Midterm 3

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy
April 29, 2020

1 Memory Bank

- 1. $v_d = i/(nqA)$... Charge drift velocity in a current i in a conductor with number density n and area A.
- 2. P = IV ... Relationship between power, current, and voltage.
- 3. $\vec{F} = q\vec{v} \times \vec{B}$... The Lorentz force on a charge q with velocity \vec{v} in a magnetic field \vec{B} .
- 4. $\vec{F} = I\vec{L} \times \vec{B}$... The Lorentz force on a conductor of length \vec{L} carrying a current I in a magnetic field \vec{B} .
- 5. $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$... Ampère's Law.
- 6. $\epsilon = -Nd\phi/dt$... Faraday's Law.
- 7. $\phi = \vec{B} \cdot \vec{A}$... Definition of magnetic flux.
- 8. Faraday's Law using **Inductance**, M: $emf = -M \frac{dI}{dt}$.
- 9. Typically, we refer to mutual inductance between two objects as M, and self inductance as L. Self-inductance: $\Delta V = -L(dI/dt)$.
- 10. Units of inductance: V s A⁻¹, which is called a Henry, or H.
- 11. $B = \mu_0 nI$... The B-field of a solenoid, n = N/L is the turn density, and I is the current.

Figure 1: (Left) A current I experiences a force F in a B-field.

2 Chapter 11: Magnetic Forces and Fields

- 1. Consider Fig. 1 (left). In each of the three cases, determine the direction of the B-field given that F is the Lorentz force.
 - a: into the page
 - b: to the left
 - c: out of the page
- 2. Consider Fig. 1 (right). **The Hall Effect**. An E-field exists in the vertical direction and a B-field is perpendicular to the direction of charge velocity. (a) Show that if the E-field force on a charge balances the Lorentz force on a charge, that v = E/B. (b) If the E-field is constant, $E = \Delta V/\Delta x$. Show that

$$\Delta V = \frac{B\Delta xI}{nq_e A} \tag{1}$$

where n is the charge carrier density, q_e is the electron charge, A is the cross-sectional area of the conductor, and I is the current. Plug in B=1.33 T, $\Delta x=2$ cm, I=10 A, $n=2\times 10^{28}$ m⁻³, A=1 mm², and q_e is the charge of an electron.

83 microvolts

3. A proton has a magnetic field due to its spin. The field is similar to that created by a circular current loop 0.65×10^{-15} m in radius with a current of 1.05×10^4 A. Find the maximum torque on a proton in a 2.50-T field. (This is a significant torque on a small particle.)

$$3.5 \times 10^{-26} \text{ N m}$$

3 Chapter 12: Sources of Magnetic Fields

1. (a) What is the B-field inside a solenoid with 500 turns per meter, carrying a current of 0.3 A? (b) Suppose we insert a piece of metal inside the solenoid, boosting μ_0 by a factor of 5000. What is the new B-field?

0.19 mT, 0.950 T

2. Consider Fig. 2. Mass spectrometer. Suppose that the velocity of the charged particles moving to the right is v = E/B. (a) Show that if v = E/B, $F_{net} = 0$ in the region in the top left¹. (b) Recall that the centripetal force on a particle of mass m is mv^2/r . Set this equal to the magnitude of the Lorentz force to prove that

$$r = \frac{mE}{aB^2} \tag{2}$$

¹Molecules that do not have this velocity will hit the sides of this portion of the instrument.

Figure 2: A basic diagram of a toroid, which is a solenoid wrapped into a circular tube.

The mass of an oxygen nucleus is 16 times that of a proton (mass of proton: 1.67×10^{-27} kg). Suppose oxygen ions with the charge of 1 proton are sent through the mass-sepctrometer. The E-field is 10 V/m, and the B-field is 0.01 T. What is the distance r?

 $1.67~\mathrm{cm}$

Chapter 13: Electromagnetic Induction 4

Figure 3: A voltage is induced on a loop by a changing B-field.

1. The magnetic field in Fig. 3 flows out of the page through a single (N=1) loop, and changes in magnitude according to

$$\frac{\Delta B}{\Delta t} = \frac{B_0}{T_0} \left(\sin(2\pi f t) \right) \tag{3}$$

The loop has a radius r. (a) In terms of the given variables, what is the induced voltage in the circuit? (b) If $B_0 = 0.1 \text{ T}$, r = 0.1 m, $f = 10^3 \text{ Hz}$, and T = 1 ms, what is the induced emf at t = 0? (c) What about $t_1 = 0.16$ ms? (d) What is the current through the resistor at t_1 ?

$$\epsilon = -A \frac{\Delta B}{\Delta t} = \pi r^2 \frac{B_0}{T_0} \sin(2\pi f t)$$

 $\epsilon = -A \frac{\Delta B}{\Delta t} = \pi r^2 \frac{B_0}{T_0} \sin(2\pi f t)$ Induced voltage is 0 Volts at t=0. Induced voltage at 0.16 ms: also 0 because it's 320 times pi inside the sine function, so 0 amps at that time.

5 Chapter 14: Inductance

1. What is (a) the rate at which the current though a 0.50-H coil is changing if an emf of 0.150 V is induced across the coil?

 $0.3~\mathrm{A/s}$

2. When a camera uses a flash, a fully charged capacitor discharges through an inductor. In what time must the 0.100-A current through a 2.00-mH inductor be switched on or off to induce a 500-V emf?

0.4 microseconds