本试卷分选择题和非选择题两部分,共100分。考试用时75分钟。 注意事项:

答题前,考生务必将自己的学校、姓名写在答题卡上。考试结束后,交回答题卡。 可能用到的相对原子质量: H1 C12 N14 O16 S32 Mn55

- 一、单项选择题:共13题,每题3分,共39分。每题只有一个选项最符合题意。
- 1. 第 19 届亚运会秉持"绿色、智能、节俭、文明"的办会理念。下列说法不正确的是
 - A. 会场"莲花碗"(如图)采取自然采光方式有利于实现"碳中和"
 - B. 火炬"薪火"使用的 1070 铝合金具有硬度高、耐高温的特点
 - C. 吉祥物"江南忆"机器人所采用芯片的主要成分为二氧化硅
 - D. 特许商品"亚运莲花尊"的艺术载体青瓷属于无机非金属材料

- A. NH3中 H元素的化合价为一1
- C. NO₂发生氧化反应

- B. NO 是酸性氧化物
- D. H₂O 的结构式为 /

3. 实验室制取 NH3 的实验原理及装置均正确的是

- A. 生成 NH₃ B. 干燥 NH₃ C. 收集 NH₃

- D. 吸收 NH₃
- 4. 硼碳氮 (BCN) 材料可用作耐磨涂层。下列说法正确的是

 - A. 原子半径: r(B) > r(C) > r(N)
 - C. 酸性强弱: HNO₃>H₃BO₃>H₂CO₃
 - 阅读下列材料,完成5~7题:
- B. 第一电离能: I₁(B)>I₁(C)>I₁(N)
- D. 硼、石墨、固态氮的晶体类型相同

氧及其化合物具有广泛用途。O2是常用的氧化剂, C2H2的燃烧热为 1299.6 kJ·mol⁻¹, 氧 炔焰产生的高温可用于焊接金属。O3可用于水处理, pH 约为 8 时, O3可与 CN 反应生成 HCO₃、N₂和 O₂。C₂H₅¹⁸OH 可用于研究酯化反应的机理。CaO 可用于烟气(含 N₂、O₂、 CO₂、SO₂等) 脱硫。H₂O₂是一种绿色氧化剂, 电解 NH₄HSO₄饱和溶液产生的(NH₄)₂S₂O₈经 水解可制得 H₂O₂。

- 5. 下列说法正确的是
 - A. O₃是由极性键构成的极性分子
 - B. C₂H₅¹⁸OH 与 C₂H₅¹⁶OH 互为同素异形体
 - C. SO₂和 CO₂的中心原子杂化轨道类型均为 sp²
 - D. CaO 晶体中 Ca²⁺与 O²⁻的相互作用具有饱和性和方向性

高三化学试卷 第1页(共6页)

- 6. 下列化学反应表示正确的是
 - A. 乙炔的燃烧: $C_2H_2(g) + \frac{5}{2}O_2(g) = 2CO_2(g) + H_2O(g)$ $\Delta H = -1299.6 \text{ kJ·mol}^{-1}$
 - B. CaO 吸收 SO₂ 的反应: CaO+SO₂ == CaSO₄
 - C. O₃处理含 CN⁻废水的反应: 5O₃+2CN⁻+H₂O == 5O₂+N₂+2HCO₃
 - D. 水解(NH₄)₂S₂O₈制得 H₂O₂的反应: S₂O₈²⁻+2OH⁻== 2SO₄²⁻+H₂O₂
- 7. 下列物质结构与性质或物质性质与用途具有对应关系的是
 - A. N2分子中含共价三键, N2的沸点比 O2的低
 - B. H₂O₂分子之间形成氢键,可与水任意比例互溶
 - C. O₂具有氧化性,可作为燃料电池的氧化剂
 - D. O₃的溶解度比 O₂大,可用于饮用水消毒杀菌
- 8. 钠及其化合物的转化具有重要应用。下列说法不正确的是
 - A. 工业制备 NaOH 的原理:2NaCl+2H2O = 2NaOH+Cl2 † +H2 †
 - B. 侯氏制碱过程中的物质转化: $NaCl \xrightarrow{CO_2} NaHCO_3 \xrightarrow{\Delta} Na_2CO_3$
 - C. Na₂O₂与 CO₂反应为潜水艇供氧的原理: 2Na₂O₂+2CO₂ == 2Na₂CO₃+O₂
 - D. 苯酚钠溶液与少量 CO₂反应: C₆H₅ONa+CO₂+H₂O → C₆H₅OH+NaHCO₃
- 9. 锂-硫电池因成本低、比能量高被寄予厚望。一种锂-硫电池的结构如题 9 图所示,硫电极 采用柔性聚丙烯-石墨烯-硫复合材料。工作时,在硫电极发生反应:

$$\frac{1}{2}S_8 + e^- = \frac{1}{2}S_8^{2-}, \frac{1}{2}S_8^{2-} + e^- = S_4^{2-}, 2Li^+ + \frac{x}{4}S_4^{2-} + 2(1-\frac{x}{4})e^- = Li_2S_x$$

下列说法正确的是

- A. 充电时, Li⁺从 b 电极向 a 电极迁移
- B. 放电时,外电路电子流动的方向是 a 电极→b 电极
- C. 放电时正极反应为: $2Li^{+}+\frac{x}{8}S_{8}-2e^{-}=Li_{2}S_{x}$
- D. 石墨烯的作用是增强硫电极导电性能
- 10. 化合物 Y 是一种精细化工中间体, 其部分合成路线如下:

下列说法不正确的是

- A. X能与 HCHO 发生缩聚反应
- δ+ δ-B. X含C=O, 能与 HCN 发生加成反应
- C. X与足量H₂加成的产物中含手性碳原子 D. X→Y转化中可能产生Y的顺反异构体
- 11. 用 NaAlO2溶液制备 Al2O3的过程如题 11 图所示。下列说法不正确的是
 - A. $0.1 \text{ mol} \cdot \text{L}^{-1} \text{ NaHCO}_3$ 溶液中: $c(\text{H}^+) c(\text{OH}^-) = c(\text{CO}_3^{2-}) c(\text{H}_2\text{CO}_3)$
 - B. "反应"说明 CO_3^{2-} 结合质子的能力强于 AIO_2^{2-}
 - C. "灼烧"时发生反应的 ΔS>0
 - D. "电解"时阳极(惰性电极)的电极反应为: $2H_2O-4e^-+4CO_3^2---4HCO_3^-+O_2$ †

a电极 隔膜 b电极

题9图

12. 室温下,下列实验探究方案能达到探究目的的是

选项	探究方案	探究目的
Α	向 Fe(NO ₃) ₂ 溶液中滴入硫酸酸化的 H ₂ O ₂ 溶液, 观察溶液 颜色变化	探究 H ₂ O ₂ 与 Fe ³⁺ 氧化性强弱
1 13	用 pH 计分别测定等体积的 CH ₃ COOH 溶液和 CH ₂ CICOOH 溶液的 pH	探究键的极性对羧酸酸性的 影响
С	向圆底烧瓶中加入 2.0 g NaOH、15 mL 无水乙醇、碎瓷片和 5 mL 1-溴丁烷,微热,将产生的气体通入酸性 KMnO ₄ 溶液,观察现象	探究 1-溴丁烷的消去产物
D	向甲、乙两支试管中分别加入 10 mL 0.01 mol·L ⁻¹ FeCl ₃ 溶液, 向甲试管中加入少量 FeCl ₃ 晶体,振荡、静置,对比观察溶液颜色变化	探究反应物浓度对水解平衡 的影响

- - I: $CO_2(g)+3H_2(g)$ $CH_3OH(g)+H_2O(g)$ Δ H_1 II: $CO_2(g)+H_2(g)$ $CO(g)+H_2O(g)$ Δ H_2 反应相同时间,测得不同温度下 CO_2 转化率和 CH_3OH 选择性如题 13 图实验值所示。图中平 衡值表示在相同条件下达到平衡状态时 CO_2 转化率和 CH_3OH 选择性随温度的变化。

下列说法不正确的是

- A. 该测定实验体系未达到化学平衡状态
- B. 相同条件下,压缩容器体积能提高 CO2 转化率的实验值
- C. 相同温度下,CH₃OH选择性的实验值大于平衡值,说明反应 I 的速率大于反应 II
- D. 260~280℃, CO₂ 转化率平衡值随温度升高而增大,说明随温度升高反应 I 平衡正向 移动的程度大于反应 II 平衡逆向移动的程度
- 二、非选择题:共4题,共61分。
- 14. (15分)MnSO4可用于制备多种物质。

25℃时,相关物质的 Ksp 见下表。

物质	Fe(OH) ₂	Fe(OH) ₃	Al(OH) ₃	Mn(OH) ₂
$K_{\rm sp}$	8.0×10^{-16}	3.0×10^{-39}	1.0×10^{-33}	1.0×10^{-13}

(1)MnSO₄ 的制备。由软锰矿粉(主要成分为 MnO₂, 含少量 Fe₂O₃、Al₂O₃、SiO₂)制备 MnSO₄的过程可表示为:

①浸取。保持温度、各物质投料量及浓度不变,能提高 Mn²⁺浸出率的措施有____。

- ③过滤。滤渣的主要成分有_____。
- (2)由 MnSO4制备 CuMnOx催化剂。
 - ①基态 Mn²⁺的价电子排布式为______; SO₄²⁻的空间结构为______。

15. (15分)本维莫德(G)是治疗湿疹的非激素类外用药,其合成路线如下:

$$COOCH_3$$
 $COOCH_3$ $COOCH_4$ $COOCH_5$ COO

其中,一Ph为苯基(一())。

- (1)室温下,在水中A的溶解度比B的_▲_(填"大"或"小"或"无差别")。
- (2)X的分子式为 C₂H₆SO₄,常用作甲基化试剂,其结构简式为___▲__。
- (3)Y的分子式为 C₃H₈O, B→C的反应类型为_____。
- (4)B的一种同分异构体同时满足下列条件,写出该同分异构体的结构简式 ▲ _ 。 碱性条件下水解后酸化生成两种产物。一种产物含有苯环,其核磁共振氢谱只有 2 组 峰;另一种产物能与银氨溶液反应,被氧化为碳酸后分解生成二氧化碳和水。
- (5)D与 SOCl₂等物质的量反应时会产生的污染性气体为____(填化学式)。

Ph₃P,无机试剂和有机溶剂任用,合成路线流程图示例见本题题干)。

- 16. (15分)实验室制备 NaClO 溶液并用于处理含氨氮废水。
 - (1)低温下将 Cl2 通入 NaOH 溶液中制得 NaClO 溶液, 装置如题 16 图-1 所示。

- ①装置 B 中盛放的试剂是 🔺
- ②为了防止装置 C 温度升高生成副产物 NaClO3, 可采取的操作为_____。
- (2)NaClO 溶液处理含氨氮废水 (pH 为 6.0~7.0)。室温下,分别取 200 mL 预处理后的废水,将初始 pH 调节至不同值,加入等量 NaClO 溶液,30 分钟后检测剩余氨氮浓度。不同初始 pH 对 NaClO 氧化脱除氨氮效果的影响如题 16 图-2 所示,不同初始 pH 对应反应结束后的 pH 如题 16 图-3 所示。
 - ①NaClO 将废水中 NH₃氧化为无污染气体,反应的化学方程式为_______,实验中 NaClO 溶液的实际投入量大于理论计算量,其原因是________。

- ②处理后的废水 pH 在 6.0~9.0 之间才能排放。NaClO 溶液处理含氨氮废水初始 pH 设置为 7.0 而不是 2.0 的原因是_______。

(须使用的试剂: 0.0500 mol·L⁻¹ Na₂S₂O₃ 溶液、淀粉溶液)

17. (16 分)"碳达峰、碳中和"是我国社会发展重大战略之一。CH₄ 与 CO₂ 经催化重整可制 得 CO 和 H₂,相关反应为:

主反应: CH₄(g)+CO₂(g) == 2CO(g)+2H₂(g) ΔH

副反应: I. $H_2(g)+CO_2(g) \longrightarrow H_2O(g)+CO(g)$ ΔH_1

II. $2CO(g) = CO_2(g) + C(s)$ ΔH_2

III. $CH_4(g) = C(s) + 2H_2(g)$ ΔH_3

IV. $CO(g) + H_2(g) = C(s) + H_2O(g)$ ΔH_4

其中,副反应II、III、IV形成的积碳易导致催化剂活性降低。

- (1)主反应的 ΔH =____。
- (2)CH₄的还原能力(R)可衡量 CO₂转化效率, $R = \frac{\Delta n(CO_2)}{\Delta n(CH_4)}$ (同一时段内 CO₂与 CH₄的物质的量变化量之比)。常压下,将 CH₄和 CO₂按物质的量之比 1:3 投料,反应相同时间,CH₄和 CO₂的转化率随温度变化如题 17 图-1 所示。
 - ①CH₄的转化率在800℃时远大于400℃时的原因是____。
 - ②400~600℃时, R值的变化情况为_____。
 - ③1000℃时 R 值为____(写出计算过程)。

- (3)CH₄在 Pt-Ni 合金或 Sn-Ni 合金催化下脱氢反应历程与相对能量关系如题 17 图-2 所示 (*表示吸附在催化剂表面的物质)。从化学反应速率角度分析,脱氢反应选择的催化剂为 ▲ (填 "Pt-Ni 合金"或 "Sn-Ni 合金"),理由是 ▲ _。
- (4)Ni/6MnO_x-CeO₂ 催化 CH₄ 与 CO₂ 重整反应的路径甲和乙如题 17 图-3 所示。研究表明,在催化剂 Ni/CeO₂ 中掺入 MnO_x 可产生更多的氧空位,生成更多的可流动 O^{*},能有效减少催化剂的积碳生成。
 - ①路径甲、乙中生成的不同中间产物为____(填化学式)。
 - ②反应路径中,减少催化剂积碳的反应为______。

高三化学试卷 第6页(共6页)