Analog VLSI Circuit Final Project

Presented By-

Group-4

Akash Ganguly – SC18B072

Kothadiya Prince - SC18B078

Kshitij Singh – SC18B079

Aditya Amrit – SC18B087

Vivek Garg – SC18B093

Contents

- Objective
 - Design Requirement
- Current Mirror Network
 - Cascode pair biasing
- Folded Cascode Design
 - Design Calculation
 - NMOS-PMOS-Overall Design
 - Results

- CMFB
 - Design
 - Buffer Design
 - Results & Analysis
- 2nd Stage Design
 - Design Calculation
 - Results
- Final Results & Conclusion
- References

Objective

Design Requirements

- $A_v \geq 70 \ dB$
- $UGF \ge 100MHz$
- Fully Differential OpAmp
- Rail-to-Rail input capability
- CMFB
- $C_L = 500 fF$

- V_{tp} biases PMOS Tail Current for M0p Transistor
- V_{tn} biases NMOS Tail Current for M0n Transistor and others
- V_{h1} biases M3 and M4 Transistor(Lower NMOS Stack)
- V_{b2} biases M5 and M6 Transistor(Upper NMOS Stack)
- V_{h3} biases M7 and M8 Transistor(Lower PMOS Stack)
- V_{b4} biases M9 and M10 Transistor(Upper PMOS Stack)

Folded Cascode Rail-to-Rail Design

Design Budgeting

- $UGF \approx \frac{g_m}{2\pi C_L} \ge 100 \text{MHz}$
- $\Rightarrow g_m \ge 2\pi \times 100MHz \times C_L$
- $\Rightarrow g_m \ge 0.314mS$

- Let's choose g_m=1 mS
- Let the design V_{in.cm}=0.9V
- 0.6V Vgs biasing
- 0.3V Vdssat + margin for tail current source

NMOS Characterization

Id: 1.13e-05
Vgs: 6.00e-01
Vds: 3.00e-01
Vbs: 0.00e+00
Vth: 4.82e-01
Vdsat: 1.30e-01
Gm: 1.34e-04

We must scale NMOS such that $g_m = 1mS$

$$W_{req.d} = 7.4 * W_1$$

PMOS Characterization

Id: 1.62e-06
Vgs: 6.00e-01
Vds: 3.00e-01
Vbs: 0.00e+00
Vth: 5.16e-01
Vdsat: 9.91e-02
Gm: 2.35e-05

We must scale PMOS such that $g_m = 1mS$

$$W_{regd}$$
=42.5* W_1

NMOS Input Pair

• Name:	m1n	m2n	m0n	
• Model:	n18	n18	n18	
• Id:	7.39e-05	7.39e-05	1.48e-04	M1n M2n
• Vgs:	6.17e-01	6.17e-01	5.93e-01	Vinp n18 n18 Vinm
• Vds:	1.27e+00	1.27e+00	2.83e-01	l=180n w=0.5u m=14
• Vbs:	-2.83e-01	-2.83e-01	0.00e+00	
• Vth:	5.30e-01	5.30e-01	4.63e-01	
• Vdsat:	1.12e-01	1.12e-01	1.42e-01	MOn
• Gm:	9.75e-04	9.75e-04	1.69e-03	Vtn n18
• Gds:	1.99e-05	1.99e-05	5.83e-05	l=250n w=0.5u m=32

PMOS Input Pair

			q0m	m2p	m1p	• Name:
	90/		p18	p18	p18	• Model:
	Vtp	Vtr	-1.26e-04	-6.30e-05	-6.30e-05	• Id:
	p18		-7.17e-01	-6.47e-01	-6.47e-01	• Vgs:
)	m=27 M0p	I=250n w=0.5u m=	-2.53e-01	-1.30e+00	-1.30e+00	• Vds:
			0.00e+00	2.53e-01	2.53e-01	• Vbs:
L8 Vinm	o18 _{VDD} p18	Vinp p18	-4.32e-01	-5.86e-01	-5.30e-01	• Vth:
2p	M1p M2p	M1	-2.42e-01	-9.10e-02	-9.10e-02	• Vdsat:
0n w=0.5u m=84	n=84 l=180n	l=180n w=0.5u m=	7.37e-04	9.77e-04	9.77e-04	• Gm:
			1.06e-04	1.67e-05	1.67e-05	• Gds:

Main Transistor Stack

Main Transistor Stack

	M3	M5	M7	M9
I _D	149μΑ	86.1μΑ	86.1μΑ	160μΑ
V_{GS}	601mV	637mV	759mV	700mV
g_{m}	1.75mS	1.05mS	0.841mS	1.49mS
r _o	10.2kΩ	27.78kΩ	56.82kΩ	13.26kΩ

Circuit Design

DC Analysis

- Input CM Voltage
 - Sweep from -0.5V to 2.5V
- Output DC Voltage
 - Range: 0.7V to 1V
- Rail to Rail working capability
 - Input CM voltage
 - 0.7V to 1V

AC Analysis(V_{cm} =0.9V)

AC Analysis

CMFB

Principle of CMFB

- Common Mode Feedback to correct for V_{cm} because of variation in PMOS and NMOS current pairs
- Compare the Common mode voltage to reference voltage
- Output signal of CMFB Stage can be fed back
- Providing it on gate terminal helps in controlling V_{gs} and hence, current through it.

