

Data Mining Assignments

اسم الطالب / عبدالرحمن عبدالرحمن

اشراف الدكتورة / هبة المروعي

Association Rules(Eclat)

Introduction

Eclat algorithm stands for Equivalence Class Transformation. It's a bottom up lattice traversal. It is more efficient and scalable version of Apriori algorithm .

While the Apriori algorithm works in a horizontal sense imitating the Breadth-First Search of a graph, the ECLAT algorithm works in a vertical manner just like the Depth-First Search of a graph. This vertical approach of the ECLAT algorithm makes it a faster algorithm than the Apriori algorithm.

Consider the following transactions record

Transaction Id	Bread	Butter	Milk	Coke	Jam
T1	1	1	0	0	1
T2	0	1	0	1	0
T3	0	1	1	0	0
T4	1	1	0	1	0
T5	1	0	1	0	0
T6	0	1	1	0	0
T7	1	0	1	0	0
T8	1	1	1	0	1
T9	1	1	1	0	0

The above-given data is a boolean matrix where for each cell (i, j), the value denotes whether the j'th item is included in the i'th transaction or not. 1 means true while 0 means false.

We now call the function for the first time and arrange each item with it's tidset in a tabular fashion:-

Confidence = 70%, minimum support = 2

Solution:

Step 1: Convert DB into vertical format with min_support_cnt gets satisfied K = 1

Item_Set	List of Items
I1 (Bread)	T1,T4,T5,T7,T8,T9
12 (Butter)	T1,T2,T3,T4,T6,T8,T9
13 (Milk)	T3,T5,T6,T7,T8,T9
I4 (Coke)	T2,T4
15 (Jam)	T1,T8

Step 2: @k = 2

Item_Set	List of Items
11,12	T1,T4,T8,T9
11,13	T5,T7,T8,T9
11,14	T4
11,15	T1,T8
12,14	T2,T4
12,15	T1,T8
13,14	NULL
13,15	T8
14,15	NULL

Eliminate the Item_set's with less than 2 list of items

Item_Set	List of Items
11,12	T1,T4,T8,T9
11,13	T5,T7,T8,T9
11,15	T1,T8
12,14	T2,T4
12,15	T1,T8

Step 3: @k = 3

Item_Set	List of Items
11,12,13	T8,T9
11,12,15	T1,T8
11,13,15	T8
12,13,14	NULL
12,13,15	T8
12,14,15	NULL

Eliminate the Item_set's with less than 2 list of items

Item_Set	List of Items	
11,12,13	T8,T9	
11,12,15	T1,T8	

Step:4 @k = 4

Item_Set	List of Items
11,12,13,15	T8

Here minimum confidence count does not match, so go to previous step.

@step:3 we have two itemsets and they are

$$\{1,2,3\} = \{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\} =$$
 equation -1

$$\{1,2,5\} = \{1,2\},\{1,5\},\{2,5\},\{1\},\{2\},\{5\} =$$
 equation -2

Applying rules on equation -1

Rule 1: $\{1,2\} => \{1,2,3\}$ and $\{1,2\}$.

Confidence =
$$(1,2,3) / (1,2) => 2/4 => 0.5$$

Rule 2: $\{2,3\} => \{1,2,3\}$ and $\{2,3\}$.

Confidence =
$$(1,2,3) / (2,3) => 2/4 => 0.5$$

Rule $3:\{1,3\} => \{1,2,3\}$ and $\{1,3\}$.

Confidence =
$$(1,2,3) / (1,3) => 2/4 => 0.5$$

Rule 4: $\{1\} = \{1,2,3\}$ and $\{1\}$.

Confidence =
$$(1,2,3) / (1) => 2/6 => 0.33$$

Rule 5: $\{2\} => \{1,2,3\}$ and $\{2\}$.

Confidence = (1,2,3) / (2) => 2/7 => 0.29

Rule 6: $\{3\} => \{1,2,3\}$ and $\{3\}$.

Confidence = (1,2,3) / (3) => 2/6 => 0.33

None of the combination satisfies at equation 1

Applying rules on equation -2

Rule 1: $\{1,2\} => \{1,2,5\}$ and $\{1,2\}$.

Confidence = (1,2,5) / (1,2) => 2/4 => 0.5

Rule 2: $\{2,5\} => \{1,2,5\}$ and $\{2,5\}$.

Confidence = (1,2,5) / (2,5) => 2/2 => 1.0

Rule $3: \{1,5\} => \{1,2,5\}$ and $\{1,5\}$.

Confidence = (1,2,5) / (1,5) => 2/2 => 1.0

Rule 4: $\{1\} => \{1,2,5\}$ and $\{1\}$.

Confidence = (1,2,5) / (1) => 2/6 => 0.33

Rule 5: $\{2\} => \{1,2,5\}$ and $\{2\}$.

Confidence = (1,2,5) / (2) => 2/7 => 0.29

Rule 6: $\{5\} => \{1,2,5\}$ and $\{5\}$.

Confidence = (1,2,5) / (5) => 2/2 => 1.00

Only Rule of the combinations 2,3 and 6 satisfies at equation 2

From overall result most commonly bought products with high confidence(>70%) are

Bread, Butter and Jam

Bread, Butter and Coke

Advantages over Apriori algorithm:-

- 1. **Memory Requirements:** Since the ECLAT algorithm uses a Depth-First Search approach, it uses less memory than Apriori algorithm.
- 2. **Speed:** The ECLAT algorithm is typically faster than the Apriori algorithm.
- 3. **Number of Computations:** The ECLAT algorithm does not involve the repeated scanning of the data to compute the individual support values.