Неинерциальные системы отсчета

- 4 Через блок, прикрепленный к потолку кабины лифта, перекинута нить, к концам которой привязаны грузы с массами m_1 и m_2 , Кабина начинает подниматься с ускорением a_0 . Пренебрегая массами блока и нити, а также трением, найдите:
 - (a) ускорение груза m_1 относительно кабины;
 - (b) силу F, с которой блок действует на потолок кабины.
 - Клин с углом наклона α при основании движется в горизонтальном направлении с ускорением a. С каким ускорением a_1 относительно наклонной плоскости будет двигаться груз массой m, помещенный на него? Трения нет. Найти силу давления N груза на наклонную плоскость.

- **в**. Определить ускорение клина в системе. Трения нет, нить и блок идеальны. Верхний участок нити горизонтален.
- Стеклянный шар объемом V и плотностью ρ_0 находится в сосуде с водой. Угол между стенкой сосуда и горизонтальным дном α . Внутренняя поверхность сосуда гладкая. Плотность воды ρ . Найдите силу давления шара на дно в двух случаях:
 - (а) сосуд неподвижен,
 - (b) сосуд движется с постоянным горизонтальным ускорением a.

5. Какую горизонтальную силу необходимо приложить к тележке массой M, чтобы тела массами m_1 и m_2 не скользили относительно нее? Трения нет.

- 6 При каком горизонтальном ускорении тележки, лежащий на ней кубик начнет кувыркаться?

- 8 Деревянный и металлический шарики связаны нитью и прикреплены одной нитью ко дну сосуда с водой. Сосуд вращается с постоянной угловой скоростью вокруг вертикальной оси OO' (см. рис.). В результате шарики, оставаясь полностью в воде, расположились так, как показано на рисунке. Деревянный шарик (1) находится от оси вращения на расстоянии втрое меньшем, чем металлический (2). Верхняя нить составляет угол α ($\sin \alpha = 4/5$) с вертикалью. Угол между нитями равен 90° . Размеры шариков малы по сравнению с их расстояниями до оси вращения.
 - а) Под каким углом к вертикали направлена сила Архимеда, действующая на деревянный шарик?
 - б) Найдите отношение сил натяжения верхней и нижней нитей.

- 9- В ракете, готовой к старту, находится большой аквариум, частично заполненный водой плотностью ρ_0 . Внутрь аквариума помещен тонкий цилиндрический поплавок плотностью ρ с поперечным сечением S, прикреплённый ко дну лёгкой пружиной жесткостью k. Перед стартом ракеты пружина растянута на x_0 , а поплавок частично выступает из воды. Определите, увеличится или уменьшится высота выступающей части поплавка, если система придёт в движение с постоянным ускорением, направленным вверх. При достижении ракетой ускорения a высота выступающей над водой части поплавка изменилась на x. Найдите аналитическую зависимость x от a. Рассчитайте численное значение x для следующих параметров задачи: k = 10 H/m, $x_0 = 1 \text{ cm}$, $\rho_0 = 1000 \text{ kr/m}^3$, $S = 10^{-4} \text{ m}^2$, a = 3g.
- **40.** Груз массой m_1 лежит на горизонтальном столе. К нему привязана нить, перекинутая через неподвижный блок, к другому концу которой привязан груз массой m. Найти силу натяжения нити, если стол движется влево с ускорением a. Коэффициент трения равен μ .

11. При каком горизонтальном ускорении открытой сверху Ш-образной трубки, состоящей из одинаковых фрагментов, в ней останется 0,4 объема воды?

Ответы (НСО)

$$\int . \ F = (m_2 + M) \frac{m_2}{m_1} g$$

$$6$$
, $a = g$

$$\label{eq:Fhamiltonian} \begin{split} \mathbf{\ref{T}}_{\text{--}} & F_{\text{\tiny Ha ДHO}} = Mg\cos\alpha \\ & F_{\text{\tiny Ha CTEHKY}} = \mu Mg\cos\alpha \end{split}$$

$$g$$
 . Увеличится ka . $x = x_0 \frac{ka}{(k + \rho_0 S(a + g))g}; x \approx 2.14 \text{ см}$

Ответы (Сопротивление)

$${\cal G}$$
 , $\frac{2\operatorname{tg}\alpha}{\mu}=4$