

Model-Based Predictive Models

LDA & QDA

BAYES FORMULA

 The Bayes theorem gives us the following formula to compute the probability that the record belongs to class Ci:

$$P(C_i|X_1,\ldots,X_p) = \frac{P(X_1,\ldots,X_p|C_i)P(C_i)}{P(X_1,\ldots,X_p|C_1)P(C_1) + \cdots + P(X_1,\ldots,X_p|C_m)P(C_m)}.$$

Where

Ci: classes of interest

X₁,X₂,...X_p: Variables which co-exist with Classes of interest

Bayes Theorem

$$P(C_i|X_1,\ldots,X_p) = \frac{P(X_1,\ldots,X_p|C_i)P(C_i)}{P(X_1,\ldots,X_p|C_1)P(C_1) + \cdots + P(X_1,\ldots,X_p|C_m)P(C_m)}.$$

- P(C_i) are called prior probabilities. We can find them by dividing the incidences of occurrence of C_i by total number of observations.
- In place of $P(X_1, X_2, ... X_p | C_i)$, we can also write a continuous function like probability density function of normal distribution as $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

$$P(C_{i}|X_{1}) = \frac{P(C_{i})\frac{1}{\sigma_{i}\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu_{i}}{\sigma_{i}})^{2}}}{\sum_{i=1}^{p}P(C_{i})\frac{1}{\sigma_{i}\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu_{i}}{\sigma_{i}})^{2}}} \dots (I)$$

LDA — Univariate

- We can estimate the parameters (μ_k, σ_k^2) from the data and use the expression (I) as classifying the observation to that class i for which $P(C_i|X_1,X_2,...X_p)$ will be maximum. But we have a better approach than this by solving this expression to $\delta_i(x)$ given below.
- We assume here $\sigma_i = \sigma$, a constant for all the classes.
- We can solve expression (I) by taking log of terms of both sides which finally results into the following expression

$$\delta_i(x) = x \frac{\mu_i}{\sigma^2} - \frac{\mu_i^2}{2\sigma^2} + \log(P(C_i))$$

- Observe here that the function $\delta_i(x)$ is linear function in x. Hence the term Linear Discriminant Analysis.
- Each test observation is assigned to that class i, for which $\delta_i(x)$ is maximum. This function is a one-dimensional form of linear discriminating function.

Multivariate LDA

• The operations done on one variable can be extended to multiple variables and the expression $\delta_i(x)$ can be written as

$$\delta_i(\bar{x}) = x^T \sum^{-1} \mu_i - \frac{1}{2} \mu_i^T \sum^{-1} \mu_i + \log(P(C_i))$$

Where

 \sum : Covariance Matrix

x: vector of variables x_i

 μ_i : Mean of variable x_i

Note: We assume that the covariance matrix is same for all the classes

Multivariate QDA

- In Quadratic Discriminant Analysis, we assume that the covariance matrix \sum is different for each class i.
- \sum_{i} : Covariance matrix for class i.
- Hence the discriminating function changes to

$$\delta_k(\bar{x}) = -\frac{1}{2}(x - \mu_i)^T \sum_{i=1}^{-1} (x - \mu_i) + \log(P(C_i))$$

Assumptions of LDA & QDA

- Predictors are all numeric
- Predictors have a multivariate normal distribution
- LDA: All the variances and covariances for all the classes are same
- QDA: All the variances and covariances for each class is different

LDA & QDA in R

• LDA & QDA in R can be performed with the functions from the package **MASS**.

```
Syntax:
```

```
Ida(formula, data, ...)
qda(formula, data, ...)
```


Example

- Consider the dataset Glass in the package mlbench
- A data frame with 214 observation containing examples of the chemical analysis of 6 different types of glass.
- The problem is to forecast the type of class on basis of the chemical analysis.
- The study of classification of types of glass was motivated by criminological investigation.
- At the scene of the crime, the glass left can be used as evidence (if it is correctly identified!)

R Program & Output

```
library(MASS)
fit.lda <- lda(Type ~ . , data = training)
pred.lda <- predict(fit.lda , newdata = validation)
confusionMatrix(pred.lda$class,validation$Type)</pre>
```

```
Confusion Matrix and Statistics
          Reference
Prediction 1 2
Overall Statistics
               Accuracy : 0.6557
                 95% CI: (0.5231, 0.7727)
    No Information Rate: 0.3607
    P-Value [Acc > NIR] : 2.711e-06
                  Kappa : 0.4931
```


Example

- Consider the dataset Vehicle from package mlbench.
- The purpose is to classify a given silhouette as one of four types of vehicle, using a set of features extracted from the silhouette.
- The vehicle may be viewed from one of many different angles.
- The features were extracted from the silhouettes by the HIPS
 (Hierarchical Image Processing System) extension BINATTS, which
 extracts a combination of scale independent features utilising both
 classical moments based measures such as scaled variance, skewness
 and kurtosis about the major/minor axes and heuristic measures such
 as hollows, circularity, rectangularity and compactness.

R Program & Output - LDA

Confusion Matrix and Statistics

Reference Prediction bus opel saab van bus 63 3 0 0 opel 0 31 17 1 saab 1 25 44 5 van 1 4 4 53

Overall Statistics

Accuracy: 0.7579

95% CI: (0.7002, 0.8095)

No Information Rate: 0.2579 P-Value [Acc > NIR]: <2e-16

Kappa : 0.677

R Program & Output - QDA

Confusion Matrix and Statistics

Reference Prediction bus opel saab van bus 64 0 0 0 opel 0 44 18 3 saab 0 18 45 3 van 1 1 2 53

Overall Statistics

Accuracy: 0.8175

95% CI : (0.7641, 0.8631)

No Information Rate : 0.2579 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7565

