Project Report - 3

Project Report-3 HBPR Based QoS Routing in LEO Satellites

Presented by Sumanth Guptha M & Sasank

Mentored by Rahul Agrawal

Timeline of our project

Agenda Overview

- Clarity of the path and last solution.
- Simulation part of arima.
- Simulation part of base paper.

Clarity of the path and last solution

- clustering
- generating traffic
- predicting arima to get the queue length
- implementing the base paper
- trying various types to integration QoS in the existing equations

Simulation part of arima

- Imagine you are analyzing network traffic data from a Low Earth Orbit (LEO) satellite. The traffic is bursty, meaning it has periods of high activity (ON) followed by periods of low activity (OFF).
- How the code works
 - Traffic Generation
 - Signal Decomposition
 - Linear Forecasting
 - Residual Analysis
 - Non-linear Forecasting
 - Hybrid Forecasting
 - Evaluation

Simulation part of arima

Simulation part of arima

Sarima and Pmdarima

- SARIMA(seasonal autoregressive integrated moving average) is an extension of arima model that incorporates seasonality in addition to the non-seasonal components.
- It has parameters p,d,q,s.
 - P seasonal autoregressive order
 - D seasonal differencing
 - o Q seasonal moving average order
 - S length of seasonal cycle
- Pmdarima is a python library that provides statistical time series analysis tool, with a particular focus on automating the process of building arima models. It's often used for forecasting and model selection in time series data.
- Pmdarima has a feature named auto_arima which automatically selects the best ARIMA/SARIMA model parameters based on criteria like AIC/BIC.

Simulation part of base paper

Simulation part of base paper

Simulation part of base paper

All Codes Are Available Here

- Base paper code: https://drive.google.com/drive/folders/1r3pt-ZZCYv5Uleg6Q3ojO_KlGk9_-8Ww?usp=sharing
- Prediction of queue length using arima model code: https://colab.research.google.com/drive/1NGrE9uP5ZZIvdSkLnU5KOai8YDw1d r8?usp=sharing
- Base paper code results: https://colab.research.google.com/drive/19Y_wcpfJug-v9V2B25qdMC3HSotxLbQz?usp=sharing

What's Next?

- \rightarrow trying various types to integration QoS in the existing equations.
- \rightarrow to see the good results than the base paper.
- → writing the term paper.