

R para Ciencias de la Salud

Unidad 5 <- Estructura de Datos
("Listas", "Data Frames")</pre>

Rafael J. Puche Q. & Fernando Hernández
Centro de Medicina Experimental
Instituto Venezolano de Investigaciones Científicas (IVIC)

Dimensión	Homogéneo	Heterogéneo
1	Vector	Lista
2	Matriz	Data frame
N	Array	

¿Que es una lista?

Un contenedor de objetos que pueden ser de cualquier clase: números, vectores, matrices, funciones, data frames, incluso otras listas.

Puede contener varios objetos a la vez, que pueden ser además de distintas dimensiones.

Cada elemento de una lista tiene un nombre (o índice) asociado, que puede ser numérico o una cadena de caracteres.

Una lista es unidimensional, sólo tiene largo.

Estructura Basica de una lista

Se pueden crear listas utilizando la función list()

Ejemplo:

Los elementos de la lista pueden ser nombrados durante la creación:

Operadores para lista

- 1.[i]
- 2.[[i]]
- 3.x\$y

Sintaxis	Objetos	Descripción
x[i]	Vectores, Listas	Selecciona elementos del objeto x , descritos en i . i puede ser un vector de tipo integer, chararacter (de nombres de los objetos) o lógico. Cuando es usado con listas, devuelve una lista. Cuando es usado en vectores devuelve un vector.
x[[i]]	Listas	Devuelve un único elemento de x que se encuentra en la posición i . i puede ser un vector de tipo integer o character de longitud 1.
x\$n	Listas, Dataframes	Devuelve un objeto con nombre n del objeto x .
[i,j]	Matrices	Devuelve el objeto de la fila i y columna j . i y j pueden ser un vector de tipo integer o chararacter (de nombres de los objetos)

Familia apply ()

Colección de funciones muy potentes que permiten aplicar operaciones a estructuras de datos como vectores, listas, matrices, data frames y arrays

- Sintaxis: apply(X, MARGIN, FUN, ...)
 - MARGIN = 1 aplica la función por filas,
 - MARGIN = 2 por columnas.
- Ejemplo:
 - o apply(matriz, 1, sum) suma por filas.

Familia apply ()

Gene	Control	Tratamiento1	Tratamiento2
Gene1	10	12	15
Gene2	5	8	6
Gene3	20	25	22
Gene4	0	1	0
Gene5	50	55	60

Función	Código_R	Output	Explicación
apply()	apply(exp_mat, 1, mean)	Gene1=12.3, Gene2=6.3,	Media por gen
apply()	apply(exp_mat, 2, sd)	Control=19.3, Trat1=20.8,	Desviación estándar por muestra
lapply()	lapply(as.data.frame(exp_mat), max)	Control=50, Trat1=55, Trat2=60	Máximo por muestra
sapply()	sapply(as.data.frame(exp_mat), min)	Control=0, Trat1=1, Trat2=0	Mínimo por muestra
mapply()	mapply(mean, exp_mat[,1], exp_mat[,2])	10.5, 6.5, 22.5, 0.5, 52.5	Media entre Control y Tratamiento1 por gen

Manos al teclado

Ejercicio - LISTA

- 1. Crea una lista llamada mi_lista que contenga los siguientes elementos:
 - a. Un vector numérico con los números del 1 al 5
 - b. Una cadena de caracteres con tu nombre
 - c. Un vector lógico con los valores TRUE, FALSE, TRUE
 - d. Una matriz de 2x2 con los números del 1 al 4
- 2. Imprime la lista mi_lista en la consola para ver su estructura, además imprime el tipo de elemento mi_lista
- 3. Accede al segundo elemento de la lista (tu nombre) y almacénalo en una variable llamada mi_nombre.

Me after coding for 5 minutes..

N.			** Comment	THE SOUR	Orming	P INSERTA	Sylvinger !	PROPERTY.	Designation of	O PRACTIA	PARCITAL	ENVIREN	PONDERAD O EXAMEN	DINKE	CONDICION
1	CONDORS MAMANT DANIESA	MUJER	45	50	50	48	45	35	25	35					APROBADO
2	CHINO GONSALEZ EDIANUEZ	SHARW.	40	45	35	40	40	40	26	35					APROBADO
3	IDERREGRA CALANT ISLIANA	MUJER	36	40	35	37	35	40	35	37					APROBADO
	HOURRIDEA PHORNANDEZ VIORONICA	MOJER	36	45	40	40	36	45	48	43					APROBADO
5	JALOOV TASTACA KOSOV	FRANCIV	51	56	45	51	42	30	60	44					APROBADO
8	LOPEZ LONA GLADES	MOJER	52	55	46	51	60	25	51	45					APROBADO
7	MAMANT MURANDA WILPREDO	VARION	45	48	36	43	6	56	52	38					APROBADO
8	MARQUEZ ROJAS PRANKLIN	196423V	40	48	25	38	60	59	55	58					APROBADO
9	RODRIGUES CRUZ PABLO	10Mayar	25	40	35	33	45	56	54	52					REPROBADO
10	TICONA ORELLANA ALEX	19MEW	16	36	36	29	25	42	56	41		Ti	dνν	/	rse
11	APAZA AJACOPA BERLEZ	MUJER	45	50	42	46	63	51	23	46			uуı	/ C I	SE
B	CARO LEDEZMA DANTELA	MUSER	40	50	40	43	25	50	52	42					
13	REDVAGA LOPEZ SHIRLEY	мелег	36	40	45	40	42	48	48	46					
11	SIPIE CACIERIES LOCIA	MOJER	40	45	40	42	56	45	45	49					

41 45 45 44 50 12 12 25

Es <mark>un conjunto de paquetes en R</mark> diseñado para facilitar el análisis de datos de forma coherente, legible y eficiente. Todos los paquetes del tidyverse comparten una misma filosofía: trabajar con datos en formato "ordenado" (tidy data)

ggplot2

readr

stringi

Lo veremos en el tema Analisis de datos en R (semana 8)

The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

Install the complete tidyverse with:

install.packages("tidyverse")

SANTOS PANTAGOA ISBRABI.

Que es un Data Frame (Marco de Datos)

Es una estructura de datos bidimensional en R, similar a una hoja de cálculo o una tabla.

Está compuesto por filas y columnas, donde cada columna debe contener el mismo tipo de datos (numérico, carácter, lógico, etc.).

Columnas se denominan "variables" Filas representan las "observaciones"

Similar a una matriz, pero puede tener columnas con diferentes tipos de datos (numérico, caracter, lógico).

Estructura Basica de un Data Frame

Se pueden crear data frames utilizando la función data. frame ()

```
data.frame(col1 = vector1, col2 = vector2, ...)
```

Los DF pueden ser importados desde archivos externos, como CSV, Excel, bases de datos, entre otros (veremos en la Sesion 8, Análisis de datos en R)

Ejemplo:

cbind y rbind en Data Frame

La función cbind() se utiliza para combinar dataframes o vectores por columnas.

Ejemplo:

cbind(df, altura = c(170, 180, 150))

cbind - Bind columns.

cbind y rbind en Data Frame

La función rbind() se utiliza para combinar dataframes o vectores por filas.

Ejemplo:

rbind(df, pais = c("Jamaica", "Italia",
"Venezuela"))

NOTA: al combinar dataframes con cbind() o rbind(), las columnas deben tener **nombres y tipos de datos compatibles**. Si los nombres de las columnas no coinciden, *R asignará nombres generados automáticamente*.

Estas funciones son muy útiles cuando necesitas agregar nuevas columnas o filas a un dataframe existente, o combinar varios data frames en uno solo.

Subconjuntos en Data Frame

df[, 2]

df[2,]

df[2, 2]

Subconjuntos en Data Frame

Operador	Descripción	Ejemplo
Орегииот	Descripcion	Ljempio
	Seleccionar filas y columnas específicas de un dataframe.	datos [1:3, c("nombre", "edad")] selecciona las filas 1 a 3 y las columnas "nombre" y "edad".
\$	Seleccionar una columna específica de un dataframe por su nombre.	datos \$nombre selecciona la columna "nombre".
	Seleccionar filas donde los valores de una columna son iguales a un valor específico.	<pre>datos[datos\$edad == 30,] selecciona las filas donde la edad es igual a 30.</pre>
!=	Seleccionar filas donde los valores de una columna son diferentes a un valor específico.	datos [datos \$genero != "M",] selecciona las filas donde el género no es "M".
>, <, >=,	Seleccionar filas donde los valores de una columna cumplen una determinada condición numérica.	datos [datos \$edad > 30,] selecciona las filas donde la edad es mayor que 30.

Manos al teclado

Ejercicio - DATA FRAME

- 1. Crea un dataframe llamado pacientes con las siguientes columnas: nombre, edad, genero, diagnostico y tratamiento. Ingresa los datos de al menos 5 pacientes diferentes.
- 2. Agrega una nueva columna llamada fecha_ingreso al dataframe pacientes utilizando la función cbind.
- 3. Crea un nuevo dataframe llamado nuevos_pacientes con las columnas nombre, edad, género y diagnostico. Ingresa los datos de al menos dos pacientes nuevos.
- 4. Combina los dataframes pacientes y nuevos pacientes utilizando la función rbind.
- 5. Selecciona las filas del dataframe pacientes donde el diagnóstico sea "Diabetes".
- 6. Selecciona las columnas nombre, edad y tratamiento del dataframe pacientes.
- 7. Selecciona las filas del dataframe pacientes donde el género sea "F" y la edad sea mayor o igual a 50.

En resumen...

rpucheq@gmail.com

Twitter: @rpucheq

