Anticoncentration and central limit theorems from zero-free regions Introductory talk

Marcus Michelen
Joint with Julian Sahasrabudhe (Cambridge)

The University of Illinois at Chicago

Geometry, Probability, and Computing Seminar March 31, 2022

Goal of this (30 minute) talk

Explain the three nouns in the title of the talk:

- Anticoncentration (and concentration)
- Central Limit Theorems
- Zero-free regions (as related to this talk)

Large random systems often exhibit predictable behavior

Let's review a prototypical example. For $j=0,1,2,\ldots$ let X_j be independent and identically distributed. Set $\mathbb{E}X_j=\mu$ and $\mathrm{Var}(X_j)=\sigma^2$.

For each n set $S_n = X_1 + \ldots + X_n = \sum_{j=1}^n X_j$.

Then $\mathbb{E}S_n = n\mu$ and $Var(S_n) = n\sigma^2$.

$$S_n \approx n\mu + \sqrt{n}\sigma Z$$

where Z is a standard (mean zero, variance one) Gaussian random variable.

The $n\mu$ term is the **Law of Large Numbers** (LLN) and the $\sqrt{n}\sigma Z$ term is the **Central Limit Theorem** (CLT).

What does the law of large numbers say?

 X_j independent, identically distributed with $\mathbb{E}X_j = \mu$, $\mathrm{Var}(X_j) = \sigma^2$; $S_n = X_1 + \cdots + X_n$.

$$S_n \approx n\mu + \sqrt{n}\sigma Z$$
.

$$\frac{S_n}{n} pprox \mu + \text{(something small)}$$
.

 S_n is **concentrated** around $n\mu$. It is unlikely to differ from $n\mu$ by too much.

Concentration is when a random variable is unlikely to differ from something predictable by too much.

What does the central limit theorem say?

 X_j independent, identically distributed with $\mathbb{E}X_j = \mu$, $\mathrm{Var}(X_j) = \sigma^2$; $S_n = X_1 + \cdots + X_n$.

If we set
$$\hat{S}_n = rac{S_n - n\mu}{\sqrt{n}\sigma}$$
 then $\mathbb{P}(\hat{S}_n \geq t) pprox \mathbb{P}(Z \geq t)$,

where Z is a standard Gaussian random variable.

On the one hand this says that \hat{S}_n is unlikely to be big

$$\mathbb{P}(|\hat{S}_n| \geq t) \approx \mathbb{P}(|Z| \geq t) \leq e^{-t^2/4}$$

for t big enough (and $n \to \infty$).

On the other hand, it says that $|\hat{S}_n|$ isn't just the random variable that is always 0:

$$\mathbb{P}(|\hat{S}_n| \geq t) \approx \mathbb{P}(|Z| \geq t) \geq e^{-t^2}$$
.

What does the central limit theorem say? (Summary)

 X_j independent, identically distributed with $\mathbb{E}X_j = \mu$, $\mathrm{Var}(X_j) = \sigma^2$; $S_n = X_1 + \cdots + X_n$.

$$\text{If we set} \quad \hat{S}_n = \frac{S_n - n\mu}{\sqrt{n}\sigma} \quad \text{ then } \quad \mathbb{P}(\hat{S}_n \geq t) \approx \mathbb{P}(Z \geq t) \,,$$

where Z is a standard Gaussian random variable.

The central limit theorem gives both:

- **Concentration**: \hat{S}_n isn't likely to be too big.
- Anticoncentration: \hat{S}_n is non-degenerate, it isn't always 0.

The story thus far

Given a random variable Y (think of Y as like our random sum S_n):

- Concentration is a statement saying that Y is likely to exhibit deterministic behavior (e.g., Y is close to a constant).
- **Anticoncentration** is a statement showing that Y is *non-degenerate* (e.g., Y is looks different than a constant).
- A **Central Limit Theorem** is when $\frac{Y \mathbb{E}Y}{\sqrt{\mathrm{Var}(Y)}}$ looks like a Gaussian random variable.

Lots of machinery for concentration and central limit theorems in certain cases

Recall the sum $S_n = X_1 + \ldots + X_n$, where X_1, \ldots, X_n are independent. Then we get concentration and a central limit theorem from classical results.

Morally, if we have a nice function F and X_1, \ldots, X_n are independent and not too large, then concentration of $F(X_1, \ldots, X_n)$ can be shown. This is an entire (sub)field of probability.

Similarly, if F doesn't depend too much on any given coordinate, then $F(X_1, \ldots, X_n)$ satisfies a central limit theorem.

Anticoncentration without a central limit theorem

Let X_1,X_2,\ldots,X_n be independent and identically distributed with $\mathbb{P}(X_j=1)=\mathbb{P}(X_j=-1)=1/2$. Let a_1,\ldots,a_n be real numbers with $|a_j|\geq 1$. Set

$$S=a_1X_1+a_2X_2+\cdots+a_nX_n.$$

The random variable S might look very far from a Gaussian (i.e. no CLT holds) if we choose a_j in an adversarial way (e.g. $a_j = 3^j$). Can we deduce uniform anticoncentration?

Theorem (Erdős, 1945)

$$\max_{t} \mathbb{P}(|S - t| < 1/2) \le \frac{1}{\sqrt{n}}$$

For any given interval of length 1, S is unlikely to fall in that interval.

A sidenote: Anticoncentration is less understood than concentration

Let X_1, X_2, \ldots, X_n be independent and identically distributed with $\mathbb{P}(X_j = 1) = \mathbb{P}(X_j = -1) = 1/2$. Set $X = (X_1, \ldots, X_n)^T$ and let M be an $n \times n$ matrix with each entry having $|M_{i,j}| \geq 1$.

Conjecture (Quadratic Littlewood-Offord Problem)

$$\mathbb{P}(X^T M X = 0) \le \frac{C}{\sqrt{n}}$$

This is known up to log factors (see: Costello, Costello-Tao-Vu, Kwan-Sauermann, Meka-Nguyen-Vu)

These all use independence

Every theorem I've told you so far is about a function of a random environment: given X_1, \ldots, X_n independent and a function F, I've told you about concentration, anticoncentration, and central limit theorems for $F(X_1, \ldots, X_n)$ under certain assumptions on X_j 's and F.

Guiding Question

How can we expand this story without using **any** independence assumption?

Towards our third noun in the title: "zero free regions"...

Probability generating functions

Let $X \in \{0, 1, ..., n\}$ be a random variable. Define the *probability* generating function f_X by

$$f_X(z) = \mathbb{E}z^X = \sum_k \mathbb{P}(X = k)z^k$$
.

Properties:

- f_X is a polynomial of degree n.
- The coefficients of f_X are non-negative.
- $f_X(1) = 1$.

These three properties characterize probability generating functions.

Some more properties of probability generating functions

If X and Y are independent, then:

$$f_{X+Y}(z) = \mathbb{E}z^{X+Y} = \mathbb{E}z^X \mathbb{E}z^Y = f_X(z)f_Y(z).$$

Theorem (Harper, 1967)

Let $X \in \{0, 1, ..., n\}$ be a random variable and suppose that all roots of f_X are real. Then $\hat{X} = \frac{X - \mathbb{E}X}{\sqrt{\mathrm{Var}(X)}}$ is close to a standard Gaussian if and only if $\mathrm{Var}(X)$ is large.

Proving the CLT when real-rooted

Assume f_X has only real roots, let $\{\zeta_j\}$ be these roots. Note that they can't be positive since f_X has non-negative coefficients. Factor

$$f_X(z) = \prod_{j=1}^n \left(rac{z}{1-\zeta_j} + rac{-\zeta_i}{1-\zeta_j}
ight).$$
 $Y_j := egin{cases} 1 & ext{w/ prob.} & rac{1}{1-\zeta_j} \ 0 & ext{w/ prob.} & rac{-\zeta_j}{1-\zeta_j} \end{cases}$
 $X = Y_1 + \dots + Y_n,$

The ordinary CLT says: X has a CLT provided Var(X) is large.

