§ 2.4 数据选择器与分配器

分析:

小规模(SSI)--函数表达式;

中规模(MSI) --掌握整个芯片的逻辑功能(外部特性)。

设计:

小规模——通过函数化简,使电路使用的门最少;

中规模——正确使用芯片,充分发挥其逻辑功能。

一、 数据选择器 (MUX--Multiplexer) (多路开关)

1. 结构和功能

1) 使能端: (片选)

E: 用于扩展芯片容量

2) 输入端: A为地址控制端、D为数据输入端,

输出端: F

Е	A_1	A_0	F
1	X	X	0
0	0	0	D_0
0	0	1	D_1
0	1	0	D_2
0	1	1	D_3

$$F = \overline{A}_{1} \overline{A}_{0} D_{0} + \overline{A}_{1} A_{0} D_{1} + A_{1} \overline{A}_{0} D_{2} + A_{1} A_{0} D_{3}$$

2. 芯片介绍

1) 74LS153 (双四选一)

74LS153 功能表

使能輸入 E	0.00	输入 A ₀	数据输入 D ₃ ~D ₀	输出 Z
1	ф	φ	þ	0
0	0	0	$D_3 \sim D_0$	$\mathbf{D_o}$
0	0	1	$D_3 \sim D_0$	$\mathbf{D_1}$
0	1	0	$D_3 \sim D_0$	$\mathbf{D}_{\mathbf{z}}$
0	1	1	$D_3 \sim D_0$	D_3

$$ZA = \overline{A}_{1}\overline{A}_{0}D_{0A} + \overline{A}_{1}A_{0}D_{1A} + A_{1}\overline{A}_{0}D_{2A} + A_{1}A_{0}D_{3A}$$

$$ZB = \overline{A}_{1}\overline{A}_{0}D_{0B} + \overline{A}_{1}A_{0}D_{1B} + A_{1}\overline{A}_{0}D_{2B} + A_{1}A_{0}D_{3B}$$

2) 74LS151 (八选一)

 $Y = \overline{A}_2 \overline{A}_1 \overline{A}_0 D_0 + \overline{A}_2 \overline{A}_1 A_0 D_1 + \dots + A_2 A_1 A_0 D_7$

功能表

输入			住能	新	诎
$\mathbf{A_2}$	$\mathbf{A_1}$	$\mathbf{A_0}$	E	Y	Ŧ
X	X	X	1	0	1
0	0	0	0	D_0	$\overline{\mathbb{D}}_0$
0	0	1	0	D_1	$\overline{\mathbb{D}}_1$
0	1	0	0	D_2	$\bar{\mathbb{D}}_2$
0	1	1	0	D_3	Ē₂ Ē8
1	0	0	0	D_4	$\overline{\mathbb{D}}_4$
1	0	1	0	D_5	$\overline{\mathbb{D}}_5$
1	1	0	0	D_{δ}	$\overline{\mathbb{D}}_{\!\delta}$
1	1	1	0	D_7	$\overline{\mathbb{D}}_7$

3) 容量扩展:

用8选1(74LS151)的数据选择器构成16选1的数据选择器

解: 真值表

 A_3	A_2	A_1	A_0	F	
 0	0	0	0	D0	
 0	0	0	1	D1	
 0	0	1	0	D2	
0	0	1	1	D3	
0	1	0	0	D4	
 0	1	0	1	D5	
0	1	1	0	D6	
0	1	1	1	D7	
 1	0	0	0	D8	
 1	0	0	1	D9	
1	0	1	0	D10	
1	0	1	1	D11	
1	1	0	0	D12	
1	1	0	1	D13	
1	1	1	0	D14	
1	1	1	1	D15	

A₃=0时:

第1片工作,第2片禁止

A₃=1时:

第1片禁止, 第2片工作

输出:

或门

3. 数据选择器的应用

1) 实现组合逻辑:

(1)分析组合逻辑:(代数法)

步骤:

将图中信号代入选择器输出方程

$$F = \overline{A_1} \overline{A_0} D_0 + \overline{A_1} A_0 D_1 + A_1 \overline{A_0} D_2 + A_1 A_0 D_3$$

