Proofs

What's a proof?

Thm: Statement S **Proof:**Axiom 1... Thm: Statement S Checkable Axiom 2 in **Proof:** There exists a ℓ lines $Poly(\ell)$ time, proof of ℓ lines $A \rightarrow B$ long , . . Q.E.D.

Checkable in 2^{ℓ} time.

Statement Φ (to be proved)

PROVER

True Statements Are Provable

• Φ is true

∃ strategy such that Prover will Win/ Verifier will Accept.

False Statements Cannot Be Proved

Φ is false

∀ strategy of Prover, Verifier will Reject.

NP

Statement:

This graph has a Rudrata cycle"

PROVER

coNP = complement of NP

Example: "This graph has NO Rudrata cycle"

No efficiently verifiable proofs of truth of coNP statements in general.

However, if statement is false, there is an efficiently verifiable proof of "NOT Φ ".

Interactive Proofs

True Statements Are Provable

• Φ is true

∃ strategy such that Prover will Win/ Verifier will Accept.

False Statements Cannot Be Proved (with high probability)

Φ is false

∀ strategy of Prover, Verifier will Reject with high probability (say 0.999) .

Are these two graphs different?

Definition: Graphs **G** and **H** are isomorphic if there exists a bijection π : $V(G) \to V(H)$ such that, $(i,j) \in E(G)$ if and only if $(\pi(i),\pi(j)) \in E(H)$

Are these graphs same?

Graph Isomorphism

Theorem: Graph Isomorphism is in NP

Are these two graphs isomorphic?

Can you prove it?

Graph Isomorphism is in NP: Its easy to prove that $G \equiv H$

Graph Non-Isomorphism is in coNP lts not easy to prove to a verifier that $G \not\equiv H$

Graph Isomorphism: NP Proof

PROVER

PROOF: Bijection $\pi: V(G) \to V(H)$

Polynomial-time computation

Prover is revealing too much information??

Graph Isomorphism: NP Proof

PROVER

Verifier

Proving Graph Non-Isomorphism

To Prove: Graph $G \not\equiv Graph H$

PROVER

Verifier

Proving Coke $\neq Pepsi$

True things can be proved If $Coke \neq Pepsi$, then prover can succeed each round.

False things can't be proved

If $Coke \equiv Pepsi$, then prover fails each round with probability $\frac{1}{2}$.

Repeat k times, probability of failure $1 - 1/2^k$

Proving Graph Non-Isomorphism

False things cannot be proved:

If $G \equiv H$, then $\pi(\Gamma)$ has the same distribution, whether verifier chose G or H

What more can be proved interactively??

IP = PSPACE!!

- Formula Φ is not satisiable
- ullet Formula Φ has exactly k satisfying assignments
- There is a winning strategy for Black in Chess

<u>Sampleable</u>

Proofs

Statement:

This graph has a Rudrata cycle"

PROVER

Special PROOF:

Samples only three bits o proof

PCP Theorem: Every NP statement has a sampleable proof

More and more proofs...

Multi-prover interactive proofs

Quantum prover/Classical verifier

Quantum multiprover/classical verifier...

• ... weak verifier

• •