PROBLEMA ORDONANTARII

Definitii:

- Problema ordonantarii
- Graful potentiale-activitati:
 Bernard Roy
- marja de timp
- activitati critice
- drum critic
- Graful potentiale- etape
 PERT (Programme
 Evaluation and Review
 Technique)

9.PROBLEMA ORDONANTARII

- Problema ordonantarii
- Graful potentiale-activitati
- Graful potentiale- etape PERT

Algoritmi (pseudocod)

 alg. Roy (a) Initializare b) Iteratia de baza c) Criteriul de stop)--- det. durata minima de realizare: graf potentiale-activitati

Problema ordonanțării

- programarea activităților în cadrul unui proiect astfel încât să se realizeze un obiectiv
- între activitățile proiectului exsită relații de interdependență și coordonare
- condițiile de realizarea a unei activități sunt de timp: unele activități pot începe doar după terminarea altora
- fiecare activitate are o durată de timp dată și pentru fiecare activitate se cunosc activitățile care trebuie finalizate înainte de âbordarea acesteia

Problema: programarea desfășurării activităților astfel încât să se realizeze unele condiții de eficiență

Bernard Roy, 1958

- fie un proiect care are n activități
- se construiește G = (X, U) astfel:
 - fiecărie activități i se asociază un nod $i \in X$;
 - există arc de la nodul i la nodul j dacă și numai dacă activitatea j poate începe imediat după terminarea activității i
 - arcul $(i,j) \in U$ are asociată ca valoare durata activității i, $l_{ij} = d_i$, $i \in \{1, 2, ..., n\}$
 - se adaugă
 - nodul 0 pentru activitatea START- activitate care le precede pe toate celelalte
 - nodul n+1 pentru activitatea STOP activitate care urmează tuturor celorlalte
 - $X = \{0, 1, ..., n, n + 1\}$

Construirea unei clădiri

Nr.	Activitate	Durata	Activități precedente
1	Amenajare căi acces	7	_
2	Şanţuri fundaţie	3	1
3	Structura rezistență	8	2
4	Montare instalații sanitare, electrice	2	3
5	Montare uși, ferestre	3	3
6	Montare schela exterioară	3	3
7	Realizare fațadă	3	6
8	Zugrăveli interioare	2	4, 5
9	Amenajări interioare	1	8
10	Demontare schelă	1	7
11	Curățenie	2	9, 10
12	Împrejmuiri	3	1

 $X = \{0, 1, 2, ..., 12, 13\}$

- pentru ca o activitate să demareze trebuie ca toate activitățile pe un drum de la activitatea de start 0 la nodul corespunzător activității să fie executate

 $t_i=$ momentul cel mai devreme de începere a activității i $t_i=$ max $\{t_j+d_j|\ j\in \varGamma^{-1}i\}=$ valoarea maximă a drumurilor de la 0 la i

- durata minimă de realizare a proiectului este t_{n+1}

 $t_i = \max\{t_j + d_j | j \in \Gamma^{-1}i\}$ = valoarea maximă a drumurilor de la 0 la i, $i = \overline{0, n+1}$

- durata minimă de realizare a proiectului este $t_{n+1}=26$

```
t_i = \max\{t_j + d_j | j \in \Gamma^{-1}i\} = valoarea maximă a drumurilor de la 0 la i, i = \overline{0, n+1}
```

 T_i = momentul cel mai târziu de începere a activității i care nu duce la amânarea realizării obiectivului, $i = \overline{0, n+1}$ Pseudocod Roy

$$t_{n+1} - T_i = max\{ \ \mathit{I}(\mu) \mid \mu \ \mathit{drum de la i la } n+1 \}$$

- a) Inițializare: $T_{n+1} = t_{n+1}$; $S = \{n+1\}$
- b) Iterația de bază:

Fie
$$i \notin S$$
 a. î. $\Gamma i \subseteq S$;
 $T_i = min \{T_j - d_j \mid j \in \Gamma i\};$
 $S = S \cup \{i\};$

c) Criteriul de stop:

Dacă
$$S = \{0, 1, ..., n, n + 1\}$$
 atunci STOP;
altfel goto b);

$$S = \{13\}$$

$$S = \{13\}$$

$$S = \{11, 12, 13\}$$

$$S = \{11, 12, 13\}$$

$$S = \{9, 10, 11, 12, 13\}$$

$$S = \{9, 10, 11, 12, 13\}$$

$$S = \{7, 8, 9, 10, 11, 12, 13\}$$

$$S = \{7, 8, 9, 10, 11, 12, 13\}$$

$$S = \{4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$$S = \{4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$$S = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$$S = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

$$S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

 $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$$

Definitii

- se definește $m_i=T_i-t_i$ marja de timp pentru activitatea $i,\ i=\overline{1,n}$
- activitatea i poate începe oricând în intervalul $[t_i, T_i]$ fără a afecta realizarea obiectivului
- activitățile i pentru care $m_i = 0$ se numesc activități critice
- drumul pe care toate activitățile sunt critice se numește drum critic

- drumul critic este: $\mu_{critic} = (0, 1, 2, 3, 5, 8, 9, 11, 13)$

PERT (Programme Evaluation and Review Technique)

- 1957-1958, Malcolm, Roseboom, Clark, Fazar dezvoltat inițial pentru proiecte pentru US Navy
- se construiește un multigraf G = (X, U) în care:
 - nodurile sunt etape ale realizării proiectului
- arcele corespund activităților și li se asociază ca valoare durata d a activității respective
- activitatea j succede activității $i\Rightarrow$ extremitatea finală a arcului i coincide cu extremitatea inițială a arcului j

Nr.	Activitate	Durata	Activități precedente
Α	Amenajare căi acces	7	_
В	Şanţuri fundaţie	3	А
С	Structura rezistență	8	В
D	Montare instalații sanitare, electrice	2	С
Ε	Montare uși, ferestre	3	С
F	Montare schela exterioară	3	С
G	Realizare fațadă	3	F
Н	Zugrăveli interioare	2	D, E
1	Amenajări interioare	1	1
J	Demontare schelă	1	Н
K	Curățenie	2	I, J
L	Împrejmuiri	3	A

- fie λ_i valoarea maximă a drumurilor de la debut (etapa 1) la etapa i
- λ_{fin} momentul realizării ultimei etape
- dacă activitatea M are ca și extremități etapele p și q înseamnă că activitatea M poate începe cel mai devreme la momentul λ_p și cel mai târziu la momentul $\lambda_q d_M$ astfel încât obiectivul să fie atins în timp optim (λ_{fin})
- drumul de valoare maximă de la etapa de debut la cea finală se numește drum critic, activitățile de pe acest drum sunt activități critice

$$\lambda_{\mathit{fin}} = 26$$
, $\mu_{\mathit{critic}} = (A, B, C, E, H, I, K)$