Functional Analysis and PDE $\,$

November 4, 2015

Contents

1	Introduction	1
2	Structures	2
	2.1 Topological spaces	2
	2.2 Metric spaces	7

Chapter 1

Introduction

Functional Analysis is the analysis on infinite dimensional spaces. Applications of FA are in geometry and topology, probability theory, numerical analysis mathematical physics, and PDEs.

Example.

 $C^2(U)$, $U \subset \mathbb{R}^n$ is the set of functions which are 2 times differentiable and have a bounded derivative. U should be a bounded, open set. Consider $f \to 0$ on ∂U and

$$\Delta = \sum_{j=1}^{n} \left(\frac{\partial}{\partial u_j} \right)^2.$$

Fix $f \in C(U)$ and look for a solution $u \in C^2(U)$, s.t.

$$\Delta u = f, \quad u = \delta^{-1} f.$$

What is the inverse operator δ^{-1} in this case? That's what we need to study here.

Program of the lecture

- Structures: We need to define *Topologies, Metrics, Norms* and *Scalarproducts* on infinite-dimensional spaces
- We introduce Functional Spaces as infinite-dimensional vector spaces of functions
- We need to talk about *Linear Operators* to be able to talk about their inverse (see ??)

Chapter 2

Structures

We consider *convergence*. We have already seen

$$x_n \to x \quad \Leftrightarrow \quad \forall \varepsilon > 0 \exists n_0 \, \forall n > n_0 : x_n \in (x - \varepsilon, x + \varepsilon)$$

In order to do so, we need the definition of a neighbourhood (topology), distances (metric), the length of a vector (norm, Banach spaces), the length and angles (scalar product, Hilbert spaces).

All vector spaces we consider should base on $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}!$

2.1 Topological spaces

Let X be a set, let 2^X the set of all possible subsets of X (including the empty set).

Definition 2.1 (Topology). A Topology \mathcal{T} on the set X is a family of subsets of X, that means

$$\mathcal{T} \subseteq 2^X$$
,

satisfying

T1 $\emptyset, X \in \mathcal{T}$

T2 Stability under finite intersection:

$$\forall A, B \in \mathcal{T} : A \cap B \in \mathcal{T}$$

T3 Stability under any possible union: Let \mathcal{I} be some set of indices (may not be countable). Then

$$\forall \{A_i\}_{i\in\mathcal{I}}\subseteq\mathcal{T}: \quad \bigcup_{i\in\mathcal{I}}A_i\in\mathcal{T}$$

Any subset $A \subset X$ is called an *open set*, if $A \in \mathcal{T}$. Else it is called a *closed set*.

 (X, \mathcal{T}) is called a topological space!

Remark 2.2. Note that

$$\left(\bigcup_{i\in\mathcal{I}}A_i\right)^c=\cap_{i\in\mathcal{I}}A_i^c$$

for all families of open sets $\{A_i\}_{i\in\mathcal{I}}$ and each index-set \mathcal{I} .

Definition 2.3 (Coarser / finer topologies). Let $\mathcal{T}_1, \mathcal{T}_2$ be two topologies on X with $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say that

- \mathcal{T}_1 is coarser / weaker than \mathcal{T}_2
- \mathcal{T}_2 is finer /stronger tthan \mathcal{T}_1

Example.

a) $\mathcal{T} = 2^X$ is a topology on $X \Rightarrow 2^X$ is the storngest (finest) topology on X.

Also $\mathcal{T} = \{\emptyset, X\}$ is a topology on $X \Rightarrow$ any topology \mathcal{T}' needs to caontain \emptyset and X, so $\mathcal{T} \subset \mathcal{T}'$. This means that \mathcal{T} is the weakest / coarsest topology on X

b) On \mathbb{R} there is a standard topology \mathcal{T}_{st} :

$$V \in \mathcal{T}_{st}$$
 iff $\forall x \in V \exists \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \subset V$

c) relative topology: Let $A \subset X$, let \mathcal{T} be a topology on X. Then

$$\mathcal{T}_A\{A \cup V : V \in \mathcal{T}\}$$

d) Intersection of topologies: Let \mathcal{I} an index set (may be uncountable), let $(\mathcal{T}_i)_{i\in\mathcal{I}}$ be a family of topologies on X. Then we can define

$$\bigcap_{i\in\mathcal{I}}\mathcal{T}_i$$

and this is again a topology on X!

