

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-22 (ODD)

Test: CLA-T2 Date:

Course Code & Title: 18CSC355T Data Mining and Analytics

Year & Sem: III Year / V Sem

Max. Marks: 50

Course Articulation Matrix: (to be placed)

S.No.	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	CO1	L	Н		Н	L				L	L		Н
2	CO2	M	Н		Н	L				M	L		Н
3	CO3	M	Н		Н	L				M	L		Н
4	CO4	M	Н		Н	L				M	L		Н
5	CO5	Н	Н		Н	L				M	L		Н

	Part - A					
Inetri	(10 x 1 = 10 Marks) uctions: Answer all					
Q. No	Question	Marks	BL	CO	PO	PI Code
1	In some cases, telecommunication companies desire to segment their clients into distinct groups in order to send suitable and related subscription offer. This can be considered as an example of which of the following methods? a. Supervised learning b. Unsupervised learning c. Serration	1	L1	3	1	1.7.1
2	d. Data extraction What is the relation between a candidate and frequent itemsets? (a) A candidate itemset is always a frequent itemset	1	L2	2	1	1.7.1
	 (b) A frequent itemset must be a candidate itemset (c) No relation between these two (d) Strong relation with transactions 					
3	Which algorithm requires fewer scans of data? (a) FP Growth (b) Naïve Bayes (c) Apriori (d) Decision Tree	1	L2	2	2	1.7.1
4	For the question given below consider the data Transactions: 1. I1, I2, I3, I4, I5, I6 2. I7, I2, I3, I4, I5, I6 3. I1, I8, I4, I5 4. I1, I9, I10, I4, I6 5. I10, I2, I4, I11, I5 With support as 0.6 find all frequent itemsets?	1	L2	2	2	2.6.3
	(a) <11>, <12>, <14>, <15>, <16>, <11, 14>, <12, 14>, <12, 15>, <15>, <14, 15>, <14, 16>, <12, 14, 15> (b) <12>, <14>, <15>, <12, 14>, <12, 15>, <14, 15>, <14, 15> (c) <12>, <14>, <15>, <12, 14>, <15>, <14, 15>, <14, 15>, <15, <14, 15>, <15, <14, 15>, <15, <15, <15, <15, <15, <15, <15, <15					
	(c) <111>, <14>, <15>, <16>, <11, 14>, <15, 14>, <111, 15>, <14,					

	16>, <12, 14, 15>					
	10>, <12, 14, 15> (d) <11>, <14>, <15>, <16>					
	1 1	1	T 1	3	1	171
5	Which of the following is a classification algorithm? a. K-means	1	L1	3	1	1.7.1
	b. Decision tree					
	c. Apriori					
	d. DBSCAN					
6	Frequency of occurrence of an itemset is called as	1	L1	2	1	1.7.1
	(a) Support					
	(b) Confidence					
	(c) Support Count					
	(d) Rules					
7	In the example of predicting number of babies based on storks'	1	L2	3	5	1.7.1
	population size, number of babies is					
	(a) Outcome					
	(b) Feature					
	(c) Attribute					
0	(d) observation Which of the following is not a type of design two node?	1	L2	3	1	1.7.1
8	Which of the following is not a type of decision tree node? a. Root node	1	L2	3	1	1./.1
	b. Leaf node					
	c. Decision node					
9	d. Branch node How do you calculate Confidence (A -> B)?	1	L2	2	1	1.7.1
^	(a) Support(A \cap B) / Support (A)	_			1	1.,.1
	(b) Support(A \cap B) / Support (B)					
	(c) Support(A ∪ B) / Support (A)					
	(d) Support(A ∪ B) / Support (B)					
10	The classification or mapping of a class using a predefined	1	L2	3	1	1.7.1
10	class or group is called:	_			_	10,11
	a. Data Sub Structure					
	b. Data Set c. Data Discrimination					
	d. Data Characterisation					
	Part – B					
1	(5x 5 = 25 Marks) Consider the data set D. Given the minimum support 2,	5	L3	2	2	2.5.2
1	apply Apriori algorithm on this dataset	3	LS	2	2	2.3.2
	Transaction ID Items					
	100 A,C,D					
	200 B,C,E 300 A,B,C,E					
	400 B,E					
	•	•	•	•	•	

