Quiz Questions: Number Theory

1.	A number greater than 33 would require a minimum of how may bits in binary representation? A. 6 B. 7 C. 10 D. 34
2.	The hexadecimal expansion of (1010101011) ₂ is: A. 283 B. 263 C. 2AB D. 2A3
3.	A multiplicative inverse of 6 modulo 10 is? A. There is no multiplicative inverse of 6 modulo 10. B2 C4 D. 1/6
4.	a, b are integers with $a = -4, b = -9$. Find $c \in \{0,1,,12\}$ such that $c = 2a + 3b \pmod{13}$ A. 0 B. 4 C. 9 D. 11
5.	Which of the following is correct for all $n \ge 2$? (congruences) A. $(n-1)! = n! \pmod{(n+1)!}$ B. $(n-1)! = (n+1)! \pmod{(n!)}$ C. $n! = (n+1)! \pmod{(n-1)!}$ D. None of the above.
6.	What is the product of (100101) ₂ with (011) ₃ A. (1202) ₄ B. (2101) ₄ C. (2110) ₄ D. (1210) ₄
7.	Let <i>p</i> be a prime number. How many different prime divisors does <i>p</i> ³ have? A. 0 B. 1 C. 2 D. 3
8.	What is the prime factorization of $(7!)^{2!}$? A. $2^4 \cdot 3^2 \cdot 5 \cdot 7$ B. $2^6 \cdot 3^4 \cdot 5^2 \cdot 7^2$ C. $2^8 \cdot 3^2 \cdot 5^2 \cdot 7^2$ D. $2^8 \cdot 3^4 \cdot 5^2 \cdot 7^2$

Answers:

- 1. A
- 2. C
- 3. A
- 4. B
- 5. C
- 6. C
- 7. B
- 8. D