-	Matrices in biology/genetics:		
	offspring having - for example - a certain eye colour		
	offspring having - for extraple a contain of		
52-12	from different combinations of genetype.		
	A = brown eyes A = brown eyes the A allele is dominant		
1 12			
	As and As As and as AA and Aa		
	The diaria		
	A AA AA AA AA AA AA		
-0-	a Aa aa aa aa Aa Aa Aa		
-			
180. 11.11	Pavents genotype: offspring genotypes:		
	Aa AA aa 12 14 14		
	A and Ma		
	ra and da		
	AA and Aa 1/2 1/2 0		
	Then can form a matrix:		
	Aa AA aa		
	/2 1/4 1/4 Aa and Aa		
0	$A = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix} \xrightarrow{Aa \text{ and } Aa} AA$ $1/2 & 1/2 & 0 & AA \text{ and } Aa$		
	$/2$ $/2$ $0/\longrightarrow AA$ and Aa		
A			
	each ROW of the matrix represents a combination of the		
	parents generypes, Here, 3 combinations have been used		
	au including As.		
	each column of the matrix then represents the possible		
	offspring genotypes; Aa, aa, AA		
	erspring generales)		
,	Next use and met the apprehation distribution the service of		
	Next you find out the population distribution; how much of		
	each genotype is present in the population. If they were equal		
	distributed, then the initial distribution vector would be;		
	$\vec{\alpha}_{\rm o} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$		

	distribution of genetypes one year later would be;
	$ \vec{X}_0 \times A = \begin{pmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} (\text{multiplication by a column matrix}) $
	$= \begin{vmatrix} \frac{1}{3}x\frac{1}{2} + \frac{1}{3}x\frac{1}{4} + \frac{1}{3}x\frac{1}{4} \\ \frac{1}{3}x\frac{1}{2} + \frac{1}{3}x\frac{1}{4} + \frac{1}{3}x\frac{1}{2} \end{vmatrix} = A\overrightarrow{Z}_0 = \frac{\frac{1}{3}(\frac{1}{2} + \frac{1}{4} + \frac{1}{2})}{\frac{1}{3}(\frac{1}{2} + \frac{1}{2})}$ $= \frac{1}{3}x\frac{1}{2} + \frac{1}{3}x\frac{1}$
	one generype, AA, because it has 2 dominant alleles.
[2]	Linus to further use of a 'tritybrid cross' of 3 traits. This is an 8x8 matrix or punnett square. The 8x8 tritybrid cross matrix gives the same result as 3 punnet squares of mononybrid cross for the same 3 traits. (maternal + paternal gametes used for each trait.) - dyadic-shift decomposition can turn an 8x8 punnet of square into an 8x8 spaise matrix (which contains very few non-zero elements)
	Theres also the well-known 8x8 genomatrix which contains all 64 triplets of the bases A,T,C,G that code for 20 amino acids and Stop Sequences.
	https://appricationanthologysib.wordpress.com/2016/02/13/matrices-genetics/ SergeyV.Petoukhov, Neuroquantology, 9, 799-803, 2011.