Теория кодирования МФТИ, осень 2013 Лектор: Александр Дайняк

1. Однозначно декодируемые коды. Неравенство Макмиллана.

В следующих заданиях под кодом понимается множество кодовых слов.

Задача 1. Установите, является ли следующие коды однозначно декодируемыми:

- a) {01, 201, 112, 122, 0112},
- b) {aaa, abaa, ba, baab, aabaaba},
- c) {aa, ab, aba, aca, bca, aaca, cabc},
- d) {ab, aba, caa, baaa, aa}.

Для этого постройте специальный граф («граф Маркова», его структура описана в первой половине первой лекции) и посмотрите, есть ли в графе цикл, проходящий через вершину ε .

Задача 2. Подумайте, как с помощью графа Маркова научиться для неоднозначного кода отыскивать слово *минимальной длины*, которое можно декодировать двумя разными способами. Приведите пример, показывающий, что такое слово не всегда соответствует циклу в графе Маркова, имеющему минимальное число вершин.

Задача 3. Для следующих кодов в общем случае (для произвольного k) установите, являются ли они однозначно декодируемыми. Запись вида w^k обозначает, что слово w записывается подряд k раз.

- a) $\{0, (10)^{k+1}, (01)^k\},$
- b) $\{001, 011, 100, 110, (1100)^k\}$.

Задача 4. Пусть C — код, число слов в котором равно 20, а максимальная длина слов равна 10. Известно, что любое двоичное слово длины ≤ 2013 можно не более чем одним способом разбить на слова из кода C. Можно ли из этого заключить, что код C однозначный?

Задача 5. Пользуясь неравенством Крафта—Макмиллана, установите, при каких n следующие наборы чисел могут являться наборами длин кодовых слов однозначно декодируемых двоичных кодов. Тот же вопрос для троичных кодов.

- a) $\{2, 3, n, n^2, \lceil \log_2 n \rceil \}$,
- b) $\{2, n+1, n+1, n+3, 2n\}$.

Задача 6. Пусть T — набор натуральных чисел, в котором числа не повторяются, кроме, быть может, самого большого (да и то не более одного раза). Докажите, что T может быть набором длин слов однозначного двоичного кода.

Задача 7. Постройте двоичный префиксный код из шести слов, длины слов которого равны

- a) 1, 2, 4, 4, 4, 4,
- b) 2,2,3,3,3,3.

Задача 8. Верно ли, что для любого однозначного кода найдётся *суффиксный* код с тем же набором длин слов?

Задача 9. Булевым n-мерным кубом называется множество $\{0,1\}^n$. Гранью булева куба размерности l называется множество наборов вида $\{(x_1,\ldots,x_n)\mid x_{i_1}=\alpha_1,\ldots,x_{i_{n-l}}=\alpha_{n-l}\}$. Иными словами, грань булева куба — это множество наборов, у которых все, кроме некоторых l координат, фиксированы, а остальные координаты пробегают всевозможные значения. Докажите, что если набор чисел n, l_1, l_2,\ldots,l_m таков, что $\sum_{i=1}^m 2^{l_i}\leqslant 2^n$, то в n-мерном булевом кубе можно выделить набор непересекающихся граней размерностей l_1,\ldots,l_m соответственно.

2. Двоичные коды с минимальной избыточностью

В задачах ниже сокращение «к. м. и.» означает *код с минимальной избыточностью*. В этом разделе мы рассматриваем только двоичные коды.

Задача 10. Из доказанной на лекции теоремы Хаффмана о редукции вытекает следующий способ построения к. м. и. для произвольного набора вероятностей. Пусть дан набор $p_1 \geqslant \ldots \geqslant p_{n-1} \geqslant p_n$. «Склеим» в этом наборе две наименьших частоты p_{n-1} и p_n , получим новый набор частот $p_1, \ldots, p_{n-2}, p_{n-1}$ p_n . В полученном наборе чисел опять сложим два наименьших, придя к набору из (n-2) чисел. Так будем действовать, пока не придём к набору из двух чисел. Для такого набора к. м. и., очевидно, состоит из двух слов длины 1 каждое: слова «0» и «1». Остаётся вернуться к исходному набору p_1, \ldots, p_n , «расклеивая» частоты обратно и пользуясь теоремой о редукции. Пользуясь описанными выше соображениями, постройте к. м. и. для набора частот

```
a) {0.6; 0.1; 0.08; 0.08; 0.04; 0.04; 0.03; 0.03},
```

- b) {0.3; 0.2; 0.2; 0.08; 0.08; 0.08; 0.06},
- c) {0.4; 0.1; 0.1; 0.1; 0.1; 0.1; 0.1}.

Задача 11. Приведите пример набора частот, для которого существуют к. м. и. с различными наборами длин слов.

Задача 12. Существует способ построения кода для набора частот, называемый методом Шеннона—Фано. Он состоит в следующем. Пусть задан набор частот p_1, \ldots, p_n . Разобьём его на две части, так, чтобы сумма частот в одной из частей была максимально близка к сумме частот в другой части. Далее каждую из этих частей рекурсивно продолжим разбивать по тому же принципу... Получим дерево, вершинами которого являются поднаборы набора p_1, \ldots, p_n , и при этом рёбра идут из набора X в наборы Y и Z, если в ходе рекурсивных разбиений мы разбили X на Y и Z. Корнем этого бинарного дерева будет набор $\{p_1, \ldots, p_n\}$, а листьями — одноэлементные наборы $\{p_1\}, \ldots \{p_n\}$. Условно будем считать, что у каждой нелистовой вершины есть «левое» и «правое» поддеревья (какое из них двух выбирается в качестве «левого», не играет роли). Теперь для каждой частоты соответствующее кодовое слово можно построить так: спускаемся от корня дерева к листу этой частоты, и каждый раз, идя в левое поддерево, пишем «0», а идя в правое — «1». Выписанная последовательность нулей и единиц и будет кодовым словом. Убедитесь, что для набора частот $\{0.35; 0.17; 0.17; 0.16; 0.15\}$ метод Шеннона—Фано даёт код, *не являющийся к. м. и.*, и постройте к. м. и. методом Хаффмана.

Задача 13. Докажите, что если префиксный код является к. м. и. для некоторого набора частот, то в нём найдутся два слова, отличающиеся только в последней координате.

- **Задача 14.** *а)* Докажите, что если код является к. м. и. для некоторого набора частот, то неравенство Макмиллана обращается для этого кода в равенство.
 - b) Пусть числа l_1, \ldots, l_n удовлетворяют соотношению $\sum_{k=1}^n 2^{-l_k} = 1$. Докажите, что существует код, являющийся к. м. и. для некоторого набора частот и имеющий длины слов l_1, \ldots, l_n .

Задача 15. Докажите, что если код является к. м. и. для некоторого набора частот, то в нём чётное количество слов максимальной длины.

Задача 16. Индукцией по n докажите, что если код является к. м. и. для некоторого набора из n частот, то сумма длин всех кодовых слов не превосходит величины $\frac{(n-1)(n+2)}{2}$.

3. Типы ошибок. Кодовое расстояние.

По умолчанию везде далее под «расстоянием» подразумевается расстояние Хемминга.

Задача 17. Когда происходит ошибка замещения, в переданном в канал слове некоторый бит заменяется на противоположный. Рассмотрим ещё один тип ошибок: *ошибки стирания*. При ошибке стирания бит слова заменяется на специальный символ ?, отсутствующий в кодовом алфавите. В этом случае задача *обнаружения* ошибок стирания, конечно, не ставится. Зато, по-прежнему, имеет смысл задача *исправления* ошибок.

- а) Докажите, что код C способен исправлять t ошибок стирания т. и т. т., когда d(C) > t.
- b) Докажите, что код способен исправлять одновременно t_1 ошибок замещения и t_2 ошибок стирания т. и т. т., когда $d(C)>2t_1+t_2$.

Задача 18. Эта задача показывает, что ошибки выпадения и вставки «взаимозаменимы».

- *а)* Докажите, что если код способен исправлять одну ошибку вставки, то он способен исправлять одну ошибку выпадения.
- b) Пусть n_1 , n_2 , n_3 , n_4 произвольные фиксированные неотрицательные числа, и пусть $n_1+n_2=n_3+n_4$. Докажите, что если некоторый код способен исправлять одновременно n_1 ошибок выпадения и n_2 ошибок вставки, то этот же код способен исправлять одновременно n_3 ошибок выпадения и n_4 ошибок вставки.

Задача 19. Рассмотрим *код проверки чётности*: $C := \{ \mathbf{a} \in \{0,1\}^n \mid \sum_{i=1}^n a_i \equiv 0 \pmod 2 \} \}$. Найдите кодовое расстояние этого кода и определите, сколько ошибок замещения может этот код обнаруживать и исправлять.

4. Коды Варшамова—Тененгольца

Задача 20. Код Варшамова—Тененгольца длины n определяется как множество слов

$$\left\{a_1 \dots a_n \mid \sum_{i=1}^n i a_i \equiv 0 \pmod{(n+1)}\right\}.$$

Докажите, что если $n=2^m-1$ для некоторого m, то число кодовых слов равно 2^{n-m} . Указание: рассмотрите позиции кодового слова с номерами $1, 2, 4, \ldots, 2^{m-1}$ и докажите, что если все остальные позиции заданы произвольным образом, то указанные позиции однозначно доопределяются.

Задача 21. Пусть l > n, и пусть l простое. Рассмотрим множество двоичных слов

$$\left\{a_1 \dots a_n \mid \sum_{i=1}^n i a_i \equiv \sum_{i=1}^n i^2 a_i \equiv 0 \pmod{l}\right\}.$$

Докажите, что это множество является кодом, способным исправлять две ошибки замещения вида $0 \to 1$.

5. Элементарные методы построения кодов

Задача 22. Укажите, как из кода с параметрами $(n,M,d)_q$, где $d\geqslant 2$, получить код с параметрами $(n-1,M,d')_q$, где $d'\geqslant d-1$.

Задача 23. Укажите, как из кода с параметрами $(n,M,d)_q$ получить код с параметрами $(n-1,M',d')_q$, где $M'\geqslant \lceil M/q \rceil$ и $d'\geqslant d$.

Задача 24. Расширенным кодом для двоичного кода C называется код C', слова которого получены дописыванием к словам кода C одного бита, равного сумме (по модулю 2) остальных битов слова. То есть расширенный код получается из исходного добавлением бита контроля чётности. Докажите, что если C является (n,M,d)-кодом и d нечётно, то C будет (n+1,M,d+1)-кодом.

Задача 25. Пусть C — некоторый $(n,M,d)_q$ -код, причём кодовое расстояние d достигается не более чем на двух парах кодовых слов. Покажите, как по коду C построить $(n+1,M,d+1)_q$ -код.

Задача 26. Пусть C_1 и C_2 имеют параметры соответственно (n,M_1,d_1) и (n,M_2,d_2) . Докажите, что множество слов $\{(\mathbf{a},\mathbf{a}+\mathbf{b})\mid \mathbf{a}\in C_1, \mathbf{b}\in C_2\}$ является $(2n,M_1\cdot M_2,\min\{2d_1,d_2\})$ -кодом (суммирование здесь побитовое). Это утверждение принадлежит Плоткину (M. Plotkin), а соответствующая конструкция кодов называется *конструкцией Плоткина*. Указание: рассмотрите пару слов вида $(\mathbf{a}',\mathbf{a}'+\mathbf{b}'), (\mathbf{a}'',\mathbf{a}''+\mathbf{b}'')$, и разберите случаи $\mathbf{b}'=\mathbf{b}''$ и $\mathbf{b}'\neq\mathbf{b}''$.

6. Границы мощностей кодов

Пусть C-q-ичный код с длиной слов n. Скоростью кода C называется величина $\mathrm{rate}(C):=\frac{\log_q|C|}{n}$. Эта величина показывает, насколько «разбухают» данные, если они кодируются с помощью кода C, во время блочного кодирования. Если кодируются q-ичные данные, то каждому q-ичному слову длины $\left\lfloor \log_q|C| \right\rfloor$ можно однозначно сопоставить кодовое слово. При блочном кодировании данных последовательность, которую нужно закодировать, разбивается на куски одинаковой длины, и затем каждый кусок кодируется своим кодовым словом. Если исходные данные имели размер N, то после кодирования они будут иметь размер $\frac{N}{\left|\log_q|C|\right|} \cdot n \approx \frac{N}{\mathrm{rate}(C)}$.

Пусть C — код с длиной слов n и кодовым расстоянием d. Относительное кодовое расстояние кода C — это величина $\delta(C):=\frac{d}{n}$. Она характеризует, какую долю от длины кодовых слов могут составлять ошибки, чтобы их всё ещё можно было обнаружить.

Очевидно, $\mathrm{rate}(C) \in [0,1]$ и $\delta(C) \in [0,1]$ для любого кода C. При асимптотическом сравнении границ и оценке качества семейств кодов чаще используются указанные нормированные величины $\delta(C)$ и $\mathrm{rate}(C)$, нежели d(C) и |C|.

Напомним основные границы, доказанные на лекциях:

- ullet Граница Хемминга. Для любого $(n,M,d)_q$ -кода выполнено неравенство $M\leqslant rac{q^n}{|S|(d-1)/2|}$
- ullet «Анти-Хемминг». Если $M\leqslant rac{q^n}{|S_d|}$, то существует $(n,M,d)_q$ -код.
- Граница Синглтона. Для любого $(n,M,d)_q$ -кода выполнено неравенство $M\leqslant q^{n-d+1}$.
- Граница Плоткина. Для любого $(n,M,d)_q$ -кода, где $\delta(C)=\delta>1-1/q$, выполнено неравенство $M\leqslant \frac{\delta}{\delta-\frac{q-1}{2}}.$
- Граница Элайеса—Бассалыго. Для любого двоичного (n,M,d)-кода, где $\delta(C)=\delta\leqslant \frac{1}{2}$, выполнено неравенство $M\leqslant \frac{n\cdot 2^n}{|S_{\lfloor \tau n-1\rfloor}|}$, где $\tau=\frac{1}{2}(1-\sqrt{1-2\delta}).$

Задача 27. При доказательстве границы Элайеса—Бассалыго мы переходили от двоичных слов к точкам евклидова пространства, так, чтобы расстояния между точками легко пересчитывались через расстояние между словами. Однако точного совпадения расстояний в этом случае мы не требовали. Докажите, что при n>1 хеммингово пространство размерности n (т.е. множество $\{0,1\}^n$ с метрикой Хемминга) нельзя вложить в \mathbb{R}^m ни для какого m, так, чтобы евклидово расстояние между образами любой пары слов было равно хеммингову расстоянию между словами.

Задача 28. Докажите следующее обобщение границы Хемминга для двоичных кодов. Пусть существует такой набор функций $\{f_{\bf a}\}_{{\bf a}\in C}$, определённых на $\{0,1\}^n$, что

$$\forall \mathbf{b} \in \{0,1\}^n \sum_{\mathbf{a} \in C} f_{\mathbf{a}}(\mathbf{b}) \leqslant 1 \quad \text{if} \quad \forall \mathbf{a} \in C \sum_{\mathbf{b} \in \{0,1\}^n} f_{\mathbf{a}}(\mathbf{b}) \geqslant s.$$

Покажите, что в этом случае $|C| \leqslant \frac{2^n}{s}$. Чему равны функции f_a в доказательстве границы Хемминга?

- **Задача 29.** *a)* Покажите, что объём шара радиуса r в \mathbb{A}_q^n (с метрикой Хемминга) равен $\sum_{k=0}^r \binom{n}{k} (q-1)^k$.
 - b) Найдите асимптотику этой величины при $n \to \infty$ и фиксированных q, r.
 - c) Найдите асимптотику логарифма этой величины при q=2, $n o\infty$ и фиксированном $ho=rac{r}{n}.$
- **Задача 30.** *а)* Какая из границ Хемминга и Синглтона лучше при $n \to \infty$ и фиксированных q, d? *b)* Какая из границ Хемминга и Синглтона лучше при $n \leqslant q$?
- **Задача 31.** Пусть величины $\delta(C)$ и $\mathrm{rate}(C)$ неизменны, а n стремится к бесконечности.
 - а) Переформулируйте границу Синглтона в терминах rate(C) и $\delta(C)$.
 - b) Докажите, что для двоичных кодов граница Хемминга даёт неравенство $\mathrm{rate}(C) \leqslant 1 H\left(\frac{\delta(C)}{2}\right)$, где H функция двоичной энтропии: $H(p) = -p\log_2 p (1-p)\log_2 (1-p)$.
 - c) Убедитесь, что граница Элайеса—Бассалыго лучше границы Хемминга при $n o \infty$ и фиксированном $\delta < \frac{1}{2}$.
- **Задача 32.** Граница Плоткина, доказанная на лекции, подходит только для оценки мощности кодов, имеющих очень большое кодовое расстояние: $\delta > 1 \frac{1}{q}$. Тем не менее, из неё можно получить оценку, применимую при меньших δ .
 - a) По аналогии с задачей 23 докажите, что если существует $(n,M,d)_q$ -код, то существует и $(n-t,\frac{M}{q^t},d)_q$ -код.
 - b) Пусть величины q, $\delta(C)$ и $\mathrm{rate}(C)$ зафиксированы, а n стремится к бесконечности. Воспользуйтесь результатом предыдущего пункта и границей Плоткина для доказательства утверждения: если $\delta(C) \leqslant 1 \frac{1}{q}$, то $\mathrm{rate}(C) \leqslant 1 \frac{q}{q-1} \cdot \delta(C) + o(1)$.
- **Задача 33.** *а)* Пусть m произвольное натуральное число. Опираясь на конструкцию Плоткина из задачи 26, постройте код с параметрами $(2^m, 2^{m+1}, 2^{m-1})$. Указание: примените конструкцию Плоткина рекурсивно, взяв в качестве вспомогательного кода тривиальный $(2^{m-1}, 2, 2^{m-1})$ -код.
 - b) Пользуясь результатом задачи 23 и границей Плоткина, докажите, что если у (n, M, d)-кода $d = \frac{n}{2}$, то $M \leqslant 2n$. Заметьте, что число слов построенного в п. а кода достигает этой границы.
- **Задача 34.** Насколько сильно (линейно/полиномиально/экспоненциально... по n) расходятся между собой граница Хемминга и обратное утверждение («анти—Хемминг»), при фиксированном d? Тот же вопрос при $\frac{d}{n} = \mathrm{const.}$

7. Линейные коды: общие свойства

- **Задача 35.** Пусть двоичный линейный код содержит хотя бы одно слово нечётного веса. Докажите, что количество кодовых слов нечётного веса равно половине от числа всех кодовых слов.
- **Задача 36.** *а)* Проверьте, что если двоичный код линеен, то и построенный по нему расширенный код линеен. (см. задачу 24)
 - *b)* Проверьте, что если исходные коды в конструкции Плоткина (см. задачу 26) линейны, то и результирующий код тоже линейный.
- **Задача 37.** Пусть $C-[n,k,d]_q$ -код. Пусть слово $\mathbf{b}\in\mathbb{F}_q^n$ таково, что $d(\mathbf{a},\mathbf{b})\geqslant d$ для любого $\mathbf{a}\in C$. Покажите, что множество $C':=\{(\mathbf{a}+\beta\mathbf{b})\mid \mathbf{a}\in C,\,\beta\in\mathbb{F}_q\}$ является $[n,k+1,d]_q$ -кодом. Переход от кода C к коду C' называется *пополнением* кода C.
- **Задача 38.** Докажите, что если C линейный код, то для любых $a,b\in C$ и любого $t\in \mathbb{N}$ число кодовых слов на расстоянии t от a равно числу слов на расстоянии t от b.

- **Задача 39.** Докажите или опровергните: если [n,k,d]-коды C_1 и C_2 таковы, что $|C_1\cap C_2|\geqslant k$, то $C_1=C_2$.
- **Задача 40.** Столбцы проверочной матрицы [7,4,3]-кода Хемминга всевозможные ненулевые векторы из \mathbb{F}_2^3 . Предъявите какую-нибудь порождающую матрицу этого кода и приведите её к каноническому виду.
- **Задача 41.** Обобщите конструкцию кодов Хемминга на q-ичный случай. Достигается ли граница Хемминга на недвоичных кодах Хемминга?
- **Задача 42.** *а)* Пусть G_1 и G_2 порождающие матрицы кодов с параметрами $[n_1,k,d_1]_q$ и $[n_2,k,d_2]_q$ соответственно. Покажите, что код с порождающей матрицей $(G_1|G_2)$ является $[n_1+n_2,k,d']$ -кодом, где $d'\geqslant d_1+d_2$. Приведите пример, когда $d'>d_1+d_2$.
 - b) Пусть G_1 и G_2 порождающие матрицы кодов с параметрами $[n_1,k_1,d_1]_q$ и $[n_2,k_2,d_2]_q$ соответственно. Найдите параметры кода с порождающей матрицей $\begin{pmatrix} G_1 & 0 \\ 0 & G_2 \end{pmatrix}$.
- **Задача 43.** Пусть C' и C'' линейные коды с параметрами $[n',k',d']_q$ и $[n'',k'',d'']_q$ соответственно. Будем считать, что у этих кодов зафиксированы некоторые порождающие матрицы, а значит и способы отображения слов из $\mathbb{F}_q^{k'}$ в C' и из $\mathbb{F}_q^{k''}$ в C''. Произведением кодов C' и C'' называется код, строящийся следующим образом (опишем это как отображение, заданное на $\mathbb{F}_q^{k'k''}$). Произвольное слово из $\mathbb{F}_q^{k'k''}$ разобьём на части $\mathbf{a}_1,\ldots,\mathbf{a}_{k''}\in\mathbb{F}_q^{k'}$. Закодируем каждую из них в коде C'. Получим k'' слов длины n' каждое. Запишем их построчно в $(k''\times n')$ -матрицу. Теперь каждый столбец этой матрицы закодируем в коде C''. Получим n' столбцов длины n'' каждый. Их конкатенация и будет словом в коде-произведении. Докажите, что получаемый код линеен и имеет параметры $[n'n'',k'k'',d'd'']_q$.
- **Задача 44.** Пусть порождающая матрица систематического кода имеет вид: $G = \left(I^k \middle| \widetilde{G}\right)$, где I^k единичная матрица. Докажите, что матрица $\left(-\widetilde{G}^T \middle| I^{n-k}\right)$ является проверочной матрицей этого кода.
- **Задача 45.** Естественный вопрос: верно ли, что если существует какой-то код с заданными параметрами (n,M,d), то найдётся и линейный код с такими же или лучшими параметрами? Оказывается, не всегда; в некоторых случаях линейные коды проигрывают нелинейным по числу слов. Известный нелинейный двоичный код Нордстрома—Робинсона имеет параметры (16, 256, 6).
 - a) Докажите, что не существует *линейного* двоичного кода с параметрами [16, 8, 6] (если бы он существовал, то число кодовых слов в нём было то же, что у кода Нордстрома—Робинсона). Указание: примените последовательно теорему Соломона—Штиффлера об остаточном коде и границу Хемминга.
 - b) Убедитесь, что одна лишь граница Грайсмера—Соломона—Штиффлера не позволяет доказать несуществование [16, 8, 6]-кода.
- **Задача 46.** С помощью теоремы Варшамова—Гилберта докажите, что существуют коды с параметрами [16, 9, 4], [16, 6, 5], [16, 4, 6] и [21, 8, 6].

8. Коды на основе двудольных графов

Задача 47. G — двудольный граф без изолированных вершин, с долями L и R, и пусть каждой вершине $v \in R$ поставлен в соответствие некоторый линейный код C_v , длина кодовых слов которого равна $\deg v$. Кодом Таннера (R. M. Tanner), построенным по графу G и семейству кодов ($C_v \mid v \in R$)

- R), называется код, определяемый следующим образом. Каждой вершине $u \in L$ ставим в соответствие переменную x_u . Считаем, что слово $(a_u \mid u \in L)$ принадлежит коду Таннера, если для каждой $v \in R$ слово, образованное соседями v, принадлежит коду C_v .
 - а) Докажите, что код Таннера является линейным кодом.
 - b) Докажите, что если каждый из кодов C_v является $[n_v,k_v,d_v]$ -кодом, то размерность кода Таннера не меньше $|L|-\sum_{v\in R}(n_v-k_v)$.
 - c) Докажите, что кодовое расстояние кода Таннера не меньше $\min_{v \in R} d(C_v)$.

Задача 48. Пусть C — код Таннера, построенный на (n,m,Δ,α,c) -расширителе (код «Таннера—Сипсера—Шпильмана»), в котором степени вершин в доле R равны l. Пусть для каждого $v \in R$ код C_v является [l,k,d]-кодом. Докажите, что при $c > \Delta/d$ кодовое расстояние кода C не меньше αn . Указание: доказательство проводится аналогично тому, что было на лекции; находим вершину в R, в которую входит меньше, чем d рёбер из вершин-единиц предполагаемого ненулевого «кодового» слова веса $< \alpha n$ — противоречие.

9. Многочлены и конечные поля

Задача 49. Для следующих многочленов докажите, что они являются неприводимыми и выполните вычисления в соответствующем конечном поле.

а)
$$x^3+x+1\in \mathbb{Z}_2[x]$$
, вычислите $(x+1)\cdot (x^2+1)^{-1}+x^2$ в поле $\mathbb{Z}_2[x]/(x^3+x+1)$;

b)
$$x^4+2\in\mathbb{Z}_5[x]$$
, вычислите $(x^2+1)\cdot(x^2+4x+2)+3x^3+1$ в поле $\mathbb{Z}_5[x]/(x^4+2)$.

Сопровождающей матрицей нормированного многочлена $Q(x)=c_0+c_1x+\ldots+c_{m-1}x^{m-1}+x^m\in\mathbb{Z}_p[x]$ называется матрица из $\mathbb{Z}_p^{m\times m}$ вида

$$A_Q := egin{pmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & \dots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{m-1} \end{pmatrix}.$$

Через I обозначим единичную матрицу из $\mathbb{Z}_p^{m imes m}$. Пусть \mathcal{A} — линейная оболочка (где линейные комбинации берутся с коэффициентами из \mathbb{Z}_p) множества матриц $\{I,\,A_Q,\,A_Q^2,\,A_Q^3,\,\ldots\}$. Известно, что \mathcal{A} является полем относительно обычных сложения и умножения матриц. Это поле оказывается изоморфным \mathbb{Z}_p/Q . Таким образом, при необходимости вычислять в конечном поле, можно пользоваться знакомой арифметикой матриц, достаточно быстро выполняемой алгоритмически. При этом, однако, элементы поля \mathbb{F}_{p^m} приходится хранить матрицами размера m imes m. Оптимальный по памяти способ хранения — хранить коэффициенты многочленов из \mathbb{Z}_p/Q , то есть векторы из \mathbb{Z}_p^m .

Задача 50. *a)* Убедитесь, что многочлен $x^2 + x + 1 \in \mathbb{Z}_2[x]$ неприводим над полем \mathbb{Z}_2 .

- b) Постройте таблицы сложения и умножения поля $\mathbb{Z}_2[x]/(x^2+x+1)$.
- c) Сопоставьте элементам поля набор матриц $\mathcal{A} \subset \mathbb{Z}_2^{2 \times 2}$, такой, что сумме и произведению элементов поля соответствует сумма и произведение матриц из \mathcal{A} .
- d) Укажите в полученном поле *примитивный элемент*, т. е. элемент λ , такой, что любой элемент поля можно представить как λ^t для подходящего t.

Задача 51. Постройте конечное поле из 9 элементов.

Задача 52. Покажите, что x является примитивным элементом поля $\mathbb{Z}_2[x]/(x^4+x+1)$.

Задача 53. Докажите, что в поле $\mathbb{Z}_p[x]/Q$ (где Q — неприводимый над \mathbb{Z}_p многочлен) для любых $a,b\in\mathbb{Z}_p[x]/Q$ справедливо равенство $(a+b)^p=a^p+b^p$.

10. Коды Рида—Маллера и Рида—Соломона. Мажоритарное декодирование.

Задача 54. Цель этой задачи — показать, что [7,4,3]-код Хемминга допускает мажоритарное декодирование. Рассмотрим порождающую матрицу этого кода:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Любой кодовый вектор $\mathbf{a}=(a_1,\ldots,a_7)$ может быть представлен в виде $\mathbf{a}=c_1\mathbf{e}_1+\ldots+c_4\mathbf{e}_4$, где \mathbf{e}_i — строки матрицы. Допустим, что мы передали вектор \mathbf{a} по каналу, и на выходе получили вектор $\mathbf{\hat{a}}$, отличный от исходного не более чем в одной координате.

- *a*) Предъявите три равенства вида $c_2 = \sum_s a_{j_s}$, где множества слагаемых сумм в правых частях равенств не пересекаются. Предъявите аналогичные системы из трёх равенств для c_3 и c_4 .
- b) Пользуясь равенствами из предыдущего пункта, декодирование можно осуществлять так: вычисляем для каждого $i \in \{2,3,4\}$ три суммы для c_i (вместо a_{j_s} беря \widehat{a}_{j_s} координаты вектора $\widehat{\mathbf{a}}$) и берём в качестве c_i то значение, которое получилось по крайней мере в двух суммах из трёх. Осталось найти c_1 . Для этого строим вектор $\widehat{\mathbf{a}} c_2\mathbf{e}_2 c_3\mathbf{e}_3 c_4\mathbf{e}_4$. Этот вектор должен отличаться от вектора $c_1\mathbf{e}_1$ не более чем в одной координате, отсюда тривиально определяется c_1 . Декодируйте описанным способом слово (1001010).

Задача 55. Обнаружьте и, при возможности, исправьте ошибки в следующих словах кода Рида—Маллера с параметрами r=1, m=3:

- a) 11010110,
- b) 11100001.

Задача 56. Цель задачи — показать связь кодов Рида—Маллера с кодами Хемминга.

- а) Докажите, что коды Рида—Маллера с параметрами (r,m) и с параметрами (m-r-1,m) ортогональны (скалярное произведение двух слов из различных кодов равно нулю). Указание: вычислить скалярное произведение кодовых слов это то же самое, что взять произведение многочленов из различных кодов и вычислить сумму значений полученного многочлена по всем наборам значений переменных.
- b) Докажите, что расширенный код Хемминга, полученный добавлением бита проверки чётности к словам $[2^m-1,\,2^m-m-1,\,3]$ -кода Хемминга, эквивалентен коду Рида—Маллера с параметрами $(m-2,\,m)$. Указание: посмотрите, как выглядит проверочная матрица расширенного кода Хемминга и используйте утверждение предыдущего пункта.

Задача 57. Обнаружьте и исправьте ошибки в следующих словах $[5,3,3]_5$ -кода Рида—Соломона. Предполагается, что поле, в котором работаем — это поле вычетов по модулю 5, а кодовое слово построено как (P(0), P(1), P(2), P(3), P(4)).

- a) 14134,
- b) 42244,
- c) 20324.

Задача 58. Задачи по лемме Липтона—ДеМилло—Шварца—Зиппеля.

- а) Докажите, что заключение леммы остаётся верным, если s_1, \ldots, s_m выбираются не из одного и того же множества, а каждое из своего множества мощности N.
- b) Как можно обобщить лемму, если каждое s_i выбирается из некоторого множества мощности N_i ?
- с) Как можно уточнить лемму, если добавить знание о величинах $\deg_{x_i} P$?

Задача 59. Эта задача касается параметров δ и rate, определяемых в начале разд. 6. Докажите, что при стремящейся к бесконечности длине слов и при фиксированном $\delta>0$ у кодов Рида—Маллера оказывается rate $\to 0$.

Задача 60. Код Рида—Соломона над алфавитом \mathbb{F}_{2^t} можно рассматривать как двоичный код, заменив каждую координату кодового слова на двоичный вектор длины t.

- а) Какие параметры будет иметь полученный код?
- b) Покажите, что при стремящейся к бесконечности длине слов и при фиксированном $\delta>0$ у полученного кода оказывается $\mathrm{rate} \to 0$.

11. Циклические коды. Коды БЧХ.

Задача 61. На лекции было доказано, что если циклический код C порождается многочленом g, и если $f \in C$, то корни многочлена g являются и корнями многочлена f. Докажите обратное утверждение: если у порождающего многочлена g ровно $\deg g$ различных корней, и если многочлен f таков, что среди его корней есть все корни g, то $f \in C$.

Задача 62. Проверочная матрица циклического кода, эквивалентного [7,4,3]-коду Хемминга, имеет вид:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Найдите проверочный и порождающий многочлены этого кода и выпишите его порождающую матрицу.

Задача 63. Определите, какие из следующих многочленов могут быть порождающими многочленами циклического двоичного кода длины 12:

- a) $x^3 + 1$,
- b) $x^2 + x + 1$,
- c) $x^3 + x + 1$,
- d) $x^4 + 1$.

Задача 64. В поле \mathbb{F}_{2^m} справедливо равенство $(a+b)^2=a^2+b^2$ (см. задачу 53). Пользуясь этим, докажите следующее утверждение. Пусть λ — примитивный элемент поля \mathbb{F}_{2^m} , пусть t>0, и пусть g — порождающий многочлен циклического кода C, причём каждый из коэффициентов g равен нулю либо единице. Тогда, если g имеет корни λ , λ^2 , ..., λ^{2t+1} , то справедлива оценка $d(C)\geqslant 2t+3$. (Указание: эта оценка немного улучшает границу БЧХ.)

Задача 65. В $\mathbb{F}_2[x]$ справедливо равенство $x^{15}-1=(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$. Известно, что для примитивного элемента $\alpha\in\mathbb{F}_{2^4}$ следующие многочлены являются минимальными для соответствующих элементов:

- $x^4 + x + 1$ минимальный многочлен для α , α^2 , α^4 , α^8 ,
- $x^4 + x^3 + x^2 + x + 1$ минимальный многочлен для α^3 , α^6 , α^9 , α^{12} ,
- $x^4 + x^3 + 1$ минимальный многочлен для α^7 , α^{11} , α^{13} , α^{14} ,
- $x^2 + x + 1$ минимальный многочлен для α^5 , α^{10} .

Для каждого из следующих двоичных циклических кодов длины 15 с порождающим многочленом g(x) найдите размерность кода, максимально точно оцените кодовое расстояние, выпишите проверочный многочлен кода.

a)
$$g(x) = x^4 + x + 1$$
,

b)
$$g(x) = (x+1)(x^2+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x+1)$$
,
c) $g(x) = (x+1)(x^2+x+1)(x^4+x^3+1)$.

Задача 66. Построим [7,4,3]-код Хемминга как циклический код. Пусть поле \mathbb{F}_8 построено как $\mathbb{F}_2[z]/(z^3+z+1)$. Пусть $\lambda:=z^2+z+1\in\mathbb{F}_8$.

- а) Убедитесь, что λ примитивный элемент в \mathbb{F}_8 .
- *b)* Каждому элементу из \mathbb{F}_8 сопоставьте двоичный вектор длины 3, так, чтобы это сопоставление «сохраняло сумму». Достаточно взять векторы коэффициентов многочленов из $\mathbb{F}_2[z]/(z^3+z+1)$, которыми представляются элементы поля.
- с) Предъявите минимальный многочлен $g \in \mathbb{F}_2[x]$ для элемента λ , найдя линейно зависимые векторы среди векторов, сопоставленных элементам λ^0 , λ^1 , λ^2 , λ^3 . Убедитесь, что этот многочлен является делителем многочлена $x^7-1 \in \mathbb{F}_2[x]$.
- d) Выпишите порождающую и проверочную матрицы циклического двоичного кода, построенного по порождающему многочлену g.

12. Восстановление синхронизации

Задача 67. Предложите двоичный код с длиной слов не более 23 и количеством слов не менее 4096, который способен исправлять 3 ошибки замещения *либо* синхронизационный сдвиг вплоть до 10 тактов.

- **Задача 68.** *а)* Покажите, что *почти все* двоичные слова длины n обладают следующим свойством: любой циклический сдвиг слова (на i позиций, где 0 < i < n) не совпадает с самим словом.
 - b) Докажите, что число слов в двоичном коде длины n, свободном от запятой, асимптотически не превосходит $\frac{2^n}{n}$.

13. Матрицы Адамара и коды Адамара

Пусть $A=(a_{ij})$, $B=(b_{ij})$ — квадратные матрицы порядков m и n соответственно. Кронекеровым произведением матриц A и B называется квадратная матрица порядка mn вида:

$$A \times B = \begin{pmatrix} a_{11} \cdot B, & a_{12} \cdot B, & \dots & a_{1m} \cdot B \\ a_{21} \cdot B, & a_{22} \cdot B, & \dots & a_{2m} \cdot B \\ \vdots & & \vdots & & \vdots \\ a_{m1} \cdot B, & a_{m2} \cdot B, & \dots & a_{mm} \cdot B \end{pmatrix} = \\ = \begin{pmatrix} a_{11}b_{11}, & \dots & a_{11}b_{1n}, & a_{12}b_{11}, & \dots & a_{1m}b_{11}, & \dots & a_{1m}b_{1n} \\ & \vdots & & & \vdots & & & \vdots \\ a_{11}b_{n1}, & \dots & a_{11}b_{nn}, & a_{12}b_{n1}, & \dots & a_{12}b_{nn} & \dots & a_{1m}b_{n1}, & \dots & a_{1m}b_{nn} \\ & \vdots & & & \vdots & & & \vdots \\ a_{m1}b_{n1}, & \dots & a_{m1}b_{nn}, & a_{m2}b_{n1}, & \dots & a_{m2}b_{nn} & \dots & a_{m2}b_{n1}, & \dots & a_{mm}b_{nn} \end{pmatrix}.$$

Задача 69. Пусть H_m и H_n — матрицы Адамара порядков m и n соответственно. Докажите, что их кронекерово произведение является матрицей Адамара порядка mn.

Задача 70. Пусть $n=2^m$ и пусть $C-\left(n,\,2n,\,\frac{n}{2}\right)$ -код на основе $(n\times n)$ -матрицы Адамара, построенной по конструкции Сильвестра.

- a) Покажите, что код C эквивалентен коду Рида—Маллера.
- b) Покажите, что код C можно построить с помощью конструкции Плоткина (см. задачу 33).

Задача 71. Пусть p>2 — простое число, и пусть $q=p^m$ таково, что $4\mid (q-1)$. Известно, что при таких q элемент -1 является квадратичным вычетом в \mathbb{F}_q . Покажите, что матрица Адамара порядка 2(q+1) может быть построена с помощью следующей конструкции. Пусть J — матрица Якобшталя порядка q (при указанном q эта матрица будет симметрична). Далее рассмотрим матрицу

$$\begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & & & \\ \vdots & & J & \\ 1 & & & \end{pmatrix}$$

(то есть к J приписываем строку из единиц сверху, столбец из единиц слева, и ноль слева-сверху). Затем в полученной матрице элементы, равные нулю (т.е. диагональные элементы) заменим на блок $\begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$, а элементы, равные ± 1 , заменим блоками $\pm \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ соответственно.

14. Каскадные коды

Задача 72. С помощью каскадной конструкции постройте двоичные коды со следующими параметрами:

- a) $(2^{12}, 2^7, 1500)$
- b) $[23 \cdot 2^{12}, 3 \cdot (2^{14} 8), 21]$