1 18-04-18

This research is collaboration with Prof. Yoneda from University of Tokyo. Main equation discussed is **Navier-Stokes equation** that usually discusses in fluid, for example air.

1.1 Navier-Stokes Equation

1.1.1 General Problem

For dimension d = 2, 3, ... (usually 2 or 3) and T > 0, we want to find

$$(u,p): \Omega \times (0,T) \to \mathbb{R}^d \times \mathbb{R}$$

where u is unknown velocity and p is unknown pressure such that

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \triangle u + \nabla p = f & \text{in } \Omega \times (0, T) \\ \nabla \cdot u = 0 & \text{in } \Omega \times (0, T) \\ u = 0 & \text{on } \partial \Omega \times (0, T) \\ u = u^0 & \text{in } \Omega, \text{ at } t = 0 \end{cases}$$

$$(1)$$

where $f: \Omega \times (0,T) \to \mathbb{R}^d$ and $u^0: \Omega \to \mathbb{R}^d$ are given functions, $\nu > 0$ is a viscosity.

From equation (1) we can see that $\frac{\partial u}{\partial t} + (u \cdot \nabla)u$ is the **convection part** that explain the movement of fluid. This part, contain **nonlinear term** $(u \cdot \nabla)u$. We can also see, that $\nu \triangle u$ (similar to Heat equation) is the **diffusion part**. In the second equations, $\nabla \cdot u = 0$ explained the **incompressible condition** of fluid.

Incompressible condition:

$$\nabla \cdot u = div \ u = 0 \Leftrightarrow \text{ fluid is incompressible}$$

means that the total amount of body does not change. By

$$0 = \int_{V} \nabla \cdot u \, dx = \int_{\partial V} u \cdot n \, ds$$

means that the energy that comes in and comes out is same and the normal component of velocity is $0 = \int_{\partial V} u \cdot n \, ds$ where n is the normal vector works on boundary.

Convection effect:

[simple explanation.] Let $\phi^0(x), c > 0$ is given. Consider $\phi(x,t) = \phi^0(x-ct)$, that represent the movement of function without changing the shape.

at t=0 we have $\phi(x,0)=\phi^0(x)$; at at t=1 we have $\phi(x,1)=\phi^0(x-c)$; at t=2 we have $\phi(x,2)=\phi^0(x-2c)$ as shown above.

1.1.2 3D Problem

For
$$d=3$$
, then $u=\left[\begin{array}{c} u_1\\u_2\\u_3\end{array}\right]$ such that for $(i=1,2,3)$ we have

$$\frac{\partial u_i}{\partial t} + (u \cdot \nabla)u_i - \nu \triangle u_i + [\nabla p]_i = f_i$$

where

$$(u \cdot \nabla)u_i = \left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \cdot \begin{bmatrix} \partial_1 \\ \partial_2 \\ \partial_3 \end{bmatrix} \right)u_i$$
$$= (u_1\partial_1 + u_2\partial_2 + u_3\partial_3)u_i$$
$$= u_1\frac{\partial u_i}{x_1} + u_2\frac{\partial u_i}{x_2} + u_3\frac{\partial u_i}{x_3}$$

and

$$\triangle u_i = \frac{\partial^2 u_i}{\partial x_1^2} + \frac{\partial^2 u_i}{\partial x_2^2} + \frac{\partial^2 u_i}{\partial x_3^2}.$$

Note: we have u_1, u_2, u_3, p as four unknown functions and four equations (as first equation defined for three u and second equation), then we could find the solution.