PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCI)

A1

(51) Classification internationale des brevets ⁶:

C07D 491/04, A61K 31/47, C07D 401/12,
471/04, 513/04, C07F 9/12 // (C07D
513/04, 285:00, 221:00) (C07D 471/04,
241:00, 221:00) (C07D 471/04, 221:00,
221:00) (C07D 471/04, 231:00, 221:00)
(C07D 471/04, 235:00, 221:00) (C07D
513/04, 275:00, 221:00) (C07D 471/04,
249:00, 221:00)

(11) Numéro de publication internationale:

WO 98/42712

(43) Date de publication internationale: 1er octobre 1998 (01.10.98)

(21) Numéro de la demande internationale: PCT/FR98/00528

(22) Date de dépôt international:

17 mars 1998 (17.03.98)

(30) Données relatives à la priorité:

97/03387 20 mars 1997 (20.03.97)

FR

(71) Déposant (pour tous les Etats désignés sauf US): SYNTHE-LABO [FR/FR]; 22, avenue Galilée, F-92350 Le Plessis Robinson (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): McCORT, Gary [FR/FR]; 5, rue Dupont des Loges, F-75007 Paris (FR). HOORNAERT, Christian [BE/FR]; 49, avenue Aristide Briand, F-92160 Antony (FR). CADILHAC, Caroline [FR/FR]; 11, rue des Potiers, F-92260 Fontenay aux Roses (FR). DUCLOS, Olivier [FR/FR]; 10, rue de la Cerisaie, F-91360 Villemoisson/Orge (FR). GUILPAIN, Eric [FR/FR]; 4, rue Foch, F-77590 Chartrettes (FR).

(74) Mandataire: THOURET-LEMAITRE, Elisabeth; Synthélabo, 22, avenue Galilée, F-92350 Le Plessis Robinson (FR).

(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Publiće

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.

(54) Title: QUINOLINE-2(1H)-ONE AND DIHYDROQUINOLINE-2(1H)-ONE DERIVATIVES AS LIGANDS OF 5-HT, 5-HT2 AND 5-HT1-LIKE RECEPTORS

(54) Titre: DERIVES DE QUINOLEIN-2(1H)-ONE ET DE DIHYDROQUINOLEIN-2(1H)-ONE EN TANT QUE LINGANDS DES RECEPTEURS 5-HT, 5-HT2 ET 5-HT1-LIKE

(57) Abstract

The invention concerns compounds of formula (I) in which — represents a single or double bond; G represents (G) in position 3 or 4; m = 2 to 4; Z represents a nitrogen atom or a -CH-group; R₁ and R₂ each represent independently of each other, a hydrogen or halogen atom, an amino, hydroxy, nitro, cyano, (C₁-C₆) alky, (C₁-C₆) alkoxy, trifluoromethyl, trifluoromethoxy, -COOH, -COOR₄, -CONH₂, -CONR₄R₅, -SR₄, -SO₂R₄, -NHCOR₄, -NHSO₂R₄, -N(R₄)₂ group; R₃ represents a hydrogen atom, a (C₁-C₄) alkyl, -(CH₂)_pOH₄, -(CH₂)_pCOOH, -(CH₂)_nCOOH, -(CH₂)_nCOOH, -(CH₂)_nCOOH, -(CH₂)_nCOOH, -(CH₂)_nCONH₂, -(CH₂)_nSO₂NH₄, -(CH₂)_pSO₂NH₄, -(CH₂)_pCONH₄, -(CH₂)_pCONH₄, -(CH₂)_pCONH₄, -(CH₂)_pCONH₄, -(CH₂)_pCOOR₄, -(CH₂)_pCOOR₄

(57) Abrégé

Composés de formule (I) dans laquelle — représente une liaison simple ou double, G représente (G) en position 3 ou 4, m = 2 à 4, Z représente un atome d'azote ou un groupe -CH-, R₁ et R₂ représentent chacun indépendamment l'un de l'autre, un atome d'hydrogène ou d'halogène, un groupe amino, hydroxy, nitro, cyano, (C₁-C₆)alkyle, (C₁-C₆)alkoxy, trifluorométhyle, trifluorométhoxy, -COOH, -COOR₄, -CONH₂, -CONH₄, -CONR₄R₅, -SR₄, -SO₂R₄, -NHCOR₄, -NHSO₂R₄, -N(R₄)₂, R₃ représente un atome d'hydrogène, un groupe (C₁-C₄)alkyle, -(CH₂)_pOH, -(CH₂)_pNH₂, -(CH₂)_pCOOH, -(CH₂)_pCOOR₄, -(CH₂)_pCONR₄, -(CH₂

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonic	SZ	Swaziland
AZ	Azerbaldjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgaric	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
ВЈ	Bénin	IE	Irlande	MN	Mongolie	ŲA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Itali e	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Рауз-Ваз	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	ĽR	Libéria	SG	Singapour		

DERIVES DE QUINOLEIN-2(1H)-ONE ET DE DIHYDROQUINOLEIN-2(1H)-ONE EN TANT QUE LINGANDS DES RECEPTEURS 5-HT, 5-HT2 ET 5-HT1-LIKE

5 La présente invention a pour objet des dérivés de quinoléin-2(1H)-one et de dihydroquinoléin-2(1H)-one, leur préparation et leur application en thérapeutique.

La demande EP 0364327 décrit des composés de formule (1)

10

$$\begin{array}{c|c}
R_{6} & & \\
R_{7} & & \\
R_{8} & & \\
\end{array}$$

$$\begin{array}{c|c}
CH_{2})_{2} - N & N-R \\
N & O
\end{array}$$

$$\begin{array}{c|c}
N-R & \\
N & O
\end{array}$$

$$\begin{array}{c|c}
(1)
\end{array}$$

15

dans laquelle R₆ et R₇ représentent chacun indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un atome 20 d'halogène, soit un groupe (C₁-C₄)alkyle, R₈ représente soit un atome d'hydrogène, soit un groupe (C₁-C₄)alkyle, R représente soit un groupe naphtyle, tétrahydronaphtyle, benzyle, phényle, pyridyle, isoquinoléinyle ou benzoyle, les dits groupes pouvant être substitués par un atome de chlore ou de fluor ou par un groupe méthoxy et E et J sont chacun un atome d'hydrogène ou forment ensemble une liaison.

Les composés de l'invention répondent à la formule (I)

30

35

dans laquelle

représente soit une liaison simple, soit une double liaison,

5

le groupe (G) représente

$$(CH_2)_m - N Z - N$$

$$A$$
(G)

et est en position 3 ou 4 de la quinoléin-2(1H)-one ou de la dihydroquinoléin-2(1H)-one,

m est égal à 2, 3 ou 4,

Z représente soit un atome d'azote, soit un groupe -CH-R₁ et R₂ représentent chacun indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un atome d'halogène, soit un groupe amino, soit un groupe hydroxy, soit un groupe nitro, soit un groupe cyano, soit un groupe (C₁-C₆)alkyle, soit un groupe (C₁-C₆)alcoxy, soit un groupe trifluorométhyle, soit un groupe trifluorométhoxy, soit un groupe -COOH, soit un groupe -COOR₄, soit un groupe -CONH₂, soit un groupe -CONHR₄, soit un groupe -SO₂R₄, soit un groupe -NHCOR₄, soit un groupe -NHSO₂R₄, soit un groupe -NHSO₂R₄ -NHSO₂R₄ -NHSO₂R₄ -NHSO₂R₄ -NHSO₂R₄ -NHSO₂R₄ -NHSO₂R₄ -NHSO₂R₄ -NHSO₂R₄

 (C_1-C_4) alkyle, R_3 représente soit un atome d'hydrogène, soit un groupe (C_1-C_4) alkyle, soit un groupe $-(CH_2)_pOH$, soit un groupe $-(CH_2)_pNH_2$, soit un groupe $-(CH_2)_nCOOH$, soit un groupe

25 $-(CH_2)_nCOOR_4$, soit un groupe $-(CH_2)_nCN$, soit un groupe $-(CH_2)_n-t$ étrazol-5-yle, soit un groupe $-(CH_2)_nCONH_2$, soit un groupe $-(CH_2)_nCONHOH$, soit un groupe $-(CH_2)_nSO_3H$, soit un groupe $-(CH_2)_nSO_2NH_2$, soit un groupe $-(CH_2)_nSO_2NH_4$, soit un groupe $-(CH_2)_nSO_2NR_4R_5$, soit un groupe $-(CH_2$

groupe $-(CH_2)_nCONHR_4$, soit un groupe $-(CH_2)_nCONR_4R_5$, soit un groupe $-(CH_2)_pNHSO_2R_4$, soit un groupe $-(CH_2)_pNHCOR_4$, soit un groupe $-(CH_2)_pOCOR_4$ où R_4 et R_5 sont chacun un groupe (C_1-C_4) alkyle, n est égal à 1, 2, 3 ou 4 et p est égal à 2, 3 ou 4 et

A représente soit un groupe benzo éventuellement substitué, soit un hétérocycle substitué ou non ayant 5 ou 6 atomes parmi lesquels un, deux ou trois sont des hétéroatomes choisis parmi les atomes d'azote, d'oxygène et de soufre, les autres atomes étant des atomes de carbone, le dit hétérocycle

ne pouvant être un groupe thiéno et pouvant être par exemple un groupe furo, pyrrolo, pyrazolo, imidazo, triazolo, oxazolo, thiazolo, oxadiazolo, thiadiazolo, pyrido, pyrimido, pyrazino, pyridazino ou oxopyrido et leurs isomères de positionnement des hétéroatomes ainsi que leurs sels d'addition aux acides ou aux bases pharmaceutiquement acceptables, à l'exception des composés pour lesquels A représente un groupe benzo éventuellement substitué par un atome de chlore ou de fluor ou par un groupe méthoxy, m est égal à 2, le groupe (G) est en position 4 de la quinoléin-2 (1H)-one ou de la dihydroquinoléin-2(1H)-one, R₁ et/ou R₂ représentent un atome d'hydrogène, d'halogène ou un groupe (C₁-C₄)alkyle et R₃ un atome d'hydrogène ou un groupe (C₁-C₄)alkyle ainsi que leurs sels d'addition aux acides ou aux bases pharmaceutiquement acceptables.

Parmi ces composés, les composés préférés sont les composés de formule (I) dans laquelle

représente soit une liaison simple, soit une double liaison, le groupe (G) étant en position 3 ou 4 de la quinoléin-2(1H)-one ou de la dihydroquinoléin-2(1H)- one, m est égal à 2,

 R_1 représente soit un atome d'hydrogène, soit un atome d'halogène, soit un groupe (C_1-C_6) alkyle, soit un groupe (C_1-C_6) alcoxy,

R₂ représente un atome d'hydrogène,

Z représente un atome d'azote,

 R_3 représente soit un atome d'hydrogène, soit un groupe (C_1-C_4) alkyle, soit un groupe $-(CH_2)_pOH$, soit un groupe

30 $-(CH_2)_nCONH_2$, soit un groupe $-(CH_2)_nCONHR_4$, soit un groupe $-(CH_2)_nCONR_4R_5$, soit un groupe $-(CH_2)_pOCOR_4$ où R_4 et R_5 sont chacun un groupe (C_1-C_4) alkyle, n est égal à 1, 2, 3 ou 4 et p est égal à 2, 3 ou 4 et

A représente soit un groupe benzo substitué par un groupe

35 hydroxy, -OCOR₄, -OCOOR₄, -OCO(CH₂)_nOR₄, -OSO₂NR₄R₅ ou
OP(O)(OH)₂ (R₄, R₅ et n étant tels que définis précédemment),

soit un groupe furo, pyrrolo, pyrazolo, imidazo, triazolo,

oxazolo, thiazolo, oxadiazolo, thiadiazolo, pyrido, pyrimido,

pyrazino, pyridazino ou oxopyrido ainsi que leurs sels

4

d'addition aux acides ou aux bases pharmaceutiquement acceptables.

Les composés particulièrement préférés selon l'invention sont les composés de formule (I) dans laquelle

représente une double liaison, le groupe (G) étant en position 4 de la quinoléin-2(1H)-one, m est égal à 2, Z représente un atome d'azote,

R₁ représente un atome d'halogène,

10 R₂ représente un atome d'hydrogène,

 R_3 représente soit un atome d'hydrogène, soit un groupe (C_1-C_4) alkyle et

A représente un groupe benzo substitué par un groupe hydroxy, $-OCOR_4$, $-OCO(CH_2)_nOR_4$, $-OSO_2NR_4R_5$ ou $-OP(O)(OH)_2$ (R_4 ,

5 R_5 et n étant tels que définis précédemment) ainsi que leurs sels d'addition aux acides ou aux bases pharmaceutiquement acceptables.

Certains composés de formule (I) peuvent exister sous la 20 forme de racémates, d'énantiomères purs ou de mélange d'énantiomères qui font également partie de l'invention.

La présente invention a également pour but l'utilisation des composés de formule (I) selon l'invention tels que définis 25 précédemment ainsi que ceux pour lesquels A représente un groupe benzo éventuellement substitué par un atome de chlore ou de fluor ou par un groupe méthoxy, m est égal à 2, le groupe (G) est en position 4 de la quinoléin-2(1H)-one ou de la dihydroquinoléin-2(1H)-one, R₁ et/ou R₂ représentent un 30 atome d'hydrogène, d'halogène ou un groupe (C₁-C₄) alkyle et R_3 un atome d'hydrogène ou un groupe (C_1-C_4) alkyle, pour la fabrication d'un médicament utile pour le traitement et la prévention de diverses formes de pathologies, comme les ischémies cardiaque, rénale, oculaire, cérébrale, ou des 35 membres inférieurs, l'insuffisance cardiaque, l'infarctus du myocarde, l'angor, les thromboses (seuls ou en adjuvants à la thrombolyse), les artérites, la claudication intermittente, les resténoses après angioplastie et différents états pathologiques associés à l'athérosclérose, aux troubles de la 5

microcirculation ou aux dysfonctionnements pulmonaires.

Elle a également pour but l'utilisation des composés de formule (I) selon l'invention tels que définis précédemment, 5 pour la fabrication d'un médicament utile pour le traitement et la prévention des hypertensions artérielle, veineuse, pulmonaire, portale, rénale ou oculaire et des vasospasmes coronaires ou périphériques.

- 10 Selon l'invention, les composés de formule (I) comportant une quinoléin-2(1H)-one substituée en position 4 peuvent être synthétisés selon le schéma 1.
 - On fait réagir de la 4-(acétyloxy)-2H,3H-pyrane-2,6-dione avec un composé de formule (II) (dans laquelle ${\bf R}_1$ et ${\bf R}_2$ sont
- 15 tels que définis précédemment et R3 est un atome d'hydrogène ou un groupe (C₁-C₄)alkyle) à température ambiante dans un solvant polaire tel que l'acide acétique. Après séchage, on cyclise le composé de formule (III) ainsi obtenu, en présence d'un acide minéral ou organique, de préférence anhydre, tel
- que l'acide sulfurique concentré, l'acide polyphosphorique, ou l'acide trifluorométhanesulfonique à une température comprise entre 10 et 150 °C et on obtient un acide 2-oxo-1,2-dihydro-quinoléine-4-acétique, substitué ou non, de formule (IV) que l'on estérifie avec un alcool de formule
- 25 R_6OH (où R_6 est un groupe (C_1-C_4)alkyle), par n'importe quelle méthode d'estérification, de préférence par l'action du chlorure de thionyle. Ensuite on réduit l'ester de formule (V) ainsi obtenu, par un hydrure dans un solvant aprotique comme, par exemple, l'hydrure de lithium et d'aluminium dans
- 30 le dioxane ou le borohydrure de sodium en excès dans le tétrahydrofurane au reflux, ou le borohydrure de lithium dans le tétrahydrofurane à température ambiante pour obtenir un alcool de formule (VI) (dans laquelle m est égal à 2) ; on obtient les composés de formule (VI), dans laquelle m est
- 35 égal à 3 ou 4, à partir de ceux où m est égal à 2 par des techniques d'homologation connues de l'homme du métier. Ensuite on active les composés de formule (VI) (dans laquelle m est égal à 2, 3 ou 4) en composés de formule (VII) (dans laquelle Y représente un groupe partant tel qu'un atome de

Schéma 1

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_7
 R_7

(Ib) , R₃ # H

7

chlore ou de brome) par exemple par réaction avec le chlorure de thionyle dans le chloroforme au reflux ou le dibromotri phénylphosphorane à température ambiante dans le dichloro méthane ou en composés de formule (VII) (dans laquelle Y 5 représente un groupe partant tel que les groupes méthanesulfonyloxy, trifluorométhanesulfonyloxy ou paratoluènesulfonyloxy), par exemple par réaction avec un anhydride sulfonique ou un chlorure d'acide sulfonique en présence d'une base telle que la pyridine ou la 10 triéthylamine. Finalement on fait réagir les composés de formule (VII) avec un composé de formule (VIII) (dans laquelle A est tel que défini précédemment) avec ou sans solvant aprotique ou protique, en présence d'une base inorganique entre 20 °C et 150 °C, de préférence dans l'acétonitrile ou le diméthylformamide en contact avec du bicarbonate de sodium et on obtient un composé de formule (Ia) ou (Ib).

Dans une variante selon l'invention, pour préparer un composé
de formule (Ib) (dans laquelle R₃ est différent d'un atome
d'hydrogène), on peut réaliser l'alkylation du composé de
formule (Ia) correspondant (dans laquelle R₃ représente un
atome d'hydrogène) à l'aide d'un agent électrophile du type
R₃Br ou R₃I, tel que par exemple le bromoacétate de

25 tert-butyle, la bromométhanesulfonamide, la
N-méthylbromométhanesulfonamide, la bromoacétamide ou
l'acétate de 2-bromoéthyle en présence d'une base telle que
l'hydrure de sodium ou de potassium, dans un solvant
30 aprotique tel que le tétrahydrofurane ou le diméthylformamide, en présence ou non d'un catalyseur de transfert de
phase, tel que le bromure de tétrabutylammonium.

