Perceptron – classification boundary

Consider the classification example shown in the following picture, where empty and filled circles correspond to two different classes.

Assume that a single-neuron perceptron is used to perform the classification. Its operation can be described by the following equation:

$$o = \Phi_{hlb} (\mathbf{w}^T \mathbf{x} + \theta) ,$$

where Φ_{hlu} is bipolar hard-limiting activation function, **x** is the input vector, **w** is the weight vector, and θ is bias. Which of the following sets of parameters will perform the desired classification?

<u>Solution:</u> This problem can be solved using slope and intercept form of line equation, as shown in the following table.

Weights and bias	\mathbf{w}_1	W 2	θ	-w ₁ /w ₂	slope	$-\theta/w_2$	y-intercept
\square $\mathbf{w}^T = [2,2], \ \theta = -2$	2	2	-2	-1	\	1	1
\square $\mathbf{w}^T = [0,1], \ \theta = -1$	0	1	-1	0	-	1	1
\square $\mathbf{w}^T = [2, 2], \ \theta = 2$	2	2	2	-1	\	-1	-1
\square $\mathbf{w}^T = [-1, 1], \ \theta = 1$	-1	1	1	1	/	-1	-1
$\mathbf{w}^T = [-2,2], \ \theta = -2$	-2	2	-2	1	/	1	1