Pumped irrigation controller

2023

Contents

1	Seti	up	1
	1.1	Installation	3
	1.2	Configuration	3
2	Оре	eration	7
	2.1	Run mode	7
		2.1.1 Dam pump	7
		2.1.2 Tank pump	7
	2.2		8
3	Out	puts	9
	3.1	Screen	9
		3.1.1 Faults	9
	3.2	Serial	10
	3.3		12
4	Tro	uble-shooting	18
	4.1		18
		4.1.1 Alarm 1 - Overflow	18
		4.1.2 Alarm 2 - Slow flow	18
		4.1.3 Alarm 3 - Fast flow	19
		4.1.4 Alarm 4 - High pulse	19
		4.1.5 Alarm 5 - Dam no flow	19
	4.2		19
		4.2.1 Warning 1 - Float switches	20
		422 Warning 2 - Clock failure	20

	4.2.3	warning 3 - No allocations	21
	4.2.4	Warning 4 - Tank no flow	21
	4.2.5	Warning 5 - Invalid configuration	22
4.3	Errors		23
	4.3.1	Error 1 - Float switches	23
	4.3.2	Error 2 - I2C2 failure	23
	4.3.3	Error 3 - I2C3 failure	24
	4.3.4	Error 4 - Memory failure	24
Contact	t		28

1 Setup

Figure 1.1 shows the full extent of the supported setup for this controller. Many of these components can be removed and the rest of the system will continue to safely operate.

Switching

- This controller outputs a 24VAC switched signal to control all pumps and valves.
- Valves should be non-latching.

Flow sensor inputs

- Both flow meters must output a digital pulse for a set volume. Volume per pulse can be changed as detailed in Section 1.2. 4-20mA signals are not supported.
- Digital pulses should have a frequency of no more than 20Hz.

Float switch inputs

- Float switches are expected to be CLOSED when the water level is above them and OPEN otherwise.
- Float switches input terminals can be left OPEN or wired CLOSED if unused. This may impair some of the controller's system safety features.

Figure 1.1: An illustrative schematic showing the supported system components.

Note: Station 1 can be used as a master valve (shown) or as an

ordinary, independent station.

2

1.1 Installation

The control unit is compatible with standard DIN rails and should be mounted accordingly. A 24V AC power supply (not supplied) will also be required.

The terminal block arrangement is shown in Figure 1.2.

1.2 Configuration

CONFIGURATION mode allows the user to set a wide range of operational parameters.

- Set time
 The controller's time and date.
- Allocation type
 Each pump can be run with either VOLUME allocations or
 TIME allocations.
- Number of valves
 This is the number of valves connected to the TANK. Not all valves have to be allocated.
- Valve allocation
 This is the VOLUME or TIME each valve will be individually allocated. The allocation units can be changed in Allocation type.
- Configure dam pump
 This is the start time (24hr clock) of the dam pump and either the volume to deliver (if using VOLUME allocations) or the stop time (if using TIME allocations).

						1
Tank pump (0)						(I) Tank flow meter
Common				7		Ground
Dam pump (O)			ಕ			(I) Dam flow meter
Common			10:23			Ground
Valve 1 (0)						(I) Tank bottom float
Common						Ground
Valve 2 (0)						(I) Tank top float
Common			4			Ground
Valve 3 (0)			& J			Reserved
Valve 4 (0)			Tank rate 48.310 kL/h			Ground
Common			주교			(I) Dam bottom float
Valve 5 (0)			> t			Ground
Common				_		Reserved
Valve 6 (0)						Reserved
Common						Reserved
Valve 7 (0)		_	_ (O _		(I) Tank overflow
Common		0	0	_ O		Reserved
Valve 8 (0)			(3		Reserved
V-I 0 (0)		_		0		
Valve 9 (0)		0	0	0		Ground
Common	·	0	0	-		Ground
Valve 10 (0)	·	0	0	0		Ground
Common		0	0	0		Ground
Valve 11 (0)		0	0			(IO) RS485 D-
Common		0	0	0		(IO) RS485 D+
Valve 12 (0)		0	0	0	•	Not connected
Common		0	0	0		Ground
Valve 13 (0)		0	0	0		(0) 3.3V DC
Alarm (0)		0	0	0		Ground
Common		0	0	0		(O) 5V DC
24V AC (100mA max) (0)		0	0	0		Not connected
Common		0	0	0		Not connected
Common		0	0	0		Not connected
Common		0	0	0		Not connected
24VAC (I)		0	0	0		Not connected
24VAC Common (I)						(0) Ground
Not connected						(O) 24VDC (500mA max)
						J

Figure 1.2: Terminal block diagram where (O) denotes an OUTPUT and (I) denotes an INPUT.