Si on veut préparer les composés de formule (Ib) dans

laquelle R₃ représente un groupe - (CH₂)_nCOOH, on réalise une désestérification des composés de formule (Ib) correspondants dans laquelle R₃ représente un groupe - (CH₂)_nCOOR₄.

Si on veut préparer les composés de formule (Ib) dans

8

laquelle R_3 représente un groupe - $(CH_2)_pOH$, on réalise une désacétylation des composés de formule (Ib) correspondants dans laquelle R_3 représente un groupe - $(CH_2)_pOCOR_4$.

Pour obtenir un composé de formule (I) dans laquelle R₁ et/ou R₂ représentent un groupe cyano, -CONH₂, -COOH, -COOR₄, -SR₄ ou -SO₂R₄ où R₄ est un groupe (C₁-C₄)alkyle, la cyclisation du composé de formule (III) en quinoléinone de formule (IV) étant défavorisée, on conduit plutôt la synthèse des composés de formules (V) et (VI) correspondants selon les schémas 2 et 3.

15

NC

$$R_{1}$$
 R_{1}
 R_{2}
 R_{3}

(VId)

(VIe)

20

$$R_{2}$$
 R_{3}

(VId)

(VIe)

$$R_{3}$$

(VIe)

$$R_{3}$$

(VId)

(VIe)

(VIe)

(VIe)

(VIe)

(VIe)

(VIe)

Selon le schéma 2, on fait réagir un composé de formule (Va) correspondant à un composé de formule (V) (dans laquelle R₁ représente un atome d'iode, R₂ et R₆ sont tels que définis précédemment et R₃ est un atome d'hydrogène ou un groupe (C₁-C₄)alkyle) avec un sel de cyanure en présence d'un sel de cuivre dans un solvant polaire tel que le diméthylformamide ou la N-méthylpyrrolidone, ou avec le cyanure de triméthylsilyle en présence d'un catalyseur de palladium, de préférence du tétrakis(triphénylphosphine)palladium[0] dans la triéthylamine au reflux pour obtenir un composé de formule

(Vb) que l'on peut soit transformer en composé de formule (VId) puis en composé de formule (VIe) (dans laquelle R7 est un atome d'hydrogène ou un groupe (C1-C4) alkyle), soit transformer en dérivé carboxamide de formule (Vc) par des méthodes classiques connues de l'hommme du métier. Selon le schéma 3, on fait réagir un composé de formule (VIa) correspondant à un composé de formule (VI) (dans laquelle R1 représente un atome d'iode, R2 est tel que défini précédemment et R3 est un atome d'hydrogène ou un groupe (C_1-C_4) alkyle) avec un thiolate tel que le thiométhoxyde de 10 sodium en présence de tétrakis(triphénylphosphine)palladium[0] dans un alcool, tel que l'éthanol, le propanol ou le n-butanol pour préparer un composé de formule (VIb) (dans laquelle R₄ est un groupe (C₁-C₄)alkyle) que l'on peut transformer par oxydation en composé de formule (VIc).

20
$$R_2$$
 R_3 R_4 R_4 R_4 R_4 R_5 R

25

15

Pour obtenir les composés de formule (I) dans laquelle R₁ et/ou R₂ représentent un groupe nitro, amino, -NHCOR₄, $-NHSO_2R_4$ ou $-N(R_4)_2$, R_4 étant un groupe (C_1-C_4) alkyle, on conduit la synthèse des composés de formule (VII) correspondants selon le schéma 4. On réalise la nitration d'un composé de formule (VIIa) correspondant à un composé de formule (VII) (dans laquelle R_1 est un atome d'hydrogène, X un atome d'halogène et R3 un atome d'hydrogène ou un groupe (C_1-C_4) alkyle) pour obtenir un composé de formule (VIIb) que l'on transforme en composé de formule (VIIc) par réduction à l'hydrogène, composé que l'on transforme soit en composé de formule (VIId) par réaction avec un chlorure d'acide carboxylique de formule R4COCl, soit en composé de formule (VIIe) par réaction avec un chlorure

d'acide sulfonique de formule R_4SO_2Cl , soit en composé de formule (VIIf) par réaction de N-dialkylation. Ensuite on fait réagir ces composés avec un composé de formule (VIII) selon le schéma 1.

30

35

Pour préparer les composés de formule (I) dans laquelle R_1 et/ou R_2 représentent un groupe hydroxy, on peut réaliser une désalkylation du composé alcoxylé correspondant de formule (I) (dans laquelle R_1 et/ou R_2 représentent un groupe alcoxyle) dans des conditions classiques connues de l'homme du métier, comme par exemple un traitement à l'acide bromhydrique à 48 % dans l'eau.

Selon l'invention, les composés de formule (I) comprenant une

3,4-dihydroquinoléin-2(1H)-one substituée en position 3 peuvent être synthétisés selon le schéma 5. On fait réagir un ortho-nitro-benzaldéhyde de formule (IX) (dans laquelle R_1 et R_2 sont tels que définis précédemment) 5 avec le α -[γ -butyrolactonylidène]triphénylphosphorane au reflux d'un solvant aprotique tel que le tétrahydrofurane ou le toluène et on obtient un composé de formule (X) que l'on transforme en dihydroquinoléinone de formule (XI) (dans . laquelle m est égal à 2), par une réaction de réduction-10 cyclisation, soit sous hydrogène dans un mélange acide acétique /tétrahydrofurane en présence de palladium, soit un composé de formule (Ic) (dans laquelle R3 représente un atome d'hydrogène et m est égal à 2), on oxyde l'alcool de formule (XI) obtenu précédemment en aldéhyde de formule (XII), de préférence par la 1,1,1-triacétoxy-1,1-dihydro-1,2-15 benzodioxol-3(1H)-one (réactif de Dess-Martin) dans le dichlorométhane ou par le système tétrapropylammonium perruthénate/N-méthyl morpholine N-oxyde, en présence de tamis moléculaire 4 Å, également dans le dichlorométhane et 20 sous hydrogène dans le tétrahydrofurane en présence de platine et d'acide ortho-phosphorique anhydre lorsque R1 ou R₂ représente un atome d'halogène, soit sans hydrogène supplémentaire, en présence de zinc et d'acide chlorhydrique concentré dans la N-méthyl pyrrolidone, lorsque ${\bf R}_1$ ou ${\bf R}_2$ représente un groupe -OSO₂CF₃. Ensuite, si on désire obtenir on condense le composé ainsi obtenu avec un composé de formule (VIII), par une réaction d'amination réductrice en présence de tétraisopropoxyde de titane et de cyanoborohydrure de sodium dans l'éthanol. 30 Pour préparer les composés de formule (Id) (dans laquelle R3 représente un atome d'hydrogène et m est égal à 3 ou 4), on réalise sur le composé de formule (XI) ou sur le composé de formule (XII) correspondant (dans lesquelles m est égal à 2),

Lorsque l'on désire préparer un composé de formule (Ie) où ${\rm R}_3$ est différent d'un atome d'hydrogène, alors on transforme

une homologation de une ou deux unités méthyléniques suivant

35 des méthodes connues de l'homme du métier puis on continue

selon le schéma 5.

5
$$R_{1} \qquad (C_{6}H_{5})_{3}P \qquad 0$$

$$R_{1} \qquad R_{2} \qquad NO_{2} \qquad (X)$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$(CH_{2})_{m}Y$$

$$(VIII)$$

(XI)

(XII)

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_3
 R_3

(Ic) , $R_3 = H \text{ et m} = 2$

(Id) , R_3 = H et m # 2

(Ie) , R_3 # H et m = 2

(If) , R_3 # H et m # 2

l'alcool de formule (XI) (dans laquelle m est égal à 2) en composé de formule (XIII) (dans laquelle P représente un groupe protecteur comme par exemple un groupe trialkylsilyle), par réaction avec un composé tel que par exemple le 5 chlorure de tert-butyldiméthylsilyle, puis on fait réagir le composé (XIII) ainsi obtenu avec un agent électrophile de type R3Br ou R3I (dans laquelle R3 est tel que défini précédemment) en présence d'une base comme l'hydrure de sodium, à une température comprise entre la température 10 ambiante et le reflux du tétrahydrofurane. Après déprotection, par exemple au moyen de fluorure de tétrabutylammonium dans le tétrahydrofurane, on obtient un alcool de formule (XIV) (dans laquelle m est égal à 2) que l'on transforme en dérivé de formule (XV) (dans laquelle Y représente un groupe partant par exemple un atome de chlore ou de brome et m est égal à 2), par exemple par réaction avec le chlorure de thionyle dans le chloroforme ou le dibromotriphénylphosphorane dans le dichlorométhane ou en composés de formule (XV) (dans laquelle Y représente un 20 groupe partant tel que les groupes méthanesulfonyloxy, trifluorométhanesulfonyloxy ou para-toluènesulfonyloxy), par exemple par réaction avec un anhydride sulfonique ou un chlorure d'acide sulfonique en présence d'une base telle que la pyridine ou la triéthylamine. Finalement on condense le composé de formule (XV) avec un composé de formule (VIII) en phase pure ou dans un solvant tel que l'acétonitrile ou le diméthylformamide, à une température comprise entre 20 et 150 °C, en présence d'une base telle que le bicarbonate de sodium.

30 Si on veut préparer un composé de formule (If) (dans laquelle m est égal à 3 ou 4), on réalise sur le composé de formule (XI) ou sur le composé de formule (XIV) correspondant (dans lesquelles m est égal à 2) une homologation de une ou deux unités méthyléniques suivant des méthodes connues de l'homme du métier puis on continue selon le schéma 5.

On peut également obtenir les composés de formules (Ie) et (If) (dans lesquelles R_3 est différent d'un atome d'hydrogène) respectivement à partir des composés de formules

PCT/FR98/00528 WO 98/42712 14

(Ic) et (Id) correspondants (dans lesquelles R_3 représente un atome d'hydrogène), par alkylation avec un agent électrophile au moyen d'une base telle que l'hydrure de sodium ou l'hydroxyde de potassium dans un solvant comme le

5 tétrahydrofurane, en présence ou non d'un catalyseur de transfert de phase tel que le bromure de tétrabutylammonium.

Les composés de départ sont disponibles dans le commerce ou décrits dans la littérature ou peuvent être préparés selon 10 des méthodes qui y sont décrites ou qui sont connues de l'homme du métier.

Ainsi la 4-(acétyloxy)-2H, 3H-pyrane-2, 6-dione est préparée à partir de l'acide 3-oxo-glutarique selon E.G. FRANDSEN et N.

15 JACOBSEN, J. Chem. Soc. Perkin I, pp 933-6 (1978). Le procédé de cyclisation est adapté de ceux décrits dans les demandes de brevets européens EP0364327 et EP0577325. L'introduction d'un nitrile sur les composés de formule (V) est réalisée selon la méthodologie décrite par N. CHANTANI et

20 T. HANAFUSA, J. Org. Chem. <u>51</u>, pp 4714-4716 (1986) . La substitution nucléophile aromatique des aryles iodés, par des thiolates est basée sur la méthode de T. MIGITAL et coll. Bull. Chem. Soc. Japan, <u>53</u>, pp 1385 (1980).

Le 5-méthoxy-2-nitrobenzaldéhyde est préparé à partir du

25 5-hydroxy-2-nitrobenzaldéhyde selon Galun et coll. J. Het. Chem. 16, p 221 (1979).

 $L'\alpha$ -[γ -butyrolactonylidène]triphénylphosphorane est préparée selon H. Zimmer et coll. J. Het. Chem. 2, p 95 (1965) et Helv. Chim. Acta $\underline{46}$, p 1580 (1963), à partir de l' α -bromobu-30 tyrolactone.

La méthode de synthèse des composés de formule (V) par une réaction de réduction-cyclisation est décrite dans T. Jean et

coll., J. Med. Chem., 16, p 663 (1973).

Les méthodes d'hydrogénation en présence d'un halogène ou

35 d'un triflate sont publiées dans le brevet allemand DE3006748 et dans T. Rossi et coll., J. Am. Chem. Soc., 115, p 5843 (1993), respectivement.

La méthode d'oxydation d'alcools par le réactif de Dess-Martin est décrite dans D. Dess et J. Martin J. Org.

20

Chem. <u>48</u>, p 4155 (1983) et R. Ireland et L. Liu, *J. Org. Chem.* <u>58</u>, p 2899 (1993).

La méthode d'oxydation d'alcools par la tétrapropylammonium perruthénate/N-méthyl morpholine N-oxyde est adaptée de celle décrite par W. Griffith et coll. J. C. S. Chem. Comm., p 1625 (1987).

La méthode de bromation d'alcools et d'éthers silylés par le dibromotriphénylphosphorane est inspirée de celles de

J. Aizpurua J. Org. Chem., 51 , p 4941 (1986) et de J. Sandri
10 et coll. Synth. Commun. 22 , p 2945 (1992).

La 4-pipérazin-1-ylfuro[3,2,c]pyridine a été préparée à partir de l'acide 3-furanacrylique et la 1-méthyl-4-pipérazin-1-ylpyrrolo[3,2,c]pyridine à partir du N-méthyl-pyrrole-2-carboxaldéhyde selon des méthodes connues comme par

15 exemple celle décrite par J.S. New et coll., *J. Med. Chem.*, 32, pp 1147-1156 (1989) et par F. Eloy et coll. *J. Het. Chem.*, 8, p 57 (1971).

La 7-méthoxyisoquinoléin-1(2H) one est préparée selon la méthode décrite par J.F. Ajao, J. Het. Chem., 22, p 329-331, (1985).

WO 98/42712 16

Les exemples qui suivent illustrent l'invention. Les microanalyses et les spectres IR, RMN et de masse confirment la structure des composés obtenus.

Les numéros des composés exemplifiés renvoient à ceux du 5 tableau, donné plus loin qui illustre les structures chimiques et les propriétés physiques de quelques composés selon l'invention.

Le rapport (x:y) correspond au rapport (acide:base).

10

Exemple 1 (composé n° 25) chlorhydrate de 7-fluoro-2-oxo-4-[2-[4-(1(H)-pyrrolo[3,2-c]pyridin-4-yl)pipérazin-1-yl]éthyl]-1,2-dihydroquinoléine-1acétamide (2:1)

15

- 4-(2-chloroéthyl)-7-fluoro-2-oxo-1,2-dihydroquinoléine-1-acétamide
- acide 3-(acétyloxy)-5-[(3-fluorophényl)amino]-5oxopent-2-énoique
- 20 Dans un ballon de 1 litre, on dissout 20 g (180 mmoles) de 3-fluorobenzèneamine dans 85 ml d'acide acétique, on agite la solution à la température ambiante et on ajoute 36 q (212 mmoles) de 4-(acétyloxy)-2H,3H-pyrane-2,6-dione. Après 3 heures d'agitation à la température ambiante, on verse le
- 25 milieu réactionnel sur 1,5 litres d'eau glacée et on agite le mélange pendant 15 minutes. On récupère le produit sous forme d'un solide blanc que l'on essore, que l'on rince successivement à l'eau et à l'éther et que l'on sèche sous vide. On obtient 37,38 q de produit.
- 30 Rendement = 74 % Point de fusion = 133-134 °C
 - 1.1.2. acide 5(7)-fluoro-2-oxo-1,2-dihydroquinoléine-4acétique
- 35 Dans un ballon de 250 ml contenant 115 ml d'acide sulfurique concentré, on introduit par peties quantités 37 q (131 mmoles) d'acide 3-(acétyloxy)-5-[(3-fluorophényl)amino]-5-oxopent-2-énoïque et on chauffe le mélange pendant 30 minutes à 45 °C puis pendant 2 heures à 100 °C. Après

WO 98/42712 PCT/FR98/00528

17

refroidissement on verse le milieu réactionnel dans 1 litre d'eau glacée et on agite le mélange pendant 15 minutes. On essore le solide obtenu, on le lave avec de l'eau et on le sèche pendant 48 heures sur pentoxyde de phosphore à 50 °C 5 sous vide.

On obtient 24,36 g d'un mélange de 82 % d'acide 7-fluoro-2-oxo-1,2-dihydroquinoléine-4-acétique et de 18 % d'acide 5-fluoro-2-oxo-1,2-dihydroquinoléine-4-acétique que I'on utilise tel quel dans l'étape suivante.

10 Rendement = 84 %

Point de fusion = 250 °C (fusion avec décomposition)

- 1.1.3 7-fluoro-2-oxo-1,2-dihydroquinoléine-4-acétate de méthyle
- Dans un ballon de 500 ml on introduit 24,81 g (122 mmoles) d'acide 5(7)-fluoro-2-oxo-1,2-dihydroquinoléine-4-acétique et 190 ml de méthanol. On refroidit la suspension ainsi obtenue dans un bain de glace, on la place sous agitation et on ajoute goutte à goutte en 20 minutes 24,5 ml (336 mmoles) de
- chlorure de thionyle. On laisse le milieu réactionnel sous agitation pendant une nuit à la température ambiante puis pendant 3 heures à 50 °C. On évapore sous vide, on reprend le résidu dans 250 ml de dichlorométhane, on ajoute 110 ml d'une solution aqueuse glacée d'hydrogénocarbonate de sodium à 3 %
- et on laisse le mélange sous agitation. On récupère la phase organique, on la lave à l'eau, on la sèche sur sulfate de sodium et on concentre. On obtient 27 g de mélange d'esters. On sépare les isomères en triturant le résidu successivement dans 500, 400 puis 300 ml d'éthanol absolu au reflux. Après
- 30 la dernière trituration, on obtient un solide blanc que l'on essore, que l'on rince à l'éthanol et que l'on sèche sous vide.

On obtient 17,54 g de l'isomère 7-fluoro. Rendement = 66 %

- 35 Point de fusion = 257-258 °C
 - 1.1.4 7-fluoro-4-(2-hydroxyéthyl) quinoléin-2(1H)-one Dans un ballon de 500 ml, sous agitation magnétique, on introduit 10,49 g (44,64 mmoles) de 7-fluoro-2-oxo-1,2-

WO 98/42712 PCT/FR98/00528

dihydroquinoléine-4-acétate de méthyle, 300 ml de tétrahydrofurane anhydre puis 6,75 g (178 mmoles) de borohydrure de sodium en poudre à 98 %. On porte le mélange à la température de reflux et on chauffe pendant 24 heures à cette température. On refroidit le milieu réactionnel par un bain de glace, on ajoute goutte à goutte 15 ml de méthanol puis 5 g (132 mmoles) de borohydrure de sodium en poudre à 98 %. On chauffe de nouveau le mélange à la température de reflux pendant 24 heures. On évapore le milieu réactionnel, on reprend le résidu par un mélange dichlorométhane:acide chlorhydrique aqueux 1 N (1:1) et on récupère le précipité. On l'essore, on le lave par du dichlorométhane et on le triture dans l'éther. Finalement on essore et on sèche sous

15 On obtient 6,85 g de produit.

Rendement = 74 %

Point de fusion = 224 °C

vide.

- 1.1.5. 4-(2-chloroéthyl)-7-fluoroquinoléin-2(1H)-one
 20 Dans un ballon de 250 ml, on introduit sous agitation 160 ml
 de chloroforme, 3 gouttes de diméthylformamide, 2 gouttes de
 pyridine, 4,3 g (20,77 mmoles) de 7-fluoro-4-(2-hydroxyéthyl)
 quinoléin-2(1H)-one puis 7 ml de chlorure de thionyle et on
 chauffe le mélange à la température de reflux pendant
- 4 heures. On laisse refoidir le milieu réactionnel à 5-10 °C et on le verse dans 150 ml d'une solution saturée aqueuse d'hydrogénocarbonate de sodium préalablement refroidie à 5-10 °C. On agite le mélange pendant 10-15 minutes puis on essore le précipité, on le lave à l'eau et on le sèche sous
- 30 vide. On filtre la phase organique, on la sèche sur sulfate de sodium et on la concentre. On rassemble les solides ainsi obtenus.

On obtient 4,78 g de produit Rendement quantitatif

- 35 Point de fusion = 185-186 °C
 - 1.1.6. 4-(2-chloroéthyl)-7-fluoro-2-oxo-1,2-dihydroquinoléine-1-acétamide
 - A 1,0 g (4,44 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléin-

- 2(1H)-one en suspension dans 20 ml de tétrahydrofurane refroidi à 0 °C, on ajoute 0,39 g (7,1 mmoles) d'hydroxyde de potassium fraîchement moulu, 0,43 g (1,33 mmoles) de bromure de tétrabutylammonium puis goutte à goutte une solution de
- 5 0,9 g (6,66 mmoles) de 2-bromoacétamide dans 13 ml de tétrahydrofurane. On agite le mélange pendant 1 heure à 0 °C puis pendant une nuit à la température ambiante. On concentre le milieu réactionnel à sec et on reprend le résidu par 200 ml de dichlorométhane. On essore l'insoluble, on lave le
- filtrat à l'eau, on sèche sur sulfate de sodium, on filtre et on évapore. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un gradient dichlorométhane: méthanol contenant des traces d'ammoniaque (98:2, 95:5 puis 90:10).
- 15 On obtient 1 g de produit sous forme d'un solide blanc cassé.

 Rendement = 83 %

 Point de fusion = 200 °C
 - 1.2. 4-pipérazin-1-yl-1*H*-pyrrolo[3,2-*c*]pyridine
- 20 1.2.1. 1-[(3,4-diméthoxyphényl)méthyl]-1H-pyrrole-2-carboxaldéhyde

A une suspension refroidie à 0 °C de 4 g (94,6 mmoles) d'hydrure de sodium à 60 % dans 30 ml de diméthylformamide anhydre, sous azote, on ajoute goutte à goutte une solution

- de 3 g (31,5 mmoles) de 1*H*-pyrrole-2-carboxaldéhyde dans 10 ml de diméthylformamide puis on agite le mélange à 0 °C pendant 30 minutes. On ajoute alors goutte à goutte 11,7 g (63 mmoles) de 4-(chlorométhyl)-1,2-diméthoxybenzène et on agite pendant 3 heures à la température ambiante. On
- 30 hydrolyse le milieu réactionnel avc 30 ml d'eau puis on extrait à l'éther. On recueille la phase organique, on la lave avec 3 volumes d'eau, on la sèche sur sulfate de magnésium, on la filtre et on l'évapore. On purifie le résidu par chromatographie flash sur colonne de gel de silice en
- 35 éluant par un gradient n-heptane:acétate d'éthyle (8:2, 7:3 puis 6:4).

On obtient 7 g de produit sous forme d'une huile orange. Rendement = 90 %

PCT/FR98/00528 WO 98/42712

20

1.2.2. 3-[1-[(3,4-diméthoxyphényl)méthyl]-1H-pyrrole-2prop-2-énoate d'éthyle

A 1,4 g (34 mmoles) d'hydrure de sodium à 60 % préalablement lavé à l'éther diisopropylique et en suspension dans 25 ml de 5 tétrahydrofurane anhydre, on ajoute goutte à goutte, à la température ambiante, 6 ml (30 mmoles) de triéthyl phosphonoacétate dans 20 ml de tétrahydrofurane. On laisse le mélange sous agitation à cette température pendant 20 minutes puis on ajoute goutte à goutte une solution de 7 g

- 10 (28,57 mmoles) de 1-[(3,4-diméthoxyphényl)méthyl]-1H-pyrrole-2-carboxaldéhyde dans 60 ml de tétrahydrofurane anhydre. On chauffe le milieu réactionnel à 55 °C pendant 3 heures puis on le refroidit à 5 °C. On l'hydrolyse avec 60 ml d'eau et on l'extrait à l'éther. On récupère la phase organique, on la 15 sèche sur sulfate de magnésium, on la filtre et on évapore.
 - On obtient 9 q de produit sous forme d'une huile jaune. Rendement quantitatif
 - acide 3-[1-[(3,4-diméthoxyphényl)méthyl]-1H-pyrrol-2-yl]prop-2-énoïque

On chauffe pendant 8 heures à 60 °C un mélange de 16 q (50,79 mmoles) de 3-[1-[(3,4-diméthoxyphényl)méthyl]-1Hpyrrole-2-prop-2-énoate d'éthyle et de 10 g (0,25 mole) d'hydroxyde de sodium dans 50 ml de dioxane et 25 ml d'eau.

- 25 On concentre le milieu réactionnel aux 2/3, on le refroidit au bain de glace et on l'acidifie à pH 2 avec une solution aqueuse d'acide chlorhydrique 6 N. On essore le précipité, on le rince successivement à l'eau et à l'éther et on le sèche sous vide.
- 30 On obtient 13 g de produit sous forme d'un solide beige clair.

Rendement = 89 % Point de fusion = 170 °C

20

35 1.2.4. 1-[(3,4-diméthoxyphényl)méthyl]-1,5-dihydro-4Hpyrrolo[3,2-c]pyridin-4-one

A un mélange de 13 g (45,3 mmoles) d'acide 3-[1-[(3,4diméthoxyphényl) méthyl] -1H-pyrrol-2-yl] prop-2-énoïque et de 7,5 ml (54,3 mmoles) de triéthylamine dans 60 ml de dioxane, WO 98/42712

21

sous atmosphère d'azote et à 5 °C, on ajoute goutte à goutte en 10 minutes 10,7 ml (49,8 mmoles) de diphénylphosphorylazide puis on agite le mélange pendant 2,5 heures à la température ambiante. On dilue le milieu réactionnel avec un 5 volume d'une solution aqueuse saturée de chlorure de sodium puis on l'extrait à l'éther. On récupère la phase organique, on la sèche sur sulfate de magnésium, on la filtre et on évapore. On reprend le résidu dans 30 ml de dichlorométhane et on ajoute cette solution goutte à goutte à un mélange de 10 40 ml de diphénylméthane et 8,8 ml de tri-n-butylamine préchauffé à 210 °C. On chauffe alors le mélange à 210 °C pendant 15 minutes puis on laisse la température du milieu réactionnel revenir à la température ambiante. On triture la gomme obtenue dans 300 ml de n-pentane et on la purifie par 15 chromatographie sur colonne de gel de silice en éluant par du dichlorométhane puis par un mélange dichlorométhane: méthanol

On obtient 10,4 q de produit sous forme d'un solide jaune amorphe.

20 Rendement = 85 % Point de fusion = 120 °C

(98:2).

1.2.5 4-chloro-1-[(3,4-diméthoxyphényl)méthyl]-1H-pyrrolo [3,2-c] pyridine

25 On chauffe à la température de reflux pendant 2 heures un mélange de 6,5 g (24 mmoles) de 1-[(3,4-diméthoxyphényl) méthyl]-1,5-dihydro-4H-pyrrolo[3,2-c]pyridin-4-one et de 32 ml (0,36 mole) de chlorure de phosphoryle. On évapore le milieu réactionnel à sec, on reprend le résidu dans 200 ml de 30 dichlorométhane et on ajoute 50 ml d'eau. On neutralise la phase aqueuse à pH 7 avec une solution aqueuse saturée de bicarbonate de sodium et on récupère la phase organique. On lave la phase organique avec une solution aqueuse saturée de chlorure de sodium, on la sèche sur sulfate de sodium, on 35 filtre et on évapore. On obtient 3,8 g de produit sous forme d'une huile marron.

Rendement = 55 %

1.2.6. 1-[(3,4-diméthoxyphényl)méthyl]-4-[4-(phénylméthyl) pipérazin-1-yl]-1H-pyrrolo[3,2-c]pyridine

On chauffe à 130 °C dans une autoclave pendant 60 heures un mélange de 3,8 g (13,26 mmoles) de 4-chloro-1-[(3,4-diméthoryphényl)méthyl] avec diméthoryphényl)méthyll avec diméthoryphényl

diméthoxyphényl) méthyl] -1H-pyrrolo[3,2-c] pyridine, de 4,63 ml (26,53 mmoles) de 1-(phénylméthyl) pipérazine et de 3,7 ml (26,53 mmoles) de triéthylamine dans 100 ml d'éthanol absolu. On concentre le milieu réactionnel à sec et on purifie le résidu par chromatographie sur colonne de gel de silice en 6 luant par un mélange dichlorométhane méthanol (00,00 muits).

10 éluant par un mélange dichlorométhane: méthanol (98:2 puis 95:5).

On obtient 3,8 g de produit sous forme d'une huile beige foncé.

Rendement = 68 %

15

1.2.7. 4-[4-(phénylméthyl)pipérazin-1-yl]-1H-pyrrolo[3,2-c] pyridine

A 450 ml d'ammoniaque liquide refroidi à -70 °C, on ajoute par petites portions 4,0 g (178 mmoles) de sodium puis après dissolution, on obtient une solution de couleur bleue à laquelle on ajoute 3,8 g (8,87 mmoles) de 1-[(3,4-diméthoxy-phényl)méthyl]-4-[4-(phénylméthyl)pipérazin-1-yl]-1H-pyrrolo [3,2-c]pyridine en solution dans 35 ml de tétrahydrofurane anhydre. On laisse le mélange pendant 30 minutes à cette

température et on ajoute du chlorure d'ammonium jusqu'à décoloration du milieu réactionnel. On évapore pendant une heure et on reprend le résidu dans 300 ml d'acétate d'éthyle, on lave à l'eau, on récupère la phase organique, on la sèche sur sulfate de sodium, on filtre et on évapore à

sec. On purifie le résidu ainsi obtenu par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane: méthanol (95:5 puis 90:10).

On obtient 1,4 g de produit sous forme d'une huile beige

On obtient 1,4 g de produit sous forme d'une huile beige épaisse.

35 Rendement = 56 %

1.2.8. 4-pipérazin-1-yl-1*H*-pyrrolo[3,2-*c*]pyridine
On hydrogène sous une pression de 0,1 MPa (1 atm) à 60 °C
pendant 2 heures 1,4 g (4,8 mmoles) de 4-[4-(phénylméthyl)

pipérazin-1-yl]-1H-pyrrolo[3,2-c]pyridine dans 50 ml de
 méthanol en présence de 150 mg d'hydroxyde de palladium à
 20 %. On refroidit le milieu réactionnel à la température
 ambiante et on filtre sur célite. On concentre le filtrat à
 sec et on ajoute au résidu 15 ml d'acétate d'éthyle. Après
 trituration on essore et on sèche sous vide.
 On obtient 0,8 g de produit sous forme d'un solide beige.
 Rendement = 83 %
 Point de fusion = 145 °C

10

1.3. chlorhydrate de 7-fluoro-2-oxo-4-[2-[4-(1H-pyrrolo [3,2-c]pyridin-4-yl)pipérazin-1-yl]éthyl]-1,2-dihydroquinoléine-1-acétamide (2:1)

A un mélange de 0,1 g (0,5 mmole) de 4-pipérazin-1-yl-1H
pyrrolo[3,2-c]pyridine, 0,06 g (0,72 mmole) de bicarbonate de sodium et 0,05 g de iodure de potassium en solution dans 10 ml d'acétonitrile et 2 ml de diméthylformamide, on ajoute 0,3 g (1,08 mmoles) de 4-(2-chloroéthyl)-7-fluoro-2-oxo-1,2-dihydroquinoléine-1-acétamide. On chauffe le mélange pendant 48 heures à 70 °C et on évapore à sec. On triture le résidu dans 65 ml de dichlorométhane et on essore. On reprend le solide ainsi obtenu dans 300 ml d'un mélange acétate d'éthyle:méthanol (95:5) et on lave avec une solution aqueuse saturée de chlorure de sodium. On sèche la phase organique 25 sur sulfate de sodium, on filtre et on évapore. On purifie le produit brut par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane:méthanol (95:5) contenant des traces d'ammoniaque.

On obtient 0,2 g de produit sous forme de base.

On reprend 0,2 g de base dans 7 ml de méthanol et on ajoute 0,52 ml d'une solution d'éther chlorhydrique 2 N. On obtient un solide blanc cassé que l'on essore, que l'on rince à l'éther et que l'on sèche sous vide à 40 °C.

On obtient 165 mg de chlorhydrate sous forme d'un solide

35 blanc.

Rendement = 64 %
Point de fusion = 240 °C

PCT/FR98/00528 WO 98/42712

24

Exemple 2 (composé nº 3)

chlorhydrate de 3-[2-(4-furo[3,2-c]pyridin-4-ylpipérazin-1yl) éthyl] -6-méthoxy-1-méthyl-3,4-dihydroquinoléin-2(1H)-one (2:1)

5

- 2.1. 3-(2-chloroéthyl)-6-méthoxy-1-méthyl-3,4-dihydroquinoléin-2(1H)-one
- 2.1.1. 3-[(5-méthoxy-2-nitrophényl)méthylène]dihydrofuran-2(3H) -one
- 10 A 5,0 g (27 mmoles) de 5-méthoxy-2-nitrobenzaldéhyde dans 200 ml de toluène, on ajoute 8,3 g (24 mmoles) de α -[γ -butyrolactonylidène]triphénylphosphorane. On porte au reflux le mélange réactionnel pendant 6 heures et on le laisse refroidir pendant la nuit. On essore le précipité
- 15 formé et on le sèche sous vide.

On obtient 4,0 g du produit attendu.

Rendement = 62 %

Point de fusion = 98 °C

20 2.1.2. 3-(2-hydroxyéthyl)-6-méthoxy-3,4-dihydroquinoléin-2(1H)-one

On soumet à 40 psi (0,3 MPa) d'hydrogène à température ambiante pendant 9 heures, un mélange de 5 g (20 mmoles) de 3-[(5-méthoxy-2-nitrophényl)méthylène]dihydrofuran-2(3H)-one

- 25 et 0,7 g de palladium à 5 % sur charbon dans 100 ml de tétrahydrofurane et 0,60 ml d'acide acétique. On filtre le catalyseur et on évapore le filtrat. On reprend le résidu dans un minimum de dichlorométhane où le produit cristallise. On obtient 3,4 g du produit attendu.
- 30 Rendement = 77 %

Point de fusion = 90 °C

- 3-[2-[[(1,1-diméthyléthyl)diméthylsilyl]oxy]éthyl]-2.1.3. 6-méthoxy-3,4-dihydroquinoléin-2(1H)-one
- 35 A 2,4 g (10,84 mmoles) de 3-(2-hydroxyéthyl)-6-méthoxy-3,4dihydroquinoléin-2(1H)-one et 1,36 g (20 mmoles) d'imidazole dans 20 ml de diméthylformamide à température ambiante, on ajoute 4,0 g (26,5 mmoles) de chlorure de tert-butyldiméthylsilyle et on agite la solution à cette température pendant

WO 98/42712

3 heures. Ensuite on évapore le solvant sous vide et on reprend le résidu dans 300 ml d'éther. On lave cette solution deux fois avec de l'eau et on sèche la phase organique sur sulfate de magnésium puis on la concentre.

25

- 5 On obtient 3,5 g de produit sous forme d'une huile incolore. Rendement quantitatif
 - 3-(2-hydroxyéthyl)-6-méthoxy-1-méthyl-3,4-dihydroquinoléin-2 (1H) -one
- 10 A 3,6 g (11,23 mmoles) de 3-[2-[[(1,1-diméthyléthyl) diméthylsilyl]oxy]éthyl]-6-méthoxy-3,4-dihydroquinoléin-2(1H)-one dans 100 ml de tétrahydrofurane, on ajoute à température ambiante 0,6 g (15 mmoles) d'hydrure de sodium à 60 %. On laisse en contact pendant 60 minutes puis on ajoute
- 15 1,6 ml (25,6 mmoles) d'iodure de méthyle et on agite pendant 20 heures à la température ambiante. On évapore à sec, on reprend le résidu dans 100 ml d'eau et on extrait à l'éther. Ensuite on sèche la phase organique sur sulfate de magnésium et on la concentre. On reprend le résidu dans 80 ml de
- 20 tétrahydrofurane et on ajoute 10 ml d'une solution de fluorure de tétrabutylammonium à 1 M dans le tétrahydrofurane puis on agite le mélange à la température ambiante pendant 2 heures. On évapore à sec et on reprend le résidu dans 300 ml d'éther. On lave cette solution plusieurs fois avec de
- 25 l'eau, on la sèche sur sulfate de magnésium et on la concentre. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane: méthanol (98:2).
- On obtient 1,5 g de produit sous forme d'une huile
- 30 Rendement = 57 %
 - 3-(2-chloroéthyl)-6-méthoxy-1-méthyl-3,4-dihydroqui-2.1.5. noléin-2(1H)-one
- A 1,5 g (6,37 mmoles) de 3-(2-hydroxyéthyl)-6-méthoxy-1-35 méthyl-3,4-dihydroquinoléin-2(1H)-one en solution dans 30 ml de chloroforme à température ambiante, on ajoute goutte à goutte 0,7 ml (9,6 mmoles) de chlorure de thionyle. Après l'addition, on porte la solution à la température de reflux pendant 1 heure, on laisse refroidir à la température

ambiante et on laisse le mélange sous agitation pendant une nuit à cette température. On évapore les solvants et on obtient le produit attendu de façon quantitative sous forme d'une huile que l'on utilise telle quelle dans l'étape 5 suivante.

26

- 2.2. chlorhydrate de 3-[2-(4-furo[3,2-c]pyridin-4-yl pipérazin-1-yl)éthyl]-6-méthoxy-1-méthyl-3,4-dihydroquinoléin-2(1H)-one (2:1)
- On chauffe à la température de reflux pendant 7 heures un mélange de 1 g (3,9 mmoles) de 3-(2-chloroéthyl)-6-méthoxy-1-méthyl-3,4-dihydroquinoléin-2(1H)-one, de 0,8 g (3,9 mmoles) de 4-pipérazin-1-ylfuro[3,2-c]pyridine et de 0,65 g (7,8 mmoles) de bicarbonate de sodium dans 20 ml
- d'acétonitrile. On filtre le milieu réactionnel et on évapore le filtrat. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange méthanol:dichlorométhane (4:96) contenant des traces d'ammoniaque.
- On obtient 1 g de base sous forme d'un solide blanc.
 On prépare le chlorhydrate dans un mélange d'éther
 chlorhydrique 3 N et de méthanol.
 On obtient 0,87 g de chlorhydrate.
 Rendement = 45 %
- 25 Point de fusion = 229-231 °C

30

Exemple 3 (composé n° 26)

chlorhydrate de 7-fluoro-4-[2-[4-(1-méthylpyrrolo[3,2-c]

pyridin-4-yl)pipérazin-1-yl]éthyl]quinoléin-2(1H)-one (2:1)

On chauffe à 60 °C un mélange de 0,3 g (1,39 mmoles) de 1-méthyl-4-pipérazin-1-ylpyrrolo[3,2-c]pyridine, 0,47 g (2,08 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléin-2(1H)- one et de 0,117 g (1,39 mmoles) de bicarbonate de sodium dans 10 ml de diméthylformamide. Après 72 heures on ajoute de nouveau 0,25 g (1,10 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléin-2(1H)-one, on continue de chauffer le milieu réactionnel sous agitation pendant 24 heures puis on évapore à sec. On reprend le résidu dans 250 ml de dichlorométhane,

on lave la solution à l'eau et on évapore le solvant. On récupère la phase organique, on la sèche sur sulfate de sodium, on la filtre et on évapore. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant avec un mélange acétate d'éthyle:méthanol (97:3 puis 94:6) contenant des traces d'ammoniaque.

27

On obtient 0,18 g de base sous forme d'un solide blanc cassé. Point de fusion = 261 °C

On reprend ce solide dans 10 ml de méthanol et on ajoute 0,55 ml d'éther chlorhydrique 2 N. On essore, on rince à l'éther et on sèche sous vide à 40 °C.
On obtient 0,18 g de chlorhydrate sous forme d'un solide blanc cassé.

Rendement = 28 %

15 Point de fusion = 213 °C (fusion avec décomposition)

Exemple 4 (composé nº 30)

chlorhydrate de 7-fluoro-4-[2-(4-thiazolo[4,5-c]pyridin-4-ylpipérazin-1-yl)éthyl]-quinoléin-2(1H)-one (2:1)

20

- 4.1. 4-pipérazin-1-ylthiazolo[4,5-c]pyridine
- 4.1.1. 4-chloro-3-nitropyridine

On chauffe à 85 °C pendant 2 heures un mélange de 20,48 g (0,146 mole) de 5-nitropyridin-4(3H)-one et de 70 ml de

- chlorure de phosphoryle puis on évapore le milieu réactionnel à sec. On ajoute 200 g de glace pilée, on ajuste le pH à 7 avec une solution aqueuse concentrée d'ammoniaque et on ajoute 200 ml d'eau. On extrait le mélange 3 fois avec 300 ml de dichlorométhane, on rassemble les phases organiques, on
- 30 les sèche sur sulfate de sodium, on filtre et on concentre.
 On obtient 23,17 g de produit sous forme d'une huile orange.
 Rendement = 99 %

4.1.2. 3-aminopyridine-4-thiol

35 A une solution de 14,3 g (90,22 mmoles) de 4-chloro-3nitropyridine dans 160 ml de méthanol sous agitation à la température ambiante, on ajoute une solution de 11 g (196 mmoles) d'hydroxyde de potassium dans 65 ml de méthanol préalablement saturée par du sulfure d'hydrogène gazeux. On WO 98/42712

28

porte le mélange à la température de reflux pendant 5 minutes puis on évapore à sec. On triture le résidu dans l'éther et on l'essore. On obtient 25,5 g de sel de potassium sous forme d'un solide orange. On chauffe à 70 °C une solution de 70 g 5 (310 mmoles) de chlorure d'étain dihydraté dans 125 ml d'une solution concentrée d'acide chlorhydrique puis on ajoute par petites portions 12,78 g (45,1 mmoles) du sel de potassium précédemment obtenu en suspension dans 50 ml d'une solution concentrée d'acide chlorhydrique. On chauffe le mélange 10 pendant 3 heures à la température de reflux, on refroidit le milieu réactionnel à 5 °C et on ajuste le pH à 6-7 avec une solution d'hydroxyde de sodium concentrée. On essore les sels et on extrait par 3 fois 250 ml d'éthanol absolu bouillant. On rassemble les extraits, on filtre et on concentre.

15 On obtient 4,53 q de produit sous forme d'un solide beige. Rendement = 77 %

Point de fusion = 175-177 °C

4.1.3. thiazolo[4,5-c]pyridine

20 On chauffe à la température de reflux pendant 2,5 heures 3,20 g (25,4 mmoles) de 3-aminopyridine-4-thiol en solution dans 100 ml de triéthylformiate contenant 4 gouttes d'une solution d'acide sulfurique concentrée. On laisse refroidir le milieu réactionnel à la température ambiante et on essore 25 l'insoluble. On évapore le filtrat et on purifie le résidu par chromatographie sur colonne de gel de silice en éluant avec de l'acétate d'éthyle contenant des traces d'ammoniaque. On obtient 1,77 q de produit sous forme d'un solide rosepâle.

30 Rendement = 51 % Point de fusion = 111 °C

thiazolo[4,5-c]pyridine-5-oxyde

A une solution de 2,60 g (19,12 mmoles) de

35 thiazolo[4,5-c]pyridine dans 280 ml de chloroforme on ajoute 4,5 g (21,03 mmoles) d'acide 3-chloroperbenzoïque et on porte le mélange pendant 2 heures à la température de reflux. On évapore le milieu réactionnel et on triture le résidu par deux fois 150 ml d'éther. On purifie le résidu par

PCT/FR98/00528

WO 98/42712 29

chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane: méthanol (9:1) contenant des traces d'ammoniaque.

On obtient 2,8 g de produit sous forme d'un solide jaune 5 pâle.

Rendement = 96 %

Point de fusion = 168-170 °C

4.1.5. 4-chlorothiazolo[4,5-c]pyridine

- On chauffe à la température de reflux un mélange de 2,80 g (18,42 mmoles) de thiazolo[4,5-c]pyridine 5-oxyde et de 40 ml de chlorure de phosphoryle pendant 1,5 heures puis on évapore le milieu réactionnel à sec. On reprend le résidu par 300 ml de chloroforme et on lave la solution avec 200 ml d'une
- solution aqueuse concentrée de bicarbonate de sodium. On récupère la phase organique, on la sèche sur sulfate de sodium, on filtre et on concentre. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange n-heptane:acétate d'éthyle (6:4) contenant des traces

20 d'ammoniaque.

On obtient 2,04 g de produit sous forme d'un solide jaune pâle.

Rendement = 65 %

35 Rendement = 67 %

Point de fusion = 191-192 °C

25

4.1.6. 4-pipérazin-1-ylthiazolo[4,5-c]pyridine
On chauffe dans un autoclave à 120 °C pendant 72 heures un mélange de 1 g (5,87 mmoles) de 4-chlorothiazolo[4,5-c] pyridine et de 3,54 g (41,1 mmoles) de pipérazine dans 30 ml
30 d'éthanol absolu. On évapore le milieu réactionnel à sec et on purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane: méthanol (90:10 puis 85:15) contenant des traces d'ammoniaque.
On obtient 0,86 g de produit sous forme d'une huile brune.

PCT/FR98/00528 WO 98/42712

30

4.2. chlorhydrate de 7-fluoro-4-[2-(4-thiazolo[4.5-c] pyridin-4-ylpipérazin-1-yl)éthyl]-quinoléin-2(1H)-one (2:1)

On chauffe à 57 °C pendant 48 heures un mélange de 0,76 g 5 (3,45 mmoles) de 4-pipérazin-1-ylthiazolo[4,5-c]pyridine, 1,46 g (6,56 mmoles) de 4-(2-chloroéthyl)-7-fluoro-1méthylquinoléin-2(1H)-one, 0,49 g (5,83 mmoles) de bicarbonate de sodium et 0,1 g d'iodure de potassium dans 20 ml d'acétonitrile et 3 ml de diméthylformamide. On laisse 10 la température du milieu réactionnel revenir à la température ambiante et on dilue par 400 ml d'éther. On essore le solide et on le reprend dans 200 ml de chloroforme. On lave avec une solution aqueuse concentrée de bicarbonate de sodium puis avec de l'eau. On récupère la phase organique, on la sèche 15 sur sulfate de sodium, on la filtre et on évapore. On purifie

- le résidu par chromatographie sur colonne de gel de silice en éluant d'abord avec un mélange acétate d'éthyle: méthanol (95:5) puis avec un mélange dichlorométhane: méthanol (95:5 puis 90:10) contenant des traces d'ammoniaque.
- 20 On obtient 0,67 g de base sous forme d'un solide jaune pâle. Rendement = 48 % Point de fusion = 261-262 °C On prépare le chlorhydrate dans l'éther chlorhydrique 2 N selon la méthode décrite dans l'exemple 3.
- 25 Point de fusion = 254-255 °C

Exemple 5 (composé nº 34) chlorhydrate de 7-fluoro-N-méthyl-2-oxo-4-[2-(4-thiazolo [4,5-c]pyridin-4-ylpipérazin-1-yl)éthyl]-1,2-dihydroguinoléi-30 ne-1-acétamide (2:1)

- 5.1. chlorhydrate de l'acide 7-fluoro-2-oxo-4-[2-(4thiazolo[4,5-c]pyridin-4-ylpipérazin-1-yl)éthyl]-1,2dihydroquinoléine-1-acétique (2:1)
- 35 On ajoute, goutte à goutte, 4,1 ml (2,05 mmoles) d'une solution à 0,5 M de bromoacétate de tert-butyle dans le tétrahydrofurane à un mélange de 0,66 g (1,63 mmoles) de 7-fluoro-4-[2-(4-thiazolo [4,5-c]pyridin-4-ylpipérazin-1yl)éthyl]quinoléin-2(1H)-one, 0,119 g (2,11 mmoles)

PCT/FR98/00528 WO 98/42712

d'hydroxyde de potassium fraîchement moulu et 0,105 q (0,325 mmole) de bromure de tétrabutylammonium dans 25 ml de tétrahydrofurane à 0-5 °C. Après 30 minutes à 0-5 °C, on laisse remonter la température à l'ambiante et on continue 5 l'agitation pendant 15 heures. On évapore le solvant sous vide et on reprend le résidu dans 150 ml de dichlorométhane, on lave à l'eau, on sèche la phase organique sur sulfate de sodium et on concentre. On purifie le produit brut par chromatographie sur gel de silice en éluant par un mélange 10 méthanol/dichlorométhane (5:95) contenant des traces d'ammoniaque et on obtient 0,81 g de N-acétate de tert-butyle sous forme d'huile épaisse incolore.

Rendement = 96 %

A 0,8 g (1,54 mmoles) de cette huile, on ajoute 50 ml d'une solution 3 N d'acide chlorhydrique dans l'acétate d'éthyle et on agite à température ambiante pendant 20 heures. On évapore à sec, on triture le solide blanc obtenu à l'éther et on le sèche sous vide.

On obtient 0,661 g de chlorhydrate que l'on utilise tel quel 20 dans l'étape suivante.

Rendement = 80 %

25

- 5.2. chlorhydrate de 7-fluoro-N-méthyl-2-oxo-4-[2-(4thiazolo[4,5-c]pyridin-4-ylpipérazin-1-yl)éthyl]-1,2dihydroquinoléine-1-acétamide (2:1)
- A 0,325 g (0,6 mmole) de chlorhydrate de l'acide 7-fluoro-2oxo-4-[2-(4-thiazolo[4,5-c]pyridin-4-ylpipérazin-1-yl) éthyl]-1,2-dihydroquinoléine-1-acétique dans 22 ml de dichlorométhane, on ajoute 0,3 ml (0,72 mmole) de
- 30 triéthylamine et 0,275 g (0,72 mmole) d'hexafluorophosphate de O-(1H-benzotriazol-1-yl)-N,N,N',N'-tétraméthyluronium et on agite le mélange pendant 30 minutes à la température ambiante. Ensuite on fait barboter pendant une heure dans le mélange de la méthylamine gazeuse puis on poursuit
- 35 l'agitation pendant 2 heures à cette température. On dilue alors le milieu réactionnel dans 400 ml de chloroforme puis on lave successivement par une solution aqueuse saturée en chlorure d'ammonium, une solution aqueuse à 3 % de bicarbonate de sodium puis une solution aqueuse saturée en

chlorure de sodium. On récupère la phase organique, on la sèche sur sulfate de sodium, on filtre et on concentre. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane: méthanol

32

5 (97:3, 95:5 puis 93:7) contenant des traces d'ammoniaque. On obtient 0,21 g de base sous forme d'un solide amorphe de couleur blanc cassé.

Rendement = 72 %

On reprend la base dans 10 ml de méthanol et on ajoute

10 0,54 ml d'éther chlorhydrique 2 N. On essore le solide, on le
rince à l'éther et on le sèche sous vide à 40 °C.

On obtient 0,23 g de chlorhydrate sous forme d'un solide
blanc.

Point de fusion = 181 °C (fusion avec décomposition)

15

Exemple 6 (composé n° 16) chlorhydrate de 7-fluoro-4-[2-[4-(7-méthoxyisoquinoléin-1-yl) pipérazin-1-yl]éthyl]quinoléin-2(1H)-one (2:1)

- 20 6.1. 7-méthoxy-1-pipérazin-1-ylisoquinoléine
 - 5.1.1. 1-chloro-7-méthoxyisoquinoléine

On chauffe pendant 2 heures à la température de reflux 38 g (0,217 mole) de 7-méthoxyisoquinoléin-1(2H)-one dans 20 ml de chlorure de phosphoryle. On évapore le milieu réactionnel, on

- reprend le résidu dans 700 g d'eau glacée et on neutralise en ajoutant du bicarbonate de sodium solide. On extrait le mélange par du dichlorométhane et on récupère la phase organique. On la sèche sur sulfate de sodium, on la filtre et on la concentre. On reprend le résidu dans un mélange de
- 30 500 ml d'éther et de 100 ml de n-pentane en présence de charbon activé. On filtre et on évapore le filtrat.
 On obtient 34 g de produit.

Rendement = 81 %

Point de fusion = 74-75 °C

35

- 6.1.2. 4-(7-méthoxyisoquinoléin-1-yl)pipérazine-1-carboxylate de 1,1-diméthyléthyle
- A 8,09 g (43,41 mmoles) de pipérazine-1-carboxylate de (1,1-diméthyléthyle) dans 175 ml de tétrahydrofurane anhydre

- à 70 °C sous azote, on ajoute goutte à goutte 17,3 ml (43,25 mmoles) d'une solution de n-butyllithium 2,5 M dans l'hexane. On laisse le mélange sous agitation pendant 15 minutes à cette température puis on ajoute goutte à goutte 4 g (20,67 mmoles) de 1-chloro-7-méthoxyisoquinoléine en solution dans 75 ml de tétrahydrofurane. On poursuit l'agitation pendant 0,5 heure puis on hydrolyse le milieu réactionnel en ajoutant 400 ml d'une solution aqueuse glacée saturée en chlorure d'ammonium. On extrait à l'éther, on récupère la phase organique, on la lave à l'eau, on la sèche sur sulfate de magnésium, on filtre et on concentre. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange acétate d'éthyle:n-heptane
- 15 On obtient 6,2 g de produit sous forme d'un solide blanc cassé.

Rendement = 87 %

(1:3 puis 2:3).

Point de fusion = 136-138 °C

- 20 6.1.3. 7-méthoxy-1-pipérazin-1-ylisoquinoléine
 On agite pendant 16 heures à la température ambiante une
 suspension de 6,1 g (17,78 mmoles) de 4-(7-méthoxyisoquinoléin-1-yl)pipérazine-1-carboxylate de 1,1-diméthyléthyle
 dans 50 ml d'acétate d'éthyle et 75 ml d'acétate d'éthyle
- 25 chlorhydrique 3 N. On essore le solide blanc obtenu, on rince à l'acétate d'éthyle puis à l'éther et on sèche sous vide à 40 °C. On obtient 5,56 g de chlorhydrate sous forme d'un solide jaune pâle.

Point de fusion = 211-213 °C

30 On dissout le solide dans 70 ml d'eau, on ajuste le pH à 10-11 avec une solution d'hydrogénocarbonate de sodium et on extrait par du chloroforme.

On obtient 4,2 g de produit sous forme d'un solide amorphe. Rendement = 99 %

35 Point de fusion = 86-87 °C

WO 98/42712 PCT/FR98/00528

6.2. chlorhydrate de 7-fluoro-4-[2-[4-(7-méthoxyisoquinoléin-1-yl) pipérazin-1-yl]éthyl]quinoléin-2(1H)-one (2:1)

On chauffe à 55 °C pendant 96 heures un mélange de 0,5 g

(2,04 mmoles) de 7-méthoxy-1-pipérazin-1-ylisoquinoléine,
0,92 g (4,13 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléin2(1H)-one, 0,34 g (4,08 mmoles) de bicarbonate de sodium et
0,1 g d'iodure de potassium dans 20 ml d'un mélange
acétonitrile:diméthylformamide (8:1). On laisse la

- température du milieu réactionnel revenir à la température ambiante et on dilue par 50 ml d'éther. On essore le précipité et on le reprend dans 150 ml de chloroforme. On lave avec une solution aqueuse saturée de bicarbonate de sodium puis avec de l'eau. On récupère la phase organique, on
- 15 la sèche sur sulfate de sodium, on la filtre et on évapore.
 On purifie le résidu par chromatographie sur colonne de gel
 de silice en éluant avec un mélange dichlorométhane:méthanol
 (98:2, 95:5 puis 90:10) contenant des traces d'ammoniaque.
 On obtient 0,454 g de base sous forme d'un solide blanc.
- 20 Rendement = 52 %
 Point de fusion = 257-258 °C
 On prépare le chlorhydrate dans l'éther chlorhydrique 2 N
 selon la méthode décrite dans l'exemple 3.
 Point de fusion = 227 °C (fusion avec décomposition)

25

Exemple 7 (composé n° 11)

chlorhydrate de 7-fluoro-4-[2-[4-(7-hydroxyisoquinoléin-1-yl)pipérazin-1-yl]éthyl]quinoléin-2(1H)-one (2:1)

- On chauffe à la température de reflux pendant 10 heures 0,25 g (0,58 mmole) de 7-fluoro-4-[2-[4-(7-méthoxyisoquino-léin-1-yl)pipérazin-1-yl]éthyl]quinoléin-2(1H)-one dans 20 ml d'une solution aqueuse d'acide bromhydrique à 48 %. On refroidit le milieu réactionnel à 5 °C, on essore le
- 35 précipité obtenu, on le rince à l'eau et on le sèche sous vide à 40 °C.

On obtient 0,33 g de bromhydrate (2:1) que l'on reprend dans 25 ml d'éthanol absolu saturé en acide chlorhydrique gazeux. On agite la suspension obtenue prendant 6 heures à 30 °C et

35

on la refroidit à la température ambiante. On récupère le précipité, on l'essore, on le rince avec de l'éthanol et on le sèche sous vide à 40 °C.

On obtient 0,27 q de chlorhydrate.

5 Rendement = 98 %

Point de fusion = 225-227 °C

Exemple 8 (compose n° 44)

7-fluoro-4-[2-(4-[1,2,5]thiadiazolo[3,4-c]pyridin-4-

10 ylpipérazin-1-yl)éthyl]quinoléin-2(1H)-one

8.1. 4-pipérazin-1-yl- $\{1,2,5\}$ thiadiazolo $\{3,4-c\}$ pyridine 2-chloro-3,4-diaminopyridine

On chauffe à 100 °C pendant 17 heures 23,1 g (0,146 mole) de 15 4-chloro-3-nitropyridine dans 140 ml d'éthanol absolu saturé en ammoniac gazeux. On évapore le milieu réactionnel à sec. On ajoute par petites quantités le solide obtenu à une solution préchauffée à 80 °C de 229,5 g (1,02 moles) de chlorure d'étain dihydraté dans 375 ml d'acide chlorhydrique 20 concentré. On chauffe ensuite le mélange à la température de reflux pendant 1,5 heures. On refroidit le milieu réactionnel

à 5 °C, on ajuste le pH à 8-9 avec une solution aqueuse concentrée d'hydroxyde de sodium. On essore le précipité et on l'extrait pendant 24 heures dans un appareil d'extraction 25 solide-liquide en utilisant 700 ml d'un mélange benzène:chloroforme (1:1). Parallèlement on extrait le filtrat avec

3 fois 400 ml d'acétate d'éthyle. On rassemble les phases organiques, on les sèche sur sulfate de sodium et on concentre.

30 On obtient 11,58 g de produit sous forme d'un solide de couleur pêche.

Rendement = 60 %

Point de fusion = 162 °C

35 8.1.2. 4-chloro-[1,2,5]-thiadiazolo[3,4-c]pyridine A 0,2 g (1,4 mmoles) de 2-chloro-3,4-diaminopyridine en suspension dans un mélange de 0,56 ml (6,94 mmoles) de pyridine et de 6 ml de dichlorométhane à la température ambiante, on ajoute goutte à goutte 0,20 ml (2,8 mmoles) de chlorure de thionyle et on laisse le mélange pendant une heure sous agitation. On ajoute alors 0,1 ml (1,4 mmoles) de chlorure de thionyle et on poursuit l'agitation pendant 2 heures. On évapore le milieu réactionnel à sec, on reprend 5 le résidu par 6 ml d'eau et on extrait avec du dichlorométhane.

On obtient 0,2 g de produit sous forme d'un solide beige. Rendement = 84 %

Point de fusion = 115-117 °C

10

- 8.1.3. 4-(pipérazin-1-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine On chauffe à la température de reflux pendant 2 heures un mélange de 0,18 g (1,05 mmoles) de 4-chloro-[1,2,5]thiadiazolo[3,4-c]pyridine et de 0,46 g (5,34 mmoles) de
- pipérazine dans 6 ml d'alcool isoamylique. On évapore le milieu réactionnel, on reprend le résidu dans 75 ml de dichlorométhane et on lave cette solution avec 10 ml d'eau. On récupère la phase organique, on la sèche sur sulfate de sodium, on filtre et on concentre. On purifie le résidu par
- chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane: méthanol (9:1) contenant des traces d'ammoniaque.
 - On obtient 0,17 g de produit sous forme d'un solide jaune pâle.
- 25 Rendement = 72 %
 - 8.2. 7-fluoro-4-[2-(4-[1,2,5]thiadiazolo[3,4-c]pyridin-4-ylpipérazin-1-yl)éthyl]quinoléin-2(1H)-one
 On chauffe à 50 °C pendant 48 heures un mélange de 0,245 g

30 (1,09 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléine-2(1H)one, 0,16 g (0,723 mmole) de 4-(pipérazin-1-yl)-1,2,5thiadiazolo[3,4-c]pyridine, 0,122 g (1,45 mmoles) de
bicarbonate de sodium et 0,04 g d'iodure de potassium dans
8 ml d'un mélange acétonitrile:diméthylformamide (3:1). On

ajoute de nouveau 0,326 g (1,45 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléine-2(1H)-one et 0,121 g (1,44 mmoles) de bicarbonate de potassium et on poursuit le chauffage pendant 72 heures. On évapore à sec, on reprend le résidu par 5 ml d'eau et on essore le précipité. On le rince à l'éther et on

WO 98/42712 PCT/FR98/00528

le sèche sous vide. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant d'abord avec de l'acétate d'éthyle puis avec un mélange dichlorométhane:méthanol (9:1) contenant des traces d'ammoniaque.

5 On obtient 0,2 g de base sous forme d'un solide jaune. Rendement = 67 %

Point de fusion = 200-202 °C

Exemple 9 (composé nº 45)

10 chlorhydrate de 7-fluoro-2-oxo-4-[2-(4-[1,2,5]-thiadiazolo [3,4-c]pyridin-4-ylpipérazin-1-yl)éthyl]-1,2-dihydroquinoléi-ne-1-acétamide (2:1)

A une suspension refroidie à 0 °C de 0,12 g (0,292 mmoles) de 7-fluoro-4-[2-[4-(1,2,5-thiadiazolo[3,4-c]pyridin-4-yl) pipérazin-1-yl]éthyl]quinoléin-2(1H)-one, 0,068 g (1,21 mmoles) d'hydroxyde de potassium fraîchement moulu, 0,037 g (0,115 mmole) de bromure de tétrabutylammonium dans 10 ml de tétrahydrofurane, on ajoute goutte à goutte 2,6 ml (1,30 mmoles) d'une solution de 2-bromoacétamide 0,5 M dans le tétrahydrofurane. On agite le mélange pendant 48 heures à la température ambiante. On concentre le milieu réactionnel à sec, on reprend le résidu par 100 ml de dichlorométhane et on lave cette solution à l'eau. On récupère la phase organique, on sèche sur sulfate de sodium, on filtre et on évapore. On purifie le résidu par chromatographie sur colonne de gel de

purifie le résidu par chromatographie sur colonne de gel de silice en éluant d'abord par un mélange acétate d'éthyle:méthanol (9:1) contenant des traces d'ammoniaque puis par un mélange dichlorométhane:méthanol (9:1) contenant des traces 30 d'ammoniaque.

On obtient 0,07 g de produit sous forme d'un solide. Rendement = 52 %

On prépare le chlorhydrate dans l'éther chlorhydrique 2 N selon la méthode décrite dans l'exemple 3.

35 Point de fusion = 194-196 °C

WO 98/42712 PCT/FR98/00528

Exemple 10 (composé n° 50)
chlorhydrate de 7-fluoro-4-[2-(4-pyrido[3,4-b]pyrazin-5-yl
pipérazin-1-yl)éthyl]quinoléin-2(1H)-one (2:1)

- 5 10.1. 5-pipérazin-1-ylpyrido[3,4-b]pyrazine
 10.1.1. 5-chloro-pyrido[3,4-b]pyrazine
 On chauffe à la température de reflux pendant 45 minutes un
 mélange de 2 g (13,93 mmoles) de 2-chloro-3,4-diaminopyridine
 et 11,2 ml (97,5 mmoles) d'une solution aqueuse de glyoxal à
 10 40 % avec 65 ml de propan-2-ol. On laisse la température du
 milieu réactionnel revenir à la température ambiante, on
 ajoute 600 ml d'eau et on extrait 3 fois à l'éther. On
 rassemble les phases organiques, on sèche sur sulfate de
 magnésium, on filtre et on concentre.
- On obtient 2,17 g de produit sous forme d'un solide jaune.

 Rendement = 94 %

 Point de fusion = 139 °C

10.1.2. 5-pipérazin-1-ylpyrido[3,4-b]pyrazine

- On chauffe pendant 15 heures à 75 °C un mélange de 2,13 g (12,86 mmoles) de 5-chloro-pyrido[3,4-b]pyrazine et 7,75 g (89,97 mmoles) de pipérazine dans 40 ml d'alcool isoamylique. On refroidit le milieu réactionnel à 5 °C et on filtre. On ajoute 20 ml d'eau au filtrat et on l'extrait 2 fois avec
- 25 100 ml de dichlorométhane. On recueille les phases organiques, on sèche sur sulfate de sodium, on filtre et on concentre. On filtre sur silice en éluant successivement par du dichlorométhane contenant des traces d'ammoniaque, un mélange dichlorométhane:méthanol (9:1) contenant des traces
- d'ammoniaque puis un mélange dichlorométhane:méthanol (8,5:1) contenant des traces d'ammoniaque. On triture le produit obtenu dans l'éther et on le sèche sous vide.

On obtient 2,31 g de produit sous forme d'un solide jaune. Rendement = 84 %

35 Point de fusion = 194 °C

WO 98/42712 PCT/FR98/00528

10.2. chlorhydrate de 7-fluoro-4-[2-(4-pyrido[3,4-b] pyrazin-5-ylpipérazin-1-yl)éthyl]quinoléin-2(1H)-one (2:1)

On chauffe à 55 °C pendant 52 heures un mélange de 0,3 g

(1,4 mmoles) de 5-pipérazin-1-ylpyrido[3,4-b]pyrazine, 0,5 g
(2,23 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléine-2(1H)one et 0,2 g (2,38 mmoles) de bicarbonate de sodium dans
10 ml d'un mélange d'acétonitrile:diméthylformamide (4:1). On
évapore l'acétonitrile et on ajoute 20 ml d'eau. On essore le

- solide, on le rince à l'éther, on le reprend dans 12 ml d'un mélange dichlorométhane: méthanol (7:3) et on filtre. On concentre le filtrat et on purifie le résidu par chromatographie sur colonne de gel de silice en éluant successivement par un mélange acétate d'éthyle: méthanol
- 15 (95:5) contenant des traces d'ammoniaque puis par un mélange acétate d'éthyle:méthanol (9:1) contenant des traces d'ammoniaque.

On obtient 0,18 g de base sous forme d'un solide jaune pâle. Rendement = 32 %

On reprend la base dans 5 ml de méthanol et 0,37 ml d'acétate d'éthyle chlorhydrique 3 N. On essore le précipité, on le rince à l'éther et on sèche sous vide à 40 °C.

On obtient 0,16 g de chlorhydrate.

Point de fusion = 198-200 °C

25

Exemple 11 (composé n° 6) chlorhydrate de 7-fluoro-4-[2-[4-(6-fluoroisoquinoléin-1-yl) pipérazin-1-yl]éthyl]quinoléin-2(1H)-one (2:1)

- 30 11.1. 6-fluoro-1-pipérazin-1-ylisoquinoléine
 11.1.1. 6-fluoro-3,4-dihydroisoquinoléin-1(2H)-one
 A une solution refroidie à 5 °C de 5 g (33,3 mmoles) de
 5-fluoroindan-1-one dans 20 ml de chloroforme, sous forte
 agitation, on ajoute 40 ml d'acide sulfurique concentré puis
 2,7 g (41,6 mmoles) d'azoture de sodium par petites fractions
- en 90 minutes. On laisse la température du milieu réactionnel revenir lentement à la température ambiante puis on agite pendant une nuit à cette température. On verse le milieu réactionnel sur 150 g de glace pilée et on ajuste le pH à 7-8

avec du carbonate de potassium. On extrait avec du dichlorométhane et on sèche la phase organique sur sulfate de sodium, on filtre et on concentre. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant progressivement par un mélange n-heptane:acétate d'éthyle (3:7, 2:8 puis 1:9).

40

On obtient 2,5 g de produit.

Rendement = 45 %

Point de fusion = 112 °C

10

11.1.2. 6-fluoroisoquinoléin-1-(2H)-one

A 3 g (18,16 mmoles) de 6-fluoro-3,4-dihydroisoquinoléin1(2H)-one dans 130 ml de dioxane, on ajoute 10,72 g
(47,22 mmoles) de 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
et on chauffe le mélange à la température de reflux pendant
90 heures. On évapore le milieu réactionnel à sec et on
reprend le résidu dans 300 ml de chloroforme. On lave cette
solution deux fois avec une solution aqueuse saturée en
bicarbonate de sodium puis avec de l'eau. On sèche la phase
organique sur sulfate de sodium, on filtre et on concentre.
On purifie le résidu par chromatographie sur colonne de gel
de silice en éluant par un mélange dichlorométhane:méthanol
(95:5).

On obtient 1,49 q de produit.

25 Rendement = 50 %

Point de fusion = 222 °C

11.1.3. 1-chloro-6-fluoroisoquinoléine

On chauffe à 90 °C pendant 1,5 heures un mélange de 0,37 g

(2,27 mmoles) de 6-fluoroisoquinoléin-1-(2H)-one et 6 ml de chlorure d'oxyphosphoryle. On évapore le milieu réactionnel à sec et on reprend le résidu avec 100 ml de chloroforme. On lave cette solution avec une solution aqueuse saturée en bicarbonate de sodium et on récupère la phase organique. On la sèche sur sulfate de sodium, on filtre et on concentre. On obtient 0,43 g de produit sous forme d'un solide blanc. Rendement quantitatif.

Point de fusion = 93 °C

WO 98/42712

41

11.1.4. 6-fluoro-1-pipérazin-1-ylisoquinoléine A une solution de 1,05 g (5,67 mmoles) de 4-(1,1-diméthyléthyl)pipérazine-carboxylate dans 30 ml de tétrahydrofurane anhydre à - 70 °C, sous azote, on ajoute qoutte à qoutte

- 5 2,27 ml (5,67 mmoles) d'une solution de n-butyllithium 2,5 M dans l'hexane. On laisse le mélange sous agitation pendant 15 minutes à cette température puis on ajoute goutte à goutte 0,41 g (2,26 mmoles) de 1-chloro-6-fluoroisoquinoléine en solution dans 15 ml de tétrahydrofurane. On poursuit
- 10 l'agitation pendant 15 minutes à 70 °C puis on hydrolyse le milieu réactionnel en ajoutant 20 ml d'une solution aqueuse saturée en chlorure d'ammonium. On extrait à l'acétate d'éthyle, on récupère la phase organique, on la sèche sur sulfate de magnésium, on filtre et on concentre. On purifie
- 15 le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange acétate d'éthyle:n-heptane (3:7). On obtient 0,35 q de produit sous forme d'un solide blanc amorphe.

Rendement = 75 %

- 20 On reprend le produit obtenu dans 6 ml d'une solution de dioxane chlorhydrique 4 N et on agite le mélange à la température ambiante pendant 7 heures. On ajoute 100 ml de chloroforme et on lave avec une solution aqueuse saturée en bicarbonate de sodium. On récupère la phase organique, on la
- 25 sèche sur sulfate de magnésium, on filtre et on évapore à sec.

On obtient 0,24 q de produit sous forme d'une huile beige. Rendement = 98 %

30 11.2. chlorhydrate de 7-fluoro-4-[2-[4-(6-fluoroisoquinoléin-1-yl)pipérazin-1-yl]éthyl]quinoléin-2(1H)-one (2:1)

On chauffe à 55-60 °C pendant 72 heures un mélange de 0,245 q (1,06 mmoles) de 1-(pipérazin-1-yl)-6-fluoroisoquinoléine,

35 0,574 g (2,54 mmoles) de 4-(2-chloroéthyl)-7-fluoroquinoléine-2(1H)-one et 0,267 g (3,18 mmoles) de bicarbonate de sodium dans 12 ml d'un mélange acétonitrile:diméthylformamide (2:1) puis on laisse la température du milieu réactionnel revenir à la température ambiante. On ajoute 100 ml de

chloroforme, on lave la solution avec de l'eau et on récupère la phase organique. On la sèche sur sulfate de sodium, on filtre et on évapore à sec. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant successivement par de l'acétate d'éthyle puis par un mélange dichlorométhane:méthanol (95:5 puis 90:10) contenant des traces d'ammoniaque.

