Zusammenfassung Höhere Mathematik

Paul Nykiel

8. Februar 2017

Inhaltsverzeichnis

Ι	\mathbf{H}	M1		3				
1	Grenzwerte							
	1.1	Grupp	oen und Körper	4				
		1.1.1	Gruppen	4				
		1.1.2	Körper	4				
		1.1.3	Angeordnete Körper	5				
		1.1.4	Minimum und Maximum	6				
		1.1.5	Obere und untere Schranke	6				
		1.1.6	Supremum und Infimum	7				
	1.2	Folgen	1	7				
		1.2.1	Konvergenz	7				
		1.2.2	Bestimmte Divergenz	7				
		1.2.3	Beschränktheit	8				
		1.2.4	Zusammenhang Konvergenz — Beschränktheit	8				
		1.2.5	Grenzwertrechenregeln	8				
		1.2.6	Sandwich Theorem u.a	8				
		1.2.7	Monotonie	9				
		1.2.8	Zusammenhang Monotonie und Beschränktheit	9				
	1.3	Häufu	ngswerte	9				
		1.3.1	Teilfolgen	9				
		1.3.2	Teilfolgen einer Konvergenten Folge	9				
		1.3.3	Häufungswerte	9				
		1.3.4	Limes superior/inferior	9				
		1.3.5	Charakterisierung limsup/liminf	10				
		1.3.6	Konvergenz und limsup/liminf	10				
		1.3.7	Satz von Bolzano-Weierstraß	10				
		1.3.8	Cauchy-Kriterium	10				
	1.4	Unend	lliche Reihen	10				
		1.4.1	Definition	10				
		1.4.2	Cauchy-Kriterium für unendliche Reihen	11				
		1.4.3	Grenzwertrechenregeln für unendliche Reihen	11				
		1.4.4	Positive Folgen	12				
		1.4.5	Leibniz-Kriterium	12				
		1.4.6	Absolute Konvergenz	12				

		1.4.7	Majorantenkriterium	12
		1.4.8	Minorantenkriterium	12
		1.4.9	Wurzel- und Quotientenkriterium	12
		1.4.10	Umordnung einer Reihe	13
		1.4.11	Cauchy-Produkt	13
		1.4.12	Cauchy-Verdichtungssatz	13
	1.5	Potenz	reihen	14
		1.5.1	Definition	14
		1.5.2	Hadamard (Konvergenzradius mit Wurzelkriterium)	14
		1.5.3	Konvergenzradius mit Quotientenkriterium	14
		1.5.4	Hinweis	14
		1.5.5	Integration und Differentiation von Potenzreihen	14
		1.5.6	Cauchy-Produkt für Potenzreihen	15
		1.5.7	Wichtige Potenzreihen	15
		1.5.8	Alternative Definiton der Exponentialfunktion	15
	1.6	Funkti	onsgrenzwerte	15
		1.6.1	Bemerkung	15
		1.6.2	Epsilon-Umgebung	16
		1.6.3	Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)	16
		1.6.4	Folgenkriterium	16
		1.6.5	Rechenregeln für Funktionsgrenzwerte	17
		1.6.6	Cauchy-Kriterium für Funktionsgrenzwerte	17
		1.6.7	Bestimmte Divergenz	17
		1.6.8	Monotone Funktionen	17
		1.6.9	Grenzwerte an Intervallgrenzen	18
	1.7	Stetigl		18
		1.7.1	Anschaulich	18
		1.7.2	Stetigkeit: Delta-Epsilon-Kriterium	18
		1.7.3	Bemerkungen	18
		1.7.4	Rechenregeln für Stetigkeit	19
		1.7.5	Stetigkeit von Potenzreihen	19
		1.7.6	Umgebung positiver Funktionswerte	19
		1.7.7	Zwischenwertsatz	19
2	App	endix		20
	2.1	Konve	rgenzkriterien	20
	2.2	Beweis	s-Ansätze	21

Teil I

HM1

Kapitel 1

Grenzwerte

1.1 Gruppen und Körper

1.1.1 Gruppen

Eine Gruppe ist definiert als ein Tuppel aus einer (nicht-leeren) Menge und einer Verknüpfung. Eine Gruppe erfüllt die folgenden Axiome (seien $a,b,c\in\mathbb{G}$):

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 (Assoziativität)
 $a \circ \varepsilon = a$ (Rechtsneutrales Element)
 $a \circ a' = \varepsilon$ (Rechtsinverses Element)

Eine abelsche Gruppe erfüllt des weiteren:

$$a \circ b = b \circ a$$
 (Kommutativität)

1.1.2 Körper

Ein Körper ist definiert als eine Menge mit mindestens zwei Elementen (0 und 1) und zwei Verknüfungen.

$$\begin{array}{cccc} + : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \\ \cdot : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \end{array}$$