• Schedule winter

This schedules WINTER mode. WINTER mode deactivates the dam pump between the dates selected.

Pulse volume This sets the volume per pulse for each flow meter.

• No-flow rate

This sets the minimum flow rate required to avoid the pump runnning dry. Each pump's NO-FLOW RATE can be set individually. Set to 0kL/hr to de-activate this protection.

• Low-flow rate

This sets the low flow rate for a given pump. Flow rates below this value will trigger a low flow alarm on that pump and the currently active station. Section 4.1.2 outlines the impact of low flow alarm. Each pump's LOW FLOW RATE can be set independently. Set to 0kL/hr to de-activate this protection.

• High-flow rate

This sets the high flow rate for the system. Flow rates below this value will trigger a high flow alarm on that pump and the currently active station. Section 4.1.3 outlines the impact of high flow alarm. Each pump's HIGH FLOW RATE can be set independently. Set to 0kL/hr to de-activate this protection.

• Master valve

This allows the use of a master valve. If activated, Valve 1 will be set as the master valve.

• Firmware

Displays the firmware version.

- Fault reset Resets all faults.
- Factory reset
 Returns the controller to factory conditions.
- Save & exit
 Saves all updated variables and returns to PAUSE mode.

2 Operation

2.1 Run mode

2.1.1 Dam pump

The DAM PUMP moves water from the DAM reservoir into the TANK. It will begin pumping every day at the configured start time. It will stop pumping when it reaches its daily VOLUME allocation or its configured stop time. The allocation mode, amounts and times can all be changed in the CONFIGURATION menu as detailed in Section 1.2.

WINTER mode sets the DAM PUMP's daily allocations to zero for the duration of WINTER. These dates are configurable in the CONFIGURATION menu.

There are a number of checks that are made before and while the DAM PUMP is turned on in order to protect the system:

- 1. The DAM PUMP will only start if the TANK is empty or the TANK PUMP is not running.
- 2. The DAM PUMP will turn off if the TANK becomes full or overflowing.
- 3. The DAM PUMP will turn off if the DAM becomes empty.

2.1.2 Tank pump

The TANK receives water from the DAM. When the float switches in the TANK register full the TANK PUMP activates and starts se-

quentially delivering each valve its allocation. This will continue until the TANK's float switches register empty. When this happens the TANK PUMP will deliver the remainder of that valve's allocation next time the TANK registers full.

The TANK PUMP can deliver either VOLUME or TIME allocations to each station. Each station's allocation is individually configurable in the CONFIGURATION menu.

2.2 Manual mode

MANUAL mode allows the user to turn on all stations including pumps. MANUAL mode is a limited to five (5) stations turned on at any one time in order to protect the controller. No other protections exist inside manual mode.

3 Outputs

3.1 Screen

In RUN mode the screen displays the time, system statistics and relevant alarm codes. Use the UP and DOWN buttons to scroll through the available outputs.

3.1.1 Faults

To clear all faults, enter the menus by holding the LEFT button, select ENTER CONFIG, scroll to FAULT RESET and press the RIGHT button.

The heirarchy of faults is as follows from least to most serious:

Alarms

When an alarm is triggered the current alarm code will be displayed in the top left of the screen and normal operation will continue. The alarm lamp and the alarm terminal will also be turned on. See Section 4.1 for details on different alarm codes.

Warnings

When a warning is triggered the controller will display the warning code on the screen and turn off all pumps and stations. The alarm lamp and the alarm terminal will also be turned on. If the warning resolves, normal operation will resume. The configuration menus can still be accessed from a warning state. See Section 4.2 for details on different warning codes.

Errors

When an error is triggered the controller will display the error code on the screen and turn off all pumps and stations. The alarm lamp and the alarm terminal will also be turned on. The controller cannot recover from an error without human intervention. See Section 4.3 for details on different error codes.

3.2 Serial

All controller operations are accompanied by an output over the serial bus. The serial codes follow the general pattern:

HH-MM-SS.mmm->ABC

where 'HH-MM-SS.mmm' is the controller's current time and 'ABC' is the serial code. All fields are fixed length and undelimited.

