

Physique

Classe: 4ème Informatique

Chapitre: Le Dipôle RL

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

On associe en série une bobine d'inductance L et de résistance r, un générateur de f.é.m., de résistance interne nulle et de masse flottante, un résistor de résistance R_0 et un interrupteur K comme il est indiqué dans la *figure2*. Afin d'enregistrer simultanément l'évolution temporelle des tensions $u_{AB}(t)$ et $u_{BC}(t)$, on relie les entrées Y_1 et Y_2 d'un oscilloscope à mémoire respectivement aux points K_1 et K_2 de l'oscilloscope. A l'instant K_1 et K_2 de l'oscilloscope. A l'instant K_3 et K_4 et K_4 et K_5 de l'oscilloscope enregistre les courbes K_4 et K_5 de l'instant K_6 et K_6 et K_6 et K_7 et K_8 et

- 1- Justifier l'inversion faite sur la voie Y_2 de l'oscilloscope.
- 2- Montrer que l'intensité i du courant qui circule dans le circuit est régie par l'équation différentielle suivant : $\frac{di}{dt} + \frac{1}{\tau}i = \frac{E}{L} \quad \text{avec} \quad \tau = \frac{L}{R} \quad \text{et } R = R_0 + R$

3- Vérifier que l'intensité du courant
$$i(t) = K (1 - e^{-\frac{t}{\tau}})$$
 est

une solution de l'équation différentielle, où **K** est une constante dont on déterminera l'expression en fonction de **E** etde **R**.

4-

- **a-** Etablir l'expression de chacune des tensions $u_{AB}(t)$ et $u_{BC}(t)$.
- **b-** En déduire leurs expressions en régime permanent.
- c- Identifier parmi les courbes C_1 et C_2 de la figure 3, le chronogramme de C_2 .
- 5- En exploitant les courbes *C*₁et *C*₂de la **figure** 3, déterminer :
- a- la valeur de la f.é.m. E du générateur, la résistance R_0 et la résistance interne r sachant que l'intensité du courant en régime permanent est $I_0 = 0$, 2A.
- **b-** la constante de temps τ et en déduire la valeur de l'inductance **L**.

Fig. 2

6- Dans le circuit précédent, on modifie l'une des grandeurs caractéristiques du circuit (L ou bien R_0). Le nouveau chronogramme de la tension u_{BC} est la courbe C_3 de la figure 3. Identifier la grandeur dont la valeur a été modifiée et comparer sa nouvelle valeur à sa valeur initiale.

Exercice 2:

l'évolution au cours du temps des tensions u_{AM} ,aux bornes de la branche du circuit AM et $u_{R1} = u_{BM} = R_1.i$, la tension aux bornes du dipôle résistor lorsque sa résistance est réglée à une valeur R_1 .

A l'instant t = 0, on ferme l'interrupteur K. Les courbes traduisant l'évolution au cours du temps de \mathbf{u}_{AM} et \mathbf{u}_{BM} sont données par la **figure 2.**

- 1- Reproduire le schéma du montage et faire les connexions nécessaires permettant de visualiser la tension **u**_{AM} sur la voie 1 et la tension **u**_{BM} sur la voie 2.
- **2-** Faire correspondre chaque courbe à la tension visualisée tout en justifiant la réponse.
- **3-** Etablir l'équation différentielle qui régit l'intensité i du courant dans le circuit.
- 4- Montrer que l'équation différentielle qui régit l'évolution de la tension u_{R1} au cours du temp

$$au_1 \frac{dUR1}{dt} + UR1 = \frac{R1}{R1+r} E$$
 avec $\overline{\tau}_1 = \frac{L}{R1+r}$, nommer τ_1

5- La solution de l'équation différentielle établie précédemment s'écrit :

$$UR1(t) = URm (1 - e^{-\frac{t}{\tau_1}})$$

Avec **URm** la valeur de $u_{R1}(t)$ en régime permanent.

- **a-** Montrer que la courbe (B) correspond à $u_{R1}(t)$
- **b-** Donner la valeur de la fém. E du générateur.
- 6- Lorsque le régime permanent est établi, l'ampèremètre indique la valeur *I*₀₁=50 mA.
- **a-** Déterminer la valeur de la résistance \mathbf{R}_1 du résistor.
- **b-** Montrer que l'expression de la résistance ${\bf r}$ de la bobine s'écrit : ${\bf r} = \left(\frac{{\bf E}}{{\bf U}_{Rm}} 1\right) R_1$ Calculer ${\bf r}$.

