

Appendix of Pending Claims

1. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating containing a polymer as represented by the following General Formula II.

General Formula II:

wherein

R is a hydrogen atom or an alkyl group; R₁ is an alkylene group, a substituted alkylene group, a cycloalkylene group, a substituted cycloalkylene group, a phenylene group or a substituted phenylene group; R₂ is a phenyl group, -COOH, a halogen atom, a cyano group, an alkoxy group or -COOR₆ in which R₆ is a substituted or non-substituted alkyl or aryl group or an ethylacetoacetate group; R₃ is -COOD; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; X is O or S; Y is O or NR₄ group in which R₄ is either a hydrogen atom or a substituted or non-substituted phenyl group or cyclic, linear or branched alkyl group; Z is O, ND group or NR₅ group in which R₅ is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and n, p and q are simple integers including zero and m and o are also simple integers including zero while at least one of them is greater than zero.

2. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 1, wherein the polymer as represented by General Formula II is a polymer as represented by the following General Formula II'

General Formula II:

wherein

R_8 is a hydrogen atom or a methyl group; R_2 is a phenyl group, $-COOH$, a halogen atom, a cyano group, an alkoxy group or $-COOR_6$ in which R_6 is a substituted or non-substituted, alkyl or aryl group or an ethylacetoacetate group; R_3 is $-COOD$; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; Z is O , ND group or NR_5 group in which R_5 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and m , n , o , p and q are simple integers including zero while at least one of m and o is greater than zero and m , n , o , p and q together lie between 5 to 50,000.

3. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 1, wherein the polymer as represented by General Formula II is a polymer as represented by the following General Formula II".

General Formula II"

wherein

R_8 is a hydrogen atom or a methyl group; R_2 is a phenyl group, -COOH, a halogen atom, a cyano group, an alkoxy group or -COOR₆ in which R₆ is a substituted or non-substituted, alkyl or aryl group or an ethylacetoacetate group; R₃ is -COOD; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; R₄ is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; Z is O, ND group or NR₅ group in which R₅ is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and m, n, o, p and q are simple integers including zero while at least one of m and o is greater than zero and m, n, o, p and q together lie between 5 to 50,000.

4. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein D is a group selected from phenyl, substituted phenyl, benzyl, substituted benzyl, naphthalene, substituted naphthalene, anthracene, substituted anthracene, anthraquinone, substituted anthraquinone, acridine, substituted acridine, azobenzene, substituted azobenzene, fluorene, substituted fluorene, fluorenone, substituted fluorenone, carbazole, substituted carbazole, N-alkylcarbazole, dibenzofuran, substituted dibenzofuran, phenanthrene, substituted phenanthrene, pyrene and substituted pyrene, and the substitutions thereof are at least one group selected from alkyl, aryl, halogen, alkoxy, nitro, aldehyde, cyano, amide, dialkylamino, sulfonamide, imide, carboxylic acid, carboxylic acid ester, sulfonic acid, sulfonic acid ester, alkylamino, and arylamino.

5. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein m, n, p and q are zero and o lies between 5 to 50,000.

6. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein n, p and q are zero and m and o together lie between 5 to 50,000 and the mole fraction of m is between 0.05 to 0.95.

7. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein m, p and q are zero and n and o together lie between 5 to 50,000 and the mole fraction of n is between 0.05 to 0.95.

8. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein R_2 is $-COOR_6$ in which R_6 is a methyl group, ethyl group, t-butyl group, isopropyl group, ethylacetoacetate group, 2-hydroxyethyl group, or n-butyl group.

9. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein p and q are zero and m, n and o together lie between 5 to 50,000 and the mole fraction of n is between 0.05 to 0.95.

10. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein Z is ND group in which D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group and n, o and p are zero and m and q together lie between 5 to 50,000 and the mole fraction of q is between 0.05 to 0.50.

11. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein n, o and q are zero and m and p together lie between 5 to 50,000 and the mole fraction of m is between 0.05 to 0.90.

12. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 2 or 3, wherein q is zero and m, n, o and p together lie between 5 to 50,000.

14. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating in which the polymer of claim 1 and/or the compound of General Formula III of claim 13 is/are further added to a composition for an anti-reflective coating or a radiation absorbing coating containing free amines or hydroxyl group containing compounds.

15. (Once amended) A composition for an anti-reflective coating or a radiation absorbing coating containing a polymer as represented by the following General Formula V.

General Formula V

wherein

R is a hydrogen atom or an alkyl group; R₁ is an alkylene group, a substituted alkylene group, a cycloalkylene group, a substituted cycloalkylene group, a phenylene group or a substituted phenylene group; R₂ is a phenyl group, -COOH, a halogen atom, a cyano group, an alkoxy group or -COOR₆ in which R₆ is a substituted or non-substituted, alkyl or aryl group or an ethylacetoacetate group; R₃ is -COOD; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; X is O or S; Y is O or NR₄ group in which R₄ is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; Z is O, ND group or NR₅ group in

which R_5 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; R_7 represents a substituted or non-substituted, linear or branched alkyl group, or a substituted or non-substituted cyclohexyl or phenyl group bonded directly or through alkylene group; and m , n , o , p and q are simple integers including zero and r is a simple integer greater than zero.

16. (Thrice amended) A composition for an anti-reflective coating or a radiation absorbing coating containing the polymer of claim 1, wherein the proportion of total molar numbers of monomer units of polymer which have isocyanate group, thioisocyanate group or blocked derivatives thereof to total molar numbers of monomers and monomer units of polymers in the composition is 0.1 to 40 mol%.

17. (Once amended) A polymer as represented by the following General Formula II.
General Formula II

wherein

R is a hydrogen atom or an alkyl group; R_1 is an alkylene group, a substituted alkylene group, a cycloalkylene group, a substituted cycloalkylene group, a phenylene group or a substituted phenylene group; R_2 is a phenyl group, $-COOH$, a halogen atom, a cyano group, an alkoxy group or $-COOR_6$ in which R_6 is a substituted or non-substituted, alkyl or aryl group or an ethylacetoacetate group; R_3 is $-COOD$; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through alkylene group; X is O or S ; Y is O or NR_4 group in which R_4 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; Z is O , ND group or NR_5 group in which

R_5 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and n , p and q are simple integers including zero and m and o are also simple integers including zero while at least one of them is greater than zero; further provided that at least one of the following conditions is met : (1) m and q are both greater than 0; (2) n and o are both greater than 0; (3) n and p are both greater than 0; (4) m and p are both greater than 0; (5) m and o are both greater than 0; and (6) m , n , and o are all greater than 0.

18. (As filed) A polymer according to claim 17, wherein R is a hydrogen atom or a methyl group, R_1 is an ethylene group, X is an oxygen atom and Y is an oxygen atom, D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through alkylene group, and n , p and q are simple integers including zero and m and o are also simple integers including zero while at least one of them is greater than zero.

19. (Once amended) A polymer according to claim 17, wherein R is a hydrogen atom or a methyl group, R_1 is an ethylene group, X is an oxygen atom, Y is $-NR_4$ group in which R_4 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group, D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group, and n , p and q are simple integers including zero and m and o are also simple integers including zero while at least one of them is greater than zero.

20. (Once amended) A polymer according to claim 18 or 19, wherein o is a simple integer greater than zero and D is a group selected from phenyl, substituted phenyl, benzyl, substituted benzyl, naphthalene, substituted naphthalene, anthracene, substituted anthracene, anthraquinone, substituted anthraquinone, acridine, substituted acridine, azobenzene, substituted azobenzene, fluorene, substituted fluorene, fluorenone, substituted fluorenone, carbazole, substituted carbazole, N-alkylcarbazole,

pyrene and substituted pyrene, and the substitutions thereof are at least one group selected from alkyl, aryl, halogen, alkoxy, nitro, aldehyde, cyano, amide, dialkylamino, alkylamino, sulfonamide, imide, carboxylic acid, carboxylic acid ester, sulfonic acid, sulfonic acid ester, and arylamino.

21. (Once amended) A polymer represented by the following General Formula V.

General Formula V

wherein

R is a hydrogen atom or an alkyl group; R₁ is an alkylene group, a substituted alkylene group, a cycloalkylene group, a substituted cycloalkylene group, a phenylene group or a substituted phenylene group; R₂ is a phenyl group, -COOH, a halogen atom, a cyano group, an alkoxy group or -COOR₆ in which R₆ is a substituted or non-substituted alkyl or aryl group or an ethylacetoacetate group; R₃ is -COOD; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through alkylene group; X is O or S; Y is O or NR₄ group in which R₄ is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; Z is O, ND group or NR₅ group in which R₅ is either hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; R₇ represents a substituted or non-substituted, linear or branched alkyl group or a substituted or non-substituted cyclohexyl or phenyl group bonded directly or through alkylene group; and m, n, o, p and q are simple integers including zero and r is a simple integer greater than zero.

22. (Once amended) A method of producing a composition for an anti-reflective coating or a radiation absorbing coating which comprises the following steps:

- a) dissolving the polymer of claim 2 or 3 having isocyanate groups in one or more solvents, and
- b) reacting the isocyanate groups either partially or fully with amino aromatic and/or hydroxyl aromatic chromophores at room temperature or elevated temperature if necessary.

