Mysql快速讲义

峰云就她了

xiaorui.cc

about me

Name: 峰云就她了

Blog: xiaorui.cc

Github: github.com/rfyiamcool

Desc: 喜欢研究高性能服务端、数据库相关

基本选择

版本

- **Mysql** >= 5.7

Percona

recommend

Mariadb

more ...

秒杀压测

测试: update goods set stock = stock -1 where id = 1 and stock >3

并发连接	mysql 5.7	percona5.7	mysql (关闭死锁)	percona (关闭死锁)
256	2000	4000	6000	4200
512	500	4300	2500	4350
1024	30	5000	1500	5200

引擎的选择

*

Myisam

淘汰的玩意

*

Innodb

优秀全能手

Tokudb

高压缩率

Myrocks

基于lsm的rocksdb

表结构设计

- 🔭 innodb一定要有主键
- 主键最好整型,并单调递增
- 将text/blob大对象独立存放
- 要注意字符集/校验集的一致性,避免类型隐式转换
- > 尽量不要使用外键

表使用规范

- 🔭 使用Not null, default "
- 少用limit m, n取范围
- 多用limit, 减少检索及输出
- ※ 避免 select *
- 避免使用 存储过程

表使用规范

表的索引不要太多

表的字段不要太多

单表行数在1000w

索引基本规则

- idx(a, b, c) HIT where a = x and b = x
- idx(a, b, c) HIT where a > x
- idx(a, b, c) Not HIT where b > x
- idx(a, b, c) Not HIT where a > x and b = x
- idx(a, b, c) Not HIT where a = x and c = x

索引基本规则

idx(sex)

→ 显示 和 隐式 join 性能与结果一致

from a,b vs from a inner join b on

索引高级规则

- idx(a, b, c) HIT where a = x order by b
- idx(a, b, c) HIT where a > x order by a
- idx(a, b, c) HIT where a = x and b > x order by a
- idx(a, b, c) Not HIT where a > x order by b
- idx(a, b, c) HIT where a = x group by a, b
- idx(a, b, c) Not HIT where a = x group by b

联表索引

驱动表

笛卡尔积

nested loop join

```
for each row in t1 matching range {
   for each row in t2 matching refer key {
     for each row in t3 {
        if row satisfies join conditions,
        send to client
     }
   }
}
```

联表查询

- 篇单说, 小表驱动大表
- 右表的条件列一定要加上索引
- 显示 和 隐式 join 性能与结果一致
 - from a, b vs from a inner join b on
 - Inner自动选择驱动表, left join 选择左面表.

关键

多用Explain

多看慢查询

优化器会随着数据量变大发生变化

explain

using index;
using where;
using where; using index;
using filesort;
using temporary;

High

Low

排查问题

事务锁

通过三表信息能快速发现哪些事务在阻塞其他事务

INFORMATION_SCHEMA.INNODB_TRX

INNODB_LOCKS

INNODB_LOCK_WAITS

慢查询

开启定义慢查询条件及开关

slow_query_log

开关

slow_query_log_file # 日志路径

long_query_time # 超时时间

管理连接

- show processlist; # 正在进行的sql语句.
 - 🙏 Sleep
 - Sending data
 - ***** Waiting for tables
 - more...
- ᄎ kill id;
 - ★ 杀掉某任务

Ops Mysql

修改表结构

alter table xxxx

非阻塞

pecona/ pt-online-schema-change

触发器方案

github/gh-ost

模拟主从协议

percona toolkit

- pt-heartbeat
- pt-table-checksum
- pt-table-sync
- pt-archiver
- 🗱 pt-kill

热备份

- **X** Mysqldump
 - 非─致性备份
- **M**ysqlpump
 - 基于表并发
- Percona XtraBackup

binlog2sql

- 1. binlog 日志格式为 row
- 2. 找到相关的sql pos点
- 3. 导出回溯sql语句
- 4. 导入重写修改的数据

Optimize Mysql

innodb

- innodb_buffer_pool_size
- innodb_log_file_size
- **innodb_log_buffer_size**
- **innodb_flush_log_at_trx_commit**
- innodb_file_per_table
- innodb_buffer_pool_instances
- **m**ore

innodb

- ***** autocommit
- innodb_deadlock_detect
- innodb_lock_wait_timeout

FB: 可以这么调优lock_deadlock ...

Mysql: 方案不靠谱

FB: 我写完了, 已提pr了

Mysql: 已经merge了

sql

- 连接池复用
- * 批量更新减少rtt消耗
- * 避免大数据返回
- * 适当的压缩数据
- 孝 多用乐观锁
- more ...

cmd

再提高

孝 硬件

★ 升级 SSD

🔭 升级 大内存

→ 分布式

分库分表

* 中间件

system

🧚 文件系统xfs/zfs

* 软中断

★ 磁盘算法

mysql cluster

Master/Slave

Slave convert new Master !!!

可靠?

- slave replication
- 🗱 semi replication
- semi replication +

主从切换的集群环境下: 不能保证消息的一致性

how?

- 🔭 阿里自研
- 灣 腾讯自研
- → 京东自研

通过paxos, raft来保证消息的一致性.

- * 各大云厂商自研
- more

HA

- keepalived multi master repl
- heartbeat drdb
- mysql galera
- mha # recommend
- mysql group replication # recommend

MGR

中间件

- Mycat # recommend
- **Kingshard**
- **DBProxy**
- **Cobar**
- * More

