1 Introduction

The aim of this work is to estimate the parameters of the SIR model. In particular, I will focus on the first wave of contagion of the Coronavirus pandemic in Italy.

Figure 1: New infections per day in Italy

2 Model & Estimation

The model is as follows:

$$N_t = \gamma_1 N_{t-1} + \gamma_2 N_{t-1} \ln N_{t-1} + U_t, \tag{1}$$

where N_t is the total infected population at time t, and U_t is the error term.

The model has been estimated through GMM, using the following instruments (which are assumed to be exogenous with respect to U_t):

- \bullet N_{t-1}
- $\bullet \ N_{t-1} \ln N_{t-1}$
- Daily average temperature in Italy (not used in Model 1, but used in Model 2)
- Daily average mobility in Italy, in particular the percent change from baseline of occupation of:
 - Retail and recreation facilities
 - Transit stations

The results are as follows:

	Model 1	Model 2
γ_1	1.720***	1.718***
	(0.0204)	(0.0201)
γ_2	-0.0582***	-0.0579***
	(0.00166)	(0.00163)
Observations	136	136
J-stat	12.48	13.08
DoF	1	2

Table 1: GMM results: standard errors are in parentheses and *p < 0.10, **p < 0.05, ***p < 0.01

Figure 2: N_t vs N_{t-1} comparison between OLS and Model 1

3 Explicit Solution

In continuous time, the model equation (1) admits the following close form solution (i.e. total cases):

$$N(t) = \exp\left(\frac{Ke^{\gamma_2 t} - \gamma_1 + 1}{\gamma_2}\right), \qquad K = \gamma_1 + \gamma_2 \ln N_0, \tag{2}$$

And derivative (i.e. new cases):

$$\dot{N}(t) = K e^{\gamma_2 t} N(t). \tag{3}$$

K can therefore be estimated, in this case, I used grid search to find:

$$\hat{K} = \arg\min_{K} \|N_t - \hat{N}_K(t)\|, \qquad \hat{K} = 0.5175$$
 (4)

Figure 3: Comparison between the regressed equations and the real values

A Data Sources

- Covid infection data is available on the Covid section of the WHO website https://data.who.int/dashboards/covid19/
- Temperature data is available on the EU Copernicus Climate Data Store website https://cds.climate.copernicus.eu/
- Mobility data is available on the Google Covid19 Mobility Report website https://www.google.com/covid19/mobility/