CLT when real-rooted

Theorem (Harper, 1967)

Let $X \in \{0, 1, ..., n\}$ be a random variable and suppose that all roots of f_X are real. Then $\hat{X} = \frac{X - \mathbb{E}X}{\sqrt{\mathrm{Var}(X)}}$ is close to a standard Gaussian if and only if $\mathrm{Var}(X)$ is large.

Proof.

This is really just the ordinary CLT in disguise.

A quantitative central limit theorem also provides anticoncentration in this case:

$$\max_s \mathbb{P}(X = s) \leq \frac{C}{\sqrt{\operatorname{Var}(X)}}.$$

Beyond real roots, and more context on zero-freeness

Goals for the next talk:

- 1. How far can we push this? We will see (sharp, quantitative) central limit theorems assuming zero-freeness in either a neighborhood of 1 or a sector/cone.
- What are some cases in which we have zero-freeness? What does this
 assumption "mean"? There is a deep connection between
 zero-freeness and absence of phase transitions in physics (so-called
 Lee-Yang theory).
- 3. How does anti-concentration fit into this picture?

A taste of these results

Let $X \in \{0, 1, ..., n\}$ be a random variable, $f_X(z) = \mathbb{E}z^X$. Assume f_X is zero-free in the sector $\{|\arg(z)| \le \delta\}$, i.e. no zeros in this gray region:

Theorem (M.-Sahasrabudhe)

In this context, $\hat{X} = \frac{X - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}}$ is close to a standard Gaussian provided $\delta^2 \operatorname{Var}(X)$ is large.

Anticoncentration and central limit theorems from zero-free regions

Research talk

Marcus Michelen

Joint with Julian Sahasrabudhe (Cambridge)

The University of Illinois at Chicago

Geometry, Probability, and Computing Seminar March 31, 2022

Probability generating function

Let $X \in \{0, 1, ..., n\}$ be a random variable. Its probability generating function is

$$f_X(z) = \mathbb{E}z^X = \sum_{k=0}^n \mathbb{P}(X=k)z^k$$
.

 $f_X(z)$ is a polynomial with non-negative coefficients and $f_X(1) = 1$.

Note the characteristic function $\mathbb{E}e^{itX}=f(e^{it})$. Will typically write $\mu=\mathbb{E}X$ and $\sigma^2=\mathrm{Var}X$.

Guiding Question

What is the relationship between the roots of f_X and the behavior of the random variable X?

A connection to statistical mechanics

(Meta)theorem (Yang-Lee '52)

There is a connection between phase transitions and zero-free regions. A way to prove a lack of a phase transition is to prove a zero-free region.

Two now-classical examples:

- The Ising model (Lee-Yang, '52).
- The "monomer dimer model" a.k.a. random matchings from a graph (Heilmann-Lieb, '72).

Vague idea of Lee-Yang theory

Given a finite graph G, and parameters $\gamma \in (0,1)$ and z, the partition function of the Ising model is the polynomial

$$Z_{G,\gamma}(z) = \sum_{S \subset G} \gamma^{|\partial S|} z^{|S|}$$

where S is a sum over all subsets of vertices in G and $|\partial S|$ is the number of edges in G with one vertex in S and one not. The form is not important for now, but it is a polynomial.

On a graph like \mathbb{Z}^d , we can take a subsequence of graphs $G_n \uparrow \mathbb{Z}^d$.

A thermodynamic quantity known as the free energy is defined as

$$\Phi(z) = \lim_{n \to \infty} \frac{1}{|G_n|} \log Z_{G_n,\gamma}(z).$$

Abstracting it a bit

We have a sequence of polynomials P_n of degree n and the $free\ energy$ is the limiting function

$$\Phi(z) = \lim_{n \to \infty} \frac{1}{n} \log P_n(z).$$

Yang-Lee (meta)Theorem/definition: a phase transition is a point $z \ge 0$ at which Φ fails to be analytic.

Fig. 1.3. The spontaneous magnetization M_0 as a function of temperature.

Lee-Yang continued

We have a sequence of polynomials P_n of degree n and the *free energy* is the limiting function

$$\Phi(z) = \lim_{n \to \infty} \frac{1}{n} \log P_n(z).$$

Lee-Yang: no phase transition for $z \in [a, b] \subset \mathbb{R}$ means that Φ is analytic in a neighborhood of [a, b].

 P_n is a polynomial so it is analytic, so $\log P_n$ is analytic provided P_n is zero-free.

Theorem (Lee-Yang, '52)

On any graph, the partition function of the Ising model has all roots on the unit circle. In particular, all roots of P_n have |z| = 1.

Theorem (Yang-Lee, '52)

As z varies, the only place the Ising model may have a phase transition is at z = 1.

Another example: Matchings in a graph

Given a finite graph G, a matching M is a collection of edges that do not touch each other.

Define

$$F_G(z) = \sum_M z^{|M|}$$

where the sum is over all matchings.

Theorem (Heilmann-Lieb, '72)

For any graph G, all roots of $F_G(z)$ are real (and thus non-positive).

Note that if I fix $\lambda>0$ then $F_G(\lambda z)/F_G(\lambda)$ is the generating function for the number of edges in a random matching when I choose a matching with probability proportional to $\lambda^{|M|}$. This is real rooted, so we get a CLT for |M| if and only if $\mathrm{Var}(|M|) \to \infty$. (see Godsil, and/or Kahn)

Zero-free in a sector

Philosophy: Random variables for which f_X has no roots in $\{z:|\arg(z)|<\delta\}$ behave like functions of roughly independent stuff. In particular, they should behave roughly like i.i.d. sums, up to some "distortion" depending on δ .

So we should have:

- CLT
- Linear variance
- Anti-concentration

CLT when zero-free in a sector

Theorem (M.-Sahasrabudhe)

Let $X \in \{0, ..., n\}$ suppose all zeros ζ of $f_X(z) \mid \arg(\zeta) \mid \geq \delta$. Then

$$\sup_{t} \left| \mathbb{P} \left(\frac{X - \mathbb{E}X}{\sqrt{\operatorname{Var}(X)}} \le t \right) - \mathbb{P}(Z \le t) \right| \le \frac{C}{\delta \sqrt{\operatorname{Var}(X)}}$$

where Z is a standard Gaussian.

Like sums of independent variables, CLT if and only if $Var(X) \to \infty$ (for when δ is fixed).

This is tight up to the constant C.

Anti-concentration theorem

Theorem (M.-Sahasrabudhe)

Let $X \in \{0, ..., n\}$ with $\mathbb{P}(X = 0)\mathbb{P}(X = n) > 0$ and suppose all zeros ζ of $f_X(z)$ satisfy $R^{-1} \le |\zeta| \le R$ and $|\arg(\zeta)| \ge \delta$. Then

$$\operatorname{Var}[X] \ge cR^{-2\pi/\delta}n$$
.

Combined results

Theorem (M.-Sahasrabudhe)

Let $X \in \{0, ..., n\}$ with all zeros ζ of $f_X(z)$ satisfy $|\arg(\zeta)| \ge \delta$. Set $\sigma^2 = \operatorname{Var}(X)$ and $X^* = (X - \mathbb{E}X)/\sigma$. Then

$$\sup_t |\mathbb{P}(X^* \le t) - \mathbb{P}(Z \le t)| \le \frac{C}{\delta \sigma}.$$

If we also assume all roots have $R^{-1} \leq |\zeta| \leq R$ then

$$\sigma^2 \ge cnR^{-2\pi/\delta}$$
.

Combining these two gives

$$\sup_{t} |\mathbb{P}(X^* \le t) - \mathbb{P}(Z \le t)| = O\left(\delta^{-1} R^{-\pi/\delta} n^{-1/2}\right)$$

$$\max_{r} \mathbb{P}(X = r) = O\left(\delta^{-1} R^{-\pi/\delta} n^{-1/2}\right)$$

Positive coefficients

Direct computation:

$$\operatorname{Var}[X] = \sum \left(\frac{1}{1 - \zeta_j} - \frac{1}{(1 - \zeta_j)^2} \right) .$$

Not obvious that this is even *non-negative*, let alone large.

X random variable $\implies f_X$ has non-negative coefficients. $|f_X(z)| \le f_X(|z|)$ for all z.

Obrechkoff's theorem: "Polynomials with positive coefficients can only have at most $2\alpha n$ roots with in $\arg(\zeta) \in [0,\alpha]|$." Roots are biased away from positive real axis.

The "game"/hard part is understanding how to harness the assumption of positive coefficients.

Proof sketch

Theorem (M.-Sahasrabudhe)

Let $X \in \{0, ..., n\}$ be a random variable and let $\zeta_1, ..., \zeta_n$ be the roots of f_X . Let

$$\delta = \min_{i} |\arg(\zeta_i)|,$$

and let

$$X^* := (X - \mu)\sigma^{-1}.$$

Then

$$\sup_{t\in\mathbb{R}}|\mathbb{P}(X^*\leq t)-\mathbb{P}(Z\leq t)|=O\left(rac{1}{\delta\sigma}
ight),$$

where $Z \sim N(0,1)$.

 $X \in \{0, ..., n\}$, f_X is a polynomial with non-negative coefficients and no zeros in $\Omega := \{z : |\arg(z)| < \delta\}$.

$$\log |f_X(z)|$$

Key fact: If f_X has no zeros in Ω if and only if $\log |f_X(z)|$ is harmonic on Ω .

Fix $\gamma = \delta/2$ and define

$$\varphi_{\gamma}(z) := \log |f_X(z)| - \log |f_X(e^{i\gamma}z)|$$

$$\varphi_{\gamma}(e^{w}) = \sum_{k \geq 2} a_{k} \operatorname{Re}(w^{k} - (w + \gamma i)^{k}).$$

Key Fact: a_k are (re-normalized) cumulants of X. $a_2 = -\sigma^2/2$ Key Fact: Random variable X is normal if a_2 "dominates" the sequence $(a_k)_k$.

Non-negativity of the coefficients f implies

$$\log |f(z)| \le \log |f(|z|)|$$

Key Fact: $\varphi_{\gamma}(z) = \log |f(z)| - \log |f(e^{i\gamma}z)| \ge 0$ for $z \in \mathbb{R}^{>0}$

Step 1

Key Fact: $\varphi_{\gamma}(z) = \log |f(z)| - \log |f(e^{i\gamma}z)| \ge 0 \text{ for } z \in \mathbb{R}^{>0}.$

Lemma (Step 1)

Our function $\varphi_{\gamma}(z)$ is positive for $|\arg(z)| \leq \delta/4$.

Step 1, continued

f has positive coefficients $\implies \varphi_{\gamma}(z) = \log |f(z)| - \log |f(e^{i\gamma}z)| \ge 0$ for $z \in \mathbb{R}^{>0}$.

Lemma (Step 1)

Our function $\varphi_{\gamma}(z)$ is positive for $|\arg(z)| \leq \delta/4$.

Idea: write $z=re^{i\theta}$. Do Poisson integration to write $\log |f(z)|$ as integral along boundary of the sector $\arg(w)\in [0,\theta+\gamma/2]$. Do the same for $\log |f(e^{i\gamma}z)|$ along boundary of $\arg(w)\in [\theta+\gamma/2,2\theta]$. By symmetry, the integrals of each along the ray $\arg(w)=\theta+\gamma/2$ exactly cancel.

Step 2

$$\varphi_{\gamma}(e^{w}) = \sum_{k\geq 2} a_{k} \operatorname{Re}(w^{k} - (w + \gamma i)^{k}).$$

Lemma (Step 2)

There exists $\delta_0 \approx \delta$ so that for all $L \geq 2$,

$$\frac{\sum_{j\geq L}|a_j|\delta_0^j}{\sum_{j\geq 2}|a_j|\delta_0^j}\leq C\cdot 2^{-L}.$$

Key Fact: Random variable X is normal if a_2 "dominates" the sequence $(a_k)_k$.

Step 3

Theorem (Marcinkiewicz)

Let

$$\psi(\xi) := \mathbb{E}_X e^{iX\xi}.$$

lf

$$\psi(\xi) = e^{P(\xi)},$$

where $P(\xi)$ is a polynomial then $deg(P(\xi)) \leq 2$.

$$\varphi_{\gamma}(e^{w}) = \sum_{k\geq 2} a_{k} \operatorname{Re}(w^{k} - (w + \gamma i)^{k}).$$

Lemma (Step 3)

lf

$$\frac{\sum_{k \ge L} |a_k| \delta_0^k}{\sum_{k \ge 2} |a_k| \delta_0^k} < 1/2$$

for some $\delta_0>0, L\geq 1$ then there exists a real number $\delta_1\approx 2^{-L}\delta_0$ for which

$$\sigma^2/2 = |a_2| \ge \delta_1^{k-2} |a_k|,$$

for all $k \geq 2$.

Work with a different "difference" function: $\log |f(|z|)| - \log |f(z)|$.

Recap of steps

Lemma (Step 1)

Our function $\varphi_{\gamma}(z) = \log |f(z)| - \log |f(e^{i\gamma}z)|$ is positive in the sector $|\arg(z)| \leq \delta/4$.

Define the cumulant sequence (a_j) defined by $\log |f(e^w)| = \sum_j a_j \operatorname{Re}(w^j)$.

Lemma (Step 2)

There exists $\delta_0 \approx \delta$ so that for all $L \geq 2$,

$$\frac{\sum_{j\geq L}|a_j|\delta_0^j}{\sum_{j\geq 2}|a_j|\delta_0^j}\leq C\cdot 2^{-L}.$$

Lemma (Step 3)

For sufficiently large L, there exists a real number $\delta_1 \approx 2^{-L}\delta_0$ for which $|a_2| \geq \delta_1^{k-2} |a_k|$, for all $k \geq 2$.

More general context

Properties used were: zero-freeness, $u(z) \le u(|z|)$, and a bound on growth (for Poisson integration).

So if μ is a probability measure on $\mathbb C$ with logarithmic potential $u(z)=\int \log |z-w| \ d\mu(w)$ satisfying:

- $\mu(\{|\arg(\zeta)| \le \delta\} = 0$
- $u(z) \leq u(|z|)$
- A growth condition on u(z) as $z \to \infty$ in the sector $\{|\arg(\zeta)| \le \delta\}$

Then $|a_2| \geq (c\delta)^{k-2}|a_k|$.

Variance lower bound

If $X \in \{0, 1, ..., n\}$ with f_X zero-free whenever $|\arg(z)| \le \delta$, $|z| \le 1/R$ or $|z| \ge R$, then

$$\operatorname{Var}(X) \ge cR^{-2\pi/\delta}\delta^{-1}n$$

(provided $R \geq 1 + \delta$).

Example

There are examples with

$$\operatorname{Var}(X) = \Theta(R^{-\pi/\delta}\delta^{-1}n)$$
.

History, and another CLT?

Conjecture (Pemantle, 2017)

For $\delta > 0$, let $X_n \in \{0, ..., n\}$ be a sequence of random variables with $\sigma_n \to \infty$. If all the roots ζ of f_{X_n} satisfy $|\zeta - 1| > \delta$, then

$$(X_n-\mu_n)\sigma_n^{-1}\to N(0,1),$$

in distribution, as $n \to \infty$.

- (1979) lagolnitzer and Souillard: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$ "in the context of the Ising model".
- (2013) Hwang and Zacharovas: Pemantle's theorem is true if all the roots are on the unit circle.
- (2016) Lebowitz, Pittel, Ruelle and Speer: Pemantle's theorem is true if $\sigma_n \gg n^{1/3}$.
- (2018) M.-Sahasrabudhe: Pemantle's conjecture is true $\sigma_n > n^{\varepsilon}$, for any $\varepsilon > 0$.
- (2018) M.-Sahasrabudhe: Pemantle's conjecture is false!

Another CLT

Zero-freeness in sector \implies CLT. Still have a CLT under much more less restrictive conditions.

Theorem (M.-Sahasrabudhe)

Let $X \in \{0, ..., n\}$ with $f_X(z)$ zero free in the ball of radius γ around 1. Set $\sigma^2 = \operatorname{Var}(X)$ and $X^* = (X - \mathbb{E}X)/\sigma$. Then

$$\sup_{t} |\mathbb{P}(X^* \leq t) - \mathbb{P}(Z \leq t)| \leq \frac{C \log n}{\gamma \sigma}.$$

CLT if $\sigma \gg \log n/\gamma$. This is sharp up to C.

Multivariate zero-freeness

$$X \in \{0,\ldots,n\}^d$$

Probability generating function of X:

$$f_X(z_1,...,z_d) = \sum_{i_1,...,i_d} \mathbb{P}(X = (i_1,...,i_d)) z_1^{i_1} \cdots z_d^{i_d}.$$

 f_X is real-stable if it has no roots in

$$\mathbb{H}:=\{(z_1,\ldots,z_d)\in\mathbb{C}^d: \mathrm{Im}(z_i)>0, \text{ for all } i\}.$$

Another perspective

Question (Pemantle, '00)

What is the "correct" notion of negatively dependent random variables?

Theorem (Borcea, Brändén, Liggett, '07)

The correct definition is

" X_1, \ldots, X_d are negatively dependent random variables if the (multi-variate) probability generating function of $X = (X_1, \ldots, X_d)$ is real stable."

Recall real stable means $f_X(z_1,\ldots,z_d)$ does not vanish if $\mathrm{Im}(z_j)>0$ for all j.

Question

What is the limit shape of these distributions?

Conjecture (Ghosh, Liggett, Pemantle, 2017)

For $d \in \mathbb{N}$, let $X_n \in \{0, \dots, n\}^d$ be a sequence of random variables. If f_{X_n} is real stable and $\operatorname{Cov}(X_n)\sigma_n^{-2} \to A$ with $\sigma_n \to \infty$ then

$$(X_n - \mu_n)\sigma_n^{-1} \to N(0, A)$$
.

Theorem (M.-Sahasrabudhe)

The Ghosh-Liggett-Pemantle conjecture is true.

Thanks!

Theorem (M.-Sahasrabudhe)

Let $X \in \{0, ..., n\}$ with $\mathbb{P}(X = 0)\mathbb{P}(X = n) > 0$ and suppose all zeros ζ of $f_X(z)$ satisfy $R^{-1} \le |\zeta| \le R$ and $|\arg(\zeta)| \ge \delta$. Then

$$\operatorname{Var}[X] \ge cR^{-2\pi/\delta}n.$$

$$|\mathbb{P}(X^* \le t) - \mathbb{P}(Z \le t)| = O\left(\delta^{-1}R^{-\pi/\delta}n^{-1/2}\right)$$

 $\max \mathbb{P}(X = r) = O\left(\delta^{-1}R^{-\pi/\delta}n^{-1/2}\right)$

(with
$$X^* = (X - \mu)\sigma^{-1}$$
 and $Z \sim N(0, 1)$).