

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-Cyano-N'-[(E)-1-(2-oxo-2H-chromen-3-yl)ethylidene]acetohydrazide

Samina Khan Yusufzai,^a Hasnah Osman,^a‡ Habibah A. Wahab,^b Mohd Mustaqim Rosli^c and Ibrahim Abdul Razak^c*§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bPharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: arazaki@usm.my

Received 24 April 2012; accepted 3 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.003 \text{ Å}$; R factor = 0.057; wR factor = 0.120; data-to-parameter ratio = 13.4.

In the title compound, $C_{14}H_{11}N_3O_3$, the chromene ring is almost planar, with a maximum deviation of 0.065 (2) Å from the mean plane for one of the C atoms. In the crystal, inversion dimers linked by pairs of $N-H\cdots O$ hydrogen bonds generate $R_2^2(8)$ loops. The dimers are linked by $C-H\cdots N$ and $C-H\cdots O$ interactions into a three-dimensional network. An aromatic $\pi-\pi$ stacking interaction, with a centroid–centroid distance of 3.562 (10) Å, is also observed.

Related literature

For related structures and background to coumarin, see: Yusufzai, Osman, Sulaiman *et al.* (2012); Yusufzai, Osman, Abdul Rahim *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{lll} {\rm C_{14}H_{11}N_3O_3} & & b = 15.8283 \ (3) \ {\rm \mathring{A}} \\ {M_r} = 269.26 & & c = 8.2650 \ (2) \ {\rm \mathring{A}} \\ {\rm Monoclinic}, \ {P2_1/c} & & \beta = 106.982 \ (2)^\circ \\ {a = 10.4755 \ (2) \ \mathring{A}} & & V = 1310.66 \ (5) \ {\rm \mathring{A}}^3 \end{array}$

Z = 4 T = 100 K Mo $K\alpha$ radiation 0.20 × 0.18 × 0.13 mm μ = 0.10 mm⁻¹

Data collection

 $\begin{array}{lll} \mbox{Bruker SMART APEXII CCD} & 13242 \mbox{ measured reflections} \\ \mbox{diffractometer} & 3020 \mbox{ independent reflections} \\ \mbox{Absorption correction: multi-scan} & 1987 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{} (SADABS; \mbox{ Bruker}, 2009) & R_{\rm int} = 0.061 \\ \mbox{} T_{\rm min} = 0.980, \ T_{\rm max} = 0.988 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.057 & 225 \ {\rm parameters} \\ WR(F^2) = 0.120 & {\rm All \ H-atom \ parameters \ refined} \\ S = 1.03 & {\Delta \rho_{\rm max}} = 0.27 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ 3020 \ {\rm reflections} & {\Delta \rho_{\rm min}} = -0.26 \ {\rm e} \ {\rm \mathring{A}}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N2-H1N2\cdots O3^{i}$	0.96 (2)	1.91 (2)	2.870 (2)	174 (2)
$C3-H3A\cdots N3^{ii}$	1.00(2)	2.53 (2)	3.446 (3)	152.9 (12)
$C4-H4A\cdots N3^{iii}$	0.96(2)	2.62 (2)	3.404 (3)	139.2 (16)
$C6-H6A\cdots O2^{iv}$	0.96(2)	2.56(2)	3.494 (3)	164.7 (17)
$C13-H13A\cdots O2^{v}$	0.96(2)	2.38 (2)	3.328 (3)	171.7 (18)
C13 $-$ H13 $B \cdot \cdot \cdot$ N3 ^{vi}	1.00(2)	2.46 (2)	3.409 (3)	159.3 (18)

Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, $y+\frac{1}{2}$, $-z+\frac{3}{2}$; (iii) x+1, $-y-\frac{1}{2}$, $z-\frac{1}{2}$; (iv) -x+1, $y-\frac{1}{2}$, $-z+\frac{3}{2}$; (v) -x+1, -y, -z+2; (vi) x, $-y-\frac{1}{2}$, $z-\frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Fundamental Research Grant Scheme (FRGS) grant (No. 203/PKIMIA/6711179) and MOSTI Grant (No. 09-05-lfn-meb-004) to conduct this work. SKY thanks USM for providing Graduate Assistance financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6757).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yusufzai, S. K., Osman, H., Abdul Rahim, A. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1056-o1057.

