Fall 2025 CPSC436/536 Project1 - Exploring Labeled Data Using kNN

Objective: Gain understanding of kNN and ML models in general and enhance proficiency by applying these techniques to a real-world dataset.

Dataset: You'll work on a dataset (attached) extracted from National Health and Nutrition Examination Survey: https://www.cdc.gov/nchs/nhanes/index.htm.

- The dataset contained health records of n NHANES participants.
 - O The attribute list includes:
 - age, gender, race, blood pressure readings (systolic and diastolic), lab work (levels of total cholesterol (TCHOL), LDL, HDL, triglyceride), and certain medical conditions such as diabetes. We also know whether he/she is a current smoker (smoker).
 - In addition to the above attributes, medical professionals consider some interaction terms are important, such as age* Systolic, age* TCHOL, age* HDL, age* smoker. You might want to consider them.
 - o Target variable: MI. (whether the participant had a heart attack (myocardial infarction)).

Goal: Predict the probability of a participant who experienced a heart attack (MI).

Output: Utilize your most optimal model to forecast the likelihood of individuals in the testing dataset who had experienced a heart attack (MI).

Things to Consider When You Tune Your kNN Models:

- 1. How many features/attributes does the dataset have?
 - o More features can increase computational cost and worsen performance due to the curse of dimensionality.
 - Consider dimensionality reduction (feature selection) if needed.
 - drop obviously irrelevant columns (IDs, constant columns, etc.)
 - use domain knowledge (e.g., medical intuition)
 - remove highly correlated features
 - keep the ones that are most correlated with the target
 - apply univariate feature selection (e.g., ANOVA F-test) to rank features based on individual predictive power
 - use variance thresholding drop features with very low variance
 - explore recursive feature elimination to select features based on model performance
 - ..
- 2. Have you considered how to handle missing values properly?
 - Drop rows (if very few are affected)
 - Impute using mean/median/mode
- 3. What is the class distribution?
 - Check the number of instances in each class (e.g., NHANES MI = 1 vs. MI = 2).
 - If the dataset is imbalanced, consider:
 - Resampling techniques (e.g., SMOTE, undersampling)
 - Evaluation metrics like F1-score, precision-recall, confusion matrix
- 4. What's the best value of k?
 - o Use cross-validation to select k.
 - Too small → overfitting; too large → underfitting.
 - Try odd values to avoid classification ties.
- 5. What distance metric should you use?
 - o Common choices: Euclidean, Manhattan, Minkowski
 - o Remember: kNN is sensitive to scale, so normalize features using StandardScaler or MinMaxScaler.
- 6. Are categorical variables encoded properly?
 - o Categorical features like gender and race must be numerically encoded.
 - Use one-hot encoding or ordinal encoding, depending on the variable type.
- 7. Should you add interaction terms or derived features?
 - o Expert-informed interactions like age × TCHOL or age × smoker may improve predictive power.
 - Try manual feature engineering.

- 8. Have you validated your model properly?
 - Use stratified train/test splits to preserve class distribution.
 - Apply k-fold cross-validation to estimate generalization performance.
- 9. Are you using appropriate performance metrics? Consider:
 - Accuracy
 - o F1-score, precision, and recall
 - Confusion matrix
- 11. Is your model efficient and scalable?
 - o kNN can be slow for large datasets.
 - o Have you tried different neighbor-finding algorithms?

What to submit: Your Jupyter notebook and your predictions for MI = 1 for the participants in the testing dataset.

Evaluation: Your project will be evaluated based on how well your model predicts the probability of a heart attack (MI). Specifically, we will use two metrics:

- Accuracy: Measures how often the model's predicted class (based on a 0.5 threshold) matches the true label.
- **Kullback-Leibler (KL) Divergence**: Measures how close your predicted **probability distribution** is to the true label distribution. Lower values indicate better calibrated probabilistic predictions.

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \; \log igg(rac{P(x)}{Q(x)}igg) \; ,$$

where P(x) is the true distribution, Q(x) is the predicted distribution. This is equivalent to log loss (cross-entropy), where $\hat{p} = Q(x)$ is the predicted probability:

$$D_{KL}(P \parallel Q) = y \cdot log\left(\frac{1}{\hat{p}}\right) + (1 - y) \cdot log\left(\frac{1}{1 - \hat{p}}\right)$$

You can try this metric yourself:

```
from sklearn.metrics import log_loss
kl div = log loss(y true, y pred prob)
```

Attributes keys:

Continues
Continues
1 yes; 2 no
1 yes; 2 no
Continues
1- Less than 9th grade; 2- 9-11th grade (Includes 12th grade with no diploma); 3- High school graduate/GED or equivalent; 4- Some college or AA degree; 5- College graduate
or above
Continues
Ratio of family income to poverty
1 yes; 2 no
Categorical
Continues
Continues
Continues
1 Mexican American, 2 Other Hispanic, 3 Non-Hispanic White, 4 Non-Hispanic Black, 5.
None, 6. Non-Hispanic Asian, 7. Other Race - Including Multi-Racial
1 male; 2 female
Continues
Continues
Continues

^{*}Sometime people consider only three race groups: white, black, and others. Blank for missing values.