s-ब्लॉक तत्त्व THE s-BLOCK ELEMENT

उद्देश्य

इस एकक के अध्ययन के बाद आप-

- क्षार-धातुओं एवं उनके यौगिकों के सामान्य अभिलक्षणों की व्याख्या कर सकेंगे:
- क्षारीय मृदा-धातुओं एवं उनके यौगिकों के सामान्य अभिलक्षणों को समझ सकेंगे;
- पोर्टलैंड सीमेन्ट सहित सोडियम एवं कैल्सियम के महत्त्वपूर्ण यौगिकों के निर्माण, गुणों एवं उपयोगों का वर्णन कर सकेंगे;
- सोडियम, पोटैशियम, मैग्नीशियम व कैल्सियम की जैव महत्ता के बारे में जान सकेंगे।

क्षार एवं क्षारीय मृदा धातु-समूहों के प्रथम तत्त्व इन समूहों के अन्य तत्त्वों से कई गुणों में भिन्न होते हैं।

आवर्त सारणी में s-ब्लॉक के तत्त्व वे तत्त्व हैं। जिनमें अंतिम इलेक्ट्रॉन बाह्यतम s-कक्षक में जाता है। चूँकि s-कक्षक में अधिकतम दो ही इलेक्ट्रॉन हो सकते हैं, अत: केवल दो ही वर्ग (1 तथा 2) s-ब्लॉक तत्त्वों के अंतर्गत आते हैं। प्रथम वर्ग के तत्त्व हैं— लीथियम (Li), सोडियम (Na), पोटैशियम (K), रूबीडियम (Rb), सीजियम (Cs) एवं फ्रेन्सियम (Fr)। सामान्य रूप से ये तत्त्व क्षार धातुओं के रूप में जाने जाते हैं। चूँकि ये जल के साथ अभिक्रिया करके क्षारीय प्रकृति के हाइड्रॉक्साइड बनाते हैं, इसलिए इन्हें 'क्षार धातुएं' कहते हैं। द्वितीय वर्ग के तत्त्व हैं— बेरीलियम (Be), मैग्नीशियम (Mg), कैल्सियम (Ca), स्ट्रॉन्शियम (Sr), बेरियम (Ba) एवं रेडियम (Ra)। बेरीलियम के अतिरिक्त शेष तत्त्व क्षारीय मृदा धातुओं के नाम से जाने जाते हैं। चूँकि इनके ऑक्साइड एवं हाइड्रॉक्साइड की प्रकृति क्षारीय होती है एवं ये ऑक्साइड सामान्यत: भू-पर्पटी* (Earth-Crust) में मिलते हैं, इसलिए इन्हें 'क्षारीय मृदा धातु' कहते हैं।

क्षार धातुओं में सोडियम एवं पोटैशियम प्रचुर मात्रा में मिलते हैं, जबिक लीथियम, रूबीडियम एवं सीजियम अल्प मात्रा में पाए जाते हैं। फ्रेन्सियम एक अति रेडियो सिक्रिय तत्त्व है (सारणी 10.1)। फ्रेन्सियम के अधिकतम दीर्घ आयु वाले समस्थानिक $^{223}{\rm Fr}$ की अर्ध आयु मात्र 21 मिनट है। क्षारीय मृदा धातुओं की भू–पर्पटी में उपस्थिति के आधार पर कैल्सियम तथा मैग्नीशियम का स्थान क्रमश: पाँचवाँ तथा छठवाँ है। स्ट्रॉन्शियम एवं बेरियम की उपलब्धता बहुत कम है। बेरीलियम एक दुर्लभ धातु है, जबिक रेडियम की मात्रा आग्नेय शैल में केवल 10^{-10} प्रतिशत है (सारणी 10.2)।

क्षार धातुओं का सामान्य इलेक्ट्रॉनिक विन्यास [उत्कृष्ट गैस] \mathbf{ns}^1 तथा क्षारीय मृदा-धातुओं का विन्यास [उत्कृष्ट गैस] \mathbf{ns}^2 है। लीथियम एवं बेरीलियम, जो क्रमश: वर्ग 1 व वर्ग 2 के प्रथम तत्त्व हैं, के कुछ गुण इन वर्गों के अन्य तत्त्वों से भिन्न होते हैं। इस असंगत व्यवहार के कारण दोनों तत्त्व अपने ठीक आगे

वाले वर्ग के दूसरे तत्त्वों से गुणों में समानताएँ प्रदर्शित करते हैं। लीथियम के बहुत से गुण मैग्नीशियम तथा बेरीलियम के बहुत से गुण ऐलुमीनियम के गुणों के समान हैं। इस प्रकार की विकर्ण समानताएँ आवर्त सारणी में विकर्ण संबंध (Diagonal Relationship) के रूप में संदर्भित की जाती हैं। तत्त्वों के आयनिक आकार या उनके आवेश/त्रिज्या अनुपात का समान होना ही विकर्ण संबंध का मुख्य आधार है।

एकल संयोजी सोडियम तथा पोटैशियम आयन एवं द्विसंयोजी मैग्नीशियम और कैल्सियम आयन जैव तरलों में बहुतायत में पाए जाते हैं। ये आयन जैवीय क्रियाओं, जैसे—आयन का संतुलन (Maintenance Of Ion Balance) और शिरा आवेग संचरण (Nerve-impulse Conduction) आदि में महत्त्वपूर्ण भूमिका निभाते हैं।

10.1 वर्ग 1 के तत्त्व : क्षार-धातुएं

क्षार धातुओं के रासायनिक तथा भौतिक गुणों में परमाणु-क्रमांक के साथ एक नियमित प्रवृत्ति पाई जाती है। इन तत्त्वों के परमाण्वीय, भौतिक तथा रासायनिक गुणों का विवेचन यहाँ किया जा रहा है।

10.1.1 इलेक्ट्रॉनिक विन्यास

सभी क्षार धातुओं के तत्त्वों में एक संयोजी इलेक्ट्रॉन होता है तथा अंतिम दूसरे कोश की उत्कृष्ट गैस की संरचना होती है (सारणी 10.1)। इन तत्त्वों के बाह्यतम कोश में उपस्थित s-इलेक्ट्रॉन को आसानी से त्यागने के कारण ये अत्यधिक धनविद्युतीय तत्त्व एक संयोजी आयन M+ देते हैं। अत: ये प्रकृति में मक्त अवस्था में नहीं पाए जाते हैं।

तत्त्व	प्रतीक	इलेक्ट्रॉनिक विन्यास
लीथियम	Li	$1s^22s^1$
सोडियम	Na	$1s^22s^22p^63s^1$
पोटैशियम	K	$1s^22s^22p^63s^23p^64s^1$
रूबीडियम	Rb	$1s^22s^22p^63s^23p^63\mathrm{d}^{10}4s^24p^65s^1$
सीजियम	Cs	$1s^22s^22p^63s^23p^63\mathrm{d}^{10}4s^2$
		$4p^64\mathrm{d}^{10}5s^25p^66s^1$ या [Xe] $6s^1$
फ्रेन्सियम	Fr	[Rn]7s ¹

10.1.2 परमाणु तथा आयनी त्रिज्या

क्षार धातुओं के परमाणुओं का आकार आवर्त सारणी के किसी विशेष आवर्त में सर्वाधिक होता है। परमाणु-क्रमांक में वृद्धि होने के साथ-साथ परमाणु का आकार बढ़ता जाता है। एक संयोजी आयन (M+) का आकार उसके जनक परमाणु के आकार की तुलना में कम होता है। क्षार धातुओं की परमाणु तथा आयनी त्रिज्या वर्ग में ऊपर से नीचे जाने पर बढ़ती जाती है, अर्थात् इनका आकार Li से Cs तक बढ़ता है।

10.1.3 आयनन एन्थेल्पी

क्षार धातुओं के आयनन एन्थैल्पी का मान बहुत कम होता है। यह वर्ग में लीथियम से सीजियम की ओर नीचे जाने पर कम होता जाता है। इसका कारण यह है कि बढ़ते हुए नाभिकीय आवेश की तुलना में बढ़ते हुए परमाणु-आकार का प्रभाव अधिक हो जाता है तथा बाह्यतम इलेक्ट्रॉन नाभिकीय आवेश द्वारा भली-भाँति परिरक्षित होते हैं।

10.1.4 जलयोजन एन्थेल्पी

क्षार धातुओं की जलयोजन एन्थैल्पी आयनिक आकार के बढ़ने पर घटती जाती है।

Li+>Na+>K+>Rb+>Cs+

Li की जलयोजन की मात्रा अधिकतम होती है, इसीलिए लीथियम के अधिकांश लवण (उदाहरणार्थ- LiCl.2H₂O) जलयोजित होते हैं।

10.1.5 भौतिक गुण

क्षार धातुएं बहुत ही नरम, हलकी तथा चाँदी के समान श्वेत होती हैं। बड़ा आकार होने के कारण इनका घनत्व कम होता है, जो लीथियम से सीजियम की ओर नीचे जाने पर कम होता जाता है, यद्यपि पोटेशियम धातु सोडियम की तुलना में हलका होता है। क्षार धातुओं के गलनांक एवं क्वथनांक कम होते हैं, जो इन धातुओं के मात्र एक संयोजी इलेक्ट्रॉन की उपस्थिति के कारण इनके बीच दुर्बल धात्विक बंध को दर्शाते हैं। क्षार धातुएं तथा इनके लवण ऑक्सीकारक ज्वाला को अभिलाक्षणिक रंग प्रदान करते हैं। इसका कारण यह है कि ज्वाला की ऊष्मा इनके बाह्यतम इलेक्ट्रॉन को उच्च ऊर्जा-स्तर पर उत्तेजित कर देती है। जब ये इलेक्ट्रॉन पुन: अपनी तलस्थ अवस्था में आता है, तो दृश्य क्षेत्र में विकिरण उत्सर्जन के कारण ज्वाला को रंग प्रदान करता है। ऑक्सीकारक ज्वाला को मिले रंग इस सारणी में दर्शाए गए हैं—

धातु	Li	Na	K	Rb	Cs
रंग	किरमिजी लाल	पीला	बैंगनी	लाल बैंगनी	नीला
λ/nm	670.8	589.2	766.5	780.0	455.5

अत: क्षार धातुओं को इनके ज्वाला-परीक्षण के द्वारा पहचाना जा सकता है तथा इनकी सांद्रता का निर्धारण ज्वाला-प्रकाशमापी (फ्लेम फोटोमीट्री) अथवा परमाण्वीय अवशोषण स्पेक्ट्रोमिती (एटॉमिक ऐब्जॉर्ब्शन स्पेक्ट्रोस्कोपी) द्वारा किया जा सकता है। इन तत्त्वों को जब प्रकाश द्वारा विकरित किया जाता है, तब प्रकाश-अवशोषण के कारण ये इलेक्ट्रॉन का परित्याग करते हैं। इसी गुण के कारण सीजियम तथा पोटैशियम का प्रयोग प्रकाश-विद्युत् सेल में इलेक्ट्रोड के रूप में किया जाता है।

10.1.6 रासायनिक गुण

बड़े आकार तथा कम आयनन एन्थैल्पी के कारण धातुएं अत्यधिक क्रियाशील होती हैं। इनकी क्रियाशीलता वर्ग में ऊपर से नीचे क्रमश: बढ़ती जाती है।

(i) वायु के साथ अभिक्रियाशीलता : क्षार धातुएं वायु की उपस्थिति में मिलन हो जाती हैं, क्योंकि वायु की उपस्थिति में इनपर ऑक्साइड तथा हाइड्रॉक्साइड की परत बन जाती हैं। ये ऑक्सीजन में तीव्रता से जलकर ऑक्साइड बनाती हैं। लीथियम और सोडियम क्रमश: मोनोऑक्साइड तथा परॉक्साइड का निर्माण करती हैं, जबिक अन्य धातुओं द्वारा सुपर ऑक्साइड आयन का निर्माण होता है। सुपर ऑक्साइड आयन का निर्माण होता है। तथा Cs^+ की उपस्थिति में स्थायी होता है।

$$4 \text{Li} + \text{O}_2 \longrightarrow 2 \text{Li}_2 \text{O} \quad ($$
 ऑक्साइड $)$
 $2 \text{Na} + \text{O}_2 \longrightarrow \text{Na}_2 \text{O}_2 \left($ प्रॉक्साइड $)$
 $M \quad \text{O}_2 \qquad M \text{O}_2 \left($ सुपर ऑक्साइड $)$
 $(M = \text{K}, \text{Rb}, \text{Cs})$

इन सभी ऑक्साइडों में क्षार की ऑक्सीकरण अवस्था +1 होती है। लीथियम अपवादस्वरूप वायु में उपस्थित नाइट्रोजन से अभिक्रिया करके नाइट्राइड, Li₃N बना लेता है। इस प्रकार लीथियम भिन्न स्वभाव दर्शाता है। क्षार धातुओं को वायु एवं जल के प्रति उनकी अति सक्रियता के कारण साधारणतया कैरोसिन में रखा जाता है।

उदाहरण 10.1

KO2 में K की ऑक्सीकरण अवस्था क्या है?

