Fisher Esterification: Synthesis of Isoamyl Acetate

Reference: Handout; Chemistry lessons: carbonyl chemistry, esterification reactions, Le Chatelier's principle; Bruice pg. 709-710

Purpose: To perform a Fischer Esterification reaction in creating isopentyl acetate

Table of Reagents:

Compounds	MW	Amount	BP (°C)	MP (°C)	Density
Isoamyl Alcohol	88.148 g/mol	5.0 mL	131 °C	-117.2 °C	0.810 g/cm ³
Acetic Acid	60.052 g/mol	7.0 mL	118.1 °C	16.6 °C	1.05 g/cm ³
Sulfuric Acid	98.079 g/mol	1.0 mL	337 °C	10 °C	1.84 g/cm ³
NaHCO ₃	84.007 g/mol	5.0 mL	851 °C	50 °C	2.2 g/cm ³
Brine	58.44 g/mol	5.0 mL	100 °C	- °C	- g/cm ³

Balanced Chemical Equation:

Mechanism:

Safety:

➤ Sulfuric Acid & Acetic Acid → very corrosive; Flush with water if gets on skin

Experimental Procedures	Data & Observations		
 1. Obtain 5 mL isoamyl alcohol, 7 mL acetic acid, & 1 mL sulfuric acid into 25 mL round bottom flask Equip with reflux condenser and calcium chloride drying tube 			
2. Swirl to mix and add boiling stones; Heat to reflux for 60 min then cool to RT	Observations: Mixture started to turn dark brown		
3. Transfer to separatory funnel and extract with 10 mL water, 5 mL NaHCO ₃ , and 5 mL Brine			
4. Transfer product to 25 mL Erlenmeyer Flask; add 1 g Sodium Sulfate; Let sit for ~10 min			
5. Purify with simple distillation; use ice-cooled vessel to collect	Pure Product Melting Point:		
 6. Record mass of isolated product Calculate % yield Get IR/NMR 	<u>True Melting Point:</u> 145 °C – 150 °C <u>Product Melting Point:</u> 137 °C <u>Product Mass:</u> 0.58 g		

Post-lab Questions:

1. a) Our final product was a clear liquid. The true boiling point range of the isoamyl acetate is between 145 - 150 °C, however, the melting point of the product is -78.5 °C, which explains the fact that it is a liquid in room temperature.

We collected 4.202 g of the product as well as the color of our product was clear

$$\% \textit{ Yield} = \frac{\textit{Product Obtained}}{\textit{Theoretical Yield}} \times 100$$

Obtained: 4.202 g Color and State: Liquid, Clear

First, we must obtain the theoretical value of our crude product in grams:

$$5.0~mL~Isoamyl~Alcohol \times \frac{0.810~g}{1~mL} \times \frac{1~mol}{88.148~g} \times \frac{1~mol}{1~mol} \times \frac{130.19~g}{1~mol} = 5.98~g~Isoamyl~Acetate$$

Next, we must use the equation above to get our % Yield:

% Yield =
$$\frac{4.202 \text{ g}}{5.98 \text{ g}} \times 100 = 70.27\% \text{ yield}$$

- We received a 70.27% yield for our product
- We received a rather moderately high yield and the reaction was succesful

2. a) IR Spectrum of Isoamyl Acetate

b) NMR of Isoamyl Acetate

- **3.** The reaction could be driven forward by removing the excess water or by adding more of the acetic acid due to Le Chatlier's principle in that a system would want to always be at equilibrium and if disturbed would want to shift away from the constraint.
- **4.** a) The role of the sulfuric acid in the reaction was to act as the proton source (H⁺) to the carboxylic acid (essentially sulfuric acid was a the source of the H⁺)
- b) The mixture was extracted with sodium bicarbonate because it was used to get rid of the excess acid in the mixture. CO_2 is observed to be the gas bubbling from the mixture as the reaction takes place.

<u>Chemical Equation:</u> NaHCO₃ + H₂SO₄ → Na₂SO₄ + H₂O + CO₂ (g)

c) Brine is essentially salt water as it is a combination of NaCl and H₂O. It is used to dry the solution to help drive the reaction towards the products.

5. Esters

Ethyl Nonanoste OH + HO W

Methyl Salicylate

Methyl Butyrak