We restrict polynomial basis to degree 2

Polynomial: 2D polynomial of degree 2 - coeff: arranged in the [x^2 , xy, y^2 , x, y, const] order + constructor(coeff) + eval(x, y): evaluate the values of the polynomials with given matrices for x and y + gradient(): returns a 2X1 vector of Polynomial objects that is gradient to the caller Polynomial + transform_from_unit_square([target_x_start, target_x_end], [target_y_start, target_y_end]) Cell - x_center, y_center, x_width, y_width - cell_type_index: use a CellType object specify widths - int_quad_pt, int_quad_wt: quadrature used to compute mass matrices - bound_quad_pt: quadrature points on the cell boundaries + constructor() + compute_interaction() + compute_absorption() + compute_external_source() + compute_basis(basis_in_unit_square) + compute_mass_matrix() + sweep(mu, eta, psi_in) DiscreteOrdinateSolver - x_start, x_end, y_start, y_end - cell_types - cells - interaction_fcn - absorption_fcn - source fcn - act_cell_indices - dis_cell_indices - unit_square_basis + constructor(x_start, x_end, y_start, y_end) + generate_uniform_mesh(num_cells_x, num_cells_y) + sweep(quadrant_index): do sweeps in specified directions + sweep(): do sweeps in all directions + set_interaction_function(function_handle) + set_absorption_function(function_handle) + set_source_function(function_handle)