Task 23-01 (Part A)

 Edit quantum_circuit1.ipynb to implement the circuit below by applying the correct IBM Qiskit quantum gates and saving the four designated state vectors:

Task 23-01 (Part B)

- After implementing the circuit in Task 23-01 Part A, answer the following two questions in Cell 2 of your notebook:
- 1. Using the truth table below as a reference, explain the results depicted in state vector 4:

Base 10	q2	q1	q0	Ket
0	0	0	0	1000>
1	0	0	1	1001>
2	0	1	0	1010>
3	0	1	1	1011>
4	1	0	0	l100>
5	1	0	1	1101>
6	1	1	0	l110>
7	1	1	1	111>

- 2. Explain why is there a 100% chance of measuring only a value of 0 for the single classical bit?
- Upload your solution to the BNL QIS101 SharePoint site

Task 23-02

 Edit quantum_circuit2.ipynb to implement and display an IBM Qiskit circuit that has an equal probability of generating a state vector representing only 63 or 64

Upload your solution to the BNL QIS101 SharePoint site

Task 23-03

- Create a new file
 quantum_circuit3.ipynb
 that implements this
 circuit and displays the
 histogram after 1,024
 shots
- In Cell 2 of your notebook, explain the exact probability if there was no quantum noise
- Upload your solution to the BNL QIS101 SharePoint site

