

. F1G.	SS SUBCLASS	
APPROVED O.G. F1G.	6Y CLASS	DRAFTSHAH

`	ا ہے ا				
	C	ł	H	ŀ	긔
	В	1	П	1	>
ZI.	A	İ	Ŋ	Ŋ	ß
CDRI	고고	Õ	Ø	Ø	Ø
Ų.	97	S	Ŋ	Ŋ	Ŋ
	25	K	Ŋ	Ø	വ
	₽2	K	召	α	召
	23	Ŋ	\mathcal{O}	\mathcal{O}	\mathcal{O}
	22	₽	Ŋ	Ŋ	Z
	27	Н	Н	ᄓ	Н
	20	L	Ŋ	\vdash	\vdash
	6 T	>	ø	Ø	Ø
	18	껖	Д	又	民
	LI	Ω	团	Ή	团
	91	Ŋ	\mathcal{Q}	Ω	Q
H	SI	>	Д	Д	口
1 4	ÐΤ	ഗ	\vdash	ß	ഗ
JC	ΣI	K	>	口	\gt
framework	12	ß	Д	S	Þ
me	TT	니	\Box	ᆸ	Ы
ra	οτ	ß	Ŋ	H	വ
Ŧ	6	ഗ	Ы	K	О
	8	വ	Д	വ	Д
	L	Ŋ	Ŋ	ഗ	ß
	9	Ø	\circ	\circ	0
	S	E	H	\vdash	\vdash
	Ð	Σ	Ξ	\Box	Σ
	3	Ø	>	∩ C	>
	7	Н	Н	Н	Н
	I	Ω	Ω	Д	Ω
		VKIDIQM	VK2DIVMT	Vk3DI	VK4DIVMT

					CDR	RI									£r	ra	ame	WOL]	T.	K,	7					CD)R	Η	H
	D	28 28 E E E	된	82		3.0	3.1	32	33	₹8	35	98	٦٤	38	3 8	0 b	ΙĐ	2 P	٤ħ	ъъ	Sħ	9 D	10 V	6 1	09 6#	IS	22	23	₹S
VK 5	ı	ı	1	Ŋ	Н	ഗ	ഗ	≯	긔	Æ	M	≻₁	Ø	Õ	X	щ	r C	K	A	<u>Б</u>	K	LI		ΧI	Z A	A	ß	S	H
AK 6 H	耳	ഗ	1	Z	Ŋ	\succ	Z	⊱	Ц	Ω	M	\succ	Ц	Ø	X	Д	ڻ ن	Ø	S	<u>்</u>	Ö	<u>П</u> .		X I	IJ.	r O	ß	Z	民
VK 7	1	1	1	>	W	ഗ	Ŋ	⊱	П	Ø	N	⊱	Ŏ	O	×	Д	to	Q	Ø	<u>Д</u>	ద	L L	П	ΙX	D D	A .	ß	Ŋ	民
Vk 8 Y	₽	Ŋ	ഗ	Z	Z	又	Z	\succ	П	Ø	\mathbb{Z}	\triangleright	Ø	Ø	X	Д	C	Ø	Д	<u>Д</u>	×	H	J	ΙX	M 2	I A	ß	\vdash	兄

FIG. 2A

0.G. FIG.	CLASS SUBCLASS	
APPROVED	È	DRAFISHAR

IJ	찟	RII											Ţ	fra	am	e K	ework	노	\sim										
	55	95	85 25 95 55	89	65	09	τ9	29	٤9	₹9	9	99	۷9	89	69	07	TL	27	273	D L	9 <i>L</i> 9 <i>L</i>	LL	87	64	08	18	82	83	₽8
VK1 Q S G	O	Ŋ	Ω	>	Д	ഗ	以	ſτι	ß	Ŋ	ß	Ŋ	ß	Ŋ	H	Ω	[Ľ	<u>[</u> -	l'i	[-	H	S	S	Q I	급 (田		Įτι	A
VK2 A S	Ø	Ŋ	Ŋ	>	Ω_{4}	Д	異	ſτι	Ŋ	Ŋ	S	Ŋ	Ŋ	C	\vdash	Д	Įτί	<u>-</u>	H	X	Н	N H	RV	円	A	田	Д	\gt	Ŋ
VK3 A T G	K	⊱	Ŋ	\gt	Д	Ø	民	ſτι	ഗ	Ŋ	Ŋ	Ŋ	ß	G	H	Д	ᅜ	 [-₁	ij		Н	Ω το	S	日日	EJ P4	田	Д	ĮΉ	Ø
7k 4 E		ഗ	Ŋ	>	Д	Д	召	ſτι	S	Ŋ	Ŋ	\mathcal{O}	Ŋ	\mathcal{O}	EH	Д	Ĺτί	 [-	니	 [Н	Ω Ω	S	N N	A O	田	Д	\gt	Ø

4	6		5	2	۱,	_	15	16		- ₊		Γ				4	1	(1	\				1
LIAMIEWOIN S	ਫ਼ੋ ਹ	ַלַ טַ	إذٍ	4	ויי		기	CDRLLL	╣	4							ם ק	AIIICWOLN) ≽	4		н .			
	28	98	۲8	88	68	06	16	76	83	7 6	96	96	۷6	86	66	001	TOT	IOS	103 103	₽0 T	SOT	90T	LOT	80T	60 T
Vk1 T	H	λĀ	≯	C	α	Q	田	×	EH	E	д	பு	⊣	[14.	G	Ø	ט	E4	X	>	田	Н	1	R	E-1
Vk 2 V Y Y	>	\succ	\Rightarrow	\mathcal{O}	Ø	\circ	出	\Rightarrow	\vdash	\vdash	Д	$\Omega_{\mathbf{i}}$	E	ſъ	᠐	Q	Ċ	E	X	>	妇	Н	X	pc,	\vdash
Vk3 V Y Y	>	\succ	\Rightarrow	\circ	Ø	Ø	耳	≯	\vdash	\vdash	Д	Д	₽	Įц	Ŋ	Q	Ŋ	E	X	>	<u>며</u>	Н	X	r K	\vdash
Vk4 VYY	\triangleright	>		Ŋ	Ø	Q Q	H	×	·H	E	Д	Д	E	ſц	ഗ	Ø	Q G T		X V		田	Н	×	K	H

10.G. F1G.	CLASS SUBOLASS	
APPROVED	}- es	DRAFTSMAN

	128	Н	\triangleright	L
	E	Z	$\dot{\Box}$	i
H	D	Ŋ	S	1
CDR.	72	Ŋ	Ŋ	Ø
O	92	Ŋ	E	Д
	25	Ŋ	Ŋ	Ω
	52	Ŋ	H	Ŋ
	23	Ü	\mathcal{O}	\mathcal{O}
	22	Ŋ	S	S
	Z Z	H	Н	Н
	20	E	\vdash	α
	6 T	>	Н	Ø
	8 T	異	Ŋ	H
	LΤ	Ø	O	Ø
	9 T	Ŋ	\mathcal{O}	Ω
~~	SI	ք.	Д	Д
پدر	ÐΤ	Ø	Ŋ	K
Н	EI	ෆ	\mathcal{O}	>
емо	IS	വ	ഗ	ഗ
E	TT	>	\gt	>
ra	Οτ	1	I	ı
41	6	က	ഗ	Ŋ
	8	д	K	Д
	L	Д	Д	Д
	9	Ø	Ø	Ø
	5	H	. [-	E
	Þ	니	口	口
	2 3 4	>	Ø	团
	2	വ	ഗ	\Rightarrow
	JT	Ø	0	ഗ
		7	72	7,3

•							l		١			l	ı					ĺ				-							
			บ	CDRI								ü	Та	шe	amework	Ί								บ	CDR	H	· 🛏 🛚		
_	62	30	3 I	0 E I E A	32	εε	34	35	9 E	37	38	38	ΟĐ	ΙĐ	24	€₽	ъъ	Sħ	9 Đ	Δ ν	8 b	6 b	09	2S	23	TS	55	95	45
VA1GSN	Ŋ	ഗ	Z	1	×	>	വ	M	×	Ø	Ø	ıП	Д	G	Ţ	A	д	X		 П	г. Н	Σ	Q	N N	Q	S (어	ß	G G
VA2 GGYN	U	\mathcal{O}	\Rightarrow	Z	\Rightarrow	>	Ŋ	M	≯	Q	Q	出	Д	Ŋ	X	Ø	щ	X	니	Σ	H	⊢	D	<i>5</i> ₁	S	R R	<u>ራ</u>	S	Ü
VA3 G D K	Ŋ	Д	又	ł	\Rightarrow	Ø	Ŋ	3	\Rightarrow	Ø	Ø	X	Д	ന	Ø	Ø	Д	>	ij	>	H	ΙX	D	D	S	D R	Д Д	S	ß

FIG. 2C

DA CLASS Journal	DRAFTSHAIL
à	DRAFT
	101.455

	1	<u> </u>		
	۷8	1	×	X
	98	>-	\succ	\succ
	8 2		Д	Ω
i i	₽8	A.	K	Ø
	83	田	团	闰
ŀ	28		Д	П
	18	田	闩	团
	08	လ	Ø	Ø
]	64	Ø	Ø	Ø
	87	ıП	$\boldsymbol{\vdash}$	H
	LL	ෆ	\mathcal{O}	\mathcal{Q}
m	9 L	اج	ß	Ŋ
.	SL	Н	Н	Н
다 사	ÐΔ	Ø	E	\vdash
Ş	٤L	L	Н	Ы
amework	27	വ	വ	Е
an	TL	A	Ø	Ø
fr	0 ८	വ	H	\vdash
4-1	69	₽	Z	Z
	89	ധ	Ü	Ω
	۷9	വ	ഗ	ഗ
	99	X	X	Z
	9	Ŋ	ഗ	Ŋ
	₽9	G	Ŋ	\mathcal{O}
	٤9	വ	ഗ	Ŋ
		ĮΤΊ	ſτι	ſτι
	79 79 09	民		召
	09	Ω	Z	団
	69	7 P D	SNR	Д
	85	>	>	Н
		Н	1.2 V	N3 I
		3	3	3

				CD	DR	\vdash	II						£r	ar	neı	amewor	rк	4			
	88	68	06	16	76	66	₹6	56	96	L6	86	66	00T	TOT	IOS	103	₽OI	SOT	90T	A	LOT
vλ ₁	U	Ø	O	出	×	H	H	Д	Д	>	Гщ	Ŋ	ഗ	Ŋ	\vdash	又	니	E	>	ᄓ	r D
$\sqrt{\chi_2}$	U	Q	Ø	耳	\Rightarrow	\vdash	⊣	Д	Д	\gt	ĮΤι	\mathcal{Q}	\mathcal{O}	Ω	\vdash	X	Ц	⊱	>	口	Ω
v\3	\mathcal{O}	Q	Q	出	\succ	E	\vdash	ቢ	Д	\gt	ſτι	Ω	Ω	Ω	H	\cdot X	Ц	\vdash	>	J	Ω

FIG. 2D

F1G.	SUBCLASS	
0.G. F	CLASS	
APPROVED	λa	DRAFISHAH

			•				٠,					£r	ra	ame	ewor	OK	Ϋ́	7									1		:
	1234	7	ا ع ا	 	l c l	9	<u>L</u>	8	6	OT	TT.	SI	EI	ÐΙ	SI	9 T	LI	8 T	6 T	20	7 Z	23	₽Z	57	97	72	87	5	30
Ø	VH1A Q V Q L	>	Ø		>	Ø	S	S	A	田	>	X	M H	Д Д	S	S	S	N	K	V S	C	X	A	S	C	Ö	H	E,	ß
1B	VH1B Q V Q L	>	O)		>	Ø	S	C)	A	H	>	X	×	<u>д</u>	3	Ø	S	V	X	>	S	K K	A	S	C)	, > 1	[-	<u>۔</u> لبا	H
VH2	DVQL	>	O		×	回	S	r U	<u>d</u>	A	I	>	X -	Д,	E	Ø	H	1.3	H	L	r _D	EH	L.	ß	G.	ĮΞ ₄	S	H	S
VH3	EI.	0 2		Ā	>	田	S	ပ် ပ	O	C)	H	>	Ø	<u>д</u>	ပ ပ	U	S	디	저	IJ.	S	A	A 1	S	G	[I]	Ė	Ţ.	S
VH4	O	>	Ø	.	Ø	臼	S)	r O	<u>д</u>	r U	H	>	×	о _л	S	田	E-1	디	S	H	E C		>	S	CD	Ö	S	H	S
VH5	国	>	Ø	, i	>	Ø	S	r U	A	田	>	X L	×	<u>ப</u>	C)	田	S	H	×	о ₂ Н	S	C K	S	S	CD CD	>+	S	Į.	E
оно	QVQL	>	O	_	Ø	Ø	S	r U	<u>д</u>	r U	J	>	×	ρı	S	O	H	님	S	H	Ð	S	H	ß	C)	Ω	S	>	ß

II	∠S 9S 5S ₹S	IFGTA	NSGGT	WDDDK	SGGST	YSGST	ברמר
CDR	SS A B	IP	NP	D 0	S G -	- - - -	1 Q >
2	TS 0S 6 8 5 4	WMGGI	WMGWI	WLALI	WVSAI	WIGYI	T T U M M
amework 2	9 b 5 b 5 b 5 b 7 c 7	BUSOS	GQGLE	GKALE	GKGLE	GKGLE	はいない
fre	Τ₩ 0₩ 6€ 8€	ROAP	ROAP	RQPP	RQAP	ROPP	α Σ
\I	7 9 G F F F	AISWV	VMHMY	GVGWI	AMSWA	IMSMI	A M C L M
CDRI	31 B 32 33 34 34 35	S Y	N X Y S	TSGVG	S Y	S Y	M > S
		VH1A S	VH1B	VH2	VH3	VH4	VHS

FIG. 2E

FIG.	SUBCLASS	
<u> </u>	CLASS	
APPROVED	≽. es	DRAFTSMAR

VH6 SNSAA	ഗ	Z	S	K		3	Z	3	Н	~ 원	Q	S	<u>D</u>	5	R)	¹ 5		田	M	L G		R	7	>	K		വ	K	3	>-	Z
				S	DR.													Fr.	me	lew 	VOR	몫	m]
	8 S	69	09	て9 て9 09 65 85		٤9	ħ9	59	99	<u>L</u> 9	89	69	07	TL	27	εL	D L	9 L 9 L	L L 9 L	87	6 L	08	18	82	A	B	D	83	₽8	8 2	
VH1A NYAQK	Z	⊱	Ø	Ø	X	ĮΉ	ð	Ŋ	R	Λ	E	Н	£	A	D	印	S.	63 E⊣	S	TA	λX	M	I E	1	ຶ່ນ	ß	H	X	ß	田	
VH1B	NYAQK	\succ	ø	Ø	×	ſτι	Ò	C	Z,	>	<u>[</u>	Σ	E	껆	Д		ß	Н	S	TA	7	M	回	그	S	ß	J	民	Ŋ	团	
VH2	×	YYST	ഗ		ഗ	П	×	[-	æ	, ,	[- 4	Н	Ŋ	X _	Д	[-	S	区	Z	∧ ŏ	/ \	/ L	[-	Σ	[]	Z	Σ	Д	щ	>	
VH3	×	≯	A D		S	>	×	r	ĸ	Į.	 [⊣	Н	ß	24	D	Z	S	X	Z	T L	> 1	77 /	Ø	M	Z	S	H	民	Ø	口	
VH4	Z	\Rightarrow	Y N P		ഗ	니	×	ß	K	>	E	Н	S	>	Д	E-1	S	X I	Z	Д О	FJ S	i I	×	N	ß	ß	>	<u>[</u> -	Ø	Ø	
VH5	<u>p</u>	RYSP	ß		ഗ	ſτι	Ø	Ö	Ò	>	E	Н	Ŋ	A	D D	×	ທ. ໝ	Н	Ω Γ.	Į.	AY	I /	Ø	3	S	ß	니	X	A,	Ŋ	
9HA		DYAV	Ø	>	വ	>	X	ß	저	H	E	H	Z	<u>Д</u>	D	Ξ.	S	K 1	N	Ø	[ī4	S L	Ø	U L	Z	S	>	H	Д	团	

			framew	am	je	vork 3	거 大	(*)	~~						S	DR	Н	H						41	fra	ame	<u>%</u>	ework	ᅩ	4
	98	78	88	68	06	16	26	83	₹6	96	96	L6	86	66	OOT	A	В) D	TOT	TOT	EOI	₽0 T	SOT	901	Z0T	80T	60T	OTT	111	EII
VH1A DTAVY	Ω	E	Æ	>	>	>-	U	A	R	3	O	r U	Ω	ෆ	[īz,	>-	A	×			1					1		E	1	
VH1B	Ω	DTAV	Ø		\Rightarrow	\Rightarrow	Ö	Ø	α	3	Ŋ	Ŋ	Ω	Ŋ	ſτι	\Rightarrow	ø	$\mathbf{\Xi}$	Д	≯	Z	Ü	Ø	Ġ	[IJ	>	H	V S	S
VH2	Ω	DTAT	Ø		\Rightarrow	\Rightarrow	\mathcal{O}	K	民	Z	Ŋ	Ŋ	Ω	Ŋ	Įτι	⋈	Ø	Ξ	Д	≯	Z	Ö	Ø	Ö		'n	>	<u>[</u>	V S	S
VH3	Ω	T L	AV		\succ	×	\mathcal{O}	Ø	α	3	Ŋ	Ŋ	Ω	Ŋ	ſτι	⊱	Ø	$\mathbf{\Xi}$	Ω	\succ	Z	Ö	Ø	Ċ	[ij	>		S S	S
VH4	Ω	DTAVY	ď	>	≯	≯	Ö	Ø	α	3	Ŋ	Ŋ	Д	Q	Гщ	\Rightarrow	ø	Σ	Д	≯	3	Ö	Ø	Ċ	E	IJ	>	ΤV	S /	S

FIG. 2F

AFFROVED	0.C. FIG	(ri
ξ¥	CLASS SU	SUBCLASS
DRAFTSKAN		

H 5	<u> </u>	<u>-</u>	Z Z	∑	у. Уч	Ы	C B	<u>ц</u>	R W	<u>ა</u>	က က	Ω rh	ტ ტ	[I.,	\succ	A.	Σ	Ω	\succ	\nearrow	Ŋ	\circ	O	⊱	i.	\gt	E	>		ഗ
9H/	Ω	\vdash	K	>	٠. ۲	S	C 1	CAR	<u>ک</u> م	ტ >	(h	Ω	r O	ĮΞ,	<u>`</u>	K,	Σ	Ω	×	3	C)	O M M CO	ഗ	\vdash	口	>	Н	>	ഗ	ഗ

F/G. 2G

APPROVED O.G. FIG. ORAFISMAN CLASS SUBCLASS	L S A S V G D	CTGAGCGCGA GCGTGGGTGA GACTCGCGCT CGCACCCACT	G I S K	GGGCATTAGC AGCTATCTGG CCCGTAATCG TCGATAGACC	K L L I Y A A A A A A A A A A A A A A A A A A	CGAAACTATT AATTTATGCA GCTTTGATAA TTAAATACGT	ש ש	CGTTTTAGCG GCTCTGGATC GCAAAATCGC CGAGACCTAG
	.D I Q M T Q S P S S ECORV BanII	CAGA TGACCCAGAG CCCGTCTAGC	RVTITCRASQ Psti	TGCA GAGCGAGCCA ACGT CTCGCTCGGT	A W Y Q Q K P G K A P KpnI SexAI	GTACCA GCAGAAACCA GGTAAAGCAC CATGGT CGTCTTTGGT CCATTTCGTG	Sa	GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC CCGTCC CGGGTCGTCG G

3. F1G.	CLASS SUBCLASS	
10	CLASS	
APPROVED D.G. FIG	> 5	DRAFTSHAR

	rhri		<i>r</i> h <i>r</i>)		
Įτι	Bbsi CAAGACTTTG	G Q MscI	CTTTGGCCAG GAAACCGGTC		
Д	ST CTG	M M S	7 ~ ~ PGG PGC		
P ECO57E	BbsI ~~~~~ GAAGAC CTTCTG	ÍΉ	CTT' GAA		
E E E	CCTGCAACCT	E	CCCCGCCGAC GGGGCGGCTG		
Q	CCTGCAACCT	വ	900		
П	7.GC 1.CG	വ	0 0 0 0 0 0		
н	CC.	_	000		
Ω·	Ø U U U	E	A H		
W	CCATTAGCAG GGTAATCGTC	E	CATTATACCA GTAATATGGT	ŢĮ	ပ္ပည္
Н	ATT. AAT	\succ	TAT AT <i>P</i>	R T BsiWI	≈≈≈≈ CGTAC GCATG
	CA.	H	AT.	以因	~~~~~ ACGTACG TGCATGC
\vdash	00			×	, -
ъ	SAC	O/	3CA CGT	Н	LTA VAT
[- 4	200	Q	CA(GT(AA. TT?
لتر	TTTACCCTGA	Ö	TTGCCAGCAG AACGGTCGTC	団	TTGAAATTAA AACTTTAATT
щ				\triangleright	
Д	A TAT	X X	LTA AAT	X V	AAG ITC
[-1	CTC	\Rightarrow	TAZ	F-1	GAZ
E E	BamHI ~ CGGCACTGAT GCCGTGACTA	E	CGACCTATTA GCTGGATAAT	⊱	GGTACGAAAG CCATGCTTTC
	Bar ~ CG(A	(C)	Ŋ	900

FIG. 3B

	r	
F1G.	SUBCLASS	
0.G. F	CLASS	
APPROVED)- (a)	DRAFTSHAN

Į	A H		() ()	\sim	Ŋ
ტ	000	Z	AA(TTC	_	GC7
0	9 9 0 0	W	\GC PCG	Д	\mathcal{C}
TQSPLSLPVTPGE Banii	CTCCGGGCGA GAGGCCCGCT	ISCRSSQSLLHSN Psti	CATAGCAACG GTATCGTTGC	L D W Y L Q K P G Q S P Q KpnI SexAI	TCTGGATTGG TACCTTCAAA AACCAGGTCA AAGCCCGCAG
H				α	<u>لا</u>
>	CTGCCAGTGA GACGGTCACT	니	AAGCCTGCTG TTCGGACGAC		TC.
^	YAG YTC	ı	OTG BAC	P G SexAI	Ŋ G G
Щ	000	S	000	Sey ~~,	CCZ
H	CT(GA(AA(TT	?	AA
70		Q	A H	云	A A
01	GA(CT(Ø) (3 (3 (4)	O	CA
H	ACT IGA	70	GGT GGT	ᆸ,	LLO
ΩН	TGACCCAGAG CCCACTGAGC ACTGGGTCTC GGGTGACTCG	01	ATTÄGCTGCA GAAGCAGCCA TAATCGACGT CTTCGTCGGT	W Y KpnI ~~~~~~~~	AC
S BanII	~~~~~~ GAG CCC CTC GGG	出	> O O	тфу ~~`	[-
m M	GAG CTC	C PstI	CTGCA GACGT C	≥ ×	TG(
O ₄	CA(Д,	~ CT GA	Д	AT
E	∆CC I'GG	Ω	TAG ATC	ت	IGC
	TG2 AC:	H	AT. TA.		Ţ
\boxtimes		70		\Rightarrow	_
N N	GTC	01	GA(CT(Z	AC.
	~~~~~ GATATCGTGA CTATAGCACT	₽ ₹	GCCTGCGAGC CGGACGCTCG	R R	GCTATAACTA
D I ECORV	~~~~~ GATATC CTATAG	വ	CCI	74	CTZ
	ੇ ਲੋ ਹੈ		ŏŬ	Ω ·	Ō

FIG. 3C

	저	AGTGGGGTCC CGGATCGTTT TCACCCCAGG GCCTAGCAAA	7
	民		
ASS	Д	AT.	S R V
O.G. FIG.		~ 0 0 0 0 0 0	വ
G. F.	дн	GGGTCC C	
*** ** ******	V SanDI	~ ~ ~ C CAC	H
APPROVEU O.G. FIG. BY CLASS SUBC	S G V P SanDI	~ 000 000	L H
. 91	0.3	STG	ᆸ
	01		
	<b>A</b>	) () () ()	⊱
	N R A	CAACCGTGCC GTTGGCACGG	E E
	 	) () () () ()	Д
	7	CAA	
	W	ပ္ခဲ့ ည	<u>-</u>
	rh	GCA CGT	Ŋ
		900	SH
	X L G S	ATCTGGGCAG CAACCGTGCC TAGACCCGTC GTTGGCACGG	G S G T BamHI
	×		
	-		

СТАТТААТТТ GATAATTAAA

Asel

П

ഗ

Ċ

S

AGCCGTGTGG TCGGCACACC TACCACCCG ATGGTGGGGC Д  $\vdash$  $\vdash$ CCTGAAAATT AGCAGCATTA GGACTTTTAA TCGTCGTAAT  $\succ$ 冮 O Ø CCGATTTTAC TATTATTGCC GGCTAAAATG ATAATAACGG  $\mathcal{O}$ ×  $\succ$ GGATCCGGCA CCTAGGCCGT CGTGGGCGTG GCACCCGCAC >  $\mathcal{O}$ > ~~~~~ TTCGACTTCT AAGCTGAAGA TAGCGGCTCT ATCGCCGAGA BbsI ~~~~~ A E Eco57. 口

FIG. 3D

F1G.	SUBCLASS	
œ	CLASS	
AFFROVED	≿	DRAFISMAN

	I	}	D C	GC
$\vdash$	BsiWI	~ ~ ~ ~ ~ ~ ~ ~ ~	TA	AT
I K R T	Щ	}	ATTAAACGT	TAATTTGCAT
X			TAZ	ATT
Н				
P T F G Q G T K V E			GAAAGTTGAA	CTTTCAACTT
$\gt$			AGI	'TC?
X			GAA	CTI
H			TAC	ATG
Ü			GGG	CCC
Ø	MscI	<pre></pre>	GCCAGGGTAC	CGGTCCCATG
U	ΣS	\ \ \	ΤĞ	AC
Įт			CTT	GAA
H			CCGACCTTTG	GGCTGGAAAC
വ		-	S	GG

#### FIG. 3E

0.G. FIG.	CLASS SUBCLASS	
APPOVED	ßY	DRAFTSKAH

田	GA CT	٨.	ATC	⊱
TQSPATLSLSPGE Banii	CTGAGCCTGT CTCCGGGCGA GACTCGGACA GAGGCCCGCT	LSCRASQSVSSY PstI	AGCAGCTATC TCGTCGATAG	Q Q K P G Q A P R L L I Y Sexai
വ	0 0 0 0 0	Ω	CAG	E S C
*0	CT( GA(	Ŋ	AG( TC(	Å
O)	G T C A	S	G G G	니
니	CCT GGA	5	rga act	以
W	AG(	F-0	, C C C C C C C C C C C C C C C C C C C	Д
니	CTG	O)	GAG	
<u>د</u>		Q	A E	4
<u>.</u> '	GA(	S	) ) ) ) )	Q
A;	9 000 000	Ø	CGA	A A H
д Н	~ O Ø		~ GAGCGAGCCA GAGCGTGAGC CTCGCTCGGT CTCGCACTCG	о С С С
SBanII	TGACCCAGAG CCCGGCGACC ACTGGGTCTC GGGCCGCTGG	K H	}	\ <u>/</u>
О	AGA TCI	C Pst H	CTGAGCTGCA GACTCGACGT	
드	) () () ()	W	AGC ICG	Q
ζ.	GA(	ı	TG.	Q
ı				
>	GAC	[-1	GAC	W Kp
I SRV	~~~~~ GATATCGTGC CTATAGCACG	R A T	ACGTGCGACC TGCACGCTGG	L A W Y Kpn]
D I ECORV	~~~~~ GATATC CTATAG	召	CGJ  GC2	74
	≀ ტ ტ		4 H	H

FIG. 3F

	los	
FIG.	SUBCLASS	
	CLASS	
APPROVED	ВY	DRAFTSMAM

CCAGCAGAAA CCAGGTCAAG CACCGCGTCT ATTAATTTAT GGTCGTCTTT GGTCCAGTTC GTGGCGCAGA TAATTAAATA	A R F S G S G Bamhi	GCGCGTTTTA GCGGCTCT CGCGCAAAAT CGCCGAGA	S S L E P E D Eco57I	BbsI	GATTTTACCC TGACCATTAG CAGCCTGGAA CCTGAAGACT
CCAGGTCAAG GGTCCAGTTC	G V P SanDI	TGGGGTCCCG ACCCCAGGGC	·H		TGACCATTA ACTGGTAAT
CCAGCAGAAA GGTCGTCTTT	A T	GCCGTGCAAC CGGCACGTTG	D F T		GATTTTACCC CTAAAATGGG
TGGCGTGGTA ACCGCACCAT	S S	GGCGCGAGCA	S D	BamHI	ATCCGGCACG TAGGCCGTGC

FIG. 3G

.G. F1G.	CLASS SUBCLASS	
APPROVED O.C. F	ದ ⊁8	DRAFTSHAN

MSCI CTGGAAACCG Ġ [I  $\vdash$ CAGCATTATA CCACCCGCC GTCGTAATAT GGTGGGGGGGGG Д Д  $\vdash$  $\vdash$ TAAACGTACG ATTTGCATGC BsiWI ~ ~ ~ ~ ~ ~ ~ ~  $\alpha$ 口 又 Ø AAGTTGAAAT TTATTGCCAG AATAACGGTC TTCAACTTTA Н Q 口  $\mathcal{O}$ × CAGGGTACGA AACGCCACAT GTCCCATGCT TTGCGGTGTA  $\vdash$ Ċ MscI Þ . О ſΞι

FIG. 3H

0.G. FIG.	CLASS SUBCLASS	
AFPROVED	, , , o	DRAFTSMAH

CGGACCCGCT ATATCGTCGT 口 TATAGCAGCA GCCTGGGCGA Д ഗ  $\mathcal{O}$ Д ഗ Ц O ഗ AGAAACCAGG CTGGCGGTGA GACCGCCACT CTCGCACGAC GAGCGTGCTG  $^{\circ}$ SexAI >Д K 又 ഗ 口 O CTTCGTCGGT TGACCCAGAG CCCGGATAGC GAAGCAGCCA TGGTACCAGC ACTGGGTCTC GGGCCTATCG Q ഗ Ø ഗ О KpnI ഗ Д 3 BanII ~~~~~ 召 TAATTGACGT ATTAACTGCA CTATCTGGCG ഗ PstI A  $\mathcal{O}$ Q Ы Z Е  $\succ$ Н Z ACAACAAAA GATATCGTGA CTATAGCACT ACGTGCGACC TGCACGCTGG Z  $\vdash$ X Þ ECORV ~~~~ Z 召 Z

FIG. 31

TCTTTGGTCC AGTCGGCGGC

ACCATGGTCG

GATAGACCGC

TGTTGTTTT

G FIC	CLASS SHOOL SE	SCHOOLASS	
APPROVED O	PY (21.7)	DRAFTSMAH	

മ്പ CTTTCGCCCC AGGGCCTAGC TAAAGCAGGG GAAAGCGGGG TCCCGGATCG  $\vdash$ W  $\Box$  $\vdash$ S Д  $\succ$ Н SanDI TACCCTGACC ATGGGACTGG 工  $\vdash$ Ç Ø 口 ഗ  $\circ$  $\vdash$ 口  $\mathcal{O}$ CGTGACTAAA GCACTGATTT TITATIGGGC AICCACCCGI TAGGTGGGCA щ 召  $\Box$  $\vdash$  $\vdash$ ഗ > Ö TCTGGATCCG AAATAACCCG AGACCTAGGC K Þ BamHI ~ ~ ~ ~ ~ ~ ഗ 3 >  $\mathcal{O}$ ×  $\Box$ S AAAATCGCCG TTTGATAATT AAACTATTAA TTTTAGCGGC 口 AseI Ç ď ഗ O 口 幺 با

FIG. 3J

BbsI

~~~~~

Eco57

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | ≻ | DRAFTSHAH |

GCCAGCAGCA TTATACCACC CGGTCGTCGT AATATGGTGG GTACG CTTTAATTTG CATGC BsiWI ~~~~~ 召 GAAATTAAAC GCCAGCAGCA × Н 口 ATGCTTTCAA TGCAAGCTGA AGACGTGGCG GTGTATTATT CACATAATAA TACGAAAGTT \gt 区 \vdash TTGGCCAGGG GGCGGCTGGA AACCGGTCCC ACGTTCGACT TCTGCACCGC ᠐ Ø ~~~~~ MscI Ċ ſщ CCGCCGACCT \vdash Д Д

FIG. 3K

| O.G. FIG. | P G Q R
SexAI | CAGGTCAGCG | Ω
⊠
⋈ | AGCAACTATG
TCGTTGATAC | LIY | GCTGATTTAT
. CGACTAAATA |
|----------------------------------|------------------|--|------------------------|--|-----------------------|--|
| APPROVED O.G. F1G. BY CLASS SUBC | Ω
Ω
Ω | AGTGGCGCAC
TCACCGCGTG | N
H | CAACATTGGC
GTTGTAACCG | A P K L
Bbel | CGCCGAAACT
GCGGCTTTGA |
| | ∆
∆ | GCCTTCAGTG
CGGAAGTCAC
Eco57I | ω
ω | GCAGCAGCAG
CGTCGTCGTC | P G T XmaI B | AC
TG |
| | QSVLTTQP | CAGAGCGTGC TGACCCAGCC
GTCTCGCACG ACTGGGTCGG | V T I S C S G
BSSSI | TGTGACCATC TCGTGTAGCG
ACACTGGTAG AGCACATCGC | V S W Y Q Q L
KpnI | TGAGCTGGTA CCAGCAGTTG
ACTCGACCAT GGTCGTCAAC |

FIG. 4A

| F1G. | SUBCLASS | |
|----------|----------|------------|
| 0.6 | SSYTC | |
| APPAGVED | 놂 | ORAFTSMAIL |

凶 TCGCTTCTGC CGCCTAGGTT AGCGAAGACG GCGGATCCAA BbsI BamH1 口 \mathcal{O} S ഗ GTCGTAATAT GGTGGGCGG GATCGTTTTA CTAGCAAAAT GGGCCTGCAA AACGCTAATG CCCGGACGTT \circ ſτι 口 召 \mathcal{O} \Box TTGCGATTAC AGGCGTGCCG TCGCAGGGAG TCCGCACGGC E CAGCATTATA Д H口 Þ \mathcal{O} Bsu36I \Box AGCGTCCCTC AGCGCGAGCC TCGCGCTCGG Y C Q TTATTGCCAG S S Д Ø 召 S Ø GATAACAACC TTCGCCGTGG CTATTGTTGG AAGCGGCACC TTCGCCTAAT AAGCGGATTA \vdash \mathbb{Z} $^{\circ}$ Z ഗ \Box 口

FIG. 4B

| 0.6. FIG | CLASS SUBCLASS | |
|----------|----------------|-----------|
| AFPROVEO | 76 | DRAFTSMAH |

| MscI | ? ? | TCTTGGC
AGAACCG | |
|------|------------------------|--------------------------|---|
| HpaI | <pre> ? ? ? ? ? </pre> | AGTTAACCGT
TCAATTGGCA | L |
| | | CACGA
GTGCT | |

 Ω

Ц

 \vdash

 \Box

×

 \vdash

 \mathcal{Q}

 \mathcal{O}

| FIG. | S SUBCLASS | |
|-----------------|------------|------------------|
| AFPROVED C.G. | DY CLASS | DRAFTSMAH |

GGCTATAACT CCGATATTGA ഗ AGCGGCTCAC CAGGTCAGAG TCGCCGAGTG GTCCAGTCTC ACTGATGATT Н Z Ø Ξ \succ Ċ П G SexA Д AGGCGCCGAA CGATGTGGGC GCTACACCCG \bowtie C ഗ Д BbeI \mathcal{O} Ø \Box S 区 GTACTAGCAG AGCACATGCC CATGATCGTC AGCTTCAGTG TCGAAGTCAC Eco57I CATCCGGGA S C XmaI 2222 ഗ ഗ Д \vdash Þ 口 r TCGTGTACGG CAGAGCGCAC TGACCCAGCC ACTGGGTCGG GTACCAGCAG Д Ŏ \vdash Ø Ø S C BssSI ~ ~ ~ ~ ~ ~ ~ KpnI \vdash 니 GTAATGGTAG CATTACCATC ATGTGAGCTG GTCTCGCGTG Z HK, S E S \triangleright HQ \succ

FIG. 4D

TGACTACTAA

TCCGCGGCTT

GTAGGGCCCT

CATGGTCGTC

TACACTCGAC

| 0.G. FIG. | CLASS SUBCLASS | |
|------------------|----------------|-----------|
| APPROVED O.G. F. | >-
60 | ORAFTSHAH |

BbsI CGGACACAAA S AATCGCCTAG CAAGCGGAAG ATCGCCGGAC GTTCGCCTTC BamHI TTAGCGGATC ~ ~ ~ ~ ~ ſщ Ç K ഗ Д O ഥ ATACCACCCC TATGGTGGGG TAGCGGCCTG AGCAACCGTT TCGTTGGCAA Д 口 召 E r Z H S ഗ \succ GCCTGACCAT CGGACTGGTA GCAACCGTCC CTCAGGCGTG CGTTGGCAGG GAGTCCGCAC CAGCAGCATT GTCGTCGTAA \mathbf{H} \gt 口 \vdash \mathcal{O} O P S Bsu36I 口 Ø ഗ TTGTGGCGCT AACACCGCGA AATAATAACG TTATTATTGC \mathcal{O} D 召 \vdash Z \succ Z ഗ ATACTACACT TATGATGTGA GTTTTCGCCG CAAAAGCGGC ACGAAGCGGA TGCTTCGCCT C Ø ഗ BamHI D E BbsI 又

FIG. 4E

| 0.6. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| AFFRONED | 'n | DRAFTSMAH |

| | Ų | |
|--|----------------------------------|------------|
| GCAAGAACCG | CCGCCGCCGT GCTTCAATTG GCAAGAACCG | CCGCCGCCGT |
| CGTTCTTGGC | GGCGGCGCA CGAAGTTAAC CGTTCTTGGC | GGCGGCGGCA |
| 5 5 7 7 7 8 7 8 8 9 9 10 </td <td>? ? ? ?</td> <td></td> | ? ? ? ? | |
| MACE | npar | |

 \vdash

 \bowtie

 \vdash

 \mathcal{Q}

 \mathcal{O}

Ç

| _ | | |
|------------|----------------|-----------|
| .0.6. FIG. | CLASS SUBCLASS | |
| APPROVED | չ | DRAFTSMAN |

 \vdash GTCCAGTCTG ATGCGCTCGA CAGGTCAGAC TACGCGAGCT \Box ഗ O \Box K, ~~~~~~ Ċ \succ SexAI TCGCAACGTG CCCGCTATT GGGCGATAAA AGCGTTGCAC Н × K > \Box 口 \mathcal{O} ഗ CGCTACGCGA GCGATGCGCT CGGAAGTCAC Ц Д Eco57I ~~~~~ Þ BbeI ഗ Ø Д Ø Ç AGCACATCGC ACTGGGTCGG TCGTGTAGCG TGACCCAGCC Д \mathcal{Q} XmaI ഗ Q Д BSSSI \mathcal{O} ~~~~~~ E K S 口 GCGCGCATAG AGCTATGAAC TCGATACTTG CGCGCGTATC \circ H 臼 O<sub>1</sub> 召 \triangleright KpnI K S 3

FIG. 4G

A,

口

 \Box

口

Þ

Q

 \vdash

C

S

Н

 \vdash

Ы

 \vdash

Þ

 \vdash

Z

Bbs.

APPROVED O.G. FIG.

BY CLASS SUBCLASS
ORAFISHAN

TTATGATGAT AATACTACTA AAGACCACTA TTCTGGTGAT CAGGCGCCAG GTCCGCGGTC GAAACCCGGG CTTTGGGCCC GGTACCAGCA

 \mathcal{O} TITAGCGGAT CCAACAGCGG GGTTGTCGCC ഗ abla~~~~~ BamHI ഗ AAATCGCCTA Ç ഗ ſτι GGGCCTTGCG CCCGGAACGC 召 口 Д CCTCAGGCAT GGAGTCCGTA Ç ~~~~~ Bsu36I Д TCTGACCGTC AGACTGGCAG α О ഗ

FIG. 4H

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVEG | <u>کے :</u> | DRAFTSMAH |

GACGAAGCGG CTGCTTCGCC TTAGCGGCAC TCAGGCGGAA AATCGCCGTG AGTCCGCCTT CAACACCGCG ACCCTGACCA TGGGACTGGT GTTGTGGCGC

TGGCGGCGGC CGCCTGTGTT TATACCACCC D Y Y C Q Q H ATTATTG CCAGCAGCAT GGTCGTCGTA TAATAATAAC

T K L T V L G
HpaI MscI

ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G FIG. 41

| ٣١G. | SUBCLASS | |
|----------|----------|------------|
| 0.6. FI | CLASS | |
| ARPROVED | ≻ | DRAF TSHAN |

| W | ωņ | | A L | - h | ပ္ ပ္ |
|------------------|--------------------------------|------------------|----------------------------|------------------|--|
| S | CGGGCAGCAG
GCCCGTCGTC | Ø | AGCTATGCGA
TCGATACGCT | O | GATGGGCGGC
CTACCCGCCG |
| | CA(| · > | AT(
TA(| Ŋ | , |
| Ŋ | 0
0
0
0
0 | ഗ | CGP | Ξ | ATG
TAC |
| Д | | | | _ | |
| × : | GTGAAAAAAC
CACTTTTTTG | W | CACTTTTAGC
GTGAAAATCG | M | GTCTCGAGTG
CAGAGCTCAC |
| | AA | Įτι | TT'
'AA' | L E
XhoI | ~~~~~
CTCGAG
GAGCTC |
| V K K | GAA | E-I | CTT | u X | ~~~
GAG
GAG |
| \triangleright | GT(
CA(| | CA(
GT(| rh | GT |
| ഥ | A.A.
T.T | Ŋ | φ
υ | Ċ | ტ () |
| | TGGCGCGGAA
ACCGCGCCTT | H
田
Q | CCTCCGGAGG | Q | ~~~~~
CCTGGGCAGG
GGACCCGTCC |
| IJ
♥ | 0
0
0
0
0
0 | S
G
BspEI | ~~~~~~
TCCGGA
AGGCCT | Ŋ | ~ 0 0
0 0 0
0 0 0 |
| Ċ |)
(GG(| 52 P-1 | ~
CTO:
GA(| Д., | ×
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH |
| Ω | | ø | | A
BstXI | } |
| 8
0
1 | ~~
TGGTTCAGTC
ACCAAGTCAG | X
A | AGCTGCAAAG
TCGACGTTTC | BS. | GCGCCAAGCC |
| Q | rca
Agt | | SCA
CGT | Q | ×××
AAC
ATT |
| > | GT | Ö | CT(| K | :
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ |
| ДΗ | | Ŋ | AG | | 99 |
| Q
Mfei | CAAT
GTTA | > | T.
A.C. | \triangleright | GT
CA |
| OZ | ~ ~
GGT | × : | AAG
ITC | M | IGG
ACC |
| \triangleright | GT(
CA(| V K V | 'GA. | N N | , CG, |
| Q | CAGGTGCAAT
GTCCACGTTA | \triangleright | CGTGAAAGTG
GCACTTTCAC | H | TTAGCTGGGT
AATCGACCCA |
| | | | 0 0 | | 1 |

FIG. 5A

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------------|----------------|-----------|
| APPROVEU O.G. | >
#23 | DRAFISHAM |

TACCTTGACT CGCGTCTTCA AAGTCCCGGC ATTATTGCGC GCGTTGGGGC ATGGAACTGA C 口 3 口 Q വ് Σ ~~~~~ ĹΤ BSSHI TAATAACGCG A Q K I GCGCAGAAGT CACCGCGTAT GTGGCGCATA K \mathcal{O} Þ \vdash TTTCGTGGTC CCGCTTGATG AAAGCACCAG ACGGCCGTGT TGCCGGCACA S > \vdash ~ ~ ~ ~ ~ ~ ~ ~ Z EagI Þ S Z, H 闰 ATCGCTTCTA TAATAAGGCT AAAAACCGTG TTTTTGGCAC TAGCGAAGAT ACCGCGGATG TGGCGCCTAC Д \Box 口 Ø ഗ \vdash GCAGCCTGCG CCACTGGTAA CGTCGGACGC GGTGACCATT 召 Н Д 口 ~~~~~~ V T BstEII ഗ ഗ

FIG. 5B

CGCAACCCCG

| · | | |
|----------|----------|-----------|
| FIG. | SUBCLASS | |
| 0.G. F | CLASS | |
| APPROVED | ≻
8 | DRAFTSMAR |

| ⊣ | A H
D D |
|--------------------------------|--------------------------|
| > | GTG
CAC |
| Y A M D Y W G Q G T L V T Styl | CCCTGGTGAC
GGGACCACTG |
| [-1 | |
| о
Н 3 | 000 |
| Styl | CCAAGG |
| G , | GGCCAAGGCA
CCGGTTCCGT |
| M | TGG
ACC |
| > · | TAT'
ATA |
| Ω | GGATTATTGG
CCTAATAACC |
| Z | AT |
| A. | 1900
1000 |
| | TTTATGCGAT
AAATACGCTA |
| Гц | |
| r) | 1990
1990 |
| Ω | GGCGATGGCT
CCGCTACCGA |
| ტ | 000 |
| | |

FIG. 5C

TCGATAATAT

ATGGAAATGG

GGAGGCCTAT

3

 \mathcal{O}

 Ξ

3

C

Ø

 \mathcal{O}

Д

ď

O<sub>i</sub>

召

 \triangleright

 \geq

二

 \boxtimes

AGCTATTATA

CCTCCGGATA TACCTTTACC

AGCTGCAAAG TCGACGTTTC

CGTGAAAGTG

GCACTTTCAC

| | SUBCLASS | | |
|----------|----------|-----------|---|
| (- | ន្ត | | |
| | 18 | | |
| 0 | CLASS | | |
| 10 | CLA | | |
| APPROVED | | DRAFTSMAH | İ |
| Versov | B | AFT | |
| | | 5 | |

ഗ CGGGCGCGAG GCCCGCGCTC Q G S Д CACTTTTTG GTGAAAAAC \vdash 又 ſτι × \vdash CGGCGCGGAA GCCGCCCTT \succ 口 BSPEI C K S \mathcal{O} Þ TGGTTCAGAG ACCAAGTCTC ഗ 又 Ø \mathcal{O} S Q MfeI CAGGTGCAAT GTCCACGTTA >O

GATGGGCTGG CTACCCGACC GTCTCGAGTG CAGAGCTCAC L E XhoI GGCGGTTCGG GGACCCGTCC CCTGGGCAGG BstXI CCGCCAAGCC TGCACTGGGT ACGTGACCCA

FIG. 5D

| | 01 400 | SUBCLASS | |
|----------|--------|-----------|--|
| APPROVED | 48 | DRAFTSHAM | |

A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC I N P N S G G T N Y ATTAACCCGA ATAGCGGCGG CACGAACTAC GTGCTTGATG TAATTGGGCT TATCGCCGCC

ATGGAACTGA GIGGCGCATA TACCTIGACT 团 Ξ CACCGCGTAT \succ Þ \vdash GGTCGTAATC CCAGCATTAG ഗ Н ഗ \vdash ACCCGTGATA TGGGCACTAT \Box α \vdash GGTGACCATG CCACTGGTAC Ξ ~~~~~ $V ext{T}$ BstEII

 \mathcal{O} 3 召 BSSHII Þ \gt EagI Ø \vdash 臼 ഗ 召 口 S S

TAATAACGCG CGCAACCCCG ATTATTGCGC GCGTTGGGGC TGCCGGCACA ACGGCCGTGT ATCGCTTCTA TAGCGAAGAT GCAGCCTGCG CGTCGGACGC

FIG. 5E

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------------|----------------|-----------|
| APPROVED O.G. F | <u>بر</u> | DRAFTSMAH |

| H | | AC | TG |
|-----------------------------------|-------------|------------|------------|
| \triangleright | | GTG | CAC |
| Y A M D Y W G Q G T L V T
Styl | | CCCTGGTGAC | GGGACCACTG |
| [| | ZA
C | Ę |
| D H | } | GG. | C_{C} |
| Q (
StyI | <pre></pre> | GGCCAAGGCA | CCGGTTCCGT |
| Ŋ | ′ | GGC | CCC |
| M | | TGG | ACC |
| \succ | | TAT | ATA |
| О | | GGATTATTGG | CCTAATAACC |
| Σ | | AT | TA |
| A | | GCG | CGC |
| | | TTTATGCGAT | AAATACGCTA |
| Įτι | | | |
| D
D | | <u> </u> | \CC(|
| О | | GGCGATGGCT | CCGCTACCGA |
| C) | | GGC | CCG |

FIG. 51

| F1G. | SUBCLASS | |
|------------|-------------|------------|
| ED 0.0. FI | CLASS | |
| APPROVED | <u>></u> | DRAF TSKAH |

Н GCTGGGTTTG ACGTCTGGCG TGCAGACCGC GGAAAGCCCT CGAGTGGCTG GACCTAAGCG GTCGGCGGAC CCTTTCGGGA GCTCACCGAC CGACCCAAAC 口 G \bigcirc Z ഗ \vdash 口 XhoI \vdash Д TAGCCTGTCC CTGGTGAAAC GACCACTTTG ATCGGACAGG ഗ 区 K \Box > X ഗ 口 C 9500995009 TGGACATGGA AAAGGCCTAA CAGCCGCCTG TTTCCGGATT TGAAAGAAAG CGGCCCGGCC ഥ D S BSPEI Д BstXI Д Д Ç Ø L ACTTTCTTTC CCTGACCCTG ACCTGTACCT CTGGATTCGC ഗ 召 Е 闰 Н \mathcal{O} 又 3 \vdash O Mfei CAGGTGCAAT GTCCACGTTA TTGGCGTGGG GGACTGGGAC AACCGCACCC \mathcal{O} П E \mathcal{O} Ц Q >

FIG. 5G

| .G. F1G. | CLASS SUBCLASS | |
|------------|----------------|-----------|
| APPROVED : | | DRAFTSMAH |

| W D D K Y Y S T S L K T Mlui | TATAGCACCA GCCTGAAAAC
ATATCGTGGT CGGACTTTTG | N Q V L T | AAATCAGGTG GTGCTGACTA
TTTAGTCCAC CACGACTGAT | DPVDTATYYCARW
BSSHII | CCTATTATTG CGCGCGTTGG GGATAATAAC GCGCGCGCAACC |
|------------------------------|--|------------------------------|--|-------------------------|--|
| W D D K Y | ATTGGGATGA TGATAAGTAT
TAACCCTACT ACTATTCATA | I S K D T S K N Q V L T NspV | ATTAGCAAAG ATACTTCGAA
TAATCGTTTC TATGAAGCTT | D P V D T A | GGACCCGGTG GATACGGCCA
CCTGGGCCAC CTATGCCGGT |
| A L H | GCTCTGATTG A
CGAGACTAAC I | R L T
MluI
~~~~ | GCGTCTGACC A | M
L
M | TGACCAACAT G
ACTGGTTGTA C |

FIG. 5H

| | . j. | | |
|----------|--|-----------|--|
| APPROVED | | DRAFISHAN | |

| > | | 'GT | CA | | | | | |
|---------------------------------|----------|-------------|------------|-------|------|---------------------------------------|------------|------------|
| Ä | | CTG | GAC | | | | | |
| T L. V | , | GCACCCTGGT | CGTGGGACCA | | | | | |
| r
G | ↓ | | | | | | | |
| ο;
Θ | Styl | TGGGGCCAAG | ACCCCGGTTC | | | | | |
| Ŋ | ? | 999 | | | | | | |
| M | | TGG(| ACC | | | | | |
| \succ | | TAT | ATA | | | | | |
| Ω | | GAT | CTZ | | | | | |
| F Y A M D Y W G Q G | | GATGGATTAT | CTACCTAATA | | - | • | | |
| ø | | SG | D
D | | | | | |
| × | | TAT | ATA | | | | | |
| Гц | | GCTTTTTATGC | CGAAAATACG | ഗ | H | ? | TCAG | AGTC |
| Ŋ | | | | | BlpI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | |
| С
С
С
С
С
С
С | | GGCGGCGATG | CCGCCGCTAC | T V S | | ₹ | GACGGTTAGC | CTGCCAATCG |
| Ŋ | | GGC | CCG | ~ | | | GGJ | CCZ |
| ტ | | CCC | SCC | H | | | GAC | CTG |

FIG. 51

ഗ

| 1 | SUBCLASS | |
|------------|----------|-----------|
| 1. | 3 | |
| 9 | SE | - 1 |
| | | \neg |
| O | C1.A.SS | į |
| , | <u>ت</u> | |
| APPROVED ! | _ | DRAFTSMAN |
| PPR | <u>}</u> | 5 |
| 4 | | క |

CGGGCGGCAG TCGATACGCT GGTGAGCGCG CCACTCGCGC GCCGCCGTC AGCTATGCGA Q K \mathcal{O} ഗ C S Д CTGGTGCAAC GACCACGTTG ATGGAAATCG TACCTTTAGC GTCTCGAGTG CAGAGCTCAC 3 ഗ O ~~~~~ L E XhoI ſщ \vdash Ы C 9009009009 GGAGGCCTAA CGCGGTTCGG GGACCCTTCC CGGCGGCGGC GCGCCAAGCC CCTGGGAAGG щ CCTCCGGATT C S G Bspei 又 ~~~~~ C C C Д K ACCACCTTTC TGGTGGAAAG TCGACGCGCC ഗ Þ Þ 闰 Ø \mathcal{O} \gt 召 ഗ Q MfeI CTTCACGTTA GAAGTGCAAT GGACGCAGAC TGAGCTGGGT CCTGCGTCTG ACTCGACCCA \gt 口 3 വ് ഗ 口 口 Ξ

APPROVED O.G. FIG.
BY CLASS SUBCLASS
ORAFISMAN

召 TGAAAGGCCG CGCCTATCGC ACTITCCGGC GCGGATAGCG W Д T Y Y CACCTATTAT GTGGATAATA S G G S GCGGCGGCAG CGCCGCCGTC $^{\circ}$ ഗ TAATCGCCAT ATTAGCGGTA Ŋ

 Ξ Ø 口 Ы \vdash z S K NspV Z \Box ~~~~~ PmlI 召 ഗ \vdash ഥ

CACCCTGTAT CTGCAAATGA GACGTTTACT GTGGGACATA ATTCGAAAAA TAAGCTTTTT AGTGCACTAT TCACGTGATA AAAATGGTAA TTTACCATT

BSSHI EagI Þ \vdash 口 Þ 召 口 ഗ Z

G

3

召

ATTATTGCGC GCGTTGGGGC CGCAACCCCG TAATAACGCG ACGCCCGTGT TGCCGGCACA TGCGGAAGAT ACGCCTTCTA ACAGCCTGCG TGTCGGACGC

FIG. 5K

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVEO | 3 | ORAFISHAN |

| \vdash | | AC | TG |
|-------------------------------------|-------------|------------|------------|
| \triangleright | | GTG | CAC |
| F Y A M D Y W G Q G T L V T
Styl | | CCCTGGTGAC | GGGACCACTG |
| \vdash | | | |
| ρ
Ĺ | ? | GGG | טטט |
| G Q (
Styl | <pre></pre> | CAZ | GTJ |
| Ŋ | } | GGCCAAGGCA | CCGGTTCCGT |
| M | | TGG | ACC |
| \succ | | TAT | ATA |
| Ω | | GGATTATTGG | CCTAATAACC |
| Z | | AT | TA |
| Ø | | ישטטן: | CGC |
| ≻ | | TTTATGCGAT | AAATACGCTA |
| | | H | 33 |
| ტ
ი | | GGCGATGGCT | CCGCTACCGA |
| Д | | GA? | CTZ |
| ტ | | GGC | CCC |

FIG. 5

| F1G. | SUBCLASS | |
|---------|----------|---------------------------|
| 0.6 | S.A.SS | was begind allow a law or |
| AFFRDVE | >·
== | DRAFTSMAIN |

 \vdash CGAGCGAAAC TCGATAATAA × 口 O ഗ \mathbf{H} Ŋ Д AAAGGCCTCC GTCGTAATCG CTGGTGAAAC GACCACTTTG 3 S × L E XhoI Н > S 口 C ACCAGGCCCG TGGTCCGGGC C Ç S BSPEI X ~ ~ ~ ~ ~ ~ ~ Д O G Д \gt TGCAAGAAAG ACGTTCTTTC TGGACGTGGC ഗ \vdash 口 O \mathcal{O} Ø വ് \vdash Q MfeI GTCCACGTTA CAGGTGCAAT GGACTCGGAC \mathbf{H} П 3 S ഗ П Ø \geq

FIG. 5M

| G. FIG | CLASS SUBCLASS | |
|------------------|----------------|-----------|
| APROVED O.G. F | 25 | DRAFTSMAN |

AAACTGAGCA TTTGACTCGT GATTGGCTAT AAAGCCGGGT TTTCGGCCCA CTAACCGATA **? ? ?** O BstEI ഗ α G П S 3 又 × CCGAGCCTGA GGCTCGGACT GTTTAGCCTG GTCTCGAGTG CAGAGCTCAC CAAATCGGAC α 口 Ц BSSHI Q ഗ S ſщ Д GTTGATACTT CGAAAAACCA GCTTTTTGGT ATTTATTATA GCGGCAGCAC CAACTATAAT GGAGCTGGAT TCGCCAGCCG CCTGGGAAGG GGACCCTTCC GTTGATATTA O Z Z \succ X Z NspVÞ EagI ഗ CGCCGTCGTG CAACTATGAA AGCGGTCGGC H \vdash \vdash S \Box C Þ S CCTCGACCTA TAAATAATAT GACCATTAGC CTGGTAATCG D ഗ \vdash T I BstEII \gt ~ ~ ~ ~ HS

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | . 8 | DRAFTSMAN |

| TTGGGGCCGCC
AACCCCGCCG | ZEYI V T V SEYI | TGGTGACGGT
ACCACTGCCA |
|---------------------------|-----------------|--------------------------|
| ATTGCGCGCG
TAACGCGCGC | Q G T 1 | CAAGGCACCC |
| GCCGTGTATT
CGGCACATAA | D M | TTATTGGGGC
AATAACCCCG |
| GGCGGATACG
CCGCCTATGC | D M A J | ATGCGATGGA
TACGCTACCT |
| GCGTGACGGC
CGCACTGCCG | D G F Y | GATGGCTTTT
CTACCGAAAA |

F/G. 50

TAGCTCAG

| 5 | SUBCLASS | |
|------------|----------|-----------|
| 10.0. FIG. | CLASS SU | |
| APPROVED | 7.0 | DRAFTSHAH |

CTACCCGTAA ഗ GCCCCCTTTC TCGATAACCT GATGGGCATT 3 口 Ċ \succ Ç \succeq S Д CACTTTTTG GTCTCGAGTG CAGAGCTCAC AAGGAAATGC TTCCTTTACG \geq GTGAAAAAAC \vdash \simeq L E XhoI щ × S > \mathcal{O} GCGCCAGATG CCTGGGAAGG CGCGGTCTAC GGACCCTTCC GCCGCGCCTT CAAGGCCTAT CGGCGCGGAA GTTCCGGATA \succ 口 S BSPEI 又 ~ ~ ~ ~ ~ ~ Q \mathcal{O} Ç Д BstX \mathcal{O} ACCAAGTCTC TGGTTCAGAG AGCTGCAAAG TCGACGTTTC ഗ \boxtimes 又 Q Ø \mathcal{O} 吆 ഗ ~~~~~~ O Mfer CTTCACGTTA TTGGCTGGGT GAAGTGCAAT CCTGAAAATT GGACTTTTAA AACCGACCCA Н \geq 又 \mathcal{O} \Box 口 H

FIG. 5P

APPROVED () (C. F.1G.

BY CLASS SUBCLASS

ORAFISMAN

CTTCAATGGA ATTATTGCGC GCGTTGGGGC TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT GAAGTTACCT C \geq \geq O K ſμ BSSHI CACCGCGTAT GTGGCGCATA TCTCCGAGCT ഗ Q Д \vdash S AAAGCATTAG TTTCGTAATC ACGGCCATGT ATGGGCAATA TACCCGTTAT ഗ Ξ വ് Q ഗ \vdash 又 AGCGAGCGAT TAAATAGGCC CGCTATCGCT AGCGCGGATA TCGCGCCTAT GCGATAGCGA \Box \Box ഗ S Q Þ ഗ
 C)
 GCAGCCTGAA GGTGACCATT CCACTGGTAA ATTTATCCGG 又 ᆸ ~~~~~ S BS ഗ

FIG.50

TAATAACGCG CGCAACCCCG

TGCCGGTACA

TCGCTCGCTA

CGTCGGACTT

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| AFPROVEO | 7.9 | DRAFTSMAN |

| | CCCTGGTGAC
GGGACCACTG |
|----------|--------------------------|
| | CA |
| ? | AGG
ICC |
| } | CA |
| ₹ | GGCCAAGGCA
CCGGTTCCGT |
| | TGG |
| | TAT! |
| | GGATTATTGG
CCTAATAACC |
| | SAT |
| | PGCC
ACGC |
| | TTTATGCGAT
AAATACGCTA |
| | TY |
| | 1GG(|
| | GGCGATGGCT
CCGCTACCGA |
| | 990 |
| | ~~~~ |

FIG.5R

| | •• | |
|---------------|----------|-----------|
| FIG | SUBCLASS | |
| NOVE C.C. FIG | CLASS | |
| AFPROVED | >
m | DRAFTSMAN |

AGCAACAGCG TCGTTGTCGC \vdash GCTCGGTTTG CGAGTGGCTG CGAGCCAAAC 니 ഗ O \geq Z S 口 S Xho. Д GACCACTTTG GGCGTGGCCT ATCGCACTCG TAGCGTGAGC CTGGTGAAAC ഗ 又 G \gt 召 ഗ 口 ~~~~~~~~~ G ACCAGGCCCG AAAGGCCTCT TTTCCGGAGA TGGTCCGGGC CAGTCTCCTG Д \bigcirc Д S G BSDE] 2222 μ ഗ G \bigcirc HACGTTGTCAG TGGACACGCT CTGGATTCGC ഗ TGCAACAGTC ACCTGTGCGA 召 D \bigcirc \mathcal{O} O \geq \vdash Q Mfei CAGGTGCAAT GTCCACGTTA GGACTCGGAC CCTGAGCCTG GCCGCACCTT \geq 口 3 S > Þ Ц Ø K

GCTCACCGAC

CCGCACCGGA

GTCAGAGGAC

GACCTAAGCG

| .16. | SUBCL ASS | |
|----------|-----------|-----------|
| 0.G. F16 | CLASS | |
| APPROVED | 7.0 | DRAFTSMAH |

TTATTGCGCG GTCAAATCGG AATAACGCGC CAGTTTAGCC TTGCTAATAC GCCACTCGCA ${ t BssHII}$ ഗ ш >Ø D AAGCTTTTTG TTCGAAAAAC GCCGCCACAT CGGCCGTGTA AACGATTATG Z Д NspVEagl ~~~~ Þ ഗ \vdash TGGGCCTATG CCGGAAGATA GGCCTTCTAT ACCCGGATAC CCGGCATGGA TAATAGCATC GTTTACCATA \vdash \Box О \geq 口 Д X Д Z TAATGGTAGT CAGCGTGACC GTCGCACTGG Y R S ATTATCGTAG ATTACCATCA \vdash BsaBI \gt ഗ CTTTTCGGCC TGCAACTGAA G R T Y GGCCGTACCT GAAAAGCCGG ACGTTGACTT ${\mathbb Z}$ 召 口 ഗ Ø X Д

FIG. 5T

| | | _ | |
|-----------|-----------------|-----------|--|
| 914 9 Dic | CLASS ISHBOLACE | - | |
| APPROVED | ₩ | DRAFTSMAR | |

| H | AC
TG | | | | |
|---------------------|--|------------------|---------------------------------------|------------|---------------------------|
| р
Б * | 000
000 | | | | |
| Styl | GCCAAGGCAC
CGGTTCCGTG | | | | |
| O | | | | | |
| M | GATTATTGGG
CTAATAACCC | | | | |
| > i | TATA | | | | |
| Ω | GAI | | | | |
| Ξ | ATG
TAC | | | | |
| K. | 909
080 | | | | |
| D G F Y A M D Y W G | GCGATGGCTT TTATGCGATG
CGCTACCGAA AATACGCTAC | | | | |
| ĹΤΙ | TT | , H | ? | AG | CE |
| CD | 000 | BlpI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | CTC | G A G |
| Ω | GCGATGGCTT
CGCTACCGAA | V S S V | } | GTTAGCTCAG | CAPTCGAGTC
TTCAGCTAGTC |
| | 9
9
9 | \triangleright | | ĞŢ | 5 |
| R W G G | 5
5
5
5
5
5
5
7 | E | | \CG | 7 |
| O H | 999 | L V T | | IGA | ACT |
| MH | FJ
AC | _ | | ĞĞ | |
| R W
BssHII
~ | CGTTGGGGCG
GCAACCCCGC | H | | CCTGGTGACG | しせしてないしなせせ |

- O1K1 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

FIG. 6A

APPROVED O.C. FIG.

BY CLASS SUBCLASS
ORAFISHAN

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- **O3K5** 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- **O3K6** 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAAAAACTATCTGGCGTGGTACCAG
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC-3'
- **O1L1** 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- **O1L2** 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCGTCCCGGGCAACTGC -3
 O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

FIG.6B

APPROVED O.G. FIG.
BY CLASS SUBGLASS
DRAFISMAH

- **O1L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- **O3L2** 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- **O3L6** 5' CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCCCGGT-TTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

FIG. 6C

- **O1AH3** 5'- GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAGGGTC -3'
- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCCA-AAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 '- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGGT-TTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3 '
- **O1BH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGATATACCTT-TACCAGCTATTATATGCACTGGGTCCGCCAAGCCCCTGGGCAGGCTC -3 '
- **O1BH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3'
- **O1BH5** 5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

FIG. 6D

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- **O3H1** 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCGC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- **O3H4** 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGAGG-CAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

FIG. 6E

APPROVED O.G. FIG.

BY OLASS SUBCLASS
ORAFISMAN

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA ATTG -3'
- **O5H2** 5 ' CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3 '
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5 ' GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3 '
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTGGCG-3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC-3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- **OCLK1** 5'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCGCCGACCTTTGGCCAGGGTAC -3'

FIG. 6F

APPROVED O.G. F.IG.
BY GLASS SUBCLASS

OCLK2 5'- GCGAAAAATAAACACGCTCGGAGCAGCCACCG-

- TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
 OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACAACTGAAAAGCGGCACGGCGAGCGTGGTGTGCCTGCTG -3'
 OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGCTTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
 OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAGCCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
 OCLK6 5'- GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGGTGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG 3'
- **OCLK7** 5'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- **OCLK8** 5'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- **OCH1** 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- **OCH3** 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- **OCH5** 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- **OCH6** 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- **OCH7** 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- **OCH8** 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTCCTCGGTTTATGG -3'

FIG. 6G

| | 38 | \neg |
|---------------|----------|------------|
| . F1G. | SUBCLASS | |
| oven (0.6. FI | CL.ASS | |
| APPROVED | ;-
ca | DRAFTSMALL |

Q 口 Д ഗ Д Д 屲 HH ഗ Д Þ Þ \gt BsiWI

CGCTACTTGT TITCCGCCGA GCGATGAACA AAAGGCGGCT CIGCICCGAG CGIGITIATI GACGAGGCTC GCACAAATAA CGTACGGTGG GCATGCCACC

CCGTGCCGCT CGCACCACAC GGACGACTTG TTGAAATAG G T A S V V C L L N GGCACGGCGA GCGTGGTGTG CCTGCTGAAC TGACTTTTCG

W K V D N A L Q S G TGGAAAGTAG ACAACGCGCT GCAAAGCGGC ACCTTTCATC TGTTGCGCGA CGTTTCGCCG GCGCACTICG CTITCAAGIC CGCGTGAAGC GAAAGTTCAG 团

AGCAAAGATA GCACCTATTC TCGTTTCTAT CGTGGATAAG ഗ × TTTCGCACTG GCTTGTCCTA AACAGCCAGG AAAGCGTGAC CGAACAGGAT 闰 Ŋ 臼 TTGTCGGTCC O W

FIG. 7A

| G. FIG. | CLASS SUBCLASS | |
|------------|----------------|-----------|
| APPROVED O | <u>ن</u> | DRAFTSMAH |

GGATTATGAA AAACATAAAG ACTCGTTTCG CCTAATACTT TTTGTATTTC 出 区 团 × L S S T L T L TCTGAGCAGC ACCCTGACCC ' AGACTCGTCG TGGGACTGGG

GTAGTTCCAG ACTCGTCGGG CCACTGATTT Д CATCAAGGTC TGAGCAGCCC ഗ ഗ П С С ACATACGCAC GCTTCACTGG TGTATGCGTG CGAAGTGACC 口

S F N R G E A

StuI

SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

FIG. 7B

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| 0.6 | CLASS | |
| APPROVED | }-
80 | DRAFTSMAN |

ഗ ഗ Д Þ 口 ρ ſΞι S Д Ç 凶 E SalI ഗ Þ

AAGGCGACCG AGGCTCGTCG GACCAAAGGT CCAAGCGTGT TTCCGCTGGC TCCGAGCAGC CTGGTTTCCA GGTTCGCACA CGAGTCGCAG GCTCAGCGTC

CCGACGGACC AATTTCTAAT GGCTGCCTGG ပ TTTTCGTGGT CGCCGCCGTG CCGACGGGAC AAAAGCACCA GCGGCGCAC GGCTGCCCTG <u>ෆ</u> ഗ ഗ

CCAGTCACCG TGAGCTGGAA CAGCGGGGCG CTGACCAGCG GGTCAGTGGC ACTCGACCTT GTCGCCCCGC GACTGGTCGC Ċ ഗ \geq TTTCCCGGAA AAAGGGCCTT

GIGCIGCAAA GCAGCGGCCI GIAIAGCCIG CACGACGITI CGICGCCGGA CAIAICGGAC Ċ ഗ ഗ GAAAGGCCGC CTTTCCGGCG ഥ CGCACGTATG GCGTGCATAC

FIG. 7C

| FIG.
SUBCLASS |
|-----------------------------|
| |
| 0.0. |
| APPAGVED
BY
DRAFTSMAN |

AATCCGTGAG TCTGGATATA ⊣ ᠐ TCGTCGCAAC ACTGGCACGG CTCGTCGTCG 7 T V P S S S T TGACCGTGCC GAGCAGC Ŋ

× TIGGIATITG GCICGIIGIG ഗ Д AACGTTGCAC

EPKSEF\*
ECORI H

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA FIG. 7D

| APPROYED | APPROVED O.G. FIG. |
|-----------|--------------------|
| Ya | CLASS SUBCLASS |
| DRAFTSHAN | |

| | SUBCLASS | |
|-------------------|----------|-----------|
| F 6. | | |
| 0.6 | CLASS | |
| APPROVED D.G. FIG | >-
50 | DRAFISMAN |

BbsI

| CCCCGCCTGT
GGGGCGGACA | Dralli
~~~ | TTTCGGCGTG | | GGCGAACAAA
CCGCTTGTTT | CCGTGACAGT
GGCACTGTCA |
|--------------------------|-----------------------------------|-----------------------|------------------|--|--------------------------|
| TACCA
ATGGT | | ACCGGTCGGC 7 | | | TATCCGGGAG (ATAGGCCCTC (|
| TTGCCAGCAG
AACGGTCGTC | HDal
~~~~~~~
OH HAAAAAAAAAA | CCGTGCTTCA ATTGGCAAGA | | GCTGTTTCCG CCGAGCAGCG AAGAATTGCA
CGACAAAGGC GGCTCGTCGC TTCTTAACGT | TAGCGACTTT
ATCGCTGAAA |
| CGGATTATTA
GCCTAATAAT | HDall
 | CCGTGCTTCA | | GCTGTTTCCG
CGACAAAGGC | TGTGCCTGAT
ACACGGACTA |
| GAAGACGAAG
CTTCTGCTTC | | CAAACCGCCG | DraIII
~~~~~~ | CGAGTGTGAC
GCTCACACTG | GCGACCCTGG
CGCTGGGACC |
| \leftarrow I | π
- | 1 | | 101 | 151 |

FIG. 7F

StuI

| 0.6. F1 G. | CLASS SUBCLASS | |
|-------------------|----------------|-----------|
| APPROVED | ት | DRAFTSMAN |

| GAGACCACCA | CTATCTGAGC
GATAGACTCG | | GCCAGGTCAC
CGGTCCAGTG |
|---|--------------------------|-------|--------------------------|
| GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA | CGGCCAGCAG | | AGCTACAGCT GCCAGGTCAC |
| CGTCTATCGT CGGGGCAGTT CCGCCCTCAC CTCTGGTGGT | GCCGGTCGTC | | TCGATGTCGA CGGTCCAGTG |
| GCCCCGTCAA | AACAAGTACG | RleAI | GTCCCACAGA |
| CGGGGCAGTT | TTGTTCATGC | | CAGGGTGTCT |
| GCAGATAGCA GCCCCGTCAA | ACAAAGCAAC AACAAGTACG | | AGCAGTGGAA |
| CGTCTATCGT CGGGGCAGTT | TGTTTCGTTG TTGTTCATGC | | TCGTCACCTT |
| GGCCTGGAAG | CACCCTCCAA | | CTGACGCCTG |
| CCGGACCTTC | GTGGGAGGTT | | GACTGCGGAC |
| 201 | 251 | | 301 |

FIG. 7G

| | 88 | |
|-----------------|----------|-----------|
| F1G. | SUBCLASS | |
| 10.G.F | CLASS | |
| APPROVED 0.G. F | >-
cs | DRAFTSMAH |

GCATGAGGGG AGCACCGTGG AAAAACCGT TGCGCCGACT GAGGCCTGAT CGTACTCCCC TCGTGGCACC TTTTTTGGCA ACGCGGCTGA CTCCGGACTA 351

Sphī

401

AAGCATGC TTCGTACG

FIG. 7H

APTROVED O.G. FIG.

BY CLASS SUBCLASS
ORAFISKAN

M24: assembly PCR

M24-A:

GAAGACAAGCGGATTATTATTGCCAGCAGCATTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B:

CAATICITCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-GAACGGTTAACTTCGTGCCGC

M24-C:

CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-TTTATCCGGGAGCCGTGACA

FIG. 71

| 0.6. FIG. | CLASS SUBCLASS | |
|------------|----------------|------------|
| APPROVED C | 1.0 | DRAFTSMA:: |

M24-D:

TGTTTGGAGGGTGTGGTGTTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-GCCACTGTCACGGCTCCCGG

M24-E:

CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F:

GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-GACCTGGCAGCTGTAGCTTC

FIG. 7J

| F1G. | SUBCLASS | |
|------------------|----------------|------------------|
| 0.6. F | CLASS | |
| APPROVED 0.G. F. | > - | DRAFTSMAM |

Д AATGGCAACG AGAAGTGGGG TTACCGTTGC TCTTCACCCC \mathcal{O} \vdash S ſΞι SapI 口 Ц > Ц Q Mfei Д 口 CGTGATAACG TGACCGTGAG GCACTATTGC ACTGGCACTC \gt 口 闰 K Д 口 × K \succ Н \Box \vdash Þ ß TACTTTGTTT ATGAAACAAA 又 Q \vdash × \gt Σ

BSPEI CTTTCGCCGC GGCAGCCTGC GTCTGAGCTG CGCGGCCTCC ഗ Ø K CGTTAACCAC GCAATTGGTG \mathbf{C} ഗ Ц α TTCTACTTCA AAGATGAAGT 口 S G GCCGACTACA CGGCTGATGT GCAACCGGGC G Д Q GCGGCCTGGT CGCCGGACCA TGTTACCAAA ACAATGGTTT \gt Ц Ç C

G Д BstXI Ø Ø 召 \gt ⋈ S Σ K \succ S ഗ ſщ \vdash BSPEI ſτι U

CAGACTCGAC GCGCCGGAGG

CCGTCGGACG

CGTTGGCCCG

GGATTTACCT TTAGCAGCTA TGCGATGAGC TGGGTGCGCC AAGCCCCTGG

ACCCACGCGG TTCGGGGACC CCTAAATGGA AATCGTCGAT ACGCTACTCG

FIG. 8A

| | SUBCLÁSS | |
|----------|------------|-----------|
| F 1G. | | _ |
| G. | OLASS | |
| - | Ž. comitae | DRAFTSMAN |
| APPROVED | 7.0 | DRAFT |
| - | | |

 \vdash ഗ \mathcal{O} \mathcal{O} S Ċ ഗ \mathbf{H} Ø S > 3 XhoI 口 口 Ö

X

CCGTCGTGGA CGGTAGCGGC GGCAGCACCT CGCGCTAATC GCCATCGCCG GCGCGATTAG CTCACCCACT GAAGGGTCTC GAGTGGGTGA CTTCCCAGAG

NgsN ഗ Z Д PmlI 召 ഗ \mathbf{H} \vdash Ŀ α Ċ 幺 > Ŋ K × \succ

ACTATTAAGC CCATTTCACG TGATAATTCG GGTAAAGTGC GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA ATCGCACTTT ATTATGCGGA TAATACGCCT

EagI K \Box 口 Ø 召 口 ഗ \mathbf{z} \succeq Ø Ы \succ 口 Е ablaNsN

AAGATACGGC TTCTATGCCG CTGCGTGCGG GACGCACGCC TTACTTGTCG TGTATCTGCA AATGAACAGC ACATAGACGT TTTTTGTGGG AAAAACACCC

 \Box \succeq K \succ ഥ G \Box \mathcal{O} \mathcal{O} Z 召 Þ O EagI

BSSHI

TGCGCGCGTT GGGGCGGCGA TGGCTTTTAT GCGATGGATT

FIG. 8B

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| 1 | CLASS | |
| APPROVED |)-
63 | DRAFTSMAN |

GCACATAATAACGCGCGCAA CCCCGCCGCT ACCGAAAATA CGCTACCTAA ഗ ტ ტ BlpI ഗ ტ Q StyI ტ

TAACCCCGGT TCCGTGGGAC CACTGCCAAT CGAGTCGCCC ACCGCCAAGA GCTCAGCGGG TGGCGGTTCT ATTGGGGCCA AGGCACCCTG GTGACGGTTA

ECORV Д ഗ Ċ Ċ Ċ Ċ ഗ $^{\circ}$ O Ċ Ċ ഗ G G \mathcal{O}

G

GGCGGCGGTG GGAGCGGTGG CGGTGGTTCT GGCGGTGGTG GTTCCGATAT CCGCCGCCAC CCTCGCCACC GCCACCAAGA CCGCCACCAC CAAGGCTATA

Д 冝 Ö Д \vdash > Д Ц ഗ Ц щ BanII ഗ Ø Н Σ ECORV \geq

CAGAGCCCAC TGAGCCTGCC AGTGACTCCG GGCGAGCCTG CCGCTCGGAC GTCTCGGGTG ACTCGGACGG TCACTGAGGC CGTGATGACC GCACTACTGG

 \succ G z ഗ 出 Ц Д S O ഗ ഗ 召 PstI Ö S Н ഗ K

CTGCAGAAGC AGCCAAAGCC TGCTGCATAG CAACGGCTAT GTTGCCGATA TCGGTTTCGG ACGACGTATC GACGTCTTCG CGAGCATTAG GCTCGTAATC

F/G. 8C

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | <u>≻</u> | DRAFISMAR |

| AseI | TT | | D
D
D
D | Æ | CT
GA | H |
|-------------------------|--|------------------------|--|-----------------|--|-------------------------|
| L
As
~ | CTA | ഗ | TAG
ATC | ĹЦ | AAG
TTC | <sub>다</sub> |
| As
As
~ | CGCAGCTATT
GCGTCGATAA | 氏
Fi | CGTTTTAGCG
GCAAAATCGC | ĭi
> | TGTGGAAGCT
ACACCTTCGA | Ωι |
| | 0 0 | CC. | ~ ~ | | | E |
| Д | 3CC
2GG | Д | GAT
CTA | 民 | 000
000 | F |
| Ω | AAA(
PTT(| Д |)
(C)
(C)
(C) | W | rag(
atc | <u>-</u>
54 |
| | STCZ
ZAGI | G V P
Ecoc1091 | FTC
PAG | H | AAATTAGCCG
TTTAATCGGC | r. |
| ÇAI
.××. | 900 | , 00
, 00
, 00 | 8 8 | × | | щ |
| P G
SexAI | CCA | о <u>н</u> | TGG | 니 | TGA | O |
| ⊀ . | AAA
TTT | Ŋ | CAG
GTC | EH | CCC
666 | Q |
| Q K P G Q S P
Sexai | TCAAAAACCA GGTCAAAGCC
AGTTTTTGGT CCAGTTTCGG | GSNRASGVPD
Eco01091 | GGCAGCAACC GTGCCAGTGG GGTCCCGGAT
CCGTCGTTGG CACGGTCACC CCAGGGCCTA | G T D F T L K I | TTTACCCTGA AAATTAGCCG
AAATGGGACT TTTAATCGGC | V G V Y Y C Q Q H Y T T |
| | | 民 | ზ C
ი ო | | E A. | ⊱₁ |
| JT T | ACC. | Z | AAC(
FTG(| О | CGA/ | ,
>4 |
| W Y L
KpnI
~~~~~~ | GGTZ
CA | W | \GC2 | E | CAC(| . |
| × | ATTGGTACCT
TAACCATGGA | ტ | GGCAGCAACC
CCGTCGTTGG | | ,
,
,
,
,
,
, | |
| Д | | | ည် <u>ဂ</u> | S
HI | SGATC C | <u>ෆ</u> |
| ᆸ | CTG | ⊢ | TCT | G S
BamHI | ~~~
GAT
CTA | > |
| ≯ | TAT
ATA | I Y L | TTA
AAT | | ~
CTG
GAC | E D
BbsI |
| N Y L D | AACTATCTGG
TTGATAGACC | AseI
~~~ | AATTTATCTG
TTAAATAGAC | Ω
Ω | GCTCTGGATC CGGCACCGAT TTTACCCTGA
CGAGACCTAG GCCGTGGCTA AAATGGGACT | ы
Вр |
| • • | . – | • | | | | • |

FIG. 8D

GAAGACGTGG GCGTGTATTA TTGCCAGCAG CATTATACCA CCCCGCCGAC CTTCTGCACC CGCACATAAT AACGGTCGTC GTAATATGGT GGGGCGGCTG

22222

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|------------|
| AFFROVED | >-
re: | DRAF TSMAN |

CTTTGGCCAG GGTACGAAAG TTGAAATTAA ACGTACGGAA TTC GAAACCGGTC CCATGCTTTC AACTTTAATT TGCATGCCTT AAG ECORI BsiWI 斘 \bowtie 闰 \bowtie \vdash \mathcal{O} MscI C ш

FIG. 8E

4

 ∞

| 103° | \geq | \geq | \geq | \geq | \geq | \geq | \geq | ≥ | ≥ | > | > | \geq | > |
|------------|--------------------|--------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|
| 105 | - | > | > | >- | >- | >- | >- | >- | >- | > | > | > | >- |
| 101 | | | | | | | | | | | | | |
| 100E | Σ | 1 | , | • | t | ı | 1 | i | • | ı | 1 | ı | ı |
| J001 | 1 | t | • | t | ı | ı | ŧ | t | • | ı | ı | ı | ı |
| J00L | ı | ı | 1 | • | • | ı | t | • | ı | • | ı | ı | ı |
| 100B | \triangleleft | • | ı | ı | ι | ı | 1 | • | • | ŧ | ı | ı | 1 |
| A001 | >- | • | 1 | 1 | 1 | 1 | ı | ı | | i | ı | ı | ı |
| 001 | ட | >- | エ | I | \propto | > | ٥ | ı | S | \checkmark | ⋖ | | Σ |
| 66 | 9 | Z | ≥ | >- | ⋖ | G | 0 | \propto | Z | S | ⋖ | > | ≥ |
| 86 | | Σ | ш | _ | \times | H | ⋖ | \vdash | \propto | | u. | 0 | ш |
| <i>26</i> | 9 | \checkmark | \vdash | ш | | — ' | ш | _ | Z | | — | ٥ | S |
| 96 | 9 | 9 | \propto | \propto | u_ | Z | Z | Ø | >- | > | \prec | ∢ | 0 |
| <i>S6</i> | ≥ | u. | エ | >, | \prec | ≥ | _ | \vdash | ≥ | S | S | > | Σ |
| <i>b</i> 6 | \propto | \propto | α. | \propto | \propto | \propto | \propto | \propto | \propto | \propto | \propto | \propto | \propto |
| 86 | Ø | 4 | A | 4 | ⋖ | 4 | ⋖ | ⋖ | 4 | 4 | 4 | 4 | 4 |
| <i>76</i> | $\overline{\circ}$ | S | ပ | C | ပ | S | ပ | ပ | C | C | C | C | O |
| | | | | | | | | | | | | | |

FIG. 10A

| APPAGYED | 0.6. FIG. |
|-----------|----------------|
| }-
E9 | CLASS SUBCLASS |
| DRAFTSMAH | |

| 3 | ≥ | 3 | > | > | > | > | > | > | > | > |
|----------|-----------|--------------|-----------|----|-----------|----|--------------|-----------|--------------|--------------|
| > | > | > | > | > | > | > | > | > | > | > |
| | | | | | | | | | | |
| Σ | Σ | ட | Σ | Σ | ட | ய | Σ | Σ | Σ | Σ |
| > | | \checkmark | > | م | | エ | \vdash | > | _ | ۵ |
| Σ | > | ∝ | \leq | Σ | S | | ග | | ட | G |
| \vdash | \leq | ⋖ | 0 | ட | ≥ | >- | Ω | — | Z | 0 |
| >- | 9 | I | 0 | ட | エ | Z | \propto | ш | ۵ | \checkmark |
| | S | u_ | ш | Z | ш | > | Z | _ | \prec | ட |
| ட | ⋖ | > | ≥ | S. | S | Z | | u_ | | H |
| エ | 8 | Σ | ட | 8 | G | ≥ | Σ | ш | z | |
| > | _ | 0 | S | >- | S | ۻ | ٥ | S | - | ပ |
| ட | ⋖ | Z | 0 | ٥ | ပ | Z | \checkmark | O | ≥ | Ø |
| > | Σ | \checkmark | — | > | * | ∝ | Σ | \times | S | > |
| \simeq | \propto | \propto | \propto | ≃ | \propto | ∝ | \propto | \propto | \propto | ~ |
| ⋖ | ⋖ | 4 | ⋖ | 4 | 4 | 4 | ⋖ | Ø | 4 | 4 |
| ပ | C | C | ပ | ပ | ပ | ပ | C | ပ | C | C |

FIG. 10B

FIG. 11

FIG. 12

APPROVED O.G. FIG.
BY CLASS SUBCLASS

FIG. 13

- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

FIG. 14

| Frequency | ,(| n | \vdash | 2 | - | \Box | \vdash | 2 | . | - | | — | | | | 7 |
|-----------------|--------------|--------------|---------------|--------------------------|--------------|---------------|-------------|-------------|--------------------------|--------------------------|--------------|--------------------------|--------------|----------------|----------------|----------------|
| EOI | \aleph | 8 | \aleph | \nearrow | \aleph | \geqslant | \geqslant | \geqslant | \geqslant | \geqslant | \geqslant | \geqslant | \aleph | \geqslant | \geq | \geqslant |
| <i>701</i> | > | > | > | > | > | > | > | \prec | \times | > | > | > | > | > | > | Y |
| IOI | Q | Q | Q | Q | О | Q | Ω | Ω | Q | Q | Q | Q | О | Q | Q | Q |
| I00E | Ц | [L | Ц | 江 | Ц | Σ | Ц | Ц | Ц | ſĽ | 口 | Ц | Щ | Ц | Щ | 口 |
| I00D | × | α | R | \aleph | S | 0 | > | X | \succ | × | α | α | T | 0 | K | \simeq |
| <i>2001</i> | Ц | 2 | H | \aleph | Z | О | A | > | X | Ω | Z | Д | × | X | 4 | S |
| <i>100B</i> | α | \mathbb{X} | α | 저 | M | Ц | × | Η | > | Ξ | \mathbf{Z} | \approx | \simeq | \approx | 口 | Щ |
| ₩00I | Д | X | コ | H | \aleph | S | M | S | \aleph | α | 2 | A | × | Д | S | \vdash |
| 00I | Z | α | H | \aleph | M | Д | Ц | \succ | S | α | Ŋ | Ц | Ŋ | \succ | \aleph | \succ |
| 66 | 0 | X | 8 | M | \mathbb{Z} | H | Ц | 2 | K | ≽ | K | X | X | Ή | \approx | 0 |
| 86 | \mathbf{Z} | 0 | × | \approx | Τ | > | Σ | H | Ξ | S | \approx | X | H | T | X | × |
| <i>L</i> 6 | \mathbf{Z} | × | Ŋ | \mathbf{Z} | X | 田 | Ъ | Ц | [- | \aleph | Д | X | > | H | \vdash | H |
| 96 | \approx | S | Z | X | \approx | Η | X | M | X | X | Z | Ŋ | \mathbf{Z} | M | \geqslant | × |
| 56 | X | \simeq | \approx | 2 | \succ | ļ | \approx | \simeq | 2 | K | \approx | X | \approx | \simeq | \approx | × |
| <i>7</i> 6 | \simeq | \simeq | \simeq | \approx | X | \approx | \approx | \approx | 2 | \approx | 2 | X | \approx | \approx | \simeq | \simeq |
| £6 <sub>.</sub> | 4 | 4 | A | A | A | A | A | A | A | A | A | A | 4 | A | A | A |
| 76 | Ö | C | \mathcal{O} | $\overline{\mathcal{O}}$ | \Box | \mathcal{O} | \Box | \Box | $\overline{\mathcal{O}}$ | $\overline{\mathcal{O}}$ | S | $\overline{\mathcal{O}}$ | \Box | \overline{C} | \overline{C} | \overline{C} |

FIG. 16

APPRUVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSHAIL

APPROVED G.G. FIG.
BY CLASS SUBCLASS

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAH

| • | | | | | | | | | | | | |
|-----------|----------|---------------|---------------|----------------|------------------|--------------|--------------|----------|----------|--------------|----------|---------------|
| FREQUENCY | Μ | . ∞ | [| \leftarrow 1 | \vdash | \leftarrow | ᆏ | . ←-1 | ⊣ | Ŋ. | 7 | ⊣ |
| EOT | 3 | ß | Z | S | M | Z | 3 | Ż | Z | Z | Z | M |
| TOS | > | \succ | \succ | \succ | \triangleright | \succ | \succ | \succ | \succ | \succ | > | > |
| TOT | Ω | О | Ω | Ω | О | Ω | О | О | О | О | Ω | Ω |
| JOOE | ĮΤι | Σ | Įті | Гщ | \boxtimes | Ξ | i | Σ | Σ | \mathbb{Z} | Ξ | Įτι |
| JOOD | Ŋ | \bowtie | α | Гц | 出 | Ξ | 1 | 民 | > | Ĺτι | 禸 | Z |
| JOOT | \times | 民 | × | \succ | \mathbb{N} | X | 1 | × | \succ | 召 | X | X |
| TOOB | 民 | 只 | Ω | 闰 | ഗ | 召 | 1 | \succ | > | α | Ω | α |
| Y00T | \vdash | Z | Н | Ω | Z | 出 | ł | ſτι | \circ | Ĺц | 以 | Σ |
| 00 T | Ø | × | വ | 니 | ĮΤι | 異 | Д | Z | W | α | W | α |
| 66 | \circ | Ĺτι | \mathbb{Z} | 以 | | Д | Д | 田 | N | Σ | \Box | Σ |
| 86 | \geq | 山 | Ξ | M | Ŋ | 口 | Ø | M | Ξ | Ø | Ø | Ы |
| 46 | Д | Z | M | Ц | M | 니 | × | \vdash | О | O | 口 | 召 |
| 96 | 異 | O | 召 | ഗ | щ | Ŋ | \mathbb{Z} | X | X | \bowtie | Σ | Σ |
| <i>96</i> | \vdash | Z | X | \succ | > | Z | Н | 又 | M | Z | Z | Z |
| ₽6 | 民 | α | α | 以 | 異 | α | 召 | 召 | 召 | 民 | ĸ | 召 |
| ٤6 | Ø | Ø | Ø | Ø | Ø | Ø | Ø | Ø | K | Ø | Ø | Ø |
| 76 | O | \mathcal{O} | \mathcal{O} | Ŋ | \mathcal{O} | Ü | U | U | U | Ö | U | \mathcal{O} |

| 0.G. FIG. | RI.ASS SUBCLASS | |
|-----------|-----------------|-----------|
| APPAGVED | 9.K | DRAFTSMAH |

| ENCY | | | | | | |
|-----------|----------|------------|----------|------------------|--------------|-----------------|
| FREQU | 4 | \sim | 7 | , - 1 | \leftarrow | \leftarrow |
| EOI | B | 3 | 3 | 3 | M | 3 |
| IOS | × | >- | ≻ | > | × | \succ |
| TOT | Ω | \Box | Д | Ω | Ω | Ω |
| JOOE | ſщ | ſц | Ĺ | ĹĽ | Ĺτι | ſΤι |
| T00D | Ø | O | O | Σ | 3 | \circ |
| JOOT | 니 | Σ | Σ | \vdash | × | Σ |
| TOOB | 又 | \bowtie | × | \bowtie | Σ | O |
| Y00T | 公 | \bigcirc | Z | Σ | Н | α |
| 00 T | \asymp | 3 | α | \supset | α | ഗ |
| 66 | K | Ø | Ø | \triangleleft | α | \triangleleft |
| 86 | Ø | 工 | \succ | U | 니 | 召 |
| L6 | \asymp | α | \asymp | 只 | Д | X |
| 96 | Н | Z | > | \bowtie | \asymp | α |
| 56 | \succ | \succ | \succ | > | α | \succ |
| <i>₱6</i> | 只 | α | α | 只 | α | 召 |
| 86 | Ø | Ø | Ø | Ø | Ø | Ø |
| 76 | \cup | \cup | \circ | \cup | U. | \mathcal{O} |

| ()
()
() | CLASS SUBCLASS | SKAN |
|----------------|----------------|-----------|
| APPROVED | λij | DRAFTSMAN |

| FREQUENCY | 16 | \vdash | | \vdash | \vdash | Н | \vdash | Н |
|-----------|----------|----------|--------------------------|----------|---------------|------------|-----------|---------------|
| EOI | Ŋ | Z | Z | 3 | 3 | 3 | 3 | M |
| IOS | > | × | × | × | × | > | \succ | \Rightarrow |
| TOT | О | Ω | Ω | О | Ω | Ω | Ω | Ω |
| JOOE | ĮΤΊ | Σ | ſщ | Σ | Σ | ſτι | \succeq | ſщ |
| JOOD | 工 | Д | \circ | 3 | > | ഗ | Z | 3 |
| J00T | Ŋ | Д | > | 江 | 二 | O | 印 | \succ |
| T00B | X | \succ | M | 工 | Д | \vdash | Z | \geq |
| Y00T | Н | W | \succ | Д | 召 | Ĺτι | ப | L |
| 00 T | X | Z | Z | X | Ø | \bigcirc | \vdash | Н |
| 66 | ഗ | لئر | Д | 니 | \circ | ഗ | Ø | \Box |
| 86 | α | Ω | 니 | \succ | [1] | Z | Ĺι | ⊱⊣ |
| L6 | \succ | α | Д | Ø | Н | 耳 | 工 | വ |
| 96 | 凶 | 3 | Ø | O | 니 | 3 | О | 3 |
| 56 | O | İ | Σ | 니 | 跘 | ഗ | > | О |
| ħ6 | 吖 | α | α | 召 | 公 | α | 公 | 公 |
| £6 | Ø | Ø | Ø | K | Ø | Ø | K | Ø |
| 76 | C | \circ | $\overline{\mathcal{O}}$ | O, | \mathcal{O} | U | \circ | \cup |

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| UENCY | | | | | | | | • | | | | |
|-----------|---------------|----------|----------|--------------|------------------|---------------|--|--------------------------|---------------|---------------|---------------|----------------|
| FREQUE | 4 | 4 | 7 | \leftarrow | \leftarrow I | 7 | , | 13 | Μ | \vdash | \leftarrow | \vdash |
| EOI | N | 3 | M | Z | 3 | 3 | M | M | M | M | M | M |
| IOS | \rightarrow | > | > | X | \triangleright | \Rightarrow | X | > | > | > | \succ | X |
| TOT | Д | Ω | Д | Ω | О | О | Ω | О | Ω | Ω | Ω | Ω |
| JOOE | 1 | Ĺц | Ξ | Σ | Σ | Σ | ſτι | ſΤι | Σ | Щ | Ĺ | Σ |
| T00D | ı | α | \circ | Н | Ŏ | Ω | X | X | 吆 | ĮΤΊ | I | Ц |
| 100Ca | ı | I | ı | i | 召 | i | | 1 | Ī | 1 | ı | ŧ |
| 200T | I | 民 | α | 異 | α | ıП | α | α | 3 | 召 | i | α |
| IOOB | I | > | W | Н | Д | Н | > | α | Ω | × | ı | 召 |
| Y00T | 1 | ĮΤί | 又 | K | 3 | Σ | 3 | \vdash | 工 | S | I | Ø |
| 00 T | ഠ | ഗ | W | U | Ω | Ω | 召 | × | > | \bowtie | Ĺц | X |
| 66 | [- | О | വ | \succ | \triangleleft | > | \vdash | S | \succ | E | 团 | \vdash |
| 86 | Ĺι | 凹 | 团 | ĹΊ | 口 | 3 | 口 | Щ | Ø | 团 | Σ | 团 |
| ۷6 | Ŋ | П | X | Ω | لير | Ш | ഗ | X | \vdash | 召 | Н | 臼 |
| 96 | ليا | ŢŢ | Д | Ö | 二 | Z | \succ | ĹĻ | X | 3 | \succ | ſτι |
| 56 | Ω | \circ | Н | 口 | Z | ഠ | \circ | \circ | \bowtie | α | О | Ø |
| <i>ħ6</i> | 民 | 民 | 以 | 公 | 以 | α | 召 | α | 民 | α | 召 | 召 |
| ٤6 | K | Ø | Ø | Ø | Ø | Ø | Ø | Ø | K | Ø | Ø | Ø |
| 76 | () | () | () | () | () | () | \overline{C} | $\overline{\mathcal{O}}$ | \mathcal{O} | \mathcal{O} | \mathcal{O} | \overline{C} |

APPROVED O.G. FIG.

| FREQUENCY | ſΛ | Н | \vdash | \vdash | . ←1 | ᆏ |
|-----------|------------|------------------|------------|------------|-----------------|----------|
| EOT | Z | 3 | 3 | 3 | 3 | 3 |
| TOS | × | \triangleright | > | >- | × | \gt |
| TOT | Ω | О | О | Ω | О | Ω |
| IOOE | Σ | ſτι | Σ | Σ | Σ | Ĺτι |
| T00D | > | 吖 | 吖 | O | \succ | ſμ |
| 200T | \succ | ĮΤΊ | > | ഗ | Z | 工 |
| 700B | Д | \Rightarrow | > | 3 | Z | \vdash |
| AOOI | Н | Z | Ш | ഗ | Д | 口 |
| 00 T | Ø | \Rightarrow | Σ | Ц | \triangleleft | വ |
| 66 | \succ | Σ | Q | 以 | 3 | × |
| 86 | Ĺτί | \succ | 印 | \succ | α | Ĺτι |
| ۷6 | Ŋ | ⊱ | ſц | 印 | ഗ | G |
| 96 | \circ | ſщ | Щ | \bowtie | Д | Ω |
| S 6 | О | \gt | > | 口 | \succ | Ω |
| <i>₽6</i> | 召 | α | ĸ | ĸ | α | 以 |
| 86 | 4 | Ø | Ø | K | K | Ø |
| 70 | <i>r</i> \ | <i>r</i> , | <i>r</i> > | <i>r</i> , | 7 \ | |

APPROVID O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAN

| APPROVED O.G. FIG. | CLASS SUBCLASS | |
|--------------------|----------------|-----------|
| APPROVED | 2 | DRAFTSMAH |

| unique restriction site | Isoschizomers |
|-------------------------|-----------------------------------|
| AatII | 1 |
| AfIII | Bfrl, BspTl, Bst981 |
| Ascl | 1 |
| Asel | Vspl, Asnl, PshBl |
| BamHI | Bstl |
| Bbel | Ehel, Kasl, Narl |
| Bbsl | BpuAl, Bpil |
| BgIII | / |
| Blpl | Bpu1102l,Celll, Blpl |
| BsaBI | Maml, Bsh1365l, BsrBRI |
| BsiWl | Pfl23II, SpII, Suni |
| BspEl | AccIII, BseAI, BsiMI, Kpn2I, Mrol |
| BsrGl | Bsp1407l, SspBl |
| BssHII | Paul |
| BstEII | BstPl, Eco91l, Eco0651 |
| BstXI | |
| Bsu36l | Aocl, Cvnl, Eco811 |
| Dralll | |
| DsmAI | |
| Eagl | BstZI, EclXI, Eco52I, XmalII |
| Eco57I | |
| Eco0109I | Drall |
| EcoRI | 1 |
| EcoRV | Eco32I |
| Fsel | 1 |
| HindIII | . / |
| Hpal | 1 |
| Kpnl | Acc65l, Asp718l |
| Mlul | |
| Mscl | Ball, MluNl |

FIG. 25B

APPROVED O.G. FIG.

BY CLASS SUBCLASS
MAFTSMAN

| unique restriction site | Isoschizomers |
|-------------------------|------------------------------------|
| Munl | Mfel |
| Nhel | / |
| Nsil | Ppu10l, EcoT22l, Mph1103l |
| NspV | Bsp1191, BstBl, Csp451, Lspl, Sful |
| Pacl | <i>I</i> |
| Pmel | |
| PmII | BbrPl, Eco72I, PmaCl |
| Psp5II | PpuMI |
| Pstl | |
| RsrII | (Rsril), Cpol, Cspl |
| SanDI | |
| Sapl | |
| SexAl | |
| Spel | . |
| Sfil | |
| Sphl | Bbul, Pael, Nspl |
| Stul | Aatl, Eco147l |
| Styl | Eco130l, EcoT14l |
| Xbal | BspLU11II |
| Xhol | PaeR7I |
| Xmal | Aval, Smal, Cfr91, PspAl |

FIG. 25C

| G. FIG. | CLASS SUBCLASS | |
|--------------------|----------------|-----------|
| APPROVEU D.G. FIG. |),
(a) | DRAFTSHAN |

| | · | · · · · · · · · · · · · · · · · · · · | | ···· |
|--|--|--|--------------------------------|---|
| reference | Skerra et al. (1991)
Bio/Technology 9,
273-278 | Hoess et al. (1986)
Nucleic Acids Res.
2287-2300 | see M2 | Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266 |
| template | vector
pASK30 | (synthetic) | (synthetic) | vector
plG10 |
| sites to be
inserted | Aatll | lox, BgIII | lox', Sphl | ทอทะ |
| sites to be
removed | 2x Vspl
(Asel) | 2x Vspl
(Asel) | none | Sphl,
BamHl |
| functional element | lac
promotor/operator | Cre/lox
recombination site | Cre/lox'
recombination site | glllp of filamentous
phage with N-
terminal
myctail/amber
codon |
| module/flan-
king
restriction
sites | Aatil-lacp/o-
Xbal | BgIII-lox-
Aatii | Xbal-lox'-
Sphl | EcoRI-
gllllong-
HindIII |
| No | M | M2 | M3 | I-7M |

FIG. 26A

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| APPROVED | 0.G. F1G. |
|-----------|----------------|
| 23 | CLASS SUBCLASS |
| DRAFTSMAN | |

| vector see M7-1
plG10 | see M7-1
p1G10 | lox (synthetic) see M3 | Pacl, Fsel (synthetic) see M1 | l, Pacl, Fsel, pASK30 see M1 | ot BsrGI, Nhel pASK30 see M1
d) | |
|---|--|-------------------------------|-------------------------------|---|--|---------------------------|
| truncated glllp of
filamentous phage
with N-terminal Gly-
Ser linker | truncated gillp of
filamentous phage
with N-terminal
myctail/amber
codon | Cre/lox
recombination site | Ipp-terminator none | Vspl,
beta-lactamase/bla Eco571,
(ampR) BssSI | origin of single-
stranded replication removed) | origin of single- Dralli, |
| M7-11 EcoRI-gillss-
Hindill | M7-III EcoRI-gillss-
Hindill | M8 Sphl-lox-
HindIII | M9-II HindIII-lpp- | M10- Pacl/Fsel-bla- | M11- BsrGI-f1 ori- | M11- BsrGI-f1 ori- |

FIG. 26B

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| APPROVEC | 0.6. FIG. |
|-----------|----------------|
| λa | CLASS SUBCLASS |
| DRAFTSMAN | |

| , | · | 1 | T | · · · | T |
|--|-------------------------------|--|--|-------------------------------------|---|
| Rose, R.E. (1988)
Nucleic Acids Res.
16, 355 | see M3 | Yanisch-Peron, C.
(1985) Gene
33,103-119 | Cardoso, M. & Schwarz, S. (1992) J. Appl. Bacteriol. 72, 289-293 | see M1 | Knappik, A &
Plückthun, A.
(1994)
BioTechniques 17,
754-761 |
| pACYC184 | (synthetic) | pUC19 | pACYC184 | (synthetic) | (synthetic) |
| Nhel, BgIII pACYC184 | BgIII, lox,
Xmnl | BgIII, Nhel | | | |
| BssSI, VspI,
NspV | none | Eco571
(BssSl not
removed) | BspEl, Mscl,
Styl/Ncol | (synthetic) | (synthetic) |
| origin of double-
stranded replication | Cre/lox
recombination site | origin of double-
stranded replication | chloramphenicol-
acetyltransferase/
cat (camR) | signal sequence of
phosphatase A | signal sequence of
phosphatase A +
FLAG detection tag |
| Nhel-p15A-
Bgill | BgIII-lox-
BgIII | BgIII-ColEI-
Nhel | Aatil-cat-
Bgill | Xbal-phoA-
EcoRI | Xbal-phoA-
FLAG-EcoRI |
| M12 | M13 | M14-
Ext2 | M17 | M19 | M20 |

FIG. 26C

| APPROVES | 0.G. FIG. |
|-----------|----------------|
| BY | CLASS SUBCLASS |
| DRAFTSMAH | |

| M21 | Xbal-stll-
Sapl | heat-stable
enterotoxin II signal (synthetic)
sequence | (synthetic) | (synthetic) | etic) | Lee et al. (1983)
Infect. Immunol.
264-268 |
|-----|---------------------------|--|--|-------------|-------|---|
| M41 | Afill-lacl-
Nhel | lac-repressor | BstXI,
MluI,BbsI,
BanII,
BstEII,
HpaI, BbeI,
VspI | pASK30 | (30 | see M1 |
| M42 | EcoRI-Histail-
HindIII | poly-histidine tail | (synthetic) | (synthetic) | | Lindner et al.,
(1992) Methods: a
companion to
methods in
enzymology 4, 41-
56 |

FIG. 26D

APPROVED O.G. FIG.

DRAF ISHAH

| 0.6. FIG. | CLASS SUBCLASS | |
|------------|----------------|-----------|
| APPROVED O | \\ \tag{2} | DRAFTSHAN |

| | HindIII | II | PacI | BsrGI |
|----------|--|---|---|--|
| ~ | ACATGTAAGC TTCCCCCCCC CCTTAATTAA
TGTACATTCG AAGGGGGGGG GGAATTAATT | TTCCCCCCC
AAGGGGGGGG | CCTTAATTAA
GGAATTAATT | CCCCCCCCC TGTACACCCC
GGGGGGGG ACATGTGGGG |
| 51 | Nhel Bglil CCCCCGCTA GCCCCCCCC CCAGATCTCC GGGGGGGGGGGGGGGGGGGGGGGGGGGGG | 555555555
5555555555555555555555555555 | Bglii
~~~~~~
CCAGATCTCC
GGTCTAGAGG | Nhel BgllI Abal CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
| 101 | xbai
~~~~
CTAGACCCCC
GATCTGGGGG | Sphi
ccccccarg
GGGGCGTAC | 99999999999
22222222222222222222222222 | Sphi EcoRI Aatii CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |

FIG. 27B

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | <u>کي</u> | DRAFTSMAN |

FIG. 28A

| | SUBCLASS | |
|----------|----------|-----------|
| 0.G. FIG | CLASS S | |
| APPROVED | 37 | DRAFISHAN |

| ATCCTTGAGA | CAGCGGTAAG | TGGATCTCAA | TACATCGAAC | ACGAGTGGGT | 251 |
|-----------------------------------|--|--------------------------|--------------------------|--------------------------|-----|
| TAGGAACTCT | GTCGCCATTC | ACCTAGAGTT | ATGTAGCTTG | TGCTCACCCA | |
| AGTTGGGTĞC
TCAACCCACG
BSSSI | Eco57I
~~~~~~
GCTGAAGATC
CGACTTCTAG | AGTAAAAGAT
TCATTTTCTA | CGCTGGTGAA
GCGACCACTT | CACCCAGAAA
GTGGGTCTTT | 201 |
| TGTTTTTGCT
ACAAAAACGA | TTTGCCTTCC
AAACGGAAGG | TTTGCGGCAT | TATTCCCTTT
ATAAGGGAAA | GTGTCGCCCT | 151 |
| CAACATTTCC | TATGAGTATT | AAAGGAAGAG | TAATATTGAA | AATGCTTCAA | 101 |
| GTTGTAAAGG | ATACTCATAA | TTTCCTTCTC | ATTATAACTT | TTACGAAGTT | |
| AACCCTGATA
TTGGGACTAT | ATGAGACAAT
TACTCTGTTA | GTATCCGCTC | ATTCAAATAT
TAAGTTTATA | TTCTAAATAC
AAGATTTATG | 51 |
| TTGTTTATTT | GAACCCCTAT | AATGTGCGCG | TTTTCGGGGA | CAGGTGGCAC | Н |
| AACAAATAAA | CTTGGGGATA | TTACACGCGC | AAAAGCCCCT | GTCCACCGTG | |

FIG. 28B

BssSI

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

APPROVED O.G. FIG.
BY CLASS SUBCLASS

| 301 | GTTTTCGCCC
CAAAAGCGGG
CTATGTGGCG | CGAAGAACGT
GCTTCTTGCA
CGGTATTATC | TTTCCAATGA
AAAGGTTACT
CCGTATTGAC | TGAGCACTTT ACTCGTGAAA GCCGGGCAAG | TAAAGTTCTG
ATTTCAAGAC
AGCAACTCGG |
|-----|--|--|--|----------------------------------|--|
| 401 | TCGCCGCATA | CACTATTCTC
GTGATAAGAG | AGAATGACTT
TCTTACTGAA | GGTTGAGTAC | TCACCAGTCA
AGTGGTCAGT |
| 451 | CAGAAAAGCA | TCTTACGGAT | GGCATGACAG | TAAGAGAATT | ATGCAGTGCT |
| | GTCTTTTCGT | AGAATGCCTA | CCGTACTGTC | ATTCTCTTAA | TACGTCACGA |
| 501 | GCCATAACCA | TGAGTGATAA | CACTGCGGCC | AACTTACTTC | TGACAACGAT |
| | CGGTATTGGT | ACTCACTATT | GTGACGCCGG | TTGAATGAAG | ACTGTTGCTA |
| 551 | CGGAGGACCG | AAGGAGCTAA | CCGCTTTTTT | GCACAACATG | GGGGATCATG |
| | GCCTCCTGGC | TTCCTCGATT | GGCGAAAAAA | CGTGTTGTAC | CCCCTAGTAC |
| 601 | TAACTCGCCT | TGATCGTTGG | GAACCGGAGC | TGAATGAAGC | CATACCAAAC |
| | ATTGAGCGGA | ACTAGCAACC | CTTGGCCTCG | ACTTACTTCG | GTATGGTTTG |
| 651 | GACGAGCGTG | ACACCACGAT | GCCTGTAGCA | ATGGCAACAA | CGTTGCGCAA |

| APPROVED O.G. FI |
|------------------|
|------------------|

| CTG | CTGCTCGCAC | TGTGGTGCTA | CGGACATCGT | TACCGTTGTT | GCAACGCGTT
AseI |
|------------------------------|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ACTATTAACT G
TGATAATTGA C | 00 | GGCGAACTAC
CCGCTTGATG | TTACTCTAGC
AATGAGATCG | TTCCCGGCAA | CAATTAATAG
GTTAATTATC |
| ACTGGATGGA GOTGACT CO | ŏŏ | GGCGGATAAA
CCGCCTATTT | GTTGCAGGAC
CAACGTCCTG | CACTTCTGCG
GTGAAGACGC | CTCGGCCCTT
GAGCCGGGAA |
| CCGCCTGGCT GG | 900 | GGTTTATTGC | TGATAAATCT | GGAGCCGGTG | AGCGTGGGTC |
| GGCCGACCGA CC | | CCAAATAACG | ACTATTTAGA | CCTCGGCCAC | TCGCACCCAG |
| TCGCGGTATC AT | AT | ATTGCAGCAC | TGGGGCCAGA | TGGTAAGCCC | TCCCGTATCG |
| AGCGCCATAG TA | TA | TAACGTCGTG | ACCCCGGTCT | ACCATTCGGG | AGGCCATAGC |
| TAGTTATCTA CA | CA | CACGACGGGG
GTGCTGCCCC | AGTCAGGCAA
TCAGTCCGTT | CTATGGATGA
GATACCTACT | ACGAAATAGA
TGCTTTATCT |
| CAGATCGCTG AG | AG | AGATAGGTGC | CTCACTGATT | AAGCATTGGT | AACTGTCAGA |
| GTCTAGCGAC TC | | TCTATCCACG | GAGTGACTAA | TTCGTAACCA | TTGACAGTCT |
| CCAAGITIAC TC | TC | TCATA1ATAC | TTTAGATTGA | TTTAAAACTT | CATTTTAAT |
| GGTTCAAATG AG | AG | AGTATATATG | AAATCTAACT | AAATTTTGAA | GTAAAAATTA |

FIG. 28D

| <u></u> | SUBCLASS | |
|----------|----------|-----------|
| 0.0 | CLASS | |
| APPROVED | ~ | DRAFTSMAH |

| 1051 | TTAAAAGGAT | CTAGGTGAAG | ATCCTTTTTG | ATAATCTCAT | GACCAAAATC |
|------|--------------------------|--------------------------|--------------------------------|--|--------------------------|
| | AATTTTCCTA | GATCCACTTC | TAGGAAAAAC | TATTAGAGTA | CTGGTTTTAG |
| 1101 | CCTTAACGTG | AGTTTTCGTT | CCACTGAGCG | TCAGACCCCG | TAGAAAAGAT |
| | GGAATTGCAC | TCAAAAGCAA | GGTGACTCGC | AGTCTGGGGC | ATCTTTTCTA |
| 1151 | CAAAGGATCT
GTTTCCTAGA | TCTTGAGATC
AGAACTCTAG | CTTTTTTCT
GAAAAAAAGA | GCGCGTAATC | TGCTGCTTGC |
| 1201 | AAACAAAAAA | ACCACCGCTA | CCAGCGGTGG | TTTGTTTGCC | GGATCAAGAG |
| | TTTGTTTTT | TGGTGGCGAT | GGTCGCCACC | AAACAAACGG | CCTAGTTCTC |
| 1251 | CTACCAACTC
GATGGTTGAG | TTTTCCGAA
AAAAAGGCTT | GGTAACTGGC
CCATTGACCG
Ec | C TTCAGCAGAG
G AAGTCGTCTC
Eco57I | CGCAGATACC
GCGTCTATGG |
| 1301 | AAATACTGTC | CTTCTAGTGT | AGCCGTAGTT | AGGCCACCAC | TTCAAGAACT |
| | TTTATGACAG | GAAGATCACA | TCGGCATCAA | TCCGGTGGTG | AAGTTCTTGA |

FIG. 28E

CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT GACATCGTGG CGGATGTATG GAGCGAGACG ATTAGGACAA TGGTCACCGA

1351

| | | | APPROVED O.G. F.IG. BY CLASS SUBI | O.G. FIG. |
|--------------------------|--------------------------|--------------------------|-----------------------------------|--------------------------|
| GCTGCCAGTG | GCGATAAGTC | GTGTCTTACC | GGGTTGGACT | CAAGACGATA |
| CGACGGTCAC | CGCTATTCAG | CACAGAATGG | CCCAACCTGA | GTTCTGCTAT |
| GTTACCGGAT | AAGGCGCAGC | GGTCGGGCTG | AACGGGGGGT | TCGTGCACAC |
| CAATGGCCTA | TTCCGCGTCG | CCAGCCCGAC | TTGCCCCCCA | AGCACGTGTG |
| AGCCCAGCTT
TCGGGTCGAA | GGAGCGAACG | ACCTACACCG
TGGATGTGGC | AACTGAGATA
TTGACTCTAT | CCTACAGCGT
GGATGTCGCA |
| GAGCTATGAG | AAAGCGCCAC | GCTTCCCGAA | GGGAGAAAGG | CGGACAGGTA |
| CTCGATACTC | TTTCGCGGTG | CGAAGGGCTT | CCCTCTTTCC | GCCTGTCCAT |
| TCCGGTAAGC
AGGCCATTCG | GGCAGGGTCG
CCGTCCCAGC | GAACAGGAGA
CTTGTCCTCT | GCGCACGAGG
CGCGTGCTCC
BSSSI | GAGCTTCCAG
CTCGAAGGTC |
| GGGGAAACGC | CTGGTATCTT | TATAGTCCTG | TCGGGTTTCG | CCACCTCTGA |
| CCCCTTTGCG | GACCATAGAA | ATATCAGGAC | AGCCCAAAGC | GGTGGAGACT |

1401

1451

1501

1551

1601

FIG. 28F

AAACGCCAGC AACGCGGCCT TTTACGGTT CCTGGCCTTT TGCTGGCCTT

1751

GGGGGGGGA GCCTATGGAA CCCCCCGCCT CGGATACCTT

CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GAACTCGCAG CTAAAAACAC TACGAGCAGT

1701

1651

| APPROVED O.G. F1G. BY OLASS SUBCLASS |
|--------------------------------------|
|--------------------------------------|

| ACGACCGGAA |
|------------|
| GGACCGGAAA |
| AAAATGCCAA |
| TTGCGCCGGA |
| TTTGCGGTCG |

| | 90,1,9909,1,1,1 | 'I'I'GCGCCGGA | AAAATGCCAA | 'I''I''I'GUGGI''UG 'I''I'GUGUUGGA AAAATGUUAA GGAQQGGAAA ACGACUGGAA | ACGACCGGAA |
|------|----------------------------|---------------------|---|--|----------------|
| | | HindIII | | Paci | BsrGI |
| 1801 | TTGCTCACAT | GTAAGCTTCC | TTOOOOOOOO | CCCCCCTT AATTAACCCC | CCCCCCTGTA |
| | AACGAGTGTA | CATTCGAAGG | GGGGGGGGAA | TTAATTGGGG | GGGGGGACAT |
| | BsrGI | NheI | BG | $\boldsymbol{\vdash}$ | AatII |
| 1851 | CACCCCCCC | CCGCTAGCCC | CCCCCCCAG | CCCCCCAG ATCTCCCCCC | CCCCGACGTC |
| | GTGGGGGGGG | GGCGATCGGG | GGGGGGGGTC | TAGAGGGGGG | GGGCTGCAG |
| | | | Sphī | ECORI |)RI |
| , | ?
?
?
?
?
? | ? | 1 | 1 | <i>? ? ? ?</i> |
| 1901 | CCCCCTCTAG | CCCCTCTAG ACCCCCCCC | CGCATGCCCC | CCCCCCGAA TTCACGT | TTCACGT |
| | GGGGGAGATC | TGGGGGGGGG | GCGTACGGGG | GGGGGGCTT AAGTGCA | AAGTGCA |

M1 142 bp *FIG. 29A*

| APPROVED O.G. FIG. BY CLASS SUBCLASS | | AŚS | |
|--|-----------|-----------------|---------|
| Commenced to personal section of the | 3. F1G. | | |
| | PROVED 0. | f
. n. 1822. | AFTSMAN |

AatII

1111

CCGAAATGTG GGCTTTACAC AGGCACCCCA TCCGTGGGGT GACGTCTTAA TGTGAGTTAG CTCACTCATT CTGCAGAATT ACACTCAATC GAGTGAGTAA

CTATTGTTAA GATAACAATT GTTGTGTGGA ATTGTGAGCG CAACACACCT TAACACTCGC CGGCTCGTAT GCCGAGCATA TTTATGCTTC (57

XbaI

11111

GCTTAAAGAT CGAATTTCTA TCACACAGGA AACAGCTATG ACCATGATTA AGTGTGTCCT TTGTCGATAC TGGTACTAAT

101

FIG. 29B

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | .Y.G | DRAFTSHAN |

M7-III (ss/myc/TAG) 520 bp

FIG. 30A

| FIG. | |
|---------------|-----------|
| 1 | |
| APPROVED 0.G. | DRAFISMAN |

ECORI

| Н | GAATTCGAGC
CTTAAGCTCG | AGAAGCTGAT
TCTTCGACTA | CTCTGAGGAG
GAGACTCCTC | GATCTGTAGG
CTAGACATCC | GTGGTGGCTC |
|-----|--|--------------------------------|--------------------------|--------------------------|--------------------------|
| 51 | TGGTTCCGGT | GATTTTGATT | ATGAAAAGAT | GGCAAACGCT | AATAAGGGGG |
| | ACCAAGGCCA | CTAAAACTAA | TACTTTTCTA | CCGTTTGCGA | TTATTCCCCC |
| 101 | CTATGACCGA | AAATGCCGAT | GAAAACGCGC | TACAGTCTGA | CGCTAAAGGC |
| | GATACTGGCT | TTTACGGCTA | CTTTTGCGCG | ATGTCAGACT | GCGATTTCCG |
| 151 | AAACTTGATT | CTGTCGCTAC | TGATTACGGT | GCTGCTATCG | ATGGTTTCAT |
| | TTTGAACTAA | GACAGCGATG | ACTAATGCCA | CGACGATAGC | TACCAAAGTA |
| 201 | TGGTGACGTT | TCCGGCCTTG | CTAATGGTAA | TGGTGCTACT | GGTGATTTTG |
| | ACCACTGCAA | AGGCCGGAAC | GATTACCATT | ACCACGATGA | CCACTAAAAC |
| 251 | CTGGCTCTAA | TTCCCAAATG | GCTCAAGTCG | GTGACGGTGA | TAATTCACCT |
| | GACCGAGATT | AAGGGTTTAC | CGAGTTCAGC | CACTGCCACT | ATTÄAGTGGA |
| 301 | Xmn
~~~~~
TTAATGAATA
AATTACTTAT | II
ATTTCCGTCA
TAAAGGCAGT | ATATTTACCT
TATAAATGGA | TCCCTCCCTC | AATCGGTTGA
TTAGCCAACT |

FIG. 30B

| ci | SUBCLASS | |
|-----------|------------|------------|
| 0.6. 716. | CLASS SU | Punit Pull |
| APPROVED |) <u>.</u> | DRAFTSHAN |

| | | | HindIII TAAGGAGTCT TGATAAGCTT ATTCCTCAGA ACTATTCGAA | TAAGGAGTCT
ATTCCTCAGA | 501 |
|--------------------------|--|--------------------------|--|--------------------------|-----|
| TACTGCGTAA
ATGACGCATT | GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA
CAACGGTGGA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT | ATTTTCTACG
TAAAAGATGC | TTATGTATGT
AATACATACA | GTTGCCACCT | 451 |
| TCTTTTATAT | TCTTTGCGTT | AATAAACTTA TTCCGTGGTG | AATAAACTTA | ATTGTGACAA | 401 |
| AGAAAATATA | AGAAACGCAA | TTATTTGAAT AAGGCACCAC | TTATTTGAAT | TAACACTGTT | |
| TTTTCTATTG | ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA ACCATATGAA TTTTCTATTG | GCGCTGGTAA | ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA | ATGTCGCCCT | 351 |
| AAAGATAAC | TACAGCGGGA AAACAGAAAC CGCGACCATT TGGTATACTT AAAAGATAAC | CGCGACCATT | TACAGCGGGA AAACAGAAAC CGCGACCATT | TACAGCGGGA | |

M9-11 123 bp

FIG. 31A

| # 0.G. FIG. | CLASS SUBCLASS | ************************************** |
|-------------|----------------|--|
| APPROVED | >-
20 | DRAFTSMAH |

HindIII

GGGGGGGGG AAGCTTGACC TGTGAAGTGA AAAATGGCGC AGATTGTGCG CCCCCCCCCC TTCGAACTGG ACACTTCACT TTTTACCGCG TCTAACACGC

PacI

FseI

ACATTITITI TGICTGCGGI TTAATTAAAG GGGGGGGGGG GCCGGCCTGG TGIAAAAAA ACAGACGGCA AATTAATTIC CCCCCCCCC CGGCCGGACC

27

BsrGI

GGGGGGTGT ACAGGGGGG GGG CCCCCCCACA TGTCCCCCCC CCC

101

FIG. 31B

APPROVED O.G. FIG.

DRAFTSHAH

M11-III 470 bp F/G. 32A

| F16. | SUBCLASS | |
|---------|------------|-----------|
| 0.G.F | CLASS | |
| APROVID | S - | DRAFTSMAN |

| Н |
|---|
| Ψ |
| 딮 |
| 4 |

| ATTGGTTAAA | ATTTCGGCCT | GATTTTGCCG | ATTTATAAGG | TATTCTTTTG | 351 |
|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|----------|
| TATCTCGGTC
ATAGAGCCAG | CACTCAACCC
GTGAGTTGGG | ACTGGAACAA
TGACCTTGTT | CTTGTTCCAA
GAACAAGGTT | ATAGTGGACT
TATCACCTGA | 301 |
| ACGTTCTTTA
TGCAAGAAAT | GTTGGAGTCC
CAACCTCAGG | GCCCTTTGAC
CGGGAAACTG | ACGGTTTTTC
TGCCAAAAAG | GCCCTGATAG
CGGGACTATC | 251 |
| GTGGGCCATC
CACCCGGTAG | GGTTCTCGTA
CCAAGAGCAT | TTAGGGTGAT | AAAAACTTGA
TTTTTGAACT | CTCGACCCCA
GAGCTGGGGT | 201 |
| TTTACGGCAC
AAATGCCGTG | GATTTAGTGC
CTAAATCACG | TTAGGGTTCC
AATCCCAAGG | GGGCATCCCT
CCCGTAGGGA | CTCTAAATCG
GAGATTTAGC | 51 |
| CCCCGTCAAG
GGGCCAGTTC | CGCCGGCTTT | TCGCCACGTT
AGCGGTGCAA | CCTTCCTTTC
GGAAGGAAAG | CGCTTTCTTC | 107 |
| CCGCTCCTTT
GGCGAGGAAA | GCCCTAGCGC
CGGGATCGCG | ACTTGCCAGC
TGAACGGTCG | TGACCGCTAC
ACTGGCGATG | ACGCGCAGCG
TGCGCGTCGC | 51 |
| TGTGGTGGTT | 0000000000
00000000000 | GGCGCATTAA
CCGCGTAATT | GCCCTGTAGC
CGGGACATCG | GCTAGCACGC | \vdash |

FIG. 32B

| ROVED 0. G. F G. | T CLASS SUBCLASS | ТБИАН |
|----------------------|------------------|-----------|
| APPROVEG | .i | DRAFTSHAR |

ATAAGAAAAC TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT

AAATGAGCTG ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA TTTACTCGAC TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT 401

BsrGI

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451

FIG. 32C

APPROVED O.G. FIG.
BY CLASS SUBCLASS

M14-EXT2 733 bp F/G. 33A

| 3. F1G. | CLASS SUBCLASS | |
|-------------------|----------------|-----------|
| APPROVED O.G. FIG | BY CLASS | ORAFTSMAN |

| - | 4 |
|---|---|
| ۲ | j |
| | - |
| _ | 4 |
| t | 7 |
| p | 7 |

| GGGCTGAACG | CGCAGCGGTC | CCGGATAAGG | ACGATAGTTA | TGGACTCAAG | 351 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| CTTACCGGGT | TAAGTCGTGT | CCAGTGGCGA | GTGGCTGCTG | CCTGTTACCA | 301 |
| GAATGGCCCA | ATTCAGCACA | GGTCACCGCT | CACCGACGAC | GGACAATGGT | |
| CTCTGCTAAT | ACATACCTCG | AGCACCGCCT | AGAACTCTGT | CACCACTTCA | 251 |
| GAGACGATTA | TGTATGGAGC | TCGTGGCGGA | TCTTGAGACA | GTGGTGAAGT | |
| GTAGTTAGGC | TAGTGTAGCC | ACTGTTCTTC | GATACCAAAT | GCAGAGCGCA | 201 |
| CATCAATCCG | ATCACATCGG | TGACAAGAAG | CTATGGTTTA | CGTCTCGCGT | |
| ACTGGCTACA
TGACCGATGT | TCCGAAGGTA
AGGCTTCCAT | CAACTCTTTT
GTTGAGAAAA | CAAGAGCTAC
GTTCTCGATG | TTTGCCGGAT | 151 |
| CGGTGGTTTG | CCGCTACCAG | AAAAAAACCA | GCTTGCAAAC | GTAATCTGCT | 101 |
| GCCACCAAAC | GGCGATGGTC | TTTTTTGGT | CGAACGTTTG | CATTAGACGA | |
| TTTTCTGCGC | GAGATCCTTT | GGATCTTCTT | AAAGATCAAA | ACCCCGTAGA | 51 |
| AAAAGACGCG | CTCTAGGAAA | CCTAGAAGAA | TTTCTAGTTT | TGGGGCATCT | |
| TGAGCGTCAG
ACTCGCAGTC | TTCGTTCCAC | AACGTGAGTT
TTGCACTCAA | AAAATCCCTT
TTTTAGGGAA | AGATCTGACC
TCTAGACTGG | \leftarrow |

| F1G. | SUBCLASS | |
|----------|----------|------------|
| 0.6. 5 | CLASS | |
| APPROVED | 7.9 | DRAF TSMAN |

| | | | L | | |
|-----------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------|-----|
| ACGGTTCCTG
TGCCAAGGAC | CGGCCTTTTT
GCCGGAAAAA | GCCAGCAACG
CGGTCGTTGC | ATGGAAAAAC
TACCTTTTTG | GGCGGAGCCT | 651 |
| TCGTCAGGGG | TTTGTGATGC
AAACACTACG | AGCGTCGATT
TCGCAGCTAA | CTCTGACTTG
GAGACTGAAC | GTTTCGCCAC | 601 |
| GTCCTGTCGG
CAGGACAGCC | TATCTTTATA
ATAGAAATAT | AAACGCCTGG
TTTGCGGACC | TTCCAGGGGG | ACGAGGGAGC
TGCTCCCTCG
BssSI | 551 |
| AGGAGAGCGC
TCCTCTCGCG
BSSSI | GGGTCGGAAC
CCCAGCCTTG | GTAAGCGGCA
CATTCGCCGT | CAGGTATCCG
GTCCATAGGC | GAAAGGCGGA
CTTTCCGCCT | 501 |
| CCCGAAGGGA
GGGCTTCCCT | CGCCACGCTT
GCGGTGCGAA | TATGAGAAAG
ATACTCTTTC | CAGCGTGAGC
GTCGCA(TCG | GAGATACCTA
CTCTATGGAT | 451 |
| ACACCGAACT
TGTGGCTTGA | CGAACGACCT
GCTTGCTGGA | CAGCTTGGAG
GTCGAACCTC | GCACACAGCC
CGTGTGTCGG | GGGGGTTCGT
CCCCCAAGCA | 401 |
| CCCGACTTGC | GCGTCGCCAG | GGCCTATTCC | тсстатсаат | ACCTGAGTTC | |

FIG. 33C

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROYED | Ϋ́ | DRAFTSMAH |

NheI

GCCTTTTGCT GGCCTT1 GC TCACATGGCT AGC CGGAAAACG AGTGTACCGA TCG

701

FIG. 33D

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAH

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | .≯
.> | DRAFTSMAN |

| ۲ | 4 |
|---|---|
| 1 | 4 |
| 1 | ر |
| a | Q |
| < | Ç |

| AGCAAACTGA | GTTTTCCATG | TTGTTACACC | GTGTTCACCC | ATATGGGATA | 351 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----|
| TGAGCTGGTG | TGAAAGACGG | CGTATGGCAA | CCCGGAGTTC | TGAATGCTCA | 301 |
| ACTCGACCAC | ACTTTCTGCC | GCATACCGTT | GGGCCTCAAG | ACTTACGAGT | |
| GCCCGCCTGA
CGGGCGGACT | TCACATTCTT
AGTGTAAGAA | CGGCCTTTAT | AAGTTTTATC
TTCAAAATAG | AAATAAGCAC
TTTATTCGTG | 251 |
| CCGTAAAGAA | TTTTTAAAGA | TATTACGGCC | TTCAGCTGGA | AACCAGACCG | 201 |
| GGCATTTCTT | AAAAATTTCT | ATAATGCCGG | AAGTCGACCT | TTGGTCTGGC | |
| ATGTACCTAT | CAGTTGCTCA | GCATTTCAGT | ACATTTTGAG | ATCGTAAAGA | 151 |
| TACATGGATA | GTCAACGAGT | CGTAAAGTCA | TGTAAAACTC | TAGCATTTCT | |
| TCCCAATGGC | CGTTGATATA | GATATACCAC | AAAATCACTG | AATGGAGAAA | 101 |
| AGGGTTACCG | GCAACTATAT | CTATATGGTG | TTTTAGTGAC | TTACCTCTTT | |
| AGGAAGCTAA
TCCTTCGATT | TCAGGAGCTA
AGTCCTCGAT | ATCGAGATTT
TAGCTCTAAA | TTTTTGAGTT
AAAAACTCAA | CCGGGCGTAT | 51 |
| AAGATCACTA | ATAATGAAAT | AACTTTCACC | GTGAGGTTCC | GGGACGTCGG | Н |
| TTCTAGTGAT | TATTACTTTA | TTGAAAGTGG | CACTCCAAGG | CCCTGCAGCC | |

FIG. 34B

| _ | | |
|----------|------------|-----------|
| | SUBCLASS | |
| F16. | | |
| i. | CLASS | |
| 20 | 10 | = |
| APPROVED | <u>≻</u> - | DRAFTSMAH |
| ~ | | 54 |

| | TATACCCTAT | CACAAGTGGG | AACAATGTGG | CAAAAGGTAC | TCGTTTGACT |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 401 | AACGTTTTCA | TCGCTCTGGA | GTGAATACCA | CGACGATTTC | CGGCAGTTTC |
| | TTGCAAAAGT | AGCGAGACCT | CACTTATGGT | GCTGCTAAAG | GCCGTCAAAG |
| 451 | TACACATATA | TTCGCAAGAT | GTGGCGTGTT | ACGGTGAAAA | CCTGGCCTAT |
| | ATGTGTATAT | AAGCGTTCTA | CACCGCACAA | TGCCACTTTT | GGACCGGATA |
| 501 | TTCCCTAAAG | GGTTTATTGA | GAATATGTTT | TTCGTCTCAG | CCAATCCCTG |
| | AAGGGATTTC | CCAAATAACT | CTTATACAAA | AAGCAGAGTC | GGTTAGGGAC |
| 551 | GGTGAGTTTC | ACCAGTTTTG | ATTTAAACGT | AGCCAATATG | GACAACTTCT |
| | CCACTCAAAG | TGGTCAAAAC | TAAATTTGCA | TCGGTTATAC | CTGTTGAAGA |
| 601 | TCGCCCCCGT | TTTCACTATG
AAAGTGATAC | GGCAAATATT
CCGTTTATAA | ATACGCAAGG
TATGCGTTCC | CGACAAGGTG
GCTGTTCCAC |
| 651 | CTGATGCCGC | TGGCGATTCA | GGTTCATCAT | GCCGTTTGTG | ATGGCTTCCA |
| | GACTACGGCG | ACCGCTAAGT | CCAAGTAGTA | CGGCAAACAC | TACCGAAGGT |
| 701 | TGTCGGCAGA | ATGCTTAATG | AATTACAACA | GTACTGCGAT | GAGTGGCAGG |
| | ACAGCCGTCT | TACGAATTAC | TTAATGTTGT | CATGACGCTA | CTCACCGTCC |
| 751 | GCGGGGCGTA | ATTTTTAA | GGCAGTTATT | GGGTGCCCTT | AAACGCCTGG |

FIG. 34C

APPROVED O.G. FIG. DRAFISHAH CGCCCCGCAT TAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC

BgllI

TGCTAGATCT TCC ACGATCTAGA AGG 801

CLASS SUBCLASS

APPROVEU O.G. FIG.

| FIG. | SUBCLASS | |
|----------|------------|-----------|
| .D. G. F | CLASS | |
| APPROVED | ≻ 9 | DRAFTSHAN |

| H
H | |
|--------|--|
| ō | |
| Э | |
| щ | |

| TGGTGGCTCT
ACCACCGAGA | ATAAGGGGGC
TATTCCCCCG | GCTAAAGGCA | . TGGTTTCATT | GTGATTTTGC
CACTAAAACG | AATTCACCTT
TTAAGTGGAA |
|--------------------------|--------------------------|------------|--------------|--------------------------|--------------------------|
| ATCTGTAGGG | GCAAACGCTA | ACAGTCTGAC | CTGCTATCGA | GGTGCTACTG | TGACGGTGAT |
| TAGACATCCC | CGTTTGCGAT | TGTCAGACTG | GACGATAGCT | CCACGATGAC | ACTGCCACTA |
| TCTGAGGAGG | TGAAAAGATG | AAAACGCGCT | GATTACGGTG | TAATGGTAAT | CTCAAGTCGG |
| AGACTCCTCC | ACTTTTCTAC | TTTTGCGCGA | CTAATGCCAC | ATTACCATTA | GAGTTCAGCC |
| GAAGCTGATC | ATTTTGATTA | AATGCCGATG | TGTCGCTACT | CCGGCCTTGC | TCCCAAATGG |
| CTTCGACTAG | TAAAACTAAT | TTACGGCTAÇ | ACAGCGATGA | | AGGGTTTACC |
| AATTCGAGCA | GGTTCCGGTG | TATGACCGAA | AACTTGATTC | GGTGACGTTT | TGGCTCTAAT |
| TTAAGCTCGT | | ATACTGGCTT | TTGAACTAAG | CCACTGCAAA | ACCGAGATTA |
| Н | 21 | 101 | 151 | 201 | 251 |

FIG. 35B

TAATGAATAA TTTCCGTCAA TATTTACCTT CCCTCCCTCA ATTACTTATT AAAGGCAGTT ATAAATGGAA GGGAGGGAGT

XmnI

301

| <u> </u> | SUBCLASS | |
|---------------|-----------|-----------|
| .G. F1G. | CLASS SUB | |
| APPROVED D. (| <u>}</u> | DRAFTSHAN |

| TTTCTATTGA
AAAGATAACT | CTTTTATATG
GAAAATATAC | ACTGCGTAAT
TGACGCATTA | CGCAGATTGT
GCGTCTAACA | ተ
8
0
1 | 9922992222
2299229999 | GTTAAAATTC
CAATTTTAAG |
|--------------------------|--------------------------|--------------------------|--|------------------|--------------------------|-----------------------------------|
| CCATATGAAT
GGTATACTTA | CTTTGCGTTT
GAAACGCAAA | TTGCTAACAT
AACGATTGTA | TGAAAAATGG
ACTTTTTACC | į | AAGGGGGGGG | TTAATATTTT
AATTATAAAA |
| CGCTGGTAAA
GCGACCATTT | TCCGTGGTGT
AGGCACCACA | TTTTCTACGT
AAAAGATGCA | ACCTGTGAAG
TGGACACTTC | Paci | HA | ATTGTAAACG
TAACA'TTTGC |
| TTGTCTTTGG
AACAGAAACC | ATAAACTTAT
TATTTGAATA | TATGTATGTA
ATACATACAT | HindIII
~~~~~
GATAAGCTTG
CTATTCGAAC | | TTTTGTCTGC
AAAACAGACG | BsrGI
TGTACATGAA
ACATGTACTT |
| TGTCGCCCTT
ACAGCGGGAA | TTGTGACAAA
AACACTGTTT | TTGCCACCTT
AACGGTGGAA | AAGGAGTCTT
TTCCTCAGAA | | GCGACATTTT
CGCTGTAAAA | TGGGGGGGG |
| 351 | 401 | 451 | 501 | | 551 | 601 |

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

APPROVED O.G. FIG.
BY CLASS SUBCLASS

| | SS | \neg |
|----------|----------|-----------|
| S | SUBCLASS | |
| .G. F1G | CLASS S | |
| 10 | [3 | 75 |
| APPROVEU | 23 | DRAFTSHAR |
| 1 4 | | ă: l |

FIG. 351

| G. F1G. | CLASS SUBCLASS | |
|-------------------|----------------|-----------|
| APPROVED 0.G. F10 | BY CLAS | DRAFTSMAN |

| TGTGTGCACG | CTATCGTCTT
GATAGCAGAA | CAGCCACTGG | GAGTTCTTGA
CTCAAGAACT | TGGTATCTGC | GCTCTTGATC CGAGAACTAG | TGCAAGCAGC | GATCTTTTCT
CTAGAAAAGA |
|------------|--------------------------|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CAAGCTGGGC | TATCCGGTAA
ATAGGCCATT | CCACTGGCAG | CGGTGCTACA
GCCACGATGT | GAACAGTATT
CTTGTCATAA | AGAGTTGGTA
TCTCAACCAT | TTTTTTTGTT
AAAAAAACAA | AAGATCCTTT
TTCTAGGAAA |
| TCGTTCGCTC | CGCTGCGCCT | CGACTTATCG | GGTATGTAGG | TACACTAGAA | CTTCGGAAAA | GTAGCGGTGG | GGATCTCAAG |
| AGCAAGCGAG | GCGACGCGGA | GCTGAATAGC | CCATACATCC | ATGTGATCTT | GAAGCCTTTT | CATCGCCACC | CCTAGAGTTC |
| TCGGTGTAGG | TCAGCCCGAC | CGGTAAGACA | AGCAGAGCGA | TAACTACGGC | AGCCAGTTAC | ACCACCGCTG | CAGAAAAAA |
| AGCCACATCC | AGTCGGGCTG | GCCATTCTGT | TCGTCTCGCT | ATTGATGCCG | TCGGTCAATG | TGGTGGCGAC | GTCTTTTTTT |
| GTATCTCAGT | AACCCCCCGT | GAGTCCAACC | TAACAGGATT | AGTGGTGGCC | GCTCTGCTGT | CGGCAAACAA | AGATTACGCG |
| CATAGAGTCA | | CTCAGGTTGG | ATTGTCCTAA | TCACCACCGG | CGAGACGACA | GCCGTTTGTT | TCTAATGCGC |
| 1351 | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 | 1701 |

FIG. 35F

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| 0.G. | CLASS | |
| APPROVED | ć, | ORAFISMAN |

| GGATTTTGGT | TTAAAAAAT | CATTAAGCAT | TGAATCGCCA | CATAGTGAAA | CAAACTGGT | TCAATAAACC |
|--------------------------|---|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CCTAAAACCA | AATTTTTTA | GTAATTCGTA | ACTTAGCGGT | GTATCACTTT | GTTTTGACCA | AGTTATTTGG |
| TCACGTTAAG | AATAACTGCC | TGTTGTAATT | ATGATGAACC | AATATTTGCC | ACGTTTAAAT | AAACATATTC |
| AGTGCAATTC | TTATTGACGG | ACAACATTAA | TACTACTTGG | TTATAAACGG | TGCAAATTTA | TTTGTATAAG |
| GAACGAAAAC | TAAGGGCACC | ATCGCAGTAC | CACAAACGGC | CCTTGCGTAT | CATATTGGCT | CTGAGACGAA |
| CTTGCTTTTG | ATTCCCGTGG | TAGCGTCATG | GTGTTTGCCG | GGAACGCATA | GTATAACCGA | GACTCTGCTT |
| ACGCTCAGTG | ACCAGGCGTT | CCTGCCACTC | TGGAAGCCAT | CACCTTGTCG | AGAAGTTGTC | CAGGGATTGG |
| TGCGAGTCAC | TGGTCCGCAA | GGACGGTGAG | ACCTTCGGTA | GTGGAACAGC | TCTTCAACAG | GTCCCTAACC |
| ACGGGGTCTG
TGCCCCAGAC | Bglii
~~~~~~
CAGATCTAGC
GTCTAGATCG | TACGCCCCGC
ATGCGGGGCG | TCTGCCGACA
AGACGGCTGT | GCGCCATCAG
CGCCGTAGTC | ACGGGGGCGA
TGCCCCCGCT | GAAACTCACC
CTTTGAGTGG |
| 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 |

FIG. 35G

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| 2101 | CTTTAGGGAA | ATAGGCCAGG | TTTTCACCGT | AACACGCCAC | ATCTTGCGAA |
|------|------------|------------|------------|------------|------------|
| | GAAATCCCTT | TATCCGUTCC | AAAAGTGGCA | TTGTGCGGTG | TAGAACGCTT |
| 2151 | TATATGTGTA | GAÀACTGCCG | GAAATCGTCG | TGGTATTCAC | TCCAGAGCGA |
| | ATATACACAT | CTTTGACGGC | CTTTAGCAGC | ACCATAAGTG | AGGTCTCGCT |
| 2201 | TGAAAACGTT | TCAGTTTGCT | CATGGAAAAC | GGTGTAACAA | GGGTGAACAC |
| | ACTTTTGCAA | AGTCAAACGA | GTACCTTTTG | CCACATTGTT | CCCACTTGTG |
| 2251 | TATCCCATAT | CACCAGCTCA | CCGTCTTTCA | TTGCCATACG | GAACTCCGGG |
| | ATAGGGTATA | GTGGTCGAGT | GGCAGAAAGT | AACGGTATGC | CTTGAGGCCC |
| 2301 | TGAGCATTCA | TCAGGCGGGC | AAGAATGTGA | ATAAAGGCCG | GATAAAACTT |
| | ACTCGTAAGT | AGTCCGCCCG | TTCTTACACT | TATTTCCGGC | CTATTTTGAA |
| 2351 | GTGCTTATTT | TTCTTTACGG | TCTTTAAAAA | GGCCGTAATA | TCCAGCTGAA |
| | CACGAATAAA | AAGAAATGCC | AGAAATTTTT | CCGGCATTAT | AGGTCGACTT |
| 2401 | CGGTCTGGTT | ATAGGTACAT | TGAGCAACTG | ACTGAAATĞC | CTCAAAATGT |
| | GCCAGACCAA | TATCCATGTA | ACTCGTTGAC | TGACTTTACG | GAGTTTTACA |
| 2451 | TCTTTACGAT | GCCATTGGGA | TATATCAACG | GTGGTATATC | CAGTGATTTT |
| | AGAAATGCTA | CGGTAACCCT | ATATAGTTGC | CACCATATAG | GTCACTAAAA |

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSHAN

| F1G. | CLASS SUBCLASS | |
|-------------------|----------------|------------|
| 0.6. | CLASS | |
| APPROVED G.G. F | £g | DRAFTSPIAH |

| 2501 | TTTCTCCATT
AAAGAGGTAA | TTAGCTTCCT
AATCGAAGGA | TAGCTCCTGA
ATCGAGGACT | AAATCTCGAT
TTTAGAGCTA | AACTCAAAAA
TTGAGTTTTT |
|-------------|--------------------------|--------------------------|--------------------------|--|--------------------------|
| 2551 | ATACGCCCGG
TATGCGGGCC | TAGTGATCTT
ATCACTAGAA | ATTTCATTAT
TAAAGTAATA | GGTGAAAGTT
CCACTTTCAA | GGAACCTCAC
CCTTGGAGTG |
| 7601 | Aatii
~~~~~~ | מחיים מיחים מיחים | まるりましな ごまして | ָרָרָרָרָרָרָ
בַּרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָ | |
| H
>
> | GGCTGCAGAT | TACACTCAAȚ | CGAGTGAGTA | ATCCGTGGGG | TCCGAAATGT |
| 2651 | CTTTATGCTT
GAAATACGAA | CCGGCTCGTA
GGCCGAGCAT | TGTTGTGG
ACAACACACC | AATTGTGAGC
TTAACACTCG | GGATAACAAT
CCTATTGTTA |
| | | | | XbaI | Xbal Sphi |
| 2701 | TTCACACAGG
AAGTGTGTCC | AAACAGCTAT
TTTGTCGATA | GACCATGATT
CTGGTACTAA | ACGAATTTCT
TGCTTAAAGA | |
| | EcoRI | | | | |
| 2751 |)
 00000 | щ. | FIG. 35I | | |

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAH

M2 173 bp *FIG.* 35J

| Ö | SUBCLASS | |
|-----------|----------|-----------|
| 0.G. F1G. | CLASS S | |
| APPROVED. | ۵۲ | DRAFTSMAN |

2 Σ AatII

11111

CCGAAATGTG GGCTTTACAC AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA ACACTCAATC TGTGAGTTAG CTGCAGAATT GACGTCTTAA

ATTGTGAGCG GATAACAATT CTATTGTTAA TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 57

XbaI

XmnI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

101

SphI

 \mathbf{TGC} ACG TCAATAGCGT AGTTATCGCA CGCTATACGA GCGATATGCT

151

APPROVED O.G. F IG.

EY GLASS SUBCLASS

DRAFISMAH

M3 47 bp *FIG.* 35L

| 2. FIG. | S SUBCLASS | | |
|----------|------------|-----------|--|
| C | CLASS | | |
| APFROVED | >-
m | DRAFTSHAR | |

Aatii

TGACGTC ACTGCAG ATGTATGCTA TACGAAGTTA TACATACGAT ATGCTTCAAT

AGATCTCATA ACTTCGTATA TCTAGAGTAT TGAAGCATAT

Σ

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFISMAN

M7-I (long) 1255 bp *FIG.* 35N

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | λū | DRAFTSMAN |

7-I (long): Σ

ECORI

| Ч | GAATTCGGTG
CTTAAGCCAC | GTGGTGGATC | TGCGTGCGCT | GAAACGGTTG
CTTTGCCAAC | AAAGTTGTTT
TTTCAACAAA |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51 | AGCAAAATCC | CATACAGAAA | ATTCATTTAC | TAACGTCTGG | AAAGACGACA |
| | TCGTTTTAGG | GTATGTCTTT | TAAGTAAATG | ATTGCAGACC | TTTCTGCTGT |
| 101 | AAACTTTAGA | TCGTTACGCT | AACTATGAGG | GCTGTCTGTG | GAATGCTACA |
| | TTTGAAATCT | AGCAATGCGA | TTGATACTCC | CGACAGACAC | CTTACGATGT |
| 151 | GGCGTTGTAG | TTTGTACTGG | TGACGAAACT | CAGTGTTACG | GTACATGGGT |
| | CCGCAACATC | AAACATGACC | ACTGCTTTGA | GTCACAATGC | CATGTACCCA |
| 201 | TCCTATTGGG
AGGATAACCC | CTTGCTATCC
GAACGATAGG | CTGAAAATGA
GACTTTTACT | GGGTGGTGGC | TCTGAGGGTG
AGACTCCCAC |

FIG. 350

GCGCTACTAA ACCTCCTGAG CGCCATGATT TGGAGGACTC

GGGTGGCGT TCTGAGGGTG CCCACCGCCA AGACTCCCAC

GCGGTTCTGA

251

TGGAGGACTC

CTCTCGACGG GAGAGCTGCC

TATATCAACC ATATAGTTGG

CACCTATTCC GGGCTATACT GTGGATAAGG CCCGATATGA

TACGGTGATA ATGCCACTAT

301

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| TTGAGGAGTC TC AACTCCTCAG AC CGAAATAGGC AC GCTTTATCCG TC | GGACCATGAC TCG TCAGCCTCTT AAT AGTCGGAGAA TTA AGGGGCATT AAC TCCCCGTAA TTG GTTAAAACTT ATT | AGCAAAACCC
TCGTTTTGGG
AATACTTTCA
TTATGAAAGT
TTGACAAATA
TTGACAAATA | CGCTAATCCT
GCGATTAGGA
TGTTTCAGAA
ACAAAGTCTT
ACGGGCACTG
TGCCCGTGAC | TTAGGAAGAG
TTATCCAAG
TTACTCAAGG
AATGAGTTCC |
|---|---|--|--|--|
| | | ATTACCAGTA TAATGGTCAT AACGGTAAAT TTGCCATTTA | CACTCCTGTA GTGAGGACAT TCAGAGACTG AGTCTCTGAC | TCATCAAAAG
AGTAGTTTTC
CGCTTTCCAT
GCGAAAGGTA |

501

401

351

ş,

451

551

601

APPROVED C.G. FIG.

FIG. 35P

701

651

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| ·1G. | SUBCLASS | |
|-------------------|----------|-----------|
| PROVED C. G. FIG. | CLA.55 | |
| APPROVED | ВУ | DRAFTSMAN |

| CCGGTGATTT
GGCCACTAAA | ACCGAAAATG
TGGCTTTTAC | TGATTCTGTC
ACTAAGACAG | ACGTTTCCGG
TGCAAAGGCC | TCTAATTCCC
AGATTAAGGG | Xmni
GAATAATTTC
CTTATTAAAG | GCCCTTTTGT
CGGGAAAACA |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|--------------------------|
| GGCTCTGGTT | GGGGGCTATG | AAGGCAAACT | TTCATTGGTG | TTTTGCTGGC | CACCTTTAAT | GTTGAATGTC |
| | CCCCCGATAC | TTCCGTTTGA | AAGTAACCAC | AAAACGACCG | GTGGAAATTA | CAACTTACAG |
| TTCCGGTGGT | ACGCTAATAA | TCTGACGCTA | TATCGATGGT | CTACTGGTGA | GGTGATAATT | CCCTCAATCG |
| AAGGCCACCA | TGCGATTATT | AGACTGCGAT | ATAGCTACCA | GATGACCACT | CCACTATTAA | GGGAGTTAGC |
| AGGGAGGCGG | AAGATGGCAA | CGCGCTACAG | ACGGTGCTGC | GGTAATGGTG | AGTCGGTGAA | TACCTTCCAT |
| TCCCTCCGCC | TTCTACCGTT | GCGCGATGTC | TGCCACGACG | CCATTACCAC | TCAGCCACTT | ATGGAAGGTA |
| GGCGGCTCTG | TGATTATGAA | CCGATGAAAA | GCTACTGATT | CCTTGCTAAT | AAATGGCTCA | CGTCAATATT |
| | ACTAATACTT | GGCTACTTTT | CGATGACTAA | GGAACGATTA | TTTACCGAGT | GCAGTTATAA |
| 751 | 801 | 851 | 901 | 951 | 1001 | 1051 |

F/G. 35Q

| . F1G. | SS SUBCLASS | |
|--------------|-------------|-----------|
| APPROVED 0.G | BY CLASS | DRAFISHAN |

| AGTCTTGATA | CGTAATAAGG | TAACATACTG | ATGTATTT CTACGTTEGC TAACATACTG | TATGTATTT | 1201 |
|------------|------------|----------------------------------|---|------------|------|
| 1 | | | | | |
| HindIII | | | | | |
| GTGGAAATAC | ATATACAACG | ACCACAGAAA CGCAAAGAAA ATATACAACG | ACCACAGAAA | TGAATAAGGC | |
| CACCTTTATG | TATATGTTGC | | TGGTGTCTTT GCGTTTCTTT | ACTTATTCCG | 1151 |
| CTGTTTTATT | ATAACTAACA | TACTTAAAAG | GAAACCGCGA CCATTTGGGA TACTTAAAAG ATAACTAACA | GAAACCGCGA | |
| GACAAAATAA | TATTGATTGT | ATGAATTTTC | TITGGCGCT GGTAAACCCT ATGAATTITC | CITIGGCGCI | 1101 |

FIG. 35R

HindI ----AGCTT TCGAA

1251

M7-II (ss-IAG) 502 bp **F/G. 35S**

| F.G. | SUBCLASS | |
|----------|----------|-----------|
| O.G. F | CLASS | |
| APPROVED | >-
C3 | DRAFISMAN |

M 7-II (SS-TAG):

ECORI

TTAAGGGTTT AAGACAGCGA AAAGGCCGGA AATTCCCAAA CACTAAAACT GAAAATGCCG CTTTTACGGC TICIGICGCI GTGATTTTGA TTTCCGGCCT AATGGTGCTA CTGGTGATTT TGCTGGCTCT TTACCACGAT GACCACTAAA ACGACCGAGA GCTACAGTCT GACGCTAAAG GCAAACTTGA CGTTTGAACT ATTGGTGACG TAACCACTGC TCTGGTTCCG GGCTATGACC AGACCAAGGC CCGATACTGG GIGCIGCIAT CGAIGGITIC CGGTGGTGGC CTAATAAGGG GATTATTCCC CTGCGATTTC GCTACCAAAG GCCACCACCG ATGGCAAACG CACGACGATA GAGGCGGTTC TACCGTTTGC CGATGTCAGA CTCCCCCAAG TGCTAATGGT ATGAAAACGC ACTGATTACG CGGGAATTCG TTATGAAAAG AATACTTTTC TACTTTGCG TGACTAATGC ACGATTACCA GCCCTTAAGC 201 101 151 51

F/G. 35T

TAATTTCCGT ATTAAAGGCA

CTTTAATGAA GAAATTACTT

CGGTGACGGT GATAATTCAC

TGGCTCAAGT

251

ACCGAGTTCA

GCCACTGCCA CTATTAAGTG

XmnI

| G. | SUBCLASS | |
|-----------|----------|-----------|
| 0.G. FIG. | CLASS SI | |
| APPROVED | 67 | DRAFTSMAN |

| CTTTTGTCTT | AAAATAAACT | CTTTATGTAT | HindIII | CTTGATAAGC |
|-----------------------|--------------------------|--------------------------|---------|--------------------------|
| GAAAACAGAA | TTTTATTTGA | GAAATACATA | | GAACTATTCG |
| GAATGTCGCC CTTTTGTCTT | TGATTGTGAC | ATGTTGCCAC | | AATAAGGAGT |
| CTTACAGCGG GAAAACAGAA | ACTAACACTG | TACAACGGTG | | TTATTCCTCA |
| TCAATCGGTT | AATTTTCTAT | TTTCTTTAT | | CGTTTGCTAA CATACTGCGT |
| AGTTAGCCAA | TTAAAAGATA | AAAGAAAATA | | GCAAACGATT GTATGACGCA |
| CTTCCCTCCC | AAACCATATG
TTTGGTATAC | TGTCTTTGCG
ACAGAAACGC | | CGTTTGCTAA
GCAAACGATT |
| CAATATTTAC | TGGCGCTGGT | TATTCCGTGG | | GTATTTTCTA |
| GTTATAAATG | ACCGCGACCA | ATAAGGCACC | | CATAAAAGAT |
| 301 | 351 | 401 | | 451 |

FIG. 35U

Hi ~ TT AA

501

APPROVEU O.G. FIG.

DRAFISMAH

M8 47 bp *FIG.* 35V

CLASS SUBCLASS APPROVED O.G. FIG. DRAFISHAN ¥

HindIII

SphI

.. ∞

 \mathbf{z}

GCATGCCATA ACTTCGTATA ATGTACGCTA TACGAAGTTA TAAGCTT CGTACGGTAT TGAAGCATAT TACATGCGAT ATGCTTCAAT ATTCGAA

FIG. 35W

M10-II 1163 bp *FIG.* 35X

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | >-
20 | DRAFTSMAN |

M 10-II

BsrGI

| ⊢ | GGGGGTGTAC | ATTCAAATAT
TAAGTTTATA | GTATCCGCTC
CATAGGCGAG | ATGAGACAAT
TACTCTGTTA | AACCCTGATA
TTGGGACTAT |
|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51 | AATGCTTCAA
TTACGAAGTT | TAATATTGAA
ATTATAACTT | AAAGGAAGAG
TTTCCTTCTC | TATGAGTATT
ATACTCATAA | CAACATTTCC
GTTGTAAAGG |
| 101 | GTGTCGCCCT
CACAGCGGGA | TATTCCCTTT
ATAAGGGAAA | TTTGCGGCAT
AAACGCCGTA | TTTGCCTTCC | TGTTTTTGCT
ACAAAAACGA |
| 151 | CACCCAGAAA
GTGGGTCTTT | CGCTGGTGAA
GCGACCACTT | AGTAAAAGAT
TCATTTTCTA | GCTGAGGATC
CGACTCCTAG | AGTTGGGTGC
TCAACCCACG |
| 201 | GCGAGTGGGT
CGCTCACCCA | TACATCGAAC
ATGTAGCTTG | TGGATCTCAA
ACCTAGAGTT | CAGCGGTAAG
GTCGCCATTC | ATCCTTGAGA
TAGGAACTCT |
| | | XmnX | | | |
| 251 | GTTTTCGCCC
CAAAAGCGGG | 4 🗗 | TTTCCAATGA | TGAGCACTTT
ACTCGTGAAA | TAAAGTTCTG
ATTTCAAGAC |

FIG. 35Y

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | }
23 | DRAFTSMAN |

| 301 | CTATGTGGCG
GATACACCGC | CGGTATTATC
GCCATAATAG | CCGTATTGAC
GGCATAACTG | GCCGGGCAAG | AGCAACTCGG
TCGTTGAGCC |
|-----|---|--------------------------|--------------------------|--------------------------|--------------------------|
| 351 | TCGCCGCATA
AGCGGCGTAT | CACTATTCTC
GTGATAAGAG | AGAATGACTT
TCTTACTGAA | GGTTGAGTAC
CCAACTCATG | TCACCAGTCA
AGTGGTCAGT |
| 401 | CAGAAAAGCA
GTCTTTTCGT | TCTTACGGAT
AGAATGCCTA | GGCATGACAG
CCGTACTGTC | TAAGAGAATT
ATTCTCTTAA | ATGCAGTGCT |
| 451 | GCCATAACCA
CGGTATTGGT | TGAGTGATAA
ACTCACTATT | CACTGCGGCC
GTGACGCCGG | AACTTACTTC
TTGAATGAAG | TGACAACGAT
ACTGTTGCTA |
| 501 | cccaccacccccccccccccccccccccccccccccccc | AAGGAGCTAA
TTCCTCGATT | CCGCTTTTTT
GGCGAAAAAA | GCACAACATG
CGTGTTGTAC | GGGGATCATG |
| 551 | TAACTCGCCT
ATTGAGCGGA | TGATCGTTGG
ACTAGCAACC | GAACCGGAGC
CTTGGCCTCG | TGAATGAAGC
ACTTACTTCG | CATACCAAAC
GTATGGTTTG |
| 601 | GACGAGCGTG
CTGCTCGCAC | ACACCAĆGAT
TGTGGTGCTA | GCCTGTAGCA | ATGGCAACAA
TACCGTTGTT | CGTTGCGCAA
GCAACGCGTT |
| 651 | ACTATTAACT
TGATAATTGA | GGCGAACTAC | TTACTCTAGC
AATGAGATCG | TTCCCGGCAA | CAGTTAATAG
GTCAATTATC |

FIG. 35Z

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | >-
G | DRAFTSMAR |

| 701 | ACTGGATGGA
TGACCTACCT | GGCGGATAAA
CCGCCTATTT | GTTGCAGGAC | CACTTCTGCG
GTGAAGACGC | CTCGGCCCTT |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 751 | CCGGCTGGCT | GGTTTATTGC
CCAAATAACG | TGATAAATCT
ACTATTTAGA | GGAGCCGGTG | AGCGTGGGTC
TCGCACCCAG |
| 801 | TCGCGGTATC
AGCGCCATAG | ATTGCAGCAC
TAACGTCGTG | TGGGGCCAGA | TGGTAAGCCC
ACCATTCGGG | TCCCGTATCG
AGGCCATAGC |
| 851 | TAGTTATCTA | CACGACGGGG | AGTCAGGCAA | CTATGGATGA | ACGAAATAGA |
| | ATCAATAGAT | GTGCTGCCCC | TCAGTCCGTT | GATACCTACT | TGCTTTATCT |
| 901 | CAGATCGCTG | AGATAGGTGC | CTCACTGATT | AAGCATTGGG | TAACTGTCAG |
| | GTCTAGCGAC | TCTATCCACG | GAGTGACTAA | TTCGTAACCC | ATTGACAGTC |
| 951 | ACCAAGTTTA | CTCATATATA | CTTTAGATTG | ATTTAAAACT | TCATTTTAA |
| | TGGTTCAAAT | GAGTATATAT | GAAATCTAAC | TAAATTTTGA | AGTAAAAATT |
| 1001 | TTTAAAAGGA | TCTAGGTGAA | GATCCTTTTT | GATAATCTCA | TGACCAAAAT |
| | AAATTTTCCT | AGATCCACTT | CTAGGAAAAA | CTATTAGAGT | ACTGGTTTTA |
| 1051 | CCCTTAACGT
GGGAATTGCA | GAGTTTTCGT
CTCAAAAGCA | TCCACTGAGC
AGGTGACTCG | GTCAGACCCC | GTAGAAAAGA
CATCTTTTCT |

FIG. 35AA

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | ¥g | DRAFTSHAN |

| 1 | CCTT | GGAA |
|----------|---|----------------------|
| ! | CCCCCCCTT | GGGGGGGGAA |
| | AATGGCCGGC | GGAAAACTA TTACCGGCCG |
| | CCTTTTTGAT | GGAAAAACTA |
| | AGGATC TICTIGAGAT CCTTITIGAT AATGGCCGGC | FCCTAG AAGAACTCTA |
| | TCAAAGGATC | AGTTTCCTAG |
| | 101 | |

PacI

FseI

PacI ~~~~~~ 51 AATTAAGGG

1151 AATTAAGGGG GGG TTAATTCCCC CCC

FIG. 35BB

APPROVED O.C. FIG.
BY CLASS SUBCLASS

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | Y | BRAFTSMAN |

111-II:

NheI

| \vdash | GCTAGCACGC | GCCCTGTAGC
CGGGACATCG | GGCGCATTAA
CCGCGTAATT | 0000000000 | TGTGGTGGTT
ACACCACCAA |
|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51 | ACGCGCAGCG | TGACCGCTAC | ACTTGCCAGC | GCCCTAGCGC | CCGCTCCTTT |
| | TGCGCGTCGC | ACTGGCGATG | TGAACGGTCG | CGGGATCGCG | GGCGAGGAAA |
| 101 | CGCTTTCTTC | CCTTCCTTTC | TCGCCACGTT | CGCCGGCTTT | CCCCGTCAAG |
| | GCGAAAGAAG | GGAAGGAAAG | AGCGGTGCAA | GCGGCCGAAA | GGGCAGTTC |
| 151 | CTCTAAATCG
GAGATTTAGC | Banll
CCCCGAGGGA | TTAGGGTTCC | GATTTAGTGC
CTAAATCACG | TTTACGGCAC
AAATGCCGTG |
| 201 | CTCGACCCCA
GAGCTGGGGT | AAAAACTTGA
TTTTTGAACT | TTAGGGTGAT
AATCCCACTA | GGTTCTCGTA
CCAAGAGCAT | GTGGGCCATC |
| 251 | GCCCTGATAG | ACGGTTTTTC | GCCCTTTGAC | GTTGGAGTCC | ACGTTCTTTA |
| | CGGGACTATC | TGCCAAAAG | CGGGAAACTG | CAACCTCAGG | TGCAAGAAAT |

| APPROVED 0. | 0.G. FIG. |
|-------------|----------------|
| <u>></u> | CLASS SUBCLASS |
| DRAFISHAR | - |

| 301 | ATAGTGGACT
TATCACCTGA | ATAGTGGACT CTTGTTCCAA
TATCACCTGA GAACAAGGTT | ACTGGAACAA
TGACCTTGTT | ATAGTGGACT CTTGTTCCAA ACTGGAACAA CACTCAACCC TATCTCGGTC
TATCACCTGA GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG | TATCTCGGTC
ATAGAGCCAG |
|-----|--------------------------|--|--------------------------|--|--|
| 351 | TATTCTTTTG | ATTTATAAGG
TAAATATTCC | GATTTTGCCG
CTAAAACGGC | ATTTCGGCCT ATTGGTTAAA
TAAAGCCGGA TAACCAATTT | ATTTCGGCCT ATTGGTTAAA
TAAAGCCGGA TAACCAATTT |
| 401 | AAATGAGCTG
TTTACTCGAC | ATTTAACAAA
TAAATTGTTT | AATTTAACGC
TTAAATTGCG | ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA
TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT | AAAATATTAA
TTTTATAATT |
| | | BsrGI | | | |
| 451 | CGTTTACAAT
GCAAATGTTA | CGTTTACAAT TTCATGTACA
GCAAATGTTA AAGTACATGT | | | |

FIG. 35EE

APPROVED O.G. FIG.
BY CLASS SUBCLASS

BRAFISMAN

| _ | | | |
|----------|-------------------|-----------|--|
| OR FIG | CL 455 letted 400 | SOCIASS | |
| APPROVED | ,
5-
69 | DRAFTSMAN | |

M 12:

Bglii

| ~ | AGATCTAATA
TCTAGATTAT | AGATGATCTT
TCTACTAGAA | CTTGAGATCG
GAACTCTAGC | TTTTGGTCTG | CGCGTAATCT
GCGCATTAGA |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51 | CTTGCTCTGA | AAACGAAAAA
TTTGCTTTTT | ACCGCCTTGC
TGCCGGAACG | AGGGCGGTTT
TCCCGCCAAA | TTCGTAGGTT
AAGCATCCAA |
| 101 | CTCTGAGCTA | CCAACTCTTT | GAACCGAGGT | AACTGGCTTG | GAGGAGCGCA |
| | GAGACTCGAT | GGTTGAGAAA | CTTGGCTCCA | TTGACCGAAC | CTCCTCGCGT |
| 151 | GTCACTAAAA | CTTGTCCTTT | CAGTTTAGCC | TTAACCGGCG | CATGACTTCA |
| | CAGTGATTTT | GAACAGGAAA | GTCAAATCGG | AATTGGCCGC | GTACTGAAGT |
| 201 | AGACTAACTC
TCTGATTGAG | CTCTAAATCA
GAGATTTAGT | ATTACCAGTG
TAATGGTCAC | GCTGCTGCCA | GTGGTGCTTT
CACCACGAAA |
| 251 | TGCATGTCTT | TCCGGGTTGG | ACTCAAGACG | ATAGTTACCG | GATAAGGCGC |
| | ACGTACAGAA | AGGCCCAACC | TGAGTTCTGC | TATCAATGGC | CTATTCCGCG |
| 301 | AGCGGTCGGA | CTGAACGGGG | GGTTCGTGCA | TACAGTCCAG | CTTGGAGCGA |
| | TCGCCAGCCT | GACTTGCCCC | CCAAGCACGT | ATGTCAGGTC | GAACCTCGCT |

FIG. 35GG

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| 0.0 | GL ASS | |
| APPROVED | £ | DRAFTSHAM |

| AAACĠCGGCC
TTTGCGCCGG | | AGGAGAGCGC
TCCTCTCGCG | GTCCTGTCGG
CAGGACAGCC | TTGTCAGGGG | ACTTCCCTGT
TGAAGGGACA | TTCGTAAGCC
AAGCATTCGG | CAGTGAGCGA
GTCACTCGCT |
|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GGAATGAGAC
CCTTACTCTG | | AGGCAGGAAC
TCCGTCCTTG | TATCTTTATA
ATAGAAATAT | TTCGTGATGC
AAGCACTACG | CGGCCCTCTC
GCCGGGAGAG | CTCCGCCCCG | CGTAGCGAGT
GCATCGCTCA |
| TGTCAGGCGT
ACAGTCCGCA | 7 | \mathcal{O} | AAACGCCTGG
TTTGCGGACC | AGCGTCAGAT
TCGCAGTCTA | GGCTTTGCCG
CCGAAACGGC | TCCAGGAAAT
AGGTCCTTTA | AACGACCGAG
TTGCTGGCTC |
| CGGAACTGAG
GCCTTGACTC | AgeI | ပ္ခဲ့စု | CGCCAGGGGG
GCGGTCCCCC | CACTGATTTG
GTGACTAAAC | ATGGAAAAAC
TACCTTTTTG | CCTGGCATCT
GGACCGTAGA | GCCGCAGTCG
CGGCGTCAGC |
| ACTGCCTACC
TGACGGATGG | | ATAACAGCGG
TATTGTCGCC | AGGAGGGAGC
TCCTCCCTCG | GTTTCGCCAC | GGCGGAGCCT
CCGCCTCGGA | TAAGTATCTT
ATTCATAGAA | ATTTCCGCTC
TAAAGGCGAG |
| 351 | | 401 | 451 | 501 | 551 | 601 | 651 |

FIG. 35HH

| | SUBCLASS | |
|-----------|-----------|-----------|
| 0.G. FIG. | CLASS SUB | |
| APPROVED | 'n | DRAFISHAN |

AgeI

ACCGGTGCAG TGGCCACGTC GACGACTGCG CTGCTGACGC GGAAGCGGAA TATATCCTGT ATCACATATT TAGTGTATAA CCTTCGCCTT ATATAGGACA 701

GAAGCACTTC ACTGACACCC TCATCAGTGC CTTCGTGAAG TGACTGTGGG AGTAGTCACG AGTAGTCACG GGAAAAAGA GGACGGTGTA CCTGCCACAT CCTTTTTTCT 751

NheI

CAACATAGTA AGCCAGTATA CACTCCGCTA GTTGTATCAT TCGGTCATAT GTGAGGCGAT

801

XmnI

M13 49 bp *FIG. 35JJ* APPROVED O.G. FIG.

BY CLASS SUBCLASS

BRAFISMAN

BglII

Σ

BglII

XmnI

TTCAGATCT AAGTCTAGA TACGAAGTTA ATGCTTCAAT AGATCTCATA ACTTCGTATA ATGTATGCTA TCTAGAGTAT TGAAGCATAT TACATACGAT

FIG. 35KK

APPROVED O.G. FIG.

M19 96 bp *FIG.* 35LL

| O G FIC | CL 455 CHBCL 400 | SOCIETA SO | |
|----------|------------------|------------|--|
| APPROVED | X 83 | PRAFTSMAH | |

M 19

SphI

XbaI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAAATG TTTATTTTAC GCGTAGGAGA AGATCTCGTA TCTAGAGCAT

GAATTC CTTAAG ECORI TACCAAAGCC ATGGTTTCGG CCGTTGCTCT TCACCCCTGT GGCAACGAGA AGTGGGGACA SapI GGCACTCTTA CCGTGAGAAT 51

FIG. 35MM

APPROVED O.G. FIG.
BY CLASS SUBCLASS

M20 120 bp FIG. 35NN

| APPROVED [0.G. F | BY CLASS S | BRAFTSMAN |
|-------------------|------------|-----------|
| F1G. | SUBCLASS | |

20: Σ SphI XbaI

11111

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA AGATCTCGTA TCTAGAGCAT

Sapi

GACTACAAAG TACCAAAGCC ATGGTTTCGG TCACCCCTGT GGCAACGAGA AGTGGGGACA 111111 CCGTTGCTCT GGCACTCTTA

5

ECORI MunI

1111111

1111

ATGAAGTGCA ATTGGAATTC

101

TACTICACGI TAACCITAAG

FIG. 3500

APPROVED O.G. FIG.
BY CLASS SUBCLASS

M21 96 bp *FIG. 35PP* APPROVED O.G. FIG.
BY CLASS SUBCLASS

M 21:

XbaI

TTATAGCGTA AAGAAGA AATATCGCAT TICTICTIGC TATGAAAAAG ATACTTTTTC GAGGTGATTT TCTAGAGGTT AGATCTCCAA

NsiI ECORI

GAATTC TGCATACGCT CAAAAAAGAT AACGATGTTT ACGTATGCGA TTGCTACAAA GTTTTTTCTA ATCTATGTTC TAGATACAAG 57

FIG. 35QQ

APPROVED O.G. FIG.

M41 1221 bp *FIG. 35RR*

| WEO 0.G. FIG. | CLASS SUBCLASS | |
|---------------|----------------|-------------------------|
| APPROVED | , e | Э ВА F Т S М А Н |

M 41

| H | GCTAGCATCG | AATGGCGCAA | AACCTTTCGC | GGTATGGCAT | GATAGCGCCC |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | CGATCGTAGC | TTACCGCGTT | TTGGAAAGCG | CCATACCGTA | CTATCGCGGG |
| 51 | GGAAGAGAGT
CCTTCTCTCA | CAATTCAGGG | TGGTGAATGT
ACCACTTACA | GAAACCAGTA
CTTTGGTCAT | ACGTTATACG
TGCAATATGC |
| 101 | ATGTCGCAGA | GTATGCCGGT | GTCTCTTATC | AGACCGTTTC | CCGCGTGGTG |
| | TACAGCGTCT | CATACGGCCA | CAGAGAATAG | TCTGGCAAAG | GGCGCACCAC |
| 151 | AACCAGGCCA
TTGGTCCGGT | GCCACGTTTC
CGGTGCAAAG | TGCGAAAACG
ACGCTTTTGC | CGGGAAAAAG
GCCCTTTTTC | TGGAAGCGGC |
| 201 | GATGGCGGAG | CTGAATTACA | TTCCTAACCG | CGTGGCACAA | CAACTGGCGG |
| | CTACCGCCTC | GACTTAATGT | AAGGATTGGC | GCACCGTGTT | GTTGACCGCC |
| 251 | GCAAACAGTC | GTTGCTGATT | GGCGTTGCCA | CCTCCAGTCT | GGCCCTGCAC |
| | CGTTTGTCAG | CAACGACTAA | CCGCAACGGT | GGAGGTCAGA | CCGGGACGTG |
| 301 | GCGCCGTCGC | AAATTGTCGC
TTTAACAGCG | GGCGATTAAA | TCTCGCGCCG
AGAGCGCGGC | ATCAACTGGG
TAGTTGACCC |

| .G. F1G. | CLASS SUBCLASS | |
|--------------|----------------|-----------|
| APPROVED 0 | \ <u>5</u> | BRAFISMAH |

| | TGCCAGCGTG | GTCGTGTCGA | TGGTAGAACG | AAGCGGCGTC | GAAGCCTGTA |
|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | ACGGTCGCAC | CAGCACAGCT | ACCATCTTGC | TTCGCCGCAG | CTTCGGACAT |
| | AAGCGGCGGT | GCACAATCTT | CTCGCGCAAC | GTGTCAGTGG | GCTGATTATT |
| TTCGCCGC | CCGCCA | CGTGTTAGAA | GAGCGCGTTG | CACAGTCACC | CGACTAATAA |
| AACTATCC | ATCCGC | TGGATGACCA | GGATGCTATT | GCTGTGGAAG | CTGCCTGCAC |
| TTGATAGG | TAGGCG | ACCTACTGGT | CCTACGATAA | CGACACCTTC | GACGGACGTG |
| TAAT | TAATGTTCCG
ATTACAAGGC | GCGTTATTTC
CGCAATAAAG | TTGATGTCTC
AACTACAGAG | TGACCAGACA | CCCATCAACA
GGGTAGTTGT |
| GTA | GTATTATTT | CTCCCATGAG | GACGGTACGC | GACTGGGCGT | GGAGCATCTG |
| | CATAATAAAA | GAGGGTACTC | CTGCCATGCG | CTGACCCGCA | CCTCGTAGAC |
| GTC | CGCATTGG | GCCACCAGCA | AATCGCGCTG
TTAGCGCGAC | TTAGCTGGCC
AATCGACCGG | CATTAAGTTC
GTAATTCAAG |
| TGT | CTCGGCG | CGTCTGCGTC
GCAGACGCAG | TGGCTGGCTG
ACCGACCGAC | GCATAAATAT
CGTATTTATA | CTCACTCGCA
GAGTGAGCGT |
| ATC | ATCAAATTCA | GCCGATAGCG | GAACGGGAAG | GCGACTGGAG | TGCCATGTCC |
| TAG | TAGTTTAAGT | CGGCTATCGC | CTTGCCCTTC | CGCTGACCTC | ACGGTACAGG |

FIG. 35TT

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | <u>≻</u> | DRAFTSMAN |

| TTCCCACTGC | CGTGCCATTA | GGGATACGAC | CCATCAAACA | CTGCAACTCT | CTCACTGGTG | CTCCCGCGC | CGACTGGAAA |
|------------|------------|------------|------------|------------|------------|------------|------------|
| AAGGGTGACG | GCACGGTAAT | CCCTATGCTG | GGTAGTTTGT | GACGTTGAGA | GAGTGACCAC | | GCTGACCTTT |
| GAGGGCATCG | GGGCGCAATG | TCTCGGTAGT | CCGCTGACCA | GGACCGCTTG | TGTTGCCCGT | CAAACCGCCT | ACAGGTTTCC |
| CTCCCGTAGC | CCCGCGTTAC | AGAGCCATCA | GCCGACTGGT | CCTGGCGAAC | ACAACGGGCA | | TGTCCAAAGG |
| AATGCTGAAT | AGATGGCGCT | GGTGCGGACA | TTATATCCCG | AAACCAGCGT | GGCAATCAGC | TCCCAATACG | AGCTGGCACG |
| TTACGACTTA | TCTACCGCGA | CCACGCCTGT | AATATAGGGC | TTTGGTCGCA | CCGTTAGTCG | AGGGTTATGC | TCGACCGTGC |
| AAACCATGCA | GCCAACGATC | GCTGCGCGTT | ACAGCTCATG | CTGCTGGGGC | GGCGGTGAAG | CCACCCTGGC | TCACTGATGC |
| TTTGGTACGT | | CGACGCGCAA | TGTCGAGTAC | GACGACCCCG | CCGCCACTTC | GGTGGGACCG | AGTGACTACG |
| GGTTTTCAAC | GATGCTGGTT | CCGAGTCCGG | GATACCGAGG | GGATTTTCGC | CTCAGGGCCA | AAAAGAAAAA | GTTGGCCGAT |
| CCAAAAGTTG | CTACGACCAA | GGCTCAGGCC | CTATGGCTCC | CCTAAAAGCG | GAGTCCCGGT | TTTTCTTTTT | CAACCGGCTA |
| 751 | 801 | 851 | 901 | 951 | 1001 | 1051 | 1101 |

FIG. 35UU

APPROVED O.C. F.1G.
BY CLASS SUBCLASS

GCGGGCAGTG AGGCTACCCG ATAAAAGCGG CTTCCTGACA GGAGGCCGTT CGCCCGTCAC TCCGATGGGC TATTTTCGCC GAAGGACTGT CCTCCGGCAA 1151

Aflii

1201 TTGTTTTGCA GCCCACTTAA G AACAAAACGT CGGGTGAATT C FIG. 35VV

CLASS SUBCLASS

BRAFTSMAH

APPROVED O.G. FIG.

| F1G. | SUBCLASS | |
|----------|----------|-----------|
| 0.6. | CLASS | |
| APPROVED | > 50 | PRAFTSMAH |

pCALO-1: Bglii

| Н | GATCTAGCAC | CAGGCGTTTA
GTCCGCAAAT | AGGGCACCAA | TAACTGCCTT
ATTGACGGAA | AAAAAATTA
TTTTTTAAT |
|-----|--------------------------|--|--|--|--------------------------|
| 51 | 00000000000 | TGCCACTCAT
ACGGTGAGTA | TGCCACTCAT CGCAGTACTG
ACGGTGAGTA GCGTCATGAC | TTGTAATTCA
AACATTAAGT | TTAAGCATTC
AATTCGTAAG |
| 101 | TGCCGACATG | | GAAGCCATCA CAAACGGCAT
CTTCGGTAGT GTTTGCCGTA | GATGAACCTG
CTACTTGGAC | AATCGCCAGC
TTAGCGGTCG |
| 151 | GGCATCAGCA
CCGTAGTCGT | CCTTGTCGCC
GGAACAGCGG | TTGCGTATAA
AACGCATATT | TATTTGCCCA TAGTGAAAACATAAA | TAGTGAAAAC
ATCACTTTTG |
| 201 | GGGGGGGAAG | GGGGGCGAAG AAGTTGTCCA
CCCCCGCTTC TTCAACAGGT | AAGTTGTCCA TATTGGCTAC
TTCAACAGGT ATAACCGATG | GTTTAAATCA AAACTGGTGA
CAAATTTAGT TTTGACCACT | AAACTGGTGA
TTTGACCACT |

FIG. 35XX

TTAGGGAAAT AGGCCAGGTT TTCACCGTAA CACGCCACAT CTTGCGAATA AATCCCTTTA TCCGGTCCAA AAGTGGCATT GTGCGGTGTA GAACGCTTAT

AATAAACCCT TTATTTGGGA

AACTCACCCA GGGATTGGCT GAGACGAAAA ACATATTCTC TTGAGTGGGT CCCTAACCGA CTCTGCTTTT TGTATAAGAG

251

301

Achim KNAPPIK *et al.*PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | . ~
 | DRAFTSHAH |

| TATGTGTAGA ATACACATCT AAAACGTTTC TTTTGCAAAG TCCCATATCA AGGGTATTTT CGTAAGTAG GCTTATTTTT CGAATAAAAA GTCTGGTTAT CAGACCAATA TTTACGATGC AAATGCTACG AAATGCTACG |
|--|
| TATGTG AAAACG TTTTGC TCCCAT AGGGTA AGGGTA GCTTAT CGAATA CGAATG CAGACC AAATGC AAATGC AGGGTA |

F/G. 35YY

| F16. | SUBCLASS | |
|----------|------------|----------|
| 0.6. | CLASS | |
| APPROVED | > 20
20 | MAFTSHAN |

| SG AACCTCACCC | AG GCTTTACACT
TC CGAAATGTGA | SG ATAACAATTT
CC TATTGTTAAA | | AG ACCCCCCCC
TC TGGGGGGGGG | HindIII
~~~~~~
TT ATAAGCTTGA
AA TATTCGAACT | TT TTTGTCTGCC
AA AAACAGACGG |
|--------------------------|---|--------------------------------|------|-------------------------------|---|--------------------------------|
| TGAAAGTTGG
ACTTTCAACC | GGCACCCCAG | TTGTGAGCGG | XbaI | GAATTTCTAG
CTTAAAGATC | ATACGAAGTT
TATGCTTCAA | CGACATTTTT
GCTGTAAAAA |
| TTCATTATGG
AAGTAATACC | TCACTCATTA
AGTGAGTAAT | TTGTGTGGAA | | CCATGATTAC
GGTACTAATG | AATGTACGCT
TTACATGCGA | GCAGATTGTG
CGTCTAACAC |
| GTGATCTTAT
CACTAGAATA | GTGAGTTAGC
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | | ACAGCTATGA
TGTCGATACT | AACTTCGTAT
TTGAAGCATA | GAAAAATGGC
CTTTTTACCG |
| ACGCCCGGTA
TGCGGGCCAT | Aatii
~~~~~~
GACGTCTAAT
CTGCAGATTA | TTATGCTTCC
AATACGAAGG | | CACACAGGAA
GTGTGTCCTT | Sphi
~~~~~
CGCATGCCAT
GCGTACGGTA | CCTGTGAAGT
GGACACTTCA |
| 751 | 801 | 851 | | 901 | 951 | 1001 |

FIG. 35ZZ

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| 0.6. | CLASS | |
| APPROVED | ξg | DRAFTSHAH |

| | Paci | | 元
(1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | { | BsrGI |
|------|--------------------------|--------------------------|---|--------------------------|--|
| 1051 | GTTTAATTAA
CAAATTAATT | AGGGGGGGG | GGGCGGCCT | GGGGGGGGT | GTACATGAAA
CATGTACTTT |
| 1101 | TTGTAAACGT | TAATATTTTG | TTAAAATTCG | CGTTAAATTT | TTGTTAAATC |
| | AACATTTGCA | ATTATAAAAC | AATTTTAAGC | GCAATTTAAA | AACAATTTAG |
| 1151 | AGCTCATTTT | TTAACCAATA | GGCCGAAATC | GGCAAAATCC | CTTATAAATC |
| | TCGAGTAAAA | AATTGGTTAT | CCGGCTTTAG | CCGTTTTAGG | GAATATTTAG |
| 1201 | AAAAGAATAG | ACCGAGATAG | GGTTGAGTGT | TGTTCCAGTT | TGGAACAAGA |
| | TTTTCTTATC | TGGCTCTATC | CCAACTCACA | ACAAGGTCAA | ACCTTGTTCT |
| 1251 | GTCCACTATT | AAAGAACGTG | GACTCCAACG | TCAAAGGGCG | AAAAACCGTC |
| | CAGGTGATAA | TTTCTTGCAC | CTGAGGTTGC | AGTTTCCCGC | TTTTTGGCAG |
| 1301 | TATCAGGGCG | ATGGCCCACT | ACGAGAACCA | TCACCCTAAT | CAAGTTTTTT |
| | ATAGTCCCGC | TACCGGGTGA | TGCTCTTGGT | AGTGGGATTA | GTTCAAAAAA |
| 1351 | GGGGTCGAGG | TGCCGTAAAG
ACGGCATTTC | CACTAAATCG
GTGATTTAGC | GAACCCTAAA
CTTGGGATTT | Banii
~~~~~
GGGAGCCCCC
CCCTCGGGGG |

FIG. 35AAA

| F1G. | SUBCLASS | |
|----------|----------|-----------|
| G. | Ci.ASS | |
| APPROVED | :- | PRAFTSMAH |

| 1401 | GATTTAGAGC
CTAAATCTCG | TTGACGGGGA
AACTGCCCCT | AAGCCGGCGA
TTCGGCCGCT | ACGTGGCGAG
TGCACCGCTC | AAAGGAAGGG
TTTCCTTCCC |
|------|----------------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|
| 1451 | AAGAAAGCGA
TTCTTTCGCT | AAGGAGCGGG
TTCCTCGCCC | CGCTAGGGCG | CTGGCAAGTG
GACCGTTCAC | TAGCGGTCAC
ATCGCCAGTG |
| 1501 | GCTGCGCGTA | ACCACCACAC
TGGTGGTGTG | CCGCCGCGCT | TAATGCGCCG
ATTACGCGGC | CTACAGGGCG
GATGTCCCGC |
| 1551 | NheI
CGTGCTAGCG
GCACGATCGC | GAGTGTATAC | TGGCTTACTA | TGTTGGCACT
ACAACCGTGA | GATGAGGGTG |
| | IumX | | | ì | AgeI |
| 1601 | TCAGTGAAGT
AGTCACTTCA | GCTTCATGTG
CGAAGTACAC | GCAGGAGAAA
CGTCCTCTTT | AAAGGCTGCA
TTTCCGACGT | CCGGTGCGTC
GGCCACGCAG |
| 1651 | AGCAGAATAT | GTGATACAGG
CACTATGTCC | ATATATTCCG
TATATAAGGC | CTTCCTCGCT
GAAGGAGCGA | CACTGACTCG
GTGACTGAGC |
| 1701 | CTACGCTCGG | TCG1 | rrceact eceeceaece FIG. 35BBB | GAAATGGCTT | ACGAACGGGG |

| F1G. | SUBCLASS | |
|----------|----------|-----------|
| 0.G. F | CLASS S | |
| APPROVED | à | BRAFTSHAH |

| TGCTTGCCCC | GAAGTGAGAG
CTTCACTCTC | GACAAGCATC
CTGTTCGTAG | AGGACTATAA
TCCTGATATT | CTCCTGTTCC
GAGGACAAGG | CGTTTGTCTC
GCAAACAGAG | CCAAGCTGGA
GGTTCGACCT | TTATCCGGTA
AATAGGCCAT |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--------------------------|--------------------------|
| CTTTACCGAA | ACTTAACAGG
TGAATTGTCC | CCGCCCCCT | GAAACCCGAC
CTTTGGGCTG | CTCCTGCGCT
GAGGACGCGA | GTTATGGCCG
CAATACCGGC | GCAGTTCGCT
CGTCAAGCGA | CCGCTGCGCC |
| CGCCGCTCGC | CCAGGAAGAT
GGTCCTTCTA | TCCATAGGCT
AGGTATCCGA | CAGTGGTGGC
GTCACCACCG | TGGCGGCTCC
ACCGCCGAGG | TCATTCCGCT
AGTAAGGCGA | TTCCGGGTAG
AAGGCCCATC | TTCAGTCCGA |
| AGCAAGCTGA | CTGGAAGATG
GACCTTCTAC | AAGCCGTTTT
TTCGGCAAAA | ACGCTCAAAT
TGCGAGTTTA | CGTTTCCCCC | AgeI
~~~~~~
TTTACCGGTG
AAATGGCCAC | TGACACTCAG
ACTGTGAGTC | GAACCCCCCG |
| GATGCGAGCC | CGGAGATTTC
GCCTCTAAAG | GGCCGCGGCA | ACGAAATCTG
TGCTTTAGAC | AGATACCAGG
TCTATGGTCC | TGCCTTTCGG
ACGGAAAGCC | ATTCCACGCC
TAAGGTGCGG | CTGTATGCAC
GACATACGTG |
| | 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 |

FIG. 35CCC

| Γ | SUBCLASS | |
|----------|------------|-----------|
| 0.G. FIG | CLASS SUBI | |
| APPROVEO | | DRAFTSHAN |

| | | BglII | | | |
|--------------------------|--|--------------------------|--|--------------------------|------|
| ACGCGCAGAC
TGCGCGTCTG | GCAAGAGATT
CGTTCTCTAA | CGTTTTCAGA
GCAAAAGTCT | GCCCTGCAAG GCGGTTTTTT
CGGGACGTTC CGCCAAAAAA | GCCCTGCAAG
CGGGACGTTC | 2301 |
| ACGAAAAACC
TGCTTTTTGG | GTTGGTAGCT CAGAGAACCT ACGAAAAACC
CAACCATCGA GTCTCTTGGA TGCTTTTTGG | | GGTTCAAAGA
CCAAGTTTCT | CAGTTACCTC
GTCAATGGAG | 2251 |
| TCCTCCAAGC
AGGAGGTTCG | ACAAGTTTTA GTGACTGCGC
TGTTCAAAAT CACTGACGCG | ACAAGTTTTA
TGTTCAAAAT | GCTA AACTGAAAGG
CGAT TTGACTTTCC | GTTAAGGCTA | 2201 |
| TCATGCGCCG | AGTCTTGAAG
TCAGAACTTC | TAGAGGAGTT
ATCTCCTCAA | GTAATTGATT
CATTAACTAA | GCAGCCACTG | 2151 |
| ACCACTGGCA
TGGTGACCGT | ATGCAAAAGC
TACGTTTTCG | CCGGAAAGAC
GGCCTTTCTG | TGAGTCCAAC
ACTCAGGTTG | ACTATCGTCT
TGATAGCAGA | 2101 |

FIG. 35DDD

CAAAACGATC TCAAGAAGAT CATCTTATTA GTTTTGCTAG AGTTCTTCTA GTAGAATAAT

2351

CLASS SUBCLASS

BRAFTSMAH

APPRIOVED 0.G. F1G.

FIG. 35EEE

APPROVED O.G. FIG.

BY CLASS SUBCLASS

pCALO-2:

BsrGI

1111

CGTTAAATTT GCAATTTAAA AATTTTAAGC TTAAAATTCG ATTATAAAAC TAATATTTTG TTGTAAACGT AACATTTGCA GTACATGAAA CATGTACTTT

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TTAACCAATA TCGAGTAAAA AATTGGTTAT AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA TGTTCCAGTT CCAACTCACA GGTTGAGTGT AAAAGAATAG ACCGAGATAG TTTTCTTATC TGGCTCTATC GAATATTTAG CTTATAAATC 101

TCAAAGGGCG AGTTTCCCGC CTGAGGTTGC GACTCCAACG AAAGAACGTG TTTCTTGCAC GTCCACTATT CAGGTGATAA ACCTTGTTCT TGGAACAAGA 151

TCACCCTAAT AGTGGGATTA TATCAGGGCG ATGGCCCACT ACGAGAACCA TGCTCTTGGT TACCGGGTGA ATAGTCCCGC TTTTGGCAG AAAAACCGTC 201

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC GGGGTCGAGG TGCCGTAAAG ACGGCATTTC CCCCAGCTCC CAAGTTTTT STTCAAAAA 251

BanII

GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG GGGAGCCCCC 301

FIG. 35FFF

| | BRAFISMAN |
|----------------|-------------|
| CLASS SUBCLASS | · |
| 0.G. FIG. | APPROVED 10 |

| | CCCTCGGGGG | CTAAATCTCG | AACTGCCCCT | TTCGGCCGCT | TGCACCGCTC |
|-----|--|---|--------------------------|--------------------------|--------------------------|
| 351 | AAAGGAAGGG
TTTCCTTCCC | AAGAAAGCGA
TTCTTTCGCT | AAGGAGCGGG
TTCCTCGCCC | CGCTAGGGCG
GCGATCCCGC | CTGGCAAGTG
GACCGTTCAC |
| 401 | TAGCGGTCAC
ATCGCCAGTG | GCTGCGCGTA
CGACGCGCAT | ACCACCACAC
TGGTGGTGTG | CCGCCGCGCT | TAATGCGCCG
ATTACGCGGC |
| 451 | CTACAGGGCG | NheI
~~~~~
CGTGCTAGCG
GCACGATCGC | GAGTGTATAC
CTCACATATG | TGGCTTACTA | TGTTGGCACT |
| | | IcmX | | | AgeI |
| 501 | GATGAGGGTG
CTACTCCCAC | TCAGTGAAGT
AGTCACTTCA | GCTTCATGTG
CGAAGTACAC | GCAGGAGAAA
CGTCCTCTTT | AAAGGCTGCA
TTTCCGACGT |
| 551 | AgeI
~~~~~~
CCGGTGCGTC
GGCCACGCAG | AGCAGAATAT
TCGTCTTATA | GTGATACAGG | ATATATTCCG
TATATAAGGC | CTTCCTCGCT
GAAGGAGCGA |
| 601 | CACTGACTCG | CTACGCTCGG | TCGTTCGACT | GCGGCGAGCG | GAAATGGCTT |

FIG. 35GGG

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVES | λo | BRAFISHAN |

| | | | すじよしじゅすしじゅ | | ARDOUGHE |
|-----|--------------------------|---|--------------------------|--------------------------|---------------------------------------|
| | 7565176515 | 220000000000000000000000000000000000000 | |) | · · · · · · · · · · · · · · · · · · · |
| 651 | ACGAACGGGG
TGCTTGCCCC | CGGAGATTTC
GCCTCTAAAG | CTGGAAGATG
GACCTTCTAC | CCAGGAAGAT
GGTCCTTCTA | ACTTAACAGG
TGAATTGTCC |
| 701 | GAAGTGAGAG
CTTCACTCTC | GGCCGCGGCA | AAGCCGTTTT
TTCGGCAAAA | TCCATAGGCT
AGGTATCCGA | CCGCCCCCCT |
| 751 | GACAAGCATC
CTGTTCGTAG | ACGAAATCTG
TGCTTTAGAC | ACGCTCAAAT
TGCGAGTTTA | CAGTGGTGGC
GTCACCACCG | GAAACCCGAC
CTTTGGGCTG |
| 801 | AGGACTATAA
TCCTGATATT | AGATACCAGG
TCTATGGTCC | CGTTTCCCCC | TGGCGGCTCC | CTCCTGCGCT
GAGGACGCGA |
| | | | AgeI | | |
| 851 | CTCCTGTTCC
GAGGACAAGG | TGCCTTTCGG
ACGGAAAGCC | TTTACCGGTG
AAATGGCCAC | TCATTCCGCT
AGTAAGGCGA | GTTATGGCCG
CAATACCGGC |
| 901 | CGTTTGTCTC
GCAAACAGAG | ATTCCACGCC
TAAGGTGCGG | TGACACTCAG
ACTGTGAGTC | TTCCGGGTAG
AAGGCCCATC | GCAGTTCGCT
CGTCAAGCGA |
| 951 | CCAAGCTGGA | CTGTATGCAC
GACATACGTG | GAACCCCCCG | TTCAGTCCGA
AAGTCAGGCT | CCGCTGCGCC |

FIG. 35ННН

| F1G. | SUBCLASS | |
|----------|----------|------------|
|
G | CLASS | |
| APPROVED |)—
E3 | BRAF ISMAN |

| CCGGAAAGAC | TAGAGGAGTT AGTCTTGAAG | ACAAGITITA GTGACTGCGC | GTTĞGTAGCT CAGAGAACCT | CGTTTTCAGA GCAAGAGATT | Bglii | CATCTTATTA GATCTAGCAC | AAAAAATTA CGCCCCGCCC |
|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------|--------------------------|----------------------------------|
| GGCCTTTCTG | ATCTCCTCAA TCAGAACTTC | TGTTCAAAAT CACTGACGCG | CAACCATCGA GTCTCTTGGA | GCAAAAGTCT CGTTCTCTAA | | GTAGAATAAT CTAGATCGTG | TTTTTTAAT GCGGGGGGGG |
| TGAGTCCAAC
ACTCAGGTTG | GTAATTGATT
CATTAACTAA | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA
CCAAGTTTCT | GCGGTTTTTT
CGCCAAAAA | | TCAAGAAGAT
AGTTCTTCTA | taactgcctt
attgacggaa
5111 |
| ACTATCGTCT | GCAGCCACTG | GTTAAGGCTA | CAGTTACCTC | GCCCTGCAAG | | CAAAACGATC | AGGGCACCAA TAAC |
| TGATAGCAGA | CGTCGGTGAC | CAATTCCGAT | GTCAATGGAG | CGGGACGTTC | | GTTTTGCTAG | TCCCGTGGTT ATTG |
| TTATCCGGTA | ACCACTGGCA | TCATGCGCCG | TCCTCCAAGC | ACGAAAAACC | | ACGCGCAGAC | CAGGCGTTTA |
| AATAGGCCAT | TGGTGACCGT | AGTACGCGGC | AGGAGGTTCG | TGCTTTTTGG | | TGCGCGTÇTG | GTCCGCAAAT |
| 1001 | 1051 | 1101 | 1151 | 1201 | | 1251 | 1301 |

| FIG. | SUBCLASS | |
|----------|-------------|-----------|
| 0.G. | CLASS | |
| APPROVER | <u>></u> | DRAFTSNAH |

| TGCCGACATG | GGCATCAGCA | GGGGGGGAAG | AACTCACCCA | TTAGGGAAAT | TATGTGTAGA | AAAACGTTTC | TCCCATATCA |
|------------|------------|------------|------------|------------|------------|------------|------------|
| ACGGCTGTAC | CCGTAGTCGT | CCCCCGCTTC | TTGAGTGGGT | AATCCCTTTA | ATACACATCT | TTTTGCAAAG | AGGGTATAGT |
| TTAAGCATTC | AATCGCCAGC | TAGTGAAAAC | AAACTGGTGA | AATAAACCCT | CTTGCGAATA | CAGAGCGATG | GTGAACACTA |
| AATTCGTAAG | TTAGCGGTCG | ATCACTTTTG | TTTGACCACT | TTATTTGGGA | GAACGCTTAT | GTCTCGCTAC | CACTTGTGAT |
| TTGTAATTCA | GATGAACCTG | TATTTGCCCA | GTTTAAATCA | ACATATTCTC | CACGCCACAT | GTATTCACTC | TGTAACAAGG |
| AACATTAAGT | CTACTTGGAC | ATAAACGGGT | CAAATTTAGT | TGTATAAGAG | GTGCGGTGTA | CATAAGTGAG | ACATTGTTCC |
| CGCAGTACTG | CAAACGGCAT | TTGCGTATAA | TATTGGCTAC | GAGACGAAAA | TTCACCGTAA | AATCGTCGTG | TGGAAAACGG |
| GCGTCATGAC | GTTTGCCGTA | AACGCATATT | ATAACCGATG | CTCTGCTTTT | AAGTGGCATT | TTAGCAGCAC | ACCTTTTGCC |
| TGCCACTCAT | GAAGCCATCA | CCTTGTCGCC | AAGTTGTCCA | GGGATTGGCT | AGGCCAGGTT | AACTGCCGGA | AGTTTGCTCA |
| ACGGTGAGTA | CTTCGGTAGT | GGAACAGCGG | TTCAACAGGT | CCCTAACCGA | TCCGGTCCAA | TTGACGGCCT | TCAAACGAGT |
| 1351 | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 | 1701 |

FIG. 35JJJ

| F16. | SUBCLASS | |
|----------|------------|-----------|
| 0.6. | CLASS | |
| APPROVEU | ≻ @ | PRAFISMAN |

| 1751 | CCAGCTCACC | GTCTTTCATT
CAGAAAGTAA | GCCATACGGA
CGGTATGCCT | ACTCCGGGGTG
TGAGGCCCAC | AGCATTCATC
TCGTAAGTAG |
|------|------------|--------------------------|--------------------------|---------------------------|---|
| 1801 | AGGCGGGCAA | GAATGTGAAT | AAAGGCCGGA | TAAAACTTGT | GCTTATTTT |
| | TCCGCCCGTT | CTTACACTTA | TTTCCGGCCT | ATTTTGAACA | CGAATAAAAA |
| 1851 | CTTTACGGTC | TTTAAAAAGG | CCGTAATATC | CAGCTGAACG | GTCTGGTTAT |
| | GAAATGCCAG | AAATTTTTCC | GGCATTATAG | GTCGACTTGC | CAGACCAATA |
| 1901 | AGGTACATTG | AGCAACTGAC | TGAAATGCCT | CAAAATGTTC | TTTACGATGC |
| | TCCATGTAAC | TCGTTGACTG | ACTTTACGGA | GTTTTACAAG | AAATGCTACG |
| 1951 | CATTGGGATA | TATCAACGGT | GGTATATCCA | GTGATTTTTT | TCTCCATTTT |
| | GTAACCCTAT | ATAGTTGCCA | CCATATAGGT | CACTAAAAAA | AGAGGTAAAA |
| 2001 | AGCTTCCTTA | GCTCCTGAAA | ATCTCGATAA | CTCAAAAAAT | ACGCCCGGTA |
| | TCGAAGGAAT | CGAGGACTTT | TAGAGCTATT | GAGTTTTTTA | TGCGGGCCAT |
| 2051 | GTGATCTTAT | TTCATTATGG | TGAAAGTTGG
ACTTTCAACC | AACCTCACCC
TTGGAGTGGG | Aatii
~~~~~~
GACGTCTAAT
CTGCAGATTA |
| 2101 | GTGAGTTAGC | TCACTCATTA | GGCACCCCAG | GCTTTACACT | TTATGCTTCC |

FIG. 35KKK

| | SUBCLASS | |
|------------|----------|-----------|
| F16. | | |
| 0.6. | CLASS | |
| APPROVED I | >-
60 | BRAFTSHAH |

| · | CACTCAATCG | AGTGAGTAAT | ccereeeerc | CGAAATGTGA | AATACGAAGG |
|------|--------------------------|--------------------------|--------------------------------------|---|---|
| 2151 | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA
AACACACCTT | TTGTGAGCGG
AACACTCGCC | ATAACAATTT
TATTGTTAAA | CACACAGGAA
GTGTGTCCTT |
| 2201 | ACAGCTATGA
TGTCGATACT | CCATGATTAC
GGTACTAATG | XbaI

GAATTTCTAG
CTTAAAGATC | ACCCCCCCC
TGGGGGGGGG | Sphi
~~~~~~
CGCATGCCAT
GCGTACGGTA |
| 2251 | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | CCTGTGAAGT
GGACACTTCA |
| 2301 | GAAAAATGGC
CTTTTTACCG | GCAGATTGTG
CGTCTAACAC | CGACATTTTT
GCTGTAAAAA | TTTGTCTGCC
AAACAGACGG | PacI
~~~~~~~
GTTTAATTAA
CAAATTAATT |
| 2351 | Fsel
ceeeeeeee ce | Fsel
 | CAAAAAGGAT
GTTTTTCCTA | CTCAAGAAGA
GAGTTCTTCT | TCCTTTGATC |

| APPROVED
BY
BRAFTSHAN | O.G. FIG. |
|-----------------------------|-----------|
|-----------------------------|-----------|

| ICAGIGGAAC GAAAACICAC GIIAAGGGAI
AGICACCTIG CITITIGAGIG CAATICCCTA | AAAGGATCTT CACCTAGATC CTTTTAAATT
TTTCCTAGAA GTGGATCTAG GAAAATTTAA | ATCTAAAGTA TATATGAGTA AACTTGGTCT
TAGATTTCAT ATATACTCAT TTGAACCAGA | TCAGTGAGGC ACCTATCTCA GCGATCTGTC
AGTCACTCCG TGGATAGAGT CGCTAGACAG | GCCTGACTCC CCGTCGTGTA GATAACTACG
CGGACTGAGG GGCAGCACAT CTATTGATGC | TGGCCCCAGT GCTGCAATGA TACCGCGAGA
ACCGGGGTCA CGACGTTACT ATGGCGCTCT | ATTTATCAGC AATAAACCAG CCAGCCGGAA
TAAATAGTCG TTATTTGGTC GGTCGGCCTT | CCTGCAACTT TATCCGCCTC CATCCAGTCT
GGACGTTGAA ATAGGCGGAG GTAGGTCAGA |
|---|--|--|--|--|--|--|--|
| AAAAGATGCC CCAGACTGCG AGT | TTTGGTCATG AGATTATCAA AAA(
AAACCAGTAC TCTAATAGTT TTT | AAAAATGAAG TTTTAAATCA ATC | GACAGTTACC CAATGCTTAA TCA(
CTGTCAATGG GTTACGAATT AGT | TATTTCGTTC ATCCATAGTT GCC | ATACGGGAGG GCTTACCATC TGG(
TATGCCCTCC CGAATGGTAG ACC | CCCACGCTCA CCGGCTCCAG ATT | GGGCCGAGCG CAGAAGTGGT CCT(|
| | 2451 | 2501 | 2551 | 2601 | 2651 | 2701 | 2751 |

FIG. 35MMM

| ٠
ت | SUBCLASS | |
|----------|----------|-----------|
| | CLASS | |
| AFFRUYED | >-
in | BRAFTSMAN |

| TTAATAGTTT
AATTATCAAA | CGCTCGTCGT
GCGAGCAGCA | GCGAGTTACA
CGCTCAATGT | GTCCTCCGAT | GTTATGGCAG
CAATACCGTC | CTTTTCTGTG | TGCGGCGACC
ACGCCGCTGG | CCACATAGCA
GGTGTATCGT |
|--------------------------|--------------------------|--------------------------|-------------|--------------------------|------------|--------------------------|--------------------------|
| AGTTCGCCAG | CGTGGTGTCA | AACGATCAAG | AGCTCCTTCG | ATCACTCATG | CCGTAAGATG | GAATAGTGTA | TAATACCGCG |
| TCAAGCGGTC | GCACCACAGT | TTGCTAGTTC | TCGAGGAAGC | TAGTGAGTAC | GGCATTCTAC | CTTATCACAT | ATTATGGCGC |
| TAGAGTAAGT | CTACAGGCAT | TCCGGTTCCC | AAAAGCGGTT | CCGCAGTGTT | GTCATGCCAT | GTCATTCTGA | CAATACGGGA |
| ATCTCATTCA | GATGTCCGTA | AGGCCAAGGG | TTTTCGCCAA | GGCGTCACAA | CAGTACGGTA | CAGTAAGACT | GTTATGCCCT |
| GCCGGGAAGC | GTTGCCATTG | TTCATTCAGC | TGTTGTGCAA | AGTAAGTTGG | TTCTCTTACT | ACTCAACCAA | TGCCCGGCGT |
| CGGCCCTTCG | CAACGGTAAC | AAGTAAGTCG | ACAACACGTT | TCATTCAACC | AAGAGAATGA | TGAGTTGGTT | ACGGGCCGCA |
| ATTAACTGTT | GCGCAACGTT | TTGGTATGGC | TGATCCCCCA | CGTTGTCAGA | CACTGCATAA | ACTGGTGAGT | GAGTTGCTCT |
| TAATTGACAA | CGCGTTGCAA | | ACTAGGGGGGT | GCAACAGTCT | GTGACGTATT | TGACCACTCA | CTCAACGAGA |
| 2801 | 2851 | 2901 | 2951 | 3001 | 3051 | 3101 | 3151 |

FIG. 35NNN

| S | |
|-------|-------------------|
| SCLAS | |
| | |
| ASS | |
| ರ | |
| • | SMA |
| ű | RAFTSMAH |
| | EY CLASS SUBCLASS |

XmnI

| GAAGCATTTA | CAATATTATT | CTTCCTTTTT | TACTCATACT | AAATGTTGAA | 3401 |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|------|
| CTTCGTAAAT | GTTATAATAA | GAAGGAAAAA | ATGAGTATGA | TTTACAACTT | |
| GGCGACACGG | AGGGAATAAG | GCCGCAAAAA | AAGGCAAAAT | CAAAAACAGG | 3351 |
| CCGCTGTGCC | TCCCTTATTC | CGGCGTTTTT | TTCCGTTTTA | GTTTTTGTCC | |
| TCTGGGTGAG | CACCAGCGTT
GTGGTCGCAA | CTTTTACTTT
GAAAATGAAA | TCCTCAGCAT
AGGAGTCGTA | ACCCAACTGA
TGGGTTGACT | 3301 |
| CCACTCGCGC | TCGATGTAAC | GAGATCCAGT | TACCGCTGTT | TCAAGGATCT | 3251 |
| GGTGAGCGCG | AGCTACATTG | CTCTAGGTCA | ATGGCGACAA | AGTTCCTAGA | |
| GCGAAAACTC | ATTGGAAAAC GTTCTTCGGG | ATTGGAAAAC | AGTGCTCATC | GAACTTTAAA | 3201 |
| CGCTTTTGAG | TAACCTTTTG CAAGAAGCCC | TAACCTTTTG | TCACGAGTAG | CTTGAAATTT | |

BsrGI

TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAAT AGTCCCAATA ACAGAGTACT CGCCTATGTA TAAACTTA 3451

FIG. 35000

CLASS SUBCLASS

BRAFTSMAN

APPROVED O.G. FIG.

FIG. 35PPP

| G. | SUBCLASS | |
|----------|---------------|-----------|
| 0.G. FI | CLASS S | |
| APPROVED | ≻
9 | BRAFTSMAH |

| Aatii
~~~~~~ | GACGTCTAAT
CTGCAGATTA | TTATGCTTCC
AATACGAAGG | CACACAGGAA
GTGTGTCCTT | Sphi | CGCATGCCAT
GCGTACGGTA | |
|------------------------|--------------------------|---------------------------|--------------------------|------|--------------------------|---------|
| | ACGAAGTTAT
TGCTTCAATA | GCTTTACACT
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | 1 | ACCCCCCCC
TGGGGGGGGG | HindIII |
| | TGTATGCTAT
ACATACGATA | GGCACCCCAG
CCGTGGGGGTC | TTGTGAGCGG
AACACTCGCC | XbaI | GAATTTCTAG
CTTAAAGATC | |
| | CTTCGTATAA
GAAGCATATT | TCACTCATTA
AGTGAGTAAT | TTGTGTGGAA
AACACACCTT | | CCATGATTAC
GGTACTAATG | |
| 0-3:
BglII
~~~~~ | GATCTCATAA
CTAGAGTATT | GTGAGTTAGC
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | | ACAGCTATGA
TGTCGATACT | |
| pCALO-3:
Bgl | Н | 51 | 101 | | 151 | |

Pac

ATAAGCTTGA CCTGTGAAGT TATTCGAACT GGACACTTCA

AATGTACGCT ATACGAAGTT TTACATGCGA TATGCTTCAA

AACTTCGTAT TTGAAGCATA

201

FIG. 35QQQ

PacI

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | <u>}</u> | DRAFTSHAN |

| AAACAGAGG CAAATTAATT | CTCAAGAAGA TCCTTTGATC
GAGTTCTTCT AGGAAACTAG | GAAAACTCAC GTTAAGGGAT
CTTTTGAGTG CAATTCCCTA | CACCTAGATC CTTTTAAATT
GTGGATCTAG GAAAATTTAA | TATATGAGTA AACTTGGTCT
ATATACTCAT TTGAACCAGA | ACCTATCTCA GCGATCTGTC
TGGATAGAGT CGCTAGACAG | CCGTCGTGTA GATAACTACG
GGCAGCACAT CTATTGATGC |
|----------------------|--|--|--|--|--|--|
| GCTGTAAAAA | CAAAAAGGAT
GTTTTTCCTA | TCAGTGGAAC | AAAGGATCTT | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC | GCCTGACTCC
CGGACTGAGG |
| eI | CGGCCATTAT
GCCGGTAATA | GGTCTGACGC | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT | ATCCATAGTT
TAGGTATCAA |
| CTTTTTACCG
Fs |
 | TTTTCTACGG
AAAAGATGCC | TTTGGTCATG
AAACCAGTAC | AAAAATGAAG
TTTTTACTTC | GACAGTTACC
CTGTCAATGG | TATTTCGTTC
ATAAAGCAAG |
| ł
)
) | 301 | 351 | 401 | 451 | 501 | 551 |

FIG. 35RRR

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| AFPROVED | > "
 | DRAFISHAN |

| 601 | ATACGGGAGG
TATGCCCTCC | GCTTACCATC
CGAATGGTAG | TGGCCCCAGT | GCTGCAATGA | TACCGCGAGA
ATGGCGCTCT |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 651 | CCCACGCTCA | CCGGCTCCAG | ATTTATCAGC
TAAATAGTCG | AATAAACCAG
TTATTTGGTC | CCAGCCGGAA
GGTCGGCCTT |
| 701 | GGGCCGAGCG | CAGAAGTGGT
GTCTTCACCA | CCTGCAACTT
GGACGTTGAA | TATCCGCCTC
ATAGGCGGAG | CATCCAGTCT
GTAGGTCAGA |
| 751 | ATTAACTGTT
TAATTGACAA | GCCGGGAAGC
CGGCCCTTCG | TAGAGTAAGT
ATCTCATTCA | AGTTCGCCAG
TCAAGCGGTC | TTAATAGTTT
AATTATCAAA |
| 801 | GCGCAACGTT
CGCGTTGCAA | GTTGCCATTG
CAACGGTAAC | CTACAGGCAT
GATGTCCGTA | CGTGGTGTCA
GCACCACAGT | CGCTCGTCGT
GCGAGCAGCA |
| 851 | TTGGTATGGC
AACCATACCG | TTCATTCAGC
AAGTAAGTCG | TCCGGTTCCC
AGGCCAAGGG | AACGATCAAG
TTGCTAGTTC | GCGAGTTACA
CGCTCAATGT |
| 901 | TGATCCCCCA | TGTTGTGCAA
ACAACACGTT | AAAAGCGGTT
TTTTCGCCAA | AGCTCCTTCG
TCGAGGAAGC | GTCCTCCGAT |
| 951 | CGTTGTCAGA | AGTAAGTTGG
TCATTCAACC | CCGCAGTGTT
GGCGTCACAA | ATCACTCATG
TAGTGAGTAC | GTTATGGCAG
CAATACCGTC |

FIG. 35SSS

| 0.G. FIG. | CI. ASS SUBCLASS | |
|-----------|------------------|------------|
| APPROVED | <u>.</u> | PRAF TSHAN |

| 1001 | CACTGCATAA
GTGACGTATT | TTCTCTTACT
AAGAGAATGA | GTCATGCCAT
CAGTACGGTA | CCGTAAGATG
GGCATTCTAC | CTTTTCTGTG
GAAAAGACAC |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1051 | ACTGGTGAGT
TGACCACTCA | ACTCAACCAA
TGAGTTGGTT | GTCATTCTGA
CAGTAAGACT | GAATAGTGTA
CTTATCACAT | TGCGGCGACC |
| 1101 | GAGTTGCTCT
CTCAACGAGA | TGCCCGGCGT | CAATACGGGA
GTTATGCCCT | TAATACCGCG
ATTATGGCGC | CCACATAGCA
GGTGTATCGT |
| | | | IrmX | | |
| 1151 | GAACTTTAAA | AGTGCTCATC
TCACGAGTAG | ATTGGAAAAC
TAACCTTTTG | GTTCTTCGGG | GCGAAAACTC
CGCTTTTGAG |
| 1201 | TCAAGGATCT
AGTTCCTAGA | TACCGCTGTT
ATGGCGACAA | GAGATCCAGT
CTCTAGGTCA | TCGATGTAAC
AGCTACATTG | CCACTCGCGC
GGTGAGCGCG |
| 1251 | ACCCAACTGA
TGGGTTGACT | TCCTCAGCAT
AGGAGTCGTA | CTTTTACTTT
GAAAATGAAA | CACCAGCGTT
GTGGTCGCAA | TCTGGGTGAG
AGACCCACTC |
| 1301 | CAAAAACAGG
GTTTTTGTCC | AAGGCAAAAT
TTCCGTTTTA | GCCGCAAAAA
CGGCGTTTTT | AGGGAATAAG
TCCCTTATTC | GGCGACACGG
CCGCTGTGCC |
| 1351 | AAATGTTGAA | TACTCATACT | CTTCCTTTTT | CAATATTATT | GAAGCATTTA |

BanII

FIG. 35UUU

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPRÓVEO | 97 | DRAFTSHAN |

TITACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT

BsrGI

| GT ACATGAAATT | GTTAAATCAG | TATAAATCAA | GAACAAGAGT | AAACCGTCTA | AGTTTTTGG |
|---------------|------------|------------|------------|------------|------------|
| CA TGTACTTTAA | CAATTTAGTC | ATATTTAGTT | CTTGTTCTCA | TTTGGCAGAT | TCAAAAAACC |
| ATTTGAATGT | TTAAATTTTT | CAAAATCCCT | TTCCAGTTTG | AAAGGGCGAA | ACCCTAATCA |
| TAAACTTACA | AATTTAAAAA | GTTTTAGGGA | AAGGTCAAAC | TTTCCCGCTT | TGGGATTAGT |
| GCGGATACAT | AAAATTCGCG | CCGAAATCGG | TTGAGTGTTG | CTCCAACGTC | GAGAACCATC |
| CGCCTATGTA | TTTTAAGCGC | GGCTTTAGCC | AACTCACAAC | GAGGTTGCAG | CTCTTGGTAG |
| TGTCTCATGA | ATATTTTGTT | AACCAATAGG | CGAGATAGGG | AGAACGTGGA | GGCCCACTAC |
| ACAGAGTACT | TATAAAACAA | TTGGTTATCC | GCTCTATCCC | TCTTGCACCT | CCGGGTGATG |
| TCAGGGTTAT | GTAAACGTTA | CTCATTTTT | AAGAATAGAC | CCACTATTAA | TCAGGGGGAT |
| AGTCCCAATA | CATTTGCAAT | GAGTAAAAAA | TTCTTATCTG | GGTGATAATT | AGTCCCGCTA |
| 1401 | 1451 | 1501 | 1551 | 1601 | 1651 |

| F1G. | SUBCLASS | |
|------------------|-------------|-----------|
| PROVED (C.C. FIG | CLASS SI | |
| APPROVED | <u>></u> | DRAFTSMAH |

| 1701 | GGTCGAGGTG
CCAGCTCCAC | CCGTAAAGCA
GGCATTTCGT | CTAAATCGGA
GATTTAGCCT | ACCCTAAAGG
TGGGATTTCC | GAGCCCCCGA
CTCGGGGGGCT |
|------|--|--------------------------|--------------------------|--------------------------------|---------------------------|
| 1751 | TTTAGAGCTT
AAATCTCGAA | GACGGGGAAA
CTGCCCCTTT | GCCGGCGAAC
CGGCCGCTTG | GTGGCGAGAA | AGGAAGGGAA
TCCTTCCCTT |
| 1801 | GAAAGCGAAA
CTTTCGCTTT | GGAGCGGGCG | CTAGGGCGCT
GATCCCGCGA | GGCAAGTGTA
CCGTTCACAT | GCGGTCACGC
CGCCAGTGCG |
| 1851 | TGCGCGTAAC
ACGCGCATTG | CACCACACCC
GTGGTGTGGG | GCCGCGCTTA
CGGCGCGAAT | ATGCGCCGCT
TACGCGGCGA | ACAGGGCGCG |
| 1901 | NheI
~~~~~~
TGCTAGCGGA
ACGATCGCCT | GTGTATACTG
CACATATGAC | GCTTACTATG
CGAATGATAC | TTGGCACTGA | TGAGGGTGTC |
| | × | | | Age | H |
| 1951 | AGTGAAGTGC
TCACTTCACG | TTCATGTGGC | AGGAGAAAAA
TCCTCTTTTT | AGGCTGCACC GG
TCCGACGTGG CC | GGTGCGTCAG
CCACGCAGTC |
| 2001 | CAGAATATGT
GTCTTATACA | GATACAGGAT | ATATTCCGCT
TATAAGGCGA | TCCTCGCTCA
AGGAGCGAGT | CTGACTCGCT
GACTGAGCGA |

FIG. 35VVV

| 0.G. FIG. | CLASS SUBCLASS | |
|------------|----------------|-----------|
| APPROVED 0 | 10 كا | PRAFTSMAH |

| AATGGCTTAC GAACGGGGCG | TTAACAGGGA AGTGAGAGGG | GCCCCCCTGA CAAGCATCAC | A AACCCGACAG GACTATAAAG
F TTGGGCTGTC CTGATATTTC | r cctgcgctct cctgttcctg
a ggacgcgaga ggacaaggac | r tatggccgcg tttgtctcat
a ataccggcgc aaacagagta | |
|--------------------------|--------------------------|--------------------------|--|--|--|------------|
| GGCGAGCGGA
CCGCTCGCCT | AGGAAGATAC
TCCTTCTATG | CATAGGCTCC
GTATCCGAGG | GTGGTGGCGA | GCGGCTCCCT
CGCCGAGGGA | ATTCCGCTGT | |
| GTTCGACTGC
CAAGCTGACG | GGAAGATGCC
CCTTCTACGG | GCCGTTTTTC
CGCCAAAAAG | GCTCAAATCA
CGAGTTTAGT | TTTCCCCCTG | Agel
~~~~~~
TACCGGTGTC
ATGGCCACAG | |
| ACGCTCGGTC | GAGATTTCCT | CCGCGGCAAA | GAAATCTGAC
CTTTAGACTG | ATACCAGGCG
TATGGTCCGC | CCTTTCGGTT
GGAAAGCCAA | SHOOS ACCE |
| 2051 | 2101 | 2151 | 2201 | 2251 | 2301 | 2351 |

FIG. 35WWW

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | β¥ | PRAFTSMAN |

| T ATCCGGTAAC | C CACTGGCAGC | C ATGCGCCGGT | C CTCCAAGCCA | c gaaaaaccec | C GCGCAGACCA |
|--------------|--------------|--------------|--------------|--------------|--------------|
| A TAGGCCATTG | G GTGACCGTCG | G TACGCGGCCA | G GAGGTTCGGT | g ctttttgg¢g | G CGCGTCTGGT |
| GCTGCGCCTT | GCAAAAGCAC | TCTTGAAGTC | GACTGCGCTC | GAGAACCTAC | AAGAGATTAC |
| CGACGCGGAA | CGTTTTCGTG | AGAACTTCAG | CTGACGCGAG | CTCTTGGATG | TTCTCTAATG |
| CAGTCCGACC | GGAAAGACAT | GAGGAGTTAG | AAGTTTTAGT | TGGTAGCTCA | TTTTCAGAGC |
| GTCAGGCTGG | CCTTTCTGTA | CTCCTCAATC | TTCAAAATCA | ACCATCGAGT | AAAAGTCTCG |
| ACCCCCCGTT | AGTCCAACCC | AATTGATTTA | CTGAAAGGAC | TTCAAAGAGT | GGTTTTTTCG |
| TGGGGGGCAA | TCAGGTTGGG | TTAACTAAAT | GACTTTCCTG | AAGTTTCTCA | CCAAAAAAGC |
| GTATGCACGA | TATCGTCTTG | AGCCACTGGT | TAAGGCTAAA | GTTACCTCGG | CCTGCAAGGC |
| CATACGTGCT | ATAGCAGAAC | TCGGTGACCA | ATTCCGATTT | CAATGGAGCC | GGACGTTCCG |
| 2401 | 2451 | 2501 | 2551 | 2601 | 2651 |

FIG. 35XXX

AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

2701

BglII

M1: PCR using template

NoVspAatII: TAGACGTC

POVED O.G. FIG.
Y CLASS SUBCLASS

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-1: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

FIG. 35YYY

NED O.G. FIG.

M8: synthesis

Iox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

Iox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCAGGCCGGCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10ll: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

FIG. 35ZZZ

ROVED O.G. F.IG.
BY CLASS SUBCLASS

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BIOXXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

FIG. 35AAAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGGTT-

AAGGGGGGGGGG

FIG. 35BBBB

M41-MCS-rev: CTAGCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGTTTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

FIG. 35CCCC

APPROVED C.G. F.IG.
BY CLASS SUBCLASS
GRAFTSMAN

| Bbe I (1361) Ase I (1364) Eco 57I (1366) Xho I (1371) Bss HII (1376) Bbs I (1386) Bsp EI (1397) Bsr GI (1403) | |
|--|---------|
| Bam H I (192) Pst I (1356) Kpn I (202) Bss SI (1346) Fse I (210) Eag I (1340) -35 (bla) -10 (bla) bla-term bla MCS | 1289 bp |
| Bsa BI (182) Nsp V (173) Bsi WI (166) Eco O109I (161) Psp 5II (161) Sty I (157) Msc I (156) Bst XI (152) Bst EII (140) Bsu 36I (136) Hpa I (126) | |

APPROVED O.G. FIG.

F/G. 36A

| | ASS | _1 |
|----------|----------|------------|
| F1G. | SUBCLASS | |
| ci | CLASS | |
| APPROVED | <u>~</u> | DRAFTSMAIL |

| | | BsiwI NspV | GTACGTTCGA | | | TCAAAAAGGA
AGTTTTTCCT | CTCAGTGGAA
GAGTCACCTT | AAAAGGATCT
TTTTCCTAGA |
|--------|----------|------------|----------------------------------|------|-----------|--------------------------------------|--------------------------|--------------------------|
| Psp5II | Eco01091 | н | AGGTCCC
TCCAGGG | | FS e I | CCGGCCATTA | GGGTCTGACG
CCCAGACTGC | GAGATTATCA
CTCTAATAGT |
| | BstXI | Msc | AAGCCCCTGG CCA
TTCGGGGACC GGT | | KpnI | SGATC CGGTACCAGG
CCTAG GCCATGGTCC | CTTTTCTACG
GAAAAGATGC | TTTTGGTCAT
AAAACCAGTA |
| | 36I | BSTEI | TCAGGTGACC
AGTCCACTGG | PmlI | | CACGT | ATCCTTTGAT
TAGGAAACTA | CGTTAAGGGA
GCAATTCCCT |
| | | Hpal | CGCGTTAACC
GCGCAATTGG | | NspVBsaBI | AGATTACCAT
TCTAATGGTA | TCTCAAGAAG
AGAGTTCTTC | CGAAAACTCA
GCTTTTGAGT |
| | | | 126 | | | 176 | 226 | 276 |

=1G. 36B

| . IG. | SUBCLASS | |
|-----------|----------|-----------|
| 0.G. F1G. | CLASS | |
| APPROYED | , e | DRAFTSKAH |

| 326 | TCACCTAGAT | CCTTTTAAAT | TAAAAATGAA | GTTTTAAATC | AATCTAAAGT |
|-----|------------|--------------------------|--------------------------|--------------------------|-------------|
| | AGTGGATCTA | GGAAAATTTA | ATTTTTACTT | CAAAATTTAG | TTAGATTTCA |
| 376 | ATATATGAGT | AAACTTGGTC | TGACAGTTAC | CAATGCTTAA | TCAGTGAGGC |
| | TATATACTCA | TTTGAACCAG | ACTGTCAATG | GTTACGAATT | AGTCACTCCG |
| 426 | ACCTATCTCA | GCGATCTGTC | TATTTCGTTC | ATCCATAGTT | GCCTGACTCC |
| | TGGATAGAGT | CGCTAGACAG | ATAAAGCAAG | TAGGTATCAA | CGGACTGAGG |
| 476 | CCGTCGTGTA | GATAACTACG
CTATTGATGC | ATACGGGAGG
TATGCCCTCC | GCTTACCATC
CGAATGGTAG | TGGCCCCCAGT |
| 526 | GCTGCAATGA | TACCGCGAGA | CCCACGCTCA | CCGGCTCCAG | ATTTATCAGC |
| | CGACGTTACT | ATGGCGCTCT | GGGTGCGAGT | GGCCGAGGTC | TAAATAGTCG |
| 576 | AATAAACCAG | CCAGCCGGAA | GGGCCGAGCG | CAGAAGTGGT | CCTGCAACTT |
| | TTATTTGGTC | GGTCGGCCTT | CCCGGCTCGC | GTCTTCACCA | GGACGTTGAA |
| 929 | TATCCGCCTC | CATCCAGTCT | ATTAACTGTT | GCCGGGAAGC | TAGAGTAAGT |
| | ATAGGCGGAG | GTAGGTCAGA | TAATTGACAA | CGGCCCTTCG | ATCTCATTCA |
| 676 | AGTTCGCCAG | TTAATAGTTT | GCGCAACGTT | GTTGCCATTG | CTACAGGCAT |
| | TCAAGCGGTC | AATTATCAAA | CGCGTTGCAA | CAACGGTAAC | GATGTCCGTA |

FIG. 36C

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | ₽ | ORAFISMAN |

| 726 | CGTGGTGTCA | CGCTCGTCGT | TTGGTATGGC | TTCATTCAGC | TCCGGTTCCC |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | GCACCACAGT | GCGAGCAGCA | AACCATACCG | AAGTAAGTCG | AGGCCAAGGG |
| 776 | AACGATCAAG | GCGAGTTACA | TGATCCCCCA | TGTTGTGCAA | AAAAGCGGTT |
| | TTGCTAGTTC | CGCTCAATGT | ACTAGGGGGGT | ACAACACGTT | TTTTCGCCAA |
| 826 | AGCTCCTTCG
TCGAGGAAGC | GTCCTCCGAT | CGTTGTCAGA
GCAACAGTCT | AGTAAGTTGG
TCATTCAACC | CCGCAGTGTT
GGCGTCACAA |
| 876 | ATCACTCATG | GTTATGGCAG | CACTGCATAA | TTCTCTTACT | GTCATGCCAT |
| | TAGTGAGTAC | CAATACCGTC | GTGACGTATT | AAGAGAATGA | CAGTACGGTA |
| 926 | CCGTAAGATG | CTTTTCTGTG | ACTGGTGAGT | ACTCAACCAA | GTCATTCTGA |
| | GGCATTCTAC | GAAAAGACAC | TGACCACTCA | TGAGTTGGTT | CAGTAAGACT |
| 976 | GAATAGTGTA
CTTATCACAT | TGCGGCGACC
ACGCCGCTGG | GAGTTGCTCT
CTCAACGAGA | TGCCCGGCGT | CAATACGGGA
GTTATGCCCT |
| 1026 | TAATACCGCG | CCACATAGCA
GGTGTATCGT | GAACTTTAAA
CTTGAAATTT | AGTGCTCATC
TCACGAGTAG | ATTGGAAAAC
TAACCTTTTG |
| 1076 | GTTCTTCGGG | GCGAAAACTC | TCAAGGATCT | TACCGCTGTT | GAGATCCAGT |
| | CAAGAAGCCC | CGCTTTTGAG | AGTTCCTAGA | ATGGCGACAA | CTCTAGGTCA |

FIG. 36D

| F1G. | SSAJOCLASS | |
|-------------------|------------|-----------|
| APPROVED O.G. FIG | 87 CLASS | DRAFTSMAN |

| 1126 | TCGATGTAAC
AGCTACATTG | CCACTCGTGC
GGTGAGCACG
BSSSI | ACCCAACTGA
TGGGTTGACT | TCTTCAGCAT
AGAAGTCGTA
Eco57I | CTTTTACTTT
GAAAATGAAA |
|------|--------------------------|-----------------------------------|--------------------------|------------------------------------|--------------------------|
| 1176 | CACCAGCGTT
GTGGTCGCAA | TCTGGGTGAG
AGACCCACTC | CAAAAACAGG
GTTTTTGTCC | AAGGCAAAAT
TTCCGTTTTA | GCCGCAAAAA
CGGCGTTTTT |
| 1226 | AGGGAATAAG
TCCCTTATTC | GGCGACACGG
CCGCTGTGCC | AAATGTTGAA
TTTACAACTT | TACTCATACT
ATGAGTATGA | CTTCCTTTTT
GAAGGAAAAA |
| 1276 | CAATATTATT
GTTATAATAA | GAAGCATTTA
CTTCGTAAAT | TCAGGGTTAT
AGTCCCAATA | TGTCTCATGA
ACAGAGTACT | GCGGATACAT
CGCCTATGTA |
| | | | PStI | į | XhoI |
| | | EagI | BSSSI | BbeI | BSSHI |
| 1326 | ATTTGAATGT
TAAACTTACA | ACTCGGCCGC | ACGAGCTGCA | GGCGCCATTA | ATGGCTCGAG |
| | BssHII | | BspEI BsrG | H | |

FIG. 36E

CLASS SUBCLASS APPROVED O.G. FIG. DRAFTSHAR

CGCTTTGTCT TCCGGATGTA CATGAAATT GCGAAACAGA AGGCCTACAT GTACTTTAA CGCGCTTCAG (GCGCGAAGTC (Eco57I 1376

FIG. 36F

| | | - | | | | | | | | | 10 | | | | | | | | |
|-----------|-----|---|---|---|---|---|---|---|---|---|----|---|---|---|---|----|-----|---|-------------------------|
| 0_K3L_5 | 5'- | G | C | C | C | T | G | C | Α | Α | G | C | G | G | Α | Α | G | Α | C |
| | | | | | | | | | | | | | | | | Bt | osl | • | |
| | | | | | | | | | | | | | | | E | | | D | |
| Vk1 & Vk3 | 5'- | G | C | C | C | T | G | C | Α | Α | G | C | G | G | Α | Α | G | Α | $\overline{\mathbb{C}}$ |
| | | | · | | | | | | | | | | • | | | | | | |
| | | | | | | | | | | | | | | | Ε | | | D | |
| Vk2 | 5'- | G | C | C | C | T | G | C | Α | Α | G | C | G | G | Α | Α | G | Α | \mathbb{C} |
| | | | | | | | | | | | | | | | Ε | | | D | |
| Vk4 | 5'- | G | C | C | C | T | G | C | Α | Α | G | C | G | G | Α | Α | G | A | \overline{C} |

FIG. 37A

APPROVED O.G. FIG.

FIG. 37B

FIG. 37C

| | | | | | 70 | | | | | | | | | | 80 | 81 | | | | |
|---|---|---|---|-----|------|---|---|---|----|---|---|---|---|---|----|----|-----|-----|------|----|
| Α | Α | C | C | G | G | T | Α | Α | G | C | T | T | T | C | G | G | -5' | 0_1 | <3L_ | _3 |
| | | | M | scl | ···· | | | | | | | | | | | | | | | |
| F | | | G | | | Q | | | | | | | | | | _ | | | | |
| T | T | G | G | С | С | Α | T | T | C | G | A | Α | Α | G | C | C | -3. | | | |
| | | | | | | | | | | | | | | | | | | | | |
| F | | | G | | | Q | | | | | | | | | | | | | | |
| Ţ | T | G | G | С | С | Α | T | T | ·C | G | Α | A | Α | G | C | C | -3' | | | |
| F | | | G | | | Q | | | | | | | | | | | | | | |
| T | T | G | G | C | C | Α | T | T | C | G | Α | Α | Α | G | C | C | -3' | | | |

FIG. 37D

APPROVED O.G. F1G.
BY CLASS SUBCLASS

E D E A D
5'- C C T G C A A G C G G A A G A G C G G A T T -

FIG. 38A

FIG. 38B

| O.G. FIG. | | | 09 | | G
G G | G | | G
G C A | T
A C G A | &
K L
AAGTTA |
|---------------------------------------|---------|---------|-------|----------|----------|---------|-----|------------|--------------|--------------------|
| · · · · · · · · · · · · · · · · · · · | GCT(| gap | gap | G C T | | | | | | |
| APPOVED
6Y
0RAFTSHAH | O C I C |) () (| J C 1 | U C I | | | | | | |
| , | GAT(| | | | ÷ | | | | | |
| | G A G (| 3 A G (| G A G | GAG | | | | | | • |
| | TII | | | | | | | | | |
| | G G T (| • | | | 1 | | | | | |
| | AIT | _ | | | : | | | | | |
| | AAG | • | | | 1 | | | | | |
| | CTT | 1 | : | • | 1 | | | | | |
| | ATG | • | | | • | | | | | |
| | AAT | AAT | AAT | AAT | • | | | | | |
| | CCT | CCT | CCT | CCT | • | | | | | |
| | CAG | | | • | : | | | | | |
| | CGT | ; | | <u> </u> | | | | | | |
| | 1 | TCT | | i | - | | | | | |
| | ACT | • | | I | - | | | | | |
| | GTT | GTT | GII | GTI | 2 | | | | | |
| | TAT | тлт | ΤΛΤ | • | : | ariabil | itv | | | |
| | 18 | 1 / 1 | | 19 | | 3.32E+0 | | | | |
| | 18 | 18 | | 19 | | 5.98E+ | | | | |
| | 18 | 18 | 18 | 19 | | .08E+ | | | | |

FIG. 38C

PPROVED O.G. F.IG.

OY CLASS SUBCLASS

AFTSMAH

T V L G Q E F
ACCGTTCTTGGCCAGGAATTCGAGCC-3'
3'-CCGGTCCTTAAGCTCGG-5'

FIG. 38D

APPROVED O.G. F.IG.
BY CLASS SUBCLAS

| λ3 | %09 | 36% | 45% | 83% | 42% | 47% | 51% |
|-----------|-----|-----|-----|-----|-----|-------|-----|
| 77 | 61% | 39% | 36% | 71% | 33% | 46% | 20% |
| 7 | %06 | 47% | 37% | 80% | 45% | 54% | 45% |
| 44 | 42% | 48% | 49% | 61% | 44% | 9/0/9 | 47% |
| Σ | 52% | %99 | 46% | 76% | 51% | 46% | 54% |
| κ2 | 58% | 48% | 57% | 67% | 52% | 49% | 28% |
| к1 | 61% | 39% | 47% | 85% | %69 | 49% | %06 |
| % soluble | H1A | H18 | H2 | H3 | H4 | H5 | H6 |

| Total amount | 3 | 5 | Co | 3 | 11 | 3.2 | 7.2 |
|------------------|------|------|------|--------|------|------|------|
| compared to H3K2 | Z | 2 | 2 | t
∠ | - | 77 | ટ્ |
| H1A | 289% | 94% | 166% | , , | 20% | 150% | 78% |
| H18 | 219% | 122% | %68 | | 117% | 158% | 101% |
| H2 | 186% | 223% | 208% | 182% | 126% | %09 | 97% |
| Н3 | 20% | | 71% | 54% | 23% | 130% | 47% |
| H4 | 37% | 55% | %09 | 77% | 195% | 107% | 251% |
| H5 | 98% | 201% | 167% | 83% | 93% | 128% | 115% |
| 9H | 65% | 117% | 89% | 109% | 299% | 215% | 278% |

FIG. 40A

5

APPROVEU O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAN

|) |
|------------|
| <i>,</i> • |

| Soluble amount | 2 | 2 | Ž | | κ4 λ1 | 75 | λ3 |
|------------------|---|-------|------|---------|-------|------|-------|
| compared to H3K2 | <u>-</u> | | 2 | | | | |
| H1A | 191% | 88% | 121% | 122% | 26% | 211% | 16% |
| | 1240/0 | 95% | 83% | 107% | 79% | 142% | 29% |
| 120 | | 204% | 139% | 130% | | 20% | 0/002 |
| 71. | |)
 | 81% | 49% | | 143% | 61% |
| S I | 40% | 470% | 49% | 49% 54% | 95% | 55% | 125% |
| † u | %
6
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 | 158% | 116% | 80% | | 84% | 84% |
| C # | %58 | 122% | 87% | 77% | 162% | | 212% |
| | McPC | | | | | | |
| soluble | 38% | | | | | | |
| %H3k2 total | 117% | | | | | | |
| %H3k2 soluble | 0/069 | | | | | | |

FIG. 40B