МИНЕСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АРХИТЕКТУРЫ И СТРОИТЕЛЬСТВА»

Инженерно-строительный институт Кафедра «Строительные конструкции»

КУРСОВОЙ ПРОЕКТ

по дисциплине: «Теория расчёта и проектирования» на тему: «Расчёт многоэтажного здания из монолитного железобетона в программном комплексе LIRA»

Автор проекта: Петржиковский Н. А.

Группа: 22СТ2м

Обозначение: КП-2069059-08.04.01-220925-22.

Направление: 08.04.01 «Строительство»

Руководитель проекта: к.т.н., доц. Карев М. А.

Проект защищен

Содержание

1. Компоновка	3
2. Расчётная схема	4
3. Жёсткости и материалы	8
4. Нагрузки	11
5. Определение давления под подошвой фундаментной плиты	21
6. Результаты расчёта	22
7 Результаты армирования	

1. Компоновка

В данном курсовом проекте представлено тринадцатиэтажное здание с подвалом размерами в осях 49×20 м. Площадь здания 15680 м². Шаг колонн в продольном направлении – 7 м, в поперечном направлении – 5 м. Число пролётов в продольном направлении – 7, в поперечном – 4. Высота этажа – 3 м. Количество этажей – 15. Высота здания по верху несущих конструкций составляет – 46,5 м.

Фундамент сделан в виде монолитной плиты толщиной 0,8 м. Глубина заложения подошвы фундамента 3,0 м.

Стены подвала запроектированы толщиной 270 мм. Перегородки подвала 180 мм. Здание содержит следующие типы перекрытий:

- 1. Перекрытие над подвалом (отм. +0,000): плита толщиной 180 мм.
- 2. Перекрытие над этажами (отм. ((+3,000) (+46,500)): плита толщиной 180 мм. Стены здания запроектированы толщиной 460 мм.

Перегородки здания запроектированы толщиной 240 и 180 мм.

Район строительства – г. Пенза. Снеговой район – III. Ветровой район – II.

2. Расчётная схема

Собственный вес

Рис. 1. Расчётная схема.

Рис. 2. Проекция расчётной схемы на плоскость ХОΖ.

Рис. 3. Проекция расчётной схемы на плоскость YOZ.

Рис. 4. Пространственная модель.

3. Жёсткости и материалы

Рис. 5. Жёсткости расчётной схемы.

Рис. 6. Материалы.

4. Нагрузки

Таблица 1.

Состав конструкции пола в жилой части

Элементы конструкций	Нормативная нагрузка, т/м ²	γ_f	Расчётная нагрузка, т/м ²
1. Пенополистирол, 30 мм	0,001	1,3	0,0013
2. Выравнивающая стяжка из ЦПР, 50 мм	0,09	1,3	0,117
3. Подложка, 10 мм	0,0004	1,2	0,00048
4. Ламинат, 10 мм	0,011	1,2	0,0132
Итого:			0,132

Таблица 2.

Состав конструкции пола в коридоре и лестничной клетке

Элементы конструкций	Нормативная нагрузка, т/м ²	γ_f	Расчётная нагрузка, т/м ²
1. Пенополистирол, 30 мм	0,001	1,3	0,001
2. Выравнивающая стяжка из ЦПР, 50 мм	0,09	1,3	0,117
3. Клей плиточный, 10 мм	0,018	1,3	0,023
4. Керамогранит,10 мм	0,024	1,2	0,029
Итого:			0,171

Таблица 3.

Состав конструкции пола балконов

Элементы конструкций	Нормативная нагрузка, т/м ²	γ_f	Расчётная нагрузка, т/м ²
1. Выравнивающая стяжка из ЦПР, 30 мм	0,054	1,2	0,065
2. Плитка керамическая на ЦПР, 20 мм	0,036	1,2	0,043
Итого:			0,11

Таблица 4.

Состав конструкции пола подвала

Элементы конструкций	Нормативная нагрузка, т/м ²	γ_f	Расчётная нагрузка, т/м ²
1. 2 слоя гидроизола	0,01	1,3	0,013
2. Выравнивающая стяжка из ЦПР, 100 мм	0,18	1,3	0,234
3. Клей плиточный, 10 мм	0,018	1,3	0,023
4. Керамогранит,10 мм	0,024	1,2	0,029
Итого:			0,3

Таблица 5.

Состав конструкции покрытия

Элементы конструкций	Нормативная нагрузка, т/м ²	γ_f	Расчётная нагрузка, т/м ²
1. Керамзит, 270 мм	0,216	1,2	0,259
2. Выравнивающая стяжка из ЦПР, 50 мм	0,12	1,2	0,144
3. Битумный праймер	0,006	1,2	0,007
4. Техноэласт ЭПП	0,005	1,2	0,006
5. Техноэласт ЭКП	0,006	1,2	0,007
Итого:			0,43

Таблица 6.

Состав конструкции пола чердака

Элементы конструкций	Нормативная нагрузка, т/м ²	γ_f	Расчётная нагрузка, т/м ²
1. Пленка	0,0015	1,2	0,0018
2. Пенополистирол, 150 мм	0,005	1,2	0,006
3. Пленка	0,0015	1,2	0,0018
4. Выравнивающая стяжка из ЦПР, 50 мм	0,1	1,2	0,12
Итого:			0,13

Таблица 7.

Состав конструкции покрытия машинного отделения

Элементы конструкций	Нормативная нагрузка, т/м ²	γ_f	Расчётная нагрузка, т/м ²
1. Бикроэласт ТПП	0,005	1,2	0,006
2. Битумный праймер	0,006	1,2	0,007
3. Пенополистирол экструдированный, 200 мм	0,001	1,2	0,0012
4. Керамзит, 150 мм	0,12	1,2	0,144
5. Выравнивающая стяжка из ЦПР, 50 мм	0,12	1,2	0,144
6. Битумный праймер	0,006	1,2	0,007
7. Техноэласт ЭПП	0,005	1,2	0,006
8. Техноэласт ЭКП	0,006	1,2	0,007
Итого:			0,34

Таблица 8.

Состав конструкции наружных стен

Элементы конструкций	Нормативная нагрузка, т/м	γ_f	Расчётная нагрузка, т/м
1. Кирпич, 250 мм	1,269	1,15	1,459
2. Пенополистирол, 150 мм	0,02	1,15	0,023
3. Наружный слой штукатурки, 30 мм	0,152	1,15	0,175
4. Внутренний слой штукатурки, 30 мм	0,152	1,15	0,175
Итого:			1,83

Таблица 9.

Состав конструкции межквартирных перегородок

Элементы конструкций	Нормативная нагрузка, т/м	γ_f	Расчётная нагрузка, т/м
1. Кирпич, 130 мм	0,66	1,15	0,759
2. Пенополистирол, 50 мм	0,0007	1,15	0,0008
3. Наружный слой штукатурки, 30 мм	0,152	1,15	0,175
4. Внутренний слой штукатурки, 30 мм	0,152	1,15	0,175
Итого:			1,11

Таблица 10.

Состав конструкции внутриквартирных перегородок

Элементы конструкций	Нормативная нагрузка, т/м	γ_f	Расчётная нагрузка, т/м
1. Кирпич, 120 мм	0,609	1,15	0,7
2. Наружный слой штукатурки, 30 мм	0,152	1,15	0,175
3. Внутренний слой штукатурки, 30 мм	0,152	1,15	0,175
Итого:			1,05

Таблица 11.

Состав конструкции ограждения балконов

Элементы конструкций	Нормативная нагрузка, т/м	γ_f	Расчётная нагрузка, т/м
1. Кирпич, 120 мм	0,22	1,15	0,253
2. Наружный слой штукатурки, 30 мм	0,054	1,15	0,062
3. Внутренний слой штукатурки, 30 мм	0,054	1,15	0,062
4. Остекление	0,055	1,15	0,063
Итого:			0,5

Y_↓Z_X

Рис. 10. Нагрузка от снега.

