Logaritmo Discreto

Ronald Mas, Angel Ramirez

28 de agosto de 2020

Contenido

- Residuos Cuadráticos
- Símbolo de Legendre

El símbolo de Legendre

Residuos cuadráticos

Sean $n \in \mathbb{N}$ y $a \in \mathbb{Z}$ tal que MCD(a, n) = 1, decimos que a es un **residuo cuadrático** módulo n si existe un $x \in \mathbb{Z}$ tal que:

$$x^2 \equiv a \pmod{n}$$
,

caso contrario, decimos que a no es un residuo cuadrático módulo n.

Observación:

• Como siempre $0^2 \equiv 0 \pmod{n}$, nos interesa estudiar los residuos cuadráticos positivos.

Ejemplo:

Para calcular los residuos cuadráticos módulo 11, es necesario calcular todos los cuadrados de todos lo números menores que 11. es decir:

$$1^2 \equiv 1 \pmod{11}$$
 $6^2 \equiv 3 \pmod{11}$ $2^2 \equiv 4 \pmod{11}$ $7^2 \equiv 5 \pmod{11}$ $3^2 \equiv 9 \pmod{11}$ $8^2 \equiv 9 \pmod{11}$ $9^2 \equiv 4 \pmod{11}$ $5^2 \equiv 3 \pmod{11}$ $10^2 \equiv 1 \pmod{11}$

Por tanto, los números residuos cuadráticos módulo 11 son 1,3,4,5 y 9 y los números que no son números residuos cuadráticos módulo 7 son 2,6,7,8 y 10.

Número de residuos cuadráticos módulo n

Teorema

Si p>2 un número primo entonces en el conjunto $S=\{1,2,3\cdots,p-1\}$ existen exactamente (p-1)/2 residuos cuadráticos y (p-1)/2 no residuos cuadráticos módulo p.

Prueba:

Por el teorema de Fermat el conjunto ${\cal S}$ coincide con el conjunto de residuos positivos de los enteros:

$$a, a^2, a^3, \cdots, a^{p-1}$$
 modulo p .

Luego, la ecuación $x^2 \equiv b \pmod{p}$ posee solución si y sólo si $2 \mid ind_a(b)$. Es decir, $x^2 \equiv b \pmod{p}$ posee solución si y sólo si

$$b \equiv a^{2j} \, (mod \, p)$$

para algún $j=1,2,\cdots,(p-1)/2$. Por lo tanto existen exactamente (p-1)/2 residuos cuadráticos, dejando (p-1)/2 no residuos cuadráticos en S.

Símbolo de Legendre

Sean $c \in \mathbb{Z}$ y p > 2 un número primo, entonces:

$$\left(\frac{c}{p}\right) = \left\{ \begin{array}{ll} 0 & \textit{si} & \textit{p} \mid c \\ \\ 1 & \textit{si} & \textit{c} \text{ es un residuo cuadrático módulo } p \\ \\ -1 & \textit{si} & \text{cumple otros casos} \end{array} \right.$$

y $\left(\frac{c}{p}\right)$ es llamado el **símbolo de Legendre** de c con respecto a p.

Ejemplo:

Del ejemplo anterior se tiene que:

$$\left(\frac{1}{11}\right) = \left(\frac{3}{11}\right) = \left(\frac{4}{11}\right) = \left(\frac{5}{11}\right) = \left(\frac{9}{11}\right) = 1 \text{ y}$$

$$\left(\frac{2}{11}\right) = \left(\frac{6}{11}\right) = \left(\frac{7}{11}\right) = \left(\frac{8}{11}\right) = \left(\frac{10}{11}\right) = -1$$

Teorema (Criterio de Euler para residuos cuadráticos)

Si p > 2 es un número primo, entonces

$$\left(\frac{c}{p}\right) \equiv c^{(p-1)/2} \pmod{p}.$$

Teorema

Sea p un número primo impar, definamos $s_1=4$ y recursivamente para $i\geq 2,\ s_i=s_{i-1}^2-2.$ Entonces $M_p=2^p-1$ es un número primo si y sólo si

$$s_{p-1} \equiv 0 \pmod{M_p}$$
.

