

Understanding Lower Critical Solution Temperature (LCST) Ionic Liquid (IL) Behavior via Molecular Simulation

Shehan Parmar and Jesse McDaniel

Georgia Tech.

GaTech, School of Chemistry & Biochemistry

Motivation

- Advancement in water desalination technologies require...
- Energy-efficient separation (cf. $\Delta H_{vap} \sim 630 \text{ kWh}_{th}/\text{m}^3 \text{ for}$ evaporative desalination)
- Minimal operational cost Low carbon footprint

Water for Energy

Thermally Responsive ILs:

A. Haddad, et al. Environmental Science & Technology 2021 55 (5), 3260-3269

Phys. Chem. Chem. Phys., 2012,14, 5063-5070

Universal design principles of LCST ILs are unknown.

Objective

Understand fundamental mechanisms that drive LCST behavior in IL/H₂O mixtures.

Hypothesis and Approach

High-throughput molecular dynamics (HTMD) workflow enables ~1000s of IL simulations.

pymatgen atomate* **Emmet Materials Project Software Stack**

Results

12 ionic liquids, 10 concentrations, 4 temperatures

 $[P_{4444}][TMBS]$

Cation-anion RDFs indicate that at increased H₂O concentrations, water hydrogen bonding dominates in LCST systems.

 $\Delta \mu_{ex}$ distribution generated via thermodynamic integration indicates microenvironment structure governs phase separation.

Future Work

- Investigate entropic contributions via thermodynamic integration.
- (2) Use graph neural networks for inverse design optimization space.

Acknowledgements

Prof. Akansha Menon Jordan Kocher Ahmed Mahfouz

