SF1625 Envariabelanalys Lösningsförslag till tentamen 2017.06.09

1. Halveringstiden för den radioaktiva isotopen kol-14 är cirka 5730 år. Levande organismer har en ungefärligen konstant halt kol-14, men i döda organismer minskar ämnet i en takt som är proportionell mot mängden av ämnet, dvs mängden y(t) uppfyller en differentialekvation på formen y' = ky för någon konstant k. Ett visst benfragment innehåller 80% av den ursprungliga mängden kol-14. Hur gammalt är benfragmentet? (4 p)

Lösning. Mängden y(t) kol 14 i benfragmentet vid tidpunkten t uppfyller differentialekvationen y'(t)=ky(t) för någon konstant k, det vill säga $y(t)=Ce^{kt}$ dr C är den ursprungliga mngden. Eftersom halveringstiden är 5730 år, kan vi bestämma k genom

$$e^{k5730} = \frac{1}{2} \Longleftrightarrow k = -\frac{\ln 2}{5730}.$$

Den tidpunkt T som är benfragmentets ålder uppfyller nu att

$$Ce^{(-T\ln 2)/5730} = \frac{4}{5}C \iff T = 5730 \frac{(\ln 5 - \ln 4)}{\ln 2} \ (\approx 1800) \ \text{år}.$$

2. Låt R vara det begränsade område i första kvadranten som ligger över kurvan $y=x^2$ och under kurvan $y=8-x^2$. Bestäm volymen av den rotationskropp som genereras då R roteras ett varv runt y-axeln. (4 p)

Lösning. Skärningen mellan de två kurvorna fås ur $x^2 = 8 - x^2$ som i första kvadranten ger oss punkterna x = 0 och x = 2. Den sökta volymen är

$$2\pi \int_0^2 x(8-2x^2) dx = 2\pi \left[4x^2 - \frac{1}{2}x^4 \right]_{x=0}^{x=2} = 16\pi.$$

3. Ellipsen E ges som lösningar till ekvationen $3x^2 + 4y^2 = 5$. Bestäm en ekvation för linjen L som tangerar E i punkten $P = (1, \sqrt{2}/2)$. (4 p)

Lösning. Implicit derivering ger $6x+8y\frac{dy}{dx}=0$. I punkten $P=(1,\sqrt{2}/2)$ erhåller vi att

$$\frac{dy}{dx|P} = -6x/8y|P = -\frac{3}{4} \cdot \frac{2}{\sqrt{2}} = -\frac{3\sqrt{2}}{4},$$

vilket är lutningen k till den sökta tangentlinjen. En ekvation är på formen y=kx+m, och punkten P ska uppfylla linjens ekvation. Detta ger

$$\sqrt{2}/2 = -\frac{3\sqrt{2}}{4} \cdot 1 + m,$$

 $\text{ och att } m = 5\sqrt{2}/4.$

4. Beräkna nedanstående integraler:

(a)
$$\int_{1}^{e} x^{5} \ln x \, dx.$$
 (2 p)

(b)
$$\int_{2}^{4} \frac{6}{x^2 - x - 2} dx.$$
 (2 p)

Lösning. (a) Vi använder partiell integration. Detta ger

$$\int_{1}^{e} x^{5} \ln x \, dx = \left[\frac{x^{6}}{6} \ln x \right]_{1}^{e} - \int_{1}^{e} \frac{x^{5}}{6} \, dx$$
$$= \frac{e^{6}}{6} - \left[\frac{x^{6}}{36} \right]_{1}^{e} = \frac{e^{6}}{6} - \frac{e^{6}}{36} + \frac{1}{36}$$
$$= \frac{1}{36} (5e^{6} + 1).$$

(b) Vi har att $x^2 - x - 2 = (x - 2)(x + 1)$, och följdaktligen att

$$\frac{6}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1},$$

för några tal A och B. Dessa tal bestäms från ekvationen

$$6 = A(x+1) + B(x-2) = (A+B)x + (A-2B) \cdot 1.$$

Detta ger att A=-B, och att 6=A-2B=-3B. Med andra ord har vi att

$$\int_{3}^{4} \frac{6}{x^{2} - x - 1} \, dx = \int_{3}^{4} \frac{2}{x - 2} \, dx + \int_{3}^{4} \frac{-2}{x + 1} \, dx.$$

Den sökta integralen är

$$2\left[\ln(x-2)\right]_{x=3}^{x=4} - 2\left[\ln(x+1)\right]_{x=3}^{x=4} = 2\ln(2) - 2\ln(5) + 2\ln(4).$$

5. Låt P(x) vara andra ordningens Taylorpolynom kring x=0 till funktionen $f(x)=e^x$.

(a) Använd
$$P(x)$$
 för att ge ett närmevärde till \sqrt{e} . (2 p)

Lösning. a) Taylorutveckling kring origo av e^x ger att

$$P(x) = 1 + x + \frac{x^2}{2}.$$

Eftersom $\sqrt{e} = e^{1/2}$ har vi att

$$\sqrt{e} = e^{1/2} \approx P(1/2) = 1 + \frac{1}{2} + \frac{1}{8} = \frac{13}{8}.$$

b) Felet i detta närmevärde i punkten x = 1/2 ges av

$$E_3(x) = \frac{f^{(3)}(c)}{3!}x^3 = \frac{e^c}{6} \cdot \left(\frac{1}{2}\right)^3,$$

för något 0 < c < 1/2. Speciellt har vi att $e^c > 1$. Detta ger att

$$\frac{e^c}{6} \cdot \left(\frac{1}{2}\right)^3 \ge \frac{1}{48} > 0.02.$$

Felet i närmevärdet är större än 0.02

6. Betrakta funktionen f som ges av $f(x)=\frac{x^3}{2x^2-1}$. Skissa kurvan y=f(x) med hjälp av en undersökning där det framgår var funktionen är växande respektive avtagande, vilka lokala extrempunkter funktionen har, vilka funktionens nollställen är och vilka asymptoter funktionskurvan har.

