

時間複雜度 費氏數列 FIBONACCI

資料結構 鍾宜玲

費氏數列 FIBONACCI

0, 1, 1, 2, 3, 5, 8, 13, ...

即
$$F_0 = 0 \cdot F_1 = 1 \cdot 且當 n>=2 \cdot F_n = F_{n-1} + F_{n-2}$$

Fo											
0	1	1	2	3	5	8	13	21	34	55	89

設計一個程式,執行時輸入n (0<=n<=40),計算並輸出 Fibonacci 數列的第n 項。

(第0項是0,第1項是1,...)

遞迴程式

在數學上, 費波那契數列是以遞迴的方法來定義:

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$ (n \geq 2)

```
long fib(int n)
{
    if(n==0 || n==1)
        return n;
    return fib(n-1)+fib(n-2);
}
```

計算第6項的呼叫過程

遞迴程式的時間複雜度 4

- 遞迴程式看起來簡單,但是並不實用
- ■嚴重的重覆計算
- ■時間複雜度為指數等級

$$O(\varphi^n), \varphi = \frac{1+\sqrt{5}}{2} \cong 1.618$$
$$\varphi^n < 2^n$$

■因此,時間複雜度可以用 $O(2^n)$ 表示。

使用迴圈


```
long fib(int n)
{
   int i;
   long pre=0, curr=1, next;
   for(i=2; i<=n; i++) {
      next = pre + curr;
      pre = curr;
      curr = next;
   }
   return curr;
}</pre>
```

```
long fib(int n)
{
    int i;
    long a=0, b=1;
    for(i=1; i<=n; i++) {
        a=a+b;
        b=a-b;
    }
    return a;
}</pre>
```

迴圈程式之時間複雜度為 O(n)

迴圈與遞迴的比較

n	迴圈執行次數	遞迴程式 呼叫次數		
1	1	0		
2	2	2		
3	3	4		
4	4	8		
5	5	14		
6	6	24		
7	7	40		
8	8	66		

7