MORAN XU

School of Computer Science and Engineering, Washington University in. St. Louis e: moranxu@wustl.edu

EDUCATION

Washington University in St. Louis

St. Louis, USA

PhD. in Computer Science

Sep. 2021 – Jun. 2026 (expected)

Southeast University

Nanjing, China

MSE in Computer Technology

Sep. 2017 – Jun. 2020

SE in Computer Technology

• GPA: 3.7/4.0, major: Imaging science and technology, Computer vision

• Selected courses: Artificial Intelligence, Algorithms, Random Signal Processing, Digital Image Processing (95/100), Imaging Theory and Method (95/100), Image Analysis & Understanding (95/100), etc

Université de Rennes Rennes, France

MSE in Signal Image Embedded System Automation (Dual Degree, expected)

Sep. 2017 – Jun. 2020

• Selected courses: Edge Detection, Machine Learning, Signal Processing

Southeast University

Nanjing, China

B.E. in Information Engineering

Sep. 2012 – Jun. 2016

- Admitted on basis of performance on national college admissions exam (top **0.2%** in Jiangsu province)
- Selected courses: Geometry & Algebra, Principle of Electronic Measurement, Mathematical Analysis for Engineering, Probability Statistics & Stochastic Processes, etc

PUBLICATIONS AND PREPRINTS

- 1. **Xu M**, Hu D, Wu W, et al. Deep Iteration Assisted by Multi-level Obey-pixel Network Discriminator (DIAMOND) for Medical Image Recovery[J]. arXiv preprint arXiv:2102.06102, 2021.[pdf]
- 2. **Xu M**, Hu D, Luo F, et al. Limited angle X ray CT reconstruction using image gradient £0 norm with dictionary learning[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020. [pdf]
- 3. **Xu, M.**, Hu, D., & Wu, W. (2019, September). £0DL: Joint Image Gradient £0-norm With Dictionary Learning for Limited-angle CT. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (pp. 538-538). ACM. [pdf]
- 4. D. Hu, W. Wu, **M. Xu** et al., "SISTER: Spectral-Image Similarity-Based Tensor With Enhanced-Sparsity Reconstruction for Sparse-View Multi-Energy CT," in IEEE Transactions on Computational Imaging, vol. 6, pp. 477-490, 2020, doi: 10.1109/TCI.2019.2956886. [pdf]

RESEARCH EXPERIENCE

Gap-year Research

Deep Iteration Assisted by Multi-level Obey-pixel Network Discriminator for Medical Image Recovery

Oct. 2020 - Feb. 2021

- Big picture: Propose a general strategy to deal with image repair problems by combining generative adversarial network and residual iteration network
- Build generative adversarial network (GAN) using modified WGAN-GP training to recover image structure and fine details
- **Deep iteration module** combines pre-trained deep network, compressed sensing, iterative learning and residual learning algorithms to improve image quality through ADMM optimization
- Submitted to Arxiv preprints and IEEE Transactions on Neural Networks and Learning Systems

Washington University in St. Louis (the McKelvey School of Engineering)

St. Louis, USA

Visiting student in the Computational Imaging Group (CIG)

Jul. 2019 - Sep. 2019

Advised by Professor Ulugbek S. Kamilov, Director of CIG

Block Coordinate Algorithm to Speed-up Regularization by Denoising (RED)

- Big picture: image reconstruction combining iterative algorithm with neural networks, based on which a speeding up method was proposed
- Used block coordinate algorithms to significantly speed-up the rate of RED image reconstruction with little gradient loss; results were recorded in a paper that has been accepted by *NeuralPS-2019*

- Determined a relationship between CT image blocks and their corresponding projections, which was subsequently
 used to define a block coordinate algorithm
- Wrote and implemented the block coordinate algorithm.
- Received a **return offer** (PhD in CS) from Washington University in St. Louis

Southeast University (School of Computer Science and Engineering)

Nanjing, China

Research Assistant to Professor Xudong Bao and Dr. Weiwen Wu

Sep. 2018 – Sep. 2019

Limited-angle Fan-beam CT Reconstruction (National Natural Science Foundation of China)

- Big picture: predicting and restoring totally lost areas in projection domain, which are caused by incorrect operations on scanners
- Employed **dictionary learning and lo-norm** to reduce noise and to recover image structures; a journal paper discussing the method has been accepted by *IEEE Transactions on Radiation and Plasma Medical Sciences*

Limited-angle Cone-beam CT Reconstruction

- Big Picture: predicting and restoring totally lost areas in 3d cone-beam projection domain using deep learning method
- Graduation thesis: equipped step-to-step neural networks based on dimension-progressive WGAN-GP and U-Net to recover details and to suppress artifacts when reconstructing images

Southeast University (School of Computer Science and Engineering)

Nanjing, China

Research Assistant to Professor Yang Chen, Senior Member, IEEE

Sep. 2018 – Sep. 2019

Sparse-view Multi-energy computed tomography (MCT) reconstruction (National Natural Science Foundation of China)

- Big picture: predicting and restoring loss information in projection domain because of restrained number of scan views
- Used newly-designed multi-energy CT scanners to generate dataset; a paper describing this method was accepted by *IEEE Transactions on Computational Imaging*
- Exploited a **non-local feature similarity** in the spatial-spectral domain by clustering similar spatial-spectral patches within non-local windows to a 4th-order tensor group; In order to make independent the quality of the reconstructed image from the quality of the training sets as in dictionary learning based methods, a **tensor decomposition strategy** was employed in our model
- Because fixing the regularization parameter for all energy channels may not be the optimal scheme, we introduced an **adaptive weight coefficient update** for each spectral channel

SELECTED AWARDS AND HONORS

•	Education Foundation Scholarship	2020
•	SEU Visiting Scholar (6/128 in CSE school) to attend Summer International Internship	
	Recipient of visiting scholarship from Southeast University (top 5% of CSE school)	2019
•	FM Radio with a PC controlling system, School Outstanding Project	2014
•	TI Cup 2013 National Undergraduate Electronics Design Test, School Third Prize	2013
•	Mathematical Contest in Modeling, School Outstanding	2013

WORK EXPERIENCE

Shengshi Science and Technology, Co., Ltd.

Hangzhou, China

Imaging Algorithm Engineer

Mar 24th 2021 - May 12th 2021

• Work on cardiac coronary artery center line extraction and vessel vascular reconstruction

Southeast University & Union Std.

Nanjing & Nantong, China

Ultrasonic Imaging Software Engineer

Aug 2017 - Mar 2019

- Developed a complex visual software called "MineViewer" that uses ultrasonic imaging, DirectX, and MFC to
 detect flaws in bridges and railways; the software will be used to find flaws on the Hong Kong-Zhuhai-Macao
 Bridge
- Oversaw the data exchanging, data structure, imaging algorithms, and user interaction aspects of the system

Southeast University

Nanjing, China

Teaching Assistant in the School of Computer Science and Engineering

Apr 2018 - Jun 2018

- Tutored and advised undergraduates in the Computer Organization and Assembly Language courses
- Tutored in CPU and operating system simulation experiments

ADDITIONAL INFORMATION

- Computer and Language Skills
 Skilled in Python, Pytorch, Tensorflow, Matlab and C++,
 - Proficient in Spyder, VSCode