Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{0}^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \ \sigma_{2+}^{\#1}\alpha\beta == 0$	$-2ik \sigma_{2}^{\#1}\alpha\beta == 0 -i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}$	2
	$3 \partial_{\delta} \partial_{\lambda} \partial_{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial_{\delta} \partial_{\chi} \partial_{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6ik^{\lambda}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\delta\beta}+$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{eta \delta lpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^X \partial_\phi \partial^\phi \partial_\epsilon \partial_\chi \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	17

$\tau_{1^{^{-}}\alpha}^{\#2}$	0	0	0	- <u>i</u> kr5+2k ³ r5	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6k^2 r_5 + t_1}{2(k+2k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2}\;(k^2r_5+2k^4r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#_2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$ au_1^{\#1} + lpha eta$	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_1^{#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{#2} +^{\alpha}$

1,5' (XZTI)X 2V (YZTI)X 2V (YZTI)	+ + + + + + + + + + + + + + + + + + + +
Quadratic (free) action	
$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$	İ
$rac{1}{6}t_1(2\omega^{lpha\prime}_{}\omega^{ heta}_{}{}^{-}4\omega^{ heta}_{lpha}\partial_{}{}^{f^{lpha\prime}}+4\omega^{ heta}_{$	
$\partial' f^{\alpha}_{\ \ \alpha} - 2 \partial_i f^{\alpha i} \partial_{\theta} f^{\ \ \theta}_{\ \ \alpha} + 4 \partial' f^{\alpha}_{\ \ \alpha} \partial_{\theta} f^{\ \ \theta}_{\ \ i} - 6 \partial_{\alpha} f_{i \theta} \partial^{\theta} f^{\alpha i}_{\ \ i} -$	
$3 \partial_{\alpha} f_{\theta_l} \partial^{\theta} f^{\alpha_l} + 3 \partial_{i} f_{\alpha \theta} \partial^{\theta} f^{\alpha_l} + 3 \partial_{\theta} f_{\alpha_l} \partial^{\theta} f^{\alpha_l} +$	
$3 \partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha \prime} + 6 \omega_{\alpha \theta \prime} (\omega^{\alpha \prime \theta} + 2 \partial^{\theta} f^{\alpha \prime})) +$	
$r_{5}\left(\partial_{i}\omega_{\theta}^{\ \ \ \ \kappa}\partial^{\theta}\omega^{\alpha\prime}_{\ \ \ \alpha}-\partial_{\theta}\omega_{i}^{\ \ \ \kappa}\partial^{\theta}\omega^{\alpha\prime}_{\ \ \ \alpha}-\left(\partial_{\alpha}\omega^{\alpha\prime\theta}-2\partial^{\theta}\omega^{\alpha\prime}_{\ \ \ }\right)$	
$(\partial_{\kappa}\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $au_2^{\#1}{}_{lphaeta}$

2 i √2 k $\frac{1}{(1+2k^2)^2t_1}$

 $(1+2k^2)^2t_1$

ikt1

0

 $\frac{t_1}{3\sqrt{2}}$

 $k^2 r_5 + \frac{t_1}{6}$

0

0

0

 $\omega_{1}^{\#_{1}} \uparrow^{\alpha}$

0

0

0

 $\omega_{1}^{\#2} +^{\alpha}$

0

0

0

0

0

0

0

 $f_1^{\#1} +^{\alpha\beta}$

0

 $\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,k\,t_1$

0

ر<u>ا</u> 1

 $\sigma_{2-\alpha\beta\chi}^{\#1}$

0 $\frac{2k^2t_1}{3}$

 $-\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,k\,t_1$

 $-\frac{1}{3}$ $i k t_1$

0

 $\tau_0^{\#1}$

0

0

0

0

0

0

12 2

 $\begin{array}{c}
\sigma_{0}^{\#1} + \\
\tau_{0}^{\#1} + \\
\tau_{0}^{\#2} + \\
\sigma_{0}^{\#1} + \\
\end{array}$

0

0

0

0

 $\omega_{0}^{*1}+$ $f_{0}^{*1}+$ $f_{0}^{*2}+$ $f_{0}^{*2}+$ $\omega_{0}^{*1}+$

0

 $k^2 t_1$

<u>t1</u>

0

	Sou) SO($\sigma_0^{\#1}$	$\tau_{0}^{\#1}$:	$\tau_0^{\#2}$:	$ au_1^{\#2}$	$\tau_{1}^{\#1}{}^{\prime}$	$\tau_1^{\#1}$	
M	ass	ive	e ar	nd r	mas	ssle	SS :	spe	ct

ctra

(No massive particles)

Unitarity conditions

 $r_5 < 0 \&\& t_1 < 0 || t_1 > 0$