

Лекция 8

Структура модуля над кольцом

Содержание лекции:

Настоящей лекцией мы вплотную приближаемся к центральному разделу нашего курса - линейным пространствам. Здесь мы обсудим понятие внешнего закона, дадим определение алгебраической структуры, а также сформулируем самые основные определения, связанные с линенми пространствами и их отображениями.

Ключевые слова:

Внешний закон композиции, оператор закона, согласованность закона со структурой, действие на структуре, алгебраическая структура, модуль над кольцом, левый (правый) R-модуль, линейное отображение, мономорфизм, эпиморфизм, ядро и образ линейного отображения, подмодуль, фактор модуль, коядро.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

8.1 Внешний закон композиции

Внешним законом композиции элементов множества Ω , называемых множеством операторов закона, и элементов множества M называется отображение множества $\Omega \times M$ в M. Значение

$$(\alpha, x) \mapsto y,$$

называется композицией α и x относительно этого закона. Элементы из Ω называются **операторами** внешнего закона.

Nota bene Как правило, действие оператора $\alpha \in \Omega$ на элемент $x \in M$ обозначают одним из указанных способов:

$$\alpha x$$
, $\alpha(x)$, x^{α} .

Иногда мы будем также использовать обозначение $\alpha \perp x$

 $Nota\ bene$ Множество Ω операторов внешнего закона на M может само иметь внутренний закон композиции своих элементов.

Пример 8.1. На множестве \mathbb{Z} , наделенном структурой коммутативной группы с операцией '+' внешний закон композиции элементов может быть задан следующим образом:

$$\forall z \in \mathbb{Z}, \quad n \in \mathbb{N} \quad (n, z) = nz = z + z + \ldots + z,$$

с оператором внешнего закона $n \in N$.

Пусть M - множество, наделенное внутренним и внешним законами композиции. Говорят, что внешний закон композиции **согласован** с внутренним законом, если

$$\forall x, y \in M, \quad \alpha \in \Omega, \quad \alpha(x \circ y) = \alpha(x) \circ \alpha(y).$$

Говорят, что алебраическая структура Ω действует на алгебраической структуре M, если каждый элемент $\alpha \in \Omega$ является оператором внешнего закона на M и для любой пары элементов из $\alpha, \beta \in \Omega$ имеет место согласованное действие:

$$(\alpha * \beta)(x) = \alpha(\beta(x)), \quad \forall x \in M.$$

Говорят, что имеет место согласованное действие Ω на M, если

$$\left(\alpha \ast \beta\right)\left(x\circ y\right) = \alpha\left(\beta\left(x\circ y\right)\right) = \alpha\left(\beta x\circ \beta y\right) = \alpha\left(\beta x\right)\circ\alpha\left(\beta y\right).$$

Пример 8.2. Внешний закон композиции, описанный в предыдущем примере согласован со структурой коммутативной группы $(\mathbb{Z},'+')$:

$$n(z_1 + z_2) = nz_1 + nz_2.$$

Если при этом множество $\mathbb N$ обладает алгебраической структурой мультипликативного моноида $(\mathbb N, '\cdot ')$, Тогда

$$(n \cdot m)(z_1 + z_2) = nmz_1 + nmz_2.$$

Пример 8.3. Пусть X - произвольный моноид и $x \in X$. Для всякого $n \in \mathbb{N}$ определим действие оператора n как

$$(n,x) = x \cdot x \cdot \ldots \cdot x \equiv x^n.$$

В частности,

$$x^0 = e, \quad x^1 = x, \quad x^2 = x \cdot x, \quad \dots$$

Далее, на множестве X можно определить внутренний закон следующим образом:

$$x^n \cdot x^m \equiv x^{n+m}, \quad (x^n)^m \equiv x^{nm}.$$

Алгебраической структурой на множестве M называется всякая структура, определяемая в M одним или несколькими внутренними законами композиции элементов из M и одним или несколькими внешними законами композиции из областей операторов $\Omega_1, \Omega_2, \ldots, \Omega_k$, согласованных с внутренними законами.

Пример 8.4. Рассмотрим алфавит $A = \{p,q\}$ и множество L всех формальных сумм элементов A с коммутативной операцией "+". Тогда произвольный элемент L имеет вид

$$p + p + \ldots + p + q + \ldots + q$$

Пусть $\mathbb Z$ множество операторов внешнего закона на L, согласованных с внутренним законом L:

$$n(p+q) = np + nq, n \in \mathbb{Z},$$

$$(n+m)(p+q) = n(p+q) + m(p+q),$$

$$(nm)p = n(mp).$$

Множество комбинаций L, наделенное алгебраической структурой коммутативного внутреннего закона и внешнего закона с множеством операторов из кольца $\mathbb Z$ называется модулем над кольцом.

8.2 Модуль над кольцом

Левым R-модулем (или левым модулем над кольцом R) называется абелева группа (G,+) с заданной бинарной операцией $R \times G \to G$, записываемой как $(\alpha,x) \to \alpha x$ и согласованной действующей на групповой структуре на G:

L1. Действие кольца группе:

$$\forall \alpha, \beta \in R, \quad \forall x \in G$$
$$(\alpha + \beta)x = \alpha x + \beta x, \quad (\alpha \beta)x = \alpha(\beta x).$$

L2. Согласованное действие:

$$\forall \alpha \in R, \quad \forall x_1, x_2 \in G \quad \alpha(x_1 + x_2) = \alpha x_1 + \alpha x_2$$

 $Nota\ bene$ Аналогично можно определить структуру **правого** R-модуля, если определена бинарная операция

$$G \times R \to G$$
, $(x, \alpha) \mapsto x\alpha$.

Если определены оба отображения, то говорят о двустороннем *R*-модуле.

Пример 8.5. Примеры R-модулей:

- ullet Всякий $J \leq R$ идеал кольца R есть R-модуль.
- Любая абелева группа (G, +) представляет собой \mathbb{Z} модуль, ибо

$$\forall x \in G \quad x + x + x + \dots + x = zx, \quad z \in \mathbb{Z}.$$

• Пусть K-поле, обозначим за K^n множество столбиков вида

$$\xi = (\xi^1, \xi^2, \dots, \xi^n)', \quad \xi^i \in K.$$

Гомоморфизмом R**-модулей** X и Y (или R-линейным отображением) называется отображение $\sigma: X \to Y$, такое что:

$$\forall x, x_1, x_2 \in X, \quad \forall \alpha \in R$$

$$\sigma(x_1 + x_2) = \sigma(x_1) + \sigma(x_2), \quad \sigma(\alpha x) = \sigma(x)\alpha.$$

 ${\it Nota \ bene}$ Для множества R-линейных отображений между X и Y используют следующее обозначение ${\it Hom}_R(X,Y).$

Гомоморфизм $\sigma \in \operatorname{Hom}_R(X,Y)$ называется

- мономорфизмом, если он инъективен;
- эпиморфизмом, если он сюрьективен;

Ядром линейного отображения $\sigma \in \operatorname{Hom}_R(X,Y)$ называется подмножество X, такое что:

$$\ker \sigma = \{ x \in X : \quad \sigma(x) = 0 \}$$

Лемма 8.1. Ядро $\ker \sigma$ - модуль над кольцом.

Образом линейного отображения $\sigma \in \operatorname{Hom}_R(X,Y)$ называется подмножество Y, такое что:

$$Im = \{ y \in Y : \exists x \in X \ \sigma(x) = y \} = \sigma(X).$$

Лемма 8.2. Образ $\text{Im } \sigma$ - модуль над кольцом.

8.3 Подмодуль. Фактор-модуль

- (1) Подмножество $L \subseteq X$ называется **подмодулем** R-модуля X, если L замкнуто относительно операций, индуцированных из X.
- (2) Подмножество $L\subseteq X$ называется **подмодулем** R-модуля X, если L само является R-модулем относительно операций, индуцированных из X.

Лемма 8.3. Определения (1) и (2) равносильны.

Пример 8.6. Примеры подмодулей:

- Ядро линейного отображения $\sigma \in \text{Hom}_R(X,Y)$ является подмодулем в X;
- Образ линейного отображения $\sigma \in \operatorname{Hom}_R(X,Y)$ является подмодулем в Y;
- Идеал $J \triangleleft R$ явлеяется подмодулем R-модуля R;
- Подмножество K^n столбиков ξ , у которых первый элемент $\xi^1 = 0$.

 $Nota\ bene$ На фактор группу X/L переносится структура R-модуля, если умножение определить формулой:

$$\alpha(x+L) = \alpha x + L, \quad \forall x \in X.$$

 $\| R$ -модуль X/L называется фактор-модулем X по L.

Коядром гомоморфизма $\sigma \in \operatorname{Hom}_R(X,Y)$ называется множество

 $\operatorname{Coker} \sigma = Y / \operatorname{Im} \sigma.$

Лемма 8.4. Коядро является фактор модулем Y.

Теорема 8.1. Имеет место изоморфизм *R*-модулей:

 $X/\ker\sigma\simeq\operatorname{Im}\sigma.$