Do subsidized nursing homes and home care teams reduce hospital bed-blocking? Evidence from Portugal

Ana Moura*

Job Market Paper

This version: October 27, 2020. Click here for the most recent version

Abstract

Excessive length of hospital stay is among the leading sources of inefficiency in healthcare. When a patient is clinically fit to be discharged but requires support outside the hospital, which is not readily available, they remain hospitalized until a safe discharge is possible—a phenomenon called bed-blocking. I study whether the entry of subsidized nursing homes (NH) and home care (HC) teams reduces hospital bed-blocking. I use individual data on emergency inpatient admissions at Portuguese hospitals during 2000-2015. My empirical approach exploits two sources of variation. First, variation in the timing of entry of NH and HC teams across regions, originating from the staggered implementation of a policy reform. Second, variation between patients in their propensity to bed-block. I find that the entry of HC teams in a region reduces the length of stay of individuals at increased risk of bed-blocking by 4 days relative to regular patients. Reductions in length of stay upon the entry of NH occur only for patients with high care needs. The reductions in length of stay do not affect the treatment received while at the hospital nor the likelihood of a readmission. The beds freed up by reducing bed-blocking are used to admit additional elective patients. I also provide evidence on the mechanisms preventing the complete elimination of bed-blocking.

Keywords: nursing home; home care; hospital bed-blocking; delayed discharges.

JEL codes: H51; I10; I18; J14.

^{*}Tilburg University. E-mail: a.c.moura@tilburguniversity.edu. I am thankful to Jan Boone and Martin Salm for extensive advice and support. For thoughtful discussions, comments, and suggestions, I thank Mara Barschkett, Joan Costa-Font, Ludovica Gazze, Judite Gonçalves, Pedro Pita Barros, Francisco Ramos, Marianne Tenand, Teodora Tsankova, and seminar participants at Tilburg University, the EuHEA PhD Conference, the IZA Workshop on Long-Term Care, the Essen Health Conference, and the Portuguese Health Economics Workshop. Access to the individual hospital data is possible under the data-sharing agreement between Administração Central do Sistema de Saúde, I.P. (ACSS) and the Health Economics & Management Knowledge Center at Nova School of Business and Economics, with which I am affiliated. I thank Hugo Lopes for providing me the data on the entry dates of nursing homes and home care teams.

1 Introduction

A significant, growing share of resources in developed countries is allocated to the healthcare sector. This has raised concerns about waste and inefficiency in healthcare among economists and policy-makers. However, identifying specific sources of inefficiency and potential improvements is challenging (Einav et al., 2019). The World Health Organization considers excessive length of hospital stay as one of the leading sources of inefficiency in healthcare (WHO, 2010). One reason for excessive length of hospital stay is bed-blocking.

Bed-blocking occurs when a patient is clinically fit to be discharged but requires some form of support outside the hospital, such as a short stay at a nursing home facility or home-help, which is not readily available. If no safe discharge arrangements can be made, the patient remains in the hospital until a safe transition to the next stage of care provision is possible, resulting in a longer length of hospital stay. This is not inconsequential. It implies higher hospital costs, has potentially detrimental impacts on patients' health originating from increased risks of mobility loss, nosocomial infections, and loneliness, and can create delays for patients awaiting elective care (Mur-Veeman and Govers, 2011).

Bed-blocking is a growing policy concern in developed countries. This is motivated by several trends. During the last decades, there was a significant increase in life expectancy and, consequently, a rising share of the elderly in the population. Moreover, chronic diseases became the leading cause of illness, disability, and death. While largely manageable outside the hospital, chronic diseases limit patients' ability to live independently. These demographic and epidemiological trends put pressure on existing institutional arrangements within the health system and call for a reorganization of care delivery (Harper, 2014). Social trends, such as the rise in female labor force participation and the decline of multi-generational households, in turn, threaten existing informal care arrangements (Lakdawalla and Philipson, 2002).

I examine whether the entry of highly subsidized nursing homes (NH) and teams providing home care (HC) reduces hospital bed-blocking in Portugal. Available estimates for Portugal suggest that, on a random day in 2019, 4.7% of beds in public hospitals were occupied with patients who were fit to be discharged but lacked support outside the hospital. These estimates amount to over 80,000 delayed bed-days and imply a cost burden of \leq M83 for public hospitals throughout the course of 2019.^{1,2}

¹Results from a snapshot-census carried out by the Portuguese Association of Hospital Managers (APAH) in collaboration with EY. See https://apah.pt/portfolio/barometro-de-internamentos-sociais/.

²This figure is comparable to available estimates for other countries. In Sweden, the share of bed-blockers was about 7% in 1992 (Styrborn and Thorslund, 1993). In 2006, 6.1% of hospital days in the Netherlands were bed-blocking days (Mur-Veeman and Govers, 2011). In Canada during 2008-09, 5% of all hospitalizations and 13% of hospital days corresponded to patients awaiting a discharge (CIHI, 2010). In England, during 2014-15 the number of days recorded as delayed transfers of care in acute hospitals made up 3% of overall bed days (NAO, 2016).

My empirical analysis relies on a difference-in-differences framework. I compare the length of stay of patients at increased risk of bed-blocking and the length of stay of regular patients, before and after the entry of NH and HC teams in a region. This identification strategy exploits two distinct sources of variation. First, it exploits variation between patients in their propensity to bed-block. Second, it exploits plausibly exogenous variation in the availability of NH and HC teams. I detail these sources of variation below.

Using individual data on the universe of emergency inpatient admissions at public hospitals in Portugal between the years 2000 and 2015, I identify groups of patients exhibiting a complex combination of health and social needs, which puts them at increased risk of bed-blocking. These groups consist of individuals who live alone, have no family to care for them, and have inadequate housing conditions or other unfortunate economic circumstances that might hinder a timely discharge. The differences in length of stay between these patients and patients who do not exhibit social needs are sizable. For example, individuals with no family to care for them have a length of stay that is, on average, over 20 days longer than that of regular patients, conditional on demographics, comorbidities, and medical diagnoses. Throughout the paper, I refer to patients who exhibit both health and social needs as bed-blockers, as opposed to regular patients, who exhibit no social needs.

Variation in the availability of NH and HC teams originates from a policy reform. Before 2006, such services were not within the scope of the Portuguese National Health Service and individuals relied almost exclusively on informal care provided by family members. In 2006, the government introduced a Network comprising highly subsidized NH and teams providing HC, with the aim of filling in this gap in service coverage. NH and HC teams belonging to the Network operate in coordination with hospitals to ease patients' transition out of the hospital. The Network was introduced in a staggered fashion, so that different regions experienced the entry of NH and HC teams at different points in time. The roll-out of the Network was determined by the central government. This helps mitigating potential endogeneity concerns regarding the entry timing and location of providers.

I find reductions in the length of stay of bed-blockers relative to regular patients following the entry of HC teams in a region. These reductions amount to 4 days, on average, for individuals living alone and those with inadequate housing and other economic issues. Reductions in the length of stay of bed-blockers relative to regular patients following the entry of NH in a region occur only for patients with high care needs, such as those with a stroke diagnosis. This finding is consistent with NH admissions requiring higher levels of disability and dependence. Finally, the entry of NH and HC teams in a region has a precise zero impact on the length of stay of regular patients. Thus, reductions in the length of stay of bed-blockers relative to regular patients originate only from reductions in the length of stay of bed-blockers.

These results are robust to alternative model specifications, outcome variables, relevant regions, and treatment definitions. An event-study design conveys that the results are not typically driven by differences in underlying pre-treatment trends. Consistent with the longer length of stay of bed-blockers being wasteful, I find no evidence of reductions in the intensity of care received by bed-blockers during their hospital stay after the entry of NH and HC teams in a region. I also find no increase in the likelihood of a hospital readmission. Finally, the beds freed up by bed-blockers do not remain unoccupied: I find evidence of increases in programmed admissions following the entry of HC teams in a region. This highlights that delays for patients awaiting elective care are a relevant economic cost of bed-blocking.

While these results show that the entry of NH and HC teams reduces hospital bed-blocking, the resulting reductions in length of stay take some time to materialize and do not fully close the gap between bed-blockers and regular patients. I investigate whether the accumulation of experience between a hospital-region pair can explain these results. The findings from this analysis convey that a large number of interactions between a hospital-region pair is needed to generate meaningful reductions in the length of stay of bed-blockers.

Related Literature. This paper relates to several strands of the economics literature.³ A small but growing literature studies the impacts of NH availability on hospital bed-blocking (Forder, 2009; Gaughan et al., 2015, 2017a,b). I contribute to this literature by exploiting plausibly exogenous variation in the availability of NH induced by a policy reform. Due to the nature of the policy reform, I am able to assess the effects of distinct types of providers, namely NH and HC teams. Apart from Walsh et al. (2020), existing literature has almost exclusively focused on nursing homes. Additionally, I use information on social needs to identify patients at increased risk of bed-blocking and circumvent the fact that the exact length of the delay is typically unobserved (with Holmås et al. (2013) a notable exception). These social needs include the availability of family support and housing conditions, which have been shown to affect both NH and HC use (Diepstraten et al., 2020; Lopes et al., 2018) and hospital bed-blocking (Costa et al., 2012; Bryan et al., 2006; McDonagh et al., 2000).

A related literature focuses on the substitutability of acute hospital care and care provided by NH or HC teams. For example, care provided by NH and HC teams can be used in lieu of (the last days of) a hospital stay, but it can also delay or avoid the need for hospital care. Overall, this literature finds little to no substitution between acute hospital care and care provided by NH and HC teams (McKnight, 2006; Forder, 2009; Gaughan et al., 2015, 2017a;

³There is also a literature on bed-blocking outside economics. Medical scholars have studied the causes of bed-blocking, characterized the affected population, and quantified the associated monetary losses (see, for example, Bryan et al., 2006; Hendy et al., 2012; Costa et al., 2012). In operations research and healthcare management, the optimization of patient flows has been well studied (McClean and P., 2006; El-Darzi et al., 1998; Katsaliaki et al., 2005; Osorio and Bierlaire, 2007 and many others).

Gonçalves and Weaver, 2017; Bakx et al., 2020; Costa-Font et al., 2018; Kümpel, 2019; Walsh et al., 2020). I estimate the elasticity of length of stay with respect to both the number and capacity of providers in the Network, for bed-blockers and regular patients. Consistent with prior literature, my elasticity estimates suggest little substitution between acute hospital care and care provided in a NH or by a HC team.

My finding that reductions in bed-blocking lead to increases in programmed admissions relates to a discussion on the internal allocation of resources within a hospital, which dates back to Harris (1977). The empirical documentation of interactions between emergency and elective care is, to the best of my knowledge, novel. Such interactions could take place, for example, via waiting times for elective care, as suggested in Johar et al. (2013).

This paper also provides new insights on the factors contributing to perpetuate bed-blocking. Fernandez and Forder (2008) study the importance of financial resources allocated to the NH sector. Holmås et al. (2010) show that monetary incentives to reduce bed-blocking can be counterproductive. Because different settings of care are organized and funded separately in many countries (Siciliani, 2014), coordination difficulties across them are likely to occur (Cebul et al., 2008). The role of coordination difficulties in driving bed-blocking was studied by Fernandez et al. (2018). Drawing on Kellogg (2011), I propose an alternative, albeit complementary mechanism based on the accumulation of experience between hospitals and regional teams responsible for finding vacancies in the Network. My findings suggest that only the hospital-region pairs with the largest number of interactions are able to accumulate a level of experience that allows for meaningful reductions in the length of stay of bed-blockers. This can explain why larger hospitals, with a high number of admissions, seem to manage discharges more efficiently and have less delayed discharges (De Volder et al., 2020).

Finally, and more broadly, this paper relates to recent work zooming in on specific aspects of the healthcare sector to identify sources of waste and inefficiency. A large part of this literature focuses on interactions between the acute care and the nursing home settings (i.e. Doyle Jr et al., 2017; Einav et al., 2018; Eliason et al., 2018; Jin et al., 2018; Einav et al., 2019; Kümpel, 2019). By and large, this literature points to the nursing home sector as a source of inefficiency in the healthcare system. My paper offers a different perspective, investigating whether the entry of NH and HC teams reduces inefficiencies associated with bed-blocking in the acute-care setting. My baseline estimates suggest that the availability of HC teams generates a 28% reduction in annual bed-blocking costs incurred by hospitals.

The remainder of this paper is organized as follows. Section 2 provides institutional background on the Portuguese healthcare landscape. Section 3 describes the data used in the analysis. Section 4 describes my empirical approach. Section 5 presents the results and Section 6 elaborates on potential mechanisms. Finally, Section 7 concludes.

2 Institutional Setting

2.1 Inpatient care

In Portugal, most inpatient care is provided by public hospitals belonging to the National Health Service (SNS). The SNS is predominantly financed through general taxation and access to care is mostly free at the point of use (Simões et al., 2017).

Inpatient care provided by public hospitals belonging to the SNS is paid based on Diagnosis-Related Groups (DRGs). A DRG groups patients who have similar consumption of resources based on their medical diagnosis, treatment received, and demographic characteristics. There are over 600 distinct groups in the current DRG system and each has an associated price that is unilaterally determined by the government. DRGs are used to set an annual prospective global budget for inpatient care provided by each hospital, which is the main source of inpatient revenues for public hospitals (Mateus, 2011).

Hospitals have no financial incentive to keep patients for longer than necessary. Since hospitals are paid according to the number and the DRG of patients they treat, DRG-based funding provides incentives for hospitals to treat more patients and to cut costs, possibly by reducing length of stay. To account for complicated patients whose length of stay might be extraordinarily long, hospitals get an additional daily payment for each day in excess of an upper trim-point defined by law for the patient's DRG until discharge. While the trim-point is DRG-specific, the daily amount for days in excess of the trim point is not.

2.2 Entry of nursing homes and home-care teams

Some individuals need support outside of the hospital, following a hospitalization. For example, they might need nursing care and rehabilitation, or they might need help with personal care (i.e. personal hygiene) and activities such as housework or meals.

Before 2006, the SNS provided no such support. Individuals relied almost exclusively on informal care provided free of charge by relatives or friends. Alternatively, individuals could purchase these services from private providers, namely non-profit religious institutions (*Misericórdias*) (Simões et al., 2017), but had to pay for them out of pocket. This took a financial toll on many users and likely priced some potential users out of the market (Santana, 2010).

In 2006 the Portuguese government established the National Network for Long-Term Integrated Care (RNCCI, henceforth the Network), as a joint effort of the Ministry of Health and the Ministry of Labor and Social Security (Decree-Law 101/2006). This was motivated by concerns regarding demographic, social, and epidemiological trends that put pressure on

Table 1: Overview of the organization of the Network

	Nursing home (NH)	Home-care (HC)
Start of roll-out	2006	2008
Providers	Private	Public
Funding	Public	Public
Set-up	Government contracts with existing providers	Teams created in primary care centers
Price	Highly subsidized (meanstested) co-payments	Free
Services	24-hour medical care, rehabilitation, food, hygiene, accommodation, etc.	Preventive care, food, hygiene, medication, etc.

existing care arrangements, including increasing life expectancy and consequent rising share of elderly in the population, the decline in the number of multi-generational households, and the increasing share of individuals living with multiple comorbidities. The Network was not explicitly aimed at reducing bed-blocking, which is a recent topic in the public debate.

The Network comprises two distinct settings of care provision: home-care services (HC) and nursing homes (NH). Table 1 provides an overview of these two settings, which are organized very differently.

The NH setting operates in a model of public funding and private provision in which the government contracts with private providers. In the earlier years of the Network, the vast majority of contracts was signed with the *Misericórdias*, who had been active in care provision for several decades.^{4,5} The services contracted include around-the-clock medical care, rehabilitation, accommodation, meals, personal hygiene, etc. There are different types of NH facilities that cater to patients with different care needs. Some target individuals who no longer need acute hospital care but still require intensive medical, nursing, and rehabilitation care for a relatively short period of time. Other NH facilities offer less intensive medical, nursing, and rehabilitation components, mainly catering to individuals with chronic illnesses and high functional dependency. Under the NH contracts the government pays providers an

⁴Misericórdias were historically the main healthcare providers in Portugal. They operated many small hospitals aimed at serving the population within a municipality. Their role was substantially diminished upon the creation of the SNS in 1979, and most of these small hospitals were closed down.

⁵More recently the government started contracts with private, for-profit providers and also established some public-owned facilities. These amounted to 16% and 2% of NH providers contracted as of 2015, the end of my study-period.

administratively set daily price for the care provided to individuals who are in the Network. The daily price is either fully paid or highly-subsidized by the government.

The HC setting operates in a model of public provision and public funding. The government established specialized teams in primary care centers that visit patients in their homes. HC teams provide services such as preventive care, help with activities of daily living, medication, personal hygiene, etc. They cater to individuals with dependency who need a lower frequency of medical and rehabilitation care and are still able to live in the community. Because HC teams belong to primary care centers, they fall under the SNS and are free of charge to users.

The contracting of NH units started in 2006, whereas the first HC teams were established only in 2008. Figure 1 shows the entry year of the first nursing home facility (on the left panel) and the first home-care team (on the right panel) across ACES regions. ACES is the Portuguese acronym for Primary Care Center Groups and these regions are relevant for organizing primary care delivery.⁶ The majority of ACES regions experienced the entry of the first NH in 2006 and 2007 and the entry of the first HC team in between 2008 and 2010.

In the case of nursing homes, entry timing was mainly determined by the availability of buildings that could be converted into nursing homes with minimal adaptation and cost—these were often buildings that had been used as small municipal hospitals prior to the existence of the SNS, and had not yet been repurposed. As for home-care teams, entry timing was largely determined by the availability of human resources in the primary-care center that could be allocated to the new team. ⁷

Patients need a referral to access the Network. The referral can be made either by a hospital if they are hospitalized, or by their general practitioner if they live in the community. Because my analysis focuses on patients who are hospitalized I focus on the former channel, which amounts to 65-70% of the referrals to the Network during my study-period (UMCCI, 2011, p. 47). Every hospital has a discharge planning team, whose main job is to timely prepare and manage hospital discharges. This is a multidisciplinary team composed of physicians, nurses, and social assistants that flags patients in need of support outside the hospital either due to their health condition and degree of transitory or prolonged functional dependency or to social factors that might be preventing a safe discharge. The discharge planning team refers patients to the Network. Upon referral, a local coordination team based in the ACES region where the patient lives validates the assessment made by the discharge management team and finds an adequate vacancy for the patient, preferably within its region

⁶There are 55 ACES regions in Portugal. The dense municipalities of Lisbon, Porto, and Vila Nova de Gaia have more than one ACES. Because patient locations are recorded at the municipality level in the inpatient data, I collapse these ACES at the municipality level. Thus, there are 52 ACES in my analysis.

⁷In the empirical analysis I formally test for pre-treatment trends. Additionally, in robustness checks, I show that the entry timing of NH and HC teams is unrelated with the share of bed-blockers in a region and the occupancy rates of hospitals prior to the introduction of the Network.

Figure 1: Entry year of the first NH unit and the first HC team across ACES regions

of influence. Figure 2 summarizes the admission process to the Network.

Overall, the implementation of the Network introduced two key changes to the Portuguese healthcare landscape that might reduce hospital bed-blocking. First, it increased the availability and affordability of care support outside the hospital by providing highly subsidized alternatives. Before 2006 individuals were easily priced out of the market. Second, it created an integrated platform where different levels of health and social services can coordinate. Before 2006 individuals in need of care after a hospitalization needed to navigate the system themselves and look for a vacancy at an adequate facility, a classic case of care fragmentation (Cebul et al., 2008; Agha et al., 2019). This can be particularly challenging since individuals do not precisely know when they will be discharged or which type of care they might need.

3 Data

3.1 Data sources and variable definitions

The main dataset used for the analysis contains individual information on the universe of inpatient stays at public hospitals located in mainland Portugal between the years 2000 and 2015. The data are maintained by Administração Central do Sistema de Saúde, I.P. (ACSS).

Figure 2: Process of admission to the Network

Throughout most of the analysis, I focus on emergency inpatient admissions because, as opposed to programmed admissions, they are unpredictable.⁸ This minimizes the concern that individuals might make their own care arrangements in advance when they know they will be hospitalized on a certain date. I exclude admissions into specialized hospitals⁹ and admissions of individuals under 18 years old, thus focusing on adult patients admitted to general acute hospitals. My final dataset comprises over 7.5 million complete emergency hospital admissions over 16 years.

In my baseline specification, the outcome variable is the length of hospital stay of patient i (in days), who lives in region m and is admitted to the hospital in month t. This measure is the sum of the appropriate length of hospital stay and the bed-blocking period.

I proxy bed-blockers using the ICD-9-CM secondary diagnosis codes capturing underlying social factors influencing a patient's health status and contact with health services. I focus on factors such as living alone, lacking family support, and having inadequate housing conditions or an unfavorable economic situation because these have been previously associated with the use of NH and HC (Lopes et al., 2019; Diepstraten et al., 2020) and hospital bed-blocking (Costa et al., 2012; Bryan et al., 2006; McDonagh et al., 2000). Information on social needs

⁸Inpatient admissions imply that the patient spends at least one night at the hospital. They can be programmed or emergency admissions. Programmed inpatient admissions (also called elective care) are for pre-arranged health care services, including scheduled operations, and usually involve a referral to the hospital by a primary care physician, a waiting period, and an appointment for an admission date. Emergency inpatient admissions, in turn, include patients with urgent or life-threatening conditions that require immediate medical assistance. There are few patients are increased risk of bed-blocking among programmed admissions. Column 5 of Table A.2 shows that my results are unchanged when including programmed admissions in the sample.

⁹Specifically, I exclude three cancer hospitals and two psychiatric hospitals because they do have specific long-term beds targeting the needs of their patients.

¹⁰Social factors are mutually exclusive. The codes for underlying social factors influencing a patient's health status and contact with health services can be found at https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt under the header "Administrative/social admissions". For individuals living alone, I use code V603; for individuals with no family to care, I use codes V604 and V605; for individuals with

is assessed by physicians, nurses, and social workers and added to the patient's file only when expected to affect the discharge process. This information is thus only available for a subset of patients, who are believed to be at increased risk of experiencing discharge delays. Importantly, the assessment of social needs is done at the hospital and it is independent of the assessment of the availability of a NH bed or place in a HC team —assessing the availability of support outside of the hospital was never a responsibility of hospitals: prior to the Network, patients had to make their own arrangements. After the introduction of the Network, assessing the availability of an appropriate provider is done by local coordination teams, who are responsible for finding a vacancy for the patient upon referral by the hospital. In robustness checks I show that the coding of the social factors used to identify bed-blockers is, indeed, not affected by the entry of NH and HC teams.

To see how social factors put patients at increased risk of bed-blocking, take two clinically identical patients who need help with activities of daily living, such as personal hygiene, for some weeks following a hospital stay. One has a partner at home who can provide support with such activities and the other does not. While the former can be safely discharged home without additional support, the latter cannot. The existence of, for example, teams providing home-care services is then crucial for his timely discharge.

I complement the inpatient dataset with monthly data on the roll-out of the Network. For most of my analysis, I measure the availability of NH and HC teams in the patient's region of residence using two binary indicators for months after the entry of the first nursing home and the first home-care team in the region. In robustness checks I use continuous treatments, such as the monthly number of NH facilities and HC teams in a region and their capacity.

In the baseline analysis, I define the relevant region as the ACES regions. As mentioned in Section 2, these are relevant because the local coordination teams that find vacancies for patients referred to the Network are established at the ACES level and preferably search for vacancies within that region. In robustness checks I use alternative region definitions.

Throughout the empirical analysis, I control for demographics, comorbidities, DRG group, admission month, and occasionally the hospital where the patient was admitted to. I also use information on medical diagnosis and procedures. All this information is available from the inpatient dataset. For some of my analyses, I use information on DRG trim-points, which I collected from the laws passed by the Government.¹¹

unfavorable housing conditions and economic situation, I use codes V600, V601, V602, V608, V6081, V6089, and V609. The unused codes refer to various situations that are either not associated with bed-blocking (i.e. living in a residential home for elderly people), not related to care needs (i.e. legal matters), or associated with services and populations outside of the scope of the Network (i.e. mental health, children).

¹¹In particular, I use information on DRG trim-points from Portaria 189/2001 published on March 9; Portaria 132/2003 published on February 5; Portaria 567/2006 published on June 12; Portaria 110-A/2007 published on January 23; Portaria 132/2009 published on January 30 and updated by Portaria 839-A/2009,

3.2 Summary Statistics

Figure 3 shows the frequency of monthly emergency admissions in each of the three categories of patients at increased risk of bed-blocking over my study-period. Despite the upward trend over time, each of these categories amounts to a small share of total emergency admissions in a month. Throughout my study-period there are 67,262 individuals at increased risk of bed-blocking, corresponding to 0.85% of total emergency admissions in the sample.¹²

Figure 3: Share of patients at increased risk of bed-blocking

NOTES: The figure shows the monthly evolution of the share of patients at increased risk of bed-blocking on total emergency admissions. The vertical dashed line marks the start of the Network. Entry of nursing homes and home-care teams occurred in a staggered way after the start of the Network.

Table 2 shows summary statistics for regular patients, i.e. patients who do not exhibit social factors, as well as each category of patients at increased risk of bed-blocking. It conveys that individuals at increased risk of bed-blocking have longer length of stay than regular patients and are more likely to have a length of stay beyond their DRG trim-point. However, they are also older and have more comorbidities.

published on July 31; Portaria 163/2013, published on April 24; and Portaria 20/2014, published on January 29. I did not find information on DRG trim-points prior to 2001, so I exclude admissions in 2000 from the estimations using trim-points as dependent variable.

¹²This share is substantially lower than that suggested by the APAH Census in footnote 1. There are several reasons for this. First, the APAH Census was done in 2019 and my data goes only until 2015. My data shows an upward increase in the share of bed-blockers over time, so one would expect a larger share of bed-blockers in future periods. Second, the sample of hospitals in the APAH Census does not include all public general acute-care hospitals (the Census was not mandatory). Third, the APAH Census includes psychiatric hospitals, which are not in my sample.

Table 2: Summary statistics

	Regular patients		Living alone		No family to care		Housing/econ. issues	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
Female (%)	58.2	49.3	57.1	49.5	52.2	50.0	46.7	49.9
Age (years)	58.6	22.5	74.2	14.2	71.0	16.5	64.9	19.8
Length of stay (days)	8.8	12.7	18.5	33.0	36.5	53.2	27.4	50.6
No. days over trim-point	0.4	6.6	2.8	25.6	10.3	41.6	6.9	42.6
Over DRG trim-point (%)	2.3	14.9	7.5	26.4	21.8	41.3	15.0	35.7
Number of procedures	5.9	3.8	8.1	4.3	8.2	4.8	7.5	4.5
Number of diagnoses	4.5	3.7	8.9	5.1	8.6	5.3	7.8	4.5
Charlson score	1.2	1.9	1.9	2.1	2.2	2.5	2.0	2.4
Charlson Comorbidities (%	():							
AMI	3.9	19.5	5.0	21.7	3.0	17.1	2.9	16.6
Heart failure	11.1	31.4	22.2	41.5	13.2	33.8	12.4	32.9
Stroke	11.5	31.9	21.5	41.1	29.6	45.6	21.1	40.8
COPD	7.8	26.8	14.6	35.4	8.9	28.5	11.1	31.4
Diabetes	13.1	33.8	19.4	39.6	18.0	38.4	15.1	35.8
Renal Disease	6.2	24.1	10.6	30.8	8.8	28.3	6.4	24.5
Observations	7,883	3,374	28,4	199	12,	013	26	5,750

NOTES: The table shows the mean and standard deviation of the main variables used in the empirical analysis, for regular patients as well as each of the groups at increased risk of bed-blocking. Abbreviations: DRG: diagnosis-related group; AMI: acute myocardial infarction; COPD: chronic obstructive pulmonary disease.

