Critical Values for the Two-sample Kolmogorov-Smirnov test (2-sided)

Table gives critical *D*-values for $\alpha = 0.05$ (upper value) and $\alpha = 0.01$ (lower value) for various sample sizes. * means you cannot reject H₀ regardless of observed *D*.

$n_2 \backslash n_1$	3	4	5	6	7	8	9	10	11	12
1	*	*	*	*	*	*	*	*	*	*
	*	*	*	*	*	*	*	*	*	*
2	*	*	*	*	*	16/16	18/18	20/20	22/22	24/24
	*	*	*	*	*	*	*	*	*	*
3	*	*	15/15	18/18	21/21	21/24	24/27	27/30	30/33	30/36
	*	*	*	*	*	24/24	27/27	30/30	33/33	36/36
4		16/16	20/20	20/24	24/28	28/32	28/36	30/40	33/44	36/48
		*	*	24/24	28/28	32/32	32/36	36/40	40/44	44/48
5			*	24/30	30/35	30/40	35/45	40/50	39/55	43/60
			*	30/30	35/35	35/40	40/45	45/50	45/55	50/60
6				30/36	30/42	34/48	39/54	40/60	43/66	48/72
				36/36	36/42	40/48	45/54	48/60	54/66	60/72
7					42/49	40/56	42/63	46/70	48/77	53/84
					42/49	48/56	49/63	53/70	59/77	60/84
8						48/64	46/72	48/80	53/88	60/96
						56/64	55/72	60/80	64/88	68/96
9							54/81	53/90	59/99	63/108
							63/81	70/90	70/99	75/108
10								70/100	60/110	66/120
								80/100	77/110	80/120
11									77/121	72/132
									88/121	86/132
12										96/144
										84/144

For larger sample sizes, the approximate critical value D_{α} is given by the equation

$$D_{\alpha} = c(\alpha) \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$$

where the coefficient is given by the table below.

α	0.10	0.05	0.025	0.01	0.005	0.001
$c(\alpha)$	1.22	1.36	1.48	1.63	1.73	1.95

Examples: (1) At $\alpha = 0.05$ and samples sizes 5 and 8, $D_{\alpha} = 30/40 = 0.75$.

(2) At
$$\alpha = 0.01$$
 and samples sizes 15 and 28, $D_{\alpha} = 1.63 \sqrt{\frac{15 + 28}{15 \cdot 28}} = 0.522$.