לינארית $> \gamma$ משפט הפירוס הספסטרלי להעתקות כלליות

שחר פרץ

2025 ביוני 2025

מבוסס על הקלטה 18 של הקורס ב־2024-2025

מרצה: ענת אמיר

המטרה: להבין לאילו העתקות בדיוק מתקיים המשפט הספקטרלי. מעל הממשיים, הבנו שאילו העתקות צמודות לעצמן. אז מה קורה מעל המרוכבים?

 $\forall v \in V \colon arphi(v) = \langle v \ | \ u \rangle$ שמקיים $u \in V$ שמקיים עורי אין פשפט 1. (פשפט 1). יהי עורי משפט ווהי $\varphi \in V^*$. איז קיים ויחיד וקטור

הוכחה. **קיום.** יהי $B=(b_i)_{i=1}^n$ בסיס אורתונורמלי של V (הוכחנו קיום בהרצאות קודמות). נסמן $B=(b_i)_{i=1}^n$ בכדי להראות $B=(b_i)_{i=1}^n$ יהי $B=(b_i)_{i=1}^n$ מספיק להראות תכונה זו לאברי הבסיס B, כלומר נראה ש־ $V=(b_i)_{i=1}^n$ מספיק להראות תכונה זו לאברי הבסיס B, כלומר נראה ש־ $V=(b_i)_{i=1}^n$ ואכן:

$$\langle b_j | u \rangle = \left\langle b_j \middle| \sum_{i=0}^n \overline{\varphi(b_i)} b_i \right\rangle = \sum_{i=1}^n \underbrace{\overline{\overline{\varphi(b_i)}}}_{b_i} \underbrace{\langle b_j | b_i \rangle}_{ij} = b_j \quad \top$$

יסידות: אם קיים וקטור נוסף שעבורו v=u-w אז בפרט עבור $\forall v\in V\colon \varphi(v)=\langle v\,|\,w\rangle$ נקבל:

$$\varphi(v) = \langle v \mid w \rangle = \langle v \mid u \rangle \implies \langle v \mid u - w \rangle = 0 \implies 0 = \langle u - w \mid u - w \rangle = ||v - w||^2 = 0 \implies v - w = 0 \implies v = w$$

סה"כ הוכחנו קיום ויחידות.

. $\forall u,v\in V\colon \langle Tu\,|\,v\rangle=\langle u\,|\,T^*v\rangle$ ומסייפת $T^*\colon V o V$ ומסייפת $T^*\colon V o V$ לינארית. אז סייפת ויחיזה $T\colon V o V$ ומסייפת T^* משפט ב. יהי T^* לעל נקראת ההעתקה הצמוזה ל- T^*

 $T^*v\in V$ ממשפט ריס קיים ויחיד $\forall u\in V: \varphi_V(u)=\langle Tu\,|\,v\rangle$ המוגדר ע"י המוגדר הלינארי הלינארי פפונקציונל הלינארי הלינארית. ע"י המוגדר ע"י המוגדר ע"י המשפט ריס קיים ויחידה, ונותר הראות שהיא לינארית. עבור $\forall u\in V: \langle Tu\,|\,v\rangle=\varphi_V(u)=\langle u\,|\,T^*v\rangle$ שעבורו עבור $\forall v,w\in V: \langle Tu\,|\,v\rangle=\varphi_V(u)$ מתקיים:

$$\forall u \in V : \ \langle u \,|\, T^*(\alpha v + \beta w) \rangle = \langle Tu \,|\, \alpha v + \beta w \rangle = \bar{\alpha} \ \langle Tu \,|\, v \rangle + \bar{\beta} \ \langle Tu \,|\, v \rangle = \bar{\alpha} \ \langle u \,|\, T^*v \rangle + \bar{\beta} \ \langle u \,|\, T^*w \rangle = \langle u \,|\, \alpha T^*u + \beta T^*w \rangle$$

מסך נסיק ש־ $T^*(\alpha v + \beta w) = \alpha T^* u + \beta T^* w$ מנימוקים דומים.

