Pontificia Universidad Católica del Perú Especialidad de Finanzas

2 de Noviembre del 2024

PC 3 FIN 203

Profesor: José Gallardo

Jefes de práctica: Marcelo Gallardo y Karen Montoya

Ejercicio 1. 4 puntos. Considere el siguiente juego con representación normal

	Н	T
Н	(1, -1)	(-1, 1)
T	(-1, 1)	(1, -1)

- 1. Halle, si existiesen, estrategias estrictamente dominadas. Jutifique su respuesta. **1 punto.**
- 2. Halle, si es que existe, un equilibrio de Nash en estrategias puras. Justifique su respuesta. **1 punto.**
- 3. Sin importar si es que encontró o no un equilibrio de Nash en estrategias puras; halle un equilibrio de Nash en estrategias mixtas. **2 puntos.**

Ejercicio 2. 3 puntos. Considere el siguiente juego con representación normal

	L	C	R
L	(2, 2)	(1, 1)	(0, 0.5)
C	(3, 2)	(1, 0.5)	(0, 0)
R	(1, 1)	(0, 2)	(5, 0)

- 1. Utilice el concepto de eliminación secuencial de estrategias dominadas para hallar las estrategias óptimas. **1.5 puntos.**
- 2. Encuentre, en caso existan, todos los equilibrios de Nash en estrategias puras. **1.5 puntos.**

Ejercicio 3. 4 puntos.

	В	S
В	(2, 1)	(0, 0)
S	(0, 0)	(1, 2)

- 1. Halle un equilibrio de Nash en estrategias mixtas. **Notación:** asigne la probabilidad *p* a la estrategia *B* del jugador 1 y probabilidad *q* a la estrategia *B* del jugador 2. **2 puntos.**
- 2. Analice el comportamiento de los individuos ante variaciones de los valores de las probabilidades. Concretamente, qué sucede con el accionar de *J*1 si *q* aumenta (respecto a la probabilidad de equilibrio) y qué sucede con el accionar de *J*2 si *p* aumenta (respecto a la probabilidad de equilibrio). **2 puntos.**

Ejercicio 4. **3 puntos.** En una **subasta de segundo precio** de un bien indivisible, hay *n* postores con valoraciones

$$0 \leq v_1 \leq v_2 \leq \cdots \leq v_n$$
.

Los postores realizan simultáneamente una oferta $s_i \in [0, \infty)$. La mayor oferta se adjudica el bien y paga como precio la segunda mayor oferta realizada. Si varios postores hacen la misma oferta, el bien se asigna aleatoriamente a uno de ellos. Los postores que no adquieren el bien no pagan nada. Demuestre que para cada postor, la estrategia $s_i = v_i$ domina débilmente todas las demás estrategias puras.