Bluetooth Test Report

Shenzhen Emperor Technology Company Limited

Applicant:

Address of Applicant:	F9, Block C, Building 1, Software Industry Base, Nanshan District, Shenzhen, China			
Manufacturer:	Shenzhen Emperor Technology Company Limited			
Address of Manufacturer:	F9, Block C, Building 1, Software Industry Base, Nanshan District, Shenzhen, China			
Factory:	Shenzhen Emperor Technology Company Limited			
Address of Factory:	F9, Block C, Building 1, Software Industry Base, Nanshan District, Shenzhen, China			
Equipment Under Test (EUT):			
Product:	ID tablet			
Model No.:	EMP2920			
Brand Name:	EP772707			
FCC ID:	2AKP2-2920A			
Standards:	47 CFR Part 15, Subpart C			
Date of Test:	2017-02-27 to 2017-03-09			
Date of Issue:	2017-03-09			
Report No. :	FCC17050447A-1			
Test Result :	PASS			
Tested By:	misy Din			
	(Daisy Qin)			
Reviewed By:	Sol Gin			
	(Sol Qin)			
Approved By:	(Sol QIII)			
	(Michal Ling)			
Prepared by:	QTC Certification & Testing Co., Ltd. 2nd Floor, Bl Building, Fengyeyuan Industrial Plant, Liuxian 2st. Road, Xin'an Street, Bao'an District, Shenzhen, 518000			
	Registration Number: 588523			

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
FCC17050447A-1	Rev.01	Initial report	2017-03-09

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

3 Contents

			Page
С	OVER PAG	3E	1
1	VERSI	ON	2
2		SUMMARY	
3	CONTE	ENTS	4
4	GENER	RAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	5
	4.3	TEST ENVIRONMENT	7
	4.4	DESCRIPTION OF SUPPORT UNITS	7
	4.5	STATEMENT OF THE MEASUREMENT UNCERTAINTY	7
	4.6	TEST LOCATION	7
	4.7	EQUIPMENT LIST	8
5	TEST F	RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT	9
	5.2	CONDUCTED EMISSIONS	
	5.3	CONDUCTED PEAK OUTPUT POWER	13
	5.4	20DB OCCUPY BANDWIDTH	20
	5.5	CARRIER FREQUENCIES SEPARATION	26
	5.6	HOPPING CHANNEL NUMBER	33
	5.7	DWELL TIME	36
	5.8	BAND-EDGE FOR RF CONDUCTED EMISSIONS	42
	5.9	SPURIOUS RF CONDUCTED EMISSIONS	50
	5.10	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	69
	5.11	RADIATED SPURIOUS EMISSION	71
	5.11.1	Radiated Emission below 1GHz	74
	5.11.2	Transmitter Emission above 1GHz	76
	5.12	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	78
6	РНОТО	OGRAPHS - EUT TEST SETUP	81
	6.1	CONDUCTED EMISSION	81
	6.2	RADIATED EMISSION	81
7	РНОТО	OGRAPHS - EUT CONSTRUCTIONAL DETAILS	82

4 General Information

4.1 Client Information

Applicant:	Shenzhen Emperor Technology Company Limited		
Address of Applicant:	F9, Block C, Building 1, Software Industry Base, Nanshan District, Shenzhen, China		
Manufacturer:	Shenzhen Emperor Technology Company Limited		
Address of Manufacturer:	F9, Block C, Building 1, Software Industry Base, Nanshan District, Shenzhen, China		
Factory:	Shenzhen Emperor Technology Company Limited		
Address of Factory:	F9, Block C, Building 1, Software Industry Base, Nanshan District, Shenzhen, China		

4.2 General Description of EUT

TIE Ocheral Description e	201
Product Name:	ID tablet
Model No.:	EMP2920
Trade Mark:	EPPEROR
Hardware Version:	V1.0
Software Version:	EMP2920_J979_V1.0_20170224
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.0
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	portable production
Test Software of EUT:	RF test (manufacturer declare)
Antenna Type:	Internal antenna
Antenna Gain:	1.0dBi
Power Supply:	Rechargeable Battery: 3.7VDC/8000mAh
	AC adapter:
	Model No.: HYX-05300W
	Input:100-240VAC 50/60Hz 0.5A
	Output: DC5V 3000mA

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The Lowest channel	2402MHz	
The Middle channel	2441MHz	
The Highest channel	2480MHz	

4.3 Test Environment

Operating Environment:	Operating Environment:			
Temperature:	25.0 °C			
Humidity:	53 % RH			
Atmospheric Pressure:	995mbar			
Test Mode:	Use test software (RF Test) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.			

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
Adapter	HEYIXUN	HYX-053000W	Provide by client	DOC

4.5 Statement of the measurement uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

4.6 Test Location

The above equipment was tested by QTC Certification & Testing Co., Ltd.

