

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

CKE 2013	UZUP	EŁNIA ZDAJĄCY	miejsce
0	KOD	PESEL	miejsce na naklejkę
Układ graficzny			

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

NADZORUJĄCY			
Uprawni	enia zdającego do:		
	dostosowania kryteriów oceniania		
	nieprzenoszenia		

dostosowania w zw. z dyskalkulią

7 MAJA 2019

Godzina rozpoczęcia: 9:00

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 **1**P-192

ZADANIA ZAMKNIĘTE

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Liczba $\log_{\sqrt{2}} 2$ jest równa

A. 2

- **B.** 4
- **C.** $\sqrt{2}$
- **D.** $\frac{1}{2}$

Zadanie 2. (1 pkt)

Liczba naturalna $n = 2^{14} \cdot 5^{15}$ w zapisie dziesiętnym ma

- **A.** 14 cyfr
- **B.** 15 cyfr
- **C.** 16 cyfr
- **D.** 30 cyfr

Zadanie 3. (1 pkt)

W pewnym banku prowizja od udzielanych kredytów hipotecznych przez cały styczeń była równa 4%. Na początku lutego ten bank obniżył wysokość prowizji od wszystkich kredytów o 1 punkt procentowy. Oznacza to, że prowizja od kredytów hipotecznych w tym banku zmniejszyła się o

- **A.** 1%
- **B.** 25%
- **C.** 33%
- **D.** 75%

Zadanie 4. (1 pkt)

Równość $\frac{1}{4} + \frac{1}{5} + \frac{1}{a} = 1$ jest prawdziwa dla

- **A.** $a = \frac{11}{20}$ **B.** $a = \frac{8}{9}$ **C.** $a = \frac{9}{8}$ **D.** $a = \frac{20}{11}$

Zadanie 5. (1 pkt)

Para liczb x = 2 i y = 2 jest rozwiązaniem układu równań $\begin{cases} ax + y = 4 \\ -2x + 3y = 2a \end{cases}$

- **A.** a = -1
- **B.** a = 1
- **C.** a = -2
- **D.** a = 2

Zadanie 6. (1 pkt)

Równanie $\frac{(x-1)(x+2)}{x-3} = 0$

A. ma trzy różne rozwiązania: x = 1, x = 3, x = -2.

B. ma trzy różne rozwiązania: x = -1, x = -3, x = 2.

C. ma dwa różne rozwiązania: x = 1, x = -2.

D. ma dwa różne rozwiązania: x = -1, x = 2.

Zadanie 7. (1 pkt)

Miejscem zerowym funkcji liniowej f określonej wzorem $f(x) = 3(x+1) - 6\sqrt{3}$ jest liczba

A.
$$3-6\sqrt{3}$$

B.
$$1-6\sqrt{3}$$

C.
$$2\sqrt{3}-1$$

B.
$$1-6\sqrt{3}$$
 C. $2\sqrt{3}-1$ **D.** $2\sqrt{3}-\frac{1}{3}$

Informacja do zadań 8.–10.

Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej f. Wierzchołkiem tej paraboli jest punkt W = (2, -4). Liczby 0 i 4 to miejsca zerowe funkcji f.

Zadanie 8. (1 pkt)

Zbiorem wartości funkcji f jest przedział

A.
$$(-\infty, 0)$$

B.
$$(0, 4)$$

B.
$$\langle 0, 4 \rangle$$
 C. $\langle -4, +\infty \rangle$ **D.** $\langle 4, +\infty \rangle$

D.
$$\langle 4, +\infty \rangle$$

Zadanie 9. *(1 pkt)*

Największa wartość funkcji f w przedziale $\langle 1, 4 \rangle$ jest równa

B.
$$-4$$

Zadanie 10. (1 pkt)

