

Hashing

CSE225: Data Structures and Algorithms

Introduction to Hashing

- Suppose that we want to store 10,000 students records (each with a 5-digit ID) in a given container.
 - · A linked list implementation would take O(n) time.
 - · A height balanced tree would give O (log n) access time.
 - · Using an array of size 100,000 would give O(1) access time but will lead to a lot of space wastage.
- Is there some way that we could get O(1) access without wasting a lot of space?
- The answer is hashing.

Hash Functions

• A *hash function*, **h**, is a function which transforms a key from a set, **K**, into an index in a table of size n:

$$h: K \rightarrow \{0, 1, \ldots, n-2, n-1\}$$

- A key can be a number, a string, a record etc.
- The size of the set of keys, |K|, to be relatively very large.
- It is possible for different keys to hash to the same array location.
 - This situation is called *collision* and the colliding keys are called *synonyms*.

Example 1: Illustrating Hashing

• Use the function f(r) = r.id % 13 to load the following

records into an array of size 13.

Al-Otaibi, Ziyad	1.73	985926
Al-Turki, Musab Ahmad Bakeer	1.60	970876
Al-Saegh, Radha Mahdi	1.58	980962
Al-Shahrani, Adel Saad	1.80	986074
Al-Awami, Louai Adnan Muhammad	1.73	970728
Al-Amer, Yousuf Jauwad	1.66	994593
Al-Helal, Husain Ali AbdulMohsen	1.70	996321
Al-Khatib, Wasfi Ghassan	1.74	863523

Example 1: Introduction to Hashing (cont'd)

	Name					D	h(r	r) = id '	% 13				
1	Al-Otai	bi, Ziy	ad						985	5926		6	
1	۱-Turk	ti, Mus	ab Ah	mad E	3akee	r			970	0876		10	
	Al-Saegh, Radha Mahdi								980	962		8	
1	Al-Shahrani, Adel Saad							986	6074		11		
	Al-Awa	mi, Lo	ouai Ac	nan N	/luhan	nmad			970	728		5	
1	Al-Ame	er, You	suf Ja	uwad					994	1593		2	
1	Al-Hela	al, Hus	ain Ali	Abdu	IMohs	sen			996	321		1	
1	Al-Khatib, Wasfi Ghassan							863	3523		11		
0	1	2	3	4	5	6	7	8	9	10	11	12	
		<u> </u>											

0	1	2	<u>3</u>	4	5	6	8	9	<u> 10</u>	<u> 11 </u>	<u> 12 </u>
	Husain	Yousuf			Louai	Ziyad	Radha		Musab	Adel	

Wasfi

Hash Tables

- There are two types of Hash Tables: **Open-addressed Hash Tables** and **Separate-Chained Hash Tables**.
- An Open-addressed *Hash Table* is a one-dimensional array indexed by integer values that are computed by an index function called a *hash function*.
- A Separate-Chained *Hash Table* is a one-dimensional array of linked lists indexed by integer values that are computed by an index function called a *hash function*.
- Hash tables are sometimes referred to as *scatter tables*.
- Typical hash table operations are:
 - · Initialization.
 - · Insertion.
 - · Searching
 - · Deletion.

Types of Hashing

- There are two types of hashing:
 - 1. Static hashing: In static hashing, the hash function maps search-key values to a fixed set of locations.
 - 2. **Dynamic hashing**: In dynamic hashing a hash table can grow to handle more items. The associated hash function must change as the table grows.
- The *load factor* of a hash table is the ratio of the number of keys in the table to the size of the hash table.
 - What do you think will happen when the load factor becomes high?
 - With open addressing, the load factor cannot exceed 1. With chaining, the load factor often exceeds 1.

Desired Properties of Hash Functions

- A good hash function should:
 - · Minimize collisions.

- · Be easy and quick to compute.
- · Distribute key values evenly in the hash table.

· Use all the information provided in the key.

Common Hashing Functions

1. Division Remainder (using the table size as the divisor)

- Computes hash value from key using the % operator.
- Table size that is a power of 2 like 32 and 1024 should be avoided, for it leads to more collisions.
- Also, powers of 10 are not good for table sizes when the keys rely on decimal integers.
- Prime numbers not close to powers of 2 are better table size values.

2. Folding

- It involves splitting keys into two or more parts and then combining the parts to form the hash addresses.
- To map the key 25936715 to a range between 0 and 9999, we can:
 - · split the number into two as 2593 and 6715 and
 - · add these two to obtain 9308 as the hash value.
- Very useful if we have keys that are very large.
- Fast and simple especially with bit patterns.
- A great advantage is ability to transform non-integer keys into integer values.

3. Mid-Square

- The key is squared and the middle part of the result taken as the hash value.
- To map the key 3121 into a hash table of size 1000, we square it $3121^2 = 9740641$ and extract 406 as the hash value.
- Works well if the keys do not contain a lot of leading or trailing zeros.
- Non-integer keys have to be preprocessed to obtain corresponding integer values.

4. Truncation or Digit/Character Extraction

- Works based on the distribution of digits or characters in the key.
- More evenly distributed digit positions are extracted and used for hashing purposes.
- For instance, students IDs or ISBN codes may contain common subsequences which may increase the likelihood of collision.
- Very fast but digits/characters distribution in keys may not be very even.

5. Radix Conversion

- Transforms a key into another number base to obtain the hash value.
- Typically use number base other than base 10 and base 2 to calculate the hash addresses.
- To map the key 55354 in the range 0 to 9999 using base 11 we have:

$$55354_{10} = 38652_{11}$$

• We may truncate the high-order 3 to yield 8652 as our hash address within 0 to 9999.

6. Use of a Random-Number Generator

- Given a seed as parameter, the method generates a random number.
- The algorithm must ensure that:
 - It always generates the same random value for a given key.
 - It is unlikely for two keys to yield the same random value.
- The random number produced can be transformed to produce a valid hash value.

Some Applications of Hash Tables

- **Database systems**: Specifically, those that require efficient random access. Generally, database systems try to optimize between two types of access methods: sequential and random. Hash tables are an important part of efficient random access because they provide a way to locate data in a constant amount of time.
- **Symbol tables**: The tables used by compilers to maintain information about symbols from a program. Compilers access information about symbols frequently. Therefore, it is important that symbol tables be implemented very efficiently.
- **Data dictionaries**: Data structures that support adding, deleting, and searching for data. Although the operations of a hash table and a data dictionary are similar, other data structures may be used to implement data dictionaries. Using a hash table is particularly efficient.
- **Network processing algorithms**: Hash tables are fundamental components of several network processing algorithms and applications, including route lookup, packet classification, and network monitoring.
- Browser Cashes: Hash tables are used to implement browser cashes.

Problems for Which Hash Tables are not Suitable

1. Problems for which data ordering is required.

Because a hash table is an unordered data structure, certain operations are difficult and expensive. Range queries, proximity queries, selection, and sorted traversals are possible only if the keys are copied into a sorted data structure. There are hash table implementations that keep the keys in order, but they are far from efficient.

2. Problems having multidimensional data.

3. Prefix searching especially if the keys are long and of variable-lengths.

4. Problems that have dynamic data:

Open-addressed hash tables are based on 1D-arrays, which are difficult to resize once they have been allocated. Unless you want to implement the table as a dynamic array and rehash all of the keys whenever the size changes. This is an incredibly expensive operation. An alternative is use a separate-chained hash tables or dynamic hashing.

5. Problems in which the data does not have unique keys.

Open-addressed hash tables cannot be used if the data does not have unique keys. An alternative is use separate-chained hash tables.

Collision Resolution Techniques

There are two broad ways of collision resolution:

1. Separate Chaining:: An array of linked list implementation.

2. Open Addressing: Array-based implementation.

- (i) Linear probing (linear search)
- (ii) Quadratic probing (nonlinear search)
- (iii) Double hashing (uses two hash functions)

Separate Chaining

- The hash table is implemented as an array of linked lists.
- Inserting an item, r, that hashes at index i is simply insertion into the linked list at position i.
- Synonyms are chained in the same linked list.

