### EE 381V: Special Topics on Unsupervised Learning

Spring 2018

Lecture 7: February 8th

Lecturer: Professor Alex Dimakis

Scribes: Justin Lewis, Dany Haddad

This lecture's notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

### **Topics Covered**

- Submodularity
- Feature selection (see [KG05-1])
- Nemhauser's proof for greedy maximization of submodular functions

### 7.1 Definitions

#### Entropy

Given a set, S, of discrete random variables, define the set function  $f_H(S): 2^V \to \mathbb{R}$ 

$$f_H(S) = H(X_S) = -\sum_{x_i \in S} p(x_i) \log p(x_i)$$

and for differential entropy:

$$f_H(S) = H(X_S) = -\int_{\mathcal{X}_S} p(x) \log p(x) dx$$

### **Mutual Information**

Given random vectors Y and  $X_S$ , define the following as the mutual information between them  $f_I(S): 2^V \to \mathbb{R}$ 

$$f_I(S) = I(Y; X_S) = H(Y) - H(Y|X_S)$$

## 7.2 Properties

**Lemma 7.1.**  $f_H$  is submodular.

*Proof.* Consider subsets A and B of random variables,  $\mathcal{X}$ , where  $A \subseteq B$ . Also consider a random variable  $X_m \notin A \cup B$ 

$$f_H(A \cup \{m\}) - f_H(X_A) = H(X_A, X_m) - H(X_A) = H(X_m | X_A)$$

and similarly

$$f_H(B \cup \{m\}) - f_H(X_B) = H(X_m|X_B)$$

Since conditioning on a larger set of random variables cannot increase the entropy:

$$H(X_m|X_B) \le H(X_m|X_A)$$
  
 $f_H(B \cup \{m\}) - f_H(X_B) \le f_H(A \cup \{m\}) - f_H(X_A)$ 

In the discrete case we can show that  $f_H$  is also monotone. However, in the continuous case, this function is no longer monotone, in general.<sup>1</sup>

**Example 7.2.** Consider  $X_1, ..., X_n$  jointly gaussian random variables with pdf:

$$p(x) = \frac{1}{\sqrt{2\pi|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

The differential entropy of a subset indexed by S is given by:

$$H(X_S) = \frac{1}{2} 2\pi e \log \det \Sigma_s$$

Where  $\Sigma_S$  denotes the submatrix of the covariance matrix  $\Sigma$  formed by taking only the variables indexed by S.

Consider the covariance matrix:

$$\Sigma = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$\begin{split} \det(\Sigma_{\{0\}}) &= 1 \\ \det(\Sigma_{\{0,1\}}) &= 2 \\ \det(\Sigma_{\{0,1,2\}}) &= 0.2 \\ \det(\Sigma_{\{0,1,2,3\}}) &= 0.6 \end{split}$$

So  $H(X_{\mathcal{X}})$  is not monotone in this case.

Note 7.3. In the above example, to choose the subset of k variables with the largest entropy, we must maximize the determinant of  $\Sigma_S$ .

**Proposition 7.4.** Mutual information is, in general, not submodular.

*Proof.* Consider X, Y independent  $Bernoulli(\frac{1}{2})$  random variables. Let  $Z = X \oplus Y$ . So:

$$H(Z) = H(Z|X) = H(Z|Y) = 1 \text{ and } H(Z|X \cup Y) = 0$$
  
$$\implies H(Z) - H(Z|X) \le H(Z|Y) - H(Z|X \cup Y)$$

<sup>&</sup>lt;sup>1</sup>see Krause & Golovia survey: https://las.inf.ethz.ch/files/krause12survey.pdf

**Claim 7.5.** Mutual information is monotone. This follows immediately from the fact that conditioning does not increase entropy.

**Proposition 7.6.** Given sets S and U of random variables such that the elements of S are independent of each other conditioned on U, then  $f_I(A) = I(U; A)$  is submodular for all  $A \subseteq S \cup U$ .

*Proof.* Let  $A \subseteq S \cup U$  and  $S_1 \perp \!\!\! \perp S_2$  conditioned on  $U \ \forall S_1, S_2 \subseteq S$ .

$$I(U;C) = H(U) - H(U|C)$$

$$= H(U) - (H(U \cup C) - H(C))$$

$$= H(U) - (H(C|U) + H(U) - H(C))$$

$$= -\sum_{u \in C \cap S} H(u|U) + H(C)$$
(7.1)

Where the last step follows by conditional independence the elements of S conditioned on U. The first term in equation 7.1 is modular in C and the second is submodular.



Figure 7.1: An undirected graphical model where the elemets of S are independent conditioned on U

This claim holds if the distribution factorizes according to an undirected graphical model similar to 7.1. Recall the conditional independence properties we can infer from an undirected graphical model.

## 7.3 Optimization

Consider the chain rule of entropy:

$$H(X_1, ..., X_n) = H(X_S) + H(X_{S^c}|X_S)$$

Since  $H(X_1,...,X_n)$  has no dependence on S, maximizing the entropy of the subset S, is equivalent to minimizing the uncertainty of the unobserved set,  $S^c$ :

$$\max_{s:|s|\leq k} H(X_S) = \min_{s:|s|\leq k} H(X_{S^c}|X_S)$$

This requires us to maximize a monotone submodular function. The greedy algorithm selects the element with the largest discrete derivative at iteration i.

# 7.4 Approx. Submodular Function Maximization

It is well known that maximizing an arbitrary submodular function with given constraint set is, in general, NP-Hard.

**Problem 1.** Given ground set  $S_q$ , subset  $S \subseteq S_q$ , and submodular set function  $f(\cdot)$ :

$$\max_{S \subseteq S_g} f(S)$$
 subject to  $|S| \le k$ 

Finding the optimal solution may be intractable; however, an approximate solution known as the Greedy Algorithm can achieve fair results. More specifically:

#### Algorithm 1: Greedy Algorithm

**Define** ground set  $S_q$ , subset  $S \subseteq S_q$ , set function  $f(\cdot)$ , and cardinality constraint  $|S| \le k$ ;

**Description** greedily add to S at iteration i the element with the largest discrete derivative;

Result:  $S_{greedy}$ 

 $S_0 = \emptyset;$ 

while  $|S_i| \leq k$  do

$$S_{i+1} = S_i \cup \underset{s \in \{S_g/S_i\}}{\operatorname{arg max}} \left\{ \Delta(s/S_i) \right\};$$

end

**Theorem 7.7.** Let  $S^*$  denote the optimal subset, and  $S_{greedy,\ell}$  as the Greedy Algorithm selection after  $\ell$  iterations. Given set function f which is submodular, monotone, non-negative, and  $f(\emptyset) = 0$ :

$$f(S_{greedy,\ell}) \ge [1 - \exp[-\frac{\ell}{k}]] \cdot f(S^*)$$

$$f(S_{greedy,\ell=k}) \ge [1 - \frac{1}{e}] \cdot f(S^*) \approx 0.63 \cdot f(S^*)$$

*Proof.* (Nemhauser and Wolsey) <sup>2</sup>

Let  $S_i$  denote the Greedy algorithm selection after the *i*-th iteration

$$f(S^*) \leq f(S^* \cup S_i)$$
 (monotonicity)

Claim 7.8. 
$$f(S^* \cup S_i) = f(S_i) + \sum_{j=1}^k \Delta \left( v_j^* / \left\{ S_i \cup \{v_1^*, v_2^*, \dots, v_{j-1}^*\} \right\} \right)$$

Subproof. Expand:

$$f(S^* \cup S_i) = f(S_i) + \Delta(v_1^* / S_i) + \Delta(v_2^* / \{S_i \cup v_1^*\}) + \dots + \Delta(v_k^* / \{S_i \cup \{v_1^*, v_2^*, \dots, v_{k-1}^*\}\})$$

$$= f(S_i) + f(S_i \cup v_1^*) - f(S_i) + \dots + f(S_i \cup \{v_1^*, v_2^*, \dots, v_k^*\}) - f(S_i \cup \{v_1^*, v_2^*, \dots, v_{k-1}^*\})$$

$$= f(S^* \cup S_i)$$

The telescoping sum leaves only the desired term.

 $<sup>^2</sup> see \ Nemhauser \ \& \ Wolsey \ survey: \ http://www.cs.toronto.edu/ \ eidan/papers/submod-max.pdf$ 

With claim above it follows:

$$f(S^*) \leq f(S^* \cup S_i) = f(S_i) + \sum_{j=1}^k \Delta \left( v_j^* / \{ S_i \cup \{ v_1^*, v_2^*, \dots, v_{j-1}^* \} \} \right)$$

$$\leq f(S_i) + \sum_{j=1}^k \Delta (v_j^* / S_i)$$
 (by submodularity)
$$\leq f(S_i) + \sum_{j=1}^k [f(S_{i+1}) - f(S_i)]$$
 (by Greedy selection)
$$= f(S_i) + k \cdot [f(S_{i+1}) - f(S_i)]$$

$$\Rightarrow f(S^*) - f(S_i) \le k \cdot [f(S_{i+1}) - f(S_i)]$$

$$\delta_i \le k \cdot [\delta_i - \delta_{i+1}] \qquad (\delta_i \triangleq f(S^*) - f(S_i))$$

$$\delta_{i+1} \le (1 - \frac{1}{k}) \cdot \delta_i$$

$$\delta_\ell \le (1 - \frac{1}{k})^\ell \cdot \delta_0$$

$$f(S_{\ell}) \ge (1 - (1 - \frac{1}{k})^{\ell}) \cdot f(S^*)$$

$$(\delta_0 = f(S^*) - f(\emptyset) = f(S^*)$$

$$f(S_{\ell}) \ge (1 - \exp(-\frac{\ell}{k})) \cdot f(S^*)$$

$$(1 - x \le \exp^{-x} \, \forall \, x)$$

### References

- [KG05-1] Krause, Andreas and Guestrin, Carlos, "Near-optimal sensor placements," Proceedings of the fifth international conference on Information processing in sensor networks IPSN 06, 2005.
- [KG05-2] Krause, Andreas and Guestrin, Carlos, "Near-optimal Nonmyopic Value of Information in Graphical Models," *Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence*, 2005.