Navin Kartik Andreas Kleiner



## Introduction (1)

Agent with utility  $u(a, \theta)$ ,  $a \in A$  and  $\theta \in \Theta \subset \mathbb{R}$ 

Important result in 1-dim signaling & mech design

 $\rightarrow$  IC reduces to local IC under single-crossing property

## Introduction (1)

```
Agent with utility u(a, \theta), a \in A and \theta \in \Theta \subset \mathbb{R}^n
```

Important result in 1-dim signaling & mech design

 $\rightarrow$  IC reduces to local IC under single-crossing property

How to extend to multi-dim types?

## Introduction (1)

```
Agent with utility u(a, \theta), a \in A and \theta \in \Theta \subset \mathbb{R}^n
```

Important result in 1-dim signaling & mech design

→ IC reduces to local IC under single-crossing property

How to extend to multi-dim types?

This paper: convex choice

ightarrow from any choice set, any action is chosen by a convex set of types

Natural requirement; useful even beyond local IC

## Introduction (2)

#### Main results:

- 1 Sense in which convex choice characterizes sufficiency of local IC
- Other applications: implementability; cheap talk

## Introduction (2)

#### Main results:

- 1 Sense in which convex choice characterizes sufficiency of local IC
- Other applications: implementability; cheap talk
- **3** Convex choice ←⇒ "directional single crossing"
- 4 For EU on lotteries, convex choice  $\implies$  "one-dim or affine" representation  $u(a,\theta)=v(a)\cdot\theta+w(a)$

This affine form has been salient in multi-dim studies

### Related Literature

Convex choice: Grandmont 1978

Interval choice and lotteries: Kartik, Lee, Rappoport 2024

Multi-dim single crossing: McAfee & McMillan 1988; Milgrom & Shannon 1994

### **Applications**

■ Sufficiency of local IC: Carroll 2012

■ Implementability: Saks & Yu 2005; BCLMNS 2006

■ Cheap talk: Levy & Razin 2004; Sobel 2016

and

**Applications** 

Agent with utility  $u(a,\theta)$ ,  $a\in A$  and  $\theta\in\Theta\subset\mathbb{R}^n$ ,  $\Theta$  convex

### Definition

u has convex choice if  $\forall B \subset A$  and  $\forall a \in B$ ,

$$\left\{\theta: \{a\} = \operatorname*{argmax}_{b \in B} u(b,\theta)\right\} \text{ is convex}.$$

(Enough to only consider all binary choice sets)

- Grandmont's 1978 "betweeness"
- In 1-dim, "interval choice" of Kartik, Lee, Rappoport 2024

Agent with utility  $u(a, \theta)$ ,  $a \in A$  and  $\theta \in \Theta \subset \mathbb{R}^n$ ,  $\Theta$  convex

### Definition

u has convex choice if  $\forall B \subset A$  and  $\forall a \in B$ ,

$$\left\{\theta: \{a\} = \operatorname*{argmax}_{b \in B} u(b,\theta)\right\} \text{ is convex}.$$

(Enough to only consider all binary choice sets)

For talk, maintain "regular" indifferences:

$$\left[u(a',\theta')>u(a'',\theta') \text{ and } u(a',\theta'')=u(a'',\theta'')\right] \implies u(a',\theta)>u(a'',\theta) \quad \forall \theta \in (\theta',\theta'').$$

Satisfied, e.g., by no indifferences or by  $A \subset \mathbb{R}^n$  and  $u(a,\theta) = a \cdot \theta$ 

(Paper uses a weaker version, and selectively.)

## Incentive Compatibility

 $N_{ heta} \subset \Theta$  denotes open neighborhood of heta (in relative topology)

#### **Definition**

Mechanism  $m:\Theta\to A$  is

■ incentive compatible (IC) if  $\forall \theta \in \Theta$ ,

$$\forall \theta' \in \Theta : u(m(\theta), \theta) \ge u(m(\theta'), \theta) \text{ and } u(m(\theta'), \theta') \ge u(m(\theta), \theta').$$

## Incentive Compatibility

 $N_{ heta} \subset \Theta$  denotes open neighborhood of heta (in relative topology)

#### **Definition**

Mechanism  $m:\Theta\to A$  is

■ incentive compatible (IC) if  $\forall \theta \in \Theta$ ,

$$\forall \theta' \in \Theta : u(m(\theta), \theta) \ge u(m(\theta'), \theta) \text{ and } u(m(\theta'), \theta') \ge u(m(\theta), \theta').$$

■ locally IC if  $\forall \theta \in \Theta, \exists N_{\theta} \subset \Theta$  s.t.

$$\forall \theta' \in N_{\theta}: \ u(m(\theta), \theta) \geq u(m(\theta'), \theta) \ \text{ and } \ u(m(\theta'), \theta') \geq u(m(\theta), \theta').$$

Local IC does not generally imply IC:



Local IC does not generally imply IC:



Not convex choice!

