試卷請註明、姓名、班級、學號,請遵守考場秩序

- I.計算題(50 points) (所有題目必須有計算過程,否則不予計分)
- 1. (12pts) The direction (in general) of a electromagnetic plane wave can be expressed by the wave vector $\vec{k} = (k_x, k_y, k_z)$. The following equation describes the magnetic field of a plane wave traveling in free space with wave number $\vec{k} = |\vec{k}|$ (in unit of \mathbf{m}^{-1})

$$\vec{B}(\vec{r},t) = B_0 \hat{z} \sin(\vec{k} \cdot \vec{r} - \omega t) = 2 \times 10^{-7} (T) \hat{z} \sin(x - \sqrt{3}y - \omega t)$$

Answer the following questions in SI unit. (Note: $\vec{r} = (x, y, z)$, $c = 3 \times 10^8$ m/s, $\mu_0 = 4 \pi \times 10^{-7}$ m/A, and $\varepsilon_0 \mu_0 = 1/c^2$)

- (a) Find the wave number (k), wavelength (λ) , and the angular frequency (ω) of this plane wave.
- (b) What is the direction of propagation of this plane wave?
- (c) The electric field of this wave plane can be written as $\vec{E}(\vec{r},t) = \vec{E}_0 \sin(\vec{k} \cdot \vec{r} \omega t)$, where $\vec{E}_0 = (E_{0x}, E_{0y}, E_{0z})$ Find the values of E_{0x} and E_{0y} .
- (d) Find the Poynting vector \vec{S} (magnitude and direction), and the intensity $(I = \langle S \rangle)$ of this plane wave.
- 2. (8pts) As shown in Fig. 1., an AC circuit with a power supply of voltage V_{in} , is connected to a capacitor C and a resistor R. Assume $I_{in} = I_0 \cos(\omega t)$. Applying the phasor method to find
- (a) $V_C(t)$, $V_R(t)$, $V_{in}(t)$
- (b) the ratio $V_{out\theta}/V_{in\theta}$ as a function of ω , where the $V_{in\theta}$ and $V_{out\theta}$ are the voltage amplitudes of the power supply and the resistor, respectively.
- (c) the ratio V_{out0}/V_{in0} as $\omega \to 0$, and $\omega \to \infty$.

- 3. (15 pts) A circular capacitor (as shown in Fig. 2) with spacing h and radius R is connected to a circuit. The current I(t) is zero for t < 0 and t > T and $I(t) = I_0 (t/T)^2$ for $0 \le t \le T$. At t = 0, there is no charge on the capacitor. Let point A locates inside the capacitor $(r_1 < R)$ and point B locates outside the capacitor $(r_2 > R)$. Ignoring the edge effect (i.e. E(r) = 0, for r > R).
- (A)(4 pts) Find the direction (up or down) and the magnitude of the electric field $E(r_p,t)$ at point A for 0 < t < T.
- (B) (4 pts) Find the direction (clockwise, or counter clockwise viewed from the top) and the magnitude of magnetic fields $B_1(r_1, t)$ at point A and
- (C) (4 pts) $B_2(r_2, t)$ at point B (direction and magnitude) due to the time-varying electric field. (You need to draw Ampere's loop for each case.)
- (d) (3 pts) Plot the magnitude of the magnetic field B(r, t=T) as a function of r, specify the magnitude of B(R).
- 4. (15 pts) As shown in Fig. 3, a plane electromagnetic wave travels in the direction normal to a screen with *N*-parallel slits, and the spacing between neighboring slits is 10.64 μm. The wave emitted from each slit forms an interference pattern on a screen 10 cm away. The spacing between the central maximum intensity peak and the neighboring peak is 0.5 cm.
- (A) (5 pts) Determine the number of the slits and the wavelength of the electromagnetic wave.
- (B) (5 pts) Draw the phasor diagram of the E-fields emitted from each slit and arriving at the intensity minimum m_1 and m_2 on the screen.
- (C) (5 pts) If the width of each slit is $2.00 \mu m$, how many major bright fringes (ignore the minor fringes) will appear in the central bright band due to the effect of the diffraction from individual slits?

II.選擇題(54 points)

- 1. (5 pts) Fig. 4 shows the voltages of the resistor (V_R), the power supply (V_s), and the inductor (V_L) in the RLC circuit shown in Fig. 5. (i) which curve is V_R ? and (ii) is the frequency ω of the circuit above or below resonance frequency ($\omega_0 = 1/\sqrt{LC}$)?
 - (A) Curve \boldsymbol{A} is $\boldsymbol{V_R}$, and $\boldsymbol{\omega} > \omega_0$; (B) Curve \boldsymbol{B} , and $\boldsymbol{\omega} > \omega_0$;
 - (C) Curve C, and $\omega > \omega_0$; (D) Curve A, and $\omega < \omega_0$;
 - (E) Curve **B**, and $\omega < \omega_{\theta}$; (F) Curve **C**, and $\omega < \omega_{\theta}$;
 - (G) None of above is correct.
- 2. (5 pts) Fig. 6 shows V_L (inductor) and $V_{Power\ Supply}$ in the RLC circuit shown in Fig. 5. Which of the following action will make the circuit to reach resonance?
 - (A) Increasing L; (B) Decreasing L; (C) Increasing C;
 - (D) Decreasing C; (E) A or C; (F) A or D;

(G) **B** or **C**;

- (H) \boldsymbol{B} or \boldsymbol{D} ; (J) None of above.

- 3. (5 pts.) For a *RLC* circuit shown in Fig. 7. The AC voltage source is $V(t) = V_0 \sin \omega t$. The current through the inductor, capacitor and resistor are I_L , I_C , and I_R , respectively. Let $V_0=1V$, $\omega=10^4$ s⁻¹, C=1.0 μ F, and L=0.01H. What is the magnitude of the current $I_{R,\theta}$ (in SI unit, A)?
- (A) 0 (B) $0 < I_{R,\theta} \le 0.005$ (C) $0.005 < I_{R,\theta} \le 0.01$ (D) $0.01 < I_{R,\theta} \le 0.015$ (E) $0.015 < I_{R,\theta} \le 0.02$
- (F) $0.02 < I_{R,\theta} \le 0.025$ (G) $0.025 < I_{R,\theta} \le 0.03$ (H) $0.03 < I_{R,\theta} \le 0.04$ (J) $0.04 < I_{R,\theta}$
- 4. (5 pts) Fig.8(a) shows a *LC* circuit, the top view of the electric and magnetic field inside the **inductor** is shown in Fig.8(b) at some time *t*. Which of the following statement is correct for the directions of the electric and magnetic fields inside the capacitor (top view)?
 - (A) B-field is counter-clock-wise (c.c.w.) and E-field is pointing out of page (up in Fig.8(a)).
 - **(B) B**-field is clock-wise (c.w.) and **E**-field is pointing out of page.
 - (C) B-field is c.c.w. and E-field is pointing into page (down in Fig.8(a)).
 - **(D) B**-field is c.w. and **E**-field is pointing into page.
 - (E) both of (A) and (B) are possible; (F) both of (C) and (D) are possible,
 - (G) both of (A) and (C) are possible; (H) both of (B) and (D) are possible,
 - (I) all (A) to (D) are possible
- 5. (5pts) As shown in Fig. 9(a), a plane electromagnetic wave is traveling in a direction normal to a thin film with reflective index n_2 and initial thickness $t_0 = \lambda/(8n_2)$, where λ is the wavelength of this wave in air. The reflective index is n_1 for the medium on the top of the film, and n_3 the medium on the other side. If Fig. 9(b) shows the total wave intensity I_T resulted from the interference of the wave reflected from the n_1 - n_2 interface with that reflected from the n_2 - n_3 interface as the thickness of the film increases, which of the following statement is correct?
 - (A) $n_1 > n_2 > n_3$ (B) $n_2 > n_1 > n_3$ (C) $n_3 > n_2 > n_1$ (D) $n_3 > n_1 > n_2$
 - (E) (A) and (C) (F) (B) and (D) (G) (A) and (B)
 - (H) (C) and (D) (I) (B),(C), and (D) (J) (A),(B), and (D)

6. (5pts) The current amplitude I versus driving angular frequency $\omega_{\rm d}$ for a driven RLC series circuit (Fig. 5) is given in Fig.10, where the vertical axis scale is set by $I_{\rm s}=4.00$ A. The inductance is 200 μ H, and the emf amplitude is 8.0 V. C and R are (A) 2 μ F and 2 Ω ; (B) 4 μ F and 2 Ω ; (C) 6 μ F and 2 Ω ; (D) 8 μ F and 2 Ω ; (E) 10 μ F and 2 Ω ; (F) 10 μ F and 4 Ω ; (G) 10 μ F and 6 Ω ; (H) 10 μ F and 8 Ω ; (J) 10 μ F and 10 Ω , respectively.

Multiple Choice Questions:

1	2	3	4	5	6	7	8	9	10
С	Е	A	C	Е	D	Н	C	В	Е
11	12	13	14	15	16	17	18	19	20
D	Н	Н	A						

1. (12pts) The direction (in general) of a plane can be expressed by the wave vector $\vec{k} = (k_x, k_y, k_z)$. The magnetic field of a plane wave (in free space) with the form of

$$\vec{B}(\vec{r}, t) = B_0 \hat{z} \sin[x - \sqrt{3}y - \omega t] = (2 \times 10^{-7} T) \hat{z} \sin[k(\hat{k} \cdot \vec{r}) - \omega t]$$

describes the wave traveling in the direction of \hat{k} with wave number k (in unit of \mathbf{m}^{-1}) and the position vector $\vec{r} = (x, y, z)$. Answer the following questions including correct unit. Note that $c = 3 \times 10^8 \, \text{m/s}$, $\mu_0 = 4\pi \times 10^{-7} \, \text{Tm/A}$, and $\epsilon_0 \mu_0 = 1/c^2$.

- (a) Find the wave number (k), wavelength (λ) , and the angular frequency (ω) of this plane wave.
- (b) What is the direction of this plane wave propagating?
- (c) The electric field of this plane can be written as $\vec{E}(\vec{r},t) = \vec{E}_0 sin[k(\hat{k} \cdot \vec{r}) \omega t]$ Find the values of E_{0x} and E_{0y} in SI unit.
- (d) Find the Poynting vector \vec{S} (magnitude and direction), and the intensity $(I = \langle S \rangle)$ of this plane wave.

$$\vec{B}(\vec{r},t) = B_0 \hat{z} \sin(\vec{k} \cdot \vec{r} - \omega t) = 2 \times 10^{-7} (T) \hat{z} \sin(x - \sqrt{3}y - \omega t)$$

$$k\hat{k} = 2(\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)$$

(a)
$$k = 2 (1/m);$$
 $\lambda = \pi (m);$ $\omega = kc = 2c = 6 \times 10^8 (rad/s)$

(b)
$$\hat{k} = (\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0)$$
 (1)

$$E_{0y} = 30 \text{ (V/m)}$$

 $E_{0x} = 30\sqrt{3} \text{ (V/m)}$

(c)
$$E_0 = B_0 \text{c} = (2 \times 10^{-7})(3 \times 10^8) = 60 \text{ V/m};$$
 $E_{0x} = 30\sqrt{3}(V/m)$ $E_{0y} = 30(V/m)$

(d)
$$\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0} = \frac{60 \times 2 \times 10^{-7}}{4\pi \times 10^{-7}} (\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0) \sin^2(x - \sqrt{3}y - \omega t) = \frac{30}{\pi} (\frac{1}{2}, -\frac{\sqrt{3}}{2}, 0) \sin^2(x - \sqrt{3}y - \omega t) (W/m^2)$$
the intensity $I = \langle S \rangle = \frac{30}{\pi} \frac{1}{2} = \frac{15}{\pi} (W/m^2)$ 2

- 2. (8pts) As shown in Fig., an AC circuit with a power supply of voltage V_{in} , is connected to a capacitor C and a resistor R. Assume $I_{in} = I_0 \cos(\omega t)$. Applying the phasor method to find
- (a) $V_C(t)$, $V_R(t)$, $V_{in}(t)$
- (b) the ratio $V_{out \, 0}/V_{in \, 0}$ as a function of ω , where the $V_{in \, 0}$ and $V_{out \, 0}$ are the voltage amplitudes of the power supply and the resistor, respectively.
- (c) the ratio $V_{out \, 0}/V_{in \, 0}$ as $\omega \rightarrow 0$, and $\omega \rightarrow \infty$.

