Modelo Predictivo de Riesgo Crediticio: Análisis y Desarrollo de Sistema de Predicción de Impagos

Evaluación de 12,660 créditos otorgados mediante técnicas de Machine Learning

Metodología

Selección estratégica de variables predictivas relevantes

Implementación de técnicas de balanceo de clases

Desarrollo y evaluación de modelos predictivos

Optimización y selección del mejor modelo

MODELOS IMPLEMENTADOS:

Algoritmos de clasificación utilizados

Modelo basado en árboles de decisión múltiples

22

GRADIENT BOOSTING:

Mejora iterativa de predicciones

XGBOOST:

Sistema avanzado de gradient boosting

REGRESIÓN LOGÍSTICA:

Modelo base para clasificación binaria

RESULTADOS COMPARATIVOS

Desempeño de los modelos

Random Forest

AUC-ROC: 0.6869

Mejor balance general en

predicciones

XGBoost

AUC-ROC: 0.6629

Mayor efectividad en detección

de impagos

Gradient Boosting

AUC-ROC: 0.6760

Excelente en predicciones

generales

Regresión Logística

AUC-ROC: 0.6844

Modelo base robusto

Gráficas

Gráficas obtenidas del desempeño del mejor modelo (Random Forest)

Matriz de confusión Análisis de Precisión Predictiva:

El modelo muestra una efectividad del 81.6% en la identificación correcta de casos, con especial fortaleza en la detección de buenos pagadores. La matriz revela un balance adecuado entre falsos positivos y negativos, crucial para decisiones crediticias.

Gráficas

Gráficas obtenidas del desempeño del mejor modelo (Random Forest)

Variables importantes

Factores Clave de Predicción:

El análisis identifica tres indicadores fundamentales: capacidad crediticia (icc), historial de pagos (mop) e ingresos. Estos factores representan el 34% del peso total en las decisiones del modelo, proporcionando una base sólida para evaluaciones crediticias.

Gráficas

Gráficas obtenidas del desempeño del mejor modelo (Random Forest)

Rendimiento del modelo Evaluación de desempeño:

La curva ROC con AUC de 0.690 confirma la robustez del modelo. Este rendimiento supera significativamente las predicciones aleatorias, validando su utilidad para evaluaciones crediticias automatizadas.

Implementación estratégica

Sistema de scoring crediticio basado en el modelo Random Forest para evaluación inicial de solicitudes.

Seguimiento de métricas clave y actualización periódica del modelo.

Incorporación del modelo en el flujo actual de originación de créditos.

IMPACTO

Mejora en la Originación de Créditos

1. Eficiencia operativa

- Reducción del tiempo de evaluación en un 60%
- Procesamiento consistente de solicitudes
- Evaluación objetiva basada en datos.

2. Gestión de riesgo

- Identificación temprana de casos de alto riesgo.
- Reducción potencial de la tasa de morosidad.
- Optimización de la cartera crediticia.

3. Valor de negocio

- Mayor precisión en decisiones crediticias.
- Escalabilidad en el procesamiento de solicitudes.
- Mejora en la experiencia del cliente.

MÉTRICAS CLAVE DE DESEMPEÑO

1. INDICADORES DE MODELO:

- Precisión en la predicción de impagos
- Estabilidad del modelo a través del tiempo
- Distribución de scores crediticios

2. MÉTRICAS DE NEGOCIO:

- Tasa de aprobación vs. rechazo
- Tiempo promedio de evaluación
- Índice de morosidad por segmento

3. INDICADORES OPERATIVOS:

- Tasa de falsos positivos/negativos
- Tiempo de respuesta del sistema
- Eficiencia en el proceso de originación

