Chapter 6 Introduction to Statistics

- **Definition:** Random Sample. A random sample, denoted as $\mathbf{X}^n = (X_1, \dots, X_n)$, is a sequence of n random variables X_1, \dots, X_n . A realization of the random sample \mathbf{X}^n , denoted as $\mathbf{x}^n = (x_1, \dots, x_n)$, is called a data set generated from \mathbf{X}^n or a sample point of \mathbf{X}^n . The positive integer n is called the sample size. A random sample \mathbf{X}^n constitutes the sample space of the random sample \mathbf{X}^n .
- **Remark:** The joint pdf or PMF of random vector (X_1, \dots, X_n) is

$$f_{\mathbf{X}^n}(\mathbf{x}^n) = \prod_{i=1}^n f_{X_i|\mathbf{X}^{i-1}}(x_i|\mathbf{x}^{i-1})$$

$$f(x_1, \cdots, x_n) = \prod_{i=1}^n f(x_i).IID$$

- **Definition:** IID Random Sample. The sequence of random variables X_1, \dots, X_n is called an independent and identically distributed (IID) random sample of size n from the population $F_X(x)$ if:
 - (1) X_1, \dots, X_n are mutually *independent* random variables, and
 - (2) each X_i has the same marginal distribution $F_X(x)$.

• Question:

- What is the interpretation and implication of an IID random sample?
- How to define the population if the random variables X_1, \dots, X_n in the sample are not identically distributed?
- How to extract information from a data set \mathbf{x}^n ?

- Example: Tossing Coins Suppose we throw n coins. Let X_i denote the outcome of throwing the i-th coin, with $X_i = 1$ for head, and $X_i = 0$ for tail. Then $\mathbf{X}^n = X_1, ..., X_n'$ constitutes a random sample. We will obtain a sequence of real numbers, such as $\mathbf{x}^n = (1, 1, 0, 0, 1, 0..., 1)$.
- Example: GDP Annual Growth Rate. Let X_i denote the Chinese GDP growth rate in year i, from 1953 to 2010. Then $\mathbf{X}^n = X_1, ..., X_n'$ constitutes a random sample with sample size n = 58.

• **Definition: Statistic.** Let $\mathbf{X}^n = (X_1, \dots, X_n)$ be a random sample of size n from a population. A statistic $T(\mathbf{X}^n) = T(X_1, \dots, X_n)$ is a real-valued or vector valued function of a random sample \mathbf{X}^n . Then the random variable or random vector $Y = T(X_1, \dots, X_n)$ is called a *statistic*.

• Examples:

- Sample mean: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- Sample variance: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2$.
- Sample standard deviation: $S_n = \sqrt{S_n^2}$.
- **Definition: Sampling Distribution.** The probability distribution of a statistic $T(\mathbf{X^n})$ is called the *sampling distribution* of $T(\mathbf{X^n})$.

• **Definition:** Log-likelihood Function. Let X_1, \dots, X_n be an IID random sample of size n from the population $f(x; \theta)$. Then the logarithm of the joint pmf/pdf of (X_1, \dots, X_n)

$$L(\theta \mid X_1, \dots, X_n) = \log \prod_{i=1}^n f(X_i; \theta) = \sum_{i=1}^n \log f(X_i; \theta)$$

is called the *log-likelihood function* of θ ; conditional on the random sample X_1, \dots, X_n .

• Remark: $L(\theta \mid X_1, \dots, X_n)$ is not a statistic, because it depends on the parameter θ .

• **Definition: Sample Mean.** Suppose $\mathbf{X}^n = (X_1, \dots, X_n)$ is a random sample from a population with mean μ and variance σ^2 . Then

$$T(\mathbf{X}^n) \equiv \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

is the sample mean for the random sample \mathbf{X}^n .

