Anneaux et Arithmétique - CC1 L3, semestre 2 (2012-2013) Université Rennes I

Contrôle continu 1

Durée : 30 minutes. Les documents ne sont pas autorisés.

Exercice 1.

Dire si les affirmations suivantes sont vraies ou fausses. Selon la réponse, donner une preuve ou un contre-exemple.

- 1) Soit K un corps. Il existe une infinité de morphismes de corps $\mathbb{Q} \to K$.
- 2) Soit A un anneau possédant des nilpotents non nuls. Alors le nombre de nilpotents de A est infini.
- 3) Soit A un anneau commutatif unitaire intègre fini. Alors A est un corps.

Exercice 2.

On définit sur \mathbb{R} la loi \star par :

$$x \star y = x + y - xy.$$

- 1) La loi \star est-elle une loi de groupe sur \mathbb{R} ?
- 2) Montrer que $(\mathbb{R} \setminus \{1\}, \star)$ est un groupe abélien isomorphe à $(\mathbb{R}^{\times}, \cdot)$.
- 3) Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R} \setminus \{1\}$, calculer $x^{\star n} = x \star \cdots \star x$ (n fois).

Exercice 3.

1) Soit E un ensemble, et soit $R = \mathcal{P}(E)$ l'ensemble des parties de E. On munit R de l'opération différence symétrique Δ : si X et Y sont des parties de R, $X\Delta Y = (X \cup Y) \setminus (X \cap Y)$. Montrer que (R, Δ, \cap) est un anneau dans lequel on a, pour tout $X \in R$, $X^2 = X$.

Soit A un anneau unitaire dans lequel tout élément $x \in A$ vérifie $x^2 = x$.

- 2) Donner un exemple de tel anneau, infini, ne s'obtenant pas directement par la construction précédente.
- 3) Montrer que pour tout $x \in A$, 2x = 0. En déduire que A est commutatif.
- 4) Montrer que le cardinal de A ne peut pas être égal à 3.

On suppose désormais que A est fini et de cardinal au moins 4.

- 5) Montrer que si le cardinal de A est 4, alors A est unique à isomorphisme près.
- 6) Montrer que le cardinal de A est une puissance de 2.