Probeminiklausur Lineare Algebra und Geometrie I

WS 16/17

Aufgabe 1

Seien A und B Aussagen.

(i) Zeigt, dass

$$A \Rightarrow \neg B \Leftrightarrow ((\neg B \land A) \Rightarrow \neg A))$$

keine Tautologie ist.

(ii) Durch welche Verknüpfung müsst ihr \Rightarrow austauschen, damit ihr eine Tautologie erhaltet? (\land , \lor oder \Leftrightarrow)

Aufgabe 2

Sei $f: X \to Y$ eine Funktion.

Zeigt für A, B Teilmengen von X, dass gilt:

$$f(A \cap B) \subseteq f(A) \cap f(B)$$

Aufgabe 3

Für welche der folgenden Abbildungen $f: \mathbb{R} \to \mathbb{R}$ sind die folgenden Aussagen wahr?

- (i) $f(x) = x^2 + 2x$ ist surjektiv.
- (ii) $f(x) = x^3$ ist injektiv.
- (iii) $f(x) = x^2$ besitzt eine eindeutige Umkehrfunktion.

Aufgabe 4

Es sei $A := \mathbb{N} \times \mathbb{N}$. Auf A sei \sim definiert durch:

$$(x,y) \sim (w,z) :\Leftrightarrow x+z=y+w.$$

Zeigt, dass \sim eine Äquivalenz
relation auf A ist.

Aufgabe 5

Zeigt folgende Aussage:

Sei G eine Gruppe, dann gibt es genau ein neutrales Element in G.