

Si4430/31/32 REGISTER DESCRIPTIONS

1. Complete Register Summary

Table 1. Register Descriptions

Add	R/W	Function/Desc	Data							POR	
			D7	D6	D5	D4	D3	D2	D1	D0	Default
00	R	Device Type	0	0	0	dt[4]	dt[3]	dt[2]	dt[1]	dt[0]	08h
01	R	Device Version	0	0	0	vc[4]	vc[3]	vc[2]	vc[1]	vc[0]	_
02	R	Device Status	ffovfl	ffunfl	rxffem	headerr	reserved	reserved	cps[1]	cps[0]	_
03	R	Interrupt Status 1	ifferr	itxffafull	itxffaem	irxffafull	iext	ipksent	ipkvalid	icrcerror	_
04	R	Interrupt Status 2	iswdet	ipreaval	ipreainval	irssi	iwut	ilbd	ichiprdy	ipor	_
05	R/W	Interrupt Enable 1	enfferr	entxffafull	entxffaem	enrxffafull	enext	enpksent	enpkvalid	encrcerror	00h
06	R/W	Interrupt Enable 2	enswdet	enpreaval	enpreainval	enrssi	enwut	enlbd	enchiprdy	enpor	03h
07	R/W	Operating & Function Control 1	swres	enlbd	enwt	x32ksel	txon	rxon	pllon	xton	01h
08	R/W	Operating & Function Control 2	antdiv[2]	antdiv[1]	antdiv[0]	rxmpk	autotx	enldm	ffclrrx	ffclrtx	00h
09	R/W	Crystal Oscillator Load Capacitance	xtalshft	xlc[6]	xlc[5]	xlc[4]	xlc[3]	xlc[2]	xlc[1]	xlc[0]	7Fh
0A	R/W	Microcontroller Output Clock	Reserved	Reserved	clkt[1]	clkt[0]	enlfc	mclk[2]	mclk[1]	mclk[0]	06h
0B	R/W	GPIO0 Configuration	gpio0drv[1]	gpio0drv[0]	pup0	gpio0[4]	gpio0[3]	gpio0[2]	gpio0[1]	gpio0[0]	00h
0C	R/W	GPIO1 Configuration	gpio1drv[1]	gpio1drv[0]	pup1	gpio1[4]	gpio1[3]	gpio1[2]	gpio1[1]	gpio1[0]	00h
0D	R/W	GPIO2 Configuration	gpio2drv[1]	gpio2drv[0]	pup2	gpio2[4]	gpio2[3]	gpio2[2]	gpio2[1]	gpio2[0]	00h
0E	R/W	I/O Port Configuration	Reserved	extitst[2]	extitst[1]	extitst[0]	itsdo	dio2	dio1	dio0	00h
0F	R/W	ADC Configuration	adcstart/adc- done	adcsel[2]	adcsel[1]	adcsel[0]	adcref[1]	adcref[0]	adcgain[1]	adcgain[0]	00h
10	R/W	ADC Sensor Amplifier Offset	Reserved	Reserved	Reserved	Reserved	adcoffs[3]	adcoffs[2]	adcoffs[1]	adcoffs[0]	00h
11	R	ADC Value	adc[7]	adc[6]	adc[5]	adc[4]	adc[3]	adc[2]	adc[1]	adc[0]	_
12	R/W	Temperature Sensor Control	tsrange[1]	tsrange[0]	entsoffs	entstrim	tstrim[3]	tstrim[2]	tstrim[1]	tstrim[0]	20h
13	R/W	Temperature Value Offset	tvoffs[7]	tvoffs[6]	tvoffs[5]	tvoffs[4]	tvoffs[3]	tvoffs[2]	tvoffs[1]	tvoffs[0]	00h
14	R/W	Wake-Up Timer Period 1	Reserved	Reserved	Reserved	wtr[4]	wtr[3]	wtr[2]	wtr[1]	wtr[0]	03h
15	R/W	Wake-Up Timer Period 2	wtm[15]	wtm[14]	wtm[13]	wtm[12]	wtm[11]	wtm[10]	wtm[9]	wtm[8]	00h
16	R/W	Wake-Up Timer Period 3	wtm[7]	wtm[6]	wtm[5]	wtm[4]	wtm[3]	wtm[2]	wtm[1]	wtm[0]	01h
17	R	Wake-Up Timer Value 1	wtv[15]	wtv[14]	wtv[13]	wtv[12]	wtv[11]	wtv[10]	wtv[9]	wtv[8]	_
18	R	Wake-Up Timer Value 2	wtv[7]	wtv[6]	wtv[5]	wtv[4]	wtv[3]	wtv[2]	wtv[1]	wtv[0]	_
19	R/W	Low-Duty Cycle Mode Duration	ldc[7]	ldc[6]	ldc[5]	ldc[4]	ldc[3]	ldc[2]	ldc[1]	ldc[0]	00h
1A	R/W	Low Battery Detector Threshold	Reserved	Reserved	Reserved	lbdt[4]	lbdt[3]	lbdt[2]	lbdt[1]	lbdt[0]	14h
1B	R	Battery Voltage Level	0	0	0	vbat[4]	vbat[3]	vbat[2]	vbat[1]	vbat[0]	_
1C	R/W	IF Filter Bandwidth	dwn3_bypass	ndec[2]	ndec[1]	ndec[0]	filset[3]	filset[2]	filset[1]	filset[0]	01h
1D	R/W	AFC Loop Gearshift Override	afcbd	enafc	afcgearh[2]	afcgearh[1]	afcgearh[0]	1p5 bypass	matap	ph0size	40h
1E	R/W	AFC Timing Control	swait_timer[1]	swait_timer[0]	shwait[2]	shwait[1]	shwait[0]	anwait[2]	anwait[1]	anwait[0]	0Ah
1F	R/W	Clock Recovery Gearshift Override	Reserved	Reserved	crfast[2]	crfast[1]	crfast[0]	crslow[2]	crslow[1]	crslow[0]	03h
20	R/W	Clock Recovery Oversampling Ratio	rxosr[7]	rxosr[6]	rxosr[5]	rxosr[4]	rxosr[3]	rxosr[2]	rxosr[1]	rxosr[0]	64h
21	R/W	Clock Recovery Offset 2	rxosr[10]	rxosr[9]	rxosr[8]	stallctrl	ncoff[19]	ncoff[18]	ncoff[17]	ncoff[16]	01h
22	R/W	Clock Recovery Offset 1	ncoff[15]	ncoff[14]	ncoff[13]	ncoff[12]	ncoff[11]	ncoff[10]	ncoff[9]	ncoff[8]	47h
23	R/W	Clock Recovery Offset 0	ncoff[7]	ncoff[6]	ncoff[5]	ncoff[4]	ncoff[3]	ncoff[2]	ncoff[1]	ncoff[0]	AEh

Table 1. Register Descriptions (Continued)

Add	R/W	Function/Desc	Data						POR		
Auu	10,00	1 unotion/bese	D7	D6	D5	D4	D3	D2	D1	D0	Default
24	R/W	Clock Recovery Timing Loop Gain 1	Reserved	Reserved	Reserved	rxncocomp	crgain2x	crgain[10]	crgain[9]	crgain[8]	02h
25	R/W	Clock Recovery Timing Loop Gain 0	crgain[7]	crgain[6]	crgain[5]	crgain[4]	crgain[3]	crgain[2]	crgain[1]	crgain[0]	8Fh
26	R	Received Signal Strength Indi- cator	rssi[7]	rssi[6]	rssi[5]	rssi[4]	rssi[3]	rssi[2]	rssi[1]	rssi[0]	_
27	R/W	RSSI Threshold for Clear Channel Indicator	rssith[7]	rssith[6]	rssith[5]	rssith[4]	rssith[3]	rssith[2]	rssith[1]	rssith[0]	1Eh
28	R	Antenna Diversity Register 1	adrssi1[7]	adrssia[6]	adrssia[5]	adrssia[4]	adrssia[3]	adrssia[2]	adrssia[1]	adrssia[0]	_
29	R	Antenna Diversity Register 2	adrssib[7]	adrssib[6]	adrssib[5]	adrssib[4]	adrssib[3]	adrssib[2]	adrssib[1]	adrssib[0]	_
2A	R/W	AFC Limiter	Afclim[7]	Afclim[6]	Afclim[5]	Afclim[4]	Afclim[3]	Afclim[2]	Afclim[1]	Afclim[0]	00h
2B	R	AFC Correction Read	afc_corr[9]	afc_corr[8]	afc_corr[7]	afc_corr[6]	afc_corr[5]	afc_corr[4]	afc_corr[3]	afc_corr[2]	00h
2C	R/W	OOK Counter Value 1	afc_corr[9]	afc_corr[9]	ookfrzen	peakdeten	madeten	ookcnt[10]	ookcnt[9]	ookcnt[8]	18h
2D	R/W	OOK Counter Value 2	ookcnt[7]	ookcnt[6]	ookcnt[5]	ookcnt[4]	ookcnt[3]	ookcnt[2]	ookcnt[1]	ookcnt[0]	BCh
2E	R/W	Slicer Peak Hold	Reserved	attack[2]	attack[1]	attack[0]	decay[3]	decay[2]	decay[1]	decay[0]	26h
2F				•	Reserve	d		•	•	•	•
30	R/W	Data Access Control	enpacrx	Isbfrst	crcdonly	skip2ph	enpactx	encrc	crc[1]	crc[0]	8Dh
31	R	EzMAC status	0	rxcrc1	pksrch	pkrx	pkvalid	crcerror	pktx	pksent	_
32	R/W	Header Control 1		bcen[3	:0]			hdcl	n[3:0]		0Ch
33	R/W	Header Control 2	skipsyn	hdlen[2]	hdlen[1]	hdlen[0]	fixpklen	synclen[1]	synclen[0]	prealen[8]	22h
34	R/W	Preamble Length	prealen[7]	prealen[6]	prealen[5]	prealen[4]	prealen[3]	prealen[2]	prealen[1]	prealen[0]	08h
35	R/W	Preamble Detection Control	preath[4]	preath[3]	preath[2]	preath[1]	preath[0]	rssi_off[2]	rssi_off[1]	rssi_off[0]	2Ah
36	R/W	Sync Word 3	sync[31]	sync[30]	sync[29]	sync[28]	sync[27]	sync[26]	sync[25]	sync[24]	2Dh
37	R/W	Sync Word 2	sync[23]	sync[22]	sync[21]	sync[20]	sync[19]	sync[18]	sync[17]	sync[16]	D4h
38	R/W	Sync Word 1	sync[15]	sync[14]	sync[13]	sync[12]	sync[11]	sync[10]	sync[9]	sync[8]	00h
39	R/W	Sync Word 0	sync[7]	sync[6]	sync[5]	sync[4]	sync[3]	sync[2]	sync[1]	sync[0]	00h
3A	R/W	Transmit Header 3	txhd[31]	txhd[30]	txhd[29]	txhd[28]	txhd[27]	txhd[26]	txhd[25]	txhd[24]	00h
3B	R/W	Transmit Header 2	txhd[23]	txhd[22]	txhd[21]	txhd[20]	txhd[19]	txhd[18]	txhd[17]	txhd[16]	00h
3C	R/W	Transmit Header 1	txhd[15]	txhd[14]	txhd[13]	txhd[12]	txhd[11]	txhd[10]	txhd[9]	txhd[8]	00h
3D	R/W	Transmit Header 0	txhd[7]	txhd[6]	txhd[5]	txhd[4]	txhd[3]	txhd[2]	txhd[1]	txhd[0]	00h
3E	R/W	Transmit Packet Length	pklen[7]	pklen[6]	pklen[5]	pklen[4]	pklen[3]	pklen[2]	pklen[1]	pklen[0]	00h
3F	R/W	Check Header 3	chhd[31]	chhd[30]	chhd[29]	chhd[28]	chhd[27]	chhd[26]	chhd[25]	chhd[24]	00h
40	R/W	Check Header 2	chhd[23]	chhd[22]	chhd[21]	chhd[20]	chhd[19]	chhd[18]	chhd[17]	chhd[16]	00h
41	R/W	Check Header 1	chhd[15]	chhd[14]	chhd[13]	chhd[12]	chhd[11]	chhd[10]	chhd[9]	chhd[8]	00h
42	R/W	Check Header 0	chhd[7]	chhd[6]	chhd[5]	chhd[4]	chhd[3]	chhd[2]	chhd[1]	chhd[0]	00h
43	R/W	Header Enable 3	hden[31]	hden[30]	hden[29]	hden[28]	hden[27]	hden[26]	hden[25]	hden[24]	FFh
44	R/W	Header Enable 2	hden[23]	hden[22]	hden[21]	hden[20]	hden[19]	hden[18]	hden[17]	hden[16]	FFh
45	R/W	Header Enable 1	hden[15]	hden[14]	hden[13]	hden[12]	hden[11]	hden[10]	hden[9]	hden[8]	FFh
46	R/W	Header Enable 0	hden[7]	hden[6]	hden[5]	hden[4]	hden[3]	hden[2]	hden[1]	hden[0]	FFh
47	R	Received Header 3	rxhd[31]	rxhd[30]	rxhd[29]	rxhd[28]	rxhd[27]	rxhd[26]	rxhd[25]	rxhd[24]	_
48	R	Received Header 2	rxhd[23]	rxhd[22]	rxhd[21]	rxhd[20]	rxhd[19]	rxhd[18]	rxhd[17]	rxhd[16]	_
49	R	Received Header 1	rxhd[15]	rxhd[14]	rxhd[13]	rxhd[12]	rxhd[11]	rxhd[10]	rxhd[9]	rxhd[8]	_
4A	R	Received Header 0	rxhd[7]	rxhd[6]	rxhd[5]	rxhd[4]	rxhd[3]	rxhd[2]	rxhd[1]	rxhd[0]	_
4B	R	Received Packet Length	rxplen[7]	rxplen[6]	rxplen[5]	rxplen[4]	rxplen[3]	rxplen[2]	rxplen[1]	rxplen[0]	_
4C-4E		5			Reserve						
4F	R/W	ADC8 Control	Reserved	Reserved	adc8[5]	adc8[4]	adc8[3]	adc8[2]	adc8[1]	adc8[0]	10h
50-5F		· · ·			Reserve		1		1 .,	1	
60	R/W	Channel Filter Coefficient Address	Inv_pre_th[3]	Inv_pre_th[2]	1	Inv_pre_th[0]	Reserved	Reserved	Reserved	Reserved	00h

Table 1. Register Descriptions (Continued)

Add	R/W	Function/Desc				Data					POR
			D7	D6	D5	D4	D3	D2	D1	D0	Default
61					Reserve	d					
62	R/W	Crystal Oscillator/Control Test	pwst[2]	pwst[1]	pwst[0]	clkhyst	enbias2x	enamp2x	bufovr	enbuf	24h
63-68					Reserve	d					
69	R/W	AGC Override 1	Reserved	sgi	agcen	Inagain	pga3	pga2	pga1	pga0	20h
6A-6C					Reserve	b					
6D	R/W	TX Power	Reserved	Reserved	Reserved	Reserved	Ina_sw	txpow[2]	txpow[1]	txpow[0]	18h
6E	R/W	TX Data Rate 1	txdr[15]	txdr[14]	txdr[13]	txdr[12]	txdr[11]	txdr[10]	txdr[9]	txdr[8]	0Ah
6F	R/W	TX Data Rate 0	txdr[7]	txdr[6]	txdr[5]	txdr[4]	txdr[3]	txdr[2]	txdr[1]	txdr[0]	3Dh
70	R/W	Modulation Mode Control 1	Reserved	Reserved	txdtrtscale	enphpwdn	manppol	enmaninv	enmanch	enwhite	0Ch
71	R/W	Modulation Mode Control 2	trclk[1]	trclk[0]	dtmod[1]	dtmod[0]	eninv	fd[8]	modtyp[1]	modtyp[0]	00h
72	R/W	Frequency Deviation	fd[7]	fd[6]	fd[5]	fd[4]	fd[3]	fd[2]	fd[1]	fd[0]	20h
73	R/W	Frequency Offset 1	fo[7]	fo[6]	fo[5]	fo[4]	fo[3]	fo[2]	fo[1]	fo[0]	00h
74	R/W	Frequency Offset 2	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	fo[9]	fo[8]	00h
75	R/W	Frequency Band Select	Reserved	sbsel	hbsel	fb[4]	fb[3]	fb[2]	fb[1]	fb[0]	75h
76	R/W	Nominal Carrier Frequency 1	fc[15]	fc[14]	fc[13]	fc[12]	fc[11]	fc[10]	fc[9]	fc[8]	BBh
77	R/W	Nominal Carrier Frequency 0	fc[7]	fc[6]	fc[5]	fc[4]	fc[3]	fc[2]	fc[1]	fc[0]	80h
78					Reserve	d					
79	R/W	Frequency Hopping Channel Select	fhch[7]	fhch[6]	fhch[5]	fhch[4]	fhch[3]	fhch[2]	fhch[1]	fhch[0]	00h
7A	R/W	Frequency Hopping Step Size	fhs[7]	fhs[6]	fhs[5]	fhs[4]	fhs[3]	fhs[2]	fhs[1]	fhs[0]	00h
7B		•		•	Reserve	d	•	•	•		
7C	R/W	TX FIFO Control 1	Reserved	Reserved	txafthr[5]	txafthr[4]	txafthr[3]	txafthr[2]	txafthr[1]	txafthr[0]	37h
7D	R/W	V TX FIFO Control 2 Reser		Reserved	txaethr[5]	txaethr[4]	txaethr[3]	txaethr[2]	txaethr[1]	txaethr[0]	04h
7E	R/W	RX FIFO Control	Reserved	Reserved	rxafthr[5]	rxafthr[4]	rxafthr[3]	rxafthr[2]	rxafthr[1]	rxafthr[0]	37h
7F	R/W	FIFO Access	fifod[7]	fifod[6]	fifod[5]	fifod[4]	fifod[3]	fifod[2]	fifod[1]	fifod[0]	_

2. Detailed Register Descriptions

Register 00h. Device Type Code (DT)

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name				dt[4:0]					
Туре	R	R	R	R					

Reset value = 00001000

Bit	Name	Function
7:5	Reserved	
4:0	dt[4:0]	Device Type Code. EZRadioPRO: 01000.

Register 01h. Version Code (VC)

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name				vc[4:0]						
Туре	R	R	R	R						

Reset value = xxxxxxxx

Bit	Name	Function
7:5	Reserved	
4:0	vc[4:0]	Version Code. Code indicating the version of the chip. ■ Si4430/31/32 Rev B1: 00110. ■ Si100x Rev C, Si101x Rev A, Si102x/3x Rev A: 00110. ■ Si100x Rev E, Si101x Rev B: Si102x/3x Rev B: 00111.

SHICHNIARS

Register 02h. Device Status

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ffovfl	ffunfl	rxffem	headerr	freqerr		cps	[1:0]
Туре	R	R	R	R	R	R	R	

Reset value = xxxxxxxx

Bit	Name	Function
7	ffovfl	RX/TX FIFO Overflow Status.
6	ffunfl	RX/TX FIFO Underflow Status.
5	rxffem	RX FIFO Empty Status.
4	headerr	Header Error Status. Indicates if the received packet has a header check error.
3	freqerr	Frequency Error Status. The programmed frequency is outside of the operating range. The actual frequency is saturated to the max/min value.
2	Reserved	
1:0	cps[1:0]	Chip Power State. 00: Idle State 01: RX State 10: TX State

Register 03h. Interrupt/Status 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ifferr	itxffafull	ixtffaem	irxffafull	iext	ipksent	ipkvalid	icrerror
Туре	R	R	R	R	R	R	R	R

Reset value = xxxxxxxx

Bit	Name	Function
7	ifferr	FIFO Underflow/Overflow Error. When set to 1 the TX or RX FIFO has overflowed or underflowed.
6	itxffafull	TX FIFO Almost Full. When set to 1 the TX FIFO has met its almost full threshold and needs to be transmitted.
5	itxffaem	TX FIFO Almost Empty. When set to 1 the TX FIFO is almost empty and needs to be filled.
4	irxffafull	RX FIFO Almost Full. When set to 1 the RX FIFO has met its almost full threshold and needs to be read by the microcontroller.
3	iext	External Interrupt. When set to 1 an interrupt occurred on one of the GPIO's if it is programmed so. The status can be checked in register 0Eh. See GPIOx Configuration section for the details.
2	ipksent	Packet Sent Interrupt. When set to1 a valid packet has been transmitted.
1	ipkvalid	Valid Packet Received. When set to 1 a valid packet has been received.
0	icrcerror	CRC Error. When set to 1 the cyclic redundancy check is failed.

When any of the Interrupt/Status 1 register bits change state from 0 to 1 the device will notify the microcontroller by setting the nIRQ pin LOW = 0 if the corresponding enable bit is set in the Interrupt Enable 1 register. The nIRQ pin will go to HIGH and all the *enabled* interrupt bits will be cleared when the microcontroller reads this address. If any of these bits are not enabled in the Interrupt Enable 1 register, they then become status signals that can be read at any time. They will not be cleared by reading the register.

