

APRESENTADO POR BRUNO CABRAL

ORIENTADOR: EDUARDO SANTANA DE ALMEIDA CO-ORIENTADOR: TASSIO VALE

MOTIVAÇÃO LINHA DE PRODUTOS DE SOFTWARE

- Software está tornando cada vez mais complexo
- Reuso começa a ser obrigatório
- Customização em massa bens e serviços para atender às necessidades individuais do cliente – e que devem ser feitas com eficiência de produção em massa

EXPERIÊNCIA DA INDÚSTRIA

Muitas organizações produzem famílias de sistemas similares, diferenciados pelo conjunto de recursos. Um exemplo recorrente é a linha de produtos de carros.

EMPRESA

General Motors

SITUAÇÃO

- A GM é a maior empresa de automóveis do mundo.
- Um veículos da GM é composto por mais de 300 subsistemas como freios, iluminação, etc...
- O Chevrolet Volt possui mais de 10 milhões de linhas de código, mais que um Boeing 787.
- A GM produz mais de 60 modelos de automóveis, sem contar a legislação e preferencias cultuais dos 150 países que atua.

PROCESSO NA GM

LINHA DO TEMPO DO REUSO

DEFINIÇÃO LINHA DE PRODUTOS DE SOFTWARE

Linha de produtos de software é um **conjunto** de sistemas com uso intensivo de software que compartilham um conjunto comum de características gerenciáveis para satisfazer necessidades específicas de um particular segmento de mercado, ou missão, e que são desenvolvidos a partir de um conjunto de core assets de uma maneira prescrita.

BENEFÍCIOS

- Redução dos Custos de Desenvolvimento
- Aumento da Qualidade
- Redução do time-to-market
- Ampliação do portfolio

LINHA DE PRODUTOS DE SOFTWARE

Tiram vantagens econômicas sobre partes comuns (commonality) Ligam (bound) a variabilidade

ATIVIDADES ESSENCIAIS

INTERATIVAS

As atividades são interativas e suas saídas e entradas influenciam umas as outras.

FEEDBACK CONTINUO

Caso os artefatos desenvolvidos em uma etapa anterior não estejam adequados, precisam ser refeitos. O feedback continuo é extremamente importante para manter a qualidade.

GERENCIAMENTO

É necessário um gerenciamento contínuo e rigoroso durante as etapas. Isso é determinante para o sucesso da LPS. Inclui fatores organizacionais e técnicos.

DESENVOLVIMENTO DOS CORE ASSETS

Restrições do produto Estilos, padrões e Frameworks Restrições de Produção Estratégia de Produção Invetário de Assets pré-existentes

DESCRIÇÃO

É uma atividade que resulta nos assets comuns que em conjunto compõem a plataforma da linha de produtos.

Composta por diversos subprocessos

DESENVOLVIMENTO DO PRODUTO

DESCRIÇÃO

TEMPO X DINHEIRO

TEMPO X DINHEIRO 2

EVOLUÇÃO DO PROCESSO NA GM

CONHEÇAM O SPLICE

AMBIENTE CONSTRUÇÃO INTEGRADO DE LINHA DE PRODUTO DE SOFTWARE (SPLICE)

DESCRIÇÃO

É um sistema de gerenciamento de ciclo de vida de aplicativos (ALM) feito para apoiar e integrar as principais atividades de LPS, como, gerenciamento de requisitos, arquitetura, codificação, testes, controle e gerenciamento de versões, proporcionando a automação de atividades e rastreabilidade em todo o processo.

FRAMEWORK ALM USADO

O METAMODELO LEVE

- Usamos uma abordagem baseada em modelos para representar todas as informações, atividades e conexões entre os artefatos.
- Nenhum metamodelo proposto anteriormente integrava métodos ágeis.
- Foi proposto nesse trabalho o "Metamodelo leve de LPS", que foi implementado na **SPLICE**

A ARQUITETURA

- Composto de 3 módulos
 - Maculelê
 - Tonho
 - Trac
- Todos escritos em Python. E com exceção do "Trac", todos utilizam o framework Django.
- "Trac" foi extendido para acomodar nossas mudanças através de plug-ins.
- Meta-modelo implementado usando ORM e geradores de aplicação.

TRANSFORMAÇÃO DO MODELO

REQUSITOS NÃO-FUNCIONAIS

 Permite que engenheiros e stakeholders colaborem e acessem o sistema de qualquer localização.

METAMODELO FLEXÍVEL

Deve permitir que se altere facilmente o metamodelo

EXTENSIBILIDADE

Deve permitir que o adicione funcionalidades através de uma interface publica.

TRANSPARÊNCIA

O usuário deve visualizar o conjunto de ferramentas integradas como uma só.

