1 functions of two variables

(3-variable functions are similar.)

- notation: z = f(x, y)
- limit:
 - definition: we say $\lim_{(x,y)\to(a,b)} f(x,y) = L$, if for any positive real number $\varepsilon > 0$, there is a positive real number $\delta > 0$, such that if $0 < dist((x,y),(a,b)) < \delta$, then $|f(x,y)-L| < \varepsilon$
 - remark: if $f(x,y) \to L_1$, as $(x,y) \to (a,b)$ along a path C_1 , and $f(x,y) \to L_2$, as $(x,y) \to (a,b)$ along another path C_2 . if $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.
- continuity:
 - definition: we say function f(x,y) is continuous at (a,b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

2 partial derivatives of z = f(x, y)

(3-variable functions are similar.)

• definition:
$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, \quad \frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

• notations:
$$\frac{\partial f}{\partial x} = f_x = \frac{\partial z}{\partial x} = z_x = D_x f$$
, $\frac{\partial f}{\partial y} = f_y = \frac{\partial z}{\partial y} = z_y = D_y f$

- how to find partial derivatives of z = f(x, y)
 - to find f_x , regard y as a constant and differentiate f(x,y) with respect to x.
 - to find f_y , regard x as a constant and differentiate f(x,y) with respect to y.
- second derivatives:
 - notations:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx} = \frac{\partial^2 z}{\partial x^2} = z_{xx}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy} = \frac{\partial^2 z}{\partial y^2} = z_{yy}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy} = \frac{\partial^2 z}{\partial y \partial x} = z_{xy}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx} = \frac{\partial^2 z}{\partial x \partial y} = z_{yx}$$

- theorem: if both of f_{xy} and f_{yx} exist and are continuous, then $f_{xy} = f_{yx}$

- linear approximation
 - tangent plane: for surface z = f(x,y), at point $(x_0, y_0, f(x_0, y_0))$, its tangent plane (linear approximation) is $L(x,y) = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0) + f(x_0, y_0)$
 - total differential: $dz = f_x dx + f_y dy$
- chain rule

- case 1:
$$z = f(x, y), x = x(t), y = y(t) \Rightarrow z_t = f_x x_t + f_y y_t$$

- case 2:
$$z = f(x, y), x = x(s, t), y = y(s, t) \Rightarrow \begin{cases} z_s = f_x x_s + f_y y_s \\ z_t = f_x x_t + f_y y_t \end{cases}$$

- implicit differentiation
 - -y = y(x) is implicitly defined by F(x,y) = k, then $\frac{dy}{dx} = -\frac{F_x}{F_y}$

$$-z = z(x,y)$$
 is implicitly defined by $F(x,y,z) = k$, then
$$\begin{cases} z_x = -\frac{F_x}{F_z} \\ z_y = -\frac{F_y}{F_z} \end{cases}$$

• gradient vector: $\nabla f = \langle f_x, f_y \rangle$

3 directional derivatives

- definition $D_{\widehat{u}}f = \lim_{h \to 0} \frac{f(x+ah,y+bh) f(x,y)}{h}$, where $\widehat{u} = \langle a,b \rangle$ is a unit vector.
- formula: $D_{\widehat{u}}f = \widehat{u} \cdot \nabla f = af_x + bf_y$
- theorem: for function f(x,y), if $\nabla f \neq \overrightarrow{0}$, then
 - the maximum rate of increasing is $\|\nabla f\|$, in the direction of $\widehat{u} = \frac{\nabla f}{\|\nabla f\|}$
 - the maximum rate of decreasing is $-\|\nabla f\|$, in the direction of $\widehat{u} = -\frac{\nabla f}{\|\nabla f\|}$
 - in the direction where $\widehat{u} \perp \nabla f$, the rate of change is 0.
- tangent lines/planes for level curves/surfaces
 - for curve F(x,y) = k, for one point (x_0,y_0) on the curve, the tangent line there is

$$F_x(x_0, y_0)(x - x_0) + F_y(x_0, y_0)(y - y_0) = 0$$

– for surface F(x, y, z) = k, for one point (x_0, y_0, z_0) on the surface, the tangent plane there is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

maximum and minimum 4

- local max/min of f(x,y)
 - find critical points by solving $\nabla f = \overrightarrow{0}$
 - second derivative test:

$$D(x,y) = f_{xx}f_{yy} - (f_{xy})^2 \Rightarrow \begin{cases} D > 0 \text{ and } f_{xx} > 0 \Rightarrow \text{local minimum} \\ D > 0 \text{ and } f_{xx} < 0 \Rightarrow \text{local maximum} \\ D < 0 \Rightarrow \text{saddle points} \\ D = 0 \Rightarrow \text{no conclustion} \end{cases}$$

- absolute max/min of f(x,y) in a region D
 - find critical points in D by solving $\nabla f = \overrightarrow{0}$ and evaluate the function values there
 - find the max/min of f(x,y) on the boundary of D
 - the largest function value from the previous 2 steps is the absolute maximum; the smallest one is the absolute minimum.
- method of lagrange multiplier:
 - max/min of f(x,y) given g(x,y) = k
 - * solve $\begin{cases} \nabla f = \lambda \nabla g \\ g(x,y) = k \end{cases}$ for x, y and λ , and then evaluate the function values there
 - * the largest function value from the previous step is the maximum; the smallest one is the minimum.
 - max/min of f(x, y, z) given g(x, y, z) = k
 - * solve $\begin{cases} \nabla f = \lambda \nabla g \\ g(x, y, z) = k \end{cases}$ for x, y, z and λ , and then evaluate the function values there
 - * the largest function value from the previous step is the maximum; the smallest one is the minimum.
 - - * solve $\begin{cases} \nabla f = \lambda \nabla g + \mu \nabla h \\ g(x,y,z) = k \\ h(x,y,z) = \ell \end{cases}$ for $x,\ y,\ z,\ \lambda$ and μ , and then evaluate the function
 - * the largest function value from the previous step is the maximum; the smallest one is the minimum.

5 double integrals

• definition:
$$\iint_D f(x,y) \ dA = \lim_{m,n\to\infty} \sum_{k=1}^m \sum_{j=1}^n f(x_j,y_k) \Delta A$$

• fubini's theorem $D = \{(x, y) | a \le x \le b, c \le y \le d\},\$

$$\iint_D f(x,y) \ dA = \int_a^b \int_c^d f(x,y) \ dydx = \int_c^d \int_a^b f(x,y) \ dxdy$$

• general region D:

$$- D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x) \},\$$

$$\iint_{D} f(x,y) \ dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \ dy dx$$

$$- D = \{(x, y) | c \le y \le d, g_1(y) \le x \le g_2(y) \},\$$

$$\iint_{D} f(x,y) \ dA = \int_{c}^{d} \int_{g_{1}(y)}^{g_{2}(y)} f(x,y) \ dxdy$$

• applications:

– area of a region
$$D = \iint_D 1 \ dA$$

– average value of a function
$$f(x,y)$$
 over a region D : $f_{avg} = \frac{\iint_D f(x,y) \ dA}{\iint_D 1 \ dA}$

– volume of a solid between 2 surfaces f(x,y) and g(x,y) $(f \ge g)$ over a region D,

$$V = \iint_D f(x, y) - g(x, y) \ dA$$

- center of mass: a plane lamina D, with density f(x,y), then the center of mass is

$$(\overline{x}, \overline{y}) = \left(\frac{M_y}{M}, \frac{M_x}{M}\right) = \left(\frac{\iint_D x f(x, y) \ dA}{\iint_D f(x, y) \ dA}, \frac{\iint_D y f(x, y) \ dA}{\iint_D f(x, y) \ dA}\right)$$