DATOS DEL TRABAJO PRÁCTICO

T US	2 0 1 7 AÑO 2°	Trabajo Practico N°2
TP 2	CUAT	METODOS NUMERICOS APLICADOS A LA INGENIERIA DE PROCESOS

INTEGRANTES DEL GRUPO

	F	Α	R	F	А	N	N	Ι	С	0	Ā	S					9	7	2	6	1
5	ΔΡΗΊΙΙΙΙΙΟ Υ NOMBRΗ					PADRÓN															
GRUPO						P	PEL	LΙ	DC) Y	NC	ME	BRE	1 1			I	PA	DR	ÓN	1

DATOS DE LA ENTREGA

. T	ХТ	-								
ARCHIVO	ARCHIVO		ONTROL	FECHA VENC	FECHA ENTR					
CORRECCIONES										
FECHA	I	NOTA		OBSERVACI	ONES					
DOCENTE	F	'IRMA								
	·									

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA <75.12> ANÁLISIS NUMÉRICO

Se resolvió el modelo planteando solo el intercambio de calor por convección. Se obtuvo una cadencia cad=28s que se usó como paso h y se planteó que la temperatura inicial del tubo es T_0 =20°C. Se usó como límite de pasos el tiempo igual a 1400 segundos, dado que se calculó que es el tiempo que tardaría el tubo en recorrer el horno. Se obtuvo en el programa T_{inf} =645°C y se usó para obtener los siguientes resultados:

<u>Grafico 1:</u> En el siguiente grafico se observan los resultados de los distintos algoritmos, como en cada punto la diferencia es ínfima, los resultados se superponen y solo en tiempos avanzados se aprecia que Euler comienza a diferir de Runge Kutta y la resolución analítica.

Se observa que los resultados son muy similares entre sí, solo se puede observar una diferencia en los últimos pasos y esto es debido a la propagación de errores propia de Euler (Orden 1) mientras que Runge Kutta 4 (Orden 4) permanece indistinguible de la solución analítica en este gráfico.

Sin embargo, existen diferencias entre los tres métodos, por lo tanto se realiza el siguiente gráfico:

<u>Grafico 2</u>: En este grafico se puede observar claramente que el orden de magnitud del error relativo de RK4 (aprox. $1x10^{-10}$ para el primer h) es más que 6 veces mayor al equivalente de Euler ($1x10^{-3}$).

Dados los gráficos 1 y 2 se puede concluir que tanto Runge Kutta 4 como Euler dan buenas aproximaciones al problema dado, pero que el método de Runge Kutta 4 presenta un error relativo mínimo comparado con Euler y por lo tanto es el método más conveniente para operar dado que la complejidad numérica es fácilmente manejable computacionalmente.

Se calcula la temperatura en función del tiempo agregando el termino de intercambio radiativo.

Se eligió el método de Runge Kutta 4 para resolver el problema dado su mínimo error relativo en el ítem 1 y el hecho que la complejidad matemática propia de Runge Kutta se resuelve computacionalmente. Luego solo se debe replicar un algoritmo similar al usado en el ítem 1.

Se comparó la resolución del punto con la resolución con el término radiativo:

<u>Grafico 3:</u> En este gráfico se puede observar que existe una gran diferencia entre la resolución sin la componente de radiación y la resolución real.

Luego dada la notable diferencia entre las curvas, el intercambio por radiación no es despreciable.

Se obtuvo la temperatura y el tiempo desde que comenzó el soaking hasta el final del proceso:

RESULTADOS SOAKING					
Tiempo (Min)	Temperatura (°C)				
21	622.094512				
21.4666667	624.154413				
21.9333333	626.03414				
22.4	627.748587				
22.8666667	629.311565				
23.3333333	630.735853				

<u>Tabla 1:</u> Temperatura y tiempo desde que comenzó el proceso de soaking (cuando la temperatura fue menos a 10° la temperatura final del proceso) hasta el final del proceso

Por lo tanto los valores sk y Tsk son los siguientes:

Sk= 2,333 min

Tsk= 626.680 °C

Se usó el mismo algoritmo de Runge Kutta 4 que para el punto 2 pero se varió la temperatura T1 y T2 hasta obtener un $Sk=10\pm1$ y un Tsk=Tsk-punto2. Se obtuvo los siguientes valores:

T1: 716 °C

T2: 631 °C

Los resultados de temperatura y tiempo de soaking son los siguientes:

RESULTADOS SOAKING	
Tiempo (min)	Temperatura (°C)
14	620.217044
14.4666667	621.16477
14.9333333	622.030288
15.4	622.820546
15.8666667	623.541936
16.3333333	624.200333
16.8	624.801132
17.2666667	625.349282
17.7333333	625.849324
18.2	626.305419
18.6666667	626.721379
19.1333333	627.100691
19.6	627.446551
20.0666667	627.761878
20.5333333	628.049343
21	628.311389
21.4666667	628.550246
21.9333333	628.767951
22.4	628.966367
22.8666667	629.147192
23.3333333	629.311978

<u>Tabla 2:</u> Tiempo y temperatura_desde que comenzó el soaking (cuando la temperatura fue menos a 10° la temperatura final del proceso) hasta el final del proceso para las temperaturas T1 y T2.

Donde:

 $Tsk = 626.02^{\circ}C$

Sk = 9.333 min

Se planteó un algoritmo para resolver por un sistema de ecuaciones no lineales, usando la matriz jacobiana:

J=

0,25	0,75
0,75	0,25

Se obtuvo:

CASO	SK(MIN)	TSK(°C)	T1(°C)	T2(°C)	N° ITERACIONES
Α	10	626.02	716.988	631.058	28
В	10	622.61	714.562	627.800	28
С	10	672.61	747.996	677.035	27

<u>Tabla 3:</u> Resultados de temperatura T1 y T2, y cantidad de iteración requeridas para esos resultados.

Luego se usó Runge Kutta 4 para determinar la variación de temperatura en función del tiempo para los casos A, B y C. Se calculó la temperatura de soaking y el tiempo de soaking para ver si coincidían con los esperados y se calculó el error relativo de la temperatura de soaking en caso que no coincidieran ((Tsk_{obtenido}-Tsk_{objetivo})/Tsk_{obtenido}).

Para el caso A se obtuvo el siguiente gráfico de temperatura:

<u>Grafico 4:</u> Grafico de temperatura en función del tiempo para una temperatura $T1=716.988^{\circ}C$ y $T2=631.057^{\circ}C$.

Usando los valores del punto A se obtuvo un soaking de:

Resultados Soaking							
Tsk (°C)	Sk(min)	Error relativo					
626.209	9.8	3.018e-4					

Para el caso B se obtuvo el siguiente gráfico:

Grafico 5: Grafico de temperatura en función del tiempo para T1=714.562°C y T2=627.800°C

Usando los valores del punto B se obtuvo un soaking de:

Resultados Soaking						
Tsk (°C)	Sk(min)	Error relativo				
622.799	9.8	3.034e-4				

Para el caso C se obtuvo:

<u>Grafico 6:</u> Temperatura en función del tiempo para una T1=747.996°C y T2=677.035°C

Resultados Soaking						
Tsk(°C)	Sk(min)	Error relativo				
672.767	9.8	2.334e-4				

Conclusiones

Durante la realización del presente trabajo práctico se usaron distintos algoritmos para resolver una problemática del mundo real. Se usaron los métodos de Runge Kutta 4 y Euler para resolver una ecuación diferencial de la que se conocía la resolución analítica. Se concluyó que la resolución por Runge Kutta 4 posee un error relativo mucho menor que la resolución por el método de Euler. Por lo tanto es conveniente utilizar Runge Kutta 4 sobre Euler dado que la complejidad matemática de Runge Kutta se puede resolver fácilmente usando un algoritmo computacional.

Las ecuaciones diferenciales lineales, por lo general, se pueden resolver analíticamente, por lo tanto usar un método numérico no es recomendable, dado que los métodos numéricos acarrean errores de truncamiento además de los errores de redondeo presentes en todos los cálculos matemáticos. Sin embargo, los métodos numéricos presentan la ventaja que son automatizables fácilmente y que el error relativo respecto de la respuesta analítica es pequeño (como se vio con Euler, en el ejercicio 1 con orden de 10⁻³).

Por otra parte, para las ecuaciones no lineales, a veces es imposible, o se necesita de una complejidad muy grande para hallar una solución analítica, por lo tanto es necesario implementar un método de resolución por algún algoritmo numérico, que como ya se ha comentado, otorgará una solución con un error de truncamiento dependiendo del método usado.

Los sistemas de ecuaciones no lineales permitieron resolver el problema de que temperaturas usar para obtener un soaking de 10 minutos. Estos sistemas permiten resolver ecuaciones diferenciales de varias variables y de grados mayores a 1. Sin embargo se trata de métodos muy complejos. Durante la realización del trabajo práctico se tomó como dato una matriz Jacobiana que permitía resolver un sistema de ecuaciones no lineales, el hecho de hallar esta matriz y comprobar si proporciona un resultado que converja, significa una dificultad muy importante. Por otra parte, al tratarse de un sistema no lineal de ecuaciones, existe un trabajo asociado a los cálculos que se puede delegar al algoritmo computacional. Es importante destacar que en el punto 4 cuando se resolvió un ejercicio usando un sistema de ecuaciones no lineales, se obtuvieron resultados de temperatura de soaking con un error relativo de orden 10⁻⁴, este orden puede ser causado mayormente por el sistema no lineal dado que se probó que el método de Runge Kutta usado en el punto 1 y 2 tiene un error relativo de orden 10⁻¹⁰ o menor. El tiempo obtenido tampoco alcanza 10 min, pero esto es causado por la cadencia que no es divisible por 10 (28 segundos).

El modelo planteado podría mejorarse, en primer lugar se necesitaría tener en cuenta que hay ciertas variables que se consideraron constantes que varían respecto a la temperatura, por ejemplo, la superficie del material. Luego, no se tiene en cuenta el término de

conducción del material en la ecuación de temperatura, durante la realización del trabajo práctico se observó que agregar la componente de radiación causó un cambio significativo a los valores de temperatura, por lo tanto la componente de conducción y el gradiente de temperatura entre el interior del tubo y el exterior pueden resultar importantes. Por otra parte no se tiene en cuenta el error con el que se midieron los distintos elementos, para tener un resultado más preciso podría ser conveniente agregar estos valores.

Anexo: Salida de datos

			RESOLUCION
Tiempo	Euler	RK4	ANALITICA
0	20	20	20
0.46666667	27.1867312	27.1455698	27.1455698
0.93333333	34.2908238	34.2094449	34.2094449
1.4	41.313228	41.1925594	41.1925594
1.86666667	48.2548833	48.0958366	48.0958366
2.33333333	55.1167181	54.9201891	54.9201891
2.8	61.8996502	61.6665195	61.6665195
3.26666667	68.6045869	68.3357197	68.3357197
3.73333333	75.2324251	74.9286715	74.9286715
4.2	81.7840513	81.4462466	81.4462466
4.66666667	88.2603419	87.8893069	87.8893069
5.13333333	94.6621631	94.2587043	94.2587043
5.6	100.990371	100.555281	100.555281
6.06666667	107.245813	106.779869	106.779869
6.53333333	113.429324	112.933292	112.933292
7	119.541733	119.016364	119.016364
7.46666667	125.583857	125.029889	125.029889
7.93333333	131.556504	130.974661	130.974661
8.4	137.460472	136.851467	136.851467
8.86666667	143.296553	142.661085	142.661085
9.33333333	149.065525	148.404281	148.404281
9.8	154.768161	154.081816	154.081816
10.2666667	160.405224	159.69444	159.69444
10.7333333	165.977468	165.242896	165.242896
11.2	171.485638	170.727916	170.727916
11.6666667	176.930471	176.150227	176.150227
12.1333333	182.312695	181.510545	181.510545
12.6	187.633029	186.809579	186.809579
13.0666667	192.892187	192.04803	192.04803
13.5333333	198.090871	197.22659	197.22659
14	203.229776	202.345944	202.345944
14.4666667	208.30959	207.406768	207.406768
14.9333333	213.330993	212.409733	212.409733
15.4	218.294655	217.3555	217.3555
15.8666667	223.201242	222.244721	222.244721

16.3333333	228.051409	227.078045	227.078045
16.8	232.845805	231.85611	231.85611
17.2666667	237.585071	236.579547	236.579548
17.7333333	242.269841	241.248982	241.248982
18.2	246.900743	245.865032	245.865032
18.6666667	251.478394	250.428307	250.428307
19.1333333	256.003409	254.93941	254.93941
19.6	260.476391	259.398939	259.398939
20.0666667	264.89794	263.807481	263.807482
20.5333333	269.268646	268.165622	268.165622
21	273.589094	272.473936	272.473936
21.4666667	277.859863	276.732994	276.732994
21.9333333	282.081523	280.943358	280.943358
22.4	286.254639	285.105585	285.105585
22.8666667	290.379769	289.220226	289.220226
23.3333333	294.457465	293.287825	293.287825

RK4PUNTO2	
0	20
0.46666667	46.469096
0.93333333	72.5409172
1.4	98.1968084
1.86666667	123.415749
2.33333333	148.174571
2.8	172.448253
3.26666667	196.210265
3.73333333	219.432995
4.2	242.088216
4.66666667	264.147602
5.13333333	285.583279
5.6	306.368393

6.06666667	326.477671
6.53333333	345.887972
7	364.578802
7.46666667	382.532764
7.93333333	399.73595
8.4	416.178245
8.86666667	431.853536
9.33333333	446.759832
9.8	460.899273
10.2666667	474.278056
10.7333333	486.906265
11.2	498.797629
11.6666667	509.96921
12.1333333	520.441048
12.6	530.235764
12.6 13.0666667	530.235764 539.378144
_	
13.0666667	539.378144
13.0666667 13.5333333	539.378144 547.894723
13.0666667 13.5333333 14	539.378144 547.894723 555.813368
13.0666667 13.5333333 14 14.4666667	539.378144 547.894723 555.813368 563.162875
13.0666667 13.5333333 14 14.4666667 14.9333333	539.378144 547.894723 555.813368 563.162875 569.972606
13.0666667 13.5333333 14 14.4666667 14.9333333 15.4	539.378144 547.894723 555.813368 563.162875 569.972606 576.272137
13.0666667 13.5333333 14 14.4666667 14.9333333 15.4 15.8666667	539.378144 547.894723 555.813368 563.162875 569.972606 576.272137 582.090957
13.0666667 13.5333333 14 14.4666667 14.9333333 15.4 15.8666667 16.33333333	539.378144 547.894723 555.813368 563.162875 569.972606 576.272137 582.090957 587.458198
13.0666667 13.5333333 14 14.4666667 14.9333333 15.4 15.8666667 16.33333333 16.8	539.378144 547.894723 555.813368 563.162875 569.972606 576.272137 582.090957 587.458198 592.402404
13.0666667 13.5333333 14 14.4666667 14.9333333 15.4 15.8666667 16.33333333 16.8 17.2666667	539.378144 547.894723 555.813368 563.162875 569.972606 576.272137 582.090957 587.458198 592.402404 596.951343
13.0666667 13.5333333 14 14.4666667 14.9333333 15.4 15.8666667 16.3333333 16.8 17.2666667 17.7333333	539.378144 547.894723 555.813368 563.162875 569.972606 576.272137 582.090957 587.458198 592.402404 596.951343 601.131847

19.1333333	611.714754
19.6	614.667574
20.0666667	617.368905
20.5333333	619.838411
21	622.094512
21.4666667	624.154413
21.9333333	626.03414
22.4	627.748587
22.8666667	629.311565
23.3333333	630.735853
RESULTADOS	
SOAKING	
	622.094512
SOAKING	622.094512 624.154413
SOAKING 21	
SOAKING 21 21.4666667	624.154413
SOAKING 21 21.4666667 21.9333333	624.154413 626.03414
SOAKING 21 21.4666667 21.9333333 22.4	624.154413 626.03414 627.748587
SOAKING 21 21.4666667 21.9333333 22.4 22.8666667	624.154413 626.03414 627.748587 629.311565
SOAKING 21 21.4666667 21.9333333 22.4 22.8666667 23.33333333	624.154413 626.03414 627.748587 629.311565
SOAKING 21 21.4666667 21.9333333 22.4 22.8666667 23.3333333 PROMEDIO	624.154413 626.03414 627.748587 629.311565

