Assignment 6 - FMCG MapReduce Analysis

Task 1: Demand-Supply Mismatch Analysis

- Objective: Identify zones and regional zones with the highest mismatch between demand and supply.
- Required Fields: zone, WH_regional_zone, product_wg_ton

Description:

- Map: For each warehouse, emit the zone and regional zone as the key and the product weight shipped in the last three months as the value.
- Reduce: Aggregate the product weight by zone and regional zone to calculate the total supply. Compare this with known demand data to identify mismatches.

mapper:

```
#!/usr/bin/python3
"""mapper.py"""
import sys

for line in sys.stdin:

   try:
        line = line.strip().split(',')

        zone = line[4]
        WH_regional_zone = line[5]
        product_wg_ton = int(line[-1])
   except:
        continue

   print('%s %s\t%s' % (zone, WH_regional_zone, product_wg_ton))
```

reducer:

```
#!/usr/bin/python3
"""reducer.py"""
import sys

current_zone = None
current_wg = 0
word = None

for line in sys.stdin:
    line = line.strip()
    zone, product_wg = line.split('\t')

try:
```

```
product_wg = int(product_wg)
except ValueError:
    continue

if current_zone == zone:
    current_wg += product_wg
else:
    if current_zone:
        print ('%s\t%s' % (current_zone, current_wg))
    current_zone = zone
    current_wg = 0

if current_zone == zone:
    print ('%s\t%s' % (current_zone, current_wg))
```

```
East Zone 1
                     858261
     East Zone 3
                     2516603
     East Zone 4
                     3295091
     East Zone 5
                     1758017
     East Zone 6
                     1264136
     North Zone 1
                     18456074
     North Zone 2
                     18956266
     North Zone 3
                     21325676
     North Zone 4
                     26244459
     North Zone 5
                     42883056
     North Zone 6
                     100239936
     South Zone 1
                     14672785
     South Zone 2
                     32457843
     South Zone 3
                     18800060
     South Zone 4
                     19220612
     South Zone 5
                     24103638
     South Zone 6
                     30225590
     West Zone 1
                     10628132
     West Zone 2
                     15136473
     West Zone 3
                     20607631
     West Zone 4
                     43794607
    West Zone 5
                     32232669
output West Zone 6
                     52651717
```

Task 2: Warehouse Refill Frequency Correlation

- Objective: Determine the correlation between warehouse capacity and refill frequency.
- Required Fields: WH_capacity_size, num_refill_req_I3m

Description:

• Map: Extract the number of refill requests (num_refill_req_l3m) and warehouse capacity size (WH_capacity_size) for each warehouse. (For each warehouse, emit the capacity size and the number of refill requests as the value)

• Reduce: Aggregate the refill requests by capacity size and calculate the correlation.

mapper:

```
#!/usr/bin/python3
"""mapper_final.py"""
import sys
for line in sys.stdin:
    lines = line.split(',')
    wh_capacity = lines[3].strip()
    num_req_fill = lines[6].strip()
    try:
        if wh_capacity == 'Small':
            wh_capacity = 0
        elif wh_capacity == 'Mid':
            wh_capacity = 1
        elif wh_capacity == 'Large':
            wh_capacity = 2
        else:
            continue
        num_req_fill = int(num_req_fill)
    except ValueError:
        continue
    print(f"{wh_capacity},{num_req_fill}")
```

reducer:

```
#!/usr/bin/python3
"""reducer_task2.py"""
import sys
import numpy as np
from collections import defaultdict

capacity = defaultdict(list)

for line in sys.stdin:
    line = line.strip()

    try:
        wh_capacity, num_req_fill = line.split(',')
        wh_capacity = int(wh_capacity)
        num_req_fill = int(num_req_fill)
    except ValueError:
        continue
```

```
capacity[wh_capacity].append(num_req_fill)
wh_capacities = np.array(list(capacity.keys()))
avg_fill = np.array([np.mean(val) for val in capacity.values()])
corr = np.corrcoef(wh_capacities, avg_fill)
print("correlation: %.2f" % corr[0, 1])
```

output

```
hadoop@hadoop-VirtualBox:~/assignment/q2$ hadoop jar /usr/local/hadoop/share/had oop/tools/lib/hadoop-streaming-2.7.6.jar -file mapper_final.py -mapper mapper_fi nal.py -file reducer_final.py -reducer reducer_final.py -input /assignment/fmcg. csv -output /assignment/output/fmcg_output2 24/09/07 06:57:06 WARN streaming.StreamJob: -file option is deprecated, please u se generic_ontion_-files_instead hadoop@hadoop-VirtualBox:~/assignment/q2$ hdfs dfs -cat /assignment/output/fmcg_ output2/* 24/09/07 06:57:49 WARN util.NativeCodeLoader: Unable to load native-hadoop libra ry for your platform... using builtin-java classes where applicable correlation: 0.73

Activate Wassignment / assignment / assignment
```

Task 3. Transport Issue Impact Analysis

Objective: Analyse the impact of transport issues on warehouse supply efficiency.

