GVPT392(849): Introduction to GIS for Social Science Research

Mid-Term Exam

Nicholas Thompson
9am Oct3 - 5pm Oct 7, 2016

The following coverages can be found in the PACD8 folder.

- 1. PA_CD8_Voterfile = all registered voters for Pennsylvania, Congressional District 8. This is north-suburban Philadelphia, including all of Bucks and part of Montgomery Counties.
- 2. PA_CD8_Boundary = the outline for CD 8.
- 3. PA_and_NJ_Counties = County boundaries for the two states.
- 4. Four States = State boundaries for PA, DE, NJ, and MD.
- 5. CD8 PA Pct Data 2012 = voter precinct data for 2012.
- 6. Mont_County_Recent_Movers_10_12.
- 7. Bucks County Recent Movers 10 12.
- 8. CD8 Places.
- 9. PA CD8 Tracts.

Three files above contain points for voters at their residences. These are 1, 6, and 7. For these files, the following columns contain important information:

Age (and Year Born) = the age of the voter in 2012.

Rep_Party, Dem_Party, Ind_Unaf_Party = the party registration of the voter: Rep = Republican, Dem = Democratic, and Ind_Unaf = Independent/Unaffiliated.

And there are other items that will be less important for this exercise.

For the following questions, use whatever tools you deem appropriate form the ArcGIS package, but be sure to describe what you did to address the questions. Be resourceful, but you need not write more than one page in response to each question.

1. Aggregate the voter and mover data to the census tract level for PA CD8.

To aggregate the data, I used a three phase process with multiple steps in each phase. In Phase 1, I imported the data using the catalogue in ArcMap. To import the data I first created a geodatabase file named exam. Here I imported all exam shapefiled included in the provided exam folder by right clicking on the exam.gdb and selecting import from multiple. Next I systemtaically added four file layers to the ArcMap table of contents:

Table 1: Percentage of Democratic Voters

Field	Pre-Join	Post-Join
Democratic	71,048	133,467
_vote_total	540,451	1,019,887
Percentages	53.23 %	52.99 %

- a. PA CD8 Voterfile (hereafter depicted as voter);
- b. Mont_County_Recent_Movers_10_12 (hereafter depicted as MC);
- c. Buck_County_Recent_Movers_10_12 (hereafter depicted as BC);
- d. PA_CD8_Tracts (hereafter depicted as tracts).

This was the end of Phase 1.

In Phase 2, I reviewed the data and deleted unnecessary fields. The number is too great to depict which were removed. I kept essential fields outlined in the instructions above, as well as some others that I anticipated would be necessary (including MOVER from the voter file, ozipcode and dzipcode from MC and BC, and ORNIC, DRNIC, and RNIC from voter, BC, and MC). The combination of fields chosen allowed me to manipulate the data to achieve the desired results. I removed fields by double-clicking on each layer in the table of contents and navigating to the Fields tab. After clearing all of the fields, I was able to check only the fields I wanted to keep. Next, I exported the data into new layers within the geodatabase. This data management process ended Phase 2.

In Phase 3, I used the Spatial Join feature (hereafter known as SJ) to systemtaically join the layers. First I conducted a SJ of voters to tracts and created a new layer called tracts05. Next I created the following SJs:

```
a. BC + tracts = tracts04
```

b. MC + tracts = tracts06

c. tracts05 + tracts04 = tracts09

d. tracts09 + tracts06 = tracts15

The last combination created a spatially joined dataset depicting the north-suburban part of Philadelphia.

• Then compute and calculate the Democratic % of total registered voters (10 points).

To compute and calculate the Democratic % of total registered voters I needed to create a new field in the BC and MC shapefiles. I completed these computations prior to merging all of the data to ensure that they were carried over in each of the SJs. First, I created a new field called vote_total. Using the field calculator tool, I added the Republican, Democratic, and Independent fields together. This produced a one in each row of the vote_total. Next, I used the statistics tool to calculate the total sum of from the Democratic field and the the sum from the vote_total fields. I conducted statistical analysis before and after conducting the joins. The Table 1 below shows the outcomes. Note there is no significant difference in the percentages either pre- or post-join.

• Compute and calculate the Democratic % of total movers in Bucks and Montgomery counties (10 points).

To calculate the percentage of democratic movers I created two fields in BC and MC once callde zip_dif and another called move2. The zip_dif field captured a difference between the originating zip code (ozipcode) of each voter in the respective counties and the destination zip code (dzipcode). Next, a phython code converted the zip_dif field into a 1 or a 0. This allowed me to total the number of people that moved from one zip code to another. Table 2 shows the results of this computation.

Table 2: Percentage of Democratic Movers

Field	Montgomery	Bucks	Sum
Democratic	2,016	$22,\!555$	24,571
$move_total$	4,620	42,040	46,660
Percentages	43.63 %	53.65~%	52.66~%

```
def is_positive(x):
   if (abs(x)>0):
     return 1
   elif (abs(x)==0):
     return 0
```

• Produce two maps of these percentages.

Figure 1: Democratic Voter Percentages