

THUẬT TOÁN QUICK SORT

- 1. Hồ Thái Ngọc
- 2. ThS. Võ Duy Nguyên
- 3. TS. Nguyễn Tấn Trần Minh Khang

BÀI TOÁN DẪN NHẬP 1

 Bài toán: Định nghĩa hàm đưa các số chẵn về đầu mảng trong mảng một chiều các số nguyên

─ Ví dụ:

– Kết quả:

```
      0
      1
      2
      3
      4
      5
      6
      7
      8

      20
      4
      36
      14
      72
      9
      15
      27
      1
```


0	1	2	3	4	5	6	7	8
15	20	4	36	27	9	14	72	1

				4				
15	20	4	36	27	9	14	72	1

	1							
15	20	4	36	27	9	14	72	1

	1							
15	20	4	36	27	9	14	72	1

	1							
20	15	4	36	27	9	14	72	1

				4				
20	15	4	36	27	9	14	72	1

_						6		_
20	15	4	36	27	9	14	72	1

						6		
20	15	4	36	27	9	14	72	1

0	1	2	3	4	5	6	7	8
20	4	15	36	27	9	14	72	1

0	1	2	3	4	5	6	7	8
20	4	15	36	27	9	14	72	1

				4				
20	4	15	36	27	9	14	72	1

0	1	2	3	4	5	6	7	8
20	4	15	36	27	9	14	72	1

_			_	4		_		
20	4	36	15	27	9	14	72	1

0	1	2	3	4	5	6	7	8
20	4	36	15	27	9	14	72	1

							7	
20	4	36	15	27	9	14	72	1

		2						
20	4	36	15	27	9	14	72	1

							6		
2	20	4	36	15	27	9	14	72	1

_				4	_			_
20	4	36	15	27	9	14	72	1

				4				
20	4	36	14	27	9	15	72	1

0	1	2	3	4	5	6	7	8
20	4	36	14	27	9	15	72	1

0	1	2	3	4	5	6	7	8
20	4	36	14	27	9	15	72	1

0	1	2	3	4	5	6	7	8
20	4	36	14	27	9	15	72	1

0	1	2	3	4	5	6	7	8
20	4	36	14	72	9	15	27	1

						6		
20	4	36	14	72	9	15	27	1

_		2				_		_	_
20	4	36	14	72	9	15	27	1	

BÀI TOÁN DẪN NHẬP 2

- Bài toán: Cho mảng một chiều các số nguyên và một đoạn Left..Right. Định nghĩa hàm đưa các số chẵn trong đoạn Left..Right về đầu đoạn.
- ─ Ví dụ:

0	1	2		7	8	9	10	11	12	13	14	15	16	17		
					28	16	57	99	81	22	66	72				
– Kết quả:																
0	1	2		7	8	9	10	11	12	13	14	15	16	17		
					28	16	22	66	72	57	99	81				

Ý TƯỞNG THUẬT TOÁN

Ý tưởng thuật toán

- Thuật toán quick sort chia không gian cần sắp xếp thành 2 không gian con là không gian con 1 và không gian con 2. Không gian con 1 là không gian mà tất cả các phần tử thuộc không gian này đều nhỏ hơn bằng tất cả các phần tử thuộc không gian con 2.
 - + Nếu không gian con thứ nhất có nhiều hơn một phần tử thì sắp xếp không gian con này bằng thuật toán Quick Sort.
 - + Nếu không gian con thứ hai có nhiều hơn một phần tử thì sắp xếp không gian con này bằng thuật toán Quick Sort.

Ý tưởng thuật toán

HÀM CÀI ĐẶT THUẬT TOÁN QUICKSORT

Hàm cài đặt thuật toán quicksort


```
- Hàm cài đặt
11.void QuickSort(int a[], int n)
12.{
13. | QuickSort(a,0,n-1);
14.}
```


Hàm cài đặt thuật toán quicksort

```
11.int Partition(int a[], int Left, int Right)
12.{
13.
       int pivot = a[Right];
14.
       int vt = (Left - 1);
       for (int i=Left; i<=Right-1; i++)</pre>
15.
            if (a[i] < pivot)</pre>
16.
17.
18.
                vt++;
19.
                swap(a[vt], a[i]);
20.
21.
       vt = vt + 1;
22.
       swap(a[vt], a[Right]);
23.
       return vt;
24.}
```


CHẠY TỪNG BƯỚC THUẬT TOÁN

0	1	2	 7	8	9	10	11	12	13	14	15	16		
				28	16	57	99	81	22	66	72			

0	1	2	 7	8	9	10	11	12	13	14	15	16		
				28	16	57	99	81	22	66	72			

0	1	2	 7	8	9	10	11	12	13	14	15	16		
				28	16	57	99	81	22	66	72			

0	1	2	 7	8	9	10	11	12	13	14	15	16		
				28	16	57	99	81	22	66	72			

0	1	2	 7	8	9	10	11	12	13	14	15	16		
				28	16	57	99	81	22	66	72			


```
11.int Partition(int a[], int Left, int Right)
12.{
13.
       int pivot = a[Right];
14.
       int vt = (Left - 1);
       for (int i=Left; i<=Right-1; i++)</pre>
15.
            if (a[i] < pivot)</pre>
16.
17.
18.
                vt++;
19.
                swap(a[vt], a[i]);
20.
21.
       vt = vt + 1;
22.
       swap(a[vt], a[Right]);
23.
       return vt;
24.}
```


Hàm cài đặt thuật toán quicksort

Hàm cài đặt thuật toán quicksort


```
- Hàm cài đặt
11.void QuickSort(int a[], int n)
12.{
13. | QuickSort(a,0,n-1);
14.}
```


Thuật toán quick sort

ĐẶC ĐIỂM – ĐIỂM MẠNH – ĐIỂM YẾU

Đ<mark>ặc điểm – điểm</mark> mạnh – điểm yếu

- Đặc điểm thuật toán Quick sort:
 - + Độ phức tạp về thời gian (time complexity): $O(n \log(n))$.
 - + Độ phức tạp về bộ nhớ (space complexity): $O(\log(n))$.
 - + Trường hợp xấu nhất (worst case): $O(n^2)$.
 - + Trường hợp trung bình (average case): $O(n \log(n))$.
 - + Trường hợp tốt nhất (best case): $O(n \log(n))$.
 - + Thuộc họ giải thuật chia để trị (Divide and Conquer).
 - + Không ổn định.

Đặc điểm – điểm mạnh – điểm yếu

- Điểm mạnh:
 - + Thuật toán có thể chạy song song.

Đặc điểm – điểm mạnh – điểm yếu 🏈

- Điểm yếu:
 - + Không ổn định.

Cảm ơn quí vị đã lắng nghe

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN TP.HCM TOÀN DIỆN - SÁNG TẠO - PHỤNG SỰ