Модели бинарного выбора

27 января 2025

Покажем, что такое линейная вероятностная модель (linear probability model)

Покажем, что такое линейная вероятностная модель (linear probability model)

Ответ

Это результат оценивания классической линейной регрессии применительно к случаю бинарного отклика:

 $y_i = \beta_0 + \beta x_i + e_i$, где y_i принимает только два значения, где, к примеру, 1 – приняли рукопись к публикации, 0 – в противном случае.

Покажем, что такое линейная вероятностная модель (linear probability model)

Ответ

Это результат оценивания классической линейной регрессии применительно к случаю бинарного отклика:

 $y_i = \beta_0 + \beta x_i + e_i$, где y_i принимает только два значения, где, к примеру, 1 – приняли рукопись к публикации, 0 – в противном случае.

В этом случае предсказанное значение отклика $(\hat{y_i})$ – это вероятность того, что Y принимает значение 1:

$$E(y_i|x_i) = 1 \times P(y_i = 1|x_i) + 0 \times P(y_i = 0|x_i) = P(y_i = 1|x_i)$$

В чем основные ограничения линейной вероятностной модели?

В чем основные ограничения линейной вероятностной модели?

Ответ

• Предсказанные значения отклика выходят за допустимые границы, может быть меньше 0 или больше 1

В чем основные ограничения линейной вероятностной модели?

- Предсказанные значения отклика выходят за допустимые границы, может быть меньше 0 или больше 1
- Содержательно не всегда правдоподобной является линейная взаимосвязь вероятности «успеха» и объясняющей переменной

Рассмотрим альтернативу. В чем суть подхода, основанного на латентной зависимой переменной?

Рассмотрим альтернативу. В чем суть подхода, основанного на латентной зависимой переменной?

Ответ

Мы допускаем, что существует некоторая ненаблюдаемая переменная y_i^* , принимающая любые значения $(-\infty; +\infty)$

Условно ее можно интерпретировать как склонность к «успеху» (склонность к тому, что наблюдаемый $y_i=1$)

На основе значений y_i^* определяются значения исходного y_i . Если $y_i^* > 0$, то $y_i = 1$

Daria Salnikova

Если $y_i^* < 0$, то $y_i = 0$

Запишем спецификацию модели с y_i^* в качестве отклика. Какие допущения делаем об ошибках?

Запишем спецификацию модели с y_i^* в качестве отклика. Какие допущения делаем об ошибках?

Ответ

Важно, что латентная зависимая переменная линейным образом связана с объясняющими переменными:

$$y_i^* = \beta_0 + \beta x_i + e_i$$

Так как отклик ненаблюдаемый, нам нужны допущения о распределении ошибок:

- $e \sim N(0,1)$ (probit-model)
- $m{2}$ стандартное логистическое распределение $e \approx N(0, 3.29)$ (logit-model). $F(e) = \frac{exp(e)}{1 + exp(e)}$

Графики функций плотности

Графики функций распределения

Panel B: cdf's for logistic and normal distributions

Покажем, что $P(y_i = 1) = F(\beta_0 + \beta x_i)$, где F – функция распределения.

Покажем, что $P(y_i = 1) = F(\beta_0 + \beta x_i)$, где F – функция распределения.

$$P(y_i = 1) =$$

Покажем, что $P(y_i = 1) = F(\beta_0 + \beta x_i)$, где F – функция распределения.

$$P(y_i = 1) = P(y_i^* > 0) =$$

Покажем, что $P(y_i = 1) = F(\beta_0 + \beta x_i)$, где F – функция распределения.

$$P(y_i = 1) = P(y_i^* > 0) = P(\beta_0 + \beta x_i + e_i > 0) =$$

Покажем, что $P(y_i = 1) = F(\beta_0 + \beta x_i)$, где F – функция распределения.

Ответ

 $P(y_i = 1) = P(y_i^* > 0) = P(\beta_0 + \beta x_i + e_i > 0) = P(e_i \le \beta_0 + \beta x_i),$ а функция распределения – это и есть вероятность того, что сл. величина не превышает указанное значение.

К примеру, для логит-модели:

$$P(y_i = 1) = F(\beta_0 + \beta x_i) = \frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)}$$

8/11

Зависимость P(Y = 1) от X ...

...в результате той самой ползущей «улитки»

Ответ

• Перейдем от $P(y_i = 1)$ к шансам $\frac{P(y_i = 1)}{1 - P(y_i = 1)}$

- Перейдем от $P(y_i = 1)$ к шансам $\frac{P(y_i = 1)}{1 P(y_i = 1)}$
- $oldsymbol{2}$ Запишем $P(y_i=1)$ как функцию распределения:

$$\frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)} = exp(\beta_0 + \beta x_i)$$
$$1 - \frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)}$$

Ответ

- Перейдем от $P(y_i = 1)$ к шансам $\frac{P(y_i = 1)}{1 P(y_i = 1)}$
- $oldsymbol{2}$ Запишем $P(y_i=1)$ как функцию распределения:

$$\frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)} = exp(\beta_0 + \beta x_i)$$
$$1 - \frac{exp(\beta_0 + \beta x_i)}{1 + exp(\beta_0 + \beta x_i)}$$

 $\ln\left(\frac{P(y_i=1)}{1-P(y_i=1)}\right) = \beta_0 + \beta x_i$ (логит линейным образом связан с объясняющими переменными)