Osią symetrii wykresu funkcji f jest prosta o równaniu

A.
$$y = -4$$

A.
$$y = -4$$
 B. $x = -4$

C.
$$y = 2$$

D.
$$x = 2$$

Zadanie 11. *(1 pkt)*

W ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, dane są dwa wyrazy: $a_1 = 7$ i $a_8 = -49$. Suma ośmiu początkowych wyrazów tego ciągu jest równa

Zadanie 12. *(1 pkt)*

Dany jest ciąg geometryczny (a_n) , określony dla $n \ge 1$. Wszystkie wyrazy tego ciągu są dodatnie i spełniony jest warunek $\frac{a_5}{a_2} = \frac{1}{9}$. Iloraz tego ciągu jest równy

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{\sqrt{3}}$$
 C. 3 **D.** $\sqrt{3}$

$$\mathbf{D.} \quad \sqrt{3}$$

Zadanie 13. *(1 pkt)*

Sinus kata ostrego α jest równy $\frac{4}{5}$. Wtedy

$$\mathbf{A.} \quad \cos \alpha = \frac{5}{4}$$

B.
$$\cos \alpha = \frac{1}{5}$$

A.
$$\cos \alpha = \frac{5}{4}$$
 B. $\cos \alpha = \frac{1}{5}$ **C.** $\cos \alpha = \frac{9}{25}$ **D.** $\cos \alpha = \frac{3}{5}$

D.
$$\cos \alpha = \frac{3}{5}$$

Zadanie 14. *(1 pkt)*

Punkty D i E leżą na okręgu opisanym na trójkącie równobocznym ABC (zobacz rysunek). Odcinek CD jest średnicą tego okręgu. Kąt wpisany DEB ma miarę α .

Zatem

A.
$$\alpha = 30^{\circ}$$

B.
$$\alpha$$
 < 30°

C.
$$\alpha > 45^{\circ}$$
 D. $\alpha = 45^{\circ}$

$$\mathbf{D} \quad \alpha = 45^{\circ}$$

Zadanie 15. *(1 pkt)*

Dane sa dwa okregi: okrag o środku w punkcie O i promieniu 5 oraz okrag o środku w punkcie P i promieniu 3. Odcinek OP ma długość 16. Prosta AB jest styczna do tych okręgów w punktach A i B. Ponadto prosta AB przecina odcinek OP w punkcie K (zobacz rysunek).

Wtedy

A.
$$|OK| = 6$$

B.
$$|OK| = 8$$

C.
$$|OK| = 10$$

B.
$$|OK| = 8$$
 C. $|OK| = 10$ **D.** $|OK| = 12$

Zadanie 16. (1 pkt)

Dany jest romb o boku długości 4 i kącie rozwartym 150°. Pole tego rombu jest równe

A. 8

B. 12

C. $8\sqrt{3}$

D. 16

Zadanie 17. *(1 pkt)*

Proste o równaniach y = (2m+2)x - 2019 oraz y = (3m-3)x + 2019 są równoległe, gdy

A. m = -1

B. m = 0

C. m = 1 **D.** m = 5

Zadanie 18. (1 pkt)

Prosta o równaniu y = ax + b jest prostopadła do prostej o równaniu y = -4x + 1 i przechodzi przez punkt $P = (\frac{1}{2}, 0)$, gdy

A. a = -4 i b = -2

B. $a = \frac{1}{4}$ i $b = -\frac{1}{8}$

C. a = -4 i b = 2

D. $a = \frac{1}{4}$ i $b = \frac{1}{2}$

Zadanie 19. *(1 pkt)*

Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f. Na wykresie tej funkcji leżą punkty A = (0, 4) i B = (2, 2).

