Nam Nguyen - 1170840587 a) $a_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ We jind I satisfying | ox - II = 0 1 | = 0 (=> 2 - 1 - 0 (=> 7 - 1 - 1 $0_2 = 0 \Rightarrow 0_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ ay - 7 = 0 => - 7 -i = 0 $\langle \Rightarrow \lambda^2 + i^2 = 0 \Leftrightarrow \lambda^2 - 1 = 0 \Leftrightarrow \lambda_1 = 1$ $+, \quad \gamma_1 = 1 \Rightarrow \begin{bmatrix} -1 & -i \\ \sqrt{1} = 0 & -i \\ \sqrt{2} & i \end{bmatrix}$ $\lambda_{2} = 1$, $\lambda_{1} = 1$, $\lambda_{2} = 1$, $\lambda_{2} = 1$, $\lambda_{3} = 1$, $\lambda_{4} = 1$, $\lambda_{5} = 1$, $\lambda_{7} = 1$, $\lambda_{$

$a_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 -1				
	(Tz - λI	-0 6>		0	=0
(=) \[\frac{\frac{1}{1-\frac{1}{2}}}{\left[\frac{1}{2} - \frac{1}{2} \right]})(-1-%)	= 0			
λ_{1} Xith λ_{1} =	1 -) 0	0.70,	= 0 _>	01= (1	
	-1 -) [2		= 0 ->	U2= (0
b) M=	(100 00i 0i0				
We need to	gind 1	4 - AI =	0		
(=) 1 - 0 0	λ ο ο -λ i	- γ l			

TÜL

TÜL

$=\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(10\right)+11\right]$ $=\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(10\right)+11\right]$ $=\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}\left(10\right)+\frac{1}{\sqrt{2}}\left(10\right)\right]$	
$= \frac{1}{2} 0\rangle + \frac{1}{2} 1\rangle - \frac{13}{2\sqrt{2}} 0\rangle + \frac{\sqrt{3}}{2\sqrt{2}} 1\rangle$	
$=\frac{1}{2} \frac{10}{2} + \frac{1}{2} \frac{11}{2} - \frac{13}{2} \frac{10}{2} + \frac{\sqrt{3}}{2} \frac{11}{2}$	
$= \sqrt{2} - \sqrt{3} 0\rangle + \sqrt{2} + \sqrt{3} 1\rangle$ $= 2\sqrt{2}$	
= 2-16 10> + 2+16 11>	
4 4	

Cose 2 [li) i=0 gre bases g C. and the vector space has m dimensions (n <m) Then In this case, (a) hold, and for (b), we have addition eigeralin - Thus the eigenvalue now are 7, 2, 2n=1 2nd> - 2m = 0 TÜL