Proposição 1. Seja G um grafo conexo. Seja T uma árvore de Busca em Largura de G a partir de um vértice v qualquer. Se existem vértices $s,t \in V(G)$ tais que $st \in E(G)$, $st \notin E(T)$ e $dist_T(v,s) = dist_T(v,t) + 1$, então G possui ciclo par.

Proposição 2. Seja G um grafo conexo livre de ciclos pares. Seja T uma Árvore de Busca em Largura de G a partir de $v \in V(G)$. Seja $V \subsetneq V(G)$ o conjunto de vértices com distância p > 0 de v. Temos que o conjunto E(G[V]) é um emparelhamento.

Lema 1. Seja G um grafo. Se existe uma k-partição V_1, V_2, \ldots, V_k dos vértices de G tal que, para todo vértice $v \in V(G)$, temos que $|N(v) \cap V_i| = 1$, para algum $1 \le i \le k$, então $\chi_{pcf}(G) \le \sum_{i=1}^k \chi(G[V_i])$.

Demonstração. Seja $H_i=G[V_i]$, para todo $1\leq i\leq k$. Iremos colorir cada subgrafo H_i com $\chi(H_i)$ cores distintas. Para isso, cada cor será representada por um par ordenado. Seja $c_i:V(H_i)\to \{i\}\times \chi(H_i)$ uma coloração própria de H_i . Para todo par distinto de colorações c_i e c_j , temos que $c_i(v)\neq c_j(u)$, para todo $v\in V(H_i)$ e $u\in V(H_j)$, pois $(i,x)\neq (j,y)$ para $i\neq j$.

Seja c uma coloração de G tal que $c(v)=c_i(v)$ se e somente se $v\in V(H_i)$. Em outras palavras, c é a união das colorações usadas em cada subgrafo H_i . Como c_i é uma coloração própria de H_i e todo par distinto de subgrafos H_i e H_j são coloridos com cores distintas, temos que c é uma coloração própria de G.

Como, para todo vértice $v \in V(G)$, vale que $|N(v) \cap V(H_i)| = 1$, para algum subgrafo H_i , e como as cores usadas em H_i são distintas das cores usadas em $V(G) \setminus V(H_i)$, temos que existe uma cor (i,x) que aparece uma única vez na vizinhança de v, para $x \in [\chi(H_i)]$. Sendo assim, c descreve uma coloração própria livre de conflitos de G.

Como
$$c_i$$
 utiliza $\chi(H_i)$ cores, para todo $1 \le i \le k$, temos que $\chi_{pcf}(G) \le \sum_{i=1}^k \chi(H_i)$.

Teorema 1. Seja G um grafo conexo. Se G é livre de ciclos pares, então $\chi_{pcf}(G) \leq 7$.

Demonstração. Seja T uma Árvore de Busca em Largura de G a partir de um vértice r qualquer. Sabemos que T é uma árvore geradora, pois G é conexo. Seja V_0, V_1, V_2 uma partição de G tal que $x \in V_i$ se e somente se $i = dist_T(r,x) \pmod 3$. Seja s um vértice de G, tal que $s \ne r$. Seja p o pai de s em T e seja f um filho de s em T. Note que p e f pertencem a partições distintas, pois:

$$dist_T(r,p) \pmod{3} \neq dist_T(r,p) + 2 \pmod{3} = dist_T(r,f) \pmod{3}$$
 (1)

Seja $t \in V(G)$ um vértice tal que $dist_T(r,s) > dist_T(r,t) + 1$. Sabemos que $st \notin E(G)$, pois T é uma árvore de Busca em Largura. Sendo assim, se $st \in E(G)$ e $st \notin E(T)$, então $dist_T(r,s) = dist_T(r,t) + 1$ ou $dist_T(r,s) = dist_T(r,t)$. Pela Proposição 1, sabemos que se $st \in E(G)$ e $st \notin E(T)$, então $dist_T(r,s) = dist_T(r,t)$, pois G é livre de ciclos pares. Note que isto implica que s é adjacente a precisamente um

vértice u em G tal que $dist_T(r,s) = dist_T(r,u) + 1$, e, sendo assim, u é o pai de s em T, i.e., u = p. Note que $|N(s) \cap V_i| = 1$, onde $f \in V_i$, para todo $s \in V(G) \setminus \{r\}$.

Resta agora a partição do vértice raiz r. Iremos remover um vértice $v \in N(r)$ da partição V_1 e iremos construir uma nova partição $V_0, V_1^{'}, V_2, V_3$ de G, de modo que $V_1^{'} = V_1 \setminus \{v\}$ e $V_3 = \{v\}$. Seja s um vértice onde $|N(s) \cap V_1| = 1$, i.e., o pai p de s pertence a V_1 . Queremos argumentar que a propriedade é satisfeita para s na nova partição $V_0, V_1^{'}, V_2, V_3$. Se $p \neq v$, então $|N(s) \cap V_1^{'}| = 1$ e a propriedade continua valendo. Se p = v, então $N(s) \cap V_3 = \{v\}$, i.e., $|N(s) \cap V_3| = 1$ e a propriedade vale.

Note que a partição V_0, V_1', V_2 e V_3 satisfaz a condição do Lema 1. Note que pela Proposição 2, $E(G[V_i])$ é um emparelhamento. Sendo assim, temos que $\chi(G[V_i])=2$, para $0\leq i\leq 2$. Note que $\chi(G[V_3])=1$, pois $V_3=\{v\}$. Sendo assim, pelo Lema 1, temos que $\chi_{pcf}(G)\leq 7$.

Definição 1. Seja $P = \{C_1, C_2, \dots C_k\}$ uma k-partição de n termos. Dizemos que P é uma k-partição par se, para todo $1 \le i \le k$, $|C_i|$ é par. Do contrário, dizemos que P é uma k-partição ímpar, i.e., P é uma k-partição ímpar se alguma parte C_i tem tamanho ímpar.

Definição 2. Seja $P = \{C_1, C_2, \dots C_k\}$ uma k-partição ímpar de n termos. Dizemos que P é uma k-partição ℓ -ímpar se há exatamente ℓ partes distintas em P de tamanho ímpar, para $\ell \geq 1$.

Definição 3. Denotamos por $\mu(n,k)$ a quantidade de k-partições pares distintas de n termos.

Definição 4. Denotamos por $\Phi(n,k)$ a quantidade de k-partições ímpares distintas de n termos. Denotamos por $\Phi_{\ell}(n,k)$ a quantidade de k-partições ℓ -ímpares distintas de n termos, para $\ell \geq 1$. Também denotamos por $\Phi_{\geq \ell}(n,k)$ a quantidade de k-partições t-ímpares distintas n termos, para todo $\ell \leq t \leq k$, i.e., $\Phi_{\geq \ell}(n,k) = \sum_{i=\ell}^k \Phi_i(n,k)$.

Definição 5. Denotamos por $\varphi_\ell(n,k)$ a quantidade de k-partições ℓ -ímpares, com a restrição de que somente as primeiras ℓ partes tenham cardinalidade ímpar. Claramente temos que $\varphi_\ell(n,k) \leq \Phi_\ell(n,k)$, pois $\varphi_\ell(n,k)$ conta apenas as k-partições com as primeiras ℓ partes de cardinalidade ímpar, já $\Phi_\ell(n,k)$ conta qualquer subconjunto pertencente a $\binom{[k]}{\ell}$ com cardinalidade ímpar.

Lema 2. Seja a recorrência a seguir:

$$T(2n,k) = \begin{cases} 1 & \text{se } n = 0 \text{ ou } k = 1\\ \sum_{i=0}^{n} {2n \choose 2i} \cdot T(2i,k-1) & \text{c.c.} \end{cases}$$
 (2)

Temos que $T(2n, k) = \mu(2n, k)$.

Demonstração. A demonstração segue por indução em k.

Base (k=1): Para k=1, temos que $T(2n,k)=\mu(2n,1)=1$, pois há uma única partição $P=\{C_1\}$ de 2n, de modo que $|C_1|$ seja par. Sendo assim, o resultado segue.

Passo (k>1): Suponha que $T(2n,\ell)=\mu(2n,\ell)$, para todo $1\leq \ell < k$. Seja a_{2i} a quantidade de maneiras de escolher 2i termos de 2_n termos para a parte C_k . Como C_k tem tamanho par, temos que $|C_k|=2i$, para $0\leq i\leq n$. Note que ao escolher 2i termos para a parte C_k temos que escolher uma (k-1)-partição par P' para os 2n-2i. Por definição, a quantidade de (k-1)-partições pares distintas de 2n-2i termos é igual a $\mu(2n-2i,k-1)$. Sendo assim:

$$\mu(2n,k) = \sum_{i=0}^{n} a_{2i} \cdot \mu(2n-2i,k-1)$$
(3)

Por HI, $T(2n-2i,k-1)=\mu(2n-2i,k-1)$. Note que $a_{2i}=\binom{2n}{2i}=\binom{2n}{2n-2i}$. Logo:

$$\mu(2n,k) = \sum_{i=0}^{n} {2n \choose 2n-2i} \cdot T(2n-2i,k-1)$$

$$= \sum_{i=0}^{n} {2n \choose 2i} \cdot T(2i,k-1) = T(2n,k)$$
(4)

Lema 3. Seja a recorrência a seguir:

$$R(2n,k) = \begin{cases} 0 & \text{se } k \le 1\\ 2^{2n-1} & \text{se } k = 2\\ \sum_{i=1}^{n} {2n \choose 2i} \cdot R(2i,k-1) & \text{se } k > 2 \end{cases}$$
 (5)

Temos que $R(2n,k) = \varphi_2(2n,k)$.

Demonstração. A demonstração segue por indução em k.

Base (k=2): Note que $\varphi_2(2n,2)=\Phi(2n,2)$, pois, seja uma k-partição ímpar $P=(C_1,C_2)$, como 2n é par, temos que $|C_1|$ e $|C_2|$ são pares ou $|C_1|$ e $|C_2|$ são ímpares. Note que $\Phi(2n,2)=2^{2n}-\mu(2n,2)$, pois há exatamente 2^{2n} formas de particionar 2n termos em duas partes C_1 e C_2 e dessas 2^{2n} maneiras há $\mu(2n,2)$ maneiras de particionar 2n termos tal que $|C_1|$ e $|C_2|$ sejam pares. Note que:

$$\mu(2n,2) = \sum_{i=0}^{n} {2n \choose 2i} \cdot T(2i,1) = \sum_{i=0}^{n} {2n \choose 2i} = 2^{2n-1}$$
 (6)

Logo, temos que $\varphi_2(2n,2)=\Phi(2n,2)=2^{2n}-2^{2n-1}=2^{2n-1}=R(2n,2)$ e o resultado segue.

Passo (k>1): Suponha que $R(2n,\ell)=\varphi_2(2n,\ell)$, para todo $2\leq \ell < k$. Seja a_{2i} a quantidade de maneiras de escolher 2i termos de 2_n termos para a parte C_k . Como somente as partes C_1 e C_2 tem tamanho ímpar, temos que a parte C_k tem tamanho par, pois k>2. Logo $|C_k|=2i$, para $0\leq i\leq n-1$. Note que $|C_k|\leq 2n-2$, pois como C_1 e C_2 possuem tamanho ímpar, temos que há ao menos um termo em C_1 e C_2 . Note que ao escolher 2i termos para a parte C_k temos que escolher uma (k-1)-partição 2-ímpar P' para os 2n-2i. Por definição, a quantidade de (k-1)-partições 2-ímpares distintas de 2n-2i termos é igual a $\varphi_2(2n-2i,k-1)$. Sendo assim:

$$\varphi_2(2n,k) = \sum_{i=0}^{n-1} a_{2i} \cdot \varphi_2(2n-2i,k-1)$$
(7)

Por HI, $R(2n-2i,k-1)=\varphi_2(2n-2i,k-1)$. Note que $a_{2i}=\binom{2n}{2i}=\binom{2n}{2n-2i}$. Logo:

$$\varphi_2(2n,k) = \sum_{i=0}^{n-1} {2n \choose 2n-2i} \cdot R(2n-2i,k-1)$$

$$= \sum_{i=1}^{n} {2n \choose 2i} \cdot R(2i,k-1) = R(2n,k)$$
(8)

Lema 4. $\varphi_2(2n, k) \leq \mu(2n, k)$.

Demonstração. A demonstração segue por indução em k.

Base (k=2): Pelo Caso Base do Lema 3, temos que $\varphi_2(2n,2)=2^{2n-1}=\mu(2n,2)$ e o resultado segue.

