Общая «Схема» и ММ-и явлений (объектов, процессов,..)

 $u_i(t)$ **y(t)** выходы - k=1,2,3...;

u(t) входы **-** *i*=1,2,3,...;

C(t) состояние -

 $V_k(t)$ **C(t)** = (c1(t), c2(t), ...)'

Ключевые сопровождающие понятия при описании динамики явления (объекта, системы, процесса,..):

- 1. C(t) = (C1(t), ..., Cn(t))'- состояние динамической системы (ДС),
 - 1.1 Алгебраическая структура (АС) состояния ДС,
 - 1.2 n Сложность системы,
- 2. $C(t+\Delta t) = D(\Delta t, u(t), p)C(t)$ Уравнение ДС,
 - 2.1 D оператор динамики ДС,
 - $2.2 \Delta t$ шаг прогноза,
 - 2.3 р-вектор-параметр,
- 2.4 u(t) вектор входных воздействий, делающий ДС неавтономной.

Сопровождающие Понятия и характеристики ММ =

Уровень абстракции ММ	Понятия
Уровень ДС	АС-Алгебранч. Структура, Состояние ДС-С(t), Оператор ДС-D(.), Приспособленность к КТ, ДУ, РУ, Управление-u(t), Базовые параметры-n, Δt, Δc, Δp, Вектор-параметр - p, фазовое пространство - ФП, Аt-шаг прогноза, ретроспекции, Память, Особ. Точки, пространство параметров-ПП, Стационарность (автономность, закрытость, однородность, высвобождение от неавтономности), Нестационарность, Управляемость, Прогноз, Повторяемость эксперимента, План, Ретроспектива, Сжатие, Восстановление, т.д.
Уровень ЧЯ	Наблюдение-у(t), Ограничения ү(), \(\lambda\) (), Уравнения движения и наблюдения, Малые и большие параметры, Линейность, Наблюдаемость, Идентифици руемость, Банк знаний ИИС и т.д.
Конкретизация (частные случаи) ЧЯ	ММ: Фильтрации дискретных и непрерывных сигналов, Авторегрессия, Скользящее среднее, Полигармоничность, Спектр, Биспектр, Полоса пропускания, Групповая и групповое время запаздывания Затухание, Банк данных ИИС, и т.д.

- Видим, что за *базовые классы* ММ нами взяты : 1)Динамическая система(ДС),
- 2)"Чёрный ящик" (ЧЯ) и
- 3)Частные случаи Чёрного Ящика).
- При использовании этой схемы в качестве обобщенного графа алгоритмов ИД "начало" в может быть, в зависимости уровня априорной информации об изучаемом явлении (и степени хотя бы частичного использования "основополагающих принципов") как с блока 4, так и с блоков 3, 2 и 1:
- (4-5-3), (4-5-3), ..., (8) идентификация в узком смысле (низший уровень ММ)
 ← базы данных
- (2-3-4-5-6), ..., (8) идентификация в широком смысле ← базы Знаний
- (1-2-3-4-5-6-7), ..., (8) идентификация на уровне принципиально новой ДС (осуществляется и приводит к успеху чрезвычайно редко, так как связана с новыми открытиями в науке на уровне открытия новых «основополагающих принципов» в новой предметной области)

7.6 Литература по лекции

- Интерес представляют наборы α = (1 0 1) и α = (0 1 1), поскольку для них фазовое пространство является связанным (полином $\chi(\lambda)$ не раскладывается на множители т.н. «неприводимый» и генератор является генератором ПСПМД.
- Подробнее смотри
- 1.А.Гилл" Линейные последовательностные машины". "Наука", М.1974.
- 2.Кирьянов К.Г. К теории сигнатурного анализа". Техника средств связи", М., ЦОНТИ "ЭКОС", сер.РИТ, вып.2(27),1980. 49с.
- 3.К.Г.Кирьянов. Оптимальное D-разбиение и синтез дискретных управляющих динамических систем. //Третья научная конференция по радиофизике 7 мая 1999 г. Н. Новгород: Изд-во ННГУ, 1999. С. 130-131.

7.5. Бифуркации АДС и ДДС

- Бифуркация приобретение нового качества в движениях динамической системы при переходе границ смены качественного поведения в ПП даже при малом изменении ее параметров или, как часто принято говорить, приобретение ДС нового качественного поведения, «сценария» ФТ в ФП.
- Например, бифуркация Андронова-Хопфа рождение устойчивого предельного цикла из устойчивого фокуса [1,2].
 Возможно возникновение бифуркации удвоения периода, и при многократном воспроизведении этого эффекта может возникать так называемый «странный аттрактор» [5].
- Сказанное относилось к ММ аналоговых ДС, описываемых Диффренциальными уравнениями (м.б. в форме Коши с разрывами функций их "правых" частей).
 Бифуркации для ДДС, с ММ в форме Разностных уравнений описываются переходами состояний ДДС между подмножествами (классами эквивалентности) состояний, соответстующих различному качественному поведению ДДС.

Разберём понятие бифуркации на примере простейшей ДДС.

Особенности Бифуркаций ДДС. D-разбиение ДДС примера.

\circ $\alpha_1 \alpha_2 \alpha_3$	Количество подмножеств в ПП
• 1) <u>(0 0 0)</u>	1
2) (1 0 0) (1 0 1) (0 1 1) (1 1 0)	4
3) (0 1 0)	1
4) (0 0 1) (1 1 1)	2

• Особый интерес представляют наборы α = (1 0 1) и α = (0 1 1), поскольку для них фазовое пространство\000 является связанным (полином $\chi(\lambda)$ не раскладывается на множители – т.н. «неприводимый» полином и ММ с такими α_1 α_2 α_3 является генератором ПСПМД.

1) Составить уравнения в форме Коши для

- динамических систем (ДС) используя уравнение Лагранжа или Гамильтониан Систем или, наконец, непосредственно схему соединения элементов.
 - 2) Построить характерные структуры ФП ДС для Вашего набора векторпараметра Р.
- Построить D-разбиения этих систем в пространстве двух выбранных Вами параметров.
- 4) Привести схемы №1 и №2 к канонической форме. Примечание. При оформлении работы использовать « Методические указания по оформлению, курсовых и дипломных работ студентами центра "Безопасность информационных стем и средств коммуникаций" » (Metodich_uk_1.doc): (ЦеБИСК)

 Срок сдачи работы преподавателю – 10 марта с.г.

Продолжаем изучать основные и сопровождающие понятия, определения и свойства ММ

- <u>Лекция</u>. Алгебраические Структуры (АС) база "стройматериалов" для ММ и алгоритмов ИД и М систем.
- 4.1.Определение AC. AC ≡ это множество(ва)
 «элементов» и множество(ва) однозначных «операций» над ними.
- Алгебраические структуры "строительные блоки" для ММ и алгоритмов Ид и М. Алгебраическая структура совокупность множеств и операций на них. Множества и операции должны быть согласованы. АС = (М1,М2,...,Мт.+1,О2,...,Ог).Операции д.б. согласованы 1) с Мі и 2) между собой. Для простейших АС т = r = 1. АС-«кирпичики» Мі + «правилами их укладки» Ој

Числа – удобные объекты для кодирования элементов множеств разной природы.

С числами удобнее делать выЧИСЛения, т.е. проводить всевозможную обработку.

• • Отображение (соответствие)

о **Отображение** - закон соответствия между элементами двух множеств. Чрезвычайно ёмкое и широко применяемое на практике и в теории понятие.

Рис. Отображение $X \to Y$; y=f(x), $x \in X$, $y \in Y$.

■ Пример:y=f(u1,u2); y,u1,u2∈GF(2)

Αp	ГУМ	ент					31	нач	40	ни.	ЯС	þу	НК	ЦИ	Й		
u2	u1							fl	(k=(0,	., <i>'</i>	15))			
		f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f ₈	f ₉	f ₁₀	f ₁₁	f ₁	₂ f _{1:}	₃ f ₁	4 f ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Видим, что

 1)Число отображений y=f(u1,u2), y,u1,u2∈GF(2) (см.) Nmax = |Y| |U| =2⁴=16.

Что полезно ещё подсчитать?

- 2) Число отображений y=f(x1,x2), y,u1,u2∈GF(3)
- 3) Число отображений для всех других видов дискретных статических и динамических систем и т.д. (от самых простых до систем общего вида, приведённых ранее в таблице Классов ДС наиболее употребляемых на практике):

Виды и свойства Операций. Многоместность, Коммутативность, Ассоциативность, Дистрибутивность.

- Операции делятся на <u>одноместные</u>, когда операция производится над одним элементом множества, <u>двухместные</u> (например, сложение, вычитание, конъюнкция, дизъюнкция). Многоместные **О** сводятся к одно- и двухместным с помощью законов ассоциативности, дистрибутивности и м.б. коммутативности.
- Для создания алгебраической структуры необходимо доказывать согласованность и непротиворечивость операций.

Отображение (соответствие)

о **Отображение** - закон соответствия между элементами двух множеств. Чрезвычайно ёмкое и широко применяемое на практике и в теории понятие.

Рис. Отображение $X \to Y$; y=f(x), $x \in X$, $y \in Y$.

Формирование представления об АС позволяет глубже понять общие свойства, особенности и взаимозависимость различных видов Математических Моделей динамических объектов и

- 1. <u>Намечает правильный выбор класса ММ</u> для ИД параметров конкретного явления, т.к.
- Показывает, что Алгебраические Структуры

 это база "стройматериалов"
 (комплектующие изделия) для построения
 ММ явлений и создания алгоритмов,
 приспособленных к компьютерному
 моделированию.
- о действительно

1. AC_позволяют <u>согласовать</u> принятые в науке языки описания <u>ММ явлений с</u>возможностями современных научных программ

(MathCad 2001 Prof, MATLAB 6, 6.5, Maple, и др.) позволяя работать исследователю сразу на языках упомянутых выше Алгебраических Структур (матричные операции, представление ДУ в форме Коши и т.д. и т.п).

2. АС позволяют обоснованно и оптимально выбрать

- А) т.н. оптимальные Базовые параметры алгебраической структуры Математических Моделей Источников экспериментальных процессов, данных: (M=T/∆t, q, n),исходные для последующей идентификации
- Б) оптимальные границы (t_i ,i=1,2,3,...) стационарных участков экспериментальных данных.

Выбор оптимальных Базовых параметров ММ для построения <u>Прогнозирующего</u> <u>Оператора</u> (ПО) ≡ Источника процесса для последующей его идентификации и ПОЗВОЛЯЮЩИЙ ВЫбрать:

- величину шага квантования процесса по уровню
- величину шага дискретизации по времени, и др,
- критерий, характеризующих "качество" экспериментальных данных (зашумленность, погрешности измерений и другие априорные сведения об источниках данных и т.д.)
- "количество" содержащейся на участках данных информации,
- оптимального кодирования выборок данных,
- и т.д. и т.п. (см. Литературу).

АЛГЕБРАИЧЕСКАЯ СТРУКТУРА МАТЕМТИЧСКОЙ МОДЕЛИ ПРОЦЕССОВ

$$\{y_i\}_{i\in[0,M-1]} = (y_0, y_1, ..., y_{M-2}, y_{M-1}) \in \Omega_Q^M,$$

где $y_i \in \mathbb{Q} \equiv [0,1,...,q-1], 0 \le i < M-1, M -$ целая часть $T/\Delta t$,

$$-\infty < y_{\min} \le y(t) \le y_{\max} < \infty, \quad t \in [0, T])$$

$$y_i = \left[\{ y(i \cdot \Delta t) - y_{\min}[0, T] / y_{\max}[0, T] - y_{\min}[0, T] \} \cdot (q - 1) \right]$$
(2)

$$y_{i+n} = f(y_i, y_{i+1}, \dots, y_{i+n-1}; \pi), \quad 0 \le i < M-n,$$

 $\pi \in Q = [0, \dots, q-1].$ (3)

Пояснения к квантованию и дискретизации аналоговых и дискретных процессов

 $y_{0,}$ $y_{1,}$ $y_{2,}$ $y_{n-1,}$ $y_{n,}$ y_{i} y_{M-2} y_{M-1}

 $M_{opt} u q_{opt}$ — оптимальные числа дискрет по осям координатной сетки экспериментальных *аналоговых или дискретных* исходных данных:

$$y(t)|_{t\in[0,T]} \Rightarrow y(i\cdot\Delta t) = y_i|_{y,\Delta t\in\mathbb{R}, i\in[0,M-1]} \Rightarrow y(i\cdot\Delta t) = y_i|_{y\in Y(q), i\in[0,M-1]} \in Y=[0,1,...,q-1],$$

 n_{opt} (<Mopt) — оптимальная размерность (порядок) модели **Источника** генератора экспериментальных данных, учитывающая степень связи выборок vi lie li

NВ !!! Шаг оптимальной дискретизации по времени определяется по формуле $\Delta topt$ = TMopt

без применения спектрального анализа и теоремы В.А.Котельникова.

