- **1.** Найти $\lim_{n\to\infty} \frac{\cos(n^2+n+1)}{3n^2+2n}$.
- **2.** Найти а) $\lim_{n\to\infty} (\sqrt{2}\sqrt[4]{2}\sqrt[8]{2}...\sqrt[2^n]{2}).$
- 6) $\lim_{n\to\infty} \left(\frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{(n-1)^2}{n^3} \right).$
- **3.** Докажите, что для любого числа A существуют такие последовательности x_n и y_n , что $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = -\infty$ и $\lim_{n\to\infty} (x_n y_n) = A$.
 - **4.** Докажите, что $\lim_{n\to\infty} a^{1/n} = 1$, где a > 0.
 - **5.** Найти $\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} \right)$.
 - **6.** Найти предел последовательности $x_n = \sqrt[n]{2^n + 7^n}$.

(можно воспользоваться теоремой о двух милиционерах и задачей 4)

7. Пусть $\lim_{n\to\infty}x_ny_n=0$. Следует ли отсюда, что либо $\lim_{n\to\infty}x_n=0$, либо $\lim_{n\to\infty}y_n=0$?