- (20%) 1. Consider an Nth-order Butterworth low-pass filter $T(j\omega)$ whose passband edge $\omega_p = 1$ MHz, stopband edge $\omega_s = 10 \text{MHz}$, maximum allowed variation in passband is A_{max} , minimum required stopband attenuation is A_{min} , and its magnitude function $|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 (\frac{\omega}{\omega_n})^{2N}}}$.
 - (a) For a filter with $\varepsilon = 1$, N = 3, please find its A_{max} and A_{min} . (10%)
 - (b) For a filter with $A_{max} = 1 dB$ and $A_{min} = 30 dB$, please find the **required filter order**. (10%)
- (20%) 2. Fig. P2 shows pole-zero patterns for two different filters, and both filters have double zeros at the origin. The distance from the origin to each pole is ω_{θ} for both filters, while $\theta_1 > \theta_2$.
 - (a) For Fig. P2(a), please specify which type of filters it is. (Hint: low-pass / high-pass / band-pass / all-pass). Explain your reason. (10%)
 - (b) Compare both filters in Fig. P2 by roughly drawing their Bode magnitude plots. Explain your reason. (10%)

Fig. P2

- (15%) 3. Fig. P3 shows a switched-capacitor integrator, and the period of the two-phase clock is T_c.
 - (a) Without considering the C_P , express the equivalent time constant of the integrator in terms of C_1 , C_2 , and T_c . (5%)
 - (b) Compared with an active-RC integrator, what are the **benefits** of a switched-capacitor integrator for on-chip implementation? (5%)
 - (c) Will the stray capacitance C_P affect the time constant of this circuit or not? Explain your reason. (5%)

- (10%) 4. Please give definitions of the following terms.
 - (a) Stagger-tuned amplifier (5%)
 - (b) Astable multivibrator (5%)

- (15%) 5. (a) Please describe the Barkhausen criterion. (10%)
 - (b) In Fig. P5, will the circuit start oscillation or not? **Explain your reason**. (5%)

Fig. P5

- (20%) 6. Fig. P6 shows two inverting bistable circuits, and the output saturation vlotages $L_{+} = -L_{-} = 12V$.
 - (a) For Fig. P6(a), assume that the threshold voltages $V_{TH} = -V_{TL} = 4V$. Please **sketch its transfer characteristic curve** (mark the L_+ , L_- , V_{TH} , V_{TL} , and the direction of the transfer operation on your plot). (5%)
 - (b) Assume that $R_1 = 1k\Omega$, please **find R₂**. (5%)
 - (c) If a DC voltage source $V_R = 3V$ is inserted, as shown in Fig. P6(b), and $R_1 = 1k\Omega$, $R_3 = 2k\Omega$. Please **sketch its transfer characteristic curve** (mark the L_+ , L_- , V_{TH} , V_{TL} , and the direction of the transfer operation on your plot). (10%)

