

第3编 Python机器学习

第1讲 机器学习概述

余力

buaayuli@ruc.edu.cn

1. 机器学习相关概念

对"大数据分析与应用"的理解

大数据分析的内涵

预测性分析

(机器学习)

描述性分析

(统计图、云图)

大数据分析与推荐

2. 机器学习过程

人类学习过程

什么是机器学习?

机器学习就是让计算机从大量的数据中学习到相关的规律和逻辑,然后利用学习来的规律来进行决策,推理和识别等。

机器学习 vs. 人类学习

机器学习分类

监督学习

Classification Regression

半监督学习

- 1. 有标记样本难以获取.
 - > 需要专门的人员,特别的设备,额外的开销等等.
- 2. 无标记的样本相对而言是很廉价的.

半监督学习的应用场景

半监督 分类 半监督回归

半监督聚类

半监督降维

无监督学习

聚类

降维

机器学习应用实例

- 1、对语言、文字的认知与识别
- 2、对图像、场景、自然物体的认知与识别
- 3、对规则的学习与掌握

例如:下雨天要带伞,生病要吃药,天冷

了要穿厚衣服等

4、对复杂事物的推理与判断能力

例如: 好人与坏人的辨别能力, 事物的正

误的判断能力

机器学习基本过程

例子: 天气预报

- 目标: 预测明天北京会不会下雨
- 数据:过去10年北京每一天的天气数据
 - ▶ 那天是否下雨: 是/否
 - 那天的前一天傍晚18点的气温、相对湿度、风向、风速、气压等 (特征)
 - > 某条数据: <18, 20, 东, 15, 80, 是>
- 训练: 学习得到规律 (模型)
- 预测: 给定今天傍晚18点的气温、相对湿度、风向、风速、 气压等、根据模型预测明天是否下雨

机器学习的关键问题

- 【表示】如何表示数据样本?
 - 通常用一个向量来表示一个样本,向量中选用哪些特征是关键
- 【训练】如何找出规律【模型+策略+算法】*
 - ▶ 通常变成一个选择题,给你n个候选的模型让你选。【模型】
 - 确定选择的标准(什么样的模型才叫好模型)【策略】
 - ▶ 如何快速地从n个模型中选出最好的【算法】
- 【测试】如何根据找到的规律进行预测

机器学习任务

$$y=f(x)$$

22.6cm

否

1.78

机器学习-实施过程

传统机器学习算法

决策树

朴素贝叶斯

逻辑回归

KNN

3. 机器学习分类评估

什么是分类?

■ 简单地说,分类(Categorization or Classification)就 是按照某种标准给对象贴标签(label)

男

女

分类体系

- 分类体系一般由人工构造政治、体育、军事、娱乐……
- 分类体系可能是层次结构

分类模式

二类问题:属于或不属于

多类问题:多个类别,可拆分成2类问题

互斥

多标记问题:一个对象可以属于多类 可相互关联

应用举例: 二类分类

性别识别

人脸检测

应用举例: 多类分类 (1)

人脸识别监控

"刷脸支付"

火车站刷脸进站

场馆刷脸进站

应用举例: 多类分类 (2)

字符识别

语音识别

机器翻译

应用举例: 多标记问题 (1)

图像标注

用户画像

应用举例: 多标记问题 (2)

分类过程

分类算法

- 线性回归、逻辑回归
- 决策树、
- SVM
- 贝叶斯分类
- 集成学习
- 神经网络
- 深度学习

分类评价

- 训练集(training set)与测试集(test set)
- k折交叉验证(k-cross validation)

• 留一法(leave-one-out)

• 指标:正确率、召回率、F1值

正确率P 及召回率R

	in the class	not in the class
predicted to be in the class	true positives (TP)	false positives (FP)
predicted to not be in the class	false negatives (FN)	true negatives (TN)

正确率 Precision = TP / (TP + FP)

召回率 Recall = TP / (TP + FN)

精确率 Accuracy = (TP+TN)/(TP + FP + FN + TN)

一个计算的例子

	In the class	Not in the class
Predicted to be in the class	100	50
Predicted to not be in the class	40	80

F1值(F Measure)

• F_1 允许在正确率和召回率之间达到某种均衡

$$F_1 = \frac{1}{\frac{1}{2}\frac{1}{P} + \frac{1}{2}\frac{1}{R}} = \frac{2PR}{P + R}$$

· 也就是P和R的调和平均值:

$$\frac{1}{F} = \frac{1}{2} \left(\frac{1}{P} + \frac{1}{R} \right)$$

谢谢大家!

