

Elaboration on HM(X): Type Inference with Constraint Types

Marius Weidner

Chair of Programming Languages, University of Freiburg weidner@cs.uni-freiburg.de

Abstract. We discuss $\operatorname{HM}(X)$, a family of type systems that supports polymorphism, full type inference and constraint types. $\operatorname{HM}(X)$ is a extension to the Hindley-Milner type system, that itself restricts System F such that full type inference is decidable and unambiguous. The constraint system X used in $\operatorname{HM}(X)$ is left abstract and can be instantiated with arbitrary constraint systems that fulfill a set of conditions. Because of this abstraction $\operatorname{HM}(X)$ can be used to model and reason about many commonly used constraint-like type features. Examples for constraint-like type features include subtyping, substructural types and type classes. $\operatorname{HM}(X)$ comes with a complete and sound type inference algorithm, as well as a soundness proof, that both are independent of the actual constraint system X. Thus, the work for proving theoretical properties and constructing a inference algorithm for new constraint-like type features in a HM setting is reduced.

Table of Contents

1	Introduction		
	1.1	Hindley Milner: Polymorphism with Full Type Inference 3	
	1.2	Example: A Program with Constraint Types	
2		$(X) \dots \dots$	
	2.1	Syntax	
		Typing	
3	Instantiating $HM(X)$		
	3.1	$\operatorname{HM}(\mathcal{R})$: Extension with Polymorphic Records	
	3.2	$\operatorname{HM}(\mathcal{O})$: Extension with Overloading	
4	Metatheory		
	4.1	Soundness	
	4.2	Type Inference	
5	Rela	elated Work & Conclusion	
	5.1	Related Work	
	5.2	Conclusion	

Fig. 1. Syntax

Fig. 2. Typing $(C, \Gamma \vdash e : \sigma)$

- 1 Introduction
- 1.1 Hindley Milner: Polymorphism with Full Type Inference
- 1.2 Example: A Program with Constraint Types
- $2 \quad \mathbf{HM}(X)$
- 2.1 Syntax
- 2.2 Typing
- 3 Instantiating HM(X)
- 3.1 $HM(\mathcal{R})$: Extension with Polymorphic Records

Extensions

Example

3.2 $HM(\mathcal{O})$: Extension with Overloading

Extensions

Example

- 4 Metatheory
- 4.1 Soundness
- 4.2 Type Inference
- 5 Related Work & Conclusion
- 5.1 Related Work
- 5.2 Conclusion

References

[1] Martin Odersky, Martin Sulzmann, and Martin Wehr. "Type Inference with Constrained Types". In: *TAPOS* 5 (Jan. 1999), pp. 35–55. DOI: 10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4.

4 Marius Weidner

Fig. 3. Syntax

Fig. 4. Constraints

- [2] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The MIT Press, 2004. ISBN: 0262162288.
- [3] Christian Skalka and François Pottier. "Syntactic Type Soundness for HM(X)". In: Electronic Notes in Theoretical Computer Science 75 (2003). TIP'02, International Workshop in Types in Programming, pp. 61–74. ISSN: 1571-0661. DOI: https://doi.org/10.1016/S1571-0661(04)80779-5. URL: https://www.sciencedirect.com/science/article/pii/S1571066104807795.

5

Fig. 5. Syntax

Fig. 6. Constraints