

Indian Institute of Technology Kharagpur

Review of Network Technologies

Prof. Indranil Sen Gupta
Dept. of Computer Science & Engg.
I.I.T. Kharagpur, INDIA

Lecture 2: Review of network technologies

On completion, the student will be able to:

- 1. Distinguish between a LAN and a WAN.
- 2. Explain the differences between circuit switching and packet switching.
- 3. Explain the differences between virtual circuit and datagram packet switching.
- 4. Explain the 7-layer OSI model.
- 5. Distinguish between the workings of hub, switch and router.
- 6. Illustrate the typical architecture of an organizational

Networking: Basic Concepts

- Computer Network
 - >A communication system for connecting computers / hosts
- Why?
 - > Better connectivity
 - >Better communication
 - > Better sharing of resources
 - **≻Bring people together**

Types of Computer Networks

- Local Area Network (LAN)
 - Connects hosts within a relatively small geographical area
 - Same room
 - Same building
 - Same campus
- Wide Area Network (WAN)
 - > Hosts may be widely dispersed
 - Across campuses
 - Across cities / countries/ continents

Faster

Cheaper

Slower

Expensive

LAN and WAN: a Comparison

- LAN
 - >Typical speeds
 - 10 Mbps to 10 Gbps
 - **≻Typical cost**
 - 1 crore for a hundred node LAN (one-time cost)

• WAN

- >Typical speeds
 - 64 Kbps to8 Mbps
- **≻Typical cost**
 - 30 lakhs (recurring cost)

Circuit Switching

- A dedicated communication path is required between two stations.
 - >The path follows a fixed sequence of intermediate links.
 - > A logical channel gets defined on each physical link.
 - Dedicated to the connection.

Circuit Switching (contd.)

- In circuit switching, three steps are required for communication:
 - > Connection establishment
 - Required before data transmission.
 - **▶** Data transfer
 - Can proceed at maximum speed.
 - **≻**Connection termination
 - Required after data transmission is over.
 - For deallocation of network resources.

Circuit Switching (contd.)

- Drawbacks:
 - ➤ Channel capacity gets dedicated during the entire duration of communication.
 - Acceptable for voice communication.
 - Very inefficient for bursty traffic.
 - ➤ There is an initial delay.
 - For connection establishment.

Packet Switching

- Modern form of long-distance data communication.
 - > Network resources are not dedicated.
 - >A link can be shared.
- The basic technology has evolved over time.
 - > Basic concept has remained the same.
 - ➤ Widely used for long-distance data communication.

Packet Switching (contd.)

- Data are transmitted in short packets (~ Kbytes).
 - >A longer message is broken up into smaller chunks.
 - > The chunks are called packets.
 - > Every packet contains a header.
 - Relevant information for routing, etc.

Packet Switching (contd.)

- Packet switching is based on storeand-forward concept.
 - > Each intermediate network node receives a whole packet.
 - > Decides the route.
 - Forwards the packet along the selected route.

Packet Switching (contd.)

- Advantages:
 - >Links can be shared; so link utilization is better.
 - > Suitable for computer-generated traffic.
 - Typically bursty in nature.
 - > Buffering and data rate conversion can be performed easily.
 - >Some packets may be given priority over others, if desired.

Packet Switching (contd.)

- How are the packets transmitted?
 - >Two alternative approaches:
 - Virtual Circuits
 - Datagram
- · The abstract network model:

Virtual Circuit Approach

- Similar in concept to circuit switching.
 - >A route is established before packet transmission starts.
 - > All packets follow the same path.
 - >The links comprising the path are not dedicated.
 - Different from circuit switching in this respect.
- Analogy:
 - >Telephone system.

Virtual Circuit Approach (contd.)

- How it works?
 - >Route is established a priori.
 - ➤ Packet forwarded from one node to the next using store-and-forward scheme.
 - ➤Only the virtual circuit number need to be carried by a packet.
 - Each intermediate node maintains a table.
 - Created during route establishment.
 - Used for packet forwarding.
 - ➤ No dynamic routing decision is taken by the intermediate nodes.

