SAC 논문 구현

환경 구축

Lunar rander environment 불러오기

Replay buffer 제작

 $[s_t, a_t, r_t, s_{t+1}]$ 을 저장할 수 있도록

모델 구현

- parameterized state value function $V_{\psi}\left(\mathbf{s}_{t}\right)$ # 8, 1
- soft Q-function \mathbf{Q}_{θ} $(\mathbf{s}_t, \mathbf{a}_t)$, If continuous action space policy as a Gaussian with mean and covariance
- ullet tractable policy $\pi_{\phi}\left(\mathbf{a}_{t}\mid\mathbf{s}_{t}
 ight)$

학습 코드 구현

SAC 논문 구현 1

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ , $\bar{\psi}$, θ , ϕ .

for each iteration do

for each environment step do

$$\mathbf{a}_{t} \sim \pi_{\phi}(\mathbf{a}_{t}|\mathbf{s}_{t})$$

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_{t}, \mathbf{a}_{t}, r(\mathbf{s}_{t}, \mathbf{a}_{t}), \mathbf{s}_{t+1})\}$$

end for

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} \hat{J}_V(\psi)
\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
\phi \leftarrow \phi - \lambda_\pi \hat{\nabla}_{\phi} J_\pi(\phi)
\bar{\psi} \leftarrow \tau \psi + (1 - \tau) \bar{\psi}$$

end for

end for

Loss function(objective function)

· Value function

At below equation, actions are sampled according to the current policy, instead of the replay buffer

$$J_{V}(\psi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}}\left[rac{1}{2}\left(V_{\psi}\left(\mathbf{s}_{t}
ight) - \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\phi}}\left[Q_{ heta}\left(\mathbf{s}_{t}, \mathbf{a}_{t}
ight) - \log \pi_{\phi}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}
ight)
ight]
ight)^{2}
ight]$$

Target value network $V_{ar{\psi}}$, we can update the target weights to match the current value function weights periodically

• Q function

$$egin{aligned} J_Q(heta) &= \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[rac{1}{2} \left(Q_ heta\left(\mathbf{s}_t, \mathbf{a}_t
ight) - \hat{Q}\left(\mathbf{s}_t, \mathbf{a}_t
ight)
ight)^2
ight] \ where \ \hat{Q}\left(\mathbf{s}_t, \mathbf{a}_t
ight) &= r\left(\mathbf{s}_t, \mathbf{a}_t
ight) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{ar{\psi}}\left(\mathbf{s}_{t+1}
ight)
ight] \end{aligned}$$

Policy

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}}\left[\mathrm{D}_{\mathrm{KL}}\left(\pi_{\phi}\left(\cdot \mid \mathbf{s}_{t}
ight) \| rac{\exp(Q_{ heta}\left(\mathbf{s}_{t}, \cdot
ight))}{Z_{ heta}\left(\mathbf{s}_{t}
ight)}
ight)
ight]$$

Hyperparameters

D. Hyperparameters

Table 1 lists the common SAC parameters used in the comparative evaluation in Figure 1 and Figure 4. Table 2 lists the reward scale parameter that was tuned for each environment.

Table 1. SAC Hyperparameters

Parameter	Value
Shared	
optimizer	Adam (Kingma & Ba, 2015)
learning rate	$3 \cdot 10^{-4}$
discount (γ)	0.99
replay buffer size	10^{6}
number of hidden layers (all networks)	2
number of hidden units per layer	256
number of samples per minibatch	256
nonlinearity	ReLU
SAC	
target smoothing coefficient (τ)	0.005
target update interval	1
gradient steps	1
SAC (hard target update)	
target smoothing coefficient (τ)	1
target update interval	1000
gradient steps (except humanoids)	4
gradient steps (humanoids)	1

테스트 코드 구현

n번 시행해서 평균 점수를 얻을 수 있도록 n번 시행의 비디오 저장(이어서)

Future work

- Use of two Q-functions to mitigate positive bias we parameterize two Q-functions, with parameters θ_i , and train them independently to optimize $J_Q(\theta_i)$. We then use the minimum of the Q-functions for the value gradient and policy gradient
- Continuous action space task에서 문제 해결
- 모델의 고도화 using LSTM(논문과 동일한 구조 사용)

SAC 논문 구현 3