 \mathbb{K} ist bezüglich der Addition und der Multiplikation (genauer: $\mathbb{K}\setminus\{0\}$) ein abelscher Körper, das heißt es gilt (seien $a,b,c\in\mathbb{K}$):

$$a+(b+c)=(a+b)+c \qquad \text{(Assoziativit"at bez. der Addition)}$$

$$a+0=a \qquad \text{(Existenz einer 0)}$$

$$a+(-a)=0 \qquad \text{(Existenz eines Inversen bez. der Addition)}$$

$$a+b=b+a \qquad \text{(Kommutativit"at bez. der Addition)}$$

$$a\cdot(b\cdot c)=(a\cdot b)\cdot c \qquad \text{(Assoziativit"at bez. der Multiplikation)}$$

$$a\cdot 1=a \qquad \text{(Existenz einer 1)}$$

$$a\cdot a^-1=1 \quad \forall a\neq 0 \qquad \text{(Existenz eines Inversen bez. der Multiplikation)}$$

$$a\cdot b=b\cdot a \qquad \text{(Kommutativit"at bez"uglich der Multiplikation)}$$

außerdem gilt:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 (Distributivgesetz)

Bem.: \mathbb{Q} , \mathbb{R} und \mathbb{C} sind Körper. \mathbb{Z} und \mathbb{N} nicht (kein additiv inverses bei \mathbb{N} , kein multiplikativ inverses bei beiden).

1.1.3 Angeordnete Körper

Ein Körper heißt angeordent wenn folgende Axiome erfüllt sind (seien $a,b,c\in\mathbb{K}$):

$$\begin{array}{cccc} a < b \lor & b < a & \lor a = b \\ \\ a < b \land b < c & \Rightarrow & a < c \\ \\ a < b & \Rightarrow & a + c < b + c \\ \\ a < b \land c > 0 & \Rightarrow & a * c < b * c \end{array}$$

Bem.: \mathbb{Q} und \mathbb{R} sind angeordnete Körper. Für \mathbb{C} kann keine Ordnungsrelation definiert werden so das alle Axiome erfüllt sind.

Gebräuchliche Definition zu angeordenten Körpern

Für gewöhnlich gilt 0 < 1.

Die Ordnungsrelation wird dann definiert durch:

$$\begin{array}{rcl} 2 & := & 1+1 \\ 3 & := & 2+1 \\ 4 & := & 3+1 \\ & \vdots \end{array}$$

Die Natürlichen Zahlen werden Induktiv definiert:

1.
$$1 \in \mathbb{N}$$

2.
$$n \in \mathbb{N} \Rightarrow (n+1) \in \mathbb{N}$$

Bem: Aus 2. lässt sich direkt ableiten das \mathbb{N} nach oben unbeschränkt ist (Archimedisches Prinzip).

Vollständig Angeordnete Körper

Ein Körper heißt Vollständig, falls jede nach oben beschränkte, nicht-leere Teilmenge ein Supremum besitzt.

 $\Rightarrow \mathbb{R}$ ist der einzige Vollständig angeordnete Körper.

Bem: \mathbb{Q} ist nicht vollständig angeordnet, da $A := \{x | x^2 \leq 2\} \subset \mathbb{Q}$ kein obere Schrank besitzt (obere Schranke ist $\sqrt{2} \notin \mathbb{Q}$).

1.1.4 Minimum und Maximum

Sei $\mathbb K$ ein angeordn
ter Körper und $A\subset \mathbb K$ dann heißt m Minimum falls gilt:

- 1. $m \in \mathbb{K}$
- 2. $a \ge m \ \forall a \in A$

Analog ist das Maximum definiert: Sei $\mathbb K$ ein angeord
nter Körper und $A\subset \mathbb K$ dann heißt m Maximum falls gilt:

- 1. $m \in \mathbb{K}$
- $2. \ a \leq m \ \forall a \in A$

Schreibweisen: $m = \min(A)$ bzw. $m = \max(A)$

Bem.: Minimum und Maximum exisitieren nicht immer.

Beispiel: $A:=\{x|x>0\}\subset\mathbb{R}$ hat nicht 0 als Minimum da $0\notin A$ und kein beliebiges m da $\tilde{m}:=\frac{m}{2}< m\ \forall m\in A$

1.1.5 Obere und untere Schranke

Sei $\mathbb K$ ein angeordenter Körper und $A\subset \mathbb K$ dann ist s untere Schranke falls gilt:

• $s \le a \ \forall a \in A$

Analog ist die obere Schranke definiert: Sei $\mathbb K$ ein angeordenter Körper und $A\subset \mathbb K$ dann ist s obere Schranke falls gilt:

• $s \ge a \ \forall a \in A$

Bem.: Hat eine Menge eine obere (bzw. untere) Schranke heißt er nach oben (bzw. unten) beschränkt. Ist eine Menge nach unten und oben beschränkt bezeichnet man sie als beschränkt.

