Classification: Linear Discriminant Functions

CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013

Soleymani

Outline

- Discriminant functions
 - ▶ Linear Discriminant functions + BW: nonlinear discriminant functions
- Linear Discriminant Function
 - Least Mean Squared Error Method LMS alg.
 - Sum of Squared Error Method SSE
 - ▶ Perceptron Error Correction method
- Multi-class problems
 - Linear machine
 - Completely Linearly Separable
 - Pairwise Linearly Separable
- Generalized LDFs

Classification Problem

- Given: Training set
 - labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - ▶ $y \in \{1, ..., c\}$
- \blacktriangleright Goal: Given an input x, assign it to one of c classes

Types of Classifiers

- Probabilistic classification approaches (previous lectures):
 - Generative
 - Discriminative
- Discriminant function
 - Various procedures for determining discriminant functions (some of them are statistical)
 - However, they don't require knowledge of the forms of underlying probability distributions

Discriminant Functions

- Discriminant functions: A popular way of representing a classifier
 - A discriminant function $g_i(x)$ for each class ω_i (i = 1, ..., c):
 - x is assigned to class ω_i if:

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \forall j \neq i$$

- ▶ Decision surfaces (boundaries) H can also be found using discriminant functions
 - Boundary of the \mathcal{R}_i and \mathcal{R}_j : $\forall x, g_i(x) = g_j(x)$

Probabilistic Discriminant Functions

Prior probability: p(w_i)

- Maximum likelihood
 - $g_i(x) = p(x|\omega_i)$ a.k.a. conditional probability: $p(x|w_i)$, e.g. If you're positive(w_i), and you tested (x) positive.
- Bayesian Classifier
 - $g_i(x) = P(\omega_i|x)$ a.k.a. Posterior probability: $p(w_i|x)$, e.g. If you tested (x) positive, and you're ACTUALLY positive(w_i).
- Expected Loss (Conditional Risk)
 - $g_i(x) = -R(a_i|x)$ +BW: a_i: treat as actions

Discriminant Functions: Two-Category

- For two-category problem, we can only find a function $g: \mathbb{R}^d \to \mathbb{R}$
 - $g_1(\mathbf{x}) = g(\mathbf{x})$
 - $g_2(\mathbf{x}) = -g(\mathbf{x})$
- Decision surface: g(x) = 0
- First, we explain two-category classification problem and then discuss the multi-category problems.

Linear Discriminant Functions

- Linear Discriminant Functions (LDFs)
- assumption Decision boundaries are linear in x, or linear in some given set of functions of x

Why LDFs?

- They can be optimal for some problems
 - **E.g.**, if the underlying distributions $p(x|\omega_j)$ are gaussians having equal covariance
- Even when they are not optimal, we can use their simplicity
 - ▶ LDFs are relatively easy to compute
 - In the absence of information suggesting otherwise, linear classifiers are an attractive candidates for initial, trial classifiers.

LDFs: Two Category

- $g(x; w) = w^T x = w_0 + w_1 x_1 + \dots + w_d x_d$ vs BW: high order poly forms
 - $\boldsymbol{x} = [1 \ x_1 \ x_2 \ ... \ x_d] \longrightarrow$ Augmented , which is to add one dim, i.e. +1
 - $\mathbf{w} = [w_0 \ w_1 \ w_2 \ ... \ w_d]$
 - $\rightarrow w_0$: bias
 - **w** contains the parameters we need to set

if
$$g(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} \ge 0$$
 then ω_1 else ω_2

- ▶ Decision surface (boundary): g(x; w) = 0
 - The equation g(x; w) = 0 defines the decision surface separating samples of the two categories
 - When g(x; w) is linear, the decision surface is a hyperplane. ???

LDFs: Two Category

- Decision boundary is a (d-1)-dimensional hyperplane H in the d-dimensional feature space
 - The orientation of H is determined by the normal vector $[w_1, ..., w_d]$
 - \triangleright w_0 is the location of the surface is determined by the bias.

+BW:笔记里有推导

$$x = x_p + r \frac{w}{\|w\|}$$

$$g(x) = r\|w\| \Rightarrow r = \frac{g(x)}{\|w\|}$$

g(x) is proportional to the signed distance from x to H

LDFs: Two Category

$$3 + \frac{3}{4}x_1 + x_2 = 0$$

$$\text{if } \mathbf{w}^T \mathbf{x} \geq 0 \ \omega_1 \\ \text{else } \omega_2$$

$$\mathbf{w} = [3, 0.75, 1]$$

$$x = [1, x_1, x_2]$$

LDFs: Cost Function

- Finding LDFs is formulated as an optimization problem
 - A cost function is needed and a procedure is used to solve it.
- Criterion or cost functions for classification:
 - Average training error or loss incurred in classifying training samples
 - A small training error does not guarantee a small test error
 - We will investigate several cost functions for the classification problem

LDFs: Methods

- Many classification methods are based on LDFs:
 - Mean Squared Error i.e. MSE
 - Sum of Squared Error i.e. SSE
 - Perceptorn i.e. error correction method
 - Fisher Linear Discriminant Analysis (LDA) [next lectures]
 - SVM [next lecture]

Main Steps in Methods based on LDFs

- We have specified the class of discriminant functions as linear
- Select how to measure the prediction loss
 - Based on the training set $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$, a cost function J(w) is defined (e.g., SSE) that is a function of the classifier parameters
- Solve the resulting optimization problem to find parameters:
 - Find optimal $\hat{g}(x) = g(x; \hat{w})$ where $\hat{w} = \underset{w}{\operatorname{argmin}} J(w)$

Bayes vs. LDFs' Cost Function

Bayes minimum error classifier:

$$\min_{\alpha(.)} E_{x,y}[L_{0-1}(\alpha(x),y)]$$

If we know the probabilities in advance then the above optimization problem will be solved easily.

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})$$

We only have a set of training samples \mathcal{D} instead of p(x, y) and usually optimize the following problem:

$$\min_{\alpha(.)} \frac{1}{N} \sum_{i=1}^{N} L(\alpha(\boldsymbol{x}^{(i)}), y^{(i)})$$

Mean Squared Error

Two-category: $y \in \{-1,1\}$ y = -1 for ω_2 , y = 1 for ω_1

Squared Loss $Loss(\alpha(x), y) = (y - \alpha(x))^2$

$$J(\mathbf{w}) = E_{\mathbf{x}\mathbf{y}} \left[\left(\mathbf{y} - g(\mathbf{x}; \mathbf{w}) \right)^2 \right] = E[(\mathbf{y} - \mathbf{w}^T \mathbf{x})^2] \qquad E$$

Gradient Descent

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \mathbf{0} \Rightarrow 2E[\mathbf{x}(y - \mathbf{w}^T \mathbf{x})] = \mathbf{0}$$

$$\Rightarrow E[\mathbf{x}y] = E[\mathbf{x}\mathbf{x}^T]\mathbf{w} \Rightarrow \widehat{\mathbf{w}} = \frac{E[\mathbf{x}y]}{E[\mathbf{x}\mathbf{x}^T]} = \mathbf{R}_{\mathbf{x}}^{-1}\mathbf{R}_{\mathbf{x}y}$$

$$\mathbf{R}_{x} = \begin{bmatrix} E[x_{1}x_{1}] & \cdots & E[x_{1}x_{d}] \\ \vdots & \ddots & \vdots \\ E[x_{d}x_{1}] & \cdots & E[x_{d}x_{d}] \end{bmatrix} \quad \mathbf{R}_{xy} = \begin{bmatrix} E[x_{1}y] \\ \vdots \\ E[x_{d}y] \end{bmatrix}$$

Sum of Squared Error (SSE)

- Cost function: Prediction errors on the training set:
 - empirical loss on N training samples

$$J(w) = \frac{1}{N} \sum_{i=1}^{N} \text{Loss}(y^{(i)}, g(x^{(i)}; w))$$

$$= \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - g(x^{(i)}; w))^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - w^{T}x^{(i)})^{2}$$

Sum of Squared Error (SSE)

$$J(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

unknown (i.e. w) is marked at the latter place

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

column vectors

$$\nabla_{w}J(\mathbf{W}) = \mathbf{0} \Rightarrow 2\mathbf{X}^{T}(\mathbf{X}\mathbf{W} - \mathbf{y}) = \mathbf{0} \Rightarrow \mathbf{X}^{T}\mathbf{X}\mathbf{W} = \mathbf{X}^{T}\mathbf{y} \Rightarrow \widehat{\mathbf{w}}$$
$$= (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

Pseudo Inverse of X

Sum of Squared Error (SSE)

SSE penalizes 'too correct' predictions

• 'too correct' predictions: samples lie a long way on the correct side of

the decision

It also lack robustness to noise

Correct predictions that are penalized by SSE (1

19

Perceptron a.k.a. Error Correction method

- ▶ Two-category: $y \in \{-1,1\}$
 - y = -1 for ω_2 , y = 1 for ω_1
- ► Goal: $\forall i, \mathbf{x}^{(i)} \in \omega_1 \Rightarrow \mathbf{w}^T \mathbf{x}^{(i)} > 0$ $\forall i, \mathbf{x}^{(i)} \in \omega_2 \Rightarrow \mathbf{w}^T \mathbf{x}^{(i)} < 0$

Perceptron Criterion

Only misclassified training samples affect the discriminant functions:

$$J_P(\mathbf{w}) = -\sum_{i \in \mathcal{M}} \mathbf{w}^T \mathbf{x}^{(i)} y^{(i)}$$

 \mathcal{M} : subset of training data that are misclassified

Many solutions? Which solution among them?

Perceptron vs. Other Criteria

Here, we are designing a better criteria or cost function.

Some classification criteria

Batch Perceptron

"Gradient Descent" to solve the optimization problem:

$$oldsymbol{w}^{t+1} = oldsymbol{w}^t - \eta oldsymbol{
abla}_{w}^{habla} oldsymbol{J}_P(oldsymbol{w}^t)$$

$$\nabla_{\mathbf{w}}J_P(\mathbf{w}) = -\sum_{i\in\mathcal{M}} \mathbf{x}^{(i)}y^{(i)}$$

Batch Perceptron converges in finite number of steps

for linearly separable data

Initialize
$$w, t \leftarrow 0$$

Repeat
$$w = w + \eta \sum_{i \in \mathcal{M}} x^{(i)} y^{(i)}$$

$$t \leftarrow t + 1$$
Until $\eta \sum_{i \in \mathcal{M}} x^{(i)} y^{(i)} < \theta$

Single-Sample Perceptron

If $x^{(i)}$ is misclassified:

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t + \eta \boldsymbol{x}^{(i)} \boldsymbol{y}^{(i)}$$

Fixed-Increment Single Sample Perceptron

Initialize $w, k \leftarrow 0$ repeat $k \leftarrow (k+1) \bmod N$ if $x^{(i)}$ is misclassified then $w = w + x^{(i)}y^{(i)}$ Until all patterns properly classified

Convergence of Perceptron

Convergence of Perceptron

If the training data set is linearly separable, the single-sample perceptron algorithm is also guaranteed to find a solution in a finite number of steps

LDFs: Multi-Category

- Linear discriminant functions for multi-category problems:
 - Linear machine :
 - \blacktriangleright A discriminant function $g_i(x)$ for each class i
 - Converting the problem to a set of two-class problems:
 - "one versus rest" or "one against all"
 - \Box For each class ω_i , an LDF separates samples of ω_i from all the other samples.
 - □ Totally linearly separable
 - "one versus one"
 - \Box c(c-1)/2 LDFs are used, one to separate samples of a pair of classes.
 - ☐ Pairwise linearly separable
- Converting the problem to a set of two-class problems can lead to regions in which the classification is undefined.

Multi-Category Classification

Multi-Category Classification: Ambiguity

[Duda, Hart & Stork]

one versus one

one versus rest

Multi-Category Classification: Linear Machine

- A discriminant function $g_i(x) = \mathbf{w}_i^T x + w_{i0}$ for each class ω_i (i = 1, ..., c):
 - x is assigned to class ω_i if:

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \forall j \neq i$$

- Decision surfaces (boundaries) can also be found using discriminant functions
 - ▶ Boundary of the contiguous \mathcal{R}_i and \mathcal{R}_j : $\forall x$, $g_i(x) = g_j(x)$
 - $(\mathbf{w}_i \mathbf{w}_j)^T \mathbf{x} + (\mathbf{w}_{i0} \mathbf{w}_{j0}) = 0$

Multi-Category Classification: Linear Machine

Multi-Category Classification: Linear Machine

- Decision regions are convex
 - Linear machines are most suitable for problems where $p(x|\omega_i)$ are unimodal.

$$x_1, x_2 \in \mathcal{R}_i \Rightarrow \forall j \neq i, g_i(x_1) \ge g_j(x_1)$$

 $g_i(x_2) \ge g_j(x_2)$

$$\Rightarrow \alpha g_i(x_1) + (1 - \alpha)g_i(x_2) \ge \alpha g_j(x_1) + (1 - \alpha)g_j(x_2)$$

$$g_i \text{ is linear } \Rightarrow g_i(\alpha x_1 + (1 - \alpha)x_2) \ge g_j(\alpha x_1 + (1 - \alpha)x_2)$$

$$\Rightarrow \alpha x_1 + (1 - \alpha)x_2 \in \mathcal{R}_i$$

Convex region definition: $\forall x_1, x_2 \in \mathcal{R}, \ 0 \le \alpha \le 1 \Rightarrow \alpha x_1 + (1 - \alpha)x_2 \in \mathcal{R}$

Multi-Category Classification: Target Coding Scheme

- ▶ Target values:
 - ▶ Binary classification: a target variable $y \in \{0,1\}$
 - Multiple classes (K > 2):
 - ► TargetClass C_j : $y_j = 1$ $\forall i \neq j \ y_i = 0$

SSE Cost Function: Multi-Class

$$J(\mathbf{W}) = Tr\{(X\mathbf{W} - \mathbf{Y})^T (X\mathbf{W} - \mathbf{Y})\}$$

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix} \quad \mathbf{W} = [\mathbf{w}_1 \quad \cdots \quad \mathbf{w}_c]$$

$$\mathbf{Y} = [\mathbf{y}_1 \quad \cdots \quad \mathbf{y}_c]$$

$$\nabla_{\mathbf{W}} J(\mathbf{W}) = \mathbf{0} \Rightarrow \widehat{\mathbf{W}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \mathbf{Y}$$

SSE Cost Function: Multi-Class

▶ Low performance of the SSE cost function for the classification problem

Perceptron: Multi-Class

$$\hat{y} = \underset{i=1,...,c}{\operatorname{argmax}} \mathbf{w}_{i}^{T} \mathbf{x}$$

$$J_{P}(\mathbf{W}) = -\sum_{i \in \mathcal{M}} \left(\mathbf{w}_{y^{(i)}} - \mathbf{w}_{\hat{y}^{(i)}} \right)^{T} \mathbf{x}^{(i)}$$

 \mathcal{M} : subset of training data that are misclassified

$$\mathcal{M} = \left\{ i | \hat{y}^{(i)} \neq y^{(i)} \right\}$$

Initialize
$$W = [w_1, ..., w_c], k \leftarrow 0$$
 repeat $k \leftarrow (k+1) \mod N$ if $x^{(i)}$ is misclassified then $w_{\hat{y}^{(i)}} = w_{\hat{y}^{(i)}} - x^{(i)}$ $w_{y^{(i)}} = w_{y^{(i)}} + x^{(i)}$ Until all patterns properly classified

Generalized LDFs

Linear combination of a fixed non-linear functions of the input vector

$$g(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + \dots w_m \phi_m(\mathbf{x})$$
/phi

 $\{\phi_1(x),\ldots,\phi_m(x)\}$: set of basis functions (or features)

$$\phi_i(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}$$

Generalized LDFs: Example

- Choose non-linear features
- Discriminant functions are still linear in parameters w

$$\phi(x) = [1, x_1, x_2, x_1^2, x_2^2, x_1 x_2]$$

$$w = [-1, 0, 0, 1, 1, 0]$$

if
$$\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) \ge 0$$
 then $y = 1$ else $y = -1$

We will discuss about them in the next lectures.