14 Regression diagnostics (14.5-14.6)

Applied regression analysis and other multivariable methods

Yi Zhou

May 16, 2016

14.5 Colinearity

Issues: unreliable and unstable parameter estimates and standard errors

Example on pp.358. Collinearity exists due to the association between AGE and AGE²

- Regression coefficients are inconsistent
- Standard error are increased

Mathematical concepts in collinearity

Considering fitting the model:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + E_i$$

$$\hat{\beta}_1 = \left(\frac{r_{y,x1} - r_{y,x2}r_{x1,x2}}{1 - r_{x1,x2}^2}\right) \left(\frac{SD_y}{SD_{x1}}\right)$$

$$\hat{\beta}_2 = \left(\frac{r_{y,x2} - r_{y,x1}r_{x1,x2}}{1 - r_{x1,x2}^2}\right) \left(\frac{SD_y}{SD_{x2}}\right)$$

$$\hat{\beta}_1, \hat{\beta}_2, \bar{Y} - \hat{\beta}_0$$
 are all proportional to $\frac{1}{1 - r_{X1,X2}^2}$ (inflation factor)

- ▶ If $r_{x1,x2}^2 = 1$, then the estimates of the coefficients are indetrminate
- ▶ As $r_{x1.x2}^2$ decreases, the collinearity problem becomes less severe
- ▶ If $r_{x1,x2}^2$ is near 1, the regression coefficients are highly unstable

Collinearity concept

Examine collinearity

- ▶ If each predictor variable is treated as the response variable with the the independent variables are the remaining predictors
- ▶ If any of the associated R^2 -values equals to 0, then collinearity exists
- ► Collinearity indicates that one of the predictors is nearly an exact combination of the others
- ► Perfect collinearity means that the parameters in the model cannot be estimated uniquely
- ► A model containing a perfect collinearity is overparameterized
- ▶ Near collinearity exists when R^2 -values is nearly 1

The variance inflation factor (VIF)

$$VIF_j = \frac{1}{1 - R_i^2}$$

- ▶ The larger the value of VIF_j , the more troublesome the variable X_i is
 - Larger than 10
 - Equivalent to $R_i^2 > 0.9$ or $R_i > 0.95$

Tolerance

Tolerance_j =
$$\frac{1}{VIF_i} = 1 - R_j^2$$

Intercept requires special treatment

- ▶ If the means of all X_j 's are 0 (centered data), \bar{Y} is the estimated intercept.
- VIF₀

The treatment of intercept in regression diagnostics

- ▶ it is another predictor
- ▶ it should be eliminated from discussion

Solutions to the presence of collinearity

- ► Computational algorithm to detect collinearity
- Scale the data properly: scaling, cetering, and computing z scores
- ▶ Principle component analysis
- Centering may help decrease collinearity

Principle component ananlysis

- ▶ Principle components: a set of new variables that are linear combinations of the original predoctors
 - Components are not correlated with each other
 - ► Each in turn has maximum variance (eigenvalue)
 - ► The larger eigenvalue, the more important the associated principle component
 - ► Eigenvalue approaching zero indicates the presence of a near collinearity
 - ► Eigenvalue equal to zero indicates an exact collinearity

- ▶ The number of zero eigenvalues is the number of collinearities
- Using eigenvalues to determine the presense of near collinearity

 - ▶ condition index (CI): $CI_j = \sqrt{\frac{\lambda_1}{\lambda_j}}$ ▶ condition number (CN): $CN = \sqrt{\frac{\lambda_1}{\lambda_k}}$
 - variance proportions: two or more loadings less than 0.5 doesn't indicates a major problem

Collinearity diagnostics

Three steps

- Simple descriptive analyses
- VIF values
 - in model with two predictors, the two VIF values are identical
- Condition index and varaince proportion should be examined

Treating collinearity problems

- ▶ Eliminating one or more of the predictors in the cllinear set
- Scientific expertise and previous experience to indentify the variables that would be accaptable to drop
- Orthogonal polynomials
- Attention to dummy variables and interaction terms
- Study design
- Using centered data
- ► Regression on principle components, ridge regression