Aufgabe 1

Wir fixieren das Alphabet $\Sigma = \{a,b\}$ und definieren $L \subseteq \Sigma$ durch

 $L = \{w \mid \text{in } w \text{ kommt das Teilwort bab vor}\}$

z. B. ist babaabb \in L, aber baabaabb \notin L. Der folgende nichtdeterministische Automat A erkennt L:

1 (10 ()

(a) Wenden Sie die Potenzmengenkonstruktion auf den Automaten an und geben Sie den resultierenden deterministischen Automaten an. Nicht erreichbare Zustände sollen nicht dargestellt werden.

Zustandsmenge	Eingabe a	Eingabe b
$Z_0 \{z_0\}$	$Z_0 \{z_0\}$	$Z_1 \{z_0, z_1\}$
$Z_1 \left\{ z_0, z_1 \right\}$	$Z_2\left\{z_0,z_2\right\}$	$Z_1 \{z_0, z_1\}$
Z_2 $\{z_0, z_2\}$	$Z_0 \{z_0\}$	$Z_3 \{z_0, z_1, z_3\}$
$Z_3 \{z_0, z_1, z_3\}$	$Z_4 \{z_0, z_2, z_3\}$	$Z_3 \{z_0, z_1, z_3\}$
$Z_4 \{z_0, z_2, z_3\}$	$Z_5\left\{z_0,z_3\right\}$	$Z_3 \{z_0, z_1, z_3\}$
$\mathbb{Z}_5\left\{z_0,z_3\right\}$	Z_5 $\{z_0, z_3\}$	$Z_3 \{z_0, z_1, z_3\}$

(b) Konstruieren Sie aus dem so erhaltenen deterministischen Automaten den Minimalautomaten für L. Beschreiben Sie dabei die Arbeitsschritte des verwendeten Algorithmus in nachvollziehbarer Weise.

z_0	Ø	Ø	Ø	Ø	Ø	Ø
z_1	<i>x</i> ₃	Ø	Ø	Ø	Ø	Ø
z_2	x_2	x_2	Ø	Ø	Ø	Ø
z_3	x_1	x_1	x_1	Ø	Ø	Ø
z_4	x_1	x_1	x_1		Ø	Ø
z_5	x_1	x_1	x_1			Ø
	z_0	z_1	z_2	z_3	z_4	z_5

- x_1 Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- x_2 Test, ob man mit der Eingabe zu einem bereits markiertem Paar kommt.
- x_3 In weiteren Iterationen markierte Zustände.
- *x*₄ ...

Übergangstabelle

