Aalto university

Björn Ivarsson

Demonstration exercises 6, done during class Thursday 8.4.2021 or Friday 9.4.2021.

Differential and integral calculus 3, MS-A0311

The solutions will be presented by the assistant during class.

(1) Let γ be the boundary curve of the portion of the plane

$$2x + y + z = 2$$

in the first octant (where $x \ge 0$, $y \ge 0$ and $z \ge 0$.) Let γ be oriented so that it's projection on the xy-plane is oriented counterclockwise. Calculate

$$\oint_{\gamma} xz \ dx + xy \ dy + 3xz \ dz.$$

(2) Let

$$F(x, y, z) = (-y + x\sqrt{x^2 + y^2}, x + y\sqrt{x^2 + y^2}, z).$$

Write the vector field in cylindrical coordinates, that is find F_R , F_{θ} and F_z in $F = F_R \hat{R} + F_{\theta} \hat{\theta} + F_z \hat{z}$.

(3) Define curvilinear coordinates in xy-space via

$$\vec{r}(u,v) = (x(u,v), y(u,v)) = (u^2 - v^2, 2uv).$$

Show that this curvilinear coordinate system is orthogonal when $(x, y) \neq (0, 0)$. Sketch the coordinate curves $u = u_0$ and $v = v_0$.