EE901
Probability and
RANDOM PROCESSES

MODULE -2 RANDOM VARIABLES

Abhishek Gupta

ELECTRICAL ENGINEERING IIT KANPUR

1

Random Variables

2

Random Variables

• It is easier to represent outcomes by assigning numbers to them

-	· I		١.	,			
н	'anc	om	V	ar	12	h	
			w	a_{1}	ıa	•	1-0

• It is easier to represent outcomes by assigning numbers to them

- · Sometimes it is intuitive
- There is a difference between number 1 and the outcome 1.
 - Outcome is a physical activity, it includes information regarding what number is on the top, what number is on the north side, where the dice falls, how many turns $\Omega = \{1,2,3,4,5,6\}$ it makes.
 - Number 1 is just a number.

4

Random Variables

- It is easier to represent outcomes by assigning numbers to them
- · Or we can take any arbitrary assignment.

 $\Omega = \{1,2,3,4,5,6\}$

5

Random Variables

- It is easier to represent outcomes by assigning numbers to them
- Sometimes, the number is all we can see.
- For example, a random generator or a slot machine
- We can differentiate between different outcomes only based on this observed number.

*		
-		

• A random variable X is a function from the sample space to real line

$$X: \Omega \to \mathbb{R}$$

$$\omega \quad X(\omega)$$

 $H \rightarrow 1$ $T \rightarrow 0$

• For every outcome ω , we have a $X(\omega)$

$$X(H) = 1$$
$$X(T) = 0$$

7

ullet A random variable X is a function from the sample space to real line

 $X:\Omega \to \mathbb{R}$

- $\omega X(\omega)$ $1 \rightarrow 1$
- $2 \rightarrow 0$ $3 \rightarrow 1$
- $4 \to 0$
- $5 \rightarrow 1$
- $6 \rightarrow 0$

- $\Omega = \{1,2,3,4,5,6\}$

8

{0,1}

{1}

• A random variable X is a function

$$\begin{array}{c|c} X:\Omega\to\mathbb{R} \\ \omega & X(\omega) \\ 2 & 0 \end{array}$$

Where does any event in sigma algebra map to?

$$E = \{1,2\}$$

 $E = \{1,5\}$

 \mathcal{F}

 $E = \{2,4\}$ $\mathbf{E}=\boldsymbol{\phi}$ $E = \Omega$

{0} {} $\{0,1\}$ $\{\{\},\{0\},\{1\},\{0,1\}\}$

 $\Omega = \{1,2,3,4,5,6\}$ \mathcal{F} =Collections of all subsets of $\boldsymbol{\Omega}$

Events under Random Variable Map

• A random variable \boldsymbol{X} is a function

 $X{:}\,\Omega \to \mathbb{R}$

Where does any event in sigma algebra maps to?

 $E = \{1,2\}$ $E = \{1,5\}$ $E = \{2,4\}$ $E = \{6\}$ $E = \{1,3,5,6\}$ $E = \phi$ $E = \Omega$

 \mathcal{F}

a algebra maps to? {0,1} {1} {0} {2} {1,2} {} {0,1,2} 10

Events under Random Variable Map

• A random variable \emph{X} is a function

 $X:\Omega \to \mathbb{R}$

Where does any event in sigma algebra maps to?

 \mathcal{F}

B: Borel algebra on ℝ

Collection of all open, closed intervals of \mathbb{R} and their intersections and countable unions ... Includes (0,x), [x], (a,b)

 $0 = \{1, 2, 3, 4, 5, 6\}$

 $\Omega = \{1,2,3,4,5,6\}$ $\mathcal{F} = \text{Collections of all}$ subsets of Ω

11

Events under Random Variable Map

$$X:\Omega \to \mathbb{R}$$

$$\mathcal{F} \rightarrow \mathcal{B}$$

Any set B in $\mathcal B$ represents a set of values X can take.

Events under Random Variable Mag

• We see the value of the random variable at the output.

13

Events under Random Variable Mag

- What does X = 1 represent?
- When does 1 occur at the output?
 - When dice roll shows 1,3 or 5.

14

Events under Random Variable Mar

- What does X = 1 represent?
- When does 1 occur?
 - When dice roll shows 1,3 or 5.

- The set of outcomes is $E = \{\omega \colon X(\omega) = 1\}.$
- $E = {\omega: X(\omega) = 1} = {1,3,5}$
- E is an event. We will also use event $\{X = 1\}$ to denote E.
- Similarly, what does X = 0 represent? $X \in [0]$
- What does X = 0 or 1 represent? $X \in \{0,1\}$.

