

中华人民共和国国家环境保护标准

HJ 194-2017

代替HJ/T 194-2005

环境空气质量手工监测技术规范

Technical specifications on manual methods for ambient air quality monitoring

(发布稿)

本电子版为发布稿。请以中国环境出版社出版的正式标准文本为准。

2017-12-29发布

2018-04-01实施

目 次

前	吉	ii
1	适用范围	
2	规范性引用文件	1
3	术语和定义	1
4	点位布设	2
5	采样时间和频率	3
6	样品采集、运输和保存	3
7	监测分析方法	12
8	数据处理	12
9	质量保证和质量控制	.13
附录	A (规范性附录) 吸收管 (瓶) 阻力测定	16
附录	B (规范性附录) 吸收管 (瓶) 吸收效率测试	.17
附录	C (规范性附录) 气体采样器采样流量校准-皂膜流量计法	18
附录	D(资料性附录)污染物常用采样记录表	21
附录	E(资料性附录)环境空气中主要污染物监测方法标准一览表	.22

前言

为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,完善监测制度,提高环境管理水平,制定本标准。

本标准规定了环境空气质量手工监测的点位布设、采样时间和频率、样品的采集、运输和保存、监测分析方法、数据处理、质量保证和质量控制等技术要求。

本标准是对《环境空气质量手工监测技术规范》(HJ/T 194-2005)的修订。

原标准首次发布于 2005 年 11 月 9 日,原标准起草单位为中国环境监测总站、湖北省环境监测中心站、湖南省环境监测中心站。本次为第一次修订。修订的主要内容如下:

- ——修订了适用范围、术语和定义。
- ——增加了点位布设、样品运输和保存及数据处理等内容。
- ——补充完善了采样、监测分析方法、质量保证和质量控制。
- ——增加了附录 D、附录 E。

自本标准实施之日起,《环境空气质量手工监测技术规范》(HJ/T 194-2005)废止。

本标准的附录 A、附录 B和附录 C为规范性附录,附录 D和附录 E为资料性附录。

本标准由环境保护部环境监测司和科技标准司组织修订。

本标准起草单位:中国环境监测总站、宁波市环境监测中心、湖北省环境监测中心站、 沈阳市环境监测中心站、湖南省环境监测中心站。

本标准环境保护部 2017年12月29日批准。

本标准自2018年4月1日起实施。

本标准由环境保护部解释。

环境空气质量手工监测技术规范

1 适用范围

本标准规定了环境空气质量手工监测的点位布设、采样时间和频率、样品采集、样品 运输和保存、数据处理、质量保证和质量控制等技术要求,适用于采用手工方法对环境空气质量进行监测的活动。

2 规范性引用文件

本标准引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。

- GB 3095 环境空气质量标准
- GB/T 4883 数据的统计处理和解释 正态样本离群值的判断和处理
- GB/T 8170 数值修约规则与极限数值的表示和判定
- GB/T 14675 空气质量 恶臭的测定 三点比较式臭袋法
- GB/T 15265 环境空气 降尘的测定 重量法
- GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法
- HJ 93 环境空气颗粒物 (PM₁₀和 PM_{2.5}) 采样器技术要求及检测方法
- HJ 481 环境空气 氟化物的测定 石灰滤纸采样氟离子选择电极法
- HJ 618 环境空气 PM₁₀和PM_{2.5}的测定 重量法
- HJ 630 环境监测质量管理技术导则
- HJ 656 环境空气颗粒物 (PM_{2.5}) 手工监测方法 (重量法) 技术规范
- HJ 663 环境空气质量评价技术规范(试行)
- HJ 664 环境空气质量监测点位布设技术规范(试行)
- HJ 691 环境空气 半挥发性有机物采样技术导则
- HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法
- HJ/T 374 总悬浮颗粒物采样器技术要求及检测方法
- HJ/T 375 环境空气采样器技术要求及检测方法
- HJ/T 376 24 小时恒温自动连续环境空气采样器技术要求及检测方法

3 术语和定义

下列术语和定义适用于本标准。

3. 1

环境空气质量手工监测 manual methods for ambient air quality monitoring 指在监测点位上用采样装置采集一定时段的环境空气样品,将采集的样品在实验室分 析、处理的过程。

3. 2

溶液吸收采样法 solvent absorption sampling

指利用空气中被测组分能迅速溶解于吸收液或能与吸收液迅速发生化学反应的原理, 采集环境空气中气态污染物的采样方法。

3. 3

吸附管采样法 adsorption tube sampling

指利用空气中被测组分通过吸附、溶解或化学反应等作用被阻留在固体吸附剂上的原理,采集环境空气中气态污染物的采样方法。

3.4

滤膜采样法 filter sampling

指采用不同材质滤膜采集空气中目标污染物的采样方法。

3.5

滤膜-吸附剂联用采样法 filter-sorbent sampling

指将滤膜和吸附剂联合使用,同时采集环境空气中以气态和颗粒物并存的污染物的采 样方法。

3. 6

直接采样法 direct sampling

指将空气样品直接采集在合适的气体收集器内的采样方法。

3. 7

被动采样法 passive sampling

指将采样装置或气样捕集介质暴露于环境空气中,不需要抽气动力,依靠环境空气中 待测污染物分子的自然扩散、迁移、沉降等作用而直接采集污染物的采样方法。

3.8

标准状态 standard state

指温度为273.15 K, 压力为101.325 kPa时的状态。本标准中的污染物浓度均为标准状态下的浓度。

4 点位布设

4.1 基本原则

采样点位应根据监测任务的目的、要求布设,必要时进行现场踏勘后确定。所选点位应具有较好的代表性,监测数据能客观反映一定空间范围内空气质量水平或空气中所测污染物浓度水平。监测点位的布设和数量应满足监测目的及任务要求,具体按照HJ 664相关要求执行。