• **Theorem.** Suppose X^n is a random sample. Then

$$\bar{X}_n = \arg\min_{-\infty < a < \infty} \sum_{i=1}^n (X_i - a)^2.$$

• Another Version. Let x_1, \dots, x_n be any number and $\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$, then

$$\min_{a} \sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \overline{x}_n)^2.$$

• Remarks:

- $-\sum_{i=1}^{n} (x_i \overline{x}_n)^2 = \sum_{i=1}^{n} x_i^2 n\overline{x}_n^2.$
- Define $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x}_n)^2$.
- $-\widehat{a} = \overline{x}_n$ is the *ordinary least square* (OLS) estimator for the linear regression model

$$x_i = a + \varepsilon_i$$

where $\{\varepsilon_i\}$ is an i.i.d. sequence with $E(\varepsilon_i) = 0$.

• **Lemma:** Let X_1, \dots, X_n be an IID random sample of a population and let g(x) be a function such that Var(X) exist. Then

$$E\left[\sum_{i=1}^{n} g(X_i)\right] = nE[g(X_1)],$$

and

$$\operatorname{Var}\left[\sum_{i=1}^{n} g(X_i)\right] = n \operatorname{Var}[g(X_1)].$$

• **Theorem:** Suppose X_1, \dots, X_n are identically distributed random variables with the same mean μ . Then

$$E(\overline{X}_n) = \mu.$$

• **Theorem:** Suppose X_1, \dots, X_n are IID random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then for all $n \ge 1$,

$$\operatorname{Var}(\overline{X}_n) = \sigma^2/n.$$

• **Remark:** The sample mean and the sample variance can be considered as the approximations of the true mean and the true variance of the population f(x), respectively.

• **Theorem.** Let X_1, \dots, X_n be an IID random sample from a population with mgf $M_X(t)$. Then the mgf of the sample mean is

$$M_{\overline{X}_n}(t) = [M_X(t/n)]^n$$
.

• **Theorem.** Suppose X_1, \dots, X_n are IID normally distributed with mean μ and variance $\sigma^2 < \infty$. Define the standardized sample mean

$$Z_n = \frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{var(\bar{X}_n)}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}.$$

Then $Z_n \sim N(0,1)$ for all $n \geq 1$.

• **Example:** Let X_1, \dots, X_n be an IID random sample from $N(\mu, \sigma^2)$, then the mgf of \overline{X}_n is

$$M_{\overline{X}_n}(t) = exp\{\mu t + \frac{(\sigma^2/n)t^2}{2}\},\,$$

and \overline{X}_n has a $N(\mu, \sigma^2/n)$ distribution.

• **Example:** Let X_1, \dots, X_n be an IID random sample from $Gamma(\alpha, \beta)$, then the mgf of \overline{X}_n is

$$M_{\overline{X}_n}(t) = (1 - \beta \frac{t}{n})^{-n\alpha},$$

and \overline{X}_n has a Gamma $(n\alpha, \beta/n)$ distribution.

• **Example:** Let Z_1, \dots, Z_n be an IID random sample from Cauchy $(0, \sigma)$ distribution with the pdf $f_X(x) = \frac{1}{\pi\sigma} \frac{1}{1+(x/\sigma)^2}$, then \overline{Z}_n also has a Cauchy $(0, \sigma)$ distribution.

• Proof.

- If $U \sim \text{Cauchy}(0, \eta)$, $V \sim \text{Cauchy}(0, \tau)$, then $U + V \sim \text{Cauchy}(0, \eta + \tau)$ (Exercise 5.7, Casella & Berger).
- Because $Z_1 + \cdots + Z_n \sim \text{Cauchy}(0, n\sigma)$, so $\overline{Z}_n \sim \text{Cauchy}(0, \sigma)$.

• Sample Variance Estimator. $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

• Questions:

- What is the mean of S_n^2 ?
- What is the variance of S_n^2 ?
- What is the sampling distribution of S_n^2 ?
- **Theorem.** Suppose $\mathbf{X}^n = (X_1, \dots, X_n)$ is an IID random sample from a population with (μ, σ^2) . Then

$$E(S_n^2) = \sigma^2.$$

• Lemma. Let Z_1, \dots, Z_k be IID N(0,1) random variables. Then

$$\sum_{i=1}^k Z_i^2 \sim \chi_k^2.$$

That is, the sum of squares of k independent N(0,1) random variable follows a χ_k^2 distribution.

• **Theorem.** Suppose $\mathbf{X}^n = (X_1, \dots, X_n)$ is an IID $N(\mu, \sigma^2)$ random sample. Then for each n > 1,

$$\frac{(n-1)S_n^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)^2}{\sigma^2} \sim \chi_{n-1}^2,$$

where χ_{n-1}^2 is a chi-square distribution with n-1 degrees of freedom.

• **Lemma.** Let X_1, \dots, X_n be an IID random sample with $X_i \sim N(\mu, \sigma^2)$. For constants a_{ij} and b_{rj} , $j = 1, \dots, n, i = 1, \dots, \nu, r = 1, \dots, m$, define

$$U_i = \sum_{j=1}^{n} a_{ij} X_i, \quad i = 1, \dots, \nu,$$
 $V_r = \sum_{j=1}^{n} b_{rj} X_i, \quad r = 1, \dots, m.$

where $\nu + m \leq n$. Then

- (1) The random variables U_i and V_r are independent iff $Cov(U_j, V_r) = 0$.
- (2) The random vectors (U_1, \dots, U_{ν}) , and (V_1, \dots, V_m) are independent are independent if and only if U_i is independent of V_r for all $i = 1, ..., \nu$, r = 1, ..., m.

• **Definition:** Random vectors (U_1, \dots, U_k) and (V_1, \dots, V_m) are independent if for any Borel sets $A \subset \mathbb{R}^k$ and $B \subset \mathbb{R}^m$,

$$P[(U_1, \dots, U_k) \in A, (V_1, \dots, V_m) \in B]$$

= $P[(U_1, \dots, U_k) \in A]P[(V_1, \dots, V_m) \in B].$

• Remarks:

 $-(U_1, \dots, U_k)$ and (V_1, \dots, V_m) are independent if and only if the joint pdf/pmf can be written as

$$f_{UV}(u_1,\cdots,u_k,v_1,\cdots,v_m)=h(u_1,\cdots,u_k)g(v_1,\cdots,v_m)$$

for all $(u_1, \dots, u_k) \in \mathbb{R}^k$ and $(v_1, \dots, v_m) \in \mathbb{R}^m$.

• Remarks:

- If (U_1, \dots, U_k) and (V_1, \dots, V_m) are independent, then for any $g(\cdot)$ and $h(\cdot)$, $g(U_1, \dots, U_k)$ and $h(V_1, \dots, V_m)$ are independent random variables.
- If (U_1, \dots, U_k) and (V_1, \dots, V_m) are independent, then every pair of U_i and V_r are independent.
- The converse may not be true. For example, in cases X_1 , X_2 , X_3 are pairwise independent, but not jointly independent, let $U = (X_1, X_2)$, $V = X_3$.

• **Lemma.** Let X_1, \dots, X_n be independent random variables, $X_i \sim N(\mu_i, \sigma_i^2)$. For constants a_{ji} and b_{ri} , $j = 1, \dots, k$, $r = 1, \dots, m$, where $k + m \leq n$, define

$$U_{j} = \sum_{i=1}^{n} a_{ji} X_{i}, \quad j = 1, \dots, k,$$
 $V_{r} = \sum_{i=1}^{n} b_{ri} X_{i}, \quad r = 1, \dots, m.$

Then

- (1) $(U_1, \dots, U_k, V_1, \dots, V_m)$ are jointly normal distributed.
- (2) U_j and V_r are independent iff $Cov(U_j, V_r) = \sum_{i=1}^n a_{ji} b_{ri} \sigma_i^2 = 0$.
- (3) (U_1, \dots, U_k) and (V_1, \dots, V_m) are independent if and only if U_j is independent of V_r for all j, r.

