Design Matrix Approximation

There is another matrix that corresponds to this, called design matrix.

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^k \\ 1 & x_2 & x_2^2 & x_2^k \\ 1 & x_3 & x_3^2 & x_3^k \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^k \end{bmatrix}$$

It is easy to show that A^TA is just the coefficient matrix.

This means that we can write normal equations in matrix form as

$$A^T A \beta = A^T y$$

In that case we can compute the least-squares estimator explicitly by inverting the k*k matrix A^TA

$$\hat{\beta}_{LeastSquares} = (A^T A)^{-1} A^T Y$$

Example (Solved Before)

i	X _i	Yi	X_i^2	$X_i Y_i$
1	20.5	765	420.25	15682.5
2	32.7	826	1069.29	27010.2
3	51.0	873	2601.00	44523.0
4	73.2	942	5358.24	68954.4
5	95.7	1032	9158.49	98762.4
	273.1	4438	18607.3	254933

Normal equations

$$\hat{\beta}_1 \sum_{i=1}^{n} x_i + \hat{\beta}_0 n = \sum_{i=1}^{n} y_i$$

$$\hat{\beta}_1 \sum_{i=1}^n x_i^2 + \hat{\beta}_0 \sum_{i=1}^n x_i = \sum_{i=1}^n x_i y_i$$

$$273.1\hat{\beta}_1 + 5\hat{\beta}_0 = 4438$$

$$18607.3\hat{\beta}_1 + 273.1\hat{\beta}_0 = 254933$$

From these we find $\hat{\beta}_1 = 3.395$, $\hat{\beta}_0 = 702.2$, and

$$\hat{\beta}_1 = 3.395$$

$$\hat{\beta}_0 = 702.2$$
, and

hence we write estimated linear equation as

$$\hat{y} = 702.2 + 3.395x$$

(Estimated Regression Line)

Solution Using Design Matrix

MTB > print c1-c3

Data Display

Row	C1	C2	C3
1	1	20,5	765
2	1	32,7	826
3	1	51,0	873
4	1	73,2	942
5	1	95,7	1032

MTB > MTB > copy c1 c2 m1

MTB > print m1

Data Display

Matrix M1

Design Matrix

1 20,5 1 32,7 1 51,0 1 73,2

1 95,7

MTB > tran m1 m2

MTB > print m2

Transpose of the Design Matrix

Data Display

Matrix M2

1,0 1,0 1 1,0 1,0 20,5 32,7 51 73,2 95,7 MTB > mult m2 m1 m3

MTB > print m3

Data Display

Matrix M3

5,0 273,1 273,1 18607,3

MTB > copy c3 m4

MTB > print m4

Data Display

Matrix M4

765

826

873

942

1032

MTB > mult m2 m4 m5

MTB > print m5

Data Display

Matrix M5

4438

254933

MTB > inve m3 m6

MTB > print m6

Data Display

Matrix M6

1,00837 -0,0148000 -0,01480 0,0002710

MTB > mult m6 m5 m7

MTB > print m7

Data Display

Matrix M7

702,172 3,395

 $\hat{y} = 702.2 + 3.395x$

(Estimated Regression Line)

2nd degree-Polynomial Regression Model

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 e$$

$$Sum = \sum_{i=1}^{n} \hat{e}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i} - \hat{\beta}_{2}x_{i}^{2})^{2}$$

Example: Find the least squares parabola for the following data

X	y
-3	3
0	1
2	1
4	3

Design Matrix

Matrix M1

1 -3 9 1 0 0 1 2 4 1 4 16

Transpose of the Design Matrix

MTB > trans m1 m2 MTB > print m2

Data Display

Matrix M2

1 1 1 1 -3 0 2 4 9 0 4 16

The matrix of $A^T A$

MTB > mult m2 m1 m3 MTB > print m3

Data Display

Matrix M3

4 3 29 3 29 45 29 45 353

The matrix of $(A^T A)^{-1}$

```
MTB > inverse m3 m4
MTB > print m4
```

Data Display

Matrix M4

```
0,626297 0,0187614 -0,0538438
0,018761 0,0435479 -0,0070927
-0,053844 -0,0070927 0,0081605
```

