

Agenda

Discussion Flow

- Understanding Neural Network Representation
- Parameter Estimation with Gradient Descent
- Back Propagation
- Parameter Tuning with sklearn

Neural Network Representation

Logistic Regression as Neural Network

Adding a hidden layer

$$S_j = W_{0j} + W_{1j} * X_1 + W_{2j} * X_2$$

General Representation

$$w_{ij}^{(l)} \begin{cases} 1 \le l \le L & \text{layers} \\ 0 \le i \le d^{(l-1)} & \text{inputs} \\ 1 \le j \le d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = \theta(s_j^{(l)}) = \theta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} \ x_i^{(l-1)}\right)$$

Activation Functions

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Gradient Descent & BackPropagation

Parameter Estimation

All the weights $\mathbf{w} = \{w_{ij}^{(l)}\}$ determine $h(\mathbf{x})$

Error on example (\mathbf{x}_n,y_n) is

$$e(h(\mathbf{x}_n), y_n) = e(\mathbf{w})$$

To implement SGD, we need the gradient

$$\nabla \mathbf{e}(\mathbf{w})$$
: $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$ for all i, j, l

Back-Propagation

Reference: http://colah.github.io/posts/2015-08-Backprop/

Back Propagation for NN

Computing
$$\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$$

We can evaluate $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ w_{ij}^{(l)}}$ one by one: analytically or numerically

A trick for efficient computation:

$$\frac{\partial \mathbf{e}(\mathbf{w})}{\partial w_{ij}^{(l)}} = \frac{\partial \mathbf{e}(\mathbf{w})}{\partial s_j^{(l)}} \times \frac{\partial s_j^{(l)}}{\partial w_{ij}^{(l)}}$$

We have
$$\frac{\partial \ s_j^{(l)}}{\partial \ w_{ij}^{(l)}} = x_i^{(l-1)}$$
 We only need: $\frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} = \ \pmb{\delta}_j^{(l)}$

Contd...

δ for the final layer

For the final layer l=L and j=1:

$$\delta_1^{(L)} = \frac{\partial \mathbf{e}(\mathbf{w})}{\partial s_1^{(L)}}$$
$$\mathbf{e}(\mathbf{w}) = (x_1^{(L)} - y_n)^2$$

$$x_1^{(L)} = \theta(s_1^{(L)})$$

$$\theta'(s) = 1 - \theta^2(s)$$
 for the tanh

Contd...

Back propagation of δ

$$\begin{split} \boldsymbol{\delta_i^{(l-1)}} &= \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \frac{\partial \ \mathbf{e}(\mathbf{w})}{\partial \ s_j^{(l)}} \times \frac{\partial \ s_j^{(l)}}{\partial \ x_i^{(l-1)}} \times \frac{\partial \ x_i^{(l-1)}}{\partial \ s_i^{(l-1)}} \\ &= \sum_{j=1}^{d^{(l)}} \ \boldsymbol{\delta_j^{(l)}} \ \times \ \boldsymbol{w_{ij}^{(l)}} \ \times \ \boldsymbol{\theta'}(s_i^{(l-1)}) \\ \boldsymbol{\delta_i^{(l-1)}} &= \ (1 - (x_i^{(l-1)})^2) \sum_{i=1}^{d^{(l)}} \boldsymbol{w_{ij}^{(l)}} \ \boldsymbol{\delta_j^{(l)}} \end{split}$$

Contd...

```
Initialize all weights w_{ij}^{(l)} at random

for t=0,1,2,\ldots do

Pick n\in\{1,2,\cdots,N\}

Forward: Compute all x_{j}^{(l)}

Backward: Compute all \underline{\delta_{j}^{(l)}}

Update the weights: \underline{w_{ij}^{(l)}}\leftarrow w_{ij}^{(l)}-\eta \ x_{i}^{(l-1)}\delta_{j}^{(l)}

Iterate to the next step until it is time to stop

Return the final weights w_{ij}^{(l)}
```


Lets see it in action in Python

