

Art of Problem Solving

1986 Balkan MO

Balkan MO 1986

1	A line passing through the incenter I of the triangle ABC intersect its incircle at D and E and its circumcircle at F and G , in such a way that the point D lies between I and F . Prove that: $DF \cdot EG \ge r^2$.
2	Let $ABCD$ be a tetrahedron and let E, F, G, H, K, L be points lying on the edges AB, BC, CD , DA, DB, DC respectively, in such a way that $AE \cdot BE = BF \cdot CF = CG \cdot AG = DH \cdot AH = DK \cdot BK = DL \cdot CL.$
	Prove that the points E, F, G, H, K, L all lie on a sphere.
3	Let a,b,c be real numbers such that $ab \neq 0$ and $c > 0$. Let $(a_n)_{n \geq 1}$ be the sequence of real numbers defined by: $a_1 = a, a_2 = b$ and $a_{n+1} = \frac{a_n^2 + c}{a_{n-1}}$

for all $n \geq 2$.

Show that all the terms of the sequence are integer numbers if and only if the numbers a,b and $\frac{a^2+b^2+c}{ab}$ are integers.

4 Let ABC a triangle and P a point such that the triangles PAB, PBC, PCA have the same area and the same perimeter. Prove that if:

- a) P is in the interior of the triangle ABC then ABC is equilateral.
- b) P is in the exterior of the triangle ABC then ABC is right angled triangle.