The AC is a lie - ICPC Library

Contents

1	Stri	ng Algorithms	1
	1.1	String Alignment	1
	1.2	KMP	1
	1.3	Trie	1
	1.4	Aho-Corasick	2
2	Dote	a Structures	2
_	2.1	BIT - Binary Indexed Tree	2
	2.1	Iterative Segment Tree	2
	2.2	Iterative Segment Tree with Interval Updates	2
	2.3	Recursive Segment Tree	2
	2.4	Segment Tree with Lazy Propagation	3
	2.6	Color Updates Structure	3
	2.7	*	
	2.7	Policy Based Structures	3
	2.8	Heavy Light Decomposition	3
3	Graj	ph Algorithms	4
	3.1	Dinic Max Flow	4
	3.2	Articulation Points/Bridges/Biconnected Components	5
	3.3	SCC - Strongly Connected Components / 2SAT	5
	3.4	LCA - Lowest Common Ancestor	5
	3.5	Sack	5
4	Math 6		
-	4.1	Discrete Logarithm	6
	4.2	GCD - Greatest Common Divisor	6
	4.3	Extended Euclides	6
	4.4	Fast Exponentiation	6
	4.5	Matrix Fast Exponentiation	6
	4.6	FFT - Fast Fourier Transform	6
_	_		_
5		metry	7
	5.1	Geometry	7
	5.2	Convex Hull	8
	5.3	ClosestPair	8
	5.4	Intersection Points	8
6	Misc	cellaneous	9
_	6.1	LIS - Longest Increasing Subsequence	9
	6.2	Binary Search	9
	6.3	Ternary Search	9
7	Terr	remas e formulas uteis	9
•	7.1		9
		Grafos	
	7.2 7.3		10
	7.3	Geometry	10

String Algorithms

String Alignment

```
int pd[ms][ms];
int edit_distance(string &a, string &b) {
    int n = a.size(), m = b.size();
    for(int i = 0; i <= n; i++) pd[i][0] = i;</pre>
    for(int j = 0; j <= m; j++) pd[0][j] = j;</pre>
    for(int i = 1; i <= n; i++) {</pre>
        for(int j = 1; j <= m; j++) {</pre>
             int del = pd[i][j-1] + 1;
```

```
int ins = pd[i-1][j] + 1;
       int mod = pd[i-1][j-1] + (a[i-1] != b[j-1]);
       pd[i][j] = min(del, min(ins, mod));
return pd[n][m];
```

1.2 KMP

```
string p, t;
int b[ms], n, m;
void kmpPreprocess() {
    int i = 0, j = -1;
   b[0] = -1;
    while(i < m) {</pre>
        while(j >= 0 && p[i] != p[j]) j = b[j];
        b[++i] = ++j;
void kmpSearch() {
    int i = 0, j = 0, ans = 0;
    while(i < n) {</pre>
        while(j \ge 0 \&\& t[i] != p[j]) j = b[j];
        i++; j++;
        if(j == m) {
            //ocorrencia aqui comecando em i - j
            ans++;
            j = borda[j];
```

1.3 Trie

```
int trie[ms][sigma], terminal[ms], z;
void init() {
    memset(trie[0], -1, sizeof trie[0]);
    z = 1;
int get_id(char c) {
    return c - 'a';
void insert(string &p) {
    int cur = 0;
    for(int i = 0; i < p.size(); i++) {</pre>
        int id = get_id(p[i]);
        if(trie[cur][id] == -1) {
   memset(trie[z], -1, sizeof trie[z]);
            trie[cur][id] = z++;
        cur = trie[cur][id];
    terminal[cur]++;
int count(string &p) {
    int cur = 0;
    for(int i = 0; i < p.size(); i++) {</pre>
        int id = get_id(p[i]);
        if(trie[cur][id] == -1) {
            return false;
        cur = trie[cur][id];
    return terminal[cur];
```

1.4 Aho-Corasick

```
// Construa a Trie do seu dicionario com o codigo acima
int fail[ms], q[ms], front, rear;
void buildFailure() {
    front = 0; rear = 0; q[rear++] = 0;
    while(front < rear) {</pre>
        int node = q[front++];
        for(int pos = 0; pos < sigma; pos++) {</pre>
            int &v = trie[node][pos];
            int f = node == 0 ? 0 : trie[fail[node]][pos];
            if(v == -1) {
               v = f;
            } else {
                fail[v] = f;
                // juntar as informacoes da borda para o V ja q um match em V implica um
                     match na borda
                terminal[v] += terminal[f];
    }
int search(string &txt) {
    int node = 0;
    int ans = 0;
    for(int i = 0; i < txt.length(); i++) {</pre>
       int pos = get_id(txt[i]);
        node = trie[node][pos];
        // processar informacoes no no atual
       ans += terminal[node];
    return ans;
```

2 Data Structures

2.1 BIT - Binary Indexed Tree

```
int arr[ms], bit[ms], n;

void update(int v, int idx) {
    while(idx <= n) {
        bit[idx] += v;
        idx += idx & -idx;
    }
}

int query(int idx) {
    int r = 0;
    while(idx > 0) {
        r += bit[idx];
        idx -= idx & -idx;
    }
    return r;
}
```

