

Trees and Lagrange inversion

Contents

1	Rec	cursive specifications
	1.1	Plane Binary Trees \mathcal{B}
		1.1.1 A recursive specification
	1.2	All Plane Rooted Trees
		1.2.1 Counting
		1.2.2 Generation
2	Sim	aple trees and Lagrange Inversion
	2.1	Restricting the out-degree
	2.2	Lagrange Inversion
	2.3	Trees with coloured nodes

1 Recursive specifications

The prototypical recursive structure is a tree.

Definition. A plane tree is the embedding of a graph without cycles into the plane. Such a tree is rooted if one of its vertices is specified (the root vertex). Since the tree is embedded in the plane, the children of each node have a unique ordering (say clockwise). If the node has a child, then one of its children is specified to be the left-most child, So its children go from left to right. The size of a rooted plane tree is the number of vertices it contains.

The enumeration of trees is best done recursively (there are other sneakier ways). Take any tree you like — and delete its root. One is left with a "forest" of trees — possibly empty. This forest consists of a (possibly empty) sequence of trees — each rooted at the vertex which was attached to the original root.

1.1 Plane Binary Trees B

A **binary tree** is a rooted tree where every node has either 0 or 2 children. Let \mathcal{B} as the combinatorial class of all **non-empty plane binary trees**, where the size of a tree is its number of nodes.

1.1.1 A recursive specification

We can describe \mathcal{B} with a recursive combinatorial description. A binary tree is either a node, or a node and an ordered pair of subtrees. This gives the following specification.

$$\mathcal{B} \equiv \mathcal{Z} + \mathcal{Z} \times \mathcal{B} \times \mathcal{B}$$
 i.e. $\mathcal{B} \equiv \mathcal{B} \times (\mathcal{E} + \mathcal{B}^2)$.

By the sum and the product rules, the generating function B(z) for \mathcal{B} satisfies

$$B(z) = Z(z) + Z(z)B(z)B(z) = z + zB(z)^{2}.$$

We can solve for B(z) with the quadratic formula.

$$zB(z)^{2} - B(z) + z = 0$$

$$B(z) = \frac{1 \pm \sqrt{1 - 4z^{2}}}{2z}.$$

Maple shows that only one of these two solutions expands to the desired power series B(z).

> series((1+sqrt(1-4*z^2))/(2*z),z,15);

$$z^{-1}-z-z^3-2z^5-5z^7-14z^9-42z^{11}-132z^{13}+O(z^{15})$$
 (1)
> series((1-sqrt(1-4*z^2))/(2*z),z,15);
 $z+z^3+2z^5+5z^7+14z^9+42z^{11}+132z^{13}+O(z^{15})$ (2)

In Lecture 2, we applied the extended binomial theorem to find an explicit expression for the coefficients of a similar power series. There we defined the *k*-th Catalan number to be

$$C_k = [z^k] \frac{1 - \sqrt{1 - 4z}}{2z} = \frac{1}{k+1} {2k \choose k}.$$

The power series B(z) is obtained from this by replacing z with z^2 and multiplying by z.

$$C_k = [z^{2k}] \frac{1 - \sqrt{1 - 4z^2}}{2z^2}$$
$$= [z^{2k+1}] \frac{1 - \sqrt{1 - 4z^2}}{2z}$$

Therefore the number of plane binary trees with n nodes is

$$B_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ C_k = \frac{1}{k+1} {2k \choose k} & \text{if } n = 2k+1 \end{cases}.$$

Exercise. Compute b_{2m+1} for small m, and verify that it gives the right number of binary trees.

1.2 All Plane Rooted Trees

We now consider the class \mathcal{T} of all non-empty rooted plane trees.

1.2.1 Counting

Every plane rooted tree is described as a root vertex with a (possibly empty) finite sequence of rooted plane subtrees trees. We can count these trees similarly to the plane binary trees.

$$\mathcal{T} = \mathcal{Z} \times \text{SeQ}(\mathcal{T})$$

$$T(z) = \frac{z}{1 - T(z)}$$

$$T(z)^2 - T(z) + z = 0$$

$$T(z) = \frac{1 \pm \sqrt{1 - 4z}}{2}$$

Again the "+" results in negative coefficients. Again get the Catalan numbers (shifted by 1).

$$T(z) = z \frac{1 - \sqrt{1 - 4z}}{2z} = z \sum_{n \ge 0} C_n z^n$$
$$T_n = [z^n] T(z) = C_{n-1} = \frac{1}{n} {2n - 2 \choose n - 1}.$$

That is, the number of plane trees with n nodes equals the (n-1)th Catalan number C_{n-1} .

1.2.2 Generation

We can step through this recursion slowly to generate the elements of \mathcal{T} . We rewrite the recursion as

$$\mathcal{T}^{[m+1]} = \mathcal{Z} \times \text{SeQ}(\mathcal{T}^{[m]}).$$

We start by taking $\mathcal{T}^{[0]} = \{\circ\}$, then

$$\begin{split} \mathcal{T}^{[1]} &= \{ \circ, \circ(\circ), \circ(\circ, \circ), \circ(\circ, \circ, \circ), \dots \} \\ \mathcal{T}^{[2]} &= \{ \circ, \circ(\circ), \circ(\circ, \circ), \circ(\circ(\circ)), \circ(\circ, \circ(\circ)), \circ(\circ(\circ), \circ) \dots \} \end{split}$$

Note that $\mathcal{T}^{[m]}$ encodes the set of plane trees trees of depth at most m, and

$$\mathcal{T} = \cup_{m>0} \mathcal{T}^{[m]}.$$

Exercise. We have seen that $[z^{2n-1}]B(z) = [z^n]T(z)$ (the(n-1)th Catalan number). That is, the number of plane binary trees with 2n-1 nodes equals the number of plane rooted trees with n nodes. Can you find a natural combinatorial bijection between B_{2n-1} and T_n ?

2 Simple trees and Lagrange Inversion

2.1 Restricting the out-degree

Above, we concidered the plane binary trees and the plane rooted trees. In each case a tree is specified by a root vertex whose deletion leaves an ordered sequence of (smaller) rooted trees. This allowed us find their generating functions and extract the coefficients.

$$\mathcal{B} = \mathcal{Z} \times \left(\mathcal{E} + \mathcal{B}^2\right) \qquad \qquad \mathcal{T} = \mathcal{Z} \times \text{SeQ}(\mathcal{T})$$

$$B(z) = z \left(1 + B(z)^2\right) \qquad \qquad T(z) = z \frac{1}{1 - T(z)}$$

$$B(z) = \frac{1 - \sqrt{1 - 4z^2}}{2z} \qquad \qquad T(z) = \frac{1 - \sqrt{1 - 4z}}{2}$$

$$B_{2k} = 0 \& B_{2k+1} = C_k \qquad \qquad T_n = C_{n-1}$$

Both of these derivations take the following form.

$$\mathcal{A} = \mathcal{Z} \times \psi(\mathcal{A}) \tag{1}$$

$$A(z) = z \phi(A(z)) \tag{2}$$

$$A(z) = f(z) \tag{3}$$

$$A_n = [z^n]f(z). (4)$$

In (1), the expression $\psi(\mathcal{A})$ involves \mathcal{A} and admimissible operators like +, \times and SEQ(). In (2), $\phi(u)$ is an algebraic expression corresponding to ψ and evaluated at u=A(z). In both cases, we were able to find the function f in (3) with the quadratic formula, but in general f(z) is not easy to find. In the next section, we present a method called Lagrange Inversion for deriving (4) directly from (2) that avoids (3) altogether.

Each of the constructions above consist of a root node and a sequence of subtrees, where each node has its out-degree restricted to a specific subset

$$\Omega \subseteq \mathbb{Z}_{>0} = \{0, 1, 2, \dots\}.$$

We can define the class of Ω -restricted trees \mathcal{T}^{Ω} to be the set of finite non-empty rooted plane trees whose out-degrees all belong to Ω . If we take $\Omega = \mathbb{Z}^+$, then we get all plane rooted trees. If we take $\Omega = \{0,2\}$ we ge the plane binary trees.

The function ϕ appearing in (2) depends only on Ω . In particular,

$$\phi(u) = \phi_{\Omega}(u) = \sum_{\omega \in \Omega} u^{\omega}.$$

Here are expressions for Ω , ψ and ϕ for some classes $\mathcal{T} = \mathcal{T}^{\Omega}$ of Ω -restricted plane trees:

Type of plane tree	Ω	$\psi(\mathcal{T})$	$\phi(u)$
full binary	$\{0, 2\}$	$\mathcal{E}+\mathcal{T}^2$	$1 + u^2$
unary-binary	$\{0, 1, 2\}$	$\mathcal{E}+\mathcal{T}+\mathcal{T}^2$	$1 + u + u^2$
all plane trees	$\mathbb{Z}_{\geq 0}$	Seq(T)	1/(1-u)
even outdegrees	$\{0,2,\overline{4},\dots\}$	$\mathbf{SEQ}(T^2)$	$1/(1-u^2)$

For Ω -restricted trees, equation (2) specializes as follows.