RK4PUNTO3	
0	20
0.46666667	54.0604654
0.93333333	87.6006112
1.4	120.584817
1.86666667	152.971711

2.33333333	184.714637
2.8	215.762352
3.26666667	246.059965
3.73333333	275.550092
4.2	304.174208
4.66666667	331.874151
5.13333333	358.593725
5.6	384.280331
6.06666667	408.886552
6.53333333	432.371606
7	454.702604
7.46666667	475.85554
7.93333333	495.815964
8.4	514.579318
8.86666667	532.150931
9.33333333	548.545672
9.8	563.78733
10.2666667	577.907738
10.7333333	590.945731
11.2	602.94598
11.6666667	613.957779
12.1333333	615.443237
12.6	616.801897
13.0666667	618.044137
13.5333333	619.179562
14	620.217044
14.4666667	621.16477
14.9333333	622.030288
15.4	622.820546
15.8666667	623.541936
16.3333333	624.200333
16.8	624.801132
17.2666667	625.349282
17.7333333	625.849324
18.2	626.305419
18.6666667	626.721379
19.1333333	627.100691
19.6	627.446551
20.0666667	627.761878
20.5333333	628.049343
21	628.311389

21.4666667	628.550246
21.9333333	628.767951
22.4	628.966367
22.8666667	629.147192
23.3333333	629.311978
RESULTADOS	SOAKING
14	620.217044
14.4666667	621.16477
14.9333333	622.030288
15.4	622.820546
15.8666667	623.541936
16.3333333	624.200333
16.8	624.801132
17.2666667	625.349282
17.7333333	625.849324
18.2	626.305419
18.6666667	626.721379
19.1333333	627.100691
19.6	627.446551
20.0666667	627.761878
20.5333333	628.049343
21	628.311389
21.4666667	628.550246
21.9333333	628.767951
22.4	628.966367
22.8666667	629.147192
23.3333333	629.311978

637.363437	643.783644	1
643.784712	646.780803	2
649.129677	646.549032	3
654.110436	646.157975	4
658.904181	645.205875	5
663.656603	644.129808	6
668.239533	643.478599	7
672.711791	642.495373	8
676.980182	641.833881	9
681.148461	640.87205	10

685.096615 688.95978	640 402470	
688.95978	640.183178	11
	639.239339	12
692.587379	638.522137	13
695.926441	637.872655	14
699.187976	636.990596	15
702.191163	636.266823	16
704.901498	635.597828	17
707.310792	634.959044	18
709.418358	634.348407	19
711.225975	633.77126	20
712.736571	633.236381	21
713.953927	632.755115	22
714.882692	632.341411	23
715.528498	632.012159	24
716.16826	631.66478	25
716.530285	631.417523	26
716.897134	631.184734	27
716.988185	631.057889	28
RESULTADOS TEN OBTENIDO	IPERATURA PARA S	OAKING
0		
	20	
	20 54.1770687	
0.46666667	54.1770687	
	54.1770687 87.8318922	
0.46666667 0.93333333 1.4	54.1770687 87.8318922 120.928539	
0.46666667 0.93333333 1.4 1.86666667	54.1770687 87.8318922	
0.46666667 0.93333333 1.4 1.86666667 2.333333333	54.1770687 87.8318922 120.928539 153.425257	
0.46666667 0.93333333 1.4 1.86666667	54.1770687 87.8318922 120.928539 153.425257 185.274946	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.26666667	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579	
0.4666667 0.9333333 1.4 1.86666667 2.33333333 2.8 3.26666667 3.733333333	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.26666667 3.73333333 4.2	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.26666667 3.73333333 4.2 4.66666667	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448 332.903784	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.266666667 3.73333333 4.2 4.66666667 5.13333333	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448 332.903784 359.700438	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.26666667 3.73333333 4.2 4.66666667 5.13333333 5.6	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448 332.903784 359.700438 385.457358	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.266666667 3.73333333 4.2 4.666666667 5.13333333 5.6 6.06666667	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448 332.903784 359.700438 385.457358 410.126758	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.266666667 3.73333333 4.2 4.666666667 5.13333333 5.6 6.06666667 6.533333333	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448 332.903784 359.700438 385.457358 410.126758 433.667593	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.266666667 3.73333333 4.2 4.666666667 5.13333333 5.6 6.06666667 6.533333333	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448 332.903784 359.700438 385.457358 410.126758 433.667593 456.046828	
0.46666667 0.93333333 1.4 1.86666667 2.33333333 2.8 3.26666667 3.73333333 4.2 4.66666667 5.13333333 5.6 6.06666667 6.53333333 7	54.1770687 87.8318922 120.928539 153.425257 185.274946 216.425864 246.822579 276.40714 305.120448 332.903784 359.700438 385.457358 410.126758 433.667593 456.046828 477.240435	

