Water Jug Problem

Problem:

You are given two jugs a 4-gallon one and a 3 gallon one. Neither has any measuring markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into the 4-gallon jug?

Ans:

Representation

- 1. State of problem or state space for this problem can be described as the set of ordered pairs of integers(x,y).
- 2. x represents amount of water in the 4 gallons of jug.
- 3. y represents amount of water in 3 gallons of jug.
- 4. The start state is (0, 0) as initial state for x is 0 and y is 0.
- 5. Limitations: $0 \le x \le 4$ and $0 \le y \le 3$.
- 6. Goal State = (2,y) where $0 \le y \le 3$.

Solution 1

Note: There is pump outside which is used to fill x and y respectively i.e. pump is an external source which have abundance of water.

- 1. First x and y in initial state , x = 0 and y = 0 i.e. x and y are empty.
- 2. Pour 3 gallons of water in y and make it full as y < 3. i.e. new state become : x=0,y=3 where $0 \le x \le 4$ and $0 \le y \le 3$.
- 3. Pour all the 3 gallons of water from y to x i.e. new state obtained x = 3, y = 0 as $0 < x + y \ge 3$ and x > 0, where $0 \le x \le 4$ and $0 \le y \le 3$.
- 4. Fill up y with 3 gallons of water by the pump used as an external source $as\ y < 3$ where $0 \le x \le 4$ and $0 \le y \le 3$, now we have new state : x= 3, y=3.
- 5. Pour 1 gallon of water to 'x' from 'y' and limit the 'x' to 4 as $0 < x + y \ge 4$ and y > 0 where $0 \le y \le 3$ and $0 \le x \le 4$, i.e. new state obtained: x = 4 and y = 2.
- 6. Now pour all the water out from x to ground as x > 0 where $0 \le y \le 3$ and $0 \le x \le 4$ so that x becomes 0. Therefore, new state obtained is x = 0, y = 2.
- 7. Pour all the water from y to x $as 0 < x + y \le 4$ and $y \ge 0$ where $0 \le y \le 3$ and $0 \le x \le 4$ so that we get x = 2 i.e. new state obtained: x = 2, y = 0.

We reached the goal state i.e. (2, y).

Representation of the above solution through table.

Gallons in 4-gallon	Gallons in 3-gallon
jug	jug
0	0
0	3
3	0
3	3
4	2
0	2
2	0

Solution 2

Note: There is pump outside which is used to fill x and y respectively i.e. pump is an external source which have abundance of water.

- 1. First x and y in initial state , x = 0 and y = 0 i.e. x and y are empty.
- 2. Pour 4 gallons of water in x and make it full as, x < 4. i.e. new state obtained x=4,y=0 where $0 \le y \le 3$ and $0 \le x \le 4$.
- 3. Pour all the 3 gallons out of 4 gallons of water from x to y $as\ 0 < x + y \ge 3 \ and\ x > 0$ i.e. new state obtained x = 1, y = 3 where $0 \le y \le 3 \ and\ 0 \le x \le 4$.
- 4. Pour all the water out from the jug 'y' to ground as y > 0 where $0 \le y \le 3$ and $0 \le x \le 4$ now we have new state: x = 1, y = 0.
- 5. Pour all water (1 gallon of water) to 'y' from 'x' $as \ 0 < x + y \le 3$ and $x \ge 0$ where $0 \le y \le 3$ and $0 \le x \le 4$ and now we have new state obtained: x = 0 and y = 1.
- 6. Now pour 4 gallons of water x from pump as x < 4, where $0 \le y \le 3$ and $0 \le x \le 4$ so that we get new state :x = 4, y =1.
- 7. Pour 2 gallons of water from x to y $as 0 < x + y \ge 3$ and a > 0 where $0 \le y \le 3$ and $a \le x \le 4$ such that : $a \ge 3$, $a \ge 3$.

We reached the goal state i.e. (2, y).

Representation of the above solution through table.

Gallons in 4-gallon	Gallons in 3-gallon
jug	jug
0	0
4	0
1	3
1	0
0	1
4	1
2	3

Therefore we can get any type of solutions to achieve our goal state (2,y).

From the above solutions, we get some set of rules:

S. No.	Actions	Constraint on the	Successor State
	Performed	state	or New State.
1.	Fill 4-gallon jug.	$(x,y), 0 \le x \le 4$	(4,y)
2.	Fill 3-gallon jug.	$(x,y), 0 \le y \le 3$	(x,3)
3.	Empty the 4- gallon jug on the	(x,y),if(x>0)	(0,y)
	ground.		
4.	Empty the 3-	(x,y),if(y>0)	(x,0)
	gallon jug on the ground.		
5.	Pour water from	(x,y), if $(0 < x +$	(4,(y-(4-x))
	the 3 gallon jug	$y \ge 4$ and $y >$	
	into the 4 gallon	0)	
	jug until the 4		
	gallon jug is full.		
6.	Pour water from	(x,y), if $(0 < x +$	((x-(3-y),3)
	the 4 gallon jug	$y \ge 3$ and $x >$	
	into the 3 gallon	0)	
	jug until the 3		
	gallon jug is full.		
7.	Pour all the water	(x,y), if $(0 < x +$	(x+y,0)
	from the 3 gallon	$y \le 4$ and $y \ge$	
	jug into the 4	0)	
	gallon jug .	() 15 (0)	(0)
8.	Pour all the water	() ()	(0,x+y)
	from the 4 gallon	$y \leq 3$ and $x \geq$	
	jug into the 3	0)	
	gallon jug .		