<u>REMARKS</u>

At the outset, the Examiner is thanked for the courtesy extended during the telephone interview conducted September 28, 2004. During that interview, the following issues were discussed.

With regard to the rejection under 35 U.S.C. § 112, second paragraph, as applied to the independent claims (Office Action, ¶ 8A), the Examiner stated that those claims did not recite that steps (a) and (b) include two-dimensional scans having at least one corresponding dimension. Proposed claim language to overcome the rejection was discussed. With regard to the rejection under 35 U.S.C. § 112, second paragraph, specifically applied to claims 6-9 and 33-36 (Office Action, ¶ 8B), the Examiner stated that the general recitation of a hill-climbing technique did not specify that a maximum was reached and could be broadly read on several techniques. The Examiner also requested the citation of a reference teaching hill climbing. Finally, with regard to the grounds of rejection involving *Higashi*, the English translation of that reference was discussed, as was the following difference between the applied reference and the present invention. The applied reference teaches a projection technique, namely, MIP. By contrast, the present invention solves for actual values in image space of the unknown high-resolution voxel values to form the isotropic, high-resolution, three-dimensional image in the image space. Again, proposed claim language to overcome the rejection was discussed.

The Applicants hereby respond to the Office Action mailed May 18, 2004, as follows.

In response to the objection to the drawings, a Submission of Formal Drawings is filed concurrently herewith.

In response to the rejection of claims 1, 2, 4-10, 12-13, 28, 29, 31-37 and 39-40 under 35 U.S.C. § 112, second paragraph, the Applicants respectfully submit that the present Amendment

overcomes that rejection. In addition, the Applicants attach hereto a copy of the relevant portion of Rich et al, *Artificial Intelligence*, *Second Edition*, © 1991 McGraw-Hill, Inc., which explains hill climbing.

The Applicants further submit that the invention defined by present claims 1, 2, 4, 5, 10, 12, 13, 28, 29, 31, 32, 37, 39 and 40 would not have been obvious over *Higashi*.

The present claimed invention is not directed merely to a projection technique. Instead, the present claimed invention solves for actual values of the unknown high-resolution voxel values in the image space.

To that end, the present claimed invention has the following noteworthy characteristics. The image data of the first plurality of slices are two-dimensional image data. The image data of the second plurality of slices are also two-dimensional image data and have at least one dimension substantially in common with the image data of the first plurality of slices. The first and second plurality of slices are registered to define a matrix of isotropic, high-resolution voxels in image space. The present claimed invention solves for the unknown high-resolution voxel values to form the isotropic, high-resolution, three-dimensional image in the image space. As discussed during the interview, steps (a) and (b) concern raw data, while step (c) concerns the transition from raw data space to image space and step (d) occurs within the image space.

The projection technique of *Higashi* does not teach or suggest a technique for actually solving for the unknown high-resolution voxel values to form the image in the image space in the manner defined in the amended claims. The remaining references of record do not overcome that deficiency of *Higashi*. Therefore, the Applicants respectfully submit that the invention as presently claimed is patentable over the prior art of record.

For the reasons set forth above, the Applicants respectfully submit that the application as amended is in condition for allowance. Notice of such allowance is earnestly solicited.

If any questions remain that can be addressed through a telephone communication, the Examiner is invited to telephone the undersigned at the telephone number set forth below.

Please charge any shortage of fees, or credit any overpayment thereof, to BLANK ROME LLP, Deposit Account No. 23-2185 (116741-00138). In the event that a petition for an extension of time is required to be submitted herewith and in the event that a separate petition does not accompany this Response or is insufficient to render this Response timely, the Applicants hereby petition under 37 C.F.R. §1.136(a) for an extension of time for as many months as are required to render this submission timely. Any fee due is authorized above.

Respectfully submitted,

José TAMEZ-PEÑA et al

David J. Edmondson

Reg. No. 35,126

Blank Rome LLP
The Watergate Building
600 New Hampshire Avenue, N.W.
Washington, D.C. 20037
202-772-5800 (receptionist)
202-772-5838 (direct dial to attorney signing paper)
202-572-1438 (facsimile

11:00

RECEIVED

OCT 08 2004

TECH CENTER 2800

Artificial Intelligence

Second Edition

Elaine Rich

Microelectronics and Computer Technology Corporation

Kevin Knight

Carnegie Mellon University

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas

Hamburg Lisbon London Madrid Mexico Milan Montreal

New Delhi Paris San Juan São Paulo Singapore Sydney

Tokyo Toronto

P0

Artificial Intelligence

Copyright @1991, 1983 by McGraw-Hill, Inc. without the prior written permission of the publisher or by any means, or stored in a data base or retrieval system, or distributed in any form no part of this publication may be reproduced Except as permitted under the United States Copyright Act of 1976. Printed in the United States of America All rights reserved.

