Inductors – Transient/Storage Phase and

Decay Phase Intro

Fall 2018

R-L Storage Phase – In Class Problem

- 1. Find au
- 2. Find $i_{L1}(t)$, $t \ge 0$ (eq)
- 3. Find $v_{L1}(t)$ and $v_{R1}(t)$, $t \ge 0$ (eq)
- 4. Find i_L and v_L for 1τ , 3τ , & 5τ
- 5. Sketch $i_{L1}(t)$, $v_{L1}(t)$, & $v_{R1}(t)$, $t \ge 0$

R-L Decay Phase – Issue with our standard Thevenin equivalent circuit approach

FIG. 11.41 Demonstrating the effect of opening a switch in series with an inductor with a steady-state current.

R-L Decay Phase – Fix to overcome the high voltage problem

FIG. 11.42 Initiating the storage phase for an inductor by closing the switch.

*Note that R2 has no effect on the storage phase: $i_{L \, Final} = E/R_1$

R-L Decay Phase – Qualitative Discussion

FIG. 11.43 Network in Fig. 11.42 the instant the switch is opened.

 $t = 0^+$ so $i_L = i_{L \text{ Final}}$ from the storage phase

R-L Decay Phase - Analysis

 $i_L(0^+) = E / R_1$ <- Final value from storage phase

Finding $v_L(0^+)$:

$$-v_{R2} - v_{R1} - v_{L} = 0 \text{ (KVL)}$$

 $v_{L} = -v_{R2} - v_{R1}$

But:
$$v_{R2} = i_L * R2 , v_{R1} = i_L * R1$$

So,
$$v_L(0^+) = -i_L * R2 - i_L * R1$$

= $-i_L * (R2 + R1)$
= $-(E / R1) * (R2 + R1)$

 $v_L(0^+) = -E(R2 / R1 + 1)$

We can also use $i_L(0^+)$ to find $v_{R2}(0^+)$ and $v_{R1}(0^+)$

For t $>> \tau$

 i_L will exponentially decrease from its max value of (E/R1) to zero v_L will exponentially decrease to 0

Example – Decay Phase

Assume the circuit was in the storage phase for > 5τ and find $i_L(t)$, $v_L(t)$, $v_{R1}(t)$, & $v_{R2}(t)$ for the decay phase (switch opens at t=0)

Vth = 50V, Rth = 2k-Ohms (for t<0)

Example – Decay Phase

$$i_{LMax}=rac{50V}{2k\Omega}=25mA,\,t=0$$
 L1 acts as a s/c once steady state conditions are met

$$i_L(t) = i_{LMax}e^{-t/\tau}A$$
 $\tau = L/R = L/R_{Th}, R_{Th} = R_1 + R_2 = 5k\Omega$

$$i_L(t) = (25 \cdot 10^{-3})e^{-t/0.8 \cdot 10^{-3}}A$$

Exponential decay to 0

Rth =
$$5k$$
-Ohms (for t >0)

$$v_{R_1}(t) = i_L(t) \cdot R_1 = 50e^{-t/0.8 \cdot 10^{-3}} V$$

$$v_{R_2}(t) = i_L(t) \cdot R_2 = -75e^{-t/0.8 \cdot 10^{-3}} V$$

switch opens at t=0 + VR1 -
$$2k\Omega$$
 + VL1 - $2k\Omega$ + VL1 - $2k\Omega$

$$KVL: v_L(t) = v_{R_2}(t) - \text{VR1(t)}$$

$$v_L(t) = -75e^{-t/0.8\cdot 10^{-3}} - 50e^{-t/0.8\cdot 10^{-3}}$$

$$v_L(t) = -125e^{-t/0.8\cdot 10^{-3}}V$$

h

Electrical Engineering Technology

Example – Decay Phase (sketches)

$$v_{R_2}(t) = i_L(t) \cdot R_2 = -75e^{-t/0.8 \cdot 10^{-3}}V$$

$$v_L(t) = -125e^{-t/0.8 \cdot 10^{-3}}V$$