23. (Once amended) A method of forming an anti-reflective coating or a radiation absorbing coating which comprises the following steps:

- a) filtering the composition for an anti-reflective coating or a radiation absorbing coating produced by the method of claim 22 with 0.5 and 0.2 micron filters,
- b) applying the filtered solution directly onto a semiconductor substrate, and
- c) baking the coated substrate at 50 to 250 °C.

24. (Once amended) A method of producing a composition for an anti-reflective coating or a radiation absorbing coating of claim 22, wherein the solvent is cyclopentanone, cyclohexanone, butyrolactone, propylene glycol monomethyl ether acetate, 2-heptanone, ethyl lactate, ethyl-3-ethoxy propanate, ethylene glycol monoethyl acetate, or methyl-3-methoxy propanate individually or mixtures thereof.

25. (Once amended) A method of forming an anti-reflective coating or a radiation absorbing coating which comprises the following steps: a) applying the composition for an anti-reflective coating or a radiation absorbing coating of claim 1, 2 or 3 onto a semiconductor substrate, and b) removing the solvent at least partially by baking to form a substrate coated with an anti-reflective coating or a radiation absorbing coating.

26. (Once amended) An anti-reflective coating or a radiation absorbing coating formed by the method of claim 23.

28. (As filed) An anti-reflective coating or a radiation absorbing coating formed by the method of claim 25.

30. (As filed) A composition for an anti-reflective coating or a radiation absorbing coating containing a polymer as represented by the following General Formula II.

General Formula II:

wherein

R is a hydrogen atom or a methyl group; R_1 is $-CH_2CH_2-$, or a phenylene group; R_2 is a phenyl group, $-COOH$, a halogen atom, a cyano group, or $-COOR_6$ in which R_6 is a member selected from the group consisting of methyl group, ethyl group, t-butyl group, isopropyl group, ethylacetoacetate group, 2-hydroxyethyl group, and n-butyl group; R_3 is $-COOD$; D is a member selected from the group consisting of phenyl, substituted phenyl, benzyl, substituted benzyl, naphthalene, substituted naphthalene, anthracene, substituted anthracene, anthraquinone, substituted anthraquinone, acridine, substituted acridine, azobenzene, substituted azobenzene, fluorene, substituted fluorene, fluorenone, substituted fluorenone, carbazole, substituted carbazole, dibenzofuran, substituted dibenzofuran, phenanthrene, substituted phenanthrene, pyrene and substituted pyrene, bonded directly or through a methylene group, wherein the substituents are at least one member selected from the group consisting of nitro, aldehyde, cyano, carboxylic acid, sulfonic acid; X is O or S; Y is O or NR_4 group in which R_4 is either a hydrogen atom or a phenyl group; Z is O, ND group or NR_5 group in which R_5 is either a hydrogen atom or a phenyl group; and m, n, o, p and q are simple integers including zero provided at least one of the following conditions are met:

- (1) m, n, p and q are zero and o is between 5 to 50,000,

- (2) n, p and q are zero, sum of m and o is between 5 to 50,000 and mol fraction of m is between 0.05 to 0.95,
- (3) m, p and q are zero, sum of n and o is between 5 to 50,000 and mol fraction of n is between 0.05 to 0.95,
- (4) p and q are zero, sum of m, n and o is between 5 to 50,000 and mol fraction of n is between 0.05 to 0.95,
- (5) n, o and p are zero, sum of m and q is between 5 to 50,000 and mol fraction of q is between 0.05 to 0.50,
- (6) n, o and q are zero, sum of m and p is between 5 to 50,000 and mol fraction of m is between 0.05 to 0.90, and
- (7) q is zero and sum of m, n, o and p is between 5 to 50,000.

31. (As filed) The composition of claim 30, wherein R₁ is -CH₂CH₂-; R₂ is -COOR₆; R₄ is a hydrogen atom; and R₅ is a hydrogen atom.

32. (New) A composition for an anti-reflective coating or a radiation absorbing coating containing a polymer as represented by the following General Formula II and/or blocked derivatives thereof,

General Formula II:

wherein

R is a hydrogen atom or an alkyl group; R₁ is an alkylene group, a substituted alkylene group, a cycloalkylene group, a substituted cycloalkylene group, a phenylene group or a substituted phenylene group; R₂ is a phenyl group, -COOH, a halogen atom, a cyano group, an alkoxy group or -COOR₆ in which R₆ is a substituted or non-substituted alkyl or aryl group or an ethylacetatoacetate group; R₃ is -COOD; D is an

organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; X is O or S; Y is O or NR₄ group in which R₄ is either a hydrogen atom or a substituted or non-substituted phenyl group or cyclic, linear or branched alkyl group; Z is O, ND group or NR₅ group in which R₅ is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and n, p and q are simple integers including zero and m and o are also simple integers including zero while at least one of them is greater than zero; wherein the proportion of total molar numbers of monomer units of polymer which have isocyanate group, thioisocyanate group or blocked derivatives thereof to total molar numbers of monomers and monomer units of polymers in the composition is 0.1 to 40 mol%.

