

《线性代数》

8-正交和投影 (Orthogonality and Projection)

杨启哲

上海师范大学信机学院计算机系

2024年4月16日

定义 1

[矩阵的秩 (Rank)].

给定一个 $m \times n$ 的矩阵 A, 其秩 (rank) 定义为:

rank(A) = 矩阵 A 的首元的个数 = r

定理 2

$$rank(A) = row - rank(A) = column - rank(A)$$

复习: 行最简形

行最简形 (Reduced Row Echelon Form)

回顾一个 m×n 矩阵 A, 定义:

$$j_i = egin{cases} +\infty & \text{如果第 i 行是零行} \\ \min\{j \in [n]: lpha_{ij}
eq 0\} & \text{o.w.} \end{cases}$$

则称 A 是行最简形的 (Reduced Row Echelon Form),如果:

1. 其是行阶梯形的,即存在 $0 \le r \le m$ 使得:

$$j_1 < j_2 < \dots < j_r, \quad j_{r+1} = \dots = j_{\mathfrak{m}} = +\infty$$

- 2. $a_{1j_1} = \cdots = a_{rj_r} = 1$,即所有的首元都是 1。
- 3. 对于所有的 $l \in [1, r], i \in [1, l-1] \cup [l+1, m]$,我们都有 $a_{ij_1} = 0$,即在首元的那一列中,除了首元之外的所有元素都是 0。

定理 3.

高斯若尔当消元法会将矩阵 A 变成一个行最简形矩阵 R,并且: rank(A) = rank(R)

复习: 方阵时 Ax = b 的解

引理 4.

令 A 是一个 $n \times n$ 的矩阵, 下面的叙述是等价的:

- 1. A 是可逆的。
- 2. 方程 Ax = b 对任意 $b \in \mathbb{R}^m$ 都有唯一解.
- 3. rank(A) = n.
- 4. $\operatorname{column-rank}(A) = n$.
- 5. row-rank(A) = n.
- 6. 存在矩阵 B 使得 AB = I。
- 7. 存在矩阵 C 使得 CA = I。

复习: Ax = 0的解(I)

一般来说,令 $A \in m \times n$ 的矩阵,我们考虑 Ax = 0 的解。我们先使用 Gauss-Jordan 消元法将 A 转化成行最简形 R. 即:

$$\mathbf{A}\mathbf{x} = \mathbf{0} \quad \longleftrightarrow \quad \begin{bmatrix} 0 & \cdots & \mathbf{b_{1j_1}} & \cdots & \mathbf{b_{1n}} \\ 0 & \cdots & 0 & \cdots & \mathbf{b_{2n}} \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x_1} \\ \vdots \\ \mathbf{x_{j1}} \\ \vdots \\ \mathbf{x_n} \end{bmatrix} = \mathbf{0}$$

其 rank(A) = r 意味着存在 r 个首元:

$$b_{1j_1} = b_{2j_2} = \dots = b_{rj_r} = 1$$

也就是

首元	自由变量	
$x_{j_1}, x_{j_2}, \cdots, x_{j_r}$	$x_1, \dots, x_{j_1-1}, x_{j_1+1}, \dots, x_{j_2-1}, \dots, x_{j_r+1}, \dots, x_n$	

 $\mathbf{R}\mathbf{x} = \mathbf{0}$ 对应的方程组为:

$$\mathbf{x_{j_1}} + b_{1,j_1+1} \mathbf{x_{j_1+1}} + \dots + b_{1,j_2-1} \mathbf{x_{j_2-1}} + b_{1,j_2+1} \mathbf{x_{j_2+1}} + \dots + b_{1n} \mathbf{x_n} = 0$$

$$\mathbf{x_{j_2}} + b_{2,j_2+1} \mathbf{x_{j_2+1}} + \dots + b_{2n} \mathbf{x_n} = 0$$

$$\vdots$$

$$\mathbf{x_{j_n}} + \dots + b_{rn} \mathbf{x_n} = 0$$

从而我们可以构造出n-r个特殊解:

$$\mathbf{s}_1 = \begin{bmatrix} 1 \\ \vdots \\ 0 \\ 0 \\ 0 \end{bmatrix}, \cdots, \mathbf{s}_{j_1-1} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{bmatrix}, \cdots, \mathbf{s}_{j_1+1} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -b_{1,j_1+1} \\ \vdots \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

定理 5.

