

AD-A249 062

OFFICE OF NAVAL RESEARCH

Contract N00014-82-K-0280

Task No. NR413E001

TECHNICAL REPORT NO. 42

Interaction Of Atomic Hydrogen With The Surface Methyl Group On Si(100) - Removal Of Surface Carbon

by

C.C. Cheng, S.R. Lucas, H. Gutleben, W.J. Choyke, and J.T. Yates, Jr.

Submitted to

Surface Science Letters

Surface Science Center Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260

March 6, 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document had been approved for public release and sale; its distribution is unlimited

92 4 06 095

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
42		
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
Interaction Of Atomic Hydrogen With The		
Surface Methyl Group On Si(100) -	
Removal Of Surface Carbon		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		S. CONTRACT OR GRANT NUMBER(*)
C.C. Cheng, S.R. Lucas, H.	Gutlehen	
W.J. Choyke, and J.T. Yates		
" onogre, and u.t. tales, ut.		
9. PERFORMING ORGANIZATION NAME AND ADDRESS SUFFACE Science Center		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Chemistry		
Department of Chemistry University of Pittsburg Pittsburgh, PA 15260	h	·
<u> </u>		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		March 6, 1992
		23
14. MONITORING AGENCY NAME & ADDRESS(II dilleren	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)		
1		
17. DISTRIBUTION STATEMENT (of the electract entered	in Block 20, if different fo	om Report)
·	in Block 20, if different to	par Report)
17. DISTRIBUTION STATEMENT (of the electract entered	in Block 20, If different in	om Report)
·	in Block 20, if different fr	pm Report)
·	in Block 20, II different fo	pm Report)
·	in Block 20, If different in	om Report)
19. KEY WORDS (Continue on reverse elde if necessary as	nd identify by block number	•)
19. KEY WORDS (Continue on reverse side if necessary at Methyl Silic	nd identify by block number On Atc	
19. KEY WORDS (Continue on reverse elde if necessary as	nd identify by block number On Atc	•)
19. KEY WORDS (Continue on reverse side if necessary at Methyl Silic	nd identify by block number On Atc	•)
19. KEY WORDS (Continue on reverse elde if necessary at Methyl Silic Etching Silan	nd identify by block number On Ato	omic hydrogen
19. KEY WORDS (Continue on reverse elde if necessary at Methyl Silic	drogen with an overlay been studied using Audesorption (TPD) mass tion with atomic hydroxposures of atomic hydroxposures of atomic hydroxposures to the almost alogen by an Eley-Ride oval rate decreases wiepletion of surface of the S1(100) surface of CH351H3(g) productive deuterium from CD3(4 so observed; this is in of atomic hydrogen	omic hydrogen yer derived from methyl ager electron spectroscopy spectroscopy. Efficient agen is observed. arogen also show the to non-activated behavior eal process producing the activated behavior eactivated behavior eactiv

SECURITY CLASSIFICATION OF THIS PAGE (From Date Emered)

Submitted to: Surface Science Letters

Date: 18 February 1992

INTERACTION OF ATOMIC HYDROGEN WITH THE SURFACE METHYL GROUP ON S1(100) REMOVAL OF SURFACE CARBON

C.C. Cheng, S.R. Lucas, H. Gutleben, W.J. Choyke, and J.T. Yates, Jr.

Surface Science Center Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260

INTERACTION OF ATOMIC HYDROGEN WITH THE SURFACE METHYL GROUP ON S1(100) REMOVAL OF SURFACE CARBON

C.C. Cheng, S.R. Lucas, H. Gutleben, W.J. Choyke, and J.T. Yates, Jr.

Surface Science Center Department of Chemistry University of Pittsburgh Pittsburgh, PA 15260

Abstract

The interaction of atomic hydrogen with an overlayer derived from methyl iodide on the Si(100) surface has been studied using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) mass spectroscopy. Efficient removal of surface iodine by reaction with atomic hydrogen is observed. However, experiments with large exposures of atomic hydrogen also show the depletion of surface carbon. In contrast to the almost non-activated behavior observed for the extraction of halogen by an Eley-Rideal process producing the hydrogen halides, the carbon removal rate decreases with increasing temperatures (T \geq 450 K). The depletion of surface carbon by atomic hydrogen correlates well with H-etching on the Si(100) surface in which $SiH_A(g)$ is evolved, and is shown to be due to CH3SiH3(g) production during H-etching. In addition, isotopic exchange of the deuterium from CD3(a) with hydrogen atoms supplied from the gas phase is also observed; this is found to be the most rapid kinetic process for the interaction of atomic hydrogen with the surface methyl group on Si(100). Finally, the selectivity of the H-induced reaction for two types of adsorbates, the methyl group and the halogen, is discussed.

I. INTRODUCTION

Studies of chemical reactions between gas phase species and semiconductor surfaces can provide molecular level understanding of the initial stages of chemical vapor deposition (CVD), of epitaxial thin film growth, as well as for the surface etching process. Among the different gas phase species which have been studied on semiconductor surfaces, atomic hydrogen is one of the most thoroughly investigated species due to its widespread presence in semiconductor processes.

Atomic hydrogen is a common reactant used both in the growth and etching processes of silicon. The interaction of atomic hydrogen with the clean Si(100) surface has been studied extensively using various surface science techniques [1-4]. It is well established now that etching of the Si(100) surface by atomic hydrogen proceeds via the breaking of the Si-Si bonds and the formation of higher surface hydrides, $SiH_2(a)$ and $SiH_3(a)$; these species are precursors for the formation of the etching product, $SiH_4(g)$ [2-4].

The importance of atomic hydrogen in diamond film deposition using CVD techniques has also been addressed [5]. Recently, efforts have been focused on the measurement of gaseous species in the growth chamber [6]. For a filament-assisted reactor containing a mixture of H₂, Ar, and CH₄, direct detection of gas phase radical species, H· and ·CH₃, has been reported using molecular beam mass spectrometry [6]. Predictions of the gaseous composition by numerical modeling have been reported by several groups [7-10]. Postulated surface reactions were included in the calculations [7]. However, all the computational results have failed to explain the mass spectroscopic measurements [6], and heterogeneous reactions on the substrate surfaces were suggested to be one of the causes for the discrepancy between the experimental measurement and

the numerical modeling [6]. Knowledge of key surface reactions occurring during the growth process is apparently required for the advanced understanding of the diamond film deposition.

The goal of this work is to study the surface reactions which may be initiated by gas phase atomic hydrogen on a Si(100) surface containing both $CH_3(a)$ and I(a). Investigations of surface reactions using gas phase hydrogen atoms as one of the reactants have been carried out on Si(100) recently. We have shown, in a previous paper [11], that abstraction of halogen adsorbates from the Si(100) surface can be efficiently induced by the use of incident atomic hydrogen from the gas phase producing the hydrogen halides by an Eley-Rideal process. The experiments showed that thermal activation of the solid surface is of minor importance for the removal of halogen by atomic hydrogen. This suggests that atomic hydrogen, with its excess potential energy (52 kcal/mol compared to the zero energy of 1/2 mole of $H_2(g)$), can be a promising driver of surface reactions. This class of reaction is thought to involve atomic hydrogen which is not thermally accommodated with the surface.

In this work, we report the interaction of atomic hydrogen with a surface layer derived from methyl iodide (CH₃I) and its deuterated counterpart (CD₃I) on the Si(100) surface. Methyl iodide dissociates to produce CH₃(a) and I(a) upon adsorption on the Si(100) surface at 100 K [12,13]. This enables one to study the interaction of atomic hydrogen with the surface methyl group. A further understanding of the H-induced surface reaction is revealed by two new observations. First, evidence is presented that the surface reaction induced by atomic hydrogen can remove surface iodine with high selectivity. Secondly, surface carbon present as CH₃(a) can be removed by atomic hydrogen at a much slower rate than that for adsorbed iodine. Studies of the temperature dependence for this reaction show that the carbon removal rate decreases with

increasing temperatures in the range of 450-650 K. Combining the Auger electron spectroscopy (AES) and temperature-programmed desorption (TPD) studies, we conclude that the interaction of atomic hydrogen with the adsorbed methyl group involves the removal of surface carbon via an H-etching process which produces methylsilane, CH₃SiH₃.

II. EXPERIMENTAL

The ultrahigh vacuum system (with a base pressure of $1x10^{-10}$ Torr) and the Si(100) crystal preparation have been described previously [12,14-16]; selected aspects will be summarized here. The system is equipped with an Auger electron spectrometer, an argon ion sputtering gun, a calibrated microcapillary array doser producing a collimated beam [14], and a multiplexed quadrupole mass spectrometer (QMS) with capabilities for both random flux and line-of-sight detection. Programmed heating of the Si(100) crystal (15x15x1.5 mm; p-type; B-doped; 10 Ω -cm) is carried out with a Honeywell programmable temperature controller which is used to drive a feedback circuit to control the power to the crystal [17].

