

DEVOIR SURVEILLÉ N° 08

NOM:
Sciences Industrielles de l'Ingénieur
[Durée 4h - Aucun document - Calculatrice interdite - Répondre sur le document réponse.]
1. Cours – Transmettre et Convertir
Solution constructives permettant de transmettre un couple
Question 1 – Remplir le tableau par des croix ou par des OUI/NON.
Modélisation des transmissions
On s'intéresse au réducteur SEW (page 3).
Question 2 – Réaliser le schéma cinématique minimal du réducteur SEW.
Ougstion 2 Calcular la reprodut de véducation du véducatour
Question 3 – Calculer le rapport de réduction du réducteur.

DS_08.docx 1/4

Dispositions constructives	Homo- cinétique	Désalig	nement pré	pondérant a	utorisé	Amortis- sement des à- coups de couple
2	OUI / NON	Axial	Radial	Angulaire	Aucun	OUI / NON
1 7 6 4 5						
Joint de cardan simple						
5 0 0 1						
Joint d'accouplement élastique						
3						
Joint d'Oldham						
Joint à soufflet métallique						
Joint à goupilles						

DS_08.docx 2/4

4	1	chelle : 1	Rep.	_	2	ယ	4	5	6	7	8	9	10	1	12	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
			Nb.	1	_	_	_	_	2	_	1	1	1	_	2	_	1	1	1	1	1	1	1	2	1	1	4	_	_	4	_	1
Dessiné par : D:	7	RÉDUCTEUR	Désignation	Couvercle	Carter	Roulement 20 BC 10	Roue de sortie mn :1 67 dents	Arbre récepteur	Anneau élastique pour alésage 42x1.75	Roue d'entrée mn :1 52 dents	Joint à lèvre type A 17x40x7	Entretoise arbre intermédiaire	Pignon arbré mn :1 12 dents	Clavette parallèle forme B 4x4x9	Roulement 12 BC 10	Pignon moteur mn:1 19 dents	Joint à lèvre type AS 25x42x7	Anneau élastique pour arbre 15x1	Roulement d'entrée 17 BC 02	Arbre d'entrée	Clavette parallèle forme B 3x3x12	Anneau élastique pour arbre 10x1	Clavette parallèle forme A 6x6x32	Anneau élastique pour alésage 40x1.75	Clavette parallèle forme B 5x5x14	Anneau élastique pour alésage 28x1,2	Vis H M6-25	Joint plat carter	Roulement 15 BC 03	Rondelle Grower W 6	Entretoise arbre de sortie	Cale de réglage
Date : N° 2000	Lycée	RÉDUCTEUR SEW-USOCOME 32A	Matière	FGL 300	FGL 300		C 45	42 Cr Mo 4	75	C45		S235	C45			C 45				42 Cr Mo 4				75		2					S235	S235
			Observation					Trempé	NF E 22-165		DIN			NF E 22-177			DIN	NF E 22-163		Trempé	NF E 22-177	NF E 22-163	NF E 22-177	NF E 22-165	NF E 22-177	NF E 22-165						

DS_08.docx 3/4

2. CONCEPTION DES SYSTÈMES MÉCANIQUES

D'après ressources de M. Carrez.

Mise en situation

Il s'agit de concevoir un système permettant de réaliser une « poulie folle », à savoir un mécanisme de renvoi de tension. L'ensemble est composé d'une poulie 1 (fonte EN-GJS 350-5), d'un axe 2 (acier E335), d'une équerre moulée 3 (acier GS 400), d'une tige verticale 4 (acier E335) et d'un support 5 (fonte EN-GJS 350-5).

La charge extérieure est constante et est due principalement à la tension de la courroie. La direction de la courroie reste fixe. L'étanchéité dynamique sera réalisée par des joints à une lèvre et l'étanchéité statique par joint toriques.

On donne le schéma technologique. La tige 4 est en liaison pivot avec le support vertical 5 et la poulie 1 est en liaison pivot avec l'équerre 3.

Les liaisons à concevoir doivent répondre aux choix technologiques suivants :

- les deux liaisons pivot sont réalisées par deux coussinets à collerettes frittés en bronze auto lubrifiés de dimension 30x38x25;
- la tige 4 est en liaison complète avec l'équerre 3. La liaison complète est réalisée par une liaison par pincement. Le serrage se fera par une vis CHC;
- l'axe 2 est en liaison complète avec l'équerre 3. L'emploi d'une clavette n'est pas conseillé.

Question 4 - Concevoir la liaison pivot entre la poulie 1 et l'équerre 3 en utilisant des coussinets à collerette.

Question 5 - Concevoir la liaison encastrement démontable entre l'équerre 3 et l'axe 1.

Question 6 - Concevoir la liaison entre le support 5 et l'équerre 3 via la tige 4.

Question 7 – Préciser les ajustements ainsi que les jeux fonctionnels.

DS_08.docx 4/4