

Команда «НИИстовые»

Задача 17

«Сервис для планирования маршрута атомного ледокола по Северному морскому пути» **Цель работы**: сформировать оптимальное расписание движения судов по СМП, их ледокольного сопровождения и формирования караванов на основе динамических данных о ледовой обстановке.

Задачи:

- формулирование задачи для оптимизируемого параметра;
- исследование данных и литературы для формирования множества подходов к решению задачи;
- реализация интеллектуального алгоритма распределения ледоколов по доступным заявкам, учитывая динамическое изменение состояние льда;
- разработка архитектуры интеллектуальной системы построения графика движения ледоколов;
- реализация прототипа интеллектуальной системы построения графика движения ледоколов.

Проблемы в работе и выгода применения нашего решения

ПРОБЛЕМЫ

- Отсутствие оптимального алгоритма формирования графика движения ледоколов
- Затраты времени на ежедневное формирование графика движения ледоколов
- **Невозможность** учитывать динамичность изменения льдов при формировании графика движения ледоколов

РЕЗУЛЬТАТ

- **Предложен** алгоритм распределения ледоколов, который учитывает динамику изменения льда
- Оперативный расчет и визуализация графика работы ледоколов
- **Возможность** перерасчета графика движения ледоколов в зависимости от появившихся заявок

Исследование и общий анализ данных (EDA)

- 1. Построены пространственные сетки в стереографической проекции со значениями тяжести льда в разные периоды времени.
- 2. Построены узлы и ребра графа вероятных маршрутов взятых из исторических данных. Построены положения ледоколов и пример маршрута из заявок.
- 3. При анализе пространственной карты с отображением тяжести льда было замечено, что имеются узлы графа, которые находятся в зонах где тяжесть льда <10. По ТЗ данные области непроходимы.

На графиках представлен один и тот же маршрут, но в разных представлениях. На графике с пространственной картой виден отступ между соседними точками, когда как на графике для матрицы все точки являются соседними.

Общая последовательность шагов для создание расписания работы

ледоколов

На данной схеме представлена система планирования маршрутов и расписания движения судов по Северному морскому пути (СМП) с учетом состояния льдов и ледоколов.

- 1. Поступающие заявки на плавание собираются и формируют перечень заявок.
- 2. Информация о состоянии льдов представлена в виде матриц, которые используются для оценки текущих условий льда.
- 3. Верхнеуровневый граф портов включает географическую информацию о портах и маршрутах, которая используется для построения маршрутов.
- 4. В качестве алгоритм поиска по ячейкам матрицы льдов используется **алгоритм А*.**
- 5. В качестве алгоритма составления оптимального расписания движения судов по СМП используется алгоритм Монте-Карло на решающих деревьях.
- 6. Оценивается качество выбора ледоколов для обеспечения эффективного и безопасного сопровождения судов.
- 7. Все результаты, включая расписание движения ледоколов, сохраняются в базе данных для дальнейшего использования и анализа.

Алгоритм для составления оптимального расписания движения судов по СМП

В основе нашего подхода лежит вариация метода Монте-Карло для поиска на деревьях, которая представлена в виде игры из четырёх этапов, которые выполняются итеративно.

1. Этап выбора. Находясь в вершине p, выбор следующего узла дерева i делается из учёта максимизации следующей формулы:

$$v_i + C imes \sqrt{rac{\ln n_p}{n_i}} + \sqrt{rac{\sum r^2 - n_i imes v_i^2 + D}{n_i}}$$
 (1)

где n_i это количество посещений узла i, v_i — средняя стоимость игры, r— результат игры на данный момент, D— константа, которая усиливает значение малопосещаемых вершин.

- 2. Этап симуляции заключается в том, что мы применяем ε жадный алгоритм для выбора всех следующих ходов до конца игры, которые максимизируют вознаграждение, но с вероятностью ε производится случайный ход.
- 3. Этап расширения. На этом этапе мы выбираем лучший узел исходя из предыдущего шага, который добавим к финальному дереву.
- 4. Этап обратного распространения ошибки. На этом шаге мы обновляем результат игры и её стоимость на основе двух предыдущих этапов до корня нашего дерева.

Метрика качества работы алгоритма

В качестве метрики качества используется общее время в часах на выполнение всех заявок. На графике представлено сравнение базового жадного подхода и метода Монте-Карло на 100 и 1000 итерациях.

Функциональная архитектура системы

Технологический стек решения

- Язык программирования: *Python*
- BI-инструмент: Superset
- БД: *Postgres* (пользователи *SuperSet*), *Redis* (Кэш)
- Обучение моделей: *JupyterLab*
- Постановка задач в очередь на обработку (*Celery, Flower*)

Пользовательский интерфейс системы

Ссылка на пользовательский интерфейс, параметры авторизации в репозитории на **github**

Направления для развития

В части исследования:

- Усовершенствование правил игры в части для алгоритма Монте-Карло
- Автоматизация процесса подбора гиперпараметров алгоритма с использованием кросс-энтропии
 - Ускорение процессов построение графа возможных переходов для судов

В части программного обеспечения:

- Добавление интеграционных механизмов взаимодействия с другими АСУ
- Автоматизация разворачивания (CI/CD)
- Расширение функционала дашбордов
- Добавление функционал добавления льдов

Состав команды

Максим Кулагин

- ML-TeamLead @maksim_kulagin
- o+7(999)114-50-52

Сергей Михайлов

- о ML-инженер
- @s_mikhailov_1
- o+7(926)537-00-37

Герман Янченко

- o ML-инженер
- o @xQQzme
- o +7(921)107-36-56

Константин Дьячков

- o ML-инженер
- o@diachkov1415
- o+7(981)557-41-40

Алексей Трушников

- o MLOps
- o @Twinshape
- o+7(902)269-35-45