CHAPTER 41 GOOGLE CLOUD MACHINE LEARNING ENGINE (CLOUD MLE)

Run the following code to create the prediction service.

source ./scripts/create-prediction-service.sh

Creating model...

Created ml engine model [projects/quantum-ally-219323/models/iris].

Creating model version...

Creating version (this might take a few minutes).....done.

The version details of the created model is as seen in Figure 41-5.

Figure 41-5. Created model for serving on Cloud MLE

Run Batch Prediction

Now let's run a batch prediction job on Cloud MLE. The code to execute a batch prediction call on Cloud MLE is provided in the following and stored in 'run-batch-predictions.sh'.

```
export JOB_NAME=iris_prediction
export MODEL_NAME=iris
```

```
export MODEL VERSION=v1
export TEST FILE=gs://iris-dataset/hold out test.csv
# submit a batched job
gcloud ai-platform jobs submit prediction $JOB NAME \
        --model $MODEL NAME \
        --version $MODEL VERSION \
        --data-format TEXT \
        --region $REGION \
        --input-paths $TEST FILE \
        --output-path $GCS JOB DIR/predictions
# stream job logs
echo "Job logs..."
gcloud ai-platform jobs stream-logs $JOB NAME
# read output summary
echo "Job output summary:"
gsutil cat $GCS JOB DIR/predictions/prediction.results-00000-of-00001
   Execute the code with the command
source ./scripts/run-batch-prediction.sh
Job [iris prediction] submitted successfully.
jobId: iris prediction
state: QUEUED
Job logs...
INFO
        2018-11-12 14:48:18 -0500 service
                                                Validating job
                                                requirements...
TNFO
        2018-11-12 14:48:18 -0500 service
                                                Job creation request
                                                has been successfully
                                                validated.
                                                Job iris prediction is
TNFO
        2018-11-12 14:48:19 -0500 service
                                                queued.
Job output summary:
Job output summary:
```

CHAPTER 41 GOOGLE CLOUD MACHINE LEARNING ENGINE (CLOUD MLE)

The prediction job details on Cloud MLE is as shown in Figure 41-6.

Figure 41-6. Batch prediction job details

Training with GPUs on Cloud MLE

Training models on GPUs can greatly reduce the processing time. In order to use GPUs on Cloud MLE, we make the following changes to our code example:

- 1. Change the scale tier to 'CUSTOM'. The CUSTOM tier makes a number of GPU accelerators available, namely:
 - a. standard_gpu: A single NVIDIA Tesla K80 GPU
 - b. complex_model_m_gpu: Four NVIDIA Tesla K80 GPUs
 - c. complex_model_l_gpu: Eight NVIDIA Tesla K80 GPUs
 - d. standard_p100: A single NVIDIA Tesla P100 GPU
 - e. complex_model_m_p100: Four NVIDIA Tesla P100 GPUs
 - f. standard_v100: A single NVIDIA Tesla V100 GPU
 - g. large_model_v100: A single NVIDIA Tesla V100 GPU
 - h. complex_model_m_v100: Four NVIDIA Tesla V100 GPUs
 - i. complex_model_l_v100: Eight NVIDIA Tesla V100 GPUs
- Add the following parameters to the 'yaml' file to configure the GPU instance.

```
trainingInput:
    scaleTier: CUSTOM
    masterType: complex_model_m_gpu
    workerType: complex_model_m_gpu
    parameterServerType: large_model
    workerCount: 2
    parameterServerCount: 3
```

3. The full configuration file in 'gpu_hptuning_config.yaml' now looks like this:

```
trainingInput:
    scaleTier: CUSTOM
    masterType: complex_model_m_gpu
    workerType: complex model m gpu
```