Lecture 6b

ECE 361
Probability for Engineers
Fall, 2016
Steven Weber

Tuesday November 1, 2016

Outline

- 1 §3.3 Gaussian (normal) RVs
- 2 §3.4 Joint PDFs of multiple RVs
 Joint PDFs
 Joint CDFs
 Expectation
- §3.5 Conditioning Conditioning an RV on an event

Gaussian PDF. The Gaussian (normal) RV X has support $\mathcal{X} = \mathbb{R}$ and PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}.$$

This distribution has **two** free parameters: $\mu \in \mathbb{R}$ and $\sigma \geq 0$

- $\mu \in \mathbb{R}$. We will show $\mathbb{E}[X] = \mu$. Changing μ shifts the PDF so that it is centered at μ . The standard value of μ is 0.
- $\sigma \in \mathbb{R}_+$. We will show $\operatorname{Var}[X] = \sigma^2$. Changing σ scales the PDF, either stretching it (for $\sigma > 1$) or compressing it (for $\sigma \in (0,1)$). The standard value of σ is 1.

We write $X \sim N(\mu, \sigma)$ to denote that the RV is normally distributed with parameters (μ, σ) . Other authors write $X \sim N(\mu, \sigma^2)$.

The standard Gaussian distribution

Gaussian PDF. The **standard** Gaussian (normal) RV Z has support

$$\mathcal{Z}=\mathbb{R}$$
 and PDF

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \ z \in \mathbb{R}.$$

This corresponds to a normal RV with $\mu=0$ and $\sigma=1$. A standard normal is often denoted $Z\sim N(0,1)$.

The $N(\mu, \sigma)$ distribution: $\mu = 0$ and $\sigma = 1$. Gridlines at $\mu, \pm \sigma, \pm 2\sigma$.

The $N(\mu, \sigma)$ distribution: $\mu = 2.5$ and $\sigma = 1$. Gridlines at $\mu, \pm \sigma, \pm 2\sigma$.

The $N(\mu, \sigma)$ distribution: $\mu = 0$ and $\sigma = 2$. Gridlines at $\mu, \pm \sigma, \pm 2\sigma$.

To be a valid PDF, we must show that $f_X(x)$ is nonnegative and integrates to one:

- Nonnegativity is obvious.
- Integration to one is not obvious, and is in fact difficult to show:

$$\int_{-\infty}^{\infty} f_X(x) \mathrm{d}x = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \mathrm{d}x = 1.$$

But is nonetheless true.

We know that given an **arbitrary** PDF $f_X(x)$ we can obtain its CDF $F_X(x)$ by integration:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt.$$

We **hope** that we can **solve** this integral to provide an **explicit** expression for $F_X(x)$.

For the normal distribution we have:

$$F_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt.$$

It is not easy, but it can be shown that it is **not possible** to solve this integral explicitly. The CDF for the normal distribution is **only** expressible as an integral of the PDF. The normal CDF must be found by a computer or through tables.

The normal distribution is **symmetric** around the parameter μ :

$$f_X(x) = f_X(2\mu - x).$$

To see this, observe:

$$f_X(2\mu-x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{((2\mu-x)-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\mu-x)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = f_X(x).$$

Any distribution that is symmetric about some number μ has two properties:

- μ is the **median**: $\mathbb{P}(X > \mu) = \mathbb{P}(X \le \mu) = 1/2$
- μ is the **mean**: $\mathbb{E}[X] = \mu$.

Proof of the median: split the integral at μ and use a change of variable:

$$1 = \int_{-\infty}^{\mu} f_X(x) dx + \int_{\mu}^{\infty} f_X(x) dx$$
$$= \int_{-\infty}^{\mu} f_X(2\mu - x) dx + \mathbb{P}(X > \mu)$$
$$= \int_{\mu}^{\infty} f_X(y) dy + \mathbb{P}(X > \mu)$$
$$= 2\mathbb{P}(X > \mu).$$

Any distribution that is symmetric about some number μ has two properties:

- μ is the **median**: $\mathbb{P}(X > \mu) = \mathbb{P}(X \le \mu) = 1/2$
- μ is the **mean**: $\mathbb{E}[X] = \mu$.

Proof of the mean: split the integral at μ and use a change of variable:

$$\mathbb{E}[X] = \int_{-\infty}^{\mu} x f_X(x) dx + \int_{\mu}^{\infty} x f_X(x) dx$$
$$= \int_{\mu}^{\infty} (2\mu - y) f_X(y) dy + \int_{\mu}^{\infty} x f_X(x) dx$$
$$= 2\mu \int_{\mu}^{\infty} f_X(y) dy = 2\mu \mathbb{P}(X > \mu) = \mu.$$

The variance of **any** distribution is computed from the equation:

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2] = \int_{-\infty}^{+\infty} (x - \mu)^2 f_X(x) dx.$$

Use this equation to compute the variance of the normal distribution via the change of variable $y=(x-\mu)/\sigma$ and integration by parts:

$$Var(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x - \mu)^2 e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^2 e^{-\frac{y^2}{2}} dy$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \left(-y e^{-\frac{y^2}{2}} \right) \Big|_{-\infty}^{\infty} + \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy$$

$$= \sigma^2.$$

Families of distributions we've seen thus far include:

- Uniform: $X \sim \text{uni}([l, u])$, for l < u
- Exponential: $X \sim \exp(\lambda)$, for $\lambda > 0$
- Normal: $X \sim N(\mu, \sigma)$, for $\mu \in \mathbb{R}$ and $\sigma > 0$

Given two RVs from a given family, e.g., X, Y each uniform over [c, d], it is **not** true in general that a linear combination of X, Y, e.g., aX + bY, is uniform.

- If X, Y are independent uniform RVs then X + Y has the Irwin-Hall distribution
- If X, Y are independent exponential RVs then X + Y has the gamma distribution

Most distribution families used in probability are not **closed** (also called **stable**) under linear combinations.

- The normal distribution, however, is closed (stable): linear combinations of normally distributed RVs are themselves normal.
- If $X \sim N(\mu_X, \sigma_X)$ and $Y \sim N(\mu_Y, \sigma_Y)$, then $aX + bY \sim N(\mu_Z, \sigma_Z)$ for some (μ_Z, σ_Z) . We will not prove this fact.
- What are (μ_z, σ_z) ?
 - Recall linearity of expectation: $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$.
 - Recall variance for linear combinations of **independent** RVs: $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$.
 - Thus $\mu_z = a\mu_x + b\mu_y$ and $\sigma_z^2 = a^2\sigma_x^2 + b^2\sigma_y^2$.

Recall that $Z \sim N(0,1)$ (with $\mu = 0$ and $\sigma = 1$) is the **standard** normal.

Standard normal PDF. The standard Gaussian (normal) RV Z has support $Z = \mathbb{R}$ and PDF and CDF:

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \ F_Z(z) = \Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx, \ z \in \mathbb{R}.$$

- The value of $F_Z(z)$ is tabulated, with a sample table on the next slide.
- The value of $F_Z(z)$ is also available by computer for many computer packages:
 - Matlab: normcdf(z)
 - Mathematica: CDF[NormalDistribution[0, 1], z]
 - Python: from scipy.stats import norm; norm.cdf(z)

http://f.hypotheses.org/wp-content/blogs.dir/253/files/2013/10/Capture-d?cran-2013-10-15--14.22.40.png

The table on the previous slide gives the CDF $\Phi(z)$ for a **standard** normal, $Z \sim \Phi(0,1)$. But what if you wish to evaluate $F_X(x)$ for $X \sim N(\mu, \sigma)$? Answer: standardize.

• For any RV X, not just a normal RV. If X has expectation $\mathbb{E}[X]$ and standard deviation $\mathrm{Std}(X)$, then its standardized version is:

$$Y = \frac{X - \mathbb{E}[X]}{\operatorname{Std}(X)}.$$

The RV Y has mean 0 and variance 1:

$$\begin{split} \mathbb{E}[Y] &= \mathbb{E}\left[\frac{X - \mathbb{E}[X]}{\mathrm{Std}(X)}\right] = \frac{\mathbb{E}[X - \mathbb{E}[X]]}{\mathrm{Std}(X)} = 0 \\ \mathrm{Var}(Y) &= \mathrm{Var}\left(\frac{X - \mathbb{E}[X]}{\mathrm{Std}(X)}\right) = \frac{\mathrm{Var}(\tilde{X})}{\mathrm{Var}(\tilde{X})} = 1. \end{split}$$

Therefore, if $X \sim N(\mu, \sigma)$ and we wish to evaluate $F_X(x)$ for some $x \in \mathbb{R}$:

$$F_X(x) = \mathbb{P}(X \le x)$$

$$= \mathbb{P}\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right)$$

$$= \mathbb{P}\left(Z \le \frac{x - \mu}{\sigma}\right)$$

$$= F_Z\left(\frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

We have standardized X into Z, and expressed $F_X(x)$ in terms of $\Phi(\cdot)$. The key insight is, for any a > 0:

$${X \le x} \Leftrightarrow {X - a \le x - a}, {X \le x} \Leftrightarrow {X/a \le x/a}.$$

Example. The annual snowfall is $X \sim N(\mu, \sigma)$ with $\mu = 60$ inches and $\sigma = 20$ inches. Find the probability the snowfall will be at least x = 80 inches. Note $(x - \mu)/\sigma = 1$.

$$\mathbb{P}(X > x) = \mathbb{P}\left(\frac{X - \mu}{\sigma} > \frac{x - \mu}{\sigma}\right)$$

$$= \mathbb{P}(Y > 1)$$

$$= 1 - \mathbb{P}(Y \le 1)$$

$$= 1 - \Phi(1)$$

$$\approx 1 - 0.8413 = 0.1587.$$

Outline

- 1 §3.3 Gaussian (normal) RVs
- §3.4 Joint PDFs of multiple RVs Joint PDFs

Joint CDFs

Expectation

More than two RVs

3 §3.5 ConditioningConditioning an RV on an event

Outline

- 1 §3.3 Gaussian (normal) RVs
- 2 §3.4 Joint PDFs of multiple RVs
 Joint PDFs

Joint CDFs
Expectation
More than two RVs

3 §3.5 ConditioningConditioning an RV on an event

The PDF f_X for a RV X obeys

$$\mathbb{P}(X \in B) = \int_B f_X(x) \mathrm{d}x,$$

for any $B \subseteq \mathbb{R}$. The PDF is normalized:

$$\int_{-\infty}^{+\infty} f_X(x) \mathrm{d}x = 1.$$

Recall that the PDF f_X for a RV X is "probability per unit length":

$$\mathbb{P}(X \in [x, x+\delta]) = \int_{x}^{x+\delta} f_X(t) dt \approx f_X(x) \delta \Rightarrow f_X(x) \approx \frac{\mathbb{P}(X \in [x, x+\delta])}{\delta}.$$

Define a pair of RVs (X, Y) as jointly continuous if there exists a function $f_{X,Y}(x,y)$ (the joint PDF) such that

$$\mathbb{P}((X,Y)\in B)=\int_{(x,y)\in B}f_{X,Y}(x,y)\mathrm{d}x\mathrm{d}y$$

for all $B \subset \mathbb{R}^2$. Letting $B = \mathbb{R}^2$ we see the joint PDF must obey the normalization property:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1.$$

Consider some point (a, c) and some small δ and form the set $B = [a, a + \delta] \times [c, c + \delta]$ with area δ^2 . Then

$$\mathbb{P}((X,Y)\in B)=\int_{c}^{c+\delta}\int_{a}^{a+\delta}f_{X,Y}(x,y)\mathrm{d}x\mathrm{d}y=f_{X,Y}(a,c)\delta^{2},$$

so $f_{X,Y}(x,y)$ is the "probability per unit area" at point (x,y).

Recall. Let (U, V) be discrete RVs with joint support \mathcal{A} and joint PMF $p_{U,V}(u,v) = \mathbb{P}(U=u,V=v)$ obeying

$$\sum_{(u,v)\in\mathcal{A}} p_{U,V}(u,v) = 1.$$

Recall that we can obtain the marginal PMFs by summing over the "other" variable:

$$p_{U}(u) = \sum_{v \in \mathcal{V}} p_{U,V}(u,v), \ u \in \mathcal{U}$$

$$p_{V}(v) = \sum_{u \in \mathcal{U}} p_{U,V}(u,v), \ v \in \mathcal{V}$$

Back to the continuous case. Let (X, Y) have joint PDF $f_{X,Y}(x, y)$. For any $A \subset \mathbb{R}$ we have

$$\mathbb{P}(X \in A) = \mathbb{P}(X \in A \cap Y \in \mathbb{R}) = \int_{A} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy dx.$$

Thus the marginal PDFs are:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \mathrm{d}y, \ f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \mathrm{d}x.$$

Example. Buffon's needle. Lines separation d, needles length l < d.

What is the probability a needle dropped on this surface intersects a line? http://mathworld.wolfram.com/BuffonsNeedleProblem.html

Example. Buffon's needle.

- x: distance from the center of the needle to the nearest line: $x \le d/2$
- θ : acute angle made by the angle relative to the horizontal: $\theta \leq \pi/2$
- For a random needle: $X \sim \mathrm{uni}([0,d/2])$ and $\Theta \sim \mathrm{uni}([0,\pi/2])$
- (X, θ) are independent with uniform joint distribution:

$$f_{X,\Theta}(x,\theta) = f_X(x)f_{\Theta}(\theta) = \frac{2}{d} \times \frac{2}{\pi} = \frac{4}{\pi d},$$

for any $(x, d) \in [0, d/2] \times [0, \pi/2]$.

Example. Buffon's needle.

• The event the needle hits the line is the event $X \leq \frac{1}{2} \sin \Theta$ and thus:

$$\mathbb{P}(X \le \frac{1}{2}\sin\Theta) = \int_{(x,\theta):x \le \frac{1}{2}\sin\theta} f_{X,\Theta}(x,\theta) dx d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \int_0^{(1/2)\sin\theta} dx d\theta = \frac{2I}{\pi d}.$$

◆ロト ◆園 ト ◆園 ト ◆園 ト 園 り へ ○

Example. Buffon's needle.

- We showed $p = \mathbb{P}(hit) = \frac{2l}{\pi d}$, or $\pi = \frac{2l}{pd}$.
- We can estimate p by dropping N needles and forming the estimate $\hat{p}^{(N)} = \#\{\text{needle } i \text{ hit}\}/N$
- We can then use this to estimate π : $\hat{\pi} = \frac{2l}{\hat{p}^{(N)}d}$.

The plot was created with the following Mathematica code:

```
(* Buffon's needle *)

Clear[phat, πhat];

Off[Power::infy];

phat[[, d_, Nn_] := Accumulate[Table[If[RandomReal[{0, d/2}] ≤ l/2Sin[RandomReal[{0, π/2}]], 1, 0], Range[Nn]]]/Range[Nn]
πhat[[, d_, Nn_] := 2l/(phat[l, d, Nn] d);

Clear[l, d, Nn, pl];

l = 1j d = 2; Nn = 1000;

Export[NotebookDirectory[] ↔ "Fig-Buffon3.odf", pl];
```

Outline

- 1 §3.3 Gaussian (normal) RVs
- 2 §3.4 Joint PDFs of multiple RVs

Joint CDFs

3 §3.5 Conditioning Conditioning an RV on an event

Recall. Given a PDF f_X for a continuous RV X we obtain the CDF F_X via

$$F_X(x) = \int_{-\infty}^x f_X(t) \mathrm{d}t.$$

This is more easily understood in analogy with the case of a PMF p_Y for a discrete RV Y, where the CDF F_Y is

$$F_Y(y) = \sum_{x \le y} p_Y(x).$$

For discrete RVs (X, Y) with joint PMF $p_{X,Y}(x, y)$, the joint CDF is

$$F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y) = \sum_{(u,v): u \leq x, v \leq y} p_{X,Y}(u,v).$$

The PDF is obtainable from the CDF via $f_X(x) = \frac{d}{dx} F_X(x)$.

The joint CDF of two continuous RVs (X, Y) is

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y).$$

The joint CDF can be found from the joint PDF by integration:

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) dt ds.$$

The joint PDF can be found from the joint CDF by differentiation:

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y).$$

Example. Suppose (X, Y) have joint CDF

$$F_{X,Y}(x,y) = (1 - e^{-\lambda x})(1 - e^{-\mu y}), (x,y) \in \mathbb{R}^2_+.$$

Find the joint PDF:

$$f_{X,Y}(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F_{X,Y}(x,y)$$

$$= \frac{\partial}{\partial x} \frac{\partial}{\partial y} (1 - e^{-\lambda x}) (1 - e^{-\mu y})$$

$$= \frac{\partial}{\partial x} (1 - e^{-\lambda x}) \frac{\partial}{\partial y} (1 - e^{-\mu y})$$

$$= \lambda e^{-\lambda x} \mu e^{-\mu y}.$$

This example has $X \sim \exp(\lambda)$ and $Y \sim \exp(\mu)$, with (X, Y) independent.

Outline

- 1 §3.3 Gaussian (normal) RVs
- 2 §3.4 Joint PDFs of multiple RVs

Joint PDFs
Joint CDFs

Expectation

More than two RVs

§3.5 Conditioning Conditioning an RV on an event

Expectation

Recall that if X is a continuous RV with PDF $f_X(x)$ and Y = g(X) for some function $g(\cdot)$, then

$$\mathbb{E}[Y] = \mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx.$$

Now let (X, Y) be a pair of continuous RVs with joint PDF $f_{X,Y}(x,y)$ and Z = g(X, Y) for some function $g(\cdot, \cdot)$, then

$$\mathbb{E}[Z] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f_{X,Y}(x, y) dx dy.$$

Expectation

Example. Let $X \sim \exp(1)$ and $Y \sim \exp(1)$, with (X, Y) independent. Define $Z = \sqrt{XY}$. Find $\mathbb{E}[Z]$.

$$\mathbb{E}[Z] = \int_0^\infty \int_0^\infty \sqrt{xy} e^{-x} e^{-y} dx dy$$
$$= \int_0^\infty \sqrt{x} e^{-x} dx \int_0^\infty \sqrt{y} e^{-y} dy$$
$$= \frac{\sqrt{\pi}}{2} \times \frac{\sqrt{\pi}}{2} = \frac{\pi}{4}.$$

The integral $\int_{x} \sqrt{x} e^{-x} dx$ requires use of $erf(\cdot)$ function.

Expectation

Linearity continues to hold: if X, Y are continuous RVs with means $\mathbb{E}[X]$ and $\mathbb{E}[Y]$, then

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y].$$

Outline

- 1 §3.3 Gaussian (normal) RVs
- 2 §3.4 Joint PDFs of multiple RVs

Joint PDFs
Joint CDFs
Expectation

More than two RVs

3 §3.5 ConditioningConditioning an RV on an event

More than two RVs

In perfect analogy with the case of two RVs, we have for three RVs (X, Y, Z):

$$\mathbb{P}((X,Y,Z)\in B)=\int_{(x,y,z)\in B}f_{X,Y,Z}(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z,\ \forall B\subset\mathbb{R}^3.$$

We can marginalize Z by integrating over it to find the joint for (X, Y):

$$f_{X,Y}(x,y) = \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dz,$$

and we can marginalize (Y, Z) by integrating over them to find the marginal for X:

$$f_X(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y,Z}(x,y,z) dy dz.$$

- 4 ロ b 4 個 b 4 直 b 4 直 b 9 Q C・

More than two RVs

Naturally the expecation for W = g(X, Y, Z) is:

$$\mathbb{E}[W] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y, z) f_{X, Y, Z}(x, y, z) dx dy dz.$$

and naturally

$$\mathbb{E}[aX + bY + cZ] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c\mathbb{E}[Z].$$

More generally, for RVs (X_1, \ldots, X_n) and scalars (a_1, \ldots, a_n) we have:

$$\mathbb{E}[a_1X_1+\cdots a_nX_n]=\mathbb{E}\left[\sum_{i=1}^n a_iX_i\right]=\sum_{i=1}^n a_i\mathbb{E}[X_i]=a_1\mathbb{E}[X_1]+\cdots+a_n\mathbb{E}[X_n].$$

◆ロト ◆部 ▶ ◆恵 ▶ ◆恵 ▶ ・恵 ・ かへで

Outline

- 1 §3.3 Gaussian (normal) RVs
- 2 §3.4 Joint PDFs of multiple RVs
 Joint PDFs
 Joint CDFs
 Expectation
 More than two RVs
- **3** §3.5 Conditioning

 Conditioning an RV on an event

Outline

- 1 §3.3 Gaussian (normal) RVs
- §3.4 Joint PDFs of multiple RVs Joint PDFs Joint CDFs Expectation More than two RVs
- **3** §3.5 Conditioning

 Conditioning an RV on an event

Conditioning an RV on an event

Given an event A with $\mathbb{P}(A) > 0$ the conditional PDF $f_{X|A}(x)$ is defined as the function for which:

$$\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx, \ \forall B \subset \mathbb{R}.$$

Again, by choosing $B = \mathbb{R}$ we require normalization:

$$1 = \int_{-\infty}^{\infty} f_{X|A}(x) \mathrm{d}x.$$

For events of the form $\{X \in A\}$ we find

$$\mathbb{P}(X \in B | X \in A) = \frac{\mathbb{P}(X \in B, X \in A)}{\mathbb{P}(X \in A)} = \frac{1}{\mathbb{P}(X \in A)} \int_{A \cap B} f_X(x) dx$$

which means the conditional PDF is

$$f_{X|\{X\in A\}}(x) = \begin{cases} \frac{f_X(x)}{\mathbb{P}(X\in A)}, & x\in A\\ 0, & \text{else} \end{cases}$$

◆ロト ◆昼ト ◆星ト ◆星ト 星 める○

Conditioning an RV on an event

Example. (Exponential RV is memoryless.) Suppose the lifetime of a lightbulb T is an exponential RV with parameter λ , i.e., $T \sim \operatorname{Exp}(\lambda)$. Given T > t, find the distribution for the additional lifetime X of the lightbulb.

Conditioning an RV on an event

Let $A = \{T > t\}$. Then:

$$\mathbb{P}(X > x | A) = \mathbb{P}(T > t + x | T > t)$$

$$= \frac{\mathbb{P}(T > t + x, T > t)}{\mathbb{P}(T > t)}$$

$$= \frac{\mathbb{P}(T > t + x)}{\mathbb{P}(T > t)} = \frac{e^{-\lambda(t+x)}}{e^{-\lambda t}} = e^{-\lambda x}.$$

In other words, $\mathbb{P}(X > x | A) = \mathbb{P}(X > x)$, i.e., the additional lifetime of the lightbulb is independent of the past lifetime. This is the memorylessness property of the exponential distribution.