EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 12: Latched Comparator

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

Date	Topics
24-Jan	Course introduction and ADC architectures
29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction
31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT
5-Feb	ADC & DAC static performance metrics, INL and DNL
7-Feb	OPAMP and bias circuits review
12-Feb	SC circuits review
14-Feb	Sample and Hold Amplifier - Reading materials
19-Feb	Flash ADC and Comparators: Regenerative Latch
21-Feb	Comparators: Latch offset, preamp, auto-zero
26-Feb	Finish Flash ADC
28-Feb	DAC Architectures - Resistor, R-2R
5-Mar	DAC Architectures - Current steering, Segmented
7-Mar	DAC Architectures - Capacitor-based
12-Mar	SAR ADC with bottom plate sampling
14-Mar	SAR ADC with top plate sampling
19-Mar	Midterm Review
21-Mar	Midterm exam
26-Mar	Spring break
28-Mar	Spring break
2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain
4-Apr	Pipelined ADC bit sync and alignment using Full adders
9-Apr	Pipelined ADC 1.5bit vs multi-bit structures
11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB
16-Apr	Single-slope ADC
18-Apr	Oversampling & Delta-Sigma ADCs
23-Apr	Second- and higher-order Delta-Sigma Modulator.
25-Apr	Hybrid ADC - Pipelined SAR
30-Apr	Hybrid ADC - Time-Interleaving
2-May	ADC testing and FoM
7-May	Project presentation 1
8-May	Project presentation 2
14-May	Final Review
20-May	Project Report Due by 6 PM

Latched Comparator

*Midterm Exam dates are approximate and subject to change with reasonable notice.

Single-ended Latched Comparator

$$V(t) = \Delta V e^{\frac{t}{\tau}}$$

$$V_{DD}$$

$$Metastable$$

$$C\frac{dV}{dt} = g_m \Delta V$$

$$V(0) = \Delta V$$

$$V(t) = \Delta V e^{\frac{t}{\tau}}$$

$$\tau = \frac{C}{g_n}$$

$$Gain = \frac{V_{DD}}{\Delta V} = e^{\frac{t}{\tau}}$$

10bit requires $t = 7\tau$

Differential Latched Comparator

Differential Latched Comparator

During \emptyset_1 , input is sampled at X & Y During \emptyset_2 , latch regenerates

Nonidealities in Latched Comparator

- Mismatch in transistors
- Mismatch in switch
- Mismatch in Capacitance
- Dynamic mismatch

MOSFET Mismatch

- Mismatch between two identically drawn transistors
 - Vth mismatch
 - Beta mismatch

$$I_D = \frac{\mu_n C_{\text{ox}}}{2} \frac{W}{L} (V_{\text{GS}} - V_{\text{TH}})^2 = \frac{\beta}{2} (V_{\text{GS}} - V_{\text{TH}})^2$$

- Important contributions are t_{ox} and Dopant concentration in the channel region
- Improves with scaling in t_{ox}

$$\sigma_{\Delta \text{VTH}} = \frac{A_{\text{VTH}}}{\sqrt{WL}} \qquad \text{Technology parameter}$$
 Best guess
$$\frac{A_{\text{VTH}}}{t_{\text{ox}}} \approx \frac{\text{mV} \cdot \mu \text{m}}{\text{nm}} \qquad \text{To reduce Vth mismatch}$$
 (1) Use transistor with least

- (1) Use transistor with low A_{vth}
- Increase the size of the transistors

Latched Comparator with Preamp

- Why bother using pre-amplification (A_v)?
 - Offset
 - Hard to build latches with offset < 10...100mV
 - Use pre-amplification to lower input referred offset
 - Common mode rejection
 - Attenuate "kickback noise"
 - Metastability

Input Referred Offset

$$\sigma_{VOS}^2 = \sigma_{VOS1}^2 + \frac{1}{A_v^2} \sigma_{VOS2}^2$$

• Example: σ_{VOS1} =3mV, σ_{VOS2} =30mV, A_v =10

$$\sigma_{VOS} = \sqrt{(3mV)^2 + \frac{1}{10^2}(30mV)^2} = 4.2mV$$

Multi-Stage Amp Offset

$$V_{out} = V_{os1}A_1A_2A_3 + V_{os2}A_2A_3 + V_{os3}A_3$$

 $V_{out} = V_{os}A_1A_2A_3$

$$A_{T} = A_{1} \cdot A_{2} \cdot A_{3}$$

$$V_{os} = V_{os1} + \frac{V_{os2}}{A_{1}} + \frac{V_{os3}}{A_{1} \cdot A_{2}}$$

Input Offset Cancellation

Two-phase operation,

- (a) Reset phase (Φ_1) to store offset into the capacitor
- (b) Comparison phase (Φ_2) to subtract the offset from the input

Input Offset Cancellation

$$V_{c} = A(V_{off} - V_{c})$$

$$= \frac{A}{1+A} \cdot V_{off}$$

$$\approx V_{off}$$

$$\begin{aligned} V_{out} &= -A \Big(V_{in} + V_c - V_{off} \Big) \\ &= -A \Bigg(V_{in} - \frac{V_{off}}{1+A} \Bigg) \end{aligned}$$

Closed loop stability required

$$V_{os,in} = \frac{V_{os}}{1+A}$$