Requirements and Design Documentation (RDD)

Version 0.5

ESEP - Praktikum - Wintersemester 2016

Lüdemann	Mona	2212744	mona.luedemann1@haw-hamburg.de
Butkereit	Marvin	2247550	marvin.butkereit@haw-hamburg.de
Schumacher	Wilhelm	2245216	wilhelm.schumacher@haw-hamburg.de
Melkonyan	Anushavan	2243668	anushavan.melkonyan@haw-hamburg.de
Colbow	Marco	2177095	marco.colbow@haw-hamburg.de
Cakir	Mehmet	2195657	mehmet.cakir@haw-hamburg.de

17. November 2016

$\ddot{\mathbf{A}}$ nderungshistorie:

Version	Author	Datum	Anmerkungen/Änderungen
0.1	Mehmet Cakir	2016-10-18	Kapitel 1-4 und Testkonzept
0.2	Mehmet Cakir	2016-10-26	Korrekturen an Formulierung, Visualisierun-
			gen noch nicht festgelegt.
0.3	Mehmet Cakir	2016-11-03	Testtabellen umformatiert. Tests zu Grund-
			funktionen, HAL_UML, Systemgrenzen, Sys-
			temarchitektur und Visualisierungsentschei-
			dung sowie entsprechend kurzen Text hinzu-
			gefügt.
0.4	Mehmet Cakir	2016-11-16	Neugliederung der Kapitel 4 und 7, Sys-
			temkontexte zusammengeführt, verwende-
			te Werkzeuge ergänzt, Zeitmessung und
			FSM/HSM eingepflegt, Abbildung 6 zur Zeit-
			erfassung aktualisiert, diverse Umformulie-
			rungen.
0.5	Mehmet Cakir	2016-11-17	Aktualisiertes UML-Klassendiagramm der
			HAL und Tests der Sensorik eingefügt.

In halts verzeichn is

2		sverzeichnis	2
		0	3
	1.1		3
	1.2	1	3
	1.3	Repository-Konzept	4
3	Pro	jektmanagement	4
3	2.1		4
3	2.2	PSP/Zeitplan/Tracking	4
3	2.3	Qualitätssicherung	4
	Rar	0 0	5
	3.1	Entwicklungsumgebung	5
	3.2	Werkzeuge	5
	3.3	Sprachen	5
4	Rec	quirements and Use Cases	6
	4.1	Stakeholder	6
	4.2	Anforderungen	7
	4.3	Systemkontext	0
		4.3.1 Softwareebene	0
		4.3.2 Systemebene	.3
	4.4	Use Cases	4
5	Des	sign 1	5
	5.1	Systemarchitektur	5
		5.1.1 Förderband intern	5
		5.1.2 Gesamtsystem	6
	5.2	Datenmodellierung	7
		5.2.1 HAL	7
	5.3	Zeitmessung	9
		5.3.1 Vorbedingungen	9
		5.3.2 Ausführung	
	5.4	Verhaltensmodellierung	:1
6	Imp	plementierung 2	5
7	Tes	ten 2	5
	7.1		25
	7.2	HAL der Sensorik	26
	7.3	Serielle Schnittstelle	27
	7.4	Anlagensteuerung pro Band	27
	7.5	Ablaufsteuerung über alle drei Bänder	27
	7.6		27
8	Les	sons Learned 2	8
9	Anl	hang 2	8
-	9.1	Glossar	
			28

1 Teamorganisation

Grundsätzlich kann jedes Teammitglied eine Aufgabe seiner Wahl übernehmen. Bei jedem Meeting werden die Aufgaben verteilt, worüber im folgenden Meeting über den Fortschritt diskutiert wird. Falls ein Mitglied seine Aufgabe fertiggestellt hat, übernimmt er eine Neue. Bei Nichteinhaltung des Zeitplans werden entsprechend der Zeitpuffer andere Aufgaben zurückgestellt. Die Aufgaben richten sich nach den zu bewältigenden Milestones(siehe [?]) zum jeweiligen Praktikumstermin. Für die Projektleitung und die Pflege des RDD-Dokuments wurde jeweils eine Person bestimmt, welche im Unterkapitel 1.1 eingesehen werden können.