Lemma. The OGF, $T^{\Omega}(z)$, for the class of Ω -restricted plane trees satisfies the following equation

$$T^{\Omega}(z) = z \, \phi(T^{\Omega}(z))$$

where $\phi(u) = \sum_{\omega \in \Omega} u^{\omega}$.

A class of trees that satisfies such an equation is called a simple variety of trees.

2.2 Lagrange Inversion

The functional relation $T(z) = z \phi(T(z))$ can be written

$$z = \frac{T(z)}{\phi(T(z))}.$$

That is, the function T takes some number z and turns it into T(z). If $T(z) = z \phi(T(z))$, then you can recover z from T(z) (ie. functional inverse of ϕ) by computing $T(z)/\phi(T(z))$. In this case, the functional form can be exploited in order to get an exact expression for the coefficients T_n of T(z) — this uses something called the Lagrange inversion formula.

Theorem (Lagrange inversion). The coefficients of an inverse function and all of its powers are determined by the coefficients of powers of the forward function. In particular, if $z = T(z)/\phi(T(z))$, then

$$[z^n] T(z) = \frac{1}{n} [u^{n-1}] \phi(u)^n$$

More generally, for any positive integer k,

$$[z^n] T(z)^k = \frac{k}{n} [u^{n-k}] \phi(u)^n.$$

Applying this to a simple variety \mathcal{T}^{Ω} of trees, the number of trees with size n is

$$T_n^{\Omega} = \frac{1}{n} [u^{n-1}] \phi(u)^n$$
, where $\phi(u) = \sum_{\omega \in \Omega} u^{\omega}$.

Considerably more general forms of this theorem exist, but this suffices for our purposes.

Example. All Plane Trees: Here $\mathcal{T} = \mathcal{T}^{\Omega}$ where $\Omega = \{0, 1, 2, \dots\}$. The recursive combinatorial specification $\mathcal{T} = z \times \text{SEQ}(\mathcal{T})$ implies that the OGF satisfies

$$T(z) = \frac{z}{1 - T(z)} = z \; \phi(T(z)), \qquad \text{where} \quad \phi(u) = \frac{1}{1 - u}.$$

That is, We proceed as follows

$$\phi(u)^n = \frac{1}{(1-u)^n} = \sum_{t=0}^{\infty} \binom{n+t-1}{t} u^t \qquad \text{(extended binomial theorem)}$$

$$[u^t]\phi(u)^n = \binom{n+t-1}{t}$$

$$[u^{n-1}]\phi(u)^n = \binom{2n-2}{n-1}$$

$$T_n = \frac{1}{n}[u^{n-1}]\phi(u)^n = \frac{1}{n}\binom{2n-2}{n-1}. \qquad \text{(the } (n-1)\text{th Catalan number)}$$

Example. Binary Plane Trees: Here $\mathcal{B} = T^{\Omega}$ where $\Omega = \{0, 2\}$.

$$\mathcal{B} = \mathcal{Z} \times \left\{ \mathcal{E} + \mathcal{B}^2 \right\}$$

$$B(z) = z (1 + B(z)^2)$$

$$B(z) = z \phi(B(z)), \quad \text{where} \quad \phi(u) = 1 + u^2$$

$$\phi(u)^n = (1 + u^2)^n = \sum_{k=0}^n \binom{n}{k} u^{2k}$$

$$[u^t] \phi(u)^n = \begin{cases} 0 & \text{if } t \text{ is odd} \\ \binom{n}{k} & \text{if } t = 2k \end{cases}$$

$$B_n = \frac{1}{n} [u^{n-1}] \phi(u)^n = \begin{cases} 0 & \text{if } n-1 \text{ is odd (i.e. } n \text{ is even)} \\ \frac{1}{2k+1} \binom{2k+1}{k} & \text{if } n-1 = 2k \text{ (i.e. } n = 2k+1). \end{cases}$$
(use $t = n-1$)

This last expression is the kth Catalan number in disguise.

