

1. Business Understanding

- Kaggle.com
- Contained 43,431 transactions and 20 variables
- Target variable = "Car_Cancellation"
 - If car was cancelled -1
 - If car not cancelled 0
- "Null" values & ID's

- Existing Variables:
 - vehicle_model_id
 - package_id
 - travel_type_id
 - from_date
 - online_booking
 - mobile_site_booking
 - booking_created

- New Variables:
 - difftime
 - month_booked_for
 - dayofweek_booked_for
 - hour_booked_for

Frequency of Months when Bookings are Created For

How does DiffTime and Month Booked For Effect Car Cancellation?

3. Modeling

Decision Tree for Car Cancellation Dataset

3. Modeling

Decision Tree for Car Cancellation Dataset

```
> print(training dt model)
                           # model results
n = 43431
node), split, n, loss, yval, (yprob)
      * denotes terminal node
 1) root 43431 3132 0 (0.92788561 0.07211439)
    2) month booked for=01,02,03,04,06,07,08,09,12 31150 1368 0
(0.95608347 0.04391653) *
    3) month booked for=05,10,11 12281 1764 0 (0.85636349 0.14363651)
hour_booked_for=00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,22,23
9523 1085 0 (0.88606532 0.11393468)
       12) online booking< 0.5 5674 442 0 (0.92210081 0.07789919)
         24) difftime< 15.85868 5446 350 0 (0.93573265 0.06426735) *
         25) difftime>=15.85868 228 92 0 (0.59649123 0.40350877)
```


4. Evaluation

- "Cost_of_error" cost incurred if booking is misclassified
 - Un-cancelled booking, cost = 1
 - Cancelled booking, cost = function of the cancellation time relative to the trip start time
- Cost / Benefit Information:

	Actual		
Predicted		Cancel	No Cancel
	Cancel	8	-1
	No Cancel	0	0

- $p_R(x) > 0.1111$
 - Expected benefit calculation: we should target bookings as long as the estimated probability of cancellation is greater than 11%.

4. Evaluation

> table(test\$dt_pred_class_error)
FALSE TRUE
7270 1416

- Accuracy = 7270 / (1416 + 7270) = 83.70%
- Confusion Matrix:

	Actual		
Predicted		0	1
	False	6987	366
	True	1050	283

• Expected Profit = 0.80*8 + 0.04*(-1) = \$6.39

5. Deployment

Months: new traffic patterns needed?

5. Deployment

- Problems:
 - Manipulating Customer does not address the entire problem.
 - Privacy concerns
 - Supply side?

ATTENTION

We have temporarily suspended our operations and will not be accepting any bookings until further notice.

