T640X

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- 5 (i) APPLICANT: Godowski, Paul J. Gurney, Austin L.
 - (ii) TITLE OF INVENTION: Tie Ligands
- 10 (iii) NUMBER OF SEQUENCES: 17
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Genentech, Inc.
 - (B) STREET: 1 DNA Way
 - (C) CITY: South San Francisco
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94080
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: WinPatin (Genentech)
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Dreger, Ginger R.
 - (B) REGISTRATION NUMBER: 33,055
 - (C) REFERENCE/DOCKET NUMBER: P1130
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 650/225-3216

64

30

口 口 口 口 口 口 口 口 口

(B) TELEFAX: 650/952-9881
(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

5

30

35

(A) LENGTH: 2290 base pairs

(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGCTGAGGGG AGGCCCGGAG CCTTTCTGGG GCCTGGGGGA TCCTCTTGCA 50

CTGGTGGGTG GAGAGAAGCG CCTGCAGCCA ACCAGGGTCA GGCTGTGCTC 100

ACAGTTTCCT CTGGCGGCAT GTAAAGGCTC CACAAAGGAG TTGGGAGTTC 150

AAATGAGGCT GCTGCGGACG GCCTGAGGAT GGACCCCAAG CCCTGGACCT 200

GCCGAGCGTG GCACTGAGGC AGCGGCTGAC GCTACTGTGA GGGAAAGAAG 250

GTTGTGAGCA GCCCCGCAGG ACCCCTGGCC AGCCCTGGCC CCAGCCTCTG 300

CCGGAGCCCT CTGTGGAGGC AGAGCCAGTG GAGCCCAGTG AGGCAGGGCT 350

GCTTGGCAGC CACCGGCCTG CAACTCAGGA ACCCCTCCAG AGGCCATGGA 400

CAGGCTGCCC CGCTGACGGC CAGGGTGAAG CATGTGAGGA GCCGCCCCGG 450

AGCCAAGCAG GAGGGAAGAG GCTTTCATAG ATTCTATTCA CAAAGAATAA 500

CCACCATTTT GCAAAGGACCA TGAGGCCACT GTGCGTGACA TGCTGGTGGC 550

TCGGACTGCT GGCTGCCATG GGAGCTGTTG CAGGCCAGGA GGACGGTTTT 600

GAGGGCACTG AGGAGGGCTC GCCAAGAGAG TTCATTTACC TAAACAGGTA 650

CAAGCGGGCG GGCGAGTCCC AGGACAAGTG CACCTACACC TTCATTGTGC 700 CCCAGCAGCG GGTCACGGGT GCCATCTGCG TCAACTCCAA GGAGCCTGAG 750 GTGCTTCTGG AGAACCGAGT GCATAAGCAG GAGCTAGAGC TGCTCAACAA 800 TGAGCTGCTC AAGCAGAAGC GGCAGATCGA GACGCTGCAG CAGCTGGTGG 850 AGGTGGACGG CGGCATTGTG AGCGAGGTGA AGCTGCTGCG CAAGGAGAGC 900 CGCAACATGA ACTCGCGGGT CACGCAGCTC TACATGCAGC TCCTGCACGA 950 GATCATCCGC AAGCGGGACA ACGCGTTGGA GCTCTCCCAG CTGGAGAACA 1000 GGATCCTGAA CCAGACAGCC GACATGCTGC AGCTGGCCAG CAAGTACAAG 1050 GACCTGGAGC ACAAGTACCA GCACCTGGCC ACAACCAATC 1100 AGAGATCATC GCGCAGCTTG AGGAGCACTG CCAGAGGGTG CCCTCGGCCA 1150 GGCCCGTCCC CCAGCCACCC CCCGCTGCCC CGCCCCGGGT CTACCAACCA 1200 CCCACCTACA ACCGCATCAT CAACCAGATC TCTACCAACG AGATCCAGAG 1250 TGACCAGAAC CTGAAGGTGC TGCCACCCC TCTGCCCACT ATGCCCACTC 1300 TCACCAGCCT CCCATCTTCC ACCGACAAGC CGTCGGGCCC ATGGAGAGAC 1350 TGCCTGCAGG CCCTGGAGGA TGGCCACGAC ACCAGCTCCA TCTACCTGGT 1400 GAAGCCGGAG AACACCAACC GCCTCATGCA GGTGTGGTGC GACCAGAGAC 1450 ACGACCCGG GGGCTGGACC GTCATCCAGA GACGCCTGGA TGGCTCTGTT 1500 AACTTCTTCA GGAACTGGGA GACGTACAAG CAAGGGTTTG GGAACATTGA 1550 CGGCGAATAC TGGCTGGGCC TGGAGAACAT TTACTGGCTG ACGAACCAAG 1600

5

10

30

GCAACTACAA ACTCCTGGTG ACCATGGAGG ACTGGTCCGG CCGCAAAGTC 1650 TTTGCAGAAT ACGCCAGTTT CCGCCTGGAA CCTGAGAGCG AGTATTATAA 1700 GCTGCGGCTG GGGCGCTACC ATGGCAATGC GGGTGACTCC TTTACATGGC 1750 ACAACGGCAA GCAGTTCACC ACCCTGGACA GAGATCATGA TGTCTACACA 1800 GGAAACTGTG CCCACTACCA GAAGGGAGGC TGGTGGTATA ACGCCTGTGC 1850 CCACTCCAAC CTCAACGGGG TCTGGTACCG CGGGGGCCAT TACCGGAGCC 1900 GCTACCAGGA CGGAGTCTAC TGGGCTGAGT TCCGAGGAGG CTCTTACTCA 1950 CTCAAGAAAG TGGTGATGAT GATCCGACCG AACCCCAACA CCTTCCACTA 2000 AGCCAGCTCC CCCTCCTGAC CTCTCGTGGC CATTGCCAGG AGCCCACCCT 2050 GGTCACGCTG GCCACAGCAC AAAGAACAAC TCCTCACCAG TTCATCCTGA 2100 GGCTGGGAGG ACCGGGATGC TGGATTCTGT TTTCCGAAGT CACTGCAGCG 2150 GATGATGGAA CTGAATCGAT ACGGTGTTTT CTGTCCCTCC TACTTTCCTT 2200 CTCTTTCTTT AAATAAATTA AGTCTCTACA ATAAAAAAA 2290

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 493 amino acids

(B) TYPE: Amino Acid

(D) TOPOLOGY: Linear

35

30

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

5	Met 1	Arg	Pro	Leu	Cys 5	Val	Thr	Cys	Trp	Trp	Leu	Gly	Leu	Leu	Ala 15
3	Ala	Met	Gly	Ala	Val 20	Ala	Gly	Gln	Glu	Asp 25	Gly	Phe	Glu	Gly	Thr 30
10	Glu	Glu	Gly	Ser	Pro 35	Arg	Glu	Phe	Ile	Tyr 40	Leu	Asn	Arg	Tyr	Lys 45
	Arg	Ala	Gly	Glu	Ser 50	Gln	Asp	Lys	Cys	Thr 55	Tyr	Thr	Phe	Ile	Val 60
15 1	Pro	Gln	Gln	Arg	Val 65	Thr	Gly	Ala	Ile	Cys 70	Val	Asn	Ser	Lys	Glu 75
15 0 1 1 1 1 2 2 2 2 2 2 3	Pro	Glu	Val	Leu	Leu 80	Glu	Asn	Arg	Val	His 85	Lys	Gln	Glu	Leu	Glu 90
	Leu	Leu	Asn	Asn	Glu 95	Leu	Leu	Lys	Gln	Lys 100	Arg	Gln	Ile	Glu	Thr 105
0 - 0 0 25	Leu	Gln	Gln	Leu	Val 110	Glu	Val	Asp	Gly	Gly 115	Ile	Val	Ser	Glu	Val 120
	Lys	Leu	Leu	Arg	Lys 125	Glu	Ser	Arg	Asn	Met 130	Asn	Ser	Arg	Val	Thr 135
30	Gln	Leu	Tyr	Met	Gln 140	Leu	Leu	His	Glu	Ile 145	Ile	Arg	Lys	Arg	Asp 150
35	Asn	Ala	Leu	Glu	Leu 155	Ser	Gln	Leu	Glu	Asn 160	Arg	Ile	Leu	Asn	Gln 165
	Thr	Ala	Asp	Met	Leu 170	Gln	Leu	Ala	Ser	Lys 175	Tyr	Lys	Asp	Leu	Glu 180

	His	Lys	Tyr	Gln	His 185	Leu	Ala	Thr	Leu	Ala 190	His	Asn	Gln	Ser	Glu 195
5	Ile	Ile	Ala	Gln	Leu 200	Glu	Glu	His	Суз	Gln 205	Arg	Val	Pro	Ser	Ala 210
	Arg	Pro	Val	Pro	Gln 215	Pro	Pro	Pro	Ala	Ala 220	Pro	Pro	Arg	Val	Tyr 225
10	Gln	Pro	Pro	Thr	Tyr 230	Asn	Arg	Ile	Ile	Asn 235	Gln	Ile	Ser	Thr	Asn 240
سر ہے بعدا	Glu	Ile	Gln	Ser	Asp 245	Gln	Asn	Leu	Lys	Val 250	Leu	Pro	Pro	Pro	Leu 255
15 0 0 0 0 0 0	Pro	Thr	Met	Pro	Thr 260	Leu	Thr	Ser	Leu	Pro 265	Ser	Ser	Thr	Asp	Lys 270
₩ ₩ ₩ ₩ ₩	Pro	Ser	Gly	Pro	Trp 275	Arg	Asp	Cys	Leu	Gln 280	Ala	Leu	Glu	Asp	Gly 285
]]] 25	His	Asp	Thr	Ser	Ser 290	Ile	Tyr	Leu	Val	Lys 295	Pro	Glu	Asn	Thr	Asn 300
25	Arg	Leu	Met	Gln	Val 305	Trp	Cys	Asp	Gln	Arg 310	His	Asp	Pro	Gly	Gly 315
20	Trp	Thr	Val	Ile	Gln 320	Arg	Arg	Leu	Asp	Gly 325	Ser	Val	Asn	Phe	Phe
30	Arg	Asn	Trp	Glu	Thr 335	Туг	Lys	Gln	Gly	Phe	Gly	Asn	Ile	Asp	Gly 345
35	Glu	Tyr	Trp	Leu	Gly 350	Leu	Glu	Asn	Ile	Tyr 355	Trp	Leu	Thr	Asn	Gln 360

	Gly	Asn	Tyr	Lys	Leu 365	Leu	Val	Thr	Met	Glu 370	Asp	Trp	Ser	Gly	Arg 375
5	Lys	Val	Phe	Ala	Glu 380	Tyr	Ala	Ser	Phe	Arg 385	Leu	Glu	Pro	Glu	Ser
	Glu	Tyr	Tyr	Lys	Leu 395	Arg	Leu	Gly	Arg	Tyr 400	His	Gly	Asn	Ala	Gly 405
10	Asp	Ser	Phe	Thr	Trp 410	His	Asn	Gly	Lys	Gln 415	Phe	Thr	Thr	Leu	Asp
15	Arg	Asp	His	Asp	Val 425	Tyr	Thr	Gly	Asn	Cys 430	Ala	His	Tyr	Gln	Lys 435
13	Gly	Gly	Trp	Trp	Туr 440	Asn	Ala	Cys	Ala	His 445	Ser	Asn	Leu	Asn	Gly 450
20	Val	Trp	Tyr	Arg	Gly 455	Gly	His	Tyr	Arg	Ser 460	Arg	Tyr	Gln	Asp	Gly 465
	Val	Tyr	Trp	Ala	Glu 470	Phe	Arg	Gly	Gly	Ser 475	Tyr	Ser	Leu	Lys	Lys 480
25	Val	Val	Met	Met	Ile 485	Arg	Pro	Asn	Pro	Asn 490	Thr	Phe	His 493		