On obtient 0,10 g de base.

Rendement = 23 %

10 Point de fusion = 190-195 °C (fusion avec décomposition)
On prépare le chlorhydrate dans un mélange méthanol:éther chlorhydrique 2 N.

Point de fusion = 240-243 °C

15 Exemple 12 (composé n° 56)

2-méthylpropanoate de 1-[4-[2-(7-fluoro-2-oxo-1,2-dihydro-quinoléin-4-yl)éthyl]pipérazin-1-yl]isoquinoléin-7-yle

A une solution de 0,10 g (0,172 mmole) de dibromhydrate de 7-fluoro-4-[2-[4-(7-hydroxyisoquinoléin-1-yl)pipérazin-1-yl]éthyl]quinoléin-2(1H)-one dans 5 ml de pyridine anhydre à température ambiante, on ajoute 0,15 ml (1,08 mmoles) de triéthylamine et 0,11 ml (0,66 mmole) d'anhydride 2-méthyl-propionique. On agite le milieu réactionnel à cette température pendant 16 heures puis on évapore à sec. On

triture le résidu dans de l'acétate d'éthyle, on essore le solide beige obtenu et on le reprend dans 50 ml de dichlorométhane. On lave avec une solution aqueuse à 3 % de bicarbonate de sodium puis avec de l'eau. On sèche la phase organique sur sulfate de sodium, on filtre et on évapore.

On obtient 0,04 g de base sous forme d'un solide blanc.
Rendement = 48 %

Point de fusion = 189 °C

43

Exemple 13 (composé nº 59)

chlorhydrate du phosphate de 1-[4-[2-(7-fluoro-2-oxo-1,2-dihydroquinoléin-4-yl)éthyl]pipérazin-1-yl]isoquinoléin-7-yle (2:1)

5

35

A une solution de 0,15 g (0,36 mmole) de 7-fluoro-4-[2-[4-(7hydroxyisoquinoléin-1-yl)pipérazin-1-yl]éthyl|quinoléin-2(1H)-one dans 4 ml de diméthylformamide, sous agitation, on ajoute à température ambiante 0,12 g (1,71 mmoles) de 10 1H-tétrazole et 0,43 g (1,72 mmoles) de di-tert-butyldiéthylphosphoramidite et on agite le mélange pendant 18 heures. On refroidit le milieu réactionnel à -40 °C et on ajoute une solution de 0,09 g (0,36 mmole) d'iode dans 0,27 ml de tétrahydrofurane et 0,12 ml d'eau. On agite pendant une nuit 15 à la température ambiante puis on ajoute 25 ml d'eau. On extrait le milieu réactionnel avec du dichlorométhane, on essore l'insoluble blanc et on le sèche sous vide. On reprend le solide ainsi obtenu dans 25 ml de dioxane et on ajoute 0,15 ml d'une solution de dioxane chlorhydrique 4 N. On 20 chauffe le mélange à 60 °C dans un bain à ultrasons pendant 4 heures puis on laisse la température du milieu réactionnel revenir à la température ambiante. On essore le précipité obtenu, on le rince à l'éther et on le sèche sous vide. On obtient 0,06 g de produit.

25 Rendement = 30 %

Point de fusion = 259 °C

Exemple 14 (composé n° 53)

chlorhydrate de 8-[4-[2-(7-fluoro-1-méthyl-2-oxo-1,2-dihydro-30 quinoléin-4-yl)éthyl)pipérazin-1-yl]-1,7-naphtyridin-2(1H)one (2:1)

14.1. 8-pipérazin-1-yl-1,7-naphtyridin-2(1H)-one

14.1.1. 4-(4-méthyl-3-nitropyridin-2-yl)pipérazine-1-carboxylate de 1,1-diméthyléthyle

On chauffe à la température de reflux pendant 48 heures un mélange de 4,2 g (24,3 mmoles) de 2-chloro-4-méthyl-3-nitropyridine et 13,5 g (72,9 mmoles) de pipérazine-1-carboxylate de (1,1-diméthyléthyle) dans 100 ml d'éthanol

absolu. On évapore le milieu réactionnel à sec et on purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange n-heptane: acétate d'éthyle (80:20) puis (70:30) contenant des traces d'ammoniaque.

44

- On obtient 7,8 g de produit sous forme d'une huile jaune. Rendement = 99 %
- 4-[4-[2-(diméthylamino)éthényl]-3-nitropyridin-2yl]pipérazine-1-carboxylate de 1,1-diméthyléthyle 10 On chauffe à 140 °C pendant 20 heures un mélange de 7,8 q (24,2 mmoles) de 4-(4-méthyl-3-nitropyridin-2-yl)pipérazine-1-carboxylate de 1,1-diméthyléthyle et 11,53 g (96,8 mmoles) d'acétaldiméthylique de la diméthylformamide puis on évapore le milieu réactionnel sous vide. On reprend le résidu par 300 ml de dichlorométhane et on lave la solution avec 150 ml 15 d'une solution aqueuse saturée en chlorure de sodium. On récupère la phase organique, on la sèche sur sulfate de sodium, on filtre et on concentre. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un
 - mélange cyclohexane: acétate d'éthyle (1:1). On obtient 9 g de produit sous forme d'une huile beige. Rendement = 98 %
- 14.1.3. 4-(4-formyl-3-nitropyridin-2-yl)pipérazine-1-25 carboxylate de 1,1-diméthyléthyle A 9 g (23,92 mmoles) de 4-[4-[2-(diméthylamino)éthényl]-3nitropyridin-2-yl]pipérazine-1-carboxylate de 1,1-diméthyléthyle dans 70 ml d'un mélange tétrahydrofurane:eau (1:1), on ajoute 15 g (70,3 mmoles) de periodate de sodium et on agite le mélange pendant 15 heures à la température ambiante. On évapore les solvants sous vide et on reprend le résidu dans 250 ml d'acétate d'éthyle. On lave plusieurs fois à l'eau, on sèche la phase organique sur sulfate de sodium et on concentre.
- 35 On obtient 7,5 g d'une huile épaisse orange que l'on utilise telle quelle dans l'étape suivante. Rendement = 96 %

45

14.1.4.4 - [4-[3-(1,1-diméthyléthoxy)-1-hydroxy-3-oxopropyl]-3-nitropyridin-2-yllpipérazine-1-carboxylate de 1,1-diméthyléthyle

A 14,5 ml d'une solution de diisopropylamidure de lithium à 5 1,5 M dans le cyclohexane et 50 ml de tétrahydrofurane refroidie à -78 °C, sous argon, on ajoute goutte à goutte une solution de 2,59 g (22,26 mmoles) d'acétate de (1,1-diméthyléthyle) dans 15 ml de tétrahydrofurane. On laisse le mélange sous agitation pendant 0,5 heure à cette température puis on 10 ajoute goutte à goutte une solution de 2,98 g (8,87 mmoles) de 4-(4-formyl-3-nitropyridin-2-yl)pipérazine-1-carboxylate de 1,1-diméthyléthyle dans 15 ml de tétrahydrofurane. On poursuit l'agitation pendant 0,75 heure puis on laisse la température du milieu réactionnel revenir à la température 15 ambiante. On hydrolyse le milieu réactionnel en ajoutant 100 ml d'une solution aqueuse glacée saturée en chlorure d'ammonium et on extrait à l'éther. On filtre et on concentre à sec. On purifie le produit brut par chromatographie sur colonne de gel de silice en éluant par un mélange acétate 20 d'éthyle:cycloheptane (1:9 puis 3:7).

On obtient 2,8 g de produit sous forme d'un sirop. Rendement = 69 %

14.1.5. 4-[3-amino-4-[3-(1,1-diméthyléthoxy)-1-hydroxy-3-25 oxopropyl]pyridin-2-yl]pipérazine-1-carboxylate de 1,1-diméthyléthyle

On hydrogène 1,4 g (3,10 mmoles) de 4-[4-[3-(1,1-diméthy]éthoxy)-1-hydroxy-3-oxopropyl]-3-nitropyridin-2-yl|pipérazine-1-carboxylate de 1,1-diméthyléthyle dans 100 ml de

- 30 tétrahydrofurane en présence de 2 q de nickel de Raney activé sous une pression de 0,1 MPa (1 atm) à température ambiante pendant 4 heures. On filtre le milieu réactionnel sur célite et on concentre le filtrat à sec.
 - On obtient 1,31 g de produit sous forme d'une huile beige.
- 35 Rendement quantitatif.
 - 14.1.6. 8-pipérazin-1-yl-1,7-naphtyridin-2(1H)-one On chauffe à 100 °C pendant 0,5 heure un mélange de 1 g (2,37 mmoles) de 4-[3-amino-4-[3-(1,1-diméthyléthoxy)-1-

46

hydroxy-3-oxopropyl]pyridin-2-yl]pipérazine-1-carboxylate de 1,1-diméthyléthyle dans 75 ml d'une solution aqueuse d'acide chlorhydrique 3 N. On concentre le milieu réactionnel aux deux-tiers et on le neutralise à pH 7 sur bain de glace 5 (5 °C) par addition de bicarbonate de sodium. On extrait le mélange avec 3 fois 200 ml d'acétate d'éthyle, on sèche la phase organique sur sulfate de sodium, on filtre et on évapore.

On obtient 0,4 g de produit sous forme d'un solide beige.

10 Rendement = 75 %

15

Point de fusion = 190 °C

14.2. chlorhydrate de 8-[4-[2-(7-fluoro-1-méthyl-2-oxo-1,2-dihydroquinoléin-4-yl)éthyl)pipérazin-1-yl]-1,7naphtyridin-2(1H)-one (2:1)

On chauffe à 65 °C pendant 72 heures un mélange de 0,32 g (1,34 mmoles) de 4-(2-chloroéthyl)-7-fluoro-1-méthyl-3,4dihydroquinoléin-2(1H)-one, de 0,1 g (0,43 mmole) de 8-pipérazin-1-yl-1,7-naphtyridin-2(1H)-one, de 0,190 q

- (2,26 mmoles) de bicarbonate de sodium et de 0,05 g 20 (0,30 mmole) d'iodure de potassium dans 12 ml d'un mélange diméthylformamide:acétonitrile (1:5). On évapore à sec le milieu réactionnel et on reprend le résidu dans 150 ml de chloroforme. On lave la solution avec une solution aqueuse
- saturée en chlorure de sodium, on la sèche sur sulfate de sodium, on filtre et on évapore. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange acétate d'éthyle: méthanol (95:5 puis 90:10) contenant des traces d'ammoniaque puis avec un mélange dichlorométhane: 30 méthanol (90:10).

On obtient 0,090 g du produit sous forme d'un solide amorphe. Rendement = 50 %

On reprend le solide obtenu dans 3 ml de méthanol et on ajoute 0,26 ml d'une solution d'éther chlorhydrique 2 N puis 35 40 ml d'éther. On essore le solide, on le rince à l'éther et on le sèche sous vide à 40 °C.

On obtient 0,08 g de dichlorhydrate sous forme d'un solide blanc cassé.

Rendement = 76 %

Point de fusion = 196 °C

<u>Légende du tableau</u>

- 5 dans la colonne --- : --- représente une doube laison et --- représente une liaison simple.
 - dans la colonne "pos" : le chiffre correspond à la position de la chaîne sur la quinoléinone ou sur la dihydroquinoléinone.
- dans la colonne "Sel" : HCl représente un chlorhydrate et (x:y) le rapport (acide:base); l'absence de toute mention signifie que le composé est sous forme de base.
 - dans la colonne "Point de fusion" : (d) correspond à une fusion avec décomposition.

	Z
Tableau	N
Tab	CH ₂) (CH ₂) m

Point de fusion (°C)	180	246
Sel	HC1 (2:1)	HCl (2:1)
Z d		
72	-N-	-N-
Æ	7	2
ಕಂದ	м	м
l;		
R ₃	н-	Н-
R2	Н-	#
\mathbb{R}_1	6-CH ₃	6-0CH ₃
° Z	н	0

Point de fusion (°C)	229-231	182-184	260-264	240-243
Sel	HC1 (2:1)	HCl (2:1)	HCl (2:1)	HCl (2:1)
N. A.		N	N ———F	Z Eu
2	- N -	-N-	-N-	- N -
Æ	0	23	0	77
sod	m	4	4	4
:				
R ₃	-CH ₃	щ -	щ.	н-
R ₂	H	H	出	н-
R ₁	6-0CH ₃	7 - 1	7 - F	7 - F
° Z	м	4	ம	v

Point de fusion (°C)	270-275	220-224	216-218
Sel	HCl (2:1)	HCl (2:1)	HC1 (2:1)
N Y	N A	E. M.	HOOH
N	, N	- N -	- N -
E	Ν .	7	7
0 0 8	4	4,	4
:	·		
R ₃	#	-CH2CONH2	-H
R ₂	н '	щ	щ.
$ m R_1$	r r	F	Гц Г
° Z	7	ω	σ

a t	Q 0	27	4
Point de fusion (°C)	244-246	225-227	212-214
Se L	HCl (2:1)	HC1 (2:1)	HCl (2:1)
N Y	HO	HO	HO HO
Z	-N-	- N -	- N -
Ħ	8	7	0
ಇಂದ	4	4	4
11.			
ъ З	н-	н-	-CH3
R ₂	#	III .	Н-
R.	[H	[t ₁	7 H
» N	10	디	12

Point de fusion (°C)	218-220	208-210	226-228
Sel	HCl (2:1)	HCl (2:1)	HCl (2:1)
N Y	N OCH ₃	N OCH ₃	N ————————————————————————————————————
Ŋ	- N -	-N-	- N
E	2	8	77
00 8	4	4	4
۳. ع	н-	-CH2CONH2	-CH2CONH2
R ₂	Щ.	н-	н-
R ₁	r r	[H	7 - F
° N	13	4.	15

Point de fusion (°C)	227 (d)	264	242
sel_	HCl (2:1)	1	1
N W	N OCH3	N ₂ O	HN SO ₂ CH ₃
ы	- N -	- N -	-N-
E	Ø	2	N
ಕಂಧ	4	44	4
R ₃	н -	щ-	Н-
R ₂	Ή,	ж. '	H ₁
R ₁	- r	E4 1	F4
°N	16	17	18

Point de fusion (°C)	176 (d)	290 (d)	262	220
se 1	HC1 (2:1)	нсì (2:1)	HC1 (2:1)	ı
N Y				
Z	- N -	- N -	-N-	- N -
E	77	0	70	77
8 ೦ ೦	4	4	4	4
:				
R ₃	н-	-CH3	-CH ₂ CONH ₂	H-
R2	#	щ.	Щ	щ.
г. Та	#	6-01	ر ا بر	6-CH ₃
ů	19	20	21	22

Point de fusion (°C)	219 (d)	170	240	213 (d)
Sel	ı	HC1 (2:1)	HCl (2:1)	HC1 (2:1)
N Y		HIN	HEN	N CH ₃
И	- N -	- N	-N-	- N -
E	73	0	8	73
Ω Ω	4'	41	4	4
R ₃	н.	н-	-CH2CONH2	H-
R ₂	н.	Ħ	н.	ж.
R ₁	6-СН ₃	7 - F	r- r	[E ₄]
N°	23	24.	25	56

r				
Point de fusion (°C)	250-255	252-255	242	254-255
Sel	HC1 (2:1)	HCl (3:1)	HC1 (2:1)	HC1 (2:1)
N. A.	N CH ₃	N NH	$\bigvee_{N \searrow N - CH_3}^{N}$	N N N N N N N N N N N N N N N N N N N
N	-N-	- N-	~N-	- N -
E	72	2	7	2
ಕಂದ	4	4	41	4
R ₃	#	щ-	## "	н-
R ₂	出	Щ -	Н-	E
R ₁	r- r	F1 - C	۲- تنا	7 - F
Š	27	28	6 29	30

Point de fusion (°C)	198 (d)	178-182	195-200	181 (d)
Sel	HCl (2:1)	HCl (2:1)	HCl (2:1)	HC1 (2:1)
N. Y.				N N N N N N N N N N N N N N N N N N N
Z	-N-	-N-	- N -	-N-
Æ	2	0	2	7
B00	4	4	4	4
li				
R ₃	-CH2CONH2	- (CH ₂) 20COCH ₃	- (СН2) 20Н	-CH ₂ CON (H) CH ₃
R ₂	Ħ-	Ξ.	Ξ.	# .
\mathbb{R}_1	7 F	7 - 1	<u> </u>	7 - F
° Z	31	32	33	34

Point de fusion	185 (d)	194-196	150
Sel	HC1 (2:1)	HCl (2:1)	HCl (2:1)
Z d	N N N N N N N N N N N N N N N N N N N	N N	S N
2	i Z	, N	. N.
E	N	8	2
sod	41	4	4
	П		
R ₃	-CH2CON (CH3)2	н-	- CH ₂ CONH ₂
R2	н-	Щ -	H-
R_1	7 - দ	7 - 13	7 - F
o N	ы П	o e	37

Point de fusion (°C)	210-212	194-196	176-180 (d)	238-240
Se]	HCl (2:1)	HCl (2:1)	HCl (2:1)	HCl (2:1)
Z Y	N N NH	N N NH	HNNNN	N CH ₃
Z	-N-	- N -	- N -	- N -
E	2	0	N	7
0 8 8	4	41	4	4
R ₃	н-	-CH2CONH2	-CH3	н-
R2	Ħ	Η '	Ψ-	н-
R ₁	۲- ۲۰	F1 - C	r F	7 - 도
, N	88 8	თ ო	40	41

Point de fusion (°C)	231-232	192 (d)	200-202	194-196
Se1	HCl (2:1)	HCl (2:1)	ı	HCl (2:1)
Z Y	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N
N	, N	- N -	- N -	-N
E	71	8	2	2
ე. O დ	4,	4'	4	4,
R ₃	д	-CH2CONH2	Ħ,	-CH2CONH2
R2	Н-	н -	Щ -	щ
R1	7 - 17	r. r.	E4 -	7-1
°N	4, 5,	4.3	44	45

Point de fusion (°C)	246	255-256	268	224
Se1	1	ı	HCl (2:1)	1
N N	N. N	N N N N N N N N N N N N N N N N N N N	N N	
72	-N-	-N-	- N -	-N-
E	N	7	0	7
ಕಂದೆ	4	41	4	4
R ₃	#	-CH2CONH2	-CH ₃	H-
R ₂	Щ.	ж.	Н.	H
R_1	F1 - 7	7 - F	r - 7	F. E.
°N	4. O	47	8 4	94

Point de fusion (°C)	198-200	266	234-235	196
Sel	HC1 (2:1)	1	HCl (1:1)	HCl (1:1)
N Y		N N N N N N N N N N N N N N N N N N N		NH O
2	-N-	-N-	-N-	- N -
Æ	8	0	N	N
ಇ ಂದ್	4	4	4,	4
li li				
R ₃	н-	н-	- CH ₃	-CH3
R ₂	#		Ψ,	Н-
R_1	7 - F	7 - F	7 - F	7 - F
° Z	O to	51	52	53

Point de fusion (°C)	197	. 190	189
sel	HC1 (2:1)	HCl (2:1)	ı
N N	CHI OHI	N OCH ₂ CH ₃	H ₃ C CH ₃
. 2	- N -	-N-	- N -
Æ	8	8	N
ಭಂಜ	41	4	4
l:			
R ₃	щ-	H	н-
R ₂	Щ	Щ.	н-
R ₁	r.	E4 - -	7 - 17
° Z	54	ភភភ	o n

Point de fusion (°C)	231	232	
Sel	•	1	
N Y	N CH ₂ OCH ₃	H ₃ C-N OH ₃	
72	- N -	-N-	
E	8	0	
sod	4	4	
R ₃	щ -	# -	
\mathbb{R}_2	щ	н-	
.R.	г	7 - F	
o Z	7.5	n ®	

Point de fusion (°C)	259
Sel	HCl (2:1)
N Y	HO O = A - OH
27	l N
E	0
pos	4,
ŀ	
R ₃	н-
R ₂	н
R_1	7 - F
°N	ທ ດ

Les composés de l'invention ont fait l'objet d'études pharmacologiques qui ont mis en évidence leurs propriétés antagonistes de la sérotonine et leur intérêt comme substances à activité thérapeutique.

