

Index to Volume 67

INDEX TO AUTHORS OF MAJOR ARTICLES

ALLSOP, T. Science in Society—a local development study	223
ASHMAN, A. Chemistry in schools—past, present and future. Part II	277
AYRES, D. Meeting the special needs of visually handicapped students in ecology	18
BELL, B. Students' thinking and the learning of science: a constructivist view	443
BLACK, P. J. Presidential address: Integrated or coordinated science?	669
BREWSTER, J. Towards science profiles	231
CHAN, K. M. Home-made equipment for the teaching of electrochemistry at A-level. Part III	285
CLARKE, S. Revolutions in science curricula in Scotland	241
DRIVER, R. Students' thinking and the learning of science: a constructivist view	443
ELLSE, M. Electronic instrumentation in A-level physics	495
FREEMAN, J. From radio to X-rays—some 'real' electrical applications	469
GIBSON, M. T. The teaching of ethics within school science	270
HART-DAVIS, A. Scientific Eye. The making of a science-based television series and educational package	682
HINTON, R. A. L. Meeting the special needs of visually handicapped students in ecology	18
HODSON, D. Towards science profiles	231
HUGHES, D. E. Some mathematics and physics of ball games	27
HUGHES, T. D. What happens when arthropods ecdyse	262
HUSSEY, D. Department of Industry grant boost primary science and technology on the Isle of Wight	13
IDDON, B. On the art of demonstrating experiments in chemistry	704
KEMPTON, T. Science in Society—a local development study	223
KINCHIN, I. M. Mural ecology: an interesting alternative or a useful adjunct	480
LEWIS, J. I. Ionic radius: its development and use in the teaching of inorganic chemistry	501
MARSHALL, R. Keeping warm, clean and fed: national and domestic energy budgets	716
MOYNIHAN, E. P. The paradox of senescence: mathematical and biological theories of death and ageing	462
NELLIST, J. Editorial	435
NEWTON, D. P. Humanized science teaching: What is it?	457
PARKER-JENKINS, M. Improving school lighting for video display units	44
PARKER-JENKINS, W. Improving school lighting for video display units	44
PLEVEY, R. F.—The French connection	488
POOLE, M. W. Science education and the interplay between science and religion	252
RAMSEY, N. Inner Space: physics at short distances	51
ROLLS, I. F. Quality and the education and training of future teachers of science	5
SLEIGH, J. F.—The French connection	488
SOLOMON, J. H. Motivation for learning science	437
THOMPSON, A. C. Wildlife gardening	692
WADDLING, R. E. L. Ionic radius: its development and use in the teaching of inorganic chemistry	501
WOMACK, S. J. Pollution in an historical context	476

