2016 Algorithm HW3 Sol utions

指導教授: 謝孫源教授

助教: 盧緯 張耕華 楊順翔 許景添

Question 1(10pts)

Solution:

```
Let n be the total number of activites, a_1, a_2, ..., a_n.

GREEDY-ACTIVITY-SELECTOR-JMC(s,f)

n = s.length
A = \{a_n\}

for m=n-1 to 1

if f[m] <= s[k]
A = \{a_m\} U A

k = m

return A

where n is the number of activities,
```

where n is the number of activities, s is an n array and s[k] contains the starting time of a_k , Assume s is monotonically increasing sorted array, f is an n array and f[k] contains the finish time of a_k ,

Question 1(10pts)

- This algorithm iterates through the activities starting from the activity with the latest Starting time. If the current activity has not finished before the last activity has started, then that activity is skipped and not added to optimal solution. However, if the candidate activity, ak, does finish before the last one starts, then that activity is added to the solution. This is the greedy step and we know that the first activity with the latest starting time is going to be chosen before all the other ones because the array of activities is sorted in increasing order. In order for this approach to yield an optimal solution, it is sufficient to prove that any activity with the latest starting time belongs to a maximum-size subset of mutually compatible activities of Sk.
- ▶ **Claim**: Consider any nonempty subproblem Sk and let am be an activity in Sk with the last starting time. Then am is included in some maximum-size subset of mutually compatible activities of Sk.

Question 1(10pts)

Solution:

Proof: Let a_i be an activity with starting time s_i and final time f_i . Let $\{a_1, a_2, ..., a_n\}$ be a set of activities monotonically increasing based on their starting time. That is, $s_1 \leq s_2 \leq s_3 \leq ... \leq s_n$. Let A_k be a maximum-size subset of mutually compatible activities S_k , and let a_j be the activity in A_k with the latest starting time.

Case 1: $a_j = a_m$

Then, since $a_j \in A_k$, a_j is in some maximum-size subset of mutually compatible activities of S_k

Case 2: $a_j \neq a_m$

Then set $A'_k = A_k - \{a_m\} + \{a_j\}$. Since A_k is some maximum-size subset of mutually compatible activities in S_k , then $f_1 \leq f_2 \leq f_3 \leq ... \leq s_m$. Since a_j and a_m are both activities with the latest starting time in S_k , $s_m = s_j$. Then we have that $f_1 \leq f_2 \leq f_3, ... \leq s_m = s_j$ and $|A'_k| = |A_k|$. Necessarily, A'_k must be a maximum-size subset of mutually compatible activities. Since $a_j \in A'_k$, a_j is in some maximum size subset of mutually compatible activities of S_k

Question 2(10pts)

- ▶ 兩個可以用 greedy 的問題 各1分
- ▶ 兩個不可以用 greedy 的問題 各1分
- ▶ 解釋差異 6分

Question 3(10pts)

Solution:

No, a directed graph is not acyclic because it has "back" edges.

Question 4(10pts)

Question 5(10pts)

Solution:

⇒ B, f, g, a, c, d, e, h

Question 6(10pts)

Question 6(10pts)

Question 6(10pts)

- 配分 (10%)
- ▶ 扣分方式
 - ▶ 寫得不夠詳細,依情況扣分。

Question 7(10pts)

Solution:

False.
The following is an example of DFS for directed graphs

Question 8(10pts)

Solution:

True.

We can use Depth First Traversal to compute the finish times and then return the nodes in order of decreasing finishing times.

We can also easily check for cycles as we do this and re port no sort is possible if a cycle exists.

Question 9(10pts) Kruskal's algorithm (5pts)

Sort the edges into non-decreasing order by

Question 9(10pts) cont. Multiple choices(5pts)

- T (I) Because it chooses the smallest weight edge that does not create a cycle in the MST at each step
- F (II) Prim's algorithm
- F (III) non-decreasing
- T (IV) [CH23, p21]
- ► T (V) [CH23, p21]

Question 10(10pts) cont. Prim's algorithm (5pts)

extracted node

Solution:

update

Question 10(10pts) cont. Multiple choices(5pts)

Solution:

- F (I) Because it takes the smallest key walke in the node that holds in one datastructure at each step
- **T**(II)
- F (III) non-decreasing, and this sgreedy strategy is used for Wouskall's a lalgorithm
- **T** (IV)
- T (V) O(VlgV + ElgV) = O(ElgV)

For connected graph,

$$: |E| \ge |V| - 1$$

$$\therefore O(V) = O(E)$$

$$O(V \lg V + E \lg V) = O(2 * E \lg V) = O(E \lg V)$$