1.1 Verantwortlichkeiten

Aufgabe	Zuständige/r	Bemerkung
Projektleitung	Mona	Die Projektleitung überwacht den Projekt-
		fortschritt und benachrichtigt insbesondere
		bei Nichteinhalten des Zeitplans alle Team-
		mitglieder. Außerdem hat die Projektleitung
		bei Unstimmigkeiten immer das letzte Wort.
RDD-Pflege	Mehmet	Der Zuständige ist für die Gestaltung und für
		die Vollständigkeit des RDDs verantwortlich.
		Er kann andere Gruppenmitglieder dazu auf-
		fordern Inhalte für das Dokument zu erarbei-
		ten und ihm bereit zu stellen.
Protkollführung	Alle Teammitglieder	Die Protokollführung wird reihum von Grup-
		penmitgliedern übernommen. Dabei wird fol-
		gende Reihenfolge eingehalten: $Mona \rightarrow$
		$ Marvin \rightarrow Marco \rightarrow Wilhelm \rightarrow $
		$Mehmet \rightarrow Anushavan$

Tabelle 1: Zuteilung von Verantwortlichkeiten

1.2 Absprachen

Zur Kommunikation außerhalb der Praktikumstermine werden Slack und WhatsApp verwendet. Unstimmigkeiten, Fragen und Inkenntnissetzung können somit interaktiv geklärt bzw. mitgeteilt werden. Es wird erwartet, dass jedes Teammitglied in einem Zeitfenster von 24 Stunden darauf reagiert. In folgender Abbildung 1 werden die Termine der Meetings dargestellt:

Terminplan für Meetings				
Oktober	Mi, 05.10.	Do, 13.10.	Mi, 19.10.	Mi, 26.10.
	ab 16:00 Uhr	ab 12:00 Uhr	ab 16:00 Uhr	ab 16:00 Uhr
November	Do, 03.11.	Do, 10.11.	Mi, 16.11.	Mi, 23.11.
	ab 12:00 Uhr	ab 12:00 Uhr	ab 16:00 Uhr	ab 16:00 Uhr
Dezember	Do, 01.12.	Mi, 07.12.	Mi, 14.12.	Do, 22.12.
	ab 12:00 Uhr	ab 16:00 Uhr	ab 16:00 Uhr	ab 12:00 Uhr
Weitere Termine können/müssen je nach Bedarf in der Gruppe vereinbart werden.				

Abbildung 1: Terminplan der Meetings

1.3 Repository-Konzept

Das Projekt wird mit dem Versionskontrollsystem Git verwaltet. Zentral wurde ein Repository auf GitHub angelegt. Erreichbar ist das Repository unter https://github.com/mbutkereit/conveyor. Änderungen werden lokal auf einem Branch vorgenommen, jedoch nicht auf dem Master. Sind die Änderungen erfolgreich abgeschlossen, kann der Master mit dem lokalen Branch zusammengeführt werden. Bevor ein push durchgeführt wird, muss gepullt werden. Nachdem ggf. Mergekonflikte gelöst wurden, kann vom Masterbranch aus auf das Repository gepusht werden.

2 Projektmanagement

Für die Gewährleistung eines guten Managements, werden in den folgenden Kapiteln erklärt wie die Teammitglieder mit ihren Aufgaben umgehen bzw. wann eine gegenseitige Benachrichtigung über ihren Fortschritt spätestens stattfinden sollte.

2.1 Prozess

Das Projekt wird auf Grundlage der geforderten Milestones umgesetzt. Für jede Implementierung ist zuvor ein geeignetes, sowie größtenteils selbsterklärendes bzw. verständliches, aber auch möglichst vollständiges Diagramm anzufertigen. Bestenfalls sollte die Visualisierung vor der Implementierung allen anderen Teammitgliedern vorgestellt werden, um mögliche Verbesserungen einzuholen und ggf. Konflikte früh zu erkennen sowie sie zu lösen. Die nachfolgende Tabelle 2 listet für die jeweiligen Spezifikationen die im Team beschlossene Modellierung.

