```
#!/usr/bin/env python
# coding: utf-8
# CREDIT STANFORD ONLINE and COURSERA
# Welcome to Linear Regression
# You will implement linear regression with one variable to predict profits for a restaurant franchise.
# import dependencies
import numpy as np
import matplotlib.pyplot as plt
from utils import *
import copy
import math
get_ipython().run_line_magic('matplotlib', 'inline')
#-----#
# Suppose you are the CEO of a restaurant franchise and are considering different cities for opening a ne
w outlet.
# -> You would like to expand your business to cities that may give your restaurant higher profits.
# -> The chain already has restaurants in various cities and you have data for profits and populations from
the cities.
# -> You also have data on cities that are candidates for a new restaurant.
   -> For these cities, you have the city population.
#
# Can you use the data to help you identify which cities may potentially give your business higher profits?
# ------#
# You will start by loading the dataset for this task.
# The 'load_data()' function shown below loads the data into variables 'x_train' and 'y_train'
# -> 'x train' is the population of a city
# -> 'y_train' is the profit of a restaurant in that city. A negative value for profit indicates a loss.
# -> Both 'X train' and 'y train' are numpy arrays.
#-----#
# load the dataset
x_train, y_train = load_data()
# View the variables
# Before starting on any task, it is useful to get more familiar with your dataset.
# A good place to start is to just print out each variable and see what it contains.
# The code below prints the variable 'x_train' and the type of the variable.
print("Type of x_train:",type(x_train))
print("First five elements of x train are:\n", x train[:5])
# x_train is a numpy array that contains decimal values that are all greater than zero.
# These values represent the city population times 10,000
# For example, 6.1101 means that the population for that city is 61,101
# Now, let's print y train
print("Type of y_train:",type(y_train))
print("First five elements of y_train are:\n", y_train[:5])
# Similarly, y_train is a numpy array that has decimal values, some negative, some positive.
# These represent your restaurant's average monthly profits in each city, in units of $10,000.
# For example, 17.592 represents $175,920 in average monthly profits for that city.
```

```
# -2.6807 represents -$26,807 in average monthly loss for that city.
# Check the dimensions of your variables
# Another useful way to get familiar with your data is to view its dimensions.
# Please print the shape of 'x train' and 'y train' and see how many training examples you have in your d
ataset.
print(f'The shape of x_train is:{x_train.shape}')
print(f'The shape of y_train is:{y_train.shape}')
print(f'Number of training examples (m):{len(x_train)}')
# The city population array has 97 data points, and the monthly average profits also has 97 data points. T
hese are NumPy 1D arrays.
# Visualize vour data
# It is often useful to understand the data by visualizing it.
# For this dataset, you can use a scatter plot to visualize the data, since it has only two properties to plot (
profit and population).
# Many other problems that you will encounter in real life have more than two properties (for example, po
pulation, average household income,
# monthly profits, monthly sales). When you have more than two properties, you can still use a scatter plo
t to see the relationship between
# each pair of properties.
```

```
# Create a scatter plot of the data. To change the markers to red "x", # we used the 'marker' and 'c' parameters

plt.scatter(x_train, y_train, marker='x', c='r')

# Set the title
plt.title("Profits vs. Population per city")

# Set the y-axis label
plt.ylabel('Profit in $10,000')

# Set the x-axis label
plt.xlabel('Population of City in 10,000s')
plt.show()
```

- # Your goal is to build a linear regression model to fit this data.
- # With this model, you can then input a new city's population, and have the model estimate your restaura nt's potential monthly profits for that city.

REFRESHER ON LINEAR REGRESSION

- # You will fit the linear regression parameters \$(w,b)\$ to your dataset.
- # The model function for linear regression, which is a function that maps from x (city population) to y
- # (your restaurant's monthly profit for that city) is represented as $f_{w,b}(x) = wx + b$
- # To train a linear regression model, you want to find the best (w,b) parameters that fit your dataset.
- # To compare how one choice of (w,b) is better or worse than another choice, you can evaluate it with a cost function J(w,b)
- # J is a function of (w,b). That is, the value of the cost J(w,b) depends on the value of (w,b).
- # The choice of (w,b) that fits your data the best is the one that has the smallest cost J(w,b).
- # To find the values (w,b) that gets the smallest possible cost J(w,b), you can use a method called gradie nt descent().
- # With each step of gradient descent, your parameters (w,b) come closer to the optimal values that will ac

hieve the lowest cost J(w,b).

- # The trained linear regression model can then take the input feature x (city population) and output a prediction $f \{w,b\}(x)$ and that is
- # (predicted monthly profit for a restaurant in that city).

COMPUTE COST

- # Gradient descent involves repeated steps to adjust the value of your parameter (w,b) to gradually get a smaller and smaller cost J(w,b).
- # At each step of gradient descent, it will be helpful for you to monitor your progress by computing the cost J(w,b) as (w,b) gets updated.
- # In this section, you will implement a function to calculate \$J(w,b)\$ so that you can check the progress of your gradient descent implementation.

