Maestría en Optimización

Escuela Politécnica Nacional

Febrero, 2015

Examen de admisión

- 1. Cálculo en \mathbb{R} .
 - (a) Dada $f(x) = \sqrt{25 x^2}$ en el intervalo [-3, 5], encuentre el punto $c \in [-3, 5]$ en el cual se satisface el teorema del valor medio.
 - (b) Sea q una función continua. Pruebe que

$$\frac{d}{dx} \left(\int_{f_1(x)}^{f_2(x)} g(t) \ dt \right) = g(f_2(x))f_2'(x) - g(f_1(x))f_1'(x),$$

donde f_1 y f_2 son funciones reales continuas y diferenciables.

- 2. Considere la función $\mathbb{R}^2 \ni (x,y) \mapsto f(x,y) = (x^2 + y 11)^2 + (x + y^2 7)^2$.
 - (a) Encuentre todos los puntos críticos de f.
 - (b) Determine cuáles de estos puntos críticos son mínimos de la función f.
 - (c) Estos mínimos, ¿son locales o globales?
- 3. Sea $\alpha(x)$ una función real continua, definida en el intervalo [a,b]. Demuestre que si

$$\int_{a}^{b} \alpha(x)h(x) \ dx = 0,$$

para toda función continua h(x) con h(a) = h(b) = 0, entonces $\alpha(x) = 0$, $\forall x \in [a, b]$.

4. Dada una matriz $A \in \mathbb{R}^{m \times n}$, definimos sus espacios rango y núcleo de la siguiente manera:

$$\mathcal{R}(A) := \{ y \in \mathbb{R}^m : y = Ax, \text{ para algún } x \in \mathbb{R}^n \},$$

 $\mathcal{N}(A) := \{ x \in \mathbb{R}^n : Ax = 0 \}.$

- (a) Demostrar que $\mathcal{R}(A) = [\mathcal{N}(A^T)]^{\perp}$, donde V^{\perp} denota el complemento ortogonal del espacio vectorial V.
- (b) Empleando el resultado anterior, demostrar que el sistema lineal Ax = b no tiene solución si y sólo si existe un vector $y \in \mathbb{R}^m$ tal que $y^TA = 0^T$ y $y^Tb \neq 0$.

- 5. Considere dos conjuntos de vectores linealmente independientes en \mathbb{R}^n : $\{x_1, \ldots, x_n\}$ y $\{y_1, \ldots, y_n\}$ con $n \geq 2$. Indique si las siguientes matrices son invertibles (y justifique su respuesta):
 - (a) $x_1y_1^{\top}$
 - (b) $x_1 y_1^{\top} + x_1 y_2^{\top} + \dots + x_1 y_n^{\top}$
 - (c) $x_1 y_1^{\top} + x_2 y_2^{\top} + \dots + x_n y_n^{\top}$