PADRÕES DE INFLAMAÇÃO AGUDA E CRÔNICA

Introdução: A Lógica da Inflamação Aguda

A inflamação é uma resposta biológica essencial que o organismo desencadeia diante de qualquer forma de agressão, como infecções por microrganismos, lesões físicas (trauma, queimadura), agentes químicos ou até mesmo isquemia (falta de oxigênio). O principal objetivo dessa resposta é eliminar a causa da lesão, remover células mortas e iniciar o processo de reparo tecidual.

A inflamação aguda é a forma inicial e imediata dessa resposta, caracterizada pela sua rápida instalação e curta duração (horas a dias). Envolve predominantemente a ação de neutrófilos, um tipo de leucócito especializado na destruição de patógenos e remoção de detritos celulares. Outro aspecto-chave é a alteração da microcirculação: vasos sanguíneos sofrem vasodilatação (aumento do calibre) e aumento da permeabilidade, permitindo a saída de células e proteínas plasmáticas para o local lesionado.

Do ponto de vista **morfológico** — ou seja, daquilo que se observa ao microscópio ou macroscopicamente nos tecidos — a inflamação aguda pode se manifestar de diferentes formas. Esses **padrões morfológicos** dependem de fatores como:

- A intensidade da lesão
- A natureza do agente causador
- O tipo de tecido afetado
- A capacidade de resposta do hospedeiro

Assim, reconhecer esses padrões é fundamental para o diagnóstico clínico-patológico, pois cada tipo de inflamação aguda está associado a determinados achados clínicos e histológicos, como a presença de pus, fibrina, fluido seroso ou necrose tecidual.

1. Eventos Vasculares e Celulares da Inflamação Aguda

1.1 Eventos Vasculares

Vasodilatação

Logo no início da inflamação, ocorre um **aumento no calibre dos vasos sanguíneos** (vasodilatação), mediado por substâncias como **histamina** e **óxido nítrico**. Esse processo aumenta o fluxo sanguíneo local, explicando dois sinais clássicos da inflamação: **rubor (vermelhidão)** e **calor**.

Aumento da Permeabilidade Vascular

A seguir, os capilares tornam-se mais "vazados", permitindo a **extravasamento de proteínas plasmáticas e leucócitos** para o tecido lesado. Essa permeabilidade aumentada pode ocorrer por:

- Contração das células endoteliais (transitória e rápida)
- Dano direto ao endotélio (por toxinas, queimaduras, isquemia)
- Transporte ativo transcelular (via canais vesiculares)

Esse extravasamento forma o **exsudato** (líquido rico em proteínas e células), o que leva ao **edema inflamatório**, manifestado clinicamente como **tumor** (**inchaço**).

Estase e Marginação

Com o extravasamento de fluido, o sangue torna-se mais viscoso, e o fluxo se torna mais lento (estase). Isso favorece a **marginação dos leucócitos**, que passam a rolar sobre o endotélio.

1.2 Eventos Celulares

Rolamento, Adesão e Transmigração

As **células inflamatórias**, principalmente **neutrófilos**, interagem com o endotélio vascular por meio de moléculas de adesão:

- 1. Rolamento: mediado por selequinas (E-, P- e L-selequina)
- Adesão firme: mediada por integrinas ativadas que se ligam a ICAM-1 e VCAM-1 no endotélio
- 3. **Transmigração** (diapedese): os leucócitos atravessam o endotélio e a membrana basal por meio de **PECAM-1** (**CD31**), dirigindo-se ao tecido lesado.

Quimiotaxia

Após alcançar o tecido, os leucócitos migram direcionalmente em resposta a gradientes químicos (quimiocinas, produtos bacterianos, C5a, leucotrieno B4). Esse processo é conhecido como quimiotaxia, e garante que as células cheguem exatamente ao local da injúria.

Fagocitose e Morte do Agente

Uma vez no local:

- 1. Os neutrófilos **reconhecem** partículas opsonizadas (revestidas por anticorpos ou complemento)
- 2. Englobam essas partículas em fagossomos
- 3. Fundem os fagossomos com lisossomos, formando fagolisossomos
- Eliminam o agente com radicais livres, enzimas hidrolíticas e espécies reativas de oxigênio (EROs)

Fixação Didática: Resumo em Etapas

Etapa	Principal evento	Mediadores-chave	
Vasodilatação	Aumento do fluxo sanguíneo	Histamina, óxido nítrico	
Permeabilidade	Extravasamento de fluido e proteínas	de fluido e Histamina, bradicinina, leucotrienos	
Rolamento	Interação inicial com endotélio	Selequinas	
Adesão	Ligação firme ao endotélio	Integrinas e ICAM-1/VCAM-1	
Transmigração	Passagem entre células endoteliais	PECAM-1 (CD31)	
Quimiotaxia	Migração direcionada ao sítio de lesão	C5a, LTB4, IL-8	
Fagocitose	Ingestão e destruição do agente	Opsoninas, EROs, enzimas lisossômicas	

2. Padrões Morfológicos Clássicos da Inflamação Aguda

A inflamação aguda pode se manifestar em diferentes formas morfológicas, que refletem o tipo de exsudato, o grau de lesão tecidual e o agente etiológico envolvido. Esses padrões são observáveis tanto macro quanto microscopicamente e auxiliam no diagnóstico clínico-patológico. Os principais padrões são: inflamação serosa, fibrinosa, supurativa (ou purulenta) e úlcera.

2.1 Inflamação Serosa

Caracteriza-se pela **produção de um exsudato aquoso claro e pobre em células**, derivado do plasma ou das secreções de células mesoteliais. É o tipo mais brando de inflamação aguda.

- **Microscopicamente**: há acúmulo de fluido entre camadas epiteliais ou em cavidades corporais (pleura, peritônio, pericárdio), sem grande presença celular.
- **Exemplo clínico**: formação de bolhas em queimaduras ou infecções virais leves, como pericardite viral.

2.2 Inflamação Fibrinosa

Ocorre quando o extravasamento vascular é intenso, permitindo a saída de **fibrinogênio**, que se converte em **fibrina** no espaço extravascular.

- **Microscopicamente**: deposição extensa de fibrina formando redes eosinofílicas; pode haver presença de leucócitos e necrose.
- **Exemplo clínico**: pericardite fibrinosa, onde a superfície do pericárdio adquire aspecto granular, descrito classicamente como "roçar de couro".

Esse tipo de inflamação pode resolver-se por **remoção da fibrina por macrófagos** ou evoluir para **organização**, com formação de tecido de granulação e fibrose.

2.3 Inflamação Supurativa (Purulenta)

É marcada pela formação de **pus**, composto por neutrófilos vivos e mortos, células necróticas e fluido rico em proteínas.

- **Microscopicamente**: acúmulo denso de neutrófilos, necrose liquefativa e presença de bactérias (geralmente piogênicas, como *Staphylococcus aureus*).
- **Exemplo clínico**: abscesso, que é uma coleção localizada de pus com centro necrótico e cápsula fibrosa periférica em organização.

A presença de pus indica uma resposta inflamatória intensa e localizada, frequentemente com necessidade de drenagem cirúrgica.

2.4 Úlcera

Refere-se à **perda de tecido epitelial** na superfície de um órgão, acompanhada por inflamação do tecido subjacente.

- **Microscopicamente**: bordas delimitadas, necrose superficial, infiltrado neutrofílico, tecido de granulação e, em fases mais avançadas, fibrose.
- Exemplo clínico: úlcera gástrica péptica, onde o epitélio do estômago ou duodeno é destruído por ação do ácido.

As úlceras podem ser agudas, com predomínio de neutrófilos, ou crônicas, com linfócitos, plasmócitos e macrófagos.

Tabela Comparativa dos Padrões Morfológicos

Padrão	Exsudato predominante	Características principais	Exemplos clínicos
Serosa	Líquido claro, pobre em células	Fluido em cavidades ou bolhas	Pericardite viral, queimaduras
Fibrinosa	Fibrina	Deposição de fibrina; risco de fibrose	Pericardite fibrinosa, pleurite
Supurativa	Pus	Acúmulo de neutrófilos e necrose liquefativa	Abscessos, apendicite aguda
Úlcera	Misto (necrose + inflamação)	Perda de epitélio e inflamação subjacente	Úlcera gástrica, úlcera varicosa

3. Exemplos Clínico-Patológicos da Inflamação Aguda

O reconhecimento dos padrões morfológicos da inflamação aguda é essencial na prática médica, pois cada padrão possui correlação direta com manifestações clínicas, exames laboratoriais e condutas terapêuticas específicas. A seguir, são apresentados exemplos clássicos associados a cada tipo de padrão morfológico.

3.1 Pneumonia Lobar - Inflamação Fibrinopurulenta

• Agente etiológico comum: Streptococcus pneumoniae.

- Morfologia: presença de exsudato fibrinoso e purulento preenchendo os alvéolos pulmonares.
- **Quadro clínico**: febre, tosse produtiva com escarro amarelado, dor torácica pleurítica.
- Histologia: alvéolos repletos por neutrófilos, fibrina e debris celulares, com congestão vascular.
- Padrões envolvidos: inflamação fibrinosa (estágios iniciais) e supurativa (fase de hepatização cinzenta).

3.2 Apendicite Aguda – Inflamação Supurativa

- **Fisiopatologia**: obstrução luminal seguida de proliferação bacteriana.
- Morfologia: infiltração transmural intensa por neutrófilos, necrose e formação de pus no lúmen.
- Quadro clínico: dor em fossa ilíaca direita, náuseas, febre, leucocitose.
- **Histologia**: mucosa ulcerada, neutrófilos em todas as camadas da parede do apêndice, com possível perfuração.
- Padrão predominante: inflamação purulenta.

3.3 Pericardite Viral – Inflamação Serosa

- Agente etiológico comum: enterovírus (coxsackie B).
- **Morfologia**: acúmulo de fluido seroso estéril entre as camadas do pericárdio, sem deposição significativa de fibrina.
- **Quadro clínico**: dor torácica que piora com a inspiração e melhora ao sentar, atrito pericárdico audível, ECG com elevação difusa do segmento ST.
- Histologia: leve infiltrado linfocitário, mesotélio íntegro ou discretamente reativo.
- Padrão predominante: inflamação serosa.

3.4 Úlcera Gástrica Péptica – Úlcera Inflamatória Aguda com Componentes Crônicos

- Causa principal: Helicobacter pylori ou uso prolongado de AINEs.
- **Morfologia**: perda focal do epitélio gástrico, com necrose tecidual, infiltrado inflamatório e tentativa de reparo.
- **Quadro clínico**: dor epigástrica em queimação, piora com jejum ou à noite, melhora com antiácidos.
- Histologia: zona de necrose superficial, neutrófilos na mucosa e submucosa, tecido de granulação e fibrose profunda.
- Padrão predominante: úlcera com inflamação aguda e crônica.

Aplicação Clínica: O Papel do Padrão Inflamatório no Diagnóstico

A distinção morfológica entre os tipos de inflamação aguda **orienta hipóteses diagnósticas e decisões clínicas**, como:

- Suspeitar de infecção piogênica em casos com exsudato purulento;
- Considerar infecções virais ou irritações não infecciosas quando presente exsudato seroso;
- Monitorar risco de aderências e fibrose em inflamações fibrinosas;
- Avaliar complicações hemorrágicas ou perfuração em úlceras inflamatórias.

4. Resultados Possíveis da Inflamação Aguda

A inflamação aguda é um processo dinâmico. Seu curso pode evoluir de diferentes formas, dependendo de fatores como:

- A intensidade e duração da agressão
- A capacidade do hospedeiro em reparar os danos
- O tipo de tecido afetado
- A presença de fatores infecciosos ou necrose extensa

Três desfechos principais são reconhecidos:

4.1 Resolução Completa

É o melhor cenário e representa a eliminação do estímulo nocivo, seguida da remoção dos exsudatos e células inflamatórias, e restauração do tecido à sua condição normal.

- Ocorre mais frequentemente em tecidos com alta capacidade regenerativa, como epitélios e fígado.
- É promovida por macrófagos do tipo M2, que participam da remoção de detritos e secreção de fatores anti-inflamatórios e de crescimento.

Exemplo clínico: resolução de uma pneumonia lobar após tratamento antibiótico eficaz.

4.2 Progressão para Inflamação Crônica

Ocorre quando o agente agressor **não é eliminado** ou quando há **persistência de estímulos lesivos**, como:

- Infecções por microrganismos intracelulares (ex.: Mycobacterium tuberculosis)
- Presença de corpos estranhos
- Resposta autoimune sustentada

Na inflamação crônica, há predomínio de **linfócitos, plasmócitos e macrófagos ativados**, com destruição tecidual e tentativa de reparo por **fibrose e angiogênese**.

Exemplo clínico: evolução de uma hepatite viral aguda para hepatite crônica.

4.3 Supuração com Formação de Abscesso

Quando o processo agudo é muito intenso e há **acúmulo de neutrófilos com necrose liquefativa**, forma-se um **abscesso** — coleção localizada de pus envolta por cápsula fibrosa.

- Os abscessos delimitam o processo inflamatório, mas impedem a resolução espontânea.
- Frequentemente exigem drenagem cirúrgica.
- Se não tratados, podem evoluir para fístulas ou disseminação hematogênica da infecção.

Exemplo clínico: abscesso perianal secundário a infecção bacteriana de glândulas anorretais.

4.4 Organização e Cicatrização por Fibrose

Se o tecido destruído não pode ser regenerado, a inflamação aguda evolui para cicatrização por deposição de tecido conjuntivo (fibrose).

- Comum em serosas (pericárdio, pleura) após inflamação fibrinosa.
- A fibrose pode limitar a função do órgão, como na pericardite constritiva.
- Envolve a ação de macrófagos, fibroblastos e deposição de colágeno.

Exemplo clínico: fibrose pulmonar residual após uma infecção bacteriana severa com organização do exsudato.

Integração com a Prática Clínica

Compreender os desfechos da inflamação aguda é essencial para:

- Prever complicações
- Estabelecer prognósticos
- Indicar necessidade de intervenção cirúrgica
- Avaliar indicações para antibióticos, anti-inflamatórios ou imunomoduladores

5. Integração com Imunologia e Microbiologia

A inflamação aguda não ocorre isoladamente — ela é o **efeito visível da ativação coordenada do sistema imunológico inato**, frequentemente em resposta à presença de **patógenos identificados por receptores moleculares especializados**. Dessa forma, o padrão morfológico da inflamação depende diretamente do tipo de microrganismo envolvido e da natureza da resposta imune desencadeada.

