Organizácia predmetu

Adaptívne riadenie (LS, ak.r. 2021/2022)

Ciel predmetu:

Študenti po absolvovaní predmetu získajú vedomosti o najvýznamnejších metódach a algoritmoch používaných v oblasti adaptívneho riadenia procesov. Absolventi predmetu získajú vedomosti týkajúce sa odvodenia a analýzy vlastností vybraných algoritmov priameho adaptívneho riadenia a nepriameho adaptívneho riadenia. Získajú poznatky o základných princípoch vybraných heuristických adaptívnych regulátorov, komerčných adaptívnych regulátorov, a princípoch využitia adaptácie pri fuzzy riadiacich systémoch.

Zodpovedný za predmet: prof. Ing. Ján Murgaš, PhD.

Predmet patrí medzi povinné predmety a študent po absolvovaní získa 7 kreditov. Týždenný rozsah predmetu: prednášky: 2 h, cvičenia: 2 h

Predmet zabezpečuje:

Ing. Marián Tárník, PhD. (prednášky, cvičenia)

Google Classroom v rámci STUBA GSuite:

https://classroom.google.com/c/NDYONjEyMDYyNjgz?cjc=trzggt7

Kód triedy: trzggt7

GitHub:

https://github.com/PracovnyBod/ADRIA

Podmienky absolvovania predmetu:

- 1. Aktívna účasť na vyučovacom procese.
- 2. Počas semestra je možné získať max. 60 bodov, pričom pre splnenie podmienok pre vykonanie skúšky je potrebných 33,6 bodu.
- 3. Je potrebná účasť na záverečnej skúške, je možné získať max. 40 bodov.

Priebežné hodnotenie študentov dennej prezenčnej formy štúdia počas semestra:

- Priebežná práca/účasť na cvičeniach: 12 bodov
- Vypracovanie referátov (zadaní): 48 bodov, konkrétne:

Referát prvý: 18 bodovReferát druhý: 30 bodov

Priebežné hodnotenie študentov dennej dištančnej formy štúdia počas semestra:

- Vypracovanie referátov (zadaní): 60 bodov, konkrétne:
 - Referát nultý: 12 bodovReferát prvý: 18 bodov
 - Referát druhý: 30 bodov

Harmonogram semestra pre študentov dennej prezenčnej formy štúdia

Týždeň	Prednáška	Cvičenie
1.	_	Cvičenie prvé [AR02] (adaptívna stabilizácia).
2.	Samonastavujúci sa regulátor	Cvičenie druhé [ARo3]. Samonastavujúci sa regulátor: rekurzívna metóda najmenších štvorcov (reprodukcia vzorového príkladu). Implementácia pomocou rôznych nástrojov
3.	Riadenie (adaptívne riadenie) s referenčným modelom [AR04].	Cvičenie tretie [ARo3]. Samonastavujúci sa regulátor: metóda rozmiestňovania pólov; dokončenie adapt. riadiaceho systému (reprodukcia vzorového príkladu).
4.	Klasické priame adaptívne riadenie s využitím Lyapunovovej teórie stability [ARo5].	Referát prvý, odovzdanie do štyroch týždňov (18b). Zadanie s komentárom. Téma: MRAC gradientný [AR04].
5.	Zovšeobecnenie riadenia s referenčným modelom, MRC problém.	Téma: MRAC gradientný [AR04]. Príklad postupu návrhu adaptívneho riadiaceho systému.
6.	Význam striktne pozitívne reálnej prenosovej funkcie. MRAC vstupno-výstupný pre $n^* = 1$ [ARo6].	Téma: MRAC stavový [ARo5]. Príklad postupu návrhu adaptívneho riadiaceho systému.
7.	MRAC vstupno-výstupný pre $n^* = 1$ [ARo6] (pokračovanie).	Extra priestor pre otázky, prípadné dokončenie predchádzajúcich úloh.
8.	MRAC vstupno-výstupný pre $n^* = 2$ [ARo6].	MRAC vstupno-výstupný pre $n^* = 1$, Referát druhý, odovzdanie do štyroch týždňov (30b). Zadanie s komentárom. Téma: MRAC vstupno-výstupný [AR06].
9.	MRAC vstupno-výstupný pre $n^* = 2$ [ARo6] (pokračovanie).	Téma: MRAC vstupno-výstupný [ARo6]. Príklad postupu návrhu adaptívneho riadiaceho systému.
10.	Rôzne.	Extra priestor pre otázky, prípadné dokončenie predchádzajúcich úloh, AR pre kyvadlo (kyvadlo ako riadený systém)
11.	Zhrnutie pred skúškou.	Zhrnutie pred skúškou (utorok), ŠVOČ (streda).
12.	Časová rezerva.	Časová rezerva (utorok), Zhrnutie pred skúškou (streda).
13.	nie je	Časová rezerva (streda).

Harmonogram semestra pre študentov dennej dištančnej formy štúdia

Týždeň	Konzultácia
1.	
2.	Konzultácia k téme Samonastavujúci sa regulátor, Referát nultý (12b)
3.	
4.	Konzultácia k téme MRAC gradientný
5.	
6.	Konzultácia k téme MRAC stavový
7.	
8.	Konzultácia k téme MRAC vstupno-výstupný
9.	
10.	Konzultácia k rôznym predchádzajúcim témam
11.	
12.	Konzultácia k záverečnej skúške

Literatúra

- [1] K. J. Åström and R. M. Murray. *Feedback Systems*. Princeton University Press, 2008.
- [2] K.J. Åström and B. Wittenmark. Adaptive Cotrol, 2nd edition. Addison-Wesley, 1995.
- [3] H. Butler. Model Reference Adaptive Control: From theory to practice. Prentice Hall International (UK) Ltd., 1992.
- [4] P. Ioannou and B. Fidan. *Adaptive Control Tutorial*. Society for Industrial and Applied Mathematics, USA., 2006.
- [5] P. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, Inc, 1996.
- [6] Lennart Ljung. System Identification (2nd Ed.): Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.
- [7] R. Monopoli. Model reference adaptive control with an augmented error signal. *IEEE Transactions on Automatic Control*, 19(5):474 484, oct 1974.
- [8] J. Murgaš and I. Hejda. Adaptívne riadenie technologických procesov. Slovenská technická univerzita v Bratislave, 1993.
- [9] K. S. Narendra and A. M. Annaswamy. Stable adaptive systems. Prentice Hall, Englewood Cliffs, NJ, 1989.
- [10] K. S. Narendra, Y.-H. Lin, and L. S. Valavani. Stable adaptive controller design, part ii: Proof of stability. *IEEE Transactions on Automatic Control*, 25(3):440 – 448, jun 1980.
- [11] K. S. Narendra and L. S. Valavani. Stable adaptive controller design—direct control. *IEEE Transactions on Automatic Control*, 23(4):570 583, aug 1978.
- [12] K. M. Passino and S. Yurkovich. Fuzzy Control. Addison Wesley Longman, Inc., 1998.
- [13] S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence, and Robustness. Prentice-Hall., 1994.
- [14] G. Tao. Adaptive control design and analysis. John Wiley & Sons, Inc., 2003.
- [15] M. Tárník. Direct model reference adaptive control of small laboratory dc motor. $posterus.sk,\ 4(1),\ 2011.$