— $J_{LIT} = 0.5$

200

150

J=0.5

150

150

200

200

100

100

 $Re\{L_j(\sigma_r)\}$

 $6. \times 10^{-7}$

 $5. \times 10^{-7}$

 $4. \times 10^{-7}$

 $3. \times 10^{-7}$

 $2. \times 10^{-7}$

 $1. \times 10^{-7}$

Out[•]=

0

50

50

50

 $\text{Re}(\text{Det}[\hat{\mathcal{H}}_{\text{mn}} - (E_0 + \sigma_r + \mathrm{i}\sigma_i)\hat{\mathcal{N}}_{\text{mn}}])$

1.0

8.0

0.6

0.4

0.2

1×10¹⁸

 -1×10^{18}

 -2×10^{18}

 -3×10^{18}

 -4×10^{18}

 $\mathsf{Re}(\mathsf{EV}_{\mathsf{min}}[\hat{H}_{\mathsf{mn}} - (E_0 + \sigma_r + \mathsf{i}\sigma_i)\hat{N}_{\mathsf{mn}}])$

J=0.5

100