TrioCFD Reference Manual V1.9.5

Support team: trust@cea.fr

December 19, 2024

Contents

1	Synt	ax to define a mathematical function	20
2	Exis	ting & predefined fields names	22
3	inter	rprete	23
	3.1	Ale_neumann_bc_for_grid_problem	24
	3.2	Bloc_lecture	24
		3.2.1 Bloc_criteres_convergence	25
		3.2.2 Solveur_petsc_option_cli	25
	3.3	Beam_model	25
	3.4	Bloc lecture beam model	25
		3.4.1 Bloc_poutre	26
		3.4.2 Newmarktimescheme deriv	27
		3.4.3 Hht	27
		3.4.4 Ma	27
		3.4.5 Fd	27
			27
			28
	2.5		
	3.5	Create_domain_from_sub_domain	28
	3.6	Debogft	28
	3.7	Write_med	29
	3.8	Extraire_surface_ale	29
	3.9	Ijk_ft_double	30
	3.10	±	35
		Link_cgns_files	35
		Merge_med	36
		Multiplefiles	36
	3.14	Op_conv_ef_stab_polymac_face	36
	3.15	Op_conv_ef_stab_polymac_p0p1nc_elem	36
	3.16	Op_conv_ef_stab_polymac_p0p1nc_face	37
	3.17	Op_conv_ef_stab_polymac_p0_face	37
	3.18	Option_cgns	37
		Option_interpolation	37
		Option_polymac	38
		Option_polymac_p0	38
		Parallel_io_parameters	38
		Projection_ale_boundary	39
		Raffiner_isotrope_parallele	39
		Read_med	40
		Solver moving mesh ale	41
		Structural_dynamic_mesh_model	41
		Bloc_lecture_structural_dynamic_mesh_model	41
			42
		Test_sse_kernels	
		Analyse_angle	42
		Associate	42
		Associer_algo	43
		Associer_pbmg_pbfin	43
		Associer_pbmg_pbgglobal	43
		Axi	43
	3.36	Bidim_axi	44
	3.37	Calculer_moments	44
	3.38	Lecture bloc moment base	44

	3.38.1 Calcul	44
	3.38.2 Centre_de_gravite	44
	Corriger_frontiere_periodique	45
3.40	Criteres_convergence	45
3.41	Debog	45
3.42	{	46
3.43	Decoupebord_pour_rayonnement	46
3.44	Decouper_bord_coincident	47
	Dilate	47
	Dimension	47
	Disable_tu	48
	Discretiser_domaine	48
	Discretize	48
	Distance_paroi	48
	Ecrire_champ_med	49
	Ecrire_fichier_formatte	49
	Ecrire_fichier_xyz_valeur	49
	Ecriturelecturespecial	50
	Espece	50
	Execute_parallel	50
	Export	51
	Extract_2d_from_3d	51
	Extract_2daxi_from_3d	51
		51
	Extraire_domaine	52
	Extraire_plan	52 53
	Extraire_surface	
	Extrudebord	53
	Extrudeparoi	54
	Extruder	55
	Troisf	55
	Extruder_en20	55
	Extruder_en3	56
	Facsec	56
	End	57
3.71	·	57
	Imposer_vit_bords_ale	57
	Imprimer_flux	58
3.74	Imprimer_flux_sum	58
	Integrer_champ_med	58
3.76	Interfaces	59
3.77	Interprete_geometrique_base	59
3.78	Lata_2_med	60
3.79	Format_lata_to_med	60
3.80	Lata_2_other	60
3.81	Lire_ideas	60
3.82	Lml_2_lata	61
3.83	Mailler	61
3.84	List_bloc_mailler	61
	3.84.1 Mailler_base	61
	3.84.2 Pave	62
	3.84.3 Bloc_pave	62
	3.84.4 List_bord	63
	3.84.5 Bord_base	63
	3.84.6 Raccord	63

3.84.7 Defbord	64
3.84.8 Defbord_2	64
3.84.9 Defbord_3	64
3.84.10 Internes	65
3.84.11 Bord	65
3.84.12 Epsilon	65
3.84.13 Domain	65
3.85 Maillerparallel	66
3.86 Mass_source	67
3.87 Modif_bord_to_raccord	67
3.88 Modifydomaineaxi1d	67
3.89 Moyenne_volumique	68
	69
3.90 Multigrid_solver	
3.91 Coarsen_operators	70
3.91.1 Coarsen_operator_uniform	70
3.92 Nettoiepasnoeuds	70
3.93 Option_vdf	70
3.94 Orientefacesbord	71
3.95 Partition	71
3.96 Bloc_decouper	71
3.97 Partition_multi	73
3.98 Pilote_icoco	73
3.99 Polyedriser	73
3.100Postraiter_domaine	74
3.101Precisiongeom	74
3.102Raffiner_anisotrope	75
3.103Raffiner_isotrope	75
3.104Read	76
3.105Read_file	77
3.106Read_file_binary	77
3.107Lire_tgrid	77
3.108Read_unsupported_ascii_file_from_icem	78
3.109Orienter_simplexes	78
3.110Redresser_hexaedres_vdf	78
3.111Refine_mesh	78
3.112Regroupebord	79
3.113Remaillage_ft_ijk	79
3.114Remove elem	80
3.115Remove_elem_bloc	80
3.116Remove_invalid_internal_boundaries	81
3.117Reorienter_tetraedres	81
3.118Reorienter_triangles	81
3.119Reordonner	81
3.120Residuals	82
3.121Rotation	82
3.122Scatter	82
3.123Scattermed	83
3.124Solve	83
3.125Stat_per_proc_perf_log	83
3.126Supprime_bord	83
3.127List_nom	84
3.128System	84
3.129Test_solveur	84
3.130Testeur	85

	3.131Testeu	r_medcoupling
	3.132Tetrae	driser
	3.133Tetrae	driser_homogene
	3.134Tetrae	driser_homogene_compact
	3.135Tetrae	driser_homogene_fin 87
	3.136Tetrae	driser_par_prisme
	3.137Therm	iique_bloc
	3.138Transf	Sormer
	3.139Triang	guler
	3.140Triang	r <mark>uler_fin 90</mark>
	3.141Triang	r <mark>uler_h</mark> 91
	3.142 Verifie	er_qualite_raffinements
	3.143 Vect_r	1 <mark>0m</mark>
	3.144 Verifie	er_simplexes
	3.145 Verifie	ercoin
	3.146Verifie	ercoin_bloc
	3.147Ecrire	92
	3.148Ecrire	_fichier_bin
4	pb_gen_bas	
		nduction
	-	_postraitement
	4.2.1	Definition_champs
	4.2.2	Definition_champ
	4.2.3	Definition_champs_fichier
	4.2.4	Sondes
	4.2.5	Sonde
	4.2.6	Sonde_base
	4.2.7	Points
	4.2.8	Point
	4.2.9	Segmentpoints
	4.2.10	8
	4.2.11	
	4.2.12	·
		Segmentfacesz
		Radius
		Numero_elem_sur_maitre
		Position_like
	4.2.17	
		Volume
		Circle
		Circle_3
	4.2.21	
	4.2.22	1 —
		- · · · · · · · · · · · · · · · · · · ·
		1 – –1
		· · · · · · · · · · · · · · · · · · ·
		T_deb
		Moyenne
		Ecart type
		10/HIL LTDV

	4.2.33 Correlation	105
	4.2.34 Stats_posts_fichier	105
	4.2.35 Stats_serie_posts	106
	4.2.36 Stats_serie_posts_fichier	106
4.3	Post_processings	
	4.3.1 Un_postraitement	
4.4	Liste_post_ok	
	4.4.1 Nom_postraitement	
	4.4.2 Postraitement base	
	4.4.3 Post_processing	
	4.4.4 Postraitement ft lata	
4.5	Liste_post	
4.5	4.5.1 Un_postraitement_spec	
	4.5.2 Type_un_post	
	4.5.3 Type_postraitement_ft_lata	
1.0		
4.6	Format_file	
4.7	Pb_fronttracking_disc	
4.8	Listdeuxmots_acc	
	4.8.1 Deuxmots	
4.9	Pb_hydraulique_cloned_concentration	
	Pb_hydraulique_cloned_concentration_turbulent	
	Pb_hydraulique_list_concentration	
4.12	Listeqn	116
4.13	Pb_hydraulique_list_concentration_turbulent	116
4.14	Pb_hydraulique_turbulent_ale	117
	Pb_hydraulique_sensibility	
	Pb_multiphase	
	Pb_multiphase_h	
	Pb_hem	
	Pb_rayo_conduction	
	Pb_rayo_hydraulique	
	Pb_rayo_hydraulique_turbulent	
	Pb_rayo_thermohydraulique	
	Pb_rayo_thermohydraulique_qc	
	Pb_rayo_thermohydraulique_turbulent	
	Pb_rayo_thermohydraulique_turbulent_qc	
	Pb_thermohydraulique_cloned_concentration	
	Pb_thermohydraulique_cloned_concentration_turbulent	
		134
		136
		137
		138
		139
		140
		140
4.35	Eq_rayo_semi_transp	141
	4.35.1 Condlims	142
	4.35.2 Condlimlu	142
4.36	Pb_avec_liste_conc	142
		143
		144
		145
		146
		1/17

	4.42	Pb_hydraulique_concentration	48
	4.43	Pb_hydraulique_concentration_scalaires_passifs	49
		Pb_hydraulique_concentration_turbulent	
		Pb_hydraulique_concentration_turbulent_scalaires_passifs	
		Pb_hydraulique_melange_binaire_qc	
		Pb_hydraulique_melange_binaire_wc	
		Pb_hydraulique_melange_binaire_turbulent_qc	
		Pb_hydraulique_turbulent	
		Pb_mg	
		Pb_phase_field	
		Pb_post	
		Pb_thermohydraulique	
		Pb_thermohydraulique_qc	
		Pb_thermohydraulique_wc	
	4.56	Pb_thermohydraulique_concentration	64
	4.57	Pb_thermohydraulique_concentration_scalaires_passifs	65
	4.58	Pb_thermohydraulique_concentration_turbulent	67
	4.59	Pb_thermohydraulique_concentration_turbulent_scalaires_passifs	68
		Pb_thermohydraulique_especes_qc	
		Pb_thermohydraulique_especes_wc	
		Pb_thermohydraulique_especes_turbulent_qc	
		Pb_thermohydraulique_scalaires_passifs	
		Pb_thermohydraulique_turbulent	
		Pb_thermohydraulique_turbulent_qc	
		Pb_thermohydraulique_turbulent_scalaires_passifs	
		Pbc_med	
	4.08	List_info_med	
	4.60	4.68.1 Info_med	
		Problem_read_generic	
	4.70	Pb_couple_rayonnement	80
5	mor	oon 1	80
3	mor_	Conduction	
	5.2	Bloc_convection	
		5.2.1 Convection_deriv	
		5.2.2 Ale	
		5.2.3 Muscl_old	
		5.2.4 Muscl3	
			83
		5.2.6 Bloc_ef	83
		5.2.7 Di_l2	83
		5.2.8 Amont_old	84
		5.2.9 Generic	84
		5.2.10 Ef_stab	84
		5.2.11 Listsous zone valeur	85
			85
			.85
		1	.86
			.86
			.86
			.86
			86
			.86 87
		3 / UL I ATUTA	

	5.2.21 Centre4	187
	5.2.22 Btd	187
	5.2.23 Supg	187
	5.2.24 Rt	188
	5.2.25 Sensibility	188
5.3	Bloc_diffusion	188
	5.3.1 Diffusion_deriv	188
	5.3.2 Turbulente	188
	5.3.3 Type_diffusion_turbulente_multiphase_deriv	189
	5.3.4 Wale	
	5.3.5 L_melange	
	5.3.6 Smago	
	5.3.7 Prandtl	
	5.3.8 Sgdh	
	5.3.9 Multiple	
	5.3.10 K_omega	
	5.3.11 Sato	
	5.3.12 K_omega	
	5.3.13 K_tau	
	5.3.14 Stab	
	5.3.15 Standard	
		193
		193
	1	193
		194
		194
	· · · · · · · · · · · · · · · · · · ·	
		194
~ 4		194
5.4		195
		195
5.5		195
5.6		195
		195
		196
5.7	Convection_diffusion_concentration_turbulent_ft_disc	
5.8	Convection_diffusion_espece_binaire_turbulent_qc	
5.9	Convection_diffusion_temperature_sensibility	
5.10	•	200
		200
		201
	8 - · · · · · · · · · · · · · · · · · ·	202
	8 =	203
		204
		204
5.16	Masse_multiphase	205
5.17	Navier_stokes_aposteriori	206
5.18	Traitement_particulier	208
	5.18.1 Traitement_particulier_base	208
	5.18.2 Profils_thermo	209
	5.18.3 Temperature	209
	5.18.4 Canal	209
	5.18.5 Chmoy_faceperio	210
		210
		211

	5.18.8 Thi_thermo	
	5.18.9 Brech	
	5.18.10 Ceg	
	5.18.11 Ceg_areva	
- 40	5.18.12 Ceg_cea_jaea	
	Floatfloat	
	Navier_stokes_turbulent_ale	
5.21	Modele_turbulence_hyd_deriv	
	5.21.1 Dt_impr_ustar_mean_only	
	5.21.2 Mod_turb_hyd_ss_maille	
	5.21.3 Form_a_nb_points	
	5.21.4 Sous_maille_smago	
	5.21.5 Sous_maille_wale	
	5.21.6 Longueur_melange	
	5.21.7 Sous_maille_selectif_mod	
	5.21.8 Deuxentiers	
	5.21.9 Floatentier	
	5.21.10 Sous_maille_selectif	
	5.21.11 Sous_maille_lelt	
	5.21.12 Sous_maille_lelt_selectif_mod	
	5.21.13 Sous_maille_axi	
	5.21.14 Sous_maille_smago_filtre	
	5.21.16 Combination	
	5.21.16 Combinaison	
	5.21.18 Mod_turb_hyd_rans	
	5.21.19 Mod_turb_hyd_rans_bicephale	
	5.21.20 K_epsilon_bicephale	
	5.21.20 K_epsilon_bicephate	
	5.21.22 Mod_turb_hyd_rans_komega	
	5.21.23 K_epsilon_realisable	
	5.21.24 Mod_turb_hyd_rans_keps	
	5.21.25 K epsilon	
	5.21.26 Modele_fonction_bas_reynolds_base	
	5.21.27 Jones_launder	
	5.21.28 Launder_sharma	
	5.21.29 Lam_bremhorst	
		241
		242
		242
		243
5 22		244
	· · · · · · · · · · · · · · · · · · ·	246
		248
5.25		249
5.26		250
		251
		252
		253
		254
		255
		256
		257 257
		257 258

ļ	ripl	le_line_model_ft_disc	301
/	'.4	Saturation_sodium	300
	1.3	Saturation_constant	
	.2	Saturation_base	
	.1	Interface_sigma_constant	299
1	ntei	rface_base	299
j	jk_s	splitting	298
5	.65	Injection_marqueur	298
		Transport_marqueur_ft	
		Transport_k_omega	
		Transport_k_epsilon	
		Transport_k	
		5.60.3 Ai_based	
		5.60.2 Modifiee	
		5.60.1 Standard	
)	.60	Type_indic_faces_deriv	
		5.59.2 Lineaire	
		5.59.1 Base	
)	.59	Interpolation_champ_face_deriv	
		Parcours_interface	
		Bloc_lecture_remaillage	
		5.56.3 Loi_horaire	
		5.56.2 Vitesse_interpolee	
		5.56.1 Vitesse_imposee	
)	.56	Methode_transport_deriv	
		Transport_interfaces_ft_disc	
		Navier_stokes_turbulent_qc	
		Navier_stokes_turbulent	
	51	Navier_stokes_standard	
		5.50.2 Bloc_mu_fonc_c	
,	.50	5.50.1 Bloc_visco2	
	50	Visco_dyn_cons	
		5.49.2 Bloc_rho_fonc_c	
,	.43	5.49.1 Bloc_boussinesq	
		Approx_boussinesq	
		Navier_stokes_phase_field	
		Navier_stokes_ft_disc	
		Navier_stokes_wc	
		Navier_stokes_qc	
		Eqn_base	
		Convection_diffusion_temperature_turbulent	
		Objet_lecture_maintien_temperature	
		Convection_diffusion_temperature_ft_disc	
		Convection_diffusion_temperature	
		Convection_diffusion_phase_field	
		Convection_diffusion_espece_multi_turbulent_qc	
		Convection_diffusion_espece_multi_wc	
		Convection_diffusion_espece_multi_qc	
•	25	Convection diffusion espace multiple	

9	algo_	base	302
	9.1	Algo_couple_1	302
10	/±		303
10		/*	
	10.1	<i>P</i>)US
11	chan	np_generique_base	303
		Champ_post_de_champs_post	303
		Listchamp_generique	
	11.3	List_nom_virgule	304
	11.4	Champ_post_operateur_base	304
	11.5	Champ_post_operateur_eqn	304
	11.6	Champ_post_statistiques_base	305
		Correlation	
		Champ_post_operateur_divergence	
		Ecart_type	
		OChamp_post_extraction	
		Champ_post_operateur_gradient	
		Interpolation	
		Champ_post_morceau_equation	
		Moyenne	
		Predefini	
		6Champ_post_reduction_0d	
		Champ_post_refchamp	
		Champ_post_tparoi_vef	
	11.19	OChamp_post_transformation)13
12	chim	ie 3	314
		Reactions	
		12.1.1 Reaction	
13		-0	315
		Modele_fonc_realisable_base	
		Modele_shih_zhu_lumley_vdf	
		Shih_zhu_lumley	
		Amgx	
		Cholesky	
		Dt_calc	
			317
			317
			317
		1 -	318
			318
			319
		-1	320 320
			320 321
		-cr	321 321
			321 321
			321 322
	13.10	550110tt_5/5_0tt00	,
14	#		322
	14.1	#	322

15	condlim_base	322
	15.1 Cond_lim_k_complique_transition_flux_nul_demi	323
	15.2 Cond_lim_k_simple_flux_nul	323
	15.3 Cond_lim_omega_demi	
	15.4 Cond_lim_omega_dix	
	15.5 Echange_couplage_thermique	
	15.6 Paroi_echange_interne_global_impose	
	15.7 Paroi_echange_interne_global_parfait	324
	15.8 Paroi_echange_interne_impose	
	15.9 Paroi_echange_interne_parfait	324
	15.10Neumann_homogene	
	15.11Neumann_paroi	325
	15.12Neumann_paroi_adiabatique	
	15.13Paroi	325
	15.14Paroi_frottante_loi	325
	15.15Paroi_frottante_simple	
	15.16Contact_vdf_vef	326
	15.17Contact_vef_vdf	326
	15.18Dirichlet	326
	15.19Echange_contact_rayo_transp_vdf	
	15.20Echange_contact_vdf_ft_disc	327
	15.21Echange_contact_vdf_ft_disc_solid	327
	15.22Entree_temperature_imposee_h	328
	15.23Flux_radiatif	328
	15.24Flux_radiatif_vdf	
	15.25Flux_radiatif_vef	328
	15.26Frontiere_ouverte	
	15.27Frontiere_ouverte_alpha_impose	
	15.28Frontiere_ouverte_concentration_imposee	
	15.29Frontiere_ouverte_fraction_massique_imposee	
	15.30Frontiere_ouverte_gradient_pression_impose	
	15.31Frontiere_ouverte_gradient_pression_impose_vefprep1b	
	15.32Frontiere_ouverte_gradient_pression_libre_vef	
	15.33Frontiere_ouverte_gradient_pression_libre_vefprep1b	
	15.34Frontiere_ouverte_k_eps_impose	
	15.35Frontiere_ouverte_k_omega_impose	
	15.36Frontiere_ouverte_pression_imposee	
	15.37Frontiere_ouverte_pression_imposee_orlansky	
	15.38Frontiere_ouverte_pression_moyenne_imposee	
	15.39Frontiere_ouverte_rayo_semi_transp	
	15.40Frontiere_ouverte_rayo_transp	
	15.41Frontiere_ouverte_rayo_transp_vdf	
	15.42Frontiere_ouverte_rayo_transp_vef	
	15.43Frontiere_ouverte_rho_u_impose	
	15.44Frontiere_ouverte_enthalpie_imposee	
	15.45Frontiere_ouverte_temperature_imposee_rayo_semi_transp	
	15.46Frontiere_ouverte_temperature_imposee_rayo_transp	
	15.47Frontiere_ouverte_temperature_imposee_rayo_transp	
	15.48Frontiere_ouverte_vitesse_imposee_ale	
	15.49Frontiere_ouverte_vitesse_imposee_sortie	
	15.50Neumann	
	15.51Paroi_adiabatique	
	15.52Paroi_contact	
	15.52Paroi contact fictif	336
	THE HOLD CANDER HALL AND A SECOND ASSESSMENT OF THE SECOND ASSESSMENT O	, ,,,

	15.54Paroi_contact_rayo	
	15.55Paroi_decalee_robin	. 337
	15.56Paroi_defilante	. 337
	15.57Paroi_echange_contact_correlation_vdf	. 337
	15.58Paroi_echange_contact_correlation_vef	. 338
	15.59Paroi_echange_contact_odvm_vdf	. 339
	15.60Paroi_echange_contact_rayo_semi_transp_vdf	. 340
	15.61Paroi_echange_contact_vdf	. 340
	15.62Paroi_echange_contact_vdf_ft	
	15.63Paroi_echange_contact_vdf_zoom_fin	
	15.64Paroi_echange_contact_vdf_zoom_grossier	
	15.65Paroi_echange_externe_impose	
	15.66Paroi_echange_externe_impose_h	
	15.67Paroi_echange_externe_impose_rayo_semi_transp	
	15.68Paroi_echange_externe_impose_rayo_transp	
	15.69Paroi_echange_global_impose	
	15.70Paroi_fixe	
	15.71Paroi_fixe_iso_genepi2_sans_contribution_aux_vitesses_sommets	
	15.72Paroi_flux_impose	
	15.73Paroi_flux_impose_rayo_semi_transp_vdf	
	15.74Paroi_flux_impose_rayo_semi_transp_vef	
	15.75Paroi_flux_impose_rayo_transp	
	15.76Paroi_ft_disc	
	15.77Paroi_ft_disc_deriv	
	15.77.1 Symetrie	
	15.77.2 Constant	
	15.78Paroi_knudsen_non_negligeable	. 343
	15.79Paroi_rugueuse	
	15.80Paroi_temperature_imposee	
	15.81Paroi_temperature_imposee_rayo_semi_transp	
	15.82Paroi_temperature_imposee_rayo_transp	
	15.83 Periodique	
	15.84Scalaire_impose_paroi	
	15.85 Sortie_libre_rho_variable	
	15.86Sortie_libre_temperature_imposee_h	
	15.87Symetrie	
	15.88Enthalpie_imposee_paroi	. 348
16	disposition has	348
10	discretisation_base	
	16.1 Ef	
	16.2 Polymac	
	16.3 Polymac_p0p1nc	
	16.4 Polymac_p0	
	16.5 Vdf	
	16.6 Vef	. 349
17	domaine	350
1/	17.1 Domaineaxi1d	
	17.1 Domaineaxitd	
	17.3 Domaine ale	
		. , , ,

18	champ_base	351
	18.1 Champ_base	
	18.2 Champ_fonc_interp	
	18.3 Champ_fonc_med_table_temps	
	18.4 Champ_fonc_med_tabule	
	18.5 Champ_tabule_morceaux	
	18.6 Champ_fonc_tabule_morceaux_interp	
	18.7 Champ_parametrique	
	18.8 Champ_composite	
	18.9 Champ_don_base	
	$18.10 Champ_don_lu $	
	18.11Champ_fonc_fonction	
	18.12Champ_fonc_fonction_txyz	
	18.13Champ_fonc_fonction_txyz_morceaux	
	18.14Champ_fonc_med	
	18.15Champ_fonc_reprise	
	18.16Fonction_champ_reprise	
	18.17Champ_fonc_t	
	18.18Champ_fonc_tabule	
	18.19Champ_init_canal_sinal	
	18.20Bloc_lec_champ_init_canal_sinal	
	18.21Champ_input_base	
	18.22Champ_input_p0	
	18.23Champ_input_p0_composite	
	18.24Champ_musig	
	18.25Champ_ostwald	
	18.26Champ_som_lu_vdf	
	18.27Champ_som_lu_vef	
	18.28Champ_tabule_temps	
	18.29Champ_uniforme_morceaux	
	18.30Champ_uniforme_morceaux_tabule_temps	
	18.31Champ_fonc_txyz	
	18.32Champ_fonc_xyz	
	18.33Field_uniform_keps_from_ud	
	18.34Init_par_partie	
	18.35Tayl_green	
	18.36Uniform_field	
	18.37 valeur_totale_sur_volume	303
19	champ_front_base	365
	19.1 Champ_front_base	
	19.2 Boundary_field_keps_from_ud	
	19.3 Ch_front_input_ale	
	19.4 Champ_front_xyz_tabule	
	19.5 Champ_front_ale_beam	
	19.6 Champ_front_parametrique	
	19.7 Champ_front_ale	
	19.8 Champ_front_debit_qc_vdf	
	19.9 Champ_front_debit_qc_vdf_fonc_t	
	19.10Champ_front_synt	
	19.11Bloc_lecture_turb_synt	
	19.12Boundary_field_inward	
	19.13Boundary_field_uniform_keps_from_ud	
	19.14Ch front input	370

	19.15Ch_front_input_uniforme	
	19.16Champ_front_med	371
	19.17Champ_front_bruite	
	19.18Champ_front_calc	
	19.19Champ_front_composite	
	19.20Champ_front_contact_rayo_semi_transp_vef	
	19.21Champ_front_contact_rayo_transp_vef	
	19.22Champ_front_contact_vef	
	19.23Champ_front_debit	
	•	
	19.24Champ_front_debit_massique	
	19.25Champ_front_fonc_pois_ipsn	
	19.26Champ_front_fonc_pois_tube	
	19.27Champ_front_fonc_t	
	19.28Champ_front_fonc_txyz	
	19.29Champ_front_fonc_xyz	
	19.30Champ_front_fonction	375
	19.31Champ_front_lu	375
	19.32Champ_front_musig	375
	19.33Champ_front_normal_vef	
	19.34Champ_front_pression_from_u	
	19.35Champ_front_recyclage	
	19.36Champ front tabule	
	19.37Champ_front_tabule_lu	
	19.38Champ_front_tangentiel_vef	
	1	
	19.39Champ_front_uniforme	
	19.40Champ_front_vortex	
	19.41Champ_front_xyz_debit	
	19.42Champ_front_zoom	3/9
20	interpolation_ibm_base	379
20	20.1 Interpolation_ibm_power_law_tbl_u_star	
	20.2 Ibm_aucune	
	20.3 Ibm_element_fluide	
	20.4 Ibm_hybride	
	20.5 Ibm_gradient_moyen	
	20.6 Ibm_power_law_tbl	382
21	Internal home	383
41	loi_etat_base	
	21.1 Eos_qc	
	21.2 Eos_wc	
	21.3 Binaire_gaz_parfait_qc	
	21.4 Binaire_gaz_parfait_wc	
	21.5 Coolprop_qc	385
	21.6 Coolprop_wc	
	21.7 Loi_etat_gaz_parfait_base	386
	21.8 Loi_etat_gaz_reel_base	386
	21.9 Loi_etat_tppi_base	386
	21.10Multi_gaz_parfait_qc	
	21.11Multi_gaz_parfait_wc	
	21.12Gaz_parfait_qc	
	21.13Gaz_parfait_wc	
	-	
	21 14Rhot gaz parfait ge	388
	21.14Rhot_gaz_parfait_qc	

22	loi_fermeture_base	389
	22.1 Loi_fermeture_test	389
23	loi_horaire	389
24	milieu_base	390
	24.1 Constituant	390
	24.2 Fluide_base	
	24.3 Fluide_dilatable_base	
	24.4 Fluide_diphasique	
	24.5 Fluid_diph_lu	
	24.6 Fluide_incompressible	
	24.7 Fluide_ostwald	
	24.8 Fluide_quasi_compressible	
	24.10Fluide_reel_base	
	24.11Fluide_sodium_gaz	
	24.12Fluide_sodium_liquide	
	24.13Fluide_stiffened_gas	
	24.14Fluide weakly compressible	
	24.15Solide	
25		
25	milieu_v2_base	402
26	modele_rayonnement_base	402
	26.1 Modele_rayonnement_milieu_transparent	402
27	modele_turbulence_scal_base	404
	27.1 Null	
	27.2 Prandtl	
	27.3 Schmidt	
	27.4 Sous_maille_dyn	406
28	moyenne_imposee_deriv	407
	28.1 Connexion_approchee	407
	28.2 Connexion_exacte	407
	28.3 Interpolation	
	28.4 Logarithmique	
	28.5 Profil	
29	nom	409
	29.1 Nom_anonyme	409
30	partitionneur_deriv	409
	30.1 Fichier_med	
	30.2 Fichier_decoupage	
	30.3 Metis	
	30.4 Partition	
	30.5 Sous_dom	
	30.6 Sous_zones	
	30.7 Tranche	
	30.8 Union	413
31	pb_champ_evaluateur	414

32	porosites	414
	32.1 Bloc_lecture_poro	414
33	precond_base	415
	33.1 Ilu	
	33.2 Precondsolv	
	33.3 Ssor	
	33.4 Ssor_bloc	416
34	preconditionneur_petsc_deriv	416
34	34.1 Block jacobi icc	
	34.2 Eisentat	
	34.3 Block_jacobi_ilu	
	34.4 Boomeramg	
	34.5 C-amg	
	34.6 Diag	
	34.7 Jacobi	
	34.8 Lu	
	34.9 Null	
	34.10Pilut	
	34.11Sa-amg	
	34.12Spai	
	34.13Ssor	419
35	schema_temps_base	419
	35.1 Implicit_euler_steady_scheme	421
	35.2 Sch_cn_ex_iteratif	
	35.3 Sch_cn_iteratif	
	35.4 Scheme_euler_explicit	
	35.5 Leap_frog	
	35.6 Rk3_ft	
	35.7 Runge_kutta_ordre_2	
	35.8 Runge_kutta_ordre_2_classique	
	35.9 Runge_kutta_ordre_3	
	35.10Runge_kutta_ordre_3_classique	
	35.11Runge_kutta_ordre_4_d3p	
	35.12Runge_kutta_ordre_4_classique	
	35.13Runge_kutta_ordre_4_classique_3_8	
	35.14Runge kutta rationnel ordre 2	447
	35.15Schema_adams_bashforth_order_2	449
	35.16Schema_adams_bashforth_order_3	450
	35.17Schema_adams_moulton_order_2	452
	35.18Schema_adams_moulton_order_3	455
	35.19Schema_backward_differentiation_order_2	457
	35.20Schema_backward_differentiation_order_3	460
	35.21Scheme_euler_implicit	462
	35.22Schema_implicite_base	465
	35.23Schema_phase_field	467
	35.24Schema_predictor_corrector	469
	35.25Schema_euler_explicite_ale	471

	solveur_implicite_base	472
	36.1 Ice	473
	36.2 Implicit_steady	474
	36.3 Implicite	475
	36.4 Implicite_ale	476
	36.5 Piso	477
	36.6 Sets	477
	36.7 Simple	479
	36.8 Simpler	
	36.9 Solveur_lineaire_std	
	36.10Solveur_u_p	
	_ _	
37	solveur_petsc_deriv	482
	37.1 Bicgstab	
	37.2 Cholesky_out_of_core	
	37.3 Cholesky_pastix	
	37.4 Cholesky_superlu	
	37.5 Cholesky_umfpack	
	37.6 Ibicgstab	485
	37.7 Pipecg	485
	37.8 Cholesky	486
	37.9 Cholesky_mumps_blr	487
	37.10Cli	488
	37.11Cli_quiet	489
	37.12Gcp	
	37.13Gmres	
	37.14Lu	
38	source_base	
		492
	38.1 Correction_antal	492
	38.1 Correction_antal	492 492
	38.1 Correction_antal	492 492 493
	38.1 Correction_antal38.2 Correction_lubchenko38.3 Dp_impose38.4 Type_perte_charge_deriv	492 492 493 493
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp	492 492 493 493 493
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul	492 492 493 493 493 494
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb	492 492 493 493 493 494 494
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb	492 492 493 493 493 494 494
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles	492 492 493 493 493 494 494
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb	492 492 493 493 493 494 494
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle	492 492 493 493 493 494 494 494
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb	492 493 493 493 494 494 494 494
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle	492 493 493 493 494 494 494 495 495
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale	492 493 493 493 494 494 494 495 495 495
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr	492 493 493 493 494 494 494 495 495 495
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb	492 493 493 494 494 494 495 495 496
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_energie_cin_turb 38.13Production_energie_cin_turb	492 493 493 494 494 494 495 495 496 496
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.14Source_bif 38.15Source_constituant_vortex	492 493 493 493 494 494 495 495 496 496 496
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_energie_cin_turb 38.13Production_energie_cin_turb 38.14Source_bif 38.15Source_constituant_vortex 38.16Source_dissipation_hzdr	492 493 493 493 494 494 495 495 496 496 496 497
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.15Source_constituant_vortex 38.16Source_dissipation_hzdr 38.17Source_dissipation_echelle_temp_taux_diss_turb	492 493 493 494 494 494 495 495 496 496 496 497 497
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.13Production_energie_cin_turb 38.14Source_bif 38.15Source_constituant_vortex 38.16Source_dissipation_hzdr 38.17Source_dissipation_echelle_temp_taux_diss_turb 38.17Source_dissipation_echelle_temp_taux_diss_turb	492 493 493 494 494 494 495 495 496 496 496 497 497 497
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_energie_cin_turb 38.13Production_energie_cin_turb 38.14Source_bif 38.15Source_constituant_vortex 38.16Source_dissipation_hzdr 38.17Source_dissipation_echelle_temp_taux_diss_turb 38.18Source_transport_k_eps_anisotherme 38.19Terme_dissipation_energie_cinetique_turbulente	492 493 493 493 494 494 495 495 496 496 496 497 497 497 498 498
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.14Source_bif 38.15Source_constituant_vortex 38.16Source_dissipation_hzdr 38.17Source_dissipation_echelle_temp_taux_diss_turb 38.18Source_transport_k_eps_anisotherme 38.19Terme_dissipation_energie_cinetique_turbulente 38.20Acceleration	492 493 493 493 494 494 495 495 496 496 496 496 497 497 497 498 498
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_energie_cin_turb 38.13Production_energie_cin_turb 38.14Source_bif 38.15Source_constituant_vortex 38.16Source_dissipation_hzdr 38.17Source_dissipation_echelle_temp_taux_diss_turb 38.18Source_transport_k_eps_anisotherme 38.19Terme_dissipation_energie_cinetique_turbulente 38.20Acceleration 38.21Boussinesq_concentration	492 493 493 493 494 494 495 495 496 496 496 497 497 497 498 498 498 499
	38.1 Correction_antal 38.2 Correction_lubchenko 38.3 Dp_impose 38.4 Type_perte_charge_deriv 38.4.1 Dp 38.4.2 Dp_regul 38.5 Diffusion_croisee_echelle_temp_taux_diss_turb 38.6 Diffusion_supplementaire_echelle_temp_turb 38.7 Dispersion_bulles 38.8 Dissipation_echelle_temp_taux_diss_turb 38.9 Injection_qdm_nulle 38.10Portance_interfaciale 38.11Production_hzdr 38.12Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.13Production_echelle_temp_taux_diss_turb 38.14Source_bif 38.15Source_constituant_vortex 38.16Source_dissipation_hzdr 38.17Source_dissipation_echelle_temp_taux_diss_turb 38.18Source_transport_k_eps_anisotherme 38.19Terme_dissipation_energie_cinetique_turbulente 38.20Acceleration	492 493 493 493 494 494 495 495 496 496 496 497 497 497 498 498 499

	38.24Coriolis	501
	38.25Darcy	
	38.26Dirac	
	38.27Flux_interfacial	
	38.28Forchheimer	
	38.29Frottement_interfacial	
	38.30Perte_charge_anisotrope	
	38.31Perte_charge_circulaire	
	38.32Perte_charge_directionnelle	
	38.33Perte_charge_isotrope	
	38.34Perte_charge_reguliere	
	38.35Spec_pdcr_base	
	38.35.1 Longitudinale	
	38.35.2 Transversale	
	38.36Perte_charge_singuliere	
	38.37Puissance_thermique	
	38.38Radioactive_decay	
	38.39Source_con_phase_field	
	38.40Systeme_naire_deriv	
	38.40.1 Non	
	38.40.2 Bloc_kappa_variable	
	38.40.3 Bloc_potentiel_chim	
	38.41Source_constituant	
	38.42Flottabilite	
	38.43 Source_generique	509
	38.44Masse_ajoutee	509
	38.45Source_pdf	509
	38.46Bloc_pdf_model	510
	38.46.1 Troismots	
	38.47Source_pdf_base	
	38.48Source_qdm	
	38.49Source_qdm_lambdaup	
	38.50Source_qdm_phase_field	
	38.51Source_rayo_semi_transp	
	38.52Source_robin	
	38.53Source_robin_scalaire	
	38.54Listdeuxmots_sacc	
	38.55Source_th_tdivu	
	38.56Trainee	
	38.57Source_transport_eps	
	38.58Source_transport_k	
	38.59Source_transport_k_eps	
	38.60Source_transport_k_eps_aniso_concen	
	38.61 Source_transport_k_eps_aniso_therm_concen	
	38.62Tenseur_reynolds_externe	
	38.63Terme_puissance_thermique_echange_impose	
	38.64Travail_pression	
	38.65Vitesse_derive_base	
	38.66Vitesse_relative_base	516
20		
<i>5</i> 9	sous_zone	517
	39.1 Bloc_origine_cotes	
	39.2 Bloc_couronne	
	39.3 Bloc_tube	518

40	turbulence_paroi_base	518
	40.1 Loi_ciofalo_hydr	519
	40.2 Loi_expert_hydr	519
	40.3 Loi_puissance_hydr	519
	40.4 Loi_standard_hydr	520
	40.5 Loi_standard_hydr_old	520
	40.6 Loi_ww_hydr	520
	40.7 Negligeable	520
	40.8 Paroi_tble	520
	40.9 Twofloat	521
	40.10Liste_sonde_tble	521
	40.10.1 Sonde_tble	521
	40.11Utau_imp	522
41	turbulence_paroi_scalaire_base	522
	41.1 Loi_ww_scalaire	522
	41.2 Loi_analytique_scalaire	523
	41.3 Loi_expert_scalaire	523
	41.4 Loi_odvm	523
	41.5 Loi_paroi_nu_impose	524
	41.6 Loi_standard_hydr_scalaire	524
	41.7 Negligeable_scalaire	524
	41.8 Paroi_tble_scal	524
	41.9 Fourfloat	525
42	listobj_impl	525
	42.1 Milieu_musig	526
	42.2 Milieu_composite	526
	42.3 List_un_pb	526
	42.4 Un_pb	
	42.5 Listobj	526
43	objet_lecture	527
	43.1 Entierfloat	527
	43.2 Type_diffusion_turbulente_multiphase_multiple_deriv	
44	index	528

1 Syntax to define a mathematical function

In a mathematical function, used for example in field definition, it's possible to use the predifined function (an object parser is used to evaluate the functions):

ABS : absolute value function

COS : cosine function
SIN : sine function
TAN : tangent function
ATAN : arctangent function
EXP : exponential function
LN : natural logarithm function
SQRT : square root function
INT : integer function
ERF : error function

RND(x): random function (values between 0 and x)

COSH : hyperbolic cosine function

```
SINH: hyperbolic sine function
TANH : hyperbolic tangent function
ACOS : inverse cosine function
ASIN : inverse sine function
ATANH: inverse hyperbolic tangent function
NOT(x): NOT x (returns 1 if x is false, 0 otherwise)
SGN(x) : SGN(x) = S
x AND y : boolean logical operation AND (returns 1 if both x and y are true, else 0)
x OR y: boolean logical operation OR (returns 1 if x or y is true, else 0)
x_GT_y: greater than (returns 1 if x>y, else 0)
x_GE_y: greater than or equal to (returns 1 if x \ge y, else 0)
x_LT_y: less than (returns 1 if x < y, else 0)
x_LE_y: less than or equal to (returns 1 if x \le y, else 0)
x_MIN_y : returns the smallest of x and y
x_MAX_y : returns the largest of x and y
x_MOD_y : modular division of x per y
x_EQ_y
                             : equal to (returns 1 if x==y, else 0)
                           : not equal to (returns 1 if x!=y, else 0)
x_NEQ_y
You can also use the following operations:
+ : addition
- : subtraction
/ : division
*: multiplication
%: modulo
$ : max
• : power
< : less than
> : greater than
[ : less than or equal to
] : greater than or equal to
You can also use the following constants:
Pi : pi value (3,1415...)
The variables which can be used are:
x,y,z : coordinates
t: time
Examples:
Champ_front_fonc_txyz 2 \cos(y+x^2) t+\ln(y)
Champ_fonc_xyz dom 2 \tanh(4*y)*(0.95+0.1*rnd(1)) 0.
Possible errors:
Error 1:
Champ_fonc_txyz 1 \cos(10*t)*(1<x<2)*(1<y<2)
Previous line is wrong. It should be written as:
Champ_fonc_txyz 1 \cos(10^*t)^*(1 < x)^*(x < 2)^*(1 < y)^*(y < 2)
Error 2:
Champ_front_fonc_xyz 1 20*(x<-2)+10*(y]-5)+3*(z>0)
Previous line is wrong because negative values are not written between parentheses. It should be written
```

Champ_front_fonc_xyz 1 20*(x<(-2))+10*(y](-5))+3*(z>0)

2 Existing & predefined fields names

Here is a list of post-processable fields, but it is not the only ones.

Physical values	Keyword for field_name	Unit
Velocity	Vitesse or Velocity	$m.s^{-1}$
Velocity residual	Vitesse_residu	$m.s^{-2}$
Kinetic energy per elements		
$(0.5\rho u_i ^2)$	Energie_cinetique_elem	$kg.m^{-1}.s^{-2}$
Total kinetic energy		
$\left(\frac{\sum_{i=1}^{nb_elem} 0.5\rho u_i ^2 vol_i}{\sum_{i=1}^{nb_elem} vol_i}\right)$	Energie_cinetique_totale	$kg.m^{-1}.s^{-2}$
$\sum_{i=1}^{nb_elem} vol_i$		
Vorticity	Vorticite	s^{-1}
Pressure in incompressible flow		
$(P/\rho + gz)$	Pression ¹	$Pa.m^{3}.kg^{-1}$
For Front Tracking probleme		or
$(P + \rho gz)$		Pa
Pressure in incompressible flow		
$(P+\rho gz)$	Pression_pa or Pressure	Pa
Pressure in compressible flow	Pression	Pa
Hydrostatic pressure (ρgz)	Pression_hydrostatique	Pa
Totale pressure (when	_ ,	
quasi compressible model		
is used)=Pth+P	Pression_tot	Pa
Pressure gradient	_	
$(\nabla(P/\rho+gz))$	Gradient_pression	$m.s^{-2}$
Velocity gradient	gradient_vitesse	$m.s^{-2}$ s^{-1}
Temperature	Temperature	°C or K
Temperature residual	Temperature_residu	${}^{o}\mathrm{C}.s^{-1}$ or $\mathrm{K}.s^{-1}$
Phase temperature of	_	
a two phases flow	Temperature_EquationName	°C or K
Mass transfer rate		
between two phases	Temperature_mpoint	$kq.m^{-2}.s^{-1}$
Temperature variance	Variance_Temperature	$\frac{kg.m^{-2}.s^{-1}}{K^2}$
Temperature dissipation rate	Taux_Dissipation_Temperature	$K^2.s^{-1}$
Temperature gradient	Gradient_temperature	$K.m^{-1}$
Heat exchange coefficient	H_echange_Tref ²	$W.m^{-2}.K^{-1}$
Turbulent heat flux	Flux_Chaleur_Turbulente	$m.K.s^{-1}$
Turbulent viscosity	Viscosite_turbulente	$m^2.s^{-1}$
Turbulent dynamic viscosity		
(when quasi compressible	Viscosite_dynamique_turbulente	$kg.m.s^{-1}$
model is used)		
Turbulent kinetic energy	K	$m^2.s^{-2}$
Turbulent dissipation rate	Eps	$m^3.s^{-1}$
Turbulent quantities	F~	
K and Epsilon	K_Eps	$(m^2.s^{-2}, m^3.s^{-1})$
Residuals of turbulent quantities	r~	,,
	continued on next page	I
···		

 $^{^1}$ The post-processed pressure is the pressure divided by the fluid's density $(P/\rho+gz)$ on incompressible laminar calculation. For turbulent, pressure is $P/\rho+gz+2/3*k$ cause the turbulent kinetic energy is in the pressure gradient.

²Tref indicates the value of a reference temperature and must be specified by the user. For example, H_echange_293 is the keyword to use for Tref=293K.

Physical values	Keyword for field_name	Unit
K and Epsilon residuals	K_Eps_residu	$(m^2.s^{-3}, m^3.s^{-2})$
Constituent concentration	Concentration	
Constituent concentration residual	Concentration_residu	
Component velocity along X	VitesseX	$m.s^{-1}$
Component velocity along Y	VitesseY	$m.s^{-1}$
Component velocity along Z	VitesseZ	$m.s^{-1}$
Mass balance on each cell	Divergence_U	$m^3.s^{-1}$
Irradiancy	Irradiance	$W.m^{-2}$
Q-criteria	Critere_Q	s^{-1}
Distance to the wall $Y^+ = yU/\nu$		
(only computed on	Y_plus	dimensionless
boundaries of wall type)		
Friction velocity	U_star	$m.s^{-1}$
Void fraction	alpha	dimensionless
Cell volumes	Volume_maille	m^3
Chemical potential	Potentiel_Chimique_Generalise	
Source term in non		
Galinean referential	Acceleration_terme_source	$m.s^{-2}$
Stability time steps	Pas_de_temps	S
Listing of boundary fluxes	Flux_bords	cf each *.out file
Volumetric porosity	Porosite_volumique	dimensionless
Distance to the wall	Distance_Paroi ³	m
Volumic thermal power	Puissance_volumique	$W.m^{-3}$
Local shear strain rate defined as		
$\sqrt{(2SijSij)}$	Taux_cisaillement	s^{-1}
Cell Courant number (VDF only)	Courant_maille	dimensionless
Cell Reynolds number (VDF only)	Reynolds_maille	dimensionless
Viscous force	viscous_force	$kg.m^2.s^{-1}$
Pressure force	pressure_force	$kg.m^2.s^{-1}$
Total force	total_force	$kg.m^2.s^{-1}$
Viscous force along X	viscous_force_x	$kg.m^2.s^{-1}$
Viscous force along Y	viscous_force_y	$kg.m^2.s^{-1}$
Viscous force along Z	viscous_force_z	$kg.m^2.s^{-1}$
Pressure force along X	pressure_force_x	$kg.m^2.s^{-1}$
Pressure force along Y	pressure_force_y	$kg.m^{2}.s^{-1}$
Pressure force along Z	pressure_force_z	$kg.m^2.s^{-1}$
Total force along X	total_force_x	$kg.m^2.s^{-1}$
Total force along Y	total_force_y	$kg.m^2.s^{-1}$
Total force along Z	total_force_z	$kg.m^2.s^{-1}$

3 interprete

Description: Basic class for interpreting a data file. Interpretors allow some operations to be carried out on objects.

See also: objet_u (44) { (3.42) } (3.71) export (3.57) ecrire_fichier_xyz_valeur (3.53) option_vdf (3.93) criteres_convergence (3.40) residuals (3.120) espece (3.55) mass_source (3.86) Option_PolyMAC_P0 (3.21)

³distance_paroi is a field which can be used only if the mixing length model (see 2.15.1.2) is used in the data file.

Option_PolyMAC (3.20) Op_Conv_EF_Stab_PolyMAC_Face (3.14) Op_Conv_EF_Stab_PolyMAC_P0P1NC-_Elem (3.15) Op_Conv_EF_Stab_PolyMAC_P0P1NC_Face (3.16) Op_Conv_EF_Stab_PolyMAC_P0_Face (3.17) verifiercoin (3.145) scatter (3.122) read med (3.25) integrer champ med (3.75) ecriturelecturespecial (3.54) facsec (3.69) trianguler (3.139) nettoiepasnoeuds (3.92) extraire_surface (3.62) precisiongeom (3.101) tetraedriser (3.132) redresser hexaedres vdf (3.110) Raffiner isotrope parallele (3.24) transformer (3.138) modifydomaineAxi1d (3.88) modif_bord_to_raccord (3.87) remove_invalid_internal_boundaries (3.116) extrudebord (3.63) analyse angle (3.30) lire ideas (3.81) extruder (3.65) reorienter triangles (3.118) corriger frontiere periodique (3.39) reorienter tetraedres (3.117) refine mesh (3.111) bidim axi (3.36) extraire plan (3.61) dimension (3.46) polyedriser (3.99) orientefacesbord (3.94) orienter simplexes (3.109) verifier_qualite_raffinements (3.142) interprete_geometrique_base (3.77) distance_paroi (3.50) extrudeparoi (3.64) reordonner (3.119) calculer moments (3.37) regroupebord (3.112) extract 2d from 3d (3.58) raffiner_anisotrope (3.102) mailler (3.83) discretiser_domaine (3.48) maillerparallel (3.85) axi (3.35) extruder-_en20 (3.67) rotation (3.121) imprimer_flux (3.73) lire_tgrid (3.107) dilate (3.45) supprime_bord (3.126) decouper_bord_coincident (3.44) decoupebord_pour_rayonnement (3.43) remove_elem (3.114) raffiner-_isotrope (3.103) extraire_domaine (3.60) verifier_simplexes (3.144) partition_multi (3.97) partition (3.95) associate (3.31) debog (3.41) discretize (3.49) solve (3.124) testeur (3.130) end (3.70) read (3.104) ecrire-_fichier_bin (3.148) system (3.128) stat_per_proc_perf_log (3.125) disable_TU (3.47) MultipleFiles (3.13) Option_Interpolation (3.19) ecrire (3.147) read_file (3.105) execute_parallel (3.56) testeur_medcoupling (3.131) pilote_icoco (3.98) test_solveur (3.129) lml_2_lata (3.82) Link_CGNS_Files (3.11) ecrire_champmed (3.51) Write MED (3.7) Merge MED (3.12) lata 2 med (3.78) lata 2 other (3.80) postraiter domaine (3.100) Option_CGNS (3.18) moyenne_volumique (3.89) Parallel_io_parameters (3.22) Test_SSE_Kernels (3.29) multigrid solver (3.90) imposer vit bords ale (3.72) Extraire surface ALE (3.8) ALE Neumann-_BC_for_grid_problem (3.1) Beam_model (3.3) remaillage_ft_ijk (3.113) interfaces (3.76) thermiquebloc (3.137) IJK FT double (3.9) Structural dynamic mesh model (3.27) Solver moving mesh ALE (3.26) DebogFT (3.6) Projection ALE boundary (3.23)

Usage:

interprete

3.1 Ale_neumann_bc_for_grid_problem

Description: block to indicates the names of the boundary with Neumann BC for the grid problem. By default, in the ALE grid problem, we impose a homogeneous Dirichelt-type BC on the fix boundary. This option allows you to impose also Neumann-type BCs on certain boundary.

See also: interprete (3)

Usage:

ALE_Neumann_BC_for_grid_problem dom bloc where

- dom str: Name of domain.
- **bloc** *bloc_lecture* (3.2): between the braces, you must specify the numbers of the mobile borders then list these mobile borders.

Example: ALE_Neumann_BC_for_grid_problem dom_name { 1 boundary_name }

3.2 Bloc_lecture

Description: to read between two braces

See also: objet_lecture (43) bloc_criteres_convergence (3.2.1) solveur_petsc_option_cli (3.2.2)

Usage:

bloc_lecture

where

• bloc_lecture str

3.2.1 Bloc_criteres_convergence

Description: Not set

See also: (3.2)

Usage:

bloc_lecture

where

• bloc_lecture str

3.2.2 Solveur_petsc_option_cli

Description: solver

See also: (3.2)

Usage:

bloc_lecture

where

• bloc_lecture str

3.3 Beam_model

Description: Reduced mechanical model: a beam model. Resolution based on a modal analysis. Temporal discretization: Newmark or Hilber-Hughes-Taylor (HHT)

See also: interprete (3)

Usage:

Beam model dom bloc

where

- dom str: domain name
- **bloc** *bloc_lecture_beam_model* (3.4)

3.4 Bloc_lecture_beam_model

Description: bloc

See also: objet_lecture (43)

Usage:

aco nb_beam nb_beam_val Name Name_of_beam bloc [Name2] [Name_of_beam2] [bloc2] acof where

- aco str into ['{'}]: Opening curly bracket.
- **nb_beam** str into ['nb_beam']: Keyword to specify the number of beams

- **nb_beam_val** int: Number of beams
- Name str into ['name']: keyword to specify the Name of the beam (the name must match with the name of the edge in the fluid domain)
- Name_of_beam str: keyword to specify the Name of the beam (the name must match with the name of the edge in the fluid domain)
- **bloc** *bloc_poutre* (3.4.1)
- Name2 str into ['name']: keyword to specify the Name of the beam (the name must match with the name of the edge in the fluid domain)
- Name_of_beam2 str: keyword to specify the Name of the beam (the name must match with the name of the edge in the fluid domain)
- **bloc2** *bloc_poutre* (3.4.1)
- acof str into ['}']: Closing curly bracket.

3.4.1 Bloc_poutre

```
Description: Read poutre bloc
See also: objet lecture (43)
Usage:
     nb modes int
     direction int
     NewmarkTimeScheme newmarktimescheme deriv
     Mass_and_stiffness_file_name str
     Absc file name str
     Modal deformation file name n word1 word2 ... wordn
     [ Young Module float]
     [ Rho_beam float]
     [ BaseCenterCoordinates x1 x2 (x3)]
     [CI file name str]
     [ Restart_file_name str]
     [ Output_position_1D n \times 1 \times 2 \dots \times n]
     [ Output_position_3D listpoints]
}
where
```

- **nb_modes** *int*: Number of modes
- direction int: x=0, y=1, z=2
- **NewmarkTimeScheme** *newmarktimescheme_deriv* (3.4.2): Solve the beam dynamics. Time integration scheme: choice between MA (Newmark mean acceleration), FD (Newmark finite differences), and HHT alpha (Hilber-Hughes-Taylor, alpha usually -0.1)
- Mass_and_stiffness_file_name str: Name of the file containing the diagonal modal mass, stiffness, and damping matrices.
- Absc_file_name str: Name of the file containing the coordinates of the Beam
- **Modal_deformation_file_name** *n word1 word2 ... wordn*: Name of the file containing the modal deformation of the Beam (mandatory if different from 0. 0. 0.)
- Young Module float: Young Module
- Rho_beam float: Beam density
- BaseCenterCoordinates x1 x2 (x3): position of the base center coordinates on the Beam
- CI_file_name str: Name of the file containing the initial condition of the Beam
- Restart_file_name str: SaveBeamForRestart.txt file to restart the calculation

- Output_position_1D n x1 x2 ... xn: nb_points position Post-traitement of specific points on the Beam
- **Output_position_3D** *listpoints* (3.4.6): nb_points position Post-traitement of specific points on the 3d FSI boundary

3.4.2 Newmarktimescheme deriv

```
Description: Solve the beam dynamics. Selection of time integration scheme.
```

```
See also: objet_lecture (43) HHT (3.4.3) MA (3.4.4) FD (3.4.5)
```

Usage:

3.4.3 Hht

Description: HHT alpha (Hilber-Hughes-Taylor, alpha usually -0.1) time integration scheme.

```
See also: NewmarkTimeScheme_deriv (3.4.2)
```

Usage:

HHT [alpha]

where

• alpha *float*: usually, alpha is set to -0.1

3.4.4 Ma

Description: MA (Newmark mean acceleration) time integration scheme.

```
See also: NewmarkTimeScheme_deriv (3.4.2)
```

Usage:

MA

3.4.5 Fd

Description: FD (Newmark finite differences) time integration scheme.

```
See also: NewmarkTimeScheme_deriv (3.4.2)
```

Usage:

FD

3.4.6 Listpoints

```
Description: Points.
```

See also: listobj (42.5)

Usage:

n object1 object2 list of un_point (3.4.7)

3.4.7 Un_point

```
Description: A point.

See also: objet_lecture (43)

Usage:
pos
where

• pos x1 x2 (x3): Point coordinates.
```

3.5 Create_domain_from_sub_domain

Description: This keyword fills the domain domaine_final with the subdomaine par_sous_zone from the domain domaine_init. It is very useful when meshing several mediums with Gmsh. Each medium will be defined as a subdomaine into Gmsh. A MED mesh file will be saved from Gmsh and read with Lire_Med keyword by the TRUST data file. And with this keyword, a domain will be created for each medium in the TRUST data file.

```
See also: interprete_geometrique_base (3.77)

Usage:
Create_domain_from_sub_domain {
    [ domaine_final str]
    [ par_sous_domlpar_sous_zone str]
    domaine_init str
}
where
```

- domaine_final str: new domain in which faces are stored
- par_sous_domlpar_sous_zone str: a sub-area (a group in a MED file) allowing to choose the elements
- **domaine_init** *str*: initial domain

3.6 Debogft

```
Description: not_set

See also: interprete (3)

Usage:

DebogFT {

    [ mode str into ['disabled', 'write_pass', 'check_pass']]
    [ filename str]
    [ seuil_absolu float]
    [ seuil_relatif float]
    [ seuil_minimum_relatif float]
}

where
```

```
mode str into ['disabled', 'write_pass', 'check_pass']
filename str
seuil_absolu float
seuil_relatif float
seuil_minimum_relatif float
```

3.7 Write_med

Description: Write a domain to MED format into a file.

```
See also: interprete (3)

Usage:

Write_MED nom_dom file
where

• nom_dom str: Name of domain.
• file str: Name of file.
```

3.8 Extraire surface ale

Description: Extraire_surface_ALE in order to extract a surface on a mobile boundary (with ALE desciption).

Keyword to specify that the extract surface is done on a mobile domain. The surface mesh is defined by one or two conditions. The first condition is about elements with Condition_elements. For example: Condition_elements x*x+y*y+z*z<1

Will define a surface mesh with external faces of the mesh elements inside the sphere of radius 1 located at (0,0,0). The second condition Condition_faces is useful to give a restriction.

By default, the faces from the boundaries are not added to the surface mesh excepted if option avec_les_bords is given (all the boundaries are added), or if the option avec_certains_bords is used to add only some boundaries.

Keyword Discretize should have already been used to read the object.

```
See also: interprete (3)
```

```
Usage:
```

```
Extraire_surface_ALE {

domaine str
probleme str
[condition_elements str]
[condition_faces str]
[avec_les_bords]
[avec_certains_bords n word1 word2 ... wordn]
}
where
```

- domaine str: Domain in which faces are saved
- probleme str: Problem from which faces should be extracted
- condition_elements str
- condition_faces str
- avec_les_bords
- avec_certains_bords n word1 word2 ... wordn

3.9 Ijk_ft_double

```
Description: not_set
See also: interprete (3)
Usage:
IJK_FT_double {
     [ p_seuil_max float]
     [ p_seuil_min float]
     [ coef_ammortissement float]
     [ coef_immobilisation float]
     [ coef_mean_force float]
     [ coef_force_time_n float]
     [ coef_rayon_force_rappel float]
     [tinit float]
     ijk_splitting str into ['grid_splitting']
     timestep float
     [timestep_facsec float]
     [cfl float]
     [ fo float]
     [ oh float]
     nb_pas_dt_max int
     [ max_simu_time int]
     multigrid_solver multigrid_solver
     [ check_divergence ]
     mu_liquide float
     [ vitesse_entree float]
     [vitesse_upstream float]
     [ upstream_dir int]
      [ expression_vitesse_upstream str]
      [ upstream_stencil int]
     [ nb_diam_upstream float]
     [ nb_diam_ortho_shear_perio str]
     rho_liquide float
     [ check_stop_file str]
     [ dt_sauvegarde int]
     [ nom_sauvegarde str]
     [ sauvegarder_xyz ]
     [ nom_reprise str]
     [ gravite n \times 1 \times 2 \dots \times n]
     [ expression_vx_init str]
     [ expression_vy_init str]
     [ expression_vz_init str]
     [ expression_derivee_force str]
     [ compute_force_init str]
     [terme_force_init str]
     [correction_force str]
     [vol_bulle_monodisperse str]
     [vol_bulles str]
     [ time_scheme str into ['euler_explicit', 'RK3_FT']]
     [ expression_variable_source_x str]
     [ expression_variable_source_y str]
      [ expression_variable_source_z str]
```

```
[ facteur_variable_source_init str]
[ expression_derivee_facteur_variable_source str]
[ expression_p_init str]
[ expression_potential_phi str]
[velocity_convection_op str]
[interfaces interfaces]
[forcage str]
[ corrections_qdm str]
[thermique thermique]
[ energie str]
ijk_splitting_ft_extension int
[fichier_post str]
[ fichier_reprise_vitesse str]
[timestep_reprise_vitesse str]
boundary_conditions bloc_lecture
[ disable_solveur_poisson ]
[resolution_fluctuations]
[ disable_diffusion_qdm ]
[ disable_source_interf ]
[ disable_convection_qdm ]
[ disable_diphasique ]
[ frozen_velocity str]
[velocity_reset str]
[improved_initial_pressure_guess str]
[include_pressure_gradient_in_ustar str]
[ use_inv_rho_for_mass_solver_and_calculer_rho_v str]
[ use_inv_rho_in_poisson_solver ]
[ diffusion_alternative str]
[ suppression_rejetons str]
[correction_bilan_qdm str]
[ refuse_patch_conservation_qdm_rk3_source_interf ]
[test_etapes_et_bilan str]
[ajout_init_a_reprise str]
[ harmonic_nu_in_diff_operator ]
[ harmonic_nu_in_calc_with_indicatrice ]
[ reprise_vap_velocity_tmoy str]
[ reprise_liq_velocity_tmoy str]
[ sigma float]
[ rho_vapeur float]
[ mu_vapeur float]
[ check_stats ]
[ dt_post int]
[ dt_post_stats_plans int]
[ dt_post_stats_bulles int]
[ champs_a_postraiter n word1 word2 ... wordn]
[ expression_vx_ana str]
[ expression_vy_ana str]
[ expression_vz_ana str]
[ expression_p_ana str]
[ expression_dPdx_ana str]
[ expression_dPdy_ana str]
[ expression_dPdz_ana str]
[ expression_dUdx_ana str]
[ expression_dUdy_ana str]
```

```
[expression_dVdx_ana str]
     [expression dVdv ana str]
     [expression_dVdz_ana str]
     [expression dWdx ana str]
     [ expression_dWdy_ana str]
     [expression dWdz ana str]
     [expression ddPdxdx ana str]
     [expression ddPdydy ana str]
     [expression ddPdzdz ana str]
     [expression ddPdxdy ana str]
     [ expression_ddPdxdz_ana str]
     [expression_ddPdydz_ana str]
     [ expression_ddUdxdx_ana str]
     [ expression_ddUdydy_ana str]
     [ expression_ddUdzdz_ana
     [expression_ddUdxdy_ana str]
     [ expression_ddUdxdz_ana str]
     [expression_ddUdydz_ana str]
     [expression ddVdxdx ana str]
     [ expression_ddVdydy_ana str]
     [expression ddVdzdz ana str]
     [ expression_ddVdxdy_ana str]
     [expression ddVdxdz ana str]
     [expression ddVdydz ana str]
     [expression ddWdxdx ana str]
     [expression ddWdydy ana str]
     [expression ddWdzdz ana str]
     [ expression_ddWdxdy_ana str]
     [expression_ddWdxdz_ana str]
     [expression_ddWdydz_ana str]
     [t_debut_statistiques float]
     [sondes bloc_lecture]
}
where
   • p seuil max float: not set, default 10000000
   • p_seuil_min float: not_set, default -10000000
   • coef ammortissement float
   • coef_immobilisation float
   • coef mean force float
   • coef_force_time_n float
   • coef rayon force rappel float
   • tinit float: initial time
   • ijk_splitting str into ['grid_splitting']: Definition of domain decomposition for parallel computa-
     tions
   • timestep float: Upper limit of the timestep
   • timestep_facsec float: Security factor on timestep
   • cfl float: To provide a value of the limiting CFL number used for setting the timestep
   • fo float
   • oh float
   • nb_pas_dt_max int: maximum limit for the number of timesteps
   • max_simu_time int: maximum limit for the number of timesteps
   • multigrid_solver multigrid_solver (3.90)
```

[expression_dUdz_ana str]

- check_divergence : Flag to compute and print the value of div(u) after each pressure-correction
- mu_liquide float: liquid viscosity
- vitesse_entree *float*: Velocity to prescribe at inlet
- vitesse_upstream float: Velocity to prescribe at 'nb_diam_upstream_' before bubble 0.
- upstream_dir int: Direction to prescribe the velocity
- expression_vitesse_upstream str: Analytical expression to set the upstream velocity
- upstream_stencil int: Width on which the velocity is set
- **nb_diam_upstream** *float*: Number of bubble diameters upstream of bubble 0 to prescribe the velocity.
- nb_diam_ortho_shear_perio str
- rho_liquide float: liquid density
- **check_stop_file** *str*: stop file to check (if 1 inside this file, stop computation)
- dt_sauvegarde int: saving frequency (writing files for computation restart)
- nom_sauvegarde str: Definition of filename to save the calculation
- sauvegarder_xyz : save in xyz format
- nom_reprise str: Enable restart from filename given
- gravite n x1 x2 ... xn: gravity vector [gx, gy, gz]
- expression_vx_init str: initial field for x-velocity component (parser of x,y,z)
- expression_vy_init str: initial field for y-velocity component (parser of x,y,z)
- expression_vz_init str: initial field for z-velocity component (parser of x,y,z)
- **expression_derivee_force** *str*: expression of the time-derivative of the X-component of a source-term (see terme_force_ini for the initial value). terme_force_ini: initial value of the X-component of the source term (see expression_derivee_force for time evolution)
- compute force init str
- terme force init str
- correction force str
- vol_bulle_monodisperse str
- vol_bulles str
- **time_scheme** *str into ['euler_explicit', 'RK3_FT']*: Type of time scheme
- expression_variable_source_x str
- expression_variable_source_y str
- expression variable source z str
- facteur_variable_source_init str
- expression_derivee_facteur_variable_source str
- **expression_p_init** *str*: initial pressure field (optional)
- expression_potential_phi str: parser to define phi and make a momentum source Nabla phi.
- **velocity_convection_op** *str*: Type of velocity convection scheme
- interfaces interfaces (3.76)
- forcage str
- corrections_qdm str
- thermique (3.10)
- energie str
- ijk_splitting_ft_extension *int*: Number of element used to extend the computational domain at each side of periodic boundary to accommodate for bubble evolution.
- fichier post str: name of the post-processing file (lata file)
- fichier_reprise_vitesse str
- timestep_reprise_vitesse str
- boundary_conditions bloc_lecture (3.2): BC
- disable_solveur_poisson : Disable pressure poisson solver
- resolution_fluctuations : Disable pressure poisson solver
- disable_diffusion_qdm : Disable diffusion operator in momentum
- **disable_source_interf** : Disable computation of the interfacial source term
- **disable_convection_qdm** : Disable convection operator in momentum
- disable diphasique : Disable all calculations related to interfaces (phase properties, interfacial

force, ...)

- frozen_velocity str
- velocity reset str
- improved_initial_pressure_guess str
- include_pressure_gradient_in_ustar str
- use_inv_rho_for_mass_solver_and_calculer_rho_v str
- use_inv_rho_in_poisson_solver
- diffusion alternative str
- suppression rejetons str
- correction bilan qdm str
- refuse patch conservation qdm rk3 source interf: experimental Keyword, not for use
- test_etapes_et_bilan str
- ajout_init_a_reprise str
- harmonic_nu_in_diff_operator : Disable pressure poisson solver
- harmonic_nu_in_calc_with_indicatrice : Disable pressure poisson solver
- reprise_vap_velocity_tmoy str
- reprise_liq_velocity_tmoy str
- sigma *float*: surface tension
- **rho_vapeur** *float*: vapour density
- mu vapeur float: vapour viscosity
- **check_stats**: Flag to compute additional (xy)-plane averaged statistics
- **dt_post** *int*: Post-processing frequency (for lata output)
- **dt_post_stats_plans** *int*: Post-processing frequency for averaged statistical files (txt files containing averaged information on (xy) planes for each z-center) both instantaneous, or cumulated time-integration (see file header for variables list)
- **dt_post_stats_bulles** *int*: Post-processing frequency for bubble information (for out files as bubble area, centroid position, etc...)
- champs_a_postraiter n word1 word2 ... wordn: List of variables to post-process in lata files.
- expression_vx_ana str: Analytical Vx (parser of x,y,z, t) used for post-processing only
- expression_vy_ana str: Analytical Vy (parser of x,y,z, t) used for post-processing only
- expression_vz_ana str: Analytical Vz (parser of x,y,z, t) used for post-processing only
- expression p ana str: analytical pressure solution (parser of x,y,z, t) used for post-processing only
- expression_dPdx_ana str: analytical expression dP/dx=f(x,y,z,t), for post-processing only
- expression_dPdy_ana str: analytical expression dP/dy=f(x,y,z,t), for post-processing only
- expression_dPdz_ana str: analytical expression dP/dz=f(x,y,z,t), for post-processing only
- expression_dUdx_ana str: analytical expression dU/dx=f(x,y,z,t), for post-processing only
- expression_dUdy_ana str: analytical expression dU/dy=f(x,y,z,t), for post-processing only
- expression_dUdz_ana str: analytical expression dU/dz=f(x,y,z,t), for post-processing only
 expression_dVdx_ana str: analytical expression dV/dx=f(x,y,z,t), for post-processing only
- expression dVdy ana str: analytical expression dV/dy=f(x,y,z,t), for post-processing only
- expression_dVdz_ana str: analytical expression dV/dz=f(x,y,z,t), for post-processing only
- expression dWdx ana str: analytical expression dW/dx=f(x,y,z,t), for post-processing only
- expression dWdy ana str: analytical expression dW/dy=f(x,y,z,t), for post-processing only
- expression dWdz ana str: analytical expression dW/dz=f(x,y,z,t), for post-processing only
- expression_ddPdxdx_ana str: analytical expression d2P/dx2=f(x,y,z,t), for post-processing only
- expression_ddPdydy_ana str: analytical expression d2P/dy2=f(x,y,z,t), for post-processing only
- expression_ddPdzdz_ana str: analytical expression d2P/dz2=f(x,y,z,t), for post-processing only
- expression_ddPdxdy_ana str: analytical expression d2P/dxdy=f(x,y,z,t), for post-processing only
- expression_ddPdxdz_ana str: analytical expression d2P/dxdz=f(x,y,z,t), for post-processing only
- expression_ddPdydz_ana str: analytical expression d2P/dydz=f(x,y,z,t), for post-processing only
- expression_ddUdxdx_ana str: analytical expression d2U/dx2=f(x,y,z,t), for post-processing only
- expression_ddUdydy_ana str: analytical expression d2U/dy2=f(x,y,z,t), for post-processing only
- **expression_ddUdzdz_ana** *str*: analytical expression d2U/dz2=f(x,y,z,t), for post-processing only

- expression_ddUdxdy_ana str: analytical expression d2U/dxdy=f(x,y,z,t), for post-processing only
- expression_ddUdxdz_ana str: analytical expression d2U/dxdz=f(x,y,z,t), for post-processing only
- expression_ddUdydz_ana str: analytical expression d2U/dydz=f(x,y,z,t), for post-processing only
- expression_ddVdxdx_ana str: analytical expression d2V/dx2=f(x,y,z,t), for post-processing only
- expression_ddVdydy_ana str: analytical expression d2V/dy2=f(x,y,z,t), for post-processing only
- expression_ddVdzdz_ana str: analytical expression d2V/dz2=f(x,y,z,t), for post-processing only
- expression_ddVdxdy_ana str: analytical expression d2V/dxdy=f(x,y,z,t), for post-processing only
- expression_ddVdxdz_ana str: analytical expression d2V/dxdz=f(x,y,z,t), for post-processing only
- expression_ddVdydz_ana str: analytical expression d2V/dydz=f(x,y,z,t), for post-processing only
- expression_ddWdxdx_ana str: analytical expression d2W/dx2=f(x,y,z,t), for post-processing only
- expression_ddWdydy_ana str: analytical expression d2W/dy2=f(x,y,z,t), for post-processing only
- expression_ddWdzdz_ana str: analytical expression d2W/dz2=f(x,y,z,t), for post-processing only
- **expression_ddWdxdy_ana** *str*: analytical expression d2W/dxdy=f(x,y,z,t), for post-processing only
- expression_ddWdxdz_ana str: analytical expression d2W/dxdz=f(x,y,z,t), for post-processing only
- expression_ddWdydz_ana str: analytical expression d2W/dydz=f(x,y,z,t), for post-processing only
- t_debut_statistiques float: Initial time for computation, printing and accumulating time-integration
- sondes bloc lecture (3.2): probes

3.10 Thermique

Description: to add energy equation resolution if needed

```
See also: listobj (42.5)

Usage: { object1 , object2 .... }
list of thermique_bloc (3.137) separeted with ,
```

3.11 Link cgns files

Description: Creates a single CGNS xxxx.cgns file that links to a xxxx.grid.cgns and xxxx.solution.*.cgns files

```
See also: interprete (3)
```

Usage:

Link_CGNS_Files base_name output_name where

- base_name str: Base name of the gid/solution cgns files.
- output_name str: Name of the output cgns file.

3.12 Merge_med

Description: This keyword allows to merge multiple MED files produced during a parallel computation into a single MED file.

See also: interprete (3)

Usage:

Merge_MED med_files_base_name time_iterations

where

- med_files_base_name str: Base name of multiple med files that should appear as base_name_xxxxx.med, where xxxxx denotes the MPI rank number. If you specify NOM_DU_CAS, it will automatically take the basename from your datafile's name.
- **time_iterations** *str into ['all_times', 'last_time']*: Identifies whether to merge all time iterations present in the MED files or only the last one.

3.13 Multiplefiles

Description: Change MPI rank limit for multiple files during I/O

See also: interprete (3)

Usage:

MultipleFiles type

where

• type int: New MPI rank limit

3.14 Op_conv_ef_stab_polymac_face

```
Description: Class Op_Conv_EF_Stab_PolyMAC_Face_PolyMAC
```

```
See also: interprete (3)
```

Usage:

Op_Conv_EF_Stab_PolyMAC_Face {

```
[ alpha float]
```

where

• alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)

3.15 Op_conv_ef_stab_polymac_p0p1nc_elem

```
Description: Class Op_Conv_EF_Stab_PolyMAC_P0P1NC_Elem
```

See also: interprete (3)

Usage:

Op_Conv_EF_Stab_PolyMAC_P0P1NC_Elem {

```
where
   • alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)
3.16
      Op_conv_ef_stab_polymac_p0p1nc_face
Description: Class Op Conv EF Stab PolyMAC P0P1NC Face
See also: interprete (3)
Usage:
3.17
      Op_conv_ef_stab_polymac_p0_face
Description: Class Op_Conv_EF_Stab_PolyMAC_P0_Face
See also: interprete (3)
Usage:
3.18
      Option_cgns
Description: Class for CGNS options.
See also: interprete (3)
Usage:
Option_CGNS {
     [ single_precision ]
     [ multiple_files ]
     [ parallel_over_zone ]
     [ use_links ]
}
where
   • single_precision: If used, data will be written with a single_precision format inside the CGNS file
     (it concerns both mesh coordinates and field values).
   • multiple_files: If used, data will be written in separate files (ie: one file per processor).
```

3.19 Option_interpolation

solution time. Links will be used.

[alpha float]

}

Description: Class for interpolation fields using MEDCoupling.

This is not so performant but easier to read later ...

```
See also: interprete (3)

Usage:
Option_Interpolation {
```

• parallel_over_zone : If used, data will be written in separate zones (ie: one zone per processor).

• use_links: If used, data will be written in separate files; one file for mesh, and then one file for

```
[ without_declsans_dec ]
     [sharing_algo int]
}
where
   • without_declsans_dec : Use remapper even for a parallel calculation
   • sharing_algo int: Setting the DEC sharing algo: 0,1,2
3.20
       Option_polymac
Description: Class of PolyMAC options.
See also: interprete (3)
Usage:
Option_PolyMAC {
     [use_osqp]
where
   • use_osqp: Flag to use the old formulation of the M2 matrix provided by the OSQP library
3.21
       Option_polymac_p0
Description: Class of PolyMAC_P0 options.
See also: interprete (3)
Usage:
Option_PolyMAC_P0 {
     [interp_ve1]
     [traitement_axi]
}
where
   • interp_ve1: Flag to enable a first order velocity face-to-element interpolation (the default value is 0
     which means a second order interpolation)
   • traitement_axi: Flag used to relax the time-step stability criterion in case of a thin slice geometry
     while modelling an axi-symetrical case
```

3.22 Parallel_io_parameters Description: Object to handle parallel

Description: Object to handle parallel files in IJK discretization

```
See also: interprete (3)

Usage:
Parallel_io_parameters {
```

```
[ block_size_bytes int]
  [ block_size_megabytes int]
  [ writing_processes int]
  [ bench_ijk_splitting_write str]
  [ bench_ijk_splitting_read str]
}
where
```

- **block_size_bytes** *int*: File writes will be performed by chunks of this size (in bytes). This parameter will not be taken into account if block_size_megabytes has been defined
- **block_size_megabytes** *int*: File writes will be performed by chunks of this size (in megabytes). The size should be a multiple of the GPFS block size or lustre stripping size (typically several megabytes)
- writing_processes *int*: This is the number of processes that will write concurrently to the file system (this must be set according to the capacity of the filesystem, set to 1 on small computers, can be up to 64 or 128 on very large systems).
- **bench_ijk_splitting_write** *str*: Name of the splitting object we want to use to run a parallel write bench (optional parameter)
- **bench_ijk_splitting_read** *str*: Name of the splitting object we want to use to run a parallel read bench (optional parameter)

3.23 Projection_ale_boundary

Description: block to compute the projection of a modal function on a mobile boundary. Use to compute modal added coefficients in FSI.

See also: interprete (3)

Usage:

Projection_ALE_boundary dom bloc

where

- dom str: Name of domain.
- **bloc** *bloc_lecture* (3.2): between the braces, you must specify the numbers of the mobile borders then list these mobile borders and indicate the modal function which must be projected on these boundaries.

Example: Projection_ALE_boundary_dom_name { 1 boundary_name 3 0.sin(pi*x)*1.e-4 0. }

3.24 Raffiner_isotrope_parallele

```
Description: Refine parallel mesh in parallel
```

```
See also: interprete (3)
```

Usage:

where

Raffiner_isotrope_parallele {

```
name_of_initial_zones|name_of_initial_domaines str
name_of_new_zones|name_of_new_domaines str
[ ascii ]
  [ single_hdf ]
```

- name_of_initial_zones|name_of_initial_domaines str: name of initial Domaines
- name_of_new_zones|name_of_new_domaines str: name of new Domaines
- ascii : writing Domaines in ascii format
- single_hdf : writing Domaines in hdf format

3.25 Read_med

Synonymous: lire_med

Description: Keyword to read MED mesh files where 'domain' corresponds to the domain name, 'file' corresponds to the file (written in the MED format) containing the mesh named mesh_name.

Note about naming boundaries: When reading 'file', TRUST will detect boundaries between domains (Raccord) when the name of the boundary begins by 'type_raccord

-_'. For example, a boundary named type_raccord_wall in 'file' will be considered by TRUST as a boundary named 'wall' between two domains.

NB: To read several domains from a mesh issued from a MED file, use Read_Med to read the mesh then use Create_domain_from_sub_domain keyword.

NB: If the MED file contains one or several subdomaine defined as a group of volumes, then Read_MED will read it and will create two files domain_name_ssz.geo and domain_name_ssz_par.geo defining the subdomaines for sequential and/or parallel calculations. These subdomaines will be read in sequential in the datafile by including (after Read_Med keyword) something like:

```
Read Med ....
Read file domain name ssz.geo;
During the parallel calculation, you will include something:
Scatter { ... }
Read_file domain_name_ssz_par.geo;
See also: interprete (3)
Usage:
read med {
     [convertalltopoly]
     domaine|domain str
     fichier|file str
     [ maillage|mesh str]
     [ exclure groupes|exclude groups n word1 word2 ... wordn]
     [inclure_groupes_faces_additionnelslinclude_additional_face_groups n word1 word2 ... wordn]
}
where
```

- convertalltopoly: Option to convert mesh with mixed cells into polyhedral/polygonal cells
- **domaineldomain** *str*: Corresponds to the domain name.
- fichier|file str: File (written in the MED format, with extension '.med') containing the mesh
- maillagelmesh str: Name of the mesh in med file. If not specified, the first mesh will be read.
- exclure_groupeslexclude_groups n word1 word2 ... wordn: List of face groups to skip in the MED file.
- inclure_groupes_faces_additionnelslinclude_additional_face_groups n word1 word2 ... wordn: List of face groups to read and register in the MED file.

3.26 Solver_moving_mesh_ale

Description: Solver used to solve the system giving the mesh velocity for the ALE (Arbitrary Lagrangian-Eulerian) framework.

See also: interprete (3)

Usage:

 $Solver_moving_mesh_ALE \ dom \ bloc$

where

- **dom** *str*: Name of domain.
- bloc bloc_lecture (3.2): Example: { PETSC GCP { precond ssor { omega 1.5 } seuil 1e-7 impr } }

3.27 Structural_dynamic_mesh_model

Description: Fictitious structural model for mesh motion. Link with MGIS library

See also: interprete (3)

Usage:

Structural_dynamic_mesh_model dom bloc

where

- dom str: domain name
- bloc bloc lecture structural dynamic mesh model (3.28)

3.28 Bloc lecture structural dynamic mesh model

Description: bloc

See also: objet lecture (43)

Usage:

aco Mfront_library Mfront_model_name Mfront_material_property [YoungModulus] [Density] [Inertial_Damping] [Grid_dt_min] acof where

- aco str into ['{'}]: Opening curly bracket.
- Mfront_library str into ['Mfront_library']: Keyword to specify the path_to_libBehaviour.so
- Mfront_model_name str into ['Mfront_model_name']: keyword to specify the Mfront model. Choice between Ogden and SaintVenantKirchhoffElasticity.
- **Mfront_material_property** str into ['Mfront_material_property']: keyword to specify the material property. Eg. Ogden_alpha_, Ogden_mu_, Ogden_K
- YoungModulus float: Young Module
- Density float: fictitious structural density
- Inertial_Damping float: fictitious structural inertial damping
- Grid_dt_min float: fictitious structural time step
- acof str into ['}']: Closing curly bracket.

3.29 Test_sse_kernels

Description: Object to test the different kernel methods used in the multigrid solver in IJK discretization

```
See also: interprete (3)

Usage:
Test_SSE_Kernels {
    [nmax int]
}
where
```

• nmax int: Number of tests we want to perform

3.30 Analyse_angle

Description: Keyword Analyse_angle prints the histogram of the largest angle of each mesh elements of the domain named name_domain. nb_histo is the histogram number of bins. It is called by default during the domain discretization with nb_histo set to 18. Useful to check the number of elements with angles above 90 degrees.

```
See also: interprete (3)

Usage:
analyse_angle domain_name nb_histo
where

• domain name str: Name of domain to resequence.
```

3.31 Associate

• nb histo int

Synonymous: associer

Description: This interpretor allows one object to be associated with another. The order of the two objects in this instruction is not important. The object objet_2 is associated to objet_1 if this makes sense; if not either objet_1 is associated to objet_2 or the program exits with error because it cannot execute the Associate (Associer) instruction. For example, to calculate water flow in a pipe, a Pb_Hydraulique type object needs to be defined. But also a Domaine type object to represent the pipe, a Scheme_euler_explicit type object for time discretization, a discretization type object (VDF or VEF) and a Fluide_Incompressible type object which will contain the water properties. These objects must then all be associated with the problem.

See also: interprete (3) associer_pbmg_pbgglobal (3.34) associer_pbmg_pbfin (3.33) associer_algo (3.32)

```
Usage:
associate objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

3.32 Associer_algo

Description: This interpretor allows an algorithm to be associated with multi-grid problem.

```
See also: associate (3.31)

Usage:
associer_algo objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

3.33 Associer_pbmg_pbfin

Description: This interpretor allows a local problem to be associated with multi-grid problem.

```
See also: associate (3.31)

Usage:
associer_pbmg_pbfin objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

3.34 Associer_pbmg_pbgglobal

Description: This interpretor allows a global problem to be associated with multi-grid problem.

```
See also: associate (3.31)

Usage:
associer_pbmg_pbgglobal objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

3.35 Axi

Description: This keyword allows a 3D calculation to be executed using cylindrical coordinates (R, θ, Z) . If this instruction is not included, calculations are carried out using Cartesian coordinates.

```
See also: interprete (3)
Usage:
axi
```

3.36 Bidim_axi

Description: Keyword allowing a 2D calculation to be executed using axisymetric coordinates (R, Z). If this instruction is not included, calculations are carried out using Cartesian coordinates.

See also: interprete (3)

Usage:

bidim_axi

3.37 Calculer_moments

Description: Calculates and prints the torque (moment of force) exerted by the fluid on each boundary in output files (.out) of the domain nom_dom.

See also: interprete (3)

Usage:

calculer_moments nom_dom mot

where

- nom_dom str: Name of domain.
- mot lecture_bloc_moment_base (3.38): Keyword.

3.38 Lecture_bloc_moment_base

Description: Auxiliary class to compute and print the moments.

See also: objet_lecture (43) calcul (3.38.1) centre_de_gravite (3.38.2)

Usage:

3.38.1 Calcul

Description: The centre of gravity will be calculated.

See also: (3.38)

Usage:

calcul

3.38.2 Centre_de_gravite

Description: To specify the centre of gravity.

See also: (3.38)

Usage:

centre_de_gravite point

where

• point un_point (3.4.7): A centre of gravity.

3.39 Corriger_frontiere_periodique

Description: The Corriger_frontiere_periodique keyword is mandatory to first define the periodic boundaries, to reorder the faces and eventually fix unaligned nodes of these boundaries. Faces on one side of the periodic domain are put first, then the faces on the opposite side, in the same order. It must be run in sequential before mesh splitting.

```
See also: interprete (3)

Usage:
corriger_frontiere_periodique {
    domaine str
    bord str
    [ direction n x1 x2 ... xn]
    [ fichier_post str]
}
where
```

- **domaine** *str*: Name of domain.
- bord str: the name of the boundary (which must contain two opposite sides of the domain)
- **direction** $n \times 1 \times 2 \dots \times n$: defines the periodicity direction vector (a vector that points from one node on one side to the opposite node on the other side). This vector must be given if the automatic algorithm fails, that is:
 - when the node coordinates are not perfectly periodic
 - when the periodic direction is not aligned with the normal vector of the boundary faces
- fichier_post str: .

3.40 Criteres_convergence

```
Description: convergence criteria

See also: interprete (3)

Usage:
aco [inco][val] acof
where

• aco str into ['{'}: Opening curly bracket.
• inco str: Unknown (i.e: alpha, temperature, velocity and pressure)
• val float: Convergence threshold
• acof str into ['}']: Closing curly bracket.
```

3.41 Debog

Description: Class to debug some differences between two TRUST versions on a same data file.

If you want to compare the results of the same code in sequential and parallel calculation, first run (mode=0) in sequential mode (the files fichier1 and fichier2 will be written first) then the second run in parallel calculation (mode=1).

During the first run (mode=0), it prints into the file DEBOG, values at different points of the code thanks to the C++ instruction call. see for example in Kernel/Framework/Resoudre.cpp file the instruction: Debog::verifier(msg,value); Where msg is a string and value may be a double, an integer or an array.

During the second run (mode=1), it prints into a file Err_Debog.dbg the same messages than in the DEBOG file and checks if the differences between results from both codes are less than a given value (error). If not,

it prints Ok else show the differences and the lines where it occured.

```
See also: interprete (3)

Usage:
debog pb fichier1 fichier2 seuil mode
where
```

- **pb** *str*: Name of the problem to debug.
- fichier1 str: Name of the file where domain will be written in sequential calculation.
- fichier2 str: Name of the file where faces will be written in sequential calculation.
- seuil *float*: Minimal value (by default 1.e-20) for the differences between the two codes.
- **mode** *int*: By default -1 (nothing is written in the different files), you will set 0 for the sequential run, and 1 for the parallel run.

3.42 {

```
Description: Block's beginning.

See also: interprete (3)

Usage:
{
```

3.43 Decoupebord_pour_rayonnement

Synonymous: decoupebord

Description: To subdivide the external boundary of a domain into several parts (may be useful for better accuracy when using radiation model in transparent medium). To specify the boundaries of the fine_domain_name domain to be splitted. These boundaries will be cut according the coarse mesh defined by either the keyword domaine_grossier (each boundary face of the coarse mesh coarse_domain_name will be used to group boundary faces of the fine mesh to define a new boundary), either by the keyword nb_parts_naif (each boundary of the fine mesh is splitted into a partition with nx*ny*nz elements), either by a geometric condition given by a formulae with the keyword condition_geometrique. If used, the coarse_domain_name domain should have the same boundaries name of the fine_domain_name domain.

A mesh file (ASCII format, except if binaire option is specified) named by default newgeom (or specified by the nom_fichier_sortie keyword) will be created and will contain the fine_domain_name domain with the splitted boundaries named boundary_name

```
See also: interprete (3)

Usage:
decoupebord_pour_rayonnement {

domaine str
[domaine_grossier str]
[nb_parts_naif n n1 n2 ... nn]
[nb_parts_geom n n1 n2 ... nn]
[condition_geometrique n word1 word2 ... wordn]
bords_a_decouper n word1 word2 ... wordn
[nom_fichier_sortie str]
[binaire int]
```

```
}
where
```

- domaine str
- domaine_grossier str
- **nb_parts_naif** *n n1 n2* ... *nn*
- nb_parts_geom n n1 n2 ... nn
- condition_geometrique n word1 word2 ... wordn
- bords_a_decouper n word1 word2 ... wordn
- nom_fichier_sortie str
- binaire int

3.44 Decouper_bord_coincident

Description: In case of non-coincident meshes and a paroi_contact condition, run is stopped and two external files are automatically generated in VEF (connectivity_failed_boundary_name and connectivity_failed_pb_name.med). In 2D, the keyword Decouper_bord_coincident associated to the connectivity_failed_boundary_name file allows to generate a new coincident mesh.

See also: interprete (3)

Usage:

decouper_bord_coincident domain_name bord where

- domain_name str: Name of domain.
- **bord** *str*: connectivity_failed_boundary_name

3.45 Dilate

Description: Keyword to multiply the whole coordinates of the geometry.

See also: interprete (3)

Usage:

dilate domain_name alpha

where

- domain_name str: Name of domain.
- alpha float: Value of dilatation coefficient.

3.46 Dimension

Description: Keyword allowing calculation dimensions to be set (2D or 3D), where dim is an integer set to 2 or 3. This instruction is mandatory.

See also: interprete (3)

Usage:

dimension dim

where

• dim int into [2, 3]: Number of dimensions.

3.47 Disable_tu

Description: Flag to disable the writing of the .TU files

See also: interprete (3)

Usage:

disable_TU

3.48 Discretiser_domaine

Description: Useful to discretize the domain domain_name (faces will be created) without defining a problem.

See also: interprete (3)

Usage:

discretiser_domaine domain_name

where

• **domain_name** *str*: Name of the domain.

3.49 Discretize

Synonymous: discretiser

Description: Keyword to discretise a problem_name according to the discretization dis. IMPORTANT: A number of objects must be already associated (a domain, time scheme, central object) prior to invoking the Discretize (Discretiser) keyword. The physical properties of this central object must also have been read.

See also: interprete (3)

Usage:

discretize problem_name dis

where

- **problem_name** *str*: Name of problem.
- dis str: Name of the discretization object.

3.50 Distance_paroi

Description: Class to generate external file Wall_length.xyz devoted for instance, for mixing length modelling. In this file, are saved the coordinates of each element (center of gravity) of dom domain and minimum distance between this point and boundaries (specified bords) that user specifies in data file (typically, those associated to walls). A field Distance_paroi is available to post process the distance to the wall.

See also: interprete (3)

Usage:

distance_paroi dom bords format

where

• dom str: Name of domain.

- **bords** *n word1 word2* ... *wordn*: Boundaries.
- **format** *str into* ['binaire', 'formatte']: Value for format may be binaire (a binary file Wall_length.xyz is written) or formatte (moreover, a formatted file Wall_length_formatted.xyz is written).

3.51 Ecrire_champ_med

Description: Keyword to write a field to MED format into a file.

```
See also: interprete (3)

Usage:
ecrire_champ_med nom_dom nom_chp file
where

• nom_dom str: domain name
• nom_chp str: field name
• file str: file name
```

3.52 Ecrire_fichier_formatte

Description: Keyword to write the object of name name_obj to a file filename in ASCII format.

```
See also: ecrire_fichier_bin (3.148)

Usage: ecrire_fichier_formatte name_obj filename where
```

- name_obj str: Name of the object to be written.
- filename str: Name of the file.

3.53 Ecrire_fichier_xyz_valeur

```
Description: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n_valeur x_1 y_1 [z_1] val_1 ... x_n y_n [z_n] val_n

The created files are named: pbname_fieldname_[boundaryname]_time.dat

See also: interprete (3)

Usage:
ecrire_fichier_xyz_valeur {

[binary_file]
[dt float]
```

• binary_file : To write file in binary format

[fields n word1 word2 ... wordn]
[boundaries n word1 word2 ... wordn]

} where

- dt float: File writing frequency
- **fields** *n word1 word2* ... *wordn*: Names of the fields we want to write
- boundaries n word1 word2 ... wordn: Names of the boundaries on which to write fields

3.54 Ecriturelecturespecial

Description: Class to write or not to write a .xyz file on the disk at the end of the calculation.

See also: interprete (3)

Usage:
ecriturelecturespecial type
where

• **type** *str*: If set to 0, no xyz file is created. If set to EFichierBin, it uses prior 1.7.0 way of reading xyz files (now LecFicDiffuseBin). If set to EcrFicPartageBin, it uses prior 1.7.0 way of writing xyz files (now EcrFicPartageMPIIO).

3.55 Espece

```
Description: not_set

See also: interprete (3)

Usage:
espece {

mu champ_base
cp champ_base
masse_molaire float
}

where

• mu champ_base (18.1): Species dynamic viscosity value (kg.m-1.s-1).
• cp champ_base (18.1): Species specific heat value (J.kg-1.K-1).
• masse_molaire float: Species molar mass.
```

3.56 Execute_parallel

Description: This keyword allows to run several computations in parallel on processors allocated to TRUST. The set of processors is split in N subsets and each subset will read and execute a different data file. Error messages usually written to stderr and stdout are redirected to .log files (journaling must be activated).

```
See also: interprete (3)

Usage:
execute_parallel {

liste_cas n word1 word2 ... wordn

[nb_procs n n1 n2 ... nn]
}
where
```

- **liste_cas** *n word1 word2 ... wordn*: N datafile1 ... datafileN. datafileX the name of a TRUST data file without the .data extension.
- **nb_procs** *n n1 n2 ... nn*: nb_procs is the number of processors needed to run each data file. If not given, TRUST assumes that computations are sequential.

3.57 Export

Description: Class to make the object have a global range, if not its range will apply to the block only (the associated object will be destroyed on exiting the block).

See also: interprete (3)

Usage:

export

3.58 Extract_2d_from_3d

Description: Keyword to extract a 2D mesh by selecting a boundary of the 3D mesh. To generate a 2D axisymmetric mesh prefer Extract_2Daxi_from_3D keyword.

See also: interprete (3) extract_2daxi_from_3d (3.59)

Usage:

extract_2d_from_3d dom3D bord dom2D

where

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

3.59 Extract 2daxi from 3d

Description: Keyword to extract a 2D axisymetric mesh by selecting a boundary of the 3D mesh.

See also: extract_2d_from_3d (3.58)

Usage:

extract 2daxi from 3d dom3D bord dom2D

where

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

3.60 Extraire domaine

Description: Keyword to create a new domain built with the domain elements of the pb_name problem verifying the two conditions given by Condition_elements. The problem pb_name should have been discretized.

```
Keyword Discretize should have already been used to read the object.

See also: interprete (3)

Usage:
extraire_domaine {

domaine str
probleme str
[condition_elements str]
[sous_zonelsous_domaine str]
}
where

• domaine str: Domain in which faces are saved
• probleme str: Problem from which faces should be extracted
• condition_elements str
• sous zonelsous domaine str
```

3.61 Extraire_plan

Description: This keyword extracts a plane mesh named domain_name (this domain should have been declared before) from the mesh of the pb_name problem. The plane can be either a triangle (defined by the keywords Origine, Point1, Point2 and Triangle), either a regular quadrangle (with keywords Origine, Point1 and Point2), or either a generalized quadrangle (with keywords Origine, Point1, Point2, Point3). The keyword Epaisseur specifies the thickness of volume around the plane which contains the faces of the extracted mesh. The keyword via_extraire_surface will create a plan and use Extraire_surface algorithm. Inverse_condition_element keyword then will be used in the case where the plane is a boundary not well oriented, and avec_certains_bords_pour_extraire_surface is the option related to the Extraire_surface option named avec_certains_bords.

Keyword Discretize should have already been used to read the object. See also: interprete (3)

```
Usage:
extraire_plan {

domaine str
probleme str
origine n x1 x2 ... xn
point1 n x1 x2 ... xn
point2 n x1 x2 ... xn
[point3 n x1 x2 ... xn]
[triangle ]
epaisseur float
[via_extraire_surface ]
[inverse_condition_element ]
[avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn]
}
where
```

- domaine str: domain name
- **probleme** *str*: pb_name

```
origine n x1 x2 ... xn
point1 n x1 x2 ... xn
point2 n x1 x2 ... xn
point3 n x1 x2 ... xn
triangle
epaisseur float: thickness
via_extraire_surface
```

- inverse_condition_element
- avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn: name of boundaries to include when extracting plan

3.62 Extraire_surface

Description: This keyword extracts a surface mesh named domain_name (this domain should have been declared before) from the mesh of the pb_name problem. The surface mesh is defined by one or two conditions. The first condition is about elements with Condition_elements. For example: Condition_elements x*x+y*y+z*z<1

Will define a surface mesh with external faces of the mesh elements inside the sphere of radius 1 located at (0,0,0). The second condition Condition_faces is useful to give a restriction.

By default, the faces from the boundaries are not added to the surface mesh excepted if option avec_les_bords is given (all the boundaries are added), or if the option avec_certains_bords is used to add only some boundaries.

Keyword Discretize should have already been used to read the object. See also: interprete (3)

```
Usage:
extraire_surface {

domaine str
probleme str
[ condition_elements str]
[ condition_faces str]
[ avec_les_bords ]
[ avec_certains_bords n word1 word2 ... wordn]
}
where
```

- domaine str: Domain in which faces are saved
- probleme str: Problem from which faces should be extracted
- condition elements str: condition on center of elements
- condition faces str
- avec les bords
- avec certains bords n word1 word2 ... wordn

3.63 Extrudebord

Description: Class to generate an extruded mesh from a boundary of a tetrahedral or an hexahedral mesh. Warning: If the initial domain is a tetrahedral mesh, the boundary will be moved in the XY plane then extrusion will be applied (you should maybe use the Transformer keyword on the final domain to have the domain you really want). You can use the keyword Postraiter_domaine to generate a latalmedl... file to visualize your initial and final meshes.

This keyword can be used for example to create a periodic box extracted from a boundary of a tetrahedral or a hexaedral mesh. This periodic box may be used then to engender turbulent inlet flow condition for the main domain.

Note that ExtrudeBord in VEF generates 3 or 14 tetrahedra from extruded prisms.

```
See also: interprete (3)

Usage:
extrudebord {

domaine_init str
direction x1 x2 (x3)
nb_tranches int
domaine_final str
nom_bord str
[hexa_old]
[trois_tetra]
[vingt_tetra]
[sans_passer_par_le2d int]
}
where
```

- **domaine_init** *str*: Initial domain with hexaedras or tetrahedras.
- **direction** $x1 \ x2 \ (x3)$: Directions for the extrusion.
- **nb_tranches** *int*: Number of elements in the extrusion direction.
- domaine final str: Extruded domain.
- nom bord str: Name of the boundary of the initial domain where extrusion will be applied.
- hexa_old : Old algorithm for boundary extrusion from a hexahedral mesh.
- trois_tetra: To extrude in 3 tetrahedras instead of 14 tetrahedras.
- vingt_tetra: To extrude in 20 tetrahedras instead of 14 tetrahedras.
- sans_passer_par_le2d int: Only for non-regression

3.64 Extrudeparoi

Description: Keyword dedicated in 3D (VEF) to create prismatic layer at wall. Each prism is cut into 3 tetraedra.

```
See also: interprete (3)

Usage:
extrudeparoi {

domaine str
nom_bord str
[epaisseur n x1 x2 ... xn]
[critere_absolu int]
[projection_normale_bord]
}
where
```

- domaine str: Name of the domain.
- **nom_bord** *str*: Name of the (no-slip) boundary for creation of prismatic layers.
- epaisseur n x1 x2 ... xn: n r1 r2 rn : (relative or absolute) width for each layer.

- critere_absolu int: relative (0, the default) or absolute (1) width for each layer.
- **projection_normale_bord**: keyword to project layers on the same plane that contiguous boundaries. defaut values are: epaisseur_relative 1 0.5 projection_normale_bord 1

3.65 Extruder

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 14) from a 2D triangular/quadrangular mesh.

```
Usage:
extruder {

domaine str
nb_tranches int
direction troisf
}
where

• domaine str: Name of the domain.
• nb_tranches int: Number of elements in the extrusion direction.
• direction troisf (3.66): Direction of the extrude operation.
```

3.66 Troisf

Description: Auxiliary class to extrude.

See also: interprete (3) extruder_en3 (3.68)

```
See also: objet_lecture (43)

Usage:
lx ly lz
where
```

- lx float: X direction of the extrude operation.
- ly float: Y direction of the extrude operation.
- Iz *float*: Z direction of the extrude operation.

3.67 Extruder_en20

Description: It does the same task as Extruder except that a prism is cut into 20 tetraedra instead of 3. The name of the boundaries will be devant (front) and derriere (back). But you can change these names with the keyword RegroupeBord.

```
See also: interprete (3)

Usage:
extruder_en20 {

domaine str
nb_tranches int
[direction troisf]
```

```
}
where
```

- domaine str: Name of the domain.
- **nb** tranches *int*: Number of elements in the extrusion direction.
- **direction** troisf(3.66): 0 Direction of the extrude operation.

3.68 Extruder en3

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 3) from a 2D triangular/quadrangular mesh. The names of the boundaries (by default, devant (front) and derriere (back)) may be edited by the keyword nom_cl_devant and nom_cl_derriere. If 'null' is written for nom_cl, then no boundary condition is generated at this place.

Recommendation: to ensure conformity between meshes (in case of fluid/solid coupling) it is recommended to extrude all the domains at the same time.

```
See also: extruder (3.65)

Usage:
extruder_en3 {

domaine n word1 word2 ... wordn
[nom_cl_devant str]
[nom_cl_derriere str]
nb_tranches int
direction troisf
}
where
```

- **domaine** *n word1 word2 ... wordn*: List of the domains
- nom_cl_devant str: New name of the first boundary.
- **nom_cl_derriere** *str*: New name of the second boundary.
- **nb** tranches *int* for inheritance: Number of elements in the extrusion direction.
- **direction** *troisf* (3.66) for inheritance: Direction of the extrude operation.

3.69 Facsec

Description: To parameter the safety factor for the time step during the simulation.

```
See also: interprete (3)

Usage:
facsec {

    [facsec_ini float]
    [facsec_max float]
    [rapport_residus float]
    [nb_ite_sans_accel_max int]
}
where
```

• facsec_ini float: Initial facsec taken into account at the beginning of the simulation.

• facsec_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- rapport_residus *float*: Ratio between the residual at time n and the residual at time n+1 above which the facsec is increased by multiplying by sqrt(rapport_residus) (1.2 by default).
- **nb_ite_sans_accel_max** *int*: Maximum number of iterations without facsec increases (20000 by default): if facsec does not increase with the previous condition (ration between 2 consecutive residuals too high), we increase it by force after nb ite sans accel max iterations.

3.70 End

Synonymous: fin

Description: Keyword which must complete the data file. The execution of the data file stops when reaching this keyword.

```
See also: interprete (3)

Usage:
end

3.71 }

Description: Block's end.

See also: interprete (3)

Usage:
```

3.72 Imposer_vit_bords_ale

Description: For the Arbitrary Lagrangian-Eulerian framework: block to indicate the number of mobile boundaries of the domain and specify the speed that must be imposed on them.

```
See also: interprete (3)

Usage:
imposer_vit_bords_ale dom bloc
```

where

- dom str: Name of domain.
- **bloc** *bloc_lecture* (3.2): between the braces, you must specify the numbers of the mobile borders of the domain then list these mobile borders and indicate the speed which must be imposed on them Example: Imposer_vit_bords_ALE dom_name { 1 boundary_name Champ_front_ALE 2 (y-0.1)*0.01 (x-0.1)*0.01 }

3.73 Imprimer_flux

Description: This keyword prints the flux per face at the specified domain boundaries in the data set. The fluxes are written to the .face files at a frequency defined by dt_impr, the evaluation printing frequency (refer to time scheme keywords). By default, fluxes are incorporated onto the edges before being displayed.

See also: interprete (3) imprimer flux sum (3.74)

Usage:

imprimer_flux domain_name noms_bord where

- **domain_name** *str*: Name of the domain.
- **noms_bord** *bloc_lecture* (3.2): List of boundaries, for ex: { Bord1 Bord2 }

3.74 Imprimer_flux_sum

Description: This keyword prints the sum of the flux per face at the domain boundaries defined by the user in the data set. The fluxes are written into the .out files at a frequency defined by dt_impr, the evaluation printing frequency (refer to time scheme keywords).

See also: imprimer_flux (3.73)

Usage:

imprimer_flux_sum domain_name noms_bord
where

- domain_name str: Name of the domain.
- **noms_bord** *bloc_lecture* (3.2): List of boundaries, for ex: { Bord1 Bord2 }

3.75 Integrer_champ_med

Description: his keyword is used to calculate a flow rate from a velocity MED field read before. The method is either debit_total to calculate the flow rate on the whole surface, either integrale_en_z to calculate flow rates between z=zmin and z=zmax on nb_tranche surfaces. The output file indicates first the flow rate for the whole surface and then lists for each tranche: the height z, the surface average value, the surface area and the flow rate. For the debit_total method, only one tranche is considered. file:z Sum(u.dS)/Sum(dS) Sum(dS) Sum(u.dS)

```
See also: interprete (3)
```

Usage:

```
integrer_champ_med {
```

 ${\bf champ_med} \quad str$

```
methode str into ['integrale_en_z', 'debit_total']
     [ zmin float]
     [zmax float]
     [ nb_tranche int]
     [fichier_sortie str]
}
where
   • champ med str
   • methode str into ['integrale_en_z', 'debit_total']: to choose between the integral following z or
     over the entire height (debit total corresponds to zmin=-DMAXFLOAT, ZMax=DMAXFLOAT, nb-
      _tranche=1)
   • zmin float
   • zmax float
   • nb tranche int
   • fichier_sortie str: name of the output file, by default: integrale.
3.76
      Interfaces
Description: not_set
See also: interprete (3)
Usage:
interfaces {
     fichier_reprise_interface str
     [timestep_reprise_interface int]
     [ lata_meshname str]
     [ remaillage_ft_ijk remaillage_ft_ijk]
     [ no_octree_method int]
     [compute distance autres interfaces ]
     [ terme_gravite str into ['rho_g', 'grad_i']]
}
where
   • fichier_reprise_interface str
   • timestep_reprise_interface int
   • lata meshname str
   • remaillage ft ijk remaillage ft ijk (3.113)
   • no_octree_method int: if the bubbles repel each other, what method should be used to compute
     relative velocities? Octree method by default, otherwise we used the IJK discretization
   • compute_distance_autres_interfaces
   • terme_gravite str into ['rho_g', 'grad_i']
3.77
       Interprete_geometrique_base
Description: Class for interpreting a data file
See also: interprete (3) Create_domain_from_sub_domain (3.5)
Usage:
```

interprete_geometrique_base

3.78 Lata_2_med

Synonymous: lata_to_med

Description: To convert results file written with LATA format to MED file. Warning: Fields located on faces are not supported yet.

See also: interprete (3)

Usage:

lata_2_med [format] file file_med

where

- **format** *format_lata_to_med* (3.79): generated file post_med.data use format (MED or LATA or LML keyword).
- file str: LATA file to convert to the new format.
- file_med str: Name of the MED file.

3.79 Format_lata_to_med

Description: not_set

See also: objet_lecture (43)

Usage:

mot [format]

where

- mot str into ['format_post_sup']
- **format** *str into ['lml', 'lata_v2', 'med']*: generated file post_med.data use format (MED or LATA or LML keyword).

3.80 Lata_2_other

Synonymous: lata_to_other

Description: To convert results file written with LATA format to MED or LML format. Warning: Fields located at faces are not supported yet.

See also: interprete (3)

Usage:

lata_2_other [format] file file_post

where

- format str into ['lml', 'lata', 'lata_v2', 'med']: Results format (MED or LATA or LML keyword).
- file str: LATA file to convert to the new format.
- file_post str: Name of file post.

3.81 Lire_ideas

Description: Read a geom in a unv file. 3D tetra mesh elements only may be read by TRUST.

```
See also: interprete (3)
Usage:
lire_ideas nom_dom file
where
   • nom_dom str: Name of domain.
   • file str: Name of file.
3.82 Lml_2_lata
Synonymous: lml_to_lata
Description: To convert results file written with LML format to a single LATA file.
See also: interprete (3)
Usage:
lml_2_lata file_lml file_lata
where
   • file_lml str: LML file to convert to the new format.
   • file_lata str: Name of the single LATA file.
3.83
      Mailler
Description: The Mailler (Mesh) interpretor allows a Domain type object domaine to be meshed with ob-
jects objet_1, objet_2, etc...
See also: interprete (3)
Usage:
mailler domaine bloc
where
   • domaine str: Name of domain.
   • bloc list_bloc_mailler (3.84): Instructions to mesh.
3.84 List_bloc_mailler
Description: List of block mesh.
See also: listobj (42.5)
Usage:
{ object1, object2....}
list of mailler_base (3.84.1) separeted with,
3.84.1 Mailler_base
Description: Basic class to mesh.
See also: objet_lecture (43) pave (3.84.2) epsilon (3.84.12) domain (3.84.13)
```

Usage:

3.84.2 Pave

where

```
Description: Class to create a pave (block) with boundaries.
See also: mailler base (3.84.1)
Usage:
pave name bloc list bord
where
   • name str: Name of the pave (block).
   • bloc bloc_pave (3.84.3): Definition of the pave (block).
   • list_bord list_bord (3.84.4): Domain boundaries definition.
3.84.3 Bloc_pave
Description: Class to create a pave.
See also: objet_lecture (43)
Usage:
{
      [Origine x1 x2 (x3)]
      [longueurs x1 \ x2 \ (x3)]
      [ nombre_de_noeuds n1 n2 (n3)]
      [ facteurs x1 \ x2 \ (x3)]
      [symx]
      [symy]
      [symz]
      [xtanh float]
      [ xtanh_dilatation int into [-1, 0, 1]]
      [ xtanh_taille_premiere_maille float]
      [ ytanh float]
      [ ytanh_dilatation int into [-1, 0, 1]]
      [ ytanh_taille_premiere_maille float]
      [ztanh float]
      [ ztanh_dilatation int into [-1, 0, 1]]
      [ ztanh taille premiere maille float]
}
```

- Origine x1 x2 (x3): Keyword to define the pave (block) origin, that is to say one of the 8 block points (or 4 in a 2D coordinate system).
- **longueurs** $x1 \ x2 \ (x3)$: Keyword to define the block dimensions, that is to say knowing the origin, length along the axes.
- **nombre_de_noeuds** *n1 n2 (n3)*: Keyword to define the discretization (nodenumber) in each direction.
- **facteurs** x1 x2 (x3): Keyword to define stretching factors for mesh discretization in each direction. This is a real number which must be positive (by default 1.0). A stretching factor other than 1 allows refinement on one edge in one direction.
- symx: Keyword to define a block mesh that is symmetrical with respect to the YZ plane (respectively Y-axis in 2D) passing through the block centre.
- **symy**: Keyword to define a block mesh that is symmetrical with respect to the XZ plane (respectively X-axis in 2D) passing through the block centre.

- symz: Keyword defining a block mesh that is symmetrical with respect to the XY plane passing through the block centre.
- xtanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction.
- xtanh_dilatation int into [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction. xtanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the left side of the channel and smaller at the right side 1: coarse mesh at the right side of the channel and smaller near the left side of the channel.
- xtanh_taille_premiere_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the X-direction.
- ytanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- ytanh_dilatation int into [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction. ytanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the bottom of the channel and smaller near the top 1: coarse mesh at the top of the channel and smaller near the bottom.
- ytanh_taille_premiere_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- ztanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction.
- **ztanh_dilatation** *int into* [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction. tanh_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the back of the channel and smaller near the front 1: coarse mesh at the front of the channel and smaller near the back.
- **ztanh_taille_premiere_maille** *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Z-direction.

3.84.4 List bord

Description: The block sides.

See also: listobj (42.5)

Usage:
{ object1 object2 }
list of bord base (3.84.5)

3.84.5 Bord base

Description: Basic class for block sides. Block sides that are neither edges nor connectors are not specified. The duplicate nodes of two blocks in contact are automatically recognized and deleted.

```
See also: objet_lecture (43) raccord (3.84.6) internes (3.84.10) bord (3.84.11)
```

3.84.6 Raccord

Usage:

Description: The block side is in contact with the block of another domain (case of two coupled problems).

```
See also: bord_base (3.84.5)
```

Usage:

raccord type1 type2 nom defbord

where

- type1 str into ['local', 'distant']: Contact type.
- type2 str into ['homogene']: Contact type.
- nom str: Name of block side.
- **defbord** *defbord* (3.84.7): Definition of block side.

3.84.7 Defbord

Description: Class to define an edge.

See also: objet_lecture (43) defbord_2 (3.84.8) defbord_3 (3.84.9)

Usage:

3.84.8 Defbord 2

Description: 1-D edge (straight line) in the 2-D space.

See also: (3.84.7)

Usage:

dir eq pos pos2_min inf1 dir2 inf2 pos2_max where

- **dir** *str into* ['X', 'Y']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- pos float: Position value.
- pos2 min *float*: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.
- **dir2** *str into* ['X', 'Y']: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2_max *float*: Maximal value.

3.84.9 Defbord_3

Description: 2-D edge (plane) in the 3-D space.

See also: (3.84.7)

Usage:

- dir str into ['X', 'Y', 'Z']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- pos float: Position value.
- pos2_min float: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.
- dir2 str into ['X', 'Y']: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2_max *float*: Maximal value.
- pos3_min float: Minimal value.
- inf3 str into ['<=']: Less than or equal to sign.
- dir3 str into ['Y', 'Z']: Edge is parallel to this direction.
- inf4 str into ['<=']: Less than or equal to sign.
- pos3_max float: Maximal value.

3.84.10 Internes

Description: To indicate that the block has a set of internal faces (these faces will be duplicated automatically by the program and will be processed in a manner similar to edge faces).

Two boundaries with the same boundary conditions may have the same name (whether or not they belong to the same block).

The keyword Internes (Internal) must be used to execute a calculation with plates, followed by the equation of the surface area covered by the plates.

See also: bord_base (3.84.5)

Usage:

internes nom defbord

where

- nom str: Name of block side.
- **defbord** (3.84.7): Definition of block side.

3.84.11 Bord

Description: The block side is not in contact with another block and boundary conditions are applied to it.

See also: bord_base (3.84.5)

Usage:

bord nom defbord

where

- nom str: Name of block side.
- **defbord** (3.84.7): Definition of block side.

3.84.12 **Epsilon**

Description: Two points will be confused if the distance between them is less than eps. By default, eps is set to 1e-12. The keyword Epsilon allows an alternative value to be assigned to eps.

See also: mailler base (3.84.1)

Usage:

epsilon eps

where

• eps *float*: New value of precision.

3.84.13 **Domain**

Description: Class to reuse a domain.

See also: mailler_base (3.84.1)

Usage:

domain domain_name

where

• domain_name str: Name of domain.

3.85 Maillerparallel

Description: creates a parallel distributed hexaedral mesh of a parallelipipedic box. It is equivalent to creating a mesh with a single Pave, splitting it with Decouper and reloading it in parallel with Scatter. It only works in 3D at this time. It can also be used for a sequential computation (with all NPARTS=1)}

```
See also: interprete (3)
Usage:
maillerparallel {
     domain str
     nb_nodes n n1 n2 ... nn
     splitting n n 1 n 2 \dots n n
     ghost_thickness int
     [ perio_x ]
     [ perio_y ]
     [perio z]
     [ function coord x str]
     [function_coord_y str]
     [function coord z str]
     [ file_coord_x str]
     [ file_coord_y str]
     [ file coord z str]
     [boundary xmin str]
     [boundary_xmax str]
     [boundary_ymin str]
     [boundary_ymax str]
     [boundary_zmin str]
     [boundary_zmax str]
}
where
```

- **domain** *str*: the name of the domain to mesh (it must be an empty domain object).
- **nb_nodes** *n n1 n2* ... *nn*: dimension defines the spatial dimension (currently only dimension=3 is supported), and nX, nY and nZ defines the total number of nodes in the mesh in each direction.
- **splitting** *n n1 n2 ... nn*: dimension is the spatial dimension and npartsX, npartsY and npartsZ are the number of parts created. The product of the number of parts must be equal to the number of processors used for the computation.
- **ghost_thickness** *int*: the number of ghost cells (equivalent to the epaisseur_joint parameter of Decouper.
- perio_x : change the splitting method to provide a valid mesh for periodic boundary conditions.
- perio_y : change the splitting method to provide a valid mesh for periodic boundary conditions.
- perio_z : change the splitting method to provide a valid mesh for periodic boundary conditions.
- function_coord_x str: By default, the meshing algorithm creates nX nY nZ coordinates ranging between 0 and 1 (eg a unity size box). If function_coord_x} is specified, it is used to transform the [0,1] segment to the coordinates of the nodes. funcX must be a function of the x variable only.
- function_coord_y str: like function_coord_x for y
- function_coord_z str: like function_coord_x for z
- file_coord_x str: Keyword to read the Nx floating point values used as nodes coordinates in the file.

```
• file_coord_y str: idem file_coord_x for y
```

• file coord z str: idem file coord x for z

- **boundary_xmin** *str*: the name of the boundary at the minimum X direction. If it not provided, the default boundary names are xmin, xmax, ymin, ymax, zmin and zmax. If the mesh is periodic in a given direction, only the MIN boundary name is used, for both sides of the box.
- boundary_xmax str
- boundary_ymin str
- boundary_ymax str
- boundary_zmin str
- boundary_zmax str

3.86 Mass source

Description: Mass source used in a dilatable simulation to add/reduce a mass at the boundary (volumetric source in the first cell of a given boundary).

```
See also: interprete (3)

Usage:
mass_source {
    bord str
    surfacic_flux champ_front_base
}
where
```

- bord str: Name of the boundary where the source term is applied
- **surfacic_flux** *champ_front_base* (19.1): The boundary field that the user likes to apply: for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_t

3.87 Modif bord to raccord

Description: Keyword to convert a boundary of domain_name domain of kind Bord to a boundary of kind Raccord (named boundary_name). It is useful when using meshes with boundaries of kind Bord defined and to run a coupled calculation.

```
See also: interprete (3)

Usage:
modif_bord_to_raccord domaine nom_bord
where

• domaine str: Name of domain
• nom_bord str: Name of the boundary to transform.
```

3.88 Modifydomaineaxi1d

```
Description: Convert a 1D mesh to 1D axisymmetric mesh

See also: interprete (3)

Usage:
modifydomaineAxi1d dom bloc
where

• dom str
• bloc bloc_lecture (3.2)
```

3.89 Moyenne_volumique

Description: This keyword should be used after Resoudre keyword. It computes the convolution product of one or more fields with a given filtering function.

```
See also: interprete (3)

Usage:
moyenne_volumique {
    nom_pb str
    nom_domaine str
    noms_champs n word1 word2 ... wordn
    [format_post str]
    [nom_fichier_post str]
    fonction_filtre bloc_lecture
    [localisation str into ['elem', 'som']]
}
where
```

- **nom pb** *str*: name of the problem where the source fields will be searched.
- **nom_domaine** *str*: name of the destination domain (for example, it can be a coarser mesh, but for optimal performance in parallel, the domain should be split with the same algorithm as the computation mesh, eg, same tranche parameters for example)
- **noms_champs** *n word1 word2 ... wordn*: name of the source fields (these fields must be accessible from the postraitement) N source field1 source field2 ... source fieldN
- **format post** str: gives the fileformat for the result (by default : lata)
- **nom_fichier_post** *str*: indicates the filename where the result is written
- **fonction_filtre** *bloc_lecture* (3.2): to specify the given filter

```
Fonction_filtre {
type filter_type
demie-largeur l
[ omega w ]
[ expression string ]
```

type filter_type: This parameter specifies the filtering function. Valid filter_type are:

```
Boite is a box filter, f(x, y, z) = (abs(x) < l) * (abs(y) < l) * (abs(z) < l)/(8l^3)
```

Chapeau is a hat filter (product of hat filters in each direction) centered on the origin, the half-width of the filter being 1 and its integral being 1.

Quadra is a 2nd order filter.

Gaussienne is a normalized gaussian filter of standard deviation sigma in each direction (all field elements outside a cubic box defined by clipping_half_width are ignored, hence, taking clipping_half_width=2.5*sigma yields an integral of 0.99 for a uniform unity field).

Parser allows a user defined function of the x,y,z variables. All elements outside a cubic box defined by clipping_half_width are ignored. The parser is much slower than the equivalent c++ coded function...

demie-largeur 1: This parameter specifies the half width of the filter

[omega w] : This parameter must be given for the gaussienne filter. It defines the standard deviation of the gaussian filter.

[expression string]: This parameter must be given for the parser filter type. This expression will be interpreted by the math parser with the predefined variables x, y and z.

• **localisation** *str into ['elem', 'som']*: indicates where the convolution product should be computed: either on the elements or on the nodes of the destination domain.

3.90 Multigrid_solver

Description: Object defining a multigrid solver in IJK discretization

```
Usage:
multigrid_solver {

    [coarsen_operators coarsen_operators]
    [ghost_size int]
    [relax_jacobi n x1 x2 ... xn]
    [pre_smooth_steps n n1 n2 ... nn]
    [smooth_steps n n1 n2 ... nn]
    [nb_full_mg_steps n n1 n2 ... nn]
    [solveur_grossier solveur_sys_base]
    [seuil float]
    [impr ]
    [solver_precision str into ['mixed', 'double']]
    [iterations_mixed_solver int]
}
where
```

- **coarsen_operators** *coarsen_operators* (3.91): Definition of the number of grids that will be used, in addition to the finest (original) grid, followed by the list of the coarsen operators that will be applied to get those grids
- ghost_size int: Number of ghost cells known by each processor in each of the three directions
- **relax_jacobi** n x1 x2 ... xn: Parameter between 0 and 1 that will be used in the Jacobi method to solve equation on each grid. Should be around 0.7
- **pre_smooth_steps** *n n1 n2* ... *nn*: First integer of the list indicates the numbers of integers that has to be read next. Following integers define the numbers of iterations done before solving the equation on each grid. For example, 2 7 8 means that we have a list of 2 integers, the first one tells us to perform 7 pre-smooth steps on the first grid, the second one tells us to perform 8 pre-smooth steps on the second grid. If there are more than 2 grids in the solver, then the remaining ones will have as many pre-smooth steps as the last mentionned number (here, 8)
- **smooth_steps** *n n1 n2 ... nn*: First integer of the list indicates the numbers of integers that has to be read next. Following integers define the numbers of iterations done after solving the equation on each grid. Same behavior as pre smooth steps
- **nb_full_mg_steps** *n n1 n2 ... nn*: Number of multigrid iterations at each level
- **solveur_grossier** *solveur_sys_base* (13.18): Name of the iterative solver that will be used to solve the system on the coarsest grid. This resolution must be more precise than the ones occurring on the fine grids. The threshold of this solver must therefore be lower than seuil defined above.
- **seuil** *float*: Define an upper bound on the norm of the final residue (i.e. the one obtained after applying the multigrid solver). With hybrid precision, as long as we have not obtained a residue whose norm is lower than the imposed threshold, we keep applying the solver
- impr : Flag to display some info on the resolution on eahc grid
- **solver_precision** *str into ['mixed', 'double']*: Precision with which the variables at stake during the resolution of the system will be stored. We can have a simple or floattant precision or both. In the case of a hybrid precision, the multigrid solver is launched in simple precision, but the residual is calculated in floattant precision.
- iterations_mixed_solver int: Define the maximum number of iterations in mixed precision solver

3.91 Coarsen_operators

```
Description: not_set

See also: listobj (42.5)

Usage:
n object1 object2 ....
list of coarsen operator uniform (3.91.1)
```

3.91.1 Coarsen_operator_uniform

Description: Object defining the uniform coarsening process of the given grid in IJK discretization

```
See also: objet_lecture (43)
```

Usage:

```
[\ Coarsen\_Operator\_Uniform\ ]\ aco\ [\ coarsen\_i\ ]\ [\ coarsen\_i\_val\ ]\ [\ coarsen\_j\ ]\ [\ coarsen\_j\ ]\ [\ coarsen\_j\ ]\ [\ coarsen\_k\_val\ ]\ acof\ where
```

- Coarsen_Operator_Uniform str
- aco str into ['{'}]: opening curly brace
- coarsen_i str into ['coarsen_i']
- **coarsen_i_val** int: Integer indicating the number by which we will divide the number of elements in the I direction (in order to obtain a coarser grid)
- coarsen_j str into ['coarsen_j']
- coarsen_j_val int: Integer indicating the number by which we will divide the number of elements in the J direction (in order to obtain a coarser grid)
- coarsen_k str into ['coarsen_k']
- coarsen_k_val int: Integer indicating the number by which we will divide the number of elements in the K direction (in order to obtain a coarser grid)
- acof str into [']': closing curly brace

3.92 Nettoiepasnoeuds

Description: Keyword NettoiePasNoeuds does not delete useless nodes (nodes without elements) from a domain.

```
See also: interprete (3)
```

Usage:

nettoiepasnoeuds domain_name

where

• domain_name str: Name of domain.

3.93 Option_vdf

Description: Class of VDF options.

See also: interprete (3)

Usage:

```
option_vdf {
    [ traitement_coins str into ['oui', 'non']]
    [ traitement_gradients str into ['oui', 'non']]
    [ p_imposee_aux_faces str into ['oui', 'non']]
    [ toutes_les_options|all_options ]
}
where
```

- **traitement_coins** *str into ['oui', 'non']*: Treatment of corners (yes or no). This option modifies slightly the calculations at the outlet of the plane channel. It supposes that the boundary continues after channel outlet (i.e. velocity vector remains parallel to the boundary).
- **traitement_gradients** *str into ['oui', 'non']*: Treatment of gradient calculations (yes or no). This option modifies slightly the gradient calculation at the corners and activates also the corner treatment option.
- p_imposee_aux_faces str into ['oui', 'non']: Pressure imposed at the faces (yes or no).
- **toutes_les_options**lall_**options**: Activates all Option_VDF options. If used, must be used alone without specifying the other options, nor combinations.

3.94 Orientefacesbord

Description: Keyword to modify the order of the boundary vertices included in a domain, such that the surface normals are outer pointing.

See also: interprete (3)

Usage:

orientefacesbord domain_name

where

• domain name str: Name of domain.

3.95 Partition

Synonymous: decouper

Description: Class for parallel calculation to cut a domain for each processor. By default, this keyword is commented in the reference test cases.

See also: interprete (3)

Usage:

partition domaine bloc_decouper

where

- domaine str: Name of the domain to be cut.
- bloc decouper bloc_decouper (3.96): Description how to cut a domain.

3.96 Bloc_decouper

Description: Auxiliary class to cut a domain.

See also: objet_lecture (43)

```
Usage:

[ Partition_toollpartitionneur partitionneur_deriv]

[ larg_joint int]
[ nom_zones str]
[ ecrire_decoupage str]
[ ecrire_lata str]
[ ecrire_med str]
[ nb_parts_tot int]
[ periodique n word1 word2 ... wordn]
[ reorder int]
[ single_hdf ]
[ print_more_infos int]

}

where
```

- **Partition_toollpartitionneur** *partitionneur_deriv* (30): Defines the partitionning algorithm (the effective C++ object used is 'Partitionneur_ALGORITHM_NAME').
- larg_joint int: This keyword specifies the thickness of the virtual ghost domaine (data known by one processor though not owned by it). The default value is 1 and is generally correct for all algorithms except the QUICK convection scheme that require a thickness of 2. Since the 1.5.5 version, the VEF discretization imply also a thickness of 2 (except VEF P0). Any non-zero positive value can be used, but the amount of data to store and exchange between processors grows quickly with the thickness.
- **nom_zones** *str*: Name of the files containing the different partition of the domain. The files will be :

```
name_0001.Zones
name_0002.Zones
```

..

name_000n.Zones. If this keyword is not specified, the geometry is not written on disk (you might just want to generate a 'ecrire_decoupage' or 'ecrire_lata').

- ecrire_decoupage str: After having called the partitionning algorithm, the resulting partition is written on disk in the specified filename. See also partitionneur Fichier_Decoupage. This keyword is useful to change the partition numbers: first, you write the partition into a file with the option ecrire_decoupage. This file contains the domaine number for each element's mesh. Then you can easily permute domaine numbers in this file. Then read the new partition to create the .Zones files with the Fichier_Decoupage keyword.
- ecrire lata str: Save the partition field in a LATA format file for visualization
- ecrire_med str: Save the partition field in a MED format file for visualization
- **nb_parts_tot** *int*: Keyword to generates N .Domaine files, instead of the default number M obtained after the partitionning algorithm. N must be greater or equal to M. This option might be used to perform coupled parallel computations. Supplemental empty domaines from M to N-1 are created. This keyword is used when you want to run a parallel calculation on several domains with for example, 2 processors on a first domain and 10 on the second domain because the first domain is very small compare to second one. You will write Nb_parts 2 and Nb_parts_tot 10 for the first domain and Nb_parts 10 for the second domain.
- **periodique** *n word1 word2* ... *wordn*: N BOUNDARY_NAME_1 BOUNDARY_NAME_2 ... : N is the number of boundary names given. Periodic boundaries must be declared by this method. The partitionning algorithm will ensure that facing nodes and faces in the periodic boundaries are located on the same processor.
- **reorder** *int*: If this option is set to 1 (0 by default), the partition is renumbered in order that the processes which communicate the most are nearer on the network. This may slighly improves parallel performance.

- single_hdf: Optional keyword to enable you to write the partitioned domaines in a single file in hdf5 format.
- **print_more_infos** *int*: If this option is set to 1 (0 by default), print infos about number of remote elements (ghosts) and additional infos about the quality of partitionning. Warning, it slows down the cutting operations.

3.97 Partition_multi

Synonymous: decouper_multi

Description: allows to partition multiple domains in contact with each other in parallel: necessary for resolution monolithique in implicit schemes and for all coupled problems using PolyMAC_P0P1NC. By default, this keyword is commented in the reference test cases.

See also: interprete (3)

Usage:

partition_multi aco domaine1 dom blocdecoupdom1 domaine2 dom2 blocdecoupdom2 acof where

- aco str into ['{'}: Opening curly bracket.
- domaine1 str into ['domaine']: not set.
- dom str: Name of the first domain to be cut.
- **blocdecoupdom1** *bloc_decouper* (3.96): *Partition bloc for the first domain.*
- domaine2 str into ['domaine']: not set.
- dom2 str: Name of the second domain to be cut.
- **blocdecoupdom2** *bloc_decouper* (3.96): *Partition bloc for the second domain.*
- acof str into ['}']: Closing curly bracket.

3.98 Pilote_icoco

```
Description: not_set

See also: interprete (3)

Usage:
pilote_icoco {
    pb_name str
    main str

}
where

• pb_name str
• main str
```

3.99 Polyedriser

Description: cast hexahedra into polyhedra so that the indexing of the mesh vertices is compatible with PolyMAC_P0P1NC discretization. Must be used in PolyMAC_P0P1NC discretization if a hexahedral mesh has been produced with TRUST's internal mesh generator.

```
See also: interprete (3)

Usage:
polyedriser domain_name
where

• domain_name str: Name of domain.
```

3.100 Postraiter_domaine

Description: To write one or more domains in a file with a specified format (MED,LML,LATA,SINGLE_LATA,CGNS).

```
See also: interprete (3)

Usage:
postraiter_domaine {
    format    str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'cgns']
    [ binaire    int into [0, 1]]
    [ ecrire_frontiere    int into [0, 1]]
    [ filelfichier    str]
    [ joints_non_postraites    int into [0, 1]]
    [ domainldomaine    str]
    [ domaines    bloc_lecture]
}
where
```

- format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'cgns']: File format.
- **binaire** *int into* [0, 1]: Binary (binaire 1) or ASCII (binaire 0) may be used. By default, it is 0 for LATA and only ASCII is available for LML and only binary is available for MED.
- ecrire_frontiere int into [0, 1]: This option will write (if set to 1, the default) or not (if set to 0) the boundaries as fields into the file (it is useful to not add the boundaries when writing a domain extracted from another domain)
- **filelfichier** *str*: The file name can be changed with the fichier option.
- **joints_non_postraites** *int into* [0, 1]: The joints_non_postraites (1 by default) will not write the boundaries between the partitioned mesh.
- domainldomaine str: Name of domain
- **domaines** *bloc_lecture* (3.2): Names of domains : { name1 name2 }

3.101 Precisiongeom

Description: Class to change the way floating-point number comparison is done. By default, two numbers are equal if their absolute difference is smaller than 1e-10. The keyword is useful to modify this value. Moreover, nodes coordinates will be written in .geom files with this same precision.

```
See also: interprete (3)

Usage:
precisiongeom precision
where
```

• **precision** *float*: New value of precision.

3.102 Raffiner_anisotrope

Description: Only for VEF discretizations, allows to cut triangle elements in 3, or tetrahedra in 4 parts, by defining a new summit located at the center of the element:

Note that such a cut creates flat elements (anisotropic).

See also: interprete (3)

Usage:

raffiner_anisotrope domain_name where

• domain_name str: Name of domain.

3.103 Raffiner_isotrope

Synonymous: raffiner_simplexes

Description: For VDF and VEF discretizations, allows to cut triangles/quadrangles or tetrahedral/hexaedras elements respectively in 4 or 8 new ones by defining new summits located at the middle of edges (and center of faces and elements for quadrangles and hexaedra). Such a cut preserves the shape of original elements (isotropic). For 2D elements:

For 3D elements:

See also: interprete (3)

Usage:

raffiner_isotrope domain_name where

• **domain_name** *str*: Name of domain.

3.104 Read

Synonymous: lire

Description: Interpretor to read the a_object objet defined between the braces.

See also: interprete (3)

Usage:

read a_object bloc

where

- a_object str: Object to be read.
- bloc str: Definition of the object.

3.105 Read_file

Synonymous: lire_fichier

Description: Keyword to read the object name obj contained in the file filename.

This is notably used when the calculation domain has already been meshed and the mesh contains the file filename, simply write read_file dom filename (where dom is the name of the meshed domain).

If the filename is ;, is to execute a data set given in the file of name name_obj (a space must be entered between the semi-colon and the file name).

See also: interprete (3) read_unsupported_ascii_file_from_icem (3.108) read_file_binary (3.106)

Usage:

read_file name_obj filename

where

- name_obj str: Name of the object to be read.
- **filename** *str*: Name of the file.

3.106 Read_file_binary

Synonymous: lire_fichier_bin

Description: Keyword to read an object name_obj in the unformatted type file filename.

See also: read_file (3.105)

Usage:

read_file_binary name_obj filename

where

- name obj str: Name of the object to be read.
- **filename** *str*: Name of the file.

3.107 Lire_tgrid

Description: Keyword to reaf Tgrid/Gambit mesh files. 2D (triangles or quadrangles) and 3D (tetra or hexa elements) meshes, may be read by TRUST.

See also: interprete (3)

Usage:

lire_tgrid dom filename

where

- dom str: Name of domaine.
- **filename** *str*: Name of file containing the mesh.

3.108 Read_unsupported_ascii_file_from_icem

Description: not_set

See also: read_file (3.105)

Usage:

 $read_unsupported_ascii_file_from_icem \quad name_obj \quad filename$

where

• name_obj str: Name of the object to be read.

• filename str: Name of the file.

3.109 Orienter_simplexes

Synonymous: rectify_mesh

Description: Keyword to raffine a mesh

See also: interprete (3)

Usage:

orienter_simplexes domain_name

where

• domain name str: Name of domain.

3.110 Redresser_hexaedres_vdf

Description: Keyword to convert a domain (named domain_name) with quadrilaterals/VEF hexaedras which looks like rectangles/VDF hexaedras into a domain with real rectangles/VDF hexaedras.

See also: interprete (3)

Usage:

redresser_hexaedres_vdf domain_name

where

• domain_name str: Name of domain to resequence.

3.111 Refine_mesh

Description: not_set

See also: interprete (3)

Usage:

refine mesh domaine

where

• domaine str

3.112 Regroupebord

Description: Keyword to build one boundary new_bord with several boundaries of the domain named domaine.

```
See also: interprete (3)
Usage:
regroupebord domaine new bord bords
where
   • domaine str: Name of domain
   • new_bord str: Name of the new boundary
   • bords bloc_lecture (3.2): { Bound1 Bound2 }
3.113 Remaillage_ft_ijk
Description: not_set
See also: interprete (3)
Usage:
remaillage_ft_ijk {
     [ pas_remaillage float]
     [ nb_iter_barycentrage int]
     [ relax_barycentrage float]
     [ critere_arete float]
     [ seuil_dvolume_residuel float]
     [ nb_iter_correction_volume int]
     [ nb_iter_remaillage int]
     [facteur longueur ideale float]
     [ equilateral int]
     [ lissage_courbure_coeff float]
     [ lissage_courbure_iterations_systematique int]
     [ lissage_courbure_iterations_si_remaillage int]
}
where
   • pas_remaillage float
   • nb_iter_barycentrage int
   • relax_barycentrage float
   • critere arete float
   • seuil_dvolume_residuel float
   • nb iter correction volume int
   • nb_iter_remaillage int
   • facteur_longueur_ideale float
   • equilateral int
   • lissage courbure coeff float
   • lissage_courbure_iterations_systematique int
   • lissage_courbure_iterations_si_remaillage int
```

3.114 Remove_elem

Description: Keyword to remove element from a VDF mesh (named domaine_name), either from an explicit list of elements or from a geometric condition defined by a condition f(x,y)>0 in 2D and f(x,y,z)>0 in 3D. All the new borders generated are gathered in one boundary called: newBord (to rename it, use RegroupeBord keyword. To split it to different boundaries, use DecoupeBord_Pour_Rayonnement keyword). Example of a removed zone of radius 0.2 centered at (x,y)=(0.5,0.5):

Remove_elem dom { fonction $0.2 * 0.2 - (x - 0.5)^2 - (y - 0.5)^2 > 0$ }

Warning: the thickness of removed zone has to be large enough to avoid singular nodes as decribed below:

See also: interprete (3)

Usage:

remove_elem domaine bloc where

- domaine str: Name of domain
- **bloc** remove_elem_bloc (3.115)

3.115 Remove_elem_bloc

```
Description: not_set

See also: objet_lecture (43)

Usage:
{
    [liste n n1 n2 ... nn]
    [fonction str]
}
where
```

- **liste** *n n1 n2 ... nn*
- fonction str

3.116 Remove_invalid_internal_boundaries

Description: Keyword to suppress an internal boundary of the domain_name domain. Indeed, some mesh tools may define internal boundaries (eg: for post processing task after the calculation) but TRUST does not support it yet.

See also: interprete (3)

Usage:

 $remove_invalid_internal_boundaries \quad domain_name$

where

• domain_name str: Name of domain.

3.117 Reorienter tetraedres

Description: This keyword is mandatory for front-tracking computations with the VEF discretization. For each tetrahedral element of the domain, it checks if it has a positive volume. If the volume (determinant of the three vectors) is negative, it swaps two nodes to reverse the orientation of this tetrahedron.

See also: interprete (3)

Usage:

reorienter_tetraedres domain_name

where

• domain_name str: Name of domain.

3.118 Reorienter_triangles

Description: not_set

See also: interprete (3)

Usage:

reorienter_triangles domain_name

where

• domain name str: Name of domain.

3.119 Reordonner

Description: The Reordonner_32_64 interpretor is required sometimes for a VDF mesh which is not produced by the internal mesher. Example where this is used:

Read_file dom fichier.geom

Reordonner_32_64 dom

Observations: This keyword is redundant when the mesh that is read is correctly sequenced in the TRUST sense. This significant mesh operation may take some time... The message returned by TRUST is not explicit when the Reordonner_32_64 (Resequencing) keyword is required but not included in the data set...

See also: interprete (3)

Usage:

reordonner domain_name

where

• domain_name str: Name of domain to resequence.

3.120 Residuals

Description: To specify how the residuals will be computed.

```
See also: interprete (3)

Usage:
residuals {
    [norm str into ['L2', 'max']]
    [relative str into ['0', '1', '2']]
}
where
```

- **norm** *str into* ['L2', 'max']: allows to choose the norm we want to use (max norm by default). Possible to specify L2-norm.
- **relative** *str into ['0', '1', '2']*: This is the old keyword seuil_statio_relatif_deconseille. If it is set to 1, it will normalize the residuals with the residuals of the first 5 timesteps (default is 0). if set to 2, residual will be computed as R/(max-min).

3.121 Rotation

Description: Keyword to rotate the geometry of an arbitrary angle around an axis aligned with Ox, Oy or Oz axis.

See also: interprete (3)

Usage:

rotation domain_name dir coord1 coord2 angle where

- **domain_name** *str*: Name of domain to wich the transformation is applied.
- dir str into ['X', 'Y', 'Z']: X, Y or Z to indicate the direction of the rotation axis
- **coord1** *float*: coordinates of the center of rotation in the plane orthogonal to the rotation axis. These coordinates must be specified in the direct triad sense.
- coord2 float
- angle *float*: angle of rotation (in degrees)

3.122 Scatter

where

Description: Class to read a partionned mesh from the files during a parallel calculation. The files are in binary format.

```
See also: interprete (3) scattermed (3.123)
Usage:
scatter file domaine
```

- file str: Name of file.
- domaine str: Name of domain.

3.123 Scattermed

Description: This keyword will read the partition of the domain_name domain into a the MED format files file.med created by Medsplitter.

See also: scatter (3.122)

Usage:

scattermed file domaine

where

• file str: Name of file.

• domaine str: Name of domain.

3.124 Solve

Synonymous: resoudre

Description: Interpretor to start calculation with TRUST.

Keyword Discretize should have already been used to read the object.

See also: interprete (3)

Usage:

solve pb

where

• **pb** *str*: Name of problem to be solved.

3.125 Stat_per_proc_perf_log

Description: Keyword allowing to activate the detailed statistics per processor (by default this is false, and only the master proc will produce stats).

See also: interprete (3)

Usage:

stat_per_proc_perf_log flg

where

• fig int: A rien that can be either 0 or 1 to turn off (default) or on the detailed stats.

3.126 Supprime_bord

Description: Keyword to remove boundaries (named Boundary_name1 Boundary_name2) of the domain named domain_name.

See also: interprete (3)

```
Usage:
supprime_bord domaine bords
where
   • domaine str: Name of domain
   • bords list_nom (3.127): { Boundary_name1 Boundaray_name2 }
3.127 List_nom
Description: List of name.
See also: listobj (42.5)
Usage:
{ object1 object2 .... }
list of nom_anonyme (29.1)
3.128 System
Description: To run Unix commands from the data file. Example: System 'echo The End | mail trust@cea.fr'
See also: interprete (3)
Usage:
system cmd
where
   • cmd str: command to execute.
3.129
        Test_solveur
Description: To test several solvers
See also: interprete (3)
Usage:
test_solveur {
     [fichier_secmem str]
     [fichier_matrice str]
     [ fichier_solution str]
     [ nb_test int]
     [impr]
     [solveur_sys_base]
     [ fichier_solveur str]
     [ genere_fichier_solveur float]
     [ seuil_verification float]
     [ pas_de_solution_initiale ]
```

[ascii]

} where

- fichier_secmem str: Filename containing the second member B
- fichier_matrice str: Filename containing the matrix A
- fichier solution str: Filename containing the solution x
- **nb_test** *int*: Number of tests to measure the time resolution (one preconditionnement)
- **impr** : To print the convergence solver
- solveur solveur_sys_base (13.18): To specify a solver
- fichier_solveur str: To specify a file containing a list of solvers
- genere_fichier_solveur float: To create a file of the solver with a threshold convergence
- **seuil_verification** *float*: Check if the solution satisfy ||Ax-B||precision
- pas_de_solution_initiale : Resolution isn't initialized with the solution x
- ascii : Ascii files

3.130 Testeur

Description: not_set

See also: interprete (3)

Usage:

testeur data

where

• data bloc lecture (3.2)

3.131 Testeur medcoupling

Description: not set

See also: interprete (3)

Usage:

 $testeur_med coupling \quad pb_name \quad field_name$

where

- **pb_name** *str*: Name of domain.
- field name str: Name of domain.

3.132 Tetraedriser

Description: To achieve a tetrahedral mesh based on a mesh comprising blocks, the Tetrahedralise) interpretor is used in VEF discretization. Initial block is divided in 6 tetrahedra:

See also: interprete (3) tetraedriser_homogene_fin (3.135) tetraedriser_homogene_compact (3.134) tetraedriser_homogene (3.133) tetraedriser_par_prisme (3.136)

Usage:

tetraedriser domain_name

where

• domain_name str: Name of domain.

3.133 Tetraedriser_homogene

Description: Use the Tetraedriser_homogene (Homogeneous_Tetrahedralisation) interpretor in VEF discretization to mesh a block in tetrahedrals. Each block hexahedral is no longer divided into 6 tetrahedrals (keyword Tetraedriser (Tetrahedralise)), it is now broken down into 40 tetrahedrals. Thus a block defined with 11 nodes in each X, Y, Z direction will contain 10*10*10*40=40,000 tetrahedrals. This also allows problems in the mesh corners with the P1NC/P1iso/P1bulle or P1/P1 discretization items to be avoided. Initial block is divided in 40 tetrahedra:

See also: tetraedriser (3.132)

Usage:

tetraedriser_homogene domain_name where

• domain_name str: Name of domain.

3.134 Tetraedriser_homogene_compact

Description: This new discretization generates tetrahedral elements from cartesian or non-cartesian hexahedral elements. The process cut each hexahedral in 6 pyramids, each of them being cut then in 4 tetrahedral. So, in comparison with tetra_homogene, less elements (*24 instead of*40) with more homogeneous volumes are generated. Moreover, this process is done in a faster way. Initial block is divided in 24 tetrahedra:

See also: tetraedriser (3.132)

Usage:

tetraedriser_homogene_compact domain_name where

• domain_name str: Name of domain.

3.135 Tetraedriser_homogene_fin

Description: Tetraedriser_homogene_fin is the recommended option to tetrahedralise blocks. As an extension (subdivision) of Tetraedriser_homogene_compact, this last one cut each initial block in 48 tetrahedra (against 24, previously). This cutting ensures :

- a correct cutting in the corners (in respect to pressure discretization PreP1B),
- a better isotropy of elements than with Tetraedriser_homogene_compact,
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness and ii/ by the way, a 3D cartesian grid based on summits can be engendered and used to realise spectral analysis in HIT for instance). Initial block is divided in 48 tetrahedra:

See also: tetraedriser (3.132)

Usage:

tetraedriser_homogene_fin domain_name where

• domain_name str: Name of domain.

3.136 Tetraedriser_par_prisme

Description: Tetraedriser_par_prisme generates 6 iso-volume tetrahedral element from primary hexahedral one (contrarily to the 5 elements ordinarily generated by tetraedriser). This element is suitable for calculation of gradients at the summit (coincident with the gravity centre of the jointed elements related with) and spectra (due to a better alignment of the points).

Initial block is divided in 6 prismes.

See also: tetraedriser (3.132)

Usage:

tetraedriser_par_prisme domain_name

• domain_name str: Name of domain.

3.137 Thermique_bloc

Description: not_set

See also: interprete (3)

Usage:
thermique_bloc {
 cp_liquid float

```
lambda_liquid float
    cp_vapor float
lambda_vapor float
[fo float]
    boundary_conditions bloc_lecture
[ expression_t_init str]
[ conv_temperature_negligible ]
    [ type_temperature_convection_op str into ['Amont', 'Quick', 'Centre2', 'Centre4']]
    [ diff_temp_negligible ]
    [ wall_flux ]
    [ expression_t_ana str]
    [ type_t_source str into ['dabiri', 'patch_dabiri', 'unweighted_dabiri']]
    [ expression_source_temperature str]
}
where
```

- cp_liquid float: Liquid specific heat at constant pressure
- lambda_liquid float: Liquid thermal conductivity
- cp_vapor float: Vapor specific heat at constant pressure
- lambda_vapor float: Vapor thermal conductivity
- fo float
- **boundary conditions** *bloc lecture* (3.2): boundary conditions
- **expression_t_init** *str*: Expression of initial temperature (parser of x,y,z)
- conv_temperature_negligible : neglect temperature convection
- type_temperature_convection_op str into ['Amont', 'Quick', 'Centre2', 'Centre4']: convection operator
- diff_temp_negligible : neglect temperature diffusion
- wall_flux
- expression_t_ana str: Analytical expression T=f(x,y,z,t) for post-processing only
- type_t_source str into ['dabiri', 'patch_dabiri', 'unweighted_dabiri']: source term
- expression_source_temperature str: source terms

3.138 Transformer

Description: Keyword to transform the coordinates of the geometry.

Exemple to rotate your mesh by a 90o rotation and to scale the z coordinates by a factor 2: Transformer domain name -y -x 2*z

See also: interprete (3)

Usage:

transformer domain_name formule

where

- domain_name str: Name of domain.
- **formule** *word1 word2 (word3)*: Function_for_x Function_for_y

 $Function_forz$

3.139 Trianguler

Description: To achieve a triangular mesh from a mesh comprising rectangles (2 triangles per rectangle). Should be used in VEF discretization. Principle:

See also: interprete (3) trianguler_h (3.141) trianguler_fin (3.140)

Usage:

trianguler domain_name

where

• domain_name str: Name of domain.

3.140 Trianguler_fin

Description: Trianguler_fin is the recommended option to triangulate rectangles.

As an extension (subdivision) of Triangulate_h option, this one cut each initial rectangle in 8 triangles (against 4, previously). This cutting ensures :

- a correct cutting in the corners (in respect to pressure discretization PreP1B).
- a better isotropy of elements than with Trianguler_h option.
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness, and, by this way, a 2D cartesian grid based on summits can be engendered and used to realize statistical analysis in plane channel configuration for instance). Principle:

See also: trianguler (3.139)

Usage:

trianguler_fin domain_name

where

• domain_name str: Name of domain.

3.141 Trianguler_h

Description: To achieve a triangular mesh from a mesh comprising rectangles (4 triangles per rectangle). Should be used in VEF discretization. Principle:

See also: trianguler (3.139)

Usage:

trianguler_h domain_name

where

• **domain_name** *str*: Name of domain.

3.142 Verifier_qualite_raffinements

Description: not_set

See also: interprete (3)

Usage:

 $verifier_qualite_raffinements \quad domain_names$

where

• domain_names vect_nom (3.143)

3.143 Vect_nom

Description: Vect of name.

See also: listobj (42.5)

Usage:

n object1 object2

list of nom_anonyme (29.1)

3.144 Verifier_simplexes

Description: Keyword to raffine a simplexes

See also: interprete (3)

Usage:

```
verifier_simplexes domain_name where
```

• domain_name str: Name of domain.

3.145 Verifiercoin

Description: This keyword subdivides inconsistent 2D/3D cells used with VEFPreP1B discretization. Must be used before the mesh is discretized. The Read_file option can be used only if the file.decoupage_som was previously created by TRUST. This option, only in 2D, reverses the common face at two cells (at least one is inconsistent), through the nodes opposed. In 3D, the option has no effect.

The expert_only option deactivates, into the VEFPreP1B divergence operator, the test of inconsistent cells.

```
See also: interprete (3)

Usage:
verifiercoin domain_name bloc
where
```

- domain_name str: Name of the domaine
- bloc verifiercoin_bloc (3.146)

3.146 Verifiercoin_bloc

```
Description: not_set

See also: objet_lecture (43)

Usage:
{
    [Lire_fichier|Read_file str]
    [expert_only]
}
where
```

- Lire_fichier|Read_file str: name of the *.decoupage_som file
- expert_only : to not check the mesh

3.147 Ecrire

Description: Keyword to write the object of name name_obj to a standard outlet.

```
See also: interprete (3)

Usage:
ecrire name_obj
where
```

• name_obj str: Name of the object to be written.

3.148 Ecrire_fichier_bin

```
Synonymous: ecrire_fichier
```

Description: Keyword to write the object of name name_obj to a file filename. Since the v1.6.3, the default format is now binary format file.

```
See also: interprete (3) ecrire_fichier_formatte (3.52)

Usage:
ecrire_fichier_bin name_obj filename
```

- name_obj str: Name of the object to be written.
- filename str: Name of the file.

4 pb_gen_base

```
Description: Basic class for problems.
```

```
See also: objet_u (44) Pb_base (4.31) pbc_med (4.67) probleme_couple (4.32) pb_mg (4.50)
```

Usage:

where

4.1 Pb_conduction

Description: Resolution of the heat equation.

```
Keyword Discretize should have already been used to read the object.
```

```
See also: Pb_base (4.31) Pb_Rayo_Conduction (4.19)
```

Usage:

where

```
Pb_Conduction str

Read str {

    [ solide solide] 
    [ Conduction conduction] 
    [ milieu milieu_base] 
    [ constituant constituant] 
    [ Post_processing|postraitement corps_postraitement] 
    [ Post_processings|postraitements post_processings] 
    [ liste_de_postraitements liste_post_ok] 
    [ liste_postraitements liste_post] 
    [ sauvegarde format_file] 
    [ sauvegarde_simple format_file] 
    [ reprise format_file] 
    [ resume_last_time format_file]
```

- **solide** *solide* (24.15): The medium associated with the problem.
- **Conduction** *conduction* (5.1): Heat equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituent constituent (24.1) for inheritance: Constituent.

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.2 Corps_postraitement

```
Description: not set
See also: post processing (4.4.3)
Usage:
     [fichier str]
     [format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major', 'cgns']]
     [domaine str]
     [ sous_zone|sous_domaine str]
     [ parallele str into ['simple', 'multiple', 'mpi-io']]
      [ definition champs definition champs]
     [ definition champs file|definition champs fichier | definition champs fichier]
      [ probes|sondes | sondes]
     [ probes_file|sondes_fichier | sondes_fichier]
      [ mobile_probes|sondes_mobiles sondes]
     [ mobile_probes_file|sondes_mobiles_fichier | sondes_fichier]
     [ deprecatedkeepduplicatedprobes int]
     [ fields|champs champs_posts]
      [ fields_file|champs_fichier champs_posts_fichier]
     [ statistics|statistiques stats_posts]
     [statistics_file|statistiques_fichier stats_posts_fichier]
     [serial statistics|statistiques en serie stats serie posts]
      [serial statistics file|statistiques en serie fichier stats serie posts fichier]
```

```
[ suffix_for_reset str]
}
where
```

- fichier str for inheritance: Name of file.
- **format** *str into* ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major', 'cgns'] for inheritance: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml.
- **domaine** *str* for inheritance: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- sous_zonelsous_domaine *str* for inheritance: This optional parameter specifies the sub_domaine on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- parallele str into ['simple', 'multiple', 'mpi-io'] for inheritance: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format
- **definition_champs** *definition_champs* (4.2.1) for inheritance: Keyword to create new or more complex field for advanced postprocessing.
- **definition_champs_fileIdefinition_champs_fichier** *definition_champs_fichier* (4.2.3) for inheritance: Definition_champs read from file.
- **probes|sondes** *sondes* (4.2.4) for inheritance: Probe.
- probes_filelsondes_fichier sondes_fichier (4.2.21) for inheritance: Probe read from a file.
- **mobile_probes|sondes_mobiles** *sondes* (4.2.4) for inheritance: Mobile probes useful for ALE, their positions will be updated in the mesh.
- mobile_probes_file|sondes_mobiles_fichier sondes_fichier (4.2.21) for inheritance: Mobile probes read in a file
- **deprecatedkeepduplicatedprobes** *int* for inheritance: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- **fieldslchamps** *champs_posts* (4.2.22) for inheritance: Field's write mode.
- fields_filelchamps_fichier champs_posts_fichier (4.2.25) for inheritance: Fields read from file.
- **statistics**|statistiques stats_posts (4.2.26) for inheritance: Statistics between two points fixed: start of integration time and end of integration time.
- statistics_file|statistiques_fichier stats_posts_fichier (4.2.34) for inheritance: Statistics read from file
- serial_statistics|statistiques_en_serie stats_serie_posts (4.2.35) for inheritance: Statistics between two points not fixed: on period of integration.
- serial_statistics_filelstatistiques_en_serie_fichier stats_serie_posts_fichier (4.2.36) for inheritance: Serial_statistics_read from a file
- **suffix_for_reset** *str* for inheritance: Suffix used to modify the postprocessing file name if the ICoCo resetTime() method is invoked.

4.2.1 Definition_champs

Description: List of definition champ

See also: listobj (42.5)

Usage:
{ object1 object2 }

list of definition champ (4.2.2)

4.2.2 Definition_champ

```
Description: Keyword to create new complex field for advanced postprocessing.
```

```
See also: objet_lecture (43)

Usage:
name champ_generique
where
```

- name str: The name of the new created field.
- **champ_generique** *champ_generique_base* (11)

4.2.3 Definition_champs_fichier

```
Description: Keyword to read definition_champs from a file
```

```
See also: objet_lecture (43)

Usage:
{

filelfichier str
}
where
```

• filelfichier str: name of file

4.2.4 Sondes

```
Description: List of probes.
```

```
See also: listobj (42.5)

Usage:
{ object1 object2 .... }
list of sonde (4.2.5)
```

4.2.5 Sonde

Description: Keyword is used to define the probes. Observations: the probe coordinates should be given in Cartesian coordinates (X, Y, Z), including axisymmetric.

```
See also: objet_lecture (43)
```

Usage:

```
nom_sonde [ special ] nom_inco mperiode prd type where
```

- **nom_sonde** *str*: Name of the file in which the values taken over time will be saved. The complete file name is nom_sonde.son.
- **special** *str into ['grav', 'som', 'nodes', 'chsom', 'gravcl']*: Option to change the positions of the probes. Several options are available:

```
grav: each probe is moved to the nearest cell center of the mesh;
```

som: each probe is moved to the nearest vertex of the mesh

nodes: each probe is moved to the nearest face center of the mesh;

chsom: only available for P1NC sampled field. The values of the probes are calculated according to P1-Conform corresponding field.

gravel: Extend to the domain face boundary a cell-located segment probe in order to have the boundary condition for the field. For this type the extreme probe point has to be on the face center of gravity.

- **nom_inco** *str*: Name of the sampled field.
- mperiode str into ['periode']: Keyword to set the sampled field measurement frequency.
- **prd** *float*: Period value. Every prd seconds, the field value calculated at the previous time step is written to the nom sonde.son file.
- **type** *sonde_base* (4.2.6): Type of probe.

4.2.6 Sonde base

Description: Basic probe. Probes refer to sensors that allow a value or several points of the domain to be monitored over time. The probes may be a set of points defined one by one (keyword Points) or a set of points evenly distributed over a straight segment (keyword Segment) or arranged according to a layout (keyword Plan) or according to a parallelepiped (keyword Volume). The fields allow all the values of a physical value on the domain to be known at several moments in time.

See also: objet_lecture (43) points (4.2.7) segment (4.2.10) segmentfacesx (4.2.11) segmentfacesy (4.2.12) segmentfacesz (4.2.13) radius (4.2.14) numero_elem_sur_maitre (4.2.15) position_like (4.2.16) plan (4.2.17) volume (4.2.18) circle (4.2.19) circle_3 (4.2.20)

Usage:

sonde_base

4.2.7 Points

Description: Keyword to define the number of probe points. The file is arranged in columns.

See also: sonde_base (4.2.6) point (4.2.8) segmentpoints (4.2.9)

Usage:

points points

where

• **points** *listpoints* (3.4.6): Probe points.

4.2.8 Point

Description: Point as class-daughter of Points.

See also: points (4.2.7)

Usage:

point points

where

• points listpoints (3.4.6): Probe points.

4.2.9 Segmentpoints

Description: This keyword is used to define a probe segment from specifics points. The nom_champ field is sampled at ns specifics points.

See also: points (4.2.7)

Usage:

segmentpoints points

where

• points *listpoints* (3.4.6): Probe points.

4.2.10 Segment

Description: Keyword to define the number of probe segment points. The file is arranged in columns.

See also: sonde_base (4.2.6)

Usage:

segment nbr point_deb point_fin where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- **point_deb** *un_point* (3.4.7): First outer probe segment point.
- **point_fin** *un_point* (3.4.7): Second outer probe segment point.

4.2.11 Segmentfacesx

Description: Segment probe where points are moved to the nearest x faces

See also: sonde_base (4.2.6)

Usage:

segmentfacesx nbr point_deb point_fin where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- **point_deb** *un_point* (3.4.7): First outer probe segment point.
- point_fin un_point (3.4.7): Second outer probe segment point.

4.2.12 Segmentfacesy

Description: Segment probe where points are moved to the nearest y faces

See also: sonde_base (4.2.6)

Usage:

segmentfacesy nbr point_deb point_fin where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- point_deb un_point (3.4.7): First outer probe segment point.
- point_fin un_point (3.4.7): Second outer probe segment point.

4.2.13 Segmentfacesz

Description: Segment probe where points are moved to the nearest z faces

See also: sonde_base (4.2.6)

Usage:

 $segment faces z \ nbr \ point_deb \ point_fin$

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- **point_deb** *un_point* (3.4.7): First outer probe segment point.
- **point_fin** *un_point* (3.4.7): Second outer probe segment point.

4.2.14 Radius

Description: not_set

See also: sonde_base (4.2.6)

Usage:

radius nbr point_deb radius teta1 teta2

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- **point_deb** *un_point* (3.4.7): First outer probe segment point.
- radius float
- teta1 float
- teta2 float

4.2.15 Numero elem sur maitre

Description: Keyword to define a probe at the special element. Useful for min/max sonde.

See also: sonde_base (4.2.6)

Usage:

numero_elem_sur_maitre numero

where

• **numero** *int*: element number

4.2.16 Position_like

Description: Keyword to define a probe at the same position of another probe named autre_sonde.

See also: sonde_base (4.2.6)

Usage:

position_like autre_sonde

where

• autre_sonde str: Name of the other probe.

4.2.17 Plan

Description: Keyword to set the number of probe layout points. The file format is type .lml

See also: sonde_base (4.2.6)

Usage:

plan nbr nbr2 point_deb point_fin point_fin_2
where

- **nbr** *int*: Number of probes in the first direction.
- **nbr2** *int*: Number of probes in the second direction.
- point_deb un_point (3.4.7): First point defining the angle. This angle should be positive.
- point_fin un_point (3.4.7): Second point defining the angle. This angle should be positive.
- point_fin_2 un_point (3.4.7): Third point defining the angle. This angle should be positive.

4.2.18 Volume

Description: Keyword to define the probe volume in a parallelepiped passing through 4 points and the number of probes in each direction.

See also: sonde_base (4.2.6)

Usage:

volume nbr nbr2 nbr3 point_deb point_fin point_fin_2 point_fin_3 where

- **nbr** *int*: Number of probes in the first direction.
- **nbr2** *int*: Number of probes in the second direction.
- **nbr3** *int*: Number of probes in the third direction.
- **point_deb** *un_point* (3.4.7): Point of origin.
- **point_fin** *un_point* (3.4.7): Point defining the first direction (from point of origin).
- point_fin_2 un_point (3.4.7): Point defining the second direction (from point of origin).
- point fin 3 un point (3.4.7): Point defining the third direction (from point of origin).

4.2.19 Circle

Description: Keyword to define several probes located on a circle.

See also: sonde_base (4.2.6)

Usage:

circle nbr point_deb [direction] radius theta1 theta2 where

- **nbr** *int*: Number of probes between teta1 and teta2 (angles given in degrees).
- point_deb un_point (3.4.7): Center of the circle.
- direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
- radius float: Radius of the circle.
- theta1 float: First angle.
- theta2 float: Second angle.

```
4.2.20 Circle_3
Description: Keyword to define several probes located on a circle (in 3-D space).
See also: sonde_base (4.2.6)
Usage:
circle_3 nbr point_deb direction radius theta1 theta2
where
   • nbr int: Number of probes between teta1 and teta2 (angles given in degrees).
   • point_deb un_point (3.4.7): Center of the circle.
   • direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
   • radius float: Radius of the circle.
   • theta1 float: First angle.
   • theta2 float: Second angle.
4.2.21 Sondes fichier
Description: Keyword to read probes from a file
See also: objet_lecture (43)
Usage:
{
      file|fichier str
where
   • filelfichier str: name of file
4.2.22 Champs_posts
Description: Field's write mode.
See also: objet_lecture (43)
Usage:
[format] mot period fields|champs
where
   • format str into ['binaire', 'formatte']: Type of file.
   • mot str into ['dt_post', 'nb_pas_dt_post']: Keyword to set the kind of the field's write frequency.
      Either a time period or a time step period.
   • period str: Value of the period which can be like (2.*t).
   • fieldslchamps champs_a_post (4.2.23): Post-processed fields.
4.2.23 Champs_a_post
Description: Fields to be post-processed.
See also: listobj (42.5)
```

Usage:

{ object1 object2 } list of *champ_a_post* (4.2.24)

4.2.24 Champ_a_post

Description: Field to be post-processed.

See also: objet_lecture (43)

Usage:

champ [localisation]

where

- **champ** *str*: Name of the post-processed field.
- **localisation** *str into ['elem', 'som', 'faces']*: Localisation of post-processed field values: The two available values are elem, som, or faces (LATA format only) used respectively to select field values at mesh centres (CHAMPMAILLE type field in the lml file) or at mesh nodes (CHAMPPOINT type field in the lml file). If no selection is made, localisation is set to som by default.

4.2.25 Champs_posts_fichier

Description: Fields read from file.

See also: objet_lecture (43)

Usage:

[format] mot period fichier

where

- **format** str into ['binaire', 'formatte']: Type of file.
- **mot** *str into* ['dt_post', 'nb_pas_dt_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.*t).
- fichier str: name of file

4.2.26 Stats_posts

Description: Post-processing for statistics.

Example:

Statistiques Dt_post dtst {

t_deb 0.1 **t_fin** 0.12

Moyenne Pression

Ecart type Pression

Correlation Vitesse Vitesse }

It will write every **dt_post** the mean, standard deviation and correlation value:

```
 \begin{split} t <& = t_{\text{deb}} \text{ or } t > = t_{\text{fin}} : \\ \text{average: } \overline{P(t)} &= 0 \\ \text{std\_deviation: } &< P(t) > = 0 \\ \text{correlation: } &< U(t).V(t) > = 0 \\ \end{split}   t > t_{\text{deb}} \text{ and } t < t_{\text{fin}} : \\ \text{average: } \overline{P(t)} &= \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} P(s) \mathrm{ds} \\ \text{std\_deviation: } &< P(t) > = \sqrt{\frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[ P(s) - \overline{P(t)} \right]^2 \mathrm{ds}} \\ \text{correlation: } &< U(t).V(t) > = \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[ U(s) - \overline{U(t)} \right]. \left[ V(s) - \overline{V(t)} \right] \mathrm{ds} \\ \end{split}
```

See also: objet_lecture (43)

Usage:

mot period fields|champs

where

- **mot** *str into* ['dt_post', 'nb_pas_dt_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.*t).
- **fieldslchamps** *list_stat_post* (4.2.27): Post-processed fields.

4.2.27 List_stat_post

Description: Post-processing for statistics

See also: listobj (42.5)

Usage:

{ object1 object2 }

list of *stat_post_deriv* (4.2.28)

4.2.28 Stat_post_deriv

Description: not_set

See also: objet_lecture (43) t_deb (4.2.29) t_fin (4.2.30) moyenne (4.2.31) ecart_type (4.2.32) correlation (4.2.33)

Usage:

stat_post_deriv

4.2.29 T_deb

Description: Start of integration time

See also: stat_post_deriv (4.2.28)

Usage:

t_deb val

where

• val float

4.2.30 T_fin

Description: End of integration time

See also: stat_post_deriv (4.2.28)

Usage: **t_fin val** where

• val float

4.2.31 Moyenne

Synonymous: champ_post_statistiques_moyenne

Description: to calculate the average of the field over time

See also: stat_post_deriv (4.2.28)

Usage:

moyenne field [**localisation**] where

• **field** *str*: name of the field on which statistical analysis will be performed. Possible keywords are Vitesse (velocity), Pression (pressure), Temperature, Concentration, ...

• localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.32 Ecart_type

Synonymous: champ_post_statistiques_ecart_type

Description: to calculate the standard deviation (statistic rms) of the field

See also: stat_post_deriv (4.2.28)

Usage:

ecart_type field [localisation]

where

- **field** *str*: name of the field on which statistical analysis will be performed. Possible keywords are Vitesse (velocity), Pression (pressure), Temperature, Concentration, ...
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.33 Correlation

Synonymous: champ_post_statistiques_correlation

Description: correlation between the two fields

See also: stat_post_deriv (4.2.28)

Usage:

correlation first_field second_field [localisation]

where

• first_field str: first field

- second field str: second field
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

4.2.34 Stats_posts_fichier

Description: Statistics read from file..

Example:

Statistiques Dt_post dtst {

t_deb 0.1 **t_fin** 0.12

Moyenne Pression

Ecart_type Pression

Correlation Vitesse Vitesse }

It will write every **dt_post** the mean, standard deviation and correlation value:

$$t <= t_{\rm deb}$$
 or $t >= t_{\rm fin}$: average: $\overline{P(t)} = 0$ std_deviation: $< P(t) >= 0$ correlation: $< U(t).V(t) >= 0$

$$t>t_{
m deb}$$
 and $t< t_{
m fin}$:
$${
m average:} \ \overline{P(t)} = { extstyle rac{1}{t-t_{
m deb}}} \int\limits_{t_{
m deb}}^t P(s) {
m d} s$$

std_deviation:
$$\langle P(t) \rangle = \sqrt{\frac{1}{t - t_{\text{deb}}} \int_{t_{\text{deb}}}^{t} \left[P(s) - \overline{P(t)} \right]^2 ds}$$

$$\text{correlation: } < U(t).V(t) > = \frac{1}{t-t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[U(s) - \overline{U(t)} \right]. \left[V(s) - \overline{V(t)} \right] \text{ds}$$

See also: objet_lecture (43)

Usage:

mot period fichier

where

- **mot** *str into* ['dt_post', 'nb_pas_dt_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.*t).
- fichier str: name of file

4.2.35 Stats_serie_posts

Description: This keyword is used to set the statistics. Average on dt_integr time interval is post-processed every dt_integr seconds.

Example:

Statistiques_en_serie Dt_integr dtst {
Moyenne Pression
}

Will calculate and write every dtst seconds the mean value:

$$(n+1) \text{dt_integr} > t > n * \text{dt_integr}, \overline{P(t)} = \frac{1}{t-n*\text{dt_integr}} \int\limits_{t_n*\text{dt_integr}}^t P(t) \text{dt}$$

See also: objet_lecture (43)

Usage:

mot dt_integr stat

where

- mot str into ['dt_integr']: Keyword is used to set the statistics period of integration and write period.
- **dt_integr** *float*: Average on dt_integr time interval is post-processed every dt_integr seconds.
- **stat** *list_stat_post* (4.2.27)

4.2.36 Stats_serie_posts_fichier

Description: This keyword is used to set the statistics read from a file. Average on dt_integr time interval is post-processed every dt_integr seconds.

Example:

Statistiques_en_serie Dt_integr dtst {
Moyenne Pression
}

Will calculate and write every dtst seconds the mean value:

$$(n+1) \text{dt_integr} > t > n * \text{dt_integr}, \overline{P(t)} = \frac{1}{t-n*\text{dt_integr}} \int\limits_{t_n*\text{dt_integr}}^t P(t) \text{dt}$$

See also: objet_lecture (43)

Usage:

mot dt_integr fichier where

- mot str into ['dt_integr']: Keyword is used to set the statistics period of integration and write period.
- dt_integr float: Average on dt_integr time interval is post-processed every dt_integr seconds.
- fichier str: name of file

```
4.3 Post_processings
Synonymous: postraitements
Description: Keyword to use several results files. List of objects of post-processing (with name).
See also: listobj (42.5)
Usage:
{ object1 object2 .... }
list of un_postraitement (4.3.1)
4.3.1 Un_postraitement
Description: An object of post-processing (with name).
See also: objet_lecture (43)
Usage:
nom post
where
   • nom str: Name of the post-processing.
   • post corps_postraitement (4.2): Definition of the post-processing.
4.4 Liste_post_ok
Description: Keyword to use several results files. List of objects of post-processing (with name)
See also: listobj (42.5)
Usage:
{ object1 object2 .... }
list of nom_postraitement (4.4.1)
4.4.1 Nom_postraitement
Description: not_set
See also: objet_lecture (43)
Usage:
nom post
where
   • nom str: Name of the post-processing.
   • post postraitement_base (4.4.2): the post
4.4.2 Postraitement_base
Description: not_set
```

See also: objet_lecture (43) post_processing (4.4.3) postraitement_ft_lata (4.4.4)

Usage:

4.4.3 Post_processing

```
Synonymous: postraitement
Description: An object of post-processing (without name).
See also: postraitement_base (4.4.2) corps_postraitement (4.2)
Usage:
post_processing {
      [fichier str]
      [format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major', 'cgns']]
      [domaine str]
      [ sous_zone|sous_domaine str]
      [ parallele str into ['simple', 'multiple', 'mpi-io']]
      [ definition_champs definition_champs]
      [ definition champs file|definition champs fichier | definition champs fichier]
      [ probes|sondes | sondes]
      [ probes_file|sondes_fichier | sondes_fichier]
      [ mobile probes|sondes mobiles sondes]
      [ mobile_probes_file|sondes_mobiles_fichier | sondes_fichier]
      [ deprecatedkeepduplicatedprobes int]
      [ fields|champs champs posts]
      [ fields_file|champs_fichier champs_posts_fichier]
      [ statistics|statistiques stats_posts]
      [statistics_file|statistiques_fichier stats_posts_fichier]
      [serial_statistics|statistiques_en_serie stats_serie_posts]
      [serial_statistics_file|statistiques_en_serie_fichier stats_serie_posts_fichier]
      [ suffix_for_reset str]
}
where
```

- fichier str: Name of file.
- **format** *str into* ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major', 'cgns']: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml.
- **domaine** *str*: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- **sous_zonelsous_domaine** *str*: This optional parameter specifies the sub_domaine on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- parallele *str into ['simple', 'multiple', 'mpi-io']*: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format
- definition_champs definition_champs (4.2.1): Keyword to create new or more complex field for advanced postprocessing.
- **definition_champs_fileIdefinition_champs_fichier** *definition_champs_fichier* (4.2.3): Definition_champs read from file.
- **probes|sondes** *sondes* (4.2.4): Probe.
- **probes_filelsondes_fichier** *sondes_fichier* (4.2.21): Probe read from a file.
- **mobile_probes|sondes_mobiles** *sondes* (4.2.4): Mobile probes useful for ALE, their positions will be updated in the mesh.

- mobile_probes_file|sondes_mobiles_fichier sondes_fichier (4.2.21): Mobile probes read in a file
- **deprecatedkeepduplicatedprobes** *int*: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- **fieldslchamps** *champs_posts* (4.2.22): Field's write mode.
- fields_filelchamps_fichier champs_posts_fichier (4.2.25): Fields read from file.
- **statistics**|**statistiques** *stats_posts* (4.2.26): Statistics between two points fixed : start of integration time and end of integration time.
- statistics filelstatistiques fichier stats posts fichier (4.2.34): Statistics read from file.
- **serial_statistics|statistiques_en_serie** *stats_serie_posts* (4.2.35): Statistics between two points not fixed: on period of integration.
- serial_statistics_file|statistiques_en_serie_fichier stats_serie_posts_fichier (4.2.36): Serial_statistics read from a file
- **suffix_for_reset** *str*: Suffix used to modify the postprocessing file name if the ICoCo resetTime() method is invoked.

4.4.4 Postraitement_ft_lata

```
Description: not_set

See also: postraitement_base (4.4.2)

Usage:
postraitement_ft_lata bloc
where

• bloc str
```

4.5 Liste_post

```
Description: Keyword to use several results files. List of objects of post-processing (with name)
```

```
See also: listobj (42.5)

Usage: { object1 object2 .... } list of un_postraitement_spec (4.5.1)
```

4.5.1 Un_postraitement_spec

```
Description: An object of post-processing (with type +name).
```

```
See also: objet_lecture (43)
Usage:
```

```
[ type_un_post ] [ type_postraitement_ft_lata ] where
```

- type_un_post type_un_post (4.5.2)
- type postraitement ft lata type postraitement ft lata (4.5.3)

```
4.5.2 Type_un_post
Description: not_set
See also: objet lecture (43)
Usage:
type post
where
   • type str into ['postraitement', 'post processing']
   • post un postraitement (4.3.1)
4.5.3 Type_postraitement_ft_lata
Description: not_set
See also: objet_lecture (43)
Usage:
type nom bloc
where
   • type str into ['postraitement_ft_lata', 'postraitement_lata']
   • nom str: Name of the post-processing.
   • bloc str
4.6
    Format file
Description: File formatted.
See also: objet lecture (43)
Usage:
[format] name_file
where
```

4.7 Pb_fronttracking_disc

Synonymous: probleme_ft_disc_gen

• name_file str: Name of file.

Description: The generic Front-Tracking problem in the discontinuous version. It differs from the rest of the TRUST code: The problem does not state the number of equations that are enclosed in the problem. Two equations are compulsory: a momentum balance equation (alias Navier-Stokes equation) and an interface tracking equation. The list of equations to be solved is declared in the beginning of the data file. Another difference with more classical TRUST data file, lies in the fluids definition. The two-phase fluid (Fluide_Diphasique) is made with two usual single-phase fluids (Fluide_Incompressible). As the list of equations to be solved in the generic Front-Tracking problem is declared in the data file and not predefined in the structure of the problem, each equation has to be distinctively associated with the problem with the Associer keyword.

• format str into ['binaire', 'formatte', 'xyz', 'single_hdf']: Type of file (the file format).

Keyword Discretize should have already been used to read the object.

```
See also: problem_read_generic (4.69)
Usage:
pb_fronttracking_disc str
Read str {
     solved equations listdeuxmots acc
     [ fluide_incompressible | fluide_incompressible ]
     [ fluide_diphasique | fluide_diphasique]
     [constituant constituant]
     [ Triple_Line_Model_FT_Disc triple_line_model_ft_disc]
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **solved_equations** *listdeuxmots_acc* (4.8): List of sovled equations in the form 'equation_type' 'equation_alias'
- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **fluide_diphasique** *fluide_diphasique* (24.4): The diphasic fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituent.
- Triple_Line_Model_FT_Disc triple_line_model_ft_disc (8)
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- Post_processings|postraitements post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.8 Listdeuxmots_acc

See also: Pb_base (4.31)

Usage:

```
Description: List of groups of two words (with curly brackets).
See also: listobj (42.5)
Usage:
{ object1 object2 .... }
list of deuxmots (4.8.1)
4.8.1 Deuxmots
Description: Two words.
See also: objet_lecture (43)
Usage:
mot_1 mot_2
where
   • mot 1 str: First word.
   • mot 2 str: Second word.
4.9 Pb_hydraulique_cloned_concentration
Description: Resolution of Navier-Stokes/multiple constituent transport equations.
Keyword Discretize should have already been used to read the object.
```

Pb_Hydraulique_Cloned_Concentration str Read str { fluide_incompressible fluide_incompressible [constituant constituant] [navier_stokes_standard navier_stokes_standard] [convection_diffusion_concentration convection_diffusion_concentration] [milieu milieu_base] [Post_processing|postraitement corps_postraitement] [Post_processings|postraitements post_processings] [liste_de_postraitements liste_post_ok] [liste_de_postraitements liste_post] [sauvegarde format_file] [sauvegarde_simple format_file] [reprise format_file] [resume_last_time format_file]

```
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.30): Constituent transport vectorial equation (concentration diffusion convection).
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.10 Pb_hydraulique_cloned_concentration_turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.31)

Usage:

Pb_Hydraulique_Cloned_Concentration_Turbulent str

Read str {

fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_turbulent navier_stokes_turbulent]

[ convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent]

[ milieu milieu base]
```

```
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.11 Pb_hydraulique_list_concentration

Description: Resolution of Navier-Stokes/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object.

```
See also: pb_avec_liste_conc (4.36)
Usage:
Pb_Hydraulique_List_Concentration str
Read str {
     fluide incompressible fluide incompressible
     [constituant constituant]
     [ navier_stokes_standard navier_stokes_standard]
     list_equations listeqn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [resume last time format file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **list_equations** *listeqn* (4.12) for inheritance: convection_diffusion_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings post_processings** (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.12 Listeqn

```
Description: List of equations.

See also: listobj (42.5)

Usage:
{ object1 object2 .... }
list of eqn_base (5.43)
```

4.13 Pb_hydraulique_list_concentration_turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object. See also: pb_avec_liste_conc (4.36)
```

Usage:

```
Pb_Hydraulique_List_Concentration_Turbulent str
Read str {
```

```
fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_turbulent navier_stokes_turbulent]

list_equations listeqn

[ milieu milieu_base]

[ Post_processinglpostraitement corps_postraitement]

[ Post_processings|postraitements post_processings]

[ liste_de_postraitements liste_post_ok]

[ liste_postraitements liste_post]

[ sauvegarde format_file]

[ sauvegarde_simple format_file]

[ reprise format_file]

[ resume_last_time format_file]

}

where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **list_equations** *listeqn* (4.12) for inheritance: convection_diffusion_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.

- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.14 Pb_hydraulique_turbulent ale

where

```
Description: Resolution of hydraulic turbulent problems for ALE
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.31)
Usage:
Pb_Hydraulique_Turbulent_ALE str
Read str {
     fluide incompressible fluide incompressible
     Navier_Stokes_Turbulent_ALE navier_stokes_turbulent_ale
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- Navier_Stokes_Turbulent_ALE navier_stokes_turbulent_ale (5.20): Navier-Stokes_ALE equations as well as the associated turbulence model equations on mobile domain (ALE)
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.15 Pb_hydraulique_sensibility

```
Description: Resolution of hydraulic sensibility problems

Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.31)

Usage:
Pb_Hydraulique_sensibility str

Read str {

fluide_incompressible fluide_incompressible
    Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
```

```
[ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem
- Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility (5.22): Navier-Stokes sensibility equations
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.16 Pb_multiphase

Description: A problem that allows the resolution of N-phases with 3*N equations

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.31) Pb_Multiphase_h (4.17) Pb_HEM (4.18)

Usage:
Pb_Multiphase str
Read str {

[milieu_composite bloc_lecture]
 [correlations bloc_lecture]

[Milieu_MUSIG bloc_lecture]

```
QDM_Multiphase qdm_multiphase
     Masse_Multiphase masse_multiphase
     Energie Multiphase energie multiphase
     [ Echelle_temporelle_turbulente | echelle_temporelle_turbulente]
     [Energie cinetique turbulente energie cinetique turbulente]
     [ Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit]
     [ Taux_dissipation_turbulent taux_dissipation_turbulent]
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- milieu_composite bloc_lecture (3.2): The composite medium associated with the problem.
- **correlations** *bloc_lecture* (3.2): List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- Milieu_MUSIG bloc_lecture (3.2): The composite medium associated with the problem.
- **QDM_Multiphase** *qdm_multiphase* (5.24): Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse_Multiphase masse_multiphase (5.16): Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- **Energie_Multiphase** *energie_multiphase* (5.12): Internal energy conservation equation for a multiphase problem where the unknown is the temperature
- **Echelle_temporelle_turbulente** *echelle_temporelle_turbulente* (5.11): Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente energie_cinetique_turbulente (5.14): Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit (5.15): Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- Taux_dissipation_turbulent taux_dissipation_turbulent (5.25): Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.17 Pb_multiphase_h

Description: A problem that allows the resolution of N-phases with 3*N equations

Keyword Discretize should have already been used to read the object.

```
See also: Pb_Multiphase (4.16)
```

```
Usage:
Pb_Multiphase_h str
Read str {
     [ milieu_composite bloc_lecture]
     [correlations bloc lecture]
     QDM Multiphase qdm multiphase
     Masse Multiphase masse multiphase
     Energie_Multiphase_h energie_multiphase_h
     [Milieu MUSIG bloc lecture]
     [ Echelle temporelle turbulente echelle temporelle turbulente]
     [ Energie_cinetique_turbulente energie_cinetique_turbulente]
     [ Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit]
     [ Taux_dissipation_turbulent taux_dissipation_turbulent]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- milieu_composite bloc_lecture (3.2): The composite medium associated with the problem.
- **correlations** *bloc_lecture* (3.2): List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **QDM_Multiphase** *qdm_multiphase* (5.24): Momentum conservation equation for a multi-phase problem where the unknown is the velocity

- Masse_Multiphase masse_multiphase (5.16): Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- Energie_Multiphase_h energie_multiphase_h (5.13): Internal energy conservation equation for a multi-phase problem where the unknown is the enthalpy
- **Milieu_MUSIG** *bloc_lecture* (3.2) for inheritance: The composite medium associated with the problem.
- **Echelle_temporelle_turbulente** *echelle_temporelle_turbulente* (5.11) for inheritance: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente energie_cinetique_turbulente (5.14) for inheritance: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit (5.15) for inheritance: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- Taux_dissipation_turbulent taux_dissipation_turbulent (5.25) for inheritance: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.18 Pb_hem

Description: A problem that allows the resolution of 2-phases mechanicaly and thermally coupled with 3 equations

Keyword Discretize should have already been used to read the object.

See also: Pb_Multiphase (4.16)

```
Usage:
Pb HEM str
Read str {
     [ milieu_composite bloc_lecture]
     [correlations bloc lecture]
     [ Milieu MUSIG bloc lecture]
     QDM_Multiphase qdm_multiphase
     Masse_Multiphase masse_multiphase
     Energie_Multiphase energie_multiphase
     [ Echelle_temporelle_turbulente | echelle_temporelle_turbulente]
     [ Energie_cinetique_turbulente energie_cinetique_turbulente]
     [ Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit]
     [ Taux_dissipation_turbulent taux_dissipation_turbulent]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **milieu_composite** *bloc_lecture* (3.2) for inheritance: The composite medium associated with the problem.
- **correlations** *bloc_lecture* (3.2) for inheritance: List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **Milieu_MUSIG** *bloc_lecture* (3.2) for inheritance: The composite medium associated with the problem.
- **QDM_Multiphase** *qdm_multiphase* (5.24) for inheritance: Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse_Multiphase masse_multiphase (5.16) for inheritance: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- **Energie_Multiphase** *energie_multiphase* (5.12) for inheritance: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature
- **Echelle_temporelle_turbulente** *echelle_temporelle_turbulente* (5.11) for inheritance: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente energie_cinetique_turbulente (5.14) for inheritance: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit (5.15) for inheritance: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- Taux_dissipation_turbulent taux_dissipation_turbulent (5.25) for inheritance: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).

- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.19 Pb_rayo_conduction

Description: Resolution of the heat equation with rayonnement.

Keyword Discretize should have already been used to read the object.

```
See also: Pb_Conduction (4.1)
```

Pb Rayo Conduction str

```
Usage:
```

```
Read str {

[ Conduction conduction]
```

```
[ conduction conduction]
[ milieu milieu_base]
[ constituant constituant]
[ Post_processinglpostraitement corps_postraitement]
[ Post_processingslpostraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
]
}
where
```

- **Conduction** *conduction* (5.1) for inheritance: Heat equation.
 - milieu milieu_base (24) for inheritance: The medium associated with the problem.
 - **constituant** *constituant* (24.1) for inheritance: Constituent.

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.20 Pb rayo hydraulique

where

Description: Resolution of the Navier-Stokes equations with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb hydraulique (4.39)

```
Usage:

Pb_Rayo_Hydraulique str

Read str {

    navier_stokes_standard navier_stokes_standard
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
```

• navier_stokes_standard navier_stokes_standard (5.51) for inheritance: Navier-Stokes equations.

- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** corps_postraitement (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.21 Pb_rayo_hydraulique_turbulent

```
Description: Resolution of pb_hydraulique_turbulent with rayonnement.
```

Keyword Discretize should have already been used to read the object. See also: pb hydraulique turbulent (4.49)

```
Usage:
```

where

```
Pb_Rayo_Hydraulique_Turbulent str

Read str {

navier_stokes_turbulent navier_stokes_turbulent

[milieu milieu_base]

[constituant constituant]

[Post_processinglpostraitement corps_postraitement]

[Post_processings|postraitements post_processings]

[liste_de_postraitements liste_post_ok]

[liste_postraitements liste_post]

[sauvegarde format_file]

[sauvegarde_simple format_file]

[reprise format_file]

[resume_last_time format_file]

}
```

- navier_stokes_turbulent navier_stokes_turbulent (5.52) for inheritance: Navier-Stokes equations as well as the associated turbulence model equations.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.22 Pb_rayo_thermohydraulique

Description: Resolution of pb_thermohydraulique with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique (4.53)

Usage:

```
Pb_Rayo_Thermohydraulique str Read str {
```

```
[fluide_ostwald fluide_ostwald]
[fluide_sodium_liquide fluide_sodium_liquide]
[fluide_sodium_gaz fluide_sodium_gaz]
[correlations bloc_lecture]
[navier_stokes_standard navier_stokes_standard]
[convection_diffusion_temperature convection_diffusion_temperature]
[milieu milieu_base]
[constituant constituant]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
[liste_de_postraitements liste_post_ok]
```

```
[ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide_ostwald** *fluide_ostwald* (24.7) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_liquide** *fluide_sodium_liquide* (24.12) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_gaz** *fluide_sodium_gaz* (24.11) for inheritance: The fluid medium associated with the problem (only one possibility).
- **correlations** *bloc_lecture* (3.2) for inheritance: List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- navier_stokes_standard navier_stokes_standard (5.51) for inheritance: Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.39) for inheritance: Energy equation (temperature diffusion convection).
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.23 Pb_rayo_thermohydraulique_qc

Description: Resolution of pb_thermohydraulique_QC with rayonnement.

Keyword Discretize should have already been used to read the object.

```
See also: pb_thermohydraulique_QC (4.54)
Usage:
Pb_Rayo_Thermohydraulique_QC str
Read str {
     navier stokes QC navier stokes qc
     convection diffusion chaleur QC convection diffusion chaleur qc
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- navier_stokes_QC navier_stokes_qc (5.44) for inheritance: Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.27) for inheritance: Temperature equation for a quasi-compressible fluid.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.24 Pb_rayo_thermohydraulique_turbulent

Description: Resolution of pb_thermohydraulique_turbulent with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique_turbulent (4.64)

Usage:

```
Pb_Rayo_Thermohydraulique_Turbulent str

Read str {

    navier_stokes_turbulent navier_stokes_turbulent convection_diffusion_temperature_turbulent [milieu_milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
```

} where

- navier_stokes_turbulent navier_stokes_turbulent (5.52) for inheritance: Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.42) for inheritance: Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.

[resume last time format file]

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.25 Pb_rayo_thermohydraulique_turbulent_qc

Description: Resolution of pb_thermohydraulique_turbulent_qc with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb thermohydraulique turbulent qc (4.65)

```
Usage:
```

```
Pb_Rayo_Thermohydraulique_Turbulent_QC str

Read str {

navier_stokes_turbulent_qc navier_stokes_turbulent_qc
```

```
navier_stokes_turbulent_qc navier_stokes_turbulent_qc
convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc
[milieu milieu_base]
[constituant constituant]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
[liste_de_postraitements liste_post_ok]
[liste_postraitements liste_post]
[sauvegarde format_file]
[sauvegarde_simple format_file]
[reprise format_file]
[resume_last_time format_file]
```

- where
 - navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.53) for inheritance: Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
 - **convection_diffusion_chaleur_turbulent_qc** *convection_diffusion_chaleur_turbulent_qc* (5.29) for inheritance: Energy equation under low Mach number as well as the associated turbulence model equations.
 - milieu milieu_base (24) for inheritance: The medium associated with the problem.
 - **constituant** *constituant* (24.1) for inheritance: Constituent.
 - **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
 - **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
 - liste de postraitements liste post ok (4.4) for inheritance: This
 - **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
 - **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.26 Pb_thermohydraulique_cloned_concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.31)

Usage:

```
Pb_Thermohydraulique_Cloned_Concentration str Read str {
```

```
fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier stokes standard navier stokes standard]
     [convection diffusion concentration convection diffusion concentration]
     [ convection_diffusion_temperature | convection_diffusion_temperature]
     [ milieu milieu_base]
     [ Post processing|postraitement corps postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.39): Energy equation (temperature diffusion convection).
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).

- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.27 Pb_thermohydraulique_cloned_concentration_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.31)
Usage:
Pb Thermohydraulique Cloned Concentration Turbulent str
Read str {
     fluide incompressible fluide incompressible
     [constituant constituant]
     [ navier stokes turbulent navier stokes turbulent]
     [ convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent]
     [convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]
     [ milieu milieu base]
     [ Post processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
```

where

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.28 Pb_thermohydraulique_list_concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object. See also: pb_avec_liste_conc (4.36)

Usage

Pb_Thermohydraulique_List_Concentration *str* **Read** *str* {

```
fluide_incompressible fluide_incompressible
[ constituant constituant]
[ navier_stokes_standard navier_stokes_standard]
```

```
[ convection_diffusion_temperature convection_diffusion_temperature]
    list_equations listeqn
[ milieu milieu_base]
[ Post_processinglpostraitement corps_postraitement]
[ Post_processingslpostraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.39): Energy equation (temperature diffusion convection).
- **list_equations** *listeqn* (4.12) for inheritance: convection_diffusion_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.29 Pb_thermohydraulique_list_concentration_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: pb avec liste conc (4.36) Usage: Pb Thermohydraulique List Concentration Turbulent str Read str { fluide_incompressible fluide_incompressible [constituant constituant] [navier_stokes_turbulent navier_stokes_turbulent] [convection_diffusion_temperature_turbulent] convection_diffusion_temperature_turbulent] **list_equations** *listeqn* [milieu milieu_base] [Post_processing|postraitement corps_postraitement] [Post_processings|postraitements post_processings] [liste de postraitements liste post ok] [liste_postraitements liste_post] [sauvegarde format file] [sauvegarde_simple format_file] [reprise format_file] [resume last time format file] } where

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- **list_equations** *listeqn* (4.12) for inheritance: convection_diffusion_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for

each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde simple format file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the name file file. If there is no backup corresponding to this time in the name file, TRUST exits in error.
- resume_last_time format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

Pb thermohydraulique sensibility

Description: Resolution of Resolution of thermohydraulic sensitivity problem

Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique (4.53)

```
Usage:
```

} where

```
Pb_Thermohydraulique_sensibility str
Read str {
     fluide incompressible fluide incompressible
     Convection Diffusion Temperature Sensibility convection diffusion temperature sensibility
     Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility
     [ fluide_ostwald | fluide_ostwald]
     [fluide sodium liquide fluide sodium liquide]
     [ fluide_sodium_gaz | fluide_sodium_gaz]
     [correlations bloc_lecture]
     [ navier_stokes_standard navier_stokes_standard]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
```

- fluide_incompressible fluide_incompressible (24.6): The fluid medium associated with the prob-
- Convection_Diffusion_Temperature_Sensibility convection_diffusion_temperature_sensibility (5.9): Convection diffusion temperature sensitivity equation
- Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility (5.22): Navier Stokes sensitivity equation

- **fluide_ostwald** *fluide_ostwald* (24.7) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_liquide** *fluide_sodium_liquide* (24.12) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_gaz** *fluide_sodium_gaz* (24.11) for inheritance: The fluid medium associated with the problem (only one possibility).
- **correlations** *bloc_lecture* (3.2) for inheritance: List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- navier_stokes_standard navier_stokes_standard (5.51) for inheritance: Navier-Stokes equations.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.31 Pb_base

Description: Resolution of equations on a domain. A problem is defined by creating an object and assigning the problem type that the user wishes to resolve. To enter values for the problem objects created, the Lire (Read) interpretor is used with a data block.

Keyword Discretize should have already been used to read the object.

See also: pb_gen_base (4) Pb_Conduction (4.1) Pb_Multiphase (4.16) pb_thermohydraulique_concentration_turbulent (4.58) pb_thermohydraulique_turbulent (4.64) pb_avec_liste_conc (4.36) pb_thermohydraulique_turbulent (4.65) pb_hydraulique_turbulent (4.49) Pb_Thermohydraulique_Cloned_Concentration_Turbulent (4.27) Pb_Hydraulique_Cloned_Concentration_Turbulent (4.10) pb_hydraulique_concentration_turbulent (4.44) pb_hydraulique_melange_binaire_turbulent_qc (4.48) pb_avec_passif (4.37) pb_thermohydraulique_QC (4.54) pb_hydraulique_melange_binaire_QC (4.46) pb_thermohydraulique_WC (4.55) pb_hydraulique_melange_binaire_WC (4.47) Pb_Thermohydraulique_Cloned_Concentration (4.26) Pb_Hydraulique_Cloned_Concentration (4.9) pb_thermohydraulique (4.53) pb_hydraulique_concentration (4.42) pb_thermohydraulique_cloned_Concentration (4.42) pb_thermohydraulique_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_cloned_concentration_clo

```
_concentration (4.56) pb_hydraulique (4.39) pb_post (4.52) problem_read_generic (4.69) modele_rayo-
_semi_transp (4.34) pb_hydraulique_ALE (4.40) Pb_Hydraulique_Turbulent_ALE (4.14) pb_hydraulique-
_aposteriori (4.41) pb_phase_field (4.51) Pb_Hydraulique_sensibility (4.15)
```

```
Usage:

Pb_base str

Read str {

    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
}
where
```

- milieu milieu_base (24): The medium associated with the problem.
- **constituant** *constituant* (24.1): Constituent.
- Post_processing|postraitement corps_postraitement (4.2): One post-processing (without name).
- **Post_processings** (4.3): List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4): This
- **liste_postraitements** *liste_post* (4.5): This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format_file (4.6): Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6): The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6): Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6): Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.32 Probleme_couple

Description: This instruction causes a probleme_couple type object to be created. This type of object has an associated problem list, that is, the coupling of n problems among them may be processed. Coupling between these problems is carried out explicitly via conditions at particular contact limits. Each problem may be associated either with the Associate keyword or with the Read/groupes keywords. The difference

is that in the first case, the four problems exchange values then calculate their timestep, rather in the second case, the same strategy is used for all the problems listed inside one group, but the second group of problem exchange values with the first group of problems after the first group did its timestep. So, the first case may then also be written like this:

```
Probleme_Couple pbc
```

```
Read pbc { groupes { { pb1 , pb2 , pb3 , pb4 } } }
```

There is a physical environment per problem (however, the same physical environment could be common to several problems).

Each problem is resolved in a domain.

Warning: Presently, coupling requires coincident meshes. In case of non-coincident meshes, boundary condition 'paroi_contact' in VEF returns error message (see paroi_contact for correcting procedure).

See also: pb_gen_base (4) pb_couple_rayonnement (4.70) pb_couple_rayo_semi_transp (4.38)

```
Usage:
```

```
probleme_couple str
Read str {
      [groupes list_list_nom]
}
where
```

• **groupes** *list_list_nom* (4.33): { groupes { { pb1 , pb2 } , { pb3 , pb4 } } }

4.33 List list nom

```
Description: pour les groupes
```

```
See also: listobj (42.5)
```

Usage:

```
{ object1, object2....}
```

list of list_un_pb (42.3) separeted with,

4.34 Modele_rayo_semi_transp

Description: Radiation model for semi transparent gas. The model should be associated to the coupling problem BEFORE the time scheme.

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.31)
```

Usage:

```
modele_rayo_semi_transp str
Read str {
```

```
[ eq_rayo_semi_transp eq_rayo_semi_transp]
[ milieu milieu_base]
[ constituant constituant]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
```

```
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- eq_rayo_semi_transp eq_rayo_semi_transp (4.35): Irradiancy G equation. Radiative flux equals -grad(G)/3/kappa.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processinglpostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.35 Eq_rayo_semi_transp

```
Description: Irradiancy equation.

See also: objet_lecture (43)

Usage:
{
    solveur solveur_sys_base
    [boundary_conditions|conditions_limites condlims]
}
where
```

- solveur solveur_sys_base (13.18): Solver of the irradiancy equation.
- boundary_conditions|conditions_limites condlims (4.35.1): Boundary conditions.

4.35.1 Condlims

```
Description: Boundary conditions.

See also: listobj (42.5)

Usage: { object1 object2 .... } list of condlimlu (4.35.2)

4.35.2 Condlimlu

Description: Boundary condition specified.

See also: objet_lecture (43)

Usage: bord cl
where
```

- **bord** *str*: Name of the edge where the boundary condition applies.
- cl condlim base (15): Boundary condition at the boundary called bord (edge).

4.36 Pb_avec_liste_conc

Description: Class to create a classical problem with a list of scalar concentration equations.

```
Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.31) Pb_Thermohydraulique_List_Concentration_Turbulent (4.29) Pb_Hydraulique_List_Concentration_Turbulent (4.13) Pb_Thermohydraulique_List_Concentration (4.28) Pb_Hydraulique_List_Concentration (4.11)
```

```
Usage:

pb_avec_liste_conc str

Read str {

    list_equations listeqn
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
}
where
```

• **list_equations** *listeqn* (4.12): convection_diffusion_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.

- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.37 Pb avec passif

Description: Class to create a classical problem with a scalar transport equation (e.g. temperature or concentration) and an additional set of passive scalars (e.g. temperature or concentration) equations.

```
Keyword Discretize should have already been used to read the object.
```

See also: Pb_base (4.31) pb_thermohydraulique_turbulent_scalaires_passifs (4.66) pb_thermohydraulique-especes_turbulent_qc (4.62) pb_hydraulique_concentration_turbulent_scalaires_passifs (4.45) pb_thermohydraulique-concentration_turbulent_scalaires_passifs (4.59) pb_thermohydraulique-especes_QC (4.60) pb_thermohydraulique-especes_WC (4.61) pb_thermohydraulique-concentration_scalaires_passifs (4.57) pb_thermohydraulique-concentration_scalaires_passifs (4.43)

```
Usage:

pb_avec_passif str

Read str {

    equations_scalaires_passifs listeqn
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
```

[sauvegarde format_file]

```
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- equations_scalaires_passifs listeqn (4.12): Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.38 Pb_couple_rayo_semi_transp

Description: Problem coupling several other problems to which radiation coupling is added (for semi transparent gas).

You have to associate a modele_rayo_semi_transp

You have to add a radiative term source in energy equation

Warning: Calculation with semi transparent gas model may lead to divergence when high temperature differences are used. Indeed, the calculation of the stability time step of the equation does not take in account the source term. In semi transparent gas model, energy equation source term depends strongly of temperature via irradiance and stability is not guaranteed by the calculated time step. Reducing the facsec of the time scheme is a good tip to reach convergence when divergence is encountered.

See also: probleme_couple (4.32)

```
pb_couple_rayo_semi_transp str
Read str {
     [groupes list list nom]
}
where
   • groupes list_list_nom (4.33) for inheritance: { groupes { { pb1 , pb2 } , { pb3 , pb4 } } }
4.39
       Pb_hydraulique
Description: Resolution of the Navier-Stokes equations.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.31) Pb_Rayo_Hydraulique (4.20)
Usage:
pb_hydraulique str
Read str {
     fluide_incompressible fluide_incompressible
     navier stokes standard navier stokes standard
     [ milieu milieu base]
      [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.

Usage:

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.40 Pb_hydraulique_ale

[reprise format_file]

[resume_last_time format_file]

Usage:

where

```
Description: Resolution of hydraulic problems for ALE
```

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.31)

```
pb_hydraulique_ALE str

Read str {

fluide_incompressible fluide_incompressible
    navier_stokes_standard_ALE navier_stokes_standard
    [ milieu milieu_base]
    [ constituant constituant]
    [ Post_processinglpostraitement corps_postraitement]
    [ Post_processingslpostraitements post_processings]
    [ liste_de_postraitements liste_post_ok]
    [ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
```

```
• fluide_incompressible fluide_incompressible (24.6): The fluid medium associated with the problem.
```

- navier_stokes_standard_ALE navier_stokes_standard (5.51): Navier-Stokes equations for ALE problems
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).

- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.41 Pb_hydraulique_aposteriori

Description: Modification of the pb_hydraulique problem in order to accept the estimateur_aposteriori post-processing.

```
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.31)
Usage:
pb hydraulique aposteriori str
Read str {
     fluide_incompressible fluide_incompressible
     Navier Stokes Aposteriori navier stokes aposteriori
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume_last_time format_file]
where
```

• **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.

- Navier_Stokes_Aposteriori navier_stokes_aposteriori (5.17): Modification of the Navier_Stokes_standard class in order to accept the estimateur_aposteriori post-processing. To post-process estimateur_aposteriori, add this keyword into the list of fields to be post-processed. This estimator whill generate a map of aposteriori error estimators; it is defined on each mesh cell and is a measure of the local discretisation error. This will serve for adaptive mesh refinement
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- Post_processing|postraitement corps_postraitement (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.42 Pb hydraulique concentration

Description: Resolution of Navier-Stokes/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.31)

Usage:
pb_hydraulique_concentration str

Read str {

fluide_incompressible fluide_incompressible
[constituant constituant]
[navier_stokes_standard navier_stokes_standard]
[convection_diffusion_concentration convection_diffusion_concentration]
[milieu milieu_base]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
[liste_de_postraitements liste_post_ok]

```
[ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.30): Constituent transport vectorial equation (concentration diffusion convection).
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.43 Pb hydraulique concentration scalaires passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.37)

Usage: pb_hydraulique_concentration_scalaires_passifs str

Read str {
```

```
fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier stokes standard navier stokes standard]
     [convection_diffusion_concentration convection_diffusion_concentration]
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- constituent constituent (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- resume_last_time format_file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved

files).

where

4.44 Pb_hydraulique_concentration_turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.31) Usage: pb hydraulique concentration turbulent str Read str { **fluide_incompressible** *fluide_incompressible* [constituant constituant] [navier_stokes_turbulent navier_stokes_turbulent] [convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent] [milieu milieu_base] [Post processing|postraitement corps postraitement] [Post_processings|postraitements post_processings] [liste de postraitements liste post ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde_simple format_file] [reprise format file] [resume_last_time format_file] }

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.45 Pb_hydraulique_concentration_turbulent_scalaires_passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.37) pb_hydraulique_concentration_turbulent_scalaires_passifs str Read str { fluide incompressible fluide incompressible [constituant constituant] [navier stokes turbulent navier stokes turbulent] $[\ \textbf{convection_diffusion_concentration_turbulent}\ \ \textit{convection_diffusion_concentration_turbulent}]$ equations_scalaires_passifs listeqn [milieu milieu base] [Post_processing|postraitement corps_postraitement] [Post_processings|postraitements post_processings] [liste_de_postraitements liste_post_ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde simple format file] [reprise format_file] [resume_last_time format_file] } where

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_concentration_turbulent** *convection_diffusion_concentration_turbulent* (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This

kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.

- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.46 Pb_hydraulique_melange_binaire_qc

[milieu milieu_base]

Description: Resolution of a binary mixture problem for a quasi-compressible fluid with an iso-thermal condition.

```
Keywords for the unknowns other than pressure, velocity, fraction_massique are:
masse_volumique: density
pression: reduced pressure
pression_tot: total pressure.

Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.31)

Usage:
pb_hydraulique_melange_binaire_QC str
Read str {

fluide_quasi_compressible fluide_quasi_compressible
[constituant constituant]
navier_stokes_QC navier_stokes_qc
convection_diffusion_espece_binaire_QC convection_diffusion_espece_binaire_qc
```

[Post_processing|postraitement corps_postraitement] [Post_processings|postraitements post_processings]

```
[ liste_de_postraitements liste_post_ok]
    [ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (24.8): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): The various constituants associated to the problem.
- navier_stokes_QC navier_stokes_qc (5.44): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_espece_binaire_QC** *convection_diffusion_espece_binaire_qc* (5.33): Species conservation equation for a binary quasi-compressible fluid.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.47 Pb_hydraulique_melange_binaire_wc

Description: Resolution of a binary mixture problem for a weakly-compressible fluid with an iso-thermal condition.

Keywords for the unknowns other than pressure, velocity, fraction_massique are :

masse_volumique : density pression : reduced pressure pression_tot : total pressure

pression hydro: hydro-static pressure

```
pression_eos: pressure used in state equation.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.31)
Usage:
pb hydraulique melange binaire WC str
Read str {
     fluide weakly compressible fluide weakly compressible
     navier_stokes_WC navier_stokes_wc
     convection_diffusion_espece_binaire_WC convection_diffusion_espece_binaire_wc
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_weakly_compressible** *fluide_weakly_compressible* (24.14): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.45): Navier-Stokes equation for a weakly-compressible fluid.
- **convection_diffusion_espece_binaire_WC** *convection_diffusion_espece_binaire_wc* (5.34): Species conservation equation for a binary weakly-compressible fluid.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the

name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.48 Pb_hydraulique_melange_binaire_turbulent_qc

Description: Resolution of a turbulent binary mixture problem for a quasi-compressible fluid with an isothermal condition.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.31)
Usage:
pb_hydraulique_melange_binaire_turbulent_qc str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier_stokes_turbulent_qc navier_stokes_turbulent_qc
     Convection_Diffusion_Espece_Binaire_Turbulent_QC convection_diffusion_espece_binaire_turbulent-
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [resume last time format file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (24.8): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.53): Navier-Stokes equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- Convection_Diffusion_Espece_Binaire_Turbulent_QC convection_diffusion_espece_binaire_turbulent_qc (5.8): Species conservation equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.49 Pb_hydraulique_turbulent

[resume_last_time format_file]

where

Description: Resolution of Navier-Stokes equations with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.31) Pb_Rayo_Hydraulique_Turbulent (4.21)
Usage:
{\bf pb\_hydraulique\_turbulent} \ \ str
Read str {
     fluide_incompressible fluide_incompressible
     navier_stokes_turbulent navier_stokes_turbulent
     [ milieu milieu base]
     [constituant constituant]
      [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
      [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
      [reprise format_file]
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).

- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.50 Pb_mg

Description: Multi-grid problem.

Keyword Discretize should have already been used to read the object.

See also: pb_gen_base (4)

Usage:

pb_mg

4.51 Pb phase field

Description: Problem to solve local instantaneous incompressible-two-phase-flows. Complete description of the Phase Field model for incompressible and immiscible fluids can be found into this PDF: TRUST_ROOT/doc/TRUST/phase_field_non_miscible_manuel.pdf

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.31)
```

```
Usage:
```

```
pb_phase_field str
Read str {
```

```
fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_phase_field navier_stokes_phase_field]

[ convection_diffusion_phase_field convection_diffusion_phase_field]

[ milieu milieu_base]

[ Post_processing|postraitement corps_postraitement]

[ Post_processings|postraitements post_processings]
```

```
[ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_phase_field navier_stokes_phase_field (5.48): Navier Stokes equation for the Phase Field problem.
- **convection_diffusion_phase_field** *convection_diffusion_phase_field* (5.38): Cahn-Hilliard equation of the Phase Field problem. The unknown of this equation is the concentration C.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- Post_processing|postraitement corps_postraitement (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.52 Pb_post

```
Description: not_set

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.31)

Usage: pb_post str
Read str {
```

```
[ milieu milieu_base]
  [ constituant constituant]
  [ Post_processing|postraitement corps_postraitement]
  [ Post_processings|postraitements post_processings]
  [ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.53 Pb_thermohydraulique

Description: Resolution of thermohydraulic problem.

Keyword Discretize should have already been used to read the object. See also: Pb_base (4.31) Pb_Thermohydraulique_sensibility (4.30) Pb_Rayo_Thermohydraulique (4.22)

Usage:

pb_thermohydraulique str

Read str {

```
[ fluide_incompressible | fluide_incompressible ]
     [ fluide_ostwald | fluide_ostwald]
     [ fluide sodium liquide fluide sodium liquide]
     [ fluide_sodium_gaz | fluide_sodium_gaz]
     [correlations bloc lecture]
     [ navier_stokes_standard navier_stokes_standard]
     [convection diffusion temperature convection diffusion temperature]
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem (only one possibility).
- **fluide_ostwald** *fluide_ostwald* (24.7): The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_liquide** *fluide_sodium_liquide* (24.12): The fluid medium associated with the problem (only one possibility).
- **fluide_sodium_gaz** *fluide_sodium_gaz* (24.11): The fluid medium associated with the problem (only one possibility).
- **correlations** *bloc_lecture* (3.2): List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.39): Energy equation (temperature diffusion convection).
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on

P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.54 Pb_thermohydraulique_qc

```
Description: Resolution of thermo-hydraulic problem for a quasi-compressible fluid.
Keywords for the unknowns other than pressure, velocity, temperature are:
masse volumique: density
enthalpie: enthalpy
pression: reduced pressure
pression tot: total pressure.
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.31) Pb Rayo Thermohydrauligue QC (4.23)
Usage:
pb_thermohydraulique_QC str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier stokes OC navier stokes ac
     {\bf convection\_diffusion\_chaleur\_QC} \quad convection\_diffusion\_chaleur\_qc
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
      [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (24.8): The fluid medium associated with the problem.
- navier_stokes_QC navier_stokes_qc (5.44): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.27): Temperature equation for a quasi-compressible fluid.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This

- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.55 Pb thermohydraulique wc

```
Description: Resolution of thermo-hydraulic problem for a weakly-compressible fluid.
Keywords for the unknowns other than pressure, velocity, temperature are :
masse_volumique : density
pression: reduced pressure
pression_tot: total pressure
pression_hydro: hydro-static pressure
pression_eos: pressure used in state equation.
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.31)
Usage:
pb_thermohydraulique_WC str
Read str {
     fluide_weakly_compressible fluide_weakly_compressible
     navier_stokes_WC navier_stokes_wc
     convection_diffusion_chaleur_WC convection_diffusion_chaleur_wc
     [ milieu milieu_base]
      [constituant constituant]
      [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
      [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
      [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
      [reprise format file]
     [ resume_last_time format_file]
}
```

where

- **fluide_weakly_compressible** *fluide_weakly_compressible* (24.14): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.45): Navier-Stokes equation for a weakly-compressible fluid.
- **convection_diffusion_chaleur_WC** *convection_diffusion_chaleur_wc* (5.28): Temperature equation for a weakly-compressible fluid.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.56 Pb thermohydraulique concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

```
Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.31)

Usage:
pb_thermohydraulique_concentration str

Read str {

fluide_incompressible fluide_incompressible
    [ constituant constituant]
    [ navier_stokes_standard navier_stokes_standard]
    [ convection_diffusion_concentration convection_diffusion_concentration]
    [ convection_diffusion_temperature convection_diffusion_temperature]
    [ milieu milieu base]
```

```
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier stokes standard navier stokes standard (5.51): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.39): Energy equation (temperature diffusion convection).
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.57 Pb thermohydraulique concentration scalaires passifs

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object.

```
See also: pb_avec_passif (4.37)
Usage:
pb_thermohydraulique_concentration_scalaires_passifs str
Read str {
     fluide incompressible fluide incompressible
     [constituant constituant]
     [convection diffusion concentration convection diffusion concentration]
     [ convection_diffusion_temperature convection_diffusion_temperature]
     equations_scalaires_passifs listeqn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_concentration** *convection_diffusion_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.39): Energy equations (temperature diffusion convection).
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.

- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.58 Pb_thermohydraulique_concentration_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: Pb base (4.31) Usage: pb_thermohydraulique_concentration_turbulent str Read str { fluide_incompressible fluide_incompressible [constituant constituant] [navier stokes turbulent navier stokes turbulent] [convection diffusion concentration turbulent] convection diffusion concentration turbulent] [convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent] [milieu milieu base] [Post_processing|postraitement corps_postraitement] [Post processings|postraitements post processings] [liste_de_postraitements liste_post_ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde_simple format_file] [reprise format_file] [resume_last_time format_file] }

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- constituant constituant (24.1): Constituents.

where

- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.59 Pb thermohydraulique concentration turbulent scalaires passifs

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb avec passif (4.37)
pb_thermohydraulique_concentration_turbulent_scalaires_passifs str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_turbulent navier_stokes_turbulent]
     [convection diffusion concentration turbulent] convection diffusion concentration turbulent]
     [ convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]
     equations scalaires passifs listegn
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
```

```
[ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.42): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processinglyostraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.60 Pb_thermohydraulique_especes_qc

Description: Resolution of thermo-hydraulic problem for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: pb_avec_passif (4.37)
Usage:
pb_thermohydraulique_especes_QC str
Read str {
     fluide quasi compressible fluide quasi compressible
     navier stokes QC navier stokes qc
     convection_diffusion_chaleur_QC convection_diffusion_chaleur_qc
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format file]
     [resume last time format file]
}
where
```

- fluide_quasi_compressible fluide_quasi_compressible (24.8): The fluid medium associated with the problem.
- navier stokes QC navier stokes qc (5.44): Navier-Stokes equation for a quasi-compressible fluid.
- **convection_diffusion_chaleur_QC** *convection_diffusion_chaleur_qc* (5.27): Temperature equation for a quasi-compressible fluid.
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file

created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in

• resume_last_time format_file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

Pb thermohydraulique especes wc

Description: Resolution of thermo-hydraulic problem for a multi-species weakly-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_passif (4.37)
```

```
pb thermohydraulique especes WC str
Read str {
     fluide_weakly_compressible fluide_weakly_compressible
     navier stokes WC navier stokes wc
     convection_diffusion_chaleur_WC convection_diffusion_chaleur_wc
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- fluide_weakly_compressible fluide_weakly_compressible (24.14): The fluid medium associated with the problem.
- navier_stokes_WC navier_stokes_wc (5.45): Navier-Stokes equation for a weakly-compressible
- convection diffusion chaleur WC convection diffusion chaleur wc (5.28): Temperature equation for a weakly-compressible fluid.
- equations scalaires passifs listegn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fractionmassiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- constituent constituent (24.1) for inheritance: Constituent.
- Post_processing|postraitement corps_postraitement (4.2) for inheritance: One post-processing (without name).

- **Post_processings**|**postraitements**| post_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.62 Pb_thermohydraulique_especes_turbulent_qc

Description: Resolution of turbulent thermohydraulic problem under low Mach number with passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_passif (4.37)
Usage:
pb thermohydraulique especes turbulent qc str
Read str {
     fluide quasi compressible fluide quasi compressible
     navier stokes turbulent qc navier stokes turbulent qc
     convection diffusion chaleur turbulent qc convection diffusion chaleur turbulent qc
     equations scalaires passifs listegn
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide_quasi_compressible** *fluide_quasi_compressible* (24.8): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.53): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- **convection_diffusion_chaleur_turbulent_qc** convection_diffusion_chaleur_turbulent_qc (5.29): Energy equation under low Mach number as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.63 Pb_thermohydraulique_scalaires_passifs

Description: Resolution of thermohydraulic problem, with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.37)

```
Usage:
```

```
pb_thermohydraulique_scalaires_passifs str
Read str {
```

fluide_incompressible *fluide_incompressible*

```
[constituant constituant]
[navier_stokes_standard navier_stokes_standard]
[convection_diffusion_temperature convection_diffusion_temperature]
equations_scalaires_passifs listeqn
[milieu milieu_base]
[Post_processing|postraitement corps_postraitement]
[Post_processings|postraitements post_processings]
[liste_de_postraitements liste_post_ok]
[liste_de_postraitements liste_post]
[sauvegarde format_file]
[sauvegarde_simple format_file]
[reprise format_file]
[resume_last_time format_file]
]
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier_stokes_standard navier_stokes_standard (5.51): Navier-Stokes equations.
- **convection_diffusion_temperature** *convection_diffusion_temperature* (5.39): Energy equations (temperature diffusion convection).
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.64 Pb_thermohydraulique_turbulent

Description: Resolution of thermohydraulic problem, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.31) Pb_Rayo_Thermohydraulique_Turbulent (4.24)
Usage:
pb thermohydraulique turbulent str
Read str {
     fluide_incompressible fluide_incompressible
     navier_stokes_turbulent navier_stokes_turbulent
     convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [resume last time format file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file

created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.

• **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.65 Pb_thermohydraulique_turbulent_qc

```
Description: Resolution of turbulent thermohydraulic problem under low Mach number.
Warning: Available for VDF and VEF P0/P1NC discretization only.
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.31) Pb Rayo Thermohydraulique Turbulent QC (4.25)
Usage:
pb thermohydraulique turbulent qc str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier_stokes_turbulent_qc navier_stokes_turbulent_qc
     convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
```

- fluide_quasi_compressible fluide_quasi_compressible (24.8): The fluid medium associated with the problem.
- navier_stokes_turbulent_qc navier_stokes_turbulent_qc (5.53): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc (5.29): Energy equation under low Mach number as well as the associated turbulence model equations.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.

} where

- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This

block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- sauvegarde format_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde_simple format_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.66 Pb_thermohydraulique_turbulent_scalaires_passifs

Description: Resolution of thermohydraulic problem, with turbulence modelling and with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_passif (4.37)
pb_thermohydraulique_turbulent_scalaires_passifs str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_turbulent navier_stokes_turbulent]
     [convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide_incompressible** *fluide_incompressible* (24.6): The fluid medium associated with the problem.
- constituent constituent (24.1): Constituents.

- navier_stokes_turbulent navier_stokes_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection_diffusion_temperature_turbulent** *convection_diffusion_temperature_turbulent* (5.42): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.
- equations_scalaires_passifs listeqn (4.12) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste_de_postraitements liste_post_ok (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error.
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.67 Pbc_med

Description: Allows to read med files and post-process them.

See also: pb_gen_base (4)

pbc_med list_info_med
where

Usage:

• list_info_med list_info_med (4.68)

4.68 List info med

Description: not_set

```
See also: listobj (42.5)

Usage:
{ object1, object2....}
list of info_med (4.68.1) separeted with,

4.68.1 Info_med

Description: not_set

See also: objet_lecture (43)

Usage:
file_med domaine pb_post
where

• file_med str: Name of the MED file.
• domaine str: Name of domain.
• pb_post pb_post (4.52)
```

4.69 Problem_read_generic

Description: The probleme_read_generic differs rom the rest of the TRUST code: The problem does not state the number of equations that are enclosed in the problem. As the list of equations to be solved in the generic read problem is declared in the data file and not pre-defined in the structure of the problem, each equation has to be distinctively associated with the problem with the Associate keyword.

See also: Pb_base (4.31) pb_fronttracking_disc (4.7) Usage: problem_read_generic str Read str { [milieu milieu_base] [constituant constituant] [Post_processing|postraitement corps_postraitement] [Post_processings|postraitements post_processings] [liste_de_postraitements liste_post_ok] [liste_postraitements liste_post] [sauvegarde format_file] [sauvegarde simple format file] [reprise format_file] [resume last time format file] } where

Keyword Discretize should have already been used to read the object.

- milieu milieu_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post_processing|postraitement** *corps_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post_processings|postraitements** *post_processings* (4.3) for inheritance: List of Postraitement objects (with name).

- **liste_de_postraitements** *liste_post_ok* (4.4) for inheritance: This
- **liste_postraitements** *liste_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde_simple** *format_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format_file (4.6) for inheritance: Keyword to resume a calculation based on the name_file file (see the class format_file). If format_reprise is xyz, the name_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema_temps_base) time fields are taken from the name_file file. If there is no backup corresponding to this time in the name_file, TRUST exits in error
- **resume_last_time** *format_file* (4.6) for inheritance: Keyword to resume a calculation based on the name_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

4.70 Pb_couple_rayonnement

Description: This keyword is used to define a problem coupling several other problems to which radiation coupling is added.

```
Usage:

pb_couple_rayonnement str

Read str {

    [groupes list_list_nom]
}

where

• groupes list_list_nom (4.33) for inheritance: { groupes { { pb1 , pb2 } , { pb3 , pb4 } } }

5 mor_eqn

Description: Class of equation pieces (morceaux d'equation).
```

5.1 Conduction

Usage:

Description: Heat equation.

See also: objet_u (44) eqn_base (5.43)

Keyword Discretize should have already been used to read the object.

```
Usage:

Conduction str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.2 Bloc convection

```
Description: not_set

See also: objet_lecture (43)

Usage:
aco operateur acof
where

• aco str into ['{'}: Opening curly bracket.
• operateur convection_deriv (5.2.1)
• acof str into ['}']: Closing curly bracket.
```

5.2.1 Convection_deriv

```
Description: not_set
See also: objet_lecture (43) ale (5.2.2) muscl_old (5.2.3) muscl3 (5.2.4) ef (5.2.5) di_12 (5.2.7) amont_old
(5.2.8) generic (5.2.9) ef_stab (5.2.10) kquick (5.2.13) muscl (5.2.14) muscl_new (5.2.15) quick (5.2.16)
centre_old (5.2.17) negligeable (5.2.18) amont (5.2.19) centre (5.2.20) centre4 (5.2.21) btd (5.2.22) supg
(5.2.23) RT (5.2.24) sensibility (5.2.25)
Usage:
convection_deriv
5.2.2 Ale
Description: A convective scheme for ALE (Arbitrary Lagrangian-Eulerian) framework.
See also: convection_deriv (5.2.1)
Usage:
ale opconv
where
   • opconv bloc_convection (5.2): Choice between: amont and muscl
      Example: convection { ALE { amont } }
5.2.3 Muscl_old
Description: Only for VEF discretization.
See also: convection_deriv (5.2.1)
Usage:
muscl_old
5.2.4 Muscl3
Description: Keyword for a scheme using a ponderation between muscl and center schemes in VEF.
See also: convection_deriv (5.2.1)
Usage:
muscl3 {
      [ alpha float]
}
where
```

• **alpha** *float*: To weight the scheme centering with the factor floattant (between 0 (full centered) and 1 (muscl), by default 1).

5.2.5 Ef

Description: For VEF calculations, a centred convective scheme based on Finite Elements formulation can be called through the following data:

Convection { EF transportant_bar val transporte_bar val antisym val filtrer_resu val }

This scheme is 2nd order accuracy (and get better the property of kinetic energy conservation). Due to possible problems of instabilities phenomena, this scheme has to be coupled with stabilisation process (see Source_Qdm_lambdaup). These two last data are equivalent from a theoretical point of view in variationnal writing to: div((u. grad ub , vb) - (u. grad vb, ub)), where vb corresponds to the filtered reference test functions.

Remark:

This class requires to define a filtering operator: see solveur_bar

5.2.6 Bloc_ef

```
Description: not_set
```

See also: objet_lecture (43)

Usage:

```
mot1 val1 mot2 val2 mot3 val3 mot4 val4 where
```

```
mot1 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
val1 int into [0, 1]
mot2 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
val2 int into [0, 1]
mot3 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
val3 int into [0, 1]
mot4 str into ['transportant_bar', 'transporte_bar', 'filtrer_resu', 'antisym']
val4 int into [0, 1]
```

5.2.7 Di_l2

Description: Only for VEF discretization.

```
See also: convection_deriv (5.2.1)
```

Usage:

di_12

5.2.8 Amont_old

Description: Only for VEF discretization, obsolete keyword, see amont.

```
See also: convection_deriv (5.2.1)
Usage:
amont old
```

5.2.9 Generic

Description: Keyword for generic calling of upwind and muscl convective scheme in VEF discretization. For muscl scheme, limiters and order for fluxes calculations have to be specified. The available limiters are: minmod - vanleer -vanalbada - chakravarthy - superbee, and the order of accuracy is 1 or 2. Note that chakravarthy is a non-symmetric limiter and superbee may engender results out of physical limits. By consequence, these two limiters are not recommended.

Examples:

```
convection { generic amont }
convection { generic muscl minmod 1 }
convection { generic muscl vanleer 2 }
```

In case of results out of physical limits with muscl scheme (due for instance to strong non-conformal velocity flow field), user can redefine in data file a lower order and a smoother limiter, as : convection { generic muscl minmod 1 }

```
See also: convection_deriv (5.2.1)
```

Usage:

```
generic type [limiteur][ordre][alpha] where
```

- type str into ['amont', 'muscl', 'centre']: type of scheme
- limiteur str into ['minmod', 'vanleer', 'vanalbada', 'chakravarthy', 'superbee']: type of limiter
- ordre int into [1, 2, 3]: order of accuracy
- alpha float: alpha

5.2.10 Ef_stab

Description: Keyword for a VEF convective scheme.

```
See also: convection_deriv (5.2.1)

Usage:
ef_stab {

    [alpha float]
    [test int]
    [tdivu ]
    [old ]
    [volumes_etendus ]
    [volumes_non_etendus ]
    [amont_sous_zone str]
    [alpha_sous_zone listsous_zone_valeur]
```

```
}
where
```

- **alpha** *float*: To weight the scheme centering with the factor floattant (between 0 (full centered) and 1 (mix between upwind and centered), by default 1). For scalar equation, it is adviced to use alpha=1 and for the momentum equation, alpha=0.2 is adviced.
- test int: Developer option to compare old and new version of EF_stab
- **tdivu**: To have the convective operator calculated as div(TU)-TdivU(=UgradT).
- old: To use old version of EF_stab scheme (default no).
- volumes_etendus: Option for the scheme to use the extended volumes (default, yes).
- volumes_non_etendus: Option for the scheme to not use the extended volumes (default, no).
- amont_sous_zone str: Option to degenerate EF_stab scheme into Amont (upwind) scheme in the sub zone of name sz_name. The sub zone may be located arbitrarily in the domain but the more often this option will be activated in a zone where EF_stab scheme generates instabilities as for free outlet for example.
- alpha_sous_zone listsous_zone_valeur (5.2.11): Option to change locally the alpha value on N subzones named sub_zone_name_I. Generally, it is used to prevent from a local divergence by increasing locally the alpha parameter.

5.2.11 Listsous zone valeur

```
Description: List of groups of two words.

See also: listobj (42.5)

Usage:
n object1 object2 ....
list of sous_zone_valeur (5.2.12)

5.2.12 Sous_zone_valeur

Description: Two words.

See also: objet_lecture (43)

Usage:
sous_zone_valeur
where

• sous_zone_str: sous zone
• valeur float: value

5.2.13 Kquick

Description: Only for VEF discretization.
```

See also: convection_deriv (5.2.1)

Usage: **kquick**

5.2.14 Muscl

Description: Keyword for muscl scheme in VEF discretization equivalent to generic muscl vanleer 2 for the 1.5 version or later. The previous muscl scheme can be used with the obsolete in future muscl_old keyword.

See also: convection_deriv (5.2.1)

Usage: **muscl**

5.2.15 Muscl_new

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

Usage: muscl_new

5.2.16 Quick

Description: Only for VDF discretization.

See also: convection_deriv (5.2.1)

Usage: quick

5.2.17 Centre_old

Description: Only for VEF discretization.

See also: convection_deriv (5.2.1)

Usage: centre_old

5.2.18 Negligeable

Description: For VDF and VEF discretizations. Suppresses the convection operator.

See also: convection_deriv (5.2.1)

Usage:

negligeable

5.2.19 Amont

Description: Keyword for upwind scheme for VDF or VEF discretizations. In VEF discretization equivalent to generic amont for TRUST version 1.5 or later. The previous upwind scheme can be used with the obsolete in future amont_old keyword.

See also: convection_deriv (5.2.1)

Usage:

```
amont
```

```
5.2.20 Centre
Description: For VDF and VEF discretizations.
See also: convection_deriv (5.2.1)
Usage:
centre
5.2.21 Centre4
Description: For VDF and VEF discretizations.
See also: convection_deriv (5.2.1)
Usage:
centre4
5.2.22 Btd
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
btd {
     btd float
     facteur float
}
where
   • btd float
   • facteur float
5.2.23 Supg
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
supg {
     facteur float
}
where
   • facteur float
```

5.2.24 Rt

Description: Keyword to use RT projection for P1NCP0RT discretization

See also: convection_deriv (5.2.1)

Usage:

RT

5.2.25 Sensibility

Description: A convective scheme for the sensibility problem.

See also: convection_deriv (5.2.1)

Usage:

sensibility opconv

where

• **opconv** *bloc_convection* (5.2): Choice between: amont and muscl Example: convection { Sensibility { amont } }

5.3 Bloc_diffusion

Description: not_set

See also: objet_lecture (43)

Usage:

aco [operateur] [op_implicite] acof
where

- aco str into ['{'}]: Opening curly bracket.
- **operateur** diffusion_deriv (5.3.1): if none is specified, the diffusive scheme used is a 2nd-order scheme.
- **op_implicite** op_implicite (5.3.22): To have diffusive implicitation, it use Uzawa algorithm. Very useful when viscosity has large variations.
- acof str into ['}']: Closing curly bracket.

5.3.1 Diffusion_deriv

Description: not set

See also: objet_lecture (43) turbulente (5.3.2) stab (5.3.14) standard (5.3.15) p1ncp1b (5.3.17) p1b (5.3.18) negligeable (5.3.19) option (5.3.20) tenseur_Reynolds_externe (5.3.21)

Usage:

diffusion deriv

5.3.2 Turbulente

Description: Turbulent diffusion operator for multiphase problem

See also: diffusion_deriv (5.3.1)

```
turbulente [ type ]
where
   • type type_diffusion_turbulente_multiphase_deriv (5.3.3): Turbulence model for multiphase problem
5.3.3 Type_diffusion_turbulente_multiphase_deriv
Description: not_set
See also: objet_lecture (43) wale (5.3.4) 1_melange (5.3.5) smago (5.3.6) Prandtl (5.3.7) SGDH (5.3.8)
multiple (5.3.9) k_omega (5.3.12) k_tau (5.3.13)
Usage:
5.3.4 Wale
Description: LES WALE type.
See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
wale {
     [cw float]
}
where
   • cw float: WALE's model constant. By default it is se to 0.5.
5.3.5 L_melange
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
l_melange {
     l_melange float
where
   • l_melange float
```

Usage:

```
5.3.6 Smago
Description: LES Smagorinsky type.
See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
smago {
     [cs float]
}
where
   • cs float: Smagorinsky's model constant. By default it is se to 0.18.
5.3.7 Prandtl
Description: Scalar Prandtl model.
See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
Prandtl {
     [ prandtl_turbulent|pr_t float]
}
where
   • prandtl_turbulent|pr_t float: Prandtl's model constant. By default it is se to 0.9.
5.3.8 Sgdh
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
SGDH {
      [ Pr_t float]
     [ sigma_turbulent|sigma float]
     [ no_alpha ]
     [gas_turb]
}
where
   • Pr_t float
   • sigma_turbulent|sigma float
   • no_alpha
   • gas_turb
```

```
5.3.9 Multiple
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
multiple {
     [ k_omega type_diffusion_turbulente_multiphase_multiple_deriv___k_omega]
      [ sato type_diffusion_turbulente_multiphase_multiple_deriv___sato]
}
where
   • k_omega type_diffusion_turbulente_multiphase_multiple_deriv___k_omega (5.3.10): first correla-
   • sato type_diffusion_turbulente_multiphase_multiple_deriv___sato (5.3.11)
5.3.10 K_omega
Description: not_set
See also: type_diffusion_turbulente_multiphase_multiple_deriv (43.2)
Usage:
5.3.11 Sato
Description: not_set
See also: type_diffusion_turbulente_multiphase_multiple_deriv (43.2)
Usage:
5.3.12 K_omega
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
k_omega {
      [ limiteur|limiter str]
     [ sigma float]
     [ beta_k float]
     [gas_turb]
where
   • limiteur|limiter str
   • sigma float
   • beta_k float
   • gas_turb
```

```
5.3.13 K_tau
Description: not_set

See also: type_diffusion_turbulente_multiphase_deriv (5.3.3)
Usage:
k_tau {
    [limiteurllimiter str]
    [sigma float]
    [beta_k float]
}
where

• limiteurllimiter str
• sigma float
• beta_k float
```

5.3.14 Stab

Description: keyword allowing consistent and stable calculations even in case of obtuse angle meshes.

```
See also: diffusion_deriv (5.3.1)

Usage:
stab {

    [standard int]
    [info int]
    [new_jacobian int]
    [nu int]
    [nut int]
    [nu_transp int]
    [nut_transp int]
}
where
```

- **standard** *int*: to recover the same results as calculations made by standard laminar diffusion operator. However, no stabilization technique is used and calculations may be unstable when working with obtuse angle meshes (by default 0)
- **info** *int*: developer option to get the stabilizing ratio (by default 0)
- **new_jacobian** *int*: when implicit time schemes are used, this option defines a new jacobian that may be more suitable to get stationary solutions (by default 0)
- **nu** *int*: (respectively nut 1) takes the molecular viscosity (resp. eddy viscosity) into account in the velocity gradient part of the diffusion expression (by default nu=1 and nut=1)
- nut in
- **nu_transp** *int*: (respectively nut_transp 1) takes the molecular viscosity (resp. eddy viscosity) into account in the transposed velocity gradient part of the diffusion expression (by default nu_transp=0 and nut_transp=1)
- nut_transp int

5.3.15 Standard

Description: A new keyword, intended for LES calculations, has been developed to optimise and parameterise each term of the diffusion operator. Remark:

- 1. This class requires to define a filtering operator : see solveur_bar
- 2. The former (original) version: diffusion { } -which omitted some of the term of the diffusion operatorcan be recovered by using the following parameters in the new class : diffusion { standard grad Ubar 0 nu 1 nut 1 nu transp 0 nut transp 1 filtrer resu 0}.

See also: diffusion_deriv (5.3.1)

Usage:

standard [mot1] [bloc_diffusion_standard] where

- mot1 str into ['defaut_bar']: equivalent to grad_Ubar 1 nu 1 nu 1 nu_transp 1 nut_transp 1 filtrer-resu 1
- bloc_diffusion_standard bloc_diffusion_standard (5.3.16)

5.3.16 Bloc_diffusion_standard

Description: grad_Ubar 1 makes the gradient calculated through the filtered values of velocity (P1-conform). nu 1 (respectively nut 1) takes the molecular viscosity (eddy viscosity) into account in the velocity gradient part of the diffusion expression.

nu_transp 1 (respectively nut_transp 1) takes the molecular viscosity (eddy viscosity) into account according in the TRANSPOSED velocity gradient part of the diffusion expression.

filtrer_resu 1 allows to filter the resulting diffusive fluxes contribution.

See also: objet_lecture (43)

Usage:

mot1 val1 mot2 val2 mot3 val3 mot4 val4 mot5 val5 mot6 val6 where

```
mot1 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val1 int into [0, 1]
mot2 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val2 int into [0, 1]
mot3 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val3 int into [0, 1]
mot4 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val4 int into [0, 1]
mot5 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val5 int into [0, 1]
mot6 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
val6 int into [0, 1]
```

5.3.17 P1ncp1b

Description: not_set

See also: diffusion_deriv (5.3.1)

Usage:

```
5.3.18 P1b
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
p1b
5.3.19 Negligeable
Description: the diffusivity will not taken in count
See also: diffusion_deriv (5.3.1)
Usage:
negligeable
5.3.20 Option
Description: not_set
See also: diffusion_deriv (5.3.1)
Usage:
option bloc_lecture
where
   • bloc_lecture bloc_lecture (3.2)
5.3.21 Tenseur_reynolds_externe
Description: Estimate the values of the Reynolds tensor.
See also: diffusion_deriv (5.3.1)
Usage:
tenseur_Reynolds_externe
5.3.22 Op_implicite
Description: not_set
See also: objet_lecture (43)
Usage:
implicite mot solveur
where
   • implicite str into ['implicite']
   • mot str into ['solveur']
```

• solveur_sys_base (13.18)

5.4 Condinits

```
Description: Initial conditions.
See also: listobj (42.5)
Usage:
{ object1 object2 .... }
list of condinit (5.4.1)
5.4.1 Condinit
Description: Initial condition.
See also: objet_lecture (43)
Usage:
nom ch
where
   • nom str: Name of initial condition field.
   • ch champ_base (18.1): Type field and the initial values.
5.5 Sources
Description: The sources.
See also: listobj (42.5)
Usage:
{ object1, object2.... }
list of source_base (38) separeted with,
5.6 Parametre_equation_base
Description: Basic class for parametre_equation
See also: objet_lecture (43) parametre_implicite (5.6.1) parametre_diffusion_implicite (5.6.2)
Usage:
5.6.1 Parametre_implicite
Description: Keyword to change for this equation only the parameter of the implicit scheme used to solve
the problem.
See also: parametre_equation_base (5.6)
Usage:
parametre_implicite {
     [ seuil convergence implicite float]
     [ seuil_convergence_solveur float]
     [solveur_sys_base]
```

```
[ resolution_explicite ]
    [ equation_non_resolue ]
    [ equation_frequence_resolue str]
}
where
```

- **seuil_convergence_implicite** *float*: Keyword to change for this equation only the value of seuil_convergence_implicite used in the implicit scheme.
- **seuil_convergence_solveur** *float*: Keyword to change for this equation only the value of seuil_convergence_solveur used in the implicit scheme
- **solveur** *solveur_sys_base* (13.18): Keyword to change for this equation only the solver used in the implicit scheme
- resolution_explicite: To solve explicitly the equation whereas the scheme is an implicit scheme.
- equation_non_resolue : Keyword to specify that the equation is not solved.
- equation_frequence_resolue *str*: Keyword to specify that the equation is solved only every n time steps (n is an integer or given by a time-dependent function f(t)).

5.6.2 Parametre_diffusion_implicite

Description: To specify additional parameters for the equation when using impliciting diffusion

```
See also: parametre_equation_base (5.6)

Usage:
parametre_diffusion_implicite {

    [ crank int into [0, 1]]
    [ preconditionnement_diag int into [0, 1]]
    [ niter_max_diffusion_implicite int]
    [ seuil_diffusion_implicite float]
    [ solveur solveur_sys_base]
}

where
```

- **crank** *int into* [0, 1]: Use (1) or not (0, default) a Crank Nicholson method for the diffusion implicitation algorithm. Setting crank to 1 increases the order of the algorithm from 1 to 2.
- **preconditionnement_diag** *int into* [0, 1]: The CG used to solve the implicitation of the equation diffusion operator is not preconditioned by default. If this option is set to 1, a diagonal preconditionning is used. Warning: this option is not necessarily more efficient, depending on the treated case.
- **niter_max_diffusion_implicite** *int*: Change the maximum number of iterations for the CG (Conjugate Gradient) algorithm when solving the diffusion implicitation of the equation.
- **seuil_diffusion_implicite** *float*: Change the threshold convergence value used by default for the CG resolution for the diffusion implicitation of this equation.
- **solveur** *solveur_sys_base* (13.18): Method (different from the default one, Conjugate Gradient) to solve the linear system.

5.7 Convection_diffusion_concentration_turbulent_ft_disc

Description: equation_non_resolue

Keyword Discretize should have already been used to read the object.

See also: convection_diffusion_concentration_turbulent (5.32)

Usage:

```
Convection_Diffusion_Concentration_Turbulent_FT_Disc str
Read str {
```

```
[ equation interface str]
     phase int into [0, 1]
     [ option str]
     [ equations_source_chimie n word1 word2 ... wordn]
     [ modele_cinetique int]
     [ equation_nu_t str]
     [ constante_cinetique | float]
     [ modele_turbulence modele_turbulence_scal_base]
     [ nom_inconnue str]
     [alias str]
     [ masse_molaire float]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer_equation str]
where
```

- **equation_interface** *str*: his is the name of the interface tracking equation to watch. The scalar will not diffuse through the interface of this equation.
- phase int into [0, 1]: tells whether the scalar must be confined in phase 0 or in phase 1
- **option** *str*: Experimental features used to prevent the concentration to leak through the interface between phases due to numerical diffusion.

RIEN: do nothing

- RAMASSE_MIETTES_SIMPLE: at each timestep, this algorithm takes all the mass located in the opposite phase and spreads it uniformly in the given phase.
- equations_source_chimie n word1 word2 ... wordn: This term specifies the name of the concentration equation of the reagents. It should be specified only in the bloc that concerns the convection/diffusion equation of the product.
- modele_cinetique *int*: This is the keyword that the user defines for the reaction model that he wants to use. Four reaction models are currently offered (1 to 4). Model 1 is the default one and is based on the laminar rate formulation. Model 2 employs an LES diffusive EDC formulation. Model 3 defines an LES variance formulation. Model 4 is a mix between models 2 and 3.
- equation_nu_t str: This specifies the name of the hydraulic equation used which defines the turbulent (basically SGS) viscosity.
- **constante_cinetique** *float*: This is the constant kinetic rate of the reaction and is used for the laminar model 1 only.
- **modele_turbulence** *modele_turbulence_scal_base* (27) for inheritance: Turbulence model to be used in the constituent transport equations. The only model currently available is Schmidt.
- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with

this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).

- alias str for inheritance
- masse_molaire *float* for inheritance
- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier Sokes Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

• renommer equation str for inheritance: Rename the equation with a specific name.

5.8 Convection_diffusion_espece_binaire_turbulent_qc

Description: Species conservation equation for a binary quasi-compressible fluid as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_espece_binaire_QC (5.33)

Usage:

}

```
Convection_Diffusion_Espece_Binaire_Turbulent_QC str
Read str {
```

```
[ modele_turbulence modele_turbulence_scal_base]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [ renommer equation str]
where
```

• modele_turbulence modele_turbulence_scal_base (27): Turbulence model for the species conservation equation.

- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- **equation_non_resolue** str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

• renommer equation str for inheritance: Rename the equation with a specific name.

5.9 Convection_diffusion_temperature_sensibility

Description: Energy sensitivity equation (temperature diffusion convection)

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_temperature (5.39)

}

```
Convection_Diffusion_Temperature_sensibility str
Read str {
```

```
[convection_sensibility convection_deriv]
     velocity_state bloc_lecture
     temperature_state bloc_lecture
     uncertain_variable bloc_lecture
     [ polynomial chaos float]
     [ penalisation_l2_ftd pp]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [ renommer equation str]
where
```

• convection_sensibility convection_deriv (5.2.1): Choice between: amont and muscl Example: convection { Sensibility { amont } }

- **velocity_state** *bloc_lecture* (3.2): Block to indicate the state problem. Between the braces, you must specify the key word 'pb_champ_evaluateur' then the name of the state problem and the velocity unknown
 - Example: velocity_state { pb_champ_evaluateur pb_state velocity }
- **temperature_state** *bloc_lecture* (3.2): Block to indicate the state problem. Between the braces, you must specify the key word 'pb_champ_evaluateur' then the name of the state problem and the temperature unknown
 - Example: velocity_state { pb_champ_evaluateur pb_state temperature }
- uncertain_variable bloc_lecture (3.2): Block to indicate the name of the uncertain variable. Between the braces, you must specify the name of the unknown variable (choice between: temperature, beta_th, boussinesq_temperature, Cp and lambda.
 - Example: uncertain_variable { temperature }
- polynomial_chaos *float*: It is the method that we will use to study the sensitivity of the
- penalisation_12_ftd pp (5.10) for inheritance: to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.10 Pp

```
Description: not_set

See also: listobj (42.5)

Usage:
{ object1 object2 .... }
list of penalisation_l2_ftd_lec (5.10.1)
```

5.10.1 Penalisation_l2_ftd_lec

Description: not_set

See also: objet_lecture (43)

Usage:

[postraiter_gradient_pression_sans_masse] [correction_matrice_projection_initiale] [correction_calcul_pression_initiale] [correction_vitesse_projection_initiale] [correction_matrice_pression] [matrice_pression_penalisee_H1] [correction_vitesse_modifie] [correction_pression_modifie] [gradient_pression_qdm_modifie] bord val where

- **postraiter_gradient_pression_sans_masse** *int*: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- correction_matrice_projection_initiale int: (IBM advanced) fix matrix of initial projection for PDF
- correction_calcul_pression_initiale int: (IBM advanced) fix initial pressure computation for PDF
- correction_vitesse_projection_initiale int: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int: (IBM advanced) fix pressure matrix for PDF
- matrice_pression_penalisee_H1 int: (IBM advanced) fix pressure matrix for PDF
- correction vitesse modifie int: (IBM advanced) fix velocity for PDF
- correction_pression_modifie int: (IBM advanced) fix pressure for PDF
- gradient_pression_qdm_modifie int: (IBM advanced) fix pressure gradient
- bord str
- val n x1 x2 ... xn

5.11 Echelle_temporelle_turbulente

Description: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
```

where

```
Echelle_temporelle_turbulente str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.

- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.12 Energie_multiphase

Description: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
Energie_Multiphase str
Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file

- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.13 Energie_multiphase_h

Description: Internal energy conservation equation for a multi-phase problem where the unknown is the enthalpy

Keyword Discretize should have already been used to read the object. See also: eqn base (5.43)

```
Usage:

Energie_Multiphase_h str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.14 Energie_cinetique_turbulente

Description: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn base (5.43)

```
Usage:
```

where

```
Energie_cinetique_turbulente str
Read str {
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
     [renommer_equation str]
}
```

- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire fichier xyz valeur ecrire fichier xyz valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

Energie_cinetique_turbulente_wit

Description: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.43)

Usage:
Energie_cinetique_turbulente_WIT str
Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

[disable equation residual str]

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.16 Masse_multiphase

Description: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)

```
Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

Usage:

Masse_Multiphase str

Read str {
```

```
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
[ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.17 Navier stokes aposteriori

Description: Modification of the Navier_Stokes_standard class in order to accept the estimateur_aposteriori post-processing. To post-process estimateur_aposteriori, add this keyword into the list of fields to be post-processed. This estimator whill generate a map of aposteriori error estimators; it is defined on each mesh cell and is a measure of the local discretisation error. This will serve for adaptive mesh refinement

Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.51)

```
Usage:
Navier_Stokes_Aposteriori str
Read str {

    [ correction_matrice_projection_initiale int]
    [ correction_calcul_pression_initiale int]
    [ correction_vitesse_projection_initiale int]
    [ correction_matrice_pression int]
    [ correction_vitesse_modifie int]
    [ gradient_pression_qdm_modifie int]
```

```
[ correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ solveur_pression solveur_sys_base]
     [ dt_projection deuxmots]
     [traitement_particulier traitement_particulier]
     [ seuil_divU floatfloat]
     [solveur bar solveur sys base]
     [ projection initiale int]
     [ methode calcul pression initiale str into ['avec les cl', 'avec sources', 'avec sources et-
     operateurs', 'sans rien']
     [ disable equation residual str]
     [ convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer_equation str]
}
where
```

- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction vitesse modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur_pression solveur_sys_base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.18 Traitement_particulier

Description: Auxiliary class to post-process particular values.

See also: objet_lecture (43)

Usage:
aco trait_part acof
where

- aco str into ['{'}]: Opening curly bracket.
- trait_part traitement_particulier_base (5.18.1): Type of traitement_particulier.
- acof str into ['}']: Closing curly bracket.

5.18.1 Traitement_particulier_base

Description: Basic class to post-process particular values.

```
See also: objet_lecture (43) profils_thermo (5.18.2) temperature (5.18.3) canal (5.18.4) chmoy_faceperio
(5.18.5) ec (5.18.6) thi (5.18.7) brech (5.18.9) ceg (5.18.10)
Usage:
5.18.2 Profils_thermo
Description: non documente
See also: traitement_particulier_base (5.18.1)
Usage:
profils_thermo bloc
where
   • bloc bloc_lecture (3.2)
5.18.3 Temperature
Description: not_set
See also: traitement_particulier_base (5.18.1)
Usage:
temperature {
     bord str
     direction int
}
where
   • bord str
   • direction int
5.18.4 Canal
Description: Keyword for statistics on a periodic plane channel.
See also: traitement_particulier_base (5.18.1)
Usage:
canal {
      [ dt_impr_moy_spat float]
      [ dt_impr_moy_temp float]
      [ debut_stat float]
      [fin_stat float]
      [ pulsation_w float]
      [ nb_points_par_phase int]
      [ reprise str]
```

where

- **dt_impr_moy_spat** *float*: Period to print the spatial average (default value is 1e6).
- **dt_impr_moy_temp** *float*: Period to print the temporal average (default value is 1e6).
- **debut_stat** *float*: Time to start the temporal averaging (default value is 1e6).
- fin_stat float: Time to end the temporal averaging (default value is 1e6).
- **pulsation_w** *float*: Pulsation for phase averaging (in case of pulsating forcing term) (no default value).
- **nb_points_par_phase** *int*: Number of samples to represent phase average all along a period (no default value).
- **reprise** *str*: val_moy_temp_xxxxxx.sauv : Keyword to resume a calculation with previous averaged quantities.

Note that for thermal and turbulent problems, averages on temperature and turbulent viscosity are automatically calculated. To resume a calculation with phase averaging, val_moy_temp_xxxxxx.sauv_phase file is required on the directory where the job is submitted (this last file will be then automatically loaded by TRUST).

5.18.5 Chmoy_faceperio

Description: non documente

See also: traitement_particulier_base (5.18.1)

Usage:

chmoy_faceperio bloc

where

• bloc bloc_lecture (3.2)

5.18.6 Ec

Description: Keyword to print total kinetic energy into the referential linked to the domain (keyword Ec). In the case where the domain is moving into a Galilean referential, the keyword Ec_dans_repere_fixe will print total kinetic energy in the Galilean referential whereas Ec will print the value calculated into the moving referential linked to the domain

See also: traitement_particulier_base (5.18.1)

```
Usage:
ec {

    [Ec]
    [Ec_dans_repere_fixe]
    [periode float]
}
where
```

- Ec
- Ec_dans_repere_fixe
- **periode** *float*: periode is the keyword to set the period of printing into the file datafile_Ec.son or datafile_Ec_dans_repere_fixe.son.

5.18.7 Thi

Description: Keyword for a THI (Homogeneous Isotropic Turbulence) calculation.

```
Usage:
thi {

    init_Ec int
    [val_Ec float]
    [facon_init int into [0, 1]]
    [calc_spectre int into [0, 1]]
    [periode_calc_spectre float]
    [spectre_3D int into [0, 1]]
    [spectre_1D int into [0, 1]]
    [conservation_Ec]
    [longueur_boite float]
}
where
```

See also: traitement particulier base (5.18.1) thi thermo (5.18.8)

- init_Ec int: Keyword to renormalize initial velocity so that kinetic energy equals to the value given by keyword val_Ec.
- val_Ec *float*: Keyword to impose a value for kinetic energy by velocity renormalizated if init_Ec value is 1.
- facon_init int into [0, 1]: Keyword to specify how kinetic energy is computed (0 or 1).
- calc_spectre int into [0, 1]: Calculate or not the spectrum of kinetic energy.

Files called Sorties_THI are written with inside four columns:

time:t global_kinetic_energy:Ec enstrophy:D skewness:S

If calc spectre is set to 1, a file Sorties THI2 2 is written with three columns:

time:t kinetic_energy_at_kc=32 enstrophy_at_kc=32

If calc_spectre is set to 1, a file spectre_xxxxx is written with two columns at each time xxxxx : frequency:k energy:E(k).

- periode_calc_spectre float: Period for calculating spectrum of kinetic energy
- spectre_3D int into [0, 1]: Calculate or not the 3D spectrum
- spectre_1D int into [0, 1]: Calculate or not the 1D spectrum
- conservation_Ec: If set to 1, velocity field will be changed as to have a constant kinetic energy (default 0)
- longueur_boite float: Length of the calculation domain

5.18.8 Thi_thermo

Description: Treatment for the temperature field.

It offers the possibility to:

- evaluate the probability density function on temperature field,
- give in a file the temperature field for a future spectral analysis,
- monitor the evolution of the max and min temperature on the whole domain.

```
See also: thi (5.18.7)

Usage: thi_thermo {
    init Ec int
```

```
[ val_Ec float]
[ facon_init int into [0, 1]]
[ calc_spectre int into [0, 1]]
[ periode_calc_spectre float]
[ spectre_3D int into [0, 1]]
[ spectre_1D int into [0, 1]]
[ conservation_Ec ]
[ longueur_boite float]
}
where
```

- **init_Ec** *int* for inheritance: Keyword to renormalize initial velocity so that kinetic energy equals to the value given by keyword val_Ec.
- val_Ec *float* for inheritance: Keyword to impose a value for kinetic energy by velocity renormalizated if init_Ec value is 1.
- **facon_init** *int into* [0, 1] for inheritance: Keyword to specify how kinetic energy is computed (0 or 1).
- calc_spectre int into [0, 1] for inheritance: Calculate or not the spectrum of kinetic energy.

Files called Sorties_THI are written with inside four columns:

time:t global_kinetic_energy:Ec enstrophy:D skewness:S

If calc_spectre is set to 1, a file Sorties_THI2_2 is written with three columns :

time:t kinetic energy at kc=32 enstrophy at kc=32

If calc_spectre is set to 1, a file spectre_xxxxx is written with two columns at each time xxxxx : frequency:k energy:E(k).

- periode calc spectre *float* for inheritance: Period for calculating spectrum of kinetic energy
- spectre_3D int into [0, 1] for inheritance: Calculate or not the 3D spectrum
- spectre_1D int into [0, 1] for inheritance: Calculate or not the 1D spectrum
- **conservation_Ec** for inheritance: If set to 1, velocity field will be changed as to have a constant kinetic energy (default 0)
- longueur_boite float for inheritance: Length of the calculation domain

5.18.9 Brech

Description: non documente

See also: traitement_particulier_base (5.18.1)

Usage: **brech bloc** where

• bloc bloc_lecture (3.2)

5.18.10 Ceg

Description: Keyword for a CEG (Gas Entrainment Criteria) calculation. An objective is deepening gas entrainment on the free surface. Numerical analysis can be performed to predict the hydraulic and geometric conditions that can handle gas entrainment from the free surface.

```
See also: traitement_particulier_base (5.18.1)

Usage:
ceg {
```

```
frontiere str
      t_deb float
      [ t_fin float]
      [ dt_post float]
      haspi float
      [ debug int]
      [ areva ceg_areva]
      [cea_jaea ceg_cea_jaea]
}
where
   • frontiere str: To specify the boundaries conditions representing the free surfaces
   • t_deb float: value of the CEG's initial calculation time
   • t_fin float: not_set time during which the CEG's calculation was stopped
   • dt_post float: periode refers to the printing period, this value is expressed in seconds
   • haspi float: The suction height required to calculate AREVA's criterion
   • debug int
   • areva ceg_areva (5.18.11): AREVA's criterion
   • cea_jaea ceg_cea_jaea (5.18.12): CEA_JAEA's criterion
5.18.11 Ceg_areva
Description: not_set
See also: objet_lecture (43)
Usage:
     [ c float]
where
   • c float
5.18.12 Ceg_cea_jaea
Description: not_set
See also: objet_lecture (43)
Usage:
{
      [ normalise int]
      [ nb_mailles_mini int]
      [ min_critere_q_sur_max_critere_q float]
```

• **normalise** *int*: renormalize (1) or not (0) values alpha and gamma

} where

- **nb_mailles_mini** *int*: Sets the minimum number of cells for the detection of a vortex.
- min_critere_q_sur_max_critere_q float: Is an optional keyword used to correct the minimum values of Q's criterion taken into account in the detection of a vortex

5.19 Floatfloat

where

```
Description: Two reals.
See also: objet lecture (43)
Usage:
a b
where
   • a float: First real.
   • b float: Second real.
5.20
       Navier_stokes_turbulent_ale
Description: Resolution of hydraulic turbulent Navier-Stokes eq. on mobile domain (ALE)
Keyword Discretize should have already been used to read the object.
See also: Navier Stokes std ALE (5.23)
Navier_Stokes_Turbulent_ALE str
Read str {
     [ modele_turbulence modele_turbulence_hyd_deriv]
     [ correction_matrice_projection_initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction_matrice_pression int]
     [ correction_vitesse_modifie int]
     [gradient pression qdm modifie int]
     [correction_pression_modifie int]
     [postraiter gradient pression sans masse]
     [solveur_pression solveur_sys_base]
     [dt projection deuxmots]
     [traitement_particulier traitement_particulier]
     [ seuil_divU floatfloat]
     [solveur_bar solveur_sys_base]
     [ projection_initiale int]
     _operateurs', 'sans_rien']]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
     [renommer_equation str]
}
```

- modele_turbulence modele_turbulence_hyd_deriv (5.21): Turbulence model for Navier-Stokes equations.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction vitesse modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur_pression solveur_sys_base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (lmax(DivU)*dtl<value)

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1) = Seuil(tn)*factor

Endit

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.

- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.21 Modele_turbulence_hyd_deriv

where

Description: Basic class for turbulence model for Navier-Stokes equations.

```
See also: objet_lecture (43) mod_turb_hyd_ss_maille (5.21.2) mod_turb_hyd_rans (5.21.18) null (5.21.33)

Usage:
modele_turbulence_hyd_deriv {

    [ turbulence_paroi turbulence_paroi_base]
    [ dt_impr_ustar float]
    [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [ nut_max float]
    [ correction_visco_turb_pour_controle_pas_de_temps ]
    [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
```

- **turbulence_paroi** *turbulence_paroi_base* (40): Keyword to set the wall law.
- **dt_impr_ustar** *float*: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.21.1): This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut max** *float*: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

```
5.21.1 Dt_impr_ustar_mean_only
```

```
Description: not set
See also: objet lecture (43)
Usage:
{
     dt_impr float
     [ boundaries n word1 word2 ... wordn]
where
   • dt impr float
```

• boundaries n word1 word2 ... wordn

5.21.2 Mod turb hyd ss maille

Description: Class for sub-grid turbulence model for Navier-Stokes equations.

```
See also: modele_turbulence_hyd_deriv (5.21) sous_maille_smago (5.21.4) sous_maille_wale (5.21.5)
longueur_melange (5.21.6) sous_maille_selectif_mod (5.21.7) sous_maille_selectif (5.21.10) sous_maille-
_1elt (5.21.11) sous_maille_axi (5.21.13) sous_maille_smago_filtre (5.21.14) sous_maille_smago_dyn (5.21.15)
combinaison (5.21.16) sous_maille (5.21.17)
```

Usage:

```
mod_turb_hyd_ss_maille {
     [formulation a nb points form a nb points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut_max float]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
```

} where

- formulation_a_nb_points form_a_nb_points (5.21.3): The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']: Different ways to calculate the characteristic length may be specified:

volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.

volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.3 Form_a_nb_points

See also: objet_lecture (43)

Description: The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.

```
Usage:
nb dir1 dir2
where
   • nb int into [4]: Number of points.
   • dir1 int: First direction.
   • dir2 int: Second direction.
5.21.4 Sous_maille_smago
Description: Smagorinsky sub-grid turbulence model.
Nut=Cs1*Cs1*l*l*sqrt(2*S*S)
K=Cs2*Cs2*1*1*2*S
See also: mod_turb_hyd_ss_maille (5.21.2)
Usage:
sous_maille_smago {
     [cs float]
     [ formulation_a_nb_points form_a_nb_points]
     [longueur maille str into ['volume', 'volume sans lissage', 'scotti', 'arrete']]
     [turbulence_paroi turbulence_paroi_base]
     [dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
```

```
[ nut_max float]
    [ correction_visco_turb_pour_controle_pas_de_temps ]
    [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **cs** *float*: This is an optional keyword and the value is used to set the constant used in the Smagorinsky model (This is currently only valid for Smagorinsky models and it is set to 0.18 by default).
- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- turbulence_paroi_turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.5 Sous_maille_wale

Description: This is the WALE-model. It is a new sub-grid scale model for eddy-viscosity in LES that has the following properties:

- it goes naturally to 0 at the wall (it doesn't need any information on the wall position or geometry)
- it has the proper wall scaling in o(y3) in the vicinity of the wall
- it reproduces correctly the laminar to turbulent transition.

See also: mod_turb_hyd_ss_maille (5.21.2)

```
Usage:
sous_maille_wale {

    [ cw float ]
    [ formulation_a_nb_points form_a_nb_points ]
    [ longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [ turbulence_paroi turbulence_paroi_base ]
    [ dt_impr_ustar float ]
    [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only ]
    [ nut_max float ]
    [ correction_visco_turb_pour_controle_pas_de_temps ]
    [ correction_visco_turb_pour_controle_pas_de_temps_parametre float ]
}
where
```

- cw float: The unique parameter (constant) of the WALE-model (by default value 0.5).
- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- turbulence_paroi_turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.6 Longueur_melange

Description: This model is based on mixing length modelling. For a non academic configuration, formulation used in the code can be expressed basically as:

```
nu\_t = (Kappa.y)^2.dU/dy
```

Till a maximum distance (dmax) set by the user in the data file, y is set equal to the distance from the wall (dist_w) calculated previously and saved in file Wall_length.xyz. [see Distance_paroi keyword]

Then (from y=dmax), y decreases as an exponential function : y=dmax*exp[-2.*(dist_w-dmax)/dmax]

```
See also: mod_turb_hyd_ss_maille (5.21.2)
```

Usage:

```
longueur_melange {
     [canalx float]
     [tuyauz float]
     [ verif_dparoi str]
     [dmax float]
     [fichier str]
     [fichier_ecriture_K_Eps str]
     [formulation a nb points form a nb points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [turbulence paroi turbulence paroi base]
     [ dt impr ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut_max float]
     [correction_visco_turb_pour_controle_pas_de_temps]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **canalx** *float*: [height]: plane channel according to Ox direction (for the moment, formulation in the code relies on fixed heigh: H=2).
- **tuyauz** *float*: [diameter] : pipe according to Oz direction (for the moment, formulation in the code relies on fixed diameter : D=2).
- verif dparoi str
- dmax float: Maximum distance.
- fichier str
- fichier_ecriture_K_Eps str: When a resume with k-epsilon model is envisaged, this keyword allows to generate external MED-format file with evaluation of k and epsilon quantities (based on eddy turbulent viscosity and turbulent characteristic length returned by mixing length model). The frequency of the MED file print is set equal to dt_impr_ustar. Moreover, k-eps MED field is automatically saved at the last time step. MED file is then used for resuming a K-Epsilon calculation with the Champ_Fonc_Med keyword.
- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes. arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.7 Sous_maille_selectif_mod

Description: Selective structure sub-grid function model (modified).

```
Usage:
sous_maille_selectif_mod {

[thi deuxentiers]
[canal floatentier]
[formulation_a_nb_points form_a_nb_points]
[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
[turbulence_paroi turbulence_paroi_base]
[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[nut_max float]
[correction_visco_turb_pour_controle_pas_de_temps]
[correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **thi** *deuxentiers* (5.21.8): For homogeneous isotropic turbulence (THI), two integers ki and kc are needed in VDF (not in VEF).
- **canal** *floatentier* (5.21.9): h dir_faces_paroi: For a channel flow, the half width h and the orientation of the wall dir_faces_paroi are needed.

- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:

volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.8 Deuxentiers

Description: Two integers.

See also: objet_lecture (43)

Usage: int1 int2 where

• int1 int: First integer.

• int2 int: Second integer.

5.21.9 Floatentier

Description: A real and an integer.

See also: objet_lecture (43)

[longueur maille str into ['volume', 'volume sans lissage', 'scotti', 'arrete']]

[correction visco turb pour controle pas de temps parametre float]

[turbulence_paroi turbulence_paroi_base]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[correction_visco_turb_pour_controle_pas_de_temps]

[dt impr ustar float]

[nut max float]

} where

Usage:

- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- turbulence_paroi_turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.11 Sous_maille_1elt

```
Description: Turbulence model sous_maille_1elt.

See also: mod_turb_hyd_ss_maille (5.21.2) sous_maille_1elt_selectif_mod (5.21.12)

Usage:
sous_maille_1elt {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete'] for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- turbulence paroi turbulence paroi base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will

be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.

- **nut_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.12 Sous_maille_1elt_selectif_mod

Description: Turbulence model sous_maille_1elt_selectif_mod.

```
Usage:
sous_maille_1elt_selectif_mod {

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[turbulence_paroi turbulence_paroi_base]

[dt_impr_ustar float]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[nut_max float]

[correction_visco_turb_pour_controle_pas_de_temps]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

}

where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- turbulence_paroi_turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.

- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.13 Sous_maille_axi

Description: Structure sub-grid function turbulence model available in cylindrical co-ordinates.

```
See also: mod_turb_hyd_ss_maille (5.21.2)

Usage:
sous_maille_axi {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete'] for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
 - volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
 - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
 - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- turbulence paroi turbulence paroi base (40) for inheritance: Keyword to set the wall law.

- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.14 Sous_maille_smago_filtre

Description: Smagorinsky sub-grid turbulence model should be used with low-filter.

```
Usage:
sous_maille_smago_filtre {

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[turbulence_paroi turbulence_paroi_base]

[dt_impr_ustar float]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[nut_max float]

[correction_visco_turb_pour_controle_pas_de_temps]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

}

where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete'] for inheritance: Different ways to calculate the characteristic length may be specified:
 - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.

volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- turbulence paroi turbulence paroi base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.15 Sous maille smago dyn

Description: Dynamic Smagorinsky sub-grid turbulence model (available in VDF discretization only).

```
Usage:
sous_maille_smago_dyn {

[stabilise str into ['6_points', 'moy_euler', 'plans_paralleles']]

[nb_points int]

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[turbulence_paroi turbulence_paroi_base]

[dt_impr_ustar_float]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[nut_max float]

[correction_visco_turb_pour_controle_pas_de_temps]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

}

where
```

- **stabilise** *str into* ['6_points', 'moy_euler', 'plans_paralleles']
- nb points int
- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume'*, *'volume_sans_lissage'*, *'scotti'*, *'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:

volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.16 Combinaison

Description: This keyword specifies a turbulent viscosity model where the turbulent viscosity is user-defined.

```
Usage:

combinaison {

[nb_var n word1 word2 ... wordn]

[fonction str]

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[turbulence_paroi turbulence_paroi_base]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[nut_max float]

[correction_visco_turb_pour_controle_pas_de_temps]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

}

where
```

- **nb_var** *n word1 word2* ... *wordn*: Number and names of variables which will be used in the turbulent viscosity definition (by default 0)
- function str: Fonction for turbulent viscosity. X,Y,Z and variables defined previously can be used.
- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:

volume_sans_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- **turbulence_paroi** *turbulence_paroi_base* (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.17 Sous maille

Description: Structure sub-grid function model.

See also: mod_turb_hyd_ss_maille (5.21.2)

Usage:
sous_maille {

 [formulation_a_nb_points form_a_nb_points]
 [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
 [turbulence_paroi turbulence_paroi_base]
 [dt_impr_ustar_float]
 [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
 [nut max float]

```
[ correction_visco_turb_pour_controle_pas_de_temps ]
    [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **formulation_a_nb_points** *form_a_nb_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur_maille** *str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:

volume_sans_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.18 Mod_turb_hyd_rans

Description: Class for RANS turbulence model for Navier-Stokes equations.

See also: modele_turbulence_hyd_deriv (5.21) mod_turb_hyd_rans_bicephale (5.21.19) k_omega (5.21.21) mod_turb_hyd_rans_komega (5.21.22) K_Epsilon_Realisable (5.21.23) mod_turb_hyd_rans_keps (5.21.24) K_Epsilon_Realisable_Bicephale (5.21.32)

```
Usage: mod_turb_hyd_rans {
    [ eps min float]
```

```
[ eps_max float]
  [ k_min float]
  [ quiet ]
  [ turbulence_paroi turbulence_paroi_base]
  [ dt_impr_ustar float]
  [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
  [ nut_max float]
  [ correction_visco_turb_pour_controle_pas_de_temps ]
  [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- eps_min *float*: Lower limitation of epsilon (default value 1.e-10).
- eps_max float: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float*: Lower limitation of k (default value 1.e-10).
- quiet: To disable printing of information about k and epsilon.
- **turbulence_paroi** *turbulence_paroi_base* (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.19 Mod turb hyd rans bicephale

Description: Class for RANS turbulence model for Navier-Stokes equations.

See also: mod_turb_hyd_rans (5.21.18) K_Epsilon_Bicephale (5.21.20) Usage:

mod_turb_hyd_rans_bicephale { [eps_min float]

```
[ eps_min float]
[ eps_max float]
[ prandtl_k float]
[ prandtl_eps float]
[ k_min float]
[ quiet ]
```

```
[ turbulence_paroi turbulence_paroi_base]
    [ dt_impr_ustar float]
    [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [ nut_max float]
    [ correction_visco_turb_pour_controle_pas_de_temps ]
    [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- eps_min *float*: Lower limitation of epsilon (default value 1.e-10).
- eps_max float: Upper limitation of epsilon (default value 1.e+10).
- **prandtl_k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float*: Keyword to change the Pre value (default 1.3)
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.20 K_epsilon_bicephale

Description: Turbulence model (k-eps) en formalisation bicephale.

```
See also: mod_turb_hyd_rans_bicephale (5.21.19)

Usage:

K_Epsilon_Bicephale {

    transport_k str
    transport_epsilon str
    [ modele_fonc_bas_reynolds modele_fonc_realisable_base]
    [ cmu float]
    [ eps_min float]
    [ eps_max float]
    [ prandtl k float]
```

```
[ prandtl_eps float]
  [ k_min float]
  [ quiet ]
  [ turbulence_paroi turbulence_paroi_base]
  [ dt_impr_ustar float]
  [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
  [ nut_max float]
  [ correction_visco_turb_pour_controle_pas_de_temps ]
  [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- transport_k str: Keyword to define the realisable (k) transportation equation.
- **transport_epsilon** *str*: Keyword to define the realisable (eps) transportation equation.
- modele_fonc_bas_reynolds modele_fonc_realisable_base (13.1): This keyword is used to set the model used
- cmu float: Keyword to modify the Cmu constant of k-eps model: Nut=Cmu*k*k/eps Default value is 0.09
- eps_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **prandtl k** *float* for inheritance: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float* for inheritance: Keyword to change the Pre value (default 1.3)
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.21 K_omega

```
Description: Turbulence model (k-omega).

See also: mod_turb_hyd_rans (5.21.18)

Usage:
```

```
k_omega {
    transport_k_omega transport_k_omega
    [model_variant str]
    [eps_min float]
    [eps_max float]
    [k_min float]
    [quiet ]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **transport_k_omega** *transport_k_omega* (5.63): Keyword to define the (k-omega) transportation equation.
- model_variant str: Model variant for k-omega (default value STD)
- eps_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence paroi turbulence paroi base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.22 Mod_turb_hyd_rans_komega

Description: Class for RANS turbulence model for Navier-Stokes equations.

```
See also: mod_turb_hyd_rans (5.21.18)
Usage:
mod_turb_hyd_rans_komega {
```

```
[ omega_min float]
[ omega_max float]
[ eps_min float]
[ eps_max float]
[ k_min float]
[ quiet ]
[ turbulence_paroi turbulence_paroi_base]
[ dt_impr_ustar float]
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[ nut_max float]
[ correction_visco_turb_pour_controle_pas_de_temps ]
[ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- omega min *float*: Lower limitation of omega (default value 1.e-20).
- omega_max float: Upper limitation of omega (default value 1.e+10).
- eps_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- k min *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.23 K_epsilon_realisable

```
Description: Realizable K-Epsilon Turbulence Model.

See also: mod_turb_hyd_rans (5.21.18)

Usage:
K_Epsilon_Realisable {
    transport k epsilon realisable str
```

```
modele_fonc_realisable modele_fonc_realisable_base
prandtl_k float
prandtl_eps float
[eps_min float]
[eps_max float]
[k_min float]
[quiet ]
[turbulence_paroi turbulence_paroi_base]
[dt_impr_ustar float]
[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[nut_max float]
[correction_visco_turb_pour_controle_pas_de_temps ]
[correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- **transport_k_epsilon_realisable** *str*: Keyword to define the realisable (k-eps) transportation equation.
- modele_fonc_realisable modele_fonc_realisable_base (13.1): This keyword is used to set the model used
- **prandtl_k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float*: Keyword to change the Pre value (default 1.3)
- eps_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt_impr_ustar_mean_only dt_impr_ustar_mean_only (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.24 Mod_turb_hyd_rans_keps

Description: Class for RANS turbulence model for Navier-Stokes equations.

```
See also: mod turb hyd rans (5.21.18) k epsilon (5.21.25)
```

```
Usage:
mod_turb_hyd_rans_keps {

    [eps_min float]
    [eps_max float]
    [k_min float]
    [quiet ]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
    [correction_visco_turb_pour_controle_pas_de_temps ]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- eps_min *float*: Lower limitation of epsilon (default value 1.e-10).
- eps_max *float*: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence paroi turbulence paroi base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- **nut_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.25 **K_epsilon**

```
Description: Turbulence model (k-eps).

See also: mod_turb_hyd_rans_keps (5.21.24)

Usage:
k_epsilon {

    transport_k_epsilon
    [modele fonc bas revnolds modele fonction bas revnolds base]
```

```
[ cmu float]
  [ prandtl_k float]
  [ prandtl_eps float]
  [ eps_min float]
  [ eps_max float]
  [ k_min float]
  [ quiet ]
  [ turbulence_paroi turbulence_paroi_base]
  [ dt_impr_ustar float]
  [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
  [ nut_max float]
  [ correction_visco_turb_pour_controle_pas_de_temps ]
  [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

• **transport_k_epsilon** *transport_k_epsilon* (5.62): Keyword to define the (k-eps) transportation equation.

- modele_fonc_bas_reynolds modele_fonction_bas_reynolds_base (5.21.26): This keyword is used to set the bas Reynolds model used.
- **cmu** *float*: Keyword to modify the Cmu constant of k-eps model : Nut=Cmu*k*k/eps Default value is 0.09
- **prandtl_k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float*: Keyword to change the Pre value (default 1.3).
- eps_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence_paroi_turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- dt_impr_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut max *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.26 Modele_fonction_bas_reynolds_base

Description: not_set

```
See also: objet_lecture (43) Jones_Launder (5.21.27) Launder_Sharma (5.21.28) Lam_Bremhorst (5.21.29)
```

Usage:

5.21.27 Jones_launder

Description: Model described in 'Jones, W. P. and Launder, B. E. (1972), The prediction of laminarization with a two-equation model of turbulence, Int. J. of Heat and Mass transfer, Vol. 15, pp. 301-314.'

```
See also: modele_fonction_bas_reynolds_base (5.21.26)
```

Usage:

5.21.28 Launder_sharma

Description: Model described in 'Launder, B. E. and Sharma, B. I. (1974), Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-138.'

```
See also: modele_fonction_bas_reynolds_base (5.21.26)
```

Usage:

5.21.29 Lam bremhorst

Description: Model described in 'C.K.G.Lam and K.Bremhorst, A modified form of the k- epsilon model for predicting wall turbulence, ASME J. Fluids Engng., Vol.103, p456, (1981)'. Only in VEF.

```
See also: modele_fonction_bas_reynolds_base (5.21.26) standard_KEps (5.21.30) EASM_Baglietto (5.21.31)
```

Usage:

```
Lam_Bremhorst {
      [fichier_distance_paroi str]
      [reynolds_stress_isotrope int]
}
where
```

- fichier_distance_paroi str: refer to distance_paroi keyword
- reynolds_stress_isotrope int: keyword for isotropic Reynolds stress

5.21.30 Standard keps

Description: Model described in 'E. Baglietto, CFD and DNS methodologies development for fuel bundle simulaions, Nuclear Engineering and Design, 1503–1510 (236), 2006. '

```
See also: Lam_Bremhorst (5.21.29)

Usage: standard_KEps {
    [fichier_distance_paroi str]
    [reynolds_stress_isotrope int]
```

```
}
where
```

- fichier_distance_paroi str for inheritance: refer to distance_paroi keyword
- reynolds stress isotrope int for inheritance: keyword for isotropic Reynolds stress

5.21.31 Easm_baglietto

Description: Model described in 'E. Baglietto and H. Ninokata, A turbulence model study for simulating flow inside tight lattice rod bundles, Nuclear Engineering and Design, 773–784 (235), 2005. '

```
See also: Lam_Bremhorst (5.21.29)

Usage:
EASM_Baglietto {
    [fichier_distance_paroi str]
    [reynolds_stress_isotrope int]
}
where
```

- fichier_distance_paroi str for inheritance: refer to distance_paroi keyword
- reynolds_stress_isotrope int for inheritance: keyword for isotropic Reynolds stress

5.21.32 K epsilon realisable bicephale

Description: Realizable Two-headed K-Epsilon Turbulence Model

```
See also: mod_turb_hyd_rans (5.21.18)
```

Usage:

} where

K_Epsilon_Realisable_Bicephale {

```
transport_k str
transport_epsilon str
modele_fonc_realisable modele_fonc_realisable_base
prandtl_k float
prandtl_eps float
[eps_min float]
[eps_max float]
[k_min float]
[quiet ]
[turbulence_paroi turbulence_paroi_base]
[dt_impr_ustar float]
[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[nut_max float]
[correction_visco_turb_pour_controle_pas_de_temps_parametre float]
```

- **transport_k** *str*: Keyword to define the realisable (k) transportation equation.
- **transport_epsilon** *str*: Keyword to define the realisable (eps) transportation equation.

- modele_fonc_realisable modele_fonc_realisable_base (13.1): This keyword is used to set the model used
- **prandtl_k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl_eps** *float*: Keyword to change the Pre value (default 1.3)
- eps_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- turbulence_paroi turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.21.33 Null

See also: modele turbulence hyd deriv (5.21)

Description: Null turbulence model (turbulent viscosity = 0) which can be used with a turbulent problem.

```
Usage:
null {

    [ turbulence_paroi turbulence_paroi_base]
    [ dt_impr_ustar float]
    [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [ nut_max float]
    [ correction_visco_turb_pour_controle_pas_de_temps ]
    [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
}
where
```

- turbulence_paroi_turbulence_paroi_base (40) for inheritance: Keyword to set the wall law.
- **dt_impr_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u*) obtained with the wall laws into a file named datafile_ProblemName_Ustar.face and periode refers to the printing period, this value is expressed in seconds.

- **dt_impr_ustar_mean_only** *dt_impr_ustar_mean_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u* (obtained with the wall laws) on each boundary, into a file named datafile_ProblemName_Ustar_mean_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb_boundaries which is the number of boundaries on which you want to calculate the mean values of u*, then you have to specify their names.
- nut_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).
- correction_visco_turb_pour_controle_pas_de_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr_visco_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction_visco_turb_pour_controle_pas_de_temps_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

5.22 Navier_stokes_standard_sensibility

Description: Resolution of Navier-Stokes sensitivity problem

Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.51)

Usage:

```
Navier_Stokes_standard_sensibility str
Read str {
```

```
state bloc_lecture
uncertain variable bloc lecture
[ polynomial_chaos float]
[ correction_matrice_projection_initiale int]
[ correction_calcul_pression_initiale int]
[ correction_vitesse_projection_initiale int]
[correction_matrice_pression int]
[correction vitesse modifie int]
[ gradient_pression_qdm_modifie int]
[ correction_pression_modifie int]
[ postraiter_gradient_pression_sans_masse ]
[solveur_pression solveur_sys_base]
[ dt_projection deuxmots]
[traitement particulier traitement particulier]
[ seuil_divU floatfloat]
[solveur bar solveur sys base]
[ projection_initiale int]
operateurs', 'sans rien']
[ disable_equation_residual str]
[convection bloc_convection]
[ diffusion bloc_diffusion]
[boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
```

```
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
[ renommer_equation str]
}
where
```

- **state** *bloc_lecture* (3.2): Block to indicate the state problem. Between the braces, you must specify the key word 'pb_champ_evaluateur' then the name of the state problem and the velocity unknown Example: state { pb_champ_evaluateur pb_state velocity }
- uncertain_variable bloc_lecture (3.2): Block to indicate the name of the uncertain variable. Between the braces, you must specify the name of the unknown variable. Choice between velocity and
 - Example: uncertain_variable { velocity }
- **polynomial_chaos** *float*: It is the method that we will use to study the sensitivity of the Navier Stokes equation:
 - if poly_chaos=0, the sensitivity will be treated by the standard sentivity method. If different than 0, it will be treated by the polynomial chaos method
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur pression solveur sys base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( lmax(DivU)*dtl<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

• **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).

- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.23 Navier_stokes_std_ale

```
Description: Resolution of hydraulic Navier-Stokes eq. on mobile domain (ALE)
```

```
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.51) Navier_Stokes_Turbulent_ALE (5.20)
```

```
Usage:
```

```
Navier_Stokes_std_ALE str
Read str {
```

```
[ correction_matrice_projection_initiale int]
[ correction_calcul_pression_initiale int]
[ correction_vitesse_projection_initiale int]
[ correction_matrice_pression int]
[ correction_vitesse_modifie int]
[ gradient_pression_qdm_modifie int]
[ correction_pression_modifie int]
[ postraiter_gradient_pression_sans_masse ]
[ solveur_pression solveur_sys_base]
[ dt_projection deuxmots]
[ traitement_particulier traitement_particulier]
```

```
[ seuil_divU floatfloat]
     [solveur_bar solveur_sys_base]
     [ projection initiale int]
     [ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
     _operateurs', 'sans_rien']]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer_equation str]
}
where
```

- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur pression solveur sys base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( lmax(DivU)*dtl<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

• **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).

- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.24 Qdm_multiphase

Description: Momentum conservation equation for a multi-phase problem where the unknown is the velocity

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
```

```
QDM_Multiphase str Read str {
```

```
[ solveur_pression solveur_sys_base]
[ evanescence bloc_lecture]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation_base]
```

```
[ equation_non_resolue str]
  [ renommer_equation str]
}
where
```

- solveur_pression solveur_sys_base (13.18): Linear pressure system resolution method.
- evanescence bloc_lecture (3.2): Management of the vanishing phase (when alpha tends to 0 or 1)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.25 Taux dissipation turbulent

Description: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
```

where

```
Taux_dissipation_turbulent str
Read str {
```

```
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
[ renommer_equation str]
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.26 Transport_k_eps_realisable

Description: Realizable K-Epsilon Turbulence Model Transport Equations for K and Epsilon.

```
Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)
```

```
Usage:
```

```
Transport_K_Eps_Realisable str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.

- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation non resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.27 Convection_diffusion_chaleur_qc

Description: Temperature equation for a quasi-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: eqn base (5.43) convection diffusion chaleur turbulent qc (5.29)
```

```
Usage:
convection_diffusion_chaleur_QC str
Read str {
     [ mode calcul convection str into ['ancien', 'divuT moins Tdivu', 'divrhouT moins Tdivrhou']]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer_equation str]
}
where
```

- mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']: Option to set the form of the convective operator divrhouT_moins_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T) - Tdiv(rho.u.1) ancien: u.gradT = div(u.T) - T.div(u)divuT moins Tdivu : u.gradT = div(u.T) - <math>Tdiv(u.1)
- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)

- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier Sokes Standard
{ equation non resolue (t>t0)*(t<t1) }
```

5.28 Convection_diffusion_chaleur_wc

Description: Temperature equation for a weakly-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
convection diffusion chaleur WC str
Read str {
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer equation str]
where
```

- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.29 Convection_diffusion_chaleur_turbulent_qc

} where

Description: Temperature equation for a quasi-compressible fluid as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_chaleur_QC (5.27) Usage: convection diffusion chaleur turbulent qc str Read str { [modele_turbulence modele_turbulence_scal_base] [mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']] [disable_equation_residual str] [convection bloc_convection] [**diffusion** bloc_diffusion] [boundary conditions|conditions limites condlims] [initial_conditions|conditions_initiales condinits] [sources sources] [ecrire_fichier_xyz_valeur | ecrire_fichier_xyz_valeur] [parametre_equation parametre_equation_base] [equation_non_resolue str] [renommer equation str]

- **modele_turbulence** *modele_turbulence_scal_base* (27): Turbulence model for the temperature (energy) conservation equation.
- mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou'] for inheritance: Option to set the form of the convective operator divrhouT_moins_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T) Tdiv(rho.u.1) ancien: u.gradT = div(u.T) T.div(u) divuT_moins_Tdivu: u.gradT = div(u.T) Tdiv(u.1)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.30 Convection_diffusion_concentration

Description: Constituent transport vectorial equation (concentration diffusion convection).

Keyword Discretize should have already been used to read the object.

See also: eqn_base (5.43) convection_diffusion_concentration_turbulent (5.32) convection_diffusion_concentration_ft_disc (5.31) convection_diffusion_phase_field (5.38)

Usage:

```
convection_diffusion_concentration str

Read str {

    [nom_inconnue str]
    [alias str]
    [masse_molaire float]
    [disable_equation_residual str]
    [convection bloc_convection]
    [diffusion bloc_diffusion]
    [boundary_conditions|conditions_limites condlims]
    [initial_conditions|conditions_initiales condinits]
    [sources sources]
    [ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [parametre_equation parametre_equation_base]
    [equation_non_resolue str]
    [renommer_equation str]
```

- **nom_inconnue** *str*: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str

where

- masse molaire float
- disable_equation_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation

• equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.31 Convection_diffusion_concentration_ft_disc

```
Description: not set
Keyword Discretize should have already been used to read the object.
See also: convection_diffusion_concentration (5.30)
convection diffusion concentration ft disc str
Read str {
     [ equation_interface str]
     phase int into [0, 1]
     [ option str]
     [ nom_inconnue str]
     [alias str]
     [ masse molaire float]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [ renommer_equation str]
}
where
```

- **equation_interface** *str*: his is the name of the interface tracking equation to watch. The scalar will not diffuse through the interface of this equation.
- phase int into [0, 1]: tells whether the scalar must be confined in phase 0 or in phase 1
- **option** *str*: Experimental features used to prevent the concentration to leak through the interface between phases due to numerical diffusion.

RIEN: do nothing

RAMASSE_MIETTES_SIMPLE: at each timestep, this algorithm takes all the mass located in the opposite phase and spreads it uniformly in the given phase.

- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str for inheritance
- masse_molaire float for inheritance
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step

- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary conditions limites** conditions (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire fichier xyz valeur ecrire fichier xyz valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre equation parametre equation base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

5.32 Convection_diffusion_concentration_turbulent

Description: Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object.

See also: convection_diffusion_concentration (5.30) Convection_Diffusion_Concentration_Turbulent_FT-_Disc (5.7)

Usage:

}

```
convection_diffusion_concentration_turbulent str
Read str {
```

```
[ modele_turbulence modele_turbulence_scal_base]
     [ nom_inconnue str]
     [alias str]
     [ masse_molaire float]
     [ disable equation residual str]
     [ convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [ sources sources]
     [ecrire fichier xyz valeur ecrire fichier xyz valeur]
     [parametre_equation parametre_equation_base]
     [ equation non resolue str]
     [renommer_equation str]
where
```

- modele_turbulence modele_turbulence_scal_base (27): Turbulence model to be used in the constituent transport equations. The only model currently available is Schmidt.
- nom_inconnue str for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with

this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).

- alias str for inheritance
- masse_molaire float for inheritance
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

convection diffusion espece binaire QC str

• renommer equation str for inheritance: Rename the equation with a specific name.

5.33 Convection_diffusion_espece_binaire_qc

Description: Species conservation equation for a binary quasi-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.43) Convection_Diffusion_Espece_Binaire_Turbulent_QC (5.8)
```

Usage:

}

```
Read str {

[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
```

```
where
```

[renommer_equation str]

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.

- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.34 Convection_diffusion_espece_binaire_wc

Description: Species conservation equation for a binary weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.43)
```

```
Usage:
```

```
convection_diffusion_espece_binaire_WC str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file

- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.35 Convection_diffusion_espece_multi_qc

Description: Species conservation equation for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
```

```
convection_diffusion_espece_multi_QC str
Read str {
      [ espece espece]
      [ disable_equation_residual str]
      [ convection bloc_convection]
      [ diffusion bloc_diffusion]
      [ boundary_conditions|conditions_limites condlims]
      [ initial_conditions|conditions_initiales condinits]
      [ sources sources]
      [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
      [ parametre_equation parametre_equation_base]
      [ equation_non_resolue str]
      [ renommer_equation str]
}
where
```

- **espece** *espece* (3.55): Assosciate a species (with its properties) to the equation
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.36 Convection_diffusion_espece_multi_wc

Description: Species conservation equation for a multi-species weakly-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
```

```
convection_diffusion_espece_multi_WC str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.37 Convection_diffusion_espece_multi_turbulent_qc

Description: not set

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.43)
Usage:
convection_diffusion_espece_multi_turbulent_qc str
Read str {
     [ modele turbulence modele turbulence scal base]
     espece espece
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur | ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer equation str]
}
where
```

- modele_turbulence modele_turbulence_scal_base (27): Turbulence model to be used.
- **espece** *espece* (3.55)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

5.38 Convection_diffusion_phase_field

Description: Cahn-Hilliard equation of the Phase Field problem. The unknown of this equation is the concentration C.

Keyword Discretize should have already been used to read the object. See also: convection_diffusion_concentration (5.30)

Usage:

```
convection_diffusion_phase_field str
Read str {
     [ mu 1 float]
     [ mu_2 float]
     [ rho_1 float]
     [ rho 2 float]
     potentiel chimique generalise str into ['avec energie cinetique', 'sans energie cinetique']
     [ nom inconnue str]
     [alias str]
     [ masse_molaire float]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
     [ renommer_equation str]
}
where
```

- mu 1 *float*: Dynamic viscosity of the first phase.
- mu 2 *float*: Dynamic viscosity of the second phase.
- **rho_1** *float*: Density of the first phase.
- **rho_2** *float*: Density of the second phase.
- potentiel_chimique_generalise str into ['avec_energie_cinetique', 'sans_energie_cinetique']: To define (chaine set to avec_energie_cinetique) or not (chaine set to sans_energie_cinetique) if the Cahn-Hilliard equation contains the cinetic energy term.
- **nom_inconnue** *str* for inheritance: Keyword Nom_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str for inheritance
- masse molaire float for inheritance
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions londitions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
  { equation_non_resolue (t>t0)*(t<t1) }
• renommer equation str for inheritance: Rename the equation with a specific name.
```

5.39 Convection_diffusion_temperature

Description: Energy equation (temperature diffusion convection).

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43) convection_diffusion_temperature_ft_disc (5.40) Convection_Diffusion_Temperature-_sensibility (5.9)

```
Usage:
convection_diffusion_temperature str
Read str {
     [ penalisation_l2_ftd pp]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
     [ renommer_equation str]
}
where
```

- penalisation 12 ftd pp (5.10): to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation non resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.40 Convection_diffusion_temperature_ft_disc

```
Description: not set
Keyword Discretize should have already been used to read the object.
See also: convection_diffusion_temperature (5.39)
Usage:
convection diffusion temperature ft disc str
Read str {
     [ equation interface str]
     phase int into [0, 1]
     [ equation navier stokes str]
     [ stencil_width int]
     [ maintien_temperature objet_lecture_maintien_temperature]
     [ prescribed_mpoint float]
     [correction_mpoint_diff_conv_energy n x1 x2 ... xn]
     [ penalisation_l2_ftd pp]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur]
     [ parametre equation parametre equation base]
     [ equation non resolue str]
     [renommer_equation str]
}
```

where

- equation_interface *str*: The name of the interface equation should be given.
- phase int into [0, 1]: Phase in which the temperature equation will be solved. The temperature, which may be postprocessed with the keyword temperature_EquationName, in the orther phase may be negative: the code only computes the temperature field in the specified phase. The other phase is supposed to physically stay at saturation temperature. The code uses a ghost fluid numerical method to work on a smooth temperature field at the interface. In the opposite phase (1-X) the temperature will therefore be extrapolated in the vicinity of the interface and have the opposite sign, saturation temperature is zero by convention).
- equation_navier_stokes str: The name of the Navier Stokes equation of the problem should be given.
- **stencil_width** *int*: distance in mesh elements over which the temperature field should be extrapolated in the opposite phase.
- maintien_temperature objet_lecture_maintien_temperature (5.41): maintien_temperature SOUS_ZONE_NAME VALUE: experimental, this acts as a dynamic source term that heats or cools the fluid to maintain the average temperature to VALUE within the specified region. At this time, this is done by multiplying the temperature within the SOUS_ZONE by an appropriate uniform value at each timestep. This feature might be implemented in a separate source term in the future.
- **prescribed_mpoint** *float*: User defined value of the phase-change rate (override the value computed based on the temperature field)
- correction_mpoint_diff_conv_energy n x1 x2 ... xn
- penalisation_l2_ftd pp (5.10) for inheritance: to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.41 Objet lecture maintien temperature

```
Description: not_set

See also: objet_lecture (43)

Usage:
sous_zone temperature_moyenne
where

• sous_zone str
• temperature_moyenne float
```

[sources sources]

5.42 Convection_diffusion_temperature_turbulent

Description: Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

Usage:
convection_diffusion_temperature_turbulent str

Read str {

[ modele_turbulence modele_turbulence_scal_base]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
```

[ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]

```
[ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- modele_turbulence modele_turbulence_scal_base (27): Turbulence model for the energy equation.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.43 Eqn_base

Description: Basic class for equations.

Keyword Discretize should have already been used to read the object.

See also: mor_eqn (5) Conduction (5.1) Energie_Multiphase (5.12) Energie_Multiphase_h (5.13) Masse_Multiphase (5.16) QDM_Multiphase (5.24) Echelle_temporelle_turbulente (5.11) Energie_cinetique_turbulente (5.14) Energie_cinetique_turbulente_WIT (5.15) Taux_dissipation_turbulent (5.25) convection_diffusion-espece_multi_turbulent_qc (5.37) navier_stokes_standard (5.51) convection_diffusion_concentration (5.30) convection_diffusion_chaleur_QC (5.27) convection_diffusion_temperature_turbulent (5.42) convection_diffusion_espece_binaire_QC (5.33) convection_diffusion_chaleur_WC (5.28) convection_diffusion_espece_multi-QC (5.35) convection_diffusion_espece_binaire_WC (5.34) convection_diffusion_espece_multi-WC (5.36) convection_diffusion_temperature (5.39) transport_k_epsilon (5.62) transport_k (5.61) transport_epsilon (5.54) transport_interfaces_ft_disc (5.55) transport_marqueur_ft (5.64) transport_k_omega (5.63) Transport_K_Eps_Realisable (5.26)

```
Usage:
eqn_base str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
```

```
[ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str*: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2): Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3): Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** condlims (4.35.1): Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4): Initial conditions.
- **sources** *sources* (5.5): To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53): This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6): Keyword used to specify additional parameters for the equation
- equation_non_resolue *str*: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str: Rename the equation with a specific name.

5.44 Navier_stokes_qc

Description: Navier-Stokes equation for a quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.51)

```
Usage:
navier_stokes_QC str
Read str {
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [ correction_vitesse_modifie int]
     [gradient pression qdm modifie int]
     [correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ solveur_pression solveur_sys_base]
     [ dt projection deuxmots]
     [traitement_particulier traitement_particulier]
     [ seuil_divU floatfloat]
     [solveur_bar solveur_sys_base]
```

```
[ projection_initiale int]
[ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien']]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
[ renommer_equation str]
}
where
```

- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient pression qdm modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur_pression solveur_sys_base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( lmax(DivU)*dtl<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.

- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.45 Navier_stokes_wc

Description: Navier-Stokes equation for a weakly-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: navier_stokes_standard (5.51)

```
Usage:
navier_stokes_WC str

Read str {

[ mass_source mass_source]
[ correction_matrice_projection_initiale int]
[ correction_calcul_pression_initiale int]
[ correction_vitesse_projection_initiale int]
[ correction_matrice_pression int]
[ correction_vitesse_modifie int]
[ gradient_pression_qdm_modifie int]
[ correction_pression_modifie int]
[ correction_pression_modifie int]
[ postraiter_gradient_pression_sans_masse ]
[ solveur_pression solveur_sys_base]
[ dt_projection deuxmots]
[ traitement_particulier traitement_particulier]
```

[seuil_divU floatfloat]

```
[solveur_bar solveur_sys_base]
     [ projection_initiale int]
     methode calcul pression initiale str into ['avec les cl', 'avec sources', 'avec sources et-
     _operateurs', 'sans_rien']
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer_equation str]
}
where
```

- mass_source mass_source (3.86): Mass source used in a dilatable simulation to add/reduce a mass at the boundary (volumetric source in the first cell of a given boundary).
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur pression solveur sys base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

• **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).

- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.46 Navier_stokes_ft_disc

```
Description: Two-phase momentum balance equation.
```

Keyword Discretize should have already been used to read the object.

```
See also: navier_stokes_turbulent (5.52)
```

```
Usage:
```

```
navier_stokes_ft_disc str
Read str {
```

```
[ equation_interfaces_proprietes_fluide str]
[ equation_interfaces_vitesse_imposee str]
[ equations_interfaces_vitesse_imposee n word1 word2 ... wordn]
[ clipping_courbure_interface int]
[ terme_gravite str into ['rho_g', 'grad_i']]
[ equation_temperature_mpoint str]
[ matrice_pression_invariante ]
[ penalisation_forcage penalisation_forcage]
[ equation_temperature_mpoint_vapeur str]
[ mpoint_inactif_sur_qdm ]
[ mpoint_vapeur_inactif_sur_qdm ]
```

```
[ new_mass_source ]
     [interpol_indic_pour_dI_dt str into ['interp_ai_based', 'interp_standard', 'interp_modifiee']]
     [ OutletCorrection pour dI dt str into ['CORRECTION GHOST INDIC']]
     [boussinesq_approximation]
     [ modele turbulence modele turbulence hyd deriv]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction vitesse projection initiale int]
     [correction matrice pression int]
     [correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ solveur_pression solveur_sys_base]
     [dt projection deuxmots]
     [traitement_particulier traitement_particulier]
     [ seuil_divU floatfloat]
     [solveur_bar solveur_sys_base]
     [ projection_initiale int]
     methode calcul pression initiale str into ['avec les cl', 'avec sources', 'avec sources et-
     _operateurs', 'sans_rien']]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
     [renommer_equation str]
}
where
```

- equation_interfaces_proprietes_fluide str: This keyword is used for liquid-gas, liquid-vapor and fluid-fluid deformable interface, which transported at the Eulerian velocity. When this case is selected, the keyword sequence Methode_transport vitesse_interpolee is used in the block Transport_Interfaces_FT_Disc to define the velocity field for the displacement of the interface.
- equation_interfaces_vitesse_imposee str: This keyword is used to specify the velocity field to be used when using an interface that mimics a solid interface moving with a given solid speed of displacement. When this case is selected, the keyword sequence Methode_transport vitesse_imposee in the Transport_Interfaces_FT_Disc block will define the velocity field for the displacement of the interface.
- equations_interfaces_vitesse_imposee n word1 word2 ... wordn: This keyword is used to specify the velocity field to be used when using an interface that mimics a solid interface moving with a given solid speed of displacement. When this case is selected, the keyword sequence Methode_transport vitesse_imposee in the Transport_Interfaces_FT_Disc block will define the velocity field for the displacement of the interface. If two or more solid interfaces are defined, then the keyword equations interfaces vitesse imposee should be used.
- **clipping_courbure_interface** *int*: This keyword is used to numerically limit the values of curvature used in the momentum balance equation. Curvature is computed as usual, but values exceeding the clipping value are replaced by this threshold, before using the clipped curvature in the momentum balance. Each time a curvature value is clipped, a counter is increased by one unity and the value of the counter is written in the .err file at the end of the time step. This clipping allows not reducing

- drastically the time stepping when a geometrical singularity occurs in the interface mesh. However, physical phenomena may be concealed with the use of such a clipping.
- **terme_gravite** *str into ['rho_g', 'grad_i']*: The Terme_gravite keyword changes the numerical scheme used for the gravity source term. The default is grad_i, which is designed to remove spurious currents around the interface. In this case, the pressure field does not contain the hydrostatic part but only a jump across the interface. This scheme seems not to work very well in vef. The rho_g option uses the more traditional source term, equal to rho*g in the volume. In this case, the hydrostatic pressure is visible in the pressure field and the boundary conditions in pressure must be set accordingly. This model produces spurious currents in the vicinity of the fluid-fluid interfaces and with the immersed boundary conditions.
- equation_temperature_mpoint str: The equation_temperature_mpoint should be used in the case of liquid-vapor flow with phase-change (see the TRUST_ROOT/doc/TRUST/ft_chgt_phase.pdf written in French for more information about the model). The name of the temperature equation, defined with the convection_diffusion_temperature_ft_disc keyword, should be given.
- matrice_pression_invariante: This keyword is a shortcut to be used only when the flow is a single-phase one, with interface tracking only used for solid-fluid interfaces. In this peculiar case, the density of the fluid does not evolve during the computation and the pressure matrix does not need to be actuated at each time step.
- penalisation_forcage penalisation_forcage (5.47): This keyword is used to specify a strong formulation (value set to 0) or a weak formulation (value set to 1) for an imposed pressure boundary condition. The first formulation converges quicker and is stable in general cases except some rare cases (see Ecoulement_Neumann test case for example) where the second one should be used despite of its slow convergence.
- equation_temperature_mpoint_vapeur str
- mpoint inactif sur qdm
- mpoint vapeur inactif sur qdm
- new_mass_source : Flag for localised computation of velocity jump based on interfacial area AI (advanced option)
- interpol_indic_pour_dI_dt str into ['interp_ai_based', 'interp_standard', 'interp_modifiee']: Specific interpolation of phase indicator function in VoF mass-preserving method (advanced option)
- OutletCorrection_pour_dI_dt str into ['CORRECTION_GHOST_INDIC']
- boussinesq approximation
- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.21) for inheritance: Turbulence model for Navier-Stokes equations.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur_pression solveur_sys_base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- **seuil_divU** *floatfloat* (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step

('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn , the linear system Ax=B is considered as solved if the residual $\|Ax-B\|$ <seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( lmax(DivU)*dtl<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs',
 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist
 time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f
 integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f
 is solved as with the previous option avec_sources but f integrating also some operators of the NavierStokes equations). The two last options are useful and sometime necessary when source terms are
 implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer equation str for inheritance: Rename the equation with a specific name.

5.47 Penalisation forcage

```
Description: penalisation_forcage

See also: objet_lecture (43)

Usage:
{
```

```
[ pression_reference float]
     [ domaine_flottant_fluide x1 x2 (x3)]
where
   • pression reference float
   • domaine_flottant_fluide x1 x2 (x3)
5.48 Navier_stokes_phase_field
Description: Navier Stokes equation for the Phase Field problem.
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.51)
Usage:
navier_stokes_phase_field str
Read str {
     approximation_de_boussinesq approx_boussinesq
     [ viscosite_dynamique_constante visco_dyn_cons]
     [ gravite n \times 1 \times 2 \dots \times n]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [ correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction pression modifie int]
     [postraiter gradient pression sans masse]
     [solveur_pression solveur_sys_base]
     [dt_projection deuxmots]
     [traitement_particulier traitement_particulier]
     [ seuil_divU floatfloat]
     [solveur_bar solveur_sys_base]
     [ projection_initiale int]
     _operateurs', 'sans_rien']]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
     [renommer_equation str]
}
where
```

• approximation_de_boussinesq approx_boussinesq (5.49): To use or not the Boussinesq approximation.

- viscosite_dynamique_constante visco_dyn_cons (5.50): To use or not a viscosity which will depends on concentration C (in fact, C is the unknown of Cahn-Hilliard equation).
- gravite n x1 x2 ... xn: Keyword to define gravity in the case Boussinesq approximation is not used.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur_pression solveur_sys_base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (|max(DivU)*dt|<value)

Seuil(tn+1) = Seuil(tn)*factor

Else

Seuil(tn+1) = Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- solveur_bar solveur_sys_base (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.

- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.49 Approx_boussinesq

See also: objet_lecture (43)

5.49.2 Bloc_rho_fonc_c

Description: if rho has a general form

Description: different mass density formulation are available depending if the Boussinesq approximation is made or not

```
Usage:
yes_or_no bloc_bouss
where
   • yes_or_no str into ['oui', 'non']: To use or not the Boussinesq approximation.
   • bloc_bouss bloc_boussinesq (5.49.1): to choose the rho formulation
5.49.1 Bloc_boussinesq
Description: choice of rho formulation
See also: objet_lecture (43)
Usage:
     [ probleme str]
     [ rho_1 float]
     [ rho 2 float]
     [ rho_fonc_c bloc_rho_fonc_c]
where
   • probleme str: Name of problem.
   • rho 1 float: value of rho
   • rho_2 float: value of rho
   • rho fonc c bloc rho fonc c (5.49.2): to use for define a general form for rho
```

```
See also: objet_lecture (43)
Usage:
[ Champ_Fonc_Fonction ] [ problem_name ] [ concentration ] [ dim ] [ val ] [ Champ_Uniforme ] [
fielddim ] [ val2 ]
where
   • Champ_Fonc_Fonction str into ['Champ_Fonc_Fonction']: Champ_Fonc_Fonction
   • problem_name str: Name of problem.
   • concentration str into ['concentration']: concentration
   • dim int: dimension of the problem
   • val str: function of rho
   • Champ_Uniforme str into ['Champ_Uniforme']: Champ_Uniforme
   • fielddim int: dimension of the problem
   • val2 str: function of rho
5.50
      Visco dyn cons
Description: different treatment of the kinematic viscosity could be done depending of the use of the
Boussinesq approximation or the constant dynamic viscosity approximation
See also: objet_lecture (43)
Usage:
yes_or_no bloc_visco
where
   • yes_or_no str into ['oui', 'non']: To use or not the constant dynamic viscosity
   • bloc_visco bloc_visco2 (5.50.1): to choose the mu formulation
5.50.1 Bloc_visco2
Description: choice of mu formulation
See also: objet_lecture (43)
Usage:
{
     [ probleme str]
     [ mu_1 float]
     [ mu_2 float]
     [ mu_fonc_c bloc_mu_fonc_c]
}
where
   • probleme str: Name of problem.
```

• mu_fonc_c bloc_mu_fonc_c (5.50.2): to use for define a general form for mu

mu_1 float: value of mumu_2 float: value of mu

```
5.50.2 Bloc_mu_fonc_c
Description: if mu has a general form
See also: objet lecture (43)
Usage:
[ Champ Fonc Fonction ] [ problem name ] [ concentration ] [ dim ] [ val ]
where
   • Champ_Fonc_Fonction str into ['Champ_Fonc_Fonction']: Champ_Fonc_Fonction
   • problem name str: Name of problem.
   • concentration str into ['concentration']: concentration
   • dim int: dimension of the problem
   • val str: function of mu
5.51 Navier_stokes_standard
Description: Navier-Stokes equations.
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.43) navier_stokes_turbulent (5.52) navier_stokes_QC (5.44) navier_stokes_WC
(5.45) navier stokes phase field (5.48) Navier Stokes std ALE (5.23) Navier Stokes Aposteriori (5.17)
Navier Stokes standard sensibility (5.22)
Usage:
navier_stokes_standard str
Read str {
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [solveur_pression solveur_sys_base]
     [dt_projection deuxmots]
     [traitement_particulier traitement_particulier]
     [ seuil_divU floatfloat]
     [solveur_bar solveur_sys_base]
     [ projection_initiale int]
     _operateurs', 'sans_rien']
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
```

[equation_non_resolue str]

- correction_matrice_projection_initiale int: (IBM advanced) fix matrix of initial projection for PDF
- correction_calcul_pression_initiale int: (IBM advanced) fix initial pressure computation for PDF
- correction_vitesse_projection_initiale int: (IBM advanced) fix initial velocity computation for PDF
- **correction_matrice_pression** *int*: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int: (IBM advanced) fix pressure gradient
- correction_pression_modifie int: (IBM advanced) fix pressure for PDF
- postraiter_gradient_pression_sans_masse: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur_pression solveur_sys_base (13.18): Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1): nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- traitement_particulier traitement_particulier (5.18): Keyword to post-process particular values.
- seuil_divU floatfloat (5.19): value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **solveur_sys_base** (13.18): This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int*: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien']: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.

- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

5.52 Navier_stokes_turbulent

}

Description: Navier-Stokes equations as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.51) navier_stokes_turbulent_qc (5.53) navier_stokes_ft_disc (5.46)
Usage:
navier stokes turbulent str
Read str {
     [ modele turbulence modele turbulence hyd deriv]
     [ correction_matrice_projection_initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction_matrice_pression int]
     [ correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction_pression_modifie int]
     [ postraiter gradient pression sans masse ]
     [solveur_pression solveur_sys_base]
     [dt projection deuxmots]
     [traitement_particulier traitement_particulier]
     [ seuil divU floatfloat]
     [solveur bar solveur sys base]
     [projection initiale int]
     _operateurs', 'sans_rien']]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
     [renommer_equation str]
```

where

- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.21): Turbulence model for Navier-Stokes equations.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur_pression solveur_sys_base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If (lmax(DivU)*dtl<value)

Seuil(tn+1)= Seuil(tn)*factor

Else

Seuil(tn+1) = Seuil(tn)*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.

- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.53 Navier_stokes_turbulent_qc

Description: Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: navier_stokes_turbulent (5.52)

Usage:
navier_stokes_turbulent_qc str
Read str {

```
[ modele_turbulence modele_turbulence_hyd_deriv]
[ correction_matrice_projection_initiale int]
[ correction calcul pression initiale int]
[ correction_vitesse_projection_initiale int]
[ correction_matrice_pression int]
[ correction_vitesse_modifie int]
[ gradient_pression_qdm_modifie int]
[ correction_pression_modifie int]
[ postraiter gradient pression sans masse ]
[solveur_pression solveur_sys_base]
[ dt projection deuxmots]
[traitement_particulier traitement_particulier]
[ seuil divU floatfloat]
[solveur_bar solveur_sys_base]
[projection initiale int]
_operateurs', 'sans_rien']]
[ disable_equation_residual str]
[convection bloc convection]
[ diffusion bloc diffusion]
[boundary conditions|conditions limites condlims]
[initial_conditions|conditions_initiales condinits]
[sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
```

```
[ equation_non_resolue str]
  [ renommer_equation str]
}
where
```

- **modele_turbulence** *modele_turbulence_hyd_deriv* (5.21) for inheritance: Turbulence model for Navier-Stokes equations.
- **correction_matrice_projection_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction_calcul_pression_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction_vitesse_projection_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction_matrice_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction_vitesse_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient_pression_qdm_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction_pression_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter_gradient_pression_sans_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- solveur pression solveur sys base (13.18) for inheritance: Linear pressure system resolution method.
- **dt_projection** *deuxmots* (4.8.1) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **traitement_particulier** *traitement_particulier* (5.18) for inheritance: Keyword to post-process particular values.
- seuil_divU floatfloat (5.19) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **solveur_bar** *solveur_sys_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source_Qdm_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **projection_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et_operateurs', 'sans_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec_les_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec_sources_et_operateurs (lapP=f is solved as with the previous option avec_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step

- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

5.54 Transport_epsilon

Description: The eps transport equation in bicephale (standard or realisable) k-eps model.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:

transport_epsilon str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)

- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

5.55 Transport_interfaces_ft_disc

[sources sources]

Description: Interface tracking equation for Front-Tracking problem in the discontinuous version.

Keyword Discretize should have already been used to read the object. See also: eqn base (5.43)

```
Usage:
```

```
transport_interfaces_ft_disc str
Read str {
     [initial_conditions|conditions_initiales bloc_lecture]
     [ methode_transport methode_transport_deriv]
     [iterations_correction_volume int]
     [ n iterations distance int]
     [ maillage str]
     [remaillage bloc lecture remaillage]
     [ collisions str]
     [ methode_interpolation_v str into ['valeur_a_elem', 'vdf_lineaire']]
     [volume impose phase 1 float]
     [ parcours_interface parcours_interface]
     [interpolation_repere_local]
     [interpolation_champ_face interpolation_champ_face_deriv]
     [ n_iterations_interpolation_ibc int]
     [type_vitesse_imposee str into ['uniforme', 'analytique']]
     [ nombre facettes retenues par cellule int]
     [ seuil_convergence_uzawa float]
     [ nb iteration max uzawa int]
     [injecteur_interfaces str]
     [vitesse imposee regularisee int]
     [indic_faces_modifiee bloc_lecture]
     [ distance projete faces str into ['simplifiee', 'initiale', 'modifiee']]
     [ voflike correction volume int]
     [ nb lissage correction volume int]
     [ nb_iterations_correction_volume int]
     [type_indic_faces type_indic_faces_deriv]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
```

[ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]

```
[ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

• initial_conditions|conditions_initiales bloc_lecture (3.2): The keyword conditions_initiales is used to define the shape of the initial interfaces through the zero level-set of a function, or through a mesh fichier_geom. Indicator function is set to 0, that is fluide0, where the function is negative; indicator function is set to 1, that is fluide1, where the function is positive; the interfaces are the level-set 0 of that function:

```
conditions_initiales { fonction (-((x-0.002)^2+(y-0.002)^2+z^2-(0.00125)^2))*((x-0.005)^2+(y-0.007)^2+z^2(0.00150)^2))*((0.020-z)) }
```

In the above example, there are three interfaces: two bubbles in a liquid with a free surface. One bubble has a radius of 0.00125, i.e. 1.25 mm, and its center is $\{0.002, 0.002, 0.000\}$. The other bubble has a radius of 0.00150, i.e. 1.5 mm, and its center is $\{0.005, 0.007, 0.000\}$. The free surface is above the two bubble, at a level z=0.02.

Additional feature in this block concerns the keywords ajout_phase0 and ajout_phase1. They can be used to simplify the composition of different interfaces. When using these keywords, the initial function defines the indicator function; ajout_phase0 and ajout_phase1 are used to modify this initial field. Each time ajout_phase0 is used, the field is untouched where the function is positive whereas the indicator field is set to 0 where the function is negative. The keyword ajout_phase1 has the symmetrical use, keeping the field value where the function is negative and setting the indicator field to 1 where the function is positive. The previous example can also be written:

```
conditions_initiales { fonction z-0.020 , NL fonction ajout_phase1 (x-0.002)^2+(y-0.002)^2+z^2-(0.00125)^2 , fonction ajout_phase1 (x-0.005)^2+(y-0.007)^2+z^2-(0.00150)^2 }
```

- methode_transport methode_transport_deriv (5.56): Method of transport of interface.
- **iterations_correction_volume** *int*: Keyword to specify the number or iterations requested for the correction process that can be used to keep the volume of the phases constant during the transport process.
- n_iterations_distance *int*: Keyword to specify the number or iterations requested for the smoothing process of computing the field corresponding to the signed distance to the interfaces and located at the center of the Eulerian elements. This smoothing is necessary when there are more Lagrangian nodes than Eulerian two-phase cells.
- maillage *str*: This optional block is used to specify that we want a Gnuplot drawing of the initial mesh. There is only one keyword, niveau_plot, that is used only to define if a Gnuplot drawing is active (value 1) or not active (value -1). By default, skipping the block will produce non Gnuplot drawing. This option is to be used only in a debug process.
- **remaillage** *bloc_lecture_remaillage* (5.57): This block is used to specify the operations that are used to keep the solid interfaces in a proper condition. The remaillage block only contains parameter's values.
- **collisions** *str*: This block is used to specify the operations that are used when a collision occurs between two parts of interfaces. When this occurs, it is necessary to build a new mesh that has locally a clear definition of what is inside and what is outside of the mesh. The collisions can either be active or inactive. If the collisions are active (highly recommended), a Juric level-set reconstruction method will be used to re-create the new mesh after each coalescence or breakup. An option

Juric_local phase_continue N can be used to force the remeshing to impact only a local portion of the mesh, near the collision. The next line (type_remaillage) is used to state whose field will be used for the level-set computation. Main option is Juric, a remeshing that is compatible with parallel computing. When using Juric level-set remeshing, the source field (source_isovaleur) that is used to compute the level-sets is then defined. It can be either the indicator function (indicatrice), a choice which is the default one and the most robust, or a geometrical distance computed from the mesh at the beginning of the time step (fonction_distance), a choice that may be more accurate in specific situations.

Type_remaillage can be either Juric or Thomas. When Thomas is used, it is an enhancement of the Juric remeshing algorithm designed to compensate for mass loss during remeshing. The mesh is always reconstructed with the indicator function (not with the distance function). After having reconstructed the mesh with the Juric algorithm, the difference between the old indicator function (before remeshing) and the new indicator function is computed. The differences occuring at a distance below or equal to N elements from the interface are summed up and used to move the interface in the normal direction. The displacement of the interface is such that the volume of each phase after displacement is equal to the volume of the phase before remeshing. N (default value 1) must be smaller than n_iterations_distance (suggested value: 2).

- methode_interpolation_v str into ['valeur_a_elem', 'vdf_lineaire']: In this block, two keywords are possible for method to select the way the interpolation is performed. With the choice valeur_a_elem the speed of displacement of the nodes of the interfaces is the velocity at the center of the Eulerian element in which each node is located at the beginning of the time step. This choice is the default interpolation method. The choice VDF_lineaire is only available with a VDF discretization (VDF). In this case, the speed of displacement of the nodes of the interfaces is linearly interpolated on the 4 (in 2D) or the 6 (in 3D) Eulerian velocities closest the location of each node at the beginning of the time step. In peculiar situation, this choice may provide a better interpolated value. Of course, this choice is not available with a VEF discretization (VEFPreP1B).
- volume_impose_phase_1 float: this keyword is used to specify the volume of one phase to keep the volume of the phases constant during the remeshing process. It is an alternate solution to trouble in mass conservation. This option is mainly realistic when only one inclusion of phase 1 is present in the domain. In most other situations, the iterations_correction_volume keyword seems easier to justify. The volume to be keep is in m3 and should agree with initial condition.
- parcours_interface parcours_interface (5.58): Parcours_interface allows you to configure the algorithm that computes the surface mesh to volume mesh intersection. This algorithm has some serious trouble when the surface mesh points coincide with some faces of the volume mesh. Effects are visible on the indicator function, in VDF when a plane interface coincides with a volume mesh surface. To overcome these problems, the keyword correction_parcours_thomas keyword can be used: it allows the algorithm to slightly move some mesh points. This algorithm is experimental and is NOT activated by default.
- interpolation_repere_local: Triggers a new transport algorithm for the interface: the velocity vector of lagrangian nodes is computed in the moving frame of reference of the center of each connex component, in such a way that relative displacements of nodes within a connex component of the lagrangian mesh are minimized, hence reducing the necessity of barycentering, smooting and local remeshing. Very efficient for bubbly flows.
- interpolation_champ_face interpolation_champ_face_deriv (5.59): It is possible to compute the imposed velocity for the solid-fluid interface by direct affectation (interpolation_scheme would be set to base) or by multi-linear interpolation (interpolation_scheme would be set to lineaire). The default value is base.
- n_iterations_interpolation_ibc int: Useful only with interpolation_champ_face positioned to lineaire. Set the value concerning the width of the region of the linear interpolation. For the Penalized Direct Forcing model, a value equals to 1 is enough.
- type_vitesse_imposee str into ['uniforme', 'analytique']: Useful only with interpolation_champ_face positioned to lineaire. Value of the keyword is uniforme (for an uniform solid-fluide interface's velocity, i.e. zero for instance) or analytique (for an analytic expression of the solid-fluide interface's velocity depending on the spatial coordinates). The default value is uniforme.

- nombre_facettes_retenues_par_cellule *int*: Keyword to specify the default number (3) of facets per cell used to describe the geometry of the solid-solid interface. This number should be increased if the geometry of the solid-solid interface is complex in each cell (eulerian mesh too coarse for example).
- **seuil_convergence_uzawa** *float*: Optional option to change the default value (10-8) of the threshold convergence for the Uzawa algorithm if used in the Penalized Direct Forcing model. Sometime, the value should be decreased to insure a better convergence to force equality between sequential and parallel results.
- **nb_iteration_max_uzawa** *int*: Optional option to change the default value (10-8) of the threshold convergence for the Uzawa algorithm if used in the Penalized Direct Forcing model. Sometime, the value should be decreased to insure a better convergence to force equality between sequential and parallel results.
- injecteur_interfaces str
- vitesse_imposee_regularisee int
- indic_faces_modifiee bloc_lecture (3.2)
- distance_projete_faces str into ['simplifiee', 'initiale', 'modifiee']
- voflike_correction_volume int
- nb_lissage_correction_volume int
- nb_iterations_correction_volume int
- **type_indic_faces** *type_indic_faces_deriv* (5.60): kind of interpolation to compute the face value of the phase indicator function (advanced option). Could be STANDARD, MODIFIEE or AI_BASED
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.35.1) for inheritance: Boundary conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.56 Methode_transport_deriv

Description: Basic class for method of transport of interface.

See also: objet_lecture (43) vitesse_imposee (5.56.1) vitesse_interpolee (5.56.2) loi_horaire (5.56.3)

Usage:

methode_transport_deriv

5.56.1 Vitesse_imposee

Description: Class to specify that the speed of displacement of the nodes of the interfaces is imposed with an analytical formula.

```
See also: methode_transport_deriv (5.56)
Usage:
vitesse_imposee val
where
   • val word1 word2 (word3): Analytical formula.
5.56.2 Vitesse interpolee
Description: Class to specify that the interpolation will use the velocity field of the Navier-Stokes equation
named val to compute the speed of displacement of the nodes of the interfaces.
See also: methode transport deriv (5.56)
Usage:
vitesse_interpolee val
where
   • val str: Navier-Stokes equation.
5.56.3 Loi_horaire
Description: not_set
See also: methode_transport_deriv (5.56)
Usage:
loi_horaire nom_loi
where
   • nom_loi str
5.57
       Bloc_lecture_remaillage
Description: Parameters for remeshing.
See also: objet_lecture (43)
Usage:
{
     [ pas float]
     [ pas_lissage float]
     [ nb_iter_remaillage int]
     [ nb_iter_barycentrage int]
```

[relax_barycentrage float] [critere_arete float] [critere_remaillage float]

[facteur_longueur_ideale float] [nb_iter_correction_volume int] [seuil_dvolume_residuel float]

[impr float]

```
[ lissage_courbure_coeff float]
  [ lissage_courbure_iterations int]
  [ lissage_courbure_iterations_systematique int]
  [ lissage_courbure_iterations_si_remaillage int]
  [ critere_longueur_fixe float]
}
where
```

- pas *float*: This keyword has default value -1.; when it is set to a negative value there is no remeshing. It is the time step in second (physical time) between two operations of remeshing.
- pas_lissage *float*: This keyword has default value -1.; when it is set to a negative value there is no smoothing of mesh. It is the time step in second (physical time) between two operations of smoothing of the mesh.
- **nb_iter_remaillage** *int*: This keyword has default value 0; when it is set to the zero value there is no remeshing. It is the number of iterations performed during a remeshing process.
- **nb_iter_barycentrage** *int*: This keyword has default value 0; when it is set to the zero value there is no operation of barycentrage. The barycentrage operation consists in moving each node of the mesh tangentially to the mesh surface and in a direction that let it closer the center of gravity of its neighbors. If relax_barycentrage is set to 1, the node is move to the center of gravity. For values lower than unity, the motion is limited to the corresponding fraction. The parameter nb_iter_barycentrage is the number of iteration of these node displacements.
- relax_barycentrage *float*: This keyword has default value 0; when it is set to the zero value there is no motion of the nodes. When 0 < relax_barycentrage <= 1, this parameter provides the relaxation ratio to be used in the barycentrage operation described for the keyword nb_iter_barycentrage.
- **critere_arete** *float*: This keyword is used to compute two sub-criteria: the minimum and the maximum edge length ratios used in the process of obtaining edges of length close to critere_longueur_fixe. Their respective values are set to (1-critere_arete)**2 and (1+critere_arete)**2. The default values of the minimum and the maximum are set respectively to 0.5 and 1.5. When an edge is longer than critere_longueur_fixe*(1+critere_arete)**2, the edge is cut into two pieces; when its length is smaller than critere_longueur_fixe*(1-critere_arete)**2, this edge has to be suppressed.
- **critere_remaillage** *float*: This keyword was previously used to compute two sub-criteria: the minimum and the maximum length used in the process of remeshing. Their respective values are set to (1-critere_remaillage)**2 and (1+critere_remaillage)**2. The default values of the minimum and the maximum are set respectively to 0.2 and 1.7. There are currently not used in data files.
- **impr** *float*: This keyword is followed by a value that specify the printing time period given. The default value is -1, which means no printing.
- **facteur_longueur_ideale** *float*: This keyword is used to set a ratio between edge length and the cube root of volume cell for the remeshing process. The default value is 1.0.
- **nb_iter_correction_volume** *int*: This keyword give the maximum number of iterations to be performed trying to satisfy the criterion seuil_dvolume_residuel. The default value is 0, which means no iteration.
- **seuil_dvolume_residuel** *float*: This keyword give the error volume (in m3) that is accepted to stop the iterations performed to keep the volume constant during the remeshing process. The default value is 0.0.
- **lissage_courbure_coeff** *float*: This keyword is used to specify the diffusion coefficient used in the diffusion process of the curvature in the curvature smoothing process with a time step. The default value is 0.05. That value usually provides a stable process. Too small values do not stabilize enough the interface, especially with several Lagrangian nodes per Eulerian cell. Too high values induce an additional macroscopic smoothing of the interface that should physically come from the surface tension and not from this numerical smoothing.
- **lissage_courbure_iterations** *int*: This keyword is used to specify the number of iterations to perform the curvature smoothing process. The default value is 1.
- **lissage_courbure_iterations_systematique** *int*: These keywords allow a finer control than the previous lissage courbure iterations keyword. N1 iterations are applied systematically at each timestep.

For proper DNS computation, N1 should be set to 0.

- **lissage_courbure_iterations_si_remaillage** *int*: N2 iterations are applied only if the local or the global remeshing effectively changes the lagrangian mesh connectivity.
- **critere_longueur_fixe** *float*: This keyword is used to specify the ideal edge length for a remeshing process. The default value is -1., which means that the remeshing does not try to have all edge lengths to tend towards a given value.

5.58 Parcours_interface

Description: allows you to configure the algorithm that computes the surface mesh to volume mesh intersection. This algorithm has some serious trouble when the surface mesh points coincide with some faces of the volume mesh. Effects are visible on the indicator function, in VDF when a plane interface coincides with a volume mesh surface.

To overcome these problems, the keyword correction_parcours_thomas keyword can be used: it allows the algorithm to slightly move some mesh points. This algorithm, which is experimental and is NOT activated by default, triggers a correction that avoids some errors in the computation of the indicator function for surface meshes that exactly cross some eulerian mesh edges (strongly suggested!).

```
See also: objet_lecture (43)
Usage:
{
     [correction_parcours_thomas]
}
where
   • correction_parcours_thomas
5.59
       Interpolation_champ_face_deriv
Description: not_set
See also: objet_lecture (43) base (5.59.1) lineaire (5.59.2)
Usage:
5.59.1 Base
Description: not set
See also: interpolation_champ_face_deriv (5.59)
Usage:
base
5.59.2 Lineaire
Description: not_set
See also: interpolation_champ_face_deriv (5.59)
Usage:
lineaire {
```

```
[ vitesse_fluide_explicite ]
}
where
   • vitesse_fluide_explicite
5.60
       Type_indic_faces_deriv
Description: not_set
See also: objet_lecture (43) standard (5.60.1) modifiee (5.60.2) ai_based (5.60.3)
Usage:
5.60.1 Standard
Description: not_set
See also: type_indic_faces_deriv (5.60)
Usage:
standard
5.60.2 Modifiee
Description: not_set
See also: type_indic_faces_deriv (5.60)
Usage:
modifiee {
      [ position float]
      [thickness float]
}
where
   • position float
   • thickness float
5.60.3 Ai_based
Description: not_set
See also: type_indic_faces_deriv (5.60)
Usage:
ai_based
```

5.61 Transport_k

Description: The k transport equation in bicephale (standard or realisable) k-eps model.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

```
Usage:
transport_k str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
    [ renommer_equation str]
}
where
```

- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.
- initial_conditions|conditions_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.62 Transport_k_epsilon

Description: The (k-eps) transport equation. To resume from a previous mixing length calculation, an external MED-format file containing reconstructed K and Epsilon quantities can be read (see fichier_ecriture_k_eps) thanks to the Champ_fonc_MED keyword.

Warning, When used with the Quasi-compressible model, k and eps should be viewed as rho k and rho epsilon when defining initial and boundary conditions or when visualizing values for k and eps. This bug will be fixed in a future version.

```
Keyword Discretize should have already been used to read the object.
See also: eqn base (5.43)
Usage:
transport_k_epsilon str
Read str {
     [ with_nu str into ['yes', 'no']]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre equation parametre equation base]
     [ equation_non_resolue str]
     [renommer_equation str]
}
where
```

- with_nu str into ['yes', 'no']: yes/no
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.
- initial conditions londitions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.63 Transport_k_omega

```
Description: The (k-omega) transport equation.

Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

Usage: transport_k_omega str
Read str {
```

```
[ with_nu str into ['yes', 'no']]
  [ disable_equation_residual str]
  [ convection bloc_convection]
  [ diffusion bloc_diffusion]
  [ boundary_conditions|conditions_limites condlims]
  [ initial_conditions|conditions_initiales condinits]
  [ sources sources]
  [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
  [ parametre_equation parametre_equation_base]
  [ equation_non_resolue str]
  [ renommer_equation str]
}
```

- with_nu str into ['yes', 'no']: yes/no (default no)
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- **boundary_conditions|conditions_limites** *condlims* (4.35.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.64 Transport_marqueur_ft

```
Description: not_set

Keyword Discretize should have already been used to read the object.

See also: eqn_base (5.43)

Usage:
transport_marqueur_ft str

Read str {

    [initial_conditions|conditions_initiales bloc_lecture]
    [injection injection_marqueur]
    [transformation_bulles bloc_lecture]
    [phase_marquee int]
    [methode_transport str into ['vitesse_interpolee', 'vitesse_particules']]
    [methode_couplage str into ['suivi', 'one_way_coupling', 'two_way_coupling']]
```

```
[ nb_iterations int]
[ contribution_one_way int into [0, 1]]
[ implicite int into [0, 1]]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
[ renommer_equation str]
}
where
```

- initial_conditions|conditions_initiales bloc_lecture (3.2): ne semble pas standard
- **injection** *injection_marqueur* (5.65): The keyword injection can be used to inject periodically during the calculation some other particles. The syntax for ensemble_points and proprietes_particles is the same than the initial conditions for the particles. The keyword t_debut_injection give the injection initial time (by default, given by t_debut_integration) and dt_injection gives the injection time period (by default given by dt_min).
- transformation_bulles bloc_lecture (3.2): This keyword will activate the transformation of an inclusion (small bubbles) into a particle. localisation gives the sub-zones (N number of sub-zones and their names) where the transformation may happen. The diameter size for the inclusion transformation is given by either diameter_min option, in this case the inclusion will be suppressed for a diameter less than diameter_size, either by the beta_transfo option, in this case the inclusion will be suppressed for a diameter less than diameter_size*cell_volume (cell_volume is the volume of the cell containing the inclusion). interface specifies the name of the inclusion interface and t_debut_transfo is the beginning time for the inclusion transformation operation (by default, it is t_debut_integr value) and dt_transfo is the period transformation (by default, it is dt_min value). In a two phase flow calculation, the particles will be suppressed when entring into the non marked phase
- **phase_marquee** *int*: Phase number giving the marked phase, where the particles are located (when they leave this phase, they are suppressed). By default, for a the two phase fluide, the particles are supposed to be into the phase 0 (liquid).
- methode_transport str into ['vitesse_interpolee', 'vitesse_particules']: Kind of transport method for the particles. With vitesse_interpolee, the velocity of the particles is the velocity a fluid interpolation velocity (option by default). With vitesse_particules, the velocity of the particules is governed by the resolution of a momentum equation for the particles.
- methode_couplage str into ['suivi', 'one_way_coupling', 'two_way_coupling']: Way of coupling between the fluid and the particles. By default, (keyword suivi), there is no interaction between both. With one_way_coupling keyword, the fluid act on the particles. With two_way_coupling keyword, besides, particles act on the fluid.
- **nb_iterations** *int*: Number of sub-timesteps to solve the momentum equation for the particles (1 per default).
- **contribution_one_way** *int into* [0, 1]: Activate (1, default) or not (0) the fluid forces on the particles when one_way_coupling or two_way_coupling coupling method is used.
- **implicite** *int into* [0, 1]: Impliciting (1) or not (0) the time scheme when weight added source term is used in the momentum equation
- **disable_equation_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary_conditions|conditions_limites condlims (4.35.1) for inheritance: Boundary conditions.

- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur (3.53) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre_equation parametre_equation_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation_non_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation_non_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

• renommer_equation str for inheritance: Rename the equation with a specific name.

5.65 Injection_marqueur

```
Description: not_set

See also: objet_lecture (43)

Usage:
{

    ensemble_points bloc_lecture
    proprietes_particules bloc_lecture
    [t_debut_injection float]
    [dt_injection float]
}
where

    ensemble_points bloc_lecture (3.2)
    proprietes_particules bloc_lecture (3.2)
    t_debut_injection float
    dt_injection float
```

6 ijk_splitting

Description: Object to specify how the domain will be divided between processors in IJK discretization

```
See also: objet_u (44)

Usage:
IJK_Splitting str

Read str {

    ijk_grid_geometry str
    nproc_i int
    nproc_j int
    nproc_k int
}

where
```

• ijk_grid_geometry str: the grid that will be splitted

- nproc_i int: the number of processors into which we will divide the grid following the I direction
- nproc_j int: the number of processors into which we will divide the grid following the J direction
- nproc_k int: the number of processors into which we will divide the grid following the K direction

interface_base

```
Description: Basic class for a liquid-gas interface (used in pb_multiphase)
See also: objet_u (44) saturation_base (7.2) Interface_sigma_constant (7.1)
Usage:
Interface_base str
Read str {
      [ surface tension|tension superficielle |float]
}
where
```

• surface_tension|tension_superficielle float: surface tension

7.1 Interface_sigma_constant

```
Description: Liquid-gas interface with a constant surface tension sigma
```

```
See also: Interface_base (7)
Usage:
Interface_sigma_constant str
Read str {
      [ surface_tension|tension_superficielle | float]
}
where
```

• surface_tension|tension_superficielle float for inheritance: surface tension

7.2 Saturation_base

```
Description: fluide-gas interface with phase change (used in pb_multiphase)
```

```
See also: Interface_base (7) saturation_sodium (7.4) saturation_constant (7.3)
```

```
Usage:
```

```
saturation_base str
Read str {
      [ p_ref float]
      [t_ref float]
      [ surface_tension|tension_superficielle | float]
}
where
```

```
• p_ref float
```

- t_ref float
- surface_tension|superficielle float for inheritance: surface tension

7.3 Saturation_constant

```
Description: Class for saturation constant
See also: saturation_base (7.2)
Usage:
saturation_constant str
Read str {
      [P_sat float]
      [T_sat float]
      [Lvap float]
      [ Hlsat float]
      [Hvsat float]
      [ p_ref float]
      [t_ref float]
      [ surface_tension|tension_superficielle |float]
}
where
   • P_sat float: Define the saturation pressure value (this is a required parameter)
   • T sat float: Define the saturation temperature value (this is a required parameter)
   • Lvap float: Latent heat of vaporization
   • Hlsat float: Liquid saturation enthalpy
   • Hvsat float: Vapor saturation enthalpy
   • p_ref float for inheritance
   • t_ref float for inheritance
   • surface_tension|superficielle float for inheritance: surface tension
```

7.4 Saturation_sodium

```
Description: Class for saturation sodium

See also: saturation_base (7.2)

Usage:
saturation_sodium str

Read str {

    [P_ref float]
    [T_ref float]
    [p_ref float]
    [t_ref float]
    [surface_tension|tension_superficielle float]
}

where
```

- **P_ref** *float*: Use to fix the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to fix the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- **p ref** float for inheritance
- **t_ref** *float* for inheritance
- surface_tension|tension_superficielle float for inheritance: surface tension

8 triple_line_model_ft_disc

```
Description: Triple Line Model (TCL)
See also: objet_u (44)
Usage:
Triple_Line_Model_FT_Disc str
Read str {
     [qtcl float]
     [ lv float]
     [coeffa float]
     [coeffb float]
     [theta_app float]
     [ ylim float]
     [ ym float]
     sm float
     equation_navier_stokes|hydraulic_equation str
     equation_temperature|thermal_equation str
     equation_interface|interface_equation str
     [ ymeso float]
     [ n_extend_meso int]
     [initial_cl_xcoord float]
     [rc_tcl_gridn float]
     [thetac tcl float]
     [ reinjection_tcl ]
     [ distri first facette ]
     [ file_name float]
     [ deactivate ]
     [ inout_method str into ['exact', 'approx', 'both']]
}
where
   • qtcl float: Heat flux contribution to micro-region [W/m]
   • Iv float: Slip length (unused)
   • coeffa float
   • coeffb float
   • theta_app float: Apparent contact angle (Cox-Voinov)
   • ym float: Wall distance of the point M delimiting micro/meso transition [m]
   • sm float: Curvilinear abscissa of the point M delimiting micro/meso transition [m]
   • equation navier stokes|hydraulic equation str: Hydraulic equation name
```

equation_temperature|thermal_equation str: Thermal equation name
 equation_interface|interface_equation str: Interface equation name

- ymeso float: Meso region extension in wall-normal direction [m]
- n_extend_meso int: Meso region extension in number of cells [-]
- initial_cl_xcoord float: Initial interface position (unused)
- rc_tcl_gridn *float*: Radius of nucleate site; [in number of grids]
- **thetac_tcl** *float*: imposed contact angle [in degree] to force bubble pinching / necking once TCL entre nucleate site
- reinjection_tcl: This rien activates the automatic injection of a new nucleate seed with a specified shape when the temperature in the nucleation site becomes higher than a certain threshold (tempC_tcl). The shape of the seed is determined by the radius Rc_tcl_GridN and the contact angle thetaC_tcl. The nucleation site is considered free when there are no bubbles present. The site size is defined by Rc_tcl_GridN. This temperature threshold, termed tempC_tcl, is the activation temperature. Setting this temperature implies a wall temperature, therefore, activating reinjection_tcl is ONLY possible for a simulation coupled with solid conduction.

When reinjection_tcl is activated, the values of tempC_tcl (default 10K), Rc_tcl_GridN (default 4 grid sizes), and thetaC_tcl (default 150 degrees) should be provided. Unless (STRONGLY not recommended), the default values (indicated in parentheses) will be used.

If reinjection_tcl is not activated (by default), the mechanism of Numerically forcing bubble pinching/necking will be used for multi-cycle simulation. Once the Triple Contact Line (TCL) enters the nucleation site, a big contact angle thetaC_tcl is imposed to initiate bubble pinching/necking. After the bubble pinching ends, the large bubble above will depart, leaving the remaining part to serve as the nucleate seed. This process is equivalent to immediately inserting a new seed with a prescribed shape (determined by the nucleation site size and contact angle) once a bubble departs. Site size is defined by Rc_tcl_GridN (default 4 grid sizes). Contact angle thetaC_tcl (default 150 degrees). Useful for a standalone (not coupling with solid conduction) simulation.

- distri_first_facette: This rien determines whether to distribute the Qtcl into all grids occupied by the first facette according to their area proportions. When set, the flux is redistributed into all grids occupied by the first facette based on their area proportions. Default value is 0, the flux is distributed differently: similar to the Meso zone, it is only distributed to grids within the Micro-zone (where the height of the front y is smaller than the size of Micro ym). The distribution of this flux is logarithmically proportional to y between 5.6nm (here interpreted as the value 0 in logarithm) and ym. In practice, in most cases, it will distribute all the flux locally in the first grid.
- file_name float: Input file to set TCL model
- deactivate : Simple way to disable completely the TCL model contribution
- **inout_method** *str into ['exact', 'approx', 'both']*: Type of method for in out calc. By defautl, exact method is used

9 algo_base

Usage:

algo_couple_1 str
Read str {

```
Description: Basic class for multi-grid algorithms.

See also: objet_u (44) algo_couple_1 (9.1)

Usage:

9.1 Algo_couple_1

Description: not_set

See also: algo_base (9)
```

```
[ dt_uniforme ]
}
where
   • dt_uniforme
      /*
10
10.1 /*
Description: bloc of Comment in a data file.
See also: objet_u (44)
Usage:
/* comm
where
   • comm str: Text to be commented.
11
      champ_generique_base
Description: not_set
See also: objet_u (44) champ_post_de_champs_post (11.1) champ_post_refchamp (11.17) predefini (11.15)
Usage:
11.1
       Champ_post_de_champs_post
Description: not_set
See also: champ_generique_base (11) champ_post_tparoi_vef (11.18) champ_post_statistiques_base (11.6)
champ_post_extraction (11.10) champ_post_transformation (11.19) champ_post_operateur_base (11.4) champ-
_post_morceau_equation (11.13) interpolation (11.12) champ_post_reduction_0d (11.16) champ_post_operateur-
_eqn (11.5)
Usage:
champ_post_de_champs_post str
Read str {
     [ source champ_generique_base]
     [sources listchamp_generique]
     [ nom_source str]
     [source reference str]
     [ sources_reference list_nom_virgule]
where
   • source champ_generique_base (11): the source field.
   • sources listchamp_generique (11.2): sources { Champ_Post... { ... } Champ_Post.. { ... }}
   • nom_source str: To name a source field with the nom_source keyword
   • source_reference str
   • sources_reference list_nom_virgule (11.3)
```

```
11.2 Listchamp_generique
```

```
Description: XXX
See also: listobj (42.5)
Usage:
{ object1, object2.... }
list of champ_generique_base (11) separeted with,
11.3 List_nom_virgule
Description: List of name.
See also: listobj (42.5)
Usage:
{ object1, object2....}
list of nom_anonyme (29.1) separeted with,
11.4
      Champ_post_operateur_base
Description: not_set
See also: champ_post_de_champs_post (11.1) champ_post_operateur_gradient (11.11) champ_post_operateur-
_divergence (11.8)
Usage:
champ_post_operateur_base str
Read str {
     [ source champ_generique_base]
     [sources listchamp_generique]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
}
where
   • source champ_generique_base (11) for inheritance: the source field.
   • sources listchamp_generique (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (11.3) for inheritance
11.5
       Champ_post_operateur_eqn
Synonymous: operateur eqn
Description: Post-process equation operators/sources
```

See also: champ_post_de_champs_post (11.1)

```
Usage:
champ_post_operateur_eqn str

Read str {

    [numero_source int]
    [numero_op int]
    [numero_masse int]
    [sans_solveur_masse]
    [compo int]
    [source champ_generique_base]
    [sources listchamp_generique]
    [nom_source str]
    [source_reference str]
    [sources_reference list_nom_virgule]
}
where
```

- **numero_source** *int*: the source to be post-processed (its number). If you have only one source term, numero_source will correspond to 0 if you want to post-process that unique source
- **numero_op** *int*: numero_op will be 0 (diffusive operator) or 1 (convective operator) or 2 (gradient operator) or 3 (divergence operator).
- numero_masse int: numero_masse will be 0 for the mass equation operator in Pb_multiphase.
- sans_solveur_masse

where

- **compo** *int*: If you want to post-process only one component of a vector field, you can specify the number of the component after compo keyword. By default, it is set to -1 which means that all the components will be post-processed. This feature is not available in VDF disretization.
- **source** *champ_generique_base* (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- sources reference list nom virgule (11.3) for inheritance

11.6 Champ_post_statistiques_base

```
Description: not_set

See also: champ_post_de_champs_post (11.1) moyenne (11.14) ecart_type (11.9) correlation (11.7)

Usage:
champ_post_statistiques_base str

Read str {

    t_deb float
    t_fin float
    [ source champ_generique_base]
    [ sources listchamp_generique]
    [ nom_source str]
    [ source_reference str]
    [ sources_reference list_nom_virgule]
}
```

- t_deb float: Start of integration time
- t_fin float: End of integration time
- **source** *champ_generique_base* (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- sources_reference list_nom_virgule (11.3) for inheritance

11.7 Correlation

Synonymous: champ_post_statistiques_correlation

Description: to calculate the correlation between the two fields.

```
See also: champ_post_statistiques_base (11.6)
```

```
Usage:
correlation str

Read str {

    t_deb float
    t_fin float
    [source champ_generique_base]
    [sources listchamp_generique]
    [nom_source str]
    [source_reference str]
    [sources_reference list_nom_virgule]
```

where

}

- t_deb float for inheritance: Start of integration time
- t_fin float for inheritance: End of integration time
- source champ_generique_base (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source_reference str for inheritance
- sources_reference list_nom_virgule (11.3) for inheritance

11.8 Champ_post_operateur_divergence

```
Synonymous: divergence

Description: To calculate divergency of a given field.

See also: champ_post_operateur_base (11.4)

Usage:
champ_post_operateur_divergence str

Read str {
```

[source champ_generique_base]

```
[sources listchamp_generique]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
}
where
   • source champ generique base (11) for inheritance: the source field.
   • sources listchamp_generique (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (11.3) for inheritance
11.9
      Ecart_type
Synonymous: champ_post_statistiques_ecart_type
Description: to calculate the standard deviation (statistic rms) of the field nom_champ.
See also: champ_post_statistiques_base (11.6)
Usage:
ecart_type str
Read str {
     t deb float
     t fin float
     [source champ_generique_base]
     [sources listchamp_generique]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
}
where
   • t_deb float for inheritance: Start of integration time
   • t_fin float for inheritance: End of integration time
   • source champ_generique_base (11) for inheritance: the source field.
   • sources listchamp_generique (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources reference list nom virgule (11.3) for inheritance
11.10
       Champ_post_extraction
```

Synonymous: extraction

Description: To create a surface field (values at the boundary) of a volume field

See also: champ_post_de_champs_post (11.1)

```
Usage:
champ_post_extraction str

Read str {

domaine str
nom_frontiere str
[methode str into ['trace', 'champ_frontiere']]
[source champ_generique_base]
[sources listchamp_generique]
[nom_source str]
[source_reference str]
[sources_reference list_nom_virgule]
}
where
```

- domaine str: name of the volume field
- nom frontiere str: boundary name where the values of the volume field will be picked
- **methode** *str into ['trace', 'champ_frontiere']*: name of the extraction method (trace by_default or champ_frontiere)
- source champ_generique_base (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source_reference str for inheritance
- sources_reference list_nom_virgule (11.3) for inheritance

11.11 Champ_post_operateur_gradient

```
Synonymous: gradient
Description: To calculate gradient of a given field.
See also: champ_post_operateur_base (11.4)
Usage:
champ_post_operateur_gradient str
Read str {
     [ source champ_generique_base]
     [sources listchamp_generique]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
}
where
   • source champ_generique_base (11) for inheritance: the source field.
   • sources listchamp_generique (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
      { ... }}
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (11.3) for inheritance
```

11.12 Interpolation

where

Synonymous: champ_post_interpolation

Description: To create a field which is an interpolation of the field given by the keyword source.

```
See also: champ_post_de_champs_post (11.1)

Usage:
interpolation str

Read str {

localisation str
[methode str]
[domaine str]
[optimisation_sous_maillage str into ['default', 'yes', 'no']]
[source champ_generique_base]
[sources listchamp_generique]
[nom_source str]
[source_reference str]
[sources_reference list_nom_virgule]
}
```

- **localisation** *str*: type_loc indicate where is done the interpolation (elem for element or som for node)
- **methode** *str*: The optional keyword methode is limited to calculer_champ_post for the moment.
- domaine str: the domain name where the interpolation is done (by default, the calculation domain)
- optimisation_sous_maillage str into ['default', 'yes', 'no']
- source champ generique base (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source_reference str for inheritance
- sources_reference list_nom_virgule (11.3) for inheritance

11.13 Champ_post_morceau_equation

Synonymous: morceau_equation

Description: To calculate a field related to a piece of equation. For the moment, the field which can be calculated is the stability time step of an operator equation. The problem name and the unknown of the equation should be given by Source refChamp { Pb_Champ problem_name unknown_field_of_equation }

```
See also: champ_post_de_champs_post (11.1)

Usage:
champ_post_morceau_equation str

Read str {

    type str
    [numero int]
    [unite str]
    option str into ['stabilite', 'flux_bords', 'flux_surfacique_bords']
```

```
[ compo int]
  [ source champ_generique_base]
  [ sources listchamp_generique]
  [ nom_source str]
  [ source_reference str]
  [ sources_reference list_nom_virgule]
}
where
```

- type str: can only be operateur for equation operators.
- **numero** *int*: numero will be 0 (diffusive operator) or 1 (convective operator) or 2 (gradient operator) or 3 (divergence operator).
- unite str: will specify the field unit
- **option** *str into ['stabilite', 'flux_bords', 'flux_surfacique_bords']:* option is stability for time steps or flux_bords for boundary fluxes or flux_surfacique_bords for boundary surfacic fluxes
- **compo** *int*: compo will specify the number component of the boundary flux (for boundary fluxes, in this case compo permits to specify the number component of the boundary flux choosen).
- **source** *champ_generique_base* (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source_reference str for inheritance
- sources reference list nom virgule (11.3) for inheritance

11.14 Moyenne

where

```
Synonymous: champ_post_statistiques_moyenne

Description: to calculate the average of the field over time

See also: champ_post_statistiques_base (11.6)

Usage:
moyenne str
Read str {

    [moyenne_convergee champ_base]
    t_deb float
    t_fin float
    [source champ_generique_base]
    [sources listchamp_generique]
    [nom_source str]
    [source_reference str]
    [sources_reference list_nom_virgule]
}
```

- moyenne_convergee champ_base (18.1): This option allows to read a converged time averaged field in a .xyz file in order to calculate, when resuming the calculation, the statistics fields (rms, correlation) which depend on this average. In that case, the time averaged field is not updated during the resume of calculation. In this case, the time averaged field must be fully converged to avoid errors when calculating high order statistics.
- **t_deb** *float* for inheritance: Start of integration time

- **t_fin** *float* for inheritance: End of integration time
- **source** *champ_generique_base* (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post... { ... } Champ_Post... { ... }}
- nom source str for inheritance: To name a source field with the nom source keyword
- source_reference str for inheritance
- sources reference list nom virgule (11.3) for inheritance

11.15 Predefini

Description: This keyword is used to post process predefined postprocessing fields.

```
See also: champ_generique_base (11)

Usage:
predefini str
Read str {
    pb_champ deuxmots
}
where
```

• **pb_champ** *deuxmots* (4.8.1): { Pb_champ nom_pb nom_champ } : nom_pb is the problem name and nom_champ is the selected field name. The available keywords for the field name are: energie_cinetique_totale, energie_cinetique_elem, viscosite_turbulente, viscous_force_x, viscous_force_y, viscous_force_z, pressure_force_x, pressure_force_y, pressure_force_z, total_force_x, total_force_y, total_force_z, viscous_force, pressure_force, total_force

11.16 Champ_post_reduction_0d

Synonymous: reduction_0d

where

Description: To calculate the min, max, sum, average, weighted sum, weighted average, weighted sum by porosity, weighted average by porosity, euclidian norm, normalized euclidian norm, L1 norm, L2 norm of a field.

```
Usage:
champ_post_reduction_0d str
Read str {

methode str into ['min', 'max', 'moyenne', 'average', 'moyenne_ponderee', 'weighted_average', 'somme', 'sum', 'somme_ponderee', 'weighted_sum', 'somme_ponderee_porosite', 'weighted_sum-porosity', 'euclidian_norm', 'normalized_euclidian_norm', 'L1_norm', 'L2_norm', 'valeur_a_gauche', 'left_value']

[ source champ_generique_base]

[ sources listchamp_generique]

[ nom_source str]

[ source_reference str]

[ sources_reference list_nom_virgule]
```

- methode str into ['min', 'max', 'moyenne', 'average', 'moyenne_ponderee', 'weighted_average', 'somme', 'sum', 'somme_ponderee', 'weighted_sum', 'somme_ponderee_porosite', 'weighted_sum-_porosity', 'euclidian_norm', 'normalized_euclidian_norm', 'L1_norm', 'L2_norm', 'valeur_a_gauche', 'left_value']: name of the reduction method:
 - min for the minimum value,
 - max for the maximum value,
 - average (or movenne) for a mean,
 - weighted_average (or moyenne_ponderee) for a mean ponderated by integration volumes, e.g. cell volumes for temperature and pressure in VDF, volumes around faces for velocity and temperature in VEF.
 - sum (or somme) for the sum of all the values of the field,
 - weighted_sum (or somme_ponderee) for a weighted sum (integral),
 - weighted_average_porosity (or moyenne_ponderee_porosite) and weighted_sum_porosity (or somme_ponderee_porosite) for the mean and sum weighted by the volumes of the elements, only for ELEM localisation,
 - euclidian norm for the euclidian norm,
 - normalized_euclidian_norm for the euclidian norm normalized,
 - L1_norm for norm L1,
 - L2_norm for norm L2
- source champ_generique_base (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source_reference str for inheritance
- sources reference list nom virgule (11.3) for inheritance

11.17 Champ_post_refchamp

```
Synonymous: refchamp

Description: Field of prolem

See also: champ_generique_base (11)

Usage:
champ_post_refchamp str

Read str {
        [nom_source str]
        pb_champ deuxmots
}

where
```

- nom source str: The alias name for the field
- **pb_champ** *deuxmots* (4.8.1): { Pb_champ nom_pb nom_champ } : nom_pb is the problem name and nom_champ is the selected field name.

11.18 Champ_post_tparoi_vef

Synonymous: tparoi_vef

Description: This keyword is used to post process (only for VEF discretization) the temperature field

with a slight difference on boundaries with Neumann condition where law of the wall is applied on the temperature field. nom_pb is the problem name and field_name is the selected field name. A keyword (temperature_physique) is available to post process this field without using Definition_champs.

```
See also: champ_post_de_champs_post (11.1)

Usage:
champ_post_tparoi_vef str

Read str {

    [source champ_generique_base]
    [source str]
    [source_reference str]
    [source_reference list_nom_virgule]
}

where

• source champ_generique_base (11) for inheritance: the source field.
• sources listchamp_generique (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post... } Champ_post... { ... } Champ
```

11.19 Champ_post_transformation

Synonymous: transformation

Description: To create a field with a transformation using source fields and x, y, z, t. If you use in your datafile source refChamp { Pb_champ pb pression }, the field pression may be used in the expression with the name pression_natif_dom; this latter is the same as pression. If you specify nom_source in refChamp bloc, you should use the alias given to pressure field. This is avail for all equations unknowns in transformation.

```
See also: champ_post_de_champs_post (11.1)

Usage:
champ_post_transformation str

Read str {

methode str into ['produit_scalaire', 'norme', 'vecteur', 'formule', 'composante']
    [ unite str]
    [ expression n word1 word2 ... wordn]
    [ numero int]
    [ localisation str]
    [ source champ_generique_base]
    [ sources listchamp_generique]
    [ nom_source str]
    [ source_reference str]
    [ sources_reference list_nom_virgule]
}

where
```

- methode str into ['produit_scalaire', 'norme', 'vecteur', 'formule', 'composante']: methode 0 methode norme: will calculate the norm of a vector given by a source field methode produit_scalaire: will calculate the dot product of two vectors given by two sources fields methode composante numero integer: will create a field by extracting the integer component of a field given by a source field methode formule expression 1: will create a scalar field located to elements using expressions with x,y,z,t parameters and field names given by a source field or several sources fields. methode vecteur expression N f1(x,y,z,t) fN(x,y,z,t): will create a vector field located to elements by defining its N components with N expressions with x,y,z,t parameters and field names given by a source field or several sources fields.
- unite str: will specify the field unit
- expression n word1 word2 ... wordn: expression 1 see methodes formule and vecteur
- numero int: numero 1 see methode composante
- **localisation** *str*: localisation 1 type_loc indicate where is done the interpolation (elem for element or som for node). The optional keyword methode is limited to calculer_champ_post for the moment
- **source** *champ_generique_base* (11) for inheritance: the source field.
- **sources** *listchamp_generique* (11.2) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... }}
- nom_source str for inheritance: To name a source field with the nom_source keyword
- source reference str for inheritance
- sources_reference list_nom_virgule (11.3) for inheritance

12 chimie

Description: Keyword to describe the chmical reactions

```
See also: objet_u (44)

Usage:
chimie str

Read str {

    reactions reactions
    [modele_micro_melange int]
    [constante_modele_micro_melange float]
    [espece_en_competition_micro_melange str]
}
where
```

- reactions reactions (12.1): list of reactions
- modele_micro_melange int: modele_micro_melange (0 by default)
- constante_modele_micro_melange float: constante of modele (1 by default)
- espece_en_competition_micro_melange str: espece in competition in reactions

12.1 Reactions

```
Description: list of reactions

See also: listobj (42.5)

Usage:
{ object1 , object2 .... }

list of reaction (12.1.1) separeted with ,
```

12.1.1 Reaction

Usage:

```
Description: Keyword to describe reaction:
w = K pow(T,beta) \exp(-Ea/(RT)) \prod pow(Reactif_i,activitivity_i).
If K inv >0,
w= K pow(T,beta) exp(-Ea/( R T)) ( Π pow(Reactif_i,activitivity_i) - Kinv/exp(-c_r_Ea/(R T)) Π pow(Produit-
_i,activitivity_i ))
See also: objet_lecture (43)
Usage:
     reactifs str
     produits str
     [ constante_taux_reaction float]
     enthalpie_reaction float
     energie activation float
     exposant beta float
     [ coefficients_activites bloc_lecture]
     [contre reaction float]
     [contre_energie_activation float]
}
where
   • reactifs str: LHS of equation (ex CH4+2*O2)
   • produits str: RHS of equation (ex CO2+2*H20)
   • constante_taux_reaction float: constante of cinetic K
   • enthalpie_reaction float: DH
   • energie_activation float: Ea
   • exposant_beta float: Beta
   • coefficients_activites bloc_lecture (3.2): coefficients od ativity (exemple { CH4 1 O2 2 })
   • contre_reaction float: K_inv
   • contre_energie_activation float: c_r_Ea
13
      class_generic
Description: not_set
See also: objet_u (44) solveur_sys_base (13.18) dt_start (13.9) Modele_Fonc_Realisable_base (13.1)
Usage:
       Modele_fonc_realisable_base
Description: Base class for Functions necessary to Realizable K-Epsilon Turbulence Model
See also: class_generic (13) Modele_Shih_Zhu_Lumley_VDF (13.2) Shih_Zhu_Lumley (13.3)
```

```
13.2 Modele_shih_zhu_lumley_vdf
```

```
Description: Functions necessary to Realizable K-Epsilon Turbulence Model in VDF
See also: Modele_Fonc_Realisable_base (13.1)
Usage:
Modele_Shih_Zhu_Lumley_VDF str
Read str {
     [ a0 float]
where
   • a0 float: value of parameter A0 in U* formula
13.3 Shih_zhu_lumley
Description: Functions necessary to Realizable K-Epsilon Turbulence Model in VEF
See also: Modele_Fonc_Realisable_base (13.1)
Usage:
Shih_Zhu_Lumley str
Read str {
     [ a0 float]
}
where
   • a0 float: value of parameter A0 in U* formula
13.4 Amgx
Description: Solver via AmgX API
See also: petsc (13.14)
Usage:
amgx solveur option_solveur
where
   • solveur str
   • option_solveur bloc_lecture (3.2)
13.5
       Cholesky
Description: Cholesky direct method.
See also: solveur_sys_base (13.18)
Usage:
cholesky str
Read str {
```

```
[impr]
     [quiet]
}
where
   • impr : Keyword which may be used to print the resolution time.
   • quiet : To disable printing of information
13.6 Dt_calc
Description: The time step at first iteration is calculated in agreement with CFL condition.
See also: dt_start (13.9)
Usage:
dt_calc
13.7 Dt_fixe
Description: The first time step is fixed by the user (recommended when resuming calculation with Crank
Nicholson temporal scheme to ensure continuity).
See also: dt_start (13.9)
Usage:
dt_fixe value
where
   • value float: first time step.
13.8 Dt min
Description: The first iteration is based on dt_min.
See also: dt_start (13.9)
Usage:
dt_min
13.9 Dt_start
Description: not_set
See also: class_generic (13) dt_calc (13.6) dt_min (13.8) dt_fixe (13.7)
Usage:
```

 dt_start

13.10 Gcp_ns

```
Description: not set
See also: gcp (13.17)
Usage:
gcp ns str
Read str {
     solveur0 solveur sys base
     solveur1 solveur_sys_base
     seuil float
     [ nb_it_max int]
     [impr]
     [quiet]
     [ save matrix|save matrice ]
     [ precond precond base]
     [ precond_nul ]
     [ optimized ]
}
where
```

- solveur0 solveur_sys_base (13.18): Solver type.
- solveur1 solveur_sys_base (13.18): Solver type.
- **seuil** *float* for inheritance: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gcp.
- **impr** for inheritance: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet for inheritance: To not displaying any outputs of the solver.
- save_matrix|save_matrice for inheritance: to save the matrix in a file.
- **precond** *precond_base* (33) for inheritance: Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:
 - when the solver does not converge during initial projection,
 - when comparing sequential and parallel computations.

With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.

- **precond_nul** for inheritance: Keyword to not use a preconditioning method.
- **optimized** for inheritance: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged.

Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.

13.11 Gen

Description: not_set

```
See also: solveur_sys_base (13.18)

Usage:
gen str
Read str {

    solv_elem str
    precond precond_base
    [seuil float]
    [impr ]
    [save_matrix|save_matrice ]
    [quiet ]
    [nb_it_max int]
    [force ]

}
where
```

- solv_elem str: To specify a solver among gmres or bicgstab.
- **precond** *precond_base* (33): The only preconditionner that we can specify is ilu.
- **seuil** *float*: Value of the final residue. The solver ceases iterations when the Euclidean residue standard ||Ax-B|| is less than this value. default value 1e-12.
- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- save_matrix|save_matrice : To save the matrix in a file.
- quiet: To not displaying any outputs of the solver.
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the GEN solver.
- **force**: Keyword to set ipar[5]=-1 in the GEN solver. This is helpful if you notice that the solver does not perform more than 100 iterations. If this keyword is specified in the datafile, you should provide nb_it_max.

13.12 Gmres

```
Description: Gmres method (for non symetric matrix).
```

```
See also: solveur_sys_base (13.18)

Usage:
gmres str
Read str {

    [impr]
    [quiet]
    [seuil float]
    [diag]
    [nb_it_max int]
    [controle_residu int into [0, 1]]
    [save_matrix|save_matrice]
    [dim_espace_krilov int]
}

where
```

- **impr**: Keyword which may be used to print the convergence.
- quiet : To disable printing of information

- seuil float: Convergence value.
- diag: Keyword to use diagonal preconditionner (in place of pilut that is not parallel).
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** *int into* [0, 1]: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.
- save_matrix|save_matrice : to save the matrix in a file.
- dim_espace_krilov int

13.13 Optimal

Description: Optimal is a solver which tests several solvers of the previous list to choose the fastest one for the considered linear system.

```
See also: solveur_sys_base (13.18)

Usage:
optimal str
Read str {

    seuil float
    [impr]
    [quiet]
    [save_matrix|save_matrice]
    [frequence_recalc int]
    [nom_fichier_solveur str]
    [fichier_solveur_non_recree]
}
where
```

- seuil *float*: Convergence threshold
- **impr**: To print the convergency of the fastest solver
- quiet : To disable printing of information
- save_matrix|save_matrice : To save the linear system (A, x, B) into a file
- frequence_recalc int: To set a time step period (by default, 100) for re-checking the fatest solver
- nom_fichier_solveur str: To specify the file containing the list of the tested solvers
- fichier_solveur_non_recree : To avoid the creation of the file containing the list

13.14 Petsc

```
Description: Solver via Petsc API

See also: solveur_sys_base (13.18) amgx (13.4) petsc_gpu (13.15) rocalution (13.16)

Usage:

petsc_solveur
where
```

• **solveur** *solveur_petsc_deriv* (37): solver type and options

```
13.15 Petsc_gpu
Description: GPU solver via Petsc API
See also: petsc (13.14)
Usage:
petsc_gpu solveur option_solveur [ atol ] [ rtol ]
where
   • solveur str
   • option_solveur bloc_lecture (3.2)
   • atol float: Absolute threshold for convergence (same as seuil option)
   • rtol float: Relative threshold for convergence
13.16 Rocalution
Description: Solver via rocALUTION API
See also: petsc (13.14)
Usage:
rocalution solveur option_solveur
where
   • solveur str
   • option_solveur bloc_lecture (3.2)
13.17 Gcp
Description: Preconditioned conjugated gradient.
See also: solveur_sys_base (13.18) gcp_ns (13.10)
Usage:
gcp str
Read str {
     seuil float
     [ nb_it_max int]
     [impr]
     [quiet]
     [ save_matrix|save_matrice ]
     [ precond precond_base]
     [ precond_nul ]
```

- **seuil** *float*: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gcp.

[optimized]

} where

- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet: To not displaying any outputs of the solver.
- save_matrix|save_matrice : to save the matrix in a file.
- precond precond_base (33): Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:
 - when the solver does not converge during initial projection,
 - when comparing sequential and parallel computations.

With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.

- precond_nul: Keyword to not use a preconditioning method.
- optimized: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged. Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.

13.18 Solveur_sys_base

Description: Basic class to solve the linear system.

See also: class_generic (13) gen (13.11) petsc (13.14) gcp (13.17) optimal (13.13) cholesky (13.5) gmres (13.12)

Usage:

14

14.1

Description: Comments in a data file.

See also: objet_u (44)

Usage: # comm

where

• comm str: Text to be commented.

15 condlim_base

Description: Basic class of boundary conditions.

See also: objet_u (44) Paroi_echange_interne_global_impose (15.6) Paroi_echange_interne_global_parfait (15.7) paroi_echange_global_impose (15.69) neumann (15.50) paroi_echange_contact_vdf (15.61) paroi_echange_contact_correlation_vdf (15.57) Paroi_echange_interne_parfait (15.9) Paroi_echange_interne_impose (15.8) paroi_decalee_robin (15.55) dirichlet (15.18) paroi_echange_externe_impose (15.65) paroi_fixe (15.70) Paroi (15.13) Neumann_homogene (15.10) paroi_echange_contact_correlation_vef (15.58)

```
periodique (15.83) paroi_adiabatique (15.51) paroi_flux_impose (15.72) paroi_contact (15.52) paroi_contact-
_fictif (15.53) frontiere_ouverte_fraction_massique_imposee (15.29) Neumann_paroi (15.11) symetrie (15.87)
frontiere_ouverte_k_eps_impose (15.34) frontiere_ouverte_k_omega_impose (15.35) paroi_ft_disc (15.76)
sortie_libre_rho_variable (15.85) flux_radiatif (15.23) paroi_contact_rayo (15.54) contact_vdf_vef (15.16)
contact_vef_vdf (15.17) Cond_lim_k_simple_flux_nul (15.2) Paroi_frottante_loi (15.14) Cond_lim_k_complique_
_transition_flux_nul_demi (15.1) Cond_lim_omega_dix (15.4) Paroi_frottante_simple (15.15) echange_
_contact_vdf_ft_disc (15.20) echange_contact_vdf_ft_disc_solid (15.21) Cond_lim_omega_demi (15.3)
```

Usage:

condlim_base

15.1 Cond_lim_k_complique_transition_flux_nul_demi

Description: Adaptive wall law boundary condition for turbulent kinetic energy

See also: condlim_base (15)

Usage:

Cond_lim_k_complique_transition_flux_nul_demi

15.2 Cond lim k simple flux nul

Description: Adaptive wall law boundary condition for turbulent kinetic energy

See also: condlim_base (15)

Usage:

Cond lim k simple flux nul

15.3 Cond lim omega demi

Description: Adaptive wall law boundary condition for turbulent dissipation rate

See also: condlim base (15)

Usage:

15.4 Cond_lim_omega_dix

Description: Adaptive wall law boundary condition for turbulent dissipation rate

See also: condlim_base (15)

Usage:

15.5 Echange_couplage_thermique

Description: Thermal coupling boundary condition

See also: paroi_echange_global_impose (15.69)

Usage:

 ${\bf Echange_couplage_thermique} \ \ \mathit{str}$

Read str {

```
[ temperature_paroi champ_base]
[ flux_paroi champ_base]
}
where
```

- temperature_paroi champ_base (18.1): Temperature
- flux_paroi champ_base (18.1): Wall heat flux

15.6 Paroi_echange_interne_global_impose

Description: Internal heat exchange boundary condition with global exchange coefficient.

See also: condlim_base (15)

Usage:

Paroi_echange_interne_global_impose h_imp ch where

- **h_imp** *str*: Global exchange coefficient value. The global exchange coefficient value is expressed in W.m-2.K-1.
- ch champ_front_base (19.1): Boundary field type.

15.7 Paroi_echange_interne_global_parfait

Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.

See also: condlim_base (15)

Usage:

Paroi_echange_interne_global_parfait

15.8 Paroi_echange_interne_impose

Description: Internal heat exchange boundary condition with exchange coefficient.

See also: condlim_base (15)

Usage:

Paroi_echange_interne_impose h_imp ch where

- **h_imp** *str*: Exchange coefficient value expressed in W.m-2.K-1.
- **ch** *champ_front_base* (19.1): Boundary field type.

15.9 Paroi_echange_interne_parfait

Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.

See also: condlim_base (15)

Usage:

Paroi_echange_interne_parfait

15.10 Neumann_homogene

Description: Homogeneous neumann boundary condition

See also: condlim_base (15) Neumann_paroi_adiabatique (15.12)

Usage:

Neumann_homogene

15.11 Neumann_paroi

Description: Neumann boundary condition for mass equation (multiphase problem)

See also: condlim_base (15)

Usage:

Neumann_paroi ch

where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.12 Neumann_paroi_adiabatique

Description: Adiabatic wall neumann boundary condition

See also: Neumann_homogene (15.10)

Usage:

Neumann_paroi_adiabatique

15.13 Paroi

Description: Impermeability condition at a wall called bord (edge) (standard flux zero). This condition must be associated with a wall type hydraulic condition.

See also: condlim_base (15)

Usage:

Paroi

15.14 Paroi_frottante_loi

Description: Adaptive wall-law boundary condition for velocity

See also: condlim_base (15)

Usage:

15.15 Paroi_frottante_simple

Description: Adaptive wall-law boundary condition for velocity

See also: condlim_base (15)

Usage:

15.16 Contact_vdf_vef

Description: Boundary condition in the case of two problems (VDF -> VEF).

See also: condlim base (15)

Usage:

 $contact_vdf_vef \ \ champ$

where

• **champ** *champ_front_base* (19.1): Boundary field type.

15.17 Contact_vef_vdf

Description: Boundary condition in the case of two problems (VEF -> VDF).

See also: condlim_base (15)

Usage:

contact_vef_vdf champ

where

• **champ** *champ_front_base* (19.1): Boundary field type.

15.18 Dirichlet

Description: Dirichlet condition at the boundary called bord (edge): 1). For Navier-Stokes equations, velocity imposed at the boundary; 2). For scalar transport equation, scalar imposed at the boundary.

See also: condlim_base (15) frontiere_ouverte_vitesse_imposee (15.47) frontiere_ouverte_enthalpie_imposee (15.44) paroi_knudsen_non_negligeable (15.78) paroi_temperature_imposee (15.80) frontiere_ouverte_concentration_imposee (15.28) frontiere_ouverte_alpha_impose (15.27) paroi_defilante (15.56) scalaire_impose_paroi (15.84) paroi_rugueuse (15.79) Frontiere_ouverte_vitesse_imposee ALE (15.48)

Usage:

dirichlet

15.19 Echange_contact_rayo_transp_vdf

Description: Exchange boundary condition in VDF between the transparent fluid and the solid for a problem coupled with radiation. Without radiation, it is the equivalent of the Paroi_Echange_contact_VDF exchange condition.

See also: paroi_echange_contact_vdf (15.61)

Usage:

echange_contact_rayo_transp_vdf autrepb nameb temp h where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.

• h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by : fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$ where di : distance between the node where Ti and the wall is found.

15.20 Echange_contact_vdf_ft_disc

```
Description: echange_conatct_vdf en prescisant la phase
See also: condlim_base (15)
Usage:
echange_contact_vdf_ft_disc str
Read str {
     autre probleme str
     autre bord str
     autre champ temperature str
     nom_mon_indicatrice str
     phase int
}
where
   • autre_probleme str: name of other problem
   • autre_bord str: name of other boundary
   • autre_champ_temperature str: name of other field
   • nom_mon_indicatrice str: name of indicatrice
   • phase int: phase
```

15.21 Echange_contact_vdf_ft_disc_solid

Description: echange_conatct_vdf en prescisant la phase

See also: condlim_base (15)

Usage:
echange_contact_vdf_ft_disc_solid str

Read str {

 autre_probleme str
 autre_champ_temperature_indic1 str
 autre_champ_temperature_indic0 str
 autre_champ_indicatrice str

}
where

• autre_probleme str: name of other problem
 • autre_bord str: name of other boundary

- autre_champ_temperature_indic1 str: name of temperature indic 1
- autre_champ_temperature_indic0 str: name of temperature indic 0
- autre_champ_indicatrice str: name of indicatrice

15.22 Entree_temperature_imposee_h

Description: Particular case of class frontiere_ouverte_temperature_imposee for enthalpy equation.

See also: frontiere ouverte enthalpie imposee (15.44)

Usage:

 $entree_temperature_imposee_h \ \ ch$

where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.23 Flux_radiatif

Description: Boundary condition for radiation equation.

See also: condlim_base (15) flux_radiatif_vdf (15.24) flux_radiatif_vef (15.25)

Usage:

flux radiatif na a ne emissivite

where

- na *str into ['A']*: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- ne str into ['emissivite']: Keyword for wall emissivity.
- emissivite champ_front_base (19.1): Wall emissivity, value between 0 and 1.

15.24 Flux_radiatif_vdf

Description: Boundary condition for radiation equation in VDF.

See also: flux_radiatif (15.23)

Usage:

flux_radiatif_vdf na a ne emissivite

where

- na str into ['A']: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- ne str into ['emissivite']: Keyword for wall emissivity.
- emissivite champ_front_base (19.1): Wall emissivity, value between 0 and 1.

15.25 Flux_radiatif_vef

Description: Boundary condition for radiation equation in VEF.

See also: flux_radiatif (15.23)

Usage:

flux_radiatif_vef na a ne emissivite

where

- na str into ['A']: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- ne str into ['emissivite']: Keyword for wall emissivity.
- emissivite champ_front_base (19.1): Wall emissivity, value between 0 and 1.

15.26 Frontiere_ouverte

Description: Boundary outlet condition on the boundary called bord (edge) (diffusion flux zero). This condition must be associated with a boundary outlet hydraulic condition.

See also: neumann (15.50) frontiere_ouverte_rayo_transp (15.40) frontiere_ouverte_rayo_semi_transp (15.39)

Usage:

frontiere_ouverte var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'K_Omega_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext', 'H_ext']: Field name.
- **ch** *champ_front_base* (19.1): Boundary field type.

15.27 Frontiere_ouverte_alpha_impose

Description: Imposed alpha condition at the open boundary.

See also: dirichlet (15.18)

Usage:

frontiere_ouverte_alpha_impose ch where

• ch champ_front_base (19.1): Boundary field type.

15.28 Frontiere_ouverte_concentration_imposee

Description: Imposed concentration condition at an open boundary called bord (edge) (situation corresponding to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: dirichlet (15.18)

Usage:

frontiere_ouverte_concentration_imposee ch where

• ch champ front base (19.1): Boundary field type.

15.29 Frontiere_ouverte_fraction_massique_imposee

Description: not_set

See also: condlim base (15)

Usage:

frontiere_ouverte_fraction_massique_imposee ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.30 Frontiere_ouverte_gradient_pression_impose

Description: Normal imposed pressure gradient condition on the open boundary called bord (edge). This boundary condition may be only used in VDF discretization. The imposed $\partial P/\partial n$ value is expressed in Pa.m-1.

See also: neumann (15.50) frontiere_ouverte_gradient_pression_impose_vefprep1b (15.31)

Usage:

frontiere_ouverte_gradient_pression_impose ch where

• **ch** champ front base (19.1): Boundary field type.

15.31 Frontiere_ouverte_gradient_pression_impose_vefprep1b

Description: Keyword for an outlet boundary condition in VEF P1B/P1NC on the gradient of the pressure.

See also: frontiere_ouverte_gradient_pression_impose (15.30)

Usage:

 $frontiere_ouverte_gradient_pression_impose_vefprep1b \quad ch \\$ where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.32 Frontiere_ouverte_gradient_pression_libre_vef

Description: Class for outlet boundary condition in VEF like Orlansky. There is no reference for pressure for theses boundary conditions so it is better to add pressure condition (with Frontiere_ouverte_pression_imposee) on one or two cells (for symmetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (15.50)

Usage:

frontiere_ouverte_gradient_pression_libre_vef

15.33 Frontiere_ouverte_gradient_pression_libre_vefprep1b

Description: Class for outlet boundary condition in VEF P1B/P1NC like Orlansky.

See also: neumann (15.50)

Usage:

frontiere_ouverte_gradient_pression_libre_vefprep1b

15.34 Frontiere_ouverte_k_eps_impose

Description: Turbulence condition imposed on an open boundary called bord (edge) (this situation corresponds to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: condlim base (15)

Usage:

 $frontiere_ouverte_k_eps_impose \ \ ch$

where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.35 Frontiere_ouverte_k_omega_impose

Description: Turbulence condition imposed on an open boundary called bord (edge) (this situation corresponds to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: condlim_base (15)

Usage:

frontiere_ouverte_k_omega_impose ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.36 Frontiere_ouverte_pression_imposee

Description: Imposed pressure condition at the open boundary called bord (edge). The imposed pressure field is expressed in Pa.

See also: neumann (15.50)

Usage:

frontiere_ouverte_pression_imposee ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.37 Frontiere_ouverte_pression_imposee_orlansky

Description: This boundary condition may only be used with VDF discretization. There is no reference for pressure for this boundary condition so it is better to add pressure condition (with Frontiere_ouverte_pression_imposee) on one or two cells (for symetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (15.50)

Usage:

frontiere_ouverte_pression_imposee_orlansky

15.38 Frontiere_ouverte_pression_moyenne_imposee

Description: Class for open boundary with pressure mean level imposed.

See also: neumann (15.50)

Usage:

frontiere_ouverte_pression_moyenne_imposee pext where

• pext float: Mean pressure.

15.39 Frontiere ouverte rayo semi transp

Description: Keyword to set a boundary outlet temperature condition on the boundary called bord (edge) (diffusion flux zero) for a radiation problem with semi transparent gas.

See also: frontiere_ouverte (15.26)

Usage:

frontiere_ouverte_rayo_semi_transp var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'K_Omega_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext', 'H_ext']: Field name.
- **ch** *champ_front_base* (19.1): Boundary field type.

15.40 Frontiere_ouverte_rayo_transp

Description: Keyword to set a boundary outlet temperature condition on the boundary called bord (edge) (diffusion flux zero) for a radiation problem with transparent gas.

See also: frontiere_ouverte (15.26) frontiere_ouverte_rayo_transp_vdf (15.41) frontiere_ouverte_rayo_transp_vef (15.42)

Usage:

frontiere_ouverte_rayo_transp var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'K_Omega_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext', 'H_ext']: Field name.
- **ch** *champ_front_base* (19.1): Boundary field type.

15.41 Frontiere_ouverte_rayo_transp_vdf

Description: doit disparaitre

See also: frontiere_ouverte_rayo_transp (15.40)

Usage:

frontiere_ouverte_rayo_transp_vdf var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'K_Omega_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext', 'H_ext']: Field name.
- **ch** *champ_front_base* (19.1): Boundary field type.

15.42 Frontiere_ouverte_rayo_transp_vef

Description: doit disparaitre

See also: frontiere ouverte rayo transp (15.40)

Usage:

frontiere_ouverte_rayo_transp_vef var_name ch where

- var_name str into ['T_ext', 'C_ext', 'Y_ext', 'K_Eps_ext', 'K_Omega_ext', 'Fluctu_Temperature_ext', 'Flux_Chaleur_Turb_ext', 'V2_ext', 'a_ext', 'tau_ext', 'k_ext', 'omega_ext', 'H_ext']: Field name.
- ch champ front base (19.1): Boundary field type.

15.43 Frontiere_ouverte_rho_u_impose

Description: This keyword is used to designate a condition of imposed mass rate at an open boundary called bord (edge). The imposed mass rate field at the inlet is vectorial and the imposed velocity values are expressed in kg.s-1. This boundary condition can be used only with the Quasi compressible model.

See also: frontiere_ouverte_vitesse_imposee_sortie (15.49)

Usage:

frontiere_ouverte_rho_u_impose ch where

• **ch** champ front base (19.1): Boundary field type.

15.44 Frontiere_ouverte_enthalpie_imposee

Synonymous: frontiere_ouverte_temperature_imposee

Description: Imposed temperature condition at the open boundary called bord (edge) (in the case of fluid inlet). This condition must be associated with an imposed inlet velocity condition. The imposed temperature value is expressed in oC or K.

See also: dirichlet (15.18) entree_temperature_imposee_h (15.22) frontiere_ouverte_temperature_imposee_rayo_transp (15.46) frontiere_ouverte_temperature_imposee_rayo_semi_transp (15.45)

Usage:

frontiere_ouverte_enthalpie_imposee ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.45 Frontiere_ouverte_temperature_imposee_rayo_semi_transp

Description: Imposed temperature condition for a radiation problem with semi transparent gas.

See also: frontiere_ouverte_enthalpie_imposee (15.44)

Usage:

${\bf frontiere_ouverte_temperature_imposee_rayo_semi_transp\ \ ch} \\ {\bf where}$

• **ch** *champ_front_base* (19.1): Boundary field type.

15.46 Frontiere_ouverte_temperature_imposee_rayo_transp

Description: Imposed temperature condition for a radiation problem with transparent gas.

See also: frontiere_ouverte_enthalpie_imposee (15.44)

Usage:

${\bf frontiere_ouverte_temperature_imposee_rayo_transp} \quad {\bf ch} \\ {\bf where} \\$

• **ch** *champ_front_base* (19.1): Boundary field type.

15.47 Frontiere_ouverte_vitesse_imposee

Description: Class for velocity-inlet boundary condition. The imposed velocity field at the inlet is vectorial and the imposed velocity values are expressed in m.s-1.

See also: dirichlet (15.18) frontiere_ouverte_vitesse_imposee_sortie (15.49)

Usage:

frontiere_ouverte_vitesse_imposee ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.48 Frontiere_ouverte_vitesse_imposee_ale

Description: Class for velocity boundary condition on a mobile boundary (ALE framework). The imposed velocity field is vectorial of type Ch_front_input_ALE, Champ_front_ALE or Champ_front_ALE_Beam.

Example: frontiere_ouverte_vitesse_imposee_ALE Champ_front_ALE 2 0.5*cos(0.5*t) 0.0

See also: dirichlet (15.18)

Usage:

Frontiere_ouverte_vitesse_imposee_ALE ch where

• ch champ front base (19.1): Boundary field type.

15.49 Frontiere_ouverte_vitesse_imposee_sortie

Description: Sub-class for velocity boundary condition. The imposed velocity field at the open boundary is vectorial and the imposed velocity values are expressed in m.s-1.

See also: frontiere_ouverte_vitesse_imposee (15.47) frontiere_ouverte_rho_u_impose (15.43)

Usage:

frontiere_ouverte_vitesse_imposee_sortie ch where

• ch champ_front_base (19.1): Boundary field type.

15.50 Neumann

Description: Neumann condition at the boundary called bord (edge): 1). For Navier-Stokes equations, constraint imposed at the boundary; 2). For scalar transport equation, flux imposed at the boundary.

See also: condlim_base (15) frontiere_ouverte_pression_imposee_orlansky (15.37) frontiere_ouverte_gradientpression_impose (15.30) sortie_libre_temperature_imposee_h (15.86) frontiere_ouverte_pression_imposee (15.36) frontiere_ouverte (15.26) frontiere_ouverte_pression_moyenne_imposee (15.38) frontiere_ouvertegradient_pression_libre_vefprep1b (15.33) frontiere_ouverte_gradient_pression_libre_vef (15.32)

Usage:

neumann

15.51 Paroi_adiabatique

Description: Normal zero flux condition at the wall called bord (edge).

See also: condlim base (15)

Usage:

paroi_adiabatique

15.52 Paroi_contact

Description: Thermal condition between two domains. Important: the name of the boundaries in the two domains should be the same. (Warning: there is also an old limitation not yet fixed on the sequential algorithm in VDF to detect the matching faces on the two boundaries: faces should be ordered in the same way). The kind of condition depends on the discretization. In VDF, it is a heat exchange condition, and in VEF, a temperature condition.

Such a coupling requires coincident meshes for the moment. In case of non-coincident meshes, run is stopped and two external files are automatically generated in VEF (connectivity_failed_boundary_name and connectivity_failed_pb_name.med). In 2D, the keyword Decouper_bord_coincident associated to the connectivity_failed_boundary_name file allows to generate a new coincident mesh.

In 3D, for a first preliminary cut domain with HOMARD (fluid for instance), the second problem associated to pb_name (solide in a fluid/solid coupling problem) has to be submitted to HOMARD cutting procedure with connectivity_failed_pb_name.med.

Such a procedure works as while the primary refined mesh (fluid in our example) impacts the fluid/solid interface with a compact shape as described below (values 2 or 4 indicates the number of division from primary faces obtained in fluid domain at the interface after HOMARD cutting):

2-2-2-2-2 2-4-4-4-4-2 2-2-2 2-4-4-4-4-2 2-4-2 2-2-2-2-2 2-2 OK 2-2 2-2-2 2-4-2 2-2 NOT OK

See also: condlim_base (15)

Usage:

paroi_contact autrepb nameb

where

- autrepb str: Name of other problem.
- nameb str: boundary name of the remote problem which should be the same than the local name

15.53 Paroi_contact_fictif

Description: This keyword is derivated from paroi_contact and is especially dedicated to compute coupled fluid/solid/fluid problem in case of thin material. Thanks to this option, solid is considered as a fictitious media (no mesh, no domain associated), and coupling is performed by considering instantaneous thermal equilibrium in it (for the moment).

See also: condlim_base (15)

Usage:

paroi_contact_fictif autrepb nameb conduct_fictif ep_fictive where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- conduct fictif float: thermal conductivity
- ep fictive float: thickness of the fictitious media

15.54 Paroi_contact_rayo

Description: Thermal condition between two domains.

```
See also: condlim_base (15)

Usage:
paroi_contact_rayo autrepb nameb type
where
```

- autrepb str: Name of other problem.
- nameb str: boundary name of the remote problem which should be the same than the local name
- type str into ['TRANSP', 'SEMI_TRANSP']

15.55 Paroi_decalee_robin

Description: This keyword is used to designate a Robin boundary condition (a.u+b.du/dn=c) associated with the Pironneau methodology for the wall laws. The value of given by the delta option is the distance between the mesh (where symmetry boundary condition is applied) and the fictious wall. This boundary condition needs the definition of the dedicated source terms (Source_Robin_or Source_Robin_Scalaire) according the equations used.

```
See also: condlim_base (15)

Usage:
paroi_decalee_robin str

Read str {
    delta float
}
where

• delta float
```

15.56 Paroi_defilante

Description: Keyword to designate a condition where tangential velocity is imposed on the wall called bord (edge). If the velocity components set by the user is not tangential, projection is used.

```
See also: dirichlet (15.18)

Usage:
paroi_defilante ch
where

• ch champ_front_base (19.1): Boundary field type.
```

15.57 Paroi_echange_contact_correlation_vdf

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with

```
the keyword Tranche.
See also: condlim_base (15)
Usage:
paroi_echange_contact_correlation_vdf str
Read str {
      \begin{bmatrix} \mathbf{dir} & int \end{bmatrix}
      [tinf float]
      [tsup float]
      [lambda str]
      [ rho str]
      [ dt_impr float]
      [cp float]
      [\mathbf{mu} \ str]
      [ debit float]
      [dh float]
      [volume str]
      [ nu str]
      [reprise_correlation]
}
where
```

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- **tinf** *float*: Inlet fluid temperature of the 1D model (oC or K).
- tsup *float*: Outlet fluid temperature of the 1D model (oC or K).
- **lambda** *str*: Thermal conductivity of the fluid (W.m-1.K-1).
- rho str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- **dt_impr** *float*: Printing period in name_of_data_file_time.dat files of the 1D model results.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- **debit** *float*: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **dh** *float*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **volume** *str*: Exact volume of the 1D domain (m3) which may be a function of the hydraulic diameter (Dh) and the lateral surface (S) of the meshed boundary.
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- reprise_correlation : Keyword in the case of a resuming calculation with this correlation.

15.58 Paroi_echange_contact_correlation_vef

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with the keyword Tranche_geom.

```
See also: condlim_base (15)

Usage:
paroi_echange_contact_correlation_vef str
Read str {
```

```
[dir int]
       [tinf float]
       [tsup float]
       [lambda str]
       [ rho str]
       [ dt_impr float]
       [ cp float]
       [\mathbf{mu} \ str]
       [ debit float]
       \begin{bmatrix} \mathbf{n} & int \end{bmatrix}
       [ dh str]
       [surface str]
       [ xinf float]
       [xsup float]
       \begin{bmatrix} \mathbf{nu} & str \end{bmatrix}
       [ emissivite_pour_rayonnement_entre_deux_plaques_quasi_infinies | float]
       [reprise_correlation]
}
where
```

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- tinf float: Inlet fluid temperature of the 1D model (oC or K).
- tsup *float*: Outlet fluid temperature of the 1D model (oC or K).
- **lambda** *str*: Thermal conductivity of the fluid (W.m-1.K-1).
- rho str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- **dt_impr** *float*: Printing period in name_of_data_file_time.dat files of the 1D model results.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- **debit** *float*: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **n** *int*: Number of 1D cells of the 1D mesh.
- **dh** *str*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **surface** *str*: Section surface of the channel which may be function f(Dh,x) of the hydraulic diameter (Dh) and x position along the 1D axis (xinf <= x <= xsup)
- xinf float: Position of the inlet of the 1D mesh on the axis direction.
- **xsup** *float*: Position of the outlet of the 1D mesh on the axis direction.
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- emissivite_pour_rayonnement_entre_deux_plaques_quasi_infinies *float*: Coefficient of emissivity for radiation between two quasi infinite plates.
- reprise_correlation : Keyword in the case of a resuming calculation with this correlation.

15.59 Paroi_echange_contact_odvm_vdf

```
Description: not_set

See also: paroi_echange_contact_vdf (15.61)

Usage:
paroi_echange_contact_odvm_vdf autrepb nameb temp h
where
```

• autrepb str: Name of other problem.

- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by :

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

15.60 Paroi_echange_contact_rayo_semi_transp_vdf

Description: Exchange boundary condition in VDF between the semi transparent fluid and the solid for a problem coupled with radiation.

See also: paroi_echange_contact_vdf (15.61)

Usage:

 ${\bf paroi_echange_contact_rayo_semi_transp_vdf} \ \ {\bf autrepb} \ \ {\bf nameb} \ \ {\bf temp} \ \ {\bf h} \\ {\bf where} \\$

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

15.61 Paroi echange contact vdf

Description: Boundary condition type to model the heat flux between two problems. Important: the name of the boundaries in the two problems should be the same.

See also: condlim_base (15) paroi_echange_contact_odvm_vdf (15.59) paroi_echange_contact_vdf_ft (15.62) echange_contact_rayo_transp_vdf (15.19) paroi_echange_contact_rayo_semi_transp_vdf (15.60)

Usage:

paroi_echange_contact_vdf autrepb nameb temp h
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- **h** *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by :

fi = h (T1-T2) where 1/h = d1/lambda1 + 1/val h contact + d2/lambda2

where di : distance between the node where Ti and the wall is found.

15.62 Paroi_echange_contact_vdf_ft

Description: This boundary condition is used between a conduction problem and a thermohydraulic problem with two phases flow (Front-Tracking method) to modelize heat exchange.

See also: paroi_echange_contact_vdf (15.61)

Usage:

 $paroi_echange_contact_vdf_ft \ \ autrepb \ \ nameb \ \ temp \ \ h$ where

- autrepb str: Name of other problem.
- nameb *str*: Name of bord.
- temp str: Name of field.
- **h** *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$

where di: distance between the node where Ti and the wall is found.

15.63 Paroi_echange_contact_vdf_zoom_fin

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature in the case of zoom (fine).

See also: paroi_echange_externe_impose (15.65)

Usage:

paroi_echange_contact_vdf_zoom_fin h_imp himpc text ch
where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** *champ_front_base* (19.1): Boundary field type.

15.64 Paroi_echange_contact_vdf_zoom_grossier

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature in the case of zoom (coarse).

See also: paroi_echange_externe_impose (15.65)

Usage:

paroi_echange_contact_vdf_zoom_grossier h_imp himpc text ch
where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ_front_base (19.1): Boundary field type.

15.65 Paroi_echange_externe_impose

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature.

See also: condlim_base (15) paroi_echange_externe_impose_h (15.66) paroi_echange_externe_impose_rayo_transp (15.68) paroi_echange_externe_impose_rayo_semi_transp (15.67) paroi_echange_contact_vdf_zoom_grossier (15.64) paroi_echange_contact_vdf_zoom_fin (15.63)

Usage:

paroi_echange_externe_impose h_imp himpc text ch
where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- **ch** *champ_front_base* (19.1): Boundary field type.

15.66 Paroi_echange_externe_impose_h

Description: Particular case of class paroi_echange_externe_impose for enthalpy equation.

See also: paroi echange externe impose (15.65)

Usage:

paroi_echange_externe_impose_h h_imp himpc text ch
where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ_front_base (19.1): Boundary field type.

15.67 Paroi echange externe impose rayo semi transp

Description: External type exchange condition for a coupled problem with radiation in semi transparent gas.

See also: paroi_echange_externe_impose (15.65)

Usage:

paroi_echange_externe_impose_rayo_semi_transp h_imp himpc text ch where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ_front_base (19.1): Boundary field type.

15.68 Paroi_echange_externe_impose_rayo_transp

Description: External type exchange condition for a coupled problem with radiation in transparent gas.

See also: paroi_echange_externe_impose (15.65)

Usage:

paroi_echange_externe_impose_rayo_transp h_imp himpc text ch where

- **h_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ_front_base (19.1): Boundary field type.
- text str: External temperature value (expressed in oC or K).
- ch champ_front_base (19.1): Boundary field type.

15.69 Paroi_echange_global_impose

Description: Global type exchange condition (internal) that is to say that diffusion on the first fluid mesh is not taken into consideration.

See also: condlim_base (15) Echange_couplage_thermique (15.5)

Usage:

paroi_echange_global_impose h_imp himpc text ch where

- **h_imp** *str*: Global exchange coefficient value. The global exchange coefficient value is expressed in W.m-2.K-1.
- himpc champ_front_base (19.1): Boundary field type.
- text str: External temperature value. The external temperature value is expressed in oC or K.
- **ch** *champ_front_base* (19.1): Boundary field type.

15.70 Paroi_fixe

Description: Keyword to designate a situation of adherence to the wall called bord (edge) (normal and tangential velocity at the edge is zero).

See also: condlim_base (15) paroi_fixe_iso_Genepi2_sans_contribution_aux_vitesses_sommets (15.71)

Usage:

paroi_fixe

15.71 Paroi fixe iso genepi2 sans contribution aux vitesses sommets

Description: Boundary condition to obtain iso Geneppi2, without interest

See also: paroi_fixe (15.70)

Usage:

paroi_fixe_iso_Genepi2_sans_contribution_aux_vitesses_sommets

15.72 Paroi_flux_impose

Description: Normal flux condition at the wall called bord (edge). The surface area of the flux (W.m-1 in 2D or W.m-2 in 3D) is imposed at the boundary according to the following convention: a positive flux is a flux that enters into the domain according to convention.

See also: condlim_base (15) paroi_flux_impose_rayo_transp (15.75) paroi_flux_impose_rayo_semi_transp_vdf (15.73) paroi_flux_impose_rayo_semi_transp_vef (15.74)

Usage:

paroi_flux_impose ch

where

• ch champ_front_base (19.1): Boundary field type.

15.73 Paroi_flux_impose_rayo_semi_transp_vdf

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in semi transparent gas (in VDF).

See also: paroi_flux_impose (15.72)

Usage:

paroi_flux_impose_rayo_semi_transp_vdf ch
where

• ch champ_front_base (19.1): Boundary field type.

15.74 Paroi_flux_impose_rayo_semi_transp_vef

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in semi transparent gas (in VEF).

See also: paroi flux impose (15.72)

Usage:

paroi_flux_impose_rayo_semi_transp_vef ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.75 Paroi_flux_impose_rayo_transp

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in transparent gas.

See also: paroi_flux_impose (15.72)

Usage:

paroi_flux_impose_rayo_transp ch where

• ch champ_front_base (19.1): Boundary field type.

15.76 Paroi_ft_disc

Description: Boundary condition for Front-Tracking problem in the discontinuous version.

See also: condlim_base (15)

Usage:
paroi_ft_disc type
where

• **type** *paroi_ft_disc_deriv* (15.77): Symetrie condition.

15.77 Paroi_ft_disc_deriv

Description: not_set

See also: objet_lecture (43) symetrie (15.77.1) constant (15.77.2)

Usage:

paroi_ft_disc_deriv

15.77.1 Symetrie

Description: Symetrie condition in the case of two-phase flows

See also: paroi_ft_disc_deriv (15.77)

Usage: symetrie

15.77.2 Constant

Description: condition contact angle fidex. The angle is measured between the wall and the interface in the phase 0.

See also: paroi_ft_disc_deriv (15.77)

Usage:

constant ch

where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.78 Paroi_knudsen_non_negligeable

Description: Boundary condition for number of Knudsen (Kn) above 0.001 where slip-flow condition appears: the velocity near the wall depends on the shear stress: Kn=l/L with l is the mean-free-path of the molecules and L a characteristic length scale.

U(y=0)-Uwall=k(dU/dY)

Where k is a coefficient given by several laws:

Mawxell: k=(2-s)*1/s

Bestok&Karniadakis:k=(2-s)/s*L*Kn/(1+Kn)

Xue&Fan : k=(2-s)/s*L*tanh(Kn)

```
s is a value between 0 and 2 named accommodation coefficient. s=1 seems a good value.
Warning: The keyword is available for VDF calculation only for the moment.
See also: dirichlet (15.18)
Usage:
paroi_knudsen_non_negligeable name_champ_1 champ_1 name_champ_2 champ_2
   • name_champ_1 str into ['vitesse_paroi', 'k']: Field name.
   • champ_1 champ_front_base (19.1): Boundary field type.
   • name_champ_2 str into ['vitesse_paroi', 'k']: Field name.
   • champ_front_base (19.1): Boundary field type.
15.79 Paroi_rugueuse
Description: Rough wall boundary
See also: dirichlet (15.18)
Usage:
paroi_rugueuse str
Read str {
     erugu float
}
where
   • erugu float: Constant value for roughness
15.80
       Paroi temperature imposee
Description: Imposed temperature condition at the wall called bord (edge).
See also: dirichlet (15.18) enthalpie_imposee_paroi (15.88) paroi_temperature_imposee_rayo_transp (15.82)
paroi_temperature_imposee_rayo_semi_transp (15.81)
Usage:
paroi_temperature_imposee ch
where
   • ch champ_front_base (19.1): Boundary field type.
15.81
        Paroi_temperature_imposee_rayo_semi_transp
Description: Imposed temperature condition at the wall called bord (edge) for a radiation problem in semi
transparent gas.
See also: paroi_temperature_imposee (15.80)
Usage:
paroi_temperature_imposee_rayo_semi_transp ch
```

• ch champ_front_base (19.1): Boundary field type.

where

15.82 Paroi_temperature_imposee_rayo_transp

Description: Imposed temperature condition at the wall called bord (edge) for a radiation problem in transparent gas.

See also: paroi_temperature_imposee (15.80)

Usage:

paroi_temperature_imposee_rayo_transp ch
where

• ch champ_front_base (19.1): Boundary field type.

15.83 Periodique

Description: 1). For Navier-Stokes equations, this keyword is used to indicate that the horizontal inlet velocity values are the same as the outlet velocity values, at every moment. As regards meshing, the inlet and outlet edges bear the same name.; 2). For scalar transport equation, this keyword is used to set a periodic condition on scalar. The two edges dealing with this periodic condition bear the same name.

See also: condlim_base (15)

Usage:

periodique

15.84 Scalaire_impose_paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: dirichlet (15.18)

Usage:

scalaire_impose_paroi ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.85 Sortie_libre_rho_variable

Description: Class to define an outlet boundary condition at which the pressure is defined through the given field, whereas the density of the two-phase flow may varies (value of P/rho given in Pa/kg.m-3).

See also: condlim_base (15)

Usage:

sortie_libre_rho_variable ch where

• **ch** *champ_front_base* (19.1): Boundary field type.

15.86 Sortie_libre_temperature_imposee_h

Description: Open boundary for heat equation with enthalpy as unknown.

See also: neumann (15.50)

Usage:

 $sortie_libre_temperature_imposee_h \ \ ch$

where

• ch champ_front_base (19.1): Boundary field type.

15.87 Symetrie

Description: 1). For Navier-Stokes equations, this keyword is used to designate a symmetry condition concerning the velocity at the boundary called bord (edge) (normal velocity at the edge equal to zero and tangential velocity gradient at the edge equal to zero); 2). For scalar transport equation, this keyword is used to set a symmetry condition on scalar on the boundary named bord (edge).

See also: condlim_base (15)

Usage:

symetrie

15.88 Enthalpie_imposee_paroi

Synonymous: temperature_imposee_paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: paroi_temperature_imposee (15.80)

Usage:

enthalpie_imposee_paroi ch

where

• ch champ_front_base (19.1): Boundary field type.

16 discretisation_base

Description: Basic class for space discretization of thermohydraulic turbulent problems.

See also: objet_u (44) vdf (16.5) polymac (16.2) polymac_P0P1NC (16.3) polymac_p0 (16.4) vef (16.6) ef (16.1)

Usage:

16.1 Ef

Description: Element Finite discretization.

See also: discretisation_base (16)

Usage:

16.2 Polymac

Description: polymac discretization (polymac discretization that is not compatible with pb_multi).

```
See also: discretisation_base (16)
```

Usage:

16.3 Polymac_p0p1nc

Description: polymac_P0P1NC discretization (previously polymac discretization compatible with pb_multi).

```
See also: discretisation_base (16)
```

Usage:

16.4 Polymac_p0

Description: polymac_p0 discretization (previously covimac discretization compatible with pb_multi).

```
See also: discretisation_base (16)
```

Usage:

16.5 Vdf

Description: Finite difference volume discretization.

```
See also: discretisation base (16)
```

Usage:

16.6 Vef

Synonymous: vefprep1b

Description: Finite element volume discretization (P1NC/P1-bubble element). Since the 1.5.5 version, several new discretizations are available thanks to the optional keyword Read. By default, the VEFPreP1B keyword is equivalent to the former VEFPreP1B formulation (v1.5.4 and sooner). P0P1 (if used with the strong formulation for imposed pressure boundary) is equivalent to VEFPreP1B but the convergence is slower. VEFPreP1B dis is equivalent to VEFPreP1B dis Read dis { P0 P1 Changement_de_base_P1Bulle 1 Cl_pression_sommet_faible 0 }

```
See also: discretisation_base (16)
```

```
Usage:
vef str

Read str {

    [ changement_de_base_p1bulle int into [0, 1]]
    [ p0  ]
    [ p1  ]
    [ pa  ]
    [ rt  ]
    [ modif_div_face_dirichlet int into [0, 1]]
```

```
[ cl_pression_sommet_faible int into [0, 1]] } where
```

- **changement_de_base_p1bulle** *int into* [0, 1]: changement_de_base_p1bulle 1 This option may be used to have the P1NC/P0P1 formulation (value set to 0) or the P1NC/P1Bulle formulation (value set to 1, the default).
- **p0**: Pressure nodes are added on element centres
- p1 : Pressure nodes are added on vertices
- pa : Only available in 3D, pressure nodes are added on bones
- rt : For P1NCP1B (in TrioCFD)
- modif_div_face_dirichlet int into [0, 1]: This option (by default 0) is used to extend control volumes for the momentum equation.
- cl_pression_sommet_faible int into [0, 1]: This option is used to specify a strong formulation (value set to 0, the default) or a weak formulation (value set to 1) for an imposed pressure boundary condition. The first formulation converges quicker and is stable in general cases. The second formulation should be used if there are several outlet boundaries with Neumann condition (see Ecoulement_Neumann test case for example).

17 domaine

```
Description: Keyword to create a domain.
```

```
See also: objet_u (44) DomaineAxi1d (17.1) IJK_Grid_Geometry (17.2) domaine_ale (17.3)
```

Usage:

Usage:

17.1 Domaineaxi1d

```
Description: 1D domain
See also: domaine (17)
```

17.2 Ijk_grid_geometry

Description: Object to define the grid that will represent the domain of the simulation in IJK discretization

```
See also: domaine (17)

Usage:

IJK_Grid_Geometry str

Read str {

    [ perio_i ]
    [ perio_j ]
    [ perio_k ]
    [ nbelem_i int]
    [ nbelem_j int]
    [ nbelem_k int]
    [ uniform_domain_size_i float]
    [ uniform_domain_size_j float]
```

```
[ uniform_domain_size_k float]
  [ origin_i float]
  [ origin_j float]
  [ origin_k float]
] where

• perio_i : rien to specify the border along the I direction is periodic
• perio_j : rien to specify the border along the J direction is periodic
• perio_k : rien to specify the border along the K direction is periodic
• perio_k : rien to specify the border along the K direction is periodic
• nbelem_i int: the number of elements of the grid in the I direction
• nbelem_j int: the number of elements of the grid in the J direction
• nbelem_k int: the number of elements of the grid in the K direction
• uniform_domain_size_i float: the size of the elements along the I direction
• uniform_domain_size_k float: the size of the elements along the K direction
• uniform_domain_size_k float: the size of the elements along the K direction
```

origin_i float: I-coordinate of the origin of the grid
origin_j float: J-coordinate of the origin of the grid
origin_k float: K-coordinate of the origin of the grid

17.3 Domaine ale

Description: Domain with nodes at the interior of the domain which are displaced in an arbitrarily prescribed way thanks to ALE (Arbitrary Lagrangian-Eulerian) description.

Keyword to specify that the domain is mobile following the displacement of some of its boundaries.

```
See also: domaine (17)
Usage:
```

18 champ_base

18.1 Champ_base

Description: Basic class of fields.

See also: objet_u (44) champ_don_base (18.9) champ_ostwald (18.25) champ_fonc_med (18.14) champ_input_base (18.21) field_uniform_keps_from_ud (18.33)

Usage:

18.2 Champ_fonc_interp

Description: Field that is interpolated from a distant domain via MEDCoupling (remapper).

```
See also: champ_don_base (18.9)

Usage:
Champ_Fonc_Interp str

Read str {

nom_champ str

pb loc str
```

```
pb_dist str
  [dom_loc str]
  [dom_dist str]
  [default_value str]
  nature str
  [use_overlapdec str]
}
where
```

- **nom champ** *str*: Name of the field (for example: temperature).
- **pb_loc** *str*: Name of the local problem.
- **pb_dist** *str*: Name of the distant problem.
- dom_loc str: Name of the local domain.
- dom dist str: Name of the distant domain.
- **default_value** *str*: Name of the distant domain.
- **nature** *str*: Nature of the field (knowledge from MEDCoupling is required; IntensiveMaximum, IntensiveConservation, ...).
- **use_overlapdec** *str*: Nature of the field (knowledge from MEDCoupling is required; IntensiveMaximum, IntensiveConservation, ...).

18.3 Champ_fonc_med_table_temps

Description: Field defined as a fixed spatial shape scaled by a temporal coefficient

```
See also: champ_fonc_med (18.14)
Usage:
Champ Fonc MED Table Temps str
Read str {
     [table temps str]
     [table_temps_lue str]
     [use_existing_domain ]
     [ last_time ]
     [ decoup str]
     [ mesh str]
     domain str
     file str
     field str
     [loc str into ['som', 'elem']]
     [ time float]
}
where
```

- table_temps str: Table containing the temporal coefficient used to scale the field
- table_temps_lue str: Name of the file containing the values of the temporal coefficient used to scale the field
- **use_existing_domain** for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- **last_time** for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str* for inheritance: specify a partition file.

- **mesh** *str* for inheritance: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str for inheritance: Name of the .med file.
- field str for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

18.4 Champ_fonc_med_tabule

```
Description: not set
See also: champ_fonc_med (18.14)
Usage:
Champ_Fonc_MED_Tabule str
Read str {
     [ use_existing_domain ]
     [ last_time ]
     [decoup str]
     [ mesh str]
     domain str
     file str
     field str
     [loc str into ['som', 'elem']]
     [time float]
}
where
```

- use_existing_domain for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- last_time for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str* for inheritance: specify a partition file.
- mesh *str* for inheritance: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str for inheritance: Name of the .med file.
- **field** *str* for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

18.5 Champ_tabule_morceaux

Description: Field defined by tabulated data in each sub-domaine. It makes possible the definition of a field which is a function of other fields.

See also: champ_don_base (18.9) Champ_Fonc_Tabule_Morceaux_Interp (18.6)

Usage:

Champ_Tabule_Morceaux domain_name nb_comp data where

- **domain name** *str*: Name of the domain.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.2): { Defaut val_def sous_domaine_1 val_1 ... sous_domaine_i val_i } By default, the value val_def is assigned to the field. It takes the sous_domaine_i identifier Sous_Domaine (sub_area) type object function, val_i. Sous_Domaine (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_tabule_morceaux type object.

18.6 Champ_fonc_tabule_morceaux_interp

Description: Field defined by tabulated data in each sub-domaine. It makes possible the definition of a field which is a function of other fields. Here we use MEDCoupling to interpolate fields between the two domains.

See also: Champ_Tabule_Morceaux (18.5)

Usage:

Champ_Fonc_Tabule_Morceaux_Interp problem_name nb_comp data where

- **problem name** *str*: Name of the problem.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.2): { Defaut val_def sous_domaine_1 val_1 ... sous_domaine_i val_i } By default, the value val_def is assigned to the field. It takes the sous_domaine_i identifier Sous_Domaine (sub_area) type object function, val_i. Sous_Domaine (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_tabule_morceaux type object.

18.7 Champ_parametrique

Description: Parametric field

See also: champ_don_base (18.9)

Usage:

Champ_Parametrique fichier

where

• fichier str: Filename where fields are read

18.8 Champ_composite

Description: Composite field. Used in multiphase problems to associate data to each phase.

See also: champ_don_base (18.9) champ_musig (18.24)

Usage:

champ_composite dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.2): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

18.9 Champ_don_base

Description: Basic class for data fields (not calculated), p.e. physics properties.

See also: champ_base (18.1) champ_som_lu_vdf (18.26) champ_som_lu_vef (18.27) champ_fonc_tabule (18.18) champ_uniforme_morceaux (18.29) champ_fonc_t (18.17) tayl_green (18.35) champ_don_lu (18.10) Champ_Tabule_Morceaux (18.5) champ_init_canal_sinal (18.19) init_par_partie (18.34) uniform_field (18.36) champ_composite (18.8) champ_fonc_txyz (18.31) champ_fonc_xyz (18.32) champ_fonc_fonction_txyz_morceaux (18.13) champ_tabule_temps (18.28) champ_fonc_reprise (18.15) Champ_Parametrique (18.7) Champ_Fonc_Interp (18.2)

Usage:

18.10 Champ_don_lu

Description: Field to read a data field (values located at the center of the cells) in a file.

See also: champ_don_base (18.9)

Usage:

champ_don_lu dom nb_comp file

where

- **dom** *str*: Name of the domain.
- **nb comp** *int*: Number of field components.
- file str: Name of the file.

This file has the following format:

nb_val_lues -> Number of values readen in th file

Xi Yi Zi -> Coordinates readen in the file

Ui Vi Wi -> Value of the field

18.11 Champ_fonc_fonction

Description: Field that is a function of another field.

See also: champ_fonc_tabule (18.18) champ_fonc_fonction_txyz (18.12)

Usage:

champ_fonc_fonction problem_name inco expression

where

- **problem_name** *str*: Name of problem.
- inco str: Name of the field (for example: temperature).
- **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

18.12 Champ_fonc_fonction_txyz

Description: this refers to a field that is a function of another field and time and/or space coordinates

See also: champ_fonc_fonction (18.11)

Usage:

champ_fonc_fonction_txyz problem_name inco expression where

- **problem_name** *str*: Name of problem.
- inco str: Name of the field (for example: temperature).
- **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

18.13 Champ_fonc_fonction_txyz_morceaux

Description: Field defined by analytical functions in each sub-domaine. On each zone, the value is defined as a function of x,y,z,t and of scalar value taken from a parameter field. This values is associated to the variable 'val' in the expression.

See also: champ_don_base (18.9)

Usage:

champ_fonc_fonction_txyz_morceaux problem_name inco nb_comp data where

- **problem_name** *str*: Name of the problem.
- inco str: Name of the field (for example: temperature).
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.2): { Defaut val_def sous_domaine_1 val_1 ... sous_domaine_i val_i } By default, the value val_def is assigned to the field. It takes the sous_domaine_i identifier Sous_Domaine (sub_area) type object function, val_i. Sous_Domaine (sub_area) type objects must have been previously defined if the operator wishes to use a champ_fonc_fonction_txyz_morceaux type object.

18.14 Champ_fonc_med

Description: Field to read a data field in a MED-format file .med at a specified time. It is very useful, for example, to resume a calculation with a new or refined geometry. The field post-processed on the new geometry at med format is used as initial condition for the resume.

See also: champ_base (18.1) Champ_Fonc_MED_Table_Temps (18.3) Champ_Fonc_MED_Tabule (18.4)

Usage:

```
champ_fonc_med str

Read str {

[ use existing domain ]
```

```
[ last_time ]
  [ decoup str]
  [ mesh str]
  domain str
  file str
  field str
  [ loc str into ['som', 'elem']]
  [ time float]
}
where
```

- **use_existing_domain**: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- last_time: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str*: specify a partition file.
- mesh *str*: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- **domain** *str*: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use_existing_domain'.
- file str: Name of the .med file.
- field str: Name of field to load.
- loc str into ['som', 'elem']: To indicate where the field is localised. Default to 'elem'.
- time *float*: Timestep to load from the MED file. Mutually exclusive with 'last_time' flag.

18.15 Champ_fonc_reprise

Description: This field is used to read a data field in a save file (.xyz or .sauv) at a specified time. It is very useful, for example, to run a thermohydraulic calculation with velocity initial condition read into a save file from a previous hydraulic calculation.

```
See also: champ_don_base (18.9)

Usage:
champ_fonc_reprise [ format ] filename pb_name champ [ fonction ] temps where
```

- **format** *str into* ['binaire', 'formatte', 'xyz', 'single_hdf']: Type of file (the file format). If xyz format is activated, the .xyz file from the previous calculation will be given for filename, and if formatte or binaire is choosen, the .sauv file of the previous calculation will be specified for filename. In the case of a parallel calculation, if the mesh partition does not changed between the previous calculation and the next one, the binaire format should be preferred, because is faster than the xyz format. If single_hdf is used, the same constraints/advantages as binaire apply, but a single (HDF5) file is produced on the filesystem instead of having one file per processor.
- filename str: Name of the save file.
- **pb_name** *str*: Name of the problem.
- **champ** *str*: Name of the problem unknown. It may also be the temporal average of a problem unknown (like moyenne_vitesse, moyenne_temperature,...)
- **fonction** *fonction_champ_reprise* (18.16): Optional keyword to apply a function on the field being read in the save file (e.g. to read a temperature field in Celsius units and convert it for the calculation on Kelvin units, you will use: fonction 1 273.+val)

• **temps** *str*: Time of the saved field in the save file or last_time. If you give the keyword last_time instead, the last time saved in the save file will be used.

18.16 Fonction_champ_reprise

Description: not_set

See also: objet_lecture (43)

Usage:

mot fonction

where

- mot str into ['fonction']
- **fonction** *n word1 word2 ... wordn*: n f1(val) f2(val) ... fn(val)] time

18.17 Champ_fonc_t

Description: Field that is constant in space and is a function of time.

See also: champ don base (18.9)

Usage:

champ_fonc_t val

where

• val n word1 word2 ... wordn: Values of field components (time dependant functions).

18.18 Champ_fonc_tabule

Description: Field that is tabulated as a function of another field.

See also: champ_don_base (18.9) champ_fonc_fonction (18.11)

Usage:

champ_fonc_tabule pb_field dim bloc

where

- **pb_field** bloc_lecture (3.2): block similar to { pb1 field1 } or { pb1 field1 ... pbN fieldN }
- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.2): Values (the table (the value of the field at any time is calculated by linear interpolation from this table) or the analytical expression (with keyword expression to use an analytical expression)).

18.19 Champ init canal sinal

Description: For a parabolic profile on U velocity with an unpredictable disturbance on V and W and a sinusoidal disturbance on V velocity.

See also: champ_don_base (18.9)

Usage:

champ_init_canal_sinal dim bloc

where

- dim int: Number of field components.
- bloc bloc_lec_champ_init_canal_sinal (18.20): Parameters for the class champ_init_canal_sinal.

18.20 Bloc_lec_champ_init_canal_sinal

```
Description: Parameters for the class champ_init_canal_sinal.
in 2D:
U=ucent*y(2h-y)/h/h
V=ampli bruit*rand+ampli sin*sin(omega*x)
rand: unpredictable value between -1 and 1.
in 3D:
U=ucent*y(2h-y)/h/h
V=ampli_bruit*rand1+ampli_sin*sin(omega*x)
W=ampli bruit*rand2
rand1 and rand2: unpredictables values between -1 and 1.
See also: objet_lecture (43)
Usage:
      ucent float
      h float
      ampli bruit float
      [ ampli sin float]
      omega float
      [ dir_flow int into [0, 1, 2]]
      [ dir_wall int into [0, 1, 2]]
      [ min_dir_flow float]
      [min_dir_wall float]
}
where
   • ucent float: Velocity value at the center of the channel.
   • h float: Half hength of the channel.
   • ampli bruit float: Amplitude for the disturbance.
   • ampli sin float: Amplitude for the sinusoidal disturbance (by default equals to ucent/10).
   • omega float: Value of pulsation for the of the sinusoidal disturbance.
   • dir_flow int into [0, 1, 2]: Flow direction for the initialization of the flow in a channel.
      - if dir flow=0, the flow direction is X
      - if dir flow=1, the flow direction is Y
      - if dir flow=2, the flow direction is Z
      Default value for dir_flow is 0
   • dir_wall int into [0, 1, 2]: Wall direction for the initialization of the flow in a channel.
      - if dir_wall=0, the normal to the wall is in X direction
      - if dir_wall=1, the normal to the wall is in Y direction
      - if dir_wall=2, the normal to the wall is in Z direction
      Default value for dir_flow is 1
```

- min_dir_flow float: Value of the minimum coordinate in the flow direction for the initialization of the flow in a channel. Default value for dir_flow is 0.
- min_dir_wall float: Value of the minimum coordinate in the wall direction for the initialization of the flow in a channel. Default value for dir_flow is 0.

18.21 Champ_input_base

```
Description: not_set
See also: champ_base (18.1) champ_input_p0 (18.22) champ_input_p0_composite (18.23)
Usage:
champ_input_base str
Read str {
     nb_comp int
     nom str
     [ initial_value n \times 1 \times 2 \dots \times n]
     probleme str
     [ sous_zone str]
}
where
   • nb_comp int
   • nom str
   • initial_value n x1 x2 ... xn
   • probleme str
   • sous_zone str
18.22
        Champ_input_p0
Description: not_set
See also: champ_input_base (18.21)
Usage:
champ_input_p0 str
Read str {
     nb_comp int
     nom str
     [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
     [ sous_zone str]
}
where
   • nb_comp int for inheritance
   • nom str for inheritance
   • initial_value n x1 x2 ... xn for inheritance
   • probleme str for inheritance
   • sous_zone str for inheritance
```

18.23 Champ_input_p0_composite

Description: Field used to define a classical champ input p0 field (for ICoCo), but with a predefined field for the initial state.

```
See also: champ_input_base (18.21)
Usage:
champ_input_p0_composite str
Read str {
     [initial_field champ_base]
     [input_field champ_input_p0]
     nb_comp int
     nom str
     [ initial_value n \times 1 \times 2 \dots \times n]
     probleme str
     [ sous_zone str]
where
   • initial_field champ_base (18.1): The field used for initialization
   • input_field champ_input_p0 (18.22): The input field for ICoCo
   • nb_comp int for inheritance
   • nom str for inheritance
   • initial_value n x1 x2 ... xn for inheritance
   • probleme str for inheritance
   • sous_zone str for inheritance
18.24 Champ_musig
Description: MUSIG field. Used in multiphase problems to associate data to each phase.
See also: champ_composite (18.8)
Usage:
champ_musig bloc
where
   • bloc bloc_lecture (3.2): Not set
18.25 Champ_ostwald
Description: This keyword is used to define the viscosity variation law:
Mu(T) = K(T)*(D:D/2)**((n-1)/2)
See also: champ_base (18.1)
Usage:
champ_ostwald
        Champ_som_lu_vdf
18.26
Description: Keyword to read in a file values located at the nodes of a mesh in VDF discretization.
See also: champ_don_base (18.9)
Usage:
```

champ_som_lu_vdf domain_name dim tolerance file

where

- domain_name str: Name of the domain.
- dim int: Value of the dimension of the field.
- tolerance float: Value of the tolerance to check the coordinates of the nodes.
- file str: name of the file

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

18.27 Champ_som_lu_vef

Description: Keyword to read in a file values located at the nodes of a mesh in VEF discretization.

See also: champ_don_base (18.9)

Usage:

champ_som_lu_vef domain_name dim tolerance file

where

- domain name str: Name of the domain.
- dim int: Value of the dimension of the field.
- tolerance *float*: Value of the tolerance to check the coordinates of the nodes.
- file str: Name of the file.

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

18.28 Champ tabule temps

Description: Field that is constant in space and tabulated as a function of time.

See also: champ_don_base (18.9)

Usage:

champ_tabule_temps dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.2): Values as a table. The value of the field at any time is calculated by linear interpolation from this table.

18.29 Champ_uniforme_morceaux

Description: Field which is partly constant in space and stationary.

See also: champ_don_base (18.9) valeur_totale_sur_volume (18.37) champ_uniforme_morceaux_tabule_temps (18.30)

Usage:

champ_uniforme_morceaux nom_dom nb_comp data where

- nom_dom str: Name of the domain to which the sub-areas belong.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.2): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

18.30 Champ_uniforme_morceaux_tabule_temps

Description: this type of field is constant in space on one or several sub_zones and tabulated as a function of time.

See also: champ_uniforme_morceaux (18.29)

Usage:

champ_uniforme_morceaux_tabule_temps nom_dom nb_comp data where

- **nom_dom** *str*: Name of the domain to which the sub-areas belong.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.2): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ Uniforme Morceaux(partly uniform field) type object.

18.31 Champ fonc txyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on the time and the space.

See also: champ_don_base (18.9)

Usage:

champ_fonc_txyz dom val
where

- dom str: Name of domain of calculation
- val n word1 word2 ... wordn: List of functions on (t,x,y,z).

18.32 Champ_fonc_xyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on (x,y,z).

See also: champ_don_base (18.9)

```
Usage:
champ_fonc_xyz dom val
where
   • dom str: Name of domain of calculation.
   • val n word1 word2 ... wordn: List of functions on (x,y,z).
18.33
        Field_uniform_keps_from_ud
Description: field which allows to impose on a domain K and EPS values derived from U velocity and D
hydraulic diameter
See also: champ_base (18.1)
Usage:
field_uniform_keps_from_ud str
Read str {
     u float
     d float
where
   • u float: value of velocity specified in boundary condition.
   • d float: value of hydraulic diameter specified in boundary condition
18.34
       Init_par_partie
Description: ne marche que pour n_comp=1
See also: champ_don_base (18.9)
Usage:
init_par_partie n_comp val1 val2 val3
where
   • n_comp int into [1]
   • val1 float
   • val2 float
   • val3 float
18.35
        Tayl_green
Description: Class Tayl_green.
See also: champ_don_base (18.9)
```

Usage:

where

tayl_green dim

• dim int: Dimension.

18.36 Uniform field

Synonymous: champ_uniforme

Description: Field that is constant in space and stationary.

See also: champ don base (18.9)

Usage:

uniform field val

where

• val n x1 x2 ... xn: Values of field components.

18.37 Valeur_totale_sur_volume

Description: Similar as Champ_Uniforme_Morceaux with the same syntax. Used for source terms when we want to specify a source term with a value given for the volume (eg: heat in Watts) and not a value per volume unit (eg: heat in Watts/m3).

See also: champ_uniforme_morceaux (18.29)

Usage:

valeur_totale_sur_volume nom_dom nb_comp data where

- **nom_dom** *str*: Name of the domain to which the sub-areas belong.
- **nb_comp** *int*: Number of field components.
- data bloc_lecture (3.2): { Defaut val_def sous_zone_1 val_1 ... sous_zone_i val_i } By default, the value val_def is assigned to the field. It takes the sous_zone_i identifier Sous_Zone (sub_area) type object value, val_i. Sous_Zone (sub_area) type objects must have been previously defined if the operator wishes to use a Champ_Uniforme_Morceaux(partly_uniform_field) type object.

19 champ_front_base

19.1 Champ_front_base

Description: Basic class for fields at domain boundaries.

See also: objet_u (44) Champ_front_debit_QC_VDF_fonc_t (19.9) Champ_front_debit_QC_VDF (19.8) champ_front_pression_from_u (19.34) champ_front_contact_vef (19.22) champ_front_tangentiel_vef (19.38) champ_front_MED (19.16) champ_front_uniforme (19.39) champ_front_fonction (19.30) champ_front_debit_massique (19.24) champ_front_tabule (19.36) ch_front_input (19.14) champ_front_debit (19.23) champ_front_xyz_debit (19.41) champ_front_lu (19.31) boundary_field_inward (19.12) champ_front_normal_vef (19.33) champ_front_fonc_pois_tube (19.26) champ_front_bruite (19.17) champ_front_fonc_txyz (19.28) champ_front_fonc_pois_ipsn (19.25) champ_front_calc (19.18) champ_front_composite (19.19) champ_front_fonc_t (19.27) champ_front_fonc_xyz (19.29) champ_front_recyclage (19.35) Champ_front_Parametrique (19.6) champ_front_vortex (19.40) boundary_field_uniform_keps_from_ud (19.13) Champ_front_synt (19.10) champ_front_zoom (19.42) Champ_front_ALE_Beam (19.5) Ch_front_input_ALE (19.3) Champ_front_ale (19.7) Boundary_field_keps_from_ud (19.2)

Usage:

19.2 Boundary_field_keps_from_ud

Description: To specify a K-Eps inlet field with hydraulic diameter, speed, and turbulence intensity (VDF only)

```
See also: champ_front_base (19.1)

Usage:

Boundary_field_keps_from_ud str

Read str {

    u champ_front_base
    d float
    i float

}

where

• u champ_front_base (19.1): U 0 Initial velocity magnitude
• d float: Hydraulic diameter
• i float: Turbulence intensity [
```

19.3 Ch_front_input_ale

Description: Class to define a boundary condition on a moving boundary of a mesh (only for the Arbitrary Lagrangian-Eulerian framework).

Example: Ch_front_input_ALE { nb_comp 3 nom VITESSE_IN_ALE probleme pb initial_value 3 1. 0. 0. }

See also: champ_front_base (19.1)

Usage:

19.4 Champ_front_xyz_tabule

Description: Space dependent field on the boundary, tabulated as a function of time.

```
See also: champ front fonc txyz (19.28)
```

Usage:

Champ_Front_xyz_Tabule val bloc

where

- val n word1 word2 ... wordn: Values of field components (mathematical expressions).
- **bloc** *bloc_lecture* (3.2): {nt1 t2 t3tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...] }

Values are entered into a table based on n couples (ti, ui) if nb_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

19.5 Champ_front_ale_beam

Description: Class to define a Beam on a FSI boundary.

```
See also: champ_front_base (19.1)
```

Usage:

Champ_front_ALE_Beam val

where

• val n word1 word2 ... wordn: Example: 3 0 0 0

19.6 Champ_front_parametrique

Description: Parametric boundary field

See also: champ_front_base (19.1)

Usage:

Champ_front_Parametrique fichier

where

• fichier str: Filename where boundary fields are read

19.7 Champ_front_ale

Description: Class to define a boundary condition on a moving boundary of a mesh (only for the Arbitrary Lagrangian-Eulerian framework).

See also: champ_front_base (19.1)

Usage:

Champ_front_ale val

where

• **val** *n word1 word2* ... *wordn*: Example: 2 -y*0.01 x*0.01

19.8 Champ_front_debit_qc_vdf

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate is kept constant during a transient.

See also: champ_front_base (19.1)

Usage:

Champ_front_debit_QC_VDF dimension liste [moyen] pb_name where

- **dimension** *int*: Problem dimension
- **liste** *bloc_lecture* (3.2): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim }
- moyen str: Option to use rho mean value
- **pb** name *str*: Problem name

19.9 Champ_front_debit_qc_vdf_fonc_t

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate could be constant or time-dependent.

```
See also: champ_front_base (19.1)
```

Usage:

Champ_front_debit_QC_VDF_fonc_t dimension liste [moyen] pb_name where

- dimension int: Problem dimension
- **liste** *bloc_lecture* (3.2): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim } where val1 ... valdim are constant or function of time.
- moyen str: Option to use rho mean value
- **pb_name** *str*: Problem name

19.10 Champ_front_synt

Description: Boundary condition to create the synthetic fluctuations as inlet boundary. Available only for 3D configurations.

```
See also: champ_front_base (19.1)
```

Usage:

Champ_front_synt dim bloc

where

- dim int: Number of field components. It should be 3!
- bloc bloc_lecture_turb_synt (19.11): bloc containing the parameters of the synthetic turbulence

19.11 Bloc lecture turb synt

Description: bloc containing parameters of the synthetic turbulence

```
See also: objet_lecture (43)

Usage:
{

moyenne x1 x2 (x3)
lenghtScale float
nbModes int
turbKinEn float
turbDissRate float
ratioCutoffWavenumber float
KeOverKmin float
timeScale float
dir_fluct x1 x2 (x3)
}
where
```

- moyenne x1 x2 (x3): components of the average velocity fields
- lenghtScale float: turbulent length scale

- **nbModes** *int*: number of Fourier modes
- turbKinEn float: turbulent kinetic energy (k)
- turbDissRate float: turbulent dissipation rate (epsilon)
- ratioCutoffWavenumber float: ratio between the cut-off wavenumber and pi/delta
- **KeOverKmin** *float*: ratio of the most energetic wavenumber Ke over the minimum wavenumber Kmin representing the largest turbulent eddies
- timeScale *float*: turbulent time scale
- **dir_fluct** x1 x2 (x3): directions for the velocity fluctations (e.g 1 0 0 generates velocity fluctuations in the x-direction only)

19.12 Boundary_field_inward

Description: this field is used to define the normal vector field standard at the boundary in VDF or VEF discretization.

```
See also: champ_front_base (19.1)

Usage:
boundary_field_inward str

Read str {

    normal_value str
}
where
```

• **normal_value** *str*: normal vector value (positive value for a vector oriented outside to inside) which can depend of the time.

19.13 Boundary_field_uniform_keps_from_ud

Description: field which allows to impose on a boundary K and EPS values derived from U velocity and D hydraulic diameter

```
See also: champ_front_base (19.1)

Usage:
boundary_field_uniform_keps_from_ud str

Read str {
    u float
    d float
}
where

• u float: value of velocity
```

• d float: value of hydraulic diameter

19.14 Ch_front_input

```
Description: not_set
See also: champ_front_base (19.1) ch_front_input_uniforme (19.15)
Usage:
ch_front_input str
Read str {
     nb_comp int
     nom str
     [initial_value n \times 1 \times 2 \dots \times n]
     probleme str
      [ sous_zone str]
}
where
   • nb comp int
   • nom str
   • initial_value n x1 x2 ... xn
   • probleme str
   • sous_zone str
```

19.15 Ch front input uniforme

See also: ch_front_input (19.14)

Description: for coupling, you can use ch_front_input_uniforme which is a champ_front_uniforme, which use an external value. It must be used with Problem.setInputField.

```
Usage:
ch_front_input_uniforme str

Read str {

    nb_comp int
    nom str
    [initial_value n x1 x2 ... xn]
    probleme str
    [sous_zone str]
}
where

• nb_comp int for inheritance
• nom str for inheritance
• initial_value n x1 x2 ... xn for inheritance
• probleme str for inheritance
• sous_zone str for inheritance
```

19.16 Champ_front_med

Description: Field allowing the loading of a boundary condition from a MED file using Champ_fonc_med

See also: champ_front_base (19.1)

Usage:

 $champ_front_MED \quad champ_fonc_med$

where

• **champ_fonc_med** *champ_base* (18.1): a champ_fonc_med loading the values of the unknown on a domain boundary

19.17 Champ_front_bruite

Description: Field which is variable in time and space in a random manner.

See also: champ front base (19.1)

Usage:

champ_front_bruite nb_comp bloc

where

- **nb comp** *int*: Number of field components.
- **bloc** *bloc_lecture* (3.2): { [N val L val] Moyenne m_1....[m_i] Amplitude A_1....[A_i]}: Random nois: If N and L are not defined, the ith component of the field varies randomly around an average value m_i with a maximum amplitude A_i.

White noise: If N and L are defined, these two additional parameters correspond to L, the domain length and N, the number of nodes in the domain. Noise frequency will be between 2*Pi/L and 2*Pi*N/(4*L).

For example, formula for velocity: u=U0(t) v=U1(t)Uj(t)=Mj+2*Aj*bruit_blanc where bruit_blanc (white_noise) is the formula given in the mettre_a_jour (update) method of the Champ_front_bruite (noise_boundary_field) (Refer to the Champ_front_bruite.cpp file).

19.18 Champ_front_calc

Description: This keyword is used on a boundary to get a field from another boundary. The local and remote boundaries should have the same mesh. If not, the Champ_front_recyclage keyword could be used instead. It is used in the condition block at the limits of equation which itself refers to a problem called pb1. We are working under the supposition that pb1 is coupled to another problem.

See also: champ_front_base (19.1)

Usage:

champ_front_calc problem_name bord field_name
where

- **problem_name** *str*: Name of the other problem to which pb1 is coupled.
- **bord** *str*: Name of the side which is the boundary between the 2 domains in the domain object description associated with the problem_name object.
- **field_name** *str*: Name of the field containing the value that the user wishes to use at the boundary. The field_name object must be recognized by the problem_name object.

19.19 Champ_front_composite

Description: Composite front field. Used in multiphase problems to associate data to each phase.

See also: champ_front_base (19.1) champ_front_musig (19.32)

Usage:

champ_front_composite dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc_lecture* (3.2): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

19.20 Champ_front_contact_rayo_semi_transp_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems with radiation in semi transparent fluid.

See also: champ_front_contact_vef (19.22)

Usage:

champ_front_contact_rayo_semi_transp_vef local_pb local_boundary remote_pb remote_boundary

where

- **local_pb** *str*: Name of the problem.
- local_boundary str: Name of the boundary.
- **remote_pb** *str*: Name of the second problem.
- remote_boundary str: Name of the boundary in the second problem.

19.21 Champ_front_contact_rayo_transp_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems with radiation in transparent fluid.

See also: champ_front_contact_vef (19.22)

Usage:

champ_front_contact_rayo_transp_vef local_pb local_boundary remote_pb remote_boundary where

- local_pb str: Name of the problem.
- local_boundary str: Name of the boundary.
- remote_pb str: Name of the second problem.
- remote_boundary str: Name of the boundary in the second problem.

19.22 Champ_front_contact_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems.

See also: champ_front_base (19.1) champ_front_contact_rayo_transp_vef (19.21) champ_front_contact_rayo_semi_transp_vef (19.20)

Usage:

champ_front_contact_vef local_pb local_boundary remote_pb remote_boundary where

- local pb str: Name of the problem.
- local_boundary str: Name of the boundary.
- remote_pb str: Name of the second problem.
- remote_boundary str: Name of the boundary in the second problem.

19.23 Champ_front_debit

Description: This field is used to define a flow rate field instead of a velocity field for a Dirichlet boundary condition on Navier-Stokes equations.

See also: champ_front_base (19.1)

Usage:

champ_front_debit ch

where

• **ch** champ_front_base (19.1): uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_txyz that depends only on time.

19.24 Champ_front_debit_massique

Description: This field is used to define a flow rate field using the density

See also: champ_front_base (19.1)

Usage:

champ_front_debit_massique ch

where

• **ch** *champ_front_base* (19.1): uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_txyz that depends only on time.

19.25 Champ_front_fonc_pois_ipsn

Description: Boundary field champ_front_fonc_pois_ipsn.

See also: champ_front_base (19.1)

Usage:

```
champ_front_fonc_pois_ipsn r_tube umoy r_loc
where
```

- r_tube float
- **umoy** n x1 x2 ... xn
- $r_{loc} x1 x2 (x3)$

19.26 Champ_front_fonc_pois_tube

Description: Boundary field champ_front_fonc_pois_tube.

See also: champ_front_base (19.1)

Usage:

champ_front_fonc_pois_tube r_tube umoy r_loc r_loc_mult
where

- r_tube float
- **umoy** n x1 x2 ... xn
- r_loc x1 x2 (x3)
- r_loc_mult n1 n2 (n3)

19.27 Champ_front_fonc_t

Description: Boundary field that depends only on time.

See also: champ_front_base (19.1)

Usage:

champ_front_fonc_t val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

19.28 Champ_front_fonc_txyz

Description: Boundary field which is not constant in space and in time.

See also: champ_front_base (19.1) Champ_Front_xyz_Tabule (19.4)

Usage:

champ_front_fonc_txyz val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

19.29 Champ_front_fonc_xyz

Description: Boundary field which is not constant in space.

See also: champ front base (19.1)

Usage:

champ_front_fonc_xyz val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

19.30 Champ_front_fonction

Description: boundary field that is function of another field

See also: champ_front_base (19.1)

Usage:

champ_front_fonction dim inco expression

where

- dim int: Number of field components.
- **inco** *str*: Name of the field (for example: temperature).
- **expression** *str*: keyword to use a analytical expression like 10.*EXP(-0.1*val) where val be the keyword for the field.

19.31 Champ_front_lu

Description: boundary field which is given from data issued from a read file. The format of this file has to be the same that the one generated by Ecrire fichier xyz valeur

Example for K and epsilon quantities to be defined for inlet condition in a boundary named 'entree': entree frontiere_ouverte_K_Eps_impose Champ_Front_lu dom 2pb_K_EPS_PERIO_1006.306198.dat

See also: champ_front_base (19.1)

Usage:

champ_front_lu domaine dim file

where

- domaine str: Name of domain
- dim int: number of components
- file str: path for the read file

19.32 Champ front musig

Description: MUSIG front field. Used in multiphase problems to associate data to each phase.

See also: champ_front_composite (19.19)

Usage:

champ_front_musig bloc

where

• **bloc** *bloc_lecture* (3.2): Not set

19.33 Champ_front_normal_vef

Description: Field to define the normal vector field standard at the boundary in VEF discretization.

```
See also: champ_front_base (19.1)

Usage: champ_front_normal_vef mot vit_tan where
```

- mot str into ['valeur normale']: Name of vector field.
- vit_tan *float*: normal vector value (positive value for a vector oriented outside to inside).

19.34 Champ_front_pression_from_u

Description: this field is used to define a pressure field depending of a velocity field.

```
See also: champ_front_base (19.1)

Usage: champ_front_pression_from_u expression where
```

• expression str: value depending of a velocity (like $2 * u_moy^2$).

19.35 Champ_front_recyclage

Description: This keyword is used on a boundary to get a field from another boundary.

It is to use, in a general way, on a boundary of a local_pb problem, a field calculated from a linear combination of an imposed field g(x,y,z,t) with an instantaneous f(x,y,z,t) and a spatial mean field f(x,y,z) extracted from a plane of a problem named pb (pb may be local_pb itself): For each component i, the field F applied on the boundary will be:

```
F_{i}(x,y,z,t) = alpha_{i}*g_{i}(x,y,z,t) + xsi_{i}*[f_{i}(x,y,z,t)-beta_{i}*<fi>]
```

```
Usage:
champ_front_recyclage str

Read str {

pb_champ_evaluateur pb_champ_evaluateur
[distance_plan x1 x2 (x3)]
[ampli_moyenne_imposee n x1 x2 ... xn]
[ampli_moyenne_recyclee n x1 x2 ... xn]
[ampli_fluctuation n x1 x2 ... xn]
[direction_anisotrope int into [1, 2, 3]]
[moyenne_imposee moyenne_imposee_deriv]
[moyenne_recyclee str]
[fichier str]
}
where
```

• pb_champ_evaluateur pb_champ_evaluateur (31)

- **distance_plan** x1 x2 (x3): Vector which gives the distance between the boundary and the plane from where the field F will be extracted. By default, the vector is zero, that should imply the two domains have coincident boundaries.
- ampli_moyenne_imposee n x1 x2 ... xn: 2l3 alpha(0) alpha(1) [alpha(2)]: alpha_i coefficients (by default =1)
- ampli_moyenne_recyclee n x1 x2 ... xn: 2l3 beta(0) beta(1) [beta(2)]}: beta_i coefficients (by default =1)
- ampli_fluctuation n x1 x2 ... xn: 2|3 gamma(0) gamma(1) [gamma(2)]}: gamma_i coefficients (by default =1)
- **direction_anisotrope** *int into* [1, 2, 3]: If an integer is given for direction (X:1, Y:2, Z:3, by default, direction is negative), the imposed field g will be 0 for the 2 other directions.
- moyenne_imposee moyenne_imposee_deriv (28): Value of the imposed g field.
- moyenne_recyclee *str*: Method used to perform a spatial or a temporal averaging of field to specify <f>. <f> can be the surface mean of f on the plane (surface option, see below) or it can be read from several files (for example generated by the chmoy_faceperio option of the Traitement_particulier keyword to obtain a temporal mean field). The option methode_recyc can be: surfacique, Surface mean for <f> from f values on the plane; Or one of the following methode_moy options applied to read a temporal mean field <f>(x,y,z): interpolation, connexion_approchee or connexion_exacte
- fichier str

19.36 Champ_front_tabule

Description: Constant field on the boundary, tabulated as a function of time.

See also: champ_front_base (19.1) champ_front_tabule_lu (19.37)

Usage:

champ_front_tabule nb_comp bloc
where

- **nb_comp** *int*: Number of field components.
- bloc bloc_lecture (3.2): {nt1 t2 t3tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...]

Values are entered into a table based on n couples (ti, ui) if nb_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

19.37 Champ_front_tabule_lu

Description: Constant field on the boundary, tabulated from a specified column file. Lines starting with # are ignored.

See also: champ_front_tabule (19.36)

Usage:

champ_front_tabule_lu nb_comp column_file
where

- **nb_comp** *int*: Number of field components.
- **column_file** *str*: Name of the column file.

19.38 Champ_front_tangentiel_vef

Description: Field to define the tangential velocity vector field standard at the boundary in VEF discretization.

See also: champ_front_base (19.1)

Usage:

champ_front_tangentiel_vef mot vit_tan
where

- mot str into ['vitesse tangentielle']: Name of vector field.
- vit_tan float: Vector field standard [m/s].

19.39 Champ_front_uniforme

Description: Boundary field which is constant in space and stationary.

See also: champ_front_base (19.1)

Usage:

champ_front_uniforme val

where

• val n x1 x2 ... xn: Values of field components.

19.40 Champ_front_vortex

Description: not_set

See also: champ_front_base (19.1)

Usage:

champ_front_vortex dom geom nu utau

where

- dom str: Name of domain.
- geom str
- nu float
- utau float

19.41 Champ_front_xyz_debit

Description: This field is used to define a flow rate field with a velocity profil which will be normalized to match the flow rate chosen.

See also: champ_front_base (19.1)

Usage:

champ_front_xyz_debit str
Read str {

[velocity_profil champ_front_base]

```
flow_rate champ_front_base
}
where
```

- **velocity_profil** *champ_front_base* (19.1): velocity_profil 0 velocity field to define the profil of velocity.
- flow_rate champ_front_base (19.1): flow_rate 1 uniform field in space to define the flow rate. It could be, for example, champ_front_uniforme, ch_front_input_uniform or champ_front_fonc_t

19.42 Champ_front_zoom

Description: Basic class for fields at boundaries of two problems (global problem and local problem).

See also: champ_front_base (19.1)

Usage:

champ_front_zoom pbMg pb_1 pb_2 bord inco
where

- **pbMg** *str*: Name of multi-grid problem.
- **pb_1** *str*: Name of first problem.
- **pb_2** *str*: Name of second problem.
- bord str: Name of bord.
- inco str: Name of field.

20 interpolation_ibm_base

Description: Base class for all the interpolation methods available in the Immersed Boundary Method (IBM).

See also: objet_u (44) ibm_element_fluide (20.3) ibm_gradient_moyen (20.5) ibm_aucune (20.2)

Usage:

```
interpolation_ibm_base [ impr ] [ nb_histo_boxes_impr ]
where
```

- impr : To print IBM-related data
- nb_histo_boxes_impr int: number of histogram boxes for printed data

20.1 Interpolation_ibm_power_law_tbl_u_star

Description: Immersed Boundary Method (IBM): law u star.

See also: ibm gradient moyen (20.5)

Usage:

```
Interpolation_IBM_power_law_tbl_u_star str
Read str {
    points_solides champ_base
```

est_dirichlet champ_base
correspondance_elements champ_base

```
elements_solides champ_base
     [impr]
     [ nb_histo_boxes_impr int]
}
where
```

- points_solides champ_base (18.1): Node field giving the projection of the node on the immersed boundary
- est_dirichlet champ_base (18.1): Node field of booleans indicating whether the node belong to an element where the interface is
- correspondance_elements champ_base (18.1): Cell field giving the SALOME cell number
- elements_solides champ_base (18.1): Node field giving the element number containing the solid
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

20.2 Ibm aucune

```
Synonymous: interpolation_ibm_aucune
```

Description: Immersed Boundary Method (IBM): no interpolation.

```
See also: interpolation_ibm_base (20)
```

Usage:

```
ibm_aucune [impr][nb_histo_boxes_impr]
where
```

- impr : To print IBM-related data
- nb_histo_boxes_impr int: number of histogram boxes for printed data

20.3 Ibm element fluide

```
Synonymous: interpolation_ibm_element_fluide
```

Description: Immersed Boundary Method (IBM): fluid element interpolation.

See also: interpolation_ibm_base (20) ibm_hybride (20.4) ibm_power_law_tbl (20.6)

```
Usage:
```

```
ibm_element_fluide str
Read str {
     points_fluides champ_base
     points_solides champ_base
     elements_fluides champ_base
     correspondance_elements champ_base
     [impr]
     [ nb_histo_boxes_impr int]
where
```

- **points_fluides** *champ_base* (18.1): Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (18.1): Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (18.1): Node field giving the number of the element (cell) containing the pure fluid point
- correspondance_elements champ_base (18.1): Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

20.4 Ibm_hybride

Synonymous: interpolation_ibm_hybride

Description: Immersed Boundary Method (IBM): hybrid (fluid/mean gradient) interpolation.

```
See also: ibm_element_fluide (20.3)

Usage:
ibm_hybride str

Read str {

    est_dirichlet champ_base
    elements_solides champ_base
    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
}

where
```

- est_dirichlet champ_base (18.1): Node field of booleans indicating whether the node belong to an element where the interface is
- **elements_solides** *champ_base* (18.1): Node field giving the element number containing the solid point
- **points_fluides** *champ_base* (18.1) for inheritance: Node field giving the projection of the point below (points_solides) falling into the pure cell fluid
- **points_solides** *champ_base* (18.1) for inheritance: Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (18.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance_elements** *champ_base* (18.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

20.5 Ibm gradient moven

Synonymous: interpolation ibm gradient moven

Description: Immersed Boundary Method (IBM): mean gradient interpolation.

```
See also: interpolation_ibm_base (20) Interpolation_IBM_power_law_tbl_u_star (20.1)

Usage:
ibm_gradient_moyen str

Read str {

    points_solides champ_base
    est_dirichlet champ_base
    correspondance_elements champ_base
    elements_solides champ_base
    [impr ]
    [nb_histo_boxes_impr int]

}

where
```

- **points_solides** *champ_base* (18.1): Node field giving the projection of the node on the immersed boundary
- est_dirichlet champ_base (18.1): Node field of booleans indicating whether the node belong to an element where the interface is
- correspondance_elements champ_base (18.1): Cell field giving the SALOME cell number
- **elements_solides** *champ_base* (18.1): Node field giving the element number containing the solid point
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

20.6 Ibm_power_law_tbl

```
Synonymous: interpolation_ibm_power_law_tbl
```

Description: Immersed Boundary Method (IBM): power law interpolation.

```
See also: ibm_element_fluide (20.3)

Usage:
ibm_power_law_tbl str

Read str {

    [formulation_linear_pwl int]
    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [impr ]
    [nb_histo_boxes_impr int]
}

where
```

- formulation_linear_pwl int: Choix formulation lineaire ou non
- **points_fluides** *champ_base* (18.1) for inheritance: Node field giving the projection of the point below (points_solides) falling into the pure cell fluid

- **points_solides** *champ_base* (18.1) for inheritance: Node field giving the projection of the node on the immersed boundary
- **elements_fluides** *champ_base* (18.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance_elements** *champ_base* (18.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- nb_histo_boxes_impr int for inheritance: number of histogram boxes for printed data

21 loi etat base

Description: Basic class for state laws used with a dilatable fluid.

```
See also: objet_u (44) loi_etat_gaz_reel_base (21.8) loi_etat_gaz_parfait_base (21.7) loi_etat_tppi_base (21.9)
```

Usage:

21.1 Eos_qc

```
Description: Class for using EOS with QC problem
```

```
See also: loi_etat_tppi_base (21.9)
Usage:
```

- Cp *float*: Specific heat at constant pressure (J/kg/K).
- fluid str: Fluid name in the EOS model
- model str: EOS model name

21.2 Eos wc

Description: Class for using EOS with WC problem

```
See also: loi_etat_tppi_base (21.9)

Usage:
EOS_WC str
Read str {
```

```
Cp float
fluid str
model str
}
```

where

```
• Cp float: Specific heat at constant pressure (J/kg/K).
```

• fluid str: Fluid name in the EOS model

• model str: EOS model name

21.3 Binaire_gaz_parfait_qc

See also: loi_etat_gaz_parfait_base (21.7)

Description: Class for perfect gas binary mixtures state law used with a quasi-compressible fluid under the iso-thermal and iso-bar assumptions.

```
Usage:
binaire_gaz_parfait_QC str

Read str {

molar_mass1 float
mul float
mu2 float
temperature float
diffusion_coeff float
}
where

• molar_mass1 float: Molar mass of species 1 (in kg/mol).
• molar_mass2 float: Molar mass of species 2 (in kg/mol).
• mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
• mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
```

- state law only works for iso-thermal conditions.
 diffusion_coeff float: Diffusion coefficient assumed the same for both species (in m2/s).
- 21.4 Binaire_gaz_parfait_wc

Description: Class for perfect gas binary mixtures state law used with a weakly-compressible fluid under the iso-thermal and iso-bar assumptions.

• temperature float: Temperature (in Kelvin) which will be constant during the simulation since this

```
See also: loi_etat_gaz_parfait_base (21.7)

Usage:
binaire_gaz_parfait_WC str

Read str {

    molar_mass1 float
    molar_mass2 float
    mu1 float
    mu2 float
    temperature float
    diffusion_coeff float
}
where
```

• molar mass1 *float*: Molar mass of species 1 (in kg/mol).

- molar_mass2 *float*: Molar mass of species 2 (in kg/mol).
- mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
- mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
- **temperature** *float*: Temperature (in Kelvin) which will be constant during the simulation since this state law only works for iso-thermal conditions.
- **diffusion_coeff** *float*: Diffusion coefficient assumed the same for both species (in m2/s).

21.5 Coolprop_qc

```
Description: Class for using CoolProp with QC problem
See also: loi_etat_tppi_base (21.9)
Usage:
coolprop_QC str
Read str {
     Cp float
     fluid str
     model str
}
where
   • Cp float: Specific heat at constant pressure (J/kg/K).
   • fluid str: Fluid name in the CoolProp model
   • model str: CoolProp model name
21.6
       Coolprop_wc
Description: Class for using CoolProp with WC problem
See also: loi_etat_tppi_base (21.9)
Usage:
coolprop_WC str
Read str {
     Cp float
     fluid str
     model str
}
where
   • Cp float: Specific heat at constant pressure (J/kg/K).
   • fluid str: Fluid name in the CoolProp model
```

21.7 Loi_etat_gaz_parfait_base

Description: Basic class for perfect gases state laws used with a dilatable fluid.

```
See also: loi_etat_base (21) rhoT_gaz_parfait_QC (21.14) binaire_gaz_parfait_QC (21.3) multi_gaz_parfait_QC (21.10) gaz_parfait_QC (21.12) multi_gaz_parfait_WC (21.11) binaire_gaz_parfait_WC (21.4) gaz_parfait_WC (21.13)
```

Usage:

21.8 Loi_etat_gaz_reel_base

Description: Basic class for real gases state laws used with a dilatable fluid.

```
See also: loi etat base (21) rhoT gaz reel QC (21.15)
```

Usage:

21.9 Loi_etat_tppi_base

Description: Basic class for thermo-physical properties interface (TPPI) used for dilatable problems

```
See also: loi_etat_base (21) coolprop_QC (21.5) EOS_QC (21.1) EOS_WC (21.2) coolprop_WC (21.6)
```

Usage:

21.10 Multi_gaz_parfait_qc

Description: Class for perfect gas multi-species mixtures state law used with a quasi-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (21.7)
```

```
Usage:
```

```
multi_gaz_parfait_QC str

Read str {

sc float
prandtl float
[cp float]
[dtol_fraction float]
[correction_fraction]
[ignore_check_fraction]
}
where
```

- sc float: Schmidt number of the gas Sc=nu/D (D: diffusion coefficient of the mixing).
- prandtl float: Prandtl number of the gas Pr=mu*Cp/lambda
- cp float: Specific heat at constant pressure of the gas Cp.
- dtol fraction float: Delta tolerance on mass fractions for check testing (default value 1.e-6).
- **correction_fraction**: To force mass fractions between 0. and 1.
- **ignore_check_fraction**: Not to check if mass fractions between 0. and 1.

21.11 Multi_gaz_parfait_wc

Description: Class for perfect gas multi-species mixtures state law used with a weakly-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (21.7)

Usage:
multi_gaz_parfait_WC str

Read str {

    species_number int
    diffusion_coeff champ_base
    molar_mass champ_base
    mu champ_base
    cp champ_base
    prandtl float

}

where
```

- species_number int: Number of species you are considering in your problem.
- **diffusion_coeff** *champ_base* (18.1): Diffusion coefficient of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **molar_mass** *champ_base* (18.1): Molar mass of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **mu** *champ_base* (18.1): Dynamic viscosity of each species, defined with a Champ_uniforme of dimension equals to the species_number.
- **cp** *champ_base* (18.1): Specific heat at constant pressure of the gas Cp, defined with a Champ_uniforme of dimension equals to the species_number..
- **prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda.

21.12 Gaz_parfait_qc

See also: loi etat gaz parfait base (21.7)

Description: Class for perfect gas state law used with a quasi-compressible fluid.

- Cp float: Specific heat at constant pressure (J/kg/K).
- Cv float: Specific heat at constant volume (J/kg/K).
- gamma float: Cp/Cv
- **Prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda
- **rho_constant_pour_debug** *champ_base* (18.1): For developers to debug the code with a constant rho.

21.13 Gaz_parfait_wc

Description: Class for perfect gas state law used with a weakly-compressible fluid.

21.14 Rhot_gaz_parfait_qc

Description: Class for perfect gas used with a quasi-compressible fluid where the state equation is defined as rho = f(T).

```
See also: loi_etat_gaz_parfait_base (21.7)

Usage:
rhoT_gaz_parfait_QC str

Read str {

    cp float
    [prandtl float]
    [rho_xyz champ_base]
    [rho_t str]
    [t_min float]
}

where
```

- cp float: Specific heat at constant pressure of the gas Cp.
- **prandtl** *float*: Prandtl number of the gas Pr=mu*Cp/lambda
- **rho_xyz** *champ_base* (18.1): Defined with a Champ_Fonc_xyz to define a constant rho with time (space dependent)
- **rho_t** *str*: Expression of T used to calculate rho. This can lead to a variable rho, both in space and in time.
- t_min *float*: Temperature may, in some cases, locally and temporarily be very small (and negative) even though computation converges. T_min keyword allows to set a lower limit of temperature (in Kelvin, -1000 by default). WARNING: DO NOT USE THIS KEYWORD WITHOUT CHECKING CAREFULY YOUR RESULTS!

21.15 Rhot_gaz_reel_qc

```
Description: Class for real gas state law used with a quasi-compressible fluid.
```

```
See also: loi_etat_gaz_reel_base (21.8)

Usage:
rhoT_gaz_reel_QC bloc
where

• bloc bloc_lecture (3.2): Description.
```

22 loi_fermeture_base

Description: Class for appends fermeture to problem

```
Keyword Discretize should have already been used to read the object. See also: objet_u (44) loi_fermeture_test (22.1)
```

Usage:

22.1 Loi_fermeture_test

```
Description: Loi for test only
```

Keyword Discretize should have already been used to read the object.

```
See also: loi_fermeture_base (22)
```

```
Usage:
```

```
loi_fermeture_test str
Read str {
     [ coef float]
}
where
```

• coef float: coefficient

23 loi_horaire

Description: to define the movement with a time-dependant law for the solid interface.

```
See also: objet_u (44)

Usage:
loi_horaire str
Read str {

    position n word1 word2 ... wordn
    vitesse n word1 word2 ... wordn
    [ rotation n word1 word2 ... wordn]
    [ derivee_rotation n word1 word2 ... wordn]
    [ verification_derivee int]
```

```
[impr int]
}
where
   • position n word1 word2 ... wordn: Vecteur position
   • vitesse n word1 word2 ... wordn: Vecteur vitesse
   • rotation n word1 word2 ... wordn: Matrice de passage
   • derivee rotation n word1 word2 ... wordn: Derivee matrice de passage
   • verification derivee int
   • impr int: Whether to print output
24
      milieu_base
Description: Basic class for medium (physics properties of medium).
See also: objet_u (44) constituant (24.1) solide (24.15) fluide_base (24.2) fluide_diphasique (24.4)
Usage:
milieu_base str
Read str {
     [gravite champ_base]
     [ porosites_champ champ_base]
      [ diametre_hyd_champ champ_base]
     [ porosites porosites]
     [rho champ base]
     [lambda champ_base]
     [cp champ_base]
}
where
   • gravite champ_base (18.1): Gravity field (optional).
   • porosites champ champ base (18.1): The porosity is given at each element and the porosity at
     each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements
     Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (18.1): Hydraulic diameter field (optional).
   • porosites porosites (32): Porosities.
   • rho champ_base (18.1): Density (kg.m-3).
   • lambda champ_base (18.1): Conductivity (W.m-1.K-1).
   • cp champ_base (18.1): Specific heat (J.kg-1.K-1).
24.1
       Constituant
Description: Constituent.
See also: milieu_base (24)
Usage:
constituant str
Read str {
```

[coefficient_diffusion champ_base]

```
[ gravite champ_base]
[ porosites_champ champ_base]
[ diametre_hyd_champ champ_base]
[ porosites porosites]
[ rho champ_base]
[ lambda champ_base]
[ cp champ_base]
}
where
```

- **coefficient_diffusion** *champ_base* (18.1): Constituent diffusion coefficient value (m2.s-1). If a multi-constituent problem is being processed, the diffusivite will be a vectorial and each components will be the diffusion of the constituent.
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** *champ_base* (18.1) for inheritance: Density (kg.m-3).
- lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
- **cp** *champ_base* (18.1) for inheritance: Specific heat (J.kg-1.K-1).

24.2 Fluide_base

Description: Basic class for fluids.

```
Keyword Discretize should have already been used to read the object.
```

See also: milieu_base (24) fluide_reel_base (24.10) fluide_incompressible (24.6) fluide_dilatable_base (24.3)

```
Usage:

fluide_base str

Read str {

    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
    [rho champ_base]
    [lambda champ_base]
    [cp champ_base]
}

where
```

- indice champ_base (18.1): Refractivity of fluid.
- **kappa** *champ_base* (18.1): Absorptivity of fluid (m-1).
- gravite champ_base (18.1) for inheritance: Gravity field (optional).

- **porosites_champ** *champ_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** *champ_base* (18.1) for inheritance: Density (kg.m-3).
- lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
- **cp** *champ_base* (18.1) for inheritance: Specific heat (J.kg-1.K-1).

24.3 Fluide_dilatable_base

Description: Basic class for dilatable fluids.

Keyword Discretize should have already been used to read the object.

See also: fluide_base (24.2) fluide_quasi_compressible (24.8) fluide_weakly_compressible (24.14)

```
Usage:
```

```
fluide_dilatable_base str

Read str {

    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
    [rho champ_base]
    [lambda champ_base]
    [cp champ_base]
}

where
```

- indice champ_base (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** *champ_base* (18.1) for inheritance: Density (kg.m-3).
- **lambda** champ base (18.1) for inheritance: Conductivity (W.m-1.K-1).
- cp champ_base (18.1) for inheritance: Specific heat (J.kg-1.K-1).

24.4 Fluide_diphasique

```
Description: fluid_diph_lu 0 Two-phase fluid.
```

See also: milieu_base (24)

Usage:

```
Read str {
     sigma champ don base
     phase0|fluide0 fluid_diph_lu
     phase1|fluide1 fluid diph lu
     [chaleur latente champ don base]
     [ formule_mu str]
     [gravite champ_base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
     [rho champ_base]
     [lambda champ_base]
     [cp champ_base]
}
where
   • sigma champ don base (18.9): surfacic tension (J/m2)
   • phase0|fluide0 fluid_diph_lu (24.5): first phase fluid
   • phase1|fluide1 fluid_diph_lu (24.5): second phase fluid
   • chaleur_latente champ_don_base (18.9): phase changement enthalpy h(phase1_) - h(phase0_)
     (J/kg/K)
   • formule_mu str: (into=[standard,arithmetic,harmonic]) formula used to calculate average
   • gravite champ_base (18.1)
   • porosites_champ_base (18.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
   • porosites porosites (32) for inheritance: Porosities.
   • rho champ base (18.1) for inheritance: Density (kg.m-3).
   • lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
   • cp champ_base (18.1) for inheritance: Specific heat (J.kg-1.K-1).
24.5 Fluid diph lu
Description: Single fluid to be read.
See also: objet_lecture (43)
Usage:
fluid_name single_fld
where
   • fluid_name str: Name of the fluid which is part of the diphasic fluid.
   • single_fld fluide_incompressible (24.6): Definition of the single fluid part of a multiphasic fluid.
```

24.6 Fluide_incompressible

fluide_diphasique str

Description: Class for non-compressible fluids.

Keyword Discretize should have already been used to read the object.

```
See also: fluide_base (24.2) fluide_ostwald (24.7)
Usage:
fluide_incompressible str
Read str {
     [beta_th champ_base]
     [mu champ base]
     [beta_co champ_base]
     [ rho champ_base]
     [cp champ base]
     [lambda champ base]
     [porosites bloc_lecture]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
where
   • beta_th champ_base (18.1): Thermal expansion (K-1).
   • mu champ_base (18.1): Dynamic viscosity (kg.m-1.s-1).
   • beta_co champ_base (18.1): Volume expansion coefficient values in concentration.
   • rho champ_base (18.1): Density (kg.m-3).
   • cp champ_base (18.1): Specific heat (J.kg-1.K-1).
   • lambda champ_base (18.1): Conductivity (W.m-1.K-1).
   • porosites bloc lecture (3.2): Porosity (optional)
   • indice champ base (18.1) for inheritance: Refractivity of fluid.
   • kappa champ_base (18.1) for inheritance: Absorptivity of fluid (m-1).
   • gravite champ_base (18.1) for inheritance: Gravity field (optional).
   • porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
24.7
       Fluide ostwald
Description: Non-Newtonian fluids governed by Ostwald's law. The law applicable to stress tensor is:
tau=K(T)*(D:D/2)**((n-1)/2)*D Where:
D refers to the deformation tensor
K refers to fluid consistency (may be a function of the temperature T)
n refers to the fluid structure index n=1 for a Newtonian fluid, n<1 for a rheofluidifier fluid, n>1 for a
rheothickening fluid.
Keyword Discretize should have already been used to read the object.
See also: fluide_incompressible (24.6)
Usage:
fluide_ostwald str
```

Read str {

[**k** champ_base]

```
[n champ_base]
     [beta_th champ_base]
     [mu champ base]
     [beta_co champ_base]
     [rho champ base]
     [ cp champ_base]
     [lambda champ base]
     [porosites bloc lecture]
     [indice champ base]
     [kappa champ_base]
     [gravite champ_base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
}
where
   • k champ_base (18.1): Fluid consistency.
   • n champ_base (18.1): Fluid structure index.
   • beta_th champ_base (18.1) for inheritance: Thermal expansion (K-1).
   • mu champ base (18.1) for inheritance: Dynamic viscosity (kg.m-1.s-1).
   • beta_co champ_base (18.1) for inheritance: Volume expansion coefficient values in concentration.
   • rho champ_base (18.1) for inheritance: Density (kg.m-3).
   • cp champ_base (18.1) for inheritance: Specific heat (J.kg-1.K-1).
   • lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
   • porosites bloc lecture (3.2) for inheritance: Porosity (optional)
   • indice champ base (18.1) for inheritance: Refractivity of fluid.
   • kappa champ base (18.1) for inheritance: Absorptivity of fluid (m-1).
   • gravite champ_base (18.1) for inheritance: Gravity field (optional).
     porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
```

• diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).

ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.

24.8 Fluide_quasi_compressible

Description: Quasi-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) is uniform in space.

Keyword Discretize should have already been used to read the object.

See also: fluide_dilatable_base (24.3)

Usage:
fluide_quasi_compressible str

Read str {

[sutherland bloc_sutherland]
 [pression float]

```
[lambda champ_base]
[mu champ_base]
[indice champ_base]
[kappa champ_base]
[gravite champ_base]
[porosites_champ champ_base]
[diametre_hyd_champ champ_base]
[porosites porosites]
[rho champ_base]
[cp champ_base]
}
where
```

- sutherland bloc_sutherland (24.9): Sutherland law for viscosity and for conductivity.
- **pression** *float*: Initial thermo-dynamic pressure used in the assosciated state law.
- loi_etat loi_etat_base (21): The state law that will be associated to the Quasi-compressible fluid.
- **traitement_pth** *str into ['edo', 'constant', 'conservation_masse']*: Particular treatment for the thermodynamic pressure Pth; there are three possibilities:
 - 1) with the keyword 'edo' the code computes Pth solving an O.D.E.; in this case, the mass is not strictly conserved (it is the default case for quasi compressible computation):
 - 2) the keyword 'conservation_masse' forces the conservation of the mass (closed geometry or with periodic boundaries condition)
 - 3) the keyword 'constant' makes it possible to have a constant Pth; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
 - It is possible to monitor the volume averaged value for temperature and density, plus Pth evolution in the .evol_glob file.
- traitement_rho_gravite str into ['standard', 'moins_rho_moyen']: It may be :1) standard: the gravity term is evaluated with rho*g (It is the default). 2) moins_rho_moyen: the gravity term is evaluated with (rho-rhomoy) *g. Unknown pressure is then P*=P+rhomoy*g*z. It is useful when you apply uniforme pressure boundary condition like P*=0.
- temps_debut_prise_en_compte_drho_dt *float*: While time<value, dRho/dt is set to zero (Rho, volumic mass). Useful for some calculation during the first time steps with big variation of temperature and volumic mass.
- omega_relaxation_drho_dt *float*: Optional option to have a relaxed algorithm to solve the mass equation. value is used (1 per default) to specify omega.
- lambda champ_base (18.1): Conductivity (W.m-1.K-1).
- mu champ_base (18.1): Dynamic viscosity (kg.m-1.s-1).
- **indice** champ base (18.1) for inheritance: Refractivity of fluid.
- **kappa** champ base (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** *champ_base* (18.1) for inheritance: Density (kg.m-3).
- cp champ_base (18.1) for inheritance: Specific heat (J.kg-1.K-1).

24.9 Bloc sutherland

Description: Sutherland law for viscosity mu(T)=mu0*((T0+C)/(T+C))*(T/T0)**1.5 and (optional) for conductivity lambda(T)=mu0*Cp/Prandtl*((T0+Slambda)/(T+Slambda))*(T/T0)**1.5

```
See also: objet_lecture (43)
Usage:
problem name mu0 mu0 val t0 t0 val [Slambda][s] C c val
where
   • problem name str: Name of problem.
   • mu0 str into ['mu0']
   • mu0_val float
   • t0 str into ['T0']
   • t0 val float
   • Slambda str into ['Slambda']
   • s float
   • C str into ['C']
   • c_val float
       Fluide_reel_base
24.10
Description: Class for real fluids.
Keyword Discretize should have already been used to read the object.
See also: fluide base (24.2) fluide sodium gaz (24.11) fluide stiffened gas (24.13) fluide sodium liquide
(24.12)
Usage:
fluide reel base str
Read str {
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
     [rho champ_base]
     [lambda champ_base]
     [ cp champ_base]
}
where
   • indice champ base (18.1) for inheritance: Refractivity of fluid.
   • kappa champ_base (18.1) for inheritance: Absorptivity of fluid (m-1).
   • gravite champ_base (18.1) for inheritance: Gravity field (optional).
   • porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
   • porosites porosites (32) for inheritance: Porosities.
   • rho champ_base (18.1) for inheritance: Density (kg.m-3).
   • lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
   • cp champ_base (18.1) for inheritance: Specific heat (J.kg-1.K-1).
```

24.11 Fluide_sodium_gaz

} where

Description: Class for Fluide_sodium_liquide Keyword Discretize should have already been used to read the object. See also: fluide_reel_base (24.10) Usage: fluide sodium gaz str Read str { [**P_ref** *float*] [T_ref float] [indice champ base] [kappa champ_base] [gravite champ_base] [porosites_champ champ_base] [diametre_hyd_champ champ_base] [porosites porosites] [rho champ_base] [lambda champ_base] [**cp** champ_base]

- **P_ref** *float*: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T_ref** *float*: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- indice champ base (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** *champ_base* (18.1) for inheritance: Density (kg.m-3).
- lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
- **cp** *champ_base* (18.1) for inheritance: Specific heat (J.kg-1.K-1).

24.12 Fluide_sodium_liquide

[**P_ref** *float*]

```
Description: Class for Fluide_sodium_liquide

Keyword Discretize should have already been used to read the object. See also: fluide_reel_base (24.10)

Usage: fluide_sodium_liquide str

Read str {
```

```
[ T_ref float]
     [indice champ_base]
     [kappa champ base]
     [gravite champ_base]
     [porosites champ champ base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
     [rho champ base]
     [lambda champ base]
     [ cp champ_base]
}
where
```

- P_ref float: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- T_ref float: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- **indice** *champ_base* (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre hyd champ champ base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** champ base (18.1) for inheritance: Density (kg.m-3).
- lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
- cp champ_base (18.1) for inheritance: Specific heat (J.kg-1.K-1).

24.13 Fluide_stiffened_gas

```
Description: Class for Stiffened Gas
Keyword Discretize should have already been used to read the object.
See also: fluide reel base (24.10)
Usage:
fluide_stiffened_gas str
Read str {
     [gamma float]
     [ pinf float]
     [ mu float]
     [lambda float]
     [ Cv float]
     [ q float]
     [q_prim float]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [porosites_champ champ_base]
```

[diametre_hyd_champ champ_base]

```
[porosites porosites]
     [rho champ_base]
     [lambda champ base]
     [cp champ_base]
}
where
```

- gamma float: Heat capacity ratio (Cp/Cv)
- pinf float: Stiffened gas pressure constant (if set to zero, the state law becomes identical to that of perfect gases)
- mu float: Dynamic viscosity
- lambda float: Thermal conductivity
- Cv float: Thermal capacity at constant volume
- q float: Reference energy
- **q_prim** *float*: Model constant
- **indice** *champ_base* (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ *champ_base* (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** champ base (18.1) for inheritance: Density (kg.m-3).
- **lambda** champ base (18.1) for inheritance: Conductivity (W.m-1.K-1).
- cp champ base (18.1) for inheritance: Specific heat (J.kg-1.K-1).

Fluide weakly compressible

Description: Weakly-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) can vary in space.

Keyword Discretize should have already been used to read the object. See also: fluide_dilatable_base (24.3)

```
Usage:
```

```
fluide_weakly_compressible str
Read str {
     [loi_etat loi_etat_base]
     [sutherland bloc sutherland]
     [traitement_pth str into ['constant']]
     [lambda champ base]
     [ mu champ_base]
     [ pression_thermo float]
     [ pression_xyz champ_base]
     [ use_total_pressure int]
     [ use_hydrostatic_pressure int]
     [ use_grad_pression_eos int]
     [time_activate_ptot float]
     [indice champ_base]
     [kappa champ_base]
```

```
[ gravite champ_base]
[ porosites_champ champ_base]
[ diametre_hyd_champ champ_base]
[ porosites porosites]
[ rho champ_base]
[ cp champ_base]
}
where
```

- loi_etat loi_etat_base (21): The state law that will be associated to the Weakly-compressible fluid.
- sutherland bloc_sutherland (24.9): Sutherland law for viscosity and for conductivity.
- **traitement_pth** *str into ['constant']*: Particular treatment for the thermodynamic pressure Pth; there is currently one possibility:
 - 1) the keyword 'constant' makes it possible to have a constant Pth but not uniform in space; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
- lambda champ_base (18.1): Conductivity (W.m-1.K-1).
- **mu** champ_base (18.1): Dynamic viscosity (kg.m-1.s-1).
- pression_thermo float: Initial thermo-dynamic pressure used in the assosciated state law.
- **pression_xyz** *champ_base* (18.1): Initial thermo-dynamic pressure used in the assosciated state law. It should be defined with as a Champ_Fonc_xyz.
- **use_total_pressure** *int*: Flag (0 or 1) used to activate and use the total pressure in the assosciated state law. The default value of this Flag is 0.
- use_hydrostatic_pressure int: Flag (0 or 1) used to activate and use the hydro-static pressure in the assosciated state law. The default value of this Flag is 0.
- use_grad_pression_eos int: Flag (0 or 1) used to specify whether or not the gradient of the thermodynamic pressure will be taken into account in the source term of the temperature equation (case of a non-uniform pressure). The default value of this Flag is 1 which means that the gradient is used in the source.
- time_activate_ptot float: Time (in seconds) at which the total pressure will be used in the assosciated state law.
- indice champ base (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre hyd champ champ base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.
- **rho** *champ_base* (18.1) for inheritance: Density (kg.m-3).
- **cp** *champ_base* (18.1) for inheritance: Specific heat (J.kg-1.K-1).

24.15 Solide

Description: Solid with cp and/or rho non-uniform.

```
See also: milieu_base (24)

Usage:
solide str

Read str {

[rho champ_base]
```

```
[ cp champ_base]
  [ lambda champ_base]
  [ user_field champ_base]
  [ gravite champ_base]
  [ porosites_champ champ_base]
  [ diametre_hyd_champ champ_base]
  [ porosites porosites]
}
where
```

- **rho** *champ_base* (18.1): Density (kg.m-3).
- cp champ_base (18.1): Specific heat (J.kg-1.K-1).
- lambda champ_base (18.1): Conductivity (W.m-1.K-1).
- user_field champ_base (18.1): user defined field.
- gravite champ_base (18.1) for inheritance: Gravity field (optional).
- **porosites_champ** *champ_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre_hyd_champ champ_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (32) for inheritance: Porosities.

25 milieu_v2_base

Description: Basic class for medium (physics properties of medium) composed of constituents (fluids and solids).

```
See also: objet_u (44)
Usage:
```

26 modele_rayonnement_base

Description: Basic class for wall thermal radiation model.

```
See also: objet_u (44) modele_rayonnement_milieu_transparent (26.1)
```

Usage:

26.1 Modele_rayonnement_milieu_transparent

Description: Wall thermal radiation model for a transparent gas and resolving a radiation-conduction-thermohydraulics coupled problem in VDF or VEF.

```
Keyword Discretize should have already been used to read the object. See also: modele_rayonnement_base (26)
```

Usage:

modele_rayonnement_milieu_transparent bloc where

```
• bloc bloc_lecture (3.2): Modele_Rayonnement_Milieu_Transparent mod
  Read mod {
  nom_pb_rayonnant
  problem_name
  fichier fij
  file_name
  fichier_face_rayo
  file name
  [fichier matrice | fichier matrice binaire file name]
```

nom_pb_rayonnant problem_name : problem_name is the name of the radiating fluid problem fichier_fij file_name : file_name is the name of the file which contains the shape factor matrix between all the faces.

fichier_face_rayo file_name : file_name is the name of the file which contains the radiating faces characteristics (area, emission value ...)

fichier_matricelfichier_matrice_binaire file_name : file_name is the name of the ASCII (or binary) file which contains the inverted shape factor matrix. It is an optional keyword, if not defined, the inverted shape factor matrix will be calculated and written in a file.

The two first files can be generated by a preprocessor, they allow the radiating face characteristics to be entered (set of faces considered to be uniform with respect to radiation for emission value, flux, etc.) and the form factors for these various faces. These files have the following format: File on radiating faces:

N M -> N is the number of radiating faces (=edges) and M equals the number of non-zero emission radiating faces

Nom(i) S(i) E(i) -> Name of the edge i, surface area of the edge i -> emission value (between 0 an 1) Exemple:

134

Gauche 50.0 0.0

Droit1 50.0 0.5

Bas 10.0 0.0

Haut 10.0 0.0

Arriere 5.0 0.0

Avant 5.0 0.0

Droit2 30.0 0.5

Bas1 40.0 0.0

Haut1 20.0 0.0

Avant1 20.0 0.0

Arriere 1 20.0 0.0

Entree 20.0 0.5

Sortie 20.0 0.5

File on form factors:

N -> Number of radiating faces

Fij -> Matrix of form factors where i, j between 1 and N

Example:

13

 $1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$ 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.20 0.10 0.10 0.10 0.10 0.16 $0.00\ 0.00\ 1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$ $0.00\ 0.00\ 0.00\ 1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$ $0.00\ 0.00\ 0.00\ 0.00\ 1.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00$

```
\begin{array}{c} 0.00\ 0.40\ 0.00\ 0.00\ 0.00\ 0.00\ 0.20\ 0.10\ 0.10\ 0.10\ 0.10\ 0.00\\ 0.00\ 0.25\ 0.00\ 0.00\ 0.00\ 0.00\ 0.15\ 0.00\ 0.15\ 0.10\ 0.10\ 0.10\ 0.15\ 0.10\\ 0.00\ 0.25\ 0.00\ 0.00\ 0.00\ 0.00\ 0.15\ 0.30\ 0.00\ 0.10\ 0.10\ 0.10\ 0.10\ 0.10\\ 0.00\ 0.25\ 0.00\ 0.00\ 0.00\ 0.00\ 0.15\ 0.20\ 0.10\ 0.00\ 0.10\ 0.10\ 0.10\\ 0.00\ 0.25\ 0.00\ 0.00\ 0.00\ 0.00\ 0.15\ 0.20\ 0.10\ 0.10\ 0.10\ 0.00\ 0.10\ 0.10\\ 0.00\ 0.25\ 0.00\ 0.00\ 0.00\ 0.00\ 0.15\ 0.30\ 0.00\ 0.10\ 0.10\ 0.10\ 0.00\ 0.10\\ 0.00\ 0.40\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.20\ 0.10\ 0.10\ 0.10\ 0.10\ 0.00\\ 0.00\ 0.40\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\\ 0.00\ 0.20\ 0.10\ 0.10\ 0.10\ 0.10\ 0.10\ 0.00\\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\ 0.00\
```

Caution:

- a) The radiation model's precision is decided by the user when he/she names the domain edges. In fact, a radiating face is recognised by the preprocessor as the set of domain edges faces bearing the same name. Thus, if the user subdivides the edge into two edges which are named differently, he/she thus creates two radiating faces instead of one.
- b) The form factors are entered by the user, the preprocessor carries out no calculations other than checking preservation relationships on form factors.
- c) The fluid is considered to be a transparent gas.

27 modele turbulence scal base

Description: Basic class for turbulence model for energy equation.

```
See also: objet_u (44) schmidt (27.3) null (27.1) prandtl (27.2) sous_maille_dyn (27.4)

Usage:
modele_turbulence_scal_base str

Read str {
    [dt_impr_nusselt float]
    [turbulence_paroi turbulence_paroi_scalaire_base]
}

where
```

- **dt_impr_nusselt** *float*: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.
 - For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».
- **turbulence_paroi** *turbulence_paroi_scalaire_base* (41): Keyword to set the wall law.

27.1 Null

Description: Null scalar turbulence model (turbulent diffusivity = 0) which can be used with a turbulent problem.

```
See also: modele_turbulence_scal_base (27)
Usage:
null str
Read str {
```

```
[ dt_impr_nusselt float]
}
where
```

• **dt_impr_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

27.2 Prandtl

Description: The Prandtl model. For the scalar equations, only the model based on Reynolds analogy is available. If K_Epsilon was selected in the hydraulic equation, Prandtl must be selected for the convection-diffusion temperature equation coupled to the hydraulic equation and Schmidt for the concentration equations.

```
See also: modele_turbulence_scal_base (27)

Usage:
prandtl str
Read str {

    [prdt str]
    [prandt_turbulent_fonction_nu_t_alpha str]
    [dt_impr_nusselt float]
    [turbulence_paroi turbulence_paroi_scalaire_base]
}
where
```

- **prdt** *str*: Keyword to modify the constant (Prdt) of Prandtl model : Alphat=Nut/Prdt Default value is 0.9
- **prandt_turbulent_fonction_nu_t_alpha** *str*: Optional keyword to specify turbulent diffusivity (by default, alpha_t=nu_t/Prt) with another formulae, for example: alpha_t=nu_t2/(0,7*alpha+0,85*nu_t) with the string nu_t*nu_t/(0,7*alpha+0,85*nu_t) where alpha is the thermal diffusivity.
- dt_impr_nusselt float for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.
 - For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».
- **turbulence_paroi** *turbulence_paroi_scalaire_base* (41) for inheritance: Keyword to set the wall law.

27.3 Schmidt

Description: The Schmidt model. For the scalar equations, only the model based on Reynolds analogy is available. If K_Epsilon was selected in the hydraulic equation, Schmidt must be selected for the convection-diffusion temperature equation coupled to the hydraulic equation and Schmidt for the concentration equations.

```
See also: modele_turbulence_scal_base (27)

Usage:
schmidt str

Read str {

    [scturb float]
    [dt_impr_nusselt float]
    [turbulence_paroi turbulence_paroi_scalaire_base]
}

where
```

- **scturb** *float*: Keyword to modify the constant (Sct) of Schmlidt model : Dt=Nut/Sct Default value is 0.7.
- **dt_impr_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.
 - For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».
- **turbulence_paroi** *turbulence_paroi_scalaire_base* (41) for inheritance: Keyword to set the wall law.

27.4 Sous_maille_dyn

```
Description: Dynamic sub-grid turbulence modele.

Warning: Available in VDF only. Not coded in VEF yet.

See also: modele_turbulence_scal_base (27)

Usage:
sous_maille_dyn str

Read str {

[ stabilise str into ['6_points', 'moy_euler', 'plans_paralleles']]
        [ nb_points int]
        [ dt_impr_nusselt float]
        [ turbulence_paroi turbulence_paroi_scalaire_base]
}
where

• stabilise str into ['6_points', 'moy_euler', 'plans_paralleles']
```

• **nb_points** int

- **dt_impr_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the _Nusselt.face file each dt_impr_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda_t)/lambda)*d_wall/d_eq where d_wall is the distance from the first mesh to the wall and d_eq is given by the wall law. This option also gives the value of d_eq and h = (lambda+lambda_t)/d_eq and the fluid temperature of the first mesh near the wall.
 - For the Neumann boundary conditions (flux_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».
- **turbulence_paroi** *turbulence_paroi_scalaire_base* (41) for inheritance: Keyword to set the wall law.

28 moyenne_imposee_deriv

```
Description: not_set
```

See also: objet_u (44) profil (28.5) connexion_exacte (28.2) connexion_approchee (28.1) interpolation (28.3) logarithmique (28.4)

Usage:

28.1 Connexion_approchee

Description: To read the imposed field from a file where positions and values are given (it is not necessary that the coordinates of points match the coordinates of the boundary faces, indeed, the nearest point of each face of the boundary will be used).

```
See also: moyenne_imposee_deriv (28)
```

Usage:

connexion_approchee fichier file1 where

• fichier str into ['fichier']

```
• file1 str: filename. The format of the file is: N
```

x(1) y(1) [z(1)] valx(1) valy(1) [valz(1)] x(2) y(2) [z(2)] valx(2) valy(2) [valz(2)]

... x(N) y(N) [z(N)] valx(N) valy(N) [valz(N)]

28.2 Connexion_exacte

Description: To read the imposed field from two files.

See also: moyenne_imposee_deriv (28)

Usage:

connexion_exacte fichier file1 [file2] where

• fichier str into ['fichier']

• **file1** *str*: first file, contains the points coordinates (which should be the same as the coordinates of the boundary faces). The format of this file is:

```
N
1 x(1) y(1) [z(1)]
2 x(2) y(2) [z(2)]
...
N x(N) y(N) [z(N)]
```

• file2 str: second file, contains the mean values. The format of this file is:

```
N
1 valx(1) valy(1) [valz(1)]
2 valx(2) valy(2) [valz(2)]
...
N valx(N) valy(N) [valz(N)]
```

28.3 Interpolation

Synonymous: champ_post_interpolation

Description: To create an imposed field built by interpolation of values read from a file. The imposed field is applied on the direction given by the keyword direction_anisotrope (the field is zero for the other directions).

See also: moyenne_imposee_deriv (28)

Usage:

interpolation fichier file1

where

• fichier str into ['fichier']: The format of the file is:

```
pos(1) val(1)
pos(2) val(2)
...
pos(N) val(N)
If direction given by direction
```

- -_anisotrope is 1 (or 2 or 3), then pos will be X (or Y or Z) coordinate and val will be X value (or Y value, or Z value) of the imposed field.
- file1 str: name of geom_face_perio

28.4 Logarithmique

Description: To specify the imposed field (in this case, velocity) by an analytical logarithmic law of the wall:

```
g(x,y,z) = u_tau * (log(0.5*diametre*u_tau/visco_cin)/Kappa + 5.1) with g(x,y,z)=u(x,y,z) if direction is set to 1, g=v(x,y,z) if direction is set to 2 and g=w(w,y,z) if it is set to 3
```

See also: moyenne_imposee_deriv (28)

Usage:

logarithmique diametre val u_tau val_u_tau visco_cin val_visco_cin direction val_direction where

- diametre str into ['diametre']
- val *float*: diameter

```
u_tau str into ['u_tau']
val_u_tau float: value of u_tau
visco_cin str into ['visco_cin']
val_visco_cin float: value of visco_cin
```

• direction str into ['direction']

• val_direction int: direction

28.5 Profil

Description: To specify analytic profile for the imposed g field.

See also: moyenne_imposee_deriv (28)

Usage:

profil profile

where

• profile n word1 word2 ... wordn: specifies the analytic profile: 2|3 valx(x,y,z,t) valy(x,y,z,t) [valz(x,y,z,t)]

29 nom

Description: Class to name the TRUST objects.

See also: objet_u (44) nom_anonyme (29.1)

Usage:

nom [mot]

where

• mot str: Chain of characters.

29.1 Nom_anonyme

Description: not_set

See also: nom (29)

Usage:

[mot]

where

• mot str: Chain of characters.

30 partitionneur_deriv

Description: not_set

See also: objet_u (44) metis (30.3) fichier_med (30.1) sous_dom (30.5) partition (30.4) union (30.8) tranche (30.7) sous_zones (30.6) fichier_decoupage (30.2)

Usage:

```
partitionneur_deriv str
Read str {
```

```
[ nb_parts int]
}
where
```

• **nb_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.1 Fichier_med

Description: Partitioning a domain using a MED file containing an integer field providing for each element the processor number on which the element should be located.

See also: partitionneur_deriv (30)

Usage:
fichier_med str

Read str {

file str

[field str]

[nb_parts int]
}

where

- file str: file name of the MED file to load
- field str: field name of the integer (or double) field to load
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.2 Fichier_decoupage

Description: This algorithm reads an array of integer values on the disc, one value for each mesh element. Each value is interpreted as the target part number n>=0 for this element. The number of parts created is the highest value in the array plus one. Empty parts can be created if some values are not present in the array.

The file format is ASCII, and contains space, tab or carriage-return separated integer values. The first value is the number nb_elem of elements in the domain, followed by nb_elem integer values (positive or zero). This algorithm has been designed to work together with the 'ecrire_decoupage' option. You can generate a partition with any other algorithm, write it to disc, modify it, and read it again to generate the .Zone files. Contrary to other partitioning algorithms, no correction is applied by default to the partition (eg. element 0 on processor 0 and corrections for periodic boundaries). If 'corriger_partition' is specified, these corrections are applied.

```
See also: partitionneur_deriv (30)

Usage:
fichier_decoupage str

Read str {

fichier str

[ corriger_partition ]

[ nb_parts int]
```

```
}
where
```

- fichier str: File name
- corriger partition
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.3 Metis

Description: Metis is an external partitionning library. It is a general algorithm that will generate a partition of the domain.

See also: partitionneur_deriv (30)

Usage:
metis str
Read str {

[kmetis]

[use_weights]
[nb_parts int]

}
where

- **kmetis**: The default values are pmetis, default parameters are automatically chosen by Metis. 'kmetis' is faster than pmetis option but the last option produces better partitioning quality. In both cases, the partitioning quality may be slightly improved by increasing the nb_essais option (by default N=1). It will compute N partitions and will keep the best one (smallest edge cut number). But this option is CPU expensive, taking N=10 will multiply the CPU cost of partitioning by 10. Experiments show that only marginal improvements can be obtained with non default parameters.
- use_weights: If use_weights is specified, weighting of the element-element links in the graph is used to force metis to keep opposite periodic elements on the same processor. This option can slightly improve the partitionning quality but it consumes more memory and takes more time. It is not mandatory since a correction algorithm is always applied afterwards to ensure a correct partitionning for periodic boundaries.
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.4 Partition

Synonymous: decouper

Description: This algorithm re-use the partition of the domain named DOMAINE_NAME. It is useful to partition for example a post processing domain. The partition should match with the calculation domain.

See also: partitionneur_deriv (30)

Usage:
partition str
Read str {
 domaine str

```
[ nb_parts int]
}
where
```

- domaine str: domain name
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.5 Sous_dom

Description: Given a global partition of a global domain, 'sous-domaine' allows to produce a conform partition of a sub-domain generated from the bigger one using the keyword create_domain_from_sub_domain. The sub-domain will be partitionned in a conform fashion with the global domain.

See also: partitionneur deriv (30)

```
Usage:
sous_dom str
Read str {
fichier str
fichier_ssz str
[nb_parts int]
}
where
```

- fichier str: fichier
- fichier ssz str: fichier sous zonne
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.6 Sous zones

Description: This algorithm will create one part for each specified subdomaine/domain. All elements contained in the first subdomaine/domain are put in the first part, all remaining elements contained in the second subdomaine/domain in the second part, etc...

If all elements of the current domain are contained in the specified subdomaines/domain, then N parts are created, otherwise, a supplemental part is created with the remaining elements.

If no subdomaine is specified, all subdomaines defined in the domain are used to split the mesh.

See also: partitionneur_deriv (30)

```
Usage:
sous_zones str
Read str {

[sous_zones n word1 word2 ... wordn]
[domaines n word1 word2 ... wordn]
[nb_parts int]
}
where
```

- sous_zones n word1 word2 ... wordn: N SUBZONE_NAME_1 SUBZONE_NAME_2 ...
- domaines n word1 word2 ... wordn: N DOMAIN_NAME_1 DOMAIN_NAME_2 ...
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.7 Tranche

Description: This algorithm will create a geometrical partitionning by slicing the mesh in the two or three axis directions, based on the geometric center of each mesh element. nz must be given if dimension=3. Each slice contains the same number of elements (slices don't have the same geometrical width, and for VDF meshes, slice boundaries are generally not flat except if the number of mesh elements in each direction is an exact multiple of the number of slices). First, nx slices in the X direction are created, then each slice is split in ny slices in the Y direction, and finally, each part is split in nz slices in the Z direction. The resulting number of parts is nx*ny*nz. If one particular direction has been declared periodic, the default slicing (0, 1, 2, ..., n-1) is replaced by (0, 1, 2, ... n-1, 0), each of the two '0' slices having twice less elements than the other slices.

See also: partitionneur_deriv (30)

Usage:
tranche str
Read str {

[tranches n1 n2 (n3)]
[nb_parts int]
}
where

- **tranches** *n1 n2 (n3)*: Partitioned by nx in the X direction, ny in the Y direction, nz in the Z direction. Works only for structured meshes. No warranty for unstructured meshes.
- **nb_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

30.8 Union

Description: Let several local domains be generated from a bigger one using the keyword create_domain_from_sub_domain, and let their partitions be generated in the usual way. Provided the list of partition files for each small domain, the keyword 'union' will partition the global domain in a conform fashion with the smaller domains.

See also: partitionneur_deriv (30)
Usage:

```
union liste [ nb_parts ]
where
```

- **liste** *bloc_lecture* (3.2): List of the partition files with the following syntaxe: {sous_domaine1 decoupage1 ... sous_domaineim decoupageim } where sous_domaine1 ... sous_zomeim are small domains names and decoupage1 ... decoupageim are partition files.
- **nb_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

31 pb_champ_evaluateur

Description: specifies problem name, the field name beloging to the problem and number of field components.

```
See also: objet_u (44)
Usage:

pb champ ncomp
where
```

- **pb** *str*: name of the problem where the source fields will be searched.
- champ str: name of the field
- ncomp int: number of components

32 porosites

Description: To define the volume porosity and surface porosity that are uniform in every direction in space on a sub-area.

Porosity was only usable in VDF discretization, and now available for VEF P1NC/P0.

Observations:

- Surface porosity values must be given in every direction in space (set this value to 1 if there is no porosity),
- Prior to defining porosity, the problem must have been discretized.

Can 't be used in VEF discretization, use Porosites champ instead.

```
See also: objet_u (44)

Usage:

porosites aco sous_zone1|sous_zone bloc [sous_zone2][bloc2] acof where
```

- aco str into ['{'}]: Opening curly bracket.
- sous_zone1|sous_zone str: Name of the sub-area to which porosity are allocated.
- **bloc** *bloc_lecture_poro* (32.1): *Surface and volume porosity values.*
- sous_zone2 str: Name of the 2nd sub-area to which porosity are allocated.
- **bloc2** *bloc_lecture_poro* (32.1): *Surface and volume porosity values.*
- acof str into ['}']: Closing curly bracket.

32.1 Bloc_lecture_poro

Description: Surface and volume porosity values.

```
See also: objet_lecture (43)

Usage:
{

volumique float
surfacique n x1 x2 ... xn
}
where
```

- volumique *float*: Volume porosity value.
- **surfacique** *n x1 x2 ... xn*: Surface porosity values (in X, Y, Z directions).

33 precond_base

```
Description: Basic class for preconditioning.
See also: objet_u (44) ilu (33.1) ssor_bloc (33.4) precondsolv (33.2) ssor (33.3)
Usage:
33.1 Ilu
Description: This preconditionner can be only used with the generic GEN solver.
See also: precond_base (33)
Usage:
ilu str
Read str {
     [type int]
     [ filling int]
where
   • type int: values can be 0|1|2|3 for null|left|right|left-and-right preconditionning (default value = 2)
   • filling int: default value = 1.
33.2 Precondsolv
Description: not_set
See also: precond_base (33)
Usage:
precondsolv solveur
where
   • solveur solveur_sys_base (13.18): Solver type.
33.3 Ssor
Description: Symmetric successive over-relaxation algorithm.
See also: precond_base (33)
Usage:
ssor str
Read str {
     [ omega float]
where
```

• omega float: Over-relaxation facteur (between 1 and 2, default value 1.6).

33.4 Ssor_bloc

```
Description: not_set
See also: precond_base (33)
Usage:
ssor_bloc str
Read str {
     [ precond0 precond_base]
     [ precond1 precond_base]
     [ preconda precond_base]
     [ alpha_0 float]
     [ alpha_1 float]
     [ alpha_a float]
}
where
   • precond0 precond_base (33)
   • precond1 precond_base (33)
   • preconda precond_base (33)
   • alpha_0 float
   alpha_1 float
   • alpha_a float
```

34 preconditionneur_petsc_deriv

Description: Preconditioners available with petsc solvers

```
See also: objet_u (44) diag (34.6) c-amg (34.5) sa-amg (34.11) BLOCK_JACOBI_ICC (34.1) boomeramg (34.4) null (34.9) lu (34.8) jacobi (34.7) EISENTAT (34.2) ssor (34.13) block_jacobi_ilu (34.3) spai (34.12) pilut (34.10)
```

Usage:

34.1 Block_jacobi_icc

Description: Incomplete Cholesky factorization for symmetric matrix with the PETSc implementation.

```
See also: preconditionneur_petsc_deriv (34)
```

Usage:

```
BLOCK_JACOBI_ICC str

Read str {

    [level int]
    [ordering str into ['natural', 'rcm']]
}
where
```

• **level** *int*: factorization level (default value, 1). In parallel, the factorization is done by block (one per processor by default).

• **ordering** *str into ['natural', 'rcm']*: The ordering of the local matrix is natural by default, but rcm ordering, which reduces the bandwith of the local matrix, may interestingly improves the quality of the decomposition and reduces the number of iterations.

34.2 Eisentat

Description: SSOR version with Eisenstat trick which reduces the number of computations and thus CPU cost...

```
Usage:
EISENTAT str
Read str {
     [ omega float]
}
where
   • omega float: relaxation factor
34.3
      Block_jacobi_ilu
Description: preconditionner
See also: preconditionneur_petsc_deriv (34)
Usage:
block_jacobi_ilu str
Read str {
     [level int]
}
where
   • level int
```

See also: preconditionneur_petsc_deriv (34)

34.4 Boomeramg

Description: Multigrid preconditioner (no option is available yet, look at CLI command and Petsc documentation to try other options).

```
See also: preconditionneur_petsc_deriv (34)
```

Usage:

34.5 C-amg

Description: preconditionner

See also: preconditionneur_petsc_deriv (34)

Usage:

```
34.6 Diag Description: D
```

Description: Diagonal (Jacobi) preconditioner.

See also: preconditionneur_petsc_deriv (34)

Usage:

34.7 Jacobi

Description: preconditionner

See also: preconditionneur_petsc_deriv (34)

Usage:

34.8 Lu

Description: preconditionner

See also: preconditionneur_petsc_deriv (34)

Usage:

34.9 Null

Description: No preconditioner used

See also: preconditionneur_petsc_deriv (34)

Usage:

34.10 Pilut

Description: Dual Threashold Incomplete LU factorization.

See also: preconditionneur_petsc_deriv (34)

```
Usage:
pilut str
Read str {
    [level int]
    [epsilon float]
}
where
```

- level int: factorization level
- epsilon float: drop tolerance

34.11 Sa-amg

```
Description: preconditionner
See also: preconditionneur_petsc_deriv (34)
Usage:
34.12
        Spai
Description: Spai Approximate Inverse algorithm from Parasails Hypre library.
See also: preconditionneur_petsc_deriv (34)
Usage:
spai str
Read str {
     [level int]
     [epsilon float]
}
where
   • level int: first parameter
   • epsilon float: second parameter
34.13 Ssor
Description: Symmetric Successive Over Relaxation algorithm.
See also: preconditionneur_petsc_deriv (34)
Usage:
ssor str
Read str {
     [ omega float]
}
where
```

35 schema_temps_base

• omega *float*: relaxation factor (default value, 1.5)

Description: Basic class for time schemes. This scheme will be associated with a problem and the equations of this problem.

See also: objet_u (44) Sch_CN_iteratif (35.3) schema_implicite_base (35.22) runge_kutta_ordre_2 (35.7) runge_kutta_ordre_3 (35.9) runge_kutta_ordre_4_d3p (35.11) runge_kutta_rationnel_ordre_2 (35.14) schema_predictor_corrector (35.24) runge_kutta_ordre_2_classique (35.8) runge_kutta_ordre_3_classique (35.10) runge_kutta_ordre_4_classique (35.12) runge_kutta_ordre_4_classique_3_8 (35.13) scheme_euler_explicit (35.4) leap_frog (35.5) schema_adams_bashforth_order_2 (35.15) schema_adams_bashforth_order_3 (35.16) schema_euler_explicite_ALE (35.25) schema_phase_field (35.23)

```
Usage:
schema temps base str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- tinit *float*: Value of initial calculation time (0 by default).
- tmax *float*: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float*: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float*: Minimum calculation time step (1e-16s by default).
- dt max str: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float*: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float*: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str*: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5. Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float*: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.

- **residuals** *residuals* (3.120): To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion_implicite int: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float*: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int*: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr_extremums** *int*: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int
- no_conv_subiteration_diffusion_implicite int
- **dt_start** *dt_start* (13.9): dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb_pas_dt_max** *int*: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int*: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int*: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode_sauvegarde_securite_en_heures *float*: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space: To disable the check of the available amount of disk space during the calculation.
- **disable_progress**: To disable the writing of the .progress file.
- **disable_dt_ev** : To disable the writing of the .dt_ev file.
- **gnuplot_header** *int*: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.1 Implicit_euler_steady_scheme

Synonymous: schema_euler_implicite_stationnaire

Description: This is the Implicit Euler scheme using a dual time step procedure (using local and global dt) for steady problems. Remark: the only possible solver choice for this scheme is the implicit_steady solver.

```
See also: schema_implicite_base (35.22)

Usage:
implicit_euler_steady_scheme str

Read str {

[ max_iter_implicite int]
    [ steady_security_facteur float]
    [ steady_global_dt float]
```

```
solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [dt impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

- max_iter_implicite int: Maximum number of iterations allowed for the solver (by default 200)
- **steady_security_facteur** *float*: Parameter used in the local time step calculation procedure in order to increase or decrease the local dt value (by default 0.5). We expect a strictly positive value
- **steady_global_dt** *float*: This is the global time step used in the dual time step algorithm (by default 100). We expect a strictly positive value
- solveur solveur_implicite_base (36) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).

- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr extremums** *int* for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.2 Sch_cn_ex_iteratif

Description: This keyword also describes a Crank-Nicholson method of second order accuracy but here, for scalars, because of instablities encountered when dt>dt_CFL, the Crank Nicholson scheme is not applied to scalar quantities. Scalars are treated according to Euler-Explicite scheme at the end of the CN treatment for velocity flow fields (by doing p Euler explicite under-iterations at dt<=dt_CFL). Parameters are the sames (but default values may change) compare to the Sch_CN_iterative scheme plus a relaxation keyword: niter_min (2 by default), niter_max (6 by default), niter_avg (3 by default), facsec_max (20 by default), seuil (0.05 by default)

```
See also: Sch_CN_iteratif (35.3)
Usage:
Sch_CN_EX_iteratif str
Read str {
     [ omega float]
     [ seuil float]
     [ niter_min int]
     [ niter_max int]
     [ niter_avg int]
     [facsec_max float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [ gnuplot_header int]
}
where
```

- omega *float*: relaxation factor (0.1 by default)
- **seuil** *float* for inheritance: criteria for ending iterative process (Max(|| u(p) u(p-1)||/Max || u(p) ||) < seuil) (0.001 by default)
- **niter_min** *int* for inheritance: minimal number of p-iterations to satisfy convergence criteria (2 by default)

- **niter_max** *int* for inheritance: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter_avg** *int* for inheritance: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter_avg, facsec is reduced, if lesser than niter_avg, facsec is increased (but limited by the facsec max value).
- **facsec_max** *float* for inheritance: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- **no_conv_subiteration_diffusion_implicite** *int* for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter_max_diffusion_implicite int for inheritance: This keyword changes the default value (num-

ber of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.

- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable progress for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.3 Sch_cn_iteratif

Description: The Crank-Nicholson method of second order accuracy. A mid-point rule formulation is used (Euler-centered scheme). The basic scheme is:

$$u(t+1) = u(t) + du/dt(t+1/2) * dt$$

The estimation of the time derivative du/dt at the level (t+1/2) is obtained either by iterative process. The time derivative du/dt at the level (t+1/2) is calculated iteratively with a simple under-relaxations method. Since the method is implicit, neither the cfl nor the fourier stability criteria must be respected. The time step is calculated in a way that the iterative procedure converges with the less iterations as possible.

Remark: for stationary or RANS calculations, no limitation can be given for time step through high value of facsec_max parameter (for instance: facsec_max 1000). In counterpart, for LES calculations, high values of facsec_max may engender numerical instabilities.

See also: schema_temps_base (35) Sch_CN_EX_iteratif (35.2)

```
Usage:
Sch_CN_iteratif str
Read str {
     [seuil float]
     [ niter_min int]
     [ niter max int]
     [ niter_avg int]
     [facsec max float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
```

```
[ no_conv_subiteration_diffusion_implicite int]
  [ dt_start dt_start]
  [ nb_pas_dt_max int]
  [ niter_max_diffusion_implicite int]
  [ precision_impr int]
  [ periode_sauvegarde_securite_en_heures float]
  [ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

- **seuil** *float*: criteria for ending iterative process (Max(|| u(p) u(p-1)||/Max || u(p) ||) < seuil) (0.001 by default)
- niter_min int: minimal number of p-iterations to satisfy convergence criteria (2 by default)
- **niter_max** *int*: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter_avg** *int*: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter_avg, facsec is reduced, if lesser than niter_avg, facsec is increased (but limited by the facsec-max value).
- facsec_max *float*: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually

if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.

- **seuil diffusion implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- impr diffusion implicite int for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- dt start dt start (13.9) for inheritance: dt start dt min : the first iteration is based on dt min. dt start dt calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value : the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter_max_diffusion_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- precision_impr int for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode_sauvegarde_securite_en_heures float for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- **disable dt ev** for inheritance: To disable the writing of the .dt ev file.
- gnuplot header int for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

```
35.4 Scheme_euler_explicit
Synonymous: schema_euler_explicite
Description: This is the Euler explicit scheme.
See also: schema temps base (35)
scheme_euler_explicit str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec str]
     [ seuil_statio float]
     [ residuals residuals]
     [ diffusion_implicite int]
```

[seuil_diffusion_implicite float]

```
[ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode sauvegarde securite en heures float]
     [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [ gnuplot_header int]
}
```

where

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- tcpumax float for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt sauv is in terms of physical time (not cpu time).
- dt impr float for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec str for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- residuals residuals (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- seuil_diffusion_implicite float for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- impr_diffusion_implicite int for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas

- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- gnuplot_header int for inheritance: Optional keyword to modify the header of the .out files. Allows
 to use the column title instead of columns number.

35.5 Leap_frog

Description: This is the leap-frog scheme.

See also: schema temps base (35) Usage: leap_frog str Read str { [tinit float] [tmax float] [tcpumax float] [dt_min float] $\begin{bmatrix} dt max str \end{bmatrix}$ [dt_sauv float] [dt_impr float] [facsec str] [seuil statio float] [residuals residuals] [diffusion implicite int] [seuil diffusion implicite float] [impr diffusion implicite int] [impr_extremums int] [no_error_if_not_converged_diffusion_implicite int] [no conv subiteration diffusion implicite int] [**dt_start** dt_start] [nb_pas_dt_max int] [niter_max_diffusion_implicite int] [precision_impr int] [periode_sauvegarde_securite_en_heures float]

```
[ no_check_disk_space ]
    [ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec str for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).

- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.6 Rk3 ft

Description: Keyword for Runge Kutta time scheme for Front Tracking calculation.

```
See also: runge kutta ordre 3 (35.9)
Usage:
rk3 ft str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

• **tinit** *float* for inheritance: Value of initial calculation time (0 by default).

- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.

- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.7 Runge_kutta_ordre_2

Description: This is a low-storage Runge-Kutta scheme of second order that uses 2 integration points. The method is presented by Williamson (case 1) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema_temps_base (35)
Usage:
runge kutta ordre 2 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
      [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
      [ dt_sauv float]
     [ dt_impr float]
      [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
      [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
      [ no conv subiteration diffusion implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
      [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
      [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.8 Runge_kutta_ordre_2_classique

Description: This is a classical Runge-Kutta scheme of second order that uses 2 integration points.

```
See also: schema temps base (35)
Usage:
runge kutta ordre 2 classique str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file
- facsec str for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to

0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.

- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.9 Runge kutta ordre 3

Description: This is a low-storage Runge-Kutta scheme of third order that uses 3 integration points. The method is presented by Williamson (case 7) in https://www.sciencedirect.com/science/article/pii/0021999180900339

See also: schema_temps_base (35) rk3_ft (35.6)

Usage:

```
runge_kutta_ordre_3 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [ dt max str]
     [ dt_sauv float]
     [dt impr float]
     [ facsec str]
     [ seuil_statio float]
     [ residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode sauvegarde securite en heures float]
     [ no check disk space ]
     [disable progress]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.

- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.10 Runge_kutta_ordre_3_classique

Description: This is a classical Runge-Kutta scheme of third order that uses 3 integration points.

```
See also: schema_temps_base (35)

Usage:
runge_kutta_ordre_3_classique str
Read str {

    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
    [dt_sauv float]
```

```
[ dt_impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually

if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.

- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.11 Runge_kutta_ordre_4_d3p

Synonymous: runge_kutta_ordre_4

Description: This is a low-storage Runge-Kutta scheme of fourth order that uses 3 integration points. The method is presented by Williamson (case 17) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema_temps_base (35)

Usage:
runge_kutta_ordre_4_d3p str

Read str {

    [ tinit float]
    [ tmax float]
    [ tcpumax float]
    [ dt_min float]
    [ dt_max str]
    [ dt_sauv float]
    [ dt_impr float]
    [ facsec str]
    [ seuil_statio float]
    [ residuals residuals]
    [ diffusion_implicite int]
```

```
[ seuil_diffusion_implicite float]
[ impr_diffusion_implicite int]
[ impr_extremums int]
[ no_error_if_not_converged_diffusion_implicite int]
[ no_conv_subiteration_diffusion_implicite int]
[ dt_start dt_start]
[ nb_pas_dt_max int]
[ niter_max_diffusion_implicite int]
[ precision_impr int]
[ periode_sauvegarde_securite_en_heures float]
[ no_check_disk_space ]
[ disable_progress ]
[ disable_dt_ev ]
[ gnuplot_header int]
}
```

where

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- seuil_diffusion_implicite *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.

- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.12 Runge_kutta_ordre_4_classique

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points.

```
See also: schema_temps_base (35)
Usage:
runge_kutta_ordre_4_classique str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec str]
      [ seuil_statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil diffusion implicite float]
      [impr_diffusion_implicite int]
      [ impr_extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
```

```
[ periode_sauvegarde_securite_en_heures float]
    [ no_check_disk_space ]
    [ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** int for inheritance: Maximum number of calculation time steps (1e9 by default).

- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.13 Runge_kutta_ordre_4_classique_3_8

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points and the 3/8 rule.

```
See also: schema_temps_base (35)
Usage:
runge_kutta_ordre_4_classique_3_8 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [disable progress]
     [disable dt ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- **no_conv_subiteration_diffusion_implicite** *int* for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no check disk space for inheritance: To disable the check of the available amount of disk space

during the calculation.

- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.14 Runge_kutta_rationnel_ordre_2

Description: This is the Runge-Kutta rational scheme of second order. The method is described in the note: Wambeck - Rational Runge-Kutta methods for solving systems of ordinary differential equations, at the link: https://link.springer.com/article/10.1007/BF02252381. Although rational methods require more computational work than linear ones, they can have some other properties, such as a stable behaviour with explicitness, which make them preferable. The CFD application of this RRK2 scheme is described in the note: https://link.springer.com/content/pdf/10.1007%2F3-540-13917-6_112.pdf.

```
See also: schema_temps_base (35)
Usage:
runge kutta rationnel ordre 2 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [ facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [ disable dt ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).

- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows

to use the column title instead of columns number.

35.15 Schema_adams_bashforth_order_2

```
Description: not_set
See also: schema_temps_base (35)
Usage:
schema adams bashforth order 2 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.

- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter_max_diffusion_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.16 Schema_adams_bashforth_order_3

Description: not_set

See also: schema_temps_base (35)

```
schema_adams_bashforth_order_3 str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
     [ dt_impr float]
      [facsec str]
     [ seuil_statio float]
     [residuals residuals]
      [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr extremums int]
      [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
      [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

Usage:

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported

- values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.17 Schema_adams_moulton_order_2

```
Description: not_set

See also: schema_implicite_base (35.22)

Usage:
schema_adams_moulton_order_2 str

Read str {

    [facsec_max float]
    [max_iter_implicite int]
    solveur solveur_implicite_base
    [tinit float]
```

```
[tmax float]
     [tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil statio float]
      [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
      [ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
     [disable progress]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

• facsec_max float: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (36) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.

- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.18 Schema_adams_moulton_order_3

```
Description: not_set
See also: schema_implicite_base (35.22)
Usage:
schema adams moulton order 3 str
Read str {
     [facsec_max float]
     [ max_iter_implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
```

where

• facsec_max float: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the im-

plicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (36) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- residuals residuals (3.120) for inheritance: To specify how the residuals will be computed (default

- max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.19 Schema_backward_differentiation_order_2

```
Description: not_set

See also: schema_implicite_base (35.22)

Usage:
schema_backward_differentiation_order_2 str

Read str {

    [facsec_max float]
    [max_iter_implicite int]
    solveur solveur_implicite_base
    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
```

```
\begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
      [ dt impr float]
     [facsec str]
      [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
      [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures | float]
      [ no_check_disk_space ]
     [ disable_progress ]
      [disable dt ev ]
     [ gnuplot_header int]
}
where
```

• facsec_max float: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur_implicite_base* (36) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than

the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- tcpumax float for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt sauv float for inheritance: Save time step value (1e30s by default). Every dt sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- dt_impr float for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec str for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-_Adams_Bashforth_order_3.
- seuil statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- residuals residuals (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- seuil_diffusion_implicite float for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- impr_diffusion_implicite int for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- dt start dt start (13.9) for inheritance: dt start dt min : the first iteration is based on dt min. dt start dt calc: the time step at first iteration is calculated in agreement with CFL condition. dt start dt fixe value : the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter_max_diffusion_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- precision_impr int for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode sauvegarde securite en heures float for inheritance: To change the default period (23

hours) between the save of the fields in .sauv file.

- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.20 Schema_backward_differentiation_order_3

```
Description: not_set
See also: schema_implicite_base (35.22)
schema_backward_differentiation_order_3 str
Read str {
     [ facsec_max float]
     [ max iter implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [ facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [ gnuplot_header int]
}
where
```

• facsec_max float: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec_max value.

Warning: Some implicit schemes do not permit high facsec_max, example Schema_Adams_Moulton_order_3 needs facsec=facsec_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec_max limit. But the user can also choose to specify a constant facsec (facsec_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec_max limit higher.

- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (36) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).

- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter_max_diffusion_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.21 Scheme euler implicit

```
Synonymous: schema_euler_implicite

Description: This is the Euler implicit scheme.

See also: schema_implicite_base (35.22)

Usage:
scheme_euler_implicit str

Read str {

    [facsec_max float]
    [resolution_monolithique bloc_lecture]
    [max_iter_implicite int]
    solveur solveur_implicite_base
    [tinit float]
    [tmax float]
```

```
[tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt max str \end{bmatrix}
      [ dt_sauv float]
     [dt impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
      [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
      [ impr_extremums int]
      [ no_error_if_not_converged_diffusion_implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures | float]
      [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [ gnuplot_header int]
where
```

- facsec_max float: For old syntax, see the complete parameters of facsec for details
- resolution_monolithique bloc_lecture (3.2): Activate monolithic resolution for coupled problems. Solves together the equations corresponding to the application domains in the given order. All aplication domains of the coupled equations must be given to determine the order of resolution. If the monolithic solving is not wanted for a specific application domain, an underscore can be added as prefix. For example, resolution_monolithique { dom1 { dom2 dom3 } _dom4 } will solve in a single matrix the equations having dom1 as application domain, then the equations having dom2 or dom3 as application domain in a single matrix, then the equations having dom4 as application domain in a sequential way (not in a single matrix).
- max_iter_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur_implicite_base (36) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).

- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt sauv float for inheritance: Save time step value (1e30s by default). Every dt sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- dt impr float for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec str for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- residuals residuals (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt max.
- seuil_diffusion_implicite float for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- impr_diffusion_implicite int for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- dt start dt start (13.9) for inheritance: dt start dt min : the first iteration is based on dt min. dt_start dt_calc : the time step at first iteration is calculated in agreement with CFL condition. dt start dt fixe value : the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
 - By default, the first iteration is based on dt calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter max diffusion implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- precision_impr int for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode_sauvegarde_securite_en_heures float for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot header** int for inheritance: Optional keyword to modify the header of the .out files. Allows

to use the column title instead of columns number.

35.22 Schema_implicite_base

Description: Basic class for implicite time scheme.

See also: schema_temps_base (35) schema_backward_differentiation_order_3 (35.20) schema_backward-_differentiation_order_2 (35.19) scheme_euler_implicit (35.21) schema_adams_moulton_order_3 (35.18) schema_adams_moulton_order_2 (35.17) implicit_euler_steady_scheme (35.1)

```
Usage:
schema implicite base str
Read str {
     [ max iter implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
      [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt sauv float]
      [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [impr_diffusion_implicite int]
     [ impr_extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
      [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
where
```

}

- max_iter_implicite int: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur implicite base (36): This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains. Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and

at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- precision impr int for inheritance: Optional keyword to define the digit number for flux values

printed into .out files (by default 3).

- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.23 Schema_phase_field

Description: Keyword for the only available Scheme for time discretization of the Phase Field problem.

```
See also: schema_temps_base (35)
Usage:
schema_phase_field str
Read str {
     [schema_ch schema_temps_base]
     [schema_ns schema_temps_base]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
     [disable progress]
     [ disable_dt_ev ]
     [ gnuplot_header int]
where
```

- schema_ch schema_temps_base (35): Time scheme for the Cahn-Hilliard equation.
- schema_ns schema_temps_base (35): Time scheme for the Navier-Stokes equation.
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).

- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt_sauv float for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- **nb pas dt max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.

- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.24 Schema_predictor_corrector

Description: This is the predictor-corrector scheme (second order). It is more accurate and economic than MacCormack scheme. It gives best results with a second ordre convective scheme like quick, centre (VDF).

```
See also: schema_temps_base (35)
Usage:
schema predictor corrector str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
      [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
      [ dt_sauv float]
     [ dt_impr float]
      [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
      [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
      [ no conv subiteration diffusion implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
      [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
      [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).

- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
 - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.
- seuil_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no_check_disk_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable_progress** for inheritance: To disable the writing of the .progress file.
- disable_dt_ev for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

35.25 Schema_euler_explicite_ale

Description: This is the Euler explicit scheme used for ALE problems.

```
See also: schema temps base (35)
Usage:
schema euler explicite ALE str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt_sauv is in terms of physical time (not cpu time).
- **dt_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file
- facsec str for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to

0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema_Adams_Bashforth_order_3.

- **seuil_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.120) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec*dt_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec*dt_max.
- **seuil_diffusion_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr_diffusion_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr_extremums int for inheritance: Print unknowns extremas
- no_error_if_not_converged_diffusion_implicite int for inheritance
- no_conv_subiteration_diffusion_implicite int for inheritance
- **dt_start** *dt_start* (13.9) for inheritance: dt_start dt_min: the first iteration is based on dt_min. dt_start dt_calc: the time step at first iteration is calculated in agreement with CFL condition. dt_start dt_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt_calc.
- nb_pas_dt_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter_max_diffusion_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode_sauvegarde_securite_en_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no_check_disk_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable_progress for inheritance: To disable the writing of the .progress file.
- **disable_dt_ev** for inheritance: To disable the writing of the .dt_ev file.
- **gnuplot_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

36 solveur_implicite_base

Description: Class for solver in the situation where the time scheme is the implicit scheme. Solver allows equation diffusion and convection operators to be set as implicit terms.

See also: objet_u (44) simpler (36.8) solveur_lineaire_std (36.9)

Usage:

36.1 Ice

Description: Implicit Continuous-fluid Eulerian solver which is useful for a multiphase problem. Robust pressure reduction resolution.

```
See also: sets (36.6)
Usage:
ice str
Read str {
     [ pression degeneree int]
     [ pressure_reduction|reduction_pression int]
     [ criteres_convergence bloc_criteres_convergence]
     [iter_min int]
     [iter_max int]
     [ seuil_convergence_implicite | float]
     [ nb corrections max int]
     [facsec diffusion for sets float]
     [ seuil_convergence_solveur float]
     [seuil generation solveur float]
     [ seuil_verification_solveur float]
     [ seuil test preliminaire solveur float]
     [solveur solveur sys base]
     [no qdm]
     [ nb_it_max int]
     [controle_residu]
where
```

- **pression_degeneree** *int*: Set to 1 if the pressure field is degenerate (ex. : incompressible fluid with no imposed-pressure BCs). Default: autodetected
- pressure_reduction|reduction_pression int: Set to 1 if the user wants a resolution with a pressure reduction. Otherwise, the rien is to be set to 0 so that the complete matrix is considered. The default value of this rien is 1.
- **criteres_convergence** *bloc_criteres_convergence* (3.2.1) for inheritance: Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter_min int for inheritance: Number of minimum iterations (default value 1)
- iter max int for inheritance: Number of maximum iterations (default value 10)
- **seuil_convergence_implicite** *float* for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **facsec_diffusion_for_sets** *float* for inheritance: facsec to impose on the diffusion time step in sets while the total time step stays smaller than the convection time step.
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).

- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.2 Implicit_steady

Description: this is the implicit solver using a dual time step. Remark: this solver can be used only with the Implicit_Euler_Steady_Scheme time scheme.

```
See also: implicite (36.3)
Usage:
implicit_steady str
Read str {
     [ seuil convergence implicite float]
     [ nb_corrections_max int]
     [ seuil convergence solveur float]
     [ seuil generation solveur float]
     [ seuil verification solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no qdm]
     [ nb_it_max int]
     [controle_residu]
}
where
```

- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.

- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.3 Implicite

Description: similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps. But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

See also: piso (36.5) implicite_ALE (36.4) implicit_steady (36.2)

```
Usage:
implicite str

Read str {

    [ seuil_convergence_implicite float]
    [ nb_corrections_max int]
    [ seuil_convergence_solveur float]
    [ seuil_generation_solveur float]
    [ seuil_verification_solveur float]
    [ seuil_test_preliminaire_solveur float]
    [ solveur solveur_sys_base]
    [ no_qdm ]
    [ nb_it_max int]
    [ controle_residu ]
}
where
```

- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.

• **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.4 Implicite_ale

Description: Implicite solver used for ALE problem

```
See also: implicite (36.3)
Usage:
implicite_ALE str
Read str {
     [ seuil convergence implicite float]
     [ nb_corrections_max int]
      [ seuil_convergence_solveur | float]
     [seuil_generation_solveur float]
      [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
      [solveur solveur sys base]
     [no_qdm]
     [ nb it max int]
     [controle_residu]
}
where
```

- seuil_convergence_implicite float for inheritance: Convergence criteria.
- **nb_corrections_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- seuil_convergence_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.5 Piso

Description: Piso (Pressure Implicit with Split Operator) - method to solve N_S.

```
See also: simpler (36.8) implicite (36.3) simple (36.7)

Usage:
piso str

Read str {

    [ seuil_convergence_implicite float]
    [ nb_corrections_max int]
    [ seuil_convergence_solveur float]
    [ seuil_generation_solveur float]
    [ seuil_verification_solveur float]
    [ seuil_test_preliminaire_solveur float]
    [ solveur solveur_sys_base]
    [ no_qdm ]
    [ nb_it_max int]
    [ controle_residu ]
}

where
```

- seuil_convergence_implicite float: Convergence criteria.
- **nb_corrections_max** *int*: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.6 Sets

Description: Stability-Enhancing Two-Step solver which is useful for a multiphase problem. Ref: J. H. MAHAFFY, A stability-enhancing two-step method for fluid flow calculations, Journal of Computational Physics, 46, 3, 329 (1982).

```
See also: simpler (36.8) ice (36.1)
Usage:
sets str
Read str {
     [criteres convergence bloc criteres convergence]
     [iter min int]
     [iter max int]
     [ seuil convergence implicite float]
     [ nb_corrections_max int]
     [ facsec_diffusion_for_sets float]
     [ seuil convergence solveur float]
     [ seuil generation solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb_it_max int]
     [controle_residu]
}
where
```

- **criteres_convergence** *bloc_criteres_convergence* (3.2.1): Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter_min int: Number of minimum iterations (default value 1)
- iter_max int: Number of maximum iterations (default value 10)
- seuil_convergence_implicite float: Convergence criteria.
- **nb_corrections_max** *int*: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **facsec_diffusion_for_sets** *float*: facsec to impose on the diffusion time step in sets while the total time step stays smaller than the convection time step.
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.7 Simple

```
Description: SIMPLE type algorithm
See also: piso (36.5) solveur u p (36.10)
Usage:
simple str
Read str {
     [relax pression float]
     [ seuil_convergence_implicite float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur | float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb it max int]
     [controle residu]
}
where
```

- **relax_pression** *float*: Value between 0 and 1 (by default 1), this keyword is used only by the SIM-PLE algorithm for relaxing the increment of pressure.
- seuil_convergence_implicite float for inheritance: Convergence criteria.
- nb_corrections_max *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil_test_preliminaire_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.8 Simpler

Description: Simpler method for incompressible systems.

```
See also: solveur_implicite_base (36) sets (36.6) piso (36.5)

Usage:
simpler str

Read str {

seuil_convergence_implicite float
[seuil_convergence_solveur float]
[seuil_generation_solveur float]
[seuil_verification_solveur float]
[seuil_test_preliminaire_solveur float]
[solveur solveur_sys_base]
[no_qdm ]
[nb_it_max int]
[controle_residu ]
}

where
```

- seuil_convergence_implicite float: Keyword to set the value of the convergence criteria for the resolution of the implicit system build to solve either the Navier_Stokes equation (only for Simple and Simpler algorithms) or a scalar equation. It is adviced to use the default value (1e6) to solve the implicit system only once by time step. This value must be decreased when a coupling between problems is considered.
- **seuil_convergence_solveur** *float*: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil_generation_solveur** *float*: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil_verification_solveur *float*: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- seuil_test_preliminaire_solveur *float*: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18): Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- no_qdm: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb_it_max** *int*: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu**: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

36.9 Solveur lineaire std

```
Description: not_set

See also: solveur_implicite_base (36)

Usage:
solveur_lineaire_std str

Read str {
    [solveur solveur_sys_base]
}
where
```

• solveur_sys_base (13.18)

36.10 Solveur_u_p

```
Description: similar to simple.
See also: simple (36.7)
Usage:
solveur_u_p str
Read str {
     [relax_pression float]
     [ seuil convergence implicite float]
     [ nb_corrections_max int]
      [ seuil_convergence_solveur float]
     [seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
      [solveur solveur sys base]
     [no_qdm]
     [ nb it max int]
     [controle_residu]
}
where
```

- **relax_pression** *float* for inheritance: Value between 0 and 1 (by default 1), this keyword is used only by the SIMPLE algorithm for relaxing the increment of pressure.
- seuil convergence implicite *float* for inheritance: Convergence criteria.
- nb_corrections_max int for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb_corrections_max if the accuracy of the projection is sufficient. (By default nb_corrections_max is set to 21).
- **seuil_convergence_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil_generation_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil_verification_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- seuil_test_preliminaire_solveur *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur_sys_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb_it_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

37 solveur_petsc_deriv

Description: Additional information is available in the PETSC documentation: https://petsc.org/release/manual/

See also: objet_u (44) lu (37.14) Cholesky_superlu (37.4) Cholesky_pastix (37.3) Cholesky_umfpack (37.5) Cholesky_out_of_core (37.2) cholesky (37.8) cholesky_mumps_blr (37.9) cli (37.10) cli_quiet (37.11) IBICGSTAB (37.6) BICGSTAB (37.1) gmres (37.13) gcp (37.12) PIPECG (37.7)

```
Usage:
solveur_petsc_deriv str

Read str {

    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
}
where
```

- **seuil** *float*: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet: is a keyword which is used to not displaying any outputs of the solver.
- **impr**: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float
- atol float
- save_matrix_mtx_format

See also: solveur_petsc_deriv (37)

37.1 Bicgstab

where

```
Description: Stabilized Bi-Conjugate Gradient
```

```
Usage:
BICGSTAB str
Read str {

    [ precond preconditionneur_petsc_deriv]
    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
```

- precond preconditionneur_petsc_deriv (34)
- **seuil** *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.

- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.2 Cholesky_out_of_core

Description: Same as the previous one but with a written LU decomposition of disk (save RAM memory but add an extra CPU cost during Ax=B solve).

```
See also: solveur_petsc_deriv (37)

Usage:
Cholesky_out_of_core str

Read str {

    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
}
where
```

- **seuil** *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.3 Cholesky_pastix

Description: Parallelized Cholesky from PASTIX library.

```
See also: solveur_petsc_deriv (37)

Usage:
Cholesky_pastix str
Read str {

    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
    [ atol float]
```

[save_matrix_mtx_format]

```
}
where
```

- seuil *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save matrix mtx format for inheritance

37.4 Cholesky_superlu

Description: Parallelized Cholesky from SUPERLU_DIST library (less CPU and RAM, efficient than the previous one)

```
See also: solveur_petsc_deriv (37)

Usage:
Cholesky_superlu str

Read str {

    [seuil float]
    [quiet ]
    [impr ]
    [rtol float]
    [atol float]
    [save_matrix_mtx_format ]
}

where
```

- **seuil** *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.5 Cholesky_umfpack

Description: Sequential Cholesky from UMFPACK library (seems fast).

```
See also: solveur_petsc_deriv (37)

Usage:
Cholesky_umfpack str

Read str {
    [ seuil float]
    [ quiet ]
```

```
[ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
}
where
```

- seuil *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.6 Ibicgstab

Description: Improved version of previous one for massive parallel computations (only a single global reduction operation instead of the usual 3 or 4).

```
See also: solveur_petsc_deriv (37)

Usage:

IBICGSTAB str

Read str {

        [ precond preconditionneur_petsc_deriv] |
            [ seuil float] |
            [ quiet ] |
            [ impr ] |
            [ rtol float] |
            [ ave_matrix_mtx_format ]
}

where
```

- **precond** preconditionneur_petsc_deriv (34)
- **seuil** *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.7 Pipecg

Description: Pipelined Conjugate Gradient (possible reduced CPU cost during massive parallel calculation due to a single non-blocking reduction per iteration, if TRUST is built with a MPI-3 implementation)... no example in TRUST

```
See also: solveur_petsc_deriv (37)

Usage:
PIPECG str
Read str {

    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
}
where
```

- **seuil** *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.8 Cholesky

Description: Parallelized version of Cholesky from MUMPS library. This solver accepts an option to select a different ordering than the automatic selected one by MUMPS (and printed by using the impr option). The possible choices are Metis, Scotch, PT-Scotch or Parmetis. The two last options can only be used during a parallel calculation, whereas the two first are available for sequential or parallel calculations. It seems that the CPU cost of A=LU factorization but also of the backward/forward elimination steps may sometimes be reduced by selecting a different ordering (Scotch seems often the best for b/f elimination) than the default one.

Notice that this solver requires a huge amont of memory compared to iterative methods. To know how much RAM you will need by core, then use the improprion to have detailled informations during the analysis phase and before the factorisation phase (in the following output, you will learn that the largest memory is taken by the zeroth CPU with 108MB):

Rank of proc needing largest memory in IC facto: 0 Estimated corresponding MBYTES for IC facto: 108

Thanks to the following graph, you read that in order to solve for instance a flow on a mesh with 2.6e6 cells, you will need to run a parallel calculation on 32 CPUs if you have cluster nodes with only 4GB/core (6.2GB*0.42 2.6GB):

```
See also: solveur_petsc_deriv (37)

Usage:
cholesky str

Read str {

[ save_matrix|save_matrice ]
    [ save_matrix_petsc_format ]
```

```
Relative evolution compare to a 16 CPUs parallel calculation
           on a 2.6e6 cells mesh (163000 cells/CPU) where:
                        Peak RAM/CPU is 6.2GB
                      A=LU in factorization in 206 s
                        x=A-1.B solve in 0.83 s
1.20
1.00
                                                              Peak RAM/CPU
                                                              A=LU Time
0.80
                                                              x=A-1.B Time
                                                              - Cells/CPU
0.60
0.20
0.00
                                   64
                                                   128
                        # CPU
```

```
[ reduce_ram ]
    [ cli_quiet solveur_petsc_option_cli]
    [ cli solveur_petsc_option_cli]
    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
}
where
```

- save_matrix|save_matrice
- save_matrix_petsc_format
- reduce_ram
- cli_quiet solveur_petsc_option_cli (3.2.2)
- cli solveur_petsc_option_cli (3.2.2)
- **seuil** *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.9 Cholesky_mumps_blr

```
Description: BLR for (Block Low-Rank)
See also: solveur_petsc_deriv (37)
Usage:
cholesky_mumps_blr str
Read str {
```

```
[ reduce_ram ]
    [ dropping_parameter float]
    [ cli solveur_petsc_option_cli]
    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
}
where
```

- reduce ram
- dropping_parameter float
- cli solveur petsc option cli (3.2.2)
- seuil *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save matrix mtx format for inheritance

37.10 Cli

Description: Command Line Interface. Should be used only by advanced users, to access the whole solver/preconditioners from the PETSC API. To find all the available options, run your calculation with the -ksp_view -help options:

trust datafile [N] -ksp_view -help

-pc_type Preconditioner:(one of) none jacobi pbjacobi bjacobi sor lu shell mg eisenstat ilu icc cholesky asm ksp composite redundant nn mat fieldsplit galerkin openmp spai hypre tfs (PCSetType)

HYPRE preconditioner options:

-pc_hypre_type pilut (choose one of) pilut parasails boomeramg

HYPRE ParaSails Options

- -pc hypre parasails nlevels 1: Number of number of levels (None)
- -pc hypre parasails thresh 0.1: Threshold (None)
- -pc hypre parasails filter 0.1: filter (None)
- -pc_hypre_parasails_loadbal 0: Load balance (None)
- -pc_hypre_parasails_logging: FALSE Print info to screen (None)
- -pc_hypre_parasails_reuse: FALSE Reuse nonzero pattern in preconditioner (None)
- -pc_hypre_parasails_sym nonsymmetric (choose one of) nonsymmetric SPD nonsymmetric,SPD

Krylov Method (KSP) Options

- -ksp_type Krylov method:(one of) cg cgne stcg gltr richardson chebychev gmres tcqmr bcgs bcgsl cgs tfqmr cr lsqr preonly qcg bicg fgmres minres symmlq lgmres lcd (KSPSetType)
- -ksp_max_it 10000: Maximum number of iterations (KSPSetTolerances)
- -ksp_rtol 0: Relative decrease in residual norm (KSPSetTolerances)
- -ksp_atol 1e-12: Absolute value of residual norm (KSPSetTolerances)
- -ksp_divtol 10000: Residual norm increase cause divergence (KSPSetTolerances)
- -ksp_converged_use_initial_residual_norm: Use initial residual norm for computing relative convergence
- -ksp monitor singular value stdout: Monitor singular values (KSPMonitorSet)

```
-ksp_monitor_short stdout: Monitor preconditioned residual norm with fewer digits (KSPMonitorSet)
-ksp_monitor_draw: Monitor graphically preconditioned residual norm (KSPMonitorSet)
-ksp_monitor_draw_true_residual: Monitor graphically true residual norm (KSPMonitorSet)
Example to use the multigrid method as a solver, not only as a preconditioner:
Solveur_pression Petsc CLI {-ksp_type richardson -pc_type hypre -pc_hypre_type boomeramg -ksp_atol
1.e-7 }
See also: solveur_petsc_deriv (37)
Usage:
cli cli_bloc
where
   • cli_bloc bloc_lecture (3.2): bloc
37.11 Cli_quiet
Description: solver
See also: solveur_petsc_deriv (37)
Usage:
cli_quiet cli_quiet_bloc
where
   • cli_quiet_bloc bloc_lecture (3.2): bloc
37.12 Gcp
Description: Preconditioned Conjugate Gradient
See also: solveur_petsc_deriv (37)
Usage:
gcp str
Read str {
     [ precond preconditionneur_petsc_deriv]
     [ precond_nul ]
     [rtol float]
     [ reuse_preconditioner_nb_it_max int]
     [ cli solveur_petsc_option_cli]
     [reorder_matrix int]
     [ read_matrix ]
     [ save_matrix|save_matrice ]
     [ petsc_decide int]
     [ pcshell str]
     [aij]
     [ seuil float]
     [ quiet ]
     [impr]
```

[atol float]

```
[ save_matrix_mtx_format ]
}
where

• precond preconditionneur_petsc_deriv (34): preconditioner
• precond_nul : No preconditioner used, equivalent to precond null { }
• rtol float
• reuse_preconditioner_nb_it_max int
```

• reorder matrix int

• cli solveur_petsc_option_cli (3.2.2)

- read_matrix: save_matrixlread_matrix are the keywords to savelread into a file the constant matrix A of the linear system Ax=B solved (eg: matrix from the pressure linear system for an incompressible flow). It is useful when you want to minimize the MPI communications on massive parallel calculation. Indeed, in VEF discretization, the overlapping width (generaly 2, specified with the largeur_joint option in the partition keyword partition) can be reduced to 1, once the matrix has been properly assembled and saved. The cost of the MPI communications in TRUST itself (not in PETSc) will be reduced with length messages divided by 2. So the strategy is:
 - I) Partition your VEF mesh with a largeur_joint value of 2
 - II) Run your parallel calculation on 0 time step, to build and save the matrix with the save_matrix option. A file named Matrix_NBROWS_rows_NCPUS_cpus.petsc will be saved to the disk (where NBROWS is the number of rows of the matrix and NCPUS the number of CPUs used).
 - III) Partition your VEF mesh with a largeur_joint value of 1
 - IV) Run your parallel calculation completly now and substitute the save_matrix option by the read_matrix option. Some interesting gains have been noticed when the cost of linear system solve with PETSc is small compared to all the other operations.
- save_matrix|save_matrice : see read_matrix
- petsc_decide int
- pcshell str
- aii
- **seuil** *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.13 Gmres

Description: Generalized Minimal Residual

See also: solveur_petsc_deriv (37)

Usage:
gmres str
Read str {

 [precond preconditionneur_petsc_deriv]
 [reuse_preconditioner_nb_it_max int]
 [save_matrix_petsc_format]
 [nb_it_max int]
 [seuil float]
 [quiet]

```
[ impr ]
    [ rtol float]
    [ atol float]
    [ save_matrix_mtx_format ]
}
where
```

- precond preconditionneur petsc deriv (34)
- reuse preconditioner nb it max int
- save_matrix_petsc_format
- **nb_it_max** *int*: In order to specify a given number of iterations instead of a condition on the residue with the keyword seuil. May be useful when defining a PETSc solver for the implicit time scheme where convergence is very fast: 5 or less iterations seems enough.
- seuil *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save_matrix_mtx_format for inheritance

37.14 Lu

Description: Several solvers through PETSc API are available. TIPS:

- A) Solver for symmetric linear systems (e.g. Pressure system from Navier-Stokes equations):
- -The CHOLESKY parallel solver is from MUMPS library. It offers better performance than all others solvers if you have enough RAM for your calculation. A parallel calculation on a cluster with 4GBytes on each processor, 40000 cells/processor seems the upper limit. Seems to be very slow to initialize above 500 cpus/cores.
- -When running a parallel calculation with a high number of cpus/cores (typically more than 500) where preconditioner scalabilty is the key for CPU performance, consider BICGSTAB with BLOCK_JACOBI_ICC(1) as preconditioner or if not converges, GCP with BLOCK_JACOBI_ICC(1) as preconditioner.
- -For other situations, the first choice should be GCP/SSOR. In order to fine tune the solver choice, each one of the previous list should be considered. Indeed, the CPU speed of a solver depends of a lot of parameters. You may give a try to the OPTIMAL solver to help you to find the fastest solver on your study.
- B) Solver for non symmetric linear systems (e.g.: Implicit schemes): The BICGSTAB/DIAG solver seems to offer the best performances.

```
See also: solveur_petsc_deriv (37)

Usage:
lu str

Read str {

    [ seuil float]
    [ quiet ]
    [ impr ]
    [ rtol float]
```

```
[ atol float]
[ save_matrix_mtx_format ]
}
where
```

- seuil *float* for inheritance: corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than seuil.
- quiet for inheritance: is a keyword which is used to not displaying any outputs of the solver.
- **impr** for inheritance: used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- rtol float for inheritance
- atol float for inheritance
- save matrix mtx format for inheritance

38 source_base

Description: Basic class of source terms introduced in the equation.

See also: objet_u (44) darcy (38.25) puissance_thermique (38.37) forchheimer (38.28) dirac (38.26) sourceconstituent (38.41) vitesse relative base (38.66) flux interfacial (38.27) frottement interfacial (38.29) Portance_interfaciale (38.10) travail_pression (38.64) Dispersion_bulles (38.7) coriolis (38.24) perte_charge-_singuliere (38.36) canal_perio (38.23) perte_charge_reguliere (38.34) source_qdm (38.48) source_pdfbase (38.47) acceleration (38.20) DP Impose (38.3) boussinesq temperature (38.22) boussinesq concentration (38.21) terme puissance thermique echange impose (38.63) Correction Antal (38.1) radioactive decay (38.38) source qdm lambdaup (38.49) source th tdivu (38.55) perte charge isotrope (38.33) perte charge-_directionnelle (38.32) perte_charge_anisotrope (38.30) perte_charge_circulaire (38.31) source_generique (38.43) source_transport_eps (38.57) source_transport_k (38.58) source_transport_k_eps (38.59) Source-_Constituant_Vortex (38.15) trainee (38.56) flottabilite (38.42) masse_ajoutee (38.44) source_rayo_semi-_transp (38.51) Source_Dissipation_echelle_temp_taux_diss_turb (38.17) source_robin_scalaire (38.53) source_con_phase_field (38.39) Source_Dissipation_HZDR (38.16) source_robin (38.52) tenseur_Reynoldsexterne (38.62) Injection_QDM_nulle (38.9) Production_HZDR (38.11) Source_BIF (38.14) Correction-_Lubchenko (38.2) Diffusion_supplementaire_echelle_temp_turb (38.6) Terme_dissipation_energie_cinetique-_turbulente (38.19) Production_echelle_temp_taux_diss_turb (38.12) Dissipation_echelle_temp_taux_diss-_turb (38.8) Diffusion_croisee_echelle_temp_taux_diss_turb (38.5) Production_energie_cin_turb (38.13) source qdm phase field (38.50)

Usage:

38.1 Correction antal

Description: Antal correction source term for multiphase problem

See also: source_base (38)

Usage:

38.2 Correction_lubchenko

```
Description: not_set

See also: source_base (38)
```

Usage:

```
Correction_Lubchenko str
Read str {
     [ beta_lift float]
     [ beta_disp float]
where
   • beta_lift float
   • beta_disp float
38.3
      Dp_impose
Description: Source term to impose a pressure difference according to the formula : DP = dp + dDP/dQ *
(Q - Q0)
See also: source_base (38)
Usage:
DP_Impose aco dp_type surface bloc_surface acof
where
   • aco str into ['{'}]: Opening curly bracket.
   • dp_type type_perte_charge_deriv (38.4): mass flow rate (kg/s).
   • surface str into ['surface']
   • bloc_surface bloc_lecture (3.2): Three syntaxes are possible for the surface definition block:
     For VDF and VEF: \{X|Y|Z = location \ subzone\_name \}
     Only for VEF: { Surface surface_name }.
     For polymac { Surface surface_name Orientation champ_uniforme }.
   • acof str into ['}']: Closing curly bracket.
       Type_perte_charge_deriv
Description: not_set
See also: objet_lecture (43) dp (38.4.1) dp_regul (38.4.2)
Usage:
38.4.1 Dp
Description: DP field should have 3 components defining dp, dDP/dQ, Q0
See also: type_perte_charge_deriv (38.4)
Usage:
dp dp_field
where
   • dp_field champ_base (18.1): the parameters of the previous formula (DP = dp + dDP/dQ * (Q -
```

Q0)): uniform_field 3 dp dDP/dQ Q0 where Q0 is a mass flow rate (kg/s).

```
38.4.2 Dp_regul
```

where

```
Description: Keyword used to regulate the DP value in order to match a target flow rate. Syntax : dp_regul { DP0 d deb d eps e }
```

- **DP0** *float*: initial value of DP
- **deb** str: target flow rate in kg/s
- **eps** *str*: strength of the regulation (low values might be slow to find the target flow rate, high values might oscillate around the target value)

38.5 Diffusion_croisee_echelle_temp_taux_diss_turb

Description: Cross-diffusion source term used in the tau and omega equations

```
See also: source_base (38)

Usage:
Diffusion_croisee_echelle_temp_taux_diss_turb str
Read str {
    [sigma_d float]
}
where
```

• sigma_d float: Constant for the used model

38.6 Diffusion_supplementaire_echelle_temp_turb

```
Description: not_set

See also: source_base (38)

Usage:
```

Diffusion_supplementaire_echelle_temp_turb

38.7 Dispersion_bulles

Description: Base class for source terms of bubble dispersion in momentum equation.

```
See also: source_base (38)
Usage:
Dispersion_bulles str
Read str {
```

```
[ beta float]
} where
```

• beta *float*: Mutliplying factor for the output of the bubble dispersion source term.

38.8 Dissipation_echelle_temp_taux_diss_turb

Description: Dissipation source term used in the tau and omega equations

```
See also: source_base (38)

Usage:
Dissipation_echelle_temp_taux_diss_turb str
Read str {
    [beta_omega float]
}
where
```

• beta_omega float: Constant for the used model

38.9 Injection_qdm_nulle

```
Description: not_set

See also: source_base (38)

Usage:
```

38.10 Portance_interfaciale

Description: Base class for source term of lift force in momentum equation.

```
See also: source_base (38)

Usage:
Portance_interfaciale str
Read str {
    [beta float]
}
where
```

• beta *float*: Multiplying factor for the bubble lift force source term.

```
38.11 Production_hzdr
```

```
Description: not_set
See also: source_base (38)
Usage:
Production_HZDR str
Read str {
     [constante_gravitation float]
     [ c_k float]
}
where
   • constante_gravitation float
   • c_k float
38.12 Production_echelle_temp_taux_diss_turb
Description: Production source term used in the tau and omega equations
See also: source_base (38)
Usage:
Production_echelle_temp_taux_diss_turb str
Read str {
     [ alpha_omega float]
}
where
   • alpha_omega float: Constant for the used model
38.13 Production_energie_cin_turb
Description: Production source term for the TKE equation
See also: source_base (38)
Usage:
38.14 Source_bif
Description: not_set
See also: source_base (38)
Usage:
```

38.15 Source_constituant_vortex

Description: Special treatment for the reactor of vortex effect where reagents are injected just below the free surface in the liquid phase

```
See also: source_base (38)

Usage:
Source_Constituant_Vortex str
Read str {

    [senseur_interface bloc_lecture]
    [rayon_spot float]
    [delta_spot n x1 x2 ... xn]
    [integrale float]
    [debit float]
}
where
```

- senseur_interface bloc_lecture (3.2): This is to be defined for the concentration equation of the reagents only and in the bloc of the sources. Here the user defines the position of the reagents injection.
- rayon_spot float: defines the radius of the concentration spot (tracer) injected in the fluid
- delta_spot n x1 x2 ... xn: dimensions of the injection (segment). the syntax is dim val1 val2 [val3]
- integrale *float*: the molar flowrate of injection
- **debit** *float*: a normalization of the molar flow rate. Advice: keep this value to 1.

38.16 Source_dissipation_hzdr

```
Description: not_set

See also: source_base (38)

Usage:
Source_Dissipation_HZDR str

Read str {

    [ constante_gravitation float]
    [ c_k float]
    [ c_epsilon float]
}
where

• constante_gravitation float
• c_k float
• c_epsilon float
```

38.17 Source_dissipation_echelle_temp_taux_diss_turb

Description: Source term which corresponds to the dissipation source term that appears in the transport equation for tau (in the k-tau turbulence model)

```
See also: source base (38)
```

Usage:

Source_Dissipation_echelle_temp_taux_diss_turb

38.18 Source_transport_k_eps_anisotherme

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92 C3_eps=1.0

```
See also: source_transport_k_eps (38.59)

Usage:
Source_Transport_K_Eps_anisotherme str

Read str {

    [c3_eps float]
    [c1_eps float]
    [c2_eps float]
}

where

• c3_eps float: Third constant.
• c1_eps float for inheritance: First constant.
• c2_eps float for inheritance: Second constant.
```

38.19 Terme_dissipation_energie_cinetique_turbulente

Description: Dissipation source term used in the TKE equation

```
See also: source_base (38)

Usage:
Terme_dissipation_energie_cinetique_turbulente str
Read str {
    [beta_k float]
}
where
```

• beta_k float: Constant for the used model

38.20 Acceleration

Description: Momentum source term to take in account the forces due to rotation or translation of a non Galilean referential R' (centre 0') into the Galilean referential R (centre 0).

```
See also: source_base (38)

Usage:
acceleration str
Read str {

[vitesse champ_base]
```

```
[acceleration champ_base]
[omega champ_base]
[domegadt champ_base]
[centre_rotation champ_base]
[option str into ['terme_complet', 'coriolis_seul', 'entrainement_seul']]
}
where
```

- **vitesse** *champ_base* (18.1): Keyword for the velocity of the referential R' into the R referential (dOO'/dt term [m.s-1]). The velocity is mandatory when you want to print the total cinetic energy into the non-mobile Galilean referential R (see Ec_dans_repere_fixe keyword).
- acceleration *champ_base* (18.1): Keyword for the acceleration of the referential R' into the R referential (d2OO'/dt2 term [m.s-2]). field_base is a time dependant field (eg: Champ_Fonc_t).
- omega champ_base (18.1): Keyword for a rotation of the referential R' into the R referential [rad.s-1]. field_base is a 3D time dependant field specified for example by a Champ_Fonc_t keyword. The time_field field should have 3 components even in 2D (In 2D: 0 0 omega).
- **domegadt** *champ_base* (18.1): Keyword to define the time derivative of the previous rotation [rad.s-2]. Should be zero if the rotation is constant. The time_field field should have 3 components even in 2D (In 2D: 0 0 domegadt).
- **centre_rotation** *champ_base* (18.1): Keyword to specify the centre of rotation (expressed in R' coordinates) of R' into R (if the domain rotates with the R' referential, the centre of rotation is 0'=(0,0,0)). The time_field should have 2 or 3 components according the dimension 2 or 3.
- **option** *str into ['terme_complet', 'coriolis_seul', 'entrainement_seul']:* Keyword to specify the kind of calculation: terme_complet (default option) will calculate both the Coriolis and centrifugal forces, coriolis_seul will calculate the first one only, entrainement_seul will calculate the second one only.

38.21 Boussinesq concentration

Description: Class to describe a source term that couples the movement quantity equation and constituent transport equation with the Boussinesq hypothesis.

```
See also: source_base (38)

Usage:
boussinesq_concentration str
Read str {

c0 n x1 x2 ... xn
}
where
```

• **c0** *n x1 x2 ... xn*: Reference concentration field type. The only field type currently available is Champ Uniform (Uniform field).

38.22 Boussinesq_temperature

Description: Class to describe a source term that couples the movement quantity equation and energy equation with the Boussinesq hypothesis.

```
See also: source base (38)
```

```
Usage:
boussinesq_temperature str
Read str {
    t0 str
    [ verif_boussinesq int]
```

- **t0** *str*: Reference temperature value (oC or K). It can also be a time dependant function since the 1.6.6 version.
- **verif_boussinesq** *int*: Keyword to check (1) or not (0) the reference value in comparison with the mean value in the domain. It is set to 1 by default.

38.23 Canal perio

Description: Momentum source term to maintain flow rate. The expression of the source term is: S(t) = (2*(Q(0) - Q(t))-(Q(0)-Q(t-dt))/(coeff*dt*area)

```
Where:
```

} where

coeff=damping coefficient area=area of the periodic boundary Q(t)=flow rate at time t dt=time step

Three files will be created during calculation on a datafile named DataFile.data. The first file contains the flow rate evolution. The second file is useful for resuming a calculation with the flow rate of the previous stopped calculation, and the last one contains the pressure gradient evolution:

- -DataFile_Channel_Flow_Rate_ProblemName_BoundaryName
- -DataFile_Channel_Flow_Rate_repr_ProblemName_BoundaryName
- -DataFile_Pressure_Gradient_ProblemName_BoundaryName

```
See also: source_base (38)

Usage:
canal_perio str

Read str {
    [u_etoile float]
    [coeff float]
    [h float]
    bord str
    [debit_impose float]
}
where
```

- u etoile float
- coeff float: Damping coefficient (optional, default value is 10).
- h float: Half heigth of the channel.
- **bord** *str*: The name of the (periodic) boundary normal to the flow direction.
- **debit_impose** *float*: Optional option to specify the aimed flow rate Q(0). If not used, Q(0) is computed by the code after the projection phase, where velocity initial conditions are slighly changed to verify incompressibility.

38.24 Coriolis

Description: Keyword for a Coriolis term in hydraulic equation. Warning: Only available in VDF.

See also: source_base (38)
Usage:

coriolis omega

where

• omega str: Value of omega.

38.25 Darcy

Description: Class for calculation in a porous media with source term of Darcy -nu/K*V. This keyword must be used with a permeability model. For the moment there are two models: permeability constant or Ergun's law. Darcy source term is available for quasi compressible calculation. A new keyword is aded for porosity (porosite).

See also: source_base (38)

Usage:

darcy bloc

where

• **bloc** *bloc lecture* (3.2): Description.

38.26 Dirac

Description: Class to define a source term corresponding to a volume power release in the energy equation.

See also: source_base (38)

Usage:

dirac position ch

where

- **position** *n x1 x2 ... xn*
- **ch** *champ_base* (18.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ_Uniforme_Morceaux (partly_uniform_field) type must be used.

Warning: The volume thermal power is expressed in W.m-3.

38.27 Flux_interfacial

Description: Source term of mass transfer between phases connected by the saturation object defined in saturation xxxx

See also: source base (38)

Usage:

flux_interfacial

38.28 Forchheimer

Description: Class to add the source term of Forchheimer -Cf/sqrt(K)*V2 in the Navier-Stokes equations. We must precise a permeability model: constant or Ergun's law. Moreover we can give the constant Cf: by default its value is 1. Forchheimer source term is available also for quasi compressible calculation. A new keyword is aded for porosity (porosite).

```
See also: source_base (38)

Usage:
forchheimer bloc
where

• bloc bloc_lecture (3.2): Description.
```

38.29 Frottement_interfacial

Description: Source term which corresponds to the phases friction at the interface

```
See also: source_base (38)

Usage:
frottement_interfacial str

Read str {

    [a_res float]
    [dv_min float]
    [exp_res int]

}

where
```

- **a_res** *float*: void fraction at which the gas velocity is forced to approach liquid velocity (default alpha_evanescence*100)
- dv_min float: minimal relative velocity used to linearize interfacial friction at low velocities
- exp_res int: exponent that callibrates intensity of velocity convergence (default 2)

38.30 Perte_charge_anisotrope

```
Description: Anisotropic pressure loss.

See also: source_base (38)

Usage:
perte_charge_anisotrope str
Read str {
    lambda str
    lambda_ortho str
    diam_hydr champ_don_base
    direction champ_don_base
    [ sous_zone str]
}

where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- lambda_ortho *str*: Function for loss coefficient in transverse direction which may be Reynolds dependant (Ex: 64/Re).
- diam_hydr champ_don_base (18.9): Hydraulic diameter value.
- direction champ_don_base (18.9): Field which indicates the direction of the pressure loss.
- sous_zone str: Optional sub-area where pressure loss applies.

38.31 Perte_charge_circulaire

```
Description: New pressure loss.

See also: source_base (38)

Usage:
perte_charge_circulaire str
Read str {

    lambda str
    diam_hydr champ_don_base
    [sous_zone str]
    lambda_ortho str
    diam_hydr_ortho champ_don_base
    direction champ_don_base
}

where
```

- lambda str: Function f(Re_tot, Re_long, t, x, y, z) for loss coefficient in the longitudinal direction
- diam_hydr champ_don_base (18.9): Hydraulic diameter value.
- sous zone str: Optional sub-area where pressure loss applies.
- lambda_ortho *str*: function: Function f(Re_tot, Re_ortho, t, x, y, z) for loss coefficient in transverse direction
- diam_hydr_ortho champ_don_base (18.9): Transverse hydraulic diameter value.
- **direction** *champ_don_base* (18.9): Field which indicates the direction of the pressure loss.

38.32 Perte_charge_directionnelle

Description: Directional pressure loss (available in VEF and PolyMAC).

```
See also: source_base (38)

Usage:
perte_charge_directionnelle str
Read str {

    lambda str
    diam_hydr champ_don_base
    direction champ_don_base
    [ sous_zone str]
}

where
```

• lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).

- diam_hydr champ_don_base (18.9): Hydraulic diameter value.
- **direction** *champ_don_base* (18.9): Field which indicates the direction of the pressure loss.
- **sous_zone** *str*: Optional sub-area where pressure loss applies.

38.33 Perte_charge_isotrope

Description: Isotropic pressure loss (available in VEF and PolyMAC).

```
See also: source_base (38)

Usage:
perte_charge_isotrope str

Read str {
    lambda str
    diam_hydr champ_don_base
    [ sous_zone str]
}

where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- diam_hydr champ_don_base (18.9): Hydraulic diameter value.
- sous_zone str: Optional sub-area where pressure loss applies.

38.34 Perte_charge_reguliere

Description: Source term modelling the presence of a bundle of tubes in a flow.

```
See also: source_base (38)

Usage:
perte_charge_reguliere spec zone_name
where
```

- **spec** *spec_pdcr_base* (38.35): Description of longitudinale or transversale type.
- **zone_name** *str*: Name of the sub-area occupied by the tube bundle. A Sous_Zone (Sub-area) type object called zone_name should have been previously created.

38.35 Spec_pdcr_base

Description: Class to read the source term modelling the presence of a bundle of tubes in a flow. Cf=A Re-B.

```
See also: objet_lecture (43) longitudinale (38.35.1) transversale (38.35.2)
```

Usage:

spec_pdcr_base

38.35.1 Longitudinale

Description: Class to define the pressure loss in the direction of the tube bundle.

```
See also: spec_pdcr_base (38.35)

Usage:
longitudinale dir dd ch_a a [ch_b][b]
where
```

- dir str into ['x', 'y', 'z']: Direction.
- **dd** *float*: Tube bundle hydraulic diameter value. This value is expressed in m.
- ch_a str into ['a', 'cf']: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

38.35.2 Transversale

Description: Class to define the pressure loss in the direction perpendicular to the tube bundle.

```
See also: spec_pdcr_base (38.35)

Usage: transversale dir dd chaine_d d ch_a a [ch_b][b] where
```

- dir str into ['x', 'y', 'z']: Direction.
- **dd** *float*: Value of the tube bundle step.
- chaine_d str into ['d']: Keyword to be used to set the value of the tube external diameter.
- **d** *float*: Value of the tube external diameter.
- **ch_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a *float*: Value of a law coefficient for regular pressure losses.
- ch b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

38.36 Perte charge singuliere

Description: Source term that is used to model a pressure loss over a surface area (transition through a grid, sudden enlargement) defined by the faces of elements located on the intersection of a subzone named subzone_name and a X,Y, or Z plane located at X,Y or Z = location.

```
See also: source_base (38)

Usage:
perte_charge_singuliere str

Read str {

    dir str into ['kx', 'ky', 'kz', 'K']
    [coeff float]
    [regul bloc_lecture]
    surface bloc lecture
```

```
}
where
```

- dir str into ['kx', 'ky', 'kz', 'K']: KX, KY or KZ designate directional pressure loss coefficients for respectively X, Y or Z direction. Or in the case where you chose a target flow rate with regul. Use K for isotropic pressure loss coefficient
- coeff float: Value (float) of friction coefficient (KX, KY, KZ).
- **regul** *bloc_lecture* (3.2): option to have adjustable K with flowrate target { K0 valeur_initiale_de_k deb debit_cible eps intervalle_variation_mutiplicatif}.
- **surface** *bloc_lecture* (3.2): Three syntaxes are possible for the surface definition block: For VDF and VEF: { XIYIZ = location subzone_name }

Only for VEE: (Symfore symfore name)

Only for VEF: { Surface surface_name }.

For polymac { Surface surface_name Orientation champ_uniforme }

38.37 Puissance_thermique

Description: Class to define a source term corresponding to a volume power release in the energy equation.

See also: source_base (38)

Usage:

puissance_thermique ch

where

• **ch** *champ_base* (18.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ_Uniforme_Morceaux (partly_uniform_field) type must be used.

Warning: The volume thermal power is expressed in W.m-3 in 3D (in W.m-2 in 2D). It is a power per volume unit (in a porous media, it is a power per fluid volume unit).

38.38 Radioactive_decay

Description: Radioactive decay source term of the form $-\lambda_{-}ic_{-}i$, where $0 \le i \le N$, N is the number of component of the constituent, $c_{-}i$ and $\lambda_{-}i$ are the concentration and the decay constant of the i-th component of the constituent.

See also: source base (38)

Usage:

radioactive_decay val

where

• val n x1 x2 ... xn: n is the number of decay constants to read (int), and val1, val2... are the decay constants (double)

38.39 Source_con_phase_field

Description: Keyword to define the source term of the Cahn-Hilliard equation.

See also: source_base (38)

Usage:

source_con_phase_field str Read str {

```
[ systeme_naire systeme_naire_deriv]
     temps_d_affichage int
     movenne de kappa str
     multiplicateur_de_kappa float
     couplage NS CH str
     implicitation_CH str into ['oui', 'non']
     gmres non lineaire str into ['oui', 'non']
     seuil cv iterations ptfixe float
     seuil residu ptfixe float
     seuil_residu_gmresnl float
     dimension espace de krylov int
     nb_iterations_gmresnl int
     residu_min_gmresnl float
     residu_max_gmresnl float
}
where
```

- systeme_naire systeme_naire_deriv (38.40)
- temps_d_affichage int: Time during the caracteristics of the problem are shown before calculation.
- moyenne_de_kappa str: To define how mobility kappa is calculated on faces of the mesh according to cell-centered values (chaine is arithmetique/harmonique/geometrique).
- multiplicateur_de_kappa *float*: To define the parameter of the mobility expression when mobility depends on C.
- couplage NS CH str: Evaluating time choosen for the term source calculation into the Navier Stokes equation (chaine is mutilde(n+1/2)/mutilde(n), in order to be conservative, the first choice seems better).
- implicitation_CH str into ['oui', 'non']: To define if the Cahn-Hilliard will be solved using a implicit algorithm or not.
- gmres_non_lineaire str into ['oui', 'non']: To define the algorithm to solve Cahn-Hilliard equation (oui: Newton-Krylov method, non: fixed point method).
- seuil_cv_iterations_ptfixe float: Convergence threshold (an option of the fixed point method).
- seuil_residu_ptfixe float: Threshold for the matrix inversion used in the method (an option of the fixed point method).
- seuil_residu_gmresnl float: Convergence threshold (an option of the Newton-Krylov method).
- dimension_espace_de_krylov int: Vector numbers used in the method (an option of the Newton-Krylov method).
- **nb** iterations gmresnl int: Maximal iteration (an option of the Newton-Krylov method).
- residu min gmresnl float: Minimal convergence threshold (an option of the Newton-Krylov method).
- residu_max_gmresnl float: Maximal convergence threshold (an option of the Newton-Krylov method).

38.40 Systeme_naire_deriv

```
Description: not set
See also: objet_lecture (43) non (38.40.1)
Usage:
```

```
38.40.1 Non
Description: not_set
See also: systeme_naire_deriv (38.40)
Usage:
non {
     alpha float
     beta float
     kappa float
     kappa_variable bloc_kappa_variable
     [ potentiel_chimique bloc_potentiel_chim]
}
where
   • alpha float: Internal capillary coefficient alfa.
   • beta float: Parameter beta of the model.
   • kappa float: Mobility coefficient kappa0.
   • kappa_variable bloc_kappa_variable (38.40.2): To define a mobility which depends on concentra-
     tion C.
   • potentiel_chimique bloc_potentiel_chim (38.40.3): chemical potential function
38.40.2 Bloc_kappa_variable
Description: if the parameter of the mobility, kappa, depends on C
See also: objet_lecture (43)
Usage:
expr
where
   • expr bloc_lecture (3.2): choice for kappa_variable
38.40.3 Bloc_potentiel_chim
Description: if the chemical potential function is an univariate function
See also: objet_lecture (43)
Usage:
expr
where
   • expr bloc_lecture (3.2): choice for potentiel_chimique
```

38.41 Source_constituant

Description: Keyword to specify source rates, in [[C]/s], for each one of the nb constituents. [C] is the concentration unit.

```
See also: source_base (38)
```

```
Usage:
```

source_constituant ch

where

• **ch** *champ_base* (18.1): Field type.

38.42 Flottabilite

Description: buoyancy effect

See also: source_base (38)

Usage: flottabilite

38.43 Source_generique

Description: to define a source term depending on some discrete fields of the problem and (or) analytic expression. It is expressed by the way of a generic field usually used for post-processing.

```
See also: source_base (38)
```

Usage:

source_generique champ

where

• **champ** *champ_generique_base* (11): the source field

38.44 Masse_ajoutee

```
Description: weight added effect
```

See also: source_base (38)

Usage:

 $masse_ajoutee$

38.45 Source_pdf

Description: Source term for Penalised Direct Forcing (PDF) method.

```
See also: source_pdf_base (38.47)
Usage:
```

```
source_pdf str
```

```
Read str {
    aire champ_base
```

```
rotation champ_base
[transpose_rotation]
modele bloc_pdf_model
```

[interpolation interpolation_ibm_base]

```
}
where
```

- aire champ_base (18.1) for inheritance: volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- **rotation** *champ_base* (18.1) for inheritance: volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- transpose_rotation for inheritance: whether to transpose the basis change matrix.
- modele bloc_pdf_model (38.46) for inheritance: model used for the Penalized Direct Forcing
- interpolation interpolation_ibm_base (20) for inheritance: interpolation method

38.46 Bloc_pdf_model

```
Description: not_set

See also: objet_lecture (43)

Usage:
{

    eta float
        [temps_relaxation_coefficient_pdf float]
        [local]
        [vitesse_imposee_data champ_base]
        [vitesse_imposee_fonction troismots]
}

where
```

- eta float: penalization coefficient
- temps_relaxation_coefficient_pdf float: time relaxation on the forcing term to help
- echelle_relaxation_coefficient_pdf float: time relaxation on the forcing term to help convergence
- local: whether the prescribed velocity is expressed in the global or local basis
- vitesse_imposee_data champ_base (18.1): Prescribed velocity as a field
- vitesse_imposee_fonction troismots (38.46.1): Prescribed velocity as a set of analytical component

38.46.1 Troismots

```
Description: Three words.

See also: objet_lecture (43)

Usage:
mot_1 mot_2 mot_3
where

• mot_1 str: First word.
• mot_2 str: Snd word.
• mot_3 str: Third word.
```

38.47 Source_pdf_base

Description: Base class of the source term for the Immersed Boundary Penalized Direct Forcing method (PDF)

```
See also: source_base (38) source_pdf (38.45)

Usage:
source_pdf_base str

Read str {

    aire champ_base
    rotation champ_base
    [transpose_rotation]
    modele bloc_pdf_model
    [interpolation interpolation_ibm_base]
}

where
```

- aire champ_base (18.1): volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- **rotation** *champ_base* (18.1): volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- transpose_rotation : whether to transpose the basis change matrix.
- modele bloc_pdf_model (38.46): model used for the Penalized Direct Forcing
- interpolation interpolation_ibm_base (20): interpolation method

38.48 Source_qdm

Description: Momentum source term in the Navier-Stokes equations.

```
See also: source_base (38)

Usage:
source_qdm ch
where
• ch champ_base (18.1): Field type.
```

38.49 Source_qdm_lambdaup

Description: This source term is a dissipative term which is intended to minimise the energy associated to non-conformscales u' (responsible for spurious oscillations in some cases). The equation for these scales can be seen as: du'/dt = -lambda. u' + grad P' where -lambda. u' represents the dissipative term, with lambda = a/Delta t For Crank-Nicholson temporal scheme, recommended value for a is 2.

Remark: This method requires to define a filtering operator.

```
See also: source_base (38)

Usage:
source_qdm_lambdaup str
Read str {

lambda float
```

```
[lambda_min float]
[lambda_max float]
[ubar_umprim_cible float]
}
where

• lambda float: value of lambda
• lambda_min float: value of lambda_min
• lambda_max float: value of lambda_max
• ubar umprim cible float: value of ubar umprim cible
```

38.50 Source_qdm_phase_field

Description: Keyword to define the capillary force into the Navier Stokes equation for the Phase Field problem.

```
See also: source_base (38)

Usage:
source_qdm_phase_field str

Read str {

forme_du_terme_source int
}
where
```

• forme du terme source int: Kind of the source term (1, 2, 3 or 4).

38.51 Source_rayo_semi_transp

Description: Radiative term source in energy equation.

```
See also: source_base (38)
Usage:
source_rayo_semi_transp
```

38.52 Source_robin

Description: This source term should be used when a Paroi_decalee_Robin boundary condition is set in a hydraulic equation. The source term will be applied on the N specified boundaries. To post-process the values of tauw, u_tau and Reynolds_tau into the files tauw_robin.dat, reynolds_tau_robin.dat and u_tau_robin.dat, you must add a block Traitement_particulier { canal { } }

```
See also: source_base (38)

Usage:
source_robin bords
where

• bords vect_nom (3.143)
```

38.53 Source_robin_scalaire

Description: This source term should be used when a Paroi_decalee_Robin boundary condition is set in a an energy equation. The source term will be applied on the N specified boundaries. The values temp_wall_valueI are the temperature specified on the Ith boundary. The last value dt_impr is a printing period which is mandatory to specify in the data file but has no effect yet.

```
See also: source_base (38)

Usage: source_robin_scalaire bords where

• bords listdeuxmots_sacc (38.54)
```

38.54 Listdeuxmots_sacc

Description: List of groups of two words (without curly brackets).

```
See also: listobj (42.5)

Usage:
n object1 object2 ....
list of deuxmots (4.8.1)
```

38.55 Source_th_tdivu

Description: This term source is dedicated for any scalar (called T) transport. Coupled with upwind (amont) or muscl scheme, this term gives for final expression of convection: div(U.T)-T.div(U)=U.grad(T) This ensures, in incompressible flow when divergence free is badly resolved, to stay in a better way in the physical boundaries.

Warning: Only available in VEF discretization.

```
See also: source_base (38)
Usage:
source_th_tdivu
```

38.56 Trainee

```
Description: drag effect
See also: source_base (38)
Usage:
trainee
```

38.57 Source_transport_eps

Description: Keyword to alter the source term constants for eps in the bicephale k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92

```
See also: source_base (38)
```

Usage:

```
source_transport_eps str
Read str {
      [ c1_eps float]
      [ c2_eps float]
}
where
      • c1_eps float: First constant.
      • c2_eps float: Second constant.
```

38.58 Source_transport_k

Description: Keyword to alter the source term constants for k in the bicephale k-eps model epsilon transport equation.

```
See also: source_base (38)
Usage:
```

38.59 Source_transport_k_eps

Description: Keyword to alter the source term constants in the standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92

See also: source_base (38) Source_Transport_K_Eps_anisotherme (38.18) source_transport_k_eps_aniso_concen (38.60) source_transport_k_eps_aniso_therm_concen (38.61)

```
Usage:
```

```
source_transport_k_eps str
Read str {
     [c1_eps float]
     [c2_eps float]
}
where
```

- c1_eps float: First constant.
- c2_eps float: Second constant.

38.60 Source_transport_k_eps_aniso_concen

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92 C3_eps=1.0

```
See also: source_transport_k_eps (38.59)

Usage:
source_transport_k_eps_aniso_concen str

Read str {

[ c3_eps float]
    [ c1_eps float]
```

```
[c2_eps float]
where
c3_eps float: Third constant.
c1_eps float for inheritance: First constant.
c2_eps float for inheritance: Second constant.
```

38.61 Source_transport_k_eps_aniso_therm_concen

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1_eps=1.44 C2_eps=1.92 C3_eps=1.0

```
See also: source_transport_k_eps (38.59)

Usage:
source_transport_k_eps_aniso_therm_concen str

Read str {

    [c3_eps float]
    [c1_eps float]
    [c2_eps float]
}

where

• c3_eps float: Third constant.
• c1_eps float for inheritance: First constant.
• c2_eps float for inheritance: Second constant.
```

38.62 Tenseur_reynolds_externe

Description: Use a neural network to estimate the values of the Reynolds tensor. The structure of the neural networks is stored in a file located in the share/reseaux_neurones directory.

```
See also: source_base (38)

Usage:
tenseur_Reynolds_externe str
Read str {
    nom_fichier str
}
where
```

• nom fichier str: The base name of the file.

38.63 Terme_puissance_thermique_echange_impose

Description: Source term to impose thermal power according to formula: P = himp * (T - Text). Where T is the Trust temperature, Text is the outside temperature with which energy is exchanged via an exchange coefficient himp

```
See also: source_base (38)

Usage:
terme_puissance_thermique_echange_impose str

Read str {
    himp champ_base
    Text champ_base
    [PID_controler_on_targer_power bloc_lecture]
}
where
```

- himp champ_base (18.1): the exchange coefficient
- **Text** *champ_base* (18.1): the outside temperature
- PID_controler_on_targer_power bloc_lecture (3.2): PID_controler_on_targer_power bloc with parameters target_power (required), Kp, Ki and Kd (at least one of them should be provided)

38.64 Travail_pression

Description: Source term which corresponds to the additional pressure work term that appears when dealing with compressible multiphase fluids

```
See also: source_base (38)
Usage:
travail_pression
```

38.65 Vitesse_derive_base

Description: Source term which corresponds to the drift-velocity between a liquid and a gas phase

```
See also: vitesse_relative_base (38.66)
Usage:
vitesse_derive_base
```

38.66 Vitesse_relative_base

Description: Basic class for drift-velocity source term between a liquid and a gas phase

```
See also: source_base (38) vitesse_derive_base (38.65)
Usage:
vitesse_relative_base
```

39 sous zone

Synonymous: sous_domaine

Description: It is an object type describing a domain sub-set.

A Sous_Zone (Sub-area) type object must be associated with a Domaine type object. The Read (Lire) interpretor is used to define the items comprising the sub-area.

Caution: The Domain type object nom_domaine must have been meshed (and triangulated or tetrahedralised in VEF) prior to carrying out the Associate (Associer) nom_sous_zone nom_domaine instruction; this instruction must always be preceded by the read instruction.

```
See also: objet_u (44)
Usage:
sous_zone str
Read str {
     [ restriction str]
      [rectangle bloc_origine_cotes]
     [ segment bloc_origine_cotes]
     [boite bloc origine cotes]
     [ liste n n1 n2 \dots nn]
      [fichier str]
     [intervalle deuxentiers]
     [ polynomes bloc lecture]
     [couronne bloc_couronne]
     [ tube bloc_tube]
     [fonction_sous_zone str]
     [union str]
}
where
```

- **restriction** *str*: The elements of the sub-area nom_sous_zone must be included into the other sub-area named nom_sous_zone2. This keyword should be used first in the Read keyword.
- **rectangle** *bloc_origine_cotes* (39.1): The sub-area will include all the domain elements whose centre of gravity is within the Rectangle (in dimension 2).
- segment bloc origine cotes (39.1)
- **boite** *bloc_origine_cotes* (39.1): The sub-area will include all the domain elements whose centre of gravity is within the Box (in dimension 3).
- liste n n1 n2 ... nn: The sub-area will include n domain items, numbers No. 1 No. i No. n.
- fichier str: The sub-area is read into the file filename.
- intervalle deuxentiers (5.21.8): The sub-area will include domain items whose number is between n1 and n2 (where n1<=n2).
- polynomes bloc_lecture (3.2): A REPRENDRE
- **couronne** *bloc_couronne* (39.2): In 2D case, to create a couronne.
- **tube** *bloc_tube* (39.3): In 3D case, to create a tube.
- **fonction_sous_zone** *str*: Keyword to build a sub-area with the elements included into the area defined by fonction>0.
- **union** *str*: The elements of the sub-area nom_sous_zone3 will be added to the sub-area nom_sous_zone. This keyword should be used last in the Read keyword.

39.1 Bloc_origine_cotes

Description: Class to create a rectangle (or a box).

See also: objet_lecture (43)

Usage:
name origin name2 cotes
where

- name str into ['Origine']: Keyword to define the origin of the rectangle (or the box).
- **origin** $x1 \ x2 \ (x3)$: Coordinates of the origin of the rectangle (or the box).
- name2 str into ['Cotes']: Keyword to define the length along the axes.
- cotes x1 x2 (x3): Length along the axes.

39.2 Bloc_couronne

Description: Class to create a couronne (2D).

See also: objet_lecture (43)

Usage:

name origin name3 ri name4 re where

- name str into ['Origine']: Keyword to define the center of the circle.
- **origin** x1 x2 (x3): Center of the circle.
- name3 str into ['ri']: Keyword to define the interior radius.
- **ri** *float*: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- re float: Exterior radius.

39.3 Bloc_tube

Description: Class to create a tube (3D).

See also: objet_lecture (43)

Usage:

name origin name2 direction name3 ri name4 re name5 h where

- name str into ['Origine']: Keyword to define the center of the tube.
- **origin** $x1 \ x2 \ (x3)$: Center of the tube.
- name2 str into ['dir']: Keyword to define the direction of the main axis.
- direction str into ['X', 'Y', 'Z']: direction of the main axis X, Y or Z
- name3 str into ['ri']: Keyword to define the interior radius.
- ri float: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- **re** *float*: Exterior radius.
- name5 str into ['hauteur']: Keyword to define the heigth of the tube.
- h *float*: Heigth of the tube.

40 turbulence_paroi_base

Description: Basic class for wall laws for Navier-Stokes equations.

```
See also: objet_u (44) negligeable (40.7) loi_puissance_hydr (40.3) loi_standard_hydr (40.4) loi_standard_hydr_old (40.5) paroi_tble (40.8) utau_imp (40.11)
```

Usage:

40.1 Loi_ciofalo_hydr

Description: A Loi_ciofalo_hydr law for wall turbulence for NAVIER STOKES equations.

```
See also: loi_standard_hydr (40.4)
```

Usage:

loi_ciofalo_hydr

40.2 Loi_expert_hydr

Description: This keyword is similar to the previous keyword Loi_standard_hydr but has several additional options into brackets.

```
See also: loi_standard_hydr (40.4)

Usage:
loi_expert_hydr str

Read str {

    [u_star_impose float]
    [methode_calcul_face_keps_impose str into ['toutes_les_faces_accrochees', 'que_les_faces_des__elts_dirichlet']]
    [kappa float]
    [Erugu float]
    [A_plus float]
}
where
```

- u_star_impose *float*: The value of the friction velocity (u*) is not calculated but given by the user.
- methode_calcul_face_keps_impose str into ['toutes_les_faces_accrochees', 'que_les_faces_des_elts_dirichlet']: The available options select the algorithm to apply K and Eps boundaries condition (the algorithms differ according to the faces).
 - toutes_les_faces_accrochees: Default option in 2D (the algorithm is the same than the algorithm used in Loi_standard_hydr)
 - que_les_faces_des_elts_dirichlet : Default option in 3D (another algorithm where less faces are concerned when applying K-Eps boundary condition).
- **kappa** *float*: The value can be changed from the default one (0.415)
- **Erugu** *float*: The value of E can be changed from the default one for a smooth wall (9.11). It is also possible to change the value for one boundary wall only with paroi rugueuse keyword/
- A plus *float*: The value can can be changed from the default one (26.0)

40.3 Loi_puissance_hydr

Description: A Loi_puissance_hydr law for wall turbulence for NAVIER STOKES equations.

```
See also: turbulence_paroi_base (40)
```

Usage:

40.4 Loi_standard_hydr

Description: Keyword for the logarithmic wall law for a hydraulic problem. Loi_standard_hydr refers to first cell rank eddy-viscosity defined from continuous analytical functions, whereas Loi_standard_hydr_3couches from functions separataly defined for each sub-layer

See also: turbulence_paroi_base (40) loi_ww_hydr (40.6) loi_ciofalo_hydr (40.1) loi_expert_hydr (40.2)

Usage:

loi_standard_hydr

40.5 Loi_standard_hydr_old

Description: not set

See also: turbulence_paroi_base (40)

Usage:

loi_standard_hydr_old

40.6 Loi_ww_hydr

Description: laws have been qualified on channel calculation

See also: loi_standard_hydr (40.4)

Usage:

40.7 Negligeable

Description: Keyword to suppress the calculation of a law of the wall with a turbulence model. The wall stress is directly calculated with the derivative of the velocity, in the direction perpendicular to the wall (tau_tan /rho= nu dU/dy).

Warning: This keyword is not available for k-epsilon models. In that case you must choose a wall law.

See also: turbulence_paroi_base (40)

Usage:

negligeable

40.8 Paroi_tble

Description: Keyword for the Thin Boundary Layer Equation wall-model (a more complete description of the model can be found into this PDF file). The wall shear stress is evaluated thanks to boundary layer equations applied in a one-dimensional fine grid in the near-wall region.

```
See also: turbulence paroi base (40)
```

```
[stats twofloat]
      [ sonde_tble liste_sonde_tble]
      [restart]
      [stationnaire floatfloat]
      [lambda str]
      [\mathbf{mu} \ str]
      [ sans_source_boussinesq ]
      [ alpha float]
      [kappa float]
}
where
   • n int: Number of nodes in the TBLE grid (mandatory option).
   • facteur float: Stretching ratio for the TBLE grid (to refine, the TBLE facteur must be greater than
   • modele_visco str: File name containing the description of the eddy viscosity model.
   • stats twofloat (40.9): Statistics of the TBLE velocity and turbulent viscosity profiles. 2 values are
      required: the starting time and ending time of the statistics computation.
   • sonde_tble liste_sonde_tble (40.10)
   restart
   • stationnaire floatfloat (5.19)
   • lambda str
   • mu str
   • sans_source_boussinesq
   • alpha float
   • kappa float
40.9
       Twofloat
Description: two reals.
See also: objet_lecture (43)
Usage:
a b
where
   • a float: First real.
   • b float: Second real.
40.10 Liste_sonde_tble
Description: not_set
See also: listobj (42.5)
Usage:
n object1 object2 ....
list of sonde_tble (40.10.1)
```

40.10.1 Sonde_tble Description: not_set

```
See also: objet_lecture (43)

Usage:
name point
where

• name str
• point un_point (3.4.7)
```

40.11 Utau_imp

Description: Keyword to impose the friction velocity on the wall with a turbulence model for thermohydraulic problems. There are two possibilities to use this keyword:

1 - we can impose directly the value of the friction velocity u_star.

2 - we can also give the friction coefficient and hydraulic diameter. So, TRUST determines the friction velocity by : $u_star = U*sqrt(lambda_c/8)$.

```
See also: turbulence_paroi_base (40)

Usage:
utau_imp str

Read str {

    [u_tau champ_base]
    [lambda_c str]
    [diam_hydr champ_base]
}
```

- u_tau champ_base (18.1): Field type.
- lambda_c str: The friction coefficient. It can be function of the spatial coordinates x,y,z, the Reynolds number Re, and the hydraulic diameter.
- diam hydr champ base (18.1): The hydraulic diameter.

41 turbulence_paroi_scalaire_base

Description: Basic class for wall laws for energy equation.

```
See also: objet_u (44) negligeable_scalaire (41.7) loi_odvm (41.4) loi_WW_scalaire (41.1) loi_standard_hydr_scalaire (41.6) loi_analytique_scalaire (41.2) paroi_tble_scal (41.8) loi_paroi_nu_impose (41.5)
```

Usage:

where

41.1 Loi ww scalaire

```
Description: not_set

See also: turbulence_paroi_scalaire_base (41)

Usage:
loi_WW_scalaire
```

41.2 Loi_analytique_scalaire

```
Description: not_set

See also: turbulence_paroi_scalaire_base (41)

Usage:
loi_analytique_scalaire
```

41.3 Loi_expert_scalaire

Description: Keyword similar to keyword Loi_standard_hydr_scalaire but with additional option.

```
See also: loi_standard_hydr_scalaire (41.6)

Usage:
loi_expert_scalaire str

Read str {
    [prdt_sur_kappa float]
    [calcul_ldp_en_flux_impose int into [0, 1]]
}
where
```

- **prdt_sur_kappa** *float*: This option is to change the default value of 2.12 in the scalable wall function.
- calcul_ldp_en_flux_impose int into [0, 1]: By default (value set to 0), the law of the wall is not applied for a wall with a Neumann condition. With value set to 1, the law is applied even on a wall with Neumann condition.

41.4 Loi odvm

where

Description: Thermal wall-function based on the simultaneous 1D resolution of a turbulent thermal boundary-layer and a variance transport equation, adapted to conjugate heat-transfer problems with fluid/solid thermal interaction (where a specific boundary condition should be used: Paroi_Echange_Contact_OVDM_VDF). This law is also available with isothermal walls.

```
See also: turbulence_paroi_scalaire_base (41)

Usage:
loi_odvm str

Read str {

    n int
    gamma float
    [ stats floatfloat]
    [ check_files ]

}
```

- **n** *int*: Number of points per face in the 1D uniform meshes. n should be choosen in order to have the first point situated near Δ y+=1/3.
- **gamma** *float*: Smoothing parameter of the signal between 10e-5 (no smoothing) and 10e-1 (high averaging).

- stats floatfloat (5.19): value_t0 value_dt: Only for plane channel flow, it gives mean and root mean square profiles in the fine meshes, since value_t0 and every value_dt seconds. The values are printed into files named ODVM fields*.dat.
- **check_files**: It gives for one boundary face a historical view of local instantaneous and filtered values, as well as the calculated variance profiles from the resolution of the equation. The printed values are into the file Suivi_ndeb.dat.

41.5 Loi_paroi_nu_impose

See also: turbulence_paroi_scalaire_base (41)

Description: Keyword to impose Nusselt numbers on the wall for the thermohydraulic problems. To use this option, it is necessary to give in the data file the value of the hydraulic diameter and the expression of the Nusselt number.

```
Usage:

loi_paroi_nu_impose str

Read str {

    nusselt str
    diam_hydr champ_base
}

where

• nusselt str: The Nusselt number. This expression can be a function of x, y, z, Re (Reynolds number), Pr (Prandtl number).
```

• diam_hydr champ_base (18.1): The hydraulic diameter.

41.6 Loi_standard_hydr_scalaire

Description: Keyword for the law of the wall.

See also: turbulence_paroi_scalaire_base (41) loi_expert_scalaire (41.3)

Usage:

loi_standard_hydr_scalaire

41.7 Negligeable_scalaire

Description: Keyword to suppress the calculation of a law of the wall with a turbulence model for thermohydraulic problems. The wall stress is directly calculated with the derivative of the velocity, in the direction perpendicular to the wall.

```
See also: turbulence_paroi_scalaire_base (41)
Usage:
negligeable_scalaire
```

41.8 Paroi_tble_scal

Description: Keyword for the Thin Boundary Layer Equation thermal wall-model.

```
See also: turbulence_paroi_scalaire_base (41)

Usage:
paroi_tble_scal str

Read str {

        [ n int]
        [ facteur float]
        [ modele_visco str]
        [ nb_comp int]
        [ stats fourfloat]
        [ sonde_tble liste_sonde_tble]
        [ prandtl float]
}

where
```

- n int: Number of nodes in the TBLE grid (mandatory option).
- **facteur** *float*: Stretching ratio for the TBLE grid (to refine, the TBLE facteur must be greater than 1).
- modele_visco str: File name containing the description of the eddy viscosity model.
- **nb_comp** *int*: Number of component to solve in the fine grid (1 if 2D simulation (2D not available yet), 2 if 3D simulation).
- stats fourfloat (41.9): Statistics of the TBLE velocity and turbulent viscosity profiles. 4 values are required: the starting time of velocity averaging, the starting time of the RMS fluctuations, the ending time of the statistics computation and finally the print time period for the statistics.
- sonde_tble liste_sonde_tble (40.10)
- prandtl float

41.9 Fourfloat

```
Description: Four reals.

See also: objet_lecture (43)

Usage:
a b c d
where

a float: First real.
b float: Second real.
c float: Third real.
d float: Fourth real.
```

42 listobj_impl

```
Description: not_set

See also: objet_u (44) listobj (42.5)

Usage:
```

42.1 Milieu_musig

```
Description: MUSIG medium made of several sub mediums.
```

```
See also: listobj (42.5)

Usage:
{ object1 object2 .... }
list of milieu_base (24)
```

42.2 Milieu_composite

Description: Composite medium made of several sub mediums.

```
See also: listobj (42.5)

Usage:
{ object1 object2 .... }
list of milieu_base (24)
```

42.3 List_un_pb

```
Description: pour les groupes
```

```
See also: listobj (42.5)

Usage: { object1, object2....} list of un\_pb (42.4) separeted with,
```

42.4 Un_pb

```
Description: pour les groupes
```

See also: objet_lecture (43)

Usage: **mot** where

• mot str: the string

42.5 Listobj

Description: List of objects.

See also: listobj_impl (42) listchamp_generique (11.2) definition_champs (4.2.1) sondes (4.2.4) champs_a_post (4.2.23) list_stat_post (4.2.27) post_processings (4.3) liste_post_ok (4.4) liste_post (4.5) list_un_pb (42.3) list_list_nom (4.33) condlims (4.35.1) condinits (5.4) sources (5.5) Milieu_composite (42.2) Milieu_MUSIG (42.1) listeqn (4.12) pp (5.10) reactions (12.1) list_nom_virgule (11.3) listsous_zone_valeur (5.2.11) list_info_med (4.68) list_bord (3.84.4) list_bloc_mailler (3.84) vect_nom (3.143) list_nom (3.127) listpoints (3.4.6) coarsen_operators (3.91) liste_sonde_tble (40.10) listdeuxmots_sacc (38.54) thermique (3.10) listdeuxmots_acc (4.8)

Usage:

43 objet_lecture

Description: Auxiliary class for reading.

See also: objet u (44) bloc lecture (3.2) deuxmots (4.8.1) troismots (38.46.1) format file (4.6) deuxentiers (5.21.8) floatfloat (5.19) entierfloat (43.1) bloc lecture poro (32.1) postraitement base (4.4.2) definition-_champ (4.2.2) definition_champs_fichier (4.2.3) sonde_base (4.2.6) sonde (4.2.5) sondes_fichier (4.2.21) champ a post (4.2.24) champs posts (4.2.22) champs posts fichier (4.2.25) stat post deriv (4.2.28) statsposts (4.2.26) stats posts fichier (4.2.34) stats serie posts (4.2.35) stats serie posts fichier (4.2.36) un-_postraitement (4.3.1) nom_postraitement (4.4.1) type_un_post (4.5.2) type_postraitement ft lata (4.5.3) un_postraitement_spec (4.5.1) un_pb (42.4) troisf (3.66) convection_deriv (5.2.1) bloc_convection (5.2) diffusion_deriv (5.3.1) op_implicite (5.3.22) bloc_diffusion (5.3) condlimlu (4.35.2) condinit (5.4.1) parametre-_equation_base (5.6) dt_impr_ustar_mean_only (5.21.1) modele_turbulence_hyd_deriv (5.21) form_a_nb-_points (5.21.3) traitement_particulier_base (5.18.1) type_diffusion_turbulente_multiphase_deriv (5.3.3) traitement_particulier (5.18) bloc_sutherland (24.9) bloc_pdf_model (38.46) penalisation_12_ftd_lec (5.10.1) spec_pdcr_base (38.35) type_perte_charge_deriv (38.4) reaction (12.1.1) verifiercoin_bloc (3.146) bloc_ef (5.2.6) bloc origine_cotes (39.1) bloc_couronne (39.2) bloc_tube (39.3) sous_zone_valeur (5.2.12) bloc-_diffusion_standard (5.3.16) info_med (4.68.1) bloc_lec_champ_init_canal_sinal (18.20) fonction_champ-_reprise (18.16) bord_base (3.84.5) defbord (3.84.7) mailler_base (3.84.1) bloc_pave (3.84.3) lecture_bloc-_moment_base (3.38) un_point (3.4.7) remove_elem_bloc (3.115) bloc_decouper (3.96) format_lata_tomed (3.79) Coarsen Operator Uniform (3.91.1) floatentier (5.21.9) modele fonction bas reynolds base (5.21.26) twofloat (40.9) sonde tble (40.10.1) fourfloat (41.9) bloc lecture turb synt (19.11) paroi ftdisc deriv (15.77) methode transport deriv (5.56) bloc lecture remaillage (5.57) objet lecture maintien-_temperature (5.41) interpolation_champ_face_deriv (5.59) type_indic_faces_deriv (5.60) parcours_interface (5.58) injection marqueur (5.65) penalisation forcage (5.47) eq rayo semi transp (4.35) type diffusion-_turbulente_multiphase_multiple_deriv (43.2) ceg_areva (5.18.11) ceg_cea_jaea (5.18.12) bloc_rho_fonc-_c (5.49.2) bloc_boussinesq (5.49.1) approx_boussinesq (5.49) bloc_mu_fonc_c (5.50.2) bloc_visco2 (5.50.1) visco_dyn_cons (5.50) systeme_naire_deriv (38.40) bloc_kappa_variable (38.40.2) bloc_potentiel_chim (38.40.3) NewmarkTimeScheme_deriv (3.4.2) bloc_poutre (3.4.1) bloc_lecture_beam_model (3.4) bloc-_lecture_Structural_dynamic_mesh_model (3.28) fluid_diph_lu (24.5)

Usage:

43.1 Entierfloat

Description: An integer and a real.

See also: objet_lecture (43)

Usage:

the_int the_float

where

• the int int: Integer.

• the_float float: Real.

43.2 Type_diffusion_turbulente_multiphase_multiple_deriv

```
Description: not_set
```

See also: objet lecture (43) k omega (5.3.10) sato (5.3.11)

Usage:

44 index

Index

/*, 303	0,82
#, 322	1,82
26 41 45 70 72 101 100 200 414 402	2,82
, 26, 41, 45, 70, 73, 181, 188, 208, 414, 493	6_points , 229, 406
associer, 42	<=,64
champ_post_interpolation, 309, 408	= , 64
champ_post_statistiques_correlation , 105, 306	A, 328, 329
champ_post_statistiques_ecart_type, 104, 307	a, 505
champ_post_statistiques_moyenne, 104, 310	a_ext, 329, 332, 333
champ_uniforme, 365	all_times, 36
decoupebord, 46	Amont, 89
decouper, 71, 411	amont, 184
decouper_multi , 73 discretiser , 48	analytique , 286, 288
	ancien, 251, 253
divergence, 306	antisym, 183
ecrire_fichier, 93	approx, 301, 302
extraction, 307	arrete, 217–232
fin, 57	avec_energie_cinetique, 262
frontiere_ouverte_temperature_imposee , 334	avec_les_cl , 207, 208, 214, 215, 244, 246–248,
gradient, 308	268–272, 274–276, 279–284
interpolation_ibm_aucune, 380	avec_sources , 207, 208, 214, 215, 244, 246–248,
interpolation_ibm_element_fluide, 380	268–272, 274–276, 279–284
interpolation_ibm_gradient_moyen, 381	avec_sources_et_operateurs , 207, 208, 214, 215,
interpolation_ibm_hybride, 381	244, 246–248, 268–272, 274–276, 279–
interpolation_ibm_power_law_tbl , 382	284
lata_to_med , 60	average, 311, 312
lata_to_other, 60	b, 505
lire, 76	binaire, 49, 101, 102, 110, 357
lire_fichier , 77	both, 301, 302
lire_fichier_bin , 77	C, 397
lire_med , 40 lml_to_lata , 61	C_ext, 329, 332, 333
morceau_equation, 309	centre, 184
operateur_eqn, 304	Centre2, 89
postraitement, 108	Centre4, 89
postraitements, 107	cf, 505
probleme_ft_disc_gen, 110	cgns, 74, 94, 95, 108
raffiner_simplexes, 75	chakravarthy, 184
rectify_mesh, 78	Champ_Fonc_Fonction, 278, 279
reduction_0d, 311	champ_frontiere , 308
refchamp, 312	Champ_Uniforme, 278
resoudre, 83	check_pass, 28, 29
runge_kutta_ordre_4 , 441	chsom, 96
schema_euler_explicite, 428	coarsen_i, 70 coarsen_j, 70
schema_euler_implicite, 462	coarsen k, 70
schema_euler_implicite_stationnaire, 421	— <i>'</i>
sous_domaine, 517	composante, 313, 314
temperature_imposee_paroi, 348	concentration, 278, 279 conservation_masse, 395, 396
tparoi_vef, 312	constant, 395, 396, 400, 401
transformation, 313	coriolis_seul , 499
vefprep1b, 349	COHOHS_SCUI , 477

CORRECTION CHOCK INDIC 272 273	W O
CORRECTION_GHOST_INDIC, 272, 273	K_Omega_ext , 329, 332, 333
Cotes , 518	kx, 505, 506
d, 505	ky, 505, 506
dabiri, 89	kz, 505, 506
debit_total, 59	L1_norm, 311, 312
default, 309	L2,82
defaut_bar, 183, 193	L2_norm, 311, 312
diametre, 408	last_time, 36
dir, 518	lata, 60, 74, 94, 95, 108
direction, 409	lata_v2, 60, 74, 94, 95, 108
disabled, 28, 29	left_value, 311, 312
distant, 64	lml, 60, 74, 94, 95, 108
divrhouT_moins_Tdivrhou, 251, 253	local, 64
divuT_moins_Tdivu, 251, 253	max, 82, 311, 312
domaine, 73	med, 60, 74, 94, 95, 108
double, 69	med_major, 94, 95, 108
dt_integr, 106	Mfront_library, 41
dt_post, 101–103, 105	Mfront_material_property, 41
edo, 395, 396	Mfront_model_name, 41
elem, 68, 102, 104, 105, 352, 353, 357	min , 311, 312
emissivite, 328, 329	minmod , 184
entrainement_seul, 499	mixed, 69
euclidian_norm, 311, 312	modifiee, 286, 289
euler_explicit, 30, 33	moins_rho_moyen, 395, 396
exact, 301, 302	moy_euler, 229, 406
faces, 102, 104, 105	moyenne, 311, 312
fichier, 407, 408	moyenne_ponderee, 311, 312
filtrer_resu , 183, 193	mpi-io, 94, 95, 108
Fluctu_Temperature_ext, 329, 332, 333	mu0, 397
flux_bords, 309, 310	multiple, 94, 95, 108
Flux_Chaleur_Turb_ext, 329, 332, 333	muscl, 184
flux_surfacique_bords, 309, 310	name, 26
fonction, 358	natural, 416, 417
format_post_sup, 60	nb_beam, 25
formatte, 49, 101, 102, 110, 357	nb_pas_dt_post , 101–103, 105
	
formule, 313, 314	no , 295, 296, 309
grad_i , 59, 271, 273	nodes, 96
grad_Ubar, 193	non , 71, 277, 278, 507
grav, 96	normalized_euclidian_norm, 311, 312
gravel, 96	norme, 313, 314
grid_splitting, 30, 32	nu, 193
H_ext, 329, 332, 333	nu_transp , 193
hauteur, 518	nut , 193
homogene, 64	nut_transp, 193
implicite, 194	omega_ext , 329, 332, 333
initiale , 286, 289	one_way_coupling, 296, 297
integrale_en_z, 59	Origine, 518
interp_ai_based, 272, 273	oui , 71, 277, 278, 507
interp_modifiee, 272, 273	patch_dabiri, 89
interp_standard, 272, 273	periode, 97
K, 505, 506	plans_paralleles, 229, 406
k, 346	post_processing, 110
K_Eps_ext, 329, 332, 333	postraitement, 110
k_ext, 329, 332, 333	postraitement_ft_lata, 110

postraitement_lata, 110	vitesse_particules, 296, 297
produit_scalaire, 313, 314	vitesse_tangentielle, 378
que_les_faces_des_elts_dirichlet, 519	volume, 217–232
Quick, 89	volume_sans_lissage, 217–232
rem, 416, 417	weighted_average, 311, 312
re, 518	weighted_sum, 311, 312
rho_g, 59, 271, 273	weighted_sum_porosity, 311, 312
ri, 518	write_pass, 28, 29
RK3_FT, 30, 33	X, 64, 82, 518
sans_energie_cinetique, 262	x, 505
sans_rien, 207, 208, 214, 215, 244, 246–248, 268–	xyz, 110, 357
272, 274–276, 279–284	Y, 64, 82, 518
scotti, 217–232	y, 505
SEMI_TRANSP, 337	Y_ext, 329, 332, 333
simple, 94, 95, 108	yes, 295, 296, 309
simplifiee , 286, 289	Z, 64, 82, 518
single_hdf , 110, 357	z, 505
single_lata, 74, 94, 95, 108	, 25, 41, 45, 70, 73, 181, 188, 208, 414, 493
Slambda, 397	all_options , 71
solveur, 194	champs , 95, 109
som, 68, 96, 102, 104, 105, 352, 353, 357	champs_fichier , 95, 109
somme, 311, 312	conditions_initiales , 181, 198–206, 208, 215, 246,
somme_ponderee, 311, 312	248–254, 256–263, 265–267, 269, 271, 274,
somme_ponderee_porosite, 311, 312	276, 280, 283, 285, 287, 294–297
stabilite, 309, 310	conditions_limites , 141, 181, 198–206, 208, 215,
standard, 395, 396	246, 248–254, 256–263, 265–267, 269, 271,
suivi , 296, 297	274, 276, 280, 282, 285, 289, 294–297
sum, 311, 312	definition_champs_fichier , 95, 108
superbee, 184	domain , 40
surface, 493	domaine, 74
T0, 397	exclude_groups , 40
T_ext, 329, 332, 333	fichier , 74, 96, 101
tau_ext, 329, 332, 333	file , 40
terme_complet, 499	fluide0 , 393
toutes_les_faces_accrochees, 519	fluide1, 393
trace, 308	hydraulic_equation, 301
TRANSP, 337	include_additional_face_groups , 40
transportant_bar, 183	interface_equation , 301
transporte_bar, 183	limiter , 191, 192
two_way_coupling, 296, 297	mesh, 40
u_tau , 409	name_of_initial_domaines , 39
uniforme, 286, 288	name_of_new_domaines , 40
unweighted_dabiri, 89	par_sous_zone , 28
V2_ext, 329, 332, 333	partitionneur , 72
valeur_a_elem , 286, 288	postraitement , 93, 111, 113–115, 117–120, 122–
valeur_a_gauche, 311, 312	124, 126–132, 134–136, 138, 139, 141,
valeur_normale, 376	143–146, 148–151, 153–157, 159–162, 164–
vanalbada, 184	167, 169–171, 173–176, 178, 179
vanleer, 184	postraitements , 94, 111, 113–115, 117–120, 122,
vdf_lineaire, 286, 288	123, 125–132, 134–136, 138, 139, 141,
vecteur, 313, 314	143–146, 148–151, 153–157, 159–162, 164–
visco_cin, 409	166, 168–171, 173–176, 178, 179
vitesse_interpolee , 296, 297	pr_t , 190
vitesse_paroi, 346	Read_file , 92

reduction_pression , 473	beta_disp , 493
sans_dec , 38	beta_k , 191, 192, 498
save_matrice , 318–320, 322, 487, 490	beta_lift , 493
sigma , 190	beta_omega , 495
sondes , 95, 108	beta_th , 394, 395
sondes_fichier, 95, 108	binaire , 47, 74
sondes_mobiles , 95, 108	binary_file , 49
sondes_mobiles_fichier , 95, 108	block_size_bytes , 39
sous_domaine , 52, 95, 108	block_size_megabytes , 39
statistiques , 95, 109	boite , 517
statistiques_en_serie , 95, 109	bord , 45, 67, 209, 500
statistiques_en_serie_fichier , 95, 109	bords_a_decouper , 47
statistiques_fichier , 95, 109	boundaries , 50, 217
tension_superficielle , 299–301	boundary_conditions , 33, 89, 141, 181, 198–206,
thermal_equation , 301	208, 215, 246, 248–254, 256–263, 265–
a0, 316	267, 269, 271, 274, 276, 280, 282, 285,
A_plus , 519	289, 294–297
-	
a_res , 502	boundary_xmax , 67
Absc_file_name , 26	boundary_xmin , 66
acceleration , 499	boundary_ymax , 67
aij , 490	boundary_ymin, 67
aire , 510, 511	boundary_zmax , 67
ajout_init_a_reprise , 34	boundary_zmin , 67
alias, 198, 254, 255, 257, 262	boussinesq_approximation, 273
alpha , 36, 37, 182, 185, 508, 521	btd , 187
alpha_0 , 416	c , 213
alpha_1 ,416	c0 , 499
alpha_a , 416	c1_eps , 498, 514, 515
alpha_omega , 496	c2_eps , 498, 514, 515
alpha_sous_zone , 185	c3_eps , 498, 515
amont_sous_zone , 185	c_epsilon , 497
ampli_bruit, 359	c_k , 496, 497
ampli_fluctuation , 377	calc_spectre, 211, 212
ampli_moyenne_imposee , 377	calcul_ldp_en_flux_impose , 523
ampli_moyenne_recyclee , 377	canal, 222
ampli_sin, 359	canalx, 221
approximation_de_boussinesq , 275	cea_jaea , 213
areva, 213	centre_rotation , 499
ascii , 40, 85	cfl , 32
atol , 482–488, 490–492	chaleur_latente , 393
autre_bord , 327	champ_med , 59
autre_champ_indicatrice , 327	champ_ned , 37 champs_a_postraiter , 34
autre_champ_temperature , 327	changement_de_base_p1bulle , 350
_ * - * ·	
autre_champ_temperature_indic0 , 327	check_divergence , 32
autre_champ_temperature_indic1, 327	check_files , 524
autre_probleme , 327	check_stats , 34
avec_certains_bords , 29, 53	check_stop_file , 33
avec_certains_bords_pour_extraire_surface , 53	CI_file_name , 26
avec_les_bords , 29, 53	cl_pression_sommet_faible , 350
BaseCenterCoordinates , 26	cli , 487, 488, 490
bench_ijk_splitting_read , 39	cli_quiet , 487
bench_ijk_splitting_write, 39	clipping_courbure_interface , 272
beta , 495, 508	cmu , 235, 240
beta_co , 394, 395	coarsen_operators , 69

• • • • • • • • • • • • • • • • • • • •	
coef , 389	convection_diffusion_temperature_turbulent , 130,
coef_ammortissement , 32	134, 136, 167, 169, 175, 178
coef_force_time_n , 32	convection_sensibility , 199
coef_immobilisation , 32	convertalltopoly, 40
coef_mean_force , 32	correction_bilan_qdm , 34
coef_rayon_force_rappel , 32	correction_calcul_pression_initiale , 207, 215, 245,
coeff , 500, 506	247, 268, 270, 273, 276, 280, 282, 284
coeffa, 301	correction_force , 33
coeffb , 301	correction_fraction , 386
coefficient_diffusion , 391	correction_matrice_pression , 207, 215, 245, 247,
coefficients_activites , 315	268, 270, 273, 276, 280, 282, 284
collisions, 287	correction_matrice_projection_initiale , 207, 215,
compo , 305, 310	245, 247, 268, 270, 273, 276, 280, 282,
compute_distance_autres_interfaces , 59	284
compute_force_init , 33	correction_mpoint_diff_conv_energy , 264
condition_elements , 29, 52, 53	correction_parcours_thomas , 292
condition_faces , 29, 53	correction_pression_modifie , 207, 215, 245, 247,
condition_geometrique , 47	268, 270, 273, 276, 280, 282, 284
Conduction, 93, 124	correction_visco_turb_pour_controle_pas_de_temps
conservation_Ec , 211, 212	, 216, 218–220, 222–224, 226–240, 243,
constante_cinetique , 197	244
constante_gravitation, 496, 497	correction_visco_turb_pour_controle_pas_de_temps-
constante_modele_micro_melange , 314	_parametre , 216, 218–220, 222, 223,
constante_taux_reaction, 315	225–240, 243, 244
constituant , 93, 111, 113–116, 118–120, 122–124,	correction_vitesse_modifie , 207, 215, 245, 247,
126–132, 134–136, 138, 139, 141, 143–	268, 270, 273, 276, 280, 282, 284
146, 148–152, 154–157, 159–162, 164–	correction_vitesse_projection_initiale , 207, 215,
167, 169–171, 173–177, 179	245, 247, 268, 270, 273, 276, 280, 282,
contre_energie_activation , 315	284
contre_reaction , 315	corrections_qdm , 33
contribution_one_way , 297	correlations , 120, 121, 123, 128, 138, 161
controle_residu , 320, 474–481	correspondance_elements , 380–383
conv_temperature_negligible , 89	corriger_partition , 411
convection , 181, 198–206, 208, 215, 246, 248–	couplage_NS_CH , 507
255, 257–263, 265–267, 269, 271, 274,	couronne , 517
276, 280, 282, 284, 285, 289, 294–297	Cp , 383, 385, 387, 388
convection_diffusion_chaleur_QC , 129, 162, 170	cp , 50, 338, 339, 386–388, 390–402
convection_diffusion_chaleur_turbulent_qc , 131,	
173, 176	cp_vapor, 89
convection_diffusion_chaleur_WC , 164, 171	crank, 196
convection_diffusion_concentration , 113, 132,	critere_absolu, 54
149, 150, 165, 166	critere_arete, 79, 291
convection_diffusion_concentration_turbulent ,	critere_longueur_fixe , 292
114, 134, 151, 152, 167, 169	critere_remaillage , 291
convection_diffusion_espece_binaire_QC , 154	criteres_convergence , 473, 478
Convection_Diffusion_Espece_Binaire_Turbulent-	
_QC , 156	Cv , 387, 388, 400
convection_diffusion_espece_binaire_WC , 155	cw , 189, 220
convection_diffusion_phase_field , 159	d , 364, 366, 369
convection_diffusion_temperature, 128, 132, 135,	deactivate, 302
161, 165, 166, 174	deb , 494
Convection_Diffusion_Temperature_Sensibility,	debit , 338, 339, 497
137	debit_impose , 500
137	debug , 213
	uchug , 413

debut_stat , 210	dom_loc , 352
decoup , 352, 353, 357	domain , 66, 74, 353, 357
default_value , 352	domaine , 29, 40, 45, 47, 52–56, 95, 108, 308, 309,
definition_champs , 95, 108	412
definition_champs_file , 95, 108	domaine_final , 28, 54
delta , 337	domaine_flottant_fluide , 275
delta_spot , 497	domaine_grossier , 47
deprecatedkeepduplicatedprobes , 95, 109	domaine_init , 28, 54
derivee_rotation , 390	domaines , 74, 413
dh , 338, 339	domegadt, 499
diag , 320	DP0 , 494
diam_hydr , 503, 504, 522, 524	dropping_parameter , 488
diam_hydr_ortho , 503	dt ,49
diametre_hyd_champ , 390–402	dt_impr , 217, 338, 339, 420, 423, 425, 427, 429,
diff_temp_negligible, 89	431, 433, 434, 436, 438, 440, 442, 444,
diffusion , 181, 198–206, 208, 215, 246, 248–254,	446, 448, 449, 451, 454, 456, 459, 461,
256–263, 265–267, 269, 271, 274, 276,	464, 466, 468, 469, 471
280, 282, 285, 289, 294–297	dt_impr_moy_spat , 209
diffusion_alternative, 34	dt_impr_moy_temp, 210
diffusion_coeff , 384, 385, 387	dt_impr_nusselt , 404–406
diffusion_implicite , 421, 423, 425, 427, 429, 431,	dt_impr_ustar , 216, 218–220, 222–227, 229–240,
433, 435, 437, 439, 440, 442, 444, 446,	243
448, 450, 452, 454, 457, 459, 461, 464,	dt_impr_ustar_mean_only , 216, 218–220, 222–
	226, 228–240, 243
466, 468, 470, 472	
dim_espace_krilov , 320	dt_injection , 298
dimension_espace_de_krylov , 507	dt_max , 420, 422, 425, 427, 429, 431, 433, 434,
dir , 338, 339, 506	436, 438, 440, 442, 444, 446, 448, 449,
dir_flow, 359	451, 454, 456, 459, 461, 464, 466, 468,
dir_fluct , 369	469, 471
dir_wall , 359	dt_min , 420, 422, 425, 427, 429, 431, 433, 434,
direction , 26, 45, 54–56, 209, 503, 504	436, 438, 440, 442, 444, 446, 447, 449,
direction_anisotrope , 377	451, 454, 456, 459, 461, 463, 466, 468,
disable_convection_qdm , 33	469, 471
disable_diffusion_qdm , 33	dt_post , 34, 213
disable_diphasique , 33	dt_post_stats_bulles , 34
disable_dt_ev , 421, 423, 426, 428, 430, 432, 434,	dt_post_stats_plans , 34
435, 437, 439, 441, 443, 445, 447, 448,	dt_projection, 207, 215, 245, 247, 268, 270, 273,
450, 452, 455, 457, 460, 462, 464, 467,	276, 280, 282, 284
469, 470, 472	dt_sauv , 420, 422, 425, 427, 429, 431, 433, 434,
disable_equation_residual , 181, 198, 200–206,	436, 438, 440, 442, 444, 446, 448, 449,
208, 215, 246, 248–255, 257–264, 266,	451, 454, 456, 459, 461, 464, 466, 468,
267, 269, 271, 274, 276, 280, 282, 284,	469, 471
285, 289, 294–297	dt_sauvegarde, 33
disable_progress , 421, 423, 426, 428, 430, 432,	dt_start , 421, 423, 425, 428, 430, 431, 433, 435,
433, 435, 437, 439, 441, 443, 445, 447,	437, 439, 441, 443, 444, 446, 448, 450,
448, 450, 452, 455, 457, 460, 462, 464,	452, 454, 457, 459, 462, 464, 466, 468,
467, 468, 470, 472	470, 472
disable_solveur_poisson , 33	dt_uniforme , 303
disable_source_interf , 33	dtol_fraction , 386
distance_plan , 376	dv_min , 502
distance_projete_faces , 289	Ec , 210
distri_first_facette , 302	Ec_dans_repere_fixe , 210
dmax , 221	echelle_relaxation_coefficient_pdf , 510
dom_dist , 352	Echelle_temporelle_turbulente , 120, 122, 123

```
ecrire_decoupage , 72
                                               expert_only, 92
ecrire_fichier_xyz_valeur , 181, 198-200, 202-
                                               exposant_beta, 315
        206, 208, 216, 246, 248–254, 256–263,
                                               expression, 314
        265–267, 269, 271, 274, 277, 281, 283,
                                               expression_ddPdxdx_ana, 34
        285, 289, 294–296, 298
                                               expression ddPdxdy ana, 34
ecrire_frontiere, 74
                                               expression_ddPdxdz_ana , 34
ecrire lata, 72
                                               expression ddPdydy ana, 34
ecrire med, 72
                                               expression ddPdydz ana, 34
elements fluides , 381, 383
                                               expression ddPdzdz ana . 34
elements solides , 380-382
                                               expression ddUdxdx ana, 34
emissivite pour rayonnement entre deux plaquesexpression ddUdxdy ana ,34
         _quasi_infinies , 339
                                               expression ddUdxdz ana , 35
energie, 33
                                               expression_ddUdydy_ana, 34
energie activation, 315
                                               expression ddUdydz ana , 35
Energie_cinetique_turbulente , 120, 122, 123
                                               expression ddUdzdz ana , 34
Energie_cinetique_turbulente_WIT , 120, 122,
                                               expression_ddVdxdx_ana , 35
        123
                                               expression_ddVdxdy_ana, 35
Energie_Multiphase , 120, 123
                                               expression_ddVdxdz_ana, 35
Energie_Multiphase_h , 122
                                               expression_ddVdydy_ana, 35
ensemble points, 298
                                               expression ddVdvdz ana , 35
enthalpie_reaction, 315
                                               expression_ddVdzdz_ana , 35
epaisseur, 53, 54
                                               expression ddWdxdx ana, 35
eps , 494
                                               expression_ddWdxdy_ana, 35
eps max, 233-240, 243
                                               expression ddWdxdz ana, 35
eps min, 233-240, 243
                                               expression ddWdydy ana, 35
epsilon . 418, 419
                                               expression ddWdvdz ana . 35
eq rayo semi transp, 141
                                               expression ddWdzdz ana , 35
equation frequence resolue, 196
                                               expression derivee facteur variable source, 33
equation interface, 197, 255, 264, 301
                                               expression derivee force, 33
equation_interfaces_proprietes_fluide, 272
                                               expression_dPdx_ana, 34
                                               expression_dPdy_ana, 34
equation_interfaces_vitesse_imposee , 272
equation navier stokes, 264, 301
                                               expression dPdz ana , 34
equation_non_resolue , 181, 196, 198-200, 202-
                                               expression_dUdx_ana, 34
        206, 208, 216, 246, 248-254, 256-263,
                                               expression_dUdy_ana, 34
        265–267, 269, 271, 274, 277, 281, 283,
                                               expression_dUdz_ana, 34
        285, 286, 289, 294–296, 298
                                               expression_dVdx_ana, 34
equation nu t, 197
                                               expression dVdv ana , 34
equation temperature, 301
                                               expression dVdz ana, 34
equation temperature mpoint, 273
                                               expression dWdx ana, 34
equation_temperature_mpoint_vapeur, 273
                                               expression_dWdy_ana, 34
equations interfaces vitesse imposee , 272
                                               expression dWdz ana, 34
equations_scalaires_passifs , 144, 150, 152, 166,
                                               expression_p_ana, 34
         169-171, 173, 174, 178
                                               expression p init, 33
equations source chimie, 197
                                               expression potential phi, 33
equilateral . 79
                                               expression source temperature, 89
Erugu , 519
                                               expression_t_ana, 89
erugu , 346
                                               expression_t_init, 89
espece, 259, 261
                                               expression_variable_source_x , 33
espece en competition micro melange, 314
                                               expression_variable_source_y , 33
est_dirichlet, 380-382
                                               expression_variable_source_z , 33
eta , 510
                                               expression_vitesse_upstream , 33
evanescence, 249
                                               expression_vx_ana, 34
exclure_groupes, 40
                                               expression_vx_init, 33
exp res , 502
                                               expression vv ana, 34
```

expression_vy_init, 33	fonction_filtre , 68
expression_vz_ana , 34	fonction_sous_zone , 517
expression_vz_init , 33	forcage, 33
facon_init , 211, 212	force , 319
facsec , 420, 423, 425, 427, 429, 431, 433, 435,	format , 74, 95, 108
436, 438, 440, 442, 444, 446, 448, 449,	format_post , 68
451, 454, 456, 459, 461, 464, 466, 468,	forme_du_terme_source , 512
470, 471	formulation_a_nb_points , 217, 219-222, 224-
facsec_diffusion_for_sets , 473, 478	229, 231, 232
facsec_ini , 56	formulation_linear_pwl , 382
facsec_max , 56, 425, 427, 453, 455, 458, 460, 463	formule_mu , 393
facteur , 187, 521, 525	frequence_recalc , 320
facteur_longueur_ideale , 79, 291	frontiere, 213
facteur_variable_source_init , 33	frozen_velocity , 34
facteurs, 62	function_coord_x , 66
fichier , 40, 95, 108, 221, 377, 411, 412, 517	function_coord_y , 66
fichier_distance_paroi , 241, 242	function_coord_z , 66
fichier_ecriture_K_Eps , 221	gamma , 387, 388, 400, 523
fichier_matrice, 85	gas_turb , 190, 191
fichier_post , 33, 45	genere_fichier_solveur , 85
fichier_reprise_interface , 59	ghost_size , 69
fichier_reprise_vitesse , 33	ghost_thickness, 66
-	
fichier_secmem , 84	gmres_non_lineaire , 507
fichier_solution , 85	gnuplot_header , 421, 423, 426, 428, 430, 432,
fichier_solveur , 85	434, 435, 437, 439, 441, 443, 445, 447,
fichier_solveur_non_recree , 320	448, 450, 452, 455, 457, 460, 462, 464,
fichier_sortie , 59	467, 469, 470, 472
fichier_ssz , 412	gradient_pression_qdm_modifie , 207, 215, 245,
field , 353, 357, 410	247, 268, 270, 273, 276, 280, 282, 284
fields , 50, 95, 109	gravite, 33, 276, 390–402
fields_file , 95, 109	groupes , 140, 145, 180
file , 74, 96, 101, 353, 357, 410	h , 359, 500
file_coord_x , 66	harmonic_nu_in_calc_with_indicatrice , 34
file_coord_y , 66	harmonic_nu_in_diff_operator , 34
file_coord_z , 66	haspi, 213
file_name , 302	hexa_old , 54
filename, 29	himp , 516
filling, 415	Hlsat , 300
fin_stat, 210	Hvsat, 300
flow_rate , 379	i , 366
fluid , 383–385	ignore_check_fraction , 386
fluide_diphasique , 111	ijk_grid_geometry, 298
fluide_incompressible , 111, 113–117, 119, 132,	ijk_splitting, 32
133, 135–137, 145–147, 149–152, 157, 159	, ijk_splitting_ft_extension , 33
161, 165–167, 169, 174, 175, 177	implicitation_CH , 507
fluide_ostwald , 128, 137, 161	implicite, 297
fluide_quasi_compressible , 154, 156, 162, 170,	impr , 69, 85, 291, 317–321, 380–383, 390, 482–
172, 176	488, 490–492
fluide_sodium_gaz , 128, 138, 161	impr_diffusion_implicite, 421, 423, 425, 428, 429,
fluide_sodium_liquide , 128, 138, 161	431, 433, 435, 437, 439, 441, 442, 444,
fluide_weakly_compressible , 155, 164, 171	446, 448, 450, 452, 454, 457, 459, 462,
flux_paroi , 324	464, 466, 468, 470, 472
fo ,32,89	impr_extremums , 421, 423, 425, 428, 429, 431,
fonction , 80, 231	433, 435, 437, 439, 441, 442, 444, 446,

448, 450, 452, 454, 457, 459, 462, 464,	Lire_fichier , 92
466, 468, 470, 472	lissage_courbure_coeff , 79, 291
improved_initial_pressure_guess , 34	lissage_courbure_iterations , 291
include_pressure_gradient_in_ustar , 34	lissage_courbure_iterations_si_remaillage , 79,
inclure_groupes_faces_additionnels , 40	292
indic_faces_modifiee , 289	lissage_courbure_iterations_systematique , 79, 291
indice , 391, 392, 394–401	list_equations , 115, 116, 135, 136, 142
info , 192	liste , 80, 517
init_Ec , 211, 212	liste_cas , 50
initial_cl_xcoord , 302	liste_de_postraitements , 94, 111, 113–115, 117–
initial_conditions , 181, 198–206, 208, 215, 246,	120, 122, 124–131, 133–136, 138, 139,
248–254, 256–263, 265–267, 269, 271, 274,	
276, 280, 283, 285, 287, 294–297	162, 164–166, 168–170, 172–176, 178, 179
initial_field , 361	liste_postraitements , 94, 111, 113–115, 117–120,
initial_value , 360, 361, 370	122, 124–131, 133–136, 138, 139, 141,
injecteur_interfaces , 289	143–145, 147–151, 153–156, 158–162, 164–
injection, 297	166, 168–170, 172–176, 178, 180
inout_method , 302	loc , 353, 357
input_field , 361	local , 510
integrale, 497	localisation , 68, 309, 314
interfaces, 33	loi_etat , 396, 401
interp_ve1, 38	longueur_boite , 211, 212
interpol_indic_pour_dI_dt , 273	longueur_maille , 217, 219–221, 223–229, 231,
interpolation, 510, 511	232
interpolation_champ_face , 288	longueurs, 62
interpolation_repere_local , 288	lv , 301
intervalle, 517	Lvap , 300
inverse_condition_element , 53	maillage , 40, 287
iter_max , 473, 478	main , 73
iter_min , 473, 478	maintien_temperature , 264
iterations_correction_volume , 287	Mass_and_stiffness_file_name , 26
iterations_mixed_solver , 69	mass_source , 270
joints_non_postraites , 74	masse_molaire , 50, 198, 254, 255, 257, 262
k , 395	Masse_Multiphase , 120, 121, 123
k_min , 233–240, 243	matrice_pression_invariante , 273
k omega , 191	max_iter_implicite , 422, 453, 456, 458, 461, 463,
kappa , 391, 392, 394–401, 508, 519, 521	465
kappa_variable , 508	max_simu_time , 32
KeOverKmin, 369	mesh , 352, 353, 357
kmetis, 411	methode, 59, 308, 309, 311, 313
l_melange , 189	methode_calcul_face_keps_impose , 519
lambda , 338, 339, 390–402, 502–504, 512, 521	methode_calcul_pression_initiale , 208, 215, 246,
	248, 268, 271, 274, 276, 280, 282, 284
lambda_c , 522	
lambda_liquid , 89	methode_couplage , 297
lambda_max , 512	methode_interpolation_v , 288
lambda_min , 512	methode_transport , 287, 297
lambda_ortho , 503	milieu , 93, 111, 113–116, 118–120, 122–125, 127–
lambda_vapor , 89	132, 134–136, 138, 139, 141, 142, 144–
larg_joint , 72	146, 148–151, 153–157, 159–162, 164–
last_time , 352, 353, 357	167, 169–171, 173–176, 178, 179
lata_meshname , 59	milieu_composite , 120, 121, 123
lenghtScale, 368	Milieu_MUSIG , 120, 122, 123
level , 416–419	min_critere_q_sur_max_critere_q, 213
limiteur 191 192	min dir flow 359

min_dir_wall , 359	navier_stokes_turbulent , 114, 116, 126, 130, 134,
mobile_probes , 95, 108	136, 151, 152, 157, 167, 169, 175, 177
mobile_probes_file , 95, 108	Navier_Stokes_Turbulent_ALE , 118
Modal_deformation_file_name , 26	navier_stokes_turbulent_qc , 131, 156, 173, 176
mode, 28	navier_stokes_WC , 155, 164, 171
mode_calcul_convection, 251, 253	nb_comp , 360, 361, 370, 525
model , 383–385	nb_corrections_max , 473–479, 481
model_variant , 236	nb_diam_ortho_shear_perio , 33
modele , 510, 511	nb_diam_upstream , 33
modele_cinetique , 197	nb_full_mg_steps , 69
modele_fonc_bas_reynolds , 235, 240	nb_histo_boxes_impr , 380–383
modele_fonc_realisable , 238, 242	nb_it_max , 318–321, 474–481, 491
modele_micro_melange , 314	nb_ite_sans_accel_max , 57
modele_turbulence , 197, 198, 214, 253, 256, 261,	nb_iter_barycentrage , 79, 291
266, 273, 282, 284	nb_iter_correction_volume , 79, 291
modele_visco , 521, 525	nb_iter_remaillage , 79, 291
modif_div_face_dirichlet , 350	nb_iteration_max_uzawa , 289
molar_mass , 387	nb_iterations, 297
molar_mass1 , 384	nb_iterations_correction_volume , 289
molar_mass2 , 384	nb_iterations_gmresnl , 507
moyenne, 368	nb_lissage_correction_volume , 289
moyenne_convergee , 310	nb_mailles_mini , 213
moyenne_de_kappa , 507	nb_modes, 26
moyenne_imposee , 377	nb_nodes , 66
moyenne_recyclee , 377	nb_parts , 410–413
mpoint_inactif_sur_qdm , 273	nb_parts_geom , 47
mpoint_vapeur_inactif_sur_qdm , 273	nb_parts_naif , 47
mu , 50, 338, 339, 387, 394–396, 400, 401, 521	nb_parts_tot , 72
mu1, 384, 385	nb_pas_dt_max , 32, 421, 423, 425, 428, 430, 431,
mu2, 384, 385	433, 435, 437, 439, 441, 443, 444, 446,
mu_1 , 262, 278	448, 450, 452, 454, 457, 459, 462, 464,
mu_2 , 262, 278	466, 468, 470, 472
mu_fonc_c , 278	nb_points , 229, 406
mu_liquide , 33	nb_points_par_phase , 210
mu_vapeur , 34	nb_procs, 51
multigrid_solver , 32	nb_test, 85
multiple_files , 37	nb_tranche , 59
multiplicateur_de_kappa , 507	nb_tranches , 54–56
n , 339, 395, 521, 523, 525 n_extend_meso , 302	nb_var , 230
n_iterations_distance , 287	nbelem_i ,351 nbelem_j ,351
n_iterations_distance , 287 n_iterations_interpolation_ibc , 288	nbelem_k , 351
name_of_initial_zones , 39	nbModes , 368
name_of_new_zones , 40	new_jacobian , 192
nature , 352	new_mass_source , 273
Navier_Stokes_Aposteriori , 147	NewmarkTimeScheme , 26
navier_stokes_phase_field , 159	niter_avg , 425, 427
navier_stokes_QC , 129, 154, 162, 170	niter_max , 424, 427
navier_stokes_standard , 113, 115, 125, 128, 132,	niter_max_diffusion_implicite, 196, 421, 423, 425,
135, 138, 145, 149, 150, 161, 165, 166,	428, 430, 431, 433, 435, 437, 439, 441,
174	443, 444, 446, 448, 450, 452, 454, 457,
navier_stokes_standard_ALE , 146	459, 462, 464, 466, 468, 470, 472
Navier_Stokes_standard_sensibility , 119, 137	niter_min , 424, 427
, ,	nmax, 42

```
no_alpha , 190
                                                nut_transp , 192
no_check_disk_space , 421, 423, 426, 428, 430,
                                                oh , 32
        432, 433, 435, 437, 439, 441, 443, 445,
                                                old, 185
        446, 448, 450, 452, 455, 457, 460, 462,
                                                omega , 359, 415, 417, 419, 424, 499
        464, 467, 468, 470, 472
                                                omega max, 237
no_conv_subiteration_diffusion_implicite , 421,
                                                omega_min, 237
        423, 425, 428, 430, 431, 433, 435, 437,
                                                omega relaxation drho dt, 396
        439, 441, 443, 444, 446, 448, 450, 452,
                                                optimisation sous maillage, 309
        454, 457, 459, 462, 464, 466, 468, 470,
                                                optimized . 318, 322
                                                option, 197, 255, 310, 499
no error if not converged diffusion implicite,
                                                ordering, 416
        421, 423, 425, 428, 429, 431, 433, 435,
                                                origin i , 351
        437, 439, 441, 443, 444, 446, 448, 450,
                                                origin_j , 351
        452, 454, 457, 459, 462, 464, 466, 468,
                                                origin_k, 351
        470, 472
                                                Origine, 62
no_octree_method , 59
                                                origine, 52
no_qdm , 474-481
                                                OutletCorrection_pour_dI_dt , 273
nom , 360, 361, 370
                                                Output_position_1D , 26
                                                Output_position_3D , 27
nom_bord, 54
nom champ, 352
                                                p0, 350
nom_cl_derriere , 56
                                                p1, 350
nom cl devant, 56
                                                p_imposee_aux_faces , 71
nom_domaine, 68
                                                P_ref , 300, 398, 399
nom fichier, 515
                                                p_ref , 299-301
nom fichier post, 68
                                                P sat , 300
nom fichier solveur, 320
                                                p seuil max, 32
nom fichier sortie, 47
                                                p seuil min, 32
nom frontiere, 308
                                                pa, 350
nom_inconnue , 197, 254-256, 262
                                                par_sous_dom, 28
nom_mon_indicatrice , 327
                                                parallel_over_zone , 37
nom_pb , 68
                                                parallele , 95, 108
                                                parametre_equation, 181, 198-200, 202-206, 208,
nom_reprise, 33
nom_sauvegarde, 33
                                                         216, 246, 248–254, 256–263, 265–267, 269,
nom_source , 303-314
                                                         271, 274, 277, 281, 283, 285, 286, 289,
                                                         294-296, 298
nom_zones, 72
                                                parcours_interface, 288
nombre_de_noeuds , 62
nombre facettes retenues par cellule, 288
                                                Partition tool, 72
noms champs, 68
                                                pas, 291
norm , 82
                                                pas de solution initiale, 85
normal_value, 369
                                                pas_lissage, 291
normalise, 213
                                                pas remaillage, 79
nproc_i , 298
                                                pb_champ , 311, 312
nproc_j , 299
                                                pb champ evaluateur, 376
nproc k , 299
                                                pb dist , 352
nu, 192, 338, 339
                                                pb loc, 352
                                                pb_name, 73
nu_transp , 192
                                                pcshell, 490
numero, 310, 314
numero_masse, 305
                                                penalisation_forcage, 273
numero_op , 305
                                                penalisation_12_ftd , 200, 263, 264
numero_source, 305
                                                perio_i , 351
nusselt, 524
                                                perio_j , 351
nut, 192
                                                perio_k, 351
nut_max , 216, 218-220, 222-224, 226-240, 243,
                                                perio_x , 66
                                                perio_y, 66
```

```
perio_z , 66
                                                 precond1, 416
periode, 210
                                                 precond_nul , 318, 322, 490
periode calc spectre, 211, 212
                                                 preconda, 416
periode_sauvegarde_securite_en_heures, 421, 423, preconditionnement_diag, 196
         426, 428, 430, 432, 433, 435, 437, 439,
                                                prescribed mpoint, 264
        441, 443, 445, 446, 448, 450, 452, 455,
                                                 pression, 396
        457, 459, 462, 464, 467, 468, 470, 472
                                                 pression degeneree, 473
periodique, 72
                                                 pression reference, 275
petsc decide . 490
                                                 pression thermo, 401
phase, 197, 255, 264, 327
                                                 pression xyz, 401
phase0, 393
                                                 pressure reduction, 473
phase1, 393
                                                 print_more_infos , 73
phase_marquee, 297
                                                 probes , 95, 108
                                                 probes_file , 95, 108
PID_controler_on_targer_power , 516
                                                 probleme, 29, 52, 53, 277, 278, 360, 361, 370
pinf , 400
point1, 53
                                                 produits, 315
point2, 53
                                                 projection_initiale , 208, 215, 245, 247, 268, 270,
                                                          274, 276, 280, 282, 284
point3, 53
                                                 projection_normale_bord , 55
points_fluides , 380-382
points solides , 380–382
                                                 proprietes particules, 298
polynomes, 517
                                                 pulsation_w , 210
polynomial chaos, 200, 245
                                                 q, 400
porosites , 390–402
                                                 q_prim , 400
porosites_champ , 390–402
                                                 QDM Multiphase , 120, 121, 123
position , 293, 390
                                                 qtcl , 301
Post processing, 93, 111, 113–115, 117–120, 122–
                                                 quiet . 233–240, 243, 317–320, 322, 482–488, 490–
         124, 126-132, 134-136, 138, 139, 141,
                                                          492
         143–146, 148–151, 153–157, 159–162, 164-rapport_residus, 57
                                                 ratioCutoffWavenumber, 369
         167, 169–171, 173–176, 178, 179
Post_processings , 94, 111, 113–115, 117–120,
                                                rayon_spot, 497
         122, 123, 125–132, 134–136, 138, 139,
                                                rc_tcl_gridn, 302
                                                 reactifs, 315
         141, 143–146, 148–151, 153–157, 159–
         162, 164–166, 168–171, 173–176, 178, 179 reactions, 314
postraiter_gradient_pression_sans_masse , 207,
                                                 read_matrix, 490
         215, 245, 247, 268, 270, 273, 276, 280,
                                                 rectangle, 517
                                                 reduce_ram , 487, 488
         282, 284
potentiel chimique, 508
                                                 refuse patch conservation qdm rk3 source interf
potentiel chimique generalise, 262
                                                          , 34
Pr t , 190
                                                 regul , 506
prandt_turbulent_fonction_nu_t_alpha , 405
                                                 reinjection_tcl , 302
Prandtl, 387, 388
                                                 relative, 82
prandtl, 386–388, 525
                                                 relax_barycentrage, 79, 291
prandtl eps , 234, 235, 238, 240, 243
                                                 relax iacobi . 69
prandtl k , 234, 235, 238, 240, 243
                                                 relax pression, 479, 481
                                                 remaillage, 287
prandtl turbulent, 190
prdt , 405
                                                 remaillage_ft_ijk , 59
prdt_sur_kappa, 523
                                                 renommer_equation, 181, 198-200, 202-206, 208,
                                                          216, 246, 248–252, 254–261, 263, 265–
pre_smooth_steps, 69
precision impr , 421, 423, 426, 428, 430, 432,
                                                          267, 269, 271, 274, 277, 281, 283, 285,
         433, 435, 437, 439, 441, 443, 445, 446,
                                                          286, 289, 294-296, 298
        448, 450, 452, 454, 457, 459, 462, 464,
                                                 reorder, 72
                                                 reorder_matrix, 490
         466, 468, 470, 472
precond, 318, 319, 322, 482, 485, 490, 491
                                                 reprise , 94, 111, 113–115, 117–119, 121, 122,
precond0, 416
                                                          124–130, 132–135, 137–139, 141, 143, 144,
```

```
146–150, 152–155, 157–161, 163–166, 168–schema_ns , 467
         170, 172–175, 177, 178, 180, 210
                                                 scturb, 406
reprise correlation, 338, 339
                                                 segment, 517
reprise_liq_velocity_tmoy, 34
                                                 senseur_interface , 497
reprise vap velocity tmoy, 34
                                                 serial statistics, 95, 109
residu_max_gmresnl, 507
                                                 serial_statistics_file, 95, 109
residu min gmresnl, 507
                                                 seuil, 69, 318–321, 424, 427, 482–488, 490–492
residuals , 420, 423, 425, 427, 429, 431, 433, 435,
                                                 seuil absolu, 29
        437, 438, 440, 442, 444, 446, 448, 450,
                                                 seuil convergence implicite, 196, 473–481
        452, 454, 456, 459, 461, 464, 466, 468,
                                                 seuil convergence solveur, 196, 473–481
        470, 472
                                                 seuil convergence uzawa, 289
resolution_explicite, 196
                                                 seuil cv iterations ptfixe, 507
resolution_fluctuations, 33
                                                 seuil_diffusion_implicite, 196, 421, 423, 425, 428,
resolution_monolithique, 463
                                                          429, 431, 433, 435, 437, 439, 441, 442,
                                                          444, 446, 448, 450, 452, 454, 457, 459,
restart, 521
Restart_file_name , 26
                                                          462, 464, 466, 468, 470, 472
restriction, 517
                                                 seuil_divU , 207, 215, 245, 247, 268, 270, 273,
                                                           276, 280, 282, 284
resume_last_time , 94, 112–114, 116–119, 121,
         122, 124–129, 131–135, 137–139, 141, 143, seuil_dvolume_residuel , 79, 291
         144, 146–150, 152–154, 156–160, 162–
                                                 seuil generation solveur, 473–481
         165, 167–169, 171–174, 176–178, 180
                                                 seuil minimum relatif, 29
reuse preconditioner nb it max, 490, 491
                                                 seuil relatif, 29
reynolds_stress_isotrope , 241, 242
                                                 seuil residu gmresnl, 507
rho, 338, 339, 390–402
                                                 seuil residu ptfixe, 507
rho 1, 262, 277
                                                 seuil statio , 420, 423, 425, 427, 429, 431, 433,
rho 2, 262, 277
                                                          435, 437, 438, 440, 442, 444, 446, 448,
                                                          450, 451, 454, 456, 459, 461, 464, 466,
Rho beam, 26
rho_constant_pour_debug, 387
                                                          468, 470, 472
                                                 seuil test preliminaire solveur, 474-481
rho_fonc_c , 277
                                                 seuil_verification, 85
rho_liquide, 33
rho_t , 388
                                                 seuil_verification_solveur, 473-481
rho_vapeur, 34
                                                 sharing algo, 38
rho_xyz , 388
                                                 sigma, 34, 191, 192, 393
rotation, 390, 510, 511
                                                 sigma_d , 494
                                                 sigma_turbulent, 190
rt, 350
rtol, 482–488, 490–492
                                                 single_hdf, 40, 72
sans passer par le2d, 54
                                                 single precision, 37
sans solveur masse, 305
                                                 sm, 301
sans source boussinesq, 521
                                                 smooth steps, 69
sato , 191
                                                 solide, 93
sauvegarde, 94, 111, 113–115, 117–120, 122, 124–
                                                 solv elem, 319
         131, 133–136, 138, 139, 141, 143–145,
                                                 solved_equations, 111
         147–151, 153–156, 158–161, 163–166, 168–solver precision, 69
                                                 solveur, 85, 141, 196, 422, 453, 456, 458, 461,
         170, 172–175, 177, 178, 180
sauvegarde simple, 94, 111, 113–115, 117–120,
                                                          463, 465, 474–481
         122, 124–131, 133–135, 137–139, 141, 143, solveur0, 318
         144, 146–151, 153–155, 157–161, 163–
                                                 solveur1, 318
         166, 168–170, 172–175, 177, 178, 180
                                                 solveur_bar , 207, 215, 245, 247, 268, 270, 274,
sauvegarder xvz , 33
                                                           276, 280, 282, 284
                                                 solveur_grossier, 69
save_matrix , 318–320, 322, 487, 490
save_matrix_mtx_format , 482–488, 490–492
                                                 solveur_pression , 207, 215, 245, 247, 249, 268,
save_matrix_petsc_format , 487, 491
                                                           270, 273, 276, 280, 282, 284
sc, 386
                                                 sonde_tble , 521, 525
schema ch , 467
                                                 sondes, 35
```

source , 303–314	temps_d_affichage , 507
source_reference , 303-314	temps_debut_prise_en_compte_drho_dt , 396
sources , 181, 198–200, 202–206, 208, 215, 246,	temps_relaxation_coefficient_pdf , 510
248–254, 256–263, 265–267, 269, 271, 274,	terme_force_init , 33
277, 280, 283, 285, 289, 294–297, 303–	terme_gravite, 59, 273
314	test , 185
sources_reference , 303-314	test_etapes_et_bilan , 34
sous_zone , 52, 95, 108, 360, 361, 370, 503, 504	Text , 516
sous_zones , 412	thermique, 33
species_number , 387	theta_app, 301
spectre_1D , 211, 212	thetac_tcl , 302
spectre_3D , 211, 212	thi , 222
splitting, 66	thickness, 293
stabilise , 229, 406	time, 353, 357
standard, 192	time_activate_ptot , 401
state , 245	time_scheme , 33
stationnaire, 521	timeScale , 369
statistics , 95, 109	timestep , 32
statistics_file , 95, 109	timestep_facsec , 32
stats , 521, 523, 525	timestep_reprise_interface , 59
steady_global_dt , 422	timestep_reprise_vitesse , 33
steady_security_facteur , 422	tinf , 338, 339
stencil_width , 264	tinit , 32, 420, 422, 425, 427, 429, 431, 432, 434,
suffix_for_reset , 95, 109	436, 438, 440, 442, 444, 445, 447, 449,
suppression_rejetons , 34	451, 454, 456, 459, 461, 463, 466, 467,
surface , 339, 506	469, 471
surface_tension , 299–301	tmax , 420, 422, 425, 427, 429, 431, 432, 434, 436,
surfacic_flux , 67	438, 440, 442, 444, 446, 447, 449, 451, 454, 456, 459, 461, 463, 466, 467, 469,
surfacique , 414 sutherland , 396, 401	434, 430, 439, 401, 403, 400, 407, 409,
symx , 62	toutes_les_options , 71
symy, 62	traitement_axi, 38
symz, 62	traitement_coins , 71
systeme_naire , 507	traitement_gradients, 71
to , 500	traitement_particulier , 207, 215, 245, 247, 268,
t_deb , 213, 305–307, 310	270, 273, 276, 280, 282, 284
t_debut_injection , 298	traitement_pth , 396, 401
t_debut_statistiques , 35	traitement_rho_gravite , 396
t_fin , 213, 306, 307, 310	tranches, 413
	transformation_bulles , 297
T_ref , 301, 398, 399	transport_epsilon, 235, 242
t_ref , 300, 301	transport_k , 235, 242
T_sat , 300	transport_k_epsilon, 240
table_temps , 352	transport_k_epsilon_realisable , 238
table_temps_lue , 352	transport_k_omega , 236
Taux_dissipation_turbulent , 120, 122, 123	transpose_rotation , 510, 511
tcpumax , 420, 422, 425, 427, 429, 431, 433, 434,	triangle, 53
436, 438, 440, 442, 444, 446, 447, 449,	Triple_Line_Model_FT_Disc , 111
451, 454, 456, 459, 461, 463, 466, 468,	trois_tetra , 54
469, 471	tsup, 338, 339
tdivu , 185	tube , 517
temperature, 384, 385	turbDissRate , 369
temperature_paroi , 324	turbKinEn, 369
temperature_state , 200	

turbulence_paroi , 216, 217, 219, 220, 222–227,	vol_bulles , 33
229–240, 243, 404–407	volume, 338
tuyauz, 221	volume_impose_phase_1 , 288
type , 310, 415	volumes_etendus, 185
type_indic_faces , 289	volumes_non_etendus , 185
type_t_source , 89	volumique, 414
type_temperature_convection_op , 89	wall_flux , 89
type_vitesse_imposee , 288	with_nu , 295, 296
u , 364, 366, 369	without_dec , 38
u_etoile, 500	writing_processes, 39
u_star_impose, 519	xinf , 339
u_tau , 522	xsup , 339
ubar_umprim_cible , 512	xtanh, 63
ucent , 359	xtanh_dilatation, 63
uncertain_variable , 200, 245	xtanh_taille_premiere_maille , 63
uniform_domain_size_i , 351	ylim , 301
uniform_domain_size_j , 351	ym , 301
uniform_domain_size_k , 351	ymeso, 301
union , 517	Young_Module , 26
unite, 310, 314	ytanh, 63
upstream_dir , 33	ytanh_dilatation , 63
upstream_stencil, 33	ytanh_taille_premiere_maille , 63
use_existing_domain , 352, 353, 357	zmax , 59
use_grad_pression_eos , 401	zmin , 59
use_hydrostatic_pressure , 401	ztanh , 63
use_inv_rho_for_mass_solver_and_calculer_rho-	ztanh_dilatation, 63
_v , 34	ztanh_taille_premiere_maille , 63
use_inv_rho_in_poisson_solver , 34	-
use_links , 37	Acceleration, 498
use_osqp , 38	Ai_based, 293
use_overlapdec , 352	Ale, 182
use_total_pressure , 401	Ale_neumann_bc_for_grid_problem, 24
use_weights , 411	Algo_base, 302
user_field , 402	Algo_couple_1, 302
val_Ec , 211, 212	Amgx, 316
velocity_convection_op , 33	Amont, 186
velocity_profil , 379	Amont_old, 183
velocity_reset , 34	Analyse_angle, 42
velocity_state , 199	Associate, 42
verif_boussinesq , 500	Associer_algo, 42
verif_dparoi , 221	Associer_pbmg_pbfin, 43
verification_derivee , 390	Associer_pbmg_pbgglobal, 43
via_extraire_surface , 53	Axi, 43
vingt_tetra , 54	_
viscosite_dynamique_constante, 275	Base, 292
vitesse, 390, 499	Beam_model, 25
vitesse_entree , 33	Bicgstab, 482
vitesse_fluide_explicite , 293	Bidim_axi, 43
vitesse_imposee_data , 510	Binaire_gaz_parfait_qc, 384
vitesse_imposee_fonction , 510	Binaire_gaz_parfait_wc, 384
vitesse_imposee_regularisee , 289	Block_jacobi_icc, 416
vitesse_upstream , 33	Block_jacobi_ilu, 417
voflike_correction_volume , 289	Boomeramg, 417
vol bulle monodisperse , 33	Bord, 65

Bord_base, 63	Champ_front_fonc_t, 374
Boundary_field_inward, 369	Champ_front_fonc_txyz, 374
Boundary_field_keps_from_ud, 365	Champ_front_fonc_xyz, 374
Boundary_field_uniform_keps_from_ud, 369	Champ_front_fonction, 375
Boussinesq_concentration, 499	Champ_front_lu, 375
Boussinesq_temperature, 499	Champ_front_med, 370
Brech, 212	Champ_front_musig, 375
Btd, 187	Champ_front_normal_vef, 375
	Champ_front_parametrique, 367
C-amg, 417	Champ_front_pression_from_u, 376
Calcul, 44	Champ_front_recyclage, 376
Calculer_moments, 44	Champ_front_synt, 368
Canal, 209	Champ_front_tabule, 377
Canal_perio, 500	Champ_front_tabule_lu, 377
Ceg, 212	Champ_front_tangentiel_vef, 377
Centre, 187	Champ_front_uniforme, 378
Centre4, 187	Champ_front_vortex, 378
Centre_de_gravite, 44	Champ_front_xyz_debit, 378
Centre_old, 186	Champ_front_xyz_tabule, 366
Ch_front_input, 369	Champ_front_zoom, 379
Ch_front_input_ale, 366	Champ_generique_base, 303
Ch_front_input_uniforme, 370	Champ_init_canal_sinal, 358
Champ_base, 351	Champ_input_base, 359
Champ_composite, 354	Champ_input_p0, 360
Champ_don_base, 355	Champ_input_p0_composite, 360
Champ_don_lu, 355	Champ_musig, 361
Champ_fonc_fonction, 355	Champ_ostwald, 361
Champ_fonc_fonction_txyz, 356	Champ_parametrique, 354
Champ_fonc_fonction_txyz_morceaux, 356	Champ_post_de_champs_post, 303
Champ_fonc_interp, 351	Champ_post_extraction, 307
Champ_fonc_med, 356	Champ_post_morceau_equation, 309
Champ_fonc_med_table_temps, 352	Champ_post_operateur_base, 304
Champ_fonc_med_tabule, 353	Champ_post_operateur_divergence, 306
Champ_fonc_reprise, 357	Champ_post_operateur_eqn, 304
Champ_fonc_t, 358	Champ_post_operateur_gradient, 308
Champ_fonc_tabule, 358	Champ_post_reduction_0d, 311
Champ_fonc_tabule_morceaux_interp, 354	Champ_post_refchamp, 312
Champ_fonc_txyz, 363	Champ_post_statistiques_base, 305
Champ_fonc_xyz, 363	Champ_post_tparoi_vef, 312
Champ_front_ale, 367	Champ_post_transformation, 313
Champ_front_ale_beam, 366	Champ_som_lu_vdf, 361
Champ_front_base, 365	Champ_som_lu_vef, 362
Champ_front_bruite, 371	Champ_tabule_morceaux, 353
Champ_front_calc, 371	Champ_tabule_temps, 362
Champ_front_composite, 371	Champ uniforme morceaux, 362
Champ_front_contact_rayo_semi_transp_vef, 372	Champ_uniforme_morceaux_tabule_temps, 363
Champ_front_contact_rayo_transp_vef, 372	Champ_front_fonc_txyz, 21
Champ_front_contact_vef, 372	Chimie, 314
Champ_front_debit, 373	Chmoy_faceperio, 210
Champ_front_debit_massique, 373	Cholesky, 316, 486
Champ_front_debit_qc_vdf, 367	Cholesky_mumps_blr, 487
Champ_front_debit_qc_vdf_fonc_t, 367	Cholesky_out_of_core, 483
Champ_front_fonc_pois_ipsn, 373	Cholesky_pastix, 483
Champ_front_fonc_pois_tube, 374	Cholesky_superlu, 484
	J — * * F * * * * 7 * *

Cholesky_umfpack, 484	Decoupebord_pour_rayonnement, 46
Circle, 100	Decouper_bord_coincident, 47
Circle_3, 100	Di_12, 183
Class_generic, 315	Diag, 417
Cli, 488	Diffusion_croisee_echelle_temp_taux_diss_turb, 494
Cli_quiet, 489	Diffusion_deriv, 188
Combinaison, 230	Diffusion_supplementaire_echelle_temp_turb, 494
Cond_lim_k_complique_transition_flux_nul_demi, 3	2Bilate, 47
Cond_lim_k_simple_flux_nul, 323	Dimension, 47
Cond_lim_omega_demi, 323	Dirac, 501
Cond_lim_omega_dix, 323	Dirichlet, 326
Condinits, 194	Disable_tu, 47
Condlim_base, 322	Discretisation_base, 348
Condlims, 141	Discretiser_domaine, 48
Conduction, 180	Discretize, 48
Connexion_approchee, 407	Dispersion_bulles, 494
Connexion_exacte, 407	Dissipation_echelle_temp_taux_diss_turb, 495
Constant, 345	Distance_paroi, 48
Constituant, 390	Domain, 65
Contact_vdf_vef, 325	Domaine, 350
Contact_vef_vdf, 326	Domaine_ale, 351
Convection_deriv, 181	Domaineaxi1d, 350
Convection_diffusion_chaleur_qc, 251	Dp, 493
Convection_diffusion_chaleur_turbulent_qc, 253	Dp_impose, 493
Convection_diffusion_chaleur_wc, 252	Dp_regul, 493
Convection_diffusion_concentration, 254	Dt_cale, 317
Convection_diffusion_concentration_ft_disc, 255	Dt_fixe, 317
Convection_diffusion_concentration_turbulent, 256	Dt_min, 317
Convection_diffusion_concentration_turbulent_ft_dis	
196	Dt_post, 102, 105
Convection_diffusion_espece_binaire_qc, 257	Dt_post, 102, 103
Convection_diffusion_espece_binaire_turbulent_qc,	Easm_baglietto, 242
198	Ec, 210
Convection_diffusion_espece_binaire_wc, 258	Ecart_type, 104, 307
Convection_diffusion_espece_multi_qc, 259	Ecart_type, 102, 105
Convection_diffusion_espece_multi_turbulent_qc, 26	
Convection_diffusion_espece_multi_wc, 260	Echange_contact_vdf_ft_disc, 327
	Echange_contact_vdf_ft_disc_solid, 327
Convection_diffusion_phase_field, 261	Echange_couplage_thermique, 323
Convection_diffusion_temperature, 263	Echelle_temporelle_turbulente, 201
Convection_diffusion_temperature_ft_disc, 263	Ecrire, 92
Convection_diffusion_temperature_sensibility, 199	Ecrire_champ_med, 49
Convection_diffusion_temperature_turbulent, 265	Ecrire_fichier_bin, 92
Coolprop_qc, 385	Ecrire_fichier_formatte, 49
Coolprop_wc, 385	Ecriturelecturespecial, 50
Coriolis, 500	Ef, 182, 348
Correction_antal, 492	Ef_stab, 184
Correction_lubchenko, 492	
Correlation, 102, 104, 105, 306	Eisentat, 417
Corriger_frontiere_periodique, 44	End, 57
Create_domain_from_sub_domain, 28	Energie_cinetique_turbulente, 203
Daray 501	Energie_cinetique_turbulente_wit, 204
Darcy, 501	Energie_multiphase, 202
Debog, 45	Energie_multiphase_h, 203
Debogft, 28	Enthalpie_imposee_paroi, 348

Eos. wc, 383 Epsilon, 65 Eqn base, 266 Epn base, 266 Execute parallel, 50 Export, 51 Extract_2daxi_from_3d, 51 Extract_2daxi_from_3d, 51 Extract_2daxi_from_3d, 51 Extraire_domaine, 51 Extraire_domaine, 51 Extraire_sarface, 53 Extraire_surface_ale, 29 Extrudedeport, 53 Extruder_eno, 55 Extruder_eno, 56 Extruder_eno, 55 Extruder_eno, 56 Extruder_	Entree_temperature_imposee_h, 327	Frontiere_ouverte_pression_imposee_orlansky, 331
Epsilon, 65 Eqn_base, 266 Eqn_base, 266 Eqn_base, 266 Eqn_base, 266 Eqn_base, 266 Execute parallel, 50 Export, 51 Extract 2, 2, from, 3d, 51 Extract 2, 2, from, 3d, 51 Extraire domaine, 51 Extraire domaine, 51 Extraire surface, 53 Extraire surface, 53 Extraire surface, 54 Extraire surface, 55 Extruder, 55 Extruder, 65 Extruder, 63 Extraire surface, 53 Extruder, 63 Extruder, 63 Fronticer, ouverte, temperature_imposee_rayo_transp, v6f, 333 Fronticer, ouverte, temperature, imposee, 334 Fronticer, ouverte, rayo, transp, v6f, 333 Fronticer, ouverte, rayo, transp, v6f, 333 Fronticer, ouverte, rayo, transp, 334 Fronticer, ouverte, rayo, transp, 332 Fronticer, ouverte, rayo, transp, 333 Fronticer, ouverte, rayo, transp, 334 Fronticer, ouverte, rayo, transp, 334 Fronticer, ouverte, payen, transp, 334 Fronticer, ouverte, payen, gayo, transp, 334 Fronticer, ouverte, payen, gayo, transp, 334 Fronticer, ouverte,	Eos_qc, 383	
Eqn. base, 266 Execute_parallel, 50 Export, 51 Extract_2d, from_3d, 51 Extract_2daxi_from_3d, 51 Extraire_domaine, 51 Extraire_plan, 52 Extraire_sarface_3s Extract_2daxi_from_3d, 51 Extraire_sarface_3s Extraire_sarface_3s Extraire_sarface_ale, 29 Extrudeproi, 54 Extrudeproi, 54 Extruder_en20, 55 Extruder_en3, 56 Fd, 27 Fichier_decoupage, 410 Fichier_med, 410 Fichier_med, 410 Fichier_med, 410 Fichier_med, 410 Fichied_dilatable_base, 397 Fluide_base, 397 Fluide_dilatable_base, 392 Fluide_diphasique, 392 Fluide_dusal_compressible, 393 Fluide_sodium_gaz_397 Fluide_sodium_gaz_397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_sweakly_compressible, 400 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_fraction_massique_impose, 333 Frontiere_ouverte_grayo_transp, vef, 333 Frontiere_ouverte_grayo_transp, vef, 333 Frontiere_ouverte_grayo_transp, vef, 333 Frontiere_ouverte_te_mho_uimposee_gayo_transp, 334 Frontiere_ouverte_temperature_imposee_gayo_transp, 334 Frontiere_ouverte_vitesse_imposee_asyo_transp, 334 Frontiere_ouverte_temperature_imposee_asyo_transp, 334 Frontiere_ouverte_vitesse_imposee_asyo_transp, 334 Frontiere_ouverte_temperature_imposee_asyo_transp, 334 Frontiere_ouverte_temperature_imposee_asyo_transp, 334 Frontiere_ouverte_temperature_imposee_asyo_transp, 334 Frontiere_ouverte_temperature_imposee_asyo_transp, 334 Frontiere_ouverte_temperature_imposee_asyo_transp, 334 Frontiere_ouverte_pla_dis_n_side_asyo_transp, 334 Frontiere_ouverte_pla_dis_n_side_asyo_transp, 334 Frontiere_ouverte_pla_dis_n_side_asyo_transp, 334 Frontiere_ouverte_pla_dis_n_side_asyo_transp, 334 Fr	Eos_wc, 383	Frontiere_ouverte_rayo_semi_transp, 332
Eqn. base, 206 Execute parallel, 50 Execute parallel, 50 Export, 51 Extract 2d. from 3d, 51 Extract 2d. from 3d, 51 Extraire domaine, 51 Extraire plan, 52 Extraire plan, 52 Extraire surface, 33 Extraire surface, 34 Extraire surface, 35 Extrudebraoi, 54 Extrudebraoi, 54 Extrudebraoi, 55 Extruder, 55 Extruder, 55 Extruder, 56 Extruder, 56 Extruder, 57 Extruder, 58 Extruder, 59 Extruder, 59 Extruder, 59 Extruder, 50 Frontiere ouverte, alpha, impose, 329 Frontiere, 60 Ille, 50 Il	Epsilon, 65	Frontiere_ouverte_rayo_transp, 332
Execute, parallel, 50 Export, 51 Export, 51 Extract_2d_from_3d, 51 Extract_2dax_from_3d, 51 Extract_2dax_from_3d, 51 Extraire_plan, 52 Ext	Eqn_base, 266	• •
Export, 51 Extract_2daxi_from_3d, 51 Extraire_domaine, 51 Extraire_plan, 52 Extraire_surface_ale, 29 Extruderparoi, 54 Extruderparoi, 54 Extruder_en3, 56 Extruder_en20, 55 Extruder_en3, 56 Fortier_couverte_vitesse_imposee_ale, 334 Extruder_en3, 56 Fortier_dowarte_vitesse_imposee_ale, 334 Frontiere_ouverte_vitesse_imposee_ale, 334 Frontiere_ouverte_vitesse_imposee, 335 Frontiere_ouverte_vitesse_imposee, 334 Frontiere_ouverte_te_temperature_imposee_a39 Frontiere_ouverte_te_temperature_imposee_a39 Frontiere_ouverte_te_temperature_imposee_a39 Frontiere_ouverte_te_temperature_imposee_a39 Frontiere_ouverte_te_temperature_imposee_a39 Frontiere_ouverte_te_temperature_imposee_a34 Frontiere_ouverte_te_temperature_imposee_a39 Frontiere_ouverte_temperature_imposee_a39 Interface_temperature_timposee_a39 Interface_temperature_timposee_a39 Interface_temperature_imposee_a39	•	
Extract_2daxi_from_3d, 51 Extraire_domaine, 51 Extraire_plan, 52 Extraire_surface, 33 Extrudepord, 53 Extrudeparoi, 54 Extrudeparoi, 55 Extruder_en20, 55 Extruder_en20, 55 Extruder_en3, 56 Gaz_parfait_qc, 387 Gep, 321, 489 Gep, 321, 489 Gep, 321, 489 Gep, 321, 489 Gep, 318 Fichier_med, 410 Gen, 318 Fichier_med, 410 Generic, 184 Griners, 319, 490 Fluide_dilatable_base, 391 Fluide_dilatable_base, 392 Fluide_dilatable_base, 392 Fluide_dilatable_base, 392 Fluide_dilatable_base, 393 Fluide_contempressible, 393 Fluide_voldum_liquide, 398 Fluide_voldum_liquide, 398 Fluide_sodium_gaz, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_voldum_liquide, 398 Flui		
Extraire_domaine, 51 Extraire_domaine, 52 Extraire_surface_ale, 29 Extraire_surface_ale, 29 Extraire_surface_ale, 29 Extrudebord, 53 Extrudeparoi, 54 Extrudeparoi, 54 Extruder_en3, 56 Extruder_en3, 56 Extruder_en3, 56 Fortiere_all_en_en_en_en_en_en_en_en_en_en_en_en_en_		
Extraire_domaine, \$1 Extraire_plan, \$2 Extraire_surface, \$3 Extraire_surface, ale, \$29 Extraire_surface_ale, \$29 Extrudebord, \$3 Extrudebord, \$5 Extruder, \$5 Extruder, \$5 Extruder_en20, \$5 Extruder_en3, \$6 Fo, \$27 Fichier_decoupage, \$410 Fichier_med, \$48 Fichier_med,		
Extraire_surface, 53 Extrudeborol, 53 Extrudeborol, 53 Extrudeparol, 54 Extrudeparol, 54 Extrudeparol, 55 Extruder_en20, 55 Extruder_en3, 56 Fortier_en2e, 410 Fichier_med, 410 Fichier_med, 410 Fichier_med, 410 Fichier_med, 410 Fichier_med, 410 Filuide_base, 391 Fluide_base, 391 Fluide_diphasique, 392 Fluide_diphasique, 392 Fluide_diphasique, 392 Fluide_guasi_compressible, 393 Fluide_sodium_laquide, 398 Fluide_sodium_laquide, 398 Fluide_sodium_laquide, 398 Fluide_sodium_laquide, 398 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 330 Frontiere_ouverte_gradient_pression_libre_vefproplation_champ_face_deriv, 292 Interpolation_lapus, 390 Frontiere_ouverte_gradient_pression_libre_vefproplation_champ_face_deriv, 292 Interpolation_lapus, 390 Frontiere_ouverte_gradient_pression_libre_vefproplation_champ_face_deriv, 292 Interpolation_lapus, 390 Interface_ouverte_gradient_pression_libre_vefproplation_champ_face_deriv, 292 Interpolation_lapus, 379 Frontiere_ouverte_gradient_pression_libre_vefproplation_champ_face_deriv, 292 Interpolation_lapus, 379 Frontiere_ouverte_gradient_pression_libre_vefproplation_champ_face_deriv, 292 Interpolation_lapus, 379 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_gradient_pression_libre_vefproplation_champ_face_deriv, 292 Interpolation_lapus, 379 Interface_lapus, 379 Interface_lapus, 379 Interface_lapus, 370	Extraire_domaine, 51	Frontiere_ouverte_temperature_imposee_rayo_transp,
Extraire_surface_ale, 29 Extrudebord, 53 Extruder, 55 Extruder_en20, 55 Extruder_en3, 56 Fd, 27 Fd, 27 Fichier_decoupage, 410 Fichier_med, 410	Extraire_plan, 52	
Extraire_surface_ale, 29 Extrudepord, 53 Extruder, 55 Extruder_en20, 55 Extruder_en3, 56 Fortier_en20, 55 Extruder_en3, 56 Fortier_en20, 55 Extruder_en3, 56 Fortier_en20, 55 Extruder_en3, 56 Fortier_en20, 55 Gaz_parfait_wc, 387 Gcp, 321, 489 Gcp, 321, 489 Gep. s18 Generic, 184 Gmres, 319, 490 Fortier_en20, 50 Fortier_en20, 50 Fortier_en20, 55 Fortier_en20, 55 Gaz_parfait_wc, 387 Gep. 318 Generic, 184 Gmres, 319, 490 Fortier_en20, 50 Fortier_en20, 55 Fortier_en20, 55 Fortier_en20, 55 Gaz_parfait_wc, 387 Gep. 321, 489 Gep. ns. 317 Gen. 318 Generic, 184 Gmres, 319, 490 Fluide_base, 392 Fluide_dilatable_base, 392 Fluide_enal_en20, 56 Fortier_en20, 55 Gaz_parfait_wc, 387 Gep. 321, 489 Gep. ns. 317 Fortier_en20, 55 Fortier_en20, 55 Gaz_parfait_wc, 387 Gep. 321, 489 Gep. ns. 317 Gen. 318 Generic, 184 Gmres, 319, 490 Fluide_gistab, 485 Ibm_aucune, 380 Ibm_element_inuide, 380 Ibm_element_inuide, 380 Ibm_aucune, 380 Ibm_element_fluide, 380 Ibm_element_inuide, 380 Ibm_power_law_tbl, 382 Ice, 472 Ijk_ft_double, 29 Ijk_grid_geometry, 350 Ijk_splitting, 298 Ilu, 415 Implicit_eler_steady_scheme, 421 Implicit_steady, 474 Implicit_steady, 474 Implicit_steady, 474 Implicit_steady, 474 Implicit_steady, 474 Implicit_steady, 476 Imposer_vit_bords_ale, 57 Imprimer_flux_sum, 58 Imit_parie, 364 Interface_base, 299 Interface_base, 299 Interfa	Extraire_surface, 53	Frontiere_ouverte_vitesse_imposee, 334
Extrudeporoi, 54 Extruder, 55 Extruder_en20, 55 Extruder_en3, 56 Extruder_en3, 56 Extruder_en3, 56 Extruder_en3, 56 Extruder_en3, 56 For an are	Extraire_surface_ale, 29	-
Extruder, 55 Extruder, 620, 55 Extruder, 63, 56 Extruder, 63, 57 Extruder, 64 Extruder, 63, 57 Extruder, 63, 57 Extruder, 64 Extruder, 63, 57 Extruder, 64 Extruder, 63, 57 Extruder, 64 Extruder, 83, 57 Extruder, 84, 57 Extruder		
Extruder_on20, 55 Extruder_en3, 56 Extruder_en3, 56 Fd, 27 Fichier_decoupage, 410 Fichier_med, 410 Field_umiform_keps_from_ud, 364 Filotlabilite, 509 Fluide_base, 391 Fluide_diphasique, 392 Fluide_ostwald, 394 Fluide_guasi_compressible, 395 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_stiffened_gas, 399 Fluide_stiffened_gas, 399 Fluide_stiffened_gas, 399 Fluix_radiatif_vdf, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vdf, 328 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_impose, 320 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefpreplibre_frontiere_ouverte_gradient_pression_libre_vefpreplibre_frontiere_ouverte_gradient_pression_libre_vefpreplibre_frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331		
Extruder_en20, 55 Extruder_en3, 56 Extruder_en3, 56 Extruder_en3, 56 Extruder_en3, 56 Gaz_parfait_we, 387 Gep, 321, 489 Gep_ns, 317 Gen, 318 Fichier_decoupage, 410 Field_uniform_keps_from_ud, 364 Fichier_med, 410 Field_uniform_keps_from_ud, 364 Flottabilite, 509 Fluide_dilatable_base, 391 Fluide_base, 391 Fluide_base, 391 Fluide_ostwald, 394 Fluide_ostwald, 394 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_weakly_compressible, 400 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_impose, 320 Frontiere_ouverte_gradient_pression_impose, 320 Frontiere_ouverte_gradient_pression_impose, 320 Frontiere_ouverte_gradient_pression_impose, 320 Frontiere_ouverte_gradient_pression_impose, 320 Frontiere_ouverte_gradient_pression_impose_vefprep1b Frontiere_ouverte_gradient_pression_libre_vefprep1b Frontiere_ouverte_gradient_pression_libre_vefprep1b Frontiere_ouverte_gradient_pression_libre_vefprep1b Frontiere_ouverte_k_eps_impose, 331	•	
Extruder_en3, 56 Fd, 27 Fichier_decoupage, 410 Fichier_med, 410 Fichier_med, 410 Fichier_med, 410 Filotabilite, 509 Fluide_base, 391 Fluide_base, 391 Fluide_dilatable_base, 392 Fluide_incompressible, 393 Fluide_ostwald, 394 Fluide_pase, 397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Flux_radiatif, 28 Flux_radiatif_vef, 328 Frontiere_ouverte_gradient_pression_imposee, 329 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefpreplib Frontiere_ouverte_gradient_pression_libre_vefpreplib Frontiere_ouverte_gradient_pression_libre_vefpreplib Frontiere_ouverte_k_eps_impose, 331		Gaz_parfait_qc, 387
Fd, 27 Fichier decoupage, 410 Fichier_med, 410 Generic, 184 Generic, 184 Gmres, 319, 490 Flutide_base, 391 Fluide_dilatable_base, 392 Fluide_dilatable_base, 392 Fluide_dilatable_base, 392 Fluide_dilatable_base, 392 Fluide_dilatable_dilatable_base, 393 Fluide_otwald, 394 Fluide_quasi_compressible, 395 Fluide_rel_base, 397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif_vdf, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_ocncentration_imposee, 329 Frontiere_ouverte_eradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_impose_vefprep1b Frontiere_ouverte_gradient_pression_libre_vef, 330 Interpolation_olm_base, 379 Interpolation_olm_base, 379 Interpolation_olm_base, 379 Interpolation_olm_		Gaz_parfait_wc, 387
Fichier_decoupage, 410 Fichier_med, 410 Fichier_med, 410 Fichier_med, 410 Fillotabilite, 509 Fluide_base, 391 Fluide_base, 391 Fluide_dilatable_base, 392 Fluide_diphasique, 392 Fluide_diphasique, 392 Fluide_incompressible, 393 Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_sodium_gaz_397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_gradient_pression_imposee, 329 Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_gradient_pression_libre_vefpreplate Frontiere_ouverte_keps_impose, 331		Gcp, 321, 489
Fichier_med, 410 Field_uniform_keps_from_ud, 364 Field_uniform_keps_from_ud, 364 Field_uniform_keps_from_ud, 364 Filotabilite, 509 Fluide_base, 391 Fluide_dilatable_base, 392 Fluide_diphasique, 392 Fluide_diphasique, 392 Fluide_ostwald, 394 Fluide_ostwald, 394 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_wakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_dalpha_impose, 329 Frontiere_ouverte_gradient_pression_impose_vefprephing Frontiere_ouverte_gradient_pression_impose_vefprephing Frontiere_ouverte_gradient_pression_impose_vefprephing Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprephing Frontiere_ouve	Fd, 27	Gcp_ns, 317
Field_uniform_keps_from_ud, 364 Flottabilite, 509 Fluide_base, 391 Fluide_dilatable_base, 392 Fluide_diphasique, 392 Fluide_ostwald, 394 Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif, 2vf, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_libre_vefprepl Tontiere_ouverte_gradient_pression_libre_vefprepl Tontiere_ouverte_k_eps_impose, 331 Tontiere_ouverte_k_eps_impose, 331 Tontiere_ouverte_k_eps_impose, 331 Tontiere_ouverte_k_eps_im	Fichier_decoupage, 410	Gen, 318
Flottabilite, 509 Fluide base, 391 Fluide dilatable base, 392 Fluide diphasique, 392 Fluide incompressible, 393 Fluide ostwald, 394 Fluide quasi_compressible, 395 Fluide gasi_compressible, 395 Fluide sodium_gaz, 397 Fluide sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_radiatif, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefpreplation_souverte_gradient_pression_impose_vefpreplation_gas, 300 Frontiere_ouverte_gradient_pression_libre_vef, 320 Frontiere_ouverte_gradient_pression_libre_vef, 320 Frontiere_ouverte_gradient_pression_libre_vef, 320 Frontiere_ouverte_gradient_pression_libre_vef, 320 Frontiere_ouverte_gradient_pression_libre_vef, 320 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_ems_aimpose, 331 Frontiere_	Fichier_med, 410	Generic, 184
Fluide_base, 391 Fluide_dilatable_base, 392 Fluide_diphasique, 392 Fluide_incompressible, 393 Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_emega_impose, 331	Field_uniform_keps_from_ud, 364	Gmres, 319, 490
Fluide_dilatable_base, 392 Fluide_diphasique, 392 Fluide_diphasique, 393 Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 398 Fluide_sodium_liquide, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif_vdf, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_impose_vefprep_lorer_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b_frontiere_ouverte_gradient_pression_libre_vefprep1b_frontiere_ouverte_gradient_pression_libre_vefprep1b_frontiere_ouverte_gradient_pression_libre_vefprep1b_frontiere_ouverte_gradient_pression_libre_vefprep1b_frontiere_ouverte_gradient_pression_libre_vefprep1b_frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331	Flottabilite, 509	
Fluide_dilatable_base, 392 Fluide_diphasique, 392 Fluide_incompressible, 393 Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefprep_lorentiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b_330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_ems_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_ems_impose, 331 Frontiere_ouverte_k_ems_impose_im	Fluide_base, 391	Hht, 27
Fluide_diphasique, 392 Fluide_incompressible, 393 Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1bt_ 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_momega_impose, 331 Frontiere_ouverte_k_momega		
Fluide_incompressible, 393 Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_gradient_pression_impose, 329 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331		<u> </u>
Fluide_ostwald, 394 Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_libre_vefprep1b Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331		
Fluide_quasi_compressible, 395 Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif_vdf, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b Frontiere_ouverte_gradient_pression_libre_vefprep1b Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331		
Fluide_reel_base, 397 Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vef, 328 Florchheimer, 501 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefprep1b Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_emps_impose, 331		·
Fluide_sodium_gaz, 397 Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefprepleficerouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprepleficerouverte_stage_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_emega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_emega_impose, 331		•
Fluide_sodium_liquide, 398 Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b		
Fluide_stiffened_gas, 399 Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefprep_1b_1330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b_1330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_ems_aimpose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_ems_aimpose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_ems_aimpose, 33	•	
Fluide_weakly_compressible, 400 Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_concentration_imposee, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331	•	v = - ·
Flux_interfacial, 501 Flux_radiatif, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefprep 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Ilu, 415 Implicit_euler_steady_scheme, 421 Implicit_euler_steady_scheme, 421 Implicit_steady, 474 Implicit_eale, 476 Implicit_eale, 476 Imprimer_flux, 58 Imprimer_flux, 58 Imprimer_flux_sum, 58 Init_par_partie, 364 Injection_qdm_nulle, 495 Interface_base, 299 Interface_base, 299 Interface_base, 299 Interpolation, 308, 408 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379		• • •
Flux_radiatif, 328 Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b		Ijk_splitting, 298
Flux_radiatif_vdf, 328 Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_enthalpie_imposee, 329 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefprep Trontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Implicit_euler_steady_scheme, 421 Implicit_etady, 474 Implicit_steady, 474 Implicit_steady, 474 Implicit_exteady_scheme, 421 Implicit_scheme, 475 Implicit_exteady_scheme, 421 Implicit_exteady_scheme, 421 Implicit_exteady_scheme, 421 Implicit_exteady_scheme, 421 Implicit_exteady_scheme, 421 Implicit_exteady_schemes, 421 Implicit_exteady_schemes, 421 Implicit_exteady_schemes, 421 Implicit_exteady_exteadint_pseadon_schemes.		Ilu, 415
Flux_radiatif_vef, 328 Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_concentration_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose_vefprep Frontiere_ouverte_gradient_pression_impose_vefprep 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Implicit_steady, 474 Implicit_steady, 475 Implicit_steady, 474 Implicit_steady, 475 Implicit_steady, 475 Implicit_steady, 475 Implicit_steady, 476 Implicit_steady, 476 Implicit_steady, 474 Implicit_steady, 476 Implicit_ate_ale, 476 Implicit_ale, 476 Implicit_ate_ale, 476 Implicit_ate_ale, 476 Implicit_ale, 476 Impli		Implicit_euler_steady_scheme, 421
Forchheimer, 501 Frontiere_ouverte, 329 Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_concentration_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_impose_vefprep 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331		- ·
Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_concentration_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_impose_vefprep Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Imprimer_flux, 58 Imprimer_flux_sum, 58 Init_par_partie, 364 Injection_qdm_nulle, 495 Interface_base, 299 Interface_sigma_constant, 299 Interpolation, 308, 408 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379 Interpolation_ibm_base, 370		
Frontiere_ouverte_alpha_impose, 329 Frontiere_ouverte_concentration_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b, 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Imposer_vit_bords_ale, 57 Imprimer_flux, 58 Imprimer_flux_sum, 58 Init_par_partie, 364 Injection_qdm_nulle, 495 Interface_base, 299 Interface_sigma_constant, 299 Interpolation, 308, 408 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379		Implicite_ale, 476
Frontiere_ouverte_concentration_imposee, 329 Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b_330 Frontiere_ouverte_gradient_pression_libre_vefprep1b_330 Frontiere_ouverte_gradient_pression_libre_vefprep1b_330 Frontiere_ouverte_gradient_pression_libre_vefprep1b_1330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Imprimer_flux, 58 Imprimer_flux_sum, 58 Init_par_partie, 364 Injection_qdm_nulle, 495 Interface_base, 299 Interface_sigma_constant, 299 Interpolation, 308, 408 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379 Interpolation_ibm_base, 370 Int		Imposer_vit_bords_ale, 57
Frontiere_ouverte_enthalpie_imposee, 333 Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_impose_vefprepage	· ·	Imprimer_flux, 58
Frontiere_ouverte_fraction_massique_imposee, 329 Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_impose_vefprep Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331	*	Imprimer_flux_sum, 58
Frontiere_ouverte_gradient_pression_impose, 330 Frontiere_ouverte_gradient_pression_impose_vefprep logical integrer_champ_med, 58		
Frontiere_ouverte_gradient_pression_impose_vefprep by Integrer_champ_med, 58 Interface_base, 299 Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379	Frontiere ouverte gradient pression impose 330	
Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Interface_sigma_constant, 299 Interpolation, 308, 408 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379	Frontiere ouverte gradient pression impose vefpre	Integrer_champ_med, 58
Frontiere_ouverte_gradient_pression_libre_vef, 330 Frontiere_ouverte_gradient_pression_libre_vefprep1b, Internes, 64 330 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Interface_sigma_constant, 299 Interpolation, 308, 408 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379	330	Interface_base, 299
Frontiere_ouverte_gradient_pression_libre_vefprep1b_Internes, 64 330 Interpolation, 308, 408 Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379	Frontiere ouverte gradient pression libre vef 330	
Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379	Frontiere ouverte gradient pression libre vefnren1	Internes, 64
Frontiere_ouverte_k_eps_impose, 331 Frontiere_ouverte_k_omega_impose, 331 Interpolation_champ_face_deriv, 292 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379	330	Interpolation, 308, 408
Frontiere_ouverte_k_omega_impose, 331 Interpolation_ibm_base, 379 Interpolation_ibm_base, 379		Interpolation_champ_face_deriv, 292
Internal ation : here we arrow that a steel 270		Interpolation_ibm_base, 379
	Frontiere_ouverte_pression_imposee, 331	Interpolation_ibm_power_law_tbl_u_star, 379

Interprete, 23	Longueur_melange, 220
Interprete_geometrique_base, 59	Lu, 418, 491
1 = 0 1 = 7	, ,
Jacobi, 418	Ma, 27
Jones_launder, 241	Mailler, 61
Y	Mailler_base, 61
K_epsilon, 239	Maillerparallel, 65
K_epsilon_bicephale, 234	Masse_ajoutee, 509
K_epsilon_realisable, 237	Masse_multiphase, 205
K_epsilon_realisable_bicephale, 242	Merge_med, 35
K_omega, 191, 235	Methode_transport_deriv, 289
K_tau, 191	Metis, 411
Kquick, 185	Milieu_base, 390
L_melange, 189	Milieu_composite, 526
Lam_bremhorst, 241	Milieu_musig, 525
Lata_2_med, 59	Milieu_v2_base, 402
Lata_2_med, 39 Lata_2_other, 60	Mod_turb_hyd_rans, 232
Launder_sharma, 241	Mod_turb_hyd_rans_bicephale, 233
Leap_frog, 430	Mod_turb_hyd_rans_keps, 238
Lineaire, 292	Mod_turb_hyd_rans_komega, 236
Link_cgns_files, 35	Mod_turb_hyd_ss_maille, 217
Lire_ideas, 60	Modele_fonc_realisable_base, 315
Lire_tgrid, 77	Modele_fonction_bas_reynolds_base, 240
List_bloc_mailler, 61	Modele_rayo_semi_transp, 140
List_bord, 63	Modele_rayonnement_base, 402
List_nom, 84	Modele_rayonnement_milieu_transparent, 402
List_nom_virgule, 304	Modele_shih_zhu_lumley_vdf, 315
List_post, 109	Modele_turbulence_hyd_deriv, 216
Liste_post_ok, 107	Modele_turbulence_scal_base, 404
Listobj, 526	Modif_bord_to_raccord, 67
Listobj_impl, 525	Modifiee, 293
Lml_2_lata, 61	Modifydomaineaxi1d, 67
Logarithmique, 408	Mor_eqn, 180
Loi_analytique_scalaire, 522	Moyenne, 102, 104–106, 310
Loi_ciofalo_hydr, 519	Moyenne_imposee_deriv, 407
	Moyenne_volumique, 67
Loi_etat_base, 383	Multi_gaz_parfait_qc, 386
Loi_etat_gaz_parfait_base, 385 Loi_etat_gaz_reel_base, 386	Multi_gaz_parfait_wc, 386
Loi_etat_tppi_base, 386	Multiple, 190
Loi_expert_hydr, 519	Multiplefiles, 36
Loi_expert_scalaire, 523	Muscl, 185
Loi_fermeture_base, 389	Muscl3, 182
Loi_fermeture_test, 389	Muscl_new, 186
Loi_horaire, 290, 389	Muscl_old, 182
Loi_norane, 290, 389 Loi_odvm, 523	X 1
Loi_odviii, 323 Loi_paroi_nu_impose, 524	Navier_stokes_aposteriori, 206
Loi_paroi_nu_impose, 324 Loi_puissance_hydr, 519	Navier_stokes_ft_disc, 271
±	Navier_stokes_phase_field, 275
Loi_standard_hydr, 519 Loi_standard_hydr_old, 520	Navier_stokes_qc, 267
Loi_standard_hydr_scalaire, 524	Navier_stokes_standard, 279
•	Navier_stokes_standard_sensibility, 244
Loi_ww_hydr, 520	Navier_stokes_std_ale, 246
Loi_ww_scalaire, 522 Longitudinale, 504	Navier_stokes_turbulent, 281
Longituumait, Ju4	Navier stokes turbulent ale, 214

Paroi_echange_externe_impose_rayo_transp, 342
Paroi_echange_global_impose, 343
Paroi_echange_interne_global_impose, 324
Paroi_echange_interne_global_parfait, 324
Paroi_echange_interne_impose, 324
Paroi_echange_interne_parfait, 324
Paroi_fixe, 343
Paroi_fixe_iso_genepi2_sans_contribution_aux_vitesses-
_sommets, 343
Paroi_flux_impose, 343
Paroi_flux_impose_rayo_semi_transp_vdf, 344
Paroi_flux_impose_rayo_semi_transp_vef, 344
Paroi_flux_impose_rayo_transp, 344
Paroi_frottante_loi, 325
Paroi_frottante_simple, 325
Paroi_ft_disc, 344
Paroi_ft_disc_deriv, 345
Paroi_knudsen_non_negligeable, 345
Paroi_rugueuse, 346
Paroi_tble, 520
Paroi_tble_scal, 524
Paroi_temperature_imposee, 346
Paroi_temperature_imposee_rayo_semi_transp, 346
Paroi_temperature_imposee_rayo_transp, 346
Partition, 71, 411
Partition_multi, 73
Partitionneur_deriv, 409
Pave, 61
Pb_avec_liste_conc, 142
Pb_avec_passif, 143
Pb_base, 138
Pb_conduction, 93
Pb_couple_rayo_semi_transp, 144
Pb_couple_rayonnement, 180
Pb_fronttracking_disc, 110
Pb_gen_base, 93
Pb_hem, 122
Pb_hydraulique, 145
Pb_hydraulique_ale, 146
Pb_hydraulique_aposteriori, 147
Pb_hydraulique_cloned_concentration, 112
Pb_hydraulique_cloned_concentration_turbulent, 113
Pb_hydraulique_concentration, 148
Pb_hydraulique_concentration_scalaires_passifs, 149
Pb_hydraulique_concentration_turbulent, 151
Pb_hydraulique_concentration_turbulent_scalaires_passifs
152
Pb_hydraulique_list_concentration, 114
Pb_hydraulique_list_concentration_turbulent, 116
Pb_hydraulique_melange_binaire_qc, 153
Pb_hydraulique_melange_binaire_turbulent_qc, 156
Pb_hydraulique_melange_binaire_wc, 154
Dh. hydroyligus, gangibility, 110
Pb hydraulique turbulent, 157

Pb_hydraulique_turbulent_ale, 117	Polymac_p0, 349
Pb_mg, 158	Polymac_p0p1nc, 349
Pb_multiphase, 119	Porosites, 414
Pb_multiphase_h, 121	Portance_interfaciale, 495
Pb_phase_field, 158	Position_like, 99
Pb_rayo_conduction, 124	Post_processing, 107
Pb_rayo_hydraulique, 125	Post_processings, 106
Pb_rayo_hydraulique_turbulent, 126	Postraitement_base, 107
Pb_rayo_thermohydraulique, 127	Postraitement_ft_lata, 109
Pb_rayo_thermohydraulique_qc, 128	Postraiter_domaine, 74
Pb_rayo_thermohydraulique_turbulent, 129	Pp, 200
Pb_rayo_thermohydraulique_turbulent_qc, 131	Prandtl, 190, 405
Pb_thermohydraulique, 160	Precisiongeom, 74
Pb_thermohydraulique_cloned_concentration, 132	Precond_base, 415
Pb_thermohydraulique_cloned_concentration_turbule	enArgeconditionneur_petsc_deriv, 416
133	Precondsolv, 415
Pb_thermohydraulique_concentration, 164	Predefini, 311
Pb_thermohydraulique_concentration_scalaires_passi	fBression, 102, 105, 106
165	Problem_read_generic, 179
Pb_thermohydraulique_concentration_turbulent, 167	Probleme_couple, 139
Pb_thermohydraulique_concentration_turbulent_scala	afresduction_echelle_temp_taux_diss_turb, 496
_passifs, 168	Production_energie_cin_turb, 496
Pb_thermohydraulique_especes_qc, 169	Production_hzdr, 495
Pb_thermohydraulique_especes_turbulent_qc, 172	Profil, 409
Pb_thermohydraulique_especes_wc, 171	Profils_thermo, 209
Pb_thermohydraulique_list_concentration, 134	Projection_ale_boundary, 39
Pb_thermohydraulique_list_concentration_turbulent,	Puissance_thermique, 506
135	
133	
Pb_thermohydraulique_qc, 162	Qdm_multiphase, 248
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173	Qdm_multiphase, 248 Quick, 186
Pb_thermohydraulique_qc, 162	Quick, 186
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175	Quick, 186 Raccord, 63
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc_176	Quick, 186 Raccord, 63 Radioactive_decay, 506
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc_176	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320 Petsc_gpu, 320	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79 Remove_invalid_internal_boundaries, 80
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320 Petsc_gpu, 320 Pilote_icoco, 73	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79 Remove_invalid_internal_boundaries, 80 Reordonner, 81
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320 Petsc_gpu, 320 Pilote_icoco, 73 Pilut, 418	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79 Remove_invalid_internal_boundaries, 80 Reordonner, 81 Reorienter_tetraedres, 81
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320 Petsc_gpu, 320 Pilote_icoco, 73 Pilut, 418 Pipecg, 485	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79 Remove_invalid_internal_boundaries, 80 Reorienter_tetraedres, 81 Reorienter_triangles, 81
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320 Petsc_gpu, 320 Pilote_icoco, 73 Pilut, 418 Pipecg, 485 Piso, 476	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79 Remove_invalid_internal_boundaries, 80 Reorienter_tetraedres, 81 Reorienter_triangles, 81 Rhot_gaz_parfait_qc, 388
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_isotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320 Petsc_gpu, 320 Pilote_icoco, 73 Pilut, 418 Pipecg, 485 Piso, 476 Plan, 99	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79 Remove_invalid_internal_boundaries, 80 Reorienter_tetraedres, 81 Reorienter_triangles, 81 Rhot_gaz_parfait_qc, 388 Rhot_gaz_reel_qc, 388
Pb_thermohydraulique_qc, 162 Pb_thermohydraulique_scalaires_passifs, 173 Pb_thermohydraulique_sensibility, 137 Pb_thermohydraulique_turbulent, 175 Pb_thermohydraulique_turbulent_qc, 176 Pb_thermohydraulique_turbulent_scalaires_passifs, 1 Pb_thermohydraulique_wc, 163 Pbc_med, 178 Periodique, 347 Perte_charge_anisotrope, 502 Perte_charge_circulaire, 503 Perte_charge_directionnelle, 503 Perte_charge_fisotrope, 504 Perte_charge_reguliere, 504 Perte_charge_singuliere, 505 Petsc, 320 Petsc_gpu, 320 Pilote_icoco, 73 Pilut, 418 Pipecg, 485 Piso, 476 Plan, 99 Point, 97	Quick, 186 Raccord, 63 Radioactive_decay, 506 Radius, 99 Raffiner_anisotrope, 74 Raffiner_isotrope, 75 Raffiner_isotrope_parallele, 39 Read, 76 Read_file, 77 Read_file_binary, 77 Read_med, 40 Read_unsupported_ascii_file_from_icem, 77 Redresser_hexaedres_vdf, 78 Refine_mesh, 78 Regroupebord, 78 Remove_elem, 79 Remove_invalid_internal_boundaries, 80 Reorienter_tetraedres, 81 Reorienter_triangles, 81 Rhot_gaz_parfait_qc, 388

Rotation, 82	Solveur_u_p, 481
Rt, 187	Sonde_base, 97
Runge_kutta_ordre_2, 434	Sortie_libre_rho_variable, 347
Runge_kutta_ordre_2_classique, 435	Sortie_libre_temperature_imposee_h, 347
Runge_kutta_ordre_3, 437	Source_base, 492
Runge_kutta_ordre_3_classique, 439	Source_bif, 496
Runge_kutta_ordre_4_classique, 443	Source_con_phase_field, 506
Runge_kutta_ordre_4_classique_3_8, 445	Source_constituant, 508
Runge_kutta_ordre_4_d3p, 441	Source_constituant_vortex, 496
Runge_kutta_rationnel_ordre_2, 447	Source_dissipation_echelle_temp_taux_diss_turb, 497
5 /	Source_dissipation_hzdr, 497
Sa-amg, 418	Source_generique, 509
Sato, 191	Source_pdf, 509
Saturation_base, 299	Source_pdf_base, 510
Saturation_constant, 300	Source_qdm, 511
Saturation_sodium, 300	Source_qdm_lambdaup, 511
Scalaire_impose_paroi, 347	Source_qdm_phase_field, 512
Scatter, 82	Source_rayo_semi_transp, 512
Scattermed, 83	Source_robin, 512
Sch_cn_ex_iteratif, 423	Source_robin_scalaire, 512
Sch_cn_iteratif, 426	
Schema_adams_bashforth_order_2, 449	Source_th_tdivu, 513
Schema_adams_bashforth_order_3, 450	Source_transport_eps, 513 Source_transport_k, 514
Schema_adams_moulton_order_2, 452	
Schema_adams_moulton_order_3, 455	Source_transport_k_eps, 514
Schema_backward_differentiation_order_2, 457	Source_transport_k_eps_aniso_concen, 514
Schema_backward_differentiation_order_3, 460	Source_transport_k_eps_aniso_therm_concen, 515
Schema_euler_explicite_ale, 470	Source_transport_k_eps_anisotherme, 498
Schema_implicite_base, 465	Sources, 195
<u>*</u>	Sous_dom, 412
Schema_phase_field, 467	Sous_maille, 231
Schema_predictor_corrector, 469	Sous_maille_1elt, 225
Schema_temps_base, 419	Sous_maille_1elt_selectif_mod, 226
Scheme_euler_explicit, 428	Sous_maille_axi, 227
Scheme_euler_implicit, 462	Sous_maille_dyn, 406
Schmidt, 405	Sous_maille_selectif, 224
Segment, 98	Sous_maille_selectif_mod, 222
Segmentfacesx, 98	Sous_maille_smago, 218
Segmentfacesy, 98	Sous_maille_smago_dyn, 229
Segmentfacesz, 98	Sous_maille_smago_filtre, 228
Segmentpoints, 97	Sous_maille_wale, 219
Sensibility, 188	Sous_zone, 517
Sets, 477	Sous_zones, 412
Sgdh, 190	Spai, 419
Shih_zhu_lumley, 316	Spec_pdcr_base, 504
Simple, 478	Ssor, 415, 419
Simpler, 479	Ssor_bloc, 415
Smago, 189	Stab, 192
Solide, 401	Standard, 192, 293
Solve, 83	Standard_keps, 241
Solver_moving_mesh_ale, 40	Stat_per_proc_perf_log, 83
Solveur_implicite_base, 472	Stat_post_deriv, 103
Solveur_lineaire_std, 480	Statistiques, 102, 105, 106
Solveur_petsc_deriv, 482	Statistiques_en_serie, 106
Solveur_sys_base, 322	Structural dynamic mesh model, 41

```
Supg, 187
                                                    Union, 413
Supprime_bord, 83
                                                    Utau_imp, 522
Symetrie, 345, 348
                                                    Valeur_totale_sur_volume, 365
System, 84
                                                    Vdf, 349
Systeme_naire_deriv, 507
                                                    Vect_nom, 91
                                                    Vef, 349
T deb, 103
T_fin, 104
                                                    Verifier_qualite_raffinements, 91
Taux_dissipation_turbulent, 249
                                                    Verifier_simplexes, 91
Tayl green, 364
                                                    Verifiercoin, 92
Temperature, 209
                                                    Vitesse_derive_base, 516
Tenseur reynolds externe, 194, 515
                                                    Vitesse imposee, 289
Terme_dissipation_energie_cinetique_turbulente, 498 Vitesse_interpolee, 290
Terme_puissance_thermique_echange_impose, 515
                                                    Vitesse relative base, 516
Test_solveur, 84
                                                    Volume, 100
Test sse kernels, 41
                                                    Wale, 189
Testeur, 85
                                                    Write med, 29
Testeur medcoupling, 85
Tetraedriser, 85
                                                    xyz, 21
Tetraedriser_homogene, 85
Tetraedriser_homogene_compact, 86
Tetraedriser_homogene_fin, 87
Tetraedriser_par_prisme, 87
Thermique, 35
Thi, 210
Thi_thermo, 211
Trainee, 513
Traitement particulier base, 208
Tranche, 413
Transformer, 89
Transport epsilon, 285
Transport_interfaces_ft_disc, 286
Transport k, 293
Transport_k_eps_realisable, 250
Transport_k_epsilon, 294
Transport_k_omega, 295
Transport_marqueur_ft, 296
Transversale, 505
Travail_pression, 516
Trianguler, 89
Trianguler_fin, 90
Trianguler_h, 90
Triple_line_model_ft_disc, 301
Turbulence_paroi_base, 518
Turbulence_paroi_scalaire_base, 522
Turbulente, 188
type, 102, 105
Type_diffusion_turbulente_multiphase_deriv, 189
Type_diffusion_turbulente_multiphase_multiple_deriv,
         527
Type indic faces deriv, 293
Type_perte_charge_deriv, 493
Uniform_field, 364
```