Pertussis

Pertussis, or whooping cough, is a higly contagious lung infection caused by a bacteria B.pertussis

```
cdc <- data.frame(</pre>
                             Year = c(1922L,
                                       1923L, 1924L, 1925L, 1926L, 1927L, 1928L,
                                       1929L,1930L,1931L,1932L,1933L,1934L,1935L,
                                       1936L, 1937L, 1938L, 1939L, 1940L, 1941L,
                                       1942L, 1943L, 1944L, 1945L, 1946L, 1947L, 1948L,
                                       1949L, 1950L, 1951L, 1952L, 1953L, 1954L,
                                       1955L,1956L,1957L,1958L,1959L,1960L,
                                       1961L, 1962L, 1963L, 1964L, 1965L, 1966L, 1967L,
                                       1968L, 1969L, 1970L, 1971L, 1972L, 1973L,
                                       1974L, 1975L, 1976L, 1977L, 1978L, 1979L, 1980L,
                                       1981L, 1982L, 1983L, 1984L, 1985L, 1986L,
                                       1987L, 1988L, 1989L, 1990L, 1991L, 1992L, 1993L,
                                       1994L, 1995L, 1996L, 1997L, 1998L, 1999L,
                                       2000L,2001L,2002L,2003L,2004L,2005L,
                                       2006L, 2007L, 2008L, 2009L, 2010L, 2011L, 2012L,
                                       2013L,2014L,2015L,2016L,2017L,2018L,
                                       2019L, 2020L, 2021L),
                             Cases = c(107473,
                                       164191, 165418, 152003, 202210, 181411,
                                       161799, 197371, 166914, 172559, 215343, 179135,
                                       265269, 180518, 147237, 214652, 227319, 103188,
                                       183866, 222202, 191383, 191890, 109873,
                                       133792, 109860, 156517, 74715, 69479, 120718,
                                       68687,45030,37129,60886,62786,31732,28295,
                                       32148,40005,14809,11468,17749,17135,
                                       13005,6799,7717,9718,4810,3285,4249,
                                       3036,3287,1759,2402,1738,1010,2177,2063,
                                       1623, 1730, 1248, 1895, 2463, 2276, 3589,
                                       4195, 2823, 3450, 4157, 4570, 2719, 4083, 6586,
                                       4617,5137,7796,6564,7405,7298,7867,
                                       7580,9771,11647,25827,25616,15632,10454,
                                       13278, 16858, 27550, 18719, 48277, 28639,
                                       32971, 20762, 17972, 18975, 15609, 18617, 6124,
                                       2116)
)
```

Q1. With the help of the R "addin" package datapasta assign the CDC pertussis case number data to a data frame called cdc and use ggplot to make a plot of cases numbers over time.

```
library(ggplot2)
ggplot(cdc) +
```

localhost:3839 1/15

```
aes(Year, Cases) +
geom_point() +
geom_line() +
labs()
```


Q2. Using the ggplot geom_vline() function add lines to your previous plot for the 1946 introduction of the wP vaccine and the 1996 switch to aP vaccine (see example in the hint below). What do you notice?

```
library(ggplot2)

ggplot(cdc) +
   aes(Year, Cases) +
   geom_point() +
   geom_line() +
   labs() +
   geom_vline(xintercept = 1942, color="blue") +
   geom_vline(xintercept = 1980, color="red", linetype= 2) +
   geom_vline(xintercept = 1995, color="green")
```

localhost:3839 2/15

Q3. Describe what happened after the introduction of the aP vaccine? Do you have a possible explanation for the observed trend?

It is clear from the CDC data that pertussis cases are once again increasing. For example, we can see that in 2012 the CDC reported 48,277 cases of pertussis in the United States. This is the largest number of cases reported since 1955, when 62,786 cases were reported. The pertussis field has several hypotheses for the resurgence of pertussis including (in no particular order): 1) more sensitive PCR-based testing, 2) vaccination hesitancy 3) bacterial evolution (escape from vaccine immunity), 4) waning of immunity in adolescents originally primed as infants with the newer aP vaccine as compared to the older wP vaccine.

```
# Allows us to read, write and process JSON data
library(jsonlite)

subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)
head(subject, 3)</pre>
```

	subject_id	infancy_vac	biological_sex			ethnicity	race
1	1	wP	Female	Not	Hispanic	or Latino	White
2	2	wP	Female	Not	Hispanic	or Latino	White
3	3	wP	Female			Unknown	White

localhost:3839 3/15

```
year_of_birth date_of_boost dataset
1 1986-01-01 2016-09-12 2020_dataset
2 1968-01-01 2019-01-28 2020_dataset
3 1983-01-01 2016-10-10 2020_dataset
```

