1 松坂集合位相

- **1.1** x を位相空間 S の点,M を S の部分集合とするとき, $x \in \overline{M}$ であるためには,x を含む 任意の開集合 O に対して $O \cap M \neq \emptyset$ となることは必要十分であることを示せ.
- **1.2** O を位相空間 S の 1 つの開集合とすれば、S の任意の部分集合 M に対して、 $O \cap \overline{M} \subset \overline{O \cap M}$ であることを示せ、(したがって特に $O \cap M = \emptyset$ ならば $O \cap \overline{M} = \emptyset$)
- 1.3 位相空間 S の任意の部分集合 M に対して $M^{aiai}=M^{ai}, M^{iaia}=M^{ia}$ が成り立つ ことを示せ.
- **1.4** S を空でない集合とするとき、 $\mathfrak{P}(S)$ の部分集合 \mathfrak{B} が $\mathfrak{O}(\mathfrak{B})$ の基底となるためには、 \mathfrak{B} が次の性質 (O^*i) および (O^*ii) をもつことが必要十分であることを証明せよ.
 - (O*i) S の任意の元 x に対して、 $x \in W$ となるような $W \in \mathfrak{B}$ が存在する.
 - (O^*ii) $W_1 \in \mathfrak{B}, W_2 \in \mathfrak{B}, W_1 \cap W_2 \neq \emptyset$ ならば, $W_1 \cap W_2$ に属する任意の点 x に対して、

$$x \in W$$
, $W \subset W_1 \cap W_2$

となるような $W \in \mathfrak{B}$ が存在する.

- **1.5** 位相空間 S において, $V^*(x)$ を x の 1 つの基本近傍系とし, また M を S の 1 つの部分集合とする. そのとき次のことを示せ.
 - (a) $x \in M^{\circ} \Leftrightarrow \exists U \in \mathbf{V}^*(x)(U \subset M)$
 - (b) x が Mの外点 $\Leftrightarrow \exists U \in V^*(x)(U \cap M = \emptyset)$
 - (c) $x \in \bar{M} \Leftrightarrow \forall U \in V^*(x)(U \cap M \neq \emptyset)$
 - (d) $x \in \partial M \Leftrightarrow \forall U \in \mathbf{V}^*(x)(U \cap M \neq \emptyset$ かつ $U \cap M^c \neq \emptyset$)
 - (e) x が M の集積点 $\Leftrightarrow \forall U \in \mathbf{V}^*(x)(U \cap (M \{x\}) \neq \emptyset)$
 - (f) x が M の孤立点 $\Leftrightarrow \exists U \in V^*(x)(U \cap M = \{x\})$
- **1.6** 位相空間 S の各点 x に対してそれぞれ 1 つの基本近傍系 $V^*(x)$ が与えられたとすれば、 $(V^*(x))_{x \in S}$ について次の (V^*i) 、 (V^*ii) 、 (V^*iii) が成り立つことを証明せよ.
 - (V^*i) すべての $U \in V^*(x)$ に対して $x \in U$.
 - (V^*ii) $U_1 \in V^*(x), U_2 \in V^*(x)$ とすれば, $U_3 \subset U_1 \cap U_2$ となるような $U_3 \in V^*(x)$ が存在する.
- (V^*iii) 任意の $U \in V^*(x)$ に対して、次の条件を満たす $W \in V^*(x)$ がある:W の任意の 点 y に対して $U_y \subset U$ となるような $U_y \in V^*(y)$ が存在する.
- **1.7** 集合 $S(\neq \varnothing)$ の各点 x に対しそれぞれ $\mathfrak{P}(S)$ の空でない部分集合 $V^*(x)$ が定められ、 (V^*i) 、 (V^*ii) 、 (V^*ii) が成り立っているとする. そのとき、S の各点 x に対し

$$V(x) = \{V | \exists U \in V^*(x)(U \subset V)\}$$

と V(x) を定めれば,V(x) を x の近傍系とする位相 $\mathfrak O$ が一意的に導入されることを

示せ.(与えられた $V^*(x)$ はこの位相空間における x の基本近傍系.)

- **1.8** 集合 S において、 (V^*i) - (V^*ii) を満たす 2 組の $(V^*(x))_{x \in S}$ 、 $(W^*(x))_{x \in S}$ が与えられたとする。 そのとき、前間の意味でこれから定められる位相 $\mathfrak{O}_1, \mathfrak{O}_2$ について、 $\mathfrak{O}_1 \subset \mathfrak{O}_2$ が成り立つためには、次の条件 (*) が成り立つことが必要十分であることを示せ.
 - (*) 任意の $V \in V^*(x)$ に対して、 $W \subset V$ となる $W \in W^*(x)$ が存在する.
- **1.9** 位相空間 S から位相空間 S' への写像 f が S の点 x_0 で連続であるためには, $x_0 \in \overline{M}$ であるような S の任意の部分集合 M に対して $f(x_0) \in \overline{f(M)}$ が成り立つことが必要十分であることを示せ.
- **1.10** M を位相空間 (S, \mathfrak{O}) の部分集合とするとき、 \mathfrak{B} が \mathfrak{O} の基底 (または準基底) ならば、

$$\mathfrak{B}_M = \{ O \cap M \, | \, O \in \mathfrak{B} \}$$

は Ω_M の基底(または準基底)となることを示せ.

- 1.11 M を位相空間 S の部分空間とするとき,M の任意の部分集合 X の M における閉包 は $\bar{X} \cap M(\bar{X}$ は X の S における閉包) となることを示せ.
- **1.12** 前間で, $X \in \mathfrak{P}(M)$ の M における開核を $X^{i'}$,S における開核を X^i とすれば, $X^{i'} \supset X^i$ であることを示せ. また, 任意の $X \in \mathfrak{P}(M)$ に対して $X^{i'} = X^i$ が成り立つためには,M が S の開集合であることが必要十分であることを示せ.
- 1.13 離散空間の任意の部分空間は離散空間, 密着空間の任意の部分空間は密着空間である ことを示せ.
- **1.14** M を位相空間 S の部分集合とする.M のすべての点が M の孤立点であるためには,S の部分空間として M が離散空間であることが必要十分であることを示せ.
- **1.15** \mathbf{R} の開区間 (a,b) は (相対位相に関して) \mathbf{R} と同相な位相空間であることを示せ.
- 1.16 $(S_{\lambda})_{\lambda \in \Lambda}$ を位相空間の族とし、各 λ に対して M_{λ} を S_{λ} の部分集合とする. そのとき、直積空間 $S = \prod_{\lambda \in \Lambda} S_{\lambda}$ の部分集合 $M = \prod_{\lambda \in \Lambda} M_{\lambda}$ について

$$\bar{M} = \prod_{\lambda \in A} \bar{M}_{\lambda}$$

が成り立つことを示せ.

1.17 前問において、 Λ が有限集合である場合には、

$$M^{\circ} = \prod_{\lambda \in \Lambda} M_{\lambda}^{\circ}$$

が成立することを示せ. Λ が無限集合の場合にはこのことは成り立つか.

- 1.18 位相空間 S から直積空間 $S'=\prod_{\lambda\in A}S'_{\lambda}$ への写像 $f:S\to S'$ が連続であるためには、 すべての $\lambda\in \Lambda$ に対し $f_{\lambda}=\operatorname{pr}_{\lambda}\circ f:S\to S'_{\lambda}$ が連続であることが必要十分であることを示せ.
- 1.19 $(S_{\lambda})_{\lambda \in \Lambda}$ を位相空間の族, Λ_1 を Λ の部分集合とし, $\Lambda \Lambda_1$ に属する各 μ に対してそれぞれ S_{μ} の 1 つの元 x_{μ}^0 を定めておく. そのとき, $\prod_{\lambda \in \Lambda_1} S_{\lambda}$ の各点 $x = (x_{\lambda})_{\lambda \in \Lambda_1}$ に $\prod_{\lambda \in \Lambda} S_{\lambda}$ の点 $x^* = (x_{\lambda}^*)_{\lambda \in \Lambda}$ (ただし $\lambda \in \Lambda_1$ に対しては $x_{\lambda}^* = x_{\lambda}$, $\mu \in \Lambda \Lambda_1$ に対しては $x_{\mu}^* = x_{\mu}^0$) を対応させる写像は, $\prod_{\lambda \in \Lambda_1} S_{\lambda}$ から $\prod_{\lambda \in \Lambda} S_{\lambda}$ の部分空間 $\prod_{\lambda \in \Lambda_1} S_{\lambda} \times \prod_{\mu \in \Lambda \Lambda_1} \{x_{\mu}^0\}$ への同相写像であることを示せ.
- 1.20 f を直積空間 $S=\prod_{\lambda\in A}S_{\lambda}$ から位相空間 S' へ連続写像とする. そのとき, 前間のようにして $\prod_{\lambda\in A_1}S_{\lambda}$ の各点 x に $\prod_{\lambda\in A}S_{\lambda}$ の点 x^* を対応させ, $f_1(x)=f(x^*)$ とおけば, f_1 は $\prod_{\lambda\in A_1}S_{\lambda}$ から S' の連続写像であることを示せ. (約言すれば, "多変数の連続写像"は、一部の変数を固定した場合, 残りの変数について連続である. 特に, "多変数の連続写像"は個々の各変数について連続である."しかし, このことの逆は成立しない (次の問題参照).)
- **1.21** 写像 $f: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ を次のように定義する:

$$f(x_1, x_2) = \begin{cases} x_1 x_2 / (x_1^2 + x_2^2) & ((x_1, x_2) \neq (0, 0)), \\ 0 & ((x_1, x_2) = (0, 0)). \end{cases}$$

は連続でないことを示せ.