For the adsorption of methyl iodide, a calibrated multicapillary array doser was used to deliver the gas molecules onto the Si(100) surface giving carefully controlled absolute adsorbate exposures [14]. Dosing of methyl iodide in this study was performed at a silicon temperature of 300 K. For dosing of H atoms onto the prepared surface, a tungsten-spiral filament (wire diameter = 0.25 mm; spiral radius = 1 cm; T=1800 K) with line-of-sight exposure to the crystal surface at a distance of ~4 cm was used to produce atomic hydrogen during H₂ exposure. The characteristics of molecular hydrogen dissociation by a hot tungsten filament have been examined previously [18,19]. The rate of atomization of molecular hydrogen on a hot tungsten filament (T ≥ 1800 K) is

linearly dependent on the H₂ pressure at $P(H_2) < 1 \times 10^{-6}$ Torr [18,19]. However, owing to the uncertainties in determining the absolute flux of atomic hydrogen, the exposures of atomic hydrogen are given by the H₂ exposures in Langmuir (L) [1 L = 1 x 10⁻⁶ Torr.s], uncorrected for ion gauge sensitivity.

Surface cleanliness and the relative surface coverages of adsorbed carbon and iodine were verified by AES. All the AES data reported here were obtained by averaging at four or more positions on the prepared surface and the measurements of iodine coverage were made in a manner eliminating electron stimulated desorption effects [11]. TPD measurements were made with a line-of-sight detection geometry, using the shielded, differentially-pumped QMS.

III. RESULTS

Dissociative adsorption of methyl iodide on the Si(100)-(2x1) surface has been investigated previously [12,13]. The CH₃I molecule dissociates upon adsorption at 300 K into a covalently-bonded methyl group and a chemisorbed iodine atom. A saturation coverage of ~ 2.9 x 10^{14} CH₃I/cm² was determined [12] which suggests that the surface species resulting from the dissociative adsorption of CH₃I are the methyl group and the iodine atom, each bound to one dangling bond on the surface (a perfect Si(100)-(2x1) surface nominally contains 6.8×10^{14} Si atoms/cm² or 3.4×10^{14} Si₂ dimers/cm²; 1 monolayer (ML) therefore nominally involves 6.8×10^{14} dangling bonds/cm².). In addition, studies of the thermal behavior of the methyl group on the Si(100) surface showed that the methyl group is stable up to ~ 630 K; above 630 K adsorbed CH₃(a) decomposes into lower CH_X species, which leads to Si-H species formation followed by the liberation of molecular hydrogen, beginning near 700 K [13]. Therefore, all the following experiments were performed at Si(100) substrate temperatures $\leq 630 \text{ K}$ to avoid the chemical complexity which would be introduced at high temperatures.

A. Preferential removal of surface halogen by atomic H

Figure 1 shows the AES results after exposing an [CH₃(a) + I(a)] overlayer on Si(100) to atomic hydrogen. The experiments were performed at a silicon temperature of 300 K and using the same H flux (the same H₂ pressure and W-filament temperature during atomic hydrogen dosing), so that the relative reaction rate constant, k, for the different adsorbates (CH₃(a) and I(a)) can be obtained. The AES spectra were taken after each H exposure. The characteristic AES signals used for data analysis are C(KLL) at 272 eV and I(MNN) at 511 eV. The intensities of all AES signals are normalized to the intensity at reaction time zero, and therefore, each data point represents the relative surface coverage at reaction time t. In the case of chemisorbed iodine, the data were obtained at a constant electron fluence for each point, avoiding the effect of electron stimulated desorption in determining the relative surface coverages as described previously [11].

Two important features are noticed from Figure 1. First, the exponential behavior of iodine removal, as shown by the fitted experimental solid line in Figure 1, indicates that the extraction process is first order in the surface coverage of iodine. It has also been shown that the extraction reaction is first order in atomic hydrogen flux, and that it is almost a non-activated process [11]. The H-extraction process follows an Eley-Rideal type reaction mechanism where the surface reaction,

$$H(g) + X(a) ----> HX(g)$$
, where X= I, Br, and Cl, (1)

is driven mainly by the high potential energy of the incident atomic hydrogen. Details of the abstraction of different halogen adsorbates from the Si(100) surface have been presented elsewhere [11]. Secondly, the carbon surface

coverage remains almost constant throughout the H exposures indicated in Figure 1, in sharp contrast to the behavior of adsorbed iodine. The initial reaction rate constant for the removal of surface iodine is 170 ± 20 times higher than that for surface carbon at 300 K. This estimate is based on the assumption that the removal processe for $CH_3(a)$ follows first order kinetics as was experimentally verified for iodine [11]. The preferential removal of surface iodine demonstrates the selectivity of the H-induced reaction for the different surface species, $CH_3(a)$ and I(a). The results also indicate a low reaction cross section for the removal of the methyl group by atomic hydrogen via a similar extraction type reaction, which might be postulated to occur,

$$H(g) + CH_3(a) ----> CH_4(g)$$
. (2)

The difference in reactivity for two types of adsorbed species, the methyl group and the halogens, will be discussed later.

B. Depletion of surface carbon (present as CH3(a)) by atomic H

A decrease of surface carbon concentration is observable following long atomic H exposures. Under the same experimental conditions as employed in Figure 1 (a silicon temperature of 300 K and a H₂ pressure of 1 x 10⁻⁷ Torr), a much slower rate of decrease of the C(KLL) intensity occurs, as shown in Figure 2(a). The error bar shown at reaction time zero indicates the reproducibility of preparing a 1 ML CH₃I overlayer. Also shown in Figure 2 is the effect of substrate temperature on the depletion rate of surface carbon by atomic hydrogen. A plot of the relative reaction rates versus substrate temperatures is shown in Figure 2(b). The relative first order reaction rates and hence the error bars shown in Figure 2(b) have been obtained by least square fitting of the logarithm of the C(KLL) signal at H₂ exposures \geq 200 L. This is the region

where all iodine has been extracted, and Auger screening effects by surface iodine (which will influence the Si Auger intenstiy) are not present. The reaction rates at 300 K and 450 K are nearly the same for the exposures investigated here; the difference is within the experimental error. At higher temperatures ($T \ge 500$ K), a significant decrease of the carbon removal rate is observed. While the temperature-independent reaction rate observed at $T \le 450$ K could suggest an Eley-Rideal type reaction, the decrease of reaction rate at $T \ge 500$ K indicates that the Eley-Rideal process is not involved in the adsorbed methyl extraction phenomenon.

C. Temperature-programmed desorption studies

Figure 3 shows typical TPD spectra obtained after exposing the prepared CH₃/Si(100) surface to moderate exposures of atomic hydrogen at 300 K. Different H₂ desorption states (β_1 , β_2 , and β_3) and silane (SiH₄) desorption are observed. These desorption products are known to be the main products from the hydrogenated Si(100) surface [2], and their production is confirmed as shown in Figures 3(a) and 3(b), respectively. In addition to the desorption of H₂ and SiH₄, the desorption of CH₃SiH₃ is also observed and shown in Figure 3(c) by its major mass fragment (m/e = 44) [20]. From a saturated CH₃I layer, untreated with atomic hydrogen, neither the β_2 and β_3 -H₂ states nor the CH₃SiH₃ and SiH₄ products are detected [12].

D. Interaction of atomic hydrogen with CD3(a)

Figure 4 shows the thermal desorption yield of H_2 , HD and D_2 obtained after a saturated [CD₃(a) + I(a)] adlayer, produced from the dissociative adsorption of CD₃I, has been exposed to different doses of atomic hydrogen at 300 K. The amount of desorbing H_2 and D_2 was calibrated by the desorption yield of the

saturated monohydride (monodeuteride) phase whose coverage corresponds to 1 ML on the Si(100) surface [2,12]. The amount of molecular hydrogen desorbing as HD was estimated from the relative sensitivities of the QMS for different hydrogen species as reported in the literature [21,22]. The initial uptake of H (see Figure 4), as shown by the increase of H_2 and HD desorption yield, occurs during the efficient removal of surface iodine (see Figure 1); the created dangling bond sites are occupied by the incoming atomic hydrogen. The initial decrease of the D_2 desorption yield is due to the exchange effect between $CD_3(a)$ and H(g), to be discussed below.

IV. DISCUSSION

In the following discussion, we will first focus on the interaction of atomic hydrogen with the adsorbed methyl group, which is further divided into two subsections: (1) the depletion of surface carbon by atomic H; and (2) the isotopic exchange interaction of atomic H with $CD_3(a)$. Then, the selectivity for the H-induced surface reaction is discussed based on the results obtained for two types of adsorbates, the methyl group and the halogen.

A. Depletion of adsorbed CH3 by atomic H

The temperature dependence of the carbon removal, as shown in Figure 2, is similar to that of H-etching on the Si(100) surface. Etching of the Si(100) surface by atomic hydrogen is known to be more efficient at low temperatures ($T \le 400 \text{ K}$) and high hydrogen coverages [2-4,23,24]. This is due to the need to achieve high hydrogen coverages to cause the breaking of the Si-Si bonds and to cause the formation of higher surface hydrides, SiH₂(a) and SiH₃(a), which serve as precursors for the formation of the etching product, SiH₄(g) [2-4]. Therefore, the observations of both the decrease of surface carbon coverage at

high atomic hydrogen exposures and the inefficient rate of removal of carbon at higher temperatures strongly suggests the following mechanism: the depletion of surface carbon on Si(100) by atomic hydrogen occurs via the etching of the C-incorporated Si(100) surface by the formation of volatile methyl silane compound(s), e.g., CH₃SiH₃(g). Further support for carbon removal by the etching mechanism is obtained from the TPD studies shown in Figure 3. The high surface coverage of chemisorbed hydrogen (as indicated by the β_2 and β_3 states) and the SiH₄ desorption indicate that etching occurs on the C-incorporated Si(100) surface at the exposures of atomic hydrogen used here [2]. Moreover, the observation of the etching product, CH₃SiH₃ (see Figure 3(c)) also strongly supports the etching mechanism for carbon removal by a process like,

where the surface methyl group is schematically shown attached to a surface silicon atom which is bonded to the bulk through three Si-Si bonds. The configuration shown in Reaction 3 does not imply a specific bonding structure of the Si atom on the Si(100) surface.

B. Interaction of atomic H with CD3(a)

The fact that the removal of surface carbon proceeds via the H-etching process indicates that the interaction of atomic hydrogen with the surface methyl group can not be described by the Eley-Rideal process (Reaction 2) which would produce methane. As a matter of fact, based on the study where the deuterated methyl group $(CD_3(a))$ is used (Section III. D), it is evident that in addition to the etching reaction channel, additional surface reactions occur between the gas phase atomic H and the surface methyl group.

As shown in Figure 4, a significant decrease of D_2 yield is observed at an exposure for 3000 s, where ~ 0.1 ML of carbon (a saturation overlayer of CH_3I on Si(100) corresponds to ~ 0.5 ML of carbon) is expected to be removed at this exposure (as judged from Figure 2), but ~ 0.6 ML of D has been removed. This indicates the existence of an additional reaction channel between the incoming atomic hydrogen and the adsorbed methyl group, in addition to the H-etching process (Reaction 3).

A likely process for this additional reaction is the direct abstraction of D from the adsorbed methyl group, CD₃(a), by the incident atomic hydrogen,

$$H(g) + CD_3(a) ---> HD(g) + CD_2(a),$$
 (4)

and

$$H(g) + CD_2(a) ---> CD_2H(a)$$
 (5)

A similar reaction with low activation energy has also been proposed for the exchange of surface deuterium with incoming atomic hydrogen on the Si(100) surface, i.e., SiD(a) + H(g) ---> HD(g) + Si(a) [25]. Therefore, combining the AES and TPD results, we conclude that the interaction of atomic hydrogen with the surface methyl group on Si(100) surface involves multiple reaction channels, including Reactions 4 and 5, and the etching process (Reaction 3) to produce $CH_3SiH_3(g)$. These results also indicate that the rate of the exchange reactions 4 and 5 exceed the rate of extraction of the methyl group by atomic hydrogen.

C. Selectivity of H-induced surface reaction

An unanswered question is: "Why is the reaction cross section so low for the elementary step, $H(g) + CH_3(a) \rightarrow CH_4(g)$, if the driving force mainly resides in the high potential energy of atomic hydrogen?", or "What is the key

factor controlling the selectivity of the H-induced surface reactions?".

As proposed previously [11], the extraction of halogens on Si(100) by atomic hydrogen follows the Eley-Rideal reaction mechanism where the gas phase reactant (in this case, atomic hydrogen) enters the transition state directly without equilibrating at the surface prior to reaction. The Eley-Rideal reaction can be expressed as,

$$H(g) + X(a) \longrightarrow [HX(a)^{\ddagger}] \longrightarrow HX(g)$$
 (6)

where the first step, the formation of the transition complex $[HX(a)^{\ddagger}]$, is the rate determining step.

The comparable reaction for the surface methyl group,

$$H(g) + CH_3(a) \longrightarrow [CH_4(a)^{\frac{1}{2}}] \longrightarrow CH_4(g)$$
 (7)

does not occur or is inefficient compared to Reaction 6. This may be understood since the transition state in Reaction 7 is expected to be highly energetic compared to that in Reaction 6. The transition complex produced in Reaction 7 from the surface methyl group is expected to be highly energetic because of the perturbation of the $C(sp^3)$ electronic structure, producing pentavalent carbon. In contrast, for adsorbed halogen atoms, the transition complex with a divalent halogen atom, $[HX(a)^{\ddagger}]$, should exist in a lower-energy state compared to that for $[CH_4(a)^{\ddagger}]$ due to the halogen capability to form multiple-coordinated compounds [27]. From adsorption experiments, it is known that the reaction between $CH_4(g)$ and the Si(100) surface is very unfavorable [26], again suggesting a high energy transition complex in Reaction 7. Finally, screening of the carbon atom in $CH_3(a)$ by the methyl hydrogens may also be an effective factor in decreasing the reactivity with atomic hydrogen. As a result, Reaction

7 is less likely to occur compared to the etching mechanism (Reaction 3) and the H-exchange process (Reaction 4).

V. CONCLUSIONS

The interaction of atomic hydrogen with an overlayer of $[CH_3(a) + I(a)]$ on the Si(100) surface has been studied. The following results have been obtained:

- (1) Efficient removal of surface iodine by reaction with atomic hydrogen is observed. The initial removal rate of surface iodine is 170 times higher than that of surface carbon at 300 K.
- (2) The removal of CH₃(a) by atomic hydrogen occurs slowly through an etching process in which silanes such as CH₃SiH₃(g) are evolved. This reaction is favored at silicon temperatures below 450 K, where the coverage of surface H may be increased to levels sufficient for silane production.
- (3) An efficient isotope exchange reaction between $CD_3(a)$ and H(g) has also been observed; this is the most rapid process for the interaction of atomic hydrogen with the surface methyl group on Si(100) at 300 K.
- (4) It is argued that H-induced extraction of CH₃(a) to form CH₄(g), based on the assumption of a transition state complex, [Si-CH₄‡], is not favored compared to the hydrogen exchange reaction and the etching process to produce silane.
- (5) The chemical activity of atomic hydrogen is observed, even on silicon surfaces covered to saturation coverage by covalent-bound species such as CH₃(a) or I(a). This indicates that coordinative unsaturation of the surface is unnecessary for H-induced surface chemistry to occur. Technological surface processes, such as CVD, epitaxial film growth,

and etching may be governed by the chemistry induced by atomic hydrogen interaction with fully-covered surfaces.

V. ACKNOWLEDGEMENT

We acknowledge with thanks the support of this work by the Office of Naval Research.

Figure Captions

- Figure 1. The selectivity of the H-induced reaction on a overlayer of CH3I/Si(100) at 300 K. The solid line through the data points of the I(MNN) Auger intensity is calculated based on the first order rate law.
- Figure 2. Temperature dependence of carbon removal from CH₃/Si(100) by atomic hydrogen. (a) shows the depletion of surface carbon at different Si(100) substrate temperatures; (b) shows the relative reaction rate versus substrate temperature where the relative reaction rate at each temperature is obtained based on the results of (a). The lines have been added as a guide for the eyes.
- Figure 3. Typical TPD spectra for different desorbing species after exposing CH₃/Si(100) to atomic hydrogen at 300 K.
- Figure 4. Thermal desorption yield of different hydrogen species after exposing a $[CD_3(a) + I(a)]$ overlayer on Si(100) to atomic hydrogen. The lines going through the data points are to guide the eyes.