Spezifikation	Modellierung
Codestruktur	UML Diagramm
Verhalten bzw. logische Abläufe	Zustandsautomat
Systemarchitektur	Komponentendiagramm

Tabelle 2: Festgelegte Modellierung zur jeweiligen Spezifikation

2.2 PSP/Zeitplan/Tracking

Zu jedem Praktikumstermin wird erwartet, dass die verteilten Aufgaben bzw. Milestones erfüllt werden. Um dies zu gewährleisten, muss jedes Teammitglied bei Schwierigkeiten andere Teammitglieder darüber sofort in Kenntnis setzen, damit frühzeitig ausgeholfen werden kann. Dazu wurden Arbeitspakete definiert und als Milestones in einem Gantt-Diagramm festgehalten.

2.3 Qualitätssicherung

Hinsichtlich der Qualitätssicherung, werden die vier Punkte Team, Modellierung, Code und Förderband herangezogen.

- 1. Team: Jedes Teammitglied sollte über seine eigenen Fähigkeiten im Klaren sein und möglichst nur Aufgaben übernehmen, wofür es sich am besten geeignet fühlt. Darüber hinaus muss jedes Teammitglied bei Möglichkeit stets seine Unterstützung anbieten. Bei Problemen oder Überforderung müssen alle anderen Teammitglieder darüber unterrichtet und Aufgaben ggf. neu verteilt werden.
- 2. **Modellierung:** Vor der Implementierung muss eine geeignete Visualisierung erstellt, anderen Teammitgliedern vorgestellt und diskutiert werden.

- 3. Code: Der Code wird nach beschlossenen Konventionen gefertigt. Dabei werden bekannte Pattern eingesetzt und verständliche sowie übersichtliche Realisierungen angestrebt. Den Maßstab hierfür setzen die Teammitglieder. Treten beim Code Review keine schwerwiegenden Anmerkungen bzw. Verständnisprobleme auf, gilt der Code als verständlich und übersichtlich.
- 4. **Förderband:** Um hohen Durchsatz sowie Effizienz bei der Aussortierung zu erzielen, werden die Komponenten mit der höchstmöglichen Leistung für die jeweilige Situation angetrieben, während die Sicherheit des Bedieners im Vordergrund steht. Dabei werden Fehler- bzw. Ausnahmezustände ggf. durch einfache Signalcodes mithilfe der Ampel dem Bediener mitgeteilt.

3 Randbedingungen

In diesem Kapitel werden die Bedingungen genannt unter denen das Projekt umgesetzt wird und die Mittel, die für die Umsetzung herangezogen werden.

3.1 Entwicklungsumgebung

Die drei Förderbänder werden über drei QNX Systeme gesteuert, die über eine serielle Schnittstelle verbunden sind. Als IDE wird QNX Momentics auf Windows 7 verwendet.

3.2 Werkzeuge

- QNX Momentics IDE 5.0
- Latex(MiKTeX 2.9, Texmaker 4.5)
- Git 2.8.1
- Visual Paradigm 13.2
- Gantt Project 2.8.1
- Microsoft Visio 2016

3.3 Sprachen

Das System wird in C++ 03 programmiert. Dabei werden vorgegebene Bibliotheken verwendet, welche in folgender Tabelle 3 aufgelistet sind:

Name	Version	Autor
HWaccess.h	Unknown	Prof. Dr. Stephan Pareigis
HAWThread.h	Unknown	Prof. Dr. Stephan Pareigis
Lock.h	0.1	Simon Brummer

Tabelle 3: Verwendete Programmierbibliotheken

4 Requirements and Use Cases

Mithilfe der Requirements werden die Anforderungen an die einzelnen Komponenten des Förderbandes ermittelt. Dabei werden die Interessen der Stakeholder berücksichtigt.

