Advanced Analysis in TEM

Outline

Week 1

- 1. Introduction to Image Processing (What should I do after collecting the data?);
- Post-acquisition and data preparation

Week 2

- 2. Analysis of High-Resolution STEM images
- Extracting Quantitative information

Week 3 to Week 7

- 3. (S)TEM Image simulations
- (S)TEM simulations of thin films
- (S)TEM simulations of thick films
- CBFD simulation
- Scanning Diffraction simulations

Week 8

4. Analysis of EDX Spectra

Week 9

5. Analysis of EELS Spectra

Week 10 and 11

- 6. STEM Phase Imaging
- Differential Phase Contrast.
- Ptychography

Week 12

7. Machine learning applied to image analysis

Why Python?

Applications in materials science?

- If you have repetitive tasks (read, write, add scale bar, convert images...etc), it can be used to automate them
- Identify and track objects in images or movies (e.g. in-situ growth, beam damage studies)
- Understand spectral datasets and fit functions (low dose EELS, EDX)
- Predicting properties from structure or processing

Week 1

- 1. Introduction to Image Processing (What should I do after collecting the data?);
 - Post-acquisition and data preparation

Output Data Formats

To date, most electron microscopy data is stored in either raw data formats (binary, bitmap images, tiff, etc.) or proprietary formats developed by vendors (dm3, emispec, .rpl, etc.).

HDF (hierarchical data format) - 1988 National Center for Supercomputing Applications, University of Illinois. (https://www.hdfgroup.org/about-us/)

> Designed to store and organize large amounts of data!

Check it out: emd developers website https://emdatasets.com/

Data as multidimensional arrays

Examples in EM

- In-situ videos/Image stacks
- Acquisition at different focus
- RGB images

MORE DIMENSIONS ...

Time to code!

