Block Diagram Transformation

Relation Between Block Diagrams & SFGs

Transfer Function	Block Diagram	Signal Flow Diagram
One block System $\frac{Y(s)}{R(s)} = G(s)$	(a)	(b)
	R(s) $G(s)$ $Y(s)$	R(s) $G(s)$ $Y(s)$
Cascade $\frac{Y(s)}{R(s)} = G_1(s) G_2(s)$	(c)	(d)
	$R(s)$ $G_1(s)$ $A(s)$ $G_2(s)$ $Y(s)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Parallel	(e)	(f)
$\frac{Y(s)}{R(s)} = G_1(s) + G_2(s)$	$R(s)$ $R(s)$ $A_1(s)$ $A_2(s)$ $A_2(s)$ $A_3(s)$	$R(s)$ $A_1(s)$ $Y(s) = A_2(s) + A_3(s)$
Feedback	(g)	(h)
$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s) H(s)}$	R(s) $E(s)$ $G(s)$ $H(s)$	R(s) E(s)

Relation Between Basic Transfer Functions & SFGs

☐ First-order Transfer Function with no Zero:

$$\frac{Y(s)}{U(s)} = \frac{b}{s+a}$$

☐ First-order Transfer Function with a single Zero:

$$\frac{Y(s)}{U(s)} = \frac{s+b}{s+a}$$

☐ Second-order Transfer Function with no Zero:

$$\frac{Y(s)}{U(s)} = \frac{c}{s^2 + as + b}$$

☐ Second-order Transfer Function with a single Zero:

$$\frac{Y(s)}{U(s)} = \frac{s+c}{s^2 + as + b}$$

