Question number	Scheme	Marks
9 (a)	$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.03$	B1
	$A = \frac{1}{2}x^2 \sin 60^\circ = \frac{\sqrt{3}}{4}x^2$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{\sqrt{3}}{2}x$	A1
	When $x = 2$ $\frac{dx}{dt} = \frac{1}{\sqrt{3}} \times 0.03 = 0.0173 \text{ cm/s}$	M1 A1 (5)
(b)	$V = \sqrt{3}x^3 \qquad \frac{\mathrm{d}V}{\mathrm{d}x} = 3\sqrt{3}x^2$	M1
	When $x = 2 \frac{dV}{dt} = 12\sqrt{3} \times 0.0173 = 0.36$	M1 A1 (3)
Total 8 mark		l 8 marks

Part	Mark	Guidance	
(a)	B1	For stating or using correctly in their Chain Rule $\frac{dA}{dt} = 0.03$	
		For using the correct formula $\left(\frac{1}{2}ab\sin C\right)$ with the correct lengths and	
		angle of 60° or $\frac{\pi}{3}$, for the cross-sectional area of the prism to	
	M1	obtain $A = \frac{1}{2}x^2 \sin 60^\circ = \left(\frac{\sqrt{3}}{4}x^2\right)$ and differentiating their expression which	
		must be as a minimum $A = px^2$ to obtain $\frac{dA}{dx} = qx$ [where p and q are constants].	
		[The height of the triangle is $\frac{\sqrt{3}}{2}x$ if they use $\frac{1}{2} \times \text{base} \times \text{height}$]	
	A1	For the correct $\frac{dA}{dx} = \frac{\sqrt{3}}{2}x$	
	M1	For applying a correct Chain rule using their $\frac{dA}{dx}$ and $x = 2$ to obtain	
		$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(\frac{1}{\frac{\mathrm{d}A}{\mathrm{d}x}} \times \frac{\mathrm{d}A}{\mathrm{d}t}\right) = \frac{\mathrm{d}x}{\mathrm{d}A} \times \frac{\mathrm{d}A}{\mathrm{d}t} = \frac{2}{\sqrt{3}} \times \frac{1}{2} \times 0.03$	
	A1	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.0173$	
(b)	M1	For a correct expression for the volume using their A from part (a) to obtain $V = \frac{\sqrt{3}}{4}x^2 \times 4x = (\sqrt{3}x^3)$ and differentiating their expression which must be	
		as a minimum $V = mx^3$ to obtain as a minimum $\frac{dV}{dx} = nx^2$ [where m and n	
		are constants]	
		$\left(\frac{\mathrm{d}V}{\mathrm{d}x} = 3\sqrt{3}x^2\right)$	
	M1	For applying a correct Chain rule using their $\frac{dV}{dx}$ and $x = 2$ to obtain	
		$\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt} = 12\sqrt{3} \times 0.0173 = \begin{bmatrix} 0.359 \end{bmatrix} \text{(ft their } \frac{dx}{dt} \text{)}$	
		Note: $\frac{dx}{dt} = 0.0173$ or $\frac{\sqrt{3}}{100}$	
		$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 12\sqrt{3} \times \frac{\sqrt{3}}{100} = \frac{9}{25} = 0.36\right)$	
	A1	For awrt 0.36	