#### Teoría de Números III

Matemática IV, Facultad de Informática, UNLP. 2019

# Números Complejos

#### Definición

Definimos al número complejo i (unidad imaginaria) como aquel número que satisface la siguiente igualdad:

$$i^2 = -1$$

Esto nos permite ampliar al conjunto de los números reales y por lo tanto escribiremos a un número complejo z de la siguiente forma:

$$z = a + ib, \quad a, b \in \mathbb{R}$$

donde vemos que si b=0 recuperamos a los números reales.

Luego el conjunto de números complejos, al que denotaremos como  $\mathbb{C}$ , se define por comprensión de la siguiente forma:

$$\mathbb{C} = \{ z = a + ib; a, b \in \mathbb{R}; i^2 = -1 \}$$

#### Definición

Dado un número complejo z=a+ib, se definen la parte real y la parte imaginaria de z como:

$$Re(z) = a$$

$$Im(z) = b,$$

 $siendo \ a,b \in \mathbb{R}$ 

#### Definición

El conjugado de un número complejo z=a+ib se lo denota como  $\bar{z}$  y se lo define como:

$$\bar{z} = a - ib$$

Observamos que  $\bar{z} = z$ 

#### Potencias del número i

Ahora nos preguntamos ¿cuánto vale  $i^n$ ? Observamos que

$$1^{0} = 1$$
 $1^{1} = i$ 
 $1^{2} = -1$ 
 $1^{3} = i^{2}i = -i$ 
 $1^{4} = i^{2}i^{2} = -1. - 1 = 1$ 

Esto nos permite inferir que  $i^m = i^r$  siendo  $m = 4q + r; 0 \le r < 4$ . Por ejemplo:

$$i^{173} = i^{43\cdot 4+1} = i^1$$
  
 $i^{1354} = i^{338\cdot 4+2} = i^2$ 

## Suma de complejos

#### Definición

Dados dos números complejos  $z_1 = a_1 + ib_1$  y  $z_2 = a_2 + ib_2$ , se define la suma de estos dos números como:

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$$

## Suma de complejos

#### <u>Definición</u>

Dados dos números complejos  $z_1 = a_1 + ib_1$  y  $z_2 = a_2 + ib_2$ , se define la suma de estos dos números como:

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2)$$

Por ejemplo si  $z_1 = 1 + i2$  y  $z_2 = 3 - i4$  entonces,

$$z_1 + z_2 = (1+i2) + (3-i4) = (1+3) + i(2-4) = 4-i2$$

### Opuesto y Resta

#### Definición

Dado un número complejo z = a + ib se define el opuesto de z y se lo denota como -z al complejo -z = -a - ib.

Esto nos permite definir la operación resta entre dos complejos  $z_1=a_1+ib_1$  y  $z_2=a_2+ib_2$  como sigue:

$$z_1 - z_2 = (a_1 + ib_1) - i(a_2 + ib_2) = (a_1 + ib_1) + (-a_2 - ib_2)$$

es decir, no es mas que sumarle a  $z_1$  el opuesto de  $z_2$ .

### Opuesto y Resta

#### Definición

Dado un número complejo z = a + ib se define el opuesto de z y se lo denota como -z al complejo -z = -a - ib.

Esto nos permite definir la operación resta entre dos complejos  $z_1=a_1+ib_1$  y  $z_2=a_2+ib_2$  como sigue:

$$z_1 - z_2 = (a_1 + ib_1) - i(a_2 + ib_2) = (a_1 + ib_1) + (-a_2 - ib_2)$$

es decir, no es mas que sumarle a  $z_1$  el opuesto de  $z_2$ .

Por ejemplo si  $z_1 = 1 + i3$  y  $z_2 = 2 - i5$ ,

$$z_1 - z_2 = (1+i3) - (2-i5) = (1+i3) + (-2+i5) = -1+i8$$

# Producto de dos complejos

#### Definición

Dados dos números complejos  $z_1 = a_1 + ib_1$  y  $z_2 = a_2 + ib_2$ , se define el producto de estos dos números como:

$$z_1.z_2 = (a_1 + ib_1) \cdot (a_2 + ib_2) = a_1a_2 + ia_1b_2 + ia_2b_1 + ib_1ib_2$$

$$= a_1a_2 + ia_1b_2 + ia_2b_1 + i^2b_1b_2$$

$$= a_1a_2 + ia_1b_2 + ia_2b_1 - b_1b_2$$

$$= (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$$

# Producto de dos complejos

#### Definición

Dados dos números complejos  $z_1 = a_1 + ib_1$  y  $z_2 = a_2 + ib_2$ , se define el producto de estos dos números como:

$$z_1.z_2 = (a_1 + ib_1) \cdot (a_2 + ib_2) = a_1a_2 + ia_1b_2 + ia_2b_1 + ib_1ib_2$$

$$= a_1a_2 + ia_1b_2 + ia_2b_1 + i^2b_1b_2$$

$$= a_1a_2 + ia_1b_2 + ia_2b_1 - b_1b_2$$

$$= (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$$

Por ejemplo si  $z_1 = 2 + i3$  y  $z_2 = 4 - i5$  entonces,

$$z_1.z_2 = (2+i3) \cdot (4-i5) = 2.4 + i2(-5) + i3.4 + i3.(-i5)$$

$$= 8 - i10 + i12 - i^215 = 8 - i10 + i12 + 15$$

$$= (8+15) + i(-10+12) = 23 + i2$$

#### Inverso

#### Definición

Dado el número complejo  $z=a+\imath b\neq 0+\imath 0$ , se define el inverso de z y se lo denota como  $z^{-1}$  al siguiente número:

$$z^{-1} = \frac{1.\bar{z}}{z.\bar{z}} = \frac{a - ib}{(a + ib).(a - ib)}$$

#### Inverso

#### Definición

Dado el número complejo  $z = a + ib \neq 0 + i0$ , se define el inverso de z y se lo denota como  $z^{-1}$  al siguiente número:

$$z^{-1} = \frac{1.\bar{z}}{z.\bar{z}} = \frac{a - ib}{(a + ib).(a - ib)}$$

Por ejemplo queremos calcular el inverso del complejo z=2+i3 entonces,

$$z^{-1} = \frac{1.\bar{z}}{z.\bar{z}} = \frac{2 - i3}{(2 + i3) \cdot (2 - i3)} = \frac{2 - i3}{((2 \cdot 2 + 3 \cdot 3) + i(2 \cdot (-3) + 3 \cdot 2))}$$
$$= \frac{2 - i3}{13} = \frac{2}{13} - i\frac{3}{13}$$

### Cociente de dos complejos

#### <u>De</u>finición

Dados dos números complejos  $z_1 = a_1 + ib_1$  y  $z_2 = a_2 + ib_2 \neq 0 + i0$ , se define el cociente de estos dos números y se lo denota como  $\frac{z_1}{z_2}$ , al producto de  $z_1$  con el inverso de  $z_2$  es decir:

$$\frac{z_1}{z_2} = z_1.z_2^{-1} = \frac{(a_1 + ib_1).(a_2 - ib_2)}{(a_2 + ib_2)(a_2 - ib_2)}$$
$$= \frac{(a_1a_2 + b_1b_2) + i(-a_1b_2 + a_2b_1)}{a_2^2 + b_2^2}$$

## Cociente de dos complejos

#### Definición

Dados dos números complejos  $z_1 = a_1 + ib_1$  y  $z_2 = a_2 + ib_2 \neq 0 + i0$ , se define el cociente de estos dos números y se lo denota como  $\frac{z_1}{z_2}$ , al producto de  $z_1$  con el inverso de  $z_2$  es decir:

$$\frac{z_1}{z_2} = z_1 \cdot z_2^{-1} = \frac{(a_1 + ib_1) \cdot (a_2 - ib_2)}{(a_2 + ib_2) \cdot (a_2 - ib_2)}$$
$$= \frac{(a_1a_2 + b_1b_2) + i(-a_1b_2 + a_2b_1)}{a_2^2 + b_2^2}$$

Por ejemplo si  $z_1 = 1 + i$  y  $z_2 = 3 + i4$  entonces,

$$\frac{z_1}{z_2} = z_1 \cdot z_2^{-1} = \frac{(1+i) \cdot (3-i4)}{(3+i4)(3-i4)} = \frac{7-i}{25} = \frac{7}{25} - i\frac{1}{25}$$

## Plano Complejo

Recordamos que al conjunto de números complejos lo hemos definido, por comprensión, de la siguiente manera:

$$\mathbb{C} = \{ z = a + ib; a, b \in \mathbb{R}; i^2 = -1 \}$$

Esto nos permite definir al Plano Complejo como el plano donde se grafica un número complejo, en efecto dado un número complejo z lo podemos graficar en el plano de la siguiente forma:

# Plano Complejo

Recordamos que al conjunto de números complejos lo hemos definido, por comprensión, de la siguiente manera:

$$\mathbb{C} = \{ z = a + ib; a, b \in \mathbb{R}; i^2 = -1 \}$$

Esto nos permite definir al Plano Complejo como el plano donde se grafica un número complejo, en efecto dado un número complejo z lo podemos graficar en el plano de la siguiente forma:



Esto último nos permite escribir al plano complejo en su forma de par ordenado, es decir z = (a, b).

