Data Representation Cont.

Bit Patterns from N Bits

Number of Bits	Number of Patterns	Number of Patterns as Power of Two
1	2	2 ¹
2	4	2 ²
3	8	2 ³
4	16	2 ⁴

- Number of possible patterns with N bits = 2^N
- How many patterns can be formed with
 - 10 bits? $= 2^{10} = 1024$
 - 20 bits? = $2^{20} = 2^{10} * 2^{10} = 1048576$
 - 30 bits? = $2^{30} = 2^{10} * 2^{20} = 1073741824$
 - 40 bits? = $2^{40} = 2^{10} * 2^{30} = 1.0995116e+12$
 - 50 bits? = $2^{50} = 2^{10} \cdot 2^{40} = 1.1258999e + 15$
 - 60 bits? = $2^{60} = 2^{10} \cdot 2^{50} = 1.1529215e + 18$

Unsigned Integers Overview

All bits represent magnitude

- Can represent range [0, 2ⁿ I]
- What range of values can be represented for a 8-bit unsigned integer?
 - [0, 2⁸-1]
 - [0, 255]
- What ranges of values can be represented by an 32-bit unsigned int?
 - $[0, 2^{32}-1]$
 - [0, 4294967296]

Unsigned Integer to Decimal

- Convert unsigned integer to decimal
- Binary number written as $d_{n-1} \dots d_2 d_1 d_0$ (where n = # of bits)
- The decimal value is $\sum_{i=0}^{n-1} d_i \times 2^i$
- Example:
 - 8-bit unsigned integer

Bits:	I	0	0	I	0	I	0	I
Indexes:	7	6	5	4	3	2	1	0

• =
$$I(2^7) + O(2^6) + O(2^5) + I(2^4) + O(2^3) + I(2^2) + O(2^1) + I(2^0)$$

$$\bullet = 2^7 + 2^4 + 2^2 + 2^0$$

$$\bullet$$
 = 128 + 16 + 4 + 1

$$\bullet = 149$$

Signed Integer Overview

Use the leftmost bit for sign

- Use twos complement to represents negative numbers
 - Take the ones complement and add one
 - Essentially invert the bits and add one
- Can represent the range [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
- What range of values can an 8-bit signed integer represent?
 - $[-2^{8-1}, 2^{8-1}-1]$
 - [-128, 127]
- What range of values can an 32-bit signed integer represent?
 - $[-2^{32-1}, 2^{32-1}-1]$
 - [-2147483648, 2147483647]

Signed Integer to Decimal

- Convert Signed Integer to Decimal
- Binary number written as $d_{n-1}d_{n-2}\dots d_1d_0$ (where n = # of bits)
- Decimal value is interpreted as $-d_{n-1}2^{n-1} + \sum_{i=0}^{n-2} d_i 2^i$
 - Works with both positive and negative numbers
- Example I:
 - 8-bit signed integer

Bits:	I	0	0	I	0	I	0	I
Indexes:	7	6	5	4	3	2	ı	0

• =
$$-(1 \times 2^7) + 0(2^6) + 0(2^5) + 1(2^4) + 0(2^3) + 1(2^2) + 0(2^1) + 1(2^0)$$

• =
$$-(1 \times 2^7) + 1(2^4) + 1(2^2) + 1(2^0)$$

$$\bullet = -128 + 16 + 4 + 1$$

$$\bullet = -107$$

Signed Integer to Decimal (Ex. Cont.)

- Let's confirm by taking taking the negative value of -107 and reevaluating decimal
- Negate -107 using twos complement
 - $-107_{10} = 10010101_2$
 - 01101010₂ (take complement)
 - 01101011₂ (add 1)
- Convert 01101011₂ to decimal
 - If right, it should be 107

Bits:	0	I	I	0	I	0	I	I
Indexes:	7	6	5	4	3	2	ı	0

- = $-(0 \times 2^7) + 1(2^6) + 1(2^5) + 0(2^4) + 1(2^3) + 0(2^2) + 1(2^1) + 1(2^0)$
- $\bullet = 2^6 + 2^5 + 2^3 + 2^1 + 2^0$
- \bullet = 64 + 32 + 8 + 2 + 1
- = 107 (correct!)

Floating Point Overview

- Most computers follow IEEE 754 standard
- Bits split up into three sections:

S	ехр	mantissa
	-	

- s: sign field determines if the number is negative (s=1 if negative)
- exp: biased exponent
- mantissa: fractional number in binary (base 2)
- Decimal Value = $(-1)^S \times 2^E \times F$
 - E : unbiased exponent in decimal
 - $E = \exp bias$ (where $k = number \exp bits$)
 - bias = $(2^{(k-1)}-1)$
 - The bias allows exp to be represented as an unsigned integer for comparison but represent negative exponents
 - F: binary scientific notation
 - F = I.<mantissa> (or 0.<mantissa>, we'll see later on)

Converting Floating Point to Decimal

- Recall: Decimal Value = $(-1)^S \times 2^E \times F$
- Basic Steps for converting floating point to decimal
 - I. Calculate Unbiased Exponent
 - Get E, where $E = \exp bias$ and $bias = 2^{(k-1)}-1$
 - 2. Get binary scientific notation with mantissa
 - Get F, where F = I.<mantissa>
 - 3. Shift binary scientific notation $(2^E \times F)$
 - 4. Convert binary representation to decimal
 - 5. Tack on sign (multiply by (-1)^S)

Example

- Recall: Decimal Value = $(-1)^S \times 2^E \times F$
- Example: 8-bit floating point
 - I bit for sign, 3 bits for exponent, 4 bits for mantissa

- I. Calculate unbiased exponent (E, where $E = \exp bias$)
 - $E = \exp bias$
 - $E = 110_2 bias = 6_{10} bias$
 - $E = 6_{10} (2^{(k-1)}-1) = 6_{10} (2^{(3-1)}-1) = 6_{10} 3_{10}$
 - E = 3
- 2. Get binary scientific notation
 - F = 1.<mantissa> = 1.1011
- 3. Shift Binary Representation $(2^E \times F)$
 - $2^3 \times 1.1011_2 = 1101.1_2$
- 4. Evaluate Binary Result To Decimal
- 5. Tack on Sign (multiply by $(-1)^S$) \longrightarrow = -13.5 \longleftarrow Final Result

= 13.5

(evaluate exp)

(evaluate bias)

Other Values in Floating Point

- We just went over how normalized values are represented in floating point
- However two additional kinds of values are represented by floating point representation
 - How we interpret them is different than normalized values
- Denormal Values
 - When exp is all 0s
 - Represents numbers 0 or very close to zero
 - Difference from normalized values:
 - Different Unbiased Exponent (E) = I bias or $I (2^{(k-1)}-I)$
 - Different Binary Scientific Notation (F) = 0.<mantissa>
- Special Values
 - When exp all Is
 - When mantissa is all 0's
 - Positive or negative Infinity $(\pm \infty)$ depending on sign
 - When mantissa is not all 0's
 - NaN = Not a number

Denormal Value Example

- Recall: Decimal Value = $(-1)^S \times 2^E \times F$
- Example: 8-bit floating point
 - I bit for sign, 3 bits for exponent, 4 bits for mantissa

- I. Calculate unbiased exponent (E, where E = I bias)
 - E = I bias
 - $E = I (2^{(k-1)}-I) = I (2^{(3-1)}-I) = I 3$ (evaluate bias)
 - E = -2
- 2. Get binary scientific notation
 - $F = 0. < mantissa > = 0.1011_2$
- 3. Shift Binary Representation $(2^E \times F)$
 - $2^{-2} \times 0.1011_2 = 0.001011_2$
- 4. Evaluate Binary Result To Decimal
- 5. Tack on Sign (multiply by (-1)^S)

= +0.171875 **← Final Result**

Special Value Examples

• Example I:

- exp is all Is so it must be a special value
- mantissa is all 0s and the sign is 0 so positive
- special value + 0 mantissa + positive value = $+\infty$

• Example 2:

- exp is all Is so it must be a special value
- mantissa is not all zeros
- special value + non-zero mantissa = NaN