Serial parameters are described in Table 3.1 and the messages are as described in Table 3.2.

Table 3.1: Serial parameters

Detail	Value
Baud rate	19200

Table 3.2: Serial messages

Code	Description	Parameters
IAA	Info start	
IFR	Info factory reset	
IES	Info end setup	
IGV	Info globals valid	
ITV	Info tank volume pumped	uint32 t
	(total)	total_volume_pumped
IDV	Info dam volume pumped	uint32 t
	(total)	total_volume_pumped
IOV	Info open valve	int16_t valve_ID
IOM	Info open master valve	int16_t valve_ID
ICV	Info close valve	int16_t valve_ID
ICM	Info close master valve	int16_t valve_ID
ITR	Info tank pump start	
ITP	Info tank pump stop	
IDR	Info dam pump start	
IDP	Info dam pump stop	
IFT	Info top float switch	int16_t switch_state
IFB	Info bottom float switch	int16_t switch_state
IS0	Info status 0	int16_t num_valves
IS1	Info status 1	char use_volume_alloc
IS2	Info status 2	uint32_t volume_per_pulse
IS3	Info status 3	uint32_t pump_no_flow_rate
IS4	Info status 4	uint32_t
		milliseconds_per_pulse
IS5	Info status 5	char use_master_valve
IS6	Info status 6	int16_t valve_ID,
		uint32_t
		valves[i].vol_allocation
IS7	Info status 7	int16_t valve_ID,
		uint32_t
		valves[i].time_allocation
IS8	Info status 8	int16_t valve_ID, char
		is_master

 Code
 Description
 Parameters

 IS9
 Info status 9
 int16_t valve_ID, char valves[i].is_open (O: open, S: shut)

 Axx
 Alarm xx

 Wxx
 Warning xx

 Exx
 Error xx

Table 3.2: Serial messages (Continued)

3.3 Modbus

Most controller statistics can be read over modbus and most configuration parameters can be written. Modbus parameters are described in Table 3.3 and the registers are as described in Table 3.4. The final column of Table 3.4 indicates if the register is read-only (R) or read-write (RW).

Table 3.3: Modbus parameters

Detail	Value
Address	1
Baud rate	19200
Endianness	Big endian

Table 3.4: Modbus registers

Register	Description	RW
0	REGISTER HASH	R
1	RESET COUNT	R
2	CURRENT WARNINGS	R
3	CURRENT ERROR	R
4	FIRMWARE VERSION	R
5	NO FLOW COUNT	R

Table 3.4: Modbus registers (Continued)

Register	Description	RW
6	TANK VOLUME HIGH WORD	R
7	TANK VOLUME LOW WORD	R
8	DAM VOLUME HIGH WORD	R
9	DAM VOLUME LOW WORD	R
10	TANK FLOW RATE HIGH WORD	R
11	TANK FLOW RATE LOW WORD	R
12	DAM FLOW RATE HIGH WORD	R
13	DAM FLOW RATE LOW WORD	R
14	STATIONS HIGH FLOW	R
15	STATIONS LOW FLOW	R
16	STATIONS ALLOCATED	R
17	INPUT STATES	R
18	OUTPUT STATES	R
19	IS WINTER	R
20	RTC FLAGS	R
21	RTC TEMP	R
22	STATION VOLUME TOTAL HIGH WORD 1	R
23	STATION VOLUME TOTAL LOW WORD 1	R
24	STATION VOLUME TOTAL HIGH WORD 2	R
25	STATION VOLUME TOTAL LOW WORD 2	R
26	STATION VOLUME TOTAL HIGH WORD 3	R
27	STATION VOLUME TOTAL LOW WORD 3	R
28	STATION VOLUME TOTAL HIGH WORD 4	R
29	STATION VOLUME TOTAL LOW WORD 4	R
30	STATION VOLUME TOTAL HIGH WORD 5	R
31	STATION VOLUME TOTAL LOW WORD 5	R
32	STATION VOLUME TOTAL HIGH WORD 6	R
33	STATION VOLUME TOTAL LOW WORD 6	R
34	STATION VOLUME TOTAL HIGH WORD 7	R
35	STATION VOLUME TOTAL LOW WORD 7	R
36	STATION VOLUME TOTAL HIGH WORD 8	R
37	STATION VOLUME TOTAL LOW WORD 8	R
38	STATION VOLUME TOTAL HIGH WORD 9	R
39	STATION VOLUME TOTAL LOW WORD 9	R