- **Theorem.** Suppose \mathbf{X}^n is an IID $N(\mu, \sigma^2)$ random sample. Then for any n > 1, S_n^2 and \bar{X}_n are mutually independent.
- **Remark.** The sum of squares $\sum_{i=1}^{n} (X_i \bar{X}_n)^2$ has only n-1 degrees of freedom.
- Ordinary Least Square(OLS). In classical linear regression model $Y_i = X_i'\beta + \varepsilon_i$, where X_i is a $p \times 1$ explanatory vector, β is a $p \times 1$ parameter vector, $\{\varepsilon_i\}_{i=1}^n$ is an IID sequence from $N(0, \sigma_{\varepsilon}^2)$. For simplicity, assume that $\{X_i\}_{i=1}^n$ are nonstochastic.
- What is the distribution of each Y_i ?
- Find the OLS estimator $\hat{\beta}$ for β .
- Find the distribution of $\hat{\beta}$ under some regularity conditions

- Find the residual variance estimator for σ_{ε}^2 .
- How about if X_i s are random variables?

Hint:

- $Y_i \sim N(X_i'\beta, \sigma_{\varepsilon}^2)$.
- Then OLS estimator for β is

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_i X_i'\right)^{-1} \sum_{i=1}^{n} X_i Y_i = (X'X)^{-1} X'Y,$$

by $\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i'\beta)^2$.

- Under a set of regularity conditions, $\hat{\beta} \beta_0 \sim N(0, \sigma_{\varepsilon}^2(X'X)^{-1})$.
- We can use $S_{\varepsilon}^2 = \frac{1}{n-p} \sum_{i=1}^n (Y_i X_i' \hat{\beta})^2$ to estimate σ_{ε}^2 .
- If X_i s are random variables, we should consider $Y|X_i$, conditional case.

• **Definition:** Chi Squared Distribution. A random variable follows chi squared distribution with degrees of freedom p, denoted by χ_p^2 , if its pdf has the form

$$f(x) = \frac{1}{\Gamma(p/2)2^{p/2}} x^{(p/2)-1} e^{-x/2}, \quad 0 < x < \infty.$$

- Facts about chi squared random variables.
 - (a) If X is a N(0,1) random variable, then $X^2 \sim \chi_1^2$.
 - (b) If Z_1, \dots, Z_n are independent and $Z_i \sim \chi_{p_i}^2$, then $Z_1 + \dots + Z_n \sim \chi_{p_1 + \dots + p_n}^2$.

- **Proof.** (a) Calculate the pdf of $Y = X^2$. (b) Z_i follows $Gamma(p_i/2, 2)$ with $mgf (1-2t)^{-p_i/2}$, then the $mgf of Z_1 + \cdots + Z_n$ is $(1-2t)^{-(p_1+\cdots+p_n)/2}$. $Z_1 + \cdots + Z_n$ follows $Gamma((p_1 + \cdots + p_n)/2, 2)$.
- **Theorem.** Suppose $\mathbf{X}^n = (X_1, \dots, X_n)$ is an IID $N(\mu, \sigma^2)$ random sample. Then for all n > 1,

$$\operatorname{var}(S_n^2) = \frac{2\sigma^4}{n-1}.$$

The fact that $var(S_n^2) = 2\sigma^4/(n-1)$ and $E(S_n^2) = \sigma^2$ implies that

$$MSE(S_n^2) = E(S_n^2 - \sigma^2)^2 = var(S_n^2) = \frac{2\sigma^4}{n-1} \to 0 \text{ as } n \to \infty.$$

• **Definition:** If $U \sim N(0,1)$, $V \sim \chi^2_{\nu}$, U and V are independent, then $T = U/\sqrt{V/\nu}$ has *Student's t distribution* with ν degrees of freedom, and we write $T \sim t_{\nu}$. It has pdf

$$f_T(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{(\nu\pi)^{1/2}} \frac{1}{(1+t^2/\nu)^{(\nu+1)/2}}, \quad -\infty < t < \infty.$$

• Remarks:

- $-t_1$ has no mean, t_2 has no variance.
- If $Y \sim t_{\nu}$, then E(Y) = 0, $Var(Y) = \nu/(\nu 2)$.
- The density can be obtained by $T = U/\sqrt{V/\nu}$, R = U, and then integrating our R.
- $-\lim_{\nu \to \infty} f_T(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}.$

• Lemma: Properties of the Student t_{ν} Distribution.

