Question 1

Open the **Music Tours - Time Intelligence and Custom Calendars.pbix** file in the folder shown above. This report has the automatic calendar feature disabled.

Date fields in this report don't have an automatic calendar.

Import the **Track calendar** worksheet from the **Track calendar.xlsx** Excel file. This calendar assumes the financial year ends on the 31st of March.

The table has several columns related to financial periods.

Configure this table so that you can use it as a calendar table. Here are some things you might need to do:

- Mark the table as a date table.
- Disable any automatic summing of numeric columns.
- Sort the **Month** and **Weekday** columns by appropriate columns.
- Hide columns from the report view.
- Create a relationship between the **Track** and **Track calendar** tables.

After completing the above tasks your table should resemble the one shown below:

The finished calendar table.

Use the **Track calendar** to create the following matrix visual:

You'll find measures in the **Music Measures** table to help you with this.

Apply a filter to the matrix visual so that it only shows dates from 1 April 1980.

You'll need to add a field to the Filters on this visual section of the Filter pane to do this.

Create a measure which shows a year-to-date count of tracks and add this to the matrix.

Financial year	Count Tracks	Count Tracks YTD
February	2	21
March	4	25
☐ FY1982/1983	23	23
April	2	2
May	2	4

Don't forget to reset the count on the end date of the financial year.

Calculate year-to-date counts for the other two measures in the matrix.

The final matrix should resemble this.

Save and close the report.

Question 2

Open the **Music Tours Basic Time Intelligence.xlsx** file in the folder shown above. On **Sheet1** you'll find a pivot table displaying a couple of measures.

We'd like to analyse these values by year and month.

In Power Pivot, choose **Design | Date Table | New** to create a new calendar table. Rename this table as **Show Calendar** and create a relationship to the **Show** table.

Connect the **Date** column to the **Show date** column.

Add the Year, Month and Date fields to the pivot table on Sheet1.

		Sum Tickets		Sum Show
Row Labels	*	Sold		Revenue
□1981				
Septemb	er			
25/09/1	981		90,782	\$1,429,817
26/09/1	981		90,782	\$1,429,817
27/09/1	981		75,000	\$1,125,000

The table is now divided by dates.

Create a measure using the **TOTALMTD** function to calculate a monthly running total of tickets sold. Add the measure to the pivot table.

Row Labels	Sur Sol		Sum Show Revenue	Monthly Running Total Tickets Sold
□1981				
Septembe	er			
25/09/19	981	90,782	\$1,429,817	90,782
26/09/19	981	90,782	\$1,429,817	181,564
27/09/19	981	75,000	\$1,125,000	256,564
28/09/19	981			256,564
29/09/19	981			256,564

Annoyingly, the running total makes dates on which no tickets were sold appear in the table.

To hide the dates on which no tickets were sold, update the measure to include an **IF** function which checks if the sum of tickets sold is blank.

Row Labels	Sum	Tickets	Sum Show Revenue	Monthly Running Total Tickets Sold
□1981	- Desirable			
September				
25/09/1981		90,782	\$1,429,817	90,782
26/09/1981		90,782	\$1,429,817	181,564
27/09/1981		75,000	\$1,125,000	256,564
□ October				
03/10/1981		60,000	\$960,000	60,000
04/10/1981		60,000	\$960,000	120,000

The table should now hide any dates with no ticket sales.

Add another measure to calculate a monthly running total of show revenue. Add this measure to the pivot table and make sure that it doesn't cause dates with no ticket sales to appear.

Row Labels	Sum ▼ Sold		Sum Show Revenue	Monthly Running Total Tickets Sold	Monthly Running Total Show Revenue
■1981					
■ September					
25/09/198	31	90,782	\$1,429,817	90,782	\$1,429,817
26/09/198	31	90,782	\$1,429,817	181,564	\$2,859,633
27/09/198	31	75,000	\$1,125,000	256,564	\$3,984,633

Apply some formatting to the measure.

On Sheet2 you'll find a pivot table showing the total length of tracks released as singles.

We'd like to group this measure by date.

Create a new calendar table called **Track calendar** and connect it to the **Track** table.

Connect the **Date** column to the **Single release date** column.

Add the **Year** and **Month** columns from the **Track Calendar** table to the pivot table on **Sheet2**. Use the **Row Labels** filter to exclude blanks and choose to show subtotals at the top of a group.

	Sum Single
Row Labels	Length (secs)
□1983	10,422
January	634
February	257
March	1 505

Each year should show a subtotal for the measure.

Create a measure which compares the sum of single length with the same period in the previous year. You can use a combination of

the **CALCULATE** and **SAMEPERIODLASTYEAR** functions to do this. Add the measure to the pivot table.

	Sum Single	Sum Single Length vs.
Row Labels	■ Length (secs)	Same Dates Last Year
□1983	10,422	4,899
January	634	401
Februan	y 257	7 -386

Add conditional formatting to highlight positive and negative numbers.

Add a measure which compares the sum of single length with the same value from one month ago. You can use the **CALCULATE** and **DATEADD** functions to do this. Add the measure to the pivot table.

	Sum Single	Sum Single Length vs.	Sum Single Length
Row Labels	Length (secs)	Same Dates Last Year	vs. Previous Month
December	r 436	436	-685
□ 1984	9,520	-902	-62
January	878	244	442
February	548	291	-330

Conditional formatting might make it easier to read the results.

When comparing with the previous month, it doesn't make sense to display a value for the year. Try modifying the measure so that it only shows a result when the **Month** column is in scope.

You can use the **ISINSCOPE** function to check if the **Month** column of the **Track Calendar** table is in scope.

Check that the subtotals don't appear for years for this measure.

	Sum Single	Sum Single Length vs.	Sum Single Length
Row Labels	Length (secs)	Same Dates Last Year	vs. Previous Month
December	436	436	-685
□1984	9,520	-902	
January	878	244	442
February	548	291	-330

You should still see subtotals for the first two measures.

Save and close the file.

Question 3

Open the **Music Tours - Basic Time Intelligence.pbix** file in the folder shown above. On **Page 1** you'll find a matrix containing the dates of shows and the tickets sold and revenue generated.

You can use the slicer to choose different artists and tours.

Add a measure to create a monthly running total of tickets sold using the **TOTALMTD** function.

Remember to reference the **Date** column of the automatic calendar table that is related to the **Show date** field, rather than just the **Show date** field itself.

Add the measure to the matrix.

Annoyingly, the running total makes dates on which no tickets were sold appear in the matrix.

To hide the dates on which no tickets were sold, update the measure to include an **IF** function which checks if the sum of tickets sold is blank.

The matrix should now hide any dates with no ticket sales.

Add another measure to calculate a monthly running total of show revenue. Add this measure to the matrix and make sure that it doesn't cause dates with no ticket sales to appear.

You could apply some formatting to the measure.

On **Page 2** you'll find a matrix showing the total length of tracks released as singles, grouped by year and month.

Year	Sum Single Length (secs)
□ 1980	8,757
January	523
February	202

The matrix has been filtered to show singles released since 1980.

Create a measure which compares the sum of single length with the same period in the previous year. You can use a combination of

the **CALCULATE** and **SAMEPERIODLASTYEAR** functions to do this. Add the measure to the matrix.

Year	Sum Single Length (secs)	Sum Single Length vs. Same Dates Last Year
□ 1983	10,422	4,899
January	634	401
February	257	-386

You could add conditional formatting to highlight positive and negative numbers.

Add a measure which compares the sum of single length with the same value from one month ago. You can use the **CALCULATE** and **DATEADD** functions to do this. Add the measure to the matrix.

Year	Sum Single Length (secs)	Sum Single Length vs. Same Dates Last Year		
December	436	436	-685	
□ 1984	9,520	-902	-62	
January	878	244	442	
February	548	291	-330	

Again, conditional formatting might make it easier to read the results.

When comparing with the previous month, it doesn't make sense to display a value for the year. Try modifying the measure so that it only shows a result when the **Month** column is in scope.

You can use the **ISINSCOPE** function to check if the **Month** column of the **Single release date** field is in scope.

Save and close the report.

Question 2

Open the **Music Tours Basic Time Intelligence.xlsx** file in the folder shown above. On **Sheet1** you'll find a pivot table displaying a couple of measures.

We'd like to analyse these values by year and month.

In Power Pivot, choose **Design | Date Table | New** to create a new calendar table. Rename this table as **Show Calendar** and create a relationship to the **Show** table.

Connect the **Date** column to the **Show date** column.

Add the Year, Month and Date fields to the pivot table on Sheet1.

Question 4

Open the Music Tours Custom Calendars.xlsx file in the folder shown above.

Import the **Show calendar** worksheet from the Excel file called **Show calendar.xlsx** into the Power Pivot data model.

Import this worksheet.

Mark the newly imported table as a date table, using the **Date** column as the key.

Use the **Date** column as the unique identifier for the table.

Set the default summarization of any numeric columns in the table to **Do not summarize**.

Power Pivot tries to sum values in numeric columns, like the **Year** column shown here. We don't want this to happen!

Change the **Sort by Column** setting of the columns shown in the table below:

Column Column to sort by

Month Month number WeekdayWeekday number

Hide the **Month number** and **Weekday number** fields from client tools so that they won't appear when you're building pivot tables.

Create a hierarchy starting with the **Decade** column. Rename the hierarchy as **Show date hierarchy** and add the columns shown below to it:

You can create a hierarchy in the **Diagram view** of Power Pivot.

Create a relationship between the **Show calendar** and **Show** tables.

Create the relationship between the columns highlighted here.

Use your new calendar table to create the following pivot charts (you'll find some measures in the **Show** table to help you):

Change the formatting to suit your preferences.

Add a slicer which you can use to filter all the charts by the **Weekday** column.

Connect the slicer to each chart.

Save and close the file.

		Tickets	Sum Show	
Row Labels	▼ Sold		Revenue	
□1981				
■ Septembe	r			
25/09/19	81	90,782	\$1,429,817	
26/09/1981		90,782	\$1,429,817	
27/09/19	81	75,000	\$1,125,000	

The table is now divided by dates.

Create a measure using the **TOTALMTD** function to calculate a monthly running total of tickets sold. Add the measure to the pivot table.

UNITED A TOTAL		um Tickets		Monthly Running		
Row Labels	▼ S	old	Revenue	Total Tickets Sold		
□ 1981						
■ Septemb	er					
25/09/1	981	90,782	\$1,429,817	90,782		
26/09/1	981	90,782	\$1,429,817	181,564		
27/09/1	981	75,000	\$1,125,000	256,564		
28/09/1	981			256,564		
29/09/1	981			256,564		

Annoyingly, the running total makes dates on which no tickets were sold appear in the table.

To hide the dates on which no tickets were sold, update the measure to include an **IF** function which checks if the sum of tickets sold is blank.

Su Row Labels 🔽 So			Sum Show Revenue	Monthly Running Total Tickets Sold	
■1981					
■ September					
25/09/198	1	90,782	\$1,429,817	90,782	
26/09/198	1	90,782	\$1,429,817	181,564	
27/09/198	1	75,000	\$1,125,000	256,564	
■October					
03/10/198	1	60,000	\$960,000	60,000	
04/10/198	1	60,000	\$960,000	120,000	

The table should now hide any dates with no ticket sales.

Add another measure to calculate a monthly running total of show revenue. Add this measure to the pivot table and make sure that it doesn't cause dates with no ticket sales to appear.

Apply some formatting to the measure.

On **Sheet2** you'll find a pivot table showing the total length of tracks released as singles.

We'd like to group this measure by date.

Create a new calendar table called **Track calendar** and connect it to the **Track** table.

Connect the **Date** column to the **Single release date** column.

Add the **Year** and **Month** columns from the **Track Calendar** table to the pivot table on **Sheet2**. Use the **Row Labels** filter to exclude blanks and choose to show subtotals at the top of a group.

Each year should show a subtotal for the measure.

Create a measure which compares the sum of single length with the same period in the previous year. You can use a combination of

the **CALCULATE** and **SAMEPERIODLASTYEAR** functions to do this. Add the measure to the pivot table.

Row Labels	Sum Single ▼ Length (secs)	Sum Single Length vs. Same Dates Last Year		
□1983	10,422	4,899		
January	634	401		
Februar	257	-386		

Add conditional formatting to highlight positive and negative numbers.

Add a measure which compares the sum of single length with the same value from one month ago. You can use the **CALCULATE** and **DATEADD** functions to do this. Add the measure to the pivot table.

Sum Single		Sum Single Length vs.	Sum Single Length	
Row Labels	T Length (secs)	Same Dates Last Year	vs. Previous Month	
Decembe	r 436	436	-685	
□1984	9,520	-902	-62	
January	878	244	442	
February	548	291	-330	

Conditional formatting might make it easier to read the results.

When comparing with the previous month, it doesn't make sense to display a value for the year. Try modifying the measure so that it only shows a result when the **Month** column is in scope.

You can use the **ISINSCOPE** function to check if the **Month** column of the **Track Calendar** table is in scope.

Check that the subtotals don't appear for years for this measure.

Sum Single		Sum Single Length vs.	Sum Single Length	
Row Labels	Length (secs)	Same Dates Last Year	vs. Previous Month	
Decembe	r 436	436	-685	
□ 1984	9,520	-902		
January	878	244	442	
February	548	291	-330	

You should still see subtotals for the first two measures.

Save and close the file.

Question 5

o start, if you haven't already done so run the script in the above folder to generate the **MAM** database (not for commercial use or copying).

Create quarter-to-date and year-to-date total quantity sold measures using the **TOTALQTD** and **TOTALYTD** functions:

Row Labels 🖃	Quantity	Quarter to date	Year to date
□ 2009	76,707	19,503	76,707
January	6,320	6,320	6,320
February	5,657	11,977	11,977
March	6,460	18,437	18,437
April	6,341	6,341	24,778
May	6,470	12,811	31,248
June	6,544	19,355	37,792
July	6,790	6,790	44,582
August	6,335	13,125	50,917
September	6,287	19,412	57,204
October	6,504	6,504	63,708
November	6,386	12,890	70,094
December	6,613	19,503	76,707
□ 2010	75,956	19,173	75,956
January	6,430	6,430	6,430
February	5,832	12,262	12,262
March	6 605	10 0/17	10 0/17

You'll need to import the **tblPos**, **tblTransaction** and **tblCalendar** tables.

Save this workbook as Years and quarters, then close it down.

Question 6

Good luck! To start, if you haven't already done so run the script in the above folder to generate the **MAM** database (not for commercial use or copying).

Connect to tables as follows:

......

Row Labels	Column Labels Amy Winehouse YTD this year	YTD last year	Variance	Anna-Liese Rice YTD this year	YTD last year	Variance	Bob Cra
⊇ 2010	59,678.28	62,906.73	(3,228.45)	108,724.80	110,165.75	(1,440.95)	155,
January	4,619.07	5,381.75	(762.67)	9,041.57	9,517.87	(476.31)	13,
February	9,590.02	10,010.09	(420.07)	16,952.30	17,640.16	(687.86)	25,
March	15,042.74	15,963.06	(920.32)	26,153.42	26,298.00	(144.58)	39,
April	19,299.50	21,202.84	(1,903.35)	34,938.52	35,437.92	(499.40)	52,
May	25,031.98	26,855.05	(1,823.08)	45,072.26	45,128.59	(56.33)	63,
June	29,531.98	31,248.50	(1,716.52)	53,972.05	54,012.64	(40.60)	75,
July	34,285.76	37,283.48	(2,997.72)	63,980.99	63,636.53	344.46	88,
August	39,578.80	42,835.46	(3,256.66)	73,136.35	71,697.84	1,438.52	102,
Septembe	er 44,034.81	47,594.36	(3,559.55)	81,854.25	81,217.35	636.90	115,
October	49,567.37	52,876.63	(3,309.26)	91,026.15	90,635.64	390.51	129,
Novembe	r 54,639.27	58,068.69	(3,429.41)	98,978.88	100,556.22	(1,577.33)	141,
Decembe	r 59,678.28	62,906.73	(3,228.45)	108,724.80	110,165.75	(1,440.95)	155,

Most of the tables and relationships are as normal, but each region's **RegionManagerId** must tie in to the value of the **StaffId** field in the **Staff** table. You'll also need the store, point-of-sale, transaction and calendar tables.

The company manager wants to be able to compare year-to-date figures for 2010 for the various regional managers against the year-to-date figures for the corresponding previous period. Your task is to create these figures!

Here's what Wise Owl think the final answer should look like:

The figures for the first couple of regional managers ...

You should find the ${\bf DATESYTD}$ function useful, as shown in the manual.

Save this workbook as **The full Monty**, and close it down.