

Olivier FARGE, Fangkai XUE et Fabio CRUZ

2021-01-17

Contents

\mathbf{R}	ésistances des Matériaux	6								
	Planning	6								
In	troduction	9								
	Plan du cours	9								
	Equipe Pédagogique	9								
	Séquences d'enseignement du module	9								
	Répartition des séquences d'enseignement	9								
1	Application sur la notions de torseur									
	1.1 Exercise 1	11								
	1.2 Exercise 2: Statique	11								
	1.3 Exercise 3	12								
	1.4 Liaisons mécaniques normalisées	12								
2	TD 2?	13								
3	TD 3	15								
4	TD 4	17								
5	TD 5	19								
6	TD 6	21								
7	TD 7	23								
8	TD 8	25								
9	Flexion dans le cadre de Navier Bernouilli	27								

Résistances des Matériaux

Planning

2020-2021 MECANIQUE Organisation du module RDM en 1A-S2 EEIGM et ENSGSI Resp. Prof. Zoubir AYADI

		promo	gr1	gr2	gr3	gr4	gr5
25-janv-21 8h15-9h30 9h45-11h	cm1 cm2	Z. Ayadi Z. Ayadi					
01-févr-21 8h15-9h30	cm3	Z. Ayadi					
9h45-11h	td1		Z. Ayadi	S. Hilpert	JP. Tinnes	J. Martin	R. Djebbar
08-févr-21 8h15-9h30	cm4	Z. Ayadi					
9h45-11h	td2		R. Djebbar	Z. Ayadi	S. Hilpert	JP. Tinnes	J. Martin
45 66 24 Ob45 Ob20		7					
15-févr-21 8h15-9h30 9h45-11h	cm5 td3	Z. Ayadi		D. Diahhau	7 Augdi	C Hilmont	ID Tinnes
9N45-11N	เนอ		J. Martin	R. Djebbar	Z. Ayadi	S. Hilpert	JP. Tinnes
01-mars-21 8h15-9h30	01-mars-21 8h15-9h30 cm6 9h45-11h td4	Z. Ayadi					
9h45-11h			JP. Tinnes	J. Martin	R. Djebbar	Z. Ayadi	S. Hilpert
311-13 2211			51.1.1111105	J. 17101-C111	iii Djezzai	2.71,000	J perc
08-mars-21 8h15-9h30	cm7	Z. Ayadi					
9h45-11h	td5	•	S. Hilpert	JP. Tinnes	J. Martin	R. Djebbar	Z. Ayadi
			·				·
15-mars-21 8h15-9h30	cm8	Z. Ayadi					
9h45-11h	9h45-11h Cl		Z. Ayadi	S. Hilpert	JP. Tinnes	J. Martin	R. Djebbar
22-mars-21 8h15-9h30	cm9	Z. Ayadi					
9h45-11h	td6		Z. Ayadi	S. Hilpert	JP. Tinnes	J. Martin	R. Djebbar
29-mars-21 8h15-9h30	cm10	Z. Ayadi					

	9h45-11h	td7	R. Djebbar	Z. Ayadi	S. Hilpert	JP. Tinnes	J. Martin
12-avr-21	8h15-9h30	cm11 Z. Ayadi					
	9h45-11h	td8	J. Martin	R. Djebbar	Z. Ayadi	S. Hilpert	JP. Tinnes
19-avr-21	8h15-9h30	cm12 Z. Ayadi					
	9h45-11h	td9	JP. Tinnes	J. Martin	R. Djebbar	Z. Ayadi	S. Hilpert
10-mai-21	9h45-11h	td10	S. Hilpert	JP. Tinnes	J. Martin	R. Djebbar	Z. Ayadi
17-mai-21	9h45-11h	td11	Z. Ayadi	S. Hilpert	JP. Tinnes	J. Martin	R. Djebbar

reste à fixer la date du contrôle final

Introduction

Plan du cours

- 1. Introduction
- Modalités de déroulemen et validation du module RDM
- La Mécanique, la Résistances des Matériaux
- Dimensionnement des structures
- 1. Notions sur les torseurs
- 2. Géometrie des poutres
- 3. Statique
- 4. Expérience fondamentale
- 5. Bilan des hypothèses
- 6. Applications: Sollicitations simples
- Traction compression
- Flexion
- 1. Dimensionnement

Equipe Pédagogique

Séquences d'enseignement du module

- 12 séances de cours
- 11 séances de Travaux dirigés
- 1 Conférence industrielle

Répartition des séquences d'enseignement

Application sur la notions de torseur

1.1 Exercise 1

Soit (O; i, j, k) un repère orthonormé direct. On note (x, y, z) les coordonnés du point P et on considère le champ de vecteurs $\vec{H(P)}$ suivant:

$$H(P) = \begin{bmatrix} -w[(y-y_0)\cos(\theta) + z\sin(\theta)] \\ -w(x-x_0)\cos(\theta) \\ -w(x-x_0)\sin(\theta) + \frac{v}{\cos(\theta)} \end{bmatrix}$$

où $x_0, y_0, \omega, \theta, v$ sont des constantes.

Questions

- 1. Montrer que le champ de vecteurs $\vec{H(P)}$ est équiprojectif. Conclure
- 2. Déterminer les coordonnées vectorielles $R(\tau)$ et $M(\tau,A)$ au point de réduction A de coordonnées $(x_0,y_0),0$

1.2 Exercise 2: Statique

Une porte blindée est articulée sur le mur au point O par l'intermédiaire de deux gonds renforcés aux points \mathbf{A} et \mathbf{B} , le poids \mathbf{P} de la porte est de 2000N (voir figure 1).

Questions

- 1. Écrire les torseurs de liaison aux point A, B et G, sachant que l'action exercée en B par le mur est contenue dans le plan horizontalement passant par le point B.
 - On suppose : liaison linéaire annulaire en B et rotule en A.
- 2. Appliquer le principe fondamental de la statique.
- 3. En déduire les réactions de liaison en A et en B.

1.3 Exercise 3

Une enseigne lumineuse d'une librairie a une liaison rotule avec le mur au point A (figure 2).

Elle est soutenue au point ${\bf D}$ par deux câbles ${\bf B}{\bf D}$ et ${\bf C}{\bf D}$ de même longueur.

Le poids ${f P}$ de l'enseigne est égal à 500N.

Questions

- 1. Écrire les torseurs de liaison aux points A, G, D, définissant les actions sur l'enseigne.
- 2. Appliquer le principe fondamental de la statique.
- 3. En déduire la tension dans les câble

1.4 Liaisons mécaniques normalisées

1.4.1 Remarques:

- 1. Un degrés de liberté égal à zéro est un degrés de liberté supprimé.
- 2. Un degrés de liberté de translation supprimée correspond à une inconnue en force dans le torseur de liaison. Un degrés de liberté de rotation supprimée correspond à une inconnue en moment dans le torseur de liaison.
- 3. Exemple : La liaison linéaire annulaire a quatre degrés de liberté : une translation et trois rotations. Elle introduit donc 2 inconnues de liaison (2 forces). Cette liaison est semblable à la liaison rotule, mais l'objet entourant la sphère mobile n'a plus la symétrie sphérique mais devient un demi-cylindre creux ce qui permet de déplacer la sphère en translation.

TD 2?

Flexion dans le cadre de Navier Bernouilli

9.1 Exercise 1

Soit $(A:i_0,j_0,k_0$ un repère orthonormé direct de réference. On considère une poutre de longeur 2L et de section droite de forme rectangulaire de largeur b et de hauteur h. Cette poutre est chargée au point C avec une force concentrée et a les lieaisons suivantes:

- Une articulation au point B.
- Une appui simple au point A

Pour l'application numérique, on donne: - 2L = 1m - F = 1000N