Lecture 1 - Introduction

Digital Image Processing

郑锐 Zheng Rui (助理教授/研究员)

上海科技大学信息科学与技术学院

E-mail: zhengrui@shanghaitech.edu.cn

地址:信息学院大楼2号楼202.H

Textbook

Digital Image Processing, 3rd edition, Rafael C. Gonzalez & Richard E. Woods, 2007, Pearson.

数字图像处理 (第三版)

作者: (美) Rafael C. Gonzalez (拉斐尔 C. 冈萨雷斯), Richard E. Woods

(理查德 E. 伍兹) 著,

出版社: 电子工业出版社

Reference book

数字图像处理基础

作者: 阮秋琦

出版社:清华大学出版社

数字图像处理 (第2版)

作者: 李俊山, 李旭辉

出版社:清华大学出版社

数字图像处理(MATLAB版)(第二版)

作者: (美) Rafael C. Gonzalez (拉斐尔 C. 冈萨雷斯)

出版社: 电子工业出版社

Schedule

Week	Date	Topic	Reading	Homework
1	09月18日	Introduction	CH1	Release: 9/20 Due: 10/9
	09月20日	Image fundamentals - Sampling and Quantization	CH2.4	
2	09月25日	Image fundamentals - Pixels	CH2.5	
	09月27日	Image fundamentals - Operation	CH2.6	
	09月29日	Image fundamentals - Color space	CH2, CH6.1-6.2	
3				
4	10月09日	Spatial domain, Intensity transformation	CH3.1-3.2	Release: 10/9 Due: 10/23
	10月11日	Histogram	Ch3.3-3.4,CH6.5	
5	10月16日	Spatial filtering-smoothing	CH3.5, CH6.6	
	10月18日	Spatial filtering-sharpening	CH3.6, CH6.6	
6	10月23日	Image transform & Frequency domain, DFT	CH4,CH7,CH8	Release: 10/23 Due: 11/6
	10月25日	Image transform & Frequency domain, DCT, Wavelet, Walsh	CH4,CH7,CH8	
7	10月30日	Multiresolution processing	CH7	
	11月01日	Frequency domain filtering	CH4.8-4.9	
8	11月06日	Midterm		
	11月08日	Image Restoration - noise filering	CH5	
9	11月13日	Image Restoration - spatial filtering	CH5	Release: 11/8
	11月15日	Image Restoration - frequency domain filtering	CH5	Due: 11/27
10		Image Restoration - degradation function	CH5	
	11月22日	Image reconstruction	CH5	
11	11月27日	Image compression	CH6	Release: 11/22 Due: 12/11
	11月29日	Morphological operation	CH9.1-9.4	
12	12月04日	Morphological algorithms	CH9.5	
	12月06日	Image segmentation - edge detection	CH10.2	
13	12月11日	Image segmentation - thresholding	CH10.3-10.4	Release: 12/6 Due: 12/25
	12月13日	Image segmentation - morphological watersheds	CH10.5	
14	12月18日	Descriptors	CH11.2-11.3	
	12月20日	Object recognition	CH12	
15	12月25日	Review		
	12月27日	Final presentation		
16		Final presentation		

Assessment

- ➤ Homework (5%*6=30%)
 - Every 2~3 weeks;
 - Handwriting & Hard copy & Electronic copy & Matlab Codes
 - Due date: the next Tuesday;
- ➤ Midterm (25%): Date: 11/6, 90 minutes
- Quiz (10%): missing twice -5%; missing more than twice: -10%
- > Final Project (35%)
 - Proposal (English): 400 words including background, objectives and methods; Due date: 11/11.
 - Presentation: 5 minutes; Date: Week 15& 16; PPT in English.
 - Project report (English): ≥4000 words following the format of IEEE Transaction; ≥15 references, Coding≥100 lines; Due date: 1/10 (the end of Week 17)
 - Course will be failed if the final report is missing

Lecture 1 - Introduction

This lecture will cover:

- What is a digital image?
- What is digital image processing?
- Examples of digital image processing
- Steps of digital image processing
- Methods of digital image processing

Image

- ① A reproduction or imitation of form of a person or thing.
- 2 The optical counterpart of an object produced by a lens, mirror, etc.

.....Noah Webster

Digital image

\triangleright A visual representation in form of a function f(x,y), where

- f is related to the intensity or brightness (color) at point
- (x, y) are spatial coordinates
- x, y, and the amplitude of f are finite and discrete quantities

(a) A 256X256 image with 256 gray levels; (b) its amplitude profile

Pixel

- Composed of a finite number of elements Pixel
- > A pixel has a location and intensity information typically represent gray levels, colors, heights, opacities, etc.
- > Digitization implies that a digital image is an approximation of a real scene.

The digitized intensity and location value of image Pixel

Digital image

Images that have more than two coordinate dimensions,

 \triangleright f [x, y, z] 3-D monochrome image (e.g., optical hologram)

➤ f [x, y, t] time-varying monochrome image over continuous time domain

➤ f [x, y, tn] time-varying monochrome image with discrete time samples (cinema)

 \triangleright f [x, y, λ] spectral image with continuous domain of wavelengths

 \triangleright f [x, y, λ n] multispectral image, discrete set of wavelengths

 \triangleright f [x, y, tn, λ m] discrete samples in time and wavelength, e.g., color movie

ightharpoonup f [x, y, z, t, λ] reality

Digital image processing

Definition: Processing digital images by means of a digital computer.

