

EEE 51: Second Semester 2017 - 2018 Lecture 20

Feedback Frequency Response

Feedback Frequency Response

$$A_{CL}(s) = \frac{S_o}{S_i} = ?$$

Loop Gain

Closed-Loop Gain

Frequency Response

How many poles in the forward gain? How many poles in the loop gain?

Shunt-Shunt Small Signal Model

Shunt-Shunt Small Signal Model

Closed Loop Gain

$$\frac{v_o}{i_i} = \frac{1}{f} \cdot \frac{T}{1+T} = -R_f \left[\frac{\frac{g_m R_1 R_2}{R_f} \left(\frac{1}{1+sC_L R_2} \right)}{1+\frac{g_m R_1 R_2}{R_f} \left(\frac{1}{1+sC_L R_2} \right)} \right] = -R_f \left[\frac{\frac{g_m R_1 R_2}{R_f}}{1+sC_L R_2 + \frac{g_m R_1 R_2}{R_f}} \right]$$

$$= -R_f \frac{\frac{g_m R_1 R_2}{R_f}}{1 + \frac{g_m R_1 R_2}{R_f}} \left[\frac{1}{1 + s \frac{C_L R_2}{1 + \frac{g_m R_1 R_2}{R_f}}} \right] = -R_f \frac{T_0}{1 + T_0} \left[\frac{1}{1 + j \frac{\omega}{(1 + T_0)\omega_p}} \right]$$

Closed Loop Magnitude Response

Feedback and Stability

Exponential Stability: For finite input, the output should settle to its final state exponentially

Frequency Response

Right-hand plane pole:

Impulse Response

Left-hand plane pole:

Impulse Response

Example:
$$a(\omega) = \frac{a_0}{1 + j\frac{\omega}{\omega_p}}$$

Forward gain:
$$a(\omega) = \frac{a_0}{1+j\frac{\omega}{\omega_p}}$$
 Note: $T_0 = a_0 f$ Closed-loop gain: $A_{CL}(\omega) = \frac{1}{f} \cdot \frac{T(\omega)}{1+T(\omega)} = \frac{\frac{a_0}{1+j\frac{\omega}{\omega_p}}}{1+\frac{a_0 f}{1+j\frac{\omega}{\omega_p}}}$
$$= \frac{a_0}{1+j\frac{\omega}{\omega_p}+a_0 f} = \frac{a_0}{1+a_0 f} \cdot \frac{1}{1+j\frac{\omega}{(1+a_0 f)\omega_p}}$$

$$= \frac{1}{f} \cdot \frac{T_0}{1+T_0} \cdot \frac{1}{1+j\frac{\omega}{(1+T_0)\omega_p}}$$

Root locus: motion of poles as the loop gain is increased

$$A_{CL}(\omega) = \frac{1}{f} \cdot \frac{T_0}{1 + T_0} \cdot \frac{1}{1 + j \frac{\omega}{(1 + T_0)\omega_p}}$$

$$a(\omega) = \frac{a_0}{1 + j\frac{\omega}{\omega_p}}$$

$$T(\omega) = a(\omega) \cdot f$$
$$T_0 = a_0 f$$

$$T_0 = a_0 f$$

Feedback reduces gain by $(1+T_0)$ and increases the bandwidth by $(1+T_0)$

$$T(\omega) = a(\omega) \cdot f$$

$$T_0 = a_0 f$$

$$a(\omega) = \frac{a_0}{1 + j\frac{\omega}{\omega_p}} \qquad T_0 = a_0 f \qquad A_{CL}(\omega) = \frac{1}{f} \cdot \frac{T_0}{1 + T_0} \cdot \frac{1}{1 + j\frac{\omega}{(1 + T_0)\omega_p}}$$

$$20 \log |a_0| \qquad \text{Loop gain:}$$

$$T(\omega) = a(\omega) \cdot f$$

$$20 \log [T(\omega)] = 20 \log [a(\omega) \cdot f]$$

$$= 20 \log [a(\omega)] + 20 \log [f]$$

$$\omega_p \qquad (1 + T_0)\omega_p \qquad = 20 \log [a(\omega)] - 20 \log \left[\frac{1}{f}\right]$$

Note:
$$\frac{a_0}{1+T_0} = \frac{1}{f} \frac{T_0}{1+T_0} \approx \frac{1}{f}$$

Stability

The loop must attenuate all transients when the input has settled.

$$\begin{cases} \angle T < 180^{\circ} \\ \angle T \ge 180^{\circ} \Rightarrow |T| < 1 \end{cases}$$

Positive Feedback

Forward gain:
$$a(\omega) = \frac{a_0}{1+j\frac{\omega}{\omega_p}}$$
 Note: $T_0 = a_0 f$

Positive feedback: $A_{CL}(\omega) = \frac{1}{f} \cdot \frac{T(\omega)}{1-T(\omega)} = \frac{\frac{a_0}{1+j\frac{\omega}{\omega_p}}}{1-\frac{a_0 f}{1+j\frac{\omega}{\omega_p}}}$

$$= \frac{a_0}{1+j\frac{\omega}{\omega_p}-a_0 f} = \frac{a_0}{1-a_0 f} \cdot \frac{1}{1+j\frac{\omega}{(1-a_0 f)\omega_p}}$$

$$= \frac{1}{f} \cdot \frac{T_0}{1-T_0} \cdot \frac{1}{1+j\frac{\omega}{(1-T_0)\omega_p}}$$

Positive feedback:

$$A_{CL}(\omega) = \frac{1}{f} \cdot \frac{T_0}{1 - T_0} \cdot \frac{1}{1 + j \frac{\omega}{(1 - T_0)\omega_p}}$$

$$a(\omega) = \frac{a_0}{1 + j\frac{\omega}{\omega_p}}$$

$$T(\omega) = a(\omega) \cdot f$$

$$T_0 = a_0 f$$

Unstable when

$$1 - T_0 < 0$$

Multi-pole forward gain transfer function:
$$a(\omega) = \frac{a_0}{\left(1 + j\frac{\omega}{\omega_{p1}}\right)\left(1 + j\frac{\omega}{\omega_{p2}}\right)...\left(1 + j\frac{\omega}{\omega_{pn}}\right)}$$

Closed loop gain:
$$A_{CL}(\omega) = \frac{1}{f} \cdot \frac{T(\omega)}{1 + T(\omega)}$$

Nyquist Criteria (simple version):

• The circuit is unstable if $|T(j\omega)| > 1$ at the frequency where the phase of $T(j\omega) = -180^{\circ}$

$$\angle T(j\omega) = \tan^{-1} \left(\frac{\operatorname{Im} \{T(j\omega)\}}{\operatorname{Re} \{T(j\omega)\}} \right)$$

Feedback and Stability

- Metrics
 - Phase margin
 - Gain margin

- Dependent on the loop gain T(s)
 - Forward amplifier second (non-dominant) pole
 - Feedback factor

Worst-case feedback factor?

Phase Margin

Next Meeting

Feedback Amplifiers