2nd Floor, Bl Building, Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an District,,Shenzhen,518000

Registration Number: 588523

4.7 Equipment List

NAME OF	MANUEACTURER	MODEL	SERIAL	Calibration	Calibration
EQUIPMENT	MANUFACTURER	MODEL	NUMBER	Date	Due.
EMI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2016	08/18/2017
Coaxial cable	Megalon	LMR400	N/A	08/12/2016	08/11/2017
GPIB cable	Megalon	GPIB	N/A	08/12/2016	08/11/2017
Spectrum Analyzer	R&S	FSU	100114	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2016	10/12/2017
Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2016	09/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		09/13/2016	09/12/2017
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2016	08/22/2017
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/25/2016	04/24/2017
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R
Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R
RF cable	Murata	MXHQ87WA300 0	-	08/21/2016	08/20/2017
Loop Antenna	EMCO	6502	00042960	08/22/2016	08/21/2017
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2016	08/18/2017
Power meter	Anritsu	ML2487A	6K00003613	08/23/2016	08/22/2017
Power sensor	Anritsu	MX248XD		08/19/2016	08/18/2017

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is internal antenna with ipex connector. The best case gain of the antenna is 1.0dBi.

5.2 Conducted Emissions

	7115		
Test Requirement:	47 CFR Part 15C Section 15.207 ANSI C63.10: 2013 : 150kHz to 30MHz		
Test Method:			
Test Frequency Range:			
Limit:	F(MIII-)	Limit (d	dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithn	n of the frequency.	<u> </u>
Test Procedure:	 Decreases with the logarithm of the frequency. The mains terminal disturbance voltage test was conducted in a shield room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω line impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of 		ough a LISN 1 (Line is a 50Ω/50μH + 5Ω linear if the EUT were id to the ground or the unit being id to connect multiple ig of the LISN was not increased to the connect multiple in the LISN was not increased in the EUT was increased in the EUT was increased in the boundary of the increased in the increased in the boundary of the increased in the boundary of the
	ANSI C63.10: 2013 on cor	nducted measurement.	
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 → AC Mar Ground Reference Plane	
Exploratory Test Mode:	Non-hopping transmitting mod data type at the lowest, middle	e, high channel.	
Final Test Mode:	Through Pre-scan, find the D	DH1 of data type and	GFSK modulation at the

	lowest channel is the worst case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

22.0980

22.2380

11

12

32.93

20.27

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

42.81

30.15

9.88

9.88

60.00 -17.19

50.00 -19.85

peak

AVG

Neutral line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dΒ	dBu∀	dBu∀	dB	Detector
1		0.1620	37.60	9.79	47.39	65.36	-17.97	peak
2		0.2380	21.74	9.80	31.54	52.17	-20.63	AVG
3	*	0.4700	42.29	9.80	52.09	56.51	-4.42	peak
4		0.4740	28.72	9.80	38.52	46.44	-7.92	AVG
5		0.8020	38.16	9.80	47.96	56.00	-8.04	peak
6		0.8340	21.70	9.80	31.50	46.00	-14.50	AVG
7		2.0980	17.60	9.88	27.48	46.00	-18.52	AVG
- 8		2.1060	31.55	9.88	41.43	56.00	-14.57	peak
9		6.1420	28.93	9.84	38.77	60.00	-21.23	peak
10		6.5220	17.91	9.84	27.75	50.00	-22.25	AVG
11		22.2700	21.01	9.93	30.94	50.00	-19.06	AVG
12		22.3260	34.07	9.93	44.00	60.00	-16.00	peak

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Factor: the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	21dBm		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Measurement Data

	GFSK mode					
Test channel	Peak Output Power (dBm)	Average Power(dBm)	Limit (dBm)	Result		
Lowest	-1.99	-2.42	21.00	Pass		
Middle	-2.58	-3.09	21.00	Pass		
Highest	-3.38	-3.84	21.00	Pass		
_	π/40	QPSK mode				
Test channel	Peak Output Power (dBm)	Average Power(dBm)	Limit (dBm)	Result		
Lowest	-1.47	-1.93	21.00	Pass		
Middle	-2.01	-2.50	21.00	Pass		
Highest	-2.77	-3.22	21.00	Pass		
	80	PSK mode				
Test channel	Peak Output Power (dBm)	Average Power(dBm)	Limit (dBm)	Result		
Lowest	-1.08	-1.56	21.00	Pass		
Middle	-1.63	-2.13	21.00	Pass		
Highest	-2.37	-2.79	21.00	Pass		

Test plot as follows:

5.4 20dB Occupy Bandwidth

Measurement Data

Toot channel	2	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4DQPSK	8DPSK	
Lowest	889.42	1230.77	1221.15	
Middle	894.23	1235.58	1221.15	
Highest	894.23	1235.58	1225.96	

