Finding the **LINEAR** and **ANGULAR VELOCITIES** associated with the mechanism shown using **graphical methods**.

ALL INSTANT CENTERS WERE PREVIOUSLY LOCATED FOR THIS MECHANISM

BELOW THE SCALE FOR THE DISTANCE AND VELOCITY ARE SHOWN. THESE WILL ACT AS RULERS FOR THE INSTANT CENTER ANALYSIS (Because of printing distortions, the scales shown may not measure 1 inch).

- Length Scale: 1in = 1in

-Velocity Scale: 1in = 10 in/s

- The linear velocity of point A can now be calculated
 - Assumptions
 - 。v, ω, & r are orthogonal
 - . Planar problem, all rotations out of paper
 - **.** CCW rotations positive, CW rotations negative

- The linear velocity of point A can now be calculated
 - The distance from I₁₂ to A is measured as 2.2 in.

- The linear velocity of point A can not we calculated
 - The distance from I₁₂ to A is measured as 2.2 in.

$$v_A = \omega_2 \cdot r_{AI_{12}} = 5\frac{1}{s} \cdot 2.2in = 11\frac{in}{s}$$

The Base-Line for Link 2's linear velocities can now be drawn - The line must pass through ${\rm I_{12}}$ and ${\rm A}$ Fout l₁₅ I₅₆ $I_{16} \rightarrow \infty$ $I_{16} \rightarrow \infty$ Hims l₂₃ l₂₅ I₃₄ I₃₅ I₄₅ ● I₂₄ I₂₆ Scales ω_2 =5 1/s ccw 20 in/s **← 1 in →** Instant Center 7 Velocity Analysis RBB

The angular velocity of link 2 in this mechanism is given as $\omega_2=5$ 1/s ccw. The Base-Line for Link 2's linear velocities can now be drawn - The line must pass through I₁₂ and A The Proportional-Line for Link's 2 linear velocities can now be drawn - The line must pass through I_{12} and the head of the linear velocity vector $\mathbf{v_A}$ Fout l₁₅ I₅₆ $I_{16} \rightarrow \infty$ $I_{16} \rightarrow \infty$ I₂₃ 125 I₃₄ I₃₅ I₄₅ •I₂₄ I₂₆ Scales ω_2 =5 1/s CCW 20 in/s – 1 in → Instant Center 8 Velocity Analysis RBB

The linear velocities of Instant Centers $\mathbf{I_{23}}$, $\mathbf{I_{24}}$, $\mathbf{I_{25}}$, and $\mathbf{I_{26}}$ can now be found

The linear velocities of Instant Centers I_{23} , I_{24} , I_{25} , and I_{26} can now be found

- The linear velocities of $\mathbf{I_{23}}$, and $\mathbf{I_{25}}$ are seen to be $\mathbf{v_A}$ because they are at A. $- v_{123} = v_{123} = v_a = 11 in/s$ Fout l₁₅ I₅₆ $I_{16} \rightarrow \infty$ $I_{16} \rightarrow \infty$ 123 $I_{34} I_{35} I_{45}$ • l₂₄ I₂₆ Scales ω_2 =5 1/s ccw 20 in/s **← 1 in →** Instant Center 11 Velocity Analysis RBB

The linear velocities of Instant Centers l_{23} , l_{24} , l_{25} , and l_{26} can now be found

- The linear velocities of I_{23} , and I_{25} are seen to be v_A because they are at A.

Determining the Linear Velocity of Instant Center I₂₆ - l₂₆ is the location on Link 2 where the linear velocity is the same as on Link 6 Fout l₁₅ I₅₆ $I_{16} \rightarrow \infty$ $I_{16} \rightarrow \infty$ Lins l₂₃ l₂₅ $I_{34} I_{35} I_{45}$ • l₂₄ 2.2 in Scales ω_2 =5 1/s CCW **←** 1 in → 20 in/s

13

RBB

nstant Center

Velocity Analysis

Determining the Linear Velocity of Instant Center I₂₆

- A circular arc is scribed from I₂₆ back to the Link 2 Base-Line
- This arc intersects the Base-Line at two points •

Determining the Linear Velocity of Instant Center I₂₆

- Either point can be used to determine the velocity
- Since the arc intersects the Link 2 Base-Line at A, that intersection will be used

Determining the Linear Velocity of Instant Center I₂₆

- The magnitude of the linear velocity at I_{26} is $v_A = v_{126}$

An ALTERNATE approach to determining the Linear Velocity of Instant Center I₂₆

- The distance from ${\rm I_{12}}$ to ${\rm I_{26}}$ is measured as 2.2 in. Fout l₁₅ I₅₆ $I_{16} \rightarrow \infty$ $I_{16} \rightarrow \infty$ Lins l₂₃ l₂₅ $I_{34} I_{35} I_{45}$ • l₂₄ 2.2 in Scales 11 in/s ω_2 =5 1/s CCW **← 1 in →** 20 in/s 17 nstant Center Velocity Analysis RBB

An ALTERNATE approach to determining the Linear Velocity of Instant Center 126

- The distance from I_{12} to I_{26} is measured as 2.2 in.

$$v_{I_{26}} = \omega_2 \cdot r_{I_{26}I_{12}} = 5\frac{1}{s} \cdot 2.2in = 11\frac{in}{s}$$

Determining the Linear Velocity of Instant Center I₂₄

- The magnitude of the linear velocity vector **v**₁₂₄ is found by
 - Scribing an arc centered at I₁₂ up to the Link 2 Base Line

An ALTERNATE approach to determining the Linear Velocity of Instant Center I₂

- The distance from I_{12} to I_{24} is measured as 5.5 in.

$$v_{I_{24}} = \omega_2 \cdot r_{I_{24}I_{12}} = 5\frac{1}{s} \cdot 5.5in = 27.5\frac{in}{s}$$

- The direction of v_{124} is perpendicular to the line extending from l_{12} to l_{24}
- The sense is determined using the Right-Hand-Rule

The Linear Velocity of Instant Centers I_{23} , I_{24} , I_{25} , and I_{25} have all been determined

At this instant, Link 3 appears to be rotating, with respect to the ground (Link 1), about Instant Center I_{13} A known velocity on Link 3 is at A which is the same as I_{23} , $v_A = v_{123} = 11$ in/s

At this instant, Link 3 appears to be rotating, with respect to the ground (Link 1), about Instant Center I_{13} A known velocity on Link 3 is at A which is the same as I_{23} , $v_A = v_{123} = 11$ in/s

At this instant, Link 3 appears to be rotating, with respect to the ground (Link 1), about Instant Center I_{13} A known velocity on Link 3 is at A which is the same as I_{23} , $v_A = v_{123} = 11$ in/s

The Base-Line for Link 3's linear velocities can now be drawn - The line must pass through I_{13} and A/I_{23} (note this is the same as the Link 2's Base Line) The Proportional-Line for Link 3's linear velocities can now be drawn - The line must pass through I₁₃ and the head of the linear velocity vector v_A Fout 27.5 in/s I₅₆ $I_{16} \rightarrow \infty$ I₁₃ Proportional Line Link 3 I₂₃ 125 I₃₄ I₃₅ I₄₅ | I₂₄ Scales 11 in/s $\omega_2 = 5 \text{ 1/s CCW}$ 20 in/s istant Center 30 Velocity Analysis RBB

The angular velocity of Link 3, $\omega_{\text{3}}\text{, can now be calculated}$

The angular velocity of Link 3, ω_3 , can now be calculated

- The distance from $\rm I_{13}$ to A/I $_{23}$ is measured, $\rm r_{l13l23}$ =1.75 in

The angular velocity of Link 3, ω_3 , can now be calculated

- The distance from I_{13} to A/ I_{23} is measured, $r_{|13|23}$ =1.75 in
- The linear velocity at A/I $_{23}$, $v_{\rm A}$ = $v_{\rm I23}$ =11 in/s is divided by $r_{\rm I13I23}$

The linear velocities of Instant Centers ${\rm I_{34}}$, ${\rm I_{35}}$, and ${\rm I_{36}}$ can now be found

Starting by finding the LINEAR VELOCITIES of Instant Centers I_{34} , and I_{35} Instant Centers I_{34} , and I_{35} are both at point B

Starting by finding the LINEAR VELOCITIES of Instant Centers I_{34} , and I_{35} Instant Centers I_{34} , and I_{35} are both at point B

- Scribing an arc centered at I_{13} , Starting at $B/I_{34}/I_{35}$, and terminating at the Link 3 Base-Line

