Computer Engineering Department, S V N I T, Surat

•Mid Semester Exam, September 2017 B. Tech II (CO) – 3rd semester

Course: Computer Organization (CO201) Time: 11:00 - 12:30 pm

Date: 19th September 2017

Date:	19 st September 2017 Time: 11:00 - 12:30 pm Total Man	ks: 30
Instru	etions: 1. Be precise and clear in answering the questions.	K3. J0
	2. Assume any necessary data but give proper justifications.	
	3. Write your B. Tech Admission No/Roll No and other details clearly on the answer books while write	e your
	B. Tech Admission No on the question paper, too.	
Q.1	Answer the following [Any Five]:	[05]
1)	Define computer organization. Describe the benefits of learning.	[]
2)	What features are considered by the compiler to compile the high level language program?	
3)	Describe ISA and explain the elements of instruction.	
4)	Justify the statement: One of the design principle states that smaller is faster.	
5)	Differentiate between register-register and load-store architecture.	
6)	Why registers are used for variables?	
Q.2	Answer the following:	[10]
1)	Explain the stored program concept and its model.	[02]
2)	Explain how CISC processor achieves shorten execution time.	[02]
3)	Write instructions for 32-bits MIPS processor for the high level language instructions (consider	[03]
	\$s0-base address of Ans, \$s1-base address of No, \$s2-i:	[OJ].
	for (i=5; i>=0; i) Ans[i]=No[i]*16;	
4)	For the Q.2(3), show 32-bits MIPS instruction mnemonics only on the memory location for	[03]
	PC=80000. Provide the calculated memory address component and target address calculation	[03]
	for branch instruction. Note: Ignore calculation of memory address component for jump	
	instruction.	
Q.3	Answer the following:	[09]
1)	Perform the arithmetic operations (+42) + (-13) and (-42) - (-13) in binary using signed-2's	[02]
	complement representation for negative numbers using 8-bit.	[03]
2)	Design a 4-bit combinational circuit of Incrementer using half adders.	[04]
3)	Explain Booth multiplication algorithm with its flowchart.	[04]
	OR	[04]
3)	Show stepwise execution of Booth Multiplication for the given numbers (-9) * (-13) with	[OT]
	values of Q _n Q _{n+1} , AC and QR. Consider 5 bit registers for the signed numbers.	,
Q.4	Answer the following [Any Two]:	[06]
1)	a) Perform Subtraction (20 – 100) by taking the 10's complement of the subtrahend.	[oo]
	b) Explain overflow by performing the arithmetic operation (+70) + (+80) and (-70) + (-80).	
2)	If the values of j and k are 3 and 4 respectively. Design an array multiplier using AND gates	
	and adders. Consider $j = multiplier$ bit, $k = multiplicand$ bit.	
3)	Draw and explain flowchart of signed magnitude data for addition and subtraction.	