<u>Policy and Procedures on Soil and Water Conservation District Cost-Share and Technical</u> Assistance Funding Allocations (Fiscal Year 2024)

Chapter 769, 2023 Acts of Assembly, Item 374

- A.2. Out of the appropriation in this Item, \$4,550,000 the first year and \$4,550,000 the second year shall be provided for base technical assistance support for the Virginia Soil and Water Conservation Districts. These funds shall be distributed upon approval by the Virginia Soil and Water Conservation Board to the districts in accordance with the Board's established financial allocation policy. These amounts shall be in addition to any other funding provided to the districts for technical assistance pursuant to subsections B and C of this Item for appropriations in excess of \$35,000,000.
- B. 2. Of the remaining amount in the first year, \$256,507,321 is authorized for transfer to the Virginia Natural Resources Commitment Fund, a sub fund of the Water Quality Improvement Fund.

 Notwithstanding any other provision of law, the funds transferred to the Virginia Natural Resources Commitment Fund shall be distributed by the Department upon approval of the Virginia Soil and Water Conservation Board in accordance with the board's developed policies, as follows: \$164,744,889 shall be used for matching grants for Agricultural Best Management Practices on lands in the Commonwealth exclusively or partly within the Chesapeake Bay watershed, \$70,604,953 shall be used for matching grants for Agricultural Best Management Practices on lands in the Commonwealth exclusively outside the Chesapeake Bay watershed, and an additional \$21,157,479 in addition to the base funding provided in A.1. shall be appropriated for Technical Assistance for Virginia Soil and Water Conservation Districts.
- F.1 Out of the appropriation in this Item, \$10,000,000 the first year and \$10,000,000 the second year from the Virginia Natural Resources Commitment Fund, a subfund of the Virginia Water Quality Improvement Fund, is hereby appropriated. The funds shall be dispersed by the department pursuant to \$10.1-2128.1, Code of Virginia.
- 2. The source of an amount estimated at \$10,000,000 the first year and \$10,000,000 the second year to support the nongeneral fund appropriation to the Virginia Natural Resources Commitment Fund shall be the recordation tax fee established in Part 3 of this act.
- 3. Out of this amount, a total of thirteen percent, or \$1,300,000, whichever is greater, shall be appropriated to Virginia Soil and Water Conservation Districts for technical assistance to farmers implementing agricultural best management practices, and \$8,700,000 for Agricultural Best Management Practices Cost-Share Assistance. Of the amount deposited for Cost-Share Assistance, seventy percent shall be used for matching grants for agricultural best management practices on lands in the Commonwealth exclusively or partly within the Chesapeake Bay watershed, and thirty percent shall be used for matching grants for agricultural best management practices on lands in the Commonwealth exclusively outside of the Chesapeake Bay watershed.
- G.1. Out of the appropriation in this Item, \$2,583,531 in the first year and \$2,583,531 in the second year from the funds designated in Item 3-1.01.C. of this act are hereby appropriated to the Virginia Water Quality Improvement Fund and designated for deposit to the reserve fund established pursuant to paragraph B of Item 373. It is the intent of the General Assembly that all interest earnings of the Water

Quality Improvement Fund shall be spent only upon appropriation by the General Assembly, after the recommendation of the Secretary of Natural and Historic Resources, pursuant to §10.1-2129, Code of Virginia.

§ 10.1-505. Duties of Board.

In addition to other duties and powers conferred upon the Board, it shall have the following duties and powers:

- 1. To give or loan appropriate financial and other assistance to district directors in carrying out any of their powers and programs.
- 3. To oversee the programs of the districts.
- 11. To provide, from such funds appropriated for districts, financial assistance for the administrative, operational and technical support of districts.

Recommended Motion:

The Virginia Soil and Water Conservation Board approves the Policy and Procedures on Soil and Water Conservation District Cost-Share and Technical Assistance Funding Allocations (Fiscal Year 2024).

Additionally, the Culpeper Soil and Water Conservation District is authorized to utilize up to \$500,000 of the District's "FY24 Cost-Share Total (VACS)" allocation to incentivize the implementation of the soil health pilot best management practice (SL-10E) as it was approved by this Board.

Motion made by:		
Motion seconded by:		
Action:		
Adam D. Wilson, Vice-Chair	Matthew S. Wells, Director	

VIRGINIA SOIL AND WATER CONSERVATION BOARD POLICY AND PROCEDURES ON SOIL AND WATER CONSERVATION DISTRICT COST-SHARE AND TECHNICAL ASSISTANCE FUNDING ALLOCATIONS (FISCAL YEAR-20232024)

(Approved by Board on June 24, 2022May 25, 2023)

1. Policy Purpose:

This Policy and Procedures document specifies the Virginia Soil and Water Conservation Board's (Board) process by which funds are to be allocated by the Department of Conservation and Recreation (Department) to the Commonwealth's 47 local Soil and Water Conservation Districts (Districts) for cost-share and technical assistance (Fiscal Year 2023-2024 or FY23FY24). The Policy also highlights the water quality emphasis of the Virginia Agricultural Best Management Practices Cost-share Program and the targeted use of allocated cost-share funding. The corresponding Grant Agreement will guide the distribution and disbursement of FY23-FY24 funds. A separate Board Policy and Grant Agreement governs the FY23-FY24 distribution of administrative and operational support funds to Districts.

2. Cost-share Program Mission and Eligibility:

The Virginia Agricultural Best Management Practices Cost-share Program (VACS) is administered by the Board and Department through the Districts. The Program's goal is to improve water quality in the state's streams, rivers, and the Chesapeake Bay. VACS offers costshare assistance as an incentive to carry out construction or implementation of selected Best Management Practices (BMPs). The basis of VACS is to encourage the voluntary installation of agricultural BMPs to meet Virginia's non-point source pollution reduction water quality objectives. Although resource based problems affecting water quality occur on all land uses, VACS promotes efforts for corrective action on agricultural lands only. VACS emphasizes the implementation of agricultural BMPs in locations that provide the greatest nutrient and sediment reductions for the taxpayer's dollars spent. Cost-shared BMPs must maximize nutrient and sediment reductions and also protect the taxpayer's interest, by implementing the most costeffective BMPs possible in locations that achieve the greatest pollutant reductions on a field by field basis. VACS objectives include special emphasis on the reduction of nutrients (nitrogen and phosphorus), and sediment delivered to the Chesapeake Bay; by preventing additional pollution from entering state waters; and meeting the criteria for Virginia's compliance with Section 319 of the Clean Water Act. VACS implementation should be based upon sound conservation planning and best professional judgment.

For the purposes of VACS, agricultural land means land being used in a bona fide program of agricultural management and engaged in the production of agricultural, horticultural, or forest products for market. In order to be considered agricultural land, the real estate must consist of a minimum of five contiguous acres and there must be verifiable gross receipts in excess of \$1,000 per year from the production or sale of agricultural, horticultural, or forest products produced on the applicant's agricultural land for each of the past three years. The greater than \$1,000 threshold may be documented by using crop type acres and livestock numbers collected as part of the conservation planning inventory or other acceptable forms of proof including Internal Revenue

Service (IRS) forms or other accounting records certified by a tax preparer that show profit or loss from farm operations. Non-industrial private forest lands are exempt from the \$1,000 requirement. (See Part 4: Definitions for further explanation.)

Readers should refer to the *Program Year* 2023 2024 Virginia Agricultural Cost Share (VACS) BMP Manual for additional requirements associated with the implementation of the Virginia Agricultural Best Management Practices Cost-Share Program.

3. Authority:

This funding distribution Policy has been developed to provide transparency, predictability, and consistency to the processes by which the cost-share and technical assistance funding set out in Item 374 A.2, B.1, B.2, B.3, F.1, F.2, F.3, and G.1 of Chapter 2 of the 2022 Special Session 1 Acts of Assembly (the 2022 Appropriation Act) Chapter 769 of the 2023 Session Acts of Assembly (the 2023 Appropriation Act) is allocated and distributed to Districts. Funds subject to this Policy are set out in Sub-programs 50320 (Financial Assistance to Soil and Water Conservation Districts), 50322 (Technical Assistance to Soil and Water Conservation Districts) and 50323 (Agricultural Best Management Practices Cost Share Assistance) and are guided by the following specific budget provisions within Item 374:

- A.2. Out of the appropriation in this Item, \$4,550,000 the first year and \$4,550,000 the second year shall be provided for base technical assistance support for the Virginia Soil and Water Conservation Districts. These funds shall be distributed upon approval by the Virginia Soil and Water Conservation Board to the districts in accordance with the Board's established financial allocation policy. These amounts shall be in addition to any other funding provided to the districts for technical assistance pursuant to subsections B and C of this Item for appropriations in excess of \$35,000,000.
- B.1. Notwithstanding §10.1-2129 A., Code of Virginia, \$313,013,000 the first year from the general fund shall be deposited to the Virginia Water Quality Improvement Fund established under the Water Quality Improvement Act of 1997. Of this amount in the first year, \$40,610,000 shall be appropriated to the Department for the following specified statewide uses: \$7,000,000 to the Department to support the Small Herd Initiative as approved by the Virginia Soil and Water Conservation Board, \$6,000,000 shall be used for the Commonwealth's match for participation in the Federal Conservation Reserve Enhancement Program (CREP); \$5,000,000 to the Department of Environmental Quality to support newly regulated municipal separate storm sewer system (MS4) localities; \$3,500,000 shall be provided the Department of Environmental Quality, collaborating with the Department of Health, to conduct studies of Harmful Algal Blooms occurring in the Shenandoah River and Lake Anna; \$4,560,000 shall be allocated for special nonpoint source reduction projects to include, but not be limited to, poultry litter transport, grants related to the development and certification of Resource Management Plans developed pursuant to §10.1-104.7, and, in the Chesapeake Bay watershed, grants related to the development and implementation of nutrient management plans developed in accordance with the regulations adopted pursuant to §10.1-104.2; \$4,000,000 shall be transferred to the Virginia Association of Soil and Water Conservation Districts to be used for the Virginia Conservation Assistance Program (VCAP); \$4,000,000 shall be transferred to the

Department of Forestry for the Virginia Trees for Clean Water program; \$2,000,000 shall be provided to the Department to provide additional incentives for the maintenance of riparian buffers by agricultural producers; \$1,000,000 shall be provided to the Department of Environmental Quality to assist with the implementation of best management practices in accordance with the State Lands Watershed Implementation Plan; \$1,500,000 shall be provided to the Department for the development and continued maintenance of the Conservation Application Suite including costs related to servers and necessary software licenses; \$700,000 shall be provided to the Virginia Cooperative Extension, collaborating with the Department, to provide enhanced and targeted outreach, education, and technical assistance for agricultural and residential landowners in the Chesapeake Bay watershed; \$1,000,000 shall be transferred to the Department of Forestry for water quality grants; \$250,000 to the Department for the Small Farm Outreach Program; and \$100,000 shall be transferred to the Department of Health, collaborating with the Virginia Institute of Marine Sciences, to conduct analysis on statewide septic hot spots and map communities with failing or failed onsite wastewater treatment. \$15,895,679 is designated for deposit to the reserve within the Virginia Water Quality Improvement Fund.

- 2. Of the remaining amount in the first year, \$256,507,321 is authorized for transfer to the Virginia Natural Resources Commitment Fund, a sub fund of the Water Quality Improvement Fund. Notwithstanding any other provision of law, the funds transferred to the Virginia Natural Resources Commitment Fund shall be distributed by the Department upon approval of the Virginia Soil and Water Conservation Board in accordance with the board's developed policies, as follows: \$164,744,889 shall be used for matching grants for Agricultural Best Management Practices on lands in the Commonwealth exclusively or partly within the Chesapeake Bay watershed, \$70,604,953 shall be used for matching grants for Agricultural Best Management Practices on lands in the Commonwealth exclusively outside the Chesapeake Bay watershed, and an additional \$21,157,479 in addition to the base funding provided in A.1. shall be appropriated for Technical Assistance for Virginia Soil and Water Conservation Districts.
- 3. Of the funds that are provided in paragraph B.1. to be used for the Virginia Conservation Assistance Program (VCAP) and for the Virginia Trees for Clean Water program, no less than 25 percent shall be used for projects in low-income geographic areas as defined by \$10.1-603.24.
- F.1 Out of the appropriation in this Item, \$10,000,000 the first year and \$10,000,000 the second year from the Virginia Natural Resources Commitment Fund, a subfund of the Virginia Water Quality Improvement Fund, is hereby appropriated. The funds shall be dispersed by the department pursuant to §10.1-2128.1, Code of Virginia.
- 2. The source of an amount estimated at \$10,000,000 the first year and \$10,000,000 the second year to support the nongeneral fund appropriation to the Virginia Natural Resources Commitment Fund shall be the recordation tax fee established in Part 3 of this act.
- 3. Out of this amount, a total of thirteen percent, or \$1,300,000, whichever is greater, shall be appropriated to Virginia Soil and Water Conservation Districts for technical assistance

to farmers implementing agricultural best management practices, and \$8,700,000 for Agricultural Best Management Practices Cost-Share Assistance. Of the amount deposited for Cost-Share Assistance, seventy percent shall be used for matching grants for agricultural best management practices on lands in the Commonwealth exclusively or partly within the Chesapeake Bay watershed, and thirty percent shall be used for matching grants for agricultural best management practices on lands in the Commonwealth exclusively outside of the Chesapeake Bay watershed.

G.1. Out of the appropriation in this Item, \$2,583,531 in the first year and \$2,583,531 in the second year from the funds designated in Item 3-1.01.C. of this act are hereby appropriated to the Virginia Water Quality Improvement Fund and designated for deposit to the reserve fund established pursuant to paragraph B of Item 373. It is the intent of the General Assembly that all interest earnings of the Water Quality Improvement Fund shall be spent only upon appropriation by the General Assembly, after the recommendation of the Secretary of Natural and Historic Resources, pursuant to § 10.1-2129, Code of Virginia.

In addition to the authorities set out in the 2022-2023 Appropriation Act, the Code of Virginia contains the following Board and Department duties applicable to this Policy:

§ 10.1-104.1. Department to assist in the nonpoint source pollution management program.

- A. The Department, with the advice of the Board of Conservation and Recreation and the Virginia Soil and Water Conservation Board and in cooperation with other agencies, organizations, and the public as appropriate, shall assist in the Commonwealth's nonpoint source pollution management program.
- B. The Department shall be assisted in performing its nonpoint source pollution management responsibilities by Virginia's soil and water conservation districts. Assistance by the soil and water conservation districts in the delivery of local programs and services may include (i) the provision of technical assistance to advance adoption of conservation management services, (ii) delivery of educational initiatives targeted at youth and adult groups to further awareness and understanding of water quality issues and solutions, and (iii) promotion of incentives to encourage voluntary actions by landowners and land managers in order to minimize nonpoint source pollution contributions to state waters.
- C. The provisions of this section shall not limit the powers and duties of other state agencies.

§ 10.1-546.1. Delivery of Agricultural Best Management Practices Cost-Share Program.

Districts shall locally deliver the Virginia Agricultural Best Management Practices Cost-Share Program described under §10.1-2128.1, under the direction of the Board, as a means of promoting voluntary adoption of conservation management practices by farmers and land managers in support of the Department's nonpoint source pollution management program.

§ 10.1-2128. Virginia Water Quality Improvement Fund established; purposes.

A. There is hereby established in the state treasury a special permanent, nonreverting fund, to be known as the "Virginia Water Quality Improvement Fund." The Fund shall be established on the books of the Comptroller. The Fund shall consist of sums appropriated to it by the General Assembly which shall include, unless otherwise provided in the general appropriation act, 10 percent of the annual general fund revenue collections that are in excess of the official estimates in the general appropriation act and 10 percent of any unrestricted and uncommitted general fund balance at the close of each fiscal year whose reappropriation is not required in the general appropriation act. The Fund shall also consist of such other sums as may be made available to it from any other source, public or private, and shall include any penalties or damages collected under this article, federal grants solicited and received for the specific purposes of the Fund, and all interest and income from investment of the Fund. Any sums remaining in the Fund, including interest thereon, at the end of each fiscal year shall not revert to the general fund but shall remain in the Fund. All moneys designated for the Fund shall be paid into the state treasury and credited to the Fund. Moneys in the Fund shall be used solely for Water Quality Improvement Grants.

§ 10.1-2128.1. Virginia Natural Resources Commitment Fund established.

- A. There is hereby created in the state treasury a special nonreverting fund to be known as the Virginia Natural Resources Commitment Fund hereafter referred to as "the Subfund," which shall be a subfund of the Virginia Water Quality Improvement Fund and administered by the Department of Conservation and Recreation. The Subfund shall be established on the books of the Comptroller. All amounts appropriated and such other funds as may be made available to the Subfund from any other source, public or private, shall be paid into the state treasury and credited to the Subfund. Interest earned on moneys in the Subfund shall remain in the Subfund and be credited to it. Any moneys remaining in the Subfund, including interest thereon, at the end of each fiscal year shall not revert to the general fund but shall remain in the Subfund. Moneys in the Subfund shall be used as provided in subsection B solely for the Virginia Agricultural Best Management Practices Cost-Share Program administered by the Department of Conservation and Recreation...
- C. The Department of Conservation and Recreation, in consultation with stakeholders, including representatives of the agricultural community, the conservation community, and the Soil and Water Conservation Districts, shall determine an annual funding amount for effective Soil and Water Conservation District technical assistance and implementation of agricultural best management practices pursuant to § 10.1-546.1. Pursuant to § 2.2-1504, the Department shall provide to the Governor the annual funding amount needed for each year of the ensuing biennial period. The Department shall include the annual funding amount as part of the reporting requirements in § 62.1-44.118.

§ 10.1-2132. Nonpoint source pollution funding; conditions for approval.

- A. The Department of Conservation and Recreation shall be the lead state agency for determining the appropriateness of any grant related to nonpoint source pollution to be made from the [Water Quality Improvement] Fund to restore, protect and improve the quality of state waters.
- C. Grant funding may be made available to local governments, soil and water conservation districts, institutions of higher education and individuals who propose specific initiatives that are clearly demonstrated as likely to achieve reductions in nonpoint source pollution, including, but not limited to, excess nutrients and suspended solids, to improve the quality of state waters. Such projects may include, but are in no way limited to, the acquisition of conservation easements related to the protection of water quality and stream buffers; conservation planning and design assistance to develop nutrient management plans for agricultural operations; instructional education directly associated with the implementation or maintenance of a specific nonpoint source pollution reduction initiative; the replacement or modification of residential onsite sewage systems to include nitrogen removal capabilities; implementation of cost-effective nutrient reduction practices; and reimbursement to local governments for tax credits and other kinds of authorized local tax relief that provides incentives for water quality improvement. The Director shall give priority consideration to the distribution of grants from the Fund for the purposes of implementing tributary strategy plans, with a priority given to agricultural practices. In no single year shall more than 60 percent of the moneys be used for projects or practices exclusively within the Chesapeake Bay watershed.
- D. The Director of the Department of Conservation and Recreation shall manage the allocation of Water Quality Improvement Grants from the Virginia Natural Resources Commitment Fund established under § 10.1-2128.1.

4. Definitions:

"Agricultural products" means crops, livestock and livestock products, including but not limited to: field crops, forage, fruits, vegetables, horticultural specialties, cattle, sheep, hogs, goats, horses, poultry, furbearing animals, milk, eggs and furs.

"Agricultural production" means the production for commercial purposes of crops, livestock and livestock products, and includes the processing or retail sales by the producer of crops, livestock or livestock products which are produced on the parcel or in the District.

"Animal Type" means the type of livestock the BMP is being installed to treat. For reporting in the AgBMP Tracking Module, the following animal types are used.

Beef	Dairy	Swine	Layer	Sheep	Goat
Horse	Turkey	Broiler	Pullets	Other	

"Applicant" means a landowner, agent, or operator of record as long as the individual has control of the property and is at least 18 years of age. An applicant may be any corporation, association, partnership, or one or more individuals. Various companies, corporations, and partnership arrangements exist for farm ownership. Farm corporations (signing under Federal Tax

Identification number) or partnerships operating under a farm name are classified as a single "applicant." Applicants are identified by a unique social security number and/or Federal Tax Identification number.

"Conservation Efficiency Factor (CEF)" means a factor calculated by the AgBMP Tracking Module to serve as a ranking tool and provide some guidance for ranking applications that would implement different BMPs. This tool is designed to assist Districts with the ranking of their cost share practice applications. The CEF uses eleven different components, including soil loss data that is inputted by the District, as well as the environmental information associated with the location of the practice on the earth to generate a factor used to rank the proposed practice compared with other instances of the same BMPs as well as instances of other BMPs.

"District" or "local soil and water conservation district" or "SWCD" means a political subdivision of the Commonwealth organized in accordance with the provisions of the Code of Virginia contained in Chapter 5 of Title 10.1 (§ 10.1-500 et seq.) and with the powers and duties set out in Chapters 1, 5, 6, and 21.1 of Title 10.1 of the Code of Virginia.

"Drainage basins" for the purposes of funding allocations means the lands within the Chesapeake Bay watershed (CB – Chesapeake Bay) or the lands in the Commonwealth exclusively outside of the Chesapeake Bay watershed (OCB – Outside of Chesapeake Bay).

"Forestal production" means the production for commercial purposes of forestal products, and includes the processing or retail sales by the producer, of forestal products that are produced on the parcel. Forestal products include, but are not limited to; saw timber, pulpwood, posts, firewood, Christmas trees, and other tree and wood products for sale or for farm use.

"Horticultural production" means the production for commercial purposes of horticultural products, and includes the processing or retail sales, by the producer, of horticultural products that are produced on the parcel. Horticultural products include, but are not limited to, fruits of all kinds, grapes, nuts, and berries, nursery and floral products for sale or for farm use.

"Total Maximum Daily Load" or "TMDL" means a calculation of a maximum amount of a pollutant that a waterbody can receive and still meet water quality standards.

5. Allocation Process for Cost-share:

The process for determining the allocation of new cost-share includes the following steps:

- A. Review the Appropriation Act language and determine the distribution of amounts deposited to the Virginia Water Quality Improvement Fund (WQIF) from state surplus allocations, WQIF Reserve, or from other General Fund deposits.

 (See **TABLE 1**)
- B. Review the Appropriation Act language and determine the total amount available for cost-share and technical assistance in the given fiscal year provided from the:
 - i. Close of fiscal year general fund surplus appropriated to the Virginia Water Quality. Improvement Fund (WQIF) and the amounts available for cost-share and technical assistance.
 - ii. Special WQIF and VNRCF deposits from the General Fund.

- iii. Nongeneral fund appropriation to the Virginia Natural Resources Commitment Fund from the recordation tax fee.
- iv. WQIF and Virginia Natural Resources Commitment Fund Interest.
- v. The Reserve within the WQIF. (SEE **TABLE 1**)
- C. Allocate portions of the funding to the CB and to OCB. (SEE **TABLE 4**)
- D. Develop a cost-share spending plan that allocates appropriated funds to Program elements. (Determine uses of cost-share in CB and OCB Areas.)
 - i. Central Service Adjustments
 - ii. VACS Virginia Agricultural Best Management Practices Cost-Share Program (SEE **TABLE 6**)
- E. Use the Agricultural Nonpoint Source Hydrologic Unit (HU) Ranking Process to determine cost-share allocations to Districts.

(SEE TABLES 7-9 and Attachments A-D)

Review of Appropriation Act Language (Allocation Steps A and B)

For In FY23, \$313,013,000 in funding is beingwas deposited to the Water Quality Improvement Fund in accordance with Item 374 of the 2022-2023 Appropriation Act (See Part 2, Authority). Of this amount, distributions are directed as follows:

TABLE 1: FY23 Appropriation Act Distributions for WQIF Surplus

Water Quality Program	Program
	Distributions
WQIF (Total Deposit)	\$313,013,000
Earmark for the Small Herd Initiative	\$7,000,000
Earmark for Commonwealth's match to federal Conservation	\$6,000,000
Reserve Enhancement Program (CREP)	
Earmark to support newly regulated MS4s (DEQ)	\$5,000,000
Earmark to conduct studies of harmful algal blooms occurring in	\$3,500,000
the Shenandoah River and Lake Anna (DEQ, VDH)	
Earmark for the Virginia Conservation Assistance Program	\$4,000,000
Earmark for special nonpoint source projects (poultry litter, NMPs)	\$4,560,000
and RMPs)	
Earmark to provide additional incentives for the maintenance of	\$2,000,000
riparian buffers by agricultural producers	
Earmark to assist with the implementation of the State Lands	\$1,000,000
Watershed Improvement Plan (DEQ)	
Earmark for the Small Farm Outreach Program (Virginia State)	\$250,000
University)	
Earmark for the Department of Forestry	\$1,000,000
Earmark for the Department of Forestry (Virginia Trees for Clean	\$4,000,000
Water program)	
Earmark for the Department of Health	\$100,000

• Earmark for the Department for the development and continued	\$1,500,000
maintenance for the Conservation Application Suite	
Earmark to provide enhanced and targeted outreach, education, and	\$700,000
technical assistance for landowners in the Bay watershed (VCE)	
WQIF Reserve Deposit	\$15,895,679
Transfers to the Virginia Natural Resources Commitment Fund	\$256,507,321
Agricultural Best Management Practices Cost-Share Assistance	\$235,349,842

For FY23 and FY24, \$261,057,321 \$112,349,842 in general funds (Item 374- see Part 2, Authority) and \$12,250,158 in returned and unallocated unobligated cost-share funds is are available for allocations to the Districts for cost-share. For FY24, and \$1,423,133 in technical assistance associated with returned and unallocated unobligated cost-share funds, \$10,246,050 in additional technical assistance funds, and \$4,550,000 in base technical assistance funding are available.

TABLE 3: FY23 and FY24 Cost-share and Technical Assistance Allocations by Fund Source

Funding Source	Total	Cost-share Portion of Total	Technical
			Assistance
			Portion of
			Total**
WQIF (Surplus	\$256,507,321	\$235,349,842	\$21,157,479
deposit) for			
both FY23 and			
FY24			
WQIF allocated	<u>\$133,911,429</u>	<u>\$123,000,000*</u>	\$10,911,429*
<u>FY23</u>			
WQIF allocated	<u>\$122,595,892</u>	<u>\$112,349,842</u>	\$10,246,050
<u>FY24</u>			
Recordation	\$8,500,000*	\$7,200,000	\$1,300,000
Fee*			
Technical			\$4,550,000
Assistance			
Base Funding			
(Item 374 A.2.)			
Returned and	<u>\$13,673,291</u>	<u>\$12,250,158</u>	<u>\$1,423,133</u>
<u>unallocated</u>			
unobligated			
<u>funds</u>			
TOTAL	\$123,000,000	\$242,549,842	\$27,007,479
ALLOCATION	<u>\$140,819,183</u> ***	<u>\$124,600,000</u>	<u>\$16,219,183</u>

for FY23 <u>FY24</u>		
(includes		
technical		
assistance		
funding		
provided in		
Item 374 A.2)		

It is anticipated that there will be \$133,507,321 available for agricultural best management practice implementation in FY24.

*The 2022-2023 Appropriation Act (Item 374 – see Part 2, Authority) provides for \$10,000,000 in Appropriation from the recordation tax fee. Anticipated A revised estimate of revenues of is \$8,500,000 is \$7,300,000 anticipated for FY2023; \$4,800,000 is projected for FY2024. For FY2023, the Board approved the allocation of \$3,000,000 from recordation revenues for certain purposes including BMP verification activities (\$1,000,000) and the poultry litter transport program (\$2,000,000). The Department recommends holding the remaining anticipated recordation revenues (\$6,500,000) and the associated technical assistance funds (\$2,600,000) in reserve for the Districts that are implementing the Whole Farm Approach during FY2024. The Department is not recommending the allocation of all of those funds at this time. The Department does recommend allocating \$1 million of these available funds for BMP verification; it is anticipated that this amount will ensure verification activities are funded through FY2025. Additionally, the Department recommends utilizing \$2 million of these funds for the poultry litter transport program, which is anticipated to meet the demand for the biennium.

* The WQIF allocated for FY2023 cost-share portion of the total column includes the \$6,639,483 held in reserve for the Districts participating in the Whole Farm Approach specifications. The associated amount of technical assistance was also held in reserve. Any funds from this reserve that were not utilized in FY2023, including any associated technical assistance funds, are considered as returned and unobligated funds.

**The 2022–2023 Appropriation Act (Item 374– see Part 2, Authority) utilizes 13% for the formulation of Technical Assistance Amounts to be allocated from the Surplus Deposit.

***The total allocation for FY2023 is \$123,000,000; however, the Department is holding \$6,639,483 in cost-share funding (and the associated technical assistance funds) in reserve for the Districts that are participating in the Whole Farm Approach during FY2023. Included in the total allocation for FY2024 are \$12,250,158 in returned and unobligated cost-share funds and \$1,423,133 in technical assistance funds.

An additional \$13,500,000 in returned and unobligated cost-share funds will be held in reserve for the Districts that are implementing the Whole Farm Approach during FY2024. For FY2024, there will be a total of \$22,600,000 available for Districts that are implementing the Whole Farm Approach (\$20,000,000 for the implementation of best management practices and \$2,600,000 for technical assistance funding).

The 2022-2023 Appropriation Act specifies the distributions for both the WQIF Surplus Deposit, the additional deposit to the Virginia Natural Resources Commitment Fund (VNRCF), and the recordation revenues. Distributions within the CB and OCB shall be as follows:

TABLE 4: FY23 FY24 Cost-share Allocations by Drainage Basin and Fund Source

Funding Source	Total	Cost-share	Cost-share Portion	Cost-share Portion
		Portion of	Allocated to Lands	Allocated to Lands
		Total	Exclusively or Partly	Exclusively OCB*
			Within the CB*	·
WQIF General	\$123,000,000	\$123,000,000	\$86,100,000	\$36,900,000
Fund deposit	\$112,349,842	\$112,349,842	<u>\$78,644,889</u>	\$33,704,953
Returned and	\$12,250,158	\$12,250,158	\$8,575,111	\$3,675,047
unallocated				
unobligated funds				
TOTAL	\$123,000,000	\$123,000,000	\$86,100,000	\$36,900,000
	\$124,600,000	\$124,600,000	\$87,220,000	\$37,380,000

^{*} Amounts rounded to the nearest dollar.

Spending Plan: Allocation of Appropriated Funds (Allocation Step D)

Out of the amounts available for cost-share, the Spending Plan shall allocate funding to BMP practices associated with specific program elements as follows:

TABLE 6: FY23 FY24 Cost-share Spending Plan by Drainage Basin and Fund Source

Program	Cost-share Portion	Cost-share	Totals
Element	Allocated to Lands	Portion Allocated	
	Exclusively or Partly	to Lands	
	Within the CB	Exclusively OCB	
	(General Funds	(General Funds)	
Total Available	\$86,100,000	\$36,900,000	\$123,000,000
	<u>\$87,220,000</u>	\$37,380,000	<u>\$124,600,000</u>
Central Service			
Adjustments	\$46,153	\$19,779	\$65,932
VACS	\$86,053,847	\$36,880,221	\$122,934,068
	\$87,173,847	\$37,360,221	\$124,534,068

^{*}Rounded to the nearest dollar.

Specifics regarding the process by which such allocations are determined for each Program element within the spending plan are as follows:

Explanation of Spending Plan Distribution Components:

RMP – Resource Management Plans (Allocation Step D1)

Any remaining RMP balances from prior fiscal years funds are authorized to be carried forward to FY23 FY24, and no new earmark is being made. These funds may be utilized to contract for

plan development and certification although the intent is for the emphasis to be placed on plan certification (RMP-2). A fundamental goal of the Resource Management Plan Program pursuant to § 10.1-104.8 of the Code of Virginia is for the RMP plans to include "agricultural best management practices sufficient to implement the Virginia Chesapeake Bay TMDL Watershed Implementation Plan and other local TMDL water quality requirements of the Commonwealth". The intent of the program is to encourage farm owners and operators to voluntarily implement a high level of BMPs on their farmlands in order to be protective of water quality.

Soil and Water Conservation Districts are authorized to develop plans and recover costs from the cost-share applicant in accordance with Item 374 of the 2022-2023 Appropriation Act.

H. Notwithstanding §10.1-552, Code of Virginia, Soil and Water Conservation Districts are hereby authorized to recover a portion of the direct costs of services rendered to landowners within the district and to recover a portion of the cost for use of district-owned conservation equipment. Such recoveries shall not exceed the amounts expended by a district on these services and equipment.

Central Service Adjustments (Allocation Step D2)

The Appropriation Act (Part 3: Miscellaneous) annually applies charges (interfund transfers) to each Agency for expenses incurred by central service agencies associated with Agency funds. For FY23 FY24, charges for nongeneral funds are \$65,932 from 0900 funds. If a portion of these expenses need to be paid from cost-share amounts provided for in the Appropriation Act, it should be allocated from non-budgeted "cash transfer in (CTI)" funds or non-budgeted recordation fee tax deposits before reallocations are made.

<u>VACS – Virginia Agricultural Best Management Practices Cost-Share Program Allocations</u> (Allocation Step D3)

After the other noted distributions have been met in the spending plan (SEE TABLE 6 there is \$123,000,000 \$124,600,000 available for distribution as VACS cost-share. (Table 6 outlines the drainage basin split and fund sources.) Specific allocations to Districts in FY23 FY24 shall be made using science-based targeting of funds so that areas with the greatest potential to contribute agricultural nonpoint source pollution have the financial resources to implement BMP to reduce nutrient and sediment contamination of surface and ground waters. The process utilized to make these allocations is called the Agricultural Nonpoint Source Hydrologic Unit (HU) Ranking Process.

Agricultural Nonpoint Source Hydrologic Unit (HU) Ranking Process (Step E)

The Department utilizes a component of Virginia's Nonpoint Source Assessment to focus its cost-share allocations where funds can produce the greatest reductions in surface and ground water contamination. Every two years, the Department of Environmental Quality (DEQ) prepares a Virginia Water Quality Assessment Report, also known as the 305(b)/303(d) Water Quality Assessment Integrated Report for submission to the Environmental Protection Agency that typically includes an updated Nonpoint Source Assessment prepared by both the Department and DEQ. Currently, the 2022 Nonpoint Source Assessment represents the most recent information available for use. The Department utilizes the agricultural component of the most current and approved NPS assessment to focus agricultural cost-share funds.

Hydrologic unit assessment scores are calculated using a nonpoint source pollutant load simulation model and data developed by the Department, DEQ, and the Virginia Tech, Department of Biological Systems Engineering. The model includes statewide data from:

- Detailed land use from interpreted imagery supplemented with tillage practice data;
- USDA Cropland data;
- National Agricultural Statistics Service data;
- Grazing and manure application practices;
- Hydrologic soil groups;
- Average water content and K factors of all soils;
- Stream flows from gauge stations;
- Climate records from a multi-state area;
- Growing seasons;
- Dominant crop types by hydrologic unit;
- CB Watershed Model output;
- Animal numbers by type and location;
- Distribution and extent of agricultural conservation practices; and
- Slope.

Additional technical information regarding modeling processes are set out in Department documents titled: 2022 NPS Assessment and Prioritization Primer

The computer model estimates and ranks the pollutant loads of nitrogen, phosphorus, and sediment in 1,240 of the 1,251 6th level hydrologic units in Version 5 of Virginia's National Watershed Boundary Dataset (NWBD), each identified by a unique code (VAHU6). Those units not modeled are primarily water. Each of three per hectare agricultural pollutant loads are sorted Low to High and assigned their sort order for each Hydrologic Unit (HU). The rank score of a HU is the sum of these three values. For example:

Hydrologic	Nitrogen	Phosphorous	Sediment	Sum	Agricultural
Unit –	Load Sort	Load Sort	Load Sort	(NSEQ +	Pollutant
(VAHU6)	Order	Order	Order	PSEQ +	Potential
	(NSEQ)	(PSEQ)	(SSEQ)	SSEQ)	Rank
PS14	944	1133	1029	3106	High (H)
JU37	683	752	1139	2574	Medium (M)
NE28	486	193	214	893	Low (L)

The higher the composite ranking score, the higher its potential to contribute agricultural NPS pollution (based on Nitrogen, Phosphorus, and Sediment loads). In accordance with this process, Attachment A includes the Unit Area Loads for Nitrogen (kg/Ag ha-yr), Phosphorus (kg/Ag ha-yr), and Sediment (mt/Ag ha-yr); the Sorted Sequence (Rank Order) between HUs for each pollutant's load; a Sum Order for each HU; and the resulting Agricultural Pollutant Potential Rank for each HU to be utilized in FY23 cost-share allocation computations.

The Department has designated the highest 20% of the ranked composite scores as High (H) potential, the middle 30% as Medium (M), and the lowest 50% are ranked Low (L) for their potential to contribute agricultural NPS pollution (natural breaking points in the data are looked for around these percentiles; not to exceed a 0.50 deviation).

For <u>FY23 FY24</u> (see **Attachment A**) the data breaks were as follows:

TABLE 7: Agricultural Pollutant Potential Ranking

Agricultural		Percent o	of		
Pollutant	Number	modeled			
Potential	of HUs	HUs		Percent of	Sum Order
Rank	included	included		Ag land	Range
Н	248	20.0		21.34	2616-3565
M	373	30.0		29.75	1795-2611
L	619	50.0		48.91	3-1792
Total	1240	100.000		100.000	

NOTE: Since the installation and distribution of BMPs implemented is part of the calculation of the agricultural NPS loads and ranking, the hydrologic units may change rankings if a large number of BMPs are implemented in a particular HU between assessments. Ranking changes tend to shift the funds between the HUs.

The next step is to compile the HU area (hectares or ha) designated as H, M, and L by county and the District geographic areas. Hydrologic unit boundaries are based upon naturally occurring drainage divides and do not often reflect county boundaries. As a result, any HU may be fully contained within a county or divided between two or more counties. Geographic Information System analysis allows the area (acres) of each ranked HU (H, M, and L) within a county boundary to be calculated and compared to the total number of acres of that pollutant ranking (H, M, and L) within each drainage basin (CB or OCB). The county area (acres) designated as H, M, and L are then rolled up to the 47 Districts. (Those HUs not within a District boundary have been removed from the analysis and do not contribute to the acreage total utilized in calculating the Cost-share Multiplier.)

Some Districts reside in the CB, some are located in only OCB areas, and some contain acreage in both. District drainage basin assignments are outlined in **Attachment B**.

Once a composite area (acres) for H, M, and L HUs has been calculated for each District by drainage basin, a H, M, and L cost-share multiplier based on percentage of agricultural acres in the District (for H, M, and L) compared to the drainage basin total (for H, M, and L) is calculated and then applied respectively to the amount of cost-share funding allocated to the H, M, and L pollutant load categories in the CB and OCB areas. This analysis is set out in **Attachment C**. **Attachment C** provides data by Drainage Basin (CB and OCB), District, Agricultural Pollutant Potential Rank (H, M, and L), Total Area (acres) of Hydrologic Units in each District by Agricultural Pollutant Potential Rank and Drainage Basin, and the resulting Percentage Rank (Cost-share Multiplier).

Attachment D provides a full-page version of the image below (FIGURE 1) depicting the statewide distribution of H, M, and L HUs by District and Drainage Basin.

FIGURE 1: Virginia's Agricultural BMP Cost-share Funding Priorities

Utilizing the information in **Attachment C**, the next step is to determine how much of the available cost-share by drainage basin and funding type will be proportioned to H, M, and L HU areas. Percentage allocations are based on providing a high percentage of the funding to the waters with the most pollutant load based on nitrogen, phosphorus, and sediment. For FY23 FY24, the H ranked HUs are assigned 50 percent of the cost-share funds. The M ranked HUs are assigned 30 percent of the cost-share funds, while the L ranked HUs are assigned 20 percent of the cost-share funds.

TABLE 8: FY23 FY24 Cost-share Allocations by Drainage Basin; Fund Source; and H, M, and L HU Areas*

Program Element	Cost-share	Cost-share	Totals
	Portion	Portion	
	Allocated to	Allocated to	
	Lands	Lands	
	Exclusively	Exclusively	
	or Partly	OCB	
	Within the	(General	
	CB	Fund)	
	(General	,	
	Fund)		
VACS (after			
spending plan	\$87,220,000	\$37,380,000	\$124,600,000
distributions –	\$86,100,000	\$36,900,000	\$123,000,000
see TABLE 6)			
H (50%)	\$43,610,000	\$18,690,000	\$62,300,000
	\$43,050,000	\$18,450,000	\$61,500,000
M (30%)	\$26,166,000	\$11,214,000	\$37,380,000
	\$25,830,000	\$11,070,000	\$36,900,000
L (20%)	\$17,444,000	\$7,476,000	\$24,920,000
, , ,	\$17,220,000	\$7,380,000	\$24,600,000

^{*}Rounded to the nearest dollar.

The H, M, and L multipliers for each District are then applied to the amount of cost-share funds being made available in each drainage basin (CB and OCB) and funding source (General Funds and Recordation fee) as set out in **TABLE 8**. Each District's drainage basin's H, M, and L funds are then accumulated to provide a total funding amount for the cost-share allocation.

The following table shows <u>FY23</u>_<u>FY24</u> District VACS cost-share allocations by drainage basin and under the cost-share total column, provides the cumulative cost-share allocations to each of the Districts.

TABLE 9: FY23-FY24 District Cost-share Allocations by Drainage Basin

			FY23 Cost-
	VACS CB	VACS OCB	Share Total
SWCD	Total	Total	(VACS)
APPOMATTOX	\$478,590	\$1,318,036	\$1,796,627
RIVER	\$137,711	\$1,159,390	\$1,297,101
BIG SANDY		\$23,181	\$23,181
	\$0	\$22,883	\$22,883
BIG WALKER		\$693,950	\$693,950
	\$0	\$685,039	\$685,039
BLUE RIDGE		\$1,305,649	\$1,372,657
	<u>\$67,008</u>	\$1,113,617	\$1,180,625
	\$66,148	\$1,099,317	\$1,165,465
CHOWAN BASIN		\$9,000,000	\$9,000,000
	\$0	\$9,000,000	\$9,000,000
CLINCH VALLEY		<u>\$641,034</u>	<u>\$641,034</u>
		\$449,002	\$449,002
	\$0	\$443,236	\$443,236
COLONIAL	\$2,689,088	\$0	\$2,689,088
	\$1,696,612		\$1,696,612
CULPEPER	\$7,000,000	\$0	\$7,000,000
	\$8,903,019		\$8,903,019
DANIEL BOONE	40	\$2,273,857	\$2,273,857
T. CTTTN. CYLORT	\$0	\$2,102,936	\$2,102,936
EASTERN SHORE	\$2,689,088	\$1,208,491	\$3,897,579
ELVED CD EEN	\$1,945,741	\$1,051,251	\$2,996,991
EVERGREEN	ФО	\$333,298	\$333,298
TIAT IDAN	\$0	\$329,018	\$329,018
HALIFAX		\$1,246,021 \$1,053,000	\$1,246,021
	60	\$1,055,989	\$1, 055,989
HANOVER-	\$0	\$1,040,433	\$1, 040,433
	\$5,189,089 \$2,571,877	\$0	\$5,189,089 \$2,571,877
	: 1	0.2	. , , , , , , , , , , , , , , , , , , ,
ΠΕΑDWATERS		\$0	
HENRICOPOLIS		\$0	
TIENKICOI OLIS		φυ	
HOLSTON RIVER	Ψ347,037	\$774 023	
TIODSTON KIVEK			\$581 001
	\$0	\$574.517	\$574.517
JAMES RIVER		\$988,609	\$1,705,281
JOHN MARSHALL		' '	
	\$4,541,863	4 0	\$4,541,863
CAROLINE HEADWATERS HENRICOPOLIS HOLSTON RIVER JAMES RIVER JOHN MARSHALL	\$3,571,877 \$5,000,000 \$8,048,575 \$725,638 \$529,659 \$0 \$716,672 \$707,469 \$4,790,033	\$0 \$0 \$774,023 \$581,991 \$574,517 \$988,609 \$975,915 \$0	\$3,571,877 \$5,000,000 \$8,048,575 \$725,638 \$529,659 \$774,023 \$581,991 \$574,517 \$1,705,281 \$1,683,383 \$4,790,033

LAKE COUNTRY		\$2,264,258	\$2,264,258
	\$0	\$2,093,461	\$2,093,461
LONESOME PINE		<u>\$296,589</u>	<u>\$296,589</u>
	\$0	\$151,058	\$151,058
LORD FAIRFAX	\$5,500,000	\$0	\$5,500,000
	\$8,361,401		\$8,361,401
LOUDOUN	\$2,592,126	\$0	\$2,592,126
	\$2,372,180		\$2,372,180
MONACAN	\$1,918,295	\$0	\$1,918,295
	\$1,707,001	• •	\$1,707,001
MOUNTAIN	\$2,678,055	\$0	\$2,678,055
	\$2,457,005	4.0	\$2,457,005
MOUNTAIN	\$1,574,668	\$224,782	\$1,799,450
CASTLES	\$1,367,786	\$80,174	\$1,447,961
NATURAL BRIDGE	\$2,057,055	\$0	\$2,057,055
	\$1,843,979	ΨΟ	\$1,843,979
NEW RIVER	Ψ1,013,575	\$996,763	\$996,763
I VE W ICI VEIC		\$804,731	\$804,731
	\$0	\$794.398	\$794,398
NORTHERN NECK	\$6,189,089	\$0	\$6,189,089
NORTHERN NECK	\$4,925,144	ΨΟ	\$4,925,144
NORTHERN	\$85,109	\$0	\$85,109
VIRGINIA	\$84,016	φU	\$84,016
PATRICK	\$07,010	\$446,354	\$446,354
PATRICK	\$0	\$298,901	\$298,901
PEAKS OF OTTER	\$333,541		\$1,011,716
PEAKS OF OTTER		\$678,175 \$527,745	
DEANILIE	\$142,597	\$527,745 \$4,282,773	\$670,342
PEANUT	\$4,189,089	\$4,282,773	\$8,471,862
DETED ED ANGIGO	\$2,693,600	\$4,086,056	\$6,779,656
PETER FRANCISCO	\$2,356,020 \$2,130,105	\$0	\$2,356,020
PIED I (O) IT	\$2,139,105	ф 227 001	\$2,139,105
PIEDMONT	\$2,728,447	\$227,991	\$2,956,438
	\$2,506,750	\$83,342	\$2,590,092
PITTSYLVANIA		\$2,000,000	\$2,000,000
		\$2,960,160	\$2,960,160
	\$0	\$2,922,148	\$2,922,148
PRINCE WILLIAM	<u>\$993,840</u>	\$0	<u>\$993,840</u>
	\$794,417		\$794,417
ROBERT E. LEE	<u>\$1,918,188</u>	<u>\$928,896</u>	<u>\$2,847,083</u>
	\$1,706,895	\$916,967	\$2,623,863
SCOTT COUNTY		<u>\$832,478</u>	<u>\$832,478</u>
	\$0	\$680,067	\$680,067
SHENANDOAH	\$4,500,000	\$0	\$4,500,000
VALLEY	\$ 5,000,000		\$5,000,000
SKYLINE	\$192,552	\$1,300,592	\$1,493,144
	\$3,419	\$1,142,170	\$1,145,589
	T-1	+ /	+ J J J

SOUTHSIDE	\$190,331	\$1,312,488	\$1,502,819
	\$1,226	\$1,153,913	\$1,155,139
TAZEWELL		\$476,567	<u>\$476,567</u>
	\$0	\$328,725	\$328,725
THOMAS	<u>\$5,491,913</u>	\$0	<u>\$5,491,913</u>
JEFFERSON	\$5,234,731		\$5,234,731
THREE RIVERS**	<u>\$6,189,089</u>	\$0	<u>\$6,189,089</u>
	\$4,479,901		\$4,479,901
TIDEWATER	\$3,689,089	\$0	\$3,689,089
	\$1,145,584		\$1,145,584
TRI-COUNTY/CITY	\$2,355,995	\$0	<u>\$2,355,995</u>
	\$2,139,080		\$2,139,080
VIRGINIA DARE	\$152,305	\$1,305,144	\$1,457,449
	\$150,349	\$1,146,663	\$1,297,012
Grand Total	\$87,220,000	\$34,889,744	\$124,600,000
	\$81,404,841	\$37,380,000	\$116,294,585

^{*}Rounded to the nearest dollar.

NOTE: The distribution of cost-share allocations is dependent on income and state finances. See the procedure outlined in Part 13: Criteria for Cost-Share and Technical Assistance for what procedures are implemented should funding availability fall short of appropriation projections.

6. Deputy Director Approved Transfer of Cost-share (and Technical Assistance):

After Grant Agreement issuance, Districts may choose to work with the Department to determine if cost-share allocations should be transferred from one District to another District to maximize water quality improvements. Cost-share shall not be transferred between CB and OCB drainage allocations. Prior to a District Board taking formal action to either transfer cost-share allocation or to accept additional cost-share allocation, the Conservation District Coordinator(s) assigned to each District must authorize the transfer or acceptance of cost-share allocation. Recommended adjustments Adjustments in the cost-share allocations that are approved by the Conservation District Coordinator(s) and the District Boards shall be advanced by Department field personnel through the Division's Central Office to the Deputy Director for consideration as District contract adjustments. A completed Transfer of Virginia Agricultural Best Management Practices Cost-Share Program (VACS) Allocated Cost-Share Funds Form 199-225 (Form) from the affected Districts will be required to document their approval of the recommended transaction. The completed Form regarding reallocations/transfers shall be routed to the Comptroller to update the Department's records. For amounts already distributed to Districts, funds shall be returned back to the Department, or deducted from the next quarterly FY23 FY24 disbursement(s) for redistribution to the approved receiving District (accordingly such funds shall not be directly sent between Districts). A proportional amount of Technical Assistance shall be transferred with the cost-share funds; however, cost-share funds may be voluntarily transferred between two Districts without a proportional amount of technical assistance funds if both the donor and recipient District Boards agree, by formally adopted motions, to such transfer. Such motions and all documentation required to execute the voluntary transfer of cost-share must be submitted to the Department prior to June 31, 2023 June 15, 2024. All transferred cost-share funds will be subject to the recipient District's ninety percent (90%) obligation requirement for their total VACS allocation as set out in Section 9 – Reallocation of cost-share funds.

Additionally, should a District decline a recommended cost-share allocation, technical assistance allocations may also be reduced accordingly if such an allocation has been recommended. Aside from transfers of funds approved under this Section, no other movements of cost-share or technical assistance funding may occur between Districts.

7. Targeting the Expenditure of Cost-share Funds in each District to Maximize Water Quality Improvements:

Once cost-share has been allocated to Districts, cost-share expenditures within Districts, in accordance with the VACS mission (See Part 2), should be targeted towards maximizing nutrient and sediment reductions by implementing the most cost-effective BMPs possible in locations that achieve the greatest pollutant reductions on a field by field basis. The VACS Program gives Districts the responsibility to determine the recipients of state cost-share funds. The better the Districts recruit and evaluate applications, the more successful the local program will be at improving local water quality. Participants are to be recruited based upon those primary and secondary factors, which most influence their existing land uses impact upon water quality. The objective of the VACS Program is to solve water quality problems by fixing the worst problems first on a field by field basis. The 2022 agricultural non-point source ranking of the National Watershed Boundary Dataset units (VAHU6) currently provides the most accurate identification at a landscape scale, of the lands with the greatest potential to contribute agricultural non-point source pollution into Virginia's rivers and streams.

Statewide water quality considerations shall be used by all Districts to qualify cost-share applications for District Board consideration for funding. Districts should prioritize the implementation of appropriate BMPs that will reduce the greatest amount of nutrient and sediment contamination while utilizing the least amount of cost-share funds to address site-specific water quality problems in identified HU priority watersheds with all program cost-share funds. Additional programmatic guidelines and specific criteria related to both priority and secondary considerations are set out in the Program Year 2024 Virginia Agricultural Cost-Share (VACS) BMP Manual. Any application that does not meet at least one of the priority considerations listed below shall not receive funding:

- 1. Applications for cost-share funding that are located within a designated NPS impaired waters drainage area (identified as *Impairment Type* in the AgBMP Tracking Module mapping) shall be prioritized for funding of practices that reduce the identified impairment types (nutrient, bacteria, septic).
- 2. Applications for cost-share funding on fields that are at least 1/3 HEL (Highly Erodible Land) soils receive priority.
- 3. Applications for cost-share to implement BMPs that are within an approved Virginia Resource Management Plan management area will also receive priority consideration over similar BMPs outside of the management area. The AgBMP Tracking Module will automatically calculate a 10% reduction in the CEF score for these BMPs.

Exceptions to the priority considerations may be made for animal waste management practices and for actions taken to protect groundwater, gully erosion, or critical areas. The following list of practices are priorities and do not need to meet any other priority consideration in order to be eligible for cost share funding:

Animal Waste Control Facilities (WP-4)

- Dairy Loafing Lot Management System (WP-4B)
- Composter Facilities* (WP-4C)
- Permanent Vegetative Cover on Critical Areas (SL-11)
- Nutrient Management Plan Writing and Revisions (NM-1A)
- Sod Waterway (WP-3)
- Small Grain Cover Crop and Mixed Cover Crop for Nutrient Management and Residue Management (SL-8B)
- Stream Exclusion with Grazing Land Management (SL-6N or SL-6W)
- Grass Filter Strips (WQ-1)
- Sediment Retention, Erosion or Water Control Structure (WP-1)
- Precision Nutrient Management on Cropland Nitrogen Application (NM-5N)
- Precision Nutrient Management on Cropland Phosphorus Application (NM-5P)
- Woodland Buffer Filter Area (FR-3)
- Feeding Pad* (WP-4FP)
- Animal Waste Control Facility for Confined Livestock Operations (WP-4LC)
- Loafing Lot Management System with Manure Management (Excluding Bovine Dairy) (WP-4LL)
- Seasonal Feeding Facility with Attached Manure Storage (WP-4SF)
- Stream Exclusion in Floodplain (SL-6F)
- Small Grain and Mixed Cover Crop for Nutrient Management and Residue Management (SL-8B)
- Small Grain and Mixed Cover Crop for Nutrient Management and Residue Management with Fall Manure Application (SL-8M)
- Whole Farm Approach Cover Crop Bundle (WFA-CC)
- Whole Farm Approach Nutrient Management Bundle (WFA-NM)

*WP-4C and WP-4FP may only be treated as priority practices if they are a part of a combined contract that also funds a SL-6N, SL-6W, or WP-4.

Further, a set of Secondary considerations that identify the local District Board's water quality improvement focus shall be developed by the District Board. The District shall submit their Secondary Considerations to the Department and receive Department approval prior to the District approving cost share applications. These secondary considerations are utilized by Districts to prioritize applications that address locally identified water quality concerns. Secondary considerations should be narrative statements that are easily understood by any potential participant and that assist District Boards in ranking cost share applications based upon which practice implementation will provide the greatest amount of local water quality improvement. The District shall be expected to abide by these policies throughout the entire program year so that each application is ranked to receive funding based upon the anticipated water quality benefits. Examples of potential secondary considerations may be found in the *Program Year 2023 Virginia Agricultural Cost Share (VACS) BMP Manual.*

Additionally, for Districts within the CB, Districts shall give priority to BMPs addressed within the Virginia Chesapeake Bay Watershed Implementation Plan; for Districts OCB, priority shall be given to BMPs in the highest priority agricultural TMDL watersheds (as ranked by the

Department; H, M, and L). BMPs within fields covered by a Resource Management Plan shall also receive priority.

Districts shall be prepared to verify and document that their cost-share allocations are being spent in accordance with the priority considerations, their approved secondary considerations, and in accordance with the *Program Year* 2023–2024 Virginia Agricultural Cost Share (VACS) BMP Manual.

Each District shall, when comparing projects for cost-share funding, utilize the Conservation Efficiency Factor (CEF). A CEF is calculated by the AgBMP Tracking Module and uses eleven different components, including installation costs and soil loss data that is input by the District, as well as the environmental information associated with the location of the practice to generate a factor that can be used to rank the proposed practice compared with other instances of the same BMPs as well as instances of other BMPs (See **TABLE 10**). Although the CEF can be used to rank different BMPs it will more accurately rank different BMPs that are oriented toward reduction of the same contaminate with the lower the value the more preferred the project.

The relative weights of **TABLE 10** reflect the weight distribution of the CEF components for practices where every component is used in the final CEF calculation. For many practices one or more of these components is not used and the relative weights of the point variables that are used will therefore be proportionally increased. Details on this procedure may be found in a Department discussion document titled *Assignment of Priority Values to BMP Instances at the Time of District ACSTP Data Entry*.

TABLE 10: CEF Ranking Components and Values

Ranking Component	Relative Weight	Value Range	Point or Credit Variable	Assigned Rank Points
Deliverable Sediment Reduction Cost Efficiency points	12.5	not calculated / equation results	DSEDXCE_P	0 / 1 - 10
Priority Practice points	16.25	yes / maintenance / no	PRI_P	1/9/13
NPS Ag Priority Hydrologic Unit points	16.25	not used / Ag Priorities SUM Order	NPSAG_P	0 / 1 - 13
NPS Biological Priority HU credit	5.0	2+ flags / 1 flag / none	NPSBIO_C	-4 / -2 / 0
Ag Bacteria Impairment Area points	6.25	Not used/7/6/5/4/3/ 2/1/0	BIMP_P	0/1/2/1/3/1/4/1/5
Ag Nutrient Impairment Area points	6.25	Not used/7/6/5/4/3/ 2/1/0	NIMP_P	0/1/1/4/4/1/1/4/5

Septic Impairment Area points	6.25	Not used/7/6/5/4/3/ 2/1/0	SIMP_P	0/1/1/1/1/2/4/3/5
Chesapeake Bay Program Efficiency credit	3.75	>50% / 35-50% / <35% / not reported	CBEFF_C	-3 / -2 / -1 / 0
Practice Contract Period points	6.25	1 - 15	PCP_P	1 - 5
Installation Cost Efficiency points	15.00	not calculated / equation results	ICE_P	0 / 1 - 12
Environmental Preferences credit	6.25	% hardwood or % early/rye cover or buffer width and contract period	ENV_C	0 / -5 - 0

Final approval of practice funding is the responsibility of the local District Board of Directors. All actions taken must be voted upon and the outcome recorded in the minutes of the meeting where such action is taken. Districts should be prepared to verify and document that their cost-share allocations are being spent in accordance with their priority and secondary considerations and in accordance with the *Program Year* 2023 2024 Virginia Agricultural Cost Share (VACS) BMP Manual.

Any application must meet appropriate technical agency standards and specifications of that practice before cost-share payment is made. Payment is issued after the participant and technical representative have certified practice installation in their Virginia BMP Incentives Contract. The amount of the cost-share payment is calculated based upon the approved estimated cost or total eligible actual cost whichever is less. When completed practices are scheduled for combined funding from a District and other sources, the District cost-share payment must reflect the balance due (not to exceed the amount approved by the District for the cost-share payment) after payment has been approved or issued by the other sources. Total combined state VACS, federal, and any other funding source cost-share payments must not exceed the amount allowed within the Program Year 2023 2024 Virginia Agricultural Cost Share (VACS) BMP Manual, or this Policy, or by written directive of the Director.

Department personnel will confer with District staff at least quarterly to determine their projected needs for cost-share payments for projected completed BMPs. Department personnel will generate a disbursement letter based upon the projected needs and AgBMP Tracking Module data showing obligations.

8. Cost-share Funding Caps:

For FY23 FY24, the VACS applicant cost-share limit or "cap" is \$300,000/applicant/year. This cap is automatically monitored for any applicant across Districts based upon data available from within the AgBMP Tracking Module.

- Each District Board may establish an applicant cost-share limit or "cap" for the program year which may not exceed the program applicant cost-share limit. Applicants may receive the amount of the District established cost-share limits or "caps" for implemented BMPs as long as the amount does not exceed the established programmatic cost-share limit or "cap". This cap is automatically monitored for any applicant across Districts based upon data available from within the AgBMP Tracking Module. Districts may view all approved cost-share funds for a participant by utilizing the "participant's contracts" button. This authority to set District cost-share limits in accordance with the provisions of this paragraph does not extend to RMP-1 and RMP-2 practices.
- Cost-share funds received for RMP-1 and RMP-2 practices do not count against or otherwise affect an applicant's contribute to annual cost-share a participant's annual cost-share cap for other specified practices. Additionally, certain initiatives, such as the Small Herd Initiative, do not contribute to a producer's annual cost-share cap.
- Certain practices, such as the WFA-CC and the WFA-NM, authorize the exceedance of are authorized to exceed the annual cost-share cap.
- A producer may be eligible to receive a variance from the cap in accordance with the procedures established in the Program Year 2024 Virginia Agricultural Cost-Share (VACS) BMP Manual. for the following practices or combination of practices:
- SE-2
- SL-6W;
- WP-4:
- WP-4B:
- WP-4LC:
- WP-4LL;
- WP-4SF:
- WP-4/WP-4C combination projects;
- SL-6N/SL-6W combination projects;
- SL-6N/WP-4B combination projects;
- SL-6N/WP-4FP combination projects;
- SL-6N/WP-4LL combination projects;
- SL-6N/WP-4SF combination projects;
- SL-6W/WP-4B combination projects;
- SL-6W/WP-4FP combination projects;
- SL-6W/WP-4LL combination projects; and
- SL-6W/WP-4SF combination projects.
- However, if producer is approved for such a variance, he is not eligible for any additional cost-share funds for any other cost-share practices, unless such other practice authorizes the exceedance of a participant cap (ex. WFA-NM and WFA-CC standards and specifications) or is implemented under an initiative that does not contribute to the VACS participant cap (ex. Small Herd Initiative).

State participant caps are based upon the fiscal year that the practice is approved rather than the fiscal year in which the cost-share payment is distributed. This allows each participant to maximize the amount of cost-share that they may receive in each fiscal year.

9. Reallocation of Cost-Share:

Following the end of each fiscal year, the Board shall reallocate (redistribute) unobligated VACS allocations, including unobligated funds from prior fiscal years, and unobligated CREP or RCPP funds (keeping cost-share within the drainage basin it was originally allocated within) at its next scheduled meeting. These funds will be used for VACS programmatic priorities which may include funding for Chesapeake Bay Watershed Implementation Plan implementation or targeted agricultural BMPs. VACS funds that have not been approved by the District's Board of Directors at the end of the fourth quarter of the fiscal year (June 30, 2023) (June 30, 2024) to fund an existing cost-share application are considered to be unobligated.

Data collected from the budget summary page of the Virginia AgBMP Tracking Module (Tracking Module) will be analyzed to identify those Districts that have obligated ninety percent (90%) or more of their Total VACS allocation. The percent of their VACS allocation obligated will be identified by dividing the "Obligated" amount by the "Allocation" amount. For those Districts that did not obligate at least ninety percent (90%) of their Total VACS allocation by June 30, 2023 June 30, 2024, unobligated cost-share funds will be summed and all of a District's unobligated VACS funds will be reallocated. This includes amounts already distributed to Districts for which a project has since been discontinued (which shall be reverted back to the Department; such funds shall not be directly sent between Districts) as well as VACS funds still being held by the Department for which there are no pending obligations against it. Technical assistance funding ("FY 24TA Addition to the FY23 TA Base") shall proportionally be returned to the Department with the reallocated cost-share.

Reallocation cost-share amounts and the associated technical assistance amounts shall be specifically noted in cost-share disbursement letters to Districts and become part of the financial record.

10. Allocation Process for Technical Assistance:

Technical Assistance funds are made available to Districts by the Department for VACS Program implementation by District technical staff. FY23 FY24 technical assistance fund allocations approved in the amount \$4,547,601 represents a base allocation for FY23 FY24 for technical assistance. Technical assistance funding provided in addition to the base \$4,547,601 will be distributed proportionally to the allocation of cost-share funding provided. Results for FY23 FY24 (Total Technical assistance allocations by District) are presented in TABLE 11. In future years, should technical assistance amounts available fall below the \$4,547,601 base level, total technical assistance to Districts would be proportionally reduced.

TABLE 11: FY22 FY24 Technical Assistance Computations and District Allocations

SWCD	FY23 <u>FY24</u>	Proportional	FY23	FY23 TA	FY23
	Cost-Share	Multiplier	<u>FY24</u> TA	Base	FY24 Total
	Total (VACS)		Addition to		Technical
			the FY23		Assistance
			TA Base		Allocated

APPOMATTOX RIVER	\$1,796,627 \$1,297,101	0.014419154 0.01115358	\$168,294 \$117,874	\$54,530	\$222,824 \$172,404
BIG SANDY	\$23,181	0.000186041	\$2,171	\$54,550	\$26,171
DIO SANDI	\$23,181 \$22,883	0.000180041 0.000196768	$\frac{$2,171}{$2,079}$	\$24,000	\$20,171 \$26,079
BIG WALKER	\$693,950	0.005569423	\$65,004	\$24,000	\$96,504
DIG WALKER	\$685,039	0.005309423 0.005890549	\$62,253	\$31,500	\$90,304 \$93,753
BLUE RIDGE	\$1,372,657	0.011016509	\$128,580	\$31,300	\$184,356
DLUE KIDGE	\$1,372,037 \$1.180,625	$\frac{0.011010309}{0.009475323}$	\$110,592		\$166,368
	\$1,165,465	$\frac{0.009473323}{0.010021662}$	\$105,912	\$55,776	\$161,688
CHOWAN	\$9,000,000	0.072231140	\$843,052	Ψ33,770	\$948,986
BASIN	\$9,000,000	$\frac{0.072231110}{0.077389674}$	\$817,877	\$105,935	\$923,812
CLINCH	\$641,034	0.005144735	\$60,047	Ψ105,935	\$128,490
VALLEY	\$449,002	0.003603549	\$42,059		\$110,502
, TIBBE I	\$443,236	0.003811321	\$40,279	\$68,443	\$108,722
COLONIAL	\$2,689,088	0.021581766	\$251,893	+)	\$362,176
0 0 2 0 1 (11 12	\$1,696,612	0.014588917	\$154,180	\$110,282	\$264,462
CULPEPER	\$7,000,000	0.056179775	\$655,707		\$1,021,123
	\$8,903,019	0.076555748	\$809,064	\$365,416	\$1,174,480
DANIEL	\$2,273,857	0.018249250	\$212,998		\$301,399
BOONE	\$2,102,936	0.018082837	\$191,105	\$88,402	\$279,507
EASTERN	\$3,897,579	0.031280734	\$365,096		\$453,748
SHORE	\$2,996,991	0.025770684	\$272,352	\$88,652	\$361,004
EVERGREEN	\$333,298	0.002674942	\$31,221		\$102,882
	\$329,018	0.002829177	\$29,900	\$71,662	\$101,562
HALIFAX	\$1,246,021	0.010000169	\$116,718		\$221,218
	\$1,053,989	0.008458982	\$98,730		\$203,230
	\$1,040,455	0.008946719	\$94,552	\$104,500	\$199,052
HANOVER-	\$5,189,089	0.041645979	\$486,074		\$624,901
CAROLINE	\$3,571,877	0.030714044	\$324,595	\$138,826	\$463,421
HEADWATERS	\$5,000,000	0.040128411	\$468,362		\$654,224
	\$8,048,575	0.06920851	\$731,416	\$185,862	\$917,278
HENRICOPOLIS	\$725,638	0.005823737	<u>\$67,972</u>		<u>\$117,416</u>
	\$529,659	0.00455446	\$48,133	\$49,444	\$97,577
HOLSTON	\$774,023	0.006212063	\$72,505		\$187,764
RIVER	<u>\$581,991</u>	0.004670871	\$54,516		\$169,776
	\$574,517	0.004940187	\$52,209	\$115,260	\$167,469
JAMES RIVER	\$1,705,281	0.013686044	<u>\$159,738</u>		<u>\$191,238</u>
	\$1,683,383	0.014475162	\$152,978	\$31,500	\$184,478
JOHN	<u>\$4,790,033</u>	0.038443282	<u>\$448,694</u>		<u>\$612,494</u>
MARSHALL	\$4,541,863	0.039054811	\$412,743	\$163,800	\$576,543
LAKE	\$2,264,258	0.018172213	<u>\$212,098</u>		\$358,731
COUNTRY	\$2,093,461	0.018001363	\$190,244	\$146,633	\$336,877
LONESOME	<u>\$296,589</u>	<u>0.002380326</u>	<u>\$27,782</u>		<u>\$75,032</u>
PINE	\$151,058	0.001298925	\$13,727	\$47,250	\$60,977

LORD FAIRFAX	\$5,500,000	0.044141252	\$515,198		\$688,247
Lord Illiani	\$8,361,401	0.071898455	\$759,844	\$173,048	\$932,892
LOUDOUN	\$2,592,126	0.020803581z	\$242,811		\$410,811
	\$2,372,180	0.020398026	\$215,572	\$168,000	\$383,572
MONACAN	\$1,918,295	0.015395625	\$179,691		\$301,131
	\$1,707,001	0.01467825	\$155,124	\$121,440	\$276,564
MOUNTAIN	\$2,678,055	0.021493219	\$250,860		\$290,460
	\$2,457,005	0.021127424	\$223,281	\$39,600	\$262,881
MOUNTAIN	\$1,799,450	0.014441815	\$168,559		\$207,199
CASTLES	\$1,447,961	0.012450803	\$131,584	\$38,640	\$170,224
NATURAL	\$2,057,055	0.016509267	\$192,689		\$256,689
BRIDGE	\$1,843,979	0.015856104	\$167,572	\$64,000	\$231,572
NEW RIVER	\$996,763	0.007999703	\$93,369		\$138,369
	\$804,731	0.006458519	\$75,381		\$120,381
	\$794,398	0.006830911	\$72,191	\$45,000	\$117,191
NORTHERN	<u>\$6,189,089</u>	<u>0.049671661</u>	<u>\$579,747</u>		<u>\$709,987</u>
NECK	\$4,925,144	0.042350588	\$447,574	\$130,240	\$577,814
NORTHERN	<u>\$85,109</u>	<u>0.000683056</u>	<u>\$7,972</u>		<u>\$19,992</u>
VIRGINIA	\$84,016	0.000722441	\$7,635	\$12,020	\$19,655
PATRICK	<u>\$446,354</u>	0.003582298	<u>\$41,811</u>		<u>\$116,325</u>
	\$298,901	0.002570206	\$27,163	\$74,514	\$101,677
PEAKS OF	<u>\$1,011,716</u>	<u>0.008119711</u>	<u>\$94,770</u>		<u>\$135,090</u>
OTTER	\$670,342	0.005764172	\$60,917	\$40,320	\$101,237
PEANUT	<u>\$8,471,862</u>	<u>0.067992471</u>	<u>\$793,580</u>		<u>\$927,644</u>
	\$6,779,656	0.058297263	\$616,103	\$134,064	\$750,167
PETER	<u>\$2,356,020</u>	<u>0.018908667</u>	<u>\$220,694</u>		<u>\$294,001</u>
FRANCISCO	\$2,139,105	0.018393849	\$194,392	\$73,307	\$267,699
PIEDMONT	\$2,956,438	0.023727436	\$276,937		<u>\$357,457</u>
	\$2,590,092	0.022271819	\$235,37-5	\$80,520	\$315,895
PITTSYLVANIA	\$2,000,000	0.016051364	\$187,345		<u>\$335,545</u>
	\$2,960,160	0.023757303	\$277,285		\$425,485
	\$2,922,148	0.02512712	\$265,551	\$148,200	\$413,751
PRINCE	\$993,840	0.007976244	\$93,095		\$132,782
WILLIAM	\$794,417	0.006831075	\$72,193	\$39,686	\$111,879
ROBERT E. LEE	\$2,847,083	0.022849787	\$266,693	\$ 60.04 0	\$335,535
	\$2,623,863	0.022562211	\$238,444	\$68,842	\$307,286
SCOTT	\$832,478	0.006681204	\$77,980	Φ.C	\$145,480
COUNTY	\$680,067	0.005847796	\$61,801	\$67,500	\$129,301
SHENANDOAH	\$4,500,000	0.036115570	\$421,526 \$454,376	#227 040	\$647,473
VALLEY	\$5,000,000	0.042994263	\$454,376	\$225,948	\$680,324
SKYLINE	\$1,493,144 \$1,145,500	0.011983500	\$139,866	#111	\$251,466
COLUMNICIDE	\$1,145,589	0.009850751	\$104,106	\$111,600	\$215,706
SOUTHSIDE	\$1,502,819 \$1,155,130	0.012061150	\$140,773	ф 73 С40	\$214,421 \$179,622
	\$1,155,139	0.00993287	\$104,974	\$73,649	\$178,623

TAZEWELL	<u>\$476,567</u>	0.003824776	\$44,641		\$98,737
	\$328,725	0.002826658	\$29,873	\$54,096	\$83,969
THOMAS	\$5,491,913	0.044076345	\$514,441		\$692,598
JEFFERSON	\$5,234,731	0.045012681	\$475,707	\$178,157	\$653,864
THREE RIVERS	\$6,189,089	0.049671661	\$579,747		\$683,197
	\$4,479,901	0.038522009	\$407,112	\$103,450	\$510,562
TIDEWATER	\$3,689,089	0.029607456	\$345,566		\$406,622
	\$1,145,584	0.009850708	\$104,105	\$61,056	\$165,161
TRI-	\$2,355,995	0.018908466	\$220,692		\$350,692
COUNTY/CITY	\$2,139,080	0.018393634	\$194,389	\$130,000	\$324,389
VIRGINIA	\$1,457,449	0.011697020	\$136,523		\$179,556
DARE	\$1,297,012	0.011152815	\$117,866	\$43,033	\$160,899
Grand Total	\$124,600,000	1.000000000	<u>\$11,671,582</u>		\$16,219,183
	\$116,294,585	1.00000000	\$10,568,296	\$4,547,601	\$15,115,897

^{*}Rounded to the nearest dollar.

Additional funding will be provided to the Eastern Shore District, for use in the Chesapeake Bay watershed portion of the District, and to the Northern Neck District. These are federal grant funds but will be treated as VACS cost-share funds in all aspects including disbursement schedules, data entry and reporting.

SWCD	Additional	Additional
	FY23	TA
	cost-share	
	funding	
EASTERN SHORE	\$500,000	\$50,000
NORTHERN NECK	\$500,000	\$50,000

The Culpeper Soil and Water Conservation District is authorized to utilize up to \$500,000 of the District's "FY24 Cost-Share Total (VACS)" allocation to incentivize the implementation of the soil health pilot best management practice (SL-10E) as it was approved by this Board.

FY23 FY24 Technical Assistance allocations (See TABLE 11) shall be disbursed to Districts over FY23 FY24 in accordance with the following procedures. During the first quarter of FY23 FY24, after the Fourth Quarter FY22 FY23 reports have been submitted (including the District's End of Year Cash Balance Report, and Carry Over Report) to the Department and the Grant Agreement has been executed and the original signed Agreement returned to the Department, twenty-five percent of the technical assistance allocations shall be disbursed, with an additional twenty-five percent disbursed in each of the second, third, and fourth quarters provided updates to the AgBMP Tracking Module are being entered monthly to the satisfaction of the Department. Except due to extenuating circumstances or as otherwise set out in the Grant Agreement, disbursements to Districts will be executed within 45 calendar days following the beginning of a quarter contingent upon the satisfactory completion of database updates and the receipt of complete and accurate reports.

Should new <u>FY23</u> <u>FY24</u> funding be transferred between Districts or reallocated, technical assistance funds noted in the column "<u>FY23</u>-<u>FY24</u> TA Addition to the FY23 TA Base" shall proportionally be transferred with the cost-share.

11. Voluntary Relinquishment of Unobligated Funds to the Department

Districts that anticipate being unable to obligate at least ninety percent (90%) of their Total VACS allocation by June 30, 2023 June 15, 2024 may relinquish unobligated cost-share funds and the associated "FY23-FY24 addition to FY23 technical assistance base" to the Department. This action by the District must be formally approved by the District Board. This District Board action must be documented in the minutes and must include the amount of cost share and proportional technical assistance funds to be relinquished to the Department. The appropriate Conservation District Coordinator must be notified of this action taken by the District. Relinquishing cost-share funds, and the associated technical assistance funds, to the Department prior to June 30, 2023 June 15, 2024 is an additional mechanism for Districts to meet the ninety percent (90%) obligation of their Total VACS allocation.

12. Signatures on the VACS Contract

For any practice funded in whole or in part by the VACS Program, a VACS contract must be completed and signed in its entirety by both the appropriate District staff, District Director, and the participant. For any practice marked complete and issued payment on or after July 1, 2022, failure to obtain the appropriate signatures on a VACS contract in its entirety will result in the amount provided in VACS cost-share funding for the practice, including the associated technical assistance funding, being withheld from the District's cost-share and technical assistance allocation for the next fiscal year by the Department. VACS cost-share files will be examined during financial audits, administrative cost share file reviews, and verifications to ensure the appropriate signatures have been obtained.

13. Noncompliance with this Policy:

In the event any District fails to comply with the provisions of this Policy, the Department reserves the right to require repayment of previously issued funds and/or direct further appropriate actions based upon noncompliance circumstances. Should an issue arise that impacts funding, the affected District(s) will be apprised of the issue(s) and will be provided an opportunity to address the concerns to the Department prior to Department action.

14. Unexpected State Funds Maintained by Districts:

Following the submission of the District's End of Year Cash Balance Report, all unobligated funds will be returned to the Department for reallocation in accordance with Section 9. Public funds from local, state, and federal sources are provided to Districts not for savings, but for performance of conservation and other required deliverables. It is unadvisable for any District to accumulate more than six-twelve months of Technical Assistance funds. The Department will monitor the growth of unexpended funds through audit reports and other fiscal reports generated by or at the request of the Department. The Department may reduce future funding to Districts

that fail to act upon guidance and recommendations from auditors and the Department. Decisions and Department actions will be addressed on a case-by-case basis working with the affected District.

15. Criteria for Cost-share and Technical Assistance:

Funding allocated to Districts as cost-share and technical assistance is contingent upon appropriations by the General Assembly. Should funding availability fall short of appropriation projections during the course of FY23 FY24, after the Department has utilized all unallocated and unobligated balances it may have available (such as CTI), every District will receive an equal percent reduction which will be calculated and deducted from each District's unobligated total approved cost-share and technical assistance funding specified within the Department/District Grant Agreement. When a reduction of funds is necessary, the Department will make reductions from available unobligated cost-share first and reduce technical assistance last. Should a reduction of funds occur, every District must return funding within 30 days of receiving notice of such reduction from the Department. Should all cost-share and technical assistance funding within a District be obligated and it becomes necessary to reduce such funds, then adjustments will be made to the next fiscal year's spending plan to honor existing commitments from the prior fiscal year first or during reallocation as determined by the Department. The Department shall refer to working papers for fund source allocations for cost-share and for technical assistance to guide reductions as may be necessary.

In the event a new District is formed or an existing District alters its boundaries, the Board will examine the total financial resources under its control and its priorities for use of these funds and adhere to its Policy titled Financial Commitments For Establishment of a New Soil & Water Conservation District (SWCD/district), or Realignment of an Existing District on all funding decisions in this Policy. The newly created or altered District may be funded at a reduced level, or may be required to share funding in an arrangement determined by the Board until sufficient funding is made available to fulfill provisions of this Policy and priorities of the Board.

Expenditure of District funds, regardless of source, will be made without regard to any person's race, color, religion, sex, age, national origin, handicap, or political affiliation.

All funds received by Districts are public funds and provisions of the Freedom of Information Act shall apply to financial records, unless otherwise specified within the Act or elsewhere in the *Code of Virginia*. Each District shall safeguard, provide accountability, and expend funds only for approved purposes.

16. Electronic Copy:

An electronic copy of this Policy guidance in PDF format is available on the Department of Conservation and Recreation's website at http://www.dcr.virginia.gov/laws-and-regulations/lr8b.

17. Contact Information:

Please contact the Department of Conservation and Recreation's Soil and Water Conservation Division by calling the Division's administrative support at 804-225-3653 with any questions regarding the application of this Policy. The call shall be referred to program staff accordingly.

18. Authorization:

Upon the approval of this Policy, the Department shall, in accordance with its fiduciary powers and responsibilities, make and enter into any and all Grant Agreements and contracts, and take all actions necessary, to fully implement and administer this Policy.

19. Adoption, Amendments, and Repeal:

This document supersedes the Policy titled <u>Policy and Procedures on Soil and Water Conservation District Cost-Share and Technical Assistance Funding Allocations (Fiscal Year 2022 2023)</u> adopted <u>May 20, 2021 June 24, 2022</u> and will remain in effect until rescinded or superseded.

Attachment A

Computer Model Estimates and Ranks Based on the 2022 305(b) Report Data of the Agricultural Pollutant Loads of Nitrogen (N), Phosphorus (P), and Sediment (S) in Each of the 1,240 6th Level Hydrologic Units (HU)

(kg/Ag ha-yr – kilograms per agricultural hectare per year; mt/Ag ha-yr – metric tons per agricultural hectare per year)

2022 Report Dataset	Unit Area Loads			Sorted Sequence (Rank Order) between HUs for each Pollutant's Load					
								Agricultural	
								Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
CU56	48.47	2.91	1.33	1188	1206	1171	3565	HIGH	1
PL69	35.46	1.94	2.84	1113	1187	1215	3515	HIGH	2
CU60	45.91	1.66	1.32	1178	1157	1169	3504	HIGH	3
JL37	42.66	1.69	1.26	1167	1162	1153	3482	HIGH	4
CU59	46.05	1.77	1.02	1180	1178	1079	3437	HIGH	5
JL24	41.58	1.58	1.16	1163	1144	1128	3435	HIGH	6
JL35	38.43	1.41	1.45	1138	1102	1182	3422	HIGH	7
PL67	31.77	1.72	1.45	1072	1169	1181	3422	HIGH	8
CU38	39.91	1.46	1.26	1147	1118	1155	3420	HIGH	9
RA53	37.79	1.34	1.94	1131	1079	1206	3416	HIGH	10
CM26	39.98	1.67	1.07	1149	1159	1107	3415	HIGH	11
PS23	27.28	1.70	2.29	1038	1166	1211	3415	HIGH	12
CU58	38.10	1.39	1.42	1133	1097	1178	3408	HIGH	13
JL29	52.64	1.79	0.92	1195	1181	1027	3403	HIGH	14
CU57	39.96	1.50	1.15	1148	1127	1123	3398	HIGH	15
PL49	36.59	1.27	2.57	1123	1055	1213	3391	HIGH	16
PS20	26.94	1.63	1.59	1034	1151	1194	3379	HIGH	17
AS03	64.89	2.50	0.85	1204	1204	966	3374	HIGH	18
PS22	23.92	1.54	1.94	1010	1136	1205	3351	HIGH	19

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural	
								Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
PS16	26.06	1.56	1.44	1029	1139	1180	3348	HIGH	20
JL10	41.74	1.43	1.02	1164	1105	1078	3347	HIGH	21
YO62	34.33	1.24	1.65	1103	1047	1196	3346	HIGH	22
CU55	38.77	1.46	1.02	1141	1115	1082	3338	HIGH	23
JL36	45.80	1.66	0.91	1177	1156	1005	3338	HIGH	24
CM19	34.52	1.36	1.24	1105	1084	1148	3337	HIGH	25
JL27	33.21	1.22	1.70	1088	1043	1197	3328	HIGH	26
AO23	36.79	1.45	1.02	1124	1112	1085	3321	HIGH	27
PS19	23.26	1.45	1.94	999	1113	1207	3319	HIGH	28
JL39	38.81	1.52	0.92	1142	1133	1024	3299	HIGH	29
PS32	25.29	1.66	1.13	1019	1158	1121	3298	HIGH	30
JL25	34.33	1.19	1.28	1104	1034	1158	3296	HIGH	31
CU44	47.40	2.16	0.80	1184	1195	915	3294	HIGH	32
JA36	30.98	1.21	1.55	1064	1039	1190	3293	HIGH	33
PL53	29.89	1.15	2.53	1052	1018	1212	3282	HIGH	34
JL01	35.12	1.27	1.08	1108	1056	1112	3276	HIGH	35
PL73	30.60	1.48	1.02	1060	1125	1086	3271	HIGH	36
CU37	34.23	1.33	1.03	1100	1078	1089	3267	HIGH	37
PS15	22.97	1.27	1.84	997	1054	1201	3252	HIGH	38
JL31	40.38	1.44	0.88	1153	1108	990	3251	HIGH	39
RD68	26.02	1.19	1.47	1028	1036	1183	3247	HIGH	40
PL18	40.79	1.63	0.82	1156	1153	935	3244	HIGH	41
PL66	23.44	1.28	1.41	1002	1063	1176	3241	HIGH	42
CU31	34.15	1.73	0.85	1096	1171	970	3237	HIGH	43
JL32	31.67	1.17	1.20	1071	1026	1140	3237	HIGH	44

				Sorted Seq	uence (Rank	Order)			
2022 Report					Us for each?	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural	
								Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RA57	32.28	1.16	1.18	1079	1023	1134	3236	HIGH	45
RA59	31.85	1.14	1.22	1073	1016	1147	3236	HIGH	46
JL15	28.23	1.10	1.49	1044	1004	1186	3234	HIGH	47
PL17	32.95	1.34	0.99	1084	1081	1063	3228	HIGH	48
JU40	23.94	1.05	3.78	1011	989	1216	3216	HIGH	49
PS26	22.37	1.21	1.31	992	1041	1167	3200	HIGH	50
RA54	31.94	1.15	1.07	1075	1017	1106	3198	HIGH	51
PL38	32.79	1.30	0.94	1083	1070	1039	3192	HIGH	52
CU41	29.46	1.20	1.06	1048	1038	1105	3191	HIGH	53
PS03	18.66	1.46	1.06	967	1119	1104	3190	HIGH	54
YO36	38.16	1.38	0.85	1134	1094	962	3190	HIGH	55
CU34	33.99	1.32	0.92	1093	1074	1021	3188	HIGH	56
PL72	28.14	1.36	0.96	1043	1089	1054	3186	HIGH	57
CM20	45.91	1.75	0.72	1179	1176	830	3185	HIGH	58
PL71	31.49	1.57	0.85	1067	1141	972	3180	HIGH	59
PS33	18.12	1.27	1.29	963	1057	1160	3180	HIGH	60
RA55	33.77	1.19	0.96	1092	1033	1051	3176	HIGH	61
PS05	17.81	1.34	1.17	959	1080	1132	3171	HIGH	62
PS25	19.02	1.17	1.34	971	1028	1172	3171	HIGH	63
JL41	35.68	1.41	0.84	1114	1103	952	3169	HIGH	64
PS11	20.71	1.25	1.17	987	1049	1129	3165	HIGH	65
JL14	34.76	1.27	0.89	1106	1058	996	3160	HIGH	66
PS21	19.30	1.12	1.30	973	1012	1166	3151	HIGH	67
YO35	29.76	0.99	1.18	1051	963	1137	3151	HIGH	68
CU15	23.39	1.12	1.18	1001	1011	1136	3148	HIGH	69

				Sorted Seq	uence (Rank	Order)			
2022 Report					Us for each l				
Dataset	Unit Area Loads			Load					
								Agricultural	
								Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
CM18	25.05	1.03	1.22	1018	980	1143	3141	HIGH	70
RA39	32.17	1.35	0.87	1077	1082	982	3141	HIGH	71
PS12	16.95	1.20	1.27	945	1037	1157	3139	HIGH	72
RA38	29.98	1.31	0.91	1054	1072	1009	3135	HIGH	73
JL05	25.83	0.99	1.22	1025	959	1146	3130	HIGH	74
PS14	19.93	1.46	0.93	980	1117	1030	3127	HIGH	75
YO32	32.78	1.16	0.92	1082	1025	1017	3124	HIGH	76
RA43	20.68	0.94	1.51	986	947	1187	3120	HIGH	77
JL33	37.44	1.39	0.78	1129	1096	893	3118	HIGH	78
RA60	31.89	1.14	0.93	1074	1013	1029	3116	HIGH	79
JL43	42.69	1.73	0.66	1168	1172	773	3113	HIGH	80
JL04	31.61	1.21	0.90	1070	1040	1002	3112	HIGH	81
PL68	29.24	1.53	0.82	1046	1135	930	3111	HIGH	82
PS56	17.39	1.10	1.22	956	1005	1145	3106	HIGH	83
PS59	16.75	1.07	1.29	942	994	1161	3097	HIGH	84
PS58	17.60	1.07	1.20	957	996	1141	3094	HIGH	85
YO56	29.64	1.15	0.92	1049	1019	1025	3093	HIGH	86
PS87	24.87	1.03	1.03	1016	981	1087	3084	HIGH	87
CM24	34.18	1.36	0.78	1099	1085	892	3076	HIGH	88
JL28	32.39	1.18	0.83	1080	1032	942	3054	HIGH	89
CU52	27.11	1.03	0.94	1036	978	1035	3049	HIGH	90
RA40	23.53	1.08	0.95	1006	997	1045	3048	HIGH	91
JL03	23.81	0.93	1.06	1008	939	1100	3047	HIGH	92
CU45	35.20	2.30	0.64	1110	1199	732	3041	HIGH	93
JL06	31.55	1.16	0.84	1068	1024	949	3041	HIGH	94

				Sorted Seq	uence (Rank	Order)			
2022 Report					Us for each l				
Dataset	Unit Area Loads			Load					
								Agricultural Pollutant	
	A a NI (Ira/A a ha	$\Lambda \sim D \left(1_{r} \sim / \Lambda \right) \sim$	A ~ C (mot/A ~				Sum	Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
CU61	44.95	ha-yr) 1.71	ha-yr) 0.61	1175	1168	693	3036	HIGH	95
RA21	25.96	1.71	0.85	1027	1042	965	3034	HIGH	96
JL46	37.15	1.44	0.68	1128	1107	798	3034	HIGH	97
JL40 JL40	36.13	1.37	0.08	1117	1090	820	3033	HIGH	98
PS66	14.33	0.95	2.12	866	950	1210	3027	HIGH	99
JL30	23.51	0.93	1.02	1004	934	1083	3020	HIGH	100
PL33	25.65	1.08	0.89	1004	998	997	3021	HIGH	100
CU48	41.91	1.59	0.61	1165	1146	704	3017	HIGH	101
PS57	16.33	1.03	1.04	937	979	1091	3013	HIGH	102
PU17	17.05	0.78	1.43	947	879	1179	3007	HIGH	103
RA58	33.30	1.15	0.78	1089	1020	895	3003	HIGH	104
YO29	34.17	1.13	0.74	1089	1044	860	3004	HIGH	105
RA20	23.25	0.90	1.00	998	931	1068	2997	HIGH	100
JL09	30.99	1.14	0.81	1065	1014	916	2995	HIGH	107
JM50	16.21	0.87	1.19	929	924	1138	2991	HIGH	109
CU43	28.06	1.08	0.84	1041	999	950	2990	HIGH	110
CU40	36.48	1.40	0.66	1121	1101	759	2981	HIGH	111
PL34	24.69	1.11	0.84	1015	1008	957	2980	HIGH	112
PS55	13.92	1.02	1.25	851	977	1151	2979	HIGH	113
YO20	17.03	0.74	1.41	946	854	1174	2974	HIGH	114
JM15	14.95	0.80	1.62	886	891	1195	2972	HIGH	115
JA45	25.62	1.01	0.87	1021	970	980	2971	HIGH	116
JL34	23.38	0.87	0.95	1000	922	1048	2970	HIGH	117
RA56	30.37	1.11	0.79	1058	1007	903	2968	HIGH	118
CU18	29.30	1.11	0.79	1047	1010	908	2965	HIGH	119

				Sorted Seq	uence (Rank	Order)			
2022 Report					Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural	
								Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
JL11	19.48	0.69	1.48	975	804	1184	2963	HIGH	120
JL42	38.36	1.46	0.62	1137	1116	710	2963	HIGH	121
CU39	36.43	1.35	0.65	1120	1083	756	2959	HIGH	122
RA36	19.02	0.78	1.09	970	873	1113	2956	HIGH	123
YO30	19.24	0.89	0.95	972	929	1049	2950	HIGH	124
PS64	17.26	1.14	0.87	950	1015	984	2949	HIGH	125
PS10	15.09	0.92	1.12	891	938	1119	2948	HIGH	126
YO54	18.43	0.71	1.26	966	830	1152	2948	HIGH	127
RA65	33.33	1.18	0.70	1090	1031	817	2938	HIGH	128
CB24	43.98	1.57	0.56	1170	1142	617	2929	HIGH	129
CU47	36.26	1.39	0.62	1118	1098	713	2929	HIGH	130
NE85	15.80	0.68	2.63	913	797	1214	2924	HIGH	131
CU42	30.71	1.17	0.72	1063	1029	831	2923	HIGH	132
PL16	18.11	0.74	1.07	961	850	1109	2920	HIGH	133
CU50	49.03	1.79	0.52	1189	1182	545	2916	HIGH	134
JM62	16.02	0.67	1.96	922	783	1208	2913	HIGH	135
CM25	25.04	1.15	0.76	1017	1021	874	2912	HIGH	136
PS34	18.30	1.36	0.74	965	1087	859	2911	HIGH	137
JL20	22.06	0.86	0.90	991	917	1001	2909	HIGH	138
JL12	19.73	0.80	0.94	978	890	1038	2906	HIGH	139
PL70	38.33	2.01	0.53	1135	1190	577	2902	HIGH	140
YO28	20.38	0.87	0.88	984	925	992	2901	HIGH	141
PS61	14.92	0.93	1.00	883	941	1069	2893	HIGH	142
JA13	15.55	0.83	1.02	905	904	1080	2889	HIGH	143
PS67	17.34	1.08	0.82	954	1000	931	2885	HIGH	144

				Sorted Seq	uence (Rank	Order)			
2022 Report					Us for each l				
Dataset	Unit Area Loads			Load					
								Agricultural Pollutant	
MAINIC	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NCEO	DCEO	CCEO	Sum	Potential	D #
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row #
AS06	94.00	3.46	0.48	1214	1210	455	2879	HIGH	145
JL26	15.84	0.65	1.86	917	753	1202	2872	HIGH	146
RD54	15.78	0.96	0.91	911	951	1010	2872	HIGH	147
PS24	15.24	1.00	0.91	896	969	1006	2871	HIGH	148
JA40	30.67	1.16	0.68	1061	1022	787	2870	HIGH	149
JU50	13.55	0.71	1.70	833	832	1198	2863	HIGH	150
JU21	15.36	0.67	1.30	902	791	1165	2858	HIGH	151
RA18	26.07	1.08	0.71	1030	1001	821	2852	HIGH	152
YO52	15.88	0.65	1.36	918	761	1173	2852	HIGH	153
CB17	37.87	1.37	0.56	1132	1091	626	2849	HIGH	154
RA29	16.22	0.76	0.97	931	863	1055	2849	HIGH	155
RA46	22.56	0.90	0.81	995	933	921	2849	HIGH	156
CU53	21.78	0.84	0.83	989	912	947	2848	HIGH	157
JL22	16.57	0.68	1.07	939	796	1110	2845	HIGH	158
PS54	17.82	1.45	0.66	960	1114	771	2845	HIGH	159
JU26	17.26	1.58	0.64	951	1145	741	2837	HIGH	160
RA23	19.68	0.95	0.79	977	949	910	2836	HIGH	161
JL07	19.43	0.76	0.90	974	859	1000	2833	HIGH	162
CU33	34.04	1.31	0.59	1095	1071	662	2828	HIGH	163
RA27	15.15	0.76	1.00	895	861	1071	2827	HIGH	164
CU35	27.63	1.11	0.67	1039	1006	781	2826	HIGH	165
PS09	16.13	1.01	0.82	925	973	926	2824	HIGH	166
CM28	41.18	1.73	0.50	1159	1170	494	2823	HIGH	167
RA62	35.97	1.25	0.58	1116	1052	655	2823	HIGH	168
CU54	22.44	0.84	0.79	994	915	905	2814	HIGH	169

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
PS68	16.04	1.04	0.78	923	986	900	2809	HIGH	170
JA17	13.58	0.78	1.06	835	870	1103	2808	HIGH	171
TP08	12.76	0.82	1.10	790	897	1117	2804	HIGH	172
YO50	15.79	0.65	1.16	912	764	1127	2803	HIGH	173
PU06	12.09	1.05	0.98	750	990	1061	2801	HIGH	174
PS74	13.14	0.83	1.02	810	908	1081	2799	HIGH	175
YO06	15.49	0.74	0.95	903	853	1042	2798	HIGH	176
CU25	16.88	0.67	0.99	943	785	1065	2793	HIGH	177
RA37	16.17	0.74	0.91	926	851	1014	2791	HIGH	178
JU68	12.99	0.84	1.01	801	910	1076	2787	HIGH	179
PL59	19.96	0.87	0.77	981	920	886	2787	HIGH	180
PS39	12.46	1.02	0.94	775	976	1036	2787	HIGH	181
PS28	16.62	1.06	0.74	940	992	850	2782	HIGH	182
JR16	13.31	0.74	1.06	823	856	1099	2778	HIGH	183
RA61	31.56	1.11	0.61	1069	1009	699	2777	HIGH	184
AO15	64.10	2.35	0.44	1203	1201	371	2775	HIGH	185
JL23	16.22	0.66	1.01	930	770	1074	2774	HIGH	186
CM23	20.33	0.83	0.77	983	907	880	2770	HIGH	187
JL19	24.08	0.96	0.69	1014	953	803	2770	HIGH	188
JL13	17.39	0.63	1.05	955	716	1096	2767	HIGH	189
PL41	14.48	0.64	1.29	872	733	1162	2767	HIGH	190
TP13	17.27	0.72	0.85	952	841	971	2764	HIGH	191
CU49	35.80	1.39	0.52	1115	1099	549	2763	HIGH	192
CM21	47.88	1.80	0.45	1185	1183	388	2756	HIGH	193
RA51	26.75	1.02	0.65	1032	975	749	2756	HIGH	194

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
		. 54					~	Agricultural Pollutant	
TA TITLE	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NGEO	DOEGO	aaro	Sum	Potential	D //
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
PS62	15.89	1.23	0.67	919	1046	784	2749	HIGH	195
JU13	13.13	0.72	1.05	809	840	1094	2743	HIGH	196
PS63	15.02	1.25	0.69	887	1050	801	2738	HIGH	197
TC34	11.38	0.72	1.58	702	839	1191	2732	HIGH	198
JL49	48.35	1.83	0.43	1187	1184	359	2730	HIGH	199
JM49	13.17	0.74	0.99	814	852	1064	2730	HIGH	200
TP09	11.85	0.72	1.27	732	837	1156	2725	HIGH	201
YO53	13.99	0.60	1.77	857	667	1200	2724	HIGH	202
PL65	20.19	0.84	0.72	982	909	832	2723	HIGH	203
PS08	13.54	0.79	0.91	831	881	1011	2723	HIGH	204
RA49	23.51	0.97	0.66	1005	955	762	2722	HIGH	205
YO51	14.72	0.59	1.59	877	651	1192	2720	HIGH	206
PL39	22.84	0.94	0.66	996	948	770	2714	HIGH	207
YO31	38.70	1.50	0.48	1140	1128	446	2714	HIGH	208
CU28	17.06	0.65	0.91	948	757	1007	2712	HIGH	209
JL47	40.48	1.60	0.46	1154	1147	411	2712	HIGH	210
JM39	12.58	0.63	1.92	780	724	1204	2708	HIGH	211
CB07	16.23	0.64	0.95	932	732	1043	2707	HIGH	212
RA30	15.15	0.62	1.05	894	712	1097	2703	HIGH	213
CB02	25.94	0.94	0.64	1026	945	728	2699	HIGH	214
YO61	16.18	0.61	1.00	928	699	1072	2699	HIGH	215
PS27	11.92	0.83	0.98	737	902	1058	2697	HIGH	216
JM42	13.59	0.67	1.00	836	787	1070	2693	HIGH	217
PS75	14.58	0.80	0.82	875	886	929	2690	HIGH	218
PL37	22.38	1.01	0.63	993	972	721	2686	HIGH	219

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
		- 4					_	Agricultural Pollutant	
***	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	Mario	DOFIO	CCTC	Sum	Potential	.
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RD70	14.29	0.75	0.85	865	857	963	2685	HIGH	220
PL60	13.81	0.62	1.16	844	711	1126	2681	HIGH	221
RU36	12.65	0.83	0.88	783	906	991	2680	HIGH	222
CB11	27.25	0.99	0.60	1037	960	679	2676	HIGH	223
YO59	14.48	0.57	1.48	873	618	1185	2676	HIGH	224
YO42	13.64	0.65	1.01	840	758	1077	2675	HIGH	225
RA63	29.71	1.05	0.57	1050	988	633	2671	HIGH	226
YO22	13.89	0.63	1.05	846	726	1093	2665	HIGH	227
JL55	41.24	2.21	0.40	1160	1197	304	2661	HIGH	228
JU37	11.34	0.70	1.20	699	823	1139	2661	HIGH	229
JM72	12.90	0.60	1.52	798	673	1189	2660	HIGH	230
PL36	18.71	0.89	0.66	968	928	760	2656	HIGH	231
PS65	15.28	1.24	0.62	897	1048	708	2653	HIGH	232
CU63	36.95	1.53	0.44	1125	1134	387	2646	HIGH	233
PS35	15.05	1.09	0.65	888	1002	755	2645	HIGH	234
RU75	14.39	0.70	0.83	870	824	945	2639	HIGH	235
JU33	16.18	1.07	0.62	927	995	716	2638	HIGH	236
PS51	18.92	1.63	0.51	969	1152	515	2636	HIGH	237
RU93	12.57	0.60	1.41	779	680	1177	2636	HIGH	238
TC35	10.34	0.69	2.09	617	808	1209	2634	HIGH	239
JM65	16.29	1.02	0.63	934	974	722	2630	HIGH	240
JA42	19.81	0.80	0.66	979	885	765	2629	HIGH	241
CU17	26.95	1.03	0.55	1035	983	609	2627	HIGH	242
CB04	35.21	1.23	0.49	1111	1045	469	2625	HIGH	243
JM74	13.13	0.60	1.18	808	679	1135	2622	HIGH	244

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A ~ N. (l-~/A ~ l-~	A = D (1==/A =	A ~ C (t A ~				Carre	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
JM78	13.00	0.62	1.12	802	701	1118	2621	HIGH	245
YO48	13.02	0.58	1.41	803	643	1175	2621	HIGH	243
PS53	16.70	1.47	0.52	941	1120	555	2616	HIGH	247
YO60	15.82	0.62	0.88	915	713	988	2616	HIGH	248
RL12	13.23	0.65	0.88	819	752	1040	2611	MED	249
CU14	16.40	0.81	0.66	938	893	777	2608	MED	250
JM35	13.48	0.69	0.85	829	809	967	2605	MED	251
CU12	16.27	0.83	0.66	933	901	769	2603	MED	252
PU11	13.08	0.85	0.77	806	916	881	2603	MED	253
JM83	14.00	0.64	0.89	859	744	999	2602	MED	254
YO37	14.78	0.54	1.24	878	563	1149	2590	MED	255
CB26	36.98	1.51	0.42	1126	1130	332	2588	MED	256
JM44	16.05	0.78	0.68	924	877	786	2587	MED	257
YO47	15.10	0.67	0.80	892	784	911	2587	MED	258
YO55	15.55	0.58	0.95	904	637	1046	2587	MED	259
JU30	13.54	0.93	0.70	832	942	810	2584	MED	260
CU32	40.36	1.51	0.40	1152	1131	298	2581	MED	261
JA21	13.38	0.67	0.85	827	781	973	2581	MED	262
PS31	14.36	1.04	0.64	868	985	727	2580	MED	263
TP07	11.82	0.77	0.87	730	867	983	2580	MED	264
PS04	12.35	0.78	0.83	762	871	946	2579	MED	265
CU62	38.36	1.47	0.41	1136	1121	317	2574	MED	266
CM31	32.73	1.32	0.46	1081	1075	416	2572	MED	267
JR21	11.92	0.72	0.89	736	838	995	2569	MED	268
JM20	12.59	0.71	0.84	781	828	958	2567	MED	269

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 / A	A C (//A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
CL04	yr) 48.00	ha-yr) 1.94	ha-yr) 0.33	1186	1188	183	2557	MED	+
									270
RU79	13.59	0.68	0.81	837	800	918	2555	MED	271
YO63	15.57	0.57	0.93	906	617	1032	2555	MED	272
CB12	36.52	1.33	0.43	1122	1077	355	2554	MED	273
PU20	14.35	0.57	0.99	867	621	1066	2554	MED	274
CB25	42.87	1.70	0.35	1169	1167	217	2553	MED	275
RA19	15.97	0.80	0.65	921	884	748	2553	MED	276
RU84	13.46	0.65	0.86	828	750	974	2552	MED	277
CM27	38.53	1.63	0.38	1139	1154	252	2545	MED	278
PU10	11.07	0.73	0.92	683	847	1015	2545	MED	279
CL03	40.15	1.69	0.36	1150	1163	231	2544	MED	280
JM84	17.28	0.77	0.62	953	868	714	2535	MED	281
AS12	87.07	3.49	0.29	1211	1211	110	2532	MED	282
AO13	63.61	2.37	0.29	1202	1202	127	2531	MED	283
CB08	17.16	0.65	0.72	949	748	834	2531	MED	284
CL05	50.93	2.21	0.31	1192	1198	138	2528	MED	285
PS06	11.49	0.71	0.87	709	833	986	2528	MED	286
YO45	12.49	0.59	1.04	776	659	1092	2527	MED	287
YO58	14.20	0.57	0.96	862	615	1050	2527	MED	288
JU61	13.97	1.00	0.62	855	965	706	2526	MED	289
AS05	53.53	2.04	0.30	1196	1192	136	2524	MED	290
CB14	15.34	0.66	0.73	900	780	844	2524	MED	291
YO12	13.92	0.78	0.68	850	878	791	2519	MED	292
PS85	14.43	0.83	0.64	871	905	736	2512	MED	293
RA42	15.80	0.84	0.59	914	914	676	2504	MED	294

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each 1	Pollutant's			
Dataset	Unit Area Loads			Load					
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
JA25	13.61	0.66	0.77	838	776	889	2503	MED	295
CU64	27.82	1.27	0.46	1040	1059	403	2502	MED	296
RA48	14.11	0.61	0.84	861	693	948	2502	MED	297
YO13	11.53	0.69	0.86	710	813	979	2502	MED	298
PS07	12.46	0.83	0.71	773	903	825	2501	MED	299
PS37	11.90	0.92	0.72	734	936	829	2499	MED	300
RA64	28.39	1.01	0.49	1045	971	478	2494	MED	301
RD73	11.58	0.66	0.90	712	777	1004	2493	MED	302
AO21	49.05	1.75	0.29	1190	1173	129	2492	MED	303
CB01	33.16	1.17	0.44	1087	1027	378	2492	MED	304
CU24	15.06	0.58	0.84	890	641	959	2490	MED	305
CB13	14.81	0.59	0.84	879	654	954	2487	MED	306
CU46	32.98	1.28	0.42	1085	1065	337	2487	MED	307
PU01	13.61	1.26	0.54	839	1053	594	2486	MED	308
JA23	14.27	0.68	0.70	864	798	818	2480	MED	309
JR22	12.14	0.64	0.87	754	739	987	2480	MED	310
YO46	12.19	0.57	1.09	757	607	1114	2478	MED	311
AS04	61.05	2.35	0.25	1201	1200	76	2477	MED	312
PS52	15.06	1.37	0.50	889	1092	495	2476	MED	313
RA69	29.96	0.99	0.48	1053	962	461	2476	MED	314
RD58	13.15	0.75	0.69	811	858	802	2471	MED	315
JL44	41.56	1.62	0.32	1162	1149	158	2469	MED	316
YO34	21.84	0.87	0.52	990	921	558	2469	MED	317
AS08	108.93	4.32	0.19	1216	1215	30	2461	MED	318
AS15	83.25	3.42	0.22	1209	1209	43	2461	MED	319

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural Pollutant	
NATITIC	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NGEO	DCEO	CCEO	Sum	Potential	D //
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
CU66	35.06	1.50	0.36	1107	1129	224	2460	MED	320
RA17	26.56	1.06	0.47	1031	993	434	2458	MED	321
TP06	10.95	0.69	0.86	670	810	975	2455	MED	322
AS09	85.32	3.40	0.21	1210	1208	36	2454	MED	323
JL52	89.24	4.93	0.18	1212	1216	26	2454	MED	324
JL51	71.15	2.84	0.22	1207	1205	41	2453	MED	325
CM32	33.50	1.37	0.39	1091	1093	267	2451	MED	326
CM17	13.94	0.69	0.67	853	818	779	2450	MED	327
NE59	11.95	0.59	0.97	740	653	1056	2449	MED	328
AS10	77.86	3.08	0.20	1208	1207	32	2447	MED	329
PS40	12.44	1.00	0.62	770	968	709	2447	MED	330
AS07	92.89	3.73	0.16	1213	1213	19	2445	MED	331
AS13	44.12	1.78	0.27	1171	1180	94	2445	MED	332
JL48	39.58	1.66	0.31	1146	1155	142	2443	MED	333
AS02	45.54	1.75	0.27	1176	1175	90	2441	MED	334
JL53	69.09	3.72	0.17	1206	1212	23	2441	MED	335
AS01	100.51	3.95	0.13	1215	1214	11	2440	MED	336
JL21	17.61	0.82	0.54	958	895	583	2436	MED	337
JU63	11.58	0.84	0.69	713	911	809	2433	MED	338
PS01	12.76	0.81	0.65	789	892	752	2433	MED	339
YO26	13.56	0.58	0.84	834	639	955	2428	MED	340
CB41	49.06	1.87	0.23	1191	1185	51	2427	MED	341
AO11	54.79	2.01	0.21	1197	1189	39	2425	MED	342
JL08	12.81	0.56	0.95	792	589	1044	2425	MED	343
TP16	10.35	0.63	1.01	620	729	1075	2424	MED	344

				_	uence (Rank	,			
2022 Report					Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural Pollutant	
	A a N (Ira/A a ha	$\Lambda \propto D \left(\frac{1}{2} \cos A \right) \propto$	A a S (mt/A a				Sum	Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
YA04	10.20	0.57	1.87	602	619	1203	2424	MED	345
CB30	67.66	2.40	0.14	1205	1203	13	2424	MED	343
JA44	23.45	0.94	0.14	1003	944	472	2421	MED	347
PS02	11.00	0.94	0.49	673	919	827	2419	MED	347
CU69	34.17	1.48	0.72	1098	1126	191	2419	MED	349
CB31	60.07	2.20	0.34	1200	1126	18	2413	MED	350
CB31	57.30	2.20	0.16	1199	1190	21	2414	MED	351
AO08	39.09	1.36	0.10	1143	1088	182	2414	MED	351
RD69	12.22	0.62	0.83	758	710	944	2413	MED	353
	31.29	1.25			1051	294		MED	
CU67			0.40	1066			2411		354
RA16	12.91	0.66	0.72	800	772	836	2408	MED	355
AS11	51.20	2.05	0.16	1193	1193	20	2406	MED	356
CB38	47.22	1.77	0.22	1183	1177	45	2405	MED	357
AO09	42.63	1.47	0.29	1166	1122 927	116	2404	MED	358
PL19	21.13	0.88	0.50	988		489	2404	MED	359
CB36	51.93	1.92	0.16	1194	1186	22	2402	MED	360
JM53	11.97	0.76	0.68	743	862	797	2402	MED	361
CU68	30.40	1.29	0.39	1059	1069	272	2400	MED	362
AO18	44.32	1.56	0.26	1172	1140	87	2399	MED	363
CB32	55.64	2.03	0.11	1198	1191	10	2399	MED	364
JM40	10.99	0.67	0.83	672	788	939	2399	MED	365
RD63	13.10	0.74	0.64	807	849	743	2399	MED	366
RU76	13.24	0.69	0.66	820	816	763	2399	MED	367
RA07	13.70	0.70	0.64	842	827	729	2398	MED	368
RA66	30.31	1.00	0.44	1056	964	375	2395	MED	369

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 /A	A C (1/A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
RU86	yr) 10.93	ha-yr) 0.60	ha-yr) 0.97	665	671	1057	2393	MED	370
CB10	14.82	0.56	0.97	880	590	922	2393	MED	370
			0.68	824	769	799	2392	MED	371
RU74 CL02	13.34 34.29	0.66 1.47	0.88	1101	1123	166	2392	MED	373
CB42	46.54	1.47	0.32	1101	1179	27	2390	MED	374
CB42 CM30	23.61	0.99	0.18	1007	961	419	2387	MED	374
RA41	14.93	0.99	0.53	884	935	568	2387	MED	376
PS49	14.90	1.44	0.45	882	1109	394	2385	MED	377
CB39	46.40	1.75	0.43	1181	1109	29	2384	MED	377
JL45	39.29	1.52	0.19	1145	1174	106	2383	MED	379
PL32	14.08	0.73	0.59	860	848	672	2380	MED	380
AO04	40.62	1.55	0.26	1155	1138	84	2377	MED	381
CU51	44.37	1.69	0.20	1173	1164	38	2375	MED	382
YO17	13.24	0.66	0.66	821	778	776	2375	MED	383
YO18	12.45	0.58	0.85	771	634	969	2374	MED	384
RD71	10.43	0.57	1.17	626	613	1131	2370	MED	385
AS14	40.93	1.67	0.23	1157	1160	50	2367	MED	386
JA27	12.18	0.60	0.83	756	675	936	2367	MED	387
PU05	15.67	0.74	0.55	908	855	603	2366	MED	388
CU65	28.09	1.29	0.38	1042	1068	254	2364	MED	389
AO14	44.79	1.68	0.17	1174	1161	24	2359	MED	390
JL16	13.18	0.64	0.69	817	736	806	2359	MED	391
PL15	12.74	0.62	0.75	788	708	863	2359	MED	392
JM75	10.39	0.54	1.32	623	557	1168	2348	MED	393
RA52	13.37	0.54	0.85	826	554	968	2348	MED	394

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 /A	A C (1/A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
	yr) 14.95	ha-yr) 0.64	ha-yr) 0.62	885				MED	+
RU70					745	717	2347		395
NE84	13.22	0.55	0.84	818	567	960	2345	MED	396
AS18	34.01	1.70	0.26	1094	1165	81	2340	MED	397
JM82	11.46	0.65	0.76	706	759	875	2340	MED	398
YO57	13.18	0.51	0.92	816	498	1026	2340	MED	399
RL14	12.79	0.59	0.78	791	652	894	2337	MED	400
YO39	13.05	0.66	0.65	805	779	753	2337	MED	401
PS79	12.82	0.79	0.59	793	880	663	2336	MED	402
RA47	14.65	0.68	0.59	876	792	668	2336	MED	403
TP17	9.41	0.56	1.59	541	602	1193	2336	MED	404
JA24	12.71	0.67	0.66	785	789	761	2335	MED	405
CB44	41.04	1.47	0.23	1158	1124	52	2334	MED	406
JM81	12.55	0.62	0.73	777	707	847	2331	MED	407
YA01	9.76	0.60	1.06	566	664	1101	2331	MED	408
JU12	11.13	0.70	0.70	685	825	816	2326	MED	409
PS69	10.64	0.69	0.75	644	811	869	2324	MED	410
RU90	10.29	0.56	1.15	612	587	1124	2323	MED	411
CM29	35.14	1.45	0.28	1109	1111	102	2322	MED	412
PS41	11.63	0.82	0.62	718	898	705	2321	MED	413
PS60	9.91	0.80	0.73	587	887	845	2319	MED	414
PS82	10.88	0.66	0.77	660	775	882	2317	MED	415
CB33	41.40	1.63	0.07	1161	1150	5	2316	MED	416
TP14	11.63	0.63	0.76	716	721	878	2315	MED	417
PS84	11.19	0.71	0.68	689	829	795	2313	MED	418
CB43	39.23	1.44	0.24	1144	1110	57	2311	MED	419

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A ~ N. (l-~/A ~ l-~	A = D (1/A =	A ~ C (t A ~				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RA06	12.59	0.67	0.65	782	782	747	2311	MED	420
AO02	30.33	1.18	0.36	1057	1030	223	2310	MED	421
PL42	15.28	0.69	0.55	898	805	607	2310	MED	422
TP10	12.55	0.69	0.63	778	807	724	2309	MED	423
JU27	12.40	0.93	0.55	766	940	599	2305	MED	424
JM51	10.59	0.68	0.75	640	799	864	2303	MED	425
JU08	14.21	0.87	0.51	863	918	522	2303	MED	426
CL01	36.38	1.58	0.21	1119	1143	37	2299	MED	427
CU09	11.56	0.62	0.77	711	702	884	2297	MED	428
YO11	10.61	0.56	0.98	642	594	1060	2296	MED	429
CU36	34.30	1.33	0.29	1102	1076	112	2290	MED	430
YO49	11.01	0.50	1.12	675	494	1120	2289	MED	431
AS20	30.68	1.61	0.26	1062	1148	78	2288	MED	432
AO10	40.34	1.39	0.21	1151	1095	40	2286	MED	433
JU59	8.98	0.61	1.06	500	688	1098	2286	MED	434
JA26	12.02	0.60	0.74	748	684	852	2284	MED	435
JM76	12.86	0.64	0.65	794	737	750	2281	MED	436
RA28	10.94	0.56	0.91	669	604	1008	2281	MED	437
AS16	25.72	1.43	0.31	1024	1106	150	2280	MED	438
JM48	12.12	0.70	0.61	751	822	698	2271	MED	439
JM41	10.12	0.69	0.76	597	801	871	2269	MED	440
CB03	37.45	1.28	0.25	1130	1064	73	2267	MED	441
CB18	37.05	1.42	0.20	1127	1104	34	2265	MED	442
JM63	11.76	0.81	0.57	727	894	644	2265	MED	443
YO41	14.37	0.65	0.57	869	754	640	2263	MED	444

					uence (Rank	/			
2022 Report					Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RU87	12.05	0.60	0.73	749	670	842	2261	MED	445
RA67	23.99	0.82	0.42	1012	900	341	2253	MED	446
RL08	11.63	0.52	0.91	717	522	1012	2251	MED	447
AS19	30.02	1.54	0.23	1055	1137	56	2248	MED	448
RU57	12.01	0.57	0.75	746	627	865	2238	MED	449
PS42	10.80	0.80	0.60	655	889	691	2235	MED	450
YO16	12.74	0.65	0.60	787	768	678	2233	MED	451
RA45	13.71	0.65	0.57	843	749	638	2230	MED	452
JM79	12.33	0.59	0.70	761	649	819	2229	MED	453
CB46	35.31	1.40	0.14	1112	1100	15	2227	MED	454
CU08	13.36	0.63	0.59	825	727	674	2226	MED	455
TP15	9.06	0.55	1.25	508	568	1150	2226	MED	456
CB06	16.33	0.61	0.55	936	689	600	2225	MED	457
YO14	11.47	0.60	0.72	707	683	835	2225	MED	458
JM13	10.69	0.63	0.74	648	714	862	2224	MED	459
PU16	13.97	0.73	0.51	854	844	525	2223	MED	460
CB16	31.98	1.19	0.28	1076	1035	105	2216	MED	461
JU03	13.90	0.97	0.46	847	957	410	2214	MED	462
JU24	10.25	0.60	0.83	608	665	937	2210	MED	463
RD02	9.30	0.55	1.07	533	569	1108	2210	MED	464
RU92	10.76	0.53	0.91	651	543	1013	2207	MED	465
JU32	13.67	1.04	0.44	841	984	380	2205	MED	466
RU66	11.65	0.54	0.82	721	553	927	2201	MED	467
PS43	10.93	0.78	0.58	664	876	658	2198	MED	468
RL13	12.88	0.62	0.61	796	700	702	2198	MED	469

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A ~ N. (l-~/A ~ l-~	A = D (1/A =	A ~ C (t A ~				Carre	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
TC23	9.61	ha-yr) 0.57	ha-yr) 0.92	559	614	1019	2192	MED	1
									470
RL11	12.02	0.58	0.70	747	630	812	2189	MED	471
CB09	13.54	0.54	0.68	830	564	794	2188	MED	472
YO23	10.27	0.49	1.14	609	456	1122	2187	MED	473
CU70	32.27	1.32	0.21	1078	1073	35	2186	MED	474
AS17	25.59	1.36	0.25	1020	1086	75	2181	MED	475
TC27	9.44	0.63	0.80	544	723	912	2179	MED	476
JM33	9.18	0.65	0.78	516	763	897	2176	MED	477
JA28	14.49	0.68	0.50	874	794	501	2169	MED	478
JM45	9.74	0.62	0.78	564	704	901	2169	MED	479
YO33	11.07	0.49	0.92	681	464	1023	2168	MED	480
CB45	33.05	1.27	0.14	1086	1061	12	2159	MED	481
TC32	8.56	0.58	0.98	457	642	1059	2158	MED	482
JU22	8.66	0.53	1.22	475	538	1144	2157	MED	483
RU69	12.89	0.55	0.66	797	572	778	2147	MED	484
RU62	12.40	0.72	0.51	767	836	536	2139	MED	485
TH45	8.39	0.50	1.71	443	497	1199	2139	MED	486
JA31	13.99	0.67	0.49	858	790	487	2135	MED	487
RD46	11.03	0.61	0.66	679	685	768	2132	MED	488
CU29	16.30	0.62	0.50	935	705	491	2131	MED	489
PL31	12.36	0.64	0.57	763	734	634	2131	MED	490
RA74	23.90	0.78	0.37	1009	875	244	2128	MED	491
CU10	15.36	0.63	0.50	901	725	499	2125	MED	492
PL48	13.18	0.70	0.49	815	826	483	2124	MED	493
PS13	8.59	0.68	0.75	462	795	866	2123	MED	494

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 /A	A C (1/A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
JU35	yr) 10.28	ha-yr) 0.76	ha-yr) 0.57	610	865	647	2122	MED	495
YO64	13.17	0.76	0.57	813	530	767	2110	MED	493
	10.20	0.32	0.00	603	467	1037	2110	MED	496
RU22 YO10	9.54	0.49	0.94	551	489	1037	2107	MED	497
JU05	15.92	1.27	0.99	920	1060	120	2107	MED	498
YO15	11.91	0.61	0.59	735	696	669	2100	MED	500
RD57	11.31	0.65	0.57	697	755	645	2097	MED	501
TP04	11.27	0.69	0.54	693	812	592	2097	MED	502
RU29	11.18	0.54	0.74	688	549	848	2085	MED	503
YO67	15.84	0.68	0.44	916	793	373	2083	MED	504
CU27	10.48	0.49	0.85	631	477	964	2082	MED	505
RU05	8.24	0.50	1.28	432	481	1159	2072	MED	506
PL40	16.89	0.77	0.38	944	866	260	2072	MED	507
JU34	15.72	1.28	0.28	910	1062	96	2068	MED	508
JU04	13.89	1.28	0.32	845	1062	154	2066	MED	509
RD61	10.40	0.59	0.68	624	650	789	2063	MED	510
JA14	11.01	0.65	0.56	676	762	624	2062	MED	511
JL18	20.52	0.88	0.31	985	926	151	2062	MED	512
JU46	8.86	0.47	1.26	486	421	1154	2061	MED	513
JM54	10.85	0.71	0.53	658	831	569	2058	MED	514
RA22	13.27	0.80	0.43	822	883	353	2058	MED	515
CU26	12.29	0.53	0.66	759	540	758	2057	MED	516
RD53	10.52	0.61	0.64	635	690	730	2055	MED	517
JL17	11.94	0.58	0.60	739	629	685	2053	MED	518
YO09	9.55	0.50	0.90	553	495	1003	2051	MED	519

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 / A	A G (.//A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
PS50	yr) 13.16	ha-yr) 1.28	ha-yr) 0.33	812	1066	172	2050	MED	1
	9.70			563		823		MED	520
JA09		0.60	0.71		663		2049		521
YO21	11.64	0.57	0.61	720	625	703	2048	MED	522
JM12	11.11	0.59	0.62	684	648	715	2047	MED	523
PL58	10.58	0.53	0.75	638	541	867	2046	MED	524
PS30	10.68	0.70	0.53	645	819	576	2040	MED	525
TC33	8.05	0.51	1.07	415	512	1111	2038	MED	526
RU77	11.73	0.65	0.52	725	766	543	2034	MED	527
RU78	12.40	0.61	0.54	764	687	582	2033	MED	528
TC26	8.17	0.56	0.92	425	588	1016	2029	MED	529
RD55	10.98	0.64	0.56	671	735	621	2027	MED	530
TC31	8.46	0.56	0.86	452	598	977	2027	MED	531
YO24	12.42	0.61	0.53	768	694	565	2027	MED	532
RD32	10.02	0.57	0.72	590	606	828	2024	MED	533
CB21	25.67	1.03	0.15	1023	982	16	2021	MED	534
TP12	10.20	0.65	0.58	604	765	652	2021	MED	535
JU07	12.91	0.76	0.42	799	864	345	2008	MED	536
JU15	11.02	0.69	0.51	678	802	526	2006	MED	537
CB15	24.02	0.87	0.25	1013	923	69	2005	MED	538
CM15	10.44	0.51	0.74	627	514	861	2002	MED	539
CB19	26.84	0.93	0.17	1033	943	25	2001	MED	540
TP05	9.27	0.59	0.70	528	656	815	1999	MED	541
CU07	12.30	0.60	0.52	760	678	560	1998	MED	542
JU66	11.99	0.96	0.40	744	952	302	1998	MED	543
JU80	8.65	0.45	1.17	474	393	1130	1997	MED	544

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A 37.4 /A 1	A D (1) A	A G (.//A				G	Agricultural Pollutant	
MAIIIIC	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NCEO	DCEO	CCEO	Sum	Potential	D #
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row #
JM17	9.47	0.69	0.57	547	814	635	1996	MED	545
JU20	10.57	0.65	0.55	637	747	612	1996	MED	546
PU14	10.46	0.59	0.62	628	661	707	1996	MED	547
RD43	9.58	0.54	0.77	555	551	883	1989	MED	548
JM80	9.83	0.51	0.80	573	499	914	1986	MED	549
PL45	18.29	0.82	0.29	964	899	117	1980	MED	550
YO25	9.31	0.47	0.92	534	424	1020	1978	MED	551
PS44	9.93	0.77	0.51	588	869	518	1975	MED	552
JA02	10.68	0.69	0.50	647	815	512	1974	MED	553
PU07	9.87	0.97	0.47	577	956	441	1974	MED	554
PU02	14.83	1.10	0.26	881	1003	88	1972	MED	555
JM14	9.26	0.56	0.73	526	601	840	1967	MED	556
JU84	8.60	0.63	0.67	464	717	782	1963	MED	557
YO02	11.33	0.67	0.49	698	786	479	1963	MED	558
PS36	10.71	0.84	0.45	649	913	399	1961	MED	559
JM64	11.05	0.72	0.47	680	842	437	1959	MED	560
JU36	10.34	0.73	0.50	618	845	496	1959	MED	561
JA16	9.43	0.64	0.60	543	731	680	1954	MED	562
TP18	9.36	0.60	0.64	537	672	745	1954	MED	563
JU25	10.86	0.94	0.43	659	946	347	1952	MED	564
RD75	10.24	0.54	0.66	606	565	774	1945	MED	565
JU31	10.21	0.82	0.47	605	896	443	1944	MED	566
RU21	9.05	0.44	0.99	506	372	1062	1940	MED	567
CM22	13.93	0.62	0.44	852	703	379	1934	MED	568
YO27	11.07	0.46	0.73	682	413	837	1932	MED	569

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A - NJ (1 / A - 1	A - D (1/A -	A - C (+ A -				Comme	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
JA12	yr) 10.24	ha-yr) 0.60	ha-yr) 0.57	607	682	642	1931	MED	+
		0.60				804		MED	570
RU91	10.05		0.69	592	535		1931		571
JU72	8.40	0.58	0.73	444	638	843	1925	MED	572
RU28	8.67	0.52	0.79	476	533	906	1915	MED	573
CM13	11.60	0.53	0.58	715	545	654	1914	MED	574
PS47	8.69	0.56	0.73	480	593	841	1914	MED	575
JR20	9.88	0.63	0.54	579	730	596	1905	MED	576
JU29	11.69	0.97	0.35	723	958	219	1900	MED	577
NE11	7.29	0.45	1.32	339	384	1170	1893	MED	578
JA05	11.68	0.69	0.43	722	806	363	1891	MED	579
CB05	15.28	0.57	0.44	899	623	368	1890	MED	580
RU34	10.05	0.58	0.59	593	633	661	1887	MED	581
PU03	11.96	1.04	0.32	741	987	156	1884	MED	582
PU09	10.00	0.63	0.53	589	728	566	1883	MED	583
RA15	10.32	0.61	0.53	616	695	572	1883	MED	584
JM21	8.41	0.51	0.81	446	508	924	1878	MED	585
JU49	7.45	0.47	1.04	359	429	1090	1878	MED	586
PL61	9.04	0.42	0.95	505	326	1047	1878	MED	587
YO68	13.98	0.54	0.49	856	558	464	1878	MED	588
RD52	10.30	0.60	0.54	614	674	588	1876	MED	589
CU23	9.69	0.46	0.79	561	402	907	1870	MED	590
RL16	8.95	0.44	0.88	497	376	989	1862	MED	591
YO07	11.77	0.60	0.48	728	668	463	1859	MED	592
JU06	13.91	0.89	0.26	848	930	79	1857	MED	593
PL56	11.78	0.58	0.50	729	628	497	1854	MED	594

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 / A	A G (.//A				C	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
	yr) 7.20	ha-yr) 0.46	ha-yr)					MED	
TH44	7.39		1.06	347	405	1102	1854		595
RA31	9.34	0.51	0.69	536	506	807	1849	MED	596
RU65	11.28	0.63	0.47	694	720	435	1849	MED	597
CM05	10.63	0.57	0.54	643	605	593	1841	MED	598
JA33	11.85	0.59	0.47	733	658	445	1836	MED	599
RU12	8.97	0.46	0.82	499	403	933	1835	MED	600
JM34	8.13	0.50	0.81	420	483	923	1826	MED	601
PL14	10.74	0.50	0.60	650	488	688	1826	MED	602
JM52	10.29	0.69	0.45	613	817	395	1825	MED	603
JM55	9.86	0.63	0.51	575	715	533	1823	MED	604
JM77	10.17	0.59	0.52	600	662	559	1821	MED	605
JR14	8.68	0.49	0.75	478	473	870	1821	MED	606
TH37	6.53	0.45	1.29	260	397	1164	1821	MED	607
PL64	11.30	0.55	0.51	695	580	541	1816	MED	608
PU04	12.88	1.00	0.23	795	966	54	1815	MED	609
JU02	12.13	1.06	0.25	753	991	67	1811	MED	610
YO44	10.35	0.52	0.59	619	528	664	1811	MED	611
JU62	11.25	0.92	0.33	692	937	179	1808	MED	612
PS48	7.13	0.45	1.05	327	386	1095	1808	MED	613
JU69	10.90	0.90	0.35	662	932	213	1807	MED	614
PL46	11.02	0.61	0.47	677	692	438	1807	MED	615
CB23	19.62	0.70	0.07	976	821	6	1803	MED	616
TC24	7.91	0.57	0.68	401	612	788	1801	MED	617
RU71	10.18	0.47	0.66	601	431	766	1798	MED	618
RD19	8.41	0.48	0.78	447	452	898	1797	MED	619

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A - NJ (1 / A - 1	A - D (1 / A -	A - C (4 A -				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
RU32	10.31	0.51	0.59	615	504	677	1796	MED	620
JU11	10.78	0.70	0.41	654	820	321	1795	MED	621
TC20	11.99	0.65	0.39	745	767	280	1792	LOW	622
BS34	6.46	0.46	1.17	253	401	1133	1787	LOW	623
RA34	10.89	0.57	0.51	661	608	516	1785	LOW	624
RD64	9.90	0.56	0.55	585	599	601	1785	LOW	625
YA03	7.81	0.45	0.89	391	389	998	1778	LOW	626
RL20	8.91	0.47	0.74	490	435	851	1776	LOW	627
NE58	8.64	0.47	0.77	473	422	879	1774	LOW	628
JM18	10.16	0.61	0.49	599	698	476	1773	LOW	629
RA35	9.75	0.59	0.52	565	646	562	1773	LOW	630
JM32	8.62	0.50	0.69	471	496	805	1772	LOW	631
CB22	18.12	0.69	0.06	962	803	3	1768	LOW	632
JR15	7.82	0.49	0.79	392	472	904	1768	LOW	633
RU94	7.80	0.37	1.29	390	215	1163	1768	LOW	634
JM23	7.79	0.47	0.84	386	428	953	1767	LOW	635
JU77	6.65	0.48	0.95	273	450	1041	1764	LOW	636
JU83	7.44	0.52	0.78	357	516	891	1764	LOW	637
JM86	15.68	0.65	0.28	909	751	103	1763	LOW	638
JM61	10.36	0.58	0.50	622	631	505	1758	LOW	639
JU28	11.42	0.97	0.28	704	954	99	1757	LOW	640
JU70	10.04	0.79	0.39	591	882	284	1757	LOW	641
RU23	8.67	0.43	0.82	477	346	934	1757	LOW	642
JA32	11.31	0.58	0.47	696	635	425	1756	LOW	643
JU56	6.89	0.45	1.00	302	380	1073	1755	LOW	644

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A ~ N. (l-~/A ~ l-~	A = D (1==/A =	A ~ C (t A ~				Carre	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
TP11	7.70	0.48	0.82	376	451	928	1755	LOW	645
JM25	8.62	0.52	0.65	469	534	751	1754	LOW	646
JU55	7.87	0.51	0.74	396	509	849	1754	LOW	647
PL26	13.91	0.80	0.15	849	888	17	1754	LOW	648
RU81	10.77	0.55	0.51	653	576	521	1750	LOW	649
JA07	11.15	0.64	0.41	687	741	320	1748	LOW	650
JA20	9.04	0.54	0.61	504	548	696	1748	LOW	651
NE75	7.68	0.42	0.96	374	318	1053	1745	LOW	652
JA34	13.03	0.66	0.32	804	774	164	1742	LOW	653
JU65	9.88	0.78	0.40	580	872	287	1739	LOW	654
JU01	11.49	1.00	0.24	708	967	62	1737	LOW	655
TC25	8.58	0.55	0.61	460	577	700	1737	LOW	656
RD44	9.54	0.52	0.58	552	529	651	1732	LOW	657
RU04	7.94	0.46	0.80	404	415	913	1732	LOW	658
YA06	7.40	0.45	0.87	350	392	985	1727	LOW	659
PL35	10.51	0.59	0.47	634	657	432	1723	LOW	660
YO03	9.89	0.57	0.51	583	620	520	1723	LOW	661
RU08	9.26	0.52	0.59	527	525	670	1722	LOW	662
PS76	9.36	0.63	0.48	538	719	459	1716	LOW	663
RU35	10.05	0.48	0.59	594	447	665	1706	LOW	664
JM43	9.09	0.55	0.56	510	570	623	1703	LOW	665
RD49	9.30	0.50	0.59	531	491	671	1693	LOW	666
TC22	7.14	0.42	0.94	328	330	1034	1692	LOW	667
RA72	15.12	0.54	0.36	893	562	230	1685	LOW	668
CM14	10.58	0.56	0.48	639	596	448	1683	LOW	669

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (Ira/A a ha	A a D (Ira/A a	A a S (mat/A a				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RU37	9.22	0.53	0.56	519	546	618	1683	LOW	670
JU39	7.11	0.54	0.69	323	550	808	1681	LOW	671
RA50	11.92	0.51	0.47	738	503	440	1681	LOW	672
PL29	12.43	0.72	0.25	769	835	74	1678	LOW	673
JR08	8.54	0.48	0.67	456	441	780	1677	LOW	674
PL30	12.71	0.73	0.22	786	846	44	1676	LOW	675
JM24	7.78	0.49	0.70	383	476	814	1673	LOW	676
CM01	9.59	0.54	0.52	557	561	552	1670	LOW	677
TC30	7.91	0.49	0.68	400	478	792	1670	LOW	678
PS72	8.31	0.57	0.55	435	622	608	1665	LOW	679
PL02	11.37	0.43	0.56	701	343	620	1664	LOW	680
JU76	8.68	0.56	0.54	479	597	587	1663	LOW	681
RU61	11.34	0.52	0.47	700	532	428	1660	LOW	682
PS45	8.07	0.55	0.59	416	582	660	1658	LOW	683
PL44	12.68	0.57	0.38	784	616	257	1657	LOW	684
JA37	8.10	0.43	0.77	418	348	888	1654	LOW	685
JM69	9.00	0.64	0.46	501	740	413	1654	LOW	686
CU30	15.60	0.60	0.25	907	676	70	1653	LOW	687
JA19	8.39	0.57	0.54	442	626	585	1653	LOW	688
JU14	11.63	0.78	0.24	719	874	60	1653	LOW	689
JU85	7.68	0.57	0.59	372	609	667	1648	LOW	690
JU86	7.50	0.47	0.74	363	427	857	1647	LOW	691
PS70	8.46	0.57	0.53	451	624	570	1645	LOW	692
YO65	11.96	0.47	0.49	742	434	468	1644	LOW	693
JM58	9.41	0.55	0.51	542	581	519	1642	LOW	694

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A ~ N. (1-~/A ~ 1-~	A = D (1/A =	A ~ C (t A ~				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
JA04	9.81	0.60	0.45	572	669	400	1641	LOW	695
CU21	7.71	0.39	0.88	377	269	994	1640	LOW	696
JU73	9.91	0.51	0.52	586	501	553	1640	LOW	697
PL52	8.90	0.47	0.62	488	433	718	1639	LOW	698
JM59	10.46	0.65	0.38	629	756	251	1636	LOW	699
RD60	9.89	0.57	0.47	584	610	442	1636	LOW	700
RU72	9.40	0.50	0.54	540	493	597	1630	LOW	701
RU20	6.98	0.40	0.92	310	289	1022	1621	LOW	702
BS32	7.85	0.48	0.67	394	443	783	1620	LOW	703
CU04	9.59	0.55	0.50	556	571	490	1617	LOW	704
JM16	9.69	0.56	0.48	562	595	460	1617	LOW	705
RA26	9.30	0.55	0.50	532	573	511	1616	LOW	706
RL10	9.12	0.49	0.56	513	471	627	1611	LOW	707
JA01	10.57	0.65	0.35	636	760	214	1610	LOW	708
CU20	8.10	0.40	0.79	419	284	902	1605	LOW	709
CM03	9.89	0.56	0.46	582	603	417	1602	LOW	710
PU22	10.60	0.64	0.35	641	746	211	1598	LOW	711
RU63	11.43	0.58	0.37	705	644	248	1597	LOW	712
JA38	7.89	0.37	0.86	398	221	976	1595	LOW	713
RD41	8.63	0.49	0.58	472	469	653	1594	LOW	714
RD05	7.94	0.44	0.71	403	365	824	1592	LOW	715
JA29	11.69	0.63	0.31	724	722	145	1591	LOW	716
RU30	9.60	0.48	0.53	558	454	578	1590	LOW	717
TH39	5.99	0.37	1.51	195	196	1188	1579	LOW	718
PL13	10.14	0.55	0.45	598	584	396	1578	LOW	719

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (lra/A a ha	$\Lambda \propto D \left(l_{r\alpha} / \Lambda \right) \propto$	$\Lambda \propto S \left(mt / \Lambda \right)$				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
JU38	8.90	0.76	0.36	489	860	227	1576	LOW	720
NE08	6.57	0.40	0.94	264	279	1033	1576	LOW	721
TC16	7.03	0.45	0.76	315	382	872	1569	LOW	722
RU14	11.22	0.55	0.40	691	578	295	1564	LOW	723
TP02	9.88	0.61	0.40	581	691	290	1562	LOW	724
PS38	8.05	0.72	0.41	414	834	312	1560	LOW	725
RU03	6.63	0.41	0.86	271	309	978	1558	LOW	726
PL12	9.79	0.43	0.57	569	355	632	1556	LOW	727
JU78	7.18	0.47	0.68	330	426	796	1552	LOW	728
YO66	10.94	0.42	0.52	668	329	550	1547	LOW	729
NE36	6.95	0.41	0.83	308	297	940	1545	LOW	730
RD35	9.22	0.54	0.49	520	552	471	1543	LOW	731
JA15	9.81	0.56	0.44	571	586	382	1539	LOW	732
NE55	7.57	0.43	0.72	369	337	833	1539	LOW	733
RD47	9.33	0.52	0.49	535	526	477	1538	LOW	734
RA71	12.40	0.43	0.46	765	362	409	1536	LOW	735
PS18	6.82	0.56	0.57	289	600	646	1535	LOW	736
JL02	11.82	0.63	0.26	731	718	85	1534	LOW	737
RL01	8.89	0.47	0.55	487	438	604	1529	LOW	738
RU33	9.26	0.47	0.53	525	432	571	1528	LOW	739
YA07	7.02	0.42	0.78	314	316	896	1526	LOW	740
RD45	8.35	0.45	0.60	439	396	687	1522	LOW	741
YO05	9.16	0.48	0.52	515	445	561	1521	LOW	742
NE69	6.87	0.40	0.81	298	294	925	1517	LOW	743
RD37	8.56	0.50	0.53	458	485	573	1516	LOW	744

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
NE04	6.14	0.35	1.15	215	175	1125	1515	LOW	745
JA10	10.40	0.62	0.33	625	709	180	1514	LOW	746
RD59	9.50	0.55	0.44	549	579	377	1505	LOW	747
CM11	10.83	0.54	0.40	656	556	292	1504	LOW	748
TC19	8.17	0.51	0.53	426	513	564	1503	LOW	749
TH23	5.76	0.36	1.21	165	195	1142	1502	LOW	750
PU19	11.75	0.56	0.33	726	591	184	1501	LOW	751
JM19	8.92	0.57	0.45	491	611	397	1499	LOW	752
JR13	7.50	0.46	0.63	362	417	720	1499	LOW	753
PL25	11.58	0.64	0.22	714	738	46	1498	LOW	754
JU09	9.86	0.66	0.31	576	773	148	1497	LOW	755
PL43	11.01	0.49	0.43	674	461	361	1496	LOW	756
JM47	7.77	0.51	0.55	381	500	613	1494	LOW	757
PS78	8.34	0.54	0.50	437	547	510	1494	LOW	758
CM12	9.44	0.44	0.53	545	366	580	1491	LOW	759
RU68	9.80	0.47	0.49	570	436	482	1488	LOW	760
YO19	9.10	0.60	0.40	511	666	307	1484	LOW	761
RA70	11.41	0.42	0.47	703	335	439	1477	LOW	762
RL18	7.68	0.38	0.74	373	247	855	1475	LOW	763
YO40	9.06	0.51	0.48	509	515	451	1475	LOW	764
RU89	7.29	0.42	0.71	337	314	822	1473	LOW	765
NE45	8.13	0.44	0.60	421	367	684	1472	LOW	766
JU58	7.12	0.50	0.58	325	487	657	1469	LOW	767
TC17	6.59	0.33	1.03	268	109	1088	1465	LOW	768
NE56	9.47	0.39	0.58	546	262	656	1464	LOW	769

				_	uence (Rank	,			
2022 Report					Us for each l	Pollutant's			
Dataset	Unit Area Loads	T		Load					
								Agricultural Pollutant	
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RU11	8.40	0.46	0.54	445	418	598	1461	LOW	770
JA03	9.20	0.60	0.38	518	681	259	1458	LOW	771
JU57	6.53	0.41	0.78	259	300	899	1458	LOW	772
RA05	8.16	0.48	0.54	423	444	591	1458	LOW	773
JA18	8.23	0.58	0.45	429	636	391	1456	LOW	774
RU83	10.09	0.58	0.36	596	632	228	1456	LOW	775
JR17	8.60	0.52	0.49	463	524	467	1454	LOW	776
RA68	12.12	0.43	0.43	752	344	358	1454	LOW	777
JU41	6.41	0.39	0.84	247	254	951	1452	LOW	778
CM08	8.58	0.49	0.51	459	457	535	1451	LOW	779
JU43	6.38	0.39	0.83	243	264	943	1450	LOW	780
RU07	8.01	0.47	0.56	412	423	615	1450	LOW	781
CU16	8.47	0.51	0.49	453	510	486	1449	LOW	782
PL57	8.22	0.43	0.58	428	360	659	1447	LOW	783
RU67	9.51	0.46	0.49	550	408	485	1443	LOW	784
JR19	9.30	0.61	0.36	530	686	225	1441	LOW	785
PS29	9.77	0.73	0.18	567	843	28	1438	LOW	786
JA11	9.25	0.60	0.37	523	677	235	1435	LOW	787
JM46	7.80	0.43	0.61	389	345	701	1435	LOW	788
NE54	7.72	0.42	0.64	378	323	731	1432	LOW	789
PL63	10.47	0.64	0.24	630	742	58	1430	LOW	790
PL03	10.76	0.35	0.56	652	158	619	1429	LOW	791
JA06	10.06	0.59	0.33	595	655	177	1427	LOW	792
BS30	6.17	0.42	0.76	218	331	877	1426	LOW	793
JM22	8.16	0.47	0.52	424	439	563	1426	LOW	794

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (ka/A a ha	$\Lambda \propto \mathbf{D} \left(l_{x} \alpha / \Lambda \alpha \right)$	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
PU18	11.13	0.51	0.37	686	502	237	1425	LOW	795
JU74	8.45	0.40	0.61	450	278	695	1423	LOW	796
NE03	6.34	0.37	0.87	237	203	981	1421	LOW	797
JL38	12.45	0.58	0.09	772	640	8	1420	LOW	798
JM67	9.01	0.66	0.31	502	771	146	1419	LOW	799
PS81	8.61	0.49	0.50	468	458	492	1418	LOW	800
BS29	6.83	0.42	0.68	292	322	800	1414	LOW	801
PS86	12.46	0.46	0.36	774	419	220	1413	LOW	802
NE53	7.04	0.42	0.66	317	320	775	1412	LOW	803
YO38	10.29	0.52	0.38	611	536	265	1412	LOW	804
RU59	8.93	0.46	0.50	492	410	509	1411	LOW	805
JU82	6.60	0.46	0.64	269	406	735	1410	LOW	806
PL24	9.78	0.55	0.39	568	574	268	1410	LOW	807
TH41	5.39	0.38	0.96	122	236	1052	1410	LOW	808
NE61	9.39	0.36	0.60	539	184	686	1409	LOW	809
BS21	5.31	0.37	1.02	112	210	1084	1406	LOW	810
YO08	7.55	0.45	0.58	368	387	650	1405	LOW	811
CU22	7.99	0.39	0.64	407	256	737	1400	LOW	812
CM16	8.95	0.50	0.46	495	482	415	1392	LOW	813
NE21	7.40	0.45	0.58	349	395	648	1392	LOW	814
RD74	7.74	0.44	0.57	380	371	639	1390	LOW	815
BS25	5.42	0.38	0.93	126	234	1028	1388	LOW	816
RD04	6.57	0.42	0.68	265	332	790	1387	LOW	817
TC15	6.46	0.45	0.64	252	391	744	1387	LOW	818
NE62	7.22	0.41	0.64	332	306	739	1377	LOW	819

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
		. 5.4						Agricultural Pollutant	
XI A TITLE	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NGEO	PCEO	CCEO	Sum	Potential	D "
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RD56	9.27	0.54	0.40	529	559	289	1377	LOW	820
BS28	7.00	0.44	0.61	312	370	694	1376	LOW	821
BS20	5.25	0.38	0.93	103	237	1031	1371	LOW	822
NE07	6.09	0.35	0.88	205	173	993	1371	LOW	823
CU02	8.61	0.52	0.44	467	521	381	1369	LOW	824
JM56	8.71	0.61	0.34	483	697	188	1368	LOW	825
JA39	9.88	0.46	0.44	578	420	367	1365	LOW	826
JM31	8.21	0.59	0.39	427	660	271	1358	LOW	827
RU73	7.86	0.42	0.56	395	328	630	1353	LOW	828
JA08	9.83	0.59	0.29	574	647	128	1349	LOW	829
RU31	8.94	0.45	0.48	493	400	447	1340	LOW	830
BS23	5.56	0.39	0.82	141	266	932	1339	LOW	831
NE02	5.80	0.34	0.92	173	147	1018	1338	LOW	832
TH36	4.93	0.34	1.09	74	145	1115	1334	LOW	833
RU82	8.51	0.49	0.47	454	455	423	1332	LOW	834
PU15	7.42	0.51	0.49	353	505	473	1331	LOW	835
NE57	8.23	0.43	0.52	430	354	546	1330	LOW	836
RL03	8.15	0.44	0.51	422	378	530	1330	LOW	837
RU85	9.49	0.49	0.41	548	466	313	1327	LOW	838
JM11	8.61	0.52	0.42	466	518	342	1326	LOW	839
BS15	5.74	0.38	0.81	161	242	917	1320	LOW	840
NE10	6.11	0.37	0.77	209	219	887	1315	LOW	841
PL20	10.90	0.51	0.31	663	511	140	1314	LOW	842
JU10	7.90	0.53	0.43	399	544	366	1309	LOW	843
TH40	4.73	0.34	1.10	57	135	1116	1308	LOW	844

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (lra/A a ha	$\Lambda \propto D \left(l_{xx} / \Lambda \right) \propto$	$\Lambda \propto S \left(mt / \Lambda \right)$				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
CM09	9.05	0.49	0.42	507	470	330	1307	LOW	845
RL06	7.45	0.33	0.71	358	121	826	1305	LOW	846
JM06	6.75	0.46	0.55	282	412	610	1304	LOW	847
PL07	9.22	0.42	0.48	521	324	454	1299	LOW	848
BS06	5.72	0.39	0.77	159	253	885	1297	LOW	849
JR18	8.59	0.52	0.40	461	531	303	1295	LOW	850
JM10	9.18	0.53	0.37	517	542	234	1293	LOW	851
PL22	9.66	0.56	0.31	560	592	141	1293	LOW	852
BS27	5.55	0.38	0.81	140	228	920	1288	LOW	853
PS83	10.94	0.50	0.31	666	479	139	1284	LOW	854
RA44	7.83	0.54	0.42	393	555	336	1284	LOW	855
JU64	6.83	0.62	0.39	293	706	283	1282	LOW	856
YO43	7.41	0.45	0.52	352	381	548	1281	LOW	857
JR01	7.31	0.39	0.59	341	260	673	1274	LOW	858
TC11	5.86	0.38	0.74	182	230	853	1265	LOW	859
NE22	6.55	0.39	0.64	262	259	742	1263	LOW	860
PS73	6.95	0.48	0.50	309	448	502	1259	LOW	861
TC14	6.28	0.40	0.64	231	288	734	1253	LOW	862
BS33	5.84	0.40	0.67	178	287	785	1250	LOW	863
CU01	8.94	0.55	0.32	494	585	168	1247	LOW	864
RL22	8.00	0.48	0.44	408	453	386	1247	LOW	865
JM57	8.34	0.54	0.37	436	560	242	1238	LOW	866
JM73	8.24	0.51	0.40	431	507	297	1235	LOW	867
JM28	6.62	0.49	0.50	270	465	498	1233	LOW	868
BS07	6.91	0.45	0.51	304	399	529	1232	LOW	869

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (Ira/A a ha	A a D (Ira/A a	A a C (mat/A a				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
JU71	6.52	0.52	0.48	257	520	453	1230	LOW	870
PL50	8.72	0.48	0.40	484	440	305	1229	LOW	871
RD23	7.40	0.41	0.53	348	303	575	1226	LOW	872
NE18	6.28	0.41	0.60	230	302	692	1224	LOW	873
RA73	11.20	0.39	0.39	690	261	273	1224	LOW	874
JM05	6.27	0.43	0.57	229	351	641	1221	LOW	875
PL04	9.11	0.36	0.51	512	192	517	1221	LOW	876
NE60	7.27	0.44	0.50	335	375	508	1218	LOW	877
JR02	6.84	0.37	0.62	295	208	711	1214	LOW	878
TC28	7.66	0.42	0.50	371	334	507	1212	LOW	879
JM68	7.74	0.64	0.27	379	743	89	1211	LOW	880
PL21	10.50	0.49	0.28	633	474	104	1211	LOW	881
TH29	5.84	0.35	0.75	180	156	868	1204	LOW	882
PU12	7.92	0.53	0.38	402	537	264	1203	LOW	883
TH27	5.66	0.36	0.74	154	190	858	1202	LOW	884
BS19	5.21	0.37	0.77	101	207	890	1198	LOW	885
BS01	4.98	0.35	0.84	83	155	956	1194	LOW	886
JU19	8.61	0.59	0.26	465	645	82	1192	LOW	887
JU53	7.09	0.50	0.44	319	486	385	1190	LOW	888
RA04	7.78	0.50	0.42	385	480	325	1190	LOW	889
JM26	7.31	0.49	0.44	342	463	383	1188	LOW	890
TH19	8.71	0.23	0.60	482	16	689	1187	LOW	891
CM04	7.79	0.50	0.41	387	484	315	1186	LOW	892
BS24	5.74	0.40	0.64	163	282	740	1185	LOW	893
JA41	9.57	0.52	0.29	554	517	114	1185	LOW	894

2022 B				_	uence (Rank				
2022 Report	TT '. A T 1				Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
								Agricultural	
	A NT (1 / A 1	A D (1 / A	A G (1/A				G	Pollutant	
MATHIC	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NGEO	DCEO	GGEO	Sum	Potential	D //
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
JM03	6.80	0.43	0.52	288	353	542	1183	LOW	895
JM60	7.54	0.50	0.41	366	492	322	1180	LOW	896
RA08	6.88	0.38	0.57	301	239	637	1177	LOW	897
TH09	6.15	0.33	0.73	217	113	846	1176	LOW	898
YO01	8.35	0.55	0.31	438	583	152	1173	LOW	899
JA30	9.25	0.53	0.28	522	539	109	1170	LOW	900
RD11	7.33	0.43	0.48	344	364	462	1170	LOW	901
JR03	6.12	0.43	0.56	213	339	616	1168	LOW	902
TC10	5.39	0.35	0.76	123	171	873	1167	LOW	903
BS17	5.48	0.37	0.70	131	222	811	1164	LOW	904
RL02	7.09	0.43	0.50	320	349	493	1162	LOW	905
JM38	6.87	0.45	0.49	300	394	465	1159	LOW	906
RL19	9.01	0.42	0.42	503	327	329	1159	LOW	907
RU80	8.37	0.44	0.42	440	379	338	1157	LOW	908
NE15	6.05	0.37	0.64	200	223	733	1156	LOW	909
YO04	8.04	0.49	0.38	413	475	266	1154	LOW	910
RD16	6.09	0.32	0.73	206	108	839	1153	LOW	911
JU47	6.07	0.37	0.65	204	201	746	1151	LOW	912
RU58	8.42	0.47	0.39	449	430	270	1149	LOW	913
PL06	6.49	0.39	0.56	255	265	628	1148	LOW	914
BS03	5.52	0.38	0.66	136	238	772	1146	LOW	915
PL09	8.42	0.40	0.46	448	273	421	1142	LOW	916
JM66	8.00	0.55	0.32	409	566	163	1138	LOW	917
NE33	6.65	0.36	0.60	272	183	681	1136	LOW	918
NE24	6.67	0.38	0.57	278	225	631	1134		919

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (ka/A a ha	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
BS04	5.28	0.36	0.73	108	187	838	1133	LOW	920
TH22	7.52	0.22	0.65	364	15	754	1133	LOW	921
NE25	8.26	0.43	0.42	434	350	339	1123	LOW	922
RL24	8.62	0.41	0.43	470	305	348	1123	LOW	923
RU25	6.77	0.38	0.55	284	229	605	1118	LOW	924
CM06	7.80	0.48	0.39	388	442	285	1115	LOW	925
YA05	5.92	0.36	0.64	183	191	738	1112	LOW	926
JR12	7.45	0.52	0.36	360	523	222	1105	LOW	927
RD09	6.77	0.41	0.51	285	296	524	1105	LOW	928
PL54	6.34	0.37	0.58	236	214	649	1099	LOW	929
CU06	8.38	0.48	0.35	441	449	207	1097	LOW	930
NE42	6.92	0.49	0.41	305	468	324	1097	LOW	931
PL11	10.36	0.38	0.37	621	233	243	1097	LOW	932
YO69	10.94	0.46	0.14	667	416	14	1097	LOW	933
RU64	8.95	0.43	0.37	496	358	241	1095	LOW	934
RA33	6.42	0.39	0.54	248	257	589	1094	LOW	935
JL54	12.17	0.42	0.06	755	325	4	1084	LOW	936
CU19	7.08	0.37	0.52	318	213	547	1078	LOW	937
CU05	8.54	0.50	0.30	455	490	132	1077	LOW	938
JM04	5.81	0.45	0.51	176	383	514	1073	LOW	939
RU26	6.73	0.39	0.51	280	252	540	1072	LOW	940
BS13	4.45	0.30	0.85	36	69	961	1066	LOW	941
TC18	6.49	0.42	0.49	256	336	474	1066	LOW	942
CM10	8.69	0.49	0.29	481	459	125	1065	LOW	943
BS22	5.78	0.41	0.54	171	295	595	1061	LOW	944

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each 1	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (ka/A a ha	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
JU48	6.32	0.37	0.55	235	220	606	1061	LOW	945
BS18	4.37	0.31	0.83	30	91	938	1059	LOW	946
JU75	7.04	0.48	0.40	316	446	293	1055	LOW	947
RD65	7.36	0.40	0.46	346	292	412	1050	LOW	948
RU60	8.09	0.45	0.37	417	385	247	1049	LOW	949
BS08	4.80	0.32	0.76	65	106	876	1047	LOW	950
CU11	6.41	0.37	0.55	246	198	602	1046	LOW	951
TH38	4.70	0.31	0.79	50	86	909	1045	LOW	952
BS26	5.75	0.36	0.60	164	188	690	1042	LOW	953
RD12	6.66	0.38	0.51	276	227	539	1042	LOW	954
RD62	7.78	0.44	0.39	384	377	274	1035	LOW	955
BS11	4.38	0.30	0.83	31	62	941	1034	LOW	956
RD03	5.95	0.35	0.60	186	165	683	1034	LOW	957
BS35	5.79	0.40	0.54	172	271	590	1033	LOW	958
BS02	4.98	0.25	0.81	82	31	919	1032	LOW	959
TH35	4.92	0.35	0.68	73	162	793	1028	LOW	960
NE46	8.01	0.43	0.38	411	352	261	1024	LOW	961
JM09	7.36	0.44	0.41	345	369	309	1023	LOW	962
RD77	7.44	0.41	0.44	356	298	369	1023	LOW	963
JM30	6.82	0.43	0.44	290	356	376	1022	LOW	964
NE34	6.14	0.38	0.53	216	224	581	1021	LOW	965
RU88	7.13	0.40	0.46	326	283	406	1015	LOW	966
NE06	6.05	0.35	0.57	201	169	643	1013	LOW	967
NE82	6.14	0.38	0.52	214	245	554	1013	LOW	968
TH15	9.25	0.33	0.43	524	124	365	1013	LOW	969

					uence (Rank	/			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
PL55	7.77	0.41	0.42	382	301	328	1011	LOW	970
NE37	5.12	0.32	0.70	90	103	813	1006	LOW	971
JM85	7.43	0.46	0.36	355	414	232	1001	LOW	972
RU56	7.26	0.41	0.43	334	312	349	995	LOW	973
RL07	7.28	0.38	0.46	336	235	420	991	LOW	974
BS16	4.60	0.31	0.74	43	87	856	986	LOW	975
JA22	7.29	0.45	0.38	338	390	258	986	LOW	976
TH32	5.48	0.34	0.62	132	139	712	983	LOW	977
JU81	6.05	0.42	0.49	198	313	470	981	LOW	978
NE40	6.27	0.37	0.51	228	218	531	977	LOW	979
RU10	7.41	0.46	0.35	351	411	215	977	LOW	980
TH11	5.46	0.39	0.53	128	270	579	977	LOW	981
PU13	7.15	0.49	0.34	329	460	185	974	LOW	982
PL10	8.24	0.41	0.36	433	304	233	970	LOW	983
PL51	8.00	0.44	0.34	410	368	187	965	LOW	984
TC13	7.01	0.40	0.43	313	286	364	963	LOW	985
JU67	6.79	0.55	0.28	287	575	98	960	LOW	986
RA25	6.45	0.43	0.43	251	347	360	958	LOW	987
TH30	4.77	0.27	0.74	61	43	854	958	LOW	988
JM70	7.10	0.52	0.28	322	527	108	957	LOW	989
JM27	6.37	0.43	0.42	242	363	344	949	LOW	990
RA32	5.96	0.35	0.53	190	178	574	942	LOW	991
RA24	6.35	0.40	0.47	238	275	426	939	LOW	992
RL21	6.85	0.43	0.40	296	341	301	938	LOW	993
RU06	6.53	0.41	0.44	258	307	372	937	LOW	994

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
NE09	6.11	0.32	0.56	210	96	629	935	LOW	995
NE32	8.75	0.35	0.39	485	163	281	929	LOW	996
TC08	6.92	0.37	0.47	306	197	424	927	LOW	997
NE47	7.12	0.39	0.42	324	267	331	922	LOW	998
RU09	7.47	0.43	0.34	361	357	203	921	LOW	999
JM08	6.78	0.45	0.37	286	398	236	920	LOW	1000
RD21	6.22	0.39	0.48	221	249	449	919	LOW	1001
TC29	9.12	0.33	0.39	514	129	275	918	LOW	1002
PL62	7.53	0.47	0.29	365	437	115	917	LOW	1003
TH20	6.39	0.33	0.52	245	127	544	916	LOW	1004
JU44	6.32	0.40	0.46	234	272	408	914	LOW	1005
RL04	6.87	0.37	0.46	299	206	407	912	LOW	1006
RD51	7.32	0.42	0.37	343	321	246	910	LOW	1007
PL23	6.84	0.42	0.39	294	333	282	909	LOW	1008
JR07	6.26	0.33	0.52	226	126	556	908	LOW	1009
JU17	6.12	0.43	0.42	211	361	334	906	LOW	1010
JU23	7.09	0.49	0.29	321	462	122	905	LOW	1011
JM29	6.36	0.42	0.42	240	317	340	897	LOW	1012
RD18	5.78	0.37	0.51	170	199	528	897	LOW	1013
RU46	6.46	0.38	0.45	254	244	398	896	LOW	1014
PS46	5.34	0.37	0.53	116	202	567	885	LOW	1015
TC09	4.93	0.31	0.63	75	84	726	885	LOW	1016
NE13	5.47	0.33	0.57	129	118	636	883	LOW	1017
RU01	5.20	0.30	0.63	99	60	723	882	LOW	1018
TC02	5.03	0.26	0.66	84	34	764	882	LOW	1019

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 / A	A G (1/A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
	yr)	ha-yr) 0.52	ha-yr) 0.32	192	519			LOW	+
PS17	5.97			_		169	880		1020
PS77	6.38	0.44	0.38	244	374	255	873	LOW	1021
RU13	7.20	0.38	0.40	331	243	299	873	LOW	1022
RA01	6.31	0.40	0.43	233	285	354	872	LOW	1023
JL58	10.83	0.37	0.10	657	204	9	870	LOW	1024
NE43	6.26	0.40	0.43	227	290	352	869	LOW	1025
NE19	5.45	0.36	0.52	127	189	551	867	LOW	1026
JM36	6.42	0.41	0.40	249	311	306	866	LOW	1027
JM07	6.71	0.41	0.39	279	308	278	865	LOW	1028
RD15	5.68	0.31	0.56	155	88	622	865	LOW	1029
JL57	10.68	0.37	0.08	646	211	7	864	LOW	1030
JR06	5.72	0.35	0.51	160	166	538	864	LOW	1031
RD38	6.77	0.39	0.41	283	268	310	861	LOW	1032
NE28	8.96	0.35	0.34	498	159	202	859	LOW	1033
NE35	5.40	0.35	0.52	125	176	557	858	LOW	1034
TH18	7.68	0.26	0.47	375	37	444	856	LOW	1035
TH43	5.08	0.32	0.59	87	93	675	855	LOW	1036
NE31	7.89	0.43	0.28	397	359	97	853	LOW	1037
RD01	5.80	0.37	0.48	174	217	458	849	LOW	1038
BS09	4.53	0.31	0.63	41	81	725	847	LOW	1039
PU08	6.55	0.46	0.33	263	407	174	844	LOW	1040
JU60	6.25	0.43	0.39	224	342	276	842	LOW	1041
NE87	4.72	0.25	0.65	55	30	757	842	LOW	1042
RD22	6.36	0.40	0.41	239	280	323	842	LOW	1043
JM71	6.53	0.43	0.36	261	340	221	822	LOW	1044

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (lea/A a ha	$A \propto D \left(l_{r\alpha} / A \right) \propto$	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RL05	5.77	0.30	0.54	167	70	584	821	LOW	1045
RD25	6.12	0.35	0.48	212	153	452	817	LOW	1046
TH25	5.39	0.39	0.47	124	255	430	809	LOW	1047
JA35	6.99	0.46	0.27	311	404	93	808	LOW	1048
NE16	5.36	0.31	0.55	117	76	614	807	LOW	1049
TH42	4.65	0.30	0.61	45	61	697	803	LOW	1050
JM37	6.86	0.47	0.26	297	425	80	802	LOW	1051
BS10	4.27	0.29	0.63	25	56	719	800	LOW	1052
TC01	5.97	0.31	0.51	191	75	534	800	LOW	1053
JR04	5.64	0.29	0.54	152	57	586	795	LOW	1054
RU16	5.57	0.33	0.51	144	110	537	791	LOW	1055
RD40	7.55	0.35	0.38	367	152	262	781	LOW	1056
JR11	6.04	0.42	0.38	197	319	263	779	LOW	1057
JR10	6.59	0.46	0.28	267	409	100	776	LOW	1058
NE17	5.76	0.35	0.47	166	172	436	774	LOW	1059
NE12	5.96	0.34	0.47	189	150	433	772	LOW	1060
RU18	4.89	0.24	0.60	70	19	682	771	LOW	1061
BS12	4.43	0.30	0.59	33	71	666	770	LOW	1062
PL47	6.67	0.42	0.33	277	315	178	770	LOW	1063
CM02	6.37	0.41	0.36	241	299	226	766	LOW	1064
YA02	5.55	0.32	0.51	138	101	523	762	LOW	1065
RD36	6.58	0.38	0.37	266	246	245	757	LOW	1066
BS31	5.52	0.38	0.45	137	226	389	752	LOW	1067
NE65	5.36	0.33	0.50	118	128	506	752	LOW	1068
RD13	5.26	0.36	0.49	105	181	466	752	LOW	1069

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
TC05	5.16	0.33	0.51	95	125	532	752	LOW	1070
JR09	6.26	0.45	0.30	225	388	137	750	LOW	1071
RD24	6.90	0.38	0.35	303	241	206	750	LOW	1072
JU42	5.30	0.34	0.50	110	133	504	747	LOW	1073
CU03	6.93	0.41	0.29	307	310	126	743	LOW	1074
TH01	5.49	0.36	0.47	133	182	427	742	LOW	1075
TC03	4.75	0.29	0.56	59	55	625	739	LOW	1076
TH06	4.79	0.30	0.55	63	65	611	739	LOW	1077
BS05	5.49	0.37	0.45	134	212	392	738	LOW	1078
NE49	5.99	0.37	0.42	194	216	326	736	LOW	1079
TH10	5.36	0.34	0.49	119	142	475	736	LOW	1080
JL56	10.49	0.32	0.02	632	100	2	734	LOW	1081
NE38	5.05	0.33	0.51	85	122	527	734	LOW	1082
NE50	5.63	0.36	0.46	150	180	401	731	LOW	1083
NE51	5.63	0.34	0.47	151	143	431	725	LOW	1084
RL09	6.65	0.33	0.42	275	120	327	722	LOW	1085
RU15	6.74	0.40	0.31	281	291	147	719	LOW	1086
NE70	5.32	0.32	0.50	113	97	500	710	LOW	1087
RL15	6.06	0.28	0.48	202	51	457	710	LOW	1088
RD06	5.84	0.33	0.46	179	117	402	698	LOW	1089
RD17	5.26	0.35	0.47	104	164	429	697	LOW	1090
TC21	6.43	0.40	0.33	250	274	173	697	LOW	1091
NE41	6.00	0.39	0.37	196	248	250	694	LOW	1092
JU79	5.38	0.44	0.34	121	373	193	687	LOW	1093
TH33	4.98	0.32	0.51	81	92	513	686	LOW	1094

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (lea/A a ha	A a D (Ira/A a	$\Lambda \propto S \left(mt / \Lambda \right)$				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RU42	5.57	0.26	0.50	143	38	503	684	LOW	1095
JR05	5.38	0.31	0.49	120	78	484	682	LOW	1096
TH26	4.97	0.32	0.49	80	107	488	675	LOW	1097
TC12	5.62	0.36	0.42	149	185	335	669	LOW	1098
PS80	5.85	0.34	0.42	181	140	346	667	LOW	1099
RD67	6.82	0.39	0.28	291	263	107	661	LOW	1100
NE27	5.71	0.39	0.37	158	258	238	654	LOW	1101
PL01	5.94	0.35	0.40	184	167	300	651	LOW	1102
RD26	6.11	0.35	0.39	208	157	286	651	LOW	1103
TH14	7.98	0.29	0.34	406	53	189	648	LOW	1104
NE01	4.65	0.33	0.49	46	119	481	646	LOW	1105
TH12	6.65	0.38	0.30	274	240	131	645	LOW	1106
RA14	5.81	0.40	0.33	175	293	175	643	LOW	1107
NE83	5.94	0.35	0.40	185	160	296	641	LOW	1108
TC06	5.95	0.31	0.43	188	89	362	639	LOW	1109
PL05	7.64	0.33	0.32	370	111	157	638	LOW	1110
RA02	5.65	0.34	0.43	153	134	351	638	LOW	1111
JU52	5.07	0.34	0.46	86	144	405	635	LOW	1112
PL08	7.95	0.30	0.32	405	68	159	632	LOW	1113
NE74	4.93	0.32	0.48	76	94	456	626	LOW	1114
BS14	5.32	0.36	0.41	114	194	314	622	LOW	1115
CM07	6.20	0.43	0.23	220	338	53	611	LOW	1116
NE29	5.98	0.35	0.37	193	177	240	610	LOW	1117
RD08	5.51	0.34	0.42	135	131	343	609	LOW	1118
RD29	5.58	0.32	0.43	146	102	356	604	LOW	1119

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 / A 1	A D (1 / A	A G (.//A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
	yr)	ha-yr) 0.34	ha-yr) 0.43	109	137	357		LOW	
RD14	5.29						603		1120
JU18	6.29	0.39	0.29	232	251	119	602	LOW	1121
RD34	6.10	0.34	0.37	207	148	239	594	LOW	1122
RD72	6.23	0.40	0.26	222	281	86	589	LOW	1123
RL23	6.24	0.38	0.30	223	232	133	588	LOW	1124
RD76	4.95	0.31	0.46	78	85	418	581	LOW	1125
NE30	6.07	0.39	0.29	203	250	123	576	LOW	1126
NE26	5.95	0.36	0.34	187	193	190	570	LOW	1127
TH13	7.26	0.25	0.34	333	29	195	557	LOW	1128
TH07	7.29	0.25	0.34	340	24	186	550	LOW	1129
NE68	6.18	0.36	0.31	219	186	143	548	LOW	1130
NE20	6.05	0.34	0.35	199	132	216	547	LOW	1131
RU24	5.56	0.32	0.41	142	95	308	545	LOW	1132
TC04	4.09	0.28	0.49	17	48	480	545	LOW	1133
NE14	4.90	0.30	0.46	72	64	404	540	LOW	1134
NE23	5.61	0.35	0.35	148	168	204	520	LOW	1135
RD10	4.72	0.30	0.44	54	74	384	512	LOW	1136
RD20	4.94	0.33	0.41	77	123	311	511	LOW	1137
NE44	5.77	0.40	0.24	168	277	64	509	LOW	1138
RD28	5.47	0.38	0.31	130	231	144	505	LOW	1139
RU55	5.74	0.30	0.39	162	59	279	500	LOW	1140
PS71	5.69	0.40	0.24	157	276	65	498	LOW	1141
NE76	7.42	0.28	0.27	354	46	95	495	LOW	1142
NE71	4.70	0.24	0.46	52	18	422	492	LOW	1143
JU51	4.27	0.29	0.46	24	52	414	490	LOW	1144

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each 1	Pollutant's			
Dataset	Unit Area Loads			Load					
	A a N (lra/A a ha	$A \propto D \left(l_{r} \alpha / A \alpha \right)$	$\Lambda \propto S \left(mt / \Lambda \right)$				Sum	Agricultural Pollutant Potential	
VAHU6	Ag N (kg/Ag ha- yr)	Ag P (kg/Ag ha-yr)	Ag S (mt/Ag ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
RD27	5.77	0.37	0.29	169	209	111	489	LOW	1145
NE05	5.09	0.28	0.43	89	47	350	486	LOW	1146
RD07	5.55	0.34	0.34	139	146	196	481	LOW	1147
TC07	4.73	0.29	0.44	56	54	370	480	LOW	1148
TH17	3.40	0.21	0.48	9	12	450	471	LOW	1149
JU45	5.22	0.35	0.34	102	174	194	470	LOW	1150
CU13	5.82	0.37	0.27	177	200	92	469	LOW	1151
TH31	4.85	0.31	0.41	68	83	316	467	LOW	1152
RU44	4.68	0.25	0.45	49	22	393	464	LOW	1153
NE52	4.95	0.31	0.40	79	90	291	460	LOW	1154
RA03	4.88	0.30	0.41	69	73	318	460	LOW	1155
TH08	5.28	0.35	0.34	106	154	199	459	LOW	1156
TH34	4.46	0.35	0.39	38	151	269	458	LOW	1157
NE63	4.23	0.27	0.45	23	44	390	457	LOW	1158
TH21	5.15	0.27	0.41	94	42	319	455	LOW	1159
RD48	5.58	0.34	0.32	145	138	165	448	LOW	1160
RD31	5.21	0.33	0.35	100	130	205	435	LOW	1161
RU48	5.28	0.33	0.34	107	112	198	417	LOW	1162
RA10	5.18	0.34	0.32	98	149	160	407	LOW	1163
RD30	5.09	0.32	0.35	88	99	212	399	LOW	1164
NE48	4.84	0.30	0.38	67	72	256	395	LOW	1165
RU27	3.54	0.20	0.44	10	9	374	393	LOW	1166
JA43	5.68	0.37	0.20	156	205	31	392	LOW	1167
RU47	5.33	0.33	0.32	115	115	153	383	LOW	1168
RA11	4.45	0.32	0.37	34	98	249	381	LOW	1169

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 /A 1	A D (1 / A	A C (1/A				C	Agricultural Pollutant	
MAIIIIC	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential	Days #
VAHU6	yr)	ha-yr)	ha-yr) 0.39	39				Rank LOW	Row #
NE39	4.49	0.30			63	277	379		1170
RU45	4.67	0.27	0.40	47	41	288	376	LOW	1171
JU54	3.91	0.25	0.42	13	28	333	374	LOW	1172
RA09	4.46	0.33	0.34	37	114	201	352	LOW	1173
RU53	5.14	0.19	0.38	91	8	253	352	LOW	1174
NE64	4.90	0.31	0.34	71	80	200	351	LOW	1175
RD50	5.59	0.34	0.24	147	141	63	351	LOW	1176
JM01	5.18	0.35	0.27	96	161	91	348	LOW	1177
NE77	5.14	0.35	0.25	92	170	68	330	LOW	1178
TH03	4.80	0.32	0.32	64	104	155	323	LOW	1179
NE72	5.15	0.36	0.22	93	179	42	314	LOW	1180
TH28	4.67	0.31	0.33	48	79	181	308	LOW	1181
RL17	4.76	0.25	0.35	60	27	218	305	LOW	1182
RU38	5.18	0.34	0.24	97	136	61	294	LOW	1183
RA12	4.73	0.33	0.29	58	116	118	292	LOW	1184
TH04	4.55	0.25	0.35	42	32	210	284	LOW	1185
RU02	4.36	0.31	0.32	29	77	170	276	LOW	1186
NE88	4.15	0.28	0.35	18	49	208	275	LOW	1187
NE79	4.04	0.24	0.36	15	21	229	265	LOW	1188
TH24	4.61	0.28	0.33	44	50	171	265	LOW	1189
JM02	4.70	0.30	0.29	51	58	124	233	LOW	1190
NE78	4.82	0.32	0.24	66	105	59	230	LOW	1191
RU51	4.16	0.22	0.34	19	13	192	224	LOW	1192
NE86	4.39	0.25	0.32	32	25	162	219	LOW	1193
RU52	2.20	0.13	0.35	3	3	209	215	LOW	1194

				Sorted Seq	uence (Rank	Order)			
2022 Report				between H	Us for each l	Pollutant's			
Dataset	Unit Area Loads			Load					
	A N. (1 /A 1	A D (1 / A	A C (1/A				G	Agricultural Pollutant	
VAHU6	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag	NSEQ	PSEQ	SSEQ	Sum Order	Potential Rank	Row#
	yr) 2.50	ha-yr) 0.17	ha-yr) 0.34	NSEQ 5		197	208	LOW	
RU40					6				1195
RA13	3.94	0.25	0.32	14	26	167	207	LOW	1196
RU43	4.33	0.23	0.32	27	17	161	205	LOW	1197
TH02	4.72	0.31	0.24	53	82	66	201	LOW	1198
NE81	3.80	0.26	0.31	12	39	149	200	LOW	1199
RD39	5.30	0.26	0.23	111	36	48	195	LOW	1200
RU19	3.25	0.18	0.33	7	7	176	190	LOW	1201
RU50	4.79	0.30	0.23	62	66	47	175	LOW	1202
NE73	4.07	0.25	0.30	16	23	134	173	LOW	1203
TH16	4.20	0.22	0.30	20	14	135	169	LOW	1204
RU54	4.21	0.21	0.30	22	11	130	163	LOW	1205
RD66	4.52	0.27	0.26	40	45	77	162	LOW	1206
RD33	4.21	0.26	0.28	21	33	101	155	LOW	1207
NE66	4.45	0.26	0.25	35	40	71	146	LOW	1208
NE67	4.35	0.26	0.25	28	35	72	135	LOW	1209
RU39	3.28	0.20	0.29	8	10	113	131	LOW	1210
RU17	2.33	0.14	0.29	4	4	121	129	LOW	1211
NE80	4.33	0.30	0.20	26	67	33	126	LOW	1212
RU41	2.52	0.15	0.26	6	5	83	94	LOW	1213
RD42	3.56	0.24	0.23	11	20	49	80	LOW	1214
RU49	2.00	0.12	0.23	2	2	55	59	LOW	1215
AO01	0.00	0.00	0.00	1	1	1	3	LOW	1216
AO03	0.00	0.00	0.00	1	1	1	3	LOW	1217
AO05	0.00	0.00	0.00	1	1	1	3	LOW	1218
AO12	0.00	0.00	0.00	1	1	1	3	LOW	1219

2022 Report					uence (Rank Us for each l				
Dataset	Unit Area Loads			Load	Os for caciff	onutant s			
	Ag N (kg/Ag ha-	Ag P (kg/Ag	Ag S (mt/Ag				Sum	Agricultural Pollutant Potential	
VAHU6	yr)	ha-yr)	ha-yr)	NSEQ	PSEQ	SSEQ	Order	Rank	Row#
AO16	0.00	0.00	0.00	1	1	1	3	LOW	1220
AO19	0.00	0.00	0.00	1	1	1	3	LOW	1221
AO20	0.00	0.00	0.00	1	1	1	3	LOW	1222
AO22	0.00	0.00	0.00	1	1	1	3	LOW	1223
AO25	0.00	0.00	0.00	1	1	1	3	LOW	1224
CB27	0.00	0.00	0.00	1	1	1	3	LOW	1225
CB28	0.00	0.00	0.00	1	1	1	3	LOW	1226
CB34	0.00	0.00	0.00	1	1	1	3	LOW	1227
CB37	0.00	0.00	0.00	1	1	1	3	LOW	1228
JL50	0.00	0.00	0.00	1	1	1	3	LOW	1229
JU16	0.00	0.00	0.00	1	1	1	3	LOW	1230
NE89	0.00	0.00	0.00	1	1	1	3	LOW	1231
NE90	0.00	0.00	0.00	1	1	1	3	LOW	1232
PL27	0.00	0.00	0.00	1	1	1	3	LOW	1233
PL28	0.00	0.00	0.00	1	1	1	3	LOW	1234
PU21	0.00	0.00	0.00	1	1	1	3	LOW	1235
TH05	0.00	0.00	0.00	1	1	1	3	LOW	1236
TH46	0.00	0.00	0.00	1	1	1	3	LOW	1237
TP01	0.00	0.00	0.00	1	1	1	3	LOW	1238
TP03	0.00	0.00	0.00	1	1	1	3	LOW	1239
TP19	0.00	0.00	0.00	1	1	1	3	LOW	1240

Attachment B

Drainage Basins in Each Soil and Water Conservation District

SWCD APPOMATTOX RIVER BIG SANDY BIG SANDY BIG WALKER BLUE RIDGE CHOWAN BASIN CCINCH VALLEY COLONIAL CULPEPER CB DANIEL BOONE EASTERN SHORE EVERGREEN HALIFAX HANOVER-CAROLINE HEADWATERS HENRICOPOLIS HOLSTON RIVER JOHN MARSHALL CB LAKE COUNTRY COB LORD FAIRFAX CB HONACAN CB MOUNTAIN CB MOUNTAIN CB NORTHERN NECK CB PEANUT PETER FRANCISCO PIEDMONT BOTH SITEM SOCB ROCH SCHOLL COR SKYLINE Both CCB PIEDMONT PITTSYLVANIA PRINCE WILLIAM CB ROBERT E. LEE SKYLINE Both CCB Both SCCB BOTH BOTH BOTH BOTH BOTH BOTH BOTH BOT		
BIG SANDY BIG WALKER BLUE RIDGE BLUE RIDGE CHOWAN BASIN CCINCH VALLEY COLONIAL CULPEPER CB DANIEL BOONE EASTERN SHORE EVERGREEN HALIFAX HANOVER-CAROLINE HEADWATERS HENRICOPOLIS HOLSTON RIVER JAMES RIVER Both JOHN MARSHALL LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORB NORTHERN VA PATRICK PEAKS OF OTTER Both PEANUT Both PETER FRANCISCO CB PIEDMONT PITTSYLVANIA PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY CCB CCB CCB CCB CCB CCCC CCCC CCCC CC		
BIG WALKER BLUE RIDGE BLUE RIDGE CHOWAN BASIN CCHOWAN BASIN CCLINCH VALLEY COLONIAL CULPEPER COLONIAL CULPEPER CB DANIEL BOONE EASTERN SHORE EVERGREEN HALIFAX HANOVER-CAROLINE HEADWATERS HENRICOPOLIS HOLSTON RIVER JOHN MARSHALL CB LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB NORTHERN NECK NORTHERN VA PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT SC BOCH COLORD CB COLORD COLO		
BLUE RIDGE CHOWAN BASIN CCLINCH VALLEY COLONIAL CULPEPER CULPEPER CB DANIEL BOONE EASTERN SHORE EVERGREEN HALIFAX HANOVER-CAROLINE HEADWATERS HENRICOPOLIS GB JAMES RIVER JOHN MARSHALL LCB LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB NORTHERN NECK NORTHERN VA PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE Both SCOTT COUNTY CB CCB CCB CCB CCC CCB CCCC CCCC CCCC		
CHOWAN BASIN CLINCH VALLEY COLONIAL CULPEPER CULPEPER CB DANIEL BOONE EASTERN SHORE EVERGREEN HALIFAX HANOVER-CAROLINE HEADWATERS HENRICOPOLIS HOLSTON RIVER JOHN MARSHALL LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA CB CCB CCB CCB CCB CCB CCCC CCCC CCCC		
CLINCH VALLEY COLONIAL CULPEPER CULPEPER CB DANIEL BOONE EASTERN SHORE EVERGREEN HALIFAX HANOVER-CAROLINE HEADWATERS HENRICOPOLIS HOLSTON RIVER JOHN MARSHALL LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN VA CB PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE CB Both CB CB CB CB CB CCB CCB CCB CCB CCB CCB	BLUE RIDGE	
COLONIAL CULPEPER CUL		
CULPEPER OCB DANIEL BOONE OCB EASTERN SHORE Both EVERGREEN OCB HALIFAX OCB HANOVER-CAROLINE CB HEADWATERS CB HENRICOPOLIS CB HOLSTON RIVER OCB JAMES RIVER Both JOHN MARSHALL CB LAKE COUNTRY OCB LONESOME PINE OCB LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE CB NEW RIVER OCB NORTHERN NECK CB NORTHERN VA CB PATRICK OCB PEAKS OF OTTER Both PEANUT Both PETER FRANCISCO CB PIEDMONT BOTH PITTSYLVANIA OCB ROBERT E. LEE Both SCOTT COUNTY OCB	CLINCH VALLEY	
DANIEL BOONE EASTERN SHORE EVERGREEN OCB HALIFAX OCB HANOVER-CAROLINE HEADWATERS CB HENRICOPOLIS CB HOLSTON RIVER JAMES RIVER JOHN MARSHALL LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN VA PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT SC ROBERT E. LEE SOTH SC ROBER SCOTT COUNTY CB OCB HOLSTON CORB CB HEADWATERS CB HOLSTON RIVER CB HOLSTON RIVER CB CB CB HOLSTON RIVER CB	COLONIAL	
EASTERN SHORE EVERGREEN OCB HALIFAX OCB HANOVER-CAROLINE HEADWATERS CB HENRICOPOLIS CB HOLSTON RIVER JAMES RIVER JOHN MARSHALL CB LAKE COUNTRY COB LONESOME PINE CB LORD FAIRFAX CB LOUDOUN CB MONACAN CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY CB	CULPEPER	CB
EVERGREEN HALIFAX OCB HANOVER-CAROLINE CB HEADWATERS CB HENRICOPOLIS CB HOLSTON RIVER JAMES RIVER JOHN MARSHALL CB LAKE COUNTRY CCB LONESOME PINE CB LORD FAIRFAX CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN NECK NORTHERN VA CB PATRICK PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA ROBERT E. LEE SCOTT COUNTY CB CB HANOVER CB	DANIEL BOONE	OCB
HALIFAX HANOVER-CAROLINE CB HEADWATERS CB HENRICOPOLIS CB HOLSTON RIVER OCB JAMES RIVER JOHN MARSHALL CB LAKE COUNTRY CB LONESOME PINE CB LORD FAIRFAX CB LOUDOUN CB MONACAN CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN NECK NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO CB PIEDMONT PITTSYLVANIA CB ROBERT E. LEE Both SCOTT COUNTY CB CB HENANDOAH VALLEY CB	EASTERN SHORE	Both
HANOVER-CAROLINE HEADWATERS CB HENRICOPOLIS CB HOLSTON RIVER JAMES RIVER JOHN MARSHALL CB LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB LOUDOUN CB MONACAN CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN NECK NORTHERN VA PATRICK PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA ROBERT E. LEE Both SCOTT COUNTY SCB	EVERGREEN	OCB
HEADWATERS HENRICOPOLIS CB HOLSTON RIVER JAMES RIVER JOHN MARSHALL LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB LOUDOUN CB MONACAN MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN NECK NORTHERN VA CB PATRICK PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE Both SCOTT COUNTY SHENANDOAH VALLEY CB	HALIFAX	OCB
HENRICOPOLIS HOLSTON RIVER JAMES RIVER JOHN MARSHALL CB LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB LOUDOUN MONACAN MOUNTAIN CB MOUNTAIN CASTLES NATURAL BRIDGE NEW RIVER NORTHERN NECK NORTHERN VA CB PATRICK PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE Both SCOTT COUNTY SHENANDOAH VALLEY CB	HANOVER-CAROLINE	CB
HOLSTON RIVER JAMES RIVER Both JOHN MARSHALL CB LAKE COUNTRY CCB LONESOME PINE CCB LORD FAIRFAX CB LOUDOUN CB MONACAN CB MOUNTAIN CB MOUNTAIN CB MOUNTAIN CB NATURAL BRIDGE NEW RIVER NORTHERN NECK CB NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO CB PIEDMONT PITTSYLVANIA CB ROBERT E. LEE SCOTT COUNTY CCB	HEADWATERS	CB
JAMES RIVER JOHN MARSHALL CB LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB LOUDOUN CB MONACAN CB MOUNTAIN CB MOUNTAIN CB MOUNTAIN CASTLES NATURAL BRIDGE NEW RIVER NORTHERN NECK NORTHERN VA CB PATRICK PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE Both SCOTT COUNTY SHENANDOAH VALLEY CB	HENRICOPOLIS	CB
JOHN MARSHALL LAKE COUNTRY LONESOME PINE LORD FAIRFAX CB LOUDOUN MONACAN MOUNTAIN MOUNTAIN MOUNTAIN CASTLES NATURAL BRIDGE NEW RIVER NORTHERN NECK NORTHERN VA PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA CB ROBERT E. LEE Both SCOTT COUNTY CB OCB CB CB CB CB CB CB CB C	HOLSTON RIVER	OCB
LAKE COUNTRY LONESOME PINE CB LORD FAIRFAX CB LOUDOUN MONACAN CB MOUNTAIN CB MOUNTAIN CASTLES NATURAL BRIDGE NEW RIVER NORTHERN NECK CB NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA CB ROBERT E. LEE Both SCOTT COUNTY CB CB CB CB CB CB CB CB CB C	JAMES RIVER	Both
LONESOME PINE LORD FAIRFAX CB LOUDOUN CB MONACAN CB MOUNTAIN CB MOUNTAIN CASTLES NATURAL BRIDGE NEW RIVER OCB NORTHERN NECK CB NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA CB ROBERT E. LEE Both SCOTT COUNTY CB	JOHN MARSHALL	CB
LORD FAIRFAX LOUDOUN CB MONACAN MOUNTAIN CB MOUNTAIN MOUNTAIN CASTLES MOUNTAIN CASTLES Both NATURAL BRIDGE NEW RIVER OCB NORTHERN NECK CB NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY CB	LAKE COUNTRY	OCB
LOUDOUNCBMONACANCBMOUNTAINCBMOUNTAIN CASTLESBothNATURAL BRIDGECBNEW RIVEROCBNORTHERN NECKCBNORTHERN VACBPATRICKOCBPEAKS OF OTTERBothPEANUTBothPETER FRANCISCOCBPIEDMONTBothPITTSYLVANIAOCBPRINCE WILLIAMCBROBERT E. LEEBothSCOTT COUNTYOCBSHENANDOAH VALLEYCB	LONESOME PINE	OCB
MONACAN CB MOUNTAIN CB MOUNTAIN CB MOUNTAIN CASTLES Both NATURAL BRIDGE CB NEW RIVER OCB NORTHERN NECK CB NORTHERN VA CB PATRICK OCB PEAKS OF OTTER Both PEANUT Both PETER FRANCISCO CB PIEDMONT Both PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY OCB	LORD FAIRFAX	CB
MOUNTAIN CB MOUNTAIN CASTLES Both NATURAL BRIDGE CB NEW RIVER OCB NORTHERN NECK CB NORTHERN VA CB PATRICK OCB PEAKS OF OTTER Both PEANUT Both PETER FRANCISCO CB PIEDMONT Both PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY OCB	LOUDOUN	СВ
MOUNTAIN CASTLES NATURAL BRIDGE NEW RIVER OCB NORTHERN NECK NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE Both SCOTT COUNTY SHENANDOAH VALLEY CB	MONACAN	СВ
NATURAL BRIDGE NEW RIVER OCB NORTHERN NECK CB NORTHERN VA CB PATRICK OCB PEAKS OF OTTER Both PEANUT Both PETER FRANCISCO CB PIEDMONT Both PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY CB	MOUNTAIN	CB
NEW RIVER NORTHERN NECK CB NORTHERN VA CB PATRICK OCB PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE SCOTT COUNTY SHENANDOAH VALLEY CB	MOUNTAIN CASTLES	Both
NORTHERN NECK NORTHERN VA CB PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE Both SCOTT COUNTY SHENANDOAH VALLEY CB	NATURAL BRIDGE	CB
NORTHERN VA PATRICK PEAKS OF OTTER PEANUT PETER FRANCISCO PIEDMONT PITTSYLVANIA PRINCE WILLIAM ROBERT E. LEE SCOTT COUNTY SHENANDOAH VALLEY CB CCB CB CB Both CB CB CB CB CB CB CB CB CB C	NEW RIVER	OCB
PATRICK OCB PEAKS OF OTTER Both PEANUT Both PETER FRANCISCO CB PIEDMONT Both PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY OCB SHENANDOAH VALLEY CB	NORTHERN NECK	СВ
PEAKS OF OTTER PEANUT Both PETER FRANCISCO CB PIEDMONT Both PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY CB	NORTHERN VA	СВ
PEANUT Both PETER FRANCISCO CB PIEDMONT Both PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY OCB SHENANDOAH VALLEY CB	PATRICK	OCB
PETER FRANCISCO PIEDMONT Both PITTSYLVANIA PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY SHENANDOAH VALLEY CB	PEAKS OF OTTER	Both
PIEDMONT Both PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY OCB SHENANDOAH VALLEY CB	PEANUT	Both
PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY OCB SHENANDOAH VALLEY CB	PETER FRANCISCO	CB
PITTSYLVANIA OCB PRINCE WILLIAM CB ROBERT E. LEE Both SCOTT COUNTY OCB SHENANDOAH VALLEY CB		
PRINCE WILLIAM ROBERT E. LEE SCOTT COUNTY SHENANDOAH VALLEY CB		OCB
ROBERT E. LEE Both SCOTT COUNTY OCB SHENANDOAH VALLEY CB	PRINCE WILLIAM	
SCOTT COUNTY OCB SHENANDOAH VALLEY CB		
SHENANDOAH VALLEY CB		

SOUTHSIDE	OCB
TAZEWELL	OCB
THOMAS JEFFERSON	CB
THREE RIVERS	CB
TIDEWATER	CB
TRI-COUNTY/CITY	CB
VIRGINIA DARE	Both

Attachment C

This attachment provides data by Drainage Basin (CB and OCB), District, Agricultural Pollutant Potential Rank (H, M, and L), Total Area (acres) of Hydrologic Units in each District by Agricultural Pollutant Potential Rank and Drainage Basin, and the resulting Percentage Rank (Cost-share Multiplier).

				Total Agricultural Area	
				(acres) of Hydrologic	
			Agricultural	Units in each District by	
			Pollutant	Agricultural Pollutant	
Drainage			Potential	Potential Rank and	Percentage AGLAND Rank (Cost-
Basin	SWCD Number	District Name	Rank	Drainage Basin	share Multiplier)
СВ	1	TIDEWATER	HIGH	3105.53	0.0038
CB	1	TIDEWATER	MED	27957.73	0.0333
CB	1	TIDEWATER	LOW	5773.16	0.0069
CB	2	THOMAS JEFFERSON	HIGH	15372.61	0.0189
CB	2	THOMAS JEFFERSON	MED	56150.53	0.0670
CB	2	THOMAS JEFFERSON	LOW	129928.20	0.1562
CB	3	SOUTHSIDE	HIGH	0.00	0.0000
CB	3	SOUTHSIDE	MED	0.00	0.0000
CB	3	SOUTHSIDE	LOW	59.24	0.0001
CB	4	NATURAL BRIDGE	HIGH	484.83	0.0006
CB	4	NATURAL BRIDGE	MED	14328.47	0.0171
CB	4	NATURAL BRIDGE	LOW	66509.92	0.0800
CB	5	PIEDMONT	HIGH	3110.48	0.0038
CB	5	PIEDMONT	MED	47173.90	0.0563
CB	5	PIEDMONT	LOW	42913.49	0.0516
CB	6	BLUE RIDGE	HIGH	0.00	0.0000
CB	6	BLUE RIDGE	MED	0.00	0.0000
CB	6	BLUE RIDGE	LOW	3195.45	0.0038
CB	7	CULPEPER	HIGH	85332.34	0.1051
CB	7	CULPEPER	MED	68968.46	0.0823
CB	7	CULPEPER	LOW	108867.96	0.1309
CB	8	NORTHERN NECK	HIGH	78937.24	0.0972
CB	8	NORTHERN NECK	MED	16628.91	0.0198
CB	8	NORTHERN NECK	LOW	10989.19	0.0132
CB	9	SHENANDOAH VALLEY	HIGH	151448.38	0.1865
CB	9	SHENANDOAH VALLEY	MED	53156.77	0.0634

СВ	9	SHENANDOAH VALLEY	LOW	1325.29	0.0016
СВ	10	ROBERT E. LEE	HIGH	1114.54	0.0014
СВ	10	ROBERT E. LEE	MED	14126.19	0.0169
СВ	10	ROBERT E. LEE	LOW	58575.91	0.0704
СВ	12	JAMES RIVER	HIGH	9094.95	0.0112
СВ	12	JAMES RIVER	MED	4901.53	0.0058
СВ	12	JAMES RIVER	LOW	3585.68	0.0043
СВ	13	LORD FAIRFAX	HIGH	85616.10	0.1054
СВ	13	LORD FAIRFAX	MED	71237.71	0.0850
CB	13	LORD FAIRFAX	LOW	78599.04	0.0945
СВ	14	SKYLINE	HIGH	0.00	0.0000
CB	14	SKYLINE	MED	0.00	0.0000
CB	14	SKYLINE	LOW	165.18	0.0002
CB	15	PEANUT	HIGH	44189.67	0.0544
CB	15	PEANUT	MED	11380.08	0.0136
CB	15	PEANUT	LOW	0.00	0.0000
CB	16	MOUNTAIN	HIGH	4633.30	0.0057
CB	16	MOUNTAIN	MED	53025.17	0.0633
CB	16	MOUNTAIN	LOW	27900.73	0.0335
CB	17	TRI-COUNTY/CITY	HIGH	22565.42	0.0278
CB	17	TRI-COUNTY/CITY	MED	26674.07	0.0318
CB	17	TRI-COUNTY/CITY	LOW	5834.65	0.0070
CB	18	COLONIAL	HIGH	27482.55	0.0338
CB	18	COLONIAL	MED	6669.20	0.0080
CB	18	COLONIAL	LOW	1641.63	0.0020
CB	20	EASTERN SHORE	HIGH	0.00	0.0000
CB	20	EASTERN SHORE	MED	63149.85	0.0753
CB	20	EASTERN SHORE	LOW	0.00	0.0000
CB	21	NORTHERN VIRGINIA	HIGH	48.06	0.0001
CB	21	NORTHERN VIRGINIA	MED	1128.76	0.0013
CB	21	NORTHERN VIRGINIA	LOW	2255.45	0.0027
CB	22	VIRGINIA DARE	HIGH	506.05	0.0006
CB	22	VIRGINIA DARE	MED	4008.83	0.0048
CB	22	VIRGINIA DARE	LOW	0.00	0.0000
СВ	30	HANOVER-CAROLINE	HIGH	33337.14	0.0411
CB	30	HANOVER-CAROLINE	MED	57090.04	0.0681
CB	30	HANOVER-CAROLINE	LOW	2188.01	0.0026

СВ	32	JOHN MARSHALL	HIGH	35796.52	0.0441
CB	32	JOHN MARSHALL	MED	45916.95	0.0548
CB	32	JOHN MARSHALL	LOW	59377.19	0.0714
CB	34	PEAKS OF OTTER	HIGH	0.00	0.0000
CB	34	PEAKS OF OTTER	MED	0.00	0.0000
CB	34	PEAKS OF OTTER	LOW	6888.56	0.0083
CB	35	PRINCE WILLIAM	HIGH	6936.98	0.0085
CB	35	PRINCE WILLIAM	MED	11217.40	0.0134
CB	35	PRINCE WILLIAM	LOW	3912.42	0.0047
CB	36	LOUDOUN	HIGH	3718.52	0.0046
CB	36	LOUDOUN	MED	9512.24	0.0113
CB	36	LOUDOUN	LOW	90912.36	0.1093
CB	38	MONACAN	HIGH	9234.14	0.0114
CB	38	MONACAN	MED	31699.06	0.0378
CB	38	MONACAN	LOW	11628.01	0.0140
CB	39	PETER FRANCISCO	HIGH	6977.41	0.0086
CB	39	PETER FRANCISCO	MED	33751.22	0.0403
CB	39	PETER FRANCISCO	LOW	35227.73	0.0423
CB	40	HENRICOPOLIS	HIGH	8799.23	0.0108
CB	40	HENRICOPOLIS	MED	1804.95	0.0022
CB	40	HENRICOPOLIS	LOW	362.56	0.0004
CB	41	HEADWATERS	HIGH	106146.85	0.1307
CB	41	HEADWATERS	MED	67721.14	0.0808
CB	41	HEADWATERS	LOW	16135.56	0.0194
CB	42	APPOMATTOX RIVER	HIGH	768.74	0.0009
CB	42	APPOMATTOX RIVER	MED	0.00	0.0000
CB	42	APPOMATTOX RIVER	LOW	4683.53	0.0056
CB	43	THREE RIVERS	HIGH	63013.40	0.0776
CB	43	THREE RIVERS	MED	36841.50	0.0439
CB	43	THREE RIVERS	LOW	181.18	0.0002
CB	45	MOUNTAIN CASTLES	HIGH	4177.36	0.0051
CB	45	MOUNTAIN CASTLES	MED	2103.14	0.0025
CB	45	MOUNTAIN CASTLES	LOW	52244.97	0.0628
OCB	3	SOUTHSIDE	HIGH	1215.74	0.0065
OCB	3	SOUTHSIDE	MED	37811.48	0.0682
OCB	3	SOUTHSIDE	LOW	55128.19	0.0378
OCB	5	PIEDMONT	HIGH	0.00	0.0000

OCB	5	PIEDMONT	MED	1024.01	0.0018
OCB	5	PIEDMONT	LOW	12426.56	0.0085
OCB	6	BLUE RIDGE	HIGH	55.54	0.0003
OCB	6	BLUE RIDGE	MED	30100.98	0.0543
OCB	6	BLUE RIDGE	LOW	97355.92	0.0668
OCB	10	ROBERT E. LEE	HIGH	0.00	0.0000
OCB	10	ROBERT E. LEE	MED	35005.89	0.0631
OCB	10	ROBERT E. LEE	LOW	43055.06	0.0295
OCB	11	NEW RIVER	HIGH	0.00	0.0000
OCB	11	NEW RIVER	MED	2621.18	0.0047
OCB	11	NEW RIVER	LOW	146616.97	0.1005
OCB	12	JAMES RIVER	HIGH	9643.96	0.0515
OCB	12	JAMES RIVER	MED	1200.89	0.0022
OCB	12	JAMES RIVER	LOW	295.86	0.0002
OCB	14	SKYLINE	HIGH	456.33	0.0024
OCB	14	SKYLINE	MED	5591.59	0.0101
OCB	14	SKYLINE	LOW	194724.76	0.1335
OCB	15	PEANUT	HIGH	30509.25	0.1630
OCB	15	PEANUT	MED	54046.45	0.0975
OCB	15	PEANUT	LOW	0.00	0.0000
OCB	19	CHOWAN BASIN	HIGH	97289.36	0.5197
OCB	19	CHOWAN BASIN	MED	70392.60	0.1270
OCB	19	CHOWAN BASIN	LOW	3245.54	0.0022
OCB	20	EASTERN SHORE	HIGH	1413.09	0.0075
OCB	20	EASTERN SHORE	MED	45668.45	0.0824
OCB	20	EASTERN SHORE	LOW	0.00	0.0000
OCB	22	VIRGINIA DARE	HIGH	42.05	0.0002
OCB	22	VIRGINIA DARE	MED	57212.51	0.1032
OCB	22	VIRGINIA DARE	LOW	0.00	0.0000
OCB	23	HOLSTON RIVER	HIGH	0.00	0.0000
OCB	23	HOLSTON RIVER	MED	2494.03	0.0045
OCB	23	HOLSTON RIVER	LOW	103674.04	0.0711
OCB	24	DANIEL BOONE	HIGH	11680.85	0.0624
OCB	24	DANIEL BOONE	MED	45927.28	0.0829
OCB	24	DANIEL BOONE	LOW	6837.08	0.0047
OCB	25	CLINCH VALLEY	HIGH	0.00	0.0000
OCB	25	CLINCH VALLEY	MED	0.00	0.0000

OCB	25	CLINCH VALLEY	LOW	87575.89	0.0601
OCB	26	SCOTT COUNTY	HIGH	102.77	0.0005
OCB	26	SCOTT COUNTY	MED	23043.39	0.0416
OCB	26	SCOTT COUNTY	LOW	41446.45	0.0284
OCB	27	LONESOME PINE	HIGH	0.00	0.0000
OCB	27	LONESOME PINE	MED	2990.72	0.0054
OCB	27	LONESOME PINE	LOW	18045.95	0.0124
OCB	28	EVERGREEN	HIGH	0.00	0.0000
OCB	28	EVERGREEN	MED	0.00	0.0000
OCB	28	EVERGREEN	LOW	65008.27	0.0446
OCB	29	TAZEWELL	HIGH	0.00	0.0000
OCB	29	TAZEWELL	MED	0.00	0.0000
OCB	29	TAZEWELL	LOW	64950.38	0.0445
OCB	31	PITTSYLVANIA	HIGH	14690.23	0.0785
OCB	31	PITTSYLVANIA	MED	55398.77	0.0999
OCB	31	PITTSYLVANIA	LOW	72728.34	0.0499
OCB	33	HALIFAX	HIGH	3642.94	0.0195
OCB	33	HALIFAX	MED	14374.43	0.0259
OCB	33	HALIFAX	LOW	77922.85	0.0534
OCB	34	PEAKS OF OTTER	HIGH	0.00	0.0000
OCB	34	PEAKS OF OTTER	MED	0.00	0.0000
OCB	34	PEAKS OF OTTER	LOW	104273.36	0.0715
OCB	37	BIG WALKER	HIGH	0.00	0.0000
OCB	37	BIG WALKER	MED	0.00	0.0000
OCB	37	BIG WALKER	LOW	135351.91	0.0928
OCB	42	APPOMATTOX RIVER	HIGH	8893.59	0.0475
OCB	42	APPOMATTOX RIVER	MED	10978.53	0.0198
OCB	42	APPOMATTOX RIVER	LOW	12579.32	0.0086
OCB	44	PATRICK	HIGH	0.00	0.0000
OCB	44	PATRICK	MED	4717.52	0.0085
OCB	44	PATRICK	LOW	40443.90	0.0277
OCB	45	MOUNTAIN CASTLES	HIGH	0.00	0.0000
OCB	45	MOUNTAIN CASTLES	MED	70.32	0.0001
OCB	45	MOUNTAIN CASTLES	LOW	15563.63	0.0107
OCB	46	LAKE COUNTRY	HIGH	7574.22	0.0405
OCB	46	LAKE COUNTRY	MED	53667.65	0.0968
OCB	46	LAKE COUNTRY	LOW	54389.32	0.0373

OCB	47	BIG SANDY	HIGH	0.00	0.0000
OCB	47	BIG SANDY	MED	0.00	0.0000
OCB	47	BIG SANDY	LOW	4521.31	0.0031

