AULA 5 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ T_{2}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{2}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{se } n > 2 \end{cases}$$

$$n, \text{se } n = 0, 1, 2$$

$$T_{3}(n) = \int_{-\infty}^{\infty} 2 \times T_{3}\left(\frac{n}{3}\right) + n, \text{se } n \text{ é múltiplo de 3} \right)$$

$$T_{3}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{3}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + n, \text{caso contrário}$$

Deve utilizar **aritmética inteira**: n/3 é igual a $\left\lfloor \frac{n}{3} \right\rfloor$ e (n+2)/3 é igual a $\left\lceil \frac{n}{3} \right\rceil$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo?

$$O\left(\left[\log_3(m)\right]\right) \rightarrow T_L, O(m) \rightarrow T_2 e T_3$$

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico.

Expression Trecontranta para as charmodos tracursivos:

$$M(m) = \begin{cases} 1 + \left| M \left(\frac{m}{3} \right) \right| \le m > 1 \\ 1 & \text{for } m = 1 \end{cases}$$

Paramodos tracursivos:

$$M(m) = \begin{cases} 1 + \left| M \left(\frac{m}{3} \right) \right| \le m > 1 \\ 1 & \text{for } m = 1 \end{cases}$$

Paramodos tracursivos:

$$M(m) = 1 + \left| M \left(\frac{m}{3} \right) \right| = 2 + \left| M \left(\frac{m}{4} \right) \right| = 3 + \left| M \left(\frac{m}{27} \right) \right| = (\dots) = K + M \left(\frac{m}{3^{K}} \right) = \left| \log_3(m) \right| + M(1) = \left| \log_3(m) \right| + M(2) = \left| \log_3(m$$

Nome: N° Mec:

n	T ₁ (n)	Nº de Chamadas Recursivas	T ₂ (n)	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	0	0	0	0	0
1	1	1	1	0	1	0
2	2	1	2	0	2	0
3	4	2	5	2	5	1
4	5	2	7	2	7	2
5	6	2	8	2	8	2
6	8	2	10	2	10	1
7	9	2	14	4	14	3
8	10	2	15	4	15	3
9	13	3	19	6	19	2
10	14	3	22	6	22	5
11	15	3	23	6	23	5
12	17	3	26	6	26	3
13	18	3	28	6	28	6
14	19	3	29	6	29	6
15	21	3	31	6	31	3
16	22	3	34	6	34	5
17	23	3	35	6	35	5
18	26	3	38	6	38	2
19	27	3	43	8	43	6
20	28	3	44	8	44	6
21	30	3	49	10	49	4
22	31	3	51	10	51	8
23	32	3	52	10	52	8
24	34	3	54	10	54	4
25	35	3	59	12	59	7
26	36	3	60	12	60	7
27	40	4	65	14	65	3
28	41	4	69	14	69	9

• Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$. Considere o caso particular $n=3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

Formula recorrents para as changed trecurring
$$\begin{array}{c} Tootherma mentre: \\ T(n) = a T(m/n) + f(n) \\ T(n) = a T(m/n) + f(n)$$

Nome: N° Mec:

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

• Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_3(n)$.

$$M(m) = \begin{cases} M\left[\frac{m}{3}\right] + M\left[\frac{m+2}{3}\right] + 2 & \text{Caso Contrains} \\ 1 + M\left(\frac{m}{3}\right) & \text{S. m. multiple de 3} \\ 0 & \text{S. } 0 \leq M \leq 2 \end{cases}$$

• Considere o caso particular $n = 3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

Teorema Mestre.

Formula recorrows para as chamadas recursivas

$$M(m) = \begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2 \\
0 & \text{if } m < 2
\end{cases}$$

Recording para as chamadas recursivas

$$M(m) = \begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2 \\
0 & \text{if } m < 2
\end{cases}$$

Recording Mestre:

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2 \\
0 & \text{if } m < 2
\end{cases}$$

Recording Mestre:

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

Recording Mestre:

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

$$\begin{cases}
1 + M(\frac{m}{3}) & \text{if } m > 2
\end{cases}$$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

A oridem de complexidade que acabamas de obter vião generaliza para todo o m, visto que para o

Caso específico do M=3 agenas utilizamos z condições das 3 Formeidas, pera todo o m timbamos que considerar todos as condições o

Gque, mente caso, tendo em conta os resultados obtidos em to, ia alterar a oridem de complexidade.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

Como Uma dos condições de $T_3(n)$ s'iqual a uma condiçõe de $T_2(m)$ podemos establecer que a oridom de conflexidade de $T_3(m)$ s' iqual a $T_2(m)$, l' como a esqressõe calculada de $T_2(m)$ s' generalizável, $T_3(m)$ tom ordom de conflexidade (0 $\binom{2^{\log_3(n)+1}-2}{2^{\log_3(n)+1}-2}$

Nome: N° mec: