

Fundamentos de Séries Temporais - Parte I

Representação das séries temporais:

$$Z_1, Z_2, Z_3,..., Z_n$$
 Ou $Z_t, t = 1,2,...,n$
 $X_1, X_2, X_3,..., X_n$ Ou $X_t, t = 1,2,...,n$

Onde n é o tamanho da série.

Temos que:

$$Z(t) = Z_1(t) \rightarrow univariada$$

$$Z(t) = [Z_1(t), Z_2(t)] \rightarrow Multivariada$$

Covariância

Em sua definição geral temos que:

Medida do grau de interdependência linear entre duas variáveis aleatórias.

Em séries temporais as medidas adjacentes (vizinhas) tendem a ser correlatas.

$$Cov(Z_t, Z_{t+\Delta t}) = \frac{\sum (Z_t - \bar{Z}_t).(Z_{t+\Delta t} - \bar{Z}_{t+\Delta t})}{n}$$

n = número de pares que foram comparados.

Exemplo

$$Cov(Z_t, Z_{t+\Delta t}) = \frac{\sum (Z_t - \bar{Z}_t).(Z_{t+\Delta t} - \bar{Z}_{t+\Delta t})}{n}$$

Mês	Vendas	Z _t	$Z_{t+\Delta t}$	$Z_t - \bar{Z}_t$	$Z_{t+\Delta t} - \bar{Z}_{t+\Delta t}$	$(Z_t - \bar{Z}_t).(Z_{t+\Delta t} - \bar{Z}_{t+\Delta t})$
Janeiro	20	20	30	-15	-15	225
Fevereiro	30	30	40	-5	-5	25
Março	40	40	50	5	5	25
Abril	50	50	60	15	15	225
Maio	60	60				
Média		\bar{Z}_t = 35	$\bar{Z}_{t+\Delta t}$ = 45		Soma	500

$$Cov(Z_t, Z_{t+\Delta t}) = \frac{500}{4} = 125$$

PUC Minas Virtual

Processos Estocásticos x Determinísticos

• Estocástico:

Formula + fator aleatório

Determinístico

Explicada através de uma formula/função

Em outras palavras:

Modelos que descrevem séries temporais são processos estocásticos.

Processo estocástico $(Z(t), t \in \tau)$ é uma coleção de variáveis aleatórias que são utilizadas para estudar a evolução de sistemas com o tempo.

Pode ser contínuo: Z(t), $t \ge 0$

Ou discreto: Z_t , t = 1,2,...

Os modelos que estudaremos são vistos sob a ótica do estudo de processos estocásticos :

Seja T um conjunto arbitrário. Um processos estocástico é uma família

$$Z = \{Z(t), t e T\}, \forall t \in T, Z(t) \text{ \'e uma v.a}$$

- Podemos ter T = $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$;
- Podemos admitir $T = \mathbb{R}$;
- $\forall t$ ∈ T -> Z(t ∈ \mathbb{R} : Z(t) é uma variável real.

O conjunto de valores $\{Z(t), t \in T\}$ o conjunto de espaço de estados.

T é chamado de espaço paramétrico:

$$T \in \mathbb{Z}$$
 -> parâmetro discreto

 $\mathsf{T} \in \mathbb{R}$ -> parâmetro contínuo

Então z(t) pode ser uma variável aleatória discreta ou uma v.a contínua

De um ponto de vista teórico, a série temporal observada é a realização de um processo estocástico.

Definição: Dado o espaço de probabilidade (Ω , A, P), um processo estocástico é uma coleção de variáveis aleatórias no espaço amostral Ω , indexadas por um conjunto de tempos T.

$$\{x(t,\omega). t \in T \in \omega \in \Omega\}$$

A descrição de um processo estocástico pode ser através da distribuição de **probabilidade conjunta** $Z(t_1)$, $Z(t_2)$..., $Z(t_k)$ ou através da **função média**, **função variância e função autocovariância**.

$$\mu(t) = E\{Z(t)\}$$
 função média.

$$\sigma^2(t) = Var\{Z(t)\}$$
 função variância.

$$\gamma(t_1, t_2) = Cov\{Z(t_1), Z(t_2)\}$$
 função autocovariância.

