Resumo Notação O, Ω e Θ

Rodrigo Richard Gomes

Agosto/2022

1 Notação O

- Limite assintótico superior
- A notação O indica limite superior. Logo, se uma função é $O(n^2)$, ela também será limitada assintoticamente por funções de graus superiores.
- f(n) = O(g(n)) significa que f(n) cresce NO MÁXIMO tão rapidamente quanto g(n).
- g(n) é um limite superior assintótico para f(n).
- f(n) pode atingir g(n), mas nunca ultrapassá-la.
- Significa que g(n) limita f(n) por cima.

$$O(g(n)) = \{ f(n) | \exists c > 0, n_0 > 0, \quad 0 \le f(n) \le c \cdot g(n) \quad \forall n \ge n_0 \}$$
 (1)

Figura 1: f(n) limitada assintoticamente por O(g(n))

1.1 Exemplo 1

Prove que $n^2 + 10 = O(n^2)$

- $f(n) = n^2 + 10$
- $\bullet \ g(n) = n^2$
- c = 2

Agora precisamos descobrir um valor para n_0 que valida a inequação $0 \le n^2 + 10 \le 2n^2$.

- $n_0 = 1: 0 \le 11 \le 2$ (falso)
- $n_0 = 2: 0 \le 14 \le 8$ (falso)
- $n_0 = 3: 0 \le 19 \le 18$ (falso)
- $n_0 = 4: 0 \le 26 \le 32$ (verdadeiro)

Portanto, os valores c=2 e $n_0=4$ provam que $f(n)=n^2+10=O(n^2)$.

1.2 Exemplo 2

Para cada função abaixo, identifique o limite superior O.

- $f(n) = 3n^2 + 1 = O(n^2), O(n^3), O(2^n)...$
- $f(n) = 2n^3 + \lg n = O(n^3), O(n^4), O(2^n)...$
- $f(n) = 5 \frac{n \lg n}{n} + 2n = \frac{O(n \lg n)}{O(n^2)}, O(n^2), O(n^3), O(2^n)...$
- f(n) = 21 = O(1), $O(\lg n)$, O(n), $O(n \lg n)$... Obs: As constantes não dependem do tamanho da entrada (n). Assim, convencionou-se que O(constante) = O(1)
- $f(n) = \lg n + 3$ n = O(n), $O(n^2)$, $O(n^3)$, $O(2^n)$...
- $f(n) = \lg n + 2 = O(\lg n), O(n), O(n \lg n), O(n^2), O(n^3), O(2^n)...$

2 Notação Ω

- Limite assintótico inferior
- A notação Ω indica limite inferior. Logo, se uma função é $\Omega(n^2)$, ela também será limitada assintoticamente por funções de graus inferiores.
- $f(n) = \Omega(g(n))$ significa que f(n) cresce NO MÍNIMO tão lentamente quanto g(n).
- g(n) é um limite inferior assintótico para f(n).
- Significa que g(n) limita f(n) por baixo.

$$\Omega(g(n)) = \{ f(n) | \exists c > 0, n_0 > 0, \quad 0 \le c \cdot g(n) \le f(n) \quad \forall n \ge n_0 \}$$
 (2)

Figura 2: f(n) limitada assintoticamente por $\Omega(g(n))$

2.1 Exemplo 1

Prove que $n^2 + 10 = \Omega(n^2)$

- $f(n) = n^2 + 10$
- $g(n) = n^2$
- c = 1

Agora precisamos descobrir um valor para n_0 que valida a inequação $0 \le n^2 \le n^2 + 10$.

- $n_0 = 1 : 0 \le 1 \le 11$ (verdadeiro)
- $n_0 = 2 : 0 \le 4 \le 14$ (verdadeiro)
- $n_0 = 3: 0 \le 9 \le 19$ (verdadeiro)
- $n_0 = 4: 0 \le 16 \le 26$ (verdadeiro)

Nesse exemplo, com c=1, qualquer valor para n_0 que seja maior ou igual a zero, prova que $f(n)=n^2+10=\Omega(n^2)$.

2.2 Exemplo 2

Para cada função abaixo, identifique o limite inferior Ω .

- $f(n) = 3n^2 + 1 = \Omega(n^2)$, $\Omega(n \lg n)$, $\Omega(n)$, $\Omega(\lg n)$, $\Omega(1)$
- $f(n) = 2n^3 + \lg n = \Omega(n^3)$, $\Omega(n^2)$, $\Omega(n)$, $\Omega(\lg n)$, $\Omega(1)$
- $f(n) = 5 \frac{n \lg n}{n} + 2n = \frac{\Omega(n \lg n)}{n}$, $\Omega(n)$, $\Omega(\lg n)$, $\Omega(1)$
- $f(n) = 21 = \Omega(1)$ Obs: As constantes não dependem do tamanho da entrada (n). Assim, convencionou-se que $\Omega(constante) = \Omega(1)$
- $f(n) = \lg n + 3 = \Omega(n), \Omega(\lg n), \Omega(1)$
- $f(n) = \frac{\lg n}{1} + 2 = \frac{\Omega(\lg n)}{1}$, $\Omega(1)$

3 Notação Θ

- Limite assintótico justo
- $f(n) = \Theta(g(n))$ significa que f(n) cresce tão rapidamente e, ao mesmo tempo, tão lentamente quanto g(n).
- g(n) é um limite assintótico restrito para f(n).
- Significa que g(n) limita f(n) tanto por cima quanto por baixo.
- g(n) limita superiormente e inferiormente f(n)

$$\Theta(g(n)) = \{ f(n) | \exists c_1 > 0, c_2 > 0, n_0 > 0, \quad 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \quad \forall n \ge n_0 \}$$
(3)

Figura 3: f(n) limitada assintoticamente por $\Theta(g(n))$

3.1 Exemplo 1

Prove que $n^2 + 10 = \Theta(n^2)$

- $f(n) = n^2 + 10$
- $g(n) = n^2$
- $c_1 = 1 e c_2 = 2$

Agora precisamos descobrir um valor para n_0 que valida a inequação $0 \le n^2 \le n^2 + 10 \le 2n^2$.

- $n_0 = 1: 0 \le 1 \le 11 \le 2$ (falso)
- $n_0 = 2: 0 \le 4 \le 14 \le 8$ (falso)
- $n_0 = 3: 0 \le 9 \le 19 \le 18$ (falso)
- $n_0 = 4: 0 \le 16 \le 26 \le 32$ (verdadeiro)

Portanto, os valores $c_1 = 1$, $c_2 = 2$ e $n_0 = 4$ provam que $f(n) = n^2 + 10 = \Theta(n^2)$.

3.2 Exemplo 2

Para cada função abaixo, identifique o Θ .

- $f(n) = 3\frac{n^2}{1} + 1 = \frac{\Theta(n^2)}{1}$
- $f(n) = 2n^3 + \lg n = \Theta(n^3)$
- $f(n) = 5 \frac{n \lg n}{n} + 2n = \frac{\Theta(n \lg n)}{n}$
- $f(n) = 21 = \Theta(1)$ Obs: As constantes não dependem do tamanho da entrada (n). Assim, convencionou-se que $\Theta(constante) = \Theta(1)$
- $f(n) = \lg n + 3 = \Theta(n)$
- $f(n) = \frac{\lg n}{1} + 2 = \frac{\Theta(\lg n)}{1}$