Separate Chaining (cont'd)

- Retrieval of an item, \mathbf{r} , with hash address, \mathbf{i} , is simply retrieval from the linked list at position \mathbf{i} .
- Deletion of an item, \mathbf{r} , with hash address, \mathbf{i} , is simply deleting \mathbf{r} from the linked list at position \mathbf{i} .
- **Example:** Load the keys **23, 13, 21, 14, 7, 8, and 15**, in this order, in a hash table of size **7** using separate chaining with the hash function: **h(key) = key % 7**

$$h(23) = 23 \% 7 = 2$$
 $h(13) = 13 \% 7 = 6$
 $h(21) = 21 \% 7 = 0$
 $h(14) = 14 \% 7 = 0$ collision
 $h(7) = 7 \% 7 = 0$ collision
 $h(8) = 8 \% 7 = 1$

h(15) = 15 % 7 = 1 collision

Introduction to Open Addressing

- All items are stored in the hash table itself.
- In addition to the cell data (if any), each cell keeps one of the three states: EMPTY, OCCUPIED, DELETED.
- While inserting, if a collision occurs, alternative cells are tried until an empty cell is found.
- **Deletion**: (lazy deletion): When a key is deleted the slot is marked as DELETED rather than EMPTY otherwise subsequent searches that hash at the deleted cell will fail.
- **Probe sequence**: A probe sequence is the sequence of array indexes that is followed in searching for an empty cell during an insertion, or in searching for a key during find or delete operations.
- The most common probe sequences are of the form:

$$h_i(key) = [h(key) + c(i)] \% n, for i = 0, 1, ..., n-1.$$

where **h** is a hash function and **n** is the size of the hash table

The function c(i) is required to have the following two properties:

```
Property 1: c(0) = 0
```

Property 2: The set of values {c(0) % n, c(1) % n, c(2) % n, . . . ,

c(n-1) % n} must be a permutation of $\{0, 1, 2, ..., n-1\}$, that is, it must contain every integer between 0 and n - 1 inclusive.

Introduction to Open Addressing (cont'd)

- The function c(i) is used to resolve collisions.
- To insert item r, we examine array location $h_0(r) = h(r)$. If there is a collision, array locations $h_1(r)$, $h_2(r)$, ..., $h_{n-1}(r)$ are examined until an empty slot is found.
 - If the probe sequence contains **one or more deleted cells**, the key is inserted into the **first deleted cell**, otherwise, it is inserted into the **empty cell**.
- Similarly, to find item r, we examine the same sequence of locations in the same order.
- Note: For a given hash function h(key), the only difference in the open addressing collision resolution techniques (linear probing, quadratic probing and double hashing) is in the definition of the function c(i).
- Common definitions of c(i) are:

Collision resolution technique	c(i)
Linear probing	i
Quadratic probing	$\pm \mathbf{i}^2$
Double hashing	i*h _p (key)

where $\mathbf{h}_{\mathbf{p}}(\mathbf{key})$ is another hash function.

Introduction to Open Addressing (cont'd)

Advantages of Open addressing:

- All items are stored in the hash table itself. There is no need for another data structure.
- Open addressing is more efficient storage-wise.

Disadvantages of Open Addressing:

- The keys of the objects to be hashed must be distinct.
- Dependent on choosing a proper table size.
- Requires the use of a three-state (Occupied, Empty, or Deleted) flag in each cell.

Open Addressing: Linear Probing

- c(i) is a linear function in i of the form c(i) = a*i.
- Usually c(i) is chosen as:

$$c(i) = i$$
 for $i = 0, 1, ..., tableSize - 1$

The probe sequences are then given by:

```
h_i(key) = [h(key) + i] \% tableSize for i = 0, 1, ..., tableSize - 1
```

• For c(i) = a*i to satisfy Property 2, a and tableSize must be relatively prime.

Linear Probing Example

Example: Perform the operations given below, in the given order, on an initially empty hash table of size 13 using linear probing with c(i) = i and the hash function: h(key) = key % 13:

insert(18), insert(26), insert(35), insert(9), find(15), find(48), delete(35), delete(40), find(9), insert(64), insert(47), find(35)

The required probe sequences are given by:

$$h_i(key) = (h(key) + i) \% 13$$
 $i = 0, 1, 2, ..., 12$

Initial state of the hash table:

Index	Status	Value
0	Е	
1	Е	
2	Е	
3	E	
4	E	
5	E	
6	E	
7	E	
8	E	
9	E	
10	Е	
11	E	
12	E	

$$h(key) = key \% 13$$
 $h(18) = 18 \% 13$
 $= 5$
 $h_i(key) = (h(key) + i) \% 13$
 $h_o(18) = (5 + 0) \% 13$
 $= 5 \% 13$
 $= 5$

insert(18)

Index	Status	Value
0	E	
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	E	
10	E	
11	E	
12	E	

```
h(key) = key \% 13
h(26) = 26 \% 13
= 0
h_i(key) = (h(key) + i) \% 13
h_o(26) = (0 + 0) \% 13
= 0 \% 13
```

insert(26)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	E	
10	E	
11	E	
12	E	

$$h(key) = key \% 13$$

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(26) = (9 + 0) \% 13$$

insert(35)

Index	Status	Value
0	O	26
1	Е	
2	Е	
3	Е	
4	E	
5	O	18
6	E	
7	Е	
8	E	
9	O	35
10	Е	
11	Е	
12	Е	

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(9) = (9 + 0) \% 13$$

COLLISION

$$h_1(9) = (9 + 1) \% 13$$

insert(9)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	O	35
10	O	9
11	E	
12	E	

$$h(key) = key \% 13$$
 $h(15) = 15 \% 13$
 $= 2$
 $h_i(key) = (h(key) + i) \% 13$
 $h_o(15) = (2 + 0) \% 13$

= 2 search FAILS because cell 2 has EMPTY status

find(15)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	Е	
9	O	35
10	O	9
11	E	
12	Е	

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(48) = (9 + 0) \% 13 = 9 \% 13 = 9$$
 continue search, because cell 9 has OCUPIED status

$$h_1(48) = (9 + 1) \% 13 = 10 \% 13 = 10$$
 continue search, because cell 10 has OCUPIED status

$$h_2(48) = (9 + 2) \% 13 = 11 \% 13 = 11$$

search FAILS, because cell 11 has EMPTY status

find(48)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	O	35
10	O	9
11	E	
12	E	

```
h(key) = key \% 13
```

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(35) = (9 + 0) \% 13 = 9 \% 13 = 9$$

35 found and deleted, cell 9 status changed to DELETED

delete(35)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	D	35
10	O	9
11	E	
12	E	

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(9) = (9 + 0) \% 13 = 9 \% 13 = 9$$

Cell 9 has DELETED status. CONTINUE SEARCHING

$$h_1(9) = (9 + 1) \% 13 = 10 \% 13 = 10$$

Cell 10 is OCCUPIED with 9 → Duplicate key. Cannot insert 9

insert(9)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	D	35
10	O	9
11	E	
12	Е	

```
h(key) = key \% 13
h(40) = 40 \% 13
= 1
h_i(key) = (h(key) + i) \% 13
h_o(40) = (1 + 0) \% 13 = 1 \% 13 = 1
cell 1 has EMPY status, 40 not found, deletion FAILS
```

delete(40)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	D	35
10	O	9
11	E	
12	E	

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(9) = (9 + 0) \% 13 = 9 \% 13 = 9$$

Continue search, because cell 9 has DELETED status.

$$h_1(9) = (9 + 1) \% 13 = 10 \% 13 = 10$$

9 found at cell 10.

find(9)

Index	Status	Value
0	O	26
1	Е	
2	Е	
3	Е	
4	Е	
5	O	18
6	Е	
7	Е	
8	Е	
9	D	35
10	O	9
11	Е	
12	Е	

```
h(key) = key \% 13
h(64) = 64 \% 13
= 12
h_i(key) = (h(key) + i) \% 13
h_o(64) = (12 + 0) \% 13 = 12 \% 13 = 12
```

insert(64)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	E	
9	D	35
10	O	9
11	E	
12	O	64

```
h(key) = key \% 13
h(47) = 47 \% 13
= 8
h_i(key) = (h(key) + i) \% 13
h_o(47) = (8 + 0) \% 13 = 8 \% 13 = 8
```

insert(47)

Index	Status	Value
0	0	26
1	E	
2	E	
3	E	
4	E	
5	0	18
6	E	
7	E	
8	0	47
9	D	35
10	O	9
11	E	
12	O	64

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(35) = (9 + 0) \% 13 = 9 \% 13 = 9$$

Search continues because cell 9 has DELETED status.

$$h_1(35) = (9 + 1) \% 13 = 10 \% 13 = 10$$

Search continues because cell 10 has OCUPPIED status and key is not 35.

$$h_2(35) = (9 + 2) \% 13 = 11 \% 13 = 11$$

Search FAILS because cell 11 has EMPTY status.

find(35)

Index	Status	Value
0	O	26
1	E	
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	O	47
9	D	35
10	O	9
11	E	
12	O	64

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(77) = (12 + 0) \% 13 = 12 \% 13 = 12$$
 collision

$$h_1(77) = (12 + 1) \% 13 = 13 \% 13 = 0$$
 collision

$$h_2(77) = (12 + 2) \% 13 = 14 \% 13 = 1$$

insert(77)

Index	Status	Value
0	O	26
1	O	77
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	O	47
9	D	35
10	O	9
11	E	
12	O	64

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_o(21) = (8 + 0) \% 13 = 8 \% 13 = 8$$
 collision

$$h_1(21) = (8 + 1) \% 13 = 9 \% 13 = 9$$
 Cell 9 has DELETED status, Search continues.

$$h_2(21) = (8 + 2) \% 13 = 10 \% 13 = 10$$

Cell 10 is OCCUPIED with a different value, search continues.

$$h_3(21) = (8 + 3) \% 13 = 11 \% 13 = 11$$

Cell 11 is empty, 21 is inserted in cell 9

insert(21)

Index	Status	Value
0	O	26
1	O	77
2	E	
3	E	
4	E	
5	0	18
6	E	
7	E	
8	O	47
9	0	21
10	O	9
11	E	
12	O	64

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_0(26) = (0+0) \% 13 = 0 \% 13 = 0$$

26 is deleted and status changed to DELETED.

delete(26)

Index	Status	Value
0	D	26
1	О	77
2	Е	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	O	47
9	O	21
10	O	9
11	E	
12	О	64

h(key) = key % 13

$$h_i(key) = (h(key) + i) \% 13$$

$$h_0(39) = (0+0) \% 13 = 0 \% 13 = 0$$

Status of cell 0 is DELETED, search continues.

$$h_1(39) = (0 + 1) \% 13 = 1 \% 13 = 1$$

Cell 1 is OCCUPIED with a different value.

$$h_2(39) = (0 + 2) \% 13 = 2 \% 13 = 2$$

Cell 2 status is EMPTY, hence 39 is inserted in cell 0

insert(39)

Index	Status	Value
0	О	39
1	О	77
2	E	
3	E	
4	E	
5	O	18
6	E	
7	E	
8	О	47
9	O	21
10	О	9
11	Е	
12	O	64

Disadvantage of Linear Probing: Primary Clustering

- Linear probing is subject to a primary clustering phenomenon.
- Elements tend to cluster around table locations that they originally hash to.
- Primary clusters can combine to form larger clusters. This leads to long probe sequences and hence deterioration in hash table efficiency.

