Functional Analysis

Alex Rutar* University of Waterloo

Fall 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: October 28, 2019

Contents

Chapter	I Fundamentals of Functional Analysis	
1	Basic Elements of Functional Analysis	1
	Linear operators and linear functionals	
	Axiom of Choice and the Hahn-Banach Theorem	
4	Some Applications of Baire Category Theorem	4
5	On Compactness of the Unit Ball	0
	More Topology	
	Nets	

I. Fundamentals of Functional Analysis

1 Basic Elements of Functional Analysis

Throughout, we denote by \mathbb{F} either the field \mathbb{R} or the field \mathbb{C} .

BANACH SPACES

Definition. Let X be a vector space over \mathbb{F} . A **norm** is a functional $\|\cdot\|: X \to \mathbb{R}$ such that it is

- (non-negative) $||x|| \ge 0$ for any $x \in X$
- (non-degenerate) ||x|| = 0 if and only if x = 0
- (subadditivity) $||x+y|| \le ||x|| + ||y||$ for $x, y \in X$
- $(|\cdot| homogeneity) ||\alpha x|| = |\alpha| ||x|| \text{ for } \alpha \in \mathbb{F}, x \in X.$

We call the pair $(X, \|\cdot\|)$ a **normed vector space**. Furthermore, we say that $(X, \|\cdot\|)$ is a **Banach space** provided that X is complete with respect to the metric $\rho(x, y) = \|x - y\|$.

Example. (i) $(\mathbb{F}, |\cdot|)$ is a Banach space.

(ii) $(\mathbb{F}^b, ||\cdot||_p), x = (x_j)_{j=1}^n$,

$$||x||_p = \begin{cases} \left(\sum_{i=1}^n |x_j|^p\right)^{1/p} & 1 \le p < \infty \\ \max_{j=1,\dots,n} |x_j| & p = \infty \end{cases}$$

(iii) Consider the space

$$L_p^{\mathbb{F}} = \left\{ f : [0,1] \to \mathbb{F} \mid f \text{ is Lebesgue measurable,} \left(\int_0^1 |f|^p \right)^{1/p} < \infty \right\} \Big|_{\sim_{\text{a.e.}}}$$

where $1 \le p < \infty$.

- (iv) $L_{\infty}^{\mathbb{F}}[0,1]$, $||f||_{\infty} = \operatorname{ess\,sup}_{t \in [0,1]} |f(t)|$.
- (v) Let (X, d) be a metric space. Then

$$C_b^{\mathbb{F}}(x) = \{ f : X \to \mathbb{F} \mid f \text{ is continuous and bounded } \}, \quad ||f||_{\infty} = \sup_{x \in X} |f(x)|$$

is a Banach space.

Here is a more interesting example:

Example. Let (X,d) be a metric space. We define the space of Lipschitz functions

$$\operatorname{Lip}^{\mathbb{F}}(X,d) = \left\{ f : X \to \mathbb{F} \middle| f \text{ is bounded, } L(f) = \sup_{\substack{x,y \in X \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} < \infty \right\}$$

We note that for $f: X \to \mathbb{F}$ that

$$f \in \operatorname{Lip}^{\mathbb{F}}(X, d) \Leftrightarrow \text{there is } L \ge 0 \text{ s.t. } |f(x) - f(x)| \le Ld(x, y) \text{ for all } x, y \in X$$
 (1.1)

It is easy to verify that $L(f) = \min\{L \ge 0 : (1.1) \text{ holds for } f\}$. It is an easy exercise to see that $\operatorname{Lip}^{\mathbb{F}}$ is a vector space, and that $L : \operatorname{Lip}^F(X,d) \to \mathbb{R}$ is a **semi-norm** (non-negative, subadditive, $|\cdot|$ -homogeneous). However, we do not have non-degeneracy (for example, constants are taken to 0). We define the Lipschitz norm

$$||f||_{\text{Lip}} = ||f||_{\infty} + L(f)$$

1.1 Proposition. (Lip^{\mathbb{F}}(X,d), $\|\cdot\|_{\text{Lip}}$) is a Banach space.

PROOF Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $(\operatorname{Lip}^{\mathbb{F}}(X,d),\|\cdot\|_{\operatorname{Lip}})$. Since $\|\cdot\|_{\infty} \leq \|\cdot\|_{\operatorname{Lip}}$ on $\operatorname{Lip}^F(X,d)$, we see that $(f_n)_{n=1}^{\infty}$ is uniformly Cauchy (and bounded), and hence there is $f=\lim_{n\to\infty} f_n$ in $C_b^{\mathbb{F}}(X)$, where the limit is taken with respect to $\|\cdot\|_{\infty}$, since $(C_b^{\mathbb{F}}(X),\|\cdot\|_{\infty})$ is a Banach space. If $x,y\in X$, then

$$|f(x) - f(x)| = \lim_{n \to \infty} |f_n(x) - f_n(y)| \le \sup_{n \in \mathbb{N}} |f_n(x) - f_n(y)|$$

$$\le \sup_{n \in \mathbb{N}} L(f_n) d(x, y) \le \sup_{n \in \mathbb{N}} ||f_n||_{\text{Lip}} d(x, y)$$

Since Cauchy sequences are bounded, we see that $|f(x) - f(y)| \le Ld(x,y)$, where $L = \sup_{n \in \mathbb{N}} \|f_n\|_{\text{Lip}} < \infty$. Thus by (1.1), $f \in \text{Lip}^{\mathbb{F}}(X,d)$. Exercise: one may verify that $\|f - f_n\|_{\text{Lip}} \to 0$.

Another collection of basic examples are given by the sequence spaces. We can define

$$\ell_1^{\mathbb{F}} = \left\{ x = (x_j)_{j=1}^{\infty} \in \mathbb{F}^{\mathbb{N}} \, \middle| \, ||x||_1 = \sum_{j=1}^{\infty} |x_j| < \infty \right\}$$

It is easy to see that $(\ell_1, ||\cdot||_1)$ is a normed vector space.

For 1 , and write

$$\ell_p^{\mathbb{F}} = \left\{ x \in \mathbb{F}^{\mathbb{N}} \middle| ||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p \right)^{1/p} < \infty \right\}$$

Note that $0 \in \ell_p$, $\alpha \in \mathbb{F}$, $\alpha x \in \ell_p$ if $x \in \ell_p$. Let q = p/(p-1) so that 1/p + 1/q = 1. Then q is called the **conjugate index**. We have

1.2 Proposition. (Young's Inequality) If $a, b \ge 0$ in \mathbb{R} , then $ab \le a^p/p + b^q/q$, with equality only if $a^p = b^q$.

and

1.3 Proposition. (Hölder's Inequality) If $x \in \ell_p$ and $y \in \ell_q$, then $xy = (x_i y_i)_{i=1}^{\infty} \in \ell_1$, with

$$\sum_{i=1}^{\infty} \left| x_i y_i \right| \le \|x\|_p \left\| y \right\|_q$$

with equality exactly when $\operatorname{sgn}(x_i y_i) = \operatorname{sgn}(x_k y_k)$ for all $j, k \in \mathbb{N}$ where $x_i y_i \neq 0 \neq x_k y_k$, and $|x|^p = (|x_j|^p)_{j=1}^{\infty}$ and $|y|^q$ are linearly dependent in ℓ_1 .

and finally

1.4 Proposition. (Minkowski's Inequality) If $x, y \in \ell_p$, then $||x + y||_p \le ||x||_p + ||y||_p$ with equality exactly when one of x or y is a non-negative scalar combination of the other.

REVIEW OF TOPOLOGY

Let *X* denote a non-empty set, and $\mathcal{P}(X)$ denote the power set of *X*.

Definition. A **topology** on a set X is a set τ of subsets of X such that

- (i) \emptyset , $X \in \tau$
- (ii) If $U_{\alpha} \in \tau$ for all $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \tau$.
- (iii) If $n \in \mathbb{N}$ and $U_i \in \tau$ for each $1 \le i \le n$, then $\bigcap_{i=1}^n U_i \in \tau$.

The sets $U \in \tau$ are called the **open sets** in X, and sets of the form $X \setminus U$ for some open set U are called the **closed sets** in X. The pair (X, τ) is called a **topological space**.

The metric topology on a metric space (X, d) is the topology

$$\tau_d = \{ U \subseteq X \mid \text{ for each } x_0 \in U, \text{ there is } \delta = \delta(x_0) \text{ s.t. } B_\delta(x_0) \subseteq U \}$$

Example. (i) Given two metrics d, ρ on X, we say that $d \sim \rho$ if and only if there are c, C > 0 such that

$$cd(x,y) \le \rho(x,y) \le Cd(x,y)$$
 for any $x,y \in X$

Note that $d \sim \rho$ implies that $\tau_d = \tau_\rho$, but the reverse implication is not true. An example of this are the metrics on $X = \mathbb{R}$ given by d(x,y) and $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$. Then $d \nsim \rho$ but $\tau_d = \tau_\rho$.

(ii) "Sorgenfry line" Set $X = \mathbb{R}$, and consider

$$\sigma = \{ V \subseteq \mathbb{R} \mid \text{ for any } s \in V, \text{ there is } \delta = \delta(s) > 0 \text{ s.t. } [s, s + \delta) \subseteq V \}$$

It is an exercise to verify that $\tau_{|\cdot|} \subseteq \sigma$. We say that σ is **finer** than $\tau_{|\cdot|}$.

(iii) Relative topology: let (X, τ) be a topological space, and $\emptyset \neq A \subseteq X$. Then we can define a topology $\tau|_A = \{U \cap A : U \in \tau\}$.

Definition. Let (X, τ) and (Y, σ) be topological spaces, and $f: X \to Y$. We say that f is $(\tau - \sigma -)$ **continuous** at x_0 in X if,

• given $V \in \sigma$ such that $f(x_0) \in V$, then there exists $U \in \tau$ such that $x_0 \in U$ and $f(U) \subseteq V$.

We say that f is $(\tau - \sigma -)$ continuous if it is continuous at each x_0 in X.

Space of bounded continuous functions into a normed space

Let $(Y, \|\cdot\|)$ denote a normed space. We let $\tau_{\|\cdot\|}$ denote the topology given by the metric $\rho(x, y) = \|x - y\|$. Let (X, τ) denote any topological space. Then we write

$$C_b^Y(X) = \{ f : X \to Y \mid f \text{ is bounded and } \tau - \tau_{\|\cdot\|} - \text{continuous} \}$$

With pointwise operations, we see that $C_b^Y(X)$ is a vector space. We also define for $f \in C_b^Y(X)$, $||f||_{\infty} = \sup\{||f(x)|| : x \in X\}$, making $(C_b^Y(X), ||\cdot||_{\infty})$ a normed vector space.

1.5 Theorem. If $(Y, \|\cdot\|)$ is a Banach space, then $(C_h^Y(X), \|\cdot\|_{\infty})$ is a Banach space.

PROOF Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $(C_b^Y(X), \|\cdot\|_{\infty})$. Then for any $x \in X$, we have that $(f_n(x))_{n=1}^{\infty}$ is Cauchy in $(Y, \|\cdot\|)$ since $\|f_n(x) - f_m(x)\| \le \|f_n - f_m\|_{\infty}$, and hence admis a limit f(x). In particular, $x \mapsto f(x)$ defines a function from X to Y. We shall fix $x_0 \in X$ and show that f is continuous at x_0 . Given $\epsilon > 0$, we let

- n_1 be so $n, m \ge n_1$ so that $||f_n f_m||_{\infty} < \epsilon/4$.
- n_2 be so $n \ge n_2$ so that $||f_n(x_0) f(x_0)|| < \epsilon/4$.
- $N = \max\{n_1, n_2\}.$
- $U \in \tau$, $x_0 \in U$ such that $f_N(U) \subseteq B_{\epsilon/4}(f(x_0)) \subset Y$.

Then for $x \in U$, we let n_x be so $n_x \ge n_1$ and $n \ge n_x$, so that $||f_n(x) - f(x)|| < \epsilon/4$. We then have

$$\begin{split} \|f(x) - f(x_0)\| &\leq \left\| f(x) - f_{n_x}(x) \right\| + \left\| f_{n_x}(x) - f_N(x) \right\| + \|f_N(x) - f_N(x_0)\| + \|f_N(x_0) - f(x_0)\| \\ &< \frac{\epsilon}{4} + \left\| f_{n_x} - f_N \right\|_{\infty} + \frac{\epsilon}{4} + \frac{\epsilon}{4} < \epsilon \end{split}$$

in other words that $f(U) \subseteq B_{\epsilon}(f(x_0))$.

Now let us check that $||f||_{\infty} < \infty$. Since $|||f_n||_{\infty} - ||f_m||_{\infty}| \le ||f_n - f_m||_{\infty}$, so $(||f_n||_{\infty})_{n=1}^{\infty} \subseteq \mathbb{R}$ is Cauchy, hence bounded. If $x \in X$, then

$$||f(x)|| = \lim_{n \to \infty} ||f_n(x)|| \le \sup_{n \in \mathbb{N}} ||f_n(x)|| \le \sup_{n \in \mathbb{N}} ||f_n||_{\infty} < \infty$$

so $||f||_{\infty} = \sup_{x \in X} ||f(x)|| < \infty$.

Notice that if ϵ , n_1 are as above, and further x_0 , N are as above, we have for $n \ge n_1$

$$||f_n(x_0) - f(x_0)|| \le ||f_n(x_0) - f_N(x_0)|| + ||f_N(x_0) - f(x_0)|| < \frac{\epsilon}{2}$$

so $||f_n - f||_{\infty} = \sup_{x_0 \in X} ||f_n(x_0) - f(x_0)|| \le \epsilon/2 < \epsilon$. This is uniform since n_1 is chosen uniformly in X.

1.6 Corollary. $(C_h^{\mathbb{F}}(X), ||\cdot||_{\infty})$ is a Banach space.

Let's first note the following general priniple: let (X,d), (Y,ρ) be metric spaces, where (X,d) is complete. If $\psi: X \to Y$ is a $(d-\rho-)$ isometry, then $(\psi(X),\rho|_{\psi(X)})$ is a complete metric space.

Example. (i) Let *T* be a non-empty set and let

$$\ell_{\infty}(T) = \left\{ x = (x_t)_{t \in T} \in \mathbb{F}^T \mid ||x||_{\infty} \right\} < \infty$$

With pointwise operations, $(\ell_{\infty}, \|\cdot\|_{\infty})$ is a normed space. In fact, it is a Banach space. Let us note that

$$f \mapsto (f(t))_{t \in T} : C_h(T, \mathcal{P}(T)) \to \ell_{\infty}(T)$$

is a surjective linear isometry, and the result follows.

(ii) Let $c = \{x \in \ell_{\infty} \mid \lim_{n \to \infty} x_n \text{ exists} \}$. Then $(c, \|\cdot\|_{\infty})$ is a Banach space. Consider the topological space given by $\omega = \mathbb{N} \cup \{\infty\}$, with topology

$$\tau_{\omega} = \mathcal{P}(\mathbb{N}) \cup \bigcup_{n \in \mathbb{N}} \{k \in \mathbb{N} : k \ge n\}$$

The map $f \mapsto (f(n))_{n=1}^{\infty} : C_b(\omega) \to c$ is a linear surjective isometry.

(iii) $c_0 = \{ x \in \mathbb{F}^{\mathbb{N}} \mid \lim_{n \to \infty} x_n = 0 \} \subseteq c \subseteq \ell_{\infty}.$

1.7 Lemma. If $x_0 \in X$ where (X, τ) is a topological space, then

$$\mathcal{I}(x_0) = \{ f \in C_b(x) \mid f(x_0) = 0 \}$$

is closed, hence complete, subspace of $C_b(X)$.

PROOF If $(f_n)_{n=1}^{\infty} \subseteq \mathcal{I}(x_0)$ and $f = \lim_{n \to \infty} f_n$ with respect to $\|\cdot\|_{\infty}$ in $C_b(X)$, then $f(x_0) = \lim_{n \to \infty} f_n(x_0) = 0$. Thus $f \in \mathcal{I}(x_0)$, and closed subsets of complete spaces are themselves complete.

Now, $f \mapsto (f(n))_{n=1}^{\infty} : \mathcal{I}(\infty) \to c_0$ is a (linear) surjective isometry.

(iv) Consider the Sorgenfty line (\mathbb{R} , σ): verify that

$$c_b(\mathbb{R}, \sigma) = \left\{ f : \mathbb{R} \to \mathbb{F} \mid f \text{ is bounded and } \lim_{t \to t_0^+} f(t) = f(t_0) \text{ for } t \in \mathbb{R} \right\}$$

2 Linear operators and linear functionals

Let X, Y be vector spaces. We let $\mathcal{L}(X, Y) = \{S : X \to Y \mid S \text{ is linear}\}$; this is itself a vector space with pointwise operations. Let $(X, \|\cdot\|)$ be a normed space. We denote

$$D(X) = \{x \in X : ||x|| < 1\}$$

$$S(X) = \{x \in X : ||x|| = 1\}$$

$$B(X) = \{x \in X : ||x|| \le 1\}$$

(Yes, this notation is confusion. No, I didn't choose it.)

- **2.1 Proposition.** If X, Y are normed spaces and $S \in \mathcal{L}(X,Y)$, then the following are equivalent:
 - (i) S is continuous
 - (ii) S is continuous at some $x_0 \in X$
- (iii) $||S|| = \sup_{x \in D(X)} ||Sx|| < \infty$.

Moreover, in this case, we have

$$||S|| = \min\{L > 0 : ||Sx|| \le L ||x|| \text{ for } x \in X\}$$
$$= \sup_{x \in S(X)} ||Sx|| = \sup_{x \in B(X)} ||Sx||$$

Proof $(i \Rightarrow ii)$ Obvious $(ii \Rightarrow iii)$ Note that

$$Sx_0 + D(Y) = \{Sx_0 + y : t \in D(Y)\} = \{y \in Y : ||Sx_0 - y'|| < 1\}$$

is a neighbourhood of Sx_0 . By the definition of metric continuity, there is $\delta > 0$ such that

$$x_0 + \delta D(X) = \{x_0 + \delta x : x \in D(x)\} = \{x' \in X : ||x_0 - x'|| < \delta\}$$

such that

$$Sx_0 + \delta S(D(X)) = S(x_0 + \delta D(x) \subseteq Sx_0 + D(Y)$$

which implies that $\delta S(D(X)) \subseteq D(Y)$ and $S(D(X)) \subseteq D(Y)/\delta$, in other words that $||Sx|| \le 1/\delta$ for $x \in D(X)$.

 $(iii \Rightarrow i)$ If $x \in X$ and $\epsilon > 0$, then

$$||Sx|| = (||x|| + \epsilon) \left| \left| S\left(\frac{1}{||x|| + \epsilon} ||x||\right) \right| \right| \le (||x|| + \epsilon)||S||$$

Then, letting $\epsilon \to 0^+$, we see that

$$||Sx|| \le ||x|| ||S|| = ||S|| ||X||$$

If $x, x' \in X$, then $||Sx - S'x|| \le ||S|| ||x - x'||$ is S is Lipschitz, hence continuous.

To complete the proof, the content of (iii) implies (i) tellus us that the Lipschitz constant $L(S) \le ||S||$. Furthermore, if ||x|| = 1, the preceding proof gives us that $||S||_{S(X)}$. Conversely,

$$||S|| = \sup_{x \in D(X) \setminus \{0\}} ||Sx|| = \sup_{x \in D(X) \setminus \{0\}} ||x|| \left| \left| S\left(\frac{1}{||x||}x\right) \right| \right| \le \sup_{x \in S(X)} ||Sx||$$

The remaining equivalence is obvious.

We now let $\mathcal{B}(X,Y) = \{ S \in \mathcal{L}(X,Y) \mid S \text{ is bounded } \}$. We will see that $\|\cdot\|$, above, defines a norm on $\mathcal{B}(X,Y)$.

2.2 Theorem. If X, Y are normed spaces, then $(\mathcal{B}(X, Y), ||\cdot||)$ is a normed space. Furthermore, if Y is a Banach spaces, then so to is $(\mathcal{B}(X, Y), ||\cdot||)$.

Proof Define

$$\Gamma: \mathcal{B}(X,Y) \to C_h^Y(\mathcal{B}(X))$$

given by $\Gamma(S) = S|_{B(X)}$. Then, by definition, Γ is linear, with

$$\|\Gamma(S)\|_{\infty} = \sup_{x \in B(X)} \|Sx\| = \|S\|$$

Thus $\|\cdot\|$ is a norm: if $S, T \in \mathcal{B}(X, Y), \alpha \in \mathbb{F}$,

$$||S + T|| = ||\Gamma(S + T)||_{\infty} = ||\Gamma(S) + \Gamma(T)||_{\infty} \le ||\Gamma(S)||_{\infty} + ||\Gamma(T)||_{\infty} = ||S|| + ||T||$$
$$||\alpha S|| = ||\Gamma(\alpha S)||_{\infty} = |\alpha| ||\Gamma(S)||_{\infty} = |\alpha| ||S||.$$

Furthermore, $\Gamma: \mathcal{B}(X,Y) \to C_h^Y(\mathcal{B}(X))$ is an isometry.

Now suppose that Y is a Banach space. We will show that $\Gamma(\mathcal{B}(X,Y))$ is closed in $C_b^Y(B(X))$, and hence $B(X,Y) = \Gamma^{-1}(\Gamma(\mathcal{B}(X,Y)))$ is complete. Let $(S_n)_{n=1}^{\infty} \subset \mathcal{B}(X,Y)$ be $\|\cdot\|$ – Cauchy. Then $(\Gamma(S_n))_{n=1}^{\infty}$ is $\|\cdot\|_{\infty}$ – Cauchy in $C_b^Y(B(X))$, and hence there is $f \in C_b^Y(B(X))$ such that $\lim_{n\to\infty} \|\Gamma(S_n) - f\|_{\infty} = 0$. Then we let $S: X \to Y$ be given by

$$Sx = \begin{cases} ||x|| f\left(\frac{x}{||x||}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

If $x, x' \in X$ and $\alpha \in \mathbb{F}$ are all such that $x, x', x + \alpha x' \neq 0$, then

$$S(x + \alpha x') = \left\| x + \alpha x' \right\| f\left(\frac{1}{x + \alpha x'}(x + \alpha x')\right)$$

$$= \left\| x + \alpha x' \right\| \lim_{n \to \infty} S_n\left(\frac{1}{x + \alpha x'}(x + \alpha x')\right)$$

$$= \lim_{n \to \infty} (S_n x + \alpha S_n x') = \lim_{n \to \infty} \left[\|x\| S_n\left(\frac{1}{\|x\|}x\right) + \alpha \|x'\| S_n\left(\frac{1}{\|x\|}x'\right) \right]$$

$$= \|x\| f\left(\frac{x}{\|x\|}\right) + \alpha \|x'\| f\left(\frac{x'}{\|x\|}\right)$$

$$= Sx + \alpha Sx'$$

The above computation is easily performed if any of x, x', $x + \alpha x'$ are 0. Hence $S \in \mathcal{L}(X, Y)$. We se that S is continuous (say, at a point on S(X)), so $S \in \mathcal{B}(X, Y)$. Finally, as $S|_{\mathcal{B}(X)} = f = \lim_{n \to \infty} S_n|_{\mathcal{B}(X)}$ (with respect to the uniform norm), we have

$$||S - S_n|| = \sup_{x \in B(X)} ||(S - S_n)x|| = ||f - \Gamma(S_n)||_{\infty}$$

goes to 0 as *n* goes to infinity.

Definition. Given a vector space X, let $X' = \mathcal{L}(X, \mathbb{F})$ denote the **algebraic dual**. If further X is a normed space, we let $X^* = \mathcal{B}(X, \mathbb{F})$ denote the (continuous) dual.

- **2.3 Corollary.** If X is a normed spaces, then X^* is always a Banach space.
- **2.4 Theorem.** Let for $x \in \ell_1$, $f_x : c_0 \to \mathbb{F}$ be given by $f_x(y) = \sum_{j=1}^{\infty} x_j y_j$. Then $f_x \in c_0^*$ with $||f_x|| = ||x||_1$. Furthermore, every element of c_0^* arises as above.

Proof If $x \in \ell_1$ and $y \in c_0 \subseteq \ell_\infty$, then

$$\sum_{j=1}^{\infty} |x_j y_j| \le \sum_{j=1}^{\infty} |x_j| \|y\|_{\infty} = \|x\|_1 \|y\|_{\infty} < \infty$$

so $f_x(y) = \sum_{j=1}^{\infty} x_j y_j$ is well-defined. It is obvious that f_x is linear: $f_x(y + \alpha y') = f_x(y) + \alpha f(y')$ for $y, yl \in c_0$ and $\alpha \in \mathbb{F}$. Also, $||f_x|| \le ||x||_1$. We let $y^n = (\overline{\operatorname{sgn} x}, \dots, \overline{\operatorname{sgn} x_n}, 0, 0, \dots) \in c_0$, with $||y^n|| = 1$. Then

$$||f_x|| \ge |f_x(y^n)| = \sum_{j=1}^n x_j \overline{\operatorname{sgn} x_i} = \sum_{j=1}^n |x_j|$$

so that $||f_x|| \ge ||x||_1$, and hence equality holds.

Now let $f \in c_0^*$, and write $e_n = (0, ..., 0, 1, 0, 0, ...) \in c_0$, and let $x_n = f(e_n)$. Then, let $y \in c_0$ and $y^n = (y_1, ..., y_n, 0, 0, ...)$ and we have

$$||y - y^n||_{\infty} = \sup_{j \ge n+1} |y_j|$$

which goes to 0 as n goes to infinity. Then since f is continuous, we have

$$f(y) = \lim_{n \to \infty} f(y^n) = \lim_{n \to \infty} \sum_{j=1}^n y_j x_j = \sum_{j=1}^\infty x_j y_j = f_x(y)$$

We use sequence $(y^n)_{n=1}^{\infty}$ as in $y^n \in c_0$, to see that

$$\sum_{j=1}^{n} |x_i| = |f(y^n)| \le ||f|| < \infty$$

so $x \in \ell_1$. Thus $f = f_x$, as desired.

2.5 Corollary. $\ell_1 \cong c^*$ isometrically isomorphically.

PROOF For $y \in c$, let $L(y) = \lim_{n \to \infty} y_n$. Given $y \in c$, let $y^n = (y_1, \dots, y_n, L(y), L(y), \dots) \in c$. Notice that $\|y - y^n\|_{\infty} \to 0$ similarly as above.

We let 1 = (1, 1, ...), and $1_n = (0, ..., 0, 1, 1, ...)$. If m < n, then $1_n - 1_m \in c_0$, so

$$|f(1_n) - f(1_m)| = |f_x(1_n - 1_m)| \le \sum_{j=m+1}^n |x_j|$$

so that $(f(1_n))_{n=1}^{\infty}$ is Cauchy in \mathbb{F} . Let $x_0 = \lim_{n \to \infty} f(1_n)$. Let $\tilde{x} = (x_0, x_1, ...) \in \ell_1$. Then letting $x_j = f(e_j)$, we see that

$$f(y) = \lim_{n \to \infty} f(y^n) = \sum_{j=1}^{\infty} x_j y_j + x_0 L(y)$$

Similarly as above, we may show that $||f|| = ||\tilde{x}||_1$.

Remark. We write $c_0^* \cong \ell_1$ isometrically.

2.6 Corollary. $(\ell_1, ||\cdot||_1)$ is complete.

3 Axiom of Choice and the Hahn-Banach Theorem

Definition. Let S be a non-empty set. A **partial ordering** is a binary relation \leq on S which satisfies for $s, t, n \in S$,

- (i) (reflexivity) $s \le s$
- (ii) (transitivity) $s \le t$, $t \le u$ implies $s \le u$
- (iii) (anti-symmetry) $s \le t$, $t \le s$ implies s = t

We call the pair (S, \leq) a **partially ordered set**. We say that (S, \leq) is **totally ordered** if, given $s, t \in S$, at least one of $s \leq t$ or $t \leq s$ holds. We say that (S, \leq) is **well-ordered** if given any $\emptyset \neq S_0 \subseteq S$, there is some $s_0 \in S_0$ such that $s_0 \leq s$ for $s \in S_0$. A **chain** in a poset (S, \leq) is any $\emptyset \neq C \subseteq S$ such that $(S, \leq)_C$ is totally ordered.

Example. (i) $X \neq \emptyset$, $(\mathcal{P}(X), \subseteq)$ is a poset

- (ii) (\mathbb{R}, \leq) is a totally ordered set
- (iii) (\mathbb{N}, \leq) , $(\omega = \mathbb{N} \cup \{\infty\}, \leq)$, are well-ordered sets.
 - **3.1 Theorem.** The following are equivalent:
 - (i) (Axiom of Choice 1): For any $x \neq \emptyset$, there is a function $\gamma : \mathcal{P}(X) \setminus \{\emptyset\} \to X$ such that $\gamma(A) \in A$ for each $A \in \mathcal{P}(X) \setminus \{\emptyset\}$.
 - (ii) (Axiom of Choice 2): Given any $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ where $A_{\lambda}\neq\emptyset$ for each λ ,

$$\prod_{\lambda \in \Lambda} A_{\lambda} = \{(a_{\lambda})_{\lambda \in \Lambda} : a_{\lambda} \in A_{\lambda} \text{ for each } \lambda\} \neq \emptyset$$

- (iii) (Zorn's Lemma): In a poset (S, \leq) , if each chain $C \subseteq S$ admits an upper bound in S, then (S, \leq) admis a maximal element.
- (iv) (Well-ordering principle): Any $S \neq \emptyset$ admits a well-ordering

Proof Exercise.

Definition. Let X be a vector space (over k). A subset $S \subseteq X$ is called

- **linearly independent** if for any distinct $x_1, ..., x_n \in S$, the equation $0 = \alpha_1 x_1 + \cdots + \alpha_n x_n = 0$ where $\alpha_i \in k$ implies $\alpha_1 = \cdots = \alpha_n = 0$.
- **spanning** if each $x \in X$ admits $x_i \in S$ and $\alpha_i \in k$ such that $x = \alpha_1 x_1 + \cdots + \alpha_n x_n$.
- Hamel basis if it is both linearly independent and spanning
- **3.2 Proposition.** Any vector space X admits a Hamel basis.

PROOF Let $\mathcal{L} = \{L \subseteq X : L \text{ is linearly independent}\}$. Then (\mathcal{L}, \subseteq) is a poset. Verify that for any chain $\mathcal{C} \subseteq \mathcal{L}$, that $U = \bigcup_{L \in \mathcal{C}} L \in \mathcal{L}$ and is an upper bound for \mathcal{C} . Apply Zorn to find a maximal element M in (\mathcal{L}, \subseteq) . Verify that M is spanning for X.

3.3 Corollary. If X is an infinite dimensional normed space, then there exists $f \in X' \setminus X^*$.

PROOF Our assumption provides $\{e_n\}_{n=1}^{\infty}$ which is linearly independent. By normalizing each element, we may and will suppose that each $||e_n|| = 1$. Let

$$\operatorname{span}\{e_n\}_{n=1}^{\infty} = \left\{ \sum_{j=1}^{m} \alpha_j e_{n_j} : m \in \mathbb{N}, \alpha_i \in \mathbb{F}, n_1 < \dots < n_m \right\}$$

and let B be any linearly independent set containing $\{e_n\}_{n=1}^{\infty}$. Define $f: X = \operatorname{span} B \to \mathbb{F}$ be given for $x = \sum_{b \in B \setminus \{e_n\}_{n=1}^{\infty}} \alpha_b b + \sum_{j=1}^n \alpha_j e_{n_j}$ by $f(x) = \sum_{j=1}^m \alpha_j n_j$. The point is that $f(e_n) = n$ and f(e) = 0 for any other $e \in B$. Notice that

$$||f|| = \sup_{x \in B(X)} |f(x)| \ge \sup_{n \in \mathbb{N}} |f(e_n)| = \sup_{n \in \mathbb{N}} n = \infty$$

Definition. Let X be a \mathbb{R} -vector space. A **sublinear functional** is any $\rho: X \to \mathbb{R}$ such that it satisfies

- (non-negative homogenity) $\rho(tx) = t\rho(x)$ for $t \ge 0$, $x \in X$.
- (subadditivity) $\rho(x+y) \le \rho(x) + \rho(y)$ for $x, y \in X$.

3.4 Theorem. (Hahn-Banach) Let X be a \mathbb{R} -vector space, $\rho: X \to \mathbb{R}$ a sublinear functional, $Y \subseteq X$ a subspace and $f \in Y'$ such that $f \leq \rho|_Y$. Then there exists $F \in X'$ such that $F|_Y = f$ and $F \leq \rho$ on X.

