Aula 2 - Limites Laterais e Limites envolvendo infinitos

Muller Moreira S Lopes

Universidade Federal do Rio Grande do Norte

17 de agosto de 2023

11 dias atrás

Recapitulando...

• Seja o primeiro problema apresentado na aula passada:

Exemplo

Dada a função $f(x)=x^2-5x+6$, qual o limite de f(x) quando x tende a 2?

• A operação de limite estuda para qual valor a função f(x) se aproxima a medida em que valores mais próximos de um valor predeterminado (no caso 2) são tomados.

Recapitulando...

• Neste exemplo, o valor de f(x) se aproximou de 0 ao fazer $x \to 2$ tanto ao se utilizar valores maiores, quanto por valores menores do que 2:

Sequência obtida ao aproximar f(x) por valores **menores** e cada vez mais próximos do que 2

x	f(x)
1.9	0.11
1.99	0.0101
1.999	0.001001
1.9999	0.00010001

Sequência obtida ao aproximar f(x) por valores **maiores** e cada vez mais próximos do que 2

proximos do que 2					
x	f(x)				
2.1	-0.9				
2.01	-0.0099				
2.001	-0.00099899999				
2.0001	-0.00009998999				

• Desta forma, diz-se o limite estudado existe e é 0.

Limites Laterais

• Ao estudar o limite de f(x) quando $x \to a$, nem sempre as sequências obtidas por valores maiores e menores do que a convergem para o mesmo valor.

Exemplo

Calcule o limite:

$$\lim_{x \to 0} \frac{|x|}{x}$$

aqui ele tende pro infinito negativo ou positivo

Limites Laterais

Ao observar o gráfico, percebe-se que:

- ao fazer $x \to 0$ com valores **maiores** do que 0, a sequência de valores converge para 1.
- ao fazer $x \to 0$ com valores **menores** do que 0, a sequência de valores converge para -1.

Definição

- O limite obtido a partir da sequência de valores **maiores** do que o valor de x estudado é chamado de **Limite lateral à direita**.
- O limite obtido a partir da sequência de valores **menores** do que o valor de *x* estudado é chamado de **Limite lateral à esquerda**.

Limites Laterais: Notação

• Limite lateral à direita: Limite de f(x) quando $x \to a$ utilizando valores maiores do que a:

$$\lim_{x \to a^+} f(x)$$

• Limite lateral à esquerda: Limite de f(x) quando $x \to a$ utilizando valores menores do que a:

$$\lim_{x \to a^+} f(x)$$

Condição de existência de um limite

Diz-se que o limite L de f(x) quando $x \to a$ existe se, e somente se:

Exercício

Exercício 1

Calcule, se existir, o limite $\lim_{x\to 3} f(x)$, em que a função f(x) é dada por:

$$f(x) = \begin{cases} x - 1, & \text{se } x < 3\\ 3x - 7, & \text{se } x > 3 \end{cases}$$

Limite lateral à esquerda:

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} x - 1 = 2$$

Limite lateral à direita:

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} 3x - 7 = 2$$

O limite $\lim_{x\to 3} f(x)$ existe e é igual a 2, pois:

Exercício

Exercício 1

Calcule, se existir, o limite $\lim_{x\to 3} f(x)$, em que a função f(x) é dada por:

$$f(x) = \begin{cases} x - 1, & \text{se } x < 3\\ 3x - 7, & \text{se } x > 3 \end{cases}$$

Limite lateral à esquerda:

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} x - 1 = 2$$

Limite lateral à direita:

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} 3x - 7 = 2$$

O limite $\lim_{x\to 3} f(x)$ existe e é igual a 2, pois $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} f(x) = 2$

Exercício

Exercício 1

Calcule, se existir, o limite $\lim_{x\to 3} f(x)$, em que a função f(x) é dada por:

$$f(x) = \begin{cases} x - 1, & \text{se } x < 3\\ 3x - 7, & \text{se } x > 3 \end{cases}$$

Limite lateral à esquerda:

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} x - 1 = 2$$

Limite lateral à direita:

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} 3x - 7 = 2$$

O limite $\lim_{x\to 3} f(x)$ existe e é igual a 2, pois:

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = 2$$

Mudou o assunto.

Exemplo

Calcule o limite abaixo, se existir:

$$\lim_{x \to 0} \frac{1}{x}$$

0 é uma assíntota horizontal dessa função 2000 -0.01 -0.0075 -0.005 -0.0025 0.005 0.0075 0.01

- Ao observar o gráfico, percebe-se que os limites laterais não convergem para o mesmo valor. Logo, o limite não existe.
- No caso do limite à direita, o valor de f(x) assume valores cada vez mais altos a medida em que $x \to 0$. Desta forma, diz-se que o limite à direita **tende ao infinito**:

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

Analogamente, o limite à esquerda tende para o "menos infinito":

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

- Ao observar o gráfico, percebe-se que os limites laterais não convergem para o mesmo valor. Logo, o limite não existe.
- No caso do limite à direita, o valor de f(x) assume valores cada vez mais altos a medida em que $x \to 0$. Desta forma, diz-se que o limite à direita **tende ao infinito**:

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

• Analogamente, o limite à esquerda tende para o "menos infinito":

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

- Ao observar o gráfico, percebe-se que os limites laterais não convergem para o mesmo valor. Logo, o limite não existe.
- No caso do limite à direita, o valor de f(x) assume valores cada vez mais altos a medida em que $x \to 0$. Desta forma, diz-se que o limite à direita **tende ao infinito**:

$$\lim_{x\to 0^+}\frac{1}{x}=\infty$$

Analogamente, o limite à esquerda tende para o "menos infinito":

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

Exemplo

Calcule o limite lateral abaixo:

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{x}$$

Aplicando as propriedades de limite:

Esse exemplo vem para nos apresentar o conceito de uma indeterminação. Analisando o resultado anterior, é de se imaginar que pudessemos quebrar o problema em algo parecido.

Este resultado é o que chamamos de expressão indeterminada

Exemplo

Calcule o limite lateral abaixo:

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{x}$$

Aplicando as propriedades de limite:

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x^2} - \lim_{x \to 0^+} \frac{1}{x} = \infty - \infty$$

Este resultado é o que chamamos de expressão indeterminada

Expressões indeterminadas

- Apesar de "soar lógico", a expressão $\infty \infty \neq 0$.
 - Isso ocorre pois os termos $\frac{1}{x^2}$ e $\frac{1}{x}$ não convergirem para o infinito "na mesma velocidade".

x	$\frac{1}{x^2}$	$\frac{1}{x}$	$\frac{1}{x^2} - \frac{1}{x}$
0.1	100	10	90
0.01	10000	100	9900
0.001	1000000	1000	999000

 Este tipo de problema ocorre em diversas situações e cada caso deve ser estudado individualmente.

Expressões indeterminadas

- Expressões indeterminadas são valores que não possuem um significado matemático definido.
- Exemplos:
 - $\frac{0}{0}$;
 - $\frac{0}{\infty}$;
 - $\infty \infty$;
 - $0 \times \infty$;
 - 0^0 ;
 - ∞^0 ;
 - 1^{∞} :
- No cálculo de limites, estas expressões podem ser contornadas através de manipulações algébricas.
 - Exemplo da aula passada: $\lim_{x\to 2} \frac{x^2-4}{x-2}$.

Expressões indeterminadas: Propriedades

Propriedades das operações envolvendo limites que tendem ao infinito:

	$\lim f(x)$	$\lim g(x)$	h(x) =	$\lim h(x)$	simbolicamente
01	±∞	±∞	f(x) + g(x)	±∞	$\pm \infty \pm \infty = \pm \infty$
02	+∞	+∞	f(x) - g(x)	?	(+∞) - (+∞) é indeterminação
03	+∞	k	f(x) + g(x)	+∞	$+\infty + k = +\infty$
04	$-\infty$	k	f(x) + g(x)	-∞	$-\infty + k = -\infty$
05	+∞	+∞	$f(x) \cdot g(x)$	+∞	$(+\infty)\cdot(+\infty)=+\infty$
06	+∞	$-\infty$	$f(x) \cdot g(x)$	-∞	$(+\infty)\cdot(-\infty)=-\infty$
07	+∞	k > 0	$f(x) \cdot g(x)$	+∞	$+\infty \cdot k = +\infty, k > 0$
08	+∞	k < 0	$f(x) \cdot g(x)$		$+\infty \cdot k = -\infty, k < 0$
09	±∞	0	$f(x) \cdot g(x)$?	$\pm \infty \cdot 0$ é indeterminação
10	k	$\pm \infty$	f(x)/g(x)	0	$k/\pm\infty=0$
11	±∞	±∞	f(x)/g(x)	?	±∞/±∞ é indeterminação
12	k > 0	0+	f(x)/g(x)	+∞	$k/0^+ = +\infty, k > 0$
13	+∞	0+	f(x)/g(x)	+∞	$+\infty/0^+ = +\infty$
14	k > 0	0-	f(x)/g(x)	-∞	$k/0^- = -\infty, k > 0$
15	+∞	0-	f(x)/g(x)	$-\infty$	$+\infty/0^- = -\infty$
16	0	0	f(x)/g(x)	?	0/0 é indeterminação

Exemplo

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{x}$$

Aplicando manipulações algébricas:

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x^2} - \frac{x}{x^2} = \lim_{x \to 0^+} \frac{1 - x}{x^2}$$

Aplicando propriedades de limites:

$$\lim_{x \to 0^+} \frac{1 - x}{x^2} = \left(\lim_{x \to 0^+} 1 - x\right) \left(\lim_{x \to 0^+} \frac{1}{x^2}\right) = 1 \times \infty = \infty$$

Portanto, o limite estudado tende ao infinito

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

Voltando ao exemplo

Exemplo

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{x}$$

Aplicando manipulações algébricas:

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{x^2} - \frac{x}{x^2} = \lim_{x \to 0^+} \frac{1 - x}{x^2}$$

Aplicando propriedades de limites:

$$\lim_{x \to 0^+} \frac{1 - x}{x^2} = \left(\lim_{x \to 0^+} 1 - x\right) \left(\lim_{x \to 0^+} \frac{1}{x^2}\right) = 1 \times \infty = \infty$$

Portanto, o limite estudado tende ao infinito.

manipula de um jeito que trás pra algo que sabemos

Esboce o gráfico da função f definida por:

$$f(x) = \begin{cases} 3 - x, & \text{se } x < 1\\ x^2 + 1, & \text{se } x > 1 \end{cases}$$

Depos encontre os limites:

- $\lim_{x\to 1^+} f(x)$
 - $\lim_{x\to 1^-} f(x)$
 - $\lim_{x\to 1} f(x)$

Esboce o gráfico da função f definida por:

$$f(x) = \begin{cases} 3 - x, & \text{se } x < 1\\ x^2 + 1, & \text{se } x > 1 \end{cases}$$

Depos encontre os limites:

- $\lim_{x\to 1^+} f(x)$
 - $\lim_{x\to 1^-} f(x)$
 - $\lim_{x\to 1} f(x)$

Considere função f definida por:

$$f(x) = \frac{|x-4|}{x-4}$$

Encontre os limites:

- $\lim_{x\to 4^+} f(x)$
- $\lim_{x\to 4^-} f(x)$
- $\lim_{x\to 4} f(x)$

Considere função f definida por:

$$f(x) = \frac{|x-4|}{x-4}$$

Encontre os limites:

- $\lim_{x\to 4^+} f(x)$
- $\lim_{x\to 4^-} f(x)$
- $\lim_{x\to 4} f(x)$

Calcule o limite:

$$\lim_{x \to -\infty} \frac{2x^2 - 5}{3x^2 + x + 2}$$

Aqui estamos lidando com um limite tendendo ao infinito. Lidando com isso, tenhamos algumas coisas em mente:

- 1. Se temos um valor arbitrario sendo dividido por um x tendendo ao infinito, ele irá para zero. Essa é a base de usar o maior grau para dividir em cima em baixo. (Sempre o maior grau!!!!)
- 2. Os limites no infinito de uma função polinomial, são iguais aos limites do termo de maior grau. Isso é equivalente a realizar a operação de dividir em cima e em baixo pelo termo de maior grau, e manipular depois com x tendendo ao infinito. Na prova, devo fazer a manipulação algébrica

Calcule o limite:

$$\lim_{x \to \infty} \frac{2x^2 - 5}{3x^4 + x + 2}$$

Isso aqui tá difícil. Tentar mais depois.

Calcule os limites:

$$\lim_{x \to \infty} \frac{\sqrt{9x^2 + 2}}{4x + 3}$$
$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 2}}{4x + 3}$$