# CENG 471 Cryptography Elliptic Curve Cryptosystems

Asst. Prof. Dr. Serap ŞAHİN

## ELLIPTIC CURVE CRYPTOSYSTEMS

 For simplicity, we shall restrict our attention to elliptic curves over Zp, where p is a prime. The elliptic curves can more generally be defined over any finite field.

# Elliptic Curves over F<sub>q</sub>

- Most standarts which specify the elliptic curve cryptographic techniques restrict the order of the underlying finite field!
- q = p to be an odd prime number or a power of 2 ( $q = 2^m$ ).
- Let p > 3 be an odd prime.
- Let elliptic curve E over  $F_p$  is defined by an equation of the form:

$$y^2 = x^3 + ax + b$$
 where a, b  $\in$  F<sub>p</sub> and  $4a^3 + 27b^2 \neq 0 \pmod{p}$ 

The set of  $E(F_p)$  consists of all points (x, y),  $x \in F_p$  and  $y \in F_p$ , which satisfy the  $y^2 = x^3 + ax + b$  equation, together with a special point O, called the point at infinity.

# Point Addition (R=P+Q





# An Example for Elliptic Curves over F<sub>p</sub>

- Let p = 23
- E:  $y^2 = x^3 + x + 4$  defined over  $F_{23}$
- $4a^3 + 27b^2 \neq 0 \pmod{p}$
- a = 1 and b = 4 then  $4(1)^3 + 27(4)^2 \equiv 22$  (mod 23), so E is indeed an elliptic curve.
- The points of  $E(F_{23})$  are O and the following:

| (0, 1)   | (0, 21)  | (1, 11) | (1, 12)  | (4, 7)  | (4, 16)  | (7, 3)   | (7, 20)  | (8,8)    | (8, 15)  |
|----------|----------|---------|----------|---------|----------|----------|----------|----------|----------|
| (9, 11)  | (9, 12)  | (10, 5) | (10, 18) | (11, 9) | (11, 14) | (13, 11) | (13, 12) | (14, 15) | (14, 18) |
| (15, 16) | (15, 17) | (17, 9) | (17, 14) | (18, 9) | (18, 14) | (22, 5)  | (22, 19) |          |          |

# **Group Law Axioms**

- Closure
- Identity:
   P + O = O+ P = P for all P
   ε E(F<sub>p</sub>)
- Inverse:(x, y) + (x, -y) = O
- Associativity
- Commutativity



## Addition Formulae

Let 
$$P = (x_1, y_1)$$
,  $Q = (x_2, y_2)$  and  $P$ ,  $Q \in E(F_p)$   
where  $P \neq \pm Q$  Then  $P + Q = (x_3, y_3)$  or point doubling  $2P = (x_3, y_3)$   
$$\frac{Then}{r}$$



 $\lambda$  is the slope of the line:

if 
$$x_1 = x_2$$
 (point doubling)

$$\lambda = (3x_1^2 + a)/2y_1$$
otherwise

$$\lambda = (y_2 - y_1)/(x_2 - x_1)$$
 and

$$x_3 = \lambda^2 - x_1 - x_2$$
  
 $y_3 = \lambda (x_1 - x_3) - y_1$ 



## Addition Formula

We will digress to modular division:  $4/3 \mod 11$ . We are looking for a number, say t, such that  $3 * t \mod 11 = 4$ . We need to multiply the left and right sides by  $3^{-1}$ 

$$3^{-1} * 3 * t \mod 11 = 3^{-1} * 4$$
  
 $t \mod 11 = 3^{-1} * 4$ 

Next we use the Extended Euclidean algorithm and get (inverse)  $3^{-1}$  is 4 (3 \* 4 = 12 mod 11 = 1).

$$4 * 4 \mod 11 = 5$$

Hence,

$$4/3 \mod 11 = 5$$

## Example of Elliptic Curve Addition

Let P = (3, 10) and Q = (9, 7). Then P + Q = (x3, y3) is computed as follows:

$$\lambda = \frac{7-10}{9-3} = \frac{-3}{6} = \frac{-1}{2} = 11 \in \mathbb{Z}_{23}$$

 $x_3 = 11^2 - 3 - 9 = 6 - 3 - 9 = -6 \equiv 17 \pmod{23}$ , and  $y_3 = 11(3 - (-6)) -10 = 11(9) -10 = 89 \equiv 20 \pmod{23}$ .

Hence P + Q = (17, 20).

Let P = (3,10). Then 2P = P + P = (x<sub>3</sub>, y<sub>3</sub>) is computed as follows:

$$\lambda = \frac{3(3^2) + 1}{20} = \frac{5}{20} = \frac{1}{4} = 6 \in \mathbb{Z}_{23}$$

$$x_3 = 6^2 - 6 = 30 \equiv 7 \pmod{23}$$
, and  $y_3 = 6(3-7) - 10 = -24 - 10 = -11 \in 12 \pmod{23}$ . Hence  $2P = (7, 12)$ .

Consider the following elliptic curve with Z<sub>p</sub>\*

$$y^2 \bmod p = (x^3 + ax + b) \bmod p$$

Set p = 11 and a = 1 and b = 2. Take a point P(4, 2) and multiply it by 3; the resulting point will be on the curve with (4, 9).

## **EC** Security

- Suppose Eve the middleman captures (p, a, b,  $Q_A$ ,  $Q_B$ ).
- Can Eve figure out the shared secret key without knowing either (d<sub>B</sub>, d<sub>A</sub>)?
- Eve could use  $Q_A = P^*d_A$  to compute the unknown  $d_A$ , which is known as the Elliptic Curve Discrete Logarithm problem.
- With appropriate cryptographic restrictions, this is believed to take exponential time.

## **Domain Parameters**

- Common values shared by a group of users from which key pairs may be generated
- User or trusted party may generate domain parameters
- Anyone may validate domain parameters

## **EC Domain Parameters**

- Finite field F<sub>q</sub>
- E is an elliptic curve over F<sub>q</sub>
- $\#E(F_q) = kr$ 
  - r is the prime divisor of  $\#E(F_q)$
  - k is cofactor
  - GCD (k, r) = 1
- Base point  $G \in E(F_q)$  of order r

## Generating EC Domain Parameters

- 1. Select a prime power q
- 2. Select an elliptic curve E over F<sub>q</sub>
  - order  $\#E(F_q) = kr$
- 3. Generate a point G of order r
- 4. Output  $D=(F_a, E(F_a), r, k, G)$  as domain parameters

## **Domain Parameters**

$$D=(F_q, E(F_q), r, k, G)$$

- Instead of using E and G as system domain parameters, we could fix only the underlying finite field  $F_p$  for all users.
- And let each user select her own elliptic curve E and point G  $\in$  E(F<sub>D</sub>).

# Generating an EC Key Pair

1. Randomly generate  $s \in [1, r-1]$ 

2. Compute W = sG

3. Output (KU,KR) = (W, s)

#### Elliptic Curve Diffie-Hellman: Key Exchange



#### **Alice**

- Secretly select a random integer k<sub>A</sub>
- Compute k<sub>A</sub>.Q and send it to Bob
- Receive k<sub>B</sub>.Q from Bob
- Common key  $P = k_A . k_B . Q$



- Receive k<sub>A</sub>.Q from Alice
- Secretly select a random integer k<sub>B</sub>
- Compute k<sub>B</sub>.Q and send it to Alice
- Common key  $P = k_B.k_A.Q$

#### Elliptic Curve Diffie-Hellman: Key Exchange

Common key  $P = k_A.k_B.Q$ 

An eavesdropper whould have to determine  $P = k_A . k_B . Q$ knowing Q,  $k_A . Q$  or  $k_B . Q$  but not  $k_A$  or  $k_B . Q$ 

The eavesdropper's task called the "Diffie-Hellman problem for elliptic curves".

#### Elliptic Curve Diffie-Hellman: Message Transfer

- Suppose that the set of message units has been imbedded in E in some agreed way to convert integer values.
- Bob wants to send Allice a message m ε E .
- Alice and Bob have already exchange  $k_A$ .Q and  $k_B$ .Q as in Diffie-Hellman key exchange protocol.

#### Elliptic Curve Diffie-Hellman: Message Transfer

#### Ciphering the message:

 Bob, chooses another secret random integer I and sends Alice the pair of points

$$(I.Q, M+I.(k_A.Q))$$

#### Deciphering the message:

• Alice, multiplies the first point in the pair by her secret key  $k_A$  ( $k_A$  I.Q)

and then subtracts the result from the second point in the pair

$$M + I.(k_A.Q) - (k_A I.Q) = M$$

The Diffie-Hellman system can be broken if someone can solve the "discrete logarithm problem" in the group E.



# Elliptic Curve Encryption System

#### **System Entities**

- Finite field F<sub>q</sub>
- E is an elliptic curve over F<sub>q</sub> with a point P lying in E(F<sub>q</sub>)
- $\#E(F_q) = kr$
- D=(F<sub>q</sub>, E(x), P, [1, r-1])

# Digital Signature: The Motivation

How Bob can be sure the message come from Allice!!

"Authentication"

How Bob can be sure the message did not changed !!

"Integrity"

## Digital Signature: Integrity



Integrity !!

## Digital Signature: Authentication



Authentication !!

#### Elliptic Curve Digital Signature Algorithm: Key Generation

- Let E be an elliptic curve over F<sub>p</sub>
- Let P be a point of prime order q in E(F<sub>p</sub>)
  - These are the system domain parameters.
  - In the ECDSA, q is about the same size as p.
- Each user, selects a random integer x in the interval
   1 < x < q-1 and computes Q = x.P</li>
- Q is the public key "KU" and x is the private key "KR".

The key pair (KU,KR) = (Q, x)

#### Elliptic Curve Digital Signature Algorithm: Key Generation

 Define equation for E, the coordinates of the point P, and the order q of P must be included in the user's public key.

• At the same time, there are an enormous number of choices of elliptic curve E over the finite field  $F_p$ .

#### Elliptic Curve Digital Signature Algorithm: Signature Generation

To sign the message m, Alice does the following.

- 1. Select a random integer k in interval 1 < k < q 1
- 2. Computes k.P =  $(x_1, y_1)$  and  $r = x_1 \mod q$ 
  - 0 <  $x_1$  < p-1
  - r is taken to be its least non-negative residue modulo q
  - If r = 0 then she return to step 1.
- 3. Computes k-1 mod q
- 4. Computes  $s = k^{-1}(H(m) + x.r) \mod q$ 
  - H(m) is the hash value of the message.
  - If s = 0 then she return to step 1.
- 5. The signature for the message m is the pair of integer (r,s)



#### Elliptic Curve Digital Signature Algorithm: Signature Verification

Bob should do the following, to verify Alice's signature (r,s);





- 3. Computes  $w = s^{-1} \mod q$  and H(m)
- 4. Compute  $u_1 = H(m)$ .w mod q and  $u_2 = r$ .w mod q
- 5. Compute  $u_1.P + u_2.Q = (x_0,y_0)$  and  $v = x_0 \mod q$
- Accept the signature if and only if v = r



# Proof that signature verification works!

If a signature (r,s) on a message m was indeed generated by Alice then

- $s = k^{-1} \cdot (H(m) + x.r) \mod q$
- $(w = s^{-1} \mod q, u_1 = H(m).w \mod q \text{ and } u_2 = r.w \mod q)$
- $k \equiv s^{-1}.(H(m) + x.r) \equiv s^{-1}.H(m) + s^{-1}.x.r \equiv w.H(m) + w.r.x$  $\equiv u_1 + u_2.x \mod q$
- (Q = x.P, KU = Q and KR = x and  $u_1.P + u_2.Q = (x_0,y_0)$  and  $v = x_0 \mod q$ )
- Thus  $u_1.P + u_2.Q = (u_1 + u_2.x).P = k.P$ ,  $k.P = (x_1, y_1)$  and  $r = x_1 \mod q$ and so v = r as required.