Stratified Analysis

Alvin Sheng

Contents

Effect Size Analysis	2
CHD Stratified Analysis	3
CAR model results, Coronary Heart Disease Stratified on Poverty	3
CAR model results, Coronary Heart Disease Stratified on RPL THEME1	9
CAR model results, Coronary Heart Disease Stratified on RPL THEME2	13
CAR model results, Coronary Heart Disease Stratified on RPL THEME3	17
CAR model results, Coronary Heart Disease Stratified on RPL THEME4	20
CAR model results, Coronary Heart Disease Stratified on RPL_THEMES	24
BPHIGH Stratified Analysis	27
Stratified on Poverty	27
Stratified on RPL_THEME1	31
Stratified on RPL_THEME2	35
Stratified on RPL_THEME3	38
Stratified on RPL_THEME4	42
Stratified on RPL_THEMES	46
CASTHMA Stratified Analysis	49
Stratified on Poverty	
Stratified on RPL_THEME1	53
Stratified on RPL_THEME2	
Stratified on RPL_THEME3	60
Stratified on RPL_THEME4	
Stratified on RPL_THEMES	68
MHLTH Stratified Analysis	71
Stratified on Poverty	71
Stratified on RPL_THEME1	75
Stratified on RPL_THEME2	79
Stratified on RPL_THEME3	82
Stratified on RPL_THEME4	86
Stratified on RPL_THEMES	90

```
library(here)
## Warning in readLines(f, n): line 1 appears to contain an embedded nul
## Warning in readLines(f, n): incomplete final line found on '/Volumes/
## ALVINDRIVE2/flood-risk-health-effects/._flood-risk-health-effects.Rproj'
## here() starts at /Volumes/ALVINDRIVE2/flood-risk-health-effects
library(coda)
library(CARBayes)
## Loading required package: MASS
## Loading required package: Rcpp
## Registered S3 method overwritten by 'GGally':
    method from
##
    +.gg
           ggplot2
library(ggplot2)
library(tidyverse)
## -- Attaching packages -----
                                                 ----- tidyverse 1.3.1 --
## v tibble 3.1.6
                      v dplyr
                              1.0.7
## v tidyr
            1.1.4
                      v stringr 1.4.0
## v readr
            2.1.1
                      v forcats 0.5.1
            0.3.4
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## x dplyr::select() masks MASS::select()
fhs_model_df <- readRDS(here("intermediary_data/fhs_model_df_all_census_tract_pc.rds"))</pre>
```

Effect Size Analysis

Recall that regression coefficient estimates $\hat{\beta}$ can be standardized in the following manner:

$$\hat{\beta}^* = \frac{SD(X)}{SD(Y)}\hat{\beta},$$

where SD(X) is the standard deviation of the covariate that $\hat{\beta}$ corresponds to, and SD(Y) is the standard deviation of the response variable, i.e., one of the health outcomes.

In the present analysis, the covariates have been scaled by their standard deviations, but the response variable has not been scaled. Denote the regression coefficient estimates of this analysis as \hat{b} , such that

$$\hat{\beta}^* = \frac{\hat{b}}{SD(Y)}$$

Acock (2014, p. 272) suggests the following effect size heuristic for standardized beta coefficients $\hat{\beta}^*$:

1. Weak: $|\hat{\beta}^*| < 0.2$

2. Moderate: $0.2 < |\hat{\beta}^*| < 0.5$

3. Strong: $|\hat{\beta}^*| > 0.5$

Citation: Acock, A. C. (2014). A Gentle Introduction to Stata (4th ed.). Texas: Stata Press.

Translating the heuristic for our estimates \hat{b} , we have that

```
1. Weak: |\hat{b}| < 0.2 \times SD(Y)
2. Moderate: 0.2 < |\hat{b}| < 0.5 \times SD(Y)
3. Strong: |\hat{b}| > 0.5 \times SD(Y)
```

In the following ggplots, I include the positive/negative cut-off for the "Weak" effect size as dashed red lines.

```
# standard deviations for the health outcome variables

(sd_CHD <- sd(fhs_model_df$Data_Value_CHD, na.rm = T))

## [1] 2.207308

(sd_BPHIGH <- sd(fhs_model_df$Data_Value_BPHIGH, na.rm = T))

## [1] 7.295828

(sd_CASTHMA <- sd(fhs_model_df$Data_Value_CASTHMA, na.rm = T))

## [1] 1.575484

(sd_MHLTH <- sd(fhs_model_df$Data_Value_MHLTH, na.rm = T))

## [1] 3.408159</pre>
```

CHD Stratified Analysis

CAR model results, Coronary Heart Disease Stratified on Poverty

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty.RData"))
```

Beta samples

```
beta_samples <- mcmc.list(chain1$samples$beta, chain2$samples$beta,
                           chain3$samples$beta)
effectiveSize(beta_samples)
##
         var1
                    var2
                                var3
                                            var4
                                                       var5
                                                                   var6
                                                                              var7
##
  68447.2046 36382.4841 37761.1319 53281.5366 68914.2531 78405.5864 87890.6361
##
         var8
                    var9
                               var10
                                          var11
                                                      var12
                                                                  var13
                                                                             var14
## 41973.9980 61353.3136 50147.4980 60253.3373 74957.3127 89787.3447 35155.2520
##
        var15
                   var16
                               var17
                                          var18
                                                      var19
                                                                  var20
## 63037.1789 62136.1468 70022.6252 73724.5058 32342.7837 88478.5492 57534.7711
##
                   var23
                               var24
                                          var25
                                                      var26
                                                                  var27
        var22
                                                                             var28
##
  10909.7609
               6229.8757
                            323.8625
                                      4500.4463
                                                  2003.7053
                                                             2883.0879
                                                                          996.6574
##
        var29
                   var30
                               var31
                                          var32
                                                      var33
                                                                 var34
                                                                             var35
                672.4907 1167.2441 28855.9245 78428.6550 39030.9892 34364.0083
##
     161.4431
```

```
##
       var36
                  var37
                             var38
                                        var39
                                                   var40
                                                              var41
                                                                         var42
## 52293.7785 66509.7765 69269.6952 76671.2019 56050.2334 50185.4620 50495.6724
##
       var43
                  var44
                             var45
                                        var46
                                                   var47
                                                              var48
                                                                         var49
## 60423.8387 60221.4781 80050.1425 28753.4787 41256.5990 55529.6434 37611.9176
##
       var50
                  var51
                             var52
                                        var53
                                                   var54
                                                              var55
                                                                         var56
## 63008.8724 35946.8002 79938.2627 47002.3867 8686.7542 6769.6085
                                                                      325.5017
                  var58
                             var59
                                        var60
                                                   var61
                                                              var62
                                                                         var63
       var57
   3937.8319 2135.7717 2707.4575 1039.3790
                                                163.8511
                                                           680.0737 1232.0642
##
##
       var64
## 28006.0742
```

Examining sigma2, nu2, rho

Examining a sample of the 3108 phi parameters

```
phi_samples <- mcmc.list(chain1$samples$phi, chain2$samples$phi, chain3$samples$phi)</pre>
set.seed(1157, kind = "Mersenne-Twister", normal.kind = "Inversion", sample.kind = "Rejection")
phi_subset_idx <- sample(1:ncol(phi_samples[[1]]), size = 10)</pre>
phi_samples_subset <- phi_samples[, phi_subset_idx]</pre>
effectiveSize(phi samples subset)
##
        var1
                  var2
                             var3
                                        var4
                                                  var5
                                                             var6
                                                                       var7
                                                                                  var8
                        6806.516 20135.793 93307.470 39089.413 33554.743 40535.330
## 37202.660
              4572.161
        var9
                 var10
## 70212.189 4821.368
```

Inference

```
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
```

```
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
                                                  97.5%
##
                                  50%
                                          2.5%
## strat0
                              6.43057 6.41684 6.44428
## strat0:flood_risk_pc1
                             -0.01479 -0.02603 -0.00362
## strat0:flood_risk_pc2
                              0.00961 -0.00341 0.02245
## strat0:flood_risk_pc3
                             -0.00201 -0.01169 0.00766
## strat0:flood_risk_pc4
                              0.00792 -0.00135 0.01719
## strat0:flood_risk_pc5
                              0.00190 -0.00692 0.01075
## strat0:EP UNEMP
                              0.05020 0.03500 0.06527
## strat0:EP_PCI
                             -0.04941 -0.06333 -0.03545
## strat0:EP NOHSDP
                              0.23345 0.20579 0.26097
## strat0:EP_AGE65
                              1.23105 1.21750 1.24458
## strat0:EP_AGE17
                              0.15970 0.14417
                                                0.17523
## strat0:EP_DISABL
                              0.22445 0.20776 0.24128
## strat0:EP SNGPNT
                              0.01504 -0.00063 0.03067
## strat0:EP_MINRTY
                             -0.17432 -0.19679 -0.15201
## strat0:EP_LIMENG
                             -0.02997 -0.05533 -0.00480
## strat0:EP_MUNIT
                             -0.05975 -0.07265 -0.04682
## strat0:EP_MOBILE
                             0.07762 0.06456 0.09065
## strat0:EP_CROWD
                              0.01336 -0.00717 0.03394
## strat0:EP_NOVEH
                              0.08992 0.06770 0.11209
## strat0:EP GROUPQ
                             -0.09386 -0.10680 -0.08081
## strat0:EP_UNINSUR
                             0.13585 0.11884 0.15277
## strat0:co
                             -0.11942 -0.15848 -0.07998
## strat0:no2
                              0.01534 -0.03633 0.06636
## strat0:o3
                             -0.14595 -0.21856 -0.07619
## strat0:pm10
                             -0.19961 -0.23314 -0.16712
## strat0:pm25
                              0.43798 0.39060 0.48763
## strat0:so2
                              0.05621 0.02290 0.09022
                              0.13280 0.08339 0.18615
## strat0:summer_tmmx
                             -0.31593 -0.47846 -0.18847
## strat0:winter_tmmx
## strat0:summer_rmax
                              0.00254 - 0.06569
                                                0.07049
## strat0:winter_rmax
                              0.05320 0.00389
                                               0.10322
## strat0:Data_Value_CSMOKING 0.70817 0.67899
                                                0.73708
## strat1
                              6.74754 6.73568 6.75929
## strat1:flood_risk_pc1
                             -0.01268 -0.02315 -0.00227
## strat1:flood_risk_pc2
                              0.00658 -0.00523 0.01846
## strat1:flood_risk_pc3
                              0.00569 -0.00365 0.01504
## strat1:flood_risk_pc4
                             -0.00259 -0.01103 0.00583
## strat1:flood_risk_pc5
                              0.00154 -0.00691 0.00993
## strat1:EP_UNEMP
                              0.05283 0.04390 0.06177
## strat1:EP PCI
                             -0.08201 -0.10645 -0.05750
## strat1:EP NOHSDP
                              0.14347
                                       0.12630 0.16066
## strat1:EP_AGE65
                              1.63400 1.61986 1.64827
## strat1:EP AGE17
                              0.30099 0.28704 0.31510
## strat1:EP_DISABL
                              0.22420 0.21232 0.23611
## strat1:EP_SNGPNT
                             -0.05794 -0.06914 -0.04666
## strat1:EP_MINRTY
                              0.01348 -0.00424 0.03122
## strat1:EP_LIMENG
                             -0.04214 -0.05721 -0.02698
## strat1:EP_MUNIT
                             -0.00647 -0.01763 0.00469
## strat1:EP_MOBILE
                              0.05158 0.04197 0.06119
## strat1:EP_CROWD
                             -0.02294 -0.03467 -0.01119
## strat1:EP_NOVEH
                             0.19940 0.18479 0.21408
```

```
## strat1:EP_GROUPQ
                              -0.05314 -0.06171 -0.04457
## strat1:EP_UNINSUR
                              0.08819 0.07621 0.10005
                              -0.14840 -0.19083 -0.10638
## strat1:co
## strat1:no2
                              -0.02954 -0.08115 0.02160
## strat1:o3
                              -0.15649 -0.22953 -0.08649
## strat1:pm10
                              -0.14592 -0.18058 -0.11255
## strat1:pm25
                              0.45173 0.40449 0.50151
## strat1:so2
                              0.01675 -0.01555 0.04973
## strat1:summer_tmmx
                              0.04595 -0.00426 0.09936
## strat1:winter_tmmx
                              -0.16618 -0.32870 -0.03905
## strat1:summer_rmax
                              -0.07471 -0.14382 -0.00705
## strat1:winter_rmax
                               0.04073 -0.00820 0.09070
## strat1:Data_Value_CSMOKING 1.03745 1.01707 1.05807
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_povert
List of significant beta coefficients:
colnames(beta_samples_matrix)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:EP_UNEMP"
                                     "strat0:EP_PCI"
## [5] "strat0:EP_NOHSDP"
                                     "strat0:EP_AGE65"
## [7] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
## [9] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [11] "strat0:EP_MUNIT"
                                     "strat0:EP_MOBILE"
## [13] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [15] "strat0:EP_UNINSUR"
                                     "strat0:co"
## [17] "strat0:o3"
                                     "strat0:pm10"
## [19] "strat0:pm25"
                                     "strat0:so2"
## [21] "strat0:summer_tmmx"
                                     "strat0:winter_tmmx"
## [23] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [25] "strat1"
                                     "strat1:flood_risk_pc1"
                                     "strat1:EP_PCI"
## [27] "strat1:EP_UNEMP"
## [29] "strat1:EP_NOHSDP"
                                     "strat1:EP_AGE65"
## [31] "strat1:EP_AGE17"
                                     "strat1:EP_DISABL"
## [33] "strat1:EP_SNGPNT"
                                     "strat1:EP_LIMENG"
## [35] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [37] "strat1:EP_NOVEH"
                                     "strat1:EP_GROUPQ"
## [39] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [41] "strat1:o3"
                                     "strat1:pm10"
## [43] "strat1:pm25"
                                     "strat1:winter_tmmx"
## [45] "strat1:summer_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

```
post_2.5 = 2.5\%,
                                                   post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                    levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 2)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
              axis.text=element_text(size=12),
              plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 12.5, y = 1.5, label = "Social Vulnerability Index",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 23.5, y = 1.5, label = "Air Pollution",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 28.5, y = 1.5, label = "GRIDMET",
                    col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                       "Unemployed", "Per Capita Income", "No High School",
                                                       "65 or Over", "17 or Under", "Disability",
                                                       "Single-Parent", "Minority", "Poor English",
                                                       "Multi-Unit", "Mobile", "Crowded",
                                                       "No Vehicle", "Group Quarters", "Uninsured",
                                                       "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                       "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                       "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                      values = c("#F8766D", "#00BFC4"),
                                      drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
```

95% Credible Intervals, Coronary Heart Disease, Stratified on Poverty


```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Below is my best attempt to use both color and shape to indicate the strata. The only problem is the legend.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat, shape = s
  geom_point() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 12.5, y = 1.5, label = "Social Vulnerability Index",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 23.5, y = 1.5, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 28.5, y = 1.5, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Unemployed", "Per Capita Income", "No High School",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent", "Minority", "Poor English",
                              "Multi-Unit", "Mobile", "Crowded",
                              "No Vehicle", "Group Quarters", "Uninsured",
```

95% Credible Intervals, Coronary Heart Disease, Stratified on Poverty

CAR model results, Coronary Heart Disease Stratified on RPL_THEME1

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))</pre>
```

```
##
                                          2.5%
                                                  97.5%
## strat0
                              6.45402 6.43867 6.46944
## strat0:flood_risk_pc1
                             -0.01373 -0.02504 -0.00250
                              0.01940 0.00628
## strat0:flood_risk_pc2
                                               0.03251
## strat0:flood_risk_pc3
                             -0.00281 -0.01244
                                                0.00678
## strat0:flood risk pc4
                              0.01097 0.00171
                                                0.02027
## strat0:flood_risk_pc5
                             -0.00040 -0.00931
                                                0.00847
## strat0:EP_AGE65
                              1.25700 1.24396
                                                1.27002
## strat0:EP_AGE17
                              0.19428 0.17933 0.20931
## strat0:EP_DISABL
                              0.23010 0.21400 0.24622
## strat0:EP_SNGPNT
                              0.00391 -0.01205 0.01993
## strat0:EP_MINRTY
                             -0.13127 -0.15406 -0.10848
## strat0:EP_LIMENG
                              0.05495 0.02828 0.08153
## strat0:EP_MUNIT
                             -0.05162 -0.06380 -0.03945
## strat0:EP_MOBILE
                              0.08315 0.06849 0.09783
## strat0:EP_CROWD
                              0.03774 0.01391
                                                0.06135
## strat0:EP_NOVEH
                              0.11075 0.08929 0.13216
## strat0:EP GROUPQ
                             -0.05570 -0.06636 -0.04511
## strat0:EP_UNINSUR
                              0.15819 0.14010 0.17630
## strat0:co
                             -0.10803 -0.14862 -0.06744
## strat0:no2
                              0.01240 -0.04062 0.06543
## strat0:o3
                             -0.18017 -0.25288 -0.10678
## strat0:pm10
                             -0.22289 -0.25677 -0.18884
                              0.49051 0.44084 0.53994
## strat0:pm25
## strat0:so2
                              0.05745 0.02305 0.09116
## strat0:summer_tmmx
                              0.12253 0.07118 0.17360
## strat0:winter_tmmx
                             -0.31262 -0.43899 -0.17723
## strat0:summer_rmax
                             -0.00054 -0.06838 0.06803
## strat0:winter_rmax
                              0.05775 0.00683 0.10815
## strat0:Data_Value_CSMOKING  0.89818  0.87352
                                                0.92311
## strat1
                              6.68605 6.67465
                                                6.69750
## strat1:flood_risk_pc1
                             -0.01704 -0.02776 -0.00619
## strat1:flood_risk_pc2
                              0.00178 -0.01015 0.01371
## strat1:flood_risk_pc3
                              0.00354 -0.00636
                                               0.01337
## strat1:flood_risk_pc4
                             -0.00033 -0.00887
                                                0.00824
## strat1:flood_risk_pc5
                              0.00002 -0.00852 0.00859
## strat1:EP AGE65
                              1.70414 1.68925
                                               1.71910
## strat1:EP_AGE17
                              0.28821 0.27392 0.30257
## strat1:EP DISABL
                              0.24440 0.23236 0.25646
## strat1:EP_SNGPNT
                             -0.02580 -0.03688 -0.01474
## strat1:EP MINRTY
                              0.06665 0.04966 0.08361
## strat1:EP LIMENG
                              0.02108 0.00815 0.03399
## strat1:EP_MUNIT
                             -0.01386 -0.02566 -0.00205
## strat1:EP_MOBILE
                              0.05589 0.04646 0.06526
## strat1:EP_CROWD
                              0.00304 -0.00842 0.01452
## strat1:EP_NOVEH
                              0.21061 0.19575 0.22548
## strat1:EP_GROUPQ
                             -0.02986 -0.03868 -0.02099
## strat1:EP_UNINSUR
                              0.11241 0.10070 0.12410
## strat1:co
                             -0.15616 -0.19852 -0.11415
## strat1:no2
                             -0.02130 -0.07389 0.03080
## strat1:o3
                             -0.17981 -0.25226 -0.10658
## strat1:pm10
                             -0.13845 -0.17356 -0.10333
## strat1:pm25
                             0.49868 0.44917 0.54790
## strat1:so2
                              0.02675 -0.00619 0.05901
```

```
## strat1:winter_tmmx
                              -0.15659 -0.28254 -0.02076
## strat1:summer rmax
                              -0.08239 -0.15016 -0.01307
## strat1:winter_rmax
                               0.06055 0.00976 0.11082
## strat1:Data_Value_CSMOKING 1.19512 1.17709 1.21304
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl1.R
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc2"
                                     "strat0:flood_risk_pc4"
## [5] "strat0:EP_AGE65"
                                     "strat0:EP_AGE17"
## [7] "strat0:EP_DISABL"
                                     "strat0:EP_MINRTY"
## [9] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [11] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [13] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [15] "strat0:EP_UNINSUR"
                                     "strat0:co"
## [17] "strat0:o3"
                                     "strat0:pm10"
## [19] "strat0:pm25"
                                     "strat0:so2"
## [21] "strat0:summer_tmmx"
                                     "strat0:winter_tmmx"
## [23] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [25] "strat1"
                                     "strat1:flood_risk_pc1"
## [27] "strat1:EP_AGE65"
                                     "strat1:EP_AGE17"
## [29] "strat1:EP_DISABL"
                                     "strat1:EP_SNGPNT"
## [31] "strat1:EP_MINRTY"
                                     "strat1:EP_LIMENG"
## [33] "strat1:EP_MUNIT"
                                     "strat1:EP_MOBILE"
## [35] "strat1:EP_NOVEH"
                                     "strat1:EP_GROUPQ"
## [37] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [39] "strat1:o3"
                                     "strat1:pm10"
## [41] "strat1:pm25"
                                     "strat1:winter_tmmx"
## [43] "strat1:summer_rmax"
                                     "strat1:winter_rmax"
## [45] "strat1:Data_Value_CSMOKING"
```

0.02545 -0.02723 0.07781

Credible Interval plots for the coefficients, in ggplot

strat1:summer_tmmx

beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>

