Міністерство освіти і науки України Національний університет "Львівська політехніка" Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

Звіт

Про виконання лабораторної роботи №2 на тему:

«ПРОГРАМУВАННЯ ЦИКЛІЧНИХ ПРОЦЕСІВ В С»

з дисципліни «Основи програмування»

Лектор:

ст. викл. каф. ПЗ Муха Т.О.

Виконав:

ст. гр. ПЗ-11

Морозов О.Р..

Прийняв:

асист. каф. ПЗ Дивак І.В.

«___»____2021 p.

 $\Sigma =$ _____.

Тема: Програмування циклічних процесів в С.

Мета: навчитися організовувати програми циклічної структури, які дозволяють повторювати певну групу операторів задану кількість разів.

ЗАВДАННЯ

Варіант 17

Завдання 1. Використовуючи цикли надрукувати усі чотиризначні натуральні числа, сума цифр яких не перевищує 23.

Завдання 2. З допомогою операторів циклу, протабулювати на відрізку від А до В з області визначення функцію, задану розкладом у ряд Тейлора. Для порівняння обчислити також у кожній точці табуляції значення функції задане формулою. Результати подати у виді таблиці з коментарями

$$(1+x)^{-1/4} = 1 - \frac{1}{4}x + \frac{1\cdot 5}{4\cdot 8}x^2 - \frac{1\cdot 5\cdot 9}{4\cdot 8\cdot 12}x^3 + \frac{1\cdot 5\cdot 9\cdot 13}{4\cdot 8\cdot 12\cdot 16}x^4 - \dots; \quad |x| < 1$$

БЛОК СХЕМИ

Завдання 1

Завдання 2

ТЕКСТ ПРОГРАМИ

```
Завдання 1
     Файл lab2 1.c
#include <stdio.h>
int main(void) {
     int num = 1000, sum=0;
     while(num<=9999)</pre>
     {
           int digit1 = num / 1000;
           int digit2 = num % 1000 / 100;
           int digit3 = num % 100 / 10;
           int digit4 = num % 10;
           sum = digit1 + digit2 + digit3 + digit4;
           if (sum \le 23) \{ printf("number = %d\n", num); \}
           num++;
     }
     return 0;
}
     Завдання 2
#include <stdio.h>
#include <math.h>
int main(void)
{
    double a, b, step, e;
    printf("Please, enter A, B, step, eps: ");
    scanf_s("%lf %lf %lf %lf", &a, &b, &step, &e);
    double delta, num, denum, result;
    double drob = -0.25;
     int i = 0;
    for (double x = a; x \le b; x += step) {
        result = 1;
        teylor = 1;
```

```
num = 1;
        denum = 1;
        if (fabs(x) < 1){
            for (int y = 1; y == 1 || fabs(teylor) > e; y++) {
                num = (y * 4.0 - 3.0) * num;
                denum = (y * 4.0) * denum;
                teylor = (pow(x, y) * num) / denum;
                if (y \% 2 == 0) {
                    result += teylor;
                }
                else {
                    result -= teylor;
                }
            }
           i++
            double function, mfunction = 1 + x;
            if (mfunction == 0) {
                function = 0;
            }
            else {
                function = pow(1 + x, drob);
            printf(" X = %1.31f | (1+x)^2 = %1.31f | teylor = %1.31f |
delta = %1.31f | iteration = %d \n", x, function, result, fabs(function -
result), i);
        }
    }
}
```

```
Microsoft Visual Studio Debug Console
                                                                                                                            \times
                                                                                                                     П
number = 9850
number = 9851
number = 9860
number = 9900
number = 9901
number = 9902
number = 9903
number = 9904
number = 9905
number = 9910
number = 9911
number = 9912
number = 9913
number = 9914
number = 9920
number = 9921
number = 9922
number = 9923
number = 9930
number = 9931
number = 9932
number = 9940
number = 9941
number = 9950
D:\University\OP\Lab_2\Project1\Debug\Project1.exe (process 12588) exited with code 0.
To automatically close the console when debugging stops, enable Tools->Options->Debugging->Automatically close the conso
le when debugging stops.
Press any key to close this window . . .
```

Рис 1. Результат виконання програми №1

```
Microsoft Visual Studio Debug Console
             ^ A, B, step, eps:
(1+x)^2 = 1.778 |
(1+x)^2 = 1.495 |
                                 -0.9 0.9 0.1 0.00
X = -0.900
                                teylor = 1.778
                                                   delta = 0.000
                                                                    iteration = 1
X =-0.800
                                teylor = 1.495
                                                   delta = 0.000
                                                                    iteration = 2
             (1+x)^2 = 1.351
                                                   delta = 0.000
X = -0.700
                                teylor = 1.351
                                                                    iteration = 3
                                teylor =
X =-0.600
             (1+x)^2 = 1.257
                                                   delta = 0.000
                                                                    iteration = 4
                                          1.257
             (1+x)^2 = 1.189
                                teylor = 1.189
                                                   delta = 0.000
                                                                    iteration = 5
X = -0.500
             (1+x)^2 = 1.136
                                teylor =
                                                   delta = 0.000
X = -0.400
                                          1.136
                                                                    iteration = 6
             (1+x)^2 = 1.093
X = -0.300
                                teylor = 1.093
                                                   delta = 0.000
                                                                    iteration = 7
                                                   delta = 0.000
X = -0.200
             (1+x)^2 = 1.057
                                teylor =
                                          1.057
                                                                    iteration = 8
             (1+x)^2 = 1.027
                                teylor =
                                                   delta = 0.000
X = -0.100
                                          1.027
                                                                    iteration = 9
  =-0.000
             (1+x)^2 = 1.000
                                teylor = 1.000
                                                   delta = 0.000
                                                                    iteration = 10
            (1+x)^2 = 0.976
                               teylor = 0.976
                                                  delta = 0.000
                                                                   iteration = 11
X = 0.100
            (1+x)^2 = 0.955
                                                  delta = 0.000
X =0.200
                               teylor = 0.955
                                                                   iteration = 12
             (1+x)^2 = 0.937
X = 0.300
                               teylor =
                                         0.937
                                                  delta = 0.000
                                                                   iteration = 13
            (1+x)^2 = 0.919
X =0.400
                               teylor =
                                         0.919
                                                  delta = 0.000
                                                                   iteration = 14
                               teylor =
                                                                   iteration = 15
X =0.500
            (1+x)^2 = 0.904
                                         0.904
                                                  delta = 0.000
            (1+x)^2 = 0.889
                                                  delta = 0.000
X = 0.600
                               teylor =
                                         0.889
                                                                   iteration = 16
            (1+x)^2 = 0.876
                               teylor =
                                                  delta = 0.000
                                                                   iteration = 17
X = 0.700
                                         0.876
            (1+x)^2 = 0.863
X = 0.800
                               teylor =
                                                  delta = 0.000
                                                                   iteration = 18
                                         0.863
            (1+x)^2 = 0.852
X =0.900
                               teylor = 0.852
                                                  delta = 0.000
                                                                   iteration = 19
D:\University\OP\Lab_2\Project2\Debug\Project2.exe (process 10736) exited with code 0.
To automatically close the console when debugging stops, enable Tools->Options->Debugging->Automatically close the conso
le when debugging stops.
Press any key to close this window . . .
```

Рис 2. Результат виконання програми №2

висновки

Виконуючи лабораторну роботу N2, я навчився програмувати на мові C програми циклічної структури, які дозволяють повторювати певну групу операторів задану кількість разів.