See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231532942

A Lewis Acid Adduct of an Alanediyl: An Aluminum(I)—Boron Donor—Acceptor Bond

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · JANUARY 2000

Impact Factor: 12.11 · DOI: 10.1021/ja993537p

CITATIONS	READS
50	14

5 AUTHORS, INCLUDING:

103 PUBLICATIONS 2,017 CITATIONS

SEE PROFILE

Communications to the Editor

A Lewis Acid Adduct of an Alanediyl: An Aluminum(I)-Boron Donor-Acceptor Bond

John D. Gorden, Andreas Voigt, Charles L. B. Macdonald, Joel S. Silverman, and Alan H. Cowley*

Department of Chemistry and Biochemistry The University of Texas at Austin Austin, Texas 78712

Received October 1, 1999

Despite a recent surge of interest in the lower oxidation state chemistry of the group 13 elements, 1 much less is known about monomeric species of the type RM(I) (M = B, Al, Ga, In) than the more familiar carbenes, nitrenes, and their heavier congeners. Theoretical studies 2 indicate that, regardless of the nature of the substituent R, the ground state of each four-valence-electron RM-(I) species is a singlet. In the particular case of $(\eta^5\text{-C}_5\text{Me}_5)\text{Al}$, the DFT-calculated singlet—triplet energy gap is between 67.6 and 70.9 kcal/mol, depending on the basis set employed. Moreover, the a_1 -symmetry HOMO of this alanediyl possesses distinctly lone pair character suggestive of potential Lewis base behavior. We report the synthesis and X-ray crystal structure of $(\eta^5\text{-C}_5\text{Me}_5)\text{Al} \rightarrow \text{B}(\text{C}_6\text{F}_5)_3$ (1), the first example of an aluminum (I)—boron donor—acceptor bond.

The addition of toluene (30 mL) to a mixture of $[Al(\eta^5-C_5 Me_5$)]₄ (0.15 g, 0.93 mmol of $Al(\eta^5-C_5Me_5)$ units) and $B(C_6F_5)_3$ (0.47 g, 0.92 mmol) resulted in a yellow-colored solution. After being stirred for 16 h at room temperature, the reaction mixture was filtered, and the solvent and volatiles were removed from the filtrate to afford a purple oil from which a 40% yield of colorless crystals of 1 (mp 126-129 °C dec) deposited over a period of days. Mass spectral data⁵ were consistent with the proposed Lewis acid-base adduct formulation. Moreover, the ¹¹B NMR chemical shift for 1⁵ fell in the tetracoordinate boron region and the ¹⁹F chemical shifts of the (equivalent) C₆F₅ groups⁵ were similar to those observed for other Lewis base complexes of B(C₆F₅)₃.6 The ²⁷Al NMR chemical shift of the broad singlet resonance of 1 (δ -59.4) was reasonably close to the value of δ -71.5 computed by the GAIO method, 7 and the equivalence of the methyl protons was suggestive of η^5 -attachment of the Me₅C₅

Figure 1. Molecular structure of ($η^5$ -C₅Me₅)Al → B(C₆F₅)₃ (1) showing the atom numbering scheme. Important distances (Å) and angles (deg): Al−B 2.169(3), Al−C(1) 2.164(3), Al−C(2) 2.185(3), Al−C(3) 2.179-(3), Al−C(4) 2.160(2), Al−C(5) 2.166(2), Al−(ring centroid) 1.802(3), B−C(11) 1.633(3), B−C(17) 1.634(3), B−C(23) 1.637(3), B−Al−X (ring centroid) 172.9(1), C(11)−B−C(17) 114.7(2), C(11)−B−C(23) 111.3-(2), C(17)−B−C(23) 113.8(2).

group to aluminum.⁵ For comparison, the ²⁷Al chemical shifts for uncoordinated monomeric Al(η^5 -C₅Me₅) and tetrameric [Al- $(\eta^5$ -C₅Me₅)]₄ are $\delta = -80$ and -150, respectively.^{1c} The foregoing spectroscopic conclusions were confirmed by X-ray crystallography.⁸ Compound **1** crystallizes in the $P\bar{1}$ space group with Z=2; the solid state consists of individual molecules of the Lewis acid–base adduct (Figure 1) and there are no unusually short intermolecular contacts. The C₅Me₅ group is attached in an η^5 fashion and ring centroid–Al–B moiety is essentially linear (172.9(1)°). The average Al–C distance of 2.171(3) Å is considerably shorter than those determined for Al(η^5 -C₅Me₅) (2.388(7) Å)⁹ and [Al(η^5 -C₅Me₅)]₄ (2.344 Å).¹⁰ Such shortening

(6) For a selection of structurally characterized donor adducts of B(C₆F₅)₃, see: (a) Bradley, D. C.; Hursthouse, M. B.; Motevalli, M.; Zheng, D. H. J. Chem. Soc., Chem. Commun. 1991, 7. (b) Röttger, D.; Erker, G.; Fröhlich, R.; Kotila, S. J. Organomet. Chem. 1996, 518, 17. (c) Bradley, D. C.; Harding, I. S.; Keefe, A. D.; Motevalli, M.; Zheng, D. H. J. Chem. Soc., Dalton Trans. 1996, 3931. (d) Parks, D. J.; Piers, W. J. Am. Chem. Soc. 1996, 118, 9440. (e) Parks, D. J.; Piers, W.; Parvez, M.; Atencio, R.; Zaworotko, M. J. Organometallics 1998, 17, 1369. (f) Jacobsen, H.; Berke, H.; Döring, S.; Kehr, G.; Erker, G.; Eröblich, R.; Meyer, O. Organometallics 1999, 18, 1724

(7) Ditchfield, R. Mol. Phys. 1974, 27, 789; Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 122, 8251. This single-point calculation employed the X-ray crystal structure parameters for 1.

employed the X-ray crystal structure parameters for 1. (8) Crystal data for 1: $C_{28}H_{15}AlBF_{15}$, triclinic, $P\bar{1}$, a=9.534(2) Å, b=9.902(2) Å, c=15.658(3) Å, $\alpha=91.04(3)$, $\beta=104.10(3)$, $\gamma=105.93(3)^\circ$, V=1372.9(5) Å³, Z=2, $D_{calcd}=1.631$ g cm⁻³, $\mu(Mo~K\alpha)~0.195~mm^{-1}$. A suitable single of 1 was covered with mineral oil and mounted on a Nonius-Kappa CCD diffractometer at 153 K. A total of 11 088 independent reflections were collected in the range $5.9 < 2\theta < 55.0^\circ$ using Mo K α radiation ($\lambda=0.71073$ Å). Of these, 6252 were considered observed ($I>2.0~\sigma(I)$) and were used to solve (direct methods) and refine (full-matrix, least-squares on F^2) the structure of 1; wR2 = 0.1372, R = 0.0549. Crystal data for 2: $C_{22}H_{15}$ -AlF₁₀, orthorhombic, P_{15} mm, a=9.049(2) Å, b=19.160(4) Å, c=11.902(2) Å, V=2063.6(7) Å³, Z=4, $D_{calcd}=1.598$ g cm⁻³, $\mu(Mo~K\alpha)~0.195~mm^1$. A suitable single crystal of 2 was covered with mineral oil and mounted on a Nonius-Kappa CCD diffractometer at 153 K. A total of 4469 independent reflections were collected in the range $6.04 < 2\theta < 73.32^\circ$ using Mo K α radiation ($\lambda=0.71073$ Å). Of these, 2435 were considered observed ($I>2.0~\sigma(I)$) and were used to solve (direct methods) and refine (full-matrix, least-squares on F^2) the structure of 2; wR2 = 0.1948, R = 0.0684.

(9) Haaland, A.; Kjell-Gunnar, M.; Shlykov, S. A.; Volden, H. V.; Dohmeier, C.; Schnöckel, H. *Organometallics* **1995**, *14*, 3116.

(10) Yu, Q.; Purath, A.; Donchev, A.; Schnöckel, H. J. Organomet. Chem. **1999**, 584, 94.

⁽¹⁾ See, for example: (a) Brothers, P. J.; Power, P. P. Adv. Organomet. Chem. **1996**, *39*, 1. (b) Uhl, W. Angew. Chem., Int. Ed. Engl. **1993**, *32*, 1386. (c) Dohmeier, C.; Loos, D.; Schnöckel, H. Angew. Chem., Int. Ed. Engl. **1996**, *35*, 129.

⁽²⁾ For alanediyls, see (a) Ahlrichs, R.; Ehrig, M.; Horn, H. Chem. Phys. Lett. 1991, 183, 227. (b) Schneider, U.; Ahlrichs, R.; Horn, H.; Schäfer, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 353. (c) Gauss, J.; Schneider, U.; Ahlrichs, R.; Dohmeier, C.; Schnöckel, H. J. Am. Chem. Soc. 1993, 115, 2402. (d) Purath, A.; Dohmeier, C.; Ecker, A.; Schnöckel, H. Organometallics 1998, 17, 1894.

