Chapter 1

Ordered Sets

1.1 Order/Partial Order

Definition 1. Let P be a set. An order (or, partial order) on P is a binary relation $(f : A \times A \to A) \le on P$ such that $\forall x, y, z \in P$

- (i) $x \le x$, (reflexivity)
- (ii) $x \le y$ and $y \le x$ imply x = y, (antisymmetry)
- (iii) $x \le y$ and $y \le z$ imply $x \le z$. (transitivity)

A set P equipped with an order relation \leq is said to be an ordered set (or, partially ordered set) or, poset. The order relation overtly we write $\langle P; \leq \rangle$.

On any set = is an order, called discrete order. A relation \leq on a set P which is reflexive and transitive but not necessarily antisymmetric is called a quasi-order/pre-order.

1.2 Chain, Antichain

Definition 2. Let P be an ordered set. Then P is a *chain* if, for all $x, y \in P$, either $x \leq y$ or $y \leq x$ (that is, if any two elements of P are comparable). Alternative names for chains are *linearly ordered* set and totally ordered set.

Definition 3. The ordered set P is an antichain if $x \leq y$ in P only if x = y.

Note. With the induced order, any subset of a chain (an antichain) is a chain (antichain).

Let P be the n-element set $\{0, 1, \ldots, n-1\}$. We write \mathbf{n} to denote the chain obtained by giving P the order in which $0 < 1 < \cdots < n-1$ and $\bar{\mathbf{n}}$ for P regarded as an antichain. Any set S may be converted into antichain \bar{S} by giving S the discrete order.

Here A, D are chains B, C and are antichains.

1.3 Cover

Definition 4. Let P be an ordered set and let $x, y \in P$. We say x is covered by y (or y covers x), and write $x \prec y$ or y > -x, if x < y and $x \le z < y$ implies z = x. The latter condition is demanding that there be no element z of P with x < z < y.

Examples

- In the chain \mathbb{N} , we have $m \prec n$ if and only if n = m + 1.
- In \mathbb{R} , there are no pairs x, y such that $x \prec\!\!\!\!< y$.
- In $\mathcal{P}(X)$, we have $A \subset B$ if and only if $B = A \cup \{b\}$, for some $b \in X \setminus A$.

Here, 1 covers b and c, b covers a, c covers a and a covers 0.

1.4 Diagrams

Let P be a finite ordered set. We can represent P be a configuration of circles (representing the elements of P) and interconnecting lines (indicating the covering relation). The construction goes as follows

- 1. To each point $x \in P$, associate a point p(x) of the Euclidean plane \mathbb{R}^2 , depicted by a small circle with center at p(x).
- 2. For each covering pair $x \ll y$ in P, take a line segment $\ell(x,y)$ joining the circle at p(x) to the circle at p(y).
- 3. Carry out (1) and (2) in such a way that
 - (a) if $x \prec y$, then p(x) is 'lower' than p(y) (that is, in standard Cartesian coordinates, has a strictly smaller second coordinate),
 - (b) the circle at p(z) does not intersect the line segment $\ell(x,y)$ if $z \neq x$ and $z \neq y$.

A configuration satisfying these conditions is called a diagram (or Hasse diagram) of P.

Figure 1.1: All possible sets with three elements.

Figure 1.2: Diagrams of $\mathbf{2}$, $\mathbf{4}$ and $\mathbf{\bar{3}}$

Figure 1.3: $\mathcal{P}(\{1,2,3\})$. Also known as the *cube*.

1.5 Bottom and Top

Let P be an ordered set. We say P has a bottom element if there exists $\bot \in P$ (called *bottom*) with the property that $\bot \le x$ for all $x \in P$. Dually, P has a top element if there exists $\top \in P$ such that $x \le \top$ for all $x \in P$.

1.6 Maximal and Minimal Element

Let P be an ordered set and let $Q \subseteq P$. Then $a \in Q$ is a maximal element of Q if $a \leq x$ and $x \in Q$ imply a = x. We denote the set of maximal elements of Q by max Q. If Q (with the order inherited from P) has a top element, T_Q , then max $Q = \{T_Q\}$; in this case T_Q is called the greatest (or maximum) element of Q, and we write $T_Q = \max Q$.

A minimal element of $Q \subseteq P$ and min Q, the least (or minimum) element of Q (when these exist) are defined dually, that is by reversing the order.

In the above figure P_1 has maximal elements a_1 , a_2 , a_3 , but no greatest element; a is the greatest element of P_2 .

Let P be a finite ordered set. Then any non-empty subset of P has at least one maximal element and, for each $x \in P$, there exists $y \in \max P$ with $x \leq y$. In general a subset Q of an ordered set P may have many maximal elements, just one, or none. A subset of the chain \mathbb{N} has a maximal element if and only if it is finite and non-empty.

1.7 Sums of Ordered Sets

1.7.1 Disjoint Union

Suppose that P and Q are (disjoint) ordered sets. The disjoint union $P \cup Q$ of P and Q is the ordered set formed by defining $x \leq y$ in $P \cup Q$ if and only if either $x, y \in P$ and $x \leq y$ in P or $x, y \in Q$ and $x \leq y$ in Q. A diagram for $P \cup Q$ is formed by placing side by side diagrams for P and Q.

1.7.2 Linear Sum

Let P and Q be (disjoint) ordered sets. The linear sum $P \oplus Q$ is defined by taking the following order relation on $P \cup Q$: $x \leq y$ if and only if

$$x, y \in P \text{ and } x \leq y \text{ in } P,$$

or $x, y \in Q \text{ and } x \leq y \text{ in } Q,$
or $x \in P \text{ and } y \in Q.$

A diagram for $P \oplus Q$ (when P and Q are finite) is obtained by placing a diagram for P directly below a diagram for Q and then adding a line segment from each maximal element of P to each minimal element of Q.

Note. Each of the operations $\dot{\cup}$ and \oplus is associative; for (pairwise disjoint) ordered sets P, Q and R,

$$P \dot{\cup} (Q \dot{\cup} R) = (P \dot{\cup} Q) \dot{\cup} R$$
 and $P \oplus (Q \oplus R) = (P \oplus Q) \oplus R$

1.7.3 Examples

1.

Figure 1.4: $P=\mathbf{2},\,Q=\mathbf{3},\,P\ \dot{\cup}\ Q=\mathbf{2}\ \dot{\cup}\ \mathbf{3}$ and $P\oplus Q=\mathbf{2}\oplus\mathbf{3}\cong\mathbf{5}$

2.

Figure 1.5: $P=M_3,\,Q=M_2,\,P\ \dot\cup\ Q=M_3\ \dot\cup\ M_2$ and $P\oplus Q=M_3\oplus M_2$

3. For $P \oplus Q$, we consider $P = \overline{\mathbf{1}}, Q = \overline{\mathbf{2}}, R = \overline{\mathbf{3}}.$

4.

5. a