	min sup = 2 TiD Tem 100 A.C.D scan 100 A.C.D scan 100 A.C.D scan 100 A.C.E scan 300 A.R.C.E scan 101 2 fill 2 fill 2 fill 3 fil					
2	How does tree pruning approach works? There are two common approaches to tree pruning: -prepruning -Postpruning Prepruning approach • A tree is "pruned" by halting its construction early e.g., by deciding not to further split or partition the subset of training tuples at a given node • Upon halting, the node becomes a leaf. • The leaf may hold the most frequent class among the subset tuples or the probability distribution of those tuples. • When constructing a tree, measures such as statistical significance, information gain, Gini index, and so on, can be used to assess the goodness of a split. • If partitioning the tuples at a node would result in a split that falls below a prespecified threshold, then further partitioning of the given subset is halted. • There are difficulties, however, in choosing an appropriate threshold. • High thresholds could result in oversimplified trees, whereas low thresholds could result in very little simplification. Postpruning Approach • The second and more common approach is which removes subtrees from a "fully grown" tree. • A subtree at a given node is pruned by removing its branches and replacing it with a leaf. • The leaf is labeled with the most frequent class among the subtree being replaced.	5	1.3	3	2	1.7.1
3	Explain the various metrics for evaluating the classifier performance. Metrics for Evaluating classifier Performance	5	L1	2	1	2.6.3
	It presents measures for assessing how good or how "accurate" your classifier is at predicting the class label of tuples					

 Consider the case of where the cless evenly distributed, as we classes are unbalanced e.g., where an import rare such as in medical They include accuracy (also rate), sensitivity (or recall), speand F. Note that although accuracy is word "accuracy" is also used refer to a classifier's predictive Using training data to derive estimate the accuracy of the recan result in misleading overous to overspecialization of the leadata. 	ant class of interest is tests known as recognition ecificity, precision, F1, a specific measure, the las a general term to abilities. a classifier and then esulting learned model ptimistic estimates due					
Measure	Formula					
accuracy, recognition rate	$\frac{TP+TN}{P+N}$					
error rate, misclassification rate	F+ FN FP+ FN P+ N					
sensitivity, true positive rate, recall	TP P					
specificity, true negative rate	TN N					
precision	TP TP+FP					
F, F ₁ , F-score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$					
F_{β} , where β is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$					
 the classifier. Let TP be the number of true positives. True negatives (TN): These are the negative tuples the classifier. Let TN be the number of true negatives. False positives (FP): These are the negative tuples the positive (e.g., tuples of class buys_computer = no for buys_computer = yes). Let FP be the number of false False negatives (FN): These are the positive tuples the positive (e.g., tuples of class have supported by the positive tuples). 	that were incorrectly labeled as r which the classifier predicted positives.					
ative (e.g., tuples of class buys_computer = yes for buys_computer = no). Let FN be the number of false. 4 Suppose the data contain the frequent I5}. What are the association rules that from !? The nonempty subsets of l are I5}, {I1}, {I2} and {I5}. Show the result and its confidence. Consider a database, D, consisting Suppose min. support count required is 22 Let the minimum confidence We have to first find out the frequent algorithm. Then, Association rules will be generate min. confidence. Step 1: Generating 1-Itemset Frequent Paltemset Count {I1} 6 {I2} 7	which the classifier predicted negatives. itemset I = {I1, I2, t can be generated {I1, I2}, {I1, I5}, {I2, ting association rules} g of 9 transactions. 2 (i.e. min_sup = 2/9 = %). required is 70%. itemset using Apriori d using min. support &	5	1.2	2	2	2.5.2

