

"Formula Student is not about designing good cars, it's about designing good teams"

Claude Rouelle

Agenda

- ■Team
- Methods
- Concept
- Implementation
- Discussion

Team

Management

Hardware

SW architecture

Estimation

Controls

Perception

Team: Training

- Spread out skills in the team
- Focused workshops
 - ROS
 - Git
 - **■** C++
- But also:
 - Rules (a lot!)
 - Vehicle dynamics
 - Basics of Formula Student
 - CAD and FEM
 - Safety procedures

Methods: Team discipline

- Knowledge transfer tools
- Meeting records
- Alumni reviews
- Design mocks
- Tech inspections simulations
- Race camps

Methods: Testing

- Efficiency: time, people, money
- Extensive use of simulation and recorded data
- Test "on the real thing"
- Integration tests at home
- Easy visualization

Concept: Team goals

- 1. Maximise points in a FSD event
- 2. Finish all disciplines
- 3. Safety is a priority
- 4. Solid foundation for AMZ driverless

Concept

- Hardware reliability and integration
- Sensor redundancy
- Algorithm robustness
- Minimize lap time

gotthard driverless

Base vehicle

- CFRP one-piece monocoque
- Heave springs
- Air springs with MRF
- Chassis diffuser
- Split accumulator packaging
- Self-designed motors

Accumulator

New accumulator needed

Decided to rebuild only the

rear section

■ 43% of the energy

■ 17 Kg lighter

Steering Actuator

- Direct load-path
- Steering rate covers 99% of driver speeds
- Design to withstand parksteer (peak) and skidpad (continuous load)

Emergency Braking System

Normally braking configuration

Hydro-pneumatic circuit

Redundant and fail safe

Compatible with a driver

No need for complex HW installation

when switching to manual driving

Software Concept

- Perception
 - Vision
 - Lidar
- Estimation
 - Velocity Estimation
 - SLAM
- Controls
 - Discovery mode
 - Race mode

Perception: Sensor setup

Cameras

- 3 Basler ace cameras:
 - 2MP resolution
 - GigE cameras
 - CMOS sensor
 - Global shutter

Lidar

- Velodyne VLP-16 Hi-Res
 - 16 Channels
 - High range
 - Low power consumption
 - Up to 600,000 points per sec

Perception: Mono setup

Perception: Mono cone detection

Perception: Stereo setup

Perception: Stereo cone estimation

Perception: Lidar

Perception: Lidar visualization

Velocity estimation: Sensor setup

Estimation: Velocity estimation

Estimation: SLAM

Estimation: SLAM

Controls: boundary estimation

Controls: boundary estimation and MPCC

"Engineers like to solve problems. If there are no problems handily available, they create their own."

Scott Adams

FSD is Formula Student

- It's not a software competition, it's an engineering competition
- It retains all challenges of Formula Student
 - Trade off decisions and sensitivity analysis
 - Hardware integration
 - Time and budget constraints
 - Project management
- The goal is the same: maximize points by minimizing lap time

Main Sponsors

Premium Sponsors

thyssenkrupp

Sponsors

CMASLab

embotech*

κυbeg♡

rofam Laser-Technik

SCHAEFFLER

Velodyne LiDAR'

Bosch Rexroth 3d-prototyp

Compter Controls

Conrad

General Dynamics

Maxon Motor

Melasta

Tallysman

driverless.amzracing.ch