

SoundScapify: Song Recommender Based on Soundscape

Adi H. Kusuma - DSI 28 6th July 2022

Table of contents

- 01 Introduction
- 02 Exploratory Data Analysis
- 03 Modelling & Result
- 04 WebApp Live Demo
- 05 Conclusion

01 Introduction

"Music is the Soundtrack of Your Life."

-Dick Clark

48%

of commuters in America listen to musics

In Singapore,

~40%

listen to music during their commute

Problem Statement

- Build a song recommender based on current ambience sound and mood
- Develop a classifier model to classify the acoustic scene
 - Target accuracy score > 80%
- Create criteria of Audio Feature Ranges as a metric for recommended

Scope of Data

Dataset	Description			
fold1_train.csv	Original dataset from TAU Urban Acoustic Scenes 2022 Mobile, development dataset that contains filename and scene label for training purposes			
fold1_test.csv	Original dataset from TAU Urban Acoustic Scenes 2022 Mobile, development dataset that contains filename and scene label for testing purposes			
valence_arousal_dataset.csv	Dataset of songs from multiple genres that is scraped using Spotify API which includes the valence and energy value of the songs			
recommend_criteria.csv	Dataset of criteria for the valence and energy range based on the label, which is extracted from <i>valence_arousal_dataset.csv</i>			

02 Exploratory Data Analysis

TAU Urban Acoustic Scene 2022 dataset

Scene Label -

Initial label: 10 nos

Label to be used: 4 nos

park <-

street traffic <-

metro <-

bus <-

Audio Files

1-second audio clips for 10 different countries in Europe

· Singapore Context

Added recordings of bus and MRT

Bar Chart of Scene Label

Preprocessing Audio File: Waveform

Audio File

Load .wav files with librosa package

Waveform

Preprocessing Audio File: Mel-Spectrogram

Waveform

Mel-Spectrogram

Fourier Transform

Representation of waveform based on the frequency and amplitude

Short-Term Fourier Transform

Preprocessing Audio File: Convert to dB scale

Mel-Spectrogram

44 windows

Valence Arousal Dataset Scraping Process

All genres available in Spotify

Recommender

Track information:

- Id
- Track name
- Artist name
- Valence
- Energy

K-Means Clustering: Elbow Graph

To check the inertia of the cluster and find optimal cluster number

Optimal Cluster: 4

K-Means Clustering on the Dataset

Label O as Metro

Based on the sample music heard, the songs which has uptension beat. This work well the soundscape of metro

The genre also give the same vibe

Label 1 as Bus

The genre within label 1 has layback vibe to them, which makes them resonates well with driving/riding bus

Label 2 as Park

The sample songs that are presented and give similar ambience of park.

The sample songs and top genres in label 3 give similar ambience of traffic sound.

Criteria Value Range

Label	Valence_min	Valence_max	Energy_min	Energy_2nd	Energy_3rd	Energy_Max
Metro	0.2590	0.489	0.00591	0.337273	0.668637	1.000
Bus	0.7330	0.975	0.14500	0.4288667	0.712333	0.996
Park	0.0196	0.257	0.00341	0.335273	0.667137	0.999
Street_Traffic	0.4900	0.731	0.02380	0.347533	0.671267	0.995

03 Modelling & Result

Model Input & Output Variable Preprocessing

- 1. Set input and output variable
- 2. Label Encoding the output variable
- 3. Train test split the dataset
- 4. Check train sample size vs batch size
- 5. Initiate DataGenerator

Long Short-Term Memory (LSTM) Neural Network

- Part of Recurrent Neural Network
- LSTM Neural Network is able to capture the previous time sequence model data and use the memory on the next time sequence model to have a better classification.

Model Layer Summary

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	(None, 44, 40, 1)	0	[]
batch_norm (LayerNormalization)	(None, 44, 40, 1)	80	['input_1[0][0]']
reshape (TimeDistributed)	(None, 44, 40)	0	['batch_norm[0][0]']
td_dense_tanh (TimeDistributed)	(None, 44, 64)	2624	['reshape[0][0]']
bidirectional_lstm (Bidirectional)	(None, 44, 64)	24832	['td_dense_tanh[0][0]']
skip_connection (Concatenate)	(None, 44, 128)	0	['td_dense_tanh[0][0]', 'bidirectional[0][0]']
dense_1_relu (Dense)	(None, 44, 64)	8256	['skip_connection[0][0]']
max_pool_1d (MaxPooling1D)	(None, 22, 64)	0	['dense_1_relu[0][0]']
dense_2_relu (Dense)	(None, 22, 32)	2080	['max_pool_1d[0][0]']
flatten (Flatten)	(None, 704)	0	['dense_2_relu[0][0]']
dropout (Dropout)	(None, 704)	0	['flatten[0][0]']
dense_3_relu (Dense)	(None, 32)	22560	['dropout[0][0]']
softmax (Dense)	(None, 4)	132	['dense_3_relu[0][0]']

Model Accuracy across Epochs

- First few epochs, train set underfitting (accuracy < 0.8)
- After 5 epochs, the accuracy difference between train and validation set widens.
- Both the train and validation
 set has accuracy higher than
 0.8 after epoch 5

Model Loss across Epochs: Best Model = Epoch 23

- The best model is determined by the smallest validation loss
- The movement of the value across epochs is inverse to accuracy

Model Accuracy on Train and Validation Set (Epoch 23)

Dataset	Accuracy	Loss
Train set	0.945338	0.161300
Validation set	0.892643	0.334957

Confusion Matrix of Prediction on Unseen Dataset

- Street_traffic scenes have the best accuracy
- A lot of park acoustic scenes are misclassified as street_traffic
- Bus and metro are misclassified with one another as well

04 WebApp Live Demo

- app.py
- authorization.py
- spotify.py

05 Conclusion

Limitations

- 1. Limited number of acoustic scenes that are able to be classified
- 2. Time limitations to fine tune the model or explore different types of deep learning model
- 3. Limited dataset on valence and energy in relation to acoustic scene
- 4. The microphone and machine not able to detect the ambience sound

Future Works

- 1. Improve the model accuracy by tuning the current model or introduce different type of deep learning model
- 2. Increase the number of acoustic scene to be trained and classified
- 3. Collect data that represent valence and energy of acoustic scenes
- 4. Develop an Android apk to deploy the app to utilize a better microphone

Thanks

"Music is life itself"

- Louis Armstrong

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

...