```
Thm 3.3.9 (Ray Theorem). Let l \in \mathcal{L}, A \in l, B \notin l If C \in \overrightarrow{AB} and C \neq A, then C \in H_B(l).
Thm 3.3.12 (Pasch's Axiom). \triangle ABC, l \in \mathcal{L}, A, B, C \notin l. If l \cap \overline{AB} \neq \emptyset then l \cap \overline{AC} \neq \emptyset or l \cap \overline{BC} \neq \emptyset.
Lemma 3.5.0. Let A, B \in \mathbb{P} distinct. Then \exists C, D \in \mathbb{P} s.t. A * C * B and A * B * D.
Thm 3.5.3. D \in \text{int} \angle BAC \text{ iff } \overrightarrow{AD} \cap \text{int} \overrightarrow{BC} \neq \emptyset.
Thm 4.3.4. Let l \in \mathcal{L}, P \in \mathbb{P} with P \notin \mathcal{L}. Let F be the foot of the \bot from P to l. If R \in l, R \neq F then PR > PF.
Thm 4.6.4. If \Box ABCD is a convex quadrilateral then \sigma(\Box ABCD) \leq 360.
Thm 4.6.6. Every parallelogram is a convex quadrilateral.
Thm 4.6.8. \Box ABCD is convex iff \overline{AB} \cap \overline{BD} \neq \emptyset.
Def EPP. Let l \in \mathcal{L}, P \in \mathbb{P} \backslash l. \exists ! m \in \mathcal{L} s.t P \in m, m \parallel l.
Thm 4.7.3. The following are equivalent to the EPP
   1. (Proclus' Axion) If l \parallel l' and t \neq l with t \cap l \neq \emptyset then t \cap l' \neq \emptyset.
   2. If l, m \in \mathcal{L} s.t. l \parallel m and n \perp l then n \perp m.
   3. If l, m, n, k \in \mathcal{L} s.t. k \parallel l, m \perp k, n \perp l then m = n or m \perp n.
   4. (Transitivity) If l \parallel m, m \parallel n then l \parallel n or l = n.
Thm 4.8.10 (Properties of Sacherri quadrilaterals). Let \Box ABCD be a Sacherri quadrilateral
   1. AC = BD.
   2. \angle BCD \cong \angle ACD
   3. If E mid \overline{AB} and F mid \overline{CD} then \overline{EF} \perp \overline{AB}, \overline{CD}
   4. \square ABCD is a parallelogram
   5. \square ABCD is convex
   6. \mu(\angle BCD), \mu(\angle ADC) \leq 90
Thm 4.8.11 (Properties of Lambert quadrilaterals). Let \Box ABCD be a lambert quadrilateral with right angles
```

at $\angle A, \angle B, \angle C$.

 $\angle A, \angle B, \angle C.$

1. $\square ABCD$ is a parallelogram.

- 2. $\square ABCD$ is a convex quadrilateral.
- 3. $\mu(\angle D) \le 90$.
- 4. $BC \leq AD$.

Thm 5.1.10 (Properties of Euclid Geometry). Let $\Box ABCD$ be a parallelogram.

- 1. $\triangle ABC \cong \triangle CDA$ and $\triangle ABD \cong CBD$
- 2. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$
- 3. $\angle DAB \cong \angle BCD$ and $\angle ABC \cong \angle CDA$
- 4. $\overline{AC} \cap \overline{BD} = \{E\}$ where E is the midpoint of $\overline{AC}, \overline{BD}$

Thm 5.2.1 (Parallel Projection Theorem). Let $l, m \in \mathcal{L}$ be distinct mutually parallel lines. Let $a, b \in \mathcal{L}$ be transversals that cut these lines at A, B, C and D, E, F with A * B * C and D * E * F. Then $\frac{AB}{AC} = \frac{DE}{DF}$.

Lemma 5.3.0. Let $A, B, C, D \in \mathbb{P}$ be distinct. If AB > CD and $E \in \overrightarrow{AB}$ s.t. AE = CD then A * E * B.

Thm 5.3.1 (Fundamental Theorem of Similar Triangles). If $\triangle ABC \sim \triangle DEF$ then $\frac{AB}{AC} = \frac{DE}{DF}$.

Thm 5.4.3. The height of a right triangle is the geometric mean of the lengths of the projections of the legs.

 $h = \sqrt{(AB)(DB)}$

Thm 5.4.4. The length of one leg of a right traingle is the geometric mean of the length of the hypotenuse and the projection of that leg onto the hypotenuse. $b = \sqrt{C(AD)}$ $a = \sqrt{C(BD)}$

Thm 8.1.7 (Tangent Line Theorem). Let $C(O,r) \in \mathfrak{C}, l \in \mathcal{L}, P \in l \cap C(O,r)$. Then $l \cap C(O,r) = \{P\}$ iff $\overrightarrow{OP} \perp l$.

Thm 8.1.9 (Secant Line Theorem). Let $C(O, r) \in \mathcal{C}, l \in \mathcal{L}$ be a second line at $\{P, Q\}$. If m is the \perp -bisector of \overline{PQ} then $O \in m$.

Thm 8.1.11 (Elementary Circular Continuity). A line cannot get from the inside to the outside of a circle without crossing the circle.

- 3. $PQ \perp OA$.

Thm 10.1.6. The composition of two isometries is an isometry and the inverse of an isometry is an isometry.

Thm 10.1.7 (Properties of Isometries). Let T be an isometry then T preserves the following

- 1. Colinearity
- 2. Betweenness of Points
- 3. Segments
- 4. Lines
- 5. Betweenness of Rays
- 6. Angles
- 7. TrianglesCircles

Thm 10.2.2 ($\frac{1}{2}$ -turn theorem). Let $l, m \in \mathcal{L}, l \perp m, O \in l \cap m$ and $h_O = \rho_l \circ \rho_m$. If $P \in \mathbb{P} \setminus \{O\}$ then O is the midpoint of $Ph_O(P)$.

Thm 10.2.5 (The Rotation Theorem). Let R_{AOB} be a rotation with center O and angle $\angle AOB$ where $R_{AOB} = \rho_m \circ \rho_l$ where $l = \overrightarrow{OA}$ and m containing the angle bisector of $\angle AOB$.

- 1. If $P = \mathbb{P} \setminus O$ and $P' = R_{AOB}(P)$ then $\mu(\angle AOB) = \mu(\angle POP')$
- 2. If $n \in \mathcal{L}$ with $O \in n$ then $\exists r, t \in \mathcal{L}$ s.t. $R_{AOB} = \rho_r \circ \rho_n = \rho_n \circ \rho_t$.

Thm 10.2.8 (Translation Theorem). 1. An isometry T is a translation iff $\exists k, l, m \in \mathcal{L}$ s.t. $l, m \perp k$ and T = $\rho_l \circ \rho_m$.

2. Let $T_{AB} = \rho_m \circ \rho_l$ be a translation where $A \neq B, k = \overrightarrow{AB}$ If $n \in \mathcal{L}, n \perp k$ Then $\exists r, t \in \mathcal{L}$ s.t. $T_{AB} = \rho_r \circ \rho_n = \rho_n \circ \rho_t$.

Thm 10.3.2 (Glide Reflection Theorem). Let T be an isometry. Then $T = G_{AB}$ iff $\exists l, m, n \in \mathcal{L}$ distinct s.t. $T = \rho_l \circ \rho_m \circ \rho_n.$