			· · ·
Nº	Аргумент f()	f()	
	<u>Y</u> _i , j∈[0,1,.,M-1]		
1	y ₀ y ₁ y ₂ y _{n-1}	y _n	
2	$y_1y_2y_{n-1}y_n$	y _{n+1}	
3	$y_2y_{n-1} y_n y_{n+1}$	y _{n+2}	
			Различают несколько видов ТИ – H(0), H(1),
r	$y_{r-n+1}y_{r-2}y_{r-1}y_r$	<u>Y_{r+1}</u>	
			y _{r+1} ≠y _{k+1} ?
k	$y_{k-n+1}y_{k-2}y_{k-1}y_k$	У _{к+1}	Processing (1) o
			Временной ряд (1) с <u>непротиворечвой</u> ТИ назовём "Мпq-рядом

Интерпретация выделения стационарных участков ГК данных путём восстановления фазовой траектории по экспериментальным данным,

преобразованным в текст

Случаи а) с самопересечением ("зацикливанием") ФТ в ФП объёма N=qⁿ⁻¹ – выделением "стационарного" участка текста, б) без самопересечения – для всего текста в ФП объёма N=qⁿ.

Широко используемые виды АС сведем в в таблицу:

N⊴	название АС	число мно- жеств в АС	общее число операций (по 1-му способу подсчета)	число операций (с выделением обратной - по 2-му способу подсчета)	Примеры 1 AC простые примеры	Примеры 2, АС Содержательные примеры АС, важные для нас.
1	Полугруппа	1	1	1	(Z ₀ ,+), (R,-),	"сдвиги" по фазовым траекториям, "накладка" кусков реализаций шума
2	Группа	1	2	1+1обр.	(R,+,-),Z+,-)	сдвиги по фазовым траекториям с обратным оператором сдвига
3	Кольцо	1	3	2+1обр.	(R,+,-,×),	Кольцо многочленов
4	Поле	1	4	2+2обр.	Комплексные числа	GF(q), g - простое
5	Векторное пространство	2(скал яры, вектор ы)	на каждом мн своя АС + операции для скаляров и векторов			

■ ■ Примеры Таблиц Кэли. Упражнения

ТК для сложения (+) и умножения (×) при q = 2,3 и 4 приведены далее.

$$(TK^{\times}, g = 4) \begin{array}{|c|c|c|c|c|c|}\hline \times & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 1 & 2 & 3 \\ \hline 2 & 0 & 2 & 0 & 2 \\ \hline 3 & 0 & 3 & 2 & 1 \\ \hline \end{array}.$$

• • • Примеры ДДС с АС, заданных Таблицами Кэли.

Пример 1. ДДС $C(t+I) = A \cdot C(t)$, $C(\theta) = (C_{\theta})$, t=0, 1, 2,... в <u>GF(2)</u> ,где

$$C(t) = \begin{pmatrix} c_1(t) \\ c_2(t) \\ c_3(t) \end{pmatrix}, \quad C(0) = \begin{pmatrix} I \\ 0 \\ I \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 & I \\ I & 0 & 0 \\ 0 & I & 0 \end{pmatrix}$$
. Найти траекторию $C(I), C(2), \dots$

Пример 2. Найти схему автономной (стационарной) ДДС примера 1, а по ней фазовую траекторию C(1), C(2),...

Пример 3. Найти соответствие «р=($\alpha_1, \alpha_2, \alpha_3$) \rightarrow структура ФП ДДС из примера1». Это D-разбиение пространства параметров на области с различным качественным поведением ФП ДДС [] из примера 1.

Далее Определим данные с данной ДС, как их Источника и их БП!!!!

В связи с ростом практических приложений компьютерных технологий в науке и технике возрос интерес к простым надёжным дискретным динамическим системам (ДС) обладающим многообразием поведения и исключительными практическими свойствами. Рассматривается один класс таких систем – генераторов псевдослучайных последовательностей (ПСП).

Наиболее распространённая схема генератора ПСП – генератор на сдвиговом регистре. На рис.1 приведена принципиальная схема сдвигового регистра на D-триггерах

Рис.2 Упрощенная схема ГПСП

- Состояние x=(x1,x2,...,xn) определяется n-битным словом, представляет собой содержимое регистра сдвига. Вектор c=(c1,c2,...,cn) называется вектором обратной связи.
- Максимальная длительность периода для таких генераторов составляет 2ⁿ-1 периодов, соответствующих частоте тактовых импульсов.

Некоторые свойства одиночных генераторов ПСП (ГПСП) на сдвиговых регистрах

- Период ГПСП зависит сложным образом как от начального состояния регистров (при t=0), так и от коэффициентов обратной связи и может достигать максимальной длины 2ⁿ-1 тактов. В этом случае ГПСП максимальной длительности называют ГПСПМД.
- В течении каждого периода сдвиговый регистр ГПСПМД, в отличие от остальных схем ГПСП с регистром из п триггеров проходит через все возможные состояния, за исключением состояния, при котором во всех разрядах записаны нули. Поэтому каждый период состоит из 2ⁿ-1 цифр, среди которых имеется точно 2ⁿ⁻¹ единиц, а число нулей – на единицу меньше
- В каждом периоде половина серий имеет длину 1 (0 или 1), четверть серий имеет длину 2 (00 или 11) и т.д. Для каждой серии нулей имеется соответствующая серия единиц равной длины.
- Свойство сдвига и сложения. Если начинать работу сдвигового регистра с различных исходных состояний, то получаются идентичные, но сдвинутые по времени последовательности максимальной длины.
- Если менять способ подключения входов сумматора цепи обратной связи к разрядам регистра, то можем получать последовательности различной длины и состава.

<u>ЧЯ</u> (для ДДС ="*конечный автомат Мили*")

Нелинейное векторное отображение

$$\circ y(t) = \lambda(x(t), u(t), p)$$
 (*)

или встречавшйся ранее <u>частный</u>, но широко распространённый случай **линейного отображения** <u>= ММ-и **ЧЯ**</u>

$$\circ y(t) = \lambda(x(t), u(t), p) = C^*x(t) + D^*u(t)$$
 (*\(\text{\pi}\))

Каноническая структурная схема Чёрного ящика в форме ММ синхронного дискретного автомата Хаффмана-Глушкова

Решение уравнения динамики (*л) находится

его последовательной итерацией:

с интервалом суммирования от μ =0 до μ = $t_{_K}$ - $t_{_H}$ -1, где $t_{_K}$ и $t_{_H}$ – времена конца и начала отсчета соответственно, $t_{_K} \ge t_{_H}$.

о После <u>замены</u> $v = t_k - 1 - \mu$ в аргументе u(...) а)нижний предел $\mu = 0$ переходит \rightarrow в новый нижний предел $v = t_k - 1$, б)верхний предел $\mu = t_k - t_h - 1$ переходит \rightarrow в новый верхний $v = t_k - 1 - (t_k - t_h - 1) = t_k - 1$ <u>и возврата</u> далее к старому индексу суммирования $v \rightarrow \mu$ уравнение (**) записывается в виде

$$t_{\kappa}-1$$
o $x(t_{\kappa}) = A^{(t\kappa-tH)}x(t_{H}) + \sum_{\mu=t_{H}} A(t_{\kappa}-1-\mu)Bu(\mu)$ (***)

Тогда уравнение *наблюдения* за ДДС по **у(t)** будет иметь вид: t_к

или в другой форме

$$t_{K} - t_{H}$$
o $y(t_{K}) = CA^{(tK-tH)} \cdot x (t_{H}) + \sum H(\mu) \cdot u(tK - \mu), \quad (****)$
 $\mu = 0$