PROOF We first do this for extensions by a single point $x \in X \setminus Y$. We wish to find $c \in \mathbb{R}$ such that

$$f(y) + \alpha c \le \rho(y + \alpha x)$$

for $y \in Y$ and $\alpha \in \mathbb{R}$. In this case, we let $F : \operatorname{span} Y \cup \{x\} \to \mathbb{R}$ be given by $F(y + \alpha x) = f(y) + \alpha c$, and we have that F is linear and satisfies $F \le \rho$ on $\operatorname{span} Y \cup \{s\}$. To do this, let y_+, y_- in Y and observe that $f(y_+) + f(y_-) = f(y_+ + y_-) \le \rho(y_+ + y_-) \le \rho(y_+ + x) + \rho(y_- - x)$ so that $f(y_-) - \rho(y_- - x) \le \rho(y_+ + x) - f(y_+)$. It thus follows that

$$\sup\{f(y) - \rho(y - x) : y \in Y\} \le \{\rho(y + x) - f(y) : y \in Y\}$$

so we may find $c \in \mathbb{R}$ for which

$$\sup\{f(y) - \rho(y - x) : y \in Y\} \le c \le \inf\{\rho(y + x) - f(y) : y \in Y\}$$

If t > 0, then for $y \in Y$,

$$c \leq \rho\left(\frac{1}{t}y + x\right) - f\left(\frac{1}{t}y\right) \Rightarrow tc \leq \rho(y + tx) - f(y) \Rightarrow f(y) + tc \leq \rho(y + tx)$$

and if s > 0, then for $y \in Y$,

$$f\left(\frac{1}{s}y\right) - \rho\left(\frac{1}{s}y - x\right) \le c \Rightarrow sc \le f(y) - \rho(y + sx) \Rightarrow f(y) - sc \le \rho(y - sx)$$

Clearly, $f(y) + 0 \le \rho(y + 0x)$. Hence, we have our desired inequality.

We now use Zorn's lemma to lift this result to the whole space. Consider the set of "p-extensions" of f,

$$\mathcal{E} = \{ (\mathcal{M}, \psi) \mid Y \subseteq \mathcal{M} \subseteq X, \mathcal{M} \text{ is a subspace, } \psi \in \mathcal{M}', \psi|_{Y} = f, \psi \leq P|_{\mathcal{M}} \}$$

Define a partial order on \mathcal{E} by

$$(\mathcal{M}, \psi) \leq (\mathcal{N}, \phi)$$
 iff $\mathcal{M} \subseteq \mathcal{N}, \phi|_{\mathcal{M}} = \psi$

Suppose $C \subseteq \mathcal{E}$ is a chain with respect to \leq . We let

- $\mathcal{U} = \bigcup_{(M,\omega)} \mathcal{M}$ which is a subspace, since \mathcal{C} is a chain.
- and define $\phi: \mathcal{U} \to \mathbb{R}$ by $\phi(x) = \psi(x)$ whenever $x \in \mathcal{M}$, which is again well-defined since C is a chain.

Furthermore, we see that $\phi \in U'$, since if $x,y \in \mathcal{U}$, get $x \in \mathcal{M}$, $y \in \mathcal{N}$ for some $(\mathcal{M},\psi) \leq (\mathcal{N},\psi') \in \mathcal{C}$. Then $\phi(x+y) = \psi'(x+y) = \psi'(x) + \psi'(y) = \phi(x) + \phi(y)$, etc. Likewise, $\psi \leq p|_{\mathcal{U}}$. Thus by Zorn's lemma, \mathcal{E} admits a maximal element \mathcal{M} , F Then $\mathcal{M} = X$, for if not, then we would find $x \in X \setminus \mathcal{M}$ and we apply step one to span $\mathcal{M} \cup \{x\}$ to get F', a strictly larger element violating maximality.

Trivially, any \mathbb{C} -vector siace is a \mathbb{R} -vector space.

- **3.5 Lemma.** Let X be a \mathbb{C} -vector space.
 - (i) If $f \in X'_{\mathbb{R}}$ into \mathbb{R} , then define $f_{\mathbb{C}}$ given by $f_{\mathbb{C}}(x) = f(x) if(ix)$ defines an element of $X' = X'_{\mathbb{C}}$.
- (ii) If $g \in X'$, then f = Re g in $X'_{\mathbb{R}}$ satisfies $g = f_{\mathbb{C}}$.
- (iii) If X is a normed \mathbb{C} -vector space, then for $f \in X'_{\mathbb{R}}$,

$$f \in X_{\mathbb{R}}^*$$
 if and only if $f_{\mathbb{C}} \in X^* = X_{\mathbb{C}}^*$ with $||f|| = ||f_{\mathbb{C}}||$

PROOF (i) and (ii) are straightforward exercises; let's see (iii). We let fr $x \in X$, $z = \operatorname{sgn} f_{\mathbb{C}}(x)$. Then

$$\mathbb{R} \ni |f_{\mathbb{C}}(x)| = \overline{z} f_{\mathbb{C}}(x) = f_{\mathbb{C}}(\overline{z}x) = \operatorname{Re} f_{\mathbb{C}}(\overline{z}x) = f(\overline{z}x) = |f(\overline{z}x)|$$

$$\leq ||f|| ||\overline{z}x|| = ||f|| ||\overline{z}|| ||x|| = ||f|| ||x||$$

so we see that $||f_{\mathbb{C}}|| \le ||f||$. Conversely,

$$|f(x)| = |\operatorname{Re} f_{\mathbb{C}}(x)| \le |f_{\mathbb{C}}(x)| \le ||f_{\mathbb{C}}|| ||x|| \text{ so that } ||f|| \le ||f_{\mathbb{C}}||$$

3.6 Corollary. If X is a normed space, $Y \subseteq X$ a subspace and $f \in Y^*$, then there exists $F \in X^*$ such that $F|_Y = f$ and ||F|| = ||f||.

PROOF Define $\rho: X \to \mathbb{R}$ be given by $p(x) = ||f|| \cdot ||x||$, so p is sublinear and $\operatorname{Re} f \leq p|_Y$. Apply Hahn-banach to to this data and get $\tilde{F} \in X_{\mathbb{R}}^*$ such that $\tilde{F}|_Y = \operatorname{Re} f$ and $\tilde{F} \leq p$, and let $F = \tilde{F}_{\mathbb{C}}$.

3.7 Corollary. If X is a normed space, $x \in C$, then there is $f \in X^*$ such that

$$||x|| = f(x) = |f(x)|$$
 and $||f|| = 1$

PROOF Let $f_0: \mathbb{F} x \to \mathbb{F}$ be given by $f_0(\alpha x) = \alpha ||x||$. If $x \neq 0$, then

$$||f_0|| = \sup_{\|\alpha x\| \le 1} |f_0(\alpha x)| = \sup_{\|\alpha x\| \le 1} |\alpha| ||x|| = 1$$

and apply the previous corollary. If x = 0, this is trivial.

3.8 Theorem. Let X be a normed space and X^{**} denote the bidual. For $x \in X$, define $\hat{x}: X^* \to \mathbb{F}$ by $\hat{x}(f) = f(x)$. Then $\hat{x} \in X^{**}$ with $||\hat{x}|| = ||x||$, so that $x\hat{x}: X \to X^{**}$ is a linear isometry.

PROOF Notice that $|\hat{x}(f)| = |f(x)| \le ||f|| ||x||$ so $||\hat{x}|| \le ||x||$. The last corollary provides for $x \in X$ an $f_x \in S(X^*)$ with $|f_x(x)| = ||x||$. Then $||\hat{x}|| \le |\hat{x}(f_x)| = ||x||$. Hence $||\hat{x}|| = ||x||$. Clearly $x \mapsto \hat{x}$ is linear.

Remark. Since X^{**} , being a dual space, is complete, we have that $\hat{X} = \{\hat{x} : x \in X\}$ satisfies that its closure $\overline{\hat{X}} \subseteq X^{**}$ is complete. Hence $\overline{\hat{X}}$ is a Banach space containing a dense copy of X. Often, we will simply write $\overline{\hat{X}} = \overline{X}$ and call it the **completion** of X.

GEOMETRIC HAHN-BANACH

If $A, B \subset X$ with $A \cap B = \emptyset$ (and other suitable assumptions), we will find a \mathbb{R} -hyperplane between A and B.

Definition. In a vector space, a **hyperplane** is any set of the form $x_0 + \ker f$ with $x_0 \in X$ and $f \in X'$. Then a \mathbb{R} -**hyperplane** is any set of the form $x_0 + \ker R$ is any set of th

- **3.9 Proposition.** Let X be a normed space.
 - (i) If $f \in X^* \setminus \{0\}$, then ker f is closed and nowhere dense.
 - (ii) if $f \in X' \setminus X^*$, then $\overline{\ker f} = X$.

Thus a hyperplane in X is either closed and nowhere dense, or it is dense.

PROOF To see (i), $\ker f = f^{-1}(\{0\})$ is a closed set since f is continuous. Furthermore, if $Y \subseteq X$ is a proper closed subspace, then it is nowhere dense. If not, then there would exist $y_0 \in T$ and $\delta > 0$ such that $y_0 + \delta D(X) \subseteq Y$. But then $D(X) \subseteq \frac{1}{\delta}(Y - y_0) = Y$, so $X = \operatorname{span} D(X) \subseteq Y$, a contradiction.

To see (ii), suppose that ker f is not dense in X. Then there would be $x_0 \in X$ and $\delta > 0$ such that $(x_0 + \delta D(X)) \cap \ker f = \emptyset$, so

$$0 \notin f(x_0 + \delta D(X)) = f(x_0) + \delta f(D(X)) \Longrightarrow \frac{1}{\delta} f(x_0) \notin -f(D(X)) = f(D(X))$$
 (3.1)

But then $||f|| \le \frac{1}{\delta}f(x_0)$, for if $||f|| > \frac{1}{\delta}f(x_0)$, there would be $x \in D(X)$ such that $|f(x)| > \frac{1}{\delta}|f(x_0)|$. Thus

$$\left| \frac{f(x_0)}{\delta f(x)} \right| < 1 \Longrightarrow \frac{f(x_0)}{\delta f(x)} = \frac{1}{\delta} f(x)$$

contradicting the statement in (3.1).

Definition. Let $\emptyset \neq A \subseteq X$. We say that A is

- **convex** if for $a, b \in A$ and $0 < \lambda < 1$, $(1 \lambda)a + \lambda b \in A$.
- **absorbing** at $a_0 \in A$ if for any $x \in X$, there is $\epsilon(a_0, x) > 0$ such that $a_0 + tx \in A$ for $0 \le t < \epsilon$.

For example, if X is a normed space, then any open set is absorbing around any of its points.

- **3.10 Lemma.** (Minkowski Functional) Let $A \subset X$ be a convex set containing 0 and absorbing at 0. Define $p: X \to \mathbb{R}$ by $p(x) = \inf\{t > 0 : x \in tA\}$. Then p is a sublinear functional. Moreover, we have that
 - (i) $\{x \in X : p(x) < 1\} \subseteq A \subseteq \{x \in X : p(x) \le 1\}$; and
 - (ii) if X is normed and A is a neighbourhood of 0, then there is N > 0 such that $p(x) \le N \|x\|$ for $x \in X$.

PROOF First note, for any $x \in X$, if A is absorbing at 0, there is s > 0 such that $sx \in A$, so $x \in \frac{1}{s}A$ and hence $0 \le p(x) < \infty$.

Let's see non-negative homogeneity. Clearly p(0) = 0. If s > 0 and $x \in X$, then

$$p(sx) = \inf\{t > 0 : sx \in tA\} = \inf\left\{t > 0 : x \in \frac{t}{s}A\right\} = s \cdot \inf\left\{\frac{t}{s} > 0 : x \in \frac{t}{s}\right\} = sp(x)$$

We also have subadditivity. First, note that if s, t > 0 and $a, b \in A$, then

$$sa + tb = (s+t)\left(\frac{s}{s+t}a + \frac{s}{s+t}b\right) \in (s+t)A \Longrightarrow sA + tA \subseteq (s+t)A$$

by convexity, and also $(s + t)A = \{(s + t)a : a \in A\} \subseteq \{sa + tb : a, b \in A\} = sA + tA$. Thus sA + tA = (s + t)A. Now for $x, y \in X$, we have

$$p(x) + p(y) = \inf\{s > 0 : x \in sA\} + \inf\{t > 0 : y \in tA\}$$

$$= \inf\{s + t : s > 0, t > 0, x \in sA, y \in tA\}$$

$$\geq \inf\{s + t : s > 0, t > 0, x + y \in sA + tA = (s + t)A\}$$

$$= \inf\{r > 0 : x + y \in rA\} = p(x + y)$$

so that p is a sublinear functional. Then

- (i) If p(x) < 1, then there is 0 < t < 1 so $x \in tA$; i.e. $\frac{1}{t}x \in A$ and $x = (1 t) = +t\frac{1}{t}x \in A$. The second inclusion is obvious.
- (ii) The assumptions provide $\delta > 0$ so $\delta D(X) \subseteq A$. Then for $x \in X$ and $\epsilon > 0$,

$$x \in (||x|| + \epsilon)D(X) = \frac{||x|| + \epsilon}{\delta}\delta D(X) \subseteq \frac{||x|| + \epsilon}{\delta}A$$

so $p(x) \le \frac{\|x\| + \epsilon}{\delta}$ so $p(x) \le \frac{1}{\delta} \|x\|$; the result follows with $N = 1/\delta$.

3.11 Theorem. (Hyperplane Separation) Let X be an \mathbb{F} –vector space, $A, B \subset X$ be convex with $A \cap B = \emptyset$ and A absorbing at some a_0 . Then there are $f \in X'$ and $\alpha \in \mathbb{R}$ such that

$$\operatorname{Re} f(a) \ge \alpha \ge \operatorname{Re} f(b)$$

for $a \in A$ and $b \in B$. Moreover, if X is normed, then

- If A is a neighbourhood of a_0 , we have $f \in X^*$; and
- if A is absorbing around each of its points (for example if A is open), then we have Re f (a) > α ≥ Re f (b).

PROOF We first re-centre at 0. Let $A - B = \{a - b : a \in A, b \in B\}$. Then it is easy to verify that

- (i) A B is absorbing at any $a_0 b$, $b \in B$
- (ii) A B is convex
- (iii) if X is normed and A a neighbourhood of a_0 , then A B is a neighbourhood of each $a_0 b$, $b \in B$; and if A is absorbing around any of its points (resp. open), then A_B is absorbing around any of its points (resp. open).

Let $x_0 = a_0 - b_0$ for some $b_0 \in V$, and set $C = x_0 - (A - B)$, so we have $0 = x_0 - x_0 \in C$. Then by the above points, C is absorbing at 0, convex, and if X is normed and A a neighbourhood of a_0 , then C is a neighbourhood of 0; and if A is absorbing at any of its points (resp. A is open), then C is absorbing at each of its points (resp. open).

Let p be the Minkowski functional of C. Notice that since $A \cap B = \emptyset$, $0 \notin A - B$ so $x_0 \notin C$. Thus by (i) of the lemma, $p(x_0) > 1$.

Let us find f and α . Let $f_0 : \mathbb{R} x_0 \to \mathbb{R}$, by $f_0(sx) = sp(x_0)$. Hence f_0 is linear and $f_0 \le p|_{Rx_0}$, so by Hahn-Banach, get $f \in X_{\mathbb{R}}'$ such that $f \le p$ on X. If $a \in A$ and $b \in B$, then

 $x_0-(a-b) \in C$, so by (i) of the lemma, since $p(x_0) \ge 1$, we have $f(x_0-(a-b)) \le p(x_0-(a-b)) \le 1$. Thus $f(x_0) + f(b) \le 1 + f(a)$ so in fact $f(b) \le f(a)$. Thus there exists some $\alpha \in \mathbb{R}$ such that

$$\sup\{f(b):b\in B\}\leq\alpha\leq\inf\{f(a):a\in A\}$$

If $\mathbb{F} = \mathbb{R}$, we are done; otherwise, we shall replace f by $f_{\mathbb{C}}$

For the remainder of the proof, we suppose X is a normed space, and A is a neighbourhood of a_0 . Then part (ii) of the lemma provides N > 0 so that $p(x) \le N ||x||$. Then for $x \in X$, $f(x) \le p(x) \le N ||x||$ and $-f(x) = p(-x) \le N ||-x|| = N ||x||$ so $|f(x)| \le N ||x||$, in other words that $||f|| \le N$ and $f \in X^*$. If A is absorbing around any of its points, then $f(a) > \alpha$ for any $a \in A$. Indeed, suppose $f(a) = \alpha$. Then there would be t > 0 so $a + t(-x_0) \in A$. But then $\alpha \le f(a - tx_0) = f(a) - tf(x_0) < \alpha$, a contradiction.

Definition. If $\emptyset \neq S \subset X$, then its **convex hull** is given by

$$(S) = \{ \sum_{i=1}^{n} \lambda_j x_j : n \in \mathbb{N}, x_1, \dots, x_n \in S \text{ and } \lambda_1, \dots, \lambda_n \ge 0 \text{ with } \sum_{j=1}^{n} \lambda_j = 1 \}$$

One can verify that (S) is in fact convex, and is the smallest convex set containing S, i.e.

$$(S) = \bigcap \{C : S \subseteq C \subseteq X, C \text{ convex}\}\$$

If *X* is normed, we let (*S*) denote the **closed convex hull**, i.e. the closure of the convex hull

Definition. A **half-space** of *X* is any set of the form $H = \{x \in X : \operatorname{Re} f(x) \le \alpha\}$ for some $f \in X'$, $\alpha \in \mathbb{R}$.

If *X* is normed, then the last proposition shows *H* is closed if and only if *f* is bounded.

3.12 Theorem. If X is a normed vector space and $\emptyset \neq S \subset X$, then $(S) = \cap \{H : S \subseteq H \subset X, H \text{ a closed half space}\}.$

PROOF It is immediate that $(S) \subseteq \cap \{H : S \subseteq H \subset X, H \text{ a closed half-space}\}$. Thus suppose $x_0 \notin (S)$. Then there is $\delta > 0$ such that $(x_0 + \delta D(X)) \cap (S) = \emptyset$. Since $x_0 + \delta D(X)$ is open and convex, hyperplace separation gives provides $f \in X^*$ and $\alpha \in \mathbb{R}$ so $\operatorname{Re} f(a) > \alpha \geq \operatorname{Re} f(b)$ for $a \in x_0 + \delta D(X)$ and $b \in (S)$. Then $S \subset H = \{y \in X : \operatorname{Re} f(x) \leq \alpha\}$ but $x_0 \notin H$.

4 Some Applications of Baire Category Theorem

4.1 Theorem. (Baire Category I) If (X,d) is a complete metric space and $\{U_n\}_{n=1}^{\infty}$ is a countable collection of dense, open subsets, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X.

Definition. Let (X,d) be a metric space. A subset $F \subset X$ is **nowhere dense** if $X \setminus F$ is dense in X; equivalently, \overline{F} contains no non-trivial open subsets. We say that a subset $M \subseteq X$ is **meagre** (1st category) if $M = \bigcup_{n=1}^{\infty} F_n$ and each F_n is nowhere dense; and a set is **non-meagre** (2nd category) otherwise.

4.2 Theorem. (Baire Category II) Let (X,d) be a complete metric space. Then a non-empty open $U \subseteq X$ is non-meagre.

PROOF Suppose not, so $U = \bigcup_{n=1}^{\infty} F_n \subseteq \bigcup_{n=1}^{\infty} \overline{F}_n$, each F_n (hence \overline{F}_n) nowhere dense. Then each $V_n = X \setminus \overline{F}_n$ is open and dense, and hence by BCT I, $G = \bigcap_{n=1}^{\infty} V_n$ is dense in X, and hence $U \cap G \neq \emptyset$, violating assumption

4.3 Theorem. (Banach-Steinhaus) Let X, Y be normed spaces, $U \subseteq X$ be non-meagre, and $\mathcal{F} \subset \mathcal{B}(X,Y)$ be such that for each $x \in U$, $\sup\{\|Tx\| : T \in \mathcal{F}\} < \infty$ (pointwise bounded). Then \mathcal{F} is uniformly bounded, i.e. $\sup\{\|T\| : T \in \mathcal{F}\} < \infty$.

Proof Let for each $n \in \mathbb{N}$

$$F_n = \bigcap_{T \in \mathcal{F}} T^{-1}(nB(Y)) = \{ x \in X : ||Tx|| \le n \text{ for all } T \in \mathcal{F} \}$$

so each F_n is closed and, by the pointwise boundedness assumption, $U \subseteq \bigcup_{n=1}^{\infty} F_n$. By assumption of non-meagreness of U, at least one F_{n_0} admis an interior point: there is $x_0 \in F_{n_0}$ and $\delta > 0$ such that $x_0 + \delta D(X) \subseteq F_{n_0}$. Then if $x \in D(X)$, we have

$$Tx = \frac{1}{\delta} \left[T\left(x_0 + \frac{\delta}{2}x\right) - T\left(x_0 - \frac{\delta}{2}x\right) \right]$$

so $||Tx|| \le \frac{2}{\delta}n_0$, in other words

$$||T|| = \sup_{x \in D(x)} ||Tx|| \le \frac{2n_0}{\delta} < \infty$$

where the bound is independent of *T*.

4.4 Theorem. (Open Mapping) Let X, Y be Banach spaces, and $T \in B(X, Y)$ surjective. Then T is an open map; i.e. T(U) is open in Y whenver U is open in X.

Remark. Given $x \in X$ and $\alpha \in \mathbb{F} \setminus \{0\}$, non-empty $A \subset X$, we have that $\overline{x + \alpha A} = x + \alpha \overline{A}$. Indeed, note that for $(a_k)_{k=1}^{\infty} \subset A$, we have

$$a_k \to a \in \overline{A}$$
 if and only if $x + \alpha a_k \to x + \alpha a \in x + \alpha \overline{A}$

4.5 Lemma. With the assumptions as above, we have that if $\overline{T(D(X)} \supset rB(Y)$ for some r > 0, then $T(D(X)) \supseteq rD(Y)$.

PROOF Let $z \in rD(Y)$ and let $0 < \delta < 1$ be so $||z|| < r(1-\delta) < r$. Set $y = z/(1-\delta)$ so $||y|| < r/(1-\delta)$. It suffices to show that $y \in \frac{1}{1-\delta}T(D(X))$. To begin, let $A = T(D(X)) \cap rB(Y)$, so $\overline{A} = rB(Y)$. Indeed, if $y \in rB(Y) \subseteq \overline{T(D(X))}$, then there is $(y_k)_{k=1}^{\infty} \subset \overline{T(D(X))}$, so $y = \lim y_k$. But then there is $x_k \in D(X)$ so each $||y_k - T(x_k)|| < 1/k$ so $y = \lim T(x_k)$ with each $x_k \in D(X)$.

Now we inductively build a sequence $(y_n)_{n=1}^{\infty}$ as follows.

- Since $y \in rD(Y) \subseteq \overline{A}$, there is $y_1 \in A \cap (y + \delta rD(Y))$
- $y \in y_1 + \delta r(D(Y)) \subseteq y_1 + \delta \overline{A} = \overline{y_1 + \delta A}$, so there is $y_2 \in (y_1 + \delta A) \cap (y + \delta^2 r D(Y))$
- $y \in y_n + \delta^n rD(Y) \subseteq \overline{y_n + \delta^n A}$, so there is $y_{n+1} \in (y_n + \delta^n A) \cap (y + \delta^{n+1} rD(Y))$

By construction, $y_{n+1} - y_n \in \delta^n A$, so $\|y_{n+1} - y_n\| \le \delta^n r$ and there is $x_n \in \delta^n D(X)$ such that $y_{n+1} - y_n = Tx_n$. Likewise, $y_1 \in A \subseteq T(D(X))$ so $y = T(x_0)$ for some $x_0 \in D(X)$. Notice that each $y_n \in y + \delta^n r(Y)$, so $\|y_n - y\| \le \delta^n r \to 0$. Since X is complete, we let $x = \sum_{n=0}^{\infty} x_n$, and by construction

$$||x|| \le \sum_{n=0}^{\infty} ||x_n|| < \sum_{n=0}^{\infty} \delta^n = \frac{1}{1-\delta}$$

Then by linearity and continuity of T, we have

$$Tx = \sum_{n=0}^{\infty} Tx_n = y_1 + \sum_{n=1}^{\infty} (y_{n+1} - y_n) = y_N + \sum_{n=N}^{\infty} (y_{n+1} - y_n) \to y$$

so that indeed T(x) = y, as required.

Remark. So far, we've only used completeness of X and continuity and linearity of T.

We now proceed with the proof of the open mapping theorem.

PROOF It suffices to see that T(D(X)) contains a neighbourhood of 0 in Y. Indeed, if $\emptyset \neq U \subseteq X$ is open, $x \in U$, then there is $\delta > 0$ such that $x + \delta D(X) \subseteq U$, so $U - x \supseteq \delta D(X)$. If $T(D(X)) \supseteq rD(Y)$, then $T(U - x) \supseteq \delta T(D(X)) \supseteq r\delta D(Y)$ so that $Tx + r\delta D(Y) \subseteq T(U)$. In other words, T(U) is a neighbourhood of any of its points, and thus open.

Now write $X = \bigcup_{n=1}^{\infty} nD(X)$, and we assume that T(X) = Y. Hence $Y = \bigcup_{n=1}^{\infty} nT(D(X))$, so $Y = \bigcup_{n=1}^{\infty} n\overline{T(D(X))}$. But Y is complete, so by Baire category theorem, there is some n so that $n\overline{T(D(X))}$ has non-empty interior. Since nT(D(X)) is convex and symmetric, and hence $n\overline{T(D(X))}$ is convex and symmetric as well. Thus if $y \in D(Y)$, then $y_0 \pm \epsilon \in y_0 + \epsilon D(Y)$ so

$$\epsilon y = \frac{1}{2} [y_0 + \epsilon y - (y_0 - \epsilon y)] \in n\overline{T(D(X))}$$

and $\frac{\epsilon}{n}y \in \overline{T(D(X))}$, i.e. $\frac{\epsilon}{n}D(Y) \subseteq \overline{T(D(X))}$. Thus applying the main lemma, $\frac{\epsilon}{n}D(Y) \subseteq T(D(X))$.

4.6 Theorem. (Inverse Mapping) If X, Y are Banach spaces and $T \in \mathcal{B}(X, Y)$ is invertible, $T^{-1} \in \mathcal{B}(Y, X)$

Proof Direct application of the open mapping theorem.

Let X, Y be normed spaces. Then we define for $(x, y) \in X \oplus Y$, and we let $||(x, y)||_1 = ||x|| + ||y||$. It is easy to check that $||\cdot||_1$ is a norm on $X \oplus Y$, and if X, Y are Banach, then so is $(X \oplus Y, ||\cdot||_1)$. In this case, we write $X \oplus_1 Y$.

4.7 Theorem. (Closed Graph) Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. Then $T \in \mathcal{B}(X, Y)$ if and only if $\Gamma(T) = \{(x, Tx) : x \in X\}$ is closed in $X \oplus_1 Y$.

PROOF Let $T \in \mathcal{B}(X,Y)$. If $(x_n) \to x$ in X, then $Tx_n \to Tx$ in Y. Thus if $(x,y) \in \overline{\Gamma(T)}$, then $(x,y) = \lim_{n \to \infty} (x_n, Tx_n)$ where $(x_n, Tx_n) \in \Gamma(T)$. But then

$$||y - Tx|| \le ||y - Tx_n|| + ||Tx_n - Tx|| \le ||x - x_n|| + ||y - Tx_n|| + ||Tx_n - tx|| = ||(x - y) - (x_n, Tx_n)||_1$$

so in fact y = Tx so (x, y) = (x, Tx).

Conversely, if $\Gamma(T)$ is closed in $X \oplus_1 Y$, then $\Gamma(T)$ is a Banach space. Define $S : \Gamma(T) \to X$ by S(x, Tx) = x. Notice that S is linear, and

$$||S(x,Tx)|| = ||x|| \le ||(x,Tx)||_1$$

so $||S|| \le 1$, so S is bounded. It is also clear that S is bijective, with $S^{-1}: X \to \Gamma(T)$ given by $S^{-1}(x) = (x, Tx)$. Thus the inverse mapping theorem gives that S^{-1} is also bounded. Hence for any $x \in X$,

$$||Tx|| \le ||(x, Tx)||_1 = ||S^{-1}x|| \le ||x|| ||S^{-1}||$$

so that *T* is in fact bounded.

4.8 Theorem. (Closed graph test) Given normed spaces and $T \in \mathcal{L}(X,Y)$, we have that $\Gamma(T)$ is closed in $X \oplus_1 Y$ if and only if whenever $x_n \to 0$ for which we may assume that Tx_n converges in Y, say $y = \lim Tx_n$, then y = 0 too.

PROOF We have $(x_n, Tx_n) \to (x, z) \in \overline{\Gamma(T)}$ if and only if $(x_n - x, T(x_n - x)) \to (x, z) - (x, Tx) = (0, z - Tx)$. Set y = z - Tx. We have $(x, z) \in \Gamma(T)$ if and only if z = Tx if and only if y = 0.

TESTING HYPOTHESIS OF OMT

(i) Let $1 \le p < r < \infty$. We have that $\ell_p \subseteq \ell_r$, with $||x||_r \le ||x||_p$ for $x \in \ell_p$. First, suppose $x \in B(\ell_p)$, so for each k, $|x_k| \le ||x||_p \le 1$ so $|x_k|^{r/p} \le |x_k|$. Hence

$$||x||_r = \left(\sum_{k=1}^{\infty} |x_k|^r\right)^{1/r} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/r} = ||x||_p^{p/r} \le 1$$

so if $x \in \ell_p \setminus \{0\}$, then the result follows.

Let $S: (\ell_p, \|\cdot\|_p) \to (\ell_p, \|\cdot\|_r)$ be the identity map. Then $\|S\| \le 1$, and furthermore S is bijective. If S were open, then by the proof of inverse mapping theorem, we would see that $\|S^{-1}\| < \infty$. Define $x^{(n)} \in \ell_p$ by

$$x_k^{(n)} = \begin{cases} \frac{1}{ck^{1/p}} & k \le n \\ 0 & k > n \end{cases}, c = \sum_{k=1}^{\infty} \frac{1}{k^{r/p}}$$

We compute that $\|x^{(n)}\|_r < 1$ while $\|x^{(n)}\|_p = \frac{1}{c} \left(\sum_{k=1}^n \frac{1}{k}\right)^{1/p}$. In other words, $\|S^{-1}x^{(n)}\|_p$ goes to infinity, while $\|x^{(n)}\|_r < 1$, contradicting $\|S^{-1}\| < \infty$. The moral of this is that if the range space is not complete, then OMT may not hold.

- (ii) Take $X = C_b(0,1)$, $X_0 = \{f \in X : f \text{ is diferentiable on } (0,1), f' \in C_b(0,1)\}$. We have $X_0 \subseteq X$, and we put the uniform norm $\|\cdot\|_{\infty}$ on both spaces. We let $D: X_0 \to X$, Df = f'. If $h_n(t) = t^n$, then $\|h_n\|_{\infty} = 1$ while $\|Dh_n\|_{\infty} = n$, so D is not bounded. Despite this, we have that $\Gamma(D) = \{(f,f'): f \in X_0\}$ is closed in $X_0 \oplus_1 X$. We apply the closed graph test: let $(f_n,f'_n) \to (0,g)$ in $X_0 \oplus_1 X$. Notice that $\|f'_n\|_{\infty} < \infty$, so f_n is Libschitz on (0,1), so f_n is uniformly continuous on (0,1), so $f_n(0^+) = \lim_{t \to 0^+} f(t)$ exists. Thus by the fundamental theorem of calculus, $f_n(t) = f_n(0^+) + \int_0^t f'_n$ for $t \in (0,1)$. In particular,
 - $f_n \to 0$ uniformly, so $f_n(0^+) \to 9$

• $f'_n \rightarrow g$ uniformly, so for each $t \in (0,1)$,

$$\int_{0}^{t} g = \lim_{n \to \infty} \int_{0}^{t} f_{n}' = \lim_{n \to \infty} [f_{n}(t) - f_{n}(0^{+})] = 0$$

and again, by the FT of C, g(t) = 0. Thus g = 0, so $\Gamma(D)$ is closed. We say that $D: X_0 \to X$ is a **closed** operator. The moral here is that if the domain is not complete, then closedness of the graph does not imply boundedness of the operator.

Now, let $J: X \to X_0$ have $Jg(t) = \int_0^t g$ for $t \in (0,1)$. By the FT of C, $D \circ J(G) = g$, in other words that $D \circ J = I$. We have for $g \in X$,

$$||Jg||_{\infty} = \sup_{t \in (0,1)} |\int_{0}^{t} g| \le \sup_{t \in (0,1)} t ||g||_{\infty} \le ||g||_{\infty}$$

so $||I|| \le 1$. Hence $I(D(X)) \subseteq D(X_0)$, and we apply D to see $D(X) \subseteq D(D(X_0))$, in other words, that D is open. As an exercise, show that $C_b(0,1) = X$ is not separable, while X_0 is separable.

Let $X \subseteq Y$ be \mathbb{F} -vector spaces. We can always find a subspace $Z \subset Y$ so X + Z = Y and $X \cap Z = \{0\}$. Indeed, let B be a basis for X, and $B' = B \cup B'$ is a basis for Y, and take $Z = \operatorname{span} B'$.

4.9 Theorem. Let Y be a Banach space and $X \subseteq Y$ a closed subspace. Then X admis a closed complement Z if and only if there is some $P \in \mathcal{B}(Y)$ such that $P \circ P = P$ and im P = P(Y) = X.

Remark. We say that $X \subseteq Y$ is **boundedly complemented** if either of the above conditions hold.

PROOF (\Leftarrow) Let $Z = \ker P$, which is closed. If $y \in Y$, then y = Py + (I - Py) where $Py \in X$ and P(I-P)y = 0 so $(I-P)y \in \ker P$. If $z \in Z \cap X$, then z = Py for some $y \in Y$ so $Pz = P^2y = Py = z$, but $z \in \ker P$, so z = Pz = 0.

(⇒) Let $S: X \oplus_1 Z \to Y$ be given by S(x,z) = x+z. Then S is surjective and if $(x,z) \in \ker S$, then x + z = 0 so $x = -z \in X \cap Z = \{0\}$, hence S is injective. Furthermore,

$$||S(x+z)|| = ||x+z|| \le ||(x,z)||_1$$

so $||S|| \le 1$. Hence S is a bounded bijection between Banach space and hence S^{-1} is bounded by the inverse mapping theorem. Let $P_1: X \oplus_1 Z \to X$ be given by $P_1(x,z) = x$; and $J: X \to Y$ by Jx = x. Notice that $||P_1|| = 1$ and ||J|| = 1. Define $P: Y \to Y$ by $Py = JP_1S^{-1}y$. Then

- im J = X, and each of P_1 , S^{-1} are surjective, so P = X
- If $y \in Y$, $||Py|| = ||JP_1S^{-1}y|| \le ||S^{-1}|| ||y||$ so $||P|| \le ||S^{-1}||$ Clearly $P^2 = JP_1S^{-1}JP_1S^{-1} = P$

4.10 Theorem. c_0 is not boundedly complemented in ℓ_{∞} .

Proof Let us assume otherwise; hence, there is $P = P^2 \in \mathcal{B}(\ell_{\infty})$ such that im $P = c_0$. Note that $c_0 = \ker(I - P)$. As in A2, we let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be a family of infinite subsets such

that for $E \neq F$ in \mathcal{F} , $|E \cap F| < \infty$ and $|\mathcal{F}| = \mathfrak{c}$. For each $F \in \mathcal{F}$, we let $y_F = (I_P)\chi_F \neq 0$. If $\alpha_1, \ldots, \alpha_n \in F$ are pairwise distinct, $F_1, \ldots, F_m \in \mathcal{F}$, then

$$\sum_{i=1}^{n} \alpha_{i} \chi_{F_{i}} = \underbrace{\sum_{i=1}^{m} \alpha_{i} \chi_{F_{i} \setminus \bigcup_{j \in [m] \setminus \{i\}} F_{j}}}_{:=z} + \underbrace{\sum_{k=2}^{m} \sum_{1 \leq i < \dots < i_{k} \leq m} (\alpha_{i_{1}} + \dots + \alpha_{i_{k}}) \chi_{F_{i_{1}} \cap \dots \cap F_{i_{k}}}}_{\in c_{0}}$$

where $||z||_{\infty} = \max_{k=1,...,m} |\alpha_k|$. Hence

$$\left\| \sum_{i=1}^{m} \alpha_i y_{F_i} \right\| = \|(I - P)z\| \le \|I - P\| \|z\| = \|I - P\| \max_{k=1,\dots,m} |\alpha_k|$$
 (4.1)

Now, let for $n, k \in \mathbb{N}$, $\mathcal{F}_{n,k} = \{F \in \mathcal{F} : |\delta_k(y_F)| \ge \frac{1}{n}\}$ m where $\underline{\delta_k(x_i)_{i=1}^{\infty}} = x_k$, so $\delta_k \in \ell_{\infty}^*$ with $||\delta_k|| \le 1$. Let F_1, \ldots, F_m be pairwise disjoint in $\mathcal{F}_{n,k}$, and $\alpha_i = \overline{\operatorname{sgn} \delta_k(y_{F_i})}$. Then we have each $|\alpha_i| = 1$, so by (4.1), we find

$$||I - P|| \ge \left\| \sum_{i=1}^{\infty} \alpha_i y_{F_i} \right\|_{\infty} \ge |\delta_k \sum_{i=1}^n \alpha_i y_{F_i}| = \sum_{i=1}^m |\delta_k (y_{F_i})| \ge \frac{m}{n}$$

so $m \le n ||I - P||$ and it follows that $\mathcal{F}_{n,k}$ is finite. Since each $y_F \ne 0$ for $F \in \mathcal{F}$, we see that $\mathcal{F} = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty}$, which contradicts that $|\mathcal{F}| = \mathfrak{c}$. Hence such a P must not exist.

4.11 Theorem. If X is a finite dimensional vector space over \mathbb{F} , then any two norms are equivalent.

PROOF Let $\|\cdot\|$ be a norm on X. Fix a basis (e_1, \dots, e_n) for X, and let $x = \sum_{k=1}^n x_k e_k$, $x_i \in \mathbb{F}$, $\|x_k\|_{\infty} = \max_{k=1,\dots,n} |x_k|$. This is easily checked to be a norm. Moreover, $B_{\infty} = \{x \in X : \|x\|_{\infty} \le 1\}$ admits a homeomorphic identification

$$B_{\infty} = \begin{cases} [-1,1]^n & \mathbb{F} = \mathbb{R} \\ \overline{D}^n & \mathbb{F} = \mathbb{C} \end{cases}$$

and hence is compact. Thus $S_{\infty} = \{x \in X : ||x||_{\infty} = 1\}$ is compact as well. Hence, for $x = \sum_{k=1}^{\infty} x_k e_k$, we have

$$||x|| \le \sum_{k=1}^{n} |x_k| ||e_k|| \le ||x||_{\infty} \underbrace{\sum_{k=1}^{n} ||e_k||}_{:=M}$$

Now for $x,y\in X$, we have $|\|x\|-\|y\|\|\leq \|x-y\|\leq M\|x-y\|_{\infty}$ so $\|\cdot\|$ is Lipschitz with respect to $\|\cdot\|_{\infty}$, and hence $\tau_{\|\cdot\|_{\infty}}$ —continuous. Thus the extreme value theorem tells us that $m=\inf_{x\in S_{\infty}}\|x\|>0$. Hence for $x\in X\setminus\{0\}$, $\|x\|=\|x\|_{\infty}\cdot\left\|\frac{1}{\|x\|_{\infty}}x\right\|\geq \|x\|_{\infty}m$. In general, $m\|x\|_{\infty}\leq \|x\|\leq M\|x\|_{\infty}$. We thus have that $\|\cdot\|\sim\|\cdot\|_{\infty}$, so any norms are equivalent.

- **4.12 Corollary.** Let $(X, \|\cdot\|)$ be a finite dimensional normed space. Then
 - (i) $K \subseteq X$ is compact if an only if K is closed and bounded.
 - (ii) $(X, \|\cdot\|)$ is a Banach space

- (iii) For any normed space Y, we have $\mathcal{L}(X,Y) = \mathcal{B}(X,Y)$
- (iv) We have $X' = X^*$.
- PROOF (i) The forward direction is immediate. If K is closed and bounded, is contained in some scaled copy of B_{∞} , which is compact.
- (ii) Cauchy sequences are bounded, and thus contained in some scaled copy of B_{∞} , which is compact.
- (iii) Let $T \in \mathcal{L}(X, Y)$, and let $||x||_0 = ||x|| + ||Tx||$. Then the result follows by equivalence of norms.
- (iv) Immediate.
 - **4.13 Proposition.** A finite dimensional subspace of normed space is always closed and boundedly complemented.

PROOF Let $Y \subseteq X$ be so Y is finite dimensional and X a normed space. We can find a basis $(e_1, ..., e_n)$ for Y. We may assume that each $||e_k|| = 1$. We define $f_1, ..., f_n \in Y' = Y^*$ by

$$f_k \left(\sum_{j=1}^n \alpha_j e_j \right) = \alpha_k$$

By Hahn-Banach, get $F_1, ..., F_n \in X^*$ such that $F_k|_Y = f_k$ and $||F_k|| = ||f_k||$. Define $P: X \to X$ by $Px = \sum_{k=1}^n F_k(x)e_k$. Notice that im $P \subseteq Y$ and by choice of $F_k|_Y = f_k$, we have $P|_Y = I_Y$. Thus $P^2 = P$. Finally, for $x \in X$, $||Px|| \le \sum_{k=1}^n ||f_k|| ||x||$ so $||P|| \le \sum ||f_k|| < \infty$, i.e. P is bounded. Closedness of Y thus follows from the last corollary. Alternatively, $Y = \ker(I - P)$.

5 On Compactness of the Unit Ball

5.1 Lemma. Let X be a normed space and $Y \subseteq X$ a closed subspace. Then given $\epsilon \in (0,1)$ there is $x_0 \in D(X) \subseteq B(X)$ such that $d(x_0,Y) > 1 - \epsilon$.

PROOF Let $x \in X \setminus Y$ and let $f : Y + \mathbb{F} x \to \mathbb{F}$ be given by $f(y + \alpha x) = \alpha$, $y \in Y$, $\alpha \in \mathbb{F}$. Then f is linear and $\ker f = Y$ is closed, $Y \subsetneq Y + \mathbb{F} x$, so f is bounded. Let $F \in X^*$ be any Hahn-Banach extension of f with ||F|| = ||f||.

Now, we find $x_0 \in D(X)$ such that $|F(x_0)| > (1 - \epsilon) ||F||$. Since $Y \subseteq \ker F$, we have for $y \in Y$ that $||F|| \, \big\| |x_0 - y| \big\| \ge |f(x_0 - y)| = |F(x_0)| > (1 - \epsilon) ||F||$, so $\big\| |x_0 - y| \big\| > 1 - \epsilon$. Hence $d(x_0, Y) = \inf_{y \in Y} \big\| |x_0 - y| \big\| \ge 1 - \epsilon$.

5.2 Theorem. Let X be a normed space. Then B(X) is compact if and only if X is finite dimensional.

PROOF The reverse implication is standard. Thus suppose X is not finite dimensional. Let $\epsilon \in (0,1)$ and let $x_1 \in B(X) \setminus \{0\}$. Inductively,

- () Find $x_2 \in B(X)$ such that $d(x_2, \mathbb{F} x_1) \ge 1 \epsilon$
- () Find $x_3 \in B(X)$ such that $d(x_3, \text{span}\{x_1, x_2\}) \ge 1 \epsilon$
- () Find $x_{n+1} \in B(X)$ such that $d(x_{n+1}, \text{span}\{x_1, \dots, x_n\}) \ge 1 \epsilon$

Hence we have $\{x_n\}_{n=1}^{\infty} \subset B(X)$ such that for m < n,

$$||x_n - x_m|| \ge d(x_n, \operatorname{span}\{x_1, \dots, x_{n-1}\}) \ge 1 - \epsilon$$

so the sequence admis no converging subsequence and B(X) is not compact.

6 More Topology

Definition. Let (X, τ) be a topological space. A **base** for τ is any family $\beta \subseteq \tau$ such that for any $U \in \tau$ and $x \in U$, there is $B \in \beta$ such that $x \in B \subseteq U$. A **subbase** for τ is any family $\alpha \subseteq \tau$ such that $\{\bigcap_{k=1}^n U_k : n \in \mathbb{N}, U_1, ..., U_n \in \alpha\}$ is a base for τ .

Note that if $\emptyset \neq X$ and $\beta \subseteq \mathcal{P}(X)$ for which $\bigcup_{B \in \beta} B = X$ and β is closed under finite intersections, then

$$\tau_{\beta} = \{ \bigcup_{i \in I} B_i : \{B_i\}_{i \in I} \subset B, I \text{ any index set with } |I| \le |\beta| \}$$

is a topology.

Definition. Let $X \neq \emptyset$. Suppose we are given

- a family $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ of topological spaces, and
- for each $\alpha \in A$, a function $f_{\alpha}: X \to X_{\alpha}$

Then the **initial topology** on *X* given this data is denoted

$$\sigma = \sigma(X, (f_{\alpha})_{\alpha \in A}) = \sigma(X, (f_{\alpha}, \tau_{\alpha})_{\alpha \in A})$$

and is the topology with base

$$\bigcap_{k=1}^{n} f_{\alpha_k}^{-1}(U_{\alpha_k}), n \in \mathbb{N}, \alpha_1, \dots, \alpha_n \in A, \text{ each } U_{\alpha_k} \in \tau_{\alpha_k}$$

In particular, $\{f_{\alpha}^{-1}(U_{\alpha}): U_{\alpha} \in \tau_{\alpha}, \alpha \in A\}$ is a subbase for σ .

Remark. The topology is chosen so that each $f_{\alpha}: X \to X_{\alpha}$ is $\sigma - \tau_{\alpha}$ -continuous. Furthermore, if $\tau \subseteq \mathcal{P}(X)$ is any topology for which every f_{α} is $\sigma - \tau_{\alpha}$ -continuous, then $\sigma \subseteq \tau$. We say that σ is the **coarsest** topology so that all the f_{α} are continuous.

Example. (i) *Metric topology:* If (X,d) is a metric space, for each $x \in X$, let d_x be given by $d_x(x') = d(x,x')$. Then $\sigma(X,(d_x)_{x \in X}) = \tau_d$.

- (ii) *Relative topology:* If (Y, τ) -topological space, $\emptyset \neq X \subseteq Y$, and $i: X \to Y$ is the inclusion map. Then $\tau|_X = \sigma(X, \{i\})$.
- (iii) *Product topology:* Let $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ be a family of topological spaces. Let $X =_{\alpha \in A} X_{\alpha}$. Let for $\alpha \in A$, $p_{\alpha} : X \to X_{\alpha}$ denote the projection map onto the component α . Then the product topology $\pi = \sigma(X, \{p_{\alpha}\}_{\alpha \in A})$. Hence, $V \in \mathcal{P}(X)$, then $V \in \pi$ if and only if for any $x \in V$, there is $\alpha_1, \ldots, \alpha_n \in A$ and $U_{\alpha_k} \in \tau_{\alpha_k}$ such that $x_{\alpha_k} = p_{\alpha_k(x)} \in U_{\alpha_k}$ and $x \in \bigcap_{k=1}^n p_{\alpha_k}^{-1}(U_{\alpha_j}) \subseteq V$.

Note that if $X = \sum_{n=1}^{\infty} X_n$, each (X_n, τ_n) is a topological space, then the basic open sets look like $U_1 \times U_2 \times \cdots \times U_m \times X_{m+1} \times X_{m+2} \times \cdots$.

(iv) *Linear topology:* Let X be a vector space and $Z \subseteq X'$ a subspace. Then $\sigma(X, Z)$ is the coarsest topology allowing each $f \in Z$ to be continuous, $f : X \to \mathbb{F}$. The basic open sets are given as follows: let $x_0 \in X$, $\epsilon > 0$, and $D = D(\mathbb{F})$, and we consider for $f \in Z$

$$f^{-1}(f(x_0) + \epsilon D) = \underbrace{\{x \in X : |f(x) - f(x_0)| < \epsilon\}}_{\text{"affine hypertube"}} = \{x \in X : |\frac{1}{\epsilon}f(x) - \frac{1}{\epsilon}f(x_0)| < 1\}$$

so that

$$\left\{ \bigcap_{k=1}^{n} \{ x \in X : |f_k(x) - f_k(x_0)| < 1 \} : f_1, \dots, f_n \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

is a base for $\sigma(X, Z)$.