### Proposition

u has convex choice



for any line segment  $\Theta' \subset \Theta$ , if  $m: \Theta' \to A$  is locally IC, then it is IC.

- So IC between  $\theta$  and  $\theta'$  requires only checking local IC along line segment  $(\theta, \theta')$
- Such "integration up" is a common strategy
- lacktriangledown Corollary: convex choice  $\implies$  on  $\Theta$ , local IC is sufficient for IC

### Proposition

u has convex choice



for any line segment  $\Theta' \subset \Theta$ , if  $m: \Theta' \to A$  is locally IC, then it is IC.

■ Sufficiency of local IC on  $\Theta \implies CC$ 



### Proposition

u has convex choice



for any line segment  $\Theta' \subset \Theta$ , if  $m: \Theta' \to A$  is locally IC, then it is IC.

- Sufficiency of local IC on  $\Theta \implies CC$
- But sufficiency on all line segments does
- A 'tractable' problem must remain tractable when restricted to lower dimensions



### Proposition

u has convex choice



for any line segment  $\Theta' \subset \Theta$ , if  $m: \Theta' \to A$  is locally IC, then it is IC.

Proof idea: **Necessity** of CC captured by earlier 1-dim example



### Proposition

u has convex choice



for any line segment  $\Theta' \subset \Theta$ , if  $m: \Theta' \to A$  is locally IC, then it is IC.

Proof idea: Heuristic for **sufficiency** 

Assume no indiff, take any  $\theta, \theta'$  and a fine grid on their line segment,  $\theta = \theta_1, \dots, \theta_n = \theta'$ 

- $\begin{array}{c} \bullet \text{ local IC} \implies u(m(\theta_i),\theta_i) > u(m(\theta_{i+1}),\theta_i) \quad \forall i=1,2 \\ \\ u(m(\theta_3),\theta_3) > u(m(\theta_2),\theta_2) \end{array}$
- convex choice  $\implies u(m(\theta_1), \theta_1) > u(m(\theta_3), \theta_1)$
- iterate logic, using local IC and CC each time, to get  $u(m(\theta_1), \theta_1) > u(m(\theta_1), \theta_n)$ .

### Proposition

u has convex choice



for any line segment  $\Theta' \subset \Theta$ , if  $m: \Theta' \to A$  is locally IC, then it is IC.

Carroll 2012 establishes sufficiency of local IC using "domain representation" of prefs

Our parameter representation approach is complementary

Formally, his result is subsumed by  $A \subset \mathbb{R}^n$  and  $u(a, \theta) = a \cdot \theta$ 

▶ Implementability

## Cheap Talk

In cheap talk or costly signaling, sender's utility having convex choice  $\implies$  every eqm is "convex partitional" (modulo details about indifferences)

## Cheap Talk

```
In cheap talk or costly signaling, sender's utility having convex choice \implies every eqm is "convex partitional" (modulo details about indifferences)
```

Has been interest in extending Crawford & Sobel 1982 to multiple dims

Levy & Razin 2004, 2007; Chakraborty & Harbaugh 2007

Also commmon-interest cheap talk with finite messsage space

Jager, Metzger, Riedel 2011; Saint-Paul 2017; Sobel 2016; Bauch 2024

## Cheap Talk

In cheap talk or costly signaling, sender's utility having convex choice  $\implies$  every eqm is "convex partitional" (modulo details about indifferences)

Has been interest in extending Crawford & Sobel 1982 to multiple dims

- Levy & Razin 2004, 2007; Chakraborty & Harbaugh 2007
- Also commmon-interest cheap talk with finite messsage space
  - Jager, Metzger, Riedel 2011; Saint-Paul 2017; Sobel 2016; Bauch 2024

#### Remark

Assume 
$$A \subset \mathbb{R}^n$$
 and  $u(a,\theta) = -l(\|a-\theta\|)$ , with  $l(\cdot)$  strictly  $\uparrow$ . (and  $A \cap \Theta$  has nonempty interior)

Convex choice 
$$\iff$$
 norm is weighted Euclidean (i.e.,  $\|x\| = \sqrt{xWx^T}$  , with  $W$  sym pos def)



## Directional Single Crossing (1)

Convex choice can be viewed as single crossing

#### Definition

 $f:\Theta\to\mathbb{R} \text{ is directionally single crossing if } \exists \alpha\in\mathbb{R}^n\setminus\{0\} \text{ s.t. } \forall \theta,\theta'\in\Theta,\\ (\theta-\theta')\cdot\alpha\geq0\implies \mathrm{sign}\left(f(\theta)\right)\geq\mathrm{sign}\left(f(\theta')\right).$ 



## Directional Single Crossing (1)

Convex choice can be viewed as single crossing

#### Definition

$$f:\Theta\to\mathbb{R} \text{ is directionally single crossing if } \exists \alpha\in\mathbb{R}^n\setminus\{0\} \text{ s.t. } \forall \theta,\theta'\in\Theta,\\ (\theta-\theta')\cdot\alpha\geq0\implies \mathrm{sign}\left(f(\theta)\right)\geq\mathrm{sign}\left(f(\theta')\right).$$



## Directional Single Crossing (1)

Convex choice can be viewed as single crossing

#### Definition

$$\begin{split} f:\Theta \to \mathbb{R} \text{ is directionally single crossing if } \exists \alpha \in \mathbb{R}^n \setminus \{0\} \text{ s.t. } \forall \theta, \theta' \in \Theta, \\ (\theta - \theta') \cdot \alpha \ge 0 \implies \operatorname{sign}\left(f(\theta)\right) \ge \operatorname{sign}\left(f(\theta')\right). \end{split}$$



## Directional Single Crossing (2)

Convex choice can be viewed as single crossing

#### Definition

 $u:A imes\Theta o\mathbb{R}$  has directionally single-crossing differences if  $orall a,a'\in A$ ,  $u(a,\theta)-u(a',\theta) \ \ \text{is directionally single crossing}.$ 

- $\blacksquare$   $\forall a,a'$ , strict preference sets are parallel half-spaces, either open or closed (intersected with the type space)
- Direction of defining hyperplanes can vary across action pairs

## Directional Single Crossing (2)

Convex choice can be viewed as single crossing

#### Definition

 $u:A imes\Theta o\mathbb{R}$  has directionally single-crossing differences if  $orall a,a'\in A$ ,  $u(a,\theta)-u(a',\theta) \ \ \text{is directionally single crossing}.$ 

Leading example families, when  $A \subset \mathbb{R}^n$ :

- f 0 weighted Euclidean: any  $\downarrow$  fn of  $(a-\theta)W(a-\theta)^T$ , with W sym pos def
- **2** CES:  $A,\Theta\subset\mathbb{R}^n_+$  and  $u(a,\theta)=\left(\sum_{i=1}^n(a_i)^r\theta_i\right)^s$  with  $r\in\mathbb{R}$  and s>0

## Directional Single Crossing (2)

Convex choice can be viewed as single crossing

#### Definition

 $u:A imes\Theta o\mathbb{R}$  has directionally single-crossing differences if  $orall a,a'\in A$ ,  $u(a,\theta)-u(a',\theta) \ \ \text{is directionally single crossing}.$ 

Leading example families, when  $A \subset \mathbb{R}^n$ :

- **1** weighted Euclidean: any  $\downarrow$  fn of  $(a-\theta)W(a-\theta)^T$ , with W sym pos def
- **2** CES:  $A,\Theta\subset\mathbb{R}^n_+$  and  $u(a,\theta)=(\sum_{i=1}^n(a_i)^r\theta_i)^s$  with  $r\in\mathbb{R}$  and s>0

For these families, adding a type-independent function preserves DSCD, so, e.g.,  $u(a,\theta)=a\cdot\theta+w(a) \text{ has DSCD}$ 

## Directional Single Crossing (3)

Convex choice can be viewed as single crossing

### Proposition

If u has DSCD, then u has convex choice.

If u "strictly violates" DSCD, then u does not have convex choice.

- 1st statement straightforward from geometry
- 2nd follows from a sep hyp thm

## Directional Single Crossing (3)

Convex choice can be viewed as single crossing

### Proposition

If u has DSCD, then u has convex choice.

If u "strictly violates" DSCD, then u does not have convex choice.

- 1st statement straightforward from geometry
- 2nd follows from a sep hyp thm
- Closely related to Grandmont 1978; his form is more restrictive (e.g., continuity)



## Convex Environments (1)

Choice among lotteries with EU:  $A \equiv \Delta X$  and  $u(a,\theta) \equiv \sum_x a(x) \bar{u}(x,\theta)$ 

- stochastic or multiple-agent mechanisms
- cheap talk where sender is uncertain about receiver prefs

## Convex Environments (1)

Choice among lotteries with EU:  $A \equiv \Delta X$  and  $u(a,\theta) \equiv \sum_x a(x) \bar{u}(x,\theta)$ 

- stochastic or multiple-agent mechanisms
- cheap talk where sender is uncertain about receiver prefs

More generally, convex environment:  $\{u(a,\cdot):\Theta\to\mathbb{R}\}_{a\in A}$  is convex

- rank-dependent EU / prob distortion, where distortion function has convex image
- choice over *T*-period consumption streams:

$$A \equiv [\underline{a}, \overline{a}]^T$$
 and  $u(a, \theta) \equiv \sum_t v(a_t) \rho(t; \theta)$ , with  $v(\cdot)$  continuous

## Convex Environments (2)

### Proposition

Assume  $\Theta = \mathbb{R}^n$ ,  $u(a, \theta)$  is differentiable in  $\theta$ , and no type is totally indifferent.

Convex environment and DSCD  $\implies u$  is 1-dimensional or has affine representation.

# Convex Environments (2)

## Proposition

Assume  $\Theta = \mathbb{R}^n$ ,  $u(a, \theta)$  is differentiable in  $\theta$ , and no type is totally indifferent.

Convex environment and DSCD  $\implies u$  is 1-dimensional or has affine representation.

- 1-dimensional if  $\exists \alpha \in \mathbb{R}^n \setminus \{0\}$  and  $\tilde{u}: A \times \mathbb{R} \to \mathbb{R}$  s.t.  $\tilde{u}(a, \alpha \cdot \theta)$  represents the same prefs for every  $\theta$
- Affine representation if  $\exists v: A \to \mathbb{R}^n$  and  $w: A \to \mathbb{R}$  s.t.  $v(a) \cdot \theta + w(a)$  represents the same prefs for every  $\theta$

# Convex Environments (2)

## Proposition

Assume  $\Theta = \mathbb{R}^n$ ,  $u(a, \theta)$  is differentiable in  $\theta$ , and no type is totally indifferent.

Convex environment and DSCD  $\implies u$  is 1-dimensional or has affine representation.

■ Consider CES prefs:  $X,\Theta\subset\mathbb{R}^n_+$ , with nonempty interiors, and

$$\bar{u}(x,\theta) = \Big(\sum_{i=1}^n (x_i)^r \theta_i\Big)^s + w(x)$$
 with  $r \in \mathbb{R}$  and  $s > 0.$ 

- Although  $\bar{u}$  satisfies DSCD, does the induced EU over  $A = \Delta X$ ?
- If n = 1, yes. But when n > 1, if and only if s = 1.

# Convex Environments (2)

## Proposition

Assume  $\Theta = \mathbb{R}^n$ ,  $u(a, \theta)$  is differentiable in  $\theta$ , and no type is totally indifferent.

Convex environment and DSCD  $\implies u$  is 1-dimensional or has affine representation.

#### Conclusion also holds under alternate assumptions

■ Prop 5: quasi-linear, differentiable in type, and minimally rich (drop  $\Theta = \mathbb{R}^n$ )

#### Interpretation:

- In rich environments, genuinely multi-dim prefs are unwieldy unless affine
- New perspective on why multi-dim mech design has emphasized affine form

#### Conclusion

#### Convex choice is a valuable property

- characterizes sufficiency of local IC (on all line segments)
- other applications: implementability; cheap talk
- essentially equiv to a form of single crossing with simple geometric interpretation
- in convex envs with some regularity, "one-dimensional or affine representation"

(Others: preference aggregation; social learning)

#### Conclusion

#### Convex choice is a valuable property

- characterizes sufficiency of local IC (on all line segments)
- other applications: implementability; cheap talk
- essentially equiv to a form of single crossing with simple geometric interpretation
- in convex envs with some regularity, "one-dimensional or affine representation"

```
(Others: preference aggregation; social learning)
```

### Another interesting notion: connected choice

- also relevant for sufficiency of local IC (on full type space)
- we view convex choice as more appealing



## On Local IC Definition

(Back)

#### Definition

Mechanism  $m: \Theta \to A$  is locally IC if  $\forall \theta \in \Theta, \exists N_{\theta} \subset \Theta$  s.t.

$$\forall \theta' \in N_\theta: \ u(m(\theta), \theta) \geq u(m(\theta'), \theta) \ \text{ and } \ u(m(\theta'), \theta') \geq u(m(\theta), \theta').$$

## Example

$$a'' \succ a'$$

Mechanism  $\begin{bmatrix} ---- a' ---- \end{bmatrix}$ 

## On Local IC Definition

(Back)

### Definition

Mechanism  $m: \Theta \to A$  is locally IC if  $\forall \theta \in \Theta, \exists N_{\theta} \subset \Theta$  s.t.

 $\forall \theta' \in N_{\theta}: \ u(m(\theta), \theta) \ge u(m(\theta'), \theta) \ \ \text{and} \ \ u(m(\theta'), \theta') \ge u(m(\theta), \theta').$ 

### Example

$$a'' \succ a'$$

Mechanism [----a''-----]

Our defn is weaker than:  $\exists \varepsilon>0$  s.t.  $\forall \theta\in\Theta$  ,  $\exists B^\varepsilon_\theta$  s.t.

$$\forall \theta' \in B^{\varepsilon}_{\theta} \cap \Theta : \ u(m(\theta), \theta) \ge u(m(\theta'), \theta).$$

$$A\equiv Y\times \mathbb{R}$$
; assume  $Y$  finite. Quasilinear prefs:  $u((y,t),\theta)\equiv \tilde{u}(y,\theta)-t$ 

(Back)

Allocation rule  $\upsilon:\Theta\to Y$  is implementable if  $\exists\ \tau:\Theta\to\mathbb{R}$  s.t.  $(\upsilon,\tau)$  is IC

Which allocation rules are implementable?

$$A \equiv Y \times \mathbb{R}$$
; assume  $Y$  finite. Quasilinear prefs:  $u((y,t),\theta) \equiv \tilde{u}(y,\theta) - t$ 

(Back)

Allocation rule  $v:\Theta \to Y$  is implementable if  $\exists \ \tau:\Theta \to \mathbb{R}$  s.t.  $(v,\tau)$  is IC

Which allocation rules are implementable?

Necessary condition is weak (or 2-cycle) monotonicity:

$$\forall \theta, \theta' : \ \tilde{u}(\upsilon(\theta), \theta) - \tilde{u}(\upsilon(\theta'), \theta) \ge \tilde{u}(\upsilon(\theta), \theta') - \tilde{u}(\upsilon(\theta'), \theta')$$

$$A \equiv Y \times \mathbb{R}$$
; assume  $Y$  finite. Quasilinear prefs:  $u((y,t),\theta) \equiv \tilde{u}(y,\theta) - t$ 

(Back)

Allocation rule  $v:\Theta \to Y$  is implementable if  $\exists \ \tau:\Theta \to \mathbb{R}$  s.t.  $(v,\tau)$  is IC

Which allocation rules are implementable?

Necessary condition is weak (or 2-cycle) monotonicity:

$$\forall \theta, \theta': \ \tilde{u}(\upsilon(\theta), \theta) - \tilde{u}(\upsilon(\theta'), \theta) \ge \tilde{u}(\upsilon(\theta), \theta') - \tilde{u}(\upsilon(\theta'), \theta')$$

(Rochet 1987: "cyclical monotonicity" is nec & suff)

Saks & Yu 2005: weak mon is suff if  $\Theta$  convex,  $Y \subset \mathbb{R}^n$ , and  $\tilde{u}(y,\theta) = y \cdot \theta$ 

$$\forall \theta, \theta' : \ \tilde{u}(\upsilon(\theta), \theta) - \tilde{u}(\upsilon(\theta'), \theta) \ge \tilde{u}(\upsilon(\theta), \theta') - \tilde{u}(\upsilon(\theta'), \theta')$$

Which allocation rules are implementable?

Necessary condition is weak (or 2-cycle) monotonicity:

$$\forall \theta, \theta : u(\theta(\theta), \theta) - u(\theta(\theta), \theta) \ge u(\theta(\theta), \theta)$$

Saks & Yu 2005: weak mon is suff if  $\Theta$  convex,  $Y \subset \mathbb{R}^n$ , and  $\tilde{u}(y,\theta) = y \cdot \theta$ 

 $A \equiv Y \times \mathbb{R}$ ; assume Y finite. Quasilinear prefs:  $u((y,t),\theta) \equiv \tilde{u}(y,\theta) - t$ 

Allocation rule  $\upsilon:\Theta\to Y$  is implementable if  $\exists\ \tau:\Theta\to\mathbb{R}$  s.t.  $(\upsilon,\tau)$  is IC

(Rochet 1987: "cyclical monotonicity" is nec & suff)

# Proposition

Assume u has convex choice and is continuous in  $\theta$ . Every weakly monotone allocation rule is implementable.

Proof uses result from Berger, Müeller, Naeemi 2017 (Back)