To understand whether social factors such as living alone, having no family to care, and having inadequate housing and other economic difficulties are associated with longer length of stay after controlling for differences in demographics, medical diagnoses, and comorbidities, I estimate the following equation:

$$y_{it} = \beta B B_i + \delta X_i + \lambda_d + \lambda_h + \lambda_t + \varepsilon_{it} \tag{1}$$

, where i, d, h, and t index the patient, their DRG group, the hospital they are admitted to, and the admission month, respectively. The dependent variable y_{it} is the length of stay of the episode in days. BB_i is a vector containing three binary indicators for each potential bed-blocking category: living alone, no family to care, and housing/economic issues; X_i is a vector containing 10-year age bins separately by gender and a set of dummies for the comorbidities included in the Charlson index (Charlson et al., 1987); λ_d , λ_h and λ_t are DRG, hospital, and admission month fixed effects, and ε_{it} is an error term. Vector β contains

 $^{^{13}}$ During my study-period there were several hospital mergers. These were purely administrative, but the hospitals involved change their identifiers in the dataset (when hospitals A and B merge they start sharing an

the parameters of interest, which measure the additional length of stay of each potential bed-blocking category relative to regular patients, averaged throughout my study-period.

Figure 4 shows the estimates of β from equation (1) and their 95% confidence intervals. Bed-blockers have a length of stay considerably longer than regular patients, even after controlling for demographics, comorbidities, DRG group, admission month, and hospital of admission. For example, individuals living alone have hospital stays that are, on average, a week longer than regular patients. Individuals with inadequate housing and other economic issues stay at the hospital, on average, two weeks longer than regular patients. Individuals with no family to care have stays that are, on average, 23 days longer than regular patients. I conclude that these factors are associated with longer length of stay and appropriately identify bed-blockers. In the empirical analysis, I assess whether the gap in the length of stay of bed-blockers and regular patients decreases after the entry of NH and HC teams in a region.

Figure 4: Estimates of β from equation (1)

NOTES: The figure shows the estimates of β from equation (1) and their corresponding 95% confidence intervals. The dependent variable is length of stay in days. The model includes individual demographics and comorbidities and admission month, diagnosis-related group, and hospital fixed-effects. The sample consists on 7,950,636 emergency inpatient episodes between the years 2000 and 2015.

identifier and their old identifiers are no longer used). I follow Chandra et al. (2016) and treat hospitals A and B as one synthetic hospital throughout the analysis.

4 Empirical Strategy

4.1 Baseline Model

My main empirical specification is a generalized difference-in-differences model comparing the length of stay of each group of bed-blockers and the length of stay of regular patients, before and after the entry of nursing homes and home-care teams in a region. I estimate:

$$y_{it} = \alpha_1 B B_i + \alpha_2 Post H C_{mt} + \alpha_3 Post H C_{mt} \times B B_i + \alpha_4 Post N H_{mt} + \alpha_5 Post N H_{mt} \times B B_i + \delta X_i + \lambda_d + \lambda_m + \lambda_t + \varepsilon_{it},$$
(2)

where i, d, and t index the patient, their DRG group, and the month of hospital admission, and m indexes the region where the patient lives. The dependent variable is the length of stay (in days) of patient i admitted in calendar month t. $PostNH_{mt}$ is an indicator variable taking value 1 after the first NH provider is contracted in region m. Similarly, $PostHC_{mt}$ is an indicator variable taking value 1 after the first HC team is created in region m. λ_m is a vector of region fixed-effects. All remaining notation is as previously defined.¹⁴

The estimates of interest are contained in α_1 to α_5 . More precisely, the estimates of α_1 are informative about the differences in length of stay between each group of bed-blockers and regular patients, prior to the entry of NH and HC teams in a region. The estimates of α_2 and α_4 capture changes in the length of stay of regular patients following the entry of the first HC team and the first NH in a region, respectively. Because regular patients are not at risk of bed-blocking, their length of stay should not change upon the entry of NH and HC teams in a region. I therefore expect these estimates to be zero. The estimates of α_3 and α_5 , in turn, capture changes in the length of stay of each group of bed-blockers relative to regular patients, following the entry of the first HC team and the first NH in a region, respectively. I expect these to be negative. Since most ACES regions experience the entry of several home-care teams and nursing home facilities, the estimates of α_2 to α_5 are informative about the effect of having at least one home-care team and one nursing home in the region of residence on length of stay. Additionally, because I do not observe individual take-up of the services provided by the Network, the estimates have an intent-to-treat flair.

One feature of my specification is that it includes two distinct treatments: the entry of the first NH and the first HC team in a region. Crucial for disentangling the effects of NH and HC entry, the first NH and HC team never enter a region in the same period. Additionally, regions which were among the first to have a NH facility were not necessarily among the first

¹⁴My baseline specification includes many covariates. Table A.1 in the Appendix shows that the estimation results are stable when using different subsets of these covariates.

to have a HC team (Figure A.1 in the Appendix). The correlation between the rankings of regions with respect to the entry of their first NH and their first HC team is fairly low, at 0.29. Consequently, there is quite some variation across regions in the number of months between the entry of the first NH and the entry of the first HC team (Figure A.2 in the Appendix).

Another feature of equation (2) is that it includes both bed-blockers and regular patients. Regular patients help controlling for general region and time specific trends in length of stay. For example, suppose that the entry of HC teams in a region decreased length of stay for all patients due to some unobserved factor. Then, estimating the model among bed-blockers only (thus only exploiting variation in treatment timing) would overestimate the effect of HC teams. Additionally, because there are relatively few bed-blockers in the sample, including regular patients increases the precision of the estimates of the covariates in the model. ^{15,16}

The inclusion of DRG fixed-effects, λ_d , is also worth of discussion. My dependent variable does not allow separating the appropriate length of stay and the length of the bed-blocking period. Since DRGs group patients with similar medical conditions and demographics, who undergo similar treatments, patients in the same DRG are expected to have similar length of appropriate stay. The DRG fixed-effects therefore capture the time-invariant, DRG-specific component of length of stay corresponding to the appropriate duration of the stay because the majority of individuals do not experience delays related to bed-blocking.

Due to the large number of DRG groups, I estimate equation (2) using the Stata package reghdfe (Correia, 2016), which allows for high dimensional fixed-effects. I exclude the month of entry of the first NH and HC team in a region from the estimation because I do not observe the exact day of the month when entry took place. Additionally, I follow Abadie et al. (2017) and cluster standard errors at the level of treatment assignment, which is the region.¹⁷

4.2 Model assumptions

The core identifying assumption of my empirical approach is that, in the absence of the entry of NH and HC teams, any trends in length of stay of each group of bed-blockers and regular patients would, in expectation, have been similar across regions. This is the so-called parallel trend assumption. The parallel trend assumption is untestable because I do not know how length of stay would have evolved, had NH and HC teams not entered a region. To inform about the plausibility of the parallel trends assumption, it is standard practice to

¹⁵My main empirical specification is similar to the models in Berger et al. (2018); Bitler and Carpenter (2016), and Chari et al. (2019), among others. It differs in that I have two distinct treatments.

¹⁶Table B.1 in the Appendix, shows results from a specification that only exploits variation in treatment timing, therefore excluding regular patients from the analysis.

¹⁷Alternative clustering options, for example at the region-DRG level, yield smaller standard errors, but do not qualitatively change my findings.

examine pre-treatment trends: if these evolved similarly, it does give some confidence that the post-treatment would have, too.

I examine pre-trends using an event-study approach. There are two events of interest, the entry of the first NH in a region and the entry of the first HC team in a region. The event-study framework allows the effect of the entry of nursing homes and home-care teams on the length of stay of each category of bed-blockers and regular patients to vary over time. I estimate the following event-study equation separately for each event:

$$y_{it} = \sum_{r} \sum_{j=1}^{3} \theta_{r}^{j} B B_{i}^{j} f(r) + \sum_{r} \theta_{r} f(r) + \sum_{j=1}^{3} \theta^{j} B B_{i}^{j} + \delta X_{i} + \lambda_{d} + \lambda_{m} + \lambda_{t} + \varepsilon_{it}, \qquad (3)$$

$$f(r) = \begin{cases} 1 & \text{if } r < -5 \\ I_{r} & \text{if } -5 \geq r \leq 5 \\ 1 & \text{if } r > 5 \end{cases}$$

, where BB_i^j is a binary indicator for individual i being coded in bed-blocking category j (that is, BB_i^j is the j^{th} component of BB_i); r indexes time in years relative to the event; and f(r) is a function of relative time. Specifically, f(r) includes binary indicators for each relative year inside a five-year event-window $(I_{-5}, I_{-4}, ..., I_5)$, a binary indicator for relative years prior to the event-window (r < -5), and a binary indicator for relative years after the event-window (r > 5). That is, I assume that outside of the five-year event-window effects are constant in relative time. The advantage of specifying f(r) in this way is that it allows me to still use observations outside of the event-window to pin down the fixed effects, demographics, and comorbidities. I normalize the year just before the event to zero, f(-1) = 0. All remaining notation is as before.

I am interested in the estimates of both θ_r and θ_r^j . The estimates of θ_r capture the evolution of the length of stay of regular patients in the years around the event. I expect these estimates to be zero because the length of stay of regular patient should be unaffected by the entry of NH and HC teams.

The estimates contained in θ_r^j , in turn, convey the evolution of the length of stay differential between each category of bed-blockers j and regular patients around the event. Since I normalize f(-1) = 0, the common trend assumption requires the estimates of θ_r^j for the remaining years prior to the event to be zero. This would mean that the length of stay differential between bed-blockers and regular patients is constant before the entry of NH and HC teams in a region, confirming the plausibility of the common trend assumption.

I estimate equation (3) separately for the two relevant events, the entry of the first NH and entry of the first HC team in a region. When estimating the event-study equation for the

entry of the first NH, I add to the regressors an indicator variable controlling for the presence of HC teams in the region. When estimating the event-study equation for the entry of the first HC, I control for the presence of NH units in the region in a similar way.

There is also a concern about compositional changes to the groups of bed-blockers and regular patients. These could originate from changes in the way hospitals code the social factors I use to identify bed-blockers if, for example, the coding of these factors became more salient due to the roll-out of the Network. I test for such compositional changes by examining whether there were any changes in the coding frequency of each of the three bed-blocking categories following the entry of HC teams and NH providers in a region. Specifically, I estimate the following equation:

$$BB_i^j = \rho_1 PostHC_{mt} + \rho_2 PostNH_{mt} + \lambda_m + \lambda_t + \epsilon_i$$
(4)

, where and all notation has been previously defined. The estimates of interest are those of ρ_1 and ρ_2 , which capture changes in the frequency of patients coded in category j upon the entry of HC teams and NH in a region, respectively. Obtaining both statistically and economically insignificant estimates for these two parameters would reassure that coding behavior is not affected by the presence of HC teams and NH providers in a region. I estimate equation (4) three times, for each of the three groups of bed-blockers and regular patients. I alternatively assume that the error term follows a normal distribution and a logistic distribution.

4.3 Intensity of care received and readmissions

One concern is that reductions in the length of stay of bed-blockers upon the entry of NH and HC teams might be accompanied by reductions in the treatment received while at the hospital. To assess this possibility, I estimate equation (2) using the number of medical procedures patients receive during their hospital stay as dependent variable. This is a typical measure of the intensity of care received by a patient (Kleiner, 2019).

Reductions in the length of stay of bed-blockers following the entry of NH and HC teams in a region might also impact their consumption of acute care in the future. On the one hand, if these individuals have now a form of support outside of the hospital, they might be able to better manage their condition without needing inpatient care thus avoiding a readmission. On the other hand, if their longer stay at the hospital was beneficial in some way that is not captured by the number of procedures, then reducing length of stay might increase the probability of a readmission.

To investigate this question, I estimate equation (2) using a binary indicator for readmission as dependent variable. Unfortunately, the structure of the dataset in the earlier years does not

allow for perfectly following patients across years and across hospitals. I therefore focus on readmissions to the same hospital, within 30 and 60 days of the discharge date. To capture admissions within the same calendar year, I exclude admissions in December of each year when assessing the likelihood of readmission within 30 days. Similarly, I exclude admissions between October and December when assessing the likelihood of readmission within 60 days.

4.4 Programmed admissions

Reductions in the length of stay of bed-blockers might raise concerns about decreased hospital occupancy, given the costs of empty hospital beds (Pauly and Wilson, 1986; Gaynor and Anderson, 1995; Keeler and Ying, 1996). However, waiting lists (and times) for elective care are a major challenge for public hospitals in Portugal (Simões et al., 2017). Provided some flexibility in the allocation of resources (ie. beds, physicians' time) within the hospital, the resources freed up by bed-blockers can be devoted to elective care.

To examine whether such reallocation of hospital activity occurs, I make use of the full inpatient dataset, which includes both emergency and programmed admissions at public hospitals in Portugal. First, I estimate the following equation:

$$Programmed_{it} = \phi_1 PostHC_{mt} + \phi_2 PostNH_{mt} + \lambda_m + \lambda_t + \lambda_h + \varepsilon_{it}$$
 (5)

, where $Programmed_{it}$ is a binary indicator taking value 1 if the episode of patient i was scheduled and value 0 if it was an emergency. As before, λ_m , λ_t , and λ_h are region, admission month, and hospital fixed-effects. The estimates of ϕ_1 and ϕ_1 are informative about changes in the share of programmed admissions in hospital h originating from region m, following the entry of HC teams and NH providers in that region, respectively.

To ensure that the increase in the share of programmed admissions is being driven by increases in the number of programmed admissions and not by a reduction in emergency admissions, I collapse my data at the tregion-hospital-month level and estimate:

$$NumberAdm_{hmt} = \varphi_1 PostHC_{mt} + \varphi_2 PostNH_{mt} + \lambda_m + \lambda_t + \lambda_h + \varepsilon_{hmt}$$
 (6)

, where $NumberAdm_{hmt}$ is alternatively the monthly number of programmed and emergency admissions from region m in hospital h. I am interested in the estimates of φ_1 and φ_2 , which inform about changes in the number of admissions in hospital h originating from region m after the entry of HC teams and NH providers in that region, respectively.¹⁹

¹⁸In the last years of my study-period, over 92% of readmissions occur in the same hospital as the initial admission. Thus, restricting the analysis to readmissions to the same hospital is a good approximation.

¹⁹During my study-period, patients awaiting programmed procedures were typically restricted to a specific

5 Results

Section 5.1 presents the baseline results. Section 5.2 investigates the plausibility of the model assumptions and reports the results of additional robustness checks. Section 5.3 presents the results of the heterogeneity analysis. Sections 5.4 and 5.5 examine the impact the impact of the entry of NH and HC teams on treatment received while at the hospital and on hospital readmissions, respectively. Section 5.6 assesses the impact on hospital costs and Section 5.7 assesses the impact on programmed admissions.

