TP2 sur la dérivation

Laurent Garnier

A rendre pour le lundi 2 mars 2015

Table des matières

1	Un premier cas particulier	1
2	Un deuxième cas particulier	2
3	Exploration du cas général	2
T	Tangente à une courbe (cliquez 9 pour remonter)	3 4
	Résumé	
	L'objectif de ce TP est d'étudier les propriétés graphiques des fonctions polynômes de degré 3 ; c'est-à-dire de la forme $f(x) = ax^3 + bx^2 + cx + d$ où a,b,c et d sont des réels tels que $a \neq 0$.	

1 Un premier cas particulier

Dans cette partie on s'intéressera à la construction d'une fonction particulière $f(x) = 2x^3 - 5x^2 - x + 3$.

- 1. Construire quatre curseurs a, b, c et d avec les options par défaut (compris entre -5 et 5 avec pour incrément 0.1).
- 2. Placer les curseurs a = 2, b = -5, c = -1 et d = 3.
- 3. Saisir la fonction $f(x) = a*x^3 + b*x^2 + c*x + d$ dans la barre de saisie.
- 4. Saisir la droite d'équation y = 0 dans la barre de saisie.
- 5. Combien de points d'intersection observez-vous entre la courbe \mathcal{C}_f et la droite \mathbf{d} ?
- 6. Construire et placer les points d'intersection.
- 7. Construire un curseur m avec les options par défauts.
- 8. Placer un point M = (m, f(m)) sur la courbe \mathcal{C}_f .
- 9. Construire la tangente à C_f au point M^{\perp} .
- 10. Afficher la pente de la tangente en utilisant l'icône ² (on renommera le nombre créé par p).
- 11. Créer un point B=(m,p) et afficher sa trace.
- 12. Faire varier le curseur m.
- 1. voir la figure 1
- 2. voir la figure 2

- 13. Calculer à la main la fonction dérivée f'(x) puis saisir la fonction obtenue sous la forme $g(x) = \dots$
- 14. Dans la barre de saisie écrire f'(x), que remarquez-vous?
- 15. Quel est le sens de variation de la fonction f lorsque la fonction f' est négative?
- 16. Même question lorsque f' est positive.
- 17. Calculer à la main la dérivée de la fonction g puis saisir la fonction obtenue sous la forme $h(x) = \dots$
- 18. Dans la barre de saisie écrire g'(x), que remarquez-vous?
- 19. Lorsque g' est positive quelle est la position de la tangente par rapport à la courbe représentant f?
- 20. Même question lorsque g' est négative.

2 Un deuxième cas particulier

Dans cette partie on s'intéressera à la construction d'une fonction particulière $f(x) = 4x^3 - 5x^2 - x + 3$. Reprendre les questions de la partie précédente avec cette nouvelle fonction.

3 Exploration du cas général

Reprendre les questions de la partie précédente en observant qu'il existe 2 configurations possibles :

- 1. La courbe représentant f traverse l'axe des abscisses une seule fois exactement (vous choisirez des valeurs pour les curseurs a,b,c et d de sorte d'être dans cette configuration).
- 2. La courbe représentant f traverse l'axe des abscisses une trois fois exactement (vous choisirez des valeurs pour les curseurs a,b,c et d de sorte d'être dans cette configuration).

FIGURE 1 – Tangente à une courbe (cliquez 9 pour remonter)

FIGURE 2 – Pente d'une droite (cliquez 10 pour remonter)