Rank-264 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_0 X_1^2 = 0$$

(0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over GF(4) is 10930

General information

Number of lines	7
Number of points	29
Number of singular points	0
Number of Eckardt points	3
Number of double points	0
Number of single points	26
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{7}
Type of lines on points	$3^3, 1^{26}$

Singular Points

The surface has 0 singular points:

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(0, 0, 1, 0, 1, 0)_{32}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{129}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega^{2} \end{bmatrix}_{339} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}_{339} = \mathbf{Pl}(0,0,0,3,0,1)_{143}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{338} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{338} = \mathbf{Pl}(0,0,0,2,0,1)_{136}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \mathbf{Pl}(0,0,1,1,1,1)_{198}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \mathbf{Pl}(1,1,1,0,1,1)_{180}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \mathbf{Pl}(1,1,1,1,1,1,1)_{74}$$

Rank of lines: (17, 337, 339, 338, 38, 26, 89)

Rank of points on Klein quadric: (32, 129, 143, 136, 198, 180, 74)

Eckardt Points

The surface has 3 Eckardt points:

 $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$

 $1: P_{38} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1),$

 $2: P_{42} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1).$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 26 single points:

The single points on the surface are:

```
\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_4 = (1,1,1,1) \ \text{lies on line} \ \ell_4 \\ 2: \ P_5 = (1,1,0,0) \ \text{lies on line} \ \ell_4 \\ 3: \ P_8 = (1,0,1,0) \ \text{lies on line} \ \ell_5 \\ 4: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_6 \\ 5: \ P_{23} = (1,0,0,1) \ \text{lies on line} \ \ell_6 \\ 6: \ P_{27} = (1,1,0,1) \ \text{lies on line} \ \ell_6 \\ 7: \ P_{39} = (1,0,1,1) \ \text{lies on line} \ \ell_0 \\ 8: \ P_{40} = (2,0,1,1) \ \text{lies on line} \ \ell_0 \\ 9: \ P_{41} = (3,0,1,1) \ \text{lies on line} \ \ell_0 \\ 10: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_1 \\ 11: \ P_{47} = (2,2,1,1) \ \text{lies on line} \ \ell_4 \\ 12: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_1 \\ 13: \ P_{52} = (3,3,1,1) \ \text{lies on line} \ \ell_4 \end{array}
```

15: $P_{57} = (0, 1, 2, 1)$ lies on line ℓ_2 16: $P_{60} = (3, 1, 2, 1)$ lies on line ℓ_5 17: $P_{61} = (0, 2, 2, 1)$ lies on line ℓ_2

14: $P_{53} = (0,0,2,1)$ lies on line ℓ_2

18 : $P_{64} = (3, 2, 2, 1)$ lies on line ℓ_6 19 : $P_{65} = (0, 3, 2, 1)$ lies on line ℓ_2

20: $P_{69} = (0,0,3,1)$ lies on line ℓ_3 21: $P_{73} = (0,1,3,1)$ lies on line ℓ_3

22 : $P_{75} = (2, 1, 3, 1)$ lies on line ℓ_5 23 : $P_{77} = (0, 2, 3, 1)$ lies on line ℓ_3

23: $P_{77} = (0, 2, 3, 1)$ lies on line ℓ_3 24: $P_{81} = (0, 3, 3, 1)$ lies on line ℓ_3

 $25: P_{83} = (2,3,3,1)$ lies on line ℓ_6

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c|c} 0123456 \\ \hline 0 & 0100100 \\ 1 & 1011111 \\ 2 & 0101000 \\ 3 & 0110000 \\ 4 & 1100000 \\ 5 & 0100001 \\ 6 & 0100010 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_4
in point	P_{38}	P_{38}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_{38}	P_1	P_1	P_{38}	P_{42}	P_{42}

Line 2 intersects

Line	ℓ_1	ℓ_3
in point	P_1	P_1

Line 3 intersects

Line	ℓ_1	ℓ_2
in point	P_1	P_1

Line 4 intersects

Line	ℓ_0	ℓ_1
in point	P_{38}	P_{38}

Line 5 intersects

Line	ℓ_1	ℓ_6
in point	P_{42}	P_{42}

Line 6 intersects

Line	ℓ_1	ℓ_5
in point	P_{42}	P_{42}

The surface has 29 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$8: P_{38} = (0,0,1,1)$	16: $P_{52} = (3, 3, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$9: P_{39} = (1,0,1,1)$	17: $P_{53} = (0, 0, 2, 1)$
$2: P_4 = (1, 1, 1, 1)$	$10: P_{40} = (2,0,1,1)$	18: $P_{57} = (0, 1, 2, 1)$
$3: P_5 = (1, 1, 0, 0)$	$11: P_{41} = (3,0,1,1)$	$19: P_{60} = (3, 1, 2, 1)$
$4: P_8 = (1,0,1,0)$	$12: P_{42} = (0, 1, 1, 1)$	$20: P_{61} = (0, 2, 2, 1)$
$5: P_{12} = (1, 1, 1, 0)$	13: $P_{45} = (0, 2, 1, 1)$	$21: P_{64} = (3, 2, 2, 1)$
$6: P_{23} = (1, 0, 0, 1)$	$14: P_{47} = (2, 2, 1, 1)$	$22: P_{65} = (0, 3, 2, 1)$
$7: P_{27} = (1, 1, 0, 1)$	$15: P_{49} = (0,3,1,1)$	$23: P_{69} = (0,0,3,1)$

 $28: P_{83} = (2, 3, 3, 1)$

 $24: P_{73} = (0, 1, 3, 1)$ $25: P_{75} = (2, 1, 3, 1)$ $\begin{array}{l} 26:\ P_{77}=(0,2,3,1) \\ 27:\ P_{81}=(0,3,3,1) \end{array}$