Events unc		

- What does $X \in (0.5,1.2)$ represent?
- When does X takes a value in (0.5,1.2)?
 - When dice roll shows 1,3 or 5.
- The set of outcomes is $E = \{\omega \colon X(\omega) \in (0.5,1.2)\}.$
- $E = \{1, 3, 5\}$. E is an event.
- For any set (a, b), there is an equivalent event for $X \in (a, b)$
- Similarly, for any set B, there is an equivalent event for $X \in B$

$$E_B = \{\omega \colon X(\omega) \in B\}.$$

• Pick a number in (0,1) Probability space $((0,1),\mathcal{B}(0,1),\mathbb{P})$

Define random variable X as 4 times the chosen number i.e.

 $X(\omega) = 4\omega$ for each $\omega \in \Omega$.

What will X > 2? In other words, what does $X \in (2, \infty)$ represent? Compute, for what values of ω , $X(\omega) > 2$? $X(\omega) > 2$

$$4\omega>2$$

$$\omega>\frac{2}{4}=0.5$$
 Equivalent event is E = (0.5,1).

17

Probability Law of Random Variables

Example: Pick a Bal

- A bag full of balls
- Each ball has a color and number

- Define random variable *X* as the number written on the ball in an outcome.
- What does $X \in (1.5,3.5)$ represent?
- What are those ω 's for which $X(\omega) \in (1.5,3.5)$?

19

Example: Pick a Ball

- · A bag full of balls
- Each ball has a color and number
- · Pick one

- Define random variable \boldsymbol{X} as the number on the ball in an outcome.
- What does $X \in (1.5,3.5)$ represent?
- What are those ω 's for which $X(\omega) \in (1.5,3.5)$?
- What is the probability that $X \in (1.5,3.5)$?

20

What is the probability that $X \in (1.5,3.5)$?

312211211							_								
X	1	3	2	3	1	2	2	1	1	2	1	1		n = 12	2
													_		
$15 X \in (1535)$?													i]	n' = 6	

Relative frequency of $X \in \{1.5,3.5\}$? Is equal to the probability of picking a ball with number 2 or 3.

 $\Pr[X \in (1.5, 3.5)] = \mathbb{P}(\{\omega : X(\omega) \in (1.5, 3.5)\}) = \frac{3}{6}$

Example: Pick a Bal

- A bag full of balls
- Each ball has a color and number
- Pick one

- Define random variable *X* as the number on the ball in an outcome.
- What is the probability that $X \in (1.5,3.5)$?

 $\Pr[X \in (1.5,3.5)] = \mathbb{P}(\{\mathbb{P}\omega : X(\omega) \in (1.5,3.5)\}) = \frac{3}{4}$

For any set B

 $\Pr[X \in B] = \mathbb{P}(\{\omega : X(\omega) \in B\})$ $\mathbb{P}_X(B)$

Known as the probability Law of the random variable X.

22

Probability Law of a Random Variable

Probability space $(\Omega,\mathcal{F},\mathbb{P})$. Let $X\colon\Omega\to\mathbb{R}$ be a random variable. The probability law of the random variable X given as

For any set ${\it B}$ in the Borel field ${\it B}$

 $\mathbb{P}_X(B) \triangleq \Pr[X \in B] = \mathbb{P}(\{\omega : X(\omega) \in B\})$

This corresponds to the probability of the event consisting of those outcomes which correspond to $\it X$ taking a value in set $\it B$.

If we perform the random experiment and observe the value of X, it will denote the probability that X takes a value from set B.

For example if $B=(-\infty,x)$, this will denote that probability that X takes value less than x.

23

Probability Law of a Random Variable

 $X:\Omega\to\mathbb{R}$

For any set ${\it B}$ in the Borel field ${\it B}$

 $\mathbb{P}_X(B) \ \triangleq \ \Pr[X \in B] = \mathbb{P}(\{\omega \colon X(\omega) \in B\})$

This is valid probability measure for the probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P}_X)$. It assigns a measure or size to each set B. This measure is equal to $\mathbb{P}_X(B)$.

Measure of a physical entity can mean its actual size (such as length or area) or its mass or its weight or number of elements in it

 $\mathbb{P}_X(B)$ can be seen as a type of mass present in the set B. Let us call it the probability mass in B.

Example: Pick a Bal

- A bag full of balls
- Each ball has a color and number
- Define random variable X as $X(\omega) = \text{the number on the ball in } \omega.$
- Pick one

• Find the probability law of X?