{I3} 6		
{I4} 2		
{I5} 2		
The above table is L1.		
In the first iteration of the algorithm, each item is a member of the set of candidate.		
The set of frequent 1-itemsets, L1, consists of the candidate 1-		
itemsets satisfying minimum support.		
Step 2: Generating 2-Itemset Frequent Pattern		
To discover the set of frequent 2-itemsets, L2, the algorithm		
uses L1 Join L1 to generate a candidate set of 2-itemsets, C2. Next, the transactions in D are scanned and the support count		
for each candidate itemset in C2 is accumulated (as shown in		
the middle table).		
The set of frequent 2-itemsets, L2, is then determined,		
consisting of those candidate 2-itemsets in C2 having minimum		
support. L1 = {11,12,13,14,15}.		
Since L2 = L1 join L1 then $\{11,12,13,14,15\}$ join		
{I1,I2,I3,I4,I5}.		
It becomes -> C2= [{I1,I2} {I1,I3}, {I1,I4}, {I1,I5}, {I2,I3},		
$\{12,14\}, \{12,15\}, \{13,14\}, \{13,15\}, \{14,14\}$		
Now we need to check the frequent itemsets with min support count.		
Then we get \rightarrow (C2*C2) L2= [{I1,I2} {I1,I3}, {I1,I5}, {I2,I3},		
{I2,I4}, {I2,I5}].		
Similarly, We do it for L3.		
Step 3: Generating 3-Itemset Frequent Pattern		
L2= [{I1,I2} {I1,I3}, {I1,I5}, {I2,I3}, {I2,I4}, {I2,I5}]. L3 = L2 JOIN L2 i.e.		
$C3 = [\{11,12,13\},\{11,12,15\}].$		
Now, the Join step is complete and the Prune step will be used		
to reduce the size of C3. Prune step helps to avoid heavy		
computation due to large Ck.		
Procedure Step 1: Find Items starting with I2 in B It gives {I1, I2, I3}, {I1, I2, I4}, {I1, I2, I5}.		
Step 2: Find Items starting with I3 in B		
It gives NIL, Similarly I4, I5.		
Step 3: Find out infrequent items sets using min support count		
and remove them.		
Based on the Apriori property that all subsets of a frequent itemset must also be frequent, we can determine that four latter		
candidates cannot possibly be frequent. How?		
For example, lets take {I1, I2, I3}. The 2-item subsets of it are		
{I1, I2}, {I1, I3} & {I2, I3}. Since all 2-item subsets of {I1, I2,		
[13] are members of L2, We will keep {I1, I2, I3} in C3. Lets take another example of {I2, I3, I5} which shows how the		
pruning is performed. The 2-item subsets are {I2, I3}, {I2, I5}		
& {I3,I5}.		
BUT, {I3, I5} is not a member of L2 and hence it is not		
frequent violating Apriori Property. Thus We will have to		
remove {I2, I3, I5} from C3. Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after checking for all		
members of the result of Join operation for Pruning.		
Now, the transactions in D are scanned in order to determine		
L3, consisting of those candidates 3-itemsets in C3 having		
minimum support. Step 4: Generating 4-Itemset Frequent Pattern		
The algorithm uses L3 Join L3 to generate a candidate set of 4-		
itemsets, C4. Although the join results in {{I1, I2, I3, I5}}, this		
itemset is pruned since its subset {{I2, I3, I5}} is not frequent.		
Thus, C4 = φ (Null), and algorithm terminates, having found all]