Yusufzai, S. K., Osman, H., Sulaiman, O., Arshad, S. & Razak, I. A. (2012).
Acta Cryst. E68, 0473–0474.

[‡] Additional correspondence author, e-mail: ohasnah@usm.my.

[§] Thomson Reuters ResearcherID: A-5599-2009.

Acta Cryst. (2012). E68, o2005 [doi:10.1107/S1600536812019915]

2-Cyano-N'-[(F)-1-(2-oxo-2H-chromen-3-yl)ethylidene]acetohydrazide

Samina Khan Yusufzai, Hasnah Osman, Habibah A. Wahab, Mohd Mustaqim Rosli and Ibrahim Abdul Razak

Comment

In continuation of our previous work of coumarin derivatives (Yusufzai, Osman, Sulaiman *et al.*, 2012; Yusufzai, Osman, Abdul Rahim *et al.*, 2012) we have synthesized the title compound: its melting point found to be 175–178°C. Synthesis of other derivatives of coumarin cyanoacetohydrazone and their biological activities are under progress.

The chromene ring is almost planar with the maximum deviation of 0.065 (2) Å from atom C1. In the crystal structure, N2—H1N2···O3ⁱ, C3—H3A···N3ⁱⁱ, C4—H4A···N3ⁱⁱⁱ and C6—H6A···O2 interactions link the molecules into layers parallel to the (1 0 2) plane (Table 1, Fig. 2). These layers are further connected by C13—H13A···O2^v and C13—H13B···N3^{vi} intermolecular interactions to form a three-dimensional network (Table 1, Fig. 2). A π — π interaction with centroid-centroid distance of 3.562 (10) Å is also observed (Cg1 = O1/C1—C2/C7—C9, Cg2 = C2—C7, 1 - x, -v, 1 - z).

Experimental

To a solution of 3-acetyl-2*H*-chromen-2-one. (0.188 g, 0.001 mol) in methanol (20 ml), cyanoacetic acid hydrazide (0.98 g m, 0.001 mol) was added with stirring at room temperature. Hydrochloric acid (0.5 ml) was added and the reaction mixture was stirred at $5-10^{\circ}$ C for 30 min. The solid product thus formed was collected by filtration, dried in vacuum and recrystallized from ethanol-dioxane (2:1) solution to give the title compound as shiny light yellow blocks.

Refinement

All H atoms were located in a difference Fourier map and freely refined.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Acta Cryst. (2012). E68, o2005 Sup-1

Figure 1Thermal ellipsoid plot.

Acta Cryst. (2012). E68, o2005 sup-2

Figure 2 Packing diagram.

2-Cyano-N'-[(E)-1-(2-oxo-2H-chromen- 3-yl)ethylidene]acetohydrazide

Crystal data

F(000) = 560 $C_{14}H_{11}N_3O_3$ $M_r = 269.26$ $D_{\rm x} = 1.365 {\rm Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 1883 reflections a = 10.4755 (2) Å θ = 2.9–32.3° b = 15.8283 (3) Å $\mu = 0.10 \text{ mm}^{-1}$ T = 100 Kc = 8.2650 (2) Å $\beta = 106.982 (2)^{\circ}$ Block, yellow $V = 1310.66 (5) \text{ Å}^3$ $0.20\times0.18\times0.13~mm$ Z = 4

Data collection

Bruker SMART APEXII CCD
diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator φ and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2009) $T_{\min} = 0.980, T_{\max} = 0.988$ 13242 measured reflections
3020 independent reflections
1987 reflections with $I > 2\sigma(I)$

Acta Cryst. (2012). E**68**, o2005 **sup-3**

$R_{\rm int} = 0.061$	$k = -20 \rightarrow 20$
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$	$l = -10 \rightarrow 10$
$h = -13 \rightarrow 11$	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ Hydrogen site location: inferred from $wR(F^2) = 0.120$ neighbouring sites S = 1.03All H-atom parameters refined 3020 reflections $w = 1/[\sigma^2(F_0^2) + (0.0477P)^2 + 0.221P]$ 225 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\text{max}} = 0.27 \text{ e Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\min} = -0.26 \text{ e Å}^{-3}$ direct methods

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.63816 (12)	0.09170 (8)	0.75003 (16)	0.0247 (3)
O2	0.51923 (13)	0.17039 (9)	0.87086 (18)	0.0315 (4)
O3	0.00031 (13)	-0.10885 (9)	1.00205 (17)	0.0299 (4)
N1	0.26272 (15)	-0.03027 (11)	0.86808 (19)	0.0240 (4)
N2	0.14627 (15)	-0.02929(11)	0.9143 (2)	0.0248 (4)
N3	0.05268 (18)	-0.31915 (12)	0.9689(2)	0.0381 (5)
C1	0.52801 (19)	0.10271 (13)	0.8072 (2)	0.0244 (4)
C2	0.67126 (19)	0.01490 (12)	0.6931 (2)	0.0225 (4)
C3	0.7888 (2)	0.01131 (14)	0.6498 (2)	0.0266 (5)
C4	0.8249 (2)	-0.06527 (14)	0.5953 (2)	0.0290 (5)
C5	0.7453 (2)	-0.13655 (14)	0.5845 (2)	0.0287 (5)
C6	0.6272 (2)	-0.13152 (14)	0.6261 (2)	0.0271 (5)
C7	0.58787 (19)	-0.05499(12)	0.6825 (2)	0.0223 (4)
C8	0.46742 (19)	-0.04304(13)	0.7273 (2)	0.0228 (4)
C9	0.43492 (18)	0.03136 (12)	0.7863 (2)	0.0225 (4)
C10	0.31072 (18)	0.04074 (13)	0.8374 (2)	0.0220 (4)
C11	0.2471 (2)	0.12496 (14)	0.8465 (3)	0.0289 (5)
C12	0.09542 (19)	-0.10427(13)	0.9446 (2)	0.0241 (4)
C13	0.1621 (2)	-0.18236 (13)	0.9000(3)	0.0261 (5)
C14	0.09896 (19)	-0.25873 (14)	0.9385 (2)	0.0267 (5)
H3A	0.8460 (19)	0.0623 (14)	0.658 (2)	0.029 (6)*

Acta Cryst. (2012). E68, o2005 Sup-4

H4A	0.906(2)	-0.0682 (13)	0.564(2)	0.031 (6)*	
H6A	0.571 (2)	-0.1803 (14)	0.617(2)	0.033 (6)*	
H5A	0.7711 (19)	-0.1885 (14)	0.543 (2)	0.030 (6)*	
H8A	0.4042 (19)	-0.0902 (13)	0.714(2)	0.026 (5)*	
H11A	0.153 (2)	0.1204 (14)	0.794(3)	0.035 (6)*	
H11B	0.284(2)	0.1687 (15)	0.787(3)	0.045 (7)*	
H11C	0.257 (3)	0.1423 (17)	0.966 (4)	0.075 (9)*	
H13A	0.255 (2)	-0.1847(14)	0.962(3)	0.040 (6)*	
H13B	0.155 (2)	-0.1803 (14)	0.777 (3)	0.043 (6)*	
H1N2	0.102(2)	0.0198 (16)	0.941 (3)	0.049 (7)*	