 $\mathbb{P}_{X}(B) = \Pr[X \in B] = \mathbb{P}(\mathbb{E}_{B})$ $\mathbb{E}_{B} = \{\omega : X(\omega) \in B\}$

 $\mathbb{P}_X(B)=0$

 $\mathbb{P}_X(B) = \frac{3}{6} = \frac{1}{2}$

 $B=(-\infty,x].$

25

Example: Pick a Ball

26

Example: Pick a Ball

32

Example: Pick a Ball

- A bag full of balls
- Each ball has a color and number
- Pick one

- Define random variable X as X(w) =the number of the b
 - $X(\omega)$ = the number of the ball in ω . $\mathbb{P}_{\omega}(R) - \mathbb{P}_{\alpha}(R) = \mathbb{P}(R_{\alpha})$

	$\mathbb{P}_X(B) = \Pr[X \in B] =$	$\mathbb{P}(\mathbb{E}_B)$
	E_B =	$\{\omega: X(\omega) \in B\}$
B =	$(-\infty, x]$.	
	r < 1	$\mathbb{P}_{\mathbf{v}}(B) =$

x < 1	$\mathbb{P}_X(B) = 0$
x = 1	$\mathbb{P}_X(B) = 1/2$
1 < x < 2	$\mathbb{P}_X(B) = 1/2$
x = 2	$P_X(B) = 5/6$
2 < x < 3	$P_X(B) = 5/6$
x = 3	$\mathbb{P}_X(B) = 1$
3 < x	$\mathbb{P}_X(B) = 1$

Example: Pick a Ball	
• $X(\omega) = \text{the number of the ball in } \omega.$ • $X(\omega) = \text{the number of the ball in } \omega.$ • $X(\omega) = \text{the number of the ball in } \omega.$ • $X(\omega) = \text{the number of the ball in } \omega.$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccc} 2 < x < 3 & \mathbb{P}_X(B) = 5/6 \\ \hline x = 3 & \mathbb{P}_X(B) = 1 \\ \hline 3 < x & \mathbb{P}_X(B) = 1 \end{array} $	
34	
Additional Requirements for Random Variables	
• Probability law $\mathbb{P}_X(B) = \Pr[X \in B] = \mathbb{P}(\mathbb{E}_B) \qquad \qquad \mathbb{E}_B = \{\omega : X(\omega) \in B\}$	
 What if for some B, E_B does not exist in sigma algebra F? Probability of E_B is not defined that. 	
• We require the random variable should be such that for each x , $\mathbf{E}_{(-\infty,x]}$ should be in $\mathcal{F}.$	
35	
Additional Requirements for Random Variables	
• Probability law $\mathbb{P}_X(B) = \Pr[X \in B] = \mathbb{P}(\mathbb{E}_B) \qquad \qquad \mathbb{E}_B = \{\omega : X(\omega) \in B\}$	
• We require the random variable should be such that for each x , $\mathbf{E}_{(-\infty,x]}$ should be in $\mathcal{F}.$	
• We also require that $\Pr[X=-\infty]$ and $\Pr[X=\infty]$ should be zero.	

Random Variable Definition

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable X is a function

 $X:\Omega\to\mathbb{R}$

such that

- for each x, $\mathrm{E}_{(-\infty,x]}=\{\omega : X(\omega)\in (-\infty,x]\}$ should be in $\mathcal F$ and
- $\Pr[X = -\infty]$ and $\Pr[X = \infty]$ should be zero.

37

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega,\mathcal{B}(0,1),\mathbb{P})$ $X(\omega)=4\omega$ for each $\omega\in\Omega$.

38

Distribution of a Random Variable

Probability space $(\Omega,\mathcal{F},\mathbb{P})$. Let $X\colon\Omega\to\mathbb{R}$ be a random variable. The probability law of the random variable X given as For any set B in the Borel field \mathcal{B}

 $\mathbb{P}_X(B) \ \triangleq \ \Pr[X \in B] = \mathbb{P}(\{\omega \colon X(\omega) \in B\})$

This represents the probability of the event consisting of those outcomes which correspond to X taking a value in set B.

Need to specify for every possible set B in Borel algebra $\mathcal{B}.$ Lots of work!

We will see that it is sufficient to specify it for sets of the form $B_x=(-\infty,x)$ for every value of x.

This denotes that probability that X takes value less than x and will be a function of x.

