Autonomous SailBoat

Estudo preliminar e proposta

Email colaboradores

André Araújo: andrepda@id.uff.br UFF

Alex Salgado: <u>alexsalgado@id.uff.br</u> UFF

Rodrigo Aguiar: <u>rbaquiar@id.uff.br</u> UFF

Davi Henrique: davihenriqueds@gmail.com UFRN

Marcelo Paravisi: marcelo.paravisi@osorio.ifrs.edu.br IFRS

(favor preencherem aqui os seus emails)

Módulo de energia (liga e desliga barco pelo controle remoto)

Quem desenvolveu o módulo de energia na PUCRS:

- Guilherme heck
- heckgui@gmail.com

Projeto Atual NBoat-UFRN

Links importantes do projeto

Projeto Atual NBoat - UFRN

Site Docs: https://nboat-documentation.readthedocs.io/en/master/index.html

Trello:

https://trello.com/invite/b/QkVBSZVx/77e12984a26b566ea53c6bccba184d20/nboat-constru%C3%A7%C3%A3o

https://trello.com/invite/b/I0wS5HER/f9e4bd0ce091755a3661ba295378b9c5/trabalhos-uff

Google Drive:

https://drive.google.com/drive/folders/1q38gfsI9PdqJXJiWq1MY8W6JsQIL--_2?usp=sharing

Partes de um veleiro

opções de comunição (pensar)

Mastro: Suporte central que serve para dar sustentação vertical à vela.
Vela: Superfície responsável por captar o vento e dar velocidade ao veleiro.
Leme: Lâmina submersa que permite mudanças na orientação da embarcação.
Retranca: Haste situada no inferior da vela, que serve para seu suporte horizontal.
Escota: Cabo conectado a retranca e utilizado para alterar a angulação da vela.

Cana do leme: Auxilia na mudança de orientação do leme.

Partes de um veleiro

opções de comunição (pensar)

Mastro: Suporte central que serve para dar sustentação vertical à vela.

Vela: Superfície responsável por captar o vento e dar velocidade ao veleiro.

Leme: Lâmina submersa que permite mudanças na orientação da embarcação.

Retranca: Haste situada no inferior da vela, que serve para seu suporte horizontal.

Escota: Cabo conectado a retranca e utilizado para alterar a angulação da vela.

Cana do leme: Auxilia na mudança de orientação do leme.

Arquitetura de hardware do veleiro Nboat

- 1. Pixhawk 2.4.6;
- 2. Arduino Mega;
- 3. Driver vnh5019 para os atuadores;
- 4. Atuador linear do leme;
- 5. Potenciômetro do leme;
- 6. Mini-guincho para atuar a vela;
- 7. Potenciômetro da vela;
- 8. Bateria nautica;
- 9. Sensores do vento;
- 10. GPS, IMU;
- 11. Telemetria 433 MHz;
- 12. Transmissor e receptor Rádio R7;

General diagram of the autonomous system for NBoat

Fonte: Davi Henrique; Dos Santos. Framework para comparação de sistemas de controle de veleiros autônomos. Tese de Doutorado, 2020

Arduino programming for servo work

Primeira versão da eletrônica do Nboat (controle RC)

fonte: Trello NBoat

Fonte: Davi Henrique; Dos Santos. Framework para comparação de sistemas de controle de veleiros autônomos. Tese de Doutorado, 2020

Electronic System: Components and Communication

Control System State Machine

Projeto Proposto (NOME_VELEIRO) - UFF

Fase 1

Links importantes do projeto

Projeto Proposto UFF

Site Docs (wiki): a definir

Trello: a definir

Artigo referência de diagramas:

https://www.frontiersin.org/articles/10.3389/frobt.2021.630081/full

A seguir,os diagramas do artigo de referência para nos orientarmos e criarmos os nossos próprios

Slide dessa cor, figura retirada do artigo

Components layout diagram

Diagrama referência do artigo:

https://www.frontiersin.org/files/Articles/630081/frobt-08-630081-HTML/image_m/frobt-08-630081-g003.jpg

Components layout diagram

Bills of Material

Component	Description	Cost	Sources of Materials
		per unit currency	
Arduino mega 2,560	Microcontroller (16 MHz clock, 8 KB SRAM)	¥200RMB	Semiconductor
Pixhawk V2.4.8	State observer (STM32F427 and STM32F103)	¥400RMB	Semiconductor
GPS u-blox M8N	Gnss receiver	¥200RMB	Semiconductor
Battery	Lipo pack 2200 mAh 3S25C	¥80RMB	Battery
Wireless module	E62-433T30D (433 MHz)	¥200RMB	Semiconductor
Winch servo	Futaba S3010	¥200RMB	Motor
Rudder servo	Futaba S3102	¥200RMB	Motor
Wind vane sensor	Magnetic rotary encoder AS5040	¥200RMB	Other
Sailboat	Hull, keel, rudder, sail and rigging	¥8000RMB	Other
	Total	¥9680RMB	

referência:

https://www.frontiersin.org/files/Articles/630081/frobt-08-630081-HTML/image_m/frobt-08-630081-t003.jpg

Bills of Material

Definição do Motor elétrico e diagrama elétrico

Hardware connection diagram

ref: https://www.frontiersin.org/files/Articles/630081/frobt-08-630081-HTML/image m/frobt-08-630081-q004.jpg

Hardware connection diagram

Illustration of functionality of microcontrollers and remote computer

ref: https://www.frontiersin.org/files/Articles/630081/frobt-08-630081-HTML/image_m/frobt-08-630081-g005.jpg

Illustration of functionality of microcontrollers and remote computer

Software framework running on Arduino Mega 2,560 microcontroller

Software framework running on Arduino Mega 2,560 microcontroller

Guidance and control structure of sailboat

ref:https://www.frontiersin.org/files/Articles/630081/frobt-08-630081-HTML/image_m/frobt-08-630081-g008.jpg

Guidance and control structure of sailboat

Autonomous sailboat sailing and guidance principle (analysis at horizontal plane)

Autonomous sailboat sailing and guidance principle (analysis at horizontal plane)

Detailed block diagram of control architecture, (A) Sailboat guidance and rudder controller, (B) Sail controller.

Detailed block diagram of control architecture, (A) Sailboat guidance and rudder controller, (B) Sail controller.

Proposta de evolução de arquitetura

Fase 2

Visão Computacional e ROS - Responsável atual Alex

"Acho que colocando o ROS (sobre a Navio 2 ou a **Jetson/Xavier**) e os arduinos fazendo o baixo nivel, seria uma contribuicao legal... o pessoal de software iria agradecer muito. Facilitaria a vida. Tem que replanejar tambem a comunicacao entre cada modulo/tanque e a comunicacao (e telemetria) com a estacao de terra." (**Prof LM**)

- OpenPilot project
- Software: OpenPilot(Empresas Automobilisticas Usando)
- ROS
- Tecnologia: PIXHAWK
- Uso: Drone
- Ground robotics toolkits offer a very wide range of sensor drivers
- and computer vision and simultaneous localization and mapping (SLAM) packages.
- Their communication infrastructure does however require all components to support either TCP/IP or UDP connections

Ref. do **Prof Raphael** - THE PIXHAWK OPEN-SOURCE COMPUTER VISION FRAMEWORK FOR MAVS

Proposta de Inclusão da Jetson com ROS para permitir...

- Reinforcement Learning for Navigation
- Horizon line Detection
- SLAM
- Mapping
- Uso de LIDAR, Cameras
- Incluir Telemetria
- Estação Terra

ZED camera:

\$449.00

lidar: \$349,00

Desenho da arquitetura proposta com Jetson e ROS

- Criar simulação no Gazebo
 - USV_SIM (https://github.com/disaster-roboticsproalertas/usv sim Isa)

. The Jetson Xavier Developer Kit with Jetson Xavier module and reference carrier

- Arquitetura em andamento