Atomic displacement parameters (Ų)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0218 (7)	0.0214 (8)	0.0357 (7)	0.0000(6)	0.0159 (6)	-0.0019 (6)
O2	0.0266 (8)	0.0227 (8)	0.0483 (8)	0.0012 (6)	0.0160(7)	-0.0072(7)
O3	0.0265 (8)	0.0287 (9)	0.0423 (8)	-0.0002(6)	0.0224 (6)	0.0001 (6)
N1	0.0211 (8)	0.0269 (10)	0.0284(8)	-0.0005(7)	0.0137 (7)	0.0006 (7)
N2	0.0215 (9)	0.0242 (10)	0.0340 (9)	0.0006 (8)	0.0161 (7)	0.0002(7)
N3	0.0403 (11)	0.0299 (12)	0.0514 (11)	-0.0052(9)	0.0246 (9)	-0.0030(9)
C1	0.0232 (10)	0.0214 (11)	0.0302 (10)	0.0036 (8)	0.0104(8)	0.0023 (8)
C2	0.0248 (10)	0.0186 (11)	0.0258 (9)	0.0048 (8)	0.0097(8)	0.0000(8)
C3	0.0241 (10)	0.0275 (13)	0.0313 (10)	-0.0003(9)	0.0131 (8)	0.0005 (9)
C4	0.0231 (11)	0.0334 (13)	0.0348 (11)	0.0039 (9)	0.0153 (9)	-0.0005(9)
C5	0.0317 (12)	0.0251 (12)	0.0331 (11)	0.0064 (10)	0.0152 (9)	-0.0009(9)
C6	0.0319 (11)	0.0201 (12)	0.0329 (10)	0.0008 (9)	0.0154 (9)	0.0008 (9)
C7	0.0238 (10)	0.0199 (11)	0.0259 (9)	0.0023 (8)	0.0113 (8)	0.0015 (8)
C8	0.0252 (10)	0.0188 (11)	0.0278 (10)	-0.0016(9)	0.0130(8)	0.0019(8)
C9	0.0220 (10)	0.0211 (11)	0.0272 (9)	0.0002(8)	0.0116 (8)	0.0017 (8)
C10	0.0207 (10)	0.0241 (12)	0.0242 (9)	0.0009(8)	0.0113 (8)	-0.0002(8)
C11	0.0279 (12)	0.0255 (12)	0.0398 (12)	0.0032 (9)	0.0200 (10)	0.0034 (9)
C12	0.0226 (10)	0.0251 (12)	0.0277 (9)	0.0006 (9)	0.0118 (8)	-0.0004(8)
C13	0.0252 (11)	0.0229 (12)	0.0357 (11)	-0.0032(9)	0.0175 (9)	-0.0032(9)
C14	0.0239 (10)	0.0265 (12)	0.0331 (10)	-0.0024(9)	0.0137 (8)	-0.0049(9)

Geometric parameters (Å, °)

O1—C1	1.379 (2)	C5—C6	1.380 (3)
O1—C2	1.384 (2)	C5—H5A	0.96 (2)
O2—C1	1.209(2)	C6—C7	1.402 (3)
O3—C12	1.225 (2)	C6—H6A	0.96 (2)
N1—C10	1.287 (2)	C7—C8	1.428 (3)
N1—N2	1.381 (2)	C8—C9	1.356 (3)
N2—C12	1.354 (2)	C8—H8A	0.98 (2)
N2—H1N2	0.96(2)	C9—C10	1.488 (3)
N3—C14	1.133 (3)	C10—C11	1.502 (3)
C1—C9	1.469 (3)	C11—H11A	0.95 (2)
C2—C3	1.380(3)	C11—H11B	0.99(2)
C2—C7	1.396 (3)	C11—H11C	1.00 (3)
C3—C4	1.384(3)	C12—C13	1.517 (3)

