## Koteshwor, Katnmangu

| FIRST TERMI<br>Subject: MATHEMATICS<br>Time: 3:00 hrs. |                                                              |                                               |              | NAL EXAMINATION<br>GRADE XII (SCIENCE)<br>SET B |                                      |         |          | F.M.: 75<br>P.M.: 30 |       |  |
|--------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------|-------------------------------------------------|--------------------------------------|---------|----------|----------------------|-------|--|
|                                                        |                                                              |                                               | Gr           | oup '                                           | Α',                                  |         |          | 11×                  | 1=11  |  |
| 1.                                                     | How many r                                                   | numbers of<br>ion of digit                    | five di      | igit ca                                         | n be form<br>wed?                    | ed from | n the nu | mber 2,0,            | 4,3,8 |  |
|                                                        | a) 96                                                        | b) 12                                         | 0            | c)                                              | 144                                  | d)      | 14       |                      |       |  |
| 2.                                                     | The value of                                                 | P (n, n-1)                                    | is           |                                                 |                                      |         |          |                      |       |  |
|                                                        | a) n!                                                        | b) (n-                                        | -1)!         | c)                                              | (n+1)!                               | d)      | 1        |                      |       |  |
| 3                                                      | If $\sum n = 55$ , then $\sum n^3$ is equal to               |                                               |              |                                                 |                                      |         |          |                      |       |  |
|                                                        | a) 110                                                       | b) 38:                                        | 5            | c)                                              | 3025                                 | d)      | 116375   | 5                    |       |  |
| 4.                                                     | If any ∆ABC                                                  | $c, \frac{\cos A}{a} = \frac{\cos A}{a}$      | b,           | then t                                          | he triangle                          | is      |          |                      |       |  |
|                                                        | a) Isosceles                                                 | 3                                             | b) E         | quilat                                          | eral                                 |         |          |                      |       |  |
|                                                        | c) Right an                                                  | gle                                           | d) S         | calen                                           | e                                    |         |          |                      |       |  |
| 3                                                      | If $A = 30^{\circ}$ , $B = 45^{\circ}$ , $C = 6$ , then b is |                                               |              |                                                 |                                      |         |          |                      |       |  |
|                                                        | a) $6(\sqrt{3} +$                                            | 1) b) 6 (                                     | $\sqrt{3}-1$ | ) c)                                            | 12                                   | d)      | 6        |                      |       |  |
| 6.                                                     | If $\left  \overrightarrow{a} + \overrightarrow{b} \right $  | $=  \overrightarrow{a} - \overrightarrow{b} $ | , then       | $\overrightarrow{a} \cdot \overrightarrow{b}$   | = ?                                  |         |          |                      |       |  |
|                                                        | a) 1                                                         | b) $\frac{1}{2}$                              |              | c)                                              | 0                                    | d)      | 2        |                      |       |  |
| 7.                                                     | $\int \frac{\mathrm{dx}}{\sqrt{9-4x^2}} =$                   | ?                                             |              |                                                 |                                      |         |          |                      |       |  |
|                                                        | a) $\frac{1}{2} \sin^{-1} \left( \frac{2}{3} \right)$        | $\left(\frac{2x}{3}\right) + C$               |              | b)                                              | $\sin^{-1}\left(\frac{2x}{3}\right)$ | )+C     |          |                      |       |  |
|                                                        | -\ (2x                                                       | )                                             |              |                                                 | 11 (2                                | x) .    |          |                      |       |  |

$$\int \frac{\sin(2 \tan^{-1} x)}{1 + x^2} dx = \dots ?$$

$$\frac{1}{2}\cos(2\tan^{-1}x) + C \qquad d) \qquad \frac{1}{2}\cos(2\tan^{-1}x) + C$$

a) 
$$\cos (2 \tan^{-1} x) + C$$
  
b)  $-\cos (2 \tan^{-1} x) + C$   
c)  $\frac{1}{2} \cos (2 \tan^{-1} x) + C$   
d)  $-\frac{1}{2} \cos (2 \tan^{-1} x) + C$ 

$$\oint \int \left(\frac{\cos 2x - 1}{\cos 2x + 1}\right) dx =$$

- a) tan x-x+c b) x+tanx+c c) x-tanx+c d) -x-cot x+c
- 10. What is the amplitude of a complex number i?

The augmented matrix of the system of equations x+y=3 & 2x-3y+1=0

a) 
$$\begin{bmatrix} 1 & 1 & : & 3 \\ 2 & -3 & : & 1 \end{bmatrix}$$
 b)  $\begin{bmatrix} 1 \checkmark & 1 \checkmark : & 3 \checkmark \\ 2 \checkmark -3 \checkmark : & 7 \end{bmatrix}$ 

c) 
$$\begin{bmatrix} 1 & 1 & : & -3 \\ 2 & 3 & : & 1 \end{bmatrix}$$
 d)  $\begin{bmatrix} 1 & 2 & : & 3 \\ 1 & -2 & : & -1 \end{bmatrix}$ 

## Group 'B' 8×5= 40

12; a) How many permutations are there of the letters of the word 'SAARC'? [2]

b) The Nepali National Cricket Team consisting 16 players includes 2 wicketkeepers and 6 bowlers. In how many ways can a cricket team of eleven players containing 1 wicketkeeper and at least 5 bowlers be selected?

[3]

b) Write the formula for the sum of first (n+1) even natural number. [1]

c) Write the formula for the sum of cubes of first 'n' natural number. [1]

14. a) Prove: 
$$1 - \tan \frac{A}{2} \tan \frac{B}{2} = \frac{2c}{a+b+c}$$
 [2]

b) Prove that in any triangle: 
$$\sin \frac{A}{2} = \sqrt{\frac{(S-b)(S-c)}{bc}}$$
. [3]



```
21. a) If z_1 = r_1(\cos \theta_1 + i \sin \theta_1) and z_2 = r_2(\cos \theta_2 + i \sin \theta_2)
     i)/ What is the argument of z<sub>1</sub>z<sub>2</sub>?
     ii)/ What is the modules of z<sub>1</sub>z<sub>2</sub>?
     iii)/ What is the polar form of z<sub>1</sub>z<sub>2</sub>?
                                                                                                             11
     iv)/ Write the amplitude of z = r(\cos\theta + i\sin\theta).
                                                                                                            11]
     b) Apply De-Moivre's theorem to compute (-1 - \sqrt{3} i)^4.
                                                                                                            2]
    c) If \omega is a cube of unity, Find the value of: (1 + \omega - \omega^2)(1 - \omega + \omega^2).
                                                                                                            21
22.a) Evaluate the integral \int \sqrt{x^2 + a^2} dx. Replace 'a' with a numerical value and
          then find the integral.
                                                                                                            13]
   b) Evaluate: \int \frac{dx}{5+3 \sin x}
                                                                                                            [3]
   c) Evaluate: \int \frac{dx}{1 + e^x}.
                                                                                                            [2]
```

\*\*\*Good Luck\*\*\*