5.9 Exercícios

Seção 5.1

5.1. Calcular $\int_2^5 \frac{1}{x \log_e(x)} dx \operatorname{com} m = 6 \text{ pelas}$

b) 1/3 de Simpson.

c) 3/8 de Simpson.

d) Comparar esses três resultados com o valor

exato $\log_e(\log_e(5)) - \log_e(\log_e(2)) \approx 0.84240$.

5.2. Seja a função $f(x) = 10^x$.

a) Achar o polinômio de Newton de grau 2 que

no item (a) no intervalo [-1, 1].

menor número de subintervalos.

5.4. Implementar o algoritmo apresentado na Figura 5.7 em qualquer linguagem de progra-utiliza um polinômio de grau 4 com m=8 e

5.5. Avaliar $\int_{0}^{3} (e^{x} + 2x) dx$ pela regra do 1/3 Simpson e com número de gubintervalos m = 5.15. $\int_{0}^{3} xe^{x} dx$ pelo método de Newton-Cotes 2, 4, 6, 8 usando o programa acima.

5.6. Calcular $\int_0^3 (e^x + 2x) dx$ utilizando quadratura de Gauss-Legendre com n=4.

5.7. Calcular $\int_0^\pi (0.2x^4 + \sin(x) + 2) \ dx \ \text{pela}$ quadratura de Gauss-Legendre com n=5.

5.8. Calcular $\int_0^n \sqrt{1+\cos(x)} dx$ usando quadra-

tura de Gauss-Legendre com n=7.

 Implementar, em qualquer linguagem de programação, o algoritmo da Figura 5.12 e o da Figura 5.13. 5.10. Resolver os Exercícios 5.6-5.8 usando os programas do Exercício 5.9.

Seção 5.3

Calcular as integrais dadas abaixo usando os métodos indicados e comparar o resultado com o valor analítico

b) integrar, analiticamente, o polinômio obtido $\frac{5.11}{c}$, $\int_{c}^{t} e^{x} dx$ usando a regra do trapézio com m=1 e Gauss-Legendre com n=2.

de Simpson com m=2 subintervalos.

d) Justificar por que os resultados dos itens (b) de Simpson com m=4 e Gauss-Legendre com e (c) são iguais. n=5.

5.3. Calcular $\int_0^2 e^x dx$ com $E < 2 \times 10^{-3}$ usan- 5.13. $\int_0^{\pi} (0.2x^4 + \sin(x) + 2) dx$ pela regra dos do uma das fórmulas de Newton-Cotes com o 3/8 de Simpson com m=6 e Gauss-Legendre com n = 7.

Gauss-Legendre com n=9.

que utiliza um polinômio de grau 5 com m=10e Gauss-Legendre com n=11.

Seção 5.4

5.16. Implementar o algoritmo da Figura 5.17 em qualquer linguagem de programação.

ma do exercício anterior, com *Toler* = 10^{-10} e Calcular as integrais a seguir usando o progra-

5.17. $\int_0^{\pi} \sqrt{1+\cos(x)} \ dx$.

5.18. $\int_2^5 \frac{1}{x \log_e(x)} dx$.

 $\int_0^{\pi} e^{1-x^2} \sin(10x) \ dx.$

5.20. $\int_{-\pi}^{\pi} \cos(2 + \cos^2(x)) \ dx.$

Seção 5.5

5.21. Calcular $\int_0^{\pi} \int_{-1}^1 \sin(x) y^2 dy dx$ usando a formula de Newton-Cotes com $n_x = n_y = 2$ e $m_x = m_y = 4$.

5.22. Avaliar $\int_0^3 \int_1^4 \sqrt{x+y} - e^{x-y} \, dy \, dx \text{ pelas}$ formulas de Newton-Cotes com $n_x = 2, \, n_y = 3$ o $n_x = m_y = 6$.

pelas fórmulas de Newton-Cotes com $n_x = 5$, 5.23. Determinar $\int_{0}^{\pi} \int_{0}^{\pi} \cos(x^{2} + 1) \sin(xy) + x \, dy \, dx$

5.24. Implementar, em qualquer linguagem de programação, o algoritmo apresentado na Figu-

5.25. Calcular as integrais dos Exercícios 5.21 a 5.23 utilizando o programa implementado no

5.26. Avaliar $\int_0^2 \int_1^3 \frac{\sqrt{xy}}{x+y} \, dy \, dx$ pela quadratura de Gauss-Legendre com $n_x = n_y = 2$.

5.28. Determinar

pela quadratura de Gauss-Legendre com $n_x =$ $\int_{1}^{2} \int_{0}^{2} (x^{3}y^{2} + x^{2}y) \log_{e}(xy) \ dy \ dx$

mação, implementar o algoritmo da Figura 5.19. 5.29. Utilizando qualquer linguagem de progra-

5.26 a 5.28 usando o programa elaborado no 5.30. Calcular as integrais dadas nos Exercícios Exercício 5.29.

Seção 5.7

Utilizando os programas implementados a partir os resultados das integrais abaixo com o valor dos algoritmos das Figuras 5.18 e 5.19, comparar exato fornecido. 5.31. $\int_0^1 \int_0^1 (x^3y + xy^3) dy dx$ usando Newton-Cotes com $n_x = n_y = m_x = m_y = 1$ e Gauss-Legendre com $n_x = n_y = 2$. Exato = 1/4. **5.32.** $\int_{-1}^{1} \int_{0}^{1} (3x^{5}y^{5} + x^{4}y + xy) \, dy \, dx \text{ usando}$ Newton-Cotes com $n_{x} = n_{y} = m_{x} = n_{y} = 2$ e Gauss-Legendre com $n_x = n_y = 3$. Exato =

5.33. $\int_0^\pi \int_{-\pi}^\pi \sin(x-y) \ dy \ dx \text{ usando Newton-}$ Cotes com $n_x = n_y = m_x = m_y = 3$ e Gauss-Legendre com $n_x = n_y = 4$. Exato = 0. 5.34. $\int_{1}^{2} \int_{0}^{1} \frac{x}{2+y} dy dx$ usando Newton-Cotes com $n_x = \tilde{n_y} = \tilde{m_x} = m_y = 1$ e Gauss-Legendre Exato = $3\log_e(3/2)/2 \approx 0,60820$. $com n_x = n_y = 2.$

5.35. $\int_0^1 \int_{-1}^1 x \sqrt{1+xy} \, dy \, dx \text{ usando Newton-}$ 5.27. Calcular $\int_0^1 e^{x^2 - y^2} \sin(x + y) \, dy \, dx$ Cotes com $n_x = n_y = m_x = m_y = 4$ e Gaussvia quadratura de Gauss-Legendre com $n_x = 3$ e Legendre com $n_x = n_y = 5$. Exato = $8(2\sqrt{2} - 3)$ $1)/15 \approx 0.97516$.

ta o maior coeficiente de determinação e a 4.29) O melhor modelo é o (c), pois apresenmenor variância residual.

4.30) $y = ab^x$, sendo a = 55,0700 e b = 0,8870.

Capítulo 5: Integração numérica

Seção 5.1

5.1.a) I = 0,8595.

5.1.b) I = 0,8438.

5.1.c) I = 0,8448.

5.2.a) $P_2(x) = 4,05x^2 + 4,95x + 1$.

5.2.b) I = 4,7.

5.2.c) I = 4.7.

5.2.d) A regra de 1/3 de Simpson (item c) consiste nas etapas a e b.

do-se a regra de 1/3 de Simpson com m=6. 5.3) I=6,3895. Este valor foi obtido usan-

_	. *	
I	28,1170	28,0876
m	4	∞
I	28,5061	28,0920
m	2	9

Seção 5.2

5.6) I = 28,0855.

5.7) I = 20,5240.

5.8) I = 2,8284.

Seção 5.3

Regra do trapézio: I = 1,8591;

Gauss-Legendre: I = 1,7179; valor analítico: I = 1,7183.

Gauss-Legendre: I = 28,0855; 1/3 de Simpson: I = 28,1170;valor analítico: I = 28,0855.

Gauss-Legendre: I = 20,5240; 3/8 de Simpson: I = 20,5402; valor analítico: I = 20,5240.

Gauss-Legendre: I = 2,8284; Newton-Cotes: I = 2,8284;

Gauss-Legendre: I = 41,1711; Newton-Cotes: I = 41,1715; valor analítico: I = 2,8284.

valor analítico: I = 41,1711.

Seção 5.4

5.17) I = 2,8284271247.

5.18) $I = 8,4239791591 \times 10^{-1}$.

5.19) $I = 2,7761914467 \times 10^{-1}$.

5.20) I = -4,7240071835.

Seção 5.5

5.21) I = 1,3364.

5.22) I = 11,0922.

5.23) I = 15,3669.

5.43.b) I = 15,5556.

5.43.c) valor exato = 15,5556.

Newton-Cotes com $n_x = n_y = 1$ é obtida integrando-se um polinômio interpolador de grau 1, o que não é suficiente para a obtenção 5.43.d) Apenas o resultado obtido pela quadratura de Gauss-Legendre é exato, pois esta é construída de forma a ser exata para polinômios de grau menor ou igual a 2n-1. de um valor exato.

5.45) I = 0,88623.

5.33) NC: I = 1,6026; GL: I = -0,0134.

5.34) NC: I = 0,6250; GL: I = 0,6081. 5.35) NC: I = 0.9729; GL: I = 0.9752.

5.31) NC: I = 0,5000; GL: I = 0,2500. 5.32) NC: I = 0,3333; GL: I = 0,2000.

5.28) I = 11,5297.5.27) I = 1,0310.

Secão 5.7

5.26) I = 1,7528.

Seção 5.6

Capítulo 6: Raízes de equações

Seção 6.1

6.1) $0.4545 \le \xi^+ \le 4,0000 \text{ e}$ -2,7321 $\le \xi^- \le -0,5635;$

 $n^{+} = 2 \text{ ou } 0 \text{ e } n^{-} = 1.$

5.36.a) $L_1(x) = x + 1$.

Gerais

5.36.b) I = 1.5.

5.36.c) I = 1,5.

6.3) [0,4545 + 4,0000 - 2,7321 - 0,5635].

6.5) $\xi_1 \in [-2,74; \; -0,95]$ para z=-1e $\xi_2 \in [0,95; \; 5,65]$ para z=1.

Seção 6.2

5.36.d) A regra do trapézio (item c) consiste

dos itens a e b. 5.39.a) I = 22.

6.6) $\xi = 0.9536 \text{ cm } [0, 2].$

6.7) $\xi = -0.7594$ em [-1, 0].

6.8) $\xi = 0,5994$ cm [0, 1].

 $E=rac{-(b-a)^{2}}{180m^{4}}f^{iv}(heta)$. A função que está sendo integrada é um polinômio de grau 3, logo

5.39.b) Sim. O erro é dado por

Seção 6.3

6.11)

5.40.a) m = 9.

secante [3, 4]		
	3,0672	3
regula falsi $[3, 4]$	3,0672	15
pégaso [3, 4]	3,0672	9

5.40.c) $|12,3354-12,3358| = 4 \times 10^{-4}$. 5.40.b) I = 12,3358.

5.43.a) I = 44.