8.86666667	533.614093	
9.33333333	550.021459	
9.8	565.269798	
10.2666667	579.391517	
10.7333333	592.426059	
11.2	604.41872	
11.6666667	615.419418	
12.1333333	616.785287	
12.6	618.034124	
13.0666667	619.175581	
13.5333333	620.218576	
14	621.171338	
14.4666667	622.041453	
14.9333333	622.835907	
15.4	623.561124	
15.8666667	624.22301	
16.3333333	624.826989	
16.8	625.378037	
17.2666667	625.880719	
17.7333333	626.339218	
18.2	626.757366	
18.6666667	627.13867	
19.1333333	627.486342	
19.6	627.803319	
20.0666667	628.092285	
20.5333333	628.355695	
21	628.595793	
21.4666667	628.814626	
21.9333333	629.014068	
22.4	629.195826	
22.8666667	629.36146	
23.3333333	629.512393	
13.5333333	620.218576	
14	621.171338	
14.4666667	622.041453	
14.9333333	622.835907	
15.4	623.561124	
15.8666667	624.22301	
16.3333333	624.826989	
16.8	625.378037	
17.2666667	625.880719	

r		
17.7333333	626.339218	
18.2	626.757366	
18.6666667	627.13867	
19.1333333	627.486342	
19.6	627.803319	
20.0666667	628.092285	
20.5333333	628.355695	
21	628.595793	
21.4666667	628.814626	
21.9333333	629.014068	
22.4	629.195826	
22.8666667	629.36146	
23.3333333	629.512393	
PROMEDIO TIEMP	O SK	
626.209282	9.8	
634.124828	640.887817	1
640.574337	643.969676	2
645.918924	643.736773	3
650.899188	643.344232	4
655.687304	642.375244	5
660.432993	641.27898	6
665.014019	640.622057	7
669.480498	639.621494	8
673.747237	638.955043	9
677.909984	637.976619	10
681.856636	637.283242	11
685.714521	636.323562	12
689.340823	635.60247	13
692.8941	634.662301	14
696.200225	633.914009	15
699.215546	633.226637	16
701.929397	632.568191	17
704.340202	631.933938	18
706.449185	631.327554	19
708.258732	630.756196	20
709.772007	630.229356	21
710.992926	629.758778	22
712.18995	629.216516	23
-		

713.106837	628.767179	24
713.74346	628.41038	25
714.104739	628.160884	26
714.470712	627.925469	27
714.562237	627.800044	28
RESULTADOS TEM	L 1PERATURA PARA S	OVKING
OBTENIDO	II LIMIONA I ANA 3	OAKING
0	20	
0.4666667	53.8913757	
0.93333333	87.265222	
1.4	120.086367	
1.86666667	152.313987	
2.33333333	183.902063	
2.8	214.800072	
3.26666667	244.953902	
3.73333333	274.306985	
4.2	302.801619	
4.66666667	330.380446	
5.13333333	356.988012	
5.6	382.572375	
6.06666667	407.086648	
6.53333333	430.490433	
•	452.751059	
7.46666667	473.844556	
7.93333333	493.756328	
8.4	512.481501	
8.86666667	530.024917	
9.33333333	546.400826	
9.8	561.632279	
10.2666667	575.750291	
10.7333333	588.792821	
11.2	600.803641	
11.6666667	611.831146	
12.1333333	613.212602	
12.6	614.476875	
13.0666667	615.633522	
13.5333333	616.691383	
14	617.658627	
14.4666667	618.54279	