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

30

35

(A) LENGTH: 3355 base pairs

(B) TYPE: Nucleic Acid

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GCAGCTGGTT ACTGCATTTC TCCATGTGGC AGACAGAGCA AAGCCACAAC 50 GCTTTCTCTG CTGGATTAAA GACGGCCCAC AGACCAGAAC TTCCACTATA 100 CTACTTAAAA TTACATAGGT GGCTTGTCAA ATTCAATTGA TTAGTATTGT 150 AAAAGGAAAA AGAAGTTCCT TCTTACAGCT TGGATTCAAC GGTCCAAAAC 200 AAAAATGCAG CTGCCATTAA AGTCTCAGAT GAACAAACTT CTACACTGAT 250 TTTTAAAATC AAGAATAAGG GCAGCAAGTT TCTGGATTCA CTGAATCAAC 300 AGACACAAAA AGCTGGCAAT ATAGCAACTA TGAAGAGAAA AGCTACTAAT 350 AAAATTAACC CAACGCATAG AAGACTTTTT TTTCTCTTCT AAAAACAACT 400 AAGTAAAGAC TTAAATTTAA ACACATCATT TTACAACCTC ATTTCAAAAT 450 GAAGACTTTT ACCTGGACCC TAGGTGTGCT ATTCTTCCTA CTAGTGGACA 500 CTGGACATTG CAGAGGTGGA CAATTCAAAA TTAAAAAAAT AAACCAGAGA 550 AGATACCCTC GTGCCACAGA TGGTAAAGAG GAAGCAAAGA AATGTGCATA 600 CACATTCCTG GTACCTGAAC AAAGAATAAC AGGGCCAATC TGTGTCAACA 650 CCAAGGGCA AGATGCAAGT ACCATTAAAG ACATGATCAC CAGGATGGAC 700 CTTGAAAACC TGAAGGATGT GCTCTCCAGG CAGAAGCGGG AGATAGATGT 750 TCTGCAACTG GTGGTGGATG TAGATGGAAA CATTGTGAAT GAGGTAAAGC 800 TGCTGAGAAA GGAAAGCCGT AACATGAACT CTCGTGTTAC TCAACTCTAT 850 ATGCAATTAT TACATGAGAT TATCCGTAAG AGGGATAATT CACTTGAACT 900 TTCCCAACTG GAAAACAAAA TCCTCAATGT CACCACAGAA ATGTTGAAGA 950

5

10

30

TGGCAACAAG ATACAGGGAA CTAGAGGTGA AATACGCTTC CTTGACTGAT 1000 CTTGTCAATA ACCAATCTGT GATGATCACT TTGTTGGAAG AACAGTGCTT 1050 GAGGATATTT TCCCGACAAG ACACCCATGT GTCTCCCCCA CTTGTCCAGG 1100 TGGTGCCACA ACATATTCCT AACAGCCAAC AGTATACTCC TGGTCTGCTG 1150 GGAGGTAACG AGATTCAGAG GGATCCAGGT TATCCCAGAG ATTTAATGCC 1200 ACCACCTGAT CTGGCAACTT CTCCCACCAA AAGCCCTTTC AAGATACCAC 1250 CGGTAACTTT CATCAATGAA GGACCATTCA AAGACTGTCA GCAAGCAAAA 1300 GAAGCTGGGC ATTCGGTCAG TGGGATTTAT ATGATTAAAC CTGAAAACAG 1350 CAATGGACCA ATGCAGTTAT GGTGTGAAAA CAGTTTGGAC CCTGGGGGTT 1400 GGACTGTTAT TCAGAAAAGA ACAGACGGCT CTGTCAACTT CTTCAGAAAT 1450 TGGGAAAATT ATAAGAAAGG GTTTGGAAAC ATTGACGGAG AATACTGGCT 1500 TGGACTGGAA AATATCTATA TGCTTAGCAA TCAAGATAAT TACAAGTTAT 1550 TGATTGAATT AGAAGACTGG AGTGATAAAA AAGTCTATGC AGAATACAGC 1600 AGCTTTCGTC TGGAACCTGA AAGTGAATTC TATAGACTGC GCCTGGGAAC 1650 TTACCAGGGA AATGCAGGGG ATTCTATGAT GTGGCATAAT GGTAAACAAT 1700 TCACCACACT GGACAGAGAT AAAGATATGT ATGCAGGAAA CTGCGCCCAC 1750 TTTCATAAAG GAGGCTGGTG GTACAATGCC TGTGCACATT CTAACCTAAA 1800 TGGAGTATGG TACAGAGGAG GCCATTACAG AAGCAAGCAC CAAGATGGAA 1850 TTTTCTGGGC CGAATACAGA GGCGGGTCAT ACTCCTTAAG AGCAGTTCAG 1900

5

10

30

ATGATGATCA AGCCTATTGA CTGAAGAGAG ACACTCGCCA ATTTAAATGA 1950 CACAGAACTT TGTACTTTTC AGCTCTTAAA AATGTAAATG TTACATGTAT 2000 ATTACTTGGC ACAATTTATT TCTACACAGA AAGTTTTTAA AATGAATTTT 2050 ACCGTAACTA TAAAAGGGAA CCTATAAATG TAGTTTCATC TGTCGTCAAT 2100 TACTGCAGAA AATTATGTGT ATCCACAACC TAGTTATTTT AAAAATTATG 2150 TTGACTAAAT ACAAAGTTTG TTTTCTAAAA TGTAAATATT TGCCACAATG 2200 TAAAGCAAAT CTTAGCTATA TTTTAAATCA TAAATAACAT GTTCAAGATA 2250 CTTAACAATT TATTTAAAAT CTAAGATTGC TCTAACGTCT AGTGAAAAAA 2300 GACAGAAAAT TAGGGAGAAA CTTCTAGTTT TGCCAATAGA AAATGTTCTT 2400 CCATTGAATA AAAGTTATTT CAAATTGAAT TTGTGCCTTT CACACGTAAT 2450 GATTAAATCT GAATTCTTAA TAATATCC TATGCTGATT TTCCCAAAAC 2500 ATGACCCATA GTATTAAATA CATATCATTT TTAAAAATAA AAAAAAACCC 2550 AAAAATAATG CATGCATAAT TTAAATGGTC AATTTATAAA GACAAATCTA 2600 TGAATGAATT TTTCAGTGTT ATCTTCATAT GATATGCTGA ACACCAAAAT 2650 CTCCAGAAAT GCATTTTATG TAGTTCTAAA ATCAGCAAAA TATTGGTATT 2700 ACAAAAATGC AGAATATTTA GTGTGCTACA GATCTGAATT ATAGTTCTAA 2750 TTTATTATTA CTTTTTTCT AATTTACTGA TCTTACTACT ACAAAGAAAA 2800 AAAAACCCAA CCCATCTGCA ATTCAAATCA GAAAGTTTGG ACAGCTTTAC 2850

