第2章c:特殊矩阵

数学系 梁卓滨

2019-2020 学年 I

提要

● 单位矩阵 数量矩阵 对角矩阵 三角矩阵

特殊矩阵 1/12 ◁ ▷ △ ▽

提要

● 单位矩阵 c 数量矩阵 c 对角矩阵 c 三角矩阵

特殊矩阵 1/12 ◁ ▷ △ ▽

提要

● 单位矩阵 c 数量矩阵 c 对角矩阵 c 三角矩阵

• 对称矩阵

特殊矩阵 1/12 ◁ ▷ △ ▽

定义 对角线元素都是 1,其余元素均为 0 的 n 阶矩阵称为 单位矩阵,记为 I_n (有时简记为 I),即

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

特殊矩阵 2/12 ⊲ ▷ △ ▽

定义 对角线元素都是 1,其余元素均为 0 的 n 阶矩阵称为 单位矩阵,记为 I_n (有时简记为 I),即

$$I_{n} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

性质 对任意矩阵 $A_{n\times m}$ 和 $B_{m\times n}$,都有

$$I_n A_{n \times m} = B_{m \times n} I_n =$$

特殊矩阵 2/12 < ▷ △ ▽

定义 对角线元素都是 1,其余元素均为 0 的 n 阶矩阵称为 单位矩阵,记为 I_n (有时简记为 I),即

$$I_{n} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

性质 对任意矩阵 $A_{n\times m}$ 和 $B_{m\times n}$,都有

$$I_n A_{n \times m} = A_{n \times m}, \qquad B_{m \times n} I_n =$$

特殊矩阵 2/12 < ▷ △ ▽

定义 对角线元素都是 1,其余元素均为 0 的 n 阶矩阵称为 单位矩阵,记为 I_n (有时简记为 I),即

$$I_{n} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

性质 对任意矩阵 $A_{n\times m}$ 和 $B_{m\times n}$,都有

$$I_n A_{n \times m} = A_{n \times m}, \qquad B_{m \times n} I_n = B_{m \times n}$$

特殊矩阵 2/12 < ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵

```
\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n}
```

特殊矩阵 3/12 < ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n}$$

う外矩阵 3/12 ▽ ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

う殊矩阵 3/12 < ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

特殊矩阵 3/12 < ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵

持殊矩阵 3/12 < ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵,例如

1.
$$kI_n + lI_n =$$

5/12 ✓ ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵,例如

1.
$$kI_n + lI_n = (k+l)I_n$$

5/12 ✓ ▷ △ ▽

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵,例如

1.
$$kI_n + lI_n = (k+l)I_n$$
, $kI_n - lI_n =$

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵,例如

1.
$$kI_n + lI_n = (k+l)I_n$$
, $kI_n - lI_n = (k-l)I_n$

3/12 < ▶ △ ▼

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = k I_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵,例如

1.
$$kI_n + lI_n = (k+l)I_n$$
, $kI_n - lI_n = (k-l)I_n$

2.
$$(kI_n)(lI_n) =$$

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵,例如

- 1. $kI_n + lI_n = (k+l)I_n$, $kI_n lI_n = (k-l)I_n$
- 2. $(kI_n)(lI_n) = (kl)I_nI_n =$

定义 对角线元素都是同一个数 k,其余元素均为 0 的 n 阶矩阵称为数量矩阵,即

$$\begin{pmatrix} k & 0 & 0 & \cdots & 0 & 0 \\ 0 & k & 0 & \cdots & 0 & 0 \\ 0 & 0 & k & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k & 0 \\ 0 & 0 & 0 & \cdots & 0 & k \end{pmatrix}_{n \times n} = k \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}_{n \times n} = kI_n$$

可见,数量矩阵可表示为 kI_n 。

性质 两个数量矩阵的和、差、乘积仍是数量矩阵,例如

1.
$$kI_n + lI_n = (k+l)I_n$$
, $kI_n - lI_n = (k-l)I_n$

2.
$$(kI_n)(lI_n) = (kl)I_nI_n = (kl)I_n$$

对角矩阵

定义 除了对角线,其余位置都是 0 的 n 阶矩阵,称为对角矩阵,即

$$\begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}_{n \times n}$$

特殊矩阵 4/12 < ▶ △ ▼

对角矩阵

定义 除了对角线,其余位置都是 0 的 n 阶矩阵,称为 对角矩阵,即

特殊矩阵 4/12 < ▶ △ ▼

对角矩阵

定义 除了对角线,其余位置都是 0 的 n 阶矩阵,称为对角矩阵,即

性质 两个对角矩阵的和、差、乘积仍是对角矩阵

持殊矩阵 4/12 < □ △ ▽

对角矩阵的和、差

$$\begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & a_{nn} \end{pmatrix} + \begin{pmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + b_{11} & & & \\ & a_{22} + b_{22} & & \\ & & \ddots & \\ & & a_{nn} + b_{nn} \end{pmatrix}_{n \times n}$$

5/12 ✓ ▷ △ ▽

对角矩阵的和、差

$$\begin{pmatrix}
a_{11} & & & & \\
& a_{22} & & & \\
& & \ddots & & \\
& & a_{nn}
\end{pmatrix} - \begin{pmatrix}
b_{11} & & & \\
& b_{22} & & \\
& & \ddots & \\
& & b_{nn}
\end{pmatrix}$$

$$= \begin{pmatrix}
a_{11} - b_{11} & & & \\
& a_{22} - b_{22} & & \\
& & \ddots & \\
& & & a_{nn} - b_{nn}
\end{pmatrix}_{n \times n}$$

对角矩阵的和、差

$$\begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & a_{nn} \end{pmatrix} \pm \begin{pmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} \pm b_{11} & & & \\ & a_{22} \pm b_{22} & & \\ & & \ddots & \\ & & a_{nn} \pm b_{nn} \end{pmatrix}_{n \times n}$$

5/12 ✓ ▷ △ ∿

$$\begin{pmatrix} a_{11} & & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & & & & \\ & b_{22} & & & \\ & & \ddots & & \\ & & & b_{nn} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & & b_{nn} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & & & & \\ & b_{22} & & & \\ & & & \ddots & \\ & & & & b_{nn} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & & & & \\ & b_{22} & & & \\ & & \ddots & & \\ & & & b_{nn} \end{pmatrix}$$

$$\vdots \begin{pmatrix} a_{11}b_{11} & & & & \\ & a_{22}b_{22} & & & \\ & & & & \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & & & & \\ & b_{22} & & & \\ & & \ddots & & \\ & & & b_{nn} \end{pmatrix}$$

$$\vdots \begin{pmatrix} a_{11}b_{11} & & & & \\ & a_{22}b_{22} & & & \\ & & \ddots & & \\ & & & \ddots & & \\ \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & & & \\ & b_{22} & & \\ & & \ddots & \\ & & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}b_{11} & & & \\ & a_{22}b_{22} & & \\ & & \ddots & \\ & & a_{nn}b_{nn} \end{pmatrix}_{\text{nyn}}$$

特殊矩阵 6/12 ◁ ▷ △ ▽

三角矩阵

• 上三角矩阵 $\begin{pmatrix} a_{11} & * & * & \cdots & * \\ & a_{22} & * & \cdots & * \\ & & a_{33} & \cdots & * \\ & & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$

特殊矩阵 7/12 ◁ ▷ △ ▽

三角矩阵

```
• 上三角矩阵 \begin{pmatrix} a_{11} & * & * & \cdots & * \\ & a_{22} & * & \cdots & * \\ & & a_{33} & \cdots & * \\ & & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}
```

 a_{11}

● 下三角矩阵

```
* * \alpha_{33} \\ \dots \dots
```

特殊矩阵 7/12 < ▷ △ ▽

三角矩阵

性质 两个上(下)三角矩阵的和、差、乘积仍是上(下)三角矩阵

7/12 ላ ▷ △ ▽

三角矩阵的和、差

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ & a_{22} & \cdots & * \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} + \begin{pmatrix} b_{11} & \Delta & \cdots & \Delta \\ & b_{22} & \cdots & \Delta \\ & & \ddots & \vdots \\ & & & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + b_{11} & \odot & \cdots & \odot \\ & a_{22} + b_{22} & \cdots & \odot \\ & & \ddots & \vdots \\ & & & a_{nn} + b_{nn} \end{pmatrix}_{n \times n}$$

特殊矩阵 8/12 ◁ ▷ △ ▽

三角矩阵的和、差

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ & a_{22} & \cdots & * \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} - \begin{pmatrix} b_{11} & \Delta & \cdots & \Delta \\ & b_{22} & \cdots & \Delta \\ & & \ddots & \vdots \\ & & & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} - b_{11} & \odot & \cdots & \odot \\ & a_{22} - b_{22} & \cdots & \odot \\ & & \ddots & \vdots \\ & & & a_{nn} - b_{nn} \end{pmatrix}_{n \times n}$$

特殊矩阵 8/12 < ▶ △ ▽

三角矩阵的和、差

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ & a_{22} & \cdots & * \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} \pm \begin{pmatrix} b_{11} & \Delta & \cdots & \Delta \\ & b_{22} & \cdots & \Delta \\ & & \ddots & \vdots \\ & & & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} \pm b_{11} & \odot & \cdots & \odot \\ & a_{22} \pm b_{22} & \cdots & \odot \\ & & \ddots & \vdots \\ & & & a_{nn} \pm b_{nn} \end{pmatrix}_{n \times n}$$

特殊矩阵

三角矩阵的乘积

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ & a_{22} & \cdots & * \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \Delta & \cdots & \Delta \\ & b_{22} & \cdots & \Delta \\ & & \ddots & \vdots \\ & & & b_{nn} \end{pmatrix}$$

三角矩阵的乘积

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ & a_{22} & \cdots & * \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \Delta & \cdots & \Delta \\ & b_{22} & \cdots & \Delta \\ & & \ddots & \vdots \\ & & & b_{nn} \end{pmatrix}$$

三角矩阵的乘积

$$\begin{pmatrix} a_{11} & * & \cdots & * \\ & a_{22} & \cdots & * \\ & & \ddots & \vdots \\ & & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \Delta & \cdots & \Delta \\ & b_{22} & \cdots & \Delta \\ & & \ddots & \vdots \\ & & & b_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}b_{11} & \odot & \cdots & \odot \\ & a_{22}b_{22} & \cdots & \odot \\ & & \ddots & \vdots \\ & & & a_{nn}b_{nn} \end{pmatrix}_{n \times n}$$

定义 如果 n 阶方阵 $A = (a_{ij})$ 满足

$$a_{ij} = a_{ji}$$
, $\forall i, j = 1, 2, \ldots n$

则称为对称矩阵。

定义 如果 n 阶方阵 $A = (a_{ij})$ 满足

$$a_{ij} = a_{ji}$$
, $\forall i, j = 1, 2, \dots n$

则称为对称矩阵。

$$\mathbf{\Phi}$$
 $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{pmatrix}$ 都是对称矩阵。

特殊矩阵

定义 如果 n 阶方阵 $A = (a_{ij})$ 满足

$$a_{ij} = a_{ji}$$
, $\forall i, j = 1, 2, \dots n$

则称为对称矩阵。

特殊矩阵 10/12 < ▷ △ ▽

定义 如果 n 阶方阵 $A = (a_{ij})$ 满足

$$a_{ij} = a_{ji}$$
, $\forall i, j = 1, 2, \ldots n$

则称为对称矩阵。

注 方阵 A 对称,等价于它满足 $A^T = A$ 。

定义 如果 n 阶方阵 $A = (a_{ij})$ 满足

$$a_{ij} = a_{ji}$$
, $\forall i, j = 1, 2, \ldots n$

则称为对称矩阵。

注 方阵 A 对称,等价于它满足 $A^T = A$ 。这是:

定义 如果 n 阶方阵 $A = (a_{ij})$ 满足

$$a_{ij} = a_{ji}$$
, $\forall i, j = 1, 2, \ldots n$

则称为对称矩阵。

注 方阵 A 对称,等价于它满足 $A^T = A$ 。这是:

	Α	$\mathcal{A}^{\mathcal{T}}$
位置 (i, j) 上的元素	a_{ij}	

定义 如果 n 阶方阵 $A = (a_{ij})$ 满足

$$a_{ij} = a_{ji}$$
, $\forall i, j = 1, 2, \ldots n$

则称为对称矩阵。

注 方阵 A 对称,等价于它满足 $A^T = A$ 。这是:

	Α	$\mathcal{A}^{\mathcal{T}}$
位置 (i, j) 上的元素	a_{ij}	a_{ji}

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

特殊矩阵

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1.
$$(A \pm B)^T =$$

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1.
$$(A \pm B)^T = A^T \pm B^T =$$

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1.
$$(A \pm B)^T = A^T \pm B^T = A \pm B$$

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

特殊矩阵

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1.
$$(A \pm B)^T = A^T \pm B^T = A \pm B$$
, 所以 $A \pm B$ 对称. $(kA)^T =$

特殊矩阵 11/12 ◁ ▷ △ ▽

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1.
$$(A \pm B)^T = A^T \pm B^T = A \pm B$$
,所以 $A \pm B$ 对称. $(kA)^T = kA^T =$

特殊矩阵

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1.
$$(A \pm B)^T = A^T \pm B^T = A \pm B$$
,所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$

特殊矩阵

1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.

证明

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$,所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$,所以 kA 对称.

特殊矩阵 11/12 < ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

证明

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.

持殊矩阵 11/12 < ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 2. $(C + C^T)^T =$

特殊矩阵 11/12 < ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 2. $(C + C^T)^T = C^T + (C^T)^T =$

特殊矩阵 11/12 ⊲ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 2. $(C + C^T)^T = C^T + (C^T)^T = C^T + C =$

特殊矩阵 11/12 ⊲ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 2. $(C + C^T)^T = C^T + (C^T)^T = C^T + C = C + C^T$

持殊矩阵 11/12 < ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 2. $(C + C^T)^T = C^T + (C^T)^T = C^T + C = C + C^T$, 所以 $C + C^T$ 对称.

特殊矩阵 11/12 ⊲ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.
- 3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 2. $(C + C^T)^T = C^T + (C^T)^T = C^T + C = C + C^T$, 所以 $C + C^T$ 对称.

持殊矩阵 11/12 ▽ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.
- 3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 3. D 为 $m \times n$, D^T 为 $n \times m$, 所以 DD^T 为 , D^TD 为

持殊矩阵 11/12 ▽ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.
- 3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 3. D为 $m \times n$, D^T 为 $n \times m$, 所以 DD^T 为 $m \times m$, D^TD 为

持殊矩阵 11/12 ▽ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.
- 3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- 1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称. $(kA)^T = kA^T = kA$, 所以 kA 对称.
- 3. D 为 $m \times n$, D^T 为 $n \times m$, 所以 DD^T 为 $m \times m$, D^TD 为 $n \times n$

時殊矩阵 11/12 < ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- $(kA)^T = kA^T = kA$,所以 kA 对称.
- 3. D 为 $m \times n$, D^T 为 $n \times m$, 所以 DD^T 为 $m \times m$, D^TD 为 $n \times n$. 此外:

$$(DD^T)^T =$$

時殊矩阵 11/12 < ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- $(kA)^T = kA^T = kA$,所以 kA 对称.
- 3. D 为 $m \times n$, D^T 为 $n \times m$, 所以 DD^T 为 $m \times m$, D^TD 为 $n \times n$. 此外:

$$(DD^{T})^{T} = (D^{T})^{T}D^{T} =$$

う殊矩阵 11/12 ▽ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- $(kA)^T = kA^T = kA$,所以 kA 对称.
- 2. $(C + C^T)^T = C^T + (C^T)^T = C^T + C = C + C^T$, $\text{MUC} + C^T$ MVC

$$(DD^T)^T = (D^T)^T D^T = DD^T$$

時殊矩阵 11/12 < ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- $(kA)^T = kA^T = kA$,所以 kA 对称.

$$(DD^{T})^{T} = (D^{T})^{T}D^{T} = DD^{T}$$
$$(D^{T}D)^{T} =$$

5殊矩阵 11/12 ✓ ▷ △ ▽

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- $(kA)^T = kA^T = kA$,所以 kA 对称.

$$(DD^{T})^{T} = (D^{T})^{T}D^{T} = DD^{T}$$
$$(D^{T}D)^{T} = D^{T}(D^{T})^{T} =$$

時殊矩阵 11/12 < ▷ △ ▽

性质

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- $(kA)^T = kA^T = kA$,所以 kA 对称.

$$(DD^T)^T = (D^T)^T D^T = DD^T$$
$$(D^T D)^T = D^T (D^T)^T = D^T D$$

時殊矩阵 11/12 < ▷ △ ▽

性质

- 1. 设 A, B 为 n 阶对称矩阵,则 $A \pm B$, kA 也是 n 阶对称矩阵.
- 2. 设 C 为任一 n 阶方阵,则 $C + C^T$ 为 n 阶对称矩阵.

1. $(A \pm B)^T = A^T \pm B^T = A \pm B$, 所以 $A \pm B$ 对称.

3. 设 D 为任一 $m \times n$ 矩阵,则 DD^T 为 m 阶对称方阵; D^TD 为 n 阶 对称方阵.

证明

- $(kA)^T = kA^T = kA$,所以 kA 对称.
- 2. $(C + C^T)^T = C^T + (C^T)^T = C^T + C = C + C^T$, $\text{MUC} + C^T$ MVC
- 3. D 为 $m \times n$, D^T 为 $n \times m$, 所以 DD^T 为 $m \times m$, D^TD 为 $n \times n$. 此外:

$$(DD^T)^T = (D^T)^T D^T = DD^T$$
$$(D^T D)^T = D^T (D^T)^T = D^T D$$

所以 DD^T , D^TD 均对称.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} =$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

<u>注</u> 设 *A, B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

う殊矩阵 12/12 < ▶ △ ▼

注 设 *A, B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

AB对称

注 设 A, B 为 n 阶对称矩阵,然而 AB 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \Longrightarrow $AB = (AB)^T =$

特殊矩阵

注 设 *A, B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \Longrightarrow $AB = (AB)^T = B^T A^T =$

行7本XEP干

 $\mathbf{\dot{L}}$ 设 \mathbf{A} , \mathbf{B} 为 \mathbf{n} 阶对称矩阵,然而 $\mathbf{A}\mathbf{B}$ 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A. B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)

证明

$$AB$$
对称 \implies $AB = (AB)^T = B^T A^T = BA$

12/12 ⊲ ⊳ ∆ ⊽

注 设 *A , B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \implies $AB = (AB)^T = B^T A^T = BA$

$$AB = BA \implies$$

注 设 *A, B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \Longrightarrow $AB = (AB)^T = B^T A^T = BA$

$$AB = BA \implies (AB)^T = AB$$

注 设 *A , B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \implies $AB = (AB)^T = B^T A^T = BA$

$$AB = BA \implies (AB)^T = B^T A^T = AB$$

注 设 *A, B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \implies $AB = (AB)^T = B^T A^T = BA$

$$AB = BA \implies (AB)^T = B^TA^T = BA \quad AB$$

注 设 *A , B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \implies $AB = (AB)^T = B^T A^T = BA$

$$AB = BA \implies (AB)^T = B^TA^T = BA = AB$$

<u>注</u> 设 *A, B* 为 *n* 阶对称矩阵,然而 *AB* 未必对称。例如

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$$
却不是对称。

性质 设 A, B 为 n 阶对称矩阵,则 AB 对称的充分必要条件是交换(i.e. AB = BA)。

证明

$$AB$$
对称 \implies $AB = (AB)^T = B^T A^T = BA$

$$AB = BA \implies (AB)^T = B^T A^T = BA = AB \Rightarrow AB$$
对称