Anticipez les besoins en consommation électrique de bâtiments

PROJET 04/ Openclassrooms

Gulsum Kapanoglu

Dans ce Project..

- ✓ Problématique
- ✓ Nettoyage des données
- ✓ Exploration des données
- ✓ Feature Engineering
- ✓ Model de Prédiction pour consommation total d'Energy
- ✓ Model de Prédiction émission Co2
- ✓ L'effet du score ENERGY STAR
- **✓** Conclusion

Problématique

- ➤ Objectif: Être une ville neutre en émissions de gaz à effets de serre en 2050
- Données: La consommation et aux émissions des bâtiments non destinés à l'habitation.

Ces relevés sont coûteux à obtenir, et à partir de ceux déjà réalisés Identifier l'impact de l'ENERGYSTARSCORE

Nettoyage & Exploration des données

Nettoyage

Suppression des variables non intéressantes

Variables existants sous une autre unité standard

SiteEUI(kBtu/sf)

SourceEUI(kBtu/sf)

SiteEnergyUse(kBtu)

GHGEmissionsIntensity

CouncilDistrictCode

SourceEUIWN(kBtu/sf)

SiteEUIWN(kBtu/sf)

Variables non nécessaires

Address,

City,

State,

Zip code,

ListOfAllPropertyUseTypes,

SecondLargestPropertyUseType,

SecondLargestPropertyUseTypeGFA,

ThirdLargestPropertyUseType,

ThirdLargestPropertyUseTypeGFA,

YearsENERGYSTARCertified,

DefaultData,

Comments,

- ✓ Conversion des surfaces (Buildings et Parking) en pourcentage de la surface totale
- ✓ Surface moyenne par bâtiment et par étage
- ✓ Age des bâtiments au lieu de l'année de construction
- ✓ Source principale d'énergie

Source principale d'énergie

Electricity(kBtu).

NaturalGas(kBtu)

SteamUse(kBtu)

Consumption_rate_Electricity

Consumption_rate_Gas

Consumption_rate_Steam

```
Correlation matrix

CostBuildray

Darkhar

2pc.coe 01

Councilibitaticale 037

Lottide 035

Longitude 01

Numberoffindray 005

Numberof
```

```
Out[54]:
                                                             level_1 corr_coeff
                          PropertyGFATotal
                                               PropertyGFABuilding(s) 0.990346
                      PropertyGFABuilding(s) LargestPropertyUseTypeGFA 0.982501
                                                    PropertyGFATotal 0.977860
              18 LargestPropertyUseTypeGFA
                         SiteEUIWN(kBtu/sf)
                                                SourceEUIWN(kBtu/sf) 0.942960
                            Electricity(kWh) LargestPropertyUseTypeGFA 0.887797
                            Electricity(kWh)
                                                PropertyGFABuilding(s) 0.876833
                          PropertyGFATotal
                                                      Electricity(kWh) 0.865489
                                               SiteEnergyUseWN(kBtu) 0.853192
                         TotalGHGEmissions
              6 LargestPropertyUseTypeGFA
                                                   NumberofBuildings 0.808038
                         NumberofBuildings
                                                PropertyGFABuilding(s) 0.783293
                         NumberofBuildings
                                                      Electricity(kWh) 0.765437
```

On remarque que les variables suffixées GFA présentent de fortes corrélations avec plusieurs autres variables. Nous allons donc créer de nouvelles variables pour tenter de gommer ces corrélations linéaires :

- GFABuildingRate.
- GFAParkingRate.
- GFAPerBuilding
- GFAPerFloor

PropertyGFABuilding(s)/PropertyGFATotal

PropertyGFAParking/PropertyGFATotal

PropertyGFATotal

PropertyGFATotal

Exploration des données

Vérification que tous les bâtiments sont localisés en Seattle

Prédiction Consommation Totale d'énergy

Normalisation & Distribution

Prédiction de la consommation d'énergie

Analyse exploratoire

Distribution de la consommation d'énergies avec l'application du logarithme

Model de Prédiction

Prédiction de la consommation d'énergie

Comparaison entre Y et log(Y)

Sans log

	Dummy Regressor	Lasso	Ridge	DecisionTree	SVM	Ridge Kernel	AdaBoost	Random Forest	GradientBoosting	KNN
MAE	9.882214e+06	6.921841e+06	6.986702e+06	7.039676e+06	9.882192e+06	6.991724e+06	1.684577e+07	6.014202e+06	6.131018e+06	7.031609e+06
MSE	1.099042e+15	8.500710e+14	8.527586e+14	8.720105e+14	1.099041e+15	8.535716e+14	9.216402e+14	7.234253e+14	7.554722e+14	7.880508e+14
RMSE	3.315181e+07	2.915598e+07	2.920203e+07	2.952982e+07	3.315179e+07	2.921595e+07	3.035853e+07	2.689657e+07	2.748585e+07	2.807224e+07
R²	-4.900000e-02	1.880000e-01	1.860000e-01	1.670000e-01	-4.900000e- 02	1.850000e-01	1.200000e-01	3.090000e-01	2.790000e-01	2.480000e-01
time	1.338940e-04	2.340823e-03	2.113030e-04	4.138690e-04	5.639792e-02	3.836831e-03	7.455705e-03	1.377393e-02	7.919580e-04	7.438980e-03

Passage au log

	Dummy Regressor	Lasso	Ridge	DecisionTree	SVM	Ridge Kernel	AdaBoost	Random Forest	GradientBoosting	KNN
MAE	0.878000	0.886000	0.541000	0.562000	0.443000	0.540000	0.542000	0.435000	0.448000	0.52100
MSE	1.237000	1.234000	0.643000	0.567000	0.371000	0.630000	0.438000	0.326000	0.353000	0.48500
RMSE	1.112000	1.111000	0.802000	0.753000	0.609000	0.794000	0.661000	0.571000	0.595000	0.69700
R²	-0.003000	-0.000000	0.479000	0.540000	0.699000	0.489000	0.645000	0.735000	0.713000	0.60600
time	0.000069	0.000362	0.000585	0.000449	0.052413	0.002466	0.006904	0.013172	0.000695	0.00463

Résultats sont meilleurs avec l'application du logarithme

Model de Prédiction

Random Forest et GradientBoosting

Pour aller plus loin

Sélection de model est Gradient Boosting Regressor

	Random Forest	GradientBoosting
MAE	0.446000	0.427000
MSE	0.347000	0.325000
RMSE	0.589000	0.570000
R²	0.719000	0.736000
time	0.140761	0.000667

Comparaison de la consommation de énergie prédite avec algorithme Gradient Boosting versus la consommation reel

Feature importance pour energy

L'effet du score ENERGY STAR

Analyse de la variable ENERGY STAR Score

Le score ENERGY
STAR ne semble pas
avoir de corrélation
importante avec
consommation energy

Prédiction des consommation Energy:

Entrainement sur le nouveau jeu de données intégrant la variable ENERGYSTARSCORE. Evaluation des performances et comparaison avec les performances initialement obtenues.

Sans ENERGYSTAR

MAE: 0.43111 MSE: 0.33157

RMSE: 0.5758197600562731

MAPE: 0.02777 R²: 0.73113

Avec ENERGYSTAR

MAE: 0.29396 MSE: 0.18344

RMSE: 0.4282990519386477

MAPE: 0.01871

R2: 0.8283

Prediction émissions de CO₂

Distribution des emissions de CO2 avec l'application du logarithme

Prédiction des émissions de CO₂

Model de Prédiction

Pour aller plus loin

	GradientBoosting	RandomForest
MAE	0.718000	0.547000
MSE	0.784000	0.500000
RMSE	0.886000	0.707000
R ²	0.347000	0.584000
time	0.000566	0.220409

Sélection de model est Gradient Boosting Regressor

MAE: 0.71785 MSE: 0.78441

RMSE: 0.885669689015457

MAPE: 0.15345 R²: 0.34711

Feature importance pour Co2

L'effet du score ENERGY STAR

Analyse de la variable ENERGY STAR Score

Le score ENERGY STAR ne semble pas avoir de corrélation importante avec émission Co2

Sans ENERGYSTAR

MAE: 0.71785

MSE: 0.78441

RMSE: 0.885669689015457

MAPE: 0.15345

R2: 0.34711

Avec ENERGYSTAR

MAE: 0.65031 MSE: 0.64078

RMSE: 0.8004900014991371

MAPE: 0.14055

R2: 0.38434

Conclusion

- ➤ Possibilité de prédire la consommation d'énergie de manière fiable (73% de variance expliquée)
- ➤ Possibilité de prédire les émissions de CO2 mais légèrement moins fiable (34% de variance expliquée)
- ➤ Score Energy Star : inutile à la prédiction
- Proposition d'amélioration: Rénover ces bâtiments sur le modèle des bâtiments à énergie positive

Merci!