4.1 Stakeholder

Stakeholder	Interessen
Kunde	- fehlerfreie Umsetzung der Anforderungen - erfolgreiche Beendigung des Projektes
Designer	 übersichtliches, leicht erweiterbares Design sorgfältige Dokumentation
Entwickler	- präzises Design - sinnvolle Kommentare - lesbarer Code
Tester	- übersichtliches, vollständiges Testkonzept
Bediener (Mitarbeiter, die das Laufband später bedienen sollen)	- einfache und intuitive Bedienung
Instandhalter	- robustes System
Andere Mitarbeiter	- Kenntnis über System und Funktions- weise

Tabelle 4: Stakeholder und ihre Interessen

4.2 Anforderungen

Titel	Beschreibung
Ansteuerung der Ampeln	Die Software soll die Ampel für folgende Fälle entsprechend ansteuern können: - grünes Licht bei Normalbetrieb, fehler- frei - gelbes Licht bei Warnungen - rotes Licht bei Fehler
Ansteuerung der Motoren der Förderbänder	Die Motoren der Förderbänder sollen in folgenden Varianten ansteuerbar sein: - Rechtslauf langsam/schnell - Linkslauf langsam/schnell - Stopp
Ansteuerung der Weichen	Die Stellungen "offen" und "geschlossen" der Weichen müssen angesteuert werden. Außerdem soll beachtet werden, dass die Weichen nur für kurze Zeit die Stellung "offen" halten, um eine Beschädigung der Weichen zu vermeiden.
Erkennung von Werkstücken	Das System muss drei Arten von Werkstücke zuordnen können: - Flache Werkstücke - Werkstücke mit Metalleinsatz (Bohrung liegt nach oben oder unten) - Werkstücke ohne Metalleinsatz (Bohrung liegt nach oben oder unten)
Aussortierung von Werkstücken	Flache Werkstücke und Werkstücke, bei der die Bohrung nach unten liegt, sollen aussortiert werden.
Reihenfolge der Werkstücke	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabelle 5: Anforderungen
(Teil 1) $\,$

Titel	Beschreibung
Erkennung von Überschlagen der Werkstücke + Aussortierung des be- treffenden Werkstücks	Das System soll erkennen, wenn sich Werkstücke bei der Übergabe von Band 1 zu Band 2 überschlagen und das betreffende Werkstück soll anschließend auf Band 2 aussortiert werden.
Langsamer Transport bei Höhenmessung	Wenn ein Werkstück durch die Höhenmessung transportiert wird, soll das Förderband langsam laufen.
Konsolenausgabe am Ende von Band 2	Wenn ein Werkstück das Ende von Band 2 erreicht, sollen auf der Konsole folgende Werkstückdaten ausgegeben werden: - ID - Typ - Höhen-Messwert von Band 1 - Höhen-Messwert von Band 2
Konsolenausgabe am Ende von Band 3	Am Ende des dritten Bandes sollen die Werkstückdaten ankommender Werkstücke ausgegeben werden.
Stopp der Bänder bei keinen Werkstücken	Alle drei Bänder sollen jeweils stoppen, wenn sich kein Werkstück auf ihnen be- findet.
Erkennung voller Rutschen	Volle Rutschen müssen mithilfe des Sensors am Rutscheneingang erkannt werden.
Rutschen koordinieren	Ist die Rutsche auf Band 1 voll, so soll die Aussortierung über Band 2 erfolgen. Umgekehrt, ist die Rutsche auf Band 2 voll, so soll die Aussortierung bereits auf Band 1 erfolgen.
Gebündelter Transport von Werkstückgruppen auf Band 3	Die drei sortierten Werkstücke sollen gebündelt (im Abstand von 1,5cm) an das Ende des dritten Bandes transportiert werden.
Fehlererfassung: Verschwinden von Werkstücken + Reaktion	Mittels Zeitmessung soll das Verschwinden von Werkstücken erfasst werden. Wenn zwischen zwei benachbarten Lichtschranken zuviel Zeit vergeht, in der kein Werkstück erfasst wurde, tritt folgende Reaktion auf: Bandstopp, Fehlermeldung.

Tabelle 6: Anforderungen(Teil 2)

Titel	Beschreibung
Fehlererfassung: Hinzufügen von	Mittels Zeitmessung soll das zu schnel-
Werkstücken + Reaktion	le oder fehlerhafte Hinzufügen von
	Werkstücken erfasst werden. Wenn zwi-
	schen zwei benachbarten Lichtschranken
	die erwartete Zeit unterschritten wird,
	in der ein Werkstück erfasst werden
	müsste, dann tritt folgende Reaktion auf:
	Bandstopp, Fehlermeldung
Fehlererfassung: Beide Rutschen voll +	Es soll erkannt werden, wenn beide Rut-
Reaktion	schen voll sind. Reaktion: Bandstopp, Feh-
	lermeldung

Tabelle 7: Anforderungen(Teil 3)

4.3 Systemkontext

Zum Systemkontext fallen Anforderungen aus Sicht der Software und des Systems an. Während bei der Software die Ansteuerung der Komponenten eines Förderbandes und die dazugehörigen Schnittstellen anfallen, ist aus Sicht der Systemebene die Kommunikation der Komponenten eines Förderbandes unter sich aber auch die der drei Förderbänder miteinander nötig.

