Laboratorium z Metod Numerycznych Sprawozdanie

Autor Łukasz Gut - WFiIS, Informatyka Stosowana, Rok 2. 4 czerwca 2019

Laboratorium nr 11 - Odszumianie sygnału przy użyciu FFT

Cel laboratorium

Celem jedenastego laboratorium było napisanie programu zdolnego do odszumiania sygnału periodycznego przy użyciu szybkiej transformacji Fouriera.

Wstęp teoretyczny

<u>Szybka transformacja Fouriera (FFT)</u> - algorytm wyznaczania dyskretnej transformaty Fouriera oraz transformaty do niej odwrotnej. Niech x_0, \ldots, x_{N-1} będą liczbami zespolonymi, wtedy dyskretna transformata Fouriera określona jest wzorem:

$$X_K = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}nk}$$
, dla $k = 0, ..., N-1$

Obliczanie powyższej sumy wymaga wykonania $O(N^2)$ operacji. Istnieją jednak pewne algorytmy, które pozwalają wyznaczyć transformatę duży szybciej. Najpopularniejszym z nich jest algorytm J. W. Cooleya i J. Tukeya o nazwie radix 2. Pozwala on wyrazić dyskretną transformację Fouriera rekurencyjnie w czasie O(NlogN).

 $Radix\ 2$ - najprostsza i najpowszechniej stosowana forma algorytmu Cooleya-Tukeya. Polega na podzieleniu dyskretnej transformacji Fouriera na dwie przeplatane wzajemnie DFT, każda o rozmiarach $\frac{N}{2}$. Dzieje się to na każdym etapie rekurencyjnym. Dzięki temu można dojść do złożoności obliczeniowej rzędu O(NlogN). Pomysł ten, choć genialny, zakłada, że N jest potęgą dwójki. Bardzo często w momencie, kiedy mamy niewystarczającą/zbyt dużą liczbę węzłów, ale zbliżoną do potęgi dwójki, to węzły się dodaje/obcina, ponieważ zazwyczaj nie wpływa to znacząco na efekt, który chcemy uzyskać.

<u>Odszumianie sygnału</u> - proces, w którym zaszumiony w jakiś sposób sygnał "wygładzamy". Istnieje wiele metod odszumiania. Na jedenastym laboratorium wykorzystaliśmy do tego celu operację splotu.

<u>Splot</u> - działanie określone dla dwóch funkcji (w naszym przypadku funkcją są sygnały), dające w wyniku inną funkcję. Splot definiujemy następująco:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

Jeśli funkcję f potraktujemy jako sygnał, zaś funkcję g jako funkcję wagową, to splot obu tych funkcji możemy potraktować jako "uśrednienie" funkcji f pewną ustaloną funkcją wagową g. Taki zabieg pozwala oraz poniżej wypisana ciekawa zależność pozwalają nam wygładzić zaszumiony sygnał w bardzo łatwy sposób. Zależnością tą jest fakt, iż transformacja Fouriera ze splotu funkcji daje w wyniku iloczyn transformat tych funkcji.

$$FFT\{(f * g)(t)\} = FFT\{f\} * FFT\{g\} = F * G$$

 $(f * g)(t) = FFT^{-1}\{F * G\}$

Problem

Problemem, z którym przyszło nam się zmierzyć na jedenastym laboratorium był problem odszumiania sygnału zadanego funkcją:

$$f(t) = sin(1 * wt) + sin(2 * wt) + sin(3 * wt) + \Delta,$$
gdzie: $w = \frac{2\pi}{T} - pulsacja$, $T - okres$, $\Delta - liczba$ pseudolosowa z zakresu $[-\frac{1}{2}, \frac{1}{2}]$.

Jako funkcję wagową przyjęliśmy funkcję gaussowską:

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}}exp(-\frac{t^2}{2\sigma^2})$$

Wyniki Poniżej przedstawiam wyniki działania programu.

Wykres 1. Niezaburzona funkcja, $\ liczba \ węzłów \ N=2^8$

Wykres 2. Niezaburzona funkcja, liczba węzłów $N=2^{10}$

Wykres 3. Niezaburzona funkcja, liczba węzłów $N=2^{12}$

Na powyższych wykresach widzimy, że odszumianie funkcji, która nie jest zaszumiona w rezultacie daje nieco inną funkcję. Różnice widoczne są głównie w okolicy ekstremów, których harmoniczne małą mniejszy wkład w ogół funkcji.

Wykres 4. Zaburzona funkcja, liczba węzłów $N=2^8$

Wykres 5. Zaburzona funkcja, liczba węzłów $N=2^{10}$

Wykres 6. Zaburzona funkcja, liczba węzłów $N=2^{12}$

W przypadku funkcji zaszumionej, widzimy, że po zastosowaniu splotu sygnał został odszumiony. Jak się można było spodziewać, na odszumionym sygnale widać czasami pewne niedoskonałości w formie ostrych krawędzi, jednak w ogólności efekt jest zadowalający.

Wnioski

Wykorzystanie FFT w połączeniu ze splotem funkcji to bardzo prosta w implementacji i dobrze działająca metoda odszumiania sygnału.