MACHINE LEARNING

1211635

MAHASARAKHAM U N I V E R S I T Y

K-NEAREST NEIGHBOR (KNN)

Supervised learning algorithm

Olarik Surinta, PhD. Lecturer

What is KNN

- A very simple classification and regression algorithm
 - In case of classification, new data points get classified in a particular class
 - In case of regression, new data gets labeled based on the average value of k nearest neighbor
- It is a lazy learner because it doesn't learn much from the training data
- It is a supervised learning algorithm
- Default method is Euclidean distance

- KNN is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure (e.g., distance functions).
- KNN has been used in statistical estimation and pattern recognition already in the beginning of 1971's as a non-parametric technique.

algorithm

- A case is classified by a majority vote of its neighbors, with the case being assigned to the class most common amongst its K nearest neighbors measured by a distance function.
- If K=1, then the case is simply assigned to the class of its nearest neighbor.

MAHASARAKHAM U N I V E R S I T Y

Distance functions

Distance functions

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

$$\sum_{i=1}^{k} |x_i - y_i|$$

$$\left(\sum_{i=1}^{k} \left(\left|x_{i}-y_{i}\right|\right)^{q}\right)^{1/q}$$

MAHASARAKHAM

MAHASARAKHAM

Cr. https://depiesml.wordpress.com/2015/09/03/learn-by-implementation-k-nearest-neighbor/

Finding a distance between new input data and all training data

Select number of neighborhood, such as K=1, 3, 5, etc.

KNN, K=7

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ <table-cell-columns></table-cell-columns>	8000
		Ţ	
48	\$142,000	ž.	

 $D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

MAHASARAKHAM U N I V E R S I T Y What is the output If K=1, K=3, and K=5?

1

References

- http://www.saedsayad.com/k_nearest _neighbors.htm
- https://depiesml.wordpress.com/2015/ 09/03/learn-by-implementation-k-near est-neighbor/