4.3.1 Softwareebene

Im Folgenden sind die Schnittstellen der Ereignisse aufgelistet, die zur Ansteuerung der einzelnen Komponenten ausgelöst sowie Ereignisse, die mithilfe der Sensoren erfasst werden. Die Methodennamen der erfassbaren Ereignisse beginnen mit "is". Port A (Ausgabeport)

Ereignis	Methodenname
Motor Rechtslauf	right()
Motor Linkslauf	left()
Motor langsam	slow()
Motor schnell	fast()
Motor Stopp	stop()
Weiche auf/zu	<pre>switchOpen() switchClosed()</pre>
Ampel Grün	<pre>turnGreenOn() turnGrennOff()</pre>
Ampel Gelb	<pre>turnYellowOn() turnYellowOff()</pre>
Ampel Rot	<pre>turnRedOn() turnRedOff()</pre>

Tabelle 8: API auf Port A(Ausgabeport) - auslösbare Ereignisse

Port B (Eingabeport)

Ereignis	Methodenname	
Einlauf Werkstück	isItemRunningIn()	
Werkstück in Höhenmessung	isItemAltimetry()	
Höhenmessung	isItemInAltimetryToleranceRange()	
Werkstück in Weiche	isItemSwitch()	
Werkstück Metall	isItemMetal()	
Weiche offen	isSwitchOpen()	
Rutsche voll	isSkidFull()	
Auslauf Werkstück	isItemRunningOut()	

Tabelle 9: API auf Port B (Eingabeport) - erfassbare Ereignisse

Port C (Ein-/Ausgabeport)

Ereignis	Methodenname
LED Starttaste	<pre>turnLedStartOn() turnLedStartOff()</pre>
LED Resettaste	<pre>turnLedResetOn() turnLedResetOff()</pre>
LED Q1	turnLedQ10n() turnLedQ10ff()
LED Q2	turnLedQ20n() turnLedQ20ff()
Taste Start	isButtonStartPressed()
Taste Stopp	isButtonStopPressed()
Taste Reset	isButtonResetPressed()
Taste E-Stopp	isButtonEStopPressed()

Tabelle 10: API auf Port C (Ein-/Ausgabeport) - auslösbare/erfassbare Ereignisse

4.3.2 Systemebene

Die nachfolgende Abbildung 2 visualisiert die Systemgrenzen der Förderbandanlage. Dabei sind die dazugehörigen Sensoren und Aktoren abgebildet durch welche eine Förderbandanlage mit der Umwelt und seiner Nachbarsysteme kommuniziert. Die Tabellen 11 und 12 listen die Aufgaben der Sensoren und Aktoren auf.

Abbildung 2: Systemgrenzen der Förderbandanlage mit Sensoren und Aktoren

Sensor	Aufgabe	
4 Lichtschranken	Erfassen, ob sich gerade ein Werkstück sich auf der Höhe	
	der jeweiligen Lichtschranke befindet.	
Induktiver Näherungssensor	Stellt fest, ob es sich um ein metallisches Werkstück han-	
	delt.	
Höhensensor	Misst die Höhe des Werkstücks.	
Serielle Schnittstelle	Ermöglicht den Empfang von Datenpaketen anderer	
	Nachbarsysteme.	
Taster	Löst je nach Programmierung entsprechende Aktion aus.	
E-Stop	Schaltet alle Förderbänderbänder bedingungslos aus.	