1.1.6 Supremum und Infimum

s heißt Infimum (größte untere Schranke) falls gilt:

- \bullet s ist untere Schranke
- Falls \tilde{s} ebenfalls untere Schranke ist gilt $s \geq \tilde{s}$

Analog ist das Supremum definiert: s heißt Supremum (kleinste obere Schranke) falls gilt:

- ullet s ist obere Schranke
- Falls \tilde{s} ebenfalls obere Schranke ist gilt $s \leq \tilde{s}$

Bem.: Wenn Minimum (bzw. Maximum) existieren sind diese gleich dem Infimum (bzw. Supremum).

Schreibweise: $s = \inf(A)$ bzw. $s = \sup(A)$

1.2 Folgen

Eine Folge a_n ist definiert als eine Funktion:

$$a_n := \varphi : \mathbb{N} \to \mathbb{M} \subset \mathbb{R}$$

oder auch $(a_n)_{n=1}^{\infty}$.

1.2.1 Konvergenz

Eine Folge a_n heißt konvergent wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : |a_n - a| < \varepsilon \ \forall n > n_0(\varepsilon)$$

Bem.: Der Grenzwert ist eindeutig, d.h. es existiert nur ein Grenzwert.

Schreibweise

Falls a_n gegen a konvergiert schreibt man:

$$\lim_{n \to \infty} a_n = a$$

1.2.2 Bestimmte Divergenz

Eine Folge a_n heißt bestimmt Divergent wenn gilt

$$\forall x \in \mathbb{R} \ \exists n(x) : \ a_n > x \text{ bzw. } a_n < x$$

Schreibweise:

$$\lim_{n \to \infty} a_n = \infty \text{ bzw. } -\infty$$

1.2.3 Beschränktheit

Eine Folge heißt beschränkt wenn gilt:

$$|a_n| < c \ \forall n$$

Beschränktheit nach oben/unten

Eine Folge heißt nach oben (bzw. unten) beschränkt wenn gilt:

$$a_n < c \ \forall n \in \mathbb{N}$$
 bzw. $a_n > c \ \forall n \in \mathbb{N}$

1.2.4 Zusammenhang Konvergenz — Beschränktheit

Jede konvergente Folge ist beschränkt.

1.2.5 Grenzwertrechenregeln

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in \mathbb{C} mit:

$$\lim_{n \to \infty} a_n = a \text{ und } \lim_{n \to \infty} b_n = b$$

Dann gilt:

- $\bullet \lim_{n\to\infty} |a_n| = |a|$
- $\bullet \lim_{n \to \infty} (a_n + b_n) = a + b$
- $\bullet \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- Falls $b \neq 0$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

1.2.6 Sandwich Theorem u.a.

Seien $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, $(c_n)_{n=1}^{\infty}$ Folgen in \mathbb{R} mit:

$$\lim_{n\to\infty} a_n = a, \ \lim_{n\to\infty} b_n = b \text{ und } \gamma \in \mathbb{R}$$

Dann gilt:

- $a_n \le \gamma \ \forall n \in \mathbb{N} \Rightarrow a \le \gamma$
- $a_n \ge \gamma \ \forall n \in \mathbb{N} \Rightarrow a \ge \gamma$
- $a_n \le b_n \ \forall n \in \mathbb{N} \Rightarrow a \le b$
- $a_n \le c_n \le b_n \ \forall n \in \mathbb{N} \land a = b \Rightarrow c = \lim_{n \to \infty} c_n = a = b$

1.2.7 Monotonie

Eine Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} heißt:

- Monoton wachsend falls: $a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \nearrow$)
- Monoton fallend falls: $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \searrow$)
- Streng monoton wachsend falls: $a_{n+1} > a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \uparrow$)
- Streng monoton fallend falls: $a_{n+1} < a_n \ \forall n \in \mathbb{N}$ (Schreibweise: $a_n \downarrow$)

1.2.8 Zusammenhang Monotonie und Beschränktheit

Jede Monotone und beschränkte Folge konvergiert.

1.3 Häufungswerte

Häufungswerte sind Grenzwerte einer Teilfolge.

1.3.1 Teilfolgen

Eine Folge $(b_n)_{n=1}^{\infty}$ heißt Teilfolge von $(a_n)_{n=1}^{\infty}$, wenn eine streng monotone Funktion $\varphi: \mathbb{N} \to \mathbb{N}$ exisitiert mit $b_n = a_{\varphi(n)}$.

1.3.2 Teilfolgen einer Konvergenten Folge

Sei $(a_n)_{n=1}^{\infty}$ eine konvergente Folge in \mathbb{C} mit: $\lim_{n\to\infty} a_n = a$ und $(b_n)_{n=1}^{\infty}$ sei eine Teilfolge. Dann gilt $\lim_{n\to\infty} b_n = a$.

1.3.3 Häufungswerte

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} . Dann heißt $a \in \mathbb{C}$ ein Häufungswert einer Folge, falls eine Teilfolge gegen a konvergiert.

