STA 2001 Final Exam

Full marks: 100 points

13:30-16:00, July 25,2023

1. (8 points) Let Y have a uniform distribution U(0,1), and let

$$W = a + (b - a)Y, \ a < b.$$

- (a) (4 point) Find the cdf of W.
- (b) (4 point) How is W distributed?
- 2. (12 points) Let X equal the weight in grams of a miniature candy bar. Assume that $\mu = E(X) = 24.43$ and $\sigma^2 = \text{Var}(X) = 2.20$. Let \bar{X} be the sample mean of a random sample of n = 30 candy bars. Find
 - (a) (4 point) $E(\bar{X})$.
 - (b) (4 point) $Var(\bar{X})$.
 - (c) (4 point) $P(24.17 \le \bar{X} \le 24.82)$, approximately.
- 3. (10 points) A car dealer sells X cars each day and always tries to sell an extended warranty on each of these cars. (In our opinion, most of these warranties are not good deals.) Let Y be the number of extended warranties sold; then $Y \leq X$. The joint pmf of X and Y is given by

$$f(x,y) = c(x+1)(4-x)(y+1)(3-y),$$

where x = 0, 1, 2, 3, y = 0, 1, 2, with $y \le x$.

- (a) (2 point) Find the value of c.
- (b) (2 point) Compute μ_X and σ_X^2 .
- (c) (2 point) Compute μ_Y and σ_Y^2 .
- (d) (2 point) Compute Cov(X, Y).
- (e) (2 point) Determine ρ , the correlation coefficient.
- 4. (10 points) If the distribution of X is $N(\mu, \sigma^2)$, then $M(t) = E(e^{tX}) = \exp(\mu t + \sigma^2 t^2/2)$. We then say that $Y = e^X$ has a lognormal distribution because $X = \ln Y$.

(a) (4 point) Show that the pdf of Y is

$$g(y) = \frac{1}{y\sqrt{2\pi\sigma^2}} \exp\left[-(\ln y - \mu)^2/2\sigma^2\right], \ 0 < y < \infty$$

.

- (b) (6 point) Find (i) E(Y), (ii) $E(Y^2)$, and (iii) Var(Y).
- 5. (10 points) Let Y be $\chi^2(n)$. Use the central limit theorem to demonstrate that $W = (Y n)/\sqrt{2n}$ has a limiting cdf that is N(0, 1). Hint: Think of Y as being the sum of a random sample from a certain distribution.
- 6. (10 points) Let X_i , i = 1, ..., n be independent binary random variables with uniform distribution over $\{0, 1\}$, where n > 0 is an integer. (You may consider $X_1, ..., X_n$ as a sequence of Bernoulli trials with success probability one half.) We also call $\mathbf{X} = (X_1, X_2, ..., X_n)$ a random binary sequence.
 - (a) (2 point) What is the probability that **X** is the all "1" sequence (i.e., $X_i = 1, i = 1, ..., n$)?
 - (b) (2 point) What is the probability that **X** has only "1"s on its odd positions and "0"s on its even positions (i.e., $X_i = 1$ if i is odd and $X_i = 0$ if i is even)?
 - (c) (6 points) The number of "1"s in **X** is $Y = \sum_{i=1}^{n} X_i$. Show that for any $\epsilon > 0$, the probability that $Y \in (n(0.5 \epsilon), n(0.5 + \epsilon))$ is at least 1ϵ when n is sufficiently large.
- 7. (10 points) Let X_1, X_2 , and X_3 be independent random variables with pdf $f(x) = e^{-x}, 0 < x < \infty$, zero elsewhere. Let $Y = \min(X_1, X_2, X_3)$, the minimum of X_1, X_2 and X_3 .
 - (a) (6 points) Find the pdf of Y.
 - (b) (4 points) Find the value of E(Y).
- 8. (8 points) A fair six-sided die is rolled 42 independent times. Let X be the number of threes and Y the number of fives.
 - (a) (4 points) What is the conditional pmf of X, given Y = y?
 - (b) (4 points) What is the joint pmf of X and Y?
- 9. (12 points) Let X_1 and X_2 be independent Poisson random variables with mean λ_1 and λ_2 respectively, and let $Y = X_1 + X_2$.
 - (a) (4 point) Prove that the distribution of Y is also Poisson.
 - (b) (4 points) Find the correlation coefficient of X_1 and Y.

- (c) (4 points) Find the joint distribution of X_1 and X_2 conditioned on Y=m, where m>0 is an integer. (Hint: consider $P(X_1=k_1,X_2=k_2|Y=m)$, where $k_1,k_2\geq 0$ are integers.)
- 10. (10 points) Let Z_1 , Z_2 and Z_3 have independent standard normal distribution N(0,1).
 - (a) (2 point) Find the distribution of

$$W = \frac{Z_1}{\sqrt{(Z_2^2 + Z_3^2)/2}}.$$

(b) (8 points) Show that

$$V = \frac{Z_1}{\sqrt{(Z_1^2 + Z_2^2)/2}}$$

has pdf $f(v) = \frac{1}{\pi\sqrt{2-v^2}}$, $-\sqrt{2} < v < \sqrt{2}$. You may use the fact that $\Gamma(1) = 1$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, where $\Gamma(\cdot)$ is the Gamma function in the given distribution table for t distribution.

Figure 1: Distribution table for normal distribution

Figure 2: Distribution table for t distribution

Figure 3: Distribution table for poisson distribution