Série 2

Exercice 1. Trouver à quelles fonctions usuelles correspondent ces séries

$$\sum_{n=0}^{\infty}\frac{z^n}{n!}, \qquad \sum_{n=1}^{\infty}\frac{(-1)^n}{n}z^n, \qquad \sum_{n=0}^{\infty}z^n.$$

Exercice 2. Calculer la somme des séries suivantes pour |z| < 1:

$$\sum_{n=1}^{\infty} nz^{n}, \qquad \sum_{n=1}^{\infty} \frac{z^{n}}{n}, \qquad \sum_{n=1}^{\infty} \frac{z^{2n+1}}{2n+1}.$$

En déduire les identités suivantes :

$$\sum_{n=1}^{\infty} \frac{\cos n\phi}{n} = -\log \left| 2\sin \frac{\phi}{2} \right| \quad (0 < |\phi| < \pi),$$

$$\sum_{n=0}^{\infty} \frac{\sin(2n+1)\phi}{2n+1} = \frac{\pi}{4} \quad (0 < \phi < \pi),$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin n\phi}{n} = \frac{\phi}{2} \quad (0 < |\phi| < \pi).$$

Exercice 3. Calculer, pour $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \frac{1 + e^{it} + \dots + e^{int}}{n}.$$

Exercice 4. Soit $(a_n)_{n\geq 1}$ une suite décroissante de nombres réels t.q. $\lim_n a_n = 0$ et soit $(b_n)_{n\geq 1}$ une suite de nombres complexes t.q. $B_N := \sum_{n=1}^N b_n$ est une suite bornée.

- (1) Montrer que la série $\sum_{n=1}^{\infty} B_n(a_n a_{n+1})$ converge.
- (2) En déduire que la série $\sum_{n=1}^{\infty} a_n b_n$ converge aussi.
- (3) Pour quel $\theta \in \mathbb{R}$ la série

$$\sum_{n=1}^{\infty} \frac{e^{in\theta}}{\sqrt{n}}$$

converge?

(4) Trouver une suite de nombres complexe $(z_n)_{n\in\mathbb{N}}$ t.q. pour tout $k\in\mathbb{N}, \sum_{n=1}^{\infty} z_n^k$ converge mais $\sum_{n=1}^{\infty} |z_n|^k$ diverge.

Exercice 5.

- (1) Prouver que si $\sum_{k=0}^{\infty} a_k (z-z_*)^k$ est une série entière de rayon de convergence $\rho > 0$, alors elle converge (normalement) en tout $z \in D(z_*, \rho)$, et diverge pour tout $z \in \mathbb{C} \setminus \bar{D}(z_*, \rho)$.
- (2) Prouver ce lemme d'Abel : si

$$\sup_{k\in\mathbb{N}}|a_k|\,\rho^k<\infty$$

pour un certain $\rho \in (0, \infty)$, alors on a que $\sum_{k=0}^{\infty} a_k z^k$ converge uniformément sur tous les sous-ensembles compacts de $D(0, \rho)$.

(3) Trouver une série entière qui a rayon de convergence 1 et qui converge sur $\partial D(0,1)$ sauf en cinq points, où elle diverge.

Exercice 6. Soient $\sum_{k=0}^{\infty} a_k z^k$ et $\sum_{k=0}^{\infty} b_k z^k$ deux séries entières avec rayon de convergence au moins $\rho > 0$.

- (1) Montrer que la série entière $\sum (a_k + b_k) z^k$ a pour rayon de convergence au moins ρ .
- (2) On note

$$(a\star b)_k = \sum_{j=0}^k a_j b_{k-j} = \sum_{j=0}^k a_{k-j} b_j = \sum_{j,l:j+l=k} a_l b_j \ .$$
 Montrer que la série $\sum_{k=0}^\infty \left(a\star b\right)_k z^k$ a pour rayon de convergence au moins ρ et que

$$\sum_{k=0}^{\infty} (a \star b)_k z^k = \left(\sum_{k=0}^{\infty} a_k z^k\right) \left(\sum_{k=0}^{\infty} b_k z^k\right).$$