COST FUNCTION

- # As you may recall from above step, for one variable, the cost function for linear regression J(w,b) is defined as
- $\# J(w,b) = (1/2*m)*sum_over_from_i_=0_to_=m-1[(f_{w,b}(x^{(i)}) y^{(i)})^2]$
- # You can think of $f_{w,b}(x^{(i)})$ as the model's prediction of your restaurant's profit, as opposed to $y^{(i)}$, which is the actual
- # profit that is recorded in the data. m is the number of training examples in the dataset

MODEL PREDICTION

- # For linear regression with one variable, the prediction of the model $f_{w,b}$ for an example $x^{(i)}$ is representented as:
- $\# f_{w,b}(x^{(i)}) = wx^{(i)} + b$
- # This is the equation for a line, with an intercept \$b\$ and a slope w

IMPLEMENTATION

- # Please complete the compute_cost() function below to compute the cost J(w,b)
- # * Iterate over the training examples, and for each example, compute:
- * The prediction of the model for that example
- # calculate $f_{wb}(x^{(i)}) = wx^{(i)} + b$
- # * The cost for that example \$\$cost^{(i)} = (f_{wb} y^{(i)})^2\$\$
- # * Return the total cost over all examples
- # If you get stuck, you can check out the hints presented after the cell below to help you with the impleme ntation.

```
# FUNCTION- compute_cost def compute_cost(x, y, w, b):
```

Computes the cost function for linear regression.

Params:

- x (ndarray): Shape (m,) Input to the model (Population of cities)
- y (ndarray): Shape (m,) Label (Actual profits for the cities)
- w, b (scalar): Parameters of the model

Returns

total_cost (float): The cost of using w,b as the parameters for linear regression to fit the data points in x and y

number of training examples

m = x.shape[0]

You need to return this variable correctly

```
total cost = 0
  ### START CODE HERE ###
  for row in range(m):
     f wb = w * x[row] + b
     cost = (f_wb - y.copy()[row]) ** 2 # squared error (loss)
     total_cost += cost
  total\_cost = (1 / (2 * m)) * total\_cost
  ### END CODE HERE ###
  return total cost
# You can check if your implementation was correct by running the following test code:
# Compute cost with some initial values for paramaters w, b
initial w = 2
initial b = 1
cost = compute_cost(x_train, y_train, initial_w, initial_b)
print(type(cost))
print(f'Cost at initial w: {cost:.2f}')
# GRADIENT DESCENT
# In this section, you will implement the gradient for parameters $w, b$ for linear regression.
# As described in the lecture videos, the gradient descent algorithm is:
# repeat until convergence:
    -> b := b - alpha * partial J(w,b)}wrt partial b
    -> w := w - alpha * partial J(w,b)}wrt partial w
# where, parameters w and b are updated simultaniously and where
# partial J(w,b) wrt partial b = (1/m)^* [sum\_over\_i\_=0\_to\_=m-1](f_{w,b}(x^{(i)}) - y^{(i)})
# partial J(w,b)} wrt partial w = (1/m) * [sum\_over\_i\_=0\_to\_=m-1](f_{w,b}(x^{(i)}) - y^{(i)})x^{(i)})
# where, m is the number of training examples in the dataset
# and f_{w,b}(x^{(i)}) is the model's prediction
# while y^{(i)}, is the target value
# You will implement a function called 'compute_gradient' which calculates
# partial J(w) wrt partial w
# partial J(w) wrt partial b
# IMPLEMENTATION
# Iterate over the training examples, and for each example, compute:
    * The prediction of the model for that example
    f_{wb}(x^{(i)}) = wx^{(i)} + b
    * The gradient for the parameters $w, b$ from that example
#
#
       -> partial J(w,b){partial b}^{(i)} = (f_{w,b}(x^{(i)}) - y^{(i)})
       -> partial J(w,b){partial w}^{(i)} = (f_{w,b}(x^{(i)}) - y^{(i)})x^{(i)}
# Return the total gradient update from all the examples
# partial J(w,b){partial b} = (1/m) * [sum_over_i_=0_to_=m-1] * {partial J(w,b)}{partial b}^{(i)}
# partial J(w,b){\partial w} = (1/m) * [sum_over_i_=0_to_=m-1]* {partial J(w,b)}{partial w}^{(i)}
# Here, m is the number of training examples and sum is the summation operator
# FUNCTION: compute_gradient
def compute_gradient(x, y, w, b):
  Computes the gradient for linear regression
  Params:
```

```
x (ndarray): Shape (m,) Input to the model (Population of cities)
   y (ndarray): Shape (m,) Label (Actual profits for the cities)
   w, b (scalar): Parameters of the model
  Returns
   dj dw (scalar): The gradient of the cost w.r.t. the parameters w
   dj_db (scalar): The gradient of the cost w.r.t. the parameter b
  # Number of training examples
  m = x.shape[0]
  # You need to return the following variables correctly
  di dw = 0
  di_db = 0
  ### START CODE HERE ###
  for row in range(m):
     f_wb = w * x[row] + b
     di_dw_row = (f_wb - y.copy()[row]) * x[row] # from above formula
     dj_db_row = f_wb - y.copy()[row] # from above formula
     di db += di db row
     dj_dw += dj_dw_row
  di dw = di dw / m
  di_db = di_db / m
  ### END CODE HERE ###
  return dj_dw, dj_db
# Compute and display gradient with w initialized to zeroes
initial w = 0
initial b = 0
tmp_dj_dw, tmp_dj_db = compute_gradient(x_train, y_train, initial_w, initial_b)
print('Gradient at initial w, b (zeros):', tmp_dj_dw, tmp_dj_db)
compute_gradient_test(compute_gradient)
# Compute and display cost and gradient with non-zero w
test w = 0.2
test b = 0.2
tmp_dj_dw, tmp_dj_db = compute_gradient(x_train, y_train, test_w, test_b)
print('Gradient at test w, b:', tmp_di_dw, tmp_di_db)
```

LEARNING PARAMETERS USING BATCH GRADIENT DESCENT

You will now find the optimal parameters of a linear regression model by using batch gradient descent. Recall batch refers to running all the examples

in one iteration.

A good way to verify that gradient descent is working correctly is to look at the value of J(w,b) and check that it is decreasing with each step.

Assuming you have implemented the gradient and computed the cost correctly and you have an appropriate value for the learning rate alpha, J(w,b)

should never increase and should converge to a steady value by the end of the algorithm.

```
def batch gradient descent(x, y, w in, b in, cost function, gradient function, alpha, num iters):
  Performs batch gradient descent to learn theta. Updates theta by taking
  num iters gradient steps with learning rate alpha
  Params:
   x: (ndarray): Shape (m,)
   y: (ndarray): Shape (m,)
   w_in, b_in: (scalar) Initial values of parameters of the model
    cost function: function to compute cost
    gradient_function: function to compute the gradient
    alpha: (float) Learning rate
    num iters: (int) number of iterations to run gradient descent
  Returns
   w: (ndarray): Shape (1,) Updated values of parameters of the model after
      running gradient descent
    b : (scalar)
                        Updated value of parameter of the model after
      running gradient descent
  # number of training examples
  m = len(x)
  # An array to store cost J and w's at each iteration — primarily for graphing later
  J_history = []
  w history = []
  w = copy.deepcopy(w_in) #avoid modifying global w within function
  b = b in
  for i in range(num iters):
     # Calculate the gradient and update the parameters
     di_dw, di_db = gradient_function(x, y, w, b)
     # Update Parameters using w, b, alpha and gradient
     w = w - alpha * dj_dw
     b = b - alpha * dj_db
     # Save cost J at each iteration
     if i<100000:
                    # prevent resource exhaustion
       cost = cost\_function(x, y, w, b)
       J_history.append(cost)
     # Print cost every at intervals 10 times or as many iterations if < 10
     if i% math.ceil(num iters/10) == 0:
       w history.append(w)
       print(f"Iteration {i:4}: Cost {float(J_history[-1]):8.2f} ")
```

return w, b, J_history, w_history #return w and J,w history for graphing

```
# initialize fitting parameters. Recall that the shape of w is (n,)
initial w = 0.
initial_b = 0.
# some gradient descent settings
iterations = 1500
alpha = 0.01
w,b,_,_ = gradient_descent(x_train ,y_train, initial_w, initial_b,
             compute cost, compute gradient, alpha, iterations)
print("w,b found by gradient descent:", w, b)
# We will now use the final parameters from gradient descent to plot the linear fit.
# Recall that we can get the prediction for a single example f(x^{(i)}) = wx^{(i)} + b.
# To calculate the predictions on the entire dataset, we can loop through all the training examples and cal
culate the prediction for each
# example. This is shown in the code block below.
m = x_{train.shape[0]}
predicted_values = np.zeros(m)
for i in range(m):
  predicted_values[i] = w * x_train[i] + b
# We will now plot the predicted values to see the linear fit.
# Plot the linear fit
plt.plot(x_train, predicted, c = "b")
# Create a scatter plot of the data.
plt.scatter(x_train, y_train, marker='x', c='r')
# Set the title
plt.title("Profits vs. Population per city")
# Set the y-axis label
plt.ylabel('Profit in $10,000')
# Set the x-axis label
plt.xlabel('Population of City in 10,000s')
# Your final values of w,b can also be used to make predictions on profits.
# Let's predict what the profit would be in areas of 35,000 and 70,000 people.
# The model takes in population of a city in 10,000s as input. Therefore, 35,000 people can be translated in
nto an input to the model as
# np.array([3.5]). Similarly, 70,000 people can be translated into an input to the model as np.array([7.])
predict 1 = 3.5 * w + b
print('For population = 35,000, we predict a profit of $\%.2f' \% (predict1*10000))
predict 2 = 7.0 * w + b
print('For population = 70,000, we predict a profit of $%.2f' % (predict2*10000))
# Happy Learning!!!
# follow me @linkedin- https://www.linkedin.com/in/debi-prasad-rath-89331814b/
```