1						
	of the frequent items. This completes our Apriori Algorithm. Step 5: Generating Association Rules From Frequent Itemsets Let the minimum confidence threshold is, say 70%. The resulting association rules are shown below, each listed with its confidence. R1: I1 ^ I2 -> I5 Confidence = sc {I1,I2,I5}/sc {I1,I2} = 2/4 = 50%. R1 is Rejected. R2: I1 ^ I5 -> I2 Confidence = sc {I1,I2,I5}/sc {I1,I5} = 2/2 = 100%. R2 is Selected. R3: I2 ^ I5 -> I1 Confidence = sc {I1,I2,I5}/sc {I2,I5} = 2/2 = 100%. R3 is Selected. R4: I1 -> I2 ^ I5 Confidence = sc {I1,I2,I5}/sc {I1} = 2/6 = 33%. R4 is Rejected. R5: I2 -> I1 ^ I5 Confidence = sc {I1,I2,I5}/{I2} = 2/7 = 29% R5 is Rejected. R6: I5 -> I1 ^ I2					
	Confidence = $sc\{11,I2,I5\}/\{I5\} = 2/2 = 100\%$.					
	R6 is Selected.					
5	Explain Naive Baye's Classification.	5	L2	3	2	2.6.3
	The naïve Bayesian classifier, or simple Bayesian classifier, works as follows:				-	2.0.5
	 Let D be a training set of tuples and their associated class labels. As usual, each tuple is represented by an n-dimensional attribute vector, X = (x₁, x₂,,x_n), depicting n measurements made on the tuple from n attributes, respectively, A₁, A₂,, A_n. Suppose that there are m classes, C₁, C₂,, C_m. Given a tuple, X, the classifier will predict that X belongs to the class having the highest posterior probability, conditioned on X. That is, the naïve Bayesian classifier predicts that tuple X belongs to the class C_i if and only if 					
	$P(C_i X) > P(C_j X) \text{for } 1 \le j \le m, j \ne i.$ Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the maximum posteriori hypothesis. By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)),					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the maximum posteriori hypothesis. By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$ 3. As $P(X)$ is constant for all classes, only $P(X C_i)P(C_i)$ need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1) = P(C_2) = \cdots = P(C_m)$, and we would therefore maximize $P(X C_i)$. Otherwise, we maximize $P(X C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i) = C_{i,D} / D $, where $ C_{i,D} $ is the number of training tuples of class C_i in D . 4. In order to reduce computation in evaluating $P(X_i)C_i$, the naïve assumption of class conditional independence is made.					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$ 3. As $P(X)$ is constant for all classes, only $P(X C_i)P(C_i)$ need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1) = P(C_2) = \cdots = P(C_m)$, and we would therefore maximize $P(X C_i)$. Otherwise, we maximize $P(X C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i) = C_{i,D} / D $, where $ C_{i,D} $ is the number of training tuples of class C_i in D . 4. In order to reduce computation in evaluating $P(X_i)C_i$, the naïve assumption of class conditional independence is made.					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$ 3. As $P(X)$ is constant for all classes, only $P(X C_i)P(C_i)$ need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1) = P(C_2) = \cdots = P(C_m)$, and we would therefore maximize $P(X C_i)$. Otherwise, we maximize $P(X C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i) = C_{i,D} / D $, where $ C_{i,D} $ is the number of training tuples of class C_i in D . 4. In order to reduce computation in evaluating $P(X_j C_i)$, the naïve					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$ 3. As $P(X)$ is constant for all classes, only $P(X C_i)P(C_i)$ need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1) = P(C_2) = \cdots = P(C_m)$, and we would therefore maximize $P(X C_i)$. Otherwise, we maximize $P(X C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i) = C_{i,D} / D $, where $ C_{i,D} $ is the number of training tuples of class C_i in D . 4. In order to reduce computation in evaluating $P(X_i)C_i$, the naïve assumption of class conditional independence is made.					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$ 3. As $P(X)$ is constant for all classes, only $P(X C_i)P(C_i)$ need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1) = P(C_2) = \cdots = P(C_m)$, and we would therefore maximize $P(X C_i)$. Otherwise, we maximize $P(X C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i) = C_{i,D} / D $, where $ C_{i,D} $ is the number of training tuples of class C_i in D . 4. In order to reduce computation in evaluating $P(X_i)$, the naïve assumption of class conditional independence is made. $P(X C_i) = \prod_{k=1}^n P(x_k C_i)$ $= P(x_1 C_i) \times P(x_2 C_i) \times \cdots \times P(x_n C_i).$ (a) If A_k is categorical, then $P(x_k C_i)$ is the number of tuples of class C_i in D having the value x_k for A_k , divided by $ C_{i,D} $, the number of tuples of class C_i in D . (b) If A_k is continuous-valued, then we need to do a bit more work, but the calculation is pretty straightforward. A continuous-valued attribute is typically assumed to have a Gaussian distribution with a mean μ and standard deviation σ , defined by					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$ 3. As $P(X)$ is constant for all classes, only $P(X C_i)P(C_i)$ need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1) = P(C_2) = \cdots = P(C_m)$, and we would therefore maximize $P(X C_i)$. Otherwise, we maximize $P(X C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i) = C_{i,D} / D $, where $ C_{i,D} $ is the number of training tuples of class C_i in D . 4. In order to reduce computation in evaluating $P(X_jC_i)$, the naïve assumption of class conditional independence is made. $P(X C_i) = \prod_{k=1}^n P(x_k C_i) = P(x_1 C_i) \times P(x_2 C_i) \times \cdots \times P(x_n C_i).$ (a) If A_k is categorical, then $P(x_k C_i)$ is the number of tuples of class C_i in D having the value x_k for A_k , divided by $ C_{i,D} $, the number of tuples of class C_i in D . (b) If A_k is continuous-valued, then we need to do a bit more work, but the calculation is pretty straightforward. A continuous-valued attribute is typically assumed to					
	Thus we maximize $P(C_i X)$. The class C_i for which $P(C_i X)$ is maximized is called the <i>maximum posteriori hypothesis</i> . By Bayes' theorem (Equation (6.10)), $P(C_i X) = \frac{P(X C_i)P(C_i)}{P(X)}. \tag{6.11}$ 3. As $P(X)$ is constant for all classes, only $P(X C_i)P(C_i)$ need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, that is, $P(C_1) = P(C_2) = \cdots = P(C_m)$, and we would therefore maximize $P(X C_i)$. Otherwise, we maximize $P(X C_i)P(C_i)$. Note that the class prior probabilities may be estimated by $P(C_i) = C_{i,D} / D $, where $ C_{i,D} $ is the number of training tuples of class C_i in D . 4. In order to reduce computation in evaluating $P(X_i)$, the naïve assumption of class conditional independence is made. $P(X C_i) = \prod_{k=1}^n P(x_k C_i)$ $= P(x_1 C_i) \times P(x_2 C_i) \times \cdots \times P(x_n C_i).$ (a) If A_k is categorical, then $P(x_k C_i)$ is the number of tuples of class C_i in D having the value x_k for A_k , divided by $ C_{i,D} $, the number of tuples of class C_i in D . (b) If A_k is continuous-valued, then we need to do a bit more work, but the calculation is pretty straightforward. A continuous-valued attribute is typically assumed to have a Gaussian distribution with a mean μ and standard deviation σ , defined by					