### Módulo y argumento de un complejo

De la representación en el plano complejo de un número z se puede ver que hay asociado a cada numero complejo un numero real que es su distancia al origen y llamaremos modulo del complejo y al que denotaremos como |z|, y un ángulo  $\alpha$ , que es el que forma el segmento de recta |z| con el eje real positivo, al que llamaremos argumento de z y se definen de la siguiente forma:

$$|z| = \sqrt{a^2 + b^2}$$
  
 $\alpha = \arctan(b/a)$ 

Luego, a partir del gráfico, se puede expresar la parte real y la parte imaginaria de cada complejo como

$$Re(z) = a = |z| \cos(\alpha)$$
  
 $Im(z) = b = |z| \sin(\alpha)$ 

# Forma trigonométrica de un complejo

Entonces, si

$$a = Re(z) = |z| \cos(\alpha)$$
  
 $b = Im(z) = |z| \sin(\alpha)$ 

podemos escribir al número complejo z en lo que se conoce como su forma trigonométrica:

# Forma trigonométrica de un complejo

Entonces, si

$$a = Re(z) = |z| \cos(\alpha)$$
  
 $b = Im(z) = |z| \sin(\alpha)$ 

podemos escribir al número complejo z en lo que se conoce como su forma trigonométrica:

$$z = a + ib = |z|\cos(\alpha) + i|z|\sin(\alpha) = |z|(\cos(\alpha) + i\sin(\alpha));$$
$$0 \le \alpha < 2\pi$$

### Forma exponencial de un complejo

Usando la formula de Euler

$$e^{i\beta} = \cos(\beta) + i\sin(\beta);$$

y la forma trigonometrica de un número complejo, obtenemos una forma mas cómoda de escribir a un número complejo z que se conoce como forma exponencial del complejo y se la define como:

## Forma exponencial de un complejo

Usando la formula de Euler

$$e^{i\beta} = \cos(\beta) + i\sin(\beta);$$

y la forma trigonometrica de un número complejo, obtenemos una forma mas cómoda de escribir a un número complejo z que se conoce como forma exponencial del complejo y se la define como:

#### Definición

$$z = |z|(\cos(\alpha) + i\sin(\alpha)) = |z|e^{i\alpha}$$

## Producto y cociente de complejos en forma exponencial

Dados dos números complejos escritos en su forma exponencial,  $z_1=|z_1|e^{i\alpha_1}$  y  $z_2=|z_2|e^{i\alpha_2}$ , podemos escribir el producto y el cociente de dos número complejos de manera simple como:

$$z_1 z_2 = |z_1| e^{i\alpha_1} |z_2| e^{i\alpha_2} = |z_1| |z_2| e^{i\alpha_1} e^{i\alpha_2} = |z_1| |z_2| e^{i(\alpha_1 + \alpha_2)}$$

$$\frac{z_1}{z_2} = \frac{|z_1| e^{i\alpha_1}}{|z_2| e^{i\alpha_2}} = \frac{|z_1|}{|z_2|} e^{i(\alpha_1 - \alpha_2)}$$

### Potencias de un complejo

Vimos que al escribir un número complejo en su forma exponencial resulta fácil calcular el producto de dos números complejos, esto nos permite definir la potencia n de un número complejo  $z = |z|e^{i\alpha}$  como:

### Potencias de un complejo

Vimos que al escribir un número complejo en su forma exponencial resulta fácil calcular el producto de dos números complejos, esto nos permite definir la potencia n de un número complejo  $z=|z|e^{i\alpha}$  como:

$$z^{n} = (|z|e^{i\alpha})^{n} = |z|^{n} (e^{i\alpha})^{n} = |z|^{n} e^{in\alpha}$$

### Raíces n-ésimas de un complejo

#### Definición

Dado un número complejo  $z=|z|e^{i\alpha}$ , se define a las raíces n-ésimas de z (y se las denota como  $z^{1/n}$ ), como los números complejos w que satisfacen la siguiente ecuación  $w^n=z$ .

Entonces  $w = |w|e^{i\beta}$  donde  $|w| = |z|^{1/n}$  y  $\beta = \frac{\alpha + 2k\pi}{n}$ ;  $0 \le k < n$ , es decir las raíces n-ésimas de z están dadas por la siguiente expresión:

### Raíces n-ésimas de un complejo

#### <u>De</u>finición

Dado un número complejo  $z=|z|e^{i\alpha}$ , se define a las raíces n-ésimas de z (y se las denota como  $z^{1/n}$ ), como los números complejos w que satisfacen la siguiente ecuación  $w^n=z$ .

Entonces  $w = |w|e^{i\beta}$  donde  $|w| = |z|^{1/n}$  y  $\beta = \frac{\alpha + 2k\pi}{n}$ ;  $0 \le k < n$ , es decir las raíces n-ésimas de z están dadas por la siguiente expresión:

$$w_k = |z|^{1/n} e^{\frac{\alpha + 2k\pi}{n}}; 0 \le k < n$$