2.2 Iterative Segment Tree

```
int n, t[2 * ms];

void build() {
   for(int i = n - 1; i > 0; --i) t[i] = t[i<<1] + t[i<<1|1];
}</pre>
```

```
void update(int p, int value) { // set value at position p
    for(t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1];
}
int query(int 1, int r) {
    int res = 0;
    for(1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
        if(1&1) res += t[1++];
        if(r&1) res += t[--r];
    }
    return res;
}

// If is non-commutative
S query(int 1, int r) {
    S resl, resr;
    for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
        if (1&1) resl = combine(resl, t[1++]);
        if (r&1) resr = combine(t[--r], resr);
    }
    return combine(resl, resr);
}
```

2.3 Iterative Segment Tree with Interval Updates

```
int n, t[2 * ms];
void build() {
    for (int i = n - 1; i > 0; --i) t[i] = t[i << 1] + t[i << 1|1];
void update(int 1, int r, int value) {
    for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
        if(l&1) t[l++] += value;
        if(r&1) t[--r] += value;
int query(int p) {
    int res = 0;
    for(p += n; p > 0; p >>= 1) res += t[p];
    return res;
void push() { // push modifications to leafs
    for(int i = 1; i < n; i++) {</pre>
        t[i<<1] += t[i];
        t[i<<1|1] += t[i];
        t[i] = 0;
```

2.4 Recursive Segment Tree

```
int arr[4 * ms], seg[4 * ms], n;

void build(int idx = 0, int 1 = 0, int r = n - 1) {
    int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
    if(1 = r) {
        seg[idx] = arr[1];
        return;
    }
    build(left, 1, mid); build(right, mid + 1, r);
    seg[idx] = seg[left] + seg[right];
}

int query(int L, int R, int idx = 0, int 1 = 0, int r = n - 1) {
    int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
    if(R < 1 | | L > r) return 0;
    if(L <= 1 && r <= R) return seg[idx];
    return query(L, R, left, 1, mid) + query(L, R, right, mid + 1, r);</pre>
```

```
void update(int V, int I, int idx = 0, int 1 = 0, int r = n -1) +
    int mid = (l+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
    if(l > I | | r < I) return;
    if(l == r) {
        arr[I] = V;
        seg[idx] = V;
        return;
    }
    update(V, I, left, 1, mid); update(V, I, right, mid + 1, r);
    seg[idx] = seg[left] + seg[right];
}
</pre>
```

2.5 Segment Tree with Lazy Propagation

```
int arr[4 * ms], seg[4 * ms], lazy[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n - 1) {
    int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
    if(1 == r) {
        seg[idx] = arr[1];
        return:
    build(left, 1, mid); build(right, mid + 1, r);
    seg[idx] = seg[left] + seg[right];
void propagate(int idx, int 1, int r, int left, int right) {
    if(lazv[idx]) {
        seg[idx] += lazy[idx] * (r - 1 + 1);
        if(1 < r) {
           lazy[left] += lazy[idx];
            lazy[right] += lazy[idx];
        lazy[idx] = 0;
int query(int L, int R, int idx = 0, int 1 = 0, int r = n - 1) {
    int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
    propagate(idx, l, r, left, right);
    if(R < 1 || L > r) return 0;
   if(L <= 1 && r <= R) return seg[idx];</pre>
    return query(L, R, left, 1, mid) + query(L, R, right, mid + 1, r);
void update(int V, int L, int R, int idx = 0, int 1 = 0, int r = n - 1) {
    int mid = (1+r)/2, left = 2 * idx + 1, right = 2 * idx + 2;
    propagate(idx, l, r, left, right);
    if(1 > R | | r < L) return;
   if(L <= 1 && r <= R) {
        lazy[idx] += V;
        propagate(idx, l, r, left, right);
    update(V, L, R, left, 1, mid); update(V, L, R, right, mid + 1, r);
    seg[idx] = seg[left] + seg[right];
```

2.6 Color Updates Structure

```
struct range {
    int 1, r;
    int v;

    range(int 1 = 0, int r = 0, int v = 0) : 1(1), r(r), v(v) {}

    bool operator < (const range &a) const {
        return 1 < a.1;
    }
};</pre>
```

```
set<range> ranges;
vector<range> update(int 1, int r, int v) { // [1, r)
        vector<range> ans;
        if(l >= r) return ans;
        auto it = ranges.lower_bound(1);
        if(it != ranges.begin()) {
               i.t.--:
                if(it->r > 1) {
                        auto cur = *it:
                        ranges.erase(it);
                        ranges.insert(range(cur.1, 1, cur.v));
                        ranges.insert(range(l, cur.r, cur.v));
        it = ranges.lower_bound(r);
        if(it != ranges.begin()) {
                it--;
                if(it->r>r) {
                        auto cur = *it;
                        ranges.erase(it);
                        ranges.insert(range(cur.l, r, cur.v));
                        ranges.insert(range(r, cur.r, cur.v));
        for(it = ranges.lower_bound(1); it != ranges.end() && it->1 < r; it++) {</pre>
                ans.push back(*it);
        ranges.erase(ranges.lower_bound(l), ranges.lower_bound(r));
        ranges.insert(range(l, r, v));
        return ans;
int query(int v) { // Substituir -1 por flag para quando nao houver resposta
        auto it = ranges.upper_bound(v);
        if(it == ranges.begin()) {
                return -1:
        it--:
        return it->r >= v ? it->v : -1;
```

2.7 Policy Based Structures

```
#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp> // Including tree_order_statistics_node_update
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
ordered_set X;
X.insert(1);
X.find_by_order(0);
X.order_of_key(-5);
end(X), begin(X);
```

2.8 Heavy Light Decomposition

```
#include <bits/stdc++.h>
#define all(foo) foo.begin(), foo.end()
using namespace std;
const int N = 112345, inf = 0x3f3f3f3f;
int k, adj[N], ant[2*N], to[2*N];

void add(int a, int b, bool f = 1) {
    ant[k] = adj[a], adj[a] = k, to[k] = b;
    k++;
    if(f) add(b, a, 0);
```

```
int par[N], h[N], big[N], sz[N];
void dfs(int v, int p, int hght) {
        sz[v] = 1, par[v] = p, h[v] = hght, big[v] = -1;
        for(int i = adj[v]; ~i; i = ant[i]){
                if(to[i] != p) {
                        dfs(to[i], v, hght+1);
                        sz[v] += sz[to[i]];
                        if(big[v] == -1 || sz[big[v]] < sz[to[i]]) big[v] = to[i];</pre>
int chainNo, chain[N], ind[N], chainSz[N], head[N];
vector<int> tree[N];
vector<int> st[N];
void upd(int p, int value, vector<int> &tree) {
        int n = tree.size()>>1;
        for(tree[p += n] = value; p > 1; p >>= 1) tree[p>>1] = min(tree[p], tree[p^1]);
int rmq(int 1, int r, vector<int> &tree) {
        int res = inf;
        int n = tree.size()>>1;
        for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1) {
                if(1&1) res = min(res, tree[1++]);
                if(r&1) res = min(res, tree[--r]);
        return res;
void HLD(int v, int p, int cIn){
        if(cIn == 0) head[chainNo] = v;
        ind[v] = cIn;
        chain[v] = chainNo;
        st[chainNo].push_back(v);
        if(~biq[v]){
                HLD(big[v], v, cIn+1);
                int n = chainSz[chainNo] = st[chainNo].size();
                tree[chainNo].resize(2*n);
                fill(all(tree[chainNo]), inf);
                chainNo++;
        for(int i = adj[v]; ~i; i = ant[i]){
                if(to[i] != p && to[i] != big[v]){
                        HLD(to[i], v, 0);
        return (head[chain[v]] != v) ? head[chain[v]] : (par[v] != -1 ? par[v] : v);
        while(chain[a] != chain[b]){
                if(par[a] == -1 || h[up(a)] < h[up(b)]) swap(a, b);
                a = up(a):
        return h[a] < h[b] ? a : b;
int queryUp(int a, int b){
        int ans = -1, curr;
        while(chain[a] != chain[b]){
                curr = rmq(0, ind[a]+1, tree[chain[a]]);
                if(curr != inf) ans = st[chain[a]][curr];
                a = par[head[chain[a]]];
        curr = rmq(ind[b], ind[a]+1, tree[chain[a]]);
        if(curr != inf) ans = st[chain[a]][curr];
        return ans;
int main(){
        int n, q;
```

3 Graph Algorithms

3.1 Dinic Max Flow

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], wt[me], z, n;
int copy_adj[ms], fila[ms], level[ms];
void clear() {
    memset(adj, -1, sizeof adj);
    z = 0;
int add(int u, int v, int k) {
    to[z] = v;
    ant[z] = adj[u];
    wt[z] = k;
    adj[u] = z++;
    swap(u, v);
    to[z] = v;
    ant[z] = adj[u];
    wt[z] = 0;
    adj[u] = z++;
int bfs(int source, int sink) {
        memset(level, -1, sizeof level);
        level[source] = 0;
        int front = 0, size = 0, v;
        fila[size++] = source;
        while(front < size) {</pre>
                v = fila[front++];
                for(int i = adj[v]; i != -1; i = ant[i]) {
                        if(wt[i] && level[to[i]] == -1) {
                                level[to[i]] = level[v] + 1;
                                fila[size++] = to[i];
        return level[sink] != -1;
int dfs(int v, int sink, int flow) {
        if(v == sink) return flow;
        int f:
        for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
                if(wt[i] && level[to[i]] == level[v] + 1 &&
                        (f = dfs(to[i], sink, min(flow, wt[i])))) {
                        wt[i] -= f;
                        wt[i ^ 1] += f;
                        return f;
```