$P(X C_i)P($	$(C_i) > P(X C_j)P(C_j)$ for $1 \le j \le m, j \ne i$. (6.15)					
	cted class label is the class C_i for which $P(X C_i)P(C_i)$ is the					
maximum.	and the first of the case of the milet (A c_i) is the					
	Part – C					
	$(4 \times 10 = 10 \text{ Marks})$	1	1	1	1	
	transactions. Let the minimum support	10	L3	2	1	1
TID	up=2, min_confi=80% ITEMS					
TID						
T2	{1,2,3,4,5,6} {7,2,3,4,5,6}					
T3	{1,8,4,5}					
T4	{1,9,0,4,6}					
T5	{0,2,2,4,5}					
	msets and generate the association rules					
using Apriori algorith						
using ripriori digorith	···					
TD Items						
71 (1,2,3,4,5,6)	support = $601 = \frac{60}{100} \times 5 = 3$ confidence = 801					
T2 {7,2,2,4,5,6}	confidence - and					
1 (1,8,4,5)	- 2 607					
T4 [1,9,0,4,6]						
1. Finding Frequent Itemse	t andidate 1 - Itemset andidate 2 - Itemset					
LI Item Court L2 Itom	court tem count Hamset count					
1 3 01,4						
	3 3 2 3					
4 5 5 4 6 3	4 5 4 5 4					
The same of the sa	6 3 2,4 3					
	2,6 2					
	9 1 415 4					
cardidate 3 - Itomset	0 2 4,6 3 5,6 2					
Ttem (comb)						
41516 2	reguent Itemet [2,4,5]					
& Generale Association 1	Rule using Min-confi - 80%.					
the frequent is	erroet - [2,4,5]					
write possible subset	of fraguent itemsel					
{2,4}, {4,5}, {2,5}, {2	ternoet - [2,4,5] t of frequent itemoet 3, {43, 83, [3, {2,4,5]} fliminate the empty subset					
Cart - sup (AUB)	$=\frac{\sup\left(2,4,6\right)}{\sup\left(2,4\right)}=\frac{2}{3}=1\left(100^{- x }\right)$					
sup(A)	$\sup_{x \in \mathbb{R}^{2}} (2,4) = \frac{3}{3} = 1 (100)$					
R2 4N5 -> 2 (Elimin	ated)					
$R_{12} \xrightarrow{4 \text{ NS}} 2 \text{ (eliminal of } \frac{\text{sup}(4,5,2)}{\text{sup}(4,5)} = \frac{3}{4}$	0.75 (75%)					
Sup (4,5) = 4	501-6 12					
Sup (2,5,4) =3	- 1 (100t)					
R_3 2 $N_5 \rightarrow 4$ (Mice) $\frac{\sup(2,5,4)}{\sup(2,5)} = \frac{5}{3}$	=1(100)					
Ry 2 -> 4 N5 (Accept	(100/l)					
sup (2,4,5) = 3 =	=1 (100 1/)					
Sup (2) 3	13					
Rs 4→215 (Elim	inated)					
$\frac{\sup(4,2,5)}{\sup(4)} = \frac{3}{5}$	= 0.6 (60%)					
sup (4) 5	4.00					
R6 $5 \rightarrow 2 \land 4$ (Elimin sup(5,2,4) = $\frac{3}{4}$ = $\frac{3}{4}$	ated)					
3up (5,2,4) = 3 = 4	75(751)					
8up(5)						
max Kules (That gatisf	os both supports & confidence)					
1.214->5	V					
2.215 -> 4						
2. 2→4N5						
	steps to generate decision tree from the					

