Wyznaczanie ładunku właściwego elektronu metodą poprzecznego pola magnetycznego (lampa Thomsona)

1 Wstęp teoretyczny

1.1 Promieniowanie beta

Promieniowanie beta¹ to strumień elektronów lub pozytonów, emitowany przez jądra atomowe podczas przemiany jądrowej. Jest jednym z rodzajów promieniowania jonizującego emitowanego oraz jest bardziej przenikliwe od promieniowania alfa(przenikliwe czyli zdolne do przenikania przez różne materiały). Energia promieniowania jest zależna od rodzaju źródła, a zasięg promieniowania dodatkowo od gęstości substancji absorbującej.

Przykładowe źródła promieniowania beta:

- promieniowanie sztucznych jądrach promieniotwórczych powstających podczas reakcji jądrowych
- rozpad izotopu sodu 22Na

1.2 Absorpcja promieniowania beta

Absorpcja promieniowania beta² jest to proces pochłaniania promieniowania przez substancję. Oddziaływanie promieniowania beta z materią powoduje straty energii cząstek beta oraz zmianę toru ich ruchu.

Zasięg masowy promieniowania³ jest zależny od energii cząsteczek beta, czyli od zasięgu maksymalnego dla danego izotopu pierwiastka promieniotwórczego oraz od współczynnika pochłaniania absorbującej materii.

¹https://pl.wikipedia.org/wiki/Promieniowanie_beta, z dnia: 25.05.2017

²https://pl.wikipedia.org/wiki/Absorpcja_promieniowania_beta, z dnia: 25.05.2017

https://pl.wikipedia.org/wiki/Oslona_przed_promieniowaniem, z dnia: 25.05.2017