Chapter 3 Design Theory for Relational Databases

Contents

- Functional Dependencies
- Decompositions
- Normal Forms (BCNF, 3NF)
- Multivalued Dependencies (and 4NF)
- Reasoning About FD's + MVD's

Remember our questions:

- Why do we design relations like the example? -good design
- What makes a good relational database schema? -no redundancy, no Update/delete anomalies,
- what we can do if it has flaws? -- decomposition

New Question:

- any standards for a good design?
 - → Normal forms: a condition on a relation schema that will eliminate problems
- any standards or methods for a decomposition?

Boyce-Codd Normal Form

- We say a relation R is in BCNF if whenever
 X->Y is a nontrivial FD that holds in R, X is a superkey.
 - Remember: *nontrivial* means Y is not contained in X.
 - Remember, a *superkey* is any superset of a key (not necessarily a proper superset).

Example

Drinkers(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer)
FD's: name->addr favBeer, beersLiked->manf

- Only key is {name, beersLiked}.
- In each FD, the left side is not a superkey.
- Any one of these FD's shows *Drinkers* is not in BCNF

Another Example

Beers(<u>name</u>, manf, manfAddr)

FD's: name->manf, manf->manfAddr

- Only key is {name}.
- name->manf does not violate BCNF, but manf->manfAddr does.

Decomposition into BCNF

- Given: relation R with FD's F.
- Look among the given FD's for a BCNF violation X -> Y.
 - If any FD following from F violates BCNF, then there will surely be an FD in F itself that violates BCNF.
- Compute X⁺.
 - Not all attributes, or else X is a superkey.

Decompose R Using X -> Y

Replace R by relations with schemas:

1.
$$R_1 = X^+$$
.

2.
$$R_2 = R - (X^+ - X)$$
.

 Project given FD's F onto the two new relations.

Decomposition Picture

Example: BCNF Decomposition

Drinkers(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer)

F = name->addr, name -> favBeer, beersLiked->manf

- Pick BCNF violation name->addr.
- Close the left side: {name}+ = {name, addr, favBeer}.
- Decomposed relations:
 - 1. Drinkers1(<u>name</u>, addr, favBeer)
 - 2. Drinkers2(<u>name</u>, <u>beersLiked</u>, manf)

Example -- Continued

- We are not done; we need to check Drinkers1 and Drinkers2 for BCNF.
- Projecting FD's is easy here.
- For Drinkers1(<u>name</u>, addr, favBeer), relevant
 FD's are name->addr and name->favBeer.
 - Thus, {name} is the only key and Drinkers1 is in BCNF.

Example -- Continued

- For Drinkers2(name, beersLiked, manf), the only FD is beersLiked->manf, and the only key is {name, beersLiked}.
 - Violation of BCNF.
- beersLiked+ = {beersLiked, manf}, so we decompose *Drinkers2* into:
 - 1. Drinkers3(<u>beersLiked</u>, manf)
 - 2. Drinkers4(name, beersLiked)

Example -- Concluded

- The resulting decomposition of *Drinkers*:
 - 1. Drinkers1(<u>name</u>, addr, favBeer)
 - 2. Drinkers3(<u>beersLiked</u>, manf)
 - Drinkers4(<u>name</u>, <u>beersLiked</u>)
- Notice: *Drinkers1* tells us about drinkers,
 Drinkers3 tells us about beers, and *Drinkers4* tells us the relationship between drinkers and the beers they like.

Classroom Exercise

Any two-attribute relation R(A,B) is in BCNF

Several Cases:

- 1) No nontrivial FD's
- 2) A→B
- 3) $A \rightarrow B$, $B \rightarrow A$

Third Normal Form -- Motivation

- There is one structure of FD's that causes trouble when we decompose.
- R(A,B,C) $AB \rightarrow C$ and $C \rightarrow B$.
 - Example: A = street address, B = city, C = zip code.
- There are two keys, {A,B} and {A,C}.
- C->B is a BCNF violation, so we must decompose into R1(AC), R2(BC).

