

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Application/Control Number: 10/017,013

Page 2

Art Unit: 2857

CLMPTO

07-28-04

SRR

1. (Currently Amended): A method for providing predictive maintenance of a device, comprising the steps of:

modeling as a time series x_n of a discretely sampled signal representative of occurrences of a defined event in the operation of said device, said time series x_n being modeled as two-state first order Markov processes with associated transition probabilities $p(i|j)$, wherein state 1 applies when the number of said occurrences exceeds a certain threshold T , and state 0 applies when the number of said occurrences falls below said certain threshold T , being represented as:

$$S_n = \begin{cases} 0 & \text{if } x_n \leq T \\ 1 & \text{if } x_n > T \end{cases}$$

wherein said transition probability $p(i|j)$ is the switching probability from state j to state i , that is, the probability that $S_{n+1} = i$ given that $S_n = j$, being a total of 4 transition probabilities:

computing said four transition probabilities the last N states S_n , where N is a predetermined number;

conducting a supervised training session utilizing a set of J devices, which have failed due to known causes and considering the two independent probabilities $p(1|1)$ and $p(1|0)$, said training session comprising:

computing the two-dimensional feature vectors $f_i = \{p(1|1), p(1|0)\}$, for the initial M windows of N scans,

computing the two-dimensional feature vectors $f_i = \{p(1|1), p(1|0)\}$, for the final N number of scans,

plotting a scatter-diagram of all 2D feature vectors $(f_i)_n$ and $(f_i)_m$, ($n = 1 \dots J$), and

deriving from the scatter-diagram a pattern classifier by estimating the optimal linear discriminant which separates the two foregoing sets of vectors; and

Art Unit: 2857

applying said classifier to monitor the persistence of occurrences of said defined event in the operation of said device.

2. (Currently Amended): A method for providing predictive maintenance of a device as recited in claim 1, including the steps of:

 updating said transition probabilities at each scan-are-updated; and
 constructing the feature vector $f = (p(1|1), p(1|0))$ -constructed.

3. (Currently Amended): A method for providing predictive maintenance of a device as recited in claim 2, including the step of:

 providing a warning of imminent failure of said device if f falls into a region of said classifier corresponding-indicating such failure prediction.

4. (Currently Amended): A method for providing predictive maintenance of an X-ray tube, comprising the steps of:

 modeling as a time series x_n of a discretely sampled signal representative of occurrences of arcing in the operation of said tube, said time series x_n being modeled as two-state first order Markov processes with associated transition probabilities $p(i|j)$, wherein state 1 applies when the number of said occurrences exceeds a certain threshold T_1 , and state 0 applies when the number of said occurrences falls below said certain threshold T_0 , being represented as:

$$S_n = \begin{cases} 0 & \text{if } x_n \leq T_0 \\ 1 & \text{if } x_n > T_1 \end{cases}$$

wherein said transition probability $p(i|j)$ is the switching probability from state j to state i , that is, the probability that $S_{n+1} = i$ given that $S_n = j$, being a total of 4 transition probabilities:

 computing said four transition probabilities the last N states S_n , where N is a predetermined number;

 conducting a supervised training session utilizing a set of J X-ray tubes, which have failed due to known causes and considering the two independent probabilities $p(1|1)$ and $p(1|0)$, said training session comprising:

computing the two-dimensional feature vectors $f_i = \{p(1|1), p(1|0)\}$, for the initial M windows of N scans,
computing the two-dimensional feature vectors $f_i = \{p(1|1), p(1|0)\}_2$ for the final N number of scans,
plotting a scatter-diagram of all 2D feature vectors $(f_i)_n$ and $(f_i)_m$, ($n = 1 \dots J$),
and
deriving a pattern classifier by estimating the optimal linear discriminant which separates the two foregoing sets of vectors; and
applying said classifier to monitor the persistence of occurrences of said arcing in the operation of said X-ray tube.

5. (Original): A method for providing predictive maintenance of an X-ray tube as recited in claim 4, including the steps of:

updating said transition probabilities at each scan arc updated; and
constructing the feature vector $f = \{p(1|1), p(1|0)\}$ constructed.

6. (Currently Amended): A method for providing predictive maintenance of an X-ray tube as recited in claim A5, including the step of:

providing a warning of imminent failure of said X-ray tube if f falls into a region of said classifier corresponding indicating such failure prediction.

Claim 7 is cancelled.

8. (Currently Amended): Apparatus for providing predictive maintenance of a device, comprising:

means for modeling as a time series x_n of a discretely sampled signal representative of occurrences of a defined event in the operation of said device, said time series x_n being modeled as two-state first order Markov processes with associated transition probabilities $p(i|j)$, wherein state 1 applies when the number of said occurrences exceeds a certain threshold T_+ and state 0 applies when the number of said occurrences falls below said certain threshold T_- , being represented as:

$$S_n = \begin{cases} 0 & \text{if } x_n \leq T_- \\ 1 & \text{if } x_n > T_+ \end{cases}$$

wherein said transition probability $p(i|j)$ is the switching probability from state j to state i , that is, the probability that $S_{n+1} = i$ given that $S_n = j$, being a total of 4 transition probabilities;

means for computing said four transition probabilities the last N states S_n , where N is a predetermined number;

means for conducting a supervised training session utilizing a set of J devices, which have failed due to known causes and considering the two independent probabilities $p(1|1)$ and $p(1|0)$, said means for conducting a supervised training session comprising means for:

computing the two-dimensional feature vectors $f_i = \{p(1|1), p(1|0)\}$, for the initial M windows of N scans,

computing the two-dimensional feature vectors $f_f = \{p(1|1), p(1|0)\}$, for the final N number of scans,

plotting a scatter-diagram of all 2D feature vectors $\{f_i\}_n$ and $\{f_f\}_n$, ($n = 1 \dots J$), and

deriving a pattern classifier by estimating the optimal linear discriminant which separates the two foregoing sets of vectors; and

means for applying said classifier to monitor the persistence of occurrences of said defined event in the operation of said device.