Métodos numéricos - Tarea 6 Interpolación por elemento finito Métodos de Jacobi y Gauss-Seidel Splines cúbicos

Salim Vargas Hernández

23 de septiembre del 2018

1. Introducción

La interpolación por el método de elemento finito permite encontrar de manera más rápida y eficiente a un polinomio de grado n que pasa por n+1 puntos.

Los métodos de Jacobi y Gauss-Seidel permiten encontrar la solución a un sistema de la forma Ax + b de manera iterativa a partir de un vector inicial. Sin embargo, estos métodos requieren que la matriz A cumpla ciertas condiciones como el ser simetrica, positiva definida o dominante diagonalmente.

Interpolar una serie de puntos por medio de splines cúbicos, permite trazar una curva suave y dos veces continuamente diferenciable en todo el intervalo de interpolación.

2. Desarrollo

2.1. Interpolación por elemento finito

Ver notas anexas.

2.2. Métodos iterativos

A partir de una aproximación inicial x_0 , los métodos iterativos generan aproximaciones, tan cercanas como se defina a través de una tolerancia, del vector solución x del sistema Ax = b.

Los métodos de Jacobi y Gauss-Seidel requieren para la convergencia que la matriz A sea diagonalmente dominante, es decir que

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

Aún si esta condición no se satisface, los métodos pueden converger, pero la convergencia sólo se garantiza si se cumple.

El algoritmo 1 muestra el pseudocódigo del método de Jacobi

El algoritmo 2 muestra el pseudocódigo del método de Gauss-Seidel

2.3. Interpolación por splines cúbicos

Ver notas anexas.

Algoritmo 1 Método de Jacobi

Entrada:

Matriz A

Vector b

Aproximación inicial x₀

Máximo de iteraciones maxIter

Salida: Vector solución x si el método converge

```
1: converge = True
2: iter = 0
3: x = x_0
4: repetir
       iter = iter + 1
       Para cada índice i en x hacer
6:
 7:
           Si A_{ii} \neq 0 entonces
             nuevo_i = rac{b_i - \sum\limits_{j \neq i} A_{ij} x_j}{A_{ii}}
8:
           Fin Si
9:
10:
       Fin Para
                  \frac{||nuevo - x||}{||x||}
11:
12:
13: hasta que conv < tolerancia o iter > maxIter
```

Algoritmo 2 Método de Gauss-Seidel

Entrada:

Matriz A

Vector b

Aproximación inicial x₀

Máximo de iteraciones maxIter

Salida: Vector solución x si el método converge

```
1: converge = True
2: iter = 0
3: x = x_0
4: repetir
       iter = iter + 1
       Para cada índice i en x hacer
6:
           Si A_{ii} \neq 0 entonces
7:
             nuevo_{i} = \frac{b_{i} - \sum_{j=1}^{i-1} A_{ij} nuevo_{j} - \sum_{j=i+1}^{n} A_{ij} x_{j}}{A_{ii}}
8:
9:
           Fin Si
10:
11:
12:
        x = nuevo
13: hasta que conv < tolerancia o iter > maxIter
```

3. Resultados

3.1. Interpolación por elemento finito

Se tomaron 13 muestras equidistantes de la función e^-x en el intervalo [-3,3] y se aplicó interpolación lineal, cuadrática y cúbica para 128 puntos en el mismo intervalo.

La siguiente figura muestra las tres gráficas resultantes:

3.2. Método de Jacobi y Método de Gauss-Seidel

Se probaron los algoritmos con tres sistemas, uno de prueba de 4×4 . Se obtuvo como resultado el vector

$$\begin{bmatrix} 1 \\ 2 \\ -1 \\ 1 \end{bmatrix}$$

Se probaron también con dos sistemas de 100×100 y 500×500 . Sin embargo, al no ser las matrices dominantes en la diagonal, los métodos no convergieron.

3.3. Interpolación por splines cúbicos

Se tomaron 15 muestras equidistantes de la función e^-x en el intervalo [-3,3] y se calcularon los splines para después interpolar 128 puntos en el mismo intervalo.

La siguiente gráfica muestra el resultado.

4. Conclusiones

El método de interpolación por elemento finito permite obtener la función interpolante de manera más sencilla que el polinomio de Lagrange, ya que se reduce a resolver algunos sistemas de ecuaciones.

Los métodos de Jacobi y Gauss-Seidel permiten aproximar la solución de un sistema de ecuaciones con poca o nula información sobre el vector solución y sin tener que recurrir al cálculo de inversas o a factorizaciones de la matriz A, sin embargo, el hecho de que se requiera que A sea dominante en la diagonal, limita mucho el uso de estos métodos.

La interpolación por splines cúbicos permite obtener una función interpolante suave y diferenciable, lo cual resulta de gran utilidad para el manejo de la función interpolante en subsecuentes análisis.