Rezept zur Berechnung der QR-Zerlegung

Gegeben sei eine Matrix $A \in \mathbb{R}^{m \times n}$ (bzw. $A \in \mathbb{C}^{m \times n}$) mit $m \ge n$. Gesucht ist die QR-Zerlegung von A, also eine orthogonale Matrix $Q \in O(m)$ (bzw. eine unitäre Matrix $Q \in U(m)$) und eine obere Dreiecksmatrix $R \in \mathbb{R}^{m \times n}$ (bzw. $R \in \mathbb{C}^{m \times n}$) mit $A = Q \cdot R$. Diese kannst du wie folgt berechnen:

- 1. Berechnung von Q: Seien $a_1, ..., a_n \in \mathbb{R}^n$ die Spaltenvektoren von A. Führe nun folgende Variante des Gram-Schmidtschen Orthogonalisierungsverfahren durch:
 - a) Beginne mit $k_1 := 1$.
 - b) Wiederhole für j=1,...,n.
 - Berechne $\tilde{a_j} := a_j \sum_{i=1}^{k_j 1} \langle q_i, a_j \rangle$
 - Falls $\tilde{a_j} = 0$, so setze $k_{j+1} := k_j$.
 - Falls $\tilde{a_j} \neq 0$, so setze $q_{k_j} := \frac{\tilde{a_j}}{\|\tilde{a_j}\|}$ und $k_{j+1} := k_j + 1$.
 - c) Ergänze die orthonormalen Vektoren $q_1, ..., q_{k_{n+1}} \in \mathbb{R}^n$ zu einer Orthonormalbasis $q_1, ..., q_m$ von \mathbb{R}^n . Es sei $Q \in \mathbb{R}^{n \times n}$ die Matrix mit diesen Vektoren als Spalten.
- 2. Berechnung von A: Sei $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ definiert durch

$$a_{ij} := \langle q_i, a_j \rangle$$

Du musst dafür fast nichts rechnen: Die Werte a_{ij} für $i < k_j$ hast du in Schritt 1 schon berechnet. Außerdem gilt $a_{k_j j} = \|\tilde{a_j}\|$ und $a_{ij} = 0$ für $i > k_j$ (insbesondere also für $i > k_{n+1}$).

Beispiel. Sei

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right).$$

Dann berechnen wir

$$\begin{split} \tilde{a_1} &= \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \\ q_1 &= \frac{\hat{a_1}}{\|\hat{a_1}\|} = \frac{1}{\sqrt{2}} \cdot \tilde{a_1} \\ \tilde{a_2} &= \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \left\langle \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle \cdot \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{2} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ 0 \end{pmatrix} \\ q_2 &= \frac{\hat{a_2}}{\|\hat{a_2}\|} = \frac{1}{\sqrt{3/2}} \cdot \tilde{a_2} \\ \tilde{a_3} &= \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} - \left\langle \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \right\rangle \cdot \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \\ &- \left\langle \frac{1}{\sqrt{3/2}} \cdot \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \right\rangle \cdot \frac{1}{\sqrt{3/2}} \cdot \begin{pmatrix} 1 \\ 1 \\ -\frac{1}{2} \\ 0 \end{pmatrix} = \dots = 0 \end{split}$$

Wir ergänzen q_1, q_2 zu einer ONB von \mathbb{R}^4 mit

$$q_3 := \frac{1}{\sqrt{3}} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \qquad q_4 := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Als Ergebnis haben wir dann

$$Q = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} & 0 \\ 0 & \sqrt{2}/\sqrt{3} & 1/\sqrt{3} & 0 \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad R = \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & \sqrt{3}/\sqrt{2} & \sqrt{3}/\sqrt{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$