

analytic; talyor 好就 就什么 过程的 建空时,

Todo; 면解》 置时的.

13: \$254 \$250	j .	1.2 坚全期阻止 辛勃约.
, . 紫空門		bi (a bi)
$i = \sqrt{-1} (i^2 = -1).$		a. 3.
Z = x + iy (x, y < R)		
7=Re Z y= Im Z		Z1 = 11 + 1 y1 = 2 = 12 + 14 2.
ex) z = 2 + 3i , Rez = 2 , Im z = 3 .		$z_1 + z_2 = (z_1 + z_2) + i(y_1 + y_2)$
이거한 돈은 (이다.		이는 두번만에 함히 게산다 같다.
		(to = (x1, y1) = (x2, y2)
Thm 1.1, C는 빨, 빙바, 오란병이 성납.		$\vec{\alpha} + \vec{b} = (y_1 + x_2, y_1 + y_2)$
		[본] 은 워크로 바라니 거2
절대(): (군) = (지 yi = J(1+iy)()-iy	= Jz =	(1811) E 3/21=24=41 H21,
型性件: z= x+iy = z= x-iy.		₹ (۵,6)
Z-1 = (= = = = -)-i4		
(252H)		₹ (a, -b)
(1) Z+= - (3) E	$z^2 = i$	·
$z^2 = \pm i$	$z = \pm \sqrt{z}$	정리 1.2 설계사이 기반되실 .
$z = \pm \sqrt{i} \text{ or } \pm \sqrt{-i}$ $z = \pm \sqrt{i}$	7+iy	21 1 21 2
	x2-y2+ 2i xy = 2	12/
IJ²	$-\frac{y^2}{4} = 0 \forall x = \frac{1}{2}$ $= \frac{1}{4} \forall x = \frac{1}{2}$ $= \frac{1}{4} \forall x = \frac{1}{2}$	₹,
λ^2	$= y^2 \beta = \frac{1}{2y}$,
オ=	±y 🐧	
		*

$$\begin{array}{c} \underbrace{\text{tirty point 1}}_{\text{Re}}(ik, + i) \stackrel{?}{=} \stackrel{?}{=} 0 & \text{tir} & \text{Re}((ik, + i) \Rightarrow) = -k_2 \\ = 2 + i \cdot i_3 & \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}((ik, + i) \Rightarrow) = -k_2 \\ = 2 + i \cdot i_3 & \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{Re}(ik, + i) \Rightarrow 0 \\ \text{Re}(ik, + i) \stackrel{?}{=} 0 & \text{tir} & \text{ti$$

$ \hat{g}^{i} \hat{g}_{i} = F_{i} e^{i\Theta_{i}} $ $ \hat{z}_{2} = F_{2} e^{i\theta_{2}} $	예계 (13)
Z, · Z = Γ, Γ, e · · · · · · · · · · · · · · · · · ·	$Z_m = \frac{1}{n} + i \frac{n-1}{m}$ of through the
(= = = = = = = = = = = = = = = = = = =	٤٥٠, الا > 2
$Z^n = r^n(\cos n\theta + i \sin n\theta)$	$m_1, m_2 \mid N_1 \Rightarrow \lceil A_{m_1} - A_{m_1} \rceil = \left \frac{1}{m} - \frac{1}{n} \right \leq \frac{1}{m} + \frac{1}{n} < \frac{2}{N} < \frac{2}{N}$
	$m > N \qquad \stackrel{k}{\downarrow} > \stackrel{\downarrow}{\downarrow}$
हिला अप्रि	$\begin{array}{c c} m > N & \stackrel{1}{N} > \stackrel{1}{M} \\ n > N & \stackrel{1}{N} > \stackrel{1}{m} \end{array}$
Z" = Zo 를 반속하는 돈을 끊이 'n-제6군"	1 1 1 2 m + n
Z= "√Z _D or Z _o "	도 문
6X) 5 ₃ =	50 (문 _미 문 일하다.
01% \ 01% \	
우하님(∞) 과 (학장 복소与=11) ·	
① 국천広 구한국 E - S 사용하기.	
$\Xi_{m} = \frac{n}{n+\lambda} = \frac{n^{2}+n}{n^{2}+1}$	
$\geq_{m} = \frac{n!}{n^{2+1}} + \frac{h}{n^{2+1}} \dot{i}$	
Pas 2m = 1 + 0 · i	
데베 니 어맨듀얼의 박보다는 친구보의 등한값과	-
$(1) \ \Xi_{n} = (-1)^{n} + \frac{i}{n} $	
n=2k-1,	
$\mathcal{E}_{2k} = (-1)^{2k} + \frac{i}{2k} = 1$	
$\mathbf{z}_{2k-1} = (-1)^{2k-1} + \frac{i}{2k-1} = -1$	

HA 2.6.	
$f(z) = \frac{z}{z}$	
$8 + \frac{1}{4} \text{ and } 1 = 1$	
जिन के भारत किन्यु = - 1	
≦ = ↓6,ie	
$ \oint (s) = \frac{L c_{\cdot,ip}}{L c_{\cdot,ip}} = 3 i_0. $	
$a(R) = 2 \cdot 10$, $f(2) = Z^2$ $D = B(0:r)$	

