Structure Coursework

Jiaxuan Tang

9th March 2021

1 Tables

$\dot{arepsilon}_y^0/s^{-1}$	$\dot{F}_x^0/~\mathrm{KN/s}$	$\dot{F}_x^{90}/~\mathrm{KN/s}$	$\dot{F}_x^{30}/~\mathrm{KN/s}$
-0.00002	0.4823	0.0482	0.1093

Table 1: Input variables

E1/GPa	V12	E2/GPa	V21	G12/GPa	E_{qi}	V_{qi}	$\mathrm{A11/~MN/m}$	$\mathrm{A22/~MN/m}$	$\mathrm{A}12/\ \mathrm{MN/m}$	V_{xy}^{30}
192.92	0.2	19.28	0.02	10.96	79.64	0.2786	86.34	86.34	24.05	0.3085

Table 2: Engineering constants

2 Graphs

Figure 1: σ_x vs ε_x

Figure 2: $-\varepsilon_y \text{ vs } \varepsilon_x$

3 Formula

Using the constant axial strain rate for the specimens, combined with the force rate, E1 of this material can be obtained very easily. E2 of the material is $\sigma_x^{90}/\varepsilon_x^{90}$ which is the traverse young's modulus. v_{12} can be obtained from $\frac{-\varepsilon_y^0}{\varepsilon_x^0}$ which was already given in the lab data. v_{21} is simply $v_{12} * \frac{E2}{E1}$. In global calculation of the stiffness matrix, only G_{12} , γ_{xy}^{30} and ϵ_{yy}^{30} are unknown, solving the equation can generate these 3 variables. When solving the equation, turn the compliance matrix S to stiffness matrix Q.

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma_6 \end{pmatrix} = [S] \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \tau_6 \end{pmatrix} = \begin{pmatrix} 1/E_1 & -v_{21}/E_2 & 0 \\ -v_{12}/E_1 & 1/E_2 & 0 \\ 0 & 0 & 1/G_{12} \end{pmatrix}$$

$$[Q] = [S]^{-1} = \begin{pmatrix} E_1/(1 - v_{12}v_{21}) & v_{21}E_1/(1 - v_{12}v_{21}) & 0\\ v_{12}E_2/(1 - v_{12}v_{21}) & E_2/(1 - v_{12}v_{21}) & 0\\ 0 & 0 & G_{12} \end{pmatrix}$$

As we need to solve for $\theta = 30$, it needs to be transformed to global coordinates using $[T_{\sigma}]$ and $[T_{\varepsilon}]$, and $[\overline{\mathbb{Q}}] = [T_{\sigma}]^{-1}[\mathbb{Q}][T_{\varepsilon}]$,

where
$$[T_{\sigma}] = \begin{pmatrix} c^2 & s^2 & 2cs \\ s^2 & c^2 & -2cs \\ -cs & cs & c^2 - s^2 \end{pmatrix}$$
, $[T_{\varepsilon}] = \begin{pmatrix} c^2 & s^2 & cs \\ s^2 & c^2 & -cs \\ -2cs & 2cs & c^2 - s^2 \end{pmatrix}$ with $c = cos\theta$ and $s = sin\theta$.

Then engineering constants except A_{12} , A_{23} , A_{34} , A_{45} , $A_$

Then engineering constants except A_{11} , A_{12} , A_{22} , E_{qi} and v_{qi} can be obtained. Remained variables can calculated using laminate in-plane stiffness matrix. The system is 0/45/90/-45/-45/90/45/0 to have the same geometry as the specimens.

$$\begin{split} N_{XX} &= \sum_{K=1}^{n} \left(\overline{Q}_{11} \right)_k \left(h_k - h_{k-1} \right) \varepsilon_{xx} + \sum_{K=1}^{n} \left(\overline{Q}_{12} \right)_k \left(h_k - h_{k-1} \right) \varepsilon_{yy} + \sum_{K=1}^{n} \left(\overline{Q}_{16} \right)_k \left(h_k - h_{k-1} \right) \gamma_{xy} \\ \left(\begin{array}{c} N_{xx} \\ N_{yy} \\ N_{xy} \end{array} \right) &= [A] \left(\begin{array}{c} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{array} \right), \text{ where } A_{ij} = \sum_{K=1}^{n} \left(\overline{Q}_{ij} \right)_k \left(h_k - h_{k-1} \right) \end{split}$$

 A_{11} , A_{12} and A_{22} then can be obttined as $h_k - h_{k-1}$ is always 0.125mm.

$$\begin{pmatrix} N_{XX} \\ 0 \\ 0 \end{pmatrix} = [A] \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ 0 \end{pmatrix} \begin{cases} N_{XX} = A_{11}\varepsilon_{xx} + A_{12}\varepsilon_{yy} \\ 0 = A_{12}\varepsilon_{xx} + A_{22}\varepsilon_{yy} \end{cases}$$

Solving the equations can eliminate the N_{xx} and can lead to:

$$\varepsilon_{YY} = -\frac{A_{12}}{A_{22}} \varepsilon_{XX}; \quad N_{XX} = \left(A_{11} - \frac{A_{12}^2}{A_{22}}\right) \varepsilon_{XX}; \quad \sigma_{XX} = E_x \varepsilon_{XX} = \frac{N_{XX}}{h}$$
$$\bar{E}_x = \frac{1}{h} \frac{N_{XX}}{\varepsilon_{XX}} = \frac{1}{h} \left(A_{11} - \frac{A_{12}^2}{A_{22}}\right); \bar{v}_{xy} = -\frac{\varepsilon_{YY}}{\varepsilon_{XX}} = \frac{A_{12}}{A_{22}}$$

All the engineering constants can now be computed.