Q4. How may aP and wP infancy vaccinated subjects are in the dataset?

```
table(subject$infancy_vac)
```

aP wP 47 49

Q5. How many Male and Female subjects/patients are in the dataset?

```
table(subject$biological_sex)
```

```
Female Male 66 30
```

Q6. What is the breakdown of race and biological sex (e.g. number of Asian females, White males etc...)?

```
table(subject$race, subject$biological_sex)
```

```
Female Male
American Indian/Alaska Native
                                                 0
                                                      1
Asian
                                                18
                                                      9
Black or African American
                                                 2
                                                      0
More Than One Race
                                                 8
                                                      2
Native Hawaiian or Other Pacific Islander
                                                 1
                                                      1
Unknown or Not Reported
                                                10
                                                      4
White
                                                27
                                                     13
```

<pre>actual_day_relative_to_boost</pre>	subject_id	specimen_id	
-3	1	1	1
736	1	2	2
1	1	3	3
3	1	4	4
7	1	5	5

localhost:3839 4/15

```
6
                                                        11
                         1
  planned_day_relative_to_boost specimen_type visit
1
                                 0
                                            Blood
                                                       1
2
                                            Blood
                                                      10
                               736
3
                                 1
                                            Blood
                                                       2
4
                                 3
                                            Blood
                                                       3
5
                                 7
                                            Blood
                                                       4
6
                                14
                                            Blood
                                                       5
```

Q9. Complete the code to join specimen and subject tables to make a new merged data frame containing all specimen records along with their associated subject details:

library(dplyr)

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
meta <- inner_join(subject, specimen)</pre>
```

Joining with `by = join_by(subject_id)`

head(meta)

	subject_id inf	ancy_vac biol	ogical_sex		ethnicity	race	
1	1	wP	Female Not	Hispanic	or Latino	White	
2	1	wP	Female Not	Hispanic	or Latino	White	
3	1	wP	Female Not	Hispanic	or Latino	White	
4	1	wP	Female Not	Hispanic	or Latino	White	
5	1	wP	Female Not	Hispanic	or Latino	White	
6	1	wP	Female Not	Hispanic	or Latino	White	
	<pre>year_of_birth date_of_boost</pre>						
1	1986-01-01	2016-09-12	2020_dataset		1		
2	1986-01-01	2016-09-12	2020_dataset		2		
3	1986-01-01	2016-09-12	2020_dataset		3		
4	1986-01-01	2016-09-12	2020_dataset		4		
5	1986-01-01	2016-09-12	2020_dataset		5		
6	1986-01-01	2016-09-12	2020_dataset		6		
	actual_day_rel	ative_to_boos	t planned_day_	relative_t	o_boost s	pecimen	_type
1		-:	3		0		Blood
2	736				736		Blood
3			1		1		Blood

localhost:3839 5/15

```
6/6/23, 11:49 AM
                                                                       Pertussis
                                           3
                                                                                                 Blood
    4
                                                                                    3
    5
                                           7
                                                                                   7
                                                                                                 Blood
    6
                                          11
                                                                                  14
                                                                                                 Blood
       visit
    1
            1
    2
           10
    3
            2
    4
            3
    5
            4
    6
            5
```

```
library(lubridate)
```

Attaching package: 'lubridate'

The following objects are masked from 'package:base':

date, intersect, setdiff, union

```
today()
```

[1] "2023-06-06"

```
today() - ymd("2000-01-01")
```

Time difference of 8557 days

```
time_length( today() - ymd("2000-01-01"), "years")
```

[1] 23,42779

Q7. Using this approach determine (i) the average age of wP individuals, (ii) the average age of aP individuals; and (iii) are they significantly different?

```
# Assuming 'subject$year_of_birth' contains birth year of subjects in "yyyy-mm-dd" format
# Use today's date to calculate age in days
subject$age <- today() - ymd(subject$year_of_birth)
# aP
ap <- subject %>% filter(infancy_vac == "aP")
round( mean( time_length( ap$age, "years" ) ), 1 )
```

[1] 25.7

localhost:3839 6/15

```
# wP
wp <- subject %>% filter(infancy_vac == "wP")
round( summary( time_length( wp$age, "years" ) ), 1 )
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 28.4 32.4 35.4 36.6 40.4 55.4
```

Q8. Determine the age of all individuals at time of boost?

```
# To determine whether they are significantly different, we can use a t-test
subject$age_at_boost <- time_length(ymd(subject$date_of_boost) - ymd(subject$year_of_birt
head(subject$age_at_boost)</pre>
```

[1] 30.69678 51.07461 33.77413 28.65982 25.65914 28.77481

Q9. With the help of a faceted boxplot (see below), do you think these two groups are significantly different?

```
# Q9
ggplot(subject) +
aes(x=time_length(age, "years"),
    fill=as.factor(infancy_vac)) +
geom_histogram(show.legend=FALSE) +
facet_wrap(vars(infancy_vac), nrow=2)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

localhost:3839 7/15

Q10. Now using the same procedure join meta with titer data so we can further analyze this data in terms of time of visit aP/wP, male/female etc.

pecimen_ia	isotype	is_antigen_specifi	c antigen	MFI	MFI_normalised	
1	IgE	FALS	E Total	1110.21154	2.493425	
1	IgE	FALS	E Total	2708.91616	2.493425	
1	IgG	TRU	E PT	68.56614	3.736992	
1	IgG	TRU	e Prn	332.12718	2.602350	
1	IgG	TRU	E FHA	1887.12263	34.050956	
1	IgE	TRU	E ACT	0.10000	1.000000	
<pre>unit lower_limit_of_detection</pre>						
1 UG/ML 2.096133						
! IU/ML 29.170000						
J/ML		0.530000				
IU/ML 6.205949						
J/ML		4.679535				
J/ML		2.816431				
	1 1 1 1 1 unit lower_ G/ML J/ML	1 IgE 1 IgE 1 IgG 1 IgG 1 IgG 1 IgG 1 IgG 1 IgE unit lower_limit_of G/ML J/ML J/ML J/ML	1 IgE FALS 1 IgE FALS 1 IgE TRU 1 IgG TRU 1 IgG TRU 1 IgG TRU 1 IgE TRU 1 Ig	1 IgE FALSE Total 1 IgE FALSE Total 1 IgG TRUE PT 1 IgG TRUE PRN 1 IgG TRUE FHA 1 IgE TRUE ACT Unit lower_limit_of_detection 5/ML 2.096133 J/ML 29.170000 J/ML 0.530000 J/ML 6.205949 J/ML 4.679535	1 IgE FALSE Total 1110.21154 1 IgE FALSE Total 2708.91616 1 IgG TRUE PT 68.56614 1 IgG TRUE PRN 332.12718 1 IgG TRUE FHA 1887.12263 1 IgE TRUE ACT 0.10000 Unit lower_limit_of_detection G/ML 2.096133 U/ML 29.170000 U/ML 0.530000 U/ML 6.205949 U/ML 4.679535	

```
abdata <-inner_join(meta, ab)</pre>
Joining with `by = join_by(specimen_id)`
dim(abdata)
[1] 32675
             20
  Q11. How many specimens (i.e. entries in abdata) do we have for each isotype?
table(abdata$isotype)
 IgE IgG IgG1 IgG2 IgG3 IgG4
6698 1413 6141 6141 6141 6141
 Q12. What do you notice about the number of visit 8 specimens compared to other visits?
table(abdata$visit)
   1
        2
             3
                  4
                        5
                             6
                                       8
5795 4640 4640 4640 4640 4320 3920
                                       80
ig1 <- abdata %>% filter(isotype == "IgG1", visit!=8)
head(iq1)
  subject_id infancy_vac biological_sex
                                                       ethnicity race
1
           1
                       wP
                                  Female Not Hispanic or Latino White
2
           1
                                  Female Not Hispanic or Latino White
                       wP
                                  Female Not Hispanic or Latino White
3
           1
                       wP
4
           1
                       wP
                                  Female Not Hispanic or Latino White
5
           1
                       wP
                                  Female Not Hispanic or Latino White
                                  Female Not Hispanic or Latino White
           1
                       wP
                                    dataset specimen_id
  year_of_birth date_of_boost
                    2016-09-12 2020 dataset
     1986-01-01
1
2
     1986-01-01
                    2016-09-12 2020_dataset
                                                       1
3
                    2016-09-12 2020 dataset
                                                       1
     1986-01-01
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                       1
5
     1986-01-01
                    2016-09-12 2020 dataset
                                                       1
     1986-01-01
                    2016-09-12 2020 dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                                                                        Blood
                             -3
                                                              0
2
                             -3
```

