北京邮电大学《矩阵分析与应用》

2006-2007学年期末考试试题

注意: 每题十分, 按中间过程给分, 只有最终结果无过程的不给分

一、求 R^4 的子空间

$$V_1 = \{ (\xi_1, \xi_2, \xi_3, \xi_4) | \xi_1 - \xi_2 + \xi_3 - \xi_4 = 0 \}$$

$$V_2 = \{ (\xi_1, \xi_2, \xi_3, \xi_4) | \xi_1 + \xi_2 + \xi_3 + \xi_4 = 0 \}$$

的交的标准正交基

二、设y是欧式空间V中的单位向量, $x \in V$,证明变换Tx = x - 2(y,x)y是正交变换。

三、求矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
的 $\| \bullet \|_{1}$, $\| \bullet \|_{2}$, $\| \bullet \|_{\infty}$, $\| \bullet \|_{m_{1}}$, $\| \bullet \|_{m_{2}}$ 范数

四、设 $\mathbf{x} = (\xi_1, \xi_2, \dots, \xi_n)^T$, $\mathbf{A} = (a_{ij})$ 是n阶对称方阵, $\mathbf{b} = (\beta_1, \beta_2, \dots, \beta_n)^T$ 是n维向量,c为常数,试求 $f(\mathbf{x}) = \left\| \mathbf{A}\mathbf{x} - \mathbf{b} \right\|_2^2 + c$,对于 \mathbf{x} 的导数

五、设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \,\, \mathbf{x}e^{\mathbf{A}}, e^{\mathbf{B}}, e^{\mathbf{A} + \mathbf{B}}.$$

六、己知矩阵 $A_{n \times m}$ 请用奇异值($\bar{S}VD$)分解求A的伪逆,并证明之

七、设 $x = (\xi_1, \xi_2, \dots, \xi_n), y = (\eta_1, \eta_2, \dots, \eta_n)$ 是 \mathbf{R}^n 的任意两个向量, $\mathbf{A} = (a_{ij})_{n \times m}$ 正定, $\diamondsuit(x,y) = xAy^T$

(1)证明在该定义下, \mathbb{R}^n 形成了欧式空间;

(2)求 \mathbf{R}^n 对单位向量 $\mathbf{e_1} = (1,0,\ldots,0), \mathbf{e_1} = (0,1,\ldots,0),\ldots,\mathbf{e_n} = (0,0,\ldots,1)$ 的度量矩阵

八、已知矩阵
$$A_{n\times m} \neq O$$
,且伪逆 A^+ 已知,记 $B = \begin{vmatrix} A \\ A \end{vmatrix}$,求 B^+ ,并验证。

九、已知函数矩阵 $\mathbf{A}(x) = \begin{bmatrix} 1 & x^2 \\ x & 0 \end{bmatrix}$,试计算:

$$(1)\frac{d}{dx}\mathbf{A}(x), \frac{d^2}{dx^2}\mathbf{A}(x), \frac{d^3}{dx^3}\mathbf{A}(x)$$

$$(2)\frac{d}{dx}|\mathbf{A}(x)|$$

$$(3)\frac{d}{dx}\mathbf{A}^{-1}(x)$$

$$(3)\frac{d}{dx}\mathbf{A}^{-1}(x)$$

十、设矩阵 $\mathbf{A} = (a_{ij})_{n \times n} \in \mathbf{C}^{n \times n}, \mathbf{x} = (\xi_1, \xi_2, \dots, \xi_n)^T \in \mathbf{C}^n$, 证明:

- (1)方阵的 m_{∞} -范数与向量的1-范数相容;
- (2)方阵的F-范数与向量的2-范数相容。