

Data Science Academy

Seja muito bem-vindo(a)!

Data Science Academy

Machine Learning - Regressão

Regressão

- Modelos de Aprendizagem
- Fundamentos Teóricos
- Avaliação, Otimização, Regularização, Customizações
- Outros Conceitos Relacionados à Criação do Modelo
- Prática

Data Science Academy

O que é Regressão?

Aprovação de Crédito de um Indivíduo

Atributo	Valor
Sexo	Masculino
Idade	34
Salário Mensal	R\$ 18.000,00
Anos no Emprego Atual	3
Anos de Residência	7
Saldo Bancário	R\$ 32.671 <mark>,9</mark> 4

Classificação

Decisão de crédito (Sim/Não)

Regressão

Quantidade de crédito (dinheiro)

Modelos de Regressão

Uma variável independente x, explica a variação em outra variável, que é chamada variável dependente y. Este relacionamento existe em apenas uma direção:

variável independente (x) -> variável dependente (y)

Análise de regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas de tal forma que uma variável possa ser predita a partir de outra.

Tipos de Modelos de Regressão Linear

- 1 Variável Dependente Y
- 1 Variável Independente X
- 1 Variável Dependente Y
- 2 ou + Variáveis Independentes X, X_i

A análise de regressão compreende quatro tipos básicos de modelos:

Linear Simples

Linear Múltiplo

Não Linear Simples Não Linear Múltiplo

Regressão Linear Simples

Regressão Linear Múltipla Regressão Logística

Qual o objetivo em se determinar a relação entre duas variáveis?

Prever a população futura de uma cidade simulando a tendência de crescimento da população no passado

Qual o objetivo em se determinar a relação entre duas variáveis?

Produtividade (Y) de uma área agrícola é alterada quando se aplica certa quantidade (X) de fertilizante sobre a terra

$$\hat{y} = a + bx$$

Onde:

= valor previsto de y dado um valor para x

= variável independente

= ponto onde a linha intercepta o eixo y

= inclinação da linha reta

Método dos Mínimos Quadrados

Esse método definirá uma reta que minimizará a soma das distâncias ao quadrado entre os pontos plotados (X, Y) e a reta (que são os valores previstos de X',Y').

Método dos Mínimos Quadrados

- Erro de Estimativa
- Coeficiente de Determinação

Método dos Mínimos Quadrados

- Erro de Estimativa
- Coeficiente de Determinação

Coeficiente de Correlação

Gráfico A (r = 1.0): correlação positiva perfeita entre x e y

Gráfico B (r = -1.0): correlação negativa perfeita entre x e y

Gráfico C (r = 0.6): relação positiva moderada: y tende a aumentar se x aumenta, mas não

necessariamente na mesma taxa observada no Gráfico A

Gráfico D (r = -0.4): relação negativa fraca: o coeficiente de correlação é próximo de zero ou

negativo: y tende a diminuir se x aumenta

Gráfico E (r = 0): Sem relação entre x e y

Os valores de r variam entre -1.0 (uma forte relação negativa) até +1.0, uma forte relação positiva.

Coeficiente de Correlação

O coeficiente de determinação indica o quanto a reta de regressão explica o ajuste da reta, enquanto que o coeficiente de correlação deve ser usado como uma medida de força da relação entre as variáveis

- Soma Total dos Quadrados (STQ) Mostra a variação em Y em torno da própria média.
- Soma dos Quadrados de Regressão (SQR) Oferece a variação de Y considerando as variáveis X utilizadas no modelo.
- Soma dos Quadrados dos Resíduos (SQU) Variação de Y que não é explicada pelo modelo elaborado.

$$STQ = SQR + SQU$$

Nossa próxima etapa é compreender o poder explicativo do modelo de regressão

Coeficiente de Ajuste R²

$$R^2 = \frac{SQR}{SQR + SQU} = \frac{SQR}{SQT}$$

O coeficiente de ajuste R2 não diz aos analistas se uma determinada variável explicativa é estatisticamente significante e se esta variável é a causa verdadeira da alteração de comportamento da variável dependente.

Data Science Academy

Avaliando o Modelo de Regressão

Típicos problemas que podem ser resolvidos com Regressão

- Quantos computadores serão vendidos no próximo mês?
- Quantas pessoas vão acessar nosso web site na próxima semana?
- Qual o salário de uma pessoa de acordo com a performance escolar?
- Qual o total de vendas relacionado ao número de seguidores em redes sociais?