localhost:3839 9/15

-3

3

0

Blood

Blood

6/6/23, 11:49 AM Pertussis -3 Blood 4 0 5 -3 0 Blood 6 -3 Blood visit isotype is_antigen_specific antigen MFI MFI normalised unit 1 1 IgG1 TRUE ACT 274.355068 0.6928058 IU/ML 2 1 IgG1 TRUE 2.1645083 IU/ML L0S 10.974026 3 1 IgG1 TRUE FELD1 1.448796 0.8080941 IU/ML 4 1 IgG1 TRUE BETV1 0.100000 1.0000000 IU/ML 5 IgG1 1 TRUE L0LP1 0.100000 1.0000000 IU/ML 6 1 IgG1 TRUE Measles 36.277417 1.6638332 IU/ML lower_limit_of_detection 1 3.848750 2 4.357917 3 2.699944 4 1.734784 5 2.550606 6 4.438966

Q13. Complete the following code to make a summary boxplot of Ab titer levels for all antigens:

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot() +
  facet_wrap(vars(visit), nrow=2)
```


Q14. What antigens show differences in the level of IgG1 antibody titers recognizing them over time? Why these and not others?

Fim2/3

```
ggplot(ig1) +
aes(MFI, antigen, col=infancy_vac ) +
geom_boxplot(show.legend = FALSE) +
facet_wrap(vars(visit), nrow=2) +
theme_bw()
```



```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(infancy_vac, visit), nrow=2)
```


Q15. Filter to pull out only two specific antigens for analysis and create a boxplot for each. You can chose any you like. Below I picked a "control" antigen ("Measles", that is not in our vaccines) and a clear antigen of interest ("FIM2/3", extra-cellular fimbriae proteins from B. pertussis that participate in substrate attachment).

```
filter(ig1, antigen=="Measles") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = TRUE) +
   facet_wrap(vars(visit)) +
   theme_bw()
```



```
filter(ig1, antigen=="FIM2/3") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = TRUE) +
   facet_wrap(vars(visit)) +
   theme_bw()
```


Q16. What do you notice about these two antigens time course and the FIM2/3 data in particular?

FIM2/3 levels clearly rise over time and far exceed those of Measles. They also appear to peak at visit 5 and then decline. This trend appears similar for for wP and aP subjects.

Q17. Do you see any clear difference in aP vs. wP responses?

It appears that aP clearly rise and are more elevated compared to wP over time.

```
url <- "https://www.cmi-pb.org/api/v2/rnaseq?versioned_ensembl_gene_id=eq.ENSG00000211896
rna <- read_json(url, simplifyVector = TRUE)</pre>
```

```
#meta <- inner_join(specimen, subject)
ssrna <- inner_join(rna, meta)</pre>
```

Joining with `by = join_by(specimen_id)`

Q18. Make a plot of the time course of gene expression for IGHG1 gene (i.e. a plot of visit vs. tpm).

localhost:3839 14/15

```
ggplot(ssrna) +
  aes(visit, tpm, group=subject_id) +
  geom_point() +
  geom_line(alpha=0.2)
```


Q19.: What do you notice about the expression of this gene (i.e. when is it at it's maximum level)?

It's most highly expressed at visit 4.

Q20. Does this pattern in time match the trend of antibody titer data? If not, why not?

Cells make antibodies, which are long lived