Intermediate Topics in Machine Learning & Deep Learning

Alexander Ioannidis

ioannidis@stanford.edu

Institute for Computational and Mathematical Engineering, Stanford University

Schedule

Day 1

Session 1: Intermediate Topics in ML (SVMs and Kernels)

Session 2: Transfer Learning & Generating Labels for Deep Learning

Day 2

Session 3: Dimensionality Reduction and Variational Autoencoders (VAEs)

Session 4: Representation Learning, Weakly Supervised, Semi-supervised, and self-supervised learning

Support Vector Machines

- Method for supervised classification
 - Binary classification (two class)

- Generalization of maximal margin classifier
- Support vector classifier: can be applied to data that is not linearly separable
- Support vector machine: non-linear decision boundary

- Maximal margin classifier
 - Key assumption: two classes are separable by linear decision boundary

• First, we need to review *hyperplanes...*

Hyperplanes

- What is a hyperplane?
 - In d-dimensional space, a (d-1)-dimensional affine subspace
 - e.g. line in 2D, plane in 3D
 - Hyperplane in d-dimensional space:

$$(\star) \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_d x_d = 0$$

Separates space into two half-spaces

Hyperplanes

$$4 + 9x_1 + 6x_2 - 2x_3 = 0$$

Idea:

Use a separating hyperplane for binary classification

Key assumption:

Classes can be separated by a linear decision boundary

To classify new data points:

Assign class by location of new data point with respect to hyperplane:

$$\hat{Y} = \operatorname{sign} (\beta_0 + \beta_1 X_1 + \dots + \beta_d X_d)$$

Figure 9.2 , ISL 2013

Key assumption:

Classes can be separated by a linear decision boundary

→ Many possible separating hyperplanes...

Mini Quiz:

Which linear decision boundary?

What criteria would you use to choose?

Which linear decision boundary?

Separating hyperplane "farthest" from training data

→ "Maximal Margin Classifier"

Figure 9.2, 9.3, ISL 2013

Maximal margin hyperplane

Hyperplane "farthest" from training data → maximizes margin

Margin: smallest distance between any training observation and the hyperplane

Support vectors: the training observations equidistant from the hyperplane

- Support vectors
 - The training observations equidistant from the maximal margin (MM) hyperplane
 - "Support": MM hyperplane only depends on these observations
 - If support vectors are perturbed, then MM hyperplane will change
 - If any other training observations are perturbed, MM hyperlane not effected

• To find maximal margin hyperplane, solve:

Recall our assumption:

Classes can be separated by a linear decision boundary

What if there's no separating hyperplane?

Disadvantage:

Disadvantage:

Can be sensitive to individual observations

May overfit training data

What if there's no separating hyperplane?

Support Vector Classifier:

allows training samples on the "wrong side" of the margin or hyperplane

- Support Vector Classifier
 - Hyperplane-based classifier
 - Allows some training samples on "wrong side" of margin/hyperplane
 - Soft margin: margin is not a hard boundary

- Support Vector Classifier
 - Hyperplane-based classifier
 - Allows some training samples on "wrong side" of margin/hyperplane
 - Soft margin: margin is not a hard boundary

- Idea: solve maximal margin problem, but allow violations of the margin
 - Impose penalty to limits number/degree of violations

To find hyperplane for the SV classifier, solve:

- Slack variables ε_i allow for violations of the margin
 - $-\varepsilon_i = 0$: training point $X^{(i)}$ is on correct side of margin
 - $-\varepsilon_i > 0$: $X^{(i)}$ violates the margin
 - $-\varepsilon_i > 1: X^{(i)}$ is misclassified (wrong side of hyperplane)

- Penalty parameter C "budget" for violations
 - Allows at most C misclassifications on training set

"Misclassification budget" parameter C is selected by cross-validation

* controls bias-variance trade-off *

Support vectors: observations on margin or violating margin

Figure 9.7, ISL 2013

Disadvantage:

Linear decision boundary

Figure 9.8, ISL 2013

Expanding Feature Space

Some data sets are not linearly separable...

But they *become* linearly separable when transformed into a *higher* dimensional space

variables: X₁, X₂

Expanding Feature Space

variables: X_1 , X_2

variables: X_1 , X_2 , X_1X_2

Expanding Feature Space

- Linear regression → non-linear model
 - Create new features that are functions of predictors

- Apply same technique to support vector classifier
 - Consider polynomial functions of predictors:

Suppose our original data has d features:

$$X = [X_1, X_2, \cdots, X_d]$$

Expand feature space to include 2d features:

$$\tilde{X} = [X_1, (X_1)^2, X_2, (X_2)^2, \cdots, X_d, (X_d)^2]$$
 $\tilde{X}_1 \quad \tilde{X}_2 \quad \tilde{X}_3 \quad \tilde{X}_4 \quad \tilde{X}_{2d-1} \quad \tilde{X}_{2d}$

Decision boundary will be non-linear in original feature space

Decision boundary in enlarged features space is linear:

$$\beta_0 + \beta_1 \tilde{X}_1 + \beta_2 \tilde{X}_2 + \dots + \beta_{2d-1} \tilde{X}_{2d-1} + \beta_{2d} \tilde{X}_{2d} = 0$$

 Decision boundary in enlarged features space is an ellipse in the original features space:

$$\beta_0 + \beta_1 X_1 + \beta_2 (X_1)^2 + \dots + \beta_{2d-1} X_d + \beta_{2d} (X_d)^2 = 0$$

- Add higher order polynomial terms to expanded features set
 - → number of features grows quickly
 - Large number of features becomes computationally challenging
 - We need an efficient way to work with large number of features