5

10

[15] [D] [D] [D] [D] [D] [D]

30

AAGTATTAGT	GCATGCTCAG	AACAGGTGGG	ACTAAAACAA	ACTCAAGGAA	2900
CTGTTGGCTG	TTTTCCCGAT	ACTGAGAATT	CAACAGCTCC	AGAGCAGAAG	2950
CCACAGGGGC	ATAGCTTAGT	CCAAACTGCT	AATTTCATTT	TACAGTGTAT	3000
GTAACGCTTA	GTCTCACAGT	GTCTTTAACT	CATCTTTGCA	ATCAACAACT	3050
TTACTAGTGA	CTTTCTGGAA	CAATTTCCTT	TCAGGAATAC	ATATTCACTG	3100
CTTAGAGGTG	ACCTTGCCTT	AATATATTTG	TGAAGTTAAA	ATTTTAAAGA	3150
TAGCTCATGA	AACTTTTGCT	TAAGCAAAAA	GAAAACCTCG	AATTGAAATG	3200
TGTGAGGCAA	ACTATGCATG	GGAATAGCTT	AATGTGAAGA	TAATCATTTG	3250
GACAACTCAA	ATCCATCAAC	ATGACCAATG	TTTTTCATCT	GCCACATCTC	3300
ААААТААААС	TTCTGGTGAA	ACAAATTAAA	СААААТАТСС	AAACCTCAAA	3350
ААААА 3355					

(2) INFORMATION FOR SEQ ID NO:4:

5

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 491 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Thr Phe Thr Trp Thr Leu Gly Val Leu Phe Phe Leu Leu

1 5 10 15

Val Asp Thr Gly His Cys Arg Gly Gln Phe Lys Ile Lys Lys
20 25 30

	Ile	Asn	Gln	Arg	Arg 35	Tyr	Pro	Arg	Ala	Thr 40	Asp	Gly	Lys	Glu	Glu 45
5	Ala	Lys	Lys	Cys	Ala 50	Tyr	Thr	Phe	Leu	Val 55	Pro	Glu	Gln	Arg	Ile 60
	Thr	Gly	Pro	Ile	Cys 65	Val	Asn	Thr	Lys	Gly 70	Gln	Asp	Ala	Ser	Thr 75
10	Ile	Lys	Asp	Met	Ile 80	Thr	Arg	Met	Asp	Leu 85	Glu	Asn	Leu	Lys	Asp 90
· 1 6	Val	Leu	Ser	Arg	Gln 95	Lys	Arg	Glu	Ile	Asp 100	Val	Leu	Gln	Leu	Val 105
15 0 0 0 0 0 0 0	Val	Asp	Val	Asp	Gly 110	Asn	Ile	Val	Asn	Glu 115	Val	Lys	Leu	Leu	Arg 120
20	Lys	Glu	Ser	Arg	Asn 125	Met	Asn	Ser	Arg	Val 130	Thr	Gln	Leu	Tyr	Met 135
25	Gln	Leu	Leu	His	Glu 140	Ile	Ile	Arg	Lys	Arg 145	Asp	Asn	Ser	Leu	Glu 150
25	Leu	Ser	Gln	Leu	Glu 155	Asn	Lys	Ile	Leu	Asn 160	Val	Thr	Thr	Glu	Met 165
20	Leu	Lys	Met	Ala	Thr 170	Arg	Tyr	Arg	Glu	Leu 175	Glu	Val	Lys	Tyr	Ala 180
30	Ser	Leu	Thr	_	Leu 185	Val	Asn	Asn	Gln	Ser 190	Val	Met	Ile	Thr	Leu 195
35	Leu	Glu	Glu	Gln	Cys 200	Leu	Arg	Ile	Phe	Ser 205	Arg	Gln	Asp	Thr	His 210

	Val	Ser	Pro	Pro	Leu 215	Val	Gln	Val	Val	Pro 220	Gln	His	Ile	Pro	Asn 225
5	Ser	Gln	Gln	Tyr	Thr 230	Pro	Gly	Leu	Leu	Gly 235	Gly	Asn	Glu	Ile	Gln 240
	Arg	Asp	Pro	Gly	Tyr 245	Pro	Arg	Asp	Leu	Met 250	Pro	Pro	Pro	Asp	Leu 255
10	Ala	Thr	Ser	Pro	Thr 260	Lys	Ser	Pro	Phe	Lys 265	Ile	Pro	Pro	Val	Thr 270
= 15	Phe	Ile	Asn	Glu	Gly 275	Pro	Phe	Lys	Asp	Cys 280	Gln	Gln	Ala	Lys	Glu 285
13 11 11 12 12 12 13	Ala	Gly	His	Ser	Val 290	Ser	Gly	Ile	Tyr	Met 295	Ile	Lys	Pro	Glu	Asn 300
20	Ser	Asn	Gly	Pro	Met 305	Gln	Leu	Trp	Cys	Glu 310	Asn	Ser	Leu	Asp	Pro 315
	Gly	Gly	Trp	Thr	Val 320	Ile	Gln	Lys	Arg ,	Thr 325	Asp	Gly	Ser	Val	Asn 330
25	Phe	Phe	Arg	Asn	Trp 335	Glu	Asn	Tyr	Lys	Lys 340	Gly	Phe	Gly	Asn	Ile 345
30	Asp	Gly	Glu	Tyr	Trp 350	Leu	Gly	Leu	Glu	Asn 355	Ile	Tyr	Met	Leu	Ser 360
30	Asn	Gln	Asp	Asn	Tyr 365	Lys	Leu	Leu	Ile	Glu 370	Leu	Glu	Asp	Trp	Ser 375
35	Asp	Lys	Lys	Val	Tyr 380	Ala	Glu	Tyr	Ser	Ser 385	Phe	Arg	Leu	Glu	Pro 390