We Cannot Enforce FD's

- The problem is that if we use AC and BC as our database schema, we cannot enforce the FD AB -> C by checking FD's in these decomposed relations.
- Example with A = street, B = city, and C = zip on the next slide.

A =street, B =city, and C =zip

Zip→city keeps

An Unenforceable FD

street	zip
545 Tech Sq.	02138
545 Tech Sq.	02139

city	zip			
Cambridge	02138			
Cambridge	02139			

Join tuples with equal zip codes.

street	city	zip		
545 Tech Sq.	Cambridge	02138		
545 Tech Sq.	Cambridge	02139		

Although no FD's were violated in the decomposed relations, FD street city -> zip is violated by the database as a whole.

3NF Let's Us Avoid This Problem

- 3rd Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in this problem situation.
- An attribute is prime if it is a member of any key.
- X->A violates 3NF if and only if X is not a superkey, and also A is not prime.

Example: 3NF

- In our problem situation R(A,B,C) with FD's AB -> C and C->B, we have keys AB and AC.
- Thus A, B, and C are each prime.
- Although C->B violates BCNF, it does not violate 3NF.

BCNF vs. 3NF

	conditions	example		
BCNF	If X->Y is a nontrivial FD that holds in R, X is a superkey.	R(A,B,C) with $A \rightarrow B$, $A \rightarrow C$		
3NF	If X->Y is a nontrivial FD that holds in R, X is a superkey, or Y is a prime	R(A,B,C) with AB - > C and C -> B .		

2 NF: no nonkey attribute is dependent on only a portion of the primary key. R(A,B,C) with $A\rightarrow B$, $B\rightarrow C$

1 NF: every component of every tuple is an atomic value.

Properties of a decomposition

- Elimination of anomalies by a decomposition, it needs other two properties:
 - Lossless Join: it should be possible to project the original relations onto the decomposed schema, and then reconstruct the original.
 - 2. Dependency Preservation: it should be possible to check in the projected relations whether all the given FD's are satisfied.

What 3NF and BCNF Give You

- We can get (1: Lossless Join) with a BCNF decomposition.
- We can get both (1) and (2: Dependency Preservation) with a 3NF decomposition.
- But we can't always get (1) and (2) with a BCNF decomposition.
 - street-city-zip is an example.

Testing for a Lossless Join

- If we project R onto R₁, R₂,..., R_k, can we recover R by rejoining?
- Any tuple in R can be recovered from its projected fragments.
- So the only question is: when we rejoin, do we ever get back something we didn't have originally?

Example

- Any tuple in R can be recovered from its projected fragments.

 As long as FD b→c ho
- Not less, not more.

As long as FD b→c holds, the joining of two projected tuples cannot produce a bogus tuple

R

<u>A</u>	B	C	A	В	В	C	_	1	2	3
1	2	3	1	2	2	3		1	2	5
4	2	5	4	2	2	5	,	4	2	3
4								4	2	5

The Chase Test (an example)

To prove that a tuple t in the join, using FD's in F, also to be a tuple in R.

- Suppose tuple t comes back in the join.
- Then t is the join of projections of some tuples of R, one for each R_i of the decomposition.
- Can we use the given FD's to show that one of these tuples must be t?

R(A,B,C) Decomposed into
$$R_1(A,B) \boxtimes R_2(B,C) =$$
 Join of R1and R2 Tuple t (a,b,c)

Because $B \rightarrow C$, c1= c, therefore a,b,c is in R

a2 b c

The Chase Test – (method)

- Start by assuming t = abc....
- For each i, there is a tuple s_i of R that has a,
 b, c,... in the attributes of R_i.
- s_i can have any values in other attributes.
- We'll use the same letter as in t, but with a subscript, for these components.

Example: The Chase

- Let R = ABCD, and the decomposition be AB, BC, and CD.
- Let the given FD's be C->D and B->A.
- Suppose the tuple t = abcd is the join of tuples projected onto AB, BC, CD.

The tuples of R projected onto AB, BC, CD.