e) Product topology: Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) two topological spaces. Let

$$S = \{(V, X) | V \in T_X\} \cup \{(X, W) | W \in T_Y\}.$$

The product topology on $X \times Y$ is the coarsest (weakest) topology on $X \times Y$, that contains S. In particular it must contain all sets of the form $U \times V$ for $U \in \mathcal{T}_X, V \in \mathcal{T}_Y$.

Remark 2.4. If nothing else is said, we consider the standard topology \mathcal{T}_{st} on $\mathbb{R}!$

Definition 2.5 (Closure / boundary of a set). Let (X, \mathcal{T}) topological space, $A \in X$.

The *interior* of A, A° is the largest open set inside

$$A = \bigcup_{V \in \mathcal{T}, V \subseteq A} V$$
 (open).

The *closure* of A, \bar{A} is the smallest closed set containing

$$A = \bigcup_{V \text{ s.t. } V^c \in \mathcal{T}, V \supseteq A} V \text{ (closed)}.$$

The boundary of A is given by

$$\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap \underbrace{(X \setminus A^{\circ})}_{(A^{c})^{c}}$$
 (closed).

Definition 2.6 (dense set / separable set). (X, \mathcal{T}) topological space in X. Then

- $A \subset X$ is called dense in X, if $\bar{A} = X$
- X is called *separable*, if there is a countable dense subset of X

Definition 2.7 (open neighbourhood). (X, \mathcal{T}) topological space, $x \in X$. A subset $V \subseteq X$ is called an open neighbourhood of x, if $V \in \mathcal{T}$ and $x \in V$.

Definition 2.8 (Convergence in topology). Let (\mathcal{T}, X) topological space. A sequence $(x_n)_{n\in\mathbb{N}}$, i.e. a map

$$x: \mathbb{N} \to X$$
$$n \to x_n,$$

emphconverges to $x^* \in X$, if

 $\forall V$ open neighbourhood of $x^*: \{n | x_n \in V^c\}$ is finite

(i.e. there is just a finite number of elements that's not contained in V). Then we say that x^* is a limit point for the sequence x_n .

Example.

- a) Let \mathcal{T} the standard topology on \mathbb{R} . Then the definition of converges equals the ε δ -Definition of convergence in Analysis 3.
- b) If $\mathcal{T} = 2^X$, then $x_n \to x^*$ iff x_n is constant up to a finite number of terms: As we have $\mathcal{T} = 2^X$ especially the set $V = \{x^*\}$ is open. This set gives us the result.
- c) If $\mathcal{T} = \{\emptyset, X\}$, then every sequence is convergent! Every point $x^* \in X$ is a limit point.

Definition 2.9 (Hausdorff space). Let (X, \mathcal{T}) topological space. It is called a *Hausdorff space*, if

$$\forall x, y \in X, x \neq y \,\exists U_x, U_y \in \mathcal{T} \text{ s.t. } x \in U_x, y \in U_y \text{ and } U_x \cap U_y = \emptyset.$$

Proposition 2.10 (Limits in Hausdorff spaces are unique)

If (X, \mathcal{T}) is a Hausdorff space, then every sequence has at most one limit, so either the sequence has no limit or it is unique!

PROOF. Proof can be done by contradiction.

Definition 2.11 (Connectedness). A topological space (X, \mathcal{T}) is *connected*, if we cannot write it as a union of 2 disjoint(!) (nonempty) open sets. So, if X is connected and $V \in \mathcal{T}$ is an open set, there is no $\emptyset \neq W \in \mathcal{T}$ with $V \cap W = \emptyset$ and $V \cup W = X$.

 $A \subseteq X$ is connected, if A is connected in \mathcal{T}_A .

Definition 2.12 (Continuity). Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ topological spaces, $f: X \to Y$. f is called *continuous*, if

$$\forall V \in \mathcal{T}_Y : f^{-1}(V) \subset \mathcal{T}_X.$$

f is continuous at a point $x \in X$, if

 $\forall V$ open neighbourhoods of $f(x) \exists U$ open neighbourhood of x in \mathcal{T}_X , s.t. $f(U) \subset V$

 $(U \subset f^{-1}(V))$. f is a homeomorphism if f is bijective, and f, f^{-1} are continuous.

Remark 2.13. It holds that

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

It is also valid that if

$$f_1:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y),\quad f_2:(Y,\mathcal{T}_Y)\to (X,\mathcal{T}_X)$$

and both are continuous, then $f_2 \circ f_1$ is also continuous! Moreover

f continuous $\Leftrightarrow f$ continuous at every $x \in X$

Example.

a) Let $\mathcal{T} = 2^X$, $f: X \to Y$, let \mathcal{T}_Y continuous. Any function is then continuous:

$$\forall V \in \mathcal{T}_Y : f^{-1}(V) \in 2^X = \mathcal{T}_X \Rightarrow continuous!$$

b) Let now $\mathcal{T}_X = \{\emptyset, X\}$, then the constant function $f(x) = y^*, \forall x \in X$ is contunuous:

$$\forall V \in \mathcal{T}_Y : f^{-1}(V) = \begin{cases} X & \text{if } y^* \in V \\ \emptyset & \text{if } y^* \notin V \end{cases}$$

c) If $\mathcal{T}_X = \{\emptyset, X\}$, and Y is Hausdorff, then the emphonly continuous function is the constant function! (Exercise!)

We may consider the following: Let $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ and $A\subset X$. Then we can define the restriction $f_{|A}:A\to Y$. That's why we also need a topology on A (that is the induced topology). If f was continuous, then $f_{|A}$ is also continuous as a function mapping between (A,\mathcal{T}_A) and (Y,\mathcal{T}_Y) .

Theorem 2.14 (Intermediate value theorem)

Let (X, \mathcal{T}) a connected topological space, $f: (X, \mathcal{T}) \to \mathbb{R}$ (on \mathbb{R} we consider the standard topology), and let f be continuous. Assume there is $x, y \in X$ s.t. f(x) < 0 < f(y). Then there exists a $z \in X$ s.t. f(z) = 0.

PROOF. Assume that $f(z) \neq 0$, $\forall z \in X$. This would mean that $0 \notin f(X)$. Consider $V = (0, \infty)$, which is open in \mathcal{T}_{st} . Then $f^{-1}(V)$ is open (as f is continuous) and is nonempty. We can take the complement of this set: $X = f^{-1}(V) \cup [f^{-1}(V)]^c$, and

$$[f^{-1}(V)]^c = f^{-1}(V^c) = f^{-1}((-\infty, 0)) = f^{-1}\left(\underbrace{(-\infty, 0)}_{\text{open}}\right)$$

is an open and nonempty set. As the space X is connected, this is not possible!

 \Rightarrow There must be $z \in X : f(z) = 0$.

2.2 Metric spaces

Definition 2.15 (Metric). A function $d: X \times X \to [0, \infty), (x, y) \mapsto d(x, y)$ is called a *metric*, if

- M1) $d(x,y) = 0 \Leftrightarrow x = y \text{ (Non-negativity)}$
- M2) $d(x,y) = d(y,x), \forall x, y \in X \text{ (Symmetry)}$
- M3) $d(x,y) \le d(x,z) + d(z,y), \forall x,y,z \in X$ (Triangle inequality)

If d is a metric on X, then the pair (X, d) is called a *metric space*.

Definition 2.16 (Semimetric). The map $d: X \times X \to [0, \infty)$ is called a *semi-metric*, if

- M2) $d(x,y) = d(y,x), \forall x, y \in X \text{ (Symmetry)}$
- M3) $d(x,y) \le d(x,z) + d(z,y), \forall x,y,z \in X$ (Triangle inequality)

The non-negativity (which would make d a metric) is not satisfied!

