Отчёт по лабораторной работе №2 Математические основы защиты информации и информационной безопасности

Шифры перестановки

Выполнила: Коняева Марина Александровна, НФИмд-01-25, 1032259383

Содержание

Теоретическое введение	4
Цель работы	5
Выполнение лабораторной работы	6
Маршрутное шифрование	6
Шифрование с помощью решеток	7
Таблица Вижинера	9
Выводы	11
Список литературы. Библиография	12

Список иллюстраций

Теоретическое введение

- Маршрутное шифрование Текст записывается в таблицу построчно, а считывается по столбцам в порядке, заданном алфавитной сортировкой букв пароля. Ключ размер таблицы и пароль.
- Шифрование решёткой Флейснера Используется трафарет с прорезями, который поворачивается на 90° после каждого заполнения. Текст вписывается в прорези, а результат считывается из полной таблицы по столбцам согласно паролю.
- Шифр Виженера Каждая буква текста сдвигается на величину, определяемую соответствующей буквой ключевого слова. Шифрование осуществляется с помощью таблицы или формулы сложения позиций букв по модулю алфавита.

Цель работы

Целью данной работы является изучение алгоритмов шифрования перестановки, принцип его работы, реализация на Julia.

Выполнение лабораторной работы

Маршрутное шифрование

Реализация:

```
function route_encrypt(message, key, rows, cols)
        message = filter(!isspace, message)
        matrix = fill('_', rows, cols)
        index = 1
        new_message = ""
        for i = 1: rows
                for j = 1:cols
                        if index != rows * cols
                                 matrix[i, j] = message[index]
                                 index += 1
                        end
                end
        end
        for j in sort(collect(key))
                for i = 1: rows
                        new_message *= (matrix[i, (findfirst(j, key))])
                end
        end
        return new_message
```

```
message = "this is a test message!"

rows, cols = 4, 5

key = "water"

println(route_encrypt(message, key, rows, cols))

Выполнение:

$ julia route.jl

hamgses!iss_iteetsta
```

Шифрование с помощью решеток

Реализация:

```
if grid[i, j] == " "
                        matrix = rotr90(matrix)
                        grid[(i+k-1):-1:i, j:-1:(j-k+1)] = matrix[k:-1:1]
                end
        end
end
index = 1
arr = Vector{String}()
for r in text
        checker = false
        for i = 1:(size(grid)[1])
                for j = 1:(size(grid)[2])
                        if grid[i, j] == string(index) && checker == fals
                                if ((string(i + 1, " ", j) ∉ arr) && (st
                                         grid[i, j] = string(r)
                                         push!(arr, string(i, " ", j))
                                         checker = true
                                end
                        end
                end
                if checker == true
                        index += 1
                        if index > k^2
                                index = 1
                                empty!(arr)
                        end
                        break
```

```
end
```

end

```
end
        for j in sort(collect(key))
                for i = 1:2k
                         new_message *= (grid[i, (findfirst(j, key))])
                         if tryparse(Float64, string(last(new_message))) != nothing
                                 new_message = replace(new_message, last(new_message))
                         end
                end
        end
        return new_message
text = "Hello, New World!"
key = "keys"
```

Выполнение:

end

k = 2

```
$ julia ./rails.jl
,lr!HNdwoeolle W
```

Таблица Вижинера

```
Реализация:
```

```
function vigenere_encrypt(text, key)
        alphabet = 'a':'z'
```

println(rails_encrypt(text, key, k))

```
output = ""
        key\_index = 1
        for i in text
                if isletter(i)
                        offset = findfirst(isequal(key[key_index]), alphabet) - :
                         index = findfirst(isequal(i), alphabet) + offset
                         index > 26 \&\& (index -= 26)
                         output *= alphabet[index]
                         key_index += 1
                         key_index > length(key) \&\& (key_index = 1)
                else
                        output *= i
                end
        end
        return output
end
text = "hello world"
key = "key"
println(vigenere_encrypt(text, key))
  Выполнение:
$ julia vigener.jl
rijvs uyvjn
```

Выводы

В данной лабораторной работе были изучены три шифра перестановки, все алгоритмы были реализованы на языке Julia и работают корректно.

Список литературы. Библиография

- [1] Методические материалы курса.
- [2] Wikipedia: Caesar cipher (URL: https://en.wikipedia.org/wiki/Caesar_cipher)
- [3] Официальная документация по языку Julia (URL: https://docs.julialang.org/).