Mechanics of Materials

Lecture 19 - Discontinuity Functions

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

10 November, 2021

1

schedule

- 10 Nov Beam Deflection (discontinuity functions)
- 12 Nov HW 8 Due, HW 7 Self-grade Due
- 15 Nov Beam Deflection (superposition)
- 17 Nov Statically Indeterminate Beams
- 19 Nov HW 9 Due, HW 8 Self-grade Due

outline

- discontinuity functions
- group problems

discontinuity functions

discontinuity functions

- Direct integration can be very cumbersome if multiple loads or boundary conditions are applied
- Instead of using a piecewise function, we can use discontinuity functions

4

Macaulay functions

 Macaulay functions can be used to describe various loading conditions, the general definition is

$$\langle x - a \rangle^n = \begin{cases} 0 & \text{for } x < a \\ (x - a)^n & \text{for } x \ge a \end{cases} n \ge 0$$

singularity functions

 Singularity functions are used for concentrated forces and can be written

$$w = P\langle x - a \rangle^{-1} = \begin{cases} 0 & \text{for } x \neq a \\ P & \text{for } x = a \end{cases}$$

6

discontinuity functions

TABLE 12-2			
Loading	Loading Function $w = w(x)$	Shear $V = \int w(x)dx$	Moment $M = \int V dx$
M ₀	$w=M_0\langle x\!-\!a\rangle^{-2}$	$V=M_0\langle x-a\rangle^{-1}$	$M=M_0\langle x-a\rangle^0$
P -x	$w = P(x-a)^{-1}$	$V=P\langle x-a\rangle^0$	$M = P(x-a)^{\perp}$
	$w=w_0\langle x\!-\!a\rangle^0$	$V=w_0\langle x\!-\!a\rangle^1$	$M=\ \frac{w_0}{2}\langle x\!-\!a\rangle^2$
slope = m	$w=m\langle x-a\rangle^1$	$V = \frac{m}{2} \langle x - a \rangle^2$	$M = \frac{m}{6} \langle x - a \rangle^3$

discontinuity functions

- 1. We add these up for each loading case along our beam
- 2. We integrate as usual to find displacement from load, slope, or moment

8

integration

- discontinuity functions follow special rules for integration
- when $n \ge 0$, they integrate like a normal polynomial
- when n < 0, they instead follow

$$\int \langle x - a \rangle^n dx = \langle x - a \rangle^{n+1}$$

signs

- we need to be careful to match the sign convention
- loads are defined as positive when they act upward
- moments are defined as positive when they act clockwise

10

example 12.5

group problems

group one

Find the maximum deflection using either direct integration or discontinuity functions.

group two

Find the maximum deflection using either direct integration or discontinuity functions.

group three

Find the maximum deflection using either direct integration or discontinuity functions.

13