	Glu Ser Glu Phe Tyr Arg Leu Arg Leu Gly Thr Tyr Gln Gly Asn 395 400 405	
5	Ala Gly Asp Ser Met Met Trp His Asn Gly Lys Gln Phe Thr Thr 410 415 420	
	Leu Asp Arg Asp Lys Asp Met Tyr Ala Gly Asn Cys Ala His Phe 425 430 435	
10	His Lys Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu 440 445 450	
	Asn Gly Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Lys His Gln 455 460 465	
15	Asp Gly Ile Phe Trp Ala Glu Tyr Arg Gly Gly Ser Tyr Ser Leu 470 475 480	
20	Arg Ala Val Gln Met Met Ile Lys Pro Ile Asp 485 490 491	
	(2) INFORMATION FOR SEQ ID NO:5:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1780 base pairs(B) TYPE: Nucleic Acid(C) STRANDEDNESS: Single(D) TOPOLOGY: Linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	GGCTCAGAGG CCCCACTGGA CCCTCGGCTC TTCCTTGGAC TTCTTGTGTG 50	
35	TTCTGTGAGC TTCGCTGGAT TCAGGGTCTT GGGCATCAGA GGTGAGAGGG 100	

TGGGAAGGTC CGCCGCGATG GGGAAGCCCT GGCTGCGTGC GCTACAGCTG 150

CTGCTCCTGC TGGGCGCGTC GTGGGCGCGG GCGGCGCCC CGCGCTGCAC 200 CTACACCTTC GTGCTGCCC CGCAGAAGTT CACGGGCGCT GTGTGCTGGA 250 GCGGCCCGC ATCCACGCGG GCGACGCCCG AGGCCGCCAA CGCCAGCGAG 300 CTGGCGGCGC TGCGCATGCG CGTCGGCCGC CACGAGGAGC TGTTACGCGA 350 GCTGCAGAGG CTGGCGGCGG CCGACGGCGC CGTGGCCGGC GAGGTGCGCG 400 CGCTGCGCAA GGAGAGCCGC GGCCTGAGCG CGCGCCTGGG CCAGTTGCGC 450 GCGCAGCTGC AGCACGAGGC GGGGCCCGGG GCGGGCCCGG GGGCGGATCT 500 GGGGGCGGAG CCTGCCGCGG CGCTGGCGCT GCTCGGGGAG CGCGTGCTCA 550 ACGCGTCCGC CGAGGCTCAG CGCGCAGCCG CCCGGTTCCA CCAGCTGGAC 600 GTCAAGTTCC GCGAGCTGGC GCAGCTCGTC ACCCAGCAGA GCAGTCTCAT 650 CGCCGCCTG GAGCGCCTGT GCCCGGGAGG CGCGGCGGG CAGCAGCAGG 700 TCCTGCCGCC ACCCCACTG GTGCCTGTGG TTCCGGTCCG TCTTGTGGGT 750 AGCACCAGTG ACACCAGTAG GATGCTGGAC CCAGCCCCAG AGCCCCAGAG 800 AGACCAGACC CAGAGACAGC AGGAGCCCAT GGCTTCTCCC ATGCCTGCAG 850 GTCACCCTGC GGTCCCCACC AAGCCTGTGG GCCCGTGGCA GGATTGTGCA 900 GAGGCCCGCC AGGCAGGCCA TGAACAGAGT GGAGTGTATG AACTGCGAGT 950 GGGCCGTCAC GTAGTGTCAG TATGGTGTGA GCAGCAACTG GAGGGTGGAG 1000 GCTGGACTGT GATCCAGCGG AGGCAAGATG GTTCAGTCAA CTTCTTCACT 1050 ACCTGGCAGC ACTATAAGGC GGGCTTTGGG CGGCCAGACG GAGAATACTG 1100

5

10

口15 口 口 口 口 口 口 口 口

30

GCTGGGCCTT GAACCCGTGT ATCAGCTGAC CAGCCGTGGG GACCATGAGC 1150 TGCTGGTTCT CCTGGAGGAC TGGGGGGGCC GTGGAGCACG TGCCCACTAT 1200 GATGGCTTCT CCCTGGAACC CGAGAGCGAC CACTACCGCC TGCGGCTTGG 1250 CCAGTACCAT GGTGATGCTG GAGACTCTCT TTCCTGGCAC AATGACAAGC 1300 CCTTCAGCAC CGTGGATAGG GACCGAGACT CCTATTCTGG TAACTGTGCC 1350 CTGTACCAGC GGGGAGGCTG GTGGTACCAT GCCTGTGCCC ACTCCAACCT 1400 CAACGGTGTG TGGCACCACG GCGGCCACTA CCGAAGCCGC TACCAGGATG 1450 GTGTCTACTG GGCTGAGTTT CGTGGTGGGG CATATTCTCT CAGGAAGGCC 1500 GCCATGCTCA TTCGGCCCCT GAAGCTGTGA CTCTGTGTTC CTCTGTCCCC 1550 TAGGCCCTAG AGGACATTGG TCAGCAGGAG CCCAAGTTGT TCTGGCCACA 1600 CCTTCTTTGT GGCTCAGTGC CAATGTGTCC CACAGAACTT CCCACTGTGG 1650 ATCTGTGACC CTGGGCGCTG AAAATGGGAC CCAGGAATCC CCCCGTCAA 1700 TATCTTGGCC TCAGATGGCT CCCCAAGGTC ATTCATATCT CGGTTTGAGC 1750 TCATATCTTA TAATAACACA AAGTAGCCAC 1780