Passo (k>2): Suponha que $\varphi_2(2n,\ell) \leq \mu(2n,\ell)$, para $2 \leq \ell < k$. Note que:

$$\mu(2n,k) = \sum_{i=0}^{n} {2n \choose 2i} \cdot \mu(2i,k-1) \ge \sum_{i=1}^{n} {2n \choose 2i} \cdot \mu(2i,k-1)$$
 (9)

Por HI:

$$\sum_{i=1}^{n} {2n \choose 2i} \cdot \varphi_2(2i, k-1) \le \sum_{i=1}^{n} {2n \choose 2i} \cdot \mu(2i, k-1)$$

$$\tag{10}$$

Como $\varphi_2(2n,k)=\sum\limits_{i=1}^n\binom{2n}{2i}\cdot \varphi_2(2i,k-1),$ por (9) e (10), temos que $\varphi_2(2n,k)\leq \mu(2n,k).$

Lema 5.
$$\Phi_2(2n,k) = \binom{k}{2} \cdot \varphi_2(2n,k)$$
.

 $\begin{array}{l} \textit{Demonstração}. \text{ Pela definição, } \varphi_2(2n,k) \text{ conta a quantidade de k-partições } C_1,C_2\dots C_k \\ \text{onde apenas } C_1 \in C_2 \text{ tenham tamanho impar. Pela definição, } \Phi_2(2n,k) \text{ conta a quantidade de k-partições } C_1,C_2\dots C_k \\ \text{onde exatamente duas partes quaisquer } C_i \in C_j \text{ tem tamanho impar, para } 1 \leq i,j \leq k. \\ \text{Note que } \varphi_2(2n,k) \\ \text{não conta as k-partições onde } |C_i| \\ \text{ou } |C_j| \\ \text{são impares, para } i,j \geq 3. \\ \text{Mas, neste caso, podemos considerar } C_i \in C_j \\ \text{como sendo as partes } C_1 \in C_2, \\ \text{de modo que a quantidade de k-partições impares distintas onde somente } |C_i| \\ \text{e } |C_j| \\ \text{são impares seja igual a } \varphi_2(2n,k). \\ \text{Como há exatamente } \binom{k}{2} \\ \text{formas de escolher duas partes } C_i \\ \text{e } C_j \\ \text{entre as } k \\ \text{partes, de modo que } |C_i| \\ \text{e } |C_j| \\ \text{sejam impares, temos que } \Phi_2(2n,k) \\ \text{e} \binom{k}{2} \\ \cdot \varphi_2(2n,k). \\ \end{array}$

Lema 6. Seja a recorrência a seguir:

$$X(2n) = \begin{cases} 1 & \text{se } n = 0\\ (2n-1)k \cdot X(2n-2) & \text{c. c.} \end{cases}$$
 (11)

Temos que $\mu(2n,k) \leq X(2n)$.

Demonstração. A demonstração segue por indução em n.

Base (n = 0): Se n = 0, então $T(0, k) = 1 \le X(0)$ e o resultado segue.

Passo (n>0): Suponha que $\mu(2\ell,k) \leq X(2\ell)$, para todo $0 \leq \ell < n$. Seja $P=(C_1,C_2\ldots C_k)$ uma k-partição par de 2n termos. Considere que o termo $2n\in C_i$, para algum $1\leq i\leq k$. Como $|C_i|$ é par, temos que existe um termo $y\in C_i$, tal que $y\neq 2n$. Seja P' a k-partição resultante da remoção dos termos 2n e y da parte C_i de P. Note que P' é uma k-partição par de 2n-2 termos. Portanto, P' é contada em $\mu(2n-2,k)$. Sendo assim, $\mu(2n-2,k)$ conta as k-partições pares de 2n termos onde $y,2n\in C_i$, para algum $1\leq i\leq k$. Como há k possibilidades para a parte C_i , temos que $k\cdot \mu(2n-2,k)$ conta as k-partições pares de 2n termos onde $y,2n\in C_j$, para todo $1\leq j\leq k$. Observe que y pode ser qualquer um dos 2n-1 termos restantes. Sendo assim, cada k-partição par P de 2n termos é equivalente a alguma combinação de $(2n-1)k\cdot \mu(2n-2,k)$. Sendo assim, $\mu(2n,k)\leq (2n-1)k\cdot \mu(2n-2,k)$. Por $HI, \mu(2n-2,k)\leq X(2n-2)$, logo:

$$\mu(2n,k) < (2n-1)k \cdot \mu(2n-2,k) < (2n-1)k \cdot X(2n-2) = X(2n) \tag{12}$$

Lema 7. Seja X_{ℓ} o evento de uma k-partição de ℓ termos P ser ímpar. Temos que $\mathbb{P}[X_{2n+2}] \geq \mathbb{P}[X_{2n}] \longleftrightarrow \Phi(2n+2,k) \geq \Phi(2n,k) \cdot k^2$.

Demonstração. Sejam Ω e Ω' os conjuntos de todas k-partições de 2n e 2n+2 termos, respectivamente. Temos que $\mathbb{P}[X_{2n}] = \frac{\Phi(2n,k)}{|\Omega|}$ e $\mathbb{P}[X_{2n+2}] = \frac{\Phi(2n+2,k)}{|\Omega'|}$. Note que $|\Omega| = k^{2n}$, pois cada um dos 2n termos pode pertencer a qualquer um dos k conjuntos independentemente. Da mesma forma, $|\Omega'| = k^{2n+2}$. Sendo assim:

$$\mathbb{P}[X_{2n+2}] \ge P[X_{2n}] \longleftrightarrow \frac{\Phi(2n+2,k)}{k^{2n+2}} \ge \frac{\Phi(2n,k)}{k^{2n}} \longleftrightarrow \Phi(2n+2,k) \ge \Phi(2n,k) \cdot k^2$$

$$\tag{13}$$

Lema 8. $\Phi(2n+2,k) \ge \Phi(2n,k) \cdot k^2$

Demonstração. Note que $\Phi(2n,k)=\Phi_2(2n,k)+\Phi_{\geq 4}(2n,k)$, pois, como temos um número par de termos, não há como ter uma k-partição com ímpar partes de tamanho ímpar, sendo assim, $\Phi_i(2n,k)=0$, para todo i ímpar. Para demonstrar este lema, iremos contar as k-partições ímpares possíveis de 2n+2 termos geradas a partir das k-partições contadas em $\Phi_2(2n,k)$, $\Phi_{\geq 4}(2n,k)$ e em $\mu(2n,k)$.

Tome uma k-partição ℓ -ímpar P_1 de 2n termos, onde $\ell \geq 4$, i.e., P_1 é uma k-partição contada em $\Phi_{\geq 4}(2n,k)$. Note que o termo 2n+1 possui k possibilidades de partes para formar uma nova k-partição a partir de P_1 , pois o termo 2n+1 pode pertencer a qualquer uma das k partes de P_1 . O mesmo vale para o termo 2n+2. Sendo assim, temos k^2 k-partições P_1' distintas de 2n+2 termos possíveis a partir da partição P_1 . Note que toda nova partição P_1' resultante é uma k-partição ímpar, pois temos ao menos 4 partes ímpares em P_1 . Como temos $\Phi_{\geq 4}(2n,k)$ k-partições ímpares distintas com ao menos 4 partes ímpares, temos que $\Phi(2n+2,k) \geq \Phi_{\geq 4}(2n,k) \cdot k^2$.

Agora, tome uma k-partição 2-ímpar P_2 de 2n termos. Considere que as partes C_i e C_j tenham tamanho ímpar em P_2 . Seja P_2' uma k-partição de 2n+2 termos resultante das k^2 combinações dos termos 2n+1 e 2n+2 nas k partes de P_2 . Se o termo 2n+1 ou o termo 2n+2 pertencer a alguma parte C_x em P_2 , onde $x \neq i, j$, então P_2' é uma k-partição ímpar, pois $|C_x|$ é par, logo $|C_x \cup \{2n+1\}|$ é ímpar. Se ambos termos 2n+1 e 2n+2 pertencem à parte C_i , então P_2' é uma k-partição ímpar, pois $|C_i \cup \{2n+1,2n+2\}|$ é ímpar. O mesmo vale para a parte C_j . Se os termos 2n+1 e 2n+2 pertencem às partes C_i e C_j , respectivamente ou não, então P_2' é uma k-partição par, pois C_i e C_j são as únicas partes de tamanho ímpar em P_2 . Sendo assim, temos k^2-2 k-partições ímpares P_2' distintas a partir de P_2 . Logo $\Phi(2n+2,k) \geq \Phi_2(2n,k) \cdot k^2-2 \cdot \Phi_2(2n,k)$. Note que a partição P_2' resultante de P_2 é distinta da partição P_1' resultante de P_1 , pois ao retirarmos os termos 2n+1 e 2n+2 de P_1' e P_2' obtemos P_1 e P_2 , e sabemos que P_1 e P_2 são k-partições distintas, pois P_1 tem exatamente duas partes de tamanho ímpar e P_2 tem pelo menos quatro partes de tamanho ímpar. Sendo assim, podemos somar as partições P_2' obtidas de P_2 junto com as partições P_1' obtidas de P_1 . Portanto:

$$\Phi(2n+2,k) \ge \Phi_{\ge 4}(2n,k) \cdot k^2 + \Phi_2(2n,k) \cdot k^2 - 2 \cdot \Phi_2(2n,k)
\ge \Phi(2n,k) \cdot k^2 - 2 \cdot \Phi_2(2n,k)$$
(14)

Agora, tome uma k-partição par P_3 de 2n termos. Seja P_3' uma k-partição de 2n+2 termos resultante das k^2 combinações possíveis dos termos 2n+1 e 2n+2 nas k partes de P_3 . Note que se os termos 2n+1 e 2n+2 pertencem a mesma parte, então P_3' é uma k-partição par. Do contrário, P_3' é uma k-partição ímpar. Sendo assim das k^2 combinações possíveis, temos que exatamente k combinações são k-partições pares, pois há k maneiras dos termos 2n+1 e 2n+2 pertencerem a mesma parte de P_3 . Logo, temos k^2-k partições ímpares P_3' resultantes de P_3 . Note que P_3' é distinto de P_2' e P_1' , pelo mesmo argumento dado anteriormente. Sendo assim:

$$\Phi(2n+2,k) \ge \Phi(2n,k) \cdot k^2 + \mu(2n,k) \cdot k^2 - \mu(2n,k) \cdot k - 2 \cdot \Phi_2(2n,k)
\ge \Phi(2n,k) \cdot k^2 + \mu(2n,k) \cdot k(k-1) - 2 \cdot \Phi_2(2n,k)$$
(15)

Iremos demonstrar que $\mu(2n,k)\cdot k(k-1)-2\cdot \Phi_2(2n,k)\geq 0.$ Pelo Lema 5, temos que:

$$2 \cdot \Phi_2(2n, k) \le 2 \cdot {k \choose 2} \cdot \varphi_2(2n, k)$$

$$\le k(k-1) \cdot \varphi_2(2n, k)$$
(16)

Pelo Lema 4, temos que:

$$k(k-1) \cdot \varphi_2(2n,k) \le k(k-1) \cdot \mu(2n,k)$$
 (17)

Por (14) e (15), temos que:

$$2 \cdot \Phi_2(2n, k) \le k(k-1) \cdot \varphi_2(2n, k) \le k(k-1) \cdot \mu(2n, k)$$

$$\therefore \mu(2n, k) \cdot k(k-1) - 2 \cdot \Phi_2(2n, k) > 0$$
(18)

Sendo assim, temos que $\Phi(2n+2,k) \geq \Phi(2n,k) \cdot k^2$, como desejado.

Lema 9. Seja Y_{ℓ} o evento de uma k-partição de ℓ termos P ser par. Temos que $\mathbb{P}[Y_{2n+2}] \leq \mathbb{P}[Y_{2n}]$.

Demonstração. Por definição, P é uma k-partição par se $|C_i|$ é par, para toda parte C_i . Em contrapartida, P é uma k-partição ímpar se $|C_j|$ é ímpar, para alguma parte C_j de P. Sendo assim, $\overline{X_\ell} = Y_\ell$, onde X_ℓ o evento de uma k-partição de ℓ termos P ser ímpar. Logo, $\mathbb{P}[Y_\ell] = 1 - \mathbb{P}[X_\ell]$. Portanto:

$$\mathbb{P}[Y_{2n}] = 1 - \mathbb{P}[X_{2n}]
\mathbb{P}[Y_{2n+2}] = 1 - \mathbb{P}[X_{2n+2}]$$
(19)

Pelos Lemas 7 e 8, temos que $\mathbb{P}[X_{2n+2}] \geq \mathbb{P}[X_{2n}]$, logo:

$$\mathbb{P}[Y_{2n+2}] = 1 - \mathbb{P}[X_{2n+2}] \le 1 - \mathbb{P}[X_{2n}] = \mathbb{P}[Y_{2n}]$$
 (20)