Junhao **Wen** PhD

@ junhao.wen89@gmail.com

Personal page:junhaowen.com

 \square Google Scholar:https://scholar.google.com/citations?user=4Wq $_FukAAAJhl=en$

☑ GitHub:https://github.com/anbai106

My research lies on the application of machine learning, neuroimaging and genetics in brain aging and disorders. Specifically, using machine learning and neuroimaging, I aim to dissect neuroanatomical heterogeneity in various brain disorders. Furthermore, my research aims to bridge the knowledge in imaging and genetics, in order to better understand their underlying interactions and associations.

EDUCATION

2015-2019 PhD in Computer Science Sorbonne University, Paris, France 2012-2015 Master in Electronic Engineering Beihang University, Beijing, China

2008-2012 Bachelor in Electronic Engineering Beihang University, Beijing, China

RESEARCH SKILLS

Programming languages Python, R, Bash

Software and frameworks Machine learning (Scikit-learn, TensorFlow, Pytorch), Neuroimaging (Nipype, FreeSurfer, FSL,

ANTs, SPM), Genome (Plink, PRSice)

Scientific writing Microsoft Word, ETFX, Overleaf, Inkscape

Development tools PyCharm, RStudio, GitHub

> Others HTML, CSS

RESEARCH EXPERIENCE

August 2019 August 2021

Postdoctoral fellow

CBICA lab, University of Pennsylvania, USA

> Neuroanatomical heterogeneity in brain diseases, working with Christos Davatzikos Neuroimaging Machine learning

October 2015

June 2019

ARAMIS lab, Sorbonne University, INRIA, CNRS, INSERM, Paris, France

- > Four-year PhD training under the supervision of Olivier Colliot and Anne Bertrand
- > Software developer for Clinica
- > PhD dissertation: Structural and microstructural neuroimaging for diagnosis and tracking of neurodegenerative diseases

Neurodegenerative disease Neuroimaging Machine learning

July 2017 October 2017

Visiting scholar

CMIC lab, University College London (UCL), London, UK

> Collaboration on a NODDI paper: Neurite density is reduced in the presymptomatic phase of C9orf72 disease

FTLD Clinical study Neuroimaging

- > Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., Dormont, D., Durrleman, S., Burgos, N., Colliot, O. and Alzheimer's Disease Neuroimaging Initiative, 2020. Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation. Medical image analysis, 63, p.101694.
- > Bertrand, A., Wen, J. (Co-first author), Rinaldi, D., Houot, M., Sayah, S., Camuzat, A., Fournier, C., Fontanella, S., Routier, A., Couratier, P. and Pasquier, F., Habert, M., Hannequin, D., Martinaud, O., Caroppo, P., Levy, R., Dubois, B., Brice, A., Durrleman, S. and Colliot, O., Le Ber., I. 2018. Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years. JAMA neurology, 75(2), pp.236-245.
- > Wen, J., Zhang, H., Alexander, D.C., Durrleman, S., Routier, A., Rinaldi, D., Houot, M., Couratier, P., Hannequin, D., Pasquier, F. and Zhang, J., Colliot, O., Le Ber., I. and Bertrand, A. 2018. Neurite Density is Reduced in the Presymptomatic Phase of C9orf72 Disease. J Neurol Neurosurg Psychiatry, pp.jnnp-2018.
- > Wen, J., Samper-González, J., Bottani, S., Routier, A., Burgos, N., Jacquemont, T., Fontanella, S., Durrleman, S., Epelbaum, S., Bertrand, A. and Colliot, O., 2021. Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimer's disease. Neuroinformatics, 19(1), pp.57-78.
- > Samper-González, J., Burgos, N., Bottani, S., Fontanella, S., Lu, P., Marcoux, A., Routier, A., Guillon, J., Bacci, M., Wen, J. and Bertrand, A., Bertin, H., Habert, M., Durrleman, S., Evgeniou, T. and Colliot., O. 2018. Reproducible evaluation of classification methods in Alzheimer's disease: framework and application to MRI and PET data. Neuroimage, 2018.
- > Marcoux, A., Burgos., Bertrand., Teichmann., Routier A., <u>Wen J.</u>, Samper-Gonzalez J., Bottani, S., Durrleman, S., Habert, M. and Colliot, O. 2018. An Automated Pipeline for the Analysis of PET Data on the Cortical Surface. <u>Frontiers in Neuroinformatics</u>, 2018.
- > Ansart, M., Epelbaum, S., Bassignana, G., Bône, A., Bottani, S., Cattai, T., Couronne, R., Faouzi, J., Koval, I., Louis, M. and Thibeau-Sutre, E., Wen, J., 2020. Predicting the progression of mild cognitive impairment using machine learning: a systematic, quantitative and critical review. Medical image analysis, p.101848.
- > Routier A, Burgos N, Díaz M, Bacci M, Bottani S, El-Rifai O, Fontanella S, Gori P, Guillon J, Guyot A, Hassanaly R, Jacquemont T, Lu P, Marcoux A, Moreau T, Samper-González J, Teichmann M, Thibeau-Sutre E, Vaillant G, Wen, J., Wild A, Habert M-O, Durrleman S and Colliot O (2021) Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies. Front. Neuroinform. 15:689675. doi: 10.3389/fninf.2021.689675
- > Yue, L., Hu, D., Zhang, H., Wen, J., Wu, Y., Li, W., Sun, L., Li, X., Wang, J., Li, G. and Wang, T., 2021. Prediction of 7-year's conversion from subjective cognitive decline to mild cognitive impairment. Human brain mapping, 42(1), pp.192-203.

> Wen, J., Varol, E., Chand, G., Sotiras, A. and Davatzikos, C., 2020, October. MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain Diseases. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 678-687). Springer, Cham.

A PAPERS IN PREPARATION

- > Wen, J., Varol, E., Sotiras, A., Yang, Z., Chand, G.B., Erus, G., Shou, H., Hwang, G. and Davatzikos, C., 2021. Multi-scale semi-supervised clustering of brain images: deriving disease subtypes. bioRxiv. Under review in Medical Image Analysis.

 Preprint
- > Wen, J. et al., A two-dimensional neuroimaging representation of late-life depression : Associations to cognition and genetics. In preparation.
- > Wen, J. et al., MIST: a data-driven, multi-sacle atlas of the lifespan of human brain for imaging genetic studies in a population of 32440 people. In preparation.
- > Yang, Z., Nasrallah, I.M., Shou, H., Wen, J., Doshi, J., Habes, M., Erus, G., Abdulkadir, A., Resnick, S.M., Wolk, D. and Davatzikos, C., 2021. Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease. arXiv preprint arXiv:2102.12582. Under review in Nature Communication. Preprint
- > Chand, G., Singhal, P., Dwyer, D., <u>Wen, J.</u>, et al., Schizophrenia imaging signatures and their associations with cognition, psychopathology, and genetics in the general population. <u>Under review in American Journal of Psychiatry</u>.
- > Hwang, G., Sotardi, S., Brodkin, E., Chand, G., Dwyer, D., Wen, J., Three Distinct Neuroanatomical Dimensions of Autism Spectrum Disorder, Revealed via Machine Learning, and Their Similarities with Dimensions of Schizophrenia. In preparation.
- > Abdulkadir et al., iISTAGING : A framework for dimensional analysis of brain structure and function in aging and neuro-degeneration. In preparation.
- > Lalousis et al., Neurobiologically Based Stratification of Recent Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes. In preparation.

LANGUAGES

♥ INTERESTS

- > Music
- > Extreme sports
- > Travel