Analytical Solutions to the Navier-Stokes

Equations

Yuen Manwai*

Department of Applied Mathematics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

Revised 20-Feb-2009

Abstract

With the previous results for the analytical blowup solutions of the N-dimensional ($N \geq 2$) Euler-Poisson equations, we extend the similar structure to construct an analytical family of solutions for the isothermal Navier-Stokes equations and pressureless Navier-Stokes equations with density-dependent viscosity.

1 Introduction

The Navier-Stokes equations can be formulated in the following form:

$$\begin{cases} \rho_t + \nabla \cdot (\rho u) = 0, \\ (\rho u)_t + \nabla \cdot (\rho u \otimes u) + \delta \nabla P = vis(\rho, u). \end{cases}$$
 (1)

As usual, $\rho = \rho(x,t)$ and u(x,t) are the density, the velocity respectively. $P = P(\rho)$ is the pressure. We use a γ -law on the pressure, i.e.

$$P(\rho) = K\rho^{\gamma},\tag{2}$$

^{*}E-mail address: nevetsyuen@hotmail.com

with K > 0, which is a universal hypothesis. The constant $\gamma = c_P/c_v \ge 1$, where c_p and c_v are the specific heats per unit mass under constant pressure and constant volume respectively, is the ratio of the specific heats. γ is the adiabatic exponent in (2). In particular, the fluid is called isothermal if $\gamma = 1$. It can be used for constructing models with non-degenerate isothermal fluid. δ can be the constant 0 or 1. When $\delta = 0$, we call the system is pressureless; when $\delta = 1$, we call that it is with pressure. And $vis(\rho, u)$ is the viscosity function. When $vis(\rho, u) = 0$, the system (1) becomes the Euler equations. For the detailed study of the Euler and Navier-Stokes equations, see [1] and [4]. In the first part of this article, we study the solutions of the N-dimensional $(N \ge 1)$ isothermal equations in radial symmetry:

$$\begin{cases}
\rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \\
\rho(u_t + uu_r) + \nabla K\rho = vis(\rho, u).
\end{cases}$$
(3)

Definition 1 (Blowup) We say a solution blows up if one of the following conditions is satisfied:

(1) The solution becomes infinitely large at some point x and some finite time T;

(2) The derivative of the solution becomes infinitely large at some point x and some finite time T.

For the formation of singularity in the 3-dimensional case for the Euler equations, please refer the paper of Sideris [10]. In this article, we extend the results form the study of the (blowup) analytical solutions in the N-dimensional ($N \ge 2$) Euler-Poisson equations, which describes the evolution of the gaseous stars in astrophysics [2], [3], [7], [12] and [13], to the Navier-Stokes equations. For the similar kinds of blowup results in the non-isothermal case of the Euler or Navier-Stokes equations, please refer [5] and [12].

Recently, Yuen's results in [13], there exists a family of the blowup solution for the Euler-Poisson equations in the 2-dimensional radial symmetry case,

$$\begin{cases}
\rho_t + u\rho_r + \rho u_r + \frac{1}{r}\rho u = 0, \\
\rho(u_t + uu_r) + K\rho_r = -\frac{2\pi\rho}{r} \int_0^r \rho(t, s) s ds.
\end{cases}$$
(4)

The solutions are

$$\begin{cases}
\rho(t,r) = \frac{1}{a(t)^2} e^{y(r/a(t))}, \ u(t,r) = \frac{\dot{a}(t)}{a(t)} r; \\
\ddot{a}(t) = -\frac{\lambda}{a(t)}, \ a(0) = a_0 > 0, \ \dot{a}(0) = a_1; \\
\ddot{y}(x) + \frac{1}{x} \dot{y}(x) + \frac{2\pi}{K} e^{y(x)} = \mu, \ y(0) = \alpha, \ \dot{y}(0) = 0,
\end{cases} (5)$$

where K > 0, $\mu = 2\lambda/K$ with a sufficiently small λ and α are constants.