Obrazem prostej AB w symetrii względem początku układu współrzędnych jest wykres funkcji g określonej wzorem

A.
$$g(x) = x + 4$$
 B. $g(x) = x - 4$ **C.** $g(x) = -x - 4$ **D.** $g(x) = -x + 4$

B.
$$g(x) = x - 4$$

C.
$$g(x) = -x - 4$$

D.
$$g(x) = -x + 4$$

Zadanie 20. (1 pkt)

Dane są punkty o współrzędnych A = (-2, 5) oraz B = (4, -1). Średnica okręgu wpisanego w kwadrat o boku AB jest równa

C.
$$6\sqrt{2}$$
 D. $2\sqrt{6}$

D.
$$2\sqrt{6}$$

Zadanie 21. *(1 pkt)*

Promień AS podstawy walca jest równy połowie wysokości OS tego walca. Sinus kata OAS (zobacz rysunek) jest równy

A.
$$\frac{\sqrt{5}}{2}$$

B.
$$\frac{2\sqrt{5}}{5}$$

C.
$$\frac{1}{2}$$

Zadanie 22. (1 pkt)

Podstawa ostrosłupa prawidłowego czworokatnego ABCDS jest kwadrat ABCD. Wszystkie ściany boczne tego ostrosłupa są trójkątami równobocznymi.

Miara kata SAC jest równa

- **A.** 90°
- **B.** 75°
- C. 60°
- **D.** 45°

Zadanie 23. (1 pkt)

Mediana zestawu sześciu danych liczb: 4, 8, 21, a, 16, 25, jest równa 14. Zatem

- **A.** a = 7
- **B.** a = 12 **C.** a = 14
- **D.** a = 20

Zadanie 24. (1 pkt)

Wszystkich liczb pięciocyfrowych, w których występują wyłącznie cyfry 0, 2, 5, jest

- **A.** 12
- **B.** 36
- **C.** 162
- **D.** 243

Zadanie 25. (1 pkt)

W pudełku jest 40 kul. Wśród nich jest 35 kul białych, a pozostałe to kule czerwone. Prawdopodobieństwo wylosowania każdej kuli jest takie samo. Z pudełka losujemy jedną kulę. Prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy kulę czerwoną, jest równe

- C. $\frac{1}{40}$ D. $\frac{1}{35}$

Zadanie 26. (2 pkt)

Rozwiąż równanie $x^3 - 5x^2 - 9x + 45 = 0$.

Odpowiedź:

Zadanie 27. *(2 pkt)*

Rozwiąż nierówność $3x^2 - 16x + 16 > 0$.

Odpowiedź:

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. *(2 pkt)*Wykaż, że dla dowolnych liczb rzeczywistych *a* i *b* prawdziwa jest nierówność

$$3a^2 - 2ab + 3b^2 \ge 0.$$

Zadanie 29. *(2 pkt)*

Dany jest okrąg o środku w punkcie S i promieniu r. Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC równy promieniowi danego okręgu. Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ACS jest równa α , to miara kąta ASD jest równa 3α .

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		·

Zadanie 30. *(2 pkt)*

Ze zbioru liczb $\{1, 2, 3, 4, 5\}$ losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

Odpowiedź:

Zadanie 31. *(2 pkt)*

W trapezie prostokątnym *ABCD* dłuższa podstawa *AB* ma długość 8. Przekątna *AC* tego trapezu ma długość 4 i tworzy z krótszą podstawą trapezu kąt o mierze 30° (zobacz rysunek). Oblicz długość przekątnej *BD* tego trapezu.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. *(4 pkt)*

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. Różnicą tego ciągu jest liczba r = -4, a średnia arytmetyczna początkowych sześciu wyrazów tego ciągu: a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , jest równa 16.

- a) Oblicz pierwszy wyraz tego ciągu.
- b) Oblicz liczbę k, dla której $a_k = -78$.

Odpowiedź:

	Nr zadania	32.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 33. *(4 pkt)*

Dany jest punkt A = (-18,10). Prosta o równaniu y = 3x jest symetralną odcinka AB. Wyznacz współrzędne punktu B.

Odpowiedź:

_	Nr zadania	33.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 34. *(5 pkt)*

Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa 6. Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt α jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta α .

Odpowiedź:

_	Nr zadania	34.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	