Introducció als Computadors

Tema 3: Circuits Lògics Combinacionals (CLC) http://personals.ac.upc.edu/enricm/Docencia/IC/IC3c.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ ()

Los últimos serán los primeros

[1]

- Temps de propagació
 - Introducció
 - Anàlisi temporal de les portes bàsiques
 - Anàlisi temporal d'un CLC
 - Temps de propagació d'un CLC
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

- Temps de propagació
 - Introducció
 - Anàlisi temporal de les portes bàsiques
 - Anàlisi temporal d'un CLC
 - Temps de propagació d'un CLC
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Introducció

- Fins ara només hem considerat el comportament lògic dels CLC's...
 - Taula de Veritat
- ... però els CLC's tenen molts altres atributs determinants:
 - Per exemple, àrea, consum energètic, cost i temps de propagació
- Ens centrarem en el temps de propagació (*Propagation delay*)
 - Fins ara hem assumit que els canvis a les entrades del CLC es propaguen immediatament a la sortida
 - En realitat, aquests canvis triguen un temps en propagar-se a la sortida perquè cada porta lògica introdueix un retard al senyal

- Temps de propagació
 - Introducció
 - Anàlisi temporal de les portes bàsiques
 - Anàlisi temporal d'un CLC
 - Temps de propagació d'un CLC
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Porta NOT

- Quan l'entrada x canvia de "0" a "1", la sortida w triga un temps $T_{p_{HL}}$ en canviar de "1" a "0"
 - $T_{p_{HL}}$ és el temps de propagació high to low
- Quan x canvia de "1" a "0", la sortida triga $T_{p_{LH}}$ en canviar
 - $T_{p_{LH}}$ és el temps de propagació low to high
- Assumirem $T_{p_{HL}} = T_{p_{LH}}$
 - En direm T_p

Porta AND-2

- Inicialment les entrades valen "0" i la sortida també
- ullet Posteriorment, x canvia a "1" i no es provoca cap canvi a la sortida
- Però quan y també canvia a "1", la sortida passa a valdre "1"
 - ullet Amb un temps de propagació igual a $T_{p_{y-w}}$
 - \bullet Temps de propagació des de l'entrada y a la sortida w
- Finalment, quan x canvia a "0", la sortida canvia a "0"
 - Amb un temps de propagació igual a $T_{p_{x-w}}$

Porta OR-2

- Inicialment les entrades valen "0" i la sortida també
- Posteriorment, x canvia a "1" i la sortida passa a valdre "1"
 - Amb un temps de propagació igual a $T_{p_{x-w}}$
- Quan y canvia a "1" la sortida no canvia
- Quan x canvia a "0" la sortia no canvia
- Finalment, quan y canvia a "0", la sortida canvia a "0"
 - ullet Amb un temps de propagació igual a $T_{p_{y-w}}$

Observacions cronogrames portes

- Algunes simplificacions
 - A les portes AND-2 i OR-2, assumirem $T_{p_{x-w}} = T_{p_{y-w}}$
 - Això no ho podrem assumir a circuits formats per vàries portes lògiques
 - ullet Com al cas de la NOT, assumirem $T_{p_{HL}}=T_{p_{LH}}$
- Canvis a les entrades:
 - Alguns canvis no provoquen canvis a la sortida
 - En aquests casos el temps de propagació és 0
 - Però d'altres canvis sí provoques canvis a la sortida
 - Observem un cert temps de propagació
- Definirem el temps de propagació de la porta, T_p , com el màxim de tots els temps de propagació observats
 - Cal verificar totes les combinacions possibles
 - Al cronograma no les hem mostrat totes

Temps de propagació portes bàsiques

- A la documentació de teoria i a les pràctiques d'IC considerarem els següents temps de propagació:
 - $T_p(NOT) = 10 \text{ u.t.}$
 - u.t. = unitats de temps
 - No concretem les unitats per ser independents de la tecnologia
 - $T_p(AND-2) = T_p(OR-2) = 20 \text{ u.t.}$
 - Però als exercicis i exàmens us podem indicar valors diferents
- A partir d'aquests valors podrem calcular el temps de propagació de qualsevol CLC implementat, directament o indirecta, amb portes NOT, AND-2 i OR-2

- Temps de propagació
 - Introducció
 - Anàlisi temporal de les portes bàsiques
 - Anàlisi temporal d'un CLC
 - Temps de propagació d'un CLC
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Extensió TV's de les portes bàsiques

- Al realitzar els cronogrames ens trobarem instants de temps en el que el valor d'un senyal d'entrada sigui desconegut
 - Tot i això, en alguns casos, la porta podrà calcular la sortida
- Estendrem les taules de veritat de les portes bàsiques per definir el seu comportament en aquests casos

X	! <i>X</i>
0	1
1	0
?	?

