UG/5th Sem (H)/22/(CBCS)

2022

BCA (Honours)

Paper Code: DSE-2

(CBCS)

Full Marks: 32

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

E1: [Operation Research]

Group - A

Answer any six questions:

 $2 \times 6 = 12$

- 1. (a) What is least cost method?
 - (b) Write two characteristics of OR.
 - (c) What is Big-M method?
 - (d) Define unbalanced solution.
 - (e) What is opportunity loss table?
 - (f) Write down the application of duality.
 - (g) Differentiate between linear programming and integer programming.

Group - B

Answer any two questions:

 $10 \times 2 = 20$

2. (a) Make the graphical representation of the set of constraints in the following L.P.P.:

Maximize
$$z = 3x_1 + 2x_2$$

Subject to $-2x_1 + x_2 \le 1$, $x_1 \le 2$, $x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$.

- (b) Describe Critical Path Method (CPM) Scheduling Technique briefly. 5+5
- 3. (a) Obtain the dual of the following L.P.P.

Minimize
$$z = 15x_1 + 10x_2$$

Subject to $3x_1 + 5x_2 \ge 5$, $5x_1+2x_2 \ge 3$, $x_1, x_2 \ge 0$.

Maximize

(b) Solve the following L.P.P. by simplex method:

Subject to
$$x_1 + x_2 \ge 1$$
, $2x_1 + x_2 \le 4$, $5x_1 + 8x_2 \le 15$ $x_1, x_2 \le 0$. $5+5$

 $z = 3x_1 + 2x_2$

4. (a) Determine an initial basic feasible solution of the following Transportation problem using VAM:

~	D1	D2 ⁻	D 3	D4	_
01	21	16	25	13	11
O 2	17	18	14	23	13
O3	32	27	18	41	19
•	6	10	12	15	2

(b) Solve the following 2 × 2 game, the game being without saddle point, using mixed strategies. 5+5