• Required Fields: transport_issue_l1y, product_wg_ton

Description:

- Map: For each warehouse, emit whether a transport issue was reported and the product weight shipped.
- Reduce: Aggregate the product weight by transport issue status to assess the impact.

mapper:

```
#!/usr/bin/python3
"""mapper_final.py"""
import sys

for line in sys.stdin:
    lines = line.strip().split(',')
    product = lines[-1]
    transport = lines[7]
    try:
        if int(transport) > 0:
            transport = 'Issue Occured'
        else:
            transport = 'No Issues'
    except:
        continue
```

```
print(f"{transport},{product}")
```

reducer:

```
#!/usr/bin/python3
"""reducer final.py"""
import sys
curr_transport = None
curr_sum = []
curr_count = 0
print('status\t\ttotal\t\taverage\t\tmin\tmax')
for line in sys.stdin:
    line = line.strip()
    try:
        transport, product = line.split(',')
        product = float(product)
    except ValueError:
        continue
    if transport != curr_transport:
        if curr_transport is not None:
            print("%s\t%s\t%s\t%s" % (curr_transport, sum(curr_sum),
(sum(curr_sum) / len(curr_sum)), min(curr_sum), max(curr_sum)))
        curr transport = transport
        curr_sum = []
        curr count = 1
    else:
        curr_sum.append(product)
        curr_count += 1
if curr transport is not None:
    print("%s\t%s\t%s\t%s\t%s" % (curr_transport, sum(curr_sum), (sum(curr_sum))
/ len(curr sum)), min(curr sum), max(curr sum)))
```

output

hadoop@hadoop-VirtualBox:~/assignment/q3\$ hadoop jar /usr/local/hadoop/share/had
oop/tools/lib/hadoop-streaming-2.7.6.jar -file mapper_final.py -mapper mapper_fi
nal.py -file reducer_final.py -reducer reducer_final.py -input /assignment/fmcg.
csv -output /assignment/output/fmcg_output3

method 2

status	total	average		min	max
0	359157294.0	23607.03	2083.0	55151.0	
1	99123809.0	21349.09	2103.0	52145.0	
2	41440494.0	18862.31	2106.0	51094.0	
3	32119529.0	17677.23	2104.0	48077.0	
4	14886387.0	19183.49	2065.0	48142.0	
5	5777950.0	16651.15	2093.0	35106.0	

Task 4. Storage Issue Analysis

- Objective: Evaluate the impact of storage issues on warehouse performance.
- Required Fields: storage_issue_reported_l3m, product_wg_ton

Description:

- Map: For each warehouse, emit whether a storage issue was reported and the product weightn shipped.
- Reduce: Aggregate the product weight by storage issue status to assess the impact

mapper:

```
#!/usr/bin/python3
"""mapper_final.py"""
import sys

for line in sys.stdin:
    lines = line.strip().split(',')
    product = lines[-1]
    storage = lines[-6]

try:
    if float(storage) > 0:
        storage = 'Issue Reported'
    else:
        storage = 'No Issues'
    except:
        continue

print(f"{storage},{product}")
```

reducer:

```
#!/usr/bin/python3
"""reducer_final.py"""
import sys

curr_storage = None
curr_sum = []
```

```
curr_count = 0
print("status\t\taverage\t\tmin\tmax")
for line in sys.stdin:
    line = line.strip()
    try:
        storage, product = line.split(',')
        product = int(product)
    except ValueError:
        continue
    if storage != curr_storage:
        if curr_storage is not None:
            print("%s\t%.2f\t%s\t%s" % (curr_storage, (sum(curr_sum) /
len(curr_sum)), min(curr_sum), max(curr_sum)))
        curr storage = storage
        curr_sum = []
        curr_count = 1
        curr_sum.append(product)
        curr_count += 1
if curr_storage is not None:
    print("%s\t%.2f\t\t%s\t%s" % (curr_storage, (sum(curr_sum) / len(curr_sum)),
min(curr_sum), max(curr_sum)))
```

output

hadoop@hadoop-VirtualBox:~/assignment/q4\$ hadoop jar /usr/local/hadoop/share/had oop/tools/lib/hadoop-streaming-2.7.6.jar -file mapper_final.py -mapper mapper_fi nal.py -file reducer_final.py -reducer reducer_final.py -input /assignment/input /fmcg.csv -output /assignment/output/fmcg_output8 24/09/07 06:53:00 WARN streaming.StreamJob: -file option is deprecated, please u se generic option -files instead.

storage	average	min	max
0	5424.27 2065	14149	
10	12969.82	11058	15150
11	14155.66	12059	17151
12	15479.49	13062	18150
13	16758.19	14125	20150
14	17706.17	16056	21146
15	19034.31	17056	23149
16	20471.99	18055	24151
17	21922.36	19056	26125
18	22703.30	20057	27133
19	24043.21	21067	29091
20	25359.97	23055	30108
21	27051.98	24055	31149
22	27933.48	25058	32138
23	29226.50	26060	33145
24	30131.84	27056	34151
25	31271.53	28061	36149
20	22770 00	20110	27140