(2) INFORMATION FOR SEQ ID NO:6:

30

5

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 470 amino acids

(B) TYPE: Amino Acid

(D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

	Met 1	: Gly	Lys	Pro	Trp 5	Leu	Arg	Ala	Leu	Gln 10	Leu	Leu	Leu	Leu	Leu 15
5	Gly	, Ala	Ser	Trp	Ala 20	Arg	Ala	Gly	Ala	Pro 25	Arg	Cys	Thr	Tyr	Thr
10	Phe	e Val	Leu	Pro	Pro 35	Gln	Lys	Phe	Thr	Gly 40	Ala	Val	Cys	Trp	Ser 45
	Gly	Pro	Ala	Ser	Thr 50	Arg	Ala	Thr	Pro	Glu 55	Ala	Ala	Asn	Ala	Ser 60
_ 15	Glu	ı Leu	Ala	Ala	Leu 65	Arg	Met	Arg	Val	Gly 70	Arg	His	Glu	Glu	Leu 75
道 点 点 点 上 20	Lev	ı Arg	Glu	Leu	Gln 80	Arg	Leu	Ala	Ala	Ala 85	Asp	Gly	Ala	Val	Ala 90
	Gly	Glu	Val	Arg	Ala 95	Leu	Arg	Lys	Glu	Ser 100	Arg	Gly	Leu	Ser	Ala 105
0 0 0 0 0 0 25	Arg	, Leu	Gly	Gln	Leu 110	Arg	Ala	Gln	Leu	Gln 115	His	Glu	Ala	Gly	Pro 120
	Gly	Ala	Gly	Pro	Gly 125	Ala	Asp	Leu	Gly	Ala 130	Glu	Pro	Ala	Ala	Ala 135
30	Leu	ı Ala	Leu	Leu	Gly 140	Glu	Arg	Val	Leu	Asn 145	Ala	Ser	Ala	Glu	Ala 150
35	Glr	ı Arg	Ala	Ala	Ala 155	Arg	Phe	His	Gln	Leu 160	Asp	Val	Lys	Phe	Arg 165
	Glu	ı Leu	Ala	Gln	Leu 170	Val	Thr	Gln	Gln	Ser 175	Ser	Leu	Ile	Ala	Arg 180

			-												
	Leu	Glu	Arg	Leu	Cys 185	Pro	Gly	Gly	Ala	Gly 190	Gly	Gln	Gln	Gln	Val 195
5	Leu	Pro	Pro	Pro	Pro 200	Leu	Val	Pro	Val	Val 205	Pro	Val	Arg	Leu	Val 210
	Gly	Ser	Thr	Ser	Asp 215	Thr	Ser	Arg	Met	Leu 220	Asp	Pro	Ala	Pro	Glu 225
10	Pro	Gln	Arg	Asp	Gln 230	Thr	Gln	Arg	Gln	Gln 235	G1u	Pro	Met	Ala	Ser 240
	Pro	Met	Pro	Ala	Gly 245	His	Pro	Ala	Val	Pro 250	Thr	Lys	Pro	Val	Gly 255
15 0 0 0	Pro	Trp	Gln	Asp	Cys 260	Ala	Glu	Ala	Arg	Gln 265	Ala	Gly	His	Glu	Gln 270
1 20	Ser	Gly	Val	Tyr	Glu 275	Leu	Arg	Val	Gly	Arg 280	His	Val	Val	Ser	Val 285
	Trp	Cys	Glu	Gln	Gln 290	Leu	Glu	Gly	Gly	Gly 295	Trp	Thr	Val	Ile	Gln 300
25	Arg	Arg	Gln	Asp	Gly 305	Ser	Val	Asn	Phe	Phe	Thr	Thr	Trp	Gln	His 315
	Tyr	Lys	Ala	Gly	Phe 320	Gly	Arg	Pro	Asp	Gly 325	Glu	Tyr	Trp	Leu	Gly 330
30	Leu	Glu	Pro	Val	Tyr 335	Gln	Leu	Thr	Ser	Arg 340	Gly	Asp	His	Glu	Leu 345
35	Leu	Val	Leu	Leu	Glu 350	Asp	Trp	Gly	Gly	Arg 355	Gly	Ala	Arg	Ala	His 360

	Tyr	Asp	Gly	Phe	Ser 365	Leu	Glu	Pro	Glu	Ser 370	Asp	His	Tyr	Arg	Leu 375
5	Arg	Leu	Gly	Gln	Tyr 380	His	Gly	Asp	Ala	Gly 385	Asp	Ser	Leu	Ser	Trp 390
	His	Asn	Asp	Lys	Pro 395	Phe	Ser	Thr	Val	Asp 400	Arg	Asp	Arg	Asp	Ser 405
10	Tyr	Ser	Gly	Asn	Cys 410	Ala	Leu	Tyr	Gln	Arg 415	Gly	Gly	Trp	Trp	Tyr 420
1.5	His	Ala	Cys	Ala	His 425	Ser	Asn	Leu	Asn	Gly 430	Val	Trp	His	His	Gl _y 435
15	Gly	His	Tyr	Arg	Ser 440	Arg	Tyr	Gln	Asp	Gly 445	Val	Tyr	Trp	Ala	Glu 450
20	Phe	Arg	Gly	Gly	Ala 455	Tyr	Ser	Leu	Arg	Lys 460	Ala	Ala	Met	Leu	Ile 465
	Arg	Pro	Leu	Lys	Leu 470										
25	(2)	INFOR	TAM	ON E	FOR S	SEQ]	ID NO):7:							
30	(:	(C	A) LE B) TY C) SY	ENGTH	H: 33 Nucl DEDNE	B bas Leic ESS:	se pa Acid Sing	irs I							
	(x:	i) SE	EQUE 1	ICE I	ESCF	RIPTI	ON:	SEQ	ID N	10 : 7 :	:				

GCTGACGAAC CAAGGCAACT ACAAACTCCT GGT 33

35

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

10

5

TGCGGCCGGA CCAGTCCTCC ATGGTCACCA GGAGTTTGTA G 41

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGTGGTGAAC TGCTTGCCGT TGTGCCATGT AAA 33

- (2) INFORMATION FOR SEQ ID NO:10:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

35

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CAGGTTATCC CAGAGATTTA ATGCCACCA 29

	**************************************				44
(2)	INFORMATION	FOR	SEO	TD	NO:11

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 34 base pairs

(B) TYPE: Nucleic Acid

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TTGGTGGGAG AAGTTGCCAG ATCAGGTGGT GGCA 34

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

TTCACACCAT AACTGCATTG GTCCA 25

(2) INFORMATION FOR SEQ ID NO:13:

30

35

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 34 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ACGTAGTTCC AGTATGGTGT GAGCAGCAAC TGGA 34

(2)	INFORMATION	FOR	SEQ	ID	NO:14	:
-----	-------------	-----	-----	----	-------	---

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single

10

- (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

AGTCCAGCCT CCACCCTCCA GTTGCT 26

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 25 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CCCCAGTCCT CCAGGAGAAC CAGCA 25

30

35

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2042 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

5

10

30

35

GCGGACGCGT GGGTGAAATT GAAAATCAAG ATAAAAATGT TCACAATTAA 50 GCTCCTTCTT TTTATTGTTC CTCTAGTTAT TTCCTCCAGA ATTGATCAAG 100 ACAATTCATC ATTTGATTCT CTATCTCCAG AGCCAAAATC AAGATTTGCT 150 ATGTTAGACG ATGTAAAAAT TTTAGCCAAT GGCCTCCTTC AGTTGGGACA 200 TGGTCTTAAA GACTTTGTCC ATAAGACGAA GGGCCAAATT AATGACATAT 250 TTCAAAAACT CAACATATTT GATCAGTCTT TTTATGATCT ATCGCTGCAA 300 ACCAGTGAAA TCAAAGAAGA AGAAAAGGAA CTGAGAAGAA CTACATATAA 350 ACTACAAGTC AAAAATGAAG AGGTAAAGAA TATGTCACTT GAACTCAACT 400 CAAAACTTGA AAGCCTCCTA GAAGAAAAAA TTCTACTTCA ACAAAAAGTG 450 AAATATTTAG AAGAGCAACT AACTAACTTA ATTCAAAATC AACCTGAAAC 500 TCCAGAACAC CCAGAAGTAA CTTCACTTAA AACTTTTGTA GAAAAACAAG 550 ATAATAGCAT CAAAGACCTT CTCCAGACCG TGGAAGACCA ATATAAACAA 600 TTAAACCAAC AGCATAGTCA AATAAAAGAA ATAGAAAATC AGCTCAGAAG 650 GACTAGTATT CAAGAACCCA CAGAAATTTC TCTATCTTCC AAGCCAAGAG 700 CACCAAGAAC TACTCCCTTT CTTCAGTTGA ATGAAATAAG AAATGTAAAA 750 CATGATGGCA TTCCTGCTGA ATGTACCACC ATTTATAACA GAGGTGAACA 800 TACAAGTGGC ATGTATGCCA TCAGACCCAG CAACTCTCAA GTTTTTCATG 850

TCTACTGTGA TGTTATATCA GGTAGTCCAT GGACATTAAT TCAACATCGA 900 ATAGATGGAT CACAAAACTT CAATGAAACG TGGGAGAACT ACAAATATGG 950 TTTTGGGAGG CTTGATGGAG AATTTTGGTT GGGCCTAGAG AAGATATACT 1000 CCATAGTGAA GCAATCTAAT TATGTTTTAC GAATTGAGTT GGAAGACTGG 1050 AAAGACAACA AACATTATAT TGAATATTCT TTTTACTTGG GAAATCACGA 1100 AACCAACTAT ACGCTACATC TAGTTGCGAT TACTGGCAAT GTCCCCAATG 1150 CAATCCCGGA AAACAAAGAT TTGGTGTTTT CTACTTGGGA TCACAAAGCA 1200 AAAGGACACT TCAACTGTCC AGAGGGTTAT TCAGGAGGCT GGTGGTGGCA 1250 TGATGAGTGT GGAGAAAACA ACCTAAATGG TAAATATAAC AAACCAAGAG 1300 CAAAATCTAA GCCAGAGAGG AGAAGAGGAT TATCTTGGAA GTCTCAAAAT 1350 GGAAGGTTAT ACTCTATAAA ATCAACCAAA ATGTTGATCC ATCCAACAGA 1400 TTCAGAAAGC TTTGAATGAA CTGAGGCAAT TTAAAGGCAT ATTTAACCAT 1450 TAACTCATTC CAAGTTAATG TGGTCTAATA ATCTGGTATA AATCCTTAAG 1500 AGAAAGCTTG AGAAATAGAT TTTTTTTATC TTAAAGTCAC TGTCTATTTA 1550 AGATTAAACA TACAATCACA TAACCTTAAA GAATACCGTT TACATTTCTC 1600 AATCAAAATT CTTATAATAC TATTTGTTTT AAATTTTGTG ATGTGGGAAT 1650 CAATTTTAGA TGGTCACAAT CTAGATTATA ATCAATAGGT GAACTTATTA 1700 AATAACTTTT CTAAATAAAA AATTTAGAGA CTTTTATTTT AAAAGGCATC 1750 ATATGAGCTA ATATCACAAC TTTCCCAGTT TAAAAAACTA GTACTCTTGT 1800

5

10

口15 位 位 位 位 位 位 位 20 12 20

30

						P	ATEN							
	TAAAAC	TCTA AACT	TGACTA A	ATACAGAG	G ACTGGTAAT	GTACAGTTCT	1850							
	TAAATG'	TTGT AGTA	TTAATT T	СААААСТА	A AAATCGTCA(G CACAGAGTAT	1900							
5	GTGTAA	AAAT CTGT	AATACA A	ATTTTTAA	A CTGATGCTTO	C ATTTTGCTAC	1950							
	AAAATA	ATTT GGAG	ТАААТС Т	TTGATATG	A TTTATTTATO	AAACCTAATG	2000							
10	AAGCAGA	ААТТ АААТ	ACTGTA I	TAAAATAA	G TTCGCTGTC1	TT 2042								
	(2) INFO	ORMATION	FOR SEQ	ID NO:17	:									
	(i) s	SEQUENCE	CHARACTE	RISTICS:										
		(A) LENGT	Н: 460 а	mino acio	ds									
[]15		(B) TYPE:	Amino A	cid										
		(D) TOPOL	OGY: Lin	ear										
	(10)	CEOUENCE	DECCETO	TON. CEO	TD NO.17.									
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:													
100 4 4 20 4 20 4 20	Met Phe	e Thr Ile	Lys Leu	Leu Leu	Phe Ile Val	. Pro Leu Va	l Ile							
a	1		5		10		15							
	•													
i de	Ser Sei	r Arg Ile		Asp Asn		Asp Ser Le								
<u>5</u> 25			20		25		30							
	Pro Glu	ı Pro Lys	Ser Arg	Phe Ala	Met Leu Asp	Asp Val Lys	s Ile							
			35		40		45							
20	Leu Ala	a Asn Gly		Gln Leu		Leu Lys Ası								
30			50		55		60							
	· Val His	s Lys Thr	Lys Gly	Gln Ile	Asn Asp Ile	Phe Gln Lys	s Leu							
			65		70	•	75							
35	Asn Ile	e Phe Asp	Gln Ser	Phe Tyr	Asp Leu Ser	Leu Gln Th	s Ser							

							_								
	Glu	Ile	Lys	GIu	95	GIu	Lys	GLu	Leu	Arg 100	Arg	Thr	Thr	Tyr	Lys 105
5	Leu	Gln	Val	Lys	Asn 110	Glu	Glu	Val	Lys	Asn 115	Met	Ser	Leu	Glu	Leu 120
	Asn	Ser	Lys	Leu	Glu 125	Ser	Leu	Leu	Glu	Glu 130	Lys	Ile	Leu	Leu	Gln 135
10	Gln	Lys	Val	Lys	Tyr 140	Leu	Glu	Glu	Gln	Leu 145	Thr	Asn	Leu	Ile	Gln 150
15	Asn	Gln	Pro	Glu	Thr 155	Pro	Glu	His	Pro	Glu 160	Val	Thr	Ser	Leu	Lys 165
	Thr	Phe	Val	Glu	Lys 170	Gln	Asp	Asn	Ser	Ile 175	Lys	Asp	Leu	Leu	Gln 180
20	Thr	Val	Glu	Asp	Gln 185	Tyr	Lys	Gln	Leu	Asn 190	Gln	Gln	His	Ser	Gln 195
	Ile	Lys	Glu	Ile	Glu 200	Asn	Gln	Leu	Arg	Arg 205	Thr	Ser	Ile	Gln	Glu 210
25	Pro	Thr	Glu	Ile	Ser 215	Leu	Ser	Ser	Lys	Pro 220	Arg	Ala	Pro	Arg	Thr 225
	Thr	Pro	Phe	Leu	Gln 230	Leu	Asn	Glu	Ile	Arg 235	Asn	Val	Lys	His	Asp 240
30	Gly	Ile	Pro	Ala	Glu 245	Cys	Thr	Thr	Ile	Tyr 250	Asn	Arg	Gly	Glu	His 255
35	Thr	Ser	Gly	Met	Tyr 260	Ala	Ile	Arg	Pro	Ser 265	Asn	Ser	Gln	Val	Phe 270

														1 / 1	ILLI
	His	Val	Tyr	Cys	Asp 275	Val	Ile	Ser	Gly	Ser 280	Pro	Trp	Thr	Leu	Ile 285
5	Gln	His	Arg	Ile	Asp 290	Gly	Ser	Gln	Asn	Phe 295	Asn	Glu	Thr	Trp	Glu 300
	Asn	Tyr	Lys	Tyr	Gly 305	Phe	Gly	Arg	Leu	Asp 310	Gly	Glu	Phe	Trp	Leu 315
10	Gly	Leu	Glu	Lys	Ile 320	Tyr	Ser	Ile	Val	Lys 325	Gln	Ser	Asn	Tyr	Val 330
	Leu	Arg	Ile	Glu	Leu 335	Glu	Asp	Trp	Lys	Asp 340	Asn	Lys	His	Tyr	Ile 345
15	Glu	Туr	Ser	Phe	Tyr 350	Leu	Gly	Asn	His	Glu 355	Thr	Asn	Tyr	Thr	Leu 360
20	His	Leu	Val	Ala	Ile 365	Thr	Gly	Asn	Val	Pro 370	Asn	Ala	Ile	Pro	Glu 375
	Asn	Lys	Asp	Leu	Val 380	Phe	Ser	Thr	Trp	Asp 385	His	Lys	Ala	Lys	Gly 390
25	His	Phe	Asn	Cys	Pro 395	Glu	Gly	Tyr	Ser	Gly 400	Gly	Trp	Trp	Trp	His 405
	Asp	Glu	Cys	Gly	Glu 410	Asn	Asn	Leu	Asn	Gly 415	Lys	Tyr	Asn	Lys	Pro 420
30	Arg	Ala	Lys	Ser	Lys 425	Pro	Glu	Arg	Arg	Arg 430	Gly	Leu	Ser	Trp	Lys 435
35	Ser	Gln	Asn	Gly	Arg 440	Leu	Tyr	Ser	Ile	Lys 445	Ser	Thr	Lys	Met	Leu 450
	Ile	His	Pro	Thr	Asp 455	Ser	Glu	Ser	Phe	Glu 460					