LINEÁRIS ALGEBRA II.

ÍRÁSBELI VIZSGA

2014. május 27.

PÁZMÁNY PÉTER KATOLIKUS EGYETEM

INFORMÁCIÓS TECHNOLÓGIAI ÉS BIONIKAI KAR

Fontos tudnivalók

Tisztelt Vizsgázó!

Jelen füzet a 2013/14/2. tanulmányi időszak, vizsgaidőszakának Lineáris algebra II. írásbeli (és szóbeli) vizsgájához lett kiadva. A füzet tartalmazza az intézmény által nyilvánosságra hozott vizsgainformációkat, valamint a tárgy témaköreinek kidolgozott formáját is.

A füzetben mindemellett megtalálható a Lineáris algebra II. vizsga menetének leírása, a pontszámítás módja, és egyéb fontos tudnivalók.

A kiadványban bárhol, de különösen a kidolgozott témakörökben előfordulhatnak hiányosságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladatmegoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik.

Eredményes felkészülést kívánunk!

A kiadványt összeállította: Naszlady Márton Bese – 2014

Ez a kiadvány a *Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc* alá tartozik. A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra.

A kiadványban szereplő tartalmi elemek harmadik személytől származó véleményt, értesülést tükröznek. Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!

Tartalomjegyzék

Témakörök	4
Mátrixok egyéb tulajdonságai	4
Mátrixok sajátértéke, nyoma és determinánsa közti összefüggés	
Mátrix rangja, egyenletrendszer megoldhatósága	
Cayley-Hamilton tétel	
Leképezések, izomorfia	
Izomorfia	
Leképezések vektortere, összege, szorzata	7
Bázistranszformáció	
Diagonalizálás	8
Bilineáris függvények	9
Kvadratikus alakok	
Kúpszeletek	
Kúpszeletek és az ellipszis, hiperbola, parabola ekvivalenciája	
Kanonikus alakok	
Komplex számok	14
Algebrai alak	15
Trigonometrikus alak	
Exponenciális alak	
Műveletek komplex számokkal	
Egységgyökök struktúrája, primitív egységgyökök	
Euklideszi tér	
Skalárszorzat	20
Metrika	21
Norma	
Cauchy-Bunyakovszkij-Schwarz egyenlőség	
Ortonormált bázis, Gram-Schmidt ortogonalizáció	
Valós euklideszi terek transzformációi	
Komplex euklideszi terek transzformációi	
Vizsgainformációk	26
Jegyzetek 1	27

Témakörök

Mátrixok egyéb tulajdonságai

Mátrixok sajátértéke, nyoma és determinánsa közti összefüggés

Definíció Az $A n \times n$ -es mátrix *nyoma* a főátlóbeli elemek összege:

$$trace(A) = \sum_{i=1}^{n} a_{ii}$$

Állítás $Az A n \times n$ -es mátrix sajátértékeinek összege egyenlő a főátlóbeli elemek összegével: trace $(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$

Bizonyítás Algebrailag megoldva a feladatot egy 2 × 2-es mátrixra. A sajátértékek ismeretében a karakterisztikus polinom:

$$\det(\mathbf{A} - \lambda \mathbf{E}) = P(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2$$

Egy tetszőleges mátrix esetén a karakterisztikus polinomot a mátrix elemeiből kifejezve:

$$\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} \end{pmatrix} = (a - \lambda)(d - \lambda) - cb =$$

$$= ad - d\lambda - a\lambda + \lambda^2 - cb = \lambda^2 - (a + d)\lambda + (ad - cb)$$

A két fölírásból látszik, hogy $a+d=\lambda_1+\lambda_2$, így az állítás beigazolódott.

Következmény

Állítás Az A $n \times n$ -es mátrix sajátértékeinek szorzata egyenlő a mátrix determinánsának értékével: $\det(\mathbf{A}) = \lambda_1 \cdot \lambda_2 \cdot ... \cdot \lambda_n$

Bizonyítás Az előző állítás bizonyításában az $(ad - cb) = \lambda_1 \lambda_2$ egyenlőség is beigazolódott, így ebből a második állítás is következik.

Mátrix rangja, egyenletrendszer megoldhatósága

Definíció Vektorrendszer *rangján* a vektorok által generált altér dimenzióját értjük. Mátrix sorrangján a sorvektorok rangját, mátrix oszloprangján az oszlopvektorok rangját, determináns rangján pedig a belőle kiválasztható legnagyobb méretű nem nulla determináns méretét értjük.

Tétel Ugyanazon mátrix sor-, oszlop-, és determinánsrangja megegyezik.

Tétel $Az A n \times n$ -es mátrix akkor és csak akkor reguláris (van inverze), ha rangja n.

Bizonyítás Ha rang(A) = n, akkor nem nulla determinánsának mérete $n \times n$. Ekkor az Ax = b egyenletrendszernek egyetlen megoldása van.

Ha rang(A) < n, akkor az Ax = 0 egyenletnek van triviálistól különböző megoldása. ■

Tétel Ha \mathbf{A} $m \times n$ -es mátrix, akkor az $\mathbf{A}\mathbf{x} = \mathbf{b}$ egyenletnek akkor és csak akkor van megoldása, ha rang(\mathbf{A}) = rang([\mathbf{A} | \mathbf{b}]), vagyis az együtthatómátrix rangja megegyezik a kibővített mátrix rangjával.

Bizonyítás Az egyenletrendszert a következő alakban írjuk: $x_1a_1 + x_2a_2 + \cdots + x_ka_k = b$.

Ha a rangok egyenlők, az egyenletrendszer megoldható:

Ha rang(A) = rang([A|b]) = r, akkor bármely r+1 darab oszlopvektor összefüggő. Legyenek A független oszlopvektorai $a_1, a_2, a_3, ... a_r$. Ezekhez b-t hozzávéve összefüggő rendszert kapunk. Mivel b vektor hozzáadásával vált összefüggővé a rendszer, ezért b kifejezhető az a_i -k lineáris kombinációjával, amelyben a skalár együttható x_i -k az egyenletrendszer megoldásai, vagyis:

$$b = x_1 a_1 + x_2 a_2 + \dots + x_k a_k$$

Ha az egyenletrendszer megoldható, a rangok egyenlők:

Legyen egy megoldás $\mathbf{b} = x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + \dots + x_k \mathbf{a_k}$, és rang $(\mathbf{A}) = r$. Azt kell belátni, hogy rang $([\mathbf{A}|\mathbf{b}]) = r$, vagyis hogy van r darab lineárisan független oszlopa, de r+1 már összefügg. Előbbi az \mathbf{A} rangjából következik, utóbbi pedig kétféle módon lehetséges. Ha r+1 vektor mindegyike \mathbf{a} vektorokból áll, akkor \mathbf{A} rangja miatt összefüggők. Ha az r+1 vektor közül valamelyik \mathbf{b} vektor, akkor két eset van:

- az r darab a_i vektor összefüggő; ekkor b-t hozzávéve is összefüggő marad, vagyis rangja nem változik meg
- az r darab a_i vektor lineárisan független. Ekkor bármely más a_j -t hozzávéve összefüggő lesz, különben A rangja r+1 kellene legyen. A hozzávett a_j -k azonban az ismert tétel szerint kifejezhetők az eredeti a_i vektorokkal. Ezeket b előállításába helyettesítve azt kapjuk, hogy b kifejezhető az r darab a_i lineárisan független vektorokkal, tehát az r darab a_i vektorok és b vektor lineárisan összefüggnek, ezért a rang nem változik.

Cayley-Hamilton tétel

Tétel *Minden négyzetes mátrix gyöke saját karakterisztikus polinomjának.*

Bizonyítás Fölhasználva azt, hogy egy mátrixot az adjungáltjával megszorozva olyan diagonális mátrixot kapunk, amelyben a főátlóbeli elemek a mátrix determinánsai:

$$(A - \lambda E) \cdot \operatorname{adj}(A - \lambda E) = \det(A - \lambda E) \cdot E$$

A fenti egyenletben a polinomokat átírva formális alakra:

$$(\mathbf{A} - \lambda \mathbf{E}) \cdot (\mathbf{M}_{n-1}\lambda^{n-1} + \dots + \mathbf{M}_2\lambda^2 + \mathbf{M}_1\lambda + \mathbf{M}_0) = (\alpha_n\lambda^n + \dots + \alpha_1\lambda + \alpha) \cdot \mathbf{E}$$

A baloldalon álló polinomot átírva úgy, hogy a benne lévő mátrixokat az n=3 esetre vizsgálva egy nagy mátrixba összefoglaljuk, a következőt kapjuk:

$$\mathrm{adj}(\pmb{A} - \lambda \pmb{E}) = \begin{bmatrix} b_{11}\lambda^2 + c_{11}\lambda + d_{11} & b_{12}\lambda^2 + c_{12}\lambda + d_{12} & b_{13}\lambda^2 + c_{13}\lambda + d_{13} \\ b_{21}\lambda^2 + c_{21}\lambda + d_{21} & b_{22}\lambda^2 + c_{22}\lambda + d_{22} & b_{23}\lambda^2 + c_{23}\lambda + d_{23} \\ b_{31}\lambda^2 + c_{31}\lambda + d_{31} & b_{32}\lambda^2 + c_{32}\lambda + d_{32} & b_{33}\lambda^2 + c_{33}\lambda + d_{33} \end{bmatrix}$$

melyből kifejezve **B**, **C** és **D** mátrixokat:

$$\boldsymbol{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}, \qquad \boldsymbol{C} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}, \qquad \boldsymbol{D} = \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{bmatrix}$$

Így ezekkel a mátrixokkal: $adj(A - \lambda E) = B\lambda^2 + C\lambda + D$

Ezt alkalmazva $n \times n$ -es mátrixokra $(M_k)_{ij} = m_{ijk}$.