Número de Funcionários Por Turno	Número de Seguidores nas Redes Sociais	Preço da Matéria-Prima (R\$)	Cotação do Dólar	Total de Vendas (R\$)
1400	54000	5000	3.44	1245900
1359	55000	5400	3.12	1302763
1402	55430	5300	3.50	1345119

Atributos ou Features

Variável Resposta

1	Número de Seguidores nas Redes Sociais	Total de Vendas (R\$)
	54000	1245900
	55000	1302763
	55430	1345119

Atributo (X)

Variável Resposta (y)

Número de Seguidores nas Redes Sociais	57
54000	
55000	
55430	

Total de Vendas (R\$)	Total de Vendas Previsto (R\$)
1245900	1278450
1302763	1302763
1345119	1320876

Atributos ou Features (X)

Variável Resposta Previsão f(x)

$$y_i - f(x_i)$$

$$f(x_i) - y_i$$

$$| f(x_i) - y_i |$$

$$(y_i - f(x_i))^2$$

Método dos Mínimos Quadrados (Least Square Error)

Total de Vendas (R\$)		Total de Vendas Previsto (R\$)
	1245900	1278450
	1302763	1334789
	1345119	1320876

Mean absolute error (MAE)= $\sum_{i=1}^{n} |f(x_i) - y_i|$

$$RMSE = \sqrt{\sum_{i=1}^{n} (y_i - f(x_i))^2}$$

Resposta (y)

- (SST Sum Square Total) Soma Total dos Quadrados (STQ) Mostra a variação em Y em torno da própria média.
- (SSR Sum Square Regression) Soma dos Quadrados de Regressão (SQR) – Oferece a variação de Y considerando as variáveis X utilizadas no modelo.
- (SSE Sum Square Error) Soma dos Quadrados dos Resíduos (SQU) Variação de Y que não é explicada pelo modelo elaborado.

$$SST = SSE + SSR$$

$$SST = SSE + SSR$$

Se o SSR é alto e o SSE é baixo, o Modelo de Regressão explica bem a variação nas previsões

Se o SSR é baixo e o SSE é alto, o Modelo de Regressão não explica bem a variação nas previsões

- SSR = medida da variação que pode ser explicada
- SSE = medida da variação que não pode ser explicada
- SST = medida da variação total

Regressão Linear Simples

Regressão Linear Múltipla

Regressão Linear Simples

Tamanho (m2)	Preço (R\$)
105	89.000
120	145.000
115	123.000

Regressão Linear Múltipla

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2$$

Tamanho (m2)		Idade do Prédio	Número Vagas na	Número de	Preço (R\$)
Ī	105	(Anos)	Garagem 2	Quartos 2	89.000
	120	4	3	3	145.000
	115	8	2	3	123.000

Regressão Linear Múltipla

Interpretando Modelos de Regressão Linear Simples e Múltipla

- Teste F de Significância Global
- Testes de Significância Individuais
- Coeficientes R2 e R2 Ajustado
- Coeficientes

Teste F de Significância Global

O modelo é útil para prever o preço?

Estatística a	e regressão
---------------	-------------

0,66
0,44
0,41
132352,0
40

F de significação: teste F de significância global do modelo. "Há evidências de que pelo menos uma variável no modelo está relacionada com o preço?"

Como valor-p do teste F < 0,05, há evidências estatísticas.

ANOVA

	gl	SQ	MQ	F	F de significação	Valor-p do
Regressão	2	5,135E+11	2,567E+11	1,466E+01	0,000	teste F
Residuo	37	6,481E+11	1,752E+10			
Total	39	1,162E+12				

	Coeficientes E	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	440107,0	182742,3	2,408	0,021	69836,0	810378,1
tamanho	6772,1	1555,7	4,353	0,000	3620,0	9924,2
idade do prédio	-19129,7	8372,9	-2,285	0,028	-36094,8	-2164,5

Testes de Significância Individuais

Quais variáveis estão realcionadas com o preço?

R múltiplo	0,66
R-Quadrado	0,44
R-quadrado ajustado	0,41
Erro padrão	132352,0
Observações	40

4	40	-0.			
: Д	N	O	w	Д	
		~			

	gl	SQ.	MQ	F	F de significação
Regressão	2	5,135E+11	2,567E+11	1,466E+01	0,000
Residuo	37	6,481E+11	1,752E+10		
Total	39	1,162E+12			

	Coeficientes E	erro padrão	Stat t	valor-P	95% inferiores	95% superiores
Interseção	440107,0	182742,3	2,408	0,021	69836,0	810378,1
tamanho	6772,1	1555,7	4,353	0,000	3620,0	9924,2
idade do prédio	-19129,7	8372,9	-2,285	0,028	-36094,8	-2164,5

Há evidências estatísticas de relação de tamanho e idade com preço, pois valores-p<0,05.

Coeficientes R2 e R2 Ajustado

Qual percentual de variabilidade é explicado pelas variáveis usadas no modelo?

R múltiplo	0,66
R-Quadrado	0,44
R-quadrado ajustado	0,41
Erro padrão	132352,0
Observações	40

R2: 44% da variabilidade do preço é explicada pelo modelo com tamanho e idade.

R² ajustado: sempre é um pouco menor que o R²; deve ser utilizado para comparar modelos com diferentes quantidades de variáveis.

ANOVA

	gl	5Q	MQ	F	F de significação
Regressão	2	5,135E+11	2,567E+11	1,466E+01	0,000
Residuo	37	6,481E+11	1,752E+10		
Total	39	1,162E+12			

Interseção	Coeficientes Erro padrão		Stat t	valor-P	95% inferiores	95% superiores
	440107,0	182742,3	2,408	0,021	69836,0	810378,1
tamanho	6772,1	1555,7	4,353	0,000	3620,0	9924,2
idade do prédio	-19129,7	8372,9	-2,285	0,028	-36094,8	-2164,5

Coeficientes

Valores que compõe a equação.

R múltiplo	0,66
R-Quadrado	0,44
R-quadrado ajustado	0,41
Erro padrão	132352,0
Observações	40

- K	6.1	~	V.	A.
· A	N	U	ν	PA.

	gl	SQ	MQ	F	F de significação
Regressão	2	5,135E+11	2,567E+11	1,466E+01	0,000
Resíduo	37	6,481E+11	1,752E+10		
Total	39	1,162E+12			

	Coeficientes Erro padrão		Stat t	valor-P	95% inferiores	95% superiores
Interseção	440107,0	182742,3	2,408	0,021	69836,0	810378,1
tamanho	6772,1	1555,7	4,353	0,000	3620,0	9924,2
idade do prédio	-19129,7	8372,9	-2,285	0,028	-36094,8	-2164,5

Regras Gerais

Modelo é útil para prever o preço, se o valor-p do teste F é menor que 0,05. O R2 indica quanto da variabilidade de y é explicado pelas variáveis preditoras. Pode ser necessário incluir mais variáveis no modelo para aumentar este coeficiente.

Há evidências de que uma variável está relacionada com o valor previsto, se o valor-p for menor que 0,05.

O objetivo da regressão é encontrar os coeficientes que permitem construir a equação de regressão e fazer as previsões.

Isso significa que muitas variáveis seriam ajustadas e o modelo ficaria super estimado, com uma variância infinita, sendo inviável o método dos mínimos quadrados

Temos basicamente 3 métodos que nos auxiliam quando o número de variáveis é maior que o número de observações:

Seleção de um subconjunto de coeficientes

Reduzir a dimensão

Reduzir o valor dos coeficientes (Regularização)

Uma regressão com diversos coeficientes regressores torna o modelo como um todo muito mais complexo e pode tirar características de interpretabilidade

Shirinkage Methods (Métodos de Encolhimento)

Ridge Regression

LASSO Regression

(Least Absolute Shrinkage and Selection Operator)

Ridge Regression

A Ridge Regression é um método de regularização do modelo que tem como principal objetivo suavizar atributos que sejam relacionados uns aos outros e que aumentam o ruído no modelo (multicolinearidade).

LASSO Regression

(Least Absolute Shrinkage and Selection Operator)

O LASSO tem o mesmo mecanismo de penalização dos coeficientes com um alto grau de correlação entre si, mas que usa o mecanismo de penalizar os coeficientes de acordo com o seu valor absoluto.

Data Science Academy

Regressão Logística

A regressão logística é uma técnica estatística que tem como objetivo modelar, a partir de um conjunto de observações, a relação "logística" entre uma variável resposta e uma série de variáveis explicativas numéricas (contínuas, discretas) e/ou categóricas.

A regressão logística é amplamente usada em ciências médicas e sociais, e tem outras denominações, como modelo logístico, modelo logit, e classificador de máxima entropia.

Na Regressão Logística, a variável resposta é binária

- 1 → acontecimento de interesse (sucesso)
- 0 → acontecimento complementar (insucesso)

$$g(x) = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right)$$

$$g(x) = \ln\left(\frac{\frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}}{1 - \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}}\right) = \ln\left(\frac{\frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}}{\frac{1}{1 + e^{\beta_0 + \beta_1 x}}}\right)$$

Transformação logit

 $g(x) = \ln(e^{\beta_0 + \beta_1 x}) = \beta_0 + \beta_1 x$ Logaritmo

Regressão Logística é útil para modelar a probabilidade de um evento ocorrer como função de <mark>outros fa</mark>tores. É um <u>modelo linear</u> generalizado que usa como função de ligação a função logit.

A regressão logística é utilizada em áreas tais como:

- Em medicina, permite por exemplo determinar os fatores que caracterizam um grupo de indivíduos doentes em relação a indivíduos saudáveis.
- Na área de seguros, permite encontrar frações de clientes que sejam sensíveis a determinada política securitária em relação a um dado risco particular.
- Em instituições financeiras, pode detectar os grupos de risco para a subscrição de um crédito.
- Em econometria, permite explicar uma variável discreta, como por exemplo as intenções de voto em atos eleitorais.

Data Science Academy

Regressão Vantagens e Desvantagens

- Simple Linear Regression
- Multiple Linear Regression
- Ridge Regression
- Lasso Regression
- **Logistic Regression**
- Polynomial Regression
- Stepwise Regression
- **Elastic Net Regression**

Previsão do Futuro

Importantes Desvantagens:

- Apenas consideram relacionamento linear
- Toma como base a média da variável dependente
- Sensível a Outliers

