PH30030: Quantum Mechanics Problems Sheet 1 Solutions

1. a) We require $A^2 \int_0^a dx \sin^2\left(\frac{n\pi x}{a}\right) = 1$. From the useful integrals we get

$$\int_{0}^{a} dx \sin^{2}\left(\frac{n\pi x}{a}\right) = \left[\frac{x}{2} - \frac{a}{4n\pi} \sin\left(\frac{2n\pi x}{a}\right)\right]_{0}^{a} = \frac{a}{2}. \text{ Therefore } A = \sqrt{\frac{2}{a}}.$$

b) We require $A^2 \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \sin \theta \int_0^{\infty} dr \, r^2 \exp(-2r/a_0) = 1$. The θ and ϕ integrals give 4π .

From the useful integrals we get $\int_{0}^{\infty} dr \ r^2 \exp\left(-2r/a_0\right) = \frac{2}{\left(2/a_0\right)^3}$. Therefore $A = \sqrt{\frac{1}{\pi a_0^3}}$.

- c) We require $A^2 \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \sin\theta \sin^2\theta = 1$. The ϕ integral gives 2π . From the useful integrals we get $\int_0^{\pi} d\theta \sin^3\theta = \left[\frac{1}{3}\cos^3\theta \cos\theta\right]_0^{\pi} = \frac{4}{3}$. Therefore $A = \sqrt{\frac{3}{8\pi}}$.
- 2. a) i), ii), iii) and vii) are linear. iv), v) and vi) are non-linear.
 - b) i) & ii) do not commute; ii) & iii) commute; i) & vii) commute; ii) & vii) do not commute.
- 3. a) Follow the analysis we did in the lecture notes for $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$. You will find that $\frac{d}{dx}$ is not Hermitian, because we need the i in the momentum operator to make the signs work out.
 - b) The kinetic energy operator in 1D is $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$. We are trying to show (see the definition of an Hermitian operator in the lecture notes) that

$$\int dx \, f_1^*(x) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) f_2(x) = \int dx \left(\left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) f_1(x) \right)^* f_2(x).$$
 I won't go through the details

but, by integrating by parts twice, you can show that the two sides of this equation are the same.

- 4. a) The 3D momentum operator is $\underline{\hat{p}} = -i\hbar \nabla = -i\hbar \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)$. Operate with this on $\exp(i\underline{k}.\underline{r}) = \exp(i\left(k_x x + k_y y + k_z z\right))$. We find $\frac{\partial}{\partial x} \exp(i\underline{k}.\underline{r}) = ik_x \exp(i\underline{k}.\underline{r})$, and similarly for y and z. Therefore $\underline{\hat{p}} \exp(i\underline{k}.\underline{r}) = \hbar \left(k_x, k_y, k_z\right) \exp(i\underline{k}.\underline{r}) = \hbar \underline{k} \exp(i\underline{k}.\underline{r})$. This shows that $\exp(i\underline{k}.\underline{r})$ is an eigenfunction of \hat{p} .
 - b) From above, the eigenvalue is $\hbar \underline{k}$.
- 5. We want to show that $\frac{2}{a} \int_{0}^{a} dx \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi x}{a}\right) = 0$ if $m \neq n$. The useful integrals can be used to show that this is the case.
- 6. We have $\psi = \sum_n c_n \phi_n$, so $\psi^* \psi = \sum_{m,n} c_m^* c_n \phi_m^* \phi_n$. Integrate both sides of this equation over the relevant region of space. The left hand side gives 1 because ψ is normalised. Because the eigenfunctions ϕ are normalised and orthogonal, $\int \phi_m^* \phi_n = \delta_{mn}$, so the right hand side becomes $\sum_{m,n} c_m^* c_n \delta_{mn} = \sum_n |c_n|^2$. Therefore $\sum_n |c_n|^2 = 1$.
- 7. a) $\phi_1^* \phi_1 = \frac{1}{13} \left(2\chi_1^* + 3\chi_2^* \right) \left(2\chi_1 + 3\chi_2 \right) = \frac{1}{13} \left(4\chi_1^* \chi_1 + 6\chi_1^* \chi_2 + 6\chi_2^* \chi_1 + 9\chi_2^* \chi_2 \right)$. Integrate both sides over the relevant region of space and use the fact that χ_1 and χ_2 are normalised and orthogonal to each other. We then find that $\int \phi_1^* \phi_1 = 1$, as expected. In a similar way, we can show that $\int \phi_2^* \phi_2 = 1$ and $\int \phi_1^* \phi_2 = 0$.
 - b) We treat

$$\phi_1 = \frac{2}{\sqrt{13}} \chi_1 + \frac{3}{\sqrt{13}} \chi_2 \qquad (1)$$

$$\phi_2 = \frac{3}{\sqrt{13}} \, \chi_1 - \frac{2}{\sqrt{13}} \, \chi_2 \qquad (2)$$

as a pair of simultaneous equations for χ_1 and χ_2 . Solving them, we find

$$\chi_1 = \frac{2}{\sqrt{13}}\phi_1 + \frac{3}{\sqrt{13}}\phi_2 \qquad (3)$$

$$\chi_2 = \frac{3}{\sqrt{13}}\phi_1 - \frac{2}{\sqrt{13}}\phi_2 \tag{4}$$

c) We know that the state of the system after the first measurement is ϕ_1 , because α_1 was measured. When the observable corresponding to \hat{B} is measured, we know from equation (1) that the probability of measuring β_1 is 4/13 and the probability of measuring β_2 is 9/13. If the \hat{B} measurement gives β_1 , then the state of the system becomes χ_1 and equation (3) shows that the probability of measuring α_1 again is 4/13. If the \hat{B} measurement gives β_2 , then the state of the system becomes χ_2 and equation (4) shows that the probability of measuring α_1 again is 9/13. The total probability of measuring α_1 again is therefore

$$\left(\frac{4}{13} \times \frac{4}{13}\right) + \left(\frac{9}{13} \times \frac{9}{13}\right) = \frac{97}{169}$$
.

- 8. a) In the lectures we found that $c_n = \frac{2\sqrt{2}}{n\pi}$ for n odd, and $c_n = 0$ for n even. The eigenvalues corresponding to the energy operator \hat{H} are $E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$. Therefore the first way of calculating $\langle \hat{H} \rangle$ gives $\langle \hat{H} \rangle = \sum_n |c_n|^2 E_n = \sum_{n \text{ odd}} \frac{8}{n^2 \pi^2} \frac{\hbar^2 \pi^2 n^2}{2ma^2} = \sum_{n \text{ odd}} \frac{4\hbar^2}{ma^2} = \infty$. The second way gives $\int_0^a dx \, \psi^* \, \hat{H} \, \psi$ where $\psi = \frac{1}{\sqrt{a}}$ and $\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$. This method therefore gives zero.
 - b) I'll let you think about this!
- 9. For these observables to be compatible, the corresponding operators must commute. This is obviously the case for all these operators, because the n^{th} power of an operator means that it operates n times. For example, $\left[\hat{Q}^2,\hat{Q}^3\right]=\hat{Q}^2\hat{Q}^3-\hat{Q}^3\hat{Q}^2=\hat{Q}\hat{Q}\hat{Q}\hat{Q}\hat{Q}\hat{Q}-\hat{Q}\hat{Q}\hat{Q}\hat{Q}\hat{Q}\hat{Q}=0$. The 1D momentum operator is $-i\hbar\frac{d}{dx}$ and the 1D kinetic energy operator is $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\equiv -\frac{\hbar^2}{2m}\frac{d}{dx}\frac{d}{dx}$. These obviously commute, which implies that momentum and kinetic energy can be measured simultaneously.