Portare in 3FN la relazione R<(ABCDE), $\{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

- Portare le dipendenze in forma canonica. I primi due passi sono mostrati nel video (fino a 5'53"), da questo punto in poi, avendo saltato il terzo passo, la soluzione presentata nel video non è corretta.

Facciamo il terzo passo.

Le dipendenze che rimangono dai primi due passi sono le seguenti:

 $B \rightarrow D$

C→E

B→C

С→В

 $C \rightarrow D$

В→Е

Per ognuna di esse bisogna verificare che la dipendenza non sia superflua, e per farlo si calcola la chiusura del determinante rispetto a **tutte le altre** dipendenze funzionali. Quindi:

Dipendenze correnti	Dipendenza da escludere	Chiusura rispetto alle altre dipendenze	Azione
B → D C→E B→C C→B C→D B→E	B→D	B+ = BCDE	contiene D quindi è superflua, si può cancellare
C→E B→C C→B C→D B→E	C→E	C+ = CBDE	contiene E quindi è superflua, si può cancellare
B→C C→B C→D B→E	B→C	B+ = BE	non contiene C, va lasciata
B→C C→B C→D B→E	С→В	C+ = CD	non contiene B, va lasciata
B→C C→B C→D B→E	C→D	C+ = CB	non contiene D, va lasciata
B→C C→B C→D B → E	В→Е	B+ = BCD	non contiene E, va lasciata

La copertura canonica è quindi:

B→C

В→Е

C→B

 $C \rightarrow D$

NOTA IMPORTANTE: In questo caso se cambiamo l'ordine di esame delle dipendenze funzionali si scopre che si possono avere coperture canoniche diverse! (si provi ad esempio a considerare prima $C \rightarrow E$ e $C \rightarrow D$). Alla fine quindi il risultato della normalizzazione sarà diverso. Entrambi i risultati sono corretti (cioè possiamo ottenere due forme normali equivalenti, anche se diverse).

Chiavi: le chiavi sono AB e AC (e solo loro)

Terza forma normale:

1. Si dividono le dipendenze rimaste in due insiemi, con la stessa parte sinistra:

 $\{B \rightarrow C, B \rightarrow E\}$ e $\{C \rightarrow B, C \rightarrow D\}$ e si ottengono i due sottoschemi:

R1 <(BCE) {B \rightarrow C, B \rightarrow E}> e R2<(BCD) {C \rightarrow B, C \rightarrow D}>

- 2. Si controlla se ci sono relazioni con gli attributi sottoinsieme di quelli di un'altra relazione (no)
- 3. Si controlla se almeno una delle relazioni contiene la chiave. Questo non accade, quindi si aggiunge ad esempio R3(AB).

Il risultato finale quindi è:

 $R1 < (BCE) \{B \rightarrow C, B \rightarrow E\} >$

 $R2<(BCD) \{C\rightarrow B, C\rightarrow D\}>$

R3<(AB) {}>