Table 2. When Individual Status Bits are Set/Cleared if not Enabled as Interrupts

Bit	Status Name	Set/Clear Conditions
7	ifferr	Set if there is a TX or RX FIFO Overflow or Underflow condition. It is cleared only by applying FIFO reset to the specific FIFO that caused the condition.
6	itxffafull	Will be set when the number of bytes written to the TX FIFO is greater than the TX Almost Full Threshold set in SPI Reg 7Ch. Example: If Reg 7Ch =0x3C=60d, the itxffafull interrupt will not be generated if 60 bytes (or less) are written to the TX FIFO, but will be generated if 61 bytes (or more) are written to the TX FIFO. It is automatically cleared when a sufficient number of bytes have been read from the TX FIFO and transmitted, such that the remaining number of bytes in the TX FIFO is less than or equal to the TX Almost Full Threshold.
5	itxffaem	Will be set when the number of bytes remaining for transmission in the TX FIFO is less than or equal to the TX Almost Empty Threshold set in SPI Reg 7Dh, plus one byte. Example: If Reg 7Dh=0x05, the itxffaem interrupt will be generated when 6 or less bytes remain in the TX FIFO. It is automatically cleared when a sufficient number of bytes have been written to the TX FIFO, such that the number of data bytes not yet transmitted is above the TX Almost Empty Threshold. Update of this status flag requires a clock from the internal TX domain circuitry, and thus may not indicate accurately until TX mode is entered.
4	irxffafull	Will be set when the number of bytes received (and not yet read-out) in RX FIFO is greater than the RX Almost Full threshold set in SPI Reg 7Eh. Example: If Reg 7EH=0x3C=60d, the irxffafull interrupt will not be generated if 60 bytes (or less) are received and stored to the RX FIFO, but will be generated if 61 bytes (or more) are received and stored to the RXFIFO. It is automatically cleared when a sufficient number of bytes are read from the RX FIFO, such that the remaining number of bytes in the RX FIFO is below the RX Almost Full Threshold. Update of this status flag requires a clock from the internal RX domain circuitry, and thus may not indicate accurately until RX mode is entered.
3	iext	External interrupt source.
2	ipksent	Will be set upon complete transmission of a packet (no TX abort). This status will be cleared if 1) The chip is commanded to leave FIFO mode, or 2) While the chip is in FIFO mode a new transmission is started. Packet Sent functionality remains available even if the TX Packet Handler (enpactx bit D3 in SPI Reg 30h) is not enabled, as it is possible construct and send an entire packet from the FIFO without making use of the Packet Handler.
1	ipkvalid	Will be set upon full and correct reception of a packet (no RX abort). It is not automatically cleared by simply re-entering RX mode, but is only cleared upon detection of a valid Sync Word in the next RX packet. Packet Valid functionality is not available if the RX Packet Handler (enpacrx bit D7 in SPI Reg 30h) is not enabled.
0	icrcerror	Will be set if the CRC computed during RX differs from the CRC sent in the packet by the TX. It is cleared upon start of data reception in a new packet. CRC functionality is not available if the RX Packet Handler (enpacrx bit D7 in SPI Reg 30h) is not enabled.

Register 04h. Interrupt/Status 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	iswdet	ipreaval	ipreainval	irssi	iwut	ilbd	ichiprdy	ipor
Туре	R	R	R	R	R	R	R	R

Reset value = xxxxxxxx

Bit	Name	Function
7	iswdet	Sync Word Detected. When a sync word is detected this bit will be set to 1.
6	ipreaval	Valid Preamble Detected. When a preamble is detected this bit will be set to 1.
5	ipreainval	Invalid Preamble Detected. When the preamble is not found within a period of time set by the invalid preamble detection threshold in Register 60h, this bit will be set to 1.
4	irssi	RSSI. When RSSI level exceeds the programmed threshold this bit will be set to 1.
3	iwut	Wake-Up-Timer. On the expiration of programmed wake-up timer this bit will be set to 1.
2	ilbd	Low Battery Detect. When a low battery event has been detected this bit will be set to 1. This interrupt event is saved even if it is not enabled by the mask register bit and causes an interrupt after it is enabled.
1	ichiprdy	Chip Ready (XTAL). When a chip ready event has been detected this bit will be set to 1.
0	ipor	Power-on-Reset (POR). When the chip detects a Power on Reset above the desired setting this bit will be set to 1.

When any of the Interrupt/Status 2 register bits change state from 0 to 1 the device will notify the microcontroller by setting the nIRQ pin LOW = 0 if the corresponding enable bit is set in the Interrupt Enable 2 register. The nIRQ pin will go to HIGH and all the **enabled** interrupt bits will be cleared when the microcontroller reads this address. If any of these bits are not enabled in the Interrupt Enable 2 register, they then become status signals that can be read at any time. They will not be cleared by reading the register.

Table 3. Detailed Description of Status Registers when not Enabled as Interrupts

Bit	Status Name	Set/Clear Conditions
7	iswdet	Goes high once the Sync Word is detected. Goes low once we are done receiving the current packet.
6	ipreaval	Goes high once the preamble is detected. Goes low once the sync is detected or the RX wait for the sync times-out.
5	ipreainval	Self clearing, user should use this as an interrupt source rather than a status.
4	irssi	Should remain high as long as the RSSI value is above programmed threshold level
3	iwut	Wake time timer interrupt. Use as an interrupt, not as a status.
2	ilbd	Low Battery Detect. When a low battery event has been detected this bit will be set to 1. It will remain set as long as the battery voltage is below the threshold but will reset if the voltage returns to a level higher than the threshold.
1	ichiprdy	Chip ready goes high once we enable the xtal, TX or RX, and a settling time for the Xtal clock elapses. The status stay high unless we go back to Idle mode.
0	ipor	Power on status.

Register 05h. Interrupt Enable 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	enfferr	entxffafull	entxffaem	enrxffafull	enext	enpksent	enpkvalid	encrcerror
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 00000000

Bit	Name	Function
7	enfferr	Enable FIFO Underflow/Overflow. When set to 1 the FIFO Underflow/Overflow interrupt will be enabled.
6	entxffafull	Enable TX FIFO Almost Full. When set to 1 the TX FIFO Almost Full interrupt will be enabled.
5	entxffaem	Enable TX FIFO Almost Empty. When set to 1 the TX FIFO Almost Empty interrupt will be enabled.
4	enrxffafull	Enable RX FIFO Almost Full. When set to 1 the RX FIFO Almost Full interrupt will be enabled.
3	enext	Enable External Interrupt. When set to 1 the External Interrupt will be enabled.
2	enpksent	Enable Packet Sent. When ipksent =1 the Packet Sense Interrupt will be enabled.
1	enpkvalid	Enable Valid Packet Received. When ipkvalid = 1 the Valid Packet Received Interrupt will be enabled.
0	encrcerror	Enable CRC Error. When set to 1 the CRC Error interrupt will be enabled.

Register 06h. Interrupt Enable 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	enswdet	enpreaval	enpreainval	enrssi	enwut	enlbd	enchiprdy	enpor
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 00000011

Bit	Name	Function
7	enswdet	Enable Sync Word Detected. When set to 1 the Syn Word Detected Interrupt will be enabled.
6	enpreaval	Enable Valid Preamble Detected. When set to 1 the Valid Preamble Detected Interrupt will be enabled.
5	enpreainval	Enable Invalid Preamble Detected. When set to 1 the Invalid Preamble Detected Interrupt will be enabled.
4	enrssi	Enable RSSI. When set to 1 the RSSI Interrupt will be enabled.
3	enwut	Enable Wake-Up Timer. When set to 1 the Wake-Up Timer interrupt will be enabled.
2	enlbd	Enable Low Battery Detect. When set to 1 the Low Battery Detect interrupt will be enabled.
1	enchiprdy	Enable Chip Ready (XTAL). When set to 1 the Chip Ready interrupt will be enabled.
0	enpor	Enable POR. When set to 1 the POR interrupt will be enabled.

Register 07h. Operating Mode and Function Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	swres	enlbd	enwt	x32ksel	txon	rxon	pllon	xton
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 00000001

Bit	Name	Function
7	swres	Software Register Reset Bit. This bit may be used to reset all registers simultaneously to a DEFAULT state, without the need for sequentially writing to each individual register. The RESET is accomplished by setting swres = 1. This bit will be automatically cleared. The user should wait until the CHIPRDY status flag/interrupt is issued before sending further SPI commands to the chip.
6	enlbd	Enable Low Battery Detect. When this bit is set to 1 the Low Battery Detector circuit and threshold comparison will be enabled.
5	enwt	Enable Wake-Up-Timer. Enabled when enwt = 1. If the Wake-up-Timer function is enabled it will operate in any mode and notify the microcontroller through the GPIO interrupt when the timer expires.
4	x32ksel	32,768 kHz Crystal Oscillator Select. 0: RC oscillator 1: 32 kHz crystal
3	txon	TX on in Manual Transmit Mode. Automatically cleared in FIFO mode once the packet is sent.
2	rxon	RX on in Manual Receiver Mode. Automatically cleared if Multiple Packets config. is disabled and a valid packet received.
1	pllon	TUNE Mode (PLL is ON). When pllon = 1 the PLL will remain enabled in Idle State. This allows for faster turnaround time at the cost of increased current consumption in Idle State.
0	xton	READY Mode (Xtal is ON).

Register 08h. Operating Mode and Function Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	antdiv[2:0]			rxmpk	autotx	enldm	ffclrrx	ffclrtx
Туре	R/W		R/W	R/W	R/W	R/W	R/W	

Reset value = 00000000

Bit	Name		Function					
7:5	antdiv[2:0]	Enable Antenna Date The GPIO must be		ntenna Diversity	for the algorithm	n to work properly.		
			RX/T	X state	non RX	/TX state		
			GPIO Ant1	GPIO Ant2	GPIO Ant1	GPIO Ant2		
		000	1	0	0	0		
		001	0	1	0	0		
		010	1	0	1	1		
		011	0	1	1	1		
		100	antenna div	ersity algorithm	0	0		
		101	antenna div	ersity algorithm	1	1		
		110		ersity algorithm con mode	0	0		
		111		ersity algorithm con mode	1	1		
4	rxmpk	(enpacrx) then it wi	When the chip is selected to use FIFO Mode (dtmod[1:0]) and RX Packet Handling (enpacrx) then it will fill up the FIFO with multiple valid packets if this bit is set, otherwise the transceiver will automatically leave the RX State after the first valid packet has been					
3	autotx	Automatic Transmission. When autotx = 1 the transceiver will enter automatically TX State when the FIFO is almost full. When the FIFO is empty it will automatically return to the Idle State.						
2	<mark>enldm</mark>	If this bit is set to 1 in the Wake-Up Tin	Enable Low Duty Cycle Mode. If this bit is set to 1 then the chip turns on the RX regularly. The frequency should be set in the Wake-Up Timer Period register, while the minimum ON time should be set in the Low-Duty Cycle Mode Duration register. The FIFO mode should be enabled also.					

AN440

Bit	Name	Function
1	ffclrrx	RX FIFO Reset/Clear. This has to be a two writes operation: Setting ffclrrx =1 followed by ffclrrx = 0 will clear the contents of the RX FIFO.
0	ffcIrtx	TX FIFO Reset/Clear. This has to be a two writes operation: Setting ffclrtx =1 followed by ffclrtx = 0 will clear the contents of the TX FIFO.

Register 09h. 30 MHz Crystal Oscillator Load Capacitance

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	xtalshft		xlc[6:0]					
Туре	R/W		R/W					

Reset value = 01111111

Bit	Name	Function
7	xtalshft	Additional capacitance to coarse shift the frequency if xlc[6:0] is not sufficient. Not binary with xlc[6:0].
6:0	xlc[6:0]	Tuning Capacitance for the 30 MHz XTAL.

Register 0Ah. Microcontroller Output Clock

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			clkt[1:0]		enlfc	mclk[2:0]		
Туре	R	R	R/W		R/W		R/W	

Reset value = xx000110

Bit	Name	Function
7:6	Reserved	
5:4	clkt[1:0]	Clock Tail. If enlfc = 0 then it can be useful to provide a few extra cycles for the microcontroller to complete its operation. Setting the clkt[1:0] register will provide the addition cycles of the clock before it shuts off. 00: 0 cycle 01: 128 cycles 10: 256 cycles 11: 512 cycles
3	enlfc	Enable Low Frequency Clock. When enlfc = 1 and the chip is in Sleep mode then the 32.768 kHz clock will be provided to the microcontroller no matter what the selection of mclk[2:0] is. For example if mclk[2:0] = 000, 30 MHz will be available through the GPIO to output to the microcontroller in all Idle, TX, or RX states. When the chip is commanded to Sleep mode the 30 MHz clock will become 32.768 kHz.
2:0	mclk[2:0]	Microcontroller Clock. Different clock frequencies may be selected for configurable GPIO clock output. All clock frequencies are created by dividing the XTAL except for the 32 kHz clock which comes directly from the 32 kHz RC Oscillator. The mclk[2:0] setting is only valid when xton = 1 except the 111. 000: 30 MHz 001: 15 MHz 010: 10 MHz 100: 3 MHz 100: 3 MHz 111: 32.768 kHz

Register 0Bh. GPIO Configuration 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	gpiodrv0[1:0]		pup0			gpio0[4:0]		
Туре	R/W		R/W			R/W		

Reset value = 00000000

Bit	Name	Function
7:6	gpiodrv0[1:0]	GPIO Driving Capability Setting.
5	pup0	Pullup Resistor Enable on GPIO0.
		When set to 1 a 200 k Ω resistor is connected internally between VDD and the pin if the GPIO is configured as a digital input.
4:0	gpio0[4:0]	GPIO0 Pin Function Select.
4.0	gpio0[4:0]	00000: Power-On-Reset (output)
		00001: Wake-Up Timer: 1 when WUT has expired (output)
		00010: Low Battery Detect: 1 when battery is below threshold setting (output)
		00011: Direct Digital Input
		00100: External Interrupt, falling edge (input)
		00101: External Interrupt, rising edge (input)
		00110: External Interrupt, state change (input)
		00111: ADC Analog Input
		01000: Reserved (Analog Test N Input)
		01001: Reserved (Analog Test P Input)
		01010: Direct Digital Output
		01011: Reserved (Digital Test Output)
		01100: Reserved (Analog Test N Output)
		01101: Reserved (Analog Test P Output)
		01110: Reference Voltage (output)
		01111: TX/RX Data CLK output to be used in conjunction with TX/RX Data pin (output)
		10000: TX Data input for direct modulation (input)
		10001: External Retransmission Request (input)
		10010: TX State (output)
		10011: TX FIFO Almost Full (output)
		10100: RX Data (output) 10101: RX State (output)
		\ \ \ \ /
		10110: RX FIFO Almost Full (output) 10111: Antenna 1 Switch used for antenna diversity (output)
		11000: Antenna 2 Switch used for antenna diversity (output)
		11001: Valid Preamble Detected (output)
		11010: Invalid Preamble Detected (output)
		11011: Sync Word Detected (output)
		11100: Clear Channel Assessment (output)
		11101: VDD
		else : GND

Register 0Ch. GPIO Configuration 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	gpiodrv1[1:0]		pup1	gpio1[4:0]				
Туре	R/W		R/W			R/W		

Reset value = 00000000

Bit	Name	Function					
7:6	gpiodrv1[1:0]	GPIO Driving Capability Setting.					
5	pup1	value Resistor Enable on GPIO1. When set to 1 a 200 $k\Omega$ resistor is connected internally between VDD and the pin if the GPIO is configured as a digital input.					
4:0	gpio1[4:0]	GPIO1 Pin Function Select. 00000: Inverted Power-On-Reset (output) 00001: Wake-Up Timer: 1 when WUT has expired (output) 00010: Low Battery Detect: 1 when battery is below threshold setting (output) 00101: Direct Digital Input 00100: External Interrupt, falling edge (input) 00101: External Interrupt, rising edge (input) 00110: External Interrupt, state change (input) 00111: ADC Analog Input 01000: Reserved (Analog Test N Input) 01001: Reserved (Analog Test P Input) 01010: Direct Digital Output 01011: Reserved (Digital Test Output) 01100: Reserved (Analog Test N Output)					
		01101: Reserved (Analog Test P Output) 01110: Reference Voltage (output) 01111: TX/RX Data CLK output to be used in conjunction with TX/RX Data pin (output) 10000: TX Data input for direct modulation (input) 10001: External Retransmission Request (input) 10010: TX State (output) 10011: TX FIFO Almost Full (output) 10100: RX Data (output) 10101: RX State (output) 10110: RX FIFO Almost Full (output) 10111: Antenna 1 Switch used for antenna diversity (output) 11000: Antenna 2 Switch used for antenna diversity (output) 11001: Valid Preamble Detected (output) 11010: Invalid Preamble Detected (output) 11011: Sync Word Detected (output) 11101: Olear Channel Assessment (output) 11101: VDD else: GND					

Register 0Dh. GPIO Configuration 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	gpiodrv2[1:0]		pup2			gpio2[4:0]		
Туре	R/W		R/W			R/W		

Reset value = 00000000

Bit	Name	Function						
7:6	gpiodrv2[1:0]	GPIO Driving Capability Setting.						
5	pup2	Pullup Resistor Enable on GPIO2.						
		When set to 1 a 200 k Ω resistor is connected internally between VDD and the pin if the GPIO is configured as a digital input.						
4:0	gpio2[4:0]	GPIO2 Pin Function Select.						
		00000: Microcontroller Clock						
		00001: Wake-Up Timer: 1 when WUT has expired (output)						
		00010: Low Battery Detect: 1 when battery is below threshold setting (output)						
		00011: Direct Digital Input						
		00100: External Interrupt, falling edge (input)						
		00101: External Interrupt, rising edge (input)						
		00110: External Interrupt, state change (input)						
		00111: ADC Analog Input						
		01000: Reserved (Analog Test N Input)						
		01001: Reserved (Analog Test P Input)						
		01010: Direct Digital Output						
		01011: Reserved (Digital Test Output)						
		01100: Reserved (Analog Test N Output)						
		01101: Reserved (Analog Test P Output)						
		01110: Reference Voltage (output)						
		01111: TX/RX Data CLK output to be used in conjunction with TX/RX Data pin (output)						
		10000: TX Data input for direct modulation (input)						
		10001: External Retransmission Request (input)						
		10010: TX State (output)						
		10011: TX FIFO Almost Full (output)						
		10100: RX Data (output)						
		10101: RX State (output)						
		10110: RX FIFO Almost Full (output)						
		10111: Antenna 1 Switch used for antenna diversity (output)						
		11000: Antenna 2 Switch used for antenna diversity (output)						
		11001: Valid Preamble Detected (output)						
		11010: Invalid Preamble Detected (output)						
		11011: Sync Word Detected (output)						
		11100: Clear Channel Assessment (output)						
		11101: VDD						
		else : GND						

Register 0Eh. I/O Port Configuration

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		extitst[2]	extitst[1]	extitst[0]	itsdo	dio2	dio1	dio0
Туре	R	R	R	R	R/W	R/W	R/W	R/W

Reset value = 00000000

Bit	Name	Function
7	Reserved	
6	extitst[2]	External Interrupt Status. If the GPIO2 is programmed to be an external interrupt source then the status can be read here.
5	extitst[1]	External Interrupt Status. If the GPIO1 is programmed to be an external interrupt source then the status can be read here.
4	extitst[0]	External Interrupt Status. If the GPIO0 is programmed to be an external interrupt source then the status can be read here.
3	itsdo	Interrupt Request Output on the SDO Pin. nIRQ output is present on the SDO pin if this bit is set and the nSEL input is inactive (high).
2	dio2	Direct I/O for GPIO2. If the GPIO2 is configured to be a direct output then the value on the GPIO pin can be set here. If the GPIO2 is configured to be a direct input then the value of the pin can be read here.
1	dio1	Direct I/O for GPIO1. If the GPIO1 is configured to be a direct output then the value on the GPIO pin can be set here. If the GPIO1 is configured to be a direct input then the value of the pin can be read here.
0	dio0	Direct I/O for GPIO0. If the GPIO0 is configured to be a direct output then the value on the GPIO pin can be set here. If the GPIO0 is configured to be a direct input then the value of the pin can be read here.

Register 0Fh. ADC Configuration

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	adcstart/ adcdone	adcsel[2:0]		adcref[1:0]		adcgain[1:0]		
Туре	R/W		R/W		R/	W	R	W

Reset value = 00000000

Bit	Name	Function
7	adcstart/adc- done	ADC Measurement Start Bit. Set this bit=1 starts the ADC measurement process. This bit self-clears during the measurement cycle and returns high when the measurement is complete. The conversion process is fast; reading this bit may always appear to return a 1.
6:4	adcsel[2:0]	ADC Input Source Selection. The internal 8-bit ADC input source can be selected as follows: 000: Internal Temperature Sensor 001: GPIO0, single-ended 010: GPIO1, single-ended 011: GPIO2, single-ended 100: GPIO0(+) – GPIO1(-), differential 101: GPIO1(+) – GPIO2(-), differential 110: GPIO0(+) – GPIO2(-), differential 111: GND
3:2	adcref[1:0]	ADC Reference Voltage Selection. The reference voltage of the internal 8-bit ADC can be selected as follows: 0X: bandgap voltage (1.2 V) 10: VDD/3 11: VDD/2
1:0	adcgain[1:0]	ADC Sensor Amplifier Gain Selection. The full scale range of the internal 8-bit ADC in differential mode (see adcsel) can be set as follows: $ \frac{\text{adcref}[0]=0 \text{FS}=0.014 \text{ x } (\text{adcgain}[1:0]+1) \text{ x VDD}}{\text{adcref}[0]=1 \text{FS}=0.021 \text{ x } (\text{adcgain}[1:0]+1) \text{ x VDD}} $

Register 10h. ADC Sensor Amplifier Offset

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						adcof	fs[3:0]	
Туре	R	R	R	R		R	W	

Reset value = xxxx0000

Bit	Name	Function					
7:4	Reserved						
3:0	adcoffs[3:0]	adcoffs[3:0] ADC Sensor Amplifier Offset*.					
*Note:	*Note: The offset can be calculated as Offset = adcoffs[2:0] x VDD/1000; MSB = adcoffs[3] = Sign bit.						

Register 11h. ADC Value

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		adc[7:0]						
Туре				F	₹			

Reset value = xxxxxxxx

Bit	Name	Function
7:0	adc[7:0]	Internal 8 bit ADC Output Value.

Register 12h. Temperature Sensor Calibration

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	tsrange[1:0]		entsoffs	entstrim		tstrim	n[3:0]	
Туре	R/	R/W		R/W		R/	W	

Reset value = 00100000

Bit	Name	Function
7:6	tsrange[1:0]	Temperature Sensor Range Selection. (FS range is 0–1024 mV) 00:
5	entsoffs	Temperature Sensor Offset to Convert from K to °C. Default is 1. Test mode only, to use set tsrange and entsoffs to 0.
4	entstrim	Temperature Sensor Trim Enable.
3:0	tstrim[3:0]	Temperature Sensor Trim Value.

Register 13h. Temperature Value Offset

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		tvoffs[7:0]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	tvoffs[7:0]	Temperature Value Offset. This value is added to the measured temperature value. (MSB, tvoffs[8]: sign bit)
		This value is added to the measured temperature value. (MSB, tvoffs[8]: sign bit).

SHIPON LARS

Note: If a new configuration is needed (e.g., for the WUT or the LDC), proper functionality is required. The function must first be disabled, then the settings changed, then enabled back on.

Register 14h. Wake-Up Timer Period 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						wtr[4:0]		
Туре	R/W	R/W	R/W			R/W		

Reset value = xxx00011

Bit	Name	Function
7:5	Reserved	
4:0	wtr[4:0]	Wake Up Timer Exponent (R) Value*. Maximum value for R is decimal 20. A value greater than 20 will yield a result as if 20 were written. R Value = 0 can be written here.

*Note: The period of the wake-up timer can be calculated as $T_{WUT} = (4 \text{ x M x } 2^R)/32.768 \text{ ms. R} = 0$ is allowed, and the maximum value for R is decimal 20. A value greater than 20 will result in the same as if 20 was written.

Register 15h. Wake-Up Timer Period 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		wtm[15:8]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function					
7:0	wtm[15:8]	Vake Up Timer Mantissa (M) Value*.					
*Note:	*Note: The period of the wake-up timer can be calculated as $T_{WUT} = (4 \times M \times 2^R)/32.768 \text{ ms.}$						

Register 16h. Wake-Up Timer Period 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		wtm[7:0]						
Туре		R/W						

Reset value = 00000001

Bit	Name	Function
7:0	wtm[7:0]	Wake Up Timer Mantissa (M) Value*. M[7:0] = 0 is not valid here. Write at least decimal 1.
*Note:	The period of the	wake-up timer can be calculated as T _{WUT} = (4 x M x 2 ^R)/32.768 ms.

Register 17h. Wake-Up Timer Value 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		wtv[15:8]						
Туре				F				

Reset value = xxxxxxxx

Bit	Name	Function
7:0	wtv[15:8]	Wake Up Timer Current Mantissa (M) Value. The value in wtv[15:0] reflects the current count value of the timer.

Register 18h. Wake-Up Timer Value 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		wtv[7:0]						
Туре				F	₹			

Reset value = xxxxxxxx

Bit	Name	Function
7:0	wtv[7:0]	Wake Up Timer Current Mantissa (M) Value. The value in wtv[15:0] reflects the current value of the timer.

Register 19h. Low-Duty Cycle Mode Duration

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		ldc[7:0]						
Туре		R/W						

Reset value = 00000001

Bit	Name	Function
7:0	ldc[7:0]	Low-Duty Cycle Mode Duration (LDC)*.
		If enabled, the LDC will start together when the WUT is supposed to start, and the duration of the LDC is specified by the address 19h and the equation that goes with it. In order for the LDC to work, the LDC value has to be smaller than the M value specified in registers 15h and 16h. LDC = 0 is not allowed here. Write at least decimal 1.

*Note: The period of the low-duty cycle ON time can be calculated as T_{LDC_ON} = (4 x LDC x 2^R)/32.768 ms. R is the same as in the wake-up timer setting in "Register 14h. Wake-Up Timer Period 1". The LDC works in conjunction with the WUT. The LDC period must be specified to be smaller than the WUT period. (i.e., the LDC register must be smaller than the M register). The LDC may not be programmed to 0.

Register 1Ah. Low Battery Detector Threshold

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						lbdt[4:0]		
Туре	R	R	R			R/W		

Reset value = xxx10100

Bit	Name	Function				
7:5	Reserved					
4:0	lbdt[4:0]	Low Battery Detector Threshold. This threshold is compared to Battery Voltage Level. If the Battery Voltage is less than the threshold the Low Battery Interrupt is set. Default = 2.7 V.*				
*Note:	*Note: The threshold can be calculated as V _{threshold} = 1.7 + lbdt x 50 mV.					

Register 1Bh. Battery Voltage Level

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				vbat[4:0]				
Туре	R	R	R	R				

Reset value = xxxxxxxx

Bit	Name	Function
7:5	Reserved	
4:0	vbat[4:0]	Battery Voltage Level. The battery voltage is converted by a 5 bit ADC if the LBD bit D6 of Reg 07h is also set. In Sleep Mode the register is updated in every 1 s. In other states it measures continuously. The measured voltage is calculated by the following formula: V _{bat} _meas=1.7V + vbat[4:0] x 50 mV

Register 1Ch. IF Filter Bandwidth

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	dwn3_bypass	ndec_exp[2:0]			filset[3:0]			
Туре	R/W	R/W			R/W			

Reset value = 00000001

Bit	Name	Function
7	dwn3_bypass	Bypass Decimate-by-3 Stage.
		If set, results in bypassing a decimate-by-3 stage in the path of the oversampled data path for the digital filter for the IF bandwidth.
6:4	ndec_exp[2:0]	IF Filter Decimation Rates.
		The oversampled data in the receive data path is decimated by a factor of 2^ndec_exp. A higher decimation factor (i.e., larger value of ndec_exp) results in a lower IF filter bandwidth.
3:0	filset[3:0]	IF Filter Coefficient Sets.
		Selects one of 15 pre-calculated sets of digital FIR filter tap coefficients. Along with the decimation ratios selected by dwn3_bypass and ndec_exp, the filter coefficients determine the bandwidth of the IF filter.

For a required IF filter bandwidth, the recommended values of the three filter parameters (ndec_exp, dwn3_bypass, and filset) may be found from the table below. If the desired filter bandwidth is not exactly available, the next higher available bandwidth should be selected. Not all possible permutations of filter parameters are listed in the table below. Those permutations not shown have similar bandwidths to entries listed here, but have different performance with regard to clock jitter and/or selectivity. Contact Silicon Labs Technical Support for assistance in using alternate filter settings.

BW [kHz]	ndec_exp	dwn3_bypass	filset
2.6	5	0	1
2.8	5	0	2
3.1	5	0	3
3.2	5	0	4
3.7	5	0	5
4.2	5	0	6
4.5	5	0	7
4.9	4	0	1
5.4	4	0	2
5.9	4	0	3
6.1	4	0	4
7.2	4	0	5
8.2	4	0	6
8.8	4	0	7
9.5	3	0	1
10.6	3	0	2
11.5	3	0	3
12.1	3	0	4
14.2	3	0	5
16.2	3	0	6

26

BW [kHz]	ndec_exp	dwn3_bypass	filset
41.7	1	0	2
45.2	1	0	3
47.9	1	0	4
56.2	1	0	5
64.1	1	0	6
69.2	1	0	7
75.2	0	0	1
83.2	0	0	2
90.0	0	0	3
95.3	0	0	4
112.1	0	0	5
127.9	0	0	6
137.9	0	0	7
142.8	1	1	4
167.8	1	1	5
181.1	1	1	9
191.5	0	1	15
225.1	0	1	1
248.8	0	1	2
269.3	0	1	3

BW [kHz]	ndec_exp	dwn3_bypass	filset
17.5	3	0	7
18.9	2	0	1
21.0	2	0	2
22.7	2	0	3
24.0	2	0	4
28.2	2	0	5
32.2	2	0	6
34.7	2	0	7
37.7	1	0	1

BW [kHz]	ndec_exp	dwn3_bypass	filset
284.9	0	1	4
335.5	0	1	8
361.8	0	1	9
420.2	0	1	10
468.4	0	1	11
518.8	0	1	12
577.0	0	1	13
620.7	0	1	14

Register 1Dh. AFC Loop Gearshift Override

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	afcbd	enafc	afcgearh[2:0]			1p5bypass	matap	ph0size
Туре	R/W	R/W	R/W			R/W		R/W

Reset value = 01000100

Bit	Name	Function
7	afcbd	AFC Wideband Enable (active high). If set, the IF filter bandwidth is reduced after preamble detection, in order to optimize RX sensitivity. The IF filter bandwidth used during preamble detection is programmed by the FILSET, NDEC, and DWN3BYPASS parameters in SPI Register 1CH. After preamble detection, the chip automatically selects the next lower IF filter bandwidth by internally decreasing the FILSET parameter by 1. The resulting filter bandwidth may be determined from the bandwidth table provided under the description for SPI Register 1CH.
6	enafc	AFC Enable.
5:3	afcgearh[2:0]	AFC High Gear Setting. Feedback loop gain during AFC setting process is proportional to 2^(-afcgearh[2:0]).
2	1p5bypass	If high (1), select 0dB bias for the second phase antenna selection, if low (0), select 1.5 dB. The default is (1), selecting 0 dB.
1	matap	Number of taps for moving average filter during Antenna Diversity RSSI evaluation. Allows for reduced noise variation on measured RSSI value but with slower update rate. If high (1), filter tap length = 8*Tb. If low (0=default), filter tap length = 8*Tb prior to first PREAMBLE_VALID, and 4*Tb thereafter.
0	ph0size	If low, we will reset the Preamble detector if there are 5 consecutive zero phases. If high, the reset will happen after 3 consecutive zero phases.

Register 1Eh. AFC Timing Control

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	swant_timer[1:0]		shwait[2:0]			anwait[2:0]		
Туре	R/W			R/W R/W				

Reset value = xx001010

Bit	Name	Function
7:6	swant timer[1:0]	swant_timer =additional number of bit periods to wait for RSSI value to stabilize during Antenna Diversity 2nd phase antenna evaluation. If matap=0, total wait time=8 x Tb+swant_timer[1:0]. If matap=1, total wait time=12*Tb+swant_timer[1:0]. Effective only during Antenna Diversity.
5:3	shwait[2:0]	shwait[2:0] =short wait periods after AFC correction used before preamble is detected. Short wait=(RegValue+1) x 2T _b . If set to 0 then no AFC correction will occur before preamble detect, i.e., AFC will be disabled.
2:0	anwait[2:0]	anwait[2:0]= Antenna switching wait time. Number of bit periods between toggling selection of antennas in AntDiv mode, prior to reception of first PREAMBLE_VALID. Number of bit periods = (anwait[2:0] + 2) x 4 +3 (when AFC = enabled) Number of bit periods = (anwait[2:0] + 2) x 2 +3 (when AFC = disabled) Default value = 3'b010 = 19 bit periods (AFC = enabled).

Register 1Fh. Clock Recovery Gearshift Override

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			crfast[2:0] crslow[2:0]					
Туре	R/W	R/W		R/W			R/W	

Reset value = 00000011

Bit	Name	Function
7:6	Reserved	
5:3	crfast[2:0]	Clock Recovery Fast Gearshift Value.
2:0	crslow[2:0]	Clock Recovery Slow Gearshift Value.

The gear-shift register controls BCR loop gain. Before the preamble is detected, BCR loop gain is as follows:

$$BCRLoopGain = \frac{crgain}{2^{crfast}}$$

Once the preamble is detected, internal state machine automatically shift BCR loop gain to the following:

$$BCRLoopGain = \frac{crgain}{2^{crslow}}$$

crfast = 3'b000 and crslow = 3'b101 are recommended for most applications. The value of "crslow" should be greater than "crfast".

Register 20h. Clock Recovery Oversampling Rate

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rxosr[7:0]						
Туре				R/	W			

Reset value = 01100100

Bit	Name	Function
7:0	rxosr[7:0]	Oversampling Rate.
		3 LSBs are the fraction, default = 0110 0100 = 12.5 clock cycles per data bit

The oversampling rate can be calculated as $rxosr = 500 \text{ kHz/}(2^{ndec_exp} \times RX_DR)$. The *ndec_exp* and the *dwn3_bypass* values found at Address: 1Ch–IF Filter Bandwidth register together with the receive data rate (Rb) are the parameters needed to calculate rxosr:

$$rxosr = \frac{500 \times (1 + 2 \times dwn3 _bypass)}{2^{ndec_exp-3} \times Rb \times (1 + enmanch)}$$

The *Rb* unit used in this equation is in kbps. The *enmanch* is the Manchester Coding parameter (see Reg. 70h, *enmach* is 1 when Manchester coding is enabled, *enmanch* is 0 when disabled). The number found in the equation should be rounded to an integer. The integer can be translated to a hexadecimal.

For optimal modem performance it is recommended to set the *rxosr* to at least 8. A higher *rxosr* can be obtained by choosing a lower value for *ndec_exp* or enable *dwn3_bypass*. A correction in *filset* might be needed to correct the channel select bandwidth to the desired value. Note that when *ndec_exp* or *dwn3_bypass* are changed the related parameters (*rxosr*, *ncoff* and *crgain*) need to be updated.

Register 21h. Clock Recovery Offset 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	rxosr[10:8]			skip2phth	ncoff[19:16]				
Туре		R/W		R/W		R	/W		

Reset value = 00000001

Bit	Name	Function
7:5	rxosr[10:8]	Oversampling Rate. Upper bits.
4	skip2phth	Skip 2nd Phase Ant Div Threshold. Threshold for skipping the 2nd phase of RSSI detection during antenna diversity algorithm. 0=16 dB (default), 1=11 dB. NOT RECOMMENDED FOR USER CONFIGURATION.
3:0	ncoff[19:16]	NCO Offset. See formula above.

The offset can be calculated as follows:

$$ncoff = \frac{Rb \times (1 + enmanch) \times 2^{20 + ndec_exp}}{500 \times (1 + 2 \times dwn3_bypass)}$$

The default values for register 20h to 23h gives 40 kbps RX_DR with Manchester coding is disabled.

Register 22h. Clock Recovery Offset 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		ncoff[15:8]						
Туре		R/W						

Reset value = 01000111

30

Bit	Name	Function
7:0		NCO Offset.
		See formula above.

Register 23h. Clock Recovery Offset 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		ncoff[7:0]						
Туре				R/	W			

Reset value = 10101110

I	Bit	Name	Function
7	7:0	ncoff[7:0]	NCO Offset. See formula above

Register 24h. Clock Recovery Timing Loop Gain 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				rxncocomp	cgainx2	crgain[10:8]		
Туре	R/W	R/W	R/W	R/W	R/W	R/W		

Reset value = 00000010

Bit	Name	Function
7:5	Reserved	
4	rxncocomp	Receive Compensation Enable for High Data Rate Offset.
3	cgainx2	Multiplying the CR Gain by 2.
2:0	crgain[10:8]	Clock Recovery Timing Loop Gain.

The loop gain can be calculated as follows:

$$crgain = 2 + \frac{2^{16} \times (1 + enmanch) \times Rb}{rxosr \times Fd}$$

Register 25h. Clock Recovery Timing Loop Gain 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		crgain[7:0]							
Туре		R/W							

Reset value = 10001111

Bit	Name	Function
7:0	crgain[7:0]	Clock Recovery Timing Loop Gain.

Register 26h. Received Signal Strength Indicator

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rssi[7:0]						
Туре				F	₹			

Reset value = xxxxxxxx

Bit	Name	Function
7:0	rssi[7:0]	Received Signal Strength Indicator Value.

Register 27h. RSSI Threshold for Clear Channel Indicator

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		rssith[7:0]							
Туре		R/W							

Reset value = 00011110

Bit	Name	Function
7:0		RSSI Threshold. Interrupt is set if the RSSI value is above this threshold.

Register 28h. Antenna Diversity 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		adrssi[7:0]						
Туре		R						

Reset value = xxxxxxxx

Bit	Name	Function
7:0	adrssi[7:0]	Measured RSSI Value on Antenna 1.

CHICAN LARG

Register 29h. Antenna Diversity 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		adrssi2[7:0]						
Туре				F	₹			

Reset value = xxxxxxxx

Bit	Name	Function
7:0	adrssi2[7:0]	Measured RSSI Value on Antenna 2.

Register 2Ah. AFC Limiter

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		Afclim[7:0]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	Afclim[7:0]	AFC Limiter.
		AFC limiter value.

Register 2Bh. AFC Correction (MSBs)

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		afc_corr[9:2]						
Туре		R						

Reset value = xxxxxxxx

Bit	Name	Function
7:0		AFC Correction Values. AFC loop correction values [9:2] (MSBs only). Values are updated once, after sync word is found during receiving. See also address 2Ch.

Register 2Ch. OOK Counter Value 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	afc_corr[1:0]		ookfrzen	peakdeten	madeten	ookcnt[10]	ookcnt[9]	ookcnt[8]
Туре	R		R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 00011000

Bit	Name	Function
7:6	afc_corr[1:0]	AFC Correction Values. AFC loop correction values [1:0] (LSBs). Values are updated once, after sync word is found during receiving. See also address 2Bh.
5	ookfrzen	OOK Freeze. ookfrzen= when '0' (default), AGC and OOK Moving Average Detector threshold operate continuously. When '1', AGC and OOK MA Detector threshold operate until PREAM-BLE_VALID signal is detected; values are frozen thereafter. Recommended for use with non-Manchestered payload data.
4	peakdeten	Peak Detector Enable. peakdeten= when '1' (default), Peak Detector for OOK Modem is enabled. Provides improved performance in presence of co-channel interferers, at slight reduction of sensitivity. Peak Detector output is logically AND'ed with Moving Average Detector output.
3	madeten	MA_Enable. madeten= when '1' (default), Moving Average Detector for OOK Modem is enabled. Provides best sensitivity, but requires DC-balanced data (e.g., Manchester data) and is more sensitive to co-channel interference. Peak Detector output is logically AND'ed with Moving Average Detector output.
2:0	ookcnt[10:8]	OOK Counter [10:8]. OOK counter [10:8] =OOK counter Value MSBs. This counter value will affect the OOK AGC's decay time.

Register 2Dh. OOK Counter Value 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		ookcnt[7:0]						
Туре		R/W						

Reset value = 10111100

Bit	Name	Function
7:0	ookcnt[7:0]	OOK Counter [7:0].
		OOK counter value LSBs. This counter value will affect the OOK AGC's decay time.

For the following registers (addresses 2Ch and 2Dh), use the following equation:

$$ook_cnt_val = \frac{3 \times 500[\text{kHz}]}{\text{R}_b \times (enmanch+1)}$$

where Rb's unit is in kHz and "enmanch" is the Manchester Enable bit (found at address 71h bit [1]). Therefore, the minimal data rate that this register can support without Manchester is 0.366 kbps.

Register 2Eh. Slicer Peak Holder

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		attack[2:0]			decay[3:0]			
Туре	R/W	R/W				R	/W	

Reset value = 00101100

Bit	Name	Function
7	Reserved	
6:4	attack[2:0]	Attack. attack [2:0}=OOK Peak Detector attack time. Peak detector value charges up at rate proportional to 2^(-attack[2:0]). OOK slicing threshold is set 6 dB below peak detector value. Effective only when OOK Peak Detector is enabled.
3:0	decay[3:0]	Decay. decay[3:0]=OOK Peak Detector decay time. Peak detector value discharges at rate proportional to 2^(-decay[3:0]). OOK slicing threshold is set 6 dB below peak detector value. Effective only when OOK Peak Detector is enabled.

Register 30h. Data Access Control

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	enpacrx	Isbfrst	crcdonly	skip2ph	enpactx	encrc	crc[1:0]	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Reset value = 10001101

Bit	Name	Function				
7	enpacrx	Enable Packet RX Handling. If FIFO Mode (dtmod = 10) is being used automatic packet handling may be enabled. Setting enpacrx = 1 will enable automatic packet handling in the RX path. Register 30–4D allow for various configurations of the packet structure. Setting enpacrx = 0 will not do any packet handling in the RX path. It will only receive everything after the sync word and fill up the RX FIFO.				
6	Isbfrst	LSB First Enable. The LSB of the data will be transmitted/received first if this bit is set.				
5	crcdonly	CRC Data Only Enable. When this bit is set to 1 the CRC is calculated on and checked against the packet data fields only.				
4	skip2ph	Skip 2nd Phase of Preamble Detection. If set, we skip the second phase of the preamble detection (under certain conditions) if antenna diversity is enabled.				
3	enpactx	Enable Packet TX Handling. If FIFO Mode (dtmod = 10) is being used automatic packet handling may be enabled. Setting enpactx = 1 will enable automatic packet handling in the TX path. Register 30–4D allow for various configurations of the packet structure. Setting enpactx = 0 will not do any packet handling in the TX path. It will only transmit what is loaded to the FIFO.				
2	encrc	CRC Enable. Cyclic Redundancy Check generation is enabled if this bit is set.				
1:0	crc[1:0]	CRC Polynomial Selection. 00: CCITT 01: CRC-16 (IBM) 10: IEC-16 11: Biacheva				

Register 31h. EZMAC® Status

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rxcrc1	pksrch	pkrx	pkvalid	crcerror	pktx	pksent
Туре	R	R	R	R	R	R	R	R

Reset value = 00000000

Bit	Name	Function
7	Reserved	
6	rxcrc1	If high, it indicates the last CRC received is all ones. May indicated Transmitter underflow in case of CRC error.
5	pksrch	Packet Searching. When pksrch = 1 the radio is searching for a valid packet.
4	pkrx	Packet Receiving. When pkrx = 1 the radio is currently receiving a valid packet.
3	pkvalid	Valid Packet Received. When a pkvalid = 1 a valid packet has been received by the receiver. (Same bit as in register 03, but reading it does not reset the IRQ)
2	crcerror	CRC Error. When crcerror = 1 a Cyclic Redundancy Check error has been detected. (Same bit as in register 03, but reading it does not reset the IRQ)
1	pktx	Packet Transmitting. When pktx = 1 the radio is currently transmitting a packet.
0	pksent	Packet Sent. A pksent = 1 a packet has been sent by the radio. (Same bit as in register 03, but reading it does not reset the IRQ)

Register 32h. Header Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		bcen	[3:0]		hdch[3:0]				
Туре		R/W				R	W		

Reset value = 00001100

Bit	Name		Function		
7:4	bcen[3:0]	Broadcast Address (FFh) Check Enable.			
		incoming header 0000: I 0001: I	gether with Header Byte Check then the header check is OK if the byte equals with the appropriate check byte <i>or</i> FFh). One hot encoding. No broadcast address enable. Broadcast address enable for header byte 0. Broadcast address enable for header byte 1.		
		0011: I	Broadcast address enable for header bytes 0 & 1.		
		0100:			
3:0	hdch[3:0]	Received Heade	er Bytes to be Checked Against the Check Header Bytes.		
		One hot encodin Bytes.	g. The receiver will use hdch[2:0] to know the position of the Header		
		0000: I	No Received Header check		
		0001: I	Received Header check for byte 0.		
		0010: I	Received Header check for bytes 1.		
		0011: I	Received header check for bytes 0 & 1.		
		0100:			

Register 33h. Header Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	skipsyn		hdlen[2:0]		fixpklen	syncle	en[1:0]	prealen[8]
Туре	R/W		R/W		R/W	R	W	R/W

Reset value = 00100010

Bit	Name	Function
7	skipsyn	Skipsyn. Skip Sync Word search timeout. If high, the system will ignore the search timeout period when failing to find Sync Word and will not return to searching for Preamble. Setting this bit does not eliminate the search for Sync Word. Proper detection of Sync Word remains necessary in FIFO mode in order to determine the start of the Payload field and to thus store the correct bytes in the RX FIFO.
6:4	hdlen[2:0]	Header Length. Transmit/Receive Header Length. Length of header used if packet handler is enabled for TX/RX (enpactx/rx). Headers are transmitted/received in descending order. 000: No TX/RX header 001: Header 3 010: Header 3 and 2 011: Header 3 and 2 and 1 100: Header 3 and 2 and 1
3	fixpklen	Fix Transmit/Receive Packet Length. When fixpklen = 1 the packet length (pklen[7:0]) is not included in the transmit header. When fixpklen = 0 the packet length is included in the transmit header. In receive mode, if this bit is set the packet length is obtained from the pklen[7:0] field in Reg 3Eh; otherwise the packet length is obtained from the received header packet length byte.
2:1	synclen[1:0]	Synchronization Word Length. The value in this register corresponds to the number of bytes used in the Synchronization Word. The synchronization word bytes are transmitted in descending order. 00: Synchronization Word 3 01: Synchronization Word 3 and 2 10: Synchronization Word 3 and 2 and 1 11: Synchronization Word 3 and 2 and 1 and 0
0	prealen[8]	MSB of Preamble Length. See register Preamble Length.

Register 34h. Preamble Length

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				preale	en[7:0]			
Туре				R/	W			

Reset value = 00001000

Bit	Name	Function
7:0	prealen[7:0]	Preamble Length.
		The value in the prealen[8:0] register corresponds to the number of nibbles (4 bits) in the packet. For example prealen[8:0] = '000001000' corresponds to a preamble length of 32 bits (8 x 4bits) or 4 bytes. The maximum preamble length is prealen[8:0] = 111111111 which corresponds to a 255 bytes Preamble. Writing 0 will have the same result as if writing 1, which corresponds to one single nibble of preamble.

Register 35h. Preamble Detection Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			preath[4:0]		rssi_offset[2:0]			
Туре			R/W		R/W			

Reset value = 00101010

Bit	Name	Function
7:3	preath[4:0]	Preamble Detection Threshold. The value in the preath[4:0] register corresponds to the number of nibbles (4 bits) of preamble pattern (i.e., 01010) that must be received correctly, before a PREAMBLE_VALID signal is issued. This threshold helps guard against false preamble detection upon noise.
2:0	rssi_offset[2:0]	rssi_offset[2:0] Value added as offset to RSSI calculation. Every increment in this register results in an increment of +4 dB in the RSSI.

SHIPPN LARG

Register 36h. Synchronization Word 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		sync[31:24]						
Туре				R/	W			

Reset value = 00101101

Bit	Name	Function
7:0		Synchronization Word 3. 4 th byte of the synchronization word.

Register 37h. Synchronization Word 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		sync[23:16]						
Туре				R/	W			

Reset value = 11010100

Bit	Name	Function
7:0	sync[23:16]	Synchronization Word 2. 3 rd byte of the synchronization word.

Register 38h. Synchronization Word 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		sync[15:8]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0		Synchronization Word 1. 2 nd byte of the synchronization word.

Register 39h. Synchronization Word 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		sync[7:0]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	sync[7:0]	Synchronization Word 0. 1 st byte of the synchronization word.

Register 3Ah. Transmit Header 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		txhd[31:24]							
Туре		R/W							

Reset value = 00000000

Bit	Name	Function
7:0		Transmit Header 3. 4 th byte of the header to be transmitted.

Register 3Bh. Transmit Header 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		txhd[23:16]							
Туре				R/	W				

Reset value = 00000000

Bit	Name	Function
7:0		Transmit Header 2. 3 rd byte of the header to be transmitted.

Register 3Ch. Transmit Header 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		txhd[15:8]							
Туре				R/	W				

Reset value = 00000000

Bit	Name	Function			
7:0	txhd[15:8]	Transmit Header 1.			
		2 nd byte of the header to be transmitted.			

Register 3Dh. Transmit Header 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		txhd[7:0]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	txhd[7:0]	Transmit Header 0. 1 st byte of the header to be transmitted.

Register 3Eh. Packet Length

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		pklen[7:0]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	pklen[7:0]	Packet Length. The value in the pklen[7:0] register corresponds directly to the number of bytes in the Packet. For example pklen[7:0] = '00001000' corresponds to a packet length of 8 bytes. The maximum packet length is pklen[7:0] = '111111111', a 255 byte packet. Writing 0 is possible, in this case we do not send any data in the packet. During RX, if fixpklen = 1, this will specify also the Packet Length for RX mode.

AN440

Check Header bytes 3 to 0 are checked against the corresponding bytes in the Received Header if the check is enabled in "Register 31h. EZMAC[®] Status," on page 37.

Register 3Fh. Check Header 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				chhd[3	31:24]			
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0		Check Header 3.
		4 th byte of the check header.

Register 40h. Check Header 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		chhd[23:16]						
Туре				R/	W			

Reset value = 00000000

	Bit	Name	Function
Ī	7:0		Check Header 2. 3 rd byte of the check header.

Register 41h. Check Header 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		chhd[15:8]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0		Check Header 1. 2 nd byte of the check header.

Register 42h. Check Header 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		chhd[7:0]						
Туре				R/	W			

Reset value = 00000000

Bit	Name	Function
7:0	chhd[7:0]	Check Header 0. 1 st byte of the check header.

Header Enable bytes 3 to 0 control which bits of the Check Header bytes are checked against the corresponding bits in the Received Header. Only those bits are compared where the enable bits are set to 1.

Register 43h. Header Enable 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		hden[31:24]							
Туре		R/W							

Reset value = 11111111

Bit	Name	Function
7:0		Header Enable 3. 4 th byte of the check header.

Register 44h. Header Enable 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		hden[23:16]							
Туре		R/W							

Reset value = 11111111

Bit	Name	Function
7:0		Header Enable 2. 3 rd byte of the check header.

Register 45h. Header Enable 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		hden[15:8]						
Туре				R/	W			

Reset value = 11111111

Bit	Name	Function
7:0	hden[15:8]	Header Enable 1. 2 nd byte of the check header.

Register 46h. Header Enable 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		hden[7:0]							
Туре		R/W							

Reset value = 11111111

Bit	Name	Function
7:0	hden[7:0]	Header Enable 0. 1 st byte of the check header.

Register 47h. Received Header 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rxhd[31:24]						
Туре		R						

Reset value = 00000000

Bit	Name	Function
7:0		Received Header 3. 4 th byte of the received header.

Register 48h. Received Header 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rxhd[23:16]						
Туре				F	₹			

Reset value = 00000000

Bit	Name	Function
7:0		Received Header 2. 3 rd byte of the received header.

Register 49h. Received Header 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rxhd[15:8]						
Туре				F	?			

Reset value = 00000000

Bit	Name	Function
7:0		Received Header 1. 2 nd byte of the received header.

Register 4Ah. Received Header 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rxhd[7:0]						
Туре				F	र			

Reset value = 00000000

Bit	Name	Function			
7:0		Received Header 0. 1 st byte of the received header.			

Register 4Bh. Received Packet Length

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		rxplen[7:0]						
Туре				F	₹			

Reset value = xxxxxxxx

Bit	Name	Function
7:0	rxplen[7:0]	Length Byte of the Received Packet during fixpklen = 0.
		This register specifies the number of Data bytes in the last received packet, and reflects the value of the packet length byte in the received header. This is relevant ONLY if the fix-pklen bit D3 of Reg 33h is cleared. If the fixpklen bit is set, then the expected number of received Data bytes must be programmed into the pklen[7:0] field in Reg 3Eh.

Register 4Fh. ADC8 Control

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			adc8[5:0]					
Туре	R/W	R/W			R/	W		

Reset value = 00010000

Bit	Name	Function
7:6	Reserved	
5:0	adc8[5:0]	ADC8 Control Bits.

Register 60h. Channel Filter Coefficient Address

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	e invalid_preamble_threshold[3:0]							
Туре	R/W				R/W	R/W	R/W	R/W

Reset value = 00000000

Bit	Name	Function
7:4	invalid_pream- ble_threshold[3:0]	Invalid Preamble Threshold. invalid_preamble_threshold[3:0}=This configures (in nibbles) for how long we will search for preamble. If during this time the preamble is not detected, we will send a signal (which can be configured as interrupt) and restart looking for the preamble again. The interval between each interrupt is given by the formula below.
3:0	Reserved	

Register 62h. Crystal Oscillator/Power-on-Reset Control

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	pwst[2:0]			clkhyst	enbias2x	enamp2x	bufovr	enbuf
Туре	R		R/W	R/W	R/W	R/W	R/W	

Reset value = xxx00100

Bit	Name	Function
7:5	pwst[2:0]	Internal Power States of the Chip.
		LP: 000
		RDY: 001
		Tune: 011
		TX: 010
		RX: 111
4	clkhyst	Clock Hysteresis Setting.
3	enbias2x	2 Times Higher Bias Current Enable.
2	enamp2x	2 Times Higher Amplification Enable.
1	bufovr	Output Buffer Enable Override.
		If set to 1 then the enbuf bit controls the output buffer.
		0: output buffer is controlled by the state machine.
		1: output buffer is controlled by the enbuf bit.
0	enbuf	Output Buffer Enable.
		This bit is active only if the bufovr bit is set to 1.

Register 69h. AGC Override 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		sgin	agcen	Inagain		pga	[3:0]	
Туре	R	R/W	R/W	R/W		R	W	

Reset value = 00100000

Bit	Name	Function
7	Reserved	
6	sgin	sgin =AGC stop increasing gain override bit (active low). When '0' (default), AGC gain increases during signal reductions are prevented. When '1', AGC gain increases during signal reductions are allowed. Only effective during Preamble, prior to detection of PRE-AMBLE_VALID signal.
5	agcen	Automatic Gain Control Enable. agcen=Automatic Gain Control enable. When this bit is set then the result of the control can be read out from bits [4:0], otherwise the gain can be controlled manually by writing into bits [4:0].
4	Inagain	LNA Gain Select. Inagain=LNA Gain select. 0 - min. gain = 5 dB
3:0	pga[3:0]	PGA Gain Override Value. 0000: 0 dB 0001: 3 dB 0010: 6 dB 1000: 24 dB max.

Register 6Dh. TX Power

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					lna_sw		txpow[2:0]	
Туре	R	R/W	R/W	R/W	R/W		R/W	

Reset value = x0011000

Bit	Name	Function
7:4	Reserved	
3	lna_sw	LNA Switch Controller. This bit determines when internal MOS switches at the LNA input(s) are invoked. When Ina_sw=0, these switches open. When Ina_sw=1, these switches are closed in TX mode and open at all other times. This bit MUST be set for proper operation in any Direct Tie application.
2:0	txpow[2:0]	TX Output Power. The output power is configurable from +13 dBm to -8 dBm (Si4430/31), and from +20 dBM to -1 dBM (Si4432) in ~3 dB steps. txpow[2:0]=000 corresponds to min output power, while txpow[2:0]=111 corresponds to max output power.

Register 6Eh. TX Data Rate 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		txdr[15:8]						
Туре				R/	W			

Reset value = 00001010

Bit	Name	Function
7:0	txdr[15:8]	Data Rate Upper Byte. See formula above.

The data rate can be calculated as: $TX_DR = \frac{10^6 \text{ x txdr}[15:0]/2^{16}}{2^{16}}$ [bps] (if address 70[5] = 0) or The data rate can be calculated as: $TX_DR = \frac{10^6 \text{ x txdr}[15:0]/2^{21}}{2^{16}}$ [bps] (if address 70[5] = 1)

Register 6Fh. TX Data Rate 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		txdr[7:0]						
Туре				R/	W			

Reset value = 00111101

Bit	Name	Function
7:0	txdr[7:0]	Data Rate Lower Byte.
		See formula above. Defaults = 40 kbps.

Register 70h. Modulation Mode Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			txdtrtscale	enphpwdn	manppol	enmaninv	enmanch	enwhite
Туре	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Reset value = 00001100

Bit	Name	Function
7:6	Reserved	
5	txdtrtscale	This bit should be set for Data Rates below 30 kbps.
4	enphpwdn	If set, the Packet Handler will be powered down when chip is in low power mode.
3	manppol	Manchester Preamble Polarity (will transmit a series of 1 if set, or series of 0 if reset). This bit affects only the transmitter side, not the receiver. This is valid only if Manchester Mode is enabled.
2	enmaninv	Manchester Data Inversion is Enabled if this bit is set. When this bit is low, a 10 pair is considered a Manchester 0, and a 01 pair as a Manchester 1. By setting this bit, do the opposite: every 10 will be considered as a 1, and every 01 will be considered as a 0. This function is relevant only if the Manchester mode is enabled.
1	enmanch	Manchester Coding is Enabled if this bit is set. What Manchester coding does is to replace a single high bit (1) with two bits starting with low followed by high (01) and a low bit (0) with a high bit followed by a low bit (10). When Manchester is enabled, please configure as well the enmaninv at 70h bit [2] since it influences the Manchester encoding/decoding process.
0	enwhite	Data Whitening is Enabled if this bit is set.

Register 71h. Modulation Mode Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	trclk	[1:0]	dtmo	dtmod[1:0]		fd[8]	modtyp[1:0]	
Туре	R/	W	R/	/W	R/W	R/W	R/	W

Reset value = 00000000

Bit	Name	Function
7:6	trclk[1:0]	TX Data Clock Configuration.
		00: No TX Data CLK is available (asynchronous mode – Can only work with modulations FSK or OOK).
		01: TX Data CLK is available via the GPIO (one of the GPIO's should be programmed as well).
		10: TX Data CLK is available via the SDO pin.
		11: TX Data CLK is available via the nIRQ pin.
5:4	dtmod[1:0]	Modulation Source.
		00: Direct Mode using TX_Data function via the GPIO pin (one of the GPIO's should be programmed accordingly as well)
		01: Direct Mode using TX_Data function via the SDI pin (only when nSEL is high)
		10: FIFO Mode
		11: PN9 (internally generated)
3	eninv	Invert TX and RX Data.
2	fd[8]	MSB of Frequency Deviation Setting, see "Register 72h. Frequency Deviation".
1:0	modtyp[1:0]	Modulation Type.
		00: Unmodulated carrier
		01: OOK
		10: FSK
		11: GFSK (enable TX Data CLK (trclk[1:0]) when direct mode is used)

The frequency deviation can be calculated: Fd = 625 Hz x fd[8:0].

Register 72h. Frequency Deviation

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		fd[7:0]						
Туре				R/	W			

Reset value = 00100000

Bit	Name	Function
7:0		Frequency Deviation Setting. See formula above.

Note: It's recommended to use modulation index of 1 or higher (maximum allowable modulation index is 32). The modulation index is defined by ${}^2F_N/F_R$ were 4F_D is the deviation and 4F_B is the data rate. When Manchester coding is enabled the modulation index is defined by ${}^4F_D/R_B$.

Register 73h. Frequency Offset 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		fo[7:0]							
Туре				R/	W				

Reset value = 00000000

Bit	Name	Function
7:0	fo[7:0]	Frequency Offset Setting. The frequency offset can be calculated as Offset = 156.25 Hz x (hbsel + 1) x fo[7:0]. fo[9:0] is a twos complement value.

Register 74h. Frequency Offset 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							fo[9	9:8]
Туре	R	R	R	R	R	R	R/W	

Reset value = 00000000

Bit	Name	Function
7:2	Reserved	
1:0	fo[9:8]	Upper Bits of the Frequency Offset Setting. fo[9] is the sign bit. The frequency offset can be calculated as Offset = 156.25 Hz x (hbsel + 1) x fo[7:0]. fo[9:0] is a twos complement value.

Register 75h. Frequency Band Select

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		sbsel	hbsel			fb[4:0]		
Туре	R	R/W	R/W			R/W		

Reset value = 01110101

Bit	Name	Function
7	Reserved	
6	sbsel	Side Band Select. Setting sbsel = 1 (recommended setting) will result in tuning the RX LO below the desired channel frequency in RX mode (low-side injection) such that the high-side sideband is selected. Note that setting sbsel = 0 will result in positioning the RX LO above the desired tuned frequency (high-side injection), but will NOT additionally flip the processing of the complex (I + jQ) signals in the IF chain necessary to select the lower sideband as the desired signal.
5	hbsel	High Band Select. Setting hbsel = 1 will choose the frequency range from 480–960 MHz (high bands). Setting hbsel = 0 will choose the frequency range from 240–479.9 MHz (low bands).
4:0	fb[4:0]	Frequency Band Select. Every increment corresponds to a 10 MHz increase in frequency (when hbsel=0) or a 20 MHz increase in frequency (when hbsel=1). Example: Setting fb[4:0]=00000 will result inn tuning within the 240-250 MHz frequency range (for hbsel=0) or within the 480-500 MHz frequency range (for hbsel=1). Setting fb[4:0]=00001 will result in tuning within the 250-260 MHz frequency range (hbsel=0) or 500-520 MHz range (hbsel=1), and so on.

The RF carrier frequency can be calculated as follows:

 $f_{carrier} = (f_b + 24 + (f_c + f_o)/64000) \times 10000 \times (hbsel + 1) + (f_{hch} \times f_{hs} \times 10) \text{ [kHz]},$

AN440

where parameters f_c , f_o , f_b and hb_sel come from registers 73h–77h. Parameters f_{hch} and f_{hs} come from register 79h and 7Ah.

Register 76h. Nominal Carrier Frequency

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		fc[15:8]							
Туре				R/	W				

Reset value = 10111011

Bit	Name	Function
7:0	fc[15:8]	Nominal Carrier Frequency Setting. See formula above.
		See formula above.

Register 77h. Nominal Carrier Frequency

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		fc[7:0]						
Туре				R/	W			

Reset value = 10000000

Bit	Name	Function			
7:0	fc[7:0]	Nominal Carrier Frequency Setting. See formula above.			

Register 79h. Frequency Hopping Channel Select

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		fhch[7:0]							
Туре		R/W							

Reset value = 00000000

Bit	Name	Function
7:0	fhch[7:0]	Frequency Hopping Channel Number.

Register 7Ah. Frequency Hopping Step Size

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		fhs[7:0]						
Туре		R/W						

Reset value = 00000000

Bit	Name	Function
7:0	fhs[7:0]	Frequency Hopping Step Size in 10 kHz Increments. See formula for the nominal carrier frequency at "Register 76h. Nominal Carrier Frequency". Important: The EZHop method of frequency programming only works while remaining entirely within one of the following defined frequency sub-bands: 240-320 MHz, 320-480 MHz, 480-640 MHz, and 640-960 MHz. It is not allowed to define a base frequency that falls in one sub-band while the selected channel number falls in another sub-band.

Register 7Ch. TX FIFO Control 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			txafthr[5:0]					
Туре	R/W	R/W			R/	W		

Reset value = 00110111

Bit	Name	Function
7:6	Reserved	
5:0	txafthr[5:0]	TX FIFO Almost Full Threshold. This register specifies the threshold value at which the TXFFAFULL status bit/interrupt will be generated, as data bytes are stored into the TX FIFO for later transmission. This value should be programmed to 1 byte less than the desired threshold value. Example: A value of 0x3C=60d will not generate an interrupt if 60 bytes (or less) are written to the TX FIFO, but will generate an interrupt when 61 bytes (or more) are written to the TX FIFO.

Register 7Dh. TX FIFO Control 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			txfaethr[5:0]					
Туре	R/W	R/W			R/	W		

Reset value = 00000100

Bit	Name	Function
7:6	Reserved	
5:0	txfaethr[5:0]	TX FIFO Almost Empty Threshold. This register specifies the threshold value at which the TXFFAEM status bit/interrupt will be generated, as data bytes are pulled from the TX FIFO and transmitted. This value should be programmed to 1 byte less than the desired threshold value. Example: A value of 0x05 will generate an interrupt when 6 bytes remain in the TX FIFO.

Register 7Eh. RX FIFO Control

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				rxafthr[5:0]				
Туре	R/W	R/W			R/	W		

Reset value = 00110111

Bit	Name	Function
7:6	Reserved	
5:0	rxafthr[5:0]	RX FIFO Almost Full Threshold. This register specifies the threshold value at which the RXFFAFULL status bit/interrupt will be generated, as data bytes are received and stored into the RX FIFO for later retrieval. This value should be programmed to 1 byte less than the desired threshold value. Example: A value of 0x3C=60d will not generate an interrupt if 60 bytes (or less) are received and stored to the RX FIFO, but will generate an interrupt when 61 bytes (or more) are received and stored to the RX FIFO.

Register 7Fh. FIFO Access

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		fifod[7:0]							
Туре		R/W							

Reset value = NA

Bit	Name	Function
7:0	fifod[7:0]	FIFO Data.
		A Write (R/W = 1) to this Address will begin a Burst Write to the TX FIFO. The FIFO will be loaded in the same manner as a Burst SPI Write but the SPI address will not be incremented. To conclude the TX FIFO Write the SEL pin should be brought HIGH. A Read (R/W = 0) to this address will begin a burst read of the RX FIFO, in the same manner.

DOCUMENT CHANGE LIST

Revision 0.3 to Revision 0.4

 Corrected description of "afcbd" functionality in SPI Reg 1Dh.

Revision 0.4 to Revision 0.5

 Added wireless MCU devices to Register 01h, Version Code.

Revision 0.5 to Revision 0.6

■ Modified description of Reg 7Ch–7Eh to clarify exact byte value(s) at which the interrupts are triggered.

Revision 0.6 to Revision 0.7

 Modified description of Reg 07h to clarify that the muser must wait for CHIPRDY after issuing a SWRESET.

Revision 0.7 to Revision 0.8

- Clarified description of 'sbsel' bit in Reg 75h.
- Modified descriptions of Reg 1Ch to clarify interaction of filter parameters.

Revision 0.8 to Revision 0.9

 Clarified that the EZHop method of frequency programming must not cross VCO sub-bands.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA