Spatial pattern formation in infectious diseases on the verge of elimination

Paige Miller & John M Drake Graduate Student Symposium January 28, 2017

Early warning signals for critical transitions

Predictions:

Spatial signals will be more reliable than temporal signals given equal amounts of data points.

Spatial signals will require fewer data points to make equally accurate predictions.

Experimental design

Simulations

Transmission environments

Transition to elimination depends on rate of transmission

Calculating R_e in spatial SIR model

Analysis of leading indicators

Temporal

Cases

Patterns in cases over time

200 weeks of data (100 null, 100 test)

Spatial

Coeff. of Variation

Periodic spatial sampling

Patterns in cases in space over fewer time points

Spatial signals are more reliable than temporal signals given the same number of data points

Less spatial data is necessary to document progress towards elimination Constant

Skewness

Conclusions

Spatial signals are more reliable than temporal signals given equal amounts of data points.

True

Spatial signals require fewer data points to make equally accurate predictions.

True

Why does this matter?

Designing better long term surveillance projects

Early warning signals for epidemic transitions

Acknowledgements

People

- Eamon O'Dea
- Drew Kramer
- Dominic Gray
- Deeran Patel
- Tom Pulliam
- Drake Lab

Resources

Questions?