- Support Vector Machines (SVMs).
- · Semi-Supervised Learning.
 - Semi-Supervised SVMs.

Maria-Florina Balcan 03/25/2015

One of the most theoretically well motivated and practically most effective classification algorithms in machine learning.

Directly motivated by Margins and Kernels!

Geometric Margin

WLOG homogeneous linear separators $[w_0 = 0]$.

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

If ||w|| = 1, margin of x w.r.t. w is $|x \cdot w|$.

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$.

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w.

Margin Important Theme in ML

Both sample complexity and algorithmic implications.

Sample/Mistake Bound complexity:

- If large margin, # mistakes Peceptron makes is small (independent on the dim of the space)!
- If large margin γ and if alg. produces a large margin classifier, then amount of data needed depends only on R/γ [Bartlett & Shawe-Taylor '99].

Algorithmic Implications

Suggests searching for a large margin classifier... SVMs

Directly optimize for the maximum margin separator: SVMs

First, assume we know a lower bound on the margin γ

Input: γ , S={(x₁, y₁), ...,(x_m, y_m)};

Find: some w where:

- $||w||^2 = 1$
- For all i, $y_i w \cdot x_i \ge \gamma$

Output: w, a separator of margin γ over 5

Realizable case, where the data is linearly separable by margin γ

Directly optimize for the maximum margin separator: SVMs

E.g., search for the best possible γ

Input:
$$S=\{(x_1, y_1), ..., (x_m, y_m)\};$$

Find: some w and maximum γ where:

- For all i, $y_i w \cdot x_i \ge \gamma$

Output: maximum margin separator over 5

Directly optimize for the maximum margin separator: SVMs

```
<u>Input</u>: S=\{(x_1, y_1), ..., (x_m, y_m)\};
```

Maximize γ under the constraint:

- $||w||^2 = 1$
- For all i, $y_i w \cdot x_i \ge \gamma$

Directly optimize for the maximum margin separator: SVMs

```
Input: S=\{(x_1, y_1), ..., (x_m, y_m)\};

Maximize \gamma under the constraint:

||w||^2 = 1
• For all i, y_i w \cdot x_i \ge \gamma

objective constraints
```

This is a constrained optimization problem.

 Famous example of constrained optimization: linear programming, where objective fn is linear, constraints are linear (in)equalities

Directly optimize for the maximum margin separator: SVMs

<u>Input</u>: $S=\{(x_1, y_1), ..., (x_m, y_m)\};$

Maximize y under the constraint:

- $||w||^2 = 1$
- For all i, $y_i w \cdot x_i \ge \gamma$

This constraint is non-linear.

In fact, it's even non-convex

Directly optimize for the maximum margin separator: SVMs

<u>Input</u>: $S=\{(x_1, y_1), ..., (x_m, y_m)\};$

Maximize γ under the constraint:

- $||w||^2 = 1$
- For all i, $y_i w \cdot x_i \ge \gamma$

 $w' = w/\gamma$, then max γ is equiv. to minimizing $||w'||^2$ (since $||w'||^2 = 1/\gamma^2$). So, dividing both sides by γ and writing in terms of w' we get:

<u>Input</u>: $S=\{(x_1, y_1), ..., (x_m, y_m)\};$

Minimize $||w'||^2$ under the constraint:

• For all i, $y_i w' \cdot x_i \ge 1$

Directly optimize for the maximum margin separator: SVMs

Directly optimize for the maximum margin separator: SVMs

```
Input: S=\{(x_1, y_1), (x_m, y_m)\};
\operatorname{argmin}_{v} ||w||^2 \text{ s.t.}:
• For all i, y_i w \cdot x_i \ge 1
```

This is a constrained optimization problem.

- The objective is convex (quadratic)
- All constraints are linear
- Can solve efficiently (in poly time) using standard quadratic programing (QP) software

Question: what if data isn't perfectly linearly separable?

<u>Issue 1</u>: now have two objectives

- maximize margin
- minimize # of misclassifications.

Ans 1: Let's optimize their sum: minimize

$$||w||^2 + C(\# \text{ misclassifications})$$

where C is some tradeoff constant.

where c is some tradeoff constant.

[even if didn't care about margin and minimized # mistakes]

NP-hard [Guruswami-Raghavendra'06]

Question: what if data isn't perfectly linearly separable?

Replace "# mistakes" with upper bound called "hinge loss"

```
<u>Input</u>: S=\{(x_1, y_1), ..., (x_m, y_m)\};
```

Minimize $||w'||^2$ under the constraint:

• For all i, $y_i w' \cdot x_i \ge 1$

Input: S={
$$(x_1, y_1), ..., (x_m, y_m)$$
};

Find $\underset{w,\xi_1,...,\xi_m}{\operatorname{argmin}_{w,\xi_1,...,\xi_m}} ||w||^2 + C \sum_i \xi_i \text{ s.t.:}$

• For all $i, y_i w \cdot x_i \ge 1 - \xi_i$
 $\xi_i \ge 0$
 $\xi_i \text{ are "slack variables"}$

Question: what if data isn't perfectly linearly separable? Replace "# mistakes" with upper bound called "hinge loss"

Input:
$$S=\{(x_1, y_1), ..., (x_m, y_m)\}$$
;

Find $\underset{w,\xi_1,...,\xi_m}{\operatorname{argmin}_{w,\xi_1,...,\xi_m}} ||w||^2 + C \sum_i \xi_i \text{ s.t.}$:

• For all $i, y_i w \cdot x_i \geq 1 - \xi_i$
 $\xi_i \geq 0$
 $\xi_i \text{ are "slack variables"}$
 $\psi \cdot x = 1$

C controls the relative weighting between the twin goals of making the $||w||^2$ small (margin is large) and ensuring that most examples have functional margin ≥ 1 .

$$l(w, x, y) = \max(0, 1 - y \cdot w \cdot x)$$

Question: what if data isn't perfectly linearly separable? Replace "# mistakes" with upper bound called "hinge loss"

```
Input: S=\{(x_1, y_1), ..., (x_m, y_m)\};
Find \operatorname{argmin}_{W,\xi_1,...,\xi_m} ||w||^2 + C \sum_i \xi_i \text{ s.t.}:
             For all i, y_i w \cdot x_i \ge 1 - \xi_i
                         \xi_i \geq 0
\forall y_i w^T x_i \geq 1, \quad \xi_i = 0
\forall y_i w^T x_i < 1, \quad \xi_i > 0 \quad (0, 1-y_i w^T x_i)
Replace the number of mistakes with
the hinge loss
     ||w||^2 + C(\# \text{ misclassifications})
  l(w, x, y) = \max(0, 1 - y w \cdot x)
```

Question: what if data isn't perfectly linearly separable? Replace "# mistakes" with upper bound called "hinge loss"

Input:
$$S = \{(x_1, y_1), ..., (x_m, y_m)\};$$

Find $\operatorname{argmin}_{w,\xi_1,...,\xi_m} ||w||^2 + C \sum_i \xi_i \text{ s.t.}:$

• For all $i, y_i w \cdot x_i \geq 1 - \xi_i$
 $\xi_i \geq 0$
 $\xi_i \text{ are "slack variables"}$

Question: what if data isn't perfectly linearly separable? Replace "# mistakes" with upper bound called "hinge loss"

```
Primal Form w \cdot x = -1
Input: S = \{(x_1, y_1), ..., (x_m, y_m)\};
Find \operatorname{argmin}_{w,\xi_1,...,\xi_m} ||w||^2 + C \sum_i \xi_i \text{ s.t.}:
• For all i, y_i w \cdot x_i \ge 1 - \xi_i
\xi_i \ge 0
```

Total amount have to move the points to get them on the correct side of the lines $w \cdot x = +1/-1$, where the distance between the lines $w \cdot x = 0$ and $w \cdot x = 1$ counts as "1 unit".

What if the data is far from being linearly separable?

Example:

٧S

No good linear separator in pixel representation.

$$\underline{k(x_i, x_j)} = \langle p(x_i), p(x_j) \rangle$$

$$\underline{k(\langle x_i, x_j \rangle)} \qquad \Phi: R^d \to R^{l'} \qquad (1) \text{ and } 1$$

SVM philosophy:

Rerviet de la constant de la constan

SVMs -- Primal Form and Dual Form

Primal: min = 11W112 y:1wxi+b) & linear separable)

Vimal: min = 11W112 y:1wxi+b) & lie [n] & di

Lagragian. $L(w, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{n} (y_i w^i x_i - 1)$

pt = min max L(N, 2) (Primal)

d'= max min L(w, d) (Dual)

(d* < p*) LLKT d*= p*

KT. $\frac{\partial L}{\partial h} = 0$ $\frac{\partial L}{\partial h} = 0$ $\frac{\partial L}{\partial h} = 0$ $\frac{\partial L}{\partial w} = 0$ $\frac{\partial L}$

 $\frac{\partial L}{\partial W} = 0$ \Rightarrow $W = \sum_{i=1}^{n} \alpha_i y_i x_i$

```
Input: S=\{(x_1, y_1), ..., (x_m, y_m)\};

Find \operatorname{argmin}_{w,\xi_1,...,\xi_m} ||w||^2 + C \sum_i \xi_i \text{ s.t.}:

• For all i, y_i w \cdot x_i \geq 1 - \xi_i

\xi_i \geq 0
```

Primal form

Which is equivalent to:

```
\begin{array}{ll} \underline{\text{Input: S=}\{(x_1,y_1), ..., (x_m,y_m)\};} & \text{Lagrangian} \\ \underline{\text{Find}} & \operatorname{argmin}_{\alpha} \frac{1}{2} \sum_{i} \sum_{j} y_i y_j \; \alpha_i \alpha_j x_i \cdot x_j - \sum_{i} \alpha_i \; \text{s.t.:} \\ & \cdot & \text{For all i, } \quad 0 \leq \alpha_i \leq C_i \; \text{C} & \text{Sample sparsity} \\ & \sum_{i} y_i \alpha_i = 0 & \text{$W=$} \sum_{i=1}^{N} \; \alpha_i \; y_i x_i \; \text{$M=$} \\ & \text{$M=$} \sum_{i=1}^{N} \; \alpha_i \; y_i x_i \; \text{$M=$} \end{array}
```

$$\frac{\partial L}{\partial z_{ii}} = 0 \Rightarrow C = (X_i + \lambda_i)$$

$$\Rightarrow \lambda_i = (-X_i > 0)$$

$$\Rightarrow (X_i < C)$$

$$\leq_{i} \geq_{0}, \forall i \leftarrow \lambda_{i}$$

$$L(w,b,5,\alpha,\lambda) = \frac{1}{2}(|w|^2 + C_{\frac{1}{2}}^{\frac{1}{2}} \sum_{i=1}^{n} Q_i (y_i(w_{x_i+b_i}) - |+z_{ii}) - \sum_{i=1}^{n} \lambda_i \sum_{i=1}^{n} Q_i (y_i(w_{x_i+b_i}) - |+z_{ii}) - -$$

s.t. y.(wxi+b) > 1-5i, Vi < xi

KKT
$$\begin{array}{ll}
-\frac{\partial L}{\partial N} = 0, & \frac{\partial L}{\partial h} = 0, & \frac{\partial L}{\partial \lambda} = 0, &$$

Primal. Min - LIWIP+ C & Zi

KKT
$$\begin{cases} \frac{\partial L}{\partial w} = 0, & \frac{\partial L}{\partial h} = 0, & \frac{\partial L}{\partial x} = 0, & \frac{\partial$$

D 0 ≤ 0 ≤ C

SVMs (Lagrangian Dual)

Input: S={ $(x_1, y_1), ..., (x_m, y_m)$ };

Find $\operatorname{argmin}_{\alpha} \frac{1}{2} \sum_{i} \sum_{j} y_i y_j \alpha_i \alpha_i \alpha_i x_i \cdot x_j - \sum_{i} \alpha_i \text{ s.t.}$:

- Final classifier is: $w = \sum_i \alpha_i y_i x_i$
- The points x_i for which $\alpha_i \neq 0$ are called the "support vectors"

Kernelizing the Dual SVMs

```
\begin{split} & \underline{\text{Input: S=}\{(x_1,y_1),...,(x_m,y_m)\};} \\ & \underline{\text{Find}} \ \ \text{argmin}_{\alpha} \frac{1}{2} \sum_{i} \sum_{j} y_i y_j \ \alpha_i \alpha_i x_i \cdot x_j + \sum_{i} \alpha_i \ \text{s.t.:}} \\ & \bullet \ \ \text{For all i, } \ \ 0 \leq \alpha_i \leq C_i \\ & \sum_{i} y_i \alpha_i = 0 \end{split} \qquad \qquad \text{with } K(x_i,x_j). \end{split}
```

- Final classifier is: $w = \sum_i \alpha_i y_i x_i$
- The points x_i for which $\alpha_i \neq 0$ are called the "support vectors"
- With a kernel, classify x using $\sum_i \alpha_i y_i K(x, x_i)$

One of the most theoretically well motivated and practically most effective classification algorithms in machine learning.

Directly motivated by Margins and Kernels!

What you should know

- The importance of margins in machine learning.
- The importance of maryins in massimization problem

 The primal form of the SVM optimization problem

 him

Regression. (RLR)

Modern (Partially) Supervised Machine Learning

 Using Unlabeled Data and Interaction for Learning

Classic Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Protein sequences

Billions of webpages

Images

Semi-Supervised Learning

Active Learning

Semi-Supervised Learning

Prominent paradigm in past 15 years in Machine Learning.

- Most applications have lots of unlabeled data, but labeled data is rare or expensive:
 - · Web page, document classification
 - Computer Vision
 - Computational Biology,

•

Semi-Supervised Learning

Algorithm outputs a classifier

$$\begin{split} &S_l \text{=} \{(x_1, y_1), ..., (x_{m_l}, y_{m_l})\} \\ &x_i \text{ drawn i.i.d from D, } y_i = c^*(x_i) \\ &S_u \text{=} \{x_1, ..., x_{m_u}\} \text{ drawn i.i.d from D} \end{split}$$

Goal: h has small error over D.

$$\operatorname{err}_{D}(h) = \Pr_{x \sim D}(h(x) \neq c^{*}(x))$$

Semi-supervised learning: no querying. Just have lots additional unlabeled data.

A bit puzzling since unclear what unlabeled data can do for you....

Key Insight

Unlabeled data useful if we have beliefs not only about the form of the target, but also about its relationship with the underlying distribution.

Combining Labeled and Unlabeled Data

- Several methods have been developed to try to use unlabeled data to improve performance, e.g.:
 - Transductive SVM [Joachims '99]
 - Co-training [Blum & Mitchell '98]
 - Graph-based methods [B&C01], [ZGL03]

Test of time awards at ICML!

Workshops [ICML '03, ICML' 05, ...]

- Books: Semi-Supervised Learning, MIT 2006

 O. Chapelle, B. Scholkopf and A. Zien (eds)
 - Introduction to Semi-Supervised Learning, Morgan & Claypool, 2009 Zhu & Goldberg

Example of "typical" assumption: Margins

- The separator goes through low density regions of the space/large margin.
 - assume we are looking for linear separator
 - belief: should exist one with large separation

Transductive SVM

Labeled data only

Optimize for the separator with large margin wrt labeled and

unlabeled data. [Joachims '99]

```
<u>Input</u>: S_l = \{(x_1, y_1), ..., (x_{m_1}, y_{m_1})\}
              S_u = \{x_1, ..., x_{m_u}\}
              \operatorname{argmin}_{w} ||w||^{2} s.t.
                      • y_i w \cdot x_i \ge 1, for all i \in \{1, ..., m_l\}
                          \widehat{y_u} \mathbf{w} \cdot \mathbf{x_u} \geq 1, for all \mathbf{u} \in \{1, ..., \mathbf{m_u}\}
                      • \widehat{y_u} \in \{-1, 1\} for all u \in \{1, ..., m_n\}
```

Find a labeling of the unlabeled sample and w s.t. w separates both labeled and unlabeled data with maximum margin.

Optimize for the separator with large margin wrt labeled and

Find a labeling of the unlabeled sample and w s.t. w separates both labeled and unlabeled data with maximum margin.

Optimize for the separator with large margin wrt labeled and unlabeled data.

```
\begin{split} & \underline{\text{Input}} \colon S_{l} \text{=} \{ (x_{1}, y_{1}), ..., (x_{m_{l}}, y_{m_{l}}) \} \\ & S_{u} \text{=} \{ x_{1}, ..., x_{m_{u}} \} \\ & \text{argmin}_{w} \left| \left| w \right| \right|^{2} + C \sum_{i} \xi_{i} + C \sum_{u} \widehat{\xi_{u}} \\ & \bullet \quad y_{i} \; w \cdot x_{i} \geq 1 \text{-} \xi_{i}, \; \text{for all } i \in \{1, ..., m_{l}\} \\ & \bullet \quad \widehat{y_{i}} w \cdot x_{u} \geq 1 - \widehat{\xi_{u}}, \; \text{for all } u \in \{1, ..., m_{u}\} \\ & \bullet \quad \widehat{y_{u}} \in \{-1, 1\} \; \text{for all } u \in \{1, ..., m_{u}\} \end{split}
```

NP-hard..... Convex only after you guessed the labels... too many possible guesses...

Optimize for the separator with large margin wrt labeled and unlabeled data.

Heuristic (Joachims) high level idea:

- First maximize margin over the labeled points
- Use this to give initial labels to unlabeled points based on this separator.
- Try flipping labels of unlabeled points to see if doing so can increase margin

Keep going until no more improvements. Finds a locally-optimal solution.

Experiments [Joachims99]

Figure 6: Average P/R-breakeven point on the Reuters dataset for different training set sizes and a test set size of 3,299.

Helpful distribution

Non-helpful distributions

 $1/\gamma^2$ clusters, all partitions separable by large margin

Semi-Supervised Learning

Prominent paradigm in past 15 years in Machine Learning.

Key Insight

Unlabeled data useful if we have beliefs not only about the form of the target, but also about its relationship with the underlying distribution.

Prominent techniques

- Transductive SVM [Joachims '99]
- Co-training [Blum & Mitchell '98]
- Graph-based methods [B&C01], [ZGL03]