(a)
$$V_C(t) = \frac{I_0}{\omega C} \cos(\omega t - \frac{\pi}{2}); \quad V_R(t) = I_0 R \cos(\omega t)$$

(a)
$$V_C(t) = \frac{I_0}{\omega C} \cos(\omega t - \frac{\pi}{2});$$
 $V_R(t) = I_0 R \cos(\omega t)$
$$V_{in}(t) = I_0 \sqrt{R^2 + \frac{1}{(\omega C)^2}} \cos(\omega t - \tan^{-1} \frac{1}{\omega RC})$$
(b) $\frac{V_{out}}{V} = \frac{R}{\sqrt{R^2 + \frac{1}{(\omega C)^2}}} \cos(\omega t - \tan^{-1} \frac{1}{\omega RC})$

(b)
$$\frac{V_{out}}{V_{in}} = \frac{R}{\sqrt{R^2 + \frac{1}{(\omega C)^2}}}$$
, or $\frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{1 + \frac{1}{(\omega RC)^2}}}$

(c)
$$\frac{V_{out}}{V_{in}} \to 0, as \ \omega \to 0 \quad \boxed{1}$$

$$\frac{V_{out}}{V_{in}} \rightarrow 1, as \ \omega \rightarrow \infty$$
 1

$$Q(t) = \int I(t)dt = I_0 \cdot \frac{t^3}{3T^2}$$
 for $0 \le t \le T$

$$E(\vec{r}_1, t) = \frac{\sigma}{\varepsilon_0} = \frac{Q(t) / A}{\varepsilon_0} = \frac{I_0(t^3 / T^2)}{3\varepsilon_0 \pi R^2}$$
 Direction: up

(B) $0 \le r_1 \le R$ case:

Direction: c.c.w. from top view 1

(C) $R \le r_2$ case: $\oint \vec{B} \cdot d\vec{l} = \mu_0 \left(I_{inc.} + \varepsilon_0 \frac{d\Phi_E}{dt} \right)$ $2\pi r B = \mu_0 \varepsilon_0 \frac{dE(t)}{dt} \pi R^2 = \mu_0 I_0 \cdot \frac{t^2}{T^2}$ $B = \frac{\mu_0 I_0}{2\pi r} \cdot \frac{t^2}{T^2}$ 2

① Direction: c.c.w. from top view

- 4. (15 pts) As shown in Fig. 3, a plane electromagnetic wave travels in the direction normal to a screen with *N*-parallel slits, and the spacing between neighboring slits is 10.64 μm. The wave emitted from each slit forms an interference pattern on a screen 10 cm away. The spacing between the central maximum intensity peak and the neighboring peak is 0.5 cm.
- (A) (5 pts) Determine the number of the slits and the wavelength of the electromagnetic wave.
- (B) (5 pts) Draw the phasor diagram of the E-fields emitted from each slit and arriving at the intensity minimum m_1 and m_2 on the screen.
- (C) (5 pts) If the width of each slit is **2.00 \mu m**, how many major bright fringes (ignore the minor fringes) will appear in the central bright band due to the effect of the diffraction from individual slits?
- (A) N=4 2 (For constructive interference, $d\sin\theta=m\lambda$, and $\tan\theta=y/\ell$ 1 For $\theta<<1$, $\sin\theta \simeq \theta \simeq \tan\theta$,

$$\Rightarrow \sin \theta = \frac{\lambda}{d} \approx \frac{y_{1st \ fringe}}{\ell} = \tan \theta$$

$$\Rightarrow \frac{\lambda}{10.64 \ \mu m} = \frac{0.5 cm}{10 cm}$$

$$\Rightarrow \lambda = \frac{1}{20} \times 10.64 \,\mu m = 0.532 \,\mu m \quad \boxed{1}$$

(C) For the first destructive interference of diffraction from individual slits,

$$D\sin\theta = \lambda$$
,

For constructive interference from the slits,

$$d\sin\theta = m\lambda$$
,

For mth constructive interference of the slits to overlap with the first destructive diffraction fringe,

$$\frac{d\sin\theta}{D\sin\theta} = \frac{m\lambda}{\lambda}, \Rightarrow \frac{d}{D} = m, \Rightarrow m = \frac{10.64\,\mu\text{m}}{2.0\,\mu\text{m}} = 5.32 \Rightarrow m = 5,$$

There are 2*m+1 = 11 major bright fringes.