Table 3.4: Modbus registers (Continued)

Register	Description	RW
40	STATION VOLUME TOTAL HIGH WORD 10	R
41	STATION VOLUME TOTAL LOW WORD 10	R
42	STATION VOLUME TOTAL HIGH WORD 11	R
43	STATION VOLUME TOTAL LOW WORD 11	R
44	STATION VOLUME TOTAL HIGH WORD 12	R
45	STATION VOLUME TOTAL LOW WORD 12	R
46	STATION VOLUME TOTAL HIGH WORD 13	R
47	STATION VOLUME TOTAL LOW WORD 13	R
48	STATION TIME TOTAL HIGH WORD 1	R
49	STATION TIME TOTAL LOW WORD 1	R
50	STATION TIME TOTAL HIGH WORD 2	R
51	STATION TIME TOTAL LOW WORD 2	R
52	STATION TIME TOTAL HIGH WORD 3	R
53	STATION TIME TOTAL LOW WORD 3	R
54	STATION TIME TOTAL HIGH WORD 4	R
55	STATION TIME TOTAL LOW WORD 4	R
56	STATION TIME TOTAL HIGH WORD 5	R
57	STATION TIME TOTAL LOW WORD 5	R
58	STATION TIME TOTAL HIGH WORD 6	R
59	STATION TIME TOTAL LOW WORD 6	R
60	STATION TIME TOTAL HIGH WORD 7	R
61	STATION TIME TOTAL LOW WORD 7	R
62	STATION TIME TOTAL HIGH WORD 8	R
63	STATION TIME TOTAL LOW WORD 8	R
64	STATION TIME TOTAL HIGH WORD 9	R
65	STATION TIME TOTAL LOW WORD 9	R
66	STATION TIME TOTAL HIGH WORD 10	R
67	STATION TIME TOTAL LOW WORD 10	R
68	STATION TIME TOTAL HIGH WORD 11	R
69	STATION TIME TOTAL LOW WORD 11	R
70	STATION TIME TOTAL HIGH WORD 12	R
71	STATION TIME TOTAL LOW WORD 12	R
72	STATION TIME TOTAL HIGH WORD 13	R
73	STATION TIME TOTAL LOW WORD 13	R

Table 3.4: Modbus registers (Continued)

Register	Description	RW
74	STATION ACTIVATION COUNT 1	R
75	STATION ACTIVATION COUNT 2	R
76	STATION ACTIVATION COUNT 3	R
77	STATION ACTIVATION COUNT 4	R
78	STATION ACTIVATION COUNT 5	R
79	STATION ACTIVATION COUNT 6	R
80	STATION ACTIVATION COUNT 7	R
81	STATION ACTIVATION COUNT 8	R
82	STATION ACTIVATION COUNT 9	R
83	STATION ACTIVATION COUNT 10	R
84	STATION ACTIVATION COUNT 11	R
85	STATION ACTIVATION COUNT 12	R
86	STATION ACTIVATION COUNT 13	R
87	RESET FAULTS	RW
88	MANUAL STATE REQUEST	RW
89	TANK PUMP ACTIVATION COUNT	RW
90	DAM PUMP ACTIVATION COUNT	RW
91	CONTROLLER RESET	RW
92	MASTER VALVE	RW
93	INVERT INPUT LOGIC	RW
94	MODBUS ADDRESS	RW
95	MODBUS BAUD	RW
96	WINTER START HIGH WORD	RW
97	WINTER START LOW WORD	RW
98	WINTER STOP HIGH WORD	RW
99	WINTER STOP LOW WORD	RW
100	DAM START TIME	RW
101	DAM STOP TIME	RW
102	TANK LITRES PER PULSE	RW
103	DAM LITRES PER PULSE	RW
104	TANK PRIME TIME	RW
105	DAM PRIME TIME	RW
106	TANK NO FLOW RATE	RW
107	DAM NO FLOW RATE	RW

Table 3.4: Modbus registers (Continued)

