Convergence of Sequence of Random Variables

In this module we investigate convergence properties of sequences of random variables. Throughout this module we assume that $\{X_1, X_2, ...\}$ or $\{X_n\}$ is a sequence of r.vs and X is a r.v. We consider *four different modes of convergence for random variables.*

1. Almost sure convergence: It is the probabilistic version of pointwise convergence known from elementary real analysis. It is also known as convergence with probability one.

The sequence of r.vs $\{X_n\}$ is said to **converge almost surely** to a r.v. X if

$$P\left(\left\{w: \lim_{n\to\infty} X_n(w) = X(w)\right\}\right) = 1$$

In this case we write $X_n \xrightarrow{a.s} X$ (or $X_n \to X$ with probability 1).

2. **Convergence in probability:** It is essentially mean that the probability that $|X_n - X|$ exceeds any prescribed strictly positive value, converges to zero. The basic idea behind this type of convergence is that the probability of an *unsual* outcome becomes smaller and smaller as the sequence progresses. The sequence of r.vs $\{X_n\}$ is said to *converge in probability* to a r.v. X if

$$\lim_{n\to\infty} P(\{|X_n - X| > \epsilon\}) = 0$$

for every $\epsilon > 0$.It is denoted by $X_n \xrightarrow{P} X$.

3. Convergence in r^{th} mean: Let $\{X_n\}$ be a sequence of r.vs such that $E(|X_n|^r) < \infty$ for some r > 0. We say that X_n converges in the r^{th} mean to a r.v. X if $E(|X|^r) < \infty$ and

$$E(|X_n - X|^r) \to 0 \text{ as } n \to \infty$$

and we write $X_n \xrightarrow{r} X$.

If r=2, we call it as **convergence in quadratic mean** and it is denoted by $X_n \xrightarrow{q.m} X$

4. Convergence in distribution: Convergence in distribution is very frequently used in practice, most often it arises from the application of the central limit theorem (to be discussed in module 4.5). Note that a cumulative distribution function (c.d.f) is briefly called as distribution function (d.f) also.

Let $\{F_n\}$ be a sequence of cumulative distribution functions (c.d.fs), if there exists a c.d.f. F such that as $n \to \infty$,

$$F_n(x) \longrightarrow F(x)$$

for all x at which F is continuous, then we say that F_n converges weakly to F, and it is denoted by $F_n \stackrel{w}{\longrightarrow} F$.

If $\{X_n\}$ is a sequence of r.vs and $\{F_n\}$ is the corresponding sequence of c.d.fs, then we say that X_n converges in distribution (or law) to X if there exists an r.v X with c.d.f. F such that $F_n \xrightarrow{w} F$. We write $X_n \xrightarrow{d} X$ or $X_n \xrightarrow{L} X$.

Note: It is quite possible for a given sequence of c.d.fs to converge to a function that is not a c.d.f.

Example: Let $F_n(x) = \begin{cases} 0, x < n \\ 1, x \ge n \end{cases}$

As $n \to \infty$, $F_n(x) \to F(x) = 0$ which is not a c.d.f.

Example 1: Let $X_1, X_2, ..., X_n$ be i.i.d.r.vs with common p.d.f

$$f(x) = \begin{cases} \frac{1}{\theta} & \text{, } 0 < x < \theta \text{, } \theta > 0 \\ 0 & \text{, otherwise} \end{cases}$$

Let $X_{(n)}=max(X_1,\dots,X_n)$. Then show that $X_{(n)}\stackrel{L}{----} X$, where X is degenerate at $x=\theta$.

(Note: We say that a r.v.X is **degenerate at** $x = \theta$ if $P(X = \theta) = 1$)

Solution: Corresponding to p.d.f. $f(x) = \frac{1}{\theta}$, the c.d.f. is given by

$$F(x) = \int_0^x f(t)dt = \frac{1}{\theta} \int_0^x dt = \frac{x}{\theta}$$

$$\Rightarrow F(x) = \begin{cases} 0, & x < 0 \\ \frac{x}{\theta}, & 0 \le x < \theta \\ 1, & x > \theta \end{cases}$$

Then the c.d.f. of $X_{(n)}$ is given by

$$F_n(x) = [F(x)]^n = \begin{cases} 0, & x < 0 \\ \left(\frac{x}{\theta}\right)^n, & 0 \le x < \theta \\ 1, & x \ge \theta \end{cases}$$

We see that as $n \to \infty$

$$F_n(x) = F(x) = \begin{cases} 0 & \text{if } x < \theta \\ 1 & \text{if } x \ge \theta \end{cases}$$

which is the d.f. of $P(X = \theta) = 1$. i. e., X is degenerate at $X = \theta$.

Thus $F_n \xrightarrow{w} F$ and hence $X_n \xrightarrow{L} X$.

The following example shows that convergence in distribution does not imply convergence of moments.

Example 2: Let F_n be a sequence of c.d.fs defined by

$$F_n(x) = \begin{cases} \mathbf{0} & , & x < 0 \\ 1 - \frac{1}{n} & , & 0 \le x < n \\ 1 & , & x \ge n \end{cases}$$

Show that $X_n \stackrel{L}{\longrightarrow} X$ does not imply $E(X_n^{\ k}) \to E(X^k)$.

Solution: We see that as $n \to \infty$

$$F(x) = \begin{cases} 0 , x < 0 \\ 1 , x \ge 0 \end{cases}$$

Note that F_n is the c.d.f. of the r.v. X_n with p.m.f.

$$P(X_n = 0) = 1 - \frac{1}{n}$$
, $P(X_n = n) = \frac{1}{n}$

and F is the c.d.f. of the r.v. degenerate at 0 i. e., P(X = 0) = 1.

Thus, $F_n \xrightarrow{w} F$ and hence $X_n \xrightarrow{L} X$. We have

 $E\left(X_n^k\right)=0^k\left(1-\frac{1}{n}\right)+n^k\left(\frac{1}{n}\right)=n^{k-1}$, where k is a positive integer. Also, $E(X^k)=0^k1=0$. Hence $E\left(X_n^k\right) \not \to E(X^k)$ as $n\to\infty$

Therefore, $X_n \xrightarrow{L} X$ does not imply $E(X_n^k) \to E(X^k)$.

The next example shows that weak convergence of distribution of function does not imply the convergence of corresponding p.m.fs or p.d.fs.

Example 3: Let $\{X_n\}$ be a sequence of r.vs with p.m.f.

$$f_n(x) = P(X_n = x) = \begin{cases} 1, & if \quad x = 2 + \frac{1}{n} \\ 0, & otherwise \end{cases}$$

Show that $F_n \xrightarrow{w} F$ does not imply $f_n \to f$.

Solution: Note that $f_n(x) \to f(x)$ as $n \to \infty$, where f(x) = 0 for all x.

The c.d.f. of X_n is given by

$$F_n(x) = P(X_n \le x) = \begin{cases} 0, & x < 2 + \frac{1}{n} \\ 1, & x \ge 2 + \frac{1}{n} \end{cases}$$

which converges to

$$F(x) = \begin{cases} 0 & , & x < 2 \\ 1 & , & x \ge 2 \end{cases}$$

at all continuity points of F. Since F is the c.d.f. of a r.v. degenerate at x=2 i.e., P(X=2)=1

$$i.e., f(x) = \begin{cases} 1, & x = 2 \\ 0, & otherwise \end{cases}$$

Thus, convergence of distribution functions does not imply the convergence of corresponding p.m.fs.

Example 4: Let $\{X_n\}$ be a sequence of r.vs with p.m.f $P(X_n=1)=\frac{1}{n}$ and $P(X_n=0)=1-\frac{1}{n}$. Then show that $X_n\stackrel{P}{\longrightarrow} 0$.

Solution: We have
$$P(|X_n| > \epsilon) = \begin{cases} P(X_n = 1) = \frac{1}{n}, & 0 < \epsilon < 1 \\ 0, & \epsilon \ge 1 \end{cases}$$

It follows that $P(|X_n| > \epsilon) \to 0$ as $n \to \infty$, and we conclude that $X_n \stackrel{P}{\longrightarrow} 0$

Example 5: Let $\{X_n\}$ be a sequence of r.vs defined by

$$P(X_n = 0) = 1 - \frac{1}{n}, \ P(X_n = 1) = \frac{1}{n}, n = 1, 2, ...$$

Show that $X_n \xrightarrow{q.m} X$, where $P(X = \mathbf{0}) = \mathbf{1}$.

Solution: Consider
$$E(|X_n - 0|^2) = E(|X_n|^2) = E(X_n^2) = 0^2 \left(1 - \frac{1}{n}\right) + 1^2 \left(\frac{1}{n}\right)$$

= $\frac{1}{n} \to 0$ as $n \to \infty$

Thus, $X_n \xrightarrow{q.m} X$, where X is degenerate at 0.

Example 6: Let $\{X_n\}$ be a sequence of independent r.vs defined by

$$P(X_n = 0) = 1 - \frac{1}{n}$$
 and $P(X_n = 1) = \frac{1}{n}$, $n = 1, 2, ...$

Show that $X_n \xrightarrow{q.m} 0$ but $X_n \xrightarrow{a.s} 0$

Solution:
$$E(|X_n - 0|^2) = E(|X_n|^2) = 0^2 \left(1 - \frac{1}{n}\right) + 1^2 \left(\frac{1}{n}\right) = \frac{1}{n} \to 0 \text{ as } n \to \infty$$

Hence $X_n \xrightarrow{q.m} 0$.

Also,
$$P(X_n=0 \ for\ every\ m \le n \le n_0) = \prod_{n=m}^{n_0} \left(1-\frac{1}{n}\right) = \frac{m-1}{n_0}$$
 which converges to zero as $n \to \infty$ for all values of m . Thus, $X_n \xrightarrow{a.s} 0$

Example 7: Let $\{X_n\}$ be a sequence of independent r.vs defined by

$$P(X_n=0)=1-rac{1}{n^r}$$
 and $P(X_n=n)=rac{1}{n^r}$, $r\geq 2$, $n=1,2,...$

Show that $X_n \xrightarrow{a.s} 0$ but $X_n \xrightarrow{r} 0$.

Solution: We have
$$P(X_n = 0 \ for \ m \le n \le n_0) = \prod_{n=m}^{n_0} \left(1 - \frac{1}{n^r}\right)$$

As $n_0 \to \infty$, the infinite product converges to some nonzero quantity, which itself converges to 1 as $m \to \infty$.

That is,
$$P\left[\lim_{n\to\infty}X_n=0\right]=1.$$
 Therefore $X_n\stackrel{a.s}{\longrightarrow}0$

However,
$$E(|X - 0|^r) = E(|X|^r) = 0^r \left(1 - \frac{1}{n^r}\right) + n^r \times \frac{1}{n^r} = 1$$

and hence $E(|X|^r) = 1$ as $n \to \infty$. Therefore, $X_n \xrightarrow{r} 0$

Thus,
$$X_n \xrightarrow{a.s} 0$$
 but $X_n \xrightarrow{r} \mathbf{0}$

A sufficient condition for a.s. convergence:

We state a sufficient condition for the a.s. convergence without proof which is sometimes to verify.

$$X_n \xrightarrow{a.s} X \iff \lim_{n \to \infty} P \left[\bigcup_{m=n}^{\infty} |X_n - X| > \epsilon \right] = 0, \quad \forall \epsilon > 0$$

Example 8: Let $\{X_n\}$ be a sequence of r.vs with $P\left(X_n=\pm\frac{1}{n}\right)=\frac{1}{2}$. Show that $X_n \stackrel{r}{\longrightarrow} 0$ and $X_n \stackrel{a.s}{\longrightarrow} 0$.

Solution: We have $E(|X_n-0|^r)=E(|X_n|^r)=\frac{1}{n^r}\Big(\frac{1}{2}\Big)+\frac{1}{n^r}\Big(\frac{1}{2}\Big)=\frac{1}{n^r}\longrightarrow 0$ as $n\longrightarrow \infty$ and hence $X_n\stackrel{r}{\longrightarrow} 0$. It follows that

$$\bigcup_{j=n}^{\infty} \left\{ \left| X_{j} \right| > \varepsilon \right\} = \left\{ \left| X_{n} \right| > \varepsilon \right\}$$

Choosing $n > \frac{1}{\epsilon}$, we see that

$$P\left[\bigcup_{j=n}^{\infty} \left\{ \left| X_{j} \right| > \varepsilon \right\} \right] = P\left(\left\{ \left| X_{n} \right| > \varepsilon \right\} \right) \le P\left(\left| X_{n} \right| > \frac{1}{n}\right) = 0 \text{ as } n \to \infty$$

$$\Rightarrow \lim_{n \to \infty} P\left[\bigcup_{j=n}^{\infty} \left\{ \left| X_{j} \right| > \varepsilon \right\} \right] = 0 \Rightarrow X_{n} \xrightarrow{a.s} 0$$

Implications always valid between modes of convergence

We state the following implications always valid between modes of convergence without proof.

1)
$$X_n \xrightarrow{r} X \Longrightarrow X_n \xrightarrow{P} X \Longrightarrow X_n \xrightarrow{d} X$$

2)
$$X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X$$

Counter examples to implications among the modes of convergence

1)
$$X_n \xrightarrow{d} X \not\Rightarrow X_n \xrightarrow{P} X$$
 (See P1)

2)
$$X_n \xrightarrow{P} X \not\Rightarrow X_n \xrightarrow{r} X$$
 (See P2)

3)
$$X_n \xrightarrow{P} X \not\Rightarrow X_n \xrightarrow{a.s} X$$
 (See P3)

4)
$$X_n \xrightarrow{r} X \not\Rightarrow X_n \xrightarrow{a.s} X$$

5)
$$X_n \xrightarrow{a.s} X \not\Longrightarrow X_n \xrightarrow{r} X$$

The following theorem is known as **Slutsky's Theorem** and is very useful in finding the limiting distribution of certain r.vs. This theorem is stated without proof.

Theorem 1: Slutsky's Theorem: Let $\{X_n,Y_n\}$, n=1,2,... be a sequence of pairs of random variables and let c be a constant. If $X_n \xrightarrow{L} X$ and $Y_n \xrightarrow{P} c$, then

(i)
$$X_n + Y_n \xrightarrow{L} X + c$$

(ii)
$$X_n Y_n \xrightarrow{L} cX$$

(iii)
$$\frac{X_n}{Y_n} \xrightarrow{L} \frac{X}{C}$$
 if $C \neq 0$

An example presented in P4 as an application of Slutsky's theorem.