Neural Implicit Functions (NIF) Implementation and Analysis

Christian Beneke

10.02.2025

Outline

- Introduction
- 2 Neural Implicit Functions Theory
- Implementation Approaches
- 4 Experimental Setup
- Results and Analysis
- 6 Conclusions

Problem Space & Motivation

- Spatio-temporal data modeled by PDEs is computationally challenging
- Current reduction methods (SVD, CAE) fail with:
 - Variable geometry
 - Adaptive meshing
- Need for a scalable, mesh-agnostic approach
- Real-time engineering applications require efficient solutions

Core Concept

- NIFs represent continuous functions through neural networks
- Combines two neural networks:
 - ShapeNet: Encodes spatial complexity
 - ParameterNet: Models temporal/parametric dependencies
- Mesh-agnostic representation
- Continuous output for any input coordinate

Architecture Overview

- HyperNetworks generate weights for target networks
- Two main architectures implemented:
 - ShortCut HyperNetwork
 - SIREN HyperNetwork
- Enables dynamic adaptation to different conditions

Figure: NIF Hypernetwork Architecture

Implementation Variants

Upstream & PyTorch

- Object-oriented design
- Native framework features
- Direct tensor operations

Functional API

- Functional programming paradigm
- Improved composability
- Clear data flow

Test Cases

- Low frequency wave
 - Simple periodic function
 - Baseline for comparison

- High frequency complex wave
 - Tests model capacity
 - Challenges interpolation

Low Frequency Wave

High Frequency Wave

Network Architectures

ShortCut HyperNetwork

- Direct skip connections
- Efficient parameter usage
- Faster convergence

SIREN HyperNetwork

- Sinusoidal activations
- Better frequency fitting
- Smooth representations

Implementation Results - Upstream

Figure: Upstream Implementation Visualization

Figure: Upstream Implementation Training Loss

Implementation Results - Functional API

Figure: Functional API - Low Frequency Wave

Figure: Functional API - High Frequency Wave

Training Loss Comparison

Figure: Training Loss Comparison (Upstream, Functional API)

- Upstream shows fast convergence (Best loss: 7.316e-05)
- Functional API shows 4x better performance (Best loss: 2.198e-05)

Training Loss Comparison

Figure: Training Loss Comparison (Upstream, PyTorch)

- Upstream shows fast convergence (Best loss: 7.316e-05)
- PyTorch shows similar performance (Best loss: 6.178e-05)
- PyTorch shows more variance in performance

Key Findings & Future Work

- Successfully implemented three variants of NIF
- Demonstrated effectiveness on both simple cases
- Key findings:
 - Framework-specific trade-offs
 - Performance characteristics
 - Implementation complexity
- Future work:
 - Additional architectures
 - More complex test cases
 - Performance optimizations

Thank you for your attention!

Questions?