### Vídeos docentes sobre

### Probabilidad y Teoría de la Decisión

### Población y muestra

F. J. Díez Vegas

Dpto. Inteligencia Artificial. UNED

fjdiez@dia.uned.es www.ia.uned.es/~fjdiez

## Población y muestra

- ◆ **Población**: conjunto de casos que existen en el mundo real
  - ➤ Ejemplo: todos los españoles, todos los enfermos de cáncer...
- Muestra: conjunto de casos recogidos en cierto estudio
  - ➤ Ejemplo: personas entrevistadas, pacientes examinados
- ◆ **Estadístico**: función que se aplica a los datos disponibles estadístico(datos) = valor-numérico
  - ➤ Ejemplos: media aritmética, mediana, desviación estándar, máximo, mínimo, cuartiles, etc.
- Distribución poblacional:

probabilidad de obtener cierto valor (para un solo individuo)

◆ <u>Distribución muestral</u> de <u>cierto estadístico</u>:

probabilidad de que el estadístico tome cierto valor en una muestra de tamaño n





#### Ejemplo (cont.): Experimento → Hemos tomado 10<sup>8</sup> muestras, de 6 elementos cada una (hay $101^6 = 1_2061.520_1150.601 \sim 10^{12}$ posibilidades) estadísticos 56, 19, 32, 9, 23, 85 37'33 25'80 Muestra 0: 35,67,45,12,75,94 24'00 Muestra 1: 54'67 ... Muestra 17.404.356: 75 , 76 , 75 , 76 , 77 , 76 75'83 0'69 Muestra 51.748.809: 0,0,98,98,0,99 49'17 49'16 Muestra 99.999.998: 1,36,81,44,99,57 53'00 26'00 Muestra 99.999.999: 73 , 42 , 3 , 46 , 25 , 16 34'17 19'50 **PROMEDIO** 26'61 50'00 distrib. $\underline{\mathsf{muestral}}$ del estadístico $\overline{X}$ distrib. $\underline{\mathsf{muestral}}$ del estadístico S



# Algunas distribuciones de probabilidad que suelen aparecer en estadística

| Distribución | Tipo           | Parámetros     | Expresión                                                             |
|--------------|----------------|----------------|-----------------------------------------------------------------------|
| Uniforme     | discr. / cont. | _              | P(x) = c                                                              |
| Bivaluada    | discreta       | $\theta$       | $P(+x) = \theta, P(\neg x) = 1 - \theta$                              |
| Binomial     | discreta       | п, Ө           | $P(m) = \frac{n!}{m!(n-m)!} \theta^m (1-\theta)^{n-m}$                |
| Normal       | continua       | μ, σ           | $P(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ |
| χ²           | continua       | $\sigma$ , $f$ | $P(u) = c u^{\int_{-1/2}^{-1/2} e^{-u/2}}$                            |
| Student      | continua       | f              | $P(t) = c \left(1 + \frac{t^2}{f}\right)^{-\frac{f+1}{2}}$            |

### Como habíamos dicho:

La <u>distribución muestral</u> depende de la distribución poblacional el tamaño de la muestra el estadístico

◆ Ejemplos, con tamaño de la muestra = n

| Distrib. poblacional | <u>Estadístico</u>                         | Distrib. muestral               |
|----------------------|--------------------------------------------|---------------------------------|
| $bivaluada(\theta)$  | m (nº positivos)                           | binomial $(n, \theta)$          |
| $normal(\mu,\sigma)$ | media                                      | normal $(\mu, \sigma/\sqrt{n})$ |
| $normal(\mu,\sigma)$ | desv. estándar                             | $\chi^2(\sigma,n-1)$            |
| $normal(\mu,\sigma)$ | $t = \frac{\overline{x} - \mu}{s\sqrt{n}}$ | Student(n-1)                    |