Starting by finding the LINEAR VELOCITIES of Instant Centers I_{34} , and I_{35} Instant Centers I_{34} , and I_{35} are both at point B

Velocity Analysis

- Scribing an arc centered at I_{13} , Starting at $B/I_{34}/I_{35}$, and terminating at the Link 3 Base-Line • There are two points where the arc intersects the Base-line, either can be used. - The magnitude of the linear velocity vector $v_{134} = v_{135} = v_B$ is found by • Drawing a vector perpendicular to the Link 3 Base-Line • Originating at the point of intersection • Terminating at the Link 3 Proportional-Line Fout 27.5 in/s 115 I₅₆ $I_{16} \rightarrow \infty$ Proportional Line Link 3 1₃₄ 1₃₅ 1₄₅ I₂₄ **Scales** 11 in/s ω_2 =5 1/s CCW ω_3 =6.3 1/s CW 20 in/s istant Center 37

Starting by finding the LINEAR VELOCITIES of Instant Centers I₃₄, and I₃₅

istant Center

Velocity Analysis

Instant Centers I₃₄, and I₃₅ are both at point B - Scribing an arc centered at I_{13} , Starting at $B/I_{34}/I_{35}$, and terminating at the Link 3 Base-Line • There are two points where the arc intersects the Base-line, either can be used. - The magnitude of the linear velocity vector $v_{134} = v_{135} = v_B$ is found by • Drawing a vector perpendicular to the Link 3 Base-Line • Originating at the point of intersection • Terminating at the Link 3 Proportional-Line Fout 27.5 in/s I₁₅ I₅₆ $I_{16} \rightarrow \infty$ Proportional Line Link 3 123 I₃₄ I₃₅ I₄₅ I₂₄ Scales 11 in/s ω_2 =5 1/s CCW ω_3 =6.3 1/s CW 20 in/s

38

Starting by finding the LINEAR VELOCITIES of Instant Centers I_{34} , and I_{35}

- The magnitude of the linear velocity vector $\mathbf{v}_{\mathrm{I34}}\text{=}\mathbf{v}_{\mathrm{I35}}\text{=}\mathbf{v}_{\mathrm{B}}$ is found by
 - Measuring the scaled length of the vector drawn

39

Starting by finding the LINEAR VELOCITIES of Instant Centers I_{34} , and I_{35}

- The magnitude of the linear velocity vector $\mathbf{v}_{\mathrm{I34}}\!\!=\!\!\mathbf{v}_{\mathrm{I35}}\!\!=\!\!\mathbf{v}_{\mathrm{B}}$ is found by
 - Measuring the scaled length of the vector drawn
 - $v_{134} = v_{135} = v_B = 10.5$ in/s

Now the LINEAR VELOCITY of Instant Centers I_{36} can be found

- Scribing an arc centered at I_{13} , Starting at I_{36} , and terminating at the Link 3 Base-Line
 - There are two points where the arc intersects the Base-line, either can be used.

- Scribing an arc centered at I_{13} , Starting at I_{36} , and terminating at the Link 3 Base-Line
 - There are two points where the arc intersects the Base-line, either can be used.

- Scribing an arc centered at I_{13} , Starting at I_{36} , and terminating at the Link 3 Base-Line
 - There are two points where the arc intersects the Base-line, either can be used.
- The magnitude of the linear velocity vector v_{136} is found by

Velocity Analysis

- The magnitude of the linear velocity vector \mathbf{v}_{I36} is found by
 - Measuring the scaled length of the vector drawn or v₁₃₆=v_A
 - v₁₃₆=v_A=11.0 in/s

Starting by finding the LINEAR VELOCITY of Instant Centers I_{36}

- The magnitude of the linear velocity vector $\boldsymbol{v}_{\text{I36}}$ is found by
 - Measuring the scaled length of the vector drawn or $v_{136} = v_A$
 - $v_{136} = v_A = 11.0 \text{ in/s}$

Now Link 4 and its associated Instant Centers can be considered.

At this instant, Link 4 appears to be rotating, with respect to the ground (Link 1), about Instant Center I₁₄

There are two locations on the expanded Link 4 that that have known velocities, B/I_{45} and I_{24}

- $v_B = v_{145} = 10.5$ in/s
- v_{124} =27.5 in/s

At this instant, Link 4 appears to be rotating, with respect to the ground (Link 1), about Instant Center 1,14

There are two locations on the expanded Link 4 that that have known velocities, B/I_{45} and I_{24}

- $v_{R} = v_{145} = 10.5 \text{ in/s}$
- $v_{124} = 27.5 in/s$

The calculation of the angular velocity $oldsymbol{0}_4$ will be conducted using $vldsymbol{1}_{124}$ because

At this instant, Link 4 appears to be rotating, with respect to the ground (Link 1), about Instant Center I_{14} A known velocity on Link 4 is V_{124} =27.5 in/s

The Base-Line for Link 4's linear velocities can now be drawn

- The line must pass through I₁₄ and I₂₄

At this instant, Link 4 appears to be rotating, with respect to the ground (Link 1), about Instant Center I₁₄ A known velocity on Link 4 is V₁₂₄=27.5 in/s The Base-Line for Link 4's linear velocities can now be drawn - The line must pass through I₁₄ and I₂₄ The Proportional-Line for Link 4's linear velocities can now be drawn - The line must pass through | 14 and the head of the linear velocity vector V₁₂₄ Fout 27.5 in/s I₁₅ I₅₆ $I_{16} \rightarrow \infty$ $I_{16} \rightarrow \infty$ I₁₃ 123 11 in/s I₃₄ I₃₅ 1/45 10.5 in/s **Base Line** l₂₄ Link 4 I₂₆ Scales 11 in/s ω_2 =5 1/s CCW ω_3 =6.3 1/s CW 20 in/s – 1 in → **Instant Center** 52 Velocity Analysis RBB

The angular velocity of Link 4, ω_4 , can now be calculated

- The distance from I_{14} to I_{24} is measured, $r_{114|24}=1.7$ in
- The linear velocity at I_{24} , v_{124} =27.5 in/s is divided by $r_{114|24}$

$$\omega_4 = \frac{v_{I_{24}}}{r_{I_{24}I_{14}}} = \frac{27.5 \frac{in}{s}}{1.7in} = 16.2 \frac{1}{s} ccw$$

The angular velocity of Link 4, ω_a , could ALTERNATELY be calculated using

- The distance from I_{14} to $I_{45}/B/I_{34}/I_{35}$ is measured, $r_{|14|45}$ =0.65 in
- The linear velocity at l_{45} , $v_{145} = v_{135} = v_{134} = v_B = 10.5$ in/s is divided by $r_{114|24}$

$$\omega_4 = \frac{v_{I_{45}}}{r_{I_{45}I_{14}}} = \frac{10.5 \frac{in}{s}}{0.65 in} = 16.2 \frac{1}{s} ccw$$

Same result.

LINEAR VELOCITY of Instant Centers I46 on the extended Link 4 can now be found Drawing the velocity vector perpendicular to the Link 4 Base-Line Originating at I₄₆ • Terminating at the Link 4 Proportional-Line Fout 27.5 in/s l₁₅ l₁₃ I₅₆ $I_{16} \rightarrow \infty$ $I_{16} \rightarrow \infty$ I₂₃ 11 in/s I₃₄ I₃₅ 1/45 0.65 in 10.5 in/s **Base Line** I₂₄ Link 4 I₂₆ 10.5 in/s Scales 11 in/s ω_2 =5 1/s CCW ω_3 =6.3 1/s CW 20 in/s Instant Center – 1 in → 58 $\omega_a = 16.2 \text{ 1/s ccw}$ Velocity Analysis RBB

Finally, the ANGULAR VELOCITY of Link 5 can be found

Finally, the ANGULAR VELOCITY of Link 5 can be found

- The distance from I_{15} to I_{56}/I_{36} is measured, r_{115156} =1.75 in

Finally, the ANGULAR VELOCITY of Link 5 can be found

- The distance from I_{15} to I_{56}/I_{36} is measured, $r_{|15|56}$ =1.75 in
- The linear velocity at I_{56}/I_{36} , $v_{156}=v_{136}=11$ in/s is divided by r_{115156}

$$\omega_4 = \frac{v_{I_{56}}}{r_{I_{56}I_{15}}} = \frac{11\frac{in}{s}}{1.75in} = 6.3\frac{1}{s}ccw$$

All LINEAR VELOCITIES of the INSTANT CENTERS and all the ANGULAR VELOCITIES of this mechanism have been determined. The diagram below illustrates the instant center solution to his problem.