Support Vector Machine (SVM)

Support Vector Machine: extension that uses kernels to achieve nonlinear decision boundary

Support Vector Machine

• *Kernel*: generalization of inner product

- Kernels (implicitly) map data into higher-dimensional space
 - Apply support vector classifier in high-dimensional space with hyperplane (linear) decision boundary

Computations in support vector classifier requires only inner products of training data

$$f(X) = \beta + \sum_{i \in S} \alpha_i \langle X^{(i)}, X \rangle$$

In SVM we replace inner product with kernel function

$$f(X) = \beta + \sum_{i \in S} \alpha_i K\left(X^{(i)}, X\right)$$

- Properties of kernels K(X, X'):
 - Generalization of inner product

$$K(X, X') = \langle \phi(X), \phi(X') \rangle, \quad \phi \text{ feature mapping}$$

- Symmetric: K(X, X') = K(X', X)
- Gives a measure of similarity between X and X'
 - If X and X' close together, then K(X, X') large
 - If X and X' far apart, then K(X, X') small

Linear kernel

$$K(X, X') = \langle X, X' \rangle$$

Polynomial kernel (degree p)

$$K(X, X') = (1 + \langle X, X' \rangle)^p$$

Radial basis kernel

$$K(X, X') = \exp(-\gamma ||X - X'||^2)$$

- Why use kernels instead of explicitly constructing larger feature space?
 - Computational advantage

$$\phi : \mathbb{R}^d \to \mathbb{R}^D, \quad d << D$$

$$K(X, X') = \langle \phi(X), \phi(X') \rangle \quad \text{in } O(d)$$

- Other machine learning methods use kernels
 - e.g. kernel PCA

• Example: polynomial kernel, p = 2, d = 2:

$$K(X,Y) = (1 + \langle X,Y \rangle)^2$$
 $X = \begin{vmatrix} X_1 \\ X_2 \end{vmatrix}$

Then

$$K(X,Y) = 1 + 2X_1Y_1 + 2X_2Y_2 + X_1^2Y_1^2 + X_2^2Y_2^2 + 2X_1Y_1X_2Y_2$$
$$= \langle \phi(X), \phi(Y) \rangle \qquad \left[\begin{array}{c} 1 \\ \sqrt{2}X_1 \end{array} \right]$$

$$= \langle \phi(X), \phi(Y) \rangle$$
where $\phi(X) = \begin{bmatrix} 1 \\ \sqrt{2}X_1 \\ \sqrt{2}X_2 \\ \sqrt{2}X_1X_2 \\ X_1^2 \\ X_2^2 \end{bmatrix}$

Advantages

- Regularization parameter C to avoid overfitting
- Use of kernel gives flexibility in form of decision boundary
- Optimization problem convex unique solution

Disadvantages

- Must tune hyperparameters (e.g. C, kernel function)
 - Poor performance if not well-chosen
- Must formulate as binary classification
- Difficult to interpret

Questions?

SVM with 3+ classes

- SVMs are designed for binary classification
 - Separating hyperplane naturally separates data into two classes
- How do we handle the case when the data belong to more than two classes?

- Popular approaches:
 - 1. One-versus-one
 - One-versus-all

SVM with 3+ classes

- One-versus-one classification
 - Construct an SVM for each pair of classes
 - For K classes, this requires training $\frac{K(K-1)}{2}$ SVMs
 - To classify a new observation, apply all $\frac{\tilde{K}(K-1)}{2}$ SVMs to the observation take the most frequent class among pairwise results as predicted class
 - Disadvantage: computationally expensive for large values of K

SVM with 3+ classes

- One-versus-all classification
 - Fit K SVMs, in which class k represents one class, and the remaining K-1 classes are combined to form the second class
 - Distance to separating hyperplane is a proxy for confidence of the classification
 - For new observation, choose "highest confidence" class to make prediction

Questions?

- Imbalanced classes: one class (+) occurs significantly more frequently in training set than the other (—)
 - e.g. fraud detection, medical database

- Why is this a problem?
 - Algorithms perform best when trained on roughly even numbers of observations in each class
 - Poor performance on underrepresented class

- How can we improve performance when we have imbalanced classes?
 - Collect more data for underrepresented class
 - Weighting of classes
 - Sampling methods

- Weighting of classes: applying different weights to false negatives in cost function
 - e.g. in SVM, larger weights to penalties for violations of margin for class (—) than for class (+):

$$\sum_{i=1}^{n} \epsilon_i < C \quad \text{becomes}$$

$$\left(\sum_{i: Y^{(i)} = (+)} \epsilon_i\right) + \omega \left(\sum_{i: Y^{(i)} = (-)} \epsilon_i\right) < C$$

- Sampling Methods modify set of training observations to make classes more even
- Balance class labels by
 - Undersampling class (+)
 - Oversampling class (—)

- Disadvantages of over/under sampling
 - Undersampling class (+) may remove important training observations

- Disadvantages of over/under sampling
 - Oversampling class (—) may result in over fitting

- Synthetic Minority Oversampling
 - Method for oversampling class (—) that generates new minority observations by perturbing existing minority observations:
 - 1. Selects observation $X^{(-)}$ in class (—) at random
 - 2. Finds k nearest neighbors of $X^{(-)}$ selects one of the neighbors $X_{nn}^{(-)}$ at random
 - 3. New sample $X_{new}^{(-)}$ is a perturbation of $X^{(-)}$ along the direction $X_{nn}^{(-)} X^{(-)}$

