Durée 2h - aucun document autorisé

Le barème n'est donné qu'à titre indicatif

1 Modélisation par réseaux de Petri

Exercice 1 – La bûche de Noël – 9 points = 3+3+3

Le réseau de la figure 1 modélise un système dynamique où un pâtissier P_1 prépare des bûches de Noël en fonction de l'arrivée des commandes de bûches.

FIGURE 1 – Préparation de bûches

Les places c_1 , c_2 , c_3 , c_4 modélisent les conditions suivantes :

- le pâtissier P_1 est au repos (c_1)
- une commande de bûche est en attente (c_2)
- une bûche a été préparée (c_3)
- une bûche a été déposée (c_4)

Les transitions modélisent les événements suivants :

- une commande arrive (e_1)
- le pâtissier prépare la bûche (e_2)
- le pâtissier dépose la bûche (e_3)
- Quel est le marquage initial qui permet au pâtissier de satisfaire au moins une commande?
 Expliquer le fonctionnement du réseau en donnant le graphe des marquages accessibles à partir de votre marquage initial.
 - À partir de votre marquage, le réseau est-il vivant? Quasi-vivant? Justifier votre réponse.
- 2. En supposant une très forte demande la veille de Noël (n commandes en attente), le pâtissier P_1 , pour maintenir sa capacité à satisfaire les n commandes, décide de se faire aider par son ami pâtissier P_2 .
 - Modifier le réseau de la figure 1 pour que P_1 et P_2 puissent travailler simultanément.
 - Donner 4 séquences de franchissement différentes qui permettent de revenir au marquage initial. Votre réseau est-il vivant, quasi-vivant? Justifier votre réponse.
- 3. Les demandes se font de plus en plus spécifiques, avec des décorations personnalisées. Aussi, les deux pâtissiers P_1 et P_2 font appel à un troisième ami P qui s'occupera exclusivement de la décoration des bûches. P prendra en charge les bûches après qu'elles soient préparées par P_1 et P_2 et les déposera une fois décorées. P_1 et P_2 se rendent disponibles dès qu'ils ont préparé les bûches. Donner le nouveau réseau de Petri et un marquage initial.
 - Montrer que le réseau ne se bloque pas.

Exercice 2 – Factorisation des traitements – 3 points

Dans cet exercice, la figure 2 propose une nouvelle modélisation des 2 pâtissiers P_i et P_j qui demandent au pâtissier décorateur P de décorer leurs bûches.

Dans cette version, P est une ressource partagée et critique. La décoration prend un certain temps. Par conséquent, on lui associe 2 transitions indiquant le début et la fin de la décoration. Les pâtissiers s'occupent eux-mêmes de déposer les bûches.

FIGURE 2 – Préparation et décoration de bûches

- 1. Est-ce qu'il y a risque de famine (*i.e.* un des pâtissiers n'est jamais satisfait)? Si oui, modifier le réseau de la figure 2 pour qu'il n'y ait pas de famine.
- 2. On suppose maintenant qu'il y ait k pâtissiers (k > 10) qui sollicitent le même décorateur. Donner une version compacte du réseau qui factorise les traitements. S'inspirer de la modélisation vue en cours.

2 Représentations sémantiques

On considère les 6 assertions suivantes :

- (a) Le Louvre est un Musée.
- (b) Le David est une sculpture de l'artiste Michel-Ange qui se trouve au Louvre.
- (c) La Joconde est une peinture de l'artiste Léonard de Vinci qui se trouve au Louvre.
- (d) Quel artiste a créé une œuvre exposée au musée du Louvre?
- (e) Les peintures et les sculptures sont des œuvres.
- (f) Tous les artistes dont une œuvre est exposée dans un musée sont des artistes consacrés.

Exercice 3 – Graphes conceptuels 3 points

- 1. Représenter les assertions (a), (b), (c) et (d) dans le formalisme des graphes conceptuels, en faisant appel aux relations a_créé et dans et aux concepts oeuvre, peinture, sculpture, artiste et musée.
- 2. Comment se représente (e) dans le formalisme des graphes conceptuels?
- 3. Donner, en la justifiant, la réponse à la requête (d)

Remarque 1 : on donnera soit la forme linéaire, soit la forme graphique.

Remarque 2 : on demande de représenter les assertions (a), (b), (c) et (d) avec des graphes conceptuels dont les relations et les concepts sont donnés, et non avec des graphes de Sowa.

Exercice 4 – Logiques de description – représentation 3 points

Représenter les assertions (a), (b), (c), (e) et (f) dans la logique de description \mathcal{ALC} en utilisant, comme dans la question précédente, les rôles a_créé et dans et les concepts Sculpture, Peinture, Deuvre, Artiste_consacre et Musée.

Exercice 5 – Logique de description - démonstration – 2 points

Démontrer à l'aide de la méthode des tableaux que $(a), (b), (c), (e), (f) \vdash$ Michel-Ange : Artiste_consacre

Remarque: Il faut ajouter à (a),(b),(c),(e),(f) la négation de Michel-Ange: Artiste_consacre ce qui donne Michel-Ange: \neg Artiste_consacre et mettre les formules sous forme normale négative.

3 Annexe

3.1 Logiques de description

Rappels : Syntaxe de ALC

 \mathcal{ALC} contient des concepts et des rôles.

• Alphabet:

Un ensemble de concepts atomiques : A, B, C, etc.

Un ensemble de rôles atomiques : r, m, n, etc.

Un ensemble de symboles : $\{ \sqcup, \sqcap, \sqsubseteq, \exists, \forall, \neg, \top, \bot, ., \exists, \forall \}$

• Grammaire des concepts :

 \perp et \top sont des concepts,

Si A et B sont des concepts, $A \sqcup B$, $A \sqcap B$ et $\neg A$ sont des concepts,

Si A est un concept et r un rôle, $\exists r.A$ et $\forall r.A$ sont des concepts

• TBox – axiomes terminologiques

C et D étant des concepts, la ${\bf TBox}$ se compose d'un ensemble de définitions et de subsomptions avec :

Définitions : $C \equiv D$

Subsomptions : $C \sqsubseteq D$

• ABox – assertions

C étant un concept, r un rôle et I, J deux individus,

I:C signifie que I est une instance du concept C

 $\langle I, J \rangle$: r signifie que $\langle I, J \rangle$ est une instance du rôle r.

3.2 Sémantique de \exists et \forall

Étant donné une interprétation $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$, on a :

• $(\exists r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists y \in C^{\mathcal{I}}, (x,y) \in r^{\mathcal{I}}\}$

Exemple : $\exists a_enfant.Docteur$ désigne l'ensemble de ceux qui ont au moins un enfant qui est docteur

 $\bullet \ (\forall r.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \forall y, (x,y) \in r^{\mathcal{I}} \rightarrow y \in C^{\mathcal{I}} \}$

Exemple : $\forall a_enfant.Humain$ désigne l'ensemble de ceux qui possèdent uniquement des enfants humains – sans qu'il soit nécessaire d'en avoir

3.3 Méthode des tableaux sémantiques pour la logique de description \mathcal{ALC}

Rappels : règles pour mettre en œuvre la méthode des tableaux dans \mathcal{ALC}

Une fois les subsomptions $(C \sqsubseteq D)$ transformées en unions $(\neg C \sqcup D)$ puis les formules mises sous forme normale négative, il y a quatre règles à appliquer sur les tableaux \mathcal{A} issus des ABox :

- R_{\sqcap} : si $P \sqcap Q \in \mathcal{A}$ et soit $P \notin \mathcal{A}$ soit $Q \notin \mathcal{A}$, alors ajouter $\mathcal{A}' = \mathcal{A} \cup \{P,Q\}$ comme fils de \mathcal{A}
- R_{\sqcup} : si $P \sqcup Q \in \mathcal{A}$ et ni $P \in \mathcal{A}$ ni $Q \in \mathcal{A}$, alors ajouter les tableaux $\mathcal{A}' = \mathcal{A} \cup \{P\}$ et $\mathcal{A}'' = \mathcal{A} \cup \{Q\}$ comme fils de \mathcal{A}
- R_{\exists} : si $\exists r.C \in \mathcal{A}$ et s'il n'existe pas de constante z telle que $\langle x, z \rangle$: $r \in \mathcal{A}$ et $z : C \in \mathcal{A}$, alors ajouter le tableau $\mathcal{A}' = \mathcal{A} \cup \{\langle x, z \rangle : r, z : C\}$ comme fils de \mathcal{A}
- R_{\forall} : si $\forall r.C \in \mathcal{A}$, $\langle x, y \rangle$: $r \in \mathcal{A}$ et $y : C \notin \mathcal{A}$, alors ajouter le tableau $\mathcal{A}' = \mathcal{A} \cup \{y : C\}$ comme fils de \mathcal{A}