Movie Review Sentiment Analysis – Report

Objective

This project aims to build and evaluate machine learning models for **sentiment analysis** on movie reviews, classifying them as **positive** (1) or **negative** (0). We used the IMDb dataset with labeled movie reviews to explore different classification techniques and identify the most effective model.

Approach

1. Dataset Overview

- IMDb Dataset with 50,000 labeled movie reviews.
- Balanced between 25,000 positive and 25,000 negative reviews.
- The dataset was split into training and testing sets (80:20).

2. Text Preprocessing

To prepare the text data for model training, we applied the following preprocessing steps without using **NLTK**:

- Lowercasing the text
- Removing HTML tags, numbers, punctuation
- Tokenization using regex and basic Python string methods
- Stopword removal using sklearn's built-in English stopword list
- Vectorization using **TF-IDF** (Term Frequency-Inverse Document Frequency)

3. Models Used

Three machine learning models were implemented:

- Logistic Regression
- Multinomial Naive Bayes
- Support Vector Machine (SVM)

Each model was trained on the processed data and evaluated using accuracy, precision, recall, and F1-score.

Challenges Faced

- **NLTK Dependency Errors**: Due to environment constraints, NLTK was avoided. Alternatives like regex and sklearn stopword tools were used.
- **Text Cleaning Trade-offs**: Removing too much from the text could lose meaning; the challenge was to retain meaningful tokens while ensuring clean input for models.
- **Vector Representation**: Choosing between CountVectorizer and TF-IDF required testing for optimal performance. TF-IDF yielded better results overall.

Model Evaluation Results

Model: Logistic Regression					
Accuracy: 0.8840					
F1-Score: 0.8868					
Classification Report:					
	precision	recall	f1-score	support	
0	0.90	0.87	0.88	4961	
1	0.87	0.90	0.89	5039	
accuracy			0.88	10000	
macro avg	0.88	0.88	0.88	10000	
weighted avg	0.88	0.88	0.88	10000	
weignied avg	0.00	0.00	0.00	10000	
	_				
Model: Naive					
Accuracy: 0.8					
F1-Score: 0.8					
Classificatio					
	precision	recall	f1-score	support	
0	0.85	0.84	0.85	4961	
1	0.85	0.85	0.85	5039	
accuracy			0.85	10000	
macro avg	0.85	0.85	0.85	10000	
weighted avg	0.85	0.85	0.85	10000	
mergireed dvg	0.03	0.03	0.03	10000	
Model: SVM					
	775				
Accuracy: 0.8726 F1-Score: 0.8751					
Classificatio					
	precision	recall	f1-score	support	
0	0.88	0.86	0.87	4961	
1	0.86	0.89	0.88	5039	
accuracy			0.87	10000	
macro avg	0.87	0.87	0.87	10000	
weighted avg	0.87	0.87	0.87	10000	

Conclusion

- **Best Performer**: **Logistic Regression** achieved the highest F1-score of **0.8868**, indicating balanced performance across precision and recall.
- **Naive Bayes** was the weakest in comparison, possibly due to its simplifying assumptions about word independence.
- **SVM** closely followed Logistic Regression, proving to be a robust alternative.

Future Improvements

- Try deep learning models like LSTM or BERT for richer language understanding.
- Deploy the model in a **Flask or Streamlit** app for interactive sentiment testing.