Import Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]:

```
Churn = pd.read_csv("F:\dataset\Churn_Modelling.csv")
```

In [3]:

```
Churn.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype				
0	RowNumber	10000 non-null	int64				
1	CustomerId	10000 non-null	int64				
2	Surname	10000 non-null	object				
3	CreditScore	10000 non-null	int64				
4	Geography	10000 non-null	object				
5	Gender	10000 non-null	object				
6	Age	10000 non-null	int64				
7	Tenure	10000 non-null	int64				
8	Balance	10000 non-null	float64				
9	NumOfProducts	10000 non-null	int64				
10	HasCrCard	10000 non-null	int64				
11	IsActiveMember	10000 non-null	int64				
12	EstimatedSalary	10000 non-null	float64				
13	Exited	10000 non-null	int64				
dtypes: float64(2), int64(9), object(3)							
memory usage: 1.1+ MB							

In [4]:

```
Churn.head()
```

Out[4]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380
2	3	15619304	Onio	502	France	Female	42	8	15966
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	12551
4									•

In [5]:

```
sns.heatmap(Churn.isnull(),yticklabels=False,cbar=False,cmap='viridis')
```

Out[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x265a351a2c8>

In [6]:

```
sns.set_style('whitegrid')
sns.countplot(x='Exited',data=Churn,palette='RdBu_r')
```

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x265a3d17f88>

In [7]:

```
sns.set_style('whitegrid')
sns.countplot(x='Exited',hue='Gender',data=Churn,palette='RdBu_r')
```

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x265a3dbd288>

In [8]:

```
sns.set_style('whitegrid')
sns.countplot(x='Exited',hue='Geography',data=Churn,palette='rainbow')
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x265a40aa9c8>

In [9]:

```
#Churn['Age'].hist(bins=30,color='darkred',alpha=0.7)
```

Data Cleaning

In [10]:

```
to_drop=['RowNumber','CustomerId','Surname']
Churn=Churn.drop(to_drop,axis=1)
Churn.head()
```

Out[10]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
0	619	France	Female	42	2	0.00	1	1	
1	608	Spain	Female	41	1	83807.86	1	0	
2	502	France	Female	42	8	159660.80	3	1	
3	699	France	Female	39	1	0.00	2	0	
4	850	Spain	Female	43	2	125510.82	1	1	
4									•

In [11]:

```
plt.figure(figsize=(12, 7))
sns.boxplot(x='Gender',y='Balance',data=Churn,palette='winter')
```

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x265a411f108>

In [12]:

```
plt.figure(figsize=(12, 7))
sns.boxplot(x='Geography',y='Balance',data=Churn,palette='winter')
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x265a47e74c8>

In [13]:

```
plt.figure(figsize=(12, 7))
sns.boxplot(x='Gender',y='EstimatedSalary',data=Churn,palette='winter')
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x265a411fe88>

In [14]:

```
plt.figure(figsize=(12, 7))
sns.boxplot(x='Exited',y='CreditScore',data=Churn,palette='winter')
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x2659e5d3848>

Converting Categorical Features

In [17]:

```
Churn.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
```

Data columns (total 11 columns): Column Non-Null Count Dtype ----------0 CreditScore 10000 non-null int64 1 Geography 10000 non-null object 2 Gender 10000 non-null object 3 Age 10000 non-null int64 4 Tenure 10000 non-null int64 10000 non-null float64 5 Balance NumOfProducts 10000 non-null int64 6 7 10000 non-null int64 HasCrCard 8 IsActiveMember 10000 non-null int64 9 EstimatedSalary 10000 non-null float64 10 Exited 10000 non-null int64

dtypes: float64(2), int64(7), object(2)

memory usage: 859.5+ KB

In [18]:

```
sex = pd.get_dummies(Churn['Gender'],drop_first=True)
sex
```

Out[18]:

	Male
0	0
1	0
2	0
3	0
4	0
9995	1
9996	1
9997	0
9998	1
9999	0

10000 rows × 1 columns

In [19]:

```
Geo = pd.get_dummies(Churn['Geography'],drop_first=True)
Geo
```

Out[19]:

	Germany	Spain
0	0	0
1	0	1
2	0	0
3	0	0
4	0	1
9995	0	0
9996	0	0
9997	0	0
9998	1	0
9999	0	0

10000 rows × 2 columns

In [20]:

```
to_drop1=['Gender','Geography']
Churn=Churn.drop(to_drop1,axis=1)
Churn.head()
```

Out[20]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estima
0	619	42	2	0.00	1	1	1	
1	608	41	1	83807.86	1	0	1	
2	502	42	8	159660.80	3	1	0	
3	699	39	1	0.00	2	0	0	
4	850	43	2	125510.82	1	1	1	
4								•

In [21]:

```
Churn = pd.concat([Churn,sex,Geo],axis=1)
```

In [22]:

Churn.head()

Out[22]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estima
0	619	42	2	0.00	1	1	1	
1	608	41	1	83807.86	1	0	1	
2	502	42	8	159660.80	3	1	0	
3	699	39	1	0.00	2	0	0	
4	850	43	2	125510.82	1	1	1	
4								>

Building a Logistic Regression model

In [23]:

```
from sklearn.model_selection import train_test_split
```

In [24]:

In [25]:

```
print(X_train,y_train)
      CreditScore
                      Age
                           Tenure
                                       Balance
                                                 NumOfProducts
                                                                   HasCrCard
27
                       44
                                 9
                                          0.00
                                                               2
                                                                            0
                571
                                 6
                                                               2
                                                                            1
3847
                611
                       37
                                          0.00
                596
7461
                       32
                                 4
                                          0.00
                                                               2
                                                                            0
                                                               2
1356
                709
                       49
                                 4
                                     154344.49
                                                                            1
                                 5
                                                               1
                                                                            0
4314
                638
                       34
                                     133501.36
. . .
                . . .
                                                             . . .
                                                                          . . .
7490
                                 2
                                      90865.80
                                                               1
                                                                            1
                654
                       35
8873
                610
                       34
                                 0
                                     103108.17
                                                               1
                                                                            0
                                 2
                                                               1
                                                                            1
7443
                634
                       24
                                      87413.19
                                 5
                                                               1
                                                                            1
4182
                550
                       52
                                     121016.23
                                 3
                                                               2
4820
                484
                       32
                                          0.00
                                                                            1
      IsActiveMember
                         EstimatedSalary
                                                              Spain
                                            Male
                                                    Germany
27
                                 38433.35
                                                           0
                                                                   0
                      0
                                                1
                      0
                                110782.88
                                                                   0
3847
                                                0
                                                           0
7461
                      1
                                146504.35
                                                1
                                                           0
                                                                   1
1356
                      1
                                 38794.57
                                                1
                                                           0
                                                                   0
                      1
                                155643.04
                                                1
                                                           0
                                                                   0
4314
. . .
                    . . .
                                       . . .
                                              . . .
                                                         . . .
                                                                 . . .
7490
                      1
                                 86764.46
                                                0
                                                           0
                                                                   0
8873
                      0
                                                           0
                                                                   0
                                125646.82
                                                1
7443
                      0
                                 63340.65
                                                0
                                                           0
                                                                   0
4182
                      1
                                 41730.37
                                                1
                                                           1
                                                                   0
                                139390.99
                                                                   0
4820
                      1
                                                0
                                                           0
[8000 rows x 11 columns] 27
3847
         0
7461
         0
1356
         0
4314
         0
7490
         0
8873
         0
7443
         0
4182
         1
4820
Name: Exited, Length: 8000, dtype: int64
```

In [26]:

```
print(X_test,y_test)
      CreditScore
                     Age
                           Tenure
                                       Balance
                                                 NumOfProducts
                                                                  HasCrCard
207
                       34
                                 5
                                     134954.53
                618
                                                                            1
                                 9
                                                                            1
1866
                559
                       70
                                          0.00
                                                               1
9487
                850
                       32
                                 5
                                          0.00
                                                               1
                                                                            1
                                 7
3673
                764
                       24
                                      98148.61
                                                               1
                                                                            1
                                                               2
                                                                            1
7178
                684
                       38
                                 5
                                     105069.98
. . .
                . . .
                                                             . . .
                                                               2
3943
                649
                      46
                                 5
                                          0.00
                                                                            1
4007
                648
                       43
                                 7
                                     139972.18
                                                               1
                                                                            1
                                 7
                                                               2
8540
                484
                       40
                                     106901.42
                                                                            0
                                 4
                                                               2
                                                                            1
1906
                786
                       29
                                          0.00
                                 2
                                                               2
488
                692
                       30
                                          0.00
                                                                            0
                         EstimatedSalary
      IsActiveMember
                                            Male
                                                   Germany
207
                                151954.39
                                                          0
                                                                  0
                      1
                                                1
                      1
                                122996.76
1866
                                                0
                                                          0
                                                                  0
                      1
                                                0
                                                          0
                                                                  1
9487
                                  3830.59
3673
                      0
                                 26843.76
                                                1
                                                          0
                                                                  0
                      1
                                198355.28
                                                          0
                                                                  0
7178
                                                1
. . .
                                       . . .
                                              . . .
3943
                     1
                                 76946.60
                                                1
                                                          0
                                                                  0
4007
                     0
                                143668.58
                                                0
                                                          0
                                                                  0
8540
                     0
                                118045.98
                                                1
                                                          1
                                                                  0
1906
                     0
                                103372.79
                                                0
                                                          0
                                                                  0
                                                                  0
488
                      1
                                130486.57
                                                1
                                                          0
[2000 rows x 11 columns] 207
1866
         0
9487
         0
3673
         0
7178
         0
3943
         0
4007
         0
8540
         0
1906
         0
488
Name: Exited, Length: 2000, dtype: int64
```

Training and Predicting

In [27]:

```
from sklearn.linear_model import LogisticRegression
```

```
In [28]:
```

```
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
```

Out[28]:

In [29]:

```
predictions = logmodel.predict(X_test)
```

In [30]:

```
predictions
```

Out[30]:

```
array([0, 1, 0, ..., 0, 0, 0], dtype=int64)
```

Let's move on to evaluate our model!

Evaluation

In [31]:

```
from sklearn.metrics import classification_report,confusion_matrix
```

In [32]:

```
print(confusion_matrix(y_test,logmodel.predict(X_test)))
```

```
[[1558 34]
[ 391 17]]
```

In [33]:

```
print(classification_report(y_test,logmodel.predict(X_test)))
```

	precision	recall	f1-score	support
0	0.80	0.98	0.88	1592
1	0.33	0.04	0.07	408
accuracy			0.79	2000
macro avg	0.57	0.51	0.48	2000
weighted avg	0.70	0.79	0.72	2000

In [34]:

```
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
logit_roc_auc = roc_auc_score(y_test, predictions)
fpr, tpr, thresholds = roc_curve(y_test, logmodel.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
#plt.savefig('Log_ROC')
plt.show()
```


In [35]:

```
roc_auc_score(y_test, logmodel.predict(X_test))
```

Out[35]:

0.5101549413735343

In [36]:

```
import statsmodels.api as sm
logit_model=sm.Logit(y_train,X_train)
result=logit_model.fit()
print(result.summary2())
```

Optimization terminated successfully.

Current function value: 0.437496

Iterations 6

Results: Logit

Model: Pseudo R-squared: 0.134 Logit Dependent Variable: Exited AIC: 7021.9371 Date: 2020-07-06 08:42 BIC: 7098.7962 No. Observations: 8000 Log-Likelihood: -3500.0 Df Model: -4043.1 10 LL-Null: Df Residuals: 7989 LLR p-value: 4.8508e-227 Converged: 1.0000 Scale: 1.0000

No. Iterations: 6.0000

Age 0.0586 0.0026 22.3630 0.0000 0.0534 0.0637 Tenure -0.0456 0.0101 -4.4962 0.0000 -0.0655 -0.0257 Balance 0.0000 0.0000 1.3242 0.1854 -0.0000 0.0000 NumOfProducts -0.3786 0.0507 -7.4704 0.0000 -0.4779 -0.2793 HasCrCard -0.1629 0.0637 -2.5584 0.0105 -0.2877 -0.0381 0.0633 -17.1750 0.0000 -1.2117 -0.9635 IsActiveMember -1.0876 EstimatedSalary -0.0000 0.0000 -1.7459 0.0808 -0.0000 0.0000 Male 0.0597 -10.9529 0.0000 -0.7706 -0.5367 -0.6537 Germany 0.0754 10.4220 0.0000 0.6378 0.9333 0.7855 Spain -0.0295 0.0774 -0.3813 0.7030 -0.1813 0.1222 ______

In [37]:

```
to_drop2=['Balance','EstimatedSalary','Spain']
Churn1=Churn.drop(to_drop2,axis=1)
Churn1.head()
```

Out[37]:

	CreditScore	Age	Tenure	NumOfProducts	HasCrCard	IsActiveMember	Exited	Male	Ge
0	619	42	2	1	1	1	1	0	
1	608	41	1	1	0	1	0	0	
2	502	42	8	3	1	0	1	0	
3	699	39	1	2	0	0	0	0	
4	850	43	2	1	1	1	0	0	
4									•

In [38]:

In [39]:

```
import statsmodels.api as sm
logit_model=sm.Logit(y_train,X_train)
result=logit_model.fit()
print(result.summary2())
```

Optimization terminated successfully.

Current function value: 0.437789

Iterations 6

Results: Logit

Model: Logit Pseudo R-squared: 0.134
Dependent Variable: Exited AIC: 7020.6276
Date: 2020-07-06 08:42 BIC: 7076.5252

No. Observations: 8000 Log-Likelihood: -3502.3 Df Model: 7 LL-Null: -4043.1 Df Residuals: 7992 LLR p-value: 2.8493e-229 1.0000 Converged: 1.0000 Scale:

No. Iterations: 6.0000

	Coef. Std.Er	r. z	P> z	[0.025	0.975]
CreditScore		02 -17.2715			
O					
lasCrCard	-0.1645 0.06			-0.2892	
sActiveMember	-1.0844 0.06	33 -17.1393	0.0000	-1.2084	-0.9604
lale		95 -10.9325	0.0000	-0.7677	-0.5343
Germany	0.8332 0.06	41 12.9964	0.0000	0.7075	0.9589
nge Tenure HumOfProducts HasCrCard TsActiveMember Hale	0.0584 0.06 -0.0457 0.01 -0.4005 0.04 -0.1645 0.06 -1.0844 0.06 -0.6510 0.05	26 22.4868 Ø1 -4.5223 93 -8.1207 36 -2.5866 33 -17.1393 95 -10.9325	0.0000 0.0000 0.0000 0.0097 0.0000 0.0000	0.0533 -0.0656 -0.4972 -0.2892 -1.2084 -0.7677	0.06 -0.02 -0.36 -0.03 -0.96 -0.53

In [40]:

```
logmodel = LogisticRegression()
logmodel.fit(X_train,y_train)
predictions1 = logmodel.predict(X_test)
predictions1
```

C:\Users\Pratima Dhar\anaconda3\lib\site-packages\sklearn\linear_model_lo
gistic.py:940: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (\max_i) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression

extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

Out[40]:

array([0, 1, 0, ..., 0, 0, 0], dtype=int64)

In [41]:

from sklearn.metrics import classification_report,confusion_matrix

In [42]:

```
print(confusion_matrix(y_test,logmodel.predict(X_test)))
```

[[1534 58] [325 83]]

In [43]:

print(classification_report(y_test,logmodel.predict(X_test)))

	precision	recall	f1-score	support
Ø 1	0.83 0.59	0.96 0.20	0.89 0.30	1592 408
1	0.39	0.20	0.50	400
accuracy			0.81	2000
macro avg	0.71	0.58	0.60	2000
weighted avg	0.78	0.81	0.77	2000

In [44]:

```
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
logit_roc_auc = roc_auc_score(y_test, predictions1)
fpr, tpr, thresholds = roc_curve(y_test, logmodel.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
#plt.savefig('Log_ROC')
plt.show()
```

