

Multiple Independent Levels of Safety & Security (MILS): High Assurance Architecture

Gordon M. Uchenick Sr. Mentor/Principal Engineer

What is High Assurance?

- To the FAA:
 - One failure per 10⁹ (1 Billion) hours of operation
 - How long is a Billion hours? Do the math!

■ 1,000,000,000 hours
$$\times \frac{1 \text{day}}{24 \text{ hours}} \times \frac{1 \text{ year}}{365.25 \text{ days}}$$

- 114,077 YEARS!
- For National Security Systems processing our most valuable data under most severe threat:
 - Failure is Unthinkable
- How do we implement systems that we can trust to be this robust?

- RTCA DO-178B, Software Considerations in Airborne Systems and Equipment Certification
- ARINC-653, Avionics Application Software Standard Interface
- ISO-15408, Common Criteria for Information Technology Security Evaluation
- DCID 6/3, Protecting Sensitive Compartmented Information Within Information Systems

Assurance Certification Goals

Common Criteria	MSLS / MLS Separation Accreditation
Basic Robustness (EAL3)	System High Closed Environment
Medium Robustness (EAL4+)	System High Open Environment
High Robustness (EAL6+)	Multi Level Separation
DCID 6/3 Protection Level 5	Multi Nation Separation Accreditation
DO-178B Level A	Failure is Catastrophic

- Most commercial computer security architectures
 - The result of systems software where security was an afterthought
 - Operating systems
 - Communications architectures
 - Reactive response to problems
 - Viruses, Worms, and Trojan Horses
 - Hackers and Attackers
 - Problems are only addressed after the damage has been done
- Inappropriate approach for mission critical systems
 - Does not safeguard information or the warfighter
 - Proactive measures are required to prevent damage

Fail-first, Patch-later (cont.)

- Reactive approach failures:
 - How many PC anti-virus programs can detect or quarantine malicious device drivers?
 - None!
 - What can an Active-X web download do to your PC?
 - Anything!

What happens when network data is processed in privilege mode?

Wild Creatures of the Net: Worms, Virus, ...

Under MILS Network Data and Privilege Mode Processing are Separated

Where We've Been: Starting Point for Architectural Evolution

The Whole Point of MILS

Really very simple:

Dramatically reduce the amount of safety/security critical code

So that we can

Dramatically increase the scrutiny of safety/security critical code

The MILS Architecture

Three distinct layers (John Rushby, PhD)

- Separation Kernel
 - Separate process spaces (partitions)
 - Secure transfer of control between partitions
 - Really small: 4K lines of code
- Middleware
 - Application component creation
 - Provides secure end-to-end inter-object message flow
 - Device Drivers, File Systems, Network Stacks, CORBA, DDS
- Applications
 - Implement application-specific security functions
 - Firewalls, Cryptomod, Guards, Mapplet Engine, CDS, Multi-Nation Web Server, etc.

Separation Kernel

- Microprocessor Based
 - Time and Space Multi- Threaded Partitioning
 - Data Isolation
 - Inter-partition Communication
 - Periods Processing
 - Minimum Interrupt Servicing
 - Semaphores
 - Synchronization Primitive's
 - Timers

And nothing else!

MILS Middleware

- Traditional RTOS Services
 - Device Drivers
 - File Systems
 - Token and Trusted Path
- Traditional Middleware
 - CORBA (Distributed Objects)
 - Data Distribution (Pub-Sub)
 - Web Services
- Partitioning Communication System (PCS)
 - Global Enclave Partition Comm
 - TCP, UDP, Rapid-IO, Firewire,

...

Partition Based Attestation

E A

Safety and Security enforcing functions must be:

Non-bypassable

Why Does Neatness Count?

- Enforcing functions cannot be circumvented
- Evaluatable
 - Enforcing functions are small enough and simple enough for mathematical verification
- Always Invoked
 - Enforcing functions are invoked each and every time
- Tamperproof
 - Subversive code cannot alter the enforcing data or functions

MILS Architecture Evolution

The MILS Architecture

Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

MILS SEPARATION KERNEL

Processor

Guest OS Architecture

Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

A MILS Workstation? (later...)

Distributed Security Requirements

- Extend single node enforcement to multiple nodes
- Do not add new threats to data Confidentiality or Integrity
- Enable distributed Reference Monitors to be NEAT
- Optimal inter-node communication
 - Minimizing added latency (first byte)
 - Minimizing bandwidth reduction (per byte)
- Fault tolerance
 - Infrastructure must have no single point of failure
 - Infrastructure must support fault tolerant applications

- The Partitioning Communications System (PCS) is communications middleware for MILS
- Always interposed in inter-node communications
- Interposed in some intra-node communications also
- Parallels Separation Kernel's policies

PCS Specific Requirements

- Strong Identity
 - Nodes within enclave
- Separation of Levels/Communities of Interest
 - Need cryptographic separation
- Secure Configuration of all Nodes in Enclave
 - Federated information
 - Distributed (compared) vs. Centralized (signed)
- Secure Loading: signed partition images
- Secure Clock Synchronization
- Suppression of Covert Channels
 - Bandwidth provisioning & partitioning
 - Network resources: bandwidth, hardware resources, buffers

Inter-node Communication

Network Middleware Libraries

Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

- Network middleware provides libraries for application use
 - e.g.,
 - Real-time CORBA
 - Data Distribution Service
 - DBMS libraries
 - Web-based libraries (.NET, Web Objects, etc.)
 - Run in application partitions
 - Provide application with higher level interface to network libraries (eg. Socket libraries)

 Some applications use socket libraries directly **Application**

CORBA, DDS,

Web, etc.

MILS Socket Lib

System Architecture with PCS

PCS Cross-Node Information Flow

Real-time MILS CORBA

- Real-time CORBA can take advantage of PCS capabilities
 - Real-time CORBA + PCS = Real-time MILS CORBA
 - Additional application-level security policies are enforceable because of MILS SK and PCS foundation
- Real-time MILS CORBA represents a single enabling application infrastructure

RT CORBA & MILS Synergy

- Synthesis yields an unexpected benefit
 - Flexibility of Real-time CORBA allows realization of MILS protection
 - MILS is all about location awareness
 - Well designed MILS system separates functions into separate partitions
 - Takes advantage of the MILS partitioning protection
 - Real-time CORBA is all about location transparency
 - The application code of a properly designed distributed system built with Real-time CORBA will not be aware of the location of the different parts of the system.
 - CORBA flexibility allows performance optimizations by rearranging what partitions each system object executes in.
 - System layout can be corrected late in the development cycle
 - Combination of MILS and Real-time CORBA allows system designer
 - Rearrange system functions to take advantage of protection without introducing new threats to data confidentiality and integrity

- OMG Data Distribution Specification
 - Data-centric publish-subscribe
- PCS protects DDS implementations from
 - Attack by other partitions
 - Network attacks
 - Covert channels
- DDS can take advantage of PCS capabilities
 - PCS + DDS = MILS DDS
 - Application-level security policies are enforceable because of MILS SK and PCS foundation

Web Services Overview

- The Web is all about the user interface
- Web Services are all about providing dynamic services driven from and to feed the user interface
- Programmable application logic accessible using standard Internet protocols

Application

Web Services Security

Web Client, Servers, Services

Partitioning Communications System

Separation Kernel

High Assurance MILS Workstation

MILS Workstation Network Access

The Whole Point of MILS

Really very simple:

Dramatically reduce the amount of safety/security critical code

So that we can

Dramatically increase the scrutiny of safety/security critical code

To make

 Development, certification, and accreditation more practical, achievable, and affordable.