- c- Déterminer graphiquement la valeur de la constante de temps τ_1 et en déduire la valeur de l'inductance L de la bobine.
- 7- On règle la résistance R_i à une valeur R_2 .
- a- Dans le but d'atteindre plus lentement le régime permanent, dire si l'on doit augmenter ou diminuer la valeur de la résistance par rapport à la valeur \mathbf{R}_1 .
- **b-** Pour cette valeur de R_2 de la résistance R_i , la constante de temps τ_2 est alors $\tau_2 = 2 \tau_1$. Déterminer, dans ce cas , la valeur de l'intensité du courant I_{02} en régime permanent.

Exercice 3:

On réalise le circuit électrique représenté par la **figure 1** comportant, en série, un générateur de tension idéale de f.é.m. E, une bobine d'inductance L et de résistance $r = 10 \Omega$, un interrupteur K et un résistor de résistance R_0 . A la date t = 0 on ferme l'interrupteur K et à l'aide d'un oscilloscope à mémoire on enregistre la tension u_{AB} aux bornes de la bobine et u_{BM} aux bornes de R_0 , on obtient les courbes de la

figure 2.

- 1- Reproduire le schéma du montage et faire les connexions nécessaires permettant de visualiser la tension **u**_{AB} sur la voie 1 et la tension **u**_{BM} sur la voie 2.
- 2- Faire correspondre chaque courbe à la tension visualisée tout en justifiant la réponse.
- 3- Montrer que l'équation différentielle qui régit l'évolution de la tension u_{R0} au cours du temps s'écrit :

$$K_1 \frac{dUR0}{dt} + UR_0 = K_2$$
 avec K_1 et K_2 des constantes a determiner.

- 4- Vérifier que UR_0 (t)) = U_0 (1 $e^{-\frac{t}{\tau_1}}$) est solution de l'équation différentielle établie précédemment avec U_0 et τ_1 des constantes à déterminer.
- 5- En exploitant les courbes de la figure 2 :
 - a- Déterminer la f.é.m. E du générateur, la valeur I_0 du courant en régime permanent, U_0 et R_0 .
 - **b-** Déterminer graphiquement la valeur de la constante de temps $\tau 1$.
 - c- En déduire la valeur de l'inductance L.
- 6-Dire si en augmentant la valeur de L, les grandeurs suivantes : τ ; I_0 ; et les valeurs de u_{BM} et u_{AB} en régime permanent, seront modifiées ou non tout en justifiant la réponse.

Exercice 4:

On réalise le circuit électrique représenté par la **figure 1** comportant, en série, un générateur de tension idéale de f.é.m. E=6V, une bobine d'inductance L et de résistance r, un interrupteur r et un résistor de résistance r0. A la date r1 on ferme l'interrupteur r2 et à l'aide d'un oscilloscope à mémoire on enregistre la tension r2 aux bornes de la bobine et r3 aux bornes de r4.

- 1- Faire les connexions nécessaires permettant de visualiser la tension **u**_{AB} sur la **voie 1** et la tension **u**_{BM} sur la **voie 2**.
- 2- Etablir l'équation différentielle qui régit l'évolution de la tension **U**RM au cours du temps.
- 3- En déduire que celle realtive a U_{AB} s'ecrit : $U_{AB} + \frac{L}{R} \frac{dU_{AB}}{dt} = r \frac{E}{R}$

4- a- Vérifier que $U_{AB}(r)=rrac{E}{R}+rac{R_0}{R}Ee^{-rac{t}{r_1}}$ est solution de l'équation différentielle établie précédemment

b-En déduire UBM

- 5- Sur l'écran de l'oscilloscope on obtient la courbe (b) de la figure 2.
- a- Dire si cette tension est observée sur la voie 1 ou sur la voie 2 ? justifier.
- **b-** En exploitant la courbe (b) de la **figure 2** :
- i. Déterminer l'intensité I_0 du courant en régime permanent. Déduire la valeur de ${\bf r}$.

Figure 2

- ii. Déterminer graphiquement la valeur de la constante de temps τ . En déduire la valeur de l'inductance L.
- iii. Tracer sur le même graphe la courbe (a) visualisée sur l'autre voie.
- **6-** On reprend l'expérience dans les deux conditions suivantes.
- **a-** On remplace la bobine par une autre d'inductance L' = 2L et on maintient le même résistor.
- b- On remplace le résistor par un autre de résistance $\mathbf{R'} = 2R_0$ et on maintient la même bobine. Tracer dans chaque cas, sur le même graphique de la figure 2, l'allure des courbes $u_{BM}(t)$.

Figure 1

www.takia

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000