Introduction to Computer Networks

Transport Layer Overview

(§6.1.2-6.1.4)

Where we are in the Course

- Starting the Transport Layer!
 - Builds on the network layer to deliver data across networks for applications with the desired reliability or quality

Application
Transport
Network
Link
Physical

Recall

 Transport layer provides end-to-end connectivity across the network

Recall (2)

- Segments carry application data across the network
- Segments are carried within packets within frames

Transport Layer Services

 Provide different kinds of data delivery across the network to applications

	Unreliable	Reliable
Messages	Datagrams (UDP)	
Bytestream		Streams (TCP)

Comparison of Internet Transports

TCP is full-featured, UDP is a glorified packet

	TCP (Streams)	UDP (Datagrams)	
P	Connections	Datagrams	-
7	Bytes are delivered once, reliably, and in order	Messages may be lost, reordered, duplicated	
7	Arbitrary length content	Limited message size	4
7	Flow control matches sender to receiver	Can send regardless of receiver state	4
3	Congestion control matches sender to network	Can send regardless of network state	-

Socket API

- Simple abstraction to use the network
 - The "network" API (really <u>Transport</u> service) used to write all Internet apps
 - Part of all major OSes and languages;
 originally Berkeley (Unix) ~1983
 - Supports both Internet transport services (Streams and Datagrams)

Socket API (2)

 <u>Sockets</u> let apps attach to the local network at different <u>ports</u>

Socket API (3)

Same API used for Streams and Datagrams

	Primitive	Meaning
	SOCKET	Create a new communication endpoint
	BIND	Associate a local address (port) with a socket
Only needed	LISTEN	Announce willingness to accept connections
for Streams	ACCEPT	Passively establish an incoming connection
	CONNECT	Actively attempt to establish a connection
To/From	SEND(TO)	Send some data over the socket
forms for	RECEIVE(FROM)	Receive some data over the socket
Datagrams	CLOSE	Release the socket

Ports

- Application process is identified by the tuple IP address, protocol, and port
 - Ports are 16-bit integers representing local "mailboxes" that a process leases
- Servers often bind to "well-known ports"
 - <1024, require administrative privileges</p>
- Clients often assigned "ephemeral" ports
 - Chosen by OS, used temporarily

Some Well-Known Ports

	Port	Protocol	Use
	20, 21	FTP	File transfer
	22	SSH	Remote login, replacement for Telnet
	25	SMTP	Email
7	80	HTTP	World Wide Web
	110	POP-3	Remote email access
	143	IMAP	Remote email access
>	443	HTTPS	Secure Web (HTTP over SSL/TLS)
	543	RTSP	Media player control
	631	IPP	Printer sharing

Topics

Service models

 Socket API and ports
 Datagrams, Streams

 User Datagram Protocol (UDP)

 Connections (TCP)

 Sliding Window (TCP)
 Flow control (TCP)
 Retransmission timers (TCP)
 Later

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey