ΘΕΜΑ 4

Δύο κατακόρυφοι μεταλλικοί οπλισμοί είναι φορτισμένοι με τάση V. Ένα πρωτόνιο εισέρχεται από μικρή οπή που βρίσκεται στον αρνητικό οπλισμό (σημείο A), με ταχύτητα \vec{v}_0 μέτρου 10^5 m/s. Η ταχύτητα του πρωτονίου όπως φαίνεται στο σχήμα είναι παράλληλη στις δυναμικές γραμμές του ομογενούς ηλεκτρικού πεδίου που επικρατεί μεταξύ των οπλισμών, με κατεύθυνση προς τον θετικό οπλισμό. Η απόσταση μεταξύ των οπλισμών είναι d=10 mm και $(AB)=(B\Gamma)$. Να υπολογίσετε:

4.1. την τιμή της τάσης V έτσι ώστε το πρωτόνιο να ακινητοποιηθεί στιγμιαία ακριβώς πριν ακουμπήσει το θετικό οπλισμό,

Μονάδες 6

4.2. το λόγο $\frac{V_{BA}}{V_{\Gamma A}}$ μεταξύ των διαφορών δυναμικού μεταξύ των σημείων Β, Α και των σημείων Γ, Α ,

Μονάδες 6

4.3. το χρονικό διάστημα που απαιτείται για να φτάσει το πρωτόνιο στη θετική πλάκα, καθώς και το χρονικό διάστημα που απαιτείται για να επιστρέψει στο σημείο εκτόξευσης,

Μονάδες 6

4.4. την κινητική ενέργεια του πρωτονίου στο μέσο της απόστασης μεταξύ των δύο οπλισμών (σημείο Β).

Μονάδες 7

Δίνεται η μάζα του πρωτονίου $m_p=1$,6 \cdot 10^{-27} kg και το στοιχειώδες ηλεκτρικό φορτίο e=1,6 \cdot 10^{-19} C. Οι βαρυτικές αλληλεπιδράσεις παραλείπονται και η επίδραση του αέρα θεωρείται αμελητέα.