ЛАБОРАТОРНАЯ РАБОТА №7

ПРОВЕРКА ЗАКОНА ОМА ДЛЯ ОДНОРОДНОГО УЧАСТКА ЦЕПИ

Цель работы: научиться подключать ашпершетр и вольтиетр к внешнему участку цели, проводить измерения на внешнем участке, проверить закон Ома для внешнего (однородного) участка цели и построить вольтамперную характеристику для участка цели.

Оборудование:

- 1) истогник постоянного тока до 36 в,
- 2) aunepuemp (mun M45MOM3),
- 3) bonomuemp (mun 134329),
- 4) nomeryuowenp (peocham) go 30 B, 5 A,
- 5) rauna hakarubahua (12 B, 40 Bm) (nompedumens 1),
- 6) marazur conpomulnerur (nomperumens 2),
- 7) coeguiumensible npologa.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Мамонов 1ИСиП-19-1

Одний из важнейших законов физики, устанавливающий соотношение иежду велигиной тока, напряжением (разностью потенциалов) на конуах угастка и сопротивлением является закон, открытый немецким физиком Георгом Омом в 1827 году.

Если парашетры проводника неизшенны и постоянна тешпература, то для проводников существует однозначная зависищость шежду напряжением U и величиной тока I в проводнике.

Dra иногих проводников, в особенности дла шеталлов, эта зависимость особенно проста: сила тока прямо пропорциональна напражению

$$I=g\;U$$
 g - arekmporpologillocme.

 $\frac{1}{g}=R$ велигина, обратная проводиности, называется электрическим сопротивлением.

Nogemaluu l
$$m$$
opoe l neploe: $I = \frac{U}{R}$

велигина тока прящо пропорущональна напряжению на конуах угастка и обратно пропорущональна сопротивлению угастка.

Понятие линейных проводников и вольтамперная характеристика Bелигина тока с электронной тогки зрения выражается доршугой $I=n\cdot q\cdot v\cdot S$

Проводники, в которых концентрация гастиц n постоянна, не зависит от напряженности, напряжения, т.е. n = const, называются линейными.

Поэтому зависимость тока от напряжения в законе Ома будет линейной и вольтамперная характеристика будет прямой линией, выходящей

из нагала координат.

Uz zakora Qua uneen:

для первой прямой
$$\frac{U}{\frac{1}{I_1}} = R = \underbrace{ctg}\alpha$$
 , $\alpha_1 > \alpha_2$ $ctg}\alpha_1 < ctg}\alpha_2$ для второй прямой $\frac{U_2}{I_2} = R = \underbrace{ctg}\alpha$, $R_1 < R_2$

На первой характеристике ток растет быстрее, т.е. сопротивление $R_{\!\scriptscriptstyle 2}$ меньше гем сопротивление $R_{\!\scriptscriptstyle 2}$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Задание 1. Сборка электрической цепи для проведения измерений.

1) Источник постоянного тока 2) Реостат 3) Вольтметр 4) Амперметр 5) Ключ

6) Потребитель

Вольтметр: тип 134323; класс точности \mathcal{O} , 2; предел включения 15 &Амперметр: тип м45м0м3, класс точности 1,0; предел включения 1,5А

Задание 2. Проведение измерений с помощью вольтметра и амперметра для потребителя 1.

Цены делений приборов находятся по формулам

$$C_1 = \frac{15}{150} = 0,1B$$
 $C_2 = \frac{1,5}{15} = 0,02 A$

Показания приборов определяются по формулам

Результаты измерений и вычислений

N	Bonomuemp			Aunepuemp			Conportubretue
7.07.0	Yera	yucro	Nokazahus	yera	yucro	Nokazahua	$R = \frac{U}{I}$, OM
	generus	generiuū	U, B	generus	generiuū	I, A	$K = \frac{1}{I}$, O _M
	$^{\circ}C_{1}$, $^{\circ}$	V		$^{\circ}$ C ₂ , A	•		1
1	0,1	5	0,5	0,02	4	0,08	6,25
2	0,1	10	1	0,02	6	0,12	<i>8</i> ,33
3	0,1	15	1,5	0,02	7	0,14	10,71
4	0,1	20	2	0,02	9	0,18	11,11
5	0,1	25	2,5	0,02	11	0,22	11,36
6	0,1	30	3	0,02	11	0,22	13,64
7	0,1	35	3,5	0,02	12	0,24	14,58
8	0,1	40	4	0,02	12	0,24	16,66
							R _{cp1} =11,58

Задание 3. Построение вольтамперной характеристики для потребителя 1.

Задание 4. Проведение измерений с помощью вольтметра и амперметра для потребителя 2.

√ n/n		Bonsmuer	np	Aunepuemp			Conportubrethe
	yera generius C1, B	yucro gereruü	Локазания U, В	yera generius C2, A	yucro generiuū	Локазания І, А	$R = \frac{U}{I}$, OM
1	0,1	5	0,5	0,02	5	0,1	5,00
2	0,1	10	1	0,02	10	0,2	5,00
3	0,1	15	1,5	0,02	14	0,28	5,36
4	0,1	20	2	0,02	21	0,42	4,76
5	0,1	25	2,5	0,02	26	0,52	4,80
6	0,1	30	3	0,02	33	0,66	4,55
7	0,1	35	3,5	0,02	33	0,66	5,30
8	0,1	40	4	0,02	42	0,84	4,76
							R _{CP1} =4,94

Задание 5. Построение вольтамперной характеристики для потребителя 2.

Задание 6. Вычисление погрешности в работе.

Относительная погрешность сопротивления

$$\delta R_{cp} = \frac{\Delta R}{R_{cp}} = \left(\frac{\Delta U}{U} + \frac{\Delta I}{I}\right) \cdot 100\%$$

$$\frac{\Delta U}{U} = 0,002 \qquad SR_{\text{sp}} = (0,002 + 0,01) \cdot 100\% = 1,2\%.$$

$$\frac{\Delta I}{I} = 0,01.$$

Абсолютная погрешность сопротивления

$$\Delta R_{cp} = R_{cp} \cdot \delta R_{cp},$$

$$aRep1 = 11,58 \cdot 0,012 = 0,139$$

 $aRep2 = 4,94, 0,012 = 0,0593$
 $R1 = 11,58 \pm 0,139$
 $R2 = 4,94 \pm 0,0593$

Вывод: сравнив градики вольташлерных характеристик, шы шожей сделать вывод о том, гто проводники не являются линейными, так как градики не являются прямой линией, следовательно, общуго велигину сопротивления проводника нам выгислить не удастся.

Ф.И.О. Манонов Антон

_группа № <u>1UCuN - 19</u>