Matemática atuarial

Anuidades Vitalícia (aula12)

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Anuidades (rendas)

Sucessão de pagamentos equidistantes (termos), efetuados por uma dada entidade a outrem.

IMEDIATAS

Os termos são exigíveis a partir do primeiro período.

DIFERIDAS

Os termos são exigíveis após um diferimento

> ANTECIPADA (Quando os termos ocorrem no início de cada período)

$$VP = \ddot{a}_{\bar{n}|} = \frac{1 - v^n}{1 - v}, n \ge 1$$

POSTECIPADA (Quando os termos ocorrem ao final de cada período)

$$VP = a_{\bar{n}|} = v\left(\frac{1-v^n}{1-v}\right), n \ge 1$$

$$\ddot{a}_{\overline{n|}} = 1 + v + v^2 + v^3 + \dots + v^{n-1}$$

$$\ddot{a}_{\bar{n}|}=rac{1-v^n}{1-v}$$
 , $n\geq 1$

$$a_{\overline{n}|} = v + v^2 + v^3 + \dots + v^n$$

$$a_{ar{n}|} = v\left(rac{1-v^n}{1-v}
ight)$$
 , $n \ge 1$

Anuidades (rendas)

$$\ddot{a}_{\overline{n|}} = 1 + \nu + \nu^2 + \nu^3 + \dots + \nu^{n-1}$$

$$a_{\overline{n-1}|} = v + v^2 + v^3 + \dots + v^{n-1}$$

$$\ddot{a}_{\overline{n|}}-a_{\overline{n-1|}}=1$$

- Estamos trabalhando com o valor presente de uma série de pagamentos.
- De fato, as anuidades apresentadas são anuidades certas. Uma série de pagamentos sendo realizados ao longo do tempo
- É preciso o reconhecimento da "natureza" aleatória do número de termos.

- No processo de compra de um produto atuarial ou de concessão de benefício, existe risco.
 - A seguradora não sabe se vai receber todos os prêmios do segurado (este pode morrer antes do período de cobertura).
 - A seguradora não sabe ao certo quanto irá gastar com previdência uma vez que uma pessoa se aposentou e entrou em gozo de benefício.

- Reconhecer a anuidade como um produto atuarial é reconhecer que:
 - \triangleright A seguradora (ou fundo de pensão) não saberá ao certo quando x irá falecer.

Anuidades (Rendas)

- > Anuidade é um produto atuarial ligado a previdência.
 - ➤ Plano de previdência: A ideia é formar uma reserva financeira para lidar com situações futuras (previdência privada-complementar).
- Anuidade (renda sobre a vida)
 - > Aposentadoria: pagamentos até o momento da morte
 - Cobertura: por período determinado.
- São interrompidos em caso de morte...

Anuidades imediatas

Pagamentos Antecipados (Os pagamentos começam no primeiro período).

$$F_0 = b \left(\frac{1}{1+i}\right)^t$$

Pagamentos Postecipados (Os pagamentos começam no final de cada período).

- ightharpoonup Seja T_x a variável aleatória discreta associada **ao maior inteiro contido** na sobrevida de x logo:
- > Antecipada (benefício unitário)

$$\ddot{a}_{\overline{T_x+1}|} = \frac{1-v^{T_x+1}}{1-v}, T_x \ge 0$$

Postecipada (benefício unitário)

$$a_{\overline{T_{\mathcal{X}}|}} = v \frac{1 - v^{T_{\mathcal{X}}}}{1 - v}, T_{\mathcal{X}} \ge 0$$

 \triangleright O valor atuarial de anuidade imediata vitalícia e com pagamento **ANTECIPADO** para uma pessoa de idade x corresponde ao valor esperado da anuidade imediata antecipada:

$$E(\ddot{a}_{\overline{T_{\chi}+1|}}) = \ddot{a}_{\chi}$$

 \triangleright O valor atuarial de anuidade imediata vitalícia e com pagamento **POSTECIPADO** para uma pessoa de idade x corresponde ao valor esperado da anuidade imediata postecipada:

$$E(a_{\overline{T_x|}}) = a_x$$

Anuidade vitalícia antecipada

$$E(\ddot{a}_{\overline{T_x+1|}}) = \sum_{t=0}^{\omega-x} \ddot{a}_{\overline{t+1}|} \ p(T_x = t)$$

$$\ddot{a}_x = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} t p_x q_{x+t}$$

Anuidade vitalícia antecipada Postecipada

$$E(a_{\overline{T_x|}}) = \sum_{t=1}^{\omega - x} a_{\bar{t}|} p(T_x = t)$$

$$a_x = \sum_{t=1}^{\omega - x} a_{\bar{t}|\ t} p_x q_{x+t}$$

EXEMPLO 1

Considere uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = E\left(\ddot{a}_{\overline{T+1|}}\right) = \sum_{t=0}^{\omega-x} \ddot{a}_{\overline{t+1|}\ t} p_{40} q_{40+t} = \ddot{a}_{\overline{1|}\ 0} p_{40} q_{40} + \ddot{a}_{\overline{2|}\ p_{40}} q_{41} + \ddot{a}_{\overline{3|}\ 2} p_{40} q_{42} + \cdots$$

$$\ddot{a}_{40} = \frac{1 - v^1}{1 - v} {}_{0}p_{40}q_{40} + \frac{1 - v^2}{1 - v} p_{40}q_{41} + \frac{1 - v^3}{1 - v} {}_{2}p_{40}q_{42} + \cdots$$

$$\ddot{a}_{40} = 17,67u.m.$$

EXEMPLO 2

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$a_{40} = \sum_{t=1}^{\omega - x} a_{t|t} p_{40} q_{40+t} = a_{1|t} p_{40} q_{41} + a_{2|t} p_{40} q_{42} + a_{3|t} p_{40} q_{43} + \cdots$$

$$a_{40} = \frac{v(1-v^1)}{1-v} p_{40}q_{41} + \frac{v(1-v^2)}{1-v} p_{40}q_{42} + \frac{v(1-v^3)}{1-v} p_{40}q_{43} + \cdots$$

$$a_{40} = 16,67$$
u.m.

> Outras alternativas para o calculo do V.P.A. serão:

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} v^{t} _{t} p_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}| t} p_{x} q_{x+t}$$

e

$$a_x = \sum_{t=1}^{\omega - x} v^t p_x = \sum_{t=1}^{\omega - x} a_{t|t} p_x q_{x+t}$$

Demonstração

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|t} p_{x} q_{x+t} = \sum_{t=0}^{\omega - x} \frac{1 - v^{t+1}}{1 - v} p_{x} (1 - p_{x+t})$$

$$\ddot{a}_{x} = \sum_{t=0}^{\omega-x} \frac{1 - v^{t+1}}{1 - v} \left({}_{t}p_{x} - {}_{t}p_{x}p_{x+t} \right) = \sum_{t=0}^{\omega-x} \frac{1 - v^{t+1}}{1 - v} \left({}_{t}p_{x} - {}_{t+1}p_{x} \right)$$

$$\ddot{a}_{x} = v^{0}(_{0}p_{x} - _{1}p_{x}) + (v^{0} + v)(_{1}p_{x} - _{2}p_{x}) + (v^{0} + v + v^{2})(_{2}p_{x} - _{3}p_{x}) + \cdots$$

Assim

$$\ddot{a}_{x} = \sum_{t=0}^{\infty} v^{t} p_{x}$$

EXEMPLO 3

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a.., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = \sum_{t=0}^{\omega - x} v^t t p_{40} = 1 + v p_{40} + v^2 p_{40} + v^3 p_{40} + \cdots$$

$$\ddot{a}_{40} = 1 + v \ p_{40} + v^2 \ p_{40}p_{41} + v^3p_{40}p_{41}p_{42} + \dots \approx 17,67u. \, m.$$

Postecipado,

$$a_{40} = \sum_{t=1}^{\omega - x} v^t \,_t p_{40} = v \,_t p_{40} + v^2 \,_2 p_{40} + v^3 \,_3 p_{40} + \cdots$$

$$a_{40} = v p_{40} + v^2 p_{40} p_{41} + v^3 p_{40} p_{41} p_{42} + \dots \approx 16,67u. m.$$

 $\ddot{a}_x = a_x + 1$

Valor atuarial de uma anuidade vitalícia antecipada.

Valor atuarial de uma anuidade vitalícia postecipada.

- Então, para o caso discreto, o V.P.A. será dado por:
 - > Anuidade Antecipada (Variável aleatória discreta)

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} {}_{t}E_{x} = \sum_{t=0}^{\omega - x} v^{t} {}_{t}p_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} {}_{t}p_{x}q_{x+t} = \sum_{t=0}^{\omega - x} \frac{1 - v^{t+1}}{1 - v} {}_{t}p_{x}q_{x+t}$$

> Anuidade Postecipada (Variável aleatória discreta)

$$a_{x} = \sum_{t=1}^{\omega - x} {}_{t}E_{x} = \sum_{t=1}^{\omega - x} v^{t} {}_{t}p_{x} = \sum_{t=1}^{\omega - x} a_{\overline{t}|} {}_{t}p_{x}q_{x+t} = \sum_{t=1}^{\omega - x} v\left(\frac{1 - v^{t}}{1 - v}\right) {}_{t}p_{x}q_{x+t}$$

Aula 13 - Anuidade Imediata

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Anuidades temporárias imediatas

- \blacktriangleright No caso de anuidades temporárias, essas são válidas enquanto a pessoa de idade x for viva até no máximo n anos.
 - Então, para o caso discreto, o V.P.A. de anuidades temporárias temos:
- > VPA de uma anuidade antecipada.

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} \, t \, p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} \, {}_n p_x$$

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & se \ 0 < T < n \\ \ddot{a}_{\overline{n|}} & se \ T \ge n \end{cases}$$

$$E(Y) = \ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P(T_x = t) + \sum_{t=n}^{\infty} \ddot{a}_{\overline{n|}} P(T_x = t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P(T_x = t) \ddot{a}_{\overline{n|}} + \sum_{t=n}^{\infty} P(T_x = t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P(T_x = t) + \ddot{a}_{\overline{n|}} P(T_x \ge n)$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} \, t \, p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} \, {}_{n} p_x$$

Anuidades temporárias imediatas

> VPA de uma anuidade Postecipada.

$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} t p_x q_{x+t}\right) + a_{\overline{n|}} p_x$$

EXEMPLO 4

Pense em uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 40 anos. Considerando a tábua de mortalidade AT-2000 feminina e uma taxa de juros de 5% a.a., calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{25:\overline{40|}} = \left(\sum_{t=0}^{39} \frac{1 - v^{t+1}}{1 - v} t^{t+1} p_{25} q_{25+t}\right) + \left(\frac{1 - v^{40}}{1 - v}\right) q_0 p_{25}$$

$$\ddot{a}_{25:\overline{40|}} = 1,0584 + 16,78173 = 17,8402$$

Anuidades temporárias imediatas- Tempo discreto

VPA de uma anuidade antecipada.

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}\ t} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}\ n} p_x$$

$$\ddot{a}_{x:\overline{n|}} = E(Y) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} {}_{t}p_{x}$$

> VPA de uma anuidade Postecipada.

$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} \ _t p_x q_{x+t}\right) + a_{\overline{n|}} \ _n p_x$$

$$a_{x:\overline{n|}} = E(Y) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} v^{t} {}_{t}p_{x}$$

EXEMPLO 5:

Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

4 1 2			ilato.	111100
$\ddot{z} = -\sum_{i=1}^{4-1} z_i = \sum_{i=1}^{3} z_i t_i$	l_x	p_X	q_X	Idade
$\ddot{a}_{30:\overline{4} } = \sum_{t=0}^{\infty} {}_{t}E_{30} = \sum_{t=0}^{\infty} v^{t} {}_{t}p_{30}$	100000	0,99923	0,00077	25
	99923	0,99919	0,00081	26
$\ddot{a}_{30:\overline{4} } = 1 + vp_{30} + v^2 _2p_{30} + v^3 _3p_{30}$	99842	0,99915	0,00085	27
30:4 1 1 7 30 1 7 2 7 30 1 7 3 7 30	99757	0,99910	0,00090	28
	99667	0,99905	0,00095	29
$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}^2$	99572	0,99900	0,00100	30
$\ddot{a}_{30:\overline{4} } = 1 + \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{31}p_3$	99472	0,99893	0,00107	31
l_{33}	99365	0,99886	0,00114	32
$p_{30}p_{31}p_{32} = \frac{l_{33}}{l_{30}}$	99251	0,99879	0,00121	33
	99131	0,99870	0,00130	34
$\ddot{a}_{30:\overline{4 }} = 3,71$	99002	0,99861	0,00139	35

EXEMPLO 6:

Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

				4 4
Idade	q_X	p_X	l_x	$a_{30:\overline{4} } = \sum_{t=1}^{4} {}_{t}E_{30} = \sum_{t=1}^{4} {}_{t}p_{30}$
25	0,00077	0,99923	100000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{30:\overline{4} } = vp_{30} + v^2 _2p_{30} + v^3 _3p_{30} + v^4 _4p_{30}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$a_{30:\overline{4} } = \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{31}p_{32}$
30	0,00100	0,99900	99572	$\begin{pmatrix} 1,03 \end{pmatrix}^4$
31	0,00107	0,99893	99472	$\left(\frac{1}{1,05}\right)^4 p_{30} p_{31} p_{32} p_{33}$
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{30:\overline{4 }} = 3,52$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

EXEMPLO 7:

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 5 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

iiii Caiaco.				5-1 4
Idade	q_X	p_X	l_x	$\ddot{a}_{25:\overline{5} } = \sum_{t=0}^{3-1} {}_{t}E_{25} = \sum_{t=0}^{4} v^{t} {}_{t}p_{25}$
25	0,00077	0,99923	100000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$\ddot{a}_{25:\overline{5} } = 1 + vp_{25} + v^2 _2p_{25} + v^3 _3p_{25} + v^4$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$\ddot{a}_{25:\overline{5 }} = 1 + \left(\frac{1}{1,05}\right)p_{25} + \left(\frac{1}{1,05}\right)^2 \frac{l_{27}}{l_{25}} + \left(\frac{1}{1,05}\right)^3 \frac{l_{28}}{l_{25}} + \left$
30	0,00100	0,99900	99572	$(1,05)^{p_{25}}$ $(1,05)^{l_{25}}$ $(1,05)^{l_{25}}$
31	0,00107	0,99893	99472	
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$\ddot{a}_{25:\overline{5} } = 4,53$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

EXEMPLO 8:

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

IIIICC	nato.			4 4
Idade	q_X	p_X	l_x	$a_{25:\overline{4} } = \sum_{t} E_{25} = \sum_{t} v^{t}_{t} p_{25}$
25	0,00077	0,99923	100000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{25:\overline{4} } = vp_{25} + v^2 _2p_{25} + v^3 _3p_{25} + v^4 _4p_{25}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$a = -\begin{pmatrix} 1 \\ 1 \end{pmatrix}_{n} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{2} l_{27} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{3} l_{28} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{4} l_{29}$
30	0,00100	0,99900	99572	$ a_{25:4} = \left(\overline{1,05}\right)^{p_{25}} + \left(\overline{1,05}\right)^{25} + \left(\overline{1,05}\right)^{25} + \left(\overline{1,05}\right)^{25} + \left(\overline{1,05}\right)^{25}$
31	0,00107	0,99893	99472	
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{25:\overline{4 }} = 3,53$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	
293031323334	0,00095 0,00100 0,00107 0,00114 0,00121 0,00130	0,99905 0,99900 0,99893 0,99886 0,99879 0,99870	99667 99572 99472 99365 99251 99131	$a_{25:\overline{4} } = \left(\frac{1}{1,05}\right) p_{25} + \left(\frac{1}{1,05}\right)^2 \frac{l_{27}}{l_{25}} + \left(\frac{1}{1,05}\right)^3 \frac{l_{27}}{l_{25}}$ $a_{25:\overline{4} } = 3,53$

Anuidades temporárias imediatas

$$\ddot{a}_{x:\overline{n|}} = 1 + vp_x + v^2 _2p_x + v^3 _3p_x + v^4 _4p_x + \cdots + v^{n-1} _{n-1}p_x$$

$$a_{x:\overline{n-1}|} = vp_x + v^2 p_x + v^3 p_x + v^4 p_x + \cdots + v^{n-1} p_x$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$\ddot{a}_x = 1 + a_x$$

Anuidades temporárias imediatas- Tempo discreto

VPA de uma anuidade antecipada.

➤VPA de uma anuidade Postecipada.

 $Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$\ddot{a}_{x:\overline{n|}} = E(Y) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} v^{t} {}_{t}p_{x}$$

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \mathbf{1} + \mathbf{a}_{x:\overline{n-1|}}$$

$$\ddot{a}_{x:\overline{n|}} = E(Y) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} {}_{t}V^{t} {}_{t}p_{x}$$

$$a_{x:\overline{n|}} = E(Y) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} {}_{t}V^{t} {}_{t}p_{x}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} p_x$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} t p_x q_{x+t}\right) + a_{\overline{n|}} p_x$$