- 1 Le corps des nombres complexes.
- 2 Représentation géométrique. 4
- 3 Conjugué d'un nombre complexe. 5
- 4 Module d'un nombre complexe. 6

Exercices 8

1 Le corps des nombres complexes.

On admet l'existence d'un ensemble de nombres noté $\mathbb C$ ainsi que d'une addition et d'un produit + et \cdot :

$$+: \left\{ \begin{array}{ccc} \mathbb{C}^2 & \to & \mathbb{C} \\ (z,z') & \mapsto & z+z' \end{array} \right. \quad \text{et} \quad \cdot: \left\{ \begin{array}{ccc} \mathbb{C}^2 & \to & \mathbb{C} \\ (z,z') & \mapsto & z\cdot z' \end{array} \right..$$

Les éléments de \mathbb{C} sont appelés **nombres complexes**. La construction de $(\mathbb{C}, +, \cdot)$ n'est pas très difficile mais elle est hors-programme. La liste des propriétés ci-dessous est donc <u>admise</u>.

• Les nombres réels sont des nombres complexes : $\mathbb{R} \subset \mathbb{C}$. Dans \mathbb{C} , il existe un nombre i tel que

$$i^2 = -1.$$

Ainsi, l'équation $x^2 = -1$, qui n'a pas de solutions dans \mathbb{R} , en possède une (au moins...) dans \mathbb{C} .

- Tout nombre complexe z s'écrit sous la forme z = a + ib, avec z = a + ib, avec z = a + ib. Cette écriture est unique (voir plus bas) : on dit que z = a + ib est la **forme algébrique** du nombre z = a + ib.
- Les lois + et \cdot sont commutatives :

$$\forall z, z' \in \mathbb{C}$$
 $z + z' = z' + z$ et $z \cdot z' = z' \cdot z$.

• Les lois + et \cdot sont associatives :

$$\forall z_1, z_2, z_3 \in \mathbb{C}$$
 $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ et $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$.

• La loi · est distributive par rapport à + :

$$\forall z_1, z_2, z \in \mathbb{C}$$
 $(z_1 + z_2) \cdot z = z_1 \cdot z + z_2 \cdot z = z \cdot (z_1 + z_2).$

• 0 est neutre pour l'addition et 1 est neutre pour la multiplication :

$$\forall z \in \mathbb{C} \quad 0+z=z=z+0 \quad \text{ et } \quad z \times 1=z=1 \times z.$$

Méthode (Un premier calcul dans \mathbb{C}).

$$(a+ib)\cdot(c+id) =$$

- L'ensemble $\mathbb{C} \setminus \{0\}$ sera noté \mathbb{C}^* . Pour tout nombre complexe z non nul, il existe un unique nombre complexe ω tel que $\omega z = z\omega = 1$. Ce nombre sera appelé **inverse** de z et noté z^{-1} . Comme dans \mathbb{R} , 0 n'a pas d'inverse dans \mathbb{C} .
- Le quotient de deux nombres complexes est défini ainsi : si $(z, z') \in \mathbb{C}^* \times \mathbb{C}$,

$$\frac{z'}{z} := z' \cdot (z)^{-1}.$$

Les égalités suivantes sont vraies pour tous nombres z_1, z_2, z_3 non nuls :

$$\left(\frac{z_1}{z_2}\right)^{-1} = \frac{z_2}{z_1} \qquad \frac{z_1 + z_2}{z_3} = \frac{z_1}{z_3} + \frac{z_2}{z_3} \qquad \frac{z_1 \cdot z_2}{z_3} = z_1 \cdot \frac{z_2}{z_3}.$$

• Un produit de nombres complexes est nul si et seulement si l'un des facteurs est nul :

$$\forall z, z' \in \mathbb{C} \quad z \cdot z' = 0 \iff (z = 0 \text{ ou } z' = 0).$$

- Les nombres complexes n'ont pas de signe : écrire une inégalité entre deux nombres complexes n'a aucun sens.
- Les identités démontrées dans le cours Sommes et produits sont vraies pour les nombres complexes (toutes les preuves fonctionnent de la même façon). On a notamment

$$\forall z \in \mathbb{C} \qquad \forall n \in \mathbb{N} \qquad \sum_{k=0}^{n} z^{k} = \begin{cases} \frac{1-z^{n+1}}{1-z} & \text{si } z \neq 1 \\ n+1 & \text{si } z = 1 \end{cases}$$

$$\forall (\alpha, \beta) \in \mathbb{C}^2 \qquad \forall n \in \mathbb{N}^* \qquad \alpha^n - \beta^n = (\alpha - \beta) \sum_{k=0}^{n-1} \alpha^{n-1-k} \beta^k$$

$$\forall (\alpha, \beta) \in \mathbb{C}^2 \qquad \forall n \in \mathbb{N} \qquad (\alpha + \beta)^n = \sum_{k=0}^n \binom{n}{k} \alpha^k \beta^{n-k}.$$

Exemple 1.

1.
$$\forall p \in \mathbb{Z}$$
 $i^{2p} = (-1)^p$ et $i^{2p+1} = (-1)^p i$. En particulier, $\boxed{\frac{1}{i} = -i}$.

2. Calcul de

$$1 + 2i + 3i^2 + 4i^3 + 5i^4$$
, $(1+2i)^2$, $(1+i)^3$.

Exemple 2 (Calcul de l'inverse).

1. Soient $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Vérifier que

$$\frac{1}{a+ib} = \frac{a-ib}{a^2+b^2}.$$

Le nombre a-ib sera appelé plus loin le conjugué de de a+ib et $\sqrt{a^2+b^2}$ son module.

2. Calculer $\frac{1}{1+i}$ et $\frac{2-i}{1-3i}$.

Proposition-Définition 3 (Retour sur l'unicité de la forme algébrique).

Soient $a, a', b, b' \in \mathbb{R}$. L'unicité de l'écriture de la forme algébrique d'un nombre complexe donne

$$a + ib = a' + ib' \iff (a = a' \text{ et } b = b').$$

En particulier,

$$a+ib=0 \iff (a=0 \text{ et } b=0).$$

Soit z = a + ib un nombre complexe, avec (a, b) tel que z = a + ib.

Le réel a est appelé partie réelle de z et noté Re(z).

Le réel b est appelé **partie imaginaire** de z et noté Im(z).

Proposition 4 (Réels et imaginaires purs).

$$\forall z \in \mathbb{C} \quad z \in \mathbb{R} \iff \operatorname{Im}(z) = 0.$$

La nullité de la partie réelle de z caractérise quant à elle l'appartenance de z à l'ensemble des **imaginaires purs**, qui est parfois noté $i\mathbb{R}$.

Proposition 5.

Pour tous $z, z' \in \mathbb{C}$, pour tout $\lambda \in \mathbb{R}$ réel, on a

$$\operatorname{Re}(z+z') = \operatorname{Re}(z) + \operatorname{Re}(z')$$
 et $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$.

$$\operatorname{Im}(z+z') = \operatorname{Im}(z) + \operatorname{Im}(z')$$
 et $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z)$.

Plus généralement, si $z_1, \ldots, z_n \in \mathbb{C}$,

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Re}(z_{k}) \quad \text{ et } \quad \operatorname{Im}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Im}(z_{k}).$$

« La partie réelle de la somme, c'est la somme des parties réelles ». Idem pour la partie imaginaire.

Corollaire 6.

Les applications partie réelle et partie imaginaire sont \mathbb{R} -linéaires, c'est à dire que pour tous $z, z' \in \mathbb{C}$, pour tout $\lambda, \mu \in \mathbb{R}$ réels, on a

$$\operatorname{Re}(\lambda z + \mu z') = \lambda \operatorname{Re}(z) + \mu \operatorname{Re}(z')$$

$$\operatorname{Im}(\lambda z + \mu z') = \lambda \operatorname{Im}(z) + \mu \operatorname{Im}(z')$$

Le nombre $\lambda z + \mu z'$ peut être désigné comme une **combinaison linéaire** de z et z' à coefficients réels.

2 Représentation géométrique.

On travaille dans cette partie avec un repère orthonormé du plan $(O, \overrightarrow{i}, \overrightarrow{j})$.

Définition 7.

Soient a et b deux réels.

- 1. Si M est le point du plan de coordonnées (a,b), le nombre a+ib est appelé l'**affixe** de M. Réciproquement, si z=a+ib, le point M de coordonnées (a,b) est l'unique point du plan d'affixe z. On pourra le noter M(z).
- 2. Cette correspondance bijective $z \mapsto M(z)$ entre nombres complexes et points du plan permet d'identifier \mathbb{C} à \mathbb{R}^2 : on parle de **plan complexe**.
- 3. L'affixe d'un vecteur $\overrightarrow{u}(a,b)$ est le nombre complexe a+ib.

Point d'affixe z = a + ib

Vecteur d'affixe z = a + ib

Proposition 8.

Si A a pour affixe z_A et B pour affixe z_B , le vecteur \overrightarrow{AB} a pour affixe $z_B - z_A$.

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs d'affixe respectives z et z', et λ et μ deux réels, le vecteur $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$ a pour affixe $\lambda z + \mu z'$.

4

Somme de deux nombres complexes et parallélogramme

3 Conjugué d'un nombre complexe.

Définition 9.

On appelle **conjugué** d'un nombre complexe z, et on note \overline{z} le nombre

$$\overline{z} := \operatorname{Re}(z) - i \operatorname{Im}(z).$$

Autrement dit,

$$\forall (a,b) \in \mathbb{R} \quad \overline{a+ib} = a-ib.$$

Figure. Soit $z \in \mathbb{C}$. Le point M', d'affixe \overline{z} , est le symétrique par rapport à l'axe des abscisses, du point M d'affixe z.

Proposition 10.

Pour tout $z \in \mathbb{C}$,

$$z + \overline{z} = 2\operatorname{Re}(z)$$
 et $z - \overline{z} = 2i\operatorname{Im}(z)$.

Ceci permet d'obtenir les caractérisations suivantes :

$$z \in \mathbb{R} \iff z = \overline{z}$$
 et $z \in i\mathbb{R} \iff z = -\overline{z}$.

Proposition 11 (Conjugaison et opérations).

Pour tous nombres complexes z et z', on a

a)
$$\overline{\overline{z}} = z$$

c)
$$\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$$

b)
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

a)
$$\overline{\overline{z}} = z$$
 c) $\overline{z \cdot z'} = \overline{z} \cdot \overline{z'}$
b) $\overline{z + z'} = \overline{z} + \overline{z'}$ d) si $z' \neq 0$, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$.

Par conséquent, l'application $z\mapsto \overline{z}$ est \mathbb{R} -linéaire, c'est à dire que pour tous nombres $z,z'\in\mathbb{C}$, et tous <u>réels</u> λ, μ , on a

$$\overline{\lambda z + \mu z'} = \lambda \overline{z}' + \mu \overline{z'}.$$

« Le conjugué de la somme, c'est la somme des conjugués ». Marche avec le produit et le quotient.

Module d'un nombre complexe. 4

Définition 12.

Pour tout nombre complexe z, on appelle **module** de z et on note |z| le nombre réel positif

$$|z| := \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}.$$

Exemple 13.

$$|i| =$$

$$|2 + 3i| =$$

Le module d'un nombre réel a vaut $\sqrt{a^2+0^2}$: c'est sa valeur absolue!

Figure.

- Si M est un point du plan d'affixe z, alors |z| est la longueur du segment [OM].
- Si M et M' sont deux points du plan d'affixes z et z', alors |z-z'| est la distance entre M et M'.

Module.

Distance entre deux points.

Confondons le point et son affixe pour énoncer l'idée importante suivante :

pour $z, z' \in \mathbb{C}$, |z - z'| est la **distance** entre z et z'.

Exemple 14 (Module, cercles et disques).

Représenter les points dont l'affixe z satisfait |z-1|=1 et $|z+1|\leq 2$.

Proposition 15.

Pour tout nombre complexe z,

a)
$$|z| = 0 \iff z = 0$$

a)
$$|z| = 0 \iff z = 0$$
. c) $|\operatorname{Re}(z)| \le |z|$ et $|\operatorname{Im}(z)| \le |z|$.

b)
$$|-z| = |z| = |\overline{z}|$$

b)
$$|-z| = |z| = |\overline{z}|$$
. d) $\operatorname{Re}(z) = |z| \iff z \in \mathbb{R}_+$.

Proposition 16 (Propriétés multiplicatives du module).

Pour tous nombres complexes z et z', on a

$$a) |z|^2 = z \cdot \overline{z}$$

$$b) |z \cdot z'| = |z| \cdot |z'|,$$

c) si
$$z' \neq 0$$
, $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$

$$a) \ |z|^2 = z \cdot \overline{z} \qquad b) \ |z \cdot z'| = |z| \cdot |z'|, \qquad c) \text{ si } z' \neq 0, \quad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \qquad d) \text{ si } z \neq 0, \quad \frac{1}{z} = \frac{\overline{z}}{|z|^2}.$$

« Le module du produit, c'est le produit des modules ». Idem pour le quotient mais... attention à la somme!

Proposition 17 (Inégalité triangulaire).

Pour tous nombres complexes z et z', on a

$$|z+z'| \le |z| + |z'|.$$

Cas d'égalité : Les deux membres sont égaux si et seulement si z=0 ou il existe un nombre réel positif λ tel que $z' = \lambda z$.

$$|z+z'| \le |z| + |z'|$$

Corollaire 18.

1.
$$\forall (z, z') \in \mathbb{C}^2 \quad |z - z'| \le |z| + |z'|$$
.

2.
$$\forall (z, z') \in \mathbb{C}^2 \quad ||z| - |z'|| \le |z - z'|.$$

3. Soit $n \in \mathbb{N}^*$. Pour tous nombres complexes z_1, \dots, z_n ,

$$\left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|.$$

Exercices

6.1 [
$$\Diamond \Diamond \Diamond$$
] Résoudre $4z^2 + 8|z|^2 - 3 = 0$.

[6.2] $[\blacklozenge \diamondsuit \diamondsuit]$ Soient a et b deux nombres complexes non nuls. Montrer que :

$$\left| \frac{a}{|a|^2} - \frac{b}{|b|^2} \right| = \frac{|a-b|}{|a||b|}.$$

6.3
$$[\spadesuit \spadesuit \diamondsuit]$$
 Si $z \in \mathbb{C} \setminus \{1\}$, montrer que :

$$\frac{1+z}{1-z} \in i\mathbb{R} \iff |z| = 1.$$

 $\boxed{\mathbf{6.4}}$ $\boxed{\left(\blacklozenge \diamondsuit \diamondsuit \right)}$ Soient $z_1, z_2, \ldots z_n$ des nombres complexes non nuls de même module. Démontrer que

$$\frac{(z_1+z_2)(z_2+z_3)\cdots(z_{n-1}+z_n)(z_n+z_1)}{z_1z_2\cdots z_n} \in \mathbb{R}.$$

6.5 $[\spadesuit \spadesuit \diamondsuit]$ Soient a, b deux nombres complexes tels que $\overline{a}b \neq 1$ et $c = \frac{a-b}{1-\overline{a}b}$. Montrer que

$$(|c| = 1) \iff (|a| = 1 \text{ ou } |b| = 1).$$

6.6
$$[\blacklozenge \blacklozenge \blacklozenge]$$
 Pour $n \in \mathbb{N}^*$, calculer $R^2 + S^2$ où

$$R = \sum_{0 \le 2k \le n} (-1)^k \binom{n}{2k}$$
 et $S = \sum_{0 \le 2k+1 \le n} (-1)^k \binom{n}{2k+1}$.

6.7
$$[\spadesuit \spadesuit \spadesuit]$$
 Soit $ABCD$ un parallélogramme.

Montrer que
$$AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + DA^2$$
.