Lösning. Vi ser att f är definierad (och kontinuerlig) för alla $x \neq \pm 1/\sqrt{2}$. Eftersom f är obegränsad när x närmar sig dessa punkter har vi hittat två lodräta asymptoter

$$x = \frac{1}{\sqrt{2}}$$
 och $x = -\frac{1}{\sqrt{2}}$.

För att hitta asymptoter när $x \to \pm \infty$ skriver vi om f(x) med polynomdivision som $f(x) = \frac{x}{2} + \frac{x}{4x^2-2}$. Av detta ser vi att vi har sned asymptot y = x/2 när $x \to \pm \infty$.

Nu söker vi lokala extrempunkter. Vi deriverar och får efter förenkling att

$$f'(x) = \frac{2x^4 - 3x^2}{(2x^2 - 1)^2}.$$

Vi ser att

$$f'(x) = 0 \Leftrightarrow x = 0 \text{ eller } x = \pm \sqrt{\frac{3}{2}}.$$

Ett teckenstudium av derivatan ger:

Om $x<-\sqrt{3/2}$ så är f'(x)>0 och funktionen strängt växande. Om $-\sqrt{3/2}< x<-1/\sqrt{2}$ så är f'(x)<0 och funktionen alltså strängt avtagande. Om $-1/\sqrt{2}< x<1/\sqrt{2}$ så är $f'(x)\leq 0$ med likhet bara för punkten x=0 och funktionen är därför strängt växande på hela detta intervall. Om $1/\sqrt{2}< x<\sqrt{3/2}$ så är f'(x)<0 och funktionen strängt avtagande. Om $x>\sqrt{3/2}$ så är f'(x)>0 och funktionen strängt växande.

Det följer av ovanstående att f har ett lokalt maximum i $x=-\sqrt{3/2}$ och ett lokalt minimum i $x=\sqrt{3/2}$. Den tredje kritiska punkten x=0 är en terasspunkt och alltså inte en lokal extrempunkt. Det är klart att f(x)=0 bara då x=0. Av asymptotutredning ovan framgår att $\lim_{x\to\infty} f(x)=\infty$ och $\lim_{x\to-\infty} f(x)=-\infty$. Övriga relevanta gränsvärden:

$$\lim_{x \to -1/\sqrt{2}^{-}} f(x) = -\infty, \quad \lim_{x \to -1/\sqrt{2}^{+}} f(x) = \infty,$$

$$\lim_{x\to 1/\sqrt{2}^-} f(x) = -\infty \quad \text{och} \quad \lim_{x\to 1/\sqrt{2}^+} f(x) = \infty$$

Nu kan vi rita grafen y = f(x).

- 7. (a) För vilka reella x gäller sambandet $\sin(\arcsin x) = x$? (2 p)
 - (b) Härled derivatan av $\arcsin x$ genom implicit derivering av detta samband. (2 p)

Lösning. (a) Sambandet är definierat för alla x sådana att $-1 \le x \le 1$.

(b) Om vi deriverar sambandet får vi

$$(\cos(\arcsin x)) \cdot \frac{d}{dx}(\arcsin x) = 1.$$

Vi löser ut derivatan av $\arcsin x$, och får att

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1-x^2}}$$

där sista identiteten följer av att $cos(y)^2 + sin(y)^2 = 1$.

8. Bevisa, genom beräkning av en integral, formeln $A = \pi ab$ för arean A av en ellips med halvaxlarna a och b. (4 p)

Lösning. Ellipsen kan beskrivas som lösningar till ekvationen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Lösningsmängden är symmetrisk med avseende på koordinat-axlarna. Övre halvan kan beskrivas som funktionskurvan

$$y = b\sqrt{1 - \frac{x^2}{a^2}}, \qquad -a \le x \le a.$$

Arean av ellipsen är två gånger arean av denna funktionskurva och x-axeln. Det vil säga den sökta arean

$$A = 2 \int_{-a}^{b} b \sqrt{1 - \frac{x^2}{a^2}} \, dx.$$

Med hjälp av koordinatbytet $x=a\sin t$ har vi att

$$A = 2 \int_{-a}^{a} b \sqrt{1 - \frac{x^{2}}{a^{2}}} dx = 2ab \int_{-\pi/2}^{\pi/2} \sqrt{1 - \sin^{2} t} \cos t dt$$
$$= 2ab \int_{-\pi/2}^{\pi/2} \cos^{2} t dt$$
$$= 2ab \int_{-\pi/2}^{\pi/2} \frac{1 + \cos(2t)}{2} dx = \pi ab.$$

9. Bevisa att formeln

$$\int_0^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} x \, dx$$
 gäller för alla heltal $n \ge 2$. (4 p)

Lösning. Sätt $I=\int_0^{\pi/2}\sin^n x\,dx$. Vi använder partiell integration och får att

$$I = \int_0^{\pi/2} \sin^n x \, dx = \left[-\cos x \sin^{n-1} x \right]_0^{\pi/2} + (n-1) \int_0^{\pi/2} \cos^2 x \sin^{n-2} x \, dx.$$

Vi använder sedan att $\cos^2 x = 1 - \sin^2 x$, vilket ger att

$$I = (n-1) \int_0^{\pi/2} \sin^{n-2} x \, dx - (n-1)I.$$

Med andra ord att

$$I = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} x \, dx$$

vilket var det vi skulle visa.