- (1) The PDF of t_{ν} is symmetric about 0.
- (2) t_{ν} has a heavier distributional tail than N(0,1).
- (3) Only the first $\nu 1$ moments exist. The mean $\mu = 0$, and the variance $\sigma^2 = \nu/(\nu 2)$ when $\nu > 2$. The MGF does not exist for any given k.
- (4) When $\nu = 1, t_1 \sim \text{Cauchy}(0,1)$.
- (5) $t_{\nu} \to N(0,1) \text{ as } \nu \to \infty.$
- **Theorem:** Let $\mathbf{X}^n = (X_1, \dots, X_n)$ be an IID random sample from $N(\mu, \sigma^2)$, then for all n > 1, the standardized sample mean

$$\frac{\bar{X} - \mu}{S_n / \sqrt{n}} = \frac{\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S_n^2}{\sigma^2} / (n-1)}} \sim \frac{N(0,1)}{\sqrt{\chi_{n-1}^2 / (n-1)}} \sim t_{n-1},$$

where t_{n-1} is the Student t distribution with n-1 degrees of freedom.

- Example: Confidence Interval Estimation for Population Mean
 - μ . Suppose there is an IID $N(\mu, \sigma^2)$ random sample $\mathbf{X}^n = (X_1, \dots, X_n)$ of size n, where both μ and σ^2 are unknown. We are interested in constructing a confidence interval estimator for μ at the $(1 \alpha)\%$ confidence level.
 - $-(1-\alpha)\%$ confidence level for μ is defined an random interval $[\hat{L}_n, \hat{U}_n]$, such that $P(\hat{L}_n < \mu < \hat{U}_n) = 1 \alpha$.
 - $-P(|\frac{\sqrt{n}(\bar{X}_n-\mu)}{S_n}| \le C_{n-1,\alpha/2}) = 1 \alpha.$
 - $-P(\bar{X}_n \frac{S_n}{\sqrt{n}}C_{t_{n-1},\alpha/2} < \mu < \bar{X}_n + \frac{S_n}{\sqrt{n}}C_{t_{n-1},\alpha/2}) = 1 \alpha.$
 - The $(1 \alpha)\%$ confidence interval for μ is $[\bar{X}_n \frac{S_n}{\sqrt{n}}C_{t_{n-1},\alpha/2}, \bar{X}_n + \frac{S_n}{\sqrt{n}}C_{t_{n-1},\alpha/2}]$

• Example: Hypothesis Testing on Population Mean: The ttest. Suppose there is an IID $N(\mu, \sigma^2)$ random sample $\mathbf{X}^n = (X_1, \dots, X_n)$ of size n, and we are interested in testing the hypothesis

$$\mathcal{H}_0: \mu = \mu_0,$$

where μ is a given(known) constant (e.g., $\mu_0 = 0$). How can we test this hypothesis?

- Statistic: $\bar{X}_n \mu_0 = (\bar{X}_n \mu) + (\mu \mu_0)$.
- How far away $\bar{X}_n \mu_0$ is from zero will be considered as "sufficiently large" in absolute value?
- Feasible statistic $T(\mathbf{X}^n) = \frac{\bar{X}_n \mu_0}{S_n / \sqrt{n}}$.
- Decision rule: Rejection region, p-value.

6.5 Snedecor's F Distribution

• **Definition:** The F Distribution. Let $U \sim \chi_p^2$, $V \sim \chi_q^2$, U and V are independent, then F = (U/p)/(V/q) has the F distribution with p and q degrees of freedom, denoted by $F_{p,q}$, with pdf

$$f_F(x) = \frac{\Gamma(\frac{p+q}{2})}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})} \left(\frac{p}{q}\right)^{p/2} \frac{x^{p/2-1}}{[1+(p/q)x]^{(p+q)/2}}, \quad 0 < x < \infty.$$

PDF can be obtained by F = (U/p)/(V/q), G = U, and integrating out G.

• Lemma:

- If $X \sim F_{p,q}$, then $1/X \sim F_{q,p}$.
- If $X \sim t_q$, then $X^2 \sim F_{1,q}$.
- If $q \to \infty$, then $p \cdot F_{p,q} \to \chi_p^2$.

6.5 Snedecor's F Distribution

- **Theorem:** Let X_1, \dots, X_n be a random sample from a $N(\mu_X, \sigma_X^2)$ population, and let Y_1, \dots, Y_m from an independent $N(\mu_Y, \sigma_Y^2)$ population. The random variable $F = (S_{n,X}^2/\sigma_X^2)/(S_{m,Y}^2/\sigma_Y^2) \sim F_{n-1,m-1}$.
- Example: Hypothesis Testing on equality of Population Variances. Let $\mathbf{X}^n = (X_1, \dots, X_n)$ be an IID random sample of size n from a $N(\mu_X, \sigma_X^2)$ population, and $\mathbf{Y}^m = (Y_1, \dots, Y_m)$ be an IID random sample of size m from a $N(\mu_Y, \sigma_Y^2)$ population. Assume that \mathbf{X}^n and \mathbf{Y}^m are independent. Suppose we are interested in comparing variability of the population, i.e. interested in testing whether $\mathcal{H}_0: \sigma_X^2 = \sigma_Y^2$ holds. Test statistic is $(S_{n,X}^2/S_{m,Y}^2)$

6.5 Snedecor's F Distribution

F-Test. Consider the classical linear regression model

$$Y_i = X_i'\beta + Z_i'\gamma + \varepsilon_i,$$

where β is $p \times 1$ parameter vector, and γ is $q \times 1$ parameter vector, $\{\varepsilon_i\}$ is a sequence of IID $N(0, \sigma_{\varepsilon}^2)$ random variables and is independent of $\mathbf{X} = (X_1, ..., X_n)'$ and $\mathbf{Z} = (Z_1, ..., Z_n)'$. We are interested in

$$H_0: \gamma = 0.$$

- Under H_0 , $Y_i = X_i'\beta + \varepsilon_i$,, $\tilde{\beta} = \arg\min_{\beta} \sum_{i=1}^n (Y_i X_i'\beta)^2$, $S_R^2 = \frac{1}{n-p} \sum_{i=1}^n (Y_i X_i'\tilde{\beta})^2$.
- Under $H_1, Y_i = X_i'\beta + Z_i'\gamma + \varepsilon_i, (\hat{\beta}, \hat{\gamma}) = \arg\min_{\beta, \gamma} \sum_{i=1}^n (Y_i X_i'\beta Z_i'\gamma)^2,$ $S_U^2 = \frac{1}{n-p-1} \sum_{i=1}^n (Y_i - X_i'\hat{\beta} - Z_i'\hat{\gamma})^2.$
- Under H_0 , Test statistic $F = \frac{[(n-p)S_R^2 (n-p-q)S_U^2]/q}{(n-p-q)S_U^2/(n-p-q)} \sim F_{q,n-p-q}$

- Sufficiency Principle. A statistic $T(X_1, \dots, X_n)$ is a sufficient statistic for a parameter θ if any inference about θ only depends on the value of $T(\boldsymbol{X})$. That is, if $\boldsymbol{x} = (x_1, \dots, x_n)$ and $\boldsymbol{y} = (y_1, \dots, y_n)$ are two sample points such that $T(\boldsymbol{x}) = T(\boldsymbol{y})$, then the inference about θ should be the same whether $\boldsymbol{X} = \boldsymbol{x}$ or $\boldsymbol{X} = \boldsymbol{y}$ is observed.
- Interpretation: When a sample X_1, \dots, X_n is given, there might be too much irrelevant information if we are only interested in knowing the value of some parameter θ . The sufficiency principle provides a method of data reduction that "throw away" the irrelevant information and maintain only the essential information T(X).

• **Definition:** Sufficient Statistic. Let $\mathbf{X}^n = (X_1, \dots, X_n)$ be a random sample from some population $f(x; \theta)$ with the parameter θ . A statistics $T(\mathbf{X}^n)$ is a sufficient statistic for θ if the conditional distribution of the sample $\mathbf{X}^n = \mathbf{x}^n$ given the value of $T(\mathbf{X}^n) = T(\mathbf{x}^n)$ does not depend on θ , *i.e.*,

$$f_{\boldsymbol{X}^n|T(\boldsymbol{X}^n)}[\boldsymbol{x}^n|T(\boldsymbol{x}^n),\theta)] = h(\boldsymbol{x}^n) \text{ for all possible } \theta,$$

where the left hand side is the conditional PMF/PDF of $\mathbf{X}^n = \mathbf{x}^n$ given $T(\mathbf{X}^n) = T(\mathbf{x}^n)$, which generally depends on θ . The right hand side $h(\mathbf{x}^n)$ does not depend on θ ; it is a function \mathbf{x}^n only.

• Example: The maximum likelihood estimate (MLE) of θ is obtained by maximizing the likelihood function $L(\theta) = f_X(\boldsymbol{x}; \theta)$ as a function of θ given observation \boldsymbol{x} . If $T(\boldsymbol{X})$ is a sufficient statistic, then $L(\theta) = f_X(\boldsymbol{x}; \theta)$ is maximized at the same point at which $f_T[T(\boldsymbol{x}); \theta]$ is maximized.

• Theorem: Factorization Theorem. Let $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$ be the pmf or pdf of \mathbf{X}^n with parameter θ . Then $T(\mathbf{X}^n)$ is a sufficient statistics for θ if and only if there exist functions $g(t, \theta)$ and $h(\mathbf{x}^n)$ such that for any sample points \mathbf{x}^n in the sample space of \mathbf{X}^n and for any parameter points $\theta \in \Theta$,

$$f_{\mathbf{X}^n}(\mathbf{x}^n, \theta) = g[T(\mathbf{x}^n), \theta]h(\mathbf{x}^n),$$

where $g(t, \theta)$ depends on parameter θ but $h(\boldsymbol{x}^n)$ does not depend on parameter θ .

• Theorem: Invariance Principle. Suppose $T(\mathbf{X}^n)$ is a sufficient statistic for θ , then any 1-1 function $G(\mathbf{X}^n) = r[T(\mathbf{X}^n)]$ is also a sufficient statistic for θ , and a sufficient statistic for the transformed parameter $r(\theta)$.

- **Example:** It is always true that the complete random sample (X_1, \dots, X_n) is a sufficient statistic for parameter θ .
- **Example:** Let X_1, \dots, X_n be i.i.d. Bernoulli random variables with parameter θ . The pmf of X_i is $f(x, \theta) = \theta^x (1 \theta)^{1-x}$ for x = 0, 1. We have

$$f(x_1, \dots, x_n, \theta) = \prod_{i=1}^n f(x_i, \theta)$$

= $\theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} h(\boldsymbol{x}),$

where $h(\boldsymbol{x}) = 1$ if all $x_i = 0$ or 1, otherwise $h(\boldsymbol{x}) = 0$. Therefore, $T(\boldsymbol{X}) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

• Example: Normal Sufficient Statistic. Let X_1, \dots, X_n be i.i.d. $N(\mu, \sigma^2)$. We have

$$f(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x}_n + \overline{x}_n - \mu)^2 \right\}$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} exp \left\{ -\frac{1}{2\sigma^2} \left[n (\overline{x}_n - \mu)^2 + \sum_{i=1}^n (x_i - \overline{x}_n)^2 \right] \right\}.$$

- $-\overline{X}_n$ is a sufficient statistic for μ if σ^2 is known.
- When both μ and σ^2 are unknown parameters, $T = (\overline{X}_n, S_n^2)$ is a sufficient statistic for (μ, σ^2) .

- Example: Uniform Sufficient Statistic. Let X_1, \dots, X_n be a random sample from the discrete uniform distribution on $1, \dots, \theta$, where θ is a positive integer.
 - The joint pmf of X_1, \dots, X_n is

$$f(x_1, \dots, x_n, \theta) = \begin{cases} \frac{1}{\theta^n} & x_i \in \{1, \dots, \theta\}, \\ 0 & \text{otherwise.} \end{cases}$$

- The joint pmf can be rewritten as

$$f(x_1, \dots, x_n, \theta) = \frac{1}{\theta^n} I(x_{(n)} \le \theta) h(x_1, \dots, x_n),$$

where $h(\mathbf{x}) = 1$ if all x_i are positive integers, otherwise $h(\mathbf{x}) = 0$.

 $-X_{(n)}$ is a sufficient statistic for θ .

• **Definition:** Exponential Family. A family of pdf or pmf is called an exponential family if it can be expressed as

$$f(x,\theta) = h(x)c(\theta)exp\left\{\sum_{j=1}^{k} w_j(\theta)t_j(x)\right\},$$

• Examples:

- Discrete exponential families: Bernoulli, binomial, Poisson.
- Continuous exponential families: normal, gamma, beta.
- The expression needs to hold for all $x \in \mathbb{R}$. In cases that the support $A = \{x : f(x,\theta) > 0\}$ is not \mathbb{R} , we can incorporate the indicator function $I_A(x)$ in h(x).
- In general, the support A of an exponential family can not depend on θ .

• **Theorem:** Let $X^n = (X_1, \dots, X_n)$ be an IID random sample from a pdf or a pmf that belongs to an exponential family

$$f(x,\theta) = h(x)c(\theta)exp\left\{\sum_{j=1}^{k} w_j(\theta)t_j(x)\right\},$$

then

$$T(\mathbf{X}^n) = \left(\sum_{i=1}^n t_1(X_i), \cdots, \sum_{i=1}^n t_k(X_i)\right)$$

is a sufficient statistic for θ .

• **Problem:** In any model, there are numerous sufficient statistics for θ . What is the most efficient sufficient statistic that achieves the most data reduction while still containing all the information about θ ?

• **Definition: Minimal Sufficient Statistic.** A sufficient statistic $T(\mathbf{X}^n)$ is called a *minimal sufficient statistic* for parameter θ if, for any other sufficient statistic $G(\mathbf{X}^n)$, $T(\mathbf{X}^n)$ is a function of $G(\mathbf{X}^n)$. That is, for any sufficient statistic $G(\mathbf{X}^n)$, there always exists some function $r(\cdot)$ such that $T(\mathbf{X}^n) = r[G(\mathbf{X}^n)]$.

• Remarks:

- If for any two sample points \boldsymbol{x} and \boldsymbol{y} , $T'(\boldsymbol{x}) = T'(\boldsymbol{y})$ implies $T(\boldsymbol{x}) = T(\boldsymbol{y})$, then $T(\boldsymbol{X})$ is a function of $T'(\boldsymbol{X})$.
- Minimal sufficient statistic may not exist.
- If $T(\mathbf{X})$ is a minimal sufficient statistic, then for any 1-1 function r, $T^*(\mathbf{x}) = r(T(\mathbf{x}))$ is also a minimal sufficient statistic.

• **Theorem.** Let $f_{\boldsymbol{X}^n}(\boldsymbol{x}^n, \theta)$ be the PMF/PDF of a random sample \boldsymbol{X}^n . Suppose there exists a function $T(\boldsymbol{X}^n)$ such that, for two sample points x^n and y^n in the sample space of \boldsymbol{X}^n , the ratio of joint PMF/PDF $f_{\boldsymbol{X}^n}(\boldsymbol{x}^n, \theta)/f_{\boldsymbol{X}^n}(\boldsymbol{y}^n, \theta)$ is constant as a function of θ (i.e. is independent of θ) if and only if $T(\boldsymbol{x}^n) = T(\boldsymbol{y}^n)$. Then $T(\boldsymbol{X}^n)$ is a minimal sufficient statistic for parameter θ .

• Conclusion.