¥.	Principle of Mathenatical Induction-
	Ket P be proposition defined on the
	integer nyl such 46 that -
	(1) P(1) is true
	(ii) P(n+1) is true whenever P(n) is true.
	Then P is true for every integer n>1
	Q Let P be the proposition that the
	Sun of the first nodd number is
	i-c.;
	$1+3+5+7++(2n-1)=n^2$
1	by attack it is the
	by nathernatical induction-
	$P(1) = 1^2 = 1$
) ·	rani e i a citta reny ale en de
•	Suppose P(n) is true Adding eqn (2n+1) to both side of P(n), we get -
	Je Je Je
	1+3+5++(2n-1)+(2n+1)=
	$1 + 3 + 5 + + (2n-1) + (2n+1) = n^2 + (2n+1)$
	$S_0 P(n+1) = (n+1)^2$
	we have shown that P(n+1) is true
1	whenever P(n) is true. By PMI Pis
	true for all n.

CIASSMALE

$$P(n+1) = (n+1) \left[\frac{2n^2 + n + 6n + 6}{6} \right]$$

$$P(n+1) = (n+1) \left(2n^2 + 7n + 6\right)$$

$$= (n+1) \left(\frac{2n^2 + 4n + 3n + 6}{6} \right)$$

$$P(n+1) = (n+1)(n+2) \otimes (2n+3)$$

$$P(n) = 1 + q + q^2 + - - - + q^n = q^{n+1} - 1$$

