K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Syllabus Honour Programme in Artificial Intelligence

Offered by Department of Information Technology

From Academic Year 2021-22 Revision 1

(Approved in Academic Council meeting dated

K J Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Honour Degree Programme in Artificial Intelligence

Offered by Department of Information Technology

Abstract:

Artificial intelligence (AI) is part and parcel of daily routine. Now a days AI is used for face recognition, robots, Alexa, driver less cars, recommendations on Netflix and Amazon. It powers Google's search engine, the diagnostic aiding tools for healthcare, predictive models and enables Facebook for target advertising to autonomous weapons that can kill without human intervention.

This honours program develops familiarity with programming for AI applications with a solid foundation by covering the basic Machine and Deep learning terminologies. The program gives insight to Deep Network architecture design, regularization and optimization. Further this stretches an opportunity to explore the convolutional networks and develop comprehension regarding Recurrent and Recursive Networks. This also spreads AI ethics for good AI with vision of the good life for the society. It will cover fundamental such as sounds, words, sentences, meanings, and conversations in context with Natural Language Processing (NLP).

Objectives:

The offered program aims to

- Build the techniques and applications of Artificial Intelligence Design, implement, and evaluate a computing-based solution to meet requirement of real life problems.
- Provide understanding of data analytics and covering classical approach of Machine learning from supervised learning to Neural Networks.
- Inculcate AI ethical issues including privacy concerns, responsibility, delegation of decisionmaking and ethical practices.
- Provide an introduction to the field of computational linguistics, aka Natural LanguageProcessing.

Learning Outcomes:

At the successful completion of this Honor program, students will able to

- 1. Realize problems with uncertainty, formalize the problem and find its solutions.
- 2. Comprehend data visualization, apply concepts of various types of learnings, Deep neuralnetworks and its applications.
- 3. Understand the moral status of AI and synthesize the ethical issues raised by AI application.
- 4. Interpret words forms and semantics of NLP, apply Deep learning algorithms for NLP.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Eligibility Criteria:

Student who has earned all credits of First Year of Engineering in department of Information Technology

Assessment Methods: Tests, Mini projects, Laboratory, Presentation/ Video making, Quiz, study of research papers etc.

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Semester of Major Degree
116h66C301	Fundamental ofData Science	3 -0 - 0	03	3-0-0	3	III
116h66L301	Fundamental ofData Science Laboratory	0-2-0	02	0-1-0	1	III
116h66C401	Introduction to Artificial Intelligence	3-0-0	03	3-0-0	3	IV
116h66L401	Introduction to Artificial Intelligence Laboratory	0-2-0	02	0-1-0	1	IV
116h66C501	MachineLearning	3-0-0	03	3-0-0	3	V
116h66L501	Machine Learning Laboratory	0-2-0	02	0 - 1 - 0	1	V
116h66C601	Deep Learning	3-0-0	03	3-0-0	3	VI
116h66L601	Deep Learning Laboratory	0 - 2 - 0	02	0 - 1 - 0	1	VI
116h66C701	Natural Language Processing	3-0-0	03	3-0-0	3	VII
116h66L701	Natural Language Processing Laboratory	0-2-0	02	0-1-0	1	VII
	Total	15 - 10 - 00	25	15 - 05 - 00	20	

Examination Scheme

Course Code	Course Name	Examinati	on Schen	ne & Mar	·ks	_			_
		CA		ESE	TW	0	P	P&O	Total
		ISE	IA	-					
116h66C301	Fundamental of Data Science	30	20	50					100
116h66L301	Fundamental of Data Science Laboratory				25	25			50
116h66C401	Introduction to Artificial Intelligence	30	20	50					100
116h66L401	Introduction to Artificial Intelligence Laboratory				25	25			50
116h66C501	Machine Learning	30	20	50					100
116h66L501	Machine Learning Laboratory				25	25			50
116h66C601	Deep Learning	30	20	50					100
116h66L601	Deep Learning Laboratory				25	25			50
116h66C701	Natural Language Processing	30	20	50					100
116h66L701	Natural Language Processing Laboratory				25	25			50
	Total	150	100	200	125	100			750

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code 116h66C301	Course Title Fundamentals of Data Science								
1100000301		Fundamentais of Data Science							
	ТН			P	P		TUT	Total	
Teaching Scheme(Hrs.)	03							03	
Credits Assigned		03					03		
				Marks					
Examination	CA		ECE	TW	0	P	P&O	Total	
Scheme	ISE	IA	ESE		U			1 Otal	
	30	20	50					100	

Course prerequisites: Basic concepts of databases

Course Objectives: This course includes the processes essential to perform initial investigations on data so as to discover patterns, to spot anomalies, to test hypotheses and to check assumptions with the help of summary statistics and visual representations. Also, it covers the techniques to optimize the parameters required in classification approach. It attempts to understand the data first and then efforts can be applied to extract as many insights from it using different visualization tools.

