Structure Discrète IFT1065 **Devoir 3**Récursivité et Preuves

Franz Girardin et Aiya Ben Ouhida

23 décembre 2023

Résolution de problèmes

Problème 3 · Équivalence des vecteurs

1. Dessinez le graphe de la ralation pour les vecteurs suivants :

$$(-1,0), (1,1), (1,0), (2,0), (2,2), (2,1), (0,-1), (0,1), (0,2).$$

Soit la relation \mathcal{R} , on peut exprimer la proposition conditionnelle qui définit la relation \mathcal{R} :

Proposition 1.1 P(x, y, t, z)

$$xt = yz \implies (x, y)\mathcal{R}(z, t)$$

Nous devons représenter **toutes les paires de vecteurs** pour lesquels P(x, y, t, z) en vraie. Autrement dit, nous devons trouver tous les couples de vecteurs (x, y), (t, z) tels que xt = yz.

Considérons les vecteurs (-1,0), (1,1), (1,0), (2,0), (2,2), (2,1), (0,-1), (0,1), (0,2) comme étant $v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8,v_9$, respectivement. Nous avons alors le graphe de $\mathcal R$ pour les vecteurs v_1,v_2,\ldots,v_9 représenté par la figure suivante.

FIGURE 1.1 – Représentation de la relation $\mathcal R$ pour les vecteurs $v_1 \to v_9$

2. Montrer que la relation \mathcal{R} est une relation d'équivalence. Mentionnez explicitement les techniques de preuves que vous utilisez.

Soit l'ensemble de vecteurs

$$A = \{(x,y) : x,y \in \mathbb{Z}, x = 0 \leftrightarrow y \neq 0\},\$$

nous devons prouver que $\mathcal R$ est une relation d'équivalence. Pour ce faire, nous allons montrer que $\mathcal R$ est réflexive, symétrique et transitive.

Proposition 1.2 $P_1(v_n, A, \mathcal{R})$

Tous les vecteurs v_n faisant partie de A respectent la proposition $v_n \mathcal{R} v_n$:

$$\forall v_n \in A, v_n \mathcal{R} v_n$$

Preuve 1

Nous procédons par **preuve directe**. Supposons que $v_n = (x, y) \in A$. Pour vérfier la réflexivité de v_n , nous pouvons appliquer la **proposition 1.1** sur le vecteur v_n . La proposition devient alors P(x, y, x, y):

$$(xy = yx) \implies (x,y)\mathcal{R}(x,y)$$

Nous savons que le produit xy est égale à yx, par la commutativité de la multiplication. Par l'implication de la proposition 1.1, nous avons alors $(x,y)\mathcal{R}(x,y)$. Ainsi, $v_n\mathcal{R}v_n$ est une proposition vraie et nous concluons alors que R est réflexive.

Proposition 1.3 $P_2(v_n, A, \mathcal{R})$

Tous les vecteurs $v_a = (x, y)$, $v_b = (z, t)$ faisant partie de A sont tels que **si** v_a est en relation avec v_b , **alors** v_b est en relation avec v_a :

$$\forall v_a, v_b \in A, v_a \mathcal{R} v_b \implies v_b \mathcal{R} v_a$$

$$\updownarrow$$

$$\forall (x, y), (z, t) \in A, (x, y) \mathcal{R}(z, t) \implies (z, t) \mathcal{R}(x, y)$$

Proposition 1.4

Nous procédons pas **preuve direction**. Supposons que (x,y), $(z,t) \in A$ et $(x,y)\mathcal{R}(z,t)$. Si $(x,y)\mathcal{R}(x,t)$, alors, par la définition de la relation \mathcal{R} nous savons que xt = yz. Par l'associativité de la multipliucation, nous savons que l'équivalence suivante est vraie :

$$xt = yz \leftrightarrow tx = zy$$

Or, tx = zy est simplement $(z,t)\mathcal{R}(x,y)$. En effet, $(z,t)\mathcal{R}(x,y)$, par la définition de la la relation \mathcal{R} , signifie que zy = tx. On sait aussi que, par la réflexitivé de l'égalité, $a = b \leftrightarrow b = a$. Donc, nous avons :

$$(x,y)\mathcal{R}(z,t) \implies xt = yz$$
 Def. de \mathcal{R}
 $xt = yz \implies tx = yz$ Commutativité de mult.
 $tx = yz \leftrightarrow yz = tx$ Relexivité de l'égalité
 $yz = tx \implies (z,t)\mathcal{R}(x,y)$ Def. de \mathcal{R} , inférence

Ainsi, nous avons montré que **si** $(x,y)\mathcal{R}(z,t)$, **alors** $(z,t)\mathcal{R}(x,y)$. Nous concluons que $P_2(v_n,A,\mathcal{R})$ est vraie et \mathcal{R} est réflexive.

Proposition 1.5 $P_3(x, v_n \mathcal{R})$

Tous les vecteurs $v_a = (x, y)$, $v_b = (p, q)$, $v_c = (z, t)$ faisant partie de A sont tels que \mathbf{si} v_a est en relation avec v_b , et que v_b est en relation avec v_a , **alors** v_a est en relation avec v_c .

$$\forall v_a, v_b, v_c \in A, \left(v_a \mathcal{R} v_b\right) \land \left(v_b \mathcal{R} v_c\right) \Longrightarrow \left(v_a \mathcal{R} v_c\right)$$

$$\updownarrow$$

$$\forall (x, y), (p, q), (z, t) \in A, \left((x, y) \mathcal{R}(p, q)\right) \land \left(p, q\right) \mathcal{R}(z, t)\right)$$

$$\Longrightarrow (x, y) \mathcal{R}(z, t)$$

Preuve 2

Nous procédons par **preuve directe**. Supposon que $(x,y),(p,q),(z,t) \in A$, que $(x,y)\mathcal{R}(p,q)$ et que $(p,q)\mathcal{R}(z,t)$ En supposant que ces deux expressions sont vraie, cela signifie que les deux expressions suivantes sont également vraies :

$$xq = yp$$
 Conséquence de. $v_a \mathcal{R} v_b$ (1.1)

$$pt = qz$$
 Conséquence de. $v_b \mathcal{R} v_c$ (1.2)

Or, en multipliant les deux côtés de l'équation (1.1) par *t*, et en multipliant les deux côté de l'équation (1.2) par *y*, nous obtenons

$$xqt = ypt (1.3)$$

$$ypt = yqz (1.4)$$

Par la transitivité de l'égalité, nous avons :

$$xqt = yqz (1.5)$$

nous ne pouvons pas diviser les deux côtés de l'équation (1.5) par t, puisqu'il est possible que t soit égal à 0 et que $(z,t)=(z,0)|z\in\mathbb{Z},z\neq0$. Mais, à toute fin pratique, nous pouvons ignorer t. Si t est égal à zéro, l'équation (1.5) est trivialement vraie; les deux côté de l'égalité sont égale à 0. Mais si $t\neq$, nous avons alors l'expression suivante :

$$xt = yz$$

Par la définition de la relation \mathcal{R} nous savons que cette expression signie $(x,y)\mathcal{R}(z,t)$ ou $v_a\mathcal{R}v_b$. Notons que si t=0, la relation $(x,y)\mathcal{R}(z,t)$ tient, tant que y=0. Dans ce cas, $(x,y)\mathcal{R}(z,t)$ découle natuellement de xqt=yqz et toutes les autres équations et dérivations menant à $(x,y)\mathcal{R}(z,t)$ demeurent vraies. Ainsi, nous avons montré que \mathbf{si} $(x,y)\mathcal{R}(p,q)$ et que $(p,q)\mathcal{R}(z,t)$, **alors**, $(x,y)\mathcal{R}(z,t)$. Nous concluons donc que \mathcal{R} est transitive.

Réponse

Nous avons montré que la relation \mathcal{R} est réflexive, symétrique et transitive. Ainsi, nous concluons que \mathcal{R} est, par définition, une relation d'équivalence.