对于任意的 $m \times n$ 的矩阵 A, 我们有:

$$rank(A) + dim(N(A)) = n$$

定理6

[Fundamental Theorem of Linear Algebra, Part I].

令 A 是一个 m × n 的矩阵并且 rank(A) = r,则:

- $1. \ dim(C(A)) = dim(C(A^T)) = r_{\circ}$
- 2. dim(N(A)) = n r, $dim(N(A^T)) = m r$.

定理 7.

Ax = b 有解当且仅当 b ∈ C(A)

定理 8. Ax = b 有解当且仅当

$$rank(A) = rank(\begin{bmatrix} A & b \end{bmatrix})$$

定理 9.

$$Ax = b \iff x - x_p \in N(A)$$

任何一个 Ax = b 的解都可以表示为:

$$\mathrm{x} = \mathrm{x}_p + c_1 \mathrm{s}_1 + \dots + c_l \mathrm{s}_l$$

即一个特解 + 一个齐次解 (Ax = 0) 的形式。

m	n	dim(N(A))	Ax = b 的解的个数
= r	= r	0	1
= r	> r	≥ 1	∞
> r	= r	0	0 or 1
> r	> r	≥ 1	0 or ∞

主要内容

> 正交性

> 投影

Ax = 0 的解与行空间 A

我们来从几何的角度来看 Ax = 0 的解。记矩阵 A 的形式如下:

$$A = \begin{bmatrix} \mathbf{a}_1^\mathsf{T} \\ \vdots \\ \mathbf{a}_{\mathfrak{m}}^\mathsf{T} \end{bmatrix}$$

则每个 a_i 可以视作一个 $n \times 1$ 的矩阵,即:

$$a_i = \begin{bmatrix} a_{i1} \\ \vdots \\ a_{in} \end{bmatrix}$$

则对于任意
$$x = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T \in \mathbb{R}^n$$
 有:

$$Ax = \mathbf{0} \iff a_{i1}x_1 + \dots + a_{in}x_n = 0$$
 对于任一 $i \in [m]$ \iff 对于任一 $i \in [m]$ $a_i \cdot x = 0$,即 $x = 5$ a_i 都是垂直(正交)的。 \iff 对于任一 $i \in [m]$ $a_i^\mathsf{T} x = 0$

Ax = 0 的解的几何性质(I)

定理 10.

给定一个矩阵 A,其行空间 $C(A^T)$ 和零空间 N(A) 是正交的 (orthogonal),即对于任意的 $u \in C(A^T)$ 和 $v \in N(A)$,我们都有:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^\mathsf{T} \mathbf{v} = 0$$

特别的,其逆命题也是成立的,即如果存在 $v \in \mathbb{R}^n$ 满足 v 与 $C(A^T)$ 中的任何一个 u 都 是垂直的,则:

$$Av = \mathbf{0}, \ \mathbb{H}: \ v \in N(A)$$

Ax = 0 的解的几何性质(II)

定理10的证明. 记 A 是之前的形式:

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}$$

则
$$\mathbf{u} \in C(\mathbf{A}^T)$$
 等价于存在 $\mathbf{c} = \begin{bmatrix} \mathbf{c}_1 \\ \vdots \mathbf{c}_m \end{bmatrix} \in \mathbb{R}^m$ 使得:

$$\mathbf{u} = \mathbf{c}_1 \mathbf{a}_1 + \dots + \mathbf{c}_{\mathfrak{m}} \mathbf{a}_{\mathfrak{m}} = \mathbf{A}^{\mathsf{T}} \mathbf{c}$$

从而对于任意 $v \in N(A)$ 有:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^\mathsf{T} \mathbf{v} = (\mathbf{A}^\mathsf{T} \mathbf{c})^\mathsf{T} \mathbf{c} = \mathbf{c}^\mathsf{T} \mathbf{A} \mathbf{v} = \mathbf{c}^\mathsf{T} \mathbf{0} = 0$$

定义 11

[Orthogonal Subspaces].