1.1

x を位相空間 S の点,M を S の部分集合とするとき, $x \in M$ であるためには,x を含む任意の開集合 O に対して $O \cap M \neq \emptyset$ となることは必要十分であることを示せ.

【解】

⇒: この命題の対偶, ある x を含む開集合 O が存在して $O\cap M=\varnothing$ ならば $x\notin \bar{M}$ が成り立つことを示す.

このような開集合 O について $M\subset O^c$ で O^c は x を含まない閉集合. よって $\bar{M}\subset O^c$ となり \bar{M} も x を含まない.

 \Leftarrow : これも対偶, $x \notin \bar{M}$ ならば x を含むある開集合 O が存在して $O \cap M = \varnothing$ であることを示す.

このとき, \bar{M}^c は x を含む開集合である. したがって $\bar{M}^c\cap M\subset M^c\cap M=\varnothing$ ゆえ $\bar{M}^c\cap M=\varnothing$ であり, これが示すべきことであった.

1.2

O を位相空間 S の 1 つの開集合とすれば,S の任意の部分集合 M に対して, $O\cap \bar{M}\subset \overline{O\cap M}$ であることを示せ.(したがって特に $O\cap M=\varnothing$ ならば $O\cap \bar{M}=\varnothing$)

【解】

 $x \in O \cap \overline{M}$ を任意にとり,O' を x を含む任意の開集合とする. このとき $x \in \overline{M}$ で $O \cap O'$ は x を含む開集合なので, 前問により $O \cap O' \cap M \neq \emptyset$. したがって $O' \cap O \cap M \neq \emptyset$ で, ふた たび前問により $x \in \overline{O \cap M}$. 以上により, $O \cap \overline{M} \subset \overline{O \cap M}$.

1.3

位相空間 S の任意の部分集合 M に対して $M^{aiai}=M^{ai}, M^{iaia}=M^{ia}$ が成り立っことを示せ.

【解】

 $M^{aiai} = M^{ai}$ を示す.

 $M^{ai}\subset M^a$ であり, $M^{aia}\subset (M^a)^a=M^a$. よって $M^{aiai}\subset M^{ai}$. また, $M^{aia}\supset M^{ai}$. (これは $M^a\supset M$ の M を M^{ai} におきかえたもの) よって $M^{aiai}\supset M^{aii}=M^{ai}$. 以上から, $M^{aiai}=M^{ai}$. が出まれることには、 M^a もほとんど同様である。

S を空でない集合とするとき、 $\mathfrak{P}(S)$ の部分集合 \mathfrak{B} が $\mathfrak{O}(\mathfrak{B})$ の基底となるためには、 \mathfrak{B} が次の性質 (O^*i) および (O^*ii) をもつことが必要十分であることを証明せよ. (O^*i) S の任意の元 x に対して、 $x \in W$ となるような $W \in \mathfrak{B}$ が存在する.

 (O^*ii) $W_1 \in \mathfrak{B}, W_2 \in \mathfrak{B}, W_1 \cap W_2 \neq \emptyset$ ならば, $W_1 \cap W_2$ に属する任意の点 x に対して、

$$x \in W$$
, $W \subset W_1 \cap W_2$

となるような $W \in \mathfrak{B}$ が存在する.

 \Leftarrow では $igcup_{\lambda\in arLambda}W_{\lambda}(W_{\lambda}\in oldsymbol{\mathfrak{B}})$ の集合全体が S の位相となることを示す.(arLambda=arnothing のとき

 $\bigcup W_{\lambda} = \emptyset$ と既約されているものとする.)

 $\lambda \in \Lambda$

【解】

 \Rightarrow : \mathfrak{D} が $\mathfrak{D}(\mathfrak{B})$ の基底ならば, (O^*i) が成り立つことは明らか.

 $W_1,W_2\in\mathfrak{B}$ ならば, 特に $W_1,W_2\in\mathfrak{O}(\mathfrak{B})$ ゆえ $W_1\cap W_2\in\mathfrak{O}(\mathfrak{B})$. よって $W_1\cap W_2\neq\varnothing$ ならば $x\in W_1\cap W_2$ について, $x\in W,W\subset W_1\cap W_2$ となる $W\in\mathfrak{B}$ が存在する.

$$\Leftarrow$$
: $\bigcup_{\lambda} W_{\lambda}(W_{\lambda} \in \mathfrak{B})$ の形の集合全体を $\mathfrak O$ とする.

 $(Oi)\emptyset \in \mathfrak{O}$ は明らか. また (O^*i) により、 $S \in \mathfrak{O}$ もいえる.