```
}
    return 0;
}
int maxflow(int source, int sink) {
    int ret = 0, flow;
    while(bfs(source, sink)) {
        memcpy(copy_adj, adj, sizeof adj);
        while((flow = dfs(source, sink, 1 << 30))) {
            ret += flow;
        }
        return ret;
}</pre>
```

3.2 Articulation Points/Bridges/Biconnected Components

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], z, n;
int idx[ms], bc[me], ind, nbc, child, st[me], top;
void generateBc(int edge) {
    while(st[--top] != edge) {
        bc[st[top]] = nbc;
    bc[edge] = nbc++;
int dfs(int v, int par = -1) {
   int low = idx[v] = ind++;
    for(int i = adj[v]; i > -1; i = ant[i]) {
        if(idx[to[i]] == -1) {
           if(par == -1) child++;
            st[top++] = i;
            int temp = dfs(to[i], v);
            if(par == -1 && child > 1 || ~par && temp >= idx[v]) generateBc(i);
            if(temp >= idx[v]) art[v] = true;
            if(temp > idx[v]) bridge[i] = true;
            low = min(low, temp);
        } else if(to[i] != par && idx[to[i]] < low) {</pre>
           low = idx[to[i]];
            st[top++] = i;
    return low;
void biconnected() {
    ind = 0:
    nbc = 0;
   top = -1;
    memset(idx, -1, sizeof idx);
   memset(art, 0, sizeof art);
    memset(bridge, 0, sizeof bridge);
    for(int i = 0; i < n; i++) if(idx[i] == -1) {</pre>
        child = 0;
        dfs(i);
```

3.3 SCC - Strongly Connected Components / 2SAT

```
vector<int> g[ms];
int idx[ms], low[ms], z, comp[ms], ncomp, st[ms], top;
int dfs(int u) {
   if(`idx[u]) return idx[u] ? idx[u] : z;
   low[u] = idx[u] = z++;
   st.push(u);
```

```
for(int v : g[u]) {
        low[u] = min(low[u], dfs(v));
    if(low[u] == idx[u]) {
        idx[st.top()] = 0;
        st.pop();
        while(st.top() != u) {
            int v = st.top();
            st.pop();
            idx[v] = 0;
            low[v] = low[u];
            comp[v] = ncomp;
        comp[u] = ncomp++;
    return low[u];
bool solveSat() {
    memset(idx, -1, sizeof idx);
    ind = 1; top = -1;
    for(int i = 0; i < n; i++) dfs(i);</pre>
    for(int i = 0; i < n; i++) if(comp[i] == comp[i^1]) return false;</pre>
    return true;
// Operacoes comuns de 2-sat
// ~v = "nao v"
#define trad(v) (v<0?((~v)*2)^1:v*2)
void addImp(int a, int b) { g[trad(a)].push(trad(b)); }
void addOr(int a, int b) { addImp(~a, b); addImp(~b, a); }
void addEqual(int a, int b) { addOr(a, ~b); addOr(~a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// valoracao: value[v] = comp[trad(v)] < comp[trad(~v)]</pre>
```

3.4 LCA - Lowest Common Ancestor

```
int par[ms][mlg], lvl[ms];
void dfs(int v, int p, int l = 0) {
    lvl[v] = 1;
    par[v][0] = p;
    for(int i = adj[v]; i > - 1; i = ant[i]) {
        if(to[i] != p) dfs(to[i], v, l + 1);
void processAncestors(int root = 0) {
    dfs(root, root);
    for (int k = 1; k \le mlg; k++) {
        for(int i = 0; i < n; i++) {
            par[i][k] = par[par[i][k-1]][k-1];
int lca(int a, int b) {
    if(lvl[b] > lvl[a]) swap(a, b);
    for(int i = mlg; i >= 0; i--) {
        if(lvl[a] - (1 << i) >= lvl[b]) a = par[a][i];
    if(a == b) return a;
    for(int i = mlg; i >= 0; i--) {
        if(par[a][i] != par[b][i]) a = par[a][i], b = par[b][i];
    return par[a][0];
```

3.5 Sack

```
void solve(int a, int p, bool f) {
    int big = -1;
```

```
for(auto &b : adj[a]){
        if(b != p \&\& (big == -1 || en[b]-st[b] > en[big]-st[big])){
                big = b;
for(auto &b : adj[a]){
        if(b == p || b == big) continue;
        solve(b, a, 0);
if(~big) solve(big, a, 1);
add(cnt[v[a]], -1);
cnt[v[a]]++;
add(cnt[v[a]], +1);
for(auto &b : adj[a]){
        if(b == p || b == big) continue;
        for(int i = st[b]; i < en[b]; i++) {</pre>
                add(cnt[ett[i]], -1);
                cnt[ett[i]]++;
                add(cnt[ett[i]], +1);
for(auto &q : Q[a]){
        ans[q.first] = query(mx-1)-query(q.second-1);
if(!f){
        for(int i = st[a]; i < en[a]; i++) {</pre>
               add(cnt[ett[i]], -1);
                cnt[ett[i]]--;
                add(cnt[ett[i]], +1);
```

4 Math

4.1 Discrete Logarithm

```
ll discreteLog(ll a, ll b, ll m) {
        // a^ans == b mod m
        // ou -1 se nao existir
        11 \text{ cur} = a, \text{ on } = 1;
        for (int i = 0; i < 100; i++) {
                cur = cur * a % m;
        while(on * on <= m) {</pre>
                cur = cur * a % m;
        map<11, 11> position;
        for (11 i = 0, x = 1; i * i <= m; i++) {
                 position[x] = i * on;
                 x = x * cur % m;
        for (11 i = 0; i \le on + 20; i++) {
                if(position.count(b)) {
                         return position[b] - i;
                 b = b * a % m;
        return -1;
```

4.2 GCD - Greatest Common Divisor

```
11 gcd(l1 a, l1 b) {
     while(b) a %= b, swap(a, b);
     return a;
}
```

4.3 Extended Euclides

4.4 Fast Exponentiation

4.5 Matrix Fast Exponentiation

```
const 11 mod = 1e9+7:
const int m = 2; // size of matrix
struct Matrix {
        11 mat[m][m];
        Matrix operator * (const Matrix &p) {
                Matrix ans;
                for(int i = 0; i < m; i++)</pre>
                         for(int j = 0; j < m; j++)</pre>
                                 for(int k = ans.mat[i][j] = 0; k < m; k++)</pre>
                                        ans.mat[i][j] = (ans.mat[i][j] + mat[i][k] * p.mat[k]
                                              ][i]) % mod;
                return ans;
};
Matrix fExp(Matrix a, ll b) {
        Matrix ans:
        for (int i = 0; i < m; i++) for (int j = 0; j < m; j++)
                ans.mat[i][j] = i == j;
        while(b) {
                if(b \& 1) ans = ans * a;
                 a = a * a;
                b >>= 1;
        return ans;
```

4.6 FFT - Fast Fourier Transform

~1

```
typedef complex<double> Complex:
typedef long double ld;
typedef long long 11;
const int ms = maiortamanhoderesposta * 2;
const ld pi = acosl(-1.0);
int rbit[1 << 23];</pre>
Complex a[ms], b[ms];
void calcReversedBits(int n) {
    int lq = 0;
    while (1 << (lg + 1) < n) {
        lg++;
    for (int i = 1; i < n; i++) {
        rbit[i] = (rbit[i >> 1] >> 1) | ((i & 1) << lq);
void fft(Complex a[], int n, bool inv = false) {
    for(int i = 0; i < n; i++) {
        if(rbit[i] > i) swap(a[i], a[rbit[i]]);
    double ang = inv ? -pi : pi;
    for(int m = 1; m < n; m += m) {</pre>
        Complex d(cosl(ang/m), sinl(ang/m));
        for (int i = 0; i < n; i += m+m) {
            Complex cur = 1;
            for (int j = 0; j < m; j++) {
                Complex u = a[i + j], v = a[i + j + m] * cur;
                a[i + j] = u + v;
                a[i + j + m] = u - v;
                cur *= d;
    if(inv) {
        for(int i = 0; i < n; i++) a[i] /= n;</pre>
void multiply(11 x[], 11 y[], 11 ans[], int nx, int ny, int &n) {
    n = 1:
    while (n < nx+ny) n <<= 1;
    calcReversedBits(n);
    for(int i = 0; i < n; i++) {</pre>
        a[i] = Complex(x[i]);
        b[i] = Complex(y[i]);
    fft(a, n); fft(b, n);
    for(int i = 0; i < n; i++) {</pre>
        a[i] = a[i] * b[i];
    fft(a, n, true);
    for(int i = 0; i < n; i++) {</pre>
        ans[i] = 11(a[i].real() + 0.5);
    n = nx + ny;
```