Register	Description	RW
108	TANK HIGH FLOW RATE	RW
109	DAM HIGH FLOW RATE	RW
110	DAM VOLUME ALLOCATION HIGH WORD	RW
111	DAM VOLUME ALLOCATION LOW WORD	RW
112	DAM USE VOLUME ALLOCATION	RW
113	CONTROLLER FLAGS	RW
114	CONTROLLER MODE	RW
115	VALVES VOLUME ALLOCATION 1	RW
116	VALVES VOLUME ALLOCATION 2	RW
117	VALVES VOLUME ALLOCATION 3	RW
118	VALVES VOLUME ALLOCATION 4	RW
119	VALVES VOLUME ALLOCATION 5	RW
120	VALVES VOLUME ALLOCATION 6	RW
121	VALVES VOLUME ALLOCATION 7	RW
122	VALVES VOLUME ALLOCATION 8	RW
123	VALVES VOLUME ALLOCATION 9	RW
124	VALVES VOLUME ALLOCATION 10	RW
125	VALVES VOLUME ALLOCATION 11	RW
126	VALVES VOLUME ALLOCATION 12	RW
127	VALVES VOLUME ALLOCATION 13	RW
128	VALVES TIME ALLOCATION 1	RW
129	VALVES TIME ALLOCATION 2	RW
130	VALVES TIME ALLOCATION 3	RW
131	VALVES TIME ALLOCATION 4	RW
132	VALVES TIME ALLOCATION 5	RW
133	VALVES TIME ALLOCATION 6	RW
134	VALVES TIME ALLOCATION 7	RW
135	VALVES TIME ALLOCATION 8	RW
136	VALVES TIME ALLOCATION 9	RW
137	VALVES TIME ALLOCATION 10	RW
138	VALVES TIME ALLOCATION 11	RW
139	VALVES TIME ALLOCATION 12	RW
140	VALVES TIME ALLOCATION 13	RW
141	NUMBER OF VALVES	RW

Table 3.4: Modbus registers (Continued)

Register	Description	RW
142	RESERVED 1	
143	CURRENT SENSE	R
144	EPOCH TIME HIGH WORD	RW
145	EPOCH TIME LOW WORD	RW
146	UNIQUE ID WORD 0	R
147	UNIQUE ID WORD 1	R
148	UNIQUE ID WORD 2	R
149	UNIQUE ID WORD 3	R
150	UNIQUE ID WORD 4	R
151	UNIQUE ID WORD 5	R

4 Trouble-shooting

To clear all faults, enter the menus by holding the LEFT button, select ENTER CONFIG, scroll to FAULT RESET and press the RIGHT button. To factory reset the controller, hold the DOWN button and then press the RESET button. Continue to hold the DOWN button for 5 seconds or until the controller restarts.

4.1 Alarms

Alarms only occur in RUN mode and the code is displayed in the top left of the screen. All alarms will activate the alarm lamp and alarm terminal on the controller.

4.1.1 Alarm 1 - Overflow

An overflow alarm indicates that the TANK is currently overflowing. The DAM pump (if running) will be turned off and the TANK pump will be started.

4.1.2 Alarm 2 - Slow flow

A slow flow alarm indicates that one or more of the stations is flowing slower than the LOW-FLOW RATE. This may indicate a blockage on that station. The slow flow station will be indicated by a slow flash on that station's allocation lamp. The system's operation is not otherwise effected.

4.1.3 Alarm 3 - Fast flow

A fast flow alarm indicates that one or more of the stations is flowing faster than the HIGH-FLOW RATE. This may indicate a leak on that station. The fast flow station will be indicated by a fast flash on that station's allocation lamp. This station will be de-activated and will not be turned on again until FAULT RESET has been selected in the CONFIGURATION menu.

4.1.4 Alarm 4 - High pulse

A high pulse alarm indicates that the pulse rate of one or more of the flow meters is approaching the controller's hardware limitations. Flow rates and flow counts at or above this rate may be inaccurate.

4.1.5 Alarm 5 - Dam no flow

A dam no flow alarm indicates that the flow from the DAM PUMP is lower than its specified NO-FLOW RATE. The DAM PUMP will be turned off and will not be turned on again until FAULT RESET has been selected in the CONFIGURATION menu. The TANK PUMP will continue operations as per normal.

The NO-FLOW RATE can be configured in the CONFIGURATION menu and should be the minimum flow rate at which the pump can safely run.

4.2 Warnings

Warnings turn off all pumps and stations to avoid unpredictable behaviour. The warning message will be displayed on the screen. Menus can still be accessed by holding LEFT. If the detected fault resolves, the controller will resume normal operation.

