uille
L

EXERCICE 1. : CODAGE DE L'INFORMATION

1.1. Décodez les octets 35H et A0H selon les trois types de codage présents dans le tableau ci-dessous:

Octet	Entier	Entier relatif	ASCII
35 н	53	53	' <i>5</i> '
А0 Н	160	-96	Hors plage

1.2. Convertissez π en base 2 (avec l'approximation $\pi \cong 3.125$).

$$(3.125)_{10} = (11,001)_2$$

1.3. Codez π selon la norme IEEE ($\pi \cong 3.125$). Donnez le résultat sous forme hexadécimale.

```
(11,001)_2 = (1,1001)_2 \times 2^1 + \rightarrow 0 \qquad 2^1 \rightarrow (1+127)_{10} = (128)_{10} = (1000\ 0000)_2 \qquad (1,1001)_2 
0\ 1000\ 0000\ 1001\ 000\ 0000\ 0000\ 0000
```

EXERCICE 2.: PROCESSEUR

- 2.1. Questions de cours.
 - a) Qu'est-ce qu'un registre?

Petite mémoire pour stockage temporaire de données Rapide car dans le processeur

b) Qu'est-ce qu'un code d'instruction (de quoi est-il composé) ?

Octet(s) correspondant(s) à une opération à effectuer. Composé d'un code opération et d'une opérande (éventuellement)

c) Pour le 80x86, donnez le nom, la taille et expliquez le rôle des registres suivants :

```
AX

Accumulateur, 16 bits,

Utilisé pour le stockage d'une opérande et du résultat de calcul.

IP

Pointeur d'Instruction, 16 bits,

Contient l'adresse de la prochaine instruction à exécuter.
```

2.2. Quel doit être la taille du bus d'adresse d'un processeur 16 bits pour qu'il puisse accéder à une mémoire de 8 Ko?

```
8Ko = 2^3 \times 2^{10} \times 8bits = 2^{12} \times 8bits = 2^{12} \times 16bits
12 bits pour le bus d'adresse
```

EXERCICE 3.: OPERATIONS ARITHMETIQUES ET LOGIQUES

3.1. Sur un processeur 8 bits, donnez le résultat des opérations suivantes et positionnez les indicateurs.

25H + 5AH	ZF	=0
0001 0101	SF	=0
+0101 1010	CF	=0
=0110 1111 = 6FH		
B5H + 4AH	ZF	=0
1011 0101	SF	= 1
+0100 1010	CF	=0
=1111 1111 = FFH		

- 3.2. Soit un nombre dans l'accumulateur 8 bits.
 - a) Donnez une instruction permettant de mettre ses 7 bits de poids faible à 0.

```
1000 0000 = 80H
AND AL, 80H
```

b) On considère un accumulateur ne pouvant avoir initialement que 2 valeurs : 00H ou 80H. Donnez <u>une</u> instruction permettant de mettre l'accumulateur à 01H s'il contenait 80H et de le mettre (ou le laisser) à 00H s'il contenait 00H.

c) Quelle est la fonction réalisée par l'exécution des deux instructions précédentes ?

Fonction signe. Retourne 1 si le signe de AL est - et O s'il est +

EXERCICE 4.: PROGRAMME

Soit l'extrait de programme suivant, stocké à l'adresse 0000H.

Code instruction	Opération		
A0 0B 00	MOV AL, [000B]		
04 FF	ADD AL, FF		
3C 00	CMP AL, 00		
75 FA	JNE 0003		
A2 00 10	MOV [1000], AL		

4.1. Complétez le tableau ci-dessous en donnant l'état des registres après l'exécution des 4 premières instructions exécutées (précisez dans la première colonne l'instruction qui a été exécutée).

Opération	IP	RTA	AL	RTUAL
Etat initial	0000	0000	00	0.0
MOV AL,[000B]	0003	000B	10	00
ADD AL, FF	0005	000B	OF	FF
CMP AL, 00	0007	000B	OF	00
JNE 0003	0003	000B	OF	00

4.2. Expliquez simplement en une phrase ce que fait la suite d'instructions précédente.

Une boucle. Faite 16 (ou 255) fois.