A Appendix

A.1 Straight-through Estimator

The Straight-Through Estimator (STE) 2 is a commonly used technique in deep learning paradigms that incorporate discrete or non-differentiable functions, for example, binarization. This method facilitates the approximation of gradients through these operations, thereby enabling end-to-end model training involving non-differentiable components. Consequently, we utilize STE for backpropagation and approximate its gradient G'(x) correspondingly.

$$G'(x) \approx 1.$$
 (5)

A.2 Proofs for Lemmas

Lemma 1.

$$\mathbb{E}_{x} \left[\mathbf{1}_{\{\theta_{1} \cdot x > \theta_{2} \cdot x\}} \mathbf{1}_{\{\hat{\theta}_{1} \cdot x > \hat{\theta}_{2} \cdot x\}} \right] = \frac{1}{2} \left(1 - \frac{\arccos\left(\frac{(\theta_{1} - \theta_{2}) \cdot (\hat{\theta}_{1} - \hat{\theta}_{2})}{\|\theta_{1} - \theta_{2}\|_{2} \|\hat{\theta}_{1} - \hat{\theta}_{2}\|_{2}}\right)}{\pi} \right).$$

Proof. Consider the plane spanned by vector $\theta_1 - \theta_2$ and $\hat{\theta}_1 - \hat{\theta}_2$ and the projection of x to this plane, the two indicator function requires the angle $< Px, \theta_1 - \theta_2 >$ and angle $< Px, \hat{\theta}_1 - \hat{\theta}_2 >$ to be smaller than $\frac{\pi}{2}$. Evaluating the expectation over \mathcal{X} is equivalent to evaluating the intersection region of two semicircles. Therefore the result is $\frac{\pi - \arccos(\frac{(\theta_1 - \theta_2) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{2\pi}) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{2\pi}.$

Lemma 2. Let $\Delta\theta = \theta_1 - \theta_2$, $\Delta\hat{\theta} = \hat{\theta}_1 - \hat{\theta}_2$. When the coordinates of vector $\Delta\theta$ are ordered by absolute value: $1 \geq |\Delta\theta_1| \geq |\Delta\theta_2| \geq \cdots \geq |\Delta\theta_d|$. Then we have the following equality:

$$\sup_{\Delta \hat{\theta} \in \{-1,0,1\}^d} \frac{\Delta \theta \cdot \Delta \hat{\theta}}{\|\Delta \theta\|_2 \|\Delta \hat{\theta}\|_2} = \sup_{1 \le j \le d} \{ \frac{\sum_{i=1}^j |\Delta \theta_j|}{\sqrt{j} \|\Delta \theta\|_2} \}.$$

Proof. By the definition of the supremum, iterate over the list $\Delta \hat{\theta} \in [\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2, \dots, \mathbf{e}_1 + \mathbf{e}_2 + \dots + \mathbf{e}_d]$, \mathbf{e}_i is the unit vector with the same sign as $\Delta \theta_i$, we know

$$\sup_{\Delta \hat{\theta} \in \{-1,0,1\}^d} \frac{\Delta \theta \cdot \Delta \hat{\theta}}{\|\Delta \theta\|_2 \|\Delta \hat{\theta}\|_2} \geq \sup_{1 \leq j \leq d} \{\frac{\sum_{i=1}^j |\Delta \theta_j|}{\sqrt{j} \|\Delta \theta\|_2}\}.$$

Now we show the \leq part. We show that when the $\Delta\theta$'s coordinates are ordered, the optimal $\Delta\hat{\theta}$ is of the form

$$(\operatorname{sign}(\Delta\theta_1), \ldots, \operatorname{sign}(\Delta\theta_i), 0, \ldots, 0).$$

For any $\Delta \hat{\theta}$ with norm \sqrt{j} ,

$$\Delta\theta \cdot \Delta\hat{\theta} \le \sum_{i=1}^{j} |\Delta\theta_j|.$$

Therefore,

$$\sup_{\Delta\hat{\theta}\in\{-1,0,1\}^d}\frac{\Delta\theta\cdot\Delta\hat{\theta}}{\|\Delta\theta\|_2\|\Delta\hat{\theta}\|_2}=\sup_{j}\sup_{|\Delta\hat{\theta}|=\sqrt{j},}\frac{\Delta\theta\cdot\Delta\hat{\theta}}{\|\Delta\theta\|_2\|\Delta\hat{\theta}\|_2}\leq \sup_{1\leq j\leq d}\{\frac{\sum_{i=1}^{j}|\Delta\theta_j|}{\sqrt{j}\|\Delta\theta\|_2}\}.$$

Lemma 3.

$$\inf_{\theta_1,\theta_2} \sup_{\hat{\theta}_1,\hat{\theta}_2} \left[1 - \frac{\arccos(\frac{(\theta_1 - \theta_2) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{\|\theta_1 - \theta_2\|_2 \|\hat{\theta}_1 - \hat{\theta}_2\|_2})}{\pi} \right] \leq 1 - \frac{\arccos(\frac{1}{\sqrt{\sum_{j=1}^d (\sqrt{j} - \sqrt{j-1})^2}})}{\pi}.$$

Proof. We will show the \leq part by construction. Set $\theta_1 = (1, \sqrt{2} - \sqrt{1}, \dots, \sqrt{d} - \sqrt{d-1}), \theta_2 = (0, 0, \dots, 0)$. According to the Lemma 2 and the monotonicity of arccos function, we have

$$\begin{split} \inf_{\theta_1,\theta_2} \sup_{\hat{\theta}_1,\hat{\theta}_2} \left[1 - \frac{\arccos(\frac{(\theta_1 - \theta_2) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{\|\theta_1 - \theta_2\|_2 \|\hat{\theta}_1 - \hat{\theta}_2\|_2})}{\pi} \right] &\leq \sup_{\hat{\theta}_1,\hat{\theta}_2} \left[1 - \frac{\arccos(\frac{(\theta_1 - \theta_2) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{\|\theta_1 - \theta_2\|_2 \|\hat{\theta}_1 - \hat{\theta}_2\|_2})}{\pi} \right] \\ &= 1 - \frac{\arccos(\sup_{\hat{\theta}_1,\hat{\theta}_2} \frac{\theta_1 - \theta_2) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{\|\theta_1 - \theta_2\| \|\hat{\theta}_1 - \hat{\theta}_2\|})}{\pi} \\ &= 1 - \frac{\arccos(\frac{1}{\sqrt{\sum_{j=1}^d (\sqrt{j} - \sqrt{j-1})^2}})}{\pi}. \end{split}$$

Lemma 4.

$$\inf_{\theta_1,\theta_2} \sup_{\hat{\theta}_1,\hat{\theta}_2} \left[1 - \frac{\arccos(\frac{(\theta_1 - \theta_2) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{\|\theta_1 - \theta_2\|_2 \|\hat{\theta}_1 - \hat{\theta}_2\|_2})}{\pi} \right] \geq 1 - \frac{\arccos(\frac{1}{\sqrt{\sum_{j=1}^d (\sqrt{j} - \sqrt{j-1})^2}})}{\pi}.$$

Proof. Proof by contradiction. Assume there exists θ_1^*, θ_2^* such that the LHS is smaller than $1 - \frac{\arccos(\frac{1}{\sqrt{\sum_{j=1}^d(\sqrt{j}-\sqrt{j-1})^2}})}{\pi}$, by monotonicity of cosine function we know

$$C_0 := \sup_{\hat{\theta}_1, \hat{\theta}_2} \frac{(\theta_1^* - \theta_2^*) \cdot (\hat{\theta}_1 - \hat{\theta}_2)}{|\theta_1^* - \theta_2^*|| \hat{\theta}_1 - \hat{\theta}_2|} < \frac{1}{\sqrt{\sum_{j=1}^d (\sqrt{j} - \sqrt{j-1})^2}} =: C_d.$$

Denote $\Delta\theta^* = \theta_1^* - \theta_2^*$. Without loss of generality, we assume $\Delta\theta^* \in [0,1]^d$, $\|\Delta\theta^*\|_2 = 1$ and

$$\Delta\theta_1^* > \Delta\theta_2^* > \cdots > \Delta\theta_d^*$$

Starting from $\Delta\theta_1^*, \ldots, \Delta\theta_d^*$, we construct another feasible solution $\Delta\theta_1, \ldots, \Delta\theta_d$ without increasing the corresponding supremum value beyond C_0 . However, if we compare $\Delta\theta_1, \ldots, \Delta\theta_d$ element-wisely with $(\sqrt{k} - \sqrt{k-1})C_0, 1 \le k \le d$, the first $\Delta\theta_k$ that is not equal to $(\sqrt{k} - \sqrt{k-1})C_0$ is greater than $(\sqrt{k} - \sqrt{k-1})C_0$, this gives us the contradiction to the C_0 's definition.

Also notice $\sum_{i=1}^{d} (\Delta \theta_i^*)^2 = 1, C_0 < C_d$, there always exists index k satisfying $\Delta \theta_k^* > (\sqrt{k} - \sqrt{k-1})C_0$.

Assume the first θ_i that is not equal to $(\sqrt{i} - \sqrt{i-1})C_0$ is still smaller than $(\sqrt{i} - \sqrt{i-1})C_0$. By the above paragraph, we can find the first $\theta_k, k > i$ with $\theta_k^* > (\sqrt{k} - \sqrt{k-1})C_0$.

Then we adjust (θ_i^*, θ_k^*) to $((\sqrt{i} - \sqrt{i-1})C_0, \sqrt{(\theta_i^*)^2 + (\theta_k^*)^2 - (\sqrt{i} - \sqrt{i-1})^2C_0^2})$. We can verify that the assumed inequalities continue to hold. (There are cases for $(\theta_i^*)^2 + (\theta_k^*)^2 - (\sqrt{i} - \sqrt{i-1})^2C_0^2 \le (\sqrt{k} - \sqrt{k-1})^2C_0^2$, then we just end this modification with $(\sqrt{(\theta_i^*)^2 + (\theta_k^*)^2 - (\sqrt{k} - \sqrt{k-1})^2C_0^2}, (\sqrt{k} - \sqrt{k-1})C_0)$ and then repeat the procedure.)

As the above procedure repeats, number $\#\{k|\theta_k = (\sqrt{k} - \sqrt{k-1})C_0\}$ is strictly increased. When it stopped, the first non- $(\sqrt{k} - \sqrt{k-1})C_0$ term is larger than the $(\sqrt{k} - \sqrt{k-1})C_0$ and this gives us the contradiction.