RF Gravit Design

Transceivers Architectures RX Architectures · Heterodyne architecture - Single IF - Double IF

- Direct-conversion or Zero IF RX
- · Shiding 1F
 - · IF sampling

-60 dB
$$\Rightarrow$$
 $|T| = 10^{-3} = 7\frac{40}{Af} = \frac{1}{2Q}$

2GHZ 1000 KHZ

 $\Rightarrow Q = \frac{2 \cdot 10^9}{10^5} \cdot \frac{1}{2} \cdot \frac{1}{10^{-3}} = 10^7 \Rightarrow too large!$

not teasible $f_{bw} = \frac{40}{2Q} = \frac{2 \cdot 10^9}{2 \cdot 10^7} = 100 \text{ Hz}$

2n-th order fiftez: $\Rightarrow too marrow$

Bufferworth BPF $f_{bw} = 10^{-3} \Rightarrow n = 10$
 $|T(jAf)| \approx (\frac{4bw}{Af}) = 10^{-3} \Rightarrow n = 10$

1 $|T(jAf)| \approx (\frac{4bw}{Af}) = 10^{-3} \Rightarrow n = 10$

-> Channel selectivity unfeasible at RF Heterodyni RX offdit SAW filter Solution: RF BPF 50 ÷ 60 dB

2 advantages:

1 trequency is lower than RF freq.

1 F flee does not need to be tunable > low IF to improve selectiaty

trade off: So RX sensitivity => image = high fire Solution to relax trade-off: Dual-IF Architect. Band

Belect

BPF1

SECOND.

BPF1

IF1

IF2

BPF4

Ch-2660

VGA

IR filter

D LO2

BPF1

IMAGE (*) MMM & IHAGE · Large fifi: relaxes IR · Small fifz: relaxes ch.sel.

margin VFS interfer. The solution of the DR = SNR + Unfiltered interfer. ratio + requirement + margin (AGC errors, fading,...) eg. SNR = 12 dB

unflyered inter. = 26 dB >> DR = 60 dB Margin = 22 dB N = 10 bit (ENOD)

Issue: Half-IF Problem Wanted
M

LO 2nd harmonic

ARF fretteo to to LNA 2nd ord. nonlin. VGA 2nd ord, nonlin.

3rd ord. non linearity

