

Departamento de Engenharia de Computação e Sistemas Digitais

Disciplina: PCS 3438 - Inteligência Artificial

Prova 1 de Aprendizado de Máquina Professor: Eduardo Raul Hruschka

Gabarito

1) Obter o conjunto de regras de classificação pelo método 1R (*One Rule*). (2,5)

	5	
Atributo		Total erros
Outlook		4/14
	$Overcast \to Yes$	
Temp		5/14
	$Cool \to Yes$	
Humidity		

- As regras para Outlook ou Humidity são obtidas pelo 1R.
- Note que NUSP é perfeitamente correlacionado com Temperatura para d=1,2,...,9 ou irrelevante para d=0, não influenciando na resposta obtida em nenhum dos casos.

2) Classificar a tupla [ensolarado, quente, normal, d] pelo *Naive Bayes.* (2,5)

Aparência	Sim	Não	Temperatura	Sim	Não	Umidade	Sim	Não
Ensolarado	2/9	3/5	Quente	2/9	2/5	Alta	3/9	4/5
Chuvoso	3/9	2/5	Fria	3/9	1/5	Normal	6/9	1/5
Nublado	4/9	0	Morna	4/9	2/5			

Para d=0:

Sim: 2/9 x 2/9 x 6/9 x 9/9 x 9/14 = 216/10.206 = 0,02 = **55%** Não: 3/5 x 2/5 x 1/5 x 5/5 x 5/14 = 30/1.750 = 0,01 = 45%

Para d≠0 (atributo NUSP fornece a mesma informação que temperatura, sendo d=quente):

Sim: 216/10206 x 2/9 = 41% Não: 30/1750 x 2/5 = **59%**

3) Considere a base de dados abaixo como base de treinamento e classifique a tupla [1, 1, d] de acordo com o método dos vizinhos mais próximos (k-NN, com k=3) utilizando a distância Euclidiana elevada ao quadrado. Apresente os cálculos realizados. (2,5)

Exemplo	\mathbf{A}_{1}	\mathbf{A}_{2}	NUSP	Classe	Distância	Vizinho
1	0	1	d	A	1	2,5
2	1	1	d	В	0	1
3	1	0	d	A	1	2,5
4	5	5	d	В	32	f(d), k≥4
5	0	0	3d	A	2+4d ²	f(d), k≥4
6	2	2	2d	В	2+d ²	f(d), k≥4
7	4	4	d	A	18	f(d), k≥4

Note que, independentemente do valor de "d", os 3 exemplos mais próximos são sempre {1,2,3}.

Resposta: As distâncias são d(1)=1 (A), d(2)=0 (B), d(3)=1(A) e a classe majoritária é portanto A.

- 4) Assinale Verdadeiro (V) ou Falso (F) para cada uma das afirmações abaixo (2,5):
 - (F) I. A validação cruzada é inapropriada para estimar a capacidade de generalização de classificadores;
 - (V) II. Quando possível, e na ausência de limitações computacionais, deve-se preferir a validação "Leave One Out";
 - (**F**) III. Na prática, a melhor validação cruzada em k pastas é obtida com k=1;
 - (F) IV. A validação cruzada nunca deve ser usada para otimizar parâmetros de algoritmos de AM;
 - (F) V. Algoritmos de aprendizado mais complexos são sempre melhores porque generalizam melhor.