(v) Now let X be a normed space. Then the **weak topology** on X is $\omega = \sigma(X, X^*)$. Certainly $\omega \subseteq \tau_{\|\cdot\|}$. Similarly, the **weak*-topology** on X^* is $\omega^* = \sigma(X^*, \hat{X})$ (recall for $x \in X$, $\hat{x}(f) = f(x)$). Since $\hat{X} \subseteq X^{**}$, we have $\omega^* \subseteq \omega = \sigma(X^*, X^{**}) \subseteq \tau_{\|\cdot\|}$.

Let (X, τ) be a topological space.

Definition. A subset $K \subseteq X$ is called **compact** if for any collection $\{U_{\alpha}\}_{{\alpha}\in A}\subseteq \tau$ with $\bigcup_{{\alpha}\in A}U_{\alpha}\supseteq K$, there exists some finite U_1,\ldots,U_n covering K. If X itself is τ -compact, we call (X,τ) a compact space.

Definition. A set $F \subseteq X$ is **closed** if $X \setminus F \in \tau$. If $S \subseteq X$, then the **closure** of S is $\overline{S} = \cap \{F \subseteq X : S \subseteq F, X \setminus F \in \tau\}$.

Note that $\overline{S} = \{x \in X : \text{for any } U \in \tau \text{ with } x \in U, U \cap S \neq \emptyset\}.$

Definition. A family $\mathcal{F} \subseteq \mathcal{P}(X)$ has the **finite intersection property** if for any $F_1, \ldots, F_n \in \mathcal{F}$, $\bigcap_{l=1}^n F_k \neq \emptyset$.

6.1 Proposition. Let (X,τ) be a topological space. Then (X,τ) is compact if and only if any $\mathcal{F} \subseteq \mathcal{P}(X)$ with the finite intersection property has $\bigcap_{F \in \mathcal{F}} \overline{F} \neq \emptyset$.

PROOF Suppose X is compact and $\mathcal{F} \subset \mathcal{P}(X)$ has the finite intersection property but with $\bigcap_{F \in \mathcal{F}} \overline{F}$, then $\{X \setminus \overline{F}\}_{F \in \mathcal{F}}$ is an open cover of X with no finite subcover.

Conversely, if $\mathcal{O} \subseteq \tau$ is an open cover of X, then $\mathcal{F} = \{X \setminus U\}_{U \in \mathcal{O}}$ satisfies $\bigcap_{F \in \mathcal{F}} = \emptyset$, so there is $F_1, \dots, F_n \in \mathcal{F}$ with $\bigcap_{k=1}^n F_k = \emptyset$. Then $\{X \setminus F_i\}_{i=1}^k$ is a finite subcover.

Definition. Let X be a non-empty set. An **ultrafilter** is a family $\mathcal{U} \subset \mathcal{P}(X)$ such that

- \mathcal{U} has the finite intersection property
- If $A \in \mathcal{P}(X)$, then either $A \in \mathcal{U}$ or $X \setminus A \in \mathcal{U}$.

Example. (i) Principal / trivial ultrafilter: If $x_0 \in X$, let $U_{x_0} = \{U \subseteq X : x_0 \in U\}$.

6.2 Lemma. (Ultrafilter) If $\mathcal{F} \subseteq \mathcal{P}(X)$ is any set with the finite intersection property, then there is an ultrafilter \mathcal{U} with $\mathcal{F} \subset \mathcal{U}$.

PROOF Let $\Phi = \{\mathcal{G} \subseteq \mathcal{P}(X) : \mathcal{F} \subseteq \mathcal{G}, \mathcal{G} \text{ has f.i.p.}\}$. Then Φ is partially ordered by inclusion. If $\Gamma \subseteq \Phi$ is a chain, then $\mathcal{G}_{\Phi} = \bigcup_{\mathcal{G} \in \Gamma} \mathcal{G}$ contains \mathcal{F} and has the finite intersection property. Hence Φ admits a maximal element \mathcal{U} . Let $A \in \mathcal{P}(X) \setminus \mathcal{U}$. Then $U \cup \{A\} \supseteq \mathcal{U}$, so $\mathcal{U} \cup \{A\}$ fails the finite intersection property. Hence get U_1, \ldots, U_n so $A \cap \bigcap_{k=1}^n U_k = \emptyset$. Now if $V_1, \ldots, V_m \in \mathcal{U}$, then $\bigcap_{j=1}^n V_j \cap \bigcap_{k=1}^n U_j \subseteq \bigcap_{k=1}^n U_k \subseteq X \setminus A$, so $(X \setminus A) \cap \bigcap_{j=1}^m V_j$. Thus $\mathcal{U} \cup \{X \setminus A\}$ has finite intersection property, so $X \setminus A \in \mathcal{U}$ by maximality.

- **6.3 Corollary.** If $U \subseteq \mathcal{P}(X)$ is an ultrafilter, then
 - (i) If $A \in \mathcal{P}(X)$, $A \in \mathcal{U}$ if and only if $A \cap U \neq \emptyset$ for each $U \in \mathcal{U}$
 - (ii) If $A, B \in \mathcal{P}(X)$, then $A \cup B \in \mathcal{U}$ implies at least one of A or B is in \mathcal{U}
- (iii) If $A \in \mathcal{U}$ and $A \subseteq V$ implies $V \in \mathcal{U}$

PROOF The forward implication of (i) follows since \mathcal{U} has finite intersection. Conversely, $X \setminus A \notin \mathcal{U}$, so $A \in \mathcal{U}$. (ii) and (iii) follow consequently.

6.4 Corollary. If X is an infinite set, it admits a non-principle ultrafilter.

PROOF Let $\mathcal{F} = \{F \in \mathcal{P}(X) : X \setminus F \text{ is finite}\}$. Then \mathcal{F} has the finite intersection property. Apply the lemma.

6.5 Proposition. There are at least \mathfrak{c} many ultrafilters in $\mathcal{P}(\mathbb{N})$.

PROOF We let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be a collection of infinite sets such that $E \neq F$ in \mathcal{F} implies $|E \cap F| < \infty$, and $|\mathcal{F}| = \mathfrak{c}$. For each $F \in \mathcal{F}$, we let $\mathcal{F}_F = \mathcal{F}_0 \cup \{F\}$, which has the finite intersection property. Moreover, if $E \in \mathcal{F} \setminus \{F\}$, then $\mathcal{F}_F \cup \{E\}$ would fail f.i.p. Hence, for $F \in \mathcal{F}$, let \mathcal{U}_F be any ultrafilter containing \mathcal{F}_F , giving \mathfrak{c} many ultrafilters.

Remark. It can be shown (with a lot more work) that N admits 2^c ultrafilters.

Let $\mathcal{U} \subset \mathcal{P}(\mathbb{N})$ be a non-principal ultrafilter. Define $\delta_{\mathcal{U}} : \mathcal{P}(\mathbb{N}) \to \{0,1\} \subset \mathbb{R}$ by $\delta_{\mathcal{U}}(A) = 1$ if $A \in \mathcal{U}$, and 0 if $X \setminus A \in \mathcal{U}$. Since $\mathbb{N} \in \mathcal{U}$, we see that $\delta_{\mathcal{U}}(\emptyset) = 0$. If $\emptyset \neq A, B \in \mathcal{P}(\mathbb{N})$ with $A \cap B = \emptyset$, then if $A \cup B \in \mathcal{U}$, then exactly one of A or B is in \mathcal{U} . Thus $\delta_{U}(A \cup B) = \delta_{U}(A) + \delta_{U}(B)$. If $E_1, ..., E_n \subseteq \mathbb{N}$ with $E_j \cap E_k = \emptyset$ for $j \neq k$, then $\sum_{k=1}^n |\delta_{\mathcal{U}}(E_k)| \leq 1$ so $||\delta_{\mathcal{U}}||_{\text{var}} \leq 1$. Since $\delta_{\mathcal{U}}(\mathbb{N}) = 1$, we have $\|\delta_{\mathcal{U}}\|_{\text{var}} = 1$. Let $L_{\mathcal{U}} \in \ell_{\infty}^*$ be the linear functional associated to $\delta_{\mathcal{U}}$. We then have (with some verification possibly needed)

- (i) $L_{\mathcal{U}}(1) = 1$, $||L_{\mathcal{U}}|| = 1$
- (ii) $L_{\mathcal{U}}|_{\mathbf{c}_0} = 0$, so if $x \in \ell_{\infty}^{\mathbb{R}}$, then $\liminf_{n \to \infty} x_n \le L_{\mathcal{U}} \le \limsup_{n \to \infty} x_n$ (iii) Exactly one of $2 \mathbb{N}$ and $2 \mathbb{N} 1$ is in \mathcal{U} , so $L(\chi_{2 \mathbb{N}}) \ne L_{\mathcal{U}}(\chi_{2 \mathbb{N} 1})$, so $L_{\mathcal{U}}$ is not translation invariant.
- (iv) Let $S \in \mathcal{B}(\ell_{\infty})$ be given by $Sx = \left(\frac{x_1 + \dots + x_n}{n}\right)_{n=1}^{\infty}$. Then $L_{\mathcal{U}} \circ S$ is a Banach limit.

Definition. If (X, τ) is a topological space, \mathcal{U} an ultrafilter on X, we say that $x_0 \in X$ is a $(\tau$ -)limit point for \mathcal{U} if for each $U \in \tau$ with $x_0 \in U$, we have $U \in \mathcal{U}$.

6.6 Proposition. Let (X,τ) be a topological space. Then (X,τ) is compact if and only if any ultrafilter on X admits a τ -limit point.

PROOF Let us begin with an observation: if $x \in X$ and \mathcal{U} is an ultrafilter on X, then

$$\in \bigcap_{V \in \mathcal{U}} \overline{V} \Leftrightarrow \text{for any } U \in \tau \text{ with } x \in U, U \cap V \neq \emptyset \text{ for each } V \in \mathcal{U}$$
 $\Leftrightarrow x \text{ is a } \tau\text{-limit point of } \mathcal{U}$

If (X,τ) is compact, then $\bigcap_{V\in\mathcal{U}}\overline{V}\neq\emptyset$. If $\mathcal{F}\subseteq\mathcal{P}(X)$ has the finite intersection property, then there exists an ultrafilter $\mathcal{U}\supseteq\mathcal{F}$, so $\bigcap_{F\in\mathcal{F}}\overline{F}\supseteq\bigcap_{V\in\mathcal{U}}\overline{V}\neq\emptyset$.

6.7 Theorem. (Tychonoff) Let $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ be a family of compact spaces, and $X = \{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ $\prod_{\alpha \in A} X_{\alpha}$ with the product topology π . Then (X, π) is compact.

Proof Let \mathcal{U} be an ultrafilter on X; we will show that it admits a π -limit point. Fix $\alpha \in A$ and let $\mathcal{U}_{\alpha} = \{p_{\alpha}(V) : V \in \mathcal{U}\}$, where p_{α} is the coordinate projection onto α . If $\emptyset \neq S_{\alpha} \subseteq X_{\alpha}$, then $S_{\alpha} = p_{\alpha}^{-1}(p_{\alpha}^{-1}(S_{\alpha}))$, so $S_{\alpha} \in \mathcal{U}_{\alpha}$ if and only if $p^{-1}(S_{\alpha}) \in \mathcal{U}$, and since p^{-1} commutes with complementation, \mathcal{U}_{α} is an ultrafilter. The last proposition provides a τ_{α} -limit point x_{α} for \mathcal{U}_{α} . Now let $x = (x_{\alpha})_{\alpha \in A}$, where x_{α} is found as above. If $W \in \pi$ with $x \in W$, then there are $\alpha_1, \ldots, \alpha_n$ in A, $U_{\alpha_i} \in \tau_{\alpha_i}$ with $x \in \bigcap_{k=1}^n p_{\alpha_k}^{-1}(U_{\alpha_k}) \subseteq W$. Since each x_{α_k} is a τ_{α_k} -limit point of \mathcal{U}_{α_k} , we see that each $U_{\alpha_k} \in \mathcal{U}_{\alpha_k}$, so $p_{\alpha_k}^{-1}(U_{\alpha_k}) \in \mathcal{U}$. Thus we see that $W \in \mathcal{U}$, so x is a π -limit point of \mathcal{U} .

- Remark. (i) Tychonoff's theorem implies the axiom of choice. Given $\{X_{\alpha}\}_{\alpha \in A}$ be a family of non-empty sets. Find y which is not a member of any X_{α} , and let $Y_{\alpha} = X_{\alpha} \cup \{y\}$ and $\tau_{\alpha} = \{\emptyset, \{y\}, X_{\alpha}, Y_{\alpha}\}$, and $(Y_{\alpha}.\tau_{\alpha})$ is compact. The constant element y is an element of Y, so by Tychonoff, (Y,π) is compact. Given $\alpha_1, \ldots, \alpha_n \in A$, then $\bigcup_{k=1}^n p_{\alpha_k}^{-1}(\{y\})$. Since $\prod_{k=1}^n X_{\alpha_k} \neq 0$, we see that $Y \subseteq \bigcup_{k=1}^n p_{\alpha_k}^{-1}(\{y\})$. Hence by compactness, $Y \subseteq \bigcup_{\alpha \in A} p_{\alpha}^{-1}(\{y\})$. Hence $\prod_{x \in A} X_{\alpha} = Y \setminus \bigcup_{\alpha \in A} p_{\alpha}^{-1}(\{y\}) \neq 0$.
- (ii) If we are given $(X_{\alpha}, \tau_{\alpha})_{\alpha \in A}$ a family of topological spaces, $X = \prod_{\alpha \in A} X_{\alpha}$, we can define the **box topology**, i.e. the topology with base $\{\prod_{\alpha \in A} U_{\alpha} : U_{\alpha} \in \tau_{\alpha} \setminus \{\emptyset\} \text{ for each } \alpha\}$ Of course, $\pi \subseteq \tau$, and the inclusion is proper on infinite products.
 - **6.8 Proposition.** Let (X, τ) be a compact space.
 - (i) If $K \subseteq X$ is closed, then K is compact.
 - (ii) If (Y, σ) is a topological space and $f: X \to Y$ is continuous, then f(X) is compact.

Proof Immediate.

Remark. If *X* is a normed space, $w^* = \sigma(X^*, \hat{X})$, if $x \in X$, $\hat{x} \in X^{**}$, $\hat{x}(f) = f(x)$, $\hat{X} = \{\hat{x} : x \in X\}$. If *A*, *B* are non-empty sets, $A^B \cong \{f : B \to A\}$.

6.9 Theorem. (Alaoglu) Let X be a normed space. Then $B(X^*)$ is $w^* = \sigma(X^*, \hat{X})$ -compact

Proof Let $\Gamma: X^* \to \mathbb{F}^X$ be given by $\Gamma(f) = (f(x))_{x \in X}$, so Γ is injective. Let $\pi = \sigma(\mathbb{F}^X, \{p_x\}_{x \in X})$ be the product topology. If $U_1, \ldots, U_n \subseteq \mathbb{F}$ are open and $x_1, \ldots, x_n \in X$, then

$$\Gamma\left(\bigcap_{k=1}^{n} \hat{x}_{n}^{-1}(U_{k})\right) = \bigcap_{k=1}^{n} \Gamma\left(\hat{x}_{n}^{-1}(U_{k})\right) = \bigcap_{k=1}^{n} \hat{x}_{n}^{-1}(U_{k}) \cap \Gamma(X^{*})$$

so Γ is an open map onto its image in \mathbb{F}^X . Similarly, it is easy to show that Γ^{-1} is also an open map, so in fact Γ is a homeomorphism onto its image.

We now consider $\overline{\Gamma(B(X^*))} \subset \mathbb{F}^X$. Let $g \in \overline{\Gamma(B(X^*))}$ and let $D = D(\mathbb{F})$. Given $x, y \in X$ and $\alpha \in \mathbb{F}$, and then given $\epsilon > 0$, we find $f \in B(X^*)$ such that

$$\Gamma(f) \in p_x^{-1}\left(g(x) + \frac{\epsilon}{3}D\right) \cap p_y^{-1}\left(g(y) + \frac{\epsilon}{3(|\alpha| + 1)}D\right) \cap p_{x + \alpha y}^{-1}\left(g(x + \alpha y) + \frac{\epsilon}{3}D\right)$$

We have that f is linear with $\Gamma(f)(x) = f(x)$, etc. so we have

$$|g(x) + \alpha g(y) - g(x + \alpha y)| \le |g(x) - f(x)| + |\alpha||g(y) - f(y)| + |g(x + \alpha y) - f(x + \alpha y)| < \epsilon$$

and since $||f|| \le 1$, we have $|g(x)| \le |g(x) - f(x)| + |f(x)| < \epsilon/3 + ||x||$. Then since $\epsilon > 0$ is arbitrary, get $g \in X'$ and $|g(x)| \ge ||x||$, i.e. $g \in B(X^*)$. Hence we have that $g = \Gamma(g)$.

Thus $\Gamma(B(X^*)) \subseteq \prod_{x \in X} ||x|| \overline{D} \subseteq \mathbb{F}^X$ is a closed subset of a compact subset of \mathbb{F}^X . Thus $B(X^*)$ is the continuous image of a compact set and hence compact.

Remark. If r > 0, then we may replace $B(X^*)$ with $rB(X^*)$ in the proof above, with trivial modifications. Thus any ball is w^* -compact. Hence bounded w^* -closed sets in X^* are automatically w^* -compact.

Definition. A topological space (X, τ) is Hausdorff if given $x \neq y$ in X, there are $U_x, V_y \in \tau$ such that $x \in U_x$ and $y \in V_y$ and $U_x \cap U_y = \emptyset$.

Example. (i) A metric space is Hausdorff.

- (ii) X a normed space, $w = \sigma(X, X^*)$ is Hausdorff (by Hahn-Banach and A2Q1).
- (iii) If *X* is a normed space, then $w^* = \sigma(X^*, \hat{X})$ on X^* is Hausdorff.
- (iv) $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ family of topological spaces, $X = \prod_{\alpha \in A} X_{\alpha}$ with π the product topology. Then (X,π) is Hausdorff if and only if all $(X_{\alpha},\tau_{\alpha})$ are Hausdorff. (Straightfoward exercise).

6.10 Proposition. Let (X,τ) be a Hausdorff space, $K \subseteq X$ τ -compact. Then K is τ -closed.

Proof Straightforward exercise.

- **6.11 Proposition.** Let (X, τ) be a compact space.
 - (i) If (Y, σ) is a Hausdorff space and $\phi: X \to Y$ is continuous and bijective, then $\phi^{-1}: Y \to X$ is continuous.
 - (ii) If $\tau' \subseteq \tau$ is a Hausdorff topology on X, so $\tau' = \tau$.

(i) If $F \subseteq X$ is τ -closed, then it is τ -compact. Hence $(\phi^{-1})^{-1}(F) = \phi(F)$ is σ -closed, so by A1Q1, ϕ^{-1} is continuous.

- (ii) id : $X \to X$ is continuous, so if $U \in \tau'$, then id⁻¹(U) = $U \in \tau$, so id is continuous. Hence by (1) id^{-1} is continuous so $\tau \subseteq \tau'$.
 - **6.12 Theorem.** (Metrization) If X is a separable normed space, then $B(X^*)$ is w^* -metrizable, i.e. there exists a metric ρ on $B(X^*)$ such that $w^*|_{B(X^*)} = \tau_{\rho}$.

PROOF Let $\{x_n\}_{n=1}^{\infty} \subset B(X)$ be any set which is separating for X^* , i.e. if $f \in X^* \setminus \{0\}$, then $f(x_n) \neq 0$ for some n (for example, take any dense subset of $D(X) \setminus \{0\}$). Let ρ be given by

$$\rho(f,g) = \sum_{k=1}^{\infty} \frac{|(f-g)(x_k)|}{2^k} \le 2$$

It is easy to see that this is a metric.

Given $f_0 \in B(X^*)$, take $\epsilon > 0$ and let

- n be so $\sum_{k=n+1}^{\infty} \frac{2}{2^k} < \frac{\epsilon}{2}$, and $V = \bigcap_{k=1}^{n} \{ f \in B(X^*) : |\hat{x}_k(f) \hat{x}_k(f_0)| < \epsilon/2 \} \in w^*|_{B(X^*)}, f_0 \in V.$

$$g(f, f_0) = \sum_{k=1}^{n} \frac{|f(x_k) - f_0(x_k)|}{2^k} + \sum_{k=n+1}^{\infty} \frac{|f(x_k) - f_0(x_k)|}{2^k} < \epsilon$$

so $f_0 \in V \subset B_{\rho,\epsilon}^{\circ}(f_0)$. Since f_0 is arbitrary, we have $\tau_{\rho} \subseteq w^*|_{B(X^*)}$, but since w^* is compact and τ_{ρ} is Hausdorff, these must be equal.

- (i) Note that different separating families from B(X) may produce different metrics, but always the same topology.
- (ii) The definition of ρ above extends to all of $X^* \times X^*$. However, X^* with the weak* topology is not in metrizable if *X* is infinite dimensional.
- (iii) $X^* = \bigcup_{i=1}^{\infty} nB(X^*)$, so each $nB(X^*)$ is metrizable and compact, and thus w^* -separable. Thus if X is separable, then X^* is itself separable.

7 Nets

Definition. A pair (N, \leq) is a **preorder** on N if

- $v \le v$ for $v \in N$
- $v_1 \le v_2$ and $v_2 \le v_3$ implies $v_1 \le v_3$.

This pair is **cofinal** if for any $v_1, v_2 \in N$, there is $v_3 \in N$ so $v_1 \le v_3$ and $v_2 \le v_3$. Then (N, \le) is a **directed set** if \le is a cofinal preorder. Given a non-empty set X, a **net** is a function $x : N \to X$.

Definition. If $(x_0)_{v \in N}$ is a net in X, $A \subseteq X$, we say that $(x_0)_{n \in \mathbb{N}}$ is

- **eventually** in *A* if there is $v_A \in N$ so $x_v \in A$ whenever $v \ge v_A$
- **frequently** in *A* if for any $v \in N$, there is $v' \in N$ with $v' \ge g$ so $x_{v'} \in A$.

Definition. Now, let (M, \leq) be anther directed set A map $\phi : M \to N$ is **eventually cofinal** if for any $v \in N$, there is $\mu_v \in N$ s $\phi(u) \geq v$ whenever $\mu \geq \mu_0$. Given a net $(x_v)_{v \in N}$ and an eventually cofinal $\phi : M \to N$, we call $(x_{\phi(\mu)})_{\mu \in M}$ a **subnet**.

Definition. We call $\phi: M \to N$ a directed map if

- (i) $\mu \le \mu'$ in M implies $\phi(\mu) \le \phi(\mu')$ in N
- (ii) For any $v \in N$, there is $\mu \in M$ s $v \le \phi(\mu)$.

Directed maps are always cofinal. Different sources use directed maps over eventually cofinal maps.

Example. (i) (\mathbb{N}, \leq) is directed, and subsequences are special types of subnets.

- (ii) (\mathbb{R}, \leq) is directed
- (iii) (*Riemann sums*) Let a < b in \mathbb{R} . We let

$$N = \{(P, P^*) : P = \{a = t_0 < t_1 < \dots < t_n = b\}, P^* = \{t_1^*, \dots, t_n^*\}, t_k^* \in [t_{k-1}, t_k]\}$$

and say $(P, P^*) \le (Q, Q^*)$ if $P \subseteq Q$. One can verify that this is a net (the Riemann sum net).

(iv) (*Nets from filtering families*). We say that $\mathcal{F} \subset \mathcal{P}(X) \setminus \{\emptyset\}$ is a **filtering family** if for each $F_1, F_2 \in \mathcal{F}$, there is $F_3 \in \mathcal{F}$ such that $F_3 \subseteq F_1 \cap F_2$. For example, an ultrafilter is a filtering family. Let

$$N_{\mathcal{F}} = \{(x, F) : x \in F, F \in \mathcal{F}\}$$

equipped with the pre-order $(x, F) \le (x', F')$ if and only if $F \supseteq F'$. Since \mathcal{F} is a filtering family, $(N_{\mathcal{F}}, \le)$ is directed. Let $x_{(x,F)} = x$, so $(x)_{(x,F) \in N_{\mathcal{F}}}$ is the net built from \mathcal{F} . Note that if $F \in \mathcal{F}$, then $(x)_{(x,F) \in \mathcal{F}}$ is eventually in F.

An **ultranet** $(x_v)_{v \in N} \subset X$ is a net for which any $A \in \mathcal{P}(X)$, $(x_v)_{v \in N}$ is either eventually in A or eventually in $X \setminus A$. If \mathcal{F} is an ultrafilter, then $(x)_{(x,F)\in N_{\mathcal{F}}}$ is an **ultranet**.

NETS AND TOPOLOGY

Now, suppose (X, τ) is a topological space.

Definition. We say that $x_0 \in X$ is

• Some $x_0 \in X$ is a **limit point** if for any $U \in \tau$ with $x_0 \in U$, $(x_v)_{v \in N}$ is eventually in U. That is, there is v_U such that $x_v \in U$ whenever $v \ge v_U$. We write $x_0 = \lim_{v \in N} x_v$, the τ -limit of $(x_v)_{v \in N}$. Note that this is an abuse of notation, since limit points need not be unique (when (X, τ) is not Hausdorff).

- Some $x_0 \in X$ is a **cluster point** of $(x_v)_{v \in N}$ if for any $U \in \tau$ with $x_0 \in U$, $(x_v)_{v \in N}$ is frequently in U.
- **7.1 Proposition.** If $(x_v)_{v \in N}$ is a net in (X, τ) and $x_0 \in X$, then x_0 is a cluster point for $(x_v)_{v \in N}$ if and only if x_0 is a τ -limit point of x_v for some subnet $(x_v)_{u \in M}$ of $(x_v)_{v \in N}$.

PROOF (\Longrightarrow) Suppose x_0 is a cluster point for $(x_v)_{v \in N}$. Then for each $v \in N$ and $U \in \tau$ containing x_0 , define

$$F_{\nu,U} = \{ \nu' \in N : \nu' \ge \nu, x_{\nu'} \in U \}$$

which is non-empty since x_0 is a cluster point. Then set

$$\mathcal{F} = \{F_{\nu,U} : \nu \in N, U \in \tau, x_0 \in U\} \subset \mathcal{P}(N)$$

Let's see that \mathcal{F} is filtering: suppose $F_{\nu,U}$ and $F_{\nu',U'}$ are in \mathcal{F} . Get $\mu \geq \nu$ and $\mu \geq \nu'$ by definition of a net and set $V = U \cap U'$, which is open and contains x_0 . Then since x_0 is a cluster point, get some $\mu' \geq \mu$ such that $x_{\mu'} \in V$, so $F_{\mu',V} \subseteq F_{\nu,U} \cap F_{\nu',U'}$ We then let $M = N_{\mathcal{F}}$ be the net construction from the filtering family and set $v_{(\nu,F)} = V$.

Now set $N_{\mathcal{F}} = \{(v, F) : v \in F, F \in \mathcal{F}\}$ with the standard preorder and $v_{(v,F)} = v$. Then the map $(v,F) \mapsto v$ from $N_{\mathcal{F}} \to N$ is eventually cofinal: if $v_0 \in N$ is arbitrary, take any $F_0 = F_{v_0,U} \in \mathcal{F}$. Then $F_0 = \{v \in N : v \geq v_0, x_v \in U\}$, so if $F_{\mu,V} \in \mathcal{F}$ with $F_{\mu,V} \subseteq W$ let $M = N_{\mathcal{F}}$ as in (iv) above, and $v_{v,\mathcal{F}} = v$. Check that $(x_v)_{(v,F)\in N_{\mathcal{F}}}$ is eventually in U for any $U \in \tau$ with $x_0 \in U$. [Check: $(v,F) \mapsto v : N_{\mathcal{F}} \to N$ is cofinal, but is not evidently directed]

- (\Leftarrow) If for some subnet $(x_{\nu_{\mu}})_{\mu \in M}$ is eventually in U for any $U \in \tau$ with $x_0 \in U$, then $(x_{\nu})_{\nu \in N}$ is frequently in U for such U by definition of a subnet.
 - **7.2 Proposition.** If (Y, σ) is another topological space, then $f: X \to Y$ is continuous if and only if for any $x_0 \in X$ and net $(x_v)_{v \in N}$ with having x_0 as a limit, $f(x_0) = \lim_{v \in N} f(x_v)$.

PROOF If $V \in \sigma$ with $f(x_0) \in V$, then $f^{-1}(V) \in \tau$ with $x_0 \in f^{-1}(V)$. Since $(x_v)_{v \in N}$ is eventually in $f^{-1}(V)$, so $(f(x_v))_{v \in N}$ is eventually in V.

Conversely, let $\tau_{x_0} = \{U \in \tau : x_0 \in U\}$, which is filtering on X. Let $N_{\tau_{x_0}} = \{(x, U) : x \in U, U \in \tau_{x_0}\}$ be directed by $(x, U) \leq (x', U')$ if and only if $U \supseteq U'$ as in (iv) above. Then $x_0 = \lim_{(x,U) \in N_{\tau_{x_0}}} x$. Now, let $V \in \sigma$ with $f(x_0)$. The assumptions on f tell us there is $v - V \in N_{\tau_{x_0}}$ such that for $v \geq v_V$, we have $f(x_0) \in V$ We have $v_V = (x, U)$ for some $U \in \tau_{x_0}$ and $x \in U$, so for any $x' \in U$, $(x', U) \geq (x, U)$ and $f(x') = f(x_{x',U}) \in V$, so that $x_0 \in U = \bigcup_{x' \in U} \{x'\} \subseteq f^{-1}(V)$, so f is continuous at x_0 . But $x_0 \in X$ was arbitrary.

Remark. We get the following consequences of this result:

- (i) Given topologies τ, τ' on X, $\tau' \subseteq \tau$ if and only if $\tau' \lim_{v \in N} x_v = x_0$ whenever $\tau \lim_{v \in N} x_v = x_0$ for any $x_0 \in X$.
- (ii) (limits in product topology) $\{(x_{\alpha}, \tau_{\alpha})\}_{\alpha \in A}$ be topological space and $X = \prod_{\alpha \in A} X_{\alpha}$ equipped with the product topology π . If $(x^{(v)})_{v \in N}$ is a net in X and $x^{(0)} \in X$, then $\pi \lim_{v \in N} x^{(v)} = x^{(0)}$ if and only if for every $\alpha \in A$, $\tau_{\alpha} \lim_{v \in N} x^{(v)}_{\alpha} = x^{(0)}_{\alpha}$. Recall that π is the coarsest topology making each μ_{α} continuous.
- (iii) If X is a normed space and $(f_v)_{v \in N} \subset X^*$, $f_0 \in X^*$, then $w^* \lim_{v \in N} f_v = f_0$ if and only if $\lim_{v \in N} f_v(x) = f_0(x)$ for each $x \in X$.

Roles of weak and weak* topologies in convexity

7.3 Theorem. (w^* -Separation) Let X be a normed space, $A, B \subset X^*$ each be non-empty and convex, with $A \cap B = \emptyset$ and B w^* -open. Then there is $x \in X$ and $\alpha \in \mathbb{R}$ such that

$$\operatorname{Re} f(x) \le \alpha < \operatorname{Re} g(x)$$

for $f \in A$ and $g \in B$.

PROOF The separation theorem and the fact that B is $\|\cdot\|$ —open (i.e. $w^* \subseteq \tau_{\|\cdot\|}$) provides $F \in X^{**}$ and $\alpha \in \mathbb{R}$ such that $\operatorname{Re} F(f) \leq \alpha \operatorname{Re} F(g)$ for $f \in A$, $g \in B$. Since $B \in w^* = \sigma(X^*, \hat{X})$, if $f_0 \in B$, then there are x_1, \ldots, x_n in X such that

$$f_0 \in U = \bigcap_{i=1}^n \hat{x}_i^{-1} (f_0(x_i) + \mathbb{D}) \subseteq B$$

Let $Y = \bigcap_{i=1}^n \ker \hat{x_i} \subseteq X^*$. Then for i = 1, ..., n, $\hat{x_i}(f_0 + Y) = \{f_0(x_i)\} \subset f_0(x_i) + \mathbb{D}$, so that $f_0 + YU \subseteq B$. Thus if $f \in Y$, then $\operatorname{Re} F(f_0 + f) > \alpha$ and hence $\operatorname{Re} F(f) > \alpha - \operatorname{Re} F(f_0)$ which implies that $f \in \ker F$, so $f \in \ker F$. That is, $Y \subseteq \ker F$. The next lemma shows that $F \in \operatorname{span}\{\hat{x_1}, ..., x_n\} \subseteq \hat{X}$, i.e. $F = \hat{x}$ for some $x \in X$.

