TP: nombres premiers Informatique commune

- 1. Écrire une fonction diviseurs renvoyant la liste des diviseurs positifs d'un entier n. Par exemple, diviseurs (36) doit renvoyer [1, 2, 3, 4, 6, 9, 12, 18, 36].
- 2. En déduire une fonction premier déterminant si un entier est premier.
- 3. En déduire une fonction tous_premiers telle que tous_premiers(n) renvoie la liste des nombres premiers inférieurs à n. Quelle est sa complexité?

Le crible d'Ératosthène est un algorithme plus efficace pour obtenir la liste des nombres premiers inférieurs à un entier n:

On commencer par créer une liste L de taille n+1 dont tous les éléments sont True. On modifie la valeur de L[0] et L[1] à False. Puis pour chaque indice i de L, si L[i] contient True, alors pour chaque k multiple de i, on modifie L[k] en False. À la fin, L[i] vaut True si et seulement si i est premier.

Si vous ne comprenez pas, vous pouvez chercher plus d'explications sur Google (activité de 3ème par exemple).

4. Appliquer à la main l'algorithme d'Ératosthène pour n = 100, en barrant les nombres quand ils sont mis à False (les nombres non barrés à la fin sont les nombres premiers) :

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- 5. Écrire une fonction eratosthene telle que eratosthene(n) renvoie la liste L ci-dessus. Vérifier que votre fonction marche avec l'exemple de la question précédente.
- 6. On veut déterminer expérimentalement la complexité de l'algorithme d'Ératosthène. Pour cela, créer une variable pour compter le nombre de fois que eratosthene met une valeur de L à False puis l'afficher juste avant le return. Comparer avec la complexité de tous_premiers.
- 7. Écrire une fonction multiplicite telle que multiplicite (d, n) renvoie le plus grand entier k tel que d^k divise n.
- 8. Écrire une fonction decomposition ayant un argument n et qui renvoie la liste L des diviseurs premiers de n avec multiplicités. On pourra stocker dans chaque élément de L une liste composée de deux entiers naturels : le diviseur et sa multiplicité. Par exemple decomposition(50) devra renvoyer la liste [[2, 1], [5, 2]], puisque $50 = 2^1 \times 5^2$.