Intro to Robotics

Lecture 14 Robotic Hand and Grasping

Anthropomorphic Hands

DLR/HIT Hand NASA Hand Bionic Hand Shadow Hand

BarrettHand

Kinematics

		Fingers which spread: 2 Joints per finger: 2 Motors per finger: 1 Axes of palm spread motion: 2 Motors for palm spread motion: 1 Total hand axes: 8 Total hand motors: 4
	Range of Motion	Finger base joint: 140° Fingertip: 45° Finger spread: 180°
No.	Finger Speed	Finger fully open to fully closed:1.0 sec Full 180° finger spread: 0.5 sec
	Position Sensing	12-bit absolute sensing at each motor with array of Hall sensors
	Weight	Hand: 980 grams
	Payload	6.0 kg
	Finger Forces (at tip)	Active: 15 N Passive: 20 N
	Motor Type	Rare-Earth brushless-DC servo motors
	Mechanisms	Worm drives integrated with proprietary cable drive and breakaway clutch

Total fingers: 3

Mechanic of Contact

- Contact forces
- Quasistatic
- What will have form closure, sliding, rolling
- Contact kinematics
- Velocity from finger (moving direction) will allow sliding, rolling

Contact Types

- Point: point on plane (stable), point on point or line (unstable)
- Line: line on plane or nonparallel line (stable), line on parallel line (unstable)
- Plane: plane on plane

Point contact with friction

Hardfinger Contact

Softfinger Contact

Frictionless point contact

- No friction between the fingertip and the object
- Forces can only be applied in the direction normal to the surface of the object
- Can push on an object, but it cannot pull on the object.

Coulomb Friction Model

- How much force a contact can apply in the tangent directions to a surface as a function of the applied normal force.
- Empirical model which asserts that the allowed tangential force is proportional to the applied normal force, and the constant of proportionality is a function of the materials which are in contact.
- If we let $f_t \in R$ denote the magnitude of the tangential force and $f_n \in R$ denote the magnitude of the normal force, Coulomb's law states that slipping begins when

 $|f_t| > \mu f_n$, where $\mu > 0$ is the (static) coefficient of friction

Friction cone

$$\alpha = \tan^{-1} \mu$$
.

Static Friction Coefficients for Some Common Materials

Steel on steel	0.58	Wood on wood	0.25 - 0.5
Polyethylene on steel	0.3-0.35	Wood on metals	0.2-0.6
Polyethylene on self	0.5	Wood on leather	0.3-0.4
Rubber on solids	1-4	Leather on metal	0.6

Point Contact with Friction Model

- Friction between fingertip and the object
- Wrench (force and torque) applied to the object with respect to a basis of directions

 $\quad \text{where} \quad$

$$FC_{c_i} = \{ f \in \mathbb{R}^3 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 \ge 0 \}.$$

Soft-Finger Contact

Forces and torques about that normal

• Friction cone becomes (where $\gamma > 0$ is the coefficient of torsional friction)

$$FC_{c_i} = \{ f \in \mathbb{R}^4 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 \ge 0, |f_4| \le \gamma f_3 \}$$

Grasping Problem with Multiple Fingers

- Existence: given an object and constraints determine if closure exist
- Analysis: given an object and contacts determine if closure applies
- Synthesis: given an object, find contacts that result in closure

Grasping Problem with Multiple Contact Points

- Force closure: fingers resist any external force
- Torque closure: fingers resist any external torque
- Equilibrium: the contact forces can balance the object weight and external forces

Frictionless Point Contacts

Frictionless Point Contacts

- Force must be normal to object boundary
- Force must point into object's interior
- Force-direction closure
 - Translate forces to center
 - They compose to generate any desired resultant force
- Torque closure
 - Translate forces to intersection points; they can be adjusted to point at each other and away from each other to generate torque

Friction Point Contact

Friction Point Contact

Comparing two grasps

Grasp

A set of wrenches that can be achieved

$$F_o = G_1 f_{c_1} + \dots + G_k f_{c_k} = \begin{bmatrix} G_1 & \dots & G_k \end{bmatrix} \begin{bmatrix} f_{c_1} \\ \vdots \\ f_{c_k} \end{bmatrix}$$

$$f_c \in FC$$

- Gi = wrench basis matrix including transformation from local contact-reference frame to global object-centric reference frame
- G=[G1 ...Gk] =grasp map Transforming all applied forces and torques to achievable wrenches

Grasp Qualities - Force Closure

• Frictional properties of the object can be used to immobilize the

object

Test force closure

Input: Contact locations

Output: Is the grasp in Force-Closure? (Yes or No)

- Approximate the friction cone at each contact with a set of wrenches
- Combine wrenches from all cones into a set of points S in wrench space
- Compute the convex hull of S
- If the origin is inside the convex hull, return YES. If not, return NO.

 Intuition: the convex hull represents the positive linear combination of all the wrenches

Grasp Quality

- A grasp is a force-closure grasp IF for any external wrench W_t there exist contact forces $f_c \in F_c$ such that
- $G f_c = -W_t$
- i.e., if able to apply **sufficient force** at each contact, every external wrench can be compensated for.
- Quality is how well a grip can resist disturbances
- How little finger force you need to can resist disturbances

Grasp Quality

- Quality is how well a grip can resist disturbances
- Worst case scenario
 - How efficiently can a grip resist disturbance wrenches at its weakest point?
 - Weakest means the direction (in wrench space) at which the sum normal force is converted to the desired wrench least efficiently
- The point on the wrench hull that is closest to the origin is the weakest point
- Disturbances in the opposite direction are hardest to resist
- Metric ε = The radius of the largest ball that can be enclosed in the wrench hull
 - Varies from 0 to 1 due to normalization of wrenches

