한 장의 이미지에서 2.5차원 표현 추출을 통한

BMI 추론 방법론

2022.06.02

Industrial and Systems Engineering
Seungjin Jeon
M.S Student

Supervisor *prof.* Sekyoung Youm Co-work Minji Kim

Index

1. Introduction

- The Importance of BMI
- The Importance of Visual based BMI Estimation -
- Related Works
- Main contribution

2. Method

- Main Idea
- Overall Architecture
- 2.5D Representation _
 - Estimator
- BMI Predictor

3. Experiments

- 2D Image to BMI
 - Dataset
- Data preprocessing
- Implementation
 - details

4. Results

- Comparison

5. Conclusion

- Limitation
- Expected Effect

Introduction

- The Importance of BMI
- 키와 몸무게만 이용하여 간편한 건강의 지표로 WHO(세계보건기구)에서 비만판단의 지표로써 사용함
- 메디컬 분야에서는 BMI와 질병 사이의 연관성을 현재까지도 계속해서 연구 중임
 - → 대표적으로 당뇨병, 고혈압은 BMI와 높은 상관관계가 있음이 밝혀짐
- 국가차원에서 인구의 비만수준에 대한 평가는 질병 유병율 및 발병율을 모니터링 하는 데에 중요함
 - → 현재 대규모 인구조사에서 많은 사람의 BMI를 얻기 위해 직접 측정하는 것은 <u>시간 및 공간적인 한계가 존재함</u>
- The Importance of Visual based BMI Estimation
- 체중을 재기 위한 보편적인 방법은 체중계를 이용하는 것임
 - → 일반적으로 바르게 선 자세로 측정하며, 다른 자세에서 체중 측정은 불가능함
- 최근 원격의료에 대한 관심이 증가함에 따라, BMI 정보는 진료의 중요한 요소로 사용 가능함
- 체중계 등의 <u>추가적인 기기 없이</u> 간편하게 BMI 예측이 가능하며, <u>시간 및 공간적인 한계 극복 가능함</u>

헬스케어 및 메디컬 분야의 BMI 중요성에 따라, 쉽게 적용가능한 BMI 측정 기술이 필요함

Introduction

Related Works – Visual based BMI Estimation

RGB-D Based Method RGB Based Method Pros Pros 추가적인 장비 필요없이 쉽고 간편하게 BMI 예측이 가능함 RGB Based Method보다 BMI 예측 성능이 좋음 BMI를 측정하는 것에 있어서 공간에 제약 받지 않음 부피에 대한 정보를 함유 할 수 있음 Cons Cons 이미지에 대한 정보가 부족하여 정확한 BMI 추정에 한계 존재 Kinect와 같은 RGB-D를 수집하기 위한 추가적인 센서가 필요함 신체정보(Anthropometric)를 Feature로써 사용하여 Handcraft RGB-D에서 Depth에 주로 의존적인 경향을 보이는데, RGB-D 센서 방식의 연구가 주로 진행됨 특성상 광원에 민감하여 야외에서 예측하지 못함 카메라와 사람 사이의 거리에 민감함 Anthropometric Features extraction Machine Features __ Machine ВМІ Waist to thigh ratio → → BMI Learning Waist to hip ratio Learning extraction Waist to head ratio Hip to head ratio

Introduction

BMI 예측의 중요성

- 여러 질병과 BMI 사이의 상관관계가 높음
- 국가의 질병 유병율 및 발병율 모니터링의 중요한 요소임
- 헬스케어, 메디컬 분야의 중요한 지표로써 사용됨

현 BMI 예측 방법의 문제점

- 체중계: 추가적인 장비, 시간과 공간의 제약
- RGB Based : 정보의 부족으로 좋은 성능을 기대하기 힘듦
- RGB-D Based : 추가적인 장비가 필요함

