Contents

Integrales	6
Integracion por fraciones simples	6
	6
	6
Caso 2: Factores lineales repetidos	6
Caso 3: Factores lineales diferentes y con repeticiones	6
Operar con factores cuadraticos	6
Integrar factores cuadraticos	7
Integrar factores cuadraticos: Tips	7
Integral de $\frac{1}{y^2+a^2}$	7
Caso 4: Factores lineales y cuadraticos que no se repiten	7
Caso 5: Factores lineales y cuadraticos con repeticiones	7
Integrales impropias	7
	7
Integrales impropias Tipo 1	7
	7
f continua en $[a, \infty)$	7
	8
	8
	8
	8
	8
	8
£ /4 \$ \ /	8
	8
	8
	8
	9
Cinterios de Comparación Tipo 2	J
Sucesiones	9
	9
	9
	9
	9
	9
	0
	0
	0
· ·	0
•	0
	0
	0
· ·	0
	0
	U

Sucesion monotona			11
Acotaciones			11
Inferior			11
Superior			11
General			11
Observacion: Pluralidad			11
Axioma de completitud de los reales			11
Supremo			11
Infimo			12
Teorema Sucesion convergente			12
Sucesion creciente y sup. acotada			12
Sucesion decreciente y inf. acotada			12
Observacion: Convergencia y crecimiento			12
Subsucesiones			12
Una subsucesion de una sucesion			12
Subsucesion de una sucesion convergente			12
Subsucesion de una sucesion convergente: Utilidad			12
Bolzano-Weierstrass			13
Series			13
Definicion			13
Suma parcial			13
Definicion			13
Convergencia			13
Serie geometrica			13
Definicion			13
Teoremas			13
Propiedades de series convergentes			13
Serie armonica			14
Criterios			14
Criterio de divergencia			14
Criterio de comparacion para series			14
Criterio de comparacion en el limite: $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$			14
Criterio de comparacion en el limite: $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$			14
Criterio de comparacion en el limite: $\lim_{n\to\infty}\frac{a_n}{b_n}>0$. Criterio de comparacion en el limite: $\lim_{n\to\infty}\frac{a_n}{b_n}=0$. Criterio de comparacion en el limite: $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$.			14
Criterio de la integral para series			15
Criterio del cociente			15
Criterio de la raiz			15
Series alternantes			15
Definicion			15
Criterio para series alternantes			15
Tipos de convergencia			15
Absoluta			15
Condicional			16
Convergencia y convergencia absoluta			16

Series de potencias				16
Definicion				16
Teoremas				16
Caracteristicas de las series de potencias				16
Observacion sobre R				16
Criterio del cociente para series de potencias				16
Derivacion e integracion de una serie de potencias				17
Radio de convergencia				17
Intervalo de convergencia				17
Definicion				17
Observaciones				17
Representacion de funciones como series de potencias .				17
Serie de Taylor				17
Hallar c_n				17
Definicion				18
Serie de McLaurin				18
Polinomio de Taylor				18
Definicion				18
Observaciones				18
Resto de Taylor				18
Definicion				18
Teorema				18
Formula de Lagrange para el resto				19
Formula de Taylor				19
Calculo vectorial				19
Propiedades producto escalar				19
Conmutatividad				19
Distributividad				19
Multiplicacion por escalar				19
Producto escalar nulo				19
Norma				19
Definicion				19
Distancia				19
Propiedades Norma				20
Norma nula				20
Multiplicacion por escalar				20
Desigualdad triangular				20
Producto escalar y norma				20
Desigualdad Cauchy-Schwarz				20
Ortogonalidad				20
Paralelismo				20
Rectas en R2 y R3				20
Rectas paralelas				20
Rectas ortogonales				20
Ecuacion vectorial de la recta en R2				21

Ecuacion de la recta en R3	1
Ecuacion vectorial:	1
Ecuacion parametrica:	1
Planos en R3	1
Plano normal	:1
Ecuaciones del plano	1
Ecuacion normal	1
Ecuacion cartesiana	1
Producto vectorial	
Computar producto vectorial	
Definicion	
Propiedad producto vectorial	
Vectores nulos o paralelos	
Angulo entre dos planos	
Funciones vectoriales	
Definicion	
Dominio	
Imagen	
Limite	
Continuidad	
Derivada	
Reglas de derivacion para funciones vectoriales	
· · · · · · · · · · · · · · · · · · ·	
Multiplicacion por una constante	
Multiplicacion por una funcion real	
Derivada del producto escalar	
Regla de la cadena	4
Funciones de varias variables 2	4
Definicion	_
Dominio	_
Imagen	
Grafico	
Bola	
Limite	
Continuidad	
Derivadas parciales	
Derivadas parciales: Generalizacion	
Definicion	
Observaciones	
Continuidad y derivada parcial	
v -	
Plano tangente	-
	-
Ecuacion normal	
Regla de la cadena	ıО

Caso 1	26
	26
	27
	27
	27
	27
1	27
	27
	- · 27
	28
v	$\frac{-3}{28}$
	$\frac{-0}{28}$
	$\frac{-0}{28}$
	$\frac{28}{28}$
8	$\frac{28}{28}$
1	$\frac{28}{28}$
	$\frac{20}{29}$
	$\frac{29}{29}$
	$\frac{29}{29}$
—J	$\frac{29}{29}$
	$\frac{29}{29}$
	29 29
	$\frac{29}{30}$
v	30
	30
	30
	30
	30 30
v 1	эо 30
v o	
Test de la derivada segunda	31
Integrales funciones de varias variables	31
-	31
· · · · · · · · · · · · · · · · · · ·	31
	31
	31
<u> </u>	31
	$\frac{31}{32}$
	$\frac{32}{32}$
	$\frac{32}{32}$
	$\frac{32}{32}$
	32 32
	32 32
	. 1 /.
Definicion	
	32 33

Region de tipo 1 (x-simple)	33
Region de tipo 2 (y-simple)	33
Region 1 y 2 simultaneamente	33
Propiedades de la integral doble	33
integral de 1	33
Suma	33
Multiplicacion por constante	33
Designaldad de funciones	33
Multiples regiones	34

Integrales

Integracion por fraciones simples

Concepciones generales

 $\frac{p(x)}{q(x)}$ cumple lo siguiente:

gr(p) < gr(q) El coeficiente de la potencia de mayor grado de q(x) es 1

Caso 1: Factores lineales diferentes

Sea
$$q(x) = (x - r_1) \dots (x - r_k)$$

Hay que buscar constantes A_1, \cdots, A_k tales que

$$\frac{p(x)}{q(x)} = \frac{A_1}{x - r_1} + \dots + \frac{A_k}{x - r_k}$$

Caso 2: Factores lineales repetidos

Sea
$$q(x) = (x - r)^k$$

Hay que buscar constantes A_1, \dots, A_k tales que:

$$\frac{p(x)}{q(x)} = \frac{A_1}{x-r} + \frac{A_2}{(x-r)^2} + \dots + \frac{A_k}{(x-r)^k}$$

Caso 3: Factores lineales diferentes y con repeticiones

Sea
$$q(x) = (x - r_1) \cdots (x - r_{i-1})(x - r_i)^{K_i} \cdots (x - r_n)^{k_n}$$

Se aplican los procedimientos de los casos $1 \ y \ 2$

Eiemplo:

$$\frac{x^3 - (x+1)}{x(x-2)(x-1)^2} = \frac{A_1}{x} + \frac{A_2}{x-2} + \frac{A_3}{x-1} + \frac{A_4}{(x-2)^2}$$

Operar con factores cuadraticos

Los factores cuadraticos se pueden factorizar de la siguiente forma:

$$\frac{Bx+C}{x^2+\alpha x+\beta}$$

Integrar factores cuadraticos

Para integrarlos debemos hallar constantes K_1, K_2

$$\frac{Bx+C}{x^2+\alpha x+\beta} = K_1 \frac{2x+\alpha}{x^2+\alpha x+\beta} + K_2 \frac{1}{x^2+\alpha x+\beta}$$

Integrar factores cuadraticos: Tips

 $K_1 \frac{2x+\alpha}{x^2+\alpha x+\beta} \to -$ Se puede integrar usando sustitucion

 $K_2\frac{1}{x^2+\alpha x+\beta}\to -$ Completar cuadrados y usar sustitucion para llegar a algo de la forma $\frac{1}{y^2+a^2}$

Integral de $\frac{1}{y^2+a^2}$

Tener en cuenta que $\int \frac{1}{y^2 + a^2} \ dx = \frac{1}{a} \ arctg(\frac{y}{a}) + c$

Caso 4: Factores lineales y cuadraticos que no se repiten

Sea
$$q(x) = (x - r_1)^{K_1} \cdots (x - r_n)^{K_n} \cdot (x^2 + \alpha_1 x + \beta_1) \cdots (x^2 + \alpha_m x + \beta_m)$$

Por cada factor lineal aparecen tantos terminos como indiquen los casos 1 y 2 $\,$

Por cada factor cuadratico aparecen terminos de la forma $\frac{Bx+C}{x^2+\alpha x+\beta}$

Caso 5: Factores lineales y cuadraticos con repeticiones

No vamos a ver este caso en la materia (Por suerte)

Integrales impropias

Definicion

Extendemos la definicion de integral para los casos en los que

$$a \lor b \not \in \mathbb{R}$$

f no sea acotada en [a, b]

Integrales impropias Tipo 1

Definicion

Funciones continuas y al menos uno de los limites de integracion no es finito Si el limite existe y es finito decimos que converge, en caso contrario decimos que diverge.

f continua en $[a, \infty)$

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

f continua en $(-\infty, a]$

$$\int_{-\infty}^{a} f(x) \ dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) \ dx$$

f continua en \mathbb{R}

$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{-\infty}^{a} f(x) \ dx + \int_{a}^{\infty} f(x) \ dx$$

Ambas integrales deben converger para que sea convergente.

Integrales impropias Tipo 2

Definicion

Limites de integracion finitos pero funciones que tienen una asintota vertical en un punto $c \in [a,b]$

Cuando las integrales existen y son menores a infinito, decimos que convergen, si no decimos que divergen.

$$\lim_{x \to b^-} f(x) = \pm \infty$$

f continua en $\left[a,b\right)$

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx$$

Sea
$$\lim_{x\to a^+} f(x) = \pm \infty$$

Sea f continua en (a, b]

$$\int_a^b f(x) \ dx = \lim_{t \to a^+} \int_t^b f(x) \ dx$$

f continua en $[a,c) \cup (c,b]$

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

Criterios de Comparacion Tipo 1

$$|f(x)| \le g(x) \forall x \in [a, \infty)$$

Sean f y g funciones continuas y $a \in \mathbb{R}$

$$\int_a^\infty g(x) \ dx$$
 converge $\Rightarrow \int_a^\infty f(x) \ dx$ converge

$$\int_a^\infty f(x) \ dx$$
 diverge $\Rightarrow \int_a^\infty g(x) \ dx$ diverge

$$|f(x)| \le g(x) \forall x \in [-\infty, a)$$

Sean f y g funciones continuas y $a \in \mathbb{R}$

$$\int_{-\infty}^a g(x) \ dx$$
 converge $\Rightarrow \int_{-\infty}^a f(x) \ dx$ converge

$$\int_{-\infty}^a f(x) \; dx$$
 diverge $\Rightarrow \int_{-\infty}^a g(x) \; dx$ diverge

Criterios de Comparacion Tipo 2

$$|f(x)| \le g(x) \forall x \in [a, b) \lor (a, b]$$

Sean f, g funciones continuas en [a,b) y

$$\lim_{x\to a^+} f(x) = \pm \infty \quad \lor \quad \lim_{x\to b^-} f(x) = \pm \infty$$

Entonces:

$$\int_a^b g(x) dx$$
 converge $\Rightarrow \int_a^b f(x) dx$ converge

$$\int_a^b f(x) \ dx$$
 diverge $\Rightarrow \int_a^b g(x) \ dx$ diverge

Sucesiones

Definicion

Una sucesion infinita de numeros reales es una funcion cuyo dominio son los naturales y cuya imagen está incluida en R

Limite

Propiedades

Aplican las propiedades normales de los limites.

Notacion

Se escribe $\lim_{n\to\infty} a_n = \ell$

Si los terminos an se acercan a l
 tanto como queramos al hacer n suficientemente grande se escribe
 $a_n\to \ell$ $n\to\infty$

Definicion formal

$$\lim_{n\to\infty} a_n = \ell \iff \forall \epsilon > 0, \ \exists n_0 \in \mathbb{N}$$

tal que
$$|a_n - \ell| < \epsilon \ \forall n \ge n_0$$

Es decir la distancia entre a_n y el limite es menor a epsilon

En otras palabras a partir de cierto n_0 la sucesion va a estar muy cerca del ℓ

$$|a_n - \ell| < \epsilon \Leftrightarrow -\epsilon < a_n - \ell < \epsilon \Leftrightarrow \ell - \epsilon < a_n < \ell + \epsilon$$

Convergencia y divergencia

$$\exists \lim_{n \to \infty} = \ell$$

$$\ell \in \mathbb{R}$$

$$\Rightarrow \ell$$
 converge a $\overset{n \rightarrow \infty}{\ell}$

En los demas casos decimos que diverge

Teoremas

Relacion entre limite de funciones y sucesiones

Sea
$$a_n = f(n) \ \forall n \ge n_0$$
 para algun $n_0 \in \mathbb{N}$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} f(n)$$

Sandwich para sucesiones

Sea
$$a_n \leq b_n \leq c_n \ \forall n \geq n_0$$
 para algun $n_0 \in \mathbb{N}$

Sea
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = \ell$$

$$\Rightarrow \lim_{n\to\infty} b_n = \ell$$

Convergencia a 0 y modulo

$$\lim_{n\to\infty} a_n = 0 \iff \lim_{n\to\infty} |a_n| = 0$$

Composicion de limite y funcion

$$\lim_{n\to\infty} a_n = a$$

$$f$$
 continua en $x = a$

$$\Rightarrow \lim_{n\to\infty} f(a_n) = f(a) = f(\lim_{n\to\infty} a_n)$$

Crecimiento y Decrecimiento

Crecientes

$$a_n \leq a_{n+1} \Rightarrow \text{Es creciente}$$

$$a_n < a_{n+1} \Rightarrow$$
 Es estrictamente creciente

Decrecientes

$$a_n \ge a_{n+1} \Rightarrow \text{Es decreciente}$$

$$a_n > a_{n+1} \Rightarrow$$
 Es estrictamente decreciente

Sucesion monotona

Si la sucesion es creciente o decreciente decimos que es monotona

Acotaciones

Inferior

 $\exists m_i \in \mathbb{R} / m_i \le a_n \ \forall n \in \mathbb{N} \Rightarrow$

 m_i Es la cota inferior

 $\{a_n\}$ Es acotada inferiormente

Superior

 $\exists \ m_s \in \mathbb{R} \ / \ m_s \ge a_n \ \forall n \in \mathbb{N} \Rightarrow$

 m_s Es la cota superior

 $\{a_n\}$ Es acotada superiormente

General

 $\exists M \in \mathbb{R} / |a_n| < M \ \forall n \in \mathbb{N} \Rightarrow \{a_n\} \text{ Es acotada}$

Observacion: Pluralidad

Las cotas inferiores y superiores no son unicas

Axioma de completitud de los reales

Sea \mathbb{I}_s Un conjunto no vacio de numeros reales acotado superiormente

 $\Rightarrow \mathbb{I}_s$ Tiene una menor cota superior en $\mathbb R$

Sea \mathbb{I}_i Un conjunto no vacio de numeros reales acotado inferiormente

 $\Rightarrow \mathbb{I}_i$ Tiene una mayor cota inferior en \mathbb{R}

Supremo

Sea $A \subset \mathbb{R}$, $A \neq \emptyset$

A es acotada superiormente \Rightarrow La menor cota superior se le llama supremo de A

Se denota sup(A)

 $sup(A) \in A \Rightarrow$ Decimos que es el maximo de A

Infimo

Sea
$$A \in \mathbb{R}, A \neq 0$$

A es acotada inferiormente \Rightarrow La mayor cota inferior se le llama infimo de A Se denota inf(A)

 $inf(A) \in A \Rightarrow$ Decimos que es el minimo de A

Teorema Sucesion convergente

 $\{a_n\}$ es convergente \Rightarrow Es acotada

Sucesion creciente y sup. acotada

 $\{a_n\}$ es creciente y acotada superiormente

$$\Rightarrow$$
 converge $\{a_n\}$

$$\Rightarrow \lim_{n\to\infty} a_n = \ell_1 = \sup(\{a_n\})$$

Sucesion decreciente y inf. acotada

 $\{a_n\}$ es decreciente y acotada inferiormente

$$\Rightarrow$$
 converge $\{a_n\}$

$$\Rightarrow \lim_{n\to\infty} a_n = \ell_2 = \inf(\{a_n\})$$

Observacion: Convergencia y crecimiento

 $\{a_n\}$ es creciente \Rightarrow converge o el limite tiende a $+\infty$

 $\{a_n\}$ es decreciente \Rightarrow converge o el limite tiende a $-\infty$

Subsucesiones

Una subsucesion de una sucesion

Es una sucesion de la forma $\{a_{n1}, a_{n2}, a_{n3}, a_{n4}, ...\} = \{a_{nj}\}_{j=1}^{\infty}$

Con $nj \in \mathbb{N}$ y $n_1 < n_2 < n_3 < \dots$

Subsucesion de una sucesion convergente

Toda subsucesion de una sucesion convergente es convergente y sus limites son iguales

Subsucesion de una sucesion convergente: Utilidad

Es util para demostrar que una sucesion no tiene limite.

Basta con encontrar dos subsucesiones distintas que converjan a distintos limites

Bolzano-Weierstrass

Toda sucesion acotada tiene al menos una subsucesion convergente Puede haber mas de una subsucesion convergente

Series

Definicion

Dada una sucesion de numeros reales

Llamaremos serie de terminos a_n a: $\sum_{n=1}^{\infty} a_n$

Suma parcial

Definicion

Para cada $k \in \mathbb{N}$ definimos la k-esima suma parcial s_k

$$s_k = a_1 + \dots + a_k = \sum_{n=1}^k a_n$$

 $\{s_k\}$ es una sucesion de números reales

Convergencia

Si su limite existe y es finito decimos que la serie es convergente Si su limite no existe o es infinito decimos que la serie es divergente

Serie geometrica

Definicion

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + \cdots$$
$$r \in \mathbb{R}$$

Teoremas

$$|r|<1\Rightarrow \sum_{n=0}^{\infty}r^n=\frac{1}{1-r}\Rightarrow$$
 Es convergente

O equivalentemente,
$$\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$$

$$|r| \ge 1 \Rightarrow \sum_{n=0}^{\infty} r^n \Rightarrow \text{Es divergente}$$

Propiedades de series convergentes

Sean
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$ series convergentes y $c \in \mathbb{R}$ $\sum_{n=1}^{\infty} (a_n \pm b_n)$ Converge

$$\sum_{n=1}^{\infty} ca_n$$
 Converge

$$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$$

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

Serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

La serie diverge

Criterios

Criterio de divergencia

Si la serie converge $\Rightarrow \lim_{n\to\infty} a_n = 0$

 $\lim_{n\to\infty} a_n \neq 0 \vee \nexists \lim_{n\to\infty} \Rightarrow$ la serie diverge

Criterio de comparacion para series

Sea $0 \le a_n \le b_n \quad \forall n \ge n_0$ para algun $n_0 \in \mathbb{N}$

$$\sum_{n=n_0}^{\infty} b_n \text{ conv.} \Rightarrow \sum_{n=n_0}^{\infty} a_n \text{ conv.}$$

$$\sum_{n=n_0}^{\infty} a_n$$
 diver. $\Rightarrow \sum_{n=n_0}^{\infty} b_n$ diver.

Criterio de comparacion en el limite: $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$

Sean $\sum_{n=n_0}^{\infty} a_n$, $\sum_{n=n_0}^{\infty} b_n$ Series de terminos positivos

$$\Rightarrow \sum_{n=n_0}^{\infty} a_n \text{ conv} \Leftrightarrow \sum_{n=n_0}^{\infty} b_n \text{ conv}$$

Criterio de comparacion en el limite: $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$

Sean $\sum_{n=n_0}^{\infty} a_n$, $\sum_{n=n_0}^{\infty} b_n$ Series de terminos positivos

$$\sum_{n=n_0}^{\infty} b_n \text{ conv.} \Rightarrow \sum_{n=n_0}^{\infty} a_n \text{ conv.}$$

$$\sum_{n=n_0}^{\infty} a_n$$
 diver. $\Rightarrow \sum_{n=n_0}^{\infty} b_n$ diver.

Criterio de comparacion en el limite: $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$

Sean $\sum_{n=n_0}^{\infty} a_n,\,\sum_{n=n_0}^{\infty} b_n$ Series de terminos positivos

$$\sum_{n=n_0}^{\infty} b_n$$
 diver. $\Rightarrow \sum_{n=n_0}^{\infty} a_n$ diver.

$$\sum_{n=n_0}^{\infty} a_n \text{ conv.} \Rightarrow \sum_{n=n_0}^{\infty} b_n \text{ conv.}$$

Criterio de la integral para series

Sea f Continua Positiva y decreciente en $[1, \infty)$

Si
$$a_n = f(n)$$
 entonces:

$$\sum_{n=1}^{\infty} a_n$$
 converge $\Leftrightarrow \int_1^{\infty} f(x) \ dx$ converge

No es necesario iniciar la serie o la integral en n=1

Criterio del cociente

Sean
$$a_n \neq 0 \ \forall n \geq n_0 \ \mathrm{y} \ r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

$$r < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 conv. abs.

$$r > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 diver.

 $r=1 \Rightarrow$ No se puede asegurar nada

Criterio de la raiz

Sea
$$r = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

$$r < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 conv. abs.

$$r > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 diver.

 $r=1 \Rightarrow$ No se puede asegurar nada

Series alternantes

Definicion

Decimos que una serie es alternante si sus terminos son positivos y negativos alternantemente

Criterio para series alternantes

Si
$$a_n \ge a_{n+1} > 0 \ \forall n \text{ y } \lim_{n \to \infty} a_n = 0$$

Entonces,
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 converge

y
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$
 tambien

Tipos de convergencia

Absoluta

$$\sum_{n=1}^{\infty} |a_n|$$
 converge

Condicional

$$\sum_{n=1}^{\infty} a_n \text{ converge}$$

$$\sum_{n=1}^{\infty} |a_n| \text{ no converge}$$

Convergencia y convergencia absoluta

$$\sum_{n=1}^{\infty} a_n$$
 conv. abs. $\Rightarrow \sum_{n=1}^{\infty} a_n$ conv.

Series de potencias

Definicion

Sean $\{c_n\}_{n=0}^{\infty}$ Una sucesion de numeros reales y $a\in \mathbb{R}$

Llamamos serie de potencias centradas en a, a la serie

$$\sum_{n=0}^{\infty} C_n(x-a)^n = C_0 + C_1(x-a) + C_2(x-a)^2 + \cdots$$

Adoptamos la convencion de que $(x-a)^0=1$

Teoremas

Caracteristicas de las series de potencias

Sea $\sum_{n=0}^{\infty} C_n(x-a)^n$ Una serie de potencias

Se cumple exactamente una de las siguientes

La serie converge solo cuando x=a

La serie es absolutamente convergente $\forall x \in \mathbb{R}$

 $\exists~R>0$ tal que la serie conv. absolutamente $\forall x$ t
q|x-a| < R

y es divergente $\forall x$ tq |x-a|>R

Observacion sobre R

Si la la serie converge en $x_0 \Rightarrow R \geq |a - x_0|$

Si la serie diverge en $x_1 \implies R \leq |a - x_1|$

Criterio del cociente para series de potencias

Dada una serie de potencias con $c_n \neq 0 \quad \forall n \geq n_0$ y R
 como su radio de convergencia

Sea
$$L = \lim_{n \to \infty} \frac{|c_{n+1}|}{|c_n|}$$

Entonces:

$$0 < L < \infty \Rightarrow R = \frac{1}{L}$$

$$L=0 \Rightarrow R=\infty$$

$$L = \infty \implies R = 0$$

Derivacion e integracion de una serie de potencias

Sea R el radio de convergencia de una serie de potencias

$$R>0 \Rightarrow f(x)=\sum_{n=1}^{\infty}c_n(x-a)^n$$
 Es derivable y continue en el intervalo $(a-R,a+R)$

Ademas

$$f'(x) = \sum_{n=1}^{\infty} n \ c_n (x - a)^{n-1}$$
$$\int f(x) dx = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x - a)^{n+1}$$

Radio de convergencia

La serie converge en x=a \Rightarrow R=0 La serie converge $\forall x\in\mathbb{R}$ \Rightarrow $R=\infty$ En los demas casos R>0

Intervalo de convergencia

Definicion

Llamamos intervalo de convergencia al conjunto

$$\mathbb{I} = \{ x \in \mathbb{R} / \sum_{n=0}^{\infty} C_n (x - a)^n \text{ converge} \}$$

Observaciones

$$R = 0 \Rightarrow \mathbb{I} = \{a\}$$

$$R = \infty \Rightarrow \mathbb{I} = (-\infty, \infty) = \mathbb{R}$$

$$0 < R < \infty \implies \mathbb{I}(a - R, a + R)$$
 (con extremos abiertos o cerrados)

Representacion de funciones como series de potencias

 $\forall x \in \mathbb{I}$, la serie define una funcion: $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ Cuyo dominio es \mathbb{I}

Serie de Taylor

Hallar c_n

Si f puede representarse como una serie de potencias, es decir:

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \ \forall x \ \text{tq} \ |x-a| < R$$

$$\Rightarrow c_n = \frac{f^{(n)}(a)}{n!}$$

Definicion

Sea f una funcion que tiene derivadas de todos los ordenes en a

Se llama serie de Taylor de f centrada en a a la serie de potencias:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

Serie de McLaurin

$$a=0\Rightarrow \sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$$
 Se suele llamar serie de Maclaurin

Polinomio de Taylor

Definicion

Sea f una funcion que tiene derivadas de todos los ordenes en a

Definimos el polinomio de Taylor de f de orden n centrado en a como

$$T_{n,a}(x) = \sum_{n=0}^{n} \frac{f^{(j)}(a)}{j!} (x-a)^{j} = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n}$$

Observaciones

La n-esima suma parcial de la serie de Taylor es justamente el polinomio de Taylor de orden n

 $T_{1,a}$ es la recta tangente al grafico de f
 en el punto (a,f(a))

f y su polinomio de Taylor de orden
n, Satisfacen $f^{(j)}(a) = T^{(j)}(a) \; T_{n,a}$

Resto de Taylor

Definicion

Se define alto de Taylor de orden n centrando en a como:

$$R_{n,a}(x) = f(x) - T_{n,a}(x)$$

Por lo tanto:

$$f(x) = T_{n,a}(x) + R_{n,a}(x)$$

Teorema

Sea f una funcion tal que existe $f^{(n)}(a) \forall n \geq 0$

sea i una iuncion tai que existe
$$f^{(n)}(a) \forall n \geq 0$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad \forall x \in (a-c,a+c) \Leftrightarrow \lim_{n \to \infty} R_{n,a}(x) = 0 \quad \forall x \in (a-c,a+c)$$

Formula de Lagrange para el resto

Sea f
 una funcion tal que existen $f',f'',\dots,f^{(n+1)}$ En un intervalo abierto
 I y $a\in I$

$$\Rightarrow \forall x \in I, \ \exists t \text{ entre x y a} \ (x > a \Rightarrow t \in (a,x) \ \lor \ x < a \Rightarrow t \in (x,a))$$
tal que $R_{n,a} = \frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}$

Formula de Taylor

Llamamos formula de Taylor a:

$$f(x) = \sum_{n=0}^{n} \frac{f^{(j)}(a)}{j!} (x-a)^{j} + \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1} = T_{n,a}(x) + R_{n,a}(x)$$

Calculo vectorial

Propiedades producto escalar

Conmutatividad

$$\langle A, B \rangle = \langle B, A \rangle$$

Distributividad

$$\langle A, B + C \rangle = \langle A, B \rangle + \langle A, C \rangle$$
 y viceversa

Multiplicacion por escalar

$$r\langle A, B \rangle = \langle rA, B \rangle = \langle A, rB \rangle$$

Producto escalar nulo

$$\langle A, A \rangle = 0 \Leftrightarrow A = 0$$

Norma

Definicion

 $A \in \mathbb{R}^n$,

$$||A|| = \sqrt{\langle A, A \rangle}$$

Es la longitud del vector

Distancia

$$A, B \in \mathbb{R}^n$$
,

$$d(A,B) = ||A - B||$$
 (Distancia entre dos puntos)

$$d(A,0) = ||A||$$
 (distancia al origen)

Propiedades Norma

Norma nula

$$||A|| = 0 \Leftrightarrow A = 0$$

Multiplicacion por escalar

$$||rA|| = |r|||A||$$

Desigualdad triangular

$$||A + B|| \le ||A|| + ||B||$$

Producto escalar y norma

$$\langle A,B\rangle = ||A|| \; ||B|| \; cos\theta$$
donde $0 \leq \theta \leq \pi$ es el angulo (radianes) entre A y B

Desigualdad Cauchy-Schwarz

$$|\langle A, B \rangle| \le ||A|| \ ||B||$$

Ortogonalidad

 $A, B \in \mathbb{R}^n$ no nulos,

 $\langle A, B \rangle = 0 \Rightarrow$ Son ortogonales (o perpendiculares)

Paralelismo

 $A, B \in \mathbb{R}^n$ no nulos $r \in \mathbb{R}$

 $A = rB \Rightarrow \text{Son paralelos}$

Rectas en R2 y R3

la recta ℓ que pasa por el punto P_0 y tiene direccion V es:

$$\ell = \{X \in \mathbb{R}^n : X = P_0 + tV, \text{ con } t \in \mathbb{R}\} \text{ con n=2 o n=3}$$

Rectas paralelas

Dos rectas son paralelas si sus vectores direccion son paralelos

Rectas ortogonales

Dos rectas son ortogonales (perpendiculares) si sus vectores direccion son ortogonales

Ecuacion vectorial de la recta en R2

 $P_0,P_1\in\mathbb{R}^2(o~\mathbb{R}^3)$, la ecuacion vectorial de la recta que pasa por P0 y P1 es: $X=P_0+t(P_1-P_0),~{\rm con}~t\in\mathbb{R}$

Ecuacion de la recta en R3

Ecuacion vectorial:

$$P_0 = (x, y, z), V = (v_1, v_2, v_3)$$

 $X = P_0 + tV \text{ con } t \in \mathbb{R}$

Ecuacion parametrica:

$$P_0 = (x, y, z), V = (v_1, v_2, v_3)$$

 $x = x_0 + tv_1$
 $y = y_0 + tv_2$
 $z = z_0 + tv_3$

Planos en R3

 $V,W\in\mathbb{R}^3,$ no nulos ni paralelos, y $P\in\mathbb{R}^3$

La ecuacion vectorial del plano generado por V y W que pasa por P es:

$$X = P + tV + rW$$
, con $t, r \in \mathbb{R}$

Plano normal

El plano normal a N y que pasa por P0 es el conjunto de puntos $\bar{X} \in \mathbb{R}^3$ tq $\bar{X} - P_0$ es perpendicular a N, es decir

$$\langle \bar{X} - P_0, N \rangle = 0 \rightarrow \text{Ecuacion normal de plano}$$

Ecuaciones del plano

Ecuacion normal

 $\langle X - P_0, N \rangle = 0$ \rightarrow Ecuación normal de plano

Ecuacion cartesiana

$$X=(x,y,z), P_0=(x_0,y_0,z_0), N=(a,b,c),$$

 $d=ax_0+by_0+cz_0$
 $\Rightarrow ax+by+cz=d \rightarrow \text{ecuacion cartesiana del plano}$

Producto vectorial

Computar producto vectorial

$$V = (v_1, v_2, v_3), W = (w_1, w_2, w_3)$$

$$\begin{pmatrix} v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix}$$

Ir tachando columnas y calcular el determinante de las columna restantes

El determinante del medio es negativo

Definicion

$$V = (v_1, v_2, v_3), W = (w_1, w_2, w_3)$$

Definimos el producto vectorial $V \times W$ como:

$$V \times W = (v_2w_3 - w_2v_3, w_1v_3 - v_1w_3, v_1w_2 - w_1v_2)$$

Propiedad producto vectorial

El vector $V \times W$ es perpendicular a V y W y al plano generado por V y W (Siempre y cuando V y W sean no nulos y no paralelos)

Vectores nulos o paralelos

$$V = 0 \lor W = 0$$
 o V y W paralelos $\Rightarrow V \times W = (0,0,0)$

Angulo entre dos planos

 α es el angulo entre dos planos si α es el angulo correspondiente a sus vectores normales (o perpendiculares)

Funciones vectoriales

Definicion

$$f_i: \mathbb{R} \to \mathbb{R}, \text{ con } i = 1, \dots, n$$

Llamamos funcion vectorial a la funcion

$$f: \mathbb{R} \to \mathbb{R}^n$$
 dada por $f(t) = (f_1(t), \dots, f_n(t))$

Los fi se llaman funciones coordenadas de f

Dominio

$$Dom(f) = \bigcap_{i=1}^{n} Dom(f_i)$$

Imagen

$$f: \mathbb{R} \to \mathbb{R}^n$$
,

la imagen de f
 es el conjunto de \mathbb{R}^n

definido por
$$Im(f) = \{(y_1, \dots, y_n) \in \mathbb{R}^n : \exists t \in Dom(f) \text{ con } f(t) = (y_1, \dots, y_n)\}$$

Cuando n=2 la imagen es una curva en el plano

Cuando n=3 la imagen es una curva en el espacio

Limite

Sea f una funcion vectorial, definimos el limite de f cuando $t \to a$ como

$$\lim_{t\to a} f(t) = (\lim_{t\to a} f_1(t), \dots, \lim_{t\to a} f_n(t))$$

Siempre y cuando existan los limites para $f_i, \forall i = 1, \dots, n$

Continuidad

$$a \in Dom(f)$$

f es continua en a $\Leftrightarrow f_i$ es continua en a $\forall i = 1, \dots, n$

Derivada

$$f'(a) = (f'_1(a), \dots, f'_n(a))$$

(derivo coordenada a coordenada)

Reglas de derivacion para funciones vectoriales

Suma y resta

f y g funciones vectoriales,

$$(f(t) \pm g(t))' = f'(t) \pm g'(t)$$

Multiplicacion por una constante

f y g funciones vectoriales, $k \in \mathbb{R}$

$$(kf(t))' = kf'(t)$$

Multiplicacion por una funcion real

Sea f una funcion vectorial, $\varphi : \mathbb{R} \to \mathbb{R}$

$$(\varphi(t)\cdot f(t))' = \varphi'(t)f(t) + \varphi(t)f'(t)$$

Derivada del producto escalar

f y g funciones vectoriales,

$$\langle f(t), g(t) \rangle' = \langle f'(t), g(t) \rangle + \langle f(t), g'(t) \rangle$$

Regla de la cadena

Sea f una funcion vectorial, $\varphi : \mathbb{R} \to \mathbb{R}$

$$f(\varphi(t))' = f'(\varphi(t)) \cdot \varphi'(t)$$

Funciones de varias variables

Definicion

una funcion f de n variables es una regla que asigna a cada n-tupla $\bar{x}=(x_1,...,x_n)$ un unico numero real:

$$f(\bar{x}) = f(x_1, ..., x_n)$$

Dominio

 $Dom(f) = \{\bar{x} \in \mathbb{R}^n : f(\bar{x}) \text{ Está bien definida } \}$

Imagen

$$Im(f) = \{ y \in \mathbb{R} : \exists \bar{x} \in Dom(f) \text{ con } y = f(\bar{x}) \}$$

Grafico

$$G(f) = \{(\bar{x}, f(\bar{x})) \in \mathbb{R}^{n+1} : \bar{x} \in Dom(f)\}\$$

Bola

Sea r > 0 y $\bar{a} \in \mathbb{R}^n$

llamamos bola (abierta) de centro \bar{a} y radio r al conjunto

$$B(\bar{a}, r) = \{ \bar{x} \in \mathbb{R}^n : ||\bar{x} - \bar{a}|| < r \}$$

Limite

 $\bar{a} \in \mathbb{R}^n, y \ f: Dom(f) \subset \mathbb{R}^n \to \mathbb{R}$ definida en un dominio Dom(f) que incluye puntos arbitrariamente cercanos a \bar{a} decimos que

$$\lim_{\bar{x}\to\bar{a}} f(\bar{x}) = L$$

Si
$$\forall \epsilon > 0, \exists \delta > 0 \text{ tq } \bar{x} \in Dom(f) \cap B(\bar{a}, \delta) \Rightarrow |f(\bar{x}) - L| < \epsilon$$

$$\bar{x} \in Dom(f) \Rightarrow \|\bar{x} - \bar{a}\| < \delta \Rightarrow |f(\bar{x}) - L| < \epsilon$$

Si existen limites distintos para aproximarse a \bar{a} . Entonces el limite no existe

Continuidad

$$f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R} \text{ y } \bar{a} \in \mathbb{R}^n$$

decimos que f es continua en \bar{a} si $\bar{a} \in Dom(f)$ y $\lim_{\bar{x} \to \bar{a}} f(\bar{x}) = f(\bar{a})$

Decimos que f es continua si f es continua $\forall \bar{x} \in Dom(f)$

Valen propiedades similares para las funciones continuas de $\mathbb{R} \to \mathbb{R}$

Derivadas parciales

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (a,b) \in \mathbb{R}^2$$

Definimos la derivada parcial de f con respecto a x en el punto (x,y) como

$$\frac{\delta f}{\delta x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

Fijamos una de las variables y la pensamos como una constante

Derivadas parciales: Generalizacion

Definicion

Sean $f: \mathbb{R}^n \to \mathbb{R}$, $\bar{a} \in \mathbb{R}^n$, sup. $B(\bar{a}, r) \subset Dom(f)$ para algun r > 0

Definimos la derivada parcial de f
 respecto a x_j en el punto \bar{a} como

$$\frac{\partial f}{\partial x_j}(a_1, \dots, a_n) = f_{x_j}(a_1, \dots, a_n)$$

$$= \lim_{h \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + h, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{h}$$

Observaciones

Para calcular la derivada parcial de f
 tomar un argumento como variable y todo el resto como constantes

 $f:\mathbb{R}^n\to\mathbb{R}$ con $n\geq 2\Rightarrow$ no se puede afirmar que f
 es continua en cierto punto si f
 es derivable en dicho punto

Continuidad y derivada parcial

 $f:Dom(f)\subseteq \mathbb{R}^n \to \mathbb{R}, \bar{a}\in Dom(f)$ y $B(\bar{a},r)\subset Dom(f)$ para algun r>a

 f_{x_1},\dots,f_{x_n} existen y son continuas para todo $\bar x\in B(\bar a,r)\Rightarrow f$ es continua $\forall \bar x\in B(\bar a,r)$

(En particular para $\bar{x} = \bar{a}$)

Plano tangente

Definicion

Sea $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $(a,b) \in Dom(f)$ El plano que pasa por (a,b,f(a,b))y es generado por los vectores $(1,0,f_x(a,b))$ y $(0,1,f_y(a,b))$ se llama plano tangente al grafico de f en el punto (a,b,f(a,b))

Ecuacion vectorial

La ecuacion vectorial del plano tangente del grafico de f en (a, b, f(a, b)) es $(x, y, z) = (a, b, f(a, b)) + t(1, 0, f_x(a, b)) + r(0, 1, f_y(a, b)), \text{ con } t, r \in \mathbb{R}$

Ecuacion normal

La ecuación normal del plano tangente al grafico de f en (a, b, f(a, b)) es $z = (x - a)f_x(a, b) + (y - b)f_y(a, b) + f(a, b)$

Regla de la cadena

Caso 1

Sea $f:Dom(f)\subseteq\mathbb{R}^n\to\mathbb{R}, \bar{a}\in Dom(f)$ tal que $\frac{\partial f}{\partial x_1},\dots,\frac{\partial f}{\partial x_n} \text{ existen y son continuas en } B(\bar{a},r) \text{ para algun } r>0$ Sean $x_i:I\to\mathbb{R}$ funciones derivables $\forall t\in I, \text{ con } 1\leq i\leq n \text{ y } I\subseteq\mathbb{R} \text{ y tal que } (x_1(t),\dots,x_n(t))\in B(\bar{a},r) \forall t\in I$ Entonces la funcion

$$g(t) = f(x_1(t), \dots, x_n(t))$$
 es derivable $\forall t \in I$

y ademas

$$\frac{dg}{dt} = g'(t) = \frac{\partial f}{\partial x_1}(x_1(t), \dots, x_n(t)) \cdot x_1'(t) + \dots + \frac{\partial f}{\partial x_n}(x_1(t), \dots, x_n(t)) \cdot x_n'(t)$$

Caso 2

Sea $f:Dom(f)\subseteq\mathbb{R}^2\to\mathbb{R}, \bar{a}_1\in Dom(f)$ tal que $\frac{\partial f}{\partial x_1}\ \text{y}\ \frac{\partial f}{\partial x_2}\ \text{existen y son continuas en }B(\bar{a}_1,r_1)\ \text{para algun }r_1>0$ Sean

$$x: Dom(x) \subseteq \mathbb{R}^2 \to \mathbb{R} \text{ y}$$

 $y: Dom(y) \subset \mathbb{R}^2 \to \mathbb{R}$

dos funciones con sus derivadas parciales continuas en $B(\bar{a}_0,r_0)$ para algun $r_0>0$

y tal que

$$(x(s,t),y(s,t)) \in B(\bar{a}_1,r_1) \forall (s,t) \in B(\bar{a}_0,r_0)$$

Entonces la funcion definida por

$$g(s,t) = f(x(s,t), y(s,t)) \forall (s,t) \in B(\bar{a}_0, r_0)$$

Tiene derivadas parciales dadas por

$$\frac{\partial g}{\partial s}(s,t) = \frac{\partial f}{\partial x}(x(s,t),y(s,t)) \cdot \frac{\partial x}{\partial s}(s,t) + \frac{\partial f}{\partial y}(x(s,t),y(s,t)) \cdot \frac{\partial g}{\partial s}(s,t)$$

$$\tfrac{\partial g}{\partial t}(s,t) = \tfrac{\partial f}{\partial x}(x(s,t),y(s,t)) \cdot \tfrac{\partial x}{\partial t}(s,t) + \tfrac{\partial f}{\partial y}(x(s,t),y(s,t)) \cdot \tfrac{\partial g}{\partial t}(s,t)$$

Vector unitario

Decimos que $\bar{u} = (u_1, \dots, u_n) \in \mathbb{R}^n$ es un vector unitario si ||u|| = 1

Derivada direccional

Definicion

Sean $f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}$, $\bar{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ tq $B(\bar{a}, r) \subseteq Dom(f)$ para algun r > 0 y \bar{u} un vector unitario

Definimos la derivada direccional de f
 en la direccion de \bar{u} en el punto \bar{a} como:

$$D_{\bar{u}}f(\bar{a}) = \lim_{h \to 0} \frac{f(a_1 + hu_1, \dots, a_n + hu_n) - f(a_1, \dots, a_n)}{h}$$

(si este limite existe)

Consideracion para vectores no unitarios

Si el vector \bar{u} no es unitario, entonces consideramos

$$\bar{v} = \frac{\bar{u}}{\|u\|}$$
 (unitario y misma direccion que u)

Derivada direccional y derivada parcial

$$\bar{u} = e_i = (0, \dots, 1, \dots, 0)$$

$$\Rightarrow D_{e_i} f(\bar{a}) = \frac{\partial f}{\partial x_1}(\bar{a})$$

osea, las derivadas parciales son un caso particular de la derivada direccional

Gradiente

Definicion

Sea
$$f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}$$
 y $\bar{a} \in Dom(f)$ tq existen $\frac{\partial f}{\partial x_i}(\bar{a}) \forall i = 1, \dots, n$

Llamamos gradiente de f
 en \bar{a} al vector:

$$\nabla f(\bar{a}) = \left(\frac{\partial f}{\partial x_1}(\bar{a}), \dots, \frac{\partial f}{\partial x_n}(\bar{a})\right)$$

Gradiente y Derivada direccional

Sea $f:Dom(f)\subseteq\mathbb{R}^n\to\mathbb{R}$ tal que $\frac{\partial f}{\partial x_i}(\bar{x})$ existen y son continuas $\forall x\in B(\bar{a},r)\subseteq Dom(f)$ y $\forall i=1,\ldots,n$

y $\bar{u} = (u_1, \dots, (u_n))$ un vector unitario

Entonces vale que:

$$D_{\bar{u}}f(\bar{a}) = \langle \nabla f(\bar{a}), \bar{u} \rangle = \frac{\partial f}{\partial x_1} u_1 + \dots + \frac{\partial f}{\partial x_n}(\bar{a}) u_n$$

Direccion de crecimiento

Sean $f: Dom(f) \subseteq \mathbb{R}^n \to \mathbb{R}$ y

 $\bar{a} \in Dom(f)$ tq $\frac{\partial f}{\partial x_i}(\bar{x})$ existen y son continuas $\forall x \in B(\bar{a}, r)$ y para $1 \le i \le n$ Si $\nabla f(\bar{a}) \ne (0, \dots, 0) \Rightarrow$

- (i) El vector $\bar{u}=\frac{\nabla f(\bar{a})}{\|\nabla f(\bar{a})\|}$ da la direccion de maximo crecimiento de f en \bar{a}
- (ii) El vector $\bar{v}=-\frac{\nabla f(\bar{a})}{\|\nabla f(\bar{a})\|}$ da la direccion de minimo crecimiento de f en \bar{a}

Curva de nivel

Definicion

Sea $K \in \mathbb{R}$ y $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$

LLamamos curva de nivel K de f al subconjunto de Dom(f) definido por

$$C_k = \{(x, y) \in Dom(f) : f(x, y) = k\}$$

 $(C_k$ puede ser \emptyset , puntos aislados, o una curva)

Recta tangente

La recta tangente a la curva de nivel de f qu epasa por (x_0, y_0) esta definida como:

$$(x,y) = (x_0,y_0) + t\left(-\frac{\partial f}{\partial y}(x_0,y_0), \frac{\partial f}{\partial x}(x_0,y_0)\right) \text{ con } t \in \mathbb{R}$$

Superficie de nivel

Definicion

Sea
$$K \in \mathbb{R}$$
 y $f: Dom(f) \subseteq \mathbb{R}^3 \to \mathbb{R}$

Llamamos superficie de nivel K de f al subconjunto de Dom(f) definido por

$$S_k = \{(x, y, z) \in Dom(f) : f(x, y, z) = k\}$$

Plano tangente

La ecuación del plano tangente a la superficie de nivel que pasa por es: (x_0, y_0, z_0)

$$\langle (x, y, z) - (x_0, y_0, z_0), \nabla f(x_0, y_0, z_0) \rangle = 0$$

es el vector normal del plano (x_0, y_0, z_0)

Derivadas de orden 2

Ejemplo

Si n=2 hay 4 derivadas parciales de orden 2:

$$(f_x)_x = f_{xx} = \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$(f_x)_y = f_{xy} = \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} = \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$

Criterio para conocer la cantidad de derivadas

Por lo general, si f
 tiene n
 variables, entonces hay n^2 derivadas parciales de orden
 $2\,$

n=3

Si n=3, hay 9 derivadas parciales de orden 2:

$$f_{xx}, f_{xy}, f_{xz}, f_{yx}, f_{yy}$$
, etc

Teorema

Sea

$$f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R} \text{ y } \bar{a} \in Dom(f)$$

Si las funciones f_{xy} y f_{yx} son ambas continuas en $B(\bar{a},r)\subseteq Dom(f)$ para algun r>0

$$\Rightarrow$$
 $f_{xy}(\bar{x}) = f_{yx}(\bar{x}), \ \forall \bar{x} \in B(\bar{a}, r)$

Maximos y minimos

Maximo local

Sea $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $(x_0, y_0) \in Dom(f)$ decimos que:

f tiene un maximo local en (x_0,y_0) si existe una bola (disco) B centrada en (x_0,y_0) , con $B\subset Dom(f)$

y tal que
$$f(x_0, y_0) \ge f(x, y) \ \forall (x, y) \in B$$

El numero $f(x_0, y_0)$ se llama valor maximo local de f

Minimo local

Sea $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $(x_0, y_0) \in Dom(f)$ decimos que:

f tiene un minimo local en (x_0, y_0) si existe una bola (disco) B centrada en (x_0, y_0) , con $B \subset Dom(f)$

y tal que
$$f(x_0, y_0) \le f(x, y) \ \forall (x, y) \in B$$

El numero $f(x_0, y_0)$ se llama valor minimo local de f

Maximo o minimo absoluto

Si las desigualdades se cumplen $\forall (x,y) \in Dom(f)$ entonces decimos que f tiene un maximo (o minimo, segun corresponda) absoluto en (x_0, y_0)

Extremo local

Decimos que f tiene un extremo local en (x_0, y_0) si f tiene un maximo local o un minimo local en (x_0, y_0)

Extremo local y derivadas parciales

Si $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ tiene un extremo local en (x_0, y_0) y existen las derivadas parciales de f en (x_0, y_0) entonces:

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$

Puntos criticos y singulares

Si $f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$ tiene un extremo local en (x_0, y_0) entonces:

- * o bien (x_0, y_0) es punto critico de f (y por lo tanto $\nabla f(x_0, y_0) = 0$)
- * o bien (x_0, y_0) es punto singular de f (y por lo tanto $\nexists \nabla f(x_0, y_0)$)

Test de la derivada segunda

Sean
$$f: Dom(f) \subseteq \mathbb{R}^2 \to \mathbb{R}$$
 y $(x_0, y_0) \in Dom(f)$

Supongamos que las derivadas parciales de 1er y 2do orden de f
 son continuas en una bola $B \subset Dom(f)$ de centro (x_0, y_0)

y supongamos ademas que $\nabla f(x_0, y_0) = (0, 0)$

Sea
$$D = D(x_0, y_0) = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2$$

entonces:

- (1) D > 0 y $f_{xx}(x_0, y_0) > 0(of_{yy}(x_0, y_0) > 0) \Rightarrow$ f tiene minimo local en (x_0, y_0)
- (2) D>0 y $f_{xx}(x_0,y_0)<0 (of_{yy}(x_0,y_0)<0)\Rightarrow$ f tiene maximo local en (x_0,y_0)
- (3) $D < 0 \Rightarrow$ f no tiene ni maximo ni minimo local en (x_0, y_0) En este caso decimos que f tiene un punto silla en (x_0, y_0)
- (4) $D = 0 \Rightarrow$ no se puede asegurar nada

Integrales funciones de varias variables

Integral doble de un rectangulo

Norma de la particion de un rectangulo

Dada una particion $P = \{Q_{ij} : 1 \le i \le m, 1 \le j \le n\}$ de un rectangulo $Q \in \mathbb{R}^2$

Definimos la norma de la particion P como la mayor longitud de las diagonales de los subrectangulos Q_{ij} y la denotamos $\|P\|$

Definicion

Sea Q un rectangulo en \mathbb{R}^2 y $f: Q \to \mathbb{R}$,

la integral doble de f sobre el rectangulo Q es:

$$\int \int_{Q} f(x,y) \ dA = \lim_{\|P\| \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}, y_{ij}) \Delta x_{i} \Delta y_{j}$$

si este limite existe. En tal caso f se dice integrable sobre Q

Continuidad e integracion

f continua en $Q \Rightarrow f$ es integrable sobre Q

Volumen bajo el grafico y sobre el rectangulo

Si $f \ge 0$ y es integrable sobre Q

 $\Rightarrow \int \int_Q f(x,y) \; dA =$ volumen bajo la grafica de f
 y arriba del rectangulo Q

Notacion

A veces denotamos $\int \int_{O} f(x,y) \ dx \ dy$ en lugar de $\int \int_{O} f(x,y) \ dA$

Integrales iteradas

Definicion

Sean
$$Q = [a, b] \times [c, d]$$
 y $f : Q \to \mathbb{R}$

Para cada $y \in [c,d]$ hacemos $\int_a^b f(x,y) \ dx$, esto define una funcion de y que podemos volver a integrar obteniendo:

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) \ dx \right) \ dy$$

esta integral se llama integral iterada de f

Orden inverso

Es posible realizar el proceso en orden inverso obteniendo así:

$$\int_a^b \left(\int_d^c f(x,y) \ dy \right) \ dx$$

lo que nos daria la "otra" integral iterada de f

Teorema de fubini

Si f es continua en el rectangulo $Q = [a, b] \times [c, d]$, entonces:

$$\int \int_Q f(x,y) \ dA = \int_a^b \int_c^d f(x,y) \ dy \ dx = \int_c^d \int_a^b f(x,y) \ dx \ dy$$

El teorema también vale si f es acotada en Q, discontinua solo en un nro. finito de curvas suaves y las integrales iteradas existen

Integrales dobles en regiones generales

Definicion

Sea D una region acotada en \mathbb{R}^2

o sea, D está contenida en algun rectangulo Q con lados paralelos a los ejes cartesianos

Dada f definida en D, extendemos f al rectangulo Q de la siguiente manera

$$F(x,y) = \begin{cases} f(x,y) & \text{ si } (x,y) \in D \cap Q \\ \\ 0 & \text{ si } (x,y) \in D^c \cap Q \end{cases}$$

Decimos que f es integrable sobre D si F es integrable sobre Q y en ese caso definimos

$$\iint_D f(x,y) \ dA = \iint_Q F(x,y) \ dA$$

Interpretacion de la integral con

Si $f \geq 0$ en D, entonces la integral se puede interpretar como el volumen del solido debajo del grafico de f y arriba de la region D

Tipos de regiones D

Region de tipo 1 (x-simple)

Sean g_1 y g_2 funciones continuas en [a,b]

Una region es de tipo 1 si es de la forma:

$$D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, g_1(x) \le y \le g_2(x)\}\$$

Region de tipo 2 (y-simple)

Sean h_1 y h_2 funciones continuas en [c,d]

Una region es de tipo 2 si es de la forma:

$$D = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, h_1(y) \le x \le h_2(y)\}\$$

Region 1 y 2 simultaneamente

Existen funciones de tipo 1 y 2 simultaneamente, por ejemplo un circulo, un rectangulo, etc

Propiedades de la integral doble

integral de 1

Sea D una region y f y g funciones integrables sobre D

$$\int \int_D 1 \ dA = A(D)$$
 (area de la region D)

Suma

Sea D una region y f y g funciones integrables sobre D

$$\iint_{D} [f(x,y) + g(x,y)] dA = \iint_{D} f(x,y) dA + \iint_{D} g(x,y) dA$$

Multiplicacion por constante

Sea D una region y f y g funciones integrables sobre D

$$\int \int c \cdot f(x, y) \ dA = c \cdot \int \int f(x, y) \ dA, \quad \forall c \in \mathbb{R}$$

Desigualdad de funciones

Sea D una region y f y g funciones integrables sobre D

$$f(x,y) \le g(x,y) \Rightarrow \iint_D f(x,y) dA \le \iint_D g(x,y) dA$$

Multiples regiones

Sea D una region y f y g funciones integrables sobre D

Sea $D=D_1\cup D_2,$ donde D_1 y D_2 no se superponen excepto quizas en sus fronteras, entonces:

$$\int \int_D f(x,y) \ dA = \int \int_{D_1} f(x,y) \ dA + \int \int_{D_2} f(x,y) \ dA$$