- (1) When $\lambda > 0$, the solutions blow up in a finite time T;
- (2) When $\lambda = 0$, if $a_1 < 0$, the solutions blow up at $t = -a_0/a_1$.

In this paper, we extend the above result to the isothermal Navier-Stokes equations in radial symmetry with the usual viscous function

$$vis(\rho, u) = v\Delta u,$$

where v is a positive constant:

$$\begin{cases}
\rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \\
\rho(u_t + uu_r) + K\rho_r = v(u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u),
\end{cases}$$
(6)

Theorem 2 For the N-dimensional isothermal Navier-Stokes equations in radial symmetry (6), there exists a family of solutions, those are:

$$\begin{cases}
\rho(t,r) = \frac{1}{a(t)^{N}} e^{y(r/a(t))}, u(t,r) = \frac{\dot{a}(t)}{a(t)} r, \\
\ddot{a}(t) = \frac{-\lambda}{a(t)}, a(0) = a_0 > 0, \dot{a}(0) = a_1, \\
y(x) = \frac{\lambda}{2K} x^2 + \alpha,
\end{cases}$$
(7)

where α and λ are arbitrary constants.

In particular, for $\lambda > 0$, the solutions blow up in finite time T.

In the last part, the corresponding solutions to the pressureless Navier-Stokes equations with density-dependent viscosity is also studied.

2 The Isothermal $(\gamma = 1)$ Cases

Before we present the proof of Theorem 2, the Lemma 6 of [13] could be needed to further extended to the N-dimensional space.

Lemma 3 (The Extension of Lemma 6 of [13]) For the equation of conservation of mass in radial symmetry:

$$\rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \tag{8}$$

there exist solutions,

$$\rho(t,r) = \frac{f(r/a(t))}{a(t)^N}, \ u(t,r) = \frac{\dot{a}(t)}{a(t)}r, \tag{9}$$

 $\ \, \text{with the form} \,\, f \geq 0 \in C^1 \,\, \text{and} \,\, a(t) > 0 \in C^1.$

Proof. We just plug (9) into (8). Then

$$\begin{split} & \rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u \\ & = \frac{-N\dot{a}(t)f(r/a(t))}{a(t)^{N+1}} - \frac{\dot{a}(t)r\dot{f}(r/a(t))}{a(t)^{N+2}} \\ & + \frac{\dot{a}(t)r}{a(t)}\frac{\dot{f}(r/a(t))}{a(t)^{N+1}} + \frac{f(r/a(t))}{a(t)^{N}}\frac{\dot{a}(t)}{a(t)} + \frac{N-1}{r}\frac{f(r/a(t))}{a(t)^{N}}\frac{\dot{a}(t)}{a(t)}r \\ & = 0. \end{split}$$

The proof is completed.

Besides, the Lemma 7 of [13] is also useful. For the better understanding of the lemma, the proof is given here.

Lemma 4 (lemma 7 of [13]) For the Emden equation,

$$\begin{cases} \ddot{a}(t) = -\frac{\lambda}{a(t)}, \\ a(0) = a_0 > 0, \ \dot{a}(0) = a_1, \end{cases}$$
 (10)

we have, if $\lambda > 0$, there exists a finite time $T_{-} < +\infty$ such that $a(T_{-}) = 0$.

Proof. By integrating (10), we have

$$0 \le \frac{1}{2}\dot{a}(t)^2 = -\lambda \ln a(t) + \theta \tag{11}$$

where $\theta = \lambda \ln a_0 + \frac{1}{2}a_1^2$.

From (11), we get,

$$a(t) \le e^{\theta/\lambda}.$$

If the statement is not true, we have

$$0 < a(t) \le e^{\theta/\lambda}$$
, for all $t \ge 0$.

But since

$$\ddot{a}(t) = -\frac{\lambda}{a(t)} \le \frac{-\lambda}{e^{\theta/\lambda}},$$

we integrate this twice to deduce

$$a(t) \le \int_0^t \int_0^\tau \frac{-\lambda}{e^{\theta/\lambda}} ds d\tau + C_1 t + C_0 = \frac{-\lambda t^2}{2e^{\theta/\lambda}} + C_1 t + C_0.$$

By taking t large enough, we get

As a contradiction is met, the statement of the Lemma is true.

By extending the structure of the solutions (5) to the 2-dimensional isothermal Euler-Poisson equations (4) in [13], it is a natural result to get the proof of the Theorem 2.

Proof of Theorem 2. By using the Lemma 3, we can get that (7) satisfy $(6)_1$. For the momentum equation, we have,

$$\rho(u_t + u \cdot u_r) + K\rho_r - v(u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u)$$

$$= \rho \frac{\ddot{a}(t)}{a(t)}r + \frac{K}{a(t)}\rho \dot{y}(\frac{r}{a(t)})$$

$$= \frac{\rho}{a(t)} \left[-\frac{\lambda r}{a(t)} + K\dot{y}(\frac{r}{a(t)}) \right].$$

By choosing

$$y(x) = \frac{\lambda}{2K}x^2 + \alpha,$$

we have verified that (7) satisfies the above (6)₂. If $\lambda > 0$, by the Lemma 4, there exists a finite time T for such that $a(T_{-}) = 0$. Thus, there exist blowup solutions in finite time T. The proof is completed.

With the assistance of the blowup rate results of the Euler-Poisson equations i.e. Theorem 3 in [13], it is trivial to have the following theorem:

Theorem 5 With $\lambda > 0$, the blowup rate of the solutions (7) is,

$$\lim_{t \to T_*} \rho(t, 0) (T_* - t)^{\alpha} \ge O(1),$$

where the blowup time T_* and $\alpha < N$ are constants.

Remark 6 If we are interested in the mass of the solutions, the mass of the solutions can be calculated by:.

$$M(t) = \int_{\mathbb{R}^N} \rho(t, s) ds = \alpha(N) \int_0^{+\infty} \rho(t, s) s^{N-1} ds,$$

where $\alpha(N)$ denotes some constant related to the unit ball in \mathbb{R}^N : $\alpha(1) = 1$; $\alpha(2) = 2\pi$; for $N \geq 3$,

$$\alpha(N) = N(N-2)V(N) = N(N-2)\frac{\pi^{N/2}}{\Gamma(N/2+1)},$$

where V(N) is the volume of the unit ball in \mathbb{R}^N and Γ is the Gamma function. We observe that the mass of the initial time 0:

(1) for $\lambda \geq 0$

$$M(0) = \frac{\alpha(N)}{a_0^N} \int_0^{+\infty} e^{\frac{\lambda}{2K}s^2 + \alpha} s^{N-1} ds.$$

The mass is infinitive. The very large density comes from the ends of outside of the origin O.

(2) for $\lambda < 0$,

$$M(0) = \frac{\alpha(N)}{a_0^N} \int_0^{+\infty} e^{\frac{\lambda}{2K}s^2 + \alpha} s^{N-1} ds = \frac{\alpha(N)e^{\alpha}}{a_0^N} \int_0^{+\infty} e^{\frac{\lambda}{2K}s^2} s^{N-1} ds.$$

The mass of the solution can be arbitrarily small but without compact support if α is taken to be a very small negative number.

Remark 7 Our results can be easily extended to the isothermal Euler/Navier-Stokes equations with frictional damping term with the assistance of Lemma 7 in [12]:

$$\begin{cases} \rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \\ \rho(u_t + u \cdot u_r) + K\rho_r + \beta \rho u = v(u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u), \end{cases}$$

where $\beta \geq 0$ and $v \geq 0$.