हल

सुपर ऑक्साइड को O_2^- से दर्शाया जाता है। चूँिक यौगिक उदासीन है, अतः इसमें K की ऑक्सीकरण अवस्था +1 है।

सारणी 10.1 क्षार धातुओं के परमाण्विक एवं भौतिक गुण (Atomic and Physical Properties of the Alkali Metals)

गुण	लीथियम	सोडियम	पोटैशियम	रूबीडियम	सीजियम	फ्रेन्सियम
	Li	Na	K	Rb	Cs	Fr
परमाणु-क्रमांक	3	11	19	37	55	87
परमाणु द्रव्यमान (g mol ⁻¹)	6.94	22.99	39.10	85.47	132.91	(223)
इलेक्ट्रॉनिक विन्यास	[He] 2s ¹	[Ne] 3S ¹	[Ar] 4s ¹	[Kr] 5s ¹	[Xe] 6s ¹	[Rn] 7s ¹
आयनन एन्थैल्पी/kJ mol ⁻¹	520	496	419	403	376	~ 375
जलयोजन एन्थैल्पी/kJ mol ⁻¹	-506	-406	-330	-310	-276	_
धात्विक त्रिज्या/pm	152	186	227	248	265	-
आयनी त्रिज्या M+/pm	76	102	138	152	167	(180)
गलनांक/K	454	371	336	312	302	_
क्वथनांक/K	1615	1156	1032	961	944	_
घनत्व/g cm ⁻³	0.53	0.97	0.86	1.53	1.90	-
मानक विभव E ^o /V (M⁺/M) के लिए	-3.04	-2.714	-2.925	-2.930	-2.927	-
स्थलमंडल+ में प्राप्ति	18*	2.27**	1.84**	78-12*	2-6*	~ 10-18*

^{*} ppm (Part per million), **भारात्मक %, *स्थलमंडल: पृथ्वी का बाह्यतल; इसकी पर्पटी तथा ऊपरी मेंटल का भाग।

(ii) जल के साथ अभिक्रियाशीलता : क्षार धातुएं जल के साथ अभिक्रिया करके हाइड्रॉक्साइड एवं डाइहाइड्रोजन बनाती हैं।

$$2M + 2H_2O \longrightarrow 2M^+ + 2OH^- + H_2$$
($M = क्षार धात्)$

यद्यपि लीथियम के E° का मान अधिकतम ऋणात्मक होता है, परंतु जल के साथ इसकी अभिक्रियाशीलता सोडियम की तुलना में कम है, जबिक सोडियम के E° का मान अन्य क्षार धातुओं की अपेक्षा न्यून ऋणात्मक होता है। लीथियम के इस व्यवहार का कारण इसके छोटे आकार तथा अत्यधिक जलयोजन ऊर्जा का होना है। अन्य क्षार धातुएं जल के साथ विस्फोटी अभिक्रिया करती हैं।

ये क्षार धातुएं प्रोटॉनदाता (जैसे-ऐल्कोहॉल, गैसीय अमोनिया, ऐल्काइन आदि) से भी अभिक्रियाएं करती हैं।

(iii) डाइहाइड्रोजन से अभिक्रियाशीलता : लगभग 673K (लीथियम के लिए 1073K) पर क्षार धातुएं डाइहाइड्रोजन से अभिक्रिया कर हाइड्राइड बनाती हैं। सभी क्षार धातुओं के हाइड्राइड ठोस एवं आयिनक होते हैं। इन हाइड्राइडों के गलनांक उच्च होते हैं।

$$2M + H_2 \longrightarrow 2M^+H^-$$

- (iv) हैलोजन से अभिक्रियाशीलता: क्षार धातुएं हैलोजन से शीघ्र प्रबल अभिक्रिया करके आयनिक हैलाइड M⁺ X⁻ बनाती हैं, हालाँकि लीथियम के हैलाइड आंशिक रूप से सहसंयोजक होते हैं। इसका कारण लीथियम की उच्च ध्रुवण-क्षमता है। (धनायन के कारण ऋणायन के इलेक्ट्रॉन अभ्र का विकृत होना 'ध्रुवणता' कहलाता है।) लीथियम आयन का आकार छोटा है, अत: यह हैलाइड आयन के इलेक्ट्रॉन अभ्र को विकृत करने की अधिक क्षमता दर्शाता है। चूँकि बड़े आकार का ऋणायन आसानी से विकृत हो जाता है, इसलिए लीथियम आयोडाइड सहसंयोजक प्रकृति सबसे अधिक दर्शांते हैं।
- (v) अपचायक प्रकृति : क्षार धातुएं प्रबल अपचायक के रूप में कार्य करती हैं, जिनमें लीथियम प्रबलतम एवं सोडियम दुर्बलतम अपचायक हैं (सारणी 10.1)। मानक इलेक्ट्रोड विभव (E[⊕]), जो अपचायक क्षमता का मापक है, संपूर्ण परिवर्तन का प्रतिनिधित्व करता है-

 $M(s) \longrightarrow M(g)$ ऊर्ध्वपातन एन्थैल्पी $M(g) \longrightarrow M^+(g) + e^-$ आयनन एन्थैल्पी

 $M^+(g) + H_2O \longrightarrow M^+(aq)$ जलयोजन एन्थैल्पी लीथियम आयन का आकार छोटा होने के कारण इसकी जलयोजन एन्थैल्पी का मान अधिकतम होता है, जो इसके उच्च ऋणात्मक E^\ominus मान तथा इसके प्रबल अपचायक होने की पुष्टि करता है।

उदाहरण 10.2

 ${\rm Cl_2/CI^-}$ के लिए ${\rm E^{\ominus}}$ का मान $+1.36,~{\rm I_2/I^-}$ के लिए $+0.53,~{\rm Ag^+/Ag}$ के लिए $+0.79,~{\rm Na^+/Na}$ के लिए -2.71 एवं ${\rm Li^+/Li}$ के लिए -3.04 है। निम्नलिखित को उनकी घटती हुई अपचायक क्षमता के अनुसार व्यवस्थित कीजिए—

I, Ag, Cl, Li, Na

हल

क्रम इस प्रकार है : Li > Na > l - > Ag > Cl -

(vi) द्रव अमोनिया में विलयन : क्षार धातुएं द्रव अमोनिया में घुलनशील हैं। अमोनिया में इनके विलयन का रंग गहरा नीला होता है एवं विलयन प्रकृति में विद्युत् का सुचालक होता है—

 $M + (x + y)NH_3 \longrightarrow [M(NH_3)_x]^+ + [e(NH_3)_y]^-$ विलयन का नीला रंग अमोनीकृत इलेक्ट्रॉनों के कारण होता है, जो दृश्यप्रकाश क्षेत्र की संगत ऊर्जा का अवशोषण करके विलयन को नीला रंग प्रदान करते हैं। अमोनीकृत विलयन अनु चुंबकीय (Paramagnetic) होता है, जो कुछ समय पड़े रहने पर हाइड्रोजन को मुक्त करता है। फलस्वरूप विलयन में ऐमाइड बनता है।

 $M^{+}_{(am)} + e^{-} + NH_{3}$ (1) \rightarrow $MNH_{2(am)} + \frac{1}{2}H_{2}$ (g) (जहाँ 'am' अमोनीकृत विलयन दर्शाता है।) सांद्र विलयन में नीला रंग ब्रॉन्ज रंग में बदल जाता है और विलयन प्रतिचुंबकीय (Diamagnetic) हो जाता है।

10.1.7 उपयोग

लीथियम का उपयोग महत्त्वपूर्ण मिश्रातुओं के निर्माण में होता है। उदाहरणार्थ—लैंड के साथ यह श्वेत धातु (White metal) बनाता है, जिससे इंजन की बियरिंग बनाई जाती है। ऐलुमीनियम के साथ मिलकर लीथियम उच्च शक्ति का मिश्रातु बनाता है, जिसका उपयोग वायुयानों के निर्माण में होता है। मैग्नीशियम के साथ उसकी मिश्रातु का उपयोग कवच-प्लेट (Armour-

plate) बनाने में तथा लीथियम का उपयोग ताप नाभिकीय अभिक्रियाओं के अतिरिक्त विद्युत् रासायनिक सेलों में भी होता है। सोडियम का उपयोग Na/Pb मिश्रातु में होता है, जो PbEt4 तथा PbMe4 के निर्माण के लिए आवश्यक है। इन कार्बलैंड यौगिकों का उपयोग पूर्व में पेट्रोल में अपस्फोटरोधी (Antihknock) के रूप में होता था, परंतु अब अधिकतर वाहनों में सीसारहित (Lead-free) पेट्रोल का उपयोग होने लगा है। द्रव सोडियम धातु का उपयोग नाभिकीय रिऐक्टर में शीतलक (Coolant) के रूप में होता है। जैवीय क्रियाओं में पोटैशियम की महत्त्वपूर्ण भूमिका है। पोटैशियम क्लोराइड का उपयोग उर्वरक के रूप में तथा पोटैशियम हाइड्रॉक्साइड का उपयोग मृदु साबुन के निर्माण में और कार्बन डाइऑक्साइड के अवशोषक के रूप में भी होता है। सीजियम का उपयोग प्रकाश वैद्युत् सेल (Photoelectric cells) में होता है।

10.2 क्षार धातुओं के यौगिकों के सामान्य अभिलक्षण

क्षार धातुओं के सभी यौगिक साधारणतया आयनिक प्रकृति के होते हैं। इनमें से कुछ यौगिकों के सामान्य अभिलक्षणों की विवेचना यहाँ की जा रही है।

10.2.1 ऑक्साइड एवं हाइड्रॉक्साइड

वायु के आधिक्य में दहन करने पर लीथियम मुख्य रूप से मोनोऑक्साइड $\mathrm{Li_2O}$ (एवं कुछ परॉक्साइड $\mathrm{Li_2O_2}$), सोडियम परॉक्साइड $\mathrm{Na_2O_2}$ (एवं कुछ सुपर ऑक्साइड $\mathrm{NaO_2}$ भी) बनाते हैं, जबिक पोटैशियम, रूबीडियम तथा सीजियम सुपर ऑक्साइड ($\mathrm{MO_2}$) बनाते हैं। अनुकूल परिस्थितियों में $\mathrm{M_2O}$, $\mathrm{M_2O_2}$ एवं $\mathrm{MO_2}$ शुद्ध रूप में बनाए जा सकते हैं। धातु–आयनों का आकार बढ़ने के साथ–साथ परॉक्साइडों तथा सुपर ऑक्साइडों के स्थायित्व में भी वृद्धि होती है। इसका कारण जालक ऊर्जा–प्रभाव (Lattice Energy Effect) के फलस्वरूप बड़े ऋणायनों का बड़े धनायनों द्वारा स्थायित्व प्रदान करना है। ये ऑक्साइड सरलतापूर्वक जल अपघटित होकर हाइड्रॉक्साइड में परिवर्तित हो जाते हैं।

$$M_2O + H_2O \longrightarrow 2M^+ + 2OH^-$$

 $M_2O_2 + 2H_2O \longrightarrow 2M^+ + 2OH^- + H_2O_2$
 $2MO_2 + 2H_2O \longrightarrow 2M^+ + 2OH^- + H_2O_2 + O_2$

शुद्ध अवस्था में ऑक्साइड एवं परॉक्साइड रंगहीन होते हैं, परंतु सुपर ऑक्साइड पीले या नारंगी रंग के होते हैं। सुपर ऑक्साइड भी अनुचुंबकीय (Paramagnetic) होते हैं। अकार्बनिक रसायन में सोडियम परॉक्साइड को ऑक्सीकारक के रूप में प्रयोग में लाया जाता है।

उदाहरण 10.3

KO2 अनुचुंबकीय क्यों होता है?

हल

 ${
m KO_2}$ तथा ${
m O_2^-}$ में एक अयुग्मित इलेक्ट्रॉन $\pi^* 2p$ आण्विक आर्बिटल में होने के कारण ${
m KO_2}$ अनुचुंबकीय होता है।

ऑक्साइड तथा जल-अभिक्रिया से प्राप्त हाइड्रॉक्साइड श्वेत क्रिस्टलीय ठोस होते हैं। क्षार धातुओं के हाइड्रॉक्साइड प्रबलतम क्षारक होते हैं। ये जल में अत्यधिक ऊष्मा के उत्सर्जन के साथ आसानी से घुल जाते हैं। जल में इनके घुलने का कारण तीव्र जलयोजन है।

10.2.2 हैलाइड

क्षार धातुओं के हैलाइड, MX, (X = F, Cl, Br, l) उच्च गलनांक वाले रंगहीन, क्रिस्टलीय ठोस पदार्थ होते हैं। इन्हें उपयुक्त ऑक्साइड, हाइड्रॉक्साइड या कार्बोनेट की हाइड्रोहेलिक अम्ल (HX) के साथ अभिक्रिया करके बनाया जा सकता है। इन सभी हैलाइडों की संभवन एन्थेल्पी उच्च ऋणात्मक होती है। क्षार धातुओं के फ्लुओराइडों के $\Delta_{,}$ H $^{\circ}$ का मान वर्ग में नीचे की ओर बढ़ने पर कम ऋणात्मक होता जाता है, जबिक इन क्षार धातुओं के क्लोराइड, ब्रोमाइड तथा आयोडाइड के $\Delta_{,}$ H $^{\circ}$ का मान ठीक इससे विपरीत होता है। किसी धातु–विशेष के लिए $\Delta_{,}$ H $^{\circ}$ का मान फ्लुओराइड से आयोडाइड तक हमेशा कम ऋणात्मक होता जाता है।

गलनांक एवं क्वथनांक का क्रम हमेशा फ्लुओराइड > क्लोराइड > ब्रोमाइड > आयोडाइड के अनुसार होता है। ये सभी हैलाइड जल में घुलनशील होते हैं। जल में LiF की निम्न विलेयता इसकी उच्च जालक ऊर्जा (Latice Energy) के कारण तथा Csl की निम्न विलेयता Cs+ तथा I- की निम्न जलयोजन ऊर्जा (Hydration Energy) के कारण है। लीथियम के अन्य हैलाइड एथानॉल, ऐसीटोन और एथिल ऐसीटेट में घुलनशील हैं। LiCl पिरीडीन में भी घुलनशील हैं।

10.2.3 ऑक्सो-अम्लों के लवण

ऑक्सो-अम्ल वे होते हैं, जिनमें जिस परमाणु पर अम्लीय प्रोटॉन से युक्त हाइड्रॉक्सिल समूह होता है, उसी परमाणु पर ऑक्सो समूह जुड़ा रहता है। जैसे—कार्बोनिक अम्ल, H_2CO_3 $[OC(OH)_2]$ सल्फ्यूरिक अम्ल, H_2SO_4 $[O_2S(OH)_2]$ क्षार धातुएं—सभी ऑक्सो—अम्लों के साथ लवण बनाते हैं। ये साधारणतया जल में घुलनशील होते हैं तथा तापीय स्थायी होते हैं। इनके कार्बोनेटों (M_2CO_3) एवं हाइड्रोजन कार्बोनेटों $(MHCO_3)$ का तापीय स्थायित्व अत्यधिक होता है। चूँिक वर्ग में ऊपर से नीचे धनविद्युतीय स्वभाव बढ़ता है, अतः कार्बोनेटों एवं हाइड्रोजन कार्बोनेटों का स्थायित्व भी बढ़ता है। लीथियम कार्बोनेट ताप के प्रति अधिक स्थायी नहीं होता है। लीथियम का आकार छोटा होने के कारण यह बड़े ऋणापन CO_3^{2-} को ध्रुवित कर अधिक स्थायी Li_2O एवं CO_2 का विरचन करता है। इसके हाइड्रोजन कार्बोनेट का अस्तित्व ठोस अवस्था में नहीं होता है।

10.3 लीथियम का असंगत व्यवहार

निम्नलिखित कारणों से लीथियम का व्यवहार असंगत है— (क) इसके परमाणु एवं आयन (Li[†]) का असामान्य छोटा आकार, (ख) उच्च ध्रुवण-क्षमता (अर्थात् आवेश/क्रिज्या अनुपात)। परिणामस्वरूप लीथियम यौगिकों की सहसंयोजक प्रवृत्ति अधिक होती है। इसी कारण ये कार्बनिक विलायकों में घुलनशील होते हैं। लीथियम मैग्नीशियम से विकर्ण संबंध दर्शाता है, जिसका वर्णन आगे (खंड 10.3.2 में) दिया गया है।

10.3.1 लीथियम एवं अन्य क्षार धातुओं में असमानताओं के मुख्य बिंदु

- (i) लीथियम अत्यधिक कठोर है। इसका गलनांक एवं क्वथनांक अन्य क्षार धातुओं की तुलना में अधिक है।
- (ii) लीथियम की अभिक्रियाशीलता अन्य क्षार धातुओं की अपेक्षा सबसे कम है, परंतु यह प्रबलतम अपचायक का कार्य करता है। वायु में दहन के फलस्वरूप लीथियम मुख्यत: मोनोऑक्साइड (Li₂O) बनाता है। अन्य क्षार धातुओं के विपरीत लीथियम नाइट्रोजन के साथ अभिक्रिया करके नाइट्राइड (Li₃N) भी बना लेता है।
- (iii) LiCl प्रस्वेद्य (Deliquescent) है एवं हाइड्रेट, ${
 m LiCl.2H_2O}$ के रूप में क्रिस्टिलत होता है, जबिक अन्य क्षार धातुओं के क्लोराइड हाइड्रेट नहीं बनाते हैं।
- (iv) लीथियम हाइड्रोजनकार्बोनेट ठोस अवस्था में प्राप्य नहीं है, जबिक अन्य क्षार धातु ठोस हाइड्रोजनकार्बोनेट बनाते हैं।

- (v) लीथियम एथाइन (Ethyne) से अभिक्रिया करके एथाइनाइड (Ethynide) नहीं बनाता है, जबिक अन्य क्षार धातुएं ऐसा करती हैं।
- (vi) लीथियम नाइट्रेट गरम करने पर लीथियम ऑक्साइड, Li₂O देता है, जबिक अन्य क्षार धातुएं नाइट्रेट विघटित होकर नाइट्राइट देती हैं।

4LiNO₃ 2Li₂O 4NO₂ O₂ 2NaNO₃ \rightarrow 2NaNO₂ + O₂

(vii) अन्य क्षार धातुओं के फ्लुओराइड एवं ऑक्साइड की तुलना में LiF एवं Li₂O जल में कम विलेय हैं।

10.3.2 लीथियम एवं मैग्नीशियम में समानताओं के बिंद्

लीथियम एवं मैग्नीशियम में समानताएँ मुख्य रूप से विचारणीय हैं। इनके समान आकार के कारण ऐसा होता है। Li तथा Mg की परमाण्वीय त्रिज्या क्रमश: 152 pm तथा 160 pm है। Li⁺ तथा Mg²⁺ की आयनिक त्रिज्या क्रमश: 76 pm एवं 72 pm है। लीथियम एवं मैग्नीशियम में समानताएँ निम्नलिखित हैं—

- (i) लीथियम एवं मैग्नीशियम अपने वर्गों की अन्य धातुओं की तुलना में कठोर तथा हलकी धातुएं हैं।
- (ii) लीथियम एवं मैग्नीशियम जल के साथ धीमी गित से अभिक्रिया करते हैं। इनके ऑक्साइड एवं हाइड्रॉक्साइड बहुत कम घुलनशील हैं। हाइड्रॉक्साइड गरम करने पर विघटित हो जाते हैं। दोनों ही नाइट्रोजन से सीधे संयोग करके नाइट्राइड क्रमश: Li₃N एवं Mg₃N₂ बनाते हैं।
- (iii) Li₂O एवं MgO ऑक्सीजन के आधिक्य से अभिक्रिया करके सुपर ऑक्साइड नहीं बनाते हैं।
- (iv) लीथियम एवं मैग्नीशियम धातुओं के कार्बोनेट गरम करने पर सरलतापूर्वक विघटित होकर उनके ऑक्साइड एवं CO₂ बनाते हैं। दोनों ही ठोस हाइड्रोजनकार्बोनेट नहीं बनाते हैं।
- (v) LiCl एवं ${\rm MgCl}_2$ एथेनॉल में विलेय हैं।
- (vi) LiCl एवं $\mathrm{MgCl_2}$ दोनों ही प्रस्वेद्य (Deliquescent) यौगिक हैं। ये जलीय विलयन से LiCl. $\mathrm{2H_2O}$ एवं $\mathrm{MgCl_2.8H_2O}$ के रूप में क्रिस्टलीकृत होते हैं।

10.4 सोडियम के कुछ महत्त्वपूर्ण यौगिक

औद्योगिक स्तर पर सोडियम के महत्त्वपूर्ण यौगिक हैं: सोडियम कार्बोनेट, सोडियम हाइड्रॉक्साइड, सोडियम क्लोराइड एवं सोडियम बाइकार्बोनेट। इन यौगिकों के औद्योगिक निर्माण एवं उपयोगों का वर्णन नीचे किया जा रहा है।

सोडियम कार्बोनेट (धावन सोडा) Na₂CO₃.10H₂O

साधारणतया सोडियम कार्बोनेट 'साल्वे विधि' द्वारा बनाया जाता है। इस प्रक्रिया में लाभ यह है कि सोडियम हाइड्रोजनकार्बोनेट, जो अमोनियम हाइड्रोजनकार्बोनेट एवं सोडियम क्लोराइड के संयोग से अवक्षेपित होता है, अल्प विलेय होता है। अमोनियम हाइड्रोजनकार्बोनेट, CO_2 गैस को सोडियम क्लोराइड के अमोनिया से संतृप्त सांद्र विलयन में प्रवाहित कर बनाया जाता है। वहाँ पहले अमोनियम कार्बोनेट और फिर अमोनियम हाइड्रोजनकार्बोनेट बनता है। संपूर्ण प्रक्रम की अभिक्रियाएं निम्नलिखित हैं—

 $2NH_3$ H_2O CO_2 $(NH_4)_2CO_3$ $(NH_4)_2CO_3$ H_2O CO_2 $2NH_4HCO_3$ NH_4HCO_3 NACL NH_4CL $NAHCO_3$

इस प्रकार सोडियम बाइकार्बोनेट के क्रिस्टल पृथक् हो जाते हैं, जिन्हें गरम करके सोडियम कार्बोनेट प्राप्त किया जाता है–

 $2NaHCO_3 Na_2CO_3 CO_2 H_2O$

इस प्रक्रम में NH_4Cl युक्त विलयन की $Ca(OH)_2$ से अभिक्रिया पर NH_3 को पुन: प्राप्त किया जा सकता है। कैल्सियम क्लोराइड सह-उत्पाद के रूप में प्राप्त होता है— $2NH_4Cl$ $Ca(OH)_2$ $2NH_3$ $CaCl_2$ H_2O

यहाँ यह उल्लेखनीय है कि साल्वे विधि का उपयोग पोटैशियम कार्बोनेट के निर्माण में नहीं किया जा सकता है, क्योंकि पोटैशियम हाइड्रोजनकार्बोनेट की अधिक विलेयता के कारण इसे पोटैशियम क्लोराइड के संतृप्त विलयन में अमोनियम हाइड्रोजनकार्बोनेट के संयोग द्वारा अवक्षेपित करना संभव नहीं है।

गुण

सोडियम कार्बोनेट श्वेत क्रिस्टलीय ठोस है, जो डेकाहाइड्रेट $\mathrm{Na_2CO_3}$ $\mathrm{10H_2O}$ के रूप में पाया जाता है। इसे 'धावन सोडा' (Washing Soda) भी कहते हैं। यह जल में आसानी से घुल जाता है। गरम करने पर डेकाहाइड्रेट क्रिस्टलीय जल त्यागकर मोनोहाइड्रेट में बदल जाता है। $373~\mathrm{K}$ से उच्च ताप पर मोनोहाइड्रेट पूर्ण रूप से शुष्क हो जाता है एवं एक श्वेत रंग के चूर्ण में बदल जाता है, जिसे 'सोडा ऐश' (Soda Ash) कहते हैं।

$$egin{aligned} \operatorname{Na_2CO_3} \cdot 10\operatorname{H_2O} & \xrightarrow{375\,\mathrm{K}} & \operatorname{Na_2CO_3} \cdot \operatorname{H_2O} + 9\operatorname{H_2O} \\ \operatorname{Na_2CO_3} \cdot \operatorname{H_2O} & \xrightarrow{>373\,\mathrm{K}} & \operatorname{Na_2CO_3} + \operatorname{H_2O} \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\$$

सोडियम कार्बोनेट का कार्बोनेट वाला भाग जल-अपघटित होकर क्षारीय विलयन बनाता है—

CO₃² H₂O HCO₃ OH

उपयोग

- (1) जल के मृदुकरण, धुलाई एवं निर्मलन में;
- (2) काँच, साबुन, बोरेक्स एवं कास्टिक सोडा के निर्माण में;
- (3) कागज़, पेन्ट एवं वस्त्र उद्योग में; और
- (4) प्रयोगशाला में गुणात्मक एवं मात्रात्मक विश्लेषण में अभिकर्मक के रूप में।

सोडियम क्लोराइड (NaCl)

सोडियम क्लोराइड का मुख्य स्रोत समुद्री जल है, जिसमें लगभग 2.7 से 2.9 प्रतिशत (भारात्मक) तक लवण होता है। हमारे देश जैसे देशों में समद्री जल के वाष्पीकरण द्वारा साधारण नमक प्राप्त किया जाता है। हमारे देश में सूर्य से वाष्पीकरण द्वारा लगभग 50 लाख टन नमक का उत्पादन प्रतिवर्ष किया जाता है। अपरिष्कत नमक, जो ब्राइन विलयन के क्रिस्टलीकरण से प्राप्त किया जाता है. में सोडियम सल्फेट. कैल्सियम सल्फेट. कैल्सियम क्लोराइड एवं मैग्नीशियम क्लोराइड अशुद्धि के रूप में होते हैं। कैल्सियम क्लोराइड CaCl, एवं मैग्नीशियम क्लोराइड MgCl की अशुद्धि का कारण उनका प्रस्वेद्य (Deliquescent) होना है (अर्थात् ये सरलतापूर्वक वायुमंडल से नमी का अवशोषण करते हैं)। शुद्ध सोडियम क्लोराइड प्राप्त करने के लिए अपरिष्कृत लवण को जल की न्युनतम मात्रा में घोला जाता है, जिसमें अविलेय अशुद्धियाँ पृथक हो जाती हैं। जब विलयन को हाइड्रोजन क्लोराइड गैस से संतृप्त करते हैं, तब सोडियम क्लोराइड के क्रिस्टल पृथक् हो जाते हैं। कैल्सियम एवं मैग्नीशियम क्लोराइड सोडियम क्लोराइड से अधिक विलेय होने के कारण विलयन में ही रहते हैं।

सोडियम क्लोराइड का गलनांक 1081 K है। जल में इसकी विलेयता 273 K पर 36.0 g प्रति 100 g जल है। ताप बढ़ाने पर विलेयता पर विशेष प्रभाव नहीं पड़ता है।

उपयोग

- (i) साधारण नमक के रूप में, तथा
- (ii) Na₂O₂, NaOH एवं Na₂CO₃ बनाने में।

सोडियम हाइड्रॉक्साइड (कास्टिक सोडा), NaOH

औद्योगिक स्तर पर सोडियम हाइड्रॉक्साइड का उत्पादन कास्टनर-कैलनर सेल में सोडियम क्लोराइड के विद्युत्-अपघटन द्वारा किया जाता है। मर्करी कैथोड एवं कार्बन ऐनोड का उपयोग करके लवण-जल का विद्युत्-अपघटन सेल में किया जाता है। सोडियम धातु मर्करी कैथोड पर विसर्जित होकर मर्करी के साथ संयुक्त होकर सोडियम अमलगम बनाता है। ऐनोड पर क्लोरीन गैस मुक्त होती है।

कैथोड : Na e Hg Na अमलगम ऐनोड : ${\rm Cl}^- o rac{1}{2} {
m Cl}_2 + {
m e}^-$ अमलगम जल से अभिक्रिया करके सोडियम हाइड्रॉक्साइड

एवं हाइडोजन गैस देता है।

2Na- अमलगम 2H₂O 2NaOH 2Hg H₂

सोडियम हाइड्रॉक्साइड पारभासी श्वेत ठोस पदार्थ है। इसका गलनांक 591 K है। यह जल में शीघ्रता से विलेय होकर क्षारीय विलयन बनाता है। सोडियम हाइड्रॉक्साइड के क्रिस्टल प्रस्वेद्य (Deliquescent) होते हैं। सतह पर सोडियम हाइड्रॉक्साइड विलयन वायुमंडलीय CO_2 से अभिक्रिया करके Na CO बनाता है।

उपयोग

- साबुन, कागज़, कृत्रिम रेशम तथा कई अन्य रसायनों के
- पेट्रोलियम के परिष्करण में;
- (iii) बॉक्साइट के शुद्धिकरण में;
- वस्त्र-उद्योग में सूती वस्त्रों के मर्सरीकरण में;
- शुद्ध वसा एवं तेलों के निर्माण में; तथा
- प्रयोगशाला-अभिकर्मक के रूप में।

सोडियम हाइड्रोजन-कार्बोनेट (बेकिंग सोडा), NaHCO3

सोडियम हाइड्रोजन कार्बोनेट को 'बेकिंग सोडा' भी कहा जाता है, क्योंकि यह गरम करने पर विघटित होकर कार्बन–डाइऑक्साइड के बुलबुले देता है। (इसीलिए पेस्ट्री, केक आदि में छोट-छोटे छिद्र हो जाते हैं। फलत: वे हलके तथा परिफुल्लित (Fluffy) बन जाते हैं।)

सोडियम हाइड्रोजन-कार्बोनेट को सोडियम कार्बोनेट के विलयन में CO2 गैस से संतृप्त करके बनाया जाता है। सोडियम हाइड्रोजनकार्बोनेट का श्वेत चूर्ण कम विलेय होने के कारण पृथक् हो जाता है।

> Na₂CO₃ H₂O CO₂ 2NaHCO₃ सोडियम हाइड्रोजन-कार्बोनेट चर्म रोगों में मंद पुतिराधी

(Mild Antiseptic) के रूप में; साथ ही अग्निशमन यंत्र में भी होता है।

10.5 सोडियम एवं पोटैशियम की जैव उपयोगिता

70 किलो के वज़न वाले एक सामान्य व्यक्ति में लगभग 90 ग्राम सोडियम एवं 170 ग्राम पोटैशियम होता है, जबिक लोहा केवल 5 ग्राम तथा ताँबा 0.06 ग्राम होता है।

सोडियम आयन मुख्यत: अंतराकाशीय द्रव में उपस्थित रक्त प्लाज्मा, जो कोशिकाओं को घेरे रहता है, में पाया जाता है। यह आयन शिरा-संकेतों के संचरण में भाग लेते हैं. जो कोशिका झिल्ली में जलप्रवाह को नियमित करते हैं तथा कोशिकाओं में शर्करा और एमीनो अम्लों के प्रवाह को भी नियंत्रित करते हैं। सोडियम एवं पोटैशियम रासायनिक रूप से समान होते हुए भी कोशिका झिल्ली को पार करने की क्षमता एवं एन्ज़ाइम को सिक्रय करने में मात्रात्मक रूप से भिन्न हैं। इसीलिए कोशिका द्रव में पोटैशियम धनायन बहुतायत में होते हैं। जहाँ ये एन्ज़ाइम को सिक्रय करते हैं तथा ग्लुकोज़ के ऑक्सीकरण से ATP बनने में भाग लेते हैं। सोडियम आयन शिरा-संकेतों के संचरण के लिए उत्तरदायी है।

कोशिका झिल्ली के अन्य हिस्सों में पाए जाने वाले सोडियम एवं पोटैशियम आयनों की सांद्रता में उल्लेखनीय भिन्नता पाई जाती है। उदाहरण के लिए– रक्त प्लाज्मा में लाल रक्त कोशिकाओं में सोडियम की मात्रा 143 m molL-1 है. जबकि पोटैशियम का स्तर केवल 5 m molL-1 है। यह सांद्रता 10 m molL-1 (Na+) एवं 105 m molL-1(K+) तक परिवर्तित हो सकती है। यह असाधारण आयनिक उतार-चढाव. जिसे 'सोडियम पोटैशियम पंप' कहते हैं. सेल झिल्ली पर कार्य करता है, जो मनुष्य की विश्रामावस्था के कुल उपभोगित ATP की एक-तिहाई से ज़्यादा का उपयोग कर लेता है, जो मात्रा लगभग 15 किलो प्रति 24 घंटे तक हो सकती है।

10.6 वर्ग 2 के तत्त्वः क्षारीय मृदा धातुए

आवर्त सारणी के वर्ग 2 के तत्त्व हैं- बेरीलियम, मैग्नीशियम, कैल्सियम, स्ट्रॉन्शियम, बेरियम एवं रेडियम। बेरीलियम के अतिरिक्त अन्य तत्त्व संयुक्त रूप से 'मृदा धातुएं' कहलाती हैं। प्रथम तत्त्व बेरीलियम वर्ग के अन्य तत्त्वों से भिन्नता दर्शाता है एवं ऐलुमीनियम के साथ विकर्ण संबंध (Diagonal Relationship) दर्शाता है। मृदा धातुओं के परमाण्वीय तथा भौतिक गुण सारणी 10.2 में दर्शाए गए हैं।

293

10.6.1 इलेक्ट्रॉनिक विन्यास

इन तत्त्वों के संयोजकता-कोश के s-कक्षक में 2 इलेक्ट्रॉन होते हैं (सारणी 10.2)। इनका सामान्य इलेक्ट्रॉनिक विन्यास [उत्कृष्ट गैस] ns^2 होता है। क्षार धातुओं के समान ही इनके भी यौगिक मुख्यत: आयनिक प्रकृति के होते हैं।

तत्त्व	प्रतीक	इलेक्ट्रॉनिक विन्यास
बेरीलियम	Ве	$1s^22s^2$
मैग्नीशियम	Mg	$1s^22s^22p^63s^2$
कैल्सियम	Ca	$1s^22s^22p^63s^23p^64s^2$
स्ट्रॉन्शियम	Sr	$1s^22s^22p^63s^23p^63\mathrm{d}^{10}4s^24\mathrm{p}^65s^2$
बेरियम	Ва	$1s^22s^22p^63s^23p^63\mathrm{d}^{10}4s^24\mathrm{p}^6$
		4d¹º5s²5p ⁶ 6s² या [Xe] 6s²
रेडियम	Ra	[Rn]7s ²

10.6.2 परमाणु एवं आयनी त्रिज्या

आवर्त सारणी के संगत आवर्तों में क्षार धातुओं की तुलना में क्षारीय मृदा धातुओं की परमाणु एवं आयनी त्रिज्याएं छोटी होती हैं। इसका कारण इन तत्त्वों के नाभिकीय आवेशों में वृद्धि होना है।

10.6.3 आयनन एन्थेल्पी

क्षारीय मृदा धातुओं के परमाणुओं के बड़े आकार के कारण इनकी आयनन एन्थेल्पी के मान न्यून होते हैं। चूँकि वर्ग में आकार ऊपर से नीचे क्रमश: बढ़ता जाता है, अत: इनकी आयनन एन्थेल्पी के मान कम होते जाते हैं (सारणी 10.2)। क्षारीय मृदा धातुओं के प्रथम आयनन एन्थेल्पी का मान क्षार धातुओं के प्रथम आयनन एन्थेल्पी के मानों की तुलना में अधिक है। यह इनकी क्षार धातुओं की संगत तुलनात्मक रूप से छोटे आकार होने के कारण होती है, परंतु यह देखना रुचिकर है कि इनके द्वितीय आयनन एन्थेल्पी के मान क्षार धातुओं के द्वितीय आयनन एन्थेल्पी के मान क्षार धातुओं के द्वितीय आयनन एन्थेल्पी के मान क्षार धातुओं के

10.6.4 जलयोजन एन्थेल्पी

क्षार धातुओं के समान इसमें भी वर्ग में ऊपर से नीचे आयनिक आकार बढ़ने पर इनकी जलयोजन एन्थैल्पी के मान कम होते जाते हैं।

 $Be^{2+} > Mg^{2+} > Ca^{2+} > Sr^{2+} > Ba^{2+}$

क्षारीय मृदा धातुओं की जलयोजन एन्थैल्पी क्षार धातुओं की जलयोजन एन्थैल्पी की तुलना में ज्यादा होती है। इसीलिए मृदा धातुओं के यौगिक क्षार धातुओं के यौगिकों की तुलना

सारणी 10.2 क्षारीय मृदा धातुओं के परमाण्विक एवं भौतिक गुण (Atomic and Physical Properties of the Alkaline Earth Metals)

गुण	बेरीलियम	मैग्नीशियम	कैल्सियम	स्ट्रॉन्शियम	बेरियम	रेडियम
	BE	MG	CA	SR	BA	RA
परमाणु-क्रमांक	4	12	20	38	56	88
परमाणु द्रव्यमान/g mol-1	9.01	24.31	40.08	87.62	137.33	226.03
इलेक्ट्रॉनिक-विन्यास	$[He]2s^2$	$[Ne]3s^2$	$[Ar]4s^2$	[Kr]5s ²	[Xe]6s ²	$[Rn]7s^2$
आयनन एन्थैल्पी (I)/kJ mol ⁻¹	899	737	590	549	503	509
आयनन एन्थैल्पी (II)/kJ mol ⁻¹	1757	1450	1145	1064	965	979
जलयोजन एन्थैल्पी (kJ mol ⁻¹)	-2494	-1921	-1577	-1443	-1305	-
धात्विक त्रिज्या/pm	112	160	197	215	222	-
आयनी त्रिज्या M ²⁺ /pm	31	72	100	118	135	148
गलनांक/K	1560	924	1124	1062	1002	973
क्वथनांक/K	2745	1363	1767	1655	2078	(1973)
घनत्व/g cm ⁻³	1.84	1.74	1.55	2.63	3.59	(5.5)
मानक विभव E [⊖] /V(M²+/M)	-1.97	-2.36	-2.84	-2.89	-2.92	-2.92
के लिए						
स्थलमंडल में प्राप्ति	2*	2.76**	4.6**	384*	390*	10-6*

^{*} पी.पी.एम ** भारात्मक प्रतिशत

में अधिक जलयोजित होते हैं। जैसे $-MgCl_2$ एवं $CaCl_2$ जलयोजित अवस्था $MgCl_2.6H_2O$ एवं $CaCl_2.6H_2O$ में पाए जाते हैं, जबिक NaCl एवं KCl ऐसे हाइड्रेट नहीं बनाते हैं।

10.6.5 भौतिक गुण

क्षारीय मुदा धातुएं सामान्यतया चाँदी की भाँति सफेद, चमकदार एवं नरम, परंतु अन्य धातुओं की तुलना में कठोर होती हैं। बेरीलियम तथा मैग्नीशियम लगभग धूसर रंग (Greyish) के होते हैं। इनके गलनांक एवं क्वथनांक क्षार धातुओं की तुलना में उच्च होते हैं. क्योंकि इनका आकार छोटा होता है। फिर भी इनके गलनांकों तथा क्वथनांकों में कोई नियमित परिवर्तन नहीं दिखता है। निम्न आयनन एन्थेल्पी के कारण ये प्रबल धन-विद्युतीय होते हैं। धन-विद्युतीय गुण ऊपर से नीचे Be से Ba तक बढ़ता है। कैल्सियम, स्ट्रॉन्शियम एवं बेरियम ज्वाला को क्रमश: ईंट जैसा लाल (Brick Red) रंग, किरमिजी लाल (Crimson Red) एवं हरा (Apple Green) रंग प्रदान करते हैं। ज्वाला में उच्च ताप पर वाष्प-अवस्था में क्षारीय मुदा धातुओं के बाह्यतम कोश के इलेक्ट्रॉन उत्तेजित होकर उच्च ऊर्जा-स्तर पर चले जाते हैं। ये उत्तेजित इलेक्ट्रॉन जब पुन: अपनी तलस्थ अवस्था में लौटते हैं, तब दुश्य प्रकाश के रूप में ऊर्जा उत्सर्जित होती है। फलत: ज्वाला रंगीन दिखने लगती है। बेरीलियम तथा मैग्नीशियम के बाह्यतम कोशों के इलेक्ट्रॉन इतनी प्रबलता से बँधे रहते हैं कि ज्वाला की ऊर्जा द्वारा इनका उत्तेजित होना कठिन हो जाता है। अत: ज्वाला में इन धातुओं का अपना कोई अभिलाक्षणिक रंग नहीं होता है। गुणात्मक विश्लेषण में Ca, Sr एवं Ba मूलकों की पुष्टि ज्वाला-परीक्षण के आधार पर की जाती है तथा इनकी सांद्रता का निर्धारण ज्वाला प्रकाशमापी द्वारा किया जाता है। क्षारीय मुदा धातुओं की क्षार धातुओं की तरह वैद्युत् एवं ऊष्मीय चालकता उच्च होती है। यह इनका अभि-लाक्षणिक गुण होता है।

10.6.6 रासायनिक गुण

क्षारीय मृदा धातुएं क्षार धातुओं से कम क्रियाशील होती हैं। इन तत्त्वों की अभिक्रियाशीलता वर्ग के ऊपर से नीचे जाने पर बढ़ती है।

(i) वायु एवं जल के प्रति अभिक्रियाशीलता : बेरीलियम एवं मैग्नीशियम गतिकीय रूप से ऑक्सीजन तथा जल के प्रति निष्क्रिय हैं, क्योंकि इन धातुओं के पृष्ठों पर ऑक्साइड की फिल्म जम जाती है। फिर भी, बेरीलियम चूर्ण रूप में वायु में जलने पर BeO एवं Be₃N₂ बना लेता है। मैग्नीशियम अधिक

धनिवद्युतीय है, जो वायु में अत्यिधक चमकीले प्रकाश के साथ जलते हुए MgO तथा $\mathrm{Mg_3N_2}$ बना लेता है। कैल्सियम, स्ट्रॉन्शियम एवं बेरियम वायु से शीघ्र अभिक्रिया करके ऑक्साइड तथा नाइट्राइड बनाते हैं। ये जल से और भी अधिक तीव्रता से अभिक्रिया करते हैं; यहाँ तक कि ठंडे जल से अभिक्रिया कर हाइड्रॉक्साइड बनाते हैं।

(ii) हैलोजन के प्रति अभिक्रियाशीलता: सभी क्षारीय मृदा धातुएं हैलोजन के साथ उच्च ताप पर अभिक्रिया करके हैलाइड बना लेती हैं—

 $M+X_2 \rightarrow MX_2(X=F, Cl, Br, I)$

 ${
m BeF}_2$ बनाने की सबसे सरल विधि $({
m NH}_4)_2\ {
m BeF}_4$ का तापीय अपघटन है, जबिक ${
m BeCl}_2$, ऑक्साइड से सरलतापूर्वक बनाया जा सकता है—

BeO C Cl₂ Book BeCl₂ CO

(iii) हाइड्रोजन के प्रति अभिक्रियाशीलता : बेरीलियम के अतिरिक्त सभी क्षारीय मृदा धातुएं गरम करने पर हाइड्रोजन से अभिक्रिया करके हाइड्राइड बनाती हैं। ${\rm BeH_2}$ को ${\rm BeCl_2}$ एवं ${\rm LiAlH_4}$ की अभिक्रिया से बनाया जा सकता है—

 $2BeCl_2 + LiAlH_4 \rightarrow 2BeH_2 + LiCl + AlCl_3$

(iv) अम्लों के प्रति अभिक्रियाशीलता : क्षारीय मृदा धातुएं शीघ्र ही अम्लों से अभिक्रिया कर हाइड्रोजन गैस मुक्त करती हैं।

M 2HCl MCl₂ H₂

- (v) अपचायक प्रकृति : प्रथम वर्ग की धातुओं के समान क्षारीय मृदा धातुएं प्रबल अपचायक हैं। इसका बोध इनके अधिक ऋणात्मक अपचयन विभव के मानों से होता है (सारणी 10.2), यद्यपि इनकी अपचयन-क्षमता क्षार धातुओं की तुलना में कम होती है। बेरीलियम के अपचयन विभव का मान अन्य क्षारीय मृदा धातुओं से कम ऋणात्मक होता है। फिर भी इसकी अपचयन-क्षमता का कारण Be²⁺ आयन के छोटे आकार, इसकी उच्च जलयोजन ऊर्जा एवं धातु की उच्च परमाण्वीय-करण एन्थेल्पी का होना है।
- (vi) द्रव अमोनिया में विलयन : क्षार धातुओं की भाँति क्षारीय मृदा धातुएं भी द्रव अमोनिया में विलेय होकर गहरे नीले काले रंग का विलयन बना लेती हैं। इस विलयन से धातुओं के अमोनीकृत आयन प्राप्त होते हैं—

 $M+(x+y)NH_3 \rightarrow [M(NH_3)_x]^{2+} + 2[e(NH_3)_y]^{-}$

इन विलयनों से पुन: अमोनिएट्स (Ammoniates) $\left[M(\mathrm{NH_3})_6 \right]^{2+}$ प्राप्त किए जा सकते हैं।

10.6.7 उपयोग

बेरीलियम का उपयोग मिश्रात के निर्माण में होता है। Cu-Be मिश्रात का उपयोग उच्च शक्ति के स्प्रिंग बनाने में होता है। धात्विक बेरीलियम का उपयोग एक्स-किरण नली में वातायन (window) के लिए किया जाता है। मैग्नीशियम ऐलमीनियम. जिंक, मैंगनीज एवं टिन के साथ मिश्रात बनाता है। Mg-Al मिश्रात हलकी होने के कारण वायुयानों के निर्माण में प्रयुक्त होती है। मैग्नीशियम (चूर्ण एवं फीता) का उपयोग चमकीले पाउडर तथा बल्ब, तापदीप्त बमों (Incendiary Bombs) और संकेतकों (Signals) में होता है। जल में मैग्नीशियम हाइड्रॉक्साइड के निलंबन (जिसे 'मिल्क ऑफ मैग्नीशियम' कहते हैं) का उपयोग ऐन्टाएसिड (Antacid) दवा के रूप में होता है। मैग्नीशियम कार्बोनेट किसी भी टूथपेस्ट का मुख्य घटक है। कैल्सियम का उपयोग ऑक्साइडों से उन धातओं के निष्कर्षण में होता है. जिन्हें कार्बन द्वारा अपचयित करना संभव नहीं है। चुँकि कैल्सियम तथा बेरियम उच्च ताप पर ऑक्सीजन एवं नाइट्रोजन से अभिक्रिया करते हैं, अत: इस गुण का उपयोग निर्वात नली से वाय-निष्कासन करने में किया जाता है। रेडियम के लवणों का उपयोग विकिरण चिकित्सा (उदाहरणार्थ-कैन्सर के उपचार) में किया जाता है।

10.7 क्षारीय मृदा धातुओं के यौगिकों के सामान्य अभिलक्षण

वर्ग 2 के तत्त्वों की द्विधनीय ऑक्सीकरण अवस्था (M²+) इनकी प्रमुख संयोजकता है। क्षारीय मृदा धातुओं के यौगिक प्राय: आयनिक होते हैं, लेकिन यह क्षार धातुओं के संगत यौगिकों की तुलना में कम आयनिक प्रकृति के होते हैं। इसका कारण इनका अधिक नाभिकीय आवेश एवं छोटा आकार है। बेरीलियम एवं मैग्नीशियम के ऑक्साइड तथा अन्य यौगिक इस वर्ग के भारी और बड़े आकार वाले अन्य तत्त्वों (Ca, Sr, Ba) के ऑक्साइडों एवं अन्य यौगिकों की तुलना में अधिक सहसंयोजी होते हैं। क्षारीय मृदा धातुओं के यौगिकों के सामान्य अभिलक्षण यहाँ बताए जा रहे हैं।

(i) ऑक्साइड एवं हाइड्रॉक्साइड : क्षारीय मृदा धातु वायु में जलकर मोनोऑक्साइड (MO) बनाते हैं, जिनकी संरचना BeO को छोड़कर, रॉक-साल्ट (Rock-Salt) जैसी होती है। BeO आवश्यक रूप से सहसंयोजक प्रकृति का होता है। इन यौगिकों की संभवन ऊष्माएँ उच्च होती हैं। यही कारण है कि ये ऊष्मा के प्रति अति स्थायी होते हैं। BeO उभयधर्मी है, जबिक अन्य तत्त्वों के आक्सॉइड क्षारीय प्रकृति के होते हैं, जो जल से अभिक्रिया कर अल्प विलेय हाइड्रॉक्साइड बनाते हैं।

$MO+H_2O\rightarrow M(OH)_2$

इन हाइड्रॉक्साइडों की विलेयता, तापीय स्थायित्व एवं क्षारीय प्रकृति Mg(OH)2 से Ba(OH)2 तक परमाणु क्रमांक बढ़ने पर बढ़ती है। क्षारीय मृदा धातुओं के हाइड्रॉक्साइड क्षार धातुओं के संगत हाइड्रॉक्साइडों की तुलना में कम स्थायी होते हैं। बेरीलियम हाइड्रॉक्साइड प्रकृति में उभयधर्मी है, क्योंकि यह अम्ल तथा क्षार दोनों से अभिक्रिया करता है।

$$\operatorname{Be}(\operatorname{OH})_2 + 2\operatorname{OH}^- \to [\operatorname{Be}(\operatorname{OH}_4)]^{2-}$$

बेरीलेट आयन

 $Be(OH)_2 + 2HCl + 2H_2O \rightarrow [Be(OH)_4]Cl_2$

(ii) हैलाइड: बेरीलियम हैलाइड के अतिरिक्त अन्य धातुओं के हैलाइडों की प्रकृति आयनिक होती है। बेरीलियम हैलाइड मुख्य रूप से सहसंयोजक होते हैं एवं कार्बिनिक विलायकों में विलेय होते हैं। बेरीलियम क्लोराइड की ठोस अवस्था में शृंखला-संरचना होती है, जैसाकि नीचे दर्शाया गया है—

वाष्प-अवस्था में BeCl_2 क्लोरो-सेतु (Chloro-Bridged) द्विलक बनाता है, जो $1200\mathrm{K}$ के उच्च ताप पर रेखीय एकलक में वियोजित हो जाता है। वर्ग में ऊपर से नीचे हैलाइड हाइड्रेट बनाने की प्रवृत्ति कम होती जाती है। Ca , Sr एवं Ba के जलयोजित क्लोराइड, ब्रोमाइड एवं आयोडाइडों का निर्जलीकरण इन्हें गरम करके किया जा सकता है, जबिक Be एवं Mg के संगत जलयोजित हैलाइड का जल-अपघटन हो जाता है। उदाहरणार्थ— MgCl_2 . $\mathrm{8H}_2\mathrm{O}$, CaCl_2 , $\mathrm{6H}_2\mathrm{O}$, SrCl_2 , $\mathrm{6H}_2\mathrm{O}$ एवं $\mathrm{BaCl}_2.2\mathrm{H}_2\mathrm{O}$) उच्च जालक ऊर्जा के कारण फ्लुओराइड क्लोराइड की तुलना में कम विलेय होते हैं। (iii) ऑक्सो-अम्लों के लवण भी बनाती हैं। इनमें से कुछ मुख्य निम्नलिखित हैं—

कार्बोनेट: क्षारीय मृदा धातुओं के कार्बोनेट जल में अविलेय होते हैं, जिन्हें इन तत्त्वों के विलेय लवणों के विलयन में

सोडियम या अमोनियम कार्बोनेट विलयन मिलाकर अवक्षेपित किया जा सकता है। तत्त्व के परमाणु क्रमांक बढ़ने पर कार्बोनेटों की जल में विलेयता बढ़ती है। सभी कार्बोनेट गरम करने पर कार्बन डाइऑक्साइड एवं ऑक्साइड में वियोजित हो जाते हैं। बेरीलियम कार्बोनेट अस्थायी होता है, जिसे केवल CO_2 के वातावरण में रखा जा सकता है। कार्बोनेटों का तापीय स्थायित्व धनायन का आकार बढने पर बढता है।

सल्फेट: क्षारीय मृदा धातुओं के सल्फेट श्वेत एवं ठोस होते हैं तथा ताप के प्रति स्थायी होते हैं। BeSO4 एवं MgSO4 शीघ्रता से जल में विलेय हो जाते हैं। CaSO4 से BaSO4 तक विलेयता कम होती जाती है। Be²+ एवं Mg²+ आयनों की जलयोजन एन्थेल्पी इनके जालक एन्थेल्पी की तुलना में अधिक होती है। अत: इनके सल्फेट जल में विलेय होते हैं। नाइट्रेट: इन धातुओं के कार्बोनेटों को तनु नाइट्रिक अम्ल में घोलकर इनके नाइट्रेट प्राप्त किए जाते हैं। मैग्नीशियम नाइट्रेट जल के छ: अणुओं के साथ क्रिस्टिलत होता है, जबिक बेरियम नाइट्रेट निर्जल लवण के रूप में क्रिस्टिलत होता है। यह फिर बढ़ते आकार के साथ घटती जलयोजन एन्थेल्पी के कारण कम जलयोजित लवण बनाने की प्रवृत्ति को पुन: दर्शाता है। लीथियम नाइट्रेट के समान सभी नाइट्रेट गरम करने पर अपघटित होकर ऑक्साइड बनाते हैं।

 $2M(NO_3)_2 \rightarrow 2MO + 4NO_2 + O_2$

(M = Be, Mg, Ca, Sr, Ba)

उदाहरण 10.4

क्षारीय मृदा धातुओं के हाइड्रॉक्साइडों की जल में विलेयता वर्ग में नीचे जाने पर क्यों बढ़ती है?

हल

क्षारीय मृदा धातुओं में ऋणायन समान हों, तो धनायन की त्रिज्या जालक एन्थेल्पी को प्रभावित करती है। चूँिक बढ़ती हुई आयनिक त्रिज्या के साथ जलयोजन एन्थेल्पी की तुलना में ऋणात्मक एन्थेल्पी तेजी से कम होती है, अत: वर्ग में नीचे जाने पर विलेयता बढ़ती है।

उदाहरण 10.5

क्षारीय मृदा धातुओं के कार्बोनेटों एवं सल्फेटों की जल में विलेयता वर्ग में ऊपर से नीचे क्यों घटती है?

हल

ऋणायन का आकार धनायन की तुलना में बहुत अधिक

है एवं जालक एन्थैल्पी वर्ग में लगभग स्थिर रहती है। चूँकि वर्ग में जलयोजन ऊर्जा का मान ऊपर से नीचे घटता है, अत: धातु कार्बोनेटों एवं सल्फेटों की विलेयता वर्ग में ऊपर से नीचे जाने पर घटती जाती है।

10.8 बेरीलियम का असंगत व्यवहार

वर्ग 2 का प्रथम तत्त्व बेरीलियम वर्ग में मैग्नीशियम तथा अन्य तत्त्वों के साथ असंगत व्यवहार दिखलाता है। यह ऐलुमीनियम से विकर्ण भी दर्शाता है, जो तदंतर विवेचित किए जाएँगे।

- (i) बेरीलियम का परमाण्वीय एवं आयिनक आकार असाधारण रूप से छोटा होता है, जिसकी तुलना वर्ग के अन्य तत्त्वों से नहीं की जा सकती है। उच्च आयनन एन्थैल्पी तथा लघु परमाणु आकार के कारण बेरीलियम के यौगिक बृहद् रूप से सहसंयोजी होते हैं तथा आसानी से जल अपघटित हो जाते हैं।
- (ii) बेरीलियम की उपसहसंयोजन संख्या (Co-ordination Number) चार से अधिक नहीं होती है, क्योंकि इसके संयोजी-कोश में केवल चार कक्षक हैं। वर्ग के अन्य सदस्यों की उपसहसंयोजन संख्या छ: हो सकती है, क्योंकि ये d कक्षकों का उपयोग करते हैं।
- (iii) अन्य सदस्यों के ऑक्साइड एवं हाइड्रॉक्साइड के विपरीत बेरीलियम के ऑक्साइड तथा हाइड्रॉक्साइड का स्वभाव उभयधर्मी (Amphoteric) होता है।

10.8.1 बेरीलियम एवं ऐलुमीनियम में विकर्ण संबंध

Be²⁺ की अनुमानित आयनिक त्रिज्या 31 pm है। इसका आवेश/त्रिज्या अनुपात Al³⁺ आयन के लगभग समान है। अत: बेरीलियम कुछ मामलों में ऐलुमीनियम के समान है। कुछ समानताएँ निम्नलिखित हैं—

- ऐलुमीनियम के समान बेरीलियम शीघ्रता से अम्लों से प्रभावित नहीं होता है, क्योंकि धातु की सतह पर ऑक्साइड फिल्म की उपस्थिति होती है।
- (ii) क्षार की अधिकता में बेरीलियम हाइड्रॉक्साइड घुल जाता है और बेरिलेट (Beryllate) आयन [Be(OH₄)]²- देता है। ठीक इसी प्रकार ऐलुमीनियम हाइड्रॉक्साइड ऐलुमिनेट (Aluminate) आयन [Al(OH)₄] देता है।
- (iii) बेरीलियम एवं ऐलुमीनियम के क्लोराइड वाष्प प्रावस्था में सेतुबंधित क्लोराइड (Bridged Chloride) की रचना करते हैं। दोनों ही क्लोराइड कार्बनिक विलायकों

में विलेय होते हैं एवं प्रबल लूइस अम्ल हैं। इनका उपयोग फ्रीडेल-क्राफ्ट के उत्प्रेरक (Friedel Craft Catalyst) के रूप में होता है।

(iv) बेरीलियम एवं ऐलुमीनियम आयन जटिल यौगिक (Complexes) बनाने की प्रबल प्रवृत्ति रखते हैं जैसे– BeF₄²⁻, AlF₆³⁻।

10.9 कैल्सियम के कुछ महत्त्वपूर्ण यौगिक

कैल्सियम के महत्त्वपूर्ण यौगिक कैल्सियम ऑक्साइड, कैल्सियम हाइड्रॉक्साइड, कैल्सियम सल्फेट, कैल्सियम कार्बोनेट एवं सीमेन्ट हैं। ये औद्योगिक रूप से महत्त्वपूर्ण यौगिक हैं। वृहद् स्तर पर इनका विरचन एवं इनके उपयोग नीचे वर्णित किए जा रहे हैं।

कैल्सियम ऑक्साइड या बिना बुझा चूना, CaO

इसका वाणिज्यिक निर्माण घूर्णित भट्ठी (Rotary Kiln) में चूने के पत्थर ($CaCO_3$) को लगभग 1070-1270 K पर गरम करके किया जाता है।

CaCO₃ CaO + CO₂

 ${\rm CO}_2$ को अभिक्रिया से शीघ्रताशीघ्र हटाते रहते हैं, तािक अभिक्रिया अग्र दिशा में पूर्ण हो सके। कैल्सियम ऑक्साइड एक श्वेत अक्रिस्टलीय ठोस पदार्थ है, जिसका गलनांक 2870 K है। वायुमंडल में खुला छोड़ने पर यह वायुमंडल से नमी एवं कार्बन डाइऑक्साइड अवशोषित कर लेता है।

 $CaO + H_2O \rightarrow Ca(OH)_2$

 $CaO + CO_2 \rightarrow CaCO_3$

सीमित मात्रा में जल मिलाने पर चूने के पिंडक (Lumps) टूट जाते हैं। इस प्रक्रम को चूना बुझाने (Slaking of lime) की प्रक्रिया कहते हैं। बिना बुझे चूने को जब सोडा द्वारा बुझाया जाता है, तब सोडा लाइम (Soda Lime) प्राप्त होता है। यह क्षारीय ऑक्साइड होने के कारण उच्च ताप अम्लीय ऑक्साइडों से संयोग करता है।

 $CaO + SiO_2 \rightarrow CaSiO_3$

 $6CaO + P_4O_{10} \rightarrow 2Ca_3(PO_4)_2$

उपयोग

(i) सीमेंट के निर्माण के लिए प्राथमिक पदार्थ के रूप में तथा क्षार के सबसे सस्ते रूप में:

- ii) कास्टिक सोडा से सोडियम कार्बोनेट बनाने में; और
- (iii) शर्करा के शुद्धिकरण में एवं रंजकों (Dye Stuffs) के निर्माण में।

कैल्सियम हाइड्रॉक्साइड अर्थात् बुझा चूना, Ca(OH)

कैल्सियम हाइड्रॉक्साइड का निर्माण बिना बुझे चूने में जल मिलाकर किया जाता है। यह श्वेत पाउडर है। यह जल में अल्प विलेय है। इसके जलीय विलयन [चूने का पानी (Lime Water)] में जब कार्बन डाइऑक्साइड गैस प्रवाहित की जाती है, तब कैल्सियम कार्बोनेट के विचरन के कारण चूने का पानी दृधिया हो जाता है।

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

कार्बन डाइऑक्साइड को अधिकता में प्रवाहित करने पर अवक्षेपित कैल्सियम कार्बोनेट जल में विलेय कैल्सियम हाइड्रोजन-कार्बोनेट में परिवर्तित हो जाता है।

 $CaCO_3 + CO_2 + H_2O \rightarrow Ca (HCO_3)_2$

चूने का पानी क्लोरीन से अभिक्रिया कर हाइपोक्लोराइट (Hypochlorite) बना लेता है, जो विरजंक चूर्ण (ब्लीचिंग पाउडर) का एक अवयव है।

 $2\text{Ca}(\text{OH})_2 + 2\text{Cl}_2 \rightarrow \text{Ca}(\text{Cl}_2 + \text{Ca}(\text{OCl})_2 + 2\text{H}_2\text{O}$ ब्लीचिंग पाउडर

उपयोग

- (i) बृहद् स्तर पर चूना-लेप (Mortar) के रूप में भवन-निर्माण में;
- (ii) रोगाणुनाशी (Disinfactant) प्रकृति के कारण सफेदी (White Wash) के रूप में; और
- (iii) काँच के उत्पादन, चर्मशोधन उद्योग, विरंजक चूर्ण के उत्पादन एवं शर्करा–शोधन में।

कैल्सियम कार्बोनेट (CaCO₃)

प्रकृति में कई रूपों, जैसे— चूना-पत्थर, खड़िया (Chalk), संगमरमर (Marble) आदि के रूप में चूना पाया जाता है। बुझे चूने पर कार्बन डाइऑक्साइड गैस प्रवाहित कर या कैल्सियम क्लोराइड में सोडियम कार्बोनेट को मिलाकर इसे बनाया जाता है।

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$

 $CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$

इस अभिक्रिया में कार्बन डाइऑक्साइड के आधिक्य से बचना चाहिए, क्योंकि इसकी अधिकता में जल में घुलनशील कैल्सियम हाइड्रोजन-कार्बोनेट बन सकता है।

कैल्सियम कार्बोनेट श्वेत खेदार पाउडर होता है। यह

जल में लगभग अविलेय होता है। 1200 K पर गरम करने पर यह विघटित होकर कार्बन डाइऑक्साइड देता है।

$$CaCO_3 \xrightarrow{1200K} CaO + CO_2$$

यह तनु अम्लों से अभिक्रिया करके कार्बन डाइऑक्साइड मुक्त करता है।

 $CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$ $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$

उपयोग

- संगमरमर के रूप में भवन-निर्माण में;
- बुझे चूने के निर्माण में;
- कैल्सियम कार्बोनेट को मैग्नीशियम कार्बोनेट के साथ लोहे जैसी धातुओं के निष्कर्षण में फ्लक्स (Flux) के रूप में;
- विशेष रूप से अवक्षेपित CaCO₃ के प्रयोग से बृहद् रूप
 में उच्च गुणवत्ता वाले कागज के निर्माण में; और
- ऐन्टासिड, टूथपेस्ट में अपघर्षक के रूप में, च्यूइंगम के संघटक एवं सौंदर्य प्रसाधनों में पुरक के रूप में।

कैल्सियम सल्फेट (प्लास्टर ऑफ पेरिस) CaSO₄ . 1/2 H₂O

यह कैल्सियम सल्फेट का अर्ध हाइड्रेट (Hemihydrate) है। इसे जिप्सम ($CaSO_4$. $2H_2O$) को 393K पर गरम करके प्राप्त किया जाता है।

 $2(CaSO_4.2H_2O) \rightarrow 2(CaSO_4).H_2O + 3H_2O$

393 K से उच्च ताप पर क्रिस्टलीय जल नहीं बचता है एवं शुष्क कैल्सियम सल्फेट (CaSO₄) बनता है। इसे 'मृत तापित प्लास्टर' (Dead Burnt Plaster) कहा जाता है। जल के साथ जमने की इसकी विशेष प्रकृति होती है। पर्याप्त मात्रा में जल मिलाने पर यह प्लास्टिक जैसा एक द्रव्य बनाता है, जो 5 से 15 मिनट में जमकर कठोर और ठोस हो जाता है।

उपयोग

प्लास्टर ऑफ पेरिस का बृहत्तर उपयोग भवन-निर्माण उद्योग के साथ-साथ टूटी हुई हिड्डयों के प्लास्टर में भी होता है। इसका उपयोग दंत-चिकित्सा, अलंकरण-कार्य एवं मूर्तियों तथा अर्ध-प्रतिमाओं को बनाने में भी होता है।

सीमेन्ट

सीमेन्ट एक महत्त्वपूर्ण भवन-निर्माण सामग्री है। इसका उपयोग सर्वप्रथम ब्रिटेन में सन् 1824 में जोसेफ एस्पिडन ने किया था। इसे 'पोर्टलैंड सीमेन्ट' भी कहा जाता है, क्योंकि यह ब्रिटेन के पोर्टलैंड टापू पर प्राप्त प्राकृतिक चूने के पत्थर से मिलता-जुलता है। यह एक ऐसा उत्पाद है, जो चूने के आधिक्य वाले पदार्थ CaO को अन्य पदार्थ (जैसे—मिट्टी, जिसमें सिलिका, $\mathrm{SiO_2}$ एवं ऐलुमिनियम, लोहा तथा मैग्नेशियम के ऑक्साइड होते हैं) को मिलाकर बनाया जाता है। पोर्टलैंड सीमेन्ट का औसत संघटन है : CaO , $\mathrm{50\text{-}60\%}$, $\mathrm{SiO_2}$, $\mathrm{20\text{-}25\%}$, $\mathrm{Al_2O_3}$, $\mathrm{5\text{-}10\%}$, MgO , $\mathrm{2\text{-}3\%}$, $\mathrm{Fe_2O_3}$, $\mathrm{1\text{-}2\%}$ एवं $\mathrm{SO_3}$ $\mathrm{1\text{-}2\%}$ । एक अच्छी गुणवत्ता वाले सीमेन्ट में सिलिका ($\mathrm{SiO_2}$) एवं ऐलुमिना ($\mathrm{Al_2O_3}$) का अनुपात $\mathrm{2.5}$ से 4 के मध्य होना चाहिए एवं चूने (CaO) तथा अन्य कुल ऑक्साइडों, $\mathrm{SiO_2}$ और $\mathrm{Al_2O_3}$ का अनुपात यथासंभव $\mathrm{2}$ के आस–पास होना चाहिए।

सीमेन्ट के निर्माण में कच्चे माल के रूप में चूने के पत्थर (Limestone) एवं चिकनी मिट्टी का उपयोग होता है। जब इन दोनों को तेजी से गरम किया जाता है तब ये संगिलत होकर अभिक्रिया कर सीमेन्ट क्लिकर (Cement Clinker) बनाते हैं। इस क्लिकर में 2-3% (भारात्मक) जिप्सम ($CaSO_4.2H_2O$) मिश्रित कर सीमेन्ट बनाया जाता है। इस प्रकार पोर्टलैंड सीमेन्ट के मुख्य घटक डाइकैल्सियम सिलिकेट (Ca_2SiO_4) 26%, ट्राइकैल्सियम सिलिकेट (Ca_3SiO_5) 51% तथा ट्राइकैल्सियम ऐलुमिनेट ($Ca_3Al_2O_6$) 11% हैं।

सीमेन्ट का जमना

जल मिलाने पर सीमेन्ट जमकर कठोर हो जाता है। इसका कारण घटकों के अणुओं का जलयोजन एवं पुन: व्यवस्थित होना है। जिप्सम मिलाने का कारण सीमेन्ट के जमने के प्रक्रम को धीमा करना है ताकि यह पूरी तरह ठोस हो सके।

उपयोग

लोहा तथा स्टील के पश्चात् सीमेन्ट ही एक ऐसा पदार्थ है, जो किसी राष्ट्र की उपयोगी वस्तुओं की श्रेणी में रखा जा सकता है। इसका उपयोग कंक्रीट (Concrete), प्रबलित कंक्रीट (Reinforced Concrete), प्लास्टरिंग, पुल-निर्माण, भवन-निर्माण आदि में किया जाता है।

10.10 मैग्नीशियम व कैल्सियम की जैव महत्ता

एक वयस्क व्यक्ति में करीब 25 ग्राम मैग्नीशियम एवं 1200 ग्राम कैल्सियम होता है, जबिक लोहा मात्र 5 ग्राम एवं ताँबा 0.06 ग्राम होता है। मानव-शरीर में इनकी दैनिक आवश्यकता 200-300 mg अनुमानित की गई है।

समस्त एन्ज़ाइम, जो फॉस्फेट के संचरण में ATP का उपयोग करते हैं, मैग्नीशियम का उपयोग सह-घटक के रूप में करते हैं। पौधों में प्रकाश-अवशोषण के लिए मुख्य रंजक (Pigment) क्लोरोफिल में भी मैग्नीशियम होता है। शरीर में कैल्सियम का 99% दाँतों तथा हिड्डयों में होता है। यह अंतरतांत्रिकीय पेशीय कार्यप्रणाली, अंतरतांत्रिकीय प्रेषण, कोशिका झिल्ली अखंडता (Cell Membrane Integrity) तथा

रक्त-स्कंदन (Blood-coagulation) में भी महत्त्वपूर्ण भूमिका निभाता है। प्लाज्मा में कैल्सियम की सांद्रता लगभग 100 mgL⁻¹ होती है। दो हॉर्मोन कैल्सिटोनिन एवं पैराथायराइड इसे बनाए रखते हैं। क्या आप जानते हैं कि हड्डी अक्रिय तथा अपरिवर्तनशील पदार्थ नहीं है, यह किसी मनुष्य में लगभग 400 mg प्रतिदिन के हिसाब से विलेयित और निक्षेपित होती है। इसका सारा कैल्सियम प्लाज्मा में से ही गुजरता है।

सारांश

वर्ग 1 की क्षार धातुएं तथा वर्ग 2 की क्षारीय मृदा धातुएं संयुक्त रूप से आवर्त सारणी के s-ब्लॉक तत्त्वों की रचना करती हैं। इन्हें 'क्षार धातुएँ' कहने का कारण यह है कि इनके ऑक्साइड एवं हाइड्रॉक्साइड क्षारीय प्रकृति के होते हैं। क्षार धातुओं तथा क्षारीय मृदा धातुओं की पहचान उनके परमाणुओं के संयोजी कोशों में क्रमश: एक s-इलेक्ट्रॉन एवं दो s-इलेक्ट्रॉन के आधार पर होती है। ये अत्यंत अभिक्रियाशील धातुएं हैं, जो क्रमश: एक धनीय (\mathbf{M}^{\dagger}) एवं द्विधनीय (\mathbf{M}^{2}) आयन बनाती हैं।

क्षार धातुओं के बढ़ते हुए परमाणु-क्रमांक के साथ इनके भौतिक एवं रासायनिक गुणों में एक नियमित प्रवृत्ति पाई जाती है। वर्ग में ऊपर से नीचे व्यवस्थित क्रम में **परमाण्वीय** एवं **आयनिक** आकार में वृद्धि होती जाती है तथा **आयनन एन्थेल्पी** घटती जाती है। क्षारीय मुदा धातुओं के गुणों में भी लगभग इसी प्रकार की प्रवृत्ति पाई जाती है।

इन वर्गों में प्रत्येक वर्ग का प्रथम तत्त्व वर्ग 1 में लीथियम एवं वर्ग 2 में बेरीलियम अपने ठीक बाद वाले वर्ग के दूसरे तत्त्व से समानताएँ प्रदर्शित करता है। आवर्त सारणी में इस प्रकार की समानताओं को विकर्ण संबंध की संज्ञा दी जाती है। इन वर्गों के प्रथम तत्त्व अपने ही वर्ग के अन्य तत्त्वों से असमानताएँ प्रदर्शित करते हैं। क्षार धातुएं रजत श्वेत (Silver White), मुलायम एवं निम्न गलनांकी होती हैं। ये अत्यंत अभिक्रियाशील होती हैं। क्षार धातुओं के यौगिक मुख्य रूप से आयिनक होते हैं। इनके ऑक्साइड एवं हाइड्रॉक्साइड जल में विलेय होते हैं तथा प्रबल क्षार बनाते हैं। सोडियम के प्रमुख यौगिकों में सोडियम कार्बोनेट, सोडियम क्लोराइड, सोडियम हाइड्रॉक्साइड एवं सोडियम हाइड्रॉक्साइड का निर्माण कास्टनर-कैलनर विधि एवं सोडियम कार्बोनेट का निर्माण साल्वे विधि के अनुसार किया जाता है।

क्षारीय मृदा धातुओं का रसायन अधिकांशत: क्षार धातुओं के समान है। क्षारीय मृदा धातुओं के छोटे परमाण्वीय तथा आयिनक आकार एवं बढ़े हुए धनायिनक आवेश के कारण कुछ असमानताएँ उत्पन्न होती हैं। इनके ऑक्साइड एवं हाइड्रॉक्साइड, क्षार धातुओं के ऑक्साइड हाइड्रॉक्साइड की तुलना में कम क्षारीय होते हैं। कैल्सियम की औद्योगिक महत्ता के यौगिकों में कैल्सियम ऑक्साइड (चूना), कैल्सियम हाइड्रॉक्साइड (बुझा चूना), कैल्सियम सल्फेट (फ्लास्टर ऑफ पेरिस), कैल्सियम कार्बोनेट (चूना-पत्थर) तथा सीमेन्ट प्रमुख हैं। पोर्टलैंड सीमेन्ट एक महत्त्वपूर्ण निर्माण-सामग्री है। चूना-पत्थर एवं चिकनी मिट्टी के चूर्ण-मिश्रण को घूर्णी भट्ठी में गरम करने के उपरांत इसका निर्माण किया जाता है। इस प्रकार प्राप्त किंतकर में जिप्सम की कुछ मात्रा (2-3%) मिलाकर सीमेन्ट का महीन पाउडर प्राप्त किया जाता है। ये सभी पदार्थ विभिन्न क्षेत्रों में विविध प्रकार के उपयोग दर्शाते हैं।

एकल संयोजी सोडियम एवं पोटैशियम आयन तथा द्विसंयोजी मैग्नीशियम एवं कैल्सियम आयन **जैव तरलों** (Biological Fluids) में उच्च अनुपातों में पाए जाते हैं। ये आयन कई जैव क्रियाओं, जैसे—आयन-संतुलन का निर्वाह, शिरा-आवेग संचरण (Nerve Impulse Conduction) आदि में महत्त्वपूर्ण भूमिका निभाते हैं।

अभ्यास

- 10.1 क्षार धातुओं के सामान्य भौतिक तथा रासायनिक गुण क्या हैं?
- 10.2 क्षारीय मुदा धातुओं के सामान्य अभिलक्षण एवं गुणों में आवर्तिता की विवेचना कीजिए।
- 10.3 क्षार धातुएं प्रकृति में क्यों नहीं पाई जाती हैं?
- 10.4 Na₂O₂ में सोडियम की ऑक्सीकरण अवस्था ज्ञात कीजिए।
- 10.5 पोटैशियम की तुलना में सोडियम कम अभिक्रियाशील क्यों है? बताइए।
- 10.6 निम्नलिखित के संदर्भ में क्षार धातुओं एवं क्षारीय मृदा धातुओं की तुलना कीजिए—
 (क) आयनन एन्थैल्पी, (ख) ऑक्साइडों की क्षारकता, (ग) हाइड्रॉक्साइडों की विलेयता।
- 10.7 लीथियम किस प्रकार मैग्नीशियम से रासायनिक गुणों में समानताएं दर्शाता है?
- 10.8 क्षार धातुएं तथा क्षारीय मृदा धातुएं रासायिनक अपचयन विधि से क्यों नहीं प्राप्त किए जा सकते हैं? समझाइए।
- 10.9 प्रकाश वैद्युत सेल में लीथियम के स्थान पर पोटैशियम एवं सीजियम क्यों प्रयुक्त किए जाते हैं?
- 10.10 जब एक क्षार धातु को द्रव अमोनिया में घोला जाता है, तब विलयन विभिन्न रंग प्राप्त कर सकता है। इस प्रकार के रंग-परिवर्तन का कारण बताइए।
- 10.11 ज्वाला को बेरीलियम एवं मैग्नीशियम कोई रंग नहीं प्रदान करते हैं, जबकि अन्य क्षारीय मृदा धातुएं ऐसा करती हैं। क्यों?
- 10.12 साल्वे प्रक्रम में होने वाली विभिन्न अभिक्रियाओं की विवेचना कीजिए।
- 12.13 पोटैशियम कार्बोनेट साल्वे विधि द्वारा नहीं बनाया जा सकता है। क्यों?
- 10.14 Li₂CO₃ कम ताप पर एवं Na₂CO₃ उच्च ताप पर क्यों विघटित होता है?
- 10.15 क्षार धातुओं के निम्नलिखित यौगिकों की तुलना क्षारीय मृदा धातुओं के संगत यौगिकों से विलेयता एवं तापीय स्थायित्व के आधार पर कीजिए— (क) नाइट्रेट (ख) कार्बोनेट (ग) सल्फेट।
- 10.16 सोडियम क्लोराइड से प्रारंभ करके निम्नलिखित को आप किस प्रकार बनाएँगे?
 - (i) सोडियम धातु
 - (ii) सोडियम हाइड्रॉक्साइड
 - (iii) सोडियम परॉक्साइड
 - (iv) सोडियम कार्बोनेट
- 10.17 क्या होता है, जब-
 - (i) मैग्नीशियम को हवा में जलाया जाता है।
 - (ii) बिना बूझे चूने को सिलीका के साथ गरम किया जाता है।
 - (iii) क्लोरीन बुझे चूने से अभिक्रिया करती है।
 - (iv) कैल्सियम नाइट्रेट को गरम किया जाता है।
- 10.18 निम्नलिखित में से प्रत्येक के दो-दो उपयोग बताइए-
 - (i) कास्टिक सोडा
 - (ii) सोडियम कार्बोनेट
 - (iii) बिना बुझा चूना
- 10.19 निम्नलिखित की संरचना बताइए- (i) $BeCl_2$ (वाष्प), (ii) $BeCl_2$ (ठोस)
- 10.20 सोडियम एवं पोटैशियम के हाइड्रॉक्साइड एवं कार्बोनेट जल में विलेय हैं, जबिक मैग्नीशियम एवं कैल्सियम के संगत लवण जल में अल्प विलेय हैं। समझाइए।

10.21	निम्नलिखित की महत्ता बताइए—					
	(i) चूना-पत्थर (ii) सीमेन्ट (iii) प्लास्टर ऑफ पेरिस					
10.22	लीथियम के लवण साधारणतया जलयोजित होते हैं, जबिक अन्य क्षार-धातुओं के लवण साधारणतया					
	निर्जलीय होते हैं। क्यों?					
10.23	LiF जल में लगभग अविलेय होता है, जबिक LiCl न सिर्फ जल में, बिल्क ऐसीटोन में भी विलेय					
	होता है। कारण बताइए?					
10.24	जैव द्रवों में सोडियम, पोटैशियम, मैग्नीशियम एवं कैल्सियम की सार्थकता बताइए।					
10.25	क्या होता है, जब— (i) सोडियम धातु को जल में डाला जाता है।					
	(i) सोडियम धातु को जल में डाला जाता है। (ii) सोडियम धातु को हवा की अधिकता में गरम किया जाता है।					
	(iii) सोडियम परॉक्साइड को जल में घोला जाता है।					
10.26	निम्नलिखित में से प्रत्येक प्रेक्षण पर टिप्पणी लिखिए-					
10.26	(क) जलीय विलयनों में क्षार धातु आयनों की गतिशीलता Li* <na*<k*<rb*<cs+ th="" क्रम="" में<=""></na*<k*<rb*<cs+>					
	होती है।					
	(ख) लीथियम ऐसी एकमात्र क्षार धातु है, जो नाइट्राइड बनाती है।					
	(ग) $M^{2+}(aq) + 2e^- \longrightarrow M(S)$ हेतु E^{\ominus} (जहाँ $M = Ca$, Sr या Ba) लगभग					
	स्थिरांक है।					
10.27	समझाइए कि क्यों–					
	(क) $\mathrm{Na_2CO_3}$ का विलयन क्षारीय होता है।					
	(ख) क्षार धातुएं उनके संगलित क्लोराइडों के वैद्युत-अपघटन से प्राप्त की जाती हैं।					
	(ग) पोटैशियम की तुलना में सोडियम अधिक उपयोगी है।					
10.28	निम्नलिखित के मध्य क्रियाओं के संतुलित समीकरण लिखिए—					
	(क) $\mathrm{Na_2CO_3}$ एवं जल					
	(ख) KO_2 एवं जल					
	$(ग)$ $\mathrm{Na_2O}$ एवं $\mathrm{CO_2}$					
10.29	आप निम्नलिखित तथ्यों को कैसे समझाएँगे—					
	$(lpha)~{ m BeO}~{ m on}$ में अविलेय है, जबिक ${ m BeSO}_{_4}$ विलेय है।					
	$\left(\mathbf{a} ight) \mathrm{BaO}$ जल में विलेय है, जबिक $\mathrm{BaSO}_{_{4}}$ अविलेय है।					
	(ग) ईथानॉल में LiI, KI की तुलना में अधिक विलेय है।					
10.30	इनमें से किस क्षार-धातु का गलनांक न्यूनतम है?					
	(ক) Na (ख) K (ग) Rb (ঘ) Cs					
10.31	निम्नलिखित में से कौन सी क्षार-धातु जलयोजित लवण देती है?					
	(ক) Li (ख) Na (ग) K (ঘ) Cs					
10.32	निम्नलिखित में कौन सी क्षारीय मृदा धातु कार्बोनेट ताप के प्रति सबसे अधिक स्थायी है?					
	(क) ${\rm MgCO_3}$ (ख) ${\rm CaCO_3}$ (ग) ${\rm SrCO_3}$ (घ) ${\rm BaCO_3}$					