Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №6 «Численное решение обыкновенных дифференциальных уравнений»

по дисциплине «Вычислительная математика»

Вариант: 1

Преподаватель:

Малышева Татьяна Алексеевна Машина Екатерина Алексеевна

Выполнил:

Бондарев Алексей Михайлович

Группа: Р3212

<u>Цель работы</u>: решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

Алгоритм:

Задача Коши

Найти функцию у(х), удовлетворяющую ОДУ

 $y'(x)=f(x,y), y(x0)=y0, x\in[x0,xn]$ с требуемой точностью ϵ .

Алгоритм, реализованный в lab6, выполняет шаги:

1. Выбор ОДУ

Пользователь выбирает одно из трёх уравнений с аналитическим решением.

2. Ввод исходных данных

х0, хп, у0, h0, є вводятся с клавиатуры.

- 3. Численные методы
 - о Одношаговые:
 - Метод Эйлера (порядок p=1)
 - Метод Рунге–Кутта 4-го порядка (p=4)
 - о Многошаговый:
 - Метод Адамса (предиктор АВ-4 + корректор АМ-4)
- 4. Адаптивный подбор шага (только для Эйлера и РК-4)
 - о Строятся две сетки: шаг h и половинный шаг h/2.
 - о Правило Рунге оценяет глобальную погрешность:

$$R = rac{|y_{h/2}(x_n) - y_h(x_n)|}{2^p - 1}$$

Пока R>є и число делений шага < max halvings, h ← h/2.

5. Запуск метода Адамса

Первые три точки вычисляются РК-4 с найденным шагом hhh; далее идёт цикл предиктор-корректор.

- 6. Оценка точности Адамса
 - тах |уАдамс(хі)-уточн(хі)|.
- 7. Вывод результатов
 - о сводка по шагу/ошибке;
 - о таблица х, уЭйл,уРК4,уАдамс,уточнх;
 - о график всех решений.
- 8. Защита от "зависаний"
 - Проверки на h≤0, xn≤x0, ε≤0;
 - о лимиты max_steps и max_halvings исключают бесконечное деление шага.

Формулы:

Метод	Формула перехода $y_n o y_{n+1}$	Порядок	Лок. погр.
Эйлер (Euler)	$y_{n+1} = y_n + h f(x_n,y_n)$	1	$O(h^2)$
Рунге-Кутта 4	$egin{aligned} k_1 &= f(x_n,y_n) \ k_2 &= f(x_n + rac{h}{2}, \ y_n + rac{h}{2}k_1) \ k_3 &= f(x_n + rac{h}{2}, \ y_n + rac{h}{2}k_2) \ k_4 &= f(x_n + h, \ y_n + h \ k_3) \ y_{n+1} &= y_n + rac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{aligned}$	4	$O(h^5)$
Адамса-Башфорта 4 (предиктор)	$y_{n+1}^{ ext{p}} = y_n + rac{h}{24}ig(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3}ig)$	4	$O(h^5)$
Адамса–Моултона 4 (корректор)	$y_{n+1} = y_n + rac{h}{24}ig(9f_{n+1}^{ m p} + 19f_n - 5f_{n-1} + f_{n-2}ig)$	4	$O(h^5)$

где $f_k = f(x_k, y_k)$, h — шаг сетки.

Правило Рунге (оценка глобальной погрешности)

Для одношагового метода порядка p:

$$R=rac{|y_{h/2}(x_n)-y_h(x_n)|}{2^p-1}, \qquad$$
если $R>arepsilon$, уменьшить $h.$

Инициализация метода Адамса:

Требуются первые 4 узла. Их вычисляем Рунге-Кутта 4-го порядка:

$$x_0, x_1 = x_0 + h, x_2 = x_0 + 2h, x_3 = x_0 + 3h.$$

Программная реализация задачи

Исходный код:

https://github.com/666Daredevil666/calmath/tree/main/lab6

Результаты выполнения программы при различных исходных данных:

- 00,0121	CIDI DDIII	001110111171	npor pam	wibi iipii j		DIA HEAU	дирих дан	1112121	
Выберите одно	из уравнений:				3.000000	2.000183	25.556116	25.556321	25.556224
1: y' = x + y					3.125000	2.000195	29.366459	29.366710	29.366590
2: y' = y - x'	^2 + 1				3.250000	2.000206	33.700787	33.701090	33.700943
3: y' = x⋅y					3.375000	2.000217	38.628865	38.629233	38.629053
Номер уравнени	ия: 1				3.500000	2.000229	44.229752	44.230194	44.229976
x0: 1					3.625000	2.000240	50.593031	50.593561	50.593297
xn: 9					3.750000	2.000252	57.820212	57.820846	57.820528
y0: 2					3.875000	2.000263	66.026323	66.027079	66.026696
Начальный шаг	h: 1				4.000000	2.000275	75.341706	75.342606	75.342148
Точность є для	я одношаговых м	етодов: 0.1			4.125000	2.000286	85.914059	85.915127	85.914580
					4.250000	2.000298	97.910745	97.912011	97.911360
Метод Эйлера:	h = 3.81469726	5625e-06 ε ≈	0.090970228649	89412	4.375000	2.000309	111.521412	111.522909	111.522135
Рунге-Кутта 4:	: h = 0.125 ε	≈ 0.0108923851	83130198		4.500000	2.000320	126.960958	126.962725	126.961808
Адамса :	h = 0.125 ε	≈ 0.21333639465	956367		4.625000	2.000332	144.472895	144.474978	144.473893
					4.750000	2.000343	164.333159	164.335609	164.334328
Таблица значен	ний				4.875000	2.000355	186.854424	186.857304	186.855793
х	Euler	RK4	Adams	Exact	5.000000	2.000366	212.390998	212.394378	212.392600
1.000000	2.000000	2.000000	2.000000	2.000000	5.125000	2.000378	241.344365	241.348327	241.346237
1.125000	2.000011	2.407593	2.407593	2.407594	5.250000	2.000389	274.169464	274.174104	274.171649
1.250000	2.000023	2.886099	2.886099	2.886102	5.375000	2.000401	311.381809	311.387236	311.384358
1.375000	2.000034	3.444962	3.444962	3.444966	5.500000	2.000412	353.565554	353.571896	353.568525
1.500000	2.000046	4.094879	4.094883	4.094885	5.625000	2.000423	401.382632	401.390036	401.386092
1.625000	2.000057	4.847975	4.847983	4.847984	5.750000	2.000435	455.583112	455.591748	455.587138
1.750000	2.000069	5.717988	5.718002	5.718000	5.875000	2.000446	517.016930	517.026996	517.021613
1.875000	2.000080	6.720486	6.720506	6.720501	6.000000	2.000458	586.647194	586.658917	586.652636
2.000000	2.000092	7.873107	7.873136	7.873127	6.125000	2.000469	665.565245	665.578888	665.571567
2.125000	2.000103	9.195842	9.195881	9.195867	6.250000	2.000481	755.007736	755.023603	755.015074
2.250000	2.000114	10.711340	10.711392	10.711372	6.375000	2.000492	856.375977	856.394417	856.384489
2.375000	2.000126	12.445267	12.445334	12.445307	6.500000	2.000504	971.257859	971.279277	971.267729
2.500000	2.000137	14.426707	14.426793	14.426756	6.625000	2.000515	1101.452699	1101.477561	1101.464138
2.625000	2.000149	16.688616	16.688724	16.688676	6.750000	2.000526	1248.999391	1249.028235	1249.012641
2.750000	2.000160	19.268337	19.268472	19.268411	6.875000	2.000538	1416.208302	1416.241746	1416.223643
2.875000	2.000172	22.208187	22.208354	22.208276	7.000000	2.000549	1605.697421	1605.736180	1605.715174

	из уравнений:				To moorb o ppn	I OMITOMOTODDIA	потодов: 011		
					M 0×	b = 7 0547570	MAG- OF I-I	0.00/100/7//501	7057
2: y' = y - x	^2 + 1							0.0861886346501	/85/
3: $y' = x \cdot y$ Номер уравнения: 2					Рунге-Кутта 4: h = 0.25 ε ≈ 0.018064417086482838				
x0: 2	ия. 2				Адамса :	n = 0.25 [ε]	≈ 2792.9548974	55095	
xn: 8									
y0: 4					Таблица значен				
, Начальный шаг	h: 0.5					Euler	RK4	Adams	Exact
Точность ϵ для одношаговых методов: $\theta.1$		2.000000	4.000000	4.000000	4.000000	4.000000			
					2.250000	4.000031	4.142395	4.142395	5.130551
Метод Эйлера: h = 3.0517578125e-05 ε ≈ 0.08618863465017057				2.500000	4.000061	4.006456	4.006456	6.547443	
Рунге-Кутта 4	: h = 0.25 ε	≈ 0.0180644170	186482838		2.750000	4.000092	3.477630	3.477630	8.296500
Адамса :	h = 0.25 ε	≈ 2792.95489746	55095		3.000000	4.000122	2.408827	2.408767	10.436564
					3.250000	4.000153	0.611184	0.611019	13.043186
Таблица значе	ний				3.500000	4.000183	-2.157806	-2.158134	16.213378
	Euler	RK4	Adams	Exact	3.750000	4.000214	-6.209522	-6.210099	20.071705
2.000000	4.000000	4.000000	4.000000	4.000000	4.000000	4.000244	-11.943784	-11.944729	24.778112
2.250000	4.000031	4.142395	4.142395	5.130551	4.250000	4.000275	-19.873964	-19.875447	30.537972
2.500000	4.000061	4.006456	4.006456	6.547443	4.500000	4.000305	-30.659244	-30.661498	37.614988
2.750000	4.000092	3.477630	3.477630	8.296500	4.750000	4.000336	-45.146020	-45.149371	46.347764
3.000000	4.000122	2.408827	2.408767	10.436564	5.000000	4.000366	-64.421084	-64.425979	57.171074
3.250000 3.500000	4.000153 4.000183	0.611184	0.611019	13.043186 16.213378	5.250000	4.000397	-89.879892	-89.886944	70.643180
3.750000	4.000183	-2.157806 -6.209522	-2.158134 -6.210099	20.071705	5.500000	4.000427	-123.314234	-123.324279	87.480904
4.000000	4.000214	-11.943784	-11.944729	24.778112	5.750000	4.000457	-167.024800	-167.038973	108.604664
4.250000	4.000275	-19.873964	-19.875447	30.537972	6.000000	4.000488	-223.965712	-223.985555	135.196300
4.500000	4.000305	-30.659244	-30.661498	37.614988	6.250000	4.000518	-297.930115	-297.957712	168.773325
4.750000	4.000336	-45.146020	-45.149371	46.347764	6.500000	4.000549	-393.788470	-393.826630	211.284263
5.000000	4.000366	-64.421084	-64.425979	57.171074	6.750000	4.000579	-517.794534	-517.847036	265.231069
5.250000	4.000397	-89.879892	-89.886944	70.643180	7.000000	4.000610	-677.978233	-678.050153	333.826318
5.500000	4.000427	-123.314234	-123.324279	87.480904	7.250000	4.000640	-884.650132	-884.748268	421.195037
5.750000	4.000457	-167.024800	-167.038973	108.604664					
6.000000	4.000488	-223.965712	-223.985555	135.196300	7.500000	4.000671	-1151.049166	-1151.182617	532.633865
6.250000	4.000518	-297.930115	-297.957712	168.773325	7.750000	4.000701	-1494.174356	-1494.355270	674.943821
6.500000	4.000549	-393.788470	-393.826630	211.284263	8.000000	4.000732	-1935.852732	-1936.097310	856.857587

Вывод

В ходе выполнения данной лабораторной работы мною былы рассмотрены и реализованы численные методы решения обыкновенных дифференциальных уравнений.

Реализация этих методов была написана на языке Python. Я также реализовал правило Рунге для оценки точности одношаговых методов. Визуализация результатов позволила продемонстрировать эффективность каждого из методов. Во время работы я поработал с численными методами в решении обыкновенных дифференциальных уравнений.