

Analog IC Design

Lecture 05 MOSFET Small Signal Model

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

N-Channel MOSFET Structure

- MOSFET: Metal-oxide-semiconductor field-effect transistor
- ☐ Three-terminal device: Gate (G), Source (S), and Drain (D)
- Substrate/Bulk/Body (S/B) can be treated as a fourth terminal

Regions of Operation Summary

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Large Signal Model

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Small Signal Approximation

- The transistor is a VCCS
- Transconductance: how well it converts the voltage to a current

Small Signal Model

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} = \frac{\partial I_D}{\partial V_{GS}}$$

$$r_o = \frac{\Delta V_{DS}}{\Delta I_D} = \frac{1}{\frac{\partial I_D}{\partial V_{DS}}}$$

Large Signal vs Small Signal Model

05: MOSFET AC [Sedra/Smith, 2015]

Transconductance

- ☐ The transistor is a VCCS
- Transconductance: how well it converts the voltage to a current

$$I_{D} \approx \frac{\mu_{n} C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^{2}$$

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}} = \frac{\partial I_{D}}{\partial V_{GS}} = \frac{\partial I_{D}}{\partial V_{ov}}$$

$$= \mu C_{ox} \frac{W}{L} V_{ov}$$

$$= \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}}$$

$$= \frac{2I_{D}}{V}$$

Transconductance

$$I_D \approx \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2$$

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_D} = \frac{2I_D}{V_{ov}}$$

$rac{W}{L}$ Constant $V_{GS}-V_{TH}$ Variable	⊮/L Variable V _{GS} − V _{TH} Constant	⊮/L Variable V _{GS} − V _{TH} Constant
$g_{ m m} \propto \sqrt{I_D}$	$g_{ m m} \propto I_D$	$g_{ m m} \propto \sqrt{rac{W}{L}}$
$g_{ m m} \propto V_{GS} - V_{TH}$	$g_{ m m} \propto rac{W}{L}$	$g_{ m m} \propto {1 \over V_{GS} - V_{TH}}$

Body Effect

- \Box V_{SB} affects the charge required to invert the channel
 - Increasing V_S or decreasing V_B increases V_{TH}

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

- $-\phi_F$ = surface potential at threshold
 - Depends on doping level and intrinsic carrier concentration n_i
- $\gamma = body effect coefficient$
 - Depends on C_{ox} and doping

05: MOSFET AC [Razavi, 20

Bulk Transconductance

☐ The bulk behaves as a second gate that changes the output current

$$g_{mb} = \frac{\partial I_D}{\partial V_{BS}}$$

$$g_{mb} = g_m \frac{\gamma}{2\sqrt{2\Phi_F + V_{SB}}}$$

$$= \eta g_m$$

 \square η is typically $0.1 \rightarrow 0.25$

Output Resistance

 \square I_D increases with V_{DS} in saturation

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

 \Box The VCCS is not ideal \rightarrow it has output resistance

$$r_o = \frac{\Delta V_{DS}}{\Delta I_D} = \frac{1}{\frac{\partial I_D}{\partial V_{DS}}} = \frac{1}{\lambda I_D}, \qquad \lambda \propto \frac{1}{L}$$

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

$$v_{bs} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

05: MOSFET AC 14

Intrinsic Gain

$$|v_{out}| = -(g_m v_{in}) r_o$$

$$|A_v| = \left| \frac{v_{out}}{v_{in}} \right| = g_m r_o$$

- \Box $g_m r_o$ is the max gain that can be obtained from a single transistor
- Common approximations that we usually use

$$g_m r_o \gg 1$$
 $r_o \gg \frac{1}{g_m}$
 $g_m + \frac{1}{r_o} \approx g_m$
 $r_o / / \frac{1}{g_m} \approx \frac{1}{g_m}$

Short Channel Effects: Velocity Saturation

- lacksquare ID-VGS quadratic: $g_m = \frac{\partial I_D}{\partial V_{GS}} = \text{linear} o g_m$ increases with V_{GS}
- \blacksquare ID-VGS linear: $g_m = \frac{\partial I_D}{\partial V_{GS}} = \text{constant} \Rightarrow g_m \text{ saturates}$

Short Channel Effects: CLM and DIBL

- \square ID-VDS horizontal: no V_{DS} dependence \rightarrow ideal current source
- lacktriangle More slope lacktriangle more V_{DS} dependence lacktriangle smaller gain

05: MOSFET AC [Weste & Harris] 17

MOSFET Amplifier Configurations

(b) Common Gate (CG)

(c) Common Drain (CD) or Source Follower

Topology	Input	Output
Common-Source	Gate	Drain
Common-Gate	Source	Drain
Common-Drain (Source-Follower)	Gate	Source

[Sedra/Smith, 2015] **05: MOSFET AC**

18

MOSFET Amplifier Analysis Steps

- 1. DC analysis
 - Coupling and bypass capacitors → open-circuit (o.c)
 - Calculate Q-point and check operation in saturation $(V_{DS} > V_{ov})$
- 2. Calculate small signal parameters (g_m, r_o)
- 3. Draw the small signal equivalent circuit
 - DC voltage source → short-circuit (s.c.)
 - DC current source → open-circuit (o.c.)
 - Coupling and bypass capacitors → short-circuit (s.c)
- 4. Determine the amplifier parameters
 - Input resistance and output resistance
 - Voltage gain and current gain

05: MOSFET AC 19

Thank you!

05: MOSFET AC 20

Transconductance

- The transconductance drops in the triode region
 - Thus, for amplifiers, we usually employ MOSFETs in saturation

$$g_{m} = \frac{\partial}{\partial V_{GS}} \left\{ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left[2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^{2} \right] \right\}$$
$$= \mu_{n} C_{ox} \frac{W}{L} V_{DS}$$

