例 4.2.31. 设 A 为方阵, k 为某个正整数, 满足 $A^k = O$. 由多项式恒等式

$$x^{k} - 1 = (x - 1)(x^{k-1} + x^{k-2} + \dots + x + 1)$$

可知,

$$A^{k} - I = (A - I)(A^{k-1} + A^{k-2} + \cdots + A + I).$$

这说明 A-I 可逆, 且

$$(A - I)^{-1} = -(A^{k-1} + A^{k-2} + \cdots + A + I).$$

习题 4.2.32. 设 A 为方阵, k 为某个正整数, 满足 $A^k = O$. 若 $\lambda \in F = \mathbb{R}$, $A + \lambda I$ 是 否可逆? 若可逆, 求出其逆矩阵; 若不可逆, 解释原因.

例 4.2.33. 假设方阵 A 满足方程 $A^2 + A - 2I = O$, 我们验证 A - 2I 可逆, 并求其逆. 为此, 对多项式 $x^2 + x - 2$ 关于 x - 2 作带余除法:

$$x^{2} + x - 2 = (x - 2)(x + 3) + 4.$$

这说明

$$O = A^2 + A - 2I = (A - 2I)(A + 3I) + 4I.$$

从而

$$(\boldsymbol{A} - 2\boldsymbol{I}) \left(-\frac{1}{4} (\boldsymbol{A} + 3\boldsymbol{I}) \right) = \boldsymbol{I}.$$

这说明 A-2I 可逆, 且其逆矩阵为 $-\frac{1}{4}(A+3I)$.

矩阵的转置 从一个 $m \times n$ 矩阵 $\mathbf{A} = (a_{ij})$ 出发, 我们有时候需要构造一个各列是 \mathbf{A} 的各行的 $n \times m$ 矩阵. 这样的矩阵称为 \mathbf{A} 的转置矩阵 (transpose), 记作

$$\boldsymbol{A}^{\mathsf{T}} \coloneqq \begin{pmatrix} a_{11} & a_{21} \cdots \cdots a_{m1} \\ a_{12} & a_{22} \cdots \cdots a_{m2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} \cdots \cdots a_{mn} \end{pmatrix}.$$

有的教材里也将其记为 A^t , A^{τ} , 或 A'.

例 4.2.34. 对于
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
, 我们有转置矩阵 $\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.

$$(1) \ (\boldsymbol{A}^{\mathsf{T}})^{\mathsf{T}} = \boldsymbol{A}.$$

$$(2) (\boldsymbol{A} + \boldsymbol{B})^{\mathsf{T}} = \boldsymbol{A}^{\mathsf{T}} + \boldsymbol{B}^{\mathsf{T}}.$$

(3)
$$(\lambda \mathbf{A})^{\mathsf{T}} = \lambda \mathbf{A}^{\mathsf{T}}$$
, 其中 λ 为标量.

$$(4) (\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}.$$

(5) 若
$$\boldsymbol{A}$$
 为可逆方阵, 则 $\boldsymbol{A}^{\mathsf{T}}$ 可逆, 且 $(\boldsymbol{A}^{\mathsf{T}})^{-1} = (\boldsymbol{A}^{-1})^{\mathsf{T}}$.

证明. (4) 的证明. 设 $\mathbf{A} \in F^{m \times n}$, $\mathbf{B} \in F^{n \times p}$, 则 $\mathbf{A}^\mathsf{T} \in F^{n \times m}$, $\mathbf{B}^\mathsf{T} \in F^{p \times n}$. 为了说明的方便, 在这儿, 对于一个矩阵右下角的双重下标 ij, 我们是在表示该矩阵的第 (i,j) 元素. 此时

(5) 的证明. 只需验证 $(A^{-1})^{\mathsf{T}}A^{\mathsf{T}} = I$. 这一点可直接验证:

$$(\boldsymbol{A}^{-1})^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} = (\boldsymbol{A} \boldsymbol{A}^{-1})^{\mathsf{T}} = \boldsymbol{I}^{\mathsf{T}} = \boldsymbol{I}.$$

推论 4.2.36. 在矩阵乘法有意义的条件下,

$$(oldsymbol{A}_1oldsymbol{A}_2\cdotsoldsymbol{A}_{k-1}oldsymbol{A}_k)^\mathsf{T} = oldsymbol{A}_k^\mathsf{T}oldsymbol{A}_{k-1}^\mathsf{T}\cdotsoldsymbol{A}_2^\mathsf{T}oldsymbol{A}_1^\mathsf{T}.$$

从转置运算出发, 我们可以引入更多的概念.

- (1) 方阵 \boldsymbol{A} 称为对称的 (symmetric) 是指其满足 $\boldsymbol{A}^{\mathsf{T}} = \boldsymbol{A}$.
- (2) 方阵 \mathbf{A} 称为**反对称的**或者**斜对称的** (skew-symmetric) 是指其满足 $\mathbf{A}^{\mathsf{T}} = -\mathbf{A}$. 这样的矩阵的主对角线上的元素全为 0.
- (3) 实数方阵 \boldsymbol{A} 称为是**正交的** (orthogonal) 是指其满足 $\boldsymbol{A}\boldsymbol{A}^\mathsf{T} = \boldsymbol{I}$ (或等价地, $\boldsymbol{A}^\mathsf{T}\boldsymbol{A} = \boldsymbol{I}$). 不难看出, 正交矩阵 \boldsymbol{A} 可逆, 且它的逆 \boldsymbol{A}^{-1} 正好为 $\boldsymbol{A}^\mathsf{T}$.
- 习题 4.2.37. (1) 给定列向量 $u \in \mathbb{R}^n$, 假定 $u^Tu = 1$. 对于 $P = uu^T$ 以及 $Q = I_n 2P$, 证明:

(i)
$$\mathbf{P}^2 = \mathbf{P}$$
, (ii) $\mathbf{P}^\mathsf{T} = \mathbf{P}$, (iii) $\mathbf{Q}^2 = \mathbf{I}_n$.

(2) 在上面一小问中, 变换 $x \mapsto Px$ 被称作一个投影, 而 $x \mapsto Qx$ 被称作一个豪斯霍尔德反射 (Householder reflection). 为了理解这一点, 对于 $u = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 和 $x = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}$,分别计算 Px 以及 Qx. 用几何的语言来解释 Qx 与 x 的关系.

复矩阵的共轭 对于复数 $z=a+b\mathrm{i}\in\mathbb{C}$ $(a,b\in\mathbb{R})$, 它的 (复) 共轭是 $\overline{z}=a-b\mathrm{i}\in\mathbb{C}$. 类似地, 对于复矩阵 $\mathbf{A}=(a_{ij})_{m\times n}$, 我们可以定义其**共轭** (conjugate) 为

$$\overline{\boldsymbol{A}} \coloneqq (\overline{a_{ij}}) = \begin{pmatrix} \overline{a_{11}} & \overline{a_{12}} & \cdots & \overline{a_{1n}} \\ \overline{a_{21}} & \overline{a_{22}} & \cdots & \overline{a_{2n}} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \overline{a_{m1}} & \overline{a_{m2}} & \cdots & \overline{a_{mn}} \end{pmatrix}.$$

例 4.2.38. 对于
$$\mathbf{A} = \begin{pmatrix} 1 & 3+5i & 7+8i \\ 13-6i & 2 & 3 \end{pmatrix}$$
, 我们有 $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 3-5i & 7-8i \\ 13+6i & 2 & 3 \end{pmatrix}$.

- 注 **4.2.39.** (1) 作为正交矩阵的推广,复数方阵 A 称为一个**酉矩阵**是指其满足 $A\overline{A^{\mathsf{T}}}=I$. 于是,一个实方阵是正交矩阵当且仅当它是一个酉矩阵.
 - (2) 对于一般的复矩阵 A 而言,有 $(\overline{A})^{\mathsf{T}} = \overline{A^{\mathsf{T}}}$; 我们可以将其称为 A 的共轭转置 (conjugate transpose). 有不少教材会将其记作 A^* , 但是这与我们教材里稍后要介绍的伴随矩阵的记号相冲突,所以我们暂时不采用这样的记号. 当然, 也有不少教材会将其记作 A^{H} .

方阵的迹 方阵 $\mathbf{A} = (a_{ij})_{n \times n}$ 的对角线元素的和称为 \mathbf{A} 的迹 (trace):

$$tr(\mathbf{A}) := a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}.$$

例 4.2.40. (1) 对于
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, 我们有 $\operatorname{tr}(\mathbf{A}) = 1 + 5 + 9 = 15$.

- (2) $\operatorname{tr}(\boldsymbol{I}_n) = n$.
- (3) 若 \boldsymbol{A} 为反对称矩阵,则 $\operatorname{tr}(\boldsymbol{A}) = 0$.

定理 4.2.41. 矩阵的迹有如下的性质 (在运算允许的条件下).

- (1) $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B}).$
- (2) $\operatorname{tr}(\lambda \mathbf{A}) = \lambda \operatorname{tr}(\mathbf{A})$, 其中 λ 为标量.
- (3) $\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}^{\mathsf{T}}), \ \operatorname{tr}(\overline{\boldsymbol{A}}) = \overline{\operatorname{tr}(\boldsymbol{A})}.$
- (4) $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$. 这儿的 $\boldsymbol{A} \in F^{m \times n}$, $\boldsymbol{B} \in F^{n \times m}$, 不要求矩阵为方阵, 只要求相应的维数相反.

证明. (4) 的证明. 为了说明的方便, 在这儿, 对于一个矩阵右下角的双重下标 ij, 我们是在表示该矩阵的第 (i,j) 元素. 此时,

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = = \sum_{i=1}^{m} (\boldsymbol{A}\boldsymbol{B})_{ii} = = \sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{A}_{ij} \boldsymbol{B}_{ji}$$

$$= \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}) = = \sum_{j=1}^{n} (\boldsymbol{B}\boldsymbol{A})_{jj} = = \sum_{j=1}^{n} \sum_{i=1}^{m} \boldsymbol{B}_{ji} \boldsymbol{A}_{ij}$$

例 4.2.42. 对于 $A \in \mathbb{C}^{m \times n}$, 证明:

$$\boldsymbol{A} = \boldsymbol{O} \Leftrightarrow \operatorname{tr}(\boldsymbol{A}\overline{\boldsymbol{A}}^{\mathsf{T}}) = 0 \Leftrightarrow \operatorname{tr}(\overline{\boldsymbol{A}}^{\mathsf{T}}\boldsymbol{A}) = 0.$$

证明. 由于有定理 4.2.41(4), 我们只需证明 " $\operatorname{tr}(\boldsymbol{A}\overline{\boldsymbol{A}}^{\mathsf{T}}) = 0 \Rightarrow \boldsymbol{A} = \boldsymbol{O}$ ". 为此, 设 $\boldsymbol{A} = (a_{ij})$, 则由上面的计算可知 $0 = \operatorname{tr}(\boldsymbol{A}\overline{\boldsymbol{A}}^{\mathsf{T}}) = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2$. 右式的求和是一些非负实数的和, 故对每个 (i,j), 必有 $|a_{ij}|^2 = 0$, 即 $a_{ij} = 0$. 这说明 $\boldsymbol{A} = \boldsymbol{O}$.

习题 4.2.43. 对于 n 阶实方阵 A, 我们可以定义函数 $\psi_A: \mathbb{R}^{n \times n} \to \mathbb{R}$, $X \mapsto \operatorname{tr}(AX)$. 若 n 阶实方阵 A, B 满足 $\psi_A = \psi_B$, 证明 A = B.

分块矩阵 若把矩阵 A 按行分成若干组,按列分成若干组,则 A 可以视为由若干个子矩阵有序排列构成的数表:

$$oldsymbol{A} = egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \cdot \cdots \cdot oldsymbol{A}_{1s} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \cdot \cdots \cdot oldsymbol{A}_{2s} \ dots & dots & dots \ oldsymbol{A}_{r1} & oldsymbol{A}_{r2} \cdot \cdots \cdot oldsymbol{A}_{rs} \end{pmatrix}.$$

这是将 A 写成分块矩阵的形式, 并可简写为 $A = (A_{ij})_{r \times s}$. 所有的这些 A_{ij} 称为 A 的子块 (block). 显然, 上面的表示中, 任何一行的子块具有相同的行数, 任何一列的子块具有相同的列数. 在 r = s 的条件下*, 我们还有以下三个特殊情形值得关注:

^{*}在这一块, 不同的教材可能会有不同的定义

(i) 若 $A_{ij} = O$ 对任意的 $i \neq j$ 都成立, 而每个 A_{ii} 都是方阵, 则称 A 为一个分块对 角矩阵 (block diagonal matrix) 或准对角矩阵, 可以将其记作

- (ii) 若 $A_{ij} = O$ 对所有的 i > j 都成立, 则称 A 为准上三角矩阵;
- (iii) 类似可以定义准下三角矩阵.

例 4.2.44. 对于矩阵

$$C = \begin{pmatrix} 1 & -2 & 4 & 1 & 3 \\ 2 & 1 & 1 & 1 & 1 \\ 3 & 3 & 2 & -1 & 2 \\ 4 & 6 & 2 & 2 & 4 \end{pmatrix},$$

我们可以将一、二行视为一组,三、四行视为一组,从而在第二、三行之间画一条横线, 我们再将一、二、三列视为一组,四、五列视为一组,从而在第三、四列之间画一条竖 线,于是将 C 分块得到了如下的表示形式:

$$oldsymbol{C} = egin{pmatrix} oldsymbol{C}_{11} & oldsymbol{C}_{12} \ oldsymbol{C}_{21} & oldsymbol{C}_{22} \end{pmatrix} = egin{pmatrix} 1 & -2 & 4 & \vdots & 1 & 3 \ 2 & 1 & 1 & 1 & 1 \ - & - & - & - & - & - \ 3 & 3 & 2 & \vdots & -1 & 2 \ 4 & 6 & 2 & 2 & 4 \end{pmatrix},$$

其中

$$m{C}_{11} = egin{pmatrix} 1 & -2 & 4 \ 2 & 1 & 1 \end{pmatrix} \quad m{C}_{12} = egin{pmatrix} 1 & 3 \ 1 & 1 \end{pmatrix} \quad m{C}_{21} = egin{pmatrix} 3 & 3 & 2 \ 4 & 6 & 2 \end{pmatrix} \quad m{C}_{22} = egin{pmatrix} -1 & 2 \ 2 & 4 \end{pmatrix}.$$

注 4.2.45. 本章一开始提到的, 将矩阵写成将其列向量按行排列的形式, 或者写成将其行向量按列排列的形式, 都是将矩阵写成分块矩阵的特殊情形.

分块矩阵的运算只是矩阵运算的分块表示而言. 具体来说, 我们有如下的操作; 它们的证明只需直接运用定义即可.

(1) **加法**. 设 $A = (A_{ij})_{r \times s}$ 和 $B = (B_{ij})_{r \times s}$ 满足 A_{ij} 与 B_{ij} 的大小相同, 即 A 和 B 为同型 (具有相同的维数) 的矩阵, 并且采用相同的方法分块:

$$m{A} = egin{pmatrix} m{A}_{11} & m{A}_{12} \cdot \cdots \cdot m{A}_{1s} \ m{A}_{21} & m{A}_{22} \cdot \cdots \cdot m{A}_{2s} \ dots & dots & dots \ m{A}_{r1} & m{A}_{r2} \cdot \cdots \cdot m{A}_{rs} \end{pmatrix}, \qquad m{B} = egin{pmatrix} m{B}_{11} & m{B}_{12} \cdot \cdots \cdot m{B}_{1s} \ m{B}_{21} & m{B}_{22} \cdot \cdots \cdot m{B}_{2s} \ dots & dots & dots \ dots & dots \ dots & dots & dots \ eta & dots & dots & dots \ eta & dots & dots & dots \ dots & dots & dots & dots \ eta & dots & dots & dots & dots \ eta & dots & dots & dots & dots \ eta & dots & dots & dots & dots & dots & dots \ eta & dots & dots & dots & dots \ eta & dots & dots & dots & dots & dots \ eta & dots & dots & dots & dots & dots & dots \ eta & dots \ \ m{B}_{r1} & m{B}_{r2} & \cdots & \ddots & dots &$$

则 $A + B = (A_{ij} + B_{ij})_{r \times s}$, 即有

$$m{A} + m{B} = egin{pmatrix} m{A}_{11} + m{B}_{11} & m{A}_{12} + m{B}_{12} \cdot \cdots \cdot m{A}_{1s} + m{B}_{1s} \ m{A}_{21} + m{B}_{21} & m{A}_{22} + m{B}_{22} \cdot \cdots \cdot m{A}_{2s} + m{B}_{2s} \ dots & dots & dots & dots \ dots & dots \ dots & dots \ dots & dots & dots \ dots \ dots \ dots \ egin{pmatrix} m{A}_{12} + m{B}_{12} & ots & dots \ egin{pmatrix} m{A}_{12} + m{B}_{12} & ots \ dots \ dots \ dots \ dots \ dots \ dots \ egin{pmatrix} m{A}_{12} + m{B}_{12} & ots \ dots \ dots \ egin{pmatrix} m{A}_{12} + m{B}_{12} & dots \ dots \ m{A}_{12} + m{B}_{12} & dots \ dots \ egin{pmatrix} \had \ m{A}_{12} + m{B}_{12} & m{A}_{12} &$$

(2) **数乘**. 假设 $\mathbf{A} = (\mathbf{A}_{ij})_{r \times s}$ 分块如上,则其对于标量 λ 的数乘为 $\lambda \mathbf{A} = (\lambda \mathbf{A}_{ij})_{r \times s}$,即有

$$\lambda oldsymbol{A} = egin{pmatrix} \lambda oldsymbol{A}_{11} & \lambda oldsymbol{A}_{12} \cdots \cdots \lambda oldsymbol{A}_{1s} \ \lambda oldsymbol{A}_{21} & \lambda oldsymbol{A}_{22} \cdots \cdots \lambda oldsymbol{A}_{2s} \ dots & dots & dots \ \lambda oldsymbol{A}_{r1} & \lambda oldsymbol{A}_{r2} \cdots \cdots \lambda oldsymbol{A}_{rs} \end{pmatrix}.$$

(3) **矩阵乘法**. 假设 $\mathbf{A} = (\mathbf{A}_{ij})_{r \times s}$ 分块如上, 而矩阵 $\mathbf{B} = (\mathbf{B}_{ij})_{s \times t}$, 即分块为

$$m{B} = egin{pmatrix} m{B}_{11} & m{B}_{12} \cdot \cdot \cdot \cdot \cdot \cdot m{B}_{1t} \ m{B}_{21} & m{B}_{22} \cdot \cdot \cdot \cdot \cdot \cdot m{B}_{2t} \ dots & dots & dots \ m{B}_{s1} & m{B}_{s2} \cdot \cdot \cdot \cdot \cdot m{B}_{st} \end{pmatrix},$$

并进一步假设, \mathbf{A}_{ij} 是 $m_i \times l_j$ 矩阵 $(1 \le i \le r, 1 \le j \le s)$, \mathbf{B}_{jk} 是 $l_j \times n_k$ 矩阵 $(1 \le j \le s, 1 \le k \le t)$, 即 \mathbf{A} 分块时列的组数等于 \mathbf{B} 分块时的行的组数, 且 \mathbf{A} 的每个列组的列数等于 \mathbf{B} 的相应行组的行数. 此时,

$$oldsymbol{AB} = (oldsymbol{C}_{ij})_{r imes t} = egin{pmatrix} oldsymbol{C}_{11} & oldsymbol{C}_{12} \cdot \cdots \cdot oldsymbol{C}_{1t} \ oldsymbol{C}_{21} & oldsymbol{C}_{22} \cdot \cdots \cdot oldsymbol{C}_{2t} \ dots & dots & dots \ dots & dots & dots \ oldsymbol{C}_{r1} & oldsymbol{C}_{r2} \cdot \cdots \cdot oldsymbol{C}_{rt} \end{pmatrix},$$

其中 $C_{ik} = \sum_{j=1}^{s} A_{ij} B_{jk}$ 是 $m_i \times n_k$ 矩阵. 这与将分块矩阵 A 和 B 中的每个块 **视为**标量时矩阵乘法的规则具有相同的**形式**.

(4) 转置. 假设 $\mathbf{A} = (\mathbf{A}_{ij})_{r \times s}$ 分块如上, 则 $\mathbf{A}^{\mathsf{T}} = (\mathbf{B}_{ij})_{s \times r}$, 其中 $\mathbf{B}_{ij} = \mathbf{A}_{ii}^{\mathsf{T}}$, 即有

$$oldsymbol{A}^\mathsf{T} = egin{pmatrix} oldsymbol{A}_{11}^\mathsf{T} & oldsymbol{A}_{21}^\mathsf{T} \cdots \cdots oldsymbol{A}_{r1}^\mathsf{T} \ oldsymbol{A}_{12}^\mathsf{T} & oldsymbol{A}_{22}^\mathsf{T} \cdots \cdots oldsymbol{A}_{r2}^\mathsf{T} \ dots & dots & dots \ oldsymbol{A}_{1s}^\mathsf{T} & oldsymbol{A}_{2s}^\mathsf{T} \cdots \cdots oldsymbol{A}_{rs}^\mathsf{T} \end{pmatrix}$$

(5) 等等.

注 4.2.46. 矩阵分块时的分组一般需要依照具体运算的要求, 对于矩阵乘法, 一般会尽可能地凑出零矩阵或者单位矩阵.

例 4.2.47. 对于

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 1 & 0 & 3 & 2 \\ -1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix},$$

我们有

$$m{AB} = egin{pmatrix} m{I} & m{O} \ m{A}_{21} & m{A}_{22} \end{pmatrix} egin{pmatrix} m{B}_{11} & m{B}_{12} \ m{B}_{21} & m{B}_{22} \end{pmatrix} = egin{pmatrix} m{B}_{11} & m{B}_{12} \ m{A}_{21}m{B}_{11} + m{A}_{22}m{B}_{21} & m{A}_{21}m{B}_{12} + m{A}_{22}m{B}_{22} \end{pmatrix},$$

其中

$$\mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21} = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 0 & 2 \end{pmatrix}$$
$$\mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22} = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}.$$

由此可知,

$$\mathbf{AB} = \begin{pmatrix} 1 & 0 & 3 & 2 \\ -1 & 2 & 0 & 1 \\ --- & --- & --- \\ -2 & 4 & 1 & 1 \\ 0 & 2 & 3 & 3 \end{pmatrix}.$$