Test plot as follows:

5.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	2/3 of the 20dB bandwidth		
	Remark: the transmission power is less than 0.125W.		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Measurement Data

	GFSK mode				
	Carrier Frequencies				
Test channel	Separation (kHz)	Limit (kHz)	Result		
Lowest	1001.6	≥596.15	Pass		
Middle	1001.6	≥596.15	Pass		
Highest	1001.6	≥596.15	Pass		
	π/4DQPSK n	node			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1001.6	≥823.72	Pass		
Middle	1001.6	≥823.72	Pass		
Highest	1001.6	≥823.72	Pass		
	8DPSK mo	de			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1001.6	≥817.31	Pass		
Middle	1001.6	≥817.31	Pass		
Highest	1001.6	≥817.31	Pass		

Note: According to section 6.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)
IVIOGE	(worse case)	(Carrier Frequencies Separation)
GFSK	894.23	596.15
π/4DQPSK	1235.58	823.72
8DPSK	1225.96	817.31

Test plot as follows:

5.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	At least 15 channels		
Test Mode:	Hopping transmitting with all kind of modulation		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Test plot as follows:

5.7 Dwell Time

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.133	≤0.4
GFSK	DH3	0.268	≤0.4
	DH5	0.313	≤0.4
	2-DH1	0.137	≤0.4
π/4DQPSK	2-DH3	0.269	≤0.4
	2-DH5	0.315	≤0.4
	3-DH1	0.137	≤0.4
8DPSK	3-DH3	0.270	≤0.4
	3-DH5	0.313	≤0.4

Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

DH1 time slot=0.417(ms)*(1600/ (2*79))*31.6=133 ms

DH3 time slot=1.675(ms)*(1600/ (4*79))*31.6=268 ms

DH5 time slot=2.937(ms)*(1600/ (6*79))*31.6=313 ms

Test plot as follows:

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Factor: the High-Frequency cable loss 5.0dB in the spectrum analyzer.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

No-hopping mode

	GFSK mode								
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result					
Lowest	2400	-50.95	-23.10	Pass					
Highest	2483.5	-51.37	-24.80	Pass					
		π/4DQPSK mode							
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result					
Lowest	2400	-52.56	-23.12	Pass					
Highest	2483.5	-52.70	-24.81	Pass					
	8DPSK mode								
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result					
Lowest	2400	-52.77	-23.22	Pass					
Highest	2483.5	-53.75	-24.79	Pass					

Hopping mode

Hopping mode							
GFSK mode							
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result			
Lowest	2400	-51.43	-23.11	Pass			
Highest	2483.5	-52.63	-24.70	Pass			
	π/4DQPSK mode						
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result			
Lowest	2400	-52.60	-23.20	Pass			
Highest	2483.5	-50.52	-24.72	Pass			
	8DPSK mode						
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result			
Lowest	2400	-52.87	-23.17	Pass			
Highest	2483.5	-53.12	-24.73	Pass			

Test plot as follows:

Stop 2.405 GHz

Test mode:

| Truly | Test channel: | Test cha

9.5 MHz/

Start 2.31 GHz

Stop 2.405 GHz

9.5 MHz/

Start 2.31 GHz

5.9 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark: Factor: the High-Frequency cable loss 5.0dB in the spectrum analyzer.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

5.10 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive

system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.11 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)		
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz		Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz		Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz		Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz Peak		Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz Average		10kHz	30kHz	Average		
	0.490MHz -30MHz Quasi			10kHz	30kHz	Quasi-peak	
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak	
	Peak Peak		1MHz	3MHz	Peak		
	Above 1GHz Peak		Peak	1MHz	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30	
	1.705MHz-30MHz		30	-	-	30	
	30MHz-88MHz		100	40.0	Quasi-peak	3	
	88MHz-216MHz 150			43.5	Quasi-peak	3	
	216MHz-960MHz 200		46.0	Quasi-peak	3		
	960MHz-1GHz 500		54.0	Quasi-peak	3		
	Above 1GHz 500		54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.					_	

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1

	Report No.: FCC17030447A-1
	meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through prescan, the worst case is the lowest channel.
Instruments Used:	Only the worst case is recorded in the report. Refer to section 5.10 for details
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

30MHz~1GHz (PEAK)		
Test mode:	Transmitting	Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	35.0048	28.33	0.13	28.46	40.00	-11.54	peak
2		95.7622	29.79	-7.19	22.60	43.50	-20.90	peak
3		136.9391	25.62	-3.05	22.57	43.50	-20.93	peak
4		216.0240	31.38	-5.39	25.99	46.00	-20.01	peak
5		504.7062	26.46	-0.89	25.57	46.00	-20.43	peak
6		842.1296	26.58	4.86	31.44	46.00	-14.56	peak