5.1 Reconhecimento Imunológico Inicial

As células do sistema imune inato (como macrófagos, neutrófilos e células dendríticas) detectam o agente agressor por meio de PRRs (receptores de reconhecimento de padrão), como os TLRs (receptores Toll-like).

Esses receptores reconhecem estruturas conservadas de patógenos, chamadas
 PAMPs (padrões moleculares associados a patógenos), como lipopolissacarídeos de bactérias Gram-negativas, peptidoglicanos de Gram-positivos e RNA viral de fita

dupla.

• Também reconhecem **DAMPs** (padrões moleculares associados a dano), liberados por células lesadas.

Essa detecção leva à ativação de vias intracelulares que promovem:

- Liberação de citocinas pró-inflamatórias (ex.: IL-1, TNF, IL-6)
- Expressão de moléculas de adesão
- Recrutamento de leucócitos
- Ativação de vias do complemento

5.2 Papel dos Neutrófilos e Monócitos

- Neutrófilos são os primeiros a chegar (6 a 24 h), sendo cruciais na defesa contra bactérias extracelulares. Eles dominam nas inflamações purulentas.
- Monócitos migram em seguida e se diferenciam em macrófagos, participando da resolução ou transição para inflamação crônica.

Esse comportamento celular está diretamente relacionado ao tipo de patógeno. Por exemplo:

- Pneumococos e estafilococos → provocam inflamação supurativa
- Vírus → tendem a induzir resposta serosa ou linfocitária, com menor extravasamento
- Micobactérias e fungos → frequentemente escapam da destruição imediata, favorecendo inflamação granulomatosa crônica

5.3 Complemento e Reforço da Inflamação

O sistema do **complemento** é ativado pelas vias clássica, alternativa ou da lectina e intensifica a inflamação através de:

- C3a e C5a: anafilotoxinas que aumentam a permeabilidade e atraem neutrófilos
- C3b: opsonina que facilita a fagocitose

• MAC (complexo de ataque à membrana): lise de bactérias

Essa ativação é essencial para a eficácia da fagocitose e para a magnitude do exsudato inflamatório.

5.4 Fatores Microbianos como Determinantes do Padrão Morfológico

Tipo de agente	Reação imune predominante	Padrão morfológico associado		
Bactérias extracelulares	Neutrófilos, complemento	Inflamação purulenta (ex: abscessos)		
Vírus	Linfócitos T, IFN tipo I	Inflamação serosa ou linfocítica		
Fungos	Macrófagos, granulomas	Inflamação granulomatosa crônica		
Micobactérias	Resposta Th1, IFN-γ	Inflamação granulomatosa		

Implicações Diagnósticas e Terapêuticas

- Interpretação de líquidos biológicos (exsudato purulento → origem bacteriana; seroso → viral ou químico)
- Escolha racional de antimicrobianos com base no tipo de agente presumido
- Utilização de anti-inflamatórios seletivos para evitar dano tecidual excessivo

6. Introdução à Inflamação Crônica

A inflamação crônica é um processo inflamatório de longa duração, que pode se seguir a uma inflamação aguda mal resolvida, surgir de forma insidiosa sem fase aguda evidente, ou ser o resultado de certos estímulos persistentes desde o início. Ao contrário da inflamação aguda — dominada por neutrófilos e exsudação de fluido — a inflamação crônica é caracterizada por:

- Infiltrado celular predominantemente composto por linfócitos, macrófagos e plasmócitos
- Destruição tecidual, frequentemente induzida pelas próprias células inflamatórias

 Tentativas simultâneas de reparo, por meio de angiogênese e fibrose (formação de tecido conjuntivo)

Essa resposta ocorre quando o organismo não consegue erradicar o agente agressor por completo, sendo comum em:

- Infecções persistentes (ex.: *Mycobacterium tuberculosis*, vírus da hepatite B ou C)
- Doenças autoimunes (ex.: lúpus, artrite reumatoide)
- Exposição prolongada a agentes tóxicos exógenos ou endógenos (ex.: sílica, colesterol oxidado)

6.1 Causas da Inflamação Crônica

1. Infecções persistentes

Alguns patógenos, como bacilos ácido-resistentes (*M. tuberculosis*) ou fungos (ex.: *Histoplasma*), são difíceis de erradicar, e estimulam resposta imune contínua, geralmente do tipo celular (Th1), com ativação prolongada de macrófagos.

2. Doenças imunomediadas

Na autoimunidade, o sistema imune responde de forma crônica contra antígenos próprios. Exemplo: na artrite reumatoide, há inflamação persistente da sinóvia, com proliferação tecidual e destruição articular.

3. Exposição prolongada a agentes tóxicos

Pode ser externa (sílica inalada em pneumoconioses) ou endógena (acúmulo de lipídios oxidados em placas de ateroma).

6.2 Células Envolvidas

- Macrófagos: principais células efetoras da inflamação crônica. Derivam de monócitos sanguíneos, têm vida longa nos tecidos e podem ser ativados por citocinas (ex.: IFN-γ). Secretam enzimas, citocinas, espécies reativas de oxigênio e fatores de crescimento, contribuindo tanto para a destruição tecidual quanto para o reparo.
- Linfócitos T: participam ativamente da perpetuação da resposta imune. Subtipos Th1, Th2 e Th17 regulam diferentes vias inflamatórias, incluindo ativação de macrófagos, eosinófilos e produção de anticorpos.
- **Plasmócitos**: derivados de linfócitos B, são responsáveis pela produção local de anticorpos contra antígenos persistentes ou autoantígenos.

- Eosinófilos: predominam em inflamações associadas a parasitos e reações alérgicas, sendo ativados por IL-5 e causando dano tecidual por proteínas granulares tóxicas (como a proteína básica maior).
- Células gigantes e células epitelioides: presentes em granulomas, que são estruturas organizadas típicas de inflamações crônicas granulomatosas.

7. Padrões Morfológicos da Inflamação Crônica

A inflamação crônica pode apresentar diferentes padrões morfológicos, que refletem o tipo de agente causador, a natureza da resposta imune e a capacidade do tecido em regenerar ou formar fibrose. Esses padrões não são mutuamente exclusivos e frequentemente coexistem. Os principais são:

7.1 Infiltrado Mononuclear Difuso

É o padrão mais comum da inflamação crônica. Caracteriza-se por:

- Infiltração extensa por linfócitos, macrófagos e plasmócitos
- Preservação parcial da arquitetura tecidual
- Ativação imunológica sustentada, geralmente sem organização estruturada

Microscopia:

- Macrófagos ativados com citoplasma espumoso e núcleo ovalado
- Linfócitos agrupados em torno de vênulas pós-capilares
- Plasmócitos em menor número, com núcleo excêntrico em "roda de carroça"

Exemplo clínico: hepatite viral crônica, onde o infiltrado linfocitário é denso, mas sem formação de granulomas.

7.2 Inflamação Crônica com Destruição Tecidual e Reparo

Neste padrão, o infiltrado inflamatório está associado a:

- Destruição do parênquima por enzimas liberadas por células inflamatórias
- Proliferação de fibroblastos e vasos (angiogênese)

• Formação de tecido de granulação, evoluindo para fibrose

Microscopia:

- Presença simultânea de inflamação, necrose, tecido de granulação e colágeno
- Atrofia e perda funcional de estruturas glandulares ou epiteliais

Exemplo clínico: cirrose hepática, em que inflamação crônica destrói hepatócitos, e o tecido é substituído por fibrose e nódulos regenerativos.

7.3 Inflamação Granulomatosa

É um tipo especial de inflamação crônica, caracterizada pela formação de **granulomas**, que são agregados organizados de:

- Macrófagos ativados com morfologia epitelioide
- Células gigantes multinucleadas (formadas por fusão de macrófagos)
- Células T CD4+ na periferia, geralmente do subtipo Th1, secretando IFN-γ

Função dos granulomas: isolar agentes difíceis de destruir, como microrganismos intracelulares ou corpos estranhos. No entanto, essa estratégia também contribui para dano tecidual colateral.

Tipos:

- Granuloma infeccioso caseoso: necrose central acentuada com aspecto grumoso; típico da tuberculose (Mycobacterium tuberculosis).
- **Granuloma não caseoso**: sem necrose central; observado em **sarcoidose**, doença de Crohn, sífilis e hanseníase tuberculoide.
- Granuloma por corpo estranho: em reação a suturas ou talco, com células gigantes em torno do material.

Microscopia:

- Macrófagos epitelioides arranjados em palissada
- Núcleos das células gigantes dispostos em anel ou amontoado central
- Eventual presença de necrose central amorfa (caseosa)

Tabela Comparativa dos Padrões

Padrão	Células predominantes	Características principais	Exemplo clínico
Infiltrado mononuclear difuso	Linfócitos, macrófagos	Infiltração tecidual extensa, sem organização	Hepatite crônica
Destruição + reparo	Macrófagos, fibroblastos	Necrose, angiogênese, fibrose, perda funcional	Cirrose hepática, artrite reumatoide
Granulomatoso	Macrófagos epitelioides, T CD4	Agregados celulares, necrose caseosa ou não, células gigantes	Tuberculose, sarcoidose

8. Exemplos Clínico-Patológicos da Inflamação Crônica

Nesta seção, destacamos doenças representativas de cada padrão morfológico da inflamação crônica, enfatizando suas características histológicas, agentes etiológicos e implicações clínicas.

