CE100 Algorithms and Programming II

Week-5 (Dynamic Programming)

Spring Semester, 2021-2022

Download DOC, SLIDE, PPTX

<iframe width=700, height=500 frameBorder=0 src="../ce100-week-5dp.md_slide.html"></iframe>

Quicksort Sort

Outline

- Convex Hull (Divide & Conquer)
- Dynamic Programming
 - Introduction
 - Divide-and-Conquer (DAC) vs Dynamic Programming (DP)

- Fibonacci Numbers
 - Recursive Solution
 - Bottom-Up Solution
- Optimization Problems
- Development of a DP Algorithms

- Matrix-Chain Multiplication
 - Matrix Multiplication and Row Columns Definitions
 - Cost of Multiplication Operations (pxqxr)
 - Counting the Number of Parenthesizations

- The Structure of Optimal Parenthesization
 - Characterize the structure of an optimal solution
 - A Recursive Solution
 - Direct Recursion Inefficiency.
 - Computing the optimal Cost of Matrix-Chain Multiplication
 - Bottom-up Computation

- Algorithm for Computing the Optimal Costs
 - MATRIX-CHAIN-ORDER
- Construction and Optimal Solution
 - MATRIX-CHAIN-MULTIPLY
- Summary

Dynamic Programming - Introduction

- An algorithm design paradigm like divide-and-conquer
- Programming: A tabular method (not writing computer code)
 - Older sense of planning or scheduling, typically by filling in a table
- Divide-and-Conquer (DAC): subproblems are independent
- Dynamic Programming (DP): subproblems are not independent
- Overlapping subproblems: subproblems share sub-subproblems
 - In solving problems with overlapping subproblems
 - A DAC algorithm does redundant work
 - Repeatedly solves common subproblems
 - A DP algorithm solves each problem just once
 - Saves its result in a table

Problem 1: Fibonacci Numbers Recursive Solution

• Reminder:

EU CE100 Week-5

$$F(0) = 0 ext{ and } F(1) = 1 \ F(n) = F(n-1) + F(n-2)$$

```
REC-FIBO(n)
  if n < 2
    return n
  else
    return REC-FIBO(n-1) + REC-FIBO(n-2)</pre>
```

 Overlapping subproblems in different recursive calls. Repeated work!

Problem 1: Fibonacci Numbers Recursive Solution

- Recurrence:
 - exponential runtime

$$T(n) = T(n-1) + T(n-2) + 1$$

• Recursive algorithm inefficient because it recomputes the same F(i) repeatedly in different branches of the recursion tree.

Problem 1: Fibonacci Numbers Bottom-up Computation

• Reminder:

$$F(0) = 0 ext{ and } F(1) = 1$$
 $F(n) = F(n-1) + F(n-2)$

• Runtime $\Theta(n)$

```
ITER-FIBO(n)
  F[0] = 0
  F[1] = 1
  for i = 2 to n do
    F[i] = F[i-1] + F[i-2]
  return F[n]
```


Optimization Problems

- **DP** typically applied to optimization problems
- In an optimization problem
 - There are many possible solutions (feasible solutions)
 - Each solution has a value
 - Want to find an optimal solution to the problem
 - A solution with the optimal value (min or max value)
 - Wrong to say the optimal solution to the problem
 - There may be several solutions with the same optimal value

Development of a DP Algorithm

- Step-1. Characterize the structure of an optimal solution
- Step-2. Recursively define the value of an optimal solution
- Step-3. Compute the value of an optimal solution in a bottom-up fashion
- Step-4. Construct an optimal solution from the information computed in Step 3

Problem 2: Matric Chain Multiplication

- Input: a sequence (chain) $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices
- Aim: compute the product $A_1 \cdot A_2 \cdot \ldots A_n$
- A product of matrices is fully parenthesized if
 - It is either a single matrix
 - o Or, the product of two fully parenthesized matrix products surrounded by a pair of parentheses.

$$egin{array}{l} \left(A_i(A_{i+1}A_{i+2}\ldots A_j)
ight) \ \left((A_iA_{i+1}A_{i+2}\ldots A_{j-1})A_j
ight) \ \left((A_iA_{i+1}A_{i+2}\ldots A_k)(A_{k+1}A_{k+2}\ldots A_j)
ight) ext{ for } i\leq k< j \end{array}$$

