Research Methods for Political Science PO3110 (TCD)

HT: Tutorial 3 - Week 4

Letícia Meniconi Barbabela

University College Dublin, https://github.com/letmeni/research-methods

11-12 February 2020

Today's topics

- Homework correction and doubts:
 - Difference between t-score and z-score (Ex. 2 d);
 - Post-treatment bias;
- Residuals.

Homework correction

- Open your homework assignment;
- Have SPSS ready and "Data_HT02.sav" and "Data HT03 Adams.sav" loaded.

- Gary King explains that it occurs in two situations:
 - 1 when controlling away for the consequences of treatment and;
 - 2 when causal ordering among predictors is ambiguous or wrong.
- E.g.: when doing a regression you should control for confounders, that is, variables that affect both the dependent and the independent variable:
 - When a variable is influenced by the independent variable, including it in the model as a control is a case of "post-treatment bias".
 - Results from such a model are unreliable because the estimation of the relationship between the dependent and independent variables is actually affected by the relationship between the control you included and the independent variable;
 - It is a problem because you cannot really separate these effects, that is, the coefficient for the independent variable will be biased.

- Gary King explains that it occurs in two situations:
 - 1 when controlling away for the consequences of treatment and;
 - 2 when causal ordering among predictors is ambiguous or wrong.
- E.g.: when doing a regression you should control for confounders, that is, variables that affect both the dependent and the independent variable:
 - When a variable is influenced by the independent variable, including it in the model as a control is a case of "post-treatment bias".
 - Results from such a model are unreliable because the estimation of the relationship between the dependent and independent variables is actually affected by the relationship between the control you included and the independent variable;
 - It is a problem because you cannot really separate these effects, that is, the coefficient for the independent variable will be biased.

- Gary King explains that it occurs in two situations:
 - 1 when controlling away for the consequences of treatment and;
 - 2 when causal ordering among predictors is ambiguous or wrong.
- E.g.: when doing a regression you should control for confounders, that is, variables that affect both the dependent and the independent variable:
 - When a variable is influenced by the independent variable, including it in the model as a control is a case of "post-treatment bias".
 - Results from such a model are unreliable because the estimation of the relationship between the dependent and independent variables is actually affected by the relationship between the control you included and the independent variable;
 - It is a problem because you cannot really separate these effects, that is, the coefficient for the independent variable will be biased.

- Gary King explains that it occurs in two situations:
 - 1 when controlling away for the consequences of treatment and;
 - 2 when causal ordering among predictors is ambiguous or wrong.
- E.g.: when doing a regression you should control for confounders, that is, variables that affect both the dependent and the independent variable:
 - When a variable is influenced by the independent variable, including it in the model as a control is a case of "post-treatment bias".
 - Results from such a model are unreliable because the estimation of the relationship between the dependent and independent variables is actually affected by the relationship between the control you included and the independent variable;
 - It is a problem because you cannot really separate these effects, that is, the coefficient for the independent variable will be biased.

- Gary King explains that it occurs in two situations:
 - 1 when controlling away for the consequences of treatment and;
 - 2 when causal ordering among predictors is ambiguous or wrong.
- E.g.: when doing a regression you should control for confounders, that is, variables that affect both the dependent and the independent variable:
 - When a variable is influenced by the independent variable, including it in the model as a control is a case of "post-treatment bias".
 - Results from such a model are unreliable because the estimation of the relationship between the dependent and independent variables is actually affected by the relationship between the control you included and the independent variable;
 - It is a problem because you cannot really separate these effects, that is, the coefficient for the independent variable will be biased.

- Gary King explains that it occurs in two situations:
 - 1 when controlling away for the consequences of treatment and;
 - 2 when causal ordering among predictors is ambiguous or wrong.
- E.g.: when doing a regression you should control for confounders, that is, variables that affect both the dependent and the independent variable:
 - When a variable is influenced by the independent variable, including it in the model as a control is a case of "post-treatment bias".
 - Results from such a model are unreliable because the estimation of the relationship between the dependent and independent variables is actually affected by the relationship between the control you included and the independent variable;
 - It is a problem because you cannot really separate these effects, that is, the coefficient for the independent variable will be biased.

Difference between t-score and z-score

- Both have a similar application to hypothesis testing and constructing a CI;
- T-score is used when sample is below 30 and standard deviation of sample is unknown;
- In samples larger than 30 the t-distribution resembles the z-distribution;
- For 95% confidence level we know the z-score is 1.96;
- For the t-score, we need to know the degrees of freedom (n-1) and check a t-table to figure out what the value is.

What are residuals?

The residuals are defined as the deviance between the observed and the predicted values. The graph below displays a selection of cases from the dataset and the regression line:

Residuals for individual observations

Calculating the Residual Sum of Squares

ANOVA^a

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	29045.763	1	29045.763	31.650	.000 ^b
	Residual	942504.215	1027	917.726		
	Total	971549.979	1028			

a. Dependent Variable: THERMOMETER DEGREE GERRY ADAMS

Formula:

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
$$R^2 = 1 - \frac{RSS}{TCS}$$

b. Predictors: (Constant), Age of respondent at time of survey

References

- Field, A (2013) Discovering Statistics Using SPSS. 4th edition. London:Sage
- HT 2019 Slides at http://andrsalvi.github.io/research-methods