Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

If A and B are independent $P(A \cap B) = P(A)P(B)$

Expected Value

$$E[x] = \int_{-\infty}^{\infty} xp(x) dx \qquad E[g(x)] = \int_{-\infty}^{\infty} g(x)p(x) dx$$

$$E[a] = a; a \text{ is a constant} \qquad E[aX + b] = aE[x] + b$$

$$E[X + Y] = E[X] + E[y]$$

Variance

$$Var[x] = E[(x - E[x])^2] = \sigma^2 = \int_{-\infty}^{\infty} (x - E[x])^2 p(x) dx$$

$$E((x - E[x])^{2}) = E[x^{2}] - (E[x])^{2}$$

$$Var[a] = 0$$
; a is a constant $Var[aX + b] = a^2 Var[X]$

Covariance

$$cov(X_1, X_2) = E[(X_1 - m_1)(X_2 - m_2)]$$

= $E[(X_1)(X_2)] - m_1 m_2$

Correlation

$$\begin{split} \rho &= \frac{cov(X_1, X_2)}{\sqrt{V(X_1)V(X_2)}} \\ r_{xy} &= \frac{\sum\limits_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum\limits_{i=1}^{n} (y_i - \bar{y})^2}} \end{split}$$

Algebra of Random Variable

$$Z = Y + X$$

$$P_Z(Z_0) = P_Y(y) * P_X(x)$$

Probability Distribution

Cumulative Distribution Function (CDF)

Normal

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \qquad E[X] = \mu \qquad Var[X] = \sigma^2$$

Exponential

$$\lambda e^{-\lambda x}$$
 $E[X] = \frac{1}{\lambda}$ $Var[X] = \frac{1}{\lambda^2}$

Uniform

$$\begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

$$E[X] = \frac{1}{2}(a+b) \qquad Var[X] = \frac{1}{12}(b-a)^2$$

Bernoulli

Success (p), Fail (1-p)

$$\begin{cases} q = 1 - p & \text{if } k = 0 \\ p & \text{if } k = 1 \end{cases} \quad E[X] = p \quad Var[X] = p(1 - p)$$

Binomial

n Bernoulli trials

$$\binom{n}{k}p^k(1-p)^{n-k} \qquad E[X] = np \qquad Var[X] = np(1-p)$$

Poisson

$$\frac{\lambda^k e^{-\lambda}}{k!} \qquad E[X] = \lambda \qquad Var[X] = \lambda$$

Pareto

$$\frac{\alpha x_m^a}{x^{\alpha+1}} \qquad E[x] = \begin{cases} \infty & \text{for } \alpha \leq 1 \\ \frac{\alpha x_m}{\alpha-1} & \text{for } \alpha > 1 \end{cases}$$

$$Var[X] = \begin{cases} \infty & \text{for } \alpha \le 1\\ \frac{x_m^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)} & \text{for } \alpha > 1 \end{cases}$$

MLE

To find the MLE given data

- 1. The likelihood function $P(data|\lambda)$, λ is the parameter
- 2. $\frac{d}{d\lambda}(\log \text{ likelihood}) = 0$, Find λ

LLN & CLT

LLN: As n grows, the probability that X_n is close to $\mu \to 1$. CLT: As n grows, the distribution of X_n converges to the normal distribution $N(\mu, \sigma^2/n)$.

Confidence Interval (Polling)

95% Confidence Interval $\bar{x} \pm \frac{1}{\sqrt{n}}$

Null Hypothesis Significance Testing

Errors

		True State of Nature				
		H_0	H_A			
Our Decision	Reject H_0	Type-I Error	correct decision			
	Reject H_0	correct decision	Type-II Error			

P-value

We usually do testing by specifying significance level and do testing using p-values. If p-value is less than the significance level we reject H_0

P-value - Probability assuming Null of seeing data at least as extreme as the experiment data.

Problems with P-value

- **P-hacking** Do experiment multiple times until the results is what we want
- Base rate fallacy Low base rate →More chance for false positive
- Low power experiments If the test has low power (underpowered study), no significant is likely to be due to not enough samples t detect small differences.

Significance level and power

Significance level =
$$P(rejectH_0|H_0)$$

= probability we incorrectly reject H_0
= $P(type I error)$

Power = probability we correctly reject
$$H_0$$

= $P(rejectH_0|H_A)$
= $1 - P(type II error)$

One Sample z-test

Use when the **Variance** (σ^2) of the data is known

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

One Sample t-test

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$
 where $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ $df = n-1$

Two Sample z-test

$$z = \frac{(\bar{x_1} - \bar{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Two Sample t-test with Equal Variance

Assume that the data have $\sigma_1 = \sigma_2$

$$t = \frac{\bar{x} - \bar{y}}{s_p} \qquad s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n + m - 2} \left(\frac{1}{n} + \frac{1}{m}\right)$$

Two Sample t-test with Unequal Variance

Assume that the data have $\sigma_1 \neq \sigma_2$

$$t = \frac{\bar{x} - \bar{y} - \mu_0}{s_P} \qquad s_P^2 = \frac{s_x^2}{n} + \frac{s_y^2}{n}$$

$$df = \frac{(s_x^2/n + s_y^2/m)^2}{(s_x^2/n)^2/(n-1) + (s_y^2/m)^2/(m-1)}$$

Paired two-sample t-test

$$t = \frac{\bar{w} - \mu_0}{s/\sqrt{n}}$$
 $w_i = x_i - y_i$ $s^2 = \frac{1}{n-1} \sum_{i=1}^n (w_i - \bar{w})^2$

One-way ANOVA (F-tesst for equal means)

Test if the population means from n group are all the same Data for each group is an independent normal sample drawn from distributions with (possibly) different means but the same variance.

$$w=\frac{MS_B}{MS_w}$$
 $\bar{x}_i=$ mean of group i $\bar{x}=$ mean of all data
$$s_i^2=\frac{1}{m-1}\sum_{j=1}m(x_{i,j}-\bar{x}_i)^2$$

 MS_B = between group variance = $m \times \text{sample variance of group means}$

$$= \frac{m}{n-1} \sum_{i=1}^{n} (\bar{x}_i - \bar{x})^2$$

 $MS_w = \text{average within group variance}$ = $m \times \text{sample means } s_1^2, \dots, s_n^2$ = $\frac{s_1^2 + s_2^2 + \dots + s_n^2}{n}$

A/B Testing

Steps

- 1. Define relevant metrics
- 2. Split samples into comparable groups
- 3. Choose statistical tests and validate their assumptions
- 4. Decide on stopping criteria
- 5. Run and monitor the experiment
- 6. Analyze results and suggest actions

Possible event probabilities

- 1. # checkout events / # hits double-count on page refreshes
- 2. # checkout events/# sessions double-count on inactive visits; good to see which products get bought within fewer visits
- 3. # checkout events / # cookies on product page "users" as denominator; includes both logins and non-logins; different browsers/devices double-counts
- 4. # payment events / # cookies on product page captures successful purchases
- 5. # payment events / # user ids non-logins count as
- 6. # payment events / # people who are people?

Attribution Period

Conversion rate of August

conversions within August / number of users that visited in August

Conversion rate of August cohort

conversions within X days / number of users that visited in August

What Frequentist Hypothesis Tests Are NOT Saying

- 1. The p-value is not the probability that the null hypothesis is true, or the probability that the alternative hypothesis is false.
- 2. The p-value is not the probability that the observed effects were produced by random chance alone.
- 3. The 0.05 significance level is merely a convention.
- 4. The p-value does not indicate the size or importance of the observed effect.

5. The p-value is not the observed false positive rate; that depends on the prevalence of the data.

MDE

Sample Size

m is the split rate (50:50 = 1, 80:20 = 4)

$$n = \frac{m+1}{m} \left(\frac{(Z_{\alpha} + Z_{\beta})\sigma}{MDE} \right)^{2}$$

When not to do an A/B test

- Things that cannot be summarized into one or a few metrics
- Totally new things
- Delayed results
- One-off events
- Cannot split group independently

Z-score table (Area to the left of the z score)

_	1									
\underline{Z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.46414