Homework Assignment 03

Machiry Aravind Kumar

UCSB

1 Problem 1

Consider the exponent d=49=(110001). Show the steps and all intermediate powers in the computation of m^d for the algorithms

1.1 the left-to-right binary method

i	e_i	Step 2a	Step 2b
4	1	$(\mathbf{m})^2 = m^2$	$m^2.m = m^3$
3	0	$(m^3)^2 = m^6$	m^6
2	0	$(m^6)^2 = m^{12}$	m^{12}
1	0	$(m^{12})^2 = m^{24}$	m^{24}
0	1	$(m^{24})^2 = m^{48}$	$m^{48}.m = m^{49}$

1.2 the right-to-left binary method

$$R_0 = 1, R_1 = m, i = 0$$

i	d_i	R_0	R_1
0	1	1.m	m^2
1	0	m	$(m^2)^2$
2	0	m	$(m^4)^2$
3	0	m	$(m^8)^2$
4	1	$\mathrm{m.m^{16}}$	$(m^{16})^2$
5	1	$m^{17}.m^{32}$	$(m^{32})^2$

$$R_0 = m^{49}$$

1.3 the square-and-multiply-always algorithm

$$R_0 = 1, R_1 = 1$$

i	d_i	b	R_0	R_b
5	1	0	$R_0 = 1^2$	$R_0 = 1.m$
4	1	0	$R_0 = m^2$	$R_0 = m^2.m$
3	0	1	$R_0 = (m^3)^2$	$R_1 = 1.m$
2	0	1	$R_0 = (m^6)^2$	$R_1 = m.m$
1	0	1	$R_0 = (m^{12})^2$	$R_1 = m^2.m$
0	1	0	$R_0 = (m^{24})^2$	$R_0 = m^{48}.m$

$$R_0 = m^{49}$$

1.4 the Montgomery powering ladder

$$R_0 = 1, R_1 = m$$

i	d_i	b	R_b	R_{d_i}
5	1	0	$R_0 = 1.m$	$R_1 = m^2$
4	1	0	$R_0 = m.m^2$	$R_1 = (m^2)^2$
3	0	1	$R_1 = m^3.m^4$	$R_0 = (m^3)^2$
2	0	1	$R_1 = m^6.m^7$	$R_0 = (m^6)^2$
1	0	1	$R_1 = m^{12}.m^{13}$	$R_0 = (m^{12})^2$
0	1	0	$R_0 = m^{24}.m^{25}$	$R_1 = (m^{25})^2$

$$R_0 = m^{49}$$

1.5 the Atomic square-and-multiply algorithm

$$R_0 = 1, R_1 = m$$

i	d_i	b_{before}	R_b	R_0	b_{after}
5	1	0	$R_0 = 1$	1.1	1
5	1	1	$R_1 = m$	1.m	0
4	1	0	$R_0 = m$	m.m	1
4	1	1	$R_1 = m$	$m^2.m$	0
3	0	0	$R_0 = m^3$	$\mathrm{m}^3.m^3$	0
2	0	0	$R_0 = m^6$	$m^{6}.m^{6}$	0
1	0	0	$R_0 = m^{12}$	$m^{12}.m^{12}$	0
0	1	0	$R_0 = m^{24}$	$m^{24}.m^{24}$	1
0	1	1	$R_1 = m$	$m^{48}.m$	0

$$R_0 = m^{49}$$

1.6 the Atomic right-to-left algorithm

$$R_0 = 1, R_1 = m, b = 1, i = 0$$

i	d_i	$b = b \bigoplus d_i$	R_b
0	1	0	$R_0 = 1.m$
0	1	1	$R_1 = m.m$
1	0	1	$R_1 = m^2.m^2$
2	0	1	$R_1 = m^4.m^4$
3	0	1	$R_1 = m^8.m^8$
4	1	0	$R_0 = m.m^{16}$
4	1	1	$R_1 = m^{16}.m^{16}$
5	1	0	$R_0 = m^{17}.m^{32}$
5	1	1	$R_1 = m^{32}.m^{49}$

$$R_0 = m^{49}$$

Let an RSA key be determined by the parameters $\{p,q,n,\phi(n),e,d\}$ = $\{97,103,9991,9792,2015,8927\}$. Compute $S = M^d \pmod{n}$ for M = 25 using each of these DPA-type countermeasure algorithms by selecting suitable random parameters:

2.1 Randomizing m, where e is known

```
Picking random r = 17. m^* = (17)^{2015}.25 mod(9991) = 7111. S^* = (7111)^{8972} mod(9991) = 6660. r^{-1} = 4114. S = 6660.4114 \text{ mod } (9991) = 7406.
```

i	j	Step	(C,S)	Partial t
0	0	$t_0 + a_0 b_0 + C$	(0,*)	000000
		0 + 6*5 + 0	(3,0)	000000
	1	$\mathbf{t}_1 + a_1 b_0 + C$		
		0 + 5*5 + 3	(2,8)	000080
	2	$\mathbf{t}_2 + a_2 b_0 + C$		
		0 + 4*5 + 2	(2,2)	000 2 80
				00 2 280
1	0	$\mathbf{t}_1 + a_0 b_1 + C$	(0,*)	
		8 + 6*5 + 0	(3,8)	002280
	1	$t_2 + a_1b_1 + C$		
		2 + 5*5 + 3	(3,0)	002 0 80
	2	$t_3 + a_2b_1 + C$		
		2 + 4*5 + 3	(2,5)	005080
				025080
2	0	$t_2 + a_0b_2 + C$	(0,*)	
		0 + 6*5 + 0	(3,0)	025 0 80
	1	$t_3 + a_1b_2 + C$		
		5 + 5*5 + 3	(3,3)	023080
	2	$\mathbf{t}_4 + a_2 b_2 + C$		
		2 + 4*5 + 3	(2,5)	0 5 3080
				2 53080

3 Illustrate the steps of the standard squaring algorithm for computing c = a * a = 456 * 456

i	J	Step	(C,S)	Partial t
0	1	$t_0 + a_0 a_0$		000000
		0 + 6*6	(3,6)	00000 6
		$t_1 + 2a_1a_0 + C$	(3,*)	000006
		0 + 2*5*6 + 3	(6,3)	000036
0	2	$t_2 + 2a_2a_0 + C$	(6,*)	000036
		0 + 2*4*6 + 6	(5,4)	000436
				00 5 436
1	2	$t_2 + a_1 a_1$		005436
		4 + 5*5	(2,9)	005 9 36
		$t_3 + 2a_2a_1 + C$	(2,*)	005936
		5 + 2*4*5 + 2	(4,7)	007936
				047936
2	2	$t_4 + a_2 a_2$		047936
		4 + 4*4	(2,0)	0 0 7936
				2 07936

4 Let r = 32, n = 21, a = 13, and b = 15. Compute $c = a * b * r^{-1}$ mod n using the standard Montgomery multiplication algorithm. Illustrate the steps and give all temporary results

iteration	q	g_0	g_1	$ u_0 $	u_1	v_0	v_1
0	-	32	21	1	0	0	1
1	1	21	11	0	1	1	-1
2	1	11	10	1	-1	-1	2
3	1	10	1	-1	2	2	-3
4	10	1	0	2	-21	-3	32
		•		•		•	
			•		•	•	•

From Table ??, GCD = 1, $r^{-1} = 2$, n' = 3.

Consider $\overline{x} = a = 13$, such that $x = \overline{x} * r^{-1} \mod n = 5$. $\overline{y} = b = 15$, such that $y = \overline{y} * r^{-1} \mod n = 9$.

Now, $a*b*r^{-1}$ mod n is same as $\overline{x}*\overline{y}*r^{-1}$ mod n.

So, $a*b*r^{-1} \mod n = \overline{x}*\overline{y}*r^{-1} \mod n = \operatorname{MonPro}(\overline{x} = 13, \overline{y} = 15).$

4.1 function MonPro($\bar{a} = 13$, $\bar{b} = 15$)

- 1. t = 13*15 = 195
- 2. $m = (195*3) \mod 32 = 9$
- 3. u = (195 + 9 * 21) / 32 = 384/32 = 12
- 4. 12 < 21 return 12

Final result is: 12.

5 Let p = 29, a = 23, and g = 10. Compute $g^a \pmod{p}$ using the binary method of exponentiation and the Montgomery multiplication where r = 32. Show the steps and temporary values.

Consider n=p=29, M=g=10, e=a=23.

iteration	q	g_0	g_1	$ u_0 $	u_1	v_0	v_1
0	-	32	29	1	0	0	1
1	1	29	3	0	1	1	-1
2	9	3	2	1	-9	-1	10
3	1	2	1	-9	10	10	-11
4	2	1	0	10	-29	-11	32
		•		•		•	

From Table ??, GCD = 1, $r^{-1} = 10$, n' = 11.

- Step 2 $\overline{M} = M * r \mod n = 10 * 32 \mod 29 = 1$
- Step 3 $\overline{C} = 1 * r \mod n = 1 * 32 \mod 29 = 3$
- Step 4

e_i	Step 5	Step 6
1	MonPro(3,3) = 3	MonPro(1,3) = 1
0	MonPro(1,1) = 10	
1	MonPro(10,10) = 14	MonPro(1,14) = 24
1	MonPro(24,24) = 18	MonPro(1,18) = 6
1	MonPro(6,6) = 12	MonPro(1,12) = 4

$$MonPro(3,3)$$

 $t = 3 * 3 = 9$
 $m = 9 * 11 \mod 32 = 3$
 $u = (9 + 3 * 29) / 32 = 3$

$$MonPro(1,3)$$

 $t = 1 * 3 = 3$
 $m = 3 * 11 \mod 32 = 1$
 $u = (3 + 1 * 29) / 32 = 1$

$$MonPro(1, 1)$$

 $t = 1 * 1 = 1$
 $m = 1 * 11 \mod 32 = 11$
 $u = (1 + 11 * 29) / 32 = 10$

```
MonPro(10, 10)
t = 10 * 10 = 100
m = 100 * 11 \mod 32 = 12
u = (100 + 12 * 29) / 32 = 14
MonPro(1, 14)
t = 1 * 14 = 14
m = 14 * 11 \mod 32 = 26
u = (14 + 26 * 29) / 32 = 24
MonPro(24, 24)
t = 24 * 24 = 576
m = 576 * 11 \mod 32 = 0
u = (576 + 0 * 29) / 32 = 18
MonPro(1, 18)
t = 1 * 18 = 18
m = 18 * 11 \mod 32 = 6
u = (18 + 6 * 29) / 32 = 6
MonPro(6,6)
t = 6 * 6 = 36
m = 36 * 11 \mod 32 = 12
u = (36 + 12 * 29) / 32 = 12
MonPro(1, 12)
t = 1 * 12 = 12
m = 12 * 11 \mod 32 = 4
u = (12 + 4 * 29) / 32 = 4
```

• Step 7 C = MonPro(4,1) = 11

Result of $10^{23} \pmod{29} = 11$

- 6 Let an RSA key be determined by the parameters $\{p,q,n,e,d\} = \{17,23,391,29,85\}$. Compute $S = M^d \pmod{n}$ for M = 175 with and without the Chinese remainder theorem and the binary exponentiation.
- 6.1 Chinese remainder theorem

$$d_1 = 85 \mod (16) = 5$$

 $d_2 = 85 \mod (22) = 19$

iteration	quotient	g_0	g_1	$ u_0 $	$ u_1 $	v_0	v_1
0	-	23	17	1	0	0	1
1	1	17	6	0	1	1	-1
2	2	6	5	1	-2	-1	3
3	1	5	1	-2	3	3	-4
4	5	1	0	3	-17	-4	23
		•		•		•	

In Table ??, Initial values of $g_0 = q = 23$ and $g_1 = p = 17$. This $p^{-1} = -4$ and $q^{-1} = 3$. $M_1 = M^{d_1} \mod p = 175^5 \mod 17 = 14$. $M_2 = M^{d_2} \mod q = 175^{19} \mod 23 = 10$. $S = M_1 + p *((M_2 - M_1) * p^{-1} \mod q) = 14 + 17*((10-14)*-4 \mod 23) = 14 + 272 = 286$.

6.2 Binary Exponentiation.

Representing 85 in binary results in: 1 0 1 0 1 0 1

Following table shows computation of RSA decryption using binary exponentiation.

i	e_i	Step 2a	Step 2b
6	0	$((175)^2) \bmod 391 = 127$	127
5		$((127)^2) \bmod 391 = 98$	$98*175 \mod 391 = 337$
4		$((337)^2) \bmod 391 = 179$	179
3	1	$((179)^2) \bmod 391 = 370$	$370*175 \mod 391 = 235$
1	0	$((235)^2) \bmod 391 = 94$	94
0	1	$((94)^2) \bmod 391 = 234$	$234*175 \mod 391 = 286$