Tutorial 11: Solutions

Q1. (i). Calculating $A\mathbf{v}_i$ for each vector we have

$$A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \implies \lambda = 2$$

$$A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \implies \lambda = 2$$

$$A \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \implies \lambda = 1$$

(ii).

$$A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} \neq \lambda \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

for any λ . Hence $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is not an eigenvector of A.

Q2. (i). Eigenvalues are given by

$$\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^2 - 1 = (1 - \lambda)(3 - \lambda) = 0$$

so $\lambda = 1$ or $\lambda = 3$.

For $\lambda = 1$: $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is equivalent to the augmented matrix

$$\left[\begin{array}{cc|c} 1 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Since there is no leading entry for v_2 we set $v_2 = t$ and then $v_1 = -t$. The solution space is therefore $t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Taking t = 1 gives $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ for the corresponding eigenvector.

For $\lambda = 3$: $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is equivalent to the augmented matrix

$$\left[\begin{array}{cc|c} -1 & 1 & 0 \\ 1 & -1 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Since there is no leading entry for v_2 we set $v_2 = t$ and then $v_1 = t$. The solution space is therefore $t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Taking t = 1 gives $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ for the corresponding eigenvector.

(ii). Eigenvalues are given by

$$\begin{bmatrix} 2-\lambda & 1\\ 4 & 2-\lambda \end{bmatrix} = (2-\lambda)^2 - 4 = -\lambda(4-\lambda) = 0$$

so $\lambda = 0$ or $\lambda = 4$.

For $\lambda = 0$: $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is equivalent to the augmented matrix

$$\left[\begin{array}{cc|c} 2 & 1 & 0 \\ 4 & 2 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} 2 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Since there is no leading entry for v_2 we set $v_2 = t$ and then $v_1 = -\frac{1}{2}t$. The solution space is therefore $t \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$. Taking t = 2 gives $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ for the corresponding eigenvector. For $\lambda = 4$: $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is equivalent to the augmented matrix

$$\left[\begin{array}{cc|c} -2 & 1 & 0 \\ 4 & -2 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} 2 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Since there is no leading entry for v_2 we set $v_2 = t$ and then $v_1 = \frac{1}{2}t$. The solution space is therefore $t \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$. Taking t = 2 gives $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ for the corresponding eigenvector.

 $\mathbf{Q3}$. The matrix of eigenvectors for A in $\mathbf{Q1}$ is

$$P = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{array} \right] \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

the rank of P is 3 therefore the eigenvectors are linearly independent. Hence A is diagonalizable and

$$D = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Q4. The eigenvalues are given by

$$\begin{bmatrix} 1-\lambda & 1 \\ 0 & 1-\lambda \end{bmatrix} = (1-\lambda)^2 = 0$$

so $\lambda = 1$.

For $\lambda = 1$: $(A - \lambda I)\mathbf{v} = \mathbf{0}$ is equivalent to the augmented matrix $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Since there is no

leading entry for v_1 we set $v_1 = t$ while $v_2 = 0$. Setting t = 1 gives the eigenvector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

There only being one eigenvector, the matrix is not diagonalizable. Geometrically, B corresponds to a shear by 1 unit in the x-direction. The only direction left unchanged is the x-axis, explaining why there is only one eigenvector.

Q5. First we note that $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$ so these vectors are orthogonal and we just need to normalize each vector.

$$||\mathbf{v_1}|| = \sqrt{2} \quad \Rightarrow \quad \mathbf{u_1} = \frac{1}{\sqrt{2}}(1,1), \quad ||\mathbf{v_2}|| = \sqrt{2} \quad \Rightarrow \quad \mathbf{u_2} = \frac{1}{\sqrt{2}}(1,-1)$$

Q6. (i). Using Q2, we have $A = PDP^{-1}$ with

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \qquad D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}, \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

Hence

$$A^{7} = PD^{7}P^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3^{7} & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3^{7} & -1 \\ 3^{7} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 3^{7} + 1 & 3^{7} - 1 \\ 3^{7} - 1 & 3^{7} + 1 \end{bmatrix}.$$

Also

$$\lim_{k\to\infty} 3^{-k}A^k = P \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] P^{-1} = \frac{1}{2} \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right].$$

- (ii). Since $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 3$, we have $A^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda^k \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3^k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Q7. (i). The second equation is already in standard form. The standard form of the first equation is obtained by dividing both sides by 1/4 to get

$$\frac{x^2}{(1/4)} + y^2 = 1$$
 or equivalently $\frac{x^2}{(1/2)^2} + y^2 = 1$.

In relation to the second equation, asymptotes occur when $x^2/9 - y^2/4 = 0$ and thus $y = \pm (2/3)x$. Intersection with the x-axis occurs when y = 0 and thus $x = \pm 3$.

(ii). We see that $||\frac{1}{\sqrt{5}}(1,2)|| = \frac{1}{\sqrt{5}}||(1,2)|| = 1$ and $||\frac{1}{\sqrt{5}}(-2,1)|| = \frac{1}{\sqrt{5}}||(-2,1)|| = 1$ so the vectors are normalized. These are eigenvectors since

$$\begin{bmatrix} -1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \begin{bmatrix} -1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}.$$

(iii). According to the theory, introducing coordinates (u, v) by the formula

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}, \qquad \mathbf{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \qquad \mathbf{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

we obtain

$$3u^2 - 2v^2 = 3$$
 or equivalently $u^2 - \frac{v^2}{(3/2)} = 1$.

This is a hyperbola, with principal axes in the directions of $\mathbf{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.