1.3.4 Limes superior/inferior

Sei $(a_n)_{n=1}^{\infty}$ eine reele Folge, dann heißt:

$$\lim_{n\to\infty}\sup a_n:=\overline{\lim}_{n\to\infty}a_n:=\sup\{x\in\mathbb{R},a_n>x\text{ ∞-oft}\}$$

der Limes superior von $(a_n)_{n=1}^{\infty}$ und

$$\lim_{n \to \infty} \inf a_n := \underline{\lim}_{n \to \infty} a_n := \inf \{ x \in \mathbb{R}, a_n < x \text{ } \infty\text{-oft} \}$$

der Limes inferior von $(a_n)_{n=1}^{\infty}$.

1.3.5 Charakterisierung limsup/liminf

Sei $(a_n)_{n=1}^{\infty}$ eine reelle Folge und $s \in \mathbb{R}$. Dann gilt:

(a)
$$s = \overline{\lim}_{n \to \infty} a_n \Leftrightarrow \forall \varepsilon > 0 \text{ gilt:}$$

i $a_n < s + \varepsilon$ für fast alle n

ii $a_n > s - \varepsilon$ für ∞ -viele n

(b)
$$s = \lim_{n \to \infty} a_n \Leftrightarrow \forall \varepsilon > 0 \text{ gilt:}$$

i $a_n > s - \varepsilon$ für fast alle n

ii $a_n < s + \varepsilon$ für ∞ -viele n

1.3.6 Konvergenz und limsup/liminf

Eine beschränkte Folge $(a_n)_{n=1}^{\infty}$ in \mathbb{R} konvergiert \Leftrightarrow

$$\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$$

1.3.7 Satz von Bolzano-Weierstraß

Jede beschränkte Folge in $\mathbb C$ besitzt eine konvergente Teilfolge.

1.3.8 Cauchy-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dann gilt

$$(a_n)_{n=1}^{\infty}$$
 konv. $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : |a_n - a_m| < \varepsilon \ \forall n, m > n_0(\varepsilon)$

Bem.: Im Gegensatz zur Definition der Folgenkonvergenz muss der Grenzwert nicht bekannt sein.

1.4 Unendliche Reihen

1.4.1 Definition

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} , dan heißt die durch

$$s_n = \sum_{k=1}^n a_k$$

definiert Folge $(s_n)_{n=1}^{\infty}$ eine Folge von Partialsummen der unendlichen Reihe:

$$\sum_{k=1}^{\infty} a_k$$

Falls die Folge $(s_n)_{n=1}^{\infty}$ konvergiert setzten wir:

$$\lim_{n \to \infty} s_n =: \sum_{k=1}^{\infty} a_k$$

1.4.2 Cauchy-Kriterium für unendliche Reihen

Sei $\sum_{k=1}^{\infty} a_k$ eine
 $\infty\text{-Reihe, dann gilt:}$

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \left| \sum_{k=m}^n a_k \right| < \varepsilon \ \forall n, m > n_0(\varepsilon)$$

und:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Rightarrow \lim_{n \to \infty} a_n = 0$$

1.4.3 Grenzwertrechenregeln für unendliche Reihen

Seien

$$\sum_{n=1}^{\infty} a_k \text{ und } \sum_{n=1}^{\infty} b_k \text{ gegeben und } \alpha, \beta \in \mathbb{C}$$

dann gilt:

(a)

$$\sum_{n=1}^{\infty} a_k \text{ und } \sum_{n=1}^{\infty} b_k \text{ konv.:}$$

$$\Rightarrow \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) \text{ konv.}$$

$$\text{und: } \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{n=1}^{\infty} a_k + \beta \sum_{n=1}^{\infty} b_k$$

(b)
$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \sum_{k=1}^{\infty} \operatorname{Re}(a_k) \text{ und } \sum_{k=1}^{\infty} \operatorname{Im}(a_k) \text{ konv.}$$

(c)

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \text{ die Restreihe } R_n := \sum_{k=n}^{\infty} a_k \text{ konv. gegen } 0 \Rightarrow \lim_{n \to \infty} R_n = 0$$

1.4.4 Positive Folgen

Es sei $(a_n)_{n=1}^{\infty}$ eine Folge mit $(a_n)_{n=1}^{\infty} \in [0,\infty)$ dann gilt:

$$\sum_{k=1}^{\infty} a_k$$
konv. \Leftrightarrow Folge der Partialsummen $\sum_{k=1}^n a_k$ ist beschr.

1.4.5 Leibniz-Kriterium

Sei $(a_n)_{n=1}^{\infty}$ eine monoton fallende, stetige Folge. Dann gilt falls $\lim_{n\to\infty}a_n=0$ ist, konv. die sogennante alternierende Reihe

$$\sum_{k=1}^{\infty} (-1)^k a_k$$

1.4.6 Absolute Konvergenz

Eine Reihe $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, wenn

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert.

Bem.: Jede absolut konvergente Reihe ist auch konvergent.

