How to Symbolic Traversal

Symbolic State Traversal for the state machine M based on the algorithm given lecture slides 5-10

Given M (assume M has no input):

statevariables:
$$(s_0, s_1)$$
 $\delta = \begin{cases} s'_0 = \neg s_0 \\ s'_1 = \neg s_1 \end{cases}$ $S_{initial} = (0,0)$

Step 1:

Create BDD manger class.

Step 2:

Create variables for current and next state bits (s_0, s_1, s_0, s_1)

Step 3:

Compute BDD for δ :

$$\delta_0 = BDD. \neg (s_0) \quad \delta_1 = BDD. \neg (s_1)$$

Step 4:

Compute BDD for transition relation $\tau = (s_0. \delta_0 + s_0'. \delta_0). (s_1. \delta_1 + s_1'. \delta_1)$

$$\begin{split} \tau_0 &= BDD. \lor 2 \left(BDD. \land 2(s_0', \delta_0), BDD. \land 2 \left(BDD. \neg (s_0'), BDD. \neg (\delta_0)\right)\right) \\ \tau_1 &= BDD. \lor 2 \left(BDD. \land 2(s_1', \delta_1), BDD. \land 2 \left(BDD. \neg (s_1'), BDD. \neg (\delta_1)\right)\right) \\ \tau &= BDD. \land 2(\tau_0, \tau_1) \end{split}$$

Step 5:

Compute BDD for state characteristic function for initial state (0,0),

$$c_{s_0} = (s_0 = 0).(s_1 = 0)$$

Note: "==" is equivalent to XNOR

$$c_{s_0} = BDD \land 2(BDD.xnor2(s_0, 0), BDD.xnor2(s_1, 0))$$

```
Step 6:
```

$$c_{Rit} = c_{s_0}$$

Step 7:

$$c_R = c_{Rit}$$

Step 8:

Compute BDD for $img(s'_0, s'_1) = \exists_{s_0} \exists_{s_1} c_R. \tau$

$$temp1 = BDD \land 2(c_R, \tau)$$

 $temp2 = BDD. \lor 2(BDD. coFactorTrue(temp1, s_1), BDD. coFactorFalse(temp1, s_1))$ $img(s_0', s_1') = BDD. \lor 2(BDD. coFactorTrue(temp2, s_0), BDD. coFactorFalse(temp2, s_0))$

Step 9:

Form $img(s_0, s_1)$ from $img(s'_0, s'_1)$: $img(s_0, s_1) = \exists_{s'_0} \exists_{s'_1} (s_0 = s'_0). (s_1 = s'_1). img(s'_0, s'_1)$

$$temp1 = BDD. \land 2(BDD. xnor2(s_0, s'_0), BDD. xnor2(s_1, s'_1))$$
$$temp2 = BDD. \land 2(temp1, img(s'_0, s'_1))$$

 $temp3 = BDD. \lor 2(BDD. coFactorTrue(temp2, s_1'), BDD. coFactorFalse(temp2, s_1'))$

 $img(s_0, s_1) = BDD. \lor 2(BDD. coFactorTrue(temp3, s'_0), BDD. coFactorFalse(temp3, s'_0))$

Step 10:

Compute BDD for new c_{Rit} :

$$c_{Rit} = BDD. \lor 2(c_R, img(s_0, s_1))$$

Step 11:

Check $c_R = c_{R_{it}}$:

At this step, c_R consists of (0,0) and (1,1) and c_{Rit} consists of (1,1), therefore it is not a fixed point and we have go back to step 7 and perform second iteration.

Step 12:

After second iteration both $c_R \wedge c_{R_{it}}$ consists of (0,0) and (1,1), therefore we reached a fixed point.

After this step, c_R is the symbolic representation of set of reachable states.