Задача 1. Простые до N

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

В первой строке содержится целое число N ($2 \le N \le 5\,000$). Нужно вывести все простые числа в диапазоне от 1 до N включительно, по одному числу в строке.

Пример

input.txt	output.txt
10	2
	3
	5
	7

Задача 2. День недели

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

В единственной строке файла записано три буквы, обозначающие день недели на английском языке. Требуется вывести номер этого дня недели.

В файле нет пробелов. Первая буква заглавная, остальные две маленькие. Гарантируется, что с трёх записанных букв начинается название дня недели на английском языке.

Пример

input.txt	output.txt
Wed	3

Пояснение к примеру

Среда в английском называется Wednesday.

Задача 3. Посчитать знаки

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Требуется определить, какая доля чисел в последовательности отрицательная, какая доля равна нулю, и какая доля положительная.

Формат входных данных

В первой строке содержится целое число N — количество элементов последовательности ($1 \le N \le 10\,000$). Во второй строке записано N целых чисел через пробел — сама последовательность. Все элементы последовательности по абсолютной величине не превышают 100.

Формат выходных данных

Нужно вывести три вещественных числа. Первое показывает, какая доля чисел отрицательная. Второе — какая доля чисел равна нулю. И последнее — какая доля положительных чисел.

Каждое выведенное число должно отличаться от своего правильного значения **не** более чем на 10^{-5} .

Пример

input.txt	output.txt
7	0.28571 0.14285 0.57142
1 3 1 -2 -1 0 1	

Пояснение к примеру

В последовательности 2/7 чисел отрицательны, 1/7 чисел равна нулю, и 4/7 чисел положительны.

Комментарий

Рекомендуется использовать тип double для хранения вещественных чисел, а выводить их с помощью формата "%0.51f", например:

```
double answer = 0.123456789;
printf("%0.51f", answer);
```

Задача 4. Прямоугольники

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Дано три прямоугольника A, B и C, заданных длинами своих сторон. Нужно определить, можно ли расположить их на плоскости так, чтобы выполнялось два условия:

- 1. все стороны прямоугольников параллельны/перпендикулярны друг другу;
- 2. прямоугольник А содержит внутри себя прямоугольники В и С (касания сторонами разрешены);

Поворачивать прямоугольники разрешается.

Формат входных данных

В первой строке содержится шесть целых положительных чисел, записанных через пробел: a_1 , a_2 , b_1 , b_2 , c_1 , c_2 . Длины сторон прямоугольника А равны a_1 и a_2 , прямоугольника В — b_1 и b_2 , а прямоугольника С — c_1 и c_2 . Все числа не превышают 100.

Формат выходных данных

Нужно вывести слово YES, если расположить прямоугольники требуемым образом можно, и NO в противном случае.

Пример

input.txt	output.txt
5 5 2 5 3 3	YES
5 5 5 2 4 4	NO

Пояснение к примеру

В первом примере прямоугольник В размерами 2×5 можно поместить сбоку прямоугольника A, тогда остаётся пустое пространство размера 3×5 , и туда влезает прямоугольник C (размера 3×3).

Во втором примере площадь А равна 25, а площади В и С равны 10 и 16 соответственно, поэтому искомое вложение заведомо невозможно.

Задача 5. Слова

Источник: основная*
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

В единственной строке файла записан набор слов, разделённых символами точки. Каждое слово состоит из букв латинского алфавита. Между словами находится один или несколько символов точки. До первого слова и после последнего точки могут быть, а могут не быть. В строке может быть записано всего одно слово, а может и вовсе не быть слов. Длина заданной строки находится в диапазоне от 1 до 10000.

Требуется вывести одно целое число — количество слов в строке.

Пример

input.txt	output.txt
koPrivet.krevedko	4

Пояснение к примеру

В примере записано четыре слова: ko, Privet, kreved и ko.

Комментарий

В данной задаче нужно читать символы из входного файла по одному, сохраняя их в переменную типа char. Примерно так:

```
char symbol;
scanf("%c", &symbol);
```

Гарантируется, что после строки имеется символ перевода строки '\n'.

Задача 6. Биты и байты

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Дана последовательность из N битов, каждый бит имеет значение 0 или 1. Нужно разделить эту последовательность на байты, по 8 битов в каждом (в последний байт может попасть меньше битов). После этого нужно распечатать значения всех полученных байтов в привычной людям десятичной системе исчисления.

Биты внутри байта записываются в привычном современным компьютерам порядке little-endian: сначала идут младшие биты, потом старшие.

Формат входных данных

В первой строке входного файла записано одно целое число N — количество битов в последовательности ($1 \le N \le 100\,000$). Во второй строке записано ровно N символов 0 или 1: значения битов последовательности.

Внимание: после второй строки файла символ перевода строки может быть, а может **не** быть.

Формат выходных данных

Выведите в одну строку через пробел десятичные значения полученных байтов.

Пример

input.txt	output.txt
34	10 255 128 83 3
01010000111111111000000011100101011	

Пояснение к примеру

Разделим в примере биты на группы (байты). Обратите внимание, что в последнюю группу попадает только 2 бита. Далее преобразуем байты в десятичный вид:

- 01010000 = 2 + 8 = 10
- 111111111 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255
- \bullet 00000001 = 128 = 128
- 11001010 = 1 + 2 + 16 + 64 = 83
- 11 = 1 + 2 = 3

Задача 7. Арифметические прогрессии

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

В файле дано три целых числа L, R и K ($1 \le L < R \le 5\,000, 2 \le K \le 1\,000$). Требуется найти количество возрастающих арифметических прогрессий, у которых ровно K элементов лежит в диапазоне от L до R включительно.

В данной задаче нужно рассматривать только прогрессии, у которых все элементы целые. Считается, что у арифметической прогрессии есть первый элемент, но нет последнего: она бесконечная. Если две прогрессии начинаются с разного элемента, то их нужно считать различными.

Пример

input.txt	output.txt
10 20 3	10

Пояснение к примеру

Все искомые арифметическии прогрессии для примера:

- **10 14 18** 22 26 ...
- **10 15 20** 25 30 ...
- 11 15 19 23 27 ...
- **12 15 18** 21 24 ...
- **12 16 20** 24 28 ...
- **13 16 19** 22 25 ...
- **14 17 20** 23 26 ...
- **15 17 19** 21 23 ...
- 16 18 20 22 24 ...
- **18 19 20** 21 22 ...

Задача 8. Дата

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Дано четыре целых числа D, M, Y и K. Первые три задают корректную дату, считая что D — это номер дня в месяце, M — номер месяца в году, и Y — номер года от рождества Христова. Нужно найти, какая дата будет через K дней после этой, и вывести её в таком же формате (т.е. день месяц год).

Ограничения: $Y \leq 10\,000, K \leq 1\,000\,000$

В данной задаче исчисление ведётся по *григорианскому календарю*. То есть год N считается високосным, если верно одно из:

- N делится на 400
- *N* делится на 4, но **не** делится на 100

Пример

input.txt	output.txt
15 1 2018 70	26 3 2018
15 8 2018 3650	12 8 2028

Пояснение к примеру

В первом примере имеется дата: 15 января 2018 года. Поскольку в январе 31 дней, а в фервале 2018 года 28 дней, то через 70 дней получается дата: 26 марта 2018 года.

Во втором примере дана начальная дата 15 августа 2018 года, требуется найти дату через 3650 дней. Если бы в каждом году было 365 дней, то получилось бы 15 августа 2028 года. Однако есть високосные годы 2020-ый, 2024-ый и 2028-ой, поэтому получается 12 августа 2028 года.

Задача 9. Комментарии

Источник: повышенной сложности*

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: специальное

Дан текст, нужно удалить из него комментарии согласно правилам языка C (точнее C99). Есть два вида комментариев:

- *Блочный комментарий*: начинается с /*, заканчивается */, может занимать несколько строк.
- Строчный комментарий: начинается с // и заканчивается символом перевода строки.

При удалении комментария все символы перевода строки остаются в файле, даже если они находятся внутри блочного комментария. В конце текста может остаться открытый комментарий. В данной задаче все пробелы и переводы строк в выходном файле должны быть выведены точно.

Текст непустой, имеет длину до миллиона символов. Объём используемой вашей программой памяти должен быть много меньше мегабайта. В частности, сохранять в памяти программы всё содержимое входного файла **нельзя**.

В тексте могут быть следующие символы:

- маленькие и большие латинские буквы,
- цифры,
- пробелы и переводы строк,
- символы / и *****,
- дополнительные символы: круглые и фигурные скобки, запятая и точка с запятой, знаки плюс и минус.

Пример

input.txt	output.txt
/*C-style comments can contain	
multiple lines*/ /*or just one*/	
// C++-style comment lines	
<pre>int main() {</pre>	<pre>int main() {</pre>
// The below code wont be run	
//return 1;	
return 0; //this will be run	return 0;
}	}

Комментарий

Рекомендуется читать текст по символам. Для проверки, закончились ли символы в файле, можно сравнивать возвращаемое значение scanf с единицей:

```
while (1) {
    if (scanf("%c", &curr) != 1)
        break;
    ... //читаем и обрабатываем очередной символ
}
```