Floating Point Summary

- Three different cases
- Normalized values
 - When exp is not all 0s or not all 1s
 - $E = \exp (2^{(k-1)}-1)$
 - F = I.<mantissa>
- Denormalized Values
 - When exp is 0
 - $E = I (2^{(k-1)}-I) -> (e.g for 32-bit float: I- 127 = -126)$
 - F = 0.<mantissa>
 - Represents 0 and values very close to 0
- Special Values
 - When exp all I's
 - When mantissa is all 0's
 - Positive or negative Infinity $(\pm \infty)$ depending on sign
 - Else when mantissa is not all 0's
 - NaN = Not a number

Rounding in Floating Point

- Round to the nearest number
- Example:
 - Assume 4 bit mantissa
 - 1.10011001
 - Need to trauncate to 4 mantissa bits

 - Round up to 1.1010 because it's closer
- What happens if tie?
 - Round to even binary number (where last digit is 0)
- Example:
 - 1.10011
 - If we round down we get an odd number 1.1001
 - So round up to even number 1.1010
 - 1.10001
 - If we round up we get 1.1001 which is not even
 - Round down to even number 1.1000

ASCII

- American Standard for Computer Information Interchange
 - Defines what character is represents by a sequence of bits
- According to ASCII standard, I character is stores with I byte (8 bits)
- Based on the English Alphabet
- Originally only encoded 128 character using 7 bits
 - One bit could be used for error detection
- Subsequently extended to use all 256 values

ASCII Table

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р	`	р
1	SOH	DC1 XON	İ	1	Α	Q	а	q
2	STX	DC2	ıı .	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	Е	U	е	u
6	ACK	SYN	&	6	F	V	f	٧
7	BEL	ETB	1	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	- 1	Υ	i	У
Α	LF	SUB	*	:	J	Ζ	j	Z
В	VT	ESC	+	i	K	[k	{
С	FF	FS		<	L	1	- 1	
D	CR	GS	-	=	M]	m	}
E	so	RS		>	N	۸	n	~
F	SI	US	1	?	0	_	0	del

Character value stored in 1 byte

Value of character in Hex

- '1' = 0x31
- 3' = 0x33
- 9' = 0x39
- 'a' = 0x61
- 'A'= 0x41

ASCII Character Representing Integer

- Supppose user types a 4 character sequence "123\n"
- Conversion from character representation to the desired two's complement integer representation
 - Integer desired = ASCII representation 48

ASCII Character	Hex Value	Decimal Value	Binary	Desired Integer	Two's Complement
'1'	0x31	49	00110001	1	0000001
'2'	0x32	50	00110010	2	0000010
'3'	0x33	51	00110011	3	00000011
'\n'	0x01	10	00001010	(NA)	(NA)

Unicode and UTF-8

- What about characters for other languages?
 - ASCII only allows for a small number of characters
- Unicode is a standard that defines more than 107,000 characters across 90 scripts (and more)
- Most Common: UTF-8
 - Variable length encoding of Unicode: I-4 bytes for each character
 - I-byte form is reserved for ASCII backward compatibility

Addressing

- All information is represented in binary form but require different sizes
- Pointer sizes are different depending on the architecture:
 - 32-bit machine: 32-bit pointer = 4 bytes
 - 64-bit machine: 64-bit pointer = 8 bytes
- How many different addresses can a pointer have?
 - 32-bits = 2^{32} bytes = $2^2 \times 2^{30}$ bytes = 4 Gigabytes
 - 64-bits = 2^{64} bytes = 2^{4} x 2^{60} bytes = 16 Exabytes
- This is what known as the "Address Space" or space of all memory address

Big Endian vs. Little Endian

 How to determine value when you have a binary number spread across multiple bytes?

- Is it A0BC0012 or I200BCA0?
- Big Endian
 - Most significant byte first
 - A0BC0012 in example above
- Little Endian
 - Least significant byte first
 - I200BCA0 in example above
- Why care?
 - Interpret machine code and values
 - Different computers use different endianness
 - Need to convert into standard form before transmitting

Data in Memory

Integer: 0xA0BC0012

Big Endian

0x100	A0	0x100	12
0x101	ВС	0x101	00
0x102	00	0x102	ВС
0x103	12	0x103	A0
			•••

Little Endian