Zusammenfassung und Ausblick

In dieser Arbeit ist ein Szenenrekonstruktionsalgortithmus für stereoskopische Bildaufnahmen mit unterschiedlicher Auflösung entstanden. Dieser ist mit zuvor bekannten intrinsischen Kameraparametern im Stande die extrinsischen Kameraparameter zu bestimmen und die 3D-Szene zu rekonstruieren.

Für die Entwicklung des Algorithmus wurde ein synthetischer Szenenaufbau implementiert. Die grundlegenden Funktionen für die Bestimmung der extrinsischen Kameraparameter und der darauf folgenden Rekonstruktion der Szene, wurden anhand dieses Szenenaufbaus entwickelt und validiert. Der entstandene Algorithmus wurde dann auf reale Stereoaufnahmen angewandt. Die auf Grund ungenauer Punktekorrespondenzen entstandenen Fehler, konnten mit Hilfe des synthetischen Beispiels lokalisiert werden. Ein möglicher Lösungsansatz wurde mit Zuhilfenahme von Literaturquellen entwickelt und der Algorithmus entsprechend modifiziert. Der entwickelte modifizierte Algorithmus kann aus stereoskopischen Bildquellen unterschiedlicher Auflösung von vorcharakterisierten intrinsischen Kameraparametern eine Rekonstruktion der aufgenommenen Szene durchführen.

Eine zukünftig angedachte Modifikation dieses Szenenrekonstruktionsalgorithmus ist die Ableitung der Kameraparameter durch die Fundamentalmatrix. Durch die Bestimmung der Fundamentalmatrix sind die für die Triangulation nötigen Informationen bereits vorhanden. Die Ableitung der nötigen Kameraparameter aus der Fundamentalmatrix müsste genauer analysiert und der Rekonstruktionsalgorithmus dementsprechend angepasst werden. Mit dieser Modifikation würde es erlaubt sein, Kameras ohne eine Vorkalibrierung für die Szenenrekonstruktion zu verwenden.

Im zweiten Abschnitt dieser Masterarbeit wurde auf den in vielen Computer-Vision-Applikationen genutzten Ansatz für eine effiziente Szenenrekonstruktion, welcher keine zusätzliche Kamerakalibrierung beinhaltet, eingegangen. Der Ansatz basiert auf der vorherigen Rektifizierung von Stereoaufnahmen, was eine Vereinfachung der Korrespondenzanalyse mit sich bringt. Anhand dieser Korrespondenzen können Tiefenkarten erstellt werden, die eine direkte Abschätzung der Szenentiefe darstellt. Da für die Anwendung dieser Applikationen meist gleiche Kameraauflösungen vorausgesetzt werden, wurde in dieser Arbeit ein Rektifizierungsalgoritmus implementiert und auf Bildquellen verschiedener Auflösungen angewandt. Es wurde festgestellt, dass eine Ändern der Proportionen einzelner Pixel zwischen beiden Kameras im implementierten Algorithmus zu Streckung oder Stauchung der rekonstruierten Szene führt. Sind die Proportionen der Pixel dieselben und die Kameras haben nur unterschiedliche Auflösungen kann der implementierte Algorithmus angewandt werden und die Szene rekonstruiert werden.

Die meisten Kameras arbeiten mit quadratischen Pixel. Stereoskopische Aufnahmen mit unterschiedlichen Auflösungen solcher Kameras können mit dem implementierten Algorithmus rekonstruiert werden. Für Aufnahmen von rechteckigen Pixel mit unterschiedlichen Proportionen könnte eine Funktion entwickelt werden, welche die unterschiedlichen Pixelproportionen anhand spezieller Bildpunkte erkennt und die Bilder in ein Koordinatensystem mit gleichen Pixelproportionen transformiert. Auf die transformierten Bilder könnte der implementierte Algorithmus angewandt werden und somit aus stereoskopischen Bildern unterschiedlicher Auflösung mit unterschiedlichen Pixelproportionen eine Szene rekonstruiert werden.