AC1 * MONITOR * U880 * (10/88)

Titelausschrift

Der Monitor 10/88 belegt 4kB Speicher im Adressbereich 0000 - 0FFF H.

Inbetriebnahme AC 1:

🛛

Monitor auf 4 K EPROM programmieren. Das Betriebsystem für Computer AC 1 stellt weitgehend eine Entwicklung des SCCH dar, modifiziert von J. Beisler, Leipzig. Wichtige Routinen, RST - Befehle und Sprungverteiler sind kompatibel zum Monitor V.3.1 von Heyder. Die im Funkamateur veröffentlichten AC 1 - Programme bleiben somit lauffähig.

Funktionen Monitor V.10/88:

Der SCCH - Monitor umfasst das Betriebsystem und einen eingebauten Maschinenspache - Monitor (Debugger). Das Betriebssystem (Software) dient der Verbindung der Computerhardware mit dem Nutzerprogramm (Anwendersoftware). Es realisiert die Eingabe/Ausgabe (Tastatur, Bildschirm, Kassetteninterface). Die Verwaltung des Speichers ist erweiterungsfähig. Die nutzbaren Betriebsroutinen und die Belegung des Arbeitsspeichers sind in Tabellen im Anhang zu entnehmen.

Einschalten:

Nach dem Einschalten des Computers übernimmt der SCCH - Monitor die Initialisierung des Systems und meldet sich mit der Überschriftszeile und zwei Zeilen weiter mit dem Promptsymbol (Doppelkreuz), dahinter blinkt der Kursor. Das Betriebssystem befindet sich jetzt im Maschinensprache - Monitor, es lassen sich Befehle des Debuggers aufrufen, Anwenderprogramme laden oder in eine andere Betriebssystemebene springen (Basicinterpreter, Programmpaket X).

Tastatur:

Neben der Eingabe von Zeichen und Zahlen erfolgt in Verbindung mit der Control - Taste die Eingabe von Steuerzeichen. Diese sind notwendig, um z. B. fehlerhafte Eingaben zu korrigieren (Zeichen-überschreiben, einfügen, löschen u.s.w.).

STEUER-/EDITIER-/KURSORTASTEN: (Taste Control und Taste Buchstaben gleichzeitig drücken!)

CODE	TASTE	FUNKTIONEN
01 H	Α	Home, Kursor oben links
02 H	В	Bildschirm ab Kursor löschen
03 H	С	Zeile ab Kursorposition löschen
04 H	D	Delete; 1 Zeichen löschen, Zeile rückt nach links
05 H	E	Insert;Space einfügen, Zeile rückt nach rechts
06 H	F	Kursor an den Anfang der Zeile
07 H	G	Bel; akustisches Signal
08 H	Н	Kursor nach links
09 H	Į.	Kursor nach rechts
0A H	J	Kursor nach unten
0B H	K	Kursor nach oben
0C H	L	Bildschirm löschen, Kursor Home
0D H	М	CR;Kursor an Anfang nächster Zeile;Enter
0E H	N	Kursor direkt positionieren (s. unten)
0F H	0	Tabulator 8 Spalten
10 H	P ¹	Einzelzeichen-normal
11 H	Q ¹	Umschaltung Einzelzeichen-Invers
18 H	X ¹	Drucker ein (V 24 – Schnittstelle)
19 H	Y	Ein-/Ausgabe normal Drucker aus
1A H	Z	Umschaltung Zeichensatz SCCH/ACC (Erweiterung 4k Zeichengenerator)
5F H	DEL/ RUBOUT	Kursor nach links und Zeichen löschen

Ctrl. + N: Direkte Kursorpositionierung.

Nach Ctrl.+ N steht Kursor Home. Mit den Zifferntasten dezimale Bildschirmposition angeben:

- 1.-> Zeilenposition (00 bis 31)
- 2.-> Spaltenposition (00 bis 63)

Der Kursor kann an jede beliebige Bildschirmposition gebracht werden. Dargestellte Zeichen werden dabei nicht verändert (der Kursor blinkt abwechelnd zum Zeichen). Fehlerhafte Zeichen können durch überschreiben mit anderen Zeichen, oder mit DEL/Rubout korrigiert werden. Um den Kursor um mehrere Bildschirmpositionen zu bewegen oder Zeichen mehrfach zu schreiben, braucht die entsprechende Taste nur gedrückt zu bleiben. Das Zeichen wird mit erhöhtem Tempo ständig wiederholt (Repetierfunktion). Wird der Bildbereich nach oben verlassen, erscheint der Kursor an der gleichen Stelle am unteren Bildrand.

BREAK - Taste / NMI:

Die entprellte NMI-Taste ist mit dem NMI-Eingang der CPU zu verbinden. Im Monitor dient diese Taste zum Programmabbruch mit Rücksprung in die Maschinensprache-Monitorebene. Registeranzeige mit R (CR), Programmfortsetzung mit G (CR) möglich.

¹ Diese CTRL-Codes sind in der Originaldoku nicht erwähnt, die entsprechenden Funktionalitäten sind im 10/88 jedoch (wie auch im Monitor V.8) vorhanden!

Befehlsroutinen des Monitors

Befehle können eingegeben werden, sobald sich der Monitor mit seinem Promptsymbol (Doppelkreuz) meldet. Dabei hat die Befehlszeile folgende Form:

X aaaa bbbb cccc

- I X ist das entsprechende Zeichen, mit dem das Kommando abgekürzt wird.
- I Hinter dem Kommandozeichen können bis zu 3 der max. 4 stelligen Argumente folgen (hexadezimal).
- I Hinter jedem Argument muss mindestens 1 Leerzeichen stehen.
- Führende Nullen können entfallen.
- I Werden weniger Argumente angegeben, als zu dem Kommando erforderlich, wird für die Fehlenden, der Wert 0 gebildet.
- I Die Angabe des Doppelpunktes hinter dem Kommandozeichen bewirkt, dass die Argumente des vorhergehenden Kommandos verwendet werden.
- I Die Befehlszeile wird mit Taste 'ENTER' bzw. 'CR' vom Bildschirm übernommen, analysiert und ausgeführt.
- I Wird ein Befehl nicht verstanden, erfolgt Ausschrift '?'.
- I Die Übernahme der kompletten Befehlszeile vom Bildschirm in den Computer hat den Vorteil, dass Korrekturen jederzeit noch möglich sind oder ein Befehl mehrfach ausgeführt wird, indem der Kursor erneut in die Befehlszeile positioniert wird (beliebige Position hinter dem Doppelkreuz).

DEBUGGER:

Der Debugger dient insbesondere der Testung, Fehlersuche, Entwicklung von Maschinenprogrammen. Weiterhin sind Kommandos zur Ein / Ausgabesteuerung (Kassette, Drucker) vorhanden. Die Kommandozeichen sind mit den geforderten Argumenten zu übergeben. In Klammern stehende Argumente sind nicht unbedingt erforderlich.

Tabelle 1 Maschinensprache - Monitor Debugger

Befehlssatz:

DCIC	11133atz.	
Α	Arithmetik	Addition, Subtraktion, Displ., Dezimal
b	BASIC	Start des Basicinterpreter V.3.2 (kalt)
В	Breakpoint	Unterbrechung setzen, nur RAM
С	Compare	Vergleich von 2 Speicherbereichen
D	Dump	Hexdump und ASCII-Darstellung
Е	Einzelschritt	Befehl abarbeiten und Register anzeigen
F	Find	Suchen nach Bytes oder Zeichenkette
G	Go	Sprung in Programm ab Adresse PC
Н	I/O	Zuordnung der Ein- und Ausgabekanäle
I	Init	RSA löschen, SP initialisieren
J	Jump	Sprung in Programm ab Adresse
K	Kassette save	Speichert Programm oder Datei auf Kassette
L	Load	Lädt ein Programm oder Datei von Kassette
N	CRC	Checksumme berechnen
0	RAM-Test	Testet RAM ab Adresse
р	Pattern	Speicher löschen von 1900-FFFF, FF einschreiben
Р	Pattern	Füllt Speicher mit angebenem Datenbyte
r	BASIC	Start des Basicinterpreter V.3.2 (warm)
R	Register	Ausgabe der RSA - Register (Modifikation)
U	In	Lesen auf Portadresse
Т	Transfer	Kopiert Speicherbereich in anderen Speicherbereich
W	Out	Schreiben auf Portadresse
Χ	Exit	Sprung in Betriebssystem Programmpaket X
?	Help	Liste der verfügbaren Kommandos
=	Speichern	Ablegen Bildschirm nach A000 H - DFFF H
/	Display	Ablage zurück auf Bildschirm
::	Arg.	Argument Anzeige
Z	Verify	Vergleich einer Bandaufzeichnung
		1

A aaaa bbbb Arithmetik

Es werden berechnet: Sprungabstand (für relative Sprünge), Summe, Differenz (aaaa zu bbbb), dezimaler Wert.

b BASIC

Kaltstart des Basic - Interpreter V.3.2 (Modul 1)

B aaaa Breakpoint

Setzen eines Softwarehaltepunktes auf Adresse aaaa. Der Breakpoint wird bei J - Befehl geladen (RST 38 H, 1 Byte – Befehl). Mit Erreichen des Breakpoint eines Programmlaufes wird das Originalbyte wieder hergestellt und der Monitor springt in den Einzelschrittmodus (siehe 'E'). Jeder Breakpoint wird nur einmal aktiviert, erforderlichenfalls ist der gleiche Breakpoint neu einzugeben.

