包除被覆モデルに関する探索アルゴリズムの改良

Improvement of search algorithm for inclusion-exclusion covering model

> 小出 風雅 数理・計算科学系 20M30143 2022年度3月修了 指導教員 室伏 俊明 准教授 提出日 2/19/2022

Abstract

包除被覆モデルとは,回帰問題の集約関数としてショケ積分を用いたモデルにおいて,そのショケ積分に内在するファジィ測度に包除被覆構造を導入したモデルである.評価基準の集合 Xの大きさに対して,X上の包除被覆の数は指数関数的に増加するので,現実的な時間で最適な包除被覆モデルを求めるのは困難である.そのため,データの持つ構造を十分反映した準最適なモデルを効率よく探索する方法があるとよい.既に準最適なモデルの探索アルゴリズムが提案されており,本論文ではそのアルゴリズムを元に改良したアルゴリズムを提案している.また,先行研究のアルゴリズムとの比較を人工データに対して行い,改良したアルゴリズムの性能についてまとめている.実験の結果,精度をある程度保ったまま先行研究のアルゴリズムの探索回数を大幅に減らすことができ,それだけではなく,本研究で提案したもののほうが全ての指標で性能が良い実験も多数存在した.

1 はじめに

昨今話題の機械学習の分野において、代表的な問題形式として回帰問題と分類問題がある [1][2]. 入力ベクトルと出力値のペアの集合からなるデータが与えられ、そのデータで回帰問題を解くということは、任意の入力ベクトルから出力値が求まる回帰関数をデータから学習し求めることである。一方、入力ベクトルと出力ラベルのペアの集合からなるデータが与えられ、その分類問題を解くということは、任意の入力ベクトルから出力ラベルが求まる分類関数をそのデータから学習し求めることである。

本論文では回帰問題を扱う。回帰問題は,多属性意思決定理論の文脈においては複数の評価基準項目から算出された評価基準値ベクトルから,それらを集約した総合評価値を求めるn入力1システムを作ることに相当する[3]。回帰問題を解く代表的なモデルとして,線形モデルがあげられる。線形モデルは入力値とパラメータの線形結合で出力値を予想するモデルである。入力ベクトルとパラメータの結合の仕方を変えることによって,より複雑なデータ構造を反映したモデルを作る

ことができる。その結合の仕方を決める関数のことを集約関数とよび、例えば荷重平均やファジィ 測度を用いたショケ積分、および包除被覆構造を持つショケ積分による集約方法がある [4]. 本論 文では、包除被覆構造を持つショケ積分を集約関数として用いた回帰モデルを扱う.

後節で詳しく述べるが、ファジィ測度は測度論における測度を一般化した集合関数であり、部分集合間の相互作用を表現できるものである。ショケ積分はファジィ測度の非空部分集合の測度値を内在するパラメータとして持つ集約関数である。ショケ積分を用いた回帰モデルの利点として、パラメータ最適化方法として最小二乗法を用いた場合、凸二次計画問題になることや [3]、モデルに内在するファジィ測度から各特徴量のシャープレイ値と任意の特徴量集合間の相互作用指標を求められることがある。シャープレイ値とは各特徴量の相互作用も含めた出力に与える影響力、相互作用指標とは特徴量間の相互作用の度合いを表す指標と解釈できるものである [4].

しかし、ショケ積分モデルのパラメータ数および単調性の制約条件は、特徴量数に対して指数関数的に増加するため、特徴量数が多くなると現実的な計算時間でパラメータの最適化が行えない。そこで、ファジィ測度に包除被覆構造を持たせてパラメータ数を抑えた、包除被覆構造を持つショケ積分モデルが提案されている[3]. 包除被覆とは、あるファジィ測度において相互作用を起こす可能性のある集合を限定しパラメータ数を抑える構造になっている。包除被覆モデルは、線形モデルを一番記述能力が低く、ショケ積分モデルを一番記述能力が高い特殊なケースとして含み、これら2つの間の表現力を持つモデルとなっている。包除被覆モデル群の数は膨大なため、全数探索でデータの真の構造を反映した最適なモデルを発見するのは困難である。これを解決するために、先行研究[3]で準最適な包除被覆モデルを逐次的に探索する手法が考案されている。

先行研究の逐次的アルゴリズムは、特徴量数が多くなると一度のステップで探索する包除被覆モデルの数が膨大になってしまい、終了条件を満たすまでかなりのステップ数を要する。そこで本論文では、一度のステップで探索する包除被覆モデルを、直前のステップで同定したモデルにおける各パラメータのt 値を用いて殆ど1 つに絞り込む、改良したアルゴリズムを提案している。また、様々な包除被覆を持つファジィ測度を元に人工データを生成して、先行研究のアルゴリズムと本論文で提案したアルゴリズムの包括的な実験を行った。その結果、本論文で提案したアルゴリズムは先行研究のアルゴリズムとさほど劣らない精度で、探索回数を大幅に減少させることができた。

次節以降では以下のような構成になっている。次節では,回帰問題の定式化,およびショケ積分と包除被覆の説明をし,包除被覆モデルを定義するための数学的準備を行う。第3節では,包除被覆モデルを探索する先行研究 [3] のアルゴリズム (CSA1) の説明と使用例を述べ,第4節では,本論文で提案するアルゴリズム (CSA2) の説明と使用例を述べる。第5節は人工データによる実験,最後の節はまとめと今後の展望である。人工データの実験で用いた50個の真値のファジィ測度のパラメータ値と,実験結果の表は参考文献の後に付録としてまとめている。

2 数学的準備

2.1 回帰問題

回帰問題は入力ベクトル $x \in \mathbb{R}^n$ と応答ベクトル $y \in \mathbb{R}$ の関係を学習するプロセスである. x と y の関係は、以下のように定式化される.

$$y = F(\boldsymbol{x}, \boldsymbol{w}) + \epsilon$$

F は集約関数とよばれ,n 個の評価基準の測定値からなる x を総合評価値 y に対応付ける関数である. $w \in \mathbb{R}^d$ は集約関数に内在するパラメータを表すベクトルである. ϵ は,F(x,w) では y を表しきれない他の要因や,y を観測することによって生じた誤差を表す項である.

集約関数 F として, $F(x, w) \coloneqq (w_1, \dots, w_n)^T x + w_0$ とすると,線形回帰モデルとなる.ここで $w = (w_0, \dots, w_n)^T$ であり, w_0 はバイアス項とよばれる.線形回帰モデルの1つの拡張として,基底関数 $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ を用いて,集約関数 F を $F(x, w) \coloneqq w^T \phi(x) + w_0$ とする方法がある.よくある基底関数の選び方として,多項式型やガウス型基底関数などがある.多項式型基底関数の取り方としては, $\phi(x) \coloneqq (x_1, x_2, \dots, x_n, x_1^2, x_2^2, \dots, x_n^2)$ と,線形モデルに x_i^2 $(i = 1, 2, \dots, n)$ の項を加えたものや, $x_i x_j$ $(i, j \in \{1, 2, \dots, n\}, i \neq j)$ を加えたモデルもある.基底関数は,その次元について $n \le m$ であるのが一般的で,入力ベクトルをより高次元な空間に写し,線形回帰モデルよりも複雑な回帰を実現することができる.しかし, ϕ が複雑になると,回帰モデルの解釈が難しくなってしまう.例えば線形モデルにおいて,パラメータ w は「入力ベクトル x がどれくらい出力 y に影響を与えているか」を表す指標と解釈できるが, x_i^2 の項は x_i ほど自然な解釈をすることが難しい.第 2.3 項で詳しく述べるショケ積分モデルと包除被覆モデルは線形モデルを一般化しつっ、パラメータの解釈が容易であるという特徴を持つ.

パラメータ w を決定する方法として,入力ベクトルとその出力値のペア m 組からなる訓練データ $D=\{(x_i,y_i)\}_{i=1}^m\subset\mathbb{R}^{n+1}$ から学習する方法がある.例えば,以下のように D における残差 2 乗和を最小化することによって,最適なパラメータ w^* を決定することができる.

$$\boldsymbol{w}^* = \operatorname*{arg\,min}_{\boldsymbol{w}} \sum_{i=1}^m (y_i - F(\boldsymbol{x}_i, \boldsymbol{w}))^2$$

このパラメータ最適化の方法は最小二乗法とよばれる。ショケ積分モデルおよび包除被覆モデルの最小二乗法によるパラメータ同定問題は,線形不等式制約付き凸 2 次計画問題になることが知られている [8].

2.2 ショケ積分と包除被覆

本論文では,評価項目の全体集合を $X=\{1,2,\ldots,n\}$ とする.また,i 個の要素からなる評価項目の集合を全て含む集合族を \mathcal{X}_i とする.すなわち, $\mathcal{X}_i=\{C\subseteq X;|C|=i\}\;(i=1,2,\ldots,n)$ である.この項では,ショケ積分と包除被覆に関する用語を述べる.

2.2.1 ショケ積分

定義 2.1 (ファジィ測度). [5] 集合関数 $\mu:2^X\to[0,\infty)$ は以下の 2 条件を満たすとき, 2^X 上のファジィ測度であるという.

- (i) $\mu(\emptyset) = 0$ (下方有界性)
- (ii) $\forall A \subset B \subseteq X \Rightarrow \mu(A) \leq \mu(B)$ (単調性)

ファジィ測度の定義に上方有界性 $(\mu(X)=1)$ の条件をつける場合もあるが、本論文ではつけない、従来の測度論における測度において、その定義の一部である加法性 $(\mu(A\cup B)=\mu(A)+\mu(B)$ $(A\cap B=\emptyset))$ から単調性を導くことができるので、ファジィ測度は測度の一般化になっていることがわかる。また、ファジィ測度は測度では表現できない部分集合間の相互作用を表せる。すなわち、集合 A,B が互いに素であっても、それらに属する要素間の作用により例えば以下のような解釈ができる.

- (i) $\mu(A \cup B) > \mu(A) + \mu(B)$ (A と B の間に相乗作用または補完性がある)
- (ii) $\mu(A \cup B) < \mu(A) + \mu(B)$ (A と B の間に相殺作用または代替性がある)
- (iii) $\mu(A \cup B) = \mu(A) + \mu(B)$ (A と B の間に相互作用がない、もしくは互いに独立である)

例 2.1 (ファジィ測度). あるレストランに行って、パスタとドリンクバーを注文する. パスタとドリンクバーを単品で注文すると、それぞれ 500 円と 300 円であった. 一方で、パスタとドリンクバーをセットで注文すると 700 円であった. このとき μ を

$$\mu(A) \coloneqq \begin{cases} 0 \: \text{円} & A = \emptyset \\ 300 \: \text{円} & A = \{ \: \text{ドリンクバー} \: \} \\ 500 \: \text{円} & A = \{ \: \text{パスタ} \: \} \\ 700 \: \text{円} & A = \{ \: \text{パスタ, ドリンクバー} \: \} \end{cases}$$

以下,特に断りがなければ μ を 2^X 上のファジィ測度とする.

定義 2.2 (ショケ積分). [5] ファジィ測度 μ と,関数 $f: X \to \mathbb{R}$ に対して, μ に関する f のショケ積分 (C) $\int f d\mu$ を以下のように定義する.

$$(C) \int_X f d\mu := \sum_{i=1}^n (f(x_{(i)}) - f(x_{(i-1)}) \cdot \mu(A_{(i)})$$

ここで, $f(x_{(0)})=0,$ $A_{(i)}\coloneqq\{x_{(i)},\ldots,x_{(n)}\},$ (\cdot) は $\{1,2,\ldots,n\}$ の置換であり, $f(x_{(1)})\le f(x_{(2)})\le\cdots\le f(x_{(n)})$ を満たすものとする.

例 2.2 (ショケ積分). $X = \{ パスタ, ドリンクバー \}$ とする. 10 人からなる団体で、5 人がパスタとドリンクバーのセットを、2 人がパスタ、3 人がドリンクバーを注文しようとしている. ここで、

セットの割引をできるだけ利用することを考える.このとき,関数 f をこの団体が注文した各品の数とする.つまり,f(パスタ)=7,f(ドリンクバー)=8 と定義する.すると,例 2.1 で定義した μ に関するショケ積分は, $(C)\int_X f d\mu=5200$ 円となり,この団体の支払う金額と一致する.

定義 2.3 (メビウス反転). [4] ファジィ測度 μ に添え字付けられた 2^X 上の集合関数

$$m_{\mu}(A) := \sum_{B \subseteq A} (-1)^{|A \setminus B|} \mu(B)$$

を μ に関するメビウス反転という.

以下のように、メビウス反転からファジィ測度の値を求めることができる.

$$\mu(A) = \sum_{B \subseteq A} m_{\mu}(B) \quad (\forall A \subseteq X)$$

集合 $A\subseteq X,$ $(|A|\ge 2)$ のメビウス反転 $m_\mu(A)$ は,他の部分集合とは独立に A が本質的に持っている相互作用の量と解釈できる.

例 2.3 (メビウス反転). あるレストランでテイクアウトする場合の価格が、以下のようになっている.

ただし, $\Omega=\{$ サラダ,パスタ,ドリンクバー $\}$ である.すると μ は 2^{Ω} 上のファジィ測度になっており, μ のメビウス反転は以下のようになる.

以下のように、メビウス反転を用いてショケ積分を計算することができる[4].

$$\begin{split} (C) \int_{X} f d\mu &= \sum_{i=1}^{n} (f(x_{(i)}) - f(x_{(i-1)})) \cdot \mu(A_{(i)}) \\ &= \sum_{i=1}^{n} f(x_{(i)}) \cdot \mu(A_{(i)}) - \sum_{j=1}^{n-1} f(x_{(j)}) \cdot \mu(A_{(j+1)}) \\ &= \sum_{i=1}^{n} f(x_{(i)}) \cdot (\mu(A_{(i)}) - \mu(A_{(i+1)})) \\ &= \sum_{i=1}^{n} f(x_{(i)}) \sum_{\substack{K \subseteq \{x_{(i)}\} \cup B \\ B \subseteq A_{(i+1)}}} m_{\mu}(K) \\ &= \sum_{i=1}^{n} \sum_{K \subseteq G_{i}} f(x_{(i)}) \cdot m_{\mu}(K) \\ &= \sum_{i=1}^{n} \sum_{K \subseteq G_{i}} \min_{x \in K} f(x) \cdot m_{\mu}(K) \\ &= \sum_{K \subseteq X} \min_{x \in K} f(x) \cdot m_{\mu}(K) \end{split}$$

ただし、 $A_{(n+1)} = \emptyset, G_i = \{\{x_{(i)}\} \cup B; B \subseteq A_{(i+1)}\}$

2.2.2 包除被覆

定義 2.4 (反鎖). [6] X の部分集合族 $A \subseteq 2^X$ は次の条件を満たすとき、反鎖であるという.

$$\forall A, B \in \mathcal{A}, A \subseteq B \Longrightarrow A = B$$

定義 2.5 (遺伝的). [6] X の部分集合族 $A \subseteq 2^X$ は、次の条件を満たすとき、遺伝的であるという.

$$\forall A \in \mathcal{A}, \forall B \subset A, B \in \mathcal{A}$$

X の部分集合族 $A \subseteq 2^X$ に対して、 $\operatorname{Max}(A), \operatorname{Her}(A) \subseteq 2^X$ を以下のように定義する.

 $Max(A) := \{A \in A; A は A の極大元 \}$

 $Min(A) := \{A \in A; A は A の極小元 \}$

 $\operatorname{Her}(\mathcal{A}) := \{ A \in 2^X; \exists B \in \mathcal{A}, A \subseteq B \}$

 $\operatorname{Max}(A)$ は A に含まれる全ての極大元からなる反鎖, $\operatorname{Min}(A)$ は A に含まれる全ての極小元からなる集合族, $\operatorname{Her}(A)$ は A を含む最小の遺伝的部分集合族である.

定義 2.6 (被覆). 集合族 $\mathcal{C} \subseteq 2^X$ は、 $X \subseteq \bigcup_{A \in \mathcal{C}} A$ を満たすとき、集合 X の被覆であるという.

X の被覆 C が反鎖であるとき、既約な被覆という.

定義 2.7 (包除被覆). [7] X の被覆 C がファジィ測度 μ に関する包除被覆であるとは、次式が成り立つことをいう.

$$\mu(A) = \sum_{\mathcal{K} \subseteq \mathcal{C}, \mathcal{K} \neq \emptyset} (-1)^{|\mathcal{K}|-1} \mu(\bigcap_{K \in \mathcal{K}} K \cap A)$$

例 2.4 (包除被覆). 例 2.3 において, $\mathcal{C}=\{\{$ ドリンクバー,サラダ $\}$, $\{$ ドリンクバー,パスタ $\}\}$ とすると, \mathcal{C} は μ に関する包除被覆になっている.包除被覆を用いて, 2^Ω の各要素を計算すると以下のようになる.

 μ ({ ドリンクバー, サラダ }) の計算は、{ ドリンクバー, サラダ } \in Her(\mathcal{C}) であり展開されず、 $\mu(\Omega)$ の計算は、 $\Omega \notin$ Her(\mathcal{C}) であり、Her(\mathcal{C}) の要素で展開されている.

一般に、任意の μ に関する包除被覆 $\mathcal C$ に対して、 $\mu(A)$ ($A\subseteq X$) は $\{\mu(B); B\in \operatorname{Her}(\mathcal C)\}$ のみを用いて展開できる。包除被覆は、全ての部分集合間の相互作用を考える必要はなく、非加法性は $\mathcal C$ に分解でき、 $C\in \mathcal C$ の内部にだけ相互作用があるという解釈ができる.

C, $\operatorname{Her}(\mathcal{C})$, $\operatorname{Max}(\mathcal{C})$ のうち,どれかが包除被覆であれば,他の2つも包除被覆である.また,任意のファジィ測度 μ に対して, μ に関する既約被覆 $\hat{\mathcal{D}}$ が存在し,他の μ の包除被覆 \mathcal{D} に対して, $\operatorname{Her}(\hat{\mathcal{D}}) = \operatorname{Her}(\mathcal{D})$ となり,パラメータ集合を共にし同じ相互作用の情報を表している.従って,既約な包除被覆のみを考えれば十分である.本論文ではこれ以降,特に断りのない限り既約な包除被覆のことを包除被覆とよぶ.

例 2.5 $(X = \{1,2,3\}$ の包除被覆群). 全体集合を $X = \{1,2,3\}$ とする. X における全ての包除被覆を図 1 に示す。包除被覆間の辺は、パラメータを 1 つ増減すると一致する関係を表している。また、包除被覆 $\mathcal{C},\mathcal{D}\subseteq 2^X$ に対して、 $|\mathrm{Her}(\mathcal{C})|<|\mathrm{Her}(\mathcal{D})|$ のとき、 \mathcal{C} は \mathcal{D} よりも細かいといい、逆に \mathcal{D} は \mathcal{C} よりも粗いという。図 1 から、 $\{\{1,2,3\}\}$ が最も粗い包除被覆であり、 $\{\{1\},\{2\},\{3\}\}\}$ が最も細かい包除被覆であることがわかる。

メビウス反転 m_{μ} を用いれば,以下のように μ の包除被覆を求めることができ [7],後述する人工データの生成などで使用している.

$$Max({A \subseteq X; m_{\mu}(A) \neq 0} \cup \mathcal{X}_1)$$

図 1: X = {1,2,3} の包除被覆群

2.3 ショケ積分モデルと包除被覆モデル

2.3.1 ショケ積分モデル

回帰モデルの集約関数としてショケ積分を用いた以下のモデルをショケ積分モデルとよぶ.

$$y = (C) \int_X x d\mu + \epsilon$$

ただし、ベクトル $x \in \mathbb{R}^n$ を、 $i \in X$ に対して $f(i) \coloneqq (x$ の第 i 成分 $x_i)$ とする関数 $f: X \to \mathbb{R}$ と同一視する。ショケ積分モデルのパラメータは、 $\mu(A)$ $(A \subseteq 2^X \setminus \{\emptyset\})$ である。このショケ積分モデルを、 ϵ を正規誤差とし、訓練データによる学習によって解くことを考える。すなわち、入力ベクトルとその出力値のペア m 組からなる訓練データ $D = \{(x_i, y_i)\}_{i=1}^m \subset [0, \infty)^{n+1}$ に、

$$y_i = (C) \int_{\mathbf{Y}} \mathbf{x}_i d\mu + \epsilon_i (i = 1, 2, \dots, m)$$
(1)

を当てはめる. ただし、誤差項 ϵ_i $(i=1,2,\ldots,m)$ は分散が等しく互いに独立とする. また、モデルのパラメータ μ を同定するために最小二乗法を用いる. すなわち、

$$\mu^* = \arg\min_{\mu} \sum_{i=1}^{m} \left((C) \int_{X} \boldsymbol{x}_i d\mu - y_i \right)^2$$

によって、全てのパラメータ $\mu(A)$ $(A\subseteq 2^X\setminus\{\emptyset\})$ を求める.最小二乗法による μ の同定問題は制約付き凸二次計画問題になることが知られている [8].

2.3.2 包除被覆モデル

包除被覆モデルは、ショケ積分モデルに内在するファジィ測度に、包除被覆を導入したモデルである。すなわち、

$$y = (C) \int_X \boldsymbol{x} d\mu + \epsilon$$

によって回帰させるが、 μ は包除被覆 $\mathcal C$ を持つ.このモデルのパラメータは $\mu(A)$ $(A \in \operatorname{Her}(\mathcal C) \setminus \{\emptyset\})$ である.

X における包除被覆モデル群は,図 2 のように,線形モデルと一般のショケ積分モデルを特殊な場合として含むモデル群である.この図におけるモデルを結ぶ辺は,パラメータを 1 つ増減させるとモデルが一致する関係を表している.これらの包除被覆モデルの中で,データに対してよく追従する一般性とパラメータ数におけるモデルの単純性を同時に満たすようなものを見つけたい.そのためのアルゴリズムは既に提案されており次項で詳しく述べる.

図 2: 包除被覆モデル群

3 CSA1

包除被覆モデル群を探索するアルゴリズムは、論文 [3] で既に提案されている. 以下、このアルゴリズムを CSA1(covering search algorithm 1 の略) とよぶ.

3.1 CSA1の説明

アルゴリズム CSA1 の疑似コードを Algorithm1,2 に示す.疑似コードでは,包除被覆モデル \mathcal{C} の同定を identify(\mathcal{C}) とし,同定したモデルを $\operatorname{model}(\mathcal{C})$ で表す.包除被覆の集合 gs に対して,minimalICmodels(gs) を「モデル群 gs の中で事前に採用した情報量基準 $\operatorname{criteria}$ について,最小となるモデルと,そのモデルとの差が 2 未満であるモデル」を返す関数とする.また,変数 calcedCoverings をこれまでに同定したモデルの包除被覆集合とし,parameters(\mathcal{C}) を包除被覆モデル \mathcal{C} のパラメータ集合, $\operatorname{IC}(\mathcal{C})$ をモデル \mathcal{C} の情報量基準値とする.

Algorithm 1 CSA1

```
Input: D = \{(x_i, y_i)\}_{i=1}^m \subset [0, \infty)^{n+1}
Require: |D| - 2^{|X|} - 1 > 0
Output: 準最適な包除被覆モデルの集合
   identify (\mathcal{X}_1)
   if \frac{\operatorname{model}(\mathcal{X}_1)}{\sum y_i^2} < 0.05 then
       criteria \leftarrow BIC
   else
       criteria \leftarrow \mathsf{AIC}
   end if
   identify (\mathcal{X}_2)
   Q \leftarrow \{C \in \mathcal{X}_2; |\text{tvalue}(\mathcal{X}_2, C)| > t_{m-2^n-1}\}
   if \bigcup \mathcal{Q} \neq X then
       \{c_1,\ldots,c_n\}\leftarrow X\setminus\bigcup\mathcal{Q}
       \mathcal{Q} \leftarrow \mathcal{Q} \cup \{\{c_1\}, \dots, \{c_n\}\}\
   end if
   for all C \in \mathcal{X}_3 do
       \mathrm{identify}(\mathcal{Q} \cup \{C\})
   end for
   cs \leftarrow \{Q \cup \{C\}; \exists C \in \mathcal{X}_3, IC(\{Q \cup \{C\}) < IC(Q)\} - 2\}
   if \forall S \in \{P,Q\} \cup cs, IC(\mathcal{X}_1) < IC(S) - 2 then
       return model(\mathcal{X}_1)
   end if
   if |X|=2 then
       return minimalICmodels(calcedCoverings)
   end if
   if |cs| = 0 then
      if Q = \emptyset then
          gs \leftarrow \{\mathcal{X}_1\}
          hs \leftarrow \{\}
       else
          gs \leftarrow \{\mathcal{Q}\}
          hs \leftarrow \{\}
       end if
   else
       gs \leftarrow \arg\min|\operatorname{parameters}(\mathcal{S})|
       hs \leftarrow cs \setminus gs
   end if
```

Algorithm 2 CSA1(続き)

```
while true do
   if |qs| = 1 then
     \exists ! g \in gs
     minimals \leftarrow Min(2^X \setminus Her(g))
     \hat{qs} \leftarrow \{g \cup \{A\}; A \in minimals\}
   else
      \hat{gs} \leftarrow \{g_1 \cup g_2; g_1, g_2 \in gs(g_1 \neq g_2)\}\
   \hat{hs} \leftarrow \{h \in hs; \exists g' \in \hat{gs}, |parameters(g')| = parameters(h)\}
  for all S \in \hat{gs} \cup \hat{hs} do
     idetify(S)
   end for
   gs \leftarrow \text{minimalICmodels}(\hat{gs} \cup \hat{hs})
  if \exists h (n+3 \le h \le 2^n - 1), \min IC(h-3) \le \min IC(h-2) \le \min IC(h-1) \le \min IC(h) then
     return minimalICmodels(calcedCoverings)
   end if
end while
```

ステップ 1:線形モデルの同定と情報量基準の選択

まず,一番単純な線形包除被覆モデル \mathcal{X}_1 を同定する.その結果から, $\frac{\mathbb{E}^{F_{l}} \mathcal{X}_1 \operatorname{CSME} 2 \, \Re n}{\sum y_i^2}$ を計算し,値が 0.05 より小さいなら,情報量基準として BIC を用いる.そうでない場合は AIC を用いる.この閾値は CSA1 が提案された論文における実験結果に基づくものである.選択された情報量基準を criteria で表す.

ステップ 2: モデル \mathcal{X}_2 の同定と 2 要素集合の選定

仮説検定で棄却された $A \in X_2$ からなる集合族を Q とする.このとき,Q が X の被覆になっていない場合があるので,その場合は Q を被覆にするために必要な 1 点集合を全て Q に加え,そのモデルを改めて Q とする.

Algorithm 3 tvalue

Input: 包除被覆 $\mathcal{C} \subseteq 2^X$

Input: 集合 $A \subseteq X$

Require: 包除被覆モデルCが同定済み

Output: 包除被覆モデル \mathcal{C} におけるAのt統計量

1: $M \leftarrow$ 訓練データ D, 包除被覆 C におけるメビウス行列

2: **if** M^TM に逆行列が存在 **then**

3: $S \leftarrow (M^T M)^{-1}$

4: **else**

 $S \leftarrow M^T M$ の一般化逆行列

6: end if

7: $V_e \leftarrow \frac{\sum_{i=1}^m (y_i - (c) \int \boldsymbol{x}_i d\mu)^2}{m - n - 1}$

8: **return** $\frac{\hat{m}(A)}{\sqrt{S^{ii}V_e}}$

仮説検定の結果,全てのパラメータが採択され $Q=\emptyset$ となる場合がある.このように 2 要素集合の相互作用がなくても,より大きい集合に相互作用がある場合は大いにありえる.先行研究 [3] では,このようなケースを想定していない部分があるため,本論文の CSA1 では Well-defined となるように,終了条件や後に登場する gs の初期値などに自然な修正を施している.

3.1.1 関数 tvalue について

Algorithm 3 に関数 tvalue の 1 つの実装方法を疑似コードで示す.

定義 3.1 (メビウス計画行列). 訓練データ D と包除被覆 C におけるメビウス計画行列は,|D| 行 $|Her(C)\setminus\{\emptyset\}|$ 列からなる実数行列である。i 行は $(C)\int_X x_i d\mu$ を包除被覆 C で展開し,メビウス反 転 m_μ で表したときの係数ベクトルである。j 列がメビウス反転のどのパラメータの係数に対応するかは一対一対応になっていれば何でもよい。ここでは, $A\subseteq X$ を辞書式順序で並べたベクトルとする.

メビウス計画行列 M,応答ベクトル $\mathbf{y}=(y_1,y_2,\ldots,y_m)$, パラメータベクトル $\mathbf{m}=(m_\mu(C_1),m_\mu(C_2),\ldots,m_\mu(C_{|\mathrm{Her}(\mathcal{C})|-1}))$ は以下の等式を満たす.

$$\boldsymbol{y} = M\boldsymbol{m}$$

例 3.1 (メビウス計画行列). $X = \{1, 2, 3\}, C = \{\{1\}, \{2, 3\}\}, |D| = 2$ のとき、 $\boldsymbol{x}_1 = \{3, 7, 4\}, \boldsymbol{x}_2 = \{4, 2, 9\}$ とすると、

$$(C) \int_X \boldsymbol{x}_1 d\mu = 3\mu(\{2\}) + \mu(\{2,3\}) + 3\mu(\{1,2,3\})$$

$$= 3\mu(\{1\}) + 3\mu(\{2\}) + 4\mu(\{2,3\})$$

$$= 3m_{\mu}(\{1\}) + 7m_{\mu}(\{2\}) + 4m_{\mu}(\{3\}) + 4m_{\mu}(\{2,3\})$$

となる. 1つ目の等式はショケ積分の定義,2つ目は包除被覆の定義,3つ目はメビウス反転の定義による式変形である. \boldsymbol{x}_1 の係数ベクトル \boldsymbol{v}_1 を, $\boldsymbol{m}=(m_\mu(\{1\}),m_\mu(\{2\}),m_\mu(\{3\}),m_\mu(\{2,3\}))^T$, $(C)\int_X \boldsymbol{x}_1 d\mu = \boldsymbol{v}_1^T \boldsymbol{m}$ となるように定める. すなわち, $\boldsymbol{v}_1=(3,7,4,4)^T$ となる. \boldsymbol{x}_2 に対応する係数ベクトル \boldsymbol{v}_2 も同様に,

$$(C) \int_{X} \boldsymbol{x}_{2} d\mu = 4m_{\mu}(\{1\}) + 2m_{\mu}(\{2\}) + 9m_{\mu}(\{3\}) + 2m_{\mu}(\{2,3\})$$
$$= (4,2,9,2)^{T} \boldsymbol{m}$$
$$= \boldsymbol{v}_{2}^{T} \boldsymbol{m}$$

となり、メビウス計画行列は以下のようになる.

$$M = \begin{pmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \end{pmatrix} = \begin{pmatrix} 3 & 7 & 4 & 4 \\ 4 & 2 & 9 & 2 \end{pmatrix}$$

関数 tvalue は、包除被覆モデル C におけるメビウス計画行列を計画行列とした重線形回帰モデルにおいて、パラメータ $A\subseteq X$ に関する帰無仮説「 $m_{\mu}(A)=0$ 」の t 統計量を求める関数である.

ステップ3:3要素集合の選定

次に全ての 3 要素集合 A に対して,先ほどの選定された 2 要素集合モデル Q に A を加えた, $Q \cup \{A\}$ を包除被覆にもつモデルを同定する.モデル Q とモデル $Q \cup \{A\}$ の情報量基準 criteria を比較し,選定された 3 要素集合モデル群 cs を求める.具体的には,モデル Q の情報量基準よりも,モデル $Q \cup \{A\}$ の情報量基準が 2 以上小さいモデルを求め,それらのモデル群を cs とおく.

この段階で、線形包除被覆モデルが最適なモデルか判定する。すなわち、線形モデル X_1 、モデル X_2 、モデルQ、モデル群CSの中で線形モデルの情報量基準が2以上の差をつけて最小であれば、線形モデルを最適なモデルと判断して探索を終了する。

ステップ 4:変数 gs の初期値の決定

この次のステップ以降は,現在のステップにおける準最適なモデル群 gs を更新し,終了条件を確認するというループ処理になる.ここではその gs の初期値を決める.cs が存在しない場合,包除被覆モデル Q のみからなるモデル群を gs とおく.cs が存在する場合は,パラメータ数が最小のモデル群を gs, そうでないものを hs として別ける.

例えば, $X=\{1,2,3,4\}$ のとき,ステップ 2 の仮説検定で $\{1,2\},\{1,3\}$ が $m(A)\neq 0$ と判断された場合, $\mathcal{Q}=\{\{1,2\},\{1,3\},\{4\}\}$ であり,ステップ 3 で $A=\{1,2,3\},\{2,3,4\}$ が選ばれた場合,

 $Q \cup \{1,2,3\}$ のパラメータ数は 9 個, $Q \cup \{2,3,4\}$ のパラメータ数は 11 個となる.このように,cs のモデル群のパラメータ数は一般に異なっており.2 つの準最適なモデルがあったとき,精度が同じならパラメータ数が少ないモデルのほうが扱いが良いため,gs,hs で区別している.

ステップ 5:ループ処理

このステップでは,ステップ 4 で決めた現在のステップ数での準最適なモデル群が格納されている変数 gs を,終了条件を満たすか,全ての包除被覆モデルを探索しきるまで更新していく.|gs|=1 かどうかでの場合分けをするが,いづれの場合でも次に探索するモデル群 $\hat{gs} \cup \hat{hs}$ を求め,その中で情報量基準において最適なモデルを次のステップにおける gs として更新する.

|gs|=1 の場合

|gs|=1 の場合は,その唯一のモデルを g とおく.まだ g に含まれていないパラメータの中で,極小元になっているものが g に追加するパラメータの候補である.これらのモデルを同定し情報量基準において最適なモデル群を次の gs とする.すなわち,

$$\{g \cup \{A\}; A \in \operatorname{Min}(2^X \setminus \operatorname{Her}(g))\}\$$

を âs とおく.

|gs| > 1 の場合

|gs| > 1 の場合は,

$$g_i \cup g_j \in gs \ (g_i \neq g_j)$$

を包除被覆にもつモデルを全て同定する. これらのモデル群を \hat{gs} とおく.

共通処理

 \hat{qs} とパラメータ数を共にするモデルが hs にあれば、それらのモデル集合を \hat{hs} とおく.

モデル集合 $\hat{gs} \cup \hat{hs}$ の中から,情報量基準 criteria において最小なモデルと,そのモデルとの差が 2 未満となるモデルを全て選び,このモデル群を改めて gs とおき,このステップでの最適なモデル群とする.

ステップ 6:終了条件

以下の終了条件を満たしたときに、ループ処理を停止しする.

$$\exists h \, (n+3 \leq h \leq 2^n - 1),$$

$$\min IC(h-3) \leq \min IC(h-2) \leq \min IC(h-1) \leq \min IC(h)$$

ここで、minIC(i) はそれまでに同定したパラメータ数が i 個のモデル群における、最小の情報 量基準値を表す.終了条件を満たした場合は、これまでに同定した全てのモデル群の中で、情報量 基準 criteria について,最小なモデルとそのモデルとの差が 2 未満となるモデルを,最適なモデル 集合として返す.

CSA1の使用例 3.2

5

5

6

7

7

人工的に生成したデータに対して、CSA1 を適用した例を示す。人工データは、全体集合 X = $\{1,2,3,4\}$ で、表 1 のメビウス反転に対応するファジィ測度から第 2 節の式 (1) を用いて生成した. なお、表にないパラメータ値は 0 であり、被積分関数は $[0,1]^4$ 上の一様乱数、誤差項 ϵ_i は、平均 0、 標準誤差 0.01 に従う正規乱数を使用し、データ数は 800 組とした.このファジィ測度の真の包除 被覆は $\operatorname{Max}(\{A\subseteq X; m_{\mu}(A)\neq 0\})=\{\{1,2,3\},\{1,3,4\}\}$ である.このデータに対して CSA1 を 適用した場合の、モデルの探索過程を表2に示す.

表 1: 生成もとのメビウス反転 $|\{1\}|\{2\}|\{3\}|\{4\}|\{1,2\}|\{1,3\}|\{2,3\}|\{3,4\}|\{1,2,3\}|\{1,3,4\}|$ m_{μ} 0.3 0.4 0.5 0.6 0.1 0.2 -0.1 -0.4

表 2: 探索過程

ステップ数	包除被覆モデル	パラメータ数	情報量基準值
1	$\{\{1\}, \{2\}, \{3\}, \{4\}\}$	4	-4640.56
2	$\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$	10	-6696.18
3	$\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{3,4\}\}$	9	-6701.93
4	$\{\{1, 4\}, \{3, 4\}, \{1, 2, 3\}\}$	10	-7197.88
4	$\{\{1,3\},\{2,3\},\{3,4\},\{1,2,4\}\}$	11	-6702.84

 $\{\{1, 2\}, \{2, 3\}, \{1, 3, 4\}\}$

 $\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3, 4\}\}$

 $\{\{1,4\},\{2,4\},\{3,4\},\{1,2,3\}\}$

 $\{\{1, 2, 3\}, \{1, 3, 4\}\}$

 $\{\{2,4\},\{1,2,3\},\{1,3,4\}\}$

 $\{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}$

 $\{\{1, 2, 3\}, \{1, 3, 4\}, \{2, 3, 4\}\}$

 $\{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$

10

11

11

11

12

13

13

14

-6695.28

-6689.52

-7191.33

-7347.68

-7341.54

-7334.89

-7336.43

-7329.9

まず線形包除被覆モデル {{1}, {2}, {3}, {4}} のファジィ測度を同定する.その結果から, $\frac{(\Re N \ D \otimes K + \overline{W} + \overline$ いる.

次に $\mathcal{X}_2 = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$ を包除被覆に持つモデルを同定し、仮説検定 を行う. この結果を表3に示す. m(A) = 0が帰無仮説なので、棄却された $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{3,4\}$ が必要と判断されたパラメータである. 生成もとのメビウス反転で $m_{\mu}(A)=0$ となる A は、 $\{1,4\}$ と $\{2,4\}$ なので、 $\{1,4\}$ は誤って棄却されていることがわかる.

表 3: 仮説検定の結果

_		{1, 2 }	{1, 3 }	{1, 4 }	{2, 3 }	{2,4 }	{3,4 }
-	t値	-2.42	30.08	13.5	-38.84	-0.96	-74.75
-	採択	х	х	х	х	0	Х

次に、包除被覆モデル $\mathcal{Q}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{3,4\}\}$ を同定し、|A|=3 となる $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$ に対して、包除被覆モデル $\mathcal{Q}\cup\{A\}$ を同定する。つまり、 $\{\{1,4\},\{3,4\},\{1,2,3\}\},\{\{1,3\},\{2,3\},\{3,4\},\{1,2,4\}\},\{\{1,2\},\{2,3\},\{1,3,4\}\},$ $\{\{1,2\},\{1,3\},\{1,4\},\{2,3,4\}\}$ をそれぞれ包除被覆に持つモデル 4 つを同定する。

モデル Q とこれら 4 つのモデルの BIC を比較する. BIC に関してモデル Q よりも 2 以上小さくなるモデルは 4 つのうち, $\{\{1,4\},\{3,4\},\{1,2,3\}\}$ の 1 つであることがわかる. このモデルのみからなる集合を cs とおく.

線形モデルが終了条件を満たしているか確認する。モデル χ_2 の情報量基準値よりも大きいので、この時点で終了条件を満たしていないことがわかる。

ループ1

|cs|=1 であり、 $g=\{\{1,4\},\{3,4\},\{1,2,3\}\}$ 、 $gs=\{g\}$ 、 $hs=\emptyset$ とおく。 $\mathrm{Min}(2^X\setminus\mathrm{Her}(g))=\{\{2,4\},\{1,3,4\}\}$ であり、それぞれの集合を g に加えた包除被覆モデルを同定する。つまり、モデル $\{\{1,4\},\{2,4\},\{3,4\},\{1,2,3\}\}$ とモデル $\{\{1,2,3\},\{1,3,4\}\}$ を同定する。その結果、この 2 つのモデルのうち情報量基準 criteria に関して最小のモデル群は、モデル $\{\{1,2,3\},\{1,3,4\}\}$ のみから構成されるものとなった。このモデル群を改めて gs とおく。

ループ2

|gs|=1 であり、 $g=\{\{1,2,3\},\{1,3,4\}\}$ とおく、 $\min(2^X\setminus \operatorname{Her}(g))=\{\{2,4\}\}$ となり、極小元は 1 つである。この極小元を g に加えたモデル $\{\{2,4\},\{1,2,3\},\{1,3,4\}\}$ を同定し、このモデルのみからなる集合を gs と改めておく、

ループ3

|gs|=1であり、 $g=\{\{2,4\},\{1,2,3\},\{1,3,4\}\}$ とおく、 $\min(2^X\setminus\operatorname{Her}(g))=\{\{1,2,4\},\{2,3,4\}\}$ となり、それぞれの集合を g に加えたモデル $\{\{1,2,3\},\{1,2,4\},\{1,3,4\}\}$ と $\{\{1,2,3\},\{1,3,4\},\{2,3,4\}\}$ をぞれぞれ同定する。これらのモデルの情報量基準値の差が 2 未満なので、両方のモデルからなる集合を gs と改めておく。

ループ4

|gs|=2であり、2つのモデル $g_1,g_2\in gs$ に対して、モデル $g_1\cup g_2=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}$ を同定する.このとき初めて終了条件を h=14 にて満たし、これまでに同定したモデルの中でBIC が最小となるモデル $\{\{1,2,3\},\{1,3,4\}\}$ を最適なモデルとして出力しアルゴリズムを終了する.このモデルの BIC との差が 2 未満であるモデルはない.この最適と判断された包除被覆モデルは、データ生成もとの真の包除被覆と一致している.

4 CSA2

4.1 CSA1からCSA2へ

CSA1 の改良の余地がある点を以下に述べ,それらの改良点を考慮した新たなアルゴリズムを考える.本論文で提案する準最適な包除被覆モデルを探索するアルゴリズムを Covering Search Algorithm 2 と名付け,以下 CSA2 と略記する.CSA1 では,|gs|=1 の場合のループ時において,全ての $A \in \text{Min}(2^X \setminus \text{Her}(g))$ に対して,モデル $g \cup \{A\}$ を同定している.しかし,評価基準の数が多くなると,一般に 1 度のループで同定するモデルの数が非線形に多くなってしまう.例えば, $g = \mathcal{X}_2$ のとき, $|\text{Min}(2^X \setminus \text{Her}(g))| = |\mathcal{X}_3| = {}_n C_3$ であり,評価基準数の n^3 のオーダーで同定するモデルは増加する.

そこで CSA2 では、これらの追加する候補の集合に対して、t 統計量の絶対値が最大のもののみを追加するように改良しており、|X| の大きさに関わらず t 統計量が完全に一致するという特殊な場合を除いて、各ループで同定するモデルはただ 1 つとなる。また、CSA1 では要素数 3 の集合に対するモデル選定をループ処理の前段階で個別に計算しているが、この改良によって CSA2 では要素数 3 の集合に対しても t 統計量を用いる選定に変更し、ループ処理に含めたものになっている。

CSA2 の疑似コードを Algorithm 4 に示す。CSA2 は,CSA1 におけるステップ 2 のモデル Q を同定するところまで同じである。次項では,それ以降のステップについて述べる。

ステップ3:変数qsの初期値の決定

CSA1 では、このあと各 3 要素集合を Q に追加したモデルを検討しているが、CSA2 では 3 要素集合を特別な場合として計算せず、この段階でループ変数 gs の初期値を決める.

具体的には、2要素集合の仮説検定で全ての集合が採択された場合は、gs を線形モデルのみのモデル集合とし、そうでない場合は、gs を Q のみからなるモデル集合とする.

ステップ4:ループ処理

あるループにおける同定したいモデル集合 ĝs は以下のように決める.

 $\hat{gs} \leftarrow \{g \cup \{A\}; g \in gs, \, A \in \text{nexts}(g)\}$

Algorithm 4 CSA2

```
Input: D = \{(x_i, y_i)\}_{i=1}^m \subset [0, \infty)^{n+1}
Require: |D| - 2^{|X|} - 1 > 0
Output: 準最適な包除被覆モデルの集合
   identify(\mathcal{X}_1)
   if \frac{\text{model}(\mathcal{X}_1)}{\sum y_i^2} における残差 2 乗和 < 0.05 then
      criteria \leftarrow BIC
   else
      criteria \leftarrow AIC
   end if
   identify (\mathcal{X}_2)
   Q \leftarrow \{C \in \mathcal{X}_2; |\text{tvalue}(\mathcal{X}_2, C)| > t_{m-2^n-1}\}
   if \bigcup \mathcal{Q} \neq X then
      \{c_1,\ldots,c_n\}\leftarrow X\setminus\bigcup\mathcal{Q}
      \mathcal{Q} \leftarrow \mathcal{Q} \cup \{\{c_1\}, \dots, \{c_n\}\}\
   end if
   if |X|=2 then
      return minimalICmodels(calcedCoverings)
   end if
   if Q = \emptyset then
      gs \leftarrow \{\mathcal{X}_1\}
   else
      gs \leftarrow \{\mathcal{Q}\}
   end if
   while true do
      \hat{gs} \leftarrow \{g \cup \{A\}; g \in gs, A \in \text{nexts}(g)\}
      qs \leftarrow \text{minimalICmodels}(\hat{qs})
      if \exists h (n+3 \le h \le 2^n - 1), \min IC(h-3) \le \min IC(h-2) \le \min IC(h-1) \le \min IC(h) then
         return minimalICmodels(calcedCoverings)
      end if
   end while
```

ここで、nexts(g) は、探索したい $g \cup \{A\}$ のパラメータ A の集合族を返す関数になっている.関数 nexts については次の項で詳しく述べる. \hat{gs} が求まったら、その中で情報量基準 criteria において最小を達成するモデルと、そのモデルとの差が 2 未満のモデルからなる集合を改めて gs とおき更新する.

CSA1 と同じ終了条件を満たしたら、ループを抜け出し、これまでに同定したモデルの中で情報

Algorithm 5 nexts

Input: 包除被覆 *C*

Output: 探索したい $g \cup \{A\}$ のパラメータ A の集合族

- 1: $minimals \leftarrow Min(2^X \setminus Her(\mathcal{C}))$
- 2: **if** |minimals| = 1 **then**
- 3: return minimals
- 4: else
- 5: identify $(C \cup minimals)$
- 6: **return** $\underset{A \in minimals}{\operatorname{arg max}} |\operatorname{tvalue}(\mathcal{C} \cup minimals, A)|$
- 7: end if

量基準 criteria において、最小を達成するモデルと、そのモデルとの差が2未満のモデルを最適なモデル集合として出力しアルゴリズムを停止する.

4.2 関数 nexts について

関数 nexts の疑似コードを Algorithm 5 に示す. まず,モデル $\mathcal C$ に含まれていない極小元の集合を minimals とおく. |minimals|=1 なら、t 統計量の大小を用いる必要はなく、minimals を そのまま返す. |minimals|>1 なら、モデル $\mathcal C\cup minnimals$ を同定し、このモデルにおける各 $A\in minimals$ の t 統計量を求め、その絶対値が最大の集合を返す.

4.3 CSA2の使用例

人工的に生成したデータに対して、CSA2 を適用した例を示す。CSA1 の例で使用した人工データを用いる。従って、CSA1 と同じ手順である Q の導出までは同じ結果となった。表 3 に探索過程を示す。

表 4: 探索過程

ステップ数	包除被覆モデル	パラメータ数	情報量基準值
1	{{1}, {2}, {3}, {4}}	4	-4640.56
2	$\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$	10	-6696.18
3	$\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{3, 4\}\}$	9	-6701.93
4	$\{\{2,4\},\{1,2,3\},\{1,3,4\}\}$	12	- 7341.54
5	$\{\{1,4\},\{3,4\},\{1,2,3\}\}$	10	- 7197.88
6	$\{\{1, 2, 3\}, \{1, 3, 4\}\}$	11	-7347.68
7	$\{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$	14	-7329.9
8	$\{\{1, 2, 3\}, \{1, 3, 4\}, \{2, 3, 4\}\}$	13	-7336.43

gs の初期値の決定

 $Q = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{3,4\}\}$ を同定した後,gs の初期値を決める.Q は空集合ではないので,gs をモデル Q のみからなるモデル集合とする.

ループ処理1

nexts(Q) を計算する. 関数 nexts 内の各変数は以下のようになる.

$$minimals \leftarrow \{\{2,4\}, \{1,2,3\}, \{1,3,4\}\}\$$

 $\mathcal{C} \cup minimals \leftarrow \{\{2,4\}, \{1,2,3\}, \{1,3,4\}\}\$

 $|minimals| \neq 1$ なので $Q \cup minimals = \{\{2,4\}, \{1,2,3\}, \{1,3,4\}\}$ を同定し、モデル $Q \cup minimals$ において、t 統計量の絶対値が最大の $A \in minimals$ は $\{1,2,3\}$ となり、nexts(Q) は $\{\{1,2,3\}\}$ を返す.従って、 $g\hat{s}$ と gs は、 $Q \cup \{\{1,2,3\}\} = \{\{1,4\}, \{3,4\}, \{1,2,3\}\}$ のみからなるモデル集合となる.

ループ処理2

 $\operatorname{nexts}(\{\{1,4\},\{3,4\},\{1,2,3\}\})$ を計算する. 関数 nexts 内の各変数は以下のようになる.

$$\begin{aligned} & minimals \leftarrow \{\{2,4\},\{1,3,4\}\} \\ & \mathcal{C} \cup minimals \leftarrow \{\{2,4\},\{1,2,3\},\{1,3,4\}\} \end{aligned}$$

モデル $\mathcal{C} \cup minimals$ は既に同定されている.このように,既に同定されている包除被覆に対して関数 identify を実行する場合は,何もしないものとする.

minimals のうち t 統計量の絶対値が最大のものは、 $\{1,3,4\}$ であったので、nexts(g) は $\{\{1,3,4\}\}$ を返す.従って、 $g\hat{s}$ と $g\hat{s}$ は、 $g\cup\{\{1,3,4\}\}=\{\{1,2,3\},\{1,3,4\}\}$ のみからなるモデル集合となる.

ループ処理3

 $nexts(\{\{1,2,3\},\{1,3,4\}\})$ を計算する. 関数 nexts 内の各変数は以下のようになる.

$$minimals \leftarrow \{\{2,4\}\}\$$
 $\mathcal{C} \cup minimals \leftarrow \{\{2,4\},\{1,2,3\},\{1,3,4\}\}\$

モデル $\mathcal{C} \cup minimals$ は既に同定されている。|minimals|=1 なので、nexts(g) は minimals を そのまま返す。従って、 \hat{gs} と gs は、 $g \cup \{\{2,4\}\}=\{\{2,4\},\{1,2,3\},\{1,3,4\}\}$ のみからなるモデル集合となる。

ループ処理4

 $nexts(\{\{2,4\},\{1,2,3\},\{1,3,4\}\})$ を計算する. 関数 nexts 内の各変数は以下のようになる.

$$\begin{aligned} & minimals \leftarrow \{\{1,2,4\},\{2,3,4\}\} \\ & \mathcal{C} \cup minimals \leftarrow \{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\} \end{aligned}$$

モデル $\mathcal{C}\cup minimals$ を同定し、minimals のうち t 統計量の絶対値が最大のものは、 $\{2,3,4\}$ であったので、nexts(g) は $\{\{2,3,4\}\}$ を返す.従って、 $g\hat{s}$ と $g\hat{s}$ は、 $g\cup\{\{2,3,4\}\}=\{\{1,2,3\},\{1,3,4\},\{2,3,4\}\}$ のみからなるモデル集合となる.

このループ時に初めて終了条件を h=14 にて満たし、情報量基準 criteria において、最小のモデル $\{\{1,2,3\},\{1,3,4\}\}$ を返す.今回は、最小のモデルと情報量基準の差が 2 未満のモデルはない.この最小のモデルの包除被覆は、データ生成もとの真の包除被覆と一致している.またこのデータにおいて、CSA1 は 13 個のモデルを同定したのに対し、CSA2 ではより少ない 8 個のモデルを同定している.

5 人工データによる実験

5.1 実験手順

人工的に生成したデータに対して,CSA1 と CSA2 の性能の比較をする.人工データは事前に定めたファジィ測度 μ から,第 2 節の式 (1) を用いて生成する.被積分関数は $[0,1]^{|X|}$ 上の一様乱数,誤差項 ϵ_i は平均 0,標準誤差 e に従う正規乱数を使用し,データ数は |D| 組とした.ここで,e を $\{0.01,0.1,1\},|D|$ を $\{10,25,50,100,200,400,800\}$ と変え,さらに各 $(\mu,e,|D|)$ に対して別の乱数シードで 3 組のデータを生成した.また,真値として事前に定めるファジィ測度 μ は全部で 50種類あり,付録の表 5-9 に |X| 毎のパラメータ値を載せておく.|X|=2 の具体例は例番号 1-5 の 5 種類,|X|=3 は例番号 6-22 の 17 種類,|X|=4 は番号 23-37 の 15 種類,|X|=5 は 38-50 の 13 種類である

ベンチマークとして以下の3つの指標を用いる.1つ目の指標はファジィ測度間のユークリッド距離である.

$$\sum_{A\in 2^X}|\hat{\mu}(A)-\mu(A)|^2$$

ここで μ は真値のファジィ測度であり、 $\hat{\mu}$ はいづれかの CSA によって求まった最適な包除被覆モデルにおけるファジィ測度である。最適と判断されたモデルが複数ある場合は、情報量基準が最小のモデルを用いる。

2つ目の指標は包除被覆間の類似度である. 包除被覆C,Dの類似度を以下のように定める.

$$\mathrm{similarity}(\mathcal{C},\mathcal{D}) \coloneqq \frac{|\mathrm{Her}(\mathcal{C}) \cap \mathrm{Her}(\mathcal{D})| - |X| - 1}{|\mathrm{Her}(\mathcal{C}) \cup \mathrm{Her}(\mathcal{D})| - |X| - 1}$$

一般に包除被覆 $\mathcal{C} \subseteq 2^X$ は X の被覆なので必ず $\mathcal{X}_1 \subseteq \operatorname{Her}(\mathcal{C})$ であることと, $\emptyset \in \operatorname{Her}(\mathcal{C})$ であることから,similarity の値域は [0,1] である.ただし, $\frac{0}{0} = 1$ とする.この類似度関数で,真値の包除被覆と各 CSA による最適なモデルの包除被覆の類似度を比較する.

3つ目の指標はアルゴリズムが終了するまでに同定したモデルの個数である. 上記 2 つの指標はデータ生成もとの真値とそれぞれのアルゴリズムとの比較なのに対し,この指標は CSA1 と CSA2 間の比較である. もしいづれのアルゴリズムも同じ包除被覆モデルを最適と選んだ場合,探索したモデルの数が少ないほど効率的だといえる.

5.2 実験結果

付録の表 10-59 に全ての実験結果を示す。各実験毎の表は,標準誤差とデータ数のマトリックス表になっている。各セルはさらに 2×3 のマトリックス表になっており,1 列目が各 CSA と真値のファジィ測度間のユークリッド距離,2 列目が各 CSA と真値の包除被覆間の類似度,3 列目が各 CSA の探索モデル数であり,1 行目が CSA1,2 行目が CSA2 の値となっている。また各セルの値は別の乱数シードを用いて生成した 3 組のデータから求まる値の平均値である。"-"は仮説検定時にデータ数が足りずアルゴリズムが動作しない場合である。

また、真値と CSA1 のファジィ測度の距離が、真値と CSA2 との距離よりも小さいなら青色、大きいなら緑色に数値を色付けしている。 包除被覆間の類似度も同様に、真値と CSA1 から求まる 包除被覆間の類似度が、真値と CSA2 との類似度よりも大きい場合は青色、小さい場合は緑色に色付けしている。 3 列目の探索回数についても、 CSA1 の探索回数が CSA2 のものよりも少ない場合は青色、多い場合は緑色に色付けしている。 従って、実験結果の表は、青色より緑色の項目が多いほど CSA2 の性能が高いといえる。

|X|=2 の実験結果

|X|=2 である実験例 1 から 5 までは,CSA1 と CSA2 は同じ処理をするため,CSA1 と CSA2 の性能の差はないことがわかる.

|X|=3 の実験結果

|X| = 3 である実験例 6 から 22 については、

- CSA1 のほうが探索回数の小さい結果:30 個
- CSA2 のほうが探索回数の小さい結果:193 個
 - さらに CSA1 のほうが、測度間の距離と被覆間の類似度に関して性能がいい結果:19 個
 - さらに CSA2 のほうが、測度間の距離と被覆間の類似度に関して性能がいい結果:8個

ここで、ある実験において CSA1 よりも CSA2 のほうが、ファジィ測度間の距離と包除被覆間の類似度に関して性能がいいとは、CSA1 のほうがファジィ測度間の距離が真に小さく、包除被覆間の類似度が小さくないか、もしくは、CSA1 のほうがファジィ測度間の距離が大きくなく、包除被覆間の類似度が真に大きいこという.

|X|=4 の実験結果

|X| = 4 である実験例 23 から 37 については、

- CSA1 のほうが探索回数の小さい結果:0個
- CSA2 のほうが探索回数の小さい結果: 270 個
 - さらに CSA1 のほうが、測度間の距離と被覆間の類似度に関して性能がいい結果: 41 個
 - さらに CSA2 のほうが、測度間の距離と被覆間の類似度に関して性能がいい結果: 14 個

|X|=5 の実験結果

|X| = 5 である実験例 38 から 50 については、

- CSA1 のほうが探索回数の小さい結果:0個
- CSA2 のほうが探索回数の小さい結果:195 個
 - さらに CSA1 のほうが、測度間の距離と被覆間の類似度に関して性能がいい結果: 44 個
 - さらに CSA2 のほうが、測度間の距離と被覆間の類似度に関して性能がいい結果: 28 個

|X|=3の 30 ケースを除いた全ての実験において、CSA2 は CSA1 よりも同等かそれ以下の探索回数である。さらに |X|=5 の実験では、多くのケースで CSA1 の探索回数が 50 を超えている一方で、CSA2 は 10 以下の探索回数で済んでおり、尚且つ CSA2 のほうが精度が同等かより良いケースが数多く存在している。CSA2 のほうが探索回数が少ない分、CSA1 のほうが総じて精度面において優れている結果になっているが、CSA2 のほうが性能がいい結果となるケースも十分存在しているため、CSA1 と CSA2 の間で、探索回数と精度のトレードオフができている結果となった。

6 まとめと今後の展望

本研究では,t 統計量の大小関係に着目した新たな包除被覆探索アルゴリズム CSA2 を提案し,先行研究 [3] のアルゴリズム CSA1 との実験比較を,50 個の具体的なファジィ測度から生成した人工データに対して行った.その結果 CSA2 は,評価基準数が 3 以上の実験で,精度をある程度保ったまま CSA1 の探索回数を大幅に減らすことができ,それだけではなく,CSA1 よりも CSA2 のほうが全ての指標で性能が良い実験も多数存在した.

本研究では、様々な包除被覆を持つファジィ測度の包括的な実験を行ったが、具体的なファジィ測度の値に着目し、どのようなファジィ測度の構造なら CSA1 および CSA2 がそれぞれ得意なのかまでは検証することができなかった.

また、そもそもファジィ測度のパラメータ数を抑える方法として、包除被覆とは別の構造を考えることもできる。例えば、 $\{1,2,3\}$ を包除被覆の要素にもつモデルは、その遺伝的部分集合全てに相互作用があると仮定されるが、 $\{1,2\},\{2,3\},\{1,3\}$ に相互作用がなくて、3 要素揃って初めて相互作用がでるというケースも考えられる。これを表現できるモデルを提案することは意義があるだろう。

CSA2 アルゴリズムは、nexts 関数と終了条件を変更すると、別の方法で探索回数と精度のトレードオフが実現できる。nexts 関数内で、データの偏りやパラメータ $\mu(A)$ の要素数 |A| による t 値の重みづけをすれば、より探索精度の良いアルゴリズムになるのではないかと考える。例えばデータの偏りには、入力ベクトルの Walk [9] の偏りが考えられる。また、要素数 |A| が大きいパラメータ $\mu(A)$ ほど、メビウス変換時に多くの加減算をするため分散が大きくなり t 値の信憑性が揺らぎやすい。

本研究の実験に用いた関数群やアルゴリズムを含むパッケージを Github 上にアップロードした [10]. さらなる研究のために是非活用していただきたい.

参考文献

- T. C. Havens and D. T. Anderson, Machine Learning of Choquet Integral Regression with Respect to a Bounded Capacity (or Non-monotonic Fuzzy Measure), 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-6, 2019
- [2] A. F. Tehrani, W. Cheng, and E. Hullermeier, Choquistic regression: "Generalizing logistic regression using the choquet integral, in Proc. EUSFLAT, 868–875, 2011
- [3] 渡邉哲史, 変数増減法による準最適包除被覆モデルの探索, 東京工業大学 知能システム科学専 攻修士論文, 2001.
- [4] Fallah Tehrani, Ali and Cheng, Weiwei and Hüllermeier, Eyke. Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking. IEEE Transactions on Fuzzy Systems. 20., 2012
- [5] T. Murofushi and M. Sugeno, A theory of fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. Appl., 159 532–549., 1991
- [6] 室伏俊明, 室伏研 研究プロジェクト資料 (演習付) 第1部 部分集合族編, 2019
- [7] 室伏俊明, 室伏研 研究プロジェクト資料 (演習付) 第2部 包除族編, 2019
- [8] 室伏俊明,ファジィ測度とファジィ積分,日本ファジィ学会,講習会「応用のためのファジィ 理論の基礎」テキスト, 62-73., 1994
- [9] B. J. Murray et al., Explainable AI for the Choquet Integral, in IEEE Transactions on Emerging Topics in Computational Intelligence, 5 520-529, 2021
- [10] 小出風雅, Github リポジトリ https://github.com/peter8rabit/covering-fuzzy, 2021

付録

人工データの生成元

表 5: |X|=2 の例

例番号	包除被覆	{1 }	{2 }	{1, 2 }
1	{{1},{2}}	0.3	0.5	0
2	{ { 1,2 } }	0.1	0.2	0.7
3	{ { 1,2 } }	0	0	1
4	{ { 1,2 } }	1	1	1
5	{ { 1,2 } }	0.1	0.9	-0.1

表 6: |X|=3 の例

例番号	包除被覆	{1 }	{2 }	{3}	{1, 2 }	{1, 3 }	{2, 3 }	{1, 2, 3 }
6	{{1},{2},{3}}	0.3	0.4	0.5	0	0	0	0
7	{ {2}, {1,3}}	0.3	0.4	0.5	0	-0.2	0	0
8	{ {2}, {1,3}}	0.3	0.4	0.5	0	0.2	0	0
9	{ {1,2}, {1,3}}	0.3	0.4	0.5	-0.25	0.2	0	0
10	{ {1,2}, {1,3}}	0.2	0	0.5	0.25	0.2	0	0
11	{ {1,2}, {1,3}}	0	0.8	0.4	0.8	0.1	0	0
12	$\{\{1,2\},\{1,3\},\{2,3\}\}$	0.3	0	0.5	0.25	0.2	0.25	0
13	$\{\{1,2\},\{1,3\},\{2,3\}\}$	0.3	0.2	0.5	-0.1	0.1	-0.1	0
14	$\{\{1,2\},\{1,3\},\{2,3\}\}$	0	0	0.3	0.25	0.3	0.35	0
15	$\{\{1,2\},\{1,3\},\{2,3\}\}$	0	0	0	0.25	0.3	0.35	0
16	{ {1,2,3} }	0.2	0.8	0.4	0.8	0.1	-0.4	0.15
17	{ {1,2,3} }	0.2	0.8	0.4	0.8	-0.2	0.4	-0.4
18	{ {1,2,3} }	0.2	0.8	0.4	0.8	0	0	-0.4
19	{ {1,2,3} }	0.2	0.8	0.4	0	0	0	-0.2
20	{ {1,2,3} }	0	0	0	0	0	0	1
21	{ {1,2,3} }	0	0	0	0.1	0	0.9	1
22	{ {1,2,3} }	0	0	0	0.1	0	0.9	1

表 7: |X| = 4 の例

				_	• •	-	1		_	-	1/ 3				
2, 3, 4}	0	0	0	0	0	0	0	0	0	0	0	-0.2	-0.2	9.4	-0.1
{2, 3, 4} {1, 2, 3, 4}	0	0	0	0	0	0	0	0	0	0	0.1	0.2	0.2	0	0
{1, 3, 4} {2	0	0	0	0	0	0	0	0	0	0.1	0	0	-0.1	0	0
{1, 2, 4} {1	0	0.2	0	0	0	0	0	0	-0.2	0	0	0	0.1	0	0
{ 1, 2, 3 } {:	0	н	0	0	0	0	0	-0.2	-0.2	-0.2	0	0	0.2	0.2	9.2
{3, 4}	0	6.3	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.2	-0.2	-0.2	0	0
{2, 4}	0	9.6	0	0	0	0	0	0	0	0	9.5	9.5	9.5	0	0
{1, 4} {2, 3}	0	0	0	0	0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0.3	0	0
{1, 3}	0	6.3	0	0	0.2	0.2	0.2	0.2	0.2	0.2	0	0	0.1	0	0
{1, 2}	0	0.2	0	0	0	0.1	0.1	0.1	0.1	0.1	0	0	-0.2	0.1	-0.2
<u>4</u>	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	0.3	6.3	0.3	0	0.2
<u>3</u>	0.5	0.5	0.5	0.5	9.5	0.5	9.5	0.5	0.5	0.5	0.3	6.3	0.3	0.3	0
{2 }	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	6.3	6.3	0.3	0	0.2
(1)	0.3	0.3	0.3	6.3	0.3	0.3	0.3	0.3	6.3	6.3	0.3	6.3	0.3	0.3	0.2
匀除被覆	{{1},{2},{3},{4}}	{{3,4},{1,2,3},{1,2,4}}	{{1},{2},{3,4}}	{{1},{2},{3,4}}	{{2},{1,3},{3,4}}	{{1,2},{1,3},{2,3},{3,4}} 0.	{{1,2},{1,3},{2,3},{3,4}} 0.	{{3,4},{1,2,3}}	{{3,4},{1,2,3},{1,2,4}}	{{1,2,3},{1,3,4}}	{{1},{2,3,4}}	{{1,2,3,4}}	{{1,2,3,4}}	{{1,2,3,4}}	{{1,2,3,4}}
例番号	23	24	25	56	27	28	29	30	31	32	33	34	35	36	37

列番号	匀除被覆	{1,2,3}{{1,2,4}}{1,2	1,2,4}	{1,2,5}	1,3,4}	1,3,5}	1,4,5}	2,3,4}	(2,3,5)	2,4,5}	3,4,5}	1,2,3,4}	$(1,3,4)\{(1,3,5)\{(1,4,5)\{(2,3,4)\{(2,3,5)\{(2,4,5)\{(3,4,5)\{(1,2,3,4\}\{(1,2,3,5)\{(1,2,4,5)\{(1,2,4,5)\{(1,3,4,5\}(1,3,4,5)\{(1,3,4,6\}(1,3,4,6)(1,3,4,6\}(1,3,4,6\}(1,3,4,6)(1,3,4,6)(1,3,4,6)(1,3,4,6)\}$	1,2,4,5}	1,3,4,5}	2,3,4,5}	1,2,3,4,5}	
38	{{1},{2},{3},{4},{5}}}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
39	{{1},{2},{3},{4},{5}}}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
40	{{4},{5},{1,2},{1,3},{2,3}}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
41	{{4},{5},{1,2,3}}	0.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
42	{{1,2,3},{1,2,4},{1,2,5}}}	0.15	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	
43	{{1,2,3},{1,2,4},{1,2,5}}}	0.15	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	
44	{{1,2,5},{1,2,3,4}}	0.15	0.2	0.2	0.15	0	0	0.1	0	0	0	-0.1	0	0	0	0	0	
45	{{5},{1,2,3,4}}	0.15	0.2	0	0.15	0	0	0.1	0	0	0	-0.1	0	0	0	0	0	
46	{{1,2,5},{1,2,3,4}}	0.15	0.2	0.2	0.15	0	0	0.1	0	0	0	-0.1	0	0	0	0	0	
47	{{2,4,5},{1,2,3,4},{1,2,3,5},{1,3,4,5}} 0.15	0.15	0.2	0.2	0.15	0.1	0.1	0.1	0.2	-0.2	0	0.1	0.2	0	0.1	0	0	
48	{{1,2,3,4,5}}	0.15	0.2	0.2	0.15	0.1	0.1	0.1	0.2	-0.2	0	0.1	0.2	0	0.1	0	0.2	
49	{{1,2,3,4,5}}	0.15	0.2	0.2	0.15	0.1	0.1	0.1	0.2	-0.2	0	0.1	0	0	0	0	0.2	
20	{{1,2,3,4,5}}	0.15	0	0	-0.15	-0.1	0.1	0.1	0.2	0	0	0	0	0	0	0	-0.2	

				_	_			<i>- D</i>	•	, IX			
$\{1,3,4\}\\ \{1,3,5\}\\ \{1,4,5\}\\ \{2,3,4\}\\ \{2,3,4\}\\ \{2,3,4,5\}\\ \{2,4,5\}\\ \{2,3,4,5\}\\ \{1,2,3,5\}\\ \{1,2,3,5\}\\ \{1,2,4,5\}\\ \{1,2,4,5\}\\ \{1,2,3,4,5\}\\ $	0	0	0	0	0	0	0	0	0	0	0.2	0.2	-0.2
{2,3,4,5}	0	0	0	0	0	0	0	0	0	0	0	0	0
{1,3,4,5}	0	0	0	0	0	0	0	0	0	0.1	0.1	0	0
{1,2,4,5}	0	0	0	0	0	0	0	0	0	0	0	0	0
{1,2,3,5}	0	0	0	0	0	0	0	0	0	0.2	0.2	0	0
{1,2,3,4}	0	0	0	0	0	0	-0.1	-0.1	-0.1	0.1	0.1	0.1	0
{3,4,5}	0	0	0	0	0	0	0	0	0	0	0	0	0
{2,4,5}	0	0	0	0	0	0	0	0	0	-0.2	-0.2	-0.2	0
{2,3,5}	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2
{ 2,3,4 }	0	0	0	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
{1,4,5}	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.1
{1,3,5}	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1	-0.1
{1,3,4}	0	0	0	0	0	0	0.15	0.15	0.15	0.15	0.15	0.15	-0.15
{1,2,5}	0	0	0	0	0.2	0.2	0.2	0	0.2	0.2	0.2	0.2	0
{1,2,4}	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0
{1,2,3}{1,2,4}{1,2,5}	0	0	0	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
包除被覆	{ { 1} } , { 3} , { 4} } , { 5} }	{{1},{2},{3},{4},{5}}}	{{4},{5},{1,2},{1,3},{2,3}}	{{4},{5},{1,2,3}}	{{1,2,3},{1,2,4},{1,2,5}}	{{1,2,3},{1,2,4},{1,2,5}}	{{1,2,5},{1,2,3,4}}	{{5},{1,2,3,4}}	{{1,2,5},{1,2,3,4}}	{{2,4,5},{1,2,3,4},{1,2,3,5},{1,3,4,5}} 0.15	{{1,2,3,4,5}}	{{1,2,3,4,5}}	{{1,2,3,4,5}}
例番号	38	39	40	41	45	43	44	45	46	47	48	49	20

人工データの実験結果

表 10: 例番号 1

		10			25			50			100			200			400			800	
1	0.75	1.	2.	0.46	0.67	2.	0.39	1.	2.	0.17	1.	2.	0.03	1.	2.	0.01	1.	2.	0.09	0.33	2.
1.	0.75	1.	2.	0.46	0.67	2.	0.39	1.	2.	0.17	1.	2.	0.03	1.	2.	0.01	1.	2.	0.09	0.33	2.
0 1	0.02	1.	2.	0.02	0.67	2.	0.02	0.33	2.	0.01	0.67	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.1	0.02	1.	2.	0.02	0.67	2.	0.02	0.33	2.	0.01	0.67	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0 01	0.	0.33	2.	0.	0.67	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.01	0.	0.33	2.	0.	0.67	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.

表 11: 例番号 2

		10			25			50			100			200			400			800	
1	0.93	0.	2.	0.56	0.	2.	0.25	0.33	2.	0.27	0.	2.	0.05	1.	2.	0.1	0.67	2.	0.02	1.	2.
1. j	0.93	0.	2.	0.56	0.	2.	0.25	0.33	2.	0.27	0.	2.	0.05	1.	2.	0.1	0.67	2.	0.02	1.	2.
0 1	0.03	1.	2.	0.01	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.1	0.03	1.	2.	0.01	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0 01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.

表 12: 例番号 3

		10			25			50			100			200			400			800	
1	0.74	0.	2.	0.96	0.33	2.	0.8	0.	2.	0.29	0.33	2.	0.21	0.67	2.	0.18	0.67	2.	0.04	1.	2.
1 · · i	0.74	0.	2.	0.96	0.33	2.	0.8	0.	2.	0.29	0.33	2.	0.21	0.67	2.	0.18	0.67	2.	0.04	1.	2.
0 1	0.05	1.	2.	0.01	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.1	0.05	1.	2.	0.01	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0 01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.

表 13: 例番号 4

		10			25			50			100			200			400			800	
1	1.97	0.	2.	1.24	0.33	2.	0.36	0.33	2.	0.47	0.	2.	0.5	0.33	2.	0.1	1.	2.	0.13	0.67	2.
1.	1.97	0.	2.	1.24	0.33	2.	0.36	0.33	2.	0.47	0.	2.	0.5	0.33	2.	0.1	1.	2.	0.13	0.67	2.
α 1	0.02	1.	2.	0.02	1.	2.	0.01	1.	2.	0.01	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.1	0.02	1.	2.	0.02	1.	2.	0.01	1.	2.	0.01	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.

表 14: 例番号 5

		10			25			50			100			200			400			800	
1	0.9	0.	2.	0.46	0.	2.	0.55	0.	2.	0.3	0.	2.	0.05	0.	2.	0.02	0.	2.	0.01	0.	2.
1.	0.9	0.	2.	0.46	0.	2.	0.55	0.	2.	0.3	0.	2.	0.05	0.	2.	0.02	0.	2.	0.01	0.	2.
0 1	0.01	0.	2.	0.01	0.	2.	0.01	0.	2.	0.01	0.	2.	0.	0.	2.	0.	0.33	2.	0.	0.67	2.
10.1	0.01	0.	2.	0.01	0.	2.	0.01	0.	2.	0.01	0.	2.	0.	0.	2.	0.	0.33	2.	0.	0.67	2.
0.01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.
0.01	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.	0.	1.	2.

t.

表 15: 例番号 6

		10			25			50			100			200			400			800	
1	3.1	0.33	8.	2.02	0.33	8.67	1.42	0.67	8.33	0.67	0.67	9.	0.34	0.67	8.67	0.27	1.	9.	0.11	0.67	8.33
1 [3.1	0.33	4.67	2.02	0.33	4.67	1.42	0.67	4.33	0.67	0.67	4.33	0.34	0.67	4.33	0.27	1.	4.33	0.11	0.67	4.33
0 1	0.1	0.67	8.33	0.1	0.67	8.	0.02	1.	8.33	0.01	1.	8.33	0.	1.	8.33	0.	1.	7.33	0.	1.	9.
0.1	0.1	0.67	4.33	0.1	0.67	4.33	0.02	1.	4.	0.01	1.	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.
0 01	0.	0.33	8.67	0.	0.67	8.	0.	1.	9.	0.	1.	8.67	0.	1.	8.	0.	1.	8.67	0.	1.	7.33
0.01	0.	0.33	4.67	0.	0.67	4.33	0.	1.	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.

表 16: 例番号 7

		10			25			50			100			200			400			800	
1	1.57	0.	9.	1.4	0.	9.	0.63	0.33	8.67	0.41	0.	8.67	0.36	0.	9.	0.09	0.	9.	0.09	0.33	8.67
1.	1.57	0.	4.	1.4	0.	4.	0.63	0.33	4.33	0.41	0.	4.33	0.36	0.	4.	0.09	0.	4.	0.06	0.33	4.33
0 1	0.2	0.	8.67	0.08	0.67	7.67	0.06	0.33	7.33	0.02	0.5	6.67	0.02	0.67	7.	0.	1.	6.	0.	0.83	5.33
0.1	0.2	0.	4.33	0.08	0.67	4.67	0.06	0.33	4.67	0.02	0.5	4.67	0.02	0.67	4.67	0.	1.	5.	0.	0.83	4.67
0 01	0.04	0.28	3.	0.	0.83	6.	0.	0.67	6.	0.	1.	6.	0.	1.	6.	0.	1.	6.	0.	1.	6.
0.01	0.04	0.33	5.	0.	0.83	5.	0.	0.67	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.

表 17: 例番号 8

		10			25			50			100			200			400			800	
1	3.82	0.33	9.	1.84	0.33	8.33	0.72	0.33	8.67	0.88	0.33	8.	0.19	0.	9.	0.24	0.	8.33	0.18	0.33	7.33
1.	3.82	0.33	4.33	1.84	0.33	4.33	0.72	0.33	4.33	0.88	0.33	4.67	0.19	0.	4.	0.24	0.	4.33	0.18	0.33	4.67
α 1	0.4	0.11	6.	0.17	0.17	6.33	0.04	0.67	6.67	0.02	0.33	7.67	0.	1.	6.	0.	1.	6.	0.	1.	6.
0.1	0.39	0.17	5.	0.17	0.17	4.67	0.04	0.67	5.	0.02	0.33	4.33	0.	1.	5.	0.	1.	5.	0.	1.	5.
0.01	0.01	0.28	3.	0.	1.	6.	0.	1.	6.	0.	1.	6.	0.	1.	6.	0.	1.	6.	0.	1.	6.
0.01	0.	0.83	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.

表 18: 例番号 9

		10			25			50			100			200			400			800	
1	1.18	0.	9.	3.92	0.17	8.67	0.86	0.	9.	0.25	0.	9.	0.17	0.	9.	0.14	0.	9.	0.28	0.17	7.67
1.	1.18	0.	4.	3.92	0.17	4.33	0.86	0.	4.	0.25	0.	4.	0.17	0.	4.	0.14	0.	4.	0.28	0.17	4.67
0 1	1.01	0.11	8.33	0.11	0.22	7.33	0.08	0.	7.67	0.02	0.83	4.67	0.01	1.	4.	0.	1.	4.	0.	1.	4.
0.1	1.01	0.11	4.67	0.11	0.22	4.67	0.08	0.	4.	0.02	0.83	4.33	0.01	1.	4.	0.	1.	4.	0.	1.	4.
0 01	0.03	0.61	3.	0.	0.83	4.	0.	1.	4.	0.	0.83	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.
0.01	0.03	0.61	5.	0.	0.83	4.	0.	1.	4.	0.	0.83	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.

表 19: 例番号 10

		10			25			50			100			200			400			800	
1	1.09	0.	9.	0.85	0.	8.67	1.42	0.	8.67	0.42	0.	9.	0.42	0.17	8.67	0.22	0.17	8.33	0.13	0.	9.
1 1	1.09	0.	4.	0.85	0.	4.33	1.42	0.	4.33	0.42	0.	4.	0.42	0.17	4.33	0.22	0.17	4.33	0.13	0.	4.
a 1	0.31	0.33	8.67	0.06	0.5	7.33	0.03	0.67	6.67	0.01	0.83	4.67	0.	1.	4.	0.	1.	4.	0.	1.	4.
0.1	0.31	0.33	4.67	0.06	0.5	4.67	0.03	0.67	5.	0.01	0.83	4.33	0.	1.	4.	0.	1.	4.	0.	1.	4.
0.01	0.02	0.61	3.	0.	1.	4.	0.	0.83	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.
0.01	0.02	0.83	5.	0.	1.	4.	0.	0.83	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.	0.	1.	4.

表 20: 例番号 11

		10			25			50			100			200			400			800	
1	12.62	0.33	8.67	2.04	0.	9.	2.54	0.17	8.	0.9	0.	9.	0.54	0.5	5.67	0.26	0.56	5.67	0.27	0.5	5.
1.	12.62	0.33	4.67	2.04	0.	4.33	2.54	0.17	4.67	0.9	0.	4.	0.43	0.44	5.	0.33	0.5	5.	0.36	0.44	5.
0 1	0.27	0.39	4.67	0.03	0.5	6.	0.09	0.44	5.33	0.01	0.67	5.33	0.01	0.5	6.	0.	0.83	4.67	0.	1.	4.
0.1	0.24	0.33	5.	0.03	0.5	5.	0.09	0.44	4.67	0.01	0.67	4.67	0.01	0.5	5.	0.	0.83	4.33	0.	1.	4.
0.01	0.	0.67	3.33	0.	0.83	4.	0.	0.89	4.	0.	0.89	3.67	0.	1.	4.	0.	1.	4.	0.	1.	4.
0.01	0.	0.78	5.	0.	0.83	4.	0.	0.89	4.	0.	0.89	3.67	0.	1.	4.	0.	1.	4.	0.	1.	4.

表 21: 例番号 12

		10			25			50			100			200			400			800	
1	2.73	0.11	8.67	1.22	0.11	9.	1.03	0.11	8.67	0.38	0.	9.	0.71	0.11	8.67	0.25	0.	9.	0.33	0.22	8.
1.	2.73	0.11	4.33	1.22	0.11	4.33	1.03	0.11	4.33	0.38	0.	4.	0.71	0.11	4.33	0.25	0.	4.	0.3	0.33	4.67
a 1	0.26	0.44	6.33	0.23	0.33	7.33	0.07	0.56	5.67	0.05	0.67	4.33	0.01	1.	3.	0.	1.	3.	0.	1.	3.
0.1	0.26	0.44	4.67	0.23	0.33	4.67	0.07	0.56	4.67	0.05	0.67	4.	0.01	1.	3.	0.	1.	3.	0.	1.	3.
a a1	0.	1.	3.67	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.	1.	4.67	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 22: 例番号 13

		10			25			50			100			200			400			800	
1	3.66	0.	9.	0.89	0.	9.	0.28	0.	9.	0.24	0.	9.	0.25	0.11	8.33	0.08	0.	9.	0.12	0.11	8.33
1.	3.66	0.	4.	0.89	0.	4.	0.28	0.	4.	0.24	0.	4.	0.25	0.11	4.33	0.08	0.	4.	0.12	0.11	4.33
0 1	0.09	0.47	6.67	0.03	0.	8.33	0.03	0.	7.67	0.02	0.	6.33	0.02	0.	6.67	0.01	0.33	3.67	0.	1.	3.
0.1	0.09	0.47	4.67	0.03	0.	4.	0.03	0.	4.	0.02	0.	4.	0.02	0.	4.33	0.01	0.33	3.67	0.	1.	3.
0 01	0.01	1.	3.	0.	0.92	3.	0.	1.	3.	0.	0.92	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.02	0.67	5.	0.	0.92	3.	0.	1.	3.	0.	0.92	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 23: 例番号 14

		10			25			50			100			200			400			800	
1	2.43	0.	9.	1.72	0.	9.	1.43	0.22	8.67	1.28	0.22	8.	0.37	0.22	8.33	0.34	0.	9.	0.12	0.44	7.
1 . [2.43	0.	4.	1.72	0.	4.	1.43	0.22	4.67	1.28	0.22	4.67	0.37	0.22	4.67	0.34	0.	4.	0.12	0.44	5.
0 1	0.27	0.58	5.	0.08	0.92	4.	0.06	0.83	4.	0.02	0.92	3.	0.01	0.92	3.	0.	1.	3.	0.	0.92	3.
0.1	0.25	0.44	4.67	0.11	0.81	5.	0.06	0.83	4.	0.02	0.92	3.	0.01	0.92	3.	0.	1.	3.	0.	0.92	3.
0.01	0.02	0.92	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.04	0.81	5.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 24: 例番号 15

		10			25			50			100			200			400			800	
1	2.38	0.11	8.67	1.13	0.11	8.33	0.6	0.11	8.67	0.42	0.11	9.	0.47	0.33	7.33	0.41	0.33	7.67	0.25	0.22	8.33
1.	2.38	0.11	4.33	1.13	0.11	4.33	0.6	0.11	4.33	0.42	0.11	4.33	0.47	0.33	5.	0.41	0.33	4.67	0.29	0.11	4.33
α 1	0.16	0.67	5.67	0.13	0.69	4.67	0.04	0.81	4.	0.01	1.	3.33	0.01	0.92	3.	0.	0.92	3.	0.	0.83	3.
0.1	0.17	0.56	5.	0.14	0.58	5.	0.04	0.81	4.	0.01	1.	3.33	0.01	0.92	3.	0.	0.92	3.	0.	0.83	3.
0 01	0.01	0.92	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	0.92	3.	0.	1.	3.	0.	0.92	3.
0.01	0.01	0.92	5.	a.	1.	3.	a.	1.	3.	a.	1.	3.	Α.	0.92	3.	ο.	1.	3.	a.	0.92	3.

表 25: 例番号 16

		10			25			50			100			200			400			800	
1	2.19	0.08	8.67	1.98	0.	9.	2.28	0.08	9.	1.09	0.25	7.	0.82	0.08	8.	0.34	0.25	7.	0.2	0.5	5.33
1.	2.19	0.08	4.33	1.98	0.	4.	2.28	0.08	4.33	0.98	0.33	5.	0.82	0.08	4.33	0.34	0.25	4.67	0.2	0.5	4.67
0 1	0.61	0.67	4.33	0.11	0.42	5.33	0.04	0.5	4.	0.03	0.58	3.67	0.01	0.92	3.	0.01	0.83	3.	0.	0.83	3.
0.1	0.6	0.5	5.	0.11	0.42	4.67	0.04	0.5	4.	0.03	0.58	3.67	0.01	0.92	3.	0.01	0.83	3.	0.	0.83	3.
0 01	0.02	0.83	3.67	0.	0.92	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.03	0.75	4.67	0.	0.92	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 26: 例番号 17

		10			25			50			100			200			400			800	
1	3.97	0.	9.	1.2	0.	9.	0.73	0.	9.	1.22	0.17	8.	0.63	0.17	8.33	0.5	0.08	8.67	0.33	0.25	7.
1 1	3.97	0.	4.	1.2	0.	4.	0.73	0.	4.	1.22	0.17	4.33	0.63	0.17	4.67	0.5	0.08	4.33	0.33	0.25	5.
a 1	0.36	0.33	6.67	0.24	0.25	7.67	0.1	0.67	4.	0.05	0.75	3.33	0.01	1.	3.	0.	1.	3.	0.	1.	3.
0.1	0.36	0.33	4.67	0.24	0.25	4.67	0.1	0.67	3.67	0.05	0.75	3.33	0.01	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.41	0.92	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.15	0.83	5.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 27: 例番号 18

		10			25			50			100			200			400			800	
1	3.46	0.08	8.67	3.8	0.17	8.33	1.14	0.	9.	0.62	0.	9.	0.57	0.25	7.33	0.53	0.42	6.33	0.21	0.17	7.
1.	3.46	0.08	4.33	3.8	0.17	4.67	1.14	0.	4.	0.62	0.	4.	0.57	0.25	4.67	0.53	0.42	4.67	0.21	0.17	4.67
a 1	0.34	0.33	7.33	0.09	0.58	6.	0.06	0.67	4.67	0.04	0.75	3.67	0.01	1.	3.33	0.	1.	3.	0.	1.	3.
0.1	0.34	0.33	5.	0.09	0.58	4.67	0.06	0.67	4.33	0.04	0.75	3.67	0.01	1.	3.33	0.	1.	3.	0.	1.	3.
0 01	0.19	0.92	3.33	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.19	0.92	5.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 28: 例番号 19

		10			25			50			100			200			400			800	
1	2.67	0.	9.	1.5	0.	9.	0.52	0.	9.	0.54	0.17	7.67	0.32	0.	9.	0.1	0.	9.	0.17	0.17	7.67
1 · · i	2.67	0.	4.	1.5	0.	4.	0.52	0.	4.	0.54	0.17	4.67	0.32	0.	4.	0.1	0.	4.	0.17	0.17	4.67
a 1	0.12	0.17	8.	0.12	0.08	6.67	0.05	0.17	8.33	0.03	0.	8.33	0.02	0.25	6.33	0.01	0.5	5.33	0.01	0.58	3.67
0.1	0.12	0.17	4.67	0.12	0.08	4.33	0.05	0.17	4.67	0.03	0.	4.	0.02	0.25	4.33	0.01	0.5	4.67	0.01	0.58	3.67
0 01	0.03	0.83	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.02	0.42	5.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 29: 例番号 20

		10			25			50			100			200			400			800	
1	2.54	0.	9.	1.46	0.	9.	2.	0.	9.	1.23	0.17	8.67	0.66	0.25	7.33	0.43	0.67	4.	0.19	0.75	4.67
1 - 1	2.54	0.	4.	1.46	0.	4.	2.	0.	4.	1.27	0.17	4.67	0.7	0.25	5.	0.46	0.58	5.	0.28	0.58	5.
0 1	0.56	0.33	8.33	0.04	1.	3.33	0.01	1.	4.	0.	1.	3.67	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.1	0.56	0.33	5.	0.04	1.	5.	0.01	1.	4.67	0.	1.	3.67	0.	1.	3.	0.	1.	3.	0.	1.	3.
0 01	0.	1.	3.	0.	1.	4.	0.	1.	3.33	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.	1.	5.	0.	1.	5.	0.	1.	3.33	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 30: 例番号 21

		10			25			50			100			200			400			800	
1	4.58	0.	9.	4.72	0.	9.	1.76	0.25	8.	0.98	0.42	6.67	1.59	0.33	6.67	0.47	0.5	5.33	0.32	0.58	5.33
1.	4.58	0.	4.	4.72	0.	4.	1.76	0.25	5.	1.13	0.17	4.67	1.63	0.17	4.67	0.47	0.5	5.	0.32	0.58	5.
α 1	0.53	0.83	3.	0.02	1.	4.	0.01	1.	4.	0.01	1.	3.67	0.01	1.	3.	0.	1.	3.	0.	1.	3.
0.1	0.51	0.5	5.	0.02	1.	4.33	0.01	1.	4.	0.01	1.	3.67	0.01	1.	3.	0.	1.	3.	0.	1.	3.
0 01	0.01	1.	3.	0.	1.	3.33	0.	1.	3.33	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.01	1.	5.	0.	1.	3.67	0.	1.	3.33	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 31: 例番号 22

		10			25			50			100			200			400			800	
1	6.03	0.	9.	3.72	0.	9.	1.75	0.42	6.67	1.83	0.25	9.	0.65	0.33	7.33	0.67	0.58	4.33	0.46	0.67	5.33
1.	6.03	0.	4.	3.72	0.	4.	1.87	0.17	4.67	2.01	0.17	4.33	0.65	0.33	5.	0.74	0.42	5.	0.46	0.67	4.67
0 1	0.5	0.83	3.	0.13	0.92	4.67	0.04	1.	3.33	0.01	1.	3.33	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.1	1.21	0.58	5.	0.13	0.92	4.67	0.04	1.	3.33	0.01	1.	3.33	0.	1.	3.	0.	1.	3.	0.	1.	3.
0 01	0.	1.	3.	0.	1.	4.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.
0.01	0.	1.	5.	0.	1.	4.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.	0.	1.	3.

表 32: 例番号 23

	10		25			50			100			200			400			800	
1	П	2.92	0.67	46.67	5.01	0.67	42.67	1.56	0.67	47.33	1.08	0.33	29.	1.1	0.	24.	0.49	0.	23.33
1.	1-1	2.92	0.67	5.33	5.01	0.67	5.67	1.56	0.67	5.33	1.08	0.33	5.67	1.1	0.	6.67	0.52	0.	7.33
0 1	П	0.18	0.67	33.	0.02	1.	37.33	0.02	1.	34.	0.03	0.33	18.67	0.01	1.	33.67	0.	1.	40.33
0.1	1 - I	0.37	0.67	7.	0.02	1.	5.	0.02	1.	5.	0.03	0.33	6.	0.01	1.	5.	0.	1.	5.
0.01	П	0.	0.33	33.33	0.	0.	15.67	0.	0.33	32.33	0.	1.	22.	0.	1.	35.33	0.	1.	28.33
0.01	· -	0.	0.33	6.	0.	0.	7.	0.	0.33	6.	0.	1.	5.	0.	1.	5.	0.	1.	5.

表 33: 例番号 24

	10		25			50			100			200			400			800	
1		11.69	0.04	42.	10.55	0.12	23.67	6.98	0.39	12.33	4.17	0.33	18.	1.38	0.47	14.	0.58	0.67	15.
1.	-	11.69	0.04	6.33	10.55	0.12	6.	7.01	0.29	8.	4.05	0.42	9.	1.87	0.33	7.67	0.66	0.58	11.
0 1		0.76	0.72	16.67	0.32	0.76	13.67	0.14	0.71	12.	0.04	0.75	13.	0.03	0.83	13.67	0.02	0.92	11.67
0.1	-	0.72	0.68	10.	0.32	0.76	9.67	0.14	0.71	8.	0.04	0.75	8.33	0.03	0.83	8.	0.02	0.92	8.
0.01	П	0.01	1.	16.33	0.	0.96	13.33	0.	1.	14.	0.	0.96	14.	0.	0.93	13.	0.	1.	16.
0.01	- [0.01	1.	9.67	0.	1.	9.	0.	1.	8.	0.	1.	9.	0.	0.96	8.	0.	1.	7.

表 34: 例番号 25

	10		25			50			100			200			400			800	
1	П	5.27	0.	50.33	4.05	0.	38.67	2.99	0.	46.67	0.98	0.	44.67	0.68	0.	33.67	0.46	0.	49.
1.	- [5.27	0.	5.33	4.05	0.	6.33	2.99	0.	5.33	1.07	0.	5.33	0.82	0.	8.	0.46	0.	5.33
0 1	П	0.21	0.5	37.	0.15	0.67	14.67	0.06	0.83	16.33	0.02	0.83	19.33	0.01	0.83	17.33	0.01	0.78	16.
6.1	-	0.21	0.5	6.33	0.15	0.67	6.33	0.06	0.83	6.67	0.02	0.83	7.	0.01	0.83	6.	0.01	0.78	6.33
0.01		0.	0.83	24.33	0.	0.61	16.	0.	0.83	18.33	0.	0.67	12.67	0.	1.	17.	0.	0.83	16.
0.01	- [0.	0.83	6.67	0.	0.61	6.67	0.	0.83	6.33	0.	0.67	6.33	0.	1.	6.33	0.	0.83	6.33

表 35: 例番号 26

	10		25			50			100			200			400			800	
1	П	3.02	0.	50.33	2.53	0.	62.	1.04	0.33	46.67	1.48	0.	53.67	0.78	0.	54.	0.47	0.17	33.33
1.	1-1	3.02	0.	5.33	2.53	0.	5.	1.21	0.17	6.	1.65	0.	5.	0.78	0.	7.33	0.47	0.17	7.
α 1	П	0.17	0.51	19.33	0.11	0.67	19.	0.04	0.83	23.	0.03	0.78	15.67	0.01	0.83	18.33	0.01	1.	19.
0.1	1-1	0.21	0.44	7.	0.11	0.67	6.33	0.04	0.83	7.33	0.03	0.78	6.33	0.01	0.83	6.	0.01	1.	6.33
0.01	П	0.02	0.49	23.	0.	0.78	14.33	0.	0.67	14.67	0.	1.	19.	0.	1.	16.67	0.	1.	19.67
0.01		0.02	0.49	9.67	0.	0.78	6.67	0.	0.67	7.	0.	1.	6.33	0.	1.	6.33	0.	1.	6.

表 36: 例番号 27

	10		25			50			100			200			400			800	
1	П	4.68	0.	62.	3.5	0.	51.	1.61	0.	60.67	1.84	0.23	25.	1.37	0.18	42.67	0.41	0.28	22.67
1.	1-1	4.68	0.	5.	3.5	0.	6.	1.61	0.	5.	1.68	0.17	6.33	1.29	0.11	6.33	0.41	0.28	6.33
0.1	П	0.44	0.44	22.	0.08	0.67	20.	0.06	0.83	12.67	0.02	0.89	16.33	0.01	0.89	10.67	0.	0.89	10.67
0.1	1-1	0.46	0.33	7.	0.08	0.67	6.33	0.06	0.83	6.	0.02	0.89	7.	0.01	0.89	6.67	0.	0.89	6.67
0.01	П	0.	0.8	20.33	0.	0.56	12.67	0.	1.	16.67	0.	1.	13.	0.	0.89	11.67	0.	0.89	10.67
0.01	- -	0.	0.8	7.33	0.	0.58	6.	0.	1.	7.	0.	1.	7.	0.	0.89	6.33	0.	0.89	6.67

表 37: 例番号 28

	10		25			50			100			200			400			800	
1	П	3.2	0.17	42.33	2.12	0.	59.	3.12	0.08	18.67	2.09	0.15	38.	0.88	0.08	37.33	0.83	0.	46.67
1.	-	3.2	0.17	6.67	2.12	0.	5.	3.12	0.08	6.	2.09	0.15	6.33	0.81	0.17	6.67	0.83	0.	5.67
0.1	П	0.52	0.17	16.33	0.18	0.32	18.67	0.1	0.38	15.33	0.03	0.67	10.33	0.02	0.83	9.67	0.01	0.92	9.33
0.1	-	0.27	0.35	7.	0.15	0.42	8.	0.1	0.47	6.33	0.03	0.67	6.33	0.02	0.83	5.67	0.01	0.92	5.
0.01	П	0.01	0.76	16.	0.	1.	9.	0.	1.	9.	0.	1.	9.	0.	1.	9.	0.	1.	9.
0.01	-	0.01	0.76	7.33	0.	1.	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.	0.	1.	5.

表 38: 例番号 29

	10		25			50			100			200			400			800	
1	П	2.32	0.	62.	3.49	0.08	52.33	1.63	0.	61.67	1.35	0.08	47.	0.6	0.17	39.67	0.69	0.25	25.33
1.	-	2.32	0.	5.	3.49	0.08	5.33	1.63	0.	5.	1.35	0.08	5.33	0.42	0.25	7.67	0.69	0.25	6.33
0 1	П	0.32	0.19	26.33	0.22	0.33	13.33	0.06	0.47	12.	0.03	0.67	10.33	0.02	0.83	9.67	0.01	0.93	9.33
6.1	-	0.22	0.17	6.	0.22	0.33	6.67	0.06	0.47	7.	0.03	0.67	6.33	0.02	0.83	5.	0.01	0.93	5.33
0.01	П	0.	0.93	10.	0.	0.93	9.67	0.	0.93	11.67	0.	0.93	9.67	0.	1.	9.	0.	0.87	9.67
6.61	-	Α.	0.89	8.33	Α.	0.93	5.33	A.	0.93	6.67	Ι α.	0.93	5.33	Α.	1.	5.	A.	0.87	5.67

表 39: 例番号 30

	10		25			50			100			200			400			800	
1	П	4.9	0.	47.	2.86	0.	59.33	1.46	0.07	53.67	0.96	0.	62.	0.42	0.13	36.67	0.73	0.19	19.67
1.	-	4.9	0.	5.67	2.86	0.	5.	1.85	0.07	5.33	0.96	0.	5.	0.42	0.13	5.67	0.77	0.24	7.
α 1	П	0.2	0.19	17.67	0.18	0.2	26.	0.06	0.33	21.	0.04	0.4	18.	0.04	0.8	12.67	0.01	0.87	16.
0.1	-	0.46	0.17	7.33	0.18	0.2	6.	0.06	0.33	7.	0.04	0.4	6.67	0.04	0.8	9.	0.01	0.73	7.33
0.01	П	0.01	0.83	12.33	0.	0.94	13.	0.	1.	12.33	0.	1.	12.33	0.	0.89	12.33	0.	0.94	12.
6.61	-	0.03	0.58	6.67	0.	0.94	9.33	0.02	0.49	9.	0.01	0.68	7.33	0.	0.85	9.	0.	0.94	8.33

表 40: 例番号 31

	10		25			50			100			200			400			800	
1		2.64	0.	62.	3.5	0.	62.	1.37	0.	62.	1.23	0.17	22.33	0.8	0.	61.67	0.55	0.12	30.33
1.	1-1	2.64	0.	5.	3.5	0.	5.	1.37	0.	5.	1.39	0.12	7.33	0.8	0.	5.	0.65	0.08	6.67
A 1		0.39	0.12	15.	0.2	0.21	14.33	0.15	0.25	12.67	0.07	0.42	16.33	0.05	0.67	13.	0.01	0.96	14.67
0.1	1-1	0.39	0.12	6.33	0.18	0.29	8.33	0.15	0.25	6.33	0.07	0.42	6.	0.05	0.67	6.67	0.02	0.83	7.33
0.01	П	0.02	0.81	14.67	0.	0.96	12.33	0.	0.96	15.	0.	0.96	13.	0.	1.	13.	0.	1.	13.
0.01	- -	0.02	0.81	9.67	0.	0.96	7.	0.	0.96	8.	0.	0.96	7.	0.	1.	7.	0.	1.	7.

表 41: 例番号 32

	10		25			50			100			200			400			800	
1	П	10.89	0.05	42.	2.	0.	62.	2.04	0.05	49.	2.24	0.05	36.	0.64	0.19	26.	0.51	0.24	27.67
1.	-	10.89	0.05	5.67	2.	0.	5.	2.04	0.05	5.33	2.24	0.05	6.	0.64	0.19	6.33	0.52	0.18	7.
a 1	П	0.28	0.17	20.33	0.15	0.19	17.	0.13	0.31	14.67	0.06	0.43	11.	0.02	0.43	14.33	0.02	0.43	16.33
0.1	-	0.22	0.14	6.33	0.15	0.19	6.33	0.13	0.31	6.33	0.06	0.43	6.	0.02	0.43	6.67	0.02	0.43	6.67
0.01	П	0.09	0.83	16.33	0.	1.	14.33	0.	1.	13.67	0.	0.96	13.33	0.	0.93	12.67	0.	1.	13.67
0.01		0.09	0.69	9.67	0.01	0.67	7.33	0.01	0.86	8.33	0.01	0.67	6.67	0.01	0.57	5.	0.	0.78	8.

表 42: 例番号 33

	10		25			50			100			200			400			800	
1		4.57	0.	47.	2.77	0.	50.33	2.56	0.	62.	1.49	0.08	40.67	0.87	0.17	33.67	0.42	0.23	39.33
1.	-	4.57	0.	5.33	2.77	0.	5.67	2.56	0.	5.	1.49	0.08	5.67	0.87	0.17	6.	0.42	0.23	6.67
0 1	П	0.32	0.28	15.	0.14	0.35	15.	0.05	0.5	12.67	0.02	0.58	12.67	0.02	0.47	17.67	0.01	0.5	11.
0.1	-	0.17	0.3	8.33	0.14	0.35	7.	0.05	0.5	7.33	0.02	0.58	6.67	0.02	0.47	7.	0.01	0.5	6.67
0.01	П	0.01	0.65	16.67	0.	0.77	13.33	0.	1.	13.33	0.	0.93	13.	0.	1.	13.67	0.	0.93	13.
0.01	- 6	0.01	0.83	7.	0.	0.77	7.67	0.	1.	7.	0.	0.93	7.33	0.	1.	7.	0.	0.93	7.33

表 43: 例番号 34

	10		25			50			100			200			400			800	
1	\Box	3.25	0.03	50.33	2.61	0.	62.	1.14	0.	62.	0.82	0.09	18.	0.59	0.03	52.33	0.69	0.03	46.
1.	- [3.25	0.03	5.33	2.61	0.	5.	1.14	0.	5.	0.82	0.09	6.67	0.59	0.03	5.33	0.69	0.03	5.33
a 1	\Box	0.32	0.21	15.33	0.11	0.15	12.33	0.07	0.15	15.33	0.04	0.18	11.	0.03	0.3	13.	0.03	0.36	12.
0.1	- [0.26	0.15	8.	0.12	0.12	6.	0.07	0.15	6.33	0.04	0.18	7.	0.03	0.3	6.67	0.03	0.36	6.33
0.01	П	0.02	0.88	16.	0.01	0.82	14.33	0.	1.	12.33	0.	1.	14.	0.	1.	16.	0.	1.	15.67
0.01	- [0.04	0.91	11.	0.01	0.82	9.67	0.	1.	7.	0.	1.	7.	0.	1.	7.	0.	1.	7.

表 44: 例番号 35

	10		25			50			100			200			400			800	
1	П	4.27	0.03	46.67	2.19	0.	62.	3.14	0.03	45.	0.85	0.12	36.33	0.78	0.09	23.67	0.85	0.09	22.
1.	-	4.27	0.03	5.67	2.19	0.	5.	3.14	0.03	5.67	0.85	0.12	6.33	0.78	0.09	6.	0.79	0.12	7.
0 1	П	0.28	0.21	22.33	0.2	0.18	13.33	0.11	0.3	10.	0.06	0.42	9.67	0.06	0.36	13.	0.03	0.52	11.67
0.1	-	0.31	0.15	8.	0.2	0.18	6.67	0.11	0.3	5.67	0.06	0.42	5.67	0.06	0.36	5.67	0.03	0.52	7.
0.01	П	0.02	0.88	13.67	0.01	0.91	14.	0.	1.	13.	0.	1.	12.33	0.	1.	13.	0.	1.	13.
0.01	-	0.02	0.82	9.67	0.01	0.91	8.	0.	1.	7.	0.	1.	7.	0.	1.	7.	0.	1.	7.

表 45: 例番号 36

1	10		25			50			100			200			400			800	
1	Т	3.99	0.	57.67	2.03	0.03	49.	1.95	0.06	33.67	1.31	0.06	51.67	1.55	0.18	22.33	0.63	0.09	35.67
1.	- [3.99	0.	5.	2.03	0.03	5.67	1.95	0.06	5.67	1.31	0.06	5.67	1.6	0.09	6.	0.63	0.09	6.67
0 1	T	0.48	0.27	17.	0.32	0.21	24.	0.11	0.58	17.	0.08	0.52	16.67	0.01	1.	17.	0.01	1.	14.33
0.1	- [0.53	0.09	6.33	0.35	0.18	7.	0.11	0.58	11.33	0.08	0.52	10.67	0.01	1.	11.	0.01	1.	9.67
0.01	T	0.02	1.	16.67	0.	1.	16.33	0.	1.	14.	0.	1.	13.	0.	1.	13.	0.	1.	13.
0.01	- [0.05	0.76	12.	Α.	1.	10.67	Α.	1.	9.67	Α.	1.	9.	Α.	1.	9.	Α.	1.	9.

表 46: 例番号 37

1	10		25			50			100			200			400			800	
1	_	1.48	0.	62.	0.85	0.03	50.33	0.58	0.	62.	0.63	0.03	46.67	0.32	0.	57.67	0.27	0.03	50.33
1.	- [1.48	0.	5.	0.85	0.03	5.67	0.58	0.	5.	0.63	0.03	5.33	0.32	0.	5.	0.27	0.03	5.33
0 1	T	0.16	0.15	46.33	0.07	0.06	37.	0.04	0.09	38.	0.04	0.3	12.67	0.03	0.24	15.	0.01	0.45	18.33
0.1	-	0.16	0.15	7.	0.07	0.06	5.67	0.05	0.09	6.33	0.04	0.18	9.	0.03	0.21	7.	0.01	0.45	10.33
0.01	Т	0.01	0.33	14.33	0.01	0.52	15.	0.	0.82	16.	0.	1.	13.	0.	1.	14.	0.	1.	14.
0.01	-	0.01	0.3	9.	0.01	0.52	10.33	0.01	0.7	10.33	0.	1.	9.	0.	1.	9.33	0.	1.	9.33

表 47: 例番号 38

	10	25		50			100			200			400			800	
1	1_		8.	1.	303.67	2.5	1.	294.67	2.09	0.67	257.	2.59	0.	54.	1.43	0.	62.33
1.	-	1-1	8.	1.	5.	2.5	1.	5.	1.82	0.67	6.	2.59	0.	7.33	1.11	0.33	8.33
0.1	T_		0.17	0.67	162.33	0.11	0.67	47.	0.02	1.	94.67	0.01	1.	91.	0.01	1.	52.67
0.1	-	1-1	0.17	0.67	5.67	0.11	0.67	5.67	0.02	1.	5.	0.01	1.	5.	0.01	1.	5.
0.01	T_		0.	0.67	30.67	0.	0.67	103.67	0.	0.33	29.33	0.	0.67	271.67	0.	1.	80.67
0.01	- -	-	0.	1.	6.	0.	0.67	5.33	0.	0.33	6.	0.	0.67	5.67	0.	1.	5.

表 48: 例番号 39

	10	25		50			100			200			400			800	
1	П	П	5.85	1.	397.	4.3	0.33	86.33	1.52	0.67	236.67	1.81	0.	64.67	1.09	0.33	138.33
1.	-	-	5.85	1.	5.	4.3	0.33	5.67	1.52	0.67	5.33	2.25	0.	6.67	1.09	0.33	6.33
0.1	П	П	0.15	0.33	81.33	0.08	1.	64.33	0.07	0.67	147.	0.01	1.	110.67	0.	1.	154.67
0.1	-	-	0.27	0.33	7.67	0.08	1.	5.33	0.07	0.67	5.33	0.01	1.	5.	0.	1.	5.
0.01			0.	0.67	53.	0.	0.33	69.	0.	0.67	144.33	0.	0.67	49.	0.	1.	19.33
0.01	1-	1-1	0.01	0.67	6.33	0.	0.33	5.67	0.	0.67	6.	0.	0.67	5.33	0.	1.	5.33

表 49: 例番号 40

	10	25		50			100			200			400			800	
1	T		10.44	0.	224.67	5.15	0.	275.	2.2	0.	151.33	1.17	0.11	84.	1.66	0.06	72.33
1.	-	-	9.22	0.	5.33	5.15	0.	5.33	2.03	0.	6.	1.17	0.11	5.67	1.57	0.11	8.33
0.1	Т	П	0.39	0.22	42.33	0.19	0.64	30.33	0.12	0.64	24.33	0.04	0.92	29.33	0.01	0.92	31.
0.1	-	-	0.39	0.22	5.67	0.19	0.64	7.33	0.12	0.64	7.33	0.04	0.92	7.33	0.01	0.92	7.
0.0		ΠÌ	0.	0.83	45.	0.	0.92	32.	0.	1.	30.67	0.	1.	39.67	0.	0.83	28.67
0.0.	-	-	0.	0.83	8.33	0.	0.92	7.33	0.	1.	7.	0.	1.	7.	0.	0.83	7.33

表 50: 例番号 41

	10	25		50			100			200			400			800	
1	T_		6.29	0.	141.67	3.8	0.08	209.33	2.1	0.	302.33	2.19	0.08	52.33	1.14	0.	82.67
1.	-	1-1	5.98	0.	5.67	3.49	0.	6.33	1.91	0.	5.	2.19	0.08	6.33	1.13	0.	7.33
0.1	T_		0.52	0.08	31.	0.11	0.58	30.	0.08	0.5	24.	0.09	0.43	20.33	0.02	0.78	22.
0.1	-	1-1	0.45	0.19	7.67	0.11	0.58	7.	0.08	0.5	8.	0.09	0.43	7.	0.02	0.78	8.
0.01	Т		0.	0.82	29.	0.	0.87	20.33	0.	0.93	19.67	0.	0.93	19.67	0.	0.89	27.67
0.01	- -	-	0.	0.82	9.33	0.	0.87	9.	0.	0.93	8.67	0.	0.93	8.67	0.	0.89	8.67

表 51: 例番号 42

	10	25		50			100			200			400			800	
1	П	П	12.63	0.03	154.	5.17	0.07	96.67	3.81	0.17	251.	1.94	0.07	130.33	1.64	0.22	84.67
1.	-	-	12.63	0.03	5.67	5.17	0.07	5.67	2.95	0.03	5.33	1.94	0.07	6.33	1.32	0.2	8.33
0.1			0.55	0.15	28.67	0.5	0.25	24.33	0.18	0.47	36.33	0.14	0.48	26.67	0.06	0.73	19.33
0.1	-	1-1	0.54	0.16	7.	0.47	0.28	8.	0.18	0.47	7.33	0.14	0.48	8.33	0.06	0.7	7.67
0.01			0.03	0.87	29.	0.01	0.86	30.67	0.01	0.85	32.	0.	0.97	33.33	0.01	0.7	61.67
0.01	-	-	0.05	0.77	9.33	0.01	0.86	10.33	0.01	0.88	11.67	0.	0.97	11.	0.	0.76	14.

表 52: 例番号 43

	10	25		50			100			200			400			800	
-1	П	П	6.9	0.	343.67	7.92	0.06	208.	3.38	0.	283.33	2.4	0.1	173.67	3.44	0.25	55.33
1.	-	-	6.9	0.	5.	7.92	0.06	6.33	3.38	0.	5.33	2.4	0.1	7.	2.91	0.23	9.
0.1	П		0.61	0.19	40.67	0.29	0.4	57.	0.22	0.5	32.33	0.14	0.52	17.67	0.05	0.73	23.
6.1	-	-	0.61	0.19	9.	0.24	0.37	7.	0.22	0.5	8.67	0.14	0.52	7.33	0.07	0.67	8.67
0.01	П	П	0.03	0.8	28.67	0.02	0.84	31.33	0.03	0.8	27.67	0.03	0.73	30.	0.02	0.76	28.33
0.01	-	-	0.02	0.9	12.33	0.02	0.84	11.33	0.03	0.8	10.	0.02	0.79	11.33	0.	0.9	13.33

表 53: 例番号 44

	10	25		50			100			200			400			800	
1			8.77	0.05	83.67	5.	0.	217.33	4.15	0.05	68.	4.01	0.13	155.	1.84	0.11	89.33
1.	-	-	10.13	0.05	6.	5.	0.	5.33	4.45	0.02	6.33	3.05	0.07	8.67	1.84	0.11	7.33
0.1	П		1.11	0.27	40.33	0.31	0.24	22.33	0.25	0.35	37.67	0.12	0.45	23.33	0.09	0.49	21.
6.1	-	-	0.91	0.25	10.	0.31	0.24	7.33	0.27	0.28	7.33	0.12	0.45	8.67	0.1	0.44	7.67
0.01	П	П	0.04	0.71	25.	0.03	0.79	33.	0.02	0.83	39.67	0.	0.92	52.	0.02	0.82	41.33
6.61	-	-	0.07	0.59	10.	0.03	0.83	13.67	0.01	0.93	13.67	0.01	0.91	15.33	0.02	0.82	12.33

表 54: 例番号 45

	10	25		50			100			200			400			800	
1	T_		10.98	0.03	58.	5.6	0.09	130.33	3.13	0.09	160.67	3.2	0.2	43.67	1.34	0.09	47.33
1.	-	-	10.98	0.03	6.	5.6	0.09	8.	3.13	0.09	6.33	3.43	0.09	8.	1.57	0.17	9.
0.1	T_		0.59	0.18	61.	0.37	0.21	21.	0.13	0.42	30.	0.11	0.43	21.	0.06	0.55	18.67
0.1	-	-	0.62	0.19	9.33	0.37	0.21	7.	0.14	0.39	10.	0.12	0.4	7.67	0.06	0.55	7.67
0.01	Т	П	0.02	0.76	27.	0.	0.85	50.67	0.	0.86	44.	0.	0.94	39.	0.	0.92	44.33
0.01	- -	-	0.01	0.82	11.67	0.	0.85	11.67	0.	0.86	12.	0.	0.94	12.67	0.	0.92	12.67

表 55: 例番号 46

	10	25		50			100			200			400			800	
1	П	П	13.87	0.	397.	6.9	0.02	117.	3.67	0.05	123.67	3.85	0.19	142.67	1.75	0.14	106.
1.	-	-	13.87	0.	5.	6.89	0.	5.67	3.67	0.05	5.67	4.	0.14	8.33	1.73	0.07	6.
α 1	П	П	0.93	0.12	42.33	0.22	0.24	21.33	0.22	0.38	28.33	0.14	0.43	25.33	0.08	0.57	39.
0.1	-	-	0.84	0.1	9.	0.32	0.21	8.33	0.21	0.4	8.33	0.14	0.43	9.33	0.1	0.48	7.33
0.01			0.03	0.79	42.67	0.02	0.81	38.33	0.03	0.74	38.67	0.01	0.87	50.33	0.01	0.87	47.67
0.01	-	-	0.06	0.66	13.	0.04	0.76	11.67	0.01	0.9	16.	0.02	0.83	12.33	0.01	0.85	16.67

表 56: 例番号 47

	10	25		50			100			200			400			800	
1	T_		12.06	0.04	176.67	9.15	0.03	110.	5.54	0.12	80.33	4.82	0.19	61.67	2.65	0.12	42.
1.	-	-	10.36	0.03	6.33	9.15	0.03	6.	6.18	0.07	6.67	4.07	0.07	6.67	2.84	0.09	7.67
0.1	Т	П	1.33	0.23	44.33	0.9	0.32	28.33	0.63	0.32	25.67	0.3	0.51	37.	0.24	0.54	40.
6.1	-	-	1.56	0.19	12.	0.87	0.39	11.67	0.61	0.33	10.	0.25	0.58	13.33	0.24	0.54	11.67
0.01	L		0.1	0.81	57.	0.1	0.77	52.	0.04	0.88	74.33	0.	1.	73.	0.	1.	84.33
0.01	- -	_	0.1	0.8	24.33	0.1	0.77	17.33	0.04	0.88	20.	0.04	0.9	20.33	0.	1.	23.67

表 57: 例番号 48

	16	25		50			100			200			400			800	
1	T		13.67	0.03	166.33	9.52	0.12	49.33	6.59	0.12	78.	4.87	0.13	122.67	2.38	0.21	49.
1.	-	1-1	13.98	0.01	6.	10.21	0.08	7.	8.25	0.05	8.67	5.68	0.1	8.67	2.63	0.1	8.33
0.1	T		1.62	0.21	36.33	1.05	0.32	27.	0.7	0.4	37.	0.35	0.58	47.	0.14	0.72	67.
0.1	-	1-1	1.77	0.18	8.33	1.22	0.23	9.	0.57	0.45	11.33	0.2	0.67	18.33	0.14	0.71	17.67
0.01	Т	П	0.17	0.85	67.	0.02	0.92	67.33	0.	0.96	77.33	0.	0.97	112.33	0.	1.	99.33
0.01	- -		0.41	0.71	22.33	0.02	0.92	23.67	0.	0.96	24.	0.	0.97	21.	0.	1.	22.

表 58: 例番号 49

	10	25		50			100			200			400			800	
1	П	П	9.59	0.08	181.	6.92	0.03	155.33	4.63	0.08	97.67	2.84	0.08	114.	2.19	0.17	34.67
1.	-	1-1	9.53	0.04	6.	6.92	0.03	5.67	4.63	0.08	7.	3.1	0.08	7.33	2.17	0.13	9.67
0.1	L	П	0.98	0.13	39.33	0.93	0.27	41.33	0.53	0.28	27.67	0.35	0.4	29.	0.14	0.55	47.67
0.1	-	1-1	0.98	0.13	7.67	1.04	0.19	7.	0.59	0.24	8.67	0.35	0.4	11.	0.16	0.53	14.67
0.01	П		0.34	0.51	40.	0.01	0.87	65.67	0.01	0.95	75.33	0.	0.99	79.	0.	1.	79.
0.01	1-	1-1	0.49	0.31	9.	0.01	0.86	24.33	0.01	0.95	22.67	0.	0.99	22.33	0.	1.	22.33

表 59: 例番号 50

	10	25		50			100			200			400			800	
1	Т	П	8.1	0.04	31.33	3.49	0.01	252.	2.98	0.	264.33	2.35	0.05	80.67	2.27	0.14	123.
1.	-	-	8.1	0.04	6.	3.49	0.01	5.33	2.98	0.	5.	2.35	0.05	6.33	1.77	0.1	9.33
0 1	Т	П	0.7	0.13	25.	0.53	0.14	21.67	0.29	0.24	21.67	0.17	0.28	18.33	0.1	0.37	50.
0.1	-	-	0.59	0.1	8.33	0.59	0.13	6.67	0.26	0.22	7.33	0.17	0.28	8.33	0.1	0.37	8.67
0.01	1_		0.1	0.54	52.	0.02	0.67	52.	0.03	0.63	57.67	0.	0.96	78.33	0.	1.	92.
6.61	- -	-	0.08	0.64	19.67	0.04	0.67	18.	0.03	0.63	14.67	Α.	0.96	20.67	Α.	1.	21.