A semimetric d can be extended to a metric as follows:

Take equivalence relation $x\tilde{y}$, if d(x,y)=0, and then take $\tilde{X}=X_{\setminus^{\sim}}$, so

$$[x] \in \tilde{X} \Rightarrow [x] \coloneqq \{z \in X | \, z\tilde{x}\} = \{z \in X | \, d(x,z) = 0\}.$$

Set then

$$\tilde{d}: \tilde{X} \times \tilde{X} \to [0, \infty), \quad \tilde{d}([x], [y]) = d(x, y).$$

Check, that \tilde{d} is a metric on \tilde{X} !

8

Example.

- a) On $X = \mathbb{R}^n$, the map $d_{\infty}(x,y) := \max_{j=1,\dots,n} |x_j y_j|$ is a metric.
- b) On $X = \mathbb{R}^n$ define for $1 \le p < \infty$:

$$d_p(x,y) := \left[\sum_{j=1}^n |x_j - y_j|^p \right]^{\frac{1}{p}}$$

is a metric on X, for p = 2 it is the euclidean metric.

c) Let $X = \ell_{\infty} := \{a : \mathbb{N} \to \mathbb{R} | \text{boudned sequence} \}$. On this space we can define a metric by

$$d_{\infty}(a,b) \coloneqq \sup_{j \in \mathbb{N}} |a_j - b_j|.$$

This metric is well-defined as all sequences in ℓ_{∞} are bounded!

d) On

$$\ell_p := \{ a : \mathbb{N} \to \mathbb{R} | \sum_{j=0}^{\infty} |a_j|^p < \infty \}$$

we can define a metric by

$$d_p(a,b) := \left[\sum_{j=0}^{\infty} |a_j - b_j|^p\right]^{\frac{1}{p}}.$$

This expression is finite since we take sequences in ℓ_p .

e) Pull-back metric: Let $X, (Y, \mathcal{T}_Y)$ given, $f: X \to Y$ injective. Then

$$d_X(x,y) := d_Y(f(x), f(y))$$

is a metric on X.

Exercise: Show that d_x is a metric iff f is injective and d_Y is a metric!

f) Let $x = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$, and Y = [-1, 1] with the standard metric $d_Y(y_1, y_2) = |y_1 - y_2|$. Let now $f: X \to Y$ given by

$$f(x) := \begin{cases} -1 & x = -\infty \\ \frac{x}{1+|x|} & x \in \mathbb{R} \\ 1 & x = +\infty \end{cases}$$

Then we have that d_x [...??]

Some definitions

Definition 2.17. Let (X, d) metric space, $A, B \subset X$. The *diameter* of A is defined as

$$diam(A) := \sup_{x,y \in A} d(x,y).$$

The distance between two sets is defined as

$$dist(A,B) \coloneqq \inf_{x \in A, y \in B} d(x,y),$$

ald the distance between a set and a point is defined as

$$dist(x, A) := \inf_{y \in A} d(x, y).$$

A Neighbourhood of a set A is given by

$$B_r(A) := \{ y \in X : d(y, A) < r \}.$$

A Ball of radius r centered at x is given by

$$B(x,r) := \{ y \in X | d(y,x) < r \}.$$

Proposition 2.18 (Topology induced by a metric)

Let (X,d) metric space. Define $\mathcal{T}_d \subset 2^X$ as

$$\mathcal{T}_d := \{ V \in X | \forall x \in V \exists \varepsilon > 0 : B(x, \varepsilon) \subset V \}.$$

Then, \mathcal{T}_d is a topology on X and (X, \mathcal{T}_d) is a Hausdorff-space.

PROOF. \mathcal{T}_d is a topology (easy exercise).

Let $x \neq y, x, y \in X$. We need to show that there are $U_x, U_y \in \mathcal{T}_d$ s.t. $x \in U_x, y \in U_y$ and $U_x \cap U_y = emptyset$.

Try with $U_x = B(x, \varepsilon_1)$, $U_y = B(y, \varepsilon_2)$. What is unknown up till now are the values of $\varepsilon_1, \varepsilon_2$. Define $z \in U_x \cap U_y$. This point exists, iff $d(z, x) < \varepsilon_1$ and $d(z, y) < \varepsilon_2$. This means

$$d(x,y) \le d(x,z) + d(z,y) < \varepsilon_1 + \varepsilon_2.$$

If $\varepsilon_1 + \varepsilon_2 < d(x,y)$ then $U_x \cap U_y = \emptyset$. This is always possible as we can chose $\varepsilon_1, \varepsilon_2$ so small, that the sum of them is smaller than d(x,y).

Are those balls open in sense of the topology \mathcal{T}_d ?

It can be checked, that every ball $B(x,r) \in \mathcal{T}_d$ (is open in \mathcal{T}_d).

Definition 2.19. B(x,r) is called an open ball of radius r centered in x. A closed ball of radius r centered in x is given by

$$\bar{B}(x,r) := \{ y \in X | d(x,y) \le r \}.$$

The closure of an open ball B(x,r) is defined as

 $\overline{B(x,r)}$ = smallest open set (in the topol.) containing the ball.

In general $\overline{B(x,r)} \subseteq \overline{B}(x,r)$.

Example.

Let $X = \{0, 1\}$ and

$$d(x,y) \coloneqq \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

Then $B(0,1) = \{z \in X | d(0,z) < 1\} = \{0\}$ and

$$[B(0,1)]^c = \{1\} = B(1,1).$$

So B(0,1) is open and $B(0,1)^c$ is also open. But $B(0,1)^c$ is the complement of an open set, so it has to be closed as well. Therefore B(0,1) is open and closed at the same time. One sees easily

$$\overline{B(0,1)} = \{0\}, \quad \bar{B}(0,1) = \{0,1\}.$$

Whenever we have a metric space, we can make it a topological space. When does the opposite hold? This property is called *Metrizability* of a topological space

Definition 2.20. A topological space (X, \mathcal{T}) s.t. $d: X \times X \to [0, \infty)$ s.t. (X, d) is a metric space, and $\mathcal{T} = \mathcal{T}_d$, then the topological space (X, \mathcal{T}) is called *metrizable*.

Remark 2.21. Not all Hausdorff spaces are metrizable!

Remark 2.22. In a Hausdorff-space (X, \mathcal{T}_d) every convergent sequence has a unique limit.

Proposition 2.23

(X,d) metric space (hence (X,\mathcal{T}_d) is Hausdorff-space). Let $x:\mathbb{N}\to X$ a sequence in X. The following are equal

1.

 $(x_n)_{n\in\mathbb{N}}$ converges to $x^*\in X$ in sense of (X,\mathcal{T}_d)

2.

$$\forall \varepsilon > 0 \,\exists k_0 \ge 0 : \, \forall k \ge k_0 \, x_k \in \underbrace{B(x^*, \varepsilon)}_{d(x^*, x_k) < \varepsilon}$$

PROOF. For all V open neighbourhood of x^* all but a finite number of x_k are in V.

$$\exists k_0 > 0 \,\forall k \geq k_0 \, x_k \in V \text{ iff } V = \text{ball.}$$

For the other direction: V is open neighbourhood of x^* . So there exists $\varepsilon > 0$ s.t.

$$B(x^*,\varepsilon)\subset V$$
.

Open and closed sets can be characterized using convergent sequences:

Proposition 2.24

Let (X,d) metric space, $X \subset X$. The following are equivalent

- 1. A is closed in topology, i.e. $A^c \in \mathcal{T}_d$
- 2. A is sequentially closed, i.e. all convergent sequences $x:\mathbb{N}\to A$ converge to a point $x^*\in A$

Moreover $\forall A \subset X$, the closure \bar{A} (topology) coincides with the sequential closure:

$$\bar{A} := \{ x^* \in X | \exists x : \mathbb{N} \to A : \lim_{k \to \infty} x_k = x^* \}.$$

PROOF. Exercise!