Assignment II: Advanced simulation techniques

Blocked Gibbs sampling

Associated Questions

1. Blocked Gibbs sampler

- É um método de Monte Carlo via Cadeias de Markov;
- Caso especial do Amostrador MH;
- Geralmente usada quando a distribuição alvo é multivariada;
- Sendo a distribuição condicional completa e fácil de amostrar o Algoritmo atualiza um parâmetro por vez, gerando candidatos pela amostragem da distribuição condicional completa e aceitando, desta forma, todos os valores;

1.1 Algoritmo

Seja $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, ..., \boldsymbol{\theta}_d)$ um vetor aleatório $\boldsymbol{\epsilon} \in \mathbb{R}^d$.

Algoritmo

Entrada:

N ∈ N representando o número de amostras desejado;

Um valor inicial $\Theta^{(0)}$

Simulação

para
$$t = 1, 2, ..., N$$
 faça

Gere
$$\Theta_1^{(t)} \sim f(\Theta_1 | \Theta_2^{(t-1)}, \Theta_3^{(t-1)}, ..., \Theta_d^{(t-1)})$$

$$\Theta_2^{(t)} \sim f(\Theta_2 | \Theta_1^{t}, \Theta_3^{(t-1)}, ..., \Theta_d^{(t-1)})$$

$$\vdots$$

$$\Theta_d^{(t)} \sim f(\Theta_d | \Theta_1^{t}, \Theta_2^{t}, ..., \Theta_{d-1}^{t});$$

fim

Saída:

A cadeia $\{\boldsymbol{\theta^{(t)}} \mid t = 1, ..., N\}$ com os valores gerados.

1.2 Teorema de Hammersley-Clifford

Se f(x)>0 para todo x, então a distribuição conjunta f(x) é determinada unicamente pelas condicionais completas. Mais precisamente,

$$f(x) = f(y) \prod_{k=1}^{K} \frac{f_{j_k}(x_{j_k}|x_{j_1}, \dots, x_{j_{k-1}}, y_{j_{k+1}}, \dots, y_{j_K})}{f_{j_k}(y_{j_k}|x_{j_1}, \dots, x_{j_{k-1}}, y_{j_{k+1}}, \dots, y_{j_K})},$$

Para cada permutação j = j(k) em $\{1, ..., n\}$ e todo y. Uma prova desse teorema pode ser encontrada na referência 4.

2. Advantages

Theoretical

- Aplicável a distribuições a posteriori intratáveis;
- Mesmo nível de confiança de MC clássico;
- A cadeia de Markov converge para sua distribuição estacionária;

Practical

- Método de simulação simples;
- Produz erros padrões assintoticamente válidos para as médias ergóticas usados para estimar a esperança a posteriori intratável.
- O erro padrão pode ser usado para escolher o tamanho da amostra apropriado;
- A cadeia de Markov de Gibbs em bloco é geometricamente ergótica.

3. Aplicação do amostrador de Gibbs simples é possível?

- Sim;
- Variáveis em blocos em conjunto levam a propriedades de convergência melhores do que a versão simples (univariada) do amostrador de Gibbs;
- Não apresenta maiores dificuldades de implementação no caso de blocos;

Implementação

A implementação feita em python está disponível no github:

https://github.com/juliezousa/Estatistica-Computacional-FGV-PhD/blob/main/Final A ssignment Est Comp/Final Assignment Julie.ipynb

Convergência

Comparação

Table 3. Results based on R = 5,000 regenerations.

2	\tilde{g}_R	$\hat{\gamma}^2$	$\sqrt{\hat{\gamma}^2/R}$	$\tilde{g}_R \pm 2\sqrt{\hat{\gamma}^2/R}$
σ_{θ}^2	0.19003	0.03463	0.00263	(0.18477, 0.19529)
σ_{θ}^2 σ_{e}^2	0.61777	0.00883	0.00133	(0.61511, 0.62043)
$\frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \sigma_{e}^2}$	0.21288	0.03532	0.00266	(0.20757, 0.21820)

	g_R	γ²	$\sqrt{(\gamma^2/R)}$	$g_R \pm 2\sqrt{(\gamma^2/R)}$
$\sigma_{\scriptscriptstyle heta}^{^{2}}$	0.18634	0.03458	0.00263	(0.18024, 0.19245)
σ _e ²	0.62112	0.01080	0.00147	(0.61818, 0.62406)
$\sigma_{\theta}^{2}/(\sigma_{\theta}^{2}+\sigma_{e}^{2})$	0.20881	0.03539	0.00302	(0.20277, 0.21484)

Significância da ergodicidade geométrica para o amostrador blocked Gibbs proposto por Tan e Hobert

"Cadeias de Markov ergóticas são regenerativas"

- Facilita a determinação do espaço discreto da cadeia de Markov;
 - Implica que se trata de um estimador fortemente consistente;
- A hipótese ergótica assume que a cadeia de Markov irá convergir para uma distribuição estacionária;

Referências

- 1. Tan, Aixin & Hobert, James. (2009). Block Gibbs Sampling for Bayesian Random Effects Models With Improper Priors: Convergence and Regeneration. Journal of Computational and Graphical Statistics J COMPUT GRAPH STAT. 18. 861-878. 10.1198/jcgs.2009.08153.
- 2. https://repositorio.unb.br/bitstream/10482/40488/3/2021_DeboraCristianedos Santos.pdf
- 3. http://www.est.ufmg.br/portal/arquivos/rts/RTE 01 2019.pdf
- 4. Julian, Besag (1974). Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 36, No. 2 (1974), pp. 192-236