C aaaa bbbb cccc Compare

Vergleicht die Speicherbereiche ab aaaa und bbbb mit der Länge cccc. Ungleichheiten werden mit Adress- und Datenangabe durch Taste "CR' fortlaufend angezeigt. Jede andere Taste bewirkt vorzeitigen Abbruch.

D aaaa	Dump normal
D aaaa eeee	Dump drucken

Der Adressbereich von Adresse aaaa wird angezeigt. Angezeigt wird Adresse, ASCII 'A', oder Hex 'H' Eingabe, 8 Datenbytes, ASCII - Interpretation. Das Bild lässt sich mit 'CR' rollen. Mit den Kursortasten kann sowohl vorwärts als auch rückwärts gerollt werden. Datenbytes können überschrieben werden, dazu wird der Kursor in die entsprechende Zeile positioniert und die erforderlichen Datenbyte überschrieben. Mit 'CTRL.+ A' wird zwischen ASCII- und Hex - Eingabe umgeschalten. Leerstellen zwischen Datenbytes werden automatisch übersprungen. Rückkehr in Monitor CTRL.+C.

E aaaa ; E: Einzelschritt

Befehlabarbeitung eines Anwenderprogramms ab Adresse aaaa oder ab PC (E:) im Schrittmodus. Die Prozessor - Register werden automatisch mit Werten der RSA geladen, welche bei Bedarf vorher mit Befehl R gesetzt und angezeigt werden können. Der Stackpointer ist vorher unbedingt mit 'R' oder 'l' auf definierten Wert zu bringen! Angezeigt werden bei ausgeführten Befehl: Adresse, Befehl, 4 Hauptregister, Flag. In der nächsten Bildzeile wird die Adresse und Bytes des nachfolgenden Befehls bereits angezeigt Befehlausführung jeweils mit Taste 'CR'. Gesamt werden 32 Befehlszeilen gleichzeitig auf den Bildschirm dargestellt, womit sich Programmfehler gut zurückverfolgen lassen. Weitere Funktionen:

Taste 'R' Sprung in den Befehl 'R'. Es kann der gesamte Registersatz

dargestellt und neu gesetzt werden (siehe 'R').

Taste 'B' Anzeige des alten Breakpoint, ein neuer Breakpoint kann eingegeben

werden. Somit können z.B. UP - Aufrufe übersprungen werden.

Taste 'G' Fortsetzung des Programmlaufs in Echtzeit bis zum Erreichen eines

neuen Breakpoint.

Taste 'Q' Einzelschrittmodus beenden, Rückkehr in Monitor.

Die CPU - Register werden in RSA zwischengespeichert. Der Einzelschritt kann jederzeit mit 'E:' an gleicher Stelle fortgesetzt werden. Folgende Befehle dürfen nicht im zu testenden Programm stehen: IM0; IM1; DI; EI; LD I,A.

Ein Breakpoint kann nur im RAM gesetzt werden, Schrittmodus ist im RAM/ROM - Bereich möglich. Der Kanal 0 der CTC darf ebenfalls vom Programm nicht verändert werden.

F aaaa eeee xx xx xx Finding String	
-------------------------------------	--

Der Speicher wird von Adresse aaaa bis eeee nach der Bytefolge xx xx xx (Länge beliebig) durchsucht. Suche nach ASCII-Zeichen ist ebenfalls möglich, diesen ist ein Hochkomma vorzusetzen. Wird für xx ein J = Joker eingesetzt, wird jedes Byte genommen. Es ist gestattet ASCII, HEX und Joker gemeinsam zu verwenden.

Seite - 6 -

G Go On

Start eines Programms ab Adresse PC, Siehe Befehl 'J'.

H I/O – Byte

Angezeigt wird das Ein/Ausgabebyte, welches die Zuordnung der Ein- und Ausgabekanäle darstellt. Normal (nach Einschalten auch Taste BREAK/NMI ist der Wert 11, somit Eingabe Tastatur und Ausgabe Bildschirm. Bit – Zuordnung:

bit 0 bit 4 Bildschirm Tastatur bit 1 V 24 (RS 232c) bit 5 V 24 (RS 232c) bit 2 Reserve bit 6 Reserve bit 3 User bit 7 User

Bit 0 - 3 sind für Eingabe, bit 4 - 7 für Ausgabe zuständig. Zur Eingabe ist max. 1 Kanal zugelassen, Ausgabe beliebige Anzahl. Nach dem angezeigten kann ein neuer Wert eingegeben werden, Übernahme mit Taste 'CR'. Nur Taste 'CR' behält alten Wert.

I Initialize

Löschen der RSA (RSA = Zwischenspeicher der CPU - Register für Anwenderprogramme. Die RSA wird genutzt bei Befehlen: B; E; G; J; R). Der Anwenderstack wird initialisiert, Adresse wird angezeigt (SP xxxx).

