Introduction

Nettovage de

Nettoyage de la donnée

Analyse exploratoire

Analyses univariees
Analyses multivariées

Conclusion

Projet 2 OC : concevoir une application au service de la santé publique

Présenté par : Guy Anthony Nama Nyam

Mentor : Julien Hendrick

5 novembre 2019

DPENCLASSROOMS

Sommaire

Introduction

- donnée
- la donnée
- exploratoire
- Analyses univariées
- Analyses multivariée
- Conclusion

- 1 Introduction
- 2 La source de donnée
- 3 Nettoyage de la donnée
- 4 Analyse exploratoire
- **6** Conclusion

Contexte

Introduction

- La population et les besoins alimentaires mondiaux s'accroissent fortement au fil des années.
- Toutes organisations(particuliers, entreprises) tirent profit pour proposer de nombreux produits alimentaires.
- La quantité d'information de part le nombre de produits ainsi que leurs compositions devient rapidement une difficulté pour les consommateurs finaux.
- L'objectif pour nous est de pourvoir proposer un système de recommandation de recherche de produit par l'utilisateur avec des choix plus informés de santé.

Source de données

 La source utilisée est la base Open Food Facts disponible sous licence Open Database License.

- Les contenus individuels de la base de données sont disponibles sous la licence Database Contents License.
- Les photos de produits sont disponibles sous la licence Creative Commons Attribution Partage à l'identique.
- Open Food Facts répertorie les produits alimentaires du monde entier, tout le monde peut les utiliser pour tout usage, et contribuer en y ajoutant des produits.
- Dans un premier temps, la suite de notre travail consistera par décrire la source de données, suivi du nettoyage de la donnée.
- Dans un second temps, de réaliser une analyse exploratoire, de proposer une application et enfin nous conclurons.

Introduction

La source de donnée

Nettoyage de la donnée

exploratoire

Analyses univariées

Analyses multivariée

Sommaire

Introduction

La source de donnée

la donnée

Analyse exploratoire

Analyses univariées

Analyses multivariées

Conclusion

- 1 Introduction
- 2 La source de donnée
- 3 Nettoyage de la donnée
- 4 Analyse exploratoire
- **5** Conclusion

Description du fichier de données

La source de donnée

le type du fichier de données est un fichier .csv

- Le fichier utilisé est en.openfoodfacts.org.products.csv de taille 1 922 868 Ko téléchargeable sur le site de Open food facts.
- Les produits ajoutés vont 31/01/2012T14 :43 :58 au 09/09/2019T00 :22 :22.
- L'encodage du fichier est l'Unicode UTF-8. Le caractère de séparation des champs est **tabulation** (\t).

Description des variables

Introduction

La source de donnée

Nettoyage de la donnée

Analyses univariées

Analyses multivariées

Généralités sur les variables se terminant par :

- _t pour des dates au format UNIX timestamp, _datetime pour des dates au format iso8601
- _100g pour le nombre de constituant en g dans 100g du produit, _{fr|en|..} le code de la langue sur 2 lettres
- _tags pour la liste des tags sur une variable pris par un produit donnée.

Les variables sont séparés en 4 sections :

- Les informations générales sur la fiche du produit : nom, date de modification, nom générique, etc..
- Un ensemble de tags : catégorie du produit, origine, etc.
- Les ingrédients composant les produits et leurs additifs éventuels.
- Des informations nutritionnelles : quantité en grammes d'un nutriment pour 100 grammes du produit.

La source de donnée

```
    Importation de la bibliothèque pandas.
```

- Lecture du fichier source de données : df = pd.read_csv("en.openfoodfacts.org.products.csv", delimiter="\t")
- Afficher : les 5 premières lignes - print(df.head()) ou print(df[:5]) les 5 dernières lignes - print(df.tail()) ou print(df[-5 :])
- Informations sur le nombre de lignes et de colonnes : print(df.shape). soient 951409 lignes ou entrés et 175 colonnes ou variables
- Afficher : l'ensemble des variables - print(list(df.columns)) plusieurs colonnes - print(df[['creator', 'product name']])

 Le typage des colonnes s'obtient par : print(df.dtypes). 2 entiers(created t, last modified t) qui sont des variables quantitatives continues, 117 flottants dont la plupart sont les variables se terminant par 100g, et 56 textes pour les autres.

> • La fonction **df.isna()** permet d'obtenir les valeurs manquantes(None ou Numpy.NaN). 8 variables entières renseignées dominées par les méta-données et 14 variables sans informations.

```
In [6]: def sans info(data=df):
           sans info -[]
           for f in data.columns:
               if data[f].isna().all():
                   sans info.append(f)
           print("Les variables sans informations : {} \n".format(sans_info))
In [7]: def full info(data=df):
           full info : []
           for f in data.columns:
              if data[f].notna().all():
                   full info.append(f)
           print("Les variables complètes : {}".format(full_info))
In [8]: sans info()
       full_info()
       Les variables sans informations : ['cities', 'allergens_en', 'mo_nutriments', 'ingredients_from_palm_oil', 'ingredients_that_ma
       y be from palm_oil', '-caproic-acid_100g', '-lignoceric-acid_100g', '-melissic-acid_100g', '-elaidic-acid_100g', '-gondoic-acid
        _188g', '-mead-acid_188g', '-erucic-acid_188g', '-nervonic-acid_188g', 'water-hardness_188g']
       Les variables complètes : ['code', 'url', 'created_t', 'last_modified_t', 'last_modified_datetime', 'states', 'states_tags', 's
       tates en'l
                                                                                                 《山大《西大《金大《草》。 草
```

La source de donnée

La source de

donnée

• Le taux de valeurs manquantes de la donnée : 78.996%

```
In [42]: #function pourcentage de données manquantes dans les données
def percent_missed_values(deta-df):
    sonne = 0
    for f in list(data.columns):
        sonne += df[f].isne().sum()
        return (sonne / (data.shape[0]'data.shape[1]))*180

In [43]: percent_missed_values()
Out[43]: 78.5965581285855
```

Remplacer les valeurs manquantes par zéro.

```
In [6]: #Selectionner Les variables se terminant par 188a
        def endswith 100g(data = df):
            features 100g = []
            for f in data.columns:
                if f.endswith('_100g'):
                    features 100g.append(f)
            return features 100g
In [7]: #Conserver Les variables qui ont un sens à remplacer à zéro
        features_zero_100g = endswith_100g()
        features_zero_100g.remove("ph_100g")
        features zero 100g,remove("nutrition-score-fr 100g")
        features zero 100g.remove("nutrition-score-uk 100g")
In [8]: #Remplacer les valeurs manquantes par des zeros pour les variables ayant un sens
        def miss_by_0(features, data=df):
            for f in features:
                data[f].fillna(0, inplace=True)
In [9]: miss by 0(features zero 100g)
```

4 0 1 4 60 1 4 5 1 4

Règles de suppression des lignes de somme supérieure à 100g.

- 1 Ne pas prendre en compte les champs suivants :
 - energy_100g, energy-from-fat_100g qui sont des énergies.
 - nutrition-score-fr_100g, nutrition-score-uk_100g qui sont des valeurs calculées sur les nutriments.
 - ph_100g qui mesure l'acidité.
- 2 Ignorer les sous éléments :

Hypothèse 1

La source de

donnée

Il y'a corrélation entre un élément principal et ses sous éléments

```
"mand-scid_lB0g",
"exercis-scid_lB0g",
"tron-fct_lB0g",
"tron-fct_lB0g",
"canbupdrest_lB0g",
"canbupdrest_lB0g",
"spicos_lB0g",
"spicos_lB0g"
```


Introduction

La source de donnée

Analyse

exploratoire

Analyses univariées Analyses multivariées

3 Ne pas prendre en compte la variable "sodium_100g"

Hypothèse 2

Il y'a duplication d'information avec la variable "salt_100g"

- 4 Ramener à 100 les éléments supérieur à 100g car n'influence pas dans le calcul du nutriscore qui est connexe à notre sujet d'application.
- Suppression des lignes de somme supérieure à 100g df.drop(df[df[features_sum_100g].sum(axis=1) > 100].index, inplace=True)

La source de donnée

```
• Le nombre de lignes après suppression est de 708960 soit
  74.52% de la donnée initiale.
```

Suppression des méta-données :

```
df.drop(['created_t', 'created_datetime', 'last_modified_t', 'last_modified_datetime'], axis=1,
                                        inplace=True)
```

 Garder les variables connexes au sujet d'application : 16 variables.

```
In [17]: #features retenues
         features ret = ['code', 'product name', 'brands', 'ingredients text', 'allergens', 'additives',
                          'nutrition grade fr', 'energy 100g', 'fat 100g', 'saturated-fat 100g', 'sugars 100g',
                          'fiber 100g', 'proteins 100g', 'salt 100g', 'fruits-vegetables-nuts 100g', 'nova group'
```

```
In [18]: df = df[features ret]
```

Sommaire

Introduction

Nettoyage de

la donnée

Analyse exploratoire

Analyses univariées

Analyses multivariées

Camaluaian

- Introduction
- 2 La source de donnée
- 3 Nettoyage de la donnée
- 4 Analyse exploratoire
- **5** Conclusion

Détection d'erreurs

Introduction

donnée

Nettoyage de la donnée

Analyse

Analyses univariées Analyses multivariées

Analyses multivariées

```
• Détection des variables inutiles et suppression.
```

fonction del_var_useless(data, seuil=1)

Suppression des variables. inutiles

seuil : seuil de suppression. compris entre 0 et 1

Aucun

```
In [4]: #supporter les vortables functies
def del_ver_useles(data_semilul):
ver_useles= []
for f in list(data_column):
    if (dat[f].isen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().lsen().l
```

In [5]: del_var_useless(df, 0.9)

retour(s)

Colonnes supprimées ['allergens', 'additives']

• Suppression des lignes dont élément(100g) négatif

fonction del_rows_val_neg(data=df)

Supprimer les lignes de valeurs _100g négatives

paramètre(s) data : DataFrame

retour(s) Aucun

Détection d'erreurs

Nettoyage de

la donnée

```
In [6]: #supprimer des valeurs nutritionnelles négatives
        def del rows val neg(data=df):
             size = data.shape[0]
            fs_pos = ['energy_100g', 'fat_100g', 'saturated-fat_100g', 'sugars_100g', 'fiber_100g',
                       'proteins 100g', 'salt 100g', 'fruits-vegetables-nuts 100g'|
                data.drop(data.loc[data[f] < 0].index, inplace=True)
             dif = size -len(data)
            print("Nombre de ligne supprimer: {}, nombre de lignes restantes : {}".format(dif, data.shape[8]))
In [7]: del rows val neg(df)
        Nombre de ligne supprimer: 24, nombre de lignes restantes : 708936
```

Aucune valeur aberrante pour nutriscore et nova groupe

```
In [168]: df['nutrition grade fr'].unique()
Out[160]: array([nan, 'a', 'c', 'e', 'b', 'd'], dtype=object)
In [161]: df['nova group'].unique()
Out[161]: array([nan, 4., 3., 2., 1.])
```

 Suppression de doublon pour l'identifiant "code" fonction

delete doublon better(data=df) Suppression des doublons en fonction le nutri-grade

paramètre(s) data: DataFrame

retour(s) Aucun

Détection d'erreurs

Introduction

La source de

Nettoyage de

Analon

exploratoire

Analyses univariées Analyses multivariée

Conclusion

```
In [25]: #conserver dans le meilleur des cas celui qui possède son nutriscore
          def delete_doublon_better(data=df):
             size = len(data)
             index = list(data['code'].value_counts().index)
             valeurs = list(data['code'].value counts())
             list sup one = []#Liste des index de code supérieur à 1
             for i in range(0, len(index)):
                 if valeurs[i] > 1:
                      list sup one.append(index[i])
             nb nutri sauv = 0
             for index in list sup one: #parcours de chaque index pour sauvegarder ceux qui possède L'info nutrigrade
                 count = 0
                 nb with na = len(df[(df['code'] == index) & (df['nutrition grade fr'].isna())])
                 nb_code = len(df[df['code'] == index])
                 if nb code != nb with na:
                     df.drop(labels=df[(df['code'] == index) & (df['nutrition_grade_fr'].isna())].index, axis=0)
                      nb nutri sauv += 1
             data.drop_duplicates(subset=['code'], inplace=True)
             dif = size -len(data)
             print("Nombres de doublons supprimés : {}, nombres de lignes restantes : {}".format(dif, data.shape[0]))
             print("Nombres de nutriscores sauvegardés : ()".format(nb nutri sauv))
```

```
In [27]: delete_doublon_better()
```

```
Nombres de doublons supprimés : 339, nombres de lignes restantes : 708597
Nombres de nutriscores sauvegardés : 66
```

Traiter les valeurs manquantes

Nettoyage de la donnée

 Remplacer les valeurs manquantes par le caractère espace(" ") pour les données textes suivantes : "product_name", "brands", "ingredients_text".

```
In [46]: features to empty = ['product name', 'brands', 'ingredients text', "product"]
         def miss by empty(features, data=df):
             for f in features:
                 data[f].fillna(" ", inplace=True)
         miss by empty(features to empty)
```

Traiter les données textes

Nettoyage de

la donnée

• Suppression des ponctuations, chiffres et minuscules.

```
In [39]: #supprimer Les ponctuations, Les accents et Les chiffres
          def del_ponct(val):
             if type(val) == str:# éviter les nan
                 val = val.lower()
                 val = re.compile('[éèéë]+').sub("e", val)
                 val = re.compile('[aaa]+').sub("a", val)
                 val = re.compile('[uuu]+').sub("u", val)
                 val = re.compile('[ii]+').sub("i", val)
                 val = re.compile('[ôo]+').sub("o", val)
                 return re.compile("["A-Za-z" "]+").sub("", val)
             return val
           ef data text del ponct(data:df):
             listCol = list(data.columns)
             listCol.remove("code")
             listCol.remove("product")
             for f in listCol:
                 if (data[f].dtvpe == "object"):
                      data[f] - data[f].apply(del ponct)
In [48]: data text del ponct(df)
```

 Lemmatisation de la donnée texte : racinisation de Snowball

```
In [42]: #Lemmatisation snowball
         stemmer = FrenchStemmer(ignore stopwords=True)
         def stem(expr):
             words_stems = []
             if type(expr) == str:#eviter les nan
                 expr_words = nltk.word_tokenize(expr)
                 for word in expr_words
                     words_stems.append(stemmer.stem(word))
                 return " ".join(words stems)
             return expr
In [43]: def data text lemma(data=df):
             listCol = list(data.columns)
             listCol.remove("code")
             listCol.remove("product")
             for f in listCol:
                 if (data[f].dtype == "object"):
                     data[f] = data[f].applv(stem)
In [44]: data text lemma()
```

Sommaire

1 Introduction

Analyse exploratoire

- 4 Analyse exploratoire Analyses univariées Analyses multivariées

Description

Introduction

La source de donnée

Nettoyage de la donnée

Analyse

Analyses univariées

Analyses multivari

Conclusion

df.describe(include='all') pour	les statistiques	basique
---	---------------	------------------	---------

df.describe() stats sur les variables quantitatives en image

	df.describe()										
	energy_100g	fat_100g	saturated- fat_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g	fruits- vegetables- nuts_100g	nova_group	predicted_gra	
count	7.085970e+05	708597.000000	708597.000000	708597.000000	708597.000000	708597.000000	708597.000000	708597.000000	204079.000000	708597.000	
mean	9.406699e+36	6.970962	2.535322	3.741359	0.514068	6.323541	1.101110	0.109821	3.522709	0.0202	
std	7.918390e+39	11.762543	4.960635	6.819252	2.159911	9.401696	4.833964	2.260011	0.877548	0.1408	
min	0.000000e+00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.0000	
25%	0.000000e+00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	3.000000	0.0000	
50%	3.800000e+02	1.000000	0.100000	0.700000	0.000000	1.900000	0.100000	0.000000	4.000000	0.0000	
75%	1.046000e+03	9.380000	2.500000	4.100000	0.000000	9.860000	1.153160	0.000000	4.000000	0.0000	
max	6.665559e+42	100.000000	93.100000	100.000000	100.000000	100.000000	100.000000	100.000000	4.000000	1.0000	
4) i	

La distribution d'une variable

fonction distribution(feature, data=df)

Distribution de la variable feat

paramètre(s) data : DataFrame

feat : le nom de la colonne

retour(s) Dataframe de distribution

Description variable quantitative

Distribution des observations

fonction

Analyses univariées

dist_graph(feature, data=df)

Distribution graphique d'une variable

paramètre(s)

feature : nom de la variable

data: DataFrame

retour(s) aucun

proteins 100g

```
In [3] import seaborn as ans ansamment of the control of the contr
```

Fig 2, graphe distribution des variables "proteins" et "fat"

Description variable quantitative

Boites à moustaches des variables.

ntroduction

La source de donnée

Analysa

exploratoire

Analyses univariées

Analyses multivariées

. .

data_pai_plot(list_feature, data=df)

Hypothèse 3

fonction

On note la présence de valeurs aberrantes sur les variables quantitatives précédentes

Description variable quantitative

Analyses univariées

```
    Test de Grubb sur les valeurs aberrantes visualisées.

    fonction
                       test grubb(feature, data=df, confiance = 0.05)
                       test de Grubb sur les valeurs aberrantes Q3 + IQ
```

paramètre(s)

retour(s)

feature : la variable à tester

data: DataFrame

confiance : intervalle de confiance retourne la valeur aberrante minimale

```
#Test de Grubb pour confirmer la valeur min anomale
def test_grubb(feature, desard), confiance = 0.05);
liste = list_sup_aberante(feature, data)
size = len(data)
for i, row in data.iterrous();
obs.append(data.log(liste_critical_value(size, confiance)
obs.append(data.log(listeature))
                        obs.sort()
mean = np.mean(obs)
                      a = 0p.Strunt-

or i in range(e, len(liste)):

abs_val = abs(liste(i) : mean)

abs_val = abs(liste(i) = mean)

strunt-

strunt-

strunt-

strunt-

point(liste usbor minimals sterrante : ()".format(liste(i)))

point(liste(i) = minimals sterrante : ()".format(liste(i)))
                           fata.drop(data[data[feature] >= val].index, inplace=True)
                       for i, row in data.terrows():

if data.loc[i,feature] val:

data.loc[i,feature] = mean#imputation par la mayenne
In [114]: #renvoyer une liste de valeurs supposées aberantes
                 def list_sup_aberante(feature, data-df):
                       IQ = q[0.75] - q[0.25]
                       liste - []
                       for i, row in data.iterrows():
                             if (data.loc[i,feature] < (q[0.25] - 1.5"IQ)) or (data.loc[i,feature] > (q[0.75] + 1.5"IQ)):
                                    liste.append(data.loc[i,feature])
                       return sorted(set(liste))
In [149]: def calculate_critical_value(size, alpha):
                       t_dist = stats.t.ppf(1 - alpha / (2 * size), size - 2)
numerateur = (size - 1) * np.sqrt(np.square(t_dist))
                       denominateur = np.sqrt(size) * np.sqrt(size - 2 + np.square(t_dist))
                       critical_value - numerateur / denominateur
                       print("La valeur critique de Grubb : {}". format(critical_value))
                       return critical_value
```

• L'hypothèse 3 est confirmée par le test de Grubb, néanmoins les valeurs considérées "aberrantes" sont conservées car présentes dans certains produits.

Description variable qualitative

• Distribution des observations pour les variables qualitatives pertinentes de nutriscore et de nova groupe.

fonction pie_chart_qual(features, data=df)

Pie chart nutri-grade et nova groupe

paramètre(s) features : les variables nutrigrade et nova groupe

data: DataFrame

retour(s) aucun

Analyses univariées

```
In [10]: Permitti tentioning

(10): Permitti tentioning

(11): Permitti tentioning

(12): Permitti tentioning

(13): Permitti tentioning

(14): Permitti tentioning

(15): Permitti tentioning

(16): Permitti tentioning

(16): Permitti tentioning

(16): Permitti tentioning

(16): Permitti tentioning

(17): Permitti tentioning

(18): Permitti ten
```

In [11]: features_qual_pert_vis = ["nutrition_grade_fr", "nova_group"]

Fig 4. Camembert des variables "nutrition_grade" et "nova_group"

- Le nutriscore dominant est D.
- 70% des produits sont de Nova 4.

Corrélation de variables quantitatives

Analyses multivariées

```
    Corrélation linéaire
```

fonction data_pair_plot(data=df)

corrélation des variables quantitatives

data: DataFrame paramètre(s)

retour(s) aucun

```
In [18]: #corrélation linéaire variables quantitatives, ignorer nova group
         #pairplot
         sns.set(style="ticks", color codes=True)
         def data pair plot(data=df):
             vars quantitative = []
             for f in list(data.columns):
                 if data[f].dtype == "float" and f != "nova_group":
                     vars quantitative.append(f)
             data["color"] = np.zeros(len(data))
             g = sns.pairplot(data, vars=vars quantitative, hue="color")
             data.drop(['color'], axis=1, inplace=True)
             g.map_lower(corrfunc)
```

In [32]: data_pair_plot()

Corrélation de variables quantitatives

Introduction

La source de

Nettoyage d

Analyse

Analyses univariées

Analyses multivariées

Fig 5. Nuage des points des variables nutritionnelles du nutriscore

Corrélation entre variable qualitative et quantitative

Analyses multivariées

```
    Corrélation linéaire(ANOVA)
```

```
In [18]: #variables quantitatives, variable qualitative=nutri-grade
         def anova(Y, quants, data=df):
             fig, axes = plt.subplots(nrows=1, ncols=len(quants), figsize=(15, 4))
             sous_echan = data[data[Y].notnull()]
             modalites = list(sous_echan[Y].unique())
             modalites.sort(reverse-True)
             cs = ["red", "orange", "yellow", "lime", "green"]
             for X in quants:
                 if X == "nova group":
                     sous_echan = sous_echan[sous_echan[X].notnull()]
                   sous_echan = sous_echan[sous_echan[X] |= 0]
                 groupes []
                  for m in modalites
                     groupes.append(sous_echan[sous_echan[Y] == m][X])
                  b = axes[i].boxplot(groupes, labels-modalites, vert-False, patch_artist-True)
                  for patch, color in zip(b['boxes'], cs):
                     patch.set facecolor(color)
             for ax in axes:
                 ex.set xlabel(quants[i])
                 ax.set_ylabel(Y)
```


Matrice de corrélation(heatmap)

 Corrélation entre les variables se terminant par "_100g" fonction matrice correlation(features, data=df) heatmap des variables quantitatives

Analyses multivariées

paramètre(s) features : listes de variables

data: DataFrame

retour(s)

aucun

In [20]: def matrice_correlation(features, data=df): X = [1 for f in features: X.append(data[f].values) Mx = np.corrcoef(X) mask = np.zeros like(Mx) n = mask.shape[0] for i in range(0, n): for i in range(0, n): if j > i: mask[i, i] = True with sns.axes style("white"): ax = sns, heatmap ffx, vmin=0, vmax=1, linewidths=,5,mask=mask, square=True, xticklabels=features, vticklabels=features) In [21]: feats_sugars = ['sugars_100g', '-sucrose_100g', '-glucose_100g', '-fructose_100g', '-lactose 100g', '-maltose 100g', '-maltodextrins 100g'] feats_saturated_fat = ['saturated-fat_100g', 'butyric.acid_100g', 'cappric.acid_100g', 'cappric.acid_100g', 'cappric.acid_100g', 'argistic.acid_100g', 'argistic.acid_100g', 'argistic.acid_100g', 'satearic.acid_100g', 'arachidic.acid_100g', 'behenic.acid_100g', 'lagisccc.acid_100g', 'arachidic.acid_100g', 'argiscc.acid_100g', 'argiscc.acid feats omega 3 fat = ['omega-3-fat 100g', '-alpha-linolenic-acid 100g', '-eicosapentaenoic-acid 100g', docosahexaenoic-acid 100g'l feats omega 6 fat = ['omega-6-fat 100g', '-linoleic-acid 100g', '-arachidonic-acid 100g', '-gamma-linolenic-acid 100g', -dihono-gamma-linolenic-acid 100g'

Hypothèse 1

Analyses multivariées

• Pas de corrélation entre un élément principal et ses sous éléments : donc infirmation de l'hypothèse 1

Hypothèse 2

Analyses multivariées

l'hypothèse 2 In [28]: matrice_correlation(["salt_188g", "sodium_188g"], dc)

Corrélation entre le sel et le sodium donc confirmation de

Fig 8. Analyse de corrélation entre les variables "salt" et "sodium"

Sommaire

Introduction

Nettovage d

la donnée

Analyse

Analyses univariées

Analyses multivarié

Conclusion

Introduction

2 La source de donnée

3 Nettoyage de la donnée

4 Analyse exploratoire

5 Conclusion

Interprétation des résultats

Introduction

La source de donnée

Nettoyage d la donnée

exploratoire

Analyses univariées

Analyses multivariées

Conclusion

- La médiane des valeurs nutritionnelles des éléments du nutriscore est inférieure à 10g, et les valeurs varient pour la plupart entre 0 et 40g.
- La plupart des produits à limiter(nutriscore e) à la consommation sont influencés principalement par le sucre et les matières grasses.
- On note tout de même la présence de l'élément nutritionnel protéine dans la plupart de ces produits qui doit être en faible quantité vu que ça n'influence pas beaucoup le nutriscore.
- Les produits à favoriser (nutriscore a et b) le doivent à la présence des fibres et dans une moindre mesure aux légumes et fruits.
- La faible relation entre le nutriscore et le nova groupe est due au faible nombre d'observation commun.

Application sur le jeu de données

ntroduction

donnée

Nettoyage de la donnée

Analyse

Analyses univer

Analyses multivarie

Conclusion

Exemple de WordCloud sur la variable enseigne(brands).

```
The second of th
```

• Ajout au "stopwords" de nltk pour le français les mots de

taille 1 du corpus

```
In [96]: res = list(result.index)
len_ore = []
for r in res:
    if len(r) == 1:
        len_one.append(r)
len_one
    my_stop_words = list(set(nltk.corpus.stopwords.words('french') + len_one))
```

Application sur le jeu de données

Introduction

La source de donnée

la donnée

Analyse exploratoire

Analyses univariées

Analyses multivariées

Conclusion

 Vectorisation des séquences (nom produit, enseigne, ingrédients).

```
In [99]: vectorizer = CountVectorizer(stop_words = my_stop_words)
X = vectorizer.fit_transform(corpus)
```

Algorithme de recommandation :

fonction recommandation(product, nb = 10)

recommandation nb premiers produits

paramètre(s) product : nom du produit

nb : nombre de produits de recommandation

retour(s) aucun

Modèle K-NN

Introduction

La source de

Nettoyage d

Analyse

Analyses univarié

Conclusion

Hyper-paramètre du modèle

Classification nutrigrade d'un produit

```
monite on of empiricage de Norticone
de morticadi(miss, heperane, dated):
data - ani(pai( norticon grade f**) total())
traque à ani(pai( norticon grade f**) total())
traque à ani(pai( norticon grade f**) total())
'proteino [186]', "all'illes," fronts-regarded end [186]', "fiber_186]',
'proteino [186]', "all'illes," fronts-regarded end [186]', "alles
d'antification
in = neighbors. Onlightor collaintéer( paighbors-hyperane)
ins. filidats, traptique (n° | insu())
d = neighbors. Onlightor collaintéer( paighbors-hyperane)
ins. filidats, traptique (n° | insu())
d = tit_nproteit = list(|d_i|index = index)[[[exemp_186]', 'sanched-fat_186]', 'ugars_186]', 'fiber_186g',
proticte = lonn_proteit(|t_i|t_i|proteit(|t_i|t_i))
proticte = lonn_proteit(|t_i|t_i|t_i)
proticte = lonn_proteit(|t_i|t_i|t_i)
```

Exemples de recommandations

```
Nutri-grade: d
                                         Nova groupe : inconnu
                                         Proteine : 7.5g
                                         Fibre : 0.0g
                                         Fruit et légume : 0.00
                                         Code Open Foods Fact BD: 3456580910456
                                         Recommandation 2 : Beignet au chocolat
                                         Nutri-grade: d (predicted)
                                         Nova groupe : inconnu
                                         Proteine : 7.5g
                                         Fibre : 0.0g
                                         Fruit et légume : 0.0g
                                         Sucre : 20.0g
                                         Code Open Foods Fact BD: 0202303000002
                                         Recommandation 3 : Beignets Chocolat
                                         Nutri-grade: d
                                         Nova groupe : inconnu
                                         Proteine : 7.5g
                                         Fibre: 0.0e
                                         Fruit et légume : 0.0g
                                         Energie : 1623.0kJ
                                         Matière grasse : 18.0g
                                         Sucre : 18.0g
                                         Code Open Foods Fact BD: 0202659019024
                             In [67]: recommandation("lait de noix de coco", 5)
Conclusion
                                      Recommandation 1 : Lait de Coco
                                      Nutri-grade: d
                                      Nova groupe : 4.0
                                      Proteine : 2.0e
                                      Fibre: 0.2g
                                      Fruit et légume : 0.0g
                                      Energie : 707,0kJ
                                      Code Open Foods Fact BD: 4002359648618
                                      Recommandation 2 : Lait De Noix De Coco En Poudre
                                      Nutri-grade: d (predicted)
Nova groupe : inconnu
                                      Proteine : 1.0g
                                      Fibre : 0.0g
                                      Fruit et légume : 0.0g
                                      Energie: 795.0kJ
```

Notifier grease 14.0g Sal : 0.15g Sal : 0.15g Code Open Foods Fact BD: 8852114532265 Recommendation 3: Lait de riz et noix de coco Nutri-grades: b (predicted) Nova groupe : incomnu Nova groupe : incomnu Fibre : 0.0g Fruit et 1.0gume : 0.0g

Code Open Foods Fact BD: 5603722501128

In [41]: recommandation("beignets chocolat", 5)

Recommandation 1 : Beignet chocolat

Perspectives

Introduction

donnée

Nettoyage de la donnée

exploratoire Analyses univariées

Analyses muluvan

Conclusion

- Appliquer un algorithme de classification plus performant.
- Analyse des valeurs aberrantes des boites à moustaches avec d'autres tests avancés à l'exemple des algorithmes de Isolation Forest
- Comparé l'algorithme de recommandation basé sur la matrice de comptage et celui basé sur la matrice tf-idf.