Modélisation Géométrique TD - Courbes Splines.

Exercice 1. On considère une courbe de Bézier \mathcal{C} de degré 2 définie par les points de contrôle

$$P_0 = (0,0), P_1 = (2,2), P_2 = (4,0),$$

i.e. C est définie par la paramétrisation $\sum_{i=0}^{2} P_i B_i^2(t), t \in [0;1]$.

- 1. Donner les points de contrôle de la courbe de Bézier obtenue par restriction de \mathcal{C} à l'intervalle $t \in [0; 1/2]$.
- 2. Donner les points de contrôle de la courbe $\mathcal C$ comme courbe B-spline uniforme de degré 2.

Exercice 2. Soit une courbe B-spline quadratique uniforme définie par quatre points de contrôle sur l'intervalle $t \in [0, 2]$.

- 1. Combien de segments de Bézier cette courbe contient-elle, et quels sont leur intervalle de définition? Justifier que le vecteur de noeuds de cette courbe est [-1,0,1,2,3].
- 2. Donner les points de contrôle de chaque segment de Bézier en fonction des points définissant cette courbe B-Spline (on pourra illustrer par un dessin).

Exercice 3. Soit une courbe B-spline cubique \mathcal{C} définie par 6 points de contrôle sur l'intervalle $t \in [0; 6]$.

- 1. Combien de segments de Bézier cette courbe contient-elle?
- 2. Donner son vecteur de noeuds comme courbe B-spline uniforme.
- 3. Donner son vecteur de noeuds afin que les deux points de contrôle aux extrémités interpolent la courbe.

Exercice 4. On considère la cubique plane de Bézier $\mathcal C$ définie par les points de contrôle suivants :

$$P_0 = (0,0), P_1 = (1,2), P_2 = (3,2), P_3 = (3,0),$$

de telle sorte que la paramétrisation de \mathcal{C} est donnée par $\sum_{i=0}^{3} P_i B_i^3(t)$, $t \in [0;1]$.

- 1. Donner les points de contrôle, comme courbe de Bézier cubique, de l'arc de courbe de C correspondant à $t \in [0; 1/2]$.
- 2. Donner les points de contrôle de la courbe $\mathcal C$ vue comme courbe B-spline cubique uniforme.
- 3. Donner les points de contrôle de la courbe \mathcal{C} comme courbe de Bézier de degré 4.