4.2 监测点位布设技术要求

4.2.1 监测点应地处相对安全、交通便利、电源和防火措施有保障的地方。

- 4.2.2 监测点采样口周围水平面应保证有 270°以上的捕集空间,不能有阻碍空气流动的高大建筑、树木或其他障碍物;如果采样口一侧靠近建筑,采样口周围水平面应有 180°以上的自由空间。从采样口到附近最高障碍物之间的水平距离,应为该障碍物与采样口高度差的两倍以上,或从采样口到建筑物顶部与地平线的夹角小于 30°。
- 4.2.3 采样口距地面高度在 $1.5 \sim 15$ m 范围内,距支撑物表面 1 m 以上。有特殊监测要求时,应根据监测目的进行调整。
- 4.2.4 采样点位布设的其他技术要求按照 HJ 664 执行。

5 采样时间和频率

5.1 总体要求

环境空气中的二氧化硫(SO_2)、二氧化氮(NO_2)、氮氧化物(NO_x)、一氧化碳(CO)、臭氧(O_3)、总悬浮颗粒物(TSP)、可吸入颗粒物(PM_{10})、细颗粒物($PM_{2.5}$)、铅(Pb)、苯并[a]芘(BaP)等污染物的采样时间及采样频率,根据GB 3095中污染物浓度数据有效性规定的要求确定。其他污染物可参照执行,或者根据监测目的、污染物浓度水平及监测分析方法的检出限等因素确定。

5.2 小时浓度间断采样频率

获取环境空气污染物小时平均浓度时,如果污染物浓度过高,或者使用直接采样法采集瞬时样品,应在1h内等时间间隔采集3~4个样品。

5.3 被动采样时间及频率

污染物被动采样时间及采样频率应根据监测点位周围环境空气中污染物的浓度水平、分析方法的检出限及监测目的确定。监测结果可代表一段时间内待测环境空气中污染物的时间加权平均浓度或浓度变化趋势。通常,硫酸盐化速率及氟化物(长期)采样时间为7~30 d;但要获得月平均浓度,样品的采样时间应不少于15 d。降尘采样时间为(30±2)d。

6 样品采集、运输和保存

6.1 溶液吸收采样法

6.1.1 适用项目

溶液吸收采样法适用于二氧化硫、二氧化氮、氮氧化物、臭氧等气态污染物的样品采集。

6.1.2 采样系统

采样系统主要由采样管路、采样器、吸收装置等部分组成。采样器各组成部分的技术

要求见HJ/T 375和HJ/T 376。常见的吸收装置主要有气泡吸收管(瓶)、多孔玻板吸收管(瓶)和冲击式吸收管(瓶)等,结构如图1所示,吸收装置技术要求按相关监测方法标准规定执行。溶液吸收法的采样管路可用不锈钢、玻璃和聚四氟乙烯等材质,采集氧化性和酸性气体应避免使用金属材质采样管。

(A) 气泡吸收管

(B) 多孔玻板吸收管(瓶)

(C) 冲击式吸收管

图 1 常见吸收管(瓶)结构示意图

6.1.3 采样前准备

- 6.1.3.1 检查采样管路是否洁净,如不洁净应进行清洗或更换。
- 6.1.3.2 选择合适的吸收管(瓶),装入相应的吸收液,具体要求见相关监测方法标准规

定。吸收管(瓶)阻力测定及吸收效率测试见附录 A 和附录 B。

- 6.1.3.3 进行气密性检查:将吸收管(瓶)及必要的前处理装置正确连接到气体采样管路,打开仪器,调节流量至规定值,封闭吸收管(瓶)进气口,吸收管(瓶)内不应冒气泡,采样仪器的流量计不应有流量显示,或者按照 HJ/T 375 中相关要求执行。
- 6.1.3.4 采样前、后用经检定合格的标准流量计校验采样系统的流量,流量误差应小于5%,采样流量校准见附录C。观察恒流装置、仪器温控装置、采样器压力传感器、计时器是否正常。

6.1.4 采样

- 6.1.4.1 到达采样现场,观测并记录气象参数和天气状况。
- 6.1.4.2 正确连接采样系统,做好样品标识。注意吸收管(瓶)的进气方向不要接反,防止倒吸。采样过程中有避光、温度控制等要求的项目应按照相关监测方法标准的要求执行。
- 6.1.4.3 设置采样时间,调节流量至规定值,采集样品。
- 6.1.4.4 采样过程中,采样人员应观察采样流量的波动和吸收液的变化,出现异常时要及时停止采样,查找原因。
- 6.1.4.5 采样过程中应及时记录采样起止时间、流量,以及气温、气压等参数,记录内容应完整、规范。采样记录的内容及格式参见附录 D。

6.1.5 样品运输和保存

- 6.1.5.1 样品采集完成后,应将样品密封后放入样品箱,样品箱再次密封后尽快送至实验室分析,并做好样品交接记录。
- 6.1.5.2 应防止样品在运输过程中受到撞击或剧烈振动而损坏。
- 6.1.5.3 样品运输及保存中应避免阳光直射。需要低温保存的样品,在运输过程中应采取相应的冷藏措施,防止样品变质。
- 6.1.5.4 样品到达实验室应及时交接,尽快分析。如不能及时测定,应按各项目的监测方法标准要求妥善保存,并在样品有效期内完成分析。

6.2 吸附管采样法

6.2.1 适用项目

吸附管采样法适用于汞、挥发性有机物等气态污染物的样品采集。

6.2.2 采样系统

采样系统主要由采样管路、采样器、吸附管等部分组成。吸附管为装有各类吸附剂的普通玻璃管、石英管或不锈钢管等,吸附剂的类型、粒径、填装方式、填装量及吸附管规格需符合相关监测方法标准要求。常见的固体吸附剂有活性炭、硅胶和有机高分子等吸附材料。常见吸附管结构见图 2、图 3。

1-玻璃棉; 2-活性炭; A-100 mg 活性炭; B-50 mg 活性炭

图 2 活性炭吸附管

1—不锈钢网/滤膜; 2—弹簧片; A—固体吸附剂

图 3 高分子材料吸附管

6.2.3 采样前准备

- 6.2.3.1 检查所选采样设备是否运行正常。
- 6.2.3.2 按监测方法标准要求准备好相应的吸附管,密封两端。
- 6.2.3.3 吸附管在使用前应按比例抽取一定数量进行空白和吸附/解吸(脱附)效率测试,结果应符合各项目监测方法标准要求; 新购和采集高浓度样品后的热脱附管在使用前需进行老化。
- 6.2.3.4 气密性检查时,选取与采样相同规格的吸附管,按采样要求正确连接到采样仪器上,打开采样泵,堵住吸附管进气端,流量计流量应归零,否则应对采样系统进行漏气检查。
- 6.2.3.5 采样前、后用经检定合格的标准流量计校验采样系统的流量,流量误差应小于5%,采样流量校准见附录 C。

6.2.4 采样

- 6.2.4.1 到达采样现场,观测并记录气象参数和天气状况。
- 6.2.4.2 正确连接采样系统,做好样品标识。注意吸附管的进气方向不可接反,分段填充的吸附管 2/3 填充物段为进气端。吸附管进气端朝向应符合监测方法标准的规定,垂直放置并进行固定。
- 6.2.4.3 设置采样时间,调节流量至规定要求,采集样品。采样过程中,对吸收温度有控制要求的,需采取相应措施。
- 6.2.4.4 采样过程中应及时记录采样起止时间、流量,以及气温、气压等参数,记录内容应完整、规范。采样记录的内容及格式参见附录 D。

6.2.5 样品运输和保存

参见 6.1.5, 其他要求按各项目监测方法标准执行。

6.3 滤膜采样法

6.3.1 适用项目

滤膜采样法适用于总悬浮颗粒物、可吸入颗粒物、细颗粒物等大气颗粒物的质量浓度监测及成分分析,以及颗粒物中重金属、苯并[a]芘、氟化物(小时和日均浓度)等污染物的样品采集。

6.3.2 采样系统

采样系统由颗粒物切割器、滤膜夹、流量测量及控制部件、采样泵、温湿度传感器、压力传感器和微处理器等组成。

总悬浮颗粒物采样系统性能和技术指标应满足 HJ/T 374 的规定,可吸入颗粒物和细颗粒物采样器性能和技术指标应符合 HJ 93 的规定。

6.3.3 采样前准备

- 6.3.3.1 清洗颗粒物切割器,采用软性材料进行擦拭。采样期间如遇特殊天气,如扬沙、沙尘暴天气或重度及以上污染过程时应及时清洗。采样时长超过7d时,也需定期清洗。
- **6.3.3.2** 如果切割器对大颗粒物有去除要求(如需涂抹凡士林或硅脂),采样人员应严格按照仪器说明书执行。
- 6.3.3.3 使用经检定合格的温度计对采样器的温度测量示值进行检查,当误差超过±2 ℃时,应对采样器进行温度校准。
- 6.3.3.4 使用经检定合格的气压计对采样器压力传感器进行检查,当误差超过±1 kPa 时,应对采样器进行压力校准。
- 6.3.3.5 使用经检定合格的标准流量计对采样器流量进行检查,当流量示值误差超过采样流量 2%时,应对采样器进行流量校准。
- 6.3.3.6 进行采样系统气密性检查。
- 6.3.3.7 如果所使用仪器的说明书中对环境温度、气压、采样流量等校准方法和顺序有特别要求时,需按照仪器说明进行校准。
- 6.3.3.8 采样滤膜的材质、本底、均匀性、稳定性需符合所采项目监测方法标准要求。如 有前处理需要,则根据监测方法标准要求对采样滤膜进行相应的前处理。使用前检查滤膜边 缘是否平滑,薄厚是否均匀,且无毛刺、无污染、无碎屑、无针孔、无折痕、无损坏。
- 6.3.3.9 采样前应确保滤膜夹无污染、无损坏。
- 6.3.3.10 滤膜平衡及称重记录表、标准膜称重记录表参见 HJ 656 表 D.2、表 D.3。
- 6.3.3.11 采样前、后用经检定合格的标准流量计校验采样系统的流量,流量误差应小于 5%。

6.3.4 采样

- 6.3.4.1 到达采样现场后,观测并记录气象参数和天气状况。
- 6.3.4.2 正确连接好采样系统,核查滤膜编号,用镊子将采样滤膜平放在滤膜支撑网上并压紧,滤膜毛面或编号标识面朝进气方向,将滤膜夹正确放入采样器中;设置采样开始时间、

结束时间等参数,启动采样器进行采样。

6.3.4.3 采样结束后,取下滤膜夹,用镊子轻轻夹住滤膜边缘,取下样品滤膜(如条件允许应尽量在室内完成装膜、取膜操作),并检查滤膜是否有破裂或滤膜上尘积面的边缘轮廓是否清晰、完整,否则该样品作废,需重新采样。整膜分析时样品滤膜可平放或向里均匀对折,放入已编号的滤膜盒(袋)中密封;非整膜分析时样品滤膜不可对折,需平放在滤膜盒中。记录采样起止时间、采样流量,以及气温、气压等参数。采样记录的内容及格式参见附录 D。

6.3.5 样品运输和保存

- 6.3.5.1 样品采集后,立即装盒(袋)密封,尽快送至实验室分析,并做好交接记录。
- 6.3.5.2 样品运输过程中,应避免剧烈振动。对于需平放的滤膜,保持滤膜采集面向上。
- 6.3.5.3 需要低温保存的样品,在运输过程中应有相应的保存措施以防样品损失。
- 6.3.5.4 样品到达实验室应及时交接,尽快分析。如不能及时称重及分析,应将样品放在 4 ℃条件下冷藏保存,并在监测方法标准要求的时间内完成称量和分析;对分析有机成分的 滤膜,采集后应按照监测方法标准要求进行保存至样品处理前,为防止有机物的损失,不宜 进行称量。

6.4 滤膜-吸附剂联用采样法

6.4.1 适用项目

滤膜-吸附剂联用采样法适用于多环芳烃类等半挥发性有机物的样品采集。

6.4.2 采样系统

在 6.3.2 的基础上,增加气态污染物捕集装置,主要包括装填吸附剂的采样筒、采样筒架及密封圈等。

采样系统性能和技术指标应符合 HJ 691 的规定。

6.4.3 采样前准备

- 6.4.3.1 吸附剂的材质、本底、均匀性、稳定性、采样效率等需符合相应项目的监测方法标准要求,必要时按监测方法标准要求进行前处理。
- 6.4.3.2 采样筒的准备见 HJ 691,采样筒架及密封圈应确保无污染、无损坏。
- 6.4.3.3 按监测方法标准要求将吸附剂放于采样筒内,采样筒用洁净的铝箔包裹备用。
- 6.4.3.4 滤膜使用前应根据监测方法的要求进行高温灼烧等前处理,其他要求参见6.3.3。

6.4.4 采样

- 6.4.4.1 根据仪器说明书把采样筒放入采样器的采样筒架内,确保密封圈安装正确。
- 6.4.4.2 采样结束后,将采样筒从采样筒架内取出,用洁净的铝箔包裹好,放入样品保存筒中,密封,贴上标签。
- 6.4.4.3 其他要求参见 6.3.4 及 HJ 691。

6.4.5 样品运输和保存

参见 6.2.5 和 6.3.5。

6.5 直接采样法

6.5.1 适用项目

直接采样法适用于一氧化碳、挥发性有机物、总烃等污染物的样品采集,常用于空气中被测组分浓度较高或所用分析方法灵敏度较高的情况。根据气态污染物的理化特性及分析方法的检出限,选择相应的采样装置,一般采用真空罐(瓶)、气袋、注射器等。

6.5.2 真空罐(瓶)

6.5.2.1 采样系统

真空罐一般由内表面经过惰性处理的金属材料制作,真空瓶一般由硬质玻璃制作,通常 配有进气阀门和真空压力表,可重复使用。

6.5.2.2 采样前准备

采样前,真空罐(瓶)应先清洗或加热清洗3~5次,再抽真空,真空度应符合相关监测方法标准的要求。每批次真空罐(瓶)应进行空白测定。采样所用的辅助物品也应经过清洗,密封带到现场,或者事先在洁净的环境中安装好,封好进气口带到现场。其他具体技术操作参见HJ 759、GB/T 14675。

6.5.2.3 采样

用真空罐(瓶)采集空气样品可分为瞬时采样和恒流采样两种方式。瞬时采样时在罐 进气口处加过滤器,恒流采样时在罐进气口安装限流阀和过滤器。

真空罐采样参见 HJ 759, 真空瓶采样参见 GB/T 14675。

6.5.2.4 样品运输和保存

样品运输和保存参见 HJ 759、GB/T 14675。

6.5.3 气袋

6.5.3.1 采样系统

气袋适用于采集化学性质稳定、不与气袋起化学反应的低沸点气态污染物。气袋常用的材质有聚四氟乙烯、聚乙烯、聚氯乙烯和金属衬里(铝箔)等。根据监测方法标准要求和目标污染物性质等选择合适的气袋。

气袋采样方式可分真空负压法和正压注入法。真空负压法采样系统由进气管、气袋、真空箱、阀门和抽气泵等部分组成;正压注入法用双联球、注射器、正压泵等器具通过连接管将样品气体直接注入气袋中。

6.5.3.2 采样前准备

采样前气袋应清洗干净,确保无残留气体干扰。采样前应检查气袋是否密封良好, 是否有破裂损坏等情况,并进行气密性检查,确保采样系统不漏气。

6.5.3.3 采样

用现场空气清洗气袋3~5次后再正式采样,采样后迅速将进气口密封,做好标识, 并记录采样时间、地点、气温、气压等参数。

6.5.3.4 样品运输和保存

采样后气袋应迅速放入运输箱内,防止阳光直射,并采取措施避免气袋破损;当环境温差较大时,应采取保温措施;样品存放时间不宜过长,应在最短的时间内送至实验室分析。

6.5.4 注射器

6.5.4.1 采样系统

注射器通常由玻璃、塑料等材质制成,采样前根据方法要求选择。一般用 50 ml 或 100 ml 带有惰性密封头的注射器。

6.5.4.2 采样前准备

将注射器按监测方法标准要求进行洗涤、干燥等处理后密封备用。采样前,所用注射器要通过气密性和空白检查,并保证内部无残留气体。

6.5.4.3 采样

采样时,移去注射器的密封头,抽吸现场空气 3~5 次,然后抽取一定体积的气样,密封后将注射器进口朝下、垂直放置,使注射器的内压略大于大气压。做好样品标识,记录采样时间、地点、气温、气压等参数。

6.5.4.4 样品运输和保存

采样后注射器应迅速放入运输箱内,并保持垂直状态运送;玻璃注射器应小心轻放,防止损坏;样品保温并避光保存,采样后尽快分析,在监测方法标准规定的时限内测定完毕。

6.6 被动采样法

6. 6. 1 适用项目

被动采样法适用于硫酸盐化速率、氟化物(长期)、降尘等污染物的样品采集。

6.6.2 硫酸盐化速率

将用碳酸钾溶液浸渍过的玻璃纤维滤膜(碱片)暴露于环境空气中,环境空气中的 二氧化硫、硫化氢、硫酸雾等与浸渍在滤膜上的碳酸钾发生反应,生成硫酸盐而被固定 的采样方法。

6.6.2.1 采样装置

采样装置由采样滤膜和采样架组成,采样架由塑料皿、塑料垫圈及塑料皿支架构成,如图4所示。

塑料皿, 高10 mm, 内径72 mm;

塑料垫圈, 厚1~2 mm, 内径50 mm, 外径72 mm;

塑料皿支架,由两块聚氯乙烯硬塑料板(120 mm×120 mm)成90°角焊接,下面再焊接一个高为30 mm、内径为78~80 mm的聚氯乙烯短管,在其管壁上互成120°处,钻三个螺栓眼,距支架面15 mm,用三个螺栓固定塑料皿。

碱片采样架

1 型料皿支架; 2 塑料皿; 3 塑料垫圈

图 4 硫酸盐化速率被动采样装置示意图

6.6.2.2 采样滤膜(碱片)制备

将玻璃纤维滤膜剪成直径70 mm的圆片,毛面向上,平放于150 ml的烧杯口上,用刻度吸管均匀滴加30%碳酸钾溶液1.0 ml于每张滤膜上,使其扩散直径为5 cm。将滤膜置于60 ℃下烘干,贮存于干燥器内备用。

6.6.2.3 采样

将滤膜毛面向外放入塑料皿中,用塑料垫圈压好边缘;将塑料皿中滤膜面向下,用螺栓固定在塑料皿支架上,并将塑料皿支架固定在距地面高3~15 m的支持物上,距基础面的相对高度应大于1.5 m,记录采样点位、样品编号、放置时间等。

采样结束后,取出塑料皿,用锋利小刀沿塑料垫圈内缘刻下直径为5 cm的样品膜,将滤膜样品面向里对折后放入样品盒(袋)中。记录采样结束时间,并核对样品编号及采样点。

6.6.3 氟化物

空气中长期平均污染水平的氟化物的采样按HJ 481的相关要求进行。

6.6.4 降尘采样

降尘的采样按 GB/T 15265 的相关要求进行。

6.7 采样点气象参数观测

在采样过程中,应观测采样点环境温度和气压,有条件时可观测相对湿度、风向和 风速等气象参数:

温度观测, 所用温度计温度测量范围一般为(-40~55)℃, 精度为±0.5℃。

压力观测,所用气压计测量范围一般为(50~107)kPa,精度为±0.1 kPa。相对湿度观测,所用湿度计测量范围一般为10%~100%,精度为±5%。风向观测,所用风向仪测量范围一般为0°~360°,精度为±5°。风速观测,所用风速仪测量范围一般为(1~30)m/s,精度为±0.5 m/s。

6.8 采样记录及要求

采样人员应及时准确记录各项采样条件及参数,采样记录内容应完整,字迹清晰、书写工整、更正规范。污染物常用采样记录的内容及格式参见附录D。

6.9 采样体积计算

采样体积计算方法如公式(1)所示。

$$V_n = Q_n \times t = Q \times t \times \frac{P \times 273.15}{101.325 \times T}$$
 (1)

式中: Vn——标准状况下采样体积, L;

 Q_n —标准状况下的采样流量,L/min;

t——采样时间, min;

O——实际采样流量, L/min;

P——采样时的环境大气压, kPa;

T——采样时环境的温度, K。

7 监测分析方法

- 7.1 原则上优先选择国家标准、环境保护标准和其他行业标准;也可采用国际标准和其他 国家或地区标准。
- 7.2 无标准方法时,可选用公认权威的监测分析方法,所选用的方法应通过实验室验证。
- 7.3 环境空气中主要污染物的监测方法标准参见附录 E, 当监测方法标准有新增和代替时, 按照国家最新发布的方法标准执行。

8 数据处理

8.1 有效数字及数值修约

有效数字及数值修约相关要求按照 GB/T 8170、HJ 663 和监测项目的监测方法标准要求执行。

8.2 异常值的判断和处理

异常值的判断和处理按照 GB/T 4883 的要求执行。当出现异常值时,应查找原因,原因不明的异常值不应随意剔除。

8.3 数据校核及审核

数据校核及审核参见 HJ 630 的相关技术要求。

9 质量保证和质量控制

9.1 监测人员要求

凡承担现场采样、实验室分析等工作的监测人员,应具备相应的技术能力,持证上岗。

9.2 监测仪器管理

- 9.2.1 凡属于需强制检定的计量器具,应按计量法规定,定期送法定计量检定机构检定, 检定合格后方可使用。
- 9.2.2 国家强制检定之外的计量器具,可送至有资质的计量机构进行校准,或自行校准、 比对,合格后方可使用。
- 9.2.3 计量器具在日常使用过程中,应按照相关技术要求定期校验、核查和维护。

9.3 采样质量保证与质量控制

9.3.1 基本要求

- 9.3.1.1 每次采样前,应对采样系统的气密性进行检查,符合要求方可采样。
- 9.3.1.2 空白样品数量应按照项目监测方法标准规定执行;如方法标准中无规定,每个项目在同一批次内至少采集1个空白样品。
- 9.3.1.3 平行样的采集及要求按照各项目监测方法标准执行。
- 9.3.1.4 多点采样时,各采样点采样须同步进行,采样时间和采样频率均应相同。
- 9.3.1.5 采样前后的流量偏差应在规定范围内。
- 9.3.1.6 推荐优先使用恒流且具有累计采样体积功能的采样仪器。
- 9.3.1.7 每月至少清洗 1 次采样管路,每月至少对仪器进行 1 次流量检查校准,其误差应在规定范围内。长时间进行连续采样时,至少每周对采样系统进行 1 次流量检查校准。及时更换仪器防尘滤膜和干燥剂,一般干燥器硅胶有 1/2 变色则需更换。
- 9.3.1.8 采样结束后,检查仪器状态是否完好,清理仪器和附件,并填写仪器使用记录。 清点样品数量,核对无误后,将样品及时送交实验室分析。
- 9.3.1.9 遇到对监测影响较大的雨雪天气及风速大于 8 m/s 的天气条件时,不宜进行手工采样监测。

9.3.2 特殊要求

9.3.2.1 溶液吸收采样法

- a) 吸收管(瓶)的阻力、吸收效率、发泡的均匀性应符合监测方法标准要求,不符合要求的吸收管(瓶)不得使用。
- b) 夏季、冬季采样过程中要采取适当的保护措施,防止因温度过高、过低而导致吸收

液蒸干、结冰、吸收管 (瓶) 冻裂等情况的发生。

9.3.2.2 吸附管采样法

- a) 若现场空气中含有较多颗粒物,可在采样管前连接过滤装置。为防止吸附剂颗粒进入采样器内部,采样器的进气口需有合适的过滤装置。
- b) 空气中水蒸汽或水雾太大会影响采样效率,采样时空气相对湿度应小于90%。
- c) 采样时流量应稳定,采样前后的流量相对偏差应不大于10%。
- d) 吸附管采样法的实际采样体积应小于安全采样体积,必要时应在采样前按照监测方 法标准要求进行穿透试验,以保证吸收效率,避免样品损失。
- e) 样品箱要有防震和防撞措施,防止样品在运输过程中发生损坏。

9.3.2.3 滤膜采样法

总悬浮颗粒物、可吸入颗粒物和细颗粒物手工监测方法的质量保证和质量控制要求分别 见 GB/T 15432、HJ 618 和 HJ 656。颗粒物中重金属、有机物等污染物的质量保证和质量控制按照各项目监测方法标准要求执行。

9.3.2.4 滤膜-吸附剂联用采样法

质量保证和质量控制要求按照 HJ 691 和各项目监测方法标准执行。

9.3.2.5 直接采样法

- a) 真空罐(瓶)
 - 1) 真空罐(瓶)清洗后,每20只应至少取1只注入高纯氮气分析,确定是否清洗干净。每个采集过高浓度样品的真空罐(瓶)清洗后,在下一次使用前均应进行本底污染分析。
 - 2) 玻璃真空瓶易碎,不锈钢真空罐的内壁进行过惰性处理,强烈碰撞会导致内壁变形或涂层脱落,致使样品保存效率下降,因此在运输、保存、使用过程中需小心谨慎,做好保护。

b) 气袋

- 1) 进气管、接头或阀门等辅助装置需选用惰性材质,气袋体积应满足监测方法标准对采样量的要求。
- 2) 使用前需对气袋进行吸附或渗透检查,稳定性差的不宜使用。
- 3) 每批气袋使用前需进行空白实验和检漏试验。气袋的检漏方法: 当气袋充满空 气后, 浸没在水中, 不应冒气泡。

c) 注射器

- 1) 注射器气密性检查:注射器内芯与外筒间应滑动自如,先吸入空气至最大刻度, 用配套密封头封好进气口,垂直放置 24 h,剩余空气应不少于 60%。
- 2) 注射器及配套密封头的材质不能污染、吸附样品,不可与样品发生化学反应。
- 3) 新的或使用过的注射器,需及时清洗、烘干,以排除可能的干扰。清洗后的注射器应排尽内部气体,密封保存在洁净环境中。

9.3.3 其他要求

其他质量保证和质量控制要求按照各污染物监测方法标准执行。

9.4 实验室及现场分析质量控制

原则上优先选择实验室分析。若分析过程确需在现场完成的监测项目,则需具备现场分析测试条件,分析过程质量控制按照 HJ 630 和污染物监测方法标准相关要求执行。

附录 A

(规范性附录)

吸收管(瓶)阻力测定

吸收管(瓶)阻力测定装置如图 A.1 所示。

向吸收管(瓶)内注入与采样吸收液等体积的水,按图 A.1 连接好测定装置,确定系统不漏气,开启抽气泵,按监测方法标准规定的采样流量采样,待流量稳定后,读取测定装置上负压表测值。

测试多孔玻板吸收管(瓶)阻力时,如监测方法标准对吸收管(瓶)阻力有明确规定的, 应以其为准。如监测方法标准无明确规定的,一般按以下要求进行。

内装 50 ml 吸收液的大型多孔玻板吸收管(瓶),以 0.2 L/min 流量采样时,玻板阻力 应为 (6.7±0.7) kPa,通过玻板后的气泡应分散均匀。

内装 10 ml 吸收液多孔玻板吸收管(瓶),以 0.5 L/min 流量采样时,玻板阻力应为 (4.7 ± 0.7) kPa,通过玻板后的气泡应分散均匀。

1-吸收管(瓶); 2-滤水井; 3-干燥器; 4-负压表; 5-流量控制装置; 6-抽气泵

图 A.1 吸收管(瓶)阻力测定装置

附录 B

(规范性附录)

吸收管(瓶)吸收效率测试

在有条件获取标准气体时,可将标气通入装有吸收液的吸收管(瓶),以正常采样流量 采样,并分析吸收液中的气体浓度。采样时间可根据标气浓度、采样流量确定,保证吸收液 中污染物浓度在方法检出下限 10 倍以上。将其与标气的标准值比较,按下列公式计算其吸 收管(瓶)的吸收效率:

$$CE\% = \frac{c_1}{c_0} \times 100\%$$
 (B.1)

式中: CE%——吸收管(瓶)的吸收效率;

 c_1 ——实验室分析的气体质量浓度, $\mu g/m^3$;

 c_0 —标气质量浓度, $\mu g/m^3$ 。

在没有条件获取标准气体时,可在采样系列中,串联安装两个装有吸收液的吸收管(瓶),进行正常采样后以分别分析两个吸收管(瓶)的污染物浓度的方式测定吸收管(瓶)的吸收效率。当空气中的污染物浓度较高时,可将空气直接通入装有吸收液的吸收管(瓶),以正常采样流量采样,并分析吸收液中的气体浓度。当空气中的污染物浓度较低时,应通过适当方法产生较高浓度的气体作为气源进行采样,以保证采样系统中第二个吸收管(瓶)吸收液中的气体浓度大于方法规定的检出下限。具体操作如下:

将两个吸收管(瓶)分别标记为 1 号和 2 号吸收管(瓶)。设 1 号吸收管(瓶)的吸收效率为 k_1 ; 2 号吸收管(瓶)吸收效率为 k_2 。

第一次测定时,使气样先通过 1 号吸收管(瓶)再进入 2 号吸收管(瓶),采样后测定出 1 号吸收管(瓶)样品浓度为 M_1 ; 2 号吸收管(瓶)样品浓度为 M_2 ; 计算比值:

$$A = \frac{M_2}{M_1} \tag{B.2}$$

第二次测定时,将 1 号和 2 号吸收管(瓶)对调,使气样先通过 2 号吸收管(瓶)再进入 1 号吸收管(瓶),采样后测定出 1 号吸收管(瓶)样品浓度为 N_1 ; 2 号吸收管(瓶)样品浓度为 N_2 ; 计算比值:

$$B = \frac{N_1}{N_2} \tag{B.3}$$

两次测定完成后;按下述公式计算 1 号吸收管(瓶)的吸收效率 k_1 和 2 号吸收管(瓶) 吸收效率 k_2 。

$$k_1 = \frac{(1 - A \times B)}{(1 + A)} \times 100\%$$
 (B.4)

$$k_2 = \frac{(1 - A \times B)}{(1 + B)} \times 100\%$$
 (B.5)

在实际测定时,上述公式的浓度值 A 和 B 也可直接用仪器测定的吸光度值代替(注意, A 和 B 必须同时使用吸光度值)。

附录 C

(规范性附录)

气体采样器采样流量校准-皂膜流量计法

C.1 转子流量计的校准

使用经计量机构检定合格的皂膜流量计作为流量标准,确保其在检定合格时间周期内。 使用秒表作为时间计时器,应定期以中央人民广播电台或其他整点报时信号作为时间标准,间隔 1 小时进行时间比对,标准偏差≤0.2%。

皂液由洗洁精与蒸馏水混合配制,比例为 1:6~1:8,皂液不宜长期连续使用,应定期更换。

校准不同流量时,选择皂膜通过皂膜流量计的计时体积应尽可能一致,且有合适的通过时间,以减少皂膜流量计不同刻度间的体积误差与测量时间误差。

使用皂膜流量计校准转子流量计步骤如下:

- a) 按图 C.1 将皂膜流量计连接至采样系统,检查并保证校准、采样系统不漏气;
- b) 记录校准时的环境温度和气压;
- c) 启动采样泵, 待系统运行稳定, 多次按压皂膜生成器生成皂膜, 直至流量计的管壁充分湿润后, 方可进入测量状态;
- d)调节采样流量使转子流量计的转子稳定在满量程 20%的刻度;
- e)按压皂膜生成器产生单个皂膜,用秒表记录其通过皂膜流量计两个选定刻度间所用的时间;
- f) 重复测量三次,取其平均值,按公式(C.1)、(C.2) 将皂膜流量计的实测流量值 修正到标准状况下的体积流量;

1一秒表; 2一皂液; 3一皂膜流量计; 4一皂液捕集器; 5一吸收管(瓶);6一干燥器; 7一转子流量器; 8一缓冲瓶; 9一针阀; 10一抽气泵

图 C.1 用皂膜流量计校准采样系统中的转子流量计

g) 依次调节采样流量, 使转子流量计的转子稳定在满量程的 40%、60%、80%、100%

刻度值位置(或使用采样流量对应的刻度值位置)。重复上述步骤 e)、f)。 皂膜流量计的体积换算成标准状况下的体积公式:

$$V_n = V_m \frac{P_b - P_v}{101.325} \times \frac{273.15 + T_s}{273.15 + T_m}$$
 (C.1)

标准状况下的流量换算公式:

$$Q_{\rm n} = \frac{V_{\rm n}}{t} \tag{C.2}$$

式中: V_n ——标准状况下皂膜流量计两刻度间的体积, ml;

 V_{m} ——校准时皂膜流量计两刻度的体积, ml;

 P_{b} ——校准时环境大气压力,kPa;

 P_v ——皂膜流量计内水的饱和蒸气压,kPa;

 T_{m} ——校准时环境温度, $^{\circ}$ C;

 T_s ——出厂标况温度, $^{\circ}$ C, 如 0 $^{\circ}$ C、20 $^{\circ}$ C等;

 Q_n ——标准状况下转子流量计的流量,ml/min;

t——校准时三次的平均时间,s。

C.2 临界限流孔的校准

临界限流孔是一定孔径的毛细管,以控制小流量采样器的流量装置,使用经计量机构检 定合格的皂膜流量计作为流量标准。

使用电子秒表作为时间计时器。

皂液由蒸馏水与洗洁精混合配制。

使用皂膜流量计校准临界限流孔的流量步骤如下:

- a) 按图 C.2 将皂膜流量计连接至采样系统,检查并保证采样系统不漏气;
- b) 记录校准时的环境温度和气压;
- c)断开皂膜捕集器与吸收管(瓶)的连接管路;启动采样泵,堵住吸收管的进气口,常压下真空表的真空度应>68 kPa,保证临界限流孔两端压力比 $P_d/P_u < 0.5$ (P_d : 下游压力、 P_u :上游压力),关闭采样泵;
- d)恢复皂膜捕集器与吸收管(瓶)的连接管路;
- e) 启动采样泵, 待系统运行稳定, 多次按压皂膜生成器生成皂膜, 直至流量计的管壁 充分湿润后, 方可进入测量状态;
- f)按压皂膜生成器产生单个皂膜,用秒表记录其通过皂膜流量计相应体积所用的时间;
- g) 重复测量三次,计时误差应小于±0.2 s,取其平均值,按公式(C.1)、(C.2)将 皂膜流量计的实测流量值修正到标准状况下的体积流量。

