# Minería de Datos IIC2433

Naïve Bayes Vicente Domínguez

Basado en diapositivas del prof. Denis Parra

#### ¿Qué vimos las clases pasadas?

Random Forest

#### ¿Qué veremos esta clase?

- Otra forma de clasificar: Naïve Bayes

#### Probabilidades condicionales y conjuntas *Ejemplo*



#### Al tirar una moneda

- ¿Cuál es la probabilidad de que salga sello
- ¿Cuál el es la probabilidad de que salga dos veces sello al tirarla dos veces?

## Probabilidad conjunta con eventos **independientes**

$$P(A, B) = P(A)*P(B)$$

$$P(A, B, C) = P(A)*P(B)*P(C)$$

## Probabilidades condicionales y conjuntas

#### Ejemplo



Tengo 4 bolitas negras y 2 blancas en una tómbola,

- Al sacar una bolita al azar, ¿Cuál es la probabilidad de que salga una blanca?
- Al sacar dos bolitas al azar, ¿Cuál es la probabilidad de que ambas salgan blancas?

## Probabilidad conjunta con eventos **dependientes**

$$P(A, B) = P(A|B)*P(B) = P(B|A)*P(A)$$

$$P(A, B, C) = P(A|B,C)*P(B|C)*P(C)$$

## Teorema de Bayes





Thomas Bayes (1701 – 1761)

### Teorema de Bayes

- P(A = sí): Probabilidad del evento A sea "sí"
- P(A=sí|B=sí): Probabilidad de que el evento A sea "sí" DADO QUE el evento B fue "sí"
- Por simplicidad, usamos P(A) = P(A="sí")

$$P(A | B) = \frac{P(A,B)}{P(B)}$$
  $P(A | B) = \frac{P(B|A) * P(A)}{P(B)}$ 

$$Posterior = rac{Likelihood imes Prior}{Evidence}$$

### Teorema de Bayes

$$Posterior = rac{Likelihood imes Prior}{Evidence}$$

**Prior**: Distribución de probabilidad a priori. El conocimiento de la probabilidad o incerteza de la clase antes de observar o condicionar los datos.

**Likelihood**: La probabilidad del evento bajo cierta clase o categoría, condicionada por los datos.

Evidence: Suma de las probabilidades del evento bajo todas las clases.

**Posterior**: Distribución de probabilidad condicional, que representa la probabilidad del evento condicionado luego de observar los datos.

### Noción del Teorema de Bayes

- << La riqueza hace la felicidad >>
- ¿Son felices los ricos? P(feliz = sí | rico = sí)
- ... yo sé que de la gente feliz, 20% es rica.



- $P(feliz \mid rico) = \frac{P(rico|feliz) * P(feliz)}{P(rico)}$
- 20% no es tanto ... por lo cual podemos concluir que la riqueza no hace la felicidad. ¿o no?

## Noción del Teorema de Bayes

- "La riqueza hace la felicidad"
- ¿Son felices los ricos? P(feliz = sí | rico = sí)
- ... yo sé que de la gente feliz, 20% es rica.



#### **Supongamos:**

A: gente feliz = 40% de la población

B: gente rica = 10% de la población

$$P(feliz \mid rico) = \frac{P(rico|feliz) * P(feliz)}{P(rico)}$$

$$Posterior = rac{Likelihood imes Prior}{Evidence}$$

### Noción del Teorema de Bayes

- "La riqueza hace la felicidad"
- ¿Son felices los ricos? P(feliz = sí | rico = sí)
- ... yo sé que de la gente feliz, 20% es rica.



#### **Supongamos:**

A: gente feliz = 40% de la población B: gente rica = 10% de la población C: P(rico | feliz) = 20%

$$P(feliz \mid rico) = \frac{P(rico | feliz) * P(feliz)}{P(rico)}$$

$$P(feliz \mid rico) = \frac{P(rico | feliz) * P(feliz)}{P(rico)}$$

$$P(feliz \mid rico) = \frac{0.2 * 0.4}{0.1}$$

## ¿Y por qué se llama "Naïve"?

- Naïve significa "ingenuo"
- Es "ingenuo" por que asume independencia de los eventos\*

• \* en realidad, asume independencia condicional

| Manzan | Carne | Pastel | ¿Alergia? |
|--------|-------|--------|-----------|
| a      |       |        |           |
| No     | Sí    | No     | Sí        |
| No     | Sí    | Sí     | Sí        |
| No     | Sí    | No     | Sí        |
| Sí     | Sí    | Sí     | Sí        |
| Sí     | Sí    | No     | No        |
| No     | No    | Sí     | No        |
| Sí     | No    | No     | No        |
| No     | No    | No     | No        |

¿Cuál es la probabilidad de haber consumido el alimento Manzana, dado que hubo alergia, es decir P(Manzana=Si|Alergia=Si)? ¿Cuál es la probabilidad de haber consumido el alimento pastel, dado que no hubo alergia, es decir, P(Pastel=Si|Alergia=No)?

## Volviendo: Ejemplo de Clasificación

 Consideremos un auto SUV, color rojo, doméstico. ¿La probabilidad de que la roben es mayor o menor de que no la roben?

| Example No. | Color  | Type   | Origin          | Stolen? |
|-------------|--------|--------|-----------------|---------|
| 1           | Red    | Sports | Domestic        | Yes     |
| 2           | Red    | Sports | Domestic        | No      |
| 3           | Red    | Sports | Domestic        | Yes     |
| 4           | Yellow | Sports | Domestic        | No      |
| 5           | Yellow | Sports | <b>Imported</b> | Yes     |
| 6           | Yellow | SUV    | <b>Imported</b> | No      |
| 7           | Yellow | SUV    | <b>Imported</b> | Yes     |
| 8           | Yellow | SUV    | Domestic        | No      |
| 9           | Red    | SUV    | <b>Imported</b> | No      |
| 10          | Red    | Sports | Imported        | Yes     |

| Example No. | Color  | Type   | Origin          | Stolen? |
|-------------|--------|--------|-----------------|---------|
| 1           | Red    | Sports | Domestic        | Yes     |
| 2           | Red    | Sports | Domestic        | No      |
| 3           | Red    | Sports | Domestic        | Yes     |
| 4           | Yellow | Sports | Domestic        | No      |
| 5           | Yellow | Sports | <b>Imported</b> | Yes     |
| 6           | Yellow | SUV    | <b>Imported</b> | No      |
| 7           | Yellow | SUV    | <b>Imported</b> | Yes     |
| 8           | Yellow | SUV    | Domestic        | No      |
| 9           | Red    | SUV    | <b>Imported</b> | No      |
| 10          | Red    | Sports | Imported        | Yes     |



Evidence

| Example No. | Color  | Type   | Origin          | Stolen? |
|-------------|--------|--------|-----------------|---------|
| 1           | Red    | Sports | Domestic        | Yes     |
| 2           | Red    | Sports | Domestic        | No      |
| 3           | Red    | Sports | Domestic        | Yes     |
| 4           | Yellow | Sports | Domestic        | No      |
| 5           | Yellow | Sports | Imported        | Yes     |
| 6           | Yellow | SUV    | <b>Imported</b> | No      |
| 7           | Yellow | SUV    | <b>Imported</b> | Yes     |
| 8           | Yellow | SUV    | Domestic        | No      |
| 9           | Red    | SUV    | <b>Imported</b> | No      |
| 10          | Red    | Sports | Imported        | Yes     |

P(Robo | Red, SUV, Domestic)

Rojo SUV Domestic
P(Robo) = (p(Robo)p(Color | Robo)\*p(Tipo | Robo)\*p(Origen | Robo))/N

N = p(Robo)p(Color|Robo)\*p(Tipo|Robo)\*p(Origen|Robo)
+
p(No Robo)p(Color|No Robo)\*p(Tipo|No Robo)\*p(Origen|No Robo)

| Manzan | Carne | Pastel | ¿Alergia? |
|--------|-------|--------|-----------|
| a      |       |        |           |
| No     | Sí    | No     | Sí        |
| No     | Sí    | Sí     | Sí        |
| No     | Sí    | No     | Sí        |
| Sí     | Sí    | Sí     | Sí        |
| Sí     | Sí    | No     | No        |
| No     | No    | Sí     | No        |
| Sí     | No    | No     | No        |
| No     | No    | No     | No        |

ManzanaCarnePastel¿Alergia?SíNoSí??SíSíNo??

 Basado en los datos de la Tabla 1, usando un clasificador Naive Bayes, clasifique los siguientes dos casos dados los datos de la Tabla 1.

## Ejemplo de Clasificación Numérico

 ¿Qué ocurrirá en el caso con datos numéricos y no categóricos?

## Ejemplo de Clasificación Numérico

- ¿Qué ocurrirá en el caso con datos numéricos y no categóricos?
- R: En general se asume que los datos distribuyen como una gaussiana (puede ser otra distribución) y se calculan sus parámetros acorde a los datos.
- Luego, se utilizan para utilizar la función de densidad para calcular un estimado de la probabilidad del dato a predecir.

#### Referencias

Material de Tom M. Mitchell, CMU:

http://www.cs.cmu.edu/~awm/15781/slides/NB ayes-9-27-05.pdf

<a href="http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf">http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf</a>