USABILIDADE

Deve oferecer uma experiência para o usuário consistente.

SEGURANÇA

Por ser um sistema publicamente acessível, deve possuir um controle de acesso rigoroso e adotar medidas para preservar a confidencialidade.

RESPONSABILIDADE

Todas as ações devem ser registradas para atribuição de responsabilidade.

REQUISITO: DOCUMENTAÇÃO COLABORATIVA

DESCRIÇÃO

Foi integrado um sistema de documentação colaborativa "Wiki". Wiki possui uma linguagem simples, e recentemente tem ganhado popularidade para publicação de conteúdo.

Bom para gestão de conhecimento.

REQUISITO: PLANEJAMENTO ÁGIL

DESCRIÇÃO

Existe um "trend" na indústria para adoção de praticas ágeis.

Alguma das características inclui:

- Participação do consumidor
- Equipe auto organizáveis
- Ênfase na codificação
- Burocracia mínima
- Entrega incremental
- Desenvolvimento baseado em testes

REQUISITO: GERENCIAMENTO UNIFICADO DE USUÁRIOS

DESCRIÇÃO

O SPLICE é um ambiente integrado que inclui uma série de ferramentas externas.

Por conveniência, o usuário deve controlar as contas de usuários e permissões por uma interface única.

REQUISITO: SISTEMA DE TICKETS

DESCRIÇÃO

Gerenciamento de Tickets em muitos projetos é uma atividade essencial para correção e acompanhamento de bugs, e implementação de novas atividades.

Temos um sistema completo de tickets.

REQUISITO: GERÊNCIA DE CONFIGURAÇÃO

DESCRIÇÃO

Para gerenciar a evolução, todos os artefatos precisam ter um mecanismo de controle de mudança. Precisa também prover suporte e controlar os principais sistemas de controle de versão do mercado (SVN; GIT)

REQUISITO: RASTREABILIDADE

DESCRIÇÃO

A ferramenta deve identificar e manter todas as relações entre os artefatos gerenciados.

A rastreabilidade é importante não apenas para a geração de relatórios, mas também para analise do impacto de mudanças, e visualização durante o desenvolvimento.

REQUISITO: GERAÇÃO DE RELATÓRIOS

DESCRIÇÃO

Deve utilizar os artefatos e as informações de rastreabilidade para geração de relatórios.

Os relatórios gerados podem ser diretamente consumidos pelos Stakeholders.

ESTUDO DE CASO: RESCUEME

Migração de um processo manual para o SPLICE.

CONTEXTO

Durante os meses de junho e novembro de 2013, foi realizado um estudo de caso no "Instituto Nacional de Engenharia de Software (INES)," um laboratório de pesquisa de Engenharia de Software, composto por 11 candidatos a Ph.D

PRODUTO

O laboratório desenvolveu um LPS chamado RescueMe, que foi construído seguindo um processo LPS ágil. O RescueMe é uma linha de produtos desenvolvidos em Objective-C para dispositivos iOS. RescueMe é projetado para ajudar os seus usuários em situações perigosas.

PROCESSO ANTES DA SPLICE

COLETA DE DADOS

COMO FERRAMENTA DE COLETA DE DADOS, UTILIZAMOS QUESTIONÁRIOS QUE ADMINISTRAMOS PARA EXPERTS.

NOME	OCUPAÇÃO	EXPERIÊNCIA COM E.S	EXPERIÊNCIA COM L.P.S
Raphael Oliveira	Estudante de Doutorado	10 anos	6 anos
Tássio Vale	Estudante de Doutorado	6 anos	4 anos com experiência na indústria

O questionário foi composto de 3 questões pessoais, oito questões fechadas com campo para justificativa, e três questões abertas

PERGUNTAS

Da perspectiva do stakeholder, como a rastreabilidade é resolvida pela SPLICE ? Quão positivamente a SPLICE impactou o ciclo de vida ? Quão negativamente a SPLICE impactou o ciclo de vida ?

RESULTADOS

DIFICULDADES USO Da Ferramenta DIFICULDADES GERAÇÃO DE ARTEFATOS PROBLEMAS Usabilidade

AJUDOU NA Rastreabilidade USARIAM A Ferramenta

SUGESTÕES

- Dificuldade de modificar o metamodelo
- Melhor análise de impacto
- Integração com o código fonte para realizar a derivação da linha de produto

MUITO OBRIGADO

REFERÊNCIAS

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons.

Gears, Biglevel Software, Inc

The noun Project. http://thenounproject.com/

Software Product Lines Essentials - Linda

Pohl, K., Bckle, G., van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles

Ingrid Oliveira de Nunes, PUC-Rio, Departamento de Informática, LES

Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston, MA, USA (2002).

Software Product Lines. http://www.sei.cmu.edu/productlines/