TD Chapitre 11: Développements Limités

Question de cours N° 1: Formules de T-Y

Ecrire la formule de Taylor-Young pour <u>en 0</u> à <u>l'ordre 3</u> puis <u>à l'ordre n</u> quelconque $\in \mathbb{N}$, des fonctions suivantes :

- a) e^x , e^{-x} , ch(x), sh(x), cos(x) et sin(x).
- b) ln(1+x) puis celui de $\frac{1}{1+x}$
- c) $(1+x)^{\alpha}$ pour $\alpha \in \mathbb{R}$. En déduire celui de $\frac{1}{1+x}$ et celui de $\sqrt{1+x}$
- d) Déduire de la formule de Taylor-Young de $(1+x)^{\alpha}$, celui de $\frac{1}{1-x}$

Questions de cours N° 2 : DLs usuels (en a = 0)

- a) Ecrire le DL à l'ordre n de e^x en $0:DL_n(e^x,0)$. En déduire le $DL_n(e^{-x},0)$.
- b) En déduire $DL_{2n+2}(sh(x),0)$ et le $DL_{2n+1}(ch(x),0)$.
- c) Ecrire le $DL_n\left(\frac{1}{1-x},0\right)$. En déduire le $DL_n\left(\frac{1}{1+x},0\right)$.
- d) Justifier l'expression du DL de $\frac{1}{1-x}$ à l'aide d'une suite géométrique.

Exercice 1: Calculer les DL suivants : **DLs en** $a \neq 0$

 $DL_4(\cos(x),\pi)$; $DL_3(\ln(2+5x),1)$; $DL_n(sh(x),-1)$; $DL_2(\sqrt{x},2)$

Exercice 2 : Calculer les DL suivants : Produit de DLs

 $DL_3(x.\cos(2x),0);$ $DL_3(\cos(x).\sin(2x),0);$ $DL_3(\frac{e^x}{1-x},0)$

Exercice 3: Calculer les DL suivants : Division de DLs

 $DL_{6}(\tan(x)\,,0)\,;\qquad DL_{4}\left(\frac{2+x}{3+x}\,,0\right)\,;\qquad DL_{4}\left(\frac{\cos(x)}{ch(x)}\,,0\right)\,;\qquad DL_{3}\left(\frac{\sin(x)}{sh(x)}\,,0\right)\,;\qquad DL_{3}\left(\frac{1}{1+e^{x}}\,,0\right)\,$

Exercice 4: Calculer les DL suivants: Composition de DLs

$$DL_{6}(\ln(1+x^{2}+x^{3}),0)\,;\qquad \qquad DL_{4}\left(\sqrt{\sin(x)}\,,0\right)\,;\qquad \qquad DL_{3}\left(\sqrt[3]{1+x},0\right);$$

$$DL_2(\sqrt{1+2\cos(x)},0);$$
 $DL_2(\exp(1+2\cos(x)),0);$ $DL_3(\ln(1+\sin(x)),1)$

Exercice 5 : Calculer les DL suivants : Intégration de DLs

 $DL_n(\arctan(x), 0)$; $DL_3(\arccos(x), 0)$; $DL_n(\ln(1+x), 0)$ par intégration de DL.

Exercice 6 : Application de la formule de TRI (Formule de Taylor-Young avec reste Intégral)

Approcher $\cos(0.01)$ à 10^{-12} près. Indice : x = 0.01, a = 0, n = 4.

Approcher e^1 à 10^{-10} près. Indice : x = 1, a = 0, n à trouver.