The matrix of A^TY

```
MTB > print m5

Data Display
  Matrix M5

3

1

1

3

MTB > mult m2 m5 m6

MTB > print m6

Data Display
  Matrix M6

8

5

79
```

The matrix of $\hat{\beta}_{LeastSquares} = (A^T A)^{-1} A^T Y$

MTB > mult m4 m6 m7

MTB > print m7

Data Display

Matrix M7

0,850519

-0,192495

0,178462

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + e$$

$$\hat{y} = 0.851 - 0.192x + 0.178x^2$$

Exercise:

Convert Operations to MATLAB

What Degree of Polynomial should be used?

In general case, we may wonder what degree of polynomial should be used. As we use high-degree polynomials, we of course will reduce the deviations of the points from the curve until, when the degree of the polynomial, k, equals n-1, there is an exact match (assuming no duplicate data at the same x value) and we have an interpolating polynomial.

The answer to this problem is found in statistics. One increases the degree of approximating polynomial as long as there is a statistically significant decrease in the variance, σ^2 , which is computed by

$$\sigma^2 = \frac{\sum e_i^2}{n-k-1}.$$

Example:

Data to illustrate curve fitting

y	X
0,956	0,050
0,890	0,110
0,832	0,150
0,717	0,310
0,571	0,460
0,539	0,520
0,378	0,700
0,370	0,740
0,306	0,820
0,242	0,980
0,104	1,171
N=11	

First Degree

MTB > regress c1 1 c2

Regression Analysis: y versus x

The regression equation is y = 0.952 - 0.760 x

Analysis of Variance

Source	DF	SS	MS	F
P P				
Regression	1	0,79259	0,79259	774,58
<mark>0,000</mark>				
Residual Error	9	0,00921	0,00102	
Total	10	0,80180		

Second Degree

MTB > regress c1 2 c2 c3

Regression Analysis: y versus x; x2

The regression equation is $y = 0.998 - 1.02 x + 0.225 x^2$

Analysis of Variance

Source	DF	SS	MS	F
<mark>P</mark>				
Regression	2	0,79994	0,39997	1722,77
<mark>0,000</mark>				
Residual Error	8	0,00186	0,00023	
Total	10	0,80180		

Third Degree

MTB > regress c1 3 c2 c3 c4

Regression Analysis: y versus x; x2; x3

The regression equation is $y = 1.00 - 1.08 x + 0.349 x^2 - 0.067 x^3$

Analysis of Variance

Source	DF	SS	MS	F
P				
Regression	3	0,79999	0,26666	1034,01
<mark>0,000</mark>				
Residual Error	7	0,00181	0,00026	
Total	10	0,80180		

Fourth Degree

MTB > regress c1 4 c2 c3 c4 c5

Regression Analysis: y versus x; x2; x3; x4

The regression equation is $y = 0.988 - 0.838 x - 0.52 x^2 + 1.04 x^3 - 0.452 x^4$ Analysis of Variance

Source	DF	SS	MS	F
P				
Regression	4	0,80016	0,20004	731,66
<mark>0,000</mark>				
Residual Error	6	0,00164	0,00027	
Total	10	0,80180		

$$\sigma^2 = \frac{\sum e_i^2}{n-k-1}.$$

N=11

In this example smallest value of σ^2 is at degree-2 as we expect.

Degree	n-k-1	$\sum e_i^2$	σ^2
1	11-1-1=9	0.00918	0.00102
2	11-2-1=8	0.00187	0.00023
3	11-3-1=7	0.00181	0.00026
4	11-4-1=6	0.00165	0.00027

Other Related Subjects:

- Orthogonal Polynomials
- Least-squares estimation using singular values