

SHORTHAND METHOD

If we specify V_{GS} to be one-half the pinch-off value V_P ,

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

$$= I_{DSS} \left(\frac{1 - V_{P}/2}{V_{P}} \right)^{2} = I_{DSS} \left(1 - \frac{1}{2} \right)^{2} = I_{DSS}(0.5)^{2}$$

$$= I_{DSS}(0.25)$$

and

and

$$I_D = \frac{I_{DSS}}{4} \bigg|_{V_{GS} = V_P/2}$$

If we choose $I_D = I_{DSS}/2$

$$V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$$

$$= V_P \left(1 - \sqrt{\frac{I_{DSS}/2}{I_{DSS}}} \right) = V_P (1 - \sqrt{0.5}) = V_P (0.293)$$

$$V_{GS} \approx 0.3 V_P |_{I_D = I_{DSS}/2}$$

V _{GS} Versus I _D Using Shockley's Equation	
V_{GS}	I_D
0	I_{DSS}
$0.3V_P$	$I_{DSS}/2$
$0.5V_P$	$I_{DSS}/4$
V_P	0 mA

SHORTHAND METHOD

EXAMPLE 6.1 Sketch the transfer curve defined by $I_{DSS} = 12 \text{ mA}$ and $V_P = -6 \text{ V}$.

Solution: Two plot points are defined by

$$I_{DSS} = 12 \text{ mA}$$
 and $V_{GS} = 0 \text{ V}$

and $I_D = 0 \, \mathrm{mA}$ and $V_{GS} = V_P$

At $V_{GS} = V_P/2 = -6 \text{ V}/2 = -3 \text{ V}$ the drain current is determined by $I_D = I_{DSS}/4 = 12 \text{ mA}/4 = 3 \text{ mA}$. At $I_D = I_{DSS}/2 = 12 \text{ mA}/2 = 6 \text{ mA}$ the gate-to-source voltage is determined by $V_{GS} \cong 0.3V_P = 0.3(-6 \text{ V}) = -1.8 \text{ V}$. All four plot points are well defined on Fig. 6.18 with the complete transfer curve.

V_{GS} Versus I_D Using Shockley's Equation

V_{GS}	I_D
0	I_{DSS}
$0.3V_P$	$I_{DSS}/2$
$0.5V_P$	$I_{DSS}/4$
V_P	0 mA

The current through R_S is the source current I_S , but $I_S = I_D$ and

$$V_{R_S} = I_D R_S$$

For the indicated closed loop of Fig. 7.9, we find that

$$-V_{GS} - V_{R_S} = 0$$
$$V_{GS} = -V_{R_S}$$

and

or

$$V_{GS} = -I_D R_S$$

(7.10)

$$V_{DS} = V_{DD} - I_D(R_S + R_D)$$

$$V_S = I_D R_S$$

$$V_G = 0$$
 V

$$V_D = V_{DS} + V_S = V_{DD} - V_{R_D}$$

a. The gate-to-source voltage is determined by

$$V_{GS} = -I_D R_S$$

Choosing $I_D = 4 \text{ mA}$, we obtain

$$V_{GS} = -(4 \text{ mA})(1 \text{ k}\Omega) = -4 \text{ V}$$

The result is the plot of Fig. 7.13 as defined by the network.

Determine the following for the network of Fig. 7.12: EXAMPLE 7.2

a.
$$V_{GSQ}$$
.

b.
$$I_{D_Q}$$

d.
$$V_s$$
.

e.
$$V_G$$
.

f.
$$V_D$$
.

FIG. 7.12

FIG. 7.14

Sketching the device characteristics for the JFET of Fig. 7.12.

FIG. 7.15

Determining the Q-point for the network of

Fig. 7.12. e. Eq. (7.13):
$$V_G = \mathbf{0} \mathbf{V}$$

f. Eq. (7.14): $V_D = V_{DS} + V_S = 8.82 \,\mathrm{V} + 2.6 \,\mathrm{V} = 11.42 \,\mathrm{V}$
or $V_D = V_{DD} - I_D R_D = 20 \,\mathrm{V} - (2.6 \,\mathrm{mA})(3.3 \,\mathrm{k}\Omega) = 11.42 \,\mathrm{V}$

EXAMPLE 7.2 Determine the following for the network of Fig. 7.12:

a. V_{GS_Q} .

b. I_{D_Q} .

c. V_{DS} .

d. V_S .

e. V_G .

f. V_D . $Q_{GS} = 8 \text{ mA}$ $Q_{GS} = 8 \text{ mA}$

b. At the quiescent point

$$I_{D_{\underline{Q}}} = 2.6 \,\mathrm{mA}$$

$$R_{\mathrm{s}} + R_{\mathrm{p}}$$

FIG. 7.12

c. Eq. (7.11):
$$V_{DS} = V_{DD} - I_D(R_S + R_D)$$

= $20 \text{ V} - (2.6 \text{ mA})(1 \text{ k}\Omega + 3.3 \text{ k}\Omega)$
= $20 \text{ V} - 11.18 \text{ V}$
= 8.82 V

= 8.82 V
d. Eq. (7.12):
$$V_S = I_D R_S$$

= $(2.6 \text{ mA})(1 \text{ k}\Omega)$
= 2.6 V

$$I_G \cong 0 \text{ A}$$

$$V_{R_G} = I_G R_G = (0 \text{ A}) R_G = 0 \text{ V}$$

$$-V_{GG} - V_{GS} = 0$$
$$V_{GS} = -V_{GG}$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$+V_{DS} + I_D R_D - V_{DD} = 0$$

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_S = 0 \text{ V}$$

$$V_{DS} = V_D - V_S$$

$$V_D = V_{DS} + V_S = V_{DS} + 0 \text{ V}$$

$$V_D = V_{DS}$$

$$V_{GS} = V_G - V_S$$
$$V_G = V_{GS} + V_S = V_{GS} + 0 \text{ V}$$

$$V_G = V_{GS}$$

Determine the following for the network of Fig. 7.6:

- a. V_{GS_Q} .
- b. I_{D_Q} .
- c. V_{DS} .
- e. V_G .
- f. V_{S} .

FIG. 7.6 Example 7.1.

a.
$$V_{GS_Q} = -V_{GG} = -2 \text{ V}$$

b.
$$I_{D_Q} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 10 \text{ mA} \left(1 - \frac{-2 \text{ V}}{-8 \text{ V}} \right)^2$$

= $10 \text{ mA} (1 - 0.25)^2 = 10 \text{ mA} (0.75)^2 = 10 \text{ mA} (0.5625)$
= $\mathbf{5.625 \text{ mA}}$

c.
$$V_{DS} = V_{DD} - I_D R_D = 16 \text{ V} - (5.625 \text{ mA})(2 \text{ k}\Omega)$$

= $16 \text{ V} - 11.25 \text{ V} = 4.75 \text{ V}$

d.
$$V_D = V_{DS} = 4.75 \text{ V}$$

e.
$$V_G = V_{GS} = -2 \text{ V}$$

f. $V_S = 0 \text{ V}$

f.
$$V_S = \mathbf{0} \mathbf{V}$$

Graphical Approach The resulting Shockley curve and the vertical line at $V_{GS} = -2 \text{ V}$ are provided in Fig. 7.7. It is certainly difficult to read beyond the second place without

significantly increasing the size of the figure, but a solution of 5.6 mA from the graph of Fig. 7.7 is quite acceptable.

a. Therefore,

$$V_{GS_O} = -V_{GG} = -2 \text{ V}$$

b.
$$I_{D_Q} = 5.6 \text{ mA}$$

c.
$$V_{DS} = V_{DD} - I_D R_D = 16 \text{ V} - (5.6 \text{ mA})(2 \text{ k}\Omega)$$

= $16 \text{ V} - 11.2 \text{ V} = 4.8 \text{ V}$

d.
$$V_D = V_{DS} = 4.8 \text{ V}$$

e.
$$V_G = V_{GS} = -2 \text{ V}$$

f.
$$V_S = \mathbf{0} \mathbf{V}$$

The results clearly confirm the fact that the mathematical and graphical approaches generate solutions that are quite close.

FET BIASING (VOLTAGE DIVIDER BIAS CONFIGURATION)

$$I_G \cong 0 \text{ A}$$

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$$

$$V_G - V_{GS} - V_{R_S} = 0$$
$$V_{GS} = V_G - V_{R_S}$$

$$V_{GS} = V_G - I_D R_S$$

$$V_{GS} = V_G - I_D R_S$$

= $V_G - (0 \text{ mA}) R_S$

$$V_{GS} = V_G|_{I_D = 0 \text{ mA}}$$

$$V_{GS} = V_G - I_D R_S$$
$$0 V = V_G - I_D R_S$$

$$I_D = \frac{V_G}{R_S} \bigg|_{V_{GS} = 0 \text{ V}}$$

$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

$$V_D = V_{DD} - I_DR_D$$

$$V_S = I_DR_S$$

$$I_{R_1} = I_{R_2} = \frac{V_{DD}}{R_1 + R_2}$$

FET BIASING (VOLTAGE DIVIDER BIAS CONFIGURATION)

a. For the transfer characteristics, if $I_D = I_{DSS}/4 = 8 \text{ mA}/4 = 2 \text{ mA}$, then $V_{GS} = V_P/2 = -4 \text{ V}/2 = -2 \text{ V}$. The resulting curve representing Shockley's equation appears in Fig. 7.22. The network equation is defined by

$$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$$

$$= \frac{(270 \text{ k}\Omega)(16 \text{ V})}{2.1 \text{ M}\Omega + 0.27 \text{ M}\Omega}$$

$$= 1.82 \text{ V}$$

$$V_{GS} = V_G - I_D R_S$$

$$= 1.82 \text{ V} - I_D (1.5 \text{ k}\Omega)$$

and

EXAMPLE 7.4 Determine the following for the network of Fig. 7.21:

b.
$$V_D$$
.

c.
$$V_S$$
.

d.
$$V_{DS}$$
.

FIG. 7.21 Example 7.4

FET BIASING (VOLTAGE DIVIDER BIAS CONFIGURATION)

FIG. 7.22

Determining the Q-point for the network of Fig. 7.21.

When $I_D = 0 \text{ mA}$,

$$V_{GS} = +1.82 \text{ V}$$

When $V_{GS} = 0 \text{ V}$,

and

$$I_D = \frac{1.82 \text{ V}}{1.5 \text{ k}\Omega} = 1.21 \text{ mA}$$

The resulting bias line appears on Fig. 7.22 with quiescent values of

$$I_{D_Q} = 2.4 \text{ mA}$$

 $V_{GS_Q} = -1.8 \text{ V}$

b.
$$V_D = V_{DD} - I_D R_D$$

= 16 V - (2.4 mA)(2.4 k Ω)
= 10.24 V

c.
$$V_S = I_D R_S = (2.4 \text{ mA})(1.5 \text{ k}\Omega)$$

= **3.6 V**

 $= 6.64 \, V$

d.
$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$

= 16 V - (2.4 mA)(2.4 k Ω + 1.5 k Ω)
= **6.64 V**
or $V_{DS} = V_D - V_S = 10.24 \text{ V} - 3.6 \text{ V}$

EXAMPLE 7.4 Determine the following for the network of Fig. 7.21:

Example 7.4.

e. Although seldom requested, the voltage V_{DG} can easily be determined using

$$V_{DG} = V_D - V_G$$

= 10.24 V - 1.82 V
= **8.42 V**

Thank You!