Scientific Computation

Spring 2019

Lecture 4

Today

Constant-time search

- Lecture 2: Binary search applied to sorted array requires log₂N operations
- Can we do better?

- Lecture 2: Binary search applied to sorted array requires log₂N operations
- Can we do better?
- Proposal: Set the value of an integer as index in an array

6 8 23 32

- Then for the example above we would have an array (or list), X, where X[6] = X[8] = X[23] = X[32] = 1
- Speed for search would be constant time (O(1))
- But many weaknesses:
 - What about more general data (not just non-negative integers)
 - Inserting and deleting entries would require O(N) time

- Lecture 1: Binary search applied to sorted array requires log₂N operations
- Can we do better?

- Real-world problem:
 - A startup is keeping track of unique visitors to its website each month
 - Each visitor must be assessed as "new" or "repeat"
 - Visitors who have not visited in 30+ days must be removed
 - Everything must be fast and accurate!

- Lecture 1: Binary search applied to sorted array requires log₂N operations
- Can we do better?

- Visitors are identified by IP addresses
 - IP addresses are 4 8-bit numbers which (in base-10) take the form: 251.31.241.80 and identify a user's location on the internet
 - There are 256⁴ possible addresses so it's not feasible to maintain an array for all possible addresses
 - Could maintain a sorted list but inserting new addresses would require O(N) operations (in Python)

- Visitors are identified by IP addresses
 - IP addresses are 4 8-bit numbers which (in base-10) take the form: 251.31.241.80 and identify a user's location on the internet
 - There are 256⁴ possible addresses so it's not feasible to maintain an array for all possible addresses
 - Could maintain a sorted list but inserting new addresses would require O(N) operations (in Python)
- Alternate approach: IP addresses are assigned indices based on their values
 - A hash function takes an address as input and provides and index as output
 - The design of hash functions is an important and active subject
 - What are the "desirable" properties of a hash function?

- Consider a hash function i = H(a)
 - i is a non-negative integer
 - a is a numeric representation of an IP address
 - Let's say we expect about 1e3 unique visitors each month
- Then, H should distribute these visitors to about 1e3 indices
 - Desirable property 1: It should always assign a particular IP to the same index on repeat visits

- Consider a hash function i = H(a)
 - i is a non-negative integer
 - a is a numeric representation of an IP address
 - Let's say we expect about 1e3 unique visitors each month
- Then, H should distribute these visitors to about 1e3 indices
 - Desirable property 1: It should always assign a particular IP to the same index on repeat visits
- Since there are 256⁴ possible IPs, it is impossible to design H so that unique visitors are always assigned unique indices
 - When two or more different IPs are assigned the same index, we have a hash collision
 - Say 0<=i<=N. Desirable property 2: Probability of 2 distinct visitors being assigned same index, i should be 1/N

An example:

- The IP address is four integers, a₁,a₂,a₃,a₄
- Choose four arbitrary integer weights, w₁,w₂,w₃,w₄
- Is: $i = \sum w_i a_i$ a suitable hash function?

An example:

- The IP address is four integers, a₁,a₂,a₃,a₄
- Randomly choose four arbitrary integer weights, w₁,w₂,w₃,w₄
- Is: $i = \sum w_i a_i$ a suitable hash function?
- Not quite:
 - This can generate 2564 indices, we only want about 1e3
- What about $i = (\Sigma w_i a_i) \mod 1000$?
 - We'll now have the right number of indices
 - But if there are patterns in the IPs, could have large number of visitors assigned the same index
- Better to use a prime number, $i = \sum w_i a_i \mod 997$

Better to use a prime number, $i = h(a_j) = \sum w_j a_j \mod 997$

- How well does this function work?
- Given two different addresses a and b, what is the probability that h(a) = h(b)?

Let's assume that $a_4 \neq b_4$ and that the weights are 4 random integers mod 997

• There will be a hash collision if: $\sum_{j=1}^4 w_j a_j \equiv \sum_{j=1}^4 w_j b_j \pmod{997}$

where $x \equiv y \pmod{n}$ if n divides x - y

- Rearranging: $\sum_{j=1}^{3} w_j (a_j b_j) \equiv w_4 (b_4 a_4) \pmod{997}$
- The LHS is just some, integer, c, and we need to "solve" the following congruence for w_4 : $w_4(b_4-a_4) \equiv c \pmod{997}$

$$w_4(b_4 - a_4) \equiv c \pmod{997}$$

To solve this for W_4 , need a result from modular arithmetic:

Let p be a prime. If k is not a multiple of p, then there exists an integer $k^{-1} \in \{1, 2, ..., p-1\}$ such that: $k \cdot k^{-1} \equiv 1 \pmod{p}$

$$w_4(b_4 - a_4) \equiv c \pmod{997}$$

To solve this for W_4 , need a result from modular arithmetic:

Let p be a prime. If k is not a multiple of p, then there exists an integer $k^{-1} \in \{1, 2, ..., p-1\}$ such that: $k \cdot k^{-1} \equiv 1 \pmod{p}$

In our example, p=997, k = (b₄-a₄) so,
$$w_4 \equiv c(b_4 - a_4)^{-1} \pmod{997}$$

We *choose:* $w_4 = c(b_4-a_4)^{-1} \mod 997$ and more generally, require: $w_i \in \{0, 1, ..., p-1\}$

This allow us to state that there is only one w_4 in the range [1 p-1] for which a and b will be assigned the same index. So, probability(h(a)=h(b)) = 1/p.

- We now have a hash function that will assign indices to IP addresses
- What is the general workflow?
 - 0. Initialize a dictionary or list (a *hash table*) where you will store addresses
 - 1. Given an IP, compute an index
 - 2. And store the IP in the corresponding location in the hash table
 - 3. Append the IP if there is already an address in the computed list

- We now have a hash function that will assign indices to IP addresses
- What is the general workflow?
 - 0. Initialize a dictionary or list (a *hash table*) where you will store addresses
 - 1. Given an IP, compute an index
 - 2. And store the IP in the corresponding location in the hash table
 - 3. Append the IP if there is already an address in the computed list
- Let's assume that we have M IP addresses and N indices with M>N
- On average, each index will be assigned M/N IPs
- Should choose M to be a prime number close to N (in practice, maybe close to 2N)

We started looking for something faster than binary search

What is the cost of using a hash table?

- Search (lookup): Given an IP, find it in the table
 - Evaluate the hash function and obtain an index
 - Check the number of items stored at index, i.
 - If i > 1, iterate through items
 - Overall, O(max(1,M/N))
 - For well-designed hash table and function, will be close to O(1)!
- Insert: Add an IP to table
 - Search
 - Then append at computed index if IP is not already present
 - Overall, close to O(1) for a careful implementation
- Delete: Remove an IP
 - Same as Insert, just replace "append" with "delete"

Summary:

- Binary search: O(log₂N) but requires the maintenance of a sorted list/array
- Hash table: O(1) for search as well as maintenance
 - Provided that the hash function and table are both welldesigned!

Summary:

- Binary search: O(log₂N) but requires the maintenance of a sorted list/array
- Hash table: O(1) for search as well as maintenance
 - Provided that the hash function and table are both welldesigned!
- What does this look like in Python?
 - Let's move away from the IP problem to a more general task
 - Consider input that may be real numbers or even non-numeric

Python hash function

Python provides a hash function that returns an integer for (almost) any input

- For an integer, i, hash(i) = i
- For two inputs if a==b then hash(a)=hash(b)
 - hash(3.0) = hash(3) = 3
- For non-integers, the function is less predictable:

```
In [1]: hash('m3sc')
Out[1]: 5237192937700339269
In [2]: hash('m3c')
Out[2]: 1091467703030128764
```

Python hash table

Can use list of lists to build hash table

- Compute hash for each item of interest
- Store item using hash value as index for list
- For hash collisions, append item at index
- Lookup:
 - Compute hash value
 - Search through sub-list at index for item
- Not too difficult try it!

- But we don't have to build our own hash table!
- Python dictionaries are hash tables (technically, they are "associative arrays")
- Dictionaries are containers where each element is a key-value pair
 - A key can be considered a label or id

- Dictionaries are containers where each element is a key-value pair
 - A key can be considered a label or id

 Python applies a hash function to keys to know where to store them and where to look for them

• Important dictionary operations

Constant time O(1):

```
In [36]: d = dict()  #initialize a new dictionary
In [37]: d[key] = value #associate key with value and store in d
In [38]: d[key]  #value associated with key in d, raises KeyError if key has not been added to d
Out[38]: [14, 1, 2019, 20]
In [39]: x=1
In [40]: d.get(key,x)  #value associated with key if key is present, otherwise x
```

• Important dictionary operations Constant time O(1):

Imperial College

London

```
In [36]: d = dict() #initialize a new dictionary
In [37]: d[key] = value #associate key with value and store in d
In [38]: d[key] #value associated with key in d, raises KeyError if key
has not been added to d
Out[38]: [14, 1, 2019, 20]
In [39]: x=1
In [40]: d.get(key,x) #value associated with key if key is present,
otherwise x
In [42]: key in d #is key in d?
Out[42]: True
In [43]: len(d) #number of key-value pairs in d
Out [43]: 1
In [44]: del d[key] #remove key (and its associated value) from d
```

• Important dictionary operations Constant time O(1):

```
In [36]: d = dict() #initialize a new dictionary
In [37]: d[key] = value #associate key with value and store in d
In [38]: d[key] #value associated with key in d, raises KeyError if key
has not been added to d
In [40]: d.get(key,x) #value associated with key if key is present,
otherwise x
In [42]: key in d #is key in d?
In [43]: len(d) #number of key-value pairs in d
In [44]: del d[key] #remove key (and its associated value) from d
linear time O(N): In [45]: for key in d: # iterate over keys in d
```

This is exactly what we need to build and maintain a hash table.

Python hash table

Genetic code

- DNA (and RNA) consists of two "strands" arranged in a double helix and connected with covalent bonds
- Each strand contains a sequence of nucleotides
- DNA is constructed from 4 nucleotides:
 - Adenine
 - Cytosine
 - Guanine
 - Thymine (RNA has Uracil in place of Thymine)

Genetic code

- DNA is constructed from 4 nucleotides (or bases):
 - Adenine
 - Cytosine
 - Guanine
 - Thymine (RNA has Uracil in place of Thymine)
- Adenine bonds with Thymine and Guanine bonds with Cytosine
- So if one strand contains the sequence GCTTCA the other strand will contain CGAAGT in the corresponding location
- During cell division, each daughter cell gets one strand
 - And then the needed 2nd strand can be constructed so A's pair with T's and C's pair with G's

Here is a DNA Molecule

Genetic code

- DNA is constructed from 4 nucleotides (or bases):
 - Adenine
 - Cytosine
 - Guanine
 - Thymine (RNA has Uracil in place of Thymine)
- Codons consist of three DNA bases and contain code for synthesizing amino acids
 - Proteins are built from amino acids
 - 64 possible codons, but there are only 20 essential amino acids specified by DNA
- Gene sequencing involves:
 - Extracting the sequence of bases from DNA samples
 - Investigating the proteins or functions associated with codons and their sequences

Pattern finding

- A fundamental computational problem:
 - Given a DNA sequence, search for a pattern
 - Both the sequence and the pattern can be extremely long
 - The number of patterns can also be large
- Fruit fly genome: 139.5 million base pairs

Humans: 3 billion or 6 billion pairs (depending on the cell type)

How can we efficiently search for patterns?

Pattern search

Problem setup:

Specify a N-character sequence, S, and a M-character pattern, P Find all locations in S where P occurs

Example:

S = ATGTTGTACCGTATCGG P = GTA

N=16, M=3