William Friend

1. For the following construct a Boolean function equal to the function S defined by the given truth table. Make your function as simple as you can.

Р	Q	R	S = f(P, Q, R)
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
T	F	F	F
F	Т	Т	F
F	Т	F	Т
F	F	Т	F
F	F	F	F

$$(p \land q \land r) \lor (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land \neg r)$$

redundancy law:

$$(p \wedge q) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge \neg r)$$

2. Create the truth table for the following statement: $\neg[(\neg p) \land q] \rightarrow r$

р	q	r	¬p	$\neg p \wedge q$	$\neg (\neg p \land q)$	$\neg (\neg p \land q) \rightarrow r$
Т	Т	Т	F	F	Т	Т
Т	Т	F	F	F	Т	F
Т	F	Т	F	F	Т	Т

Due on September 24, 2021

Name_____

T	F	F	F	F	Т	F
F	Т	Т	Т	Т	F	Т
F	Т	F	Т	T	F	Т
F	F	Т	Т	F	Т	Т
F	F	F	Т	F	Т	F

3. Prove (or disprove) the following:

$$\neg(x \to (\neg y))$$
 is logically equivalent to $x \land y$

X	у	хЛу
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

X	у	not y	x→(¬y)	$\neg(x \rightarrow (\neg y))$
T	T	F	F	T
T	F	Т	Т	F
F	T	F	Т	F
F	F	T	Т	F

Both truth tables for $\neg(x \rightarrow (\neg y))$, and $x \land y$ result in the sequence T, F, F, and F. Therefore $\neg(x \rightarrow (\neg y))$, and $x \land y$ are logically equivalent.

Name_____