

Math Methods for Political Science

Lecture 4: Vector Spaces

Outline

- 1 Vector spaces and subspaces
- 2 Null space, column space and linear transformations
- 3 Linearly independent sets and bases
- 4 Coordinate systems
- 5 Dimension of a vector space
- 6 Rank

Vector space

Definition 1 (Vector space)

A **vector space** V is a nonempty set of elements, called **vectors**, on which are defined two operations called **addition** and **scalar multiplication** satisfying, $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in \mathbb{R}$,

1.
$$u + v \in V$$

2.
$$u + v = v + u$$

3.
$$(u + v) + w = u + (v + w)$$

4.
$$\exists$$
0 ∈ *V* s.t. \mathbf{v} + **0** = \mathbf{v}

5.
$$\exists$$
 − \mathbf{v} ∈ V s.t. \mathbf{v} + $(-\mathbf{v})$ = $\mathbf{0}$

6.
$$c\mathbf{v} \in V$$

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{v} + c\mathbf{u}$$

8.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

9.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

10.
$$1u = u$$
.

Remark: $\mathbf{0}$ and $-\mathbf{v}$ are unique, $0\mathbf{v} = \mathbf{0}$, $c\mathbf{0} = \mathbf{0}$, and $-\mathbf{v} = (-1)\mathbf{v}$.

Example 1 (Vector space)

- $\blacksquare \mathbb{R}^n$
- Doubly infinite sequences

- Polynomials of degree $\leq n$
- Real-valued functions on ℝ

Vector subspace

Definition 2 (Vector subspace)

A **subspace** of a vector space V is subset $H \subseteq V$ satisfying

- **1**. **0** ∈ *H*
- 2. $\mathbf{u} + \mathbf{v} \in H \ \forall \mathbf{u}, \mathbf{v} \in H$
- 3. $c\mathbf{v} \in H \ \forall \ \mathbf{u} \in H \ \text{and} \ c \in \mathbb{R}$.

Remark: the definition implies that H is also a vector space.

Example 2 (Vector space)

- \blacksquare $H = \{0\}$ (zero subspace)
- Polynomials form a subspace of the real-valued functions
- Polynomials of degree at most n form a subspace of the polynomials

■ Since $\mathbb{R}^2 \not\subseteq \mathbb{R}^3$, \mathbb{R}^2 is not a subspace of \mathbb{R}^3 .

Subspace spanned by a set

Let V be a vector space.

Theorem 1 (Subspace spanned by a set)

If $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$, then $Span\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

Definition 3 (Subspace spanned by a set and spanning set)

- Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the subspace spanned (or generated by) by $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.
- A spanning (or generating) set for a subspace H is a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ s.t. Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\} = H$.

Subspace spanned by a set cont'd

Example 3 (Subspace spanned by a set and spanning set)

Let
$$H = \left\{ \begin{bmatrix} a-3b \\ b-a \\ a \\ b \end{bmatrix} \mid a,b \in \mathbb{R} \right\}$$
. Notice that,

$$\mathbf{v} \in H \iff \exists a, b \in \mathbb{R} \text{ s.t. } \mathbf{v} = \begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix} = a \underbrace{\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}}_{\mathbf{v}_1} + b \underbrace{\begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}}_{\mathbf{v}_2}.$$

Hence $H = \text{Span} \{ \mathbf{v}_1, \mathbf{v}_2 \} \implies H$ is a subspace of \mathbb{R}^4 .

Outline

- 1 Vector spaces and subspaces
- 2 Null space, column space and linear transformations
- 3 Linearly independent sets and bases
- 4 Coordinate systems
- 5 Dimension of a vector space
- 6 Rank

Null space

Definition 4 (Null space)

The **null space** of an $m \times n$ matrix A is Nul $A = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$

Example 4 (Null space)

Let
$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$, then $\mathbf{u} \in \mathsf{Nul}\,A$.

Null space cont'd

Theorem 2 (Null space)

If A is a $m \times n$ matrix, then Nul A is a subspace of \mathbb{R}^n .

Remark: \iff the solution set of $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{R}^n .

Example 5 (Row reduction to characterize the null space)

Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$
, then the RREF of $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ is
$$\begin{bmatrix} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \end{bmatrix} \implies \begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = -2x_3 - 3x_4 \end{cases}$$

$$\implies \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_3 + 2x_4 \\ -2x_3 - 3x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \underbrace{\begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}}_{\mathbf{v}} + x_4 \underbrace{\begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}}_{\mathbf{v}}$$

$$\implies \text{Nul } A = \text{Span } \{\mathbf{u}, \mathbf{v}\}$$

Column space

Definition 5 (column space)

The **column space** of an $m \times n$ matrix A with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ is $\operatorname{Col} A = \{ \mathbf{b} \in \mathbb{R}^m \mid \exists \mathbf{x} \in \mathbb{R}^n \text{ with } A\mathbf{x} = \mathbf{b} \} = \operatorname{Span} \{ \mathbf{a}_1, \dots, \mathbf{a}_n \}.$

Theorem 3 (Column space)

- If A is a $m \times n$ matrix, then Col A is a subspace of \mathbb{R}^m .
- Col $A = \mathbb{R}^m \iff A\mathbf{x} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbb{R}^m$.

Null space and column space

Let A be a $m \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$.

Nul A:

- 1. a subspace of \mathbb{R}^n ,
- 2. implicitly characterized by $A\mathbf{x} = \mathbf{0}$ & needs the RREF of $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ to find its vectors,
- 3. $\mathbf{v} \in \operatorname{Nul} A \iff A\mathbf{v} = \mathbf{0}$,
- 4. easy to know if $\mathbf{v} \in \mathbb{R}^n$ is in it by computing $A\mathbf{v}$,
- 5. Nul $A = \{0\} \iff 0$ is the unique solution of Ax = 0.

Col A:

- 1. a subspace of \mathbb{R}^m ,
- 2. explicitly defined by Span $\{a_1, \dots, a_n\}$ & does not need intermediate steps,
- 3. $\mathbf{v} \in \operatorname{Col} A \Leftrightarrow \exists \mathbf{x} \text{ s.t. } A\mathbf{x} = \mathbf{v},$
- 4. to know if $\mathbf{v} \in \mathbb{R}^m$ is in it, needs the RREF of $\begin{bmatrix} A & \mathbf{v} \end{bmatrix}$,
- 5. Col $A = \mathbb{R}^m \iff A\mathbf{x} = \mathbf{b}$ has a solution $\forall \mathbf{b} \in \mathbb{R}^m$.

Linear transformations

Definition 6 (Linear transformation, kernel, image)

Let V and W be two vector spaces.

- For each $\mathbf{x} \in V$, a linear transformation $T: V \to W$ assigns a unique $T(\mathbf{x}) \in W$ and is s.t.
 - 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$,
 - 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all $\mathbf{u} \in V$ and $c \in \mathbb{R}$.
- The **null space** (or **kernel**) is Nul $T = \{x \in V \mid T(x) = 0\}$.
- The **image** is Im $T = \{ \mathbf{b} \in W \mid \exists \mathbf{x} \in V \text{ with } T(\mathbf{x}) = \mathbf{b} \}.$

Outline

- 1 Vector spaces and subspaces
- 2 Null space, column space and linear transformations
- 3 Linearly independent sets and bases
- 4 Coordinate systems
- 5 Dimension of a vector space
- 6 Rank

Linear independence

Let V be a vector space and $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ a set of vectors.

Definition 7 (Linear independence)

S is linearly independent $\sum_{i=1}^{p} c_i \mathbf{v}_i = \mathbf{0} \iff c_i = 0 \, \forall i$.

Theorem 4

For $p \ge 2$ and $\mathbf{v}_1 \ne \mathbf{0}$, S is linearly dependent $\iff \exists j > 1$ s.t. $\mathbf{v}_j \in Span \{\mathbf{v}_1, \cdots, \mathbf{v}_{j-1}\}.$

Example 6

- $V = \mathbb{R}^n$ and $A = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix} \implies S$ linearly independent \iff Nul $A = \{\mathbf{0}\} \iff \mathbf{0}$ is the unique solution of $A\mathbf{x} = \mathbf{0}$.
- Let $\mathbf{p}_1(t) = 1$, $\mathbf{p}_2(t) = t$, and $\mathbf{p}_3(t) = 4 t$, $S = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3}$ is linearly dependent because $\mathbf{p}_3 = 4\mathbf{p}_1 \mathbf{p}_2$.
- $S = \{\cos(t), \sin(t)\}$ is linearly independent in V = C[0, 1] because there exists no $c \in \mathbb{R}$ s.t. $\cos(t) = c\sin(t) \ \forall t \in [0, 1]$.

Basis

Definition 8 (Basis)

Let H be a subspace of a vector space V. A set of vectors $\mathcal{B} = \{\mathbf{b}_1, \cdots, \mathbf{b}_p\}$ is a **basis** for H if

- 1. \mathcal{B} is linearly independent, 2. $H = \text{Span } \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$.

Example 7

- The columns of an $n \times n$ invertible matrix form a basis of \mathbb{R}^n .
- The basis $\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ formed with the columns of I_n is called the **standard basis** for \mathbb{R}^n .

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ -6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$ is a basis of \mathbb{R}^3 .

The spanning set theorem

Theorem 5 (The spanning set theorem)

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set in V and $H = Span \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

- 1. If $\exists k \text{ s.t. } \mathbf{v}_k = \sum_{j \neq k} c_j \mathbf{v}_j$, then $H = Span \{ \mathbf{v}_1, \cdots, \mathbf{v}_{k-1}, \mathbf{v}_{k+1}, \cdots, \mathbf{v}_p \}$.
- 2. If $H \neq \{0\}$, then $\exists R \subseteq S$ s.t. R is a basis for H.

The spanning set theorem cont'd

Corollary 1 (A basis for Col A)

The pivot columns of a matrix A form a basis for Col A.

Example 8 (The spanning set theorem)

If
$$B = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$, then
$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
 and
$$\left\{ \begin{bmatrix} 1 \\ 3 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ 2 \\ 8 \end{bmatrix} \right\}$$

form respectively bases for $Col\ B$ and $Col\ A$ (the later because B is the RREF of A).

Outline

- 1 Vector spaces and subspaces
- 2 Null space, column space and linear transformations
- 3 Linearly independent sets and bases
- 4 Coordinate systems
- 5 Dimension of a vector space
- 6 Rank

Coordinates

Let V be a vector space, $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis and $\mathbf{x} \in V$.

Definition 9 (Coordinates)

- The coordinates of x relative to \mathcal{B} (or \mathcal{B} -coordinates of x) are the weights c_1, \dots, c_n s.t. $\mathbf{x} = \sum_{i=1}^n c_i \mathbf{b}_i$.
- If c_1, \dots, c_n are the \mathcal{B} -coordinates of \mathbf{x} , then $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ is the coordinate vector of \mathbf{x} relative to \mathcal{B} (or the \mathcal{B} -coordinate vector of \mathbf{x}).

Remark: if $V = \mathbb{R}^n$, then $\mathbf{x} = [\mathbf{x}]_{\mathcal{E}}$.

Theorem 6 (The unique representation theorem)

The \mathcal{B} -coordinates of \mathbf{x} are unique.

Coordinates cont'd

Example 9 (Coordinates in \mathbb{R}^2)

$$\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 lin. ind. $\implies \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ is a basis for

$$\mathbb{R}^2$$
.

If
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, then $\mathbf{x} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

Change of basis

Theorem 7 (Change of basis)

Let $\mathcal{B} = \{\mathbf{b}_1, \cdots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \cdots, \mathbf{c}_n\}$ be two bases of a vector space V, then there exists a unique $n \times n$ matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ s.t.

1.
$$[\mathbf{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$$

2.
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{C}} & \cdots & \begin{bmatrix} \mathbf{b}_n \end{bmatrix}_{\mathcal{C}} \end{bmatrix}$$

3. the RREF of $[\mathbf{c}_1 \cdots \mathbf{c}_n \ \mathbf{b}_1 \cdots \mathbf{b}_n]$ is $[I_n \ P_{\mathcal{C} \leftarrow \mathcal{B}}]$.

 $\text{Remark: } P_{\mathcal{B} \leftarrow \mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1} \implies \left[\mathbf{x}\right]_{\mathcal{B}} = P_{\mathcal{B} \leftarrow \mathcal{C}} \left[\mathbf{x}\right]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1} \left[\mathbf{x}\right]_{\mathcal{C}}.$

Change of basis cont'd

Example 10 (Change of basis)

Let
$$\mathbf{b}_1=egin{bmatrix} -9\\1 \end{bmatrix}$$
, $\mathbf{b}_2=egin{bmatrix} -5\\-1 \end{bmatrix}$, $\mathbf{c}_1=egin{bmatrix} 1\\-4 \end{bmatrix}$, $\mathbf{c}_2=egin{bmatrix} 3\\-5 \end{bmatrix}$, then

$$\begin{aligned} \left[\mathbf{c}_1 \quad \mathbf{c}_2 \quad \mathbf{b}_1 \quad \mathbf{b}_2 \right] &= \begin{bmatrix} 1 & 3 & -9 & -5 \\ -4 & -5 & 1 & -1 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -5 & -3 \end{bmatrix} \\ & \Longrightarrow \left[\mathbf{b}_1 \right]_{\mathcal{C}} &= \begin{bmatrix} 6 \\ -5 \end{bmatrix}, \left[\mathbf{b}_2 \right]_{\mathcal{C}} &= \begin{bmatrix} 4 \\ -3 \end{bmatrix}, P_{\mathcal{C} \leftarrow \mathcal{B}} &= \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix} \\ & \Longrightarrow P_{\mathcal{B} \leftarrow \mathcal{C}} &= \frac{1}{2} \begin{bmatrix} -3 & -4 \\ 5 & 6 \end{bmatrix}. \end{aligned}$$

Outline

- 1 Vector spaces and subspaces
- 2 Null space, column space and linear transformations
- 3 Linearly independent sets and bases
- 4 Coordinate systems
- 5 Dimension of a vector space
- 6 Rank

Dimension of a vector space

Let V be a vector space and \mathcal{B} a basis for V.

Theorem 8

If $|\mathcal{B}| = n$, then any set S with |S| > n is linearly dependent.

Corollary 2

If \mathcal{B}_2 is another basis for V, then $|\mathcal{B}_2| = |\mathcal{B}|$.

Definition 10 (Dimension of a vector space)

The **dimension** of *V* is dim $V = |\mathcal{B}|$. If dim $V < \infty$, then *V* is finite-dimensional. Otherwise, it is infinite-dimensional.

Remark: by convention, if $V = \{0\}$, then dim V = 0.

Example 11 (Dimension of a vector space)

- If $V = \mathbb{R}^n$, then $|\mathcal{E}| = n \implies \dim V = n$.
- If $H = \text{Span } \{\mathbf{e}_1, \mathbf{e}_2\}$ (subspace of $V = \mathbb{R}^3$), then dim H = 2.

The basis theorem

Let *V* be a vector space with dim $V = n < \infty$.

Theorem 9 (Subspaces of finite-dimensional spaces)

Let H be a subspace of V, then

- 1. in H, linearly independent sets can be extended into bases,
- 2. and dim $H < \dim V$.

Theorem 10 (The basis theorem)

Let S be a set of n vectors and $n \ge 1$. If S is linearly independent (or equivalently if Span S = V), then S is a basis for V.

Outline

- 1 Vector spaces and subspaces
- 2 Null space, column space and linear transformations
- 3 Linearly independent sets and bases
- 4 Coordinate systems
- 5 Dimension of a vector space
- 6 Rank

Dimension of Nul A and Col A

Let A be an $m \times n$ matrix.

- Pivot columns = basis of Col $A \implies \dim \operatorname{Col} A = \#$ of pivots.
- dim Nul A = # of free variables in $A\mathbf{x} = \mathbf{0}$.

Example 12 (Dimension of Nul A and Col A)

If
$$A = \begin{bmatrix} -3 & -6 & -1 & 1 & 7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$
, then the RREF of $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ is

$$\begin{bmatrix} 1 & -2 & 2 & 3 & -1 & 0 \\ 0 & 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- 2 pivot columns \implies dim Col A = 2
- 3 free variables \implies dim Nul A = 3

The row space

Let A be an $m \times n$ matrix.

Definition 11 (The row space)

Let $\mathbf{a}_1, \cdots, \mathbf{a}_m \in \mathbb{R}^n$ be the rows of A, namely

$$A = \begin{bmatrix} \mathbf{a}_1^\top \\ \vdots \\ \mathbf{a}_m^\top \end{bmatrix},$$

then **the row space** of A is Row $A = \text{Span } \{a_1, \dots, a_m\}.$

Theorem 11 (Row equivalence and the row space)

Let B is another $m \times n$ matrix, then

- 1. A is r.e. to $B \iff Row A = Row B$.
- 2. if B is in REF, its nonzero rows form a basis for Row A/Row B.

The row space cont'd

Example 13 (The row space)

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \mathsf{Row}\,A = \mathsf{Span}\,\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -5 \end{bmatrix} \right\}, \mathsf{Nul}\,A = \mathsf{Span}\,\left\{ \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 0 \\ 5 \\ 1 \end{bmatrix} \right\}$$

$$\mathsf{Col}\,A = \mathsf{Span}\,\left\{ \begin{bmatrix} -2 \\ 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -5 \\ 3 \\ 11 \\ 7 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 7 \\ 5 \end{bmatrix} \right\}.$$

The rank

Let A be an $m \times n$ matrix.

Definition 12 (The rank)

The **rank** of a matrix A is Rank $A = \dim \operatorname{Col} A$.

Theorem 12 (The rank theorem)

 $\dim Row A = Rank A$ and $Rank A + \dim Nul A = n$.

Example 14 (The rank theorem)

- If A is a 7×9 matrix with dim Nul A = 2, then Rank A = 7.
- If A is a 6×9 matrix, then dim Nul $A \neq 2$.

Rank of invertible matrices

Theorem 13 (Characterization of the matrix inverse cont'd)

Let A be a $n \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, then the following statements are equivalent:

- 1. A is invertible.
- 2. A is r.e. to I_n .
- 3. A has n pivot positions.
- 4. The only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.

- 5. $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in \mathbb{R}^n$.
- 6. $Span\{a_1, \dots, a_n\} = \mathbb{R}^n$.
- 7. There exists C $n \times n$ s.t. $CA = I_n$
- 8. There exists $B \ n \times n \ s.t. \ AB = I_n$.
- 9. A^{\top} is invertible.

Furthermore:

- 10. $\mathbf{a}_1, \dots, \mathbf{a}_n$ form a basis of \mathbb{R}^n .
- 11. $Col A = \mathbb{R}^n$.
- 12. $\dim Col A = n$.

- 13. Rank A = n.
- **14**. $NulA = \{\mathbf{0}\}.$
- 15. dim Nul A = 0.