INTERNET: introduction et adressage

Plan

- 1. Introduction à L'INTERNET: Historique et définitions
- 2. Protocoles IP: Adressage
- 3. Protocole ARP: Résolution d'adresses
- 4. Protocole ICMP : contrôle des erreurs
- 5. Mode d'accès à Internet : ADSL, PPP

Bibliographie

- TCP/IP: Principes, protocoles et Architecture
 Douglas E.Comer, Prentice Hall 4ème édition 754 pages
- TCP/IP Illustré vol. 1, 2 et 3
 W. Richard Stevens, Addison-Wesley 1996
- Routage dans l'Internet
 Christian Huitema, Prentice Hall 2ème édition 384 pages
- Réseaux locaux et Internet : Des protocoles à l'interconnexion
 Laurent toutain, Hermès 2 ème édition 732 pages

Historique

- 1969 : Début du réseau (D)ARPANET (4 calculateurs)
- DARPA = Defense Advanced Research Projects Agency
- 1972 : Démonstration de ARPANET
 - IMP Interface Message Processor mode connecté (X.25)
 - NCP Network Control Program non connecté (ancêtre de TCP)
- 1977-1979: Les protocoles TCP/IP prennent leur forme définitive,
- 1980 L'université de Berkeley intègre TCP/IP dans Unix (BSD)
- 1980 janvier 1983 : Tous les réseaux raccordés à ARPANET sont convertis à TCP/IP

Historique (2)

- 198x TCPIP devient le Standard de facto pour l'interconnexion de réseaux hétérogènes,
- 1988 Mise en place du Backbone de la NSFnet (12 réseaux régionaux)
- 1992 EBone et RENATER
- 199x explosion de l'offre et de la demande de services Internet y compris pour les particuliers
- 1995 Arrêt du Backbone NSFnet
 - Mise en œuvre des NAPs (Network Access Points)
- 200x Internet nouvelle génération

Qu'est ce qu'Internet? 3 définitions

- 1. Une famille de protocoles de communication, appelée :
 - TCP / IP: Transmission Control Protocol / Internetworking Protocol,
 - ou Internet Protocol Suite,
- 2. Un réseau mondial constitué de milliers de réseaux hétérogènes, et interconnecté au moyen des protocoles TCP/IP :
 - Réseaux locaux d'agences gouvernementales, institutions d'éducation, hôpitaux, des commerciaux, ...
 - Réseaux fédérateur de Campus,
 - Réseaux Régionaux, Nationaux, Intercontinentaux (Américains, Européen, Eunet, Ebone, Asiatiques, ...)
- 3. Une communauté de personnes utilisant différents services
 - Courrier électronique, Web, Transfert de fichiers FTP, ...

Qu'est ce qu'un Intranet ou Extranet ?

- 1. Intranet : un réseau d'entreprise dans lequel les mêmes technologies et protocoles que l'Internet sont mis en œuvres
 - Routeurs, protocoles TCP/IP, protocoles applicatifs: émail, web, ...
- 2. Extranet : un Intranet qui offre des accès distants aux usagers/employés/partenaires de l'entreprise
 - Problème de sécurité

Structure Physique de l'INTERNET

Qui normalise l'Internet?

- Technologie INTERNET développée par un organisme bénévole : l'IETF (Internet Engineering Task Force) organisé en 8 secteurs de recherche,
- Les normes sont appelées RFC (Request For Comment),
 - Exemple : RFC 791 (décrit IP) RFC 793 (décrit TCP)
 - Documents gratuits accessibles à « <u>www.ietf.org</u> »
- Tout le monde peut proposer un RFC
 - L'IAB (Internet Activities Board) gère le processus d'acceptation des RFC
- les standards sont publiés par une association sans but lucratif l'internet society (1992)

Qui gère Internet

- 1. Normes techniques : IETF (internet Engineering Task Force) Les normes sont appelées RFC (Request For Comment),
 - Exemple : RFC 791 (décrit IP) RFC 793 (décrit TCP)
 - Documents gratuits accessibles à « www.ietf.org »
- 2. Noms de domaines: ICANN (USA), RIPE (France) ICANN: Internet corporation for Assigned Names and Numbers;
- 3. Adresses IP, N°port, N°AS: ICANN depuis décembre 1998;
- 4. Réseaux : ISP (Internet Service Provider), NSP (Network Service Provider)
- 5. Fibres : Opérateurs télécoms
- 6. Serveurs, contenus : tout le monde (particuliers, entreprises, université, ...)

