Définition 1.32 - sous-groupe engendré par une partie

Soit (G, \star) , un groupe, L'intersection de tous les sous-groupes de G contenant A est un sous-groupe de G, appelé sous-groupe engendré par A et noté $\langle A \rangle$.

$$\langle A \rangle = \bigcap_{\substack{H \text{ sg de } G \\ A \subset H}} H$$

Proposition 1.33 - caractérisation du sous-groupe engendré par A

Soit (G, \star) un groupe et A une partie de G. Alors $\langle A \rangle$ est, au sens de l'inclusion, le plus petit sous-groupe de G contenant A.

Proposition 1.34 : description du sous-groupe engendré par une partie Soit (G,) un groupe et A une partie de G. 1. hi = eG. 2. Si A est non-vide alors hAi = x G; $n N , (1, \ldots, n)$ (A A 1) $n , x = 1 \cdots n$

. En d'autres termes hAi est l'ensemble des éléments de G qui sont des produits finis d'éléments de A ou d'inverses d'éléments de A.

Proposition 1.34 - description du sous-groupe engendré par une partie

Soit (G, \star) un groupe et A une partie de G.

- **1.** Si $A = \emptyset$, alors $\langle A \rangle = \{1_G\}$
- 2. Sinon, alors $\langle A \rangle$ est l'ensemble des éléments de G qui sont des produits finis d'éléments de A ou d'inverses d'éléments de A:

$$\langle A \rangle = \{ x \in G, \, \exists n \in \mathbb{N}^*, \, \exists (\alpha_1, \, \dots, \, \alpha_n) \in (A \cup A^{-1})^n, \, x = \alpha_1 \star \dots \star \alpha_n \}$$

Définition 1.35 - groupe monogène

Un groupe (G, \star) est monogène lorsqu'il est engendré par un seul de ses éléments. En d'autres termes, s'il existe $g \in G$ tel que $G = \langle \{g\} \rangle$ (ou $\langle g \rangle$).

Dans ce cas tout élément $g \in G$ tel que $G = \langle g \rangle$ est appelé générateur de G.

Définition 1.35 bis - groupe cyclique

Un groupe est dit cyclique s'il est fini et monogène.

Définition 1.59 - classe d'équivalence, représentant

Soit \mathcal{R} une relation d'équivalence sur un ensemble E. On appelle classe d'équivalence d'un élément l'ensemble des éléments qui sont en relation avec lui :

$$cl(x) = \overline{x} = \{ y \in E, x \mathcal{R} y \}$$

On appelle représentant de la classe cl(x) tout élément y tel que $y \in cl(x)$.

Théorème 1.61 - partition d'un ensemble par les classes d'équivalence

Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Les classes d'équivalence de \mathcal{R} forment une partition de E:

- **1.** Aucune classe n'est vide : pour tout $x \in E$, $cl(x) \neq \emptyset$.
- **2.** Deux classes distinctes sont disjointes : si $\operatorname{cl}(x) \neq \operatorname{cl}(y)$ alors $\operatorname{cl}(x) \cap \operatorname{cl}(y) = \emptyset$.
- **3.** La réunion de toutes les classes est égale à E.

Théorème 1.62 - de Lagrange

Dans un groupe fini, le cardinal d'un sous-groupe divise le cardinal du groupe.

Définition 1.65 - *l'ensemble* $\mathbb{Z}/n\mathbb{Z}$

L'ensemble des classes d'équivalence pour la congruence modulo $n \in \mathbb{Z}$ est par définition :

$$\mathbb{Z}/n\mathbb{Z} = \{\operatorname{cl}(0), \ldots, \operatorname{cl}(n-1)\}\$$

Théorème 1.67 - groupe quotient $(\mathbb{Z}/n\mathbb{Z}, +)$

L'ensemble $\mathbb{Z}/n\mathbb{Z}$ est un groupe abélien pour la loi + définie par $\operatorname{cl}(a+b) = \operatorname{cl}(a) + \operatorname{cl}(b)$, appelé groupe quotient.

Théorème 1.70 - générateurs de $(\mathbb{Z}/n\mathbb{Z}, +)$

Soit $k \in \mathbb{Z}$. la classe cl(k) génère $(\mathbb{Z}/n\mathbb{Z}, +)$ si et seulement si $k \wedge n = 1$.

Théorème 1.71 - produits de groupes quotients

Soit $(n, p) \in \mathbb{N}^2$ premiers entre eux. Les groupes $\mathbb{Z}/np\mathbb{Z}$ et $(\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$ sont isomorphes.

Proposition 1.75 - description des groupes monogènes

Soit $n \in \mathbb{Z}$.

- 1. Tout groupe monogène infini est isomorphe à \mathbb{Z} .
- 2. Tout groupe monogène fini (ou cyclique) d'ordre n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$

Définition 1.76 - ordre d'un groupe fini, ordre d'un élément d'un groupe

On appelle ordre d'un groupe fini son cardinal, qui est dit infini pour un groupe infini. On appelle ordre d'un élément a d'un groupe l'ordre du sous-groupe engendré par a.

Théorème 1.79 - ordre d'un élément d'un groupe fini

L'ordre d'un élément d'un groupe fini divise le cardinal du groupe.