IN	FO	4 _	AN	N	EE	20	15	/20	16
A 1 .	$\mathbf{L} \mathbf{V}$		7 A 1	1 1					$\mathbf{L}\mathbf{V}$

Fiche de suivi de projet

Titre du projet : R écup ération de flux de donn ées						
Nom étudiant : LI GUOBAO						
Nom étudiant :						
Nom tuteur enseignant : Beno î Parrein						
Signature tuteur:						
Semaine du 21th Decembre Au 25th Decembre						

TRAVAIL EFFECTUE

Pendant cette semaine, j'ai mis en place Mosca dans Docker en appliquant mongodb en tant que pub/sub service. Et puis j'ai appliqué Haproxy en tant que loadbalance, etcd une base de données pour stocker les informations des conteneurs Mosca, et Confd pour générer automatiquement la configuration de Haproxy. Ensuite, j'ai déjà réalisé un prototype dans mon ordinateur. Et puis je vais travailler sur les autres frameworks comme Mesos. A la fin, j'ai noté la schéma d'architecture au dessous :