The Tableau

We've proved the second tuple must be *t*.

Summary of the Chase Test method

- 1. If two rows agree in the left side of a FD, make their right sides agree too.
- 2. Always replace a subscripted symbol by the corresponding unsubscripted one, if possible.
- If we ever get an unsubscripted row, we know any tuple in the project-join is in the original (the join is lossless).
- 4. Otherwise, the final tableau is a counterexample.

Example: Lossy Join (more tuples)

 Same relation R = ABCD and same decomposition: AB, BC, and CD.

But with only the FD C->D.

These projections rejoin to form

ahcd

The Tableau

These three tuples are an example *R* that shows the join lossy. *abcd* is not in *R*. but we can project and rejoin to get *abcd*. More tuples

Use *C->D*

Some results (until now)

- Some decompositions can not keep lossless join (lossy join).
- Use chase method to find out whether the decomposition is lossy join.
- BCNF decomposition is lossless join, sometimes it can not keep functional dependencies.
- Relations with 3NF keep lossless join and also functional dependencies.
- How to decompose relations to reach 3NF?

3NF Synthesis Algorithm

- We can always construct a decomposition into 3NF relations with a lossless join and dependency preservation.
- Need minimal basis for the FD's:
 - 1. Right sides are single attributes.
 - No FD can be removed.
 - 3. No attribute can be removed from a left side.

Constructing a Minimal Basis

- Split right sides.
- Repeatedly try to remove an FD and see if the remaining FD's are equivalent to the original.
- 3. Repeatedly try to remove an attribute from a left side and see if the resulting FD's are equivalent to the original.

3NF Synthesis – method

- Find a minimal basis for F
- 2. One relation for each FD in the minimal basis.
 - 1. Schema is the union of the left and right sides.
 - 2. $X \rightarrow A$ then (XA) is a schema.
- 3. If no key is contained in an FD, then add one relation whose schema is some key.

Example: 3NF Synthesis

- Relation R = ABCD.
- FD's $A \rightarrow B$ and $A \rightarrow C$. Key is AD

 Decomposition: AB and AC from the FD's, plus AD for a key.

Another example

- Relation R(A,B,C,D,E)
- FD's AB \rightarrow C, C \rightarrow B,A \rightarrow D key?

3NF synthesis:

- 1) A minimal basis
- 2) R1(ABC) R2(CB) R3(AD)
- 3) R2 is a part of R1, delete R2
- 4) No key is in R1, R3, add a key R4(ABE)

R has two keys: ABE, ACE. Add one of them

Classroom exercises

Given R(A,B,C,D,E) FD's AB \rightarrow C, C \rightarrow B, A \rightarrow D

- To test R1(ABC), R3(AD), R4(ABE) is in 3NF
- To test whether functional dependency keeps in the R1,R3,R4
- To test the decomposition is lossless.

Why It Works (3NF synthesis)

- Preserves dependencies: each FD from a minimal basis is contained in a relation, thus preserved.
- Lossless Join: use the chase to show that the row for the relation that contains a key can be made all-unsubscripted variables.

Question:

Why we say "BCNF decomposition", "3NF synthesis"?

BCNF decomposition algorithm

Input: relation R + FDs for R

Output: decomposition of R into BCNF relations

With "lossless join"

- 1.Compute keys for R
- 2. Repeat until all relations are in BCNF:

Pick any R' with A→ B that violates BCNF

Decompose R' into R1(A+) and R2(A, rest)

Compute FDs for R1 and R2

Compute keys for R1 and R2

3NF synthesis

- Input: relation R + FDs for R
- Output: decomposition of R into 3NF

With "lossless join" and keep FD's

- 1.Computer key of R
- 2. Find a minimal basis for F
- 3.One relation for each FD in the minimal basis.
- 4.If no key is contained in an FD, then add one relation whose schema is some key.

Summary

- Conditions of Norm Forms (BCNF, 3NF)
- The way to decompose in order to reach BCNF
- The way to decompose in order to reach 3NF
- The way to test the join is lossless join