(若发现问题,请及时告知)

- 4. 对于图30所给出的流图,
 - 1) 为基本块 B2 构造 DAG 图。
- 2) 假设 B4 出口处的活跃变量集合为空,求出 B3 出口处、B3 入口处以及 B2 出口处的活跃变量集合,即 LiveOut(B3), LiveIn(B3) 以及 LiveOut(B2) 的值。

参考解答:

1) 基本块 B2 的 DAG 图:

2)

	LiveUse	DEF	LiveIn	LiveOut
в1	Ø	{a}	Ø	{a}
В2	{a}	{b, c, d, e}	{a}	{a, c}
в3	{a, c}	{e}	{a, c}	{a, c}
в4	{a, c}	{e}	{a, c}	Ø

所以 B3 出口处、B3 入口处以及 B2 出口处的活跃变量集合分别是:

6. 图33是包含 7 个基本块的流图, 其中 B1 为入口基本块, B7 为出口基本块:

- 1)指出在该流图中,基本块 B4 的支配结点(基本块)集合,始于 B4 的回边,以及基于该回边的自然循环中包含哪些基本块?
- 2)采用迭代求解数据流方程的方法对活跃变量信息进行分析。假设B7的 LiveOut信息为 Ø, 迭代结束时的结果在下图所示表中给出。试填充该表的内容。

	LiveUse	DEF	LiveIn	LiveOut
В1				
В2				

в3		
в4		
в5		
В6		
в7		Ø

3)对于该流图,根据采用迭代求解数据流方程对到达-定值(reaching definitions)数据流信息进行分析的方法。假设 B1 的 IN 信息为 \emptyset ,迭代结束时的结果在下图所示表中给出。试填充该表的内容。

	GEN	KILL	IN	OUT
в1			Ø	
в2				
в3				
в4				
в5				
в6				
в7				

- 4) 指出该流图范围内,变量 a 在(11)的 UD 链。
- 5) 指出该流图范围内,变量 c 在 (2) 的 DU 链。

参考解答:

1) 基本块 B4 的支配结点(基本块)集合: { B₁, B₂, B4};

始于 B4 的回边 B4 \rightarrow B2;

基于该回边的自然循环中包含基本块: B2, B3, B4, B5, B6

2) 求解结果如下:

	LiveUse	DEF	LiveIn	LiveOut
в1	Ø	{a}	{e}	{a,e}
В2	{a}	{c}	{a,e}	{a,e}
в3	{e}	{a}	{e}	{a}
В4	{a}	{b,c,d,e}	{a}	{a,c,d,e}

в5	{a,d}	{d}	{a,c,d}	{a,c,d}
в6	{a,c}	{e}	{a,c}	{a}
в7	Ø	Ø	Ø	Ø

3) 求解结果如下:

	GEN	KILL	IN	OUT
B 1	{1}	Ø	Ø	{1}
B2	{2}	{9}	{1, 4, 5, 7, 8, 9, 14}	{1, 4, 5, 7, 8, 14, 2}
В3	{4}	{1, 14}	{1, 4, 5, 7, 8, 14, 2}	{4, 5, 7, 8, 2}
B4	{5, 7, 8, 9}	{2, 11,13}	{1, 4, 5, 7, 8, 2,9,11,13,14}	{1, 4, 5, 7, 8, 9, 14}
В5	{11}	{7}	{1, 4, 5, 7, 8, 9, 11, 14}	{1, 4, 5, 8, 9, 11, 14}
В6	{13, 14}	{1,4, 8}	{1, 4, 5, 8, 9, 11, 14}	{ 5, 9, 11, 13, 14}
В7	Ø	Ø	{ 5, 9, 11, 13, 14}	{ 5, 9, 11, 13, 14}

- 4) 该流图范围内,变量 a 在(11)的 UD 链{(1), (4), (14)}.
- 5) 该流图范围内, 变量 c 在 (2) 的 DU 链{ (3) }.
- 10. 图23右边的DAG图也是一棵表达式树。试对该表达式树的每个结点用Ershov数进行标记,并根据标记结果以及4.3节所介绍的算法,针对4.3节所假设的基于寄存器的简单机器,生成该表达式的目标代码。

参考解答: 每个结点用 Ershov 数进行标记

该表达式的目标代码之一:

LD R0, a

LD R1, b

ADD R0, R0, R1

LD R1, c

LD R2, d

ADD R1, R1, R2

LD R2, e

SUB R1, R2, R1

SUB R0, R0, R1

11. 对于图32和图33中的流图,分别给出相应的寄存器相干图。若要保证图着色过程中不会出现将寄存器泄漏到内存中的情形,那么可供分配的物理寄存器的最小数目分别是多少?。 参考解答:对于图 33 的流图,寄存器相干图为

若要保证图着色过程中不会出现将寄存器泄漏到内存中的情形,那么可供分配的物理寄存器的最小数目是4。