Ветровая нагрузка.

Таблица 12.

№ эт.	h, м	$w_a, T/M^2$	Н_w, м	W_a(б), т/м	W_o, t/m	W_б, т/м
(перекр.)				C = 0.8	C = 0.5	C = 1,0
подвал	0	0,0168	1,5	0,025	0,016	0,032
1	3	0,0168	3	0,05	0,032	0,063
2	6	0,0178	3	0,053	0,033	0,067
3	9	0,0208	3	0,062	0,039	0,078
4	12	0,0235	3	0,071	0,044	0,088
5	15	0,0257	3	0,077	0,048	0,096
6	18	0,0276	3	0,083	0,052	0,104
7	21	0,0294	3	0,088	0,055	0,110
8	24	0,031	3	0,093	0,058	0,116
9	27	0,0325	3	0,098	0,061	0,122
10	30	0,0339	3	0,102	0,064	0,127
11	33	0,0352	3	0,106	0,066	0,132
12	36	0,0365	3	0,110	0,068	0,137
13	39	0,0376	3	0,113	0,071	0,141
14	42	0,0388	2,5	0,097	0,061	0,121
покр.	44	0,0395	2,7	0,107	0,067	0,133
шахта	44	0,0395	1,25	0,049	0,031	0,062
шахта	46,5	0,0404	2,45	0,099	0,062	0,124

Y_↑ X

Рис. 13. Нагрузка от ветра по оси X.

Рис. 16. Нагрузка от ветра по оси Ү.

Таблица 13.

Таблица 14.

Формирование динамических загружений из статических.

Рис. 17. Параметры РСУ.

Рис. 18. Параметры РСН.

5. Определение давления под подошвой фундаментной плиты

В качестве исходных данных для проектирования в соответствии с заданием принимаем следующие величины:

$$P_z=24777$$
 т;
$$p_{\phi.пл.}=rac{P_z}{A}=rac{21906}{53\cdot 24}=19,48\ rac{ au}{ ext{m}^2}.$$

Данные по грунтам основания приведены далее в таблице.

Рис. 19. Характеристики грунтов основания.

6. Результаты расчёта

Протокол расчета Дата: 30.12.2022

AuthenticAMD AMD Ryzen 5 3600 6-Core Processor

12 threads

Microsoft Windows 10 Professional RUS 64-bit. Build 22000

Размер доступной физической памяти = 11679211008

14:35 Чтение исходных данных из файла C:\Users\Public\Documents\LIRA SAPR\LIRA SAPR 2016 NonCommercial\Data\22st2m_petrzhikovsky.txt

14:35 Контроль исходных данных основной схемы

Количество узлов = 93837 (из них количество неудаленных = 93837)

Количество элементов = 91097 (из них количество неудаленных = 91097)

ОСНОВНАЯ СХЕМА

14:35 Оптимизация порядка неизвестных

Количество неизвестных = 474829

РАСЧЕТ НА СТАТИЧЕСКИЕ ЗАГРУЖЕНИЯ

14:35 Формирование матрицы жесткости

14:35 Формирование векторов нагрузок

14:35 Разложение матрицы жесткости

14:36 Вычисление неизвестных

14:37 Контроль решения

РАСЧЕТ НА ДИНАМИЧЕСКИЕ ЗАГРУЖЕНИЯ

14:37 Формирование матрицы масс для динамического загружения №16

14:37 Формирование матрицы масс для динамического загружения №17

14:37 Формирование матрицы масс для динамического загружения №18

14:37 Формирование матрицы масс для динамического загружения №19

Вычисление собственных колебаний для динамических загужений №№16 17 18 19

Суммарные массы: mX=2323.92 mY=2323.92 mZ=2323.95 mUX=0 mUY=0 mUZ=0

14:37 Контроль пригодности схемы для вычисления собственных колебаний при таком приложении масс. Контроль осуществляется путем приложения масс как статических нагрузок

14:37 Вычисление собственных колебаний

14:37 Итерация №1

14:37 Итерация №2

Найдено форм 0 (из них 0 в заданном диапазоне)

14:37 Итерация №3

Найдено форм 2 (из них 2 в заданном диапазоне)

14:37 Итерация №4

Найдено форм 3 (из них 3 в заданном диапазоне)

14:37 Формирование векторов динамических нагрузок

14:37 Вычисление неизвестных

Формирование результатов

14:37 Формирование топологии

14:37 Формирование перемещений

14:37 Вычисление и формирование усилий в элементах

14:37 Вычисление и формирование реакций в элементах

14:37 Вычисление и формирование эпюр усилий в стержнях

14:37 Вычисление и формирование эпюр прогибов в стержнях

14:37 Формирование форм колебаний

Суммарные узловые нагрузки на основную схему:

Загружение 1 PX=0 PY=0 PZ=14870.4 PUX=0.0163927 PUY=-5.25931e-013 PUZ=0

Загружение 2 PX=0 PY=0 PZ=2758.3 PUX=0.00344412 PUY=-1.16472e-013 PUZ=0

Загружение 3 PX=0 PY=0 PZ=4955.29 PUX=4.17718e-006 PUY=-9.09492e-008 PUZ=0

Загружение 4 PX=0 PY=0 PZ=673.02 PUX=8.10766e-015 PUY=-2.10799e-014 PUZ=0

Загружение 5 PX=0 PY=0 PZ=2768.17 PUX=0.00799528 PUY=-9.66289e-014 PUZ=0

```
Загружение 6 РХ=-1.39611e-014 РY=2.81719e-014 РZ=1787.04 РUX=8.06625e-015 РUY=-
4.70008e-014 PUZ=2.27336e-015
Загружение 7
              PX=-7.04992e-015 PY=1.41553e-014 PZ=0 PUX=0
                                                                PUY=1.04083e-015
PUZ=9.99201e-016
Загружение 8 PX=0 PY=0 PZ=193.52 PUX=1.37976e-015 PUY=-5.60034e-015 PUZ=0
Загружение 9 PX=0 PY=0 PZ=59.88 PUX=-8.28679e-016 PUY=-9.36751e-016 PUZ=0
Загружение 10 PX=0 PY=0 PZ=18 PUX=1.05818e-016 PUY=-4.3715e-016 PUZ=0
Загружение 11 PX=0 PY=0 PZ=284.073 PUX=-0.0157639 PUY=-8.02678e-015 PUZ=0
Загружение 12 PX=2.28706e-014 PY=-141.229 PZ=0 PUX=0 PUY=0 PUZ=0
Загружение 13 PX=4.44089e-015 PY=108.161 PZ=0 PUX=0 PUY=0 PUZ=0
Загружение 14 PX=-45.3529 PY=0.0982995 PZ=0 PUX=0 PUY=0 PUZ=0
Загружение 15 PX=45.3529 PY=0.0982995 PZ=0 PUX=0 PUY=0 PUZ=0
Загружение 16-1 PX=-1.82168 PY=-0.0219382 PZ=0.00485576 PUX=0 PUY=0 PUZ=0
Загружение 16-2 РХ=2.40069 РҮ=-108.717 РZ=0.247885 РUХ=0 РUY=0 РUZ=0
Загружение 16-3 РХ=-0.220415 РY=-0.0112148 РZ=0.00070931 РUX=0 РUY=0 РUZ=0
Загружение 16-4 PX=2.74988e-014 PY=-141.229 PZ=0 PUX=0 PUY=0 PUZ=0
Загружение 17-1 PX=0.957977 PY=0.0115368 PZ=-0.00255353 PUX=0 PUY=0 PUZ=0
Загружение 17-2 PX=-1.86167 PY=84.3072 PZ=-0.192229 PUX=0 PUY=0 PUZ=0
Загружение 17-3 PX=0.621094 PY=0.0316015 PZ=-0.00199872 PUX=0 PUY=0 PUZ=0
Загружение 17-4 PX=7.35523e-016 PY=108.161 PZ=0 PUX=0 PUY=0 PUZ=0
Загружение 18-1 PX=-34.3934 PY=-0.414194 PZ=0.0916771 PUX=0 PUY=0 PUZ=0
Загружение 18-2 PX=-0.0227537 PY=1.03042 PZ=-0.00234946 PUX=0 PUY=0 PUZ=0
Загружение 18-3 PX=-5.11606 PY=-0.260307 PZ=0.0164638 PUX=0 PUY=0 PUZ=0
Загружение 18-4 PX=-45.3529 PY=0.0982995 PZ=0 PUX=0 PUY=0 PUZ=0
Загружение 19-1 PX=34.3978 PY=0.414247 PZ=-0.0916889 PUX=0 PUY=0 PUZ=0
Загружение 19-2 PX=0.0128381 PY=-0.581383 PZ=0.00132561 PUX=0 PUY=0 PUZ=0
Загружение 19-3 PX=5.12084 PY=0.26055 PZ=-0.0164792 PUX=0 PUY=0 PUZ=0
```

