

Indian Institute of Technology Palakkad

Department of Computer Science and Engineering CS5616 Computational Complexity

January - May 2024

Mid Exam Total Points -42 Name: 2 March 2023 Roll no: 10.00 - 11.30 AM

1. (12 points) (a) (4 points) Let $REC = \{M \mid L(M) \text{ is recursive}\}\$ and

 $REN = \{M \mid L(M) \text{ is recursive enumerable}\}.$

Find the smallest integers i and j such that $REC \in \Pi_i$ and $REN \in \Delta_j$.

- (b) (4 points) Is the language $K = \{M_x \# x \mid M_x \text{ halts on } x\}$ undecidable? Justify.
- (c) (4 points) Recall that $AH = \bigcup_{i \geq 0} \Sigma_i$. Argue that for any $i \geq 0$, $AH \neq \Sigma_i$.
- 2. (10 points) For the following statements, either prove them true by a providing a proof or prove them false by a counter-example. Let A, B be languages.
 - (a) (2 points) If $A \leq_T B$ and A is undecidable then B is undecidable.
 - (b) (2 points) If $A \leq_T B$ and A is decidable then B is decidable.
 - (c) (2 points) For some pair of languages A, B, we have $A \leq_T A \cup B$ and $B \leq_T A \cup B$.
 - (d) (2 points) For any pair of languages A, B, we have $A \leq_T A \cup B$ and $B \leq_T A \cup B$.
 - (e) (2 points) If A is Σ_1 -complete and $B \subseteq A$, then B cannot be Σ_1 -complete.
- 3. (10 points) Answer both the parts.
 - (a) (5 points) Show that $\mathsf{MP}^{\mathsf{MP}}$ is Σ_2 -complete.
 - (b) (5 points) Define MPXOR as follows:

$$\{(M_1, M_2, x) \mid (x \in L(M_1) \text{ and } x \notin L(M_2)) \text{ or } (x \notin L(M_1) \text{ and } x \in L(M_2))\}$$

Here M_1 and M_2 are valid Turing machine descriptions and $x \in \Sigma^*$. Show that $MPXOR \in \Delta_2$.

- 4. (10 points) Consider a lexicographic total ordering of strings in Σ^* .
 - (a) (5 points) Show that a recursively enumerable set is recursive if and only if there exists an enumeration machine that enumerates it in the increasing lexicographic order
 - (b) (5 points) Show that every infinite recursively enumerable set must contain an infinite recursive set.