Calculus Stewart Ch10 Sec 2

67. If f' is continuous and $f'(t) \neq 0$ for $a \leq t \leq b$. Show that the parametric curve $x = f(t), y = g(t), a \leq t \leq b$, can be put in the form y = F(x).

Proof:

- f' is continuous and $f' \neq 0$ on [a, b]
- f' is either > 0 or < 0
- $\Rightarrow f$ is strictly monotonic
- $\Rightarrow f^{-1}$ exists

Then,
$$t = f^{-1}(x)$$

$$y = g(t) = g(f^{-1}(x)) = F(x)$$