Correction du TD d'entraînement

Diviseur de tension

Schéma

Résultat attendu

On cherche I puis U_{BC} .

Outils

- \diamond Loi des mailles pour I;
- \diamond Loi d'Ohm pour U_{BC} .

Application

Puis trivialement

$$U_{BC} = R_1 I = \frac{R_1}{R_1 + R_2} E$$

Remarque

On remarque donc que deux dipôles de résistances R_1 et R_2 se partageant une tension totale E vont se la répartir en respectant la fraction de résistance à laquelle chaque diôle participe. C'est également une simple moyenne pondérée.

Important

Ce résultat est bien plus général que pour deux dipôles et fonctionne avec n dipôles en série sur une branche. Il faut pouvoir se ramener à ce schéma précis pour appliquer la formule du pont diviseur de tension – que vous pouvez maintenant utiliser sans loi des

mailles : $U_x = E \times \frac{R_x}{R_{\text{tot}}}$

Schéma

Réponse

Oui, elle va changer puisqu'on a branché un nouveau dipôle.

Résultat attendu

On cherche I et U_{BC} .

Outils

- \diamond Loi des mailles pour I;
- \diamond Loi d'Ohm pour U_{BC} .

Schéma simplifié

Application

On peut envisager ce calcul de deux manières :

- \diamond D'une part, $U_{BC}=R_1I_1$ et on pourrait déterminer I_1 en fonction de I avec une LdN, et pour ça avoir I avec une LdM en calculant $R_{\rm eq}$ comme précédemment, et donc :
- \diamond On voit immédiatement que $U_{BC} = R_{eq}I$. Autant partir là-dessus.

On obtient ainsi

$$R_{\text{eq}} = \frac{R_1 R_3}{R_1 + R_3}$$
 et $I = \frac{E}{R_2 + \frac{R_1 R_3}{R_1 + R_2}}$

d'où après calcul

$$U_{BC} = \frac{ER_1R_3}{R_2(R_1 + R_3) + R_1R_3}$$

Diviseur de courant

Schéma

Résultat attendu

On cherche U_{R_1} et U_{R_2} .

Outils

- \diamond Unicité de la tension en parallèle ;
- \diamond Expression résistance \parallel .

Application

On a certes $U_{R_1} = I_1 R_1$ et $U_{R_2} = I_2 R_2$, mais comme on a $U_{R_1} = U_{R_2} = U_{AB}$, le plus simple est de déterminer U_{AB} . Une résistance équivalente $R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$ avec l'intensité I qui est connue (car imposée par le générateur de courant) donne facilement

$$U_{R_1} = U_{R_2} = R_{\text{eq}}I = \frac{R_1 R_2}{R_1 + R_2}I$$

Important

Ce résultat est la base de la réflexion menant à l'expression du diviseur de courant qui donne l'expression de I_x : on voit directement apparaître que $I_x = I \times \frac{R_{\rm eq}}{R_x}$ de par l'unicité de la tension. Souvenez-vous de cette simplicité.

Résultat attendu

On cherche I_2 en fonction de I, R_1, R_2 à partir de la loi des mailles.

Outils

- LdM :
$$I_1R_1 = I_2R_2$$
 (1);
- LdN : $I = I_1 + I_2$ (2).

Application

En utilisant (2) dans (1), on a $I_2R_2 = (I - I_2)R_1$, donc en isolant I_2 on obtient facilement

$$I_2 = I \frac{R_1}{R_1 + R_2}$$

3)

III. Calcul d'intensité

Schéma

Résultat attendu

Évidemment, I_2 va changer puisqu'on branche un nouveau dipôle en parallèle. Une rivière qui se divise en 3 plutôt qu'en 2 va avoir des débits différents dans les deux situations. Donc on cherche I_2 en fonction de I, R_1 , R_2 , R_3 sans méthode imposée.

Application

nalement
$$I_2 = I \times \frac{R_1 R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$

4)

Remarque

L'intensité I ne va pas changer, puisque c'est celle que l'on fixe avec le générateur.

Important

Bien que la loi des mailles soit l'origine de nombreuses relations, ici c'est la simple unicité de la tension qui amène au diviseur de courant.

III Calcul d'intensité

Schéma

Résultat attendu

On cherche à exprimer I_2 .

LdN, LdM

- $\Diamond I = I_1 + I_2(1) \text{ (LdN)};$
- $\Diamond I_1R_1 + Ir_1 = E_1(2) \text{ (LdM 1)};$
- $\Diamond I_2(R+R_2) = I_1R_1(3) \text{ (LdM 2)}.$

Conseil

Pour les systèmes, il faut : numéroter les équations qu'on veut réutiliser en premier lieu, à l'aide des (1) par exemple, savoir qu'un système de 3 équations (indépendantes) à 3 inconnues est résolvable ensuite, et comprendre comment s'y prendre enfin. Cette dernière partie est bien sûr la vraie étape difficile et passe par la pratique, mais elle s'apprend.

 I_2 apparaît dans l'équation (3), mais s'exprime en fonction de I_1 inconnu. On doit donc commencer par trouver une expression de I_1 utile. I_1 fait partie de l'équation (2) qui, elle, dépend de I mais en utilisant (1) on peut facilement changer (2) en une nouvelle équation reliant I_1 à I_2 et qui n'est pas (3) et qu'on appellera brillamment (4). Ainsi, en réinjectant (4) dans (3), on aura une expression de I_2 en fonction uniquement des paramètres du circuit (E, R).

Application

Injecter (1) dans (2) donne:

$$I_1R_1 + (I_1 + I_2)r_1 = E_1$$

$$I_1(R_1 + r_1) = E_1 - I_2r_1$$

$$I_1 = \frac{E_1 - I_2r_1}{R_1 + r_1} \quad (4)$$

Ainsi, il suffit de réinjecter (4) dans (3) pour avoir :

$$I_2(R_2 + R) = \frac{E_1 - I_2 r_1}{R_1 + r_1} \times R_1$$
$$I_2(R_2 + R) \times (R_1 + r) = (E_1 - I_2 r) \times R_1$$
$$I_2[(R_2 + R)(R_1 + r_1) + r_1 R_1] = E_1 R_1$$

et finalement

$$I_2 = \frac{E_1 R_1}{[(R_2 + R)(R_1 + r_1) + r_1 R_1]}$$

2)

Résultat attendu

On cherche à trouver I_2 avec un diviseur de courant.

Dans le circuit ci-contre,

$$I_2 = \frac{R_{\rm eq}}{R_2} I$$

III. Calcul d'intensité

Application

Sur le schéma ci-dessus, on définit

$$R_{\text{eq},1} = R + R_2$$
 et $R_{\text{eq},2} = \frac{R_1(R + R_2)}{R + R_1 + R_2}$

pour appliquer la relation du pont diviseur de courant :

$$I_2 = \frac{R_{\text{eq},2}}{R_{\text{eq},1}}I \Leftrightarrow I_2 = \frac{R_1}{R + R_1 + R_2}I$$

Avec une loi des mailles on trouve

$$I = \frac{E_1}{r_1 + R_{\text{eq},2}} \Leftrightarrow I = \frac{E_1}{r_1 + \frac{R_1(R + R_2)}{R + R_1 + R_2}}$$

Ainsi

$$I_{2} = \frac{R_{1}}{R + R_{1} + R_{2}} \frac{E_{1}}{r_{1}(R + R_{1} + R_{2}) + \frac{R_{1}(R + R_{2})}{R + R_{1} + R_{2}}}$$

$$\Leftrightarrow I_{2} = \frac{R_{1}E_{1}}{(R + R_{1} + R_{2})r_{1} + R_{1}(R + R_{2})}$$

On trouve bien le même résultat (en développant un peu).

3)

Résultat attendu

On cherche à trouver I_2 avec un diviseur de tension.

Dans le circuit ci-contre,

$$U_{R_2} = \frac{R_2}{R_1 + R_2} E$$

Application

Sur le schéma ci-dessus, on définit

$$R_{\rm eq,1} = R + R_2$$

 $R_{\text{eq},2} = \frac{R_1(R + R_2)}{R + R_1 + R_2}$

pour appliquer la relation du pont diviseur de tension :

$$I_2(R_{\text{eq},1}) = U_{AB} = U_{R_{\text{eq},2}} = \frac{R_{\text{eq},2}}{r_1 + R_{\text{eq},2}} E$$

En développant on trouve

$$I_{2}(R+R_{2}) = \frac{R_{1}(R+R_{2})}{E} \frac{E}{R+R_{1}+R_{2}} \frac{E}{r_{1}(R+R_{1}+R_{2}) + \frac{R_{1}(R+R_{2})}{R+R_{1}+R_{2}}}$$

Ce qui donne bien

$$I_2 = \frac{R_1 E}{(R + R_1 + R_2)r_1 + R_1(R + R_2)}$$

Pont de Wheatstone

Résultat

On cherche R_i , ou U_{DC} quand « le pont équilibré ».

Outil

D'après l'énoncé, le pont est équilibré quand = 0, soit quand $V_B = V_D$.

Application

$$U_{BC} = E \frac{R_1}{R_1 + R}$$
$$U_{DC} = E \frac{R_i}{R_i + R_2}$$

Donc

$$U_{BC} = U_{DC}$$

$$\Leftrightarrow \mathbb{Z} \frac{R_1}{R_1 + R} = \mathbb{Z} \frac{R_i}{R_i + R_2}$$

$$\Leftrightarrow R_1(\mathbb{Z}_i + R_2) = R_i(\mathbb{Z}_1 + R)$$

$$\Leftrightarrow R_i = \frac{R_1 R_2}{R}$$