1.4.7 Majorantenkriterium

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ mit $b_k \geq 0$ gegeben. Wenn $\sum_{k=1}^{\infty} b_k$ konv. und ein c > 0 ex. mit

$$|a_k| \leq c \cdot |b_k|$$

für fast alle k
, dann konv. $\sum_{k=1}^\infty a_k$ absolut.

1.4.8 Minorantenkriterium

Falls ein c > 0 ex. mit $a_k \ge c \cdot b_k > 0$ für fast alle k, dann:

$$\sum_{k=1}^{\infty} b_k \text{ div. } \Rightarrow \sum_{k=1}^{\infty} a_k \text{ div.}$$

1.4.9 Wurzel- und Quotientenkriterium

Sei $\sum_{k=1}^{\infty} a_k$ gegeben. Dann gilt:

(a) Wenn

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty} a_k$ absolut.

Wenn

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1$$

gilt, dann div. $\sum_{k=1}^{\infty} a_k$.

(b) Wenn $a_n \neq 0 \ \forall n \ \text{und}$

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty} a_k$ absolut.

Wenn $a_n \neq 0 \ \forall n \ \text{und}$

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

gilt, dann divergiert. $\sum_{k=1}^{\infty} a_k$.

Bem.: Wenn das Wurzelkriterium keine Aussage macht, kann das Quotienten-kriterium trotzdem eine Aussage machen.

1.4.10 Umordnung einer Reihe

Eine Reihe $\sum_{k=1}^{\infty} b_k$ heißt Umordnung der Reihe $\sum_{k=1}^{\infty} a_k$, wenn eine bij. Abb $\varphi: \mathbb{N} \to \mathbb{N}$ ex. mit $b_k = a_{\varphi(k)}$.

Bem.: Die Reihe konvergiert nur gegen den selben Wert, wenn $\sum_{k=1}^{\infty} a_k$ absolut konvergent ist.

1.4.11 Cauchy-Produkt

Die Reihen $\sum_{k=1}^{\infty} b_k$ und $\sum_{k=1}^{\infty} a_k$ seien absolut konv.. Dann gilt:

$$\left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j \cdot b_{k-j}\right) = \sum_{k=0}^{\infty} c_k$$

und $\sum_{k=0}^{\infty} c_k$ konv. ebenfalls absolut.

1.4.12 Cauchy-Verdichtungssatz

$$\sum_{n=1}^{\infty} a_n \text{ konv. } \Leftrightarrow \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ konv.}$$

1.5 Potenzreihen

1.5.1 **Definition**

Sei $(a_n)_{n=1}^{\infty}$ eine Folge in \mathbb{C} und $z_0 \in \mathbb{C}$. Dann heißt

$$\sum_{k=0}^{\infty} a_k \cdot (z - z_0)^k$$

eine Potenzreihe mit Entwicklungspunkt z_0 und Koeffizienten a_n .

Bem.: Viele wichtige Funktionen können als Potenzreihen dargestellt werden.

Hadamard (Konvergenzradius mit Wurzelkriterium)

Sei $\sum_{k=0}^{\infty} a_k (z-z_o)^k$ eine PR. Definiere

$$R := \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}$$

Dabei sei $R := \infty$, falls $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 0$ und R = 0 falls $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty$. Dann konv. die PR absolut, falls $|z - z_0| < R$ und divergiert falls $|z - z_0| > R$.

Bem. I: Für $|z-z_0|=R$ wird keine Aussage gemacht.

Bem. II: R heißt der Konvergenzradius der Potenzreihe.

1.5.3 Konvergenzradius mit Quotientenkriterium

Sei $\sum_{k=0}^{\infty}a_k(z-z_0)^k$ eine PR. Der Potenzradius kann ebenfalls berechnet werden durch:

$$R = \overline{\lim}_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Hinweis 1.5.4

Es gilt:

$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

Integration und Differentiation von Potenzreihen

Sei $\sum_{k=0}^{\infty}a_k(z-z_0)^k$ mit Konvergenzradius R. Dann besitzen auch die Potenzreihen

$$\sum_{k=0}^{\infty} k \, a_k (z - z_0)^{k-1} \text{ und } \sum_{k=0}^{\infty} \frac{a_k}{k+1} (z - z_0)^{k+1}$$

den Konvergenzradius R.

