

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

Datos básicos de la asignatura

Titulación: Grado en Estadística

Año plan de estudio: 2010

Curso implantación: 2013-14

Centro responsable: Facultad de Matemáticas

Nombre asignatura: Geometría de los Métodos Estadísticos

Código asigantura:1960028Tipología:OPTATIVA

Curso: 4

Periodo impartición: Primer cuatrimestre

Créditos ECTS: 6
Horas totales: 150

Área/s: Geometría y Topología **Departamento/s:** Geometría y Topología

Coordinador de la asignatura

FERNANDEZ TERNERO DESAMPARADOS

Profesorado

Profesorado del grupo principal:

MARQUEZ GARCIA CARMEN

FERNANDEZ TERNERO DESAMPARADOS

Objetivos y competencias

OBJETIVOS:

Proporcionar al estudiante una formación complementaria en Geometría como disciplina científica de apoyo a la Estadística y contribuir a la formación de profesionales capacitados para aplicar los métodos y modelos de la Estadística y la Investigación Operativa desde un enfoque geométrico. COMPETENCIAS:

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

Competencias específicas:

- Saber seleccionar los modelos o técnicas estadísticas para su aplicación en estudios y problemas reales en diversos ámbitos científicos y sociales, así como conocer herramientas de validación de los mismos.
- Comprender la importancia de la Investigación Operativa como metodología de optimización, toma de decisiones y diseño de modelos particulares para la resolución de problemas en situaciones específicas.
- Comprender y utilizar básicamente el lenguaje matemático.
- Conocer los conceptos y herramientas matemáticas necesarias para el estudio de los aspectos teóricos y prácticos de la Probabilidad, la Estadística y la Investigación Operativa.
- Conocer y saber utilizar aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, bases de datos, visualización gráfica y optimización, que sean útiles para la aplicación y desarrollo de las técnicas estadísticas.

En particular, las competencias que el estudiante adquiere con esta asignatura se concretan en los siguientes resultados del aprendizaje:

- ¿ Adquirir conocimientos de conceptos básicos de geometría.
- ¿ Intuición geométrica para interpretar sobre una muestra conceptos como los de media, desviación, covarianzas ¿
- ¿ Aplicación de la geometría en el análisis de la varianza y problemas de regresión.
- ¿ Saber aplicar la geometría para la resolución de problemas simples mediante programas de cálculo simbólico y visualización gráfica.

Competencias genéricas:

- Poseer los conocimientos básicos de los distintos módulos que, partiendo de la base de la educación secundaria general, y apoyándose en libros de texto avanzados, se desarrollan en la propuesta de título de Grado en Estadística que se presenta.

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

- Saber aplicar los conocimientos básicos de cada módulo a su trabajo o vocación de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de la Estadística y ámbitos en que esta se aplica directamente.
- Saber reunir e interpretar datos relevantes para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- Poder transmitir información, ideas, problemas y sus soluciones, de forma escrita u oral, a un público tanto especializado como no especializado.
- Haber desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
- Saber utilizar herramientas de búsqueda de recursos bibliográficos.
- Poseer habilidades y aptitudes que favorezcan el espíritu emprendedor en el ámbito de aplicación y desarrollo de su formación académica.

Contenidos o bloques temáticos

- ¿ Conceptos geométricos básicos en Estadística.
- ¿ Estadística descriptiva: métodos geométricos.
- ¿ Geometría y modelos lineales.

Relación detallada y ordenación temporal de los contenidos

1. Introducción.

Espacios Vectoriales. Subespacios. Distancias. Proyección ortogonal. Mínimos cuadrados.

2. Herramientas de la Geometría Computacional.

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

Cierre Convexo de una nube de puntos. Aplicaciones a la Estadística. Problemas de proximidad.

Diagrama de Voronoi. Triangulaciones de polígonos. Triangulaciones de nubes de puntos. Triangulación de Delaunay. Aplicaciones.

3. Geometría de una muestra

Interpretación geométrica sobre una muestra de conceptos como media, desviación, covarianzas,

4. Métodos geométricos en el análisis de la varianza.

Estudio del análisis de la varianza en una población simple, una población de datos apareados, dos o varias poblaciones independientes.

5. Fundamentos geométricos de la regresión.

Interpretación geométrica del coeficiente de correlación. Generalización a la regresión simple.

Actividades formativas y horas lectivas		
Actividad	Créditos	Horas
B Clases Teórico/ Prácticas	5	50
G Prácticas de Informática	1	10

Metodología de enseñanza-aprendizaje

Clases teóricas

La clases teóricas se desarrollarán adaptando la metodología en función del número de estudiantes y de la tipología de estudiantes de cada curso académico. Básicamente, se expondrá el contenido teórico de los temas a través de clases presenciales, siguiendo libros de texto de referencia y/o documentación previamente facilitada al estudiante, que servirán para fijar los conocimientos y contenidos ligados a las competencias previstas.

Prácticas informáticas

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

- Las prácticas informáticas se dedicarán a la resolución de problemas y/o estudio de casos prácticos que permitirán la aplicación de las definiciones, propiedades y teoremas expuestos en las clases teóricas, así como a la exposición de algunos temas complementarios. Para ello se utilizará el adecuado software matemático en los Laboratorios de Informática.
- El estudiante deberá participar de manera muy activa en estas sesiones, trabajando las prácticas propuestas por los profesores, bien de forma individual o en grupo, y exponiendo los resultados obtenidos. Esto promoverá que comiencen a alcanzar por sí mismos las competencias de la asignatura.

Prácticas en el aula

Las clases prácticas se dedicarán a la resolución de problemas y/o al estudio de casos prácticos que permitan la aplicación de las definiciones, propiedades y teoremas expuestos en las clases teóricas, de modo que los estudiantes alcancen las competencias previstas.

Los profesores podrán proponer a los estudiantes la realización de trabajos personales (individuales y/o en grupo), para cuya realización tendrán el apoyo del profesor en seminarios y/o tutorías, de forma que los estudiantes puedan compartir con sus compañeros y con el profesor las dudas que encuentren, obtener solución a las mismas y comenzar a alcanzar por sí mismos las competencias de la asignatura.

Sistemas y criterios de evaluación y calificación

Del volumen de trabajo total del alumno en una asignatura, una gran parte corresponde al trabajo individual o en grupo que el alumno ha de realizar sin la presencia del profesor. En estas horas de trabajo se incluye la preparación de las clases, el estudio, ampliación y síntesis de información recibida, la resolución de ejercicios, la elaboración y redacción de trabajos, la escritura, verificación y comprobación de programas informáticos, la preparación y ensayo de exposiciones, la preparación de exámenes.

El rendimiento del alumno en la materia cursada depende, entre otros, de la combinación de dos factores: el esfuerzo realizado y la capacidad del propio alumno. La forma en que lo evaluamos condiciona el método de aprendizaje e influye en el aprendizaje mismo. El proceso de aprendizaje puede contribuir de forma decisiva a estimular al alumno a seguir el proceso y a involucrarse más en su propia formación. En este sentido, se puede contemplar un criterio general de evaluación para todas las asignaturas que cuente con dos instrumentos: la evaluación continua y el examen y/o prueba final. En cualquier caso, se ha de respetar lo contemplado en el Estatuto de la Universidad

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

de Sevilla al respecto: "los sistemas de evaluación contemplarán la posibilidad de aprobar una asignatura por curso de manera previa a la prueba final, caso de que la hubiere".

La evaluación debe servir para verificar que el alumno ha asimilado los conocimientos básicos que se le han transmitido y adquirido las competencias generales del título. En este sentido, en el Grado en Estadística, el examen escrito es una herramienta eficaz. Pero la evaluación también debe ser el instrumento de comprobación de que el estudiante ha adquirido las competencias prácticas del título. Por ello, es recomendable que, además del examen escrito o como alternativa al mismo, se utilicen métodos de evaluación distintos (exposiciones orales preparadas de antemano, explicaciones cortas realizadas por los alumnos en clase, manejo práctico de bibliografía, uso de ordenador, trabajo en equipo, etc.) que permitan valorar si el alumno ha adquirido las competencias previstas.

En consecuencia, el criterio general deja la puerta abierta para que el profesor pueda desarrollar el esquema de evaluación continua que estime adecuado a los contenidos, a las competencias y los resultados del aprendizaje previstos. Dicho esquema deberá estar explicitado detalladamente en la programación docente y hecho público con antelación al inicio de la actividad docente. Dicho criterio general se explicita como sigue:

La evaluación constará de procedimientos que permitan la evaluación continua y un examen final. La evaluación continua se realizará a través de pruebas escritas y/o ante el ordenador, trabajos personales (individuales y/o grupales), participación en las actividades presenciales u otros medios explicitados en la programación previa de la asignatura. Los profesores fijarán en la guía docente anual el sistema de ponderación de cada una de las actividades contempladas en la misma, respetando lo contemplado en el Estatuto de la Universidad de Sevilla: "los sistemas de evaluación contemplarán la posibilidad de aprobar una asignatura por curso de manera previa a la prueba final, caso de que la hubiere".

En resumen, el sistema de evaluación podrá basarse en las siguientes técnicas:

- ¿ Exámenes de carácter teórico y/o práctico.
- ¿ Prácticas informáticas.
- ¿ Trabajos desarrollados durante el curso.
- ¿ Exposiciones de ejercicios, temas y trabajos.

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

¿ Pruebas escritas desarrolladas durante el curso.

Criterios de calificación del grupo

Cada estudiante podrá ser evaluado mediante una de las dos siguientes modalidades: evaluación continua o asistencia a examen final.

La evaluación continua se realizará teniendo en cuenta las distintas calificaciones obtenidas en:

- dos pruebas escritas, que repercutirá en un 70% de la nota final,
- la realización y exposición de trabajos, que repercutirá en un 20% de la nota final, y
- las pruebas de las prácticas informáticas, que repercutirá en un 10% de la nota final.

Para superar la asignatura será necesario obtener una calificación igual o superior a 4 en la media de las dos pruebas escritas y una calificación final igual o superior a 5.

La calificación de prácticas será la media entre las calificaciones de las pruebas realizadas durante las sesiones en el aula de informática.

Aquellos alumnos que no superen la asignatura mediante evaluación continua o bien quieran mejorar su calificación en cualquiera de las partes, podrán concurrir al examen final que constará de una prueba escrita teórico-práctica y una prueba en el aula de informática el día 23 de enero de 2019, para la primera convocatoria, y el día 10 de septiembre de 2019 para la segunda. En este caso, la calificación final será la media ponderada entre la prueba escrita (90%) y la prueba de prácticas de informática (10%).

PLAN DE CONTINGENCIA PARA EL CURSO 2020/21

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

En el escenario (A) de semi-presencialidad, los estudiantes asistirán a clase de forma presencial en dos turnos rotatorios, según acuerdo de Junta de Centro de 29 de julio de 2020. Las clases serán retransmitidas por medios digitales a través de la plataforma de Enseñanza Virtual para su seguimiento por parte de los estudiantes que no se encuentren en el aula.

Se insistirá a los alumnos sobre la importancia de que preparen las clases con antelación usando los materiales que tendrán a su disposición en la plataforma de Enseñanza Virtual.

En el escenario (B) de no presencialidad, las clases se impartirán de forma online, a través de la plataforma de Enseñanza Virtual. En este caso, se pondrá a disposición de los alumnos material bibliográfico y/o audiovisual adicional de apoyo a las clases.

En el escenario (A), las pruebas escritas y exámenes se realizarán de forma presencial durante el periodo de presencialidad de cada grupo (véase las fechas indicadas más arriba). Los ejercicios de las sesiones de prácticas de informática se realizarán de modo presencial por parte de los alumnos presentes en el aula y de modo online para los alumnos no presentes en el aula, según los turnos correspondientes al día de realización de la correspondiente sesión. En el escenario (B) de no presencialidad, todas las pruebas de evaluación se realizarán de forma online.

Horarios del grupo del proyecto docente

https://matematicas.us.es/index.php/informacion-academica/horarios

Calendario de exámenes

https://matematicas.us.es/index.php/informacion-academica/examenes

Tribunales específicos de evaluación y apelación

Presidente: ANTONIO RAFAEL QUINTERO TOSCANO Vocal: FRANCISCO JESUS FERNANDEZ LASHERAS

Secretario: RAMON JESUS FLORES DIAZ

Suplente 1: MANUEL ENRIQUE CARDENAS ESCUDERO Suplente 2: DESAMPARADOS FERNANDEZ TERNERO

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

Suplente 3: CARMEN MARQUEZ GARCIA

Bibliografía recomendada

BIBLIOGRAFÍA ESPECÍFICA:

Applied Multivariate Statistical Analysis

Autores: Richard A. Johnson y Dean W. Wichern

Edición: 2002

Publicación: Prentice Hall ISBN: 0-13-121973-1

Computational Geometry, Algorithms and Applications

Autores: M. de Berg, M. vanKreveld, M. Overmards y O. Schwarzkopf

Edición: 2000

Publicación: Springer-Verlag

ISBN: 3-540-65620-0

Computational Geometry. Texts and Monographs in Computer Science

Autores: F. P. Preparata y M. I. Shamos

Edición: 1985

Publicación: Springer-Verlag

ISBN: 0-387-96131-3

Estadística para Ciencias Biológicas y Ambientales

Autores: A. M. Lara

Edición: 2002

Publicación: Proyecto Sur de Ediciones

ISBN: 84-8254-944-8

Statistical Methods: The Geometric Approach Autores: David J. Saville y Graham R. Wood

Edición: 1991

Publicación: Springer-Verlag

ISBN: 0-387-97517-9

Geometría de los Métodos Estadísticos

Grp Clases Teórico-Prácticas de Geometría de los Métodos Estadísticos CURSO 2020-21

Fundamentos de Inferencia Estadística

Autores: F. J. Martín-Pliego López y L. Ruíz-Maya Pérez

Edición: 2008

Publicación: Thomson

ISBN:

Probabilidad y estadística para ingeniería y ciencias

Autores: Jay L. Devore

Edición: 1998

Publicación: Thomson ISBN: 968-7529-48-2

Statistical Methods: A Geometric Primer Autores: David J. Saville y Graham R. Wood

Edición: 1996

Publicación: Springer ISBN: 9780387947051

Estadística para Ingenieros y Científicos

Autores: W. Navidi Edición: 2006

Publicación: McGraw-Hill ISBN: 970-10-5629-9