1 Introduction

This document presets the mathematical model used to implement the ship-in-transitsimulator".

2 Ship dynamics

The ship is modelled in three degrees of freedom (surge, sway and yaw) according to the following equations:

$$\begin{split} \dot{\boldsymbol{x}} &= \boldsymbol{R}_z(\psi)\boldsymbol{v} \\ \boldsymbol{M}\dot{\boldsymbol{v}} &= -\boldsymbol{C}_{RB}(\boldsymbol{v})\boldsymbol{v} - \boldsymbol{C}_A(\boldsymbol{v}_R)\boldsymbol{v}_R - \boldsymbol{D}_L\boldsymbol{v}_R - \boldsymbol{D}_{NL}(\boldsymbol{v}_R)\boldsymbol{v}_R + \boldsymbol{\tau}_w + \boldsymbol{\tau}_r + \boldsymbol{\tau}_p \end{split} \tag{1}$$
 where:

- $x = [N, E, psi]^T$ is the north and east position, and the yaw angle.
- $\boldsymbol{x} = [u, v, r]^T$ is the velocity vector representing the forward and sideways speed, and the yaw rate.
- $\mathbf{R}_z(\psi)$ is the rotation matrix about the vertical axis, used to express the velocity vector in terms of a reference frame oriented north-east-down.
- $M = M_{RB} + M_A$ is the ship's mass matrix including the rigid body mass and added mass.
- $C_{RB}(v)c$ is the centripetal and Coriolis forces.
- $C_A(v_R)v_R$ are the centripetal and Coriolis forces due to the added mass.
- $D_L v_R$ is the linear damping forces. Only the diagonal of the linear damping matrix is non-zero.
- $D_{NL}(v_R)v_R$ is the non-linear damping forces. Only the diagonal of the non-linear damping matrix is non-zero.
- τ_w is the forces acting on the ship from the wind. The wind forces are calculated based on the relative wind speed, based on the ship's projected area towards the wind, according to $F = 0.5 \rho_a v_w^2 c_d A_p$ where F is the force in some direction, ρ_a is the density of the air, v_w is the relative wind speed in the direction of F, c_d is the drag coefficient in air and A_p is the projected area of the ship in the same direction.
- $\tau_r = [0, F_v, F_r]^T$ is the rudder force where $F_v = c_v \cdot \delta(u u_c)$ and $F_r = c_r \cdot \delta(u u_c)$ where c_v and c_r are coefficients, $u u_c$ is the velocity of a water particle in the direction of the ship's longitudinal axis relative to the ship's surge speed, and δ is the rudder angle.

• $\tau_p = [F_p, 0, 0]^T$ is the propulsion force. The provided classes gives at least two ways of generating the propulsion force.

3 Machinery system

The machinery system can be modelled either using a model that includes shaft dynamics, or as a simplified model where the dynamics between engine load and propulsion force is modelled as a transfer function. In either case the engine load is the input which determines the propulsion force (output).

3.1 Model with shaft dynamics

The shaft dynamics is described as:

$$J_p \dot{\omega}_p = \frac{1}{r_{ME}} (\tau_{ME} - d_{ME}\omega_p) + \frac{1}{r_{HSG}} (\tau_{HSG} - d_{HSG}\omega_p) - k_p \omega_p^2$$
 (2)

where...

The thrust force F_p is given as

$$F_p = D_p^4 K_T \omega_p |\omega_p| \tag{3}$$

where D_p is the diameter of the propeller, K_T is a constant, and ω_p is the rotation speed of the propeller.

3.2 Simplified model

The simplified propeller force dynamics is described as

$$\dot{F}_p = -\frac{P_{max}}{T \cdot F_{max}} F_p + \frac{1}{T} P \tag{4}$$

where F_p is the propeller force in the surge direction, P_{max} is the maximum countinous rated power of the main engine (or the set of engines used to generate propulsion force), $F_m ax$ is the maximal propulsion force, T is a time constant, and u is the engine load in kW.