

PVsyst - Simulation report

Grid-Connected System

Project: 25_08_25_Bomen PVSyst - 2021 - per inverter

Variant: 24_10_08_Match_measured_inv_2_1_mono

Tracking system with backtracking

System power: 2285 kWp

Wagga Wagga - Australia

PVsyst student

PVsyst student

Author Sijin Wang (Australia)

PVsyst student

Variant: 24_10_08_Match_measured_inv_2_1_mono

PVsyst V8.0.15

VPI, Simulation date: 10/09/25 14:44 with V8.0.15

Sijin Wang (Australia)

Project summary

Geographical Site

Situation

Weather data

Wagga Wagga

Latitude -35.13 °(S) Longitude 147.32 °(E) Bomen Solar Farm 2021 wind

Australia

Altitude 213 m Custom file - Imported

Time zone UTC+10

Monthly albedo values

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
Albedo	0.20	0.20	0.19	0.20	0.17	0.14	0.13	0.16	0.19	0.20	0.17	0.21

System summary

Grid-Connected System

Simulation for year no 2

Tracking system with backtracking

Orientation #1 Tracking plane, horizontal N-S axis **Near Shadings**

Linear shadings : Slow (simul.)

User's needs

0 ° Axis azimuth

Phi min / max.

-/+ 60 °

Unlimited load (grid)

Diffuse shading

Tracking algorithm Astronomic calculation Backtracking activated

System information

PV Array

Inverters

Nb. of modules

5936 units Nb. of units

1 unit 2750 kWac

Pnom total 2285 kWp

all trackers

Total power

Pnom ratio

0.83

Results summary

Specific production 1298 kWh/kWp/year Produced Energy 2966.2 MWh/year

61.86 % Perf. Ratio PR 0.00 % Bifacial perf. ratio

Table of contents

General parameters, PV Array Characteristics, System losses							
Near shading definition - Iso-shadings diagram							
Main results							
Loss diagram							
Predef. graphs							
Single-line diagram							
Single-line diagram							

Variant: 24_10_08_Match_measured_inv_2_1_mono

PVsyst V8.0.15

VPI. Simulation date: 10/09/25 14:44 with V8.0.15

Sijin Wang (Australia)

General parameters

Grid-Connected System Tracking system with backtracking

Orientation #1 Tracking plane, horizontal N-S axis

Axis azimuth -/+ 60 ° Phi min / max.

all trackers Diffuse shading

Tracking algorithm Astronomic calculation Backtracking activated

Field properties Nb. of trackers 72 units

Tracking plane, horizontal N-S axis

Sizes

Tracker Spacing 4.95 m Sensitive width 2.03 m GCR Shading 41.0 %

Backtracking limit angle

+/- 65.8 ° Phi limits

Backtracking parameters

4.95 m Backtracking pitch Backtracking width 2.03 m 0.00 m Left inactive band Right inactive band 0.00 m 41.0 % GCR Backtracking Parameters choice Automatic

Horizon **Near Shadings** User's needs Linear shadings: Slow (simul.) Unlimited load (grid) Free Horizon

Bifacial system definition

Orientation #1 Bifacial system

Model Unlimited Trackers 2D model

Bifacial model geometry

Tracker Spacing 4.95 m Tracker width 2.03 m Axis height above ground 2.10 m Nb. of sheds 72 units

Bifacial model definitions

0.30 Ground albedo Bifaciality factor 0 % Rear shading factor 5.0 % Rear mismatch loss 10.0 % Shed transparent fraction 0.0 %

PV Array Characteristics

PV module

Manufacturer Generic Model JKM-385M-72H-TV-Bifacial Model Sunny Central 2750-EV

(Custom parameters definition)

Jinko_JKM_385M_72H_TV_Monofacial.PAN

Unit Nom. Power 385 Wp Number of PV modules 5936 units Nominal (STC) 2285 kWp Modules 212 string x 28 In series

At operating cond. (50°C)

Pmpp 2096 kWp U mpp 1023 V I mpp 2048 A

Inverter

Generic Manufacturer

Models used

Perez

separate

Perez, Meteonorm

Transposition

Circumsolar

Diffuse

(Original PVsyst database)

Unit Nom. Power 2750 kWac Number of inverters 1 unit Total power 2750 kWac 875-1425 V Operating voltage Pnom ratio (DC:AC) 0.83

Variant: 24_10_08_Match_measured_inv_2_1_mono

PVsyst V8.0.15

VPI, Simulation date: 10/09/25 14:44 with V8.0.15

Sijin Wang (Australia)

PV Array Characteristics

Total PV power

Total inverter power

Nominal (STC) 2285 kWp Total 5936 modules Module area 12152 m²

Total power Number of inverters

Pnom ratio

1 unit 0.83

2750 kWac

Cell area

10495 m²

Array losses

Array Soiling Losses

Average loss Fraction

0.3 %

Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
0.3%	0.2%	0.7%	0.6%	0.2%	0.1%	0.2%	0.2%	0.2%	0.1%	0.1%	0.2%

Thermal Loss factor

DC wiring losses

Serie Diode Loss

Module temperature according to irradiance

Global array res. $3.5~\text{m}\Omega$ Voltage drop 07 V

Uc (const) 18.0 W/m²K Uv (wind) 0.0 W/m2K/m/s Loss Fraction 0.63 % at STC Loss Fraction 0.1 % at STC

LID - Light Induced Degradation

2.5 %

Module Quality Loss

Module mismatch losses

Loss Fraction

Loss Fraction 0.70 % Loss Fraction 2.00 % at MPP

Strings Mismatch loss

Loss Fraction 0.15 % Module average degradation

Year no

Loss factor 0.4 %/year 80% / 20%

Imp / Vmp contributions

Mismatch due to degradation

Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.963	0.892	0.814	0.679	0.438	0.000

Spectral correction

FirstSolar model

Coefficient Set	CO	C1	C2	C3	C4	C5
Monocrystalline Si	0.85914	-0.02088	-0.0058853	0.12029	0.026814	-0.001781

System losses

Unavailability of the system

Auxiliary losses

Time fraction 2.0 % constant (fans) 88.0 kW

7.3 days,

0.0 kW from Power thresh.

3 periods Night aux. cons. 88.0 kW

Variant: 24_10_08_Match_measured_inv_2_1_mono

Sijin Wang (Australia)

PVsyst V8.0.15 VPI, Simulation date: 10/09/25 14:44

with V8.0.15

Variant: 24_10_08_Match_measured_inv_2_1_mono

PVsyst V8.0.15

VPI, Simulation date: 10/09/25 14:44 with V8.0.15

Sijin Wang (Australia)

Main results

System Production

Produced Energy

2966.2 MWh/year

Specific production Perf. Ratio PR Bifacial perf. ratio

1298 kWh/kWp/year

61.86 % 0.00 %

Normalized productions (per installed kWp)

Performance Ratio PR

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR	PRBifi
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio	ratio
Jan. 21	84.3	30.31	8.56	108.2	105.0	194.9	126.3	0.511	0.000
Feb. 21	195.8	54.18	21.84	256.5	250.9	464.5	397.9	0.679	0.000
Mar. 21	154.0	53.66	18.49	198.0	191.5	367.0	252.5	0.558	0.000
Apr. 21	134.4	38.38	13.81	179.6	173.6	344.2	275.1	0.670	0.000
May 21	92.7	32.50	10.91	121.7	117.0	240.2	171.6	0.617	0.000
June 21	58.7	28.34	8.55	72.5	69.2	145.2	78.8	0.476	0.000
July 21	64.9	30.26	7.96	80.2	76.7	160.8	92.1	0.503	0.000
Aug. 21	101.7	40.08	8.68	131.0	126.6	259.5	189.3	0.632	0.000
Sep. 21	138.8	47.34	11.01	179.6	174.6	347.4	278.0	0.677	0.000
Oct. 21	194.0	60.62	13.74	248.3	242.5	467.2	393.9	0.694	0.000
Nov. 21	164.9	65.05	17.08	204.9	199.7	380.2	263.5	0.563	0.000
Dec. 21	243.8	65.31	21.50	317.7	310.7	570.0	447.1	0.616	0.000
Year	1628.0	546.05	13.43	2098.1	2037.9	3940.9	2966.2	0.619	0.000

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation T_Amb **Ambient Temperature** GlobInc Global incident in coll. plane GlobEff Effective Global, corr. for IAM and shadings **EArray** Effective energy at the output of the array E_Grid Energy injected into grid

PR Performance Ratio PRBifi

Bifacial Performance Ratio

Variant: 24_10_08_Match_measured_inv_2_1_mono

PVsyst V8.0.15

VPI, Simulation date: 10/09/25 14:44 with V8.0.15

Sijin Wang (Australia)

Variant: 24_10_08_Match_measured_inv_2_1_mono

Sijin Wang (Australia)

PVsyst V8.0.15VPI, Simulation date: 10/09/25 14:44

Variant: 24_10_08_Match_measured_inv_2_1_mono

PVsyst V8.0.15

VPI, Simulation date: 10/09/25 14:44 with V8.0.15

Sijin Wang (Australia)

PVsyst student

PVsyst student

Variant: 24_10_08_Match_measured_inv_2_1_mono

PVsyst V8.0.15

VPI, Simulation date: 10/09/25 14:44 with V8.0.15

Sijin Wang (Australia)

CO₂ Emission Balance

Total: -223148.0 tCO₂

Total: 288725.12 tCO₂

Source: Detailed calculation from table below

Replaced Emissions

Generated emissions

Total: 75578.8 tCO $_2$ System production: 2974.37 MWh/yr Grid Lifecycle Emissions: 847 gCO $_2$ /kWh

Source: IEA List
Country: Australia
Lifetime: 30 years
Annual degradation: 1.0 %

Saved CO₂ Emission vs. Time

System Lifecycle Emissions Details

Item	LCE	Quantity	Subtotal
			[kgCO₂]
Modules	1713 kgCO2/kWp	118019 kWp	202134255
Supports	5.65 kgCO2/kg	15327200 kg	86590863

PVsyst student