CI. Semana 16-23/04/2020

Ejercicio 1. Calcular

$$\int_{\gamma} x dx + y dy + z dz$$

donde $\gamma(t) = (4\cos t, 4\sin t, 3t), t \in [0, 2\pi].$

Ejercicio 2. Se considera el campo de fuerza $\vec{F}(x,y)=(y,x)$ en \mathbb{R}^2 . Hallar el trabajo de \vec{F} a lo largo de las curvas:

- 1. $\gamma_1(t) = (t, t), t \in [0, 1].$
- 2. $\gamma_2(t) = (t, t^2), t \in [0, 1].$
- 3. $\gamma_3(t) = (t, t^3(t-1)\log(t+2) + t), t \in [0, 1].$

Ejercicio 3. Sean las funciones $P(x,y) = \frac{y}{x^2+y^2}$, $Q(x,y) = \frac{-x}{x^2+y^2}$ y las curvas $\gamma_1(t) = (\cos t, \sin t)$, $t \in [0,\pi]$ y $\gamma_2(t) = (-\cos t, \sin t)$, $t \in [\pi, 2\pi]$. Se pide:

- 1. Comprobar que en todo \mathbb{R}^2 excepto en (0,0) se verifica $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.
- 2. Decir razonadamente si se verifica $\int_{\gamma_1} P dx + Q dy = \int_{\gamma_2} P dx + Q dy$.
- 3. Calcular ambas integrales por separado.

Ejercicio 4. Calcular

$$\int_{\gamma} \frac{y}{x^2 + y^2} dx - \frac{x}{x^2 + y^2} dy$$

siendo γ la elipse $\gamma(t)=(4\cos t, 3\sin t), t\in [0, 2\pi].$