• All parenthesizations yield the same product; matrix product is associative

CE100 Matrix Techain Multiplication: An Example Parenthesization

• Input: $\langle A_1, A_2, A_3, A_4 \rangle$ (5 distinct ways of full parenthesization)

$$\begin{pmatrix} A_1 \left(A_2 (A_3 A_4) \right) \\ \left(A_1 \left((A_2 A_3) A_4 \right) \right) \\ \left((A_1 A_2) (A_3 A_4) \right) \\ \left(\left(A_1 (A_2 A_3) A_4 \right) \right) \\ \left(\left((A_1 A_2) A_3 \right) A_4 \right) \\ \end{pmatrix}$$

• The way we parenthesize a chain of matrices can have a dramatic effect on the cost

Matrix-chain Multiplication: Reminder

```
MATRIX-MULTIPLY(A, B)
  if cols[A]!=rows[B] then
    error("incompatible dimensions")
  for i=1 to rows[A] do
    for j=1 to cols[B] do
        C[i,j]=0
        for k=1 to cols[A] do
        C[i,j]=C[i,j]+A[i,k]·B[k,j]
    return C
```


Matrix Chain Multiplication: Example

• A1:10x100, A2:100x5,

A3:5x50

 \circ Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

of mult-add ops = 5000+2500 = 7500

Matrix Chain Multiplication: Example

- ullet A1:10 imes100, A2:100 imes5, A3:5 imes50
 - \circ Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

of mult-add ops = 25000+5000 = 75000

Matrix Chain Multiplication: Example

- ullet A1:10 imes100, A2:100 imes5, A3:5 imes50
 - \circ Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

In summary:

- (A1A2)A3 = # of multiply-add ops: 7500
- A1(A2A3) = # of multiple-add ops: 75000

First parenthesization yields 10x faster computation

Matrix-chain Multiplication Problem

- Input: A chain $\langle A_1, A_2, \ldots, A_n \rangle$ of n matrices,
 - \circ where A_i is a $p_{i-1} imes p_i$ matrix
- Objective: Fully parenthesize the product
 - $\circ A_1 \cdot A_2 \dots A_n$
 - such that the number of scalar mult-adds is minimized.

Counting the Number of Parenthesizations

- Brute force approach: exhaustively check all parenthesizations
- ullet P(n): # of parenthesizations of a sequence of n matrices
- We can split sequence between k^{th} and $(k+1)^{st}$ matrices for any $k=1,2,\ldots,n-1$, then parenthesize the two resulting sequences independently, i.e.,

$$(A_1A_2A_3\dots A_k) (A_{k+1}A_{k+2}\dots A_n)$$

• We obtain the recurrence

$$P(1) = 1 ext{ and } P(n) = \sum_{k=1}^{n-1} P(k) P(n-k)$$

Number of Parenthesizations:

- ullet P(1)=1 and $P(n)=\sum_{k=1}^{n-1}P(k)P(n-k)$
- ullet The recurrence generates the sequence of **Catalan Numbers** Solution is P(n)=C(n-1) where

$$C(n)=rac{1}{n+1}inom{2n}{n}=\Omega(4^n/n^{3/2})$$

- ullet The number of solutions is **exponential** in n
- Therefore, brute force approach is a poor strategy

The Structure of Optimal Parenthesization

- Notation: $A_{i...j}$: The matrix that results from evaluation of the product: $A_iA_{i+1}A_{i+2}\ldots A_j$
- Observation: Consider the last multiplication operation in any parenthesization: $(A_1A_2\ldots A_k)\cdot (A_{k+1}A_{k+2}\ldots A_n)$
 - \circ There is a k value $(1 \le k < n)$ such that:
 - lacksquare First, the product $A_1 \dots k$ is computed
 - lacktriangle Then, the product $A_{k+1\ldots n}$ is computed
 - lacktriangle Finally, the matrices $A_{1\ldots k}$ and $A_{k+1\ldots n}$ are multiplied

Step 1: Characterize the Structure of an Optimal Solution

- An optimal parenthesization of product $A_1A_2\dots A_n$ will be: $(A_1A_2\dots A_k)\cdot (A_{k+1}A_{k+2}\dots A_n)$ for some k value
- The cost of this optimal parenthesization will be:
 - = Cost of computing $A_{1...k}$
 - + Cost of computing $A_{k+1\ldots n}$
 - + Cost of multiplying $A_{1\ldots k}\cdot A_{k+1\ldots n}$

