Steffen Haug

Øving 1 Diskret Matematikk TMA4140

Oppgåver til seksjon 1.1

Oppgåve 12cf

La p, q og r vera proposisjonane

p: You have the flu.

q: You miss the final examination.

r: You pass the course.

Proposisjonar uttrykte som engelske setningar:

 $q \to \neg r$: If you have the flu, you will not pass the course.

 $(p \wedge q) \vee (\neg q \wedge r)$: You have the flu and you miss the final examination, or you do not miss the final examination and you pass the course.

Oppgåve 14

La p, q og r vera proposisjonane

p: You get an A on the final exam.

q: You do every exercise in this book.

r: You get an A in this class.

Proposisjonar uttrykte som logiske uttrykk:

a: You get an A in this class, but you do not do every exercise in this book.

$$r \wedge \neg q$$

e: Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.

$$(p \land q) \to r$$

Oppgåver til seksjon 1.3

Oppgåve 10

Skal vise at uttrykka er tautologiar.

a: $[\neg p \land (p \lor q)] \rightarrow q$

p	q	$\neg p$	$a:p\vee q$	$b: \neg p \wedge a$	$b \rightarrow q$
0	0	1	0	0	1
0	1	1	1	1	1
1	0	0	1	0	1
1	1	0	1	0	1

b: $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$

p	q	r	$a:p\to q$	$b:q\to r$	$c:a\wedge b$	$d:p\to r$	$c \to d$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

c: $[p \land (p \rightarrow q)] \rightarrow q$

d: $[(p \land q) \land (p \rightarrow r) \land (q \rightarrow r)] \rightarrow r$

p	q	r	$a:p\wedge q$	$b:p\to r$	$c:q\to r$	$d:a\wedge b\wedge c$	$d \rightarrow r$
0	0	0	0	1	1	0	1
0	0	1	0	1	1	0	1
0	1	0	0	1	0	0	1
0	1	1	0	1	1	0	1
1	0	0	0	0	1	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1

Oppgåver til seksjon 1.4

Oppgåve 24

d: All students in your class can solve quadratic equations.

```
P(x): student x kan løyse kvadratiske likningar Q(x): student x er i klassa x \in U = \{\text{alle elevar i klassa}\} \forall x P(x) x \in U = \{\text{alle mennesker}\} \forall x (Q(x) \rightarrow P(x))
```

e: Some students in your class does not want to be rich.

```
P(x): student x har lyst å bli rik Q(x): student x er i klassa x \in U = \{\text{alle elevar i klassa}\} \exists x P(x) x \in U = \{\text{alle mennesker}\} \exists x (Q(x) \to P(x))
```

Oppgåver til seksjon 1.5

Oppgåve 12

```
I(x): x has an Internet connection C(x,y): x and y have chatted over the Internet x \in U = \{\text{elevar i klassa}\}
```

b: Rachel has not chatted over the Internet with Chelsea.

$$\exists x \exists y \neg C(x,y)$$

I klassa eksisterer ein person x, nemleg Rachel, og der eksisterer ein person y, Chelsea, slik at C ikkje held.

e: Sanjay has chatted with everyone except Joseph.

$$\exists x \exists y \neg C(x,y)$$

I klassa eksisterer ein person x, Sanjay, og der eksisterer ein person y, Joseph, slik at C ikkje held.

Oppgåve 30

$$\mathbf{c:} \ \neg \exists y (Q(y) \land \forall x \neg R(x,y))$$

$$\neg \exists y (Q(y) \land \forall x \neg R(x,y))$$

$$= \forall y \neg (Q(y) \land \forall x \neg R(x,y))$$

$$= \forall y (\neg Q(y)) \lor (\neg \forall x \neg R(x,y))$$

$$= \forall y \neg Q(y) \lor \exists x R(x,y)$$

$$\mathbf{e:} \ \neg \exists y (\forall x \exists z T(x,y,z) \lor \exists x \forall z U(x,y,z))$$

$$\neg \exists y (\forall x \exists z T(x,y,z) \lor \exists x \forall z U(x,y,z))$$

$$= \forall y \neg (\forall x \exists z T(x,y,z) \lor \exists x \forall z U(x,y,z))$$

$$= \forall y (\neg \forall x \exists z T(x,y,z) \land (\neg \exists x \forall z U(z,y,z))$$

$$= \forall y (\exists x \forall z \neg T(x,y,z) \land (\forall x \exists z \neg U(x,y,z))$$