

Tokenized USD Certificates with Burn-on-Use, Paper Redemption, and Biometric Recovery

Written by: Chris McWhorter, CTO, CyberNest Holdings, LLC. Avaron, Inc. Date: March 28, 2025

Defensive Publication Title:

Tokenized USD Certificates with Burn-on-Use, Paper Redemption, and Biometric Recovery

Section 1: Technical Field

This invention relates to digital payment systems, cryptographic identity, decentralized finance, and secure tokenized fiat equivalents. It specifically addresses systems for issuing, transferring, verifying, and redeeming fiat-backed cryptographic certificates in both digital and physical forms, using biometric authentication, public anchoring, and tamper-proof revocation.

Section 2: Background

Conventional fiat systems and modern digital payment platforms (e.g., credit cards, P2P wallets, stablecoins) each suffer from unique drawbacks:

- Credit and debit card systems are susceptible to fraud, chargebacks, and require complex PCI compliance.
- Stablecoins lack consistent transparency, regulatory certainty, and privacy.
- Cash is secure and irreversible, but non-traceable and not digitally portable.

This invention provides a system for securely issuing and managing dollar-pegged cryptographic certificates ("certs") in traditional denominations (\$1, \$5, \$10, \$20, \$50, \$100), combining the strengths of physical cash, digital security, and legal traceability.

Section 3: Summary of the Invention

This system introduces:

1. Tokenized USD Certs

Represented as Kyber public/private keypairs within signed JSON blobs.

- Denominations are user-selected and issued via FDIC-insured accounts (e.g., through Soldfi).
- Each cert includes:
 - A UUID
 - Amount in clear text
 - Hash of the private key (generated at runtime)
 - Issuer signature
 - Optional redemption metadata

2. Transfer and Burn Mechanism

- Upon use or transfer:
 - The original certificate is **burned** (added to the "Used" log).
 - A **new cert** is issued to the recipient.
 - An instant API call transfers funds between FDIC accounts.
- All transfers use idempotency tokens to ensure no duplication or failed transactions.

3. Revocation and Double-Spend Prevention

- All used certs are recorded in a tamper-proof database using ObjectBox.
- Each user device stores a **local copy** of the Used DB.
- During redemption, the device:
 - Verifies cert integrity
 - Checks the local hash of the DB
 - Confirms the cert has not been spent or revoked (even while offline)
- Used certs are cryptographically blocked from reuse.

4. Physical Paper Token Support

- Certs can be printed as paper currency, containing:
 - A QR code (top-left)
 - Human-readable denomination (top-right)
 - Plain-text private key (bottom)
- Usable in **offline**, **off-chain transactions** with basic trust model.
- Redemption requires biometric verification via mobile app to ensure legitimacy.

5. Biometric Redemption and Recovery

- o A dedicated mobile app handles:
 - Biometric verification
 - Cert validation
 - Real-time transfer processing
- Users may trigger Lost or Stolen Certs flow:
 - The system checks for unspent certs
 - Destroys them in the Used log
 - Reissues new certs to the user within ~10 seconds

Section 4: Token Flow Description

4.1 Cert Structure (JSON)

```
{
  "uuid": "e9fd0d24-a6b4-4ab7-bde7-1c3ed15bdf52",
  "amount": "$20",
  "key_hash": "blake3_123456abcdef...",
  "issued_by": "avaron_payment_system",
  "signature": "kyber_signed_block",
  "redeemable": true
}
```

4.2 Cert Issuance Process

- 1. User deposits funds into FDIC account via Soldfi.
- 2. User selects denominations.
- 3. Platform creates one cert per denomination, issues to device over encrypted channel.
- 4. Public cert + amount + UUID hash are anchored to the **public log** for transparency.

4.3 Transfer / Use Process

- 1. User selects cert to spend.
- 2. Biometric app validates key ownership.
- 3. Old cert is destroyed (burned + moved to Used log).
- 4. A new cert is issued to the recipient.
- 5. API triggers FDIC account transfer in real-time.

4.4 Offline Verification Process

- ObjectBox DB locally verifies:
 - Token has not been spent
 - Token hash matches amount
 - o Device hash is up to date
- If any check fails → transaction rejected
- DB updates when online or manually refreshed

4.5 Paper Token Redemption

- Recipient scans QR code or enters private key manually
- App performs biometric check of redeemer
- If token is valid and unspent:
 - Burns cert
 - Transfers funds
 - Logs transaction to public chain

4.6 Lost or Stolen Recovery Flow

- User clicks "Lost or Stolen Certs" in app
- App:
 - Verifies biometric identity
 - Queries public and local Used log

- Flags original certs as burned
- Reissues new certs in same amounts

Section 5: Advantages Over Prior Systems

Feature	Traditional Cash	Stablecoin s	This System
Fraud Protection	X	×	(biometric verification)
Double-Spend Resistant	X	V	V
Fully Offline Usage	V	×	✓ (ObjectBox + printed certs)
Instant Recovery	×	×	(10-second biometric reissue)
Traceable Denomination Logs	×	×	(public anchor log)
Real-World Compatibility	✓	X	(printable, scannable)

End of Defensive Publication

Inventor: James Christopher McWhorter **System**: Tokenized USD Certificates

Company: Avaron, Inc. | CyberNest Holdings, LLC

Date of Disclosure: March 28, 2025 **Contact**: chris@cybernestit.com