Lecture 34

Peripheral Devices

Input Devices

- Keyboard
- Optical input devices
 - Card Reader
 - Paper Tape Reader
 - Bar code reader
 - Digitizer
 - Optical Mark Reader
- Magnetic Input Devices
 - Magnetic Stripe Reader
- Screen Input Devices
 - Touch Screen
 - Light Pen
 - Mouse
- Analog Input Devices

Output Devices

- Card Puncher, Paper Tape Puncher
- CRT
- Printer (Impact, Ink Jet, Laser, Dot Matrix)
- Plotter
- Analog
- Voice

Lecture 34

I/O Interface

- Provides a method for transferring information between internal storage (such as memory and CPU registers) and external I/O devices
- Resolves the differences between the computer and peripheral devices
 - Peripherals Electromechanical Devices
 - CPU or Memory Electronic Device
 - Data Transfer Rate
 - Peripherals Usually slower
 - CPU or Memory Usually faster than peripherals
 - Some kinds of Synchronization mechanism may be needed
 - Unit of Information
 - Peripherals Byte, Block, ...
 - CPU or Memory Word
 - Data representations may differ

Peripherals are usually slower as compared to CPU.

True

False

I/O Bus and Interface

Each peripheral has an interface module associated with it

Interface

- Decodes the device address (device code)
- Decodes the commands (operation)
- Provides signals for the peripheral controller
- Synchronizes the data flow and supervises the transfer rate between peripheral and CPU or Memory

Typical I/O instruction

Op. code	Device address	Function code
		(Command)

Lecture 34 I/O Bus and Memory Bus

Functions of Buses

- MEMORY BUS is for information transfers between CPU and the MM
- I/O BUS is for information transfers between CPU and I/O devices through their I/O interface
- Many computers use a common single bus system for both memory and I/O interface units
 - Use one common bus but separate control lines for each function
 - Use one common bus with common control lines for both functions
- •Some computer systems use two separate buses, one to communicate with memory and the other with I/O interfaces
 - Communication between CPU and all interface units is via a common I/O Bus
 - An interface connected to a peripheral device may have a number of *data* registers, a control register, and a status register
 - A command is passed to the peripheral by sending to the appropriate interface register
 - Function code and sense lines are not needed (Transfer of data, control, and status information is always via the common I/O Bus)

Isolated vs. Memory Mapped I/O

Isolated I/O

- Separate I/O read/write control lines in addition to memory read/write control lines
- Separate (isolated) memory and I/O address spaces
- Distinct input and output instructions

Memory-mapped I/O

- A single set of read/write control lines (no distinction between memory and I/O transfer)
- Memory and I/O addresses share the common address space
 - -> reduces memory address range available
- No specific input or output instruction
 - -> The same memory reference instructions can be used for I/O transfers
- Considerable flexibility in handling I/O operations

...... Provides signals for the peripheral controller

- a) CPU
- b) MEMORY
- c) REGISTER
- d) INTERFACE

Lecture 34

I/O Interface

<u>CS</u>	RS1	RS0	Register selected
0	Х	Х	None - data bus in high-impedence
1	0	0	Port A register
1	0	1	Port B register
1	1	0	Control register
1	1	1	Status register

- CPU initializes(loads) each port by transferring a byte to the Control Register

→ Allows CPU can define the mode of operation of each port

→ Programmable Port: By changing the bits in the control register, it is possible to change the interface characteristics