<pre>In [1]: In [2]: In [3]: Out[3]: In [4]: Out[4]: Out[5]:</pre>	<pre>from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.metrics import classification_report %matplotlib inline (X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data() len(X_train) 60000 len(X_test) 10000 X_train[0].shape (co</pre>
<pre>In [6]: Out[6]: In [7]: Out[7]:</pre>	<pre>cmatplotlib.image.AxesImage at extecf575aafe></pre>
In [8]: Out[8]:	X_train[0]
<pre>In [10]: In [11]: Out[11]: In [12]: In [13]: In [14]: Out[15]: In [16]: In [17]: In [19]: Out[19]: In [20]:</pre>	model = keras.Sequential(
Out[20]:	0 - 970
In []:	1 0.99 0.99 0.99 1135 2 0.98 0.98 0.98 1032 3 0.98 0.97 0.98 1010 4 0.97 0.99 0.98 982 5 0.98 0.97 0.97 892 6 0.98 0.99 0.98 958 7 0.97 0.98 0.98 1028 8 0.97 0.97 0.97 974 9 0.98 0.97 0.97 1009 accuracy macro avg 0.98 0.98 0.98 10000 weighted avg 0.98 0.98 0.98 10000
In [25]:	The Sigmoid function (also known as the Logistic function) is one of the most widely used activation function. Sigmoid activation function Derivative Derivative The output of the function is centered at 0.5 with a range from 0 to 1. The main problems with the Sigmoid function are: Vanishing gradient: looking at the function plot, you can see that when inputs become small or large, the function saturates at 0 or 1, with a derivative extremely close to 0. Thus it has almost no gradient to propagate back through the network, so there is almost nothing left for lower layers. Computationally expensive: the function has an exponential operation. The output is not zero centered
In [28]: Out [28]: In [30]: In [31]:	matricles ("according") 10 model. Fitting by Errain, apposition of the control o
In [52]:	Rectified Linear Unit (ReLU) is the most commonly used activation function in deep learning. The function returns 0 if the input is negative, but for any positive input, it returns that value back. $\begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ $ReLU activation function $
In [35]: In [36]:	model.compile(optimizer='adm', loss=sparse_categorical_crossentropy, metrics='adm', loss=sparse_categorical_crossentropy, model.fit(X_train_flatten, y_train, epochs=5) Epoch 1/5 1875/1875 [====================================
<pre>In [37]: In [38]: In [39]: Out[40]:</pre>	from tensorflow.keras.layers import LeakyReLU(alpha=0.01) model = keras.Sequential([keras.layers.Dense(100, input_shape=(784,), activation=leaky_relu), keras.layers.Dense(100, input_shape=(784,), activation=leaky_relu), keras.layers.Dense(100, input_shape=(784,), activation=leaky_relu), loss=sparse_categorical_crossentropy,
In [41]: In [42]: In [43]: Out[44]:	from tensor Flow. Acras. Jayers import PMeLU para_role = PMeLU()
In [45]: In [46]: Out[47]:	the main drawback of the ELU activation is that it is slower to compute than the ReLU and its variants (due to the use of the exponential function), but during training this is compensated by the faster convergence rate. However, at test time, an ELU network will be slower than a ReLU network. model = keras.Sequential([
In [49]: In [50]: In [51]: In []:	Exponential Linear Unit (SELU) Exponential Linear Unit (SELU) activation function is another variation of ReLU. If you build a neural network composed exclusively of a stack of dense layers, and if all hidden layers use the SELU activation function, then the network will self-normalize (the output of each layer will tend to preserve mean 0 and standard deviation 1 during training, which resolves the vanishing/exploding gradients problem). This activation function often outperforms other activation functions very significantly. To use SELU with Keras and TensorFlow 2, just set activation='relu' and kernel_initializer='lecun_normal' model = keras.Sequential([