Κλειστού τύπου

- 9.37 Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις επόμενες προτάσεις (σε όλες τις εξισώσεις άγνωστος είναι ο x):
- α) Αν η εξίσωση αx = β είναι ταυτότητα, τότε και η εξίσωση βx = α είναι ταυτότητα.
- β) Αν η εξίσωση αx = β είναι αδύνατη, τότε και η εξίσωση βx = α είναι αδύνατη.
- γ) Η εξίσωση αχ = 0 δεν είναι ποτέ αδύνατη.
- δ) Αν η εξίσωση $\alpha x + \beta = 0$ έχει λύσεις τις: $x = 2017 \quad \kappa \alpha i \quad x = 2018$

τότε θα έχει λύση και τη x = 2019.

- ε) Η εξίσωση $(|\alpha| + |\beta|)x = 3$ έχει μοναδική λύση για οποιεσδήποτε τιμές των $\alpha, \beta \in \mathbb{R}$.
- στ) Η εξίσωση:

$$(|\lambda - 1| + |\lambda - 2|)x = \mu$$

έχει μοναδική λύση για οποιεσδήποτε τιμές των $\lambda, \, \mu \in \mathbb{R}.$

ζ) Η εξίσωση:

$$\left(\lambda^2 + \mu^2\right) x = 2017\lambda + 2018\mu$$

έχει μία τουλάχιστον λύση για οποιεσδήποτε τιμές των λ, μ $\in \mathbb{R}.$

- 9.38 Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες ερωτήσεις (σε όλες τις εξισώσεις άγνωστος είναι ο x).
- α) Αν η εξίσωση αx = β είναι αδύνατη, τότε η εξίσωση βx = α:

Α: έχει μοναδική λύση

Β: είναι ταυτότητα

Γ: είναι αδύνατη

β) Αν η εξίσωση αx = β έχει μοναδική λύση το 0, τότε η εξίσωση βx = α:

Α: έχει μοναδική λύση

Β: είναι ταυτότητα

Γ: είναι αδύνατη

γ) Αν η εξίσωση:

$$(|\alpha| + |\beta|)x = 2017$$

είναι αδύνατη, τότε η εξίσωση αx = β:

Α: έχει μοναδική λύση

Β: είναι ταυτότητα

Γ: είναι αδύνατη

 δ) Ποια από τις παρακάτω εξισώσεις έχει μοναδική λύση για οποιαδήποτε τιμή του λ ∈ ℝ;

A:
$$(\lambda - 2)^2 x = \mu$$

B:
$$(|\lambda^2 - \lambda| + |\lambda^2 - 1|)x = \mu$$

$$\Gamma: (-\lambda^2 - 4)x = \mu$$

- **10.69** Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις επόμενες προτάσεις:
- α) Αν $\theta < 0$, τότε η εξίσωση $|x| = -\theta$ είναι αδύνατη.
- β) Η εξίσωση $|x-2| = -\lambda^2$ είναι αδύνατη για οποιαδήποτε τιμή του $\lambda \in \mathbb{R}$.
- γ) Αν η εξίσωση $|2x 5| = \lambda$ είναι αδύνατη, τότε και η εξίσωση $|3x + 7| = \lambda 1$ είναι αδύνατη.
- δ) Η εξίσωση $|x+3| = |\lambda| \lambda$ δεν είναι αδύνατη για καμία τιμή του $\lambda \in \mathbb{R}$.
- ε) Οι εξισώσεις:

$$|x-5| = |\alpha-\beta|$$
 $|x-5| = |\beta-\alpha|$

écoun tis ídies lúseis gia opoiesdýpote timés twn $\alpha,\beta\in\mathbb{R}.$

- στ) Αν η εξίσωση $|x 13| = \lambda$ έχει μοναδική λύση, τότε η εξίσωση $|x + 7| = -\lambda$ είναι αδύνατη.
- **10.70** Σε καθεμία από τις επόμενες ερωτήσεις να επιλέξετε τη σωστή απάντηση.
- a) Oi lúseis ths exíswshs |x|=x είναι:

A:
$$x = 0$$
 B: $x \ge 0$ Γ : $x > 0$ Δ : $x < 0$

b) Oi lúseig the exíswshy |x|=-x eínai:

A:
$$x = 0$$
 B: $x > 0$ **T:** $x < 0$ **\Delta:** $x \le 0$

γ) Ισχύει ότι $|x| \neq x$, αν και μόνο αν:

A:
$$x \neq 0$$
 B: $x \leq 0$ **\Gamma:** $x < 0$ **\Delta:** $x > 0$

δ) Ισχύει ότι $|x| \neq -x$, αν και μόνο αν:

A:
$$x \neq 0$$
 B: $x > 0$ Γ : $x \geq 0$ Δ : $x < 0$

ε) Η εξίσωση $|x| = -|\alpha|$ δεν είναι αδύνατη όταν: **A:** $\alpha = 0$ **B:** $\alpha < 0$ **Γ:** $\alpha > 0$ **Δ:** $\alpha \neq 0$

- 11.26 Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις επόμενες προτάσεις:
- α) Η εξίσωση $x^5 = \alpha$ δεν είναι αδύνατη για οποιαδήποτε τιμή του $\alpha \in \mathbb{R}$.
- β) Η εξίσωση $x^6 = -\alpha$ είναι αδύνατη για οποιαδήποτε τιμή του $\alpha \in \mathbb{R}$.
- γ) Οι εξισώσεις $x^6 = 3^{12}$ και $x^{12} = 3^{24}$ έχουν τις ίδιες λύσεις.
- d) Oι εξισώσεις $x^5=3^{10}$ και $x^{10}=3^{20}$ έχουν τις ίδιες λύσεις.
- ε) Αν η εξίσωση $x^8 + \alpha = 0$ έχει δύο λύσεις άνισες, τότε η εξίσωση $x^7 + \alpha = 0$ έχει μία θετική λύση.
- στ) Αν η εξίσωση $x^9 = \alpha$ έχει μία αρνητική λύση, τότε η εξίσωση $x^{10} + \alpha = 0$ είναι αδύνατη.
- ζ) Η εξίσωση $x^{10} + 3 = \pi$ είναι αδύνατη.
- η) Η εξίσωση $x^{12} = 2\sqrt{3} 3\sqrt{2}$ είναι αδύνατη.
- θ) Για οποιαδήποτε τιμή του $\lambda \in \mathbb{R}$, με $\lambda \neq 0$, η εξίσωση $x^6 = \lambda^4$ έχει λύσεις τις $x = \pm \sqrt[3]{\lambda^2}$.
- ι) Για οποιαδήποτε τιμή του $\lambda \in \mathbb{R}$, με $\lambda \neq 0$, η $\epsilon \xi \text{ίσωση } x^8 = \lambda^6 \text{ έχει λύσεις τις } x = \pm \sqrt[4]{\lambda^3}.$