Tabelle 11: Sensoren und deren Aufgaben

Aktor	Aufgabe
Motor	Treibt das band der Förderbandanlagen an.
Ampel	Signalisiert entsprechend anliegender Ereignisse.
Weiche	Sortiert bei falscher Reihung Werkstücke aus.
HumanInterface Leds	Signalisieren dem Bediener Sensorereignisse
Serielle Schnittstelle	Ermöglicht das Versenden von Datenpaketen an andere Nach-
	barsysteme

Tabelle 12: Aktoren und deren Aufgaben

4.4 Use Cases

1. Flache Werkstücke aussortieren

Akteure: Mitarbeiter (legt die Werkstücke auf das Band), Höhenmessung, Weiche

Auslösendes Ereignis: Höhenmessung erkennt das flache Werkstück.

Kurzbeschreibung: Die flachen Werkstücke werden auf Band 1 mit der Höhenmessung erkannt und über die Weiche aussortiert.

2. Werkstückdaten ausgeben

Akteure: Lichtschranke, Display

Auslösendes Ereignis: Die Lichtschranke auf Band 2 wird durchquert.

Kurzbeschreibung: Wenn ein Werkstück das Ende von Band 2 erreicht, werden die Werkstückdaten auf dem Display ausgegeben.

Weinstein dar dem Bisplay dasgegeben.

3. Ausgabe der Werkstücke auf Band 3 in der richtigen Reihenfolge

Akteure: Lichtschranke, Mitarbeiter (nimmt die Werkstücke in Empfang), Weiche

Auslösendes Ereignis: Es sind die drei richtigen Werkstücke auf Band 3 vorhanden.

Kurzbeschreibung: Auf Band 3 werden jeweils 3 Werkstücke gebündelt in der richtigen Reihenfolge (Bohrung oben ohne Metall \rightarrow Bohrung oben ohne Metall) ausgegeben.

5 Design

Im Designentwurf sind Systemarchitektur, Datenmodellierung und Verhaltensmodellierung der Förderbänder enthalten.

5.1 Systemarchitektur

Die Systemarchitektur setzt sich aus den internen Architekturen der drei Förderbänder und der Architektur des Gesamtsystems, welche die Schnittstellen der drei Förderbänder zueinander darstellt, zusammen.

5.1.1 Förderband intern

Abbildung 3: Interne Systemarchitektur eines Förderbandes

Komponente	Aufgabe		
Interrupt Verarbeiter	Verarbeitet Interrupts aus Timer, Signal Verarbeiter und		
	Hardware.		
Timer	Zeiterfassung für zeitkritische Abläufe.		
Signal Verarbeiter	Verarbeitet Signale aus Interrupt Verarbeiter, Timer, State-		
	machine und Kommunikation seriell.		
Statemachine	Steuert den logischen Ablauf.		
Kommunikation seriell	Bildet die Schnittstelle zwischen Förderband und Gesamtsys-		
	tem.		
HAL	Hardwareabstraktionsschicht zur Ansteuerung der Kompo-		
	nenten eines Förderbandes.		
Hardware	Hardware des Förderbandes		

Tabelle 13: Aufgaben der Komponenten eines Förderbandes

5.1.2 Gesamtsystem

Abbildung 4: Systemarchitektur des Gesamtsystems

Komponente	Aufgabe	
Band 1	Erstes Förderband, welches die Sortierung entsprechend	
	der Reihung durchführt.	
Band 2	Zweites Förderband, welches die Sortierung entsprechend	
	der Reihung durchführt.	
Band 3	Drittes Förderband, welches die Gruppierung der	
	Werkstücke übernimmt und anschließend übergibt.	
Serialisierer/Deserialisierer	Serialisiert bzw. deserialisiert Datenpakete zur Kommuni-	
	kation.	
Interband Kommunikation	Empfängt bzw. versendet serialisierte Datenpakete.	

Tabelle 14: Aufgaben der Komponenten des Gesamtsystems

5.2 Datenmodellierung

Die Modellierung der Klassen und dessen Methoden sind mithilfe von UML-Diagrammen realisiert.

5.2.1 HAL

Mit der Klasse HAL werden die Hardwarekomponenten eines Förderbandes angesteuert. Dabei wird jede Hardwarekomponente nach dem Singleton-Pattern instanziiert. Die nachfolgende Abbildung 5 stellt alle Klassen zur HAL mit ihren Methoden dar.