```
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
 ylim(c(-1, 2)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 11.5, y = 1.5, label = "Social Vulnerability Index",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 20.5, y = 1.5, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 25.5, y = 1.5, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent", "Minority", "Poor English",
                              "Multi-Unit", "Mobile", "Crowded",
                              "No Vehicle", "Group Quarters", "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom hline(yintercept = 0.2 * sd CHD, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
```

beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]

р


```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpl1.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL THEME2

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl2.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               6.30423 6.28996 6.31858
                              -0.06673 -0.08370 -0.04983
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                              0.03380 0.01456 0.05310
## strat0:flood_risk_pc3
                              -0.02927 -0.04362 -0.01490
## strat0:flood_risk_pc4
                              0.01555 0.00232 0.02886
## strat0:flood_risk_pc5
                              -0.01854 -0.03140 -0.00567
## strat0:EP_POV
                               0.17521 0.15077 0.19948
## strat0:EP_UNEMP
                              0.14020 0.12108 0.15921
## strat0:EP PCI
                              0.05835 0.03835 0.07856
## strat0:EP_NOHSDP
                              0.84768 0.81526 0.88063
## strat0:EP_MINRTY
                             -0.69547 -0.72610 -0.66503
```

```
## strat0:EP_LIMENG
                            -0.02521 -0.05299 0.00254
## strat0:EP_MUNIT
                           -0.07892 -0.09462 -0.06322
## strat0:EP MOBILE
                            0.26763 0.24778 0.28737
## strat0:EP_CROWD
                            -0.25308 -0.27413 -0.23196
## strat0:EP_NOVEH
                             0.50768 0.48130 0.53391
## strat0:EP GROUPQ
                            -0.29208 -0.30253 -0.28167
## strat0:EP_UNINSUR
                           -0.06808 -0.08957 -0.04657
## strat0:co
                            -0.26079 -0.32410 -0.19767
## strat0:no2
                             0.00479 -0.08237 0.09049
## strat0:o3
                            0.03266 -0.10392 0.16851
## strat0:pm10
                            -0.52101 -0.57945 -0.46236
                            0.53864 0.45407 0.62318
## strat0:pm25
## strat0:so2
                            -0.06112 -0.11984 -0.00350
## strat0:summer_tmmx
                            -0.00153 -0.09792 0.09139
## strat0:winter_tmmx
                            -0.25447 -0.48549 0.01561
## strat0:winter_rmax
## strat0:summer_rmax
                             0.00042 -0.12539 0.12497
                             0.01963 -0.07374 0.11369
## strat0:Data_Value_CSMOKING -0.04856 -0.08570 -0.01111
## strat1
                            7.02421 7.00937 7.03925
## strat1:EP_POV
                            0.65182 0.62551 0.67798
## strat1:EP_UNEMP
                            0.07042 0.05548 0.08540
## strat1:EP_PCI
                            -0.03986 -0.07767 -0.00180
## strat1:EP_NOHSDP
                            0.60882 0.57970 0.63782
## strat1:EP_MINRTY
                            -0.54699 -0.57551 -0.51871
## strat1:EP_LIMENG
                           -0.17493 -0.20235 -0.14773
                            0.07210 0.04990 0.09420
## strat1:EP_MUNIT
## strat1:EP_MOBILE
                            0.20244 0.18781 0.21696
## strat1:EP_CROWD
                           -0.23715 -0.25767 -0.21643
## strat1:EP_NOVEH
                            0.54499 0.51862 0.57143
## strat1:EP_GROUPQ
                            0.12809 0.09979 0.15653
## strat1:EP_UNINSUR
                            -0.04980 -0.06976 -0.02978
## strat1:co
                            -0.30915 -0.38079 -0.23805
## strat1:no2
                           -0.19977 -0.29126 -0.10965
                            0.06285 -0.07316 0.19868
## strat1:o3
## strat1:pm10
                           -0.45389 -0.51216 -0.39624
## strat1:pm25
                            0.61054 0.52651 0.69397
## strat1:so2
                            -0.03964 -0.09686 0.01733
## strat1:summer_tmmx
                             0.01070 -0.08642 0.10425
## strat1:winter_tmmx
                            -0.28525 -0.51747 -0.01566
## strat1:summer_rmax
                             0.02450 -0.10133 0.14917
## strat1:winter_rmax
                             0.03539 -0.05743 0.12851
## strat1:Data_Value_CSMOKING -0.21323 -0.24947 -0.17705
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl2.R
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                   "strat0:flood_risk_pc1"
```

```
## [3] "strat0:flood_risk_pc2"
                                      "strat0:flood_risk_pc3"
## [5] "strat0:flood_risk_pc4"
                                     "strat0:flood_risk_pc5"
## [7] "strat0:EP POV"
                                     "strat0:EP_UNEMP"
## [9] "strat0:EP_PCI"
                                      "strat0:EP_NOHSDP"
## [11] "strat0:EP_MINRTY"
                                      "strat0:EP_MUNIT"
## [13] "strat0:EP MOBILE"
                                     "strat0:EP CROWD"
## [15] "strat0:EP_NOVEH"
                                     "strat0:EP GROUPQ"
## [17] "strat0:EP_UNINSUR"
                                      "strat0:co"
## [19] "strat0:pm10"
                                     "strat0:pm25"
## [21] "strat0:so2"
                                     "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                      "strat1:flood_risk_pc1"
## [25] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [27] "strat1:EP_PCI"
                                     "strat1:EP_NOHSDP"
## [29] "strat1:EP_MINRTY"
                                     "strat1:EP_LIMENG"
## [31] "strat1:EP_MUNIT"
                                      "strat1:EP_MOBILE"
## [33] "strat1:EP_CROWD"
                                      "strat1:EP_NOVEH"
## [35] "strat1:EP_GROUPQ"
                                     "strat1:EP_UNINSUR"
## [37] "strat1:co"
                                     "strat1:no2"
## [39] "strat1:pm10"
                                     "strat1:pm25"
## [41] "strat1:winter_tmmx"
                                     "strat1:Data_Value_CSMOKING"
```

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2))),</pre>
                                         rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1, 2)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
```

 $geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +$

annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",

geom_hline(yintercept = 0, col = "red") +

```
col = "blue", size = 4.5) +
     annotate(geom = "text", x = 11.5, y = 1.5, label = "Social Vulnerability Index",
                              col = "blue", size = 4.5) +
     annotate(geom = "text", x = 20.5, y = 1.5, label = "Air Pollution",
                             col = "blue", size = 4.5) +
     annotate(geom = "text", x = 25.5, y = 1.5, label = "GRIDMET",
                              col = "blue", size = 4.5) +
     scale x discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                                 "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                                 "Minority", "Poor English",
                                                                                 "Multi-Unit", "Mobile", "Crowded",
                                                                                 "No Vehicle", "Group Quarters", "Uninsured",
                                                                                 "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                                 "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humid
                                                                                 "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
     geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
     geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
     scale_color_manual(name = "Strata",
                                                        values = c("#F8766D", "#00BFC4"),
                                                        drop = FALSE) +
     geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
     geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, Coronary Heart Disease, Stratified on RPL Theme 2


```
width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL_THEME3

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               6.76501
                                        6.74767
                                                 6.78232
## strat0:flood risk pc1
                              -0.01483 -0.02636 -0.00329
## strat0:flood_risk_pc2
                                        0.00585
                                                 0.03304
                               0.01941
## strat0:flood_risk_pc3
                               0.01204
                                        0.00166
                                                 0.02237
## strat0:flood_risk_pc4
                               0.01696 0.00631
                                                 0.02751
## strat0:flood_risk_pc5
                               0.00355 -0.00677
                                                 0.01390
## strat0:EP_POV
                               0.31113
                                        0.29337
                                                 0.32879
## strat0:EP_UNEMP
                               0.03773
                                        0.02563
                                                 0.04977
## strat0:EP_PCI
                              -0.02874 -0.04289 -0.01464
## strat0:EP_NOHSDP
                               0.27300
                                        0.24645
                                                 0.29950
## strat0:EP_AGE65
                               1.30345
                                        1.29075
                                                 1.31612
## strat0:EP_AGE17
                               0.29597
                                        0.28110
                                                 0.31068
## strat0:EP_DISABL
                               0.26693 0.25282 0.28102
## strat0:EP_SNGPNT
                              -0.01633 -0.03074 -0.00193
## strat0:EP_MUNIT
                              -0.05652 -0.07218 -0.04082
## strat0:EP_MOBILE
                               0.06397 0.05291 0.07506
## strat0:EP_CROWD
                              -0.00750 -0.03182
                                                 0.01660
## strat0:EP_NOVEH
                               0.13557
                                        0.11469
                                                 0.15648
## strat0:EP_GROUPQ
                              -0.12827 -0.13845 -0.11820
## strat0:EP_UNINSUR
                               0.10768 0.09121 0.12411
## strat0:co
                              -0.12087 -0.16222 -0.07935
## strat0:no2
                              -0.04947 -0.10435 0.00505
## strat0:o3
                              -0.15967 -0.23060 -0.07892
## strat0:pm10
                              -0.14755 -0.18179 -0.11344
## strat0:pm25
                               0.39031
                                        0.33941 0.44041
## strat0:so2
                               0.04042
                                        0.00561
                                                 0.07503
                                        0.02380
## strat0:summer_tmmx
                               0.07608
                                                 0.12765
## strat0:winter_tmmx
                              -0.27667 -0.40808 -0.15117
## strat0:summer_rmax
                              -0.01973 -0.08950
                                                 0.04666
## strat0:winter_rmax
                               0.07179
                                        0.01947
                                                 0.12320
## strat0:Data_Value_CSMOKING 0.69089 0.66326
                                                 0.71846
## strat1
                               6.70294 6.69188
                                                 6.71406
## strat1:flood_risk_pc1
                              -0.02118 -0.03244 -0.00987
## strat1:flood_risk_pc2
                               0.00852 -0.00349
                                                 0.02045
## strat1:flood_risk_pc3
                              -0.00779 -0.01750
                                                 0.00194
## strat1:flood risk pc4
                              -0.00117 -0.00917
                                                 0.00686
                                                 0.00930
## strat1:flood_risk_pc5
                               0.00156 -0.00624
```

```
## strat1:EP_POV
                             0.32643 0.31130 0.34164
## strat1:EP_UNEMP
                            0.02950 0.01973 0.03931
## strat1:EP PCI
                            -0.03701 -0.05396 -0.02003
## strat1:EP_NOHSDP
                            0.13020 0.11521 0.14521
## strat1:EP_AGE65
                            1.55164 1.53707 1.56633
## strat1:EP AGE17
                             0.24312 0.22915 0.25720
## strat1:EP_DISABL
                            0.24637 0.23310 0.25961
## strat1:EP_SNGPNT
                            -0.06454 -0.07580 -0.05327
## strat1:EP_MUNIT
                            -0.06197 -0.07234 -0.05155
## strat1:EP_MOBILE
                            0.09291 0.08235 0.10348
## strat1:EP_CROWD
                            -0.02666 -0.03815 -0.01518
## strat1:EP_NOVEH
                            0.09375 0.07817 0.10935
## strat1:EP_GROUPQ
                            -0.06692 -0.07650 -0.05736
                            0.08772 0.07555 0.09989
## strat1:EP_UNINSUR
## strat1:co
                            -0.12116 -0.16478 -0.07813
## strat1:no2
                            -0.05278 -0.10570 0.00006
## strat1:o3
                            -0.15822 -0.22952 -0.07679
                            -0.16850 -0.20472 -0.13198
## strat1:pm10
                            0.44519 0.39367 0.49574
## strat1:pm25
## strat1:so2
                             0.02409 -0.01298 0.06035
## strat1:summer_tmmx
                             0.04815 -0.00518 0.10083
## strat1:winter_tmmx
                            -0.21012 -0.34171 -0.08545
## strat1:summer_rmax
                            -0.07801 -0.14827 -0.01132
                             0.04087 -0.01191 0.09299
## strat1:winter rmax
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl3.R
```

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
##
   [1] "strat0"
                                      "strat0:flood_risk_pc1"
##
  [3] "strat0:flood_risk_pc2"
                                      "strat0:flood_risk_pc3"
## [5] "strat0:flood_risk_pc4"
                                      "strat0:EP_POV"
## [7] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [9] "strat0:EP_NOHSDP"
                                      "strat0:EP_AGE65"
## [11] "strat0:EP_AGE17"
                                      "strat0:EP_DISABL"
## [13] "strat0:EP_SNGPNT"
                                      "strat0:EP_MUNIT"
## [15] "strat0:EP_MOBILE"
                                      "strat0:EP_NOVEH"
## [17] "strat0:EP_GROUPQ"
                                      "strat0:EP_UNINSUR"
## [19] "strat0:co"
                                      "strat0:o3"
## [21] "strat0:pm10"
                                      "strat0:pm25"
## [23] "strat0:so2"
                                      "strat0:summer_tmmx"
## [25] "strat0:winter_tmmx"
                                      "strat0:winter_rmax"
## [27] "strat0:Data_Value_CSMOKING" "strat1"
## [29] "strat1:flood_risk_pc1"
                                      "strat1:EP_POV"
## [31] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [33] "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE65"
## [35] "strat1:EP_AGE17"
                                      "strat1:EP_DISABL"
## [37] "strat1:EP_SNGPNT"
                                      "strat1:EP_MUNIT"
## [39] "strat1:EP_MOBILE"
                                      "strat1:EP_CROWD"
## [41] "strat1:EP_NOVEH"
                                      "strat1:EP_GROUPQ"
## [43] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [45] "strat1:o3"
                                      "strat1:pm10"
```

```
# first, process the beta inference matrix in a form applot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                                                   post_median = `50%`,
                                                   post_2.5 = 2.5\%,
                                                   post 97.5 = ^97.5\%)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                    levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 2)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
              axis.text=element_text(size=12),
              plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 12.5, y = 1.5, label = "Social Vulnerability Index",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 22.5, y = 1.5, label = "Air Pollution",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 27.5, y = 1.5, label = "GRIDMET",
                    col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                       "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                       "65 or Over", "17 or Under", "Disability",
                                                       "Single-Parent",
                                                       "Multi-Unit", "Mobile", "Crowded",
                                                       "No Vehicle", "Group Quarters", "Uninsured",
                                                       "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                       "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humi
                                                       "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
```

95% Credible Intervals, Coronary Heart Disease, Stratified on RPL Theme 3


```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpl3.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL_THEME4

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
### 50% 2.5% 97.5%</pre>
```

```
## strat0
                              6.63735 6.62864 6.64598
## strat0:flood_risk_pc1
                             -0.00364 -0.01457 0.00737
## strat0:flood_risk_pc2
                              0.02375 0.01129 0.03624
## strat0:flood_risk_pc3
                              0.00200 -0.00753 0.01157
## strat0:flood_risk_pc4
                              0.00945 0.00023
                                                0.01875
## strat0:flood risk pc5
                              0.00102 -0.00800 0.01002
## strat0:EP POV
                              0.35369 0.33530
                                               0.37222
## strat0:EP UNEMP
                              0.02864 0.01693 0.04041
## strat0:EP PCI
                              0.00055 -0.01324
                                                0.01443
## strat0:EP_NOHSDP
                              0.25463 0.23257
                                                0.27695
## strat0:EP_AGE65
                             1.31732 1.30509
                                               1.32956
## strat0:EP_AGE17
                              0.28532 0.27281 0.29780
## strat0:EP_DISABL
                              0.24523 0.23103 0.25938
## strat0:EP_SNGPNT
                             -0.05462 -0.06811 -0.04103
## strat0:EP_MINRTY
                             -0.11497 -0.13396 -0.09593
## strat0:EP_LIMENG
                             -0.10944 -0.13225 -0.08678
## strat0:EP_UNINSUR
                             0.15000 0.13483 0.16519
## strat0:co
                             -0.14266 -0.18588 -0.09948
## strat0:no2
                             -0.01346 -0.06727 0.04026
## strat0:o3
                             -0.18840 -0.25888 -0.11536
## strat0:pm10
                            -0.18489 -0.21851 -0.15140
## strat0:pm25
                             0.39730 0.34927 0.44605
## strat0:so2
                             0.04539 0.01126 0.07893
## strat0:summer tmmx
                              0.11469 0.06126 0.16597
## strat0:winter tmmx
                             -0.27003 -0.39622 -0.11920
## strat0:summer_rmax
                             -0.03065 -0.09464 0.03626
## strat0:winter_rmax
                              0.06184 0.01007 0.11092
## strat0:Data_Value_CSMOKING  0.76785  0.74208  0.79377
## strat1
                              6.69248 6.68424 6.70077
## strat1:flood_risk_pc1
                             -0.01305 -0.02363 -0.00250
## strat1:flood_risk_pc2
                             -0.00001 -0.01185 0.01190
## strat1:flood_risk_pc3
                              0.00253 -0.00697
                                                0.01204
## strat1:flood_risk_pc4
                              0.00372 -0.00465
                                               0.01210
## strat1:flood_risk_pc5
                              0.00187 -0.00655 0.01020
## strat1:EP POV
                              0.27532 0.26177 0.28878
## strat1:EP_UNEMP
                              0.02950 0.01933 0.03962
## strat1:EP PCI
                             -0.02088 -0.03821 -0.00346
## strat1:EP_NOHSDP
                              0.12811 0.11050 0.14567
## strat1:EP AGE65
                              1.58104 1.56781 1.59430
## strat1:EP_AGE17
                              0.36873 0.35667 0.38077
## strat1:EP_DISABL
                              0.29361 0.28102 0.30624
## strat1:EP SNGPNT
                             -0.08524 -0.09724 -0.07322
## strat1:EP_MINRTY
                             -0.00064 -0.01896 0.01768
## strat1:EP_LIMENG
                             -0.03896 -0.05410 -0.02382
## strat1:EP_UNINSUR
                             0.10881 0.09672 0.12092
                             -0.13901 -0.17730 -0.10084
## strat1:co
## strat1:no2
                             -0.06750 -0.11743 -0.01767
## strat1:o3
                             -0.20967 -0.28003 -0.13643
## strat1:pm10
                             -0.13527 -0.16996 -0.10129
## strat1:pm25
                              0.40482 0.35736 0.45303
## strat1:so2
                             0.04802 0.01488 0.08091
## strat1:summer_tmmx
                             0.08015 0.02752 0.13014
## strat1:winter_tmmx
                             -0.20823 -0.33365 -0.05768
                             -0.06400 -0.12763 0.00301
## strat1:summer rmax
```

```
0.05103 -0.00009 0.09987
## strat1:winter_rmax
## strat1:Data_Value_CSMOKING 0.92192 0.89936 0.94454
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpl4.R
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
   [1] "strat0"
                                      "strat0:flood_risk_pc2"
                                      "strat0:EP_POV"
##
  [3] "strat0:flood_risk_pc4"
## [5] "strat0:EP_UNEMP"
                                      "strat0:EP_NOHSDP"
## [7] "strat0:EP_AGE65"
                                      "strat0:EP_AGE17"
## [9] "strat0:EP_DISABL"
                                      "strat0:EP_SNGPNT"
## [11] "strat0:EP_MINRTY"
                                      "strat0:EP_LIMENG"
## [13] "strat0:EP_UNINSUR"
                                      "strat0:co"
## [15] "strat0:o3"
                                      "strat0:pm10"
## [17] "strat0:pm25"
                                      "strat0:so2"
## [19] "strat0:summer_tmmx"
                                      "strat0:winter_tmmx"
## [21] "strat0:winter_rmax"
                                      "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                      "strat1:flood_risk_pc1"
## [25] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [27] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [29] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
## [31] "strat1:EP_DISABL"
                                      "strat1:EP_SNGPNT"
## [33] "strat1:EP_LIMENG"
                                      "strat1:EP_UNINSUR"
## [35] "strat1:co"
                                      "strat1:no2"
## [37] "strat1:o3"
                                      "strat1:pm10"
## [39] "strat1:pm25"
                                      "strat1:so2"
## [41] "strat1:summer_tmmx"
                                      "strat1:winter_tmmx"
## [43] "strat1:Data_Value_CSMOKING"
```

