

CP8319/CPS824 Lecture 3

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Last Lecture Review

2. Markov Process

3. Markov Reward Process

4. Markov Decision Process

RL: The Agent and the Environment

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

History and State

 The history is the sequence of observations, actions, rewards

$$H_t = O_1, R_1, A_1, ..., A_{t-1}, O_t, R_t$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- The State is the information used to determine what happens next Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment State

- The environment state S_t^e is the environment's private representation
- The environment uses the state to pick the next observation/reward
- The environment state is not usually visible to the agent directly
- Even when S_t^e is the visible it may contain irrelevant information

Agent State

- The agent state S_t^a is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_t^a = f(H_t)$$

Today's Agenda

1. Last Lecture Review

2. Markov Process

3. Markov Reward Process

4. Markov Decision Process

Markov Assumption

"The future is independent of the past given the present"

Definition

A state S_t is *Markov* if and only if

$$P(S_{t+1} | S_t) = P(S_{t+1} | S_1, ..., S_t)$$

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future

State Transition Matrix

For a Markov state s and successor state s', the state transition probability is defined by

$$P_{S,S'} = P(S_{t+1} = S' | S_t = S)$$

State transition matrix ${\bf P}$ defines transition probabilities from all states s to all successor states s',

$$\mathbf{P} = \mathbf{E} \begin{pmatrix} P_{1,1} & \cdots & P_{1,n} \\ \vdots & \ddots & \vdots \\ P_{n,1} & \cdots & P_{n,n} \end{pmatrix}$$

Note that each row of the matrix sums to 1.

Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random states $S_1, S_2, ...$ with the Markov property.

Definition

A Markov Process (or Markov Chain) is a tuple $\langle S, P \rangle$

- \mathcal{S} is a (finite) set of states
- P is a state transition probability matrix,

$$P_{S,S'} = P(S_{t+1} = S' | S_t = S)$$

$$\mathbf{P} = \begin{pmatrix} 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.2 & 0.4 & 0 & 0 & 0 & 0 \\ 0 & 0.4 & 0.2 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0.4 & 0.2 & 0.4 & 0 \\ 0 & 0 & 0 & 0 & 0.4 & 0.2 & 0.4 \\ 0 & 0 & 0 & 0 & 0 & 0.4 & 0.6 \end{pmatrix}$$

Example: Sample episodes starting from S_4

- Episode 1: S_4 , S_5 , S_6 , S_7 , S_7 , S_7 , . . .
- Episode 2: S_4 , S_4 , S_5 , S_4 , S_5 , S_6 , . . .
- Episode 3: *S*₄, *S*₃, *S*₂, *S*₁, . . .

Today's Agenda

1. Last Lecture Review

2. Markov Process

3. Markov Reward Process

4. Markov Decision Process

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple $\langle S, P, R, \gamma \rangle$

- S is a (finite) set of states
- P is a state transition probability matrix,

$$P_{S,S'} = P(S_{t+1} = S' | S_{t} = S)$$

- R is the reward function, $R(s) = \mathbb{E}[r_{t+1}|S_t = s]$
- γ is a discount factor, $\gamma \in [0, 1]$

Reward: +1 in s_1 , +10 in s_7 , 0 in all other states

Horizon and Return

Definition of *horizon*, *H*

- Number of time steps in each episode
- Can be infinite
- Otherwise called finite Markov reward process

Definition

The *return* G_t is the total discounted reward from time-step t.

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{k=0}^{H} \gamma^k r_{t+k}$$

- The *discount* $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward r after k time-steps is $\gamma^k r$
- This values immediate reward above delayed reward.
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation

Discount Value

- The *discount* $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward r after k time-steps is $\gamma^k r$
- This values immediate reward above delayed reward.
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation

$$G_t = \sum_{k=0}^{H} \gamma^k r_{t+k}$$

Most Markov reward and decision processes are discounted. Why?

- Mathematically convenient to discount rewards
- Avoids infinite returns in cyclic Markov processes
- Uncertainty about the future may not be fully represented
- If the reward is financial, immediate rewards may earn more than delayed rewards
- Animal/human behaviour shows preference for immediate reward
- It is sometimes possible to use *undiscounted* Markov reward processes (i.e. $\gamma=1$), e.g. if all sequences terminate (i.e., have finite length).

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

Reward: +1 in s_1 , +10 in s_7 , 0 in all other states

Sample returns for sample 4-step episodes, $\gamma=1/2$

 S_4, S_5, S_6, S_7 :

 S_4, S_4, S_5, S_4 :

 s_4, s_3, s_2, s_1 :

Reward: +1 in s_1 , +10 in s_7 , 0 in all other states

Sample returns for sample 4-step episodes, $\gamma=1/2$

$$s_4, s_5, s_6, s_7$$
: $0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 10 = 1.25$
 s_4, s_4, s_5, s_4 : $0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 0 = 0$
 s_4, s_3, s_2, s_1 : $0 + \frac{1}{2} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 1 = 0.125$

Reward: +1 in s_1 , +10 in s_7 , 0 in all other states

What about the value function?

 $V = [1.53 \ 0.37 \ 0.13 \ 0.22 \ 0.85 \ 3.59 \ 15.31]$

Computing the Value of MRP: Simulation

Could estimate by simulation (Monte Carlo)

- Generate a large number of episodes
- Average returns
- Concentration inequalities bound how quickly average concentrates to expected value
- Requires no assumption of Markov structure

$$v(s) = \mathbb{E}[G_t|S_t = s]$$

$$= \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | S_t = s]$$

$$= \mathbb{E}[r_t|S_t = s] + \mathbb{E}[\gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | S_t = s]$$

$$= \mathbb{E}[r_t|S_t = s] + \gamma \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \cdots | S_t = s]$$

$$= \mathbb{E}[r_t|S_t = s] + \gamma \mathbb{E}[G_{t+1}|S_t = s]$$

$$= \mathbb{E}[r_t|S_t = s] + \gamma \mathbb{E}[v(S_{t+1})|S_t = s]$$

$$v(s) = \mathbb{E}[r_t|S_t = s] + \gamma \mathbb{E}[v(S_{t+1})|S_t = s]$$

$$= R(s) + \gamma \sum_{s' \in S} P_{s,s'}v(s')$$
immediate
reward
Discounted sum of
future rewards

The value function can be decomposed into two parts:

- immediate reward R_t
- discounted value of successor state $\gamma v(S_{t+1})$

For finite state MRP, we can express V(s) using a matrix equation

$$\begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \vdots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \cdots & P(s_N|s_1) \\ P(s_1|s_2) & \cdots & P(s_N|s_2) \\ \vdots & \ddots & \vdots \\ P(s_1|s_N) & \cdots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix}$$

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

For finite state MRP, we can express V(s) using a matrix equation

$$\begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \vdots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \cdots & P(s_N|s_1) \\ P(s_1|s_2) & \cdots & P(s_N|s_2) \\ \vdots & \ddots & \vdots \\ P(s_1|s_N) & \cdots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix}$$

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

$$\mathbf{v} - \gamma \mathbf{P} \mathbf{v} = \mathbf{r}$$

$$(\mathbf{I} - \gamma \mathbf{P}) \mathbf{v} = \mathbf{r}$$

$$\mathbf{v} = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{r}$$

Solving directly requires taking a matrix inverse $\sim O(N^3)$

Computing the Value of MRP: Iterative Algorithm

Use dynamic programming Value Iteration

- Initialize $v_0(s) = 0 \ \forall s \in \mathcal{S}$
- For k = 1 until convergence (i.e., iterations):
 - For all $s \in S$:

•
$$v_k(s) = R(s) + \gamma \sum_{s' \in S} P_{s,s'} v_{k-1}(s')$$

Computational complexity: for each iteration $O(N^2)$, where $N = |\mathcal{S}|$

Today's Agenda

1. Last Lecture Review

2. Markov Process

3. Markov Reward Process

4. Markov Decision Process

Markov Decision Process (MDP)

A Markov decision process (MDP) is a Markov reward process with decisions/actions

Definition

A *Markov Decision Process* is a tuple $\langle S, A, P, R, \gamma \rangle$

- \mathcal{S} is a (finite) set of states
- \mathcal{A} is a finite set of actions
- P is dynamics/transition model for each action,

$$P_{s,s'}^{a} = P(St_{+1} = s'|S_{t} = s, A_{t} = a)$$

- R is the reward function, $R(s, a) = \mathbb{E}[r_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0, 1]$

0.6

What are these two deterministic actions?

$$P(s'|s,a_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} P(s'|s,a_2) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

0.2

MDP: Policy

Definition

A *policy* π is a distribution over actions given states,

$$\pi(a|s) = P(A_t = a|S_t = s)$$

- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are *stationary* (time-independent),

$$A_t \sim \pi(\cdot | S_t), \forall t > 0$$

MDP Given a Policy

- Given an MDP $M = \langle S, A, P, R, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathbf{P}^{\pi} \rangle$
- The state and reward sequence $S_1, R_2, S_2, ...$ is a Markov reward process $\langle S, \mathbf{P}^{\pi}, R^{\pi}, \gamma \rangle$

With

$$P_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) P_{s,s'}^{a}$$

$$R^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)R(s,a)$$