о где H – импульсная реакция **ДС**

o
$$H = D, \mu=0$$
 (*****) $CA^{(\mu-1)} \cdot B, \mu>0$

Из данной формы для у следует другая форма

 $y(t_k) = CA^{(tk-th)} \cdot x (th) + \Phi(t_k - t_h) \cdot [u^T(t_h), u^T(t_h + 1), ..., u^T(t_k)]^T$ (******), при этом матрица Φ имеет следующий вид: $\Phi(t_k - t_h) = [CA^{(tk-th)}B|CA^{(tk-th-1)}B|...|CAB|CB|D].$ (*******) Отметим, что

- Все приведённые выше формулы, как следует из их вывода, справедливы как для АС R так и АС GF(q)!.
- о первое слагаемое $y(t_k)$ в (***) при нулевом внешнем воздействии u(t)=0, t∈[t_H , t_H] характеризует изменение состояния автономной ДДС \equiv скачкообразную ФТ автономной ДДС при старте из x (t_H).
- второе слагаемое в (******) «обязано созданию» **кодового эталона** = **сигнатуры** («*диагностической метки*») у(t_k), если считать что код $K(t_k$ - t_h) $\equiv [u^T(t_h), u^T(t_h+1), ..., u^T(t_k)]$.
- о сигнатура кода это сжимающее (как правило) отображение $y(t_k)$. ← $K(t_k$ t_h) при $x(t_h) \equiv x(0) = const.$ (*******)

Задачки к Зачёту: 1. <u>Подчеркнуть</u> в приведённом списке Сопровождающие Понятия и характеристики ММ-й, которые Вам встретились в предыдущих разделах лекций и дополнить (!!!) подчёркнутое ссылками на названия опорных конспектов

Уровень абстракции ММ	Понятия					
Уровень ДС	АС-Алгебранч. Структура, Состояние ДС-С(t), Оператор ДС-D(.), Приспособленность к КТ, ДУ, РУ,					
	Управление-u(t), Базовые параметры-п, Аt, Ас, Ар, Вектор-параметр - p, фазовое пространство - ФП, At-шаг прогноза, ретроспекции, Память, Особ. Точки, пространство параметров-ПП, Стационарность (автономность, закрытость, однородность, высвобождение от неавтономности), Нестационарность, Управляемость, Прогноз, Повторяемость эксперимента, План, Ретроспектива, Сжатие, Восстановление, т.д.					
Уровень ЧЯ	Наблюдение-у(t), Ограничения у(), \(\lambda\)(), Уравнения движения и наблюдения, Малые и большие параметры, Линейность, Наблюдаемость, Идентифицируемость, Банк знаний ИИС и т.д.					
Конкретизация (частные случаи) ЧЯ	ММ: Фильтрации дискретных и непрерывных сигналов, Авторегрессия, Скользящее среднее, Полигармоничность, Спектр, Биспектр, Полоса пропускания, Групповая и групповое время запаздывания, Затухание, Банк данных ИИС, и т.д.					

Список литературы

- 1. Шеннон К. Работы по теории информации и кибернетике. Пер. с англ. под ред. Р.Л. Добрушина и О.Б. Лупанова. М.: ИЛ, 1963. С. 333-402.
- 2. Бабаш А.В., Шанкин Г.П. Криптография. М.: СОЛОН-Р, 2002.
- 3. Гилл А. Линейные последовательностные машины: Перев. с англ. М.: Наука, Гл. редакция физ.-мат. литературы, 1974.
- 4. Кирьянов К.Г. Выбор оптимальных базовых параметров источников экспериментальных данных при их идентификации // Труды III Международной конференции «Идентификация систем и задачи управления» SICPRO'04. Москва, 28-30 января 2004 г. Институт проблем управления им. В.А.Трапезникова РАН. М.: Институт проблем управления им. В.А.Трапезникова РАН, 2004. С.187-208.
- 5. Кирьянов К.Г. Соотношение неопределенности для базовых параметров генетических карт и применение его для идентификации нестационарных источников экспериментальных данных // Труды V Международной конференции «Идентификация систем и задачи управления» SICPRO'06. Москва, 26-28 января 2006 г. Институт проблем управления им. В.А.Трапезникова РАН. М.: Институт проблем управления им. В.А.Трапезникова РАН, 2006. С.155-182.
- 6. Горбунов А.А., Кирьянов К.Г. Динамические модели криптосистем с закрытым ключом. Синтез дешифраторов // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия Радиофизика. Выпуск 1 (2). Н. Новгород: ННГУ, 2004. С. 24–36.