Gráficas Flip

Geometría Computacional Ailyn Rebollar Pérez

Preguntas sobre la gráfica flip

¿Qué serán los nodos de la gráfica flip?

- ¿Cómo le haremos para conectar dos nodos?
- ¿Será siempre conexa?

Definiciones

Triangulación

Recordemos que...

No siempre las triangulaciones son únicas.

Una triangulación a lo más puede tener n-2 triángulos.

Una triangulación a lo más puede tener n-3 diagonales.

Definición de la gráfica flip

Para un conjunto de puntos S, la **gráfica flip** de S, es una gráfica donde sus nodos son conjuntos de triangulaciones de S.

Dos nodos T_1 y T_2 de la gráfica flip están conectados por un **arco** si una diagonal de T_1 puede ser intercambiada(flip) para obtener a T_2 .

Observación

Los flips (intercambios/giros de diagonales) no son posibles para cuadriláteros no convexos.

G y G₁ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

G₁ y G₂ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

G₂ y G₃ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

G₁ y G₄ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

G₄ y G₅ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

G y G₆ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

G₆ y G₇ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

G₇ y G₈ difieren en una diagonal, por lo que serán adyacentes en la gráfica flip

¿La gráfica flip es conexa?

Sí y fue demostrado por Charles Lawson en 1971

Probando que la gráfica flip es conexa

Teorema: La gráfica flip de cualquier conjunto S en el plano es conexa.

La idea es ver que de una triangulación de S puede transformarse en otra por medio de una secuencia de flips.

Probando que la gráfica flip es conexa

Sea T₊ la triangulación obtenida de S (maximal).

Ésta triangulación se obtiene de un algoritmo incremental.

Demostración por inducción sobre el número de nodos

Caso Base n = 3:

Hipótesis de Inducción:

Supongamos para un conjunto de n puntos en el plano que su gráfica flip es conexa, es decir, para cualquier triangulación de S se puede convertir/llegar a la T_{*} de S por una secuencia de flips.

Caso Inductivo para n+1:

La **estrella** de un vértice v de una triangulación es la unión de triángulos incidentes de v.

¿Cómo es el algoritmo incremental para un conjunto de puntos?

- Ordenamos los puntos de acuerdo a su coordenada x y si tienen la misma coordenada x, pasamos a hacerlo con y.
- Formamos un triángulo con los 3 primeros puntos, consideremos a p_k como el último punto tomado.
- Conectamos a p_k con todos los puntos anteriores {p₁, p₂, ..., p_{k-1}} visibles para él .
 - Repetimos el proceso para los siguientes puntos de uno en uno.

¿Cómo se relaciona el algoritmo incremental con la demostración?

Aplicamos el algoritmo incremental para cambiar de triangulación.

: Es conexa

¿Podemos saber cuál es la distancia del camino más corto entre dos nodos?

No podemos saber la longitud exacta pero podemos saber cuál sería su longitud a lo más.

¿Podemos saber cuál es la distancia del camino más corto entre dos nodos?

Y lo sabemos gracias un teorema de Sabine Hanke, Thomas Ottmann y Sven Schurierer en 1996.

¿Podemos saber cuál es la distancia del camino más corto entre dos nodos?

Teorema: Sea S un conjunto de puntos en posición general y sean T₁ y T₂ dos triangulaciones de S. Sea T₁₂ el diagrama obtenido de sobreponer T₁ y T₂ entonces la distancia entre T₁ y T₂ en la gráfica flip es a lo más el número de cruces entre las aristas en T₁₂.

Distancia del camino más corto entre dos nodos

Distancia del camino más corto entre dos nodos

El diámetro en la gráfica flip

El diámetro de una gráfica es la longitud(número de arcos) del camino más largo entre 2 nodos.

El diámetro de una gráfica flip podemos interpretarlo como el máximo número de flips que hay para pasar de una triangulación a otra.

El diámetro en la gráfica flip

Corolario: Para un conjunto de puntos S en el plano, el diámetro de su gráfica flip es a lo más (n-2)(n-3)

Aplicaciones

Enumerar:

1. Enumerar los diferentes tipos de gráficas planas dado un tamaño

Optimizar:

1. Para generar una gráfica plana que sea óptima dado un criterio. (Ej. maximizar o minimizar los ángulos de los triángulos)

Bibliografía:

- 1. Devadoss, Satyan L., O'Rourke ,Joseph. Discrete and Computational Geometry, Princeton University Press, 2011, p.66.
- 2. https://www.journals.elsevier.com/computational-geometry