SUBJECT INDEX

*Major article

A.C., use of light-emitting diodes to show the nature of	370	Centre of gravity, using your pupils to find the	569
A-level grades, comparability of	623	Charles' Law demonstration using a computer	562
Activity and the date of discovery of elements	166	Charles' Law, method for the demonstration of	125
Aeroplane's wing, the working of an	563	Chemistry, art of demonstrating experiments in*	704
Age distribution, the stable	306	Chemistry in schools, Part II*	277
Alcohol-in-glass thermometer, making an	775	Chlorine, photo-activation reaction between hydrogen and	767
Algorithmic keys	304	Cohesion theory of water movement in plants	166
Alkali metals, isolation of	167	Colour, a project for primary and middle schools	368
Alkaline-earth metals, isolation of	167	Commutative, chemical reactions	557
Aluminium, anodic oxidation of	530	Comparability of A-level grades	623
Amount of substance, the concept of	401	Competition for science and technology in a middle school	164
Analogue port, the BBC	584	Complexes of transition metals with pentan-2,4-dione	332
Analogue signals, sensing	371	Complexing of a substituted phosphine to nickel (II)	532
Anodic oxidation of aluminium	530	Computer-aided learning	784
Apparatus, identification of a piece of glass	626	Computer control of a continuous chemical reaction	337
Aquatic plants and chemical buffering	301	Computer, <i>Daphnia</i> respiration rates and the BBC	731
Artefacts, discovering reactive	747	Computer, monitoring movement in <i>Mimosa pudica</i> using the BBC	77
Arthropods, ecdysis in*	262	Computer printers in science teaching	387
Assessing planning, a strategy for	622	Computer program for use with a Charles' Law demonstration	562
Assessment in science	145	Computer simulation of hydrogen atom spectrum	345
Atmospheric pressure, using your pupils to measure	369	Computer simulation of radioactive decay	566
Audible electric currents	375	Computer simulations in science education	139
BBC analogue port	584	Computer simulations to demonstrate the reliability of quadrat measures	66
BBC microcomputer, a photosensor and the	770	Computer, use to work out fitness scores	314
BBC microcomputer, Maxwell-Boltzmann distribution for the	105	Computers, power conditioning for	570
Ball games, mathematics and physics of*	27	Conductivity, verbal definition of	400
Bernoulli principle	563	Constructivist view of students' thinking and the learning of science*	443
Bike, 'On your bike'— measurements on a braking cyclist	362	Control of a continuous chemical reaction by computer	337
Biology, A- and S-level reading list, Part XVII	321	Coordination compounds with copper (II)	331
Biology, A- and S-level reading list, Part XVIII	725	Copper (II) coordination compounds of 2-aminobenzoate and 2-hydroxybenzoate ions	331
Bridge rectification, demonstration	589	Crystal planes in a sodium chloride unit cube	89
Buffering, aquatic plants and chemical	301		
Buggy, a program for the BBC	109		
Bunsen burner, efficiency of a	581		
Burette, a robotic	533		
CAL, computer-aided learning	784		
Calculations and formulae in chemistry	87		
Cell, a simple oral	403		
Cellulose, decomposition in soil	733		

Curriculum development model in an LEA	624	Engineering education	614
Cuttings, apparatus for propagating	74	Enzymes, digestion of starch	758
<i>Daphnia</i> , respiration rates using the BBC microcomputer	731	Equilibrium constant, determination by an electrical method	766
Data, using a microcomputer for acquisition of	355	Equivalence point on titration curves	545
Deadnettle in geotropic experiments, use of white	739	Ethics, teaching within school science*	270
Demonstration experiments in chemistry*	704	Ethnic minority groups, teaching science to	607
2,4-dichlorophenoxyethanoic acid, use to demonstrate translocation in plants	511	Facts and theories	818
Dichotomous key	520	Fat content of milk, measurement of	730
Digestion of starch	738	Fitness scores, using a computer to work out	314
Discovery of the metals	168	Fluorine, F—The French connection*	488
Dissociation, determination of K_a	835	Food chain in a sweet jar	743
Dissolved gas in water	101	Formulae and calculations in chemistry	87
Ecdysis in arthropods*	262	Franck-Hertz experiment and the BBC micro	133
Ecology, food chain in a sweet jar	743	Friedel-Crafts reactions	753
Ecology, mural*	480	Fringe science	401
Ecology with visually handicapped students*	18	GCSE science, the case for Games, mathematics and physics of ball*	803
Ecosystem, energy flow through a marine	513	Gardening, wildlife*	692
Editorial*	435	Gases, dissolved in water	627
Education for the 16–19 age group, provision of science, Part I	155	General studies course, science module for a sixth-form	151
Education for the 16–19 age group, provision of science, Part II	380	Geotropic experiments, use of the white deadnettle in	739
Education for the 16–19 age group, provision of science, Part III	596	Germination, light and seed	744
Electric currents, audible	375	Gifted child, program for integrating science/mathematics with language arts	808
Electrical method for determining the equilibrium constant	766	Grant for primary science and technology from the Department of Industry*	13
Electrical power	823	Graph-plotting program for use with a Charles' Law demonstration	562
Electrocardiogram, an easy-to-build equipment for the teaching of	285, 762	Haemoglobin, structural changes caused by oxygen binding	71
Electrodes, simple ion-selective	341	Handicapped, ecology with the visually*	18
Electrolytic decomposition of water	170	Harmonics in a square wave	578
Electromagnetic radiation from radio to X-rays*	469	Heartbeat, effects of synaptic transmitter substances of locust	70
Electronics, from Legg to	564	Helicopters, thoughts on using model	373
Electrostatics—electronic penguins and conjuring tricks	592	Hexagonally close-packed spheres, unit cell of	343
Electrostatics, a teaching problem	113	Hexamminenickel (II) bromide	95
Elements, activity and date of discovery of	166	Holmes—a remarkable scientist	162
Energetics of ionic lattice formation	96	Humanized science teaching*	457
Energy budgets, national and domestic*	716	Hydrogen bond, teaching the	547
Energy education in the curricula	812		
Energy flow through a marine ecosystem	513		
Energy, introduction to	797		

Infra-red spectroscopy and protein structure, Part I	535	Metals, discovery of the	168
Infra-red spectroscopy and the hydrogen bond	547	Microbial activity and contamination in milk samples	313
Inner Space: physics at short distances*	51	Microcomputer simulation of the hydrogen atom spectrum	345
Inorganic chemistry, ionic radius in the teaching of*	501	Microcomputer, titration curves using the BBC	91
Insect populations, modification to a sweep net for sampling	309	Microcomputer, use for acquisition of data	355
Instrumentation in A-level physics*	495	Microcomputers in chemistry: Raoult's Law	553
Interfacing the BBC micro to the Franck-Hertz experiment	133	Microcomputers in physics teaching	376
Invergrog reservoir project	328	Microelectronics, Review of Projects in Microelectronics	628
Ionic lattice formation, energetics of	96	Milk, measurement of the fat content of	730
Ionic radius in the teaching of inorganic chemistry*	501	Milk, measurement of the total solids content of	735
Ion-selective electrodes	341	Milk samples, microbial activity and contamination in	313
Iron(III) ions with sulphur oxoanions, aqueous chemistry of	768	<i>Mimosa pudica</i> , use of the BBC computer to monitor movement in	77
Junior school, criticising the experiment in	142	Molar conductivity, verbal definition of	400
K _w determination of	335	Mole, how it should be taught	171
Key, teaching the use a dichotomous	520	Mothballs, a fresh look at dancing	360
Learning of science, constructivist view of students' thinking and the*	443	Motivation for learning science*	437
Lift, the working of an aeroplane's wing	563	Multiple-choice pupils misunderstanding of concepts in	759
Light and seed germination	744	Mural ecology*	480
Light-emitting diodes to show the nature of a.c.	370	Net for sampling insect populations, a sweep	309
Light gate for timing experiments	590	Newton's Third Law, demonstration of	793
Lighting for video display units, improving school*	44	Nickel, complexing of a substituted phosphane to	532
Locust heartbeat, effects of synaptic transmitter substances on	70	Nuffield A-level Biology	821
Logistic equation, another look at	81	Nuffield 11 to 13 science scheme	392
Lorentz transformations, special relativity: a derivation of the	356, 822	Obituary: Miss P. M. Taylor (1898-1985)	160
Lung structure, ideas for teaching	741	Oxygen binding, structural changes in haemoglobin caused by	71
Magnesium, discovery and extraction of	167, 168	Oxidation of aluminium	530
Magnetic field around a wire, measurement of	579	Onion epidermal cells, solute potential of	525
Mains, fuses, power supplies and the	122	pH indicator properties of plant pigments	85
Maximum-power theorem, non-calculus proof of	402	Peanuts, dancing	627
Maxwell-Boltzmann distribution for the BBC microcomputer	105	Pentan-2,4-dione, transition metal complexes with	332
Maylett Cup science and technology competition	617	Periodic table model, rotating 3-D	560
Mechanical resonance, demonstration of	113	Pesticide, A poem of	824
Mechanism of the electrolytic decomposition of water	170	Phase changes in a steel wire	128
		Phosphine to nickel (II), complexing of a substituted	532

Photoactivation reaction between hydrogen and chlorine	767	Reading list for A- and S-level Biology, Part XVIII	725
Photodecomposition of "ammonium vanadyl oxalate"	86	Rectification, demonstration of bridge	589
Photosensor and the BBC microcomputer	770	Red box, Rutherford's	373
Photosynthesis, apparatus for measuring the rate of	80	Relativity, Lorentz transformations and special	356
Physics, relevance and understanding	143	Religion and science	168, 621
Physics, electronic instrumentation in A-level*	495	Religion, interplay between science and*	252
Physics of road safety	115	Repeating reaction, a	330
Physics of rockclimbing	349	Reservoir Project, Invergrog	328
Piaget and curriculum analysis	800	Resonance, demonstrating mechanical	113
Pigments, pH indicator properties of plant	85	Respiration rates in Daphnia using the BBC microcomputer	731
Planning, an effective strategy for assessing	622	Review of <i>Projects in Microelectronics</i>	628
Pollution in an historical context*	476	Road safety, the physics of	115
Pollution, use of leaf yeasts to monitor atmospheric	524	Robotic burette	533
'Porous pot' experiment	627	Rockclimbing, physics in action	349
Power conditioning for computers	570	Roulette patterns	579
Power supplies, fuses and the mains	122	Rutherford's red box	373
Primary science and technology, Department of Industry grant for*	13	Salting-out, dissolved gas in water—demonstration by	101
Primary science, thinking and writing in	602	Science and religion	168, 621
Printers in science teaching, use of computer	387	Science education and the interplay between science and religion*	252
Profiles, towards science*	231	Science education for the 16-19 age group, Part I	155
Propagating cuttings, apparatus for	74	Science education for the 16-19 age group, Part II	380
Proteins and related structures, Part I	535	Science education for the 16-19 age group, Part III	596
Pseudoscience	169	Science in Society—a local development study*	223
Pulleys, an introduction to	379	Science, motivation for learning*	437
Quadrat measures of frequency, percentage cover and density	66	Science, relevance and understanding	621
Quanta on the BBC microcomputer, shuffling	364	<i>Scientific Eye</i> , a television series*	682
Quartz-halogen lamps	595	Scotland, science curricula in*	241
Radio to X-rays, from*	469	<i>Scope</i>	820
Radioactive decay, computer simulation of	566	Senescence, theories of death and ageing*	462
Rainbow, how to make a	120	Signals, sensing analogue	371
Raoult's Law and microcomputers	553	Simulations in science education, computer	139
Rate of reaction, effect of surface area on	104	Size and weight with juniors	593
Rate of reaction, use of analogy in teaching	171	Society, a local development study of science in*	223
Ray diagrams, novel approach to accurate	130	Sodium chloride unit cube, crystal planes in a	89
Reactions, commutative chemical	557	Solids content of milk, measurement of	735
Reading list for A- and S-level Biology, Part XVII	321	Solute potential of onion epidermal cells	525
		Sound, approaching science through Special relativity: a derivation of the Lorentz transformations	591
			356

Spectacles, free	594	Transition metal complexes with pentan-2,4-dione	332
Spectrum, microcomputer simulation of the hydrogen atom	345	Translocation in plants	511
Stability constant of the tetraiodoargentate ion	543	Transpiration meter, a "balance"	519
Static electricity detector, the versorium	375	Transpiration stream in a cut shoot	309
Steel wire, phase changes in a	128	Triac, experiments with	590
Stomata I. Measuring stomatal opening	74	Twopenny whistle	582
Stomata II. The mechanism of stomatal opening	298		
Sublimation, demonstrating	560	Understanding and relevance in science	621
Substance, concept of the amount of Sulphur oxoanions, aqueous chemistry of iron (III) ions with	401	Unit cell of hexagonally close-packed spheres	343
Taylor, Miss P. M. (1898-1985)		Versorium, a static electricity detector	375
Teachers of science, education and training of*		Video camera, use of a	795
Technology competition	5	Video display units, improving school lighting for*	44
Television series: <i>Scientific Eye</i> *		Video for the teaching of science	398
Theatre, the chemical		Viscous forces	776
Theories, facts and		Visually handicapped students and ecology*	18
Thermometer, an alcohol-in-glass		Water, electrolytic decomposition of	170
Thoron generators in school labs		Water movement in plants	166
Ticker timer, an alternative to the		Weighing small things	402
Tickertape timer, an alternative to		Weight and size with juniors	593
Timing experiments, a light gate for		Whistle, the twopenny	582
Titration curves, equivalence point		Wildlife gardening*	692
Titration curves using the BBC microcomputer	91	Wire, the magnetic field around	579
Titration experiment and the stability constant of the tetraiodoargentate ion		Workcards, choosing, making and using	799
Training of future teachers of science*	5	X-rays, from radio to	469
	543	Yeasts, uses to monitor atmospheric pollution	524

