Splošna topologija

 $Luka\ Horjak\ (lukahorjak@student.uni-lj.si)$

29. november 2021

Kazalo Luka Horjak

Kazalo

Uvod			3
1	Prostori in preslikave		
	1.1	Topološki prostori	4
	1.2	Zvezne preslikave	5
	1.3	Homeomorfizmi	6
	1.4	Baze in predbaze	7
	1.5	Podprostori	9
2		ološke lastnosti Ločljivost	11 11
St	varn	n kazalo	14

Uvod Luka Horjak

$\mathbf{U}\mathbf{vod}$

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Splošna topologija v letu 2021/22. Predavatelj v tem letu je bil prof. dr. Petar Pavešić.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

1 Prostori in preslikave

1.1 Topološki prostori

Definicija 1.1.1. Naj bo X množica. Topologija na X je družina τ podmnožic X, ki zadošča pogojem:

- i) $\emptyset, X \in \tau$,
- ii) poljubna unija elementov τ je element τ ,
- iii) poljuben končen presek elementov τ je element τ .

 $Topološki\ prostor$ je par (X,τ) . Elementom τ pravimo $odprte\ množice$, njihovim komplementom pa zaprte.

Opomba 1.1.1.1. V metričnih prostorih (X, d) odprte množice¹ tvorijo topologijo τ_d .

Definicija 1.1.2. Topološki prostor (X, τ) je *metrizabilen*, če obstaja taka metrika d na X, da je $\tau = \tau_d$ pri zgornjih oznakah.

Opomba 1.1.2.1. Za metriko $d'(x, x') = \min \{d(x, x'), 1\}$ velja $\tau_d = \tau_{d'}$.

¹ Tu vzamemo definicijo odprtih množic v metričnih prostorih.

1.2 Zvezne preslikave

Definicija 1.2.1. Preslikava $f:(X,\tau)\to (X',\tau')$ je zvezna, če je praslika vsake odprte množice odprta, oziroma

$$V \in \tau' \implies f^{-1}(V) \in \tau.$$

Opomba 1.2.1.1. Zvezne preslikave med metričnimi prostori so zvezne tudi glede na z metrikami porojene topologije.

Opomba 1.2.1.2. Identiteta id: $(X, \tau) \to (X, \tau')$ je zvezna natanko tedaj, ko je $\tau' \subseteq \tau$. Pravimo, da je topologija τ finejša, τ' pa bolj groba.

Trditev 1.2.2. Kompozitum zveznih preslikav je zvezna preslikava.

Dokaz. Naj bosta $f:(X,\tau)\to (X',\tau')$ in $g:(X',\tau')\to (X'',\tau'')$ zvezni. Sledi

$$V \in \tau'' \implies q^{-1}(V) \in \tau' \implies (q \circ f)^{-1}(V) \in \tau.$$

Opomba 1.2.2.1. Množico vseh zveznih preslikav med (X, τ) in (Y, τ') označimo z $\mathcal{C}((X, \tau), (Y, \tau'))$, oziroma $\mathcal{C}(X, Y)$.

Izrek 1.2.3. Naslednje izjave so ekvivalentne:

- i) $f: (X, \tau) \to (Y, \tau')$ je zvezna,
- ii) $V \in \tau' \implies f^{-1}(V) \in \tau$,
- iii) $B^{c} \in \tau' \implies (f^{-1}(B))^{c} \in \tau$,
- iv) $\forall A \subseteq X : f(\overline{A}) \subseteq \overline{f(A)}$.

Dokaz. Prvi dve trditvi sta očitno ekvivalentni po definiciji zveznosti. 2. in 3. trditev sta očitno ekvivalentni, saj velja $f^{-1}(B^{c}) = f^{-1}(B)^{c}$. Dokažimo še ekvivalenco 3. in 4. trditve.

Naj bo $A\subseteq X$ poljubna in predpostavimo, da velja 3. trditev. Sledi, da je

$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)}).$$

Desna stran je zaprta množica, zato je $\overline{A} \subseteq f^{-1}(\overline{f(A)})$ in

$$f(\overline{A}) \subseteq \overline{f(A)}$$
.

Sedaj predpostavimo, da velja 4. točka. Naj bo ${\cal B}$ poljubna zaprta podmnožica Y. Potem je

$$f(\overline{f^{-1}(B)}) \subseteq \overline{f(f^{-1}(B))} \subseteq \overline{B} = B.$$

Sledi, da je

$$\overline{f^{-1}(B)} \subseteq f^{-1}(B),$$

zato je $f^{-1}(B)$ zaprta.

1.3 Homeomorfizmi

Definicija 1.3.1. Funkcija $f: X \to X'$ določa homeomorfizem med prostoroma (X, τ) in (X', τ') , če je f bijekcija in obenem inducirana bijekcija $f: \tau \to \tau'$. Pišemo $(X, \tau) \approx (X', \tau)$ in pravimo, da sta prostora homeomorfna.

Definicija 1.3.2. Preslikava je odprta, če je slika vsake odprte podmnožice X odprta v X'. Simetrično definiramo zaprte preslikave.

Trditev 1.3.3. Naslednje izjave so ekvivalentne:

- i) $f: X \to X'$ je homeomorfizem,
- ii) f je bijekcija, f in f^{-1} sta zvezni,
- iii) f je zvezna, odprta bijekcija,
- iv) f je zvezna, zaprta bijekcija.

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.3.4. *Topološka lastnost* je vsaka lastnost topologije, ki se ohranja pri homeomorfizmih.

Opomba 1.3.4.1. Kompaktnost in povezanost sta topološki lastnosti, polnost pa ne.

Definicija 1.3.5. Definiramo naslednje množice:

- i) $B^n = \{\overrightarrow{x} \in \mathbb{R}^n \mid \|\overrightarrow{x}\| \leq 1\}$ zaprta enotska krogla
- ii) $\mathring{B}^n = \{ \overrightarrow{x} \in \mathbb{R}^n \mid ||\overrightarrow{x}|| < 1 \}$ odprta enotska krogla
- iii) $S^{n-1} = \{\overrightarrow{x} \in \mathbb{R}^n \mid \|\overrightarrow{x}\| = 1\}$ enotska sfera

Trditev 1.3.6. Velja $\mathring{B}^n \approx \mathbb{R}^n$.

Dokaz. Vzamemo bijekcijo

$$f(\vec{x}) = \frac{\vec{x}}{1 - \|\vec{x}\|}.$$

Trditev 1.3.7. Velja $S^{n-1} \setminus \{(0, 0, ..., 1)\} \approx \mathbb{R}^{n-1}$.

Dokaz. Naredimo inverzijo v točki $(0,0,\ldots,1)$.

Opomba 1.3.7.1. Zgornji preslikavi pravimo stereografska projekcija.

Opomba 1.3.7.2. Posebej velja $S^2 \approx \mathbb{C} \cup \{\infty\}$. Temu prostoru pravimo *Riemannova sfera*.

26. oktober 202

1.4 Baze in predbaze

Definicija 1.4.1. Družina odprtih množic $\mathcal{B} \subseteq \tau$ je *baza* topologije τ , če lahko vsak element τ dobimo kot unijo elementov \mathcal{B} .

Trditev 1.4.2. Naj bo \mathcal{B} baza topologije τ množice x. $A \subseteq X$ je odprta natanko tedaj, ko za vsak $x \in A$ obstaja $B \in \mathcal{B}$, za katero je $x \in B$ in $B \subseteq A$.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.4.3. Naj bo $f:(X,\tau)\to (X',\tau')$, \mathcal{B} baza τ in \mathcal{B}' baza τ' . Potem velja

- i) f je zvezna natanko tedaj, ko je $f^{-1}(\mathcal{B}') \subseteq \tau$ in
- ii) f je odprta natanko tedaj, ko je $f(\mathcal{B}) \subseteq \tau'$.

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.4.4. Naj bo $\mathcal{B}_x \subseteq \tau$ neka poddružina topologije, katere elementi vsebujejo x. Pravimo, da je \mathcal{B}_x lokalna baza okolice pri x, če za vsak $U \in \tau$, ki vsebuje x, obstaja $B \in \mathcal{B}_x$, za katero je $B \subseteq U$.

Trditev 1.4.5. Naj bo \mathcal{B} družina podmnožic X in τ množica unij elementov \mathcal{B} . Potem je τ topologija natanko tedaj, ko je \mathcal{B} pokritje X in velja

$$\forall B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2 \exists B \in \mathcal{B} \colon x \in B \land B \subseteq B_1 \cap B_2.$$

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.4.6. Naj bo \mathcal{P} neka družina podmnožic X. Množica \mathcal{B} vseh končnih presekov elementov \mathcal{P} je baza. Družini \mathcal{P} pravimo predbaza baze \mathcal{B} .

Trditev 1.4.7. Naj bo $f:(X,\tau)\to (X',\tau')$ in \mathcal{P}' podbaza za τ' . Potem je f zvezna natanko tedaj, ko je $f^{-1}(\mathcal{P}')\subseteq \tau$.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.4.8. Preslikava $f: Z \to X_1 \times \cdots \times X_n$ je zvezna za produktno topologijo² natanko tedaj, ko so zvezne vse komponente f.

Dokaz. Očitno je trditev dovolj dokazati za n=2. Naj bo $f:Z\to X\times Y$ zvezna. Potem sta komponenti kartezični produkt projekcije z f, ki sta obe zvezni.

Če sta obe komponenti zvezni, pa ni težko videti, da so praslike pasov odprte, ti pa tvorijo predbazo. $\hfill\Box$

Definicija 1.4.9. Prostor je 1-števen, če za vsak x obstaja števna lokalna baza pri x. Prostor je 2-števen, če ima števno bazo.

² Produktna topologija je topologija, ki jo dobimo iz baze $\{U_1 \times \cdots \times U_n \mid \forall i : U_i \in \tau_i\}$.

Trditev 1.4.10. Naj bo X 1-števen topološki prostor. Potem za vsak $A \in x$ velja, da je $\overline{A} = L(A) = \{x \mid x \text{ je limita zaporejda v } A\}.$

Dokaz. Za vsak $x\in\overline{A}$ obstaja števna lokalna baza, zato lahko za vsak člen zaporedja preprosto izberemo poljuben

$$a_n \in A \cap \bigcap_{i=1}^n B_i.$$

Trditev 1.4.11. $f: X \to Y$ je zvezna natanko tedaj, ko za vsak $A \subseteq X$ velja $f(L(A)) \subseteq L(f(A))$.

Definicija 1.4.12. Množica $A \subseteq X$ je gosta, če je $\overline{A} = X$.

Definicija 1.4.13. Prostor (X, τ) je separabilen, če v njem obstaja števna gosta množica.

Izrek 1.4.14. Metrični prostor je 2-števen natanko tedaj, ko je separabilen.

Dokaz. Naj bo Q števna in gosta podmnožica X. Sedaj preprosto vzamemo

$$\mathcal{B} = \{ \mathcal{K}(q, r) \mid q \in Q, r \in \mathbb{Q} \} \,.$$

9. november 2021

1.5 Podprostori

Definicija 1.5.1. Naj bo (X, τ) topološki prostor in $A \subseteq X$. Množica

$$\tau_A = \{ A \cap U \mid U \in \tau \}$$

je topologija na A, ki ji pravimo inducirana ali podedovana topologija. Prostor (A, τ_A) je podprostor prostora (X, τ) .

Trditev 1.5.2. Zaprte množice v A so preseki A z zaprtimi množicami X.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.5.3. Naj bo \mathcal{B} baza τ . Potem je

$$\mathcal{B}_A = \{ B \cap A \mid B \in \mathcal{B} \}$$

baza inducirane topologije.

Definicija 1.5.4. Topološka lastnost je *dedna*, če se prenaša na podprostore.

Opomba 1.5.4.1. Separabilnost ni dedna lastnost, a se deduje na odprte podprostore. Podobno se kompaktnost deduje na zaprte podprostore.

Trditev 1.5.5. Naj bo $B \subseteq A \subseteq X$. Potem je

$$\operatorname{Cl}_A B = A \cap \operatorname{Cl}_X B$$
, $\operatorname{Int}_A B \supseteq A \cap \operatorname{Int}_X B$ in $\operatorname{Fr}_A B \subseteq A \cap \operatorname{Fr}_X B$.

Dokaz. Velja

$$\operatorname{Cl}_A B = \bigcap \{ F \mid B \subseteq F \subseteq A \land F \text{ je zaprta v } A \}$$

= $\bigcap \{ A \cap F \mid B \subseteq F \subseteq X \land F \text{ je zaprta v } X \}$
= $A \cap \operatorname{Cl}_X B$.

Podobno je

$$\begin{split} \operatorname{Int}_A B &= \bigcup \left\{ U \mid U \subseteq A \wedge U \subseteq B \wedge U \text{ je odprta v } A \right\} \\ &= \bigcup \left\{ A \cap U \mid U \subseteq X \wedge U \cap A \subseteq B \wedge U \text{ je odprta v } X \right\} \\ &\supseteq A \cap \left(\bigcup \left\{ U \mid U \subseteq X \wedge U \subseteq B \wedge U \text{ je odprta v } X \text{ in } B \right\} \right) \\ &= A \cap \operatorname{Int}_X B. \end{split}$$

Zadnja inkluzija je direktna posledica prejšnje enakosti in inkluzije.

Trditev 1.5.6. Če je B odprta v A in A odprta v X, je B odprta v X. Podobno, če je B zaprta v A in A zaprta v X, je B zaprta v X.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.5.7. Inkluzija $i: (A, \tau_A) \hookrightarrow (X, \tau)$ je zvezna.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.5.8. Skrčitev zvezne funkcije na podprostor je zvezna.

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.5.9. Pokritjem $\{X_{\lambda}\}$ topološkega prostora pravimo atlas.

Izrek 1.5.10. Naj bo $\{X_{\lambda}\}$ odprto pokritje za X. Potem velja

$$A$$
 je odprta v $X \iff \forall \lambda \colon A \cap X_{\lambda}$ je odprta v X_{λ} .

Če je $\{X_{\lambda}\}$ zaprto in lokalno končno pokritje za X, velja

$$A$$
 je zaprta v $X \iff \forall \lambda \colon A \cap X_{\lambda}$ je zaprta v X_{λ} .

Dokaz. Če je $A \cap X_{\lambda}$ odprta v X za vse λ , je A odprta v X, saj je

$$A = \bigcup_{\lambda} A \cap X_{\lambda}.$$

Naj bo sedaj $A \cap X_{\lambda}$ zaprta v X za vse λ . Naj bo $x \in X \setminus A$ in U okolica x, ki seka končno mnogo elementov $\{X_{\lambda}\}$ – naj bodo to $X_{\lambda_1}, \ldots, X_{\lambda_n}$. Sledi, da je

$$x \in U \setminus \bigcup_{i=1}^{n} A \cap X_{\lambda_i},$$

kar je odprta okolica x, ki ne seka A.

Izrek 1.5.11. Naj bo $\{X_{\lambda}\}$ odprto ali lokalno končno zaprto pokritje X in $f\colon X\to Y$ funkcija. Potem velja

$$f$$
 je zvezna $\iff \forall \lambda \colon f|_{X_{\lambda}}$ je zvezna.

Dokaz. Naj bo $\{X_{\lambda}\}$ odprto pokritje. Za odprto množico $U \subseteq Y$ velja

$$f^{-1}(U) = \bigcup_{\lambda} f^{-1}(U) \cap X_{\lambda} = \bigcup_{\lambda} \left(f|_{X_{\lambda}} \right)^{-1} (U),$$

kar je odprto v X.

Naj bo $\{X_{\lambda}\}$ lokalno končno zaprto pokritje. Za zaprto množico $F\subseteq Y$ velja

$$f^{-1}(F) = \bigcup_{\lambda} f^{-1}(F) \cap X_{\lambda} = \bigcup_{\lambda} (f|_{X_{\lambda}})^{-1} (F),$$

kar je zaprto v X.

Definicija 1.5.12. Preslikava $f: X \to Y$ je vložitev, če je $f: X \to f(X)$ homeomorfizem.

³ Obe preostali implikaciji sta direktna posledica definicije inducirane topologije.

2 Topološke lastnosti

2.1 Ločljivost

Definicija 2.1.1. Pravimo, da topologija loči disjunktni množici $A, B \subseteq X$, če obstajata taki množici $U, V \in \tau$, da velja

$$A \subseteq U$$
, $B \subseteq V$, $B \cap U = \emptyset$ in $A \cap V = \emptyset$.

Pravimo, da topologija ostro loči množici, če sta v zgornji definiciji U in V disjunktni.

Definicija 2.1.2. Topološki prostor (X, τ) je Hausdorffov, če τ ostro loči vse točke.

Trditev 2.1.3. Naslednje izjave so ekvivalentne:

- i) X je Hausdorffov
- ii) Za vse $x \neq y$ obstaja tak $U \in \tau$, da je $x \in U$ in $y \notin \overline{U}$
- iii) Diagonala⁴ je zaprt podprostor v $X \times X$.

Dokaz. Če je prostor Hausdorffov, lahko preprosto vzamemo U iz definicije. Sledi, da $y \notin \overline{U}$. Če velja druga točka, pa lahko preprosto vzamemo $V = \overline{U}^{c}$.

Naj bo $x \neq y$, U in V pa taki odprti množici, da je $x \in U$ in $y \in V$. U in V sta disjunktni natanko tedaj, ko $U \times V$ ne seka diagonale. Če je prostor Hausdorffov, lahko preprosto vzamemo U iz definicije. Obratno, če je diagonala zaprta, obstaja škatlasta okolica (x, y), ki ne seka diagonale, iz te pa dobimo želene okolice.

Izrek 2.1.4. Naj bo Y Hausdorffov.

- i) Vsaka končna podmnožica Y je zaprta
- ii) Zaporedja v Y imajo najve \check{c} eno limito
- iii) Če sta $f, g: X \to Y$ zvezni, je $\{x \in X \mid f(x) = g(x)\}$ zaprta v X
- iv) Če se zvezni preslikavi $f, g: X \to Y$ ujemata na gosti podmnožici X, sta enaki
- v) Graf zvezne preslikave $f: X \to Y$ je zaprt v $X \times Y$.

Dokaz. Prvi dve točki sta očitni.

Vidimo, da je (f,g) zvezna, velja pa $\{x \in X \mid f(x) = g(x)\} = (f,g)^{-1}(\Delta_x)$.

4. točka sledi iz 3. – če se preslikavi ujemata na neki množici, se ujemata tudi na zaprtju.

Izrek 2.1.5. Naj bo X 1-števen in Y Hausdorffov. Potem je preslikava $f: X \to Y$ zvezna natanko tedaj, ko za vsako konvergentno zaporedje v X velja

$$f\left(\lim_{n\to\infty}x_n\right) = \lim_{n\to\infty}f(x_n).$$

Definicija 2.1.6. Prostor (X, τ) je Fréchetov, če τ loči točke.

⁴ Diagonala je množica $\Delta_x = \{(x, x) \mid x \in X\}.$

23. november 2021

Trditev 2.1.7. X je Fréchetov natanko tedaj, ko τ finejša od topologije končnih komplementov.

Dokaz. Če je prostor Fréchetov, za vse različne x in y obstaja tak $V \in \tau$, da je $y \in V$ in $x \neq \in V$, zato je y notranja v $X \setminus \{x\}$. Če pa so enojčki zaprti, pa $X \setminus \{x\}$ in $X \setminus \{y\}$ ločita x in y.

Trditev 2.1.8. Hausdorffova in Fréchetova lastnost sta dedni in multiplikativni.⁵

Dokaz. The proof is obvious and need not be mentioned.

Definicija 2.1.9. Prostor (X, τ) je regularen, če je Hausdorffov in τ ostro loči točke od zaprtih množic.

Definicija 2.1.10. Prostor (X, τ) je normalen, če je Hausdorffov in τ ostro loči disjunktne zaprte množice.

Izrek 2.1.11. Če je X metričen, je normalen.

Dokaz. Očitno je X Hausdorffov, zato je dovolj dokazati, da τ ostro loči disjunktne zaprte množice. Naj bosta A in B taki množici. Sedaj preprosto vzamemo

$$U = \{x \in X \mid d(x, A) < d(x, B)\} \quad \text{in} \quad V = \{x \in X \mid d(x, B) < d(x, A)\}.$$

Ni težko videti, da sta ti množici res odprti in disjunktni.

Trditev 2.1.12. Regularnost je dedna, normalnost pa se deduje na zaprte podprostore.

Dokaz. The proof is obvious and need not be mentioned.

Izrek 2.1.13 (Tikonov). Prostor, ki je regularen in 2-števen, je normalen.

Dokaz. Naj bosta A in B disjunktni zaprti množici v X s števno bazo \mathcal{B} .

Za vsak $a \in A$ obstajata taki disjunktni odprti množici U_a in U'_a , da je $a \in U_a$ in $B \subseteq U'_a$. Za U_a lahko vzamemo kar bazično okolico. Unija

$$\bigcup_{a \in A} U_a$$

je tako števno pokritje A, ki je disjunktno B. Podobno lahko najdemo števno pokritje

$$\bigcup_{b \in B} V_b$$

množice B, ki je disjunktno A. Te množice lahko zapišemo v zaporedjih (U_n) in (V_n) . Sedaj preprosto vzamemo

$$U'_i = U_i \setminus \bigcup_{j \le i} \overline{V_j}$$
 in $V'_i = V_i \setminus \bigcup_{j \le i} \overline{U_j}$.

Uniji teh množic sta disjunktni in odprti.

⁵ Lastnost je *multiplikativna*, če za vse prostore X in Y s to lastnostjo velja, da jo ima tudi $X \times Y$.

Definicija 2.1.14. Različne stopnje ločljivosti označimo na naslednji način:⁶ T_0 : Za vse $x \neq y$ ima vsaj ena izmed njiju okolico, ki ne vsebuje druge. T_1 : Prostor je Fréchetov. T_2 : Prostor je Hausdorffov. T_3 : Prostor je regularen. T_4 : Prostor je normalen. **Trditev 2.1.15.** Prostor je T_3 natanko tedaj, ko za vsako odprto množico U in $x \in U$ obstaja taka odprta množica V, da je $x \in V$ in $\overline{V} \subseteq U$. Dokaz. The proof is obvious and need not be mentioned. Trditev 2.1.16. Regularnost je multiplikativna. Dokaz. Naj bo U odprta množica in $x \in U$. Brez škode za splošnost naj bo U bazična. Sedaj uporabimo regularnost na komponentah in vzamemo njun kartezični produkt. **Trditev 2.1.17.** Prostor je T_4 natanko tedaj, ko za vsako zaprto množico A, vsebovano v odprti množici U, obstaja taka odprta množica V, za katero je $A \subseteq V$ in $\overline{V} \subseteq U$. *Dokaz.* The proof is obvious and need not be mentioned.

⁶ Oznaka ni enotna.

Stvarno kazalo

```
\mathbf{G}
Gosta množica, 8
Ι
Izrek
    Tikonov, 12
\mathbf{P}
Preslikava
    Odprta, zaprta, 6
    Stereografska projekcija, 6
    Vložitev, 10
    Zvezna, 5
\mathbf{T}
Topologija, 4
    Baza, 7
      Lokalna, 7
      Predbaza, 7
    Finejša, bolj groba, 5
    Homeomorfizem, 6
    Inducirana, 9
    Odprte, zaprte množice, 4
    Topološka lastnost, 6
      Dedna, 9
Topološka lastnost
    Fréchetova, 11
    Hausdorffova, 11
    Ločljivost, 11
Topološki prostor, 4
    1, 2-števen, 7
    Atlas, 10
    Homeomorfen, 6
    Metrizabilen, 4
    Podprostor, 9
    Riemannova sfera, 6
    Separabilen, 8
```