Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)										,	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

ÉVALUATION COMMUNE
CLASSE: Première
EC : □ EC1 ⊠ EC2 □ EC3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
□ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 – QCM (5 points)

Ce QCM comprend 5 questions indépendantes. Pour chacune d'elles, une seule des réponses proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

Question 1

Pour tout entier naturel n, on définit la suite (u_n) par : $u_n = 3 \times \frac{10^n}{2^{n+1}}$ La suite (u_n) est une suite :

A.	В.	C.	D.
arithmétique de	géométrique de	arithmétique de	géométrique de
raison 3.	raison 3.	raison 5.	raison 5.

Question 2

Dans un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$ du plan, on considère les points A(-2; 1) et B(2; 4). La droite Δ passe par le point C(-1; 1) et admet le vecteur \overrightarrow{AB} pour vecteur normal. La droite Δ admet pour équation cartésienne :

A.	В.	C.	D.
3x - 4y + 7 = 0	4x + 3y + 1 = 0	3x - 4y - 1 = 0	4x + 3y + 7 = 0

Question 3

Dans l'intervalle $\left[0; \frac{\pi}{2}\right]$, l'unique solution de l'équation : $2\cos(x+\pi)+1=0$ est :

A.	B.	C.	D.
$\frac{\pi}{3}$	$-\frac{5\pi}{3}$	$\frac{\pi}{6}$	$\frac{2\pi}{3}$

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı:			
	(Les nu	ıméros	figure	ent sur	la con	vocatio	on.)			•							•	
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :						/												1.1

Question 4

On considère la fonction f définie et dérivable sur \mathbf{R} par : $f(x) = \frac{e^x}{1 + e^x}$ La fonction dérivée f' de la fonction f est définie par :

A.	В.	C.	D.
$f'(x) = \frac{e}{1 + e}$	$f'(x) = \frac{e^x}{(1 + e^x)^2}$	f'(x)=1	$f'(x) = \frac{-e^x}{(1 + e^x)^2}$

Question 5

On considère la fonction f définie sur ${\bf R}$ par : $f(x)=-0.5(x+2)^2+4.5$. On peut affirmer que :

Α.

Le tableau de variations de la fonction f est donné ci-dessous :

В.

La courbe représentative de la fonction f admet un sommet de coordonnées (4,5; -2).

C.

Le signe de f(x) est donné ci-dessous :

x	-∞		-5		1	+∞
f(x)		_		+		-

D.

La fonction f admet un minimum en -2 égal à 4,5.

Exercice 2 (5 points)

Une fleuriste met en vente quatre sortes de bouquets dont les tarifs et la composition sont indiqués dans le tableau ci-dessous :

Bouquet de tulipes orange : 10,50 €	Bouquet de roses orange : 23,50 €
Bouquet de tulipes blanches : 11,60 €	Bouquet de roses blanches : 25,50 €

- 72 % des bouquets mis en vente ne contiennent que des roses.
- Les autres bouquets mis en vente ne contiennent que des tulipes.
- 20 % des bouquets de tulipe mis en vente ne contiennent que des tulipes orange.
- 36 % des bouquets mis en vente ne contiennent que des roses blanches.

Un client achète au hasard un bouquet parmi ceux mis en vente par la fleuriste. On note :

- R l'événement : « Le bouquet acheté par ce client est composé de roses. »
- B l'événement : « Le bouquet acheté par ce client est composé de fleurs blanches. »

Les événements contraires des événements R et B sont notés respectivement \overline{R} et \overline{B} .

- **1. a.** Donner, sans justifier, la probabilité $P(R \cap B)$.
 - **b.** Recopier et compléter le plus possible l'arbre de probabilité ci-dessous en traduisant uniquement les données de l'énoncé.

- **c.** Montrer que P(B) = 0.584.
- **2.** On note *X* la variable aléatoire qui donne le prix d'un bouquet acheté par un client.
 - **a.** Recopier et compléter le tableau ci-dessous donnant, pour chaque valeur x_i de X, la probabilité de l'événement $\{X=x_i\}$. Justifier.

x_i		
$P(X=x_i)$		

b. Calculer l'espérance de la variable aléatoire *X*. On arrondira le résultat au centième.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	n:			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 (5 points)

Soit f la fonction définie sur l'intervalle [0;10] par : $f(x)=60x\mathrm{e}^{-0.5x}$. La fonction dérivée de la fonction f est notée f'.

- **1.** Démontrer que, pour tout réel x, $f'(x) = -30(x-2)e^{-0.5x}$.
- **2.** Déterminer le signe de f'(x) sur l'intervalle [0; 10].
- **3.** Établir le tableau de variation de la fonction f sur l'intervalle [0;10]. On indiquera dans ce tableau les valeurs exactes des extremums.
- **4.** Quelles sont les coordonnées du point en lequel la tangente à la courbe représentative de la fonction f est parallèle à l'axe des abscisses ?
- **5.** Déterminer l'équation réduite de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.

Exercice 4 (5 points)

Le 1^{er} janvier 2019, le propriétaire d'un appartement a fixé à 650 euros le montant des loyers mensuels pour l'année 2019. Chaque 1^{er} janvier, le propriétaire augmente de 1,52 % le loyer mensuel.

On modélise l'évolution du montant des loyers mensuels par une suite (u_n) . L'arrondi à l'unité du terme u_n représente le montant, en euros, du loyer mensuel fixé le 1^{er} janvier de l'année (2019+n), pour n entier naturel. Ainsi $u_0=650$ euros.

- **1. a.** Calculer le montant du loyer mensuel fixé le 1^{er} janvier 2020.
 - **b.** Quelle est la nature de la suite (u_n) ? Préciser sa raison et son premier terme.
 - c. Calculer le montant du loyer mensuel qui, selon ce modèle, sera fixé pour l'année 2027.
- **2.** Pour calculer la somme totale des loyers perçus par le propriétaire durant les années 2019 à 2019+A, on utilise la fonction ci-dessous, écrite en langage Python.

```
1 def somme(A):
2 S=0
3 n=0
4 while n<=A:
5 S=S+7800*1.0152**n
6 n = n + 1
7 return S
```

L'exécution de ce programme pour quelques valeurs de A donne les résultats ci-dessous :

```
>>> somme(0)
7800.0
>>> somme(1)
15718.560000000001
>>> somme(2)
23757.482112000005
>>> somme(3)
31918.595840102407
>>> somme(8)
74623.04180934158
```

- a. Interpréter, dans le contexte de l'exercice, le résultat obtenu lors de l'appel somme(1).
- b. Déterminer la somme totale des loyers perçus par le propriétaire durant les années 2022 à 2027 incluses. On arrondira le résultat à l'unité.