Задача 1. Докажите, что всякую целочисленную квадратную матрицу второго порядка можно представить в виде суммы четырех целочисленных унимодулярных (2×2) – матриц, определитель которых равен «плюс» или «минус» один.

Решение. Представим матрицу (2×2):

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} + \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ -1 & d \end{pmatrix} + \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ c & -1 \end{pmatrix}.$$

Задача 2. Члены последовательности (a_n) удовлетворяют равенству $a_{n+1}-a_n=\sqrt{a_{n+1}+a_n},$ n=0,1,2,..., причем $a_0=0,$ $a_1\neq 0.$

Какие значения может принимать 2025-й член последовательности?

Ответ. Единственное значение $a_{2025} = 1013 \cdot 2025 = 2051325$.

Решение. Так как по условию задачи $a_0=0$, получаем, что $a_1=1$, $a_2=3$, $a_3=6$ и т.д.

Применяя метод математической индукции, докажем, что $a_n = \frac{(n+1)n}{2}$ (то есть (a_n) –последовательность треугольных чисел, возрастающая).

База индукции (n = 1) выполнена. Что очевидно.

Индукционный шаг. Предположим, что при n=k равенство $a_k=\frac{(k+1)k}{2}$ верно.

Тогда при n = k + 1 из формулы в условии получаем

$$(a_{k+1}-a_k)^2=a_{k+1}+a_k$$
, то есть $a_{k+1}^2-(2a_k+1)a_{k+1}+a_k^2-a_k=0.$

Решая квадратное уравнение относительно a_{k+1} и подставляя $a_k = \frac{(k+1)k}{2}$, получаем

$$a_{k+1} = \frac{2a_k + 1 \pm \sqrt{8a_k + 1}}{2} = \frac{(k+1)k + 1 \pm \sqrt{4(k+1)k + 1}}{2} = \frac{k^2 + k + 1 \pm (2k+1)}{2}$$

Так как $a_{k+1} \ge a_k$, то $a_{k+1} = \frac{k^2 + k + 1 + (2k+1)}{2} = \frac{(k+2)(k+1)}{2}$. Что и требовалось доказать.

Таким образом, $a_{2025} = \frac{(2025+1)2025}{2} = 1013 \cdot 2025 = 2051325.$

Omsem. Единственное значение $a_{2025}=1013\,\cdot\,2025=2051325.$

Задача 3. Пусть векторы x, y на плоскости таковы, что |x+y|=|x|+|y|. Докажите, что тогда для любых $a,b\in\mathbb{R},\ a\ge 0,\ b\ge 0$ верно |ax+by|=a|x|+b|y|.

Решение. Предположим, что $a \ge b$. Тогда

$$|ax+by| = |a(x+y)-(a-b)y| \ge a|x+y|-(a-b)|y| =$$

= $a|x|+a|y|-(a-b)|y| = a|x|+b|y|.$

С другой стороны, по неравенству треугольника $|ax+by| \le a|x|+b|y|$.

Задача 4. Пусть $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1} = 0$, где $a_0, a_1, a_2, \dots, a_n$ - вещественные постоянные. Доказать, что многочлен $a_0 + a_1 x + \dots + a_n x^n$ имеет хотя бы один действительный корень.

Решение. Рассмотрим многочлен $P_{n+1} = a_0 x + \frac{a_1 x^2}{2} + \frac{a_2 x^3}{3} + \dots + \frac{a_n x^{n+1}}{n+1}$. По условию имеем, что $P_{n+1}(1) = a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1} = 0$ и $P_{n+1}(0) = 0$. Тогда по теореме Ролля $\exists x_0 \in (0,1)$ такое, что $P'_{n+1}(x_0) = 0$, где $P'_{n+1}(x)$ совпадает с многочленом $a_0 + a_1 x + \dots + a_n x^n$.

Задача 5. Докажите, что
$$\int_{0}^{\pi/2} \frac{\sin 1001x}{\sin x} dx = \int_{0}^{\pi/2} \frac{\sin 999x}{\sin x} dx.$$

Решение. Покажем, что разность интегралов равна нулю. Рассмотрим

$$\int_{0}^{\pi/2} \frac{\sin(1001x)}{\sin x} dx - \int_{0}^{\pi/2} \frac{\sin(999x)}{\sin x} dx = \int_{0}^{\pi/2} \left(\frac{\sin 1001x}{\sin x} - \frac{\sin 999x}{\sin x}\right) dx =$$

$$= \int_{0}^{\pi/2} \left(\frac{\sin 1001x}{\sin x} - \frac{\sin 999x}{\sin x}\right) dx = \int_{0}^{\pi/2} \left(\frac{\sin 1001x - \sin 999x}{\sin x}\right) dx =$$

$$= \int_{0}^{\pi/2} \left(\frac{\sin 1001x - \sin 999x}{\sin x}\right) dx = \begin{vmatrix} \text{воспользуемся формулой:} \\ \sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2} \end{vmatrix} =$$

$$= 2 \int_{0}^{\pi/2} \frac{\sin x \cdot \cos(1000x)}{\sin x} dx = 2 \int_{0}^{\pi/2} \cos(1000x) dx = \frac{1}{500} \sin(1000x) \Big|_{0}^{\pi/2} =$$

$$= \frac{1}{500} \left(\sin(500\pi) - \sin 0\right) = 0.$$

Т.е.
$$\int_{0}^{\pi/2} \frac{\sin 1001x}{\sin x} dx = \int_{0}^{\pi/2} \frac{\sin 999x}{\sin x} dx$$
, что и требовалось доказать.

(интегралы собственные, т.к. функцию можно доопределить по непрерывности в точке x=0).

Задача 6. Вычислите предел
$$\lim_{x\to +\infty} \frac{\sqrt{x+2025}-2025\sqrt{x+1}+2024\sqrt{x}}{\sqrt{x+2023}-2023\sqrt{x+1}+2022\sqrt{x}}$$

Решение.

Обозначим через
$$L = \lim_{x \to +\infty} \frac{\sqrt{x + 2025} - 2025\sqrt{x + 1} + 2024\sqrt{x}}{\sqrt{x + 2023} - 2023\sqrt{x + 1} + 2022\sqrt{x}}.$$

Тип предела
$$\left\{ \frac{\infty - \infty}{\infty - \infty} \right\}$$
.

Преобразуем числитель:

$$\sqrt{x+2025} - 2025\sqrt{x+1} + 2024\sqrt{x} =$$

$$= (\sqrt{x+2025} - \sqrt{x+1}) + 2024(\sqrt{x} - \sqrt{x+1}).$$

Умножим и разделим каждую скобку на сопряженное:

$$\frac{x+2025-x-1}{\sqrt{x+2025}+\sqrt{x+1}} + \frac{2024(x-x-1)}{\sqrt{x}+\sqrt{x+1}} = \frac{2024(\sqrt{x}-\sqrt{x+2025})}{(\sqrt{x+2025}+\sqrt{x+1})(\sqrt{x}+\sqrt{x+1})} = \frac{2024(x-x-2025)}{(\sqrt{x+2025}+\sqrt{x+1})(\sqrt{x}+\sqrt{x+1})(\sqrt{x}+\sqrt{x+2025})}.$$

Аналогично преобразуем знаменатель:

$$\sqrt{x+2023} - 2023\sqrt{x+1} + 2022\sqrt{x} = \frac{2022\left(\sqrt{x} - \sqrt{x+2023}\right)}{\left(\sqrt{x+2023} + \sqrt{x+1}\right)\left(\sqrt{x} + \sqrt{x+1}\right)} = \frac{2022\left(x - x - 2023\right)}{\left(\sqrt{x+2023} + \sqrt{x+1}\right)\left(\sqrt{x} + \sqrt{x+1}\right)\left(\sqrt{x} + \sqrt{x+2023}\right)}.$$

Тогда предел

$$L = \lim_{x \to +\infty} \frac{2024(-2025)(\sqrt{x+2023} + \sqrt{x+1})(\sqrt{x} + \sqrt{x+1})(\sqrt{x} + \sqrt{x+2023})}{2022(-2023)(\sqrt{x+2025} + \sqrt{x+1})(\sqrt{x} + \sqrt{x+1})(\sqrt{x} + \sqrt{x+2025})} = \frac{2024 \cdot 2025}{2022 \cdot 2023}$$

Otbet.
$$L = \frac{2024 \cdot 2025}{2022 \cdot 2023}$$
.

Задача 7. Непустое множество X на прямой или на плоскости называется линейно связным, если любые две его точки можно соединить ломаной, целиком лежащей в данном множестве. Известно, что проекции на оси координат множества $X \subset \mathbb{R}^2$ есть линейно связные множества в \mathbb{R}^1 . Обязательно ли множество X линейно связно? Ответ обоснуйте.

Решение. Пример. Окружность с выделенным центром не будет линейно связным множеством, но проекциями этого множества буду отрезки, которые линейно связны.

Критические точки. Промежутки возрастания/убывания функции.

Ответ. Нет.