1 Problem 3

1.1 Algorithm

To ensure the implementation is efficient, we start by setting up an adjacency list to represent the graph, so that Breadth First Search can run in O(m+n) time where m is the number of edges and n is the number of nodes. We will also use an array where the value at index i correlates to the cost of edge c_{i+1} for pre-processing. Let edge e = (u, v).

- 1. From given graph G = (V, E), create graph G' in which all edges with cost greater that c_e and edge e are removed
- 2. Use BFS to determine if there is a path from u to v
- 3. If there is a path from u to v
 - Then nodes u, v can be joined by a path of edges that are all cheaper then e. Hence, e is not a part of the minimal spanning tree
- 4. Else e is included in the minimal spanning tree

1.2 Runtime

The adjacency list can be made in O(m) time by iterated though all the edges. Similarly, the cost array can be built by iterating through all $e \in E$ and adding c_e to the array, which will take O(m) time. Creating G' has a bound of O(m+n) (if there are no edges in the graph that have a cost greater than c_e). Breadth First Search can run in O(m+n) time where m is the number of edges and n is the number of nodes as the graph is represented as an adjacency list, which is also given in the book. Hence, total running time is bounded by O(m+n).

1.3 Correctness

Lemma 1. Edge e = (u, v) is contained in the minimum spanning tree T of the graph G if there does not exists a path from u to v made of only cheaper edges compared to c_e .

Proof of Lemma 1. Assume there exists a path p from u to v that consists of edges that all cost cheaper than e. Now, add e to path p to create cycle C. Hence, e is the most expensive edge in C, and so by the Cycle Property, e is in no minimum spanning tree of G, hence e is not contained in T.

Then, assume there does not exist such a path p. Let S be the set of nodes reachable from u using edges that are cheaper than e. Then let V-S be the set of nodes that contains v. Note, that V-S cannot contain an edge that is cheaper than e, e'=(u',v') in which $u' \in S$ and $v' \in V-S$ as u' and v' would be reachable from u using strictly cheaper edges than e. Hence, e is the cheapest edge crossing from set S to complement V-S. Thus, by the Cut Property, e is in every minimum spanning tree of G, which follows that e is contained

in T.

Therefore, we have proved Lemma 1 as needed.