2020 数学分析 C 期中考试

Zavalon from TG

一. 考虑幂级数 $\sum_{n=0}^{+\infty} \frac{3^n}{n} x^n$.

(1).(6 分) 求该幂级数的收敛半径 R. 判断级数在 $x = \pm R$ 处是否收敛, 是否 绝对收敛.

(2).(4分) 求该幂级数的和函数.

二.(10 分) 设 $p \in \mathbb{R}$, 判断 p 的范围使得如下广义积分收敛. 证明你的判断.

$$\int_0^{+\infty} \frac{\ln(1+x)}{x^p} \, \mathrm{d}x.$$

三.(10 分) 设函数 f 在 $[a, +\infty)$ 上连续可导, 且 $\int_a^{+\infty} f$ 与 $\int_a^{+\infty} f'$ 皆收敛. 求证: $\lim_{x \to +\infty} f(x) = 0$.

四.(10分)判断如下级数是否收敛.证明你的判断.

$$\sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{n+2\sin n}.$$

五.(10 分) 设 $\sum_{n=1}^{+\infty} a_n$ 收敛且通项皆非负. 令 $b_n = \sup\{a_k | k \ge n\}$. 判断: $\sum_{n=1}^{+\infty} b_n$

是否必收敛. 若是, 请证之. 若否, 请举反例, 并证明反例正确. 六.(1).(5 分) 求证: $\sum_{n=1}^{+\infty} \frac{x}{(1+x)^n}$ 在 $x \in [0, +\infty)$ 上收敛.

(2).(5 分) 求证: 上述级数在 $x \in [0, +\infty)$ 上不一致收敛.

七.(10 分) 设函数 f_0 在 [a,b] 上可积. 对正整数 n 归纳定义 $f_n(x) = \int_a^x f_{n-1}(t) \, \mathrm{d}t$.

求证: $\sum_{n=0}^{+\infty} f_n$ 在 [a,b] 上一致收敛.

八.(10 分) 设 $\{f_n\}$ 是定义在 [a,b] 上的连续函数列, 且 $f_n \Rightarrow f(n \to +\infty)$. 求证: $\forall \epsilon > 0, \exists \delta > 0, \forall n, \forall x_1 \in [a, b], \forall x_2 \in [a, b],$ 当 $|x_1 - x_2| < \delta$ 时, 有 $|f_n(x_1) - f_n(x_2)| < \epsilon.$

九. 判断如下陈述是否正确. 若是, 则证之. 若否, 请举反例, 并证明反例正确.

- (1).(5 分) 判断: 若 $\sum_{n=1}^{+\infty} a_n$ 收敛, 则 $\sum_{n=1}^{+\infty} a_n^2$ 收敛. (2).(5 分) 判断: 若 $\sum_{n=1}^{+\infty} a_n$ 收敛, 则 $\sum_{n=1}^{+\infty} a_n^3$ 收敛.
- 十. 设数列 $\{a_n\}$ 单调,且 $\lim_{n\to+\infty} na_n = 0$. 考虑函数项级数 $\sum_{n=1}^{+\infty} a_n \sin nx$. (1).(4 分) 求证: $\forall \delta \in (0,\pi)$, 该级数在 $[-\pi,-\delta] \cup [\delta,\pi]$ 上一致收敛.
- (2).(6 分) 求证: 该级数在 ℝ 上一致收敛.