```
In [1]: from IPython.display import display
   import yfinance as yf
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns; sns.set()
```

First, We will ask for a user to input their desired number of stock assets in their portfolio and then ask for them to specify which ones they are interested in.

```
In [3]: #user input for stocks
    stonks = []
    n = int(input("Enter number of Stocks in Portfolio: "))
    for i in range(0, n):
        istonks = input("Enter Ticker")
        stonks.append(istonks)
    print(stonks)

#stonks = ['IBUY', 'ADBE', 'JNJ', 'JPM', 'J', 'NEE', 'AMAT', 'WDC', 'IIPR', 'G
    OOGL', 'BSX', 'WMT', 'LOW', 'SWBI', 'WU']
    #stonks = ['LQD', 'GOVT', 'USIG', 'SHY']

Enter number of Stocks in Portfolio: 4
    Enter TickerIBUY
    Enter TickerADBE
    Enter TickerJPM
```

Enter TickerGOOGL

['IBUY', 'ADBE', 'JPM', 'GOOGL']

Enter the Period of Time for Stock Data: 10y, 5y, 2y,1y, 6mo, etc2y [********* 4 of 4 completed <class 'pandas.core.frame.DataFrame'> RangeIndex: 504 entries, 0 to 503 Data columns (total 2 columns): Column Non-Null Count Dtype 0 Date 504 non-null datetime64[ns] 1 Close 504 non-null float64 dtypes: datetime64[ns](1), float64(1) memory usage: 8.0 KB

<Figure size 432x288 with 0 Axes>

In [6]: data = data.head(-1)
print(data)

	ADBE Open	High	ı L	ow Cl	ose Vol	\ ume
Date		8				
2019-02-06	255.059998	255.929993				
2019-02-07	251.330002	254.309998				
2019-02-08	251.389999	257.049988				
2019-02-11 2019-02-12	258.890015 260.149994	259.899994 262.250000				
2019-02-12	200.149994					
2021-01-29	462.170013	465.000000		 85 458.769		 400
2021-02-01	462.279999	474.799988				
2021-02-02	473.649994	487.369995	472.5499	88 484.929	993 3022	200
2021-02-03	487.089996	488.850006	479.1700	13 481.920	013 2146	900
2021-02-04	484.220001	489.880005	481.9200	13 489.380	005 2004	900
	A14A T					,
	AMAT	∐ i ah		ow Cl	ose Vo	··· \ lume ···
Date	0pen	High	I L	ow CI	ose vo.	
2019-02-06	38.069387	39.445271	37.9821	83 39.028	629 2105	 8100
2019-02-07	38.495721	39.077083				
2019-02-08	38.079079	38.563546				1300
2019-02-11	38.728264	38.941426				9500
2019-02-12	39.125521	39.619675	39.0286	26 39.425	888 891:	1900
• • •	• • •		•	• •	• • •	
2021-01-29	100.230003	100.459999				3800
2021-02-01	99.250000	102.150002				3600
2021-02-02	102.989998	103.940002				8600
2021-02-03	104.320000	104.410004				9200
2021-02-04	100.209999	103.730003	100.2099	99 103.239	998 635	5100
	WDC					SWBI
\						52_
·	0pen	High	Low	Close	Volume	0pen
Date						
2019-02-06	45.006200	46.202065	44.996711	45.556679	5251600	9.833775
2019-02-07	44.882826		43.136486	43.525616	7045600	9.543423
2019-02-08	42.187385		41.807745	44.332344	7119700	
2019-02-11	44.398784		43.288342	43.592052	4173700	
2019-02-12	44.095074		43.990672	44.854351	4634000	9.298916
2021-01-29	58.660000	60.680000	55.119999	56.430000	15480300	 16.850000
2021-02-01	56.990002		56.430000	57.590000	4600300	
2021-02-02	58.599998	59.009998	57.490002	57.910000	4025000	
2021-02-03	57.980000		57.220001	57.700001	3038500	16.830000
2021-02-04	58.240002	59.410000	58.060001	59.259998	3299300	17.110001
			-7			
Data	High	Low	Close	Volume		
Date	0 864220	0 5301/13	0 566246	712550		
2019-02-06 2019-02-07	9.864338 9.619830	9.528142 9.237789	9.566346 9.390606	712558 601582		
2019-02-07	9.413529	9.161381	9.207226	469921		
2019-02-08	9.367684	9.176663	9.260713	303523		
2019-02-12	9.482296	9.291274	9.405888	401489		
• • •	•••	•••	•••	•••		
2021-01-29	17.209999		16.559999	2000000		
2021-02-01	17.030001	16.340000	16.830000	1949800		

```
2021-02-02 17.180000 16.420000 16.770000 1785500 2021-02-03 17.150000 16.559999 16.959999 2243200 2021-02-04 17.840000 17.020000 17.830000 2562800
```

[504 rows x 25 columns]

Below is a normalized graph of the stock performance compared with each other.

```
In [5]: stonks_df = pd.DataFrame()
    for i in range(len(stonks)):
        stonks_df[stonks[i]]= data[stonks[i]]['Close']
    #print(stonks_df)
    stonks_df.dropna(inplace=True)
    Normalized_stonks = (stonks_df/stonks_df.iloc[0])
    #print(Normalized_stonks)
    Normalized_stonks.info()
    Normalized_stonks.plot.line(figsize=(12, 10))
```

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 505 entries, 2019-02-26 to 2021-02-25
Data columns (total 4 columns):
     Column Non-Null Count Dtype
     IBUY
0
             505 non-null
                             float64
1
     ADBE
             505 non-null
                             float64
 2
     JPM
             505 non-null
                             float64
 3
     G00GL
             505 non-null
                             float64
dtypes: float64(4)
memory usage: 19.7 KB
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x2a8a265f5c0>


```
In [6]: #print(stonks_df)
    stonks_returns= np.log(stonks_df/stonks_df.shift(1))
    stonks_returns.dropna(inplace=True)
    #print(stonks_returns)
    info_df= pd.DataFrame()
    data_rate= 365
    info_df['Annualized Returns(%)'] =stonks_returns.mean() * data_rate *100
    info_df['Annualized Volatility(%)'] = stonks_returns.std() * np.sqrt(data_rate )*100
    info_df['Sharpe Ratio'] = info_df['Annualized Returns(%)'] /info_df['Annualized Volatility(%)']
    info_df.style.bar(color=['red','green'], align='zero')
    #print(stonks_returns)
```

Out[6]:

	Annualized Returns(%)	Annualized Volatility(%)	Sharpe Ratio
IBUY	69.288612	37.307076	1.857251
ADBE	40.847829	45.774983	0.892361
JPM	30.942138	49.217494	0.628682
GOOGL	42.436232	39.191927	1.082780

In [9]: #Sortino Ratio

```
In [7]: corr_matrix= stonks_returns.corr()
    fig, ax = plt.subplots(figsize=(16,16))
    sns.heatmap(corr_matrix, annot = True)
    plt.show()
```



```
In [8]:
        sim num= 5000
        monte weights df list= pd.DataFrame()
        port return sim = []
        port vol sim =[]
        all weights = np.zeros((sim num, len(stonks)))
        sharpe_arr = np.zeros(sim_num)
        for i in range(sim num):
            monte weights = np.random.random(len(stonks))
            monte weights /= np.sum(monte weights)
            all_weights[i,:] = monte_weights
            port return sim.append(np.sum(stonks returns[stonks].mean()* monte weights
        )* 365)
            port vol sim.append(np.sqrt(np.dot(monte weights.T,np.dot(stonks returns[s
        tonks].cov()*365,
         monte weights))))
            sharpe_arr[i] = port_return_sim[i]/port_vol_sim[i]
        port return sim = np.array(port return sim)
        port_vol_sim=np.array(port_vol_sim)
        sharpe_arr=np.array(sharpe_arr)
        #print(port_return sim)
        #print(port vol sim)
        #print(all_weights)
        #print(sharpe arr)
```

```
Max Sharpe Ratio is: 1.8031311244884796
Max Sharpe Ratio index is: 4909
['IBUY', 'ADBE', 'JPM', 'GOOGL']
[0.82264552 0.00783881 0.00900001 0.16051566]
0.6441032422663064
0.35721375640333897
0.6514956555192692
```

Out[10]: Text(0.5, 1.0, 'Monte Carlo Simulation Efficient Frontier')

Above is our 'efficient frontier' in which we visually see the monte carlo simulation results and the green dot represents the optimal portfolio choice when following markowitz theory and taking into acount our expected return vs our expected volatility.

```
"""from scipy.optimize import minimize
In [11]:
         def get_ret_vol_sr(weights):
             weights = np.array(weights)
             ret = np.sum(stonks returns.mean() * weights) * 252
             vol = np.sqrt(np.dot(weights.T, np.dot(stonks returns.cov()*252, weight
         s)))
             sr = ret/vol
             return np.array([ret, vol, sr])
         def neg sharpe(weights):
         # the number 2 is the sharpe ratio index from the get ret vol sr
             return get_ret_vol_sr(weights)[2] * -1
         def check sum(weights):
             #return 0 if sum of the weights is 1
             return np.sum(weights)-1
         cons= ({'type': 'eq', 'fun':check_sum})
         bounds= ((0,1),(0,1),(0,1),(0,1))
         init quess = [0.25, 0.25, 0.25, 0.25]
         opt_results = minimize(neg_sharpe, init_guess, method= 'SLSQP', bounds = bound
         s, constraints= cons)
         print(opt results)
         get ret vol sr(opt results.x)
         frontier y = np.linspace(0, 0.8,200)
         def minimize_volatility(weights):
             return get ret vol sr(weights)[1]
```

Out[11]: "from scipy.optimize import minimize\ndef get ret vol sr(weights):\n weigh ts = np.array(weights)\n ret = np.sum(stonks returns.mean() * weights) * 2 vol = np.sqrt(np.dot(weights.T, np.dot(stonks_returns.cov()*252, weig sr = ret/vol\n return np.array([ret, vol, sr])\n\ndef neg shar hts)))\n pe(weights):\n# the number 2 is the sharpe ratio index from the get ret vol s return get_ret_vol_sr(weights)[2] * -1\n\ndef check_sum(weights):\n #return 0 if sum of the weights is 1\n return np.sum(weights)-1\n\ncons= ({'type': 'eq', 'fun':check_sum})\nbounds= ((0,1),(0,1),(0,1),(0,1))\ninit_gu ess = [0.25,0.25,0.25,0.25]\n\nopt_results = minimize(neg_sharpe, init_guess, method= 'SLSQP', bounds = bounds, constraints= cons)\nprint(opt results)\n\ng et ret vol sr(opt results.x)\nfrontier y = np.linspace(0, 0.8,200)\ndef minim ize volatility(weights):\n return get ret vol sr(weights)[1]\n"

```
"""frontier_x = []
In [12]:
         for possible return in frontier y:
             cons = ({'type':'eq', 'fun':check_sum},
                      {'type':'eq', 'fun': lambda w: get_ret_vol_sr(w)[0] - possible_ret
         urn})
             result = minimize(minimize volatility, init quess, method='SLSQP', bounds=bo
         unds, constraints=cons)
             frontier_x.append(result['fun'])
         plt.figure(figsize=(12,8))
         plt.scatter(port_vol_sim, port_return_sim, c=sharpe_arr, cmap='viridis')
         plt.colorbar(label='Sharpe Ratio')
         plt.xlabel('Volatility')
         plt.ylabel('Return')
         plt.plot(frontier x, frontier y, 'r--', linewidth=3)
         plt.savefig('cover.png')
         plt.show()"""
```

Out[12]: "frontier_x = []\n\nfor possible_return in frontier_y:\n cons = ({'typ
 e':'eq', 'fun':check_sum},\n {'type':'eq', 'fun': lambda w: get_re
 t_vol_sr(w)[0] - possible_return})\n \n result = minimize(minimize_vola
 tility,init_guess,method='SLSQP', bounds=bounds, constraints=cons)\n front
 ier_x.append(result['fun'])\n \nplt.figure(figsize=(12,8))\nplt.scatter(po
 rt_vol_sim, port_return_sim, c=sharpe_arr, cmap='viridis')\nplt.colorbar(labe
 l='Sharpe Ratio')\nplt.xlabel('Volatility')\nplt.ylabel('Return')\nplt.plot(f
 rontier_x,frontier_y, 'r--', linewidth=3)\nplt.savefig('cover.png')\nplt.show
 ()"

```
# For Manually Inputing Weights
In [16]:
                                    inp = 'no'
                                    while inp == 'yes':
                                                   inp = str(input("Would you like to continue: 'yes' or 'no'?"))
                                                   weight=[]
                                                   while np.sum(weight) != float(1.0):
                                                                  for i in range(len(stonks)):
                                                                                  x = float(input("Enter Weight of " + stonks[i]))
                                                                                  weight.append(x)
                                                   print(weight)
                                                   weight= np.array(weight)
                                                   Expected port return= np.sum(stonks returns.mean()*weight)*365
                                                   Expected port Std = np.sqrt(weight.T.dot(stonks returns.cov()*365).dot(weight.T.dot(stonks returns.cov()*365).dot(stonks re
                                    ght))
                                                   port sharpe= Expected port return/Expected port Std
                                                   print('Annualized Returns: {:.3%}'.format(Expected port return))
                                                   print('Annualized Volatility: {:.3%}'.format(Expected port Std))
                                                   print('Sharpe Ratio: {:.4}'.format(port sharpe))
                                                   if inp == 'no':
                                                                   break
```

```
In [21]:
         #weight=[0.14807922, 0.16466128, 0.07525923, 0.00480915, 0.03407212, 0.013477
          #0.07040439, 0.00621632, 0.03569034, 0.14024049, 0.01212091, 0.00636116, 0.16
         319165, 0.09052107, 0.02298392, 0.01191133]
         weight= [0.82264552,0.00783881,0.00900001,0.16051566]
         weight= np.array(weight)
         print(weight)
         Expected_port_return= np.sum(stonks_returns.mean()*weight)*365
         Expected port Std = np.sqrt(weight.T.dot(stonks returns.cov()*365).dot(weight
         ))
         port sharpe= Expected port return/Expected port Std
         print('Annualized Returns: {:.3%}'.format(Expected_port_return))
         print('Annualized Volatility: {:.3%}'.format(Expected_port_Std))
         print('Sharpe Ratio: {:.4}'.format(port_sharpe))
         [0.82264552 0.00783881 0.00900001 0.16051566]
```

Annualized Returns: 64.410% Annualized Volatility: 35.721%

Sharpe Ratio: 1.803

In []: