

Week 8

FIT5202 Big Data Processing

Collaborative Filtering using ALS

Week 8 Agenda

- Week 7 Review
 - K-means clustering
 - Model Selection
 - Model Persistence
- Collaborative Filtering
- Use case : Music Recommendation

SETU FEEDBACK

Recommender Approaches

Memory-Based Approach

Implicit vs Explicit Feedback

- Explicit:
 - when we have some sort of Rating (i.e. users provide items' rating explicitly)
- Implicit:
 - data is gathered from user behaviour, e.g. how many times a song is played or a movie is watched.
 - Advantage : more data
 - Disadvantage: Noisy data, negative preferences are not known

Matrix Factorization

Matrix Factorization – with Explicit Rating

Matrix Factorization – with Implicit Feedback

Alternating Least Square (ALS) – Implicit Rating

- Confidence: $c_{ui} = 1 + \alpha r_{ui}$
 - Quantify confidence of how much user u likes the item i of the user from the implicit rating data r
- Alpha α
 - The rate (linear scaling) of confidence increases
- Optimizing alternately to find U, V
 - Randomly initialize U and V
 - Iterating the following steps:
 - Fixing U → Optimizing V
 - Fixing V → Optimizing U

Train/Test Split

Evaluation metrics

For explicit feedback

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

RMSE may not be appropriate for measuring prediction for implicit feedback

++			
user_id	artist_id	playcount	prediction
++			
1001440	463	2	-0.6025843
1046559	463	782	0.6918464
1059765	463	793	-0.045939725
1024631	833	5	0.8736501
2010008	833	185	1.0421734
1029563	833	3	0.38790843
2010008	2366	4	0.16086206
2023686	3175	1	0.19943924
2102019	1004021	28	0.043972284
1059765	1007972	21	0.46731347
1024631	1012617	1	0.03206493
1024631	1014191	3	0.38790256
2023686	1014191	3	0.16714399
2023686	1014690	2	0.24097718
1017610	1019303	68	0.42512476
1024631	1028228	1	0.1952564
1059637	1048726	1	0.0038849264
2069889	1048726	2	-0.032158498
1072684	1076507	2	0.97082245
2023686	1084951	1	-0.027778534
++			
only showing top 20 rows			

For implicit feedback

ROEM (Rank Ordering Error Metric)

$$\overline{rank} = \frac{\sum_{u,i} r_{ui}^t rank_{ui}}{\sum_{u,i} r_{ui}^t}$$
 (8)

Lower values of \overline{rank} are more desirable, as they indicate ranking actually watched shows closer to the top of the recommendation lists. Notice that for random predictions, the expected value of $rank_{ui}$ is 50% (placing i in the middle of the sorted list). Thus, $\overline{rank} \geqslant 50\%$ indicates an algorithm no better than random.

1059637 | 1233770

only showing top 20 rows

|2020513|754 |1072684|1330

1059334 228 112 1059637 | 1000130 1070641 | 1004294 1007308 | 393 3.5190763 | 0.0014227642276422765 2023686 | 1285410 3.4317646 | 0.0016260162601626016 1047812 718 3.3937335 | 0.001829268292682927 1031009 4163 1055449 | 407 1055449 | 1194 1058890 | 1233770 3.0264745 | 0.003048780487804878 2005710 1001412 | 1575 2.981335 | 0.0032520325203252032

|user id|artist id|playcount|prediction|percent rank

6.226111 | 0.0

From paper 'Collaborative Filtering for Implicit Feedback Datasets'

Cold-Start Problem

- Cold-start: New users will have no to little information about them to be compared with other users.
- Cold starts occur when we attempt to predict a rating for users and/or items in the test dataset that were not present during training the model

Two strategies for handling this problem:

"NaN" - return an empty variable.

- Spark assigns NaN predictions during ALSModel.transform when a user and/or item factor is not present in the model.
- In development however, this result prevents us from calculating a performance metric to evaluate the system.

"drop" - this option simply removes the row/column from the predictions that contain NaN values. Our result will therefore only contain valid numbers that can be used for evaluation.

Use Case: Music Recommendation

Thank You!

See you next week.