$$B_{2k+1} = \frac{1}{2k+1} \frac{(2k+1)!}{k!(k+1)!} = \frac{1}{k+1} \frac{(2k)!}{k!k!} = \frac{1}{k+1} \binom{2k}{k} = C_k.$$

Example. Unary-Binary Plane Trees: $\mathcal{U} = T^{\Omega}$ where $\Omega = \{0, 1, 2\}$. This one is more challenging. The trinomial theorem is needed here.

$$(a+b+c)^n = \sum_{\substack{0 \le i, j, k \le n \\ i+j+k=n}} \frac{n!}{i! \ j! \ k!} a^i b^j c^k = \sum_{i=0}^n \sum_{j=0}^{n-i} \frac{n!}{i! \ j! \ (n-i-j)!} a^i b^j c^{n-i-j}$$

When n = i + j + k we may write this using the coefficient extraction operator.

$$[a^{i}b^{j}c^{k}](a+b+c)^{n} = \frac{n!}{i!\ j!\ k!}$$

The last expression above is often written as $\binom{i+j+k}{i,j,k}$ and is called a *trinomial coefficient*. It counts the ways of putting n labeled balls into three labeled boxes containing i, j and k balls, repectively.

We proceed as before.

$$\begin{split} \mathcal{U} &= \mathcal{Z} \times \left\{ \mathcal{E} + \mathcal{U} + \mathcal{U}^2 \right\} \\ U(z) &= z \left(1 + U(z) + U(z)^2 \right) \\ U(z) &= z \, \phi(U(z)) \qquad \text{where} \quad \phi(u) = 1 + u + u^2 \\ \phi(u)^n &= (u^2 + u + 1)^n = \sum_{\substack{0 \leq i, j, k \leq n \\ i + j + k = n}} \binom{n}{i, j, k} \left(u^2 \right)^i u^j 1^j \qquad \text{(using } a = u^2, b = u, c = 1) \\ &= \sum_{i=0}^n \sum_{j=0}^{n-i} \frac{n!}{i! \, j! \, (n-i-j)!} u^{2i+j}. \end{split}$$

To extract a particular coefficient, say $[u^t]\phi(u)^n$, we need to select from the double-sum those index pairs (i,j), $i,j\geq 0$ for which 2i+j=t. Here i can be any number in $\{0,1,\ldots,\lfloor t/2\rfloor\}$, which gives j=t-2i and n-i-j=n-i-(t-2i)=n-t+i.

$$[u^t]\phi(u)^n = \sum_{i=0}^{\lfloor t/2 \rfloor} \frac{n!}{i! (t-2i)! (n-t+i)!}$$

Now we can apply the Lagrange inversion formula.

$$U_n = \frac{1}{n} [u^{n-1}] \phi(u)^n$$

$$= \frac{1}{n} \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} \frac{n!}{i! (n-1-2i)! (n-(n-1)1+i)!}$$

$$= \sum_{i=0}^{\lfloor (n-1)/2 \rfloor} \frac{(n-1)!}{i! (n-1-2i)! (i+1)!}.$$

This formula can not really be further simplified. It is remarkable that Maple can express this last sum in terms of "hypergeometric functions".

We can check number of unary-binary plane trees with 5 nodes.

