Quantum Machine Learning for High Energy Physics

Quantum Contrastive Learning

Amey Bhatuse

Google Summer of Code 2024

Final Evaluation

Goal

Learn better representations of high-energy physics data using quantum machine learning models and benchmark the model performance against pre-existing classical approaches

Contrastive Learning of HEP data

A simple framework for contrastive learning of visual representations. (Image source: Chen et al, 2020)

JetCLR - Jet classification

PASCL - Particle Decay Reconstruction

Working with Jet Images

Average of jet images for each channel Top - Gluon, Bottom - Quark

Data-Reuploading circuits (DRC)

HYBRID

- Quantum Convolution layers followed by a classical Linear layer
- Output N-dimensional vector

Data Augmentation

- Random Horizontal flips
- Random Vertical flips
- Random Rotations
- Z-score Normalization

Encoder - Quantum Convolutional NN

FULLY-QUANTUM

- Quantum Convolution layers followed by a parameterised quantum circuit
- Output 2ⁿ-dimensional quantum state vector

MNIST

Downstream Classification Accuracy > 90%

Quark Gluon

Downstream Classification Accuracy - 50-60 %

Key Learnings

- Data augmentations play more significant role than earlier assumed
- Jet images (that we use) are probably a less than good candidate for quantum contrastive learning

Jets as Graphs

Jet Observables

Original

Derived (Roy's work from last year's GSoC)

Transverse Mass Per Multiplicity $(m_{\alpha,T}^{(i)})$

$$m_{lpha,T}^{(i)}=\sqrt{m_lpha^{(i)^2}+p_{lpha,T}^{(i)^2}}$$

Energy Per Multiplicity $(E_{\alpha}^{(i)})$

$$E_{lpha}^{(i)}=m_{lpha,T}^{(i)}{
m cosh}y_{lpha}^{(i)}$$

Kinematic Momenta Components Per Multiplicity $(\vec{p}_{\alpha}^{(i)} = (p_{x,\alpha}^{(i)}, p_{y,\alpha}^{(i)}, p_{z,\alpha}^{(i)})$

$$p_{x,lpha}^{(i)}=p_{T,lpha}^{(i)}{
m cos}\phi_lpha^{(i)}$$

$$p_{y,lpha}^{(i)}=p_{T,lpha}^{(i)}{
m sin}\phi_lpha^{(i)}$$

$$p_{z,lpha}^{(i)}=m_{T,lpha}^{(i)}{
m sinh}y_lpha^{(i)}$$

Let Invariant Rationale Discovery Inspire Graph Contrastive Learning, Li et al.

Hypothesis -

Discriminatory information ----> Rationale (Causal part) (Here - a subset of nodes in the graph)

Perform augmentation to *highlight* rationale

- Encoder trains predominantly on the rationally important part leading to better representations
- Spurious Correlations (Non-Causal part) are ignored!

Augmentation and Rationale Generation

Node score from rationale generator

Discrete probability distribution signifying each node's importance

Randomly sample nodes (and their corresponding edges) under this distribution

IRC Safety

"Symmetries, Safety, and Self-Supervision" - Barry et al. (JetCLR paper)

$$\text{Infrared safe} \qquad \eta' \sim \mathcal{N}\left(\eta, \frac{\Lambda_{\text{soft}}}{p_T}\right) \qquad \text{and} \qquad \phi' \sim \mathcal{N}\left(\phi, \frac{\Lambda_{\text{soft}}}{p_T}\right) \qquad \qquad \Lambda \text{soft} = 100 \; \text{MeV}$$

Collinear safe
$$p_{T,a}+p_{T,b}=p_T$$
 $\eta_a=\eta_b=\eta$ $\phi_a=\phi_b=\phi$

Backbone - ParticleNet, 10000 samples, 10 particles

Classical RGQuantum RGTrainable parameters107345AUC0.7520.758

Quantum Rationale Generator

QNN

- Angle embedding node vectors (1 qubit per node)
- Use entangling layers for parameterization
- Output probability distribution over basis states
- Select probabilities of basis states with hamming weight 1 (For eg. 001, 010, 100) and normalize

In Progress...

- Gathering results for various model (different backbones) and data configurations
- Trying to work out the theoretical explanation for the performance of QRG and comparing it with the classical counterpart.

Thank you!