Collaborative Filtering on Amazon Product Rating Prediction

100060001 郁安安

Problem Description

Sentiment Analysis of User Comments for One-Class
 Collaborative Filtering over TED talks. SIGIR 2013

predict if a user would "like" or "unlike" a TED talk by collaborative filtering, perform SANN analysis on text comments for missing ground-truth labels.

Differences

- 1. Ratings in scores $(1.0^{5.0})$
- 2. No ambiguity of unliking or neutral
- 3. Weird model with bad performance

Model

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in D^k(u;i)} d_{ij} (r_{uj} - b_{uj})}{\sum_{j \in D^k(u;i)} d_{ij}}$$

$$b_{ui} = \mu + b_u + b_i$$

$$d_{ij} = s_{ij} \frac{n_{ij}}{n_{ij} + \lambda};$$

Baseline estimates

$$\hat{r}_{ui} = b_{ui}$$

Paper:

$$\mu = \frac{1}{|I|} \sum_{i \in I} \frac{r_i}{r_{max}}; \ b_u = \frac{r_u}{|I|}; \ b_i = \frac{r_i}{r_{max}}$$

Propose:

$$\min_{b_*} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mu - b_u - b_i)^2 + \lambda_1 (\sum_u b_u^2 + \sum_i b_i^2)$$

Solve Regression with std process

$$\begin{split} f &= \sum_u (r_{ui} - \mu - b_u - b_i)^2 + \lambda_1 \left(\sum_u {b_n}^2 + \sum_i {b_i}^2 \right. \\ & \frac{\partial f}{\partial \mu} = 0 \\ & \frac{\partial f}{\partial b_{u1}} = 0 \ \ \frac{\partial f}{\partial b_{uM}} = 0 \\ & \frac{\partial f}{\partial b_{i1}} = 0 \ \ \frac{\partial f}{\partial b_{iN}} = 0 \end{split}$$

Obtain Matrix

$\sum_{\mathbf{u}} c_{\mathbf{u}}$	c _{u1}		c _{uM}	c _{i1}		c _{iN}	μ		$\sum_{\mathbf{u}} \mathbf{r}_{\mathbf{u}}$
c _{u1}	c _{u1} + λ ₁ 0	0 $c_{u2} + \lambda_1$	0		mb		b _{u1}	_	r _{u1}
c _{uM}	0	0	$c_{uM} + \lambda_{1}$				b _{uM}	ı	r _{uM}
c _{i1}		mb [†]		c _{i1} + λ ₁	0	0	b _{i1}		r _{i1}
c _{iN}		Ш		0	$c_{i2} + \lambda_{1}$	$c_{iN} + \lambda_1$	b _{iN}		r_{iN}

G_G

$\bigg \sum_u c_u$	O ₁		O ₁	O		Q	μ		$\sum r_{\mathbf{u}}$
	$c_{u1} + \lambda_{1}$ 0	$\begin{array}{c} & & & \\ c_{u2} + & \lambda \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	0		0		b _{u1}		u r _{u1}
O ₁	Ü	r O ī	$c_{\text{uM}} + \lambda_{1}$	c _{i1} + λ ₁	0	0	b _{uM} b _{i1}	1	r _{uM} r _{i1}
O'		.0		0	$c_{i2} + \lambda_1$	$c_{iN} + \lambda_1$	b _{iN}		r_{iN}

Results

My bui:

MSE = 0.616018723464

paper's bui:

MSE = 66.7697037634

Evaluation:

randomly partition a dataset of 42183 entries into 5 sets. choose 4 sets as training data, 1 as testing set

Neighborhood Model

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in D^k(u;i)} d_{ij} (r_{uj} - b_{uj})}{\sum_{j \in D^k(u;i)} d_{ij}}$$

$$b_{ui} = \mu + b_u + b_i$$

$$d_{ij} = s_{ij} \frac{n_{ij}}{n_{ij} + \lambda};$$

Results

My bui:

MSE = 0.0187463518511

paper's bui:

MSE = 0.0648160577155

