LINEALIZACIÓN DE MODELOS

I. MODELO LINEAL O LINEA RECTA

 $y=a \cdot x + b$ representa una recta en R^2

Para determinar los parámetros **a** y **b** del modelo lineal que da cuenta de los datos empíricos del fenómeno analizado, estos deben **determinarse a partir del gráfico**. Nota: La recta que mejor da cuenta de estos datos, se puede trazar por diferentes caminos por ejemplo al "ojo", usando el método de los "mínimos cuadrados", etc.

Procedimiento para encontrar los parámetros del modelo lineal.

- Se eligen convenientemente las escalas de los ejes, de acuerdo a los valores observados para la variable independiente (eje x) y para los valores observados para la variable dependiente (eje y)
- Se plotean los pares ordenados de la tabla donde se recolectaron los valores observados del experimento en cuestión
- Se traza una recta, de tal manera que esta sea la mejor recta que de cuenta de los datos observados
- Se eligen y se marcan dos puntos cómodos en la recta a los cuales se les determinan sus coordenadas con la precisión que den las escalas elegidas, correspondiente a los ejes
- El punto anterior, permite determinar el valor de la pendiente de la recta, cuyo valor corresponde al valor del parámetro "a" del modelo
- Prolongando con una línea de puntos la recta hasta que esta corte el eje y, se determina el valor de la ordenada en el origen o "coeficiente de posición de la recta", con la precisión que de la escala del eje y, valor que corresponde al parámetro "b" del modelo lineal.

II. MODELO POTENCIAL

 $y=a \cdot x^b$ representa una curva de tipo potencial en R^2

Para determinar los parámetros **a** y **b** del modelo potencial que da cuenta de los datos empíricos implícito en el modelo, se debe efectuar las transformaciones matemáticas adecuadas a la expresión analítica del modelo de tal forma de trasformarlo en una línea recta. Para tal efecto se le saca logaritmo a la expresión potencial y se obtiene:

$$\log y = \log (a \cdot x^b) \Leftrightarrow \log y = b \cdot \log x + \log a$$

$$\log y = b \cdot \log x + \log a$$
*Si $Y = \log y$ (eje vertical) y $X = \log x$ (eje horizontal) la ecuación * queda:

$$Y = b \cdot X + \log a$$

donde b es la pendiente de la recta y $\log a$ es el coeficiente de posición de la recta, valores que se deben determinar a partir del gráfico

Procedimiento para encontrar los parámetros del modelo potencial.

 Después de considerar las transformaciones a los datos observados que permiten linealizar el modelo potencial, se procede de igual forma que el procedimiento explicado para el modelo lineal.

III. MODELO EXPONENCIAL

 $y = a \cdot e^{b \cdot x}$ representa una curva de tipo exponencial en R^2

Para determinar los parámetros **a** y **b** del modelo exponencial que da cuenta de los datos empíricos implícito en el modelo, se debe efectuar las transformaciones matemáticas adecuadas a la expresión analítica del modelo de tal forma de trasformarlo en una línea recta. Para tal efecto se le saca logaritmo a la expresión potencial y se obtiene:

$$\ln y = \ln (a \cdot e^{b \cdot x}) \Leftrightarrow \ln y = b \cdot x + \ln a$$

$$\ln y = b \cdot x + \ln a$$
Si $Y = \ln y$ (eje vertical) (y) $x = x$ (eje horizontal)

la ecuación * queda: $Y = b \cdot x + \ln a$

donde b es la pendiente de la recta (y) $\ln a$ es el coeficiente de posición de la recta, valores que se deben determinar a partir del gráfico

Procedimiento para encontrar los parámetros del modelo potencial.

 Después de considerar las transformaciones a los datos observados que permiten linealizar el modelo exponencial, se procede de igual forma que el procedimiento explicado para el modelo lineal.

IV. MODELO HIPERBÓLICO

$$y = \frac{a \cdot x}{b + x}$$
 representa una curva de tipo hiperbólico en R^2

Para determinar los parámetros **a** y **b** del modelo hiperbólico que da cuenta de los datos empíricos implícito en el modelo, se debe efectuar las transformaciones matemáticas adecuadas a la expresión analítica del modelo de tal forma de trasformarlo en una línea recta. Para tal efecto se le saca logaritmo a la expresión potencial y se obtiene:

$$\frac{1}{y} = \frac{b+x}{a \cdot x} \Leftrightarrow \frac{1}{y} = \left(\frac{b}{a}\right) \cdot \frac{1}{x} + \frac{1}{a}$$

$$\frac{1}{y} = \left(\frac{b}{a}\right) \cdot \frac{1}{x} + \frac{1}{a}$$

Si
$$Y = \frac{1}{y}$$
 (eje vertical) y $X = \frac{1}{x}$ (eje horizontal)
la ecuación * queda: $Y = \left(\frac{b}{a}\right) \cdot X + \frac{1}{a}$

donde $\frac{b}{a}$ es la pendiente de la recta y $\frac{1}{a}$ es el coeficiente de posición de la recta, valores que se deben determinar a partir del gráfico

Procedimiento para encontrar los parámetros del modelo potencial.

 Después de considerar las transformaciones a los datos observados que permiten linealizar el modelo hiperbólico, se procede de igual forma que el procedimiento explicado para el modelo lineal.