

Machine learning classique: zero-to-hero

Exemple: Churn prediction

Un opérateur téléphonique a les données historiques sur ses clients.

Churn = 1: client a annulé son abonnement

L'entreprise souhaite anticiper le "churn" avec un algorithme de prédiction pour cibler les clients concernés

Dependents TechSupport Contract InternetService Months MonthlyCharges Churn

75.65

89.50

65.25

35.30

85.81

 $\mathbf{X} = (\mathbf{X}^1, \dots, \mathbf{X}^6) \to y \in \{0, 1\}$

$f(\mathbf{X}) \approx y$ On cherche une fonction f telle que:

On ne peut pas chercher g dans la totalité de l'espace des fonctions (dimension infinie), il faut paramétriser g

f doit donner 1 ou 0, on considère alors des fonctions de type: $f(\mathbf{x}) = \mathbb{1}_{g(\mathbf{x}) \geq 0}$

$$\min_{f} \sum_{i=1}^{\infty} (f(\mathbf{x}_i) - y_i)^2$$
 Erreur de prédiction

Un opérateur téléphonique a les données historiques sur ses clients.

Dependents	TechSupport	Contract	InternetService	Months	MonthlyCharges	Churn
0	1	0	1	12	75.65	0
1	0	0	0	24	89.50	0
0	0	0	1	6	65.25	1
0	1	1	0	48	35.30	?
1	0	0	1	48	85.81	?

Churn = 1: client a annulé son abonnement

L'entreprise souhaite anticiper le "churn" avec un algorithme de prédiction pour cibler les clients concernés

$$\mathbf{X} = (\mathbf{X}^1, \dots, \mathbf{X}^6) \to y \in \{0, 1\}$$

$$f(\mathbf{X}) \approx y$$

On cherche une fonction f telle que:
$$f(\mathbf{X}) \approx y$$
 $\min_f \sum_{i=1}^n (f(\mathbf{x}_i) - y_i)^2$ Erreur de prédiction

f doit donner 1 ou 0, on considère alors des fonctions de type:

$$f(\mathbf{x}) = \mathbb{1}_{g(\mathbf{x}) \ge 0}$$

On ne peut pas chercher g dans la totalité de l'espace des fonctions (dimension infinie), il faut paramétriser g

f doit donner 1 ou 0, on considère alors des fonctions de type: $f(\mathbf{x}) = \mathbb{1}_{g(\mathbf{x}) \geq 0}$

On ne peut pas chercher g dans la totalité de l'espace des fonctions (dimension infinie), il faut paramétriser g

