

Can Learned Indexes be Built Efficiently? A Deep Dive into Sampling Trade-offs

Minguk Choi, Seehwan Yoo, and Jongmoo Choi

{mgchoi, seehwan.yoo, jmchoi}@dankook.ac.kr

Background

Learned Index Structure

- Index structure employs machine learning techniques
- View the index as a model that predicts the position of a key

Performance of Learned Index: Space-efficient

Pareto optimal in terms of index size and lookup latency in read-only

Dankook University, South Korea

No alternative exists that has both a smaller size and lower latency

Motivation

Long Index Build Time

- Up to about 2,000x slower than traditional indexes
- But still there are application where index build time is crucial (e.g., LSM-tree)

Why Building the Learned Index is Slow?

Index build time = 1) Number of elements \times 2) Per – element overhead

- Complete traversal and training
- Higher per-element training overhead
 - Light-weight training model: RadixSpline (aiDM`20), Bourbon (OSDI`20) > But it's still longer than traditional indexes
- This study began with the question ...

Since the learned index uses the model,

Can't it learn efficiently even with less data?

Design

Our Approach: Sampling

Challenges

- 1. Losing the error-bound property due to sampling loss
- 2. Complex trade-offs in terms of model, index, and microarchitecture
- 3. Absence of benchmark for sampling applied indexes

1. Error-bound Preserving Sample Learning Algorithm

- EB-PLA (Error-bounded Piece-wise Linear Approximation) Model
 - (a) Train all keys with error-bound ε $\rightarrow \forall k, Error(k) \leq \varepsilon$
 - (b) Train sample I^{th} keys with the error-bound ε $\forall k, Error(k) \leq \varepsilon$
- Sample EB-PLA Algorithm
 - Refine the error-bound due to sampling loss $\rightarrow \forall k, Error(k) \leq \varepsilon' (= \varepsilon + I - 1)$
 - Preserve the error-bound property
 - Replace the sample learning error-bound to $\delta (= \varepsilon - I + 1) \rightarrow \forall k, Error(k) \leq \varepsilon$
 - \triangleright Preserve the error-bound (ε) by learning less data with smaller & stricter error-bound (δ)
- Sample EB-Histogram
- PLR with Simple Linear Regression

2. Internal Changes due to Sampling

- Dynamic Segmentation (Key range of each segment is different)
 - Aggressive sampling can increase the number of segments
- Fixed Segmentation (Key range of each segment is equal)
- + Constant Segment

Aggressive sampling can increase the number of under-fitting segments

3. Unified Sampling Algorithm& Implementation

BASIL (Benchmark of Sampling Applied Learned Indexes)

- Unified Sampling Algorithm: Systematic Sampling
 - Extract every I^{th} key form first to last key (I=sampling interval)
- Unified Sampling Implementation
 - Index access and train only sample key-value data from entire dataset

Error bound ($\varepsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \varepsilon \leq 2^{16})$)

Index: sPGM (Sample EB-PLA), Dataset: History

(b) sPGM

Evaluation

(a) Simple Linear Regression (I = 1)

1. Sampling Trade-offs

- Sampling interval (I) \rightarrow (a) build time \downarrow
- Each error-bound (ε) has threshold interval (I^{TH})
- Until I^{TH} , (b-i) rest of metrics remain consistent
- After I^{TH}
 - # of segments 1
 - \rightarrow (b) Size \uparrow , (d) Height \uparrow
 - \rightarrow (e) Pred. cache miss \uparrow ,
 - (f) Pred. latency 1 After I^{TH} ,
 - # of segments $\uparrow \rightarrow$ (g) MSE $\downarrow \rightarrow$ (h) Corr. cache miss \downarrow , (i) Corr. latency \downarrow

2. Design Space of Learned Indexes

Without sampling, absence of trade-offs between build, size, and lookup

Sampling introduce trade-offs between build, size, and lookup

Broaden design space of learned indexes from 2D to 3D

3. Build Speed-up

Explore Safe down-sampling, where size & lookup latency increased by less than 5%

Max build speedup without performance loss > sRMI: 1/44,514, sPGM: 1/40,781, sRS: 1/14,479

4. Pareto Analysis

- Can learned indexes be built more efficiently in terms of build time and lookup latency than traditional indexes through sampling?
- To the best of our knowledge, this is first to show that learned indexes are also Pareto optimal in terms of build time and (average and tail) lookup latency

