POPULASI, SAMPEL DAN TEKNIK SAMPLING

- POPULASI SAMPEL DAN TEKNIK SAMPLING/SAMPLING
- ALASAN DILAKUKAN SAMPEL
- FAKTOR-FAKTOR PENENTUAN SAMPEL
- MENENTUKAN UKURAN SAMPEL
- JENIS TEKNIK SAMPLING

TEKNIK SAMPLING/SAMPLING

- Proses pemilihan beberapa obyek untuk contoh (sampel) dari seluruh obyek (populasi) yang akan kita teliti sifat-sifatnya.
- Suatu studi dimana informasi yang dikumpulkan diambil dari sebagian unsur-unsur populasi yang dipilih (sampel) untuk mewakili seluruh unsur populasi itu. Suatu studi dimana informasi yang dikumpulkan diambil dari sebagian unsur-unsur populasi yang dipilih (sampel) untuk mewakili seluruh unsur populasi itu.

Prosedur Pemilihan Sampel

- MENGIDENTIFIKASI POPULASI TARGET
- MEMILIH KERANGKA PEMILIHAN SAMPLE
- MENENTUKAN METODE PEMILIHAN SAMPLE
 - MERENCANAKAN PROSEDUR PEMILHAN UNIT SAMPLE
- MENENTUKAN UKURAN SAMPLE
- MENENTUKAN UNIT SAMPLE

POPULASI

Wilayah generalisasi yang terdiri atas obyek/subyek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulan.

 Sekumpulan obyek yang dikaji dengan ciri-ciri yang sama yg menjadi pusat penelitian

SAMPEL

MERUPAKAN REPRESENTASI KARAKTERISTIK DARI POPULASI SEHINGGA HASIL PENELITIAN DAPAT KITA GENERALISASIKAN KEPADA POPULASI

- Sampel: bagian dari populasi yang dapat mewakili seluruh populasi
- Sampel: sebagian unsur populasi yang dijadikan objek penelitian.
- Sampel: miniatur (mikrokosmos) populasi
- Sampel yang memiliki ciri karakteristik yang sama atau relatif sama dengan ciri karakteristik populasinya disebut sampel representatif.
- Ciri karakteristik sampel disebut statistik

ALUR KERANGKA PIKIR POPULASI DAN SAMPEL

Alasan Penggunaan Sampel

FAKTOR-FAKTOR PENENTUAN SAMPEL

- Derajat keseragaman (degree of homogenity)
- Kemampuan peneliti mengenal sifat-sifat khusus populasi
- Presisi (ketepatan) yang dikehendaki dalam penelitian. Misalnya pada taraf nyata alpha 5%.
- Penggunaan teknik sampling yang benar dan tepat

UKURAN SAMPEL

Syarat sampel yang baik adalah:

- tingkat ketepatan (*precision*)
 - seberapa dekat estimasi peneliti berdasarkan sampel yang terpilih terhadap karakteristik yang sebenarmya dari populasi
- tingkat kepercayaan (confidence)
 - derajat kepercayaan atau ketelitian pengambilan sebuah sampel
 - Confidence level 95%-99%.
 - Semakin tinggi Condidence level semakin dapat dipercaya data tersebut.

Ukuran Sampel (Pendekatan Slovin)

 Ukuran sampel dapat pula ditentukan dengan menggunakan rumus slovin (1960):

$$n = \frac{N}{1 + N e^2}$$

n = ukuran sampel

N = ukuran populasi

e = persen kelonggaran ketidaktelitian karena
 kesalahan pengambilan sampel yang masih dapat
 ditolerir atau diinginkan, misalnya 5%

Ukuran Sampel METODE STATISTIK

Pada Metode Pengambilan Sampel Acak Sederhana (Simple Random Sampling)

$$n = \frac{NZ^2S^2}{Nd^2 + Z^2S^2}$$

d = besarnya toleransi penyimpangan

- Pada Metode Pengambilan Sampel Acak Sistematis (Systematic Random Sampling)
 - a. Populasi terbatas

$$n = \frac{Z_{\alpha}^2 \sigma^2 N}{Z_{\alpha}^2 \sigma^2 + e^2 N}$$

b. Populasi tak terbatas

$$n = \left[\frac{Z_{\alpha}\sigma}{e}\right]^2$$

TABEL PENENTUAN SAMPEL OLEH STEPHEN ISSAC DAN WILLIAM B MICHAEL

$$\lambda^{2} . N . P . Q$$
s = -----
$$d^{2}(N-1) + \lambda^{2} . P Q$$

- s = Jumlah sample
- N = Jumlah populasi
- λ2 = Chi kuadrat (tergantung derajat kebebasan dan tingkat kesalahan. Untuk derajat kebebasan 1 dan kesalahan 5% harga chi kuadrat = 3,841)
- d = Perbedaan antara sampel yang diharapkan dengan yang terjadi perbedaan. Perbedaan bisa 1%, 5% dan 10%
- P = Q = 0,5

NI.		S		NI.	S			2000	S		
N	1%	5%	10%	N	1%	5%	10%	N	1%	5%	10%
10	10	10	10	280	197	115	138	2800	537	310	247
15	15	14	14	290	202	158	140	3000	543	312	248
20	19	19	19	300	207	161	143	3500	558	317	251
25	24	23	23	320	216	167	147	4000	569	320	254
30	29	28	27	340	225	172	151	4500	578	323	255
35	33	32	31	360	234	177	155	5000	586	326	257
40	38	36	35	380	242	182	158	6000	598	329	259
45	42	40	39	400	250	186	162	7000	606	332	261
50	47	44	42	420	257	191	165	8000	613	334	263
55	51	48	46	440	265	195	168	9000	618	335	263
60	55	51	49	460	272	198	171	10000	622	336	263
65	59	55	53	480	279	202	173	15000	635	340	266
70	63	58	56	500	285	205	176	20000	642	342	267
80	71	65	62	600	315	221	187	40000	563	345	269
35	75	68	65	650	329	227	191	50000	655	346	269
90	79	72	68	700	341	233	195	75000	658	346	270
95	83	75	71	750	352	238	199	100000	659	347	270
100	87	78	73	800	363	243	202	150000	661	347	270
110	94	84	78	850	373	247	205	200000	661	347	270
120	102	89	83	900	382	251	208	250000	662	348	270
130	109	95	88	950	391	255	211	300000	662	348	270
140	116	100	92	1000	399	258	213	350000	662	348	270
150	122	105	97	1050	414	265	217	400000	662	348	270
160	129	110	101	1100	427	270	221	450000	663	348	270
170	135	114	105	1200	440	275	224	500000	663	348	270
180	142	119	108	1300	450	279	227	550000	663	348	270
190	148	123	112	1400	460	283	229	600000	663	348	270
200	154	127	115	1500	469	286	232	650000	663	348	270
210	160	131	118	1600	477	289	234	700000	663	348	270
220	165	135	122	1700	485	292	235	750000	663	348	271
230	171	139	125	1800	492	294	237	800000	663	348	271
240	176	142	127	1900	498	297	238	850000	663	348	271
250	182	146	130	2000	510	301	241	900000	663	348	271
260	187	149	133	2200	520	304	243	950000	663	348	271
270	192	152	135	2600	529	307	245	1000000	664	349	272

PENENTUAN SAMPEL DENGAN PENDEKATAN KREJCIE DAN MORGAN

 Bentuk Tabel Krejcie-Morgan sangat sederhana, mudah digunakan, sebab secara fungsional hanya terdiri dari dua kolom penting yaitu kolom untuk ukuran populasi (N) dan kolom untuk ukuran sampel (n).

Rumus Krejcie dan Morgan:

$$n = \frac{\chi^2.N.P(1-P)}{(N-1).d^2 + \chi^2.P(1-P)}$$

dimana:

n = ukuran sampel

N = ukuran populasi

χ² = nilai Chi kuadrat

P = proporsi populasi

d = galat pendugaan

Berdasarkan pada rumus tersebut dan dengan beberapa asumsi tertentu, Krejcie dan Morgan dapat membuat Tabel yang dengan perhitungan tertentu sebagai berikut:

$$n = \frac{\chi^2.N.P(1-P)}{(N-1).d^2 + \chi^2.P(1-P)}$$

$$n = \frac{3,841 \times N(0,5 \times 0,5)}{(N-1)0,05^2 + 3,841(0,5 \times 0,5)}$$

$$n = \frac{3,841 \times N(0,25)}{(N-1)0,0025 + 3,841(0,25)}$$

Berdasarkan pada perhitungan di atas, dapat diketahui beberapa keterangan mengenai T

TABEL PENENTUAN SAMPEL OLEH KREJCIE DAN MORGAN (1970)

N	S	N	S	N	S
10	10	220	140	1.200	291
15	14	230	144	1.300	297
20	19	240	148	1.400	302
25	24	250	152	1.500	306
30	28	260	155	1.600	310
35	32	270	159	1.700	313
40	36	280	162	1.800	317
45	40	290	165	1.900	320
50	44	300	169	2.000	322
55	48	320	175	2.200	327
60	52	340	181	2.400	331
65	56	360	186	2.600	335
70	59	380	191	2.800	338
75	63	400	196	3.000	341
80	66	420	201	3.500	346
85	70	440	205	4.000	351
90	73	460	210	4.500	354
95	76	480	214	5.000	357
100	80	500	217	6.000	361
110	86	550	226	7.000	364
120	92	600	234	8.000	367
130	97	650	242	9.000	368
140	103	700	248	10.000	370
150	108	750	254	15.000	375
160	113	800	260	20.000	377
170	118	850	265	30.000	379
180	123	900	269	40.000	380
190	127	950	274	50.000	381
200	132	1.000	278	75.000	382
210	136	1.100	285	100.000	384

PENENTUAN SAMPEL BERDASARKAN PRESENTASE MENURUT YOUNT (1999)

Besarnya Populasi	Besar Sampel
0-100	100%
101-1000	10%
1.001-5.000	5%
5.001-10.000	3%
>10.000	1%

Ukuran Sampel

Ukuran minimum sampel yang dapat diterima berdasarkan desain/metode penelitian yang digunakan menurut Gay (1976):

- Deskriptif, minimal 10 % dari populasi. Untuk populasi yang relatif kecil minimal minimal 20%.
- Desain deskriptif-korelasional, minimal 30 subjek
- Metode ex post facto, minimal 15 subyek per kelompok
- Metode eksperimental, minimal 15 subyek

Penggunaan kaidah di atas sebaiknya disesuaikan dengan kondisi populasi dan keadaan lain yang berkaitan

SAMPLING

- Sampling → adalah proses memilih suatu jumlah unsur populasi yang mencukupi dari populasi, sehingga dengan mempelajari sampel dan memahami karakteristiknya memungkinkan untuk untuk menggeneralisasikan karakteristik tersebut pada seluruh anggota populasi.
- Proses menyeleksi sejumlah elemen dari populasi sehingga dengan mempelajari sampel dan memahami sifat-sifat subyek dalam sampel, maka kita mampu menggenalisir sifat-sifat tersebut ke dalam elemen-elemen populasi

PROBABILITY SAMPLING

 Suatu teknik sampling yang memberikan peluang yang sama bagi setiap unsur populasi untuk dipilih menjadi sampel.

NON PROBABILITY SAMPLING

 Suatu teknik pengambilan sampel yang tidak memberi peluang/kesempatan yang sama bagi setiap anggota populasi untuk dipilih menjadi sampel.

PS: Simple Random Sampling

- Seluruh elemen dalam populasi diperhitungkan dan tiap elemen mempunyai kesempatan yang sama untuk terpilih sebagai objek
- Kelebihan: kemampuan generalisasi hasil penemuan tinggi
- Kelemahan: Tidak seefisien stratified sampling
- Setiap unsur populasi harus mempunyai kesempatan sama untuk bisa dipilih menjadi sampel. Prosedurnya :
 - Susun "sampling frame"
 - Tetapkan jumlah sampel yang akan diambil
 - Tentukan alat pemilihan sampel
 - Pilih sampel sampai dengan jumlah terpenuhi

RANDOM SAMPLING

Probability Sampling: Systematic Sampling

- Setiap elemen ke n dari populasi dipilih, mulai dari anggota tertentu dalam kerangka populasi
- Kelebihan: Mudah dilakukan bila kerangka populasinya tersedia
- Kelemahan: Dimungkinkan terjadinya bias sistematik

Systematic random sampling

- i (interval) = N/n (N=ukuran populasi; n=ukuran sampling)
- Random angka 1 sampai i → n₁
- Tambahkan i ke n₁ untuk mendapatkan n₂ dst.

Contoh

- Saya akan meneliti kelas dengan populasi 150 orang, dan sampel yang saya butuhkan adalah 50 orang. Maka i = 150/50 = 3.
- Saya acak NPM 1-3 dan dapat NPM 2, yang merupakan sampel pertama saya.
- Sampel 2 adalah mahasiswa dengan NPM (n1 + i) = 2+3 = 5.
- Sampel 3 adalah mahasiswa dengan NPM (n2 + i) = 5+3 = 8 dst
 sampai sampel ke 50.

Contoh lainnya: Sistematis Sampling

- Mislanya ada data sebanyak 1000 mahasiswa. Dalam data tersebut diberi nomor urit 1,,, sd 1000. dalam penelitian ini akan diambil sampel sebanyak 100 responden.
- Maka prosedurnya adalah
- N/n = 1000/100 = 10.
- Langkah kedua: untuk mencari nomor pertama misalnya kita ambil secara acak nomor 1 sd 10. dari hasil acaka tersebut terpilih no. 3.
- Langkah ketiga untuk menentukan siapa yang dijadikan sampel adalah
- Sampel 1 = nor urut 3
- Sampel kedua = 3 + 10 = no 13
- Sampel ketiga = 13 + 10 = 23
- Sampel keempat = 23 + 10 = 33,,,, dan seterusnya sampai mendapatkan sejumlah 100 responden

PROBABILTAS	NON-PROBABILITAS		
1. Simple Random Sampling	1. Purposive		
2. Systematic Random Sampling	2. Accidental		
3. Stratified Random Sampling	3. Snowwball		
4. Cluster Random Sampling	4. Quota		

2. Systematic Random Sampling

- 1. Doni
- 2. Koni
- s. Mukidi
- 4. Sinto

- Melakukan kocokan (siple random sampling)
- 2. Menghitung interval sampel (N/n)
- S. Ketamu jumlah sampel pertama
- 4. Menjumlahkan sampel pertama dengan hasil perhitungan interval

S + 10 0= 1

PS: Stratified Random Sampling

- Populasi dibagi ke dalam kelompok tertentu kemudian subyek diambil:
 - dalam proporsi jumlah yang sebenarnya dan perbandingannya (proporsionate)
 - berdasarkan criteria selain jumlah populasi sebenarnya (disproporsionate)
- Kelebihan: Paling efisien di antara semua desain probabilitas semua kelompok terwakili jumlahnya
- Kelemahan:
 - Stratified harus memiliki arti tertentu
 - lebih memakan waktu dibandingkan dengan simple random sampling
 - kerangka populasi untuk tiap kelompok/strata diperlukan.

Stratified random sampling

- Proportionate
- Disproportionate

Proportionate stratified random sampling

- Tentukan stratifikasi (angkatan, jenis kelamin, atau karakteristik populasi yang menjadi fokus penelitian)
- Hitung proporsi karakteristik, jika meneliti satu angkatan dengan 90 mahasiswi dan 60 mahasiswa (60:40).
- n = 50 → mahasiswi 50 x 60% = 30 dan mahasiwa 50 x 40% = 20
- Selanjutnya diseleksi dengan random sederhana

Disproportionate

- Gunakan asumsi 50:50 agar mudah (mahasiswi = 50; mahasiswa = 50)
- Setelah data terkumpul maka hitung proporsi sebenarnya (60:40) dan dibagi dengan asumsi proporsi yang digunakan
- Data mahasiswi akan punya nilai (dikalikan) dengan 60/50 = 1,2
- Data mahasiswa akan punya nilai (dikalikan) dengan40/50 = 0,8

0:09:

0:05:02

Dari setiap stratum yang dibentuk, dipilih sampel secara acak. Prosedurnya:

- 1. Siapkan "sampling frame"
- 2. Bagi sampling frame tersebut berdasarkan strata yang dikehendaki
- 3. Tentukan jumlah sampel dalam setiap stratum
- 4. Pilih sampel dari setiap stratum secara acak.

PS: Cluster Sampling

- Teknik ini biasa juga diterjemahkan dengan cara pengambilan sampel berdasarkan gugus.
- Dalam sampel gugus, setiap gugus boleh mengandung unsur yang karakteristiknya berbeda-beda atau heterogen.
- Kelebihan: Dalam cluster geografis, biaya pengumpulan datanya rendah
- Kelemahan: Paling kurang dapat diandalkan & kurang efisien diantara desain probabilitas lainnya karena sub-sub dari kelompok lebih cenderung homogen daripada heterogen.

CLUSTER SAMPLING

PS: Area Sampling

- Cluster sampling dalam suatu daerah/lokasi tertentu
- Kelebihan: Biayanya efektif, berguna untuk keputusan yang berhubungan dengan lokasi tertentu
- Kelemahan: Memakan waktu untuk mengumpulkan data dari suatu lokasi.

NPS: Convenience Sampling

- Anggota populasi yang paling mudah ditemui dipilih sebagai subyek
- Kelebihan: Cepat, mudah, tidak mahal
- Kelemahan: Tidak dapat digeneralisasikan sama sekali
- Disebut juga: accidental sampling tidak disengaja atau juga captive sample (man-on-the-street)
- Jenis sampel ini sangat baik jika dimanfaatkan untuk penelitian penjajagan, yang kemudian diikuti oleh penelitian lanjutan yang sampelnya diambil secara acak (random).

NPS: Purposive Sampling

sampel diambil dengan maksud atau tujuan tertentu

Judgement Sampling:

- 1. Subyek dipilih berdasarkan keahlian dalam bidang diteliti
- 2. Kelebihan: Kadang merupakan satu-satunya cara untuk menyelidiki
- 3. **Kelemahan:** Kemampuan generalisasinya dipertanyakan, tidak dapat digeneralisasikan ke seluruh popolasi

NPS: Purposive Sampling

Quota sampling

- 1. Subyek dipilih yang paling mudah ditemui dari kelompok yang ditargetkan berdasar jumlah kuota yangtelah ditentukan sebelumnya
- 2. **Kelebihan:** Sangat berguna bila partisipasi kelompok minoritas diperlukan dalam suatu penelitian
- 3. Kelemahan: Tidak dapat digeneralisasikan dengan mudah

NPS: Snowball Sampling

- Memilih unit yang karakteristiknya jarang, unit selanjutnya ditunjukkan responden sebelumnya
- Hanya untuk penerapan yang sangat khusus
- Kelemahan: Keterwakilan dari karakteristik yang jarang tidak terlihat dalam pemilihan sampel
- Metode ini biasa digunakan untuk meneliti kelompok eksklusif (tertutup) misalnya: gay, lesbian, pecandu narkotik, dll.

KESALAHAN SAMPLING DAN NON SAMPLING

TERIMA KASIH

