= 3



Let Xij=# of truckloads to move from highpoint i to lowpoint j
i= {1,2,3} j={A,B}

(constraints / X2A + X2B

X2A + X3R = 4

 $+ \times_{3A} + \times_{3B} = 3$ 

The model xij 20

-want to distribute stuff from any set of sources
to any set of sinks/destinations

- Each source has a supply
Assure: - fixed

- entire supply must be distributed

- Each sink was a demand

Assume: -Fixed
-entire demand must be not

· cost cij per unit shipped from i to j
-directly proportional to # of units shipped



Special property of transportation problems

- ordinary up's may have non-integer sol'ns

-transportation problems Juarantee and integer

opt. sol'n when supplies + demands are integer

Proof Sketch: consider the following fractional flow



There are two feasible integer flows



Cost<sub>o</sub> = 
$$2C_{1A} + OC_{1R} + 2C_{2A} + |C_{2B}|$$

Cost<sub>o</sub> =  $1.5C_{1A} + 0.5C_{1B} + 2.5C_{2A} + 0.5C_{2B}$ 

Cost<sub>o</sub> =  $1.5C_{1A} + |C_{1B}| + |C_{1B}| + |C_{2B}|$ 

Cost<sub>o</sub> =  $1.5C_{1A} + |C_{1B}| + |C_{2B}| + |C_{2B}|$ 

So cost<sub>o</sub>  $\leq cost_{1} \leq cost_{2}$ 

\*Either fractional flow 1sh't optimal (6/c #0/#2 optimal)

\*or it is optimal, in which case (ost<sub>o</sub> = Cost<sub>1</sub> = Cost<sub>2</sub>)

what if supply > demand

I. Assignment Problems

\* This is a transportation problem where all Si'c + Di's one 1 (Students are "shipping" their labor to the tasks)



This example actually doesn't have a feasible assignment!

世. Min Cost Flow Problems

B Formulate as an LP

min  $2 \times_{13} + \times_{14} + 3 \times_{21} + 6 \times_{23} + 4 \times_{34} + \times_{35}$ s.t.  $200 + \times_{21} - \times_{13} + \times_{14}$  (Flow balance at noole 13)  $500 = \times_{21} + \times_{22}$  [noole 2)  $\times_{13} + \times_{23} = \times_{34} + \times_{35}$  (noole 3)  $\times_{14} + \times_{34} = 300$  (noole 4)  $\times_{35} = 400$  (noole 5)  $\times_{ij} \ge 0 \times_{ij} \ge 0 \times_{21} \le 100 \times_{35} \le 400$ 

- Integrality Still holds! (for tateger S+D+UB)

IV. Shortest Path Problem

+MCF=min cost flow

Source: 1 - 1 unit of supply

Sink: 1 - 1 unit of demand

Do we have to put a capacity on the arcs?