Step 1: Characterize the Structure of an Optimal Solution

• Key observation: Given optimal parenthesization

$$\circ \ (A_1A_2A_3\ldots A_k)\cdot (A_{k+1}A_{k+2}\ldots A_n)$$

- ullet Parenthesization of the subchain $A_1A_2A_3\ldots A_k$
- Parenthesization of the subchain $A_{k+1}A_{k+2}\ldots A_n$

should both be optimal

- Thus, optimal solution to an instance of the problem contains optimal solutions to subproblem instances
 - o i.e., optimal substructure within an optimal solution exists.

- Step 2: Define the value of an optimal solution recursively in terms of optimal solutions to the subproblems
- ullet Assume we are trying to determine the min cost of computing $A_{i\ldots j}$
- ullet $m_{i,j}$: min # of scalar multiply-add opns needed to compute $A_{i\ldots j}$
 - \circ **Note**: The optimal cost of the original problem: $m_{1,n}$
- How to compute $m_{i,j}$ recursively?

- ullet Base case: $m_{i,i}=0$ (single matrix, no multiplication)
- ullet Let the size of matrix A_i be $(p_{i-1} imes p_i)$
- Consider an optimal parenthesization of chain

$$\circ \ A_i \ldots A_j : (A_i \ldots A_k) \cdot (A_{k+1} \ldots A_j)$$

- ullet The optimal cost: $m_{i,j} = m_{i,k} + m_{k+1,j} + p_{i-1} imes p_k imes p_j$
- where:
 - $\circ \; m_{i,k}$: Optimal cost of computing $A_{i\ldots k}$
 - $\circ \ m_{k+1,j}$: Optimal cost of computing $A_{k+1\ldots j}$
 - $\circ~p_{i-1} imes p_k imes p_j$: Cost of multiplying $A_{i\dots k}$ and $A_{k+1\dots j}$

- ullet In an optimal parenthesization: k must be chosen to minimize m_{ij}
- The recursive formulation for m_{ij} :

$$m_{ij} = egin{cases} 0 & if \ i = j \ MIN\{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\} & if \ i < j \end{cases}$$

- ullet The m_{ij} values give the **costs of optimal solutions** to subproblems
- In order to keep track of how to construct an optimal solution
 - \circ Define s_{ij} to be the value of k which yields the optimal split of the subchain $A_{i\ldots j}$
 - lacksquare That is, $s_{ij}=k$ such that
 - $lacksquare m_{ij} = m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j$ holds

CE100 Algorithms and Programming II Direct Recursion: Inefficient!

Recursive Matrix-Chain (RMC) Order

```
RMC(p,i,j)
  if (i == j) then
    return 0
  m[i, j] = INF
 for k=i to j-1 do
    q = RMC(p, i, k) + RMC(p, k+1, j) + p_{i-1} p_k p_j
    if q < m[i, j] then</pre>
      m[i, j] = q
  endfor
        return m[i, j]
```


Direct Recursion: Inefficient!

- ullet Recursion tree for RMC(p,1,4)
- ullet Nodes are labeled with i and j values

Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

- We have relatively few subproblems
 - \circ one problem for each choice of i and j satisfying $1 \leq i \leq j \leq n$
 - \circ total $n+(n-1)+\cdots+2+1=rac{1}{2}n(n+1)=\Theta(n2)$ subproblems
- We can write a **recursive** algorithm based on recurrence.
- However, a recursive algorithm may encounter each subproblem many times in different branches of the recursion tree
- This property, overlapping subproblems, is the second important feature for applicability of dynamic programming

Computing the Optimal Cost (Matrix-Chain Multiplication)

- Compute the value of an optimal solution in a bottom-up fashion
 - \circ matrix A_i has dimensions $p_{i-1} imes p_i$ for $i=1,2,\ldots,n$
 - \circ the input is a sequence $\langle p_0, p_1, \dots, p_n
 angle$ where length[p] = n+1
- Procedure uses the following auxiliary tables:
 - $\circ \ m[1\ldots n,1\ldots n]$: for storing the m[i,j] costs
 - $\circ \ s[1\dots n,1\dots n]$: records which index of k achieved the optimal cost in computing m[i,j]

- How to choose the order in which we process m_{ij} values?
- Before computing m_{ij} , we have to make sure that the values for m_{ik} and $m_{k+1,j}$ have been computed for all k.

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

- $ullet m_{ij}$ must be processed after m_{ik} and $m_{j,k+1}$
- ullet Reminder: m_{ij} computed only for j>i

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

- $ullet m_{ij}$ must be processed after m_{ik} and $m_{j,k+1}$
- How to set up the iterations over i and j to compute m_{ij} ?

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

• If the entries m_{ij} are computed in the shown order, then m_{ik} and $m_{k+1,j}$ values are guaranteed to be computed before m_{ij} .

Bottom-Up Computation

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

Bottom-Up Computation

$$m_{ij} = \mathop{MIN}\limits_{i \leq k < j} \{m_{ik} + m_{k+1,j} + p_{i-1}p_kp_j\}$$

Algorithm for Computing the Optimal Costs

• Note: $l=\ell$ and p_{i-1} p_k p_j = $p_{i-1}p_kp_j$

```
MATRIX-CHAIN-ORDER(p)
  n = length[p]-1
  for i=1 to n do
   m[i, i]=0
  endfor
  for l=2 to n do
    for i=1 to n n-1+1 do
      j=i+l-1
      m[i, j]=INF
      for k=i to j-1 do
        q=m[i,k]+m[k+1, j]+p_{i-1} p_k p_j
        if q < m[i,j] then</pre>
          m[i,j]=q
          s[i,j]=k
      endfor
    endfor
  endfor
  return m and s
```

Algorithm for Computing the Optimal Costs

- The algorithm first computes
 - $\circ \ m[i,i] \leftarrow 0$ for $i=1,2,\ldots,n$ min costs for all chains of length 1
- ullet Then, for $\ell=2,3,\ldots,n$ computes
 - $\circ \ m[i,i+\ell-1]$ for $i=1,\ldots,n-\ell+1$ min costs for all chains of length ℓ
- ullet For each value of $\ell=2,3,\ldots,n$,
 - $m[i,i+\ell-1]$ depends only on table entries $m[i,k]\&m[k+1,i+\ell-1]$ for $i\leq k < i+\ell-1$, which are already computed

Algorithm for Computing the Optimal Costs

$$\underbrace{\{m[1,2], m[2,3], \dots, m[n-1,n]\}}_{(n-1) \text{ values}} \left\{ \begin{array}{l} \ell = 2 \\ \text{ for } i = 1 \text{ to } n-1 \text{ do} \\ m[i,i+1] = \infty \\ \text{ for } k = i \text{ to } i \text{ do} \\ \vdots \\ \\ \ell = 3 \\ \text{ for } i = 1 \text{ to } n-2 \text{ do} \\ m[i,i+2] = \infty \\ \text{ for } k = i \text{ to } i+1 \text{ do} \\ \vdots \\ \\ \ell = 3 \\ \text{ for } i = 1 \text{ to } n-2 \text{ do} \\ m[i,i+2] = \infty \\ \text{ for } k = i \text{ to } i+1 \text{ do} \\ \vdots \\ \ell = 4 \\ \text{ for } i = 1 \text{ to } n-3 \text{ do} \\ m[i,i+3] = \infty \\ \text{ for } k = i \text{ to } i+2 \text{ do} \\ \end{cases}$$

Table access pattern in computing m[i,j]s for

$$\ell = j - i + 1$$

$$ext{for } k \leftarrow i ext{ to } j-1 ext{ do} \ q \leftarrow m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

Table access pattern in computing m[i,j]s for

$$\ell = j - i + 1$$

mult.

 $((A_i) \ \vdots \ (A_{i+1}A_{i+2}\ldots A_j))$

Table access pattern in computing m[i,j]s for $\ell=j-i+1$

mult.

 $((A_iA_{i+1}) \ \vdots \ (A_{i+2}\ldots A_j))$

Table access pattern in computing m[i,j]s for $\ell=j-i+1$

$$egin{array}{c} egin{array}{c} A_i A_{i+1} A_{i+2} \end{pmatrix} & dots & (A_{i+3} \ldots A_j) \end{pmatrix}$$

Table access pattern in computing m[i,j]s for $\ell=j-i+1$

$$((A_iA_{i+1}\dots A_{j-1})\ dots\ (A_j))$$

References

$$-End-Of-Week-5-Course-Module-$$

