MOS FET Relays G3VM-353G/G1

Analog-switching MOS FET Relay with SPST-NC Contacts. General Purpose version added.

- New models with SPST-NC contacts and a 4-pin SOP package included in 350-V load voltage series.
- Continuous load current of 120 mA.
- Dielectric strength of 1,500 Vrms between I/O.
- General-purpose series (with high ON resistance) added.
- · RoHS Compliant.

■ Application Examples

- · Broadband systems
- Measurement devices and Data loggers
- Amusement machines

Note: The actual product is marked differently from the image shown

■ List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NC	Surface-mounting	350 VAC	G3VM-353G	100	
	terminals		G3VM-353G1		
			G3VM-353G(TR)		2,500
			G3VM-353G1(TR)		

Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-353G/G1

Note: The actual product is marked differently from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-353G/G1

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-353G/G1

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement conditions	1
Input	LED forward current	I _F	50	mA		Note:
	Repetitive peak LED forward current	I _{FP}	1	А	100 μs pulses, 100 pps	
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V_R	5	V		
	Connection temperature	T _j	125	°C		
Output	Load voltage (AC peak/DC)	V_{OFF}	350	V		
	Continuous load current (AC peak/DC)	Io	120 (90)	mA		
	ON current reduction rate	Δ I _{ON} /°C	-1.2 (-0.9)	mA/°C	$T_a \ge 25^{\circ}C$	
	ric strength between input and (See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min	
Operating temperature		T _a	-40 to +85	°C	With no icing or condensation	
Storage temperature		T_{stg}	-55 to +125	°C	With no icing or condensation	1
Soldering temperature (10 s)			260	°C	10 s	1

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Values in parentheses are for the G3VM-353G1

■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μА	V _R = 5 V
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		1	3	mA	$I_{OFF} = 10 \mu A$
Output	Maximum resistance with output ON	R _{ON}		15 (30)	25 (50)	Ω	I _O = 120 mA (90 mA)
	Current leakage when the relay is open	I _{LEAK}		0.0105 (0.003)	1.0	μА	$V_{OFF} = 350 \text{ V, } I_F = 5 \text{ mA}$
	Capacity between terminals	C _{OFF}		65 (30)		pF	$V = 0$, $f = 1MHz$, $I_F = 5 mA$
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V
Insulation resistance		R _{I-O}	1,000			ΜΩ	$\begin{aligned} &V_{\text{I-O}} = 500 \text{ VDC}, \\ &R_{\text{oH}} \leq 60\% \end{aligned}$
Turn-ON time		t _{ON}		0.15 (0.25)	1.0 (1)	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.7 (0.5)	3.0 (1)	ms	V _{DD} = 20 V (See note 2.)

Note: 2. Turn-ON and Turn-OFF Times

Values in parentheses are for the G3VM-353G1

■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			280	V
Operating LED forward current	I _F	5		25	mA
Continuous load current (AC peak/DC)	Io			120 (90)	mA
Operating temperature	T _a	- 20		65	°C

Values in parentheses are for the G3VM-353G1

■ Engineering Data G3VM-353G

LED forward current vs. Ambient temperature

Continuous load current vs. Ambient temperature

LED forward current vs. LED forward voltage

Continuous load current vs. On-state voltage

On-state resistance vs. Ambient temperature

Trigger LED forward current vs. Ambient temperature

Trigger LED forward current IFC (mA)

Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

■ Engineering Data G3VM-353G1

LED forward current vs. Ambient temperature

Continuous load current vs. Ambient temperature

LED forward current vs. LED forward voltage

Continuous load current vs. On-state voltage

On-state resistance vs. Ambient temperature

Trigger LED forward current vs. Ambient temperature

Turn ON, Turn OFF time vs. LED forward current

Turn ON, Turn OFF time vs. Ambient temperature

Current leakage vs. Ambient temperature

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

Specifications subject to change without notice

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA