ENGG 5501: Foundations of Optimization Homework Set 2 Instructor: Anthony Man-Cho So Due: October 3, 2018

INSTRUCTIONS: Problems 1 and 2 are compulsory. The remaining problems are for practice and will not be graded.

Problem 1 (20pts). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex differentiable function.

(a) (10pts). Show that for any $x, y \in \mathbb{R}^n$, we have

$$(\nabla f(y) - \nabla f(x))^T (y - x) \ge 0.$$

(b) (10pts). Suppose in addition that f has Lipschitz continuous gradient; i.e.,

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$
 for all $x, y \in \mathbb{R}^n$

for some constant L > 0. Show that for any $x, y \in \mathbb{R}^n$, we have

$$|f(y) - f(x) - \nabla f(x)^T (y - x)| \le \frac{L}{2} ||x - y||_2^2.$$

(Hint: Fix $x, y \in \mathbb{R}^n$ and apply the Fundamental Theorem of Calculus to the function $t \mapsto f(x + t(y - x))$.)

Problem 2 (10pts). Given a convex set $S \subseteq \mathbb{R}^n$ and a vector $c \in \mathbb{R}^n$, consider the optimization problem

$$\inf_{x \in S} c^T x.$$

Show that the minimum is attained at a point $\bar{x} \in \text{rel int}(S)$ if and only if the function $x \mapsto c^T x$ is constant on S.

Problem 3. For any given $k \geq 1$, let $\lambda_1^k : \mathcal{S}^n \to \mathbb{R}$ be the function that returns the sum of the k largest eigenvalues of its argument.

(a) Show that

$$\lambda_1^k(A) = \text{maximize} \quad \operatorname{tr}(AX)$$
 subject to $\operatorname{tr}(X) = k,$ $I \succeq X \succeq \mathbf{0}.$

(b) Using the result in (a), show that λ_1^k is convex for each $k \geq 1$.

Problem 4. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a convex function such that $\operatorname{epi}(f)$ is closed and f is not identically $+\infty$.

- (a) Show that $f = f^{**}$, where $f^{**} = (f^*)^*$ is the conjugate of f^* .
- (b) Using the result in (a), show that for any $x, y \in \mathbb{R}^n$, the following statements are equivalent:

- (i) $y \in \partial f(x)$
- (ii) $f(x) + f^*(y) = x^T y$
- (iii) $x \in \partial f^*(y)$

REMARK: The subdifferential of f, ∂f , is a set-valued mapping in the sense that it assigns a set $\partial f(x) \subseteq \mathbb{R}^n$ to each $x \in \mathbb{R}^n$. The inverse mapping of ∂f , denoted by $(\partial f)^{-1}$, is simply defined as

$$(\partial f)^{-1}(y) = \{x \in \mathbb{R}^n : y \in \partial f(x)\}.$$

With these notations, the equivalence of (i) and (iii) above can be expressed as $(\partial f)^{-1} = \partial f^*$, which is another important relationship between f and f^* .