Abbildung 5: UML-Diagramm zur HAL

5.3 Zeitmessung

Auf allen Förderbändern muss jeweils eine Zeitmessung durchgeführt werden, um Zeiten zu erfassen, mit denen im Normalbetrieb unsachgemäß hinzugefügte Werkstücke oder das Verschwinden von Werkstücken erkannt werden kann.

5.3.1 Vorbedingungen

Für die Zeitmessung muss eine ähnliche Routine laufen, die auch im Normalbetrieb für die Förderbänder ablaufen wird, wobei Messvorgänge ausgelassen werden und ggf. das Werkstück bedingungslos durchgelassen wird. Falls in der Routine Geschwindigkeitsänderungen des Bandes vorliegen, müssen diese jedoch miteinbezogen werden, nur die aktive Messung nicht. Da das Band der jeweiligen Förderbänder nicht perfekt geführt wird und der Timer eine relativ hohe Zeitauflösung hat, müssen best und worst case Zeiten ermittelt werden.

5.3.2 Ausführung

Für den best case wird das Werkstück beim Hinzufügen von der ersten Lichtschranke aus gesehen am linken Rand der Führung angelegt, während beim worst case am rechten Rand angelegt werden muss. Dabei muss das Werkstück die erste Lichtschranke auch unterbrechen, was trivialerweise auch im Normalbetrieb beim Hinzufügen weiterer Werkstücke beachtet werden muss! Die Zeitmessung beginnt, nachdem das Werkstück die Lichtschranke am Anfang nicht mehr unterbricht. Unterbricht das Werkstück die nachfolgenden Lichtschranken, wird jeweils die Zeit gestoppt. Die nachfolgende Abbildung 6 zeigt wann die Zeiten t_0, t_H, t_W und t_E erfasst werden.

Abbildung 6: Stoppen der Zeit an den Lichtschranken: LS_A, LS_H, LS_W, LS_E

 LS_A : Lichtschranke-Anfang, LS_H : Lichtschranke-Höhenmessung, LS_W : Lichtschranke-Weiche, LS_E : Lichtschranke-Ende.

Auf der nachfolgenden Seite ist der endliche Automat in Abbildung 7 zur Zeitmessung abgebildet.

5.4 Verhaltensmodellierung

Das Verhalten der drei Förderbänder ist mithilfe von hierarchischen Zustandsautomaten realisiert. Nach der Durchführung einer Zeitmessung, sind alle drei Förderbänder bereit für den Normalbetrieb. Die Abbildungen 8, 9 und 10 auf den folgenden Seiten bilde die Förderbänder 1, 2 und 3 ab.

Embedded System Engineering

6 Implementierung

Anmerkung: Nur wichtige Implementierungsdetails sollen hier erklärt werden. Code-Beispiele (snippets) können hier aufgelistet werden, um der Erklärung zu dienen. Anmerkung: Bitte KEINE ganzen Programme hierhin kopieren!

7 Testen

Das Testen der Förderbänder findet nach Fertigstellung von Milestones statt, welche die Ansteuerung der Förderbänder sowie deren Kommunikation untereinander enthalten. Die Tests reichen von essentiellen Ansteuerungstests einzelner Komponenten der Förderbänder bis hin zur Ablaufsteuerung über alle drei Bänder. Für die Abnahme werden speziell komplexere Tests durchgeführt.

7.1 HAL der Aktorik

ID	Funktion	Test erfolgreich?	Anmerkung
1	Rote Lampe an.	Ja	
2	Rote Lampe aus.	Ja	
3	Gelbe Lampe an.	Ja	
4	Gelbe Lampe aus.	Ja	
5	Grüne Lampe an.	Ja	
6	Grüne Lampe aus.	Ja	
7	Motor langsam.	Ja	
8	Motor schnell.	Ja	
9	Motor links.	Ja	
10	Motor rechts.	Ja	
11	Motor stoppen.	Ja	
12	Weiche auf.	Ja	
13	Weiche zu.	Ja	
14	Led Start an.	Ja	
15	Led Start aus.	Ja	
16	Led Reset an.	Ja	
17	Led Reset aus.	Ja	
18	Led Q1 an.	Ja	
19	Led Q1 aus.	Ja	
20	Led Q2 an.	Ja	
21	Led Q2 aus.	Ja	

Tabelle 15: Testauswertung zur HAL der Aktorik

7.2 HAL der Sensorik

ID	Funktion	Test erfolgreich?	Anmerkung
1	Lichtschranke Anfang unterbrochen.	Ja	
2	Lichtschranke Anfang nicht mehr unterbrochen.	Ja	
3	Lichtschranke Höhenmessung un- terbrochen	Ja	
4	Lichtschranke Höhenmessung nicht mehr unterbrochen	Ja	
5	Lichtschranke Weiche unterbrochen	Ja	
6	Lichtschranke Weiche nicht mehr unterbrochen	Ja	
7	Lichtschranke Ende un- terbrochen	Ja	
8	Lichtschranke Ende nicht mehr unterbrochen	Ja	
9	Lichtschranke Rutsche unterbrochen	Ja	
10	Lichtschranke Rutsche nicht mehr unterbrochen	Ja	
11	E-Stopp betätigt	Ja	
12	Stopp betätigt	Ja	
13	Start betätigt	Ja	
14	Reset betätigt	Ja	
15	Korrekte Höhenmessung	Ja	
16	Metalldetektion	Ja	

Tabelle 16: Testauswertung zur HAL der Sensorik

7.3 Serielle Schnittstelle

Hier erscheinen bald die Tests zu der seriellen Schnittstelle sowie deren Auswertung.

7.4 Anlagensteuerung pro Band

Hier erscheinen bald die Tests zur Anlagensteuerung pro Band sowie deren Auswertung.

7.5 Ablaufsteuerung über alle drei Bänder

Hier erscheinen bald die Tests zur Ablaufsteuerung über alle drei Bänder sowie deren Auswertung.

7.6 Testkonzept für die Abnahme

ID	Funktion	Test erfolgreich?	Anmerkung
1	Erkennung der		
	Werkstücke am An-		
	fang des Förderbandes.		
2	Flache Werkstücke wer-		
	den aussortiert.		
3	Bei der Aussortierung		
	der flachen Werkstücke		
	blinkt die gelbe Leuchte.		
4	Werkstücke mit der Boh-		
	rung nach unten werden		
	aussortiert.		
5	Bei Förderband 1, Fehler-		
	meldung bei voller Rut-		
	sche.		
6	Bei Förderband 2, Feh-		
	lermeldung und Stopp		
	von Förderband 1 und		
	Förderband 2 bei voller		
	Rutsche.		
7	Stopp beim leeren		
	Förderband.		
8	Beim Verschwinden von		
	Werkstücken wird eine		
	Fehlermeldung ausgege-		
	ben und das Förderband		
	stoppt.		
9	Beim Hinzufügen von		
	Werkstücken mitten		
	auf dem Förderband		
	wird eine Fehlermeldung		
	ausgegeben und das		
10	Förderband stoppt.		
10	Am Ende von Band 2		
	soll die gewünschte Rei-		
	henfolge der Werkstücke		
	entstehen.		

Tabelle 17: Testauswertung der Abnahmetests(Teil 1)

ID	Funktion	Test erfolgreich?	Anmerkung
12	Am Ende vom		
	Band 3 werden die		
	Werkstückdaten als 3er		
	Gruppe ausgegeben auf		
	der Konsole.		
13	Förderband 3 transpor-		
	tiert die Werkstücke erst		
	dann bis zum Ende des		
	Bandes wenn die 3er		
	Gruppe vollständig ist.		

Tabelle 18: Testauswertung der Abnahmetests(Teil 2)

8 Lessons Learned

Führen sie ein Teammeeting durch in dem gesammelt wird, was gut gelaufen war, was schlecht gelaufen war und was man im nächsten Projekt (z.B. im PO) besser machen will. Listen sie für die Aspekte jeweils mindestens drei Punkte auf. Weitere Erfahrungen und Erkenntnisse können hier ebenso kommentiert werden, auch Anregungen für die Weiterentwicklung des Praktikums.

9 Anhang

9.1 Glossar

Eindeutige Begriffserklärungen

9.2 Abkürzungen

Listen sie alle Abkürzungen auf, die sie in diesem Dokument benutzt haben.