5.1 Baseline Results

Figure 5 shows the estimates of interest from equation (2) and their corresponding 95% confidence intervals. The top estimates correspond to α_1 , the vector of indicators for each of the three bed-blocking categories. They convey sizable length of stay differences between each type of bed-blocker and regular patients prior to the entry of HC teams and NH in a region. The second block of estimates corresponds to α_2 and α_4 , the two indicators for periods after the entry of home-care teams and nursing homes in a region. These effects are precisely estimated at zero, meaning that the entry of NH and HC providers in a region does not affect the length of stay of regular patients. The next block of estimates corresponds to α_3 , the vector of interaction terms between each bed-blocking category and the indicator for periods after the entry of home-care teams in a region. These estimates convey length of stay reductions of 4 days for individuals living alone and for those with inadequate housing after the entry of HC teams in their region. Note, however, that these 4-day length of stay reductions do not fully eliminate the difference in length of stay between regular patients and bed-blockers—some bed-blocking still persists. For individuals with no family to care, the estimates are imprecise and I cannot rule out sizable increases in the length of stay of these patients after the entry of HC teams in a region. Finally, the last block of estimates refers to α_5 , the vector of interaction terms between each bed-blocking category and the indicator for periods after the entry of nursing homes in a region. These estimates are statistically insignificant, with the point estimates being close to zero.

5.2 Robustness checks

Section 5.2.1 elaborates on the plausibility of the model assumptions. It shows that (i) my baseline results are not typically driven by pre-treatment trends; (ii) the entry timing of the

hospital within their region of residence (they could not shop around for other hospitals that they might perceive as being of higher quality or that have shorter waiting times).

Figure 5: Estimates of α_1 to α_5 from equation (2)

NOTES: The figure shows the estimates of α_1 to α_5 from equation (2) and their corresponding 95% confidence intervals. The dependent variable is the length of stay in days. The model includes individual demographics and comorbidities, and admission month, DRG, and region (ACES) fixed-effects. The sample excludes admissions in the entry month of the first NH and HC team in a region, amounting to 7,868,350 observations. Standard errors are heteroskedasticy-robust and clustered at the region level.

first NH and HC team in a region is unrelated with the share of bed-blockers originating from that region prior to the Network; and (iii) hospitals did not change the coding frequency of the factors used to identify bed-blockers upon the entry of NH and HC teams. Section 5.2.2 shows that my baseline results do not depend on the choice of relevant region, outcome variable, and model specification.

5.2.1 Model assumptions

To examine pre-treatment trends, I estimate the event-study specification in equation (3). I report the event-study results in Figures 6 and 7, respectively, for the entry of the first HC team and the first NH facility in a region. Each of the figures has three panels, corresponding to comparisons of the length of stay of each of the three bed-blocking categories and regular patients around the relevant event. Each panel plots the estimates of θ_r for regular patients (full circles) and θ_r^j for each type of bed-blocking j (hollow circles) from equation (3) and the corresponding 95% confidence intervals. The scale on the vertical axis differs across plots.

The event-study specification is informative about pre-treatment trends in length of stay for each of the patient groups analyzed. The estimates of θ_r convey that the length of stay of regular patients is constant in relative time, as expected. In most of the event-study plots the

estimates of θ_r^j for years prior to the entry of the first NH and HC team in a region are not statistically significant, supporting the plausibility of the parallel trend assumption.²⁰ The exception is panel (b) in Figure 6, which shows an increasing trend in the length of stay of individuals with no family to care relative to regular patients prior to the entry of the first HC team in a region. Due to this pre-treatment trend, the corresponding estimate from the baseline analysis is biased towards finding no reductions in the length of stay of individuals with no family to care following the entry of the first HC team in a region. The event-study plot, in turn, shows that the increasing trend in the length of stay of individuals with no family to care relative to regular patients is inverted upon the entry of HC teams in a region.

Overall, the baseline model and the event-study convey similar results. While the entry of HC teams leads to reductions in the length of stay of bed-blockers, the entry of NH does not. The event-study plots show, however, that the length of stay reductions experienced by bed-blockers do not occur immediately after the entry of the first HC team. I will return to this issue in Section 6.

To rule out concerns about endogeneity of treatment timing, panel (a) of Figure 8 plots the percentage of bed-blockers out of the total number of emergency inpatient admissions originating from each ACES region in 2005 (the year prior to the introduction of the Network) against the entry month of the first NH and HC team in that region. Panel (b) of Figure 8 plots the average 2005 occupancy rate of the modal hospital visited by patients living in a region against the entry month of the first NH and HC team in that region. The plots convey no relationship between treatment timing and the percentage of bed-blockers or the capacity constraints of the hospital, supporting the plausible exogeneity of treatment timing.

Table 3 reports the results from equation (4), assessing changes in the coding of the social factors used to identify bed-blockers after the entry of HC teams and NH providers in a region. The left panel shows OLS estimates. The right panel shows marginal effects after logit, evaluated at the mean of the independent variables. None of the estimates are statistically or economically significant, indicating no clear association between the entry of NH and HC teams and the coding of the social factors used to identify bed-blockers. These results are reassuring that the increase in the frequency of bed-blockers in recent years is not endogenous

²⁰More precisely, the joint significance of the pre-treatment estimates can be assessed with an F-test. For individuals living alone, one cannot reject the hypothesis that these estimates are jointly insignificant (the corresponding p-values are 0.6677 and 0.5827, respectively, for periods prior to the entry of the first HC team and the first NH in a region). For individuals with no family to care, the estimates for periods prior to the entry of the first HC team are jointly significant (p-value=0.000), but those for periods prior to the entry of the first NH are not (p-value=0.2536). Finally, for individuals with inadequate housing, the F-test on the joint significance of the estimates for periods prior to the entry of the first HC team and the first NH has p-values equal to 0.0249 and 0.0584, respectively. These relatively low p-values are driven by the earliest pre-treatment periods (relative year -5 and earlier). Excluding those early periods yields p-values of 0.1620 and 0.8455, respectively for periods prior to the entry of the first HC team and the first NH.

to the availability of NH and HC teams, but rather reflects social and demographic changes.

Table 3: Results from estimating equation (4)

		OLS		Logit			
	(1) Living alone	(2) No family to care	(3) Housing/econ. issues	(4) Living alone	(5) No family to care	(6) Housing/econ. issues	
Post HC (ρ_1)	0.0010	0.0000	0.0003	0.0006	-0.0001	0.0001	
	(0.0006)	(0.0003)	(0.0005)	(0.0004)	(0.0002)	(0.0003)	
Post NH (ρ_2)	-0.0000	0.0001	-0.0005	0.0005	0.0001	-0.0001	
	(0.0009)	(0.0003)	(0.0006)	(0.0005)	(0.0002)	(0.0003)	
Observations	7,830,074	7,813,746	7,828,255	7,697,852	7,681,524	7,696,033	
$(Pseudo-)R^2$	0.004	0.001	0.002	0.073	0.045	0.045	

NOTES: The table shows the estimates of ρ_1 and ρ_2 from equation (4). The left panel reports OLS estimates. The right panel reports marginal effects after logit evaluated at the mean of the independent variables. For each column, the sample of individuals consists on those classified in the category stated in the column title and the regular patients. The sample excludes admissions in the entry month of the first NH and HC in a region. All models include admission month and region (ACES) fixed-effects. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, *** p < 0.05, *** p < 0.01

(c) Housing/economic issues

Figure 6: Event-study results for HC entry

NOTES: Each panel plots the estimates of θ_r and θ_r^j from equation (3) and the corresponding 95% confidence intervals for a specific group of patients in the sample. In each panel, the vertical axis is the length of stay in days and the horizontal axis is time in years relative to the entry of the first home-care team in a region. The coefficient on the year just before entry was normalized to zero. The model includes individual demographics and comorbidities, indicators for type of bed-blocking, and admission month, diagnosis-related group, region (ACES), and relative year fixed-effects, as well as a binary indicator for the presence of a nursing home at the time of admission.

(c) Housing/economic issues

Figure 7: Event-study results for NH entry

NOTES: Each panel plots the estimates of θ_r and θ_r^j from equation (3) and the corresponding 95% confidence intervals for a specific group of patients in the sample. In each panel, the vertical axis is length of stay in days and the horizontal axis is time in years relative to the entry of the first nursing home in the region. The coefficient on the year just before entry was normalized to zero. The model includes individual demographics and comorbidities, admission month, diagnosis-related group, and region (ACES) fixed-effects, indicators for each type of bed-blocking, relative year fixed-effects, and a binary indicator for the presence of a home-care team at the time of admission.

Figure 8: Exogeneity of treatment timing

(a) With respect to share of bed-blockers in the region

(b) With respect to the occupancy rate of the modal hospital visited by patients in the region

NOTES: The figures in the top panel plot the percentage of bed-blockers in a region in year 2005 against the timing of entry of the first nursing home (left panel) and home-care team (right panel) in the region. The figures in the bottom panel plot the average occupancy rate of the modal hospital visited by patients living in each region as of year 2005 against the timing of entry of the first nursing home (left panel) and home-care team (right panel) in the region. Each of the 52 dots corresponds to an ACES region. The line corresponds to the predictions from a linear regression using these 52 data points and the shaded area corresponds to the 95% confidence interval. The sample consists in all 516,003 hospital admissions in year 2005.

5.2.2 Alternative model specifications and variable definitions

For convenience, column 1 of Table 4 reproduces the baseline results. As robustness checks to the baseline model specification, I alternatively replace the region and month fixed-effects with region-month fixed-effects in column 2 and region-specific time trends in column 3. Column 4 adds hospital fixed-effects to the baseline specification. The results are unchanged.

Because ACES regions differ in their territorial area, I alternatively use 15 and 30km radii around the centroid of a patient's municipality of residence as the relevant region.²¹ Columns 5 and 6 in Table 4 show that these alternative region definitions yield similar results to the baseline specification.

Table A.2 in the Appendix shows my baseline are also unchanged when using different sample definitions. Specifically, I restrict the sample to a balanced panel of hospitals, I exclude patients who were transferred between hospitals and those who have died at the hospital, and I include both emergency and programmed admissions in the sample.

As alternative outcome variables in equation (2), I use binary indicators for being above certain percentiles of the pooled distribution of length of stay, and a binary indicator for being above the corresponding DRG trim-point. Table A.3 in the Appendix shows the results. After the entry of HC teams in their region, individuals living alone and those with inadequate housing are 5 percentage points (pp.) less likely to be above the 50th percentile of the length of stay distribution and 6-7pp. less likely to be above the 90th percentile. They are also 4pp. less likely to have a length of stay beyond their DRG trim-point.

Finally, a recent literature in econometrics highlights challenges in difference-in-differences designs that exploit staggered treatments. Goodman-Bacon (2018) shows that the estimate recovered in those cases is a weighted average of all underlying two-by-two difference-in-differences estimates. Because weights can be negative, even if all underlying two-by-two effects are positive, they might be aggregated in a negative effect. To the best of my knowledge, there is not yet an extension of these concepts that accommodates designs featuring more than two groups and more than one treatment. Table B.2 in the Appendix shows the results from estimating my baseline model separately among regions treated in different years, therefore limiting the variation in treatment timing. While statistical significance is lost in a few cases, the direction and magnitude of the results obtained are in line with my baseline results, suggesting issues related to staggered treatment timing to be limited in my setting.

²¹Municipalities are small territorial units. There are 278 municipalities in mainland Portugal.

Table 4: Robustness checks to the baseline estimation of equation (2)

	(1)	(2)	(3)	(4)	(5)	(6)
	Baseline	Region-month FE	Region-specific time trends	Hospital FE	15km radius	30km radius
Bed-blocking indicators (α_1)						
Living alone	9.226***	9.230***	9.245***	9.227***	8.884***	9.802***
	(1.357)	(1.372)	(1.377)	(1.345)	(1.370)	(1.685)
No family to care	23.282***	23.344***	23.317***	23.284***	21.877***	23.447***
	(4.184)	(4.178)	(4.182)	(4.179)	(3.755)	(4.511)
Housing/econ. issues	17.984***	17.972***	17.952***	17.969***	17.442***	19.178***
	(2.611)	(2.595)	(2.610)	(2.601)	(2.304)	(2.454)
Effects of HC and NH entry						
Post HC (α_2)	0.003		-0.006	-0.001	-0.016	0.028
	(0.105)		(0.094)	(0.106)	(0.070)	(0.076)
Post NH (α_4)	0.095		0.046	0.086	0.023	0.010
	(0.193)		(0.092)	(0.194)	(0.077)	(0.076)
Differential effects of HC entry (α_3)						
Post HC \times Living alone	-4.361***	-4.040***	-4.209***	-4.362***	-3.377***	-2.991***
	(1.559)	(1.481)	(1.527)	(1.563)	(1.061)	(1.140)
Post HC \times No family to care	-0.384	-0.364	-0.394	-0.403	-1.124	-0.482
	(5.318)	(5.273)	(5.285)	(5.312)	(3.421)	(3.231)
Post HC \times Housing/econ. issues	-4.673**	-4.668**	-4.692**	-4.640**	-5.430***	-4.992***
	(2.143)	(2.110)	(2.133)	(2.148)	(1.681)	(1.789)
Differential effects of NH entry (α_5)						
Post NH \times Living alone	0.539	0.238	0.354	0.564	-0.001	-1.229
	(1.097)	(1.075)	(1.084)	(1.104)	(1.138)	(1.259)
Post NH \times No family to care	0.040	-0.110	-0.060	0.047	2.985	-0.127
	(3.777)	(3.741)	(3.761)	(3.777)	(1.869)	(2.126)
Post NH \times Housing/econ. issues	-1.154	-1.128	-1.087	-1.179	0.379	-2.098
	(2.435)	(2.417)	(2.405)	(2.416)	(1.354)	(1.505)
Observations	7,868,350	7,868,350	7,868,350	7,868,350	7,950,636	7,950,636
R^2	0.210	0.212	0.210	0.210	0.210	0.210

NOTES: The table shows the estimates of α_1 to α_5 from robustness checks to equation (2). The dependent variable is the length of stay in days. The baseline model in column 1 includes individual demographics and comorbidities and admission month, diagnosis-related group, and region (ACES) fixed-effects. Column 2 replaces the region and month fixed effects with region-month fixed-effects. Column 3 includes region-specific time trends. Column 4 includes hospital fixed-effects. Columns 5 and 6 use the 15 and 30km radius around the centroid of the patient's municipality as the relevant region, respectively. The sample excludes admissions in the entry month of the first NH and HC in a region. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, ** p < 0.05, *** p < 0.01

5.2.3 Elasticities

Different regions experienced different intensities of entry of nursing homes and home-care teams at distinct speeds. To exploit these additional sources of variation, I define two alternative continuous measures of treatment intensity: the monthly number of home-care teams and nursing home units operating in region m and the monthly number of places in home-care teams and beds in nursing home facilities in region m. This is a fundamentally distinct exercise from the baseline analysis: while the baseline analysis quantifies the effect of having at least one HC team or NH provider in a region on the length of stay of bed-blockers, this analysis quantifies the impact of one additional provider or bed in a region on the length of stay of bed-blockers. To interpret the estimates as (an approximation of) elasticities, I take the natural logarithm (+1) of length of stay as well as the of treatment intensity variables.²²

Table A.4 in the Appendix shows the elasticity estimates. In general, these are of very small magnitude. For example, a 10% increase in the number of available spots in home-care teams (about 10 spots) would reduce the length of stay of individuals living alone by only 0.3%. A 20% increase in the number of HC teams in a region (1 additional team) would reduce the length of stay of individuals living alone and those with inadequate housing by 1.6% and 1.5%, respectively. These results suggest that the increased number of NH and HC teams over time is unlikely to be the main driver of the finding (conveyed by the event-study plots in Figure 6) that reductions in the length of stay of bed-blockers do not occur immediately after the entry of the first home-care team, but rather take time to materialize.

5.3 Heterogeneity analysis

The baseline results convey no reductions in the length of stay of bed-blockers following the entry of nursing homes in a region. This result might simply reflect the fact that nursing homes cater to patients with high care needs and the average bed-blocker might not need a nursing home. The most common admission diagnoses among bed-blockers are respiratory illnesses, such as pneumonia and acute bronchitis, whose recovery usually involves resting and avoiding heavy tasks. In contrast, the most common reasons for a NH admission are recovery from surgery and stroke.

To assess this hypothesis, I estimate the baseline model among different patient groups. Specifically, I restrict the sample to individuals admitted to the hospital with a stroke diagnosis, with respiratory conditions, individuals who underwent surgery during their hospital stay, and those whose Charlson comorbidity score is above 1. Table A.5 in the Appendix shows

 $^{^{22}}$ I take the natural logarithm (+1) of length of stay to accommodate a few observations who have 0 length of stay because they died on the day they were admitted at the hospital.

the results. When restricting the sample to patients admitted with a stroke (column 1), I find that individuals living alone and those with inadequate housing experience length of stay reductions of about 3 and 10 days, respectively, after the entry of nursing homes in their region. This supports the hypothesis that nursing homes cater to patients with high care needs. I find a similar pattern when restricting the sample to patients undergoing surgery at the hospital (column 3), but these effects are not statistically significant. The results for patients admitted with respiratory illnesses and for those with Charlson score over 1 are in line with the baseline results.

Table A.6 in the Appendix shows the results of heterogeneity analyses with respect to gender and age. There is little heterogeneity across different demographic groups. Remarkably, bed-blockers under 50 years old also see significant reductions in their length of stay upon the entry of HC teams, making clear that bed-blocking can affect individuals of any age.

5.4 Impact on the intensity of care received

Column 1 of Table 5 shows the results of estimating equation (2) using the number of procedures received while at the hospital as dependent variable. It conveys that, despite reducing the length of stay of bed-blockers, the entry of NH and HC teams does not affect the intensity of care they received at the hospital. This finding is consistent with the idea that the longer length of stay of bed-blockers does not entail any meaningful care provision.

Additionally, the estimates of the bed-blocking indicators convey that, even after controlling for demographics, comorbidities, and detailed medical diagnoses, bed-blockers seem to get more intensive treatment during their hospital stay than regular patients (and that does not change upon the entry of NH and HC teams). A more intensive treatment might require a longer stay. This can be one reason why the gap in length of stay between bed-blockers and regular patients is not fully eliminated upon the entry of NH and HC teams in a region.

5.5 Impact on hospital readmissions

Table 5 shows the results of estimating equation (2) using a binary indicator for readmission as dependent variable. Columns 2 and 4 show the results for changes in the probability of readmission within 30 and 60 days, respectively, upon the entry of NH and HC teams in a region. Columns 3 and 5 focus on readmissions in the same DRG group, which are more likely to signal a recurrent (chronic) condition, or a consequence of the previous admission. Overall, all columns convey the same finding. In most cases I cannot reject the null hypothesis that the entry of NH and HC teams had no effect on the likelihood of readmission. In some cases, the entry of NH and HC teams is associated with a reduction in the probability of readmission,

potentially reflecting the fact that these types of care can prevent a readmission. These effects have a rather large magnitude, given the mean values of the dependent variable. For example, the entry of NH reduce the likelihood of readmission within 60 days for individuals with inadequate housing by 2pp., which amounts to a 16% reduction.

5.6 Cost savings

Computing the cost savings associated with the reductions in the length of stay of bed-blockers helps putting the baseline estimates into perspective. I do this analysis for the year of 2015.

To assess the cost burden bed-blocking places on hospitals, I use the official estimate of the cost of one day in inpatient care, which is ≤ 230 .²³ Absent the entry of NH and HC teams, I estimate that the cost burden associated with the longer length of stay of bed-blockers relative to regular patients would have been $\leq M22.9$ in 2015. My baseline estimates imply that the entry of HC teams in a region reduces these costs by $\leq M6$.

The government transfers funds to compensate hospitals for the additional costs imposed by patients with length of stay beyond their DRG trim-point, thus bearing part of the above cost burden. In 2015, the daily amount paid for days in excess of the corresponding DRG trim-point was $\in 87.56$. Absent the entry of NH and HC teams, I estimate that the additional payments made to hospitals for the exceptionally long hospital stays of bed-blockers would have amounted to $\in M3.5$ in 2015. The entry of HC teams in a region generates reductions in these payments to the extent that it reduces the length of stay of bed-blockers. These reductions are small, lowering the total amount transferred by the government by about $\in M1$.

Overall, my baseline results imply that the entry of HC teams in a region reduced hospital costs (net of government transfers) associated with bed-blocking by \leq M5 (28%) in 2015, from \leq M19.5 (=22.9-3.5) to \leq M14.3 (=22.9-2.5-6).

From the perspective of the health system, the cost of care provided in NH and HC teams must be taken into account. No information on the cost of one day of home-care is available. Therefore, I value one day of home-care provision using the daily amount paid by the government to providers in the Network for ambulatory services, which is ≤ 9.6 per day.²⁴ If reductions in hospital length of stay are replaced one-to-one with home-care use, then my baseline estimates imply that the cost of home-care provision is $\leq M0.26$ in 2015.

 $^{^{23}}$ The official figure taken from ACSS (2007) is €219 and corresponds to 2007, the last year for which cost estimates are available. I use the consumer price index for the healthcare sector to update the cost of one day in inpatient care to 2015 euros. I acknowledge that this figure might be overestimating to some extent the costs bed-blocking imposes on hospitals because a bed-blocking day likely involves lower costs than a day of an average patient who is still receiving acute medical care. But this is the best cost estimate available.

²⁴From the patients' perspective, "a day of home-care" consists of a visit by the home-care team on a given day. These visits take only a couple of hours.

Table 5: Impact of the entry of NH and HC teams on the likelihood of readmission

	(1)	(2)	(3)	(4)	(5)
	Number of procedures	Within 30 days	Within 30 days, same DRG	Within 60 days	Within 60 days, same DRG
Bed-blocking indicators (α_1)					
Living alone	0.916***	-0.003	-0.003*	-0.002	-0.003
	(0.123)	(0.003)	(0.002)	(0.004)	(0.002)
No family to care	1.056***	0.015	0.005	0.021*	0.009
	(0.223)	(0.010)	(0.006)	(0.013)	(0.009)
Housing/econ. issues	0.557***	0.024***	0.007**	0.035***	0.010**
	(0.145)	(0.004)	(0.003)	(0.006)	(0.004)
Effects of HC and NH entry					
Post HC (α_2)	0.058	0.002	-0.000	0.002	-0.000
	(0.168)	(0.001)	(0.000)	(0.002)	(0.001)
Post NH (α_4)	-0.386**	-0.000	0.000	-0.001	-0.000
	(0.185)	(0.002)	(0.001)	(0.002)	(0.001)
Differential effects of HC entry (α_3)					
Post $HC \times Living alone$	0.207	-0.011**	0.001	-0.005	0.002
	(0.253)	(0.005)	(0.003)	(0.005)	(0.003)
Post HC \times No family to care	0.052	-0.031**	-0.016**	-0.043**	-0.022**
	(0.365)	(0.013)	(0.008)	(0.018)	(0.010)
Post HC \times Housing/econ. issues	-0.177	0.005	0.003	0.005	0.004
	(0.214)	(0.006)	(0.003)	(0.009)	(0.004)
Differential effects of NH entry (α_5)					
Post NH \times Living alone	-0.060	0.008	0.002	0.002	0.001
	(0.163)	(0.006)	(0.002)	(0.009)	(0.004)
Post NH \times No family to care	0.178	0.012	0.009	0.020	0.011
	(0.201)	(0.014)	(0.007)	(0.018)	(0.008)
Post NH \times Housing/econ. issues	0.317	-0.012*	-0.007**	-0.020**	-0.010**
	(0.254)	(0.006)	(0.003)	(0.008)	(0.004)
Mean of the dep. variable	5.956	0.088	0.020	0.125	0.028
Observations	7,856,898	7,216,328	7,216,328	5,919,920	5,919,920
R^2	0.356	0.079	0.052	0.102	0.060

NOTES: The table shows the OLS estimates of α_1 to α_5 from equation (2). In column 1 the dependent variable is the number of procedures received by patient i during his hospital stay. In columns 2 and 4, the dependent variable is an indicator for readmission in the same hospital with 30 and 60 days, respectively. In columns 3 and 5, the dependent variable is an indicator for readmission in the same hospital and the same DRG with 30 and 60 days, respectively. The sample excludes admissions in the entry month of the first NH and HC in a region. Additionally, the sample in columns 2 and 3 excludes admissions in December and the sample in columns 4 and 5 excludes admissions in October-December. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, ** p < 0.05, *** p < 0.01

This barely affects my savings estimate. More generally, the average duration of home care use was 64.2 days in 2015 (Lopes et al., 2019). I estimate the costs of home care provision in 2015 at \in M4.4, which is still below \in M6. Thus, even when accounting for the fact that individuals consume home-care for a much longer period than they would have stayed at the hospital, some savings small are realized.

5.7 Impact on programmed admissions

Columns 1 and 2 of Table 6 show the estimates from equation (5) assuming the distribution of the error term is normal and logistic, respectively. The results convey an increase of 1.7 percentage points in the share of programmed admissions originating from region m, following the entry of HC teams in the region.

Columns 3 and 4 of Table 6 show the results of estimating equation (6) using as dependent variable the monthly number of programmed admissions and the monthly number of emergency admissions, respectively. Column 3 conveys an increase of 10 programmed admissions per month in hospital h originating from region m upon the entry of the first HC team in that region. Consistent with the entry of nursing homes not reducing the length of stay of the average bed-blocker, it also is not associated with increases in programmed admissions. Column 4 conveys no change in the number of emergency admissions following the entry of NH and HC teams. Overall, these results suggest that hospitals devote the resources freed up by bed-blockers to elective care.

6 Mechanisms: Relationship-specific experience

While my main results convey reductions in bed-blocking following the entry of HC teams, the event-study plots show that these take some time to materialize and bed-blocking is never fully eliminated. Fernandez et al. (2018) examine the role of coordination frictions between hospitals and local teams in driving bed-blocking. They find that patients in hospitals that deal with a larger number of local teams experience more discharge delays and that hospital size helps mitigating this effect. Larger hospitals might, for example, be more efficient at managing the discharge process (De Volder et al., 2020).

In this section, I study the accumulation of relationship-specific experience between a hospital and an ACES region, in the spirit of Kellogg (2011). This mechanism can potentially explain why the reductions in the length of stay of bed-blockers from my baseline analysis do not seem to take place immediately after the entry of the first NH and HC team in the region.

The underlying idea is that a given hospital-region pair hm accumulates experience from

Table 6: Results from estimating equations (5) and (6)

	(1) Programmed admission (OLS)	(2) Programmed admission (Logit)	(3) Monthly programmed admissions	(4) Monthly emergency admissions
Post HC	0.017**	0.018**	10.572**	-0.832
	(0.008)	(0.009)	(3.876)	(0.898)
Post NH	0.004	0.006	-1.374	-0.826
	(0.013)	(0.012)	(5.787)	(1.179)
Observations	17,633,499	17,633,499	154,054	154,054
$(Pseudo-)R^2$	0.081	0.091	0.043	0.021

NOTES: Columns 1 shows the estimates of ϕ_1 and ϕ_2 from equation (5) using OLS and column 2 shows the corresponding marginal effects after logit evaluated at the mean of the independent variables. The estimation sample consists in all individual inpatient admissions to public hospitals (programmed and emergency) between 2000 and 2015. Columns 3 and 4 show the estimates of φ_1 and φ_2 from equation (6). In column 3 the dependent variable is the monthly number of programmed admissions from region m in hospital h. In column 4 the dependent variable is the monthly number of emergency admissions from region m in hospital h. The sample in columns 3 and 4 is a panel of region-hospital-month admissions. All models include hospital, region, and month fixed-effects. In all columns 1 to 4, the estimation sample excludes the entry month of the first NH and HC. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, *** p < 0.05, *** p < 0.01

dealing with bed-blockers that are residents of m and are admitted to hospital h. This pair-specific experience is built from frequent interactions between the discharge planning team at the hospital and the local coordinating team in the ACES region, which can foster teamwork and coordination.

