charge in an electric field experiences $\vec{F} = q \vec{E}$,
· In a wire: T - dQ na A ()	
· In a wire: $I = dQ = nq A(v)$ cross sectional area.	
· pod is work done per unit charge, in moving 9 in E.	
· pd is work done per unit charge, in moving q in E. · emf & is the energy gained per unit charge in a cell.	
· Kirchhoff's (wrent law: current converved at junction · Kirchhoff's voltage law: around any loop, no { v; =0 (for cons energy).	
· Kirchhoff's voltage law: around any loop, no EV; =0	
(For cons energy).	
. We can simplify colculations using current loops.	
E T THE THE TAR	
E = (I,) 1 P+ (I) 1 P6	
	_
(3 eq with 3 ankno	wns
· For voltage, we can or bitrarily label voltage wirt	3
· For voltage, we can or bitrarily label voltage wirt any reference point of our choosing (negative terminal usually	/
Capacitors	
Defined by $(=Q)$. $W=Vdq=(\frac{1}{2}CV^2)$	
In an RC circuit with a charged capacitor:	
V-18=8 . NO 0 -+ +Q	_
$V = IR = Q \qquad dQ = Q \Rightarrow Q(t) = Q_0 e^{-\frac{t}{RC}} \Rightarrow Q(t) = Q_0 e^{-\frac{t}{RC}}$	
Lo exponential decay with characteristic time T=RC	
· To charge a cap	
1Q1 1-Q	
+ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	
18 01	
$= Q = C_{\epsilon}(1 - e^{-\frac{1}{n_{\epsilon}}})$	
-/ & CEC.	

,	Inductors	
	E=-dle But we als have \$P_B=LI by definition	tion.
	$\mathcal{E} = -L \frac{dI}{dt}$	- -
	La stores energy in the field: W= = LI?	
	In an RL circuit, -IR-Lat =0	
	i-e exponential decay with characteristic $T = \frac{L}{R}$.	