Nielsen-Schreier Theorem

Behshad Jahan Pour

Free Groups

- ▶ A word in a set S is a string of elements of $s \in S$ and its inverse s^{-1} . A reduced word is a word that contains no adjacent pairs ss^{-1} or $s^{-1}s$. F_S is then the set of reduced words in S.
- ▶ The free group F_S over a set S is the set of reduced words in S, it forms a group under juxtaposition. The rank of F_S is |S|, when |S| = n, we write F_n .
- ▶ The free product of two groups G and H, denoted G*H, is the set consisting of words $g_1h_1g_2h_2\cdots g_nh_n$ where $g_i\in G$ and $h_i\in H$ are not the identity.

Theorem (Nielsen-Schreier)

Every subgroup of a free group is free.

Fundamental Groups

- ▶ Given a space X, a *loop* based at $x_0 \in X$ is continuous map $\gamma: I \to X$ with $\gamma(0) = x_0 = \gamma(1)$.
- ▶ The two loops γ_1, γ_2 are equivalent if there exists a *(path)* homotopy between them; that is, if there exists a continuous map $h: I \times I \to X$ with

$$h(t,0) = \gamma_2(t), \quad h(t,1) = \gamma_2(t), \quad h(0,t) = h(1,t) = x_0.$$

- ▶ Define $\pi_1(X, x_0)$ to be the set of homotopy classes of loops based at x_0 .
- $\blacktriangleright \pi(X,x_0)$ forms a group under concatenation, and is called the fundamental group.
- For Given a continuous map $p:(X,x_0) \to (Y,y_0)$ with $p(x_0)=y_0$, we define $p_*:\pi_1(X,x_0) \to \pi_1(Y,y_0)$ by $p_*([\gamma])=[p\gamma].$ p_* is a homomorphism.

Fundamental Groups

Theorem $\pi_1(S^1) \cong \mathbb{Z}$

Van Kampen Theorem (A specialized case)

We say a space X is simply-connected if it is path-connected and has a trivial fundamental group, a space X is semi-locally simply-connected if every point $x_0 \in X$ has an open neighborhood such that the homomorphism $i_*: \pi_1(U,x_0) \to \pi_1(X,x_0)$ induced by the inclusion is trivial.

Theorem (Van Kampen)

Let X be a space with $x_0 \in X$. If $X = A \cup B$ is the union of path connected open subsets A, B, with $A \cap B$ simply-connected, then

$$\pi_1(X, x_0) = \pi_1(A, x_0) * \pi_2(B, x_0).$$

An application: Wedge Sum of Two Circles

Consider the wedge of two circles $S^1\vee S^1$ around a point b. By the Van Kampen Theorem we have

$$\pi_1(S^1 \vee S^1, b) \cong \mathbb{Z} * \mathbb{Z} \cong F_2$$

We can similarly show that the fundamental group of the the wedge of n circles $\bigvee_n S^1$ is free.

Covering Spaces

- A covering space of a space B is a space E equipped with a continuous surjective map $p:E\to B$ that satisfies the following condition: for every $x\in B$, there exists an open neighborhood $U\subset B$ of x such that $p^{-1}(U)=\bigcup_{i\in I}V_i$ is the union of pairwise disjoint open subsets $(V_i)_{i\in I}\subset E$, and for each $i\in I$ the restriction $p|_{V_i}$ is a homeomorphism onto U.
- Such a U is called a fundamental neighborhood, and each V_i is called a sheet. We call p a covering map (or cover), and X the base space.

Covering Spaces

Examples of Covering Spaces

▶ The map $p: \mathbb{R} \to S^1$ given by $p(t) = e^{2\pi i t}$ is a cover.

Examples of Covering Spaces

▶ The map $p \times p : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$. is a cover of the torus.

Path Lifting

A lift of a continuous map $f:X\to B$ to the covering space $p:E\to B$ is a map $\tilde{f}:X\to E$ such that $p\tilde{f}=f$:

Lemma

Let $p: E \to B$ be a covering with $p(e_0) = b_0$. Any path $\gamma: I \to B$ with $\gamma(0) = b_0$ has a unique lift to a path $\tilde{\gamma}: I \to E$ with $\tilde{\gamma}(0) = e_0$.

(Path) Homotopy Lifting

Lemma

Let $p: E \to B$ be a covering with $p(e_0) = b_0$. Let $F: I \times I \to B$ be continuous with $F(0,0) = b_0$. There is a unique lifting of F to a continuous map $\tilde{F}: I \times I \to E$ with $\tilde{F}(0,0) = e_0$. Moreover, if F is a path homotopy, then \tilde{F} is a path homotopy.

(Path) Homotopy Lifting

Theorem

Let $p: E \to B$ be a covering with $p(e_0) = b_0$, and let $\gamma, \eta: I \to B$ be paths from b_0 to b_1 , with unique path liftings $\tilde{\gamma}, \tilde{\eta}: I \to E$ that start at e_0 . If γ and η are path homotopic, then $\tilde{\gamma}$ and $\tilde{\eta}$ end at the same point, and are path homotopic.

Proof.

We have a unique lift \tilde{F} of our homotopy F from γ to η . The restrictions of \tilde{F} to $I \times \{0\}$ and $I \times \{1\}$ are paths lifts of γ and η respectively, so by uniqueness of path lifting they are equal to $\tilde{\gamma}$ and $\tilde{\eta}$. In particular $\tilde{\gamma}(1) = \tilde{\eta}(1) = \tilde{F}(1,1)$.

Corollary

The induced homomorphism $p_*:\pi_1(E,e_0)\to\pi_1(B,b_0)$ is injective.

Universal Cover

Theorem

A connected, locally path-connected, and semi-locally simply-connected space B with a basepoint b_0 has a simply connected covering space

 $E == \{ [\gamma] : \gamma \text{ is a path in } B \text{ starting at } b_0 \}, \text{ with } p : E \to B \text{ given by } p([\gamma]) = \gamma(1).$

Galois correspondence of covering spaces

Theorem

Let (B,b_0) be a connected, locally path-connected, and semi-locally simply-connected based space. Then for every subgroup $H \leq \pi_1(B,b_0)$, there exists a path-connected covering space $p: (E_H,e_0) \to (B,b_0)$ such that $p_*(\pi_1(E_H,e_0)) = H$.

Graphs

A graph X is a topological space obtained from a discrete set X^0 of points and a collection of copies of the unit interval $I_{\alpha}=[0,1]$, as the quotient space of the disjoint union of X^0 and the intervals, where the endpoints of each I_{α} is identified with points in X.

Trees

- ▶ A tree is a graph such that every two vertices are connected by a unique path. A maximal tree T of a graph X is a subgraph of X which is a tree and contains all vertices of T.
- If X is a connected graph which admits a maximal tree, then X/T is the wedge of |K| circles where K consists of edges in X that are not in T.

Theorem

Every connected graph X has a maximal tree T.

Proposition

Every Tree is contractible.

Fundamental Group and Covering Spaces of a Graph

Theorem

The fundamental group of a connected graph X is free.

Proof.

There exists a maximal tree T of X. Since T is contractible, we have a homotopy equivalence $X \to X/T$. So $\pi_1(X,x_0) \cong \pi_1(X/T,x_0)$. Since X/T is the wedge of |K| circles, its fundamental group is free, so it follows that the fundamental group of X is also free.

Lemma

Every covering space of a graph is also a graph.

Proof.

Let $p:E\to X$ be a covering space of a graph $X=X^0\bigsqcup_{\alpha}I_{\alpha}/\sim$. We can realize E as a graph with a vertex-set $E^0=p^{-1}(X^0)$ and a edges corresponding to the unique path lifts of maps $I_{\alpha}\to X$. \square

Proof of the Nielsen-Schreier Theorem

Proof.

Let F be a free group with rank |K|, and let X be a wedge of |K| circles, so that $\pi_1(X,x_0)\cong F$. Given a subgroup H of $\pi_1(X,x_0)$, there exists a covering space $p:(X_H,x_H)\to (X,x_0)$ such that $p_*(\pi_1(X_H,x_H))=H,\ p_*$ is injective so it is an isomorphism onto H. Since X is a graph, it follows that X_H is also a graph, so $H\cong \pi(X_H,x_H)$ is free.