Datagram Approach

- Basic concept:
 - >No route is established beforehand.
 - ➤ Each packet is transmitted as an independent entity.
 - > Does not maintain any history.
- Analogy:
 - **▶**Postal system.

Datagram Approach (contd.)

- Every intermediate node has to take routing decisions dynamically.
 - ➤ Makes use of a routing table.
 - > Every packet must contain source and destination addresses.
- Problems:
 - > Packets may be delivered out of order.
 - >If a node crashes momentarily, all of its queued packets are lost.
 - > Duplicate packets may also be generated.

Datagram Approach (contd.)

- Advantages:
 - Faster than virtual circuit for smaller number of packets.
 - No route establishment and termination.
 - **►**More flexible.
 - ▶Packets between two hosts may follow different paths.
 - Can handle congestion/failed link.

Comparative Study

- Three types of delays must be considered:
 - > Propagation Delay
 - Time taken by a data signal to propagate from one node to the next.
 - > Transmission Time
 - Time taken to send out a packet by the transmitter.
 - **▶**Processing Delay
 - Time taken by a node to "process" a packet.

Circuit Switching

 After initial circuit establishment, data bits sent continuously without any delay.

Virtual Circuit Packet Switching

- Call request packet sent from source to destination.
- Call accept packet returns back.
- Packets sent sequentially in a pipelined fashion.
 - >Store-and-forward approach.

Datagram Packet Switching

- No initial delay.
- The packets are sent out independently.
 - ➤ May follow different paths.
 - > Follow store-and-forward approach.

Layered Network Architecture

- Open systems interconnection (OSI) reference model.
 - ➤ Seven layer model.
 - **≻**Communication functions are partitioned into a hierarchical set of layers.
- Objective:
 - > Systematic approach to design.
 - ➤ Changes in one layer should not require changes in other layers.

Layer Functions

- Physical
 - ➤Transmit raw bit stream over a physical medium.
- Data Link
 - ➤ Reliable transfer of frames over a point-topoint link (flow control, error control).
- Network
 - >Establishing, maintaining and terminating connections.
 - > Routes packets through point-to-point links.

Layer Functions (contd.)

- Transport
 - > End-to-end reliable data transfer, with error recovery and flow control.
- Session
 - **≻**Manages sessions.
- Presentation
 - > Provides data independence.
- Application
 - >Interface point for user applications.

Internetworking Devices

- Hub
 - > Extends the span of a single LAN.
- Bridge / Layer-2 Switch
 - > Connects two or more LANs together.
 - **≻Works at data link layer level.**
- Router / Layer-3 Switch
 - ➤ Connects any combination of LANs and WANs.
 - >Works at network layer level.

End of Lecture 2

QUIZ QUESTIONS ON LECTURE 2

Quiz Questions on Lecture 2

- 1. With respect to speed of data transfer, which of LAN or WAN is faster?
- 2. What is the typical speed of a modern Ethernet backbone LAN?
- 3. Why is circuit switching not suitable for computer-to-computer traffic?
- 4. What are the three steps that are required for data communication using circuit switching?

Quiz Questions on Lecture 2

- 5. With respect to sharing of links, which of circuit switching or packet switching is more suitable?
- 6. Among virtual circuit and datagram, which approach requires less information in the packet header?
- 7. Which of virtual circuit and datagram makes better utilization of the links?
- 8. Which of virtual circuit and datagram will guarantee ordered delivery of packets in the absence of any errors?

Quiz Questions on Lecture 2

- 9. Under what circumstances will the datagram method of packet delivery prove useful?
- 10. Five packets need to be sent from a host A to another host B. Which of virtual circuit or datagram would be faster?
- 11. For a 5 Kbytes packets sent over a 10 Mbps transmission link, what is the transmission time of the packet?

Quiz Questions on Lecture 2

- 12. A 600-byte packet is sent over a 20 Kbps point-to-point link whose propagation delay is 10 msec. After how much delay will the packet reach the destination?
- 13. Which layers in the OSI model are host-to-host layers?
- 14. What is the responsibility of the network layer in the OSI model?
- 15. What is the responsibility of the data link layer in the OSI model?
- 16. What is the basic difference between a bridge and a router?