AppAttack

Finding Name: Insufficient Token Entropy

Name	Team	Role	Project	Quality Assurance	Is this a re-tested Finding?
Andrew Duffy	AppAtack	Pen-Tester	OnTrack Web App	Filipe Oliveira	No

Was this Finding Successful?	
Yes	,

Finding Description

An **Insufficient Token Entropy vulnerability** was discovered in the OnTrack web application. Session or Authentication Tokens with insufficient entropy have reduced randomness and present opportunities for threat actors to guess valid tokens through brute force techniques. The Entropy value is the indicator of how resilient a token is to this brute force guessing.

Analysis was conducted using the Burp Suite Sequencer tool, a free tool that is readily available, used for testing token randomness. The Sequencer tool sends thousands of authentication requests to the application and captures the returned authentication token. In this instance 10000 tokens were captured, which represents a significant sample size. The tool will assess the token to determine its actual randomness at a bit level and identify patterns or predictability with the final output or entropy estimate as an indication of its resilience to being brute forced.

As a result, the token randomness was assessed as being **reasonable** with an entropy of approximately **38 bits**. Entropy represents the randomness or unpredictability of a token, and higher entropy means more possible combinations an attacker must guess. The Open Worldwide Application Security Project (OWASP) recommends that session identifiers have at least 64 bits of entropy to prevent brute force attacks. According to OWASP, session IDs with 64 bits of entropy, could take a threat actor approximately 585 years to successfully guess a valid session ID. ¹

The simplistic nature of brute force attacks and ready availability of the tools, tempered with the relative time it would stake to conduct a successful attack, despite teh lower entropy, the likelihood of this vulnerability being exploited is **Moderate**. Additionally, compensating controls such as token invalidation techniques limit the impact of a successfully brute forced token, reducing the impact to **Very Minor**, resulting in an overall risk rating of **Low**.

Further analysis with a larger sample size (approximately 20,000 tokens) will likely result in an even lower assessed entropy and randomness score.

¹ OWASP. Session Management.

Risk Rating - Low

Impact: Very Minor
Likelihood: Moderate

Impact values								
Very Minor	Minor	Significant	Major	Severe				
Risk that holds	Risk that holds	Risk that holds	Risk that holds	Risk that holds				
little to no impact.	minor form of	enough impact to	major impact to be	severe impact and				
Will not cause	impact, but not	be somewhat of a	of threat. Will	is a threat. Will				
damage and regular	significant enough	threat. Will cause	cause damage that	cause critical				
activity can	to be of threat. Can	damage that can	will impede regular	damage that can				
continue.	cause some damage	impede regular	activity and will	cease activity to be				
	but not enough to	activity but will be	not be able to run	run.				
impede regular		able to run	normally.					
	activity.	normally.						

Likelihood								
Rare	Rare Unlikely		High	Certain				
Event may occur	Event could occur	Event may occur	Event occurs at	Event is occurring				
and/or if it did, it	occasionally and/or	and/or happens.	times and/or	now and/or				
happens in specific	could happen (at		probably happens a	happens				
circumstances.	some point)		lot.	frequently.				

Business Impact

While the test conducted doesn't directly exploit a token vulnerability, the results are indicative of an underlying vulnerability. The presence of session tokens with low entropy provides an opportunity for threat actors to exploit and opportunity to obtain a valid session token through brute forcing techniques. A successful compromise could expose user accounts or sensitive data through authenticated requests. Although compensating session management controls are in place to limit the exposure to this vulnerability, weaknesses in token generation below the industry recommendations may undermine user trust in the applications security.

Affected Assets

OnTrack Web Application Authentication/Session Token implementation. Any API, endpoint of functionality that relies on a valid authentication token is potentially vulnerable.

Evidence

Step 1: Configure Burp Suite and Firefox

1. Configure Firefox to route all traffic through the Burp Suite proxy, ensuring that requests made to the application are processed through Burp and can be reviewed in the HTTP history.

Figure – Firefox configured to route traffic through Burp Suite

Step 2: Login to the application review HTTP history in Burp Suite

1. Login to the application as student_1.

Figure – Login to application

2. Go to Burp Suite and navigate to Proxy, HTTP history and identify the HTTP request that returns an authorisation token.

Figure – Identifying the authorisation token request / response

Step 3: Send authorisation request to Burp Suit Sequencer tool

1. Right click within the 'Request' box and select 'Send to Sequencer' in the pop up menu. Then navigate to the Sequencer tab and click on Configure to set the token location for the tool.

Figure – Navigate to Sequencer, select configure

2. In the new window pops up to configure the token location, scroll down to the token and highlight just the characters between the quotations then click ok. This will set the token for the tool and will populate the 'Custom location' field.

Figure – Setting token location

Figure – Custom token location populated within the tool

Step 3: Start live capture

1. Click 'Start live capture' this will open another window where the tool will send authorisation requests to the application and capturing the authorisation token. Let the tool run for approximately 10000 requests, this is significant enough to get an accurate indication of the token's strength. Once 10000 requests have been captured click 'Stop' then 'Analyze now'. This will present a summary of the token's overall randomness and entropy.

Figure – Summary of token analysis

2. Further analysis results are available to better understand bit predictability.

Figure – Further analysis is available under each specific test

Remediation Advice

The application currently uses a session token generator with lower than recommended entropy, making tokens more predictable and vulnerable to brute-force attacks.

Mitigations:

- Review current session identifier implementation and uplift in line with OWASP recommendations, uplift to ensure at least 64 bits of entropy.
- Use a strong CSPRNG (Cryptographically Secure Pseudorandom Number Generator) must be used to generate session IDs.
- Retest session token using same method (e.g. Burp Suite Sequencer) to confirm improvements have been implemented effectively.

References

• OWASP - Session Management Cheat Sheet

- OWASP Insufficient Session ID Length
- <u>CWE CWE-331: Insufficient Entropy</u>

Contact Details

Name/Teams: Andrew Duffy Email: s218325308@deakin.edu.au

Pentest Leader Feedback.

Filipe Oliveira <u>s222478779@deaki.edu.au</u>

- Make sure blue text is changed to black Done
- Some bits of your text are not size 12 times new roman Fixed, I note the sub heading ar size 13. And the table at top is 10.
- Expand on affected assets e.g any API endpoints or pages protected by session tokens The affected item is the token, or the token generation implementation. Then by extention the whole application. -- Updated.
- You should also add more references e.g Burp, owasp auth cheat sheet Added
- Unsure if at the bottom of step 2 there is a missing image or just accidental repeat of (Figure Student level user accessing admin level endpoint) Fixed. Removed.

well done!