A Prezime, ime, br. indeksa: Studijski program E1 E2 PR SW IT IN (zaokruži) KOLOKVIJUM 1 Studenti koji kod pitanja do zvezdica naprave više od osam grešaka nisu položili ispit! U svakom zadatku dato je više odgovora, a treba zaokružiti brojeve ispred tačnih odgovora. U jednom istom zadatku broj tačnih odgovora može biti 0,1,2,3,,svi. U nekim zadacima ostavljena su prazna mesta za upisivanje odgovora. Na kraju testa su tri zadatka koji se rade u datoj svesci. Obavezno se predaje ovaj test i sveska.
• Pri deljenju polinoma $x^4 + 5x^2 + 4$ sa $x^2 + 1$ nad \mathbb{R} , količnik je, a ostatak je • Asocijativni grupoid sa neutralnim elementom koji nije grupa je: 1) $(\{-1,1\},\cdot)$ 2) $(\{-1,i,1,-i\},\cdot)$ 3) $((0,1),\cdot)$ 4) $(\{-1,0,1\},\cdot)$ 5) $((-\infty,0),\cdot)$ 6) $((0,\infty),\cdot)$ 7) (\mathbb{C},\cdot) 8) $(\mathbb{Q}\setminus\{0\},\cdot)$ 9) $(\{\binom{1}{1},\binom{2}{2},\binom{1}{2},\binom{1}{2}\},\circ)$
• Zaokružiti brojeve ispred tvrđenja koja su tačna u svakoj Bulovoj algebri $(B, +, \cdot, ', 0, 1)$ za sve $a, b \in B$: 1) $c + ab = (b + c)(a + c)$ 2) $(ab)' = a' + b'$ 3) $(aa)' = a' + a'$ 4) $(a + b)' = a' + b'$ 5) $(a + a)' = a' + a'$ 6) $1 + 1 = 0$ 7) $1 + a = 0'$ 8) $1 + a = 1 \cdot a$
• Neka su funkcije $f:(0,\infty) \to (0,\infty)$ i $g:(0,\infty) \to (0,\infty)$ definisane sa $f(x) = \sqrt{x}$ i $g(x) = \ln(x+1)$. 1) $f^{-1}(x) =$ 2) $g^{-1}(x) =$ 3) $(f \circ g)(x) =$ 5) $(g^{-1} \circ f^{-1})(x) =$
• $\arg(\frac{\pi}{2}) =$, $\arg(1-i) =$, $\arg(-1+i) =$, $\arg(i) =$, $\arg(\frac{\sqrt{2}}{2}) =$, $\arg(\sqrt{3}+i) =$.
• Ako je $f(x) = 2^x$, tada je $f^{-1}(x) =$
* * * * * * * * * * * * * * * * * * * *
• Odrediti realni i imaginarni deo, moduo, argument, i konjugovani broj kompleksnog broja $z=i+2e^{-i\frac{\pi}{6}}$: $Re(z)=$, $Im(z)=$, $ z =$, $\arg(z)=$, $\overline{z}=$, $z^{-1}=$.
• Da li postoji inverzna funkcija za $f(x) = \frac{2^x}{1+2^x}$? DA NE. Ako je DA tada je $f^{-1}(x) =$
$ullet$ Ako je funkcija $y=f(x)$ definisana i injektivna za $x\in\mathbb{R},$ da li postoji inverzna funkcija f^{-1} ? DA NE
$ullet$ Za svaku od datih relacija u skupu $A=\{1,2,3\}$ zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje: R- refleksivnost S- simetričnost A- antisimetričnost T- tranzitivnost F- funkcija, a zatim zaokružiti brojeve ispred tačnih iskaza.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
• Ako je $A = \left\{ (\arg z + \arg z^{-1}) z \in \mathbb{C} \setminus \{0\} \right\}$ i $B = \left\{ (\arg z - \arg(-z)) z \in \mathbb{C} \setminus \{0\} \right\}$ tada je: 1) $A = \{0\}$ 2) $A = \{2\pi\}$ 3) $A = \{0, 2\pi\}$ 4) $A = \{\pi\}$ 5) $B = \{\pi\}$ 6) $B = \{0, -\pi\}$ 7) $B = \{0, \pi\}$ 8) $B = \{\pi, -\pi\}$
• Bijektivne funkcije su: 1) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$ 2) $f: (3, \infty) \to (1, \infty)$, $f(x) = \log_3 x$ 3) $f: (-\infty, -2) \to (-\infty, 6)$, $f(x) = -x^2 - 4x$ 4) $f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$
• Ako je $z \in \mathbb{C}$ tada je (Upiši nedostajući element u šestočlanom skupu, u obliku $\rho e^{i\varphi}, \rho \geq 0, \varphi \in (-\pi, \pi]$) $z^6 = i \Leftrightarrow z \in \left\{ -\frac{1}{2}\sqrt{2+\sqrt{3}} - \frac{1}{2}i\sqrt{2-\sqrt{3}}, e^{-i\frac{7\pi}{12}}, \frac{1}{\sqrt{2}}(1-i), \frac{1}{2}\sqrt{2+\sqrt{3}} + \frac{1}{2}i\sqrt{2-\sqrt{3}}, \right. \\ \left. , \frac{1}{\sqrt{2}}(-1+i) \right\}$
• Ako je p polinom stepena 3 nad proizvoljnim poljem F tada: 1) p je nesvodljiv nad F akko p ima korena u F 2) ako p ima 3 korena u F onda je p svodljiv nad F 3) ništa od prethodnog
• Normalizovani najveći zajednički delitelj za polinome $P(t)=2(t-3)^7(t+2)^3(t-5)^5(t+17)^3$ i $Q(t)=7(t-3)^2(t-15)(t-4)^3(t+2)^5$ je:
• Zaokružiti brojeve ispred algebarskih struktura koja su polja. 1) $\Big(\{f_k f_k(x)=kx,k\in\mathbb{R}\},+,\circ\Big)$
$\mathbf{2)} \ (\mathbb{R}^{\mathbb{R}},+,\cdot) \mathbf{3)} \ (\mathbb{R}[t],+,\cdot) \mathbf{4)} \ (\mathbb{Z}_4,+,\cdot) \mathbf{5)} \ (\mathbb{Q},+,\cdot) \mathbf{6)} \ (\mathbb{Z}_3,+,\cdot) \mathbf{7)} \ \left(\{f f:\mathbb{R} \underset{\mathbf{na}}{\overset{1-1}{\rightarrow}} \mathbb{R}\},+,\circ\right)$

• Zaokružiti oznaku polja za koje važi da je polinom t^3+2t+1 svodljiv nad njima. \mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_3 \mathbb{Z}_5

1. Neka je $A = \{a,b\}$, i neka je * binarna operacija skupa $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, A\}$ definisana sa $X * Y = \left\{ \begin{array}{ccc} X \cup Y &, & X \neq Y \\ \emptyset &, & X = Y \end{array} \right.$ Ispitati sve aksiome komutativne grupe za uređeni par $(\mathcal{P}(A), *)$.

2. Faktorisati polinom a(x) nad poljima \mathbb{C} i \mathbb{R} i izračunati najveći zajednički delilac c(x) polinoma $a(x) = x^4 - 6x^3 + 17x^2 - 28x + 20$ i $b(x) = x^4 - x^3 - 18x^2 + 52x - 40$.

3. Ispitati da li Bulovi izrazi $I_1(x,y,z)=(xy'+x'z)'(y+z')$ i $I_2(x,y,z)=(x+y'z+x'z')'$ određuju istu Bulovu funkciju na dvoelementnoj Bulovoj algebri.