Vysoké Učení Technické v Brne

Fakulta Informačných technológií

Projekt, Databázové systémy 2021 Dokumentácia

Veronika Vengerová – xvenge01 Matej Viskupič – xvisku01

Obsah

1.	Zada	anie	. 3
2.	Diag	gramy	. 4
2	2.1	ER diagram	. 4
2	2.2	Use Case diagram	. 5
3.	Rieš	enie	. 6
3	3.1	Zahodenie existujúcich dát	. 6
3	3.2	Vytvorenie tabuliek	. 6
3	3.3	Naplnenie dátami	. 6
3	3.4	Dotazy nad databázou	. 7
3	3.5	Nastavenie privilégií	. 7
3	3.6	Pokročilé objekty schémy databázy	. 7
3	3.7	Transakcie	. 8

1. Zadanie

Zvolili sme si pokračovať v projekte z predmetu IUS, konkrétne v zadaní 61. Kavárenský Povaleč. Jeho zadanie je nasledovné:

Představte si, že jste kavárenský povaleč, který tráví celé dny v kavárnách po celém Brně, a protože jste už vyzkoušeli spoustu kaváren a ne vždy vám v každé kavárně káva chutnala, rozhodli jste se vytvořit kavárenskou komunitu, ve které by si mohli lidé sdílet informace o brněnských kavárnách. Kavárny nabízejí kávy připravované z různých směsí kávových zrn, přičemž kávová zrna se liší odrůdou, stupněm kyselosti, aromatem, ale i chutí. Uživatel, který musí uvést kromě svých základních informací i údaje o oblíbeném druhu přípravy kávy (espresso, cappuccino, flat white, atd.), oblíbené kavárně, oblíbeném druhu kávy a počtu vypitých káv denně, může psát recenze k jednotlivým kavárnám, které navštívil. Pokud se tak uživatel kávové komunity rozhodne navštívit nějakou kavárnu, může si díky kavárenské komunitě zjistit informace o tom, kde se kavárna nachází, jaké má otvírací hodiny, kapacitu míst a její popis a informace o jejích zaměstnancích. Dále si může uživatel vyhledat jednotlivé recenze a podle toho se rozhodnout, zda kavárnu navštíví nebo nikoliv. V případě návštěvy kavárny, pak sám může buď sepsat recenzi, ve které uvede, jak se mu kavárna líbila, přidělí jí určitý počet hvězdiček a uvede, kdy kavárnu navštívil, nebo může reagovat na recenze ostatních uživatelů a uvést v reakci svůj vlastní názor. V systému se uchová nejen datum, kdy byla reakce napsána, ale i počet palců nahoru nebo dolů, které byly reakci přiděleny. Na recenze mohou kromě uživatelů reagovat i samotní zaměstnanci kaváren, aby se mohli ohradit vůči pomluvám. Každá kavárna má kromě zaměstnanců také svého majitele, a protože brněnské kavárny jsou většinou malé, předpokládejte, že tento majitel zároveň i vypomáhá jako řadový zaměstnanec v kavárně. Aby majitel přilákal více návštěvníků, pořádá často ve svých kavárna tzv. cupping akce, na kterých můžou návštěvníci ochutnat různé druhy kávy. O jednotlivých druzích kávy, které se na cupping akcích obvykle ochutnávají, si může uživatel přečíst informace, a to konkrétně o oblasti původu, kvalitě a popis chuti. Uživatelé si mohou u jednotlivých kaváren zjistit, kdy se nějaká cupping akce koná, jaká je cena ochutnávky a zda jsou ještě nějaká volná místa. Pokud ano, mohou se akce zúčastnit a napsat na ni recenzi.

2. Diagramy

2.1 ER diagram

Na priloženom ER diagrame (v prílohe priložený v lepšom rozlíšení) zobrazujeme návrh pre aplikáciu "Kaviarenský povaľač".

Aplikácia si v prvom rade bude udržiavať prehľad o osobách, ktoré s ňou interagujú. Na rozlíšenie užívateľov sme zvolili generalizáciu entity "Osoba", keďže chceme jasne odlíšiť majiteľov/zamestnancov kaviarne od užívateľov a ich vzťahy s kaviarňou.

Rovnako sme sa rozhodli pre generalizáciu entity "Recenzia". Považujeme za dostatočne rozdielnu recenziu kaviarne od recenzie Cupping Akcie(akcie na zvýšenie povedomia o kaviarni) a chceme tento rozdiel premietnuť aj do samotného systému. Spomínaná Cupping Akcia je akcia na ktorej sa koná ochutnávka rôznych druhov káv nielen ponúkaných kaviarňami. Z dôvodu, že je podstatné odkomunikovať užívateľom konanie podobnej akcie a uchovávať o nej informácie, zahrnuli sme ju do modelu ako samostatnú entitu.

Systém by si samozrejme mal udržiavať informácie o jednotlivých kaviarňach, nielen nimi ponúkaných kávach a zrne, z ktorého sa dané kávy pripravujú. Preto sú všetky tieto objekty reálneho sveta zachytené v našom návrhu ako samostatné entity s príslušnými vzťahmi.

2.2 Use Case diagram

Na priloženom Usecase diagrame (v prílohe priložený v lepšom rozlíšení) reprezentujeme interakciu účastníkov so systémom pre aplikáciu "Kaviarenský povaľač".

Najskôr sme si rozlíšili 5 účastníkov pracujúcich so systémom. A postupne im prideľovali prípady využitia a interakcie.

Hosť (do systému neprihlásený užívateľ zobrazujúci si aplikáciu) si môže v aplikácií vytvoriť účet alebo sa prihlásiť do už vytvoreného účtu (hosť sa môže prihlásiť ako užívateľ alebo ako zamestnanec). Bez toho aby sa prihlásil si hosť môže iba zobrazovať informácie o kaviarňach, káve a zoznam kaviarní v systéme, no nemá prístup k zobrazeniu špeciálnych cupping akcií a nemôže vytvoriť ani reagovať na recenzie.

Užívateľ (do systému prihlásený užívateľ) môže vykonávať všetky prípady využitia hosťa ale navyše môže reagovať na už existujúce recenzie, editovať svoje údaje, zobrazovať si a prihlásiť sa na špeciálne cupping akcie kaviarní a napísať recenzie na kaviarne a cupping akcie.

Zamestnanec si vie zobraziť informácie o kaviarňach, káve editovať svoje údaje a zobraziť akcie. Taktiež umožňujeme zamestnancovi reagovať na recenziu či už aby sa mohli zamestnanci brániť pri nepriaznivých recenziách alebo poďakovať za pozitívnu recenziu. Zamestnanec môže taktiež pridávať informácie o kávach.

Majiteľ môže vykonávať všetky prípady využitia zamestnanca, ale vie navyše pridávať informácie o svojej kaviarni a usporadovať v nej cupping akcie.

Posledným účastníkom je administrátor, ktorý sa stará o správu užívateľov a správu príspevkov (odstraňovanie nemorálnych recenzii atď.).

3. Riešenie

Projekt sme riešili v 4 fázach - vytvorenie ER a usecase diagramov, implementácia tabuliek, implementácia dotazov nad databázou, implementácia triggerov, procesov a pokročilých objektov databázy. Tieto fázy zodpovedajú požiadavkám jednotlivých termínov odovzdania. Pre prehľadnejšie priblíženie fungovania skriptu sme ho rozdelili na 7 častí, ktoré bližšie popisujeme v nasledujúcich podkapitolách.

3.1 Zahodenie existujúcich dát

Ako prvý krok pri volaní skriptu sa zahodia všetky existujúce údaje o tabuľkách a štruktúrach. Tento krok je vykonaný pre umožnenie opakovaného volania.

3.2 Vytvorenie tabuliek

V druhom kroku sa vytvoria tabuľky reprezentujúce jednotlivé entity v ER diagrame. Ak to návrh požaduje, sú tiež vytvorené tabuľky vzťahov jednotlivých entít a potrebných triggerov.

3.3 Naplnenie dátami

Novo vytvorené tabuľky sú následne naplnené ukážkovými dátami. Každá tabuľka je naplnená zhruba štyrmi položkami. Jednotlivé dáta sú zvolené viac menej náhodne a ich vzťahy vybrané tak, aby čo najlepšie demonštrovali komplexnosť diagramu.

3.4 Dotazy nad databázou

Po naplnení tabuliek dátami môžeme demonštrovať niekoľko dotazov a vytvoriť procesy Vytvorili kaviaren_workers pracujúce nimi. sme dva procesy ODSTRAN_VSETKY_KAVY_OBASHUJUCE_ZRNO_AJ_SO_ZRNOM. Proces kaviaren_workers potrebuje 1 argument (meno kaviarne) a vracia počet zamestnancov pracujúcich v kaviarni (vrátane majitel'a a bez majitel'a). Proces ODSTRAN_VSETKY_KAVY_OBASHUJUCE_ZRNO_AJ_SO_ZRNOM potrebuje 1 argument a to ID zrna kávy. Po jeho zavolaní sa vymažú z databázy všetky kávy obsahujúce dané zrno a aj samotné zrno. Taktiež sme vytvorili materializovaný pohľad kava_popularity, ktorý obsahuje súhrn káv, a počet užívateľov ktorý danú kávu obľubujú. Ten sa dá využiť napríklad na určenie najobľúbenejších káv.

3.5 Nastavenie privilégií

V ďalšom kroku projektu sme prideľovali práva. Tie boli dané druhému členovi tímu.

3.6 Pokročilé objekty schémy databázy

Nasledujúca tabuľka zobrazuje Explain plan vysvetľujúci postup databázy pri dotaze select, ktorý vyberá kávy s jemnou arómou a počíta priemer vypitých káv denne u užívateľov, ktorí ich obľubujú. Konkrétne sa jedná o nasledujúci príkaz:

```
EXPLAIN PLAN FOR SELECT u.ID_KAVA,
    k.nazov,
    AVG(u.pocet_kav_denne)
FROM uzivatel u JOIN kava k ON u.ID_KAVA = k.ID_kavy WHERE aroma = 'Jemná'
GROUP BY u.ID_KAVA, k.nazov;
```

Id	Operation	Name	Rows	Bytes	Cost	Time
				,	(%CPU)	
0	SELECT STATEMENT		1	23	7 (29)	00:00:01
1	HASH GROUP BY		1	23	7 (29)	00:00:01
2	MERGE JOIN		1	23	6 (17)	00:00:01
*	TABLE ACCESS BY	KAVA	1	17	2 (0)	00:00:01
3	INDEX ROWID					
4	INDEX FULL SCAN		4		1 (0)	00:00:01
		SYS_C001908273				
*	SORT JOIN		4	24	4 (25)	00:00:01
5						
6	TABLE ACCESS FULL	UZIVATEL	4	24	3 (0)	00:00:01

Môžeme si všimnúť že databáza vykonáva až dve spojenia. Prvé na základe požiadavky aroma = 'Jemná' a druhé pri hľadaní správnych užívateľov. Tento postup sa dá urýchliť použitím indexu na tabuľke káva a jej stĺpci aroma. Zlepšenie môžeme vidieť na následnom Explain Plan:

Id	Operation	Name	Rows	Bytes	Cost	Time
					(%CPU)	
0	SELECT STATEMENT		1	23	6 (17)	00:00:01
1	HASH GROUP BY		1	23	6 (17)	00:00:01
*	HASH JOIN		1	23	5 (0)	00:00:01
2						
3	TABLE ACCESS BY	KAVA	1	17	2 (0)	00:00:01
	INDEX ROWID BATCHED					
*	INDEX RANGE SCAN		1		1 (0)	00:00:01
4		AROMAINDEX				
5	TABLE ACCESS FULL	UZIVATEL	4	24	3 (0)	00:00:01

Databáza využila novo vytvorený index. Vďaka nemu potrebovala už len jediný join na vykonanie dotazu. Podľa stĺpcu cena (Cost) si môžeme všimnúť, že dotaz s využitím indexu bol omnoho jednoduchší na vykonanie.

3.7 Transakcie

V poslednej časti sme sa rozhodli demonštrovať funkcionalitu transakcií. Transakcie splňujú všetky nasledujúce vlastnosti: atomicita, konzistentnosť, izolovanosť a trvalosť (ACID). Izolovanosť vieme pozorovať napríklad pri vracaní transakcie späť. Pri tomto úkone nie sú zasiahnuté iné transakcie a ak sú, tak sa všetky zasiahnuté transakcie vrátia späť. Trvalosť vieme vidieť na dátach, ktoré po úspešnom ukončení transakcie zostávajú zmenené. Konkrétne v našom skripte po úspešnej transakcii ukončenej COMMIT-om. Transakcie prechádzajú z jedného konzistentného stavu do druhého, čím sa demonštruje konzistentnosť. Atomicitu môžeme v transakcii sledovať pri vykonávaní jednotlivých príkazov. Všetky zmeny vykonané v rámci transakacie sú zapísané až po úspešnom realizovaní všetkých príkazov v danej transakcii. Ak ktorýkoľvek z príkazov zlyhá, zlyháva celá transakcia. Táto vlastnosť sa nám nepodarila demonštrovať v skripte, ktorý sme odovzdali. S úmyselnou chybou v transakcii sa skript odmietne vykonať.