mathematics Discrete Logic a, b, c, d, e- Alphabels Ram, Book This is a boy - Sontence Sentence Del core five Imperative Introquire Exclamatory P: Deepak is a good boy Propositions 9: 2×3 =6 Compound atomic +abonic + atonice + This is aboy DIndia's Coepital is Delli and Delli Cerpitals is New Dellij logical operations Conjunction (1)-fand Disjunction (V)-or Negation (coo u)_ REDMI NOTE 5 PRO In moth MI DUAL CAMERA

Conjunction (1) P: Deepak is a good boy 9 : Deepak is an intelligent boy P+9 = Combination) Deepak is a good and an intelligent boy Disjunction (V) P: Deepak is going patora 9: Deepak is going Delhi =) Deepak is going podna or dellis. MI DUAL CAMERA

P 9 Prg Prg XOR	6
T T T F F	4
TFTFT	4
F T T F T	6
T F F F	C
	E
A Negotion of Conjuction, (NAND), (~(PAQ))	6
It will be false if p and q both	
are true other wise The	6
NAND, ~ (PAq), And's Not	-
9 And's negation	
,	1
P 9 PN9 ~ (PN9) T T T T T T T T T	C
T F F T F T T T T T T T T T T T T T T T	C
F For F T T T T T T T T T	9
NAND	
	C
Negation of Disjunction (NOR), (~(pvq)) It will be true if panely are take	
false other wise false	
	6
(NOR), ~ (PVq), And'sor,	1
And's negation REDMI NOTE 5 PRO	
MI DUAL CAMERA 2023/2/7 21:	56

Logical Equivalence (=)

Two different Compound propositions are said to be logically aquivalence if they have the same truth value or truth tables.

P 9 T T T F	nplng	1 P 19	&PV9	PA ~9 1	2 1 NP	R.H.S
7 7	FF	一十	T	F	F	P
TF	FT	F	+	T	F	+
FT	T F	E	7.	Froit	ico 8 long	K-
FF	T F T	F	F	F	F	F

n(PA9)	L.H.S.	-	
E 7	P		
T	T	R. Mr.	S = L.M.S
T	AUTI (96 1 9	provel
T	F	1 5-D - 1- 1-	
T 99	F	100 John	

REDMI NOTE 5 PRO MI DUAL CAMERA

predicates, and quantifiers
Tautologies and Contradictions
Tantologies o_
A tautologies is an statement always true.
EX-PINP PVNP TFTTT
Contradictions
A fautologies is an statement
always folse
P / NP / PNNP
F F
Try's 1,5 the example of
Contradictions
DED. W. LIGHT CO.

REDMI NOTE 5 PRO MI DUAL CAMERA

Exemple 0 XX X 3 ⇒ of x and x ≥ 3 **७**×2 €3 => pand q (PAq) Now ~ (pnq) = ~pv~q · ~por~j 02 × 10 08273 08 0 2 2 9 4 2 4 2 ~(Prq) = ~PV~q 1-92x or x22

REDMI NOTE 5 PRO MI DUAL CAMERA

2023/2/7 21:56

COUNTRATION CONTRACTOR

Logical Equivalence laws

Commutative laws: -> PA9 = 9AP PV9 = QVP Associative laws: -> (prq)r=pr(qrt) (prvq)vr=pr(qvt) Distributive laws: -> PA(qvx)=(PAQ)v(PAT) PV(qAT)=pvq)A I dentity law: -> prt=p Negation laus: -> pv~p=t PA~P=C Double negative (only: $\rightarrow \sim (\sim p) \equiv P$ Idempotent lans: -> PAP = P PYP=P universal bound laws: > pyt=t. PACEC Demorgenis Laws: - ~ (prq) = ~prq ~ (prq) = ~prq Absorpation laws: > por pv(prg)=p PA (PV9)=P Negations laws: | at = C ~c =t Conditional statements (->)

hand work

9: get Paid

(If .. _ .. then)

if you work hand then you get paid.

if P then q.

It you work hard then you not paid this is

a) ~P vq ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8
F F F T F T F T T T T T T T T T T T T T	X X X X X
PV~9 ~~ ~P	7
P q ~P ~q pv~q pv~q - ~p	1
Negation of Condition statement.	1 1
The my dad is at home then he can't pick me up The My dad is at home and he can pick me up $(P \rightarrow Q) = P \wedge Q$	
$\sim (P \rightarrow Q) = P \wedge \sim Q$	
and the state of t	
	11 11 11
REDMI NOTE 5 PRO MI DUAL CAMERA 2023/2/7 21:56	

EX= ①
$$A : \begin{cases} 5, 6, 7 \end{cases}$$
 $m : any integer$
 $\exists m \in A \text{ such that } m^2 = m$

$$5^2 = 25 \neq 5$$

$$6 = 36 \neq 6$$

$$7^2 = 49 \neq 7$$
 $\forall x \in R, x > \frac{1}{2} x \text{ folse}$

$$5 > \frac{1}{5}$$
 sut

$$0.1 > \frac{1}{0.1}$$
 $\exists m \in R \text{ such that } \frac{1}{m} \text{ is undiffered}$
 $m = 1$

$$\frac{1}{1} = \text{objined}$$
 $m = 5$

$$\frac{1}{1} = \text{defined}$$
 $m = 0$

$$\frac{1}{1} = \text{objined}$$
 $m = 0$

Ex-A= § 1, 2, 5, 3.8, -5.5}

 $\forall \chi \in A, \chi \in N \rightarrow false$ $\downarrow Wegation$ $\exists \chi \in A, \chi \notin N$

 $\exists x \in A$, z is multiple of 10 - false $\sqrt[4]{\text{Negation}}$ $\forall x \in A$, z is not multiple of 10

REDMI NOTE 5 PRO MI DUAL CAMERA