MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO

SECRETARIA DA EDUCAÇÃO SUPERIOR

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA

CURSO DE ENGENHARIA

DEPARTAMENTO			PLANO DE CURSO DA DISCIPLINA		
DEPEL			ELETRICIDADE/ELETRÔNICA		
CÓDIGO		PERÍODO	ANO	SEMESTRE	PRÉ-REQUISITOS
GELE 7178		4°	2007	1	
CRÉDITOS		AULAS/SEMA		TOTAL DE AULAS NO SEMESTRE	GEXT 7003 ELETRICIDADE BÁSICA
	TEÓRICA	PRÁTICA	ESTÁGIO		
4	3	2	0	90	
			EMENTA		

Métodos de circuitos em regime permanente. Corrente Contínua e Alternada (monofásica e trifásica). Transformador ideal. Potência e energia. Medidas elétricas e magnéticas. Componentes elétricos e eletrônicos. Máquinas de corrente contínua: Geradores, motores e máquinas de solda. Máquinas de corrente alternada. Circuitos de controle e proteção.

BIBLIOGRAFIA

OBJETIVOS GERAIS

Introduzir os conceitos relacionados à teoria de circuitos elétricos. Apresentar e discutir as propriedades e o funcionamento dos principais dispositivos elétricos e eletrônicos. Introdução ao estudo das máquinas elétricas e suas utilizações.

METODOLOGIA

Aulas expositivas e aulas de Laboratório.

CRITÉRIO DE AVALIAÇÃO

A avaliação será realizada pela aplicação de 2 provas escritas discursivas sobre os temas abordados em aula e uma prova de laboratório. A média semestral será calculada como a média ponderada das notas das provas escritas e de laboratório com pesos escolhidos a critério do professor.

CHEFE DO DEPARTAMENTO				
NOME	ASSINATURA			
Alessandro Rosa Lopes Zachi				

PROFESSOR RESPONSÁVEL PELA DISCIPLINA				
NOME	ASSINATURA			
João Amin Moor Neto				

APROVADO PELO CONSELHO DEPARTAMENTAL EM:/

PROGRAMA

- 1- Conceitos Básicos de Eletricidade para aplicação em instalações elétricas
- 1.1-Tipos e formas de distribuição de energia
- 1.2- Geração de energia alétrica
- 1.3-Eletricidade
- 2 Ferramentas para instalações elétricas
- 2.1- Introdução
- 2.2- Disposição das ferramentas
- 2.3- Conservação das ferramentas
- 2.4- Descrição técnica
- 3 Definições e parâmetros de circuitos
- 3.1- Lei de Coulomb
- 3.2- Diferença de potencial
- 3.3- Corrente
- 3.4- Potência
- 3.5- Energia
- 3.6- Resistor, indutor e capacitor
- 3.7- Associação série, paralelo e misto
- 3.8- Leis de Kirchhoff
- 4 Valores médio e eficaz
- 5 Potência e correção de fator de potência
- 6- Impedância complexa e notação de fasores
- 7- Potência e correção de fator de potência
- 8- Teoremas gerais de circuitos
- 8.1- Introdução

- 8.2- Transformação Δ -Y
- 9- Utilização de esquemas
- 9.1- Simbologia padronizada
- 9.2- Esquema multifilar
- 9.3- Esquema unifilar
- 9.4- Esquema funcional
- 10- Princípio de comando e proteção em baixa tensão
- 10.1- Níveis de tensão da rede de BT.
- 10.2- O motor de indução monofásico de rotor em curto circuito; partida a capacitor
- 10.3- Ligação em 110/220V
- 10.4- Obtenção da inversão do sentido de giro do motor
- 10.5- Partida automática de um conjunto motor bomba acionado por um motor de potência fracionária
- 10.6- O motor de indução trifásico
- 10.7- Tensões de funcionamento
- 10.8- Ligação triângulo e ligação estrela
- 10.9- Obtenção da inversão de giro de um motor de indução trifásico
- 10.10- Chave reversora manual
- 10.11- Princípio de funcionamento de uma chave magnética
- 10.12- Diagrama de comando
- 10.13- Proteção contra curto-circuito e sobrecarga
- 10.14- Partida a plena tensão de um motor de indução trifásico através de uma chave contratora com as devidas proteções.
- 10.15- Partida automática e manual de um conjunto motor-bomba acionado por um motor de indução trifásico.
- 10.16- Chave reversora automática trifásica
- 10.17- Redução de corrente de partida dos motores de indução trifásico.