Rachunek Prawdopodobieństwa II

Data ostatniej aktualizacji: 3 grudnia 2024

Krótki Wstęp

Uważny czytelnik zauważy, że poniższe notatki przypominają niezwykłe dydaktyczne prace dr Arkadiusza Męcla, które również gorąco polecam.

Link do omówienia pewniaków na egzamin znajduje się tutaj

1 Zbieżność według rozkładu

Definicja 1.1: Zbieżność rozkładów

Niech $\mu, \mu_1, \mu_2, \ldots$ będą rozkładami prawdopodobieństwa na (E, ρ) . Mówimy, że ciąg (μ_n) zbiega do μ :

- (a) w sensie całkowitego wahania, jeżeli $\lim_{n\to\infty} \|\mu_n \mu\|_{TV} = 0.$
- (b) silnie, jeżeli $\forall B \in \mathcal{B}(E) \lim_{n \to \infty} \mu_n(B) = \mu(B)$.

Definicja 1.2: Słaba zbieżność

C(E)- $ciagle\ i$ ograniczone

Niech $\mu, \mu_1, \mu_2, \ldots$ będą rozkładami prawdopodobieństwa na przestrzeni (E, ρ) . Mówimy, że ciąg (μ_n) ZBIEGA SŁABO DO ROZKŁADU μ (ozn. $\mu_n \Rightarrow \mu$), jeżeli dla każdej funkcji $f \in C(E)$ zachodzi

$$\lim_{n\to\infty} \int f \, d\mu_n = \int f \, d\mu.$$

Alternatywnie:

$$\lim_{n \to \infty} \mathbb{E}f(X_n) = \mathbb{E}f(X), \quad \forall f \in C(E).$$

Twierdzenie 1.1: Jedyność rozkładu

Załóżmy, że μ i ν są rozkładami prawdopodobieństwa na (E, ρ) takimi, że dla każdej funkcji jednostajnie ciągłej i ograniczonej $f: E \to \mathbb{R}$ zachodzi

$$\int f \, d\mu = \int f \, d\nu.$$

Wtedy $\mu \equiv \nu$.

Twierdzenie 1.2

Niech X, X_1, X_2, \ldots będą zmiennymi losowymi o wartościach w (E, ρ) (mogą być określone na różnych przestrzeniach probabilistycznych!) o rozkładach $\mu, \mu_1, \mu_2, \ldots$, odpowiednio. Mówimy, że ciąg (X_n) zbiega według rozkładu do X, jeżeli $\mu_n \Rightarrow \mu$. Piszemy

$$X_n \xrightarrow{D} X$$

Twierdzenie 1.3: Charakteryzacja zbieżności według rozkładu

Niech $\mu, \mu_1, \mu_2, \ldots$ będą rozkładami prawdopodobieństwa na przestrzeni metrycznej (E, ρ) . Następujące warunki są równoważne:

1. $\mu_n \Rightarrow \mu$.

2.

$$\forall f \in C_{\text{jedn}}(E)$$
 $\lim_{n \to \infty} \int f \, d\mu_n = \int f \, d\mu$

Alternatywnie:

$$\mathbb{E}f(X_n) \to \mathbb{E}f(X)$$

3. Dla każdego zbioru domkniętego $F \subset E$ zachodzi

$$\limsup_{n\to\infty}\mu_n(F)\leqslant\mu(F)$$

4. Dla każdego zbioru otwartego $G \subset E$ zachodzi

$$\liminf_{n\to\infty}\mu_n(G)\geqslant\mu(G)$$

5. Dla każdego zbioru $A \in \mathcal{B}(E)$, takiego że $\mu(\partial A) = 0$ (gdzie $\partial A = A \setminus \text{int}(A)$ — brzeg zbioru A), zachodzi

$$\lim_{n\to\infty}\mu_n(A)=\mu(A)$$

Fakt 1.1

Jeśli dla każdej f - ograniczonej i ciągła zachodzi

$$\mathbb{E} f(X) = \mathbb{E} f(Y)$$

to X i Y mają ten sam rozkład

Twierdzenie 1.4

Niech $X, X_1, Y_1, X_2, Y_2, \ldots$ będą zmiennymi losowymi o wartościach w ośrodkowej przestrzeni metrycznej (E, ρ) , przy czym zakładamy, że ciągi zmiennych losowych $(X_n)_n$ i $(Y_n)_n$ są określone na tej samej przestrzeni probabilistycznej. Jeżeli

$$Y_n \xrightarrow{D} X \text{ oraz } \rho(X_n, Y_n) \xrightarrow{P} 0$$

to

$$X_n \xrightarrow{D} X$$

Twierdzenie 1.5

Jeżeli X, X_1, X_2, \ldots są zmiennymi losowymi określonymi na tej samej przestrzeni probabilistycznej o wartościach w ośrodkowej przestrzeni metrycznej (E, ρ) takimi, że X_n zbiega do X według prawdopodobieństwa, to $X_n \Longrightarrow X$.

Twierdzenie 1.6: Zbieżność rozkładów a zbieżność dystrybuant

Niech $\mu, \mu_1, \mu_2, \ldots$ będą rozkładami prawdopodobieństwa na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ o dystrybuantach F, F_1, F_2, \ldots , odpowiednio. NWSR

- $\mu_n \Rightarrow \mu$
- $\lim_{\substack{n \to \infty \\ F}} F_n(t) = F(t)$ dla każdego t będącego punktem ciągłości dystrybuanty granicznej

Przykład 1.1: Kolokwium 2012

Zadanie 1. Zmienne X_n i Y_n są określone na wspólnej przestrzeni probabilistycznej, przy czym zmienna X_n ma gęstość

$$f_{X_n}(x) = \frac{5}{2n^5} x^4 \mathbf{1}_{\{|x| \leqslant \frac{1}{n}\}},$$

a zmienne Y_n spełniają warunek

$$\mathbb{P}(Y_n = \frac{k}{n}) = 1 - e^{-\frac{5}{n}} e^{-\frac{5k}{n}}, \quad k = 0, 1, \dots$$

Czy wynika stąd, że ciąg $X_n + Y_n$ jest zbieżny według rozkładu? Jeśli tak, to do jakiej granicy?

Wskazówka: Może się przydać fakt, że

$$\lim_{x \to 0} \frac{1}{x} (1 - e^{-x}) = 1.$$

Definicja 1.3: Ciasność rodziny rozkładów

Niech \mathcal{P} będzie pewną rodziną rozkładów prawdopodobieństwa na przestrzeni metrycznej (E, ρ) . Mówimy, że \mathcal{P} jest CIASNA (albo: jędrna, ang. tight), jeżeli dla każdego $\varepsilon > 0$ istnieje zbiór zwarty $K \subset E$ taki, że

$$\bigvee_{\mu \in \mathcal{P}} \mu(K) \geqslant 1 - \varepsilon$$

Twierdzenie 1.7

Niech $\{X_{\alpha} : \alpha \in \Lambda\}$ będzie rodziną zmiennych losowych dla których istnieje $\delta > 0$ taka, że

$$\sup_{\alpha} \mathbb{E}|X_{\alpha}| = M < \infty$$

Wtedy rodzina $\{\mu_{\alpha} : \alpha \in \Lambda\}$ jest ciasna.

Definicja 1.4: Warunkowa zwartość rodziny rozkładów

Niech (E, ρ) będzie przestrzenią metryczną. Mówimy, że rodzina \mathcal{P} rozkładów prawdopodobieństwa na $(E, \mathcal{B}(E))$ jest WARUNKOWO ZWARTA, jeżeli z każdego ciągu (μ_n) , gdzie $\mu_n \in \mathcal{P}$, można wybrać podciąg słabo zbieżny do pewnej miary probabilistycznej μ na $(E, \mathcal{B}(E))$ (ale niekoniecznie $\mu \in \mathcal{P}$).

Twierdzenie 1.8: Twierdzenie Prochorowa

Niech (E, ρ) będzie przestrzenią metryczną, a \mathcal{P} pewną rodziną rozkładów na $(E, \mathcal{B}(E))$.

- (a) Jeżeli ${\mathcal P}$ jest ciasna, to jest warunkowo zwarta.
- (b) Na odwrót: Jeżeli (E, ρ) jest przestrzenią polską (metryczną, ośrodkową i zupełną) i \mathcal{P} jest warunkowo zwarta, to jest ciasna.

 $\begin{array}{ccc} \mathcal{P} \text{ jest ciasna} & \Longrightarrow \mathcal{P} \text{ jest warunkowo zwarta} \\ \mathcal{P} \text{ jest warunkowo zwarta} \\ (E,\rho) \text{ jest polska} \end{array} \right\} \Longrightarrow \mathcal{P} \text{ jest ciasna}$

2 Funkcje Charakterystyczne

Definicja 2.1: Wartość oczekiwana zmiennej zespolonej

Niech Zbędzie zmienną losową o wartościach w $\mathbb{C},$ taką że ReZi ImZmają wartość oczekiwaną. Definiujemy

$$\mathbb{E} Z = \mathbb{E} \operatorname{Re} Z + i \mathbb{E} \operatorname{Im} Z.$$

Definicja 2.2: Funkcja charakterystyczna

(a) Niech μ będzie miarą probabilistyczną na $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Funkcją charakterystyczną μ nazywamy funkcję $\varphi: \mathbb{R}^d \to \mathbb{C}$ daną wzorem:

$$\varphi_{\mu}(t) = \int_{\mathbb{R}^d} e^{i\langle t, x \rangle} \mu(dx), \quad t \in \mathbb{R}^d,$$

gdzie $\langle \cdot, \cdot \rangle$ jest iloczynem skalarnym w \mathbb{R}^d .

(b) Niech X będzie wektorem losowym o wartościach w \mathbb{R}^d i rozkładzie μ_X . Funkcję $\varphi_X:=\varphi_{\mu_X}$ nazywamy FUNKCJĄ CHARAKTERYSTYCZNĄ WEKTORA LOSOWEGO X.

 φ_{μ} jest transformatą Fouriera miary μ

Twierdzenie 2.1: Własności funkcji charakterystycznej

Niech X będzie wektorem losowym o wartościach w \mathbb{R}^d , a φ_X jego funkcją charakterystyczną. Wtedy:

- 1. $\varphi_X(0) = 1$.
- 2. $|\varphi_X(t)| \leq 1$.
- 3. $\varphi_X(-t) = \overline{\varphi_X(t)}$.
- 4. Jeżeli rozkład X jest symetryczny, tj. $-X \sim X$, to φ_X przyjmuje wartości rzeczywiste.
- 5. φ_X jest jednostajnie ciągła w \mathbb{R}^d .
- 6. Jeżeli A jest macierzą $n \times d$ i $b \in \mathbb{R}^n$, to

$$\varphi_{AX+b}(s) = e^{i\langle s,b\rangle} \varphi_X(A^{\top}s), \quad s \in \mathbb{R}^n.$$

7. Jeżeli d=1 (tj. X jest zmienną losową o wartościach rzeczywistych) oraz $\mathbb{E}|X|^k < \infty$ dla pewnego $k \in \mathbb{N}$, to φ_X jest k-krotnie różniczkowalna,

$$\varphi_X^{(k)}(t) = i^k \mathbb{E}\left[e^{itX}X^k\right],$$

oraz $\varphi_X^{(k)}$ jest jednostajnie ciągła. Ponadto $\varphi_X^{(k)}(0) = i^k \mathbb{E} X^k$.

- 8. Na odwrót, jeżeli X jest zmienną losową o wartościach rzeczywistych i $\varphi_X^{(k)}(0)$ istnieje dla pewnego parzystego k, to $\mathbb{E}|X|^k < \infty$.
- 9. Jeżeli X_1, X_2, \ldots, X_n są niezależnymi wektorami losowymi o wartościach w \mathbb{R}^d , to

$$\varphi_{X_1+\dots+X_n}(t) = \prod_{k=1}^n \varphi_{X_k}(t).$$

10. Jeżeli X_1, X_2, \ldots, X_n są niezależne, to

$$\varphi_{(X_1,\ldots,X_n)}(t_1,\ldots,t_n)=\prod_{k=1}^n\varphi_{X_k}(t_k).$$

11. Funkcja φ_X jest dodatnio określona, tj. $\forall\,n\,\,\forall\,t_1,\ldots,t_n\in\mathbb{R}^d\,\,\forall\,z_1,\ldots,z_n\in\mathbb{C}$ zachodzi:

$$\sum_{k,j=1}^{n} z_k \varphi_X(t_k - t_j) \overline{z_j} \geqslant 0.$$

12. Jeśli φ_i są funkcjami charakterystycznymi i $\sum p_i = 1$, $p_i > 0$ to kombinacja wypukła $\sum p_i \varphi_i$ również jest funkcją charakterystyczną.

Rozkład	Gęstość	Funkcja charakterystyczna
Normalny $\mathcal{N}(\mu, \sigma^2)$	$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\varphi(t) = \exp\left(it\mu - \frac{1}{2}\sigma^2 t^2\right)$
cv Jednostajny $U(a,b)$	$g(x) = \frac{1}{b-a}, a \leqslant x \leqslant b$	$\varphi(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$
Exponentialny $\text{Exp}(\lambda)$	$g(x) = \lambda e^{-\lambda x}, x \geqslant 0$	$\varphi(t) = \frac{\lambda}{\lambda - it}$
Gamma $\Gamma(\alpha, \beta)$	$g(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$	$\varphi(t) = (1 - it\beta)^{-\alpha}$
Cauchy $\mathcal{C}(\mu, \gamma)$	$g(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - \mu}{\gamma}\right)^2\right]}$	$\varphi(t) = \exp(it\mu - \gamma t)$
Poissona Poisson (λ)	$g(x) = \frac{\lambda^x e^{-\lambda}}{x!}, x \in \mathbb{N}_0$	$\varphi(t) = \exp(\lambda(e^{it} - 1))$

Tabela 1: Podstawowe gęstości i funkcje charakterystyczne

Twierdzenie 2.2: O jednoznaczności

Jeżeli dla pewnych miar probabilistycznych μ i ν na $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ zachodzi $\varphi_{\mu}(t) = \varphi_{\nu}(t)$ dla każdego $t \in \mathbb{R}^d$, to $\mu \equiv \nu$.

Wniosek 2.1

Zmienne losowe X_1, \ldots, X_d są niezależne wtedy i tylko wtedy, gdy funkcja charakterystyczna wektora losowego $X = (X_1, \ldots, X_d)$ ma postać

$$\varphi_X(t) = \prod_{j=1}^d \varphi_{X_j}(t_j), \quad t = (t_1, \dots, t_d).$$

Przykład 2.1: Kolokwium 2016

Zadanie 2. Zmienna losowa X ma funkcję charakterystyczną φ_X

i) Wykaż, że istnieje zmienna losowa Y, której funkcja charakterystyczna ma postać

$$\varphi_Y = \frac{1}{5 - 4\varphi_X}$$

ii) Zmienna losowa X ma wartości w przedziale [0,1]. Czy z tego wynika, że zmienna losowa Y jest nieujemna? Czy wynika, że Y jest ograniczona?

Twierdzenie 2.3

Niech Q będzie macierzą $d \times d$, symetryczną i nieujemnie określoną, $a \in \mathbb{R}^d$ oraz niech Y będzie zmienną losową o rozkładzie normalnym N(a,Q). Ponadto załóżmy, że B jest macierzą o n wierszach i d kolumnach oraz $b \in \mathbb{R}^n$. Niech Z będzie wektorem losowym zdefiniowanym jako Z = BY + b. Wtedy $Z \sim N(Ba + b, BQB^T)$.

Uwaga: W szczególności, jeżeli $Y = (Y_1, \ldots, Y_d)$ ma rozkład Gaussa, to dla dowolnych $j_1, \ldots, j_k \in \{1, \ldots, d\}$ wektor $(Y_{j_1}, \ldots, Y_{j_k})$ ma rozkład Gaussa.

Twierdzenie 2.4

Istnieje stała C>0 taka, że dla każdego rozkładu probabilistycznego μ na $\mathbb R$ o funkcji charakterystycznej φ zachodzi

$$\mu\left(\left\{x:|x|\geqslant K\right\}\right)\leqslant \frac{C}{K}\int_{-K}^{K}\left(1-\varphi(s)\right)\,ds,\quad K>0.$$

Twierdzenie 2.5: (Twierdzenie Lévy'ego-Craméra)

Niech $(\mu_n)_n$ będzie ciągiem rozkładów probabilistycznych na $(\mathbb{R}^d, B(\mathbb{R}^d))$ o funkcjach charakterystycznych (φ_n) , odpowiednio. Jeżeli

$$\lim_{n\to\infty} \varphi_n(t) = \varphi(t) \quad \text{dla każdego } t \in \mathbb{R}^d$$

oraz funkcja φ jest ciągła w zerze, to φ jest funkcją charakterystyczną pewnego rozkładu probabilistycznego μ oraz $\mu_n \Rightarrow \mu$.

Uwaga. Na odwrót: jeżeli $\mu_n \Rightarrow \mu$, to $\varphi_n(t) \rightarrow \varphi_\mu(t)$.

Twierdzenie 2.6: (Tożsamość Parsevala)

Niech φ i ψ będą funkcjami charakterystycznymi rozkładów μ i ν na $(\mathbb{R}^d, B(\mathbb{R}^d))$. Wtedy

$$\int_{\mathbb{R}^d} e^{-i\langle s,t\rangle} \varphi(s) \, \nu(ds) = \int_{\mathbb{R}^d} \psi(x-t) \, \mu(dx).$$

Twierdzenie 2.7: (Odwrotna transformata Fouriera)

Rozkład prawdopodobieństwa μ na (\mathbb{R}^d , $B(\mathbb{R}^d)$), który ma całkowalną funkcję charakterystyczną φ , ma także ograniczoną i ciągłą gęstość f daną wzorem

$$f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\langle s, x \rangle} \varphi(s) \, ds.$$

Twierdzenie 2.8

Ciągła, ograniczona i całkowalna funkcja $\varphi: \mathbb{R}^d \to \mathbb{C}$ jest funkcją charakterystyczną pewnego rozkładu prawdopodobieństwa wtedy i tylko wtedy, gdy $\varphi(0)=1$ oraz funkcja f zdefiniowana w Odwrotnej Transformacie Fouriera jest nieujemna. Ponadto, wówczas f jest gęstością rozkładu o funkcji charakterystycznej φ .

Twierdzenie 2.9: (Twierdzenie Bochnera)

Każda funkcja $\varphi: \mathbb{R}^d \to \mathbb{R}$ ciągła, dodatnio określona i taka, że $\varphi(0) = 1$, jest funkcją charakterystyczną pewnej miary probabilistycznej na \mathbb{R}^d .

"Podobno ktoś go kiedyś użył w praktce" - dr Rafał Meller

3 Centralne Twierdzenie Graniczne

Twierdzenie 3.1: Twierdzenie Lindeberga

Niech $(X_{n,k})$, $n=1,2,\ldots,k=1,2,\ldots,r_n$ będzie tablicą zmiennych losowych (o wartościach rzeczywistych) o skończonej wariancji. Załóżmy, że dla każdego n zmienne losowe $X_{n,1},\ldots,X_{n,r_n}$ są niezależne, $\mathbb{E}X_{n,k}=0$ dla $k=1,2,\ldots,r_n$ oraz

$$\sum_{k=1}^{r_n} \operatorname{Var} X_{n,k} \to 1 \quad \text{gdy } n \to \infty.$$

Ponadto załóżmy, że zachodzi WARUNEK LINDEBERGA:

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \sum_{k=1}^{r_n} \mathbb{E}\left[X_{n,k}^2 \mathbf{1}_{\{|X_{n,k}| > \varepsilon\}}\right] = 0.$$

Wtedy

$$\sum_{k=1}^{r_n} X_{n,k} \xrightarrow{D} \mathcal{N}(0,1) \quad \text{gdy } n \to \infty.$$

8

Stwierdzenie 3.1

Jeżeli zachodzi Twierdzenie Lindeberga, to:

- (a) $\max_{1 \le k \le r_n} |X_{n,k}| \xrightarrow{\mathbb{P}} 0 \quad \text{gdy } n \to \infty,$
- (b) $\lim_{n\to\infty} \max_{1\leqslant k\leqslant r_n} \mathbb{E}X_{n,k}^2 = 0.$

Punkt (a) oznacza, że wkład każdego ze składników w sumę jest mały.

Punkt (b) mówi, że wariancja każdego ze składników jest mała w porównaniu z sumą. W szczególności musi zachodzić $r_n \to \infty$.

Twierdzenie 3.2: Centralne Twierdzenie Graniczne

Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i skończonej, niezerowej wariancji. Oznaczmy $m = \mathbb{E}X_k$, $\sigma^2 = \text{Var}X_k$. Wtedy

$$\frac{\sum\limits_{k=1}^{n}X_{k}-nm}{\sqrt{n}\sigma}\xrightarrow{D}\mathcal{N}(0,1)\quad\text{gdy }n\to\infty.$$

Wniosek 3.1

Niech $X_{n,k}$ - schemat tablicowy takie że:

- dla każdego $n X_{1,n},...,X_{n,n}$ są niezależne, $S_n = \sum_{k=1}^n X_{k,n}$
- $\mathbb{E}S_n \xrightarrow{n \to \infty} \mu$
- $Var S_n \xrightarrow{n \to \infty} \sigma^2$
- zmienne $X_{n,k} \mathbb{E}X_{n,k}$ spełniają warunek Lindeberga

Wtedy

$$S_n \xrightarrow{\mathcal{D}} \mathcal{N}(\mu, \sigma^2)$$

Twierdzenie 3.3: Warunek Lapunowa

Niech $(X_{n,k})$, $n=1,2,\ldots,k=1,2,\ldots,r_n$ będzie tablicą zmiennych losowych (o wartościach rzeczywistych) o skończonej wariancji. Przyjmijmy, że $\mathbb{E}X_{n,k}=0$. WARUNEK LAPUNOWA zachodzi, jeśli istnieje $\delta>0$ takie że zachodzi:

$$\lim_{n \to \infty} \sum_{k=1}^{r_n} \mathbb{E}|X_{n,k}|^{2+\delta} = 0.$$

Wtedy spełniony jest warunek Lindeberga.

Twierdzenie 3.4: Ogólne Centralne Twierdzenie Graniczne

Niech $(X_{n,k})$, $n=1,2,\ldots,k=1,2,\ldots,r_n$ będzie tablicą zmiennych losowych (o wartościach rzeczywistych) o skończonej wariancji. Załóżmy, że dla każdego n zmienne losowe $X_{n,1},\ldots,X_{n,r_n}$ są niezależne oraz

$$\lim_{n \to \infty} \sum_{k=1}^{r_n} \mathbb{E} X_{n,k} = m, \quad \lim_{n \to \infty} \sum_{k=1}^{r_n} \operatorname{Var} X_{n,k} = \sigma^2.$$

Ponadto załóżmy, że zachodzi warunek Lindeberga:

$$\forall \varepsilon > 0 \quad \lim_{n \to \infty} \sum_{k=1}^{r_n} \mathbb{E}\left(|X_{n,k} - \mathbb{E}X_{n,k}|^2 \mathbf{1}_{\{|X_{n,k} - \mathbb{E}X_{n,k}| > \varepsilon\}} \right) = 0.$$

Wtedy

$$\sum_{k=1}^{r_n} X_{n,k} \xrightarrow{D} N(m, \sigma^2) \quad \text{gdy } n \to \infty.$$

Przykład 3.1: Kolokwium 2023 - Warunek Lapunowa

Zadanie 3. Rozważmy ciąg niezależnych zmiennych losowych X_1, X_2, \ldots , taki że zmienna X_k ma rozkład wykładniczy z parametrem $\frac{1}{k}$. Niech $S_n = X_1 + \cdots + X_n$. Czy ciąg zmiennych losowych

 $Z_n = \frac{S_n - \mathbb{E}S_n}{\sqrt{\operatorname{Var}S_n}}$

jest zbieżny według rozkładu? Jeśli tak – wyznaczyć granicę, w przeciwnym przypadku – uzasadnić brak zbieżności.

Rozwiązanie Zadania 1. Wiemy, że jeśli $X \sim Exp(\lambda)$, to $\mathbb{E}X^k = \frac{k!}{\lambda^k}$, więc

$$\mathbb{E}X_k = k \qquad \text{Var}S_n = \sum_{k=1}^n \text{Var}X_k = \sum_{k=1}^n \left(\frac{2!}{k^2} - \left(\frac{1}{k}\right)^2\right) = \sum_{k=1}^n \frac{1}{k^2} = \frac{n(n+1)(2n+1)}{6}$$

Chcemy skorzystać z warunku Lapunowa, czyli znaleźć takie $\delta > 0$, że

$$\lim_{n \to \infty} \frac{1}{s_2^{2+\delta}} \sum_{k=1}^{r_n} \mathbb{E}|X_{n,k} - \mathbb{E}X_{n,k}|^{2+\delta} = 0, \qquad s_n = \sqrt{\text{Var}S_n}$$

Weźmy $\delta = 1$. Wtedy:

$$\sum_{k=1}^{n} \mathbb{E} |X_k - \mathbb{E} X_k|^3 = \sum_{k=1}^{n} \mathbb{E} \left[X_k^3 - 3X_k^2 \mathbb{E} X_k + 3X_k (\mathbb{E} X_k)^2 - (\mathbb{E} X_k)^3 \right].$$

Zauważmy teraz, że każdy z wyrazów w powyższej sumie jest równy co najwyżej Ck^3 dla pewnej stałej C>0, w związku z czym

$$\sum_{k=1}^{n} \mathbb{E} |X_k - \mathbb{E} X_k|^3 \leqslant C \sum_{k=1}^{n} k^3 = O(n^4) \quad \text{przy } n \to \infty,$$

gdzie skorzystaliśmy z elementarnych własności sum typu $\sum_{k=1}^{n} k^{\alpha}$. Jednocześnie

$$s_n^3 = (\operatorname{Var} S_n)^{3/2} = \left(\frac{n(n+1)(2n+1)}{6}\right)^{3/2} = \Theta(n^{9/2}).$$

Stąd mamy

$$\frac{1}{s_n^3} \sum_{k=1}^n \mathbb{E} |X_k - \mathbb{E} X_k|^3 = O(n^{4-9/2}) = O(n^{-1/2}) \to 0 \quad \text{przy } n \to \infty,$$

co chcieliśmy pokazać.

Twierdzenie 3.5

Przy powyższych założeniach dla każdego $t \in \mathbb{R}$ zachodzi

$$\lim_{n \to \infty} \mathbb{P}\left(\sum_{k=1}^{r_n} X_{n,k} \leqslant t\right) = \Phi(t),$$

gdzie Φ oznacza dystrybuantę rozkładu normalnego standardowego. Ponadto, zbieżność jest jednostajna względem t.

Twierdzenie 3.6: Berry-Esseen

Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie. Załóżmy ponadto, że $\mathbb{E}|X_k|^3 < \infty$ oraz $\mathrm{Var} X_k = \sigma^2 > 0$, i oznaczmy $m = \mathbb{E} X_k$, $\sigma^2 = \mathrm{Var} X_k$. Wtedy

 $egin{aligned} \textbf{\textit{Uwaga:}} \\ Wariancja \ jest \\ sum q \\ poszczególnych \\ wariancji \\ ponieważ \ X_k \ sq \\ niezależne \end{aligned}$

$$\left| \mathbb{P} \left(\frac{\sum_{k=1}^{n} X_k - nm}{\sqrt{n\sigma^2}} \leqslant t \right) - \Phi(t) \right| \leqslant C \frac{\mathbb{E}|X_1 - \mathbb{E}X_1|^3}{\sigma^3 \sqrt{n}},$$

gdzie Φ jest dystrybu
antą rozkładu N(0,1),aCpewną dodatnią stałą taką, ż
e $\frac{1}{\sqrt{2\pi}} \leqslant C < 0.8.$

4 Martyngaly

Definicja 4.1: Filtracja

FILTRACJĄ nazywamy rodzinę σ -ciał $(\mathcal{F}_t)_{t\in T}$, $\mathcal{F}_t\subset\mathcal{F}$, taką, że dla dowolnych $t_1\leqslant t_2$, $t_1,t_2\in T$, zachodzi zawieranie $\mathcal{F}_{t_1}\subset\mathcal{F}_{t_2}$.

Definicja 4.2: Proces adaptowany do filtracji

Niech $(X_t)_{t\in T}$ będzie rodziną zmiennych losowych określonych na pewnej przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$, a $(\mathcal{F}_t)_{t\in T}$ filtracją. Mówimy, że proces $(X_t)_{t\in T}$ jest adaptowany do $(\mathcal{F}_t)_{t\in T}$, jeżeli dla każdego $t\in T$ zmienna X_t jest \mathcal{F}_t -mierzalna.

Definicja 4.3: Filtracja naturalna

Niech $(X_t)_{t\in T}$ będzie rodziną zmiennych losowych określonych na pewnej przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$. Dla każdego $t \in T$ kładziemy

$$\mathcal{F}_t = \sigma(X_s : s \leqslant t, s \in T)$$

tj. najmniejsze σ -ciało, względem którego mierzalne są wszystkie zmienne losowe X_s dla $s \leq t$. Rodzina $(\mathcal{F}_t)_{t \in T}$ jest filtracją. Tak zdefiniowaną filtrację nazywamy FILTRACJĄ NATURALNĄ dla procesu $(X_t)_{t \in T}$.

Definicja 4.4: Moment zatrzymania

Niech $(\mathcal{F}_t)_{t\in T}$ będzie pewną ustaloną filtracją. Funkcję $\tau:\Omega\to T\cup\{+\infty\}$ nazywamy MOMENTEM ZATRZYMANIA względem filtracji $(\mathcal{F}_t)_{t\in T}$, jeżeli dla każdego $t\in T$ zachodzi $\{\tau\leqslant t\}\in \mathcal{F}_t$.

Twierdzenie 4.1: Moment zatrzymania

Niech $(\mathcal{F}_n)_{n\in T}$ będzie filtracją. NWSR

- Funkcja $\tau:\Omega\to T\cup\{+\infty\}$ jest momentem zatrzymania
- Dla każdego $n \in T$ zachodzi $\{\tau = n\} \in \mathcal{F}_n$.

Twierdzenie 4.2: Operacje na momentach zatrzymania

Niech $\tau, \sigma, \tau_1, \tau_2, \ldots$ będą momentami zatrzymania względem pewnej filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Wtedy:

$$\tau \wedge \sigma \qquad \tau \vee \sigma \qquad \tau + \sigma \qquad \sup_{n} \tau_{n} \qquad \inf_{n} \tau_{n}$$

są momentami zatrzymania.

Ozn. $a \wedge b := \min(a, b), a \vee b := \min(a, b)$

Definicja 4.5: Klasa zdarzeń związanych z momentem zatrzymania

Niech τ będzie momentem zatrzymania względem pewnej filtracji $(\mathcal{F}_t)_{t\in T}$. Przez \mathcal{F}_{τ} oznaczamy klasę takich zdarzeń $A\in\mathcal{F}$, że

$$A \cap \{\tau \leqslant t\} \in \mathcal{F}_t \qquad \bigvee_{t \in T}$$

 \mathcal{F}_{τ} zawiera więc zdarzenia, o których możemy powiedzieć, czy zaszły czy nie, jeżeli obserwujemy doświadczenie do chwili τ .

Stwierdzenie 4.1: Właściwości klasy \mathcal{F}_{τ}

Niech τ będzie momentem zatrzymania względem filtracji $(\mathcal{F}_t)_{t\in T}$. Wówczas:

- 1. \mathcal{F}_{τ} jest σ -ciałem,
- 2. $A \in \mathcal{F}_{\tau}$ wtedy i tylko wtedy, gdy dla każdego $n \in T$ zachodzi $A \cap \{\tau = n\} \in \mathcal{F}_n$,
- 3. Jeżeli $\tau \equiv k$ dla pewnego $k \in T$, to $\mathcal{F}_{\tau} = \mathcal{F}_{k}$,
- 4. Jeżeli τ_1 i τ_2 są momentami zatrzymania takimi, że $\tau_1 \leqslant \tau_2$, to $\mathcal{F}_{\tau_1} \subset \mathcal{F}_{\tau_2}$,
- 5. τ jest \mathcal{F}_{τ} -mierzalne,
- 6. Jeżeli $(X_t)_{t\in T}$ jest ciągiem zmiennych losowych adaptowanych do $(\mathcal{F}_t)_{t\in T}$, to X_{τ} jest \mathcal{F}_{τ} -mierzalne na zbiorze $\{\tau < \infty\}$.

(Uwaga: $X_{\tau}(\omega) = X_{\tau(\omega)}(\omega)$).