Cumulative Distribution Function (CDF)

The CDF of a random variable X is defined as the probability that XThe CUP of a range takes value less than x $F_X(x) = \mathbb{P}(\{\omega : X(\omega) \le x\})$

$$F_X(x) = \mathbb{P}(\{\omega : X(\omega) \le x\})$$

$$= \mathbb{P}(\{\omega \colon X(\omega) \in (-\infty,x]\})$$

$$= \mathbb{P}_X ((-\infty, x])$$

It is nothing but the probability Law $\mathbb{P}_X(B_x)$ of a random variable X for $B_X = (-\infty, x]$.

CDF at x can be seen as the probability mass of

40

the interval $(-\infty, x]$.

12	• $X(\omega)$ = the number of the b	pall in ω.
123	• $X(\omega)$ = the number of the b $\mathbb{P}_X(B) = \Pr[X \in B] = \mathbb{P}(E_B)$	$E_B = \{\omega : X(\omega) \in B\}$
•	A () ()	-b (())

$B=(-\infty,x].$	
x < 1	$\mathbb{P}_X(B) = 0$
x = 1	$\mathbb{P}_X(B) = 1/2$
1 < x < 2	$\mathbb{P}_X(B) = 1/2$
x = 2	$\mathbb{P}_X(B) = 5/6$
2 < x < 3	$\mathbb{P}_X(B) = 5/6$
x = 3	$\mathbb{P}_X(B) = 1$
3 < x	$\mathbb{P}_X(B) = 1$

$$\text{CDF is } F_{\chi}(x) = \mathbb{P}_{\chi} \big((-\infty, x] \big)$$

$$= \begin{cases} 0 & x < 1 \\ 1/2 & x = 1 \\ 1/2 & 1 < x < 2 \\ 5/6 & x = 2 \\ 5/6 & 2 < x < 3 \\ 1 & x = 3 \\ 1 & 3 < x \end{cases}$$

41

Pick a number in (0,1) Probability space $(\mathbb{R},\mathcal{B}(0,1),\mathbb{P})$ $X(\omega)=4\omega$ for each $\omega\in\Omega$.

	v	
R	= (-c)	റഴി
D	- ("	~, ~]

x	$E_B = \{\omega \colon X(\omega) \in B\}$	$\mathbb{P}_X(B)$
x < 0	φ	0
x = 0	φ	0
0 < x < 4	$\left(0,\frac{x}{4}\right)$	$\frac{x}{4}$
x = 4	(0,1)	1
x > 4	(0,1)	1

43

Pick a number in (0,1) Probability space $(\mathbb{R},\mathcal{B}(0,1),\mathbb{P})$ $X(\omega)=4\omega$ for each $\omega\in\Omega$.

x	$\mathbb{P}_X(B)$
x < 0	0
x = 0	0
0 < x < 4	$\frac{x}{4}$
x = 4	1
x > 4	1

$$\mbox{CDF is } F_X(x) = \mathbb{P}_X \big((-\infty, x] \big) \\ = \begin{cases} 0 & x < 0 \\ 0 & x = 0 \\ \frac{x}{4} & 0 < x < 4 \\ 1 & x = 4 \\ 1 & x > 4 \end{cases}$$

44

Pick a number in (0,1) Probability space $(\mathbb{R},\mathcal{B}(0,1),\mathbb{P})$ $X(\omega)=4\omega$ for each $\omega\in\Omega$.

CDF is $F_X(x) = \mathbb{P}_X((-\infty, x])$

ь						CDF
Н	$r \circ$	n = 0	rtı	മ	\cap t	() E
	-	\mathcal{L}	ΙUΙ	てつ	OI.	OD1

 $F_X(\infty) = 1$

Proof:

Recall $F_X(x) = \mathbb{P}(E_x)$ where $E_x = \{\omega \colon X(\omega) \le x\}$

$$E_{\infty} = \{\omega \colon X(\omega) \leq \infty\}$$

Since for every outcome, $\mathit{X}(\omega) < \infty$, therefore, $\mathit{E}_{\infty} = \Omega$

$$F_X(\infty)=\mathbb{P}(\Omega)=1$$

46

Properties of CDF

 $F_X(-\infty)=0$

Proof:

Recall $F_X(x) = \mathbb{P}(E_x)$ where $E_x = \{\omega : X(\omega) \le x\}$

$$E_{-\infty} = \{\omega : X(\omega) \le -\infty\}$$

Since for every outcome, $X(\omega)>-\infty$, therefore, $E_{-\infty}=\phi$ $F_X(\infty)=\mathbb{P}(\phi)=0$

47

Properties of CDF

 $\mathbb{P}(X > x) = 1 - F_X(x)$

Note that $\{X \leq x\}$ is a short form of saying $\{\omega : X(\omega) \leq x\}$. Therefore $\{X \leq x\}$ is an event.

Now, the event $\{X \leq x\}$ and the event $\{X > x\}$ are disjoint. Their union is Ω .

Therefore, from finite additivity property of probability

 $\mathbb{P}(A_1) + \mathbb{P}(A_2) = \mathbb{P}(A_1 \cup A_2)$ for disjoint events A_1 and A_2

$$\mathbb{P}(\{X \le x\}) + \mathbb{P}(\{X > x\}) = \mathbb{P}(\Omega) = 1$$

$$\mathbb{P}(\{X > x\}) = 1 - \mathbb{P}(\{X \le x\})$$

Properties of CDF

Now, E_{x_2} is a subset of E_{x_1} .

 $F_X(x)$ is monotonically increasing. i.e. If $x_1 < x_2$, then $F_X(x_1) \le F_X(x_2)$

Proof:

Recall $F_X(x_1) = \mathbb{P}(E_{x_1})$ where $E_{x_1} = \{\omega \colon X(\omega) \le x_1\} = \{X \le x_1\}$

Recall $F_X(x_2) = \mathbb{P}(E_{x_2})$

where $E_{x_2} = \{X \leq x_2\}$

Property of Probability: Monotonicity If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

 $(-\infty, x_2]$

 $\mathbb{P}(E_{x_1}) \leq \mathbb{P}(E_{x_2})$ $F_X(x_1) \, \leq \, F_X(x_2)$

Now, E_{x_2} is a subset of E_{x_1} .

50

Properties of CDF

Proof:

 $\operatorname{Recall} F_X(x_1) = \mathbb{P}\big(E_{x_1}\big)$

where $E_{x_1} = \{\omega \colon X(\omega) \le x_1\} = \{X \le x_1\}$

 $\operatorname{Recall} F_X(x_2) = \mathbb{P}\big(E_{x_2}\big)$

where $E_{x_2} = \{X \le x_2\}$

The event $\{x_1 < X \le x_2\}$ is equivalent to $E_{x_2} \setminus E_{x_1}$ i.e. $\{X \le x_2\}$ is the union of $\{X \le x_1\}$ and the

 $\text{ event } \{x_1 < X \leq x_2\}.$

Properties of CDF

If $x_1 < x_2$, then $\mathbb{P}((x_1, x_2]) = F_X(x_2) - F_X(x_1)$

Proof:

Now, $\{X \leq x_2\}$ is the union of $\{X \leq x_1\}$ and the event $\{x_1 < X \leq x_2\}$.

Therefore, from finite additivity property of probability

 $\mathbb{P}(A_1) + \mathbb{P}(A_2) = \mathbb{P}(A_1 \cup A_2)$ for disjoint events A_1 and A_2

52

Properties of CDF

5. $F_X(x)$ is right continuous $\lim_{\epsilon \to 0} F_X(x + \epsilon) = F_X(x)$

53

Properties of CDF

5. $F_X(x)$ is right continuous $\lim_{\epsilon \to 0} F_X(x + \epsilon) = F_X(x)$

 $F_X(x)$ may not be left continuous $\lim_{\epsilon \to 0} F_X(x - \epsilon) = F_X(x^-) \neq F_X(x)$

 $F_X(x^-) \leq F_X(x)$

 $F_X(x)-F_X(x^-)=\mathbb{P}(\{X=x\})$

58

6. $F_X(x)$ may not be left continuous $\lim_{\epsilon \to 0} F_X(x - \epsilon) = F_X(x^-) \neq F_X(x)$

Proof:

$$\begin{split} F_X(x) &= \mathbb{P}(\{\omega ; X(\omega) \leq x\}) \\ F_X(x - \epsilon) &= \mathbb{P}(\{\omega ; X(\omega) \leq x - \epsilon\}) \end{split}$$
 $F_\chi(x-\epsilon)$ denotes the probability of outcomes that map to a number up to $x-\epsilon$

As $\epsilon \to 0$, the upper limit comes closer to x, however, it will never include outcomes that map to x.

This means that as $\epsilon \to 0$,

 $F_{\chi}(x-\epsilon)$ will denote the probability of outcomes that map to a number up to \boldsymbol{x} (excluding \boldsymbol{x}).

It is not the same as $F_X(x),$ if there are some outcomes with non-zero probability that map to $\{x\}$

 $F_X(x) - F_X(x^-) = \mathbb{P}(\{X = x\})$