0.1Threshold Moore

Definition 0.1.1. Let $x,y,n\in\mathbb{N}$. We write $x=\leq^n y$ if x=y or x,y>n. Let $\mathcal{A}=(Q,\Sigma,q_0,\delta,c)$ be a DPA. For $k\in c(Q)$, we define $\equiv^{\leq k}_M\subseteq Q\times Q$ as a relation, such that $p\equiv^{\leq k}_M q$ if and only if for all $w\in\Sigma^*$, $c(\delta^*(p,w))=^{\leq k} c(\delta^*(q,w))$. We call $\equiv^{\leq k}_M$ the k-threshold Moore equivalence.

Lemma 0.1.1. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, c)$ be a DPA and let $\mathcal{A}' = (Q, \Sigma, q_0, \delta, c')$ with $c'(q) = \min\{k + 1\}$ 1, c(q). Then $\equiv_M^{\leq k}$ of \mathcal{A} is equal to \equiv_M of \mathcal{A}' .

Proof. Follows directly from the definition of = $\leq k$.

Corollary 0.1.2. $\equiv_M^{\leq k}$ is a congruence relation.

Definition 0.1.2. Let \mathcal{A} be a DPA and let R be an equivalence relation on the state space that implies language equivalence. We define a relation \equiv_{TM}^R such that $p \equiv_{\text{TM}} q$ if and only if all of the following are satisfied:

- 1. c(p) = c(q)
- 2. $p \equiv_M^{\leq c(p)} q$
- 3. $(p,q) \in R$

Theorem 0.1.3. Let A and R as before and let A' be a representative merge of A w.r.t. an equivalence class λ of \equiv_{TM}^R . Then L(A) = L(A').

Proof. Let $q \in Q'$ be a state in the representative merge and let $\alpha \in \Sigma^{\omega}$. Let ρ and ρ' be the runs of \mathcal{A} and \mathcal{A}' on α starting from q. We claim that ρ is accepting iff ρ' is accepting.

We show that for all i, $\rho(i) \equiv_L \rho'(i)$ (in \mathcal{A}) and $\rho(i) \equiv_M^{\leq k} \rho'(i)$. If that is true, then there are two cases: if $c(\rho)$ sees infinitely many priorities of at most k, then $c(\rho')$ sees the same priorities at the same positions and thus min $\operatorname{Inf}(c(\rho)) = \min \operatorname{Inf}(c(\rho'))$. Otherwise there is a position n from which $c(\rho)$ only is greater than k and therefore the same is true for $c(\rho')$. That means reading $\alpha[n,\omega]$ from $\rho'(n)$ in either \mathcal{A} or \mathcal{A}' yields the same run which has the same acceptance as ρ .

Claim For all i, $\rho(i) \equiv_L \rho'(i)$ and $\rho(i) \equiv_M^{\leq k} \rho'(i)$. First, consider i = 0. If $\rho'(0) \notin \lambda$, then $\rho(0) = \rho'(0)$ and we are done. Otherwise, $\rho'(0) = r_{\lambda} \in \lambda$. Then $\rho(0) \in \lambda$ and thus $\rho(0) \equiv_M^{\leq k} \rho'(0)$ and $(\rho(0), \rho'(0)) \in R$. Since $R \subseteq \equiv_L$, we are done.

Next, consider i+1>0. If $\rho'(i+1)\notin\lambda$, then $\rho'(i+1)=\delta(\rho'(i),\alpha(i))$. By induction, $\rho(i) \equiv_L \rho'(i)$. Since \equiv_L is a congruence relation this implies $\rho(i+1) \equiv_L \rho'(i+1)$. The same argumentation works for $\equiv_M^{\leq k}$.

Otherwise, $\rho'(i+1) = r_{\lambda} \in \lambda$. That means $\delta(\rho'(i), \alpha(i)) = p$ for some $p \in \lambda$. Since \equiv_L is a congruence relation, $p \equiv_L \delta(\rho(i), \alpha(i)) = \rho(i+1)$. Because $p \equiv_{\text{TM}}^R \rho'(i+1)$, $p \equiv_L \rho'(i+1)$ and together this gives $\rho'(i+1) \equiv_L \rho(i+1)$. The same argumentation works for $\equiv_M^{\leq k}$.

Lemma 0.1.4. Let \mathcal{A} be a DPA and let p and q be two states with $p \equiv_{M} q$. We construct \mathcal{A}' from A by redirecting all transitions to p to q instead. Then for all states $r \neq p$ and all words w, $c(\delta^*(r, w)) = c'(\delta'^*(r, w)).$

Proof. Let ρ and ρ' be the runs of \mathcal{A} and \mathcal{A}' on w starting in r. If ρ never visits p, then $\rho = \rho'$ and the proof is done. Otherwise, let n be the last position at which $\rho(n) = p$. Then $\rho'(n) = q$. Since $p \equiv_M q$, $c(\delta^*(p,u)) = c(\delta^*(q,u))$ for all $u \in \Sigma^*$ and especially for u = w[n,|w|]. Since n was chosen as the last position where p is visited, $\delta^*(q,u) = \delta'^*(q,u)$ and therefore $c(\delta^*(p,u)) = c'(\delta'^*(q,u))$ which finishes the proof.

Lemma 0.1.5. Let \mathcal{A} and R as before and let \mathcal{A}' be a representative merge of \mathcal{A} w.r.t. an equivalence class λ of \equiv_{TM}^R . Let k be the priority of the states in λ and let $\equiv_M^{\leq l}$ and $\equiv_M^{\leq l}$ be the l-threshold Moore equivalences of \mathcal{A} and \mathcal{A}' . If $l \leq k$, then $\equiv_M^{\leq l}$ and $\equiv_M^{\leq l}$ are the same.

Proof. A representative merge w.r.t. λ can be seen as a repeated redirection of transitions, meaning that Lemma 0.1.4 applies. Together with Lemma 0.1.1, that already finishes our proof.

On the other hand, figures ?? show that if l > k, the l-threshold Moore equivalence can both grow or shrink during the merge step.