Einfluss des Ausgangs- und Werkzeugmaterials auf Umformprozesse zur Herstellung von Verzierungselementen in der Automobilbranche

Benedikt Kaffanke

23. Dezember 2013

Inhaltsverzeichnis

1	Einl	eitung	3			
2 Bauteil						
	2.1	Funktion & Qualitätsumfang	5			
	2.2	Aluminium	6			
	2.3	Streckbiegen	6			
		Kröpfen				
	2.5	Methode Messauswertung	8			
	2.6	Chargenvergleich Streckbiegen	9			
		2.6.1 Ausblick	14			

1 Einleitung

In der modernen Automobilindustrie werden heutzutage immer höhere Qualitätsund Präzisionsansprüche an die einzelnen Fahrzeugkomponenten gestellt. So unterliegen selbst Verzierungselemente strengen Maß- und Toleranzvorgaben von Seiten der Hersteller an die Komponenten Zulieferer.

Die Fertigungsprozesse solcher Präzisionsfabrikate erfordern ein hohes Maß an Überwachung und Kontrolle auf den einzelnen Fertigungsstufen. Es kommen überwiegend modernste Fertigungstechnologien (CNC-Maschinen, Industrie Roboter) zum Einsatz. Trotz hohem Automatisierungsgrad sind immer noch humane Fertigungskräfte unverzichtbar. So ist zum Beispiel bei einer Sichtprüfung zur Verifikation der erforderlichen Oberflächengüte, des bearbeiteten Materials, das menschliche Auge unersetzlich. Auch das Handling bei Nacharbeitungsverfahren (z.B. Polieren, Schleifen) geschieht häufig noch manuell. So erstreckt sich das Spektrum der am Fertigungsprozess Involvierten von der einfachen Hilfskraft bis zum hochqualifizierten CNC-Spezialisten.

Hinter diesem Background ist es nicht zu vermeiden das eine komplexe Anzahl von Einflussgrößen bei der Wertschöpfung als Störfaktor berücksichtigt werden müssen. Eine besondere und stetige Observation, insbesondere bei der Herstellung von sehr großen Stückzahlen, des kontinuierlichen Flusses der Bearbeitungsschritte und der Synergie der einzelnen Elemente der Fertigungskette, ist daher ein wichtiger Punkt zur Prävention eventueller negativer Störfaktoren. Muss zum Beispiel eine Bearbeitungsstufe, während einer Serienfertigung an einer CNC-Einheit, aufgrund von inhomogenen Spannungsverläufen im Ausgangsmaterial häufig unterbrochen werden um Justierungen an dem Gerät durch qualifizierte Spezialisten vorzunehmen, ist der Kosten- und Zeitaufwand wirtschaftlich nicht mehr vertretbar.

Im Focus dieser Forschungsarbeit steht deshalb die Problematik der Optimierung der Fertigungsverfahren zur Erlangung höherer Güte bei der Herstellung von Zierleisten.

Zum größten Teil werden für eben diese Verzierungselemente Strangpressprofile aus Aluminium verwendet die ein besonders hochwertiges Finish verbürgen. Sie werden in speziellen Biege- und Abkantvorrichtungen in Serie gefertigt. Weitere Bearbeitungsprozesse sind:

- Fräsen
- Beschneiden
- Schleifen und Polieren
- Eloxieren
- DURAPro Beschichten (Nanolack)
- Montage

Besondere Schwierigkeiten treten im Bereich der Maßtoleranz Einhaltung bei diesen Biegeprozessen auf. Häufig sind bei Biegeradien und langen Profilen Toleranzen von $\pm 0.5\,\mathrm{mm}$ gefordert. Bei kleinen Biegeradien die größtenteils bei Abkantprozessen anfallen treten optische Merkmale und Veränderungen auf, die meistens unerwünscht sind.

Die Beschaffenheit des Werkstoff- und Werkzeugmaterials ist der wohl wichtigste Beeinflussungsfaktor bei o.g. Problemprodukten (siehe Abbildung 1) .

Abbildung 1: Problemprodukte Zierleisten und Verdeckkastendeckel

Die nächsten Abschnitte befassen sich mit der Durchführung und Auswertung von Versuchsreihen die mit Hilfe von Messungen, herkömmlicher sowie zukunftsweisender Art (FEM-Verfahren), Erkenntnisse liefern die die Herstellungsverfahren von Zierleisten in qualitativer- sowie ökonomischer Sicht optimieren.

Zur Untersuchung sind hier vor allen Dingen die Umformverfahren Kröpfen (siehe Abschnitt 2.4 auf Seite 7) und Streckbiegen herangezogen worden.

2 Bauteil

Prüfobjekt ist in den folgenden Untersuchungen der Verdeckkastendeckel des Audi A3 Cabriolet's (siehe Abbildung 2). Als Verzierung eines Luxusobjektes sind die Anforderungen an Aussehen und Qualität außergewöhnlich hoch. So dient er zum einen als rein optisches Veredelungselement zum anderen hat er auch funktionelle Aufgaben (z.B. Stabilität in den gesamten Kofferraumdeckel bringen oder auch als Antenne zu agieren). Geringe Spaltmaße, perfekte Symmetrie (das menschliche Auge erkennt ein Hundertstel Millimeter) so wie allgemeine Benutzerfreundlichkeit (z.B. Hängenbleiben von Kleidungsstücken und ähnlichem and dem Verzierungsobjekt sollte ausgeschlossen sein) sind Anforderungen die höchste Priorität haben. Darüber hinaus sind flüssige Übergänge und Einklang zu weiteren Verzierungselementen des Fahrzeuges primordial für einen harmonischen Gesamteindruck.

(a) Audi A3

(b) Audi A3 Verdeckkastendeckel

Abbildung 2: Audi A3 Endprodukt

2.1 Funktion & Qualitätsumfang

An Verzierungselemente werden gerade in der Automobil Oberklasse besonders hohe Ansprüche gestellt. Es sind besonders folgende hervorzuheben:

- keine Beulen
- keine Oberflächenfehler
- ideale Fugenläufe
- präzise Radien
- enge Form- und Lagetoleranzen (siehe Abbildung 3 auf der nächsten Seite)
- enge Spalttoleranzen

Abbildung 3: Wölbungstoleranz

2.2 Aluminium

Aufgrund seiner geringen Dichte (2,69 kg dm⁻³)¹, guten Umformbarkeit, Korosionsbeständigkeit und mit einer hervorragend zu erzielender Oberflächengüte sowie hohem Reflexionsgrad ist Aluminium das am häufigsten verwendete Ausgangsmaterial für Zierleisten.

Es werden überwiegend Strangpressprofile verarbeitet die bei den Lieferanten mit bestimmten Eigenschaften angefordert werden. Die wichtigsten dort angeführten mechanischen Eigenschaften sind die Zugfestigkeit $R_m[\text{N mm}^{-2}]$, Dehnung $R_{po,2}[\text{N mm}^{-2}]$, Bruchdehnung A oder auch $A_{50}[\%]$ (der Index 50 bezieht sich auf eine Messlänge von 50 mm der Probe beim einachsigen Zugversuch)²und die Korngröße.

Sie wird in der Einheit [µm²] angegeben und hat Einfluss auf die Oberflächengüte nach Umformprozessen. Bei steigendem Umformgrad ergibt sich häufig eine Aufrauung der Oberfläche (Orangenhaut) die von der Ausgangskorngröße abhängig ist. Je geringer die Ausgangskorngröße desto geringer der Aufrauungseffekt.³

Erwähnenswert ist zu vorangegangenem noch das aufgrund der, bei den meisten Aluminiumlegierungen, nicht ausgeprägten Streckgrenze die $R_{p0,2}$ Dehngrenze als Bemessungskennwert bei einer 0,2 % bleibenden Verformung gegenüber rein elastischem Verhalten ermittelt wird (siehe Abbildung 4 auf der nächsten Seite).⁴

2.3 Streckbiegen

Bei dem Umformverfahren Streckbiegen werden auf speziellen Streckbiegemaschinen die Enden eines Profilstranges in Spannern gehalten und auf Zugspannung gebracht (siehe Abbildung 5 auf der nächsten Seite). Anschließend werden sie über ein massives Biegewerkzeug streckgebogen.⁵ Das Ausgangsmaterial (Aluminium Strangpressprofile) wird streckgebogen um eine Rückfederung zu minimieren. Kritisch sind hier vor allen Dingen Biegeschwankungen und nicht kontinuierliche Materialeinschnü-

¹Vgl. Läpple u. a. Werkstofftechnik Maschinenbau. Zweite aktualisierte und erweiterte Auflage. Europa-Verlag, 2010, S. 353.

²Vgl. Friedrich Ostermann. Anwendungstechnologie Aluminium. Zweite neu bearbeitete und aktualisierte Auflage. Springer-Verlag, 2007, S. 281.

³Vgl. ebd., S. 524.

⁴Vgl. ebd., S. 280-281.

 $^{^5\}mathrm{Vgl.http://www.tillmann-gruppe.de/de/streckbiegen.html} [27.10.2013].$

Abbildung 4: Spannungs-Dehnungs Schaubild mit $Rp_{0,2}$ Dehngrenze

Abbildung 5: Streckbiegemaschine

rungen, welche häufig an den Verengungen der Biegeradien auftreten. Die einflussreichsten mechanischen Eigenschaften des Werkstoffes sind bei diesem Verfahren die Härte sowie die Streckgrenze.

2.4 Kröpfen

Der eigenartig anmutende Ausdruck Kröpfen bedeutet eigentlich nur krumm biegen⁶ Bei dem Umformprozess Kröpfen werden von den Enden der Zierleisten zu nächst die auf den Innenseiten verlaufenden Stege abgefräst. Daraufhin werden sie in der Kröpfeinheit (siehe Abbildung 6 auf der nächsten Seite) auf dem Kröpfstein justiert und von einem Niederhalter durch die Anpresskraft einer Gasdruckfeder angepresst. Nun fährt, angetrieben durch einen Hydraulikzylinder, der Kröpf- oder auch Ziehstempel herunter und kantet das Material ab. Im Anschluss daran wird die Stirnseite der Kröpfung (siehe Abbildung 7 auf der nächsten Seite) noch beschnitten.

Problembereiche sind hier zu erst einmal die Fräsprozesse. Schon bei geringsten Unterschieden in der Materialabnahme sind Fehlstellen in der Oberflächenqualität der Radien bei einer Sichtprüfung zu erkennen. Auch der Ziehstempel und der Kröpfstein lassen Spuren auf der Oberfläche zurück. Ein nicht zu vernachlässigender Aspekt sind auch Verschleiß des Werkzeugmaterials bei diesem Verfahren. So kommt es gerade

 $^{^6\}mathrm{Vgl.http://woerterbuchnetz.de/DWB/?sigle=DWB&mode=Gliederung&lemid=GK14769[27.10.2013].}$

(a) Bezeichnungen

(b) Kröpfstein

Abbildung 6: Kröpfeinheit

(a) Kröpfung mit Fräsbereich

(b) Kröpfung

Abbildung 7: Kröpfung innen und Stirnseite

bei Ziehstempeln aus Stahl oft zu Kaltaufschweißungen. Hier liegt nahe auch andere Werkzeugmaterialien in Versuchsreihen zu erproben.

Hervorzuheben sind folgende, aus dem Kröpfprozess resultierende, Qualitätsbeeinträchtigungen:

- Orangenhaut
- Materialungänzen bedingt durch Materialschwankungen
- Abweichungen des auf das Kröpfen angepassten Fräsbildes

2.5 Methode Messauswertung

Es wurde bei der Auswertung von Messreihen in dieser Untersuchung vorwiegend die *empirische* Standardabweichung $s = \sqrt{\sum\limits_{i=1}^{n}(x_i-\bar{x})^2 \over n-1}$ verwendet, welche für solche

Operationen von der Fachliteratur empfohlen wird.⁷ Der Unterschied zur Standard-

abweichung $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$ ist das *Teilen* durch **n-1** anstatt durch lediglich **n**. An dieser Stelle eine kurze Beleuchtung des Sachverhaltes (in Anbetracht der Erläuterung von Dr. Guido Pinkernell⁸, welches exzellent mit dem Sachverhalt umgeht)⁹.

Die *empirische* Standardabweichung berechnet das Streuungsmaß einer *Stichprobe* im Gegensatz zur Standardabweichung die sich auf eine *Grundgesamtheit* bezieht. Bei Stichproben wir die *empirische* Standardabweichung vorgezogen da dort in der Regel die *wirkliche Streuung* unterschätzt wird. Die *empirische* Standardabweichung ist wegen des Teilers n-1 grundsätzlich etwas größer als die Standardabweichung, bei großem n liefern aber beide nahezu gleiche Ergebnisse, welches ja nur eine logische Konsequenz ist, denn je größer die Stichprobe desto näher kommt sie an die Grundgesamtheit.

Durch das Quadrieren der einzelnen Abweichungen $(x_i - \bar{x})$ und Addieren der einzelnen Abweichungsquadrate erhält man nur positive Beträge in denen eine Überbetonung einzelner Ausreißer erzielt wird. Die empirische Standardabweichung ist eines der wichtigsten Vergleichsparameter in der Statistik und bietet sich zur Analyse der Versuchsreihen besonders an, da sie von Extremwerten nicht stark beeinflusst wird. Dei der Auswertung von Messbereichen, die für unsere Problemstellung besondere Signifikanz haben, wird zusätzlich der Fehler mit Hilfe der Standardabweichung des

 $Mittelwertes \ \Delta \bar{x} = t_{0,95} \cdot \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}$ angegeben. Da bei den Versuchsserien eine nicht allzu große Stückzahl (n = 16 - 20) bearbeitet wurde, ist auch der für die international geforderte statistische Sicherheit zu berücksichtigende P Wert mit dem $t_{0,95}$ Faktor in die Berechnungen eingegangen. Es sei noch bemerkt, dass der Fehler nach DIN 1333 jeweils auf die erste signifikante Stelle gerundet wurde.

2.6 Chargenvergleich Streckbiegen

Zur Versuchsdurchführung wurden drei Materialchargen zu jeweils 20 Profilen des Werkstoffes EN AW 6060 (Legierungsnummer EAL-6048 *Alminox*, AlMgSi 0,5) mit den Materialbezeichnungen F17 (T61/Charge 1) und Fxx (T4/Charge 2) sowie das ursprünglich zur Serienfertigung vorgesehene Material F13 (T4) gegenübergestellt (eine Übersicht der relevantesten Eigenschaften ist in Tabelle 1 auf der nächsten Seite aufgeführt).

⁷Vgl. Lothar Papula. Mathematische Formelsammlung. Zehnte Auflage. Vieweg-Teubner, 2009, S. 301.

 $^{^{8} \}texttt{www.ti-unterrichtsmaterialien.net/imgserv.php?id=pinkernell_106.pdf} [10.11.2013].$

⁹Herv. d. Verf.

¹⁰Vgl. Heinrich Holland und Kurt Scharmbacher. Grundlagen der Statistik. Achte Auflage. Gabler-Verlag, 2010, S. 54.

¹¹Vgl. Hering, Martin und Stohrer. Physik für Ingenieure. Zehnte Auflage. Springer-Verlag, 2007, S. 16.

 $^{^{12} \}rm Vgl.$ Kuchling. $Taschenbuch \ der \ Physik.$ Neunzehnte Auflage. Carl Hanser Verlag, 2007, S. 609. $^{13} \rm Vgl.$ ebd., S. 612.

Tabelle 1: Gegenüberstellung der mechanischen Eigenschaften (Laborwerte) der Chargen

Material Charge	Zugfestigkeit Rm $[N mm^{-2}]$	Streckgrenze $R_{p0,2}$ [N mm ⁻²]	Bruchdehnung A_{50} [%]	Zustand
1.F17	160,25	85,55	12,3	T61
2.Fxx	152,4	74,65	11,65	T61
3.F13 Serie	149,3	$70,\!55$	20,41	T4

Die Chargen 1 und 2 wurden auch mit der herkömmlichen Zustandsbezeichnung T61 (lösungsgeglüht, nicht vollständig warmausgelagert, überaltert)¹⁴ bezeichnet während das Serienmaterial im Zustand T4 (lösungsgeglüht, kaltausgelagert) bestellt wurde.

Unter Überalterung versteht man den Prozess der Vereinigung von submikroskopischen Ausscheidungen die sich in der Anzahl verringern jedoch als Ausscheidung größer werden und so eine Abnahme der Festigkeit herbeiführen.¹⁵

Lösungsglühen erfolgt durch Glühen im Bereich der homogenen Mischkristalle welches das Lösungsvermögen der Mischkristalle begünstigt, Ausscheidungen können so gelöst werden.

Unter Auslagern versteht man Liegenlassen bei Raumtemperatur (Kaltauslagern) oder bei höheren Temperaturen (Warmauslagern), meistens zwischen 100 und 220 Grad Celsius, über einen bestimmten Zeitraum um so die Eigenschaften des Werkstoffes zu beeinflussen. Ein typischer Aushärtungsprozess läuft nach folgendem Schema ab:

- 1. Lösungsglühen aller Ausscheidungen in einem homogenen Mischkristall
- 2. Abschrecken
- 3. Auslagern

Die Zusstandsbezeichnungen F17, F13 und Fxx beziehen sich nach DIN 755-2 auf die Zugfestigkeit. Fxx ist allerdings eine firmeninterne Bezeichnung und bedeutet das ein vorgezogener Kaltauslagerungsprozess durchgeführt wurde um das Strangpressprofil zu "stabilisieren". Das bedeutet ein gewisses "Einfrieren" des Gefüges in den momentanen Zustand um Veränderungen desselbigens auch bei nicht vorgesehener längerer Lagerung zu verhindern. Nach Auskunft des Lieferanten ist Fxx leicht wärmebehandelt worden.

Bei Charge 2 (Fxx) schieden zwei Profile aufgrund von Biegefehlern aus. Die Proben wurden streckgebogen und auf einer Messlehre mit 40 Messpunkten (Messpunkte MP1a bist MP10d) vermessen. Die Messbereiche, Messpunkte und Messuhren wurden, zur besseren Übersicht, mit Farben markiert (siehe Abbildung 8).

 $^{^{14}\}mathrm{Vgl.https://www.google.de/search?q=aluminium+T61\&rlz=1C1CHFX_deDE510DE510\&oq=aluminium+T61\&aqs=chrome..69i57j015.7685j0j3&sourceid=chrome&espv=210&es_sm=122&ie=UTF-8[25.11.2013].$

 ¹⁵Vgl. Roos und Maile. Werkstoffkunde für Ingenieure. Dritte neu bearbeitete Auflage. 2008, S. 52.
 ¹⁶Vgl. Wolfgang Weisbach. Werkstoffkunde. Sechzehnte überarbeitete Auflage. Vieweg-Verlag, 2007, S. 213.

And den Messpunkten wurden folgende Messbereiche ermittelt:

MP1a-MP10a Kontur aussen (grün)

MP1b-MP10b Spalt (gelb)

MP1c-MP10c Wölbung oben innen (rot)

MP1d-MP10d Wölbung oben aussen (blau)

Abbildung 8: Messpunkte Biegelehre

Das Messen erfolgte durch Abfahren aller Messpunkte mit den zu den spezifischen Messbereichen zu verwendenden Messuhren (siehe Abbildung 9). Ein negativer Messwert lässt auf eine Verkleinerung des Messbereiches schließen. Eine Ausnahme hierzu ist der Messbereich "Spalt vorne unten" welcher bei negativen Werten eine Vergrößerung bedeutet.

Alle relevanten Messergebnisse (mit Ausnahme der Messpunkte MP1b und MP10b bei Charge 1, welche nicht zu ermitteln waren) wurden in Tabellen eingetragen und der Mittelwert sowie die Standardabweichung ermittelt. Darüber hinaus erfolgte eine Gegenüberstellung der spezifischen Werte.

Da aufgrund der vielen Messpunkte sehr umfangreiche Auswertungen durchgeführt wurden, sind hier die für die Problematik Ausschlaggebendsten näher betrachtet worden. Alle weiteren Messergebnisse und Visualisierungen sowie Dokumentationen sind dem Anhang zugefügt.

(b) Messung "Kontur aussen"

Abbildung 9: Messverfahren an der "Biegelehre"

Der für das Streckbiegen aussagekräftigste Parameter ist der Messbereich "Kontur aussen" da er dem Verlauf der Biegelinie entspricht. Besonders an den Messpunk-

ten MP1a und MP10a sind die Auswirkungen der Rückfederung zu beobachten. Ein Vergleich der Chargen ist in Tabelle 2 auf der nächsten Seite übersichtlich dargestellt. Ein visueller Vergleich der Standardabweichungen der "Kontur aussen" ist in Abbildung 10 aufgeführt. Dort ist zu sehen, dass das Material F17 (Charge 1)

Abbildung 10: Überlagerung Standardabweichungen "Kontur aussen" Streckbiegen

an fast allen Messpunkten die geringste Standardabweichung aufweist. Lediglich bei Messpunkt MP3a liegt sie in nicht großem Abstand zwischen dem Fxx (Charge 2) und dem F13 (Serie) Material.

Ein Vergleich der Mittelwerte (Kontur aussen) der Chargen (siehe Abbildung 11) ergibt, dass and den Messpunkten MP1a, MP2a, MP9a und MP10a Charge 1 (F17) die größte Rückfederung nach dem Streckbiegeprozess auftritt.

Abbildung 11: Vergleich Mittelwerte "Kontur aussen" Streckbiegen

Tabelle 2: Messwerte und Standardabweichungen Streckbiegen "Kontur aussen"

	Messwert $x = (\bar{x} \pm \Delta x)$ [mm]				
Material	MP1a	MP2a	MP3a	MP4a	MP5a
F17 Fxx F13 Serie	$\begin{array}{c} 1,95\pm0,13 \\ 0,81\pm0,21 \\ -0,66\pm0,22 \end{array}$	$0,72 \pm 0,06$ $0,34 \pm 0,07$ $-0,13 \pm 0,06$	$0,60 \pm 0,04 \\0,15 \pm 0,05 \\-0,38 \pm 0,04$	$0,028 \pm 0,017 \\ 0,021 \pm 0,027 \\ 0,028 \pm 0,024$	$-0,297 \pm 0,014 \\ -0,188 \pm 0,030 \\ 0,00 \pm 0,05$
Material	MP6a	MP7a	MP8a	MP9a	MP10a
F17 Fxx F13 Serie	$-0,368 \pm 0,014 -0,233 \pm 0,024 -0,04 \pm 0,08$	$-0,293 \pm 0,012 \\ -0,251 \pm 0,015 \\ -0,16 \pm 0,11$	$0,46 \pm 0,06 \\ -0,17 \pm 0,07 \\ -0,55 \pm 0,11$	$1,31 \pm 0,04 \\0,57 \pm 0,06 \\0,04 \pm 0,10$	$2,96 \pm 0,10$ $1,37 \pm 0,15$ $-0,08 \pm 0,21$

	Standardabweichung s [mm]					
Material	MP1a	MP2a	MP3a	MP4a	MP5a	
F17 Fxx F13 Serie	0,270 0,416 0,454	0,116 0,138 0,121	0,086 0,098 0,068	0.036 0.053 0.051	0,028 0,060 0,103	
Material	MP6a	MP7a	MP8a	MP9a	MP10a	
F17 Fxx F13 Serie	0,028 0,048 0,164	0,025 $0,028$ $0,219$	0,113 0,132 0,235	0,078 0,121 0,211	0,210 0,291 0,432	

2.6.1 Ausblick

In folge der Überlagerung der Standardabweichungen (Streckbiegen "Kontur aussen") der untersuchten Chargen unter dem Gesichtspunkt der Mindestzugfestigkeiten (siehe Abbildung 12) ist einzusehen, dass das Material F17 (Charge 1) bei einer Mindestzugfestigkeit von Rm = 160 N mm $^{-2}$ die geringste Standardabweichung hat. Bei Werten von s = (0.025 bis 0.270) mm ist davon auszugehen das auch größere Stückzahlen mit relativ geringen Prozessschwankungen zu fertigen sind. Hier müssen jedoch eventuelle Montageprobleme des Verdeckkastendeckels aufgrund der höheren Rückfederungswerte von $x_{\text{Rückfeder}} = (-0.368 \text{ bis } 2.96)$ mm berücksichtigt werden. Eine Tatsache die bei einer Spannweite von 3,328 mm schon einen beachtlichen Spielraum beim Einbau und bei der Passform bedarf. Hier ist das Ausmaß von Wölbungen und Spannungen nach und während der Montage schon genau zu untersuchen.

Abbildung 12: Übersicht Mindestzugfestigkeit/Standardabweichung "Kontur aussen"

Zu einem ähnlichen Ergebnis kommen wir bei Betrachtung der Überlagerung der Chargen unter Berücksichtigung der Standardabweichung im Bezug zur Streckgrenze (siehe Abbildung 13 auf der nächsten Seite). Unter der Voraussetzung geringer Prozessschwankungen im Streckbiegeverfahren welche bei geringer Standardabweichung unter sorgfältiger und präziser Auswahl des Vormaterials durchaus zu realisieren sind, können die Ausschussrate sowie Kosten und Zeitverluste die durch ständiges Justieren der Streckbiegemaschine durch geschultes Personal entstehen, erheblich reduziert werden.

In Anbetracht der vorangegangenen Auswertung wurden noch einmal zwei Chargen (F19 und F18) bei dem Zulieferer WKW Erbslöh, zu Versuchszwecken, bestellt. Möglicherweise ist hier ein Material herauszukristallisieren welches noch geringere Prozessschwankungen ermöglicht. Wir sind dabei von einer steigenden Zugfestigkeit ausgegangen da sich nach den Diagrammen in Abbildung 12 und Abbildung 13 auf der nächsten Seite die Standardabweichung sowie Mindestzugfestigkeit und Streckgrenze gegenläufig verhalten.

Abbildung 13: Übersicht Streckgrenze/Standardabweichung "Kontur aussen"

Anhang

Literatur

Hering, Martin und Stohrer. *Physik für Ingenieure*. Zehnte Auflage. Springer-Verlag, 2007.

Holland, Heinrich und Kurt Scharmbacher. Grundlagen der Statistik. Achte Auflage. Gabler-Verlag, 2010.

Kuchling. Taschenbuch der Physik. Neunzehnte Auflage. Carl Hanser Verlag, 2007. Läpple u. a. Werkstofftechnik Maschinenbau. Zweite aktualisierte und erweiterte Auflage. Europa-Verlag, 2010.

Ostermann, Friedrich. Anwendungstechnologie Aluminium. Zweite neu bearbeitete und aktualisierte Auflage. Springer-Verlag, 2007.

Papula, Lothar. *Mathematische Formelsammlung*. Zehnte Auflage. Vieweg-Teubner, 2009.

Roos und Maile. Werkstoffkunde für Ingenieure. Dritte neu bearbeitete Auflage. 2008.

Weisbach, Wolfgang. Werkstoffkunde. Sechzehnte überarbeitete Auflage. Vieweg-Verlag, 2007.