#Pr 15.2 (Complex sequence)

restart;

$$zn := \left(\frac{10 \cdot I}{11}\right)^{\frac{n}{20}};$$

$$zn \coloneqq \left(\frac{10 \, \mathrm{I}}{11}\right)^{\frac{n}{20}} \tag{1}$$

S := seq([Re(zn), Im(zn)], n = 1..100):

with(plots): $complexplot([zn], n=1..100, style=point, labels=[Re_z, Im_z], scaling=constrained);$

 $plot([S], style = point, labels = [Re_z, Im_z], scaling = constrained);$

#Pr 15.3 (Convergence test)

restart;

$$z := \frac{(33 + 22 \cdot I)^n}{n!};$$

$$z := \frac{(33 + 22 \,\mathrm{I})^n}{n!} \tag{2}$$

 $z_n := subs(n = n + 1, zn);$

$$z_n := zn$$
 (3)

#using the ratio test $\frac{z_n}{z}$

$$ratio := \left(\frac{z_n}{z}\right);$$

$$ratio := \frac{zn\,n!}{\left(33 + 22\,\mathrm{I}\right)^n} \tag{4}$$

simplify(ratio);

$$zn(33+22I)^{-n}n!$$
 (5)

$$(\operatorname{abs}(z))^{\frac{1}{n}};$$

$$\left| \frac{(33 + 22 \,\mathrm{I})^n}{n!} \right|^{\frac{1}{n}}$$
 (6)

limit(%, n = infinity);

0 (7)

#Pr 15.6 (Radius of convergence)

restart;

define the series

 $a := n(n-1) \cdot 3^n \cdot z^{2n};$

$$a := n(n-1) 3^n z^{2n}$$
 (8)

define a(n+1) as a_n $a \ n := subs(n=n+1, a)$;

$$a_n := (n+1)(n) 3^{n+1} z^{2n+2}$$
 (9)

 $\frac{a}{a n}$;

$$\frac{n(n-1) \, 3^n \, z^{2n}}{(n(n)+1) \, 3^{n+1} \, z^{2n+2}} \tag{10}$$

simplify(%);

$$\frac{n(n-1)}{3z^2(n(n)+1)}$$
 (11)

Radius of Convergence = $limit(\frac{a}{an}, n = infinity)$

limit(%, n = infinity);

$$\lim_{n \to \infty} \frac{n(n-1)}{3z^2 (n(n)+1)}$$
 (12)

#Pr 15.7 (Radius of convergence)

restart;

define the series

$$a := \frac{(4 \cdot n)!}{5^n \cdot (n!)^4} \cdot z^n;$$

$$a := \frac{(4 n)! z^n}{5^n n!^4}$$
 (13)

define a(n+1) as a_n $a \ n := subs(n = n + 1, a)$;

$$a_{n} := \frac{(4n+4)! z^{n+1}}{5^{n+1} (n+1)!^{4}}$$
 (14)

Radius of Convergence = $limit(\frac{a}{an}, n = infinity)$

 $convergence_test := limit\left(\frac{a}{a_n}, \ n = infinity\right);$

$$convergence_test := \frac{5}{256 z}$$
 (15)

#Pr 15.10 (Taylor series)

restart;

#define the function $f = cos^2(z)$ $f := cos^2(z)$;

$$f \coloneqq \cos(z)^2 \tag{16}$$

find the zero term as a0

$$a0 := eval\left(subs\left(z = \frac{Pi}{2}, f\right)\right);$$

$$a0 := 0$$
(17)

#find the taylor series

$$Taylor_Series := seq\left(\left(eval\left(subs\left(z = \frac{\text{Pi}}{2}, \frac{diff\left(f, z\$n\right)}{n!}\right)\right), n = 1 ..4\right)\right);$$

$$Taylor_Series := 0, 1, 0, -\frac{1}{3}$$
(18)