J aaaa Jump

Sprung in Anwenderprogramm ab Adresse aaaa. Die CPU - Register werden mit den Werten der RSA geladen. Ein zuvor eingegebener Breakpoint wird aktiviert. Wird im Programmlauf ein Breakpoint erreicht, erfolgt Registeranzeige und der weitere Ablauf im Einzelschritt (siehe 'E').

K aaaa bbbb ("name")

K aaaa bbbb * ("Name")

Kassette bespielen Programm (Turbo)

Kassette bespielen Datei (Turbo)

Abspeichern eines Files von Adresse aaaa bis bbbb auf Kassette. Ein Name kann bis zu 16 Zeichen lang sein. Das Bandgerät ist mit akustischen Signal zu starten, bei weiteren ak. Signal wieder abzuschalten (Stellung Aufnahme). Bei Einsatz der elektronischen Start/Stop - Schaltung erfolgt der Start automatisch (siehe Schaltbild). Am Ende wird die CRC-Prüfsumme berechnet und ausgeschrieben. Turbo-Tape lädt 1 kByte in ca.3 sec. bbbb bis max.FFCF zulässig. Autostart und Interrupt siehe 'L'.

L ("Name")	Laden Programm (Turbo)
L *("Name")	Laden Datei (Turbo)

Der Computer lädt ein Programm oder Datei in den Speicher. Ein zuverlässiges Suchsystem ist Vorhanden. Ohne Namenangabe wird das nächste Programm geladen ('L'CR)). Mit Namensangabe wird das Programm gleichen Namens geladen, andere Programme werden aufgelistet (Found name). Der Name kann beliebig gekürzt werden, wenn Verwechslungen ausgegeschlossen sind, (z.B.'L'"BA (CR) für Laden BASIC - INTERPR.) Von jeden ladenden bzw. gefundenen Programm werden angezeigt:

Name, Anfangsadresse, Endadresse, Filetyp (siehe Anhang). Nach dem Laden werden zusätzlich Ladefehler angezeigt (ERROR Blockendadressen) und Laden nach defekten RAM - Speicher (ERROR RAM Blockadressen). Werden mehr als 9 Blöcke fehlerhaft gelesen, erfolgt vorzeitiger Abbruch. Laden kann mit Taste BREAK/NMI abgebrochenwerden. Die Adressen werden nach arg. 1+2 übergeben, mit 'N:' kann die CRC - Prüfsumme angezeigt werden.

<u>Autostart:</u> Nach dem Laden überprüft der Computer das Programm auf vorhandene Autostart - Sequenz. Ist diese vorhanden, erfolgt der Autostart auf entsprechender Adresse. Die Autostartsequenz kann vor jedes Programm gesetzt werden (5 Byte):

53 43 48 xx xx; xx xx = Startadresse.

Interrupt: Der Interrupt wird während Save ('K') und Load ('L') gesperrt. Somit brauchen Interruptprogramme (z.B. Uhr) nicht abgeschaltet werden. Akustische Signale und Start / Stop siehe 'K'.

Seite - 7 -

N aaaa bbbb CRC - Prüfsumme

Prüfsummenberechnung über Speicher von Adresse aaaa bis bbbb entsprechend dem CRC (SDLC) – Standard.

O aaaa RAM – Test

Ermitteln der höchsten verfügbaren RAM - Speicher – Adresse. aaaa entspricht dem RAM - Anfang (min.1000). Der Test verändert den RAM - Inhalt nicht.

p Pattern

RAM wird gelöscht und mit FF beschrieben.

P aaaa bbbb cc Pattern

Speicherbereich von Adresse aaaa bis bbbb mit Datenbyte cc füllen.

r BASIC (Warmstart)

Warmstart des BASIC - Interpreter. Es muss breits ein Kaltstart ('b') erfolgt sein und man muss über 'BYE' in die Monitorebene zurückgesprungen sein.

R (aa) Register

Anzeige und ändern der CPU - Register (RSA). 'R'CR erfolgt Anzeige des gesamten Registersatzes, des Breakpoint, Breakpointsequenz sowie gesetzte Flags anhand ihres Symbols. Zum Ändern einzelner Register ist für aa der Name des jeweiligen Registerpaares anzugeben: HL, DE, BC, AF, HL, DE, BC, AF, SP, IX, IY, PC. Der alte Inhalt wird angezeigt, gefolgt vom Promtsymbol. Ein neuer Wert ist anzugeben, Übernahme mit 'CR'.

T aaaa bbbb cccc TRANSFER

Speicherbereich verschieben von Adresse aaaa nach bbbb. cccc ist die Länge. Überschneidung ist zulässig.

U xx Port lesen

Lesen auf, Portadresse xx. Ausgabe des gelesenen Bytes auf Bildschirm. Taste: Neu einlesen und Ausgabe. Mit 'Q' zurück in Monitor.

W xx aa Port ausgeben

Auf Portadresse xx wird Byte aa ausgegeben (siehe Anhang).

X Exit

Sprung in weiteres Betriebssystem X. Es wird Konfiguration Modul 1 eingestellt und nach Adresse E000 gesprungen (näheres siehe Bauanleitung Modul 1).

Z ("Name") Verify (Turbo)

Vergleich einer Bandaufzeichnung mit Speicherbereich, um Bandfehler festzustellen. Bei Verify Datei ist zusätzlich Stern (*) vor Name.

? Help

Der Speicherbereich wird nach Startkommandos durchsucht und diese aufgelistet. Neben den Startbefehlen des Debuggers werden Startbefehle geladener Anwenderprogramme angezeigt.

Startroutinen des Monitors:

Diese werden anhand eines Kodemusters in Adressbereich 0400 - FFFF gesucht. Jede Routine hat die Form: 00 09 xx Programm C9.

xx ist der ASCII - Code des Start - Kennbuchstaben. Eigene Programme brauchen nur in diesen Rahmen gepackt zu werden und können über Kennbuchstaben (Zeichen/Ziffer) gestartet werden.

:: Argumente

Mit Doppelpunkt, Doppelpunkt werden die zuletzt übernommenen Argumente angezeigt.

= Bildschirminhalt ablegen

Nach Eingabe des Gleichheitszeichen (=) blinkt der Kursor rechts oben, jetzt kann eine Ziffer von 0 bis 7 eingegeben werden. Mit der Ziffer 0 - 7 wird der Bildschirminhalt auf Adresse A000 - DFFF mit Seitenummer abgelegt.

Bildschirmkopie zurückschreiben

Mit Schrägstrich (/) und Seitenangabe (z.B. /0 - /7) wird der abgelegte Bilschirminhalt wieder dargestellt. Seitenweises Umblättern mit den Kursortasten bzw. CTRL.+ K/J.

Turbo - Tape

Es werden 4 Filetypen unterschieden:

P Lauffähiges Maschinenprogramm

B Basicprogramm

D Maschinendatei

F Datenfeld (BASIC)

Die Filetypen B und F können nur mit BASIC - Interpreter V.3.2 geladen werden. Im Monitor erfolgt lediglich Anzeige des Namens, Filetyp, Anfangs- und Endadresse.

Ein / Ausgabe

Es stehen jeweils 4 Möglichkeiten zur Verfügung:

Eingabe: Tastatur, V 24 (RS 232c), Reserve, User Ausgabe: Bildschirm, V 24 (RS 232c), Reserve, User

Die Ein/Ausgabe - Kanäle werden über das I/O - Byte adressiert (siehe Befehl H). Nach Einschalten des Computers wird das Ein/Ausgabebyte (Adresse 1821 H) auf 11 gesetzt, somit Tastatureingabe und Bildschirmausgabe.

Setzen der Ein/Ausgabe:

- I Debuggerbefehl 'H' für beliebige Zuordnungen
- I Taste Control + Taste 'X' schaltet zusätzlich Ausgabe über V 24 ein
- I Taste Control + Taste 'Y' schaltet Ein/Ausgabe auf Standard (11)
- I Taste BREAK/NMI setzt Ein/Ausgabe auf Standard (11)

Die Ausgabe verarbeitet Datenbytes 00 - 7F H, womit der ASCII-Code (0 - 7F) verarbeitet wird, bit 7 wird dabei auf 0 gesetzt Die Ausgabe lässt sich auf 00 - FF H umstellen, indem bit 7 des V 24 - Kontrollregister gesetzt wird.

Adressen:

Eingabekanal 80 (dez. 8) Ausgabekanal 10 (dez.16) I/O - Byte 1821 V 24 Kontrollregister 1820 User – Eingabe 18F0 User – Ausgabe 18F3 V 24 - Eingabe UP 01D6 V 24 - Ausgabe UP 0FE8

V 24 - Schnittstelle (RS 232c)

Die standardisierte Schnittstelle ermöglicht den Anschluss vonDrucker, Modem u.a. Peripheriegeräten und die Kopplung mit weiteren Computern. Die Schnittstelle arbeitet mit TTL - Pegel zum Anschluss von Peripherie wird in der Regel eine Pegelanpassung (-12V, +12V) benötigt (siehe Schaltbild). V 24 ist eine serielle Schnittstelle. Zur Kopplung können wahlweise 3 Leitungen (3 Draht - Handshake) oder 5 Leitungen (X Draht - Handshake) eingesetzt werden. Letzteres ist zur Kopplung mit langsamer Peripherie (Drucker) notwendig. Zur Kopplung von 2 Computern genügt der schnelle 3 - Draht Handshake.

Über das Kontrollregister werden die Standardwerte der Schnittstelle eingestellt (siehe Tabelle). Nach Einschalten des Computers sind folgende Werte voreingestellt:

- I Adresse 02
- I 9600 Baud
- I 1 Stop-Bit
- I ohne Parität
- I X-Draht-Handshake
- I 8 Datenbit (Ausgabebit 7 auf 0 gesetzt).

Somit kann übliche Pripherie (Drucker) unmittelbar betrieben werden z.B. Schreibmaschine S 6006.

V 24 - Kontrollregister (Adr.1820 H):

V 24 - Kontrollregister (Adr. 182	bit7	bit6	bit5	bit4	bit3	bit2	bit 1	bit 0	dez.
Baudrate									
300						1	1	1	7
600						1	1	0	6
1200						1	0	1	5
2400						1	0	0	4
4800						0	1	1	3
9600						0	1	0	2
9200						0	0	1	1
Stop - Bits (Ausgabe)									
1					0				0
2					1				8
Parität (Ausgabe)									
8 Datenbit, ohne P.			0	0					0
7 Datenbit, + P.ungerade			0	1					16
7 Datenbit, + P.gerade			1	0					32
Handshake (Ausgabe)									
3 – Draht		1							64
X - Draht		0							0
Ausgabe									
8 Datenbit	1								128
7 Datenbit bit 0-6 + bit 7-0	0								0

Der Eingabekanal arbeitet ohne Paritätskennung, eine Einstellung der Stop - Bits und Handshake ist nicht notwendig.

Hardware:

Die serielle Schnittstelle verwendet 4 Kanäle (A0 - A3) der PIO 2. Die PIO 2 ist zu erweitern, Adressierung über IOSEL 2. Die PIO hat gegenüber einer SIO den Vorteil des geringeren Aufwandes. Die Baudraten werden softwaremäßig getaktet und sehr genau eingehalten (+ - 0%).

PIO 2	Signal		Buchse
A0	Eingang Daten	RxD	1
A1	Ausgang Daten	TxD	3
A2	Eingang empfangsbereit	CTS	4
А3	Ausgang sendebereit	DSR	5

Die Leitungen werden auf eine 5 - pol. Diodenbuchse gelegt. 2 Computer AC 1 können über ein Überspielkabel gekoppelt werden. Die Kopplung mit weiteren Computern (z.B. Comodore 64, +4, KC 85) erfolgt entsprechend der Angaben in den Handbüchern. Es können problemlos Daten ausgetauscht werden.

Serielle IEC - Schnittstelle

Es handelt sich um die standardisierte Comodore - Schnittstelle. Ermöglicht wird somit die Verbindung der Comodore-Peripherie, inbesondere Diskettenlaufwerk Typ 1541, 1570, 1571 und Comodore - Drucker. Im Monitor sind keine Routinen zur Unterstützung dieser Schnittstelle enthalten.

Hardware:

PIO 2	Signal	Buchse (6-pin)
B 7	DATA IN	6
B 6	CLK IN	1
B 5	DATA OUT	5
B 4	CLK OUT	4
В 3	ATN	3

EPROM - Programmer 2708 – 27512

Der EPROMER arbeitet mit PIO 2 Port A + B. Zu beachten ist, das PIO 2 mehrfach genutzt wird (V 24, IEC). Vor Anschluss des Programmers V.1.1/2 ist die Peripherie zu trennen.

Port A der PIO 2 ist auf Modus 2 zu initialisieren. Epromer v.1.1/2 entsprechend erweitern. (Epromer V.1.3 ist bereits erweitert!) :

LD A,BFh 3E BF

OUT PIO2/A D3 0A

Joystick

Es können 1 oder 2 Stück angeschlossen werden, (siehe Schaltbild). Die Abfrage der Joysticks kann im Anwenderprogrammen über UP 'Joy' erfolgen, siehe UP - Verzeichnis.

Weitere Betriebssysteme

Die weiteren Betriebssysteme werden fest auf EPROM installiert, entsprechend Bauanleitung Modul 1. Welchen Betriebssystem die höchste Priorität zusteht, kann der Anwender frei festlegen. Um in das jeweilige Betriebssystem zu gelangen, gibt es verschiedene Möglichkeiten:

- I Starten des BASIC Interpreter V.3.2 :'b' (CR) (Rückkehr in Monitor mit BYE)
- Starten des Programmpaket X
 - 1. 'X' (CR)
 - 2. Taste 'X' drücken und RESET betätigen.
 - 3. Taste 'X' während des Einschaltens des Computers drücken

Betriebssystem Monitor SCCH

Ablauf nach Einschalten des Computers:

- I Interrupt gesperrt
- I SP initialisiert
- I Initialisierung der Peripherie (PIO/CTC)
- I Sprungtabelle für RST, NMI in den RAM übertragen
- Ein/Ausgabe Byte, V24 Kontrollregister in den RAM übertragen
- I Interruptregister wird gesetzt
- I Abfrage Tastatur auf gedrückter Taste 'X'

Taste 'X' gedrückt: Konfigurationsregister für Modul 1 einstellen,

Sprung nach E000 H.

sonst: Bildschirm löschen und Überschrift Tastaturschleife/Warten auf Eingabe Debugger/Monitor

Betriebssystem, Routinen, Unterprogramme

Adresse	Funktion	verwendete Register
8000	Eingabekanal, normal Tastatur	(A)
0010	Ausgabekanal, normal Bildschirm	(A)
0018	Zeichenkettenausgabe bis incl. des Byte, wo bit 7 gesetzt	
0033	Ausgabe über Bildschirm	
0038	Breakpoint	
0066	NMI-Befehl, Programmunterbrechung	
00A5	UP 'Eingabekanal'	(A)
011D	UP 'MS 30', Zeitschleife 30 ms	
0118	UP 'Inline', liest Zeile von Bildschirm ein (Adresse in 181A)	
0146	UP-Routine zu InHex	
0172	UP 'InHex'wandelt eine 4-stellige Zahl im ASCII-Code in Hexzahl um. DE - Zeiger auf Zahl (Bildschirm), Ergebnis in HL	(DE,HL)
0183	UP 'Outhex', gibt A als 2-stellige Hexzahl auf Schirm aus	(A)
019A	UP 'Out HL', gibt HL-Register als Hexzahl auf Schirm aus	(HL)
01A5	UP, CPU-Register ausräumen nach RSA	
01BC	UP, CPU-Register einräumen von RSA	
01D6	V 24-Eingabe	(A)
01DE	Warteschleife Kommandozeicheneingabe	
0220	Tabelle RST, NMI, Hilfsregister, V 24, I/O	
0240	Einsprung bei Programmfehlern	
026B	UP 'ERROR', schreibt Zeichenkette 'ERROR'	
0272	UP 'akustisches Signal'	
0287	UP 'Ton', Reg, B = Tonlänge, C = Tonhöhe	(BC)
0297	UP 'Taste', testet Tastaturstatus, kehrt bei gedrückter Taste nach 18 ms mit dem Kode zum Akku zurück, keine Taste - Rückkehr mit gesetzten Z - Flag und A = 0 Code steht auch in 1822 H	(A)
02F8	Interruptvektor CTC	
04CA	Register mit Argumenten laden, aaaa = HL, bbbb = DE, cccc = BC	
	<u> </u>	

Sprungverteiler

07E8	V 24		Ausgabe
07EB	MS 30	Zeitschleife 30 ms	(011D)
07EE	OUTHEX	gibt den Akku als zweistellige Hexzahl auf dem Schirm aus	(0183)
07F1	OUT HL	gibt das HL-Register als vierstellige Hexzahl auf dem Schirm aus	(019A)
07F4	INLINE	liest eine Zeile, die mit cr abgeschlossen wird, auf dem Schirm ein und legt den Anfang der Zeile in den Zellen 181A181B ab	(0128)
07F7	INHEX	wandelt eine maximal vierstellige in ASCII-Zeichen angegebene Zahl ab (DE) abwärts in deren hexadezimalen Wert um, der dann in HL steht	(0172)
07FA	TASTE	testet den Tastaturstatus, kehrt bei gedrückter, Taste mit dem nach 30 ms anliegenden Kode zurück (wartet nicht auf das Loslassen der Taste!); wenn keine Taste gedrückt, erfolgt sofortige Rückkehr mit gesetztem Zero-Flag	(0297)
07FD	GETCO	Sprung zur Monitoreingabeschleife, der Monitorstack wird neu initialisiert	(01DE)
0AD8		Tabelle Peripherie	
0B90		UP 'Zeitschleife 18 ms' zur Tastaturentprellung	
0EB4		UP 'Joy'. Abfrage Joystick 1, keine Taste = Z – Flag gesetzt und A = 0, oben = bit 0, unten = bit 1, links = bit 2, rechts = bit 3, Feuerknopf = bit 4 vom Akku gesetzt.	(A)

Die dunkel hinterlegten Adressen entsprechen den originalen Sprungverteileradressen des 3.1er Monitors.

Speicherbelegung (Mamory Map)

0000	Dateiahaayatana		
0000	Betriebssystem Bilde chirmon sich or		
1000	Bildschirmspeicher		
1800	Zwischenspeicher Kursor		
1802	Sprungtabelle RST 8 H		
1805	Sprungtabelle RST 10 H		
1808	Sprungtabelle RST 18 H		
180B	Sprungtabelle RST 20 H		
18DE	Sprungtabelle RST 28 H		
1811	Sprungtabelle RST 30 H		
1814	Sprungtabelle RST 38 H		
1817	Sprungtabelle NMI		
181A	Zwischenspeicher 'Inline'		
181C	Warmstartcode		
1820	Kommandocode V 24		
1821	Ein/Ausgabebyte		
1822	Tastencode der zuletzt gedrückten Taste		
1824	Hilfsregister Repetierfuktion Tastatur		
1825	Hilfsregister Kursorpositionierung (CTRL.+ N)		
1856	Stack		
1857	Hilfsregister UP 'INLINE'		
185B	Zwischenspeicher Argument 1		
185D	Zwischenspeicher Argument 2		
185F	Zwischenspeicher Argument 3		
1861	RSA: AF', BC',DE',HL'		
1869	RSA : AF, BC, DE, HL		
1871	RSA: IX, IY, PC, SP		
1879	RSA : BP		
187B	RSA : Breakpointsequenz		
187E	Speicher Save/Load Turbo – Tape		
18D6	freier RAM		
18F0	User Eingaberoutine		
18F3	User Ausgaberoutine		
1900	Anwenderspeicher bis FFFF		
2000	Modul 1 : Basicinterpreter		
6000	Arbeitsspeicher Basicinterpreter		
60F7	Anfang Basic RAM		
C000	Modul 1 : ROM - Bank 1 und 2		
E000	Betriebssystem Programmpaket X		
FFFF	RAM-Ende		
•			

Peripherie

00	CTC - Kanal 0 - 3
04	PIO 1
08	PIO 2
14	Modul 1; Konfigurationsregister
15	Modul 3; RAM - Disk / Bank

Belegung PIO 1/B (D17)

Kanal	Belegung
В0	Ton – Ausgang
B1	Joystick 1 gem.A
B2	Grafiktaste
В3	Bildschirmmode
B4	frei
B5	Start / Stop – Schaltung
B6	TB - Interface – Ausgang
B7	TB - Interface – Eingang

Hinweis:

Einige PIO-Kanäle werden vom Epromer doppelt mitbenutzt. Epromer V 1.1/2 sollte daher steckbar sein und nur bei Bedarf angeschlossen werden.

Einbau der Grafiktaste (nur Originaltastatur)

- Ø Der einpolige rastende Schalter kommt an PIO 1/B2 und Masse.
- Von PIO 1/B2 ein R = 330 Ohm und LED VQA 13 nach 5P anschließen. Die LED leuchtet bei eingeschalteter Grafiktastatur.
- Ø Änderung im Monitor notwendig: Adresse 02A9: Datenbyte FF in 21 ändern (EPROM kann überprogrammiert werden)

Super-Tape

Super-Tape ermöglicht, Programme im Super-Tape-Format zu saven. Geladen werden Supertape - Aufzeichnungen normal mit der Funktion 'L' des Monitors bzw. 'CLOAD'des Basicinterpreters. Zum Laden wird Supertape nicht mehr benötigt!

Das Supertape - Format verfügt über folgende Eigenschaften:

- I Titelbild: Kurz nach Anzeige des Programmnamens erscheint ein Titelbild, indem sich z.B. Programm und Autor vorstellen können. Nach dem Titelbild wird das weitere Programm geladen.
- I Streifen: In den unteren 4 Bildzeilen erscheint ein bewegtes Muster, welches eine optische Kontrolle des Ladevorgangs ermöglicht.
- I Autostart: Nach dem Laden erfolgt Autostart des Programms.

Start von Super - Tape

Laden Sie das Programm, welches Sie in Super - Tape - Format saven wollen. Falls Sie mit Titelbild arbeiten, ist dieses zu gestalten. Möglich sind: Von Hand, über ein kurzes Basic - Programm oder über grafisches Mal/Zeichenprogramm. Das Titelbild ist vom Bildschirm in den Bildspeicher von Super-Tape zu transferieren:

z.B.:'T1000 E800 800 '(CR)

Starten Sie Super - Tape ('x'(CR)). Jetzt werden folgende Eingaben abgefragt:

Programmname	(bis 16 Zeichen möglich)
Anfangsadresse	Anfangadresse des Programms
Endadresse	Endadresse des Programms
Adr.Hilfslader	Adresse für Hilfslader möglichst 200 H vor Anfangsadresse. Wenn dies nicht geht (ROM-Ber./belegter RAM), in beliebigen freien Bereich von 2,2 kByte.
Startadresse	Startadresse des Programms für Autostart
Adr.BREAK/NMI	Damit wird die Break-Taste automatisch neu belegt
Adr.RESET	Wird mit 'CR' übergangen
AC 1 /LLC 2	Es lassen sich Supertape-Aufnahmen für AC 1 und LLC 2 herstellen, unabhängig von Ihren Computertyp (die Programme müssen natürlich auf den jeweiligen Computer laufen!)
Titelbild J/N	Supertape ist auch ohne Titelbild
Start Save	Kassette starten (Aufn.) und CR drücken
Wiederholung J/N	Mit Wiederholung können unzählige Kassetten bespielt werden

Hinweis:

Verwenden Sie Supertape nicht bei der Weitergabe, eine Copy wäre nicht möglich.

Copyright:

SCCH - Monitor und Super - Tape sind (c) by E.Ludwig. Alle Rechte vorbehalten. Programme und Anleitungen können zur persönlichen Verwendung kostenlos weitergegeben und vervielfältigt werden, unter Urheberangaben