Equivalence of RA and RC

Dr Paolo Guagliardo

Fall 2020 (v20.1.0)

$Algebra \equiv Safe calculus$

Fundamental theorem of database theory:

Relational algebra and Safe relational calculus equally expressive

- ► For every query in safe relational calculus there exists an equivalent query in relational algebra
- ► For every query in relational algebra there exists an equivalent query in safe relational calculus

Assumption: Hybrid data model

columns have names and they are ordered

(R over A, B, C means the 1st column is A, the 2nd is B, the 3rd is C)

From algebra to calculus

Translate each RA expression E into a FOL formula φ

Environment η

Injective map from attributes to variables

Unless stated otherwise, for an attribute A we assume $\eta(A)=x_A$ But in general the chosen variable names can be arbitrary

From algebra to calculus

Base relation

R over A_1,\ldots,A_n is translated to $R\big(\eta(A_1),\ldots,\eta(A_n)\big)$

Example

If R is a base relation over A, B

$$\eta = \{ A \mapsto x_A, B \mapsto x_B, \dots \}$$

then R is translated to $R(x_A, x_B)$

From algebra to calculus

Renaming $\rho_{\text{OLD} \to \text{NEW}}(E)$

- 1. Translate E to φ
- 2. If there is no mapping for NEW in η , add $\{\text{NEW} \mapsto x_{\text{NEW}}\}$
- 3. Replace every occurrence of $\eta(\text{NEW})$ in φ with a **fresh** variable
- 4. Replace every (free) occurrence of $\eta(OLD)$ in φ by $\eta(NEW)$

Example

If R is a base relation over A,B then $\rho_{A\to B}\big(\rho_{B\to C}(R)\big)$ is translated to $R(x_B,x_C)$

From algebra to calculus

Projection

$$\pi_{\alpha}(E)$$
 is translated to $\exists X \varphi$

where

- $ightharpoonup \varphi$ is the translation of E
- $X = \mathbf{free}(\varphi) \eta(\alpha)$ (attributes that are **not** projected become quantified)

Example

If R is a base relation over A,B then $\pi_A(R)$ is translated into $\exists x_B \ R(x_A,x_B)$

From algebra to calculus

Selection

 $\sigma_{\theta}(E)$ is translated to $\varphi \wedge \eta(\theta)$

where

- $ightharpoonup \varphi$ is the translation of E
- $lackbox{} \eta(\theta)$ is obtained from θ by replacing each attribute A by $\eta(A)$

Example

If R is a base relation over A,B then $\sigma_{A=B}(R)$ is translated into $R(x_A,x_B)\wedge x_A=x_B$

From algebra to calculus

Cartesian Product, Union, Difference

Product	$E_1 \times E_2$	is translated to	$\varphi_1 \wedge \varphi_2$
Union	$E_1 \cup E_2$	is translated to	$\varphi_1 \vee \varphi_2$
Difference	$E_1 - E_2$	is translated to	$\varphi_1 \wedge \neg \varphi_2$

where

- $ightharpoonup \varphi_1$ is the translation of E_1
- $ightharpoonup \varphi_2$ is the translation of E_2

Example

Customer: CustID, Name

Account: Number, CustID

Environment $\eta = \{ \text{ CustID} \mapsto x_1, \text{ Name} \mapsto x_2, \text{ Number} \mapsto x_3 \}$

How do we translate Customer ⋈ Account ? Blackboard time!

$$\exists x_4 \; \mathsf{Customer}(x_1, x_2) \land \mathsf{Account}(x_3, x_4) \land x_1 = x_4$$

Active domain in relational algebra

For R over attributes A_1, \ldots, A_n

Adom
$$(R)$$
 is given by $\rho_{A_1\to A}\big(\pi_{A_1}(R)\big)\cup\cdots\cup\rho_{A_n\to A}\big(\pi_{A_n}(R)\big)$

$$\mathsf{Adom}(D) = \bigcup_{R \in D} \mathsf{Adom}(R)$$

We denote by \mathbf{Adom}_N the RA expression that, on a database D, returns a table

- ightharpoonup with a single column, named N
- ightharpoonup consisting of all elements of **Adom**(D)

From calculus to algebra

Translate each FOL formula φ into an RA expression E

Assumptions (without loss of generality)

- No universal quantifiers, implications, double negations
- ▶ No distinct pair of quantifiers binds the same variable name
- ▶ No variable name occurs both free and bound
- No variable name is repeated within a predicate
- No constants in predicates
- ightharpoonup No atoms of the form x **op** x or c_1 **op** c_2

Environment η

Injective map from variables to attributes Unless stated otherwise, for a variable x we assume $\eta(x)=A_x$ But in general the chosen attribute names can be arbitrary

From calculus to algebra

Let R be over attributes A_1, \ldots, A_n

Predicate

$$R(x_1,\ldots,x_n)$$
 is translated to $\rho_{A_1\to\eta(x_1),\ldots,A_n\to\eta(x_n)}(R)$

Example

For R over attributes A,B,C, R(x,y,z) is translated into $\rho_{A\to A_x,\,B\to A_y,\,C\to A_z}(R)$

From calculus to algebra

Existential quantification

 $\exists x \ \varphi \text{ is translated } to \pi_{\eta(X-\{x\})}(E)$

where

- ightharpoonup E is the translation of φ
- $ightharpoonup X = \mathbf{free}(\varphi)$

Example

For φ with free variables x,y,z and translation E, $\exists y \ \varphi$ is translated to $\pi_{A_x,A_z}(E)$

From calculus to algebra

Comparisons

$$x$$
 op y is translated to $\sigma_{\eta(x)} \operatorname{op} \eta(y) \left(\operatorname{Adom}_{\eta(x)} \times \operatorname{Adom}_{\eta(y)} \right)$
$$x \operatorname{op} c \text{ is translated to } \sigma_{\eta(x)} \operatorname{op} c \left(\operatorname{Adom}_{\eta(x)} \right)$$

Example

$$x=y$$
 is translated to $\sigma_{A_x=A_y} \big(\mathbf{Adom}_{A_x} \times \mathbf{Adom}_{A_y} \big)$ $x>1$ is translated to $\sigma_{A_x>1} \big(\mathbf{Adom}_{A_x} \big)$

From calculus to algebra

Negation

$$\neg \varphi \text{ is translated into } \left(\underset{x \in \mathbf{free}(\varphi)}{\textstyle \bigvee} \mathbf{Adom}_{\eta(x)} \quad \right) - E$$

where ${\cal E}$ is the translation of φ

Example

For φ with free variables x,y and translation E $\neg \varphi$ is translated to $\mathbf{Adom}_{A_x} \times \mathbf{Adom}_{A_y} - E$

From calculus to algebra

Disjunction: $\varphi_1 \vee \varphi_2$ is translated to

$$E_1 \times \bigl(\underset{x \in X_2 - X_1}{\textstyle \times} \mathsf{Adom}_{\eta(x)} \ \bigr) \cup E_2 \times \bigl(\underset{x \in X_1 - X_2}{\textstyle \times} \mathsf{Adom}_{\eta(x)} \ \bigr)$$

where, for $i \in \{1, 2\}$,

- $ightharpoonup E_i$ is the translation of φ_i
- $ightharpoonup X_i = \mathsf{free}(\varphi_i)$

Conjunction: same as disjunction, but use \cap instead of \cup

Example

Customer: CustID, Name

Account: Number, CustID

$$\begin{aligned} \text{Translate } &\exists x_4 \; \mathsf{Customer}(x_1, x_2) \land \mathsf{Account}(x_3, x_4) \land x_1 = x_4 \\ \text{Environment } &\eta = \{ \; x_1 \mapsto A, \; x_2 \mapsto B, \; x_3 \mapsto C, x_4 \mapsto D \; \} \\ &\pi_{A,B,C} \Big(\big(E_1 \times \mathsf{Adom}_C \times \mathsf{Adom}_D \big) \cap \\ & \big(\mathsf{Adom}_A \times \mathsf{Adom}_B \times E_2 \big) \cap \\ & \big(\sigma_{A=D}(\mathsf{Adom}_A \times \mathsf{Adom}_D) \times \mathsf{Adom}_B \times \mathsf{Adom}_C \big) \Big) \end{aligned}$$

where

- $\blacktriangleright E_1 = \rho_{\operatorname{CustID} \to A, \operatorname{Name} \to B}(\operatorname{Customer})$
- $\blacktriangleright E_2 = \rho_{\, \mathsf{Number} \to C, \, \mathsf{CustID} \to D}(\mathsf{Account})$