ADS Group1

Collaborate Filtering

Team Members: Cao, Xinlei Guo, Xiaoxiao Li, Xinrou Utomo, Michael Wang, Jingyi

CONTENTS

Model-Based Algorithm Memory-Based Algorithm Evaluation and Results About Dataset

PART 01 About Dataset

- The first data set is Anonymous Microsoft Web Data. It is an implicit voting data, with each vroot characterized as being visited (vote of one) or not (no vote).
- The second data set is EachMovie. It is an explicit voting data, with votes ranging in value from 1 to 6.

Data Processing

Microsoft Web Data (Implicit Voting)

	Web 1	Web 2	 Web m
User 1	0	1	1
User 2	1	0	0
User n	1	1	0

1 for visited0 for not visited

EachMovie Data (Explicit Voting)

	Movie 1	Movie 2	 Movie m
User 1	5	NA	3
User 2	NA	4	1
User n	6	2	2

1-6 for ratings NA for not rated

PART 02 Memory-Based Algorithm

- Goal
- Framework

Goal

$$p_{a,i} = \overline{r}_a + \frac{\sum_{u=1}^{n} (r_{u,i} - \overline{r}_u) * w_{a,u}}{\sum_{u=1}^{n} w_{a,u}}$$

Make prediction by performing a weighted average of deviations from the neighbors' mean

Two important things here:

- Weight $(w_{a,u})$: the similarity weight between the active user a and neighbor u
- n: the number of neighbors

Memory-Based Algorithm

Similarity Weight

For movie data, we set ratings larger than 4 as "like" and smaller than or equal to 4 as "dislike"

 $w(a,i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}} \quad w(a,i) = \sum_{j} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{i,j}}{\sqrt{\sum_{k \in I_a} v_{i,k}^2}} \quad \begin{cases} S^{(0)} = \mathbf{I}_n \\ S^{(k+1)} = (c \cdot \mathbf{Q} \cdot \mathbf{S}^{(k)} \cdot \mathbf{Q}^T) \bigvee \mathbf{I}_n \ (\forall k = 0, 1, \dots) \end{cases}$

Variance Weighting

Idea:

Knowing a user's rating on distinguishing (high variance) items is more valuable than others in discerning a user's interest.

Implement:

$$w_{a,u} = \frac{\sum_{i=1}^{m} v_i * z_{a,i} * z_{u,i}}{\sum_{i=1}^{m} v_i}$$

 $v_i = rac{var_i - var_{min}}{var_{max}}$ Where Z stands for the scaled rating

By incorporating a variance weight term, we will increase the influence of items with high variance in ratings and decrease the influence of items with low variance.

Neighbors Selection

Weight Threshold

Idea:

Users with High correlates can be exceptionally more valuable as predictors than those with low correlations. So we choose users with relatively high correlates (larger than a given threshold) as our predictors.

However, the larger the threshold, the smaller the prediction coverage.

PART 03 Model-Based Algorithm

- Cluster Models
- EM Algorithm

Cluster Models

Assumptions:

Users in the same cluster have the same voting behavior. That is, users in the same cluster have the same probability to give one specific item one specific score.

Goal: Estimate
$$\mathbb{E}[V_b^{(i)}|v_j^{(i)},j\in I(i)] = \sum_{k=1}^{n} k\cdot P\big(V_b^{(i)} = k|v_j^{(i)},j\in I(i)\big)$$

Estimate parameters by maximize the log-likelihood function

$$\sum_{i=1}^{N} \log \left[\sum_{c=1}^{C} \mu_c \cdot \prod_{j \in I(i)} P(V_j^{(i)} = v_j^{(i)} | \Delta_i = c) \right]$$

EM Algorithm

Use EM Algorithm to find the maximum of the log-likelihood function:

$$\sum_{i=1}^{N} \log \left[\sum_{c=1}^{C} \mu_c \cdot \prod_{j \in I(i)} P(V_j^{(i)} = v_j^{(i)} | \Delta_i = c) \right]$$

- Step 1: Take initial guess for all the parameters μ̂, γ̂.
 To avoid local optima, don't use uniform initial values.
- Step 2: Expectation.

Compute the responsibilities for each user i

$$\hat{\pi_i^c} = \frac{\hat{\mu_c} \cdot \hat{\phi_c}(D(i))}{\sum_{c=1}^C \hat{\mu_c} \cdot \hat{\phi_c}(D(i))}$$
(9)

for c = 1, ..., C and i = 1, ..., N.

In the above equation, $\hat{\phi}_c(D(i)) = \prod_{j \in I(i)} \hat{P}(V_j^{(i)} = v_j^{(i)} | \Delta_i = c)$, where $\hat{P}(V_j^{(i)} = k | \Delta_i = c) = \hat{\gamma}_{c,j}^{(k)}$.

Step 3: Maximization.

Update the parameters

$$\hat{\mu}_{c} = \frac{\sum_{i=1}^{N} \hat{\pi}_{i}^{c}}{N}, \quad \text{for} \quad c = 1, ..., C$$

$$\hat{\gamma}_{c,j}^{(k)} = \frac{\sum_{i:j \in I(i)} \hat{\pi}_{i}^{c} \cdot \mathbb{I}(v_{j}^{(i)} = k)}{\sum_{i:j \in I(i)} \hat{\pi}_{i}^{c}}, \quad \text{for} \quad \forall c, j, k$$
(10)

where $\mathbb{I}(\cdot)$ is the indicator function taking values in $\{0,1\}$.

The idea is this step is that in order to calculate MLE in a weighted multinomial distribution, we only need to take the weighted frequency for each class.

• Step 4: Iteration.

Iterate steps 2 and 3 until convergence.

PART 04 Evaluation and Results

• For dataset 1: Rank Score

For dataset 2: MAE

Metrics

$$R_{a} = \sum_{i} \frac{\max(v_{a,j} - d, 0)}{2^{(j-1)/(\alpha - 1)}}$$

$$R = 100 \frac{\sum_{a} R_{a}}{\sum_{a} R_{a}^{max}}$$

mean(abs(prediction - true))

Performance

Microsoft Web Data (Implicit Voting)

Ranked Score	Pearson	Vector
None	35.75975	36.30890
Variance	45.73053	

EachMovie Data (Explicit Voting)

MAE	Pearson	Vector	SimRank
None	1.091662	1.069133	1.051652
Variance	1.268181		

Results:

Similarity Weight:

- MS Data: Vector similarity performs better than Pearson correlation. Maybe because the entries here are 0 or 1, and thus hard to show linear relationships.
- EachMovie Data: SimRank outperforms the others, but the difference among them is only very slight.

Variance Weighting:

- MS Data: Pearson correlation with variance weighting performs better than without as we expected.
- EachMovie Data: Applying variance weighting to Pearson correlation decreases the prediction accuracy. One reason may be the variance weighting method ignores the fact that a user who disagrees with the popular feeling provides a lot of information.

Performance

Memory-Based Algorithm VS Model-Based Algorithm

Microsoft Web Data

Ranked Score	Pearson	Vector
None	35.75975	36.30890
Variance	45.73053	

Number of Clusters	Ranked Score
3	46.36221
5	41.30776
7	45.98717
9	40.55384

Results:

The highest ranked score of our cluster model is 46.36221 with 3 clusters, which is higher than the best performance of our Memory-based models.

Thus, the cluster models may outperform the memory-based models for MS Data.

THANK YOU