MDA HW3 KMeans Report

106062314 蔡政諺

(a) Euclidean distance

1. Plot of cost vs. iteration

	C1	C2	
Round 1	6.236603e+08	4.387478e+08	
Round 2	5.098629e+08	2.498039e+08	
Round 3	4.854807e+08	1.944948e+08	
Round 4	4.639970e+08	1.698048e+08	
Round 5	4.609693e+08	1.562957e+08	
Round 6	4.605378e+08	1.490942e+08	
Round 7	4.603131e+08	1.425085e+08	
Round 8	4.600035e+08	1.323039e+08	
Round 9	4.595705e+08	1.171710e+08	le8
Round 10	4.590211e+08	1.085474e+08	6
Round 11	4.584907e+08	1.022372e+08	5
Round 12	4.579442e+08	9.827802e+07	1
Round 13	4.575580e+08	9.563023e+07	4
Round 14	4.572901e+08	9.379331e+07	ts 3
Round 15	4.570506e+08	9.237713e+07	
Round 16	4.568922e+08	9.154161e+07	2
Round 17	4.567036e+08	9.104557e+07	1
Round 18	4.564042e+08	9.075224e+07	
Round 19	4.561778e+08	9.047017e+07	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Round 20	4.559869e+08	9.021642e+07	iteration

2. Percentage improvement and explanation

c1 percentage improvement: 26.885383 %
c2 percentage improvement: 79.437750 %

使用 Euclidean distance 做為 cost function 時,C2 (as far as possible)的表現會比C1 (random initialization)更好。原因是C2 的 centroids 會相較於C1 更發散,因此C1 的 centroids 會較C2 更容易互搶本應屬於同一個 cluster 的 data points,導致最後收斂的時候,並沒有最 optimally 分割 k 個群,反而掉入一個 local minimum,如下圖。

3. Distance of centroids

(i) Euclidean distances for centroids in c1

	1	2	3	4	5	6	7	8	9	10
1	0	692.158	3490.26	205.75	346.719	512.612	444.731	566.202	1282.77	307.669
2		0	2798.8	897.659	1038.83	1204.08	1136.33	1257.45	669.89	412.076
3			0	3695.11	3836.91	4002.69	3934.87	4056.14	2294.58	3195.92
4				0	142.439	309.506	241.73	363.263	1474.95	504.634
5					0	167.15	99.5455	220.902	1615.85	646.931
6						0	67.9119	53.7899	1782.2	814.076
7							0	121.634	1715.25	746.336
8								0	1835.64	867.823
9									0	975.32
10										0

(ii) Manhattan distances for centroids in c1

	1	2	3	4	5	6	7	8	9	10
1	0	728.924	3797.9	212.181	374.89	577.402	499.158	645.77	1731.06	406.701
2		0	3072.89	935.885	1100.83	1303.9	1225.35	1372.09	1005.29	490.928
3			0	4001.04	4170.3	4372.79	4294.95	4440.72	2513.42	3396.42
4				0	171.365	375.248	296.255	443.498	1934.09	609.749
5					0	204.523	125.597	272.935	2102.86	779.397
6						0	79.4017	69.5899	2306.38	983.02
7							0	147.866	2227.56	904.37
8								0	2374.55	1050.92
9									0	1327.58
10										0

(iii) Euclidean distances for centroids in c2

	1	2	3	4	5	6	7	8	9	10
1	0	15760.1	14110.8	9045.32	5567.68	1924.62	1100.86	402.891	2105.44	3169
2		0	11524.5	6743.88	10192.5	14455.1	14682.5	15362.4	13674.7	12597
3			0	9545.88	10883.4	12234	13208	13786.5	12509	11938.4
4				0	3494.22	7718.22	7957.78	8644.81	6947.82	5876.33
5					0	4404.56	4492.46	5169.94	3488.16	2407.92
6						0	1182.86	1615.79	1313.33	2153.77
7							0	698.488	1010.2	2085.46
8								0	1702.79	2768.61
9									0	1080.53
10										0

(iv) Manhattan distances for centroids in c2

	1	2	3	4	5	6	7	8	9	10
1	0	15772.6	20215.6	9533.17	5604.2	3088.05	1311.04	471.266	2369.41	3349.66
2		0	16003.5	7219.2	10221	16105.3	14909.2	15434.5	13950.6	12776.9
3			0	10690.5	14613.6	17509.9	18912.6	19748.9	17851.8	16873.2
4				0	3935.29	8896.39	8228.36	9065.4	7168.73	6190.68
5					0	5893.07	4696.98	5221.25	3737.71	2564.17
6						0	1781.82	2619.81	2162.8	3337.75
7							0	840.723	1068.94	2137.79
8								0	1901.21	2883.73
9									0	1176.45
10										0

(b) Manhattan distance

1. Plot of cost vs. iteration

2. Percentage improvement and explanation

c1 percentage improvement: 18.378954 %
c2 percentage improvement: 54.685694 %

使用 Manhattan distance 做為 cost function 時,C1 (random initialization)的表現會比 C2 (as far as possible)更好。原因是相較於 Euclidean distance,Manhattan distance 對於離群值的敏感度較低,也就是若有一群較遠的 data points,centroids 不會積極地趨向這些 data points。但若使用 C2 進行初始化,centroid 會有較 C1 更高的機率被分配到離群的 cluster 中(因為要離群表示距離夠大),於是 centroid 就有可能會被這些離群值卡住,陷入 local minimum。相對地,若使用 C1 進行初始化,各個 centroids 在 data points 之間理論上會是 uniformly distributed,且 centroids 並不會積極地去解決離群值的問題,而在 Manhattan distance 的度量下,這種情況可以讓大部分點的距離都變短,於是使 cost 極趨近於最佳解。

3. Distance of centroids

(i) Euclidean distances for centroids in c1

	1	2	3	4	5	6	7	8	9	10
1	0	2219.18	9948.04	528.7	413.365	827.719	681.035	917.127	832.147	729.056
2		0	7767.95	2734.05	2628.49	3044.48	2898.71	3133.46	1812.45	1491.36
3			0	10433.1	10361.4	10773.5	10626.5	10863	9340.28	9236.84
4				0	221.373	375.156	249.379	457.26	1156.58	1251.16
5					0	415.99	270.749	505.071	1171.96	1137.14
6						0	147.047	89.4909	1529.46	1553.12
7							0	236.515	1391.55	1407.4
8								0	1613.56	1642.13
9									0	709.408
10										0

(ii) Manhattan distances for centroids in c1

	1	2	3	4	5	6	7	8	9	10
1	0	2341.02	11929.3	651.187	496.332	947.743	770.737	1056.8	1260.51	737.714
2		0	9597.44	2778.95	2830.14	3280.36	3104.29	3388.98	2380.46	1605.27
3			0	12323.3	12421.3	12871.5	12695.6	12979.1	10775.9	11196.8
4				0	335.951	558.469	382.463	667.533	1653.83	1379.17
5					0	452.861	276.326	561.849	1755.11	1226.66
6						0	177.593	110.218	2205.31	1677.67
7							0	287.43	2028.9	1500.99
8								0	2314.67	1786.81
9									0	1006.37
10										0

(iii) Euclidean distances for centroids in c2

	1	2	3	4	5	6	7	8	9	10
1	0	15747.2	14100.1	9032.33	5554.79	2006.7	1338.16	514.627	1571.24	3022.66
2		0	11524.5	6743.88	10192.5	14474.6	14412.1	15239.9	14328.2	12731.4
3			0	9545.88	10883.4	12167.8	13125.4	13684.6	12644	12006.4
4				0	3494.22	7742.63	7694.28	8521.2	7588.4	6009.82
5					0	4452.97	4219.76	5047.52	4167.64	2542.57
6						0	1405.11	1637.73	910.994	2124.26
7							0	827.841	566.551	1684.52
8								0	1081.38	2511.46
9									0	1649.39
10										0

(iv) Manhattan distances for centroids in c2

	1	2	3	4	5	6	7	8	9	10
1	0	15757.7	20200.3	9517.67	5588.85	3281.49	1430.21	602.955	2102.55	3211.46
2		0	16003.5	7219.2	10221	16325.3	14506.5	15336	14980.1	12922.9
3			0	10690.5	14613.6	17521.5	18775.1	19602.3	18111.9	16995.1
4				0	3935.29	9116.02	8090.51	8918.81	7771.22	6312.53
5					0	6110.83	4293.5	5123.07	4768.92	2710.06
6						0	1855.58	2682.57	1358.8	3413.04
7							0	833.43	674.828	1784.51
8								0	1500.82	2614
9									0	2062.25
10										0