1 Curves in Polar Coordinates

Polar coordinates are constructed by the distance from the origin a (radius) and the angle θ .

Previously, we used Rectangular Coordinates

Conversions

 $x = r \cos \theta$

 $y = r \sin \theta$

 $\tan \theta = \frac{y}{x}$

1.1 Example Polar 1

Ex: Convert $(r, \theta) = (2, \frac{\pi}{3})$ to Cartesian coordinates.

$$x = r\cos\theta, y = r\sin\theta\tag{1}$$

$$x = 2\cos\frac{\pi}{3}, y = 2\sin\frac{\pi}{3} \tag{2}$$

$$x = 1, y = \sqrt{3} \tag{3}$$

1.2 Example Polar 5

 $\underline{\text{Graph:}} \ r = \sin 2\theta$

2 Parametric Equations

Recall: Parametric Equations if $r = f(\theta)$, then: $x = r \cos \theta = f(\theta) \cos \theta$ $y = r \sin \theta = f(\theta) \sin \theta$ $\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-f'(\theta) \sin \theta}{f'(\theta) \cos \theta}$

2.1 Parametrc Example 1

2.2 Parametric Example 2

Find values of θ where the tangent line is horizontal or vertical.

$$\underline{\text{Hor: }} \frac{dy}{dx} = 0 = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$