 $T_A(x)=A$ מוגדרת ע"י מעל $A\in M_n(\mathbb{C})$, עבור $T_A\colon \mathbb{C}^n o \mathbb{C}^n$ אז: $T_A(x)=A$ מוגדרת ע"י מעל T_A

$$\forall x, y \in \mathbb{C}^n \colon \langle T_A(x) \, | \, y \rangle = \langle Ax \, | \, y \rangle = \overline{(Ax)^T} \cdot y = \overline{x^T} \cdot \overline{A^T} y \cdot = \overline{x^T} T_{\overline{A^T}}(y) = \langle x \, | \, T_{\overline{A^T}} y \rangle$$

. כלומר, $T_A^*=\overline{A^T}$ כאשר כאשר אין וקראנו לה המטריצה הצמודה. $(T_A)^*=T_{A^*}$

 $(T_A)^* = T_{A^*}$ עזיין עזיין לי כוח לתקן. עזיין הפוכה החנכתה התכלכלה אכל אין לי כוח לתקן. עזיין $T_A^* = T_{A^*}$ גבחין שהעתקה נקראת צמודה לעצמה אממ $T^* = T$

 $(T_{ heta})^*=$ עוד נבחין שעבור העתקה הסיבוב $T:\mathbb{R}^2 o \mathbb{R}^2$ בזווית θ , מתקיים ש T^* היא הסיבוב ב $-\theta$, וכן היא גם ההופכית לה. כלומר $T:\mathbb{R}^2 o \mathbb{R}^2$ בזווית $T:\mathbb{R}^2 o \mathbb{R}^2$ בזווית שם במועד מאוחר יותר. $T:\mathbb{R}^2 o \mathbb{R}^2$. זו תכונה מאוד מועילה וגם נמציא לה שם במועד מאוחר יותר.

משפט 3. (תכונות ההעתקה הצמודה) יהי V ממ"פ ותהיינה $T,S\colon V o V$ זוג העתקות לינאריות. נבחין ש־:

$$(T^*)^* = T \tag{R}$$

$$(T \circ S)^* = S^* \circ T^* \tag{3}$$

$$(T+S)^* = T^* + S^*$$
 (x)

$$\forall \lambda \in \mathbb{F} \colon (\lambda T)^* = \bar{\lambda}(T^*) \tag{7}$$

"זה אחד וחצי לינאריות"

הוכחה.

$$\forall u,v \in V \colon \left\langle T^*u \,|\, v \right\rangle = \overline{\left\langle v \,|\, T^*u \right\rangle} = \overline{\left\langle Tv \,|\, u \right\rangle} = \left\langle u \,|\, Tv \right\rangle \implies (T^*)^* = T$$

$$\langle (T \circ S)u \,|\, v \rangle = \langle Su \,|\, T^*v \rangle = \langle u \,|\, S^*T^* \rangle \implies (TS)^* = T^*S^*$$

$$\langle (T+S)u \,|\, v \rangle = \langle Tu \,|\, v \rangle + \langle Su \,|\, v \rangle = \langle u \,|\, T^*v \rangle + \langle u \,|\, S^*v \rangle = \langle u \,|\, T^*v + S^*v \rangle \tag{λ}$$

ד) כנ"ל

משפט 4. יהי V ממ"פ נ"ס ותהי $T\colon V o V$ לינאריות. אס $B=(b_i)_{i=1}^n$ בסיס אורתוגונלי לו"ע של $T\colon V o V$ ו"ע של ההעתקה הצמודה.

כלומר: אם מתקיים המשפט הספקטרלי, אז הבסיס שמלכסן אורתוגונלית את T מלכסן אורתוגונלית את הצמודה.

 $:\langle b_i\,|\, T^*b_j
angle$ את בעבור $i\in[n]$ עבור לו"ע המתאים לו"ע הע"ע הע"ע הע"ע הע"ע הע"ע הע"ג ונסמן ונסמן $i\in[n]$

$$\langle b_i \,|\, T^*b_i \rangle = \overline{\langle Tb_i \,|\, b_i \rangle} = \overline{\langle \lambda_i b_i \,|\, b_i \rangle} = \lambda_i \,\langle b_i \,|\, b_i \rangle = 0$$

לכן n-1 ולכן הממד 1 ולכן המיסה מממד 1 ולכן המיסה מממד 1 ולכן השוויון. $T^*b_j \in (\mathrm{span}\{b_i\}_{i=1}^n)^\perp \stackrel{!}{=} \mathrm{span}\{b_j\}$ לכן $T^*b_i \in \mathrm{span}\{b_i\}$ ולכן $T^*b_i \in \mathrm{span}\{b_i\}$ ולכן השוויון.

 $.TT^*=T^*T$ מסקנה. אאם V ממ"פ נ"ס ו־T:V o V ט"ל עם בסיס מלכסן אורתוגונלי, אז T:V o V ממ"פ נ"ס ו־

הוכחה. לפי הטענה הקודמת כל b_i הוא ו"ע משותף ל־ T^* , ולכן:

$$TT^*(b_i) = T(T^*(b_i)) = \beta_i T^*(b_i) = \beta_i \delta_i b_i = \alpha_i \beta_i b_i = \alpha_i T^*(b_i) = T^*T(b_i)$$

 $TT^* = T^*T$ ולכן העתקה שהיא עושה לפי מה מוגדרת לפי מוגדרת

. נקראת וורמלית) $AA^*=A^*A$ נקראת וורמלית).

עתה, ננסה להראות שכל העתקה נורמלית מקיימת את המפשט הספקטרלי.

משפט 5. (המשפט הספקטרלי) יהי V ממ"פ נוצר סופית מעל \mathbb{C} , ותהי V o V לינארית. אז קייס בסיס אורתוגונלי של ו"ע של T אמ"פ T נורמלית.

V אם אורתוגונלי של אורתוגונלי איז קיים בסיס אורתוגונלי איז אוג ט"ל צמודות ולעמן ומתחלפות (כלומר $S_1,S_2:V o V$). אז קיים בסיס אורתוגונלי של אורתוגונלי של $S_1,S_2:V o V$ שמורכב מו"עים משופים ל־ S_1 ול־ S_2 .

הוכחה. ידוע ש־ S_1 צמודה לעצמה, לכן לפי המשפט הספקטרלי להעתקות צמודות לעצמן (לא מעגלי כי הוכח בנפרד בהרצאה הקודמת), קיים לה לכסון אורותגונלי ובפרט S_1 לכסינה. נציג את S_1 כ־ S_1 לכסינה עביר אונחשב: $V=\bigoplus_{i=1}^m \ker(S_1-\lambda_i I)$ המרחב העצמי) הוא S_1 אינווריאנטי שהרי אם V=1 ונחשב:

$$S_1(S_2v) = S_2(S_1v) = S_2(\lambda_i v) = \lambda_i S_2 v \implies S_2 v \in V_{\lambda_i}$$

כאשר שנו בסיס אורתוגונלי של ו"עים אומר עצמן לצמודות לעצמן המפשט הספקטרלי לצמודה לעצמה, ולכן המפשט הספקטרלי לצמודות לעצמן אומר צמודה לעצמה, ולכן המפשט הספקטרלי אורתוגונלי של ו"עים משותפים ל־ S_1 ול- S_2 . האיחוד של כל הבסיסים הללו מכל מ"ע של S_1 יהיה בסיס אורתוגונלי של ו"עים משותפים ל־ S_2 .

הוכחת הפשפט הספסטרלי.

- לפי המסקנה הקודמת, אם ישנו לכסון אורתוגונלי T בהכרח נורמלית. \Longrightarrow
- נגדיר $S_1=\frac{T+T^*}{2},\ S_2=\frac{T-T^*}{2i}$ הן וודאי צמודות לעצמן מהלינאריות וכל השטויות ממקודם, והן גם מתחלפות אם תטרחו להכפיל מגדיר $S_1=a_ib_i,\ S_2=a_ib_i,\ S_2=a_ib_i$ וגם מהטענה קיים ל- S_1 בסיס אורתוגונלי של ו"עים משותפים ל- $S_1,S_2=a_ib_i$ וגם לטעון ש- S_1 אבל זה לא מועיל לנו. נשים לב ש- $S_1+iS_2=a_ib_i$ כלומר $S_1(b_i)=S_1(b_i)+iS_2(b_i)=a_ib_i+iS_2(b_i)$ מבל זה לא מועיל לנו. נשים לב ש- $S_1+iS_2=a_ib_i$ כלומר $S_1+iS_2=a_ib_i$ וזהו בסיס אורתוגונלי של ו"עים של $S_1+iS_2=a_ib_i$

. מדומה את החלק המשי של הע"ע ו־ S_1,S_2 את החלק המדומה למעשה, הבנו מהפירוק של S_1,S_2 את החלק המדומה.

"אגב – לא השתמשתי במשפט היסודי של האלגברה"

......