Manufacturing System Analysis Experiment

Batching

1. Experiment Overview

Title

Effects of batching on production system

- Objective
 - Model move batching and process batching, which are seen a lot in the industry, using the simulation
 - Consider how changes in batch size within a given variation affects each batching system

2. Theoretical Background

Move (transfer) Batches

•
$$CT(batching) = CT(batching) \frac{k-1}{2u(1)} t_e + \frac{k-1}{2} t_e(2) = CT(batching) + \frac{k-1}{2} \left(\frac{t_e(1)}{u(1)} + \frac{t_e(1)}{2} + \frac{t_e(1)}{$$

2. Theoretical Background

Process Batches (Parallel Batching)

• $CT = WTBT (Wait To Batch Time, Batch forming time) + CT_q(waiting time) +$

$$t(working\ time) = \frac{k-1}{2r_a} + (\frac{\frac{c_a^2}{k} + c_e^2}{2}) \left(\frac{u}{u-1}\right) t + 1 = \frac{k-1}{2ku}t + (\frac{\frac{c_a^2}{k} + c_e^2}{2}) \left(\frac{u}{1-u}\right)t + t$$

➤ Batching reduces the variability of the production system

3. Experiment Design

Yonsei Electronics has two production lines using batching:

- 1) Move batching
- 2) Process batching

Decide the appropriate batch size by calculating the cycle time and variability with the machine performance given below.

	Entity Create	Process time
Move Batching	15 min/unit	Expo (15 min)
Process Batching	15 min/unit	Expo (15 * batch size)

- Step 1-1. Simulation summary
 - Simulation consists of two batch methods:
 - 1) move (transfer) batch
 - 2) process batch
 - Each model is a simple system: create, batch, process, and dispose
 - Simulation runs for one day (24 hrs) and is repeated 10 times (Run Setup settings)

Step 1-2. Creating the model

- Basic simulation model is as the picture shown below
- Modules used: Create, Process, Batch, Separate, Dispose, Assign

<Picture 1> Models window with simulation modules

- Step 1-2. Creating the model (cont.)
 - Create one resource each for move batching and process batching

- Step 1-2. Creating the model (cont.)
 - Set 'Initial Picture' for each product to see the product moving through the line during simulation

- Step 1-2. Creating the model (cont.)
 - Set Create module
 - Move batching and process batching has the same constant arrival, as the objective is to see the effects of batch size

- Step 1-2. Creating the model (cont.)
 - Define variables to set batch size
 - Useful when experimenting through changing batch size

Step 1-2. Creating the model (cont.)

Type:

Last

Temporary

Save Criterion:

Cancel

Help

• Set Batch modules

Batch

Name:

Rule:

Move Batch

move batching size

Representative Entity Type:

Batch Size

Any Entity

Comment:

• Use the name typed in Variable module for batch size

Variables representing

the batch size

OK

- Step 1-2. Creating the model (cont.)
 - Assign new pictures for entity to see products batching
 - Use the add button to select the picture

- Step 1-2. Creating the model (cont.)
 - Set Separate module as shown for both system
 - Move Batching is separated by definition
 - Process Batching is separated for the experiment purpose

Step 1-2. Creating the model (cont.)

1. Move Batching

- Set action as 'Seize Delay Release'
 - = Station seize, process, and return the resource
- Use Add button to assign resources
- Delay time = exponential (15)

Step 1-2. Creating the model (cont.)

1. Move Batching

- Use a Process module to express the moving to the next process
- Set Action as Delay and Delay Type value to 0 as we do not consider the moving time

Step 1-2. Creating the model (cont.)

2. Process Batching

- Set action as 'Seize Delay Release'
- Use Add button to assign resources
- Delay time = EXPO (150) or (15 * batch size variable)
- Describes the work arriving at the process after batching

■ Step 2. Analyze the result report

- To analyze the variability of two machines, use [Waiting time / U x t]
 - Waiting time \approx V x U x t_e
 - $V \approx$ Waiting time / $U \times t$
 - V = variability, U = utilization (u/(1-u)), t_e = production time

■ Step 3. Change batch size & analyze the variability

• Change Batch size from 1 to 10 to analyze the performance

Q & A