14.9333333	619.35082	
15.4	620.089113	
15.8666667	620.763557	
16.3333333	621.379563	
16.8	621.942101	
17.2666667	622.455737	
17.7333333	622.924657	
18.2	623.352699	
18.6666667	623.743383	
19.1333333	624.099933	
19.6	624.425298	
20.0666667	624.722182	
20.5333333	624.993054	
21	625.240178	
21.4666667	625.465619	
21.9333333	625.671267	
22.4	625.858851	
22.8666667	626.029947	
23.3333333	626.185999	
13.5333333	616.691383	
14	617.658627	
14.4666667	618.54279	
14.9333333	619.35082	
15.4	620.089113	
15.8666667	620.763557	
16.3333333	621.379563	
16.8	621.942101	
17.2666667	622.455737	
17.7333333	622.924657	
18.2	623.352699	
18.6666667	623.743383	
19.1333333	624.099933	
19.6	624.425298	
20.0666667	624.722182	
20.5333333	624.993054	
21	625.240178	
21.4666667	625.465619	
21.9333333	625.671267	
22.4	625.858851	
22.8666667	626.029947	
23.3333333	626.185999	

PROMEDIO TIEMP	O SK	
622.799398	9.8	
681.639866	685.299597	1
687.193033	687.5591	2
691.949081	687.427243	3
696.523007	686.74902	4
700.873652	686.334289	5
705.120456	685.608035	6
709.147944	685.157164	7
713.086996	684.440989	8
716.795697	683.967092	9
720.428268	683.264803	10
723.818355	682.768399	11
726.918267	682.334802	12
729.945503	681.683176	13
732.712866	681.185264	14
735.187262	680.741786	15
737.361199	680.330265	16
739.483564	679.764024	17
741.331322	679.307301	18
742.887022	678.907732	19
744.148264	678.558125	20
745.117575	678.266058	21
746.065468	677.909737	22
746.733827	677.648148	23
747.122895	677.48202	24
747.507082	677.301246	25
747.889641	677.115591	26
747.996142	677.035091	27
RESULTADOS TEM	1PERATURA PARA S	OAKING
OBTENIDO		
0	20	
0.46666667	57.9995737	
0.93333333	95.4131634	
1.4	132.193719	
1.86666667	168.285788	

2.33333333	203.626169	
2.8	238.144965	
3.26666667	271.767034	
3.73333333	304.413831	
4.2	336.005573	
4.66666667	366.463658	
5.13333333	395.713225	
5.6	423.685719	
6.06666667	450.321315	
6.53333333	475.571059	
7	499.398585	
7.46666667	521.781321	
7.93333333	542.711108	
8.4	562.194227	
8.86666667	580.250854	
9.33333333	596.914022	
9.8	612.22818	
10.2666667	626.24747	
10.7333333	639.033844	
11.2	650.655132	
11.6666667	661.183155	
12.1333333	662.753319	
12.6	664.170779	
13.0666667	665.449857	
13.5333333	666.60363	
14	667.644021	
14.4666667	668.581885	
14.9333333	669.427092	
15.4	670.188605	
15.8666667	670.874558	
16.3333333	671.492322	
16.8	672.048573	
17.2666667	672.549354	
17.7333333	673.000129	
18.2	673.405837	
18.6666667	673.77094	
19.1333333	674.099465	
19.6	674.395049	
20.0666667	674.66097	-
20.5333333	674.900186	
21	675.115364	

21.4666667	675.308907	
21.9333333	675.48298	
22.4	675.639534	
22.8666667	675.780325	
23.3333333	675.906934	
13.5333333	666.60363	
14	667.644021	
14.4666667	668.581885	
14.9333333	669.427092	
15.4	670.188605	
15.8666667	670.874558	
16.3333333	671.492322	
16.8	672.048573	
17.2666667	672.549354	
17.7333333	673.000129	
18.2	673.405837	
18.6666667	673.77094	
19.1333333	674.099465	
19.6	674.395049	
20.0666667	674.66097	
20.5333333	674.900186	
21	675.115364	
21.4666667	675.308907	
21.9333333	675.48298	
22.4	675.639534	
22.8666667	675.780325	
23.3333333	675.906934	
PROMEDIO TIEMP	O SK	
672.767121	9.8	