Acta Cryst. (2012). E**68**, o2005

C3—H3A
C4—H4A 0.96 (2) C13—H13B 1.00 (2) C1—O1—C2 123.02 (15) C9—C8—C7 122.84 (19) C10—N1—N2 118.20 (17) C9—C8—H8A 117.9 (12) C12—N2—N1 117.93 (17) C7—C8—H8A 119.3 (12) C12—N2—H1N2 114.9 (14) C8—C9—C1 118.83 (18) N1—N2—H1N2 126.7 (14) C8—C9—C10 121.40 (18) O2—C1—O1 116.01 (17) C1—C9—C10 119.72 (17) O2—C1—C9 126.87 (18) N1—C10—C9 113.17 (17) O1—C1—C9 117.10 (18) C9—C10—C11 122.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—H3A 120.9 (12) C10—C11—H11B 110.9 (18) C2—C3—H3A 120.1 (12) H11A—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (2) H11B—C11—H11C </td
C1—O1—C2
C10—N1—N2 118.20 (17) C9—C8—H8A 117.9 (12) C12—N2—N1 117.93 (17) C7—C8—H8A 119.3 (12) C12—N2—H1N2 114.9 (14) C8—C9—C1 118.83 (18) N1—N2—H1N2 126.7 (14) C8—C9—C10 121.40 (18) O2—C1—O1 116.01 (17) C1—C9—C10 119.72 (17) O2—C1—C9 126.87 (18) N1—C10—C9 113.17 (17) O1—C1—C9 117.12 (17) N1—C10—C11 124.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C3—C4 118.0 (2) H11A—C11—H11B 110.5 (13) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11B—C11—H11C 110.5 (15) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13)
C12—N2—N1 117.93 (17) C7—C8—H8A 119.3 (12) C12—N2—H1N2 114.9 (14) C8—C9—C1 118.83 (18) N1—N2—H1N2 126.7 (14) C8—C9—C10 121.40 (18) O2—C1—O1 116.01 (17) C1—C9—C10 119.72 (17) O2—C1—C9 126.87 (18) N1—C10—C9 113.17 (17) O1—C1—C9 117.12 (17) N1—C10—C11 124.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11B—C11—H11C 112.0 (16) C3—C4—C5 121.1 (2) H11B—C11—H11C 112.0 (16) C3—C4—C5 121.1 (2) <td< td=""></td<>
C12—N2—H1N2 114.9 (14) C8—C9—C1 118.83 (18) N1—N2—H1N2 126.7 (14) C8—C9—C10 121.40 (18) O2—C1—O1 116.01 (17) C1—C9—C10 119.72 (17) O2—C1—C9 126.87 (18) N1—C10—C9 113.17 (17) O1—C1—C9 117.12 (17) N1—C10—C11 124.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 110 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C1
C12—N2—H1N2 114.9 (14) C8—C9—C1 118.83 (18) N1—N2—H1N2 126.7 (14) C8—C9—C10 121.40 (18) O2—C1—O1 116.01 (17) C1—C9—C10 119.72 (17) O2—C1—C9 126.87 (18) N1—C10—C9 113.17 (17) O1—C1—C9 117.12 (17) N1—C10—C11 124.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 110 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C1
O2—C1—O1 116.01 (17) C1—C9—C10 119.72 (17) O2—C1—C9 126.87 (18) N1—C10—C9 113.17 (17) O1—C1—C9 117.12 (17) N1—C10—C11 124.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—H5A 120.3 (12) C14—C13—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—H13A 107.8 (13) C5—C6—H6A 120.7 (12) C14—C13—H13A 111.6 (13) C5—C6—H6A 119.0 (12) C12—
O2—C1—C9 126.87 (18) N1—C10—C9 113.17 (17) O1—C1—C9 117.12 (17) N1—C10—C11 124.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—H6A 120.7 (12) C14—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C
O1—C1—C9 117.12 (17) N1—C10—C11 124.11 (18) C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C14—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6 117.80 (18) H13A—C13—H1
C3—C2—O1 117.10 (18) C9—C10—C11 122.70 (18) C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 120.3 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—O1—C1—C9 177.89 (17) C
C3—C2—C7 122.69 (19) C10—C11—H11A 108.8 (13) O1—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) -0.7
01—C2—C7 120.21 (17) C10—C11—H11B 110.5 (13) C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) -0.7
