2º Parcial de Ec. Dif. y Cálculo Multivariado - 2022

Estudiante: UADER - 13/6

Estadiani.											1011
Ejercicio	1	2a	2b	3a	3b	3c	3d	4a	4b	5	Total
Puntaje asignado	8	8	8	8	8	8	8	10	10	24	100
Puntaje obtenido											

1) Calcular el siguiente límite doble. (Debe probar varias trayectorias, se sugieren:

y=ax, y=ax²)
$$\lim_{(x,y)\to(0,0)} \frac{-3xy}{x^2+y^2}$$

- 2) Dada $z=f(x,y)=x^2+7y^2$, con $x(u,t)=u+\cos(t)$ y y(u,t)=sen(t)-u hallar $\frac{\partial z}{\partial u}$ y $\frac{\partial z}{\partial t}$
- 3) Para $z=4-x^2-2y^2$ se pide:
 - (a) Dominio y Rango.
 - (b) Hallar ∇z
 - (c) $D_u f(x, y)$ en el punto (1,1) y en la dirección del vector \vec{u} que va del punto (-1,-1) hacia el punto (0,0)
 - (d) Hallar su/s extremo/s relativo/s.
- 4) Encuentre la solución general de las siguientes ecuaciones diferenciales
 - (a) $y' + 3x^2y = x$
 - (b) y''-10y'+25y=0
- 5) Indique si las siguientes proposiciones son verdaderas o falsas, justificando su respuesta. Considerando que $f:D\subseteq R^2\to R$ es una función de dos variables reales diferenciable
 - (a) La función f es diferenciable porque es continua.
 - (b) Si $(a, b) \in D$ es un punto crítico de f, entonces f(a, b) es máximo o es mínimo de f.
 - (c) El máximo valor de la derivada direccional de f en un punto $(a, b) \in D$ en la dirección de un vector unitario $\vec{u} = (a, b)$ se da cuando este vector es perpendicular al vector gradiente de f.
 - (d) Considerando que f es una función compuesta f[x(t), y(t)] y sabiendo que $\frac{\partial f}{\partial x}(0,0)=3$ y $\frac{\partial f}{\partial y}(0,0)=4$, y además x=x(t) y y=y(t) son funciones derivables, siendo $\frac{dx}{dt}(0)=-2$ y $\frac{dy}{dt}(0)=-1$, entonces $\frac{df}{dt}(0)=8$

2º Parcial de Ec. Dif. y Cálculo Multivariado - 2022

Estudiante: UADER - 13/6

Ejercicio	1	2a	2b	3a	3b	3c	3d	4a	4b	5	Total
Puntaje asignado	8	8	8	8	8	8	8	10	10	24	100
Puntaje obtenido											

1) Calcular el siguiente límite doble. (Debe probar varias trayectorias, se sugieren:

y=ax, y=ax²)
$$\lim_{(x,y)\to(0,0)} \frac{-3xy}{x^2+y^2}$$

- 2) Dada $z=f(x,y)=x^2+7y^2$, con $x(u,t)=u+\cos(t)$ y y(u,t)=sen(t)-u hallar $\frac{\partial z}{\partial u}$ y $\frac{\partial z}{\partial t}$
- 3) Para $z=4-x^2-2y^2$ se pide:
 - (a) Dominio y Rango.
 - (b) Hallar ∇z
 - (c) $D_u f(x, y)$ en el punto (1,1) y en la dirección del vector \vec{u} que va del punto (-1,-1) hacia el punto (0,0)
 - (d) Hallar su/s extremo/s relativo/s.
- 4) Encuentre la solución general de las siguientes ecuaciones diferenciales
 - (a) $y' + 3x^2y = x$
 - (b) y'' 10y' + 25y = 0
- 5) Indique si las siguientes proposiciones son verdaderas o falsas, justificando su respuesta. Considerando que $f:D\subseteq R^2\to R$ es una función de dos variables reales diferenciable
 - (a) La función f es diferenciable porque es continua.
 - (b) Si $(a, b) \in D$ es un punto crítico de f, entonces f(a, b) es máximo o es mínimo de f.
 - (c) El máximo valor de la derivada direccional de f en un punto $(a, b) \in D$ en la dirección de un vector unitario $\vec{u} = (a, b)$ se da cuando este vector es perpendicular al vector gradiente de f.
 - (d) Considerando que f es una función compuesta f[x(t), y(t)] y sabiendo que $\frac{\partial f}{\partial x}(0,0)=3$ y $\frac{\partial f}{\partial y}(0,0)=4$, y además x=x(t) y y=y(t) son funciones derivables, siendo $\frac{dx}{dt}(0)=-2$ y $\frac{dy}{dt}(0)=-1$, entonces $\frac{df}{dt}(0)=8$

2º Parcial de Ec. Dif. y Cálculo Multivariado - 2022

Estudiante: UADER -15/6

Dotte diditio.											ID LIC 15/0
Ejercicio	1	2a	2b	3a	3b	3c	3d	4a	4b	5	Total
Puntaje asignado	8	8	8	8	8	8	8	10	10	24	100
Puntaje obtenido											

1) Calcular el siguiente límite doble. (Debe probar varias trayectorias, se sugieren:

y=ax, y=ax²)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{\sqrt{x^2+y^2}}$$

- 2) Dada $z=f(x,y)=x^2y^2$, con $x(u,t)=u-\cos(t)$ y y(u,t)=sen(2u)-t hallar $\frac{\partial z}{\partial u}$ y $\frac{\partial z}{\partial t}$
- 3) Para $z = x^2 + y^2 4$ se pide:
 - (a) Dominio y Rango.
 - (b) Hallar ∇z
 - (c) $D_u f(x, y)$ en el punto (2,2) y en la dirección del vector \vec{u} que va del punto (0,1) hacia el punto (1,0)
 - (d) Hallar su/s extremo/s relativo/s.
- 4) Encuentre la solución general de las siguientes ecuaciones diferenciales
 - (a) $y' + 2xy = x^3$
 - (b) 12y''-5y'-2y=0
- 5) Indique si las siguientes proposiciones son verdaderas o falsas, justificando su respuesta. Considerando que f: D ⊆ R² → R es una función de dos variables reales diferenciable
 - (a) El gradiente de f en un punto (a, b) de su dominio es perpendicular a la gráfica de la función en ese punto.
 - (b) Si $(a, b) \in D$ es un punto crítico de f, entonces (a, b) es un punto de máximo o de mínimo de f.
 - (c) El mínimo valor de la derivada direccional de f en un punto $(a, b) \in D$ en la dirección de un vector unitario $\vec{u} = (a, b)$ se da cuando este vector tiene la misma dirección del vector gradiente de f.
 - (d) Si $\frac{\partial^2 f}{\partial x^2}(a,b) > 0$ $y \frac{\partial^2 f}{\partial y^2}(a,b) < 0$, entonces (a,b) es punto silla.

2º Parcial de Ec. Dif. y Cálculo Multivariado - 2022

Estudiante:											ADER -15/6
Ejercicio	1	2a	2b	3a	3b	3c	3d	4a	4b	5	Total
Puntaje asignado	8	8	8	8	8	8	8	10	10	24	100
Puntaje obtenido											

1) Calcular el siguiente límite doble. (Debe probar varias trayectorias, se sugieren:

y=ax, y=ax²)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{\sqrt{x^2+y^2}}$$

- 2) Dada $z=f(x,y)=x^2y^2$, con $x(u,t)=u-\cos(t)$ y y(u,t)=sen(2u)-t hallar $\frac{\partial z}{\partial u}$ y $\frac{\partial z}{\partial t}$
- 3) Para $z=x^2+y^2-4$ se pide:
 - (a) Dominio y Rango.
 - (b) Hallar ∇z
 - (c) $D_u f(x, y)$ en el punto (2,2) y en la dirección del vector \vec{u} que va del punto (0,1) hacia el punto (1,0)
 - (d) Hallar su/s extremo/s relativo/s.
- 4) Encuentre la solución general de las siguientes ecuaciones diferenciales
 - (a) $y' + 2xy = x^3$
 - (b) 12y''-5y'-2y=0
- 5) Indique si las siguientes proposiciones son verdaderas o falsas, justificando su respuesta. Considerando que f: D⊆ R² → R es una función de dos variables reales diferenciable
 - (a) El gradiente de f en un punto (a, b) de su dominio es perpendicular a la gráfica de la función en ese punto.
 - (b) Si (a, b) ∈ D es un punto crítico de f, entonces (a, b) es un punto de máximo o de mínimo de f.
 - (c) El mínimo valor de la derivada direccional de f en un punto $(a, b) \in D$ en la dirección de un vector unitario $\vec{u} = (a, b)$ se da cuando este vector tiene la misma dirección del vector gradiente de f.
 - (d) Si $\frac{\partial^2 f}{\partial x^2}(a,b) > 0$ $y \frac{\partial^2 f}{\partial y^2}(a,b) < 0$, entonces (a,b) es punto silla.