FEM Programming on Surface Mesh

这一节主要讨论曲面有限元程序实现中的数学细节,这些数学细节是 fealpy 中进行正确高效程序实现的基础。

符号

Notation	Meaning
S	R ³ 空间中的曲面
$K \subset \mathbb{R}^2$	二维空间中的标准单元
$\mathbf{u}=(u,v)^T$	二维空间中的坐标系
$ au_{h} \subset \mathbf{R}^{3}$	三维空间中的尺寸为 h 的平面三角形,假设它的三个顶点在曲面 S 上
$\mathbf{x} = (x, y, z)^T \in \boldsymbol{\tau_h}$	$ au_h$ 上的一个点
\mathcal{P}_0	S 邻近区域到 S 的投影
$\mathbf{x}_{i}, i = 1, \dots, n_{dof}$	$ au_h$ 上 p 次 Lagrangian 基函数对应的自由度坐标点, 假设 $x_i \in S$
$\tau_p \subset \mathbb{R}^3$	定义在 τ_h 上的 p 次多项式曲面三角形
$\mathbf{x}_p = (x_p, y_p, z_p)^T \in \tau_p$	$ au_p$ 上一个点的三维坐标
$\tau_{\mathcal{S}} \subset \mathbb{R}^3$	把 τ_h 投影到曲面 S 上的曲面三角形
$\mathbf{x}_{S} = (\mathbf{x}_{S}, \mathbf{y}_{S}, \mathbf{z}_{S})^{T} \in \tau_{S}$	$ au_S$ 上一个点的三维坐标
$\varphi_i(\mathbf{x})$	定义在 $ au_h$ 上第 i 个 Lagrangian 基函数

τ_h, τ_p 和 τ_S 之间关系

对于 τ_p 上的任意一点 \mathbf{x}_p , 存在一点 $\mathbf{x} \in \tau_h$, 使得

$$\mathbf{x}_{p} = \sum_{i=1}^{n_{dof}} \mathbf{x}_{i} \boldsymbol{\varphi}_{i}(\mathbf{x})$$

进一步, 存在标准参考单元 K 中存在一点 $\mathbf{u} = (u, v)$, 可得

$$\mathbf{x}(\mathbf{u},\mathbf{v}) = \lambda_0 \mathbf{x}_0 + \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2$$

其中 \mathbf{x}_0 , \mathbf{x}_1 和 \mathbf{x}_2 为 $\boldsymbol{\tau}_h$ 的三个顶点,

$$\lambda_0 = 1 - \boldsymbol{u} - \boldsymbol{v}$$
, $\lambda_1 = \boldsymbol{u}, \lambda_2 = \boldsymbol{v}$

对于 τ_S 上的任意一点 \mathbf{x}_S , 存在 τ_p 上的一点 \mathbf{x}_p , 使得

$$\mathbf{x}_{\mathbf{S}} = \mathcal{P}_0(\mathbf{x}_{\mathbf{p}})$$

x 关于 (u, v) 的 Jacobi 矩阵为

$$\frac{\partial \mathbf{x}}{\partial \mathbf{u}} = [\mathbf{x}_1 - \mathbf{x}_0, \mathbf{x}_2 - \mathbf{x}_0]$$

 x_p 关于 x 的 Jacobi 矩阵为

$$\frac{\partial \mathbf{x}_{p}}{\partial \mathbf{x}} = \sum_{i=1}^{n_{dof}} \begin{bmatrix} x_{i} \nabla_{\mathbf{x}} \varphi_{i}(\mathbf{x})^{T} \\ y_{i} \nabla_{\mathbf{x}} \varphi_{i}(\mathbf{x})^{T} \\ z_{i} \nabla_{\mathbf{x}} \varphi_{i}(\mathbf{x})^{T} \end{bmatrix}$$

则 x_n 关于 u 的 Jacobi 矩阵为

$$\frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} = \left[\frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}}, \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{v}}\right] = \sum_{i=1}^{n_{dof}} \begin{bmatrix} \mathbf{x}_{i} \nabla_{\mathbf{x}} \boldsymbol{\varphi}_{i}(\mathbf{x})^{T} \\ \mathbf{y}_{i} \nabla_{\mathbf{x}} \boldsymbol{\varphi}_{i}(\mathbf{x})^{T} \\ z_{i} \nabla_{\mathbf{x}} \boldsymbol{\varphi}_{i}(\mathbf{x})^{T} \end{bmatrix} [\mathbf{x}_{1} - \mathbf{x}_{0}, \mathbf{x}_{2} - \mathbf{x}_{0}]$$
(1)

记

$$\mathrm{d}\mathbf{x}_{p} = \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} \mathrm{d}\mathbf{u} = \frac{\partial \mathbf{x}_{p}}{\partial u} \mathrm{d}u + \frac{\partial \mathbf{x}_{p}}{\partial v} \mathrm{d}v,$$

其中 $d\mathbf{u} = [d\mathbf{u}, d\mathbf{v}]^T$ 。

进一步可得曲面三角形 τ_p 上的第一基本形式

$$I = \langle d\mathbf{x}_p, d\mathbf{x}_p \rangle = d\mathbf{u}^T \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} \\ \mathbf{g}_{12} & \mathbf{g}_{22} \end{bmatrix} d\mathbf{u}$$

其中

$$\boldsymbol{g}_{11} = \langle \frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{u}}, \frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{u}} \rangle, \boldsymbol{g}_{12} = \langle \frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{u}}, \frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{v}} \rangle, \boldsymbol{g}_{22} = \langle \frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{v}}, \frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{v}} \rangle,$$

定义 τ_n 上的基函数如下

$$\varphi_{p,i}(\mathbf{x}_p) = \varphi_i(\mathbf{x})$$

其中

$$\mathbf{x}_{p} = \sum_{i=1}^{n_{dof}} \mathbf{x}_{i} \boldsymbol{\varphi}_{i}(\mathbf{x})$$

则 $\varphi_{p,i}(\mathbf{x}_p)$ 在 τ_p 上的切向导数定义如下:

$$\nabla_{S_{p}} \varphi_{p,i} = \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} \\ \mathbf{g}_{12} & \mathbf{g}_{22} \end{bmatrix}^{-1} (\frac{\partial \mathbf{x}}{\partial \mathbf{u}})^{T} \nabla_{S_{h}} \varphi_{i}(\mathbf{x})$$

S 上曲面三角形的面积计算公式

$$\mathcal{P}_0(\mathbf{x}) := \mathbf{x} - d(\mathbf{x})\mathbf{n}(\mathbf{x})$$

对于 $x_p \in \tau_p$, 存在 $x_S \in S$, 有

$$\mathbf{x}_{S} = \mathcal{P}_{0}(\mathbf{x}_{p}) = \mathbf{x}_{p} - d(\mathbf{x}_{p})\mathbf{n}(\mathbf{x}_{p})$$

$$\frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} = I - d(\mathbf{x}_{p})H(\mathbf{x}_{p}) - \mathbf{n}(\mathbf{x}_{p})\mathbf{n}(\mathbf{x}_{p})^{T}$$

$$\frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}}$$

S 上的导数计算

考虑 τ_S 和 τ_p 的关系

则 $\mathbf{x}_{\mathcal{S}}$ 关于 \mathbf{u} 的 Jacobi 矩阵为

$$\frac{\partial x_{S}}{\partial u} = \frac{\partial x_{S}}{\partial x_{p}} \frac{\partial x_{p}}{\partial u}$$

$$\frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} = I - d(\mathbf{x}_{p})H(\mathbf{x}_{p}) - \mathbf{n}(\mathbf{x}_{p})\mathbf{n}(\mathbf{x}_{p})^{T}$$