AKA: Computer image processing

Digital image processing

Digital image processing vs Computer graphics (CG)?

Goal

Why do we need image processing

- > Improvement of pictorial information for human interpretation
- > Processing of image data for autonomous machine perception
 - Storage
 - Transmission
 - Representation
 - Description
 - Recognition
 - Many more.

Image processing is ubiquitous!

History of image processing

Early stage of digital image

A digital picture produced from a coded tape in 1921

A digital picture from a tape punched after the signal had crossed the Atlantic twice in 1922

Unretouched cable picture transmitted from London to New York by 15-tone equipment in 1929

History of image processing

Modern digital image processing

- > 1960s Improvements in computing technology and develop of the space program
- > 1970s Medical application
- > Until present, digital image processing techniques has been explored to
 - All kinds of tasks
 - All kinds of areas
 - All kinds of sources

Application - Medicine

Application - Industry

Application – Remote sensing

Application – Seismic imaging

Application – Astronomical image

Application – Law enforcement

- Enhancement of CCTV footage
- License plate number recognition
- > Face recognition
- Finger print recognition …etc

Application – HCI

Human Computer Interface

- Face recognition
- Gesture recognition
- Optical character recognition (OCR)
- Autonomous vehicles

Stage of DIP

Low level process

INPUT: Image **OUTPUT:** Image

EXAMPLE:

Denoise

Contrast enhancement

Image sharpening

Mid level process

INPUT: Image

OUTPUT: Attributes

EXAMPLE:

Segmentation

Description

Recognition

High level process

INPUT: Attributes

OUTPUT: Understanding

EXAMPLE:

Image analysis

Image understanding

There are no clear-cut boundaries from image processing to computer vision

Fundamental Steps in DIP

- > Image acquisition
- > Image enhancement
- ➤ Image restoration
- ➤ Image reconstruction
- > Image compression
- > Image segmentation
- > Image representation and description
- ➤ Object recognition

Fundamental Steps in DIP

- ➤ Image acquisition
- > Image enhancement
- ➤ Image restoration
- > Image reconstruction
- > Image compression
- > Image segmentation
- Image representation and description
- ➤ Object recognition

Schedule

Week	Date	Торіс	Reading	Homework
1	09月18日	Introduction	CH1	
	09月20日	Image fundamentals - Sampling and Quantization	CH2.4	
2	09月25日	Image fundamentals - Pixels	CH2.5	Release: 9/20
	09月27日	Image fundamentals - Operation	CH2.6	Due: 10/9
	09月29日	Image fundamentals - Color space	CH2, CH6.1-6.2	
3				
4	10月09日	Spatial domain, Intensity transformation	CH3.1-3.2	Release: 10/9 Due: 10/23
	10月11日	Histogram	Ch3.3-3.4,CH6.5	
5	10月16日	Spatial filtering-smoothing	CH3.5, CH6.6	
	10月18日	Spatial filtering-sharpening	CH3.6, CH6.6	
6	10月23日	Image transform & Frequency domain, DFT	CH4,CH7,CH8	Release: 10/23 Due: 11/6
	10月25日	Image transform & Frequency domain, DCT, Wavelet, Walsh	CH4,CH7,CH8	
7	10月30日	Multiresolution processing	CH7	
	11月01日	Frequency domain filtering	CH4.8-4.9	
8	11月06日	Midterm		
	11月08日	Image Restoration - noise filering	CH5	
9	11月13日	Image Restoration - spatial filtering	CH5	Release: 11/8
	11月15日	Image Restoration - frequency domain filtering	CH5	Due: 11/27
10	11月20日	Image Restoration - degradation function	CH5	
		Image reconstruction	CH5	
11	11月27日	Image compression	CH6	Release: 11/22
	11月29日	Morphological operation	CH9.1-9.4	Due: 12/11
12	12月04日	Morphological algorithms	CH9.5	
	12月06日	Image segmentation - edge detection	CH10.2	
13	12月11日	Image segmentation - thresholding	CH10.3-10.4	Release: 12/6
	12月13日	Image segmentation - morphological watersheds	CH10.5	Due: 12/25
14	12月18日	Descriptors	CH11.2-11.3	Due. 12/25
	12月20日	Object recognition	CH12	
15	12月25日	Review		
	12月27日	Final presentation		
16	01月03日	Final presentation		

Applied methods in DIP

Spatial domain

- Pixel processing grey processing
- Neighborhood processing gradient algorithm, Laplacian operator, smoothing operator, convolution algorithm

Frequency domain

- Discrete Fourier Transform (DFT)
- Discrete Cosine Transform (DCT)
- Discrete Wavelet Transform (DWT)
- Walsh-Hadamard Transform (WHT)

Tools: Orthogonal transformation, Filtering, Convolution, Statistics etc.

Lecture 1 - Introduction

This lecture will cover:

- What is a digital image?
- What is digital image processing?
- Examples of digital image processing
- Steps of digital image processing
- Methods of digital image processing

