(ELMO SL 2010/N5)

Bài toán 1. Tìm tập hợp S gồm các số nguyên tố sao cho $p \in S$ khi và chỉ khi tồn tại một số nguyên x thỏa mãn:

$$x^{2010} + x^{2009} + \dots + 1 \equiv p^{2010} \pmod{p^{2011}}.$$
 $D\hat{\rho} \ kh \acute{o}: \ 5$

 $\boldsymbol{L\eth i}$ giải. Đáp số là mọi số nguyên tố có dạng 2011k+1, chú ý rằng 2011 cũng là số nguyên tố.

Ta sẽ giải bài toán tổng quát hơn với $x^{q-1} + x^{q-2} + \cdots + 1 \equiv p^{q-1} \pmod{p^q}$. Với p, q là các số nguyên tố lớn hơn 3.

Trước tiên, giả sử $p \in S$, khi đó $\frac{x^q-1}{x-1} \equiv p^{q-1} \pmod{p^q}$. Suy ra $p \mid \frac{x^q-1}{x-1}$, nếu $p \mid x-1$ thì theo định lý LTE ta sẽ thu được $v_p(\frac{x^q-1}{x-1}) = v_p(x^q-1) - v_p(x-1) \le 1$.

Điều này là mâu thuẫn, vậy nên x-1 không chia hết cho p, suy ra $p \mid x^q-1$. Vậy $ord_p(x)=q$, hay là $q \mid p-1$.

Giờ, ta chứng minh với mọi p có dạng qk+1 thì đều thuộc S. Thật vậy, ta đã biết trong \mathbb{F}_p có $\phi(q)$ phần tử nhận q làm cấp, vậy nên áp dụng bổ đề Hansel cho đa thức $P(n) = n^q - 1$ thì sẽ tồn tại x đề $p^{q-1} \mid x^q - 1$.

Ta sẽ làm việc trong trường \mathbb{F}_{p^q} . Giả sử $x^q - 1 = ap^{q-1}$, lúc này ta có:

$$(x+xp^{q-1})^q - 1 = \sum_{i=0}^{q} {q \choose i} p^{i(q-1)} x^q - 1 = qp^{q-1} x^q + x^q - 1$$

Hay là

$$(x+xp^{q-1})^q-1=p^{q-1}(a+qx^q)=p^{q-1}(a+q(ap^{q-1}+1))=p^{q-1}(a+q)$$

Tương tự ta quy nạp được rằng $(x + nxp^{q-1})^q - 1 = p^{q-1}(a + nq)$ với mọi $n \in \mathbb{Z}^+$

Lúc này ta chỉ việc chọn $n=\frac{xp^{q-1}-q}{1-x}$ là xong. Vậy ta kết luận S là tập các số nguyên tố đồng dư 1 mod 2011.