Package 'tidyHeatmap'

July 7, 2021

```
Version 1.3.1
Maintainer Stefano Mangiola <mangiolastefano@gmail.com>
Description This is a tidy implementation for heatmap. At the
      moment it is based on the (great) package 'ComplexHeatmap'. The goal
     of this package is to interface a tidy data frame with this powerful
     tool. Some of the advantages are: Row and/or columns colour
     annotations are easy to integrate just specifying one parameter
      (column names). Custom grouping of rows is easy to specify providing
      a grouped tbl. For example: df %>% group_by(...). Labels size
      adjusted by row and column total number. Default use of Brewer and
      Viridis palettes.
License GPL-3
URL https://www.r-project.org,
     https://github.com/stemangiola/tidyHeatmap
BugReports https://github.com/stemangiola/tidyHeatmap
Depends R (>= 3.6)
Imports methods,
     stats,
     utils,
     dplyr (>= 0.8.5),
     magrittr (>= 1.5),
     tidyr (>= 1.0.3),
     rlang (>= 0.4.5),
     purrr (>= 0.3.3),
     tibble,
     ComplexHeatmap (\geq 2.2.0),
      viridis (>= 0.5.1),
     circlize (>= 0.4.8),
     RColorBrewer (>= 1.1),
     grid,
     grDevices,
     lifecycle (>= 0.2.0),
     dendextend
```

Type Package

Title A Tidy Implementation of Heatmap

2 R topics documented:

Suggests spelling,
testthat,
vdiffr,
BiocManager,
knitr,
rmarkdown,
qpdf,
covr,
roxygen2
VignetteBuilder knitr
RdMacros lifecycle
Biarch true
biocViews AssayDomain, Infrastructure
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Language en-US

R topics documented:

add_annotation
add_attr
add_bar
add_bar,InputHeatmap-method
add_class
add_line
add_line,InputHeatmap-method
add_point
add_tile
annot_to_list
as_matrix
check_if_counts_is_na
check_if_duplicated_genes
check_if_wrong_input
drop_class
error_if_log_transformed
get_abundance_norm_if_exists
get_elements
get_elements_features
get_elements_features_abundance
get_sample_counts
get_sample_transcript
get_sample_transcript_counts
get_x_y_annotation_columns
heatmap
ifelse2_pipe
ifelse_pipe
$input_heatmap \dots \dots$
layer_arrow_up

add_annotation 3

	N52	24
	parse_formula	25
	pasilla	25
	prepend	26
	quo_names	26
	save_pdf	27
	save_pdf,Heatmap-method	28
	save_pdf,InputHeatmap-method	28
	scale_design	29
	scale_robust	29
	select_closest_pairs	30
	split_rows	30
Index		32

add_annotation

add_annotation

Description

add_annotation() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

Usage

```
add_annotation(
   my_input_heatmap,
   annotation,
   type = rep("tile", length(quo_names(annotation))),
   palette_discrete = list(),
   palette_continuous = list()
)
```

Arguments

```
my_input_heatmap
```

A 'InputHeatmap' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |

annotation Vector of quotes

type A character vector of the set c(\"tile\", \"point\", \"bar\", \"line\")

palette_discrete

A list of character vectors. This is the list of palettes that will be used for horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and factor).

palette_continuous

A list of character vectors. This is the list of palettes that will be used for horizontal and vertical continuous annotations. The continuous classification of annotations depends on the column type of your input tibble (e.g., integer, numerical, double).

4 add_bar

Details

To be added.

Value

A 'ComplexHeatmap' object

add_attr

Add attribute to abject

Description

Add attribute to abject

Usage

```
add_attr(var, attribute, name)
```

Arguments

var A tibble attribute An object

name A character name of the attribute

Value

A tibble with an additional attribute

add_bar

Adds a bar annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_bar() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
add_bar(.data, .column, palette = NULL)
```

Arguments

.data A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> |

.column Vector of quotes

palette A character vector of colors This is the list of palettes that will be used for

horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
   tidyHeatmap::N52 %>%
   tidyHeatmap::heatmap(
        .row = symbol_ct,
        .column = UBR,
        .value = `read count normalised log`)
hm %>% add_bar()
```

Description

add_bar

Usage

```
## S4 method for signature 'InputHeatmap'
add_bar(.data, .column, palette = NULL)
```

Arguments

```
.data A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> |

.column Vector of quotes

A character vector of colors This is the list of palettes that will be used for horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and factor).
```

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

6 add_line

add_class

Add class to abject

Description

Add class to abject

Usage

```
add_class(var, name)
```

Arguments

var A tibble

name A character name of the attribute

Value

A tibble with an additional attribute

add_line

Adds a line annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

add_line() from a 'InputHeatmap' object, adds a line annotation layer.

