《高等数学 (一)》2018-2019 考试卷 A15

编辑整理: 死抠

1. 设
$$f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 2}, & x \neq 2 \\ a, & x = 2 \end{cases}$$
 为连续函数,则 $a =$ _____

A. 任意 B. 0 C. 2
2. 设
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 则 $f'(0) =$ _____

3. 函数 f(x) 有连续二阶导数,且 f(0) = 0, f'(0) = 1, f''(0) = -2,则

$$\lim_{x \to 0} \frac{f(x) - x}{x^2} =$$

4. $\int \sec x \tan x \, dx = \underline{\hspace{1cm}}$ A. $\tan x + C$ B. $\sec x + C$ C. $\arctan x + C$ D. $\arctan x + C$

D. $\operatorname{arccot} x + C$

D. $4e^{-2x}$

7. 若 $\int_0^1 (x+k) dx = 2$,则 k =_____

A. 0 B. 1

8. 下列反常积分中收敛的是_____
A.
$$\int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx$$
 B. $\int_{1}^{+\infty} \frac{1}{1+x^2} dx$
C. $\int_{1}^{+\infty} \frac{1}{1+x} dx$ D. $\int_{2}^{+\infty} \frac{1}{x \ln x} dx$

4. $\int \sec x (\sec x - \tan x) \, dx = \underline{\hspace{1cm}}$

5. 经过点
$$(1,2)$$
 且其切线的斜率为 $2x$ 的曲线方程是

6. 通过定积分的几何意义知
$$\int_{-1}^{1} (1+x)\sqrt{1-x^2} \, dx =$$

8. 由 $y = x^2 + 1$, y = 0, x = 1, x = 0 所围平面图形绕 x 轴旋转一周所得

立体的体积用定积分表示为

三. 大题

$$1. \ \ \vec{\Re} \ \lim_{x \to 0} \left(1 + \frac{1}{2x} \right)^{x+3}$$

2. 计算
$$\lim_{x\to 0} \frac{x - \int_0^x e^{-t^2} dt}{x^3}$$

3. 设 $y = \sin(x^2)$, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

3. 设
$$y = \sin(x^2)$$
,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$, $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$

4. 计算不定积分
$$\int \sin^3 x \, dx$$

5. 计算不定积分
$$\int x \ln x \, dx$$

6. 计算广义积分
$$\int_{2}^{+\infty} \frac{1}{x(\ln x)^2} dx$$

7. 计算
$$\int_{1}^{5} \frac{\sqrt{u-1}}{u} du$$

8. 己知

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{2}{3}, & n \text{ h.t.} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}, & n \text{ h.t.} \end{cases}$$

求星形线 $\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$ 围成的平面图形的面积,其中 a > 0

9. 设 f(x), g(x) 均在 [a,b] 上连续,证明在 (a,b) 内至少存在一个 ξ ,使得

$$f(\xi) \int_{\xi}^{b} g(x) dx = g(\xi) \int_{a}^{\xi} f(x) dx$$

(提示: 辅助函数
$$F(x) = \int_a^x f(t) dt \int_x^b g(t) dt$$
)