A Positivity-preserving Strategy for Entropy Stable Discretizations of the Compressible Euler and Navier-Stokes equations

Yimin Lin, Ignacio Tomas, Jesse Chan

SIAM TXLA21, Nov 2021

Department of Computational and Applied Mathematics, Rice University

High order discontinuous Galerkin methods for PDEs

 Physical phenomena governed by PDE: aerospace engineering, nuclear engineering

Figure 1: Vortex structures from a helicopter simulation

High order discontinuous Galerkin methods for PDEs

- Physical phenomena governed by PDE: aerospace engineering, nuclear engineering
- High accuracy computational fluid dynamics on complex geometries

Figure 1: Unstructured mesh for NACA 0012 foil

High order discontinuous Galerkin methods for PDEs

- Physical phenomena governed by PDE: aerospace engineering, nuclear engineering
- High accuracy computational fluid dynamics on complex geometries
- More accurate per degrees of freedom than low order methods (for smooth solutions)

Figure 1: high order methods achieve better accuracy more efficiently

Compressible Euler and Navier-Stokes equations

· Compressible Euler and Navier-Stokes equations

$$\frac{\partial U}{\partial t} + \underbrace{\sum_{i=1}^{3} \frac{\partial f_i(U)}{\partial x_i}}_{\text{inviscid flux}} = \underbrace{\sum_{i=1}^{3} \frac{\partial g_i(U)}{\partial x_i}}_{\text{viscous flux}}$$

Entropy variables symmetrizes the viscous fluxes:

$$\sum_{i=1}^{d} \frac{\partial \mathbf{g}_{i}}{\partial \mathbf{x}_{i}} = \sum_{i,j=1}^{d} \frac{\partial}{\partial \mathbf{x}_{i}} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{v}}{\partial \mathbf{x}_{j}} \right),$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{11} & \dots & \mathbf{K}_{1d} \\ \vdots & \ddots & \vdots \\ \mathbf{K}_{d1} & \dots & \mathbf{K}_{dd} \end{bmatrix} = \mathbf{K}^{\mathsf{T}}, \qquad \mathbf{K} \succeq 0$$

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

$$\int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{u}}{\partial t} + \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial f_{i}(\mathbf{u})}{\partial x_{i}} = \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial g_{i}(\mathbf{u})}{\partial x_{i}}$$
 Test by \mathbf{v}

3

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

$$\begin{split} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{u}}{\partial t} + \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{f}_{i}(\mathbf{u})}{\partial x_{i}} &= \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{g}_{i}(\mathbf{u})}{\partial x_{i}} & \text{Test by } \mathbf{v} \\ \int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} + \sum_{i=1}^{d} \int_{\partial \Omega} n_{i} \left(F_{i}(\mathbf{u}) - \frac{1}{c_{\mathsf{v}}\mathsf{T}} \kappa \frac{\partial \mathsf{T}}{\partial x_{i}} \right) &= -\int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(K_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right) \\ &\text{Integration by parts and chain rule} \end{split}$$

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

$$\int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{u}}{\partial t} + \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial f_{i}(\mathbf{u})}{\partial x_{i}} = \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial g_{i}(\mathbf{u})}{\partial x_{i}}$$
 Test by \mathbf{v}

$$\int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} + \sum_{i=1}^{d} \int_{\partial \Omega} n_{i} \left(F_{i}(\mathbf{u}) - \frac{1}{c_{\mathsf{v}}\mathsf{T}} \kappa \frac{\partial \mathsf{T}}{\partial x_{i}} \right) = - \int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right)$$

Integration by parts and chain rule

$$\int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} = -\int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right) \leq 0$$
 Periodic

3

• With convex entropy η , entropy variable $\mathbf{v} = \frac{\partial \eta(u)}{\partial u}$ and entropy potential ψ_i . We can derive an entropy balance

$$\int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial \mathbf{u}}{\partial t} + \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial f_{i}(\mathbf{u})}{\partial x_{i}} = \sum_{i=1}^{d} \int_{\Omega} \mathbf{v}^{\mathsf{T}} \frac{\partial g_{i}(\mathbf{u})}{\partial x_{i}}$$
 Test by \mathbf{v}

$$\int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} + \sum_{i=1}^{d} \int_{\partial \Omega} n_{i} \left(F_{i}(\mathbf{u}) - \frac{1}{c_{\mathsf{v}}\mathsf{T}} \kappa \frac{\partial \mathsf{T}}{\partial x_{i}} \right) = -\int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(K_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right)$$

Integration by parts and chain rule

$$\int_{\Omega} \frac{\partial \eta(\mathbf{u})}{\partial t} = -\int_{\Omega} \sum_{i,j=1}^{d} \left(\frac{\partial \mathbf{v}}{\partial x_{i}} \right)^{\mathsf{T}} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{v}}{\partial x_{j}} \right) \leq 0$$
 Periodic

Loss of chain rule at discrete level (discrete effects, inexact quadrature)
 Loss of entropy stability

· Entropy conservative numerical flux

$$f_{S}(u,u) = f(u),$$
 $f_{S}(u_{L},u_{R}) = f_{S}(u_{R},u_{L})$
 $(v_{L} - v_{R})^{T} f_{S}(u_{L},u_{R}) = \psi(u_{L}) - \psi(u_{R})$

· Entropy conservative numerical flux

$$f_{S}(u, u) = f(u),$$
 $f_{S}(u_{L}, u_{R}) = f_{S}(u_{R}, u_{L})$
 $(v_{L} - v_{R})^{T} f_{S}(u_{L}, u_{R}) = \psi(u_{L}) - \psi(u_{R})$

Flux differencing technique

$$\frac{\partial f(u(x))}{\partial x} = 2 \left. \frac{\partial f_{S}(u(x), u(y))}{\partial x} \right|_{y=x}$$

· Entropy conservative numerical flux

$$f_{S}(u, u) = f(u),$$
 $f_{S}(u_{L}, u_{R}) = f_{S}(u_{R}, u_{L})$
 $(v_{L} - v_{R})^{T} f_{S}(u_{L}, u_{R}) = \psi(u_{L}) - \psi(u_{R})$

Flux differencing technique

$$\frac{\partial f(u(x))}{\partial x} = 2 \left. \frac{\partial f_{S}(u(x), u(y))}{\partial x} \right|_{y=x}$$

 Collocation on Lobatto quadrature nodes gives summation-by-parts (SBP) operator

$$Q = MD,$$
 $Q + Q^T = B,$ $Q1 = 0$

Entropy conservative numerical flux

$$f_{S}(u, u) = f(u), \qquad f_{S}(u_{L}, u_{R}) = f_{S}(u_{R}, u_{L})$$
$$(v_{L} - v_{R})^{T} f_{S}(u_{L}, u_{R}) = \psi(u_{L}) - \psi(u_{R})$$

Flux differencing technique

$$\frac{\partial f(u(x))}{\partial x} = 2 \left. \frac{\partial f_{S}(u(x), u(y))}{\partial x} \right|_{y=x}$$

 Collocation on Lobatto quadrature nodes gives summation-by-parts (SBP) operator

$$Q = MD,$$
 $Q + Q^T = B,$ $Q1 = 0$

· Discretize the variational form

$$\int_{\widehat{D}} \frac{\partial f}{\partial x} \overrightarrow{l} \xrightarrow{\text{Discretize}} 2(\mathbf{Q} \circ \mathbf{F}_{S}) \mathbf{1}, \quad (\mathbf{F}_{S})_{ij} = f_{S} (\mathbf{u}_{i}, \mathbf{u}_{j})$$

4

Viscous term discretization

· We write the system differently:

$$\frac{\partial \mathbf{g}}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{K} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \right) \xrightarrow{\text{Rewrite}} \begin{cases}
\mathbf{\Theta} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\
\mathbf{\sigma} = \mathbf{K} \mathbf{\Theta} = \mathbf{g} \\
\mathbf{G}_{\text{visc}} = \frac{\partial \boldsymbol{\sigma}}{\partial \mathbf{x}}
\end{cases}$$

$$\frac{\text{Discretize}}{\mathbf{\Theta}} \begin{cases}
(\mathbf{\Theta}, \varphi)_{\Omega} = \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}, \varphi\right)_{\Omega} + \langle [\mathbf{v}] \mathbf{n}_{i}, \varphi\rangle_{\partial\Omega} \\
(\mathbf{\sigma}, \eta)_{\Omega} = (\mathbf{K} \mathbf{\Theta}, \eta)_{\Omega} \\
(\mathbf{G}_{\text{visc}}, \psi)_{\Omega} = -\left(\mathbf{\sigma}, \frac{\partial \psi}{\partial \mathbf{x}}\right)_{\Omega} + \langle \{\{\mathbf{\sigma}\}\} \mathbf{n}_{i}, \psi\rangle_{\partial\Omega}
\end{cases}$$

Viscous term discretization

We write the system differently:

$$\frac{\partial \mathbf{g}}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{K} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \right) \quad \overset{\text{Rewrite}}{\Longrightarrow} \quad \begin{cases} \mathbf{\Theta} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\ \boldsymbol{\sigma} = \mathbf{K} \mathbf{\Theta} = \mathbf{g} \\ \mathbf{G}_{\text{visc}} = \frac{\partial \boldsymbol{\sigma}}{\partial \mathbf{x}} \end{cases} \\ \xrightarrow{\overset{\text{Discretize}}{\Longrightarrow}} \quad \begin{cases} (\mathbf{\Theta}, \varphi)_{\Omega} = \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}, \varphi \right)_{\Omega} + \langle [\![\mathbf{v}]\!] n_i, \varphi \rangle_{\partial \Omega} \\ (\boldsymbol{\sigma}, \eta)_{\Omega} = (\mathbf{K} \mathbf{\Theta}, \eta)_{\Omega} \\ (\mathbf{G}_{\text{visc}}, \psi)_{\Omega} = -\left(\boldsymbol{\sigma}, \frac{\partial \psi}{\partial \mathbf{x}} \right)_{\Omega} + \langle \{\!\{ \boldsymbol{\sigma} \}\!\} n_i, \psi \rangle_{\partial \Omega} \end{cases}$$

Viscous term dissipates entropy

$$\sum_{k} \left(\mathbf{G}_{\text{visc}}, \mathbf{v} \right)_{D^{k}} = \sum_{k} \sum_{i,i=1}^{d} - \left(\mathbf{K}_{ij} \mathbf{\Theta}_{j}, \mathbf{\Theta}_{i} \right)_{D^{k}} \leq 0$$

Current work: Positivity Limiting for nodal ESDG

• The entropy is well-defined only if densities and pressures are positive.

$$\mathbf{v}_1 = (\gamma + 1 - s) - \frac{(\gamma - 1)E}{p}, \qquad s = \log\left(\frac{p}{\rho^{\gamma}}\right)$$

Current work: Positivity Limiting for nodal ESDG

Strong shock forms - Negative densities

Figure 2: Exact solution

Figure 3: Solution in polynomial basis

· Oscillation by Gibbs phenomenon leads to negative density

· Step 1. Compute high order target scheme (nodal ESDG)

- · Step 1. Compute high order target scheme (nodal ESDG)
- \cdot Step 2. Compute low order positivity-preserving scheme

- · Step 1. Compute high order target scheme (nodal ESDG)
- · Step 2. Compute low order positivity-preserving scheme
- Step 3. Blend two schemes together through convex limiting

- Step 3. Blend two schemes together through convex limiting
 - · Low order positivity-preserving and ESDG in algebraic flux form:

$$\frac{m_i}{\tau}(u_i^{L,n+1} - u_i^n) + \sum_i F_{ij}^{L,n} = 0$$

$$\frac{m_i}{\tau}(u_i^{H,n+1} - u_i^n) + \sum_i F_{ij}^{H,n} = 0$$

- Step 3. Blend two schemes together through convex limiting
 - · Low order positivity-preserving and ESDG in algebraic flux form:

$$\frac{m_i}{\tau}(u_i^{L,n+1} - u_i^n) + \sum_i F_{ij}^{L,n} = 0$$

$$\frac{m_i}{\tau}(u_i^{H,n+1} - u_i^n) + \sum_i F_{ij}^{H,n} = 0$$

· High order algebraic flux

$$\mathbf{F}_{ij}^{\mathrm{H}} = \left(\mathbf{Q} - \mathbf{Q}^{\mathsf{T}}\right)_{ij} \left[f_{\mathsf{S}}\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right) - \frac{\boldsymbol{\sigma}_{i} + \boldsymbol{\sigma}_{j}}{2} \right]$$

• Choose suitable parameter $l_{ii} \in [0,1]$ to satisfy positivity

$$m_i u_i^{n+1} = m_i u_i^{L,n+1} + \sum \tau l_{ij} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

• Choose suitable parameter $l_{ii} \in [0,1]$ to satisfy positivity

$$m_i u_i^{n+1} = m_i u_i^{L,n+1} + \sum \tau l_{ij} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

• $l_{ij}=1 \implies$ recovers ESDG. $l_{ij}=0 \implies$ recovers low order positivity-preserving scheme.

• Choose suitable parameter $l_{ii} \in [0,1]$ to satisfy positivity

$$m_i u_i^{n+1} = m_i u_i^{L,n+1} + \sum \tau l_{ij} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

- $l_{ij} = 1 \implies$ recovers ESDG. $l_{ij} = 0 \implies$ recovers low order positivity-preserving scheme.
- Find largest possible l_{ij} that satisfy positivity.

· Limited solution as a convex combination of substates

$$u_i^{n+1} = u_i^{L,n+1} + \sum \tau \frac{l_{ij}}{m_i} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

Limited solution as a convex combination of substates

$$u_{i}^{n+1} = u_{i}^{L,n+1} + \sum_{i} \tau \frac{l_{ij}}{m_{i}} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

$$= \sum_{i} \lambda_{ij} u_{i}^{L,n+1} + \sum_{i} \lambda_{ij} \frac{\tau l_{ij}}{\lambda_{ij} m_{i}} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

9

Limited solution as a convex combination of substates

$$\begin{aligned} \mathbf{u}_{i}^{n+1} &= \mathbf{u}_{i}^{L,n+1} + \sum_{i} \tau \frac{l_{ij}}{\mathbf{m}_{i}} (\mathbf{F}_{ij}^{L,n} - \mathbf{F}_{ij}^{H,n}) \\ &= \sum_{i} \lambda_{ij} \mathbf{u}_{i}^{L,n+1} + \sum_{i} \lambda_{ij} \frac{\tau l_{ij}}{\lambda_{ij} \mathbf{m}_{i}} (\mathbf{F}_{ij}^{L,n} - \mathbf{F}_{ij}^{H,n}) \\ &= \sum_{i} \lambda_{ij} \left(\mathbf{u}_{i}^{L,n+1} + l_{ij} \frac{\tau}{\lambda_{ij} \mathbf{m}_{i}} (\mathbf{F}_{ij}^{L,n} - \mathbf{F}_{ij}^{H,n}) \right) \end{aligned}$$

· Limited solution as a convex combination of substates

$$\begin{aligned} u_{i}^{n+1} &= u_{i}^{L,n+1} + \sum_{i} \tau \frac{l_{ij}}{m_{i}} (\mathsf{F}_{ij}^{L,n} - \mathsf{F}_{ij}^{H,n}) \\ &= \sum_{i} \lambda_{ij} u_{i}^{L,n+1} + \sum_{i} \lambda_{ij} \frac{\tau l_{ij}}{\lambda_{ij} m_{i}} (\mathsf{F}_{ij}^{L,n} - \mathsf{F}_{ij}^{H,n}) \\ &= \sum_{i} \lambda_{ij} \left(u_{i}^{L,n+1} + l_{ij} \frac{\tau}{\lambda_{ij} m_{i}} (\mathsf{F}_{ij}^{L,n} - \mathsf{F}_{ij}^{H,n}) \right) \end{aligned}$$

 Solutions with positive density and internal energy (pressure) is a convex set

$$\mathcal{A} \coloneqq \{ \mathbf{u} = (\rho, \rho \mathbf{u}, \mathbf{E}) \mid \rho(\mathbf{u}) > 0, \rho e(\mathbf{u}) > 0 \}$$

· Limited solution as a convex combination of substates

$$u_{i}^{n+1} = u_{i}^{L,n+1} + \sum_{j} \tau \frac{l_{ij}}{m_{i}} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

$$= \sum_{j} \lambda_{ij} u_{i}^{L,n+1} + \sum_{j} \lambda_{ij} \frac{\tau l_{ij}}{\lambda_{ij} m_{i}} (F_{ij}^{L,n} - F_{ij}^{H,n})$$

$$= \sum_{j} \lambda_{ij} \left(u_{i}^{L,n+1} + l_{ij} \frac{\tau}{\lambda_{ij} m_{i}} (F_{ij}^{L,n} - F_{ij}^{H,n}) \right)$$

 Solutions with positive density and internal energy (pressure) is a convex set

$$\mathcal{A} \coloneqq \{ \mathbf{u} = (\rho, \rho \mathbf{u}, \mathbf{E}) \mid \rho(\mathbf{u}) > 0, \rho e(\mathbf{u}) > 0 \}$$

 \cdot Solving for l_{ij} is a simple quadratic solve

Positivity preserving discretization

· Low order positivity preserving method could be written as

$$\underbrace{m_i \frac{\partial u}{\partial t} + \sum Q_{ij} \left(f(u_j) - \sigma_j \right)}_{\text{low order nodal DG on LGL nodes}} - \underbrace{\sum d_{ij} (u_j - u_i)}_{\text{graph viscosity}} = 0$$

Positivity preserving discretization

· Low order positivity preserving method could be written as

$$\underbrace{m_i \frac{\partial u}{\partial t} + \sum Q_{ij} (f(u_j) - \sigma_j)}_{\text{low order nodal DG on LGL nodes}} - \underbrace{\sum d_{ij} (u_j - u_i)}_{\text{graph viscosity}} = 0$$

 \cdot Weighted differentiation matrix ${\it Q}$ is a sparse low order (SBP) operator:

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Positivity preserving discretization

Low order positivity preserving method could be written as

$$\underbrace{m_i \frac{\partial u}{\partial t} + \sum Q_{ij} (f(u_j) - \sigma_j)}_{\text{low order nodal DG on LGL nodes}} - \underbrace{\sum d_{ij} (u_j - u_i)}_{\text{graph viscosity}} = 0$$

 \cdot Weighted differentiation matrix ${\it Q}$ is a sparse low order (SBP) operator:

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

· Low order algebraic flux

$$\mathbf{F}_{ij}^{\mathrm{L}} = \frac{1}{2} \left(\mathbf{Q}^{\mathrm{L}} - \left(\mathbf{Q}^{\mathrm{L}} \right)^{\mathrm{T}} \right)_{ij} \left[f(\mathbf{u}_i) + f(\mathbf{u}_j) - (\boldsymbol{\sigma})_i - (\boldsymbol{\sigma})_j \right] - d_{ij} \left(\mathbf{u}_j - \mathbf{u}_i \right)$$

Graph viscosity coefficients

$$\mathbf{Q} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Define the graph viscosity coefficients:

$$d_{ij} = \max \left\{ \beta(u_i, u_j, n_{ij}) \|Q_{ij}\|, \beta(u_j, u_i, n_{ji}) \|Q_{ji}\| \right\}, n_{ij} = Q_{ij} / \|Q_{ij}\|$$

Graph viscosity coefficients

$$\mathbf{Q} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Define the graph viscosity coefficients:

$$d_{ij} = \max \left\{ \beta(u_i, u_j, n_{ij}) \|Q_{ij}\|, \beta(u_j, u_i, n_{ji}) \|Q_{ji}\| \right\}, n_{ij} = Q_{ij} / \|Q_{ij}\|$$

Compressible Euler - Maximum wavespeed (Lax-Friedrichs flux)

$$\beta\left(\mathbf{u}_{i},\mathbf{u}_{j},\mathbf{n}_{ij}\right)=\lambda_{\max}\left(\mathbf{u}_{i},\mathbf{u}_{j},\mathbf{n}_{ij}\right)$$

Graph viscosity coefficients

$$\mathbf{Q} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & \dots & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

· Define the graph viscosity coefficients:

$$d_{ij} = \max \left\{ \beta(u_i, u_j, n_{ij}) \|Q_{ij}\|, \beta(u_j, u_i, n_{ji}) \|Q_{ji}\| \right\}, n_{ij} = Q_{ij} / \|Q_{ij}\|$$

· Compressible Euler - Maximum wavespeed (Lax-Friedrichs flux)

$$\beta\left(\mathbf{u}_{i},\mathbf{u}_{j},\mathbf{n}_{ij}\right)=\lambda_{\max}\left(\mathbf{u}_{i},\mathbf{u}_{j},\mathbf{n}_{ij}\right)$$

· Compressible Navier-Stokes - Zhang's positivity preserving flux

$$\beta\left(\mathbf{u}_{i},\mathbf{u}_{j},\mathbf{n}_{ij}\right)=\epsilon_{0}+\left|\mathbf{n}\cdot\mathbf{u}\right|+\frac{1}{2\rho^{2}e}\left(\sqrt{\rho^{2}\left(\mathbf{q}\cdot\mathbf{n}\right)^{2}+2\rho^{2}e\left\|\mathbf{n}\cdot\boldsymbol{\tau}-\rho\mathbf{n}\right\|}+\rho\left|\mathbf{q}\cdot\mathbf{n}\right|\right)$$

Positivity preserving discretization - Tensor product elements

• Interpretation: subcell Lax-Friedriches type dissipation

Positivity preserving discretization - Tensor product elements

· Interpretation: subcell Lax-Friedriches type dissipation

· Extension to tensor product elements

Positivity preserving discretization - Simplex elements

· Build connectivity graph

Positivity preserving discretization - Simplex elements

Build connectivity graph

· Generalized sparse low order SBP operator

$$\begin{aligned} \mathbf{Q}_r^{\mathrm{L}}\mathbf{1} &= 0 \\ \text{s.t.} \quad \left(\frac{\mathbf{Q}_r^{\mathrm{L}} - \left(\mathbf{Q}_r^{\mathrm{L}}\right)^{\mathsf{T}}}{2}\right)_{ij} = \begin{cases} 0 & \text{if } \mathbf{A}_{ij} = 0 \\ \psi_j - \psi_i & \text{otherwise} \end{cases}. \\ \\ \mathbf{Q}_r^{\mathrm{L}} &= \frac{\mathbf{Q}_r^{\mathrm{L}} - \left(\mathbf{Q}_r^{\mathrm{L}}\right)^{\mathsf{T}}}{2} + \frac{1}{2}\mathbf{E}^{\mathsf{T}}\mathbf{B}\mathbf{E}, \qquad \psi^{\mathsf{T}}\mathbf{1} = 0 \end{aligned}$$

Modifications of interface fluxes

The limited solution is

$$\mathbf{m}_{i}\mathbf{u}_{i}^{n+1} = \mathbf{m}_{i}\mathbf{u}_{i}^{\mathbf{L},n+1} + \tau \left(\sum_{j \in \mathcal{I}(i)} l_{ij} \left(\mathbf{F}_{ij}^{\mathbf{L}} - \mathbf{F}_{ij}^{\mathbf{H}}\right) + \sum_{j \in \mathcal{B}(i)} l_{ij} \left(\mathbf{F}_{ij}^{\mathbf{B},\mathbf{L}} - \mathbf{F}_{ij}^{\mathbf{B},\mathbf{H}}\right)\right)$$

Modifications of interface fluxes

The limited solution is

$$m_{i}u_{i}^{n+1} = m_{i}u_{i}^{\mathrm{L},n+1} + \tau \left(\sum_{j \in \mathcal{I}(i)} l_{ij} \left(F_{ij}^{\mathrm{L}} - F_{ij}^{\mathrm{H}}\right) + \sum_{j \in \mathcal{B}(i)} l_{ij} \left(F_{ij}^{\mathrm{B,L}} - F_{ij}^{\mathrm{B,H}}\right)\right)$$

Modify interface fluxes

$$\mathbf{F}_{ij}^{\mathbf{B},\mathbf{H}} = \mathbf{F}_{ij}^{\mathbf{B},\mathbf{L}} = \sum_{k=1}^{2} \frac{1}{2} \left(\mathbf{E}^{\mathsf{T}} \mathbf{B}_{k} \mathbf{E} \right)_{ii} \left[f_{k} \left(\mathbf{u}_{i} \right) + f_{k} \left(\mathbf{u}_{j} \right) \right] - (\boldsymbol{\lambda}_{k})_{i} \left(\mathbf{u}_{j} - \mathbf{u}_{i} \right).$$

Modifications of interface fluxes

The limited solution is

$$m_{i}u_{i}^{n+1} = m_{i}u_{i}^{\mathrm{L},n+1} + \tau \left(\sum_{j \in \mathcal{I}(i)} l_{ij} \left(\mathbf{F}_{ij}^{\mathrm{L}} - \mathbf{F}_{ij}^{\mathrm{H}}\right) + \sum_{j \in \mathcal{B}(i)} l_{ij} \left(\mathbf{F}_{ij}^{\mathrm{B},\mathrm{L}} - \mathbf{F}_{ij}^{\mathrm{B},\mathrm{H}}\right)\right)$$

Modify interface fluxes

$$\mathbf{F}_{ij}^{\mathbf{B},\mathbf{H}} = \mathbf{F}_{ij}^{\mathbf{B},\mathbf{L}} = \sum_{k=1}^{2} \frac{1}{2} \left(\mathbf{E}^{\mathsf{T}} \mathbf{B}_{k} \mathbf{E} \right)_{ii} \left[f_{k} \left(\mathbf{u}_{i} \right) + f_{k} \left(\mathbf{u}_{j} \right) \right] - (\boldsymbol{\lambda}_{k})_{i} \left(\mathbf{u}_{j} - \mathbf{u}_{i} \right).$$

· Lax-Friedrichs flux is entropy stable.

 Low order positive + High order entropy stable ⇒ positivity-preserving and entropy stable limited solution

- Low order positive + High order entropy stable ⇒ positivity-preserving and entropy stable limited solution
- · ELement-wise limited solution

$$\mathbf{m}_{i}\mathbf{u}_{i}^{n+1} = \mathbf{m}_{i}\mathbf{u}_{i}^{\mathrm{L},n+1} + \tau \sum_{j \in \mathcal{I}(i)} l_{ij} \left(\mathbf{F}_{ij}^{\mathrm{L}} - \mathbf{F}_{ij}^{\mathrm{H}}\right)$$

- Low order positive + High order entropy stable ⇒ positivity-preserving and entropy stable limited solution
- · ELement-wise limited solution

$$\mathbf{m}_{i}\mathbf{u}_{i}^{n+1} = \mathbf{m}_{i}\mathbf{u}_{i}^{\mathrm{L},n+1} + \tau \sum_{j \in \mathcal{I}(i)} l_{ij} \left(\mathbf{F}_{ij}^{\mathrm{L}} - \mathbf{F}_{ij}^{\mathrm{H}} \right)$$

- Low order positive + High order entropy stable ⇒ positivity-preserving and entropy stable limited solution
- · ELement-wise limited solution

$$\mathbf{m}_{i}\mathbf{u}_{i}^{n+1} = \mathbf{m}_{i}\mathbf{u}_{i}^{\mathrm{L},n+1} + \tau \sum_{j \in \mathcal{I}(i)} l\left(\mathbf{F}_{ij}^{\mathrm{L}} - \mathbf{F}_{ij}^{\mathrm{H}}\right)$$

 $l = \min \{l_{ij}, i, j \text{ in the same element}\}$

- Low order positive + High order entropy stable ⇒ positivity-preserving and entropy stable limited solution
- · ELement-wise limited solution

$$\mathbf{m}_{i}\mathbf{u}_{i}^{n+1} = \mathbf{m}_{i}\mathbf{u}_{i}^{\mathrm{L},n+1} + \tau \sum_{j \in \mathcal{I}(i)} l\left(\mathbf{F}_{ij}^{\mathrm{L}} - \mathbf{F}_{ij}^{\mathrm{H}}\right)$$

 $l = \min \{l_{ij}, i, j \text{ in the same element}\}$

The limited solution is both positivity-preserving and entropy stable.

$$\mathbf{u}_{i}^{n+1} = (1-l)\,\mathbf{u}_{i}^{L,n} + l\mathbf{u}_{i}^{H,n}$$

Entropy stable and positivity-preserving limited solution

• (Euler) Local Lax-Friedrichs flux dissipates entropy

$$\boldsymbol{\psi} - \mathbf{v}^{\mathsf{T}} \mathbf{f}_{\mathsf{LF}} \leq 0$$

Entropy stable and positivity-preserving limited solution

· (Euler) Local Lax-Friedrichs flux dissipates entropy

$$\boldsymbol{\psi} - \mathbf{v}^{\mathsf{T}} \mathbf{f}_{\mathsf{LF}} \leq 0$$

· Discrete entropy stability (Euler)

$$\mathbf{v}^{\mathsf{T}}\mathbf{M}\frac{\partial \mathbf{u}}{\partial t} \leq \mathbf{1}^{\mathsf{T}}\mathbf{B}\left(\boldsymbol{\psi} - \mathbf{v}^{\mathsf{T}}\boldsymbol{f}^{*}\right) \quad \iff \quad \int_{\mathbf{D}} \frac{\partial \eta\left(\mathbf{u}\right)}{\partial t} \leq \int_{\partial \mathbf{D}} \boldsymbol{n}\left(\boldsymbol{\psi} - \mathbf{v}^{\mathsf{T}}\boldsymbol{f}^{*}\right)$$

Entropy stable and positivity-preserving limited solution

• (Euler) Local Lax-Friedrichs flux dissipates entropy

$$\boldsymbol{\psi} - \mathbf{v}^{\mathsf{T}} \mathbf{f}_{\mathsf{LF}} \leq 0$$

· Discrete entropy stability (Euler)

$$\mathbf{v}^{\mathsf{T}}\mathbf{M}\frac{\partial\mathbf{u}}{\partial\mathsf{t}}\leq\mathbf{1}^{\mathsf{T}}\mathbf{B}\left(\boldsymbol{\psi}-\mathbf{v}^{\mathsf{T}}\boldsymbol{f}^{*}\right)\quad\iff\quad\int_{\mathsf{D}}\frac{\partial\eta\left(\mathbf{u}\right)}{\partial\mathsf{t}}\leq\int_{\partial\mathsf{D}}\boldsymbol{n}\left(\boldsymbol{\psi}-\mathbf{v}^{\mathsf{T}}\boldsymbol{f}^{*}\right)$$

· Discrete entropy balance (Navier-Stokes)

$$\beta\left(u_{i}, u_{j}, n_{ij}\right) = \max\left\{\lambda_{\max}\left(u_{i}, u_{j}, n_{ij}\right), \alpha\left(u_{i}, u_{j}, n_{ij}\right)\right\}$$

$$\mathbf{v}^{\mathsf{T}} \mathbf{M} \frac{\partial \mathbf{u}}{\partial t} \leq \mathbf{1}^{\mathsf{T}} \mathbf{B} \left(\psi - \mathbf{v}^{\mathsf{T}} \mathbf{f}^{*}\right) - \mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{G}_{\mathsf{visc}}$$

$$\iff \int_{D} \frac{\partial \eta\left(\mathbf{u}\right)}{\partial t} \leq \int_{\partial D} \mathbf{n} \left(\psi - \mathbf{v}^{\mathsf{T}} \mathbf{f}^{*}\right) - \int_{D} \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)^{\mathsf{T}} \left(\mathbf{K} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)$$

Numerical results: LeBlanc shocktube

K	L1 error	Rate
50	0.09403	
100	0.02240	2.07
200	0.00905	1.31
400	0.00348	1.38
800	0.00182	0.93
1600	0.00072	1.34

Figure 4: LeBlanc shocktube, N = 2, K = 800

Numerical results: 1D viscous shocktube

K	L1 error	Rate
50	0.03278	
100	0.01852	0.82
200	0.00856	1.11
400	0.00241	1.83
800	0.00042	2.52
1600	0.00006	2.80

Figure 5: Viscous shocktube, N = 2, K = 400

Double Mach Reflection - Compressible Euler

• ${\it N}=3,~1000 \times 250$ elements, ${\it T}=0.2$, element-wise and node-wise limiting

Figure 6: Element-wise

Figure 7: Node-wise

Double Mach Reflection - Compressible Euler

• $\mathit{N}=3,\ 1000\times250$ elements, $\mathit{T}=0.2$, element-wise and node-wise limiting

Figure 6: Element-wise

Figure 7: (Pazner) N = 3, 2400 \times 600 elements, $T \approx 0.275$

Double Mach Reflection - Compressible Navier-Stokes

• $N=3,\ 250\times750, Re=500$ elements, element-wise and node-wise limiting

Figure 8: Element-wise

Figure 9: Node-wise

Summary and future works

- We present a positivity limiting strategy for nodal ESDG based on graph viscosity.
- Future work: Positivity limiting for modal ESDG. Implicit timestepping.

Thank you!