1.5.6 Cauchy-Produkt für Potenzreihen

Seien $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ und $\sum_{k=0}^{\infty} b_k (z-z_0)^k$ Potenzreihen, die den Konvergenzradius R_1 bzw. R_2 besitzen. Dann besitzt

$$\sum_{k=0}^{\infty} c_k (z - z_0)^k \text{ mit } c_k = \sum_{l=0}^k a_l \cdot b_{k-l}$$

den Konvergenzradius $R = \min\{R_1, R_2\}.$

1.5.7 Wichtige Potenzreihen

(a) Die Expontentialfunktion ist definiert durch:

$$\exp: \mathbb{C} \to \mathbb{C} \quad z \mapsto \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

(b) Die Trigonometrischen Funktionen sind definiert durch:

$$\sin: \mathbb{C} \to \mathbb{C} \quad z \mapsto \sin(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
$$\cos: \mathbb{C} \to \mathbb{C} \quad z \mapsto \cos(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

(c) Tangens und Cotangens sind dann definiert als:

$$\tan: \{z \in \mathbb{C}: \cos(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \tan(z) := \frac{\sin(z)}{\cos(z)}$$
$$\cot: \{z \in \mathbb{C}: \sin(z) \neq 0\} \to \mathbb{C} \quad z \mapsto \cot(z) := \frac{\cos(z)}{\sin(z)}$$

1.5.8 Alternative Definiton der Exponentialfunktion

$$\forall z \in \mathbb{C} \text{ gilt } \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = \exp\left(z\right)$$

1.6 Funktionsgrenzwerte

1.6.1 Bemerkung

In diesem Intervall bezeichnet I stets ein offenes Intervall und \overline{I} dessen sog. Abschluss z.B.:

- (a) I = (a, b) und $\overline{I} = [a, b]$
- (b) $I = (-\infty, b)$ und $\overline{I} = (-\infty, b]$
- (c) $I = (a, \infty)$ und $\overline{I} = [a, \infty)$
- (d) $I = (\infty, \infty)$ und $\overline{I} = (\infty, \infty)$

1.6.2 Epsilon-Umgebung

Für $x_0 \in \mathbb{R}$ und $\varepsilon > 0$ heißt

$$U_e(x_0) := \{x \in \mathbb{R} : |x - x_0| < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon)$$

die ε -Umgebung von x_0 . Und

$$\dot{U}_e(x_0) := U_e(x_0) \setminus \{0\} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$$

die punktierte ε -Umgebung von x_0 .

1.6.3 Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$

(a) fkonv. gegen ein $a\in\mathbb{R}$ für $x\to x_0$ (kurz: $\lim_{x\to x_0}f(x)=a)$ wenn gilt

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon): \ \left| f(x) - a \right| < \varepsilon \ \forall x \ \mathrm{mit} \ \left| x - x_0 \right| < \delta(\varepsilon) \ \mathrm{und} \ x \neq x_0$$

Schreibweise:

$$\lim_{x \to x_0} f(x) = a \text{ oder } f(x) = a \text{ für } x \to x_0$$

(b) Sei $x_o \in I$, dann konv. f einseitig von links gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in (x_0 - \delta \varepsilon, x_0)$$

Schreibweise:

$$\lim_{x \to x_{0^-}} f(x) = a$$

(c) Sei $x_o \in I$, dann konv. f einseitig von rechts gegen $a \in \mathbb{R}$ wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in (x_0, x_0 + \delta \varepsilon)$$

Schreibweise:

$$\lim_{x \to x_{0^+}} f(x) = a$$

(d) Sei $I=(\alpha,\infty)$ (bzw. $I=(-\infty,\beta)$) dann konv. f gegen a für $x\to\infty$ (bzw. $x\to-\infty$) wenn gilt:

$$\forall \varepsilon > 0 \ \exists x_1(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in I : x > x_1(\varepsilon) \ (bzw. x < x_1(\varepsilon))$$

1.6.4 Folgenkriterium

Sei $f:I\to\mathbb{R}$ und $x_0\in\overline{I},u\in\mathbb{R}$ dann gilt $\lim_{x\to\infty}f(x)=a\Leftrightarrow$

Für eine beliebe Folge
$$(x_n)_{n=1}^{\infty}$$
 mit $(i)x_n \neq x_0 \forall n$ $(ii) \lim_{n \to \infty} x_n = x_0$ gilt stets: $\lim_{n \to \infty} f(x_n) = a$

1.6.5 Rechenregeln für Funktionsgrenzwerte

Seien $f, g: I \to \mathbb{R}$ und $x_0 \in I$ und gelte

$$\lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b$$

Dann gilt:

(a)
$$\lim_{x \to x_0} (\alpha \cdot f(x)) = \alpha \cdot a$$

$$\lim_{x \to x_0} (g(x) + f(x)) = a + b$$

(c)
$$\lim_{x \to x_0} (g(x) \cdot f(x)) = a \cdot b$$

(d)
$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{a}{b} \quad \text{falls } b \neq 0$$

1.6.6 Cauchy-Kriterium für Funktionsgrenzwerte

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$ dann ex. $\lim_{x \to x_0} f(x) \Leftrightarrow$

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \big| f(x) - f(y) \big| < \varepsilon \ \forall x, y \in I \ \text{mit} \ 0 < |x - x_o| < \delta(\varepsilon) \ \text{und} \ 0 < |y - x_0| < \delta(\varepsilon)$$

1.6.7 Bestimmte Divergenz

Sei $f: I \to \mathbb{R}, \ x_0 \in I$ dann definieren wir die bestimmte Divergenz (uneigentliche Konvergenz) von $(f \to \infty)$ durch

$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall c > 0 \ \exists \delta(c) : f(x) > c \ \forall x \ \text{mit} \ 0 < |x - x_0| < \delta(c)$$

Analog definieren man links- und rechtsseitig Divergenz gegen ∞ bzw. $-\infty$.

1.6.8 Monotone Funktionen

Sei $f: I \to \mathbb{R}$ dann heißt (auf I)

(a) monoton wachsend $(f \nearrow)$, falls gilt

$$x < y \Rightarrow f(x) \le f(y)$$

(b) streng monoton wachsend $(f \uparrow)$, falls gilt

$$x < y \Rightarrow f(x) < f(y)$$

(c) monoton fallend $(f \searrow)$, falls gilt

$$x < y \Rightarrow f(x) \ge f(y)$$

(d) streng monoton fallend $(f\downarrow)$

$$x < y \Rightarrow f(x) > f(y)$$

- (e) monoton fallend falls f monoton fallend oder monoton steigend ist
- (f) streng monoton falls f streng monoton fallend oder streng monoton steigend ist
- (g) Beschränkt falls gilt:

$$\exists c : |f(x)| < c \ \forall x \in I$$

1.6.9 Grenzwerte an Intervallgrenzen

Sei $a \leq b$ und $f:(a,b) \to \mathbb{R}$ monoton und beschränkt, dann ex.

$$\lim_{x \to b^-} f(x) \text{ und } \lim_{x \to a^+} f(x)$$

1.7 Stetigkeit

1.7.1 Anschaulich

Graph einer Funktion kann ohne Absetzen gezeichnet werden \Leftrightarrow Es gibt keine Sprünge \Leftrightarrow

 $f:I\to\mathbb{R}$ an keiner Stelle $x_0\in I$ ist ein Sprung $\Leftrightarrow \forall x_0\in I: \lim_{x\to x_0}f(x)=f(x_0)$

1.7.2 Stetigkeit: Delta-Epsilon-Kriterium

Sei $f: I \to \mathbb{R}$ und $x_0 \in I$, dann ist f in x_0 stetig falls gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - f(x_0)| < \varepsilon \ \forall x \in I \ \text{mit} \ |x - x_0| < \delta(\varepsilon)$$

Und f ist stetig (auf I), wenn f in jedem $x_0 \in I$ stetig ist.

1.7.3 Bemerkungen

(a) f ist stetig in $x_0 \Leftrightarrow$

$$\lim_{x \to x_0} f(x) = f(x_0)$$

gilt.

(b) f ist stetig in x_0 dann gilt:

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$$

1.7.4 Rechenregeln für Stetigkeit

Sind $f, g: I \to \mathbb{R}$ stetig, dann sind auch die Funktionen

- (a) $c \cdot f$ (für $c \in \mathbb{R}$)
- (b) f + g
- (c) $f \cdot g$
- (d) und falls $g(x) \neq 0 \forall x \in I_{\frac{f}{g}}$

stetig

Ist $f: I \to J, g: I \to \mathbb{R}$ und beide stetig dann ist auch $g \circ f$ stetig.

1.7.5 Stetigkeit von Potenzreihen

Sei $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ eine Potenzereihe mit Konvergenzradius R > 0, dann gilt für $x_1 \in U_R(x_0)$, dass $\lim_{x \to x_1} f(x) = f(x_1)$ (d.h. Potenzreihen sind innerhalb des Konvergenzradius stetig).

1.7.6 Umgebung positiver Funktionswerte

Sei $f: I \to \mathbb{R}$ stetig in x_0 , dann gilt:

$$f(x_0) > 0 \Rightarrow \exists \delta > 0: \ f(x) > 0 \ \forall x \in I \text{ mit } |x - x_0| < \delta$$

1.7.7 Zwischenwertsatz

Sei D=[a,b] (also abgeschlossen) und $f:D\to\mathbb{R}$ stetig dann ex. zu jedem y zwischen f(a) und f(b) ein $x\in[a,b]$ mit f(x)=y.

Genauer:

$$\forall y \in [m, M] \ \exists x \in [a, b] \ \text{mit} \ f(x) = y$$

Wobei $m = \min\{f(a), f(b)\}\$ und $M = \max\{f(a), f(b)\}.$

Bem.: Bei einer Funktion ist das Bild eines Intervals wieder ein Interval. D.h.

$$f([a,b]) = [c,d]$$

Kapitel 2

Appendix

2.1 Konvergenzkriterien

Zusammenfassung verschiedener Konvergenzkriterien nach Wikipedia (Seite: Konvergenzkriterium):