⁽³⁾ Macdonald, C. L. B.; Cowley, A. H. J. Am. Chem. Soc. 2000, in press. (4) Prepared by the method of Schulz, S.; Roesky, H. W.; Koch, H. J.; Sheldrick, G. M.; Stalke, D.; Kuhn, A. Angew. Chem., Int. Ed. Engl. 1993, 32. 1729.

^{(5) 1:} MS (CI, CH₄) m/z 675 (0.93%) [M + H]⁺; 512 (66.98%) [B(C₆F₅)₃]⁺; 164 (2.02%) [(C₅Me₅)AlH₂]⁺. HRMS (CI, CH₄) calcd for C₂₈H₁₆AlBF₁₄, 655.0859; found 655.0884. ¹H NMR (300.00 MHz, 295 K, C₆D₆) δ 1.39 (s. 15H, C₅Me₅). ¹⁹F NMR (282.72 MHz, 295 K, C₆D₆) δ -127.2 (s. m-C₆F₅), δ -154.9 (s. p-C₆F₅), δ -159.8 (s. p-C₆F₅). ¹¹B NMR (96.28 MHz, 295 K, C₆D₆) δ -32.9 (s). ²⁷Al NMR (78.21 MHz, 295 K, C₆D₆) δ -59.4 (br. m-1/2 = 1564 Hz). 2: MS (CI, CH₄) m/z 496 (17.95%) (M⁺); 477 (36.71%) [M - F]⁺ 329 (100%) [M - C₆F₅]⁺ HRMS (CI, CH₄ calcd for C₂₂H₁₅AlF₁₀, 496.0829; found 496.0817. ¹H NMR (300.00 MHz), 295 K, C₆D₆) δ 1.63 (s. 15H, C₅Me₅). ¹⁹F NMR (282.78 MHz, 295K, C₆D₆) δ -119.0 (s. m-C₆F₅), δ -149.0 (s. p-C₆F₅), -155.8 (s. ρ -C₆F₅). ²⁷Al NMR (78.21 MHz, 295 K, C₆D₆) δ 57.6 (br. m-12 +4505 Hz).

is anticipated as the aluminum lone pair is transformed into the donor-acceptor bond with the concomitant development of partial positive and negative charges on aluminum and boron, respectively. There is a very little information in the literature with which to compare the Al-B bond distance of 1 (2.169(3) Å). In the hydride-bridged complexes Me₃NAl(η^2 -H₂BH₂)₃¹¹ and [η^5 -C₅H₅)- $Ti(\mu_2-H)_2]_2Al(\eta^2-H_2BH_2)^{12}$ the average Al-B separations are 2.18-(2) to 2.27(3) Å, respectively, while in a variety of aluminumsubstituted carboranes, these distances range from \sim 2.13 to 2.24 Å.¹³ A DFT calculation¹⁴ on the model compound (η^5 -C₅Me₅)-AlBH₃ revealed that the global minimum possesses a "staggered" C_s geometry similar to that observed for 1 with a computed Al-B bond distance of 2.127 Å. As a consequence of donor action on the part of the alanediyl, the geometry of B(C₆F₅)₃ changes from trigonal planar to distorted tetrahedral. The sum of bond angles at boron is 339.8(2)°, and to the extent that this geometrical change is a measure of the strength of the donor-acceptor interactions, it is interesting to note an almost identical sum of bond angles in $(C_6H_5)_3PB(C_6F_5)_3$. 6f

The present results have a bearing on the current debate¹⁶ concerning the nature of the bonding between group 13 univalent ligands, RM, and transition metal carbonyl fragments, $M'(CO)_n$. Much of the discussion has centered on whether the bonding is of the donor-acceptor type, viz. RM \rightarrow M'(CO)_n, or whether M'-to-M back-bonding is important as reflected by the canonical forms RM \rightleftharpoons M'(CO)_n and RM \rightleftharpoons M'(CO)_n. The isolation of 1 proves that an alanediyl can function as a pure donor ligand because there is no question of back-bonding in this particular case. Moreover, the experimental structural parameters and the DFT computed charge distribution and orbital occupancy for the alanediyl fragment of $\mathbf{1}^3$ are very similar to those of the terminal alanediyl transition metal complexes (η^5 -C₅Me₅)AlFe(CO)₄ (av $Al-C = 2.147(8) \text{ Å})^{17}$ and $(\eta^5-C_5Me_5)AlCr(CO)_5$ (av Al-C =

Figure 2. Molecular structure of $(C_6F_5)_2Al(\eta^3-C_5Me_5)$ (2) showing the atom numbering scheme. Important distances (Å) and angles (deg): Al-C(1) 2.018(3), Al-C(11) 1.672(3), Al-C(12) 2.067(3), C(1)-Al-C(1)* 103.5(2), C(11)-Al-C(12) 46.09(13).

2.183(2) Å),¹⁰ suggesting the existence of the same donor acceptor bonding mode in both cases.

Interestingly, when $[Al(\eta^5-C_5Me_5)]_4$ was treated with $In(C_6F_5)_3$ using the same procedure as that described above for the $B(C_6F_5)_3$ reaction, the product was colorless, crystalline $(C_6F_5)_2Al(\eta^3-C_5-\eta^3)$ Me₅) (2) (mp 158 °C). The proposed formulation for 2 was consistent with mass spectral data⁵ and the presence of C₆F₅ and C₅Me₅ groups was evident from ¹⁹F and ¹H NMR spectroscopic data;⁵ however, to establish for example the hapticity of the cyclopentadienyl ring it was necessary to perform an X-ray crystal structure.8 Individual molecules of 2 crystallize in the orthorhombic space group Pnma with Z = 4; there are no unusually short intermolecular contacts (Figure 2). The C₅Me₅ group is attached to aluminum in an η^3 fashion, a coordination mode that has been seen previously only in the case of the dimers $[(\eta^3-C_5 Me_5(R)Al-\eta-Cl_2(R = Me, i-Pr).^{18}$ The Al-C(11) and Al-C(12)distances are 1.672(3) and 2.067(3) Å, respectively while the Al-(1)...C(13) distance is 2.687 Å. The Al–C(1) distance of 2.018-(3) Å in 2 is slightly longer than those in the THF (1.995(3) Å), ¹⁹ benzene (1.979(7) Å),²⁰ and toluene (1.984(2) Å)²⁰ complexes of $Al(C_6F_5)_3$. It is possible that 2 was produced via C_6F_5 transfer from the adduct $(\eta^5-C_5Me_5)Al \rightarrow In(C_6F_5)_3$. Such a view would be consistent with the modest In—C bond energy and the relative stability of the In(I) oxidation state.

Acknowledgment. We are grateful to the National Science Foundation and the Robert A. Welch Foundation for support.

Supporting Information Available: X-ray experimental details with positional parameters and full bond distances and angles for 1 and 2 and a summary of the DFT calculations (PDF). An X-ray crystallographic file, in CIF format is also available. This material is available free of charge via the Internet at http://pubs.acs.org.

JA993537P

⁽¹¹⁾ Bailey, N. A.; Bird, P. H.; Wallbridge, M. G. H. Inorg. Chem. 1968, 7, 1575.

⁽¹²⁾ Sizov, A. I.; Molodnitskaya, I. V.; Bulychev, B. M. Bel'skii, V. K.; Soloveichik, G. L. J. Organomet. Chem. 1988, 344, 185.

⁽¹³⁾ See, for example, Schubert, D. M.; Bandman, M. A.; Rees, W. S., Jr.; Knobler, C. B.; Lu, P.; Nam, W.; Hawthorne, M. F. Inorg. Chem. 1990, 9, 2046.

⁽¹⁴⁾ All BP8615 calculations were performed using the Gaussian 94 (revision B2) suite of programs. All-electron basis sets were used for C, H, F. (6-31G (d)) and the group 13 elements (6-31+G(d)). Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, revision B2; Gaussian, Inc.: Pittsburgh, PA, 1995. (15) Becke, A. D. *Phys. Rev.* **1988**, *38*, 3098; Perdew, J. P. *Phys. Rev.*

^{1986,} 33, 8822

^{(16) (}a) Su, J.; Li, X.-W.; Crittendon, C.; Campana, C. F.; Robinson, G. H. Organometallics 1997, 16, 4511. (b) Cotton, F. A.; Feng, X. Organometallics 1998, 17, 128. (c) Boehme, C.; Frenking, G. Chem. Eur. J. 1999, 5, 2184. (d) Chem. Eng. News March 16, 1998, p 31 and August 2, 1999, p 23.

⁽¹⁷⁾ Weiss, J.; Stetzkamp, D.; Nuber, B.; Fischer, R. A.; Boehme, C.; Frenking, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 70.

⁽¹⁸⁾ Shonberg, P. R.; Paine, R. T.; Campana, C. F. J. Am. Chem. Soc. 1979, 101, 7726; Schonberg, P. R.; Paine, R. T.; Campana, C. F.; Duesler, E. N. Organometallics 1982, 1, 799.

⁽¹⁹⁾ Belgardt, T.; Storre, J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Inorg. Chem. 1995, 34, 3821.

⁽²⁰⁾ Hair, G. S.; Cowley, A. H.; Jones, R. A.; McBurnett, B. G.; Voigt, A. J. Am. Chem. Soc. 1999, 121, 4922.