4.2.1 Warning 1 - Float switches

An upper float switch has registered as up while a lower float switch has registered as down and therefore the system is in an invalid state. In order to resolve this warning, the system must register a valid float switch state for more than 10 seconds. If this warning occurs three (3) times, the controller will enter an error state. See Section 4.3.1 for details on the error state.

Suggestions

- Float switches have been connected incorrectly. Check all float switch terminals at the controller and verify that the corresponding controller lamp responds to each float switch.
- 2. Faulty switches or connections. Check all connections and switches. Replace or repair as necessary.

4.2.2 Warning 2 - Clock failure

The controller's internal clock has failed. Please contact supplier.

- 1. Factory reset the controller. To do this, hold down the LEFT key, press the RESET button and continue to hold LEFT for five (5) seconds.
- 2. Contact the suppplier.

4.2.3 Warning 3 - No allocations

All stations have an allocation of zero units. This could be a configuration problem or could indicate a leak.

Stations are de-queued if fast flow is detected on that station. The SAFE FLOW RATE is used to decide if a station's flow rate is safe and can be configured in the CONFIGURATION menu. If there is a system-wide issue, all stations will be sequentially de-queued as each station fails to flow safely.

Suggestions

- Stations were all given an allocation of zero units by the user. Enter CONFIGURE mode by holding down the LEFT button. Adjust the allocations as required.
- The SAFE FLOW RATE is too low for this system. Enter CONFIGURE mode by holding down the LEFT button. Increase the SAFE FLOW RATE until it matches your system's normal flow rate.
- 3. The system is flowing faster than the SAFE FLOW RATE on every valve. This indicates a leak between the pump and the valves.
- 4. To deactivate SAFE FLOW RATE protection, enter CONFIGURE mode and set SAFE FLOW RATE to 0 L/m.

4.2.4 Warning 4 - Tank no flow

The flow rate on the TANK PUMP is less than its specified ${\tt NO-FLOW}$ RATE.

The NO-FLOW RATE can be configured in the CONFIGURATION menu and should be the minimum flow rate at which the

pump can safely run. This warning can be cleared in the menu under FAULT RESET.

Suggestions

- 1. The measured flow rate is below the NO-FLOW RATE. Check for blockages, pump failures, valve failures and flow meter failures.
- The NO-FLOW RATE may be too high. Consult the pump's specifications, enter CONFIGURE mode and set NO-FLOW RATE to the correct value.
- 3. The VOLUME PER PULSE for your flow meter may be too low. Consult the flow meter's specifications, enter CONFIGURE mode and set VOLUME PER PULSE to the correct value.
- 4. The controller is not receiving pulses from the flow meter. Check all controller input terminals.
- 5. To deactivate NO-FLOW RATE protection, enter CONFIGURE mode and set NO-FLOW RATE to 0 kL/hr.

4.2.5 Warning 5 - Invalid configuration

One or more of the configuration variables is not in the valid range. This is most likely due to the user entering invalid configuration variables.

- 1. Enter CONFIGURE mode by holding down the LEFT button. Ensure all variables are reasonable and then enter RUN mode again.
- 2. Factory reset the controller.

4.3 Errors

Errors are faults which do not allow the controller to operate. These are usually due to serious hardware faults.

4.3.1 Error 1 - Float switches

The TANK's float switches have registered an invalid state and then subsequently recovered three (3) times. Warning 1 in Section 4.2.1 has been upgraded to an error in order to protect the pump. Operator intervention is now required.

Suggestions

- 1. Check all float switches. In particular, the HIGH or OVERFLOW switches may be stuck.
- 2. Reset the controller.

4.3.2 Error 2 - I2C2 failure

The controller's internal communications have failed. Please contact supplier.

- 1. Factory reset the controller. To do this, hold down the LEFT key, press RESET and continue to hold LEFT for five (5) seconds.
- 2. Contact the suppplier.

4.3.3 Error 3 - I2C3 failure

The controller's internal communications have failed. Please contact supplier.

Suggestions

- 1. Factory reset the controller. To do this, hold down the LEFT key, press the RESET button and continue to hold LEFT for five (5) seconds.
- 2. Contact the suppplier.

4.3.4 Error 4 - Memory failure

The controller's internal memory has failed. Please contact supplier.

- 1. Factory reset the controller. To do this, hold down the LEFT key, press the RESET button and continue to hold LEFT for five (5) seconds.
- 2. Contact the suppplier.

Contact

Email - support@clonk.au Website - https://clonk.au