Usage

```
add_line(.data, .column, palette = NULL)
```

Arguments

.data A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> |

.column Vector of quotes

palette A character vector of colors This is the list of palettes that will be used for

horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and

factor).

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% add_line()
```

Description

add_line

Usage

```
## S4 method for signature 'InputHeatmap'
add_line(.data, .column, palette = NULL)
```

Arguments

```
.data A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> |

.column Vector of quotes

A character vector of colors This is the list of palettes that will be used for horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and factor).
```

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

8 add_point

add_point	Adds a point annotation layer to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'
add_point	

Description

add_point() from a 'InputHeatmap' object, adds a point annotation layer.

Usage

```
add_point(.data, .column, palette = NULL)
## S4 method for signature 'InputHeatmap'
add_point(.data, .column, palette = NULL)
```

Arguments

.data	A 'tbl_df' formatted as <element> <feature> <value> <> </value></feature></element>
.column	Vector of quotes
palette	A character vector of colors This is the list of palettes that will be used for horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and factor).

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% add_point()
```

add_tile 9

add_tile	Adds a tile annotation layer to a 'InputHeatmap', that on evaluation
	creates a 'ComplexHeatmap'

Description

add_tile() from a 'InputHeatmap' object, adds a tile annotation layer.

Usage

```
add_tile(.data, .column, palette = NULL)
## S4 method for signature 'InputHeatmap'
add_tile(.data, .column, palette = NULL)
```

Arguments

.data	A 'tbl_df' formatted as <element> <feature> <value> <> </value></feature></element>
.column	Vector of quotes
palette	A character vector of colors This is the list of palettes that will be used for horizontal and vertical discrete annotations. The discrete classification of annotations depends on the column type of your input tibble (e.g., character and factor).

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% add_tile(CAPRA_TOTAL)
```

10 as_matrix

annot_to_list

 $annot_to_list$

Description

annot_to_list

Usage

```
annot_to_list(.data)
```

Arguments

.data

A data frame

Value

A list

 as_matrix

 $Get\ matrix\ from\ tibble$

Description

Get matrix from tibble

Usage

```
as_matrix(tbl, rownames = NULL, do_check = TRUE)
```

Arguments

tbl A tibble

rownames A character string of the rownames

do_check A boolean

Value

A matrix

check_if_counts_is_na

```
check_if_counts_is_na
```

Check whether there are NA counts

Description

Check whether there are NA counts

Usage

```
check_if_counts_is_na(.data, .abundance)
```

Arguments

.data A tibble of read counts

. abundance A character name of the read count column

Value

A tbl

```
check_if_duplicated_genes
```

Check whether there are duplicated genes/transcripts

Description

Check whether there are duplicated genes/transcripts

Usage

```
check_if_duplicated_genes(.data, .sample, .transcript, .abundance)
```

Arguments

.data A tibble of read counts

.sample A character name of the sample column

.transcript A character name of the transcript/gene column
 .abundance A character name of the read count column

Value

A tbl

12 drop_class

```
check_if_wrong_input
```

Check whether there are NA counts

Description

Check whether there are NA counts

Usage

```
check_if_wrong_input(.data, list_input, expected_type)
```

Arguments

```
\begin{array}{ll} \texttt{.data} & A \text{ tibble of read counts} \\ \texttt{list\_input} & A \text{ list} \\ \texttt{expected\_type} & \\ & A \text{ character string} \end{array}
```

Value

A tbl

drop_class

Remove class to abject

Description

Remove class to abject

Usage

```
drop_class(var, name)
```

Arguments

var A tibble

name A character name of the class

Value

A tibble with an additional attribute

```
error_if_log_transformed
```

Check whether a numeric vector has been log transformed

Description

Check whether a numeric vector has been log transformed

Usage

```
error_if_log_transformed(x, .abundance)
```

Arguments

x A numeric vector

. abundance A character name of the transcript/gene abundance column

Value

NA

```
get_abundance_norm_if_exists
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_abundance_norm_if_exists(.data, .abundance)
```

Arguments

.data A tibble

. abundance A character name of the abundance column

Value

get_elements

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements(.data, .element, of_samples = TRUE)
```

Arguments

.data A tibble

 $. \verb|element| A character name of the sample column|$

of_samples A boolean

Value

A list of column enquo or error

```
get_elements_features
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements_features(.data, .element, .feature, of_samples = TRUE)
```

Arguments

.data A tibble

.element A character name of the sample column

.feature A character name of the transcript/gene column

of_samples A boolean

Value

```
get_elements_features_abundance
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_elements_features_abundance(
   .data,
   .element,
   .feature,
   .abundance,
   of_samples = TRUE
)
```

Arguments

.data A tibble

.element A character name of the sample column

feature A character name of the transcript/gene column
 abundance A character name of the read count column

of_samples A boolean

Value

A list of column enquo or error

```
get_sample_counts Get column names either from user or from attributes
```

Description

Get column names either from user or from attributes

Usage

```
get_sample_counts(.data, .sample, .abundance)
```

Arguments

.data A tibble

.sample A character name of the sample column.abundance A character name of the read count column

Value

```
get_sample_transcript
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_sample_transcript(.data, .sample, .transcript)
```

Arguments

.data A tibble

 $. \, {\tt sample} \qquad \quad A \, {\tt character} \, {\tt name} \, {\tt of} \, {\tt the} \, {\tt sample} \, {\tt column}$

.transcript A character name of the transcript/gene column

Value

A list of column enquo or error

```
get_sample_transcript_counts
```

Get column names either from user or from attributes

Description

Get column names either from user or from attributes

Usage

```
get_sample_transcript_counts(.data, .sample, .transcript, .abundance)
```

Arguments

.data A tibble

.sample A character name of the sample column

.transcript A character name of the transcript/gene column
 .abundance A character name of the read count column

Value

Description

```
get_x_y_annotation_columns
```

Usage

```
get_x_y_annotation_columns(.data, .column, .row, .abundance)
```

Arguments

.data	A 'tbl' formatted as <sample> <transcript> <count> <> </count></transcript></sample>
.column	The name of the column horizontally presented in the heatmap
.row	The name of the column vertically presented in the heatmap
.abundance	The name of the transcript/gene abundance column

Value

A list

heatmap Creates a 'InputHeatmap' object from 'tbl_df' on evaluation creates a 'ComplexHeatmap'

Description

heatmap() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

Usage

```
heatmap(
    .data,
    .row,
    .column,
    .value,
    transform = NULL,
    .scale = "row",
    palette_value = c("#440154FF", "#21908CFF", "#fefada"),
    palette_grouping = list(),
    annotation = NULL,
    type = rep("tile", length(quo_names(annotation))),
    palette_discrete = list(),
    palette_continuous = list(),
    ...
)
```

18 heatmap

```
heatmap_(
  .data,
  .row,
  .column,
  .value,
 transform = NULL,
  .scale = "row",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
  palette_grouping = list(),
  annotation = NULL,
 type = rep("tile", length(quo_names(annotation))),
  palette discrete = list(),
 palette_continuous = list(),
)
## S4 method for signature 'tbl'
heatmap(
  .data,
  .row,
  .column,
  .value,
  transform = NULL,
  .scale = "row",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
  palette_grouping = list(),
 annotation = NULL,
  type = rep("tile", length(quo_names(annotation))),
  palette_discrete = list(),
 palette_continuous = list(),
  . . .
)
## S4 method for signature 'tbl_df'
heatmap(
  .data,
  .row,
  .column,
  .value,
  transform = NULL,
  .scale = "row",
  palette_value = c("#440154FF", "#21908CFF", "#fefada"),
 palette_grouping = list(),
 annotation = NULL,
  type = rep("tile", length(quo_names(annotation))),
  palette_discrete = list(),
 palette_continuous = list(),
)
```

heatmap 19

Arguments

A 'tbl_df' formatted as | <ELEMENT> | <FEATURE> | <VALUE> | <...> | .data The name of the column vertically presented in the heatmap .row .column The name of the column horizontally presented in the heatmap The name of the column for the value of the element/feature pair .value A function, used to transform .value row-wise (e.g., transform = log1p) transform A character string. Possible values are c(\"none\", \"row\", \"column\", \"both\") .scale palette value A character vector This is the palette that will be used as gradient for .value. For example c("red", "white", "blue"). For higher flexibility you can use circlize::colorRamp2\(c\((-\)(- $2, -1, 0, 1, 2\)$, viridis::magma\(5\)\) palette_grouping A list of character vectors. This is the list of palettes that will be used for grouping. For example list(RColorBrewer::brewer.pal(8, "Accent")) or list(c("#B3E2CD",

"#FDCDAC", "#CBD5E8")) or list(c("black", "red"))

DEPRECATED. please use the annotation functions add_* function \(*\) one of

tile, point, bar, line \).

tile, point, bar, line \).

palette_discrete

annotation

DEPRECATED. please use the annotation functions add_* function \(\\\^*\) one of

tile, point, bar, line $\$).

palette_continuous

DEPRECATED. please use the annotation functions add_* function \(\\^*\) one of

tile, point, bar, line \).

.. Further arguments to be passed to ComplexHeatmap::Heatmap

Details

[Maturing]

This function takes a tbl as an input and creates a 'ComplexHeatmap' plot. The information is stored in a 'InputHeatmap' object that is updated along the pipe statement, for example adding annotation layers.

Value

A 'InputHeatmap' objects that gets evaluated to a 'ComplexHeatmap' object

A 'InputHeatmap' object

A 'InputHeatmap' object

A 'InputHeatmap' object

Examples

```
library(dplyr)

tidyHeatmap::N52 %>%
group_by( `Cell type`) %>%
tidyHeatmap::heatmap(
```

20 ifelse_pipe

```
.row = symbol_ct,
.column = UBR,
.value = `read count normalised log`,
```

ifelse2_pipe

This is a generalisation of ifelse that accepts an object and return an objects

Description

This is a generalisation of ifelse that accepts an object and return an objects

Usage

```
ifelse2\_pipe(.x, .p1, .p2, .f1, .f2, .f3 = NULL)
```

Arguments

. X	A tibble
.p1	A boolean
.p2	ELSE IF condition
.f1	A function
.f2	A function

A function

Value

A tibble

.f3

ifelse_pipe

This is a generalisation of ifelse that accepts an object and return an objects

Description

This is a generalisation of ifelse that accepts an object and return an objects

Usage

```
ifelse\_pipe(.x, .p, .f1, .f2 = NULL)
```

Arguments

.X	A tibble
.p	A boolean
.f1	A function
.f2	A function

input_heatmap 21

Value

A tibble

input heatmap

input heatmap

Description

input_heatmap() takes a tbl object and easily produces a ComplexHeatmap plot, with integration with tibble and dplyr frameworks.

Usage

```
input_heatmap(
   .data,
   .horizontal,
   .vertical,
   .abundance,
   transform = NULL,
   .scale = "row",
   palette_value = c("#440154FF", "#21908CFF", "#fefada"),
   palette_grouping = list(),
   ...
)
```

Arguments

.data A 'tbl' formatted as | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |
.horizontal The name of the column horizontally presented in the heatmap

.vertical The name of the column vertically presented in the heatmap

. abundance The name of the transcript/gene abundance column

 ${\tt transform} \qquad \text{A function, used to transform .value, for example $\log 1p$}$

. scale A character string. Possible values are c("none", "row", "column", "both")

palette_value

A character vector, or a function for higher customisation (colorRamp2). This is the palette that will be used as gradient for abundance. If palette_value is a vector of hexadecimal colours, it should have 3 values. If you want more customisation, you can pass to palette_value a function, that is derived as for example 'colorRamp2(c(-2, 0, 2), palette_value)'

palette_grouping

A list of character vectors. This is the list of palettes that will be used for grouping

. . . Further arguments to be passed to ComplexHeatmap::Heatmap

Details

To be added.

Value

A 'ComplexHeatmap' object

22 layer_arrow_up

layer_arrow_up

Adds a layers of symbols above the heatmap tiles to a 'InputHeatmap', that on evaluation creates a 'ComplexHeatmap'

Description

layer_arrow_up() from a 'InputHeatmap' object, adds a bar annotation layer.
layer_arrow_down() from a 'InputHeatmap' object, adds a bar annotation layer.
layer_point() from a 'InputHeatmap' object, adds a bar annotation layer.
layer_square() from a 'InputHeatmap' object, adds a bar annotation layer.
layer_diamond() from a 'InputHeatmap' object, adds a bar annotation layer.

Usage

```
layer_arrow_up(.data, ...)
## S4 method for signature 'InputHeatmap'
layer_arrow_up(.data, ...)

## S4 method for signature 'InputHeatmap'
layer_arrow_down(.data, ...)

## S4 method for signature 'InputHeatmap'
layer_point(.data, ...)

## S4 method for signature 'InputHeatmap'
layer_square(.data, ...)

## S4 method for signature 'InputHeatmap'
layer_square(.data, ...)

## S4 method for signature 'InputHeatmap'
layer_diamond(.data, ...)

## S4 method for signature 'InputHeatmap'
layer_diamond(.data, ...)
```

Arguments

.data A 'InputHeatmap'

Expressions that return a logical value, and are defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. Only rows for which all conditions evaluate to TRUE are kept.

layer_arrow_up 23

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
   tidyHeatmap::N52 %>%
   tidyHeatmap::heatmap(
        .row = symbol_ct,
        .column = UBR,
        .value = `read count normalised log`)
hm %>% layer_arrow_up()

library(dplyr)
hm =
   tidyHeatmap::N52 %>%
   tidyHeatmap::heatmap(
        .row = symbol_ct,
```

N52

```
.column = UBR,
    .value = `read count normalised log`
)
hm %>% layer_arrow_down()
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% layer_point()
library(dplyr)
hm =
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
hm %>% layer_square()
library(dplyr)
hm =
 tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
.value = `read count normalised log`
)
hm %>% layer_diamond()
```

N52

Example data set N52

Description

Example data set N52

parse_formula 25

Usage

N52

Format

An object of class tbl_df (inherits from tbl, data.frame) with 520 rows and 15 columns.

parse_formula

.formula parser

Description

.formula parser

Usage

```
parse_formula(fm)
```

Arguments

fm

a formula

Value

A character vector

pasilla

Example data set Pasilla

Description

Example data set Pasilla

Usage

pasilla

Format

An object of class tbl_df (inherits from tbl, data.frame) with 504 rows and 8 columns.

quo_names

prepend

From rlang deprecated

Description

From rlang deprecated

Usage

```
prepend(x, values, before = 1)
```

Arguments

x An arrayvalues An arraybefore A boolean

Value

An array

quo_names

Convert array of quosure (e.g. $c(col_a, col_b)$) into character vector

Description

Convert array of quosure (e.g. c(col_a, col_b)) into character vector

Usage

```
quo_names(v)
```

Arguments

7.7

A array of quosures (e.g. c(col_a, col_b))

Value

A character vector

save_pdf 27

save_pdf

Save plot on PDF file

Description

save_pdf() takes as input a Heatmap from ComplexHeatmap and save it to PDF file

Usage

```
save_pdf(
   .heatmap,
  filename,
  width = NULL,
  height = NULL,
  units = c("in", "cm", "mm")
)
```

Arguments

```
.heatmap A 'Heatmap'
filename A character string. The name of the output file/path
width A 'double'. Plot width
height A 'double'. Plot height
units A character string. units ("in", "cm", or "mm")
```

Details

[Maturing]

It simply save an 'Heatmap' to a PDF file use pdf() function in the back end

Value

NA

Examples

```
library(dplyr)
tidyHeatmap::heatmap(
  dplyr::group_by(tidyHeatmap::pasilla,location, type),
    .column = sample,
    .row = symbol,
    .value = `count normalised adjusted`,
) %>%
save_pdf(tempfile())
```

Description

save_pdf

Usage

```
## S4 method for signature 'Heatmap'
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
)
```

Arguments

```
.heatmap A 'Heatmap'
filename A character string. The name of the output file/path
width A 'double'. Plot width
height A 'double'. Plot height
units A character string. units ("in", "cm", or "mm")
```

Description

save_pdf

Usage

```
## S4 method for signature 'InputHeatmap'
save_pdf(
   .heatmap,
   filename,
   width = NULL,
   height = NULL,
   units = c("in", "cm", "mm")
)
```

scale_design 29

Arguments

.heatmap A 'Heatmap'

filename A character string. The name of the output file/path

width A 'double'. Plot width height A 'double'. Plot height

units A character string. units ("in", "cm", or "mm")

scale_design Scale design matrix

Description

Scale design matrix

Usage

```
scale_design(df, .formula)
```

Arguments

df A tibble .formula a formula

Value

A tibble

 $Scale_robust$ $Scale\ counts\ in\ a\ robust\ way\ against\ sd == 0$

Description

Scale counts in a robust way against sd == 0

Usage

```
scale_robust(y)
```

Arguments

y A numerical array

Value

A scaled and centred numerical array

30 split_rows

```
select_closest_pairs
```

Sub function of remove_redundancy_elements_though_reduced_dimensions

Description

Sub function of remove_redundancy_elements_though_reduced_dimensions

Usage

```
select_closest_pairs(df)
```

Arguments

df

A tibble

Value

A tibble with pairs to drop

split_rows

Split the heatmap row-wise depending on the biggest branches in the cladogram.

Description

```
split_rows() from a 'InputHeatmap' object, split the row cladogram.
split_columns() from a 'InputHeatmap' object, split the column cladogram.
```

Usage

```
split_rows(.data, number_of_groups)
## S4 method for signature 'InputHeatmap'
split_rows(.data, number_of_groups)
split_columns(.data, number_of_groups)
## S4 method for signature 'InputHeatmap'
split_columns(.data, number_of_groups)
```

Arguments

An integer. The number of groups to split the cladogram into.

split_rows 31

Details

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

[Maturing]

It uses 'ComplexHeatmap' as visualisation tool.

Value

- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'
- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'
- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'
- A 'InputHeatmap' object that gets evaluated to a 'ComplexHeatmap'

Examples

```
library(dplyr)
hm =
 tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% split_rows(2)
library(dplyr)
  tidyHeatmap::N52 %>%
  tidyHeatmap::heatmap(
    .row = symbol_ct,
    .column = UBR,
    .value = `read count normalised log`
)
hm %>% split_columns(2)
```

Index

* datasets	ifelse_pipe, 20
N52, 24	input_heatmap, 21
pasilla, 25	
	layer_arrow_down
add_annotation, 3	(layer_arrow_up),22
add_attr,4	<pre>layer_arrow_down,InputHeatmap-method</pre>
add_bar,4	(layer_arrow_up),22
add_bar, InputHeatmap-method, 5	layer_arrow_up, 22
add_class, 6	layer_arrow_up, InputHeatmap-method
add_line, 6	(layer_arrow_up),22
add_line, InputHeatmap-method, 7	layer_diamond(layer_arrow_up), 22
add_point, 8	layer_diamond, InputHeatmap-method
add_point, InputHeatmap-method	(layer_arrow_up), 22
(add_point), 8	layer_point (layer_arrow_up), 22
add_tile,9	layer_point, InputHeatmap-method
add_tile, InputHeatmap-method	(layer_arrow_up), 22
(add_tile),9	layer_square(layer_arrow_up), 22
annot_to_list, 10	layer_square, InputHeatmap-method
as_matrix, 10	(layer_arrow_up), 22
	(
<pre>check_if_counts_is_na, 11</pre>	N52, 24
check_if_duplicated_genes, 11	
check_if_wrong_input, 12	parse_formula, 25
	pasilla, 25
drop_class, 12	prepend, 26
error_if_log_transformed, 13	quo_names, 26
	15.07
get_abundance_norm_if_exists, 13	save_pdf, 27
get_elements, 14	save_pdf, Heatmap-method, 28
get_elements_features, 14	save_pdf, InputHeatmap-method, 28
<pre>get_elements_features_abundance,</pre>	scale_design, 29
15	scale_robust, 29
get_sample_counts, 15	select_closest_pairs, 30
<pre>get_sample_transcript, 16</pre>	split_columns (split_rows), 30
get_sample_transcript_counts, 16	split_columns, InputHeatmap-method
<pre>get_x_y_annotation_columns, 17</pre>	$(split_rows), 30$
17	split_rows, 30
heatmap, 17	split_rows, InputHeatmap-method
heatmap, tbl-method (heatmap), 17	$(split_rows), 30$
heatmap, tbl_df-method(heatmap),	
17	
heatmap_(heatmap), 17	
ifalaa2 mina 20	
ifelse2_pipe, 20	