ограниченного кривыми

$$ay = 2ax - x^2$$
 $(a > 0)$ $y = 0$.

Чему равны радиусы инерции r_x и r_y , т. е. величины, определяемые соотношениями

$$I_x = Sr_x^2, \quad I_y = Sr_y^2,$$

где S — площадь сегмента?

2503. Найти моменты инерции однородной эллиптической пластинки с полуосями a и b относительно ее главных осей ($\rho = 1$).

2504. Найти статический момент и момент инерции однородного кругового конуса с радиусом основания r и высотой h относительно плоскости основания этого конуса ($\rho = 1$).

2504.1. Найти момент инерции однородного шара

радиуса R и массы М относительно его диаметра.

2505. Доказать первую теорему Гульдена: площадь поверхности, образованной вращением плоской дуги С вокруг не пересекающей ее оси, лежащей в плоскости дуги, равна длине этой дуги, умноженной на длину окружности, описываемой центром тяжести дуги С.

2506. Доказать вторую теорему Гульдена: объем тела, образованного вращением плоской фигуры S вокруг не пересекающей ее оси, расположенной в плоскости фигуры, равен произведению площади S на длину окружности, описываемой центром тяжести этой фигуры.

2507. Определить координаты центра тяжести круговой дуги: $x = a \cos \varphi$, $y = a \sin \varphi$ ($|\varphi| \le \alpha \le \pi$).

2508. Определить координаты центра тяжести области, ограниченной параболами $ax = y^2$, $ay = x^2$ (a > 0).

2509. Определить координаты центра тяжести области $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ (0 $\le x \le a$, 0 $\le y \le b$).

2510. Определить центр тяжести однородного полу-

шара радиуса а.

2511. Определить координаты центра тяжести C (φ_0 , r_0) дуги OP логарифмической спирали $r=ae^{m\varphi}$ (m>0) от точки 0 (— ∞ , 0) до точки P (φ , r). Какую кривую описывает точка C при движении точки P?

2512. Определить координаты центра тяжести области, ограниченной кривой $r=a~(1+\cos\phi)$.