Teorema

Si p > 2 es un número primo y $b, c \in \mathbb{Z}$, entonces:

- 1) Si $b \equiv c \pmod{p}$ entonces $\left(\frac{b}{p}\right) = \left(\frac{c}{p}\right)$.
- 2) $\left(\frac{b}{p}\right)\left(\frac{c}{p}\right) = \left(\frac{bc}{p}\right)$.
- 3) $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$.

Prueba:

2) Usando el Criterio de Euler para residuos cuadráticos se tiene:

Ejemplo: Como $-3 \equiv 11 \pmod{7}$ se tiene que:

$$\left(\frac{-3}{7}\right) = \left(\frac{11}{7}\right) = 1.$$

Lema (Lema de Gauss para residuos cuadráticos)

Sea p > 2 un número primo y $c \in \mathbb{Z}$ con MCD(c, p) = 1. Sea el conjunto R conformado por los residuos positivos r_i tal que $r_i \equiv ic \pmod{p}$ con $i = 1, 2, \cdots, (p-1)/2$ y $S = \{r_i \in R : r_i > p/2\}$, con |S| = s se tiene que:

$$\left(\frac{c}{p}\right)=(-1)^{s}.$$

Ejemplo:

Para c = 3 y p = 11, se debe hallar los residuos $r_i \equiv 3i \pmod{11}$ con i = 1, 2, 3, 4, 5. Al resolver se tiene que:

$$r_1 = 3$$
, $r_2 = 6$, $r_3 = 9$, $r_4 = 1$ y $r_5 = 4$.

Luego $S = \{6, 9\}$, por ello s = |S| = 2, por lo tanto

$$\left(\frac{3}{11}\right) = (-1)^2 = 1.$$

Teorema

Para todo número primo p > 2 se cumple:

$$\left(\frac{2}{p}\right) \equiv (-1)^{(p^2-1)/8} \pmod{p}.$$

Corolario

Si p es un número primo impar, entonces

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{si} \quad p \equiv \pm 1 \pmod{8} \\ -1 & \text{si} \quad p \equiv \pm 3 \pmod{8} \end{cases}$$

Prueba:

Si $p \equiv \pm 1 \pmod{8}$ entonces $p^2 \equiv 1 \pmod{16}$ entonces $p^2 - 1 = 16k$ para algún $k \in \mathbb{N}$, luego por el teorema anterior se tiene que:

$$\left(\frac{2}{p}\right) \equiv (-1)^{2k} \pmod{p} \longrightarrow \left(\frac{2}{p}\right) = 1.$$

Ejemplo:

Usando el teorema anterior se puede concluir que:

$$\left(\frac{2}{11}\right) \equiv (-1)^{(11^2-1)/8} \equiv -1 \pmod{11}$$

$$\left(\frac{2}{7}\right) \equiv (-1)^{(7^2-1)/8} \equiv 1 \pmod{7}$$

$$\left(\frac{2}{13}\right) \equiv (-1)^{(13^2-1)/8} \equiv -1 \pmod{13}$$

$$\left(\frac{2}{17}\right) \equiv (-1)^{(17^2-1)/8} \equiv -1 \pmod{17}$$

Ley de Reciprocidad cuadrática

Teorema (Ley de Reciprocidad cuadrática)

Si $p \neq q$ son primos impares entonces

$$\left(rac{p}{q}
ight)\left(rac{q}{p}
ight)=(-1)^{rac{p-1}{2}\cdotrac{q-1}{2}}$$

Ejemplo:

Para p = 7 y q = 101 se tiene por reciprocidad cuadrática que:

$$\left(\frac{7}{101}\right)\left(\frac{101}{7}\right) = (-1)^{3.50} = 1.$$