1. Series de potencias

1.1. Definición

Definición 1. Una serie de potencias es una serie de la forma:

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

donde a_n , $n = 0, 1, ..., z_0$ y z son elementos de \mathbb{R} .

Estamos interesados en determinar los valores de z para los cuales una serie converge.

Ejemplo 1. La serie geométrica

$$\sum_{n=0}^{\infty} z^n,$$

es una serie de potencias. Aquí $a_n=1,\, n=0,1,\dots$ y $z_0=0.$ Esta serie converge para |z|<1 a

$$\frac{1}{1-z}$$

y no converge para cualquier otro valor de $z \in \mathbb{R}$.

Ejemplo 2. Supongamos $f:I\to\mathbb{R}$, donde I es un intervalo abierto I=(a,b) y que f tiene derivadas de todo orden en $z_0\in I$. Entonces es posible construir la serie de Taylor de f en z_0 que es una serie de potencias. Recordemos que esta serie es

$$S(f, z_0, z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

1.2. Límites superior e inferior

Definición 2. Dada una sucesión de números reales x_n , consideramos una nueva sucesión:

$$A_n = \sup\{x_n, x_{n+1}, \ldots\}$$

La nueva sucesión de reales A_n es siempre nocreciente $(A_n \ge A_{n+1})$, luego tiene un límite (puede ser $\pm \infty$). A este límite lo llamamos el límite superior de x_n . Lo denotamos por lím sup. Es decir:

$$\limsup x_n = \lim_{n \to \infty} A_n = \lim_{n \to \infty} \sup \{x_n, x_{n+1}, \ldots\}.$$

Tomando ínfimo en lugar de supremo conseguimos el límite inferior (lím inf).

Ejemplo 3. Si $x_n = (-1)^n$, entonces

$$\{x_n, x_{n+1}, \ldots\} = \{\pm 1, \mp 1, \pm 1, \ldots\}.$$

El supremode este conjunto es para todo n igual a 1 y el ínfimo igual a -1. Luego lím inf $x_n=-1$ y lím sup =1.

Ejemplo 4. Si $x_n = 1/n$, si n es par y $x_n = 1$ si n es impar, entonces el conjunto

$$\{x_n, x_{n+1}, \ldots\}$$

tiene por supremo 1 y el ínfimo igual a 0. Luego lím inf $x_n = 0$ y lím sup = 1.

Teorema 1. Propiedades Sea x_n e y_n dos sucesiones de números reales, entonces:

- 1. El lím sup y el lím inf existen siempre si se permite que $\pm\infty$ sean sus posibles valores.
- 2. $\liminf x_n \le \limsup x_n$.
- 3. $\liminf x_n = \limsup x_n$ si y solo si el $\lim x_n$ existe. En este caso todos los límites coinciden.
- 4. $\liminf (x_n + y_n) \ge \liminf x_n + \liminf y_n$.
- 5. $\limsup (x_n + y_n) \le \limsup x_n + \limsup y_n$

1.3. Radio de convergencia

Definición 3. Dada la serie de potencias

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

definimos el radio de convergencia R de la siguiente forma:

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n}.$$

Ejemplo 5. La serie

$$\sum_{n=0}^{\infty} z^n,$$

tiene radio de convergencia:

$$\frac{1}{R} = \limsup_{n \to \infty} 1^{1/n} = \lim_{n \to \infty} 1^{1/n} = 1$$

Luego R = 1.

Ejemplo 6. La serie

$$\sum_{n=0}^{\infty} \left(\frac{1}{M}\right)^n z^n,$$

tiene radio de convergencia:

$$\frac{1}{R} = \limsup_{n \to \infty} \left(\left(\frac{1}{M} \right)^n \right)^{1/n} = \lim_{n \to \infty} \left(\left(\frac{1}{M} \right)^n \right)^{1/n} = \frac{1}{M}$$

Luego R = M.

Ejemplo 7. Fijemos M>0 y n un natural tal que $\lfloor n/2 \rfloor>M$ (aquí $\lfloor x \rfloor$ es la parte entera de x). Entonces, como $n-\lfloor n/2 \rfloor \geq \lfloor n/2 \rfloor > M$

$$n! = n(n-1) \cdots 1 > n(n-1) \cdots (n-\lfloor n/2 \rfloor)$$

$$> \underbrace{M \cdots M}_{\lfloor n/2 \rfloor - \text{veces}}$$

$$\geq M^{\lfloor n/2 \rfloor}$$

$$> M^{n/3}$$

Luego

$$\frac{1}{R} := \limsup_{n \to \infty} (1/n!)^{1/n} \le \lim_{n \to \infty} \left(\frac{1}{M^{n/3}}\right)^{1/n} = \frac{1}{\sqrt[3]{M}}$$

Como M es arbitrario, haciendo $M \to \infty$ vemos que el radio de convergencia de la serie $\sum_{n=0}^{\infty} \frac{1}{n!} z^n$ es $R = \infty$.

Teorema 2. Consideremos la serie:

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n,$$

Entonces:

- 1. Si $|z z_0| < R$, la serie converge absolutamente en z.
- 2. Si $|z-z_0| > R$, la serie diverge.
- 3. Si $|z z_0| = R$, no se afirma nada.

Dem. Se puede suponer sin perdida de generalidad $z_0=0$. Supongamos $0 < R < \infty$. Sea L=1/R y tomemos $\varepsilon>0$ pequeño. Como

$$\lim_{n \to \infty} \sup\{|a_n|^{1/n}, |a_{n+1}|^{1/n+1}, \ldots\} = L$$

para n_0 suficientemente grande

$$\sup\{|a_n|^{1/n}, |a_{n+1}|^{1/n+1}, \ldots\} < L + \varepsilon.$$

Así

$$|a_n|^{1/n} < L + \varepsilon$$
 para $n \ge n_0$.

Elijamos $0 < r < 1/(L + \varepsilon) < 1/L = R$. Si |z| < r entonces

$$|a_n||z|^n < (L+\varepsilon)^n r^n$$
 para $n \ge n_0$.

Pero $r(L+\varepsilon)<1$. La desigualdad de arriba y el teorema de comparación (notar que el miembro de la derecha forma una serie geométrica) implican que la serie converge absolutamente para este z. Como epsilon es arbitrario, dado cualquier z, con |z|<1, tenemos un ε lo suficientemente chico para que $|z|<1/(L+\varepsilon)$.

Ejercicio 1. Demostrar los casos R = 0, $R = \infty$ y el segundo inciso.

Teorema 3. La función

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

es diferenciable dentro en $\{z: |z-z_0| < R\}$. Además

$$f'(z) = g(z) := \sum_{n=1}^{\infty} na_n(z - z_0)^{n-1},$$

teniendo esta serie el mismo radio de convergencia que el de f.

Dem. Nuevamente supondremos $z_0=0$. La afirmación sobre el radio de convergencia es consecuencia de que $\lim_{n\to\infty} n^{1/n}=1$. Como el radio R' de convergencia de g es:

$$\frac{1}{R'} = \limsup_{n \to \infty} |a_{n+1}(n+1)|^{1/(n+1)}$$

$$= \lim_{n \to \infty} \sup_{n \to \infty} |a_{n+1}|^{1/(n+1)} \lim_{n \to \infty} |(n+1)|^{1/(n+1)}$$

$$= \limsup_{n \to \infty} |a_{n+1}|^{1/(n+1)} = \frac{1}{R}$$

Ahora veamos que f es holomorfa y f' = g. Sea 0 < r < R, $|z_0| < r$ y $N \in \mathbb{N}$. Pongamos:

$$f(z) = S_N(z) + E_N(z),$$

$$S_N(z) = \sum_{n=0}^N a_n z^n \quad \text{y} \quad E_N(z) = \sum_{n=N+1}^\infty a_n z^n$$

Tomemos $|h| < r - |z_0|$, así $|z_0 + h| < r$. Tenemos

$$\frac{f(z_0 + h) - f(z_0)}{h} - g(z_0) = \frac{S_N(z_0 + h) - S_N(z_0)}{h} - S'_N(z_0) + S'_N(z_0) - g(z_0) + \frac{E_N(z_0 + h) - E_N(z_0)}{h}$$

Ahora si $\varepsilon > 0$

$$\left| \frac{E_N(z_0 + h) - E_N(z_0)}{h} \right| \le \sum_{n=N+1}^{\infty} |a_n| \left| \frac{(z_0 + h)^n - z_0^n}{h} \right|$$

$$= \sum_{n=N+1}^{\infty} |a_n| (|z_0|^{n-1} + |z_0|^{n-2}h + \dots + h^{n-1})$$

$$\le 2 \sum_{n=N+1}^{\infty} |a_n| nr^{n-1} < \varepsilon$$

Para N suficientemente grande. Además como $S_N'(z) \to g(z)$ cuando $N \to \infty$ podemos elegir, a su vez, N suficientemente grande para que

$$|S_N'(z_0) - g(z_0)| < \varepsilon$$

Fijemos un N que satisfaga las condiciones anteriores. Ahora podemos encontrar $\delta>0$ para que $|h|<\delta$ cumpla que

$$\left|\frac{S_N(z_0+h)-S_N(z_0)}{h}-S_N'(z_0)\right|<\varepsilon.$$

Esto muestra que $f'(z_0) = g(z_0)$ y por consiguiente f es derivavble.

Corolario 4. Una serie de potencias es infinitamente diferenciable. Las sucesivas derivadas se obtienen derivando término a término la serie. El radio de convergencia se conserva.

Ejemplo 8. Hemos visto que la serie:

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$$

tiene radio de convergencia infinito y por ende converge en \mathbb{R} . Ahora vemos que

$$f'(z) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} z^{n-1} = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$$

Luego f resuelve la simple ecuación diferencial f'(z)=f(z). La misma ecuación es resuelta por $g(z)=e^z$. Además f(0)=g(0)=1. Por el Teorema de existencia y unicidad f(z)=g(z) para todo z. Hemos probado la importante fórmula.

$$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n \tag{1}$$

1.4. Funciones analíticas

Definición 4. Una función $f:\Omega\subset\mathbb{R}\to\mathbb{R}$ se dirá analítica si para cada $z_0\in\Omega$, existe un R y $a_n\in\mathbb{R}$, tal que vale la igualdad:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
, para $|z - z_0| < R$

Ejercicio 2. Si f es analítica tenemos la siguiente fórmula

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

para los coeficientes a_n .

2. Solución de EDO mediante series de potencias. Puntos Ordinarios

2.1. Método coeficientes indeterminados

Dada una EDO

(1)
$$F(x, y, y', \dots, y^{(n)}) = 0$$
 (2)

queremos encontrar el desarrollo en series de potencias de la solución general a esta ecuación. El método que estudiaremos se denomina metodo de los coeficientes indeterminados. Consiste en proponer el desarrollo en serie de la solución

$$y(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots$$

remplazar y(x) por este desarrollo en en la ecuación (1) y tratar de resolver la ecuación resultante para los coeficientes (indeterminados) a_n . El método suele funcionar en algunas ecuaciones. Desarrollemos un ejemplo.

Ejemplo 9. Hallar el desarrollo en serie de la solución del siguiente pvi

$$\begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

La solución es bien sabido que es $y(x)=e^x$, pero pretendemos reencontrarla por el método expuesto. Escribimos

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

$$y' = a_1 + 2a_2 x + 3a_3 x^2 + \dots + (n+1)a_{n+1} x^n + \dots$$

La igualdad y' = y implica que

$$a_1 = a_0$$

$$a_2 = \frac{a_1}{2}$$

$$a_3 = \frac{a_2}{3}$$

$$\vdots$$

$$a_{n+1} = \frac{a_n}{n+1}$$

Si iteramos la fórmula $a_{n+1} = a_n/(n+1)$, obtenemos

$$a_n = \frac{1}{n}a_{n-1} = \frac{1}{n(n-1)}a_{n-2} = \dots = \frac{1}{n(n-1)\dots 1}a_0 = \frac{a_0}{n!}.$$

Pero $a_0 = y(0) = 1$. Luego

$$a_n = \frac{1}{n!} \tag{3}$$

La expresión $a_{n+1}=\frac{a_n}{n+1}$ es un ejemplo de relación de recurrencia.

Definición 5. Una relación de recurrencia para una sucesión b_n de números reales es una sucesión de funciones $f_n:\mathbb{R}^n\to\mathbb{R}$ que relaciona b_{n+1} con los términos anteriores de la sucesión por medio de la expresión

$$b_{n+1} = f_n(b_1, \dots, b_n) \tag{4}$$

Resolver una relación de recurrencia es encontrar una fórmula explícita de b_n como función de n.