Machine Learning in Real World: C4.5

Outline

- Handling Numeric Attributes
 - Finding Best Split(s)
- Dealing with Missing Values
- Pruning
 - Pre-pruning, Post-pruning, Error Estimates
- From Trees to Rules

Industrial-strength algorithms

- For an algorithm to be useful in a wide range of realworld applications it must:
 - Permit numeric attributes
 - Allow missing values
 - Be robust in the presence of noise
 - Be able to approximate arbitrary concept descriptions (at least in principle)
- Basic schemes need to be extended to fulfill these requirements

C4.5 History

- ID3, CHAID 1960s
- C4.5 innovations (Quinlan):
 - permit numeric attributes
 - deal sensibly with missing values
 - pruning to deal with for noisy data
- C4.5 one of best-known and most widely-used learning algorithms
 - Last research version: C4.8, implemented in Weka as J4.8 (Java)
 - Commercial successor: C5.0 (available from Rulequest)

Numeric attributes

- Standard method: binary splits
 - E.g. temp < 45
- Unlike nominal attributes, every attribute has many possible split points
- Solution is straightforward extension:
 - Evaluate info gain (or other measure)
 for every possible split point of attribute
 - Choose "best" split point
 - Info gain for best split point is info gain for attribute
- Computationally more demanding

Weather data - nominal values

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	Normal	False	Yes

```
If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes
```

Weather data - numeric

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

```
If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes
```

Example

Split on temperature attribute:

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No Yes Yes No Yes Yes No
```

- E.g. temperature < 71.5: yes/4, no/2 temperature ≥ 71.5: yes/5, no/3
- Info([4,2],[5,3])= 6/14 info([4,2]) + 8/14 info([5,3])= 0.939 bits
- Place split points halfway between values
- Can evaluate all split points in one pass!

Avoid repeated sorting!

- Sort instances by the values of the numeric attribute
 - Time complexity for sorting: O(n log n)
- Q. Does this have to be repeated at each node of the tree?
- A: No! Sort order for children can be derived from sort order for parent
 - Time complexity of derivation: O(n)
 - Drawback: need to create and store an array of sorted indices for each numeric attribute

More speeding up

 Entropy only needs to be evaluated between points of different classes (Fayyad & Irani, 1992)

Potential optimal breakpoints

Breakpoints between values of the same class cannot be optimal

Binary vs. multi-way splits

- Splitting (multi-way) on a nominal attribute exhausts all information in that attribute
 - Nominal attribute is tested (at most) once on any path in the tree
- Not so for binary splits on numeric attributes!
 - Numeric attribute may be tested several times along a path in the tree
- Disadvantage: tree is hard to read
- Remedy:
 - pre-discretize numeric attributes, or
 - use multi-way splits instead of binary ones

Missing as a separate value

- Missing value denoted "?" in C4.X
- Simple idea: treat missing as a separate value
- Q: When this is not appropriate?
- A: When values are missing due to different reasons
 - Example 1: gene expression could be missing when it is very high or very low
 - Example 2: field IsPregnant=missing for a male patient should be treated differently (no) than for a female patient of age 25 (unknown)

Missing values - advanced

Split instances with missing values into pieces

- A piece going down a branch receives a weight proportional to the popularity of the branch
- weights sum to 1
- Info gain works with fractional instances
 - use sums of weights instead of counts
- During classification, split the instance into pieces in the same way
 - Merge probability distribution using weights

Pruning

- Goal: Prevent overfitting to noise in the data
- Two strategies for "pruning" the decision tree:
 - Postpruning take a fully-grown decision tree and discard unreliable parts
 - Prepruning stop growing a branch when information becomes unreliable
- Postpruning preferred in practice prepruning can "stop too early"

Prepruning

- Based on statistical significance test
 - Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- Most popular test: chi-squared test
- ID3 used chi-squared test in addition to information gain
 - Only statistically significant attributes were allowed to be selected by information gain procedure

Early stopping

	a	b	class
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

- Pre-pruning may stop the growth process prematurely: early stopping
- Classic example: XOR/Parity-problem
 - No individual attribute exhibits any significant association to the class
 - Structure is only visible in fully expanded tree
 - Pre-pruning won't expand the root node
- But: XOR-type problems rare in practice
- And: pre-pruning faster than post-pruning

Post-pruning

- First, build full tree
- Then, prune it
 - Fully-grown tree shows all attribute interactions
- Problem: some subtrees might be due to chance effects
- Two pruning operations:
 - 1. Subtree replacement
 - 2. Subtree raising
- Possible strategies:
 - error estimation
 - significance testing
 - MDL principle

Subtree replacement, 1

- Bottom-up
- Consider replacing a tree only after considering all its subtrees

Ex: labor negotiations wage increase 1st year <= 2.5> 2.5 working hours per week statutory holidays <= 36> 36 > 10 <= 10health plan contribution wage increase 1st year bad good <= 4half full > 4 none bad bad good bad good

18

Subtree replacement, 2

What subtree can we replace?

wage increase 1st year Subtree replacement, 3 <= 2.5> 2.5 statutory holidays bad Bottom-up > 10 <= 10Consider replacing a tree only after considering all wage increase 1st year good its subtrees wage increase 1st <= 4> 4 > 2.5 <= 2.5 bad good working hours per week statutory holidays <= 36 > 36 > 10 <= 10health plan contribution good wage increase 1st year bad

half

good

none

full

bad

<= 4

bad

> 4

good

*Subtree raising

- Delete node
- Redistribute instances
- Slower than subtree replacement

(Worthwhile?) C 5 2 3

Estimating error rates

- Prune only if it reduces the estimated error
- Error on the training data is NOT a useful estimator
 - Q: Why it would result in very little pruning?
- Use hold-out set for pruning ("reduced-error pruning")
- C4.5's method
 - Derive confidence interval from training data
 - Use a heuristic limit, derived from this, for pruning
 - Standard Bernoulli-process-based method
 - Shaky statistical assumptions (based on training data)

*Mean and variance

- Mean and variance for a Bernoulli trial: p, p(1-p)
- Expected success rate f=S|N
- Mean and variance for f: p, p(1-p)/N
- For large enough N, f follows a Normal distribution
- c% confidence interval $[-z \le X \le z]$ for random variable with 0 mean is given by:

$$\Pr[-z \le X \le z] = c$$

With a symmetric distribution:

$$\Pr[-z \le X \le z] = 1 - 2 \times \Pr[X \ge z]$$

*Confidence limits

Confidence limits for the normal distribution with 0 mean and

a variance of 1:

$Pr[X \ge z]$	Z
0.1%	3.09
0.5%	2.58
1%	2.33
5%	1.65
10%	1.28
20%	0.84
25%	0.69
40%	0.25

Thus:

$$Pr[-1.65 \le X \le 1.65] = 90\%$$

 To use this we have to reduce our random variable f to have 0 mean and unit variance

*Transforming f

- Transformed value for f: $\frac{f-p}{\sqrt{p(1-p)/N}}$ (i.e. subtract the mean and divide by the *standard deviation*)
- Resulting equation:

Solving for p:

$$\Pr\left[-z \le \frac{f-p}{\sqrt{p(1-p)/N}} \le z\right] = c$$

$$p = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left(1 + \frac{z^2}{N} \right)$$

C4.5's method

- Error estimate for subtree is weighted sum of error estimates for all its leaves
- Error estimate for a node (upper bound):

$$e = \left(f + \frac{z^2}{2N} + z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left(1 + \frac{z^2}{N} \right)$$

- If c = 25% then z = 0.69 (from normal distribution)
- f is the error on the training data
- N is the number of instances covered by the leaf

Combined using ratios 6:2:6 gives 0.51

*Complexity of tree induction

- Assume
 - *m* attributes
 - n training instances
 - tree depth O (log n)
- Building a tree

 $O(m n \log n)$

Subtree replacement

O(n)

Subtree raising

- $O(n (\log n)^2)$
- Every instance may have to be redistributed at every node between its leaf and the root
- Cost for redistribution (on average): O (log n)
- Total cost: $O(m n \log n) + O(n (\log n)^2)$

From trees to rules – how?

How can we produce a set of rules from a decision tree?

From trees to rules – simple

- Simple way: one rule for each leaf
- C4.5rules: greedily prune conditions from each rule if this reduces its estimated error
 - Can produce duplicate rules
 - Check for this at the end
- Then
 - look at each class in turn
 - consider the rules for that class
 - find a "good" subset (guided by MDL)
- Then rank the subsets to avoid conflicts
- Finally, remove rules (greedily) if this decreases error on the training data

30

C4.5rules: choices and options

- C4.5rules slow for large and noisy datasets
- Commercial version C5.0rules uses a different technique
 - Much faster and a bit more accurate
- C4.5 has two parameters
 - Confidence value (default 25%): lower values incur heavier pruning
 - Minimum number of instances in the two most popular branches (default 2)

*Classification rules

- Common procedure: separate-and-conquer
- Differences:
 - Search method (e.g. greedy, beam search, ...)
 - Test selection criteria (e.g. accuracy, ...)
 - Pruning method (e.g. MDL, hold-out set, ...)
 - Stopping criterion (e.g. minimum accuracy)
 - Post-processing step
- Also: Decision list
 vs. one rule set for each class

*Test selection criteria

- Basic covering algorithm:
 - keep adding conditions to a rule to improve its accuracy
 - Add the condition that improves accuracy the most
- Measure 1: p/t
 - t total instances covered by rule
 - p number of these that are positive
 - Produce rules that don't cover negative instances, as quickly as possible
 - May produce rules with very small coverage
 —special cases or noise?
- Measure 2: Information gain $p(\log(p/t) \log(P/T))$
 - P and T the positive and total numbers before the new condition was added
 - Information gain emphasizes positive rather than negative instances
- These interact with the pruning mechanism used

*Missing values, numeric attributes

- Common treatment of missing values:
 for any test, they fail
 - Algorithm must either
 - use other tests to separate out positive instances
 - leave them uncovered until later in the process
- In some cases it's better to treat "missing" as a separate value
- Numeric attributes are treated just like they are in decision trees

*Pruning rules

- Two main strategies:
 - Incremental pruning
 - Global pruning
- Other difference: pruning criterion
 - Error on hold-out set (reduced-error pruning)
 - Statistical significance
 - MDL principle
- Also: post-pruning vs. pre-pruning

Summary

- Decision Trees
 - splits binary, multi-way
 - split criteria entropy, gini, ...
 - missing value treatment
 - pruning
 - rule extraction from trees
- Both C4.5 and CART are robust tools
- No method is always superior experiment!