Allocation des Adresses/Noms

Internet Corporation For Assigned Names and Numbers

Regional Internet Registries

NIR

National Internet Registries

LIR

Local Internet Registries

End Users

Architecture TCP/IP

Normes et RFC

Couche Liaison :

_	SLIP : Serial Line IP	RFC 1055
_	PPP : Point to Point Protocol	RFC 1661

Couche Réseaux :

_	IP : Internetworking Protocol	RFC 791 (v4) et RFC 2460 (v6)
_	ICMP : Internet Control Message Protocol	RFC 792
_	ARP : Adress Resolution Protocol	RFC 826
_	RARP: Reverse ARP	RFC 903
_	IGMP: Internet Group Management Protocol	RFC 1112

Protocoles Transport

•	UDP : User Datagram Protocol	RFC 768
•	TCP: Transport Control Protocol	RFC 793

Normes et RFC (suite)

Couche Application :

_	DNS: Domain Name Server	RFC 1034	UDP (53)
_	HTTP: Hyper Text Transfer Protocol	RFC 2616	TCP (80)
_	SMTP: Simple Mail Transfer Protocol	RFC 821	TCP (25)
_	POP 3 : Post Office Protocol	RFC 1939	TCP (110)
_	MIME: Multipurpose Internet Mail Extensions	RFC 2045	-
_	FTP : File Transfer Protocol	RFC 959	TCP (20-21)
_	TELNET	RFC 854	TCP (23)
_	BOOTP : Bootstrap Protocol	RFC 951	UDP (67-68)
_	DHCP: Dynamic Host Configuration Protocol	RFC 2131	TCP (546-547)
_	SNMP : Simple Network Management Protocol	RFC 1157	UDP (161-162)
_	RIP 2 : Routing Internet Protocol	RFC 2453	UDP (520)
_	OSPF 2 : Open Shortest Path First	RFC 2328	-
_	BGP : Border Gateway Protocol	RFC 1771	TCP (179)
_	IMAP : Internet Message Access Protocol	RFC 2060	TCP (143)
_	RTSP : Real Time Streaming Protocol	RFC 2326	TCP (554)
_	NFS : Network File system	RFC 1094	UDP (2049)

Architecture d'un terminal IP

Communication client/serveur

© Ahmed Mehaoua 1999 - page 16 page 16

Structure des Paquets IP

Adresse réseau

Classes d'adresses IP

Prefix réseau

10

1110

réseau

♦ 127 réseaux –

\$\\ 65534 machines

♦ 2097152 réseaux –

\$\square\$ 254 machines

Suffix machine

hôte

adresse diffusion

Classe D de 224.0.0.0 à 239.255.255.255 (multicast)

Classe E de 240.0.0.0 à 255.255.255 (Expérimentale)

Adresses IP particulières

- Adresse de diffusion : tous les champs sont à « 1 »
 - Exemple: 255.255.255.255
 - Diffusion sur tout le réseau (tous les sous-réseaux sont concernés)
- Adresse de diffusion dirigée : le champ «hostid» est tout à « 1 » et le champ « netid » est une adresse réseau spécifique :
 - Exemple: 192.20.0.255
 - ⇒ la diffusion concerne toutes les machines situées sur le réseau spécifié : 192.20.0.255
 - ⇒ désigne toutes les machines du réseau de classe C 192.20.0

Adresse de boucle locale :

- l'adresse réseau 127.0.0.1 est réservée pour la désignation de la machine locale, c'est à dire la communication intra-machine. Une adresse réseau 127 ne doit, en conséquence, jamais être véhiculée sur un réseau et un routeur ne doit jamais router un datagramme pour le réseau 127.
- Adresse de BOOTP (« hostid » et « netid » tout à zéro), l'adresse est utilisée au démarrage du système afin de connaître l'adresse IP (Cf RARP).
 - Exemple: 0.0.0.0

Masque de réseau ou Netmask

- Masque du réseau : adresse IP particulière servant à identifier l'adresse du réseau à partir d'une adresse IP de machine.
 - Le masque d'un réseau de classe A = 255.0.0.0
 - Le masque d'un réseau de classe B = 255.255.0.0
 - Le masque d'un réseau de classe C = 255.255.255.0
 - Dans le cas d'un réseau découpé en sous-réseau : le masque est calculé en mettant tous les bits du préfix réseaux à la valeur binaire « 1 », et tous les bits associés au suffix à « 0 ».
- Adresses réseau : adresse IP dont la partie « hostid » ne comprend que des zéros;
 - => la valeur zéro ne peut être attribuée à une machine réelle : 192.20.0.0 désigne le réseau de classe C 192.20.0
- Adresse machine locale : adresse IP dont le champ réseau (netid) ne contient que des zéros;
 - Exemple 0.0.25.1

