

What you will learn

- What is text classification?
- O How to create a model which O O O
 predicts the customer sentiment?
- The Naïve Bayes model.
- Key metrics for model evaluation
- Practical examples in Python.

But...what is "text classification" exactly?

Two main types of machine learning problems:

Regression problems in ML

 Regression - the task of predicting a continuous target variable.

Classification problems in ML

 Classification - the task of predicting a categorical target variable.

Common text classification problems

- Sentiment/emotion analysis;
- Customer service request classification;
- Detection of toxic behavior in the internet;
- Classification of helpful comments/reviews in forums;
- Fake news detection;
- Finding opinion manipulation trolls;
- Applications in the **medical domain for example** Sensors | Free Full-Text | Schizophrenia Detection | Using Machine Learning Approach from Social Media | Content | HTML (mdpi.com)

Sentiment analysis as a classification problem Sentiment Analysis Hybrid Lexicon-based approach approach (lexicons + ML)Machine Learning (ML) approach Unsupervised Supervised learning learning Transfer Deep Classical ML learning learning

Supervised vs. Unsupervised learning

Supervised learning

Predict the value of the target variable based on historical data. You have training (labeled) data!

Unsupervised learning

You don't have any previous knowledge about the target variable values (<u>no training</u> <u>data available</u>).

Sentiment classification – the use case (1)

- The dataset customer reviews for mobile applications (scraped from Google Play).
- The dataset contains the following information:
 - Text with the customer review.
 - Name of the mobile app.
 - Customer service rating (expressed in 5 ☆ scale).
 - Date
- Reference: Android Apps and User Feedback: A
 Dataset for Software Evolution and Quality
 Improvement (uzh.ch)

Sentiment classification – the use case (2)

Sentiment classification – the use case (3)

Historical data from Google Play

Create a sentiment classification model using ML

The CRISP-DM model

Problem/Business understanding (1)

- Build a sentiment classification model based on app reviews posted in Google Play.
- O Predict the customer sentiment in its polarity:

13

Problem/Business understanding (2)

- How to **build the target variable**?
- The answer: use distant supervision.

The negative category:

The positive category:

The negative category:

The positive category:

Possible problems with this approach:

"Great app....." 🜟

Data Understanding

 Use graphical analysis in order to get familiar with data – word clouds, box plot diagrams and various visualizations.

Data Preparation

- Text data cleaning and normalization are crucial in any text mining project!
- Some important techniques:
 - Special characters removal;
 - Case normalization;
 - Removal of URLs;
 - Removal of html tags;
 - Stemming/Lemmatization etc.

Data Modeling – the feature engineering stage (1)

- Classical ML models require feature engineering.
- Main source of explanatory variables the text.
- Usage of *n*-grams unigrams, bigrams etc.
- Be aware: increasing n might lead to model overfit!

Data Modeling – the feature engineering stage (2)

Other potential explanatory variables:

Emoticons -

- Punctuation "!!!!!", "?", "?!" etc.
- Word capitalization "COOL"
- Available metadata time, location etc.
- And other...

NB: some features should be extracted before text processing!

Data Modeling – text vectorization

- The vector space model
- Three main forms of text vectorization:
 - Binary vectorization
 - Count vectorization
 - TF-IDF vectorization

Vector Representation:

Data Modeling – feature selection

Feature selection...Why?

- Select explanatory variables which have more predictive power compared to others;
- Dimension reduction;
- Reduce noise and irrelevant information.

Different techniques:

- Filtering variables according to frequency.
- Mutual Information (example with "freeze").
- Chi-square test.
- And other.

Data Modeling – text classification algorithms

- Logistic regression read more in Gareth, J. et al. An introduction to statistical learning: with applications in R. Spinger, 2013. – Chapter 4
- Support vector classifier (SVC) read more in Gareth, J. et al. An introduction to statistical learning: with applications in R. Spinger, 2013. – Chapter 9
- Naïve Bayes Model Introduction to Information Retrieval (stanford.edu), Chapter 13

The Naïve Bayes model (1)

O Bayes' Theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{1}$$

- \bigcirc A, B two events.
- \bigcirc P(A|B) probability of A given B.
- $\bigcirc P(B|A)$ probability of B given A.
- \bigcirc P(A) and P(B) independent probabilities of A and $B, P(B) \neq 0$.
- $\bigcirc P(A)$ is **prior** probability, while P(A|B) is **posterior** probability.

The Naïve Bayes model (2)

$$P(y|d) = \frac{P(d|y)P(y)}{P(d)}$$
 (2)

d – a given client review, $d \in \{1, ..., M\}$).

y — the class of the target vairable (positive or negative sentiment), $y = \{0,1\}.$

- Naïve Bayes Classifier types:
 - Multinomial.
 - Bernoulli.
 - Gaussian.

The Naïve Bayes model (3)

- The "naïve" assumption of the Naïve Bayes model – all explanatory variables are independent.
- This assumption is rarely true especially when we work with text data!
- The independence assumption is defined as follows:

$$P(A \cap B) = P(A) \times P(B) \tag{3}$$

The Naïve Bayes model (4)

$$P(y|d) = P(w_1|y)P(w_2|y) \dots P(w_v|y)P(y)$$
 (4)

y — the class of the target vairable (positive or negative), $y = \{0,1\}$.

$$W = (w_1, w_2 \dots w_v)$$

V — number of explanatory variables (words, for example).

$$P(y|d) = P(y) \prod_{i=1}^{V} P(w_i|y)$$
 (5)

The Naïve Bayes model (5)

The Bernoulli Naïve Bayes model solves the following optimization task:

$$\hat{y} = \underset{y}{argmax} P(y) \prod_{i=1}^{V} P(w_i|y)$$
 (6)

Model validation.. Why?

- Model validation assess model's performance on unseen data.
- **Techniques**:
 - The validation set approach.
 - Leave-one-out cross-validation.
 - K-fold cross-validation.
- Check out Chapter 5 in Gareth, J. et al. An introduction to statistical learning: with applications in R. Spinger, 2013.

Model validation – the confusion matrix

Confusion matrix for 2-class target variable:

	Predicted Values			
		"Positive" category	"Negative" category	
Actual Values	"Positive" category	True positive (TP)	False Negative (FN)	Total truly positive (TTP)
	"Negative" category	False positive (FP)	True negative (TN)	Total Truly negative (TTN)

Model validation – evaluation metrics

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F1 score = 2 \frac{Precision \times Recall}{Precision + Recall}$$

If you want to learn more...

- Gareth, J. et al. An introduction to statistical learning: with applications in R.
 Spinger, 2013. – Chapter 4, 5, 9.
- Introduction to Information Retrieval (stanford.edu), Chapter 13

Thanks!

Any questions?

You can find me at: g.hristova@feb.uni-sofia.bg

