AD-A063 132 CATHOLIC UNIV OF AMERICA WASHINGTON D C VITREOUS STA-ETC F/6 11/2 INVESTIGATION OF PIEZOELECTRIC EFFECT IN PERMANENTLY POLARIZED --ETC(U) NOV 78 J H SIMMONS, M S CHU, C J SIMMONS NO0014-75-C-0707 NL

2 OF 2
AB-83/32
BY

END
DATE
FILMED
3 - 79
DBC

TABLE 2 Comparison of Empirical Equation, Eq.(2), to data from several authors.^a

Na ₂ O content	ΔH measured	ΔH [Eqn.(2)]	Authors
0.02	29.2	32.8	present paper
0.06	30.0	30.0	U
0.4	24.8	25.1	· ·
0.9	23.8	23.1	"
5	19.2	18.8	Ref. 13
5	30.5	18.8	Ref. 15
6.7	17.8	17.9	present paper
7.5	17.0	17.7	Ref. 12
10	17.8	17.0 .	Ref. 13
13	18.0	16.3	Ref. 15
15	16.2	16.0	Ref. 12
15	16.8	16.0	Ref. 13
15	18	16.0	Ref. 15
20	16.0	15.2	Ref. 13
20	17.5	15.2	Ref. 15
25	15.0	14.7	Ref. 13
25	17	14.7	Ref. 15
30	14.5	14.1	Ref. 12
30	14.1	14.1	Ref. 11
30	14.8	14.1	Ref. 13
30	16.5	14.1	Ref. 15
35	14.4	13.8	Ref. 13
40	12.4	13.4	Ref. 12
40	14.0	13.4	Ref. 13

a. Authors quoted are: Provenzano et al. 11, Charles 12, Otto and Milberg 13 and Hakim and Uhlmann 15. Data of Redwine and Field 14 was not included because of phase separation problems.

TABLE 3 Exponent for the dependence of conductivity on sodium ion concentration (Eq. (3)).

Temperature	Exponent from dependence	Exponent from AH
(°C)	of 10 o on 1n c	calculation: 2549/RT
300	2.19	2.22
350	2.08	2.05
400	1.85	1.89
500	1.65	1.65

FIGURE CAPTIONS

- Fig. 1 -- Measurement of A.C. conductivity plotted against frequency for Sample 2.
- Fig. 2 -- Measurement of A.C. conductivity plotted against frequency for Sample 4.
- Fig. 3 --Extrapolated D.C. conductivity plotted against inverse temperature to demonstrate Arrhenian behavior for all samples.
- Fig. 4 --Concentration dependence of the activation enthalpy for conduction.
- Fig. 5 --Concentration dependence of the D.C. conductivity at various temperatures. The slopes give the exponent a/RT in Eq. (3).
- Fig. 6 --Comparison of the suitability of the Anderson-Stuart model and the empirical equation derived here in fitting the dependence of the activation enthalpy for conduction on sodium concentration, from 0.06% to 40% Na₂O.

 The data from this paper is represented by solid circles, Ref.11 by solid squares, Ref. 12 by open circles and Ref. 13 by open triangles. The Anderson-Stuart model is plotted as a dotted line and the empirical fit of Eq. (14) as a solid line.

ACKNOWLEDGEMENTS

The authors would like to thank Profs. C. T. Moynihan and P. B. Macedo for helpful discussions during the course of this research.

CONDUCTIVITY [ohm-m]-1

FREQUENCY