Example of a primary cluster: Insert keys: 18, 41, 22, 44, 59, 32, 31, 73, in this order, in an originally empty hash table of size 13, using the hash function h(key) = key % 13 and c(i) = i:

$$h(18) = 5$$

$$h(41) = 2$$

$$h(22) = 9$$

$$h(44) = 5+1$$

$$h(59) = 7$$

$$h(32) = 6+1+1$$

$$h(31) = 5+1+1+1+1$$

$$h(73) = 8+1+1+1$$

Open Addressing: Quadratic Probing

- Quadratic probing eliminates primary clusters.
- c(i) is a quadratic function in i of the form c(i) = a*i² + b*i. Usually c(i) is chosen as:

$$c(i) = \pm i^2$$
 for $i = 0, 1, ..., (tableSize - 1) / 2$

• The probe sequences are then given by:

$$h_i(\text{key}) = [h(\text{key}) \pm i^2] \% \text{ tableSize}$$
 for $i = 0, 1, \dots, (\text{tableSize} - 1) / 2$

- Note for Quadratic Probing:
 - > Hashtable size should not be an even number; otherwise Property 2 will not be satisfied.
 - ➤ Ideally, table size should be a prime of the form 4j+3, where j is an integer. This choice of table size guarantees Property 2.

Open Addressing: Quadratic Probing

- For $h_0(\text{key}) = [h(\text{key}) \pm i^2]$ % tableSize the probe sequence starts at $h_0(\text{key}) = h(\text{key})$ and then it examines cells 1, -1, 4, -4, 9, -9 and so on, away from the original probe. For this probe sequence, normalization is done when a **negative** index is computed: **normalizedIndex = (computedIndex + tableSize)** % **tableSize**
- Example: Load the keys 23, 13, 21, 14, 7, 8, and 15, in this order, in a hash table of size 7 using quadratic probing with $c(i) = \pm i^2$ and the hash function: h(key) = key % 7
- The required probe sequences are given by:

$$h_i(key) = (h(key) \pm i^2) \% 7 i = 0, 1, 2, 3$$

Quadratic Probing (cont'd)

$$h_i(\text{key}) = (h(\text{key}) \pm i^2) \% 7 \quad i = 0, 1, 2, 3$$

```
h_0(23) = (23 \% 7) \% 7 = 2
h_0(13) = (13 \% 7) \% 7 = 6
h_0(21) = (21 \% 7) \% 7 = 0
h_0(14) = (14 \% 7) \% 7 = 0
                             collision
       h_1(14) = (0 + 1^2) \% 7 = 1
h_0(7) = (7 \% 7) \% 7 = 0 collision
       h_1(7) = (0 + 1^2) \% 7 = 1 collision
        h_{-1}(7) = (0 - 1^2) \% 7 = -1
           NORMALIZE: (-1+7) % 7=6 collision
       h_2(7) = (0 + 2^2) \% 7 = 4
 h_0(8) = (8 \% 7)\%7 = 1
                                   collision
        h_1(8) = (1 + 1^2) \% 7 = 2 collision
        h_{-1}(8) = (1 - 1^2) \% 7 = 0
                                  collision
        h_2(8) = (1 + 2^2) \% 7 = 5
  h_0(15) = (15 \% 7)\%7 = 1 collision
        h_1(15) = (1 + 1^2) \% 7 = 2 collision
        h_{-1}(15) = (1 - 1^2) \% 7 = 0 collision
        h_2(15) = (1 + 2^2) \% 7 = 5 collision
        h_{.2}(15) = (1 - 2^2) \% 7 = -3
           NORMALIZE: (-3+7) % 7=4 collision
      h_3(15) = (1+3^2)\%7 = 3
```

	-	
0	0	21
1	0	14
2	0	23
3	0	15
4	0	7
5	0	8
6	0	13

Secondary Clusters

- Quadratic probing is better than linear probing because it eliminates primary clustering.
- However, it may result in **secondary clustering**: if h(k1) = h(k2) the probing sequences for k1 and k2 are exactly the same. This sequence of locations is called a secondary cluster.
- Secondary clustering is less harmful than primary clustering because secondary clusters do not combine to form large clusters.
- Example of Secondary Clustering: Suppose keys k0, k1, k2, k3, and k4 are inserted in the given order in an originally empty hash table using quadratic probing with $c(i) = i^2$. Assuming that each of the keys hashes to the same array index x. A secondary cluster will develop and grow in size:

