

Sistem Bilangan Real

Apa yang dimaksud dengan bilangan real, rasional dan bilangan irasional?

- ☐ Bilangan Real adalah bilangan-bilangan yang merupakan gabungan dari bilangan rasional dan bilangan irasional
- □ Bilangan rasional adalah bilangan yangdapat ditulis dalam bentuk p/q dengan p dan q bilangan bulat, $q \neq 0$
- ☐ Bilangan Irasional adalah bilangan-bilangan real yang tak dapat dinyatakan sebagai p/q dengan p,q bilangan bulat dan $q\neq0$

Bagaimana cara membedakan antara bilangan rasional dan bilangan irasional, bila dinyatakan dalam bentuk desimal?

- ☐ Bentuk desimal bilangan-bilangan rasional selalu berulang.
- ☐ Bentuk desimal bilangan-bilangan irasional selalu takberulang.

Bagaimana lambang baku untuk mengenali suatu himpunan bilangan?

```
\mathbf{R} = \mathbf{x} x bilangan real \mathbf{N} = \mathbf{x} x bilangan asli \mathbf{B} + \mathbf{A} x bilangan asli \mathbf{B} + \mathbf{A} x bilangan bulat \mathbf{B} + \mathbf{A} x bilangan bulat \mathbf{B} + \mathbf{A} x bilangan rasional \mathbf{Q} = \mathbf{x} x bilangan rasional
```


☐ Bagaimna sifat lapangan bilangan real?

Untuk setiap x,y,z di R, berlaku

1. Sifat komutatif

$$x + y = y + x$$
; $x \cdot y = y \cdot x$

2. Sifat asosiatif

$$x + (y + z) = (x + y) + z$$
; $x(yz) = (xy)z$

3. Sifat distributif kali terhadap tambah x(y + z) = xy + xz

4. Unsur kesatuan

Terdapat unsur 0 (unsur kesatuan tambah atau unsur nol) dan *1* (unsur kesatuan kali atau unsur satuan) yang memenuhi

$$x + 0 = 0 + x = z$$
 dan $x \cdot 1 = 1 \cdot x = x$

- 5. Unsur balikan (invers)
 - (i) Untuk setiap x di \mathbf{R} terdapat -x di \mathbf{R} sehingga x + (-x) = 0 (-x lawan dari x)
 - (ii) Untuk setiap x di \mathbf{R} , $x\neq 0$ terdapat x^{-1} di \mathbf{R} sehingga $x \cdot x^{-1} = 1$ (x^{-1} kebalikan dari x)

Bagaimana definisi pengurangan dan pembagian bilangan real?

 $Misalkan x, y di \mathbf{R}.$

- (a) Pengurangan dari bilangan real xdengan y ditulis x - y didefinisikan dengan x - y = x + (-y)
- (b) Pembagian dari bilangan real x oleh $y(y\neq 0)$ ditulis x:y didefinisikan dengan $x:y=x/y=xy^{-1}$

Bagaimana Definisi Urutan pada Bilangan Real?

Misalkan a,b di **R**.

(1) a < b berarti b - a positif atau b - a > 0

 $\bigcirc a \le b$ berarti a = b atau a < b

6 > b > a berarti a < b atau b - a positif

Bagaimana Sifat-sifat Urutan bilangan real?

Misalkan x, y, z, c di \mathbf{R} .

- (1) $Jika \ x < y \ dan \ y < z, \ maka \ x < z$ ($Sifat \ Transitif$)
- (2) Jika x < y, maka x + c < y + c (Sifat Penambahan)
- (3) $Jika \ x < y \ dan \ c > 0$, $maka \ cx < cy$ (Sifat Perkalian)
- (4) $Jika \ x < y \ dan \ c < 0$, $maka \ cx > cy$ (Sifat Perkalian)

Apa yang dimaksud dengan pertidaksamaan, dan himpunan penyelesaian?

- ✓ Pertidaksamaan adalah hubungan matematika yang mengandung tanda salah satu dari <, >, \ge , \le , dan suatu variabel.
- ✓ Semua himpunan bilangan real yang memenuhi pertidaksamaan dinamakan himpunan penyelesaian.
- ✓ Penyelesaian pertidaksamaan dapat diperoleh dengan menggunakan sifat-sifat urutan yang telah dibicarakan pada pasal sebelumnya

Bagimana cara menentukan tanda pertidaksamaan?

Untuk pertidaksamaan yang terdiri dari sejumlah berhingga faktor linear di ruas kiri dengan ruas kanannya nol, tandanya dapat ditentukan dengan cara berikut:

- ✓ Tetapkan tanda dari suatu selang bagiannya.
- Bila melintasi nilai batas yang berasal dari faktor linear berpangkat bilangan ganjil, maka tanda selang bagian berikutnya berubah.

✓ Bila melintasi nilai batas yang berasal dari faktor linear berpangkat bilangan genap, maka tanda selang bagian berikutnya tetap.

■ Bagaimana Definisi Nilai Mutlak?

Nilai mutlak dari bilangan real x, ditulis /x/, didefinisikan sebagai

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

Bagimana sifat-sifat nilai mutlak?

1. Untuk setiap bilangan real x berlaku

a.
$$|x| \ge 0$$

$$c. -|x| \le x \le |x|$$

b.
$$|-x| = |x|$$

b.
$$|-x| = |x|$$
 d. $|x|^2 = |x|^2 = |x|$

2. Untuk setiap bilangan real x dan y berlaku

- a. |x| = |y| jhj $x = \pm y$ dan $x^2 = y^2$
- b. |x y| = |y x|

3. Jika $a \ge 0$, maka

- a. $|x| \le a \ jhj a \le x \le a \ dan \ x^2 \le a^2$
- b. $|x| \ge a$ jhj $x \ge a$ atau $x \le -a$, $dan x^2 \ge a^2$

4. Untuk setiap bilangan real x dan y berlaku

a.
$$|x + y| \le |x| + |y|$$
 c. $|x| - |y| \le |x - y|$

b.
$$|x - y| \le |x| + |y|$$
 d. $||x| - |y|| \le |x - y|$

5. Untuk setiap bilangan real x dan y berlaku

$$a. |xy| = |x|.|y|$$

b.
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, \ y \neq 0$$

Fungsi dan Grafiknya

□ Definisi Fungsi sebagai pasangan terurut:

Misalkan A dan B himpunan-himpunan tidak kosong. Suatu fungsi f dari A ke B ditulis $f:A \rightarrow B$ adalah himpunan pasangan terurut sehingga

- (i) untuk setiap x di A ada y di B sehingga (x,y) di $f \subset A \times B$
- (ii) jika (x,y) di f dan (x,z) di f, maka y = z

□ Definisi Fungsi sebagai pemetaan

Misalkan A dan B himpunan-himpunan tidak kosong. Suatu fungsi f dari A ke B ditulis $f: A \rightarrow B$ adalah suatu aturan yang memasangkan setiap x di A dengan tepat satu anggota f(x) di B.

Bagaimana Definisi Fungsi Injektif, Surjektif, dan Fungsi Bijektif?

Misalkan A dan B himpunan-himpunan yang tak kosong, dan fungsi f: A → B

(1) f dikatakan fungsi satu-satu (injektif)

ditulis f : A - B apabila

 $\{x_1, y_2 \in f \text{ dan } \{x_2, y_2 \in f \text{ maka } x_1 = x_2;$ atau ekuivalen dengan pernyataan:

apabila $(x_1, y_1) \in f dan (x_2, y_2) \in f$ $dan (x_1 \neq x_2, maka y_1 \neq y_2)$

- (2) f dikatakan fungsi pada (onto) ditulis $f:A \xrightarrow{\text{pada}} B$, apabila $R_f=B$. Fungsi ini disebut juga fungsi surjektif.
- (3) Jika fungsi f tidak pada, maka f dikata-kan fungsi "ke dalam" (into) dan ditulis $f:A \stackrel{\text{kedatam}}{=} B$.

Definisi Fungsi Genap dan Fungsi Ganjil

Diberikan f suatu fungsi sebarang.

(i) f dikatakan fungsi genap apabila f(-x) = f(x) untuk setiap x di D_f (ii) f dikatakan fungsi ganjil apabila f(-x) = -f(x) untuk setiap x di D_f

Definisi Bilangan Bulat Terbesar

Bilangan bulat terbesar dari $x \in \mathbb{R}$, ditulis [x], didefinisikan sebagai bilangan bulat terbesar yang lebih kecil atau sama dengan x atau [x] $= k \Leftrightarrow k \leq x < k+1$, dengan k bilangan bulat

Definisi Jumlah, Selisih, hasilkali, hasilbagi, dan Pangkat

Diberikan f,g adalah fungsi dan c suatu konstanta. Fungsi-fungsi f+g, f-g, cf, f.g, dan f/g untuk setiap $x \in D_{f} \cap D_{g}$ didefinisikan sebagai

$$(f + g) = f + g$$

$$(f - g) = f + g$$

$$(i) + g = cf$$

$$(i) + g = cf$$

$$(i) + g = f + g$$

$$(i) + g = f$$

$$(i) + g = g$$

Pergeseran Grafik Fungsi

Diberikan grafik fungsi f dan a suatu bilangan positif, maka:

- (i) Grafik fungsi y = f(x a) diperoleh dengan menggeser grafik f ke kanan sejauh a satuan.
- (ii) Grafik fungsi y = f(x + a) diperoleh dengan menggeser grafik f ke kiri sejauh a satuan.

- (iii) Grafik fungsi y = f(x) + a diperoleh dengan menggeser grafik f ke atas sejauh a satuan.
- (iv) Grafik fungsi y = f(x) a diperoleh dengan menggeser grafik f ke bawah sejauh a satuan.

Definisi Peta dan Prapeta

Diberikan y = f(x) suatu fungsi.

- (i) $Jika \ x \in D_r$, $maka \ f(x)$ $disebut \ peta \ dari \ x$

Definisi Peta dan Prapeta Suatu Himpunan

Misalkan f suatu fungsi.

- (i) Jika $A \subset D_{f}$, maka himpunan $f(A) = f(x)|x \in A$ disebut peta dari himpunan A.
- (ii) Jika $B \subset R_{f}$, maka himpunan $f^{-1}(B) = \mathbf{1} \in D_{f} | f(x) \in B$ disebut prapeta dari himpunan B.

□ Definisi Fungsi Komposisi g o f

Misalkan f dan g adalah fungsi dengan $R \cap D \neq \phi$. Terdapat fungsi dari himpunan bagian D_f ke himpunan bagian R_{ϱ} . Fungsi ini disebut komposisi dari f dan g, ditulis g o f (dibaca f bundaran g) dan persamaannya ditentukan oleh $(g \circ f)(x) = g(f(x))$

Daerah asal $g \circ f$ adalah prapeta $R_{f} \cap D_{g}$ terhadap f, ditulis

$$D_{sof} = f^{-1} \mathbf{R}_{f} \cap D_{s} = \mathbf{R} \in D_{f} | f \mathbf{R}_{s} \in D_{s}$$

Daerah nilai g of adalah peta $R_{_f} \cap D_{_g}$ terhadap g, ditulis

$$R_{sof} = g \cdot \P \cap D_{s} = g(x) \in R_{s} | x \in R_{s} = g \cdot \P \cdot \P x \in D_{sof}$$

☐ Teorema Keberadaan Fungsi Invers

Jika f fungsi satu-satu, maka

(i) fungsi invers f⁻¹ ada, dan

(ii)
$$D_{r} = R_{r}$$