

Quiz 2

Course Title: Real Analysis 1 Date: October 19, 2023 Course Code: MTH-240 Time Duration: 50 min Total Mark: 15 Time: 9.30-10.20 am

Give proper justifications for your answer. Mention the results or Theorems which you are using. Do not use the method of differentiation.

Q.1)a) Give $\varepsilon - \delta$ definition of a continuous function.

Q.1)b) Give an example of a function f such that $\lim_{x\to c} f(x)$ exists but not equal to f(c). 2+1=3-marks

Q.2)a) Show that if $f:(a,\infty)\to\mathbb{R}$ is such that $\lim_{x\to\infty}xf(x)=L$ where $L\in\mathbb{R}$, then $\lim_{x\to\infty}f(x)=0$.

Q.2)b) Can you give example of a continuous function such that $\lim_{x\to\infty} f(x) = L$ such that L is a finite number. 2.5 + 0.5 = 3-marks

Q.3)a) Suppose $f:[a,b] \to \mathbb{R}$ is continuous. If $c \in (a,b)$ is such that f(c) > 0, and if $0 < \beta < f(c)$, then show that there exists $\delta > 0$ such that $f(x) > \beta$ for all $x \in (c - \delta, c + \delta) \subseteq [a,b]$.

Q.3)b)Locate a root of the equation $1 - \frac{x^2}{4} = \cos x$ other than 0. (You can assume $\pi^2 = 9.87$) 1.5 + 1.5 = 3-marks

Q.4)a) Let $f:[0,\pi]\to\mathbb{R}$ be defined by f(0)=0 and $f(x)=x\sin\frac{1}{x}-\frac{1}{x}\cos\frac{1}{x}$ for $x\neq 0$. Is f continuous at x=0?

Q.4)b) If $\lim_{x\to 0+} f(x) = A$ and $\lim_{x\to 0-} f(x) = B$ and A may not be equal to B, then what is $\lim_{x\to 0+} f(x^3 - x)$?

1.5 + 1.5 = 3-marks

Q.5)a) Using ε - δ definition can you prove $f:(0,\infty)\to\mathbb{R}$ be defined by $f(x)=\frac{1}{\sqrt{x}}$ is a continuous function.

Q.5)b) Can you give an example of a function which is continuous only at one point in its domain? 2+1=3-marks