ЗАДАНИЕ

Определить, обеспечивается ли отключающая способность зануления воздушной линии 380/220 В длиной l, к которой подключен электродвигатель, защищенный автоматом с номинальным током расцепителя I_{ns} и коэффициентом кратности номинального тока k. Фазные провода и нулевой электрические провода сети выполнены из материалов, указанных в табл. 1. Удельное сопротивление проводников приведено в табл. 2. Электрическая сеть питается от трансформатора 6/0,4 кВ мощностью P_{H} .

ПОРЯДОК ВЫПОЛНЕНИЯ

1. Определить наименьшее допустимое значение тока короткого замыкания:

$$I_{IK3} \geq kI_{ne}$$
,

где k — коэффициент кратности номинального тока плавкой вставки предохранителя, или установки тока срабатывания автоматического выключателя;

 I_{ns} — номинальный ток плавкой вставки предохранителя, или установки тока срабатывания автоматического выключателя.

2. Рассчитать сопротивление фазы трансформатора току однофазного короткого замыкания $Z_{\phi m}$.

Сопротивление фазы трансформатора току однофазного короткого замыкания при вторичном номинальном напряжении 400/230 В можно приближенно рассчитать по формуле:

$$Z_{\phi m} = \frac{K_m}{P_u},$$

где $K_m = 26$ при схеме трансформатора звезда-звезда и $K_m = 7,5$ при схеме звезда-треугольник;

 P_{H} — номинальная мощность трансформатора, кВА.

*** Учетных вариантов задания схема звезда-звезда, у нечетных — звездатреугольник.

3. Определить полное сопротивление петли фаза-ноль:

$$Z_{n} = \sum l \sqrt{\left(R_{\phi} + R_{\mu}\right)^{2} + \left(X_{\phi} + X_{\mu} + X_{n}\right)^{2}} ,$$

где l — длина участка линии, м;

 R_{ϕ} , $R_{\scriptscriptstyle H}$ — численные значения удельного активного сопротивления соответственно фазного и нулевого проводников, Ом/м, которые следует принимать по табл. 2;

 X_{ϕ} , $X_{\rm H}$, $X_{\rm n}$ — удельные внутренние индуктивные сопротивления соответственно фазного, нулевого проводников и петли проводников фазаноль, ${\rm Om/m}$.

Если проводники выполнены из цветных металлов, численные значения удельных внутренних индуктивных сопротивлений X_{ϕ} ф и X_{H} можно считать равными нулю, в остальных случаях на воздушных линиях при номинальном напряжении $U_{H} \le 1$ кВ: $X_{\phi} = X_{H} = 0.3 \cdot 10^{-3}$ Ом/м (при номинальном напряжении $U_{H} = 6$ кВ или $U_{H} = 10$ кВ $X_{\phi} = X_{H} = 0.4 \cdot 10^{-3}$ Ом/м); численное значение удельного внутреннего индуктивного сопротивления X_{H} ориентировочно равно $0.6 \cdot 10^{-3}$ Ом/м.

4. Определить ток короткого замыкания, проходящего по петле фазаноль:

$$I_{K3} = \frac{U_{\phi}}{Z_n + Z_{\phi m}},$$

где U_{ϕ} – фазное номинальное напряжение (U_{ϕ} = 220 B);

5. Произвести оценку отключающей способности системы зануления.

Исходные данные

№	<i>l</i> , м	Inв,	k	Марка фаз	ного	Марка нулевого	$P_{\scriptscriptstyle H}$,
варианта		A		провода		провода	кВА
1	100	80	1,25	M10		ПС50	25
2	200	63	1,4	A35		ПС05	40
3	300	125	3,0	ПС35		A25	63
4	50	50	4,0	ПС50		M16	100
5	150	40	6,0	M25		ПС50	160
6	250	125	1,2	A25		ПС05	1600
7	350	80	1,5	ПС35		M16	1000
8	400	100	2,5	A16		M10	630
9	75	40	5,5	ПС50		A25	400
10	125	50	10,0	ПС25		M25	250
11	175	63	2,0	ПС05		M25	2500
12	225	32	3,2	M16		ПС25	40
13	375	63	5,0	M25		M10	63
14	325	125	1,3	ПС25		A16	160
15	275	80	8,0	ПС05		A16	100
16	225	40	6,0	A35		A35	250
17	450	32	4,5	M10		ПС35	400
18	500	100	1,75	A25		A35	1000
19	475	80	2,25	M16		ПС25	1600
20	550	125	2,75	A16		ПС35	25

 Таблица 2

 Удельные активные сопротивления фазных и нулевого проводников

Марка	Удельные сопротивления,	Марка	Удельные сопротивления,
провода	$R_{\phi}, R_{\scriptscriptstyle H}, \mathrm{Om/m}$	провода	$R_{\phi}, R_{\scriptscriptstyle H}, \mathrm{Om/M}$
M10	1,88 · 10 ⁻³	A35	1,00 · 10 ⁻³
M16	1,27 · 10 ⁻³	ПС05	1,20 · 10 ⁻³
M25	1,84 · 10 ⁻³	ПС25	0,67 · 10 ⁻³
A16	2,00 · 10 ⁻³	ПС35	$0.54 \cdot 10^{-3}$
A25	1,34 · 10 ⁻³	ПС50	$0.39 \cdot 10^{-3}$