C2—C3—C4 118.0 (2) H11A—C11—H11B 109.1 (18) C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1
C2—C3—H3A 120.9 (12) C10—C11—H11C 112.0 (16) C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—C9 7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16)
C4—C3—H3A 121.1 (12) H11A—C11—H11C 105 (2) C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2)
C3—C4—C5 121.1 (2) H11B—C11—H11C 111 (2) C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3)
C3—C4—H4A 118.5 (13) O3—C12—N2 122.15 (18) C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 -176.90 (15)
C5—C4—H4A 120.4 (13) O3—C12—C13 122.03 (18) C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 -176.90 (15)
C6—C5—C4 120.1 (2) N2—C12—C13 115.81 (17) C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C6—C5—H5A 120.3 (12) C14—C13—C12 110.63 (16) C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—O9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C4—C5—H5A 119.6 (12) C14—C13—H13A 107.8 (13) C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C5—C6—C7 120.3 (2) C12—C13—H13A 111.6 (13) C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C5—C6—H6A 120.7 (12) C14—C13—H13B 110.2 (13) C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C7—C6—H6A 119.0 (12) C12—C13—H13B 108.4 (13) C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C2—C7—C6 117.80 (18) H13A—C13—H13B 108.2 (18) C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) C7—C8—C9—C1 -0.7 (3) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C2—C7—C8 117.57 (18) N3—C14—C13 178.3 (2) C6—C7—C8 124.62 (19) 179.26 (16) C7—C8—C9—C1 -0.7 (3) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -177.89 (17) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C6—C7—C8 124.62 (19) C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C10—N1—N2—C12 179.26 (16) C7—C8—C9—C1 -0.7 (3) C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C2—O1—C1—O2 171.92 (16) C7—C8—C9—C10 -177.89 (17) C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C2—O1—C1—C9 -7.4 (2) O2—C1—C9—C8 -173.41 (19) C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C1—O1—C2—C3 -175.90 (16) O1—C1—C9—C8 5.9 (3) C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C1—O1—C2—C7 3.7 (2) O2—C1—C9—C10 3.8 (3) O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
O1—C2—C3—C4 178.95 (16) O1—C1—C9—C10 -176.90 (15)
C2—C3—C4—C5
C3—C4—C5—C6 1.0 (3) C8—C9—C10—N1 19.6 (2)
C4—C5—C6—C7
C3—C2—C7—C6
O1—C2—C7—C6 —179.18 (16) — C1—C9—C10—C11 — 24.1 (3)
C3—C2—C7—C8 —178.66 (17) N1—N2—C12—O3 172.68 (16)
O1—C2—C7—C8
C5—C6—C7—C2
C5—C6—C7—C8 179.50 (18) N2—C12—C13—C14 179.88 (16)
C2—C7—C8—C9
C6—C7—C8—C9 177.89 (18)

Acta Cryst. (2012). E68, o2005 sup-6

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N2—H1 <i>N</i> 2···O3 ⁱ	0.96(2)	1.91 (2)	2.870(2)	174 (2)
C3—H3 <i>A</i> ···N3 ⁱⁱ	1.00(2)	2.53 (2)	3.446 (3)	152.9 (12)
C4—H4 <i>A</i> ···N3 ⁱⁱⁱ	0.96(2)	2.62(2)	3.404 (3)	139.2 (16)
C6—H6 <i>A</i> ···O2 ^{iv}	0.96(2)	2.56(2)	3.494 (3)	164.7 (17)
C13—H13 <i>A</i> ···O2 ^v	0.96(2)	2.38 (2)	3.328 (3)	171.7 (18)
C13—H13 <i>B</i> ····N3 ^{vi}	1.00(2)	2.46 (2)	3.409 (3)	159.3 (18)

Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, y+1/2, -z+3/2; (iii) x+1, -y-1/2, z-1/2; (iv) -x+1, y-1/2, -z+3/2; (v) -x+1, -y, -z+2; (vi) x, -y-1/2, z-1/2.

Acta Cryst. (2012). E68, o2005 Sup-7