1—皂液; 2—皂膜流量计; 3—皂液捕集器; 4—吸收管(瓶); 5—滤水井; 6—干燥器; 7—恒温装置; 8—临界限流孔; 9—负压表; 10—真空泵

图 C. 2 临界限流孔流量校准示意图

表 C. 1 在 101.325 kPa 压力下,不同温度时空气中水的饱和蒸气压

汨庄 / ∞	水的饱和	中蒸气压	狙鹿 / ∞	水的饱和蒸气压		
温度 / ℃	mmHg	kPa	温度 / ℃	mmHg	kPa	
9	8.60	1.15	23	21.1	2.81	
10	9.20	1.23	24	22.4	2.99	
11	9.80	1.31	25	23.8	3.17	
12	10.5	1.40	26	25.2	3.36	
13	11.2	1.49	27	26.7	3.56	
14	12.0	1.60	28	28.3	3.77	
15	12.8	1.71	29	30.0	4.00	
16	13.6	1.81	30	31.8	4.24	
17	14.5	1.93	31	33.7	4.49	
18	15.5	2.07	32	35.7	4.76	
19	16.5	2.20	33	37.7	5.03	
20	17.5	2.33	34	39.9	5.32	
21	18.7	2.49	35	42.2	5.62	
22	19.8	2.64	36	44.6	5.94	

附录 D

(资料性附录)

污染物常用采样记录表

					纬度										
监测 项目	仪器 型号及 编号	样品编号	采样时间		采样流量(L/min)		采样平均	气象五参数			累计实况	累计标准 状态体积			
			开始 时间	结東 时间	累积 时间	采样前	采样后	流量 (L/min)	气温 (℃)	气压 (kPa)	相对湿度 (%)	风速 (m/s)	主导 风向	体积 (m³)	(m³)
备注: 3	备注:建议采集并留存采样期间点位周围环境图像信息。														
采样: 校对:					审核:										

附录 E

(资料性附录)

环境空气中主要污染物监测方法标准一览表

序号	污染物	标准编号	标准名称						
1		НЈ 482	环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法						
	二氧化硫	НЈ 483	环境空气 二氧化硫的测定 四氯汞盐吸收-副玫瑰苯胺分光光度 法						
2	氮氧化物(一氧化 氮和二氧化氮)	НЈ 479	环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法						
3	二氧化氮	GB/T 15435	环境空气 二氧化氮的测定 Saltzman法						
4	臭氧	НЈ 504	环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法						
5	一氧化碳	GB 9801	空气质量 一氧化碳的测定 非分散红外法						
	铅	GB/T 15264	环境空气 铅的测定 火焰原子吸收分光光度法						
6		НЈ 539	环境空气 铅的测定 石墨炉原子吸收分光光度法						
7	总悬浮颗粒物	GB/T 15432	环境空气 总悬浮颗粒物的测定 重量法						
8	PM_{10}	НЈ 618	环境空气 PM ₁₀ 和PM _{2.5} 的测定 重量法						
	PM _{2.5}	НЈ 618	环境空气 PM ₁₀ 和PM _{2.5} 的测定 重量法						
9		НЈ 656	环境空气颗粒物(PM _{2.5})手工监测方法(重量法)技术规范						
10	氟化物	НЈ 480	环境空气 氟化物的测定 滤膜采样氟离子选择电极法						
10		НЈ 481	环境空气 氟化物的测定 石灰滤纸采样氟离子选择电极法						
11	苯并[a]芘	GB/T 15439	环境空气 苯并[a]芘测定 高效液相色谱法						
12	氨	НЈ 533	环境空气和废气 氨的测定 纳氏试剂分光光度法						
12		НЈ 534	环境空气 氨的测定 次氯酸钠-水杨酸分光光度法						
13	总烃	НЈ 604	环境空气 总烃的测定 气相色谱法						
1.4	苯系物	НЈ 583	环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法						
14		НЈ 584	环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法						

序号	污染物	标准编号	标准名称				
1.5	rx 甘 寸: / 米)	НЈ 738	环境空气 硝基苯类化合物的测定 气相色谱法				
15	硝基苯(类)	НЈ 739	环境空气 硝基苯类化合物的测定 气相色谱-质谱法				
	多环芳烃	НЈ 646	环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法				
16		НЈ 647	环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法				
17	挥发性卤代烃 HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳相色谱法						
18	挥发性有机物	НЈ 644	环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱- 质谱法				
		НЈ 759	环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法				
19	半挥发性有机物	НЈ 691	环境空气 半挥发性有机物采样技术导则				
20	酚类化合物	НЈ 638	环境空气 酚类化合物的测定 高效液相色谱法				
21	醛、酮类化合物	НЈ 683	环境空气 醛、酮类化合物的测定 高效液相色谱法				
22	汞	汞 HJ 542 环境空气 汞的测定 巯基棉富集-冷原子荧光分光光度法(暂行					
23	降尘	GB/T 15265	环境空气 降尘的测定 重量法				
24	锑、铝、砷、铅等 24种金属元素	НЈ 657	空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法				
25	六价铬	НЈ 779	环境空气 六价铬的测定 柱后衍生离子色谱法				
26	氯化氢	НЈ 549	环境空气和废气 氯化氢的测定 离子色谱法				
27	酰胺类	НЈ 801	环境空气和废气 酰胺类化合物的测定 液相色谱法				
28	颗粒物中水溶性阴 离子	НЈ 799	环境空气 颗粒物中水溶性阴离子(F-、Cl-、Br-、NO ₂ -、NO ₃ -、PO ₄ ³⁻ 、SO ₃ ²⁻ 、SO ₄ ²⁻)的测定 离子色谱法				
29	颗粒物中水溶性阳 离子	НЈ 800	环境空气 颗粒物中水溶性阳离子(Li ⁺ 、Na ⁺ 、NH ₄ ⁺ 、K ⁺ 、Ca ²⁺ 、Mg ²⁺)的测定 离子色谱法				