;	X	y	$x \cdot y$	x + y
(0	0	0	0
(0	1	0	1
(О	1 ?	0	?
	1	0	0	1
	1	1	1	1
	1	1 ?	?	1
•	?	0	0	?
•	?	1	?	1
	?	?	?	?

Cas senzill

- Circuits amb un únic camí des de cada entrada a la sortida
 - Camí: seqüència de portes que ha de travessar un senyal per anar des d'un punt del circuit a un altre punt del circuit
 - Exemple:

- L'únic camí des de l'entrada x a la sortida w és: NOT AND-2
- L'únic camí des de l'entrada y a la sortida w és: AND-2
- Veurem que el temps de propagació pot ser diferent per a cada entrada

Cas senzill: exemple

- Ens indiquen comportament entrades x i y
- Dibuixarem el cronograma a la sortida de cada porta a mesura que coneguem els cronogrames a les entrades
 - Comencem per la sortida de la porta NOT ($T_p(NOT) = 10 \text{ u.t.}$)
 - Apliquem la TV de la porta NOT però desplaçant el resultat 10 u.t.
 - Els requadres blaus indiquen que en aquest lapse no coneixem el valor
 - Continuem amb la sortida de la porta AND-2 ($T_p(AND-2) = 20 \text{ u.t.}$)
 - A la implementació d'AND-2, 0·? = 0
- Observem $T_{p_{x-w}} \neq T_{p_{x-y}}$

Cas senzill: exemple

- Per què $T_{p_{x-w}} \neq T_{p_{x-y}}$?
 - ullet El camí des de x a w és més llarg que el camí des de y a w
 - Els canvis a x han de travessar més portes que els canvis a y per arribar a la sortida
 - $T_{p_{x-w}} = T_p(NOT) + T_p(AND-2) = 10 \text{ u.t.} + 20 \text{ u.t.} = 30 \text{ u.t.}$
 - $T_{p_{y-w}} = T_p(AND-2) = 20 \text{ u.t.}$
- Quin seria el T_p del circuit?
 - Ens hem de quedar amb el cas pitjor: 30 u.t.
 - Temps necessari per garantir que la sortida té un valor estable i correcte

Cas general

- Circuits amb varis camins des d'alguna entrada a la sortida
- Exemple:

х	у	z	!y	x∙!y	y·z	w
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	0	1	1	1	0	1
1	1	0	0	0	0	0
1	1	1	0	0	1	1

- Hi ha dos camins entre l'entrada y i la sortida w
 - y NOT A1 OR-2 w
 - y A2 OR-2 w
- Analitzarem l'efecte d'alguns canvis a les entrades d'aquest circuit

Cas general: escenari 1

• Les entrades canvien de (1, 0, 0) a (1, 1, 0)

• $T_{\rho_{y-w}} = T_{\rho}(NOT) + T_{\rho}(AND-2) + T_{\rho}(OR-2) = 50 \text{ u.t.}$

Cas general: escenari 2

• Les entrades canvien de (0, 1, 1) a (0, 0, 1)

• $T_{p_{y-w}} = T_p(AND-2) + T_p(OR-2) = 40 \text{ u.t.}$

Cas general: conclusions escenari 1 i 2

- Depenent del canvi als valors d'entrada, el senyal es propaga per un camí o per un altre
- Cada camí pot tenir un temps de propagació diferent
- I si el senyal es propaga pels dos camins alhora?
 - Ho veurem al següent exemple

Cas general: escenari 3

• Les entrades canvien de (1, 1, 1) a (1, 0, 1)

- El senyal es propaga pels dos camins simultàniament
- A la sortida observem dos canvis
 - Tenim un glitch

glitch

- Es produeix perquè el senyal es propaga per varis camins que tenen temps de propagació diferents
 - Per a algunes combinacions de valors pot provocar, **temporalment**, un valor erroni a la sortida
 - Quan el senyal s'hagi acabat de propagar per tots els camins, tindrem el valor correcte a la sortida
- El circuit és correcte
 - El que és incorrecte és no respectar el temps de propagació del circuit
 - En el moment que observem un canvi a la sortida NO podem assumir que aquest serà el valor definitiu de la sortida
 - Cal esperar tot el temps de propagació del circuit
- Circuits més complexes podrien provocar més de dos canvis a la sortida abans d'estabilitzar-se
 - Influència en consum energètic
- Exemple de *glitch* en un altre entorn:
 - https://www.youtube.com/watch?v=k0dD3GtlTkI
 - Entre 0:23 i 0:26, el display mostra temporalment un valor incorrecte

Un altre exemple de glitch

• Les entrades canvien de (0, 0) a (1, 1)

- El senyal es propaga pels dos camins simultàniament
- A la sortida observem dos canvis
 - Tenim un glitch

- Temps de propagació
 - Introducció
 - Anàlisi temporal de les portes bàsiques
 - Anàlisi temporal d'un CLC
 - Temps de propagació d'un CLC
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Formalització: definicions

- Camí des de l'entrada e a la sortida s
 - Recorregut vàlid des de l'entrada e a la sortida s passant per cables, portes i altres CLC's que les connecten
 - Poden existir-ne varis
- Temps de propagació d'un camí
 - Suma dels temps de propagació de les portes (o CLC's) del camí
- Camí crític de l'entrada e a la sortida s
 - Camí entre e i s amb major temps de propagació
- ullet Temps de propagació des de l'entrada e a la sortida s ($T_{p_{e-s}}$)
 - Temps de propagació del camí crític entre e i s

Exemple: calcular $T_{p_{\nu-\nu}}$

- Per a cada CLC ens indiquen el T_p entre cada entrada i cada sortida
- Cal determinar tots els camins possibles entre x i w

 $Tp_{x,w} = 80$

• El camí crític és x - CLC1(c - d) - A1 - CLC3(a - e) - A2 - w

Formalització: definicions

- Temps de propagació d'un circuit (T_p)
 - Màxim dels $T_{p_{e-s}}$ entre totes les possibles combinacions d'entrada/sortida
- Camí crític del circuit
 - ullet Camí crític des de l'entrada a la sortida que tingui el major T_p
 - Poden haver-ne varis

- Temps de propagació
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Exercici 1415Q1 E1

Completad el siguiente cronograma de las señales del esquema lógico sabiendo que los tiempos de propagación de las puertas son: $T_p(\text{Not}) = 10$ u.t., $T_p(\text{And}) = T_p(\text{Or}) = 20$ u.t. Debéis operar adecuadamente con las zonas sombreadas (no se sabe el valor que tienen) y dibujar la señal sombreada cuando no se pueda saber si vale $0 \circ 1$.

Exercici 1415Q1 E1

Completad el siguiente cronograma de las señales del esquema lógico sabiendo que los tiempos de propagación de las puertas son: $T_p(\mathrm{Not})=10$ u.t., $T_p(\mathrm{And})=T_p(\mathrm{Or})=20$ u.t. Debéis operar adecuadamente con las zonas sombreadas (no se sabe el valor que tienen) y dibujar la señal sombreada cuando no se pueda saber si vale 0 o 1.

Exercici 1112Q2 E1

Dado el esquema del siguiente circuito (incluida la tabla de verdad del bloque H).

- a) Completad la tabla de verdad de las salidas c y d y escribid la expresión lógica en suma de minterms de c. (1 punto)
- b) Escribid el camino crítico (o uno de ellos si hay varios) y el tiempo de propagación desde la entrada a hasta la salida c. Se dan los tiempos de propagación de H (en la tabla) y de las puertas: Tp(Not) = 10, Tp(And) = 20, Tp(Or) = 30 y Tp(Xor) = 50 u.t. Por ejemplo, uno de los caminos de b a d se especificaría como: b k s Xor e f Not d. (1 punto)

Tp bloque H

Tp	f	S
е	60	50
k	90	80

Expresión en suma de minterms de c:

Camino crítico de a a c:

Tp_{a-c}:

Exercici 1112Q2 E1

Dado el esquema del siguiente circuito (incluida la tabla de verdad del bloque H).

- a) Completad la tabla de verdad de las salidas c y d y escribid la expresión lógica en suma de minterms de c. (1 punto)
- b) Escribid el camino crítico (o uno de ellos si hay varios) y el tiempo de propagación desde la entrada a hasta la salida c. Se dan los tiempos de propagación de H (en la tabla) y de las puertas: Tp(Not) = 10, Tp(And) = 20, Tp(Or) = 30 y Tp(Xor) = 50 u.t. Por ejemplo, uno de los caminos de b a d se especificaría como: b k s Xor e f Not d. (1 punto)

Tp bloque H

_	-	
Tp	f	S
е	60	50
k	90	80

Camino crítico de a a c: a - e - f - And - Xor - e - s - Not - c Tp_{a-c}: 190 u.t.

- Temps de propagació
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Conclusions

- Les portes lògiques triguen un cert temps en processar els canvis als valors de les entrades i propagar-los, si la TV ho indica, a la sortida
 - Temps de propagació (T_p)
- El resultat d'un CLC és correcte i estable únicament quan hagin transcorregut T_p unitats de temps des de que es van modificar els valors de les entrades
- Alguns circuits poden presentar un glitch al senyal de sortida
 - ullet Si respectem el T_p , el glitch no ens afectarà
- No oblideu respondre l'ET3c a Atenea i fer autoaprenentatge dels temes indicats a continuació!

- Temps de propagació
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Autoaprenentatge^l

- Àlgebra de Boole
 - Podeu documentar-vos a Atenea o a d'altres fonts.
- Minimització de circuits
 - Estudieu els mapes de Karnaugh sobre funcions de tres i quatre variables. El resultat s'ha d'expressar com a suma de productes.

George Boole (1815-1864) [2] Dr. Maurice Karnaugh (1924-) [3]

Exercici 1415Q2E1

Dibujad el mapa de Karnaugh marcando las agrupaciones de unos adecuadas para obtener la expresión mínima en suma de productos de la función w cuya tabla de verdad se da. Escribe la expresión mínima en suma de productos de w.

х3	x ₂	X ₁	x ₀	w
0	0	0	0	X
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	X
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	X
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	x

Exercici 1415Q2E1

Dibujad el mapa de Karnaugh marcando las agrupaciones de unos adecuadas para obtener la expresión mínima en suma de productos de la función w cuya tabla de verdad se da. Escribe la expresión mínima en suma de productos de w.

X 3	X ₂	X ₁	x_0	w
0	0	0	0	X
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	x
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	x
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	x

- Temps de propagació
- Exercicis
- Conclusions
- Autoaprenentatge
- Miscel·lània

Dualitat de l'àlgebra de Boole

• Si considerem la TV de la funció AND-2, i canviem els "1"'s per "0"'s i els "0"'s per "1"'s obtenim la TV de la funció OR-2 (desordenada)

X	У	$x \cdot y$		X	У	x + y
0	0	0		1	1	1
0	1	0	\Rightarrow	1	0	1
1	0	0		0	1	1
1	1	1		0	0	0

- Les Lleis de De Morgan també mostren aquest fet:
 - $\bullet \ \ x+y=!(!x\cdot!y)$
 - $x \cdot y = !(!x + !y)$
- Com a conseqüència, qualsevol teorema d'àlgebra de Boole es pot transformar en un altre teorema vàlid si canviem sumes per productes, productes per sumes, "1"'s per "0"'s i "0"'s per "1"'s
 - ullet Per exemple, el teorema $x\cdot 0=0$ esdevé x+1=1

minterms versus maxterms

- La versió dual de les funcions *minterms* són les funcions *maxterms*
 - maxterm: funció lògica que retorna "0" únicament per a una de les combinacions dels valors d'entrada
 - OR-2 és una de les quatre funcions maxterm de dues variables
- Tota funció lògica es pot descompondre com a producte de maxterms
 - Descomposició en producte de sumes
 - Es sintetitzaran els *maxterms* de les files de la TV que tinguin el valor 0
 - Cada maxterm es sintetitza amb portes NOT i una porta OR
 - Les sortides a X (Don't care) convé considerar-les "1"
 - Es farà el producte dels maxterms amb una porta AND
- Exemple: funció XOR-2 expressada como a producte de sumes
 - $w(x, y) = (x + y) \cdot (!x + !y)$

Conjunt de portes universals

- Un conjunt de portes lògiques és universal si permet implementar qualsevol funció lògica
 - Hem vist que {NOT, AND-2, OR-2} n'és
- Existeixen altres conjunts universals amb menys portes?
 - Aplicant lleis de De Morgan: {NOT, AND-2}, {NOT, OR-2}
 - El format únicament per la porta NAND-2

X	У	NAND-2(x, y)
0	0	1
0	1	1
1	0	1
1	1	0

- NOT(x) = NAND(x, x)
- AND(x, y) = NOT(NAND(x, y)) = NAND(NAND(x, y), NAND(x, y))
- OR(x, y) = NAND(NAND(x, x), NAND(y, y))
- A algunes tecnologies, implementar portes NAND-2 és molt senzill
- Per dualitat de l'àlgebra de Boole, el format per la porta NOR-2

Referències I

Llevat que s'indiqui el contrari, les figures, esquemes, cronogrames i altre material gràfic o bé han estat extrets de la documentació de l'assignatura elaborada per Juanjo Navarro i Toni Juan, o corresponen a enunciats de problemes i exàmens de l'assignatura, o bé són d'elaboració pròpia.

- [1] [Online]. Available: https://metro.co.uk/2016/08/06/10-underdogs-who-embodied-the-olympic-spirit-6047775/.
- [2] [Online]. Available: https://commons.wikimedia.org/wiki/File:George_Boole_color.jpg#/media/File:Portrait_of_George_Boole.png.
- [3] [Online]. Available: https://www.ithistory.org/honor-roll/dr-maurice-karnaugh.

Introducció als Computadors

Tema 3: Circuits Lògics Combinacionals (CLC)
http://personals.ac.upc.edu/enricm/Docencia/IC/IC3c.pdf

Enric Morancho (enricm@ac.upc.edu)

Departament d'Arquitectura de Computadors Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

2020-21, 1^{er} quad.

Presentació publicada sota Ilicència Creative Commons 4.0 @ (1) (3)