5 Geometry

5.1 Geometry

```
const double inf = 1e100, eps = 1e-9;
struct PT {
          double x, y;
          PT(double x = 0, double y = 0) : x(x), y(y) {}
          PT operator + (const PT &p) { return PT(x + p.x, y + p.y); }
          PT operator - (const PT &p) { return PT(x - p.x, y - p.y); }
```

```
PT operator * (double c) { return PT(x * c, y * c); }
        PT operator / (double c) { return PT(x / c, y / c); }
        bool operator <(const PT &p) const {
                if(fabs(x - p.x) >= eps) return x < p.x;</pre>
                return fabs(y - p.y) >= eps && y < p.y;</pre>
        bool operator == (const PT &p) const {
                return fabs(x - p.x) < eps && fabs(y - p.y) < eps;</pre>
};
double dot(PT p, PT q) { return p.x * q.x + p.y * q.y; }
double dist2(PT p, PT q) { return dot(p - q, p - q); }
double dist(PT p, PT q) {return hypot(p.x-q.x, p.y-q.y); }
double cross(PT p, PT q) { return p.x * q.y - p.y * q.x; }
// Rotaciona o ponto CCW ou CW ao redor da origem
PT rotateCCW90(PT p) { return PT(-p.y, p.x); }
PT rotateCW90(PT p) { return PT(p.y, -p.x); }
PT rotateCCW(PT p, double d) {
    return PT(p.x * cos(t) - p.y * sin(t), p.x * sin(t) + p.y * cos(t));
// Projeta ponto c na linha a - b assumindo a != b
PT projectPointLine(PT a, PT b, PT c) {
    return a + (b - a) * dot(c - a, b - a) / dot(b - a, b - a);
// Projeta ponto c no segmento a - b
PT projectPointSegment(PT a, PT b, PT c) {
    double r = dot(b - a, b - a);
    if(abs(r) < eps) return a;</pre>
    r = dot(c - a, b - a) / r;
    if(r < 0) return a;</pre>
    if(r > 1) return b;
    return a + (b - a) * r;
// Calcula distancia entre o ponto c e o segmento a - b
double distancePointSegment(PT a, PT b, PT c) {
    return sqrt(dist2(c, projectPointSegment(a, b, c)));
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz = d
double distancePointPlane(double x, double y, double z, double a, double b, double c, double
    return abs(a * x + b * y + c * z - d) / sqrt(a * a + b * b + c * c);
// Determina se as linhas a - b e c - d sao paralelas ou colineares
bool linesParallel(PT a, PT b, PT c, PT d) {
    return abs(cross(b - a, c - d)) < eps;
bool linesCollinear(PT a, PT b, PT c, PT d) {
    return linesParallel(a, b, c, d) && abs(cross(a - b, a - c)) < eps && abs(cross(c - d, c
          - a)) < eps;</pre>
// Determina se o segmento a - b intersecta com o segmento c - d
bool segmentsIntersect(PT a, PT b, PT c, PT d) {
    if(linesCollinear(a, b, c, d)) {
        if(dist2(a, c) < eps || dist2(a, d) < eps || dist2(b, c) < eps || dist2(b, d) < eps)</pre>
             return true:
        if (dot(c - a, c - b) > 0 & dot(d - a, d - b) > 0 & dot(c - b, d - b) > 0) return
             false;
        return true;
    if(cross(d - a, b - a) * cross(c - a, b - a) > 0) return false;
    if(cross(a - c, d - c) * cross(b - c, d - c) > 0) return false;
    return true;
// Calcula a intersecao entre as retas a - b e c - d assumindo que uma unica intersecao
// Para intersecao de segmentos, cheque primeiro se os segmentos se intersectam e que nao
     paralelos
PT computeLineIntersection(PT a, PT b, PT c, PT d) {
    b = b - a; d = c - d; c = c - a;
    assert (cross (b, d) != 0); // garante que as retas nao sao paralelas, remover pra evitar
```

```
t1e
    return a + b * cross(c, d) / cross(b, d);
// Calcula centro do circulo dado tres pontos
PT computeCircleCenter(PT a, PT b, PT c) {
   b = (a + b) / 2;
    c = (a + c) / 2;
   return computeLineIntersection(b, b + rotateCW90(a - b), c, c + rotateCW90(a - c));
// Determina se o ponto esta num poligno possivelmente nao-convexo
// Retorna 1 para pontos estritamente dentro, 0 para pontos estritamente fora do poligno
// e 0 ou 1 para os pontos restantes
// Eh possivel converter num teste exato usando inteiros e tomando cuidado com a divisao
// e entao usar testes exatos para checar se esta na borda do poligno
bool pointInPolygon(const vector<PT> &p, PT q) {
  bool c = 0:
  for(int i = 0; i < p.size(); i++) {</pre>
   int j = (i + 1) % p.size();
    if((p[i].y \le q.y \&\& q.y < p[j].y || p[j].y \le q.y \&\& q.y < p[i].y) \&\&
     q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
      c = !c;
  return c:
// Determina se o ponto esta na borda do poligno
bool pointOnPolygon(const vector<PT> &p, PT q) {
  for(int i = 0; i < p.size(); i++)</pre>
   if(dist2(projectPointSegment(p[i], p[(i + 1) % p.size()], q), q) < eps)</pre>
      return true:
    return false;
// Calcula intersecao da linha a - b com o circulo centrado em c com raio r > 0
vector<PT> circleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ans:
  b = b - a;
  a = a - c;
  double x = dot(b, b);
  double y = dot(a, b);
  double z = dot(a, a) - r * r;
  double w = y * y - x * z;
  if (w < -eps) return ans;</pre>
  ans.push_back(c + a + b * (-y + sqrt(w + eps)) / x);
  if (w > eps)
   ans.push_back(c + a + b \star (-y - sqrt(w)) / x);
  return ans;
// Calcula intersecao do circulo centrado em a com raio r e o centrado em b com raio R
vector<PT> circleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ans;
  double d = sqrt(dist2(a, b));
  if (d > r + R \mid \mid d + min(r, R) < max(r, R)) return ans;
  double x = (d * d - R * R + r * r)/(2 * d);
  double y = sqrt(r * r - x * x);
  PT v = (b - a) / d;
  ans.push_back(a + v * x + rotateCCW90(v) * y);
  if (y > 0)
   ans.push_back(a + v * x - RotateCCW90(v) * y);
  return ans;
// Calcula a area ou o centroide de um poligono (possivelmente nao-convexo)
// assumindo que as coordenadas estao listada em ordem horaria ou anti-horaria
// O centroide eh equivalente a o centro de massa ou centro de gravidade
double computeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
   int j = (i + 1) % p.size();
   area += p[i].x * p[j].y - p[j].x * p[i].y;
  return area / 2.0;
double computeArea(const vector<PT> &p) {
```

```
return abs(computeSignedArea(p));
PT computeCentroid(const vector<PT> &p) {
  PT c(0,0);
  double scale = 6.0 * ComputeSignedArea(p);
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i + 1) % p.size();
   c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
  return c / scale;
// Testa se o poligno listada em ordem CW ou CCW eh simples (nenhuma linha se intersecta)
bool isSimple(const vector<PT> &p) {
  for(int i = 0; i < p.size(); i++) {</pre>
    for(int k = i + 1; k < p.size(); k++) {</pre>
      int j = (i + 1) % p.size();
      int 1 = (k + 1) % p.size();
      if (i == 1 \mid | j == k) continue;
      if (segmentsIntersect(p[i], p[j], p[k], p[l]))
        return false;
  return true:
```