Each hospital admits patients originating from different regions, and residents of a region can visit different hospitals. I can thus separate pair-specific experience from: (i) experience accumulated by hospital h dealing with bed-blockers from regions other than m; and (ii) experience accumulated by region m dealing with bed-blockers that visited hospitals other than h. Experience accumulated by a hospital from interacting with regions other than m might, for example, contribute to a more timely identification of potential bed-blockers by the discharge planning team. In turn, the experience accumulated by a region from interacting with hospitals other than h might improve the coordination between the local coordinating team and the NH and HC teams in the region, thus lowering times to find a vacancy for a patient. Accumulation of these types of experience might therefore also benefit patients living in region m who visit hospital h.

To understand the role of these three different types of experience in reducing the length

of stay of bed-blockers, I estimate the following equation:

$$y_{it} = \mu_1 B B_i + \mu_2 g(Exp_{hm\tau}) + \mu_3 g(Exp_{hm\tau}) B B_i + \delta X_i + \gamma_d + \gamma_t + \gamma_{mh} + \varepsilon_{it}$$
 (7)

, where γ_{mh} are fixed-effects for a hospital-region pair and $g(Exp_{hm\tau})$ is a function of the experience accumulated by hospital h and region m during period τ . All remaining notation is as previously defined. I specify q as follows:

$$g(Exp_{hm\tau}) = \eta_1 Exp_{hm\tau} + \eta_2 Exp_{-hm\tau} + \eta_3 Exp_{hm\tau}$$
(8)

, where $Exp_{hm\tau}$ is the experience accumulated by pair hm during period τ , $Exp_{h-m\tau}$ is the experience accumulated by hospital h during period τ from dealing with hospitals other than m, and $Exp_{-hm\tau}$ is the experience accumulated by region m during period τ from dealing with hospitals other than h.

For this analysis, I restrict the sample to region-periods after the entry of the first provider affiliated with the Network in a region (either a home-care team or a nursing home, whichever enters first). A relationship between a hospital-region pair hm starts at the moment when there is a bed-blocker originating from region m in hospital h. I measure the accumulated experience of a hospital-region pair using the cumulative number of bed-blockers originating from region m that are admitted to hospital h during a certain period τ . This is a proxy for the actual number of interactions between h and m, which I do no observe. I measure the experience accumulated by a hospital (region) from dealing with bed-blockers coming from other regions (hospitals) during period τ in a similar fashion. I alternatively define τ as the entire period between the episode of patient i and the entry of the first provider in region m, the year preceding episode i, and the two-year period preceding episode i.

Table 7 shows the estimates from equation (7) corresponding to the impact of the accumulation of relationship-specific experience by hospital h and region m on the length of stay of bed-blockers relative to regular patients. First, relationship-specific experience does not affect the length of stay of regular patients. Second, there is a negative relationship between the accumulated, pair-specific experience and the length of stay of bed-blockers relative to regular patients. According to these estimates, relationship-specific experience accumulated by the average hm pair is associated with a 1.2 days reduction in the length of stay of individuals with no family to care relative to regular patients. For individuals living alone and with inadequate housing, this reduction amounts to about 0.3 days. A significant flow of bed-blockers between a hospital and a region is needed in order to generate meaningful reductions in the length of stay of bed-blockers. For example, the relationship-specific experience accumulated by pairs at the top 10% of the experience distribution is associated with reductions of 2.8 days in the

Table 7: Results from estimating equation (7)

	(1)	(2)	(3)
	Total experience	Last year	Last 2 years
Relationship-specific experi	ence		
$Exp_{hm au}$	0.000	-0.000**	-0.000
	(0.000)	(0.000)	(0.000)
$Exp_{hm\tau} \times \text{Living alone}$	-0.001***	-0.003***	-0.002***
	(0.000)	(0.001)	(0.000)
$Exp_{hm\tau} \times No$ family to care	-0.004***	-0.004	-0.004**
	(0.001)	(0.004)	(0.002)
$Exp_{hm\tau} \times Housing/econ.$ issues	-0.001***	-0.001	-0.001
	(0.000)	(0.002)	(0.001)
Mean $Exp_{hm\tau}$	313.64	85.53	154.63
P90 $Exp_{hm\tau}$	730	197	354
P95 $Exp_{hm\tau}$	1,063	265	477
Observations	3,859,751	3,655,882	3,640,309
R^2	0.230	0.229	0.229

NOTES: The table shows the estimates from equation (7) corresponding to the accumulation of relationship-specific experience. Column 1 considers experience accumulated since the entry of the first provider in a region. Columns 2 and 3 consider experience accumulated during the 1 and 2 years preceding each episode, respectively. * p < 0.1, *** p < 0.05, **** p < 0.01

length of stay of individuals with no family to care, and of 0.7 days in the length of stay of individuals living alone and those with inadequate housing. Comparing across columns, recently accumulated experience seems no more relevant than total accumulated experience.

The full set of estimates from equation (7) is available in Table A.7 in the Appendix. Overall, these confirm the importance of relationship-specific experience relatively to other types of experience. Neither experience accumulated by hospital h from dealing with bed-blockers from regions other than m or experience accumulated by region m from dealing with bed-blockers from hospitals other than h show a clear association with reductions in the length of stay of bed-blockers. In some cases, they are even counterproductive and associated with increases in the length of stay of bed-blockers relative to regular patients.

7 Conclusion

I analyze whether the entry of nursing homes and teams providing home-care reduces bedblocking in Portuguese public hospitals. The bed-blockers in my sample are patients with a complex combination of health and social needs, who stay considerably longer at the hospital than regular patients. My empirical analysis relies on a generalized difference-in-differences design comparing the length of stay of bed-blockers and the length of stay of regular patients, before and after the entry of the first nursing home and the first home-care team in a region.

My baseline results show that home-care teams are successful at reducing bed-blocking. For example, individuals living alone and those with inadequate housing experience, on average, a reduction of 4 days in hospital length of stay after the entry of home-care teams in their region of residence. The entry of nursing homes only reduces the length of stay of bed-blockers with high care needs, such as a those admitted with a stroke.

These results are robust to alternative model specifications and definitions of the outcome variables, the relevant region, and treatment variables. An event-study approach shows that these results are typically not driven by underlying pre-trends. I find no evidence of changes in the coding frequency of the factors used to identify bed-blockers after the entry of NH and HC teams in a region. The reductions in the length of stay of bed-blockers do not affect the intensity of care received while at the hospital and do not increase their likelihood of a hospital readmission. Finally, the reductions in the length of stay of bed-blockers allow for increases in programmed admissions, suggesting that increased waiting times to elective care are a relevant economic cost of bed-blocking.

My results have important policy implications. If policy-makers aim at reducing bed-blocking, then the provision of home-care services is more effective than the opening of nursing home facilities. Indeed, the average bed-blocker does not seem to have sufficiently high care needs in order to benefit from nursing home care. This is not a peculiarity of my setting: the medical literature has highlighted that not all cases of delayed discharge are necessarily clinically complex (Pellico-López et al., 2019). Additionally, home-care teams are more flexible than nursing homes in that their capacity can be easily adjusted with respect to demand fluctuations. These findings are relevant for countries where bed-blocking threatens the regular functioning of the health system.

References

- Abadie, A., Athey, S., Imbens, G., and Wooldridge, W. (2017). When should you adjust standard errors for clustering? NBER Working Paper No. 24003.
- ACSS (2007). Custos unitários directos, Setembro 2007/2006.
- Agha, L., Frandsen, B., and Rebitzer, J. (2019). Fragmented division of labor and healthcare costs: Evidence from moves across regions. *Journal of Public Economics*, 169:144–159.
- Bakx, P., Wouterse, B., van Doorslaer, E., and Wong, A. (2020). Better off at home? Effects of a nursing home admission on costs, hospitalizations, and survival. *Journal of Health Economics*.
- Berger, T., Chen, C., and Frey, C. B. (2018). Drivers of disruption? estimating the Uber effect. European Economic Review, 110:197 210.
- Bitler, M. P. and Carpenter, C. S. (2016). Health insurance mandates, mammography, and breast cancer diagnoses. *American Economic Journal: Economic Policy*, 8(3):39–68.
- Bryan, K., Gage, H., and Gilbert, K. (2006). Delayed transfers of older people from hospital: causes and policy implications. *Health Policy*, 76:194–201.
- Canadian Institute for Health Information (CIHI) (2010). Health care in canada 2010. Ottawa, Canada.
- Cebul, R. D., Rebitzer, J. B., Taylor, L. J., and Votruba, M. E. (2008). Organizational fragmentation and care quality in the U.S. healthcare system. *Journal of Economic Perspectives*, 22(4):93–113.
- Chandra, A., Finkelstein, A., Sacarny, A., and Syverson, C. (2016). Health care exceptionalism? Performance and allocation in the US health care sector. *American Economic Review*, 106(8):2110–2144.
- Chari, A., Glick, P., Okeke, E., and Srinivasan, S. V. (2019). Workfare and infant health: Evidence from India's public works program. *Journal of Development Economics*, 138:116–134.
- Charlson, M., Pompei, P., Ales, K., and MacKenzie, C. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. *Journal of Chronic Diseases*, 40(5):373–383.

- Correia, S. (2016). Linear models with high-dimensional fixed effects: An efficient and feasible estimator. Technical report. Working Paper.
- Costa, A. P., Poss, J. W., Peirce, T., and Hirdes, J. P. (2012). Acute care inpatients with long-term delayed-discharge: evidence from a Canadian health region. *BMC Health Services Research*, 12(172).
- Costa-Font, J., Jimenez-Martin, S., and Vilaplana, C. (2018). Does long-term care subsidization reduce hospital admissions and utilization? *Journal of Health Economics*, 58:43–66.
- De Volder, R., Serra-Sastre, V., and Zamora, B. (2020). Examining the variation across acute trusts in patient delayed discharge. *Health Policy*.
- Diepstraten, M., Douven, R., and Wouterse, B. (2020). Can your house keep you out of a nursing home? *Health Economics*, 29(5):540–553.
- Doyle Jr, J. J., Graves, J. A., and Gruber, J. (2017). Uncovering waste in US healthcare: evidence from ambulance referral patterns. *Journal of Health Economics*, 54:25–39.
- Einav, L., Finkelstein, A., and Mahoney, N. (2018). Provider incentives and long-term costs: evidence from long-term care hospitals. *Econometrica*, 6:2161–2219.
- Einav, L., Finkelstein, A., and Mahoney, N. (2019). Long-term care hospitals: a case-study in waste. NBER Working Paper 24946.
- El-Darzi, E., Vasilakis, C., Chaussalet, T., and Millard, P. (1998). A simulation modelling approach to evaluating length of stay, occupancy, emptiness and bed blocking in a hospital geriatric department. *Health Care Management Science*, 1(2):143–149.
- Eliason, P. J., Grieco, P. L. E., McDevitt, R. C., and Roberts, J. W. (2018). Strategic patient discharge: the case of long-term care hospitals. *American Economic Review*, 108(11):3232–3265.
- Fernandez, J.-L. and Forder, J. (2008). Consequences of local variations in social care on the performance of the acute health care sector. *Applied Economics*, 40(12):1503–1518.
- Fernandez, J.-L., McGuire, A., and Raikou, M. (2018). Hospital coordination and integration with social care in England: the effect on post-operative length of stay. *Journal of Health Economics*, 61:233–243.
- Forder, J. (2009). Long-term care and hospital utilisation by older people: an analysis of substitution rates. *Health Economics*, 18:1322–1338.

- Gaughan, J., Gravelle, H., Santos, R., and Siciliani, L. (2017a). Long-term care provision, hospital bed-blocking, and discharge destination for hip fracture and stroke patients. *International Journal of Health Economics and Management*, 17:311–331.
- Gaughan, J., Gravelle, H., and Siciliani, L. (2015). Testing the bed-blocking hypothesis: Does nursing and care home supply reduce delayed hospital discharges? *Health Economics*, 24:32–44.
- Gaughan, J., Gravelle, H., and Siciliani, L. (2017b). Delayed discharges and hospital type: Evidence from the English NHS. *Fiscal Studies*, 38(3):495–519.
- Gaynor, M. and Anderson, G. F. (1995). Uncertain demand, the structure of hospital costs, and the cost of empty hospital beds. *Journal of Health Economics*, 14(3):291–317.
- Gonçalves, J. and Weaver, F. (2017). Effects of formal home care on hospitalizations and doctor visits. *International Journal of Health Economics and Management*, 17:203–233.
- Goodman-Bacon, A. (2018). Difference-in-differences with variation in treatment timing. NBER Working Paper 25018.
- Harper, S. (2014). Economic and social implications of aging societies. *Science*, 346(6209):587–591.
- Harris, J. E. (1977). The internal organization of hospitals: Some economic implications. *The Bell Journal of Economics*, 8(2):467–482.
- Hendy, P., Patel, J., Kordbacheh, T., Laskar, N., and Harbord, M. (2012). In-depth analysis of delays to patient discharge: a metropolitan teaching hospital experience. *Clinical Medicine*, 12(4):320–323.
- Holmås, T. H., Islam, M. K., and Kjerstad, E. (2013). Between two beds: inappropriately delayed discharges from hospitals. *International Journal of Healthcare Finance and Economics*, 13:201–217.
- Holmås, T. H., Kjerstad, E., Lurås, H., and Straume, O. R. (2010). Does monetary punishment crowd out pro-social motivation? a natural experiment on hospital length of stay. *Journal of Economic Behavior & Organization*, 75(2).
- Jin, G. Z., Lee, A., and Lu, S. F. (2018). Medicare payment to skilled nursing facilities: the consequence of the three-day rule. NBER Working Paper 25017.

- Johar, M., Jones, G. S., and Savage, E. (2013). Emergency admissions and elective surgery waiting times. *Health Economics*, 22(6):749–756.
- Katsaliaki, K., Brailsford, S., Browning, D., and Knight, P. (2005). Mapping care pathways for the elderly. *Journal of Health Organization and Management*, 19(1):57–72.
- Keeler, T. E. and Ying, J. S. (1996). Hospital costs and excess bed capacity: A statistical analysis. *Review of Economics and Statistics*, 78(3):470–481.
- Kellogg, R. (2011). Learning by drilling: Interfirm learning and relationship persistence in the Texas oilpatch. *The Quarterly Journal of Economics*, 126(4):1961–2004.
- Kleiner, S. A. (2019). Hospital treatment and patient outcomes: Evidence from capacity constraints. *Journal of Public Economics*, 175:94–118.
- Kümpel, C. (2019). Do financial incentives influence the hospitalization rate of nursing home residents? Evidence from Germany. *Health Economics*, 28:1235–1247.
- Lakdawalla, D. and Philipson, T. (2002). The rise in old-age longevity and the market for long-term care. *American Economic Review*, 92(1):295–306.
- Lopes, H., Mateus, C., and Hernández-Quevedo, C. (2018). Ten years after the creation of the Portuguese national network for long-term care in 2006: achievements and challenges. *Health Policy*, 122:210–216.
- Lopes, H., Mateus, C., and Rosati, N. (2019). Identifying the long-term care beneficiaries differences between risk factors of nursing homes and community-based services admissions. *Aging Clinical and Experimental Research*.
- Mateus, C. (2011). Portugal: results of 25 years of experience with DRGs, pages 381–400. Open University Press.
- McClean, S. and P., M. (2006). Where to treat the older patient? Can Markov models help us better under- stand the relationship between hospital and community care? *Journal of the Operational Research Society*, 58(2):255–261.
- McDonagh, M. S., Smith, D. H., and Goddard, M. (2000). Measuring appropriate use of acute beds: A systematic review of methods and results. *Health Policy*, 53:157–184.
- McKnight, R. (2006). Home care reimbursement, long-term care utilization, and health outcomes. *Journal of Public Economics*, 90:293–323.

- Mur-Veeman, I. and Govers, M. (2011). Buffer management to solve bed-blocking in the netherlands 2000-2010. cooperation from an integrated chain perspective as a key success factor for managing patient flows. *International Journal of Integrated Care*, 11 (Special 10th Anniversary Edition).
- National Audit Office (NAO) (2016). Discharging older patients from hospital. London, United Kingdom.
- Osorio, C. and Bierlaire, M. (2007). An analytic finite capacity queueing network model capturing the propagation of congestion and blocking. *European Journal of Operational Research*, 196(3):996–1007.
- Pauly, M. and Wilson, P. (1986). Hospital output forecasts and the cost of empty hospital beds. *Health Services Research*, 21(3):403–428.
- Pellico-López, A., Cantarero, D., Fernández-Feito, A., Parás-Bravo, P., Cayón de las Cuevas, J., and Paz-Zulueta, M. (2019). Factors associated with bed-blocking at a university hospital (Cantabria, Spain) between 2007 and 2015: A retrospective observational study. *International Journal of Environmental Research and Public Health*, 16(18):3304.
- Santana, S. (2010). Reforming long-term care in Portugal: dealing with the multidimensional character of quality. Social Policy & Administration, 44(4):512–528.
- Siciliani, L. (2014). The economics of long-term care. The B.E. Journal of Economic Analysis and Policy, 14(2):343–375.
- Simões, J., Augusto, G., Fronteira, I., and Hernández-Quevedo, C. (2017). Portugal: Health system review. *Health Systems in Transition*, 19(2):1–184.
- Styrborn, K. and Thorslund, M. (1993). Bed-blockers: Delayed discharge of hospital patients in a nationwide perspective in Sweden. *Health Policy*, 26(2):155 170.
- UMCCI (2011). Relatório de monitorizacção do desenvolvimento e da actividade da Rede Nacional de Cuidados Continuados Integrados (RNCCI) 2010.
- Walsh, B., Lyons, S., Smith, S., Wren, M.-A., Eighan, J., and Morgenroth, E. (2020). Does formal home care reduce inpatient length of stay? *Health Economics*, pages 1–17.
- World Health Organization (WHO) (2010). The World Health Report. Health systems financing: the path to universal coverage.

A Supplementary tables and figures

Table A.1: Results from estimating equation (2) with different sets of covariates

	(1)	(2)	(3)
	Region and time FE	Add DRG FE	Baseline
Bed-blocking indicators (α_1)			
Living alone	12.184***	9.430***	9.226***
	(1.457)	(1.361)	(1.357)
No family to care	27.703***	18.022***	17.984***
	(4.225)	(4.187)	(4.184)
Housing/econ. issues	21.434***	18.022***	17.984***
	(2.754)	(2.631)	(2.611)
Effects of HC and NH entry			
Post HC (α_2)	-0.047	0.008	0.003
	(0.125)	(0.106)	(0.105)
Post NH (α_4)	0.009	0.048	0.095
	(0.206)	(0.187)	(0.193)
Differential effects of HC entry (α_3)			
Post HC \times Living alone	-5.284***	-4.303***	-4.361***
	(1.689)	(1.550)	(1.559)
Post HC \times No family to care	-0.892	-0.242	-0.384
	(5.572)	(5.320)	(5.318)
Post HC \times Housing/econ. issues	-5.318**	-4.664**	-4.673**
	(2.252)	(2.145)	(2.143)
Differential effects of NH entry (α_5)			
Post NH \times Living alone	0.535	0.516	0.539
	(1.259)	(1.099)	(1.097)
Post NH \times No family to care	0.438	0.078	0.040
	(4.082)	(3.756)	(3.777)
Post NH \times Housing/econ. issues	-1.263	-1.084	-1.154
	(2.584)	(2.455)	(2.435)
Observations	7,868,350	7,868,350	7,868,350
R^2	0.019	0.203	0.210

NOTES: The table shows the estimates of α_1 to α_5 from equation (2) using different sets of covariates. Column 1 only includes region and admission month fixed-effects. Columns 2 adds the DRG fixed-effects. Finally, in column 3 adds the individual demographics and comorbidities. The specification in column 3 is my baseline specification. The sample excludes admissions in the entry month of the first NH and HC in a region. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, ** p < 0.05, *** p < 0.01

Table A.2: Results from estimating equation (2) with alternative sample definitions

	(1)	(2)	(3) Excluding	(4)	(5) Including
	Baseline	Balanced panel of hospitals	patients who died	Excluding transferred patients	programmed admissions
Bed-blocking indicators (α_1)					
Living alone	9.226***	9.224***	8.939***	9.202***	9.470***
	(1.357)	(1.361)	(1.333)	(1.418)	(1.233)
No family to care	23.282***	23.444***	20.998***	23.061***	25.802***
	(4.184)	(4.219)	(3.941)	(4.113)	(4.036)
Housing/econ. issues	17.984***	18.026***	16.530***	18.037***	18.304***
	(2.611)	(2.614)	(2.412)	(2.721)	(2.581)
Effects of HC and NH entry					
Post HC (α_2)	0.003	-0.000	0.014	0.003	-0.054
	(0.105)	(0.106)	(0.104)	(0.106)	(0.060)
Post NH (α_4)	0.095	0.093	0.059	0.204	0.036
	(0.193)	(0.194)	(0.191)	(0.157)	(0.079)
Differential effects of HC entry (α_3)					
Post HC \times Living alone	-4.361***	-4.397***	-4.369***	-4.470***	-4.310***
	(1.559)	(1.569)	(1.577)	(1.620)	(1.521)
Post HC \times No family to care	-0.384	-0.555	1.290	-0.184	-0.034
	(5.318)	(5.380)	(4.976)	(5.449)	(5.255)
Post HC \times Housing/econ. issues	-4.673**	-4.917**	-4.150**	-4.573**	-5.555**
	(2.143)	(2.135)	(2.057)	(2.179)	(2.197)
Differential effects of NH entry (α_5)					
Post NH \times Living alone	0.539	0.545	0.556	0.629	0.699
	(1.097)	(1.097)	(1.107)	(1.185)	(1.043)
Post NH \times No family to care	0.040	-0.076	0.204	0.077	-2.653
	(3.777)	(3.765)	(3.819)	(3.900)	(3.539)
Post NH \times Housing/econ. issues	-1.154	-1.306	-0.676	-1.389	-0.244
	(2.435)	(2.435)	(2.219)	(2.456)	(2.713)
Observations	7,868,350	7,806,365	7,239,610	7,484,930	17,632,688
R^2	0.210	0.210	0.230	0.216	0.284

NOTES: The table shows the estimates of α_1 to α_5 in equation (2) using alternative. Column 1 reproduces the baseline results. Columns 2 restricts the sample to a balanced panel of hospitals. Columns 3 and 4 exclude patients who died in the hospital and those who were transferred to other hospitals, respectively. Finally, column 5 includes both emergency and programmed inpatient admissions. All samples exclude admissions in the entry month of the first NH and HC in a region. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, *** p < 0.05, **** p < 0.01

Table A.3: Results from estimating equation (2) with alternative outcome variables

	(1)	(2)	(3)	(4)	(5)
	Baseline	LOS>p50	LOS>p75	LOS>p90	LOS>Trim-point
Bed-blocking indicators (α_1)					
Living alone	9.226***	0.124***	0.177***	0.146***	0.077***
	(1.357)	(0.011)	(0.016)	(0.015)	(0.012)
No family to care	23.282***	0.166***	0.294***	0.303***	0.195***
	(4.184)	(0.016)	(0.028)	(0.037)	(0.033)
Housing/economic issues	17.984***	0.167***	0.268***	0.253***	0.149***
	(2.611)	(0.014)	(0.020)	(0.025)	(0.021)
Effects of HC and NH entry					
Post HC (α_2)	0.003	0.000	0.001	-0.000	-0.001
	(0.105)	(0.005)	(0.004)	(0.002)	(0.001)
Post NH (α_4)	0.095	-0.008	0.005	0.004	0.002
	(0.193)	(0.010)	(0.006)	(0.003)	(0.001)
Differential effects of HC entry (α_3)					
Post $HC \times Living alone$	-4.361***	-0.054***	-0.095***	-0.076***	-0.040***
	(1.559)	(0.018)	(0.025)	(0.022)	(0.012)
Post HC \times No family to care	-0.384	-0.010	-0.004	0.011	-0.013
	(5.318)	(0.023)	(0.040)	(0.049)	(0.038)
Post HC \times Housing/econ. issues	-4.673**	-0.053***	-0.076***	-0.062**	-0.046**
	(2.143)	(0.013)	(0.020)	(0.024)	(0.017)
Differential effects of NH entry (α_5)					
Post NH \times Living alone	0.539	0.025	0.040	0.032*	0.001
	(1.097)	(0.020)	(0.025)	(0.017)	(0.010)
Post NH \times No family to care	0.040	0.017	0.047	0.043	0.000
	(3.777)	(0.020)	(0.033)	(0.037)	(0.029)
Post NH \times Housing/econ. issues	-1.154	0.011	0.026	0.026	-0.003
	(2.435)	(0.015)	(0.023)	(0.026)	(0.020)
Observations	7,868,350	7,868,350	7,868,350	7,868,350	7,031,266
R^2	0.210	0.306	0.213	0.165	0.087

NOTES: The table shows the estimates of α_1 to α_5 from equation (2) using alternative outcome variables. In the baseline model the dependent variable is length of stay in days. In columns 2 to 4 the dependent variable is a binary indicator taking value 1 for individuals above percentiles 50, 75, and 90 of pooled the distribution of length of stay, respectively. Finally, in column 5 it is a binary indicator for episodes with length of stay above their DRG trim-point. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. The sample excludes admissions in the entry month of the first NH and HC in a region. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, *** p < 0.05, **** p < 0.01

Table A.4: Elasticities estimates

	(1)	(2)	(3)	(4)
	Ln No. of places	Ln No. of places, per 10,000 inhab.	No. of providers	Ln No. of providers, per 10,000 inhab.
Bed-blocking indicators (α_1)				
Living alone	0.415***	0.419***	0.417***	0.385***
	(0.041)	(0.039)	(0.040)	(0.025)
No family to care	0.786***	0.827***	0.837***	0.870***
	(0.100)	(0.096)	(0.095)	(0.080)
Housing/econ. issues	0.661***	0.668***	0.669***	0.660***
	(0.070)	(0.070)	(0.069)	(0.058)
Effects of HC and NH intensity				
$\ln(\text{HC intensity}) (\alpha_2)$	0.006*	0.014*	0.014*	0.068*
	(0.003)	(0.007)	(0.008)	(0.036)
$ln(NH intensity) (\alpha_4)$	-0.006	-0.020*	-0.026**	-0.151***
	(0.005)	(0.012)	(0.012)	(0.049)
Differential effects of HC intensity (α_3)				
Living alone $\times \ln(HC \text{ intensity})$	-0.030**	-0.065**	-0.082***	-0.427*
	(0.012)	(0.029)	(0.030)	(0.219)
No family to care $\times \ln(HC \text{ intensity})$	0.019	0.070	0.019	-0.077
	(0.028)	(0.063)	(0.065)	(0.308)
Housing/econ. issues $\times \ln(HC \text{ intensity})$	-0.022	-0.031	-0.076**	-0.454*
	(0.013)	(0.035)	(0.034)	(0.250)
Differential effects of NH intensity (α_5)				
Living alone $\times \ln(NH \text{ intensity})$	0.005	-0.013	0.007	0.010
	(0.014)	(0.028)	(0.035)	(0.174)
No family to care $\times \ln(NH \text{ intensity})$	-0.010	-0.097	-0.055	-0.554*
	(0.027)	(0.059)	(0.070)	(0.298)
Housing/econ. issues $\times \ln(NH \text{ intensity})$	-0.008	-0.060	-0.021	-0.285
	(0.018)	(0.039)	(0.045)	(0.216)
Mean Ln HC intensity in 2015	4.35	1.75	1.64	0.26
Mean Ln NH intensity in 2015	4.49	1.99	1.68	0.29
Observations	7,868,350	7,868,350	7,868,350	7,868,350
R^2	0.314	0.315	0.315	0.315

NOTES: The table shows the estimates of α_1 to α_5 in equation (2) using continuous treatment measures. The dependent variable is the natural logarithm of length of stay (+1). In column 1 the treatment is the natural log of the monthly number of places in home-care teams and beds in nursing home units in region m (+1). In column 2, this measure is scaled by the population living in region m. In column 3 the treatment is the natural log monthly number of home-care teams and nursing home units in region m (+1). In column 4, this measure is scaled by the population living in region m. The middle panel shows the 2015 mean of the treatment variables. The sample excludes admissions in the entry month of the first NH and HC in a region. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, *** p < 0.05, *** p < 0.01