33. (New) A composition for an anti-reflective coating or a radiation absorbing coating containing a polymer as represented by the following General Formula II.

General Formula II:

wherein

R is a hydrogen atom or an alkyl group; R₁ is an alkylene group, a substituted alkylene group, a cycloalkylene group, a substituted cycloalkylene group, a phenylene group or a substituted phenylene group; R₂ is a phenyl group, -COOH, a halogen atom, a cyano group, an alkoxy group or -COOR₆ in which R₆ is a substituted or non-substituted alkyl or aryl group or an ethylacetoacetate group; R₃ is -COOD; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; X is O or S; Y is O or

NR₄ group in which R₄ is either a hydrogen atom or a substituted or non-substituted phenyl group or cyclic, linear or branched alkyl group; Z is O, ND group or NR₅ group in which R₅ is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and n, p and q are simple integers including zero and m and o are also simple integers including zero while at least one of them is greater than 1; further provided that at least one of the following conditions is met : (1) m and q are both greater than 0; (2) n and o are both greater than 0; (3) n and p are both greater than 0; (4) m and p are both greater than 0; (5) m and o are both greater than 0; and (6) m, n, and o are all greater than 0.

34. (New) The composition of claim 33, wherein R₁ is -CH₂CH₂-; R₂ is -COOR₆; R₄ is a hydrogen atom; and R₅ is a hydrogen atom.

35. (New) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 33, wherein the polymer as represented by General Formula II is a polymer as represented by the following General Formula II'.

General Formula II'

wherein

R₈ is a hydrogen atom or a methyl group; R₂ is a phenyl group, -COOH, a halogen atom, a cyano group, an alkoxy group or -COOR₆ in which R₆ is a substituted or non-substituted, alkyl or aryl group or an ethylacetoacetate group; R₃ is -COOD; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; Z is O, ND group or NR₅

group in which R_5 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and m , n , o , p and q are simple integers including zero while at least one of m and o is greater than zero and m , n , o , p and q together lie between 5 to 50,000; further provided that at least one of the following conditions is met : (1) m and q are both greater than 0; (2) n and o are both greater than 0; (3) n and p are both greater than 0; (4) m and p are both greater than 0; (5) m and o are both greater than 0; and (6) m , n , and o are all greater than 0.

36. (New) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 33, wherein the polymer as represented by General Formula II is a polymer as represented by the following General Formula II".

General Formula II"

wherein

R_8 is a hydrogen atom or a methyl group; R_2 is a phenyl group, $-COOH$, a halogen atom, a cyano group, an alkoxy group or $-COOR_6$ in which R_6 is a substituted or non-substituted, alkyl or aryl group or an ethylacetoacetate group; R_3 is $-COOD$; D is an organic chromophore which absorbs the exposed wavelength (100-450 nm) and represents a substituted or non-substituted, benzene ring, condensed ring or heterocyclic ring bonded directly or through an alkylene group; R_4 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; Z is O, ND group or NR_5 group in which R_5 is either a hydrogen atom or a substituted or non-substituted, phenyl group or cyclic, linear or branched alkyl group; and m, n, o, p and q are simple integers including zero while at least one of m and o is greater than zero and m, n, o, p and q together lie between 5 to 50; further provided that at least one of the following conditions is met : (1) m and q are both greater than

0; (2) n and o are both greater than 0; (3) n and p are both greater than 0; (4) m and p are both greater than 0; (5) m and o are both greater than 0; and (6) m, n, and o are all greater than 0.

37. (New) A composition for an anti-reflective coating or a radiation absorbing coating according to claim 35 or 36, wherein D is a group selected from phenyl, substituted phenyl, benzyl, substituted benzyl, naphthalene, substituted naphthalene, anthracene, substituted anthracene, anthraquinone, substituted anthraquinone, acridine, substituted acridine, azobenzene, substituted azobenzene, fluorene, substituted fluorene, fluorenone, substituted fluorenone, carbazole, substituted carbazole, N-alkylcarbazole, dibenzofuran, substituted dibenzofuran, phenanthrene, substituted phenanthrene, pyrene and substituted pyrene, and the substitutions thereof are at least one group selected from alkyl, aryl, halogen, alkoxy, nitro, aldehyde, cyano, amide, dialkylamino, sulfonamide, imide, carboxylic acid, carboxylic acid ester, sulfonic acid, sulfonic acid ester, alkylamino, and arylamino.