$$U_5 = \sum_{i=0}^{2} \frac{4!}{i! (4-2i)! (i+1)!}$$

$$= \frac{4!}{0! 4! 1!} + \frac{4!}{1! 2! 2!} + \frac{4!}{2! 0! 3!}$$

$$= 1+6+2$$

$$= 9.$$


```
# Unary-Binary Trees #
   # The generating function U(z)
   solve(U=z*(1+U+U^2), U);
   series([%][2],z,13);
                                     \frac{1}{2} \frac{-z+1+\sqrt{-3\,z^2-2\,z+1}}{z}, -\frac{1}{2} \frac{z-1+\sqrt{-3\,z^2-2\,z+1}}{z}
   # Check whether summation formula that we found by hand
   # using Lagrange Inversion appears to be correct:
   Usum:= n \rightarrow add((n-1)!/i!/(i+1)!/(n-1-2*i)!,i=0..(n-1)/2);
   seq( Usum(n), n=0..12 );
                                       \textit{Usum} := n \rightarrow \textit{add} \left( \frac{(n-1)!}{i! \; (i+1)! \; (n-1-2 \; i)!}, i = 0 \dots \frac{1}{2} \; n - \frac{1}{2} \right)
  # Ask Maple to evaluate this sum in closed form
   # and check whether it appears to evaluate correctly, to 4 decimal places
   Sum((n-1)!/i!/(i+1)!/(n-1-2*i)!,i=0..(n-1)/2) = sum((n-1)!/i!/(i+1)!/(n-1-2*i)!,i=0..((n-1)/2));
   Uhyper:=unapply(rhs(%),n);
seq( evalf(g(n),4), n=0..12);
                               \sum_{i=0}^{2} \frac{(n-1)!}{i! \ (i+1)! \ (n-1-2i)!} = \text{hypergeom}\left(\left[-\frac{1}{2} \ n+1, -\frac{1}{2} \ n+\frac{1}{2}\right], [2], 4\right)
                                         Uhyper := n → hypergeom \left[ \left[ -\frac{1}{2}n + 1, \frac{1}{2} - \frac{1}{2}n \right], [2], 4 \right]
                           0.5000 - 0.8660 I, 1., 1., 2.000, 4.000, 9.000, 21.00, 51.00, 127.0, 323.0, 835.0, 2188., 5798.
> #This appears to be correct, although the first term is an anomoly.
```

Exercise. Show that when $\Omega = \{0, 1, k\}$ (Unary - k-ary Trees) we get the formula

$$T_n^{\Omega} = \sum_{i=0}^{\lfloor (n-1)/k \rfloor} \frac{(n-1)!}{i! (ki-i+1)! (n-1-ki)!}.$$

2.3 Trees with coloured nodes

Sometimes we need to consider trees which have nodes of different colours. For example, in computer science we often see a data structure called a *red-black tree*. Here is an example which we use throughout this subsection.

Example. Let \mathcal{T} be the combinatorial class of plane trees where each node is either red or blue, where

- every blue node has at most one blue child and at most one red child.
- · every red node has no red children and an even number of blue children.

The size of a tree in \mathcal{T} is its number of nodes, regardless of colour. We wish to find a combinatorial specification for \mathcal{T} , so that we can find its OGF and count them.

Evidently we are treating those trees in \mathcal{T} with a red root differently from those trees with a blue root. Therefore we need to define two more combinatorial classes. Let \mathcal{T}_b be those trees in \mathcal{T} having a blue root node (call them *blue trees*), and let $\mathcal{T}_r = \mathcal{T} - \mathcal{T}_b$ be the *red trees*.

Comparing to Section 2.2 of Lecture 5, our task is to find a specification for the triplet of classes

$$\mathcal{A} = (\mathcal{T}, \mathcal{T}_b, \mathcal{T}_r)$$

The specification consists of a set of three combinatorial constructions, one for each of \mathcal{T} , \mathcal{T}_b and \mathcal{T}_r . Blue nodes and red nodes each contribute 1 toward the size of a tree, but they may need to be treated differently, so the specification will use two atomic classes, say \mathcal{Z}_b , \mathcal{Z}_r , and the neutral class \mathcal{E} .

The first equation comes from observing that every tree in \mathcal{T} is either a blue tree or a red tree, but not both.

$$\mathcal{T} = \mathcal{T}_r + \mathcal{T}_b \tag{5}$$

Each blue tree is uniquely specified to consist of a blue root together with either nothing, or a blue subtree, or a red subtree, or a blue subtree followed by a red subtree, or a red subtree followed by a blue subtree. (The last two cases are different since we are talking about plane trees.)

$$\mathcal{T}_b = \mathcal{Z}_b \times (\mathcal{E} + \mathcal{T}_b + \mathcal{T}_r + \mathcal{T}_b \times T_r + \mathcal{T}_r \times T_b)$$
(6)

Each red tree is uniquely specified to consist of a red root together with a sequence of pairs or blue subtrees.

$$\mathcal{T}_r = \mathcal{Z}_r \times \text{SEQ}(\mathcal{T}_b \times \mathcal{T}_b). \tag{7}$$

We have completed our specification for $(\mathcal{T}, \mathcal{T}_b, \mathcal{T}_r)$.

