2024 秋季学期复变函数期中考试

命题人: 考试时间: 2024 年 11 月 20 日 10:00-12:00 整理人: Aut

1.(10分) 求下列极限

- (1) $\lim_{z \to 0} \frac{\sin z}{z}$; (2) $\lim_{z \to 0} \frac{\ln(z+1)}{z} (\ln 1 = 0)$.
- 2.(10 分) 试求函数 $f(z) = ze^{\overline{z}}$ 在何处可微和解析?

3.(30分) 计算下列积分:

- (1) $\int_{\alpha} \frac{dz}{1+z^2}$, 其中 γ 是从 0 到 1 且不过点 ±i 的简单连续曲线;
- (2) $\int_{|z|=2}^{\infty} \frac{z^2}{z^4-1} dz$;
- (3) $\int_C \frac{dz}{\sqrt{z}}$, 其中 C 是圆 |z|=1 沿逆时针方向, \sqrt{z} 是由 $\sqrt{1}=-1$ 确定的解析分支。

 $4.(10\ \mathcal{G})$ 设 f(z) 在区域 D 外和 D 的边界 Γ 上解析,且满足 $\lim_{z\to\infty}f(z)=\alpha$ 。对 $z\in\mathbb{C}\setminus\Gamma$, 求积分

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

 $5.(20\,\%)$ 设 $f(z)=\frac{1}{z^2-5z+6}$,求

- (1) f(z) 在 z=0 处的 Taylor 展式及其收敛半径;
- (2) f(z) 在 2 < |z| < 3 和 |z| > 3 的 Laurent 展式。

6.(15分) 指出下列函数的孤立奇点和类型

- (1) $\frac{z^2 1}{z(z^2 + 2)}$; (2) $\frac{e^{\frac{1}{z-1}}}{e^z 1}$ (3) $\cos \frac{1}{1 z}$.

7.(5 分) 函数 $f(z) = \sin \frac{1}{1-z}$ 的零点 $1 - \frac{1}{n\pi}$ 有聚点 1,但 f(z) 不恒为 0,这是否与解析函数 的唯一性矛盾?请说明理由。