At the end of successful completion of the course the student will be able to

CO1: Summarize the data

CO2: Comprehend descriptive and proximity measures of data

CO3: Apply the transformations required on data to make it suitable for Mining

CO4:Comprehend various data visualization techniques and its

Module No.	Unit No.	Details	Hrs	COs				
1	Introd	uction to data	6	CO1				
	1.1	Understanding data, Types of attributes, Nominal, ordinal,						
		interval, ratio, Discrete and continuous attributes						
	1.2	Types of datasets: Record data, Graph-based data, Sequence data, time series data, spatial data, General						
		characteristics of datasets						
	1.3	Data quality problems, issues related to applications, • Data transformations to make data suitable for data mining, Exploratory Data Applysis yes classical data applytics						
	1.4	Exploratory Data Analysis vs. classical data analytics Categorization of Data Analytics techniques, Supervised						
	Unsupervised, semi-supervised, Application of Data science in real world: Medical andhealthcare, Agriculture, disaster							
	management etc.							
2.	Explori	ng data using descriptive measures	12	CO2				
	2.1	Frequency distribution: simple, grouped, cumulative and						
		relative frequency distribution, graphs for frequency						
		distribution (Histogram, frequency polygon, frequency						
	curve, cumulative frequency curve) 2.2 Measures of central tendency: Mean (Arithmetic,							
	weighted and geometric mean), , median, mode, mid							
		range						
		 Predicting missing data using regression modeling, 						
	2.2	interpolation						
	2.3	Measures of dispersion: range, inter-quartile range, variance,						
		standard deviation, root mean square deviation, Coefficients						
		of dispersion based upon range, quartile deviation, mean deviation, standard deviation, ANOVA.						
		Boxplot, Quantile—Quantile Plot, Scatter Plots/Pair-plot						
		and its limitations						
		DataCorrelation, Covariance, Bregman divergence.						
		Measures of Skewness: Pearson's coefficient, Bowley's						
		coefficient, coefficient based upon moments						
3.	Data si	milarity and dissimilarity	9	CO2				
	3.1	Similarity measures for numeric data, Minkowski						
		distance, Euclidean distance, Manhattan distance,						
		supremum distance, Mahalanobis distance,						
	Bhattacharyya distance							
	3.2	Similarity measures for symmetric and asymmetric						
		binary data, simple matching coefficient, Jaccard coefficient, hamming distance						
	2.2							
	3.3	Similarity measures for textual data, edit distance, cosine						
		distance, Jaro distance, n-Gram distance, longest						

		common subsequence, Dissimilarity between attributes of mixed type		
4.	Data	a normalization, discretization and reduction techniques	10	CO3
	4.1	Data Normalization, Min-Max normalization, z-score normalization, Decimal scaling		
	4.2	Data discretization, Binning, Histogram, discretization using data clustering techniques, discretization using classification techniques		
	4.3	Data reduction, filtering techniques, sampling techniques, attribute subset selection techniques, detecting outliers		
	4.4	Parameter Optimization techniques : Linear optimization and nonlinear optimization		
5	• Data	Visualization and interpretation	8	CO4
	5.1	Pixel Oriented visualization techniques, Geometric projection visualization techniques, Icon based visualization techniques, Hierarchical visualization techniques		
	5.2	Visualizing complex data and Relations, Scoreboard Vs Dashboard, Graph Vs Chart		
	5.3	Data Visualization tools: Weka, Rapid Miner		
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	S.C. Gupta , V. K. Kapoor	Fundamentals of mathematical statistics	Sultan Chand and Sons	2014
2.	P. N. Tan, M. Steinbach, Vipin Kumar,	Introduction to Data Mining	Pearson Education,	2014
3.	Han, Kamber	Data Mining Concepts and Techniques	Morgan Kaufmann	3 nd Edition,2012
4.	C. B. Gupta, Vijay Gupta	An Introduction to Statistical Methods	Sultan Chand and Sons	23rd Edition, 2004
5.	Colin Ware	Information Visualization: Perception for Design	MK publication	May 2020, 4 th Edition
6.	Michael Berry and Gordon Linoff	Data Mining Techniques	Wiley Publications	2nd Edition , 2011

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116h66L301	Fundamental of Data Science Laboratory								
	ТН			P	P		TUT	Total	
Teaching Scheme(Hrs.)	-			02	02		-	02	
Credits Assigned	-			01	01		-	01	
		Marks							
Examination	CA					Total			
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total	
	-	-	-	25	25	-	-	50	

- Term-Work will consist of practical performance during the lab sessions covering the entire syllabus of "Fundamental of Data Science Laboratory", Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and the entire syllabus of "Fundamental of Data Science Laboratory".

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code 116h66C401	Course Title Introduction to Artificial Intelligence							
	TH				P	,	TUT	Total
Teaching Scheme(Hrs.)	03			-		-		03
Credits Assigned		03		-		-		03
				Mark	s			
Examination	CA		ECE	TEXX!	0	Ъ	P&O	Total
Scheme	ISE	IA	ESE	TW		P		1 Otal
	30	20	50	-	-	-	-	100

Course prerequisites: Mathematics- Probability Theory, Data structure, Analysis of Algorithms

Course Objectives:

This course introduces basic principles, techniques, and applications of Artificial Intelligence. The course coverage includes knowledge representation, logic, inference, problem solving, search algorithms, game theory, perception, learning, planning, and agent design. Studentswill develop familiarity with programming for AI applications.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- **CO1**: Understand structure, types and PEAS parameters of an AI (Artificial Intelligence) agent and formalize the problem.
- **CO2**:Analyze and formalize the problem (as a state space, graph, etc.) and select the appropriatesearch method and write the algorithm
- **CO3**: Ability to formally state the problem and develop the appropriate proof for given a logical deduction problem
- **CO4** :Comprehend problems with uncertainty, formalize the problem and understand howsolutions are found
- CO5: Understand fundamentals of learning in AI

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	luction to AI and Intelligent Agents	05	CO1
	1.1	Introduction to AI, AI Problems and AI techniques		
	1.2	Intelligent agents, Types of Agents		
	1.3	Agent Environments PEAS representation for an Agent		
	1.4	Solving problems by searching, Problem Formulation		
2	Uninf	ormed, Informed and Adversarial Search Techniques	12	CO2
	2.1	Uninformed search, DFS, BFS, Uniform cost search,		
		Depth Limited Search, Iterative Deepening, Bidirectional		
		search, Comparing different techniques		
	2.2	Informed search, Heuristic functions, Best First Search,		
		Greedy BFS, A* Crypto-Arithmetic Problem, CSP and		
		Backtracking for CSP, Performance Evaluation		
	2.3	 Local search algorithms and optimization problems, 		
		Hill Climbing, Simulated Annealing, Genetic algorithms		
	2.4	 Game Playing, Min-Max Search, Alpha Beta pruning 		
	2.5	• Defining constraint satisfaction problems(CSP),		
		constraint propagation, backtracking search for CSPs		
3	Know	ledge and Reasoning	08	CO3
	3.1	A Knowledge Based Agent, Wumpus world		
		Environment, Logic, Propositional Logic, Propositional		
		theorem proving,		
	3.2	Syntax and semantics of first-order logic, propositional		
		vs. First-order inference, Unification and Lifting		
	3.3	 Forward and Backward Chaining, Resolution 		
4		tain Knowledge and Reasoning	10	CO4
	4.1	Acting under uncertainty, Basic probability notation,		
		Inference using full joint distributions, Bayes' rule and		
		its use.		
	4.2	Representing knowledge in an uncertain domain,		
		Semantics of Bayesian networks, Efficient representation		
	4.2	of conditional distributions		
	4.3	• Exact inference in Bayesian networks	10	005
5	• Lear		10	CO5
	5.1	nework for Symbol-Based Learning, Version Space		
		Search, The ID3 Decision Tree Induction Algorithm, Inductive Bias and Learnability		
	5.2	·		
	3.4	Knowledge and Learning, Unsupervised Learning, Reinforcement Learning		
	5.3	Prediction Error, Bias Error, Variance Error, Irreducible		
	3.3	Error, The Bias-Variance Trade-off, Intro to fitting		
	1	Total	45	
		Total	73	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr.	Name/s of	Title of Book	Name of	Edition and
No.	Author/s		Publisher	Year of
			with country	Publication
1.	Stuart Russell	Artificial Intelligence: A Modern	Pearson, 2004	3 rd Edition
	and Peter Norvig	Approach		
2.	Luger, George F.	Artificial intelligence :	Pearson	6 th Edition
		structures and strategies for	Education,	
		complex problem solving	2009	
3.	Jason Brownlee.	Master Machine Learning	eBook, 2017	Edition,
		Algorithms		v1.12
4.	Patrick H.	Artificial Intelligence	Pearson	3rd Edition
	Winston		Education,	
			1992	

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title								
116h66L401	Introd	Introduction to Artificial Intelligence Laboratory								
	TH			I	P		TUT	Total		
Teaching Scheme(Hrs.)			0	2		-	02			
Credits Assigned		-			01		-	01		
				Marks						
Examination	CA		ECE	TEXX	0	Ъ	P&O	Total		
Scheme	ISE	IA	ESE	TW	U	P	rau	1 Otal		
	-	-	-	25	25	-	-	50		

- Term-Work will consist of practical performance during the lab sessions covering the syllabus of "Introduction to Artificial Intelligence", Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and the syllabus of "Introduction to Artificial Intelligence".

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title						
116h66C501	Machine Learning							
	TH P)	TUT		Total
Teaching Scheme(Hrs.)			-			-	03	
Credits Assigned	(03		-		-		03
		Marks						
Examination	CA		ECE	TXX7	0	P	P&O	Total
Scheme	ISE	IA	ESE	TW	U	P		1 otai
	30	20	50	-	-	-	-	100

Course prerequisites: Mathematics- Probability Theory, Calculus and Metrics

Course Objectives:

The course offers insightful introduction paving way to machine learning methods. The course covers classical approach of Machine learning ranging from supervised learning to neural Network and also includes dimensionality reduction approaches.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Comprehend basics of machine learning

CO2: Apply concepts of different types of Learning and Neural Network

CO3: Comprehend radial-basis-function (RBF) networks and Kernel learning method

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	duction to Machine Learning	08	CO1
	1.1	Introduction, Types of Machine Learning, Process of Machine earning		
	1.2	Introduction to terminologies – Weight space, Cure of Dimensionality		
	1.3	Testing Machine Learning Algorithms		
	1.4	Minimizing Risk algorithm and The Naïve Bayes' Classifier		
	1.5	Bias-Variance Trade Off		
2		r Model for Classification	10	CO2
	2.1	Linear Basis Function Models		
	2.2	Bayesian Linear Regression		
	2.3	Discriminant Functions		
	2.4	Probabilistic Generative Models		
	2.5	Probabilistic Discriminative Models		
3	Neuro	ons, Neural Networks, and Linear Discriminants	07	CO2
	3.1	Hebb's Rule, McCulloch and Pitts Neurons and its limitation		
	3.2	The Perceptron		
	3.3	Linear Separability		
	3.4	Linear regression		
4	• Dim	ensionality Reduction and Probabilistic Learning	10	CO3
	4.1	Linear Discriminant Analysis (LDA)		
	4.2	Principle Component Analysis (PCA)		
	4.3	Independent Component Analysis (ICA)		
	4.4	The Expectation-Maximization (EM) Algorithm		
	4.5	Nearest Neighbor Methods		
5		nel Methods and Radial-Basis Function Networks	10	CO3
	5.1	Cover's Theorem on the Separability of Patterns		
	5.2	The Interpolation Problem		
	5.3	Radial-Basis-Function Networks		
	5.4	K-Means Clustering		
	5.5	Recursive Least-Squares Estimation of the Weight Vector		
	5.6	Hybrid Learning Procedure for RBF Networks		
	5.7	The Support Vector Machine Viewed as a Kernel Machine		
	5.8	Design of Support Vector Machines		
		T <mark>otal</mark>	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
			country	Publication
1.	Stephen Marsland	Machine learning An Algorithmic Perspective	CRC Press, 2015	2 nd Edition
2.	Christopher M. Bishop	Pattern Recognition and Machine Learning	Springer Science, Business Media	2006
3.	Simon Haykin	Neural Networks and Learning Machines	Pearson Education	2009
4.	Alex Smola and S.V.N. Vishwanathan	Introduction to Machine Learning	Cambridge University Press	2008

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h66L501	Machine Learning Laboratory							
		I	P		TUT	Total		
Teaching Scheme(Hrs.)			0	02		-	02	
Credits Assigned		-		01		-		01
				Marks				
Examination	CA		ECE	TEXX		Ъ	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	rau	1 Otal
	-	-	-	25	25	-	-	50

- Term-Work will consist of practical performance during the lab sessions covering the syllabus of "Machine Learning", Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and the syllabus of "Machine Learning".

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h66C601	Deep Learning							
	٦	ГН		P)	Γ	CUT	Total
Teaching Scheme(Hrs.)	03			-		-		03
Credits Assigned		03		-			-	03
				Marks				
Examination	CA		ECE	7DXX7		Р	P&O	Total
Scheme	ISE	IA	ESE	TW	TW O	UP		Total
	30	20	50					100

Course prerequisites: Mathematics- Probability Theory, Calculus and Metrics.

Course Objectives:

The course builds a solid foundation by covering the basic deep terminologies. The course gives insight to Deep Network architecture design, regularization and optimization. Further students get an opportunity to explore the convolutional networks. The course helps to develop comprehension regarding Recurrent and Recursive Networks.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Understand the evolution of Deep Learning.

CO2: Comprehend the Deep Network concepts.

CO3: Assimilate fundamentals of Convolutional Neural Network.

CO4: Underhand the essentials of Recurrent and Recursive Nets.

Module	Unit	Details	Hrs.	CO
No.	No.		10	004
1		Machine Learning to Deep Learning	10	CO1
	1.1	Math Behind Machine Learning: Statistics, Probability		
		Conditional Probabilities, Posterior Probability,		
		Distributions, Samples Versus Population, Resampling		
	1.2	Methods, Selection Bias, Likelihood		
	1.2	Bayesian Statistics, Supervise and Unsupervised Learning Stochastic Gradient Descent		
	1.3			
	1.5	Building a Machine Learning Algorithm Challenges Motivating Deep Learning		
	1.5	Chanenges Wordwaring Deep Learning		
2	Funda	amentals of Deep Networks	08	CO2
	2.1	Common Architectural Principles of Deep Networks		
	2.2	Deep Feedforward Networks – Example of Ex OR		
	2.3	Gradient-Based Learning		
	2.4	Hidden Units, Architecture Design	1	
3		arization and Optimization for Training DeepModels	12	CO2
	3.1	Parameter Norm Penalties, Norm Penalties as Constrained		
		Optimization, Regularization and Under-Constrained		
		Problems, Dataset Augmentation, Noise Robustness		
	3.2	Semi-Supervised Learning, Multi-Task Learning, Early		
	3.2	Stopping, Parameter Tying and Parameter Sharing,		
		Sparse Representations Bagging and Other Ensemble		
		Methods, Dropout, Adversarial Training, Tangent		
		Distance, Tangent Prop, and Manifold Tangent Classifier		
	3.3	Challenges in Neural Network Optimization, Basic		
		Algorithms		
	3.4	Parameter Initialization Strategies, Algorithms with		
		Adaptive Learning Rates, Approximate Second-Order		
		Methods Optimization Strategies and Meta-Algorithms		
4	• Con	volutional Networks	08	CO3
•	4.1	The Convolution Operation, Motivation, Pooling,		
		Convolution and Pooling as an Infinitely Strong Prior		
	4.2	Variants of the Basic Convolution Function, Structured]	
		Outputs, Data Types		
	4.3	Efficient Convolution Algorithms, Random or		
		Unsupervised Features, The Neuroscientific Basis for		
		Convolutional Networks		
	4.4	Convolutional Networks and the History of Deep		
0 P1		Learning Honour Programme in Artificial Intelligence	ge 20 of 2'	

5	Seque	ence Modeling: Recurrent and Recursive Nets	07	CO3				
	5.1	Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures						
	5.2	Deep Recurrent Networks, Recursive Neural Networks, The Challenge of Long-Term Dependencies, Echo State Networks, Leaky Units and Other Strategies for Multiple Time Scales						
:	5.3 • The Long Short-Term Memory and Other Gated RNNs, Optimization for Long-Term Dependencies, Explicit Memory							
		Total	45					

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Josh Patterson and Adam Gibson	Deep Learning A Practitioner's Approach	O'Reilly Media	2017
2.	Nikhil Buduma	Fundamentals of Deep Learning Designing Next-Generation Machine Intelligence Algorithms	O'Reilly Media	2017
3.	Ian Goodfellow YoshuaBengio Aaron Courville	Deep Learning	MIT Press	2017

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h66L601	Deep Learning Laboratory							
	,	TH		I	P		TUT	Total
Teaching Scheme(Hrs.)			0.	02		-	02	
Credits Assigned		-		01		-		01
				Marks				
Examination	CA		ESE	TW	0	P	P&O	Total
Scheme	ISE	IA	Loz	_ ``				
	-	-	-	25	25	-	-	50

- Term-Work will consist of practical performance during the lab sessions covering the syllabus of "Deep Learning", Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and the entire syllabus of "Deep Learning".

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h66C701	Natural Language Processing							
		P			TUT	Total		
Teaching Scheme(Hrs.)				-		-	03	
Credits Assigned		03		-		-		03
				Marks				
Examination	CA		ECE	TDXX/		ъ	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	Pau	Total
	30	20	50	-	-	-	-	100

Course prerequisites: Knowledge of Neural Networks

Course Objectives:

This course provides an introduction to the field of computational linguistics, aka natural language processing (NLP). It will cover fundamental as sounds, words, sentences, meanings, and conversations in context with NLP. Along with Linguistics as morphology, syntax, semantics it also touches upon application of deep learning for NLP.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Understand fundamentals of NLP

CO2: Comprehend Words and Word Forms in NLP

CO3: Establish concept of Structure and Semantics

CO4: Applying Deep learning algorithm for NLP

Module	Unit	Details	Hrs	CO
No.	No.			
1	Basics	of NLP		
	1.1	Biology of Speech Processing; Place and Manner of		
		Articulation	10	CO1
	1.2	Word Boundary Detection		
	1.3	Argmax based computations		
	1.4	HMM and Speech Recognition		
2	Words	and Word Forms	10	CO2
	2.1	Morphology fundamentals; Morphological Diversity of IndianLanguages		
	2.2	Morphology Paradigms, Finite State Machine Based Morphology, Automatic Morphology Learning		
	2.3	Shallow Parsing, Named Entities, Maximum Entropy Models, Random Fields		
3.	Structu	ires	10	CO3
	3.1	Theories of Parsing, Parsing Algorithms		
	3.2	Robust and Scalable Parsing on Noisy Text as in Web		
		documents		
		Hybrid of Rule Based and Probabilistic		
	3.3	Parsing, Scope Ambiguity and Attachment		
		Ambiguity resolution		
4	Seman	tics	08	CO ₃
	4.1	Lexical Knowledge Networks, Wordnet Theory		
	4.2	Indian LanguageWordnets and Multilingual Dictionaries		
	4.3	Semantic Roles, Word Sense Disambiguation, WSD and Multilinguality, Metaphors, Coreference		
5	NLP us	sing Deep learning	07	CO4
	5.1	Natural Language Processing and Recurrent Neural		
		Networks,RNNs Mechanism		
	5.2	• Training RNNs, Meta Meaning of Hidden State		
		of RNN, Tuning RNNs, Long Short-Term		
	F 3	Memory Networks		
	5.3	• Sequence-to-Sequence Models, Advanced Sequence-to-		
		Sequence Models, Sequence-to-Sequence Use Case	AE	
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Allen, James	Natural Language	Benjamin/Cumm	Second
		Understanding	ing,	Edition,
				1995
2.	Palash Goyal, Karan	Deep Learning for	Apress	2018
	Jain, Sumit Pandey	Natural Language		
		Processing: Creating		
		Neural Networks		
		with Python		
3.	Jurafsky, Dan and	Speech and Language	Prentice Hall	2008
	Martin, James	Processing		
4.	Charniack, Eugene	Statistical Language	MIT Press	1993
		Learning		

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h66L701	Natural Language Processing Laboratory							
	ŗ	ГН		P	•		TUT	Total
Teaching Scheme(Hrs.)	-			02		-		02
Credits Assigned		-		01		-		01
				Marks				
Examination	CA		ECE	(DXX)	0	D	P&O	Total
Scheme	ISE	IA	ESE	TW	U	P	rau	1 Otal
	-	-	-	25	25	-	-	50

- Term-Work will consist of practical performance during the lab sessions covering the syllabus of "Natural Language Processing", Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and the syllabus of "Natural Language Processing".