(Oiii) も $\mathfrak O$ の定め方から明らか. (Oii) まず, $W_1,W_2\in \mathfrak B$ ならば $W_1\cap W_2\in \mathfrak O$ である. 実際, $W_1\in \mathfrak B,W_2\in \mathfrak B$ について, $W_1\cap W_2=\varnothing$ ならばこれは $\mathfrak O$ の元. $W_1\cap W_2\neq\varnothing$ のとき,(O*ii) を満たす $W\in \mathfrak B$ を W_x とすれば $W_1\cap W_2=$ \bigcup $W_x\in \mathfrak O$.

 $x \in W_1 \cap W_2$

 $O_1\in\mathfrak{O}, O_2\in\mathfrak{O}$ は $O_1=igcup_{\lambda\in A}W_\lambda^{(1)}, O_2=igcup_{\mu\in M}W_\mu^{(2)}$ と \mathfrak{B} の元の合併として表せる. この

とき

$$O_1 \cap O_2 = \bigcup_{(\lambda,\mu) \in \Lambda \times M} (W_{\lambda}^{(1)} \cap W_{\mu}^{(2)})$$

 $W_{\lambda}^{(1)} \cap W_{\mu}^{(2)} \in \mathfrak{O}$ なので (Oiii) により, $O_1 \cap O_2 \in \mathfrak{O}$. 以上により \mathfrak{O} は S 上の位相となり, \mathfrak{B} はその基底である.

位相空間 S において, $V^*(x)$ を x の 1 つの基本近傍系とし, また M を S の 1 つの部分集合とする. そのとき次のことを示せ.

- (a) $x \in M^{\circ} \Leftrightarrow \exists U \in \mathbf{V}^*(x)(U \subset M)$
- (b) xがMの外点 $\Leftrightarrow \exists U \in V^*(x)(U \cap M = \emptyset)$
- (c) $x \in \bar{M} \Leftrightarrow \forall U \in V^*(x)(U \cap M \neq \varnothing)$
- (d) $x \in \partial M \Leftrightarrow \forall U \in V^*(x)(U \cap M \neq \emptyset \Rightarrow U \cap M^c \neq \emptyset)$
- (e) x が M の集積点 $\Leftrightarrow \forall U \in \mathbf{V}^*(x)(U \cap (M \{x\}) \neq \emptyset)$
- (f) x が M の孤立点 $\Leftrightarrow \exists U \in \mathbf{V}^*(x)(U \cap M = \{x\})$

【解】

(a) ⇒: $x \in M^\circ$ ゆえ,M は x の近傍である. 基本近傍系の定義により, $x \in U^\circ, U \subset M$ となる $U \in \mathbf{V}^*(x)$ が存在する.

 \Leftarrow : このとき特に $x \in U^{\circ}$ であり $U^{\circ} \subset M^{\circ}$ なので $x \in M^{\circ}$.

(b) \Rightarrow :x は M^c の内点なので,(a) により, ある $U \in V^*(x)$ が存在して $U \subset M^c$. よって $U \cap M^c = \emptyset$.

 \Leftarrow : このとき $U \subset M^c$ で, $x \in U^i$ かつ $U^i \subset M^{ci}$ なので $x \in M^{ci}$.

- (d) $\Rightarrow : x \in \overline{M}$ により、任意の $U \in V^*(x)$ において $U \cap M \neq \emptyset$. また、 $x \notin M^\circ$ なので (a) の否定

$$\forall U \in \mathbf{V}^*(x)(U \not\subset M)$$

すなわち

$$\forall U \in V^*(x)(U \cap M \neq \varnothing)$$

が成立、以上により示された、

 \Leftarrow :(a),(c) により $x \in \bar{M} - M^{\circ} = \partial M$ となることは明らか.

- (e) \Rightarrow : このとき $x \in \overline{M \{x\}}$ ゆえ,(c) により明らか.
 - **⇐:** これも (c) により明らか.
- (f) ⇒: $\sharp \sharp x \notin \overline{M \{x\}}$ toor, (c) kl cot

$$\exists U \in \mathbf{V}^*(x)(U \cap (M - \{x\}) = \varnothing)$$

この U について $U \cap (M - \{x\}) = \emptyset$ であり, $x \in U \cap M$ なので $U \cap M = \{x\}$. \Leftarrow : このとき $U \cap (M - \{x\}) = \emptyset$ なので (c) により

$$x \in M$$
 かつ $x \notin \overline{M - \{x\}}$

よってxはMの孤立点.

位相空間 S の各点 x に対してそれぞれ 1 つの基本近傍系 $V^*(x)$ が与えられたとすれば、 $(V^*(x))_{x \in S}$ について次の (V^*i) 、 (V^*ii) 、 (V^*iii) が成り立つことを証明せよ. (V^*i) すべての $U \in V^*(x)$ に対して $x \in U$.

- (V^*ii) $U_1 \in V^*(x), U_2 \in V^*(x)$ とすれば, $U_3 \subset U_1 \cap U_2$ となるような $U_3 \in V^*(x)$ が存在する.
- (V^*iii) 任意の $U \in V^*(x)$ に対して、次の条件を満たす $W \in V^*(x)$ がある:W の任意の点 y に対して $U_y \subset U$ となるような $U_y \in V^*(y)$ が存在する.

【解】

 (V^*i) は明らか.

 (V^*ii) も U_1, U_2 は x の近傍ゆえ $U_1 \cap U_2$ も x の近傍. よって, 基本近傍系の定義から $U_3 \subset U_1 \cap U_2$ となる $U_3 \in V^*(x)$ が存在する.

 $(V^*iii):W=U^\circ$ とすれば、任意の $y\in W$ について W は y の近傍なので、基本近傍系の定義から $U_y\subset U$ となる $U_y\in V^*(y)$ が存在する.

1.7

集合 $S(\neq \emptyset)$ の各点 x に対しそれぞれ $\mathfrak{P}(S)$ の空でない部分集合 $V^*(x)$ が定められ, (V^*i) , (V^*ii) , (V^*iii) が成り立っているとする. そのとき,S の各点 x に対し

$$V(x) = \{V | \exists U \in V^*(x)(U \subset V)\}$$

と V(x) を定めれば,V(x) を x の近傍系とする位相 $\mathfrak O$ が一意的に導入されることを示せ.(与えられた $V^*(x)$ はこの位相空間における x の基本近傍系.)

【解】

まず V(x) が (Vi)-(Viv)(p161) を満たすことを示す.

(Vi) は明らか.

 $(Vii):V\in V(x)$ で $V\subset V'$ とする. このときある $U\in V^*(x)$ が存在して, $U\subset V$ ゆえ $U\subset V'$ なので $V'\in V(x)$.

 $(Viii):V_1 \in V(x), V_2 \in V(x)$ とすると $V_1' \subset V_1, V_2' \subset V_2$ となる $V^*(x)$ の 2 元 V_1', V_2' が存在する. このとき $V_1' \cap V_2' \subset V_1 \cap V_2$ で (V^*ii) によって $V_3' \subset V_1' \cap V_2'$ となる $V_3' \in V^*(x)$ が存在する. このとき $V_3' \subset V_1 \cap V_2$ なので $V_1 \cap V_2 \in V(x)$.

(Viv): 任意の $V \in V(x)$ について $U \subset V$ となる $U \in V^*(x)$ が存在する. (V^*iii) によって、ある $W \in V^*(x)$ が存在して

$$\forall y \in W, \exists U_y \in \mathbf{V}^*(y)(U_y \subset U)$$

となる. 特に $W \in V(x)$ で W の任意の元 y に対して、明らかに $y \in U_y \subset U \subset V$. 定理 11(p162) によって V(x) を x の近傍系とする位相 $\mathfrak O$ が一意的に導入される.

1.8

集合 S において、 (V^*i) - (V^*ii) を満たす 2 組の $(V^*(x))_{x \in S}$ 、 $(W^*(x))_{x \in S}$ が与えられたとする。 そのとき、前間の意味でこれから定められる位相 Ω_1, Ω_2 について、 $\Omega_1 \subset \Omega_2$ が成り立つためには、次の条件 (*) が成り立つことが必要十分であることを示せ。

(*) 任意の $V \in V^*(x)$ に対して, $W \subset V$ となる $W \in W^*(x)$ が存在する.

【解】

 i_1, i_2 をそれぞれ $\mathfrak{O}_1, \mathfrak{O}_2$ における開核作用子とする.

 \Rightarrow (*): 任意の $V \in V^*(x)$ について, V^{i_1} は x を含む (S, \mathfrak{O}_1) の開集合. よって $V^{i_1} \in \mathfrak{O}_2$ なので, V^{i_1} は (S, \mathfrak{O}_2) の開集合. 1.5(a) により $W \subset V^{i_1}$ となる $W \in W^*(x)$ が存在し, $W \subset V$.

 \Leftarrow (*): $O \in \mathfrak{Q}_1$ について, $x \in O$ を任意にとる. このとき $O \in V^*(x)$ ゆえ, $W \subset V$ となる $W \in W^*(x)$ が存在する. よって V は (S,\mathfrak{Q}_2) における開集合でもあるので $O \in \mathfrak{Q}_2$.

1.9

位相空間 S から位相空間 S' への写像 f が S の点 x_0 で連続であるためには, $x_0 \in \overline{M}$ であるような S の任意の部分集合 M に対して $f(x_0) \in \overline{f(M)}$ が成り立つことが必要十分であることを示せ.

【解】

 $\Rightarrow : f(x_0) = x_0'$ とし, $V_{S'}(x_0')$ を x_0' の基本近傍系とする.

任意の $V' \in V_{S'}^*(x_0')$ について,f の連続性から $f^{-1}(V') \in V_S(x_0)$. よって 1.5(c) から $f^{-1}(V') \cap M \neq \emptyset$. この両辺に f の像を取ると $f(f^{-1}(V') \cap M) \neq \emptyset$ で $f(f^{-1}(V')) \cap f(M) \neq \emptyset$. よって $V' \cap f(M) \neq \emptyset$ なので $x_0' \in \overline{f(M)}$. したがって $f(x_0) \in \overline{f(M)}$.

 $\Leftarrow: V' \in V_{S'}^*(x_0')$ とし, $f^{-1}(V')$ が x_0 の近傍でないとする. つまり $x_0 \notin (f^{-1}(V'))^\circ$ ゆえ $x_0 \in (f^{-1}(V'))^{ic} = (f^{-1}(V'))^{ca} = \overline{S - f^{-1}(V')} = \overline{f^{-1}(S' - V')}$. いま仮定していること により,

$$f(x_0) \in \overline{f(f^{-1}(S'-V'))} \subset \overline{S'-V'}$$

よって $x_0' \in \overline{S'-V'} = V'^{ca} = V'^{ic}$ となり、これは V' が x_0 の近傍であることに反する.

1.10

M を位相空間 (S, \mathfrak{O}) の部分集合とするとき, \mathfrak{B} が \mathfrak{O} の基底 (または準基底) ならば,

$$\mathfrak{B}_M = \{ O \cap M \mid O \in \mathfrak{B} \}$$

は \mathfrak{O}_M の基底 (または準基底) となることを示せ.

【解】

 $\mathfrak B$ が基底のとき: $\mathfrak B_M\subset \mathfrak O_M$ は明らか. 任意の x と $x\in O'$ となる $O'\in \mathfrak O_M$ につい $\mathsf T_*O'=O\cap M(O\in \mathfrak O)$ と表せる. このときある $W\in \mathfrak B$ が存在して, $x\in W,W\subset O$ とな

る. このとき $x \in W \cap M, W \cap M \subset O \cap M$ なので、 \mathfrak{B}_M は \mathfrak{O}_M の基底.

 $\mathfrak B$ が準基底のとき: $\mathfrak B$ の有限個の元の共通部分 $\bigcap_{i\in I}W_i(\operatorname{card} I<\aleph_0,W_i\in\mathfrak B)$ 全体の集合を

 $\mathfrak{M}',\mathfrak{M}'$ の元の和集合 $\bigcup_{\lambda} B_{\lambda}(B_{\lambda} \in \mathfrak{M}')$ 全体の集合を \mathfrak{M} とする. このとき $\mathfrak{M} = \mathfrak{O}$ である.

ℜ_M の有限個の元の共通部分全体の集合は

$$\bigcap_{i \in I} (W_i \cap M) = \left(\bigcap_{i \in I} W_i\right) \cap M \text{ (card } I < \aleph_0, W_i \in \mathfrak{B})$$

の形の集合全体,すなわち $\{W\cap M\,|\,W\in\mathfrak{M}'\}$ となる.これを \mathfrak{M}'_M とする.さらに \mathfrak{M}'_M の元の和集合 $\bigcup_{\lambda\in A}B'_\lambda(B'_\lambda\in\mathfrak{M}'_M)$ 全体を \mathfrak{M}_M とすれば,

$$\bigcup_{\lambda\in\varLambda}B_{\lambda}'=\bigcup_{\lambda\in\varLambda}(W_{\lambda}\cap M)=\left(\bigcup_{\lambda\in\varLambda}W_{\lambda}\right)\cap M\ (W_{\lambda}\in\mathfrak{M}')$$

ゆえ $\mathfrak{M}_M = \{O \cap M \mid O \in \mathfrak{O}\} = \mathfrak{O}_M$ となり, \mathfrak{M}_M は \mathfrak{O}_M の準基底となる.

1.11

M を位相空間 S の部分空間とするとき,M の任意の部分集合 X の M における閉包は $\bar{X} \cap M(\bar{X}$ は X の S における閉包) となることを示せ.

【解】

S の閉集合系を $\mathfrak A$ とする.M に S の相対位相を入れてできる位相空間 M の閉集合系を $\mathfrak A_M$ とすれば $\mathfrak A_M=\{A\cap M\,|\, A\in\mathfrak A\}$. このとき X の M における閉包 X^{a_M} は

$$X^{a_M} = \bigcap \{ A \in \mathfrak{A}_M \mid X \subset A \} = \bigcap \{ A \cap M \mid A \in \mathfrak{A}, X \subset A \cap M \}$$

 $v \in X \subset M$ $x \circ v \in X \subset A \cap M \Leftrightarrow X \subset A$. Lot

$$\{A\cap M\,|\,A\in\mathfrak{A},X\subset A\cap M\}=\{A\cap M\,|\,A\in\mathfrak{A},X\subset A\}$$

以上により、 $X^{a_M} = \bigcap \{A\cap M | A\in \mathfrak{A}, X\subset A\} = \Big(\bigcap \{A | A\in \mathfrak{A}, X\subset A\}\Big)\cap M = \bar{X}\cap M.$

1.12

前間で $X \in \mathfrak{P}(M)$ の M における開核を $X^{i'}$,S における開核を X^i とすれば, $X^{i'} \supset X^i$ であることを示せ. また, 任意の $X \in \mathfrak{P}(M)$ に対して $X^{i'} = X^i$ が成り立つためには,M が S の開集合であることが必要十分であることを示せ.

【解】

 $X^i\cap M=X^i$ は位相空間 M における開集合. また $X^i\subset X$ なので、 $(X^i)^{i'}\subset X^{i'}$ であるが、 X^i は M における開集合ゆえ、 $(X^i)^{i'}=X^i$. したがって、 $X^i\subset X^{i'}$.

⇒: このとき特に $M^{i'}=M^i.M$ は位相空間 M における開集合ゆえ, $M^{i'}=M^i$ で, $M^i=M$. よって M は S の開集合.

 \Leftarrow : このとき $X^{i'} \subset X^i$ であることを示す. $X^{i'}$ は M の開集合なので, $X^{i'} = O \cap M$ を満たす

S の開集合 O が存在する. このとき $(X^{i'})^i=(O\cap M)^i=O^i\cap M^i=O\cap M=X^{i'}.X^{i'}\subset X$ なので $(X^{i'})^i\subset X^i$. したがって $X^{i'}\subset X^i$.

1.13

離散空間の任意の部分空間は離散空間, 密着空間の任意の部分空間は密着空間であることを示せ.

【解】

これはほとんど明らか.

1.14

M を位相空間 S の部分集合とする.M のすべての点が M の孤立点であるためには.S の部分空間として M が離散空間であることが必要十分であることを示せ.

【解】

⇒: $V^*(x)$ を x の S における基本近傍系とする.x が M の孤立点ならば, ある $U \in V^*(x)$ が 存在して $U \cap M = \{x\}$ となる.U は x の近傍なので $x \in U^i(i$ は S における開核作用子) で $U^i \cap M = \{x\}$ で $\{x\}$ は M の開集合. よって $\{x\}$ は位相空間 M の開集合ゆえ,M は離散空間.

 $\Leftarrow:M$ が離散空間ならば、 $\{x\}$ は M の開集合でゆえ $\{x\}^c=M-\{x\}$ は閉集合. よって任意の $x\in M$ について $x\notin M-\{x\}=\overline{M-\{x\}}$.

1.15

 \mathbf{R} の開区間 (a,b) は (相対位相に関して) \mathbf{R} と同相な位相空間であることを示せ

【解1】

まず 2 つの任意の開区間 (a,b),(c,d) (a < b,c < d) が同相であることを示す.これは (a,b) から (c,d) への写像 $x\mapsto \frac{d-c}{b-a}(x-a)+c$ が同相写像になる.したがって $(-1,1)\approx \mathbf{R}$ を示せばよい.これは例えば $x\mapsto \tan\frac{\pi x}{2}((-1,1)\to \mathbf{R})$ や $x\mapsto\frac{x}{1-x^2}((-1,1)\to \mathbf{R})$ が同相写像である.

【解 2】

(a,b) から \mathbf{R} への同相写像 f として $f(x) = \frac{x-c}{(x-a)(b-x)}(c=(a+b)/2)$ などがある.

 $(S_{\lambda})_{\lambda \in A}$ を位相空間の族とし、各 λ に対して M_{λ} を S_{λ} の部分集合とする。そのとき、直積空間 $S=\prod_{\lambda \in A} S_{\lambda}$ の部分集合 $M=\prod_{\lambda \in A} M_{\lambda}$ について

$$\bar{M} = \prod_{\lambda \in \varLambda} \bar{M}_{\lambda}$$

が成り立つことを示せ.

【解】

直積空間 S の任意の元 $x=(x_{\lambda})_{\lambda\in\Lambda}$ の基本近傍系として

$$\bigcap_{i=1}^{n} \operatorname{pr}_{\lambda_{i}}^{-1}(V_{\lambda_{i}}) = \left(\prod_{\lambda \in \Lambda - \{\lambda_{1}, \dots, \lambda_{n}\}} S_{\lambda}\right) \times V_{\lambda_{1}} \times \dots \times V_{\lambda_{n}}$$

$$(\lambda_1, \cdots, \lambda_n$$
は Λ の相異なる元, $V_{\lambda_i} \in V_{S_{\lambda_i}}(x_{\lambda_i}) \ (i=1,\cdots,n))$

の形の集合の全体をとる. これを $V^*(x)$ とする.

$$\forall V \in \mathbf{V}^*(x)(V \cap M \neq \varnothing)$$

を満たす任意の $x = (x_{\lambda})_{\lambda \in \Lambda} \in S$ について,

$$\forall \lambda \in \Lambda, \forall V_{\lambda} \in V_{S_{\lambda}}(x_{\lambda})(V_{\lambda} \cap M_{\lambda} \neq \varnothing)$$

となり,
$$x_{\lambda} \in \bar{M}_{\lambda}$$
. よって $\bar{M} \subset \prod_{\lambda \in \Lambda} \bar{M}_{\lambda}$.

また

$$\forall V_{\lambda} \in \mathbf{V}_{S_{\lambda}}(x_{\lambda})(V_{\lambda} \cap M_{\lambda} \neq \varnothing)$$

となる任意の $x_{\lambda} \in S_{\lambda}$ について, $x = (x_{\lambda})_{\lambda \in \Lambda} \in S$ とすれば

$$\forall V \in \mathbf{V}_S^*(x)(V \cap M \neq \varnothing)$$

よって
$$x \in \bar{M}$$
 なので, $\prod_{\lambda \in \Lambda} \bar{M}_{\lambda} \subset \bar{M}$.

前問において、 Λ が有限集合である場合には、

$$M^\circ = \prod_{\lambda \in \varLambda} M_\lambda^\circ$$

が成立することを示せ. Λ が無限集合の場合にはこのことは成り立つか.

【解】

 $\Lambda = \{1, \cdots, n\}$ とする. 直積空間 S の任意の元 $x = (x_{\lambda})_{\lambda \in \Lambda}$ の基本近傍系として

$$V_1 \times \cdots \times V_n \ (V_{\lambda} \in \mathbf{V}_{S_{\lambda}}(x_{\lambda}))$$

をとることができる.

任意の $x = (x_{\lambda})_{\lambda \in \Lambda} \in M^{\circ}$ について,

$$V_1 \times \cdots \times V_n \subset M$$

となる $V_{\lambda} \in V_{S_{\lambda}}(x_{\lambda})$ が存在する. このとき任意の $\lambda \in \Lambda$ について $V_{\lambda} \subset M_{\lambda}$ ゆえ $x_{\lambda} \in M_{\lambda}^{\circ}$. よって $x = (x_{\lambda})_{\lambda \in \Lambda} \in \prod M_{\lambda}^{\circ}$ なので, $M^{\circ} \subset \prod M_{\lambda}^{\circ}$.

よって $x=(x_{\lambda})_{\lambda\in A}\in\prod_{\lambda\in A}M_{\lambda}^{\circ}$ なので, $M^{\circ}\subset\prod_{\lambda\in A}M_{\lambda}^{\circ}$. 任意の $x=(x_{\lambda})_{\lambda\in A}\in\prod_{\lambda\in A}M_{\lambda}^{\circ}$ について, $x_{\lambda}\in M_{\lambda}^{\circ}$ なので

$$V_{\lambda} \subset M_{\lambda}$$

となる $V_{\lambda} \in V_{S_{\lambda}}(x_{\lambda})$ が存在する. よって

$$V_1 \times \cdots \times V_n \subset \prod_{\lambda \in \Lambda} M_{\lambda}$$

 $V_1 imes \cdots imes V_n$ は M の x における基本近傍系の元なので $x \in M^\circ$. 以上により $\prod_{\lambda \in A} M_\lambda^\circ \subset M^\circ$

$$\label{eq:def_def} \ensuremath{\wp} \, \breve{\raisebox{-0.1em}{$\check{\raisebox{-0.1em}{$\check{\raisebox{-0.1em}{\downarrow}}$}}}} M^\circ = \prod_{\lambda} M^\circ_\lambda.$$

 λ が無限集合の場合にはこの等式は成り立たない.

反例: $m{R}$ に通常のを入れ, $\prod_{n \in m{N}} m{R}$ に直積位相を定める. $n \in m{N}$ に対し $A_n = (0,1)$ とおけ

は、
$$A_n^\circ=(0,1)$$
 なので $\prod_{n\in \mathbf{N}}A_n^\circ=\prod_{n\in \mathbf{N}}(0,1).\prod_{n\in \mathbf{N}}\mathbf{R}$ における $x=(x_n)_{n\in \mathbf{N}}$ の基本近傍系は

$$\left(\prod_{k\in\mathbf{N}-\{\lambda_1,\cdots,\lambda_n\}}\mathbf{R}\right)\times V_{\lambda_1}\times\cdots\times V_{\lambda_n}$$

$$(\lambda_1,\cdots,\lambda_n$$
は Λ の相異なる元, $V_{\lambda_i}\in \emph{V}_{\emph{R}}(x_{\lambda_i})\;(i=1,\cdots,n))$

もし $\left(\prod_{n\in \mathbb{N}}A_n\right)^\circ \neq \emptyset$ ならば、ある $x\in\prod_{n\in \mathbb{N}}\mathbf{R}$ が存在して、ある n で $\mathbf{R}\subset A_n=(0,1)$ となるが、これは明らかに矛盾.