

	Plan
1	The problem
2	FGSM,PGD
3	Adversarial Training
4	Defensive Distillation
5	Defensive Randomized Networks
6	Other Attacks (C&W)

FGSM Attack [1]:

perturbated_image = image + epsilon * sign(data grad) = $x + \epsilon * sign(\nabla_x J(\theta, \mathbf{x}, y))$

epsilon = [0, 0.0003, 0.003, 0.03, 0.3]

PGD Attack:

Accuracy results of FGSM and PGD attacks with epsilon from 0 to 0,095

Adversarial Training[3]: Epsilon=0.01, 50% Natural Data, 50% Adversarial Data

Results of Adversarial Training with FGSM

Adversarial Training[3]

Epsilon=0.03

Results of Adversarial Training with PGD

Adversarial Training[3]

Results of Adversarial Training with PGD Vs PGD attack

Adversarial Training[3]

Results of Adversarial Training with PGD Vs FGSM attack

Defensive Distillation [4]:

Basic and Distilled model against FGSM & PGD:

Randomized Networks [5]:

 $x_{test} = x_{test} + gaussian_noise(0, 0.01)$

Ensemble of Networks

10 different networks with the same architecture and different ways of attacking and predicting

Carlini & Wagner [6]:

minimize
$$D(x, x + \delta)$$

such that $C(x + \delta) = t$
 $x + \delta \in [0, 1]^n$

$$f(x') = (\max_{i \neq t} (Z(x')_i) - Z(x')t)^+$$

How it works?

Carlini & Wagner [6]:

Model	Accuracy	Accuracy after attack
Natural Model	61.81%	0%
Model trained with adversarial Data FGSM	59.96%	0%
Model trained with adversarial Data PGD	56.73%	0%
Distilled Model	60.15%	0%

Results of C&W attack on Basic model, Models with adversarial Training and Distilled Model

Conclusion and perspectives

Bibliography:

- [1] FGSM Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.
- [2] Defensive Distillation <u>Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. Distillation as a defense to adversarial perturbations against deep neural networks. arXiv preprint arXiv:1511.04508, 2016b.</u>
- [3] Madry, Aleksander et al. "Towards Deep Learning Models Resistant to Adversarial Attacks." *ArXiv*abs/1706.06083 (2018): n. pag.
- [4] Carlini, Nicholas and David A. Wagner. "Towards Evaluating the Robustness of Neural Networks." 2017 IEEE Symposium on Security and Privacy (SP) (2017): 39-57.