A fenti egyenlet tehát írható a következő alakban:

$$(A - \lambda E) \cdot (M_{n-1}\lambda^{n-1} + \dots + M_1\lambda + M_0) = \det(A - \lambda E) \cdot E$$

A baloldali szorzást elvégezve:

$$\begin{aligned} \mathbf{A} \cdot \mathbf{M_{n-1}} \lambda^{n-1} + \cdots + \mathbf{A} \cdot \mathbf{M_1} \lambda + \mathbf{A} \cdot \mathbf{M_0} - \lambda \mathbf{E} \cdot \mathbf{M_{n-1}} \lambda^{n-1} - \cdots - \lambda \mathbf{E} \cdot \mathbf{M_1} \lambda - \lambda \mathbf{E} \cdot \mathbf{M_0} &= \\ &= -\mathbf{M_{n-1}} \lambda^n + \mathbf{A} \cdot \mathbf{M_{n-1}} \lambda^{n-1} - \mathbf{M_{n-2}} \lambda^{n-1} + \cdots + \mathbf{A} \cdot \mathbf{M_0} &= (\alpha_n \lambda^n + \cdots + \alpha_1 \lambda + \alpha_0) \cdot \mathbf{E} \end{aligned}$$

Ezzel egy olyan egyenlőséghez jutottunk, melynek mindkét oldalán λ különböző együtthatós polinomokban van fölírva. Mivel két (mátrix)polinom akkor és csak akkor egyenlő egymással, hogyha az együtthatók megegyeznek, ezért fölírható a következő egyenletrendszer:

$$\begin{cases} \lambda^{n} \colon & -M_{n-1} = \alpha_{n} \cdot E & /\cdot A^{n} \\ \lambda^{n-1} \colon & A \cdot M_{n-1} - M_{n-2} = \alpha_{n-1} \cdot E & /\cdot A^{n-1} \\ \lambda^{n-2} \colon & A \cdot M_{n-2} - M_{n-3} = \alpha_{n-2} \cdot E & /\cdot A^{n-2} \\ & \vdots & \vdots \\ \lambda \colon & A \cdot M_{1} - M_{0} = \alpha_{1} \cdot E & /\cdot A^{1} = A \\ 1 \colon & A \cdot M_{0} = \alpha_{0} \cdot E & /\cdot A^{0} = E \end{cases}$$

Az egyenleteket a jelölt módon beszorozva, majd pedig mindegyiket összeadva a baloldalon az eredmény a nullmátrix, a jobboldalon pedig az egységmátrixszal való beszorzás után előáll a karakterisztikus polinom:

$$\mathbf{0} = \alpha_n \mathbf{A}^n + \alpha_{n-1} \mathbf{A}^{n-1} + \dots + \alpha_2 \mathbf{A}^2 + \alpha_1 \mathbf{A} + \alpha_0 \mathbf{E}$$

írásbeli vizsga 1427 6 / 28 2014. május 27.

Leképezések, izomorfia

Izomorfia

Definíció Az egy-egy értelmű $L: V \to W$ lineáris leképezést *izomorf leképezésnek* nevezzük. Az izomorf vektorterek jelölése: $V \cong W$

Tétel Két vektortér akkor és csak akkor izomorf, ha dimenziójuk egyenlő.

Bizonyítás Ha két vektortér dimenziója egyenlő, akkor bármely két bázisának elemszáma egyenlő. Legyen a *V* vektortér egy bázisa [*a*], a *W* vektortéré pedig [*b*]. A *V*-beli *x* vektort az [*a*] bázisra vonatkozó koordinátamátrixával reprezentáljuk. Rendeljük hozzá a *W*-ben azt az *y* vektort, aminek [*b*]-re vonatkoztatva ugyan az a koordinátamátrixa. Nyilvánvaló, hogy az így adott leképezés egy-egy értelmű. ■

$$\boldsymbol{x} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix}_{[a]} \longleftrightarrow \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix}_{[b]} = \boldsymbol{y}$$

Leképezések vektortere, összege, szorzata

Definíció Legyenek V és W ugyanazon T test feletti vektorterek, és $A, B: V^n \to W^k$ lineáris leképezések. Legyen továbbá egy $x \in V$ vektor. Az A és B lineáris leképezések összege: (A + B)(x) = A(x) + B(x)

Definíció Legyenek V és W ugyanazon T test feletti vektorterek, és $A: V^n \to W^k$ lineáris leképezés. Legyenek továbbá $x \in V$ vektor és λ szám. Az A lineáris leképezés számszorosa (skalárszorosa): $(\lambda A)(x) = \lambda A(x)$

Tétel A fent definiált összeg és számszoros valóban homogén lineáris leképezés.

Bizonyítás Be kell látni, hogy a fent definiált leképezésre szintén teljesülnek a homogén és lineáris leképezés tulajdonságai. Összegre:

$$(A+B)(x+y) = A(x) + B(x) + A(y) + B(y) = (A+B)(x) + (A+B)(y)$$

$$(A+B)(\mu x) = A(\mu x) + B(\mu x) = \mu(A(x) + B(x)) = \mu((A+B)(x))$$

Számszorosra:

$$(\lambda A)(x + y) = (\lambda A)(x) + (\lambda A)(y) = \lambda A(x) + \lambda A(y) = \lambda A(x + y)$$
$$(\lambda A)(\mu x) = \lambda A(\mu x) = \mu \lambda A(x)$$

Tétel $A V^n \to W^k$ lineáris leképezések halmaza a fent definiált összegre és számszorosra nézve $k \times n$ dimenziós vektorteret alkot.

Bizonyítás Mivel a fenti leképezések homogén lineáris tulajdonságúak, felírhatók a leképezés mátrixával, ami épp $k \times n$ -es.

Ebből a bizonyításból következik az alábbi tétel:

Tétel $A V^n \to W^k$ lineáris leképezések vektortere izomorf a $k \times n$ típusú mátrixok vektorterével.

Definíció Legyenek U, V és W ugyanazon T test feletti vektorterek. Legyen továbbá két lineáris leképezés, $A: V \to W$ és $B: U \to V$. Az A és B lineáris leképezések szorzata: $AB: U \to W$ leképezés, melyre (AB)(x) = A(B(x)), (ahol $x \in U$).

Bázistranszformáció

Diagonalizálás

Definíció Az **A** mátrix *hasonló* a **B** mátrixhoz, ha létezik olyan **S** mátrix, mellyel fennáll, hogy $A = S^{-1}BS$.

Definíció Az **A** mátrix *diagonalizálható*, ha hasonló egy diagonális mátrixhoz.

Tétel Hasonló mátrixok sajátértékei páronként egyenlők. Továbbá, ha $\bf A$ hasonló $\bf B$ -hez, azaz $\bf A = \bf T^{-1}\bf B\bf T$, és $\bf A$ sajátvektora $\bf s$, akkor $\bf B$ ugyanazon sajátértékhez tartozó sajátvektora $\bf T \bf s$.

Bizonyítás Fölírva az egyenlőséget, majd pedig beszorozva:

$$T \cdot / \qquad As = T^{-1}BTs = \lambda s$$

$$BTs = \lambda (Ts)$$

TételHa a transzformáció sajátvektorai bázist alkotnak, akkor áttérve e bázisra, a bázistranszformáció eredménye az a diagonális mátrix, melynek főátlójában a sajátértékek állnak.

Bizonyítás A transzformáció mátrixának oszlopvektorai a bázisvektorok képei. Minden sajátvektor képe önmagának sajátértékszerese. Ezért például az *i*-edik sajátvektor (*s_i*) mátrixos alakja a sajátértékek bázisában csak az *i*-edik helyen tartalmazza a sajátértéket, a többi koordináta nulla. Ezekből az oszlopvektorokból alkotott mátrix valóban diagonális lesz. ■

$$\mathcal{L}(\mathbf{s}_i) = 0 \cdot \mathbf{s}_1 + \dots + \lambda_i \cdot \mathbf{s}_i + \dots + 0 \cdot \mathbf{s}_n = \begin{bmatrix} 0 \\ \vdots \\ \lambda_i \\ \vdots \\ 0 \end{bmatrix}_{[s]} \qquad S = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Tétel Az **A** mátrix akkor és csak akkor diagonalizálható, ha van sajátvektorokból álló bázisa.

Bizonyítás Ha a sajátvektorok bázist alkotnak, akkor áttérve erre a bázisra, a már igazolt tétel alapján a transzformáció mátrixa a sajátvektorok bázisában diagonális.

Ha az A mátrix diagonalizálható, vagyis hasonló egy D diagonális mátrixhoz, akkor be kell látni, hogy D elemei A mátrix sajátértékei, és S elemei az A mátrix sajátvektorai. Az, hogy ez utóbbiak bázist alkotnak, következik abból, hogy S-nek létezik inverze, így $\det(S) \neq 0$, vagyis a vektorok függetlenek. Mivel bármely független vektorrendszer bázis, ha elemszáma egyenlő a dimenzióval, ezért csak azt kell bizonyítani, hogy S oszlopai valóban sajátvektorok.

Legyen $D = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, illetve $S = [s_1 | s_2 | ... | s_n]$. A hasonlóság képletéből kiindulva $D = S^{-1}AS$. Ezt balról beszorozva S mátrixszal: SD = AS.

Fölírva a bal- és jobboldali mátrixszorzásokat, és a mátrixokat oszlopvektoraik-kal reprezentálva a fentiekből a következőt kapjuk:

$$[s_{1}|s_{2}| \dots |s_{n}] \cdot diag(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}) = A \cdot [s_{1}|s_{2}| \dots |s_{n}]$$
$$[\lambda_{1}s_{1}|\lambda_{2}s_{2}| \dots |\lambda_{n}s_{n}] = [As_{1}|As_{2}| \dots |As_{n}]$$

A két mátrix egyenlőségéből következik, hogy $\lambda_i s_i = A s_i$, tehát a diagonális mátrix elemei valóban a sajátértékek, az áttérési mátrix elemei pedig a hozzátartozó sajátvektorok.

Tétel (Diagonalizálhatóság elégséges feltétele) Ha valamely \mathbf{A} kvadratikus $\mathbf{n} \times \mathbf{n}$ -es mátrix sajátértékei mind különbözők, akkor a mátrix diagonalizálható.

Bizonyítás Különböző sajátértékek esetén a sajátvektorok lineárisan függetlenek, ezért bázist alkotnak. ■

Tétel (Diagonalizálhatóság szükséges és elégséges feltétele) Ha valamely A n × n-es mátrix sajátértékei által meghatározott alterek (sajátalterek) dimenzióinak öszszege pontosan n, akkor a mátrix diagonalizálható.

Bilineáris függvények

Definíció Legyen a V vektortér a valós test felett. Az $L: V \times V \to \mathbb{R}$ leképezést *bilineárisnak* nevezzük, ha mindkét változójában lineáris. Az L minden (v_1, v_2) vektorpárhoz egyértelműen hozzárendel egy valós számot, melyet $L(v_1, v_2)$ -vel jelölünk. Tulajdonságai:

1.a)
$$L(v_1 + v_2, v_3) = L(v_1 + v_3) + L(v_2 + v_3)$$

1.b)
$$L(v_1, v_2 + v_3) = L(v_1 + v_2) + L(v_1 + v_3)$$

2.a)
$$L(\lambda v_1, v_2) = \lambda L(v_1, v_2)$$

2.b)
$$L(v_1, \lambda v_2) = \lambda L(v_1, v_2)$$

Definíció Az L bilineáris függvények a $[b] = b_1, ... b_n$ bázis szerinti L mátrixán azt az $n \times n$ -es mátrixot értjük, melyben az i-edig sor j-edik eleme $l_{ij} = L(b_i, b_j)$

Tétel $Ha\ L: V \times V \to R$ bilineáris függvény, akkor $L(x, y) = x^T L y$, ahol $x, y \in V$ és L a bilineáris függvény mátrixa.

Bizonyítás Írjuk fel x és y vektorokat a [b] bázisra vonatkozó koordinátáikkal!

$$x = x_1 \mathbf{b_1} + x_2 \mathbf{b_2} + \dots + x_n \mathbf{b_n}$$

$$y = y_1 \mathbf{b_1} + y_2 \mathbf{b_2} + \dots + y_n \mathbf{b_n}$$

Ezeket behelyettesítve és alkalmazva a bilineáris tulajdonságokat:

$$L(\mathbf{x}, \mathbf{y}) = L(x_1 \mathbf{b_1} + x_2 \mathbf{b_2} + \dots + x_n \mathbf{b_n}, y_1 \mathbf{b_1} + y_2 \mathbf{b_2} + \dots + y_n \mathbf{b_n}) =$$

$$= x_1 y_1 L(\mathbf{b_1}, \mathbf{b_1}) + x_1 y_2 L(\mathbf{b_1}, \mathbf{b_2}) + \dots + x_1 y_n L(\mathbf{b_1}, \mathbf{b_n}) +$$

$$+ x_2 y_1 L(\mathbf{b_2}, \mathbf{b_1}) + x_2 y_2 L(\mathbf{b_2}, \mathbf{b_2}) + \dots + x_2 y_n L(\mathbf{b_2}, \mathbf{b_n}) +$$

$$:$$

$$+x_ny_1L(\boldsymbol{b_n},\boldsymbol{b_1})+x_ny_2L(\boldsymbol{b_n},\boldsymbol{b_2})+\cdots+x_ny_nL(\boldsymbol{b_n},\boldsymbol{b_n})$$

Az egész egyenletet mátrixokba rendezve és mátrixműveletekkel átírva:

$$[x_1, x_2, \dots, x_n] \begin{bmatrix} L(\boldsymbol{b_1}, \boldsymbol{b_1}) & L(\boldsymbol{b_1}, \boldsymbol{b_2}) & \cdots & L(\boldsymbol{b_1}, \boldsymbol{b_n}) \\ L(\boldsymbol{b_2}, \boldsymbol{b_1}) & L(\boldsymbol{b_2}, \boldsymbol{b_2}) & \cdots & L(\boldsymbol{b_2}, \boldsymbol{b_n}) \\ \vdots & \vdots & \ddots & \vdots \\ L(\boldsymbol{b_n}, \boldsymbol{b_1}) & L(\boldsymbol{b_n}, \boldsymbol{b_2}) & \cdots & L(\boldsymbol{b_n}, \boldsymbol{b_n}) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \boldsymbol{x}^T \boldsymbol{L} \boldsymbol{y}$$

Definíció Az L bilineáris függvény szimmetrikus, ha $L(v_1, v_2) = L(v_2, v_1)$.

Tétel Az L bilineáris függvény akkor és csak akkor szimmetrikus, ha mátrixa szimmetrikus.

Kvadratikus alakok

Definíció Az $L: V \times V \to \mathbb{R}$ szimmetrikus bilineáris függvényhez tartozó $Q: V \to \mathbb{R}$ leképezést L kvadratikus alakjának nevezzük, ha teljesül Q(x) = L(x, x), minden $x \in V$ esetén.

Definíció A G mátrix *ortogonális*, ha $G \cdot G^T = E$, ahol E a megfelelő típusú egységmátrix. Másképpen, G ortogonális, ha transzponáltja inverze is $(G^T = G^{-1})$.

Tétel Szimmetrikus mátrix különböző sajátértékeihez tartozó sajátvektorai merőlegesek.

Bizonyítás A bizonyításhoz induljunk ki a definiáló egyenlőségekből, majd szorozzuk be őket az első egyenletnél s_2 -vel, a másodiknál pedig s_1 -gyel.

$$\begin{cases} As_1 = \lambda_1 s_1 \\ As_2 = \lambda_2 s_2 \end{cases}$$
$$\begin{cases} As_2 s_1 = \lambda_1 s_1 s_2 \\ As_1 s_2 = \lambda_2 s_2 s_1 \end{cases}$$

A két egyenletet kivonva egymásból azt látjuk, hogy $0 = (\lambda_1 - \lambda_2) s_1 s_2$. Mivel azonban a sajátértékek különbözők, az egyenlőség csak akkor állhat fenn, ha az $s_1 s_2$ skalárszorzat nulla, vagyis a sajátvektorok merőlegesek.

Definíció Az \boldsymbol{A} mátrix *ortogonálisan diagonalizálható*, ha $\boldsymbol{D} = \boldsymbol{S}^{-1}\boldsymbol{A}\boldsymbol{S}$, ahol \boldsymbol{S} ortogonális, \boldsymbol{D} diagonális mátrix.

Tétel (Főtengely tétel) $A Q = \mathbf{x}^T \mathbf{Q} \mathbf{x}$ kvadratikus alakhoz tekintsük az S ortogonális transzformációt, amelynek \mathbf{S} mátrixában az oszlopok \mathbf{Q} szimmetrikus mátrix ortonormált sajátvektorai. Áttérve ezen ortonormált sajátvektorok bázisára, vagyis alkalmazva az $\mathbf{x} = \mathbf{S} \mathbf{u}$ koordinátatranszformációt, a \mathbf{Q} kvadratikus alak a következőképpen írható:

$$Q = \mathbf{x}^T \mathbf{Q} \mathbf{x} = \mathbf{u}^T \mathbf{D} \mathbf{u} = \sum_i \lambda_i \mathbf{u}_i^2$$

ahol λ_i -k az A mátrix sajátértékei. Ezt a transzformációt főtengely transzformációnak nevezzük.

Definíció A $Q = x^T A x$ kvadratikus alak $A \in T^{n \times n}$ szimmetrikus mátrixának n különböző sajátértékéhez tartozó sajátaltereit a Q kvadratikus alak főtengelyeinek nevezzük.

Definíció A Q kvadratikus alak *pozitív definit*, ha minden $x \neq 0$ helyettesítésre Q > 0.

A Q kvadratikus alak *pozitív szemidefinit*, ha minden x-re $Q \ge 0$.

A $\it Q$ kvadratikus alak $\it indefinit$, ha pozitív és negatív értékeket egyaránt fölvesz.

Tétel $Az \ n \times n$ -es Q mátrix akkor és csak akkor pozitív definit, ha minden sajátértéke pozitív.

 $Az \ n \times n$ -es Q mátrix akkor és csak akkor pozitív szemidefinit, ha minden sajátértéke pozitív vagy nulla.

Bizonyítás A $Q = x^T Q x = u^T D u = \sum_i \lambda_i u_i^2$ összefüggésből az állítás következik.

Tétel *Q akkor és csak akkor pozitív definit, ha a bal felső négyzetes mátrixok aldeterminánsai mind pozitívak. (Bizonyítás nélkül.)*

Tétel (Spektrál tétel) Valamely négyzetes mátrix akkor és csak akkor diagonalizálható ortogonálisan, ha szimmetrikus. (Bizonyítás nélkül.)

Kúpszeletek

Egy egyenes körkúpot a csúcsára nem illeszkedő síkkal elmetszve különböző görbéket kapunk síkmetszetként, aszerint, hogy a sík a kúp tengelyével mekkora szöget zár be.

Ha a bezárt szög megegyezik a kúp félnyílásszögével, azaz a sík egy alkotóval párhuzamos, akkor parabola; ha kisebb, mint félnyílásszög, akkor hiperbola; ha nagyobb, mint félnyílásszög, akkor ellipszis; ha pedig a sík a tengelyre merőleges, akkor kör lesz a síkmetszet.

Definíció Az *ellipszis* azon pontok mértani helye a síkban, amelyek két adott ponttól mért távolságának összege állandó, mely állandó nagyobb az adott pontok távolságánál.

Definíció A *hiperbola* azon pontok mértani helye a síkban, amelyek két adott ponttól mért távolságának különbsége állandó, mely állandó kisebb az adott pontok távolságánál.

Definíció A *parabola* azon pontok mértani helye a síkban, amik egy adott egyenestől és egy adott, az egyenesre nem illeszkedő ponttól egyenlő távolságra vannak.

Kúpszeletek és az ellipszis, hiperbola, parabola ekvivalenciája

Ellipszis

Legyen P a síkmetszet egy tetszőleges pontja. Illesszünk a kúpba olyan gömböket, amik érintik a kúpot és a metszősíkot is. A G_1 gömb a kúp palástját k_1 körben, a síkot F_1 pontban érinti. A G_2 gömb a kúpot k_2 körben, a metszősíkot F_2 pontban érinti. P ponton áthaladó alkotó a k_1 és k_2 köröket a P_1 és P_2 pontokban metszi. Teljesül rájuk, hogy $PP_1 = PF_1$ és $PP_2 = PF_2$, mivel ezek a szakaszok a gömbhöz húzott érintőszakaszok egy külső pontból. Ugyanakkor PP_1 és PP_2 egy közös alkotón vannak és ezek hosszának összege a forgásszimmetria miatt állandó. Tehát egy tetszőleges P pontnak a fókuszoktól vett távolságainak összege állandó, ezért ez ellipszis.

Hiperbola

Legyen P a síkmetszet egy tetszőleges pontja. Illesszünk a kúpba olyan gömböket, amik érintik a kúpot és a metszősíkot is. A G_1 gömb a kúp palástját k_1 körben, a síkot F_1 pontban érinti. A G_2 gömb a kúpot k_2 körben, a metszősíkot F_2 pontban érinti. A P ponton áthaladó alkotó a k_1 és k_2 köröket a P_1 és P_2 pontokban metszi. Teljesül rájuk, hogy $PP_1 = PF_1$ és $PP_2 = PF_2$, mivel ezek a szakaszok a gömbhöz húzott érintőszakaszok egy külső pontból. Ugyanakkor PP_1 és PP_2 egy közös alkotón vannak és a forgásszimmetria miatt P_1P_2 szakasz hossza állandó és P ugyanazon az egyenesen van, ezért PP_1 és PP_2 szakaszok különbségének abszolút értéke állandó. Tehát egy tetszőleges P pontnak a fókuszoktól vett távolságainak különbségének abszolút értéke állandó, ezért ez hiperbola.

Parabola

Legyen P a síkmetszet egy tetszőleges pontja. Illesszünk a kúpba egy olyan érintőgömböt G, ami egyúttal a síkot is érinti. A kúpot k körben, a síkot F pontban érinti a G gömb. P-ből a gömbhöz húzott érintőszakaszok PF és PP', amik egyenlő hosszúságúak. A metszősík és k síkja d egyenesben metszik egymást. P-ből merőlegest állítva d-re és k síkjára kapjuk a D és a P^* talppontokat. PD a metszősíkban van és párhuzamos azzal az alkotóval, amivel a sík is párhuzamos. Így a DPP^* és a P^*PP' szög is váltószöge egy-egy olyan szögnek, melynek egyik szára a kúp tengelye, másik szára pedig egy alkotó; a két szög tehát egyenlő. Ezért a kapott $PP'P^*$ derékszögű háromszög egybevágó a PP^*D derékszögű háromszöggel (egy oldaluk közös és a rajta fekvő szögeik egyenlők). Tehát az átfogók egyenlő hosszúak: DP = PP', másrészről PP' = PF. Tehát egy tetszőleges P pont távolsága a fókusztól és a vezéregyenestől egyenlő, ezért ez parabola.

Kanonikus alakok

Vegyünk fel egy koordinátarendszert úgy, hogy $F_1 = (-c, 0)$ és $F_2 = (c, 0)$ legyen, vagyis a fókuszok távolsága 2c. Jelölje a definícióban szereplő állandót 2a.

Állítás Egy megfelelően választott koordinátarendszerben a kúpszeleteket fel lehet írni a következő (kanonikus) egyenletekkel:

Ellipszis Hiperbola Parabola
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $y^2 = 2px$

ahol a és b az ellipszis ahol a és b a hiperbola ahol p a parabola panagy és kis féltengelye. valós és képzetes félten-ramétere. gelye.

Bizonyítás Az ellipszis és a hiperbola egyenletét egyszerre lehet tárgyalni. Jelölje r_1 és r_2 a sík egy tetszőleges P(x,y) pontjának távolságát az $F_1(-c,0)$, $F_2(c,0)$ fókuszoktól. Az

$$(r_1 + r_2 + 2a)(r_1 + r_2 - 2a)(r_1 - r_2 + 2a)(-r_1 + r_2 + 2a) = 0$$

egyenlet, ha a>c, akkor a 2a nagytengelyű ellipszis pontjaira és csak azokra, ha viszont a< c, akkor a 2a valós tengelyű hiperbola pontjaira és csak azokra teljesül. Ugyanis az első tényező nem lehet 0, mivel nem negatív számok összege és 2a pozitív. Továbbá a második tényező akkor és csak akkor 0, ha igaz, hogy $r_1+r_2=2a$, és ez az $r_1+r_2\geq 2c$ háromszög-egyenlőtlenség miatt az a< c esetben nem következhet be. Végül az utolsó két tényező valamelyike akkor és csak akkor 0, ha $|r_1+r_2|=2a$, és ez az $|r_1+r_2|\leq 2c$ háromszög-egyenlőtlenség miatt az a>c esetben nem következhet be. Az egyenletet átalakítjuk:

$$(r_1 + r_2 + 2a)(r_1 + r_2 - 2a)((r_1 - r_2) + 2a)(-(r_1 - r_2) + 2a) = 0$$

Ez két darab (a + b)(a - b) alakú kifejezés, melyet így írhatunk át:

$$((r_1 + r_2)^2 - 4a^2)(4a^2 - (r_1 - r_2)^2) = 0$$

Elvégezve a beszorzást:

$$4a^{2}(r_{1}+r_{2})^{2}-16a^{4}-(r_{1}+r_{2})^{2}(r_{1}-r_{2})^{2}+4a^{2}(r_{1}-r_{2})^{2}=0$$

Átalakítva úgy, hogy a hatványozások a zárójelbe kerüljenek:

$$-(r_1^2 - r_2^2)^2 + 8a^2(r_1^2 + r_2^2) - 16a^4 = 0$$

Az r₁ és r₂ távolságokra a pontok koordinátái alapján:

$$r_1^2 = (x + c)^2 + y^2$$
, $r_2^2 = (x - c)^2 + y^2$

Ezért:

$$r_1^2 - r_2^2 = 4cx$$
, $r_1^2 + r_2^2 = 2(x^2 + y^2 + c^2)$

Ezeket az egyenletbe helyettesítve:

$$-(4cx)^{2} + 8a^{2}(2(x^{2} + y^{2} + c^{2})) - 16a^{4} = 0$$
$$-16c^{2}x^{2} + 16a^{2}(x^{2} + y^{2} + c^{2}) - 16a^{4} = 0$$

Ezt 16-al osztva és átrendezve:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

Ami az állítás, mivel ellipszisnél $a^2 - c^2 = b^2$, hiperbolánál $a^2 - c^2 = -b^2$, tehát aszerint behelyettesítve, hogy a < c vagy a > c megkapjuk az egyenleteket.

Parabolánál $F\left(\frac{p}{2},0\right)$ a fókusz, és $x+\frac{p}{2}=0$ a vezéregyenes egyenlete. Legyen r és t a P(x,y) pontnak a fókusztól és az egyenestől vett távolsága. Ha P a parabola egy pontja, akkor $r^2=t^2$ is teljesül. Ebből

$$r^2 = \left(x - \frac{p}{2}\right)^2 + y^2, \qquad t^2 = \left(x + \frac{p}{2}\right)^2$$

Tehát $\left(x - \frac{p}{2}\right)^2 + y^2 = \left(x + \frac{p}{2}\right)^2$, amit átalakítva az állítás egyenletét kapjuk.

Komplex számok

Definíció Legyen $\mathbb C$ a valós számpárok halmaza: $\mathbb C = \{(a,b): a,b \in \mathbb R\}$. A $\mathbb C$ halmazon két műveletet értelmezünk a következőképpen:

összeadás: $\forall (a,b), (c,d) \in \mathbb{C}$ esetén $(a,b)+(c,d)=(a+c,b+d) \in \mathbb{C}$

szorzás: $\forall (a,b), (c,d) \in \mathbb{C}$ esetén $(a,b) \cdot (c,d) = (ac-bd,ad+bc) \in \mathbb{C}$

A C halmaz elemei a műveletekkel együtt alkotják a komplex számokat.

Definíció Két komplex szám akkor és csak akkor *egyenlő*, ha első és második elemeik egymással páronként egyenlők: $(a_1, b_1) = (a_2, b_2) \Leftrightarrow a_1 = a_2$ és $b_1 = b_2$.

Tétel $A \mathbb{C} = \{(a, b) : a, b \in \mathbb{R}\}$ alakú számok testet alkotnak a definícióban megadott műveletekre nézve.

Bizonyítás Ahhoz, hogy belássuk, hogy valóban testet alkot, teljesülnie kell a műveletekre hogy kommutatív csoportot alkotnak, és a műveleteket a disztributív szabályok kötik össze.

Összeadás: Az egységelem (0,0), az (a,b) pár összeadására vonatkozó inverz eleme (-a,-b). A többi tulajdonság a valós számok tulajdonságából következik, mivel a+c és b+d is valós számok.

Szorzás: Az asszociativitás és kommutativitás könnyen belátható:

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc)=(ca-db,da+cb)=(c,d)\cdot(a,b)$$
 illetve

((a,b)(c,d))(e,f) = (ac - bd, ad + bc)(e,f) = = (e(ac - bd) - f(ad + bc), e(ad + bc) + f(ac - bd)) =

$$= (eac - ebd - fad - fbc, ead + ebc + fac - fbd) =$$

$$= (a(ec - fd) - b(ed + fc), a(ed + fc) + b(ec - fd)) =$$

$$= (a,b)(ec - fd, ed + fc) = (a,b)((c,d)(e,f))$$

A szorzás egységeleme (1,0), mivel minden z = (a, b) számra igaz, hogy

$$(1,0)(a,b) = (1a - 0b, 0a + 1b) = (a,b)$$

A szorzás inverzeleme az (1,0) egységelemre nézve a z=(a,b) számnak:

$$z^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

hiszen igaz a következő:

$$(a,b)\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right) = (1,0)$$

A disztributív tulajdonságok belátásához pedig tekintsük a következőt:

$$(a,b)[(c,d) + (e,f)] = (a,b)(c+e,d+f) =$$

$$= (a(c+e) - b(d+f), a(d+f) - b(c+e)) =$$

$$= (ac + ae - bd - bf, ad + af - bc - be) =$$

$$= (a,b)(c,d) + (a,b)(e,f) \blacksquare$$

Algebrai alak

Tétel

Az(a,0) komplex számok és a valós számok között egy-egy értelmű, művelettartó leképezés létesíthető, vagyis az (a,0) komplex számok izomorfak a valós számokkal.

Bizonyítás

Konstruktív módon, megadva az izomorfiát biztosító egy-egy értelmű leképezést: $(a, 0) \in \mathbb{C} \leftrightarrow a \in \mathbb{R}$.

A kommutatív és asszociatív tulajdonságok a komplex számokra is teljesülnek, így elegendő annak bizonyítása, hogy mind az összeadásra, mind a szorzásra nézve is zárt a halmaz: két ilyen komplex szám szorzata és összege is ugyanilyen típusú komplex szám. Szükséges még az inverz és az egységelem létezésének bizonyítása is.