Kriterium	nur f. mon. F.	Konv.	Div.	abs. Konv.	Absch.	Fehlerabsch.
Nullfolgenkriterium			Х			
Monotoniekriterium		X		x		
Leibniz-Kriterium	X	X			X	X
Cauchy-Kriterium		X	x			
Abel-Kriterium	X	X				
Dirichlet-Kriterium	X	X				
Majorantenkriterium		X		X		
Minorantenkriterium			X			
Wurzelkriterium		X	X	X		X
Integralkriterium	X	X	X	X	X	
Cauchy-Kriterium	X	X	X	X		
Grenzwertkriterium		X	X			
Quotientenkriterium		X	X	X		X
Gauß-Kriterium		X	X	X		
Raabe-Kriterium		X	X	X		
Kummer-Kriterium		X	X	X		
Bertrand-Kriterium		X	X	x		
Ermakoff-Kriterium	X	X	X	X		

2.2 Beweis-Ansätze

Ansatz für die einzelnen Beweise.

Lemma / Satz	Beweisansatz
Eindeutigkeit des GW einer Folge	Zeige, dass GW a = GW b, nahrhafte 0
Konvergente Folgen sind beschränkt	Nahrhafte 0, Dreiecks-ugl.
Grenzwertrechenregeln	Nahrhafte 0, Dreiecks-ugl.
$a_n \le \gamma \ \forall n \Rightarrow a \le \gamma$	Ausgehend von a über nahrh. 0 zu Def Konvergenz
$a_n \le b_n \ \forall n \Rightarrow a \le b$	Definiere Hilfsfolge, argumentiere nach s.o
SWT	Zeige, dass $-\varepsilon < c_n < \varepsilon$ (Quasi Epsilon-Schlauch)
Monotoniekriterium	Da $ a_n < c \ \forall n$, argumentiere über das Supremum der Menge, die aus besteht
GW einer konv. $Folge = GW$ jeder Teilfolge	Def. Konvergenz + Def Teilfolge
Charakterisierung limSup und limInf	Argumentiere über Eigneschaften sup und inf
Folge konv. $\lim_{x \to a} \sup = \lim_{x \to a} \inf$	Hin: Eindeutigkeit des GW;Rück: Charakterisierung limSup und limInf
Bolzano-Weierstraß	Zunächst für reelle Folge (trivial), dann für komplex: Realteil ist klar, Imaginärteil: Teilfolge konstruieren
Cauchykriterium	Hin: nahrhafte 0; Rück: zeige Beschränktheit, dann folge daraus, dass ein HW ex und benutze diesen als GW-Kandidat
Reihe konv. Folge ist Nullfolge	Cauchy für Reihen
GWRR für Reihen	GWRR für Folgen
Reihe konv g. 0	Restreihe als Differenz darstellen
Leibniz	Cauchy für Reihen
Absolut konv. \Rightarrow konv.	Cauchy und Dreiecks-ugl.
Majorantenkrit.	Cauchy
Minorantenkrit.	Kontradiktion von Majoranten- krit.
Wurzelkriterium	Majorantenkrit: geom. Summe über $Q:=q+\varepsilon<1$, in q das Wurzelkrit einsetzen, Char. Lim-Sup

Quotientenkrit.

Hadamard

Differenzieren / Integrieren von PR Lemma zu sin, cos und exp

 $e^z \neq 0$ und $e^{-z} = \frac{1}{z}$

Pythagoras $e^x > 0 \ \forall x \in \mathbb{R}$

 $1 + x \le e^x \forall x \in \mathbb{R}$ $x < y \Rightarrow e^x < e^y$ Folgenkriterium

Cauchy für Funktionen

Grenzwerte an Intervallgrenzen

Verknüpfungen von stetigen Funktionen sind stetig Potenzreihen sind innerhalb des KR stetig

Umgebung pos. Funktionswerte Zwischenwertsatz

Majorantenkrit: setze in q das Quotientenkrit ein u. arg. über

LimSup

Wurzelkrit + Fallunterscheidung

für Sonderfälle Wurzelkriterium

 ${\bf Cauchy\text{-}Produkt + Definitionen} \\ {\bf Inverses \ Element \ der \ Multiplika} \\$

tion

3. binomische Formel

Betrachte $x \geq 0$, angeordneter

Körper Bernoulli nahrhafte 0

Hin: Def. Folgenkonv. und dann Def FunktionsGW einsetzen; Rück: Wähle versch. δ und zeige

Widerspruch

Hin: Def. FunktionsGW + nahrhafte 0; Rück: Cauchy für Folgen Argumentiere über Supremum / Infimum

Folgenkriterium

Abschätzung: $\exists r>0: |x-x_0 \text{ bzw. } x_1|\leq r, \text{ dann einfach } \left|f(x)-f(x_1)\right| \text{ nach oben abschätzen}$

Wähle $\varepsilon = \frac{f(x_0)}{2}$, Def. Stetigkeit Definiere $x_0 := \sup\{x \in [a,b] : f(x) \le y\}$ und zwei Hilfsfolgen, die gegen x_0 konvergieren