Detection of Common mode voltage

- Sensed by simple resistor
- But direct resistor comes parallel to R_{out}
- Results in low gain
- Require high value of Resistor
- Solution is to use buffer stage
- Followed by low value resistor to detect the output V_{CM}

Source Follower

Benefits:

Very high input impedance

Price:

- Voltage(V_{GS}) drop across the M2 transistor
- Reference voltage = V_{CMref}- V_{GS}

- $V_{CMref} = 0.9V$
- $V_{GS} = 0.593V \approx 0.6V$

Correction for Common Mode voltage

- Common Mode voltage detected
- CMFB stage: 5T OTA
- Output: Vo_5T
- Reference voltage: (V-)
 - $(V-) = V_{CMref} V_{GS} = 0.3$

DC Analysis

- Input CM Voltage
 - Sweep from -0.5V to 2.5V
- Output DC Voltage
 - Not much Variation.
- Rail to Rail working capability
 - Input CM voltage
 - Full Range

DC Analysis

- Input CM Voltage
 - Sweep from -0.5V to 2.5V
- Output CM Voltage
 - Range: 0.4V to 1.4V

- Output of CMFB Stage
 - Range: 0.4V to 1.4V
 - Similar behavior

AC Analysis

Folded cascode with CMFB

Transient Analysis

- To simulate current disturbance: extra current source used.
- Current sources in parallel with the MOSFET
- Current source: Pulse input I=180n w=0.5u m=62

Transient Voltage analysis

 $T_{s} = 0.4 \mu S$

2nd Stage

Design Budgeting

- Common source amplifier
- Design parameters:
 - V_{gs}(for second stage)
 - $V_{gs} = V_{DD} V_{CMRef} = 1.8V 0.9V = 0.9V$
 - $A_{v.reg}$ (Required gain) $\sim 25dB = 17.78$
- Calculation:
 - $A_{v,req} = 17.78 = g_m * R_{out}$
 - $(2.22m) * (8k\Omega) = 17.78$
 - $R_{out} \sim 8k\Omega$
 - $g_m \approx 2.22mS$

PMOS Characterization

• Scaling factor(multipliers) =
$$\frac{2.22mS}{60.023467\mu S}$$
 = 36.98 \approx 37

2nd Stage Design

Operating Point

Simulation Results

- $g_m = 2.04mS$
- $R_{out} = 10.672k\Omega$
- $Gain(A_v) = 23.32dB$
- Cut-off Frequency(f_c)

$$\frac{1}{2\pi RoutCout} = 29.83 \text{MHz}$$

Gain Plot

Phase Compensation(Miller compensation)

Resistor Calculation:

$$R_z > \frac{1}{g_m}$$

$$\frac{1}{g_m} = 490.196\Omega$$
Taking $R_z = 500\Omega$

• Taking arbitrary value for capacitor $c_c = 500fF$

Circuit Design

2nd Stage with miller compensation(between 1st and 2nd stage)

Simulation result

Without Miller Compensation
Gain Cross-over frequency = 1.584GHz

Phase margin = -201.48+180 = -21.48(Unstable)

With Miller Compensation
Gain Cross-over frequency = 263.02 MHz
Phase margin = -117.81+180 = 62.19(stable)

Results

DC Analysis

- Input CM Voltage
 - Sweep from -0.5V to 2.5V
- Output DC Voltage of Stage-1
 - Range: 0.4V to 1.4V
 - Not much variation
- Output DC Voltage of Stage-2 (Final O/P)
 - Range: 0.4V to 1.4V
 - Not much variation
- Rail to Rail working capability
 - Input CM voltage Full Range

AC Analysis ($V_{CM} = 0.9V$)

AC Analysis (V_{CM} sweep)

AC Analysis (V_{CM} sweep)

Results & Conclusion

- Gain
 - 65.3 dB to 76.63 dB
- BW
 - 156.055 kHz to 77.16 kHz
- UGF
 - 263 MHz to 436.5 MHz
 - UGF > 100 MHz
- Phase margin
 - 48° to 63°

- Power Consumption (Overall)
 - 1.8*1.37m = 2.467mW
- Power Consumption (w/o bias)
 - 1.8*1.33m = 2.39mW
- Input common mode range
 - Rail-to-Rail
- CMFB
 - Working

Improvements

- Rail-to-Rail input capabilities in stage-1 (folded cascode)
- Gm Calibration
- Overall Gain Improvements

References

- Design of Analog CMOS Integrated Circuits, B. Razavi
- ECEN474/704: (Analog) VLSI Circuit Design (Spring 2018), Sam Palermo Analog & Mixed-Signal Center, Texas A&M University
 - Lecture 15: Fully Differential Amplifiers & CMFB
 - Lecture 17: Fully Differential Amplifiers & CMFB
- Lecture notes

THANK YOU!