反三角函數

定義. 在以下定義域上之三角函數為嵌射:

$$\begin{aligned} \sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \left[-1, 1 \right] & \csc x : \left(0, \frac{\pi}{2} \right] \cup \left(\pi, \frac{3\pi}{2} \right] \to \left(-\infty, -1 \right] \cup \left[1, \infty \right) \\ \cos x : \left[0, \pi \right] \to \left[-1, 1 \right] & \sec x : \left[0, \frac{\pi}{2} \right) \cup \left[\pi, \frac{3\pi}{2} \right) \to \left(-\infty, -1 \right] \cup \left[1, \infty \right) \\ \tan x : \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \to \left(-\infty, \infty \right) & \cot x : \left(0, \pi \right) \to \left(-\infty, \infty \right) \end{aligned}$$

故存在反三角函數:

$$\sin^{-1} x : [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \qquad \csc^{-1} x : (-\infty, -1] \cup [1, \infty) \to \left(0, \frac{\pi}{2} \right] \cup \left(\pi, \frac{3\pi}{2} \right] \\
\cos^{-1} x : [-1,1] \to [0, \pi] \qquad \sec^{-1} x : (-\infty, -1] \cup [1, \infty) \to \left[0, \frac{\pi}{2} \right) \cup \left[\pi, \frac{3\pi}{2} \right) \\
\tan^{-1} x : (-\infty, \infty) \to \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \qquad \cot x : (-\infty, \infty) \to (0, \pi)$$

性質.

- $\bullet \ \ \boxminus \ -\frac{\pi}{2}\leqslant x\leqslant\frac{\pi}{2}, \ \ \sin^{-1}(\sin x)=x \text{;} \ \ \boxminus \ \ 0\leqslant x\leqslant\pi, \ \ \cos^{-1}(\cos x)=x_{\circ}$
- $\sin^{-1}(-x) = -\sin^{-1}x$; $\cos^{-1}(-x) = \pi \cos^{-1}x$.

 $\exists 1: y = \sin x, \ y = \sin^{-1} x$

 $\exists 3: y = \tan x, \ y = \tan^{-1} x$

例.

例. 若 $\alpha = \sin^{-1} \frac{2}{3}$, 求 $\cos \alpha$, $\tan \alpha$, $\cot \alpha$, $\sec \alpha$, $\csc \alpha$.

PR.
$$\cos \alpha = \frac{\sqrt{5}}{3}$$
, $\tan \alpha = \frac{2}{\sqrt{5}}$, $\cot \alpha = \frac{\sqrt{5}}{2}$, $\sec \alpha = \frac{3}{\sqrt{5}}$, $\csc \alpha = \frac{3}{2}$.

例. 將 $\sin(\cos^{-1}x)$ 與 $\tan(\cos^{-1}x)$ 化簡為 x 的 (不含三角函數之) 表示式,其中 $-1 \leqslant x \leqslant 1$ 。

解. 令
$$u = \cos^{-1} x$$
, 則 $0 \le u \le \pi$, $\cos u = x$, $\sin u = +\sqrt{1-x^2}$, $\tan u = \frac{\sqrt{1-x^2}}{x}$.

例.
$$\cos(\sin^{-1}x) = \sqrt{1-x^2}$$
, $\sin(\tan^{-1}x) = \frac{x}{\sqrt{1+x^2}}$, $\sin(2\tan^{-1}x) = \frac{2x}{1+x^2}$ °

例. 將 $\sin(\cos^{-1}x + \tan^{-1}y)$ 化簡為 x, y 的 (不含三角函數之) 表示式,其中 $-1 \leqslant x \leqslant 1, y \in \mathbb{R}$ 。

解. 令 $u = \cos^{-1} x$, $v = \tan^{-1} y$, 則 $\cos u = x$, $\tan v = y$, 由此 $\sin u = \sqrt{1 - x^2}$, $\cos v = \frac{1}{\sqrt{1 + y^2}}$, $\sin v = \frac{y}{\sqrt{1 + y^2}}$; 原式為 $\sin(\cos^{-1} x + \tan^{-1} y) = \sin(u + v) = \sin u \cos v + \cos u \sin v = \sqrt{1 - x^2} \cdot \frac{1}{\sqrt{1 + y^2}} + x \cdot \frac{y}{\sqrt{1 + y^2}}$ 。

例. 證明 $\cos^{-1}(1-2x^2) = 2\sin^{-1}x$, $0 \le x \le 1$ 。

解. 令 $u = \sin^{-1} x$,則 $\cos^{-1}(1 - 2x^2) = \cos^{-1}(1 - 2\sin^2 u) = \cos^{-1}(\cos 2u) = 2u = 2\sin^{-1} x$ 。

例.解 $2\sin^{-1}x + \cos^{-1}x = \pi$ 。

解. 令 $\sin^{-1} x = u$, $\cos^{-1} x = v$, 則 $\sin u = \cos v = x$, $\cos u = \sin v = \sqrt{1 - x^2}$ 。 方程式兩邊取 $\cos \cos(2u + v) = -1 \implies \cos 2u \cos v - \sin 2u \sin v = (1 - 2\sin^2 u)\cos v - 2\sin u\cos u\sin v = -1 \implies (1 - 2x^2)x - 2x(1 - x^2) = -1 \implies x = 1$ 。