Технология MIMO (Multiple Input Multiple Out) - технология, которая предусматривает пространственное разнесение сигнала как на приеме, так и на передаче, при этом используется несколько передающих и принимающих антенн.

РАСШИРЕННЫЙ ПРОФИЛЬ

1. ОПИСАНИЕ

На рисунке 1 показан тракт формирования МІМО-сигнала на базовой Пользовательская информация или упаковывается транспортных блока в соотвествии с количеством пространственных уровней в схеме МІМО. Их количество выбирается по отчетам АС о состоянии канала (отношение сигнал-шум, степень корреляции сигналов двух антенных трактов). Пользовательская информация, упакованная в транспортные блоки, подвергается операциям расширения спектра и скремблирования для каждого кодового канала SF16 (с коэффициентом расширения спектра 16). Расширенные сигналы прекодируются – умножаются на прекодирующую матрицу (с весовыми коэффициентами w1...w4). Затем выполняется операция мультиплексирования: сигналы кодовых каналов складываются в каждой из двух передающих ветвей, к ним в каждой ветви добавляются служебные каналы, включая пилот-канал СРІСН.

Рис. 1 – Тракт формирования МІМО-сигнала

Прекодирование – ключевая операция в схеме MIMO с обратной связью, позволяющая согласовать излучаемый сигнал с характеристиками

канала. Идеально подобранные весовые коэффициенты позволяют сформировать два неинтерферирующих между собой тракта распространения радиоволн в системе МІМО 2х2. В HSPA (High Speed Packet Access — высокоскоростная пакетная передача данных) используется следующий набор коэффициентов:

$$w_1 = w_3 = 1/\sqrt{2}$$
, $w_2 \in \left\{ \frac{1+j}{2}, \frac{1-j}{2}, \frac{-1+j}{2}, \frac{-1-j}{2} \right\}$, $w_4 = -w_2$.

Коэффициенты w1,w3 — постоянные действительные числа, а w2,w4 — переменные комплексные числа. По сообщениям от АС выбирается одно из 4 возможных значений w2 (и соответсвующее ему значение w4). При передаче 2 транспортных блоков используются все 4 коэффициента, а при передаче одного блока — только пара коэффициентов w1 и w2.

Процедура прекодирования может рассматриваться как процедура динамического формирования диаграммы направленности (beam forming) для каждого информационного потока с 4 квантованными фазовыми сдвигами между антеннами элементами. Сигналы информационных потоков в результате прекодирования передаются в направлениях, обеспечивающих наилучшие отношения сигнал-шум в точке приема. На рис.3 показан пример формирования вектора сигнала первичного транспортного блока S1=w1+w2

 $w_2 = w_{2,1} = \frac{1+j}{2}$. Соотвествующий вектор сигнала вторичного транспортного блока будет ортогонален S1.

Рис. 2 — Результат прекодирования сигнала первичного тракта (в фазовой плоскости)

Первый патент на использование МІМО-принципа в радиосвязи был зарегистрирован в 1984 году сотрудником Bell Laboratories Джеком Винтерсом (Jack Winters). Базируясь на его исследованиях, Джек Селз (Jack Salz) из той же Bell Laboratories опубликовал в 1985 году первую статью по МІМО-решениям. Развитие данного направления продолжалось специалистами Bell Laboratories и другими исследователями вплоть до 1995 года. В 1996 году Грэг Ралей (Greg Raleigh) и Джеральд Дж. Фошини (Gerald

J. Foschini) предложили новый подход к реализации МІМО-системы, увеличивший ее эффективность. Впоследствии Грэг Ралей, которому приписывают авторство в использовании OFDM (Orthogonal Frequency Division Multiplexing — мультиплексирование посредством ортогональных несущих) для МІМО, основал компанию Airgo Networks, разработавшую первый МІМО-чипсет True MIMO.

В системе LTE реализация технологии MIMO на линиях «вверх» и «вниз» различаются. На схеме «вниз» возможны схемы MIMO максимального размера 4х4 с пространственным мультиплексированием до 4 независимых потоков информации, т.е. с рангом 4, а на линии «вверх» ранг MIMO не превышает 1, даже если абонентская станция оснащается несколькими антеннами.

В соответствии с Release 8 3GPP схемы МІМО (см. рис. 1) на линии «вниз» специфицированы следующем образом:

- разнесенная передача (TM2 Transmission Mode 2);
- пространственное мультиплексирование (ТМ3);
- пространственное мультиплексирование с прекодированием (ТМ4);
- схема многопользовательского МІМО (МU-МІМО) (ТМ5);
- схема с прекодированием и с рангом 1 (ТМ6);
- адаптивное формирование луча диаграммы направленности (ДН) (ТМ7).

В Realease 9 была добавлена возможность адаптивного формирования луча диаграммы направленности с поддержкой линии «вниз» двух пространственных уровней, или ранга 2 (ТМ8).

Рис. 2 – Схемы MIMO на линии «вниз» в системе LTE

Классификация схем МІМО на линии «вверх» показана на рисунке 3, где поддерживаются следующие схемы МІМО: разнесенная передача, многопользовательское МІМО, адаптивное формирование луча диаграммы направленности.

На линии «вниз» в системе LTE разнесенная передача (ТМ2) может использоваться для всех физических каналов, включая каналы управления и трафика. Другие схемы MIMO применимы только к каналу трафика (PDSCH – Physical Downlink Shared Chanel).

Рис. 3 – Схемы MIMO на линии «вверх» в системе LTE

На линии «вниз» для разнесенной передачи используется вариант кода Аламоути, только в отличие от оригинального пространственно-временного кода в LTE используется пространственно-частотный код (SFBC — Space Frequency Block Code). Код SFBC позволяет достичь высокой помехоустойчивости и используется, в основном, для увеличения дальности связи.

При наличии четырех передающих трактов на базовой станции используется комбинация SFBC и разнесенной передачи с переключением (FSTD — Frequency — Switched Transmit Diversity). Передача SFBC в комбинации с FSTD позволяет уменьшить эффект корреляции между сигналами соседних передающих антенн и за счет ортогональности матрицы SFBC упростить реализацию абонентской станции. На линии «вверх» SFBC не применяется: для минимизации стоимости абонентское оборудование оснащается только одним передатчиком даже при наличии двух антенн.

Схемы однопользовательского MIMO (SU-MIMO) используются только для канала трафика PDSCH на линии «вниз», предназначены для повышения пропускной способности за счет мультиплексирования нескольких потоков информации в пространственной области. Схема SU-MIMO изображена на рисунке 4.

Рис. 4 – Схема SU-MIMO

Входные данные демультиплексируются на G потоков ($G \le 2$), каждый из которых подвергается помехоустойчивому кодированию и модуляции КАМ, т.е. формируются G кодовых слов. Полученные кодовые слова посимвольно распределяются между V уровнями пространственного мультиплексирования ($G \le V \le 4$). Сформированные векторы из V символов умножаются на прекодирующую матрицу и подаются на M антенных портов ($V \le M \le 4$). Предусматривается использование схем SU-MIMO двух типов: с обратной связью (TM4) и без обратной связи (TM3).

Схема многопользовательского MIMO (MU-MIMO) (ТМ5), реализующая множественный доступ с пространственным разделением, приведена на рисунке 5.

Рис. 5 – Cxeмa MU-MIMO

На линиях «вверх» и «вниз» базовая станция может работать одновременно с K абонентскими станциями, $K \le M$, выделяя этим станциям одинаковые частотно-временные ресурсы. При этом обеспечивается только пространственное разнесение сигналов разных абоенентов.

В схеме MU-MIMO на линии «вниз» данные для разных абонентских станций передаются с одним пространственным уровнем. Для каждой абонентской станции используется своя прекодирующие матрицы. При этом используются те же прекодирующие матрицы, что и в режиме SU-MIMO.

На линии «вверх» несколько абонентских станций могут передавать данные на базовую станцию, задействовав одни и те же частотно-временные ресурсы, т.е. могут работать по схеме MU-MIMO.

- В LTE различают два режима формирования луча диаграммы направленности:
 - 1) прекодирование с обратной связью при использовании одного пространственного уровня (ТМ6). Примеры диаграмм направленности антенной системы, состоящей из двух антенн, разнесенных на расстояние 1/2 (1 длина волны радиосигнала), для четырех РМІ (индикатор принимаемый от абонентской станции) показаны на рисунке 6. В случае четырех антенн на базовой станции может быть сформировано 16 различных диаграмм направленности.
 - 2) адаптивное формирование диаграммы направленности Forming) (ТМ7). Схема адаптивного формирования луча приведена данном случае передается также 7. В пространственный уровень, но РМІ от абонентской станции не передается, базовая станция оценивает канал по пилот-сигналам абонентской станшии вычисляет комплексные коэффициенты передачи сигналов в каждом приёмопередающем

тракте. Адаптивное формирование луча диаграммы направленности используется, в основном, в системах с временным дуплексом, где характеристики каналов «вверх» и «вниз» идентичны, поскольку используют одну и ту же частоту.

Рис. 6 – Диаграммы направленности 2-антенной системы базовой станции в режиме МІМО ТМ6: а – индикатор РМІ 0; б – индикатор РМІ 1; в – индикатор РМІ 2; г – индикатор РМІ 3

Рис. 7 – Схема адаптивного формирования луча диаграммы направленности

В системах Release 9 появилась возможность объединения технологии формирования луча диаграммы направленности и пространственного мультиплексирования с двумя уровнями (ТМ8).

Системы LTE-Advanced, специфицированные 3GPP, начиная с Release 10, позволяют повысить спектральную эффективность за счет использования на линиях «вверх» и «вниз» схем МІМО более высокого порядка, чем в системе LTE.

Повышение скорости передачи данных на краях сот может обеспечиваться благодаря системам скоординированной многоточечной связи (CoMP – Coordinated Multi Point), специфицированным в Release 11, в абонентская станция может одновременно работать несколькими базовыми станциями.

Технология МІМО направлена на повышение эффективности радиочастотного спектра, а значит увеличение пропускной способности сети. Увеличение пропускной способности необходимо, например, для просмотра онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

В настоящий момент технология МІМО применяется сотовыми операторами большой тройки, а также на рынке представлено множество вариантов исполнения антенн, поддерживающих эту технологию. На рисунке 8 представлена антенна Antex NITSA-5 МІМО 2х2.

Рис. 8 – Антенна Antex NITSA-5 MIMO 2x2.

2. БИЗНЕС-ПОТЕНЦИАЛ

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология МІМО позволила увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 — а, b, g, п и так далее. Технология МІМО это ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек. Стандарт 802.11п позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик. Более новый стандарт - 802.11ас также использует технологию MIMO.

Потенциальными пользователями технологии MIMO являются все абоненты сотовых и беспроводных сетей.

На 2016 г. уже более 53% продаваемых телефонов в России – это смартфоны с поддержкой LTE. Охват рынка по мнению экспертов составляет 41%.

3. БАРЬЕРЫ

Совместное использование эффектов пространственного разнесения, пространственного мультиплексирования и формирования луча диаграммы в технологии МІМО позволяет:

- повысить помехоустойчивость системы (уменьшить вероятность ошибки);
- повысить скорость передачи информации;
- увеличить зону покрытия;
- уменьшить требуемую мощность передатчика.

Эти четыре положительных свойства не могут быть реализованы одновременно. Например, увеличение скорости передачи информации приводит к увеличению вероятности ошибки или к увеличению излучаемой мощности передатчика.

Кроме τογο, передача В одном TTI (интервал передачи) прекодированных кодовых каналов МІМО и обычных кодовых каналов создает помехи для приемников обычных не МІМО-терминалов, поскольку фазовыми При каналы передаются разными сдвигами. мультиплексировании в одном TTI кодовых каналов MIMO разных пользователей наблюдается снижение пропускной способности.

4. ЗНАЧИМОСТЬ ДЛЯ РАЗВИТИЯ БИЗНЕСА

При освоении более высоких диапазонов частот, например сантиметрового или миллиметрового, при длине волны значительно меньше размеров абонентского терминала упростится реализация многоэлементных антенн как в абонентских устройствах, так и в базовых станциях, а значит, станет возможным переход к системам МІМО значительно большего порядка, чем настоящие системы, - в несколько раз больше, чем 8х8. В таких условиях вероятно будут предложены новые методы формирования и обработки сигналов МІМО, что отразится в стандартах для систем беспроводного широкополосного доступа и в конечном счете найдет применение в реальных сетях связи.

5. ИСТОЧНИКИ

- 1. Бакулин М. Г., Варукина Л. А., Крейнделин В. Б. Технология МІМО: принципы и алгоритмы. М.: Горячая линия Телеком, 2014. 244с.
- 2. 3GPP TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulations (Release 10)
- 3. 3GPP Release 11: Understanding the Standards for HSPA+ and LTE-Advanced Enhancements