The solutions are:

$$\begin{cases} \rho(t,r) = \frac{e^{y(r/a(t))}}{a(t)^{N}}, u(t,r) = \frac{\dot{a}(t)}{a(t)}r, \\ \ddot{a}(t) + \beta \dot{a}(t) = \frac{-\lambda}{a(t)}, a(0) = a_0 > 0, \dot{a}(0) = a_1, \\ y(x) = \frac{\lambda}{2K}x^2 + \alpha. \end{cases}$$

Remark 8 Our results can be easily extended to the isothermal Euler/Navier-Stokes equations

with frictional damping term with the assistance of Lemma 7 in [12]:

$$\begin{cases} \rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \\ \rho(u_t + u \cdot u_r) + K\rho_r + \beta \rho u = v(u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u) \end{cases}$$

where $\beta \geq 0$ and $v \geq 0$.

The solutions are:

$$\begin{cases} \rho(t,r) = \frac{e^{y(r/a(t))}}{a(t)^N}, u(t,r) = \frac{\dot{a}(t)}{a(t)}r, \\ \ddot{a}(t) + \beta \dot{a}(t) = \frac{-\lambda}{a(t)}, a(0) = a_0 > 0, \dot{a}(0) = a_1, \\ y(x) = \frac{\lambda}{2K}x^2 + \alpha. \end{cases}$$

Remark 9 The solutions (5) to the Euler-Poisson equations only work for the 2-dimensional case. But the solutions (7) to the Navier-Stokes equations work for the N-dimensional $(N \ge 1)$ case.

Remark 10 We may extend the solutions to the 2-dimensional Euler/Navier-Stokes equations with a solid core [6]:

$$\begin{cases} \rho_t + u\rho_r + \rho u_r + \frac{1}{r}\rho u = 0, \\ \rho(u_t + uu_r) + K\rho_r + \beta\rho u = \frac{M_0}{r} + v(u_{rr} + \frac{1}{r}u_r - \frac{1}{r^2}u), \end{cases}$$

where $M_0 > 0$, there is a unit stationary solid core locating $[0, r_0]$, where r_0 is a positive constant, surrounded by the distribution density.

The corresponding solutions are:

$$\begin{cases} \rho(t,r) = \frac{e^{y(r/a(t))}}{a(t)^2}, \ u(t,r) = \frac{\dot{a}(t)}{a(t)}r, \ for \ r > r_0, \\ \ddot{a}(t) + \beta \dot{a}(t) = \frac{-\lambda}{a(t)}, \ a(0) = a_0 > 0, \dot{a}(0) = a_1, \\ y(x) = \frac{\lambda}{2K}x^2 + M_0 \ln x + \alpha, \end{cases}$$

where $\alpha > \frac{-\lambda}{2K}$ is a constant.

3 Pressureless Navier-Stokes Equations with Density-dependent Viscosity

Now we consider the pressureless Navier-Stokes equations with density-dependent viscosity:

$$vis(\rho, u) \doteq \nabla(\mu(\rho) \nabla \cdot u),$$

in radial symmetry:

$$\begin{pmatrix}
\rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \\
\rho(u_t + uu_r) = (\mu(\rho))_r (\frac{N-1}{r}u + u_r) + \mu(\rho)(u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u),
\end{pmatrix} (12)$$

where $\mu(\rho)$ is a density-dependent viscosity function, which is usually written as $\mu(\rho) \doteq \kappa \rho^{\theta}$ with the constants κ , $\theta > 0$. For the study of this kind of the above system, the readers may refer [8][9][11].

We can obtain the similar estimate about Lemma 4 to the following ODE,

$$\begin{cases} \ddot{a}(t) = \frac{\lambda \dot{a}(t)}{a(t)^2}, \\ a(0) = a_0 > 0, \ \dot{a}(0) = a_1 \le \frac{\lambda}{a_0}. \end{cases}$$
 (13)

Lemma 11 For the ODE (13), with $\lambda > 0$, there exists a finite time $T_- < +\infty$ such that $a(T_-) = 0$.

Proof. (1) If a(t) > 0 and $\dot{a}(0) = a_1 \le \frac{\lambda}{a_0}$ for all time t, by integrating (13), we have

$$\dot{a}(t) = -\frac{\lambda}{a(t)} - \frac{\lambda}{a_0} + a_1 \le -\frac{\lambda}{a(t)}.$$
(14)

Take the integration for (14):

$$\int_0^t a(s)\dot{a}(s)ds \le -\int_0^t \lambda ds,$$
$$\frac{1}{2}[a(t)]^2 \le -\lambda t + \frac{1}{2}a_0^2.$$

When t is very large, we have

$$\frac{1}{2}[a(t)]^2 \le -1.$$

A contradiction is met. The proof is completed.

Here we present another lemma before proceeding to the next theorem.

Lemma 12 For the ODE

$$\begin{cases} \dot{y}(x)y(x)^{n} - \xi x = 0, \\ y(0) = \alpha > 0, n \neq -1, \end{cases}$$
 (15)

where ξ and n are constants,

we have the solution

$$y(x) = \sqrt[n+1]{\frac{1}{2}(n+1)\xi x^2 + \alpha^{n+1}}.$$

Proof. The above ODE (15) may be solved by the separation method:

$$\dot{y}(x)y(x)^n - \xi x = 0,$$

$$\dot{y}(x)y(x)^n = \xi x.$$

By taking the integration with respect to x:

$$\int_0^x \dot{y}(x)y(x)^n dx = \int_0^x \xi x dx,$$

we have,

$$\int_0^x y(x)^n d[y(x)] = \frac{1}{2} \xi x^2 + C_1, \tag{16}$$

where C_1 is a constant.

By integration by part, then the identity becomes

$$y(x)^{n+1} - n \int_0^x y(x)^{n-1} \dot{y}(x) y(x) dx = \frac{1}{2} \xi x^2 + C_1,$$
$$y(x)^{n+1} - n \int_0^x \dot{y}(x) y(x)^n dx = \frac{1}{2} \xi x^2 + C_1.$$

From the equation (16), we can have the simple expression for y(x):

$$y(x)^{n+1} - n(\frac{1}{2}\xi x^2 + C_1) = \frac{1}{2}\xi x^2 + C_1,$$
$$y(x)^{n+1} = \frac{1}{2}(n+1)\xi x^2 + C_2,$$

where $C_2 = (n+1)C_1$.

By plugging into the initial condition for y(0), we have

$$y(0)^{n+1} = \alpha^{n+1} = C_2$$
.

Thus, the solution is:

$$y(x) = \sqrt[n+1]{\frac{1}{2}(n+1)\xi x^2 + \alpha^{n+1}}.$$

The proof is completed.

The family of the solution to the pressureless Navier-Stokes equations with density-dependent viscosity:

$$\begin{cases}
\rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \\
\rho(u_t + uu_r) = (\kappa \rho^{\theta})_r (\frac{N-1}{r}u + u_r) + \kappa \rho^{\theta} (u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u),
\end{cases}$$
(17)

is presented as the followings:

Theorem 13 For the pressureless Navier-Stokes equations with density-dependent viscosity (17) in radial symmetry, there exists a family of solutions,

for $\theta = 1$:

$$\begin{cases} \rho(t,r) = \frac{e^{y(r/a(t))}}{a(t)^{N}}, u(t,r) = \frac{\dot{a}(t)}{a(t)}r, \\ \ddot{a}(t) = \frac{\lambda \dot{a}(t)}{a(t)^{2}}, a(0) = a_{0} > 0, \dot{a}(0) = a_{1}, \\ y(x) = \frac{\lambda}{2N\kappa}x^{2} + \alpha, \end{cases}$$

where α and λ are arbitrary constants.

In particular, for $\lambda > 0$ and $a_1 \leq \frac{\lambda}{a_0}$, the solutions blow up in finite time;

for $\theta \neq 1$:

$$\begin{cases}
\rho(t,r) = \begin{cases}
\frac{y(r/a(t))}{a(t)^{N}}, & \text{for } y(\frac{r}{a(t)}) \ge 0; \\
0, & \text{for } y(\frac{r}{a(t)}) < 0
\end{cases}, \quad u(t,r) = \frac{\dot{a}(t)}{a(t)}r, \\
\ddot{a}(t) = \frac{-\lambda \dot{a}(t)}{a(t)^{N\theta - N + 2}}, \quad a(0) = a_{0} > 0, \quad \dot{a}(0) = a_{1}, \\
y(x) = \sqrt[\theta - 1]{\frac{1}{2}(\theta - 1)\frac{-\lambda}{N\kappa\theta}x^{2} + \alpha^{\theta - 1}},
\end{cases} (18)$$

where $\alpha > 0$.

Proof of Theorem 13. To $(17)_1$, we may use Lemma 3 to check it.

For $\theta = 1$, $(17)_2$, becomes:

$$\rho(u_t + u \cdot u_r) - (\kappa \rho)_r \left(\frac{N-1}{r}u + u_r\right) - \kappa \rho_r \left(u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u\right)$$

$$= \rho \frac{\ddot{a}(t)}{a(t)}r - N\left(\frac{\kappa e^{y(r/a(t))}}{a(t)^N}\right)_r \frac{\dot{a}(t)}{a(t)}$$

$$= \rho \left(\frac{\lambda \dot{a}(t)r}{a(t)^3}\right) - \frac{N\kappa e^{y(r/a(t))}\dot{y}\left(\frac{r}{a(t)}\right)}{a(t)^{N+1}} \frac{\dot{a}(t)}{a(t)}$$

$$= \frac{\rho \dot{a}(t)}{a(t)^2} \left(\frac{\lambda r}{a(t)} - N\kappa \dot{y}\left(\frac{r}{a(t)}\right)\right),$$

$$(19)$$

where we use

$$\ddot{a}(t) = \frac{\lambda \dot{a}(t)}{a(t)^2}.$$

By choosing

$$y(\frac{r}{a(t)}) \doteq y(x) = \frac{\lambda}{2N\kappa}x^2 + \alpha,$$

(19) is equal to zero.

For the case of $\theta \neq 1$, $(17)_2$ can be calculated:

$$\rho(u_{t} + u \cdot u_{r}) - (\kappa \rho^{\theta})_{r} \left(\frac{N-1}{r}u + u_{r}\right) - \kappa \rho^{\theta}(u_{rr} + \frac{N-1}{r}u_{r} - \frac{N-1}{r^{2}}u)$$

$$= \rho \left(-\frac{\lambda \dot{a}(t)r}{a(t)^{N\theta-N+2}a(t)}\right) - \frac{N\kappa\theta y(\frac{r}{a(t)})^{\theta-1}\dot{y}(\frac{r}{a(t)})}{a(t)^{N(\theta-1)}a(t)^{N+1}} \frac{\dot{a}(t)}{a(t)}$$

$$= \rho \left(-\frac{\lambda \dot{a}(t)r}{a(t)^{N\theta-N+2}a(t)}\right) - \frac{N\kappa\theta y(\frac{r}{a(t)})y(\frac{r}{a(t)})^{\theta-2}\dot{y}(\frac{r}{a(t)})\dot{a}(t)}{a(t)^{N\theta-N+2}}$$

$$= \rho \left(-\frac{\lambda \dot{a}(t)r}{a(t)^{N\theta-N+2}a(t)}\right) - \frac{N\kappa\theta\rho y(\frac{r}{a(t)})^{\theta-2}\dot{y}(\frac{r}{a(t)})\dot{a}(t)}{a(t)^{N\theta-N+2}}$$

$$= \frac{-\rho \dot{a}(t)}{a(t)^{N\theta-N+2}} \left(-\frac{\lambda r}{a(t)} + N\kappa\theta y(\frac{r}{a(t)})^{\theta-2}\dot{y}(\frac{r}{a(t)})\right).$$

$$(21)$$

Define $x \doteq \frac{r}{a(t)}$, $n \doteq \theta - 2$, it follows:

$$= \frac{-\rho \dot{a}(t)}{a(t)^{N\theta-N+2}} \left(\lambda x + N\kappa \theta y(x)^n \dot{y}(x) \right)$$
 (22)

$$= \frac{-\lambda \rho \dot{a}(t)}{a(t)^{N\theta - N + 2}} \left(x + \frac{N\kappa\theta}{\lambda} y(x)^n \dot{y}(x) \right), \tag{23}$$

and $\xi \doteq \frac{\lambda}{N\kappa\theta}$ in Lemma 12, and choose

$$y(\frac{r}{a(t)}) \doteq y(x) = \sqrt[\theta-1]{\frac{1}{2}(\theta-1)\frac{-\lambda}{N\kappa\theta}x^2 + \alpha^{\theta-1}}.$$

And this is easy to check that

$$\dot{y}(0) = 0.$$

The equation (22) is equal to zero. The proof is completed.

Remark 14 By controlling the initial conditions in some solutions (18), we may get the blowup solutions. And the modified solutions can be extended to the system in radial symmetry with frictional damping:

$$\begin{cases} \rho_t + u\rho_r + \rho u_r + \frac{N-1}{r}\rho u = 0, \\ \rho(u_t + uu_r) + \beta \rho u = (\mu(\rho))_r \left(\frac{N-1}{r}u + u_r\right) + \mu(\rho)(u_{rr} + \frac{N-1}{r}u_r - \frac{N-1}{r^2}u), \end{cases}$$

where $\beta > 0$,

with the assistance of the ODE:

$$\begin{cases} \ddot{a}(t) + \beta \dot{a}(t) = \frac{-\lambda \dot{a}(t)}{a(t)^{S}}, \\ a(0) = a_0 > 0, \dot{a}(0) = a_1, \end{cases}$$

where S is a constant.

References

[1] G.Q. Chen and D.H. Wang, The Cauchy Problem for the Euler Equations for Compressible Fluids, Handbook of Mathematical Fluid Dynamics, Vol. I, 421-543, North-Holland, Amsterdam, 2002.

- [2] Y.B. Deng, J.L. Xiang and T. Yang, Blowup Phenomena of Solutions to Euler-Poisson Equations, J. Math. Anal. Appl. 286 (1)(2003), 295-306.
- [3] P.Goldreich, S. Weber, Homologously Collapsing Stellar Cores, Astrophys, J. 238, 991-997 (1980).
- [4] P.L. Lions, Mathematical Topics in Fluid Mechanics, Vols. 1, 2, 1998, Oxford:Clarendon Press, 1998.
- [5] T.H. Li, Some Special Solutions of the Multidimensional Euler Equations in R^N, Comm. Pure Appl. Anal. 4 (4)(2005), 757-762.
- [6] S. S. Lin, Stability of Gaseous Stars in Radially Symmetric Motions, SIAM J. Math. Anal. 28 (1997), No. 3, 539–569.
- [7] T. Makino, Blowing up Solutions of the Euler-Poisson Equation for the Evolution of the Gaseous Stars, Transport Theory and Statistical Physics 21 (1992), 615-624.
- [8] T. Makino, On a local existence theorem for the evolution equations of gaseous stars, "Patterns and wave-qualitative analysis of nonlinear differential equations", Ed. T. Nishida, M. Mimura and H. Fujii, North-Holland, 1986, 459–479.
- [9] T. Nishida, Equations of fluid dynamics-free surface problems, Comm. Pure Appl. Math., XXXIX (1986), 221–238.
- [10] T.C. Sideris, Formation of Singularities in Three-dimensional Compressible Fluids, Comm. Math. Phys. 101 (1985), No. 4, 475-485.

- [11] T. Yang, Z.A. Yao, C. J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations 26 (2001), no. 5-6, 965–981.
- [12] M.W. Yuen, Blowup Solutions for a Class of Fluid Dynamical Equations in \mathbb{R}^N , J. Math. Anal. Appl. **329** (2)(2007), 1064-1079.
- [13] M.W. Yuen, Analytical Blowup Solutions to the 2-dimensional Isothermal Euler-Poisson Equations of Gaseous Stars, J. Math. Anal. Appl. 341 (1)(2008), 445-456.