令 $n \ge 0$, V 和 W 是 \mathbb{R}^n 的两个子空间,我们称 V 和 W 是正交的 (orthogonal),记作:

$$V \perp W$$

如果每个 V 中的向量 v 和 W 中的任何一个向量 w 都是垂直的 (perpendicular),即:

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^\mathsf{T} \mathbf{w} = 0$$

我们同样用 $v \perp w$ 来表示 $v \cdot w = 0$

例 12.

- $\{(x,0) \mid x \in \mathbb{R}\}\$ 和 $\{(0,y) \mid y \in \mathbb{R}\}\$ 是正交的。
- 任何一个向量空间 V 和 $Z = \{0\}$ 都是正交的。
- $\{(x,0,0) \mid x,z \in \mathbb{R}\}$ 和 $\{(0,y,z) \mid y,z \in \mathbb{R}\}$ 是正交的。

基与正交的关系(I)

令 V 和 W 是 \mathbb{R}^n 的两个子空间:

- V 的一组基为 $\{v_1, \dots, v_k\}$
- W 的一组基为 $\{w_1, \dots, w_l\}$ 。

如果 V 和 W 是正交的,显然这两组向量是互相正交的,那么问题反过来呢?

定理 13.

 $V \bot W$ 当且仅当对任意的 $i \in [k], j \in [l]$ 我们有: $v_i \bot w_j$.

基与正交的关系(II)

定理13的证明. 我们只需证明 ← 的方向, 另一边直接由定义可得。

假设对于任意的 v_i 和 w_j ,我们有: $v_i \perp w_j$,则对于任意的 $v \in V$ 和 $w \in W$,存在 $a \in \mathbb{R}^k$ 和 $b \in \mathbb{R}^1$ 满足:

$$v = \begin{bmatrix} v_1 & \cdots & v_k \end{bmatrix} a, \quad w = \begin{bmatrix} w_1 & \cdots & w_l \end{bmatrix} b$$

从而:

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^{\mathsf{T}} \mathbf{w} = \mathbf{a}^{\mathsf{T}} \begin{bmatrix} \mathbf{v}_{1}^{\mathsf{T}} \\ \vdots \\ \mathbf{v}_{k}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{1} & \cdots & \mathbf{w}_{l} \end{bmatrix} \mathbf{b}$$

$$= \mathbf{a}^{\mathsf{T}} \begin{bmatrix} \mathbf{v}_{1}^{\mathsf{T}} \mathbf{w}_{1} & \cdots & \mathbf{v}_{1}^{\mathsf{T}} \mathbf{w}_{l} \\ \vdots & \ddots & \vdots \\ \mathbf{v}_{k}^{\mathsf{T}} \mathbf{w}_{1} & \cdots & \mathbf{v}_{k}^{\mathsf{T}} \mathbf{w}_{l} \end{bmatrix} \mathbf{b}$$

$$= \mathbf{a}^{\mathsf{T}} \begin{bmatrix} \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix} \mathbf{b} = \mathbf{0}$$

$C(A^{T}) \perp N(A)$ 的另一个证明

我们利用定理13来给出 $C(A^{\mathsf{T}}) \perp N(A)$ 的另一个证明。

1. 记 A^T 的列向量为 a_1, \dots, a_m ,则可以从中选出 $C(A^T)$ 的一组基:

$$\{a_{i_1}, \cdots, a_{i_r}\}$$

其中 r = rank(A).

2. 类似的选出 N(A) 的一组基:

$$\{\mathbf{x}_1,\cdots,\mathbf{x}_{n-r}\}$$

3. 对任意的 $k \in [r]$ 和 $j \in [n-r]$ 我们有: $a_{i_k} \perp x_j$.

直观理解

C(A) 和 N(A) 可以看成将 \mathbb{R}^n 分解成了两个正交的子空间。

定义 14

[Orthogonal Complements].

令 $V \in \mathbb{R}^n$ 的一个子空间,我们称 V 的正交补 (orthogonal complement) 为:

$$V^{\perp} = \{ v \in \mathbb{R}^n \mid v \bot u, \ 对于任意的 \ u \in V \}$$

例 15.

