신경망의 이해

퍼셉트론

- 1 가중치, 가중합, 바이어스, 활성화 함수
- 2 | 퍼셉트론의 과제
- 3 | XOR 문제

- 인간의 뇌는 치밀하게 연결된 약 1000억 개의 뉴런으로 이루어져 있음
- 뉴런과 뉴런 사이에는 시냅스라는 연결 부위가 있는데, 신경 말단에서 자극을 받으면 시냅스에서 화학 물질이 나와 전위 변화를 일으킴
- 전위가 임계 값을 넘으면 다음 뉴런으로 신호를 전달하고, 임계 값에 미치지 못하면
 아무것도 하지 않음 → 퍼셉트론의 개념과 유사!

- 신경망을 이루는 가장 중요한 기본 단위는 **퍼셉트론**(perceptron)
- 퍼셉트론은 입력 값과 활성화 함수를 사용해 출력 값을 다음으로 넘기는 가장 작은 신경망 단위

1 가중치, 가중합, 바이어스, 활성화 함수

- 용어를 정리해 보자.
- 기울기 a나 y 절편 b와 같은 용어를 퍼셉트론의 개념에 맞춰 좀 더 '딥러닝답게' 표 현해 보면 다음과 같음

$$y = ax + b (a$$
는 기울기, b 는 y 절편)
 $\rightarrow y = wx + b (w$ 는 가중치, b 는 바이어스)

- 먼저 기울기 a는 퍼셉트론에서는 **가중치**를 의미하는 w(weight)로 표기됨
- y 절편 b는 똑같이 b라고 씀, 하지만 y = ax + b의 b가 아니라 편향, 선입견이라는
 뜻인 바이어스(bias)에서 따온 b

1 가중치, 가중합, 바이어스, 활성화 함수

- **가중합**(weighted sum): 입력 값(x)과 가중치(w)의 곱을 모두 더한 다음 거기에 바이어스(b)를 더한 값
- 가중합의 결과를 놓고 1 또는 0을 출력해서 다음으로 보냄
- 여기서 0과 1을 판단하는 함수가 있는데, 이를 **활성화 함수**(activation function) 라고 함. 앞서 배웠던 시그모이드 함수가 바로 대표적인 활성화 함수

2 | 퍼셉트론의 과제

사각형 종이에 놓인 검은점 두 개와 흰점 두개

- ▶ 사각형 종이에 검은점 두 개와 흰점 두 개가 놓여 있음
- 이 네 점 사이에 직선을 하나 긋는다고 하자
- 이때 직선의 한쪽 편에는 검은점만 있고, 다른 한쪽에는 흰점만 있게끔 선을 그을 수 있을까?

2 | 퍼셉트론의 과제

선으로는 같은 색끼리 나눌 수 없다: 퍼셉트론의 한계

여러 개의 선을 아무리 그어보아도 하나의 직선으로는 흰점과 검은점을 구분할 수
 없음

2 | 퍼셉트론의 과제

- 선형 회귀와 로지스틱 회귀를 통해 머신러닝이 결국 선이나 2차원 평면을 그리는 작업임을 배웠다.
- 따라서 이와 같은 개념인 퍼셉트론 역시 선을 긋는 작업이라고 할 수 있다.
- 그런데 이 예시처럼 경우에 따라선 선을 아무리 그어도 해결되지 않는 상황이 있다.

3 XOR 문제

- 이것이 퍼셉트론의 한계를 설명할 때 등장하는 XOR(exclusive OR) 문제
- XOR 문제는 논리 회로에 등장하는 개념
- 컴퓨터는 두 가지의 디지털 값, 즉 0과 1을 입력해 하나의 값을 출력하는 회로가
 모여 만들어지는데, 이 회로를 '게이트(gate)'라고 부름
- AND 게이트는 x₁와 x₂ 둘 다 1일 때 결과값이 1로 출력됨
- OR 게이트는 둘 중 하나라도 1이면 결과값이 1로 출력됨
- XOR 게이트는 둘 중 하나만 1일 때 1이 출력됨

3 | XOR 문제

AND 진리표	AND	진근	Ŧ
---------	-----	----	---

X ₁	X ₂	결괏값
0	0	0
0	1	0
1	0	0
1	1	1

OR 진리표

X ₁	X ₂	결괏값
0	0	0
0	1	1
1	0	1
1	1	1

XOR 진리표

X ₁	X ₂	결괏값
0	0	0
0	1	1
1	0	1
1	1	0

AND, OR, XOR 게이트에 대한 진리표

3 | XOR 문제

- 표 6-1을 각각 그래프로 좌표 평면에 나타내 보자
- 결과값이 0이면 흰점으로, 1이면 검은점으로 나타낸 후 조금 전처럼 직선을 그어
 위 조건을 만족할 수 있는지 보자

AND, OR, XOR 진리표대로 좌표 평면에 표현한 뒤 선을 그어 색이 같은 점끼리 나누기(XOR는 불가능)

- AND와 OR 게이트는 직선을 그어 결과값이 1인 값(검은점)을 구별할 수 있음
- 그러나 XOR의 경우 선을 그어 구분할 수 없음

3 | XOR 문제

- 이는 인공지능 분야의 선구자였던 MIT의 마빈 민스키(Marvin Minsky) 교수가
 1969년에 발표한 <퍼셉트론즈(Perceptrons)>라는 논문에 나오는 내용
- 10여 년이 지난 후에야 이 문제가 해결되는데, 이를 해결한 개념이 바로 **다층** 퍼셉트론(multilayer perceptron)

다층 퍼셉트론

- 1 다층 퍼셉트론의 설계
- 2 | XOR 문제의 해결
- 3 코딩으로 XOR 문제 해결하기

앞서 종이 위에 각각 엇갈려 놓인 검은점 두 개와 흰점 두 개를 하나의 선으로는
 구별할 수 없다는 것을 살펴보았음

- 이 문제를 해결하려면 새로운 접근이 필요함
- EX) '성냥개비 여섯 개로 정삼각형 네 개를 만들 수 있는가'

성냥개비 여섯 개로 정삼각형 네 개를?

 2차원 평면에서만 해결하려는 고정관념을 깨고 피라미드 모양으로 성냥개비를 쌓 아 올리면 해결

차원을 달리하니 쉽게 완성!

XOR 문제를 극복은 평면을 휘어주는것! 즉, 좌표 평면 자체에 변화를 주는 것

XOR 문제의 해결

- XOR 문제를 해결하기 위해서 두 개의 퍼셉트론을 한 번에 계산할 수 있어야 함
- 이를 가능하게 하려면 숨어있는 층, 즉 은닉층(hidden layer)을 만들면 됨

퍼셉트론에서 다층 퍼셉트론으로

- 입력층과 은닉층의 그래프를 집어넣어 보면 그림과 같음
- 은닉층이 좌표 평면을 왜곡시키는 결과를 가져옴 → 두 영역을 가로지르는 선이 직 선으로 바뀜

은닉층의 공간 왜곡(https://goo.gl/8qEGHD 참조)

다층 퍼셉트론이 입력층과 출력층 사이에 숨어있는 은닉층을 만드는 것을 도식
 으로 나타내면 그림과 같음

다중 퍼셉트론의 내부

- 가운데 숨어있는 은닉층으로 퍼셉트론이 각각 자신의 가중치(w)와 바이어스(b)
 값을 보내고, 이 은닉층에서 모인 값이 한 번 더 시그모이드 함수(기호로 σ라고 표시)를 이용해 최종 값으로 결과를 보냄
- 은닉층에 모이는 중간 정거장을 노드(node)라고 하며, 여기서는 n_1 과 n_2 로 표현

■ n_1 과 n_2 의 값은 각각 단일 퍼셉트론의 값과 같음

$$n_1 = \sigma (x_1 w_{11} + x_2 w_{21} + b_1)$$

$$n_2 = \sigma (x_2 w_{21} + x_2 w_{22} + b_2)$$

- 위 두 식의 결과값이 출력층으로 보내짐
- 출력층에서는 역시 시그모이드 함수를 통해 y 값이 정해짐

$$y_{\text{out}} = \sigma (n_1 w_{31} + n_2 w_{32} + b_3)$$

- 이제 각각의 가중치(x)와 바이어스(b)의 값을 정할 차례
- 2차원 배열로 늘어놓으면 다음과 같이 표시할 수 있음
- 은닉층을 포함해 가중치 6개와 바이어스 3개가 필요함

$$W(1) = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \quad B(1) = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$W(2) = \begin{bmatrix} w_{31} \\ w_{32} \end{bmatrix} \quad B(2) = [b_3]$$

2 XOR 문제의 해결

- 앞서 우리에게 어떤 가중치와 바이어스가 필요한지를 알아보았음
- 이를 만족하는 가중치와 바이어스의 조합은 무수히 많음
- 지금은 먼저 각 변숫값을 정하고 이를 이용해 XOR 문제를 해결하는 과정을 알아보자

$$W(1) = \begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix} \quad B(1) = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
$$W(2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad B(2) = \begin{bmatrix} -1 \end{bmatrix}$$

2 | XOR 문제의 해결

• 이것을 도식에 대입하면 다음과 같음

다중 퍼셉트론의 내부에 변수를 채워보자.

2 XOR 문제의 해결

• 이제 x_1 의 값과 x_2 의 값을 각각 입력해 y 값이 우리가 원하는 값으로 나오는지를 점검해 보자

X ₁	X ₂	n ₁	n_2	Y _{out}	우리가 원하는 값
0	0	$\sigma(0*(-2)+0*(-2)+3)=1$	$\sigma(0*2+0*2-1)=0$	$\sigma(1*1+0*1-1)=0$	0
0	1	$\sigma(0*(-2)+1*(-2)+3)=1$	$\sigma(0*2+1*2-1)=1$	$\sigma(1*1+1*1-1)=1$	1
1	0	$\sigma(1*(-2)+0*(-2)+3)=1$	$\sigma(1*2+0*2-1)=1$	$\sigma(1*1+1*1-1)=1$	1
1	1	$\sigma(1*(-2)+1*(-2)+3)=0$	$\sigma(1*2+1*2-1)=1$	$\sigma(0*1+1*1-1)=0$	0

XOR 다층 문제 해결

- 표에서 볼 수 있듯이 n_1 , n_2 , y를 구하는 공식에 차례로 대입하니 우리가 원하는 결과를 구할 수 있었음
- 숨어있는 두 개의 노드를 둔 다층 퍼셉트론을 통해 XOR 문제가 해결된 것

- 이제 주어진 가중치와 바이어스를 이용해 XOR 문제를 해결하는 파이썬 코드를 작성해 보자
- 표에서 n_1 의 값을 잘 보면 입력 값 x_1 , x_2 가 모두 1일 때 0을 출력하고 하나라도 0이 아니면 1을 출력하게 되어 있음
- 이는 표에서 배운 AND 게이트의 정 반대 값을 출력하는 방식 (이를 NAND 게이트 라고 부름)
- n_2 의 값을 잘 보면 x_1 , x_2 에 대한 OR 게이트에 대한 답
- NAND 게이트와 OR 게이트, 이 두 가지를 내재한 각각의 퍼셉트론이 다중 레이어 안에서 각각 작동하고, 이 두 가지의 값에 대해 AND 게이트를 수행한 값이 바로 우리가 구하고자 하는 Y_{out}임을 알 수 있음

• 정해진 가중치와 바이러스를 넘파이 라이브러리를 사용해 다음과 같이 선언

```
import numpy as np

w11 = np.array([-2, -2])
w12 = np.array([2, 2])
w2 = np.array([1, 1])
b1 = 3
b2 = -1
b3 = -1
```

- 이제 퍼셉트론 함수를 만들어 보자
- 0과 1 중에서 값을 출력하게 설정

```
def MLP(x, w, b):
    y = np.sum(w * x) + b
    if y <= 0:
        return 0
    else:
        return 1</pre>
```