5

Ainsi, les composés de l'invention ont été soumis à un test d'inhibition de l'effet vasopresseur de la sérotonine. On utilise des rats mâles (Sprague-Dawley, Charles River France) pesant 250 à 300 g, que l'on anesthésie au pentobarbital 10 sodique (60 mg/kg/i.p.) et que l'on maintient sous respiration artificielle (Respirateur Harvard TM-fréquence de respiration de 70 ml par minute, volume d'air 1 ml par 100 q de poids corporel). On amyèle les animaux à l'aide d'une tige métallique, introduite par l'orbite de l'oeil droit descendue 15 le long de la colonne vertébrale. On sectionne les nerfs vaques droit et qauche (bivaqotomie), on ligature l'artère carotide droite, l'artère carotide qauche étant cathétérisée afin de mesurer la pression artérielle à l'aide d'une cellule de pression (type Statham P23Db). On cathétérise une veine 20 fémorale en vue de l'administration de divers composés. On mesure les augmentations de pression artérielle moyenne induite par la sérotonine administrée par voie intraveineuse à la dose de 30 μ q/kq. Les composés de l'invention ou le véhicule sont administrés 5 minutes (pour les études par voie 25 i.v.) ou 75 minutes (pour les études par voie orale) avant l'administration de la sérotonine. Les composés de l'invention sont administrés à des doses allant de 0.001 à 10 mg/kg. Le pourcentage d'inhibition de la réponse contrôle à la sérotonine est utilisé pour apprécier le potentiel 30 antagoniste à la sérotonine des composés de l'invention.

Les composés de l'invention ont également fait l'objet d'un essai d'inhibition de la liaison du [³H] spiropéridol aux récepteurs sérotoninergiques 5-HT2 du cortex cérébral de rat.

35 Pour cet essai, on prélève les cerveaux de rats, on en dissèque le cortex et on l'homogénéise à 0°C dans 20 volumes d'un mélange contenant, par litre, 50 mmoles de tampon Tris/HCl à pH = 7,4, 120 mmoles de NaCl et 5 mmoles de KCl.

On centrifuge le mélange homogène à 40000 x q pendant

10 minutes puis, à deux reprises, on récupère le culot, on le lave en le mettant en suspension dans le même mélange tampon, on l'homogénéise de nouveau et on le centrifuge. Pour terminer on dilue le culot final dans le même mélange tampon à raison de 500 mg de tissu humide pour 10 ml de tampon. On soumet alors le tissu à une incubation préalable de 10 minutes à 37 °C en présence de 10 μm/l de pargyline, puis à une incubation de 20 minutes à 37 °C en présence de ³H-spiropéridol (activité spécifique : 19 Ci par mmole) à la concentration de 0,3 nM et de composé à étudier à des concentrations allant de 0.0001 à 100 μM.

On prélève des aliquots de 1 ml que l'on filtre sous vide, on lave les filtres deux fois avec 5 ml de tampon froid, on les sèche et on mesure la radioactivité.

- Pour évaluer l'activité des composés, on établit la courbe du pourcentage d'inhibition de la liaison spécifique de $^3\text{H-spiropéridol}$ en fonction de la concentration en drogue déplaçante. On détermine graphiquement la CI_{50} , concentration qui inhibe 50 % de la liaison spécifique.
- 20 La liaison spécifique est définie comme étant la liaison déplacée par 100 $\mu \rm M$ de 5-HT. Les $\rm CI_{50}$ des composés de l'invention sont inférieurs à 1 $\mu \rm M$.

Les composés de l'invention ont également été testés dans un modèle de vasoconstriction au Sumatriptan de la veine saphène isolée de chien (activité antagoniste au niveau du récepteur 5-HT_{1-like}, selon HUMPHREY et al. dans Br. J. Pharmacol. 1988, 94, 1123).

Des veines saphènes de chiens Beagles ou Anglopoitevins sont prélevées sous anesthésie au pentobarbital administré en injection intraveineuse. Le vaisseau est découpé en hélice de 0,4 cm de large puis divisé en segments de 0,5 cm de longueur. Chaque fragment, monté entre deux serre-fines, est placé dans une cuve à organes isolés contenant 20 ml d'une solution physiologique de Krebs de composition suivante (mM): NaCl 118; KCl 4,7; MgCl₂ 1,2; CaCl₂ 2,6; NaHCO₃ 25; Glucose 11,1; acide ascorbique 0,11. L'organe, maintenu à 37 °C sous un courant de carbogène (95 %O₂-5 % CO₂) à pH 7,4 est relié à un capteur isométrique Hugo Sachs type 351 sous une tension

68

basale de 2 g et connecté à un polygraphe Gould 2400S permettant l'enregistrement des variations tensionnelles. L'acquisition des données est automatisée par système microinformatique. Après un repos de 90 minutes entrecoupé de fréquents rinçages pendant lequel la tension basale est réajustée, l'organe est stimulé par 3 μM de noradrénaline afin de vérifier sa viabilité. On construit alors une courbe concentration-réponse contractile au Sumatriptan de façon cumulative entre 10 nM et 10 μ M. Lorsque la contraction 10 maximale est obtenue (plateau de l'effet à deux concentrations consécutives de Sumatriptan), on rince abondamment la préparation en intercalant des périodes de repos pour permettre à l'organe de revenir à la tension initiale. Le composé à étudier est alors ajouté dans le bain 15 à organes 15 minutes avant qu'une deuxième courbe concentration-réponse au Sumatriptan soit construite. Les réponses de contraction obtenues en présence du composé sont exprimées en pourcentage de la contraction maximale observée lors de la première courbe au Sumatriptan. Les courbes sont analysées par régression non-linéaire de façon à déterminer le E_{max} (réponse maximale) et la CE₅₀ (concentration produisant 50 % de la réponse maximale). Le potentiel antagoniste des composés est estimé par calcul de la constante de dissociation K_B selon l'équation K_B = 25 [concentration du composé en M] / (CR - 1) où CR représente le rapport des CE₅₀ du Sumatriptan en présence et en absence du composé. Le résultat est exprimé comme $pA_2 = -\log K_B$.

Les résultats de ces essais ont montré que les composés de 30 l'invention présentent des propriétés antagonistes de la sérotonine.

A ce titre, ils peuvent être utilisés dans le traitement et la prévention de diverses formes de pathologies, comme les hypertensions artérielle, veineuse, pulmonaire, portale, rénale ou oculaire, les ischémies cardiaque, rénale, oculaire, cérébrale, ou des membres inférieurs, l'insuffisance cardiaque, l'infarctus du myocarde, l'angor, les vasospasmes coronaires ou périphériques, les thromboses (seuls ou en adjuvants à la thrombolyse), les artérites, la claudication intermittente, les resténoses après angioplastie et différents états pathologiques associés à l'athérosclérose, aux troubles de la microcirculation ou aux dysfonctionnements pulmonaires. Ils peuvent également être utilisés, seuls ou en association avec d'autres substances dans les interventions de greffe vasculaire.

Les composés de l'invention peuvent être utilisés en

10 association avec d'autres substances à activité
cardiovasculaire ou cardiopulmonaire, telles que les
antithrombotiques, les thrombolytiques, les β-bloquants, les
antagonistes calciques, les antagonistes de la thromboxane,
les inhibiteurs de la thromboxane synthétase.

15

A cet effet, ces composés peuvent être présentés sous toutes formes appropriées à l'administration orale, ou parentérale, telles que comprimés, dragées, gélules, capsules, formulations oculaires topiques en association avec des excipients convenables. Ces formes sont dosées pour permettre une administration de 0,1 mg à 1 g, une à plusieurs fois par jour.

Ils peuvent également être présentés sous toutes formes appropriées à l'administration transdermique.

70

Revendications

1. Composés de formule (I)

5

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$
 G
 O
 O

10

dans laquelle

--- représente soit une liaison simple, soit une double liaison,

G représente

$$/(CH_2)_m - N$$
 $Z - N$
 A
 (G)

20

et est en position 3 ou 4 de la quinoléin-2(1H)-one ou de la dihydroquinoléin-2(1H)-one,

25 m est égal à 2, 3 ou 4,

Z représente soit un atome d'azote, soit un groupe -CH- R_1 et R_2 représentent chacun indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un atome d'halogène, soit un groupe amino, soit un groupe hydroxy, soit un groupe nitro,

- soit un groupe cyano, soit un groupe (C_1-C_6) alkyle, soit un groupe (C_1-C_6) alcoxy, soit un groupe trifluorométhyle, soit un groupe trifluorométhoxy, soit un groupe -COOH, soit un groupe -COOR₄, soit un groupe -CONH₂, soit un groupe -CONHR₄, soit un groupe -CONR₄R₅, soit un groupe -SR₄, soit un groupe
- 35 $-SO_2R_4$, soit un groupe $-NHCOR_4$, soit un groupe $-NHSO_2R_4$, soit un groupe $-N(R_4)_2$ où R_4 et R_5 sont chacun un groupe (C_1-C_4) alkyle,

 R_3 représente soit un atome d'hydrogène, soit un groupe (C_1-C_4) alkyle, soit un groupe $-(CH_2)_pOH$, soit un groupe

- $-(CH_2)_pNH_2$, soit un groupe $-(CH_2)_nCOOH$, soit un groupe -(CH₂)_nCOOR₄, soit un groupe -(CH₂)_nCN, soit un groupe $-(CH_2)_n$ -tétrazol-5-yle, soit un groupe $-(CH_2)_n$ CONH₂, soit un groupe - (CH2) nCONHOH, soit un groupe - (CH2) nSH, soit un 5 groupe -(CH2) $_{n}SO_{3}H$, soit un groupe -(CH $_{2}$) $_{n}SO_{2}NH_{2}$, soit un groupe - (CH₂)_nSO₂NHR₄, soit un groupe - (CH₂)_nSO₂NR₄R₅, soit un groupe -(CH₂)_nCONHR₄, soit un groupe -(CH₂)_nCONR₄R₅, soit un groupe - (CH2) NHSO2R4, soit un groupe - (CH2) NHCOR4 soit un groupe -(CH₂)_pOCOR₄ où R₄ et R₅ sont chacun un groupe 10 (C_1-C_4) alkyle, n est égal à 1, 2, 3 ou 4 et p est égal à 2, 3 ou 4 et A représente soit un groupe benzo éventuellement substitué, soit un hétérocycle substitué ou non ayant 5 ou 6 atomes parmi lesquels un, deux ou trois sont des hétéroatomes 15 choisis parmi les atomes d'azote, d'oxygène et de soufre, les autres atomes étant des atomes de carbone, le dit hétérocycle ne pouvant être un thiéno et pouvant être par exemple un groupe furo, pyrrolo, pyrazolo, imidazo, triazolo, oxazolo, thiazolo, oxadiazolo, thiadiazolo, pyrido, pyrimido, 20 pyrazino, pyridazino ou oxopyrido et leurs isomères de positionnement des hétéroatomes, sous la forme de racémates, d'énantiomères purs ou de mélange d'énantiomères, ainsi que leurs sels d'addition aux acides ou aux bases pharmaceutiquement acceptables, à l'exception des composés 25 pour lesquels A représente un groupe benzo éventuellement substitué par un atome de chlore ou de fluor ou par un groupe méthoxy, m est égal à 2, le groupe (G) est en position 4 de la quinoléin-2(1H)-one ou de la dihydroquinoléin-2(1H)-one, R₁ et/ou R₂ représentent un atome d'hydrogène, d'halogène ou 30 un groupe (C₁-C₄)alkyle et R₃ un atome d'hydrogène ou un groupe (C1-C4) alkyle, sous la forme de racémates, d'énantiomères purs ou de mélange d'énantiomères ainsi que leurs sels d'addition aux acides ou aux bases pharmaceutiquement acceptables.
 - 2. Composés selon la revendication 1 caractérisés en ce que --- représente soit une liaison simple, soit une double liaison, le groupe (G) étant en position 3 ou 4 de la quinoléin-2(1H)-one ou de la dihydroquinoléin-2(1H)- one, m

est égal à 2,

Z représente un atome d'azote,

 R_1 représente soit un atome d'hydrogène, soit un atome d'halogène, soit un groupe (C_1-C_6) alkyle, soit un groupe (C_1-C_6) alcoxy,

R₂ représente un atome d'hydrogène,

 R_3 représente soit un atome d'hydrogène, soit un groupe (C_1-C_4) alkyle, soit un groupe $-(CH_2)_pOH$, soit un groupe $-(CH_2)_nCONH_2$, soit un groupe $-(CH_2)_nCONH_4$, soit un groupe

- 10 $-(CH_2)_nCONR_4R_5$, soit un groupe $-(CH_2)_pOCOR_4$ où R_4 et R_5 sont chacun un groupe (C_1-C_4) alkyle, n est égal à 1, 2, 3 ou 4 et p est égal à 2, 3 ou 4 et
 - A représente soit un groupe benzo substitué par un groupe hydroxy, $-OCOR_4$, $-OCOOR_4$, $-OCO(CH_2)_nOR_4$, $-OSO_2NR_4R_5$ ou
- -OP(O)(OH)₂ (R₄, R₅ et n étant tels que définis dans la revendication 1), soit un un groupe furo, pyrrolo, pyrazolo, imidazo, triazolo, oxazolo, thiazolo, oxadiazolo, thiadiazolo, pyrido, pyrimido, pyrazino, pyridazino ou oxopyrido sous la forme de racémates, d'énantiomères purs ou
- 20 de mélange d'énantiomères, ainsi que leurs sels d'addition aux acides ou aux bases pharmaceutiquement acceptables.
 - 3. Composés selon l'une quelconque des revendications 1 ou 2, caractérisés en ce que
- 25 --- représente une double liaison, le groupe (G) étant en position 4 de la quinoléin-2(1H)-one, m est égal à 2, Z représente un atome d'azote,
 - R₁ représente un atome d'halogène,
 - R₂ représente un atome d'hydrogène,
- 30 R_3 représente soit un atome d'hydrogène, soit un groupe (C_1-C_4) alkyle et
 - A représente un groupe benzo substitué par un groupe hydroxy, $-\text{OCOR}_4$, $-\text{OCOOR}_4$, $-\text{OCO}\left(\text{CH}_2\right)_n\text{OR}_4$, $-\text{OSO}_2\text{NR}_4\text{R}_5$ ou $-\text{OP}\left(\text{O}\right)\left(\text{OH}\right)_2$ (R₄, R₅ et n étant tels que définis dans la revendication 1), sous
- 35 la forme de racémates, d'énantiomères purs ou de mélange d'énantiomères, ainsi que leurs sels d'addition aux acides ou aux bases pharmaceutiquement acceptables.

4. Procédé de préparation des composés de formule (Ia)

dans laquelle R₁, R₂ m. Z et

dans laquelle R_1 , R_2 , m, Z et A sont tels que définis dans la revendication 1 et des composés de formule (Ib)

15
$$(CH_{2})_{\mathfrak{m}} - N \qquad Z - N$$

$$R_{1} \qquad \qquad A$$

$$R_{2} \qquad \qquad R_{3}$$

$$(Ib)$$

dans laquelle R_1 , R_2 , R_3 , m, Z et A sont tels que définis dans la revendication 1, procédé caractérisé en ce que l'on fait réagir un composé de formule (VII)

dans laquelle R₁, R₂, R₃ et m sont tels que définis dans la revendication 1 et Y représente un groupe partant avec un composé de formule (VIII)

5

dans laquelle Z et A sont tels que définis dans la revendication 1.

10 5. Procédé de préparation des composés de formule (Ic)

15

dans laquelle R_1 , R_2 , Z et A sont tels que définis dans la revendication 1 et des composés de formule (Id)

20

$$\begin{array}{c|c} R_1 & & \\ & & \\ \hline \\ R_2 & & \\ & & \\ \end{array}$$

25

dans laquelle R_1 , R_2 , Z et A sont tels que définis dans la revendication 1 et m est égal à 3 ou 4, procédé caractérisé en ce que l'on fait réagir un composé de formule (XII)

30

35

dans laquelle \mathbf{R}_1 , \mathbf{R}_2 et m sont tels que définis dans la revendication 1 avec un composé de formule (VIII)

dans laquelle Z et A sont tels que définis dans la revendication 1.

10 6. Procédé de préparation des composés de formule (Ie)

dans laquelle R_1 , R_2 , R_3 (différent d'un atome d'hydrogène), Z et A sont tels que définis dans la revendication 1 et des 20 composés de formule (If)

25

$$\begin{array}{c|c}
R_1 & & \\
\hline
R_2 & & \\
\hline
R_3 & &
\end{array}$$
(CH₂) m-N Z-N

A

dans laquelle R_1 , R_2 , R_3 (différent d'un atome d'hydrogène),

 ${\tt Z}$ et ${\tt A}$ sont tels que définis dans la revendication 1 et ${\tt m}$ est égal à 3 ou 4, procédé caractérisé en ce que l'on fait réagir un composé de formule (XV)

35

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$
(CH₂)_mY
(XV)

dans laquelle R_1 , R_2 , R_3 (différent d'un atome d'hydrogène), et m sont tels que définis dans la revendication 1 et Y représente un groupe partant avec un composé de formule (VIII)

5

10

dans laquelle Z et A sont tels que définis dans la revendication 1.

7. Procédé de préparation des composés de formule (Ib)

15

20

dans laquelle R_1 , R_2 , R_3 , m, Z et A sont tels que définis dans la revendication 1 et R_3 est différent d'un atome d'hydrogène, procédé caractérisé en ce que l'on fait réagir un composé de formule (Ia)

30

$$\begin{array}{c|c} & & & & \\ & & & & \\ R_1 & & & & \\ R_2 & & & \\ & & & \\ & & & \\ \end{array}$$

35

dans laquelle R_1 , R_2 , m, Z et A sont tels que définis dans la revendication 1 avec un agent électrophile.

- 8. Médicament caractérisé en ce qu'il contient un composé selon l'une quelconque des revendications 1 à 3.
- 9. Composition pharmaceutique caractérisée en ce qu'elle contient un composé selon l'une quelconque des revendications 1 à 3 en association avec tout excipient pharmaceutiquement acceptable.
 - 10. Utilisation des composés de formule (I)

$$\begin{array}{c}
R_1 \\
R_2
\end{array}$$

$$\begin{array}{c}
R_3
\end{array}$$

$$\begin{array}{c}
G \\
O \\
R_3
\end{array}$$

15

dans laquelle

--- représente soit une liaison simple, soit une double liaison.

20 G représente

$$/(CH_2)_m - N$$
 $Z - N$
A
(G)

25

et est en position 3 ou 4 de la quinoléin-2(1H)-one ou de la dihydroquinoléin-2(1H)-one,

m est égal à 2, 3 ou 4,

Z représente soit un atome d'azote, soit un groupe -CH-R₁ et R₂ représentent chacun indépendamment l'un de l'autre, soit un atome d'hydrogène, soit un atome d'halogène, soit un groupe amino, soit un groupe hydroxy, soit un groupe nitro, soit un groupe cyano, soit un groupe (C₁-C₆)alkyle, soit un groupe (C₁-C₆)alcoxy, soit un groupe trifluorométhyle, soit un groupe trifluorométhoxy, soit un groupe -COOH, soit un groupe -COOR₄, soit un groupe -CONH₂, soit un groupe -CONH₄, soit un groupe -SR₄, soit un groupe -SN₂, soit un groupe -NHSO₂R₄, soit

un groupe $-N(R_4)_2$ où R_4 et R_5 sont chacun un groupe (C_1-C_4) alkyle,

 R_3 représente soit un atome d'hydrogène, soit un groupe (C_1-C_4) alkyle, soit un groupe $-(CH_2)_pOH$, soit un groupe $-(CH_2)_pNH_2$, soit un groupe $-(CH_2)_nCOOH$, soit un groupe $-(CH_2)_nCOOR_4$, soit un groupe $-(CH_2)_nCN$, soit un groupe $-(CH_2)_n-CONH_2$, soit un groupe $-(CH_2)_n-CONH_2$, soit un groupe $-(CH_2)_nCONH_2$, soit un groupe $-(CH_2)_nCONHOH$, soit un groupe $-(CH_2)_pSH$, soit un groupe $-(CH_2)_nSO_2NH_2$, soit un groupe $-(CH_2)_nSO_2NH_2$, soit un groupe $-(CH_2)_nSO_2NH_4$, soit un groupe $-(CH_2)_nSO_2NR_4$, soit un

groupe $-(CH_2)_nCONHR_4$, soit un groupe $-(CH_2)_nCONR_4R_5$, soit un groupe $-(CH_2)_pNHSO_2R_4$, soit un groupe $-(CH_2)_pNHCOR_4$, soit un groupe $-(CH_2)_pOCOR_4$ où R_4 et R_5 sont chacun un groupe $-(C_1-C_4)$ alkyle, n est égal à 1, 2, 3 ou 4 et p est égal à 2, 3 ou 4 et

A représente soit un groupe benzo éventuellement substitué, soit un hétérocycle substitué ou non ayant 5 ou 6 atomes parmi lesquels un, deux ou trois sont des hétéroatomes choisis parmi les atomes d'azote, d'oxygène et de soufre, les autres atomes étant des atomes de carbone, le dit hétérocycle ne pouvant être un thiéno et pouvant être par exemple un groupe furo, pyrrolo, pyrazolo, imidazo, triazolo, oxazolo,

pyrazino, pyridazino ou oxopyrido et leurs isomères de
25 positionnement des hétéroatomes, sous la forme de racémates,
d'énantiomères purs ou de mélange d'énantiomères,
ainsi que de leurs sels d'addition aux acides ou aux bases
pharmaceutiquement acceptables pour la préparation d'un

médicament utile pour le traitement et la prévention de

thiazolo, oxadiazolo, thiadiazolo, pyrido, pyrimido,

diverses formes de pathologies, comme les ischémies cardiaque, rénale, oculaire, cérébrale, ou des membres inférieurs, l'insuffisance cardiaque, l'infarctus du myocarde, l'angor, les thromboses (seuls ou en adjuvants à la thrombolyse), les artérites, la claudication intermittente,

les resténoses après angioplastie et différents états pathologiques associés à l'athérosclérose, aux troubles de la microcirculation ou aux dysfonctionnements pulmonaires.

11. Utilisation des composés selon l'une quelconque des

revendications 1 à 3 pour la fabrication d'un médicament utile pour le traitement et la prévention des hypertensions artérielle, veineuse, pulmonaire, portale, rénale ou oculaire et des vasospasmes coronaires ou périphériques.

Int .tional Application No PCT/FR 98/00528

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D491/04 A61K A61K31/47 C07D401/12 C07D471/04 C07D513/04 //(C07D513/04,285:00,221:00),(C07D471/04,241:00, C07F9/12 221:00), (C07D471/04,221:00,221:00), (C07D471/04,231:00,221:00), According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D A61K CO7F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Y EP 0 364 327 A (SYNTHELABO) 18 April 1990 1,9,10 cited in the application see examples 14,21 GB 2 174 703 A (BRISTOL-MEYERS COMPANY) 1,9,10 12 November 1986 *whole document* P,Y WO 97 10238 A (SYNTHELABO) 20 March 1997 1,9,10 *whole document* P,Y FR 2 738 823 A (SYNTHELABO SA) 21 March 1,9,10 1997 *whole document* Patent family members are listed in annex. Further documents are listed in the continuation of box C * Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publicationdate of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 13 July 1998 24/07/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Van Bijlen, H Fax: (+31-70) 340-3016

1

Int .tional Application No PCT/FR 98/00528

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 (C07D471/04,235:00,221:00),(C07D5 (C07D471/04,249:00,221:00)	13/04,275:00,221:00),
According to International Patent Classification (IPC) or to both national classification (IPC)	ation and IPC
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by classification	on symbols)
Documentation searched other than minimum documentation to the extent that	such documents are included in the fields searched
Electronic data base consulted during the international search (name of data b	ise and. where practical. search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category Citation of document, with indication, where appropriate, of the re	evant passages Relevant to claim No.
Further documents are listed in the continuation of box C.	χ Patent family members are listed in annex.
'Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publicationdate of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of theinternational search	"T" tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (-31-70) 340-2404, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Van Bijlen, H

In ational Application No
PCT/FR 98/00528

Patent document cited in search report		Publication date	(Patent family member(s)	Publication date
EP 364327	Α	18-04-1990	FR	2637591 A	13-04-1990
			AU	619349 B	23-01-1992
			AU	4275089 A	26-04-1990
			CS	9104048 A	15-04-1992
			DK	500189 A	12-04-1990
			FI	894803 A,B,	12-04-1990
			GR	3003921 T	16-03-1993
			ΙE	61830 B	30-11-1994
•			JP	2157267 A	18-06-1990
			PT	91939 A,B	30-04-1990
			US 	4983607 A	08-01-1991
GB 2174703	Α	12-11-1986	AT	398572 B	27-12-1994
			ΑT	12 14 86 A	15-05-1994
			AU	593244 B	08-02-1990
			AU	5679586 A	13-11-1986
			BE	904724 A	05-11-1986
			CA	1278792 A	08-01-1991
			CH	672787 A	29-12-1989
			CN	1017901 B	19-08-1992
•			CN	1058967 A,B	26-02-1992
			DE	3615180 A	06-11-1986
			DK	207186 A,B,	07-11-1986
			EG	18206 A	30-09-1992
			FI	861820 A,B 2581385 A	07-11-1986 07-11-1986
			FR IE	59201 B	26-01-1994
			JP	2015084 C	02-02-1996
			JP	7053728 B	07-06-1995
			JP	61268681 A	28-11-1986
			KR	9400829 B	02-02-1994
			LU	86421 A	05-12-1986
			NL	8601146 A	01-12-1986
			PT	82523 B	14-10-1988
			SE	465270 B	19-08-1991
			SE	8602061 A	07-11-1986
			ÜS	4677104 A	30-06-1987
W0 9710238	A	20-03-1997	FR	2738822 A	21-03-1997
			FR	2739100 A	28-03-1997

In ational Application No PCT/FR 98/00528

Patent document cited in search report	t	Publication date	Patent family member(s)	Publication date
WO 9710238	Α		AU 6991996 A EP 0850235 A	01-04-1997 01-07-1998
FR 2738823	Α	21-03-1997	NONE	

Du nde Internationale No PCT/FR 98/00528

		PCT/FR 98	3/00528
C18 0	EMENT DE L'OBJET DE LA DEMANDE C07D491/04 A61K31/47 C07D401/ C07F9/12 //(C07D513/04,285:00, 221:00),(C07D471/04,221:00,221:00) assification internationale des brevets (CIB) ou à la fois selon la classif	221:00),(C07D471/04,24,(C07D471/04,231:00,22	0513/04 41:00, 21:00),
	NES SUR LESQUELS LA RECHERCHE A PORTE		
	tion minimale consultee (système de classification suivi des symboles C07D A61K C07F	de classement)	
Documenta	tion consultée autre que la documentationminimale dans la mesure or	u ces documents relèvent des domaines s	ur lesquels a porté la recherche
Basa de do utilises)	nnees électronique consultée au cours de la recherche internationale	(nom de la base de donnees, et si cela est	realisable, termes de recherche
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
Categorie :	Identification des documents cites, avec le cas échéant. Findication	des passages pertinents	no. des revendications visées
Y	EP 0 364 327 A (SYNTHELABO) 18 av cité dans la demande voir exemples 14,21	ril 1990	1,9,10
Y	GB 2 174 703 A (BRISTOL-MEYERS Co 12 novembre 1986 * document complet *	OMPANY)	1,9,10
P,Y	WO 97 10238 A (SYNTHELABO) 20 mar * document complet *	s 1997	1,9,10
Р,Ү	FR 2 738 823 A (SYNTHELABO SA) 21 1997 * document complet *	mars	1,9,10
Voir	la suite du cadre C pour la finde la liste des documents	[v]	
		X Les documents de familles de bre	vets sont indiques en annexe
"A" docume conside "E" docume ou aprè "L" docume prontité autre ci "O" docume une ext	nt définissant l'état général de latechnique, non éréré comme particulièrement pertinent int antérieur, mais publié à la date dedépôt international se cette date int pouvant jeter un doute sur une revendcation de ou cité pour déterminer la date depublication d'une itation ou pour une raison spéciale (telle qu'indiquée) int se référant à une divulgation orale, à un usage, à position ou tous autres moyens int publié avant la date de dépôtinternational, mais autrement à la date de priorité revendiquée	C' document ultérieur publié après la date de priorité et n'appartenenant par technique pertinent, mais cité pour cor ou la théorie constituant la base de l'in C' document particulièrement pertinent; l'i être considérée comme nouvelle ou curiventive par rapport au document cor document particulièrement pertinent; l'i ne peut être considérée comme implic lorsque le document est associé à un documents de même nature, cette con pour une personne du métier.	a à l'état de la nprendre le principe vention revendiquée ne peut omne impliquant une activité solément nvention revendiquée punt de l'étate de
	ille la recherche internationale a étéeffectivement achevée	Date d'expédition du présent rapport de	recherche internationale
	B Juillet 1998 see postale de l'administrationchargée de la recherche internationale	24/07/1998 Fonctionnaire autorisé	
	Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Van Bijlen, H	

De .de internationale No PCT/FR 98/00528

		101/11/30	7, 00020
A. CLASSE CIB 6	EMENT DE L'OBJET DE LA DEMANDE (C07D471/04,235:00,221:00),(C07D51 (C07D471/04,249:00,221:00)	3/04,275:00,221:00),	
Selon la cla	ssification internationale des brevets (CIB) ou à la fois selon la classifi	cation nationale et la CIB	
	NES SUR LESQUELS LA RECHERCHE A PORTE		
Documenta	tion minimale consultée (système de classification suivi des symboles	de classement)	
	tion consultée autre que la documentationminimale dans la mesure où		
Base de doi utilises;	nnees électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est	realisable, termes de recherche
	ENTS CONSIDERES COMME PERTINENTS		
Categorie	Identification des documents cités, avec, le cas échéant, l'indication	des passages pertinents	no. des revendications visees
Voir I	a suite du cadre C pour la finde la liste des documents	Les documents de familles de bre	vets sont indiqués en annexe
"A" docume conside "E" docume ou apré "L" docume priorité autre c' "O" docume une ext "P" docume postérie	nt définissant l'état général de latechnique, non s'été comme particulièrement pertinent nt antérieur, mais publié à la date dedépôt international às cette date nt pouvant jeter un doute sur une revendcation de ou cité pour déterminer la date de publication d'une itation ou pour une raison spéciale (felle qu'indiquée) nt se référant à une divulgation orale, à un usage, à position ou tous autres moyens nt publié avant la date de dépôtinternational, mais eurement à la date de priorité revendiquée "étle la recherche internationale a étéeffectivement achevée	"document ultérieur publié après la date de priorité et n'appartenenant pa technique perlinent, mais cité pour co ou la théorie constituant la base de l'it (document particulièrement pertinent; l' être considéree comme nouvelle ou c inventive par rapport au document co c' document particullèrement pertinent; l' ne peut être considérée comme implie lorsque le document est associé à un documents de même nature, cette coi pour une personne du métier c' document qui fait partie de la même ta	s à l'état de la migrendre le principe ivention invention revendiquée ne peut omme impliquant une activité insidéré isolément invention revendiquée quant une activité inventive ou plusieurs autres inbinaison étant évidente millede brevets
	3 juillet 1998 see postale de l'administrationchargée de la recherche internationale Office Européen des Brevets. P.B. 5618 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Fonctionnaire autorisé	
	Fax: (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Van Bijlen, H	

Dt. ide internationale No PCT/FR 98/00528

Document brevet co	te	Date de	Me	mbre(s) de la	Date de
au rapport de recherche		publication	fam	lle de brevet(s)	publication
EP 364327	Α	18-04-1990	FR	2637591 A	13-04-1990
			AU	619349 B	23-01-1992
			AU	4275089 A	26-04-1990
			CS	9104048 A	15-04-1992
			DK	500189 A	12-04-1990
			FI	894803 A,B,	12-04-1990
			GR	3003921 T	16-03-1993
			ΙE	61830 B	30-11-1994
			JP	2157267 A	18-06-1990
			PT	91939 A,B	30-04-1990
			US	4983607 A	08-01-1991
GB 2174703	Α	12-11-1986	AT	398572 B	27-12-1994
			AT	121486 A	15-05-1994
			AU	593244 B	08-02-1990
			AU	5679586 A	13-11-1986
			BE	904724 A	05-11-1986
			CA	1278792 A	08-01-1991
			CH	672787 A	29-12-1989
			CN	1017901 B	19-08-1992
			CN	1058967 A,B	26-02-1992
			DE	3615180 A	06-11-1986
			DK	207186 A,B,	07-11-1986
			EG	18206 A	30-09-1992
			FI	861820 A,B	07-11-1986
			FR	2581385 A	07-11-1986
			ΙE	59201 B	26-01-1994
			JP	2015084 C	02-02-1996
			JP	7053728 B	07-06-1995
			JP	61268681 A	28-11-1986
			KR	9400829 B	02-02-1994
			LU	86421 A	05-12-1986
			NL	8601146 A	01-12-1986
			PT	82523 B	14-10-1988
			SE	465270 B	19-08-1991
		•	SE	8602061 A	07-11-1986
			US	4677104 A	30-06-1987
WO 9710238	Α	20-03-1997	FR	2738822 A	21-03-1997
			FR	2739100 A	28-03-1997

De .de Internationale No PCT/FR 98/00528

					T/FR 98	
Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)			Date de publication
WO 9710238	Α		AU EP	6991996 0850235	A A	01-04-1997 01-07-1998
FR 2738823	Α	21-03-1997	AUCUN			
-***						