ISBN 0-07-052263-4

R. R. Donnelley & Sons Company was printer and binder. the production supervisor was Louise Karam. The editors were David M. Shapiro and Joseph F. Murphy;

Library of Congress Cataloging in Publication Data

Artificial Intelligence / Elaine Rich, Kevin Knight.—2nd ed ISBN 0-07-052263-4 Includes bibliographical references and index

11:00

006.3 — dc20 Q338.R53

Artificial intelligence.

I. Knight, Kevin.

II. Title

09/30/04

90-20608

About the Authors

sciences at the University of Texas, she received her Ph.D. from Carnegie Me and Computer Technology Corporation (MCC). Formerly on the faculty in comp representation, and machine translation. University. Her research interests include natural language processing, knowl Elaine Rich is Director of the Artificial Intelligence Laboratory at the Microelectre

at MCC, his research interests include natural language processing, unification, his Ph.D. in computer science at Carnegie Mellon University. A regular consu Kevin Knight received his B.A. from Harvard University and is presently comple machine translation, and search.

BEST AVAILABLE COPY

a reference to a method for finding an object in the British Museum by wandering

randomly. Between these two extremes lies a practical middle ground in which the

seem unlikely to lead to a solution. This evaluation is performed by a heuristic function search process proceeds systematically, but some paths are not considered because they will ever be found. In this form, it is also known as the British Museum algorithm, operate by generating solutions randomly, but then there is no guarantee that a solution

simply an exhaustive search of the problem space. Generate-and-test can, of course, also solutions must be generated before they can be tested. In its most systematic form, it is

The generate-and-test algorithm is a depth-first search procedure since complete

will find a solution eventually, if one exists. Unfortunately, if the problem space is very

If the generation of possible solutions is done systematically, then this procedure

large, "eventually" may be a very long time.

Generate-and-Test

The generate-and-test strategy is the simplest of all the approaches we discuss. It consists of the following steps:

Algorithm: Generate-and-Test

1. Generate a possible solution. For some problems, this means generating a par-

ticular point in the problem space. For others, it means generating a path from a

start state.

Test to see if this is actually a solution by comparing the chosen point or the

endpoint of the chosen path to the set of acceptable goal states.

If a solution has been found, quit. Otherwise, return to step 1.

11:00

09/30/04

ELEC COMPUTER ENG

as described in Section 2.2.2.

above, to traverse a graph rather than a tree. appear often in the tree, however, it may be better to modify that procedure, as described

depth-first search tree with backtracking. If some intermediate states are likely to

The most straightforward way to implement systematic generate-and-test is as a

showing. This problem can be solved by a person (who is a much slower processor for of the cubes in a row such that on alt four sides of the row one block face of each color is each cube painted one of four colors. A solution to the puzzle consists of an arrangement For example, consider the puzzle that consists of four six-sided cubes, with each side of and exhaustively trying all possibilities. It can be solved even more quickly using a this sort of thing than even a very cheap computer) in several minutes by systematically heuristic generate-and-test procedure. A quick glance at the four blocks reveals that Using this heuristic, many configurations need never be explored and a solution can be outside faces. As many of them as possible should be placed to abut the next block. with several red faces, it would be a good idea to use as few of them as possible as there are mure, say, red faces than there are of other colors. Thus when placing a block For simple problems, exhaustive generate-and-test is often a reasonable technique.

Or, as another story goes, if a sufficient number of monkeys were placed in front of a set of typewriters the same land than they would eventually produce all of the works of Shakespeare.

all by itself, is not a very effective technique. But when combined with other techniques to restrict the space in which to search even further, the technique can be very effective. Unfortunately, for problems much harder than this, even heuristic generate-and-test

and nuclear magnetic resonance (NMR) data. It uses a strategy called plan-generate-test. et al., 1980], which infers the structure of organic compounds using mass spectrogram procedure then uses those lists so that it can explore only a fairly limited set of structures creates lists of recommended and contraindicated substructures. The generate-and-test in which a planning process that uses constraint-sutisfaction techniques (see Section 3.5) Constrained in this way, the generate-and-test procedure has proved highly effective. For example, one early example of a successful Al program is DENDRAL [Lindsay

are avoided by judicious reference to the plans. in the generate-and-test process, the lack of detailed accuracy becomes unimportant. the world. But by using it only to produce pieces of solutions that will then be exploited is that it often produces somewhat inaccurate solutions since there is no feedback from overcome the limitations that each possesses individually. A major weakness of planning generate-and-test, is an excellent example of the way techniques can be combined to constraint satisfaction) with the use of the plan by another problem-solving method. And, at the same time, the combinatorial problems that arise in simple generate-and-test This combination of planning, using one problem-solving method (in this case,

of how close a given state is to a goal state, the generate procedure can exploit it as if the test function is augmented with a heuristic function2 that provides an estimate pure generate-and-test procedure, the test function responds with only a yes or no. But is used to help the generator decide which direction to move in the search space. In a solution is being performed. Hill climbing is often used when a good heuristic function of the heuristic function can be done at almost no cost at the same time that the test for a shown in the procedure below. This is particularly nice because often the computation Hill climbing is a variant of generate-and-test in which feedback from the test procedure are those in which this distance is minimized between the current location and the location of the tall buildings and the desirable states downtown. You simply aim for the tall buildings. The heuristic function is just distance example, suppose you are in an unfamiliar city without a map and you want to get is available for evaluating states but when no other useful knowledge is available. For

downtown is an example of such a problem. For these problems, hill climbing can exist whenever it is possible to recognize a goal state just by examining it. Getting answer to the question, "Is a good solution absolute or relative?" Absolute solution: maximization (or minimization) problems, such as the traveling salesman problem. Ir terminate whenever a goal state is reached. Only relative solutions exist, however, for to terminate hill climbing when there is no reasonable alternative state to move to. these problems, there is no a priori goal state. For problems of this sort, it makes sense Recall from Section 2.3.4 that one way to characterize problems is according to their

BEST AVAILABLE COPY

the literature of mathematical optimization ²What we are calling the heuristic function is sometimes also called the objective function, particularly in

CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

Simple Hill Climbing

The simplest way to implement hill climbing is as follows

Algorithm: Simple Hill Climbing

- Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise continue with the initial state as the current state
- Loop until a solution is found or until there are no new operators left to be applied in the current state:
- (a) Select an operator that has not yet been applied to the current state and apply it to produce a new state
- 3 Evaluate the new state
- i. If it is a goal state, then return it and quit.
- ii. If it is not a goal state but it is better than the current state, then make it the current state.
- If it is not better than the current state, then continue in the loop

other methods discussed in the rest of this chapter heuristic search methods, and it is into the control process. It is the use of such knowledge that makes this and the test is the use of an evaluation function as a way to inject task-specific knowledge that same knowledge that gives these methods their power to solve some otherwise intractable problems. The key difference between this algorithm and the one we gave for generate-and-

program is consistent in its interpretation. it means a lower value. It does not matter which, as long as a particular hill-climbing state hetter than another?" For the algorithm to work, a precise definition of hetter must be provided. In some cases, it means a higher value of the heuristic function. In others, Notice that in this algorithm, we have asked the relatively vague question, "Is one

close a particular configuration is to being a solution. One such function is simply the at random or with the aid of the heuristic function described in the last section. Now definitions, the next step is to generate a starting configuration. This can either be done simply pick a block and rotate it 90 degrees in any direction. Having provided these transforming one configuration into another. Actually, one rule will suffice. It says will have a value of 16. Next we need to define a set of rules that describe ways of sum of the number of different colors on each of the four sides. A solution to the puzzle To solve the problem, we first need to define a heuristic function that describes how tey a different perturbation the resulting state is better, then we keep it. If not, we return to the previous state and hill climbing can begin. We generate a new state by selecting a block and rotating it. If To see how hill climbing works, let's return to the puzzle of the four colored blocks

11:00

3.2.2 Steepest-Ascent Hill Climbing

:

09/30/04

the first state that is better than the current state is selected. The algorithm works climbing or gradient search. Notice that this contrasts with the basic method in whi

Algorithm: Steepest-Ascent Hill Climbing

- 1. Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwis continue with the initial state as the current state.
- Loop until a solution is found or until a complete iteration produces no change
- (a) Let SUCC be a state such that any possible successor of the current sta will be better than SUCC
- For each operator that applies to the current state do:

ਭ

- Apply the operator and generate a new state.
- Evaluate the new state. If it is a goal state, then return it and quit. not, compare it to SUCC. If it is better, then set SUCC to this state it is not better, leave SUCC alone.
- If the SUCC is better than current state, then set current state to SUCC.

that must be considered when deciding which method will work better for a particula number of moves required to get to a solution (usually longer for basic hill climbin) time required to select a move (usually longer for steepest-ascent hill climbing) and th is difficult since there are so many possible moves. There is a trade-off between the consider all perturbations of the initial state and choose the best. For this problem, th To apply steepest-ascent hill climbing to the colored blocks problem, we mu

no better states can be generated. This will happen if the program has reached either local maximum, a plateau, or a ridge algorithm may terminate not by finding a goal state but by getting to a state from whic Both basic and steepest-ascent hill climbing may fail to find a solution. Eithe

appear to make things worse. Local maxima are particularly frustrating better than some other states farther away. At a local maximum, all moves they are called faothills. because they often occur almost within sight of a solution. In this case, A local maximum is a state that is better than all its neighbors but is not

A plureuu is a flat area of the search space in which a whole set of neighborthe best direction in which to move by making local comparisons ing states have the same value. On a plateau, it is not possible to determine

would like to climb). But the orientation of the high region, compared to that is higher than surrounding areas and that itself has a slope (which one A ridge is a special kind of local maximum. It is an area of the search space 09/30/04

3.2. HILL CLIMBING

There are some ways of dealing with these problems, although these methods are by no means guaranteed:

- Backtrack to some earlier node and try going in a different direction. This is particularly reasonable if at that node there was another direction that looked as promising or almost as promising as the one that was chosen earlier. To implement this strategy, maintain a list of paths almost taken and go back to one of them if the path that was taken leads to a dead end. This is a fairly good way of dealing with local maxima.
- Make a big jump in some direction to try to get to a new section of the search space. This is a particularly good way of dealing with plateaus. If the only rules available describe single small steps, apply them several times in the same transfer.
- Apply two or more rules before doing the test. This corresponds to moving in several directions at once. This is a particularly good strategy for dealing with ridges

Even with these first-aid measures, hill climbing is not always very effective. It is particularly unsuited to problems where the value of the heuristic function drops off suddenly as you move away from a solution. This is often the case whenever any sort of threshold effect is present. Hill climbing is a local method, by which we mean that it of threshold effect is present. Hill climbing is a local method, by which we mean that it after than by exhaustively exploring all the consequences. It shares with other local rather than by exhaustively exploring all the consequences. It shares with other local rethods, such as the nearest neighbor heuristic described in Section 2.2.2, the advantage methods, such as the nearest neighbor heuristic described in Section 2.2.2, the advantage methods, such as the nearest neighbor heuristic fooks only one methods. But it also of being less combinatorially explosive than comparable global methods. But it also shares with other local methods a lack of a guarantee that it will be effective. Although it is true that the hill-climbing procedure itself looks only one move ahead and not any it is true that the hill-climbing procedure itself looks only one move ahead and not any it is true that the hill-climbing procedure itself looks only one move ahead and not any hat information is encoded in the heuristic function. Consider the blocks world problem shown in Figure 3.1. Assume the same operators (i.e., pick up one block and put it on shown in Figure 3.1. Assume the same operators (i.e., pick up one block and put it on the table; pick up one block and put it on another one) that were used in Section 2.3.1.

Local: Add one point for every block that is resting on the thing it is supposed to be resting on. Subtract one point for every block that is sitting on the wrong thing.

Using this function, the goal state has a score of 8. The initial state has a score of 4 (since it gets one point added for blocks C. D. E, F, G, and H and one point subtracted for blocks A and B). There is only one move from the initial state, namely to move block A to the table. That produces a state with a score of 6 (since now A's position causes a point to be added rather than subtracted). The hill-climbing procedure will accept that move. From the new state, there are three possible moves, leading to the three states shown in Figure 3.2. These states have the scores: (a) 4, (b) 4, and (c) 4. Hill climbing shown in Figure 3.2. These states have lower scores than the current state. The process

Figure 3.1: A Hill-Climbing Problem

Figure 3.2: Three Possible Moves

than any of its successors because more blocks rest on the correct objects. To solve th problem, it is necessary to disassemble a good local structure (the stack B through I because it is in the wrong global context.

We could blame hill climbing itself for this failure to look far enough ahead to fin a solution. But we could also blame the heuristic function and try to modify it. Suppower try the following heuristic function in place of the first one:

Global: For each block that has the correct support structure (i.e., the complete structure underneath it is exactly as it should be), add one point for every block in the support structure. For each block that has an incorrect support structure, subtract one point for every block in the existing support structure.

BEST AVAILABLE COPY

00

CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

J.B. HICK CHIMMINI

hill climbing will choose move (r), which is the correct one. This new heuristic function same hill climbing procedure that failed with the earlier heuristic function now works he taken apart; and correct structures are good and should be built up. As a result, the captures the two key aspects of this problem: incorrect structures are bad and should have the following scores: (a) -28, (b) -16, and (c) -15. This time, steepest-ascent longer has seven wrong blocks under it. The three states that can be produced next now

example, imagine a heuristic function that computes a value for a state by invoking its the case of a strange city, is not always available. And even if perfect knowledge is, For example, consider again the problem of driving downtown. The perfect heuristic own problem-solving procedure to look ahead from the state it is given to find a solution. in principle, available, it may not be computationally tractable to use. As an extreme function would need to have knowledge about one-way and dead-end streets, which, in global method by embedding a global method within it. But now the computational A heuristic function that does this converts the local hill-climbing procedure into a It then knows the exact cost of finding that solution and can return that cost as its value. with other methods that get it started in the right general neighborhood. very inefficient in a large, rough problem space. But it is often useful when combined advantages of a local method have been lost. Thus it is still true that hill climbing can be Unfortunately, it is not always possible to construct such a perfect heuristic function.

Simulated Annealing

process, some downhill moves may be made. The idea is to do enough exploration of Simulated annealing is a variation of hill climbing in which, at the beginning of the state. This should lower the chances of getting caught at a local maximum, a plateau, the whole space early on so that the final solution is relatively insensitive to the starting

or a ridge. objective function in place of the term heuristic function. we make two notational changes for the duration of this section. In order to be compatible with standard usage in discussions of simulated annealing, We use the term

Thus we actually describe a process of valley descending rather than hill climbing. And we attempt to minimize rather than maximize the value of the objective function

a higher energy state will occur. This probability is given by the function the valley descending occurs naturally. But there is some probability that a transition to process is one of valley descending in which the objective function is the energy level. is reached. The goal of this process is to produce a minimal-energy final state. Thus this melted (i.e., raised to high energy levels) and then gradually cooled until some solid state Physical substances usually move from higher energy configurations to lower ones, so after the physical process of *unnealing*, in which physical substances such as metals are Simulated annealing (Kirkpatrick et al., 1983) as a computational process is patterned

11:00

$$p = e^{-\Delta E/kT}$$

<u>7</u>. where ΔE is the positive change in the energy level. T is the temperature, and kRollzmann's constant. Thus, in the physical valley descending that occurs during

09/30/04

small upward moves are allowed until finally the process converges to a local minim lower. One way to characterize this process is that downfull moves are allowed anytin temperature is high, and they become less likely at the end as the temperature become decreases. Thus such moves are more likely during the beginning of the process when t Large upward moves may occur early on, but as the process progresses, only relative one. Also, the probability that an uphill move will be made decreases as the temperato

schedule is too slow, time is wasted. At high temperatures, where essentially rando structure, which corresponds to a global minimum, is more likely to develop. But, if t wasted after the final structure has already been formed. The optimal annealing schede motion is allowed, nothing useful happens. At low temperatures a lot of time may minimum is reached. If, however, a slower schedule is used, a uniform crystalli rapidly, stable regions of high energy will form. In other words, a local but not glol annealing processes are very sensitive to the annealing schedule. If cooling occurs t for each particular annealing problem must usually be discovered empirically. The rate at which the system is cooled is called the annealing schedule. Physic

straightforward. In the physical process, temperature is a well-defined notion, measure it represents not specifically the change in energy but more generally, the change simple hill climbing can be used. In this analogous process, ΔE is generalized so the of simulated annealing, which can be used (although not always effectively) whenev both E and T are artificial, it makes sense to incorporate k into T, selecting values temperature and the units of energy. Since, in the analogous process, the units in standard units. The variable k describes the correspondence between the units the value of the objective function, whatever it is. The analogy for kT is slightly h T that produce desirable behavior on the part of the algorithm. Thus we use the revi These properties of physical annealing can be used to define an analogous proce

$$p'=c^{-\Delta \varepsilon/r}$$

We discuss this briefly below after we present the simulated annealing algorithm. But we still need to choose a schedule of values for T (which we still call temperature

hill-climbing procedure. The three differences are: The algorithm for simulated annealing is only slightly different from the sim

- The annealing schedule must be maintained
- Moves to worse states may be accepted.
- It is a good idea to maintain, in addition to the current state, the best state for in accepting moves to worse states), the earlier state is still available. so far. Then, if the final state is worse than that earlier state (because of bad II

Algorithm: Simulated Annealing

- Evaluate the initial state. If it is also a goal state, then return it and quit. Otherw continue with the initial state as the current state.
- Initialize REST-SO-FAR to the current state