[ED210] Será uma árvore de pesquisa?

Neste problema deverá apenas submeter uma classe BSTree<T> (e não um programa completo).

Código Base

Use como base a classe BSTree<T> (ver código | download de BSTNode.Java e BSTree.Java), que representa uma árvore binária de pesquisa, tal como dada nas aulas).

O problema

Acrescente à classe dada um método public boolean valid() que verifique se a árvore binária é realmente uma árvore de pesquisa, ou seja:

- Todas os valores (se existir algum) da subárvore esquerda são menores do que o valor da raíz
- Todas os valores (se existir algum) da subárvore direita são maiores do que o valor da raíz
- As subárvores esquerda e direita são também árvores binárias de pesquisa

A figura seguinte ilustra alguns exemplos de árvores binárias, indicando se são ou não árvores binárias de pesquisa:

- A árvore 3 não é de pesquisa pois 7 é maior que 5 mas está na sua subárvore esquerda.
- A árvore 4 não é de pesquisa pois 2 é menor que 3 mas está na sua subárvore direita.

Pode assumir que ja foi lida uma árvore binária não vazia contendo somento elementos diferentes (não existem valores iguais) e agora só tem de verificar se é ou não de pesquisa.

Submissão

Deverá submeter apenas a classe **BSTree<T>**, acrescentando o método **valid** como pedido **(e sem apagar ou modificar nenhum dos outros métodos dados como base)**. Pode assumir que terá acesso no Mooshak à classe BSTNode<T> (não a pode mudar) e se precisar pode criar outros métodos auxiliares. O Mooshak irá criar várias instâncias da sua classe e irá fazer uma série de testes ao método por si implementado.

Exemplos de Input/Output

Os exemplos correspondem às árvores da figura do enunciado.

Árvore t (em preorder com N a ser uma subárvore nula)	t.valid()
5 3 1 N N 4 N N 10 7 N N 42 N N	true
7 5 N 6 N N 9 8 N N 10 N N	true
5 4 2 N N 7 N N 8 N N	false
5 3 1 N N 2 N N 7 6 N N 8 N N	false

Última actualização: 06/22/2020 00:48:54