

Google Cloud Community Day 2023

Introduction to Graph Data Science

Dr. Yogesh Haribhau Kulkarni

Al Coach

Hello! I am Yogesh Kulkarni

- 20+ years in CAD/Engineering software development
- Got Bachelors, Masters and Doctoral degrees in Mechanical Engineering (specialization: Geometric Modeling Algorithms).
- Currently doing Coaching in fields such as Data Science, Artificial Intelligence Machine-Deep Learning (ML/DL) and Natural Language Processing (NLP).

Feel free to follow me at:

- LinkedIn (www.linkedin.com/in/yogeshkulkarni/)
- Medium (yogeshharibhaukulkarni.medium.com)

1.

What are Graphs?

First, one disclaimer

This is a graph

Everything is Naturally Connected

Networks of People

Employees, Customers, Suppliers, Partners, Influencers, etc.

Transaction Networks

Risk management, Supply chain, Orders, Payments, etc.

Knowledge Networks

Enterprise content, Domain specific content, eCommerce content, etc

Take advantage of

- graphs to capture the network structure
- graph queries to store and retrieve relationships
- graph algorithms to infer relationships

What is data science?

"Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from structured and unstructured data." - Wikipedia

Mark Needham - Intro to Graph Data Science with Neo4j

What is GRAPH data science?

Graph Data Science is a science-driven approach to gain knowledge from the relationships and structures in data, typically to power predictions.

Data scientists use relationships to answer questions.

What's different?

- Separate vs related
- Fixed vs variable size

Static approach

Discrete data, as represented in a relational database

Connected approach, or "graph"

Data represented as network in a "graph"-structure

Graphs enrich all stages of Data Science

Knowledge Graphs

Graph Feature Engineering and Graph ML Graph Analytics, Investigations and Counterfactuals Integrations and Knowledge Graphs for Heuristic Al

Graph Data Science Applications

Disambiguation & Segmentation

Personalized Recommendations

Life Sciences

Churn Prediction

Search & Master Data Mgmt.

Predictive Maintenance

Cybersecurity

Google Developer Groups

Section 1/3

Find the patterns you're looking for in connected data **Graph Algorithms**

Use unsupervised machine learning techniques to identify associations.

Use embeddings to learn the features in your graph that you don't even know are important yet.

Train supervise ML models to predict links, labels, and missing data.

Knowledge Graph - Building Blocks

Node

Represents an entity in the graph

Relationship

Connect nodes to each other

Property

Describes a node or relationship: e.g. name, age, weight etc

Database, Query Language and Visualization

GRAPH QUERIES

MATCH (a)-[:KNOWS]->(b)
RETURN b.name
UNION ALL
MATCH (a)-[:LOVES]->(b)
RETURN b.name

CYPHER

https://neo4j.com/developer/cypher/

GRAPH VISUALIZATION

What can you do with a knowledge graph?

Financial Domain

How many flagged accounts are in the applicant's network 4+ hops out?

How many login / account variables in common?

Add these metrics to your approval process

Life Sciences

What completes the connections from genes to diseases to targets?

What genes can be reached 4+ hops out from a known drug target?

What mechanisms in common are there between two drugs?

Marketing and Recommendations

Collaborative filtering: users who bought X, also bought Y (openended pattern matching)

What items make you more likely to buy additional items in subsequent transactions?

Traverse hierarchies - what items are similar 4+ hops out?

Google Developer Groups

Section 2/3

Find the patterns you're looking for in connected data/

Graph Algorithms

Use unsupervised machine learning techniques to identify associations.

Use embeddings to learn the features in your graph that you don't even know are important yet.

Train supervise ML models to predict links, labels, and missing data.

Graph Algorithm types

E.g. influencers

in the network

E.g. hidden links between two points

Similarity

E.g. finding common entities based on graph properties

Mark Needham - Intro to Graph Data Science with Neo4j

E.g. shortest

path between

two points

.

Graph Algorithms

Pathfinding & Search

- Shortest Path
- Single-Source Shortest Path
- All Pairs Shortest Path
- A* Shortest Path
- · Yen's K Shortest Path
- Minimum Weight Spanning Tree
- K-Spanning Tree (MST)
- Random Walk
- **Breadth & Depth First Search**

Centrality & **Importance**

- Degree Centrality
- · Closeness Centrality
- · Harmonic Centrality
- Betweenness Centrality & Approx.
- PageRank
- · Personalized PageRank
- ArticleRank
- **Eigenvector Centrality**
- Hyperlink Induced Topic Search (HITS)
- Influence Maximization (Greedy, CELF)

Community Detection

- · Triangle Count
- K-Means Local Clustering Coefficient
- Connected Components (Union Find)
- · Strongly Connected Components
- · Label Propagation
- Louvain Modularity
- K-1 Coloring
- Modularity Optimization
- Speaker Listener Label Propagation

Supervised Machine Learning

- Node Classification
- Link Prediction
- **Node Regression**

... and more!

- Synthetic Graph Generation
- Collapse Paths
- One Hot Encoding
- Split Relationships

Scale Properties

- Graph Export
- Pregel API (write your own algos)

Heuristic Link Prediction

- · Adamic Adar
- Common Neighbors
- Preferential Attachment
- Resource Allocations Same Community
- · Total Neighbors

Similarity

- Node Similarity
- K-Nearest Neighbors (KNN)
- Jaccard Similarity
- **Cosine Similarity**
- Pearson Similarity
- **Euclidean Distance**
- · Approximate Nearest Neighbors (ANN)

Graph **Embeddings**

- Node2Vec
- FastRP
- GraphSAGE

.