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1, 2)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 11, y = 1.5, label = "Social Vulnerability Index",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 19.5, y = 1.5, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 24.5, y = 1.5, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Poverty", "Unemployed", "Per Capita Income", "No High School",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent",
                              "Minority", "Poor English",
                              "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
```



```
plot = p, device = "pdf",
width = 8, height = 6, units = "in")
```

CAR model results, Coronary Heart Disease Stratified on RPL THEMES

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               6.22923 6.20960 6.24873
## strat0:flood risk pc1
                              -0.09529 -0.11554 -0.07482
## strat0:flood_risk_pc2
                               0.02648 0.00304 0.04975
## strat0:flood_risk_pc3
                              -0.03070 -0.04791 -0.01340
## strat0:flood_risk_pc4
                               0.01623 -0.00086 0.03324
## strat0:flood_risk_pc5
                              -0.03153 -0.04782 -0.01522
## strat0:EP UNINSUR
                              -0.00946 -0.03789 0.01914
## strat0:co
                              -0.31590 -0.39066 -0.24136
```

```
## strat0:o3
                          -0.41323 -0.57595 -0.26473
## strat0:pm10
                          -0.69297 -0.76084 -0.62591
## strat0:pm25
                           0.81704 0.72026 0.91460
## strat0:so2
                           0.02995 -0.03554 0.09841
## strat0:summer tmmx
                           0.08278 -0.03023 0.20197
## strat0:winter_tmmx
                          -0.46540 -0.80970 -0.12863
                          -0.02028 -0.15795 0.12244
## strat0:summer_rmax
## strat0:winter_rmax
                            0.12838 0.02425 0.23107
## strat0:Data_Value_CSMOKING 0.36589 0.33407 0.39785
6.86194 6.84507 6.87874
## strat1:co
                           -0.49377 -0.57383 -0.41376
## strat1:no2
                           -0.04214 -0.14042 0.05686
## strat1:o3
                           -0.52150 -0.68436 -0.37188
## strat1:pm10
                          -0.62719 -0.69743 -0.55768
## strat1:pm25
                           0.82231 0.72475 0.91947
                           0.03199 -0.03275 0.09900
## strat1:so2
## strat1:summer_tmmx
                           0.00419 -0.10952 0.12432
## strat1:winter_tmmx
                           -0.25761 -0.59916 0.07707
## strat1:summer_rmax
                           -0.07899 -0.21757 0.06513
## strat1:winter_rmax
                            0.10485 0.00059 0.20788
## strat1:Data_Value_CSMOKING 0.86591 0.84219 0.88957
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CHD_rpls.R
```

-0.34359 -0.44004 -0.24469

List of significant beta coefficients:

strat0:no2

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc2"
                                     "strat0:flood_risk_pc3"
## [5] "strat0:flood_risk_pc5"
                                     "strat0:co"
## [7] "strat0:no2"
                                     "strat0:o3"
## [9] "strat0:pm10"
                                     "strat0:pm25"
## [11] "strat0:winter_tmmx"
                                     "strat0:winter_rmax"
## [13] "strat0:Data_Value_CSMOKING" "strat1"
## [15] "strat1:flood_risk_pc1"
                                     "strat1:flood_risk_pc2"
## [17] "strat1:flood_risk_pc3"
                                     "strat1:EP_UNINSUR"
## [19] "strat1:co"
                                     "strat1:o3"
## [21] "strat1:pm10"
                                     "strat1:pm25"
## [23] "strat1:winter_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
```

```
post_median = `50%`,
                                                       post_2.5 = 2.5\%,
                                                       post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                         levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                            rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta inference df strat0 <- beta inference df[1:(nrow(beta inference df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 2)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
               plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 9.5, y = 1.5, label = "Air Pollution",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 14.5, y = 1.5, label = "GRIDMET",
                     col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                           "Uninsured",
                                                           "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                           "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                           "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                         values = c("#F8766D", "#00BFC4"),
                                         drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_CHD, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_CHD, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CHD_CI_rpls.pdf"),
       plot = p, device = "pdf",
       width = 8, height = 6, units = "in")
```

BPHIGH Stratified Analysis

Repeating the stratified analysis in the last section, this time just doing the plots

Stratified on Poverty

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                                   97.5%
                                           2.5%
                              31.81072 31.76808 31.85316
## strat0
## strat0:flood_risk_pc1
                               0.00942 -0.02697 0.04548
## strat0:flood_risk_pc2
                               0.05889 0.01730
                                                 0.10010
## strat0:flood_risk_pc3
                               0.01296 -0.01790
                                                 0.04395
## strat0:flood_risk_pc4
                               0.04486 0.01528 0.07444
## strat0:flood_risk_pc5
                               0.01254 -0.01536 0.04061
```

```
## strat0:EP UNEMP
                              0.10481 0.05762 0.15164
## strat0:EP PCI
                              0.10979 0.06522 0.15466
## strat0:EP NOHSDP
                             0.26285 0.17595 0.34920
## strat0:EP_AGE65
                              3.69131 3.64823 3.73430
## strat0:EP_AGE17
                              0.26898 0.21980
                                                0.31812
## strat0:EP DISABL
                              0.64584 0.59379 0.69845
## strat0:EP SNGPNT
                              0.05582 0.00695 0.10473
## strat0:EP MINRTY
                             1.78954 1.71692 1.86169
## strat0:EP_LIMENG
                             -0.84896 -0.92822 -0.77018
## strat0:EP_MUNIT
                             -0.70297 -0.74363 -0.66217
## strat0:EP_MOBILE
                              0.18471 0.14378 0.22560
## strat0:EP_CROWD
                             -0.01549 -0.07955 0.04878
## strat0:EP_NOVEH
                              0.25038 0.17968 0.32075
                             -0.71909 -0.75996 -0.67807
## strat0:EP_GROUPQ
## strat0:EP_UNINSUR
                             0.38212 0.32853 0.43530
## strat0:co
                             -0.52543 -0.65490 -0.39521
## strat0:no2
                             -0.59173 -0.76546 -0.41967
## strat0:o3
                             -0.48358 -0.74541 -0.22200
## strat0:pm10
                             -0.51405 -0.62941 -0.40235
                             1.07335 0.91211 1.24476
## strat0:pm25
## strat0:so2
                             0.15815 0.04247 0.27580
## strat0:summer tmmx
                              0.28587 0.10736 0.47950
## strat0:winter_tmmx
                             -0.89791 -1.49153 -0.43034
## strat0:summer rmax
                             -0.15934 -0.40798 0.09149
## strat0:winter rmax
                              0.24545 0.06530 0.42711
## strat0:Data_Value_CSMOKING 1.83412 1.74082 1.92630
## strat1
                             32.31804 32.28175 32.35408
## strat1:flood_risk_pc1
                             -0.02892 -0.06274 0.00486
## strat1:flood_risk_pc2
                              0.08176 0.04389 0.11985
## strat1:flood_risk_pc3
                              0.06746 0.03762 0.09730
## strat1:flood_risk_pc4
                              0.02925 0.00222
                                                0.05602
## strat1:flood_risk_pc5
                              0.00818 -0.01859
                                                0.03488
## strat1:EP_UNEMP
                              0.09299 0.06486
                                               0.12128
## strat1:EP_PCI
                              0.43201 0.35438 0.50905
## strat1:EP_NOHSDP
                             -0.14034 -0.19509 -0.08587
## strat1:EP_AGE65
                              4.42987 4.38491 4.47519
## strat1:EP AGE17
                              0.72096 0.67688 0.76560
## strat1:EP_DISABL
                             0.75897 0.72140 0.79667
## strat1:EP SNGPNT
                             -0.10875 -0.14398 -0.07336
## strat1:EP_MINRTY
                             3.08881 3.03057 3.14727
## strat1:EP LIMENG
                             -0.88186 -0.93034 -0.83323
## strat1:EP MUNIT
                             -0.50383 -0.53926 -0.46831
## strat1:EP_MOBILE
                              0.11469 0.08422 0.14508
## strat1:EP_CROWD
                             -0.14332 -0.18035 -0.10618
## strat1:EP_NOVEH
                             0.57222 0.52562 0.61891
## strat1:EP_GROUPQ
                             -0.49463 -0.52152 -0.46768
## strat1:EP_UNINSUR
                             0.19596 0.15789 0.23357
## strat1:co
                             -0.80327 -0.94502 -0.66230
## strat1:no2
                             -0.55613 -0.73215 -0.38318
## strat1:o3
                             -0.55544 -0.81800 -0.29313
                            -0.46440 -0.58334 -0.34982
## strat1:pm10
## strat1:pm25
                            1.31189 1.15016 1.48344
## strat1:so2
                            -0.02503 -0.13820 0.09058
## strat1:summer tmmx
                            0.01667 -0.16454 0.21049
```

```
## strat1:summer_rmax
                              -0.29181 -0.54163 -0.04171
## strat1:winter_rmax
                               0.13001 -0.04799 0.31213
## strat1:Data_Value_CSMOKING 2.74937 2.68355 2.81552
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_pov
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
   [1] "strat0"
                                      "strat0:flood_risk_pc2"
   [3] "strat0:flood risk pc4"
                                      "strat0:EP UNEMP"
##
## [5] "strat0:EP_PCI"
                                      "strat0:EP_NOHSDP"
## [7] "strat0:EP_AGE65"
                                      "strat0:EP_AGE17"
## [9] "strat0:EP_DISABL"
                                      "strat0:EP_SNGPNT"
                                      "strat0:EP_LIMENG"
## [11] "strat0:EP_MINRTY"
## [13] "strat0:EP_MUNIT"
                                      "strat0:EP_MOBILE"
## [15] "strat0:EP_NOVEH"
                                      "strat0:EP_GROUPQ"
## [17] "strat0:EP_UNINSUR"
                                      "strat0:co"
## [19] "strat0:no2"
                                      "strat0:o3"
## [21] "strat0:pm10"
                                      "strat0:pm25"
## [23] "strat0:so2"
                                      "strat0:summer_tmmx"
## [25] "strat0:winter_tmmx"
                                      "strat0:winter_rmax"
## [27] "strat0:Data_Value_CSMOKING"
                                      "strat1"
## [29] "strat1:flood_risk_pc2"
                                      "strat1:flood_risk_pc3"
## [31] "strat1:flood_risk_pc4"
                                      "strat1:EP_UNEMP"
## [33] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE17"
## [35] "strat1:EP_AGE65"
## [37] "strat1:EP DISABL"
                                      "strat1:EP SNGPNT"
## [39] "strat1:EP_MINRTY"
                                      "strat1:EP_LIMENG"
## [41] "strat1:EP_MUNIT"
                                      "strat1:EP_MOBILE"
## [43] "strat1:EP_CROWD"
                                      "strat1:EP_NOVEH"
## [45] "strat1:EP_GROUPQ"
                                      "strat1:EP_UNINSUR"
## [47] "strat1:co"
                                      "strat1:no2"
## [49] "strat1:o3"
                                      "strat1:pm10"
## [51] "strat1:pm25"
                                      "strat1:winter_tmmx"
```

-0.47474 -1.06863 -0.00922

Credible Interval plots for the coefficients, in ggplot

[53] "strat1:summer_rmax"

strat1:winter_tmmx

"strat1:Data_Value_CSMOKING"

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-3, 5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
                plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                     col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 4, label = "Social Vulnerability Index",
                     col = "blue", size = 4.5) +
    annotate(geom = "text", x = 23.5, y = 4, label = "Air Pollution",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 28.5, y = 4, label = "GRIDMET",
                      col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                            "Unemployed", "Per Capita Income", "No High School",
                                                            "65 or Over", "17 or Under", "Disability",
                                                            "Single-Parent", "Minority", "Poor English",
                                                            "Multi-Unit", "Mobile", "Crowded",
                                                            "No Vehicle", "Group Quarters", "Uninsured",
                                                            "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                            "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                            "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                          values = c("#F8766D", "#00BFC4"),
                                          drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME1

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              31.75099 31.70342 31.79852
                               0.00235 -0.03414 0.03842
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                               0.10135 0.05966 0.14310
## strat0:flood_risk_pc3
                               0.01665 -0.01398 0.04732
## strat0:flood_risk_pc4
                               0.04505 0.01570 0.07450
## strat0:flood_risk_pc5
                               0.01600 -0.01201 0.04409
## strat0:EP_AGE65
                               3.78311 3.74198 3.82395
## strat0:EP_AGE17
                              0.47906 0.43214 0.52616
## strat0:EP DISABL
                              0.63102 0.58084 0.68107
## strat0:EP_SNGPNT
                              -0.07256 -0.12214 -0.02288
## strat0:EP_MINRTY
                              1.67401 1.60131 1.74694
```

```
## strat0:EP MOBILE
                             0.19232 0.14667 0.23816
## strat0:EP_CROWD
                            -0.07846 -0.15196 -0.00524
## strat0:EP_NOVEH
                              0.22505 0.15718 0.29284
## strat0:EP GROUPQ
                             -0.59108 -0.62483 -0.55739
## strat0:EP UNINSUR
                             0.41334 0.35717 0.46994
## strat0:co
                              -0.49746 -0.63013 -0.36529
## strat0:no2
                             -0.55779 -0.73639 -0.37994
## strat0:o3
                             -0.53962 -0.80646 -0.27464
## strat0:pm10
                            -0.52247 -0.63757 -0.40611
                              1.04560 0.87661 1.21440
## strat0:pm25
## strat0:so2
                              0.13944 0.02163 0.25470
## strat0:summer_tmmx
                              0.26548 0.07906 0.44780
## strat0:winter_tmmx
                              -0.85863 -1.31658 -0.34198
## strat0:summer_rmax
## strat0:winter_rmax
                              -0.20968 -0.45496 0.03449
                               0.21920 0.03709 0.40092
## strat0:Data_Value_CSMOKING 2.05272 1.97409 2.13205
## strat1
                              32.04895 32.01390 32.08427
## strat1:flood_risk_pc1
                              -0.04157 -0.07595 -0.00676
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
                              0.05277 0.01470 0.09086
                              0.06164 0.03023 0.09268
                             0.03777 0.01066 0.06494
## strat1:flood_risk_pc5
                              -0.00299 -0.03005 0.02420
## strat1:EP_AGE65
                              4.49072 4.44376 4.53788
## strat1:EP_AGE17
                             0.55995 0.51526 0.60498
## strat1:EP_DISABL
                              0.77355 0.73582 0.81155
## strat1:EP_SNGPNT
                             -0.01326 -0.04790 0.02131
## strat1:EP_MINRTY
                             3.06203 3.00626 3.11747
                           -1.01014 -1.05192 -0.96862
## strat1:EP_LIMENG
## strat1:EP_MUNIT
                            -0.42028 -0.45755 -0.38309
## strat1:EP_MOBILE
                             0.12143 0.09177 0.15094
## strat1:EP_CROWD
                             -0.11758 -0.15370 -0.08131
## strat1:EP_NOVEH
                             0.53785 0.49070 0.58485
## strat1:EP_GROUPQ
                             -0.57288 -0.60034 -0.54534
## strat1:EP_UNINSUR
                             0.21087 0.17394 0.24765
## strat1:co
                            -0.80996 -0.95135 -0.66940
## strat1:no2
                            -0.58030 -0.75933 -0.40401
## strat1:o3
                            -0.58185 -0.84861 -0.31803
## strat1:pm10
                            -0.49926 -0.61924 -0.37969
## strat1:pm25
                             1.32042 1.15090 1.48843
                              0.04465 -0.06941 0.15670
## strat1:so2
## strat1:summer_tmmx
                              0.05546 -0.13527 0.24183
## strat1:winter_tmmx
                              -0.49115 -0.95010 0.02275
## strat1:summer_rmax
                              -0.30221 -0.54817 -0.05525
                               0.15729 -0.02456 0.33965
## strat1:winter_rmax
## strat1:Data_Value_CSMOKING 2.68359 2.62601 2.74077
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc2"
```

-0.67208 -0.75482 -0.58976

-0.65183 -0.69018 -0.61333

strat0:EP_LIMENG

strat0:EP_MUNIT

```
## [3] "strat0:flood_risk_pc4"
                                      "strat0:EP_AGE65"
## [5] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
## [7] "strat0:EP_SNGPNT"
                                     "strat0:EP_MINRTY"
## [9] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [11] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [13] "strat0:EP NOVEH"
                                     "strat0:EP GROUPQ"
## [15] "strat0:EP_UNINSUR"
                                      "strat0:co"
## [17] "strat0:no2"
                                      "strat0:o3"
## [19] "strat0:pm10"
                                      "strat0:pm25"
## [21] "strat0:so2"
                                      "strat0:summer_tmmx"
## [23] "strat0:winter_tmmx"
                                      "strat0:winter_rmax"
## [25] "strat0:Data_Value_CSMOKING"
                                     "strat1"
## [27] "strat1:flood_risk_pc1"
                                      "strat1:flood_risk_pc2"
## [29] "strat1:flood_risk_pc3"
                                      "strat1:flood_risk_pc4"
## [31] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
## [33] "strat1:EP_DISABL"
                                      "strat1:EP_MINRTY"
## [35] "strat1:EP_LIMENG"
                                     "strat1:EP_MUNIT"
## [37] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [39] "strat1:EP_NOVEH"
                                     "strat1:EP_GROUPQ"
## [41] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [43] "strat1:no2"
                                     "strat1:o3"
## [45] "strat1:pm10"
                                      "strat1:pm25"
## [47] "strat1:summer_rmax"
                                     "strat1:Data_Value_CSMOKING"
```

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.</pre>
```

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-3, 5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +</pre>
```

```
geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
     geom_hline(yintercept = 0, col = "red") +
     annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                            col = "blue", size = 4.5) +
     annotate(geom = "text", x = 11.5, y = 4, label = "Social Vulnerability Index",
                            col = "blue", size = 4.5) +
     annotate(geom = "text", x = 20.5, y = 4, label = "Air Pollution",
                           col = "blue", size = 4.5) +
     annotate(geom = "text", x = 25.5, y = 4, label = "GRIDMET",
                            col = "blue", size = 4.5) +
     scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                           "65 or Over", "17 or Under", "Disability",
                                                                           "Single-Parent", "Minority", "Poor English",
                                                                           "Multi-Unit", "Mobile", "Crowded",
                                                                           "No Vehicle", "Group Quarters", "Uninsured",
                                                                           "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                           "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter H
                                                                           "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
     geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
     geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
     scale_color_manual(name = "Strata",
                                                    values = c("#F8766D", "#00BFC4"),
                                                    drop = FALSE) +
     geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
     geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, High Blood Pressure, Stratified on RPL Theme 1


```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_rpl1.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL_THEME2

strat1:EP_PCI

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl2_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                 50%
                                         2.5%
                                                97.5%
## strat0
                            31.45644 31.41414 31.49878
## strat0:flood_risk_pc1
                            -0.15907 -0.21088 -0.10769
## strat0:flood_risk_pc2
                            0.10597 0.04751 0.16427
## strat0:flood_risk_pc3
                            -0.05471 -0.09848 -0.01104
## strat0:flood_risk_pc4
                             0.06027 0.02014 0.10069
## strat0:flood_risk_pc5
                            -0.05735 -0.09625 -0.01839
## strat0:EP_POV
                            -0.31666 -0.39095 -0.24294
## strat0:EP_UNEMP
                             0.47713 0.41939 0.53423
## strat0:EP_PCI
                            0.60769 0.54669 0.66893
## strat0:EP_NOHSDP
                            2.15542 2.05747 2.25526
## strat0:EP_MINRTY
                            0.17523 0.08203 0.26778
## strat0:EP_LIMENG
                            -0.74571 -0.82980 -0.66178
## strat0:EP_MUNIT
                            -0.58412 -0.63164 -0.53651
## strat0:EP_MOBILE
                            0.68516 0.62533 0.74468
## strat0:EP_CROWD
                            -0.75870 -0.82214 -0.69460
## strat0:EP_NOVEH
                            1.68505 1.60514 1.76453
## strat0:EP_GROUPQ
                            -1.13523 -1.16670 -1.10382
## strat0:EP UNINSUR
                            -0.20329 -0.26804 -0.13817
## strat0:co
                            -1.01654 -1.21089 -0.82295
## strat0:no2
                            -0.34208 -0.61510 -0.07642
## strat0:o3
                            0.01710 -0.41361 0.44528
## strat0:pm10
                            -1.53872 -1.72068 -1.35653
                            1.29982 1.03644 1.56257
## strat0:pm25
## strat0:so2
                            -0.18497 -0.36830 -0.00551
## strat0:summer_tmmx
                            -0.16230 -0.47360 0.13139
## strat0:winter_tmmx
                            -0.66324 -1.38476 0.22514
## strat0:summer_rmax
                            -0.13863 -0.54006 0.25056
                             0.09776 -0.19686 0.39737
## strat0:winter_rmax
## strat1
                            33.45418 33.41013 33.49867
## strat1:flood_risk_pc1
                            -0.16718 -0.22021 -0.11349
                             0.05373 -0.00505 0.11220
## strat1:flood_risk_pc2
                             0.02929 -0.01953 0.07754
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
                             0.07414 0.03138 0.11758
## strat1:flood_risk_pc5
                            -0.02092 -0.06375 0.02206
## strat1:EP_POV
                            1.09702 1.01749 1.17566
## strat1:EP_UNEMP
                            0.23621 0.19112 0.28118
```

0.18125 0.06716 0.29630

```
## strat1:EP_NOHSDP
                              1.08862 1.00082 1.17642
## strat1:EP_MINRTY
                              1.42124 1.33371 1.50796
## strat1:EP LIMENG
                              -1.25858 -1.34144 -1.17614
## strat1:EP_MUNIT
                              -0.22499 -0.29241 -0.15840
## strat1:EP_MOBILE
                              0.51224 0.46785 0.55613
## strat1:EP CROWD
                              -0.75327 -0.81570 -0.69085
## strat1:EP_NOVEH
                              1.77914 1.69929 1.85939
## strat1:EP_GROUPQ
                              0.05134 -0.03340 0.13678
## strat1:EP_UNINSUR
                              -0.24698 -0.30716 -0.18627
## strat1:co
                              -1.17901 -1.39911 -0.96066
## strat1:no2
                              -0.99470 -1.27990 -0.71519
                              0.09953 -0.33101 0.52902
## strat1:o3
                             -1.43858 -1.62036 -1.25976
## strat1:pm10
                              1.76715 1.50517 2.02726
## strat1:pm25
## strat1:so2
                              -0.10709 -0.28578 0.07125
## strat1:summer_tmmx
                              -0.07195 -0.38376 0.22479
## strat1:winter_tmmx
                              -0.88206 -1.61019 0.00593
                              -0.00825 -0.40890 0.38234
## strat1:summer_rmax
                               0.14057 -0.15296 0.43661
## strat1:winter_rmax
## strat1:Data_Value_CSMOKING -0.70961 -0.81996 -0.59947
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc1"
   [3] "strat0:flood_risk_pc2"
                                     "strat0:flood_risk_pc3"
##
## [5] "strat0:flood_risk_pc4"
                                     "strat0:flood_risk_pc5"
                                     "strat0:EP_UNEMP"
## [7] "strat0:EP POV"
## [9] "strat0:EP_PCI"
                                     "strat0:EP_NOHSDP"
## [11] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [13] "strat0:EP_MUNIT"
                                     "strat0:EP_MOBILE"
## [15] "strat0:EP_CROWD"
                                     "strat0:EP_NOVEH"
## [17] "strat0:EP_GROUPQ"
                                     "strat0:EP_UNINSUR"
## [19] "strat0:co"
                                     "strat0:no2"
## [21] "strat0:pm10"
                                     "strat0:pm25"
## [23] "strat0:so2"
                                     "strat0:Data_Value_CSMOKING"
## [25] "strat1"
                                     "strat1:flood_risk_pc1"
## [27] "strat1:flood_risk_pc4"
                                     "strat1:EP_POV"
## [29] "strat1:EP_UNEMP"
                                     "strat1:EP_PCI"
## [31] "strat1:EP_NOHSDP"
                                     "strat1:EP_MINRTY"
## [33] "strat1:EP_LIMENG"
                                     "strat1:EP_MUNIT"
## [35] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [37] "strat1:EP_NOVEH"
                                     "strat1:EP UNINSUR"
## [39] "strat1:co"
                                     "strat1:no2"
## [41] "strat1:pm10"
                                     "strat1:pm25"
```

[43] "strat1:Data_Value_CSMOKING"

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
```

```
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                                                  post_median = `50%`,
                                                  post_2.5 = 2.5\%,
                                                  post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                   levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                      rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom point() +
   ylim(c(-3, 5)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
              axis.text=element_text(size=12),
              plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 11.5, y = 4, label = "Social Vulnerability Index",
                   col = "blue", size = 4.5) +
   annotate(geom = "text", x = 20.5, y = 4, label = "Air Pollution",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 25.5, y = 4, label = "GRIDMET",
                    col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                      "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                      "Minority", "Poor English",
                                                      "Multi-Unit", "Mobile", "Crowded",
                                                      "No Vehicle", "Group Quarters", "Uninsured",
                                                      "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                      "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                      "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                      values = c("#F8766D", "#00BFC4"),
                                      drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
```


width = 8, height = 6, units = "in")

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              32.28737 32.22942 32.34502
## strat0:flood risk pc1
                               0.02503 -0.01548 0.06552
## strat0:flood_risk_pc2
                               0.08669 0.03980
                                                 0.13364
## strat0:flood_risk_pc3
                               0.05534
                                        0.01958
                                                 0.09100
## strat0:flood_risk_pc4
                                                 0.12195
                               0.08586 0.04940
## strat0:flood risk pc5
                               0.00407 -0.03118
                                                 0.03913
## strat0:EP POV
                               0.18981 0.12915
                                                 0.25028
## strat0:EP_UNEMP
                               0.28633 0.24586 0.32663
```

```
## strat0:EP PCI
                              0.02792 -0.02063 0.07603
## strat0:EP NOHSDP
                              0.39995 0.31001 0.48925
## strat0:EP AGE65
                              3.74150 3.69827 3.78479
## strat0:EP_AGE17
                              0.72611 0.67620 0.77587
## strat0:EP_DISABL
                              0.61926 0.57176 0.66656
## strat0:EP SNGPNT
                             0.23762 0.18914 0.28607
## strat0:EP MUNIT
                             -0.61392 -0.66696 -0.56087
## strat0:EP MOBILE
                             -0.04925 -0.08687 -0.01190
## strat0:EP_CROWD
                             -0.09792 -0.17969 -0.01703
## strat0:EP_NOVEH
                             0.87654 0.80603 0.94746
## strat0:EP_GROUPQ
                             -0.75868 -0.79292 -0.72484
## strat0:EP_UNINSUR
                             0.22181 0.16669 0.27722
## strat0:co
                             -0.67584 -0.82265 -0.52933
## strat0:no2
                             -0.35850 -0.55997 -0.15878
## strat0:o3
                             -0.12599 -0.42188 0.21995
## strat0:pm10
                             -0.46740 -0.59682 -0.33828
## strat0:pm25
                            1.00437 0.81358 1.19087
## strat0:so2
                             0.00872 -0.12507 0.14204
## strat0:summer_tmmx
                             0.14279 -0.06532 0.34788
## strat0:winter tmmx
                             -0.36038 -0.91051 0.14173
## strat0:summer_rmax
                             -0.21700 -0.49917 0.04503
                             0.16550 -0.04391 0.37366
## strat0:winter_rmax
## strat0:Data_Value_CSMOKING 2.22017 2.12460 2.31535
## strat1
                             32.50600 32.46942 32.54260
## strat1:flood_risk_pc1
                             0.00260 -0.03650 0.04199
## strat1:flood_risk_pc2
                             -0.00353 -0.04469 0.03764
## strat1:flood_risk_pc3
                              0.00012 -0.03324 0.03351
## strat1:flood_risk_pc4
                             -0.01653 -0.04394 0.01103
## strat1:flood_risk_pc5
                             -0.01238 -0.03899 0.01412
## strat1:EP_POV
                             0.06810 0.01683 0.11948
## strat1:EP_UNEMP
                             0.32142 0.28864 0.35412
## strat1:EP_PCI
                             -0.19614 -0.25398 -0.13820
## strat1:EP_NOHSDP
                            -0.14544 -0.19695 -0.09375
## strat1:EP_AGE65
                             4.03199 3.98265 4.08162
## strat1:EP_AGE17
                             0.54709 0.50015 0.59433
## strat1:EP_DISABL
                             0.87819 0.83365 0.92249
## strat1:EP SNGPNT
                            0.24037 0.20280 0.27796
## strat1:EP_MUNIT
                             -0.55411 -0.58944 -0.51865
## strat1:EP MOBILE
                             0.06642 0.03083 0.10188
## strat1:EP_CROWD
                             -0.12233 -0.16130 -0.08354
## strat1:EP NOVEH
                            0.65654 0.60312 0.70976
## strat1:EP_GROUPQ
                            -0.42558 -0.45805 -0.39346
## strat1:EP UNINSUR
                             0.24401 0.20280 0.28507
## strat1:co
                            -0.94943 -1.10967 -0.79146
## strat1:no2
                             0.07153 -0.12768 0.26723
## strat1:o3
                             -0.21019 -0.51031 0.13707
## strat1:pm10
                            -0.64967 -0.78516 -0.51307
## strat1:pm25
                            1.32532 1.13300 1.51525
## strat1:so2
                            0.10701 -0.03450
                                               0.24633
## strat1:summer_tmmx
                             0.04272 -0.16969
                                               0.25301
## strat1:winter_tmmx
                             0.08564 -0.46721
                                               0.58400
## strat1:summer rmax
                             -0.18357 -0.46706 0.07935
## strat1:winter_rmax
                             -0.13457 -0.34600 0.07657
## strat1:Data_Value_CSMOKING 2.67161 2.59059 2.75253
```

```
[1] "strat0"
                                      "strat0:flood_risk_pc2"
## [3] "strat0:flood_risk_pc3"
                                      "strat0:flood_risk_pc4"
##
   [5] "strat0:EP_POV"
                                      "strat0:EP_UNEMP"
## [7] "strat0:EP_NOHSDP"
                                      "strat0:EP_AGE65"
## [9] "strat0:EP_AGE17"
                                      "strat0:EP_DISABL"
## [11] "strat0:EP_SNGPNT"
                                      "strat0:EP_MUNIT"
## [13] "strat0:EP_MOBILE"
                                      "strat0:EP_CROWD"
## [15] "strat0:EP_NOVEH"
                                      "strat0:EP_GROUPQ"
## [17] "strat0:EP_UNINSUR"
                                      "strat0:co"
## [19] "strat0:no2"
                                      "strat0:pm10"
## [21] "strat0:pm25"
                                      "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                      "strat1:EP_POV"
## [25] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [27] "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE65"
## [29] "strat1:EP_AGE17"
                                      "strat1:EP_DISABL"
## [31] "strat1:EP_SNGPNT"
                                      "strat1:EP_MUNIT"
## [33] "strat1:EP_MOBILE"
                                      "strat1:EP_CROWD"
## [35] "strat1:EP_NOVEH"
                                      "strat1:EP_GROUPQ"
## [37] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [39] "strat1:pm10"
                                      "strat1:pm25"
## [41] "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form gaplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
```

beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>

theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi

 $p \leftarrow ggplot(beta_inference_df_strat0[-1,], aes(x = var_name, y = post_median, color = strat)) +$

saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl.")

row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]

List of significant beta coefficients:

Note: The intercept for both strata is not included.

geom_point() + ylim(c(-3, 5)) +

```
axis.text=element_text(size=12),
                  plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 4, label = "Social Vulnerability Index",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 22.5, y = 4, label = "Air Pollution",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 27.5, y = 4, label = "GRIDMET",
                         col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                     "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                     "65 or Over", "17 or Under", "Disability",
                                                                     "Single-Parent",
                                                                     "Multi-Unit", "Mobile", "Crowded",
                                                                     "No Vehicle", "Group Quarters", "Uninsured",
                                                                     "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                     "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                                     "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                                values = c("#F8766D", "#00BFC4"),
                                                drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
p
```



```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_rpl3.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              32.34453 32.31740 32.37151
## strat0:flood risk pc1
                               0.06184 0.02539 0.09855
## strat0:flood_risk_pc2
                               0.06510 0.02411
                                                 0.10639
## strat0:flood_risk_pc3
                               0.03537
                                        0.00397
                                                 0.06677
## strat0:flood_risk_pc4
                               0.04385 0.01349
                                                 0.07438
                               0.01329 -0.01614
## strat0:flood risk pc5
                                                 0.04266
## strat0:EP POV
                               0.02618 -0.03366
                                                 0.08657
## strat0:EP_UNEMP
                               0.13564 0.09771 0.17357
```

```
## strat0:EP PCI
                           0.42478 0.37912 0.47031
## strat0:EP_NOHSDP
                            0.20797 0.13574 0.28030
                           4.17003 4.13004 4.21045
## strat0:EP AGE65
## strat0:EP_AGE17
                           0.94565 0.90493 0.98638
## strat0:EP_DISABL
                            0.70167 0.65582 0.74749
## strat0:EP SNGPNT
                          -0.08897 -0.13249 -0.04518
## strat0:EP MINRTY
                           2.42272 2.35904 2.48662
## strat0:EP_LIMENG
                           -1.23105 -1.30488 -1.15722
## strat0:EP_UNINSUR
                           0.45511 0.40619 0.50423
## strat0:co
                           -0.69204 -0.84010 -0.54424
## strat0:no2
                           -0.82668 -1.01427 -0.63891
## strat0:o3
                          -0.74798 -1.01166 -0.47192
## strat0:pm10
                          -0.66789 -0.78680 -0.55013
## strat0:pm25
                           1.53866 1.36935 1.71008
## strat0:so2
                           0.17573 0.05340 0.29551
                           0.22435 0.02714 0.41565
## strat0:summer_tmmx
## strat0:winter_tmmx
                           -1.09844 -1.58431 -0.53500
## strat0:summer_rmax
## strat0:winter_rmax
                          -0.30462 -0.54211 -0.05615
                           0.27902 0.08614 0.46189
## strat0:Data_Value_CSMOKING 2.55474 2.46990 2.64055
## strat1
                           32.20324 32.17764 32.22885
## strat1:flood_risk_pc1
                            -0.01286 -0.04786 0.02226
## strat1:flood_risk_pc4
                           0.02087 -0.00657 0.04835
## strat1:flood_risk_pc5
                           0.01193 -0.01578 0.03917
## strat1:EP_POV
                            -0.20455 -0.24903 -0.16026
## strat1:EP_UNEMP
                            0.10909 0.07622 0.14173
## strat1:EP_PCI
                           0.35805 0.30077 0.41545
## strat1:EP_NOHSDP
                          -0.23818 -0.29585 -0.18043
## strat1:EP_AGE65
                           4.57784 4.53462 4.62100
## strat1:EP_AGE17
                           1.17516 1.13594 1.21434
## strat1:EP_DISABL
                           0.92201 0.88107 0.96312
## strat1:EP_SNGPNT
                           -0.12497 -0.16399 -0.08614
## strat1:EP_MINRTY
                            2.80770 2.74604 2.86928
## strat1:EP_LIMENG
                           -0.77106 -0.82119 -0.72107
## strat1:EP_UNINSUR
                           0.28775 0.24814 0.32724
## strat1:co
                           -0.78142 -0.91253 -0.65074
## strat1:no2
                          -0.80869 -0.98417 -0.63432
## strat1:o3
                          -0.86265 -1.12641 -0.58625
## strat1:pm10
                          -0.62093 -0.74304 -0.50113
## strat1:pm25
                           1.67358 1.50604 1.84456
## strat1:so2
                           0.11688 -0.00223 0.23414
## strat1:summer_tmmx
                            0.07222 -0.12310 0.25914
## strat1:winter_tmmx
                            -0.79578 -1.27834 -0.23410
## strat1:summer_rmax
                            -0.35252 -0.58756 -0.10294
## strat1:winter_rmax
                             0.16089 -0.02971 0.34240
## strat1:Data_Value_CSMOKING 3.01174 2.93672 3.08660
```

saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl

List of significant beta coefficients:

```
[1] "strat0"
                                      "strat0:flood_risk_pc1"
                                      "strat0:flood_risk_pc3"
## [3] "strat0:flood_risk_pc2"
## [5] "strat0:flood_risk_pc4"
                                      "strat0:EP_UNEMP"
## [7] "strat0:EP_PCI"
                                      "strat0:EP_NOHSDP"
## [9] "strat0:EP_AGE65"
                                      "strat0:EP_AGE17"
## [11] "strat0:EP_DISABL"
                                      "strat0:EP_SNGPNT"
## [13] "strat0:EP_MINRTY"
                                      "strat0:EP_LIMENG"
## [15] "strat0:EP UNINSUR"
                                      "strat0:co"
## [17] "strat0:no2"
                                      "strat0:o3"
## [19] "strat0:pm10"
                                      "strat0:pm25"
## [21] "strat0:so2"
                                      "strat0:summer_tmmx"
## [23] "strat0:winter_tmmx"
                                      "strat0:summer_rmax"
## [25] "strat0:winter_rmax"
                                      "strat0:Data_Value_CSMOKING"
## [27] "strat1"
                                      "strat1:flood_risk_pc2"
## [29] "strat1:flood_risk_pc3"
                                      "strat1:EP_POV"
## [31] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [33] "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE65"
                                      "strat1:EP_DISABL"
## [35] "strat1:EP_AGE17"
## [37] "strat1:EP_SNGPNT"
                                      "strat1:EP_MINRTY"
## [39] "strat1:EP_LIMENG"
                                      "strat1:EP_UNINSUR"
## [41] "strat1:co"
                                      "strat1:no2"
## [43] "strat1:o3"
                                      "strat1:pm10"
## [45] "strat1:pm25"
                                      "strat1:winter_tmmx"
## [47] "strat1:summer_rmax"
                                      "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
```

row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]

p <- ggplot(beta_inference_df_strat0[-1,], aes(x = var_name, y = post_median, color = strat)) +

theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi

Note: The intercept for both strata is not included.

