

Машинное обучение: напоминание

Схема работы машинного обучения

Напоминание: обучающая выборка

Обучающая выборка

ооъект $oldsymbol{\mathcal{X}_{i}}$

Площадь	Год постройки	Число комнат	Цена
45	1995	1	7000000
60	2005	2	9900000
35	2010	1	5500000

Обобщающая способность алгоритма

• Обучаем алгоритм на обучающих данных, измеряем качество на тесте:

Линейная модель для регрессии

X	у
1	2
3	5
-1	-2
5	?

Линейные модели для задачи регрессии

Линейная модель суммирует значения всех признаков с некоторыми весами **Веса при признаках** — параметры, которые необходимо настраивать в процессе обучения

$$a(x) = w_0 + w_1 x_1 + \dots w_d x_d$$
 d — число признаков

Обучение линейной модели

Метод k ближайших соседей

Схема работы машинного обучения

Измерение качества в регрессии

a(x)	У	отклонение?
11	10	;
9	10	?
20	10	?
1	10	?

Измерение качества в регрессии

a(x)	У	отклонение
11	10	1
9	10	-1
20	10	10
1	10	-9

Измерение качества в регрессии

a(x)	У	a(x) - y
11	10	1
9	10	1
20	10	10
1	10	9

Среднее абсолютное отклонение, или MAE (Mean Absolute Error)

$$MAE = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

 ℓ — число прецедентов в выборке

В примере:

$$MAE = \frac{1}{4}(1+1+10+9) = 5.25$$

Схема работы машинного обучения

• **Числовые (numerical)**: в них хранятся целые числа (integer) или числа с плавающей точкой (real).

ФИО	Город	Возраст	Пол
Иванова Иванка Ивановна	Москва	32	Ж
Петров Пётр Петрович	Москва	18	M
Сидоров Сидр Сидорович	Пермь	54	M

• **Категориальные (nominal)**: здесь хранится какое-то значение из справочника.

ФИО	Город	Возраст	Пол
Иванова Иванка Ивановна	Москва	32	Ж
Петров Пётр Петрович	Москва	18	M
Сидоров Сидр Сидорович	Пермь	54	M
	(poly-)		(bi-)

Анализируют по-разному

- Числовые столбцы можно умножать на коэффициенты, а категориальные нельзя
 - Москва х 5 = ?
 - (номер Москвы в справочнике) x 5 = ?

Анализируют по-разному

- Числовые столбцы можно умножать на коэффициенты, а категориальные нельзя
 - Москва х 5 = ?
 - (номер Москвы в справочнике) x 5 = ?
- Что делать с категориальными столбцами?
 - можно считать средние значения по категориям (средний возраст в городе)
 - можно бинаризовать ("город = Москва?", "город = Казань?" ...)

Измерение качества в классификации

a(x)	У	отклонение?
яблоко	яблоко	?
апельсин	яблоко	?
яблоко	яблоко	?
апельсин	апельсин	5

Измерение качества в классификации

a(x)	У	совпадение
яблоко	яблоко	да
апельсин	яблоко	нет
яблоко	яблоко	да
апельсин	апельсин	да

Доля правильных ответов (accuracy):

$$Accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

 ℓ — число прецедентов в выборке

* выражение [x] равно единице, если x является верным утверждением, и нулю иначе

В примере:

$$Accuracy = \frac{1}{4}(1+0+1+1) = 0.75$$

Схема работы машинного обучения

• **Текстовые (text)**: текст может быть из любой последовательности символов, нельзя представить в виде значения из справочника.

ФИО	Город	Возраст	Пол
Иванова Иванка Ивановна	Москва	32	Ж
Петров Пётр Петрович	Москва	18	M
Сидоров Сидр Сидорович	Пермь	54	M

Тексты: мешок слов

хватит денег	
денег не хватит	
много денег	

хватит	денег	не	много
1	1	0	0
1	1	1	0
0	1	0	1

Тексты

Числа (модель мешка слов)

Точность и полнота (precision, recall)

Точность и полнота (precision, recall)

Точность и полнота (precision, recall)

