Land Use and Land Cover Classification of Satellite Imagery

Andrew Loeber, Yeshwanth Somu, Zhifei Dong

Dataset Information

- Data comes from EuroSAT dataset
- 27,000 satellite images of land cover in JPEG format
- Each image is a 64x64 RGB pixel grid
- Labeled into 10 classes, shown on the right
- Split into train/validation/test in 70%/15%/15%, stratified by class label

Class ID	Class Label	Number of Images	
0	Industrial	2500	
1	Residential	3000	
2	Highway	2500	
3	Annual Crop	3000	
4	Permanent Crop	2500	
5	Pasture	2000	
6	Herbaceous Vegetation	3000	
7	Forest	3000	
8	River	2500	
9	Sea Lake	3000	

Input Features

Average RGB Values

Gray-Level Co-occurrence

Matrix (GLCM)

EfficientNet Embeddings

Color K-Means Color Bin **Histograms**

Texture

Complex

Average RGB Values

K-Means Color Bin Histograms

K-Means Color Bin Histograms

Original Image

K-Means Color Quantized - 64 Bins

K-Means Color Bin Histograms

- GLCM is a statistical method of examining texture that considers the spatial relationship of pixels.
- The construction of GLCM needs two inputs:
 pixel distance and direction
- GLCM accounts for the frequency of pixel pairs occurring at the specified distance and direction.
- The matrix shape is determined by the number of gray levels, which in our case is (256, 256)
- Statistical properties of GLCM to include:
 Contrast, Dissimilarity, Homogeneity, Energy,
 Correlation

Oray	Devel do occurren	cc matrix (ODCIVI)	
Feature	Description	Formula	Sample w/ Low Value	

 $\sum_{i,j} P(i,j)(i-j)^2$

 $\sum_{i,j} P(i,j)|i-j|$

 $\sum_{i,j} P(i,j)/(1+(i-j)^2)$

 $\sum_{i,j} P(i,j)^2$

 $\sum_{i,j} P(i,j)((i-\mu_i)(j-\mu_j))/(\sigma_i\sigma_j)$

Measures the local variations in the GLCM

Similar to Contrast, but takes the absolute difference, making it less sensitive to larger

Measures the closeness of the distribution of

elements in the GLCM to the GLCM diagonal

Measures how correlated a pixel is to its neighbor

Sum of squared elements in the GLCM

differences

over the whole image

Contrast

Dissimilarity

Homogeneity

Energy (Angular Second Moment)

Correlation

EfficientNet

- CNN model architecture developed by two Google researchers
- Designed to be as accurate as SOTA image classifiers with fewer parameters, lower computational burden, and faster inference speed
- Final selection: EfficientNetV2B3
 - ImageNet-pretrained checkpoint available through Keras
 - Built-in pre-processing & transfer learning functionality
 - Can natively handle 64x64 resolution

EfficientNet Embeddings

EfficientNet Embeddings - Compression

EfficientNet Embeddings

EfficientNet Embeddings - Compressed

Model Architectures

Logistic Regression

- Multiclass classification using multinomial regression
- Pros:
 - Computationally cheap
 - Easy interpretability
 - Less prone to overfitting
- Cons:
 - Limited to linear relationships
 - Sensitive to feature scaling
- Searched regularization coefficient ('C') and max iterations parameters

eXtreme Gradient Boosting (XGBoost)

- Uses results of multiple decision trees to capture complex non-linear relationships between features and class labels
- Pros:
 - Incorporates gradient boosting and regularization
 - Early stopping
 - Handles non-linearity
- Cons:
 - Computationally expensive
 - Black box in nature
- Searched n_estimators, max_depth, learning_rate parameters

Preliminary Results

Model Type	Feature Set	Best Configuration	Training Time (sec)	Training Accuracy	Validation Accuracy	
Logistic Regression	Basic	C = 1000 max_iter = 3000	61.6	87.3%	85.7%	+ 9.5
	Full	C = 1 max_iter = 100	2.36	99.3%	95.2%	+ 9.57
XGBoost	Basic	learning_rate = 0.1 max_depth = 7 n_estimators = 200	48.6	100.0%	92.8%	+ 1.9
	Full	learning_rate = 0.1 max_depth = 3 n_estimators = 100	18.4	99.7%	94.7%	1.9

Basic = Avg RGB Values, Kmeans Color Bin Histograms, GLCM Features = **107** columns Full = Basic + EfficientNet features = **171** columns

Confusion Matrix - Test Set

PCA Analysis of Full Feature Vector

