Reinforcement Learning Exercise 3 - Solution

Jonathan Schnitzler - st166934 Eric Choquet - st160996

May 2, 2024

Proofs

a) Bellman optimality operator is a gamma-contraction We want to show

$$(\mathcal{T}v)(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')]$$
(1)

fullfills the γ -contraction property, namely

$$\|\mathcal{T}v - \mathcal{T}w\|_{\infty} \le \gamma \|v - w\|_{\infty} \tag{2}$$

Inspired by the lecture for the Bellman expectation backup operator, we will similarly use the definition of the infinity norm to show the contraction property

$$\|\mathcal{T}v - \mathcal{T}w\|_{\infty} = \|\max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')] - \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma w(s')]\|$$

(3)

$$= \| \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v(s') - (r + \gamma w(s'))] \|$$
 (4)

$$= \gamma \| \max_{a} \sum_{s',r} p(s',r|s,a) [v(s') - w(s')] \|$$
 (5)

$$\leq \gamma \| \max_{a} \sum_{s',r} p(s',r|s,a) \| v(s') - w(s') \|_{\infty} \|$$
 (6)

$$= \gamma \|v(s') - w(s')\|_{\infty} \|\max_{a} \sum_{s',r} p(s',r|s,a)\|$$
 (7)

$$\leq \gamma \|v - w\|_{\infty}$$
 (8)

b) Bounding general finite MDPs This is quite simple by imagining, a sequence of actions for which always the best reward $r_{\rm max}$ or always the worst outcome, i.e. $r_{\rm min}$ occurs. We can use the geometric sum formular for $\gamma < 1$

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] \tag{9}$$

$$= \mathbb{E}_{\pi}\left[\sum_{i=0}^{\infty} \gamma^{i} R_{t+i+1} | S_{t} = s\right] \tag{10}$$

$$\leq \sum_{i=0}^{\infty} \gamma^i r_{\text{max}} \tag{11}$$

$$=r_{\max}\frac{1}{1-\gamma}\tag{12}$$

which reversly holds for the minimum with a lower bound

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] \tag{13}$$

$$= \mathbb{E}_{\pi} \left[\sum_{i=0}^{\infty} \gamma^i R_{t+i+1} | S_t = s \right] \tag{14}$$

$$\geq \sum_{i=0}^{\infty} \gamma^{i} r_{\min} \tag{15}$$

$$=r_{\min}\frac{1}{1-\gamma}\tag{16}$$

This yields

+2

$$\frac{r_{\min}}{1 - \gamma} \le v(s) \le \frac{r_{\max}}{1 - \gamma} \tag{17}$$

From this we can follow from arbitrary v(s) and v(s') by assuming without loss of generality taht $v(s) \ge v(s')$ (since the naming is arbitrary)

$$|v(s) - v(s')| = v(s) - v(s')$$
 (18)

$$\leq \frac{r_{\text{max}}}{1 - \gamma} - v(s') \tag{19}$$

$$\leq \frac{r_{\text{max}}}{1 - \gamma} - \frac{r_{\text{min}}}{1 - \gamma} \tag{20}$$

$$=\frac{r_{\text{max}} - r_{\text{min}}}{1 - \gamma} \tag{21}$$

which concludes the proof.

Value Iteration

a) & b) Implementation of the value function

The value function is initialized with zero-values

$$V(s) = 0 \quad \forall_{s \in \mathcal{S}} \tag{22}$$

+4

Try to show other optimal policies as well.

and $\gamma=0.8,\,\theta=10^{-8}.$ It converges in 43 Iterations

0.015	0.016	0.027	0.016
0.027	0.000	0.060	0.000
0.058	0.134	0.197	0.000
0.000	0.247	0.544	0.000

\downarrow	↑	\rightarrow	↑
\leftarrow	Η	\leftarrow	Η
\uparrow	\downarrow	\leftarrow	Н
Н	\rightarrow	\downarrow	G

Table 1: Optimal value v_* Table 2: Optimal policy π_*