Flash Fill and Equation Discovery

Craps Jeroen en De Groote Tom 27 oktober 2014

- Ons doel
- Example-based learning
- Spreadsheet tabel transformaties
- Equation discovery
- Conclusie

- Ons doel
- Example-based learning
- Spreadsheet tabel transformaties
- Equation discovery
- Conclusie

Ons doel

- Flash fill voor getallen
 - Equation discovery voor nodig
- Voorbeeld

X1	X2	Х3	Υ
1	2	2	9
4	3	3	
1	8	2	
8	9	2	
2	2	2	

X1	X2	Х3	Υ
1	2	2	9
4	3	3	343
1	8	2	81
8	9	2	289
2	2	2	16

End-user programming

Domein

Programmeertaal

Algoritme

- Ons doel
- Example-based learning

- [Gulwani, CACM 14]
- Spreadsheet tabel transformaties
- Equation discovery
- Conlusie

Vergelijking: soorten problemen

PROCEDUREEL

- Beslissingsmethode
- Memoriseren en toepassen

CONCEPTUEEL

- Geen beslissingsmethode
- Creatief denken
- Bewijs en Constructie problemen

Probleem generatie

- Genereren adhv voorbeeld problemen
- Voordelen
 - Voorkomen spieken
 - Copyright problemen vermijden

Oplossing generatie

- Automatisch generen oplossing
- Voordelen
 - Voorbeeld oplossing
 - Oplossing op basis van deeloplossing
 - Hints

Feedback generatie

- Controleren correctheid oplossing
 - Waarom incorrect
 - Waar en hoe fout verbeteren (hint)
- ledereen gelijke beoordeling
- Handmatig analyseren fouten tijdrovend

- Ons doel
- Example-based learning
- Spreadsheet tabel transformaties [Harris en Gulwani, CACM 11]
- Equation discovery
- Conclusie

Concept oplossing generatie

Voorbeeld input tabel:

	Qual 1	Qual 2	Qual 3
Andrew	01.02.2003	27.06.2008	06.04.2007
Ben	31.08.2001		05.07.2004
Carl		18.04.2003	09.12.2009

Voorbeeld output tabel:

[Harris en Gulwani, CACM 11]

Tabel transformaties

1. Programmeertaal: TableProg

Grammatica

```
TableProg := TABPROG(CompProg<sub>1</sub>, ..., CompProg<sub>n</sub>)
CompProg := FilterProg \mid AssocProg
FilterProg := FILTER(MapCond, SEQ_{i,i,k})
MapCond := AND(MapPred_1, MapPred_2, \dots, MapPred_n)
 MapPred := ROWEQ(TERM_1, TERM_2) \mid COLEQ(TERM_1, TERM_2)
               | DATAEQ(TERM_1, TERM_2) | NOT(MapPred)
AssocProg := ASSOC(CompProg, RelFunc_1, RelFunc_2)
  RelFunc := RELCOL_i \mid RELROW_i
```

Figure 2. The syntax of TableProg. [Harris en Gulwani, CACM 11]

Domein kennis

$$[ASSOC(C, R_1, R_2)] = \lambda T_I. \left\{ \begin{array}{l} ([R_1]](r_1, c_1), [R_2]](r_2, c_2)) \mid \\ ((r_1, c_1), (r_2, c_2)) \in [C]](T_I) \end{array} \right\}$$

$$[RELCOL_i] = \lambda(r, c).(r, i)$$

$$[RELROW_i] = \lambda(r, c).(i, c)$$

$$[Hellow_i] = \lambda(r, c).(r, i)$$

$$[Hellow_i] = \lambda(r, i)$$

$$[Hello$$

Figure 3. The semantics of TableProg. [Harris en Gulwani, CACM 11]

Tabel transformaties

- 1. TableProg
- 2. Algoritme: ProgFromEx
- 3. Experimenten

- Ons doel
- Example-based learning
- Spreadsheet tabel transformaties
- Equation discovery

Conclusie

[Todorovski, LNAI 07]

Definitie

"Equation discovery is a machine learning task that deals with the problem of learning quantitative laws and models, expressed in the form of equations, in collections of measured numeric data."

Encyclopedia of machine learning

Kennis integreren

- 3 manieren
 - Expliciete integratie
 - Impliciete integratie
 - Inductive bias
- Inductive language bias

Context vrije grammatica (1)

"A context free grammar consists of a finite set of variables, each of them representing a subclass of subexpressions or phrases in the language represented by the grammar."

- Todorovski & Džeroski

Context vrije grammatica (2)

- Voorbeeld context vrije grammatica
- Parse tree
 - Controleren expressie tot taal behoort
 - Expressies generen die tot taal behoren

- Ons doel
- Example-based learning
- Spreadsheet tabel transformaties
- Equation discovery
- Conclusie

Conclusie

- Ons doel: Flash Fill voor getallen
 - Domein kennis: equation discovery
 - Grammatica
 - Genereren van verschillende opties

Papers

- Spreadsheet Table Transformations from Examples, CACM, W.R. Harris, S. Gulwani
- Example-Based Learning in Computer-Aided STEM Education, CACM 2014, Sumit Gulwani
- Integrating domain knowledge in equation discovery,
 LNCS 4660, Springer Berlin Heidelberg, 2007, Todorovski,
 Ljupčo, and Sašo Džeroski
- Equation Discovery, Enclyclopedia of Machine Learning

Vragen?