## **Stair Pairs**

by Sven Nilsen, 2020

*In this paper I present a way to enumerate pairs that resembles a stair pattern.* 

A pair is a tuple `(a, b) : (nat, nat)` where `a < b`<sup>[1]</sup>. Pairs can be mapped to and from natural numbers<sup>[2]</sup>. By enumerating natural numbers, one can also enumerate pairs.

However, mapping to and from natural numbers is not the only way to enumerate pairs. One can select a pair, decrease  $\hat{a}$  and increase  $\hat{b}$  until  $\hat{a} = 0$ .

$$(3, 4)$$
  $(2, 5)$   $(1, 6)$   $(0, 7)$ 

Notice that the sum a + b is the same for all such pairs.

The problem is to find a way to select initial pairs such that this method covers every possible pair.

A stair pair is a pair corresponding to each natural number `n`:

stair\_pair(n : nat) = if even(n) 
$$\{((n + 2) / 2 - 1, (n + 2) / 2)\}$$
  
else  $\{((n + 3) / 2 - 2, (n + 3) / 2)\}$   
stair\_pair\_number((a, b) : (nat, nat)) = a + b - 1

For example:

One can see the stair pattern when connecting dots in the matrix<sup>[3]</sup> representation of pairs:



## **References:**

- [1] "Ordered pair"
  Wikipedia
  https://en.wikipedia.org/wiki/Ordered\_pair
- [2] "Natural number"
  Wikipedia
  https://en.wikipedia.org/wiki/Natural\_number
- [3] "Matrix (mathematics)"
  Wikipedia
  <a href="https://en.wikipedia.org/wiki/Matrix">https://en.wikipedia.org/wiki/Matrix</a> (mathematics)