각 게이트의 정의에 따라 NAND 게이트, OR 게이트, AND 게이트, XOR 게이트
 함수를 만들어 보자

```
# NAND 게이트
def NAND(x1, x2):
    return MLP(np.array([x1, x2]), w11, b1)
# OR 게이트
def OR(x1, x2):
    return MLP(np.array([x1, x2]), w12, b2)
# AND 게이트
def AND(x1, x2):
    return MLP(np.array([x1, x2]), w2, b3)
# XOR 게이트
def XOR(x1, x2):
    return AND(NAND(x1, x2), OR(x1, x2))
```

• 이제 x_1 과 x_2 값을 번갈아 대입해 가며 최종 값을 출력해 보자

```
if __name__ == '__main__':
    for x in [(0, 0), (1, 0), (0, 1), (1, 1)]:
        y = XOR(x[0], x[1])
        print("입력 값: " + str(x) + " 출력 값: " + str(y))
```

다층 퍼셉트론으로 XOR 문제 해결하기

XOR.py

```
import numpy as np

# 가중치와 바이어스
w11 = np.array([-2, -2])
w12 = np.array([2, 2])
w2 = np.array([1, 1])
b1 = 3
b2 = -1
b3 = -1
```



```
# 퍼셉트론
def MLP(x, w, b):
   y = np.sum(w * x) + b
   if y <= 0:
       return 0
   else:
       return 1
# NAND 게이트
def NAND(x1, x2):
   return MLP(np.array([x1, x2]), w11, b1)
# OR 게이트
def OR(x1, x2):
   return MLP(np.array([x1, x2]), w12, b2)
```



```
# AND 게이트

def AND(x1, x2):
    return MLP(np.array([x1, x2]), w2, b3)

# XOR 게이트

def XOR(x1, x2):
    return AND(NAND(x1, x2), OR(x1, x2))

# x1, x2 값을 번갈아 대입해 가며 최종값 출력

if __name__ == '__main__':
    for x in [(0, 0), (1, 0), (0, 1), (1, 1)]:
        y = XOR(x[0], x[1])
        print("입력 값: " + str(x) + " 출력 값: " + str(y))
```

• 실행 결과

입력 값: (0, 0) 출력 값: 0 입력 값: (1, 0) 출력 값: 1 입력 값: (0, 1) 출력 값: 1 입력 값: (1, 1) 출력 값: 0

- 우리가 원하는 XOR 문제의 정답이 도출됨
- 이렇게 퍼셉트론 하나로 해결되지 않던 문제를 은닉층을 만들어 해결
- 은닉층을 여러 개 쌓아올려 복잡한 문제를 해결하는 과정이 뉴런이 복잡한 과정을
 거쳐 사고를 낳는 사람의 신경망을 닮음
- 그래서 이 방법을 인공 신경망이라 부르기 시작했고, 이를 간단히 줄여서 신경망이라고 통칭

오차 역전파

- 1 오차 역전파의 개념
- 2 코딩으로 확인하는 오차 역전파

- 퍼셉트론으로 해결되지 않던 문제를 신경망을 이용해 해결했음
- 신경망 내부의 가중치는 오차 역전파 방법을 사용해 수정
- 오차 역전파는 경사 하강법의 확장 개념
- 이 장에서는 오차 역전파의 기본 개념과 반드시 알아야 할 점을 짚어보자

- 지금까지 입력 값과 출력 값을 알고 있는 상태에서 중간에 은닉층을 두는 다층
 퍼셉트론의 개념에 대해서 공부했음
- 우리가 구해야 할 가중치(w)와 바이어스(b)가 무엇인지도 알아보았음
- 그런데 우리는 앞서 XOR 문제를 해결할 때 정답에 해당하는 가중치와 바이어스를 미리 알아본 후 이를 집어넣었음
- 실제 프로젝트에서는 경사 하강법을 이용한다!

- 앞서 배운 경사 하강법은 입력과 출력이 하나일 때, 즉 '단일 퍼셉트론'일 경우였음
- 그런데 이번에는 숨어 있는 층이 하나 더 생김

- 단일 퍼셉트론에서 결과값을 얻으면 오차를 구해 이를 토대로 앞 단계에서 정한
 가중치를 조정하는 것과 마찬가지로
- 다층 퍼셉트론 역시 결과값의 오차를 구해 이를 토대로 하나 앞선 가중치를 차례로 거슬러 올라가며 조정해 감

단일 퍼셉트론에서의 오차 수정

다층 퍼셉트론에서의 오차 수정

- 그러다 보니 최적화의 계산 방향이 출력층에서 시작해 앞(뒤어서 앞으로)으로 진행됨: 오차 역전파(back propagation)라고 부름
- 오차 역전파 구동 방식의 정리
- 1) 임의의 초기 가중치(w₍₁₎)를 준 뒤 결과(y_{out})를 계산한다.
- 2) 계산 결과와 우리가 원하는 값 사이의 오차를 구한다.
- 3) 경사 하강법을 이용해 바로 앞 가중치를 오차가 작아지는 방향으로 업데이트한다.
- 4) 1~3 과정을 더이상 오차가 줄어들지 않을 때까지 반복한다.

- 여기서 '오차가 작아지는 방향으로 업데이트한다'는 의미는 미분 값이 0에 가까워
 지는 방향으로 나아간다는 말
- 즉, '기울기가 0이 되는 방향'으로 나아가야 하는데, 이 말은 가중치에서 기울기를
 뺐을 때 가중치의 변화가 전혀 없는 상태를 말함
- 따라서 오차 역전파를 다른 방식으로 표현하면 가중치에서 기울기를 빼도 값의 변화가 없을 때까지 계속해서 가중치 수정 작업을 반복하는 것

새 가중치는 현 가중치에서 '가중치에 대한 기울기'를 뺀 값

$$W(t+1) = Wt - \frac{\partial$$
오차

2 코딩으로 확인하는 오차 역전파

신경망의 구현 과정

2 코딩으로 확인하는 오차 역전파

- 각각을 조금 더 자세히 설명하면 다음과 같음
- 1) 환경 변수 지정: 환경 변수에는 입력 값과 타깃 결과값이 포함된 데이터셋, 학습률 등이 포함됩니다. 또한, 활성화 함수와 가중치 등도 선언되어야 합니다.
- 2) 신경망 실행: 초기값을 입력하여 활성화 함수와 가중치를 거쳐 결과값이 나오게 합니다.
- 3) 결과를 실제 **값과 비교**: 오차를 측정합니다.
- 4) 역전파 실행: 출력층과 은닉층의 가중치를 수정합니다.
- 5) 결과 출력

신경망에서 딥러닝으로

- 1 기울기 소실 문제와 활성화 함수
- 2 | 속도와 정확도 문제를 해결하는 고급 경사 하강법

- 다층 퍼셉트론이 오차 역전파를 만나 신경망이 되었고, 신경망은 XOR 문제를 가볍게 해결
- 하지만 기대만큼 결과가 좋아지지 않았음
- 이유가 무엇일까?

- 기울기 소실 문제!
- 오차 역전파는 출력층으로부터 하나씩 앞으로 되돌아가며 각 층의 가중치를 수정하는 방법
- 가중치를 수정하려면 미분 값, 즉 기울기가 필요하다고 배움
- 그런데 층이 늘어나면서 기울기가 중간에 0이 되어버리는 기울기 소실(vanishing gradient) 문제가 발생하기 시작

기울기 소실 문제 발생

- 이는 활성화 함수로 사용된 시그모이드 함수의 특성 때문임
- 그림에서처럼 시그모이드를 미분하면 최대치가 0.3
- 1보다 작으므로 계속 곱하다 보면 0에 가까워짐
- 따라서 층을 거쳐 갈수록 기울기가 사라져 가중치를 수정하기가 어려워지는 것

시그모이드의 미분

이를 해결하고자 활성화 함수를 시그모이드가 아닌 여러 함수로 대체하기 시작

여러 활성화 함수의 도입

- 시그모이드 함수의 범위를 -1에서 1로 확장한 개념인 하이퍼볼릭 탄젠트(tanh)는
 미분한 값의 범위가 함께 확장되는 효과를 가져왔음
- 하지만 여전히 1보다 작은 값이 존재하므로 기울기 소실 문제는 사라지지 않음

- 토론토대학교의 제프리 힌튼 교수가 제안한 렐루(ReLU)는 시그모이드의 대안으로 떠오르며 현재 가장 많이 사용되는 활성화 함수
- 렐루는 x가 0보다 작을 때는 모든 값을 0으로 처리하고, 0보다 큰 값은 x를 그대로
 사용하는 방법. 이 방법을 쓰면 x가 0보다 크기만 하면 미분 값이 1이 됨
- 따라서 여러 은닉층을 거치며 곱해지더라도 맨 처음 층까지 사라지지 않고 남아
 있을 수 있음: 딥러닝의 발전에 속도가 붙게 됨

- 속도와 정확도 문제!
- 경사 하강법은 정확하게 가중치를 찾아가지만, 한 번 업데이트할 때마다
 전체 데이터를 미분해야 하므로 계산량이 매우 많다는 단점이 있음

경사 하강법

확률적 경사 하강법(SGD)

- 전체 데이터를 사용하는 것이 아니라, 랜덤하게 추출한 일부 데이터를 사용
- 일부 데이터를 사용하므로 더 빨리 그리고 자주 업데이트를 하는 것이 가능해짐

경사 하강법

확률적 경사 하강법

모멘텀

 경사 하강법과 마찬가지로 매번 기울기를 구하지만, 이를 통해 오차를 수정하기 전 바로 앞 수정 값과 방향(+, -)을 참고하여 같은 방향으로 일정한 비율만 수정되게 하 는 방법 (이도에 탄력을 더한다)

확률적 경사 하강법

모멘텀을 적용한 확률적 경사 하강법

이밖에 딥러닝 구동에 필요한 고급 경사 하강법과 케라스 내부에서의 활용법 정리

고급 경사 하강법	개요	효과	케라스 사용법
1. 확률적 경사 하강법 (SGD)	랜덤하게 추출한 일부 데이터를 사용해 더 빨리, 자주 업데이트를 하게 하는 것	속도 개선	keras.optimizers.SGD(Ir = 0.1) 케라스 최적화 함수를 이용합니다.
2. 모멘텀 (Momentum)	관성의 방향을 고려해 진동과 폭을 줄이 는 효과	정확도 개선	keras.optimizers.SGD(Ir = 0.1, momentum = 0.9) 모멘텀 계수를 추가합니다.
3. 네스테로프 모멘텀 (NAG)	모멘텀이 이동시킬 방향으로 미리 이동해 서 그레이디언트를 계산. 불필요한 이동 을 줄이는 효과	정확도 개선	keras,optimizers,SGD(Ir = 0.1, momentum = 0.9, nesterov = Irue) 네스테로프 옵션을 추가합니다.

	<u> </u>		
			keras.optimizers.Adagrad(Ir = 0.01,
			epsilon = 1e - 6)
			아다그라드 함수를 사용합니다.
4. 아다그라드	변수의 업데이트가 잦으면 학습률을 적게	보폭 크기	
(Adagrad)	하여 이동 보폭을 조절하는 방법	개선	※ 참고: 여기서 epsilon, rho, decay 같은
			파라미터는 바꾸지 않고 그대로 사용하기를
			권장하고 있습니다. 따라서 Ir, 즉 learning
			rate(학습률) 값만 적절히 조절하면 됩니다.
5. 알엠에스프롭		보폭 크기	keras,optimizers,RMSprop(Ir = 0,001, rho
(RMSProp)	아다그라드의 보폭 민감도를 보완한 방법	개선	= 0.9, epsilon $= 1e - 08$, decay $= 0.0$)
			알엠에스프롭 함수를 사용합니다.
6. 0담(Adam)	모멘텀과 알엠에스프롭 방법을 합친 방법	정확도와 보폭 크기 개선	keras.optimizers.Adam(lr = 0.001, beta_1
			$= 0.9$, beta_2 = 0.999, epsilon = 1e $- 08$,
			decay = 0.0)
			이담 함수를 사용합니다.

딥러닝 구동에 사용되는 고급 경사 하강법 개요 및 활용법