MATH 435 ASSIGNMENT 4

ARNOLD JIADONG YU

1. Chapter 15 Ring Homomorphisms

1.1. Let
$$Z[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in Z\}$$
 and

$$H = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \middle| a, b \in Z \right\}$$

Show that $Z[\sqrt{2}]$ and H are isomorphic as rings. proof: Let f be a map such that

$$f: Z[\sqrt{2}] \to H$$

$$f:(a+\sqrt{2}b)\mapsto \begin{bmatrix} a & 2b\\ b & a \end{bmatrix}, \text{ where } a\in Z,b\in Z$$

Pick $a + \sqrt{2}b, c + \sqrt{2}d \in Z[\sqrt{2}]$, then $f(a + \sqrt{2}b) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ and

$$f(c+\sqrt{2}d) = \begin{bmatrix} c & 2d \\ d & c \end{bmatrix}.$$

$$f(a+\sqrt{2}b)+f(c+\sqrt{2}d)=\begin{bmatrix} a & 2b \\ b & a \end{bmatrix}+\begin{bmatrix} c & 2d \\ d & c \end{bmatrix}$$

$$= \begin{bmatrix} a+c & 2(b+d) \\ b+d & a+c \end{bmatrix} = f((a+c) + \sqrt{2}(b+d))$$

$$f(a+\sqrt{2}b)\cdot f(c+\sqrt{2}d) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} c & 2d \\ d & c \end{bmatrix}$$

$$=\begin{bmatrix} ac+2bd & 2ad+2bc \\ ad+bc & ac+2bd \end{bmatrix}=f((ac+2bd)+\sqrt{2}(ad+bc))=f((a+\sqrt{2}b)\cdot(c+\sqrt{2}d))$$

Therefore, f is ring homomorphism. Let $f(a+\sqrt{2}b)=f(c+\sqrt{2}d)$, then

$$\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} = \begin{bmatrix} c & 2d \\ d & c \end{bmatrix} \Rightarrow a = c, b = d \Rightarrow a + \sqrt{2}b = c + \sqrt{2}d$$

Therefore, f is injective function. Let $\begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$, then $f(a+\sqrt{2}b)=\begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$, which means for $\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \in H$, there exists $a+\sqrt{2}b \in Z[\sqrt{2}]$. Therefore, f is also surjective. Hence, f is bijective. As a result, $Z[\sqrt{2}]$ and H are isomorphic as rings.

2. Chapter 14 Ideal and Factor Rings

- **2.1.** If A and B are ideals of a ring, show that the sum of A and B, $A + B = \{a + b | a \in A, b \in B\}$, is an ideal.
- proof: Let R be a ring, and A, B are ideals of R. i.e. A, B are normal subgroup under addition, for any $a, c \in A, b, d \in B, a-c \in A, b-d \in B$ and any $r \in R$, $ar \in A, ra \in A$ and $br \in B, rb \in B$.
- (1) For $a+b, c+d \in A+B$, $(a+b)-(c+d)=(a-c)+(b-d)\in A+B$ since $a-c\in A, b-d\in B$ and addition is associative.
- (2) For $a+b \in A+B$ and $r \in R$. $r(a+b)=ra+rb \in A+B$ since $ra \in A, rb \in B$. Moreover, $(a+b)r=ar+br \in A+B$ since $ar \in A, br \in B$. Hence A+B is an ideal by Ideal Test.
- **2.2.** If A and B are ideals of a ring, show that the *product* of A and B, $AB = \{a_1b_1 + a_2b_2 + ... + a_nb_n | a_i \in A, b_i \in B, n \text{ a positive integer }\}$, is an ideal.

proof: Let R be a ring, and A, B are ideals of R. i.e. A, B are normal subgroup under addition, for any $a_i, c_i \in A$, $b_i, d_i \in B$, $a_i - c_i \in A$, $b_i - d_i \in B$ and any $r \in R$, $a_i r \in A$, $ra_i \in A$ and $b_i r \in B$, $rb_i \in B$.

(1) For $a_1b_1 + ... + a_nb_n$, $c_1b_1 + ... + c_mb_m \in AB$. WLOG, assume n > m

$$(a_1b_1 + ... + a_nb_n) - (c_1b_1 + ... + c_mb_m)$$

$$= a_1b_1 - c_1b_1 + \dots + a_mb_m - c_mb_m + a_{m+1}b_{m+1} + \dots + a_nb_n$$

= $(a_1 - c_1)b_1 + \dots + (a_m - c_m)b_m + a_{m+1}b_{m+1} + \dots + a_nb_n \in AB$

Since $, a_i, a_i - c_i \in A, b_i \in B.$

(2) For $a_1b_1 + ... + a_nb_n \in AB$ and $r \in R$,

$$(a_1b_1 + \dots + a_nb_n)r = (a_1b_1)r + \dots + (a_nb_n)r = a_1(b_1r) + \dots + a_n(b_nr) \in AB$$

Since R is associative respect to multiplication and $a_i \in A, b_i r \in B$.

$$r(a_1b_1+\ldots+a_nb_n) = r(a_1b_1)+\ldots+r(a_nb_n) = (ra_1)b_1+\ldots+(ra_n)b_n \in AB$$

Since R is associative respect to multiplication and $ra_i \in A, b_i \in B$. Hence AB is an ideal by Ideal Test.

- **2.3.** *Does the previous exercise work if you define the product of ideals as $A \times B = \{ab | a \in a, b \in B\}$? Prove or give a counterexample. proof:
- **2.4.** Show that $\mathbb{R}[x]/\langle x^2+1\rangle$ is a field. proof: WTS $\langle x^2+1\rangle$ is maximal ideal. $\langle x^2+1\rangle$ is a principal ideal since $\langle x^2+1\rangle=\{f(x)(x^2+1)|f(x)\in\mathbb{R}[x]\}$. Let I be ideal of R, s.t. $\langle x^2+1\rangle\subsetneq I\subseteq\mathbb{R}[x]$. WTS $I=\mathbb{R}[x]$, it is same to show $1\in I$.

$$\mathbb{R}[x]/\langle x^2 + 1 \rangle = \{ax + b + \langle x^2 + 1 \rangle | a, b \in \mathbb{R}\}\$$

Let $f(x) \in I \setminus \langle x^2 + 1 \rangle$, then $f(x) \in \mathbb{R}[x]$, i.e. $f(x) = q(x)(x^2 + 1) + r(x)$, where $q(x) \in \mathbb{R}[x]$, $r(x) = ax + b \neq 0$. Since it is for all $x \in \mathbb{R}$, then a, b can not be both zero. Moreover, $ax + b \in I$ when g(x) = 0. Let $cx + d \in I$ s.t. (ax + c)(cx + d) = 1, if such cx + d exists, then $1 \in I$. Therefore,

$$(ax+b)(cx+d) = acx^2 + (ad+bc)x + bd = ac(x^2+1) + (ad+bc)x + bd - ac = 1$$

$$\Rightarrow ad + bc = 0, bd - ac = 1$$

By solving the equations, we obtain $c=\frac{-a}{a^2+b^2}, d=\frac{b}{a^2+b^2}$. Such c,d exists since $a^2+b^2\neq 0$. That is $1\in I$, this implies $I=\mathbb{R}[x]$. Hence $\langle x^2+1\rangle$ is a maximal ideal. As a result, $\mathbb{R}[x]/\langle x^2+1\rangle$ is a field.

- **2.5.** * Let R be a commutative ring and let A be any ideal of R. Show that the $nil\ radical\$ of A, $N(A) = \{r \in R | r^n \in A \$ for some positive integer $n(n \$ depends on $r)\}$, is an ideal of R. $[N(\langle 0 \rangle)]$ is called the $nil\ radical$ of R.
- **2.6.** In a principal ideal domain, show that every nontrivial prime ideal is a maximal ideal.

proof: Let R be a principal ideal domain, and I be an nontrivial prime ideal, then there exists an $a \in R$ s.t. $I = \langle a \rangle$. Assume there exists another ideal J, s.t. $I \subseteq J \subseteq R$. Then $J = \langle b \rangle$ for some $b \in R$. Since $\langle a \rangle \subset \langle b \rangle$, then $a \in \langle b \rangle$ but $b \notin \langle a \rangle$. i.e. a = bs for some $s \in R$. I is prime ideal and $bs \in \langle a \rangle$ implies $s \in \langle a \rangle$ since $b \notin \langle a \rangle$. Then s = ta for some $t \in R$, then

$$a = bs, s = ta \Rightarrow a = bta$$

By cancellation, we obtain bt = 1. Since $bt \in \langle b \rangle$, then $1 \in J$, this implies J = R. Hence I is also maximal ideal.

2.7. Suppose that R is a commutative ring with unity such that for each a in R there is a positive integer n greater than 1 (n depends on a) such that $a^n = a$. Prove that every prime ideal of R is a maximal ideal of R.

proof: Suppose that R is a commutative ring with unity and I be a prime ideal of R, then R/I is an integral domain. WTS R/I is also a field.

 $a+I\in R/I$, and $(a+I)^n=a^n+I=a+I$. i.e. $[a^n]=[a]$ implies $[a^{n-1}]=[1]$ by cancellation. Moreover, $[a^{n-1}]=[a][a^{n-2}]=[1]$, i.e. the inverse of a+I is $a^{n-2}+I$. Therefore, for every $a+I\in R/I$ have a multiplicative inverse, i.e. a+I is a unit. Hence R/I is a field, and furthermore I is a maximal ideal.