Sine perturbation

Let $\Psi(\mathbf{r},t)$ be the following linear combination of two wave functions where $c_a(t)$ and $c_b(t)$ are dimensionless time-dependent coefficients such that $|c_a(t)|^2 + |c_b(t)|^2 = 1$ for all time t.

$$\Psi(\mathbf{r},t) = c_a(t)\psi_a(\mathbf{r})\exp\left(-\frac{i}{\hbar}E_at\right) + c_b(t)\psi_b(\mathbf{r})\exp\left(-\frac{i}{\hbar}E_bt\right)$$

Let $\hat{H}(\mathbf{r},t)$ be the Hamiltonian

$$\hat{H}(\mathbf{r},t) = \hat{H}_0(\mathbf{r}) + \hat{H}_1(\mathbf{r},t)$$

where

$$\hat{H}_0 \psi_a = E_a \psi_a, \quad \hat{H}_0 \psi_b = E_b \psi_b$$

Let $E_b > E_a$. The first-order perturbation solution for $c_b(t)$ is

$$c_b(t) = -\frac{i}{\hbar} \int_0^t \langle \psi_b | \hat{H}_1 | \psi_a \rangle \exp(i\omega_0 t') dt', \quad \omega_0 = \frac{E_b - E_a}{\hbar}$$

Let $\hat{H}_1(\mathbf{r},t)$ be the perturbation

$$\hat{H}_1(\mathbf{r},t) = \hat{V}(\mathbf{r})\cos(\omega t)$$

Then by substitution

$$c_b(t) = -\frac{i}{\hbar} \langle \psi_b | \hat{V} | \psi_a \rangle \int_0^t \cos(\omega t') \exp(i\omega_0 t') dt'$$

Solve the integral.

$$\int_0^t \cos(\omega t') \exp(i\omega_0 t') dt' = -\frac{i}{2} \left(\frac{\exp(i(\omega_0 - \omega)t) - 1}{\omega_0 - \omega} + \frac{\exp(i(\omega_0 + \omega)t) - 1}{\omega_0 + \omega} \right)$$
(1)

Hence

$$c_b(t) = -\frac{\langle \psi_b | \hat{V} | \psi_a \rangle}{2\hbar} \left(\frac{\exp(i(\omega_0 - \omega)t) - 1}{\omega_0 - \omega} + \frac{\exp(i(\omega_0 + \omega)t) - 1}{\omega_0 + \omega} \right)$$
(2)

As an approximation, discard the second term since the first term dominates for $\omega \approx \omega_0$.

$$c_b(t) = -\frac{\langle \psi_b | V | \psi_a \rangle}{2\hbar} \frac{\exp(i(\omega_0 - \omega)t) - 1}{\omega_0 - \omega}$$

Rewrite $c_b(t)$ using a sine function.

$$c_b(t) = -\frac{i}{\hbar} \langle \psi_b | \hat{V} | \psi_a \rangle \frac{\sin\left(\frac{1}{2}(\omega_0 - \omega)t\right)}{\omega_0 - \omega} \exp\left(\frac{i}{2}(\omega_0 - \omega)t\right)$$
(3)

The transition probability is

$$\Pr_{a \to b}(t) = |c_b(t)|^2 = \frac{\left| \langle \psi_b | \hat{V} | \psi_a \rangle \right|^2}{\hbar^2} \frac{\sin^2 \left(\frac{1}{2} (\omega_0 - \omega) t \right)}{(\omega_0 - \omega)^2} \tag{4}$$