Практикум по программированию на языке Python

Занятие 6: Представление, обработка, анализ и визуализация данных

Мурат Апишев (mel-lain@yandex.ru)

Москва, 2020

Определение матрицы

- *Матрица* математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы
- Обычно нас интересуют вещественнозначные матрицы (т.е. над полем \mathbb{R})
- Пример обозначения матрицы: $A^{n \times m} = \{a_{ij}\}_{i=1,j=1}^{n,m}$
- Первая размерность число строк, вторая число столбцов (стандарт в Python и Matlab)

Некоторые операции над матрицами

• Сложение:

$$C = A + B \equiv c_{ij} = a_{ij} + b_{ij} \quad \forall i = \overline{1, n}, \ j = \overline{1, m}$$

• Транспонирование:

$$C = A^T \equiv c_{ji} = a_{ij} \quad \forall i = \overline{1, n}, \ j = \overline{1, m}$$

• Умножение:

$$C = A * B \equiv c_{ij} = \sum_{k=1}^{r} a_{ik} * b_{kj} \quad \forall i = \overline{1, n}, \ j = \overline{1, m}$$

• Обращение:

$$A^{-1}: A*A^{-1} = A^{-1}*A = I, I = diag(n, n)$$

Представление матрицы в Python

Простейший вариант - список списков:

```
In [1]: A = [
            [1, 2, 3],
            [4, 5, 6],
            [7, 8, 9],
        B = [
            [1, 0, 0],
            [0, 2, 0],
            [0, 0, 3],
        def print_matrix(A):
            for row in A:
                 print(row)
             print()
        print matrix(A)
        print_matrix(B)
        [1, 2, 3]
```

```
[4, 5, 6]
[7, 8, 9]
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]
```

Опишем базовые операции: сложение

matrix_add 0.006 ms
[2, 2, 3]
[4, 7, 6]
[7, 8, 12]

Опишем базовые операции: транспонирование

[2, 5, 8] [3, 6, 9]

Опишем базовые операции: умножение

[1, 4, 9] [4, 10, 18] [7, 16, 27]

```
In [5]: | def dot(a, b):
              return sum(x * y for (x, y) in zip(a, b))
         @timed
         def matrix mul(A, B):
             # chec\bar{k} correctness of dimensions
             n, m = len(A), len(B[0])
             C = [[0.0 \text{ for } in \text{ range(n)}] \text{ for } in \text{ range(m)}]
             B T = matrix transpose(B)
             for i in range(n):
                  for j in range(m):
                      C[i][j] = dot(A[i], B_T[j])
              return C
         print_matrix(matrix_mul(A, B))
         matrix_transpose 0.008 ms
         matrix_mul 0.084 ms
```

Библиотека NumPy

- Позволяет работать с многомерными массивами
- Реализует множество базовых матричных операций
- Работает на порядки быстрее самописных реализаций в Python
- Поддерживается большинством сторонних модулей, работающих с матрицами

In [24]: import numpy as np

Почему NumPy быстрая

- Значительная часть кода написана на С
- Базовым классом является ndarray, имеющий следующие отличия от списков:
 - 1. NumPy array имеет фиксированную длину, задаваемую в момент его создания (списки в Python могут менять размер динамически)
 - 2. Все элементы в NumPy array имеют один тип
- NumPy array хранится в памяти в виде одного последовательного блока, что позволяет эффективно использовать процессорный кэш и векторные инструкции
- NumPy можно подключить к высокооптимизированным библиотекам для матричной алгебры (BLAS, LAPACK, Intel MKL)
- Часть матричных операций может быть распараллелена при наличии в системе нескольких потоков

Способы создания NumPy array

- 1. Пустой
- 2. Заполненный нулями
- 3. Заполненный единицами
- 4. Заполненный нужным значением

```
In [23]: print(np.empty(shape=[2, 3])) # values are arbitrary
         [[1. 1. 1.]
          [1. 1. 1.]]
In [18]: | print(np.zeros([2, 3]))
         [[0. 0. 0.]
          [0. 0. 0.]
In [22]:
         print(np.ones([2, 3]))
         [[1. 1. 1.]
          [1. 1. 1.]]
In [19]:
         print(np.full([2, 3], 3.0))
         [[3. 3. 3.]
          [3. 3. 3.]]
```

Способы создания NumPy array

1. На основе списков

```
In [25]: print(np.array([[1, 2, 3], [4, 5, 6]]))
       [[1 2 3]
       [4 5 6]]
```

Число элементов должно удовлетворять размерности, numpy попытается преобразовать типы:

```
In [26]: print(np.array([[1, 2, 3], [4, 6]]))
    [list([1, 2, 3]) list([4, 6])]
```

Тип можно указать явно, и неправильное число элементов приведёт к ошибке:

Важные параметры создания ndarray

- shape список или кортеж с размерностями создаваемого массива
- dtype указание типа элементов массива, если массив создаётся на базе объектов из Python, то должно существовать преобразование из типа этих объектов в указываемый тип
- order порядок хранения данных в памяти, по строкам (C-order) или же по столбцам (Fortranorder). По-умолчанию используется C-order

Отличие классов np.ndarray и np.matrix

- ndarray более общий класс, поддерживающий все возможные операции
- matrix более узкий класс, наследующий ndarray. Он поддерживает несколько операций и атрибутов, специфичных для матриц, в удобной нотации
- При этом все те же операции можно применять и к ndarray, если он двумерный и состоит из чисел (начиная с Python 3.5 умножение можно записать как A @ B)
- Рекомендуется пользоваться ndarray, чтобы не вносить путаницу в код и не проверять каждый раз, какого именно типа массив будет обрабатываться

Изменение размерности

reshape позволяет изменить размерности массива **без изменения общего числа элементов**:

```
In [37]: | a = np.zeros([2, 3, 2])
         print(a, a.shape)
         [[0.0.]
           [0.0.]
           [0. \ 0.]]
          [[0. 0.]
          [0.0.]
           [0. 0.]]] (2, 3, 2)
In [38]: b = a.reshape((1, 2 * 3 * 2))
         print(b, b.shape, '\n')
         b[0][0] = 10 # 'b' is a new view on the same data
         print(a, a.shape)
         [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
         [[[10. 0.]
          [0. 0.]
           [ 0. 0.]]
          [[0. 0.]
          [0.0.]
           [0. 0.1] (2, 3, 2)
```

Изменение размерности

Отметим, что практически все методы np.ndarray доступны в виде функций модуля NumPy:

Размерность можно изменить и напрямую:

```
In [40]: c.shape = (1, 2 * 3 * 2)
    print(c, c.shape)

[[10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] (1, 12)
```

Про размерности массивов

```
In [92]: a = np.array([1, 2, 3])
b = np.array([[1, 2, 3]])
c = np.array([[1], [2], [3]])
print(a.shape)
print(b.shape)
print(c.shape)
(3,)
(1, 3)
(3, 1)
```

- Данные лежат в памяти одним и тем же образом
- Вопрос только во view == способ индексации == число и порядок индексов

```
In [93]: print(a.ndim, b.ndim, c.ndim)
```

1 2 2

Полезная для понимания происходящего статья: https://stackoverflow.com/questions/22053050/difference-between-numpy-array-shape-r-1-and-r (https://stackoverflow.com/questions/22053050/difference-between-numpy-array-shape-r-1-and-r)

Индексирование

- Всё аналогично спискам, можно делать срезы и использовать отрицательные индексы
- Индексы и срезы в многомерных массивах не обязательно разделять квадратными скобками

```
In [55]: a = np.array([[1, 2, 3], [3, 4, 5]])
         print(a, '\n')
         print(a[0], '\n')
         print(a[0, 0: 100500], '\n')
         print(a[0][1], '\n')
         print(a[-1][-2], '\n')
         print(a[-1, -2], '\n')
         print(a[0, 0: -1])
         [[1 2 3]
          [3 4 5]]
         [1 2 3]
         [1 2 3]
         2
         4
         4
         [1 2]
```

Индексирование

Индексирование можно производить по логическому массиву такого же размера:

```
In [57]: a = np.arange(10)
    i = np.array([j % 2 == 0 for j in range(10)])
    print(a, '\n')
    print(i, '\n')
    print(a[i], '\n')

[0 1 2 3 4 5 6 7 8 9]

[ True False True False True False True False]
    [0 2 4 6 8]
```

Арифметические операции

- Арифметические операции в общем случае по-элементные и требуют одинакового размера операндов
- Но часто NumPy может применять их к операндам разного размера с помощью broadcasting, то есть правил обработки операндов разного размера

Примеры операций с массивами одного размера:

```
In [58]: A, B = np.array(A), np.array(B) # were declared previously
    print(A, '\n\n', B, '\n\n', A + B)

[[1 2 3]
    [4 5 6]
    [7 8 9]]

[[1 0 0]
    [0 2 0]
    [0 0 3]]

[[2 2 3]
    [4 7 6]
    [7 8 12]]
```

Арифметические операции

```
In [59]: | print(A - B)
         [[0 2 3]
          [4 3 6]
          [7 8 6]]
In [60]: | print(A * B)
         [[1 0 0]
          [ 0 10 0]
          [ 0 0 27]]
In [63]: | print(B / A)
         [[1.
                      0.
                                 0.
          [0.
                      0.4
          [0.
                      0.
                                 0.33333333]]
In [65]: | print(A @ B)
         [[1 4 9]
          [ 4 10 18]
          [ 7 16 27]]
```

Если по одному из измерений массивы не равны, и у одного из них эта размерность имеет длину 1, то он будет продублирован по этой размерности:

```
In [66]: a = np.array([[1, 2], [3, 4]])
b = np.array([1])
c = np.array([1, 1])

print(b + c, '\n')
print(a + b, '\n')
print(a + c)

[2 2]

[[2 3]
[4 5]]

[[2 3]
[4 5]]
```

Если не совпадает количество размерностей, то массив, у которого их меньше, будет "добиваться" слева размерностями длины 1:

```
In [67]: a = np.ones((2, 3, 4))
b = np.ones(4)

print(a + b) # here a.shape=(2, 3, 4) and b.shape is considered to be (1, 1, 4)

[[[2. 2. 2. 2.]
[2. 2. 2. 2.]
[2. 2. 2. 2.]]
[[2. 2. 2. 2.]]
[[2. 2. 2. 2.]]
```

Добавим к массиву вектор-строку:

Теперь попробуем добавить столбец:

```
In [69]: a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.array([1, 2])
a + b
```

ValueError: operands could not be broadcast together with shapes (2,3) (2,)

- Ошибка возникла из-за того, что прибавлялась строка с неправильным размером
- Нужно преобразовать строку в столбец, и тогда NumPy поймёт, как с ней работать

Для этого воспользуемся reshape (способ хороший, но далеко не единственный):

Матричное умножение

Расмотрим для случая двумерных матриц, кому интересны многомерные, изучайте https://numpy.org/devdocs/reference/generated/numpy.dot.html
(https://numpy.org/devdocs/reference/generated/numpy.dot.html)

Транспонирование

- Расмотрим для случая двумерных матриц, кому интересны многомерные, изучайте
 https://stackoverflow.com/questions/32034237/how-does-numpys-transpose-method-permute-the-axes-of-an-array)
- При транспонировании (как и reshape) возвращается ссылка на те же данные

```
In [72]: print(A, '\n\n', A.T, '\n\n', A.transpose())

[[1 2 3]
       [4 5 6]
       [7 8 9]]

[[1 4 7]
       [2 5 8]
       [3 6 9]]

[[1 4 7]
       [2 5 8]
       [3 6 9]]
```

Сравнение скорости

Воспользуемся декоратором timed для сравнения скорости матричных операций, реализованных в numpy и написанных выше с помощью списков:

```
In [247]:
          @timed
          def matrix add np(A, B): return A + B
          @timed
          def matrix mul np(A, B): return A @ B
In [246]: tmp = [range(1000) for in range(1000)]
          X, Y = np.array(tmp), np.array(tmp)
            = matrix add(X, Y)
          _ = matrix_add_np(X, Y)
          tmp = [range(200) for in range(200)]
          X, Y = np.array(tmp), np.array(tmp)
          _{-} = matrix_mul(X, Y)
          = matrix mul np(X, Y)
          matrix add 550.172 ms
          matrix add np 2.707 ms
          matrix transpose 9.073 ms
          matrix mul 1882.368 ms
          matrix mul np 5.546 ms
```

Агрегирующие функции

Подобных функций много, ищите нужное в документации NumPy

```
In [77]: a = np.array([1, 2, 3, 4, 3, 2, 1, 3, 3])
        print('Min element: {}'.format(np.min(a)))
        print('Min element position: {}'.format(np.argmin(a)))
       print('Median: {}'.format(np.median(a)))
        print('Cumulative sum: {}'.format(np.cumsum(a)))
        print('Cumulative product: {}'.format(np.cumprod(a)))
       Min element:
       Min element position: 0
       Max element:
                          2.44444444444446
       Mean:
        Sum:
                          22
       Median:
                          3.0
        Cumulative sum:
                          [ 1 3 6 10 13 15 16 19 22]
        Cumulative product:
                                     6
                                         24 72 144 144 432 1296]
```

Что будет происходить в случае многомерного массива?

Агрегирующие функции

В многомерном случае операция применяется к массиву, вытянутому в вектор (flatten):

Для работы с определёнными размерностям нужно указать явно параметр axis:

Конкатенация массивов

Конкатенировать несколько массивом можно с помощью функций concatenate (общий случай), hstack и vstack:

Ещё несколько полезных функций

Примеры задач на матрицы в NumPy

Условие - нельзя использовать

- циклы
- генераторы списков/списковые включения
- map-функции (в т.ч. np. vectorize)

Задача 1. Пронумеровать в порядке следования максимальные элементы в векторе. Для вектора [1, 2, 3, 3, 2, 1, 3, 1] должно получиться [0, 0, 1, 2, 0, 0, 3, 0]:

```
In [89]: def task_1(a):
    b = a == np.max(a)
    return np.cumsum(b) * b

print(task_1([1, 2, 3, 3, 2, 1, 3, 1]))

[0 0 1 2 0 0 3 0]
```

Примеры задач на матрицы в NumPy

Задача 2. Реализуйте функцию подсчёта произведения ненулевых элементов на диагонали прямоугольной матрицы. Для матрицы [[1, 0, 1], [2, 0, 2], [3, 0, 3], [4, 4, 4]] ответом является 3. Если ненулевых элементов нет, функция должна возвращать None:

```
In [90]: def task_2(A):
    B = A.diagonal()
    return np.prod(B[B > 0]) if np.any(B > 0) > 0 else None

print(task_2(np.array([[1, 0, 1], [2, 0, 2], [3, 0, 3], [4, 4, 4]])))
3
```

Задача 3. Найти максимальный элемент в вектор-строке среди элементов, перед которым стоит нулевой. Для [0, 4, 2, 0, 3, 0, 0, 5, 7, 0] ответ равен 5:

```
In [91]: def task_3(a):
    return np.max(a[np.where(a[0: -1] == 0)[0] + 1]) # [0] to skip technical wrapper, + 1 for shift
print(task_3(np.array([0, 4, 2, 0, 3, 0, 0, 5, 7, 0])))
```

DataFrame. Библиотека Pandas

- DataFrame объект, представляющий собой таблицу с
 - 1. именованными столбцами
 - 2. индексированными строками
 - 3. содержимым потенциально разного типа в разных столбцах
- Модуль Pandas предоставляет возможность считать данные в DataFrame, проводить простую аналитику и строить несложные визуализации
- DataFrame обладает очень широкими возможностями, мы рассмотрим только ключевые
- Большинство модулей для анализа данных умеет работать с DataFrame в качестве входных данных
- Pandas полностью базируется на NumPy и Matplotlib

Пример DataFrame

```
In [27]: import pandas as pd
import seaborn

df = seaborn.load_dataset('planets')
    print(type(df))

df.head()
```

<class 'pandas.core.frame.DataFrame'>

Out[27]:

	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.300	7.10	77.40	2006
1	Radial Velocity	1	874.774	2.21	56.95	2008
2	Radial Velocity	1	763.000	2.60	19.84	2011
3	Radial Velocity	1	326.030	19.40	110.62	2007
4	Radial Velocity	1	516.220	10.50	119.47	2009

In [39]: | df.tail()

Out[39]:

		method	number	orbital_period	mass	distance	year
-	1030	Transit	1	3.941507	NaN	172.0	2006
	1031	Transit	1	2.615864	NaN	148.0	2007
	1032	Transit	1	3.191524	NaN	174.0	2007
	1033	Transit	1	4.125083	NaN	293.0	2008
	1034	Transit	1	4.187757	NaN	260.0	2008

Доступ к элементам

По строкам:

```
In [95]: df.iloc[2: 4] # == df[2: 4]
```

Out[95]:

		method	number	orbital_period	mass	distance	year
	2	Radial Velocity	1	763.00	2.6	19.84	2011
	3	Radial Velocity	1	326.03	19.4	110.62	2007

По столбцам:

In [96]: df[['mass', 'year']][2: 4]

Out[96]:

 mass
 year

 2
 2.6
 2011

 3
 19.4
 2007

DataFrame и Series

- Series это одномерный массив с элементами одного типа с индексом
- Каждый извлекаемый столбец является объектом Series
- Cam DataFrame можно воспринимать как набор Series
- Cодержимое Series можно извлечь в виде np.ndarray, обратившись к полю values

```
In [98]: | print(type(df['mass']))
          print(type(df[['mass', 'year']]), '\n')
          <class 'pandas.core.series.Series'>
          <class 'pandas.core.frame.DataFrame'>
In [101]: | print(df['method'][0: 4], '\n')
               Radial Velocity
               Radial Velocity
               Radial Velocity
               Radial Velocity
          Name: method, dtype: object
In [102]:
          print(df['method'][0: 4].values)
          print(type(df['method'][0: 4].values))
          ['Radial Velocity' 'Radial Velocity' 'Radial Velocity' 'Radial Velocity']
          <class 'numpy.ndarray'>
```

Операции над столбцами DataFrame

Столбцы поддерживают поэлементные операции (если они поддерживаются их элементами):

```
In [104]: print((df['mass'] * df['mass']).head(), '\n')

0     50.4100
1     4.8841
2     6.7600
3     376.3600
4     110.2500
Name: mass, dtype: float64

In [105]: print((df['method'] * 3).head())

0     Radial VelocityRadial VelocityRadial Velocity
1     Radial VelocityRadial VelocityRadial Velocity
2     Radial VelocityRadial VelocityRadial Velocity
3     Radial VelocityRadial VelocityRadial Velocity
4     Radial VelocityRadial VelocityRadial Velocity
Name: method, dtype: object
```

Выборка по условию

In [106]: | df[df['mass'] > 20.0]

Out[106]:

		method	number	orbital_period	mass	distance	year
_	63	Radial Velocity	1	305.50	20.60	92.51	2013
	85	Radial Velocity	2	379.63	21.42	NaN	2009
	321	Radial Velocity	1	2371.00	25.00	37.05	2008

Лучше делать так (подробности в https://stackoverflow.com/questions/38886080/python-pandas-series-why-use-loc):

In [107]: | df.loc[df['mass'] > 20.0]

Out[107]:

		method	number	orbital_period	mass	distance	year
	63	Radial Velocity	1	305.50	20.60	92.51	2013
	85	Radial Velocity	2	379.63	21.42	NaN	2009
	321	Radial Velocity	1	2371.00	25.00	37.05	2008

Создание DataFrame

Можно напрямую:

Out[108]:

	col1	col2	col3
row1	1	2	3
row2	4	5	6

Можно загрузить с диска (поддерживаются разные форматы):

```
In []:
    try:
        pd.read_csv(path)
        pd.read_excel(path)
        pd.read_json(path)
        pd.read_pickle(path)
        except:
        pass
```

Редактирование DataFrame

- Первый параметр loc определяет затрагиваемые строки (индексы), второй столбцы
- Если они ещё не существовали, то создаются, и на пересечении ставится присваиваемое значение
- Все прочие новые ячейки заполняются NaN

```
In [40]: df.loc['mass', 0] = 40 # this 'mass' has nothing to do with 'mass' column name
df.tail()
```

Out[40]:

		method	number	orbital_period	mass	distance	year	0
:	1031	Transit	1.0	2.615864	NaN	148.0	2007.0	NaN
•	1032	Transit	1.0	3.191524	NaN	174.0	2007.0	NaN
-:	1033	Transit	1.0	4.125083	NaN	293.0	2008.0	NaN
-:	1034	Transit	1.0	4.187757	NaN	260.0	2008.0	NaN
-	nass	NaN	NaN	NaN	NaN	NaN	NaN	40.0

```
In [110]: df = df.assign(year=4000)
    df.tail()
```

Out[110]:

	method	number	orbital_period	mass	distance	year	0
1031	Transit	1.0	2.615864	NaN	148.0	4000	NaN
1032	Transit	1.0	3.191524	NaN	174.0	4000	NaN
1033	Transit	1.0	4.125083	NaN	293.0	4000	NaN
1034	Transit	1.0	4.187757	NaN	260.0	4000	NaN
mass	NaN	NaN	NaN	NaN	NaN	4000	40.0

Удаление столбцов/строк

```
In [114]: df.drop([0, 1], axis=0, inplace=True) # first arg is indices in df.index
    df.head()
```

Out[114]:

	method	number	orbital_period	mass	distance	year
2	Radial Velocity	1	763.00	2.60	19.84	2011
3	Radial Velocity	1	326.03	19.40	110.62	2007
4	Radial Velocity	1	516.22	10.50	119.47	2009
5	Radial Velocity	1	185.84	4.80	76.39	2008
6	Radial Velocity	1	1773.40	4.64	18.15	2002

```
In [115]: df.drop(['number'], axis=1, inplace=True) # == del df['number']
df.head()
```

Out[115]:

		method	orbital_period	mass	distance	year
	2	Radial Velocity	763.00	2.60	19.84	2011
	3	Radial Velocity	326.03	19.40	110.62	2007
_	4	Radial Velocity	516.22	10.50	119.47	2009
	5	Radial Velocity	185.84	4.80	76.39	2008
	6	Radial Velocity	1773.40	4.64	18.15	2002

Добавление столбцов/строк

```
In [116]: df['zeros'] = [0] * df.shape[0]
    df.head()
```

Out[116]:

	method	orbital_period	mass	distance	year	zeros
2	Radial Velocity	763.00	2.60	19.84	2011	0
3	Radial Velocity	326.03	19.40	110.62	2007	0
4	Radial Velocity	516.22	10.50	119.47	2009	0
5	Radial Velocity	185.84	4.80	76.39	2008	0
6	Radial Velocity	1773.40	4.64	18.15	2002	0

```
In [117]: df.loc[1000000] = ["Str", 0.0, 0.0, 0.0, 0.0, 0]
    df.tail()
```

Out[117]:

		method	orbital_period	mass	distance	year	zeros
	1031	Transit	2.615864	NaN	148.0	2007	0
	1032	Transit	3.191524	NaN	174.0	2007	0
-	1033	Transit	4.125083	NaN	293.0	2008	0
	1034	Transit	4.187757	NaN	260.0	2008	0
	1000000	Str	0.000000	0.0	0.0	0	0

Итерирование по DataFrame

Конкатенация DataFrame-ов

		col1	col2	col3
copy_1	row1	1	2	3
	row2	4	5	6
copy_2	row1	1	2	3
	row2	4	5	6

```
In [128]: 
    df_2 = pd.concat([df_1, df_1], axis=1)
    df_2.columns = ['col_{{}}'.format(i) for i in range(6)]
    df_2
```

Out[128]:

	col_0	col_1	col_2	col_3	col_4	col_5
row1	1	2	3	1	2	3
row2	4	5	6	4	5	6

С помощью этой же функции можно реализовать join.

Полезные атрибуты и функции DataFrame

6 False

False

False False

False False

```
In [129]: | df.dtypes
                                     object
             method
Out[129]:
                                    float64
              orbital period
                                    float64
             mass
             distance
                                    float64
                                      int64
             year
                                      int64
             zeros
             dtype: object
In [130]:
             df.shape
              (1034, 6)
Out[130]:
In [131]:
             df.isna().head()
Out[131]:
                 method orbital_period mass distance year
                                                   zeros
                       False
              2 False
                                   False
                                       False
                                               False
                                                   False
              3 False
                       False
                                  False False
                                               False False
              4 False
                                  False False
                                               False False
                       False
              5 False
                       False
                                  False False
                                               False False
```

Полезные атрибуты и функции DataFrame

```
In [135]: | df = seaborn.load dataset('planets')
          print('Max value of "mass":
                                                                  {}'.format(df['mass'].max()))
          print('Mean value of "mass":
                                                                 {}'.format(df['mass'].mean()))
          print('Median value of "mass":
                                                                  {}'.format(df['mass'].median()))
          print('Sum if "mass" values:
                                                                  {}'.format(df['mass'].sum()))
          print('Correlation between "mass" and "number" values: {}'.format(df['mass'].corr(df['number'])))
          Max value of "mass":
                                                           25.0
          Mean value of "mass":
                                                           2.6381605847953233
          Median value of "mass":
                                                           1.26
          Sum if "mass" values:
                                                           1353.37638
          Correlation between "mass" and "number" values: -0.24142949353433238
```

Можно вывести много характеристик разом

In [136]: | df.describe() # only for columns with numeric data

Out[136]:

	number	orbital_period	mass	distance	year
count	1035.000000	992.000000	513.000000	808.000000	1035.000000
mean	1.785507	2002.917596	2.638161	264.069282	2009.070531
std	1.240976	26014.728304	3.818617	733.116493	3.972567
min	1.000000	0.090706	0.003600	1.350000	1989.000000
25%	1.000000	5.442540	0.229000	32.560000	2007.000000
50%	1.000000	39.979500	1.260000	55.250000	2010.000000
75%	2.000000	526.005000	3.040000	178.500000	2012.000000
max	7.000000	730000.000000	25.000000	8500.000000	2014.000000

Базовая визуализация на основе DataFrame

Построим простой график, где по Ox идут индексы, а по Oy - значения столбца(-ов) с числовым содержимым:

```
In [139]: %matplotlib inline
    df['distance'].plot()
```

Out[139]: <matplotlib.axes._subplots.AxesSubplot at 0x7f25df0c1b38>

Базовая визуализация на основе DataFrame

Построим гистограмму на выходе значений метода describe для пары столбцов:

```
In [140]: df.describe()[['distance', 'mass']].plot.bar()
```

Out[140]: <matplotlib.axes._subplots.AxesSubplot at 0x7f25dea4fc88>

Базовая визуализация на основе DataFrame

Построим круговую диаграмму значений столбца:

```
In [155]: df['year_2010'] = df['year'].apply(lambda x: int(x > 2012))
df['year_2010'].value_counts().plot.pie()
```

Out[155]: <matplotlib.axes._subplots.AxesSubplot at 0x7f25d194bdd8>

Библиотека Matplotlib

- Один из основных инструментов для визуализации разнообразных 2D и 3D графиков и диаграм
- Позволяет создавать как статические, так и анимированные изображения
- Поддерживаются много растровых и векторных форматов
- Гибкая система настроек позволяет управлять внешним видом графика, комбинированием графиков, оформлением полотна, легенды и т.д.
- На странице библиотеки есть вводный туториал:
 <u>https://matplotlib.org/tutorials/introductory/pyplot.html#using-mathematical-expressions-in-text</u>
 (<u>https://matplotlib.org/tutorials/introductory/pyplot.html#using-mathematical-expressions-in-text</u>)
- У проекта хорошая документация, часто можно найти похожую на нужную диаграмму и кастомизировать её код под свои нужды (см. галерею https://matplotlib.org/3.1.1/gallery/index.html))
- Возможность библиотеки очень велики, рассмотрим ниже несколько относительно простых примеров

Самый простой график

```
In [171]: import matplotlib
import matplotlib.pyplot as plt

x = np.array(range(0, 1000, 1)) / 40
y = np.sin(x)

plt.figure()
plt.plot(x, y)
```

Out[171]: [<matplotlib.lines.Line2D at 0x7f25d13dacf8>]

Немного форматирования, и выглядит лучше

Out[181]: Text(0.5, 1.0, 'Plot function "y = sin(x)"')

Можно размещать несколько графиков на одном полотне

Out[182]: Text(0.5, 1.0, 'Plot function "y = sin(x)"')

Можно размещать несколько графиков рядом

```
In [251]: x = np.array(range(1, 1000, 1)) / 40
y, y_2, y_3 = np.sin(x), np.cos(x), np.log10(x)
plt.figure(figsize=(15, 4))

plt.subplot(1, 3, 1)
plt.plot(x, y, 'r--')

plt.subplot(1, 3, 2)
plt.plot(x, y_2, 'b')

plt.subplot(1, 3, 3)
plt.ylim((-2.0, 2.0))
plt.yticks(ticks=[-2.0, 0.0, 2.0])
plt.plot(x, y_3, 'g+')

plt.show()
```


Визуализация выборки

```
In [224]: num_samples = 100
    x, y = np.random.rand(num_samples), np.random.rand(num_samples)
    labels = np.random.randint(low=0, high=3, size=num_samples)

plt.figure(figsize=(12, 6))
    plt.scatter(x, y, s=40, c=labels) # s - area of circles
    plt.show()
```


Визуализация выборки и разделяющей поверхности

Здесь код уже большой и менее понятный, но всё равно легко гуглится (основа этого примера взята с сайта https://scikit-learn.org (https://scikit-learn.

```
In [249]: from sklearn.datasets import make_circles
    from sklearn import svm

X, y = make_circles(noise=0.2, factor=0.2, random_state=1, n_samples=200)
    model = svm.SVC(kernel='rbf', C=1.0, gamma=1.0)
    model.fit(X, y)

plot_results(model, X, y, level=0.98)
```


Спасибо за внимание!