由于

$$\frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} = \left[\frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{u}}, \frac{\partial \mathbf{x}_{p}}{\partial \boldsymbol{v}}\right] = \sum_{i=1}^{n_{dof}} \begin{bmatrix} x_{i} \nabla_{\mathbf{x}} \boldsymbol{\varphi}_{i}(\mathbf{x})^{T} \\ y_{i} \nabla_{\mathbf{x}} \boldsymbol{\varphi}_{i}(\mathbf{x})^{T} \\ z_{i} \nabla_{\mathbf{x}} \boldsymbol{\varphi}_{i}(\mathbf{x})^{T} \end{bmatrix} [\mathbf{x}_{1} - \mathbf{x}_{0}, \mathbf{x}_{2} - \mathbf{x}_{0}]$$

$$\frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}}$$

进一步可得到曲面 τ_S 上的第一基本形式

记

$$d\mathbf{x}_{S} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}} d\mathbf{u} = \frac{\partial \mathbf{x}_{S}}{\partial u} d\mathbf{u} + \frac{\partial \mathbf{x}_{S}}{\partial v} dv,$$

其中

$$d\mathbf{x}_{S} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}} d\mathbf{u}$$

$$= \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} d\mathbf{u}$$

$$= \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} d\mathbf{u} + \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{v}} d\mathbf{v}$$

故

$$\frac{\partial \mathbf{x}_{S}}{\partial u} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial u}$$
$$\frac{\partial \mathbf{x}_{S}}{\partial v} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial v}$$

$$I = \langle d\mathbf{x}_{S}, d\mathbf{x}_{S} \rangle = d\mathbf{u}^{T} \begin{bmatrix} \mathbf{g}_{11}^{'} & \mathbf{g}_{12}^{'} \\ \mathbf{g}_{12}^{'} & \mathbf{g}_{22}^{'} \end{bmatrix} d\mathbf{u}$$

其中

$$g_{11}^{'} = <\frac{\partial x_{S}}{\partial u}, \frac{\partial x_{S}}{\partial u}>, g_{12}^{'} = <\frac{\partial x_{S}}{\partial u}, \frac{\partial x_{S}}{\partial v}>, g_{22}^{'} = <\frac{\partial x_{S}}{\partial v}, \frac{\partial x_{S}}{\partial v}>,$$

定义 τ_S 上的基函数如下

$$\varphi_{S,i}(\mathbf{x}_S) = \varphi_i(\mathbf{x})$$

其中

$$\mathbf{x}_{S} = \sum_{i=1}^{n_{dof}} \mathbf{x}_{i} \boldsymbol{\varphi}_{i}(\mathbf{x})$$

则 $\varphi_{S,i}(\mathbf{x}_S)$ 在 τ_S 上的导数定义如下:

$$\nabla_{\mathbf{S}_{S}} \varphi_{\mathbf{S}, i} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}} \begin{bmatrix} \mathbf{g}_{11}^{'} & \mathbf{g}_{12}^{'} \\ \mathbf{g}_{12}^{'} & \mathbf{g}_{22}^{'} \end{bmatrix}^{-1} (\frac{\partial \mathbf{x}}{\partial \mathbf{u}})^{T} \nabla_{\mathbf{S}_{h}} \varphi_{i}(\mathbf{x})$$

设 $w(\mathbf{x}_S)$ 是定义在 S 上的函数, 利用投影可以定义 S_p 上函数

$$\hat{w}(\mathbf{x}_p) = w(\mathcal{P}_0(\mathbf{x}_p))$$

下面讨论如何计算 $\nabla_{S_p} w$.

$$\nabla_{\mathbf{S}_{p}} \hat{\mathbf{w}}(\mathbf{x}_{p}) = \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{12} \\ \mathbf{g}_{12} & \mathbf{g}_{22} \end{bmatrix}^{-1} \begin{pmatrix} \hat{\mathbf{w}}_{u} \\ \hat{\mathbf{w}}_{v} \end{pmatrix}$$

$$\begin{pmatrix} \hat{w}_u \\ \hat{w}_v \end{pmatrix} = (\frac{\partial x_S}{\partial u})^T \nabla_{x_S} w(x_S)$$

In []: