Title: Online experience sharing without explicit social interaction does not foster social

bonding

Running title: Online experience sharing and social bonding

Authors: Wouter Wolf^{1,2*}, Kayley Dotson¹

Affiliations

¹ Duke University, Durham, North Carolina, Department of Psychology and Neuroscience

27708, United States

² Utrecht University, Department of Developmental Psychology, Heidelberglaan 1, 3584 CS

Utrecht, The Netherlands

*Corresponding author: wouter.wolf@gmail.com

The current study was pre-registered:

https://osf.io/p85wh/?view_only=d071fedad7ff4c79b2303e42e53fa9a6

and anonymized data can be accessed at OSF:

https://osf.io/p85wh/?view only=f8288c523fdd4076baf349d0bde22bf4

Funding statement: This work was supported by a Philip Jackson Baugh fellowship for

human development from Duke University awarded to Wouter Wolf and a Klaus J. Jacobs

Research Prize from the Jacobs Foundation awarded to Professor Michael Tomasello.

Ethics approval statement: This work was approved by Duke University's Institutional

Review Board

Conflicts of interest: The authors declare that they have no conflict of interest

Abstract

Humans have a unique capacity to bond with others through shared experiences, even in the absence of explicit communication. Yet it is unknown whether this capacity is flexible enough to accommodate the different kinds of virtual environments on which we increasingly rely. In the current pre-registered study, we examined whether this capacity still operates effectively on shared screens during non-communicative video mediated interactions, in dyads and in groups. Participants either watched a video on a shared screen together with (pre-recorded) partners or watched individually while their partners attended to something else. Equivalence tests showed that self-reported social bonding scores were practically equivalent between conditions, Thus, in contrast to several in-person studies, no social bonding occurred during these interactions. These results show that, in the absence of explicit communication, some of humans' most fundamental social bonding mechanisms might not operate as effectively in video mediated social interactions.

To satisfy their fundamental need for belonging (Baumeister & Leary, 1995), humans create social connections in unique ways: they bond by creating shared experiences with others, for example by engaging in shared social activities together, such as gossiping (Dunbar, 2004), making music (Pearce et al., 2015), playing team sports (Artinger et al., 2006), engaging in rituals (Charles et al., 2021; Singh et al., 2020) or watching movies (Wolf & Tomasello, 2020b). The fundamental psychological mechanisms underlying these social bonding activities is humans' capacity to create shared representations by inferring mutual awareness (i.e., both individuals know that both individuals know) about their experience being shared (Carpenter et al., 1998; Shteynberg et al., 2023; Siposova & Carpenter, 2019; Wolf & Tomasello, 2023). This capacity is not only one of the key components of humans' unique forms of communication, cooperation and social learning (Angus & Newton, 2015; Baldwin, 1995; Cleveland et al., 2007; Shteynberg, 2015, 2018; Tomasello, 2008, 2014, 2016, 2019; Tomasello & Carpenter, 2007; Tomasello & Vaish, 2013), but has also been demonstrated to play an instrumental role in humans' unique forms of social bonding (Shteynberg et al., 2023; Wolf & Tomasello, 2023).

Although shared representations about shared experiences are often created linguistically, humans can also bond through shared representations without relying on linguistic communication. For example, research has shown that both adults (Haj-Mohamadi et al., 2018; Rennung & Göritz, 2015; Wolf, Launay, et al., 2015) and 2.5 year old children (Wolf & Tomasello, 2020b) feel closer towards an interaction partner after sharing the experience of jointly attending to something (e.g., a video) together. In these cases, humans seem to rely on other, often more implicit social cues within social interactions to infer that their experience is shared.

Importantly, however, the way humans engage in social interactions (and thus share experiences) has dramatically changed over the past few decades. Humans have become

increasingly dependent on virtual social interactions, for example in digital classrooms and remote workplaces. Yet we know relatively little about the degree to which our capacity to bond through shared experiences is flexible enough to accommodate these novel, virtual environments.

In general, social bonding (as well as social exclusion) has been shown to occur in a variety of virtual environments (Dabbish, 2008; Depping & Mandryk, 2017; Williams et al., 2000; Williams & Jarvis, 2006; Wolf, Levordashka, et al., 2015; Zheng et al., 2002). Specifically, online video mediated conversations seem to be an effective tool to maintain social relationships, for example with geographically distant family members (Furukawa & Driessnack, 2013) or within long-distance romantic relationships (Furukawa et al., 2018). Recent research has also shown that watching something on a shared screen while talking about it elicits social closeness (Mahaphanit & Chang, 2023). This suggests that sharing experiences through video mediated social interactions does seem to facilitate social bonding, at least under certain conditions.

In these studies, however, participants engaged in explicit communicative behavior during the procedure, either naturally or because they were instructed to do so. Yet research has shown that online (i.e., video mediated) social engagement suffers from reduced communicative engagement relative to in-person settings (Yarmand et al., 2021). This lack of communicative engagement might not be a problem, as long as people can still rely on the non-linguistic mechanisms for sharing experiences they successfully use during in-person interactions (Rennung & Göritz, 2015; Wolf, Launay, et al., 2015; Wolf & Tomasello, 2020b, 2023). In that case, we would expect that sharing an experience through video mediated interactions, on a shared screen, facilitates social bonding even in the absence of explicit communication.

However, there are plausible reasons for why this might not be the case. For example, in video mediated interactions individuals cannot see their partners' screens, making it more difficult to infer whether a partner is attentive or distracted. Furthermore, in these types of interactions (communicative) eye contact is not possible, removing a commonly used signal for establishing mutual awareness of a shared experience from peoples' inferential repertoires. (Siposova et al., 2018; Wolf & Tomasello, 2020a).

Because access to these types of social information is more limited in video mediated interactions than in in-person social interactions, it might be more difficult to infer that an experience is shared, potentially limiting the degree to which people can bond through shared experience during video mediated interactions in the absence of more explicit (e.g., linguistic) social engagement. This might have far-reaching implications for the wellbeing of participants of (especially large scale) video mediated interactions with limited opportunities for explicit communication (such as virtual classrooms), as well as the social cohesion within their communities.

To find out whether non-communicative shared experience in video mediated interactions facilitate social bonding, we conducted an experiment similar to previous inperson studies: Participants engaged in an online video-mediated social interaction (which, unbeknownst to the participant, were pre-recorded videos of confederates). They did so in either a dyad or in a group of four, as previous research has shown that social bonding through jointly attended stimuli can occur both in dyads (Dunbar et al., 2016; Haj-Mohamadi et al., 2018; Wolf, Launay, et al., 2015; Wolf & Tomasello, 2019, 2020b, 2020a) as well as in larger groups (Rennung & Göritz, 2015).

In both conditions, participants were instructed not to communicate with others. In the joint attention condition, participants were told that they were watching a video on a shared screen together with the other 'participants'. In the disjoint attention condition, participants

were told that everyone would watch the video sequentially, meaning that the participant watched the video individually while the other 'participants' were instructed to do what they wanted as long as they remained within the visual field of the camera (in practice, they always attended to their phone). We then measured participants' self-reported social bonding to the other participants. In addition, we also asked participants about how they experienced watching the video to see if other, previously found social consequences of sharing experiences online through instruction (i.e., emotion amplification, see: Shteynberg et al., 2014) would also manifest in the current social interaction based procedure.

Methods

Pre-registration and data availability statement

The current study was pre-registered:

https://osf.io/p85wh/?view_only=d071fedad7ff4c79b2303e42e53fa9a6 and anonymized data can be accessed at OSF:

https://osf.io/p85wh/?view_only=f8288c523fdd4076baf349d0bde22bf4.

Participants and design

Participants from the US between 18 and 30 years old were recruited online through a variety of databases that included students and alumni of the local university, as well as members of the local community (i.e., convenience sample). Previous studies on similar questions in face-to-face interactions used 32 participants per between subjects cell. Our aim was for our sample to be similar. However, in order to counterbalance the use of 3 separate stooge videos in the dyad condition, we aimed for 36 included participants per cell in our 2 (Attention: Joint vs Disjoint) by 2 (Group size: Dyad vs Group) design, totaling 144 included participants. We collected data from 225 participants, 81 of which were excluded for a variety of reasons, such as inattentiveness (i.e., failing the comprehension questions or instructional manipulation check, not internalizing the manipulation, or indicating to be

inattentive during the manipulation; n = 61), indicating that they were suspicious that the other participants were confederates (n = 8), not following instructions (n = 8), experimenter error (n = 2), and technical difficulties (n = 2). As such, our final sample, as planned, included 144 participants ($M_{age} = 20.17$, $SD_{age} = 2.19$), 71 of which identified as female, 72 as male and 1 as non-binary. Furthermore, participants' ethnic backgrounds included Asian (n = 69), White/Caucasian (n = 43), Mixed (n = 12), African American (n = 10), and Hispanic (n = 8), while 1 participant indicated not wanting to answer this question and 1 other participant left this question blank. Participants were compensated with a \$10 gift card or course credits. The research was approved by ethics committee of the University.

Procedure

After registering for the study, participants received an email in which they were told that they would be taking part in an online video call (i.e., through Zoom) with other participants. They were asked to use a laptop or desktop to join the call. In this email they also received a link to a survey that contained an informed consent form and questions about their demographics (i.e., age, gender, race, and student ID, if they had one). The informed consent was obtained from all the participants. Furthermore, participants were told that all of the participants in the study would first meet with the experimenter separately to go over some instructions and to make sure everyone's set up worked properly. Participants saw a list of names including their own, with a specific time indicated to join the meeting for each name. In reality, participants always received an email with their name at the bottom of the list, so that the experiment always started immediately after the experimenter had gone over the instructions with them.

Once participants joined the meeting, they were welcomed by the experimenter who went through the instructions with them. To standardize the experience as much as possible for participants, they were asked to (1) have their video enabled and (2) their microphones

muted once the study started, (3) only have one monitor active during the study, (4) make sure that their names were displayed in the bottom corner in Zoom, and (5) make sure that they could see all the participants in the call who were not in break out rooms displayed on top of the screen the experimenter was sharing. Furthermore, the experimenter also checked whether participants knew (1) how to use the chat feature in Zoom, (2) how to open a link from the chat feature of Zoom to display in a browser on their computer, and (3) how to take a screenshot of the Zoom call and save this screenshot for later use.

During this initial stage, participants were also informed about what was going to happen during the study procedure. They were told that after the instruction was over the experimenter would have all participants join the meeting, after which the experimenter would share a video about animals from the National Park Service through a shared screen. The experimenter also indicated that they would disable their own camera and microphone right before the video would start, to ensure that they would not disturb the experiment. In addition, the experimenter told the participants that if they wanted to contact them, they could send them a private message over Zoom chat.

Crucially, in the joint attention condition participants were told that all the participants in the Zoom call would be watching a video on a shared screen, whereas in the disjoint attention condition they were told that one person at a time would watch the video, sequentially, while the other participants could do something else while they waited, as long as they remained visible on their camera. In reality, the participant always went first (i.e., in both conditions the participant always watched the video at the start of the experiment). While giving these instructions to participants in the disjoint attention condition, the experimenter suddenly 'realized' that the participant would be watching the video first, and that some of these instructions were therefore not particularly relevant to them. In reality, this

instruction was meant to make clear to the participant that the other participants might be doing something else while the participant was watching the video.

Once the experimenter had finished the instructions and asked the participants if they had any more questions, the experimenter let the 'other participant(s)' out of the breakout room. These other participants were pre-recorded videos of student aged individuals who were not part of the local student community (to decrease the risk of pre-existing social relationships between the participant and the confederates). Sufficient male and female confederate videos were created so that the gender of the confederates could be matched to the participant (similar to in previous in-person research, see: Wolf, Launay, et al., 2015). Crucially, in the dyads only one additional participant entered the call, whereas in the larger group, three additional participants entered the call. To create this group, the experimenter controlled either two (small group) or four (large group) computers, where all but one computer (i.e., the one the experimenter was using to interact with the participant) had an opaque piece of paper taped over the camera. This then allowed the experimenter to play the videos of the confederates as background videos in Zoom in a way that made the confederates appear to be real life participants.

Once the other participants had joined, the experimenter briefly welcomed the participants and asked everyone if they could still hear them. To make the confederate videos more credible as real participants, two sentences were timed so that the videos of the confederates gave a thumbs up and/or a nod immediately after a question, making it seem like they responded to the experimenter's question. Next, the experimenter started the video, which (similar to previous in-person studies: Wolf & Tomasello, 2020a, 2020b) was a short sequence of documentary style scenes on animal behavior, without sound. In the joint attention condition, the confederates in the videos kept paying attention to their screen(s) throughout the manipulation, whereas in the disjoint attention condition, the confederates

disengaged from their screen(s) and looked at their phone for the remainder of the procedure (see Figure 1 for an overview of the conditions).

Participant view for each of the conditions

After the video had finished, the experimenter sent a private message to the participant containing the link to the survey and their participant number, which participants filled in on the first page of the survey. Next, participants were asked to take a screenshot of the Zoom call and save it so they could upload it later in the survey. They were then instructed to leave the Zoom meeting and completed the rest of the survey, which contained comprehension questions (i.e., attention manipulation checks), questions about the experience of watching the video, social bonding questions about the other participants, and several additional questions and manipulation checks. Finally, participants read the debriefing and exited the survey, after which they were compensated within 24 hours of their participation.

Measures

All self-reported questions were answered on 100-point slider scales in Qualtrics. For all scales, the starting value was 50. For all questions a response was requested. In total, in all the dependent measures 14 questions were left empty by participants. As it is impossible to know whether participants meant to answer 50 to these questions (and therefore did not move the slider), or whether they could not or did not want to answer these questions, these answers were coded as missing.

Attentiveness manipulation check

To catch inattentive participants, we asked them three questions about the content of the video, namely what the main subject of the video was (i.e., mountains, animals, airplanes or beaches, the correct answer being animals), whether or not there was a monkey in the video (true), and whether or not there was a koala bear in the video (false). Furthermore, we also asked participants how many participants (including themselves and the host) were in the Zoom call during the experiment (i.e., three, four, or five, with the correct answer being three for the dyads and five for the larger groups). Participants that answered these questions wrong were excluded from data analysis.

Instructional manipulation check

In the midst of the questions on watching experience, we included an instructional manipulation check (Oppenheimer et al., 2009). Participants were presented with an item that said "Please place the slider on exactly '37'. This is used to spot inattentive participants".

Participants that did not follow these instructions were excluded from data analysis.

Social bonding

For each set of questions (i.e., once for participants in the dyad condition, three times for participants in the group condition) participants were first asked to enter the name of (one

of) the participant(s). If they had forgotten the name, they were encouraged to look at the screenshot they took earlier. Participants who put down the name of the experimenter were excluded from the sample. Next, to measure social bonding, we asked participants to answer eight questions on how they felt about this other participant (i.e., separate for each participant in the large group condition) on a 100-point slider scale. Specifically, we asked participants how much they liked the other participant and to what extent they thought the participant was liked by others (0 = "not at all", 100 = "a lot"), how positively they felt towards that participant (0 = "very negatively", 100 = "very positively"), how much they trust this participant and how much they connected with them (0 = "not at all", 100 = "very much"), how cooperative they felt towards that participant (0 = "not at all", 100 = "very cooperative"), to what extent they felt close with that participant (0 = "not at all close", 100 = "extremely close"), and, if they had to do a similar task again, how they would feel about doing that task again with this participant (0 = "I would prefer to do it with someone else", 100 = "I would prefer doing it with the same person").

These questions were then collapsed into a single social bonding score, and for the larger group cells, averaged across the three confederates. These questions were almost identical to the questions of the social bonding scale of previous research (Wolf, Launay, et al., 2015), aside from replacing the Inclusion of Other in Self scale with a more generic question about perceived social closeness. This new question seemed more intuitive in a setting in which participants were not in close physical proximity and was also more consistent with the rest of the scale in terms of response format. Analyses also showed similar reliability for this scale (Posterior mean of Bayesian Cronbach's alpha = .78, 95% HDI = [.74, .82]), as in previous research (e.g., Wolf, Levordashka, et al., 2015).

Watching experience

To get a sense of how participants experienced watching the video, we asked them to indicate on a 100-point slider scale how much they liked watching the video, how much they enjoyed watching the video, and how much they liked the video (0 = ``not at all'', 100 = ``a lot''). Furthermore, we also asked them how often they were distracted during the video (0 = ``never'', 100 = ``all the time''). Finally, we asked participants whether they would like to watch the video again by themselves and how attentive they were during the video (0 = ``not at all'', 100 = ``very much'').

Additional questions and manipulation checks.

At the end of the survey, we asked participants how attractive they found this participant (0 = "not at all", 100 = "very attractive"), to be able to control for this potential social bonding confound (Lorenzo et al., 2010). In addition, to make sure that participants did not feel like participants in the disjointed condition violated a social norm by looking at their phone during the video, we also asked participants how impolite they felt the other participant was (0 = "not at all", 100 = "very impolite"). These items were not part of the preregistration but added after registering (but before the start of data collection) based on external feedback. Nevertheless, we are therefore cautious about drawing strong conclusions based on these items.

As an extra attentional manipulation check, we asked participants how aware they were of the other participants during the video (0 = "not at all", 100 = "very much").

Participants were then also asked about their sexual orientation ("Heterosexual", "Lesbian", "Gay", "Bisexual", "Queer", "Asexual", "Other", or "Prefer not to say"). Finally, at the very end of the survey, we asked participants two open ended questions, namely (1) "What were the other participants instructed to do during the video, and did they follow these instructions?", and (2) "Sometimes people develop ideas about what studies are about and

what researchers are trying to find. If you have any thoughts about what we are studying, please describe them below." These questions were meant to see if participants were suspicious about the confederates in the experiment and/or were aware of what the manipulation was trying to achieve. Suspicious participants were excluded from data analysis.

Results

Social bonding

The standardized residuals of the social bonding scores (skewness = .28, kurtosis .12) indicated that the data was appropriate for using standardized Bayesian models with uninformed priors and normal likelihoods in JASP version 0.16.2 (Marsman & Wagenmakers, 2017), using 100.000 posterior samples for estimation. To estimate the effect of the attention manipulation and group size on social bonding scores, we conducted a 2 x 2 between subjects Bayesian GLM with condition and group size as independent variables and the social bonding scores as dependent variables.

The Bayes Factors (i.e. BFM and BF10) in Table 1 show that of all the possible models, the Null model (i.e., without any predictor variables) was by far the most likely one, showing no main effect of the attention manipulation or group size, nor an interaction effect on social bonding scores. We then also looked if our parameter estimates yielded a similar pattern, by looking at the 95% Bayesian High Density Intervals showing, in this case, the 95% most likely values of the mean social bonding score for each cell in the 2 by 2 design. We found highly overlapping 95% HDI's for the participants who engaged in a dyadic interaction in the joint attention condition (estimated M = 45.91, 95% HPI = [42.62, 49.20]) and in the disjoint attention condition (estimated M = 46.58, 95% HPI = [42.29, 50.86]), as well as for participants who engaged in a group interaction in the joint attention condition (estimated M = 44.89, 95% HPI = [41.70, 48.09]) and in the disjoint attention condition

(estimated M = 43.04, 95% HPI = [38.42, 47.66]). See Figure 2 for a graphical representation of the 95% HDI's per cell.

Table 1: *Model Comparison parameters for social bonding models.*

Models	P(M)	P(M data)	BF 10
Null model	0.20	0.62	1.00
Group size	0.20	0.21	0.34
Attention	0.20	0.12	0.19
Attention + Group size	0.20	0.04	0.07
Attention + Group size + Attention * Group size	0.20	0.01	0.02

Note. The P(M) is the probability of the model before the data. The P(M|data) is the probability of the model after accounting for the data. The BF₁₀ is the Bayesfactor of that model relative to the most likely model

Figure 2:

Bayesian High Density Intervals containing the 95% most likely social bonding scores for the

Joint Attention and Disjoint attention groups per group size.

To further corroborate the absence of the effect of the attention manipulation, we conducted Bayesian independent samples T-tests of equivalence. In equivalence tests, like in regular Bayesian T-tests, the posterior distribution of the difference score between two groups is estimated. However, instead of looking at the 5% most extreme values of the difference score at the tails of the distribution to infer non-equivalence, equivalence tests look at the 5% most extreme values centered around zero, creating a region of practical equivalence. This helps to distinguish null-effects caused by high uncertainty in parameter estimation (e.g., due to low power) from null-effects that actually reflect practical equivalence between two groups. This equivalence model (i.e., the mean difference falls within the region of practical equivalence) is then compared to a non-equivalence model (i.e., the mean difference falls outside of the region of practical equivalence) in terms of their relative likelihood, using a Bayes factor, which indicates the odds ratio in favor of the equivalence model or the non-equivalence model.

A Bayesian equivalence test comparing the difference between the joint attention and disjoint attention condition in the full sample showed moderate evidence (van Doorn et al., 2021) for the two conditions being practically equivalent (BF = 5.28). We also conducted separate equivalence tests for the participants who interacted in a dyad and participants who interacted in a group. The equivalence test for the participants who engaged in a dyadic interaction showed moderate support for the social bonding scores in the joint attention and disjoint attention condition being practically equivalent (BF = 3.98). In addition, the equivalence test for the participants who engaged in a group interaction showed moderate support for the two groups being practically equivalent (BF = 3.38). Overall, these findings suggest that the current attention manipulation had no effect on the participants' social bonding scores.

Politeness and Attractiveness

Two 2 x 2 between subjects Bayesian GLM's with condition and group size as independent variables and the politeness as dependent variable showed no main effects or interactions (i.e., the Null model was the most likely model) of the joint versus disjoint attention condition or the dyad versus group setting in the degree to which participants felt the confederates were behaving in an impolite manner or the degree to which the participants felt the confederates were attractive (see supplementary materials, Table S1 and S2 for model summaries). In addition, practical equivalence tests showed moderate support for participants in the two conditions reporting practically equivalent levels of politeness (BF = 4.08) and attractiveness (BF = 5.09) As the perceived impoliteness and attractiveness of the confederates was similar between conditions, it is unlikely that these factors meaningfully influenced the current results.

Watching experience

As the questions how much participants liked watching the video and how much they enjoyed watching the video were conceptually very similar and highly correlated (Bayesian estimation of correlation coefficient: .93, 95% HDI = .90, 95), we collapsed them into a single viewing enjoyment measure (skewness = -.75, kurtosis .43). Although a 2 x 2 between subjects Bayesian GLM with condition and group size as independent variables and viewing enjoyment as dependent variable did show that a model with the joint attention condition as a predictor was the most likely model and more likely than a null model without predictors (BF = 1.42), this evidence is considered anecdotal and no strong conclusions can be drawn from these results (See supplementary Table S3 for model summaries).

Furthermore, we found no difference between conditions in the extent to which participants liked the video (skewness = -.87, kurtosis -.88; see supplementary Table S4 for model summaries), although in this case the practical equivalence test provided only marginal

evidence for participants in the two conditions liking the conditions equally (BF = 1.59). The extent to which participants were willing to watch a similar video by themselves again (skewness = .19, kurtosis -1.15; see supplementary Table S5 for model summaries) provided a clearer picture, with equivalence tests providing moderate support for this willingness to be practically equivalent across the 2 conditions (BF = 4.03).

Discussion

The current results show no social bonding effect of sharing attention through online video-mediated social interactions. Crucially, Bayesian equivalence tests provided evidence for the social bonding scores to be practically equivalent between the joint attention and disjoint condition within and across group sizes. Thus, our results are in stark contrast with (1) research showing social bonding through shared experiences in online video mediated interactions during which participants explicitly communicate (Dabbish, 2008; Depping & Mandryk, 2017; Furukawa et al., 2018; Furukawa & Driessnack, 2013; Mahaphanit & Chang, 2023; Zheng et al., 2002), and (2) research showing social bonding through shared experiences in studies using real life social interactions during which participants are not allowed to communicate (Haj-Mohamadi et al., 2018; Rennung & Göritz, 2015; Wolf, Launay, et al., 2015; Wolf & Tomasello, 2019, 2020b, 2020a).

Importantly, the study design, instructions, stimulus materials and dependent measures were very similar/identical to several of these in-person studies (Rennung & Göritz, 2015; Wolf & Tomasello, 2020b, 2020a) and the current sample only included participants who had correctly reported (1) what their partners' instructions were and (2) if their partners followed these instructions, suggesting participants in the joint attention condition were aware that (1) their partners had been instructed to attend to the video and (2) their partners looked at the screen during the procedure. Moreover, the social interaction in the current procedure was highly similar to those in virtual classrooms or workplaces in which

participants jointly attend to a video or lecture, while the study sample should, based on their demographics, be highly familiar with these kinds of virtual environments. Thus, it seems unlikely that the current results are due to issues with the methodology or ecological validity. Instead, the data suggest that although in-person interactions might provide sufficient implicit social information to bond through shared experiences without the need for explicit communication, this might not be the case in video-mediated social interactions.

For example, the fact that participants were not able to see their partners' screens in the current study (compared to previous in-person studies) might have made it more difficult for participants to infer whether their partners were actually looking at the same stimulus (i.e., perhaps they are multitasking and have other windows open on their screen). Although explicit communication about the stimulus might have solved this problem (as successfully communicating about a stimulus is only possible if one is attending to it), in the absence of explicit communication, this uncertainty might have eroded the social bonding properties in this online video mediated setting.

In addition, the video stream of participants in a shared screen interface on Zoom (or many other video communication platforms) is likely too small to accurately assess the gaze direction of participants, making it difficult for participants to judge whether their partners were looking at them or at the video, something that is much easier to infer during triadic engagements in in-person settings. A related, albeit slightly different issue is that, in contrast to participants in previous in-person studies, it was impossible for participants in the current study to make direct eye contact with their partners simply because their camera and the location at which their partners' eyes were being displayed were in different places. Although eye contact is not a prerequisite for creating social closeness in triadic interactions per se (Wolf, Launay, et al., 2015; Wolf & Tomasello, 2019, 2020b), it does play an important role in inferring the degree of cooperativeness between individuals (Cui et al., 2019; Kleinke,

1986; Siposova et al., 2018) and also contributes to the social closeness created specifically in joint attention interactions, at least in humans (Wolf & Tomasello, 2020a). Both of these issues cause more uncertainty for participants of online video mediated interactions about whether an experience is actually shared. It is therefore plausible that these added sources of uncertainty help explain why social bonding through video mediated communication without explicit communication is more difficult than during in-person interactions.

These results thus raise important considerations when deciding to exchange inperson gatherings such as school classes, lectures and work meetings for more convenient
virtual alternatives. Unless communicative or proactive social engagement is facilitated and
encouraged, increased convenience perhaps comes at a social cost people might not always
be aware of: Students or colleagues might lose their sense of connection with their peers and
with the community as a whole, potentially increasing loneliness and reducing wellbeing.

From a developmental perspective, these social costs might be particularly impactful for younger children for whom in-person classrooms are replaced by virtual ones. Early childhood marks the time during which children start to regularly interact with novel peers in school or kindergarten, allowing them to learn how to effectively develop social relationships. If their in-person educational experience is replaced by online video-mediated interactions without sufficient active social engagement, they might not only struggle creating social connections with others in that moment, but also be deprived of opportunities to learn how to connect with their peers through shared experiences, potentially interfering with their long-term social development.

One thing to note here is that the current results were found in participants who (1) indicated that they were paying attention to the manipulation, (2) passed the instructional manipulation check, and (3) correctly answered the comprehension questions. Yet there were another 61 participants who were excluded because they did not meet these criteria. This is

not surprising, given that these types of virtual interactions have been shown to reduce information processing and recall in online settings relative to in-person settings (De Felice et al., 2021). However, this does mean that a substantial number of participants did not seem to process the social information presented in the procedure at all (or at least not enough to pass the manipulation checks), meaning that the social costs of moving interactions into digital environments without making them more socially engaging might be even higher than the data based on the current included sample suggests.

Importantly, the results of the current study do not imply that social bonding by sharing experiences virtually in general, or through video mediated interactions specifically, is impossible, nor that we should stay away from doing so. However, the current results imply that if one attempts to substitute in-person shared experiences with online video mediated shared experiences, one should be aware that in video mediated shared experiences a lack of active social engagement (e.g., through a chat function or by creating Virtual Reality avatars) might render the experience less (or perhaps not at all) effective for social bonding purposes, whereas this is less problematic for in-person shared experiences.

As such, on a fundamental level, the contrast between the data of our current online study and previous research on social bonding during in-person non-communicative shared experiences suggests that the contextual flexibility of one of our most basic social bonding capacities, the capacity to create social closeness by sharing experiences through shared representations, is, in fact, more limited than previously thought. Importantly, these limitations, specifically in the context of modern day virtual social environments, might have serious implications for the social relationships and social networks of individuals using this medium as a social interaction, as well as for the overall social cohesiveness in communities and societies where these types of technologies are currently used on a regular basis.

References

- Angus, S. D., & Newton, J. (2015). Emergence of Shared Intentionality Is Coupled to the Advance of Cumulative Culture. *PLOS Computational Biology*, 11(10), e1004587. https://doi.org/10.1371/journal.pcbi.1004587
- Artinger, L., Clapham, L., Hunt, C., Meigs, M., Milord, N., Sampson, B., & Forrester, S. A. (2006).

 The Social Benefits of Intramural Sports. *Journal of Student Affairs Research and Practice*,

 43(1). https://doi.org/10.2202/1949-6605.1572
- Baldwin, D. A. (1995). Understanding the link between joint attention and language. In *Joint* attention: Its origins and role in development (pp. 131–158). Psychology Press.
- Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. *Psychological Bulletin*, *117*(3), 497–529. https://psycnet.apa.org/doi/10.1037/0033-2909.117.3.497
- Carpenter, M., Nagell, K., & Tomasello, M. (1998). Social Cognition, Joint Attention, and

 Communicative Competence from 9 to 15 Months of Age. *Monographs of the Society for Research in Child Development*, 63(4).
- Charles, S. J., van Mulukom, V., Brown, J. E., Watts, F., Dunbar, R. I. M., & Farias, M. (2021).

 United on Sunday: The effects of secular rituals on social bonding and affect. *PLOS ONE*,

 16(1), e0242546. https://doi.org/10.1371/journal.pone.0242546
- Cleveland, A., Schug, M., & Striano, T. (2007). Joint attention and object learning in 5- and 7-month-old infants. *Infant and Child Development*, *16*(3), 295–306. https://doi.org/10.1002/icd.508
- Cui, M., Zhu, M., Lu, X., & Zhu, L. (2019). Implicit Perceptions of Closeness from the Direct Eye Gaze. Frontiers in Psychology, 9, 2673. https://doi.org/10.3389/fpsyg.2018.02673
- Dabbish, L. A. (2008). Jumpstarting Relationships with Online Games: Evidence from a Laboratory Investigation. *Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work*, 4.

- De Felice, S., Vigliocco, G., & Hamilton, A. F. de C. (2021). Social interaction is a catalyst for adult human learning in online contexts. *Current Biology*, *31*(21), 4853-4859.e3. https://doi.org/10.1016/j.cub.2021.08.045
- Depping, A. E., & Mandryk, R. L. (2017). Cooperation and Interdependence: How Multiplayer

 Games Increase Social Closeness. *Proceedings of the Annual Symposium on Computer-*Human Interaction in Play, 449–461. https://doi.org/10.1145/3116595.3116639
- Dunbar, R. I. M. (2004). Gossip in evolutionary perspective. *Review of General Psychology*, 8(2), 100–110. https://doi.org/10.1037/1089-2680.8.2.100
- Dunbar, R. I. M., Teasdale, B., Thompson, J., Budelmann, F., Duncan, S., van Emde Boas, E., & Maguire, L. (2016). Emotional arousal when watching drama increases pain threshold and social bonding. *Royal Society Open Science*, 3(9), 160288.
 https://doi.org/10.1098/rsos.160288
- Furukawa, R., & Driessnack, M. (2013). Video-Mediated Communication to Support Distant Family Connectedness. *Clinical Nursing Research*, 22(1), 82–94. https://doi.org/10.1177/1054773812446150
- Furukawa, R., Driessnack, M., & Kobori, E. (2018). The Impact of a Video-Mediated Communication on Separated Perinatal Couples in Japan. *Journal of Transcultural Nursing*, 29(2), 202–211. https://doi.org/10.1177/1043659617692394
- Haj-Mohamadi, P., Fles, E. H., & Shteynberg, G. (2018). When can shared attention increase affiliation? On the bonding effects of co-experienced belief affirmation. *Journal of Experimental Social Psychology*, 75, 103–106. https://doi.org/10.1016/j.jesp.2017.11.007
- Kleinke, C. L. (1986). Gaze and eye contact. A research review. *Psychological Bulletin*, 100(1).
- Lorenzo, G. L., Biesanz, J. C., & Human, L. J. (2010). What Is Beautiful Is Good and More

 Accurately Understood: Physical Attractiveness and Accuracy in First Impressions of

 Personality. *Psychological Science*, *21*(12), 1777–1782.

 https://doi.org/10.1177/0956797610388048

- Mahaphanit, W., & Chang, L. (2023). Shared experiences strengthen social connectedness through shared impression formation and communication behavior. *Proceedings of the Annual Meeting of the Cognitive Science Society*, 45.
- Marsman, M., & Wagenmakers, E. J. (2017). Bayesian benefits with JASP. European Journal of Developmental Psychology, 14(5), 545–555. https://doi.org/10.1080/17405629.2016.1259614
- Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks:

 Detecting satisficing to increase statistical power. *Journal of Experimental Social Psychology*,

 45(4), 867–872. https://doi.org/10.1016/j.jesp.2009.03.009
- Pearce, E., Launay, J., & Dunbar, R. I. M. (2015). The ice-breaker effect: Singing mediates fast social bonding. *Royal Society Open Science*, 2(10), 150221. https://doi.org/10.1098/rsos.150221
- Rennung, M., & Göritz, A. S. (2015). Facing sorrow as a group unites. Facing sorrow in a group divides. *PLoS ONE*, *10*(9), 1–22. https://doi.org/10.1371/journal.pone.0136750
- Sarasso, P., Ronga, I., Del Fante, E., Barbieri, P., Lozzi, I., Rosaia, N., Cicerale, A., Neppi-Modona, M., & Sacco, K. (2022). Physical but not virtual presence of others potentiates implicit and explicit learning. *Scientific Reports*, 12(1), 21205. https://doi.org/10.1038/s41598-022-25273-4
- Shteynberg, G. (2015). Shared Attention. Perspectives on Psychological Science, 10((5)), 579–590.
- Shteynberg, G. (2018). A collective perspective: Shared attention and the mind. *Current Opinion in Psychology*, 23, 93–97. https://doi.org/10.1016/j.copsyc.2017.12.007
- Shteynberg, G., Hirsh, J. B., Apfelbaum, E. P., Larsen, J. T., Galinsky, A. D., & Roese, N. J. (2014). Feeling more together: Group attention intensifies emotion. *Emotion*, *14*(6), 1102–1114. https://doi.org/10.1037/a0037697
- Shteynberg, G., Hirsh, J. B., Wolf, W., Bargh, J. A., Boothby, E. J., Colman, A. M., Echterhoff, G., & Rossignac-Milon, M. (2023). Theory of collective mind. *Trends in Cognitive Sciences*. https://doi.org/10.1016/j.tics.2023.06.009
- Singh, P., Tewari, S., Kesberg, R., Karl, J. A., Bulbulia, K., & Fischer, R. (2020). Time investments in rituals are associated with social bonding, affect and subjective health: A longitudinal study

- of Diwali in two Indian communities. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *375*(1805), 20190430. https://doi.org/10.1098/rstb.2019.0430
- Siposova, B., & Carpenter, M. (2019). A new look at joint attention and common knowledge. *Cognition*, 189, 260–274. https://doi.org/10.1016/j.cognition.2019.03.019
- Siposova, B., Tomasello, M., & Carpenter, M. (2018). Communicative eye contact signals a commitment to cooperate for young children. *Cognition*, *179*, 192–201. https://doi.org/10.1016/j.cognition.2018.06.010
- Tomasello, M. (2008). Origins of human communication. MIT press.
- Tomasello, M. (2014). A natural history of human thinking. Harvard University Press.
- Tomasello, M. (2016). A natural history of human morality. Harvard University Press.
- Tomasello, M. (2019). Becoming Human. A theory of Ontogeny. Harvard University Press.
- Tomasello, M., & Carpenter, M. (2007). Shared intentionality. *Developmental Science*, *10*(1), 121–125. https://doi.org/10.1111/j.1467-7687.2007.00573.x
- Tomasello, M., & Vaish, A. (2013). Origins of Human Cooperation and Morality. *Annual Review of Psychology*, 64(1), 231–255. https://doi.org/10.1146/annurev-psych-113011-143812
- van Doorn, J., van den Bergh, D., Böhm, U., Dablander, F., Derks, K., Draws, T., Etz, A., Evans, N. J., Gronau, Q. F., Haaf, J. M., Hinne, M., Kucharský, S., Ly, A., Marsman, M., Almirall, D., Gupta, A. R. K., Sarafoglou, A., Stefan, A., Voelkel, J. G., & Wagenmakers, E. J. (2021). The JASP guidelines for conducting and reporting a Bayesian analysis. *Psychonomic Bulletin & Review*, 28(3), 813–826. https://doi.org/10.3758/s13423-020-01798-5
- Williams, K. D., Cheung, C. K. T., & Choi, W. (2000). Cyberostracism: Effects of Being Ignored Over the Internet. *Journal of Personality and Social Psychology*, 79(5), 748–762.
- Williams, K. D., & Jarvis, B. (2006). Cyberball: A program for use in research on interpersonal ostracism and acceptance. *Behavior Research Methods*, *38*(1), 174–180. https://doi.org/10.3758/BF03192765
- Wolf, W., Launay, J., & Dunbar, R. I. M. (2015). Joint attention, shared goals, and social bonding.

 *British Journal of Psychology, 107(2), 322–337. https://doi.org/10.1111/bjop.12144

- Wolf, W., Levordashka, A., Ruff, J. R., Kraaijeveld, S., Lueckmann, J. M., & Williams, K. D. (2015).

 Ostracism Online: A social media ostracism paradigm. *Behavior Research Methods*, 47(2),

 361–373. https://doi.org/10.3758/s13428-014-0475-x
- Wolf, W., & Tomasello, M. (2019). Visually attending to a video together facilitates great ape social closeness. *Proceedings of the Royal Society B*, 286(19087). https://doi.org/10.1098/rspb.2019.0488
- Wolf, W., & Tomasello, M. (2020a). Human children, but not great apes, become socially closer by sharing an experience in common ground. *Journal of Experimental Child Psychology*, 199, 104930. https://doi.org/10.1016/j.jecp.2020.104930
- Wolf, W., & Tomasello, M. (2020b). Watching a video together creates social closeness between children and adults. *Journal of Experimental Child Psychology*, *189*, 12. https://doi.org/10.1016/j.jecp.2019.104712
- Wolf, W., & Tomasello, M. (2023). A Shared Intentionality Account of Uniquely Human Social Bonding. *Perspectives on Psychological Science*.
- Yarmand, M., Solyst, J., Klemmer, S., & Weibel, N. (2021). "It Feels Like I am Talking into a Void":

 Understanding Interaction Gaps in Synchronous Online Classrooms. *Proceedings of the 2021*CHI Conference on Human Factors in Computing Systems, 1–9.

 https://doi.org/10.1145/3411764.3445240
- Zheng, J., Veinott, E., Bos, N., Olson, J. S., & Olson, G. M. (2002). Trust without touch: Jumpstarting long-distance trust with initial social activities. *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 6.