Загружение 19-4 PX=45.3529 PY=0.0982995 PZ=0 PUX=0 PUY=0 PUZ=0

Рис. 20. Изополя перемещений здания по оси Z.

0.0919 Ветер по Y- дин. 0.109 0.117 0.126 0.134 0.1 0.143 0.151 0.16

Составляющая 1

Изополя перемещений по X(G)

Единицы измерения - мм Массы собраны из загружений: 1,2,3,5,8,9,10,11

Рис. 21. Изополя перемещений здания по оси Х.

Рис. 23. Изополя перемещений здания по оси Y.

-3.06 -2.67 -2.29 -1.91 -1.53 -1.15 -0.764-0.382-0.030;0.0303 0.382 0.764 1.15 1.53 1.91 2.29 Ветер по X+ дин. Составляющая 1 2.67

Изополя перемещений по Y(G)

Единицы измерения - мм

Массы собраны из загружений: 1,2,3,5,8,9,10,11

Рис. 24. Изополя перемещений здания по оси Ү.

Показать мозаику ускорений а Единицы измерения - м/с**2 Массы собраны из загружений: 1,2,3,5,8,9,10,11

Рис. 25. Мозаика ускорений а.

7. Результаты армирования

Армирование фундаментной плиты

Площадь полной арматуры на 1пм по оси X у нижней грани (балки-стенки - посередине); максимум в элементе 5152 Рис. 30. Расчетное армирование фундаментной плиты по оси X у нижней грани.

Площадь полной арматуры на 1пм по оси Y у нижней грани (балки-стенки - посередине); максимум в элементе 1 Рис. 31. Расчетное армирование фундаментной плиты по оси Y у нижней грани.

Площадь полной арматуры на 1 пм по оси X у верхней грани; максимум в элементе 1 Рис. 32. Расчетное армирование фундаментной плиты по оси X у верхней грани.

Площадь полной арматуры на 1 пм по оси У у верхней грани; максимум в элементе 1

Рис. 33. Расчетное армирование фундаментной плиты по оси Y у верхней грани.

Площадь поперечной арматуры на 1м2 при шаге 100 см; максимум в элементе 1 Рис. 34. Расчетное армирование фундаментной плиты поперечной арматурой.

Армирование плиты над подвалом

Площадь полной арматуры на 1m по оси X у нижней грани (балки-стенки - посередине); максимум в элементе 5152 Рис. 35. Расчетное армирование плиты над подвалом по оси X у нижней грани.

Площадь полной арматуры на 1пм по оси Y у нижней грани (балки-стенки - посередине); максимум в элементе 1 Рис. 36. Расчетное армирование плиты над подвалом по оси Y у нижней грани.

Площадь полной арматуры на 1 пм по оси X у верхней грани; максимум в элементе 1 Рис. 37. Расчетное армирование плиты над подвалом по оси X у верхней грани.

Площадь полной арматуры на 1 пм по оси Y у верхней грани; максимум в элементе 1

Рис. 38. Расчетное армирование плиты над подвалом по оси У у верхней грани.

Площадь поперечной арматуры на 1м2 при шаге 100 см; максимум в элементе 1

Рис. 39. Расчетное армирование плиты над подвалом поперечной арматурой.

Площадь полной арматуры на 1пм по оси Х у нижней грани (балки-стенки - посередине); максимум в элементе 5152

Рис. 40. Расчетное армирование плиты над первым этажом по оси X у нижней грани.

Площадь полной арматуры на 1пм по оси Y у нижней грани (балки-стенки - посередине); максимум в элементе 1 Рис. 41. Расчетное армирование плиты над первым этажом по оси Y у нижней грани.

Площадь полной арматуры на 1пм по оси X у верхней грани; максимум в элементе 1

Рис. 42. Расчетное армирование плиты над первым этажом по оси X у верхней грани.

Площадь полной арматуры на 1 пм по оси У у верхней грани; максимум в элементе 1

Рис. 43. Расчетное армирование плиты над первым этажом по оси Y у верхней грани.

Площадь поперечной арматуры на 1м2 при шаге 100 см; максимум в элементе 1

Рис. 44. Расчетное армирование плиты над первым этажом поперечной арматурой.

Армирование плиты покрытия

Площадь полной арматуры на 1пм по оси X у нижней грани (балки-стенки - посередине); максимум в элементе 5152 Рис. 45. Расчетное армирование плиты покрытия по оси X у нижней грани.

Площадь полной арматуры на 1пм по оси Y у нижней грани (балки-стенки - посередине); максимум в элементе 1 Рис. 46. Расчетное армирование плиты покрытия по оси Y у нижней грани.

Площадь полной арматуры на 1 пм по оси X у верхней грани; максимум в элементе 1 Рис. 47. Расчетное армирование плиты покрытия по оси X у верхней грани.

Площадь полной арматуры на 1пм по оси Y у верхней грани; максимум в элементе 1 Рис. 48. Расчетное армирование плиты покрытия по оси Y у верхней грани.

Площадь поперечной арматуры на 1м2 при шаге 100 см; максимум в элементе 1 Рис. 49. Расчетное армирование плиты покрытия поперечной арматурой.

Площадь полной арматуры на 1пм по оси X у нижней грани (балки-стенки - посередине); максимум в элементе 5152 Рис. 50. Расчетное армирование стен подвала по оси X у нижней грани.

Площадь полной арматуры на 1пм по оси Y у нижней грани (балки-стенки - посередине); максимум в элементе 1 Рис. 51. Расчетное армирование стен подвала по оси Y у нижней грани.

Рис. 52. Расчетное армирование стен подвала по оси X у верхней грани: максимум в элементе 1 Рис. 52. Расчетное армирование стен подвала по оси X у верхней грани.

Рис. 53. Расчетное армирование стен подвала по оси Y у верхней грани.

Площадь поперечной арматуры вдоль оси У при шаге 100 см; максимум в элементе 1 Рис. 54. Расчетное армирование стен подвала поперечной арматурой.

Армирование стен по оси 1

Площадь полной арматуры на 1 пм по оси Y у нижней грани (балки-стенки - посередине); максимум в элементе 1 Рис. 56. Расчетное армирование стен по оси Y у нижней грани.

Рис. 57. Расчетное армирование стен по оси Х у верхней грани.

Рис. 58. Расчетное армирование стен по оси Y у верхней грани.

Площадь поперечной арматуры вдоль оси У при шаге 100 см; максимум в элементе 1 Рис. 59. Расчетное армирование стен поперечной арматурой.