AUA CS 108, Statistics, Fall 2019 Lecture 28

Michael Poghosyan
YSU, AUA
michael@ysu.am, mpoghosyan@aua.am

28 Oct 2019

Contents

► The Maximum Likelihood Method (MLE)

Last Lecture ReCap

► How to estimate 3D unknown Parameter using MoM?

Last Lecture ReCap

- ► How to estimate 3D unknown Parameter using MoM?
- Give some reasons to use MoM.

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$.

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. We take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

and want to use it to construct a good Estimator for θ .

Idea of the Maximum Likelihood Method

Assume we have a Parametric Family of Distributions \mathcal{F}_{θ} with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. We take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

and want to use it to construct a good Estimator for θ .

Idea of Maximum Likelihood Estimation: We choose that value of our parameter, under which **our Observation is the most Probable**.

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$.

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations,

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations, i.e., to construct an **Estimator** for θ .

Again, assume we have an Observation $x: x_1, ..., x_n$, from one of the Distributions of Parametric Family \mathcal{F}_{θ} , with the PD(M)F $f(x|\theta)$, $\theta \in \Theta$. Our aim is to Estimate θ .

We, instead of our Observation, take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta},$$

to generalize, to have our method work also for unseen Data, to get a result for all possible Observations, i.e., to construct an **Estimator** for θ .

And the Maximum Likelihood Method is saying: **choose that** value of θ , under which it is most likely to get $X_1, X_2, ..., X_n$.

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

¹Since X_k -s are independent

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

The Log-Likelihood Function is the function

$$\ell(\theta) = \ell(X_1, ..., X_n | \theta) = \ln \mathcal{L}(\theta) = \sum_{k=1}^n \ln f(X_k | \theta), \qquad \theta \in \Theta.$$

¹Since X_k -s are independent

Likelihood

Definition: The **Likelihood Function** for the above Model and Random Sample is the Joint PD(M)F of $X_1, ..., X_n$, **considered as a function of the parameter** θ , and **calculated at the Random Sample**, i.e., it is given by¹

$$\mathcal{L}(\theta) = \mathcal{L}_n(X_1, ..., X_n | \theta) = f(X_1 | \theta) \cdot f(X_2 | \theta) \cdot ... \cdot f(X_n | \theta), \qquad \theta \in \Theta.$$

The Log-Likelihood Function is the function

$$\ell(\theta) = \ell(X_1, ..., X_n | \theta) = \ln \mathcal{L}(\theta) = \sum_{k=1}^n \ln f(X_k | \theta), \qquad \theta \in \Theta.$$

Also we define the Negative Log-Likelihood Function to be

$$-\ell(\theta) = -\ln \mathcal{L}(\theta).$$

¹Since X_k -s are independent

Note: Likelihood is not a Probability - it can be larger than 1.

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Definition: The **Maximum Likelihood Estimator (MLE)** of the parameter θ is the value of θ that maximizes the Likelihood function for the given random sample $X_1, ..., X_n$, the global maximum point (in case it exists) of $\mathcal{L}(X_1, ..., X_n | \theta)$:

$$\hat{\theta}^{MLE} = \hat{\theta}^{MLE}_n = \mathop{argmax}_{\theta \in \Theta} \mathcal{L}(\theta).$$

Note: Likelihood is not a Probability - it can be larger than 1. It is not a PDF either, it is a **function of the parameter** θ . Say, the integral of Likelihood over all possible θ -s can be different than 1.

Now, the Maximum Likelihood Method suggests to find a point that makes our Likelihood Maximal:

Definition: The **Maximum Likelihood Estimator (MLE)** of the parameter θ is the value of θ that maximizes the Likelihood function for the given random sample $X_1, ..., X_n$, the global maximum point (in case it exists) of $\mathcal{L}(X_1, ..., X_n | \theta)$:

$$\hat{\theta}^{MLE} = \hat{\theta}_{n}^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} \mathcal{L}(\theta).$$

And in the case if we have an Observation $x: x_1, x_2,, x_n$ from the above Model (from one of the Distributions of that Model), the **Maximum Likelihood Estimate** (again **MLE**) of the parameter θ is the value of $\hat{\theta}^{MLE}$ on our Observation.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: Since the function $h(t) = \ln t$ is strictly increasing, we will have that

$$\operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}(\theta) = \operatorname*{argmax}_{\theta \in \Theta} \ln \mathcal{L}(\theta) = \operatorname*{argmax}_{\theta \in \Theta} \ell(\theta),$$

i.e., the points of maximum of $\mathcal{L}(\theta)$ and $\ln \mathcal{L}(\theta)$ coincide.

Note: argmax means the Argument of the Maximum, the point(s) of the Maximum. In our case, Global Max Point(s).

Note: To find the **Maximum Likelihood Estimate** for θ , you can do the following steps:

- ▶ Either find the **Maximum Likelihood Estimator** for θ , and then plug the Observation values;
- Or first plug the Observation values into the Likelihood function, to get

$$\mathcal{L}(x_1,...,x_n|\theta),$$

and then find the maximum point for this function, over $\theta \in \Theta$.

Note: Since the function $h(t) = \ln t$ is strictly increasing, we will have that

$$\underset{\theta \in \Theta}{\operatorname{argmax}} \, \mathcal{L}(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \ln \mathcal{L}(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \, \ell(\theta),$$

i.e., the points of maximum of $\mathcal{L}(\theta)$ and $\ln \mathcal{L}(\theta)$ coincide. And, in the rest, we will find the Max points of the **Log-Likelihd** function.

Calc 1 + Calc 3 Refresher

Here it is desirable to have a slide about how to find the maximum points of a function $\ell(\theta)$ for $\theta \in \Theta$, considering:

- ▶ 1D Case
- ▶ n-D Case
- Sufficient Conditions.

Calc 1 + Calc 3 Refresher

Here it is desirable to have a slide about how to find the maximum points of a function $\ell(\theta)$ for $\theta \in \Theta$, considering:

- ▶ 1D Case
- ▶ *n*-D Case
- Sufficient Conditions.

I know that you can fill this slide, so I am keeping it to you*.

 $^{^*}$ In fact, I realized that one slide will not be enough, and was lazy to prepare them $\ddot{-}$

Examples

Example: Find the MLE for p in the Bernoulli(p) Model.

Solution: OTB

Examples

Example: Find the MLE for p in the Bernoulli(p) Model.

Solution: OTB

Example: Find the MLE Estimator for λ in the $Exp(\lambda)$ Model.

Solution: OTB

Examples

Example: Find the MLE for p in the Bernoulli(p) Model.

Solution: OTB

Example: Find the MLE Estimator for λ in the $Exp(\lambda)$ Model.

Solution: OTB

Example: Find the MLE Estimator for θ in the *Unif* $[0, \theta]$ Model.

Solution: OTB