Asy. Var
$$[\boldsymbol{b}] = \frac{1}{n} (\mathsf{E} [\boldsymbol{x}_i \boldsymbol{x}_i'])^{-1} \mathsf{E} [\boldsymbol{x}_i \sigma^2 \omega_i \boldsymbol{x}_i'] (\mathsf{E} [\boldsymbol{x}_i \boldsymbol{x}_i'])^{-1}$$
.

In practice, the two expected values are unobserved: we do not have the information of the entire population. Furthermore, we do not observe σ^2 , and we do not know the form of Ω and hence ω_i . We want to estimate them. But why? The reason is about to get clear.

We know that the first expected value

$$\left(\mathsf{E}\left[\mathbf{x}_{i}\mathbf{x}_{i}^{\prime}\right]\right)^{-1}$$

is equal to

$$\left(\mathsf{plim}\frac{1}{n}\sum_{i=1}^n \mathbf{x}_i\mathbf{x}_i'\right)^{-1},$$

which we can estimate with

$$\left(\frac{1}{n}\boldsymbol{X}'\boldsymbol{X}\right)^{-1}$$
.

We know that the second expected value

$$\mathsf{E}\left[\boldsymbol{x}_{i}\sigma^{2}\omega_{i}\boldsymbol{x}_{i}^{\prime}\right]$$

is equal to

$$\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \sigma^{2} \omega_{i} \mathbf{x}'_{i}.$$

How can we estimate it?

With certain assumptions on x_i , and using the LLN (Greene, Theorems D.4 through D.9),

$$\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \sigma^{2} \omega_{i} \mathbf{x}'_{i} = \operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} \mathbf{x}_{i} \mathbf{x}'_{i}.$$

Furthermore, since **b** is a consistent estimator of β , e_i (= $y_i - x_i b$) is a consistent estimator of ε_i . Hence,

$$\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' = \operatorname{plim} \frac{1}{n} \sum_{i=1}^{n} e_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'.$$

The last term can be estimated with

$$\frac{1}{n}\sum_{i=1}^n e_i^2 \mathbf{x}_i \mathbf{x}_i'.$$

These results mean that we can estimate

Asy. Var
$$[\boldsymbol{b}] = \frac{1}{n} \left(\mathbb{E} \left[\boldsymbol{x}_i \boldsymbol{x}_i' \right] \right)^{-1} \mathbb{E} \left[\boldsymbol{x}_i \sigma^2 \omega_i \boldsymbol{x}_i' \right] \left(\mathbb{E} \left[\boldsymbol{x}_i \boldsymbol{x}_i' \right] \right)^{-1}$$

by

Est. Asy.
$$\operatorname{Var}\left[\boldsymbol{b}\right] = \frac{1}{n} \left(\frac{1}{n} \boldsymbol{X}' \boldsymbol{X}\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} e_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \left(\frac{1}{n} \boldsymbol{X}' \boldsymbol{X}\right)^{-1}.$$

Dropping the $\frac{1}{n}$ terms,

Est. Asy.
$$\operatorname{Var}\left[\boldsymbol{b}\right] = \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \sum_{i=1}^{n} \operatorname{e}_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}.$$

Est. Asy.
$$\operatorname{Var}\left[\boldsymbol{b}\right] = \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \sum_{i=1}^{n} e_{i}^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}$$

is called the heteroskedasticity-consistent estimator of the variance of \boldsymbol{b} . We said that the t and F statistics are not valid if we use

Est.
$$Var[\boldsymbol{b} \mid \boldsymbol{X}] = s^2 (\boldsymbol{X}'\boldsymbol{X})^{-1}$$
.

But they are valid if we use the HCE. They are then called the heteroskedasticity-consistent t and F statistics. HCE is powerful. Ω is often unknown. HCE does not need to figure out Ω . We can use the HCE to make inference on β . We only need to keep in mind that the HCE, and the test statistics that make use of the HCE, require a large n. We also do not need that the errors are normal!

To calculate the HCE in R or MATLAB, we recast

Est. Asy.
$$\operatorname{Var}\left[m{b}\right] = \left(m{X}'m{X}\right)^{-1}\sum_{i=1}^n e_i^2m{x}_im{x}_i'\left(m{X}'m{X}\right)^{-1}.$$

as

Est. Asy.
$$Var[\boldsymbol{b}] = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' diag(e_1^2, \dots, e_n^2) \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1},$$

where

$$diag(e_1^2,\ldots,e_n^2) = egin{bmatrix} e_1^2 & 0 & \ldots & 0 \ 0 & e_2^2 & \ldots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \ldots & e_n^2 \end{bmatrix}.$$

How to interpret the HEC?

Start with the estimator of the variance of \boldsymbol{b} under homoskedasticity:

Est. Var
$$[\mathbf{b} \mid \mathbf{X}] = s^2 (\mathbf{X}'\mathbf{X})^{-1}$$
.

$$= \frac{\mathbf{e}'\mathbf{e}}{n - K} (\mathbf{X}'\mathbf{X})^{-1}.$$

$$= \frac{\mathbf{e}'\mathbf{e}}{n - K} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}.$$

$$= (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \frac{\mathbf{e}'\mathbf{e}}{n - K} \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}.$$

$$= (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \operatorname{diag} \left(\frac{\mathbf{e}'\mathbf{e}}{n - K}, \dots, \frac{\mathbf{e}'\mathbf{e}}{n - K} \right) \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}.$$

We can move e'e across the matrices because it is a scalar.

Under homoskedasticity:

Est.
$$Var[\boldsymbol{b} \mid \boldsymbol{X}] = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' diag\left(\frac{\boldsymbol{e}'\boldsymbol{e}}{n-K}, \dots, \frac{\boldsymbol{e}'\boldsymbol{e}}{n-K}\right) \boldsymbol{X} (\boldsymbol{X}'\boldsymbol{X})^{-1}$$
.

Across the diagonal, the elements are same!

Under heteroskedasticity:

Est. Asy.
$$Var\left[\boldsymbol{b}\right] = \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{X}'diag\left(e_1^2,\ldots,e_n^2\right)\boldsymbol{X}\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1},$$

Across the diagonal, the elements are different! You are accounting for heteroskedasticity!

. regress wage educ

Source	SS	df	MS	Number of obs	=	997 251.46
Model Residual	7842.35455 31031.0745		7842.35455 31.1870095	Prob > F R-squared	= =	0.0000 0.2017
Total	38873.429 996	39.0295472	Adj R-squared Root MSE	=	0.2009 5.5845	

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ _cons	1.135645 -4.860424	.0716154 .9679821			.9951106 -6.759944	1.27618 -2.960903

. regress wage educ, robust

Linear regression	Number of obs	=	997
	F(1, 995)	=	178.66
	Prob > F	=	0.0000
	R-squared	=	0.2017
	Root MSE	=	5.5845

wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
educ	1.135645 -4.860424	.0849627 1.078429	13.37 -4.51	0.000 0.000	.9689186 -6.976681	1.302372 -2.744167