Netmask

- Permet à une station de savoir si la station destination est dans le même réseau qu'elle ou s'il lui faut envoyer son paquet au routeur qui l'acheminera,
- Exemple station A veut envoyer un paquet à une station B :
 - @ IP A = 172.16.2.4
 - @ IP B = 172.16.3.5
 - @ netmask A: 255.255.0.0
- La station A doit réaliser 3 opérations :
 - 1. @ A AND @ netmask A = Res 1
 - 2. @ B AND @ netmask A = Res 2
 - 3. comparer Res 1 et Re 2
 - Si Res 1 = Res2 alors station sur le même réseau
 - Sinon station sur des réseaux distants

A AND B В Netmask (2) 0 0 1 0 0 1 0 0 1 1 172 (@ IP A) 16 10101100 . 00010000 . 00000010 . 00000100 (mask A = 255.255.0.0)(@ du réseau classe B 172.16.0.0) 172 . (@ IP B) 16 . 3 . 5 10101100 . 00010000 . 00000011 . 00000101 (mask A = 255.255.0.0)

10101100.00010000.00000000.00000000

(@ du réseau B 172.16.0.0)

Netmask (3) Autre exemple @ IP C = 125.128.96.12

Adresses IP Privées

• Classe A: 10.0.0.0 - 10.255.255.255

• Classe B: 172.16.0.0 - 172.31.255.255

• Classe C: 192.168.0.0 - 192.168.255.255

Problème des adresses IPv4

- L'assignation d'une classe par bit, signifie : la classe A prend 1/2 des adresses, la classe B 1/4, la classe C 1/8 etc.
- Problèmes avec une telle assignation :
 - 1. Gaspillage
 - 2. Saturation dans les routeurs
 - 3. Pénurie des adresses encore libres

Solutions?

- 1. Utiliser les adresses IP privées avec un protocole de translation d'adresse (NAT: Network Address Translation)
- 2. Fractionner les blocs d'adresses plus finement : « Subnetting » ou « sous-adressage »
 - conserver la taille à 32 bits mais ...
- 3. Augmenter la taille du champ adresse :
 - Exemple : IP version 6 (décembre 1998) : champ adresse de 128 bits
 - conséquence : incompatibilité entre les machines

« NAT »

Network Address Translation :

Attributions des adresses IP

Pour communiquer dans un réseau IP, les hosts doivent connaître :

- L'adresse IP du host
- Le masque de leur réseau
- L'adresse IP de la passerelle (Gateway) (optionnel)
- L'adresse IP du serveur de noms (DNS) (optionnel)

Configuration statique :

- Configuration manuelle et permanente.
- requise pour les serveurs et routeurs
- Commandes systèmes ifconfig (unix) netsh (windows)

Configuration dynamique :

- Simplicité et optimisation des adresses IP
- Adaptée pour les terminaux nomades
- Utilisation d'un serveur de configuration interrogé par les terminaux au démarrage
- Les clients et le serveur communique au moyen d'un protocole (règles d'échange et format de messages valides) DHCP (Dynamic Host Configuration Protocol)

Dynamic Host Configuration Protocol (DHCP)

Subnetting

- Constat : Un site ne contient pas un réseau mais un ensemble de réseaux (exemple : UVSQ)
- Solution : scinder une classe en sous-réseaux (ou segment):
 - La partie numéro de machine devient le numéro de sous-réseau et le numéro de la machine dans ce sous-réseau,
 - Combien de bits (n) utiliser pour représenter les sous-réseaux ?
 - Si (p) sous-réseaux à représenter alors p ≥ (2ⁿ)
 - Nombre de bits alloués au numéro de sous-réseau est configurable : c'est le « sub-netmask » ou simplement le « netmask » du sousréseau

(1)	Partie internet	Partie locale	
(2)	Partie internet	Sous-réseau	Machine

Subnetting Exemple

- Soit un réseau d'entreprise de classe B = 130.96.0.0 constitué de 10 sous-réseaux locaux.
- Pour identifier 10 sous-réseaux, combien de bits faut il prendre de la partie Host-id?
 - $3 \text{ bits ?} => 2^3 = 8 \text{ (insuffisant !!!)}$
 - $-4 \text{ bits ?} => 2^4 = 16 \text{ (Oui !!!)}$
 - Soit: 2ⁿ (2 puissance n)
- Masque de sous-réseau = 255.255.240.0
- Exemple d'adresse de diffusion restreinte = 130.96.175.255 pour le sous-réseaux de net-id = 130.96.160.0

Résolution des adresses

Pourquoi ?