5.2 Convex Hull

```
vector<PT> convexHull(vector<PT> p)) {
    int n = p.size(), k = 0;
    vector<PT> h(2 * n);
    sort(p.begin(), p.end());
    for(int i = 0; i < n; i++) {
        while(k >= 2 && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0) k--;
        h[k++] = p[i];
    }
    for(int i = n - 2, t = k + 1; i >= 0; i--) {
        while(k >= t && cross(h[k - 1] - h[k - 2], p[i] - h[k - 2]) <= 0) k--;
        h(k++] = p[i];
    }
    h.resize(k);
    return h;
}</pre>
```

5.3 ClosestPair

```
double closestPair(vector<PT> p) {
   int n = p.size(), k = 0;
   sort(p.begin(), p.end());
   double d = inf;
   set*PT> ptsInv;
   for(int i = 0; i < n; i++) {
      while(k < i && p[k].x < p[i].x - d) {
            ptsInv.erase(swapCoord(p[k++]));
      }
      for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
            it != ptsInv.end() && it->x <= p[i].y + d; it++) {
            d = min(d, !(p[i] - swapCoord(*it)));
      }
      ptsInv.insert(swapCoord(p[i]));
   }
   return d;
}</pre>
```

5.4 Intersection Points

// Utiliza uma seg tree

```
int intersectionPoints(vector<pair<PT, PT>> v) {
   int n = v.size();
    vector<pair<int, int>> events, vertInt;
   for(int i = 0; i < n; i++) {
        if(v.first.x == v.second.x) { // Segmento Vertical
           int y0 = min(v.first.y, v.second.y), y1 = max(v.first.y, v.second.y);
            events.push_back({v.first.x, vertInt.size()}); // Tipo = Indice no array
            vertInt.push_back({y0, y1});
        } else { // Segmento Horizontal
           int x0 = min(v.first.x, v.second.x), x1 = max(v.first.x, v.second.x);
            events.push_back({x0, -1}); // Inicio de Segmento
            events.push_back({x1, inf}); // Final de Segmento
    sort(events.begin(), events.end());
   int ans = 0:
    for(int i = 0; i < events.size(); i++) {</pre>
        int t = events[i].second;
        if(t == -1) {
           segUpdate(events[i].first, 1);
        } else if(t == inf) {
           segUpdate(events[i].first, 0);
        } else {
           ans += segQuery(vertInt[t].first, vertInt[t].second);
    return ans;
```

6 Miscellaneous

6.1 LIS - Longest Increasing Subsequence

```
int arr[ms], lisArr[ms], n;
// int bef[ms], pos[ms];
int lis() {
   int len = 1;
    lisArr[0] = arr[0];
    // bef[0] = -1;
    for(int i = 1; i < n; i++) {</pre>
        // upper bound se non-decreasing
        int x = lower_bound(lisArr, lisArr + len, arr[i]) - lisArr;
        len = max(len, x + 1);
        lisArr[x] = arr[i];
        // pos[x] = i;
        // bef[i] = x ? pos[x-1] : -1;
    return len;
vi getLis() {
    int len = lis();
    vi ans:
    for(int i = pos[lisArr[len - 1]]; i >= 0; i = bef[i]) {
        ans.push_back(arr[i]);
    reverse(ans.begin(), ans.end());
    return ans;
```

6.2 Binary Search

```
int smallestSolution() {
   int x = -1;
   for(int b = z; b >= 1; b /= 2) {
      while(!ok(x+b)) x += b;
   }
   return x + 1;
}
```

```
int maximumValue() {
   int x = -1;
   for(int b = z; b >= 1; b /= 2) {
      while(f(x+b) < f(x+b+1)) x += b;
   }
   return x + 1;
}</pre>
```

6.3 Ternary Search

```
// R
for (int i = 0; i < LOG; i++) {
        long double m1 = (A * 2 + B) / 3.0;
        long double m2 = (A + 2 * B) / 3.0;
        if(f(m1) > f(m2))
                A = m1;
        else
                 B = m2;
ans = f(A);
// Z
while (B - A > 4) {
        int m1 = (A + B) / 2;
        int m2 = (A + B) / 2 + 1;
        if(f(m1) > f(m2))
                A = m1;
                B = m2:
ans = inf;
for(int i = A; i <= B; i++) ans = min(ans , f(i));</pre>
```

7 Teoremas e formulas uteis

Formula de Euler: V - E + F = 2 (para grafo planar)

Handshaking: Numero par de vertices tem grau impar

7.1 Grafos

```
Kirchhoff's Theorem: Monta matriz onde Mi,i = Grau[i] = Mi, j = -1 se houver aresta i-j ou 0
     caso contrario, remove uma linha e uma coluna qualquer e o numero de spanning trees
     nesse grafo eh o det da matriz
Grafo contem caminho hamiltoniano se.
Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
Ore's theorem: Se a soma dos graus que cada par nao-adjacente de vertices for pelo menos n
Tem Catalan(N) Binary trees de N vertices
Tem Catalan (N-1) Arvores enraizadas com N vertices
Caley Formula: n^(n-2) arvores em N vertices com label
Prufer code: Cada etapa voce remove a folha com menor label e o label do vizinho eh
     adicionado ao codigo ate ter 2 vertices
{\tt Max \ Edge-disjoint \ paths: \ Max \ flow \ com \ arestas \ com \ peso} \ 1
Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em um com as arestas de
     chegadas e um com as arestas de saida e uma aresta de peso 1 conectando o vertice com
     aresta de chegada com ele mesmo com arestas de saida
Koniq's Theorem: minimum node cover = maximum matching se o grafo for bipartido, complemento
     eh o maximum independent set
Min Node disjoint path cover: formar grafo bipartido de vertices duplicados, onde aresta sai
     do vertice tipo A e chega em tipo B, entao o path cover eh N - matching
Min General path cover: Mesma coisa mas colocando arestas de A pra B sempre que houver
     caminho de A pra B
Dilworth's Theorem: Min General Path cover = Max Antichain (set de vertices tal que nao
     existe caminho no grafo entre vertices desse set)
Hall's marriage: um grafo tem um matching completo do lado X se para cada subconjunto W de X,
    |W| \le |vizinhosW| onde |W| eh quantos vertices tem em W
```

7.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b onde a e b sao primos
Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos
Legendre's: sempre tem um primo entre n^2 e (n+1)^2
Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4 quadrados
Zeckendorf's: todo numero pode ser representado pela soma de dois numeros de fibonnacis
     diferentes e nao consecutivos
Euclid's: toda tripla de pitagoras primitiva pode ser gerada com
    (n^2 - m^2, 2nm, n^2+m^2) onde n, m sao coprimos e um deles eh par
Wilson's: n eh primo quando (n-1)! mod n = n - 1
Mcnugget: Para dois coprimos x, y o maior inteiro que nao pode ser escrito como ax + by eh (x
     -1) (y-1)/2
Fermat: Se p eh primo entao a(p-1) % p = 1
Se x e m tambem forem coprimos entao x^k % m = x^(k \mod (m-1)) % m
Euler's theorem: x^{(m)} = 1 mod m = 1 onde phi(m) eh o totiente de euler
Chinese remainder theorem:
Para equacoes no formato x = a1 mod m1, ..., x = an mod mn onde todos os pares m1, ..., mn
     sao coprimos
Deixe Xk = m1*m2*..*mn/mk e Xk^-1 mod mk = inverso de Xk mod mk, entao
x = somatorio com k de 1 ate n de ak*Xk*(Xk,mk^-1 mod mk)
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
C0 = 1, Cn = somatorio de <math>i=0 \rightarrow n-1 de Ci*C(n-1+1)
outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q, prob de em todo ponto ter
      mais As do que Bs antes dele = (p-q)/(p+q)
```

Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de possibilidades nos dois

```
Hockey-stick: Somatorio de i = r \rightarrow n de (i \text{ escolhe } r) = (n+1 \text{ escolhe } r+1) Vandermonde: (m+n \text{ escolhe } r) = \text{ somatorio de } k = 0 \rightarrow r de (m \text{ escolhe } k) * (n \text{ escolhe } r-k) Burnside lemma: colares diferentes nao contando rotacoes quando m = \text{ cores } e \ n = \text{ comprimento } (m^n + \text{ somatorio } i = 1 \rightarrow n-1 \text{ de } m^* \text{gcd}(i, n))/n Distribuicao uniforme a,a+1, ..., b Expected[X] = (a+b)/2 Distribuicao binomial com n tentativas de probabilidade p, X = \text{ sucessos: } p(X = x) = p^n * (1-p)^n(n-x) * (n \text{ escolhe } x) e E[X] = p*n Distribuicao geometrica onde continuamos ate ter sucesso, X = \text{ tentativas: } p(X = x) = (1-p)^n(x-1) * p e E[X] = 1/p Linearity of expectation: Tendo duas variaveis X \in Y e constantes a \in b, o valor esperado de
```

casos basta multiplicar por (p + q escolhe q)

7.3 Geometry

aX + bY = a*E[X] + b*E[X]

inscrita e eh equidistante aos lados

Formula de Euler: V - E + F = 2

Pick Theorem: Para achar pontos em coords inteiras num poligono Area = i + b/2 - 1 onde i eh o o numero de pontos dentro do poligono e b de pontos no perimetro do poligono

Two ears theorem: Todo poligono simples com mais de 3 vertices tem pelo menos 2 orelhas, vertices que podem ser removidos sem criar um crossing, remover orelhas repetidamente triangula o poligono

Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde a = lado oposto ao vertice a, incentro eh onde cruzam as bissetrizes, eh o centro da circunferencia