

TRIGONOMETRY

Chapter 03

Sesión 01

Sector Circular

MOTIVACIÓN

Sector Circular

Se llama sector circular a la región circular limitada por dos radios y el arco correspondiente.

Se cumple: $L = \theta R$ Donde:

L: Longitud del arco AB

 θ : Número de radianes $(0 < \theta \le 2\pi)$

R: Radio de la circunferencia

$$\frac{L_1}{L_2} = \frac{R_1}{R_2}$$

$$\theta = \frac{L_2 - L_1}{h}$$

El péndulo de un reloj tiene 20cm de longitud y recorre un arco de 25^g por segundo ¿Cuántos centímetros recorre la punta del péndulo en un segundo?($\pi = 3,14$)

Resolución:

Recordar:
$$25^g = 25^g \left(\frac{\pi \text{rad}}{200^g}\right) = \frac{\pi}{8} \text{rad}$$

Entonces:

$$L = \frac{\theta r}{8}$$

$$L = \frac{\pi}{8} \cdot 20cm \quad \Rightarrow \quad L = 2,5 \pi cm$$

$$\therefore L = 7,85cm$$

Del gráfico, halle la longitud del radio OA en el sector

circular mostrado.

Resolución:

Recordar: $40^g = 40^g \left(\frac{\pi \text{rad}}{200^g}\right) = \frac{\pi}{5} \text{ rad}$ Entonces: $L = \theta R \implies 3\pi m = \frac{\pi}{5} r \implies \therefore r = 15 m$

$$L = \theta R$$

$$3\pi m = \frac{\pi}{5}r$$

$$\therefore r = 15 m$$

Del gráfico, calcule el valor de L.

Resolución: Por propiedad:

$$\frac{L}{8\pi m} = \frac{6}{6+10} \Rightarrow L = 8\pi m \left(\frac{6}{16}\right) \Rightarrow \therefore L$$

Del gráfico, simplifique:

$$K = \frac{3L_3 - 2L_2 - L_1}{L_3 - L_1}$$

Resolución:

Por propiedad:

$$L_1 = L$$

$$L_2 = 2L$$

$$L_3 = 3L$$

Piden:
$$K = \frac{3(3L)-2(2L)-(L)}{(3L)-(L)}$$

$$K = \frac{4L}{2L} \implies K = 2$$

Del gráfico calcule x + y.

Resolución:

Recordar: $L = \theta R$

Sector menor: $3 = 1.x \Rightarrow x = 3$

Del gráfico hallar el valor de L.

Resolución: Recordar: $L = \theta R$

$$L = \theta R$$

Sector menor: $3\pi = \frac{\pi}{4}$. R = 12

Sector mayor:
$$L = \frac{\pi}{4} \cdot (R + 6) \not L = \frac{\pi}{4} (18)$$

$$\therefore L = \frac{9\pi}{2}u$$

Del gráfico, determinar el valor de β , si $L_1 = 5L_2$.

Resolución:

Resolución:
$$L = \theta R$$
 Recordar:
$$L = \theta R$$

$$L_1 = \beta . R$$

$$L_2 = (\pi - \beta) . R$$

Reemplazando en el dato:

$$L_1 = 5L_2$$

$$\beta R = 5(\pi - \beta).R$$

$$\therefore \beta = \frac{5\pi}{6}$$

Del gráfico, determine la longitud del radio.

Resolución: Recordar

$$L = \theta R$$

Finalmente operando: x = 3 \Rightarrow $\therefore R = (x + 1)u = 4u$