Our next task is to translate these specifications to three equations relating the three OGFs T(z), $T_b(z)$, $T_r(z)$ in the usual way.

$$T(z) = T_b(z) + T_r(z) \tag{8}$$

$$T_b(z) = z(1 + T_b(z) + T_r(z) + 2T_b(z)T_r(z))$$
(9)

$$T_r(z) = \frac{z}{1 - T_h(z)^2}. (10)$$

The third task is to solve these equations for T(z), $T_b(z)$ and $T_r(z)$. Substituting (6) into (5) and simplifying gives

$$T_b(z) = z + zT_b(z) + \frac{z^2}{1 - T_b(z)^2} + \frac{2z^2T_b(z)}{1 - T_b(z)^2}$$

$$T_b(z) - T_b(z)^3 = (z - zT_b(z)^2) + (zT_b(z) - zT_b(z)^3) + z^2 + 2z^2T_b(z)$$

$$0 = (1 - z)T_b(z)^3 - zT_b(z)^2 + (2z^2 + z - 1)T_b(z) + z^2 + z$$

With huge effort this equation can be solved by hand to get

$$T_{b}(z) = \frac{-2\,z\,+\,\sqrt[3]{36\,z^{4} - 80\,z^{3} - 36\,z^{2} + 72\,z + 12\,(z-1)\,\sqrt{(z+1)\,(-96\,z^{6} + 9\,z^{5} + 129\,z^{4} - 72\,z^{3} - 36\,z^{2} + 60\,z - 12)}}{6\,z - 6} \\ + \frac{12\,z^{3} - 4\,z^{2} - 12\,z + 6}{(3\,z - 3)\,\sqrt[3]{36\,z^{4} - 80\,z^{3} - 36\,z^{2} + 72\,z + 12\,(z-1)\,\sqrt{(z+1)\,(-96\,z^{6} + 9\,z^{5} + 129\,z^{4} - 72\,z^{3} - 36\,z^{2} + 60\,z - 12)}}}$$

However we are much better off to let Maple handle this part. We find, for example, that exactly 343 trees in \mathcal{T} have 7 nodes.

```
# These plane trees have blue nodes and red nodes.
       # Each blue node has a tmost one black child and at most one red child
       # Each red node has no red children, and an even number of blue children
      unassign('Tb', 'Tr', 'T'):
      equations := { T = Tb + Tr,

Tb = z*(1 + Tb + Tr + 2*Tb*Tr),
                                                 Tr = z/(1-Tb*Tb)
       solve ( equations, {T, Tb, Tr} ):
       assign(op(%));
                                                 equations := \left\{T = Tb + Tr, Tb = z \left(2 \ Tb \ Tr + Tb + Tr + 1\right), Tr = \frac{z}{-Tb^2 + 1}\right\}
> # We can print the OGFs for Tb.
       # The first expression is in terms of the roots of a cubic polynomial
       # The second is in radical form, but very complicated
       # The OGF for Tr (not shown here) is even more complicated
       'Tb' = Tb;
       'Tb' = convert(Tb, radical) ;
                                                           Tb = RootOf((z-1))Z^3 + zZ^2 + (-2z^2 - z + 1)Z - z^2 - z)
Tb = \frac{1}{6} \frac{1}{z-1} \left( 36z^4 - 80z^3 + 12\sqrt{-96z^7 - 87z^6 + 138z^5 + 57z^4 - 108z^3 + 24z^2 + 48z - 12} z - 36z^2 + 12z^2 + 12z^2
          -12\sqrt{-96z^7-87z^6+138z^5+57z^4-108z^3+24z^2+48z-12}+72z) +72z) +\frac{2}{3}(6z^3-2z^2-6z+3)
         \left((z-1)\left(36\,z^4-80\,z^3+12\,\sqrt{-96\,z^7-87\,z^6+138\,z^5+57\,z^4-108\,z^3+24\,z^2+48\,z-12}\,\,z-36\,z^2\right)\right)
          -12\sqrt{-96z^7-87z^6+138z^5+57z^4-108z^3+24z^2+48z-12}+72z) -\frac{1}{3}\frac{z}{z-1}
Tb_ser := series( Tb, z, 11);
Tr_ser := series( Tr, z, 12);
T_ser := series( T, z, 12);
                         Tb ser := z + 2z^2 + 4z^3 + 9z^4 + 23z^5 + 66z^6 + 204z^7 + 661z^8 + 2209z^9 + 7551z^{10} + O(z^{11})
                                   Tr \ ser := z + z^3 + 4z^4 + 13z^5 + 42z^6 + 139z^7 + 472z^8 + 1634z^9 + 5742z^{10} + O(z^{11})
                    T \ ser := 2z + 2z^2 + 5z^3 + 13z^4 + 36z^5 + 108z^6 + 343z^7 + 1133z^8 + 3843z^9 + 13293z^{10} + O(z^{11})
```



```
> with (combstruct):
               unassign('Tb','Tr','T'):
RBTrees1 := {T = Union(Tb,Tr),
                                                                                                    Tb = Prod( Zb, Union( E, Tb, Tr, Prod(Tb,Tr), Prod(Tr,Tb) )),
Tr = Prod( Zr, Sequence( Prod(Tb,Tb) )),
Zb = Atom, Zr=Atom, E=Epsilon
                OGFs := table(gfsolve( RBTrees1, unlabeled, z)):
               TbGF := OGFs[Tb(z)];
convert( TbGF, radical);
  RBTrees1 := \{E = E, T = Union(Tb, Tr), Tb = Prod(Zb, Union(E, Tb, Tr, Prod(Tb, Tr), Prod(Tr, Tb))\}, Tr = Prod(Zr, Tb, Tr, Prod(Tb, Tr), Prod(Tr, Tb))\}
                    Sequence(Prod(Tb, Tb))), Zb = Atom, Zr = Atom}
                                                                                                                                TbGF := RootOf((z-1) Z^3 + z Z^2 + (-2z^2 - z + 1) Z - z^2 - z)
   \frac{1}{6(z-1)} \left(36z^4 - 80z^3 + 12\sqrt{-96z^7 - 87z^6 + 138z^5 + 57z^4 - 108z^3 + 24z^2 + 48z - 12}z - 36z^2\right)
                       -12\sqrt{-96z^7-87z^6+138z^5+57z^4-108z^3+24z^2+48z-12}+72z) +(2(6z^3-2z^2-6z^2)^{1/3}+(2(6z^3-2z^2-6z^2)^{1/3})^{1/3}+(2(6z^3-2z^2-6z^2)^{1/3})^{1/3}
                        +3) / (3(z-1)(36z^4-80z^3+12\sqrt{-96z^7-87z^6+138z^5+57z^4-108z^3+24z^2+48z-12}z-36z^2)
                        -12\sqrt{-96z^7-87z^6+138z^5+57z^4-108z^3+24z^2+48z-12}+72z) -\frac{z}{3(z-1)}
> TrGF := OGFs[Tr(z)];
              #convert( TrGF, radical);
                TGF := OGFs[T(z)];
                #convert( TGF, radical);
TrGF := -\frac{1}{3z} \left( 2z \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z^2 + \left( -2\, z^2 - z + 1 \right) \, \_Z - z^2 - z \right)^2 - 2 \, RootOf((z-1) \, \_Z^3 + z \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((z-1) \, \_Z - z + 1 \right)^2 - 2 \, RootOf((
                   -2\,z^{2}-z+1\big) \quad Z-z^{2}-z\big)^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+\big(-2\,z^{2}-z+1\big)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{3}+z\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-1)\,\_Z^{2}+(z-2\,z^{2}-z+1)\,\_Z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,\_Z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,\_Z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,\_Z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,\_Z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,_{2}-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,_{2}-z^{2}-z\big)\,z-4\,z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,_{2}-z^{2}-z\big)\,z-4\,z^{2}-z^{2}-z\big)\,z-4\,z^{2}+RootOf\big((z-2\,z^{2}-z+1)\,_{2}-z^{2}-z\big)\,z-4\,z^{2}-z^{2}-z\big)\,z-4\,z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}-z^{2}
                        -1) Z^3 + z Z^2 + (-2z^2 - z + 1) Z - z^2 - z) - z
-2z^2-z+1) Z-z^2-z) = -2RootOf((z-1))(z^3+z)(z^2+(-2z^2-z+1))(z-z^2-z)(z-4z^2+RootOf((z-1)))(z-z^2-z)(z-4z^2+RootOf((z-1)))(z-z^2-z)(z-4z^2+RootOf((z-1)))(z-z^2-z)(z-4z^2+RootOf((z-1)))(z-z^2-z)(z-4z^2+RootOf((z-1)))(z-z^2-z)(z-4z^2+RootOf((z-1)))(z-z^2-z)(z-2z^2-z)(z-4z^2+RootOf((z-1)))(z-z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-2z^2-z)(z-
                        -1) Z^3 + z Z^2 + (-2z^2 - z + 1) Z - z^2 - z) - z
> gfseries( RBTrees1, unlabeled, z)[T(z)];

2z + 2z^2 + 5z^3 + 13z^4 + 36z^5 + O(z^6)
```