7.4 Lemma. In an \mathbb{F} –vector space, if $f_0, f_1, \ldots, f_{\in}X'$ with $\ker f_0 \supseteq \bigcap_{i=1}^n \ker f_i$, then $f \in \operatorname{span}\{f_1, \ldots, f_n\}$.

Proof Define $T: X \to \mathbb{F}^n$ by $Tx = (f_1(x), \ldots, f_n(x))$. Then $\ker T = \bigcap_{i=1}^n \ker f_i$. Let $\mathcal{R} = \operatorname{im} T \subseteq \mathbb{F}$ and $g_0 \in \mathcal{R}'$ by $g_0(Tx) = f_0(x)$. Then g_0 is well-defined: if Tx = Ty, then $x - y \in \ker T \subseteq \ker f_0$, so $f_0(x - y) = 0$ so $f_0(x) = f_0(y)$. Also g_0 is linear. Let $g \in (\mathbb{F}^n)'$ such that $g|_{\mathcal{R}} = g_0$. Hence there are $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ such that $g(y_1, \ldots, y_n) = \sum_{j=1}^n \alpha_j y_j$. Hence for $x \in X$,

$$f_0(x) = g_0(Tx) = g(Tx) = g(f_1(x), \dots, f_n(x)) = \sum_{j=1}^n \alpha_j f_j(x)$$

so that $f_0 = \sum_{j=1}^n \alpha_j f_j$.

7.5 Theorem. (w^* -Closed Convex Hull) If $S \subset X^*$, then

$$\overline{\operatorname{co}}^{w^*} S = \bigcap \{ \{ f \in X^* : \operatorname{Re} f(x) \le \alpha \} \supseteq S : x \in X, \alpha \in \mathbb{R} \}$$

PROOF The set on the right is w^* -closed and convex being the intersection of such. Conversely, if $f \in X^* \setminus \overline{\operatorname{co}}^{w^*} S$, which is open, then there is a basic w^* -open neighbourhood

$$B = \bigcap_{j=1}^{n} \hat{x}_{j}^{-1} (f(x_{j}) + \mathbb{D}) \subseteq X^{*} \setminus \overline{\operatorname{co}}^{w^{*}} S$$

so that $B \cap \overline{\operatorname{co}}^{w^*} S = \emptyset$. Also, *B* is convex.

Remark. If X is a normed spacee, a closed half space $H = \{x \in X : \operatorname{Re} f(x) \le \alpha\}$ for some f in X^* , $\alpha \in \mathbb{R}$. Hence, H is weakly closed $(\operatorname{Re} f)^{-1}([\alpha, \infty)) = f^{-1}(\{z \in \mathbb{C} : \operatorname{Re} z \ge \alpha\})$ is w-closed. Thus if $S \subset X$, we have $\overline{\operatorname{co}} S \in w = \sigma(X, X^*) \subseteq \tau_{\|\cdot\|}$, so $\overline{\operatorname{co}} S$ is automatically weakly closed. Hence if $C \subseteq X$ is convex, then C is norm closed if and only if C is w-closed.

Definition. Let X be a normed space. If $E \subseteq X$ (non-empty), the **polar** of E is given by

$$E^{\circ} = \{ f \in X^* : \operatorname{Re} f(x) \le 1 \text{ for all } x \text{ in } E \} \subseteq X^*$$
$$= \bigcap_{x \in E} \{ f \in X^* : \operatorname{Re} \hat{x}(f) \le 1 \}$$

so E° is convex and w^* -closed in X^* , and $0 \in E^{\circ}$.

If $F \subseteq X^*$ (non-empty), let the **pre-polar** of F be given by

$$F_{\circ} = \{x \in X : \operatorname{Re} f(x) \le 1 \text{ for all } f \text{ in } F\}$$

so, like above, F_0 is convex, (w-) closed, and $0 \in F_0$.

7.6 Theorem. (Bipolar) (i) If
$$\emptyset \neq E \subseteq X$$
, then $(E^{\circ})_{\circ} = \overline{\operatorname{co}}(E \cup \{0\})$. (ii) If $\emptyset \neq F \subseteq X^{*}$, then $(F_{\circ})^{\circ} = \overline{\operatorname{co}}^{w^{*}}(F \cup \{0\})$.

- PROOF (i) Note that $E \cup \{0\} \subseteq (E^\circ)_\circ$, so $\overline{\operatorname{co}}(E \cup \{0\}) \subseteq (E^\circ)_\circ$. If $x_0 \in X \setminus \overline{\operatorname{co}}(E \cup \{0\})$, then the separation theorem provides $f \in X^*$, $\alpha \in \mathbb{R}$ so $\operatorname{Re} f(x_0) > \alpha \geq \operatorname{Re} f(x)$ for $x \in E \cup \{0\}$. Notice that $\alpha \geq \operatorname{Re} f(0) = 0$, and we let $\beta = \frac{1}{2}[\operatorname{Re} f(x_0) + \alpha] > 0$, so $\operatorname{Re} f(x_0) > \beta \geq \operatorname{Re} f(x)$ for $x \in E \cup \{0\}$, $\beta > 0$. Let $g = \frac{1}{\beta}f$ and we see that $g \in E^\circ$ and as $\operatorname{Re} g(x_0) > 1$, $x_0 \notin (E^\circ)_\circ$.
- (ii) Similar, use w^* -separation.

Remark. Let $Y \subseteq X$ be a subspace. If $f \in Y^0$, then $\operatorname{Re} f(y) \le 1$ for $y \in Y$ implies that f(y) = 0 for all $y \in Y$. We write $Y^a = Y^0$, and $Y^a = \{f \in X^* : f|_Y = 0\}$ is called the **annhilator** of Y. Likewise, if $Z \subseteq X^*$ is a subspace, then $Z_a = Z_0$ where $Z_a = \{x \in X : f(x) = 0 \text{ for each } f \in Z\}$ is called the **pre-annhilator**. Notice that Y^a and Z_a are subspaces.

- **7.7 Corollary.** (i) If $Y \subseteq is$ a subspace, then $(X^a)_a = \overline{X}$. (ii) If $Z \subseteq X^*$ is a subspace, then $(Z_a)^a = \overline{Z}^{w^*}$.
- **7.8 Lemma.** If X is a normed space, then $B(X)^0 = B(X^*)$ and $B(X^*)_0 = B(X)$.

PROOF If $f \in B(X^0)$, then $\operatorname{Re} f(x) \leq 1$ for $x \in B(X)$. Thus for $x \in B(X)$, $|f(x)| = \operatorname{sgn} f(x)f(x) = f(\operatorname{sgn} f(x)x) \leq 1$, so $||f|| \leq 1$ and $f \in B(X^*)$. Conversely, if $f \in B(X^*)$, $x \in B(X)$, then $\operatorname{Re} f(x) \leq |f(x)| \leq 1$ so $f \in B(X)^\circ$. Then use the Bipolar theorem.

7.9 Theorem. (Goldstine) If X is a normed space, then $\overline{B(\hat{X})}^{w^*} = B(X^{**})$. Note that $w^* = \sigma(X^{**}, \hat{X}^*)$.

Proof The Bipolar theorem provides $\overline{B(\hat{X})}^{w^*} = \overline{\operatorname{co}}^{w^*} B(\hat{X}) = (B(\hat{X})_{\circ})^{\circ}$. But, in X^* ,

$$B(X)^{\circ} = \{ f \in X^* : \text{Re } f(x) \le 1 \text{ for } x \text{ in } B(X) \}$$

= $\{ f \in \hat{X}^* : \text{Re } \hat{x}(f) \le 1 \text{ for } x \text{ in } B(X) \}$
= $B(\hat{X})_{\circ}$

Hence we have, using the lemma,

$$\overline{B(\hat{X})}^{w^*} = (B(\hat{X})_{\circ})^{\circ} = (B(X)^{\circ})^{\circ} = B(X^*)^{\circ} = B(X^{**})$$

- *Example.* (i) Recall that $c_0^* \cong \ell_1$ and $\ell_1^* \cong \ell_\infty$, wheren $c_0 \subseteq \ell_\infty$. Thus by Goldstine, $\overline{B(c_0)}^{w^*} = B(\ell_\infty)$, so $w^* = \sigma(\ell_\infty, \ell_1)$. Since ℓ_1 is separable, we have that $(B(\ell_\infty), w^*)$ is metrizable. In fact, if $x \in \ell_\infty$, then if $x^{(n)} = (x_1, \dots, x_n, 0, 0, \dots) \in c_0$, we have $x = w^* \lim_{n \to \infty} x^{(n)}$.
 - (ii) $\ell_{\infty}^* \cong (\mathbb{N})$. But $B((\mathbb{N}), w^*)$ is not metrizable. Since $\ell_1^* \cong \ell_{\infty}$, there is a natural isometric embedding $\ell_1 \hookrightarrow (\mathbb{N})$. Then $y^{(n)} = \frac{1}{n}(1, 1, \ldots) \in B(\ell_1)$, and w^* -cluster point of $(y^{(n)})_{n=1}^{\infty} \subset B((\mathbb{N}))$ is a Banach limit.

7.10 Corollary. If $F \in X^{**}$, there always exists a net $(x_{\nu})_{\nu \in N} \subset X$ such that

$$F = w^* - \lim_{v \in N} \hat{x}_v \text{ and } ||x_v|| \le ||F||$$

PROOF If $F \neq 0$, $\frac{1}{\|F\|}F \in B(X^{**}) = \overline{B(\hat{X})}^{w^*}$, and we may find $(y_{\nu})_{\nu \in N} \subset B(X)$ such that $(\hat{y}_{\nu})_{\nu \in N} \subset B(\hat{X})$ and $\frac{1}{\|F\|}F = w^* - \lim_{\nu \in N} \hat{y}_{\nu}$. Let $x_{\nu} = \|F\|y_{\nu}$.

Consider $\mathcal{F}=w^*_{\frac{1}{\|F\|}F}=\{U\in w^*|_{B(X^{**})}:F\in U\}$ is a filtering family. Each $U\in w^*_{\frac{1}{\|F\|}F}$ has $U\cap B(\hat{X})\neq\emptyset$ by Goldstine. Let $N_{\mathcal{F}}=\{(x,U):x\in B(X),\hat{x}\in U,U\in\mathcal{F}\}$. Then $(x_{\nu})_{\nu\in N_{\mathcal{F}}}=(x)_{(x,U)\in N_{\mathcal{F}}}$ works.

Definition. A normed space X is **reflexive** if $\hat{X} = X^{**}$.

Notice that $X^{**} = (X^*)^*$ is complete, and $x \mapsto \hat{x}$ is an isometry, so a reflexive space is always complete.

- **7.11 Theorem.** Let X be a Banach space. The following are equivalent:
 - (i) X is reflexive
 - (ii) B(X) is w-compact
- (iii) $w^* = w$ on X^*
- (iv) X^* is reflexive.

PROOF The map $\iota: x \mapsto \hat{x}$ is a $w - w^*|_{\hat{X}}$ -homeomorphism. Recall $w^* = \sigma(X^{**}, \hat{X}^*)$, and $w^*|_{\hat{X}} = \sigma(,(\hat{X})^*|_{\hat{X}})$ and we have for $x_0 \in X$, net $(x_\nu)_{\nu \in N}$ in X,

$$\begin{split} w - \lim_{\nu \in N} x_{\nu} &= x_{0} \iff \lim_{\nu \in N} f(x_{\nu}) = f(x_{0}) \forall f \in X^{*} \\ &\iff \lim_{\nu \in N} \hat{x}_{\nu}(f) = \hat{x}_{0}(f) \forall f \in X^{*} \\ &\iff \lim_{\nu \in N} \hat{f}(\hat{x}_{\nu}) = \hat{f}(\hat{x}_{0}) \end{split}$$

and having the same convergent nets means that the topologies are the same.

- $(i \Rightarrow ii)$ By assumption, $\widehat{B(X)} = B(\widehat{X}) = B(X^{**})$. Since $B(X^{**})$ is w^* -compact, and hence $\iota^{-1}(B(X^{**})) = B(X)$ is w-compact
- $(ii \Rightarrow i)$ If B(X) is w-compact, then since $x \mapsto \hat{x} : X \to X^{**}$ is continuous, we see that $B(\hat{X}) = \widehat{B(X)}$ is w^* -compact.
 - $(i \Rightarrow iii)$ We have $\hat{X} = X^{**}$ so on X^* , we have $w = \sigma(X^*, X^{**}) = \sigma(X^*, \hat{X}) = w^*$.
- $(iii \Rightarrow iv)$ $B(X^*)$ is compact, hence w-compct, so by (ii) implies (i) applied to X^* , we have that X^* is reflexive.
- $(iv \Rightarrow i)$ We assume $\widehat{X^*} = X^{***}$. Thus on X^{***} , we have $w = \sigma(X^{**}, X^{***}) = \sigma(X^{**}, \widehat{X^*}) = w^*$. Now $B(\widehat{X}) = B(X^{**}) \cap \widehat{X}$ is norm-closed and convex, hence w-closed, by Closed Convex Hull

theorem. Thus from above, $B(\hat{X})$ is w^* -closed, so $B(\hat{X}) = \overline{B(\hat{X})}^{w^*} = B(X^{**})$ by Goldstine, so $\hat{X} = X^{**}$.

- **7.12 Corollary.** (i) Any finite dimensional normed space is reflexive.
- (ii) Any closed subspace Y of a normed space X is reflexive.
- PROOF (i) A finite dimensional normed space is complete, and its closed ball is compact, and thus w-compact as $\tau_{\|\cdot\|} \supseteq w$.
- (ii) By Hahn-Banach, $Y^* = X^*|_Y$, so $\sigma(Y, Y^*) = \sigma(Y, X^*|_Y) = \sigma(X, X^*)|_Y$. Now $B(Y) = B(X) \cap Y$ is norm-closed and convex, hence w-closed in B(X). But B(X) is w-compact, so B(Y) is a w-closed subset of a w-compact space and thus w-compact.

Extreme Points and the Krein-Milman Theorem

Definition. Let X be a vector space and $C \subset X$ convex. A **face** F of C is any non-empty subset such that if $x \in F$, x = (1 - t)y + tz, $t \in (0, 1)$, $y, z \in C$ implies that $y, z \in F$. A **extreme point** of C is a singleton face, i.e. ext $C = \{x \in C : \{x\} \text{ is a face of } C\}$. Hence $x \in \text{ext } C$ if for any $t \in (0, 1)$ and $y, z \in C$, if x = (1 - t)y + tz then x = y = z.

Remark. (i) Faces of *C* are themselves convex subsets.

- (ii) A face F' of a face F of C is itself a face of C.
- (iii) $\operatorname{ext} F \subseteq \operatorname{ext} C$.
- (iv) If $f \in X'$ and Re f(C) = [a, b], then (Re f)⁻¹($\{b\}$) is itself a face of C.

7.13 Theorem. (Krein-Milman) Let X be a normed space and $C \subset X^*$ convex and w^* -compact. Then $C = \overline{co}^{w^*}$ ext C.

PROOF We first verify that any w^* -closed face of C admits an extreme point. We let $\mathcal{F} = \{F : F \text{ is a } w^*$ -closed face of $C\}$, which is partially ordered by reverse inclusion. If C is a chain in \mathcal{F} with $F_1, \ldots, F_n \in C$, we may assume $F_1 \supseteq \cdots \supseteq F_n$ so that C has the finite intersection property. Thus $\emptyset \neq F_0 = \bigcap_{F \in C} F$. If $x \in F_0$, $t \in (0,1)$, $y,z \in C$ and x = (1-t)y + tz, then $x \in F$ for any $F \in C$ so $y,z \in F$ for any $f \in C$. Thus $y,z \in \bigcap_{F \in C} F = F_0$. Also F_0 is closed, so $F_0 \in \mathcal{F}$. Thus F_0 is an upper bound in \mathcal{F} for C, so by Zorn, get some maximal element M.