7.7

Due griglie G_1 e G_2 metalliche parallele molto estese distanti $d=4\ cm$, tra le quali è applicata una ddp V separando due regioni in cui esiste un campo magnetico $B=0.8\ T$ uniforme, ortogonale al foglio.

In un punto A_1 viene iniettato un protone con $vel = v_1$ che a $t_0 = 0$ attraversa la griglia perpendicolarmente.

Dopo un tempo $t = 1.22 * 10^{-7} s$ il protone riattraversa G_1 nello stesso verso in un punto A_2 distante h = 5.2 cm da A_1 .

Descrivere la traiettoria percorsa dal protone A_1 e A_2 e calcolare la d.d.p. V applicata tra le griglie e la velocità v_1 e v_2 elle 2 regioni in cui c'è campo.

Formule utilizzate

Soluzione punto a

$$\begin{split} &\Delta = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 \\ &d = v_m t \\ &v_m = \frac{v_2 + v_1}{m} \\ &h = A_1 A_2 = 2 (r_2 - r_1) \\ &\Delta E_k = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 = q \Delta v \\ &\Delta V = \frac{\frac{1}{2} m (v_2^2 - v_1^2)}{q} \end{split}$$

Soluzione punto b