Homework 3

Ravi Kini

October 24, 2023

Exercise 1

Let $\varphi: G \to H$ be an isomorphism. For some $g \in G$, we first show that $\phi(g^n) = \phi(g)^n$. Since $\phi(g^1) = \phi(g) = \phi(g)^1$, the assertion clearly holds for n = 1. Assume this assertion holds for some n. Then:

$$\phi\left(g^{n+1}\right) = \phi\left(g^{n}g\right) = \phi\left(g^{n}\right)\phi\left(g\right)$$
$$= \phi\left(g\right)^{n}\phi\left(g\right) = \phi\left(g\right)^{n+1} \tag{1}$$

By the Principle of Mathematical Induction, $\phi(g^n) = \phi(g)^n$ for all $n \in \mathbb{N}$. Suppose ord $(g) = \infty$ and ord $(\varphi(g)) = n < \infty$. Then:

$$\varphi(g)^{n} = 1_{H}$$

$$\varphi(g^{n}) = \varphi(1_{G})$$
(2)

Since φ is an isomorphism and therefore bijective, this means $g^n = 1_G$, which is a contradiction. Now suppose ord $(g) = n < \infty$ and ord $(\varphi(g)) = \infty$. Then:

$$\varphi(g^n) = \varphi(1_G) = 1_H$$

$$\varphi(g)^n =$$
(3)

This means ord $(\varphi(g)) = n < \infty$, which is a contradiction. ord (g) and ord $(\varphi(g))$ are then either both finite or both infinite. If both are infinite, then ord (g) =ord $(\varphi(g))$. Now suppose both are finite, such that ord (g) = n and ord $(\varphi(g)) = m$. Then:

$$\varphi(g)^n = \varphi(g^n) = \varphi(1_G) = 1_H \tag{4}$$

Since m is the smallest positive integer such that $\varphi(g)^m = 1_H, m \leq n$. Furthermore:

$$\varphi(g^m) = \varphi(g)^m = 1_H = \varphi(1_G) \tag{5}$$

Since φ is an isomorphism and therefore bijective, this means $g^m=1_G$. Since n is the smallest positive integer such that $g^n=1_G$, $n\leq m$. Consequently, m=n and $\operatorname{ord}(g)=\operatorname{ord}(\varphi(g))$. In all cases, $\operatorname{ord}(g)=\operatorname{ord}(\varphi(g))$.

Part (a)

Let (A, \star) and (B, \diamond) be groups, and let $A \times B$ be their direct product. Let $a_1, a_2, a_3 \in A$ and $b_1, b_2, b_3 \in B$. Then:

$$((a_{1}, b_{1}) (a_{2}, b_{2})) (a_{3}, b_{3}) = (a_{1} \star a_{2}, b_{1} \diamond b_{2}) (a_{3}, b_{3})$$

$$= (a_{1} \star a_{2} \star a_{3}, b_{1} \diamond b_{2} \diamond b_{3})$$

$$(a_{1}, b_{1}) ((a_{2}, b_{2}) (a_{3}, b_{3})) = (a_{1}, b_{1}) (a_{2} \star a_{3}, b_{2} \diamond b_{3})$$

$$= (a_{1} \star a_{2} \star a_{3}, b_{1} \diamond b_{2} \diamond b_{3})$$

$$(6)$$

Since $((a_1, b_1)(a_2, b_2))(a_3, b_3) = (a_1, b_1)((a_2, b_2)(a_3, b_3))$ for all $a_1, a_2, a_3 \in A$ and $b_1, b_2, b_3 \in B$, multiplication is associative.

Part (b)

Let 1_A be the identity element in A and 1_B be the identity element in B. Then:

$$(a,b) (1_A, 1_B) = (a \star 1_A, b \diamond 1_B) = (a,b)$$
 (7)

Since $(a, b) (1_A, 1_B) = (a, b)$, the identity element in $A \times B$ is $(1_A, 1_B)$.

Part (c)

Let a^{-1} be the inverse of a in A and b^{-1} be the inverse of b in B. Then:

$$(a,b) (a^{-1},b^{-1}) = (a \star a^{-1},b \diamond b^{-1})$$

= $(1_A,1_B)$ (8)

Since $(a, b) (a^{-1}, b^{-1}) = (1_A, 1_B)$, the inverse of (a, b) in $A \times B$ is (a^{-1}, b^{-1}) .

Part (a)

Let g be the generator of the cyclic group C_p and φ be an automorphism of C_p . Let $\varphi(g) = g^i$. Then, as automorphisms are a type of isomorphism and using the result found as part of Exercise 1:

$$\varphi(g^j) = \varphi(g)^j = (g^i)^j \tag{9}$$

Since φ is an automorphism, $C_p = \left\{ \left(g^i\right)^j : j \in \mathbb{Z} \right\}$, which means that g^i is a generator of C_p . Evidently C_p has as many automorphisms as there are ways to map g to a generator of C_p , which is equal to the number of generators of C_p .

We assert that g^i is a generator of C_p iff i and p are relatively prime. Let g^i be a generator of C_p and suppose i and p are not relatively prime. There then exists some integer n > 1 such that an = i and bn = p for $a, b \in \mathbb{Z}$. Then:

$$(g^i)^b = g^{ib} = g^{anb} = g^{ap} = (g^p)^a$$

= $1_G^a = 1_G$ (10)

The order of the cyclic subgroup generated by g^i is then at most b. However, since b < bn = p, the cyclic subgroup generated by g^i cannot be C_p , which has order p. Consequently, g^i cannot be a generator of C_p . This is a contradiction; therefore, i and p are relatively prime. Now let $g^i \in C_p$ such that i and p are relatively prime. The order of the cyclic subgroup generated by g^i is obviously at most p, as otherwise G would no longer be a group. Let $\langle g^i \rangle$ have order j < p. Then $(g^i)^j = g^{ij}$, which means that ij = kp for some $k \in \mathbb{Z}$. Since i and p are relatively prime, p must divide p. This is a contradiction, as p0 and p1 are relatively prime, p2. Consequently, ord p3 is a generator of p4. Evidently, p5 is a generator of p6 iff p7 are relatively prime.

For prime p, there are p-1 relatively prime integers less than p. C_p therefore has p-1 automorphisms.

Part (b)

From the results of Part (a), since there are 8 integers less than 24 that are relatively prime to 24, there are 8 automorphisms of C_{24} .

Algebra (Artin, 2e) Exercise 2.5.2

Part (a)

Let $K, H \leq G$ for some group G. Since the identity of a group is the identity of the subgroup, 1_G is the identity element in both K and H, and is therefore an element of $K \cap H$. Let $a, b \in K \cap H$. Since $a, b \in K \cap H$, $a, b \in K$ and therefore, since K is a subgroup fo G, $ab \in K$. Similarly, $ab \in H$, which means $ab \in K \cap H$. Let $c \in K \cap H$. Since $c \in K \cap H$, $c \in K$ and therefore, since K is a subgroup of G, $c^{-1} \in K$. Similarly, $c^{-1} \in H$, which means $c^{-1} \in K \cap H$. Since the identity, closure, and inverse properties hold, $K \cap H$ is a subgroup of G.

Part (b)

From Part (a), since $K \cap H \subseteq H$ and the identity, closure, and inverse properties hold, $K \cap H$ is a subgroup of H. Let $k' \in K \cap H$ and $h \in H$. Since $k' \in K$ and $h \in G$, $hk'h^{-1} \in K$ since $K \subseteq G$. Furthermore, since $k' \in H$, $hk'h^{-1} \in H$ due to the closure of subgroups. Therefore $hk'h^{-1} \in K \cap H$ and $K \cap H \subseteq H$.

Algebra (Artin, 2e) Exercise 2.6.4

Let $a, b \in G$ for some group G. Since G is a group, $a^{-1}, b^{-1} \in G$. Then:

$$a^{-1}(ab) a = (a^{-1}a) (ba)$$

$$= ba$$

$$b^{-1}(ba) b = (b^{-1}b) (ab)$$

$$= ab$$

$$(11)$$

Since $a^{-1}, b^{-1} \in G$, ba is the conjugate of ab by a^{-1} and ab is the conjugate of ba by b^{-1} , which means ab and ba are conjugate elements.

Algebra (Artin, 2e) Exercise 2.8.10 (partial)

Let $H \leq G$ for some group G such that [G:H]=2. H then has two left cosets and two right cosets in G. Let $g \in G$. Suppose $g \in H$. Then gH=H=Hg. How suppose $g \in G \setminus H$. Then $gH=G \setminus H$ since the two cosets of H partition G. Similarly, $Hg=G \setminus H$, which means gH=Hg for all $g \in G$. Consequently, $gHg^{-1}=H$, which means $H \leq G$.