

Department of Computer Science CSCI 2824: Discrete Structures Chris Ketelsen

Algorithms and Complexity

Algorithms

Searching Algorithms

Task: Find the location of an element in a sequence or determine that the desired element is not in the list

Application: Check if a word is in a dictionary

Example: Find the location of 19 in the sequence

{1, 25, 3, 16, 7, 10, 5, 19, 21, 2}

We'll look at two algorithms: Linear Search and Binary Search

Linear Search

procedure LinearSearch $(x, a_1, a_2, \ldots, a_n)$

i := 1

while $(i \le n \text{ and } x \ne a_i)$

i := i + 1

if $i \le n$ then location := i

else location := -1

return location

Question: How fast is this?

Task: Find the location of an element in an *ordered* sequence or determine that the desired element is not in the list

Example: Find 19 in the sequence {1, 2, 3, 5, 7, 10, 16, 18, 19, 25}

Binary Search leverages the fact that the list is sorted

Example: Find 19 in the sequence $\{1, 2, 3, 5, 7, 10, 16, 18, 19, 25\}$

- 1. Break list into two halves: 1 2 3 5 7 10 16 18 19 25
- 2. Compare x to largest item in left list. Since 19 > 7, look right

10 16 18 19 25

3. Compare x to largest item in left list. Since 19 > 18, look right

19 25

4. Compare x to largest item in left list. Since 19 > 19, look left

19

5. Only one entry left. Check if x = last entry. Found it!


```
procedure BinarySearch(x, a_1, a_2, \dots, a_n)
\ell := 1 # \ell is left endpoint of search interval
r := n # r is right endpoint of search interval
while \ell < r
      m := |(\ell + r)/2| # m is index of largest in left list
      if x > a_m then \ell := m + 1, else r := m
if x = a_{\ell} then location := \ell, else location := -1
return location
```

return location

```
procedure BinarySearch(x, a_1, a_2, ..., a_n)
             # \ell is left endpoint of search interval
\ell := 1
             # r is right endpoint of search interval
r := n
while \ell < r
           m := \lfloor (\ell + r)/2 \rfloor # m is index of largest in left list
           if x > a_m then \ell := m + 1, else r := m
if x = a_{\ell} then location := \ell, else location := -1
```

Searching Algorithms

Question: Which of the two searching algorithms seems faster?

Searching Algorithms

Question: Which of the two searching algorithms seems faster?

Be Careful: What do we mean by faster?

- Which is faster in the best-case scenario?
- Which is faster in the worst-case scenario?
- Which is faster on average?

Sorting Algorithms

Task: Given an unordered list of elements, organize them according to some notion of order

Applications: Ordering mail by location on route. Alphabetizing.

Goal: Sometimes ordering a list is the goal in-and-of itself. Sometimes we order a list so that other tasks become easier.

- binary search
- finding duplicates in a list

Huuuuge amount of computing power spent on sorting

Many many sophisticated algorithms

We'll look at the **bubble sort** algorithm

Bubble Sort

Make passes through list, interchanging adjacent pairs that are in the wrong order

Repeat until the list is sorted

Large elements sink to bottom, small elements bubble to top

Bubble Sort

procedure BubbleSort (a_1, a_2, \ldots, a_n)

for
$$i := 1$$
 to $n - 1$

for
$$j := 1$$
 to $n - i$

if $a_j > a_{j+1}$ then interchange a_j and a_{j+1}

Many algorithms are designed to solve optimization problems

Goal: Find solution that minimizes or maximizes some parameter

Applications

- Finding a route between cities that minimizes distance
- Encode a message using fewest bits possible

Greedy Algorithms select the best choice at each step

Note: Not guaranteed to find optimal solution. Have to check once a solution is found.

Task: Consider making *n* cents change with quarters, dimes, nickels, and pennies, using the least total amount of coins.

Greedy Strategy: At each step, choose the largest denomination coin possible to add to the pile that does not exceed n cents.

Example: Suppose we want to make change for 67 cents.

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

Let $c_1 > c_2 > \cdots > c_r$ denote coin denominations

procedure Change $(n, c_1, c_2, \ldots, c_r)$

for
$$i := 1$$
 to r

$$d_i := 0$$

d_i counts coins of denom. c_i

while $n \geq c_i$

$$d_i := d_i + 1$$

add one coin of denom. c_i

$$n := n - c_i$$

Fact: The number of coins used to make *n* cents using quarters, dimes, nickels, and pennies in the previous algorithm is optimal.

Fact: If we only used quarters, dimes, and pennies (and no nickels) then the algorithm would not produce an optimal solution

Example: Suppose we wanted to make change for 30 cents using only quarters, dimes, and pennies

Our algorithm would use 1 quarter (25 cents) and 5 pennies (5 cents) for a total of 6 coins used

But a more optimal solution would be to use 3 dimes