		1				<u> </u>
Algorithm: 0	Generate_decision_tree. Generate a decision tree from the training tuples of data D.					
Input:						
■ Data p	artition, D, which is a set of training tuples and their associated class labels;					
■ attribu	te_list, the set of candidate attributes;					
titions	ute_selection_method, a procedure to determine the splitting criterion that "best" parthe data tuples into individual classes. This criterion consists of a splitting_attribute ossibly, either a split point or splitting subset.					
Output: A d	ecision tree.					
Method:						
(1) create a						
	s in D are all of the same class, C then are N as a leaf node labeled with the class C ;					
	ute_list is empty then					
(6) apply A	Irn N as a leaf node labeled with the majority class in D; // majority voting ttribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;					
	ode N with splitting_criterion; ing_attribute is discrete-valued and					
mu	ltiway splits allowed then // not restricted to binary trees					
	ribute_list ← attribute_list – splitting_attribute; // remove splitting_attribute n outcome j of splitting_criterion					
// partit	tion the tuples and grow subtrees for each partition					
	D_j be the set of data tuples in D satisfying outcome j ; // a partition D_j is empty then					
(13) (14) else	attach a leaf labeled with the majority class in D to node N ; attach the node returned by Generate_decision_tree(D_j , attribute_list) to node N ;					
endfor						
(15) return l	v;					
Pasis algorith	m for indusing a decision tree from training tuples					
	nm for inducing a decision tree from training tuples.	10	L1	2	1	1.7.1
	t are the advantages of FP-Growth algorithm? uss the applications of association analysis.	10	LI	2	1	1./.1
	dvantages of FP Growth Algorithm					
	This algorithm needs to scan the database twice when					
	compared to Apriori, which scans the transactions for each iteration.	,				
0	The pairing of items is not done in this algorithm,					
	making it faster.					
0	The database is stored in a compact version in	Į.				
	memory.					
	It is efficient and scalable for mining both long and short frequent patterns.	-				
	No candidate generation, no candidate test					
0	Uses compact data structure called FP-Tree					
	Eliminates repeated database scan					
	Basic operation is counting and FP-tree building Applications of association analysis					
	ociation rule learning is the important technique of	,				
	learning, and it is employed in Market Basket analysis,					
	age mining, continuous production, etc. In market					
	nalysis, it is an adequate used by several big retailers to relations among items.)				
	ion rules were originally transformed from point-of-					
	that represent what products are purchased together.					
	n its roots are in linking point-of-sale transactions,					
	on rules can be used external the retail market to find	- 1				
	hips among types of "baskets." e various applications of Association Rule which are as	.]				
follows -		1				
	Items purchased on a credit card, such as rental cars					
	and hotel rooms, support insight into the following	: [
	product that customer are likely to buy.	1				
	Optional services purchased by tele-connection users (call waiting, call forwarding, DSL, speed call, etc.)					
	support decide how to bundle these functions to					
	maximize revenue.	1				
	Banking services used by retail users (money industry					
	accounts, CDs, investment services, car loans, etc.)					

