Learning Activity 15 - Solutions

1. Determine if W is a subspace of \mathbb{R}^3 in the following cases. Justify your answer. (Mark the right answer by X and then explain your answer).

To determine if a given subset is a subspace, we can consider two methods:

- By using the definition: showing that $\vec{0} \in W$, W is closed under addition (if $\vec{u}, \vec{v} \in W$, then $\vec{u} + \vec{v} \in W$), and W is closed under scalar multiplication (if $c \in \mathbb{R}$ and $\vec{u} \in W$, the $c\vec{v} \in W$). So if one of these is not satisfied, then W is not a vector space.
- By writing W as spanned of some vectors, i.e. $W = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_r)$.

(a)
$$W = \left\{ \begin{bmatrix} a+c \\ a-b \\ b+c \end{bmatrix} | a,b,c \text{ in } \mathbb{R} \right\}.$$

ı	it s a subspace of in	it s not a subspace of ik.
	X	

Justification:

First Method: We use the definition (checking the three conditions).

• Choosing
$$a = b = c = 0$$
, we have $\vec{0} = \begin{bmatrix} 0 + 0 \\ 0 - 0 \\ 0 + 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. So $\vec{0}$ is in W .

• For $\vec{u} = \begin{bmatrix} a + c \\ a - b \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} a' + c' \\ a' - b' \end{bmatrix}$ in W , we have $\vec{u} + \vec{v} = \begin{bmatrix} (a + a') + (c + c') \\ (a + a') - (b + b') \end{bmatrix}$

• For
$$\vec{u} = \begin{bmatrix} a+c \\ a-b \\ b+c \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} a'+c' \\ a'-b' \\ b'+c' \end{bmatrix}$ in W , we have $\vec{u}+\vec{v} = \begin{bmatrix} (a+a')+(c+c') \\ (a+a')-(b+b') \\ (b+b')+(c+c') \end{bmatrix}$. So, $\vec{u}+\vec{v}$ still has the form of the elements of W so it's in W . Thus W is closed under addition.

• For
$$\vec{u} = \begin{bmatrix} a+c \\ a-b \\ b+c \end{bmatrix}$$
 and a scalar α , we have $\alpha \vec{u} = \begin{bmatrix} \alpha a + \alpha c \\ \alpha a - \alpha b \\ \alpha b + \alpha c \end{bmatrix}$. So $\alpha \vec{v}$ still have the form of the elements of W so it is in W . Thus, W is closed under scalar multiplication.

Second method: We write W as span of some vectors in \mathbb{R}^3 . For every \vec{u} in W , we have

$$\vec{u} = \begin{bmatrix} a+c \\ a-b \\ b+c \end{bmatrix} = \begin{bmatrix} a \\ a \\ b \end{bmatrix} + \begin{bmatrix} 0 \\ -b \\ b \end{bmatrix} + \begin{bmatrix} c \\ 0 \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_2, \ a,b,c \in \mathbb{R}$$
 Therefore, the element of W are linear combinations of $\vec{v}_1,\vec{v}_2,\vec{v}_3$, so $W = \mathrm{Span}(\vec{v}_1,\vec{v}_2,\vec{v}_3)$. Therefore,

 $W \text{ is a subspace } \mathbb{Z}.$ (b) $W = \left\{ \begin{bmatrix} 1 \\ a+3b \\ 3a-2b \end{bmatrix} \mid a,b \text{ in } \mathbb{R} \right\}.$ $\mathbb{Z} = \mathbb{Z} \text{ subspace of } \mathbb{R}^3 \text{ It's not a subspace of } \mathbb{R}^3.$ \mathbb{X}

(b)
$$W = \left\{ \begin{bmatrix} a+3b \\ 3a-2b \end{bmatrix} | a, b \text{ in } \mathbb{R} \right\}$$

It's a

It's a subspace of R ^o	It's not a subspace of \mathbb{R}^3 .
	X
1	
1	

Note that the first entry of the elements of W must be 1. Since the first entry of the zero vector is

Justification: We check the three conditions (first method).

not 1, the zero vector is not in W. It follows that W is not a subspace of \mathbb{R}^3 .

(c)
$$W=\left\{ \left[\begin{array}{c} a\\ b\\ c \end{array}\right] \mid a,b,c\in\mathbb{R} \text{ and } a+b+c=1 \right\}.$$
 It's a subspace of \mathbb{R}^3 It's not a subspace of \mathbb{R}^3 .

		X				
Justification: We check the three conditions (first method).						
Note that the sum of th	e entries of an element	of W must be 1.	Since the			

zero vector is $0 \neq 1$, the zero vector is not in W. Therefore W is not a subspace of \mathbb{R}^3 .

2. Let $M_{2\times 2}(\mathbb{R})$ be the set of all 2×2 matrices (with real number entries). That is

sum of the entries of the

 $M_{2\times 2}(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \text{ in } \mathbb{R} \right\}$

The set
$$M_{2\times 2}(\mathbb{R})$$
 with the zero matrix $\mathbf{0}=\begin{bmatrix}0&0\\0&0\end{bmatrix}$, with the usual addition and scalar multiplication

is a vector space. Let $H = \left\{ \left[\begin{array}{cc} a & 0 \\ c & d \end{array} \right] \mid a, c, d \text{ in } \mathbb{R} \right\}$ be a subset of $M_{2 \times 2}(\mathbb{R})$. (a) Give a nonzero element of H. Answer:

Note that the (1,2)-entry of an element of H must be 0. So the matrix must be a 2×2 matrix such

that $a_{12} = 0$. The matrix $A = \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}$ is a nonzero element of H since its (1,2)-entry is 0.

(b) Give an element of M_{2×2}(ℝ) which is not in H.

Answer:

Justification:

(c) Is H a subspace of $M_{2\times 2}(\mathbb{R})$? Justify your answer.

The matrix $B=\left[\begin{array}{cc} 0 & 1 \\ -1 & 5 \end{array}\right]$ is an element of $M_{2\times 2}(\mathbb{R})$ but not in H, since its (1,2)-entry is not zero.

It's a subspace of $M_{2\times 2}(\mathbb{R})$ It's not a subspace of $M_{2\times 2}(\mathbb{R})$.

First method (using the definition). We check the three conditions.

 2

• If $A = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} a' & 0 \\ c' & d' \end{bmatrix}$ are in H, then $A + B = \begin{bmatrix} a + a' & 0 \\ c + c' & d + d' \end{bmatrix}$ is also in H,

• If α is a scalar and $A = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$ is in H, then $\alpha A = \begin{bmatrix} \alpha a & 0 \\ \alpha c & \alpha d \end{bmatrix}$ is also in H, since its

(1,2)-entry is in 0. So H is closed under scalar multiplication. Since the three conditions are satisfied, H is a subspace of $M_{2\times 2}(\mathbb{R})$.

Second method (write H as spanned by some matrices). For any element of H, we have

• Since the (1,2)-entry of the zero matrix $\mathbf{0} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is 0, the zero matrix is in H.

since its (1,2)-entry is 0. So H is closed under addition.

 $\begin{vmatrix} a & 0 \\ c & d \end{vmatrix} = a \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + c \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} + d \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix}$

So every element of H is a linear combination of the matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

It follows that $H = \operatorname{Span}\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right)$. Thus, H is a subspace of $M_{2\times 2}(\mathbb{R})$.

 3