 $geom_point() + ylim(c(-3, 5)) +$

```
axis.text=element_text(size=12),
                   plot.margin = margin(5.5, 5.5, 5.5, 10)) +
     geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
     geom_vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +
     geom_hline(yintercept = 0, col = "red") +
     annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
                          col = "blue", size = 4.5) +
     annotate(geom = "text", x = 11, y = 4, label = "Social Vulnerability Index",
                         col = "blue", size = 4.5) +
     annotate(geom = "text", x = 19.5, y = 4, label = "Air Pollution",
                         col = "blue", size = 4.5) +
     annotate(geom = "text", x = 24.5, y = 4, label = "GRIDMET",
                          col = "blue", size = 4.5) +
     scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                      "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                      "65 or Over", "17 or Under", "Disability",
                                                                      "Single-Parent",
                                                                      "Minority", "Poor English",
                                                                      "Uninsured",
                                                                      "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                      "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                                      "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
     geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
     geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
     scale_color_manual(name = "Strata",
                                                 values = c("#F8766D", "#00BFC4"),
                                                 drop = FALSE) +
     geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
     geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
p
```



```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_rpl4.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls_BPHIGH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              31.01173 30.95395 31.06938
## strat0:flood risk pc1
                              -0.16883 -0.23044 -0.10707
## strat0:flood_risk_pc2
                               0.10764 0.03683 0.17758
## strat0:flood_risk_pc3
                              -0.09087 -0.14283 -0.03877
## strat0:flood_risk_pc4
                               0.05322 0.00163 0.10460
## strat0:flood_risk_pc5
                              -0.08951 -0.13859 -0.04066
## strat0:EP_UNINSUR
                              -0.06353 -0.14842 0.02206
## strat0:co
                              -1.41847 -1.64434 -1.19246
```

```
## strat0:no2
                               -1.88210 -2.17835 -1.57562
## strat0:o3
                              -0.62222 -1.13803 -0.16637
## strat0:pm10
                              -1.91627 -2.13090 -1.70644
## strat0:pm25
                               2.89261 2.58794 3.19647
## strat0:so2
                               0.04869 -0.15835 0.26276
## strat0:summer tmmx
                               0.02843 -0.32887 0.42379
## strat0:winter_tmmx
                               -1.07293 -2.23056 -0.03311
                               -0.15642 -0.58956 0.29840
## strat0:summer_rmax
## strat0:winter_rmax
                                0.28693 -0.03901 0.61072
## strat0:Data_Value_CSMOKING 0.58762 0.49157 0.68427
                              32.81156 32.76215 32.86090
## strat1:flood_risk_pc1
                               -0.04144 -0.10090 0.01810
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
## strat1:flood_risk_pc5
                               -0.04653 -0.11129 0.01813
                               -0.05677 -0.11025 -0.00410
                               -0.02001 -0.06536 0.02520
                               -0.03834 -0.08342 0.00687
## strat1:EP_UNINSUR
                               -0.48710 -0.54328 -0.43035
## strat1:co
                               -2.52394 -2.77092 -2.27706
## strat1:no2
                               0.15416 -0.15131 0.46105
## strat1:o3
                               -1.09753 -1.61501 -0.64022
## strat1:pm10
                              -2.24855 -2.47093 -2.03065
## strat1:pm25
                               3.26321 2.95451 3.56351
## strat1:so2
                               -0.03677 -0.24123 0.17541
## strat1:summer_tmmx
                               -0.00683 -0.36702 0.38898
## strat1:winter_tmmx
                               -0.26963 -1.42854 0.77722
## strat1:summer_rmax
                               -0.17439 -0.61053 0.28022
## strat1:winter_rmax
                                0.00397 -0.32229 0.32984
## strat1:Data_Value_CSMOKING 2.18717 2.11541 2.25882
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/BPHIGH_rpl
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                       "strat0:flood_risk_pc1"
```

```
## [3] "strat0:flood_risk_pc2"
                                      "strat0:flood_risk_pc3"
## [5] "strat0:flood_risk_pc4"
                                     "strat0:flood_risk_pc5"
## [7] "strat0:co"
                                      "strat0:no2"
## [9] "strat0:o3"
                                      "strat0:pm10"
## [11] "strat0:pm25"
                                      "strat0:winter_tmmx"
## [13] "strat0:Data_Value_CSMOKING" "strat1"
## [15] "strat1:flood_risk_pc3"
                                      "strat1:EP_UNINSUR"
## [17] "strat1:co"
                                      "strat1:o3"
## [19] "strat1:pm10"
                                      "strat1:pm25"
## [21] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                              post_median = `50%`,
```

```
post_2.5 = 2.5\%,
                            post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                     levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                       rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
 ylim(c(-3, 5)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 9.5, y = 4, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 14.5, y = 4, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale color manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_BPHIGH, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_BPHIGH, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/BPHIGH_CI_rpls.pdf"),
       plot = p, device = "pdf",
       width = 8, height = 6, units = "in")
```

CASTHMA Stratified Analysis

Repeating the stratified analysis in the last section, this time just doing the plots

Stratified on Poverty

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                                    97.5%
                                           2.5%
                               9.77557
                                        9.76827
                                                 9.78288
## strat0
## strat0:flood_risk_pc1
                               0.00844 0.00200 0.01480
## strat0:flood_risk_pc2
                               0.00038 -0.00698
                                                 0.00766
## strat0:flood_risk_pc3
                              -0.00381 -0.00924
                                                 0.00170
## strat0:flood_risk_pc4
                              -0.00803 -0.01321 -0.00280
## strat0:flood_risk_pc5
                               0.00290 -0.00200 0.00780
```

```
## strat0:EP UNEMP
                            0.06204 0.05388 0.07013
## strat0:EP_PCI
                            -0.02706 -0.03489 -0.01912
## strat0:EP NOHSDP
                            0.07645 0.06143 0.09155
## strat0:EP_AGE65
                             0.07227 0.06479 0.07974
## strat0:EP_AGE17
                             -0.00758 -0.01616 0.00094
## strat0:EP DISABL
                            -0.00651 -0.01553 0.00258
## strat0:EP SNGPNT
                             0.04500 0.03656 0.05349
## strat0:EP MINRTY
                             0.18608 0.17325 0.19873
## strat0:EP_LIMENG
                            -0.15503 -0.16877 -0.14140
## strat0:EP_MUNIT
                            -0.02435 -0.03147 -0.01724
## strat0:EP_MOBILE
                            -0.01357 -0.02066 -0.00648
## strat0:EP_CROWD
                            -0.02428 -0.03536 -0.01318
## strat0:EP_NOVEH
                             0.11665 0.10430 0.12895
## strat0:EP_GROUPQ
                            -0.05015 -0.05729 -0.04303
## strat0:EP_UNINSUR
                            0.01566 0.00637 0.02493
## strat0:co
                             -0.05401 -0.07727 -0.03083
## strat0:no2
                            -0.06262 -0.09461 -0.03110
## strat0:o3
                            -0.00880 -0.05780 0.04370
## strat0:pm10
                            -0.16041 -0.18167 -0.13977
## strat0:pm25
                             0.27139 0.24209 0.30285
## strat0:so2
                             0.00999 -0.01163 0.03165
## strat0:summer tmmx
                             0.03949 0.00605 0.07677
## strat0:winter_tmmx
                             -0.07082 -0.18680 0.01287
## strat0:summer rmax
                             0.01395 -0.03393 0.06356
## strat0:winter rmax
                             -0.05153 -0.08644 -0.01636
## strat1
                              9.87323 9.86703 9.87937
## strat1:flood_risk_pc1
                             -0.00742 -0.01341 -0.00145
## strat1:flood_risk_pc2
                             0.00525 -0.00141 0.01196
## strat1:flood_risk_pc3
                             -0.00189 -0.00713 0.00336
## strat1:flood_risk_pc4
                             -0.00502 -0.00977 -0.00032
## strat1:flood_risk_pc5
                             -0.00176 -0.00644 0.00293
## strat1:EP_UNEMP
                             0.09316 0.08825 0.09810
## strat1:EP_PCI
                             -0.27264 -0.28620 -0.25915
## strat1:EP_NOHSDP
                             0.03389 0.02427 0.04345
## strat1:EP_AGE65
                             0.12021 0.11244 0.12806
## strat1:EP AGE17
                            -0.00404 -0.01175 0.00378
## strat1:EP_DISABL
                            -0.09023 -0.09678 -0.08365
## strat1:EP SNGPNT
                             0.05595 0.04983 0.06211
## strat1:EP_MINRTY
                             0.39284 0.38251 0.40324
## strat1:EP LIMENG
                            -0.26986 -0.27841 -0.26128
## strat1:EP MUNIT
                             0.03982 0.03361 0.04604
## strat1:EP_MOBILE
                            -0.02345 -0.02880 -0.01814
## strat1:EP_CROWD
                            -0.00649 -0.01297 -0.00001
## strat1:EP_NOVEH
                            0.19988 0.19172 0.20804
## strat1:EP_GROUPQ
                            -0.04258 -0.04725 -0.03789
## strat1:EP_UNINSUR
                            -0.05330 -0.05996 -0.04674
## strat1:co
                            -0.03664 -0.06229 -0.01107
## strat1:no2
                            -0.18228 -0.21498 -0.15070
## strat1:o3
                             0.00757 -0.04140 0.06026
## strat1:pm10
                            -0.18556 -0.20756 -0.16444
## strat1:pm25
                            0.31354 0.28392 0.34536
## strat1:so2
                            -0.01830 -0.03962 0.00311
## strat1:summer tmmx
                            0.00971 -0.02420 0.04718
```

```
## strat1:summer_rmax
                              -0.01595 -0.06402 0.03377
## strat1:winter_rmax
                              -0.06097 -0.09571 -0.02587
## strat1:Data_Value_CSMOKING 0.99978 0.98824 1.01141
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_po
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc1"
                                     "strat0:EP_UNEMP"
## [3] "strat0:flood_risk_pc4"
## [5] "strat0:EP_PCI"
                                     "strat0:EP_NOHSDP"
## [7] "strat0:EP_AGE65"
                                     "strat0:EP_SNGPNT"
## [9] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [11] "strat0:EP_MUNIT"
                                     "strat0:EP_MOBILE"
## [13] "strat0:EP_CROWD"
                                     "strat0:EP_NOVEH"
## [15] "strat0:EP_GROUPQ"
                                     "strat0:EP_UNINSUR"
## [17] "strat0:co"
                                     "strat0:no2"
## [19] "strat0:pm10"
                                      "strat0:pm25"
## [21] "strat0:summer_tmmx"
                                     "strat0:winter_rmax"
## [23] "strat0:Data_Value_CSMOKING"
                                     "strat1"
## [25] "strat1:flood_risk_pc1"
                                      "strat1:flood_risk_pc4"
## [27] "strat1:EP_UNEMP"
                                     "strat1:EP_PCI"
## [29] "strat1:EP_NOHSDP"
                                     "strat1:EP_AGE65"
## [31] "strat1:EP_DISABL"
                                     "strat1:EP_SNGPNT"
## [33] "strat1:EP_MINRTY"
                                     "strat1:EP_LIMENG"
## [35] "strat1:EP_MUNIT"
                                     "strat1:EP_MOBILE"
## [37] "strat1:EP_CROWD"
                                     "strat1:EP_NOVEH"
## [39] "strat1:EP_GROUPQ"
                                     "strat1:EP UNINSUR"
## [41] "strat1:co"
                                     "strat1:no2"
## [43] "strat1:pm10"
                                     "strat1:pm25"
```

-0.07186 -0.18785 0.01162

Credible Interval plots for the coefficients, in ggplot

[45] "strat1:winter_rmax"

strat1:winter_tmmx

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

"strat1:Data_Value_CSMOKING"

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-1, 1.5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                 axis.text=element_text(size=12),
                 plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 1, label = "Social Vulnerability Index",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 23.5, y = 1, label = "Air Pollution",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 28.5, y = 1, label = "GRIDMET",
                       col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                               "Unemployed", "Per Capita Income", "No High School",
                                                               "65 or Over", "17 or Under", "Disability",
                                                               "Single-Parent", "Minority", "Poor English",
                                                               "Multi-Unit", "Mobile", "Crowded",
                                                               "No Vehicle", "Group Quarters", "Uninsured",
                                                               "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                               "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                               "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on Pove
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                            values = c("#F8766D", "#00BFC4"),
                                            drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               9.75162 9.74319 9.75995
                               0.00702 0.00041 0.01357
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                               0.00410 -0.00342 0.01162
## strat0:flood_risk_pc3
                              -0.00465 -0.01020 0.00089
## strat0:flood_risk_pc4
                              -0.01385 -0.01910 -0.00856
## strat0:flood_risk_pc5
                              0.00161 -0.00339 0.00665
## strat0:EP_AGE65
                              0.06838 0.06110 0.07563
## strat0:EP_AGE17
                              -0.01247 -0.02079 -0.00410
## strat0:EP DISABL
                             -0.00960 -0.01850 -0.00074
## strat0:EP_SNGPNT
                              0.05261 0.04386 0.06138
## strat0:EP_MINRTY
                              0.17280 0.15973 0.18591
```

```
## strat0:EP_NOVEH
                              0.13213 0.12003 0.14426
## strat0:EP GROUPQ
                              -0.03445 -0.04047 -0.02844
## strat0:EP UNINSUR
                              0.02141 0.01145 0.03139
## strat0:co
                              -0.05450 -0.07879 -0.03040
## strat0:no2
                              -0.04416 -0.07800 -0.01093
## strat0:o3
                             -0.01479 -0.06728 0.03669
## strat0:pm10
                              -0.17061 -0.19253 -0.14864
## strat0:pm25
                              0.30260 0.27050 0.33465
## strat0:so2
                               0.00884 -0.01345 0.03061
                               0.04398 0.00682 0.07933
## strat0:summer_tmmx
## strat0:winter_tmmx
                              -0.10333 -0.19112 0.00406
## strat0:summer_rmax
## strat0:winter_rmax
                               0.02081 -0.02779 0.06757
                              -0.04613 -0.08151 -0.01013
## strat0:Data_Value_CSMOKING 1.02432 1.01025 1.03861
## strat1
                              9.92445 9.91829 9.93065
## strat1:flood_risk_pc1
                              -0.00606 -0.01228 0.00022
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
                              -0.00026 -0.00713 0.00662
                              -0.00075 -0.00639 0.00478
                              -0.00243 -0.00728 0.00244
## strat1:flood_risk_pc5
                              0.00177 -0.00309 0.00664
## strat1:EP_AGE65
                              0.13098 0.12266 0.13933
## strat1:EP_AGE17
                              0.00261 -0.00536 0.01061
## strat1:EP_DISABL
                              -0.07702 -0.08376 -0.07023
## strat1:EP_SNGPNT
                               0.06650 0.06035 0.07262
## strat1:EP_MINRTY
                               0.46604 0.45585 0.47618
## strat1:EP_LIMENG
                             -0.26184 -0.26943 -0.25433
                              0.04181 0.03513 0.04848
## strat1:EP_MUNIT
## strat1:EP_MOBILE
                              -0.01521 -0.02054 -0.00993
## strat1:EP_CROWD
                             0.00404 -0.00244 0.01051
## strat1:EP_NOVEH
                              0.22375 0.21528 0.23218
## strat1:EP_GROUPQ
                              -0.00290 -0.00779 0.00197
                             -0.04246 -0.04906 -0.03588
## strat1:EP_UNINSUR
## strat1:co
                             -0.04215 -0.06856 -0.01610
## strat1:no2
                             -0.17775 -0.21185 -0.14456
## strat1:o3
                              -0.00921 -0.06167 0.04217
## strat1:pm10
                             -0.20222 -0.22501 -0.17975
## strat1:pm25
                              0.37575 0.34335 0.40738
                              -0.02989 -0.05164 -0.00857
## strat1:so2
## strat1:summer_tmmx
                              0.00915 -0.02873 0.04537
## strat1:winter_tmmx
                              -0.10258 -0.19064 0.00418
## strat1:summer_rmax
                              -0.04082 -0.08962 0.00625
## strat1:winter_rmax
                              -0.04745 -0.08294 -0.01142
## strat1:Data_Value_CSMOKING 1.13814 1.12783 1.14839
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "strat0"
                                     "strat0:flood_risk_pc1"
```

-0.12341 -0.13804 -0.10888

-0.02418 -0.03103 -0.01731 -0.00477 -0.01286 0.00333

-0.01419 -0.02710 -0.00128

strat0:EP_LIMENG

strat0:EP_MUNIT

strat0:EP_MOBILE
strat0:EP_CROWD

```
## [3] "strat0:flood_risk_pc4"
                                      "strat0:EP_AGE65"
## [5] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
## [7] "strat0:EP_SNGPNT"
                                     "strat0:EP_MINRTY"
## [9] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [11] "strat0:EP_CROWD"
                                      "strat0:EP_NOVEH"
## [13] "strat0:EP GROUPQ"
                                     "strat0:EP UNINSUR"
## [15] "strat0:co"
                                      "strat0:no2"
## [17] "strat0:pm10"
                                      "strat0:pm25"
## [19] "strat0:summer_tmmx"
                                      "strat0:winter_rmax"
## [21] "strat0:Data_Value_CSMOKING" "strat1"
## [23] "strat1:EP_AGE65"
                                      "strat1:EP_DISABL"
## [25] "strat1:EP_SNGPNT"
                                      "strat1:EP_MINRTY"
## [27] "strat1:EP_LIMENG"
                                     "strat1:EP_MUNIT"
## [29] "strat1:EP_MOBILE"
                                      "strat1:EP_NOVEH"
## [31] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [33] "strat1:no2"
                                      "strat1:pm10"
## [35] "strat1:pm25"
                                     "strat1:so2"
## [37] "strat1:winter_rmax"
                                      "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
col = "blue", size = 4.5) +
  annotate(geom = "text", x = 20.5, y = 1, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 25.5, y = 1, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent", "Minority", "Poor English",
                              "Multi-Unit", "Mobile", "Crowded",
                              "No Vehicle", "Group Quarters", "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, Asthma, Stratified on RPL Theme 1


```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpl1.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl2_CASTHMA.RData"))
beta samples matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                  50%
                                          2.5%
                                                  97.5%
## strat0
                              9.83264 9.82786 9.83743
## strat0:flood_risk_pc1
                              0.00998 0.00412 0.01579
## strat0:flood risk pc2
                             -0.00674 -0.01336 -0.00015
## strat0:flood_risk_pc3
                             -0.00867 -0.01362 -0.00372
## strat0:flood_risk_pc4
                             -0.01375 -0.01829 -0.00918
                             -0.00092 -0.00533 0.00349
## strat0:flood_risk_pc5
## strat0:EP_POV
                              0.35202 0.34362 0.36034
## strat0:EP_UNEMP
                             0.09381 0.08729 0.10029
## strat0:EP PCI
                             -0.08317 -0.09008 -0.07625
## strat0:EP_NOHSDP
                              0.10002 0.08895 0.11130
## strat0:EP_MINRTY
                              0.13569 0.12516 0.14616
## strat0:EP_LIMENG
                             -0.18991 -0.19947 -0.18036
## strat0:EP_MUNIT
                             -0.02827 -0.03366 -0.02288
## strat0:EP_MOBILE
                             -0.02250 -0.02927 -0.01575
## strat0:EP CROWD
                             -0.02105 -0.02823 -0.01380
## strat0:EP NOVEH
                             0.10760 0.09856 0.11659
## strat0:EP_GROUPQ
                             -0.03283 -0.03639 -0.02927
## strat0:EP_UNINSUR
                             -0.00297 -0.01030 0.00439
## strat0:co
                             -0.05955 -0.08152 -0.03766
## strat0:no2
                             -0.14367 -0.17448 -0.11366
                             0.03335 -0.01517 0.08162
## strat0:o3
## strat0:pm10
                             -0.17287 -0.19342 -0.15227
## strat0:pm25
                             0.29212 0.26239 0.32183
## strat0:so2
                             -0.00810 -0.02881 0.01215
## strat0:summer_tmmx
                             0.05552 0.02104 0.08849
## strat0:winter_tmmx
                             -0.11357 -0.19440 -0.01503
## strat0:summer_rmax
                              0.03850 -0.00660 0.08232
## strat0:winter_rmax
                             -0.06366 -0.09684 -0.02998
## strat0:Data_Value_CSMOKING 0.66702 0.65428 0.67988
## strat1
                              9.89579 9.89080 9.90083
## strat1:flood_risk_pc1
                             -0.00536 -0.01136 0.00070
## strat1:flood_risk_pc2
                              0.01585 0.00919 0.02245
                              0.00596 0.00044 0.01142
## strat1:flood risk pc3
## strat1:flood_risk_pc4
                              0.00229 -0.00256 0.00721
## strat1:flood risk pc5
                              0.00106 -0.00380 0.00592
## strat1:EP_POV
                              0.19801 0.18901 0.20691
## strat1:EP UNEMP
                              0.04952 0.04441 0.05462
## strat1:EP_PCI
                              0.00884 -0.00410 0.02188
## strat1:EP NOHSDP
                              0.08805 0.07814 0.09799
## strat1:EP_MINRTY
                             0.46170 0.45180 0.47150
## strat1:EP_LIMENG
                             -0.27954 -0.28895 -0.27018
## strat1:EP_MUNIT
                              0.01349 0.00586 0.02104
## strat1:EP_MOBILE
                             -0.01182 -0.01684 -0.00685
```

```
## strat1:EP_CROWD
                              -0.02393 -0.03098 -0.01686
## strat1:EP_NOVEH
                              0.17206 0.16301 0.18114
                              -0.18147 -0.19107 -0.17179
## strat1:EP_GROUPQ
## strat1:EP_UNINSUR
                              -0.04491 -0.05172 -0.03803
## strat1:co
                              -0.09295 -0.11785 -0.06823
## strat1:no2
                              -0.16797 -0.20015 -0.13644
## strat1:o3
                              0.03346 -0.01507 0.08188
## strat1:pm10
                              -0.14327 -0.16377 -0.12308
## strat1:pm25
                              0.28095 0.25138 0.31033
## strat1:so2
                              -0.03189 -0.05207 -0.01178
## strat1:summer_tmmx
                              0.00121 -0.03336 0.03451
## strat1:winter_tmmx
                              -0.08841 -0.17009 0.00969
                              -0.02166 -0.06670 0.02236
## strat1:summer_rmax
## strat1:winter_rmax
                              -0.03993 -0.07298 -0.00662
## strat1:Data_Value_CSMOKING 0.92356 0.91109 0.93602
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
   [1] "strat0"
##
                                     "strat0:flood_risk_pc1"
   [3] "strat0:flood_risk_pc2"
                                     "strat0:flood_risk_pc3"
   [5] "strat0:flood_risk_pc4"
                                     "strat0:EP_POV"
## [7] "strat0:EP_UNEMP"
                                     "strat0:EP_PCI"
## [9] "strat0:EP_NOHSDP"
                                     "strat0:EP_MINRTY"
## [11] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
## [13] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [15] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [17] "strat0:co"
                                     "strat0:no2"
## [19] "strat0:pm10"
                                     "strat0:pm25"
## [21] "strat0:summer_tmmx"
                                     "strat0:winter_tmmx"
                                     "strat0:Data_Value_CSMOKING"
## [23] "strat0:winter_rmax"
```

"strat1:flood_risk_pc2"

"strat1:EP_POV"

"strat1:EP_NOHSDP"

"strat1:EP_LIMENG"

"strat1:EP_MOBILE"

"strat1:EP_NOVEH"

"strat1:no2"

"strat1:pm25"

"strat1:EP_UNINSUR"

"strat1:winter_rmax"

Credible Interval plots for the coefficients, in ggplot

[25] "strat1"

[27] "strat1:flood_risk_pc3"

[45] "strat1:Data_Value_CSMOKING"

[29] "strat1:EP_UNEMP"

[31] "strat1:EP_MINRTY"

[33] "strat1:EP_MUNIT"

[35] "strat1:EP_CROWD"

[39] "strat1:co"

[41] "strat1:pm10"

[43] "strat1:so2"

[37] "strat1:EP_GROUPQ"

```
post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                     levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                                                         rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta inference df strat1 <- beta inference df[(nrow(beta inference df)/2 + 1):nrow(beta inference df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 1.5)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
              plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 11.5, y = 1, label = "Social Vulnerability Index",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 20.5, y = 1, label = "Air Pollution",
                    col = "blue", size = 4.5) +
   annotate(geom = "text", x = 25.5, y = 1, label = "GRIDMET",
                    col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                        "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                        "Minority", "Poor English",
                                                        "Multi-Unit", "Mobile", "Crowded",
                                                        "No Vehicle", "Group Quarters", "Uninsured",
                                                        "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                        "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                        "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                       values = c("#F8766D", "#00BFC4"),
                                       drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpl2.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               9.99906 9.98953 10.00855
## strat0:flood risk pc1
                               0.00941 0.00266 0.01615
## strat0:flood_risk_pc2
                              -0.00489 -0.01270 0.00290
## strat0:flood_risk_pc3
                              -0.01113 -0.01705 -0.00520
## strat0:flood_risk_pc4
                              -0.00466 -0.01072 0.00134
## strat0:flood risk pc5
                              -0.00309 -0.00889
                                                 0.00271
## strat0:EP POV
                               0.34665 0.33659
                                                 0.35663
## strat0:EP_UNEMP
                               0.08162 0.07493 0.08824
```

```
## strat0:EP PCI
                            -0.08781 -0.09588 -0.07985
## strat0:EP NOHSDP
                             0.15158 0.13674 0.16629
## strat0:EP AGE65
                            0.04287 0.03577 0.05004
## strat0:EP_AGE17
                             0.00612 -0.00212 0.01434
## strat0:EP_DISABL
                            -0.04526 -0.05312 -0.03745
## strat0:EP SNGPNT
                            0.06454 0.05654 0.07252
## strat0:EP MUNIT
                            -0.03139 -0.04014 -0.02263
## strat0:EP MOBILE
                            -0.02874 -0.03496 -0.02257
## strat0:EP_CROWD
                            0.01581 0.00233 0.02914
## strat0:EP_NOVEH
                            0.13571 0.12406 0.14738
## strat0:EP_GROUPQ
                            0.00889 0.00324 0.01451
## strat0:EP_UNINSUR
                            -0.01708 -0.02614 -0.00797
## strat0:co
                            -0.10393 -0.12848 -0.07957
## strat0:no2
                            -0.13115 -0.16510 -0.09752
## strat0:o3
                            0.05404 0.00160 0.11625
## strat0:pm10
                            -0.12198 -0.14399 -0.09986
## strat0:pm25
                            0.26487 0.23267 0.29648
## strat0:so2
                            -0.01024 -0.03321 0.01256
## strat0:summer_tmmx
                            0.02651 -0.00948 0.06118
## strat0:winter tmmx
                            -0.01612 -0.10780 0.07143
## strat0:summer_rmax
                             0.02342 -0.02535 0.06800
## strat0:winter_rmax
                            -0.06347 -0.09936 -0.02752
## strat1
                             9.91846 9.91248 9.92446
## strat1:flood_risk_pc1
                             0.00368 -0.00283 0.01024
## strat1:flood_risk_pc2
                             0.00737 0.00056 0.01419
## strat1:flood_risk_pc3
                             0.00148 -0.00404 0.00702
## strat1:flood_risk_pc4
                            -0.00809 -0.01262 -0.00352
## strat1:flood_risk_pc5
                            -0.00001 -0.00441 0.00439
## strat1:EP_POV
                             0.21822 0.20970 0.22672
## strat1:EP_UNEMP
                            0.10426 0.09884 0.10965
## strat1:EP_PCI
                            -0.11826 -0.12783 -0.10868
## strat1:EP_NOHSDP
                            -0.03546 -0.04405 -0.02685
## strat1:EP_AGE65
                            0.09362 0.08550 0.10178
## strat1:EP_AGE17
                             0.00749 -0.00025 0.01531
## strat1:EP_DISABL
                            -0.04196 -0.04931 -0.03464
## strat1:EP SNGPNT
                            0.08019 0.07401 0.08638
## strat1:EP_MUNIT
                            -0.01101 -0.01689 -0.00514
## strat1:EP MOBILE
                            -0.02878 -0.03466 -0.02296
## strat1:EP_CROWD
                            -0.05000 -0.05643 -0.04358
## strat1:EP NOVEH
                            0.16640 0.15757 0.17518
## strat1:EP GROUPQ
                            -0.09129 -0.09665 -0.08602
## strat1:EP UNINSUR
                            -0.06280 -0.06960 -0.05603
## strat1:co
                            -0.11777 -0.14481 -0.09107
## strat1:no2
                            -0.06414 -0.09797 -0.03128
                            0.07824 0.02542 0.14097
## strat1:o3
## strat1:pm10
                            -0.19517 -0.21811 -0.17203
## strat1:pm25
                            0.30593 0.27340 0.33815
## strat1:so2
                            -0.05205 -0.07625 -0.02818
## strat1:summer_tmmx
                             0.01795 -0.01894 0.05365
## strat1:winter_tmmx
                             0.04904 -0.04320 0.13588
## strat1:summer_rmax
                            -0.00576 -0.05503 0.03902
## strat1:winter_rmax
                            -0.06682 -0.10313 -0.03037
## strat1:Data_Value_CSMOKING 1.01413 1.00076 1.02756
```

```
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
```

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
   [1] "strat0"
                                      "strat0:flood_risk_pc1"
   [3] "strat0:flood_risk_pc3"
                                      "strat0:EP_POV"
##
   [5] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [7] "strat0:EP_NOHSDP"
                                      "strat0:EP_AGE65"
                                      "strat0:EP_SNGPNT"
## [9] "strat0:EP_DISABL"
## [11] "strat0:EP_MUNIT"
                                      "strat0:EP_MOBILE"
## [13] "strat0:EP_CROWD"
                                      "strat0:EP_NOVEH"
## [15] "strat0:EP_GROUPQ"
                                      "strat0:EP_UNINSUR"
## [17] "strat0:co"
                                      "strat0:no2"
## [19] "strat0:o3"
                                      "strat0:pm10"
## [21] "strat0:pm25"
                                      "strat0:winter_rmax"
## [23] "strat0:Data_Value_CSMOKING" "strat1"
## [25] "strat1:flood_risk_pc2"
                                      "strat1:flood_risk_pc4"
## [27] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [29] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [31] "strat1:EP_AGE65"
                                      "strat1:EP_DISABL"
## [33] "strat1:EP_SNGPNT"
                                      "strat1:EP_MUNIT"
## [35] "strat1:EP_MOBILE"
                                      "strat1:EP_CROWD"
## [37] "strat1:EP_NOVEH"
                                      "strat1:EP_GROUPQ"
## [39] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [41] "strat1:no2"
                                      "strat1:o3"
## [43] "strat1:pm10"
                                      "strat1:pm25"
## [45] "strat1:so2"
                                      "strat1:winter_rmax"
## [47] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-1, 1.5)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                 axis.text=element_text(size=12),
                 plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 1, label = "Social Vulnerability Index",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 22.5, y = 1, label = "Air Pollution",
                       col = "blue", size = 4.5) +
    annotate(geom = "text", x = 27.5, y = 1, label = "GRIDMET",
                       col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                "65 or Over", "17 or Under", "Disability",
                                                                "Single-Parent",
                                                                "Multi-Unit", "Mobile", "Crowded",
                                                                "No Vehicle", "Group Quarters", "Uninsured",
                                                                "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                                "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                            values = c("#F8766D", "#00BFC4"),
                                            drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpl3.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               9.88563 9.88127
                                                 9.88996
## strat0:flood risk pc1
                               0.00909 0.00296 0.01530
## strat0:flood_risk_pc2
                              -0.00165 -0.00851
                                                 0.00527
## strat0:flood_risk_pc3
                              -0.00395 -0.00922
                                                 0.00128
## strat0:flood_risk_pc4
                              -0.01283 -0.01792 -0.00770
## strat0:flood risk pc5
                                                 0.00936
                               0.00444 -0.00047
## strat0:EP POV
                               0.25566 0.24570
                                                 0.26572
## strat0:EP_UNEMP
                               0.06538 0.05905 0.07168
```

```
-0.02582 -0.03350 -0.01817
## strat0:EP PCI
## strat0:EP_NOHSDP
                         0.07125 0.05919 0.08336
## strat0:EP AGE65
                         0.11614 0.10952 0.12286
## strat0:EP_AGE17
                          0.03901 0.03223 0.04581
                         -0.01989 -0.02749 -0.01227
## strat0:EP_DISABL
## strat0:EP SNGPNT
                         0.02869 0.02149 0.03595
## strat0:EP MINRTY
                         0.33452 0.32379 0.34521
## strat0:EP_LIMENG
## strat0:EP_UNINSUR
                          -0.24641 -0.25876 -0.23410
                      -0.01275 -0.02088 -0.00454
## strat0:co
                         -0.06220 -0.08760 -0.03704
## strat0:no2
                          -0.11861 -0.15119 -0.08586
                          -0.06525 -0.11252 -0.01469
## strat0:o3
## strat0:pm10
                         -0.16075 -0.18154 -0.14025
## strat0:pm25
                         0.30707 0.27750 0.33693
## strat0:so2
                          0.00511 -0.01644 0.02616
## strat0:summer_tmmx
                          0.03706 0.00232 0.07170
## strat1
                          9.88356 9.87949 9.88765
## strat1:flood_risk_pc5
                         0.00088 -0.00375 0.00546
## strat1:EP_POV
                          0.31772 0.31025 0.32516
## strat1:EP_UNEMP
                          0.07534 0.06984 0.08075
## strat1:EP_PCI
                         -0.08702 -0.09658 -0.07737
## strat1:EP_NOHSDP
                         0.05042 0.04074 0.06008
## strat1:EP_AGE65
                          0.13794 0.13078 0.14509
## strat1:EP_AGE17
                          0.03907 0.03254 0.04561
## strat1:EP_DISABL
                         -0.04471 -0.05154 -0.03788
## strat1:EP_SNGPNT
                         0.04370 0.03722 0.05015
                          0.35996 0.34956 0.37032
## strat1:EP_MINRTY
## strat1:EP_LIMENG
                         -0.25852 -0.26697 -0.25011
## strat1:EP_UNINSUR -0.02638 -0.03300 -0.01979
## strat1:co
                         -0.02935 -0.05176 -0.00703
## strat1:no2
                         -0.16136 -0.19199 -0.13091
## strat1:o3
                        -0.06381 -0.11090 -0.01333
## strat1:pm10
                        -0.16431 -0.18560 -0.14347
## strat1:pm25
                         0.32205 0.29281 0.35179
## strat1:so2
                          0.00225 -0.01872 0.02298
## strat1:summer_tmmx
                          0.02393 -0.01072 0.05793
## strat1:winter_tmmx
                          -0.13158 -0.21986 -0.03289
                          -0.00652 -0.04827 0.03752
## strat1:summer_rmax
## strat1:winter_rmax
                          -0.06836 -0.10291 -0.03595
## strat1:Data_Value_CSMOKING 0.85738 0.84477 0.86999
```

saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp

List of significant beta coefficients:

```
##
  [1] "strat0"
                                      "strat0:flood_risk_pc1"
  [3] "strat0:flood_risk_pc4"
                                      "strat0:EP_POV"
##
## [5] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [7] "strat0:EP_NOHSDP"
                                      "strat0:EP_AGE65"
## [9] "strat0:EP_AGE17"
                                      "strat0:EP_DISABL"
## [11] "strat0:EP_SNGPNT"
                                      "strat0:EP_MINRTY"
## [13] "strat0:EP_LIMENG"
                                      "strat0:EP_UNINSUR"
## [15] "strat0:co"
                                      "strat0:no2"
## [17] "strat0:o3"
                                      "strat0:pm10"
## [19] "strat0:pm25"
                                      "strat0:summer_tmmx"
## [21] "strat0:winter_tmmx"
                                      "strat0:winter_rmax"
## [23] "strat0:Data_Value_CSMOKING"
                                      "strat1"
## [25] "strat1:flood_risk_pc4"
                                      "strat1:EP_POV"
## [27] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [29] "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE65"
## [31] "strat1:EP_AGE17"
                                      "strat1:EP_DISABL"
## [33] "strat1:EP_SNGPNT"
                                      "strat1:EP_MINRTY"
## [35] "strat1:EP_LIMENG"
                                      "strat1:EP_UNINSUR"
## [37] "strat1:co"
                                      "strat1:no2"
## [39] "strat1:o3"
                                      "strat1:pm10"
## [41] "strat1:pm25"
                                      "strat1:winter_tmmx"
## [43] "strat1:winter_rmax"
                                      "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1, 1.5)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
```

row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]

```
geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
geom_vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +
geom_hline(yintercept = 0, col = "red") +
annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                     col = "blue", size = 4.5) +
annotate(geom = "text", x = 11, y = 1, label = "Social Vulnerability Index",
                     col = "blue", size = 4.5) +
annotate(geom = "text", x = 19.5, y = 1, label = "Air Pollution",
                     col = "blue", size = 4.5) +
annotate(geom = "text", x = 24.5, y = 1, label = "GRIDMET",
                     col = "blue", size = 4.5) +
scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                   "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                   "65 or Over", "17 or Under", "Disability",
                                                                   "Single-Parent",
                                                                   "Minority", "Poor English",
                                                                   "Uninsured",
                                                                   "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                   "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity "
                                                                   "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on RPL
geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
scale_color_manual(name = "Strata",
                                             values = c("#F8766D", "#00BFC4"),
                                             drop = FALSE) +
geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpl4.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls_CASTHMA.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                               9.75622 9.74944
                                                 9.76299
## strat0:flood risk pc1
                               0.00327 -0.00404
                                                 0.01060
## strat0:flood_risk_pc2
                               0.01177 0.00340
                                                 0.02006
## strat0:flood_risk_pc3
                              -0.00240 -0.00856
                                                 0.00377
## strat0:flood_risk_pc4
                              -0.01433 -0.02045 -0.00825
## strat0:flood_risk_pc5
                               0.00004 -0.00577 0.00582
## strat0:EP_UNINSUR
                              -0.02325 -0.03329 -0.01313
## strat0:co
                              -0.02119 -0.04792 0.00560
```

```
## strat0:no2
                               -0.05715 -0.09241 -0.02048
## strat0:o3
                              -0.02102 -0.08280 0.03279
## strat0:pm10
                             -0.19038 -0.21629 -0.16516
## strat0:pm25
                               0.40374 0.36681 0.43983
## strat0:so2
                               0.02362 -0.00121 0.04928
## strat0:summer tmmx
                              0.02812 -0.01473 0.07639
## strat0:winter_tmmx
                             -0.14511 -0.28701 -0.01899
## strat0:summer_rmax
                              0.00074 -0.05115 0.05542
## strat0:winter_rmax
                               -0.06271 -0.10157 -0.02412
## strat0:Data_Value_CSMOKING 1.10676 1.09537 1.11818
                              9.93931 9.93349 9.94509
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
## strat1:flood_risk_pc5
## strat1:EP UNINSUR
## strat1:flood_risk_pc1
                               0.00817 0.00113 0.01523
                               -0.02120 -0.02891 -0.01355
                               -0.01027 -0.01660 -0.00402
                               -0.01417 -0.01955 -0.00882
                               -0.00308 -0.00841 0.00230
## strat1:EP_UNINSUR
                               -0.08751 -0.09417 -0.08079
## strat1:co
                               -0.11410 -0.14362 -0.08465
## strat1:no2
                               0.12848 0.09206 0.16534
## strat1:o3
                               -0.06187 -0.12384 -0.00737
## strat1:pm10
                              -0.27097 -0.29773 -0.24468
## strat1:pm25
                              0.46442 0.42713 0.50001
                               0.00146 -0.02313 0.02704
## strat1:so2
## strat1:summer_tmmx
                               0.01963 -0.02352 0.06782
## strat1:winter_tmmx
                              -0.06299 -0.20464 0.06378
## strat1:summer_rmax
                              -0.04780 -0.10020 0.00667
## strat1:winter_rmax
                               -0.10682 -0.14588 -0.06773
## strat1:Data_Value_CSMOKING 1.31950 1.31100 1.32798
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/CASTHMA_rp
List of significant beta coefficients:
```

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
```

```
## [1] "strat0"
                                     "strat0:flood_risk_pc2"
                                     "strat0:EP_UNINSUR"
## [3] "strat0:flood_risk_pc4"
## [5] "strat0:no2"
                                     "strat0:pm10"
                                     "strat0:winter_tmmx"
## [7] "strat0:pm25"
## [9] "strat0:winter_rmax"
                                     "strat0:Data_Value_CSMOKING"
## [11] "strat1"
                                     "strat1:flood_risk_pc1"
## [13] "strat1:flood_risk_pc2"
                                     "strat1:flood_risk_pc3"
## [15] "strat1:flood_risk_pc4"
                                     "strat1:EP_UNINSUR"
## [17] "strat1:co"
                                     "strat1:no2"
## [19] "strat1:o3"
                                     "strat1:pm10"
## [21] "strat1:pm25"
                                     "strat1:winter_rmax"
## [23] "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
```

```
post_median = `50%`,
                                                       post_2.5 = 2.5\%,
                                                       post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                                                        levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                                                            rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta inference df strat0 <- beta inference df[1:(nrow(beta inference df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
   geom_point() +
   ylim(c(-1, 1.5)) +
   theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
               axis.text=element_text(size=12),
               plot.margin = margin(5.5, 5.5, 5.5, 10)) +
   geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
   geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
   geom_hline(yintercept = 0, col = "red") +
   annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 9.5, y = 1, label = "Air Pollution",
                     col = "blue", size = 4.5) +
   annotate(geom = "text", x = 14.5, y = 1, label = "GRIDMET",
                     col = "blue", size = 4.5) +
   scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                           "Uninsured",
                                                           "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                           "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity", "Winter
                                                           "Smoking")) + ggtitle("95% Credible Intervals, Asthma, Stratified on All
   geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
   geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
   scale_color_manual(name = "Strata",
                                         values = c("#F8766D", "#00BFC4"),
                                         drop = FALSE) +
   geom_hline(yintercept = 0.2 * sd_CASTHMA, col = "red", linetype = "dashed") +
   geom_hline(yintercept = -0.2 * sd_CASTHMA, col = "red", linetype = "dashed")
```



```
ggsave(here("figures/final_figures/stratified_analysis/CASTHMA_CI_rpls.pdf"),
       plot = p, device = "pdf",
       width = 8, height = 6, units = "in")
```

MHLTH Stratified Analysis

Repeating the stratified analysis in the last section, this time just doing the plots

Stratified on Poverty

```
load(here("modeling_files/stratified_analysis/model_stratif_poverty_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                    97.5%
                              14.05947 14.04671 14.07223
## strat0
## strat0:flood_risk_pc1
                              -0.00184 -0.01307 0.00924
## strat0:flood_risk_pc2
                               0.01708 0.00431
                                                 0.02976
## strat0:flood_risk_pc3
                               0.00648 -0.00296
                                                 0.01608
                              -0.00581 -0.01485 0.00326
## strat0:flood_risk_pc4
## strat0:flood_risk_pc5
                               0.00517 -0.00336 0.01371
```

```
## strat0:EP UNEMP
                            0.08925 0.07501 0.10341
## strat0:EP PCI
                             -0.17038 -0.18402 -0.15655
                             0.11597 0.08972 0.14229
## strat0:EP NOHSDP
## strat0:EP_AGE65
                             -0.22733 -0.24039 -0.21431
## strat0:EP_AGE17
                             -0.03245 -0.04743 -0.01759
## strat0:EP DISABL
                             -0.03668 -0.05240 -0.02079
## strat0:EP SNGPNT
                             0.07427 0.05954 0.08905
## strat0:EP MINRTY
                             -0.07790 -0.10024 -0.05588
## strat0:EP_LIMENG
                              0.05954 0.03559 0.08327
## strat0:EP_MUNIT
                             0.08564 0.07322 0.09804
## strat0:EP_MOBILE
                             -0.02338 -0.03577 -0.01101
## strat0:EP_CROWD
                              0.07613 0.05683 0.09549
## strat0:EP_NOVEH
                              0.11751 0.09594 0.13894
## strat0:EP_GROUPQ
                              0.17599 0.16353 0.18839
## strat0:EP_UNINSUR
                              0.03959 0.02338
                                               0.05574
## strat0:co
                              0.10258 0.06221
                                                0.14291
## strat0:no2
                             0.14149 0.08615 0.19601
## strat0:o3
                             -0.01658 -0.10130 0.07347
## strat0:pm10
                             -0.15972 -0.19648 -0.12402
## strat0:pm25
                              0.30003 0.24911 0.35454
## strat0:so2
                              0.04434 0.00702 0.08183
## strat0:summer tmmx
                              0.05300 -0.00508 0.11704
## strat0:winter_tmmx
                             -0.00398 -0.20391 0.14552
## strat0:summer rmax
                              0.03978 -0.04264 0.12482
## strat0:winter rmax
                             -0.05081 -0.11053 0.00965
## strat0:Data_Value_CSMOKING 2.74502 2.71650 2.77333
## strat1
                             14.21971 14.20887 14.23045
## strat1:flood_risk_pc1
                             -0.01064 -0.02106 -0.00026
## strat1:flood_risk_pc2
                             -0.01192 -0.02354 -0.00024
## strat1:flood_risk_pc3
                             -0.01572 -0.02487 -0.00658
## strat1:flood_risk_pc4
                             -0.00932 -0.01760 -0.00115
## strat1:flood_risk_pc5
                             -0.00682 -0.01498 0.00133
## strat1:EP_UNEMP
                              0.13909 0.13053 0.14771
## strat1:EP_PCI
                             -0.97670 -1.00046 -0.95314
## strat1:EP_NOHSDP
                              0.18956 0.17280 0.20620
## strat1:EP_AGE65
                             -0.40953 -0.42321 -0.39583
## strat1:EP AGE17
                             -0.17848 -0.19195 -0.16481
## strat1:EP_DISABL
                             -0.24717 -0.25857 -0.23570
## strat1:EP SNGPNT
                              0.14464 0.13396 0.15535
## strat1:EP_MINRTY
                             -0.22903 -0.24695 -0.21095
## strat1:EP LIMENG
                             -0.03292 -0.04778 -0.01799
                             0.22072 0.20991 0.23156
## strat1:EP MUNIT
## strat1:EP_MOBILE
                             -0.04202 -0.05136 -0.03277
## strat1:EP_CROWD
                              0.07309 0.06181 0.08439
## strat1:EP_NOVEH
                              0.25182 0.23762 0.26604
## strat1:EP_GROUPQ
                              0.15220 0.14404 0.16040
## strat1:EP_UNINSUR
                             -0.09023 -0.10184 -0.07879
## strat1:co
                              0.10435 0.05997 0.14870
## strat1:no2
                             -0.03093 -0.08740 0.02378
## strat1:o3
                             0.03027 -0.05432 0.12085
## strat1:pm10
                            -0.22038 -0.25841 -0.18383
## strat1:pm25
                            0.36805 0.31676 0.42310
## strat1:so2
                             0.04734 0.01052 0.08444
## strat1:summer tmmx
                            0.03700 -0.02192 0.10119
```

```
0.12018 -0.07962 0.26905
## strat1:winter_tmmx
## strat1:summer_rmax
                              -0.00967 -0.09248 0.07530
                              -0.02356 -0.08296 0.03696
## strat1:winter rmax
## strat1:Data_Value_CSMOKING 2.51264 2.49246 2.53298
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_pove
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc2"
## [3] "strat0:EP UNEMP"
                                     "strat0:EP PCI"
                                     "strat0:EP_AGE65"
## [5] "strat0:EP NOHSDP"
## [7] "strat0:EP_AGE17"
                                     "strat0:EP DISABL"
## [9] "strat0:EP_SNGPNT"
                                     "strat0:EP_MINRTY"
## [11] "strat0:EP_LIMENG"
                                     "strat0:EP_MUNIT"
```

"strat0:EP_CROWD"

"strat0:EP_GROUPQ"

"strat1:flood_risk_pc2"

"strat1:flood_risk_pc4"

"strat0:co"

"strat0:pm10"

"strat1:EP_PCI"

"strat1:EP_AGE65"

"strat1:EP_DISABL"

"strat1:EP_MINRTY"

"strat1:EP_MUNIT"

"strat1:EP_CROWD"

"strat1:EP_GROUPQ"

"strat1:Data_Value_CSMOKING"

"strat1:co" "strat1:pm25"

"strat0:so2"

Credible Interval plots for the coefficients, in ggplot

[23] "strat0:Data_Value_CSMOKING" "strat1"

[13] "strat0:EP_MOBILE"

[15] "strat0:EP_NOVEH"

[29] "strat1:EP_UNEMP"

[31] "strat1:EP_NOHSDP"

[33] "strat1:EP_AGE17"

[35] "strat1:EP_SNGPNT"

[37] "strat1:EP_LIMENG"

[39] "strat1:EP MOBILE"

[41] "strat1:EP_NOVEH"

[45] "strat1:pm10" ## [47] "strat1:so2"

[43] "strat1:EP_UNINSUR"

[19] "strat0:no2"

[21] "strat0:pm25"

[17] "strat0:EP_UNINSUR"

[25] "strat1:flood_risk_pc1"

[27] "strat1:flood_risk_pc3"

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = 2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,
                                       levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                         rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
```

```
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
   ylim(c(-1.5, 4)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                axis.text=element_text(size=12),
                plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 20.5, 26.5, 30.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 3.8, label = "Social Vulnerability Index",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 23.5, y = 3.8, label = "Air Pollution",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 28.5, y = 3.8, label = "GRIDMET",
                      col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                             "Unemployed", "Per Capita Income", "No High School",
                                                             "65 or Over", "17 or Under", "Disability",
                                                             "Single-Parent", "Minority", "Poor English",
                                                             "Multi-Unit", "Mobile", "Crowded",
                                                             "No Vehicle", "Group Quarters", "Uninsured",
                                                             "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                             "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity "
                                                             "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                          values = c("#F8766D", "#00BFC4"),
                                          drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
    geom hline(vintercept = -0.2 * sd MHLTH, col = "red", linetype = "dashed")
```

p

95% Credible Intervals, Poor Mental Health, Stratified on Poverty


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_poverty.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME1

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl1_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              14.07636 14.06121 14.09134
                               0.00041 -0.01150 0.01220
## strat0:flood_risk_pc1
## strat0:flood_risk_pc2
                               0.01121 -0.00234 0.02474
## strat0:flood_risk_pc3
                               0.00295 -0.00704 0.01291
## strat0:flood_risk_pc4
                              -0.01337 -0.02282 -0.00385
## strat0:flood_risk_pc5
                              0.00193 -0.00707 0.01100
## strat0:EP_AGE65
                              -0.25804 -0.27113 -0.24497
## strat0:EP_AGE17
                              -0.09463 -0.10960 -0.07954
## strat0:EP DISABL
                             -0.03532 -0.05129 -0.01939
## strat0:EP_SNGPNT
                              0.10692 0.09116 0.12267
## strat0:EP_MINRTY
                             -0.03117 -0.05468 -0.00757
```

```
## strat0:EP_MUNIT
                               0.08816 0.07583 0.10051
## strat0:EP MOBILE
                             -0.00470 -0.01925 0.00986
## strat0:EP_CROWD
                              0.09523 0.07203 0.11844
## strat0:EP_NOVEH
                               0.18957 0.16786 0.21139
## strat0:EP GROUPQ
                               0.21271 0.20189 0.22351
## strat0:EP_UNINSUR
                              0.05379 0.03591 0.07170
## strat0:co
                               0.10014 0.05641 0.14350
## strat0:no2
                              0.18211 0.12105 0.24200
## strat0:o3
                              -0.04821 -0.14324 0.04472
## strat0:pm10
                             -0.18750 -0.22709 -0.14783
                              0.41384 0.35602 0.47171
## strat0:pm25
## strat0:so2
                             0.03062 -0.00961 0.06993
## strat0:summer_tmmx
                             0.06567 -0.00351 0.13001
## strat0:winter_tmmx
                              -0.10078 -0.26152 0.10112
## strat0:summer_rmax
## strat0:winter_rmax
                               0.05608 -0.03233 0.14088
                              -0.02006 -0.08400 0.04510
## strat0:Data_Value_CSMOKING 2.90290 2.87752 2.92862
## strat1
                           14.45215 14.44110 14.46329
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
## strat1:flood_risk_pc4
## strat1:flood_risk_pc5
## strat1:flood_risk_pc1
                              -0.00245 -0.01365 0.00884
                              -0.01903 -0.03142 -0.00665
                              -0.01167 -0.02182 -0.00172
                              -0.01038 -0.01910 -0.00163
                              0.00507 -0.00365 0.01383
## strat1:EP_AGE65
                              -0.41428 -0.42926 -0.39918
## strat1:EP_AGE17
                             -0.11709 -0.13144 -0.10269
## strat1:EP_DISABL
                             -0.21070 -0.22282 -0.19848
## strat1:EP_SNGPNT
                              0.15432 0.14326 0.16533
## strat1:EP_MINRTY
                             -0.04108 -0.05933 -0.02283
## strat1:EP_LIMENG
                             0.06949 0.05589 0.08292
                              0.19108 0.17907 0.20305
## strat1:EP_MUNIT
## strat1:EP_MOBILE
                            -0.01789 -0.02745 -0.00839
## strat1:EP_CROWD
                             0.11279 0.10113 0.12444
## strat1:EP_NOVEH
                             0.31876 0.30356 0.33394
## strat1:EP_GROUPQ
                               0.27661 0.26783 0.28538
## strat1:EP_UNINSUR
                             -0.06466 -0.07656 -0.05285
## strat1:co
                              0.10647 0.05888 0.15342
## strat1:no2
                              -0.00704 -0.06869 0.05287
## strat1:o3
                             -0.02023 -0.11548 0.07256
## strat1:pm10
                             -0.24547 -0.28660 -0.20493
## strat1:pm25
                             0.53593 0.47743 0.59305
                              0.00160 -0.03766 0.04014
## strat1:so2
## strat1:summer_tmmx
                               0.04451 -0.02560 0.11045
## strat1:winter_tmmx
                               0.05280 -0.10826 0.25412
## strat1:summer_rmax
                              -0.06693 -0.15553 0.01845
## strat1:winter_rmax
                               0.02940 -0.03489 0.09462
## strat1:Data_Value_CSMOKING 2.92075 2.90223 2.93919
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl1
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                     "strat0:flood_risk_pc4"
```

0.05570 0.02948 0.08173

strat0:EP_LIMENG

```
## [3] "strat0:EP_AGE65"
                                      "strat0:EP_AGE17"
## [5] "strat0:EP_DISABL"
                                     "strat0:EP_SNGPNT"
## [7] "strat0:EP_MINRTY"
                                     "strat0:EP_LIMENG"
## [9] "strat0:EP_MUNIT"
                                     "strat0:EP_CROWD"
## [11] "strat0:EP_NOVEH"
                                      "strat0:EP_GROUPQ"
## [13] "strat0:EP UNINSUR"
                                     "strat0:co"
## [15] "strat0:no2"
                                     "strat0:pm10"
## [17] "strat0:pm25"
                                      "strat0:Data_Value_CSMOKING"
## [19] "strat1"
                                     "strat1:flood_risk_pc2"
## [21] "strat1:flood_risk_pc3"
                                     "strat1:flood_risk_pc4"
## [23] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
                                      "strat1:EP_SNGPNT"
## [25] "strat1:EP_DISABL"
## [27] "strat1:EP_MINRTY"
                                     "strat1:EP_LIMENG"
## [29] "strat1:EP_MUNIT"
                                     "strat1:EP_MOBILE"
## [31] "strat1:EP_CROWD"
                                      "strat1:EP_NOVEH"
                                      "strat1:EP_UNINSUR"
## [33] "strat1:EP_GROUPQ"
## [35] "strat1:co"
                                     "strat1:pm10"
## [37] "strat1:pm25"
                                      "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

Splitting up the beta coefficients for each strata

```
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]</pre>
```

Note: The intercept for both strata is not included.

```
col = "blue", size = 4.5) +
  annotate(geom = "text", x = 20.5, y = 3.8, label = "Air Pollution",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 25.5, y = 3.8, label = "GRIDMET",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                              "65 or Over", "17 or Under", "Disability",
                              "Single-Parent", "Minority", "Poor English",
                              "Multi-Unit", "Mobile", "Crowded",
                              "No Vehicle", "Group Quarters", "Uninsured",
                              "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Hu
                              "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
  geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
  geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
  scale_color_manual(name = "Strata",
                     values = c("#F8766D", "#00BFC4"),
                     drop = FALSE) +
  geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
  geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, Poor Mental Health, Stratified on RPL Theme 1


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpl1.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME2

```
load(here("modeling files/stratified analysis/model stratif rp12 MHLTH.RData"))
beta samples matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
                                                  97.5%
##
                                  50%
                                          2.5%
## strat0
                             14.30661 14.29818 14.31510
## strat0:flood_risk_pc1
                              0.02131 0.01121 0.03139
## strat0:flood risk pc2
                             -0.00723 -0.01869 0.00427
## strat0:flood_risk_pc3
                             -0.00211 -0.01066 0.00646
## strat0:flood_risk_pc4
                             -0.01781 -0.02568 -0.00989
                             0.00422 -0.00343 0.01189
## strat0:flood_risk_pc5
## strat0:EP_POV
                             1.06868 1.05384 1.08340
## strat0:EP_UNEMP
                             0.08676 0.07541 0.09805
## strat0:EP PCI
                             -0.35894 -0.37085 -0.34691
## strat0:EP_NOHSDP
                             -0.00128 -0.02055 0.01830
## strat0:EP_MINRTY
                             -0.08711 -0.10538 -0.06895
## strat0:EP_LIMENG
                            0.01373 -0.00285 0.03026
## strat0:EP_MUNIT
                            0.05483 0.04546 0.06419
## strat0:EP_MOBILE
                             -0.08832 -0.10013 -0.07657
## strat0:EP CROWD
                            0.13251 0.12000 0.14508
## strat0:EP NOVEH
                            -0.09704 -0.11272 -0.08142
## strat0:EP_GROUPQ
                             0.25105 0.24483 0.25724
## strat0:EP_UNINSUR
                             0.05375 0.04098 0.06657
## strat0:co
                             0.13064 0.09276 0.16831
## strat0:no2
                             -0.07947 -0.13176 -0.02815
## strat0:o3
                             -0.00886 -0.09103 0.07275
## strat0:pm10
                             -0.04927 -0.08430 -0.01413
## strat0:pm25
                            0.30198 0.25146 0.35266
## strat0:so2
                            0.06000 0.02475 0.09453
                             0.13605 0.07791 0.19191
## strat0:summer_tmmx
## strat0:winter_tmmx
                             -0.06092 -0.19971 0.10337
## strat0:summer_rmax
                              0.08365 0.00775 0.15828
## strat0:winter_rmax
                             -0.03945 -0.09559 0.01713
## strat0:Data_Value_CSMOKING 2.13351 2.11127 2.15590
## strat1
                             14.12187 14.11308 14.13073
## strat1:flood_risk_pc1
                              0.01306 0.00266 0.02355
## strat1:flood_risk_pc2
                              0.00942 -0.00206 0.02085
## strat1:flood risk pc3
                              0.00637 -0.00319 0.01585
## strat1:flood_risk_pc4
                             -0.00517 -0.01355 0.00334
## strat1:flood_risk_pc5
                              0.00437 -0.00407 0.01278
## strat1:EP_POV
                              0.44656 0.43089 0.46211
## strat1:EP UNEMP
                              0.02534 0.01647 0.03424
## strat1:EP_PCI
                             -0.29838 -0.32087 -0.27575
## strat1:EP NOHSDP
                             0.17839 0.16106 0.19565
## strat1:EP_MINRTY
                              0.11621 0.09915 0.13309
## strat1:EP_LIMENG
                             0.00374 -0.01255 0.01992
## strat1:EP_MUNIT
                              0.10365 0.09042 0.11677
## strat1:EP_MOBILE
                             -0.05947 -0.06819 -0.05084
```

```
## strat1:EP_CROWD
                              0.09810 0.08590 0.11044
## strat1:EP_NOVEH
                             -0.00152 -0.01721 0.01423
## strat1:EP_GROUPQ
                             -0.11601 -0.13282 -0.09913
## strat1:EP_UNINSUR
                              0.01266 0.00078 0.02457
## strat1:co
                              0.04578 0.00303 0.08824
## strat1:no2
                              0.04898 -0.00595 0.10289
## strat1:03
                             -0.01080 -0.09281 0.07078
## strat1:pm10
                             -0.02841 -0.06330 0.00618
## strat1:pm25
                              0.23900 0.18871 0.28906
## strat1:so2
                              0.01775 -0.01658 0.05192
## strat1:summer_tmmx
                             0.04003 -0.01864 0.09627
## strat1:winter_tmmx
                              0.09914 -0.04064 0.26309
## strat1:summer_rmax
                             -0.03122 -0.10693 0.04379
                              0.00374 -0.05216 0.05981
## strat1:winter_rmax
## strat1:Data_Value_CSMOKING 2.64618 2.62452 2.66777
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl2
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
##
   [1] "strat0"
```