Contribution Summary

- 1. 2.5차원(Normal, Depth map)을 이용하여 3차원의 인체 특징을 반영한 BMI Estimator 개발
- → 기존 RGB 방식보다 정확한 BMI 예측이 가능함
- → 추가적인 장비 없이 BMI 예측이 가능함
- 2. End-to-end 방식으로 한 장의 신체 이미지를 이용하여 BMI 추정이 가능함
- → Not handcraft and End-to-end 네트워크 구조를 가짐
- 3. BMI를 구함에 있어서 의미론적인 접근을 하여 문제를 해결하였음
- → BMI의 내포 되어있는 부피의 정보를 2.5D 정보를 통해 네트워크를 학습시킴으로서 더 나은 성능을 갖게 됨

Main Idea

사람의 체중은 인체의 3차원 표현을 가지고 있음

$$BMI = \frac{W}{H^2}$$

$$W = 체중(kg)$$

 $H = 신장(m)$

- ✓ 인체를 구성하는 물질들은 알려져 있으며, 밀도를 구할 수 있음
- → 따라서 체중은 부피를 통해 역추정이 가능한 요소임

COMPOSITION OF THE HUMAN BODY

Problem

Limitations when using only 2D Image

- ① 인체의 3차원적 표현을 제대로 반영하지 못함
- ② 기존 연구에서 RGB-D를 사용하여 BMI를 예측하였을 때, 깊이 값에 의존적인 경향을 보이므로 이미지만으로 한계가 존재함을 알 수 있음

How can we use a 3D representation?

- 2D image → 3D representation
- 실제 사용하기에 Memory Efficiency에 문제가 있음
- 2D image → 2.5D representation
- Monocular depth 이미지는 많은 발전 을 이루었음

2.5D Representation

2차원이지만 3차원의 표현을 포함하고 있음

Depth Map

- 관찰 시점(viewpoint)으로부터 물체 P= 표면과의 거리와 관련된 정보가 담긴 하나의 채널임

$$P = egin{bmatrix} rac{2}{ ext{right-left}} & 0 & 0 & -rac{ ext{right-left}}{ ext{right-left}} \ 0 & rac{2}{ ext{top-bottom}} & 0 & -rac{ ext{top+bottom}}{ ext{top-bottom}} \ 0 & 0 & rac{-2}{ ext{far-near}} & -rac{ ext{far+near}}{ ext{far-near}} \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

$$z' = 2 \cdot \frac{z - near}{far - near} - 1$$

Normal Map

- 일반적으로 RGB 구성 요소가 표면 법선 의 X, Y 및 Z 좌표에 각각 대응하 는 일반 RGB 이미지로 표현됨

Monocular estimation

Adapt 2.5D representation

Depth Map

- 단순 RGB이미지에 비하여 3차원 표현인 카메 라와 물체로 부터의 깊이 내용을 포함 가능함
- 카메라 시점에 의존적인 경향이 존재함

Normal Map

- 물체기준의 법선 벡터의 정보를 가지고 있으 므로 카메라 시점의 의존성을 낮춤
- Depth map 보다 세밀한 입체 정보 표현가능

Method

- Overall Architecture
- Backbone: HRNet-v2
- → 고해상도의 Feature map을 유지하여 최근 Backbone 모델 중 성능이 우수한 장점이 존재함
- 크게 2.5D Representation을 추론하는 부분과 BMI를 예측하는 부분으로 이루어짐
- Loss는 Depth, Normal Loss(L2)와 BMI Loss(L2)의 합으로 이루어짐

Method

- 2.5D Representation estimator
- THUMAN2.0 데이터셋을 이용하여 2.5D representation estimator를 Pretrained하고, BMI Prediction을 위해 Fine-tuning함

THUMAN 2.0 Dataset

- 총 300명의 데이터를 Mesh Yaw를 기준으로 1도씩 360도 랜더링하여 한 사람 당 360개의 랜더링된 RGB, Depth Map, Normal Map GT를 도출함

3D Data

Pretrained

- 랜더링된 이미지를 이용해 Normal map과 Depth map을 추론함
- 500*360 = 180000 쌍의 이미지, Normal map, Depth map 의 쌍을 갖게 됨
- HRNet-w18-v2를 이용함

Method

- BMI Predictor
- Backbone 뒤에 Fully Connected Layer를 추가함
- FC 1024 → Leaky ReLU → FC 512 → ReLU → FC 1

Experiments

- 2D image to BMI Dataset
- 한 웹사이트에서 수집한 데이터로 성별, 키, 나이, 몸무게 속성이 포함되어 있음
- Train Data : 2917개, Test Data : 1254개
- (BMI 기준) 저체중 : 1.77%, 보통 : 27.63%, 과체중 : 29.63%, 비만 : 41.47%

- Data Augmentation
- BMI < 25, BMI > 35 에 대해 -30~30 각도의 rotation, flip을 진행하였음
- Train Data: 7535개, Test Data: 1254개

Experiments

- Implementation Training Details
- 2.5D Representation Estimator
- > Optimizer: Adam
- > Epoch: 70
- > Learning rate: 10⁻⁴
- > Batch size: 32
- > Single Nvidia RTX 3090 GPU

- BMI Predictor
- Optimizer: Adam
- > Epoch: 120
- > Learning rate: 10⁻³
- > Batch size: 16
- > FC 1024 → Leaky ReLU → FC 512 → ReLU → FC 1
- > Single Nvidia RTX 3090 GPU

Results – Ablation study

• Comparison of results according to backbone

	Test data	Underweight	Normal	Overweight	Obesity	overall
Ours	MAE	9.54	3.14	3.32	5.61	5.40
	MAPE	60.29%	13.88%	12.15%	14.19%	14.10%
HRNet-W18	MAE	13.64	1.24	4.53	5.23	6.16
	MAPE	86%	32.02%	16.58%	13.89%	15.30%

• Comparison of results according to input data

	Test data	Underweight	Normal	Overweight	Obesity	Overall
Ours	MAE	9.54	3.14	3.32	5.61	5.40
	MAPE	60.29%	13.88%	12.15%	14.19%	14.10%
Only RGB	MAE	9.19	3.59	3.43	5.60	5.45
	MAPE	58.09%	15.89%	12.56%	14.87%	14.90%
Normal, Depth	MAE	8.89	4.25	3.55	6.47	5.79
	MAPE	60.29%	13.88%	12.15%	14.89%	16.56%

Results – other model

Comparison with others model

	Test data	Underweight	Normal	Overweight	Obesity	Overall
Ours	MAE	9.54	3.14	3.32	5.61	5.40
	MAPE	60.29%	13.88%	12.15%	14.19%	14.10%
Zhi et.al	MAE	67.52	3.80	2.70	5.19	4.13
	MAPE	64.38%	17.22%	9.93%	12.58%	13.81%
Jiang et.al	MAE					5.94
	MAPE					19.20%

Conclusion

- Limitation
- Data preprocessing으로 배경제거를 해야함 (Masking 필요)
- 데이터셋이 서양인으로 구성되어 있어서 인종에 따라 차이가 있을 것으로 보임
- 검은 옷을 입었거나 문신을 했을 경우 depth estimation을 하지 못하는 경우가 생김
- Expected Effect
- 물리적 공간과 기구에 구애 받지 않고 BMI를 측정 가능 함
- 미래의 헬스케어는 4P(Predictive, Preventive, Personalized, Participatory)로 변화될 것으로 예측됨에 따라, 건강의 지표로 사용되는 BMI를 예측해주는 시스템은 4P를 충족시켜주는 새로운 헬스케어 서비스로 활용 가능함
- 국가차원 혹은 대규모 인구조사에서 BMI를 통해 질병 유병률 모니터링이 가능할 것으로 기대됨