Confidence limits on estimated total capacity

- When computing \widehat{Q} , important to know certainty of estimate
- Would like to know variance $\sigma_{\widehat{Q}}^2$ to compute confidence intervals within which the true cell total capacity Q lies, with high certainty \Box For example, three-sigma bounds: $Q \in (\widehat{Q} 3\sigma_{\widehat{Q}}, \widehat{Q} + 3\sigma_{\widehat{Q}})$
- To derive confidence limits, must re-cast least-squares type problem as maximum-likelihood optimization problem
- Then, Cramer-Rao theorem will give us confidence bounds

Dr. Gregory I. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | Total-least-squares battery-cell capacity estimation

of 6

4.2.6: Confidence intervals on least-squares solution

Recasting WLS as maximum-likelihood

- First, recast problem as maximum-likelihood optimization
- Assuming all errors are Gaussian, this is straightforward
- If we form a vector \mathbf{y} comprising elements y_i , and a vector \mathbf{x} comprising corresponding elements x_i and a diagonal matrix $\Sigma_{\mathbf{y}}$ having corresponding diagonal elements $\sigma_{y_i}^2$, then minimizing χ_{WLS}^2 is equivalent to maximizing

$$\begin{split} ML_{\text{WLS}} &= \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{y}}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{y} - \widehat{Q} \, \mathbf{x})^T \Sigma_{\mathbf{y}}^{-1} (\mathbf{y} - \widehat{Q} \, \mathbf{x})\right) \\ &= \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{y}}|^{1/2}} \exp\left(-\frac{1}{2} \chi_{\text{WLS}}^2\right), \end{split}$$

which is a maximum-likelihood problem

■ Constant multiplying exponential causes ML_{WLS} to integrate to 1, yielding valid pdf

Dr. Gregory L. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | Total-least-squares battery-cell capacity estimation

2 of (

4.2.6: Confidence intervals on least-squares solutions

Recasting WTLS as maximum-likelihood

If we form vector \mathbf{d} concatenating \mathbf{y} and \mathbf{x} , and vector $\widehat{\mathbf{d}}$ concatenating corresponding elements Y_i and X_i , and diagonal matrix $\Sigma_{\mathbf{d}}$ having diagonal elements $\sigma_{y_i}^2$ followed by $\sigma_{x_i}^2$, then minimizing χ_{WTLS}^2 is equivalent to maximizing

$$ML_{\text{WTLS}} = \frac{1}{(2\pi)^N |\Sigma_{\mathbf{d}}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{d} - \widehat{\mathbf{d}})^T \Sigma_{\mathbf{d}}^{-1}(\mathbf{d} - \widehat{\mathbf{d}})\right)$$
$$= \frac{1}{(2\pi)^N |\Sigma_{\mathbf{d}}|^{1/2}} \exp\left(-\frac{1}{2}\chi_{\text{WTLS}}^2\right)$$

■ The maximum-likelihood formulation makes it possible to determine confidence intervals on \widehat{Q} ...

Application of Cramer-Rao theorem

- Cramer—Rao theorem, a tight lower bound on variance of \widehat{Q} is given by the negative inverse of second derivative of argument of the exponential function, evaluated at the \widehat{Q} that optimizes the cost function
- That is, for the cost functions we have investigated so far,

$$\begin{split} \sigma_{\widehat{\mathcal{Q}}}^2 &\geq 2 \left. \left(\frac{\partial^2 \chi_{\mathrm{WLS}}^2}{\partial \mathcal{Q}^2} \right)^{-1} \right|_{\mathcal{Q} = \widehat{\mathcal{Q}}} \quad \text{for WLS} \\ \sigma_{\widehat{\mathcal{Q}}}^2 &\geq 2 \left. \left(\frac{\partial^2 \chi_{\mathrm{WTLS}}^2}{\partial \mathcal{Q}^2} \right)^{-1} \right|_{\mathcal{Q} = \widehat{\mathcal{Q}}} \quad \text{for WTLS} \end{split}$$

Dr. Gregory I. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | Total-least-squares battery-cell capacity estimation

4 of 6

4.2.6: Confidence intervals on least-squares solutions

Finding the Hessians

- The second partial derivatives (*i.e.*, Hessians) of WTLS and FMWTLS cost functions have already been described in the context of a Newton–Raphson iteration
- For WLS and FMWLS, the situation is easier:

$$\frac{\partial^2 \chi_{\text{WLS}}^2}{\partial Q^2} = 2 \sum_{i=1}^N \frac{x_i^2}{\sigma_{y_i}^2} \quad \text{and} \quad \frac{\partial^2 \chi_{\text{FMWLS}}^2}{\partial Q^2} = 2 \sum_{i=1}^N \gamma^{N-i} \frac{x_i^2}{\sigma_{y_i}^2}$$

■ These may be computed using the previously defined recursive parameters as

$$rac{\partial^2 \chi_{\mathrm{WLS}}^2}{\partial Q^2} = 2c_{1,n}$$
 and $rac{\partial^2 \chi_{\mathrm{FMWLS}}^2}{\partial Q^2} = 2\tilde{c}_{1,n}$

Dr. Gregory L. Plet

Iniversity of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | Total-least-squares battery-cell capacity estimation

5 of 6

4.2.6: Confidence intervals on least-squares solutions

Summary

- \blacksquare Desire to find $\sigma_{\widehat{Q}}^2$ to compute confidence intervals on \widehat{Q}
 - \Box For example, three-sigma bounds: $Q \in (\widehat{Q} 3\sigma_{\widehat{Q}}, \widehat{Q} + 3\sigma_{\widehat{Q}})$
- Recasting xLS problem as ML problem allows invoking Cramer—Rao theorem,

$$\sigma_{\widehat{Q}}^2 \ge 2 \left. \left(\frac{\partial^2 \chi_{\text{xLS}}^2}{\partial Q^2} \right)^{-1} \right|_{Q = \widehat{Q}}$$

- □ Hessians for WTLS/FMWTLS were already known
- □ Hessians for WLS/FMWLS trivial to compute using already-existing quantities