PROVA N⁰3

CM311 - Cálculo I

Eng. Ambiental - 09/12/2024

È proibido o uso de celulares e calculadoras de qualquer tipo. Respostas sem justificativa, mesmo que corretas, não serão consideradas.

1. Use a técnica de integração que achar mais conveniente para calcular:

(a)
$$\int 3x (2x^2 - 4)^4 dx$$
,

(b)
$$\int x e^{2x} dx,$$

(c)
$$\int \cos(\pi x) e^x dx,$$

(d)
$$\int \frac{3x+1}{4+x^2} dx$$
.

2. (a) Calcule a derivada da função $F(x) = \int_{-\infty}^{-\infty} t^2 f(t) dt$.

 $\lim_{x \to 0} \frac{\int_0^{x^2} e^{-t^2} dt}{x^2}.$ (b) Use a regra de L'Hôspital para calcular

3. (a) Justifique por que $\int_{-\pi}^{\pi} \frac{\sin x}{3 + x^2} dx = 0.$

(b) Sejam $f \in g$ funções contínuas tais que $\int_0^1 f(x) dx = 5$ e $\int_0^1 g(x) dx = 3$

(i)
$$\int_0^1 (-2) f(x) + 4g(x) dx$$
. (ii) $\int_0^1 x f(1-x^2) dx$.

(ii)
$$\int_0^1 x f(1-x^2) dx$$
.

4. A área da região compreendida entre duas funções contínuas f e g no intervalo [a,b]é dada por: $\int_{0}^{b} |f(x) - g(x)| dx.$

(a) Represente graficamente a região delimitada pelas parábolas $f(x) = 3x^2$ e $q(x) = 5 - 2x^2$ e calcule sua área.

(b) A região do primeiro quadrante delimitada pelas gráficas das funções $y = x^2 + 1$, y = 2/x e a reta y = x - 1 é mostrada na figura. Calcule a área dessa região.