	recognize users likely to needed other services.					
	Unusual group of insurance claims can be an					
	expression of fraud and can spark higher investigation.					
	Medical patient histories can supports expressions of					
	likely complications based on definite set of					
	treatments.					
4	Illustrate any two of the attribute selection measure with an	10	L2	3	2	2.5.2
	example.					
	Attribute Selection Measures					
	An attribute selection measure is a heuristic for					
	selecting the splitting criterion that "best" separates a					
	given data partition, D, of class-labeled training tuples					
	into individual classes.					
	• If we were to split D into smaller partitions according					
	to the outcomes of the splitting criterion, ideally each					
	partition would be pure (i.e., all the tuples that fall into					
	a given partition would belong to the same class).					
	Attribute selection measures are also known as					
	splitting rules because they determine how the tuples					
	at a given node are to be split.					
	Three popular attribute selection measures					
1	- information gain					
1	- gain ratio, and					
	- gini index.					
	Information gain					
	• ID3 uses information gain as its attribute selection					
	measure.					
	• The attribute with the highest information gain is					
	chosen as the splitting attribute for node N .					
	Where pi is the probability that an arbitrary tuple in D					
	belongs to class Ci and is estimated by Ci,D / D .					
	• A log function to the base 2 is used, because the					
	information is encoded in bits.					
	• Info(D) is just the average amount of information					
	needed to identify the class label of a tuple in D.					
	• <i>Info(D)</i> is also known as the entropy of <i>D</i> .					
	The expected information needed to classify a tuple in					
	D is given by					
	$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i),$					
	$m_i o(D) = -\sum_{i=1}^{n} p_i \log_2(p_i),$					
	How much more information would we still need					
	(after the partitioning) in order to arrive at an exact					
	classification? This amount is measured by					
	$\sum_{i=0}^{p} D_{i} \dots D_{i} $					
1	$\mathit{Info}_A(D) = \sum_{i=1}^{\nu} rac{ D_j }{ D } imes \mathit{Info}(D_j).$					
1						
1	• The term $ Dj / D $ acts as the weight of the <i>j</i> th partition.					
1	• InfoA(D) is the expected information required to					
1	classify a tuple from D based on the partitioning by A .					
1	The smaller the expected information (still) required,					
	the greater the purity of the partitions.					
1	• Information gain is defined as the difference between					
1	the original information requirement (i.e., based on					
1	just the proportion of classes) and the new requirement					
1	(i.e., obtained after partitioning on A).					
	$Gain(A) = Info(D) - Info_A(D)$.					
1	• The class label attribute, buys computer, has two					
1	distinct values (namely, {yes, no}).					
1	• There are two distinct classes (that is, $m = 2$).					
1	• Let class C1 correspond to yes and class C2					
1	correspond to <i>no</i> .					
1	There are nine tuples of class <i>yes</i> and five tuples of class re					
1	class no.					
1	A (root) node N is created for the tuples in D .					
						ļ

Info(D) =
$$-\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$$
 bits.

• Compute the expected information requirement for each attribute.

• Age category youth - 2 yes & 3 no, Middle aged - 4 yes & 0 no, Senior - 3 yes & 2 no.

Info_{age}(D) = $\frac{5}{14} \times (-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5})$

$$+ \frac{1}{14} \times (-\frac{4}{4} \log_2 \frac{4}{4} - \frac{0}{4} \log_2 \frac{0}{4})$$

$$+ \frac{5}{14} \times (-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5})$$

$$= 0.694$$
 bits.

• Compute $Gain(income) = 0.029$ bits, $Gain(student) = 0.151$ bits, and $Gain(reedir rating) = 0.048$ bits.

• Age has the highest information gain among the attributes, it is selected as the splitting attribute.

Gain ratio

• It prefers to select attributes having a large number of values.

• C4.5, a successor of ID3, uses an extension to information gain known as gain ratio.

• It applies a kind of normalization to information gain using a "split information" value defined analogously with $Info(D)$ as

 $SplitInfo_A(D) = -\sum_{j=1}^{V} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$.

• It differs from information gain, which measures the information with respect to classification that is acquired based on the same partitioning.

• The gain ratio is defined as

 $Gain(A) = \frac{Gain(A)}{SplitInfo(A)}$.

$$\textit{SplitInfo}_A(D) = -\frac{4}{14} \times \log_2 \left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2 \left(\frac{4}{14}\right)$$

$$= 0.926.$$

Gain(income) = 0.029.

GainRatio(income) = 0.029/0.926 = 0.031.

*Program Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator