

Class Name: MATH 1050/1051 Fall 2018 Instructor Name: Nguyen

Student Name : _____ Instructor Note:

- 1. Answer the following.
 - (a) Find an angle between 0° and 360° that is coterminal with 860° .
 - (b) Find an angle between 0 and 2π that is coterminal with $\frac{13\pi}{5}$.

Give exact values for your answers.

2. Find the terminal point on the unit circle determined by $\frac{3\pi}{2}$ radians.

Use exact values, not decimal approximations.

3. Suppose that $\left(x, -\frac{8}{17}\right)$ is a point in quadrant IV lying on the unit circle.

Find x. Write the exact value, not a decimal approximation.

- **4.** Find the exact value of $\sin 180^{\circ}$.
- 5. Find the exact values below.

6. Find the exact values below.

$$\sin \frac{23\pi}{4}$$
$$\cot (-540^{\circ})$$

7. Suppose that θ is an angle in standard position whose terminal side intersects the unit circle at $\left(\frac{8}{17}, \frac{15}{17}\right)$.

Find the exact values of sec θ , cos θ , and tan θ .

8. For the right triangles below, find the exact values of the side lengths b and c.

If necessary, write your responses in simplified radical form.

9. A right triangle has side lengths d, e, and f as shown below. Use these lengths to find $\cos x$, $\sin x$, and $\tan x$.

10. Find $csc~\theta$, $sin~\theta$, and $cot~\theta$, where θ is the angle shown in the figure.

Give exact values, not decimal approximations.

11. Graph the function $y = \sin\left(x + \frac{3\pi}{4}\right)$.

12. Find the period, phase shift, and amplitude of the function.

$$y = 2\sin\left(x - \frac{\pi}{4}\right) - 3$$

Give the exact values, not decimal approximations.

13. Find all solutions to the equation.

$$\sin \theta + 1 = 0$$

Write your answer in radians in terms of $\boldsymbol{\pi}$.

Example:
$$\theta = \frac{\pi}{5} + 2k\pi$$
, $k \in \mathbb{Z}$ or $\theta = \frac{\pi}{7} + k\pi$, $k \in \mathbb{Z}$

14. Find all solutions of the equation in the interval $[0, 2\pi)$.

$$\cot \theta - 1 = 0$$

Write your answer in radians in terms of $\boldsymbol{\pi}$.

15. Find all solutions of the equation in the interval $\left[0,2\pi\right)$.

$$2\sin\theta + \sqrt{2} = 0$$

Write your answer in radians in terms of $\boldsymbol{\pi}$.

If there is more than one solution, separate them with commas.

16. Find the exact value of $\tan^{-1} \left(\frac{\sqrt{3}}{3} \right)$.

Write your answer in radians in terms of $\boldsymbol{\pi}$.

17. Find the amplitude and period of the function.

$$y = -\frac{3}{2}\cos 3x$$

Give the exact values, not decimal approximations.

Amplitude:

Period:

18. Graph the function $y = 3 \cos \left(\frac{2}{3} x + \frac{\pi}{2} \right)$.

19. Graph the function $y = \sin\left(\frac{3}{2}x\right)$.

20. Find the reference angle for $\frac{7\pi}{12}$.

21. Determine the quadrant in which the terminal side of θ lies.

(a)	$\cos \theta < 0$ and $\sin \theta > 0$
	quadrant {I, II, III, IV}
(b)	$\tan \theta < 0$ and $\cos \theta < 0$
	quadrant {I, II, III, IV}

22. Let (-6, 8) be a point on the terminal side of θ .

Find the exact values of $\sin\theta$, $\sec\theta$, and $\tan\theta$.

23. Let θ be an angle in quadrant I such that $\tan\,\theta=\frac{5}{2}$.

Find the exact values of $\cos\,\theta$ and $\csc\,\theta$.

24. Let θ be an angle in quadrant I such that $\sin\theta=\frac{4}{5}$.

Find the exact values of sec θ and $\tan \theta$.

Obj. 10 #5 Answers for class MATH 1050/1051 Fall 2018

1.

(a) 140 $^{\circ}$

(b)
$$\frac{3\pi}{5}$$
 radians

2.
$$(x, y) = (0, -1)$$

3.
$$x = \frac{15}{17}$$

4.
$$\sin 180^{\circ} = 0$$

5.

$$csc 270^{\circ} = -1$$

 $cot 270^{\circ} = 0$

6.
$$\sin \frac{23\pi}{4} = -\frac{\sqrt{2}}{2}$$
 $\cot (-540^\circ)$ Undefined

$$\sec \theta = \frac{17}{8}$$

$$\cos \theta = \frac{8}{17}$$

$$\tan\theta = \frac{15}{8}$$

8.
$$b = 3\sqrt{2}$$
 $c = 3\sqrt{3}$

$$9. \cos x = \frac{e}{f}$$

$$\sin x = \frac{d}{f}$$

$$\tan x = \frac{d}{e}$$

$$\csc \theta = \frac{17}{15}$$

$$\sin\theta = \frac{15}{17}$$

$$\cot \theta = \frac{8}{15}$$

Period: 2π

Phase shift: $\frac{\pi}{4}$

 $\quad \text{Amplitude:} \ \ 2$

13.
$$\theta = \frac{3\pi}{2} + 2k\pi, k \in \mathbb{Z}$$

14.
$$\theta = \frac{\pi}{4}, \frac{5\pi}{4}$$

15.
$$\theta = \frac{5\pi}{4}, \frac{7\pi}{4}$$

16.
$$\tan^{-1} \left(\frac{\sqrt{3}}{3} \right) = \frac{\pi}{6}$$

17. Amplitude:
$$\frac{3}{2}$$

Period:
$$\frac{2\pi}{3}$$

19.

20.
$$\frac{5\pi}{12}$$

(a)	$\cos \theta < 0$ and $\sin \theta > 0$
	quadrant II
(b)	$\tan \theta < 0$ and $\cos \theta < 0$
	quadrant II

$$\sin\theta = \frac{4}{5}$$

$$\sec \theta = -\frac{5}{3}$$

$$\tan\theta = -\frac{4}{3}$$

23.

$$\cos\theta = \frac{2\sqrt{29}}{29}$$

$$\csc \theta = \frac{\sqrt{29}}{5}$$

$$\sec \theta = \frac{5}{3}$$

$$\tan \theta = \frac{4}{3}$$