Az összeadás nem vezet ki az $\{(a, 0) : a \in \mathbb{R}\}$ halmazból, mivelhogy

$$(a,0) + (b,0) = (a+b,0)$$

Az összeadás egysége (0,0). Erre vonatkozó inverz: (a,0) + (-a,0) = (0,0)

A szorzás nem vezet ki az $\{(a,0):a\in\mathbb{R}\}$ halmazból, mivelhogy

$$(a,0) \cdot (b,0) = (ab - 0^2, 0a + 0b) = (ab, 0)$$

A szorzás egysége (1,0). Erre vonatkozó inverz: $(a,0) \cdot (\frac{1}{a},0) = (1,0)$

Tétel

Minden komplex szám felírható olyan kéttagú összegként, ahol az első tag mindkét tényezőjének van izomorf képe a valós számok között, a másodiknak pedig egy tényezője rendelkezik e tulajdonságokkal: (a,b) = (a,0)(1,0) + (b,0)(0,1)

Bizonyítás

Az (1,0) neve valós egység, valós megfelelője 1. A (0,1) neve képzetes egység, jelöljük őt i-vel. Az i komplex számnak nincs valós megfelelője!

Ekkor \mathbb{C} minden eleme a+bi alakban írható, ahol $a,b\in\mathbb{R}$.

Megjegyzés Az i komplex szám négyzete $i^2 = (0,1)(0,1) = (-1,0)$.

Definíció A z = (a, b) komplex szám *algebrai alakja* z = (a, b) = a + bi, ahol $i^2 \leftrightarrow -1$.

Definíció A z = a + bi komplex szám *abszolút értéke* $|z| = \sqrt{a^2 + b^2}$

Definíció A z = a + bi komplex szám *konjugáltja* a $\bar{z} = a - bi$ komplex szám.

Trigonometrikus alak

Definíció

A z = (a, b) komplex szám *trigonometrikus alakját* kapjuk, ha a komplex számsíkon ábrázolt algebrai alak polárkoordinátáit adjuk meg. A polártengely a valós tengely pozitív félegyenese. Ekkor a z szám trigonometrikus alakja:

$$z = r(\cos(\varphi) + i \cdot \sin(\varphi))$$

ahol
$$a = r \cdot \cos(\varphi)$$
 és $b = r \cdot \sin(\varphi)$.

Exponenciális alak

Az Euler formulából kiindulva a trigonometrikus alak írható másképpen is.

$$e^{ix} = \cos(x) + i \cdot \sin(x)$$

Definíció A $z = r \cdot e^{i\varphi}$ alakot, ahol r a z komplex szám abszolút értéke, a φ az argumentuma, a komplex szám *exponenciális alakjának* nevezzük.

Műveletek komplex számokkal

Szorzás

Algebrai alakban:

$$(a+bi)(c+di) = ac + bci + adi + bdi^2 = ac - bd + (bc + ad)i$$

Trigonometrikus alakban:

$$z_1 z_2 = r_1(\cos(\varphi_1) + i \cdot \sin(\varphi_1)) \cdot r_2(\cos(\varphi_2) + i \cdot \sin(\varphi_2)) =$$

$$= r_1 r_2 \left((\cos(\varphi_1) \cos(\varphi_2) - \sin(\varphi_1) \sin(\varphi_2)) + i \cdot (\sin(\varphi_1) \cos(\varphi_2) + \cos(\varphi_1) \sin(\varphi_2)) \right) =$$

$$= r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2))$$

Exponenciális alakban:

$$z_1 z_2 = (r_1 \cdot e^{i\varphi_1})(r_2 \cdot e^{i\varphi_2}) = r_1 r_2 \cdot e^{i\varphi_1} \cdot e^{i\varphi_2} = r_1 r_2 \cdot e^{i(\varphi_1 + \varphi_2)}$$

Osztás

Algebrai alakban:

$$\frac{z_1}{z_2} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bci-adi+bdi^2}{c^2-d^2i^2} = \frac{ac-bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Trigonometrikus alakban:

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))}{r_{2}(\cos(\varphi_{2}) + i \cdot \sin(\varphi_{2}))} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{(\cos(\varphi_{2}) + i \cdot \sin(\varphi_{2}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{2}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{2}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{1}) - i \cdot \sin(\varphi_{2}))}{\cos^{2}(\varphi_{1}) - i^{2} \cdot \sin^{2}(\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{1}) - i \cdot \sin(\varphi_{1}))}{\cos^{2}(\varphi_{1}) - i^{2} \cdot \sin^{2}(\varphi_{1})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{1}) - i \cdot \sin(\varphi_{1}))}{\cos^{2}(\varphi_{1}) - i^{2} \cdot \sin^{2}(\varphi_{1})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{1}) - i \cdot \sin(\varphi_{1}))}{\cos^{2}(\varphi_{1}) - i^{2} \cdot \sin^{2}(\varphi_{1})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{1}) - i \cdot \sin(\varphi_{1}))}{\cos^{2}(\varphi_{1}) - i^{2} \cdot \sin^{2}(\varphi_{1})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos(\varphi_{1}) + i \cdot \sin(\varphi_{1}))(\cos(\varphi_{1}) -$$

$$= \frac{r_1}{r_2} \cdot \left((\cos(\varphi_1)\cos(\varphi_2) + \sin(\varphi_1)\sin(\varphi_2)) + i \cdot (\sin(\varphi_1)\cos(\varphi_2) - \cos(\varphi_1)\sin(\varphi_2) \right) =$$

$$= \frac{r_1}{r_2} \cdot \left(\cos(\varphi_1 - \varphi_2) + i \cdot \sin(\varphi_1 - \varphi_2) \right)$$

Exponenciális alakban:

$$\frac{z_1}{z_2} = \frac{r_1 \cdot e^{i\varphi_1}}{r_2 \cdot e^{i\varphi_2}} = \frac{r_1}{r_2} \cdot e^{i(\varphi_1 - \varphi_2)}$$

Hatványozás

Trigonometrikus alakban:

Tétel (Moivre formula) A hatványozás trigonometrikus alakban elvégezhető a következőképp:

$$z^n = r^n(\cos(n\varphi) + i \cdot \sin(n\varphi))$$

Bizonyítás Teljes indukcióval. Az n = 1 esetre nyilvánvalóan igaz. Tegyük fel, hogy eddig minden k-ra igazolást nyert az állítás. Ekkor n = k + 1 esetre vizsgálva:

$$\begin{split} r^{k+1}(\cos(\phi)+i\cdot\sin(\phi))^{k+1} &= r^{k+1}(\cos(\phi)+i\cdot\sin(\phi))^k\cdot(\cos(\phi)+i\cdot\sin(\phi)) = \\ &= r^{k+1}[\cos(k\phi)+i\cdot\sin(k\phi)](\cos(\phi)+i\cdot\sin(\phi)) = \\ &= r^{k+1}\big(\cos(k\phi)\cos(\phi)-\sin(k\phi)\sin(\phi)+i\cdot(\cos(\phi)\sin(k\phi)+\sin(\phi)\cos(k\phi))\big) = \\ &= r^{k+1}\big(\cos((k+1)\phi)+i\cdot\sin((k+1)\phi)\big) \end{split}$$

írásbeli vizsga 1427 16 / 28 2014. május 27.

Exponenciális alakban:

$$z^n = \left(r \cdot e^{\mathrm{i}\varphi}\right)^n = r^n \cdot e^{\mathrm{i}n\varphi}$$

Gyökvonás

Definíció A z komplex számot a $z^* \neq 0$ komplex szám n-edik gyökének nevezzük, ha $z^n = z^*$

$$\sqrt[n]{z^*} = z \iff z^n = z^*$$

Trigonometrikus alakban:

A trigonometrikus alakban fölírt $z = r(\cos(\varphi) + i \cdot \sin(\varphi))$ komplex szám összes n-edik gyökét a következőképpen lehet megtalálni:

Legyen $z = r(\cos(\varphi) + i \cdot \sin(\varphi))$ és $z^* = r^*(\cos(\varphi^*) + i \cdot \sin(\varphi^*))$. A két trigonometrikus egyenlőségből a következőt kapjuk:

$$z^{n} = r^{n}(\cos(n\varphi) + i \cdot \sin(n\varphi)) = r^{*}(\cos(\varphi^{*}) + i \cdot \sin(\varphi^{*}))$$
$$r^{*} = r^{n} \iff r = \sqrt[n]{r^{*}} \text{ és } n\varphi = \varphi^{*} + 2k\pi \iff \varphi = \frac{\varphi^{*} + 2k\pi}{n}, \text{ ahol } k = 0,1,2,...,n-1$$

Egy képletben összefoglalva:

$$\sqrt[n]{z} = \sqrt[n]{r} \cdot \left(\cos\left(\frac{\varphi + 2k\pi}{n}\right) + i \cdot \sin\left(\frac{\varphi + 2k\pi}{n}\right)\right), \qquad k = 0, 1, 2, \dots, n - 1$$

Speciális eset: négyzetgyök vonása

Pozitív szám négyzetgyöke:

A pozitív számok argumentuma 0, így trigonometrikus alakjuk $a = a(\cos(0) + i \cdot \sin(0))$ $x^2 = a$ megoldása:

$$z_0 = \sqrt{a} \cdot \left(\cos\left(\frac{0^{\circ}}{2}\right) + i \cdot \sin\left(\frac{0^{\circ}}{2}\right)\right) = \sqrt{a}$$

$$z_1 = \sqrt{a} \cdot \left(\cos\left(\frac{0^{\circ}}{2} + \frac{360^{\circ}}{2}\right) + i \cdot \sin\left(\frac{0^{\circ}}{2} + \frac{360^{\circ}}{2}\right)\right) = (-1) \cdot \sqrt{a}$$

Negatív szám négyzetgyöke:

A negatív számok argumentuma 180°, ezért alakjuk $a = |a| \cdot (\cos(180^\circ) + i \cdot \sin(180^\circ))$ $x^2 = a$ megoldása:

$$z_0 = \sqrt{|a|} \cdot \left(\cos\left(\frac{180^\circ}{2}\right) + i \cdot \sin\left(\frac{180^\circ}{2}\right)\right) = i \cdot \sqrt{|a|}$$

$$z_1 = \sqrt{|a|} \cdot \left(\cos\left(\frac{180^\circ}{2} + \frac{360^\circ}{2}\right) + i \cdot \sin\left(\frac{180^\circ}{2} + \frac{360^\circ}{2}\right)\right) = (-i) \cdot \sqrt{|a|}$$

Exponenciális alakban:

$$\sqrt[n]{z} = \sqrt[n]{r \cdot e^{i\varphi}} = \sqrt[n]{r} \cdot e^{i\frac{\varphi+2k\pi}{n}}, \qquad k = 0,1,2,...,n-1$$

Egységgyökök struktúrája, primitív egységgyökök

Definíció A z komplex számot n-edik (komplex) egységgyöknek nevezzük, ha $z^n = 1$.

Jelölés:
$$\varepsilon_k = \cos\left(\frac{2k\pi}{n}\right) + i \cdot \sin\left(\frac{2k\pi}{n}\right)$$

Tétel Az összes n-edik egységgyök előáll az első; ε_1 egységgyök hatványaiként.

Bizonyítás Az *n*-edik gyökvonásra vonatkozó képletből azonnal adódik. ■

Tétel Az n-edik egységgyökök csoportot alkotnak a komplex számok szokásos szorzására nézve.

Bizonyítás Zártság:
$$(\varepsilon_k \varepsilon_l)^n = \left(\cos\left((k+l) \cdot \frac{2\pi}{n}\right) + i \cdot \sin\left((k+l) \cdot \frac{2\pi}{n}\right)\right)^n =$$

$$= \cos\left((k+l) \cdot n\frac{2\pi}{n}\right) + i \cdot \sin\left((k+l) \cdot n\frac{2\pi}{n}\right) = 1$$

Egység: az
$$1 = 1\left(\cos\left(\frac{0}{n}\right) + i \cdot \sin\left(\frac{0}{n}\right)\right)$$

Inverz:
$$\varepsilon_k \varepsilon_j = 1 \left(\cos \left(\frac{0}{n} \right) + \mathrm{i} \cdot \sin \left(\frac{0}{n} \right) \right)$$
 alapján $\frac{k \cdot 2\pi}{n} + \frac{j \cdot 2\pi}{n} = \frac{n \cdot 2\pi}{n} \to j = n - k$

Tehát
$$\varepsilon_k$$
 inverze $(\varepsilon_k)^{-1} = \varepsilon_{n-k}$

Az asszociatív és kommutatív tulajdonság a valós számok összegének asszociatív és kommutatív tulajdonságaiból következik, hiszen két egységgyök szorzatát úgy kapjuk, hogy argumentumaikat összeadjuk.

- **Definíció 1** Azt az ε_k n-edik egységgyököt, melynek hatványai az összes többi egységgyököt előállítják, primitiv egységgyöknek nevezzük.
- **Definíció 2** Az az egységgyök, amelynek *n*-edik hatványa 1, és semelyik ennél kisebb hatványa nem 1, *primitív egységgyök*.
- **Definíció 3** Ha ε_k *n*-edik egységgyök, továbbá k és n relatív prímek, akkor ε_k *primitív egységgyök*.

Tétel (Definíció $2 \Rightarrow$ Definíció 1) Legyen n az a legkisebb szám, amire ε_k n-edik egységgyök. Mivel az egységgyökök csoportot alkotnak, mindegyik hatvány egységgyök. Mivel pontosan n különböző egységgyök van, ha a hatványok mind különbözők, akkor elő is állítják a többi egységgyököt.

Bizonyítás Indirekt módon tegyük fel, hogy vannak egyenlők is az ε_k hatványai között, pl:

$$(\varepsilon_k)^j = (\varepsilon_k)^l \to \frac{(\varepsilon_k)^j}{(\varepsilon_k)^l} = 1 = (\varepsilon_k)^{j-l}$$

A csoport struktúra miatt van inverz, ezért pl. a jobboldal inverzével beszorozva j-l < n hatványt kapunk. Ez azt jelenti, hogy (ε_k) -hoz nem az n lenne a legkisebb olyan szám, amire n-edik egységgyök. Ez ellentmondás, tehát feltevésünk igaz volt. \blacksquare

Tétel (Definíció 1 \Rightarrow Definíció 3) Ha ε_k n-edik primitív egységgyök, akkor k és n relativ primek.

Bizonyítás A primitív egységgyökök hatványaival minden egységgyök előállítható, így az első is. Tegyük fel, hogy ε_k j-edik hatványa állítja elő ε_1 -et: $(\varepsilon_k)^j = \varepsilon_1$. Írjuk fel mindkét oldalt trigonometrikus alakban!

$$\cos\left(jk\frac{360^{\circ}}{n}\right) + i \cdot \sin\left(jk\frac{360^{\circ}}{n}\right) = \cos\left(1\frac{360^{\circ}}{n}\right) + i \cdot \sin\left(1\frac{360^{\circ}}{n}\right)$$

Mivel egységgyökök, így abszolút értékük 1, tehát ahhoz, hogy az egyenlőség fennálljon, az argumentumok csak 360° egész számú többszörösével különbözhetnek egymástól.

$$jk\frac{360^{\circ}}{n} = \frac{360^{\circ}}{n} + u \cdot 360^{\circ}$$

Ezt az egyenletet alakítjuk át,

$$\frac{jk\frac{360^{\circ}}{n} - \frac{360^{\circ}}{n}}{n} = 360^{\circ}$$

ahonnan $360^{\circ} \cdot n^{-1}$ -el való leosztás után:

$$\frac{jk-1}{u} = n$$

$$jk - 1 = nu$$

$$jk - nu = 1$$

Tehát ha lenne k-nak és n-nek közös osztója, akkor az osztója lenne 1-nek is, ami viszont lehetetlen. Ebből következik, hogy k és n legnagyobb közös osztója 1, vagyis k és n relatív prímek. \blacksquare

Tétel (Definíció 3 \Rightarrow Definíció 2) Ha k és n relatív prímek, akkor ε_k n-edik primitív egységgyök.

Bizonyítás A második definíció teljesülését bizonyítjuk. Ha k relatív prím, akkor az n az a legkisebb szám, amire ε_k n-edik egységgyök. Indirekt módon tegyük fel, hogy ε_k -t j < n hatványra emeljük, és 1-et kapunk. A Moivre tétel szerint ez azt jelenti, hogy

$$(\varepsilon_k)^j = \cos\left(jk\frac{360^\circ}{n}\right) + i \cdot \sin\left(jk\frac{360^\circ}{n}\right) \neq \cos(0^\circ) + i \cdot \sin(0^\circ)$$

A 0° úgy jöhetne ki, hogy hogy a $jk\frac{360^{\circ}}{n}$ szög a 360° egész számú többszöröse lenne. Mivel k relatív prím n-hez, ez csak úgy lehetne, ha n osztója lenne j-nek, de ez lehetetlen, hiszen feltettük, hogy j < n.

A fenti tételek miatt beláttuk, hogy a három primitív egységgyök definíció ekvivalens.

Euklideszi tér

Skalárszorzat

Definíció Az $\langle .,. \rangle$: $V \times V \to \mathbb{R}$ függvényt, melynek függvényértékét $s(x,y) = \langle x,y \rangle$ -ként jelöljük, *skalárszorzatnak* nevezzük, ha teljesülnek rá a következő tulajdonságok:

- 1.) $\forall x \in V$ esetén $\langle x, x \rangle \ge 0$ és $\langle x, x \rangle = 0$ pontosan akkor, ha $x = \mathbf{0}$ (pozitív definit)
- 2.) $\forall x, y \in V$ esetén $\langle x, y \rangle = \langle y, x \rangle$ (szimmetrikus)
- 3.) $\forall x, y \in V \text{ és } \lambda \in \mathbb{R} \text{ esetén } \langle \lambda x, y \rangle = \lambda \langle x, y \rangle \text{ (lineáris)}$
- 4.) $\forall x, y, z \in V$ esetén $\langle (x + y), z \rangle = \langle x, z \rangle + \langle y, z \rangle$

Definíció A skalárszorzattal ellátott tereket *Euklideszi tereknek* nevezzük.

Tétel Minden, véges dimenziós térben megadható skalárszorzat.

Bizonyítás Konstruktív módon, megadva egyet.

$$s(x,y) = x_1y_1 + x_2y_2 + \dots + x_ny_n = \sum_{i=1}^{n} x_iy_i$$

Erre teljesülnek a skalárszorzat tulajdonságai:

1.) $\forall x \in V$ esetén $\langle x, x \rangle \ge 0$ és $\langle x, x \rangle = 0$ pontosan akkor, ha x = 0 (pozitív definit)

$$x_1x_1 + x_2x_2 + \dots + x_nx_n = \sum_{i=1}^n x_i^2 \ge 0$$

2.) $\forall x, y \in V$ esetén $\langle x, y \rangle = \langle y, x \rangle$ (szimmetrikus)

$$s(x, y) = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = s(y, x)$$

3.) $\forall x, y \in V \text{ és } \lambda \in \mathbb{R} \text{ esetén } \langle \lambda x, y \rangle = \lambda \langle x, y \rangle \text{ (lineáris)}$

$$s(\lambda \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \lambda x_i y_i = \lambda \sum_{i=1}^{n} x_i y_i = \lambda \cdot s(\mathbf{x}, \mathbf{y})$$

4.) $\forall x, y, z \in V$ esetén $\langle (x + y), z \rangle = \langle x, z \rangle + \langle y, z \rangle$

$$s(x + y, z) = \sum_{i=1}^{n} (x_i + y_i) \cdot z_i = \sum_{i=1}^{n} x_i z_i + \sum_{i=1}^{n} y_i z_i = s(x, z) + s(y, z)$$

írásbeli vizsga 1427 20 / 28 2014. május 27.

Metrika

Definíció

A *H* halmazt *metrikus térnek* nevezzük, ha van rajta olyan, *metrikának* nevezett $d: H \times H \to \mathbb{R}^+ \cup \{0\}$ függvény, melyre teljesülnek a következők:

- 1.) $\forall x, y \in H$ -ra $d(x, y) \ge 0$ és d(x, y) = 0 pontosan akkor, ha x = y (pozitív definit)
- 2.) $\forall x, y \in H$ -ra d(x, y) = d(y, x) (szimmetrikus)
- 3.) $\forall x, y, z \in H$ -ra $d(x, y) \le d(x, z) + d(z, y)$ (háromszög-egyenlőtlenség)

Norma

Definíció

A V vektortér *normált térnek nevezzük*, ha van rajta olyan, *normának* nevezett $n: V \to \mathbb{R}^+ \cup \{0\}$ függvény, melyre teljesülnek a következők:

- 1.) $\forall x, y \in V$ esetén $n(x) \ge 0$ és n(x) = 0 pontosan akkor, ha x = 0 (pozitív definit)
- 2.) $\forall x \in V \text{ és } \alpha \in \mathbb{R} \text{ esetén } n(\alpha x) = |\alpha| \cdot n(x)$
- 3.) $\forall x, y \in V$ esetén $n(x + y) \le n(x) + n(y)$ (háromszög-egyenlőtlenség)

Tétel *Minden normált tér metrikus tér.*

Bizonyítás

Konstruktív módon, megadva egy metrikát: d(x, y) := ||y - x||. Erről könnyen belátható, hogy rendelkezik a metrika tulajdonságaival.

Tétel *Minden skalárszorzatos tér normált tér.*

Bizonyítás

Konstruktív módon, megadva egy normát: $n(x) \coloneqq \sqrt{\langle x, x \rangle}$. A norma első és második tulajdonsága a skalárszorzat első és második tulajdonságából teljesül. A háromszög-egyenlőtlenség pedig a Cauchy-Bunyakovszkij-Schwarz egyenlőségből következik.

Tétel *Minden Euklideszi tér metrikus tér.*

Bizonyítás Konstruktívan, megadva egy metrikát: $d(x, y) \coloneqq \sqrt{\langle x - y, x - y \rangle}$

Cauchy-Bunyakovszkij-Schwarz egyenlőség

Tétel (Cauchy-Bunyakovszkij-Schwarz egyenlőség) $|\langle a, b \rangle|^2 \le \langle a, a \rangle \langle b, b \rangle$

Bizonyítás Tekintsük az $\langle a + \lambda b, a + \lambda b \rangle$ skalárszorzatot. A pozitív definit tulajdonság miatt $0 \le \langle a + \lambda b, a + \lambda b \rangle$. Fejtsük ki ezt a következőképp:

$$0 \le \langle \boldsymbol{a} + \lambda \boldsymbol{b}, \boldsymbol{a} + \lambda \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \boldsymbol{a} \rangle + \langle \lambda \boldsymbol{b}, \boldsymbol{a} \rangle + \langle \boldsymbol{a}, \lambda \boldsymbol{b} \rangle + \langle \lambda \boldsymbol{b}, \lambda \boldsymbol{b} \rangle =$$
$$= \langle \boldsymbol{a}, \boldsymbol{a} \rangle + 2\lambda \langle \boldsymbol{a}, \boldsymbol{b} \rangle + \lambda^2 \langle \boldsymbol{b}, \boldsymbol{b} \rangle$$

Ez λ -ra nézve egy másodfokú egyenlőtlenség: $\lambda^2 A + \lambda B + C \ge 0$.

Mivel e függvénynek legfeljebb egy gyöke lehet, a diszkrimináns nem pozitív, azaz $B^2 - 4AC \le 0$. A megfelelő értékeket behelyettesítve:

$$(2\langle a, b \rangle)^2 \le 4(\langle a, a \rangle \langle b, b \rangle)$$
$$\langle a, b \rangle^2 \le \langle a, a \rangle \langle b, b \rangle$$

A norma függvény bevezetésével az egyenlőség a következőképp írható: $|\langle a, b \rangle| = ||a|| \cdot ||b||$

Ortonormált bázis, Gram-Schmidt ortogonalizáció

Definíció Euklideszi térben két vektor, az \boldsymbol{a} és \boldsymbol{b} által *bezárt* α *szöget* a következőképpen lehet értelmezni. Legyen $\langle \boldsymbol{a}, \boldsymbol{b} \rangle$ egy skalárszorzat V-ben, és $\|\boldsymbol{x}\| = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$ valamely \boldsymbol{x} vektor normája. Ekkor

$$\cos(\alpha) = \frac{\langle a, b \rangle}{\|a\| \cdot \|b\|}$$

Definíció Azt mondjuk, hogy az \boldsymbol{a} vektor *ortogonális* a \boldsymbol{b} vektrorra, ha $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = 0$.

Tétel Ortogonális, nem nulla vektorok lineárisan függetlenek.

Bizonyítás Induljunk ki a függetlenség definíciójából: $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k = 0$.

Azt kell bizonyítani, hogy mindegyik $\alpha_i = 0$. Vegyük rendre az $x_1, x_2, ..., x_k$ vektorokkal való skalárszorzatokat.

$$\alpha_1 \mathbf{x_1} + \alpha_2 \mathbf{x_2} + \dots + \alpha_k \mathbf{x_k} = \mathbf{0} / \mathbf{x_j}, j = 1, 2, \dots, k$$

Ezzel azt kapjuk, hogy $\alpha_i \langle x_i, x_i \rangle = 0$. A skalárszorzat pozitív definit tulajdonsága miatt $\langle x_i, x_i \rangle > 0$, ezért minden $\alpha_i = 0$.

Tétel Minden altérben van ortogonális bázis.

Bizonyítás Konstruktív, azt bizonyítjuk, hogy bármely független rendszerből kiindulva, így bázisból is, tudunk ugyanolyan elemszámú ortogonális rendszert konstruálni. Az alkalmazott eljárás neve *Gram-Schmidt ortogonalizáció*.

Legyen $b_1, b_2, ..., b_k$ a független rendszer. Ebből $c_1, c_2, ..., c_k$ ortogonális rendszer a következőképpen kapható:

$$c_1 \coloneqq b_1$$

$$c_2 \coloneqq b_2 + \alpha_{21}c_1$$

Vegyük mindkét oldal skalárszorzatát c_1 -gyel, és válasszuk a $\langle c_1, c_2 \rangle$ skalárszorzatot nullának, így lesznek ortogonálisak e vektorok. Ebből:

$$\alpha_{21} = \frac{\langle -b_2, c_1 \rangle}{\langle c_1, c_1 \rangle}, \text{igy } c_2 = b_2 - \frac{\langle b_2, c_1 \rangle}{\langle c_1, c_1 \rangle} c_1$$

Ehhez hasonlóan általában a definiáló egyenletnek rendre vegyük a skalárszorzatát a c_1, c_2, \dots, c_{k-1} vektorokkal, az együtthatókra a következőt kapjuk:

$$c_{k} \coloneqq b_{k} + \alpha_{k1}c_{1} + \alpha_{k2}c_{2} + \dots + \alpha_{k,k-1}c_{k-1}$$

$$\alpha_{kj} = \frac{\langle -b_{k}, c_{j} \rangle}{\langle c_{j}, c_{j} \rangle}, \qquad j = 1, 2, \dots, k-1$$

Definíció *Ortonormált* a vektorrendszer, ha páronként ortogonális, és minden elemének normája 1.

Tétel *Minden euklideszi térnek van ortonormált bázisa.*

Bizonyítás Konstruktív, megmutatjuk, hogyan lehet az ortonormált rendszert létrehozni. Legyen a norma a skalárszorzatból származtatott: $\|c_i\|^2 = \langle c_i, c_i \rangle$

Tetszőleges bázisból kiindulva, a Gram-Schmidt eljárással kapott ortogonális bázis minden elemét szorozzuk ezen norma reciprokával:

$$c_i^* = \frac{c_i}{\|c_i\|}$$

Ekkor valóban,

$$\|c_i^*\|^2 = \langle \frac{c_i}{\|c_i\|}, \frac{c_i}{\|c_i\|} \rangle = \frac{1}{\|c_i\|^2} \langle c_i, c_i \rangle = \frac{1}{\|c_i\|^2} \|c_i\|^2 = 1$$

Tétel Az euklideszi tér valamely bázisa akkor és csak akkor ortonormált, ha egy vektor koordinátáját a következőképpen kapjuk meg:

$$a = \sum_{i=1}^{n} \alpha_i e_i$$
, $\alpha_k = \langle a, e_k \rangle$

Valós euklideszi terek transzformációi

Szimmetrikus transzformáció

Definíció Egy transzformációt *szimmetrikusnak* nevezünk, ha van olyan bázis, amelyre nézve a transzformáció mátrixa szimmetrikus.

Lemma Ha a leképezés **A** mátrixa szimmetrikus és $\langle x, y \rangle := y^T x$, akkor $\langle x, Ax \rangle = \langle Ax, y \rangle$

Bizonyítás $\langle x, Ay \rangle = (Ay)^T x = y^T A^T x = y^T A x = \langle Ax, y \rangle$, merthogy A szimmetriája azt jelenti, hogy $A = A^T$.

Tétel Szimmetrikus mátrix különböző sajátértékeihez tartozó sajátvektorok ortogonálisak.

Bizonyítás $As_1 = \lambda_1 s_1$ -ből: $\langle As_1, s_2 \rangle = \lambda_1 \langle s_1, s_2 \rangle$ $As_2 = \lambda_2 s_2$ -ből: $\langle As_2, s_1 \rangle = \lambda_2 \langle s_2, s_1 \rangle$

Ezért $0=(\lambda_1-\lambda_2)\langle s_2,s_1\rangle$, és mivel $\lambda_1\neq\lambda_2$, ezért $\langle s_2,s_1\rangle=0$, vagyis valóban ortogonálisak. \blacksquare

Ortogonális transzformáció

Definíció Egy transzformáció *ortogonális*, ha van olyan bázis, melyben mátrixa ortogonális.

Tétel Az ortogonális transzformáció megőrzi a $\langle x, y \rangle := y^T x$ slakárszorzatot.

Tétel Ortogonális transzformáció távolságtartó, normatartó, szögtartó, ha e függvényeket a skalárszorzatból származtatjuk.

Tétel (Determinánsok szorzás tétele) $\det(\mathbf{AB}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$, ha \mathbf{A} és \mathbf{B} egyaránt $n \times n$ -es mátrixok.

Tétel *Ortogonális mátrix determinánsának abszolút értéke* 1.

Bizonyítás $1 = \det(E) = \det(AA^{-1}) = \det(A) \cdot \det(A^{-1}) = \det(A) \cdot \det(A) = \det^2(A)$

Tétel Ortogonális transzformáció sajátértékeinek abszolút értéke 1.

