Teoria da Computação Linguagem Regular - Tipo 3 Autômato Finito Determinístico (AFD)

Alessandra Hauck & Tiago Leite

FATECS

Teoria da Computação

Sistema de Estados Finitos

Sistema de Estados Finitos

- Modelo matemático de sistema com entradas e saídas discretas
- Composto por entrada e estados
- Não tem memória
- Número <u>finito</u> e predefinido de estados
- A máquina só pode estar em um estado por vez
- Ex.: elevador
 - Estados:
 - guarda o "andar corrente"
 - e "direção de movimento"
 - Entrada:
 - lista de requisições pendentes

Teoria da Computação

Autômato Finito

É um sistema de estados finitos

- Estados: Numero finito e predefinido
- Entrada: bem definida

É um sistema de estados finitos

- Estados: Numero finito e predefinido
- Entrada: bem definida

Tipos: (são todos equivalentes)

- Autômato Finito Determinístico (AFD)
- Autômato Finito Não Determinístico (AFND ou AFN)
- \bullet Autômato Finito com Movimentos Vazios ou $\varepsilon\text{-Transições}$ (AF $\varepsilon)$

Tipos: (são todos equivalentes)

- Autômato Finito Determinístico (AFD)
 - A partir de um determinado estado e do símbolo lido pode assumir um <u>único</u> estado

Tipos: (são todos equivalentes)

- Autômato Finito Determinístico (AFD)
 - A partir de um determinado estado e do símbolo lido pode assumir um <u>único</u> estado
- Autômato Finito Não Determinístico (AFND ou AFN)
 - A partir de um determinado estado e do símbolo lido pode assumir um conjunto de estados

Tipos: (são todos equivalentes)

- Autômato Finito Determinístico (AFD)
 - A partir de um determinado estado e do símbolo lido pode assumir um único estado
- Autômato Finito Não Determinístico (AFND ou AFN)
 - A partir de um determinado estado e do símbolo lido pode assumir um conjunto de estados
- \bullet Autômato Finito com Movimentos Vazios ou $\varepsilon\text{-Transições}$ (AF $\varepsilon)$
 - \bullet A partir de um determinado estado e sem ler um símbolo pode assumir um conjunto de estados

FATECS

Teoria da Computação

Autômato Finito Determinístico (AFD)

É composto por:

- Fita
 - Dispositivo de entrada
 - Contém a informação a ser processada

É composto por:

- Fita
 - Dispositivo de entrada
 - Contém a informação a ser processada
- Unidade de Controle
 - Reflete o estado corrente da máquina
 - Possui unidade leitura (cabeça de leitura)
 - Acessa uma célula da fita de cada vez
 - Movimenta-se exclusivamente da esquerda para direita

É composto por:

- Fita
 - Dispositivo de entrada
 - Contém a informação a ser processada
- Unidade de Controle
 - Reflete o estado corrente da máquina
 - Possui unidade leitura (cabeça de leitura)
 - Acessa uma célula da fita de cada vez
 - Movimenta-se exclusivamente da esquerda para direita
- Programa, Função Programa ou Função de Transição
 - Comanda as leituras
 - Define o estado da máquina

FATECS

Fita

- Dividida em células
- Cada célula armazena um símbolo
- Os símbolos pertencem a um alfabeto (Σ)
- NÃO é possível gravar na fita
- \bullet A palavra (w)a ser processada ocupa toda a fita

а	а	b	С	С	b	а	а
---	---	---	---	---	---	---	---

Unidade de Controle

- Número finito de estados
- Leitura:
 - Lê o símbolo de cada célula da fita
 - Lê apenas um símbolo por vez
 - Move a cabeça sempre da esquerda pra direita
 - Posição inicial da cabeça: é a célula mais a esquerda da fita

a a b	СС	b a	а
-------	----	-----	---

Função de Transição (δ)

- A partir do estado corrente (ou estado atual) e do símbolo lido, a função de transição (δ) define o novo estado do autômato
- Ex.:

$$\delta(q_1, b) = q_4$$

Lê-se:

 $\delta(q_1,b)=q_4 \Rightarrow \text{Se o estado atual \'e o } q_1 \text{ e o símbolo lido foi "b"},$ então vá para o estado q_4

Função de Transição (δ)

- A partir do estado corrente (ou estado atual) e do símbolo lido, a função de transição (δ) define o novo estado do autômato
- Ex.:

$$\delta(q_1, b) = q_4$$

Lê-se:

 $\delta(q_1,b)=q_4\Rightarrow {\rm Se}$ o estado atual é o q_1 e o símbolo lido foi "b", então vá para o estado q_4

• Ex.:

$$\delta(p, a) = q$$

Lê-se:

 $\delta((p,a)=q\Rightarrow \text{Se}$ o estado atual é o pe o símbolo lido foi "a", então vá para o estado q

Exemplo de **Diagrama de Estados** de um Automato finito:

 \bullet Veja que este automato tem apenas uma função de transição (δ)

$$\delta(p, a) = q$$

Definição Matemática:

Autômato Finito Determinístico (AFD)

$$M = (\Sigma, Q, \delta, q_0, F)$$

Onde:

- $\Sigma \Rightarrow \text{alfabeto}$
- $Q \Rightarrow$ conjunto de estados possíveis do AFD
- $\bullet \ \delta \Rightarrow$ função de transição

$$\delta: Q \times \Sigma \to Q$$

- $q_0 \Rightarrow \text{estado inicial}$
- $F \Rightarrow$ conjunto dos estados finais (F é um subconjunto de Q)

Por Convenção:

• Estados:

Por Convenção:

• Estados:

Função de transição será representada por tabela:

δ	a	• • •
p	q	• • •

Construa um Autômato Finito Determinístico (AFD) que aceite que aceite qualquer palavra do no alfabeto $\{a, b\}$ que possua como subpalavra aa ou bb

Construa um Autômato Finito Determinístico (AFD) que aceite que aceite qualquer palavra do no alfabeto $\{a,b\}$ que possua como subpalavra aa ou bb

Ou seja, queremos um AFD que aceite a linguagem L, onde:

$$L = \{w \mid w \text{ possui } aa \text{ \underline{ou} } bb \text{ como subpalavra} \}$$
e $\Sigma = \{a,b\}$

 $L = \{ w \mid w \text{ possui } aa \text{ \underline{ou} } bb \text{ como subpalavra} \}$ e $\Sigma = \{ a, b \}$

FATECS

Definição:

$$M_1 = (\Sigma, Q, \delta, q_0, F) = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta, q_0, \{q_f\})$$

	δ	a	b
\rightarrow	q_0	q_1	q_2
	q_1	q_f	q_2
	q_2	q_1	q_f
*	q_f	q_f	q_f

- Estado q0, leu **a**, para onde vai?
- $\delta(q0, a) = ?$

- Estado q0, leu a, para onde vai? R: Para estado q1
- $\delta(q0, a) = q1$

- Estado q1, leu b, para onde vai?
- $\delta(q1, b) = ?$

- Estado q1, leu **b**, para onde vai? R: Para estado q2
- $\delta(q1, b) = q2$

- Estado q2, leu **b**, para onde vai?
- $\delta(q2, b) = ?$

- Estado q2, leu b, para onde vai? R: Para estado qf
- $\delta(q2, b) = qf$

Vamos analisar se entrada abba é aceita pela linguagem

- Estado q2, leu b, para onde vai? R: Para estado qf
- $\delta(q2, b) = qf$

ACABOU?

Vamos analisar se entrada abba é aceita pela linguagem

- Estado q2, leu b, para onde vai? R: Para estado qf
- $\delta(q2, b) = qf$

ACABOU?

- NÃO. Só aceita quando:
 - Está num estado final
 - A entrada foi toda processada

- Estado qf, leu **a**, para onde vai?
- $\delta(qf, a) = ?$

- Estado qf, leu a, para onde vai? R: Para estado qf
- $\delta(qf, a) = qf$

- Estado qf, leu a, para onde vai? R: Para estado qf
- $\delta(qf, a) = qf$
- FIM!
- A palavra abba foi aceita.
- Logo pode-se dizer que ela pertence a Linguagem L

Condições de parada:

- \bullet Um AFD recebe uma entrada w, ela pode ser:
 - Aceita pelo AFD; ou
 - Rejeitada pelo AFD.

Condições de parada:

- \bullet Um AFD recebe uma entrada w, ela pode ser:
 - Aceita pelo AFD:
 - Após processar o último símbolo, o AFD assume um estado final

Condições de parada:

- \bullet Um AFD recebe uma entrada w, ela pode ser:
 - Aceita pelo AFD:
 - Após processar o último símbolo, o AFD assume um estado final

- Rejeitada pelo AFD:
 - Após processar o último símbolo, o AFD assume um estado NÃO final

Condições de parada:

- Um AFD recebe uma entrada w, ela pode ser:
 - Aceita pelo AFD:
 - Após processar o último símbolo, o AFD assume um estado final

- Rejeitada pelo AFD:
 - Após processar o último símbolo, o AFD assume um estado NÃO final
 - Função de transição indefinida para algum parâmetro (estado e símbolo)

Não sabe o que fazer ao ler o simbolo "c"

AFD - Exemplo 1

Agora é a sua vez!

Faça a mesma simulação para as seguintes entradas:

- a ababaaabab
- bababab
- bbbbbbb

E agora, como fazer um Autômato Finito Determinístico (AFD)?

E agora, como fazer um Autômato Finito Determinístico (AFD)?

- Não tem regra!
- \bullet Podemos usar: Força bruta, tentativa e erro

E agora, como fazer um Autômato Finito Determinístico (AFD)?

- Não tem regra!
- Podemos usar: Força bruta, tentativa e erro
- Mas, lembre-se que:

Os <u>Autômatos Finitos</u> não têm memória!!!

E agora, como fazer um Autômato Finito Determinístico (AFD)?

- Não tem regra!
- Podemos usar: Força bruta, tentativa e erro
- Mas, lembre-se que:

Os Autômatos Finitos não têm memória!!!

- Dicas:
 - O estado atual pode te ajudar e funciona como memória
 - Escreva algumas sentenças que serão aceitas e rejeitadas

FATECS

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L_1 :

$$L_1 = \{ w \in \{a, b\}^* \mid w \text{ tem tamanho } 3 \}$$

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L_2 :

$$L_2 = \{w \in \{a,b\}^* \mid w \text{ tem tamanho } \underline{\text{maior que }}3\}$$

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L_3 :

$$L_3 = \{ w \in \{a, b\}^* \mid w \text{ tem como prefixo } aa \}$$

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L_4 :

$$L_4 = \{w \in \{a,b\}^* \mid w \text{ tem tamanho } \underline{\text{múltiplo}} \text{ de } 3\}$$

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L_5 :

 $L_5 = \{w \in \{0,1\}^* \mid \text{cada } 0 \text{ de } w \text{ \'e imediatamente seguido de, no } \underline{\text{m\'nimo}} \text{ dois } 1\text{'s}\}$

FATECS

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L:

 $L = \{w \in \{a,b\}^* \mid w \text{ possui um número } \underline{\text{par}} \text{ de } a \overset{\textbf{e}}{\bullet} b\}$

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L:

$$L = \{w \in \{a,b\}^* \mid w$$
possui um número par de $a \stackrel{\textbf{e}}{\bullet} b\}$

Teste algumas sentenças, por exemplo:

- aa <aceita>
- abba <aceita>
- abab <aceita>
- abbaa <rejeita>

FATECS

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L_7 :

$$L_7 = \{w \in \{a,b\}^* \mid w \text{ tem como } \underline{\text{sufixo}} \text{ } aaa \text{ ou } bb\}$$

Construa um Autômato Finito Determinístico (AFD) para a seguinte linguagem L_7 :

$$L_7 = \{w \in \{a, b\}^* \mid w \text{ tem como sufixo } aaa \text{ ou } bb\}$$

Teste algumas sentenças, por exemplo:

- aaa <aceita>
 - bb <aceita>
 - ababb <aceita>
 - aabbbbbaaa <aceita>
 - aabbbbba <rejeita>

Exercícios

AFD - Exercício 1

Construa os seguintes Autômatos Finitos Determinísticos (AFD):

AFD - Exercício 2

Seja $\Sigma = \{0,1,2,3,4,5,6,7,8,9\},$ construa AFDs para as seguintes linguagens:

- $\{w \in \Sigma^* \mid \text{a sequência descrita por } w \text{ corresponde a um valor inteiro par}\}$
- $\ \ \, \big\{w\in\Sigma^*\mid \text{a sequência descrita por }w\text{ corresponde a um valor inteiro impar}\big\}$

AFD - Exercício 3

Construa os seguintes Autômatos Finitos Determinísticos (AFD):

- que aceite todas as strings (palavras w) sobre $\{a,b\}$ que começam e terminam com a.
- que aceite todas as strings (palavras w) sobre $\{0,1\}$ que contenham pelo menos três 1's <u>consecutivos</u>.
- que aceite todas as strings (palavras w) sobre $\{a,b\}$ onde o número de b's é ímpar.
- **d** que aceite todas as strings (palavras w) sobre $\{0,1\}$ que não contenham 00 como sufixo.
- que aceite todas as strings (palavras w) sobre $\{a,b\}$ que contêm pelo menos DUAS ocorrências de aa ou bb.

FATECS