Problem Set 2

D. Zack Garza

Wednesday 16th September, 2020

1 Exercises

Exercise 1.1 (Gathmann 2.17).

Find the irreducible components of

$$X = V(x - yz, xz - y^2) \subset \mathbb{A}^3/\mathbb{C}.$$

Solution:

Since x = yz for all points in X, we have

$$X = V(x - yz, yz^{2} - y^{2})$$

$$= V(x - yz, y(z^{2} - y))$$

$$= V(x - yz, y) \cup V(x - yz, z^{2} - y)$$

$$\coloneqq X_{1} \cup X_{2}.$$

Claim: These two subvarieties are irreducible.

It suffices to show that the $A(X_i)$ are integral domains. We have

$$A(X_1) := \mathbb{C}[x, y, z] / \langle x - yz, y \rangle \cong \mathbb{C}[y, z] / \langle y \rangle \cong \mathbb{C}[z],$$

which is an integral domain since \mathbb{C} is a field and thus an integral domain, and

$$A(X_2) := \mathbb{C}[x, y, z] / \langle x - yz, z^2 - y \rangle \cong \mathbb{C}[y, z] / \langle z^2 - y \rangle \cong \mathbb{C}[y],$$

which is an integral domain for the same reason.

Exercise 1.2 (Gathmann 2.18).

Let $X \subset \mathbb{A}^n$ be an arbitrary subset and show that

$$V(I(X)) = \overline{X}.$$

Solution:

 $\overline{X} \subseteq V(I(X))$:

We have $X \subseteq V(I(X))$ and since V(J) is closed in the Zariski topology for any ideal $J \leq k[x_1, \dots, x_n]$ by definition, V(I(X)) is closed. Thus

$$X \subseteq V(I(X))$$
 and $V(I(X))$ closed $\implies \overline{X} \subseteq V(I(X))$,

since \overline{X} is the intersection of all closed sets containing X.

 $V(I(X)) \subseteq \overline{X}$:

Noting that $V(\cdot)$, $I(\cdot)$ are individually order-reversing, we find that $V(I(\cdot))$ is order-preserving and thus

$$X \subseteq \overline{X} \implies V(I(X)) \subseteq V(I(\overline{X})) = \overline{X},$$

where in the last equality we've used part (i) of the Nullstellensatz: if X is an affine variety, then V(I(X)) = X. This applies here because \overline{X} is always closed, and the closed sets in the Zariski topology are precisely the affine varieties.

Exercise 1.3 (Gathmann 2.21).

Let $\{U_i\}_{i\in I} \rightrightarrows X$ be an open cover of a topological space with $U_i \cap U_j \neq \emptyset$ for every i, j.

- a. Show that if U_i is connected for every i then X is connected.
- b. Show that if U_i is irreducible for every i then X is irreducible.

Solution (a):

Suppose toward a contradiction that $X = X_1 \coprod X_2$ with X_i proper, disjoint, and open. Since $\{U_i\} \rightrightarrows X$, for each $j \in I$ this would force one of $U_j \subseteq X_1$ or $U_j \subseteq X_2$, since otherwise $U_j \cap X_1 \cap X_2$ would be nonempty.

So without loss of generality (relabeling if necessary), assume $U_j \in X_1$ for some fixed j. But then for every $i \neq j$, we have $U_i \cap U_j$ nonempty by assumption, and so in fact $U_i \subseteq X_1$ for every $i \in I$. But then $\bigcup_{i \in I} U_i \subseteq X_1$, and since $\{U_i\}$ was a cover, this forces $X \subseteq X_1$ and thus $X_2 = \emptyset$.

Solution(b):

Claim: X is irreducible \iff any two open subsets intersect.

This follows because otherwise, if $U, V \subset X$ are open and disjoint then $X \setminus U, X \setminus V$ are proper and closed. But then we can write $X = (X \setminus U) \coprod (X \setminus V)$ as a union of proper closed subsets, forcing X to not be irreducible.

So it suffices to show that if $U, V \subset X$ then $U \cap V$ is nonempty. Since $\{U_i\} \rightrightarrows X$, we can find a pair i, j such that there is at least one point in $U \cap U_i$ and one point in $V \cap U_j$.

But by assumption $U_i \cap U_j$ is nonempty, so both $U \cap U_i$ and $U_j \cap U_i$ are open nonempty subsets of U_i . Since U_i was assumed irreducible, they must intersect, so there exists a point

$$x_0 \in (U \cap U_i) \cap (U_i \cap U_i) = U \cap (U_i \cap U_j) := \tilde{U}.$$

We can now similarly note that $\tilde{U} \cap V$ and $U_j \cap V$ are nonempty open subsets of V, and thus intersect. So there is a point

$$\tilde{x}_0 \in (\tilde{U} \cap V) \cap (U_j \cap V) = \tilde{U} \cap V = U \cap V \cap (U_i \cap U_j),$$

and in particular $\tilde{x}_0 \in U \cap V$ as desired.

Exercise 1.4 (Gathmann 2.22).

Let $f: X \to Y$ be a continuous map of topological spaces.

- a. Show that if X is connected then f(X) is connected.
- b. Show that if X is irreducible then f(X) is irreducible.

Solution (a):

Toward a contradiction, if $f(X) = Y_1 \coprod Y_2$ with Y_1, Y_2 nonempty and open in Y, then

$$f^{-1}(f(X)) \subseteq X$$

on one hand, and

$$f^{-1}(f(X)) = f^{-1}(Y_1) \coprod f^{-1}(Y_2)$$

on the other. If f is continuous, the preimages $f^{-1}(Y_i)$ are open (and nonempty), so X contains a disconnected subset. However, every subset of a connected set must be connected, so this contradicts the connectedness of X.

Solution(b):

Suppose $f(X) = Y_1 \cup Y_2$ with Y_i proper closed subsets of Y. Then $f^{-1}(Y_1) \cup f^{-1}(Y^2) = (f^{-1} \circ f)(X) \subseteq X$ are closed in X, since f is continuous. Since X is irreducible, without loss of generality (by relabeling), this forces $X_1 = \emptyset$. But then $f(X_1) = \emptyset$, forcing $f(X) = Y_2$.

Definition 1.0.1 (Ideal Quotient).

For two ideals $J_1, J_2 \leq R$, the *ideal quotient* is defined by

$$J_1:J_2\coloneqq\left\{f\in R\mid fJ_2\subset J_1\right\}.$$

Exercise 1.5 (Gathmann 2.23).

Let X be an affine variety.

a. Show that if $Y_1, Y_2 \subset X$ are subvarieties then

$$I(\overline{Y_1 \setminus Y_2}) = I(Y_1) : I(Y_2).$$

b. If $J_1, J_2 \leq A(X)$ are radical, then

$$\overline{V(J_1) \setminus V(J_2)} = V(J_1 : J_2).$$

Solution:

?

Exercise 1.6 (Gathmann 2.24).

Let $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ be irreducible affine varieties, and show that $X \times Y \subset \mathbb{A}^{n+m}$ is irreducible.

Solution:

That $X \times Y$ is again an affine variety follows from writing X = V(I), Y = V(J), then $X \times Y = V(I+J)$ where $I+J \subseteq k[x_1, \dots, x_n, y_1, \dots, y_m]$.

Let $X \times Y = U \times V$ with U, V proper and closed, and let π_X, π_Y be the projections onto the factors.

Claim: For each $x \in X$, $\pi^{-1}(x) \cong Y$ is contained in only one of U or V.

Note that if this is true, we can write $X = G_U \cup G_V$ where $G_U := \{x \in X \mid \pi^{-1}(x) \subseteq U\}$