Signály a informace

Přednáška č.2

Číslicové signály – vznik, popis v časové oblasti

Připomenutí předchozí přednášky

- 1. Signály různých typů jsou nositelem informací
- 2. Signály nesou informace o vývoji v čase nebo/a v prostoru.
- 3. Číslicové signály umožňují velmi efektivní záznam, analýzu a syntézu informace.
- 4. U číslicových signálů se prováděné operace dají vyjádřit jednoduchými algebraickými výrazy či jejich posloupnostmi (programy).
- 5. Číslicové signály se dají velmi dobře studovat v prostředí programu MATLAB

Vznik číslicových signálů

- 1. Převodem analogových veličin A/D
- 2. Vytvořením řad z naměřených či vypočtených hodnot např. ekonomická data, meteorologické údaje
- 3. Generováním dat v číslicovém systému, např. generátor tónů nebo šumu, syntéza řeči, syntéza obrazů, apod.

Popis číslicových signálů

jednorozměrné

```
x[n] ... n je index příslušející nejčastěji času x[0] = 2, x[1] = 0, x[2] = -3, .... v praxi píšeme často x(n) či pomocí hodnot: 2, 0, -3, ...
```

dvourozměrné (obrazy)
 x[n,m] ... n, m jsou nejčastěji souřadnice obrazu

Analogově digitální převod

Analogový signál - spojitý v čase (prostoru) a hodnotách - je převeden na číslicový signál - definovaný pouze v některých časových (prostorových) bodech a nabývající pouze konečného počtu hodnot.

Dvě základní operace:

Vzorkování (sampling), kvantování (quantization)

Vzorkování (1)

Vzorkování v čase

$$x[i] = x(i^*T_s)$$

$$T_s$$
 vzorkovací perioda, $F_s = 1/T_s$ vzorkovací frekvence

Vzorkování (2)

Vliv vzorkovací frekvence

snižováním Fs se snižuje "věrnost" navzorkovaného signálu, příliš nízké Fs může způsobit zkreslení informace v původním signálu

Fs=500Hz Fs=150Hz

Vzorkování (3)

Vzorkování

Podmínka vzorkování – F_s> 2*f_{max} vzorkovací frekvence musí být alespoň **2 x vyšší** než nejvyšší frekvence obsažená ve vzorkovaném signálu

Vzorkovací frekvence a věrnost signálu

Příklady:

Hudba (16, 8, 4, 2 kHz) CD 44,1 kHZ

Kvantování (1)

Převod na menší (konečný) počet úrovní

Kvantování (2)

Lineární

jednotlivé úrovně jsou od sebe stějhě vzdáleny – např. zaokrouhlování
 Počet bitů N → počet úrovní 2^N (rozlišení)
 příklad - hudba (16 bitů – 8 bitů)

y[n]

Nelineární – vzdálenost mezi úrovněmi je různá, např. dig. telefonie (A-law, u-law)

Poznámky k AD převodu

Po převedení různých fyzikálních veličin do bezrozměrných čísel **hrozí problém ztráty informace** o původním významu signálu x[n] = -1, 2, 5, 0, -58, -129, -41, 3, 39,

Je proto nutné zvlášť uchovat údaje o

- Původní veličině (napětí, proud, průtok, ..)
- Původních jednotkách (V, mV, A, m³) a převodním vztahu (x[i] = k . u(i.Ts))
- Vzork. frekvenci (1 Hz, 8 kHz, 1x za hod.)
- Čase snímání ("od kdy do kdy")

Digitálně analogový převod

Zpětný převod Po A/D a D/A vždy dojde ke ztrátě informace

Příklad A/D a D/A převodníku

Zvuková karta

- možnosti jejího využití i pro jiné signály

možnosti nastavení:

- vzorkovací frekvence (4 44kHz)
- rozlišení (8 16 bitů)

A/D převod u obrazových signálů (1)

Vzorkování v prostoru – převod na pixely příklady – originál, podvzorkování 4x,16x,64x

A/D převod u obrazových signálů (2)

Kvantizace – převod na menší počet úrovní příklady – originál, počet úrovní na barvu 32, 8, 2

Číslicové signály v Matlabu (1)

Vytvoření číslicového signálu výčtem hodnot

x = [28151923183-2-8-13-90]

plot (x)

... vykreslení hodnot **x** spojováním

stem (x)

... vykreslení hodnot x po bodech

Číslicové signály v Matlabu (2)

Vytvoření číslicového signálu v definovaném čase

x = [2 8 15 19 23 18 3 -2 -8 -13 -9 0]; t = 2 :13; plot (t, x)

 $y = [1 \ 0 \ 2 \ 1 \ 3 \ 2 \ 4 \ 3 \ 5 \ 4 \ 6 \ 5]$: $t = -3 \ : 8$; stem (t, x)

Číslicové signály v Matlabu (3)

Vytvoření signálu navzorkováním funkce

Fs = 100; % stanovení vzorkovací frekvence

t = -1:1/Fs:1; % vytvoření časové osy

f = 10; $x = \sin(2*pi*f*t)$; plot (t, x) %sinusovka s frekvencí f

fm = 2; y = sin (2*pi*fm*t); plot (t, y) %sinusovka s frekv. fm

z = x .* y; plot (t, z); % součin 2 sinusovek (AM)

Signály a hudba (1)

Tóny (periodické zvuky) – vytvářeny nástroji jako jsou flétna, trubka, klavír, kytara, housle,

Ruchy (neperiodické zvuky) – vytvářeny zejména bicími nástroji

Hudební tón mívá následující charakteristiky:

- výška odpovídá základní frekvenci periodického zvuku F
- síla (hlasitost) odpovídá amplitudě periodického zvuku A
- délka trvání periodického zvuku T
 v MATLABu t = 0:1/Fs:T; ton = A * sin (2 * pi * F * t)
- barva (odlišuje stejně vysoké tóny různých nástrojů) spektrální složení zvuku (podíl vyšších harmonických)

```
ton1 = A * sin (2 * pi * F * t) + A2 * sin (2 * pi * 2F * t + faze)
```

Signály a hudba (2)

Dva tóny hrané najednou zní *libozvučn*ě, jsou-li jejich frekvence v poměru malých celých čísel.

Interval	Poměr frekvencí	Příklad
oktáva	2:1	c1 + c2
kvinta	3:2	c2 + g2
kvarta	4:3	c2 + f2
velká tercie	5 : 4	c2 + e2
malá tercie	6 : 5	c2 + es2

Signály a hudba (3)

V evropské hudbě je 1 oktáva složena z 12 půltónů, tj. na klaviatuře je mezi c1 a c2 dvanáct kláves

Rovnoměrně temperované ladění

- vychází z principu, že dva sousední tóny mají vždy stejný poměr frekvencí tj. $f_2 = f_1 * q$, $f_3 = f_2 * q$, $f_{13} = f_{12} * q$,
- tedy pro oktávu platí $f_{13} = q^{12} * f_1$ a zároveň $f_{13} = 2 * f_1$
- z toho vyplývá $q = \sqrt[12]{2}$

Je-li pak dán nějaký standard, např. a1 = 440 Hz ("komorní a"), Ize frekvence ostatních tónů spočítat pomocí kvocientu q.

Signály a hudba (4)

Tabulka frekvencí vybraných tónů

Tón	Frekvence [Hz]
c1	261,626
cis1 (des1)	277,183
d1	293,665
dis1 (es1)	311,127
e1	329,628
f1	349,228
fis1 (ges1)	369,994
g1	391,995
gis1 (as1)	415,305
a1	440,000
ais1 (b)	466,164
h1	493,883
c2	523,251
cis2 (des2)	554,365
d2	587,330
dis2 (es2)	622,254
e2	659,255

Signály a hudba (5)

Jak syntetizovat melodii z not?

- 1. Ke každé notě zjistit frekvenci tónu.
- 2. Stanovit si dobu trvání pro "celou" notu. Z trvání celé noty odvodit trvání not půlových, čtvrťových, osminových, atd.
- 3. Pro každou notu v melodii vytvořit tón o dané frekvenci a daném trvání. Pro pauzu použít ticho (konst. signál o nulové úrovni) s příslušným trváním.

Shrnutí přednášky

Číslicové signály vznikají nejčastěji převodem analogových signálů (napětí na mikrofonu, osvětlení na čipu, nespojité měření průtoku, ...)

Převod zahrnuje 2 operace vzorkování a kvantování

Základním parametrem vzorkování je <u>vzorkovací frekvence</u>, u kvantování <u>rozlišení</u>

Vzorkováním i kvantováním se ztrácí část informace.

Správnou volbou parametrů <u>digitalizace</u> musíme dbát na to, aby nedošlo k zásadní změně informace.

Příkladem jednoduché aplikace je tvorba syntetických hudebních tónů.

Konec přednášky

Děkuji za pozornost.