写真值表

$$F = \overline{A}BC + A\overline{B}C + AB$$

A B C	F
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
1 0 0	0
1 0 1	1
1 1 0	1
1 1 1	1

三变量多数表决器

$$Si = \bar{A}\bar{B}C + \bar{A}B\bar{C} + A\bar{B}\bar{C} + ABC$$

$$Ci = \bar{A}BC + A\bar{B}C + AB$$

输入	输出
AB C	Ci Si
0 0 0	0 0
0 0 1	0 1
0 1 0	0 1
0 1 1	1 0
1 0 0	0 1
1 0 1	1 0
1 1 0	1 0
1 1 1	1 1

结论:本电路为一位全加器

(2) 实现组合逻辑: (卡诺图法)

实现多输入,单输出的组合逻辑。

步骤:

(i) 画卡诺图, 选定地址变量;

(ii) 在卡诺图上确定地址变量的控制范围(输入数据区);

(iii) 在数据区确定每一个数据输入的连接。

例:用74LS153(双四选一)的数据选择器实现逻辑函数:

F (A,B,C,D)= \sum m (0, 1, 5, 6, 7, 9, 10, 14, 15)

解:地址为AB, CD在数据输入端。

只能在地址控制区内化简

$$D_0 = \overline{C}$$
 $D_1 = C + D$ $D_2 = C \oplus D$ $D_3 = C$

用74LS151(八选一)的数据选择器实现逻辑函数

$$D_0 = 1$$
 $D_1 = 0$ $D_2 = D$ $D_3 = 1$ $D_4 = D$ $D_5 = \overline{D}$ $D_6 = 0$ $D_7 = 1$

D0=1, D1=0, D2=D, D3=1, D4=D, D5=D, D6=0, D7=1

用 74153 双 4 路 选 择 器 实 现 4 变 量 多 输 出 函 数。 $F_1(A, B, C, D) = \sum m(0, 1, 5, 7, 10, 13, 15)$

$$F_2(A, B, C, D) = \sum m(8, 10, 12, 13, 15)$$

$$F_3(A, B, C, D) = \sum m(1, 3, 6)$$

$$F_4(A, B, C, D) = \sum m(4, 6, 8, 9, 10, 11)$$

解: 选AB作为地址输入

$$D_{10} = \overline{C}$$
 $D_{11} = D$ $D_{12} = C\overline{D}$ $D_{13} = D$ $D_{20} = 0$ $D_{21} = 0$ $D_{22} = \overline{D}$ $D_{23} = \overline{C} + D$

$$D_{10} = D$$
 $D_{11} = CD$ $D_{12} = 0$ $D_{13} = 0$
$$D_{20} = 0$$
 $D_{21} = \overline{D}$ $D_{22} = 1$ $D_{13} = 0$

3) 序列信号发生器:

重复产生序列码10100110,

- 并行数据转换为串行数据;
- 多路信号的分时传送。

数据选择器的特点:

- (1) 有使能输入
- (2) 地址线公用
- (3) 原码输出
 - (4) 可执行并行到串行的输出转换
- (5) 可用作多输入,单输出的函数发生器。

◆ 数据选择器种类:

74XX157

双4to 1

· 4 to 1 MUX:

· 2 to 1 MUX:

74XX153

74XX253

· 8 to 1 MUX:

74XX151

具有三态输 出,可直接 挂总线。

· 16 to 1 MUX:

74XX150

用一片74LS153连接实现八选一

二、数据分配器: (DEMUX)

1. 结构和功能:

将一路数据分配到多路装置中,由地址输入决定输出通路。

1) 输入线:

E: 使能端, E=1时, 芯片工

作, E=0时, 输出全为1;

A: 地址输入端。

D: 数据输入端

2) 输出线: F

输 入		输出
地址	使能	
$\overline{A_1A_0}$	Е	$F_0 F_1 F_2 F_3$
XX	0	1 1 1 1
0 0	1	D 1 1 1
0 1	1	1 D 1 1
1 0	1	1 1 D 1
11	1	1 1 1 D

例: 用四路数据分配器构成八路分配器

2. 应用:

1) 数据分配:

2)多路信号分时传送

Time Division Multiplexing (TDM) (时分复用)

