

Artificial Intelligence

Neural Network

Artificial Neural Network Learning

• How does a perceptron learn the appropriate weights?

Example

x1	x2	х3	w14	w15	w24	w25	w34	w35	w46	w56	b4	b5	b6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Example

Feed-Forward

$$y_{4} = (1 i w_{14} + \chi_{2} w_{24} + \chi_{3}, w_{34}) + b_{4}$$

 $= 1.6 - 2 + 0.0.4 + 1.(-0.5) + (-0.4)$
 $y_{4} = 6(-0.7) = 70.332$

45 = 11.015 + 12.0125 + 13.0135 + 105 = 10.1 46 = 41.0100 + 10.5 = 0.524 46 = 41.0100 + 10.5

Backpropagation

- Error = $\frac{1}{2}$ (Target output)² =>**Squared Error Function**
- Derivate of Squared Error Function= (Target output)

- Sigmoid Function: σ
- Derivate of Sigmoid Function: σ (1- σ)

Backpropagation

- Error = ½ (Target output)² =>**Squared Error Function**
- Derivate of Squared Error Function= (Target output)
- Sigmoid Function: σ
- Derivate of Sigmoid Function: σ (1- σ)

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right]$$

$$= \frac{d}{dx} (1+e^{-x})^{-1}$$

$$= -(1+e^{-x})^{-2} (-e^{-x})$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}} \cdot \frac{(1+e^{-x})-1}{1+e^{-x}}$$

$$= \frac{1}{1+e^{-x}}$$

$$\cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}} \right)$$

$$= \frac{1}{1+e^{-x}} \cdot \left(1 - \frac{1}{1+e^{-x}} \right)$$

$$= \sigma(x) \cdot (1-\sigma(x))$$

Review: Partial Derivate Example

Rule	f(x)	respect to x	Example
Constant	С	0	$\frac{d}{dx}99 = 0$
Multiplication by constant	cf	$C\frac{df}{dx}$	$\frac{d}{dx}3x = 3$
Power Rule	χ^n	nx^{n-1}	$\frac{d}{dx}x^3 = 3x^2$
Sum Rule	f + g	$\frac{df}{dx} + \frac{dg}{dx}$	$\frac{d}{dx}(x^2+3x)=2x+3$
Difference Rule	f-g	$\frac{df}{dx} - \frac{dg}{dx}$	$\frac{d}{dx}(x^2 - 3x) = 2x - 3$
Product Rule	fg	$f\frac{dg}{dx} + \frac{df}{dx}g$	$\frac{d}{dx}x^2x = x^2 + x2x = 3x^2$
Chain Rule	f(g(x))	$\frac{df(u)}{du}\frac{du}{dx}$, let $u=g(x)$	$\frac{d}{dx}ln(x^2) = \frac{1}{x^2}2x = \frac{2}{x}$

Scalar derivative notation with

Review: Chain-Rule

• Univariate Chain Rule

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

• Multivariate Chain Rule

$$\frac{\partial g}{\partial x} = \sum \frac{\partial g}{\partial f_i} \frac{\partial f_i}{\partial x}$$

Output layer

$Err_j = O_j(1 - O_j)(T_j - O_j)$

Compute Gradient

Hidden layer

Error at unit
$$6 = \sigma(1 - \sigma)(T - \hat{y}_6)$$

Error at unit 6=
$$\hat{y}_6$$
 $(1 - \hat{y}_6)(1 - \hat{y}_6)$

Err at unit
$$5 = \frac{\partial E}{\partial \hat{y}_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial y_6}{\partial \hat{y}_5} \cdot \frac{\partial y_6}{\partial \hat{y}_5} \cdot \frac{\partial \hat{y}_5}{\partial y_5} = Err \text{ at unit } 4 = \frac{\partial E}{\partial \hat{y}_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial y_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial \hat{y}_4} \cdot \frac{\partial \hat{y}_6}{\partial y_4} \cdot \frac{\partial \hat{y}_6}{\partial y_4} = \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} = \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} = \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} = \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} = \frac{\partial \hat{y}_6}{\partial y_$$

$$\hat{y}_{5}(1-\hat{y}_{5})\Delta E_{6}\omega_{56}$$

$$Err \ at \ unit \ 4 = \frac{\partial E}{\partial \hat{y}_6} \cdot \frac{\partial \hat{y}_6}{\partial y_6} \cdot \frac{\partial y_6}{\partial y_6} \cdot \frac{\partial y_6}{\partial \hat{y}_4} \cdot \frac{\partial \hat{y}_4}{\partial y_4}$$

$$\hat{y}_4(1-\hat{y}_4)\Delta E_6\omega_{46}$$

$$\Delta_{\mathsf{w}_{\mathsf{i}\mathsf{j}}} = \eta \delta_{\mathsf{j}} o_{\mathsf{i}}$$

Weights Update

$$\omega_{56(\text{new})} = \omega_{56} + \eta \quad \Delta E_6 \hat{y}_5 = 0 \quad \forall \beta \in \mathcal{Y}_5 = 0 \quad$$

Weights Update

$$\omega_{56} = \omega_{56} + \eta \quad \Delta\omega_{56} = \frac{\Delta E_6 \cdot (\text{input at unit 6 and Output unit 5})}{-0 \cdot | \mathcal{O}|}$$

$$\omega_{46} = \omega_{46} + \eta \quad \Delta\omega_{46} = - \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O}$$

$$\omega_{14} = \omega_{14} + \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O}$$

$$\omega_{15} = \omega_{15} + \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O} \cdot \mathcal{O}$$

$$\omega_{24} = \omega_{24} + \Delta E_4 x_2 \qquad \omega_{34} = \omega_{34} + \Delta E_4 x_3$$

$$\omega_{25} = \omega_{25} + \Delta E_5 x_2 \qquad \omega_{35} = \omega_{35} + \Delta E_5 x_3$$

Bias Update

•
$$b_6 = b_6 + \eta . \Delta b_6$$
 $\Rightarrow \Delta b_6 = \Delta E$ rror at unit 6

•
$$b_5 = b_5 + \eta . \Delta b_5$$

•
$$b_4 = b_4 + \eta \cdot \Delta b_4$$

1. Compute gradients

$$Err_j = O_j(1 - O_j)(T_j - O_j),$$
 $Err_j = O_j(1 - O_j)\sum_k Err_k w_{jk},$

2. Update weights

$$w_{\text{new}} = w_{\text{old}} + \Delta w_{ij}$$

$$\Delta_{w_{ij}} = \eta \delta_j o_i$$

3. Update Bias

$$b_{\rm n} = b_{\rm n} + \eta . \Delta b_{\rm n} \qquad \Rightarrow \Delta b_{\rm n} = \Delta E \, {\rm rror} \, {\rm at} \, {\rm unit} \, {\rm n}$$

• • • • • • • •

1. Compute gradients

$$Err_j = O_j(1 - O_j)(T_j - O_j),$$
 $Err_j = O_j(1 - O_j)\sum_k Err_k w_{jk},$

2. Update weights

$$w_{\text{new}} = w_{\text{old}} + \Delta w_{ij}$$

3. Update Bias

$$b_{\rm n} = b_{\rm n} + \eta . \Delta b_{\rm n} \quad \Rightarrow \Delta b_{\rm n} = \Delta E \, {\rm rror} \, {\rm at} \, {\rm unit} \, {\rm n}$$

Learning Rate

- This is a subtle art.
- Too small: can take days instead of minutes to converge
- Too large: diverges (MSE gets larger and larger while the weights increase and usually oscillate)
- Sometimes the "just right" value is hard to find.

Train ANN

Training neural nets:

Loop until convergence:

- for each example n
 - 1. Given input $\mathbf{x}^{(n)}$, propagate activity forward $(\mathbf{x}^{(n)} \to \mathbf{h}^{(n)} \to o^{(n)})$ (forward pass)
 - 2. Propagate gradients backward (backward pass)
 - 3. Update each weight (via gradient descent)