Лабораторная работа №1. Аналитическое моделирование. Построение аналитической модели по вербальному

ОПИСАНИЮ.Основой методов построения аналитических моделей является построение и программная реализация *МАТЕМАТИЧЕСКОЙ МОДЕЛИ*.

Основные этапы использования формальных математических методов:

анализ ситуации и постановка задачи исследования
построение математической модели
формирование задачи выбора наилучшей стратегии
решение задачи и анализ полученного решения с возможной
корректировкой модели

Анализ ситуации позволяет выделить основные типы параметров, описывающих состояние системы: *УПРАВЛЯЕМЫЕ*, *ЦЕЛЕВЫЕ И НЕУПРАВЛЯЕМЫЕ*.

Управляемые параметры являются искомыми и их значения определяют стратегию.

Целевые параметры необходимы для описания поставленных целей.

Значения целевых параметров зависят от управляемых параметров.

Значения **неуправляемых** параметров не могут изменяться руководством, оставаясь постоянными, известными полностью или частично.

Разделение параметров на 3 основные группы носит относительный характер и может изменяться в зависимости от ситуации.

Построение мат. модели включает введение условных обозначений для параметров и, самое главное, *УСТАНОВЛЕНИЕ ЗАВИСИМОСТЕЙ*, которые связывают эти параметры. Любая модель является абстракцией, отражающей лишь самые важные черты, особенности описываемой системы. Будем считать, что зависимости между параметрами задаются в виде следующего набора функций:

$$W_i = F(X_1, X_2, ..., X_n, a_1, a_2, ..., a_k), i = (1, m),$$
(1. 1)

где

W - обозначения целевых параметров,

Х - обозначения управляемых параметров,

а - обозначения неуправляемых параметров,

m - число целевых параметров,

n - число управляемых параметров,

k - число неуправляемых параметров.

Построение статичной аналитической модели оптимизации с реализацией в среде MS Excel.

Задача оптимизации, или задача выбора наилучшей стратегии, формируется на основе мат. модели следующим образом:

- 1. из целевых параметров выбирается ОДИН, определяющий ЦЕЛЬ функционирования системы и, следовательно, конкретизирующий понятие наилучшей стратегии; значение этого параметра в зависимости от ситуации должно быть или как можно больше, или как можно меньше; соответствующая функция F называется ЦЕЛЕВОЙ или КРИТЕРИЕМ ЭФФЕКТИВНОСТИ; эта функция позволяет сравнивать стратегии между собой и выбирать наилучшую из них в соответствии с поставленной целью;
- 2. на значения остальных (m-1) целевых параметров накладываются ОГРАНИЧЕНИЯ вида bi < Wi < ci, где b и с заданные величины; эти ограничения определяют набор ДОПУСТИМЫХ стратегий, т.е. такие значения управляемых параметров, при которых выполняются СРАЗУ ВСЕ заданные условия; наилучшая стратегия должна выбираться ТОЛЬКО из допустимых.

В результате задача выбора наилучшей стратегии математически формулируется как ЗАДАЧА ОПТИМИЗАЦИИ:

НАЙТИ ТАКИЕ ЗНАЧЕНИЯ УПРАВЛЯЕМЫХ ПАРАМЕТРОВ, ПРИ КОТОРЫХ ВЫПОЛНЯЮТСЯ ВСЕ ОГРАНИЧЕНИЯ НА ЗНАЧЕНИЯ ЦЕЛЕВЫХ ПАРАМЕТРОВ И ДОСТИГАЕТСЯ НАИБОЛЬШЕЕ (НАИМЕНЬШЕЕ) ЗНАЧЕНИЕ ЦЕЛЕВОЙ ФУНКЦИИ.

Условная запись:

найти
$$x_1, x_2, ..., x_n$$
 так, чтобы $W = F(x, a) \Longrightarrow \max(\min)$ (1. 2)

при выполнении ограничений

$$b_i < W_i = F(x, a) < c_i, i = (2,m)$$
 (1.3)

Наиболее простой и распространенной на практике задачей подобного типа является задача ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. Ее особенность состоит в том, что ВСЕ функции F являются ЛИНЕЙНЫМИ, т.е.

$$F(X, a) = a_1X_1 + a_2X_2 + ... + a_nX_n$$
 (1.4)

Задача линейного программирования (ЗЛП).

Найти вектор стратегий $X = (X_1, ... X_n)$ при котором :

$$F(X) = c_1 X_1 + ... + c_n X_n => \max \text{ (min)}$$
 $a_{i,1} X_1 + ... + a_{i,n} X_n \# \text{ bi } i=(1,m)$ (1. 5) где $\# \#$ - один из знаков $=,<=,>=,<,>$ $X_i=0$ $j=(1,n)$

Пример 1

Неформальная постановка задачи

Автогараж располагает 3 видами грузовых машин: А,Б,В грузоподъемностью 8т, 4т и 3т соответственно. Одна машина типа А тратит на выполнение работы 60л бензина, типа Б - 30л, типа С - 20л. Найти число машин, исходя из следующих условий:

- затраты бензина не превосходят 3000л,
- объем перевозок не менее 300т,
- суммарное количество машин минимально.

І этап: Анализ словесного описания задачи

Управляемые параметры: количество машин каждого вида Неуправляемые параметры: грузоподъемность каждой машины и расход бензина

Целевые параметры: суммарные затраты бензина, суммарный объем перевозок суммарное количество используемых машин

II этап: Построение математической модели

Таблица 1.1

Характеристика	Машина типа	Машина типа	Машина типа
машины	A	Б	В
Грузоподъемность, т	8	4	3
Расход бензина	60	30	20

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ:

Управляемые параметры: X_1, X_2, X_3 - количество машин типа A,Б,В соответственно, т.е. n=3

Целевые параметры:

- W_1 затраты бензина,
- W₂ объем перевозок,
- W₃ количество используемых машин,

т.е. m = 3

Неуправляемые параметры:

$$a_{1,1}$$
=60 $a_{1,2}$ =30 $a_{1,3}$ =20 $a_{2,1}$ =8 $a_{2,2}$ =4 $a_{2,3}$ =3

Соотношения между параметрами:

$$W_1 = 60X_1 + 30X_2 + 20X_3$$

$$W_2 = 8X_1 + 4X_2 + 3X_3$$

$$W_3 = X_1 + X_2 + X_3$$
(1. 6)

III этап: Формирование задачи выбора наилучшей стратегии

Искомые параметры: X_1 , X_2 , X_3

Целевая функция: $F(X) = X_1 + X_2 + X_3 => \min$

Ограничения:

$$60X_1 + 30X_2 + 20X_3 \le 3000$$

$$8X_1 + 4X_2 + 3X_3 \ge 300$$

$$X_i \ge 0, (i=1,3)$$
(1.7)

Решение задач линейного программирования с помощью надстройки «поиск решений» в среде excel

Поиск решения - это надстройка EXCEL, которая позволяет решать оптимизационные задачи. Если во вкладке Данные отсутствует опция Поиск решения, значит, необходимо загрузить эту надстройку.

Для MS Excel 2010.

Перейдите во вкладку Файл, и выберите пункт меню Параметры:

Рис.1. 1 Выбор пункта меню «Параметры».

В появившемся окне выберите пункт $Hadcmpoй\kappa u$, а в правой части пункт «Поиск решения»:

Рис.1. 2 Управление надстройками.

В нижней части окна нажмите на кнопку «Перейти». Откроется окно выбора активируемых надстроек. Выберите Поиск решения и нажмите «OK»:

Рис.1. 3. Добавление надстройки «Поиск решения».

После этого пункт Поиск решения появится на вкладке Данные:

Рис.1. 4 Вкладка «Данные» с пунктом «Поиск решения».

Для непосредственного решения задачи оптимизации необходимо:

- 1. Создать форму для ввода условий задачи.
- 2. Указать адреса ячеек, в которые будет помещен результат решения (изменяемые ячейки).
- 3. Ввести исходные данные.
- 4. Ввести зависимость для целевой функции.
- 5. Ввести зависимости для ограничений.
- 6. Указать назначение целевой функции (установить целевую ячейку).
- 7. Ввести ограничения.
- 8. Ввести параметры для решения ЗЛП.

Рассмотрим процесс решения на примере *Задачи оптимального использования ресурсов*.

Задача оптимального использования ресурсов

Фабрика имеет в своем распоряжении определенное количество ресурсов: рабочую силу, деньги, сырье, оборудование, производственные и т.п. Допустим, например, ресурсы трех видов: рабочая сила, сырье и оборудование - имеются в количестве соответственно 80 (чел/дней), 480 (кг) и 130 (станко/ч). Фабрика может выпускать ковры четырех видов. Информация о количестве единиц каждого ресурса, необходимых для производства одного ковра каждого вида, и доходах, получаемых предприятием от единицы каждого вида товаров, приведена в таблице.

Ресурсы	Нормы ра	ицу	Наличие		
	изделия	ресурсов			
	ковер «Лужайка»	ковер «Силуэт»	ковер «Детский»	ковер «Дымка»	
Труд	7	2	2	6	80
Сырье	5	8	4	3	480
Оборудование	2	4	1	8	130
Цена (т. руб.)	3	4	3	1	

Требуется найти такой план выпуска продукции, при котором будет максимальной общая стоимость продукции.

Обозначим через X_1 , X_2 , X_3 , X_4 количество ковров каждого типа.

Математическая модель задачи.

Целевая функция - это выражение, которое необходимо максимизировать:

$$f(X) = 3X_1 + 4X_2 + 3X_3 + X_4$$

Ограничения по ресурсам

$$7X_1 + 2X_2 + 2X_3 + 6X_4 \le 80,$$

 $5X_1 + 8X_2 + 4X_3 + 3X_4 \le 480,$
 $2X_1 + 4X_2 + X_3 + 8X_4 \le 130,$
 $X_1, X_2, X_3, X_4 \ge 0.$

- 1. Для задачи *оптимального использования ресурсов* подготовим форму для ввода условий (Рис.1. 5).
- **2.** В нашей задаче оптимальные значения вектора $X = (X_1, X_2, X_3, X_4)$ будут помещены в ячейках **B3:E3**, оптимальное значение целевой функции в ячейке **F4.**
- 3. Введем исходные данные в созданную форму. Получим результат, показанный на Рис.1. 6.

1	Α	В	С	D	Е	F	G	Н	1
1			Перемен	Переменные					
2		X1	X2	X3	X4				
3	значение					ЦФ			
4	коэф. В ЦФ								
5			Ограниче	ения					
6	Вид ресурсов					левая часть	знак	правая ча	СТЬ
7	труд								
8	сырье								
9	оборудование								
10									

Рис.1. 5. Введена форма для ввода данных.

Весь текст на Рис.1. 5 является комментарием и на решение задачи не влияет.

	Α	В	С	D	Е	F	G	Н	1
1			Перемен	ные					
2		X1	X2	X3	X4				
3	значение					ЦФ			
4	коэф. В ЦФ	3	4	3	1				
5			Ограниче	ния					
6	Вид ресурсов					левая часть	знак	правая ча	сть
7	труд	7	2	2	6		<=	80	
8	сырье	5	8	4	3		<=	480	
9	оборудование	2	4	1	8		<=	130	
10									

Рис.1. 6. Данные введены.

- 4. Введем зависимость для целевой функции¹.
 - Курсор в F4.
 - Перейти на вкладку Формулы.
 - Выбрать пункт «Вставить функцию».

Рис.1. 7.

• М1. На экране диалоговое окно Мастер функций шаг 1 из 2.

8

¹ Обозначим через М1 действие «один щелчок левой кнопкой мыши »

Рис.1. 8.

- Курсор в окно Категория на категорию Математические.
- M1.
- Курсор в окно Функции на СУММПРОИЗВ.
- M1
- В массив 1 ввести² В\$3:Е\$3.
- В массив 2 ввести В4:Е4.

Рис.1. 9. Задание функции – значения целевой функции.

• На экране: в F4 введена функция, как показано на Рис.1. 10.

 $^{^2}$ Адреса ячеек во все диалоговые окна удобно вводить не с клавиатуры, а «протаскивая» мышь по ячейкам, чьи адреса следует ввести.

	СУММПРОИЗВ	- (□ ×	√ f _x =	:СУММПРО	DИЗВ(В\$3:E	\$3;B4:E4)					
	Α	В	С	D	Е	F	G	Н	1	J	K
1			Перемен	ные							
2		X1	X2	X3	X4						
3	значение					ЦФ					
4	коэф. В ЦФ	3	4	3	1	=СУММПРО	- 13B(B\$3:E\$	3;B4:E4)			
5			Ограниче	вин		СУММПРОИ		1; [массив2];	; [массив3];	[массив4];	.)
6	Вид ресурсов					левая часть	знак	правая ча	сть		
7	труд	7	2	2	6		<=	80			
8	сырье	5	8	4	3		<=	480			
9	оборудование	2	4	1	. 8		<=	130			
10											

Рис.1. 10. Ввод целевой функции.

- 5. Введем зависимость для левых частей ограничений:
- Курсор в F4.
- Копировать в буфер.
- Курсор в F7.
- Вставить из буфера.
- Курсор в F8.
- Вставить из буфера.
- Курсор в F9.
- Вставить из буфера.

На этом ввод зависимостей окончен.

Рис.1. 11. Ввод выражений для вычисления левых частей ограничений.

Запуск «Поиска решения»

После перехода на вкладку *Данные* и выбора *Поиск решения* появится диалоговое окно *Поиск решения*.

В диалоговом окне Поиск решения есть три основных параметра:

- Установить целевую ячейку
- Изменяя ячейки
- Ограничения

Сначала нужно заполнить поле «Установить целевую ячейку». Во всех задачах для средства *Поиск решения* оптимизируется результат в одной из

ячеек рабочего листа. Целевая ячейка связана с другими ячейками этого рабочего листа с помощью формул. Средство *Поиск решения* использует формулы, которые дают результат в целевой ячейке, для проверки возможных решений. Можно выбрать поиск наименьшего или наибольшего значения для целевой ячейки или же установить конкретное значение.

Второй важный параметр средства Поиск решения - это параметр Изменяя ячейки. Изменяемые ячейки - это те ячейки, значения в которых будут изменяться для того, чтобы оптимизировать результат в целевой ячейке. Для поиска решения можно указать до 200 изменяемых ячеек К изменяемым ячейкам предъявляется два основных требования: они не должны содержать формул, и изменение их значений должно отражаться на изменении результата в целевой ячейке. Другими словами, целевая ячейка зависима от изменяемых ячеек.

Третий параметр, который нужно вводить для *Поиска решения* — это *Ограничения*.

- 6. Назначение целевой функции (установить целевую ячейку).
 - Курсор в поле «Установить целевую ячейку».
 - Ввести адрес \$F\$4.
 - Ввести направление целевой функции: Максимальному значению.

Ввести адреса искомых переменных:

- Курсор в поле «Изменяя ячейки».
- Ввести адреса B\$3:E\$3.
- 7. Ввод ограничений.
 - Курсор в поле «Добавить». Появится диалоговое окно Добавление ограничения.
 - В поле «Ссылка на ячейку» ввести адрес \$F\$7.
 - Ввести знак ограничения ≤.
 - Курсор в правое окно.
 - Ввести адрес \$Н\$7.

Рис.1. 12. Добавление ограничения.

- Добавить. На экране опять отобразится диалоговое окно Добавление ограничения.
- Ввести остальные ограничения.
- После ввода последнего ограничения ввести ОК.
- 8. Ввод параметров для решения ЗЛП.
- Выбрать из выпадающего списка метод решения *«Поиск решения линейных задач симплекс-методом»*.
- Установить флажок Неотрицательные значения.
 - На экране появится диалоговое окно Поиск решения с введенными условиями.

Рис.1. 13. Введены все условия для решения задачи.

• Нажать кнопку «Найти решение». Появится окно «Результат поиска решения»:

Рис.1. 14. Окно результата.

1	Α	В	С	D	Е	F	G	Н	1
1			Перемен	Переменные					
2		X1	X2	X3	X4				
3	значение	0	30	10	0	ЦФ			
4	коэф. В ЦФ	3	4	3	1	150			
5			Ограниче	ния					
6	Вид ресурсов					левая часть	знак	правая ча	СТЬ
7	труд	7	2	2	6	80	<=	80	
8	сырье	5	8	4	3	280	<=	480	
9	оборудование	2	4	1	8	130	<=	130	
10									

Рис.1. 15. Решение на листе.

Полученное решение означает, что максимальный доход 150 тыс. руб. фабрика может получить при выпуске 30 ковров второго вида и 10 ковров третьего вида. При этом ресурсы труд и оборудование будут использованы полностью, а из 480 кг пряжи (ресурс сырье) будет использовано 280 кг.

Создание отчета по результатам поиска решения

EXCEL позволяет представить результаты поиска решения в форме отчета. Существует три типа таких отчетов:

Результаты (Answer). В отчет включаются исходные и конечные значения целевой и влияющих ячеек, дополнительные сведения об ограничениях.

Рис.1. 16. Выбор отчета по результатам.

Устойчивость (Sensitivity). Отчет, содержащий сведения о чувствительности решения к малым изменениям в изменяемых ячейках или в формулах ограничений.

Пределы (Limits). Помимо исходных и конечных значений изменяемых и целевой ячеек в отчет включаются верхние и нижние границы значений, которые могут принимать влияющие ячейки при соблюдении ограничений.

Рис.1. 17. Фрагмент отчета по результатам.

В отчете по результатам содержатся оптимальные значения переменных X_1 X_2 , X_3 , X_4 , которые соответственно равны 0, 30, 10, 0, значение целевой функции - 150, а также левые части ограничений.

Индивидуальные варианты заданий.

Задание №1.

Предприятие может выпускать изделия 4-х видов: A, B, C и D. Для каждого изделия известны:

- цена в рублях,
- трудоемкость изготовления в человеко-часах,
- -зарплата рабочих в рублях.

Таблица 1. 3

Показатели	Виды изделий							
	A	A B C						
Цена	1000	500	2600	4800				
единицы								
Трудоемкость	10000	6000	4000	5000				
единицы								
Зарплата на	4000	6000	400	3200				
единицу								

Найти объем выпуска всех изделий, исходя из следующих условий:

- 1) Прибыль от реализации изделий должна быть максимальна
- 2) Фонд зарплаты ограничен 1 млн. руб.
- 3) Численность рабочих ограничена 6 000 человек. Примечание: численность рабочих =(трудоемкость изготовления/1800), прибыль=цена-зарплата рабочих.

<u>Задание №2.</u>

Обработка деталей A, B, C может производиться на трёх станках (I, II, III). В следующей таблице указаны нормы затрат времени на обработку станком соответствующей детали, продажная цена единицы детали (в рублях) и предельное время работы станка:

Таблица 2.

Детали	Н	Время работы			
	A	A B C			
Станки				станка	
Ι	0.2	0.1	0.05	40	
II	0.6	0.3	0.2	60	
III	0.2	0.1	0.4	30	
Цена	10	16	12		

Определить оптимальную производственную программу для получения максимума суммарной прибыли, предполагая, что любая деталь

может производиться на любом из станков и что станок II должен работать не менее 20 часов.

Задание №3.

Швейная фабрика может выпускать изделия трех видов: А , В и С . Эти изделия проходят 3 стадии производства. Известны нормы времени в человеко-часах для изготовления одного изделия на каждой стадии производства (Таблица 1. 4). Известна полная себестоимость и цена одного изделия для всех видов.

Таблица 1.4.

Показатели -		іды из	делий	Фонд
Tiorasarcsivi	A	В	С	времени
Нормы времени по				
стадиям:				
1-я стадия	0.3	0,4	0,6	3360
2-я стадия	0,4	0,4	0,7	2668
3-я стадия	0,5	0,4	0,8	5010
Полная себестоимость, руб.	15	40,5	97,8	-
Цена, руб.	17,5	42	100	

Примечание: прибыль = цена - себестоимость.

Задан действительный фонд времени для каждой стадии производства. Найти план выпуска изделий, обеспечивающий максимальную прибыль.

Задание №4.

Предприятие производит замену оборудования четырех типов: A ,B ,C , D. Известны следующие показатели (Таблица 1. 5);

- повышение производительности от единицы оборудования каждого из типов;
- стоимость единицы оборудования каждого из типов;
- площадь, .необходимая для размещения единицы оборудования каждого из типов.

Найти количество оборудования всех типов, походя из следующих условий: повышение производительности максимально, площадь, выделенная под размещение оборудования, не превосходит 200м². Фонд средств, выделенных на приобретение оборудования, равен 140 тыс. руб.;

Таблица 1.5.

Показатели	Типы оборудования					
	A	В	С	D		
Повышение производительности	1,6	3	2,5	4		
Стоимость единицы оборудования, тыс. руб.	2,8	3,2	4,5	6,8		
Площадь под единицу оборудования, м ²	3	4,2	4,8	12,0		

Задание №5. Предприятие может выпускать изделия трех видов: А, В, С, для изготовления которых нужны материалы двух типов. Известны нормы расхода этих материалов на изготовление одного изделия каждого вида (Таблица 1. 6), а также запас этих материалов на предприятии. Известны трудоемкости изготовления единицы каждого изделия, прибыль от реализации единицы изделия. Найти план выпуска продукции, исходя из следующих условий; прибыль максимальна, трудоемкость выпуска всех изделий не превосходит 16 800 человеко-часов, причем изделий типа А надо выпустить не менее 300 шт.;

Таблица 1. 6.

Показатели	Виды изделий			Запас
			материалов	
	A	В	С	
Норма расхода материалов, т				
материал №1	0.32	0.31	0,38	900
материал № 2	0,2	0,2	0,08	300
Трудоемкость .человеко-часов	10.2	7,5	5.8	
Прибыль на единицу, руб.	100	40	20	