Analysis of the Movement Variability in Dance Activities Using Wearable Sensors

Miguel Xochicale¹, Chris Baber¹ and Mourad Oussalah²

 1 School of Electronic, Electrical and System Engineering, University of Birmingham, U.K. 2 Center for Ubiquitous Computing, University of Oulu, Finland

The 2nd International Symposium on Wearable Robotics La Granja de San Idelfonso, Segovia, Spain 18-21 October 2016

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Movement Variability

Movement Variability is an inherent feature that occurs not only within individual but also between individual systems of movement [Newell and Corcos, 1993] .

Inter-trial Movement Variability

[Preatoni et al., 2013] mentioned that inter-trial variability is a combination of

- noise in the neuro-musculo-skeletal system, and
- functional changes that might be associated with the exploration of different stragies to find the most effective one among many available.

Motor Variability is not noise

Figure 1: Find the piñata [Herzfeld and Shadmehr, 2014] .

Nonlinear Dynamics to Movement Variability

According to [Preatoni et al., 2013], some nonlinear dynamics tools to explore the nature of movement variability and its relationship with skills development are:

- Phase Space Representation.
- Lyapunov Exponent.

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Time-delay embedding theorem

For a given discrete time-series $x(n)=[x(1),x(2),\ldots,x(N)]$, a reconstructed state space can be created by

$$\overline{x}(n) = [x(n), x(n-\tau), x(n-2\tau), \dots, x(n-(m-1)\tau)]$$

which creates a concatenated column-wise matrix of the time-delay versions of the original signal:

$$\mathbf{X} = \begin{pmatrix} x(1) & x(1-\tau) & x(1-2\tau) & \dots & x(1-(m-1)\tau) \\ x(2) & x(2-\tau) & x(2-2\tau) & \dots & x(2-(m-1)\tau) \\ \vdots & & \ddots & \vdots \\ x(N) & x(N-\tau) & x(N-2\tau) & \dots & x(N-(m-1)\tau) \end{pmatrix}$$

where m is the **embedding dimension** and τ is the **embedding delay [Takens, 1981]** . False Nearest Neighborhood and Mutual Information algorithms are used to compute the optimal value of m and τ .

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Percentage Of Variance

The Percentage of variance (POV) is obtained by using the PCA.

Figure 2: Percentage of Cummulative Energy

Figure 3: Reconstructed State Space

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Participants

Thirteen participants with different years of experience in dancing were invited to dance basic salsa steps:

- eleven (4 female, 7 male) novice dancers (none or less than two months of experience);
- one male intermediate (4 years of experience); and,
- one male expert (14 years of experience)

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Razor 9DOF IMU

Data collection from triaxial accelerometer, gyroscope and magnetometer sensors at a sampling rate of 50Hz for 20 seconds.

Figure 4: IMU sensors mounted on left and right ankle

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Basic Salsa Steps

Figure 5: Mambo and Side Cross-over Steps

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Visual levels of dexterity

Figure 6: 2-D reconstructed state spaces and percentage of variance.

I. Introduction

II. Methods

- A. Time-delay embedding
- B. Framework of the experiment
- C. Participants
- D. Data Collection
- E. Experiment Design

III. Results

Conclusions

- (+) Visual difference between levels of skillfulness in simple dance activities using the time-delay embedding technique.
- (+) Extending the understanding of human movement variability.
- (-) Time-delay embedding is subject to the embedded parameters $(m \text{ and } \tau)$.
- (-) There is only one intermediate and one expert participant.

Future Work

- Collect data from a wider range of individuals (gender and age) performing different simple movements with additional inertial sensors
- Undertake a wider review of nonlinear dynamics techniques.
- Explore the use of Hidden Markov Models and Deep Neural Networks for the automatic classification of the movement variability.

Figure 7: Mirror Simple Movements Using NAO Robot

GRACIAS

Analysis of the Movement Variability in Dance Activities Using Wearable Sensors

Miguel Xochicale¹, Chris Baber¹ and Mourad Oussalah²

¹School of Electronic, Electrical and System Engineering, University of Birmingham, U.K.
²Center for Ubiquitous Computing, University of Oulu, Finland

The 2nd International Symposium on Wearable Robotics La Granja de San Idelfonso, Segovia, Spain 18-21 October 2016

References I

Banos, O., Galvez, J.-M., Damas, M., Pomares, H., and Rojas, I. (2014). Window size impact in human activity recognition. Sensors (Basel, Switzerland), 14(4):6474–99.

Bulling, A., Blanke, U., and Schiele, B. (2014). A tutorial on human activity recognition using body-worn inertial sensors. *ACM Computing Surveys (CSUR)*, 46(3):1–33.

Figo, D., Diniz, P. C., Ferreira, D. R., and Cardoso, J. M. P. (2010). Preprocessing techniques for context recognition from accelerometer data. *Personal and Ubiquitous Computing*, 14(7):645–662.

Fish, B. and Khan, a. (2012). Feature selection based on mutual information for human activity recognition. . . . , Speech and Signal . . . , pages 1729–1732.

Frank, J., Mannor, S., Pineau, J., and Precup, D. (2012). Time Series Analysis Using Geometric Template Matching. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(3):1–1.

References II

Frank, J., Mannor, S., and Precup, D. (2010). Activity and Gait Recognition with Time-Delay Embeddings. *AAAI Conference on Artificial Intelligence*. pages 407–408.

Gouwanda, D. and Senanayake, A. (2012). Non-linear Time Analysis to Estimate Gait Stability Using Wearable Gyroscopes Network.

Journal of Robotics and ..., 24(4):1-22.

Gupta, P. and Dallas, T. (2014).

Feature selection and activity recognition system using a single triaxial accelerometer.

IEEE Transactions on Biomedical Engineering, 61(6):1780-1786.

Hammerla, N., Ploetz, T., Andras, P., and Olivier, P. (2011).

Assessing Motor Performance with PCA.

Proceedings of the International Workshop on Frontiers in Activity Recognition using Pervasive Sensing (in conjunction with Pervasive 2011), pages 18–23.

References III

Harimi, A., AhmadyFard, A., Shahzadi, A., and Yaghmaie, K. (2015). Anger or Joy? Emotion Recognition Using Nonlinear Dynamics of Speech. *Applied Artificial Intelligence*, 29(7):675–696.

Herzfeld, D. J. and Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning mill. *Nature neuroscience*, 17(2):149–50.

Liao, M., Guo, Y., Qin, Y., and Wang, Y. (2015). The application of EMD in activity recognition based on a single triaxial accelerometer.

Bio-Medical Materials and Engineering, 26(s1):S1533-S1539.

Newell, K. and Corcos, D. (1993). Variability and Motor Control. Human Kinetics Publishers.

References IV

Plötz, T., Chen, C., Hammerla, N. Y., and Abowd, G. D. (2012). Automatic synchronization of wearable sensors and video-cameras for ground truth annotation - A practical approach.

Proceedings - International Symposium on Wearable Computers, ISWC, page

 ${\it Proceedings-International\ Symposium\ on\ Wearable\ Computers,\ ISWC,\ pages\ 100-103.}$

Preatoni, E., Hamill, J., Harrison, A. J., Hayes, K., Emmerik, R. E. A. V., Wilson, C., and Rodado, R. (2013).

Movement variability and skills monitoring in sports.

Sports Biomechanics, 12(2):69–92.

Samà, A., Ruiz, F. J., Agell, N., Pérez-López, C., Català, A., and Cabestany, J. (2013).

Gait identification by means of box approximation geometry of reconstructed attractors in latent space.

Neurocomputing, 121:79–88.

Takens, F. (1981).

Detecting strange attractors in turbulence.

Dynamical Systems and Turbulence, Warwick 1980, 898:366-381.

References V

Zhang, M. and Sawchuk, A. A. (2011).

A Feature Selection-Based Framework for Human Activity Recognition Using Wearable Multimodal Sensors.

International Conference on Body Area Networks (BodyNets), 1:92-98.