Table A.5: Results from estimating equation (2) among specific patient groups

	(1)	(2)	(3)	(4)	(5)
	Baseline	Stroke	Respiratory conditions	Underwent surgery	Charlson>1
Bed-blocking indicators (α_1)					
Living alone	9.226***	13.883***	6.872***	15.853***	9.460***
	(1.357)	(3.304)	(1.402)	(3.567)	(1.290)
No family to care	23.282***	28.687***	17.905***	43.942***	26.445***
	(4.184)	(5.755)	(4.037)	(7.618)	(4.944)
Housing/econ. issues	17.984***	27.084***	14.044***	37.104***	20.563***
	(2.611)	(4.655)	(2.559)	(6.237)	(3.257)
Effects of HC and NH entry					
Post HC (α_2)	0.003	-0.294	0.162	0.078	-0.008
	(0.105)	(0.258)	(0.171)	(0.148)	(0.160)
Post NH (α_4)	0.095	0.337	0.403	-0.016	0.298
	(0.193)	(0.557)	(0.257)	(0.176)	(0.281)
Differential effects of HC entry (α_3)					
Post HC \times Living alone	-4.361***	-5.393*	-4.009**	-0.739	-4.860***
	(1.559)	(2.742)	(1.826)	(3.482)	(1.660)
Post HC \times No family to care	-0.384	1.801	2.083	-15.132	-4.086
	(5.318)	(8.170)	(4.594)	(10.685)	(5.168)
Post HC \times Housing/econ. issues	-4.673**	-0.385	-4.315	-11.159**	-5.251**
	(2.143)	(3.524)	(2.586)	(4.944)	(2.279)
Differential effects of NH entry (α_{-5})					
Post NH \times Living alone	0.539	-2.862*	1.231	-4.262	1.039
	(1.097)	(1.604)	(1.169)	(3.787)	(1.396)
Post NH \times No family to care	0.040	-1.856	1.670	3.635	2.387
	(3.777)	(6.668)	(3.938)	(9.661)	(4.242)
Post NH \times Housing/econ. issues	-1.154	-9.634**	1.191	-3.511	-1.319
	(2.435)	(3.905)	(2.849)	(5.328)	(3.000)
Observations	7,868,350	278,198	913,309	1,847,227	2,232,164
R^2	0.210	0.070	0.111	0.296	0.162

NOTES: The table shows the estimates of α_1 to α_5 from equation (2) for alternative patient groups. Column 1 reproduces the baseline results. Columns 2 and 3 restrict the sample to individuals admitted for stroke and respiratory conditions (pneumonia, bronchitis, etc.), respectively. Finally, columns 4 and 5 restrict the sample to individuals who underwent surgery during their stay at the hospital and to patients whose Charlson score is above 1, respectively. The sample excludes admissions in the entry month of the first NH and HC in a region. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, *** p < 0.05, **** p < 0.01

Table A.6: Results form estimating equation (2) among specific demographic groups

	(1)	(2)	(3)	(4)	(5)	(6)
	Baseline	Under 50	Over 50	Over 65	Men	Women
Bed-blocking indicators (α_{-1})						
Living alone	9.226***	10.715***	9.049***	8.768***	8.831***	9.550***
	(1.357)	(1.848)	(1.431)	(1.457)	(1.041)	(1.786)
No family to care	23.282***	28.872***	22.041***	21.334***	23.978***	22.606***
	(4.184)	(6.588)	(3.934)	(4.285)	(4.243)	(4.233)
Housing/econ. issues	17.984***	13.112***	19.612***	19.427***	17.017***	19.087***
	(2.611)	(1.905)	(3.013)	(3.050)	(2.073)	(3.508)
Effects of HC and NH entry						
Post HC (α_2)	0.003	-0.022	-0.016	-0.022	-0.074	0.060
	(0.105)	(0.042)	(0.147)	(0.152)	(0.134)	(0.096)
Post NH (α_4)	0.095	-0.081	0.208	0.249	0.123	0.076
	(0.193)	(0.097)	(0.259)	(0.267)	(0.236)	(0.167)
Differential effects of HC entry (α_3)						
Post HC \times Living alone	-4.361***	-8.100***	-3.959**	-3.885**	-2.939**	-5.413***
	(1.559)	(2.247)	(1.637)	(1.705)	(1.273)	(1.901)
Post HC \times No family to care	-0.384	1.408	-0.422	-1.178	0.712	-1.246
	(5.318)	(7.604)	(5.299)	(5.570)	(5.222)	(5.770)
Post HC \times Housing/econ. issues	-4.673**	-5.507**	-4.296*	-3.618	-5.645***	-3.472
	(2.143)	(2.240)	(2.293)	(2.221)	(1.948)	(2.591)
Differential effects of NH entry (α_5)						
Post NH \times Living alone	0.539	1.195	0.455	0.246	0.373	0.639
	(1.097)	(2.478)	(1.104)	(1.017)	(1.384)	(1.062)
Post NH \times No family to care	0.040	-8.617	1.492	2.326	-1.673	1.522
	(3.777)	(6.696)	(3.683)	(3.525)	(4.027)	(4.048)
Post NH \times Housing/econ. issues	-1.154	-0.595	-1.610	-1.647	0.716	-3.357
	(2.435)	(2.150)	(2.554)	(2.350)	(2.377)	(2.657)
Observations	7,868,350	2,877,662	4,990,661	3,834,418	3,294,812	4,573,522
R^2	0.210	0.248	0.169	0.164	0.178	0.234

 \overline{NOTES} : The table shows the estimates of α_1 to α_5 in equation (2) for patients with different demographics. Column 1 reproduces the baseline results. Columns 2 to 4 restrict the sample to individuals under 50, over 50, and over 65 years old, respectively. Columns 5 and 6 restrict the sample to men and women, respectively. The sample excludes admissions in the entry month of the first NH and HC in a region. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, ** p < 0.05, *** p < 0.01

Table A.7: Full set of results from estimating equation (7)

	(1)	(2)	(3)
	Total experience	Last year	Last 2 years
Hospital h , regions other than n	$\overline{\imath}$		
$Exp_{h-m au}$	-0.000***	-0.001***	-0.001***
	(0.000)	(0.000)	(0.000)
Living alone $\times Exp_{h-m\tau}$	-0.000**	-0.002***	-0.001***
	(0.000)	(0.001)	(0.000)
No family to care $\times Exp_{h-m\tau}$	0.005***	0.027***	0.015***
	(0.001)	(0.008)	(0.004)
Housing/econ. issues× $Exp_{h-m\tau}$	0.001**	0.006***	0.003***
	(0.001)	(0.002)	(0.001)
Region m , hospitals other than	h		
$Exp_{-hm au}$	-0.000	-0.000**	-0.000
	(0.000)	(0.000)	(0.000)
Living alone $\times Exp_{-hm\tau}$	-0.000	0.002	0.001
	(0.000)	(0.001)	(0.001)
No family to care $\times Exp_{-hm\tau}$	0.000	0.011***	0.005**
	(0.002)	(0.004)	(0.002)
Housing/econ. issues $\times Exp_{-hm\tau}$	0.000	0.005*	0.001
	(0.001)	(0.003)	(0.001)
Hospital h , region m			
$Exp_{hm au}$	0.000	-0.000**	-0.000
	(0.000)	(0.000)	(0.000)
Living alone $\times Exp_{hm\tau}$	-0.001***	-0.003***	-0.002***
	(0.000)	(0.001)	(0.000)
No family to care $\times Exp_{hm\tau}$	-0.004***	-0.004	-0.004**
	(0.001)	(0.004)	(0.002)
Housing/economic issues $\times Exp_{hm\tau}$	-0.001***	-0.001	-0.001
· · · · · · · · · · · · · · · · · · ·	(0.000)	(0.002)	(0.001)
Mean $Exp_{hm\tau}$	313.64	85.53	154.63
P50 $Exp_{hm\tau}$	156	49	87
P90 $Exp_{hm\tau}$	730	197	354
P95 $Exp_{hm\tau}$	1,063	265	477
Observations	3,859,751	3,655,882	3,640,309
R^2	0.230	0.229	0.229

NOTES: The table shows the full set of experience estimates from equation (7). Column 1 considers experience accumulated since the entry of the first provider in a region. Columns 2 and 3 consider experience accumulated during the last 1 and 2 years, respectively. * p < 0.1, *** p < 0.05, **** p < 0.01

Figure A.1: Relationship between region rankings with respect to entry of first NH and HC team

NOTES: The scatterplot conveys the relationship between the ranking of regions with respect to the entry of their first NH and the entry of their first HC team. I allow for ties in the rankings. Each point corresponds to an ACES region. Some of the points overlap in the plot. The correlation between the two rankings in 0.29.

Figure A.2: Density of months between entry of the first NH and the first HC team in a region

NOTES: Kernel density estimate of the difference between HC and NH treatment timing, in months. The unit of observation is the region.

B Alternative empirical approaches

B.1 Exploiting only variation in treatment timing

This specification does not use regular patients as control group, thus only exploiting variation in the length of stay of bed-blockers originating from differential treatment timing. I estimate:

$$y_{it} = \omega_1 PostHC_{mt} + \omega_2 PostNH_{mt} + \delta X_i + \gamma_d + \gamma_m + \gamma_t + \varepsilon_{it}$$
(9)

Notation is as before. The coefficients of interest are ω_1 and ω_2 , capturing the change in the length of stay of bed-blockers after the entry of the first home-care team and the first nursing home in a region, respectively. Equation (9) is estimated three times, for each of the three types of bed-blocker. Table B.1 shows the results. The number of observations used in each estimation is substantially smaller. The impact of the entry of the first home-care team in a region reduces the length of stay of individuals living alone by 3.4 days, similar to the baseline results. The other estimates are not statistically significant.

Table B.1: Results from exploiting differential treatment timing

	(1)	(2)	(3)
	Living alone	No family to care	Housing/ econ. issues
Post HC	-3.569**	-1.207	-1.678
	(1.589)	(3.107)	(1.836)
Post NH	3.190	0.143	1.408
	(4.816)	(3.889)	(3.101)
Observations	28,068	11,706	26,249
R^2	0.179	0.243	0.220

NOTES: The table shows the estimates of ω_1 and ω_2 from equation (9). In column 1 the sample consists of individuals living alone. In columns 2 and 3 it consists of individuals with no family to care and with housing issues or other economic circumstances, respectively. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. The sample excludes admissions in the entry month of the first NH and HC in a region. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, ** p < 0.05, *** p < 0.01

B.2 Exploiting only differences between bed-blockers and regular patients

These specifications are similar to equation (2), but restrict the comparison between bed-blockers and regular patients living in regions that were treated in a given year, thereby greatly limiting the variation in treatment timing. I focus on the years were the largest number of regions was treated. For the entry of the first nursing home I focus on the years of 2006 and 2007 (38% and 34% of the regions experienced the entry of the first NH in these years, respectively). For the entry of the first home-care team, I focus on the years of 2008, 2009, and 2010 (17%, 25%, and 54% of the regions experienced the entry of the first HC team in these years, respectively).

Table B.2 shows the results. For ease of comparison, column 1 shows the baseline results using all the treatment cohorts. In general, the patterns are similar across regions treated in different years, even though statistical significance is sometimes lost. This suggests that concerns about variation in treatment timing are limited in my settings.

Table B.2: Results from estimating equation (2) for specific treatment years

	(1)	(2)	(3)	(4)	(5)	(6)
	Baseline	NH in 2006	NH in 2007	HC in 2008	HC in 2009	HC in 2010
Bed-blocking indicators						
Living alone	9.266***	7.150***	10.885***	7.883***	12.730***	8.514***
	(1.357)	(1.265)	(2.638)	(1.614)	(2.370)	(1.649)
No family to care	23.282***	11.781***	32.638***	17.537***	35.693***	18.912***
	(4.184)	(2.505)	(7.784)	(5.062)	(8.994)	(2.779)
Housing/econ.issues	17.984***	14.329***	24.014***	16.236***	23.141***	15.971***
	(2.611)	(2.487)	(3.078)	(3.526)	(3.900)	(2.779)
Effects of HC and NH entry						
Post HC (α_2)	0.003	-0.038	-0.005	-0.158	-0.254	0.288*
	(0.105)	(0.132)	(0.236)	(0.217)	(0.266)	(0.146)
Post NH (α_4)	0.095	0.344	0.056	0.033	-0.102	0.209
	(0.193)	(0.267)	(0.205)	(0.257)	(0.148)	(0.239)
Differential effects of HC entry (α_3)						
Post HC \times Living alone	-4.361***	-1.050	-5.850***	-0.596	-5.280***	-3.923*
	(1.559)	(1.672)	(1.167)	(1.614)	(0.965)	(2.221)
Post HC \times No family to care	-0.384	0.902	-13.539**	2.868	-11.355*	4.488
	(5.318)	(2.217)	(4.898)	(3.232)	(5.745)	(5.621)
Post HC \times Housing/econ. issues	-4.673**	-3.658	-7.000***	-5.790	-6.049**	-3.068
	(2.143)	(2.209)	(2.199)	(5.376)	(2.485)	(2.617)
Differential effects of NH entry (α_5)						
Post NH \times Living alone	0.539	0.118	-0.674	-0.748	-2.845	1.772
	(1.097)	(1.562)	(2.291)	(1.373)	(1.691)	(1.372)
Post NH \times No family to care	0.040	0.249	3.752	-6.249**	-2.975	4.034
	(3.777)	(2.555)	(4.528)	(1.983)	(3.701)	(5.238)
Post NH \times Housing/econ. issues	-1.154	-1.436	-3.082	0.976	-5.456***	0.383
	(2.435)	(2.223)	(1.882)	(4.439)	(1.171)	(3.417)
Observations	7,868,350	2,766,703	2,824,736	1,282,011	2,412,916	4,033,208
R^2	0.210	0.214	0.200	0.205	0.200	0.223

NOTES: The table shows the estimates of α_1 to α_5 from equation (2). Column 1 shows the baseline results. Columns 2 and 3 restrict the sample to regions where the first nursing home entered in 2006 and 2007, respectively. Columns 4 to 6 restrict the sample to regions where the first home-care team entered in 2008, 2009, and 2010, respectively. All models include individual demographics and comorbidities and admission month, DRG, and region (ACES) fixed-effects. The sample excludes admissions in the entry month of the first NH and HC in a region. Standard errors in parenthesis are heteroskedasticy-robust and clustered at the region level. * p < 0.1, *** p < 0.05, *** p < 0.01