```
"strat0:flood_risk_pc1"
## [3] "strat0:flood_risk_pc4"
                                      "strat0:EP_POV"
   [5] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [7] "strat0:EP_MINRTY"
                                     "strat0:EP_MUNIT"
## [9] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [11] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [13] "strat0:EP_UNINSUR"
                                     "strat0:co"
## [15] "strat0:no2"
                                     "strat0:pm10"
## [17] "strat0:pm25"
                                     "strat0:so2"
                                      "strat0:summer_rmax"
## [19] "strat0:summer_tmmx"
## [21] "strat0:Data_Value_CSMOKING" "strat1"
## [23] "strat1:flood_risk_pc1"
                                     "strat1:EP_POV"
## [25] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [27] "strat1:EP_NOHSDP"
                                      "strat1:EP_MINRTY"
## [29] "strat1:EP_MUNIT"
                                     "strat1:EP_MOBILE"
                                     "strat1:EP_GROUPQ"
## [31] "strat1:EP_CROWD"
## [33] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [35] "strat1:pm25"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]</pre>
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
    geom_point() +
    ylim(c(-1.5, 4)) +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
                axis.text=element_text(size=12),
                plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 17.5, 23.5, 27.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 11.5, y = 3.8, label = "Social Vulnerability Index",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 20.5, y = 3.8, label = "Air Pollution",
                      col = "blue", size = 4.5) +
    annotate(geom = "text", x = 25.5, y = 3.8, label = "GRIDMET",
                      col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                            "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                            "Minority", "Poor English",
                                                            "Multi-Unit", "Mobile", "Crowded",
                                                            "No Vehicle", "Group Quarters", "Uninsured",
                                                            "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                            "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humid
                                                            "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                          values = c("#F8766D", "#00BFC4"),
                                          drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
```

rep("Upper", (nrow(beta_inference_df)/2))))


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpl2.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME3

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl3_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              14.28926 14.27427 14.30418
## strat0:flood risk pc1
                               0.00390 -0.00648 0.01428
## strat0:flood_risk_pc2
                              -0.00250 -0.01452 0.00958
## strat0:flood_risk_pc3
                              -0.01699 -0.02619 -0.00783
## strat0:flood_risk_pc4
                              -0.01200 -0.02138 -0.00273
                              -0.00610 -0.01517 0.00293
## strat0:flood risk pc5
## strat0:EP POV
                               0.89232 0.87655 0.90803
## strat0:EP_UNEMP
                               0.05196 0.04153 0.06237
```

```
## strat0:EP PCI
                             -0.27425 -0.28673 -0.26184
## strat0:EP NOHSDP
                             0.17846 0.15526 0.20149
## strat0:EP AGE65
                             -0.34326 -0.35439 -0.33214
## strat0:EP_AGE17
                             -0.14710 -0.16003 -0.13434
## strat0:EP_DISABL
                            -0.14073 -0.15299 -0.12851
                            0.02235 0.00984 0.03485
## strat0:EP SNGPNT
## strat0:EP MUNIT
                             0.08846 0.07477 0.10212
## strat0:EP MOBILE
                            0.01209 0.00241 0.02172
## strat0:EP_CROWD
                             0.07511 0.05403 0.09599
## strat0:EP_NOVEH
                            0.02480 0.00658 0.04309
## strat0:EP_GROUPQ
                             0.29620 0.28736 0.30495
## strat0:EP_UNINSUR
                             -0.03581 -0.05005 -0.02152
## strat0:co
                             0.02040 -0.01718 0.05804
## strat0:no2
                            -0.13499 -0.18633 -0.08400
## strat0:o3
                            0.01962 -0.05440 0.10557
## strat0:pm10
                             -0.09122 -0.12412 -0.05837
## strat0:pm25
                            0.32304 0.27457 0.37051
## strat0:so2
                            0.01807 -0.01585 0.05185
## strat0:summer_tmmx
                            0.06644 0.01394 0.11827
## strat0:winter tmmx
                              0.02744 -0.11092 0.15412
## strat0:summer_rmax
                              0.05653 -0.01453 0.12300
## strat0:winter_rmax
                             -0.04551 -0.09817 0.00690
## strat0:Data_Value_CSMOKING 2.14141 2.11669 2.16593
## strat1
                             14.19656 14.18708 14.20603
## strat1:flood_risk_pc1
                             0.00445 -0.00561 0.01457
## strat1:flood_risk_pc2
                              0.00978 -0.00082 0.02036
## strat1:flood_risk_pc3
                              0.00709 -0.00150 0.01570
## strat1:flood_risk_pc4
                             -0.00266 -0.00972 0.00442
## strat1:flood_risk_pc5
                             0.00408 -0.00277 0.01090
## strat1:EP_POV
                             0.71301 0.69968 0.72637
## strat1:EP_UNEMP
                             0.06574 0.05728 0.07421
## strat1:EP_PCI
                             -0.36337 -0.37826 -0.34842
## strat1:EP_NOHSDP
                            0.21765 0.20439 0.23094
## strat1:EP_AGE65
                             -0.32917 -0.34187 -0.31644
## strat1:EP_AGE17
                             -0.08938 -0.10149 -0.07717
## strat1:EP_DISABL
                            -0.17414 -0.18563 -0.16271
## strat1:EP SNGPNT
                            0.07475 0.06504 0.08444
## strat1:EP_MUNIT
                            0.08736 0.07826 0.09650
## strat1:EP MOBILE
                            -0.01952 -0.02870 -0.01037
## strat1:EP_CROWD
                            0.02481 0.01478 0.03484
## strat1:EP NOVEH
                            0.08222 0.06848 0.09591
## strat1:EP GROUPQ
                             0.05077 0.04238 0.05907
## strat1:EP UNINSUR
                             -0.03719 -0.04783 -0.02660
## strat1:co
                             0.06368 0.02280 0.10397
## strat1:no2
                             -0.04470 -0.09523 0.00496
                             0.06111 -0.01379 0.14775
## strat1:o3
## strat1:pm10
                             -0.19566 -0.23011 -0.16099
## strat1:pm25
                             0.33667 0.28771 0.38493
## strat1:so2
                            -0.03032 -0.06626 0.00492
## strat1:summer_tmmx
                             0.06793 0.01436 0.12117
## strat1:winter_tmmx
                             0.10097 -0.03801 0.22729
## strat1:summer rmax
                             -0.00928 -0.08060 0.05739
## strat1:winter_rmax
                              0.03510 -0.01828 0.08824
## strat1:Data Value CSMOKING 2.24508 2.22421 2.26599
```

```
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl3
```

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
  [1] "strat0"
                                      "strat0:flood_risk_pc3"
## [3] "strat0:flood_risk_pc4"
                                      "strat0:EP_POV"
## [5] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [7] "strat0:EP_NOHSDP"
                                     "strat0:EP_AGE65"
## [9] "strat0:EP_AGE17"
                                     "strat0:EP_DISABL"
## [11] "strat0:EP_SNGPNT"
                                      "strat0:EP_MUNIT"
## [13] "strat0:EP_MOBILE"
                                     "strat0:EP_CROWD"
## [15] "strat0:EP_NOVEH"
                                     "strat0:EP_GROUPQ"
## [17] "strat0:EP_UNINSUR"
                                     "strat0:no2"
## [19] "strat0:pm10"
                                     "strat0:pm25"
## [21] "strat0:summer_tmmx"
                                     "strat0:Data_Value_CSMOKING"
## [23] "strat1"
                                     "strat1:EP_POV"
## [25] "strat1:EP_UNEMP"
                                      "strat1:EP_PCI"
## [27] "strat1:EP_NOHSDP"
                                      "strat1:EP_AGE65"
## [29] "strat1:EP_AGE17"
                                     "strat1:EP_DISABL"
## [31] "strat1:EP_SNGPNT"
                                     "strat1:EP_MUNIT"
## [33] "strat1:EP_MOBILE"
                                     "strat1:EP_CROWD"
## [35] "strat1:EP_NOVEH"
                                      "strat1:EP_GROUPQ"
## [37] "strat1:EP_UNINSUR"
                                     "strat1:co"
## [39] "strat1:pm10"
                                      "strat1:pm25"
## [41] "strat1:summer_tmmx"
                                     "strat1:Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

ylim(c(-1.5, 4)) +

first, process the beta_inference matrix in a form applot can understand

```
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                              post_median = `50%`,
                              post_2.5 = 2.5\%
                              post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                       levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                         rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p \leftarrow ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
```

theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi

```
axis.text=element_text(size=12),
                  plot.margin = margin(5.5, 5.5, 5.5, 10)) +
    geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
    geom_vline(xintercept = c(5.5, 19.5, 25.5, 29.5), col = "blue") +
    geom_hline(yintercept = 0, col = "red") +
    annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 12.5, y = 3.8, label = "Social Vulnerability Index",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 22.5, y = 3.8, label = "Air Pollution",
                         col = "blue", size = 4.5) +
    annotate(geom = "text", x = 27.5, y = 3.8, label = "GRIDMET",
                         col = "blue", size = 4.5) +
    scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                     "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                     "65 or Over", "17 or Under", "Disability",
                                                                     "Single-Parent",
                                                                     "Multi-Unit", "Mobile", "Crowded",
                                                                     "No Vehicle", "Group Quarters", "Uninsured",
                                                                     "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                     "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter H
                                                                     "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
    geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
    geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
    scale_color_manual(name = "Strata",
                                                values = c("#F8766D", "#00BFC4"),
                                                drop = FALSE) +
    geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
    geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
p
```



```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpl3.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL THEME4

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpl4_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta_samples_matrix) <- var_names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                   50%
                                           2.5%
                                                   97.5%
## strat0
                              14.21734 14.20999 14.22465
## strat0:flood risk pc1
                              -0.01174 -0.02180 -0.00157
## strat0:flood_risk_pc2
                               0.01768 0.00636 0.02904
## strat0:flood_risk_pc3
                               0.00610 -0.00257
                                                 0.01473
## strat0:flood_risk_pc4
                              -0.01267 -0.02104 -0.00424
## strat0:flood risk pc5
                               0.00824 0.00016 0.01634
## strat0:EP POV
                               0.74585
                                       0.72932 0.76247
## strat0:EP_UNEMP
                               0.07704 0.06659 0.08744
```

```
## strat0:EP PCI
                            -0.28154 -0.29413 -0.26894
## strat0:EP_NOHSDP
                            0.23445 0.21453 0.25439
                            -0.36436 -0.37532 -0.35331
## strat0:EP AGE65
## strat0:EP_AGE17
                           -0.19197 -0.20313 -0.18073
## strat0:EP_DISABL
                           -0.11405 -0.12664 -0.10146
## strat0:EP SNGPNT
                            0.06362 0.05168 0.07565
## strat0:EP MINRTY
                           -0.07618 -0.09372 -0.05865
## strat0:EP_LIMENG
                            0.03339 0.01309 0.05363
## strat0:EP_UNINSUR
                            -0.04488 -0.05832 -0.03138
## strat0:co
                            0.11777 0.07659 0.15884
## strat0:no2
                            0.00035 -0.05211 0.05285
## strat0:o3
                            0.02721 -0.04741 0.10600
## strat0:pm10
                           -0.07674 -0.11013 -0.04381
## strat0:pm25
                            0.19068 0.14328 0.23867
## strat0:so2
                            -0.00485 -0.03920 0.02879
                         0.05316 -0.00258 0.10750
## strat0:summer_tmmx
## strat0:winter_tmmx
                            0.05980 -0.07978 0.21843
## strat0:Data_Value_CSMOKING 2.27176 2.24821 2.29550
## strat1
                           14.28544 14.27852 14.29236
## strat1:flood_risk_pc1
## strat1:flood_risk_pc2
## strat1:flood_risk_pc3
                            -0.00071 -0.01040 0.00901
                            -0.00007 -0.01086 0.01076
                            -0.00518 -0.01375 0.00343
## strat1:flood_risk_pc4
                            -0.00403 -0.01158 0.00355
## strat1:flood_risk_pc5
                            -0.00422 -0.01185 0.00328
## strat1:EP_POV
                             0.94023 0.92783 0.95259
## strat1:EP_UNEMP
                             0.08296 0.07391 0.09193
## strat1:EP_PCI
                            -0.53814 -0.55388 -0.52233
## strat1:EP_NOHSDP
                            0.32007 0.30413 0.33601
## strat1:EP_AGE65
                            -0.42984 -0.44167 -0.41807
## strat1:EP_AGE17
                           -0.23675 -0.24755 -0.22593
## strat1:EP_DISABL
                           -0.21525 -0.22651 -0.20395
## strat1:EP_SNGPNT
                            0.10110 0.09039 0.11176
## strat1:EP_MINRTY
                            -0.22441 -0.24139 -0.20745
                            -0.07023 -0.08407 -0.05643
## strat1:EP_LIMENG
## strat1:EP_UNINSUR
                           -0.06241 -0.07332 -0.05154
## strat1:co
                            0.13889 0.10246 0.17512
## strat1:no2
                            -0.03073 -0.07980 0.01813
## strat1:o3
                            0.05685 -0.01757 0.13574
## strat1:pm10
                           -0.10769 -0.14189 -0.07419
                            0.19533 0.14841 0.24311
## strat1:pm25
## strat1:so2
                             0.03851 0.00498 0.07147
## strat1:summer_tmmx
                             0.07522 0.01989 0.12849
## strat1:winter_tmmx
                             0.07123 -0.06700 0.22945
## strat1:summer_rmax
                             0.05240 -0.01416 0.12310
## strat1:winter_rmax
                            -0.04582 -0.09999 0.00553
## strat1:Data_Value_CSMOKING 1.98123 1.96047 2.00200
```

saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpl4

List of significant beta coefficients:

```
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
##
   [1] "strat0"
                                      "strat0:flood_risk_pc1"
##
  [3] "strat0:flood_risk_pc2"
                                      "strat0:flood_risk_pc4"
## [5] "strat0:flood_risk_pc5"
                                      "strat0:EP_POV"
## [7] "strat0:EP_UNEMP"
                                      "strat0:EP_PCI"
## [9] "strat0:EP_NOHSDP"
                                      "strat0:EP_AGE65"
## [11] "strat0:EP_AGE17"
                                      "strat0:EP_DISABL"
## [13] "strat0:EP_SNGPNT"
                                      "strat0:EP_MINRTY"
## [15] "strat0:EP LIMENG"
                                      "strat0:EP_UNINSUR"
## [17] "strat0:co"
                                      "strat0:pm10"
## [19] "strat0:pm25"
                                      "strat0:winter_rmax"
## [21] "strat0:Data_Value_CSMOKING" "strat1"
## [23] "strat1:EP_POV"
                                      "strat1:EP_UNEMP"
## [25] "strat1:EP_PCI"
                                      "strat1:EP_NOHSDP"
## [27] "strat1:EP_AGE65"
                                      "strat1:EP_AGE17"
## [29] "strat1:EP_DISABL"
                                      "strat1:EP_SNGPNT"
## [31] "strat1:EP_MINRTY"
                                      "strat1:EP_LIMENG"
## [33] "strat1:EP_UNINSUR"
                                      "strat1:co"
## [35] "strat1:pm10"
                                      "strat1:pm25"
## [37] "strat1:so2"
                                      "strat1:summer_tmmx"
## [39] "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                            post_median = `50%`,
                            post_2.5 = 2.5\%,
                            post 97.5 = ^97.5\%)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1.5, 4)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
```

 $geom_vline(xintercept = c(5.5, 16.5, 22.5, 26.5), col = "blue") +$

```
geom_hline(yintercept = 0, col = "red") +
     annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
                            col = "blue", size = 4.5) +
     annotate(geom = "text", x = 11, y = 3.8, label = "Social Vulnerability Index",
                            col = "blue", size = 4.5) +
     annotate(geom = "text", x = 19.5, y = 3.8, label = "Air Pollution",
                            col = "blue", size = 4.5) +
     annotate(geom = "text", x = 24.5, y = 3.8, label = "GRIDMET",
                            col = "blue", size = 4.5) +
     scale_x_discrete(labels = c("PC 1", "PC 2", "PC 3", "PC 4", "PC 5",
                                                                             "Poverty", "Unemployed", "Per Capita Income", "No High School",
                                                                             "65 or Over", "17 or Under", "Disability",
                                                                              "Single-Parent",
                                                                             "Minority", "Poor English",
                                                                             "Uninsured",
                                                                             "CO", "NO2", "O3", "PM10", "PM2.5", "SO2",
                                                                              "Summer Temperature", "Winter Temperature", "Summer Humidity", "Winter Humidity "Winter Humidity "Winter Humidity", "Winter Humidity "Winter Humidity", "Winter Humidity "Wint
                                                                             "Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Strati
     geom_point(data = beta_inference_df_strat1[-1, ], col = "#00BFC4") + # strat 1
     geom_errorbar(data = beta_inference_df_strat1[-1, ], aes(ymin = post_2.5, ymax = post_97.5, width = 0
     scale_color_manual(name = "Strata",
                                                      values = c("#F8766D", "#00BFC4"),
                                                      drop = FALSE) +
     geom_hline(yintercept = 0.2 * sd_MHLTH, col = "red", linetype = "dashed") +
     geom_hline(yintercept = -0.2 * sd_MHLTH, col = "red", linetype = "dashed")
p
```

95% Credible Intervals, Poor Mental Health, Stratified on RPL Theme 4


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpl4.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

Stratified on RPL_THEMES

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/stratified_analysis/model_stratif_rpls_MHLTH.RData"))
beta_samples_matrix <- rbind(chain1$samples$beta, chain2$samples$beta, chain3$samples$beta)
colnames(beta samples matrix) <- var names</pre>
(beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5))
##
                                          2.5%
                                                  97.5%
                                  50%
## strat0
                             14.15367 14.14102 14.16636
## strat0:flood_risk_pc1
                             -0.00654 -0.02043 0.00722
## strat0:flood_risk_pc2
                              0.02702 0.01120 0.04267
## strat0:flood_risk_pc3
                              0.02546 0.01385 0.03706
## strat0:flood_risk_pc4
                             -0.01559 -0.02715 -0.00410
## strat0:flood_risk_pc5
                              0.01256 0.00163 0.02350
## strat0:EP_UNINSUR
                              0.01510 -0.00381 0.03411
## strat0:co
                              0.41021 0.35962 0.46084
## strat0:no2
                              0.46637
                                       0.39960
                                                0.53641
                             -0.18809 -0.30441 -0.08838
## strat0:o3
## strat0:pm10
                             -0.04566 -0.09521
                                               0.00282
## strat0:pm25
                              0.11130 0.03955 0.18006
## strat0:so2
                              0.08199 0.03461 0.13069
## strat0:summer_tmmx
                              0.10204 0.02238 0.19816
## strat0:winter tmmx
                             -0.11950 -0.40562 0.11594
## strat0:summer_rmax
                             -0.00776 -0.10540 0.09567
## strat0:winter rmax
                             -0.03034 -0.10429
                                                0.04287
## strat0:Data_Value_CSMOKING 3.32079 3.29937 3.34239
## strat1
                             14.34485 14.33398 14.35566
## strat1:flood_risk_pc1
                             -0.00576 -0.01906 0.00750
## strat1:flood_risk_pc2
                             -0.01158 -0.02618 0.00291
## strat1:flood_risk_pc3
                              0.00484 -0.00711 0.01663
## strat1:flood_risk_pc4
                             -0.00438 -0.01453 0.00567
## strat1:flood_risk_pc5
                              0.00522 -0.00487
                                                0.01533
                              0.04852 0.03593 0.06113
## strat1:EP_UNINSUR
## strat1:co
                              0.43561 0.37933
                                                0.49160
## strat1:no2
                              0.41196 0.34268
                                                0.48262
## strat1:o3
                             -0.18844 -0.30508 -0.08675
                             -0.04765 -0.09893 0.00279
## strat1:pm10
## strat1:pm25
                              0.18217 0.10949
                                                0.24989
## strat1:so2
                              0.08869 0.04188 0.13727
## strat1:summer tmmx
                              0.05097 -0.02973
                                                0.14534
## strat1:winter_tmmx
                             -0.01281 -0.29875 0.22034
## strat1:summer_rmax
                             -0.10496 -0.20402 -0.00115
                             -0.00588 -0.07994 0.06843
## strat1:winter_rmax
```

```
saveRDS(beta_inference, file = here("modeling_files/stratified_analysis/beta_inference_files/MHLTH_rpls
List of significant beta coefficients:
row.names(beta_inference)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
##
  [1] "strat0"
                                      "strat0:flood_risk_pc2"
   [3] "strat0:flood_risk_pc3"
                                      "strat0:flood_risk_pc4"
                                      "strat0:co"
## [5] "strat0:flood_risk_pc5"
## [7] "strat0:no2"
                                      "strat0:o3"
## [9] "strat0:pm25"
                                      "strat0:so2"
## [11] "strat0:summer tmmx"
                                      "strat0:Data_Value_CSMOKING"
                                      "strat1:EP UNINSUR"
## [13] "strat1"
## [15] "strat1:co"
                                      "strat1:no2"
## [17] "strat1:o3"
                                      "strat1:pm25"
## [19] "strat1:so2"
                                      "strat1:summer_rmax"
## [21] "strat1:Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))</pre>
beta_inference_df <- rename(beta_inference_df,</pre>
                             post_median = `50%`,
                             post_2.5 = ^2.5\%,
                             post_97.5 = `97.5\%`)
beta_inference_df$var_name <- substring(beta_inference_df$var_name, first = 8)</pre>
beta_inference_df$var_name <- factor(beta_inference_df$var_name,</pre>
                                      levels = unique(beta_inference_df$var_name))
beta_inference_df$strat <- as.factor(c(rep("Lower", (nrow(beta_inference_df)/2)),</pre>
                                        rep("Upper", (nrow(beta_inference_df)/2))))
Splitting up the beta coefficients for each strata
beta_inference_df_strat0 <- beta_inference_df[1:(nrow(beta_inference_df)/2),]
beta_inference_df_strat1 <- beta_inference_df[(nrow(beta_inference_df)/2 + 1):nrow(beta_inference_df),]
Note: The intercept for both strata is not included.
p <- ggplot(beta_inference_df_strat0[-1, ], aes(x = var_name, y = post_median, color = strat)) +
  geom_point() +
  ylim(c(-1.5, 4)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 10)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4), col = "#F8766D") +
  geom_vline(xintercept = c(5.5, 6.5, 12.5, 16.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  annotate(geom = "text", x = 9.5, y = 3.8, label = "Air Pollution",
           col = "blue", size = 4.5) +
```

95% Credible Intervals, Poor Mental Health, Stratified on All RPL Themes


```
ggsave(here("figures/final_figures/stratified_analysis/MHLTH_CI_rpls.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```