- Dans un Intranet ou Internet, les <u>communications</u> entre applications se font au moyen des adresses IP des hosts (et des n°de por ts).
- Dans un réseau local, <u>l'acheminement</u> des données se fait au moyen des adresses physiques des émetteurs et des récepteurs.
- L'unité de transfert est la Trame Ethernet (et non le paquet IP)
- Les adresses IP sont obtenues par l'interrogation d'un serveur : le DNS
- Comment obtenir l'adresse physique d'une machine distante en connaissant son adresse IP ?

La Solution :

- ARP : Address Resolution Protocol
- utiliser un protocole de type requête/réponse
- utilise le principe de la diffusion sur le réseau local (broadcast)
- l'association adresse physique adresse IP de l'émetteur est incluse dans la requête ARP de manière à ce que les récepteurs enregistrent l'association dans leur propre mémoire cache,

ARP

 L'association adresse physique - adresse IP de l'émetteur est incluse dans la requête ARP de manière à ce que les récepteurs enregistrent l'association dans leur propre mémoire cache,

- Pour connaître l'adresse physique de B (PB) à partir de son adresse IP (IB), la machine A diffuse une requête ARP qui contient l'adresse IP de B (IB) vers toutes les machines;
- la machine B répond avec un message ARP qui contient la paire (IB, PB).
- Rem : champ type de la trame Ethernet: 0806 pour ARP

ARP: encapsulation

Format du message ARP

0	8	16	24	31
Type de matériel		Type de protocole		
LGR-MAT LGR-PROT Opération				
Adresse matériel émetteur (octets 0-3)				
Adresse Mat émetteur (octets 4,5)		Adresse	e IP émetteur (octet	ts 0,1)
Adresse IP émetteur (octets 4,5)		Adress	e Mat cible (octets	0,1)
Adresse Matériel cible (octets 2,5)				
Adresse IP cible (octets 0-3)				

Nommage des ressources

 Nommage des ressources du réseau : utiliser un NOM SYMBOLIQUE plutôt qu'une adresse décimale :

brune.prism.uvsq.fr193.51.25.130

www.yahoo.fr10.25.123.68

Unicité des adresses => unicité des noms

 Il existe un « plan de nommage » hiérarchique mondiale et un « service de noms » mondial : le DNS (Domain Name System)

Le domaine

Un domaine est un sous-arbre de l'espace nom de domaine

DNS Root Servers

Designation, Responsibility, and Locations

Principe (illustration)

Protocole ICMP

- Le protocole ICMP (Internet Control Message Protocol) permet d'envoyer des messages de commande ou des messages d'erreurs vers d'autres machines ou routeurs.
- ICMP rapporte les messages d'erreur à l'émetteur initial.
- Beaucoup d'erreurs sont causées par l'émetteur, mais d'autres sont dûes à des problèmes d'interconnexions rencontrées sur l'Internet :
 - machine destination déconnectée,
 - durée de vie du datagramme expirée,
 - congestion de routeurs intermédiaires.
- Si un routeur détecte un problème sur un datagramme IP, elle le détruit et émet un message ICMP pour informer l'émetteur initial.
- Les messages ICMP sont véhiculés à l'intérieur de datagrammes IP et sont routés comme n'importe quel datagramme IP sur l'internet.
- Une erreur engendrée par un message ICMP ne peut donner naissance à un autre message ICMP (évite l'effet cummulatif).

ICMP: encapsulation

ICMP: format des messages

TYPE 8 bits; type de message

CODE 8 bits; informations complémentaires

CHECKSUM 16 bits; champ de contrôle

IDENTIFIER (16 bits) et SEQUENCE NUMBER (16 bits) sont utilisés par l'émetteur pour contrôler les réponses aux requêtes, (CODE = 0).

ICMP: type de messages

TYPE	Message ICMP	<u>TYPE</u>	Message ICMP
0	Echo Reply	13	Timestamp Request
3	Destination Unreachable	14	Timestamp Reply
4	Source Quench	15	Information Request (obsolete)
5	Redirect (change a route)	16	Information Reply
8	Echo Request	10	(obsolète)
11	Time Exceeded (TTL)	17	Address Mask Reques
12	Parameter Problem with a Datagram	18	Address Mask Reply

ICMP: les messages d'erreur

• Lorsqu'une passerelle émet un message ICMP de type destination inaccessible, le champ CODE décrit la nature de l'erreur :

Network Unreachable
Host Unreachable
Protocol Unreachable
Port Unreachable
Fragmentation Needed and DF set
Source Route Failed
Destination Network Unknown
Destination Host Unknown
Source Host Isolated
Communication with desination network administratively prohibited
Communication with desination host administratively prohibited
Network Unreachable for type of Service
Host Unreachable for type of Service