

Olimpiada de Fizică Etapa pe județ

Pagina 1 din 4

Subject		Parțial	Punctaj
1.			10
a)	Din $\beta_1 \cdot \beta_2 = 1$ rezultă că cele două poziții ale lentilei sunt simetrice față		3
	de centrul segmentului de pe axul optic principal, determinat de obiect și	1,0	
	ecran. Fie a și b distanțele de la lentilă la obiect și ecran în cele două		
	situații; considerăm că este notată cu <i>a</i> distanța mai mare.		
	$\begin{cases} a - b = d \\ a + b = D \end{cases} \Leftrightarrow$		
	a+b=D		
	D+d		
	$\Leftrightarrow \begin{cases} a = \frac{D+d}{2} \\ b = \frac{D-d}{2} \end{cases}$	0,5	
	\Leftrightarrow $\int_{-\infty}^{\infty} D - d$	٥,٥	
	$b = {2}$		
	1 1 1	0,5	
	Deoarece $\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$, rezultă	0,3	
	D^2-d^2		
	$f = \frac{1}{4D} \Rightarrow f = 12 \text{ cm}$	1,0	
	5. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3
b)	$f = \frac{D^2 - d^2}{4D} \Rightarrow f = 12 \text{ cm}$ $\text{Din } \frac{1}{a} + \frac{1}{b} = \frac{1}{f} \text{ rezultă } ab = Df \text{ și, conform ecuațiilor lui Viète, rezultă}$		
	ecuația (în z):		
	$z^2 - Dz + Df = 0$	2,0	
	ale cărei soluții sunt a și b . Pentru ca această ecuație să aibă soluții reale		
	$D \ge 4f$	0,5	
	Valoarea minimă este:	0,5	
- o)	$D_{\min} = 4f$ Měririla liniara transvarsala în cala dauž situatii sunt:		3
c)	Măririle liniare transversale în cele două situații sunt:		3
	$\beta_1 = -\frac{\sigma}{a}$		
	$\begin{cases} \beta_1 = -\frac{b}{a} \\ \beta_2 = -\frac{a}{a} \end{cases} \Rightarrow$	2,0	
	$\beta_{i} = -\frac{3}{2}$		
	$\Rightarrow \begin{cases} 1 & 2 \end{cases}$	1,0	
	$\Rightarrow \begin{cases} \beta_1 = -\frac{3}{2} \\ \beta_2 = -\frac{2}{3} \end{cases}$		
	(3		
Oficiu			1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 24 februarie 2007

Barem

Pagina 2 din 4

Subiect		Parțial	Punctaj
2.	Barem subject 2	,	10
a)	Forțele de interacțiune între corpurile considerate (pe direcție orizontală): $m_3 \qquad \overrightarrow{F}'_{f1}$		3
	m_3 m_2 $\vec{F}_{f2}\vec{F}_{f1}$ \vec{F}	0,5	
	m_1 \vec{F}_{f2}		
	Presupunând că cele trei corpuri se deplasează cu aceeași accelerație <i>a</i> :		
	$\left[\left(m_1 + m_2 + m_3\right)a = F\right]$		
	$m_1 a = F'_{f2}$		
	$\left\{ m_{3}a = F_{f1}^{2} \right\}$	1,5	
	$F'_{f_1} \le \mu m_3 g$ (frecare statică)		
	$F'_{f2} \le \mu(m_2 + m_3)g$ (frecare statică)		
	$\Rightarrow F \le 3\mu mg$ adică $F \in [0; 3\mu mg]$	1,0	
b)	Din rezolvarea sistemului de la punctul precedent rezultă că primul dintre corpuri care rămâne în urmă față de m_2 la creșterea forței F este corpul	0,5	3
	de masă m_3 .		
	Presupunând că F are o astfel de valoare încât corpul de masă m_3 rămâne în		
	urmă, iar corpurile cu masele m_1 și m_2 se deplasează împreună:		
	$\left[\left(m_1 + m_2 \right) a = F - \mu m_3 g \right]$		
	$\left\{ m_{_{1}}a=F_{_{f2}}^{\prime}$	1,5	
	$F_{f2}' \leq \mu \left(m_2 + m_3 \right) g$		
	$\Rightarrow F \leq 5 \mu mg$	0,5	
	Pentru ca cele trei corpuri să se deplaseze separat: $F > 5 \mu mg$	0,5	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 24 februarie 2007

Barem

Pagina 3 din 4

	1 ag	ina 3 din 4
Forțele care acționează asupra barei din mijloc și asupra uneia dintre celelalte bare: $\vec{F}_{12} = \vec{F}_{11} = \vec{F}_{11} = \vec{F}_{11} = \vec{F}_{12} = \vec{F}_{13} = \vec{F}_{14} = \vec$	1,0	3
Pentru deplasare uniformă: $\begin{cases} F = G + 2N_1 \sin \alpha + 2F_{f1} \cos \alpha \\ N_1 = G \sin \alpha \end{cases}$	1,0	
$\begin{array}{c} \text{ în care:} \\ F_{f1} = \mu N_1 \end{array}$	0,5	
Rezultă:		
$F = (2 + \mu) mg$	0,5	
Oficiu		1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 24 februarie 2007 Barem

Pagina 4 din 4

Subject		Punctaj
3. Barem subject 3	,	10
R. F. F.	1,0	3
$\lambda = \frac{R}{2} \frac{1}{\cos i} - \frac{R}{2} \Rightarrow \lambda = \frac{R}{2} \left(\frac{1}{\cos i} - 1 \right)$	2,0	
$F = 2i \vee F'$	1,0	3
$\tau = \lambda \operatorname{tg} 2i \Rightarrow \tau = \frac{R}{2} \left(\frac{1}{\cos i} - 1 \right) \operatorname{tg} 2i$	2,0	
c) $\lambda \cong \frac{R}{2} \left(\frac{1}{1 - \frac{i^2}{2}} - 1 \right) \cong \frac{R}{2} \left(1 + \frac{i^2}{2} - 1 \right) \Longrightarrow \lambda \cong \frac{1}{4} R i^2$	1,5	3
$\tau \cong \lambda \cdot 2i \Longrightarrow \tau \cong \frac{1}{2}Ri^3$	1,0	
Descreșterea unghiului maxim de incidență determină desc a ambelor aberații. În consecință, astigmatismul oglinzilor s reduce relativ ușor prin utilizarea unor diafragme.		
Oficiu		1

(Subiect propus de prof. Stelian Ursu, C.N. "Frații Buzești" – Craiova, prof. Dorel Haralamb, C.N. "Petru Rareș" – Piatra-Neamț)

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.