Universidade Federal de Campina Grande - UFCG Curso de Engenharia Elétrica

Felipe Targino da Silva
Francisco Cristóvão Ventura Ferreira Junior
Matheus Lucas Tavares de Farias
Raphael Lins di Pace
Tulio Rafael de Aguiar Tavares

STM_NES: Plataforma Embarcada para Jogos

Orientador: Prof. RAFAEL BEZERRA CORREIA LIMA

Campina Grande - PB 2025

1 Introdução

Este relatório apresenta o projeto **STM_NES**, desenvolvido como parte da disciplina de *Sistemas Embarcados*, do curso de Engenharia Elétrica da Universidade Federal de Campina Grande (UFCG).

O objetivo principal do projeto é desenvolver uma plataforma de hardware baseada na placa **Bluepill (STM32F103C6T6A)** para a criação de jogos simples. A placa desenvolvida integra múltiplos periféricos, como joystick, botões, buzzer, LEDs RGB e display OLED, permitindo implementar diferentes mecânicas de interação típicas de jogos.

Figura 1 – Placa desenvolvida no projeto STM_NES.

2 Softwares Utilizados

2.1 EasyEDA

O EasyEDA [1] foi utilizado para projetar a Placa de Circuito Impresso (PCB). Ele é uma ferramenta online de design eletrônico que integra captura esquemática, simulação de circuitos e design de PCBs. Com ele, foi possível:

- 1. Criar o esquemático do circuito.
- 2. Realizar o roteamento manual/automático das trilhas.
- 3. Gerar os arquivos de fabricação para a fresadora.
- 4. Visualizar o projeto em 2D e 3D para verificação do encaixe dos componentes.

2.2 STM32CubeIDE

O **STM32CubeIDE** foi utilizado para o desenvolvimento do firmware da Bluepill (STM32F103C6T6A). Principais funcionalidades utilizadas:

- Configuração dos periféricos internos do microcontrolador através do CubeMX (GPIOs, I2C, Timers, etc).
- Escrita, compilação e depuração do código em C.
- Organização de drivers e bibliotecas para comunicação com os módulos externos (como o display OLED).

3 Hardware e PCB

A placa foi projetada ao redor da **Bluepill** (STM32F103C6T6A), integrando diversos periféricos para interação em jogos.

3.1 Joystick Analógico (XY + botão)

- Permite movimentação em duas direções (X e Y).
- Possui um botão integrado quando pressionado.
- Conectado às entradas analógicas/digitais do STM32 para leitura dos valores.

3.2 LEDs RGB

- Dois LEDs RGB endereçáveis, que podem ser usados para indicar status do jogo (vidas, pontuação, efeitos visuais, etc).
- Cada cor (R, G, B) é controlada separadamente via GPIOs.

3.3 Botões (KEY1 e KEY2)

- Botões de uso geral que podem ser atribuídos a ações como "Start", "Pause" ou "Fire".
- São ligados a pinos digitais configurados com pull-up interno.

3.4 Buzzer (SG1)

- Permite emitir sons simples durante o jogo (como efeitos de colisão ou música básica).
- Conectado a um pino PWM do microcontrolador, para gerar tons em diferentes frequências.

3.5 Display OLED (I2C)

- Display OLED de 128x64 pixels, comunicação via I2C.
- Utilizado para exibir gráficos e informações do jogo.
- Permite criar desde interfaces simples até sprites animados.

4 Projeto da PCB

A Placa de Circuito Impresso (PCB) foi projetada com base no microcontrolador **STM32F103C6T6A**, popularmente utilizado na placa *Bluepill*. O projeto contempla a integração dos periféricos descritos no Capítulo de Hardware, buscando uma topologia compacta e organizada, adequada para a implementação de jogos embarcados.

4.1 Critérios de Projeto e Montagem

Durante o desenvolvimento da PCB, foram considerados os seguintes critérios:

- Separação de trilhas de sinal e alimentação: garantiu-se a correta distribuição de energia (3,3V e 5V) e planos de terra (GND) bem definidos.
- Uso de resistores de limitação para LEDs: cada canal RGB possui resistores de 1k Ω em série para evitar sobrecorrente.
- Alimentação dos periféricos: O joystick utiliza alimentação de 3,3 V, enquanto o display OLED possui entrada de 5 V com regulador interno.
- Padronização de conectores: foi utilizado conector tipo pino (PTH) para facilitar a soldagem e manutenção.
- Isolamento de sinais analógicos: os canais do joystick (JOY_X e JOY_Y) foram conectados a entradas ADC dedicadas, reduzindo interferência.

A montagem da placa exige atenção à polaridade de LEDs, ao correto encaixe do display OLED e à soldagem do buzzer e botões, que possuem orientação definida no footprint.

4.2 Pinagem e Conexões

A Tabela 1 resume as principais conexões entre o microcontrolador e os periféricos implementados na PCB.

4.3 Considerações de Construção

• A PCB foi projetada para ser fresada em laboratório, logo foram respeitados critérios de largura mínima de trilha e distância entre pads, típicos de fresagem CNC.

- O plano de terra foi priorizado para melhorar a estabilidade elétrica e reduzir ruídos.
- Conectores foram posicionados nas bordas da placa para facilitar acesso aos periféricos.
- \bullet O regulador de tensão de 3,3 V deve ser corretamente testado antes da inserção da Bluepill, para evitar danos ao microcontrolador.

Tabela 1 – Mapeamento de pinos do STM32F103C6T6A para os periféricos da PCB.

Periférico	Sinal	Pino STM32
LED RGB 1	LED1_R	PA4
	LED1_G	PA5
	LED1_B	PA6
LED RGB 2	LED2_R	PA7
	LED2_G	PB0
	LED2_B	PB1
Joystick	JOY_X	PA0 (ADC1_IN0)
	JOY_Y	PA1 (ADC1_IN1)
	JOY_SW	PA2 (GPIO)
Botões	BUTTON_A	PB9
	BUTTON_B	PB8
Buzzer	BUZZER_PWM	PA8 (TIM1_CH1)
Display OLED (I2C)	SDA	PB7 (I2C1_SDA)
	SCL	PB6 (I2C1_SCL)

Referências

[1] EASYEDA. Disponível em: https://easyeda.com/. Acesso em: 24 set. 2025.