- ・ 考察 \mathbb{R}^2 的子空间 $\{(c,0) \mid c \in \mathbb{R}\}$,其正交补为: $\{(0,c) \mid c \in \mathbb{R}\}$
- ・ 考察 \mathbb{R}^2 的子空间 $\{(c,2c) \mid c \in \mathbb{R}\}$,其正交补为: $\{(-2c,c) \mid c \in \mathbb{R}\}$
- ・ 考察 \mathbb{R}^3 的子空间 $\{(x,y,z) \mid x+y+z=0\}$,其正交补为: $\{(c,c,c) \mid c \in \mathbb{R}\}$

正交补的性质

引理 16.

令 $V \in \mathbb{R}^n$ 的一个子空间,则:

- 1. V[⊥] 是一个子空间。
- 2. V⊥V[⊥]。
- 3. 令 W 是 \mathbb{R}^n 的子空间,如果 $W \perp V$,则 $W \subseteq V^{\perp}$,即 V^{\perp} 是最大的与 V 正交的子空间。
- 4. $(V^{\perp})^{\perp} = V_{\circ}$

[Fundamental Theorem of Linear Algebra, Part II].

E埋 17 [Fundamental Theorem of Linear Algebra, $A = - m \times n$ 的矩阵,则其零空间 N(A) 是行空间 $C(A^T)$ 的正交补,即:

$$N(A) = (C(A^{\mathsf{T}}))^{\perp}$$

我们再来从几何的角度理解一下矩阵 A。

关于矩阵 A 的空间

我们已经介绍了矩阵 A 的四个空间:

- 1. C(A): A 的列空间, 即所有的 Ax 的集合。
- 2. N(A): A 的零空间,即 Ax = 0 的解的集合。
- 3. $C(A^T)$: A 的行空间,即所有的 A^Ty 的集合。
- 4. $N(A^T)$: A^T 的零空间,即 $A^Tx = \mathbf{0}$ 的解的集合。

我们同样引入 A^T 的零空间 $N(A^T)$, 其是 $A^Ty = \mathbf{0}$ 的解的集合,即:

$$y^T A = \mathbf{0}$$

的解的集合,我们称其为 A 的左零空间 (Left Nullspace)。

线性代数基本定理

我们再来回顾一下线性代数基本定理:

E埋 1/ [Fundamental Theo A 是一个 $m \times n$ 的矩阵并且 rank(A) = r, 则: [Fundamental Theorem of Linear Algebra, Part I].

- 1. $dim(C(A)) = dim(C(A^T)) = r_o$
- 2. dim(N(A)) = n r, $dim(N(A^T)) = m r$.

定理 17 [Fundamental Theorem of Linear Algebra, Part II].

矩阵 A 的空间理解(I)

 $m \times n$ 的矩阵 A 的四个空间

矩阵 A 的空间理解 (II)

 \mathbb{R}^n 的子空间

 $m \times n$ 的矩阵 A 的四个空间

称作"补"的原因

我们考虑 \mathbb{R}^2 的子集:

$$V = \{(x,0) \mid x \in \mathbb{R}\}\$$

其正交补为:

$$V^{\perp} = \{(0, y) \mid y \in \mathbb{R}\}$$

注意到: $\mathbb{R} \neq V \cup V^{\perp}$, 但每个 $(x,y) \in \mathbb{R}$ 都可以表示为:

$$(x,y) = (x,0) + (0,y)$$

引理 18.

令 V 是 \mathbb{R}^n 的一个子空间,则对于任一 $x\in\mathbb{R}^n$,我们都存在唯一的 $v\in V$ 和 $v^\perp\in V^\perp$ 使得:

$$x = v + v^{\perp}$$

换句话说,

$$\mathbb{R}^{n} = V + V^{\perp} = \{ u + v \mid u \in V \text{ and } v \in V^{\perp} \}$$

矩阵 A 的空间理解 (Ⅲ)

 $m \times n$ 的矩阵 A 的四个空间

引理 19.

令 V 是 \mathbb{R}^n 的一个子空间,则对于任一 $x\in\mathbb{R}^n$,我们都存在唯一的 $v\in V$ 和 $v^\perp\in V^\perp$ 使得:

$$x = v + v^{\perp}$$

换句话说,

$$\mathbb{R}^n = V + V^{\perp} = \{ u + v \mid u \in V \text{ and } v \in V^{\perp} \}$$

说明

- 1. 我们需要一些额外的手段(投影, Projection)来证明上述结论,也就是我们接下来要讨论的内容。
- 2. 作为一个作业,你们被要求先来尝试证明其唯一性。

阶段总结

- 正交的概念。子空间正交。
- 正交补的概念。线性代数基本定理的第二部分。
- 矩阵的四个空间的几何直观。
- 正交补的性质, 待证明的引理19。

投影到一条直线

假设一条线的方向是 $\mathbf{a}=(a_1,\cdots,a_m)$ 。考虑任一个向量 $\mathbf{b}=(b_1,\cdots,b_m)$,我们希望在这条直线上找到 \mathbf{p} ,使得 \mathbf{p} 到 \mathbf{b} 的距离最小。

寻找最小的 e

关键在于发现 b 和 p 的最小误差是与 a(p) 垂直的。我们称 p 是 b 在 a 上的投影。

投影的计算(1)

假设:

$$p = \hat{x}a$$

则 e = b - p, 注意到 $e \perp a$, 则我们有:

$$0 = \mathbf{a} \cdot \mathbf{e} = \mathbf{a}^\mathsf{T} (\mathbf{b} - \mathbf{p}) = \mathbf{a}^\mathsf{T} (\mathbf{b} - \hat{\mathbf{x}} \mathbf{a}) = \mathbf{a}^\mathsf{T} \mathbf{b} - \hat{\mathbf{x}} \mathbf{a}^\mathsf{T} \mathbf{a}$$

从而我们有:

$$\hat{\mathbf{x}} = \frac{\mathbf{a}^\mathsf{T} \mathbf{b}}{\mathbf{a}^\mathsf{T} \mathbf{a}}$$

即我们所需要求的投影 p 为:

$$p = \frac{a^\mathsf{T} b}{a^\mathsf{T} a} a$$

另一个算法
注意到:
$$p = \frac{\|p\|}{\|a\|}a$$
, $\|p\| = \|b\|\cos\theta$ 以及 $\cos\theta = \frac{a^Tb}{\|a\|\|b\|}$, 我们有:
$$\hat{x} = \frac{\|b\|\cos\theta}{\|a\|} = \frac{\|b\|}{\|a\|} \frac{a \cdot b}{\|a\|\|b\|} = \frac{a \cdot b}{\|a\|^2} = \frac{a^Tb}{a^Ta}$$

最小误差的证明 (不使用 $\cos \theta$)

我们来证明, 当误差最小的时候恰好为 e 与 p 垂直的时候:

$$\begin{split} \|b - xa\|^2 &= \|b - p + p - xa\|^2 \\ &= \|b - p\|^2 + \|p - xa\|^2 + 2(b - p) \cdot (p - xa) \\ &= \|b - p\|^2 + \|\hat{x}a - xa\|^2 + 2(b - p) \cdot (\hat{x}a - xa) \\ &= \|b - p\|^2 + (\hat{x} - x)^2 \|a\|^2 + 2(\hat{x} - x)(b - p) \cdot a \\ &= \|b - p\|^2 + (\hat{x} - x)^2 \|a\|^2 \\ &\geqslant \|b - p\|^2 \end{split}$$

最后一个不等式等号成立当且仅当 $x = \hat{x}$,所以我们得到 $p \neq a$ 方向这条线上唯一的一个点使得其与 b 的距离是最近的。

一些例子

例 20.

1. 对于
$$b = a = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 来说,其投影 $p = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

2. 对于
$$b = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
, $a = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ 来说,其投影 $p = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

3. 对于
$$b = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$$
 和 $a = \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix}$ 来说, $a^T b = 5$, $\|a\|^2 = 9$,从而其投影 p 为:

$$p = \hat{x}a = \frac{a^Tb}{a^Ta}a = \frac{5}{9}a = \begin{bmatrix} \frac{5}{9} \\ \frac{10}{9} \\ \frac{10}{9} \end{bmatrix}$$

投影矩阵 P

给定 $a \in \mathbb{R}^m$ 和 $b \in \mathbb{R}^m$,前面我们已经给出了 b 在 a 上的投影 p,是否可以找到一个矩阵 P,使得我们有:

$$Pb=p$$

解 21.

$$P = \frac{aa^{\mathsf{T}}}{a^{\mathsf{T}}a}$$

这里 P 是一个 m×m 的矩阵。

证明.

$$Pb = \frac{aa^\mathsf{T}}{a^\mathsf{T}a}b = \frac{aa^\mathsf{T}b}{a^\mathsf{T}a} = \frac{a^\mathsf{T}ba}{a^\mathsf{T}a} = \frac{a^\mathsf{T}b}{a^\mathsf{T}a}a = p$$

说明

注意 $\mathbf{a}^\mathsf{T}\mathbf{b}$ 既可以当成 1×1 的矩阵,也可以当成是一个 \mathbb{R} 中的数。

误差投影矩阵

回顾投影的误差是:

$$e = b - p$$

从而当 P 是投影矩阵的时候, 我们有:

$$(I - P)b = Ib - Pb = b - p$$

注意到 e 是与 p 垂直的,从而 I-P 是一个将 b 投影到与 a 正交的子空间的投影矩阵。

投影到一个子空间

我们现在来考虑对一个子空间的投影。令 $a_1, \dots, a_n \in \mathbb{R}^m$ 是线性无关的,即他们是下列子 空间的一组基:

$$V = span(\{a_1, \cdots, a_n\})$$

与到一条线的投影相同. b 到 V 的投影应该是:

V 中离 b 最近的元素 (可能是唯一的?)

也就是说,我们需要寻找到 V 中的一个向量 p:

$$p = \hat{x}_1 a_1 + \dots + \hat{x}_n a_n$$

使得 ||b - p|| 最小

记号
$$记 \, \hat{x} = (\hat{x}_1, \dots, \hat{x}_n) \, \, \text{和 } A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}, \, \, \text{则我们有:}$$

$$p = A \hat{x}$$

$$p = A\hat{x}$$

p 的计算-误差向量 e(l)

$$e = b - p = b - A\hat{x}$$

我们首先证明:

 $e \bot V$

证明. 对于任意的 $v \in V$,我们有:

$$v = Ay$$

从而:

$$\begin{aligned} \|b - v\|^2 &= \|b - Ay\|^2 \\ &= \|b - A\hat{x} + A\hat{x} - Ay\|^2 \\ &= \|e\|^2 + \|A(\hat{x} - y)\|^2 + 2e \cdot A(\hat{x} - y) \\ &= \|e\|^2 + \|A(\hat{x} - y)\|^2 \\ &\geqslant \|e\|^2 \end{aligned}$$

p的计算-误差向量 e(II)

这也意味着:

$$e \perp a_1, \cdots, e \perp a_n$$

从而我们有:

$$\begin{cases} \mathbf{a}_{1}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}) = 0 \\ \vdots \\ \mathbf{a}_{n}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}) = 0 \end{cases}$$

即:

$$A^{\mathsf{T}}(b - A\hat{\mathbf{x}}) = \mathbf{0}$$

p 的计算-投影矩阵 P

我们可以看到:

$$A^{\mathsf{T}}(b - A\hat{x}) = \mathbf{0} \iff A^{\mathsf{T}}A\hat{x} = A^{\mathsf{T}}b$$

注意到 A 是一个 $m \times n$ 的矩阵:

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$

并且其列向量是线性无关的,则 A^TA 是 $n \times n$ 的矩阵,并且如果我们可以证明 A^TA 是可逆的,则我们有:

$$\hat{\mathbf{x}} = (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{b}$$

并且我们可以得到 b 到 $V(= span\{a_1, \dots, a_n\})$ 的投影为:

$$\mathbf{p} = \mathbf{A}\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$$

对应的投影矩阵为:

$$P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$$

一个例子

考虑
$$\mathbb{R}^3$$
,考虑矩阵 $A=\begin{bmatrix}1&0\\1&1\\1&2\end{bmatrix}$ 的列空间和 $b=\begin{bmatrix}6\\0\\0\end{bmatrix}$,我们来计算其投影和对应的投影矩

阵。

1.
$$A^{\mathsf{T}}A = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}, A^{\mathsf{T}}b = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

2. 解方程: $A^TA\hat{x} = A^Tb$:

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_1 \\ \hat{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

可得: $\hat{\mathbf{x}} = (\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2) = (5, -3)$

3. 其投影
$$p = A\hat{x} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$
,误差为 $e = b - p = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$,投影矩阵 $P = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$

$A^{\mathsf{T}}A$ 的可逆性 (1)

现在我们来证明 A^TA 的可逆性. 注意到:

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$

并且其列向量是线性无关的、所以其是列满秩的。

A^TA 的可逆性(Ⅱ)

定理22的证明. 我们证明: $column-rank(A^TA)=n$, 即等价的:

$$A^{\mathsf{T}}Ax = \mathbf{0}$$
 只有 $\mathbf{0}$ 一个解。

事实上, 我们有:

$$A^{T}Ax = \mathbf{0}$$
 $\implies x^{T}A^{T}Ax = 0$
 $\iff (Ax)^{T}Ax = 0$
 $\iff Ax \cdot Ax = 0$
 $\iff |Ax|| = 0$
 $\iff Ax = \mathbf{0}$
 $\iff x = \mathbf{0}$ (这是因为 $rank(A) = n$)

_

投影计算总结

1. 我们的目标是计算 b 到下列空间:

$$V = span(\{a_1, \dots, a_n\})$$

的投影 p, 其中 a_1, \ldots, a_n 是线性无关的, $p \in V$.

2. 我们令 $p \in V$ 是满足其误差 e = b - p 与 V 垂直的向量。我们证明了,对于任意的 $v \in V$:

$$\|\mathbf{b} - \mathbf{v}\| = \min_{\mathbf{u} \in \mathbf{V}} \|\mathbf{b} - \mathbf{u}\| \quad \Longleftrightarrow \quad \mathbf{v} = \mathbf{p}$$

3. 我们得到了相应的投影矩阵 $P = A(A^TA)^{-1}A^T$,即:

$$p = A\hat{x} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b$$

并且我们证明了当 rank(A) = n 时 $(A^TA)^{-1}$ 是存在的,这也说明了 p 的唯一性。

回到引理19

令 V 是 \mathbb{R}^n 的一个子空间,则对于任一 $x\in\mathbb{R}^n$,我们都存在唯一的 $v\in V$ 和 $v^\perp\in V^\perp$ 使得:

$$x = v + v^{\perp}$$

$$\mathbb{R}^n = V + V^{\perp} = \{ u + v \mid u \in V \text{ and } v \in V^{\perp} \}$$

证明. 令 a_1, \dots, a_k 表示 V 的一组基,并且:

$$A = \begin{bmatrix} a_1 & \cdots & a_k \end{bmatrix}$$

则对于任意的 $x \in \mathbb{R}^n$,令 $u = A(A^TA)^{-1}A^Tx$,则我们有:

$$x = u + (x - u), u \in V, x - u \in V^{\perp}$$

矩阵 A 的空间理解(Ⅲ)

 $m \times n$ 的矩阵 A 的四个空间

• 投影到一条直线:

$$p = \frac{a^\mathsf{T}b}{a^\mathsf{T}a}a, \quad P = \frac{aa^\mathsf{T}}{a^\mathsf{T}a}$$

• 投影到一个子空间:

$$\mathrm{p} = A\hat{\boldsymbol{x}} = A(A^TA)^{-1}A^T\mathrm{b}, \quad P = A(A^TA)^{-1}A^T$$

关于没有解的方程 Ax = b

最后让我们回到方程 Ax = b。

问题 20.

如果其没有解,我们如何找出一个 û 使其是最为接近的一组解?

• 投影-最小二乘法 (Least Squares Approximation)!