Bizonvítás Ha $Ax = \lambda x$, akkor $(Ax)^T = (\lambda x)^T$. A két egyenletet összeszorozva:

$$(Ax)^{T}Ax = (\lambda x)^{T}\lambda x$$

$$x^{T}A^{T}Ax = (\lambda x)^{T}\lambda x$$

$$x^{T}A^{T}Ax = (\lambda^{2}x)^{T}x$$

$$x^{T}Ex = \lambda^{2}x^{T}x$$

$$\lambda^{2} = 1$$

Komplex euklideszi terek transzformációi

Definíció Az $\langle .,. \rangle$: $V \times V \to \mathbb{C}$ függvényt, *komplex skalárszorzatnak* nevezzük, ha teljesülnek rá a következő tulajdonságok:

- 1.) $\forall \mathbf{z} \in V$ esetén $\langle \mathbf{z}, \mathbf{z} \rangle \ge 0$ és $\langle \mathbf{z}, \mathbf{z} \rangle = 0$ pontosan akkor, ha $\mathbf{z} = \mathbf{0}$ (pozitív definit)
- 2.) $\forall z_1, z_2 \in V$ esetén $\langle z_1, z_2 \rangle = \overline{\langle z_2, z_1 \rangle}$ (konjugáltan szimmetrikus)
- 3.a) $\forall \mathbf{z_1}, \mathbf{z_2} \in V$ esetén $\langle \lambda \mathbf{z_1}, \mathbf{z_2} \rangle = \overline{\lambda} \langle \mathbf{z_1}, \mathbf{z_2} \rangle$
- 3.b) $\forall z_1, z_2 \in V$ esetén $\langle z_1, \lambda z_2 \rangle = \lambda \langle z_1, z_2 \rangle$
- 4.a) $\forall z_1, z_2, z_3 \in V$ esetén $\langle z_1 + z_2, z_3 \rangle = \langle z_1, z_3 \rangle + \langle z_2, z_3 \rangle$
- 4.b) $\forall z_1, z_2, z_3 \in V$ esetén $\langle z_1, z_2 + z_3 \rangle = \langle z_1, z_2 \rangle + \langle z_1, z_3 \rangle$

Komplex speciális mátrixok

hermitikus ferdén hermitikus unitér
$$A = \overline{A}^T$$
 $A = -\overline{A}^T$ $A^{-1} = \overline{A}^T$

Tétel Hermitikus mátrix sajátértékei valósak.

Bizonyítás $Ax = \lambda x$. Ezt balról megszorozva \overline{x}^T -tal:

$$\overline{x}^T A x = \overline{x}^T \lambda x = \lambda \overline{x}^T x = \lambda \sum_{k=1}^n |x_k|^2$$

Mivel a jobboldal valós szám, ezért $\lambda = \frac{\overline{x}^T A x}{\overline{x}^T x}$

Most már csak azt kell belátni, hogy nemcsak a nevező, de a számláló is valós. Ezt úgy fogjuk bizonyítani, hogy tudjuk, a komplex szám akkor és csak akkor egyenlő a konjugáltjával, ha csak valós része van. Azt tudjuk, hogy a számláló is egyetlen komplex szám, hiszen a skalárszorzatnak ez volt a definíciója, így a szám megegyezik a "transzponáltjával":

$$\overline{x}^{T}(Ax) = \left(\overline{x}^{T}(Ax)\right)^{T} = (Ax)^{T}\overline{x} = x^{T}A^{T}\overline{x} = x^{T}\overline{Ax} = \overline{x}^{T}(Ax)$$

Következésképpen a sajátérték, λ is valós. ■

Tétel A ferdén hermitikus mátrix sajátértékei vagy nullák, vagy tisztán képzetesek.

Bizonyítás Az előzőhöz hasonlóan a bizonyítás lényege, hogy a komplex szám akkor és csak akkor képzetes, ha egyenlő konjugáltja (-1)-szeresével.

$$\lambda = \frac{\overline{x}^T A x}{\overline{x}^T x}$$

$$\overline{x}^T (A x) = (\overline{x}^T (A x))^T = (A x)^T \overline{x}^T = x^T A^T \overline{x} = x^T (-\overline{A}) \overline{x} = -\overline{x}^T (A x)$$

Eszerint valóban a 0 illetve képzetes szám lehet a sajátérték.

Tétel *Unitér mátrix sajátértékeinek abszolút értéke* 1.

Bizonyítás A bizonyítás analóg a valós esetben tanult szimmetrikus mátrixra vonatkozó hasonló állítás bizonyításával:

$$Ax = \lambda x$$

$$\overline{(Ax)}^T = \overline{\lambda x}^T$$

A két egyenletet összeszorozva:

$$\overline{(Ax)}^{T} \cdot Ax = \overline{\lambda x}^{T} \cdot \lambda x$$

$$\overline{(Ax)}^{T} \cdot Ax = \lambda \cdot \overline{\lambda} \cdot \overline{x}^{T} x$$

$$\overline{x}^{T} \overline{A}^{T} (Ax) = \lambda^{2} \cdot \overline{x}^{T} x$$

$$\overline{x}^{T} \left(\overline{A}^{T} A \right) x = \lambda^{2} \cdot \overline{x}^{T} x$$

$$\overline{x}^{T} x = \lambda^{2} \cdot \overline{x}^{T} x$$

Amiből valóban, $\lambda^2 = 1$.

Vizsgainformációk

A tantárgyi leírásból, szöveghűen

A tárgy vizsgaköteles. Azonban csak azok tehetnek vizsgát, akik az ún. aláírás feltételt teljesítik. Akinek a matematika felmérő dolgozata nem sikerült, annak KÖTELEZŐ a felzárkóztató gyakorlatokra járni, vizsgát csak akkor tehet, ha a felzárkóztató anyagából megszerzi a tanár által előírt pontszámot.

A zárthelyikkel szerezhető pontszám összesen 100 pont, egy nagy zh kb. 40 pont lesz, a két nagy zh összesen 80 pont. a kis zh-k segítségével még további 20 pont szerezhető. Az kap aláírást, aki mindkét évközi nagy zárthelyi dolgozatot legalább 50%-ra teljesít, és összességében megszerzi a félév során a nagy és kis zh-kon szerezhető 100 pont 50%-át.

A féléves munkára megajánlott jegyet lehet kapni, ez a NEPTUN-ba bekerül. Ha ezt a hallgató nem fogadja el, akkor a szokásos módon a kiírt vizsgákon 2 alkalommal javíthat. A végső eredmény az UTOLSÓ vizsga eredménye, akkor is, ha az rosszabb, mint az előző eredmények.

A vizsga írásbeli és szóbeli részből áll. A vizsgaidőpontok a szorgalmi időszak végén lesznek kihirdetve.

Azok a hallgatók, akiknek nem sikerült valamelyik évfolyam-zárthelyi 50%-át teljesíteni, vagy összességében nem szerezték meg a pontok 50%-át, javító dolgozatot írhatnak. A sikeres javító dolgozatot írók vizsgára vitt pontszáma egységesen a megszerezhető pontok 50%-a. Ha megvan az aláíráshoz szükséges 50%, de az elégséges megajánlott jegy megszerzéséhez nincsen meg a szükséges pontszám, úgy a hallgató szintén javító dolgozatot írhat, de csak elégséges megajánlott jegyért. Amennyiben a javító dolgozattal sem sikerül jogot szerezni a vizsgára, a tárgyat a következő év tavaszi félévében lehet csak teljesíteni.

A régi tanterv (osztatlan képzés) szerint tanulók, amennyiben teljesítették a fenti feltételeket, gyakorlati jegyet is kapnak: 0-50%:1, 51-65%: 2, 65-75%: 3, 76-89%: 4, 90%-tól: 5.

A gyakorlati jegy megszerzése után szintén VIZSGÁT kell tenniük.

A vizsga 3 részből tevődik össze: Az első rész beugró jellegű, ha ez nem sikerül, a második részt nem értékeljük (technikai okok miatt a 2. részt is mindenki megírja). Itt definícók, és könnyű bizonyítások szerepelnek. A második részben nehezebb fogalmakat, eljárásokat, bizonyításokat kérdezünk. A két rész, és az évközi teljesítmény alapján jegyet ajánlunk meg, melyet a vizsga 3. részében, szóbelivel lehet javítani (rontani). Az évfolyam legjobb 10%-a a félév végén csak szóbeli elővizsgát tehet.

A félév során megírt zárthelyikből származó pontok alapján a megajánlott jegy, illetve a vizsga írásbelin szerzett pontok alapján az ajánlott jegy számítása (régi tanterv szerint tanulók vizsgajegyének számítása):

```
0%-59%: elégtelen (1)
60%-69% elégséges (2)
70%-79% közepes (3)
80%-89% jó (4)
90%- jeles (5)
```

Az elégtelen érdemjegyet szerzőknek meg kell ismételni a vizsgát. Az elégséges és közepes jegyet írásban megszerzők szóban javíthatják (ronthatják) eredményüket. A jó és jeles pontszámot elérők szóbelin "védik meg" eredményeiket.

Jegyzetek

Évközi eredmény

	•	maximális pontszám	
Nagy zárthelyi dolgozatok	1. nagy zárthelyi dolgozat	40	
	2. nagy zárthelyi dolgozat	40	
	Összesen	80	
Röpdolgozatok	Összesen	20	
	Elér	t pontszám	

Az évközi és a vizsgán nyújtott teljesítmény értékelése

évközi vizsga	50%	55%	60%	65%	70%	75%	80%	85%	90%	95%	100%
50%	50%	53%	55%	58%	60%	63%	65%	68%	70%	73%	75%
55%	53%	55%	58%	60%	63%	65%	68%	70%	73%	75%	78%
60%	55%	58%	60%	63%	65%	68%	70%	73%	75%	78%	80%
65%	58%	60%	63%	65%	68%	70%	73%	75%	78%	80%	83%
70%	60%	63%	65%	68%	70%	73%	75%	78%	80%	83%	85%
75%	63%	65%	68%	70%	73%	75%	78%	80%	83%	85%	88%
80%	65%	68%	70%	73%	75%	78%	80%	83%	85%	88%	90%
85%	68%	70%	73%	75%	78%	80%	83%	85%	88%	90%	93%
90%	70%	73%	75%	78%	80%	83%	85%	88%	90%	93%	95%
95%	73%	75%	78%	80%	83%	85%	88%	90%	93%	95%	98%
100%	75%	78%	80%	83%	85%	88%	90%	93%	95%	98%	100%

Érdemjegyek megállapítása

Érdemjegy	%
1 (elégtelen)	0 - 59
2 (elégséges)	60 - 69
3 (közepes)	70 - 79
4 (jó)	80 - 89
5 (jeles)	90 – 100