

CAPÍTULO 3

PROGRAMACIÓN DUAL Y ANÁLISIS PARAMÉTRICO

Método dual simplex

MÉTODO SIMPLEX

Preserva la factibilidad

OPTIMALIDAD

MÉTODO DUAL SIMPLEX

Preserva la optimalidad

FACTIBILIDAD

Método dual simplex

Resuelve los problemas que tengan lados derechos negativos y que estén en la forma canónica, es decir lo que el **MÉTODO SIMPLEX NO PUEDE RESOLVER**.

- 1. Llevar a la forma canónica la formulación primal, y aplicar las reglas de equivalencia para convertir luego todas las restricciones a igualdades.
- 2. Llenar la tabla con los coeficientes de todas las variables utilizadas, verificando que el lado derecho tiene **por lo menos un valor negativo.**

Método dual simplex

Para elegir el pivote se debe:

<u>Determinar primero la fila</u>: Eligiendo de entre todos los valores del lado derecho aquel valor negativo más alejado del cero. (esto determina la variable que sale de la base).

Determinar la columna: Hallar el valor de θ, utilizando la siguiente fórmula: elegir RADIO el menor en valor absoluto.

$$\theta = \frac{f_{kj}}{a_{ij}}$$

Donde:

 $a_{ii} =$ Son todos los valores de la fila del pivote, los cuales deben ser valores **menores a cero.**

 $f_{ki}=$ Son todos los valores de la fila de $\,z\,$

- 4. Aplicar el método Gauss-Jordan, de manera similar al método simplex.
- 5. Repetir los pasos del 3 al 5 hasta que en el lado derecho no exista **ningún** valor negativo.

F.O min
$$z = 2x_1 + x_2$$

S.A $3x_1 + x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \ge 3$
 $\forall x_i \ge 0$

F.O MAX
$$-z = -2x_1 - x_2$$

S.a $-3x_1 - x_2 \le -3$
 $-4x_1 - 3x_2 \le -6$
 $-x_1 - 2x_2 \le -3$
 $\forall x_i \ge 0$

Llevando a la forma canónica.

	Z	x1	x2	h1	h2	h3	LD	
Z	-1	2	1	0	0	0	0	
h1	0	-3	-1	1	0	0	-3	
h2	0	-4	-3	0	1	0	-6	fila
h3	0	-1	-2	0	0	1	-3	
θ		0,5	0,333					

	Z	x1	x2	h1	h2	h3	LD	
Z	-1	0,667	0	0	0,333	0	-2	
h1	0	-1,67	0	1	-0,33	0	-1	fila
x2	0	1,333	1	0	-0,33	0	2	
h3	0	1,667	0	0	-0,67	1	1	
θ		0,4			1			

	Z	x1	x2	h1	h2	h3	LD
Z	-1	0	0	0,4	0,2	0	-2,4
x1	0	1	0	-0,6	0,2	0	0,6
x2	0	0	1	0,8	-0,6	0	1,2
h3	0	0	0	1	-1	1	0

Solución óptima y factible						
z*=	2,4					
x1*=	0,6					
x2*=	1,2					
	z*= x1*= x2*=					

Ejercicio 1

F.O MAX
$$z = 3x_1 + 5x_2$$

$$S.A \qquad x_1 \le 4$$

$$2x_2 = 12$$

$$3x_1 + 2x_2 \ge 18$$

$$\forall x_i \ge 0 \land x_i \in R$$

Solución:

Solución óptima y factible						
			z*=	42		
			x1*=	6		
			x2*=	4		

Ejercicio 2

$$x_1 = unidades del producto 1$$

 $x_2 = unidades del producto 2$
 $x_3 = unidades del producto 3$

F. 0 min
$$z = 3x_1 + 2x_2 + 4x_3$$
 z= euros

s. a
$$2x_1 + 2x_2 + 3x_3 \ge 15$$

 $2x_1 + 3x_2 + x_3 \le 12$

$$\forall x_j \geq 0 \ y x_j \in Z$$

Solución:

Se deben fabricar 3 unidades de cada producto 2 y producto 3 respectivamente para obtener un gasto mínimo de 18 euros.