Test mode: Transmitting Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		30.9619	22.41	2.85	25.26	40.00	-14.74	peak
2		54.2610	28.11	-9.43	18.68	40.00	-21.32	peak
3		119.8556	25.64	-2.33	23.31	43.50	-20.19	peak
4		216.0240	29.55	-5.39	24.16	46.00	-21.84	peak
5		504.7062	27.64	-0.89	26.75	46.00	-19.25	peak
6	*	890.7278	29.01	5.33	34.34	46.00	-11.66	peak

5.11.2 Transmitter Emission above 1GHz

Worse case mode:	GFSK(DH1)	Test channel:	Lowest
------------------	-----------	---------------	--------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol. H/V
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	1 1/ V
4804	49.55	-5.18	44.37	74	-29.63	peak	Н
4804	36.21	-5.18	31.03	54	-22.97	AVG	Н
7206	49.71	-6.45	43.26	74	-30.74	peak	Н
7206	36.29	-6.45	29.84	54	-24.16	AVG	Н
4804	48.81	-5.18	43.63	74	-30.37	peak	V
4804	36.26	-5.18	31.08	54	-22.92	AVG	V
7206	48.32	-6.45	41.87	74	-32.13	peak	V
7206	35.92	-6.45	29.47	54	-24.53	AVG	V

Worse case mode:	GFSK(DH1)	Test channel:	Middle
------------------	-----------	---------------	--------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4882	49.17	-5.19	43.98	74	-30.02	peak	Н
4882	36.11	-5.19	30.92	54	-23.08	AVG	Н
7323	49.34	-6.47	42.87	74	-31.13	peak	Н
7323	35.04	-6.47	28.57	54	-25.43	AVG	Н
4882	49.78	-5.19	44.59	74	-29.41	peak	V
4882	37.57	-5.19	32.38	54	-21.62	AVG	V
7323	49.72	-6.47	43.25	74	-30.75	peak	V
7323	35.15	-6.47	28.68	54	-25.32	AVG	V

Worse case mode:	GFSK(DH1)	Test channel:	Highest
vvoice eace ineae.	0.014(0111)	1 oot onamion	riigiloot

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4960	50.10	-5.2	44.90	74	-29.10	peak	Н
4960	37.40	-5.2	32.20	54	-21.80	AVG	Н
7440	49.96	-6.47	43.49	74	-30.51	peak	Н
7440	37.45	-6.47	30.98	54	-23.02	AVG	Н
4960	50.00	-5.2	44.80	74	-29.20	peak	V
4960	37.53	-5.2	32.33	54	-21.67	AVG	V
7440	50.91	-6.47	44.44	74	-29.56	peak	V
7440	36.39	-6.47	29.92	54	-24.08	AVG	V

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

5.12Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2013					
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)			
Limit:	Frequency	Limit (dBuV/m @3m)	Remark			
	30MHz-88MHz	40.0	Quasi-peak Value			
	88MHz-216MHz	43.5	Quasi-peak Value			
	216MHz-960MHz	46.0	Quasi-peak Value			
	960MHz-1GHz	54.0	Quasi-peak Value			
	Above 1GHz	54.0	Average Value			
	Above IGHZ	74.0	Peak Value			
Test Setup:						

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

	Report No.: 1 CO110304417A-1
Exploratory Test Mode: Final Test Mode:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation shall be that which maximizes the emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass
root Nooulto.	1 400

Worse case mode. Gran(Dha) Test channel. Lowest	Worse case mode:	GFSK(DH5)	Test channel:	Lowest
---	------------------	-----------	---------------	--------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390	48.90	-4.36	44.54	74	-29.46	peak	Н
2390	35.97	-4.36	31.61	54	-22.39	AVG	Н
2400	53.22	-4.36	48.86	74	-25.14	peak	Н
2400	40.07	-4.36	35.71	54	-18.29	AVG	Н
2390	45.79	-4.36	41.43	74	-32.57	peak	V
2390	35.41	-4.36	31.05	54	-22.95	AVG	V
2400	54.68	-4.36	50.32	74	-23.68	peak	V
2400	40.29	-4.36	35.93	54	-18.07	AVG	V

Worse case mode:	GFSK(DH5)	Test channel:	Highest
------------------	-----------	---------------	---------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.5	59.44	-4.22	55.22	74	-18.78	peak	Н
2483.5	47.43	-4.22	43.21	54	-10.79	AVG	Н
2483.5	61.24	-4.22	57.02	74	-16.98	peak	V
2483.5	46.51	-4.22	42.29	54	-11.71	AVG	V

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

6 Photographs - EUT Test Setup

6.1 Conducted Emission

6.2 Radiated Emission

Above 1GHz:

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for FCC17050447A.

The End