Density Clustering

Clustering

Problem description

Given:

A data set of N data items which are d-dimensional data feature vectors.

Task:

Determine a natural, useful partitioning of the data set into a number of clusters (k) and noise.

Density-Based Clustering

- A cluster is defined as a connected dense component which can grow in any direction that density leads.
- Density, connectivity and boundary
- Arbitrary shaped clusters and good scalability

K-means Clustering	DBScan Clustering
Clusters formed are more or less spherical or convex in shape and must have same feature size.	Clusters formed are arbitrary in shape and may not have same feature size.
K-means clustering is sensitive to the number of clusters specified.	Number of clusters need not be specified.
K-means Clustering is more efficient for large datasets.	DBSCan Clustering can not efficiently handle high dimensional datasets.
K-means Clustering does not work well with outliers and noisy datasets.	DBScan clustering efficiently handles outliers and noisy datasets.
In the domain of anomaly detection, this algorithm causes problems as anomalous points will be assigned to the same cluster as "normal" data points.	DBScan algorithm, on the other hand, locates regions of high density that are separated from one another by regions of low density.
It requires one parameter : Number of clusters (K)	It requires two parameters : Radius(R) and Minimum Points(M)
Varying densities of the data points doesn't affect K-means clustering algorithm.	DBScan clustering does not work very well for sparse datasets or for data points with varying density.

Two Major Types of Density-Based Clustering Algorithms

- Connectivity based:
 DBSCAN, GDBSCAN, OPTICS and DBCLASD
- Density function based:
 DENCLUE

DBSCAN [Ester et al.1996]

- Clusters are defined as Density-Connected Sets (wrt. Eps, MinPts)
- Density and connectivity are measured by local distribution of nearest neighbor
- Target low dimensional spatial data

- Definition 1: Eps-neighborhood of a point
 N_{Eps}(p) = {q ∈D | dist(p,q) ≤ Eps}
- Definition 2: Core point
 |N_{Eps}(q)| ≥ MinPts

- Definition 3: Directly density-reachable
 - A point p is directly density-reachable from a point q wrt. Eps, MinPts if
 - 1) $p \in N_{Eps}(q)$ and
 - 2) $|N_{Eps}(q)| \ge MinPts$ (core point condition).

• Definition 4: Density-reachable

A point p is density-reachable from a point q wrt. Eps and MinPts if there is a chain of points p_1 , ..., p_n , $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i

• Definition 5: Density-connected

A point p is density-connected to a point q wrt. Eps and MinPts if there is a point o such that both, p and q are density-reachable from o wrt. Eps and MinPts.

DBSCAN is a density-based algorithm.

- Density = number of points within a specified radius r (Eps)
- A point is a core point if it has more than a specified number of points (MinPts)
 within Eps
 - These are points that are at the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

...the first thing we can do is count the number of points close to each point.

...then we see that the orange circle overlaps, at least partially, 8 other points.

Ultimately, we can call all of these red points Core Points because they are all close to 4 or more other points...

Then the **Core Points** that are close to the growing first cluster join it...

NOTE: At this point, every single point in the first cluster is a Core Point...

So, unlike **Core Points**, **Non-Core Points** can only join a cluster. They
can not extend it further.

Now we add all of the **Non-Core Points** that are close **Core Points** in the **first** cluster to the **first** cluster.

Lastly, because all of **Core Points** have been assigned to a cluster, we're done making new clusters...

Point	Х	У
А	0.5	1.2
В	1.0	1.8
С	1.2	1.5
D	3.8	3.2
E	3.9	3.8
F	4.5	4.2
G	2.0	2.2
Н	2.3	2.0

Point	Α	В	С	D	E	F	G	Н
Α	0	0.78	0.76	3.76	4.36	5.02	1.86	2.05
В	0.78	0	0.36	3.10	3.74	4.45	1.28	1.37
С	0.76	0.36	0	2.78	3.41	4.08	0.96	1.06
D	3.76	3.10	2.78	0	0.61	1.22	1.84	1.58
Е	4.36	3.74	3.41	0.61	0	0.72	2.50	2.27
F	5.02	4.45	4.08	1.22	0.72	0	3.31	3.05
G	1.86	1.28	0.96	1.84	2.50	3.31	0	0.36
Н	2.05	1.37	1.06	1.58	2.27	3.05	0.36	0

Point	Α	В	С	D	E	F	G	Н
Α	0	0.78	0.76	3.76	4.36	5.02	1.86	2.05
В	0.78	0	0.36	3.10	3.74	4.45	1.28	1.37
С	0.76	0.36	0	2.78	3.41	4.08	0.96	1.06
D	3.76	3.10	2.78	0	0.61	1.22	1.84	1.58
Е	4.36	3.74	3.41	0.61	0	0.72	2.50	2.27
F	5.02	4.45	4.08	1.22	0.72	0	3.31	3.05
G	1.86	1.28	0.96	1.84	2.50	3.31	0	0.36
Н	2.05	1.37	1.06	1.58	2.27	3.05	0.36	0

Point	
А	A, B, C
В	A, B, C
С	A, B, C
D	D, E
Е	D, E, F
F	E, F
G	G, H
Н	G, H

Point	
А	A, B, C
В	A, B, C
С	A, B, C
D	D, E
E	D, E, F
F	E, F
G	G, H
Н	G, H

Point	Status		
Α	Core		
В	Core		
С	Core		
D	Core		
E	Core		
F	Core		
G	Core		
Н	Core		

Cluster	Points
1	A, B, C
2	D,E,F
3	G,H

Point	
А	A, B, C
В	A, B, C
С	A, B, C
D	D, E
E	D, E, F
F	E, F
G	G, H
Н	G, H

Point	Status		
А	Core		
В	Core		
С	Core		
D	Noise	Border	
Е	Core		
F	Noise	Border	
G	Noise	Outlier	
Н	Noise	Outlier	

minPts=3 and eps=0.8

D is part of core point (E)

F is part of core point (E)

Cluster	Points
1	А, В, С
2	D,E,F
Outlier	G,H

Core Points: A, B, C and E

Border Points: D and F

Outliers/Noise Points: G and H

Practice Problem

 Apply the DBSCAN 	Data Points:		
algorithm to the given	P1: (3, 7)	P2: (4, 6)	
data points and	P3: (5, 5)	P4: (6, 4)	
	P5: (7, 3)	P6: (6, 2)	
 Create the clusters with 	P7: (7, 2)	P8: (8, 4)	
minPts = 4 and	P9: (3, 3)	P10: (2, 6)	
• epsilon (ε) = 1.9.	P11: (3, 5)	P12: (2, 4)	