REFERENCES

- For a recent review, see H. Froitzheim, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Eds., D.A. King, and D.P. Woodruff, Vol. 5, P. 183, Elsevier Science Publishers B.V., Netherlands, 1988.
- 2. C.C. Cheng, and J.T. Yates, Jr., Phys. Rev. B 43, 4041 (1991).
- 3. J.J. Boland, Phys. Rev. Lett. 65, 3325 (1990).
- 4. S.M. Gates, R.R. Kunz, and C.M. Greenlief, Surf. Sci. 207, 364 (1989).
- 5. For a recent review, see J.C. Angus, and C.C. Hayman, Science 241, 913 (1988).
- 6. W.L. Hsu, Appl. Phys. Lett. in press.
- 7. M. Frenklach, and H. Wang, Phys. Rev. B 43, 1520 (1991).
- 8. D.G. Goodwin, and G.G. Gavillet, J. Appl. Phys. 68, 6393 (1990).
- 9. S.J. Harris, and A.M. Weiner, J. Appl. Phys. 67, 6520 (1990).
- 10. I. Chen, J. Appl. Phys. 64, 3742 (1988).
- C.C. Cheng, S.R. Lucas, H. Gutleben, W.J. Choyke, and J.T. Yates, Jr., J.
 Amer. Chem. Soc. in press.
- 12. H. Gutleben, S.R. Lucas, C.C. Cheng, W.J. Choyke, and J.T. Yates, Jr., Surf. Sci. 257, 146 (1991).
- 13. M.L. Colaianni, P.J. Chen, H. Gutleben, and J.T. Yates, Jr., Chem. Phys. Lett. accepted.
- 14. C.C. Cheng, R.M. Wallace, P.A. Taylor, W.J. Choyke, and J.T. Yates, Jr., J. Appl. Phys. 67, 3693 (1990).
- 15. C.C. Cheng, W.J. Choyke, and J.T. Yates, Jr., Surf. Sci. 231, 289 (1990).
- 16. R.M. Wallace, C.C. Cheng, P.A. Taylor, W.J. Choyke, and J.T. Yates, Jr., Appl. Surf. Sci. 45, 201 (1990).
- R.J. Muha, S.M. Gates, J.T. Yates, Jr., and P. Basu, Rev. Sci. Instrum. 56, 613 (1985).

- 18. D. Brennan, and P.C. Fletcher, Proc. Roy. Soc. London A 250, 389 (1959).
- 19. J.N. Smith, Jr., and W.L. Fite, J. Chem. Phys. 37, 898 (1962).
- 20. G.P. van der Kelen, O. Volders, H. van Onckelen, and Z. Eeckhaut, Z. Anorg. Allg. Chem. 338, 106 (1965).
- 21. Y.-K. Sun, and W.H. Weinberg, J. Vac. Sci. Technol. A7, 3121 (1989).
- 22. The relative mass spectrometric sensitivities (γ) determined in Ref. 21 are $\gamma(H_2): \gamma(HD): \gamma(D_2) = 1.00: 0.815: 0.615$, by averaging the results of two separate measurements. The values detremined in our system are $\gamma(H_2): \gamma(D_2) = 1.00: 0.62$, in good agreement with the data reported in Ref. 21. In both cases, a UTI quadrupole mass spectrometer was employed.
- 23. (a) S. Veprek, Pure Appl. Chem. 54, 1197 (1982); (b). A.P. Webb, and S. Veprek, Chem. Phys. Letters 62, 173 (1979).
- 24. J. Abrefah, and D.R. Olander, Surf. Sci. 209, 291 (1989).
- K. Sinniah, M.G. Sherman, L.B. Lewis, W.H. Weinberg, J.T. Yates, Jr., and
 K.C. Janda, Phys. Rev. Lett. 62, 567 (1989); J. Chem. Phys. 92, 5700 (1990).
- 26. M.J. Bozack, P.A. Taylor, W.J. Choyke, and J.T. Yates, Jr., Surf. Sci., 177, L933 (1986).
- 27. R.L. DeKock, and H.B. Gary, Chemical Structure and Bonding, Benjamin/Cummings Publishing Company, Inc., CA. 1980.

TEMPERATURE DEPENDENCE OF CARBON REMOVAL FROM CH₃/Si(100) BY ATOMIC HYDROGEN

TYPICAL TPD SPECTRA AFTER EXPOSING CH₃/Si(100) TO ATOMIC HYDROGEN AT 300 K

DESORPTION YIELD OF DIFFERENT HYDROGEN SPECIES AFTER EXPOSING A CD31 OVERLAYER ON Si(100) TO ATOMIC HYDROGEN

ALE Contractor Distribution List	# Copies
D.T.I.C. Bldg # 5, Cameron Station Alexandria, VA 22314	12
Dr. Andrew Freedman Aerodyne Research, Inc. 45 Manning Road Billerica, MA 01821 Tel: (508) 663-9500 FAX: (508) 663-4918 e-mail: aerodyn@mitvma.mit.edu	1
Dr. Asif Kahn APA Optics 2950 NE 84th Lane Blaine, MN 55434 Tel: (612) 784-4995 FAX: (612) 784-2038 e-mail: 70702.2032@compuserve.com	1
Dr. Duncan Brown Advanced Technology Materials, Inc Commerce Drive Danbury, CT 06810 Tel: (203) 794-1100 FAX: (203) 792-8040	1
Dr. Peter Norris EMCORE Corp. 35 Elizabeth Ave. Somerset, NJ 08873 Tel: (201) 271-9090	1
Prof. Joe Greene Dept. of Materials Science and Engineering University of Illinois 1101 W. Springfield Ave. Urbana, IL 61801 Tel: (217) 333-0747	1
Dr. T. P. Smith IBM T.J. Watson Research Center P. O. Box 218, Route 134 Yorktown Heights, NY 10598 e-mail: trey@ibm.com	1
Prof. Robert F. Davis N.C.S.U. Box 7907	1

Raleigh, NC 27695-7907 Tel: (919) 515-2377/3272 FAX: (919) 515-3419 e-mail: davis@mte.ncsu.edu	
Prof. Salah Bedair Department of Electrical Engineering N.C.S.U.; Box Raleigh, NC 27695 Tel: (919) 515-2336 e-mail: jll@ecegrad.ncsu.edu	1
Max N. Yoder ONR Code 1114 Arlington, VA 22217 Tel: (703) 696-4218 FAXes (703) 696-2611/3945/5383 e-mail: yoder@charm.isi.edu	1
Dr. A. M. Goodman ONR, Code 1114 Arlington, VA 22217 Tel: (703) 696-4218 FAXes (703) 696-2611/3945/5383 e-mail: goodman@ocnr-hq.navy.mil	1
Dr. J. Pazik ONR Code 1113 Arlington, VA 22217 Tel: (703) 696-4410 FAXes (703) 696-2611/3945/5383 e-mail: pazik@ocnr-hq.navy.mil pazik@estd.decnet@ccf.nrl.navy.mil	1
Prof. J. T. Yates, Jr. Dept. of Chemistry Surface Science Ctr. University of Pittsburgh Pittsburgh, PA 15260 Tel: (412) 624-8320 FAX: (412) 624-8552 e-mail: yates@vms.cis.pitt.edu	1
Robert J. Markunas, R.A. Rudder Research Triangle Institute; Box 12194 Research Triangle Park, NC 27709-2194 Tel: (919) 541-6153 FAX: (919) 541-6515 e-mail: rjmk@rti.rti.org	1
Professor Mark P. D'Evelyn William Marsh Rice University Dept. of Chemistry P.O. Box 1892 Houston, TX 77251 Tel: (713) 527-8101, ext. 3468 FAX: (713) 285-5155 e-mail: mpdev@@langmuir.rice.edu	1
Dr. Howard K. Schmidt Schmidt Instruments, Inc. 2476 Bolsover, Suite 234 Houston, TX 770054 Tel: (713) 529-9040	

FAX: (713) 529-1147 e-mail: hksionwk@ricevml.rice.edu Prof. A. F. Tasch 1 Dept. of Electrical Engr. & Computer Science Engineering Science Bldg. University of Texas at Austin Austin, TX 78712 Tel: FAX: e-mail: tasch@roz.ece.utexas.edu Prof. Charles Tu 1 Dept of Electrical & Computer Engr. UCSD LaJolla, CA Tel: (619) 534-4687 FAX: (619) 534-2486 e-mail: cwt@celece.ucsd.edu

1

1

Prof. John E. Crowell
Department of Chemistry
University of California at San Diego
LaJolla, CA
Tel: (619) 534-5441

FAX: (619) 534-0058 email: jcrowell@ucsd.edu

Prof. P. Daniel Dapkus University of Southern California University Park Los Angeles, CA 90089-1147 e-mail: dapkus@mizar.usc.edu Tel: (213) 740-4414 FAX: (213) 740-8684

Unless you are a small business invoking your 2 year proprietory rights clause, you MUST state on the front page of your report: Approved for Public Release; distribution unlimited.

_ _ _ _ _