8.1 Hepatite Viral Crônica – Infiltrado Mononuclear Difuso

- Etiologia: vírus da hepatite B (HBV) ou C (HCV)
- Morfologia:
 - Infiltrado linfocitário periportal e lobular
 - o Presença de plasmócitos em hepatite C
 - Apoptose de hepatócitos (corpos acidofílicos de Councilman)
- Implicação clínica:
 - Elevação persistente de aminotransferases
 - Progressão para fibrose e cirrose hepática
- Padrão morfológico predominante: inflamação crônica difusa com infiltração linfomonocitária

8.2 Artrite Reumatoide – Inflamação Crônica com Reparo e Destruição Tecidual

• **Etiologia**: autoimune, mediada por linfócitos T CD4+ e autoanticorpos (fator reumatoide, anti-CCP)

• Morfologia:

- Espessamento da membrana sinovial com proliferação de fibroblastos (pannus)
- o Infiltrado de linfócitos e plasmócitos
- Necrose da cartilagem articular e erosão óssea

• Implicação clínica:

- o Dor, rigidez e deformidade articular progressiva
- o Necessidade de imunossupressão
- Padrão morfológico predominante: inflamação crônica com destruição tecidual e fibrose

8.3 Tuberculose Pulmonar – Inflamação Granulomatosa Caseosa

- Etiologia: Mycobacterium tuberculosis
- Morfologia:
 - Granulomas com necrose central caseosa
 - Células gigantes de Langhans (núcleos periféricos em ferradura)
 - o Infiltrado linfocitário periférico

• Implicação clínica:

- o Tosse crônica, febre vespertina, sudorese noturna
- o Risco de cavitação pulmonar e disseminação
- Padrão morfológico predominante: inflamação granulomatosa com necrose caseosa

8.4 Sarcoidose - Granuloma Não Caseoso

- Etiologia: desconhecida, provável natureza imune
- Morfologia:
 - Granulomas compactos sem necrose
 - Inclusões intracelulares nas células gigantes (corpos de Schaumann e asteroides)
- Implicação clínica:
 - o Linfadenopatia hilar, nódulos pulmonares, lesões cutâneas
 - Pode afetar múltiplos órgãos
- Padrão morfológico predominante: inflamação granulomatosa não caseosa

8.5 Doença de Crohn – Inflamação Granulomatosa Segmentar

- Etiologia: autoimune, resposta aberrante a microbiota intestinal
- Morfologia:
 - Granulomas não caseosos transmucosos
 - o Fissuras, espessamento da parede intestinal, fibrose
- Implicação clínica:
 - o Diarreia crônica, dor abdominal, perda de peso
 - Complicações como estenoses e fístulas
- Padrão morfológico predominante: inflamação granulomatosa com fibrose

Aplicações Diagnósticas

Reconhecer o padrão de inflamação crônica auxilia em:

• Diferenciação entre causas infecciosas, autoimunes e tóxicas

- Escolha de exames complementares (biópsia, cultura, sorologia)
- Definição do tratamento (antimicrobianos vs. imunossupressores)

9. Resultados e Complicações da Inflamação Crônica

Ao contrário da inflamação aguda, cujo objetivo primário é resolução rápida e eficiente, a inflamação crônica frequentemente **falha em erradicar completamente o agente agressor**. Como consequência, ocorrem alterações teciduais duradouras que podem comprometer a função do órgão afetado. Os principais desfechos incluem:

9.1 Fibrose e Cicatrização Exuberante

A inflamação crônica é comumente acompanhada de **tentativas contínuas de reparo**, mediadas por citocinas como **TGF-**β e **fatores de crescimento derivados de macrófagos**. Esse processo resulta em:

- Proliferação de fibroblastos
- Deposição de colágeno e matriz extracelular
- Formação de tecido cicatricial denso

Consequência funcional: perda parcial ou total da função tecidual, dependendo da extensão da fibrose.

Exemplos clínicos:

- Cirrose hepática: fibrose nodular difusa → hipertensão portal e insuficiência hepática
- Pneumonite intersticial crônica: fibrose pulmonar → redução da complacência e troca gasosa
- Esclerose sistêmica (esclerodermia): fibrose de pele e vísceras

9.2 Perda Progressiva da Função Tecidual

A destruição lenta e constante do parênquima funcional, com substituição por tecido conjuntivo, leva a:

Atrofia tecidual

- Disfunção orgânica irreversível
- Necessidade de transplante em casos avançados

Exemplos clínicos:

- Glomerulonefrite crônica → insuficiência renal terminal
- Artrite reumatoide → anquilose articular e incapacidade

9.3 Formação de Fístulas e Estenoses

A inflamação transmural, comum em doenças como a doença de Crohn, pode promover:

- Ulceração profunda
- Formação de trajetos fistulosos entre órgãos (ex.: entero-vesicais)
- Estreitamentos fibrosos (estenoses), com obstrução do lúmen

9.4 Calcificação Distrófica

Ocorre em tecidos necrosados cronicamente inflamados, mesmo na ausência de hipercalcemia sistêmica.

Exemplo: calcificação em granulomas antigos ou placas ateromatosas inflamadas.

9.5 Malignização (Transformação Neoplásica)

A inflamação crônica prolongada pode induzir **alterações genéticas e epigenéticas** em células epiteliais ou mesenquimais, predispondo ao desenvolvimento de neoplasias malignas. Isso ocorre devido à:

- Produção contínua de espécies reativas de oxigênio (ERO)
- Proliferação celular compensatória
- Angiogênese e remodelamento tecidual constante

Exemplos clínicos:

- Colite ulcerativa crônica → risco aumentado de câncer colorretal
- Hepatite crônica por HBV ou HCV → carcinoma hepatocelular

• Esôfago de Barrett (inflamação crônica por refluxo) → adenocarcinoma esofágico

Tabela Resumo dos Desfechos

Desfecho	Mecanismo principal	Implicações clínicas	
Fibrose	Ativação de fibroblastos por TGF-β	Perda funcional, disfunção orgânica crônica	
Perda tecidual funcional	Necrose + remodelamento inadequado Insuficiência de órgão, necessi de transplante		
Fístulas e estenoses	Inflamação transmural e fibrose	Obstruções, infecções secundárias	
Calcificação distrófica	Precipitação de sais de cálcio em necrose	Endurecimento tecidual, evidência radiológica	
Malignização	Proliferação + dano genético persistente	Desenvolvimento de câncer	

10. Revisão Integrativa: Inflamação Aguda e Crônica

10.1 Esquema Comparativo Geral

Característica	Inflamação Aguda	Inflamação Crônica
Duração	Horas a dias	Semanas a anos
Início	Rápido	Lento e progressivo
Células predominantes	Neutrófilos	Macrófagos, linfócitos, plasmócitos
Exsudato	Rico em proteínas, pus, edema	Pouco exsudato; possível fibrose
Lesão tecidual	Moderada, reversível	Intensa, com destruição e substituição
Reparo	Regeneração completa	Fibrose, cicatriz, reorganização estrutural
Exemplos	Apendicite aguda, pneumonia	Tuberculose, hepatite crônica, artrite reumatoide

10.2 Mapa Mental Conceitual

INFLAMAÇÃO AGUDA

- → Vasodilatação → Permeabilidade vascular ↑
- → Recrutamento de neutrófilos
- → Exsudato (seroso, fibrinoso, purulento)
- → Desfecho: resolução / abscesso / cronicidade

INFLAMAÇÃO CRÔNICA

- → Persistência do estímulo
- → Macrófagos + linfócitos T
- → Destruição tecidual progressiva
- → Reparação: angiogênese + fibrose
- → Padrões: difuso / destrutivo / granulomatoso
- → Riscos: fístulas, estenoses, calcificação, câncer

10.3 Perguntas de Revisão (Espaçamento Ativo)

- 1. Quais são os quatro padrões morfológicos clássicos da inflamação aguda?
- 2. O que diferencia um abscesso de uma inflamação fibrinosa?
- 3. Quais células predominam na inflamação crônica e qual seu papel?
- 4. O que é um granuloma e em que doenças ele é típico?
- 5. Quais são os desfechos possíveis da inflamação crônica?
- 6. Qual a importância do IFN-γ na formação de granulomas?
- 7. Explique como a inflamação crônica pode levar ao câncer.
- 8. Cite um exemplo clínico de inflamação crônica com fibrose funcionalmente limitante.

10.4 Aplicações Clínicas e Diagnósticas

- Histopatologia: identificação de padrões inflamatórios auxilia no diagnóstico diferencial (ex.: abscesso vs. granuloma)
- Terapêutica dirigida: agentes imunossupressores para doenças autoimunes, antibióticos para infecção supurativa

 Prevenção de complicações: monitoramento de inflamação crônica para evitar fibrose, falência orgânica ou malignização

APÊNDICE

Tópicos Complementares em Inflamação

1. Efeitos Sistêmicos da Inflamação Aguda (Resposta de Fase Aguda)

Além das manifestações locais (rubor, calor, tumor, dor, perda de função), a inflamação, especialmente quando severa ou disseminada, desencadeia uma resposta sistêmica coordenada, mediada principalmente por citocinas como **TNF, IL-1 e IL-6**. Os principais componentes são:

- **Febre:** É uma das manifestações mais comuns. Citocinas (pirógenos endógenos) atuam no hipotálamo, estimulando a produção de prostaglandinas (especialmente a PGE₂), que reajustam o "termostato" corporal para uma temperatura mais elevada.
- Leucocitose: Ocorre um aumento na contagem de leucócitos no sangue (tipicamente 15.000-20.000 células/µL). A inflamação bacteriana aguda classicamente causa neutrofilia. Citocinas estimulam a liberação de células da medula óssea, o que pode incluir a presença de formas imaturas (bastonetes), um fenômeno conhecido como "desvio à esquerda".
- **Produção de Proteínas de Fase Aguda:** São proteínas plasmáticas, sintetizadas primariamente no fígado sob estímulo da IL-6, cujas concentrações mudam rapidamente durante a inflamação. As mais importantes clinicamente são:
 - Proteína C Reativa (PCR): Funciona como uma opsonina, facilitando a fagocitose. Seus níveis séricos são um indicador sensível e amplamente utilizado da presença e intensidade de um processo inflamatório.
 - Fibrinogênio: Liga-se a hemácias, causando sua agregação e aumentando a Velocidade de Hemossedimentação (VHS), outro marcador inflamatório inespecífico.
 - Amiloide A Sérica (SAA): Também atua como opsonina. Sua produção crônica pode levar a uma complicação chamada amiloidose secundária.
- Sintomas Constitucionais: Citocinas agindo no cérebro podem causar mal-estar, sonolência, anorexia e calafrios. Em infecções graves (sepse), a grande quantidade de TNF pode causar vasodilatação sistêmica, hipotensão e coagulação intravascular disseminada, levando ao choque séptico.

2. Detalhamento dos Mediadores Químicos da Inflamação

A resposta inflamatória é orquestrada por uma vasta gama de mediadores químicos que atuam de forma coordenada.

Cruzeiro do Sul - UNIPÊ

Curso de Medicina

Classe de Mediador	Exemplos Principais	Origem Principal	Ações Principais
Aminas Vasoativas	Histamina, Serotonina	Mastócitos, basófilos, plaquetas	Vasodilatação, aumento rápido e transitório da permeabilidade vascular.
Metabólitos do Ácido Araquidônico	Prostaglandinas, Leucotrienos, Lipoxinas	Leucócitos, mastócitos, células endoteliais	Prostaglandinas: Vasodilatação, dor, febre. Leucotrienos: Aumento da permeabilidade, quimiotaxia, broncoespasmo. Lipoxinas: Inibição da inflamação.
Citocinas e Quimiocinas	TNF, IL-1, IL-6, IFN-γ, IL-8	Macrófagos, linfócitos, células endoteliais	TNF, IL-1, IL-6: Ativação endotelial, febre, resposta de fase aguda. IFN-γ: Ativação de macrófagos (via clássica). Quimiocinas (ex: IL-8): Recrutamento e quimiotaxia de leucócitos.
Sistema Complemento	C3a, C5a, C3b	Proteínas plasmáticas (fígado)	C3a, C5a: Aumento da permeabilidade, quimiotaxia (anafilotoxinas). C3b: Opsonização e fagocitose.

3. Resolução Ativa da Inflamação: O Papel dos SPMs

A resolução da inflamação não é um evento passivo. É um processo ativo, programado, que visa restaurar a homeostase tecidual. Um evento-chave é o "switch" de mediadores lipídicos: a produção de leucotrienos pró-inflamatórios cessa, e inicia-se a síntese de uma classe de moléculas chamadas Mediadores Lipídicos Pró-Resolução (Specialized Pro-resolving Mediators - SPMs).

- Principais Famílias de SPMs: Lipoxinas, Resolvinas, Protectinas e Maresinas.
- Funções:
 - 1. Cessar o recrutamento de neutrófilos no local da inflamação.
 - 2. Induzir a **apoptose (morte celular programada)** dos neutrófilos que já estão no tecido.
 - 3. Promover a **eferocitose**, que é a fagocitose de células apoptóticas por macrófagos.
 - 4. Mudar o fenótipo dos macrófagos para um perfil anti-inflamatório e reparador (M2).
 - 5. Estimular o reparo tecidual.

Falhas nesse processo de resolução ativa podem levar à inflamação crônica.

4. Correlações Farmacológicas: Alvos Terapêuticos na Inflamação

Cruzeiro do Sul - UNIPÊ

Curso de Medicina

O entendimento dos mediadores inflamatórios permite o desenvolvimento de fármacos que modulam a resposta inflamatória, sendo a base do tratamento de muitas doenças.

• Anti-inflamatórios Não Esteroidais (AINEs):

- Alvo: Enzimas Ciclooxigenases (COX-1 e COX-2).
- o Mecanismo: Bloqueiam a síntese de prostaglandinas.
- Uso Clínico: Controle da dor, febre e inflamação (ex: Ibuprofeno, Diclofenaco).

Corticosteroides:

- Alvo: Múltiplos alvos intracelulares.
- Mecanismo: Inibem a transcrição de genes de citocinas (TNF, IL-1), quimiocinas e moléculas de adesão. Inibem a fosfolipase A₂, bloqueando a liberação de ácido araquidônico e, consequentemente, a produção de todos os seus metabólitos.
- Uso Clínico: Potentes anti-inflamatórios e imunossupressores usados em doenças autoimunes, alérgicas e inflamatórias graves (ex: Prednisona, Dexametasona).

• Terapias Biológicas (Imunobiológicos):

- o Alvo: Mediadores específicos, como citocinas.
- Mecanismo: Utilizam anticorpos monoclonais para neutralizar mediadores específicos. O exemplo mais clássico são os inibidores de TNF.
- Uso Clínico: Doenças inflamatórias crônicas como Artrite Reumatoide,
 Doença de Crohn e Psoríase (ex: Infliximabe, Adalimumabe).