- 1. 当 a > b > 0 时, 比较 $\frac{2a+b}{a+2b}$ 和 $\frac{a}{b}$ 的大小.
- 2. 已知 $a>0, a\neq 1, m>n>0$,比较 $A=a^m+\frac{1}{a^m}$ 和 $B=a^n+\frac{1}{a^n}$ 的大小.
- 3. 若 a > b, 则下列各式中正确的是(

A. $a \lg x > b \lg x \ (x > 0)$ B. $ax^2 > bx^2$ C. $a^2 > b^2$

D. $2^x \cdot a > 2^x \cdot b$

【训练题】

4. 设 ab > 0, 且 $\frac{c}{a} > \frac{d}{b}$, 则下列各式中, 恒成立的是 ().

B. bc > ad

C. $\frac{a}{a} > \frac{b}{a}$

D. $\frac{a}{a} < \frac{b}{d}$

5. 下列命题中, 不正确的一个是().

A. 若 $\sqrt[3]{a} > \sqrt[3]{b}$, 则 a > b B. 若 a > b, c > d, 则 a - C. 若 a > b > 0, c > d > D. 若 a > b > 0, ac > bd

6. 若 x < y < 0, 则有 ().

A. $0 < x^2 < xy$ B. $y^2 < xy < x^2$ C. $xy < y^2 < x^2$ D. $y^2 > x^2 > 0$

7. 若 $a = \log_{0.2} 0.3$, $b = \log_{0.3} 0.2$, c = 1, 则 a, b, c 的大小关系是 ().

A. a > b > c

B. b > a > c

- 8. 用不等号 (">" 或 "<") 填空: (1) 若 $a \neq b$, 则 $a^2 + 3b^2$ _____2b(a+b) (2) 若 c > 1, 则 $\sqrt{c+1}$
- 9. 若 " $a > b, a \frac{1}{a} > b \frac{1}{b}$ " 同时成立, 则 ab 应满足的条件是______.
- 10. (1) 已知 a>0, b>0, 且 $a\neq b$, 比较 $\frac{a^2}{b}+\frac{b^2}{a}$ 与 a+b 的大小. (2) 已知 $0<\frac{a}{b}<\frac{c}{d}$, 比较 $\frac{b}{a+b}$ 与 $\frac{d}{c+d}$ 的
- 11. 若 x > y > 1, 0 < a < 1, 则下列各式中正确的一个是(

B. $(\sin a)^x > (\sin a)^y$ C. $\log_{\frac{1}{a}} x < \log_{\frac{1}{a}} y$ D. $1 + a^{x+y} > a^x + a^y$

- 12. (1) 已知 $a \in \mathbf{R}$, 比较 $\frac{1}{1+a}$ 与 1-a 的大小. (2) 设 $a>0, a\neq 1, t>0$, 比较 $\frac{1}{2}\log_a t$ 和 $\log_a \frac{t+1}{2}$ 的大小.
- 13. (1) 已知 x>y>0,比较 $\sqrt{\frac{y^2+1}{x^2+1}}$ 与 $\frac{y}{x}$ 的大小. (2) 已知 $a,\,b,\,m,\,n$ 都是正实数,且 m+n=1,比较 $\sqrt{ma+nb}$ 和 $m\sqrt{a}+n\sqrt{b}$ 的大小. 二、一元二次不等式
- 14. 解下列不等式: $(1)6x^2 5x 1 > 0$. $(2)6x^2 5x 1 > 0$. $(3)5x^2 2x + 3 > 0$. $(4)9x^2 + 6x + 1 > 0$. $(5)3x^2 - 4x + 5 < 0.$
- 15. 已知关于 x 的不等式 $ax^2 + bx + c < 0$ 的解集是 $\{x | x < -2x < -\frac{1}{2}\}$, 求 $ax^2 bx + c > 0$ 的解集.

- 16. 已知集合 $A = \{x|x^2 + (a-1)x a > 0\}, B = \{x|(x+a)(x+b) > 0\}, a \neq b, M = \{x|x^2 2x 3 \leq 0\}.$ (1) 若 $\mathcal{C}_U B = M$, 求 a, b 的值. (2) 若 -1 < b < a < 1, 求 $A \cap B$. (3) 若 -3 < a < -1, 且 $a^2 - 1 \in \mathcal{C}_U A$, 求实数 a 的取值范围.
- 17. 已知函数 $y = (k^2 + 4k 5)x^2 + 4(1 k)x + 3$ 的图象都在 x 轴的上方, 求实数 k 的取值范围. 【训练题】
- 18. 已知 a < b, 则下列各式中恒成立的是 ().
 - A. $a^2 < b^2$
- B. c a > c b
- C. |a| < |b|
- D. a 1 > b 2

- 19. 若 |x| > 2, 则 ().
 - A. x > 2
- B. $x > \pm 2$
- C. -2 < x < 2
- D. x > 2 或 x < -2

- 20. 不等式 |x| 3 < 0 的解集是 ().
 - A. $\{x | x < \pm 3\}$
- B. $\{x | -3 < x < 3\}$
- C. $\{x|x>3\}$
- D. $\{x | x < -3\}$
- 21. 已知集合 $M = \{x | |x| > 2\}, N = \{x | x < 3\},$ 则下列结论正确的是 ().
 - A. $M \cup N = M$
- B. $M \cap N = \{x | 2 < x < C. M \cup N = R\}$
- D. $M \cap N = \{x | x < -2\}$

- 3}
- 22. 已知集合 $M = \{x | |x+1| \le 2\}, P = \{x | x \le 2 \text{ 或 } .x \ge 3\}, 则 M, P$ 之间的关系是 (
 - A. $M \supset P$
- B. $M \supset P$
- C. $M \subseteq P$
- D. $M \subset P$

- 23. 已知 $|1-x| + \sqrt{x^2 4x + 4} = 1$, 则 x 的取值范围是 ().
 - A. 1 < x < 2
- B. x < 1
- C. x < 1 或 x > 2
- D. x > 2

- 24. 不等式 $2x + 3 x^2 > 0$ 的解集是 ().

- A. $\{x | -\frac{3}{2} \le x < 1\}$ B. $\{x | -1 < x < 3\}$ C. $\{x | 1 \le x < 3\}$ D. $\{x | -\frac{3}{2} \le x < 3\}$
- 25. 不等式 $6x^2 + 5x < 4$ 的解集是 ().
 - A. $\{x|x<-\frac{4}{3}x>\frac{1}{2}\}$ B. $\{x|-\frac{4}{3}< x<\frac{1}{2}\}$. C. $\{x|-\frac{1}{2}< x<\frac{4}{3}\}$. D. $\{x|x<-\frac{1}{2}x>\frac{4}{3}\}$

- 26. $\exists a < 0 \text{ pt}$, $\not \exists x \text{ base} x^2 4ax 5a^2 > 0 \text{ base} x \not \exists x \text{ base} x \not \exists$
- A. $\{x|x > 5ax < -a\}$ B. $\{x|x < 5ax > -a\}$ C. $\{x|-a < x < 5a\}$. D. $\{x|5a < x < -a\}$.

- 27. 若 x 为实数,则下列命题正确的是().
 - A. $x^2 \ge 2$ 的解集是 B. $(x-1)^2 < 2$ 的解集是 C. $x^2 9 < 0$ 的解集是 D. 设 x_1, x_2 为 $ax^2 + bx + 1$ $\{x|x \ge \pm \sqrt{2}\}.$ $\{x|1 - \sqrt{2} < x < 1 + \sqrt{2}\}.$ $\{x|x < 3\}.$
- c = 0 的两个实根, 且 $x_1 > x_2, \text{ III } ax^2 + bx + c >$ 0 的解集是 $\{x | x_2 < x < \}$ x_1 }.

28.	在 "① $x^2-2x-3 < 0$ 与 $\frac{x^2-2x-3}{x-3}$ 与 $x^2-1>0$ " 三组不等式	$\frac{-2x}{-1} < \frac{3}{x-1}$,② $x^2 + 3x - 4$ 2 中,解集相同的组数是()		$ (x+2)(x^2-1) / x+2 > 0 $		
	A. 0	B. 1	C. 2	D. 3		
29.	若 $x^2 + x < 0$, 则 $x^2, x, -x^2$, - <i>x</i> 的大小关系是 ().				
	A. $x^2 > x > -x^2 > -x$.	B. $-x > x^2 > -x^2 > x$.	C. $-x > x^2 > x > -x^2$	D. $x^2 > -x > x > -x^2$		
30.	直接写出下列不等式的解集: $2x$: $(4)1 - 2x -$		4			
	$(7)\frac{4-2x}{1+3x} > 0:$ $ 2x-1 :$					
31.	(1) 若 $\sqrt{x^2 - x - 6} \in \mathbf{R}$, 贝是 (3) 若代数式		代数式 $\dfrac{\sqrt{x-3}}{\sqrt{x^2-3x+2}}$ 有意。 实数, 则实数 x 的取值范围是			
32.	(1) 不等式 $4 \le x^2 - 3x < \sqrt{x^2 - 8x + 16} - x - 3 $.	18 的整数解集是	$_{-}$. (2) 已知实数 x 满足 $4x$	$x^2 - 4x - 15 \le 0$,化简		
33.	已知 $a > b$, 直接写出下列不 $b)x + ab > 0$: (4	w o	w o	$(3)x^2 - (a -$		
34.	(1) 若关于 x 的方程 $2kx^2 + (8k+1)x + 8k = 0$ 有两个不等实根, 则实数 k 的取值范围是 (2) 若关于 x 的不等式 $ax^2 - 2ax + 2a + 3 > 0$ 无实数解, 则 a 的取值范围是 $(a \neq 0)$.					
35.	不等式 $\frac{x-1}{2x} \le 1$ 的解集是	().				
	A. $\{x x \ge -1\}$	B. $\{x x \le -1\}$	C. $\{x -1 \le x < 0\}$	D. $\{x x \le -1x > 0\}$		
36.	若关于 x 的二次不等式 mx^2	$x^2 + 8mx + 21 < 0$ 的解集是	${x -1 < x < -1}$,则实数 ${x}$	n 的值等于 ().		
	A. 1	B. 2	C. 3	D. 4		
37.	若关于 x 的不等式 (a^2-3) :	$x^2 + 5x - 2 > 0$ 的解集是 $\{x^2 + 5x - 2 > 0\}$	$ rac{1}{2} < x < 2\}$, 则实数 a 的值	等于 ().		
	A. 1	B1	C. ±1	D. 0		
38.	若关于 x 的不等式 $ax^2 + bx$	$c + c < 0 (a \neq 0)$ 的解集是空	集,则().			
	A. $a < 0$ 且 $b^2 - 4ac > 0$	B. $a < 0$ 且 $b^2 - 4ac \le 0$	C. $a > 0$ 且 $b^2 - 4ac \le 0$	D. $a > 0$ 且 $b^2 - 4ac > 0$		
39.	若对任何实数 x, 二次函数 y	$y = ax^2 - x + c$ 的值恒为负,	则 a,c 应满足 ()			
40.	若对任意实数 x , 不等式 x^2	+2(1+k)x+3+k>0 恒瓦	\mathtt{k} 立,则 k 的取值范围是().		
	A. $-1 < k < 2$	B. $-1 \le k \le 2$	C. $-2 < k < 1$	D. $-2 \le k \le 1$		

- 41. 若关于 x 的二次方程 $2(k+1)x^2 + 4kx + 3k 2 = 0$ 的两根同号, 则 k 的取值范围是 (). B. $-2 \le k < -1$ 或 $\frac{2}{3} <$ C. k < -1 或 $k > \frac{2}{3}$ D. -2 < k < 1 或 $\frac{2}{3} <$ A. -2 < k < 1
- 42. 已知关于 x 的方程 $(m+3)x^2-4mx+2m-1=0$ 的两根异号, 且负根的绝对值比根大, 那么实数 m 的取 值范围是().
- A. -3 < m < 0 B. 0 < m < 3 C. $m < -3 \not\equiv m > 0$ D. $m < 0 \not\equiv m > 3$
- 43. 若 α, β 芦是关于 x 的方程 $x^2 (k-2)x + k^2 + 3k + 5 = 0(k)$ 为实数) 的两个实根, 则 $\alpha^2 + \beta^2$ 的最大值等于
 - A. 19

B. 18

C. $\frac{50}{9}$

D. -6

- 44. 不等式 (x-1)(x-2)(x-3)(x-4) > 120 的解为 ().
 - A. x > 6
- B. x < -1 或 x > 6 C. x < -1
- D. -1 < x < 6
- 45. 在三个关于 x 的方程 $x^2 ax + 4 = 0$, $x^2 + (a-1)x + 16 = 0$ 和 $x^2 + 2ax + 3a + 10 = 0$ 中, 已知至少有一 个方程有实根,则实数 a 的取值范围是 ().
 - A. -4 < a < 4
- B. -2 < a < 4
- C. a < -2 或 a > 4
- 46. (1) 若关于 x 的二次方程 $x^2 2mx + 4x + 2m^2 4m 2 = 0$ 有实根,则其两根之积的最大值等于______
 - (2) 使关于 x 的方程 $x^2 kx + 2k 3 = 0$ 的两实根的平方和取最小值, 实数 k 的值等于
- 47. (1) 若关于 x 的不等式 $x^2 mx + n \le 0$ 的解集是 $\{x \mid -5 \le x \le 1\}$, 则实数 m = 1, n = 1,
 - (2) 若关于 x 的不等式 $ax^2 + bx + 1 \ge 0$ 的解集是 $\{x | -5 \le x \le 1\}$, 则实数 a =_______, b =______.
- 48. (1) 若关于 x 的不等式 (a+b)x + (2a-3b) < 0 的解集是 $\{x|x>3\}$, 则不等式 (a-3b)x + b 2a > 0 的解 $ax^2 - bx + c > 0$ 的解集是
- 49. (1) 解不等式 $x^1 2x^2 + 1 > x^2 1$. (2) 已知关于 x 的不等式 $kx^2 2x + 6k < 0 (k \neq 0)$. ① 若不等式的解 集是 $\{x|x<-3x>-2\}$, 求实数 k 的值; ② 若不等式的解集是 $\{x|x\neq\frac{1}{k}\}$, 求实数 k 的值; ③ 若不等式的解 集是实数集, 求实数 k 的值.
- 50. (1) 已知关于 x 的方程 m(x-1) = 3(x+2) 的解是正实数, 求实数 m 的取值范围. (2) 已知关于 x 的方程 $\frac{1}{4}x^2 - kx + 5k - 6 = 0$ 无实数解, 求实数 k 的取值范围. (3) 已知关于 x 的方程 $kx^2 - (3k - 1)x + k = 0$ 有 两个正实数根, 求实数 k 的取值范围.
- 51. (1) 已知集合 $M = \{x | x^2 7x + 10 \le 0\}$, $N = \{x | x^2 (2 m)x + 5 m \le 0\}$, 且 $N \subseteq M$, 求实数 m 的取 值范围. (2) 已知集合 $A = \{x|x^2 + 4x + p < 0\}, B = \{x|x^2 - x - 2 > 0\},$ 且 $A \subseteq B$ 求实数 p 的取值范围. (3) 已知集合 $A = \{x | x^2 + ax + 1 \le 0\}$, $B = \{x | x^2 - 3x + 2 \le 0\}$, 且 $A \subseteq B$, 求实数 a 的取值范围.

- 52. (1) 已知集合 $A = \{x|x^2-2x-3\leq 0\},\ B = \{x|x^2+px+q<0\},\ \$ 且 $A\cap B = \{x|-1\leq x<2\},\$ 求实数 p,q 的关系式及其取值范围. (2) 已知集合 $A = \{x|-2< x<-1x>\frac{1}{2}\},\ B = \{x|x^2+ax+b\leq 0\},\$ 且 $A\cup B = \{x|x+2>0\},\ A\cap B = \{x|\frac{1}{2}< x\leq 3\},\$ 求 a,b 的值.
- 53. (1) 要使代数式 $mx^2+(m-1)x+(m-1)$ 的值恒为负值,求实数 m 的取值范围. (2) 已知关于 x 的不等式 $(a^2-4)x^2+(a+2)x-1\geq 0$ 的解集是空集,求实数 a 的取值范围. (3) 若关于 x 的不等式 $\frac{x^2-8x+20}{mx^2+2(m+1)x+9m+4}<0$ 的解集为 R,求实数 m 的取值范围. (4) 当 $0^\circ<\varphi<90^\circ$ 时,要使 $\frac{x^2-6x+8}{x^2+2}=\sin\varphi$ 成立,求实数 x 的取值范围. (5) 既要使关于 x 的不等式 $x^2+(m-\frac{1}{2})x-\frac{7}{16}\leq 0$ 有实数解,又要使关于 x 的方程 $(2m+3)x^2+mx+\frac{m-2}{4}=0$ 有实数解,求实数 m 的取值范围.
- 54. 为长 80cm、宽 60cm 的工作台做一块台布,使台布的面积是台面面积的两倍以上,并使台子四边垂下的长度相等,问: 乖下的长度至少是多少 (精确到 0.1cm)?
- 55. 已知非零实数 x, y, z, 满足 x + y + z = xyz, $x^2 = yz$, 求证: $x^2 \ge 3$.
- 56. 已知 $a+b \ge 0$, 求证: $a^3+b^3 \ge a^2b+ab^2$.
- 57. 设 $a, b \in \mathbb{R}^+$, 且 $a \neq b$, 求证: $a^a b^b > a^b b^a$.
- 58. (1) 已知 $a, b, c \in \mathbb{R}$, 求证: $a^2 + b^2 + c^2 \ge ab + bc + ca$. (2) 已知 a, b, c > 0, 求证: ① $(a+b)(\frac{1}{a} + \frac{1}{b}) \ge 4$; ② $(a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) \ge 9$.
- 59. 已知正数 a, b 满足 a + b = 1, 求证: $\sqrt{2a + 1} + \sqrt{2b + 1} \le 2\sqrt{2}$.
- 60. 已知 $\alpha, \beta \in (0, \frac{\pi}{2})$, 且 $\alpha \neq \beta$, 求证: $\tan \alpha + \tan \beta > 2 \tan \frac{\alpha + \beta}{2}$.
- 61. 记 $f(x) = x^2 + ax + b$, 求证: |f(1)|, |f(2)|, |f(3)| 中至少有一个不小于 $\frac{1}{2}$.
- 62. 已知 $-1 \le x \le 1$, $n \ge 2$, $n \in \mathbb{N}$, 求证: $(1-x)^n + (1+x)^n \le 2^n$.
- 63. 已知 x + 2y + 3z = 12, 求证: $x^2 + 2y^2 + 3z^2 \ge 24$.
- 64. 已知 $a, b, c \in \mathbb{R}^+$, 求证: $a^3 + b^3 + c^3 \ge 3abc$ (当且仅当 a = b = c 时取等号).
- 65. 已知 a > 0,求证: $x + \frac{1}{x} + \frac{1}{x + \frac{1}{x}} \ge \frac{5}{2}$.
- 66. 已知实数 a,b,c 满足 a+b+c=0 和 abc=2, 求证: a,b,c 中至少有一个不小于 2.
- 67. 已知 0 < a < 1, 0 < b < 1, 求证: $\sqrt{a^2 + b^2} + \sqrt{(a-1)^2 + b^2} + \sqrt{a^2 + (b-1)^2} + \sqrt{(a+1)^2 + (b-1)^2} \ge 2\sqrt{2}$.
- 68. 已知实数 x, y, z 不全为零, 求证: $\sqrt{x^2 + xy + y^2} + \sqrt{x^2 + yz + z^2} + \sqrt{z^2 + zx + x^2} > \frac{3}{2}(x + y + z)$.
- 69. 已知 $x \ge 0$, $y \ge 0$, 求证: $\frac{1}{2}(x+y)^2 + \frac{1}{4}(x+y) \ge x\sqrt{y} + y\sqrt{x}$.
- 70. 求证: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots + \frac{1}{n^2} < \frac{7}{4} (n \in \mathbf{N}).$

- 71. 已知 x > 0, y > 0, a, b 是正常数, 且满足 $\frac{a}{x} + \frac{b}{y} = 1$, 求证: $x + y \ge (\sqrt{a} + \sqrt{b})^2$.
- 72. (1) 已知正数 a, b 满足 $a^2b = 1$, 求 a + b 的最小值. (2) 求 $\sin^2 \alpha \cos^2 \alpha + \frac{1}{\sin^2 \alpha \cos^2 \alpha}$ 的最小值.
- 73. 已知直角三角形的周长为定值 l, 求它面积的最大值.
- 74. 已知圆柱的体积为定值 V, 求圆柱全面积的最小值.
- 75. 从半径为 R 的圆形铁片里剪去一个扇形,然后把剩下部分卷成一个圆锥形漏斗,要使漏斗有最大容量,剪去扇形的圆心角 θ 应是多少弧度?
- 76. 在 $Rt\triangle ABC$, 已知 $\angle C=90^\circ$, $\angle A$, $\angle B$, $\angle C$ 的对边 a,b,c 满足 a+b=cx. 设 $\triangle ABC$ 绕直线 AB 旋转一周 所得的旋转体的侧面积为 S_1 , $\triangle ABC$ 的内切圆面积为 S_2 . 求: (1) 函数 $f(x)=\frac{S_1}{S_2}$ 的解析式和定义域. (2) 函数 f(x) 的最小值. 【训练题】(一) 比较法
- 77. 用比较法证明以下各题: (1) 已知 $a>0,\ b>0,\ 求证:\ \frac{1}{a}+\frac{1}{b}\geq\frac{2}{\sqrt{ab}}.$ (2) 已知 $a>0,\ b>0,\ 求证:\ \frac{b}{\sqrt{a}}+\frac{a}{\sqrt{b}}\geq\sqrt{a}+\sqrt{b}.$ (3) 已知 $a>0,\ b>0,\ 求证:\ a^2+b^2\geq(a+b)\sqrt{ab}.$ (4) 已知 $0< x<1,\ 求证:\ \frac{a^2}{x}+\frac{b^2}{1-x}\geq(a+b)^2.$
- 78. (1) 已知 $a \ge 0$, $b \ge 0$, 求证: $a^3 + b^3 \ge a^2b + b^2a$. (2) 已知 $x \in \mathbf{R}^+$, $y \in \mathbf{R}^+$, $n \in \mathbf{N}$, 求证: $x^{n+1} + y^{n+1} \ge x^ny + xy^n$.
- 79. (1) 已知 $a>0,\ b>0,\ c>0,\$ 求证: $a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)\geq 6abc.$ (2) 求证: $a^5+b^5\geq \frac{1}{2}(a^3+b^3)(a^2+b^2)(a>0,b>0).$
- 80. (1) 求证: $a^2 + b^2 + c^2 > ab + bc + ca(a, b, c)$ 是实数). (2) 已知 a > b > c, 求证: $a^2b + b^2c + c^2a > ab^2 + bc^2 + ca^2$.
- 81. 在 $\triangle ABC$ 中,记 a,b,c 分别是角 A,B,C 的对边,S 是 $\triangle ABC$ 的面积,求证: $c^2-a^2-b^2+4ab\geq 4\sqrt{3}S$.
- 82. 设 $a,b \in \mathbb{N}$, 则 $\sqrt{2}$ 在 $\frac{b}{a}$ 与 $\frac{2a+b}{a+b}$ 之间.
- 83. 已知 a, b, c 都是正数, 求证: $a^{2a}b^{2b} \ge a^{b+c}b^{c+a}c^{a+b}$. (二) 综合法
- 84. 下列命题中, 正确的一个是().

A. 若 $a, b, c \in \mathbf{R}$, 且 a > b, B. 若 $a, b \in \mathbf{R}$, 且 $a \cdot b \neq 0$, C. 若 $a, b \in \mathbf{R}$, 且 a > |b|, D. 若 a > b, c < d, 则 则 $ac^2 > bc^2$ 则 $\frac{a}{b} + \frac{b}{a} \ge 2$ 则 $a^n > b^n (n \in \mathbf{N})$ $\frac{a}{c} > \frac{b}{d}$

85. 下列各式中, 对任何实数 x 都成立的一个是 ().

A.
$$\lg(x^2 + 1) \ge \lg 2x$$
 B. $x^2 + 1 > 2x$ C. $\frac{1}{x^2 + 1} \le 1$ D. $x + \frac{1}{x} \ge 2$

86. 已知, $a, b \in \mathbf{R}$, 且 $a, b \neq 0$, 则在"① $\frac{a^2 + b^2}{2} \geq ab$, ② $\frac{b}{a} + \frac{a}{b} \geq 2$, ③ $ab \leq (\frac{a+b}{2})^2$, ④ $(\frac{a+b}{2})^2 \leq \frac{a^2 + b^2}{2}$ " 这四个式子中,恒成立的个数是().

A. 1 B. 2 C. 3 D. 4

- 87. (1) 若 a > 0, b > 0, c > 0, d > 0, 则 $\frac{b}{a} + \frac{a}{b} \ge$ ______, $\frac{b}{a} + \frac{c}{b} + \frac{a}{c} \ge$ ______, $\frac{b+c}{a} + \frac{c+a}{b} + \frac{c+a}{b} \le$ ______, $\frac{a+b}{c} \ge$ ______, $\frac{b+c}{a} \le \frac{c+a}{b} \le$ ______, $\frac{b+c}{a} \le \frac{c+a}{b} \le \frac{c+a}{b} \le \frac{c+a}{c} \le \frac{c+a}{b} \le \frac{c+a}{c} \le \frac{c+a}{b} \le \frac{c+a}{b} \le \frac{c+a}{c} \le \frac{c+a}{b} \le \frac{c+$ $\log_a b + \log_b a \ge$ ______. (5) 若 a > 1, 0 < b < 1, 则 $\log_a b + \log_b a \le$ ______
- 88. 设 a, b 为正数, 且 $a + b \le 4$, 则下列各式中, 一定正确的是(

A.
$$\frac{1}{a} + \frac{1}{b} \le \frac{1}{4}$$

B.
$$\frac{1}{4} \le \frac{1}{a} + \frac{1}{b} \le \frac{1}{2}$$

B.
$$\frac{1}{4} \le \frac{1}{a} + \frac{1}{b} \le \frac{1}{2}$$
 C. $\frac{1}{2} \le \frac{1}{a} + \frac{1}{b} \le 1$

D.
$$\frac{1}{a} + \frac{1}{b} \ge 1$$

89. 若 a, b, c 均大于 1, 且 $\log_a c \cdot \log_b c = 4$, 则下列各式中, 一定正确的是 ().

A.
$$ac \geq b$$

B.
$$ab \ge c$$

C.
$$bc \geq a$$

D.
$$ab \leq c$$

90. 若 a > 0, b > 0, 且 $a \neq b$, 则下列各式恒成立的是 (

A.
$$\frac{2ab}{a+b} < \frac{a+b}{2} < \sqrt{ab}$$

B.
$$\sqrt{ab} < \frac{2ab}{a+b} < \frac{a+b}{2}$$

A.
$$\frac{2ab}{a+b} < \frac{a+b}{2} < \sqrt{ab}$$
 B. $\sqrt{ab} < \frac{2ab}{a+b} < \frac{a+b}{2}$ C. $\frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2}$ D. $\sqrt{ab} < \frac{a+b}{2} < \frac{2ab}{a+b}$

D.
$$\sqrt{ab} < \frac{a+b}{2} < \frac{2ab}{a+b}$$

- 91. 利用公式 $a^2 + b^2 \ge 2ab$ 或 $a + b \ge 2\sqrt{ab}(a, b \ge 0)$, 求证: (1) 若 x > 0, y > 0, 则 $\sqrt{(1+x)(1+y)} \ge 1 + \sqrt{xy}$.
 - (2) $\exists a > 0, b > 0, c > 0, \text{ } \exists a > 0, b > 0, c > 0, \text{ } \exists a > 0, b$
 - (4) 若 $m = x\cos^2\theta + y\sin^2\theta$, $n = x\sin^2\theta + y\cos^2\theta$, 则 $mn \ge xy$. (5) 若 x + 3y 1 = 0, 则 $2^x + 8^y \ge 2\sqrt{2}$.
 - $(6)\log_{0.5}(\frac{1}{A^a} + \frac{1}{A^b}) \le a + b 1.$
- 92. 已知 x > 0, y > 0, x + y = 1, 求证: $(1)(1 + \frac{1}{x})(1 + \frac{1}{y}) \ge 9$. $(2)(\frac{1}{x^2} 1)(\frac{1}{y^2} 1) \ge 9$.
- 93. 已知 a > 0, b > 0, c > 0, a + b + c = 1, 求证: $(1)(1-a)(1-b)(1-c) \ge 8abc$. $(2)(\frac{1}{a}-1)(\frac{1}{b}-1)(\frac{1}{c}-1) \ge 8$. $(3)\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9. \ (4)\frac{1}{abc} \ge 27. \ (5)(1 + \frac{1}{a})(1 + \frac{1}{b})(1 + \frac{1}{c}) \ge 64.$
- 94. 利用公式 $\frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}}$ 或 $\frac{a+b+c}{3} \leq \sqrt{\frac{a^2+b^2+c^2}{3}}$,求证: $(1)\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2} \geq \sqrt{a^2+b^2+c^2}$ $\sqrt{2}(a+b+c)$. (2) 若 a+b=1($a,b\geq 0$), 则 $\sqrt{2a+1}+\sqrt{2b+1}\leq 2\sqrt{2}$. (3) 若 a+b+c=1($a,b,c\geq 0$), 则 $\sqrt{13a+1} + \sqrt{13b+1} + \sqrt{13c+1} \le 4\sqrt{3}$. $(4)a\cos\varphi + b\sin\varphi + c \le \sqrt{2(a^2+b^2+c^2)}$.
- 95. 先证明 $a^2 + b^2 + c^2 \ge ab + bc + ca(a, b, c \in \mathbf{R})$, 再利用此结论证明下列各题: (1) 若 a > 0, b > 0, c > 0, 则
- 96. 利用放缩法并结合公式 $ab \leq (\frac{a+b}{2})$ 证明下列各题: $(1)\lg 9 \cdot \lg 11 < 1$. $(2)\log_a(a-1) \cdot \log_a(a+1) < 1$ (a>1).
- 97. 利用放缩法证明下列各题: $(1)\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \frac{1}{n+4} + \dots + \frac{1}{n^2} > 1 (n \in \mathbb{N}, n \ge 2)$. $(2)\frac{1}{2} \le \frac{1}{n+1} + \dots + \frac{1}{n^2} > 1$ $\frac{1}{n+2} + \dots + \frac{1}{2n} < 1(n \in \mathbb{N}).$ (3) 已知 a > 0, b > 0, c > 0, 且 $a^2 + b^2 = c^2,$ 求证: $a^n + b^n < c^n (n \ge 3, n \in \mathbb{N}).$

- 98. 利用拆项法证明下列各题: (1) 若 x>y, xy=1, 则 $\frac{x^2+y^2}{x-y}\geq 2\sqrt{2}$. (2) $\frac{1}{2}(a^2+b^2)+1\geq \sqrt{a^2+1}\cdot\sqrt{b^2+1}$. (3) 若 a>0, b>0, c>0, 则 $2(\frac{a+b}{2}-\sqrt{ab})\leq 3(\frac{a+b+c}{3}-\sqrt[3]{abc})$. (4) $2(\sqrt{n+1}-1)<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}<2\sqrt{n}(n\in\mathbf{N})$.
- 99. 利用逆代法证明下列各题: (1) 若正数 x,y 满足 x+2y=1, 则 $\frac{1}{x}+\frac{1}{y} \geq 3+2\sqrt{2}$. (2) $\frac{1}{\sin^2\alpha}+\frac{3}{\cos^2\alpha} \geq 4+2\sqrt{3}$. (3) 若 x,y>0,a,b 为正常数,且 $\frac{a}{x}+\frac{a}{y}=1,$ 则 $x+y\geq (\sqrt{a}+\sqrt{b})^2$.
- 100. 利用判别式法证明下列各题: $(1)\frac{1}{3} \leq \frac{x^2-x+1}{x^2+x+1} \leq 3$. (2) 已知关于 x 的不等式 $(a^2-1)x^2-(a-1)x-1 < 0$ $(a \in \mathbf{R})$ 对仟意实数 x 恒成立,求证: $-\frac{3}{5} < a \leq 1$.
- 101. 利用荫数的单词性证明下列各题: (1) 若 $x>0,\ y>0,\ x+y=1,\$ 则 $(x+\frac{1}{x})(y+\frac{1}{y})\geq \frac{25}{4}.$ (2) 若 $0< a<\frac{1}{k}(k\geq 2, k\in \mathbf{N}),\$ 且 $a^2< a-b,\$ 则 $b<\frac{1}{k+1}.$
- 102. 利用三角换元法证明下列符题: (1) 若 $a^2+b^2=1$, 则 $a\sin x+b\cos x\leq 1$. (2) 若 |a|<1, |b|<1, 则 $|ab\pm\sqrt{(1-a^2)(1-b^2)}|\leq 1$. (3) 若 $x^2+y^2\leq 1$, 则 $-\sqrt{2}\leq x^2+2xy-y^2\leq \sqrt{2}$. (4) 若 $|x|\leq 1$, 则 $(1+x)^n+(1-x)^n\leq 2^n$. (5) 若 a>0, b>0, 且 a-b=1, 则 $0<\frac{1}{a}(\sqrt{a}-\frac{1}{\sqrt{a}})(\sqrt{b}+\frac{1}{\sqrt{b}})<1$. (6) $0<\sqrt{1+x}-\sqrt{x}\leq 1$.
- 103. 试构造几何图形证明: (1) 若 $f(x) = \sqrt{1+x^2}$, x > b > 0, 则 |f(a) f(b)| < |a b|. (2) 若 x, y, z > 0, 则 $\sqrt{x^2 + y^2 + xy} + \sqrt{y^2 + z^2 + yz} > \sqrt{z^2 + x^2 + zx}$.
- 104. 利用均值换元或设差换元证明下列各题: (1) 若 a>0, b>0, 且 a+b=1, 则 $\frac{4}{3}\leq \frac{1}{a+1}+\frac{1}{b+1}<\frac{3}{2}.$ (2) 若 a+b+c=1, 则 $a^2+b^2+c^2\geq \frac{1}{3}.$ (3) 若 $x\geq y\geq 0,$ 则 $\sqrt{2xy-y^2}+\sqrt{x^2-y^2}\geq x.$ 试选用适当的方法证明下列备题:
- 105. 已知 a,b,c 都是正数, 求证: $a^ab^bc^c \geq (abc)$ 3.
- 106. 已知正数 a,b 满足 a+b=1,求证: $(1)(ax+by)(ay+bx) \geq xy$. $(2)(a+\frac{1}{a})^2+(b+\frac{1}{b})^2 \geq \frac{25}{2}$. $(3)(a+\frac{1}{a})(b+\frac{1}{b}) \geq \frac{25}{4}$.
- 107. 已知正数 a,b,c 满足 a+b+c=1, 求证: $(1)(a+\frac{1}{a})+(b+\frac{1}{b})+(c+\frac{1}{c})\geq 10$. $(2)(a+\frac{1}{a})^2+(b+\frac{1}{b})^2+(c+\frac{1}{c})^2\geq \frac{100}{3}$ $(3)\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\geq 3\sqrt{3}$.
- 108. 已知 $a^2+b^2+c^2=1$, 求证: $(1)-\frac{1}{2} \leq ab+bc+ca \leq 1$. $(2)|abc| \leq \frac{\sqrt{3}}{9}$.
- 109. 已知 x > 1, 求证: $\sqrt{x} \sqrt{x-1} > \sqrt{x+1} \sqrt{x}$.
- 110. 已知 a > 0, b > 0, c > 0, 求证: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 2(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a})$.
- 111. (1) 已知 $a>0,\ b>0,\ c>0,\$ 求证: $\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}\geq \frac{3}{2}.$ (2) 已知 $\alpha,\beta\in(0,\frac{\pi}{2}),\$ 求证: $\frac{1}{\cos^2\alpha}+\frac{1}{\sin^2\alpha\sin\beta\cos^2\beta}\geq 9.$ (3) 已知 $a>0,\ b>0,\ c>0,\$ 求证: $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}.$

- 112. (1) 己知 $\tan \alpha$, $\tan \beta$ 是关于 x 的方程 $mx^2 + (2m-3)x + (m-2) = 0 (m \neq 0)$ 的两根, 求证: $\tan(\alpha + \beta) \geq -\frac{3}{4}$. (2) 已知长方体的对角线长为定长 l, 求证: 它的体积 $V \leq \frac{\sqrt{3}l^3}{9}$.
- 113. 在 $\triangle ABC$ 中,求证: (1) $\cos A + \cos B + \cos C \le \frac{3}{2}$. (2) $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \le \frac{1}{8}$. (3) $\tan A \tan B \tan C \ge 3\sqrt{3}$, 其中三内角 A, B, C 都是锐角. $(4)a^2 + b^2 + c^2 \ge 4\sqrt{3}S$, 其中三内角 A, B, C 的对边分别为 a, b, c 三角形的 面积为S.
- 114. 已知 $f(x) = \lg \frac{1 + 2^x + a \cdot 4^x}{2} (a \in \mathbf{R})$. (1) 如果 $x \le 1$ 时 f(x) 有意义, 求 a 的取值范围. (2) 如果 $0 < a \le 1$, 求证: $x \neq 0$ 时, 2f(x) < f(2x). (三) 分析法和反证法利用分析法证明下列各题: $(87 \sim 89)$
- 115. 求证: $(1)2 + \sin \theta + \cos \theta \geq \frac{2}{2 \sin \theta \cos \theta}$. $(2)-1 < \frac{4\sin \theta + 3}{\sin^2 + 1} \leq 4$. $(3)\frac{x + b + c + abc}{1 + ab + bc + ca} \leq 1$, 其中 $0 \leq a \leq 1, \ 0 \leq b \leq 1, \ 0 \leq c \leq 1$. $(4)2\sin 2\alpha \leq c\cot \frac{\alpha}{2}$, 其中 $0 < \alpha < \pi$.
- 116. 求证下列各题: (1) 若 x>-1, 则 $(\frac{1}{3})^{x+\frac{3}{2}}<(\frac{1}{3})^{\sqrt{(x+1)(x+2)}}$. (2) 若 $a>b>0,\ c>d>0$, 则 $\sqrt{ac}-\sqrt{bd}>$ $\sqrt{(a-b)(c-d)}$. $(3)ac+bd \le \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2}$. $(4) \stackrel{\text{def}}{=} x > y > 0, \ \theta \in (0,\frac{\pi}{2}), \ \text{M} \ x \sec \theta - y \tan \theta \ge 0$ $\sqrt{x^2 - y^2}$. (5) = -1 < x < 1, -1 < y < 1, $= |\frac{x + y}{1 + xy}| < 1.$
- 117. 求证 F 列各题: (1) $16^{18} > 18^{16}$. (2) $(\sqrt{2})^{\sqrt{3}} < (\sqrt{3})^{\sqrt{2}}$. (3) 若 a > 0, b > 0, a + b = 1, 则 $3^a + 3^b < 4$. 注意 分析法常在去分母或两边平方时采用需要注意的是: 若去分母, 则必须先说明分母的符号; 若两边平方, 则必 须先说明两边都为非负数.
- 118. 利用反证法证明下列各题: (1) 若 0 < a < 1, 0 < b < 1, 0 < c < 1, 则 (1-a)b, (1-b)c, (1-c)a 不能都大于 $\frac{1}{4}. \ (2) \ \hbox{$\stackrel{<}{\hbox{$\not$}}$} \ 0 < a < 2, \ 0 < b < 2, \ 0 < c < 2, \ \hbox{$ڕ$} \ a(2-b), \ b(2-c), \ c(2-a) \ \hbox{\nwarrow} \ \hbox{\frown} \ \hbox{$$
- 119. 若 $a>0,\,b>0,\,$ 且 $a^3+b^3=2,\,$ 试分别利用 $x^3+y^3+z^3\geq 3xyz(x,y,z\geq 0)$ 构造方程. 并利用 $\triangle\geq 0$ 以及 反证法证明: $a+b \le 2$. (四) 函数的最大值和最小值
- 120. 下列函数中, 最小值为 2 的是(

A.
$$x + \frac{1}{x}$$

B.
$$\frac{x^2+2}{\sqrt{x^2+1}}$$

C.
$$\log_a x + \log_x a(a > D. 3^x + 3^{-x}(x > 0)$$

 $0, x > 0a \neq 1, x \neq 1$

D.
$$3^x + 3^{-x}(x > 0)$$

121. 若 $\log_{\sqrt{2}} x + \log_{\sqrt{2}} y = 4$, 则 x + y 的最小值是 (

A. 8

B. $4\sqrt{2}$

C. 4

D. 2

122. 若 a, b 均为大于 1 的正数, 且 ab = 100, 则 $\lg a \cdot \lg b$ 的最大值是 ().

A. 0

B. 1

C. 2

D. $\frac{5}{2}$

123. 若实数 x 与 y 满足 x + y - 4 = 0, 则 $x^2 + y^2$ 的最小值是 (

A. 4

B. 6

C. 8

D. 10

124.	124. 若非负实数 a,b 满足 $2a+3b=10$, 则 $\sqrt{3b}+\sqrt{2a}$ 的最大值是 ().					
	A. $\sqrt{10}$	B. $2\sqrt{5}$	C. 5	D. 10		
125.	若 $x > 1$, 则 $\frac{x^2 - 2x + 2}{2x - 2}$ 有 ().					
	A. 最小值 1	B. 最大值 1	C. 最小值-1	D. 最大值-1		
126.	(1) 若 $x, y \in \mathbf{R}^+$, 且 $x^2 + y^2 =$					
	则 $\log_a x + \log_a y$ 的最大值					
	x = (4) 若 x > 0	0 , 则 $x + \frac{1}{x} + \frac{16x}{x^2 + 1}$ 的最小	\ 值是,此时 $x = _$	(5) 若正数		
	a, b 满足 $a^2 + \frac{b^2}{2} = 1$, 则 a					
127.	(1) 若 $x > 0$, 则 $3x + \frac{12}{x^2}$ 的:	最小值是, 此时 <i>x</i>	c = (2) 若 $0 < x$	$<\frac{1}{3}, \emptyset x^2(1-3x) $ 的		
	最大值是,此时 #	z= (3) 若 xy >	0 , 且 $x^2y = 2$, 则 $xy + x^2$ 自	的最小值是		
	$(4)\sin^4 \alpha \cos^2 \alpha$ 的最大值是	, 此时 sin α =	$\alpha = \underline{\qquad}$.	(5) 若正数 x,y,z 满足		
	$5x + 2y + z = 100$, $\iint \lg x +$	$\lg y + \lg z$ 的最大值是				
128.	若 $\frac{x^2}{4} + y^2 = x$, 则 $x^2 + y^2 = x$	有 ().				
	A. 最小值 0, 最大值 16	B. 最小值 $-\frac{1}{3}$, 最大值 0	C. 最小值 0, 最大值 1	D. 最小值 1, 最大值 2		
129.	$ \sin x + \cos x $ 的最大值是	().				
	A. 2	B. $\sqrt{2}$	C. $\frac{\sqrt{2}}{2}$	D. $\frac{1}{2}$		
130.	若 $x > 0$,则 $\frac{x}{x^3 + 2}$ 的最大位	直是 ().				
	A. 5	B. 3	C. 1	D. $\frac{1}{3}$		
131.	若正数 a, b 满足 $ab - (a + b) = 1$, 则 $a + b$ 的最小值是 ().					
	A. $2 + 2\sqrt{2}$	B. $2\sqrt{2} - 2$	C. $\sqrt{5} + 2$	D. $\sqrt{5} - 2$		
132.	(1) 已知 $a>1$ 且 $a^{\lg b}=$	$\sqrt[4]{2}$,求 $\log_2(ab)$ 的最小值.	(2) 求函数 $y = \frac{x^4 + 3x^2}{x^2 + 1}$	+3 的最小值. (3) 求		
	$f(x) = 4x^2 + \frac{16}{(x^2+1)^2}$ 的最	小值. (4) 求 $f(x) = x^2 - 3x$	$x-2-\frac{3}{x}+\frac{1}{x^2}(x>0)$ 的最小	$^{\circ}$ (5) 若 $x, y > 0$, 求		
	$\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x+y}}$ 的最大值.		u u			
133.	已知正常数 a, b 和正变数 x ,	y 满足 $a + b = 10, \frac{a}{x} + \frac{b}{y} =$	1, x + y 的最小值为 $18, 求$	a,b 的值.		
134.	(1) 已知 $x^2 + y^2 = 1$, 求 (1 +	- xy)(1-xy) 的最大值和最A	小值(2) 已知 x^2	$a^2 + y^2 = 3$, $a^2 + b^2 = 4$,		
	求 $ax + by$ 的最大值和最小值					
135.	已知函数 $f(x) = \frac{2^{x+3}}{4^x + 8}$. (1)	求 $f(x)$ 的最大值. (2) 对于	任意实数 a,b , 求证: $f(a)$ <	$b^2 - 4b + \frac{11}{2}.$		
136.	(1) 若直角三角形的周长为 1	, 求它的面积的最大值. (2) ネ	些直角三角形的内切半径为 1	, 求它的面积的最小值.		

- 137. 若球半径为 R, 试求它的内接圆柱的最大体积,请指出下向解法的错误,并给出正确的解答.解:设圆柱底面半径为 r, 则 $4r^2=4R^2-h^2$,而 $V=\pi r^2h=\frac{\pi}{4}(4R^2-h^2)h=\frac{\pi}{4}(2R+h)(2R-h)=\frac{\pi}{8}(2R+h)(4R-2h)h\leq \frac{\pi}{8}(\frac{2R+h+4R-2h+h}{3})^3=\frac{\pi}{8}(2R)^3=\pi R^3$.
- 138. 在 $\triangle ABC$ 中,已知 BC = a, CA = b, AB = c, $\angle ACB = \theta$. 现将 $\triangle ABC$ 分别以 BC, CA, AB 所在直线为 轴旋转一周,设所得三个旋转体的体积依次为 V_1, V_2, V_3 . (1) 设 $T =_3 V_1 + V_2$, 试用 a, b, c 表示 T. (2) 若 θ 为定值,并令 $\frac{a+b}{c} = x$,将 T 表示为 x 的函数,写出这个函数的定义域,并求这个函数的最大值 u. (3) 若 $\theta \in [\frac{\pi}{3}, \pi)$,求 u 的最大值.
- 139. 已知 $A(0,\sqrt{3}a)$, B(-a,0), C(a,0) 是等边 $\triangle ABC$ 的顶点,点 M,N 分别在边 AB,BC 上,且将 $\triangle ABC$ 的面积两等分,记 N 的横坐标为 x, |MN|=y. (1) 写出 y=f(x) 的表达式. (2) 求 y=f(x) 的最小值.
- 140. 已知 $\triangle ABC$ 内接于单位圆, 且 $(1 + \tan A)(1 + \tan B) = 2$. (1) 求证: 内角 C 为定值. (2) 求 $\triangle ABC$ 面积的最大值. 四、不等式的解法
- 141. 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x | \alpha < x < \beta\}$, 其中 $0 < \alpha < \beta$, 求 $cx^2 + bx + a < 0$ 的解集.
- 142. 解不等式 $(x+1)^2(x-1)(x-4)^3 > 0$.
- 143. 解不等式 $\frac{3x^2 14x + 14}{x^2 6x + 8} \ge 1$.
- 144. 解不等式 $\sqrt{x^2 3x + 2} > x 3$.
- 145. 解不等式 $\sqrt{2x-1} < x-2$.
- 146. 解不等式: $(1)|x^2-4| \le x+2$. $(2)|x^2-\frac{1}{2}| > 2x$.
- 147. 解关于 x 的不等式 $|\log_a x| < |\log_a (ax^2)| 2(0 < a < 1)$. 【训练题】(一) 一次、二次、高次不等式
- 148. 若关于 x 的不等式 2x-1 > a(x-2) 的解集是 R, 则实数 a 的取值范围是 ().

A.
$$a > B. 24$$

C. 14

D. -14

$$2.$$
____(B) $a =$

$$2.$$
____(C) a <

在.

149. 若关于 x 的不等式 ax^2 +

$$bx - 2 > 0$$
 的解集是
 $(-\infty, -\frac{1}{2}) \cup (\frac{1}{3}, +\infty), 则$
 ab 等于 (). (A)-24

150. 若关于 x 的不等式 $(a-2)x^2 + 2(a-2)x - 4 < 0$ 对一切实数 x 恒成立,则实数 a 的取值范围是 ().

A.
$$(-\infty, 2]$$

B.
$$(\infty, -2)$$

C.
$$(-2,2]$$

D.
$$(-2,2)$$

151. 若 q < 0 < p, 则不等式 $q < \frac{1}{x} < p$ 的解集为 ().

A.
$$\{x | \frac{1}{q} < x < \frac{1}{p} x \neq 0\}$$

B.
$$\{x|x < \frac{1}{q}x > \frac{1}{p}\}$$

A.
$$\{x|\frac{1}{q} < x < \frac{1}{p}x \neq 0\}$$
 B. $\{x|x < \frac{1}{q}x > \frac{1}{p}\}$ C. $\{x|-\frac{1}{p} < x < -\frac{1}{q}x \neq D$. $\{x|\frac{1}{p} < x < -\frac{1}{q}\}$ 0}

- 152. (1) 若关于 x 的不等式 (a+b)x+2a-3b<0 的解集是 $\{x|x<-\frac{1}{3}\}$, 则 (a-3b)x+b-2a>0 的解集 是_______. (2) 若不等式 $\frac{2x^2+2kx+k}{4x^2+6x+3} < 1$ 对一切, $x \in \mathbf{R}$ 恒成立, 则实数 k 的取值范围是_______. (3) 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x | 3 < x < 5\}$, 则不等式 $cx^2 + bx + a < 0$ 的解集
- 153. 写出下列不等式的解集: $(1)(x+2)(x+1)^2(x-1)^3(x-3) > 0$:______. $(2)\frac{(x-1)^2(x+2)}{(x-3)(x-4)} \le 0$:_____. $(3)x + 1 \le \frac{4}{x + 1}$:_____.
- 154. 若不等式 $f(x) \ge 0$ 的解集为 [1,2], 不等式 $g(x) \ge 0$ 的解集为 \emptyset , 则不等式 $\frac{f(x)}{g(x)}$ 的解集是 ().

A. \emptyset

B.
$$(-\infty, 1) \cup (2, +\infty)$$

C.
$$[1, 2)$$

- D. R
- 155. 若关于 x 的不等式 $ax^2 bx + c < 0$ 的解集为 $(-\infty, \alpha) \cup (\beta, +\infty)$, 其中 $\alpha < \beta < 0$, 则不等式 $cx^2 + bx + a > 0$ 的解集为(

A. $(\frac{1}{\beta}, \frac{1}{\alpha})$

B.
$$(\frac{1}{\alpha}, \frac{1}{\beta})$$

$$C. \left(-\frac{1}{\beta}, -\frac{1}{\alpha}\right)$$

- D. $(-\frac{1}{\alpha}, -\frac{1}{\beta})$
- 156. 解下列关于 x 的不等式: $(1)m^2x 1 < x + m$. $(2)x^2 ax 2a^2 < 0$.
- 157. (1) 已知关于 x 的不等式 $\sqrt{x} > ax + \frac{3}{2}$ 的解集是 $\{x | 4 < x < b\}$, 求 a, b 的值. (2) 已知 x = 3 是不等式 ax > b解集中的元素, 求实数 a,b 应满足的条件. (3) 已知集合 $\{x|x<-2x>3\}$ 是集合 $\{x|2ax^2+(2-ab)x-b>0\}$ 的子集, 求实数 a,b 的取值范围.
- 158. (1) 已知集合 $A = \{x | \frac{2x-1}{x^2+3x+2} > 0\}, B = \{x | x^2+ax+b \le 0\}, 且 A \cap B = \{x | \frac{1}{2} < x \le 3\},$ 求实数 a,b 的取 值范围. (2) 已知集合 $A=\{x|(x+2)(x+1)(2x-1)>0\},\ B=\{x|x^2+ax+b\leq 0\},\$ 且 $A\cup B=\{x|x+2>0\},$ $A \cap B = \{x | \frac{1}{2} < x \le 3\}$, 求实数 a, b 的值.
- 159. (1) 已知关于 x 的不等式 $x^2 ax 6a \le 0$ 有解, 且对于任意的解 x_1, x_2 恒有 $|x_1 x_2| \le 5$, 求实数 a 的取 值范围. (2) 已知关于 x 的方程 $3x^2 + x \log_1^2 a + 2 \log_1 a = 0$ 的两根 x_1, x_2 满足条件 $-1 < x_1 < 0 < x_2 < 1$, $\frac{1}{2}$ 求实数 a 的取值范围. (3) 已知关于 x 的方程 $x^2+(m^2-1)x+m-2=0$ 的一个根比-1 小, 另一个根比 1 大, 求参数 m 的取值范围.
- 160. 已知集合 $A=\{x|x-a>0\},\,B=\{x|x^2-2ax-3a^2<0\},\,$ 求 $A\cap B$ 与 $A\cup B$. (二) 无理不等式
- 161. 不等式 $\sqrt{x+3} > -1$ 的解集是 ().

A. $\{x|x > -2\}$

B.
$$\{x | x \ge -3\}$$

C.
$$\emptyset$$

D. R

- 162. 不等式 $(x-1)\sqrt{x+2} \ge 0$ 的解集是 ().
 - A. $\{x | x > 1\}$
- B. $\{x | x \ge 1\}$
- C. $\{x|x \ge 1x = -2\}$ D. $\{x|x > 1x = -2\}$
- 163. 与不等式 $\sqrt{(x-4)(x+3)} \le 1$ 的解完全相同的不等式是 ().

- A. $|(x-4)(x+3)| \le 1$ B. $|(x-4)(x+3)| \le 1$ C. $|\lg[(x-4)(x+3)| \le 0$ D. $0 \le (x-4)(x+3) \le 1$
- 164. 解下列不等式: $(1)\sqrt{x-5}+4x-3>3x+1+\sqrt{x-5}$:______. $(2)\sqrt{x^2+1}>\sqrt{x^2-x+3}$:_____. $(3)(x-4)\sqrt{x^2-3x-4} \ge 0:$ $(4)\frac{x+1}{x+4}\sqrt{\frac{x+3}{1-x}} < 0:$ $(5)\sqrt{x+2}+\sqrt{x-5} \ge \sqrt{5-x}:$ $(6)\sqrt{x-6} + \sqrt{x-3} > \sqrt{3-x}$:
- 165. 解下列不等式: $(1)\sqrt{2-x} < x$. $(2)\sqrt{4-x^2} < x+1$. $(3)\sqrt{3-2x} > x$. $(4)\sqrt{(x-1)(2-x)} > 4-3x$.
- 166. 不等式 $\sqrt{4-x^2} + \frac{|x|}{x} \ge 0$ 的解集是 (
 - A. [-2, 2]

- B. $[-\sqrt{3}, 0) \cup (0, 2]$ C. $[-2, 0] \cup (0, 2]$ D. $[-\sqrt{3}, 0) \cup (0, \sqrt{3}]$
- 167. 已知关于 x 的不等式 $\sqrt{2x-x^2} > kx$ 的解集是 $\{x | 0 < x \le 2\}$, 则实数 k 的取值范围是 ().
 - A. k < 0
- B. $k \geq 0$
- C. 0 < k < 2
- D. $-\frac{1}{2} < k < 0$
- 168. 解下列不等式: $(1)\sqrt{2x-4} \sqrt{x+5} < 1$. $(2)\sqrt{x^2-5x-6} < |x-3|$. $(3)|2\sqrt{x+3}-x+1| < 1$.
- 169. 解下列关于 x 的不等式: $(1)\sqrt{a(a-x)} > a 2x(a > 0)$. $(2)\sqrt{4x-x^2} > ax(a < 0)$. $(3)\sqrt{1-ax} < x 1(a > 0)$ 0). $(4)\sqrt{a^2-x^2} > 2x-a$. (三) 指数不等式, 对数不等式
- 170. $\lg x^2 < 2$ 的解集是 ().

A.
$$\{x|-10 < x < 00 <$$
 B. $\{x|x < 10\}$ C. $\{x|0 < x < 10\}$ D. $\{x|-10 < x < 10\}$

B.
$$\{x | x < 10\}$$

C.
$$\{x | 0 < x < 10\}$$

D.
$$\{x | -10 < x < 10\}$$

x < 10

- 171. $<math> f(x) = \log_2 x,$ 则不等式 $[f(x)]^2 > f(x^2)$ 的解集是 ().
- A. $\{x|0 < x < \frac{1}{4}\}$ B. $\{x|\frac{1}{4} < x < 1\}$ C. $\{x|0 < x < 1x > 4\}$ D. $\{x|\frac{1}{4} < x < 4\}$
- 172. 若 a, b 都是小于 1 的正数, 且 $a^{\log_b(x-5)} < 1$, 则 x 的取值范围是 ().
 - A. x > 5
- B. x < 6
- C. 5 < x < 6
- D. x < 5 或 x > 6

- 173. 不等式 $\log_x \frac{4}{5} < 1$ 的解集是 ().

- A. $\{x|0 < x < \frac{4}{5}\}$ B. $\{x|x > \frac{4}{5}\}$ C. $\{x|\frac{4}{5} < x < 1\}$ D. $\{x|0 < x < \frac{4}{5}\}$ $\{x|x>1\}$
- 174. 若函数 $f(x) = \log_{a^2-1}(2x+1)$ 在区间 $(-\frac{1}{2},0)$ 内恒有 f(x) > 0,则实数 a 的取值范围是 ().
 - A. 0 < a < 1
- B. a > 1
- C. $-\sqrt{2} < a < -1 \implies 1 <$ D. $a < -\sqrt{2} \implies a > \sqrt{2}$

 $a < \sqrt{2}$

175.	若不等式 $\log_a(x^2-2x+3)$	≤ −1 对一切实数都成立,则	a 的取值范围是 ().	
	A. $a \geq 2$	B. $1 < a \le 2$	C. $\frac{1}{2} \le a < 1$	D. $0 < a \le \frac{1}{2}$
176.	解下列关于 x 的不等式: (1)	$\log_{\frac{1}{2}}(3x-2) > \log_{\frac{1}{2}}(x+1)$:	$(2)\log_{\frac{1}{2}}(x^2 - x)$	$(-2) > \log_{\frac{1}{2}}(2x^2 - 7x +$
	解下列关于 x 的不等式: (1) 3 3 : (3) $\log_x \frac{1}{2} < 1$	1: $(4)\lg(x-\frac{1}{x})$	$< 0:$ $(5)\log_2 x-$	$ \frac{1}{2} < -1$:
177.	已知集合 $M = \{x \log_3(x - x)\}$	$ m > 1$ $\Rightarrow P = \{x 3^{5-3x} \ge 1\}$	$\frac{1}{3}$ } 满足 $M \cap P \neq \emptyset$, 求实数	\mathfrak{b}_m 的取值范围.
178.	解下列不等式: $(1)\log_8(2-x)$			
	1) > 1. $(4)\log_{x-1}(6 - x - x)$	$(2) > 2. (5) \frac{1}{\log_2(x-1)} < \frac{1}{\log_2(x-1)}$	$\frac{1}{g_2\sqrt{x+1}}$. $(6)\frac{\log_3(1-\frac{1}{2})}{\log_9(2x)}$	$\geq 1. (7)\log_{0.5}(2^x - 1)$
	$\log_{0.5}(2^{x-1} - \frac{1}{2}) \le 2.$		2	
179.	解关于 x 的不等式, 其中 a			
	$\log_a(x-1). \ (4)\log_a^2 x < \log_x^2$	a. $(5)x^{\log_a x} > \frac{x^4 \cdot \sqrt{x}}{a^2}$	$(6)\sqrt{\log_a x - 1} > 3 - 1$	$\log_a x$.
180.	已知 x 满足不等式 $(\frac{1}{2})^{2x-4}$	$-\left(\frac{1}{2}\right)^x - \left(\frac{1}{2}\right)^{x-2} + \frac{1}{4} \le 0, $	$\exists y = \log_{\frac{1}{2}} (a^2 x) \cdot \log_{\frac{1}{2}} (ax)$) 的最大值是 0, 最小值
	是 $-\frac{1}{8}$, 求实数 a 的值.		a a^2	
181.	已知关于 x 的方程 $x^2 - 5x$ l	$\log_a k + 6 \log_a^2 k = 0$ 的两根中	$\mathbf{P}(k>1)$,仅较小的根在区间	可 $(1,2)$ 内,试用 a 表示
	k 的取值范围 $(a>0$ 且 $a\neq$	1). (四) 绝对值不等式		
182.	设 $x \in \mathbf{R}$, 则 $(1 - x)(1 + x)$) > 0 成立的充要条件是().	
	A. $ x < 1$	B. $x < 1$	C. $ x > 1$	D. $x < 1$ 且 $x \neq 1$
183.	若函数 $f(x) = \sqrt{x^2 - 2x - 8}$	的定义域为 $M, g(x) = \frac{1}{\sqrt{1}}$	$\frac{1}{\left \frac{1}{x-a}\right }$ 的定义域为 N , 则	$]$ 使 $M\cap N=arnothing$ 的实数

a 的取值范围为 ().

A. -1 < a < 3 B. $-1 \le a \le 3$ C. -2 < a < 4 D. $-2 \le a \le 4$

184. 设 a, b 是满足 ab < 0 的实数,则下列不等式中正确的一个是 ().

A. |a+b| > |a-b| B. |a+b| < |a-b| C. |a-b| < ||a| - |b|| D. |a-b| < ||a| + |b||

185. 不等式 $|x| < \frac{1}{x}$ 的解集为 (

B. $\{x | x < 0\}$

C. $\{x | 0 < x < 1\}$ D. $\{x | x < 0x \ge 1\}$

186. 若 |a+b| < -c, 则在"① a < -b-c, ② a+b > c, ③ a+c < b, ④ |a|+c < |b|, ⑤ |a|+|b| < -c" 这五个式 子中一定成立的个数是().

A. 1

B. 2

C. 3

D. 4

187. 若实数 a,b 满足 ab > 0,则在"① |a+b| > |a|,② |a+b| < |b|,③ |a+b| < |a-b|,④ |a+b| > |a-b|"这四 个式子中,正确的是(

A. (1) (2)

B. (1) (3)

C. (1) (4)

D. (2) (4)

188. 不等式 $\left| \frac{x}{1+x} \right| > \frac{x}{1+x}$ 的解集是 ().

A. $\{x | x \neq -1\}$

B. $\{x|x > -1\}$

C. $\{x | x < 0x \neq -1\}$ D. $\{x | -1 < x < 0\}$

- 189. 解下列不等式. $(1)x^2 + |x| 6 < 0$:_____. $(2)x^2 2|x| 15 > 0$:_____. (3) 4 < $|1 3x| <math>\le$ 1. 7:______. (4)|x-3| < x-1:______. $(5)\log_2|x-\frac{1}{2}| < -1$:______.
- 190. 若函数 $y = \log_a x$ 在 $x \in [2, +\infty]$ 上恒有 |y| > 1, 则实数 a 的取值范围是______. 156 解下列不等 式: $(1)|x^2 - 5x + 10| > x^2 - 8$. $(2)|x^2 - 4| \le x + 2$. $(3)|x + 1| < \frac{1}{x - 1}$. (4)|x + 2| - |x - 3| < 4. (5) $|x+3| - |2x-1| < \frac{x}{2} + 1.$
- 191. (1) 已知当 |x-2| < a 成立时, $|x^2-4| < 1$ 也成立, 求正数 a 的取值范围. (2) 已知关于 x 的不等式 |x-4|+|x-3| < a 在实数集 R 上的解集不是空集, 求正数 a 的取值范围.
- 192. 解下列不等式: $(1)\log_{\frac{1}{4}}|x| < \log_{\frac{1}{2}}|x+1|$. $(2)|\lg(1-x)| > |\lg(1+x)|$. $(3)|\log_{\frac{1}{2}}x| + |\log_{\frac{1}{2}}\frac{1}{3-x}| \ge 1$.
- 193. (1) 求函数 $f(x) = |x \frac{1}{2}| |x + \frac{1}{2}|$ 的最大值. (2) 已知 $|\lg x \lg y| \le 1$, 则 $\frac{x}{y} + \frac{y}{x}$ 的取值范围是______
- 194. 解下列关于 x 的不等式: $(1)|\log_{\sqrt{a}}x-2|-|\log_ax-2|<2$. $(2)|\log_ax|<|\log_a(ax^2)|-2$.
- 195. 解下列关于 z 的不等式: (1) $|3^x 3| + 9^x 3 > 0$. (2) $|a^x 1| + |a^{2x} 3| > 2(a > 0)$.
- 196. $\triangle ABC$ 三内角 A,B,C 对边长分别为 a,b,c,外接圆半径记作 R. 求证: $(1)a^2+b^2+c^2 \geq 2ab\cos C+2b\cos A+2b\cos A$ $2ca\cos B.\ (2)(a+b-c)(b+c-a)(c+a-b) \leq abc.\ (3)\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \leq \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} < \frac{1}{a} + \frac{1}{b} + \frac{1}{c}.$ $(4)\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \ge \frac{1}{R^2}$
- 197. 已知 $f(\log_a x) = \frac{a(x^2-1)}{x(a^2-1)}(0 < a < 1, x > 0)$. (l) 求 $f(x)(x \in \mathbf{R})$ 的表达式, 并判断它的单凋性. (2) 若 $n \geq 2, n \in \mathbb{N}$, 求证: f(n) > n.
- 198. 若正数 a, b, c 满足 a + b > c, 求证: $\frac{a}{1+a} + \frac{b}{1+b} > \frac{c}{1+c}$.
- 199. 求证: $(1)\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \dots \cdot \frac{99}{100} < \frac{1}{10}$. $(2)(1+\frac{1}{3})(1+\frac{1}{5}) \cdot \dots \cdot (1+\frac{1}{2n-1}) > \frac{1}{\sqrt{3}}\sqrt{2n+1}(n \in \mathbf{N}, n > 1)$. $(3)\frac{x_1^2}{x_2-1}+\frac{x_2^2}{x_2-1}+\cdots+\frac{x_{n-1}^2}{x_n-1}+\frac{x_n^2}{x_1-1}\geq n+x_1+x_2+\cdots+x_a(x_1,x_2,\cdots,x_n \text{ \existsE\T 1$ bigs.}).$
- 200. (1) 若正数 a, b, c 满足 a + b + c, 求证: $(1+a)(1+b)(1+c) \ge 8(1-a)(1-b)(1-c)$. (2) 若 $0 \le a \le 1$, $0 \le b \le 1$, $0 \le c \le 1$, 求证: $\frac{a}{1+b+c} + \frac{b}{1+c+a} + \frac{c}{1+a+b} + (1-a)(1-b)(1-c) \le 1$.
- 201. 已知三棱锥的三条侧棱两两互相垂直,且六条棱之和为定值 m,求证: 它的体积 $V \leq \frac{5\sqrt{2}-7}{169}m^3$.
- 202. 已知 a+b+c>0, ab+bc+ca>0, abc>0 求证: a>0, b>0, c>0.

- 203. 求证: 任何面积等于 1 的凸四边形的周长及两条对角线的长度之和不小于 $4+\sqrt{8}$.
- 204. 解下列关于 x 的不等式: $(1)2^{x+1}+x>0$. $(2)\frac{a(x-1)}{x-2}>1$. $(3)x^2+(a-4)x+4-2a>0$, 其中 $-1\leq a\leq 1$. $(4)\frac{x}{\sqrt{1+x^2}}+\frac{1-x^2}{1+x^2}>0$. $(5)\frac{cx}{ac^2+b}-\frac{x}{2\sqrt{ab}}>x^2$, 其中 $a,b,c\in\mathbf{R}$, 且 a>0, b>0.
- 205. 已知函数 $f(x) = ax^2 c$ 满足 $-4 \le f(1) \le -1, -1 \le f(2) \le 5$, 求证: $-1 \le f(3) \le 20$.
- 206. 已知关于 x 的方程 $a\sin^2 x + \frac{1}{2}\cos x + \frac{1}{2} a = 0$ 在 $0 \le x < 2\pi$ 内有两个相异的实根, 求实数 a 的取值范围.
- 207. 已知 |a| < 1, |b| < 1, |c| < 1, 求证: (1)|1 abc| > |ab c|._____(2)a + b + c < abc + 2.