What are Graph Algorithms?

Section 3/3

Use graph features to learn the features in your graph that you don't even know are important yet.

Train supervise ML models to predict links, labels, and missing data.

Find the patterns you're looking for in connected data

Use unsupervised machine learning techniques to identify associations.

Relationship-Driven Al

- Traditional ML ignore network structure because it's difficult to extract
- Use the right data structures to store and retrieve relationships
- Add relationships to AI/ML pipelines to make them contextual and to unlock otherwise unattainable predictions

Graph Feature Engineering

Human-crafted query, human-readable result

MATCH (p1:Person)-[:ENEMY]->(:Person)<-[:ENEMY]-(p2:PERSON)
MERGE (p1)-[:FRIEND]->(p2)

Algorithms

Predefined formula, human-readable result

 $PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)}$ PageRank (Emil) = 13.25 PageRank (Amy) = 4.83 PageRank (Alicia) = 4.75

Embeddings

Al-learned formula, machine-readable result

Machine Learning Workflows

Train ML models based on results

Graph Machine Learning

The Only Completely In-Graph, ML Workflow

In-Graph Machine Learning

Labeled data: Pairs of nodes that are either linked or not **Features**: Pre-existing

attributes, algorithms (pageRank), embedding

f(x)

Node classification:

"What kind of node is this?"

Link prediction:

"Should there be a relationship between these nodes?"

Neo4j Graph Data Science Framework

What's available in GDS library?

Pathfinding & Search

- · Breadth/Depth First Search
- Shortest Path
- · Single-Source Shortest Path
- · All Pairs Shortest Path
- Minimum Spanning Tree
- A* Shortest Path
- · Yen's K Shortest Path
- K-Spanning Tree (MST)
- Random Walk

Similarity

- Node Similarity
- K-Nearest Neighbors
- Euclidean Distance
- · Cosine Similarity
- Jaccard Similarity
- Overlap Similarity
- · Pearson Similarity

- · Degree Centrality
- · Closeness Centrality
- CC Variations: Harmonic, Dangalchev, Wasserman & Faust
- · Betweenness Centrality
- PageRank
- · Personalized PageRank
- ArticleRank

Embeddings

Graph

Node Similarity

K-Nearest Neighbors

Euclidean Distance

Cosine Similarity

· Jaccard Similarity

Overlap Similarity

Pearson Similarity

· Eigenvector Centrality

Link Prediction

- · Adamic Adar
- · Common Neighbors
- · Preferential Attachment
- · Resource Allocations
- Same Community
- Total Neighbors

- Community
 Detection
 - Triangle Count
 - · Clustering Coefficients
 - · Weakly Connected Components
 - · Strongly Connected Components
 - · Label Propagation
 - · Louvain Modularity
 - K1 coloring
 - · Modularity optimization

...and also:

- · Random graph generation
- · One hot encoding
- · Machine learning models
 - Node Classification
 - Link Prediction

Mark Needham - Intro to Graph Data Science with Neo4j

.

GDS syntax

```
CALL gds[.<tier>].<algorithm>.<execution-mode>[.<estimate>](
    graphName: STRING,
    configuration: MAP
)
```

- <tier> tier of support
- <algorithm> name of algorithm to execute
- <execution-mode> how to run the algorithm: write/stream/stats
- <estimate> estimate the memory requirements of the algorithm

Mark Needham - Intro to Graph Data Science with Neo4j

Where do I find the GDS library?

neo4j.com/developer/neo4j-desktop/

Mark Needham - Intro to Graph Data Science with Neo4j

Where do I find the GDS library?

- Download from: neo4j.com/download-center
- Documentation: neo4j.com/docs/graph-data-science/1.5

What Next?

- dev.neo4j.com/learn
- dev.neo4j.com/datasets

- dev.neo4j.com/sandbox
- github.com/neo4j

connect with the community:

- dev.neo4j.com/chat
- dev.neo4j.com/forum
- dev.neo4j.com/newsletter

Next developer events

- Live Streams Weekly & Online
- Local Meetups neo4j.com/events

Google Developer Groups Cloud • Pune

Continue your graph journey with Graph Academy

What is Graph Academy?

Free, Self-Paced, Hands-on Online Training to help you learn how to build, optimize and launch your Neo4j project, all from the Neo4j experts.

What's more?

2 free certifications designed to test you on your overall knowledge of Neo4j:

- Neo4j Graph Data Science Certification
- Neo4j Certified Professional

Interested? For more information visit: www.graphacademy.neo4j.com

neo4j (nodes 23

Beginner to Expert. It All Connects Here.

October 26, 2023

Save the Date

References

- Neo4j Graph Data Science Alison Cossette
- Neo4j supplied presentations: Graph Databases, Cypher.
- "an introduction to neo4j (graph database tutorial for beginners)" Chris Hay
- CIS 6930 Advanced Databases Neo4j
- Learning Neo4j" Wabri/LearningNeo4j Github
- Neo4J Certification Sample Questions https://wiki.glitchdata.com/index.php/Neo4J_Certification
- Neo4j Certified Professional: Exam Practice Tests By Cristian Scutaru
- "Graph Data Science with Neo4j Graph Algorithms Will Lyon" Youtube
- "Mark Needham Intro to Graph Data Science with Neo4j" Youtube
- "THE POWER OF "GRAPH DATA SCIENCE" using Neo4j" Youtube
- "Using Neo4j Graph Data Science in Python to Improve Machine Learning Models" -Tomaz Bratanic
- "Graph Data Science for Supply Chains Part 1" Zach Blumenfeld

Thank You!

yogeshkulkarni@yahoo.com

