Robótica grupo2 Clase 30

Facultad de Ingeniería UNAM

M.I. Erik Peña Medina

Derechos reservados

Todos los derechos reservados, Facultad de Ingeniería de la Universidad Nacional Autónoma de México © 2020. Quedan estrictamente prohibidos su uso fuera del ámbito académico, alteración, descarga o divulgación por cualquier medio, así como su reproducción parcial o total.

Contenido

- Robots seriales en el espacio
 - Modelo cinemático de la posición
 - Modelo cinemático inverso de la posición
 - Modelo cinemático de la velocidad
 - Modelo cinemático inverso de las velocidades
 - Modelo dinámico

$${}^{0}\boldsymbol{\theta}_{P} = \begin{pmatrix} {}^{0}\boldsymbol{\gamma}_{P} \\ {}^{0}\boldsymbol{\beta}_{P} \\ {}^{0}\boldsymbol{\alpha}_{P} \end{pmatrix}$$

Planteamiento de la transformación general

$${}^{i}T_{j_{x}} = \begin{pmatrix} {}^{i}R_{j} & {}^{i}\mathbf{p}_{jx} \\ 0^{T} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & {}^{i}x_{j} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{i}T_{j_{y}} = \begin{pmatrix} {}^{i}R_{j} & {}^{i}\mathbf{p}_{jy} \\ 0^{T} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & {}^{i}y_{j} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{i}T_{j_{z}} = \begin{pmatrix} {}^{i}R_{j} & {}^{i}\mathbf{p}_{jz} \\ 0^{T} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & {}^{i}z_{j} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Planteamiento de la transformación general

j = i + 1

anslaciones

Planteamiento de la transformación general

Planteamiento de la transformación general

$${}^{i}\mathbf{T}_{jR} = {}^{i}\mathbf{T}_{Rj_{z}}{}^{i}\mathbf{T}_{Rj_{y}}{}^{i}\mathbf{T}_{Rj_{x}} = \begin{pmatrix} \cos({}^{i}\alpha_{j})\cos({}^{i}\beta_{j}) & \cos({}^{i}\alpha_{j})\sin({}^{i}\beta_{j})\sin({}^{i}\gamma_{j}) - \sin({}^{i}\alpha_{j})\cos({}^{i}\gamma_{j}) & \sin({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) + \cos({}^{i}\alpha_{j})\sin({}^{i}\beta_{j})\cos({}^{i}\gamma_{j}) & 0 \\ \sin({}^{i}\alpha_{j})\cos({}^{i}\beta_{j}) & \cos({}^{i}\alpha_{j})\cos({}^{i}\gamma_{j}) + \sin({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) & \sin({}^{i}\alpha_{j})\sin({}^{i}\beta_{j})\cos({}^{i}\gamma_{j}) - \cos({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) & 0 \\ -\sin({}^{i}\beta_{j}) & \cos({}^{i}\beta_{j})\sin({}^{i}\gamma_{j}) & \cos({}^{i}\beta_{j})\sin({}^{i}\gamma_{j}) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Planteamiento de la transformación general

Transformación general

$${}^{0}\boldsymbol{\xi}_{P} = \begin{pmatrix} {}^{0}\boldsymbol{x}_{P} & & \\ {}^{0}\boldsymbol{y}_{P} & & \\ {}^{0}\boldsymbol{z}_{P} & & \\ \cos({}^{0}\boldsymbol{\gamma}_{P}) & & \\ \cos({}^{0}\boldsymbol{\beta}_{P}) & & \\ \cos({}^{0}\boldsymbol{\alpha}_{P}) \end{pmatrix}$$

$${}^{i}\mathbf{T}_{j} = {}^{i}\mathbf{T}_{j_{xyz}} {}^{i}\mathbf{T}_{j_{R}} = \begin{pmatrix} \cos({}^{i}\alpha_{j})\cos({}^{i}\beta_{j}) & \cos({}^{i}\alpha_{j})\sin({}^{i}\beta_{j})\sin({}^{i}\beta_{j})\sin({}^{i}\gamma_{j}) - \sin({}^{i}\alpha_{j})\cos({}^{i}\gamma_{j}) & \sin({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) + \cos({}^{i}\alpha_{j})\sin({}^{i}\beta_{j})\cos({}^{i}\gamma_{j}) & \sin({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) - \cos({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) & \sin({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) - \cos({}^{i}\alpha_{j})\sin({}^{i}\gamma_{j}) & iy_{j} \\ -\sin({}^{i}\beta_{j}) & \cos({}^{i}\beta_{j})\sin({}^{i}\gamma_{j}) & \cos({}^{i}\beta_{j})\sin({}^{i}\gamma_{j}) & \cos({}^{i}\beta_{j})\sin({}^{i}\gamma_{j}) & iz_{j} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ejemplo base

Consideraciones

Consideraciones

Consideraciones

- 1. Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.
- 3. Sobre los ejes de actuación establecer los sistema de referencias que rescriban las relaciones de movimiento entre una junta y un eslabón.
- 4. Establecer los parámetros y las variables de posición y orientación entre los sistemas de referencia de cada eslabón hasta llegar el sistema {P}.
- 5. Colocar los parámetros en la tabla de configuración y de variables.
- 6. Calcular la ecuación resultante.

traslaciones

rotaciones

i	х	У	Z	γ(r,x)	$\beta(p,y)$	$\alpha(y,z)$
0_1	0	0	Z 1	γ	0	θ1
1_2	0	-y 2	0	0	θ2	0
2_3	X 3	0	0	0	θз	0
3_4	X 4	y 4	0	θ4	0	0
4_5	X 5	0	0	0	0	θ5
5_6	X 6	0	0	θ6	0	0

Para distinguir entre un parámetro y una variable se empleará la siguiente consideración:

- En el caso de las juntas prismáticas sobre un eje se empleará la letra b.
- En el caso de las juntas rotacionales sobre un eje se empleará la letra griega θ .

Algoritmo

1. Determinar el sistema inercial.

- 1. Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.

- 1. Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.
- 3. Sobre los ejes de actuación establecer los sistema de referencias que rescriban las relaciones de movimiento entre una junta y un eslabón.

i	Х	У	Z	γ(r,x)	β(p,y)	α(y,z)
0_1	$^{0}x_{1}=0$	$^{0}y_{1}=0$	${}^0z_1=h_0$	0	0	$^{0}\theta_{1}$

- Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.
- 3. Sobre los ejes de actuación establecer los sistema de referencias que rescriban las relaciones de movimiento entre una junta y un eslabón.

- 1. Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.
- 3. Sobre los ejes de actuación establecer los sistema de referencias que rescriban las relaciones de movimiento entre una junta y un eslabón.

i	Х	У	Z	γ(r,x)	β(p,y)	α(y,z)
0_1	$^{0}x_{1}=0$	$^{0}y_{1}=0$	$^{0}z_{1}=h_{1}$	$^{0}\gamma_{1}=0$	$^{0}\beta_{1}=0$	$^{0}\theta_{1}$
1_2	$1 x_2 = 0$	$y_2 = 0$	$^{1}z_{2}=0$	$^{1}\gamma_{2}=0$	$^{1}\theta_{2}$	$\alpha_2 = 0$

- 1. Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.
- 3. Sobre los ejes de actuación establecer los sistema de referencias que rescriban las relaciones de movimiento entre una junta y un eslabón.

i	Х	У	Z	γ(r,x)	β(p,y)	α(y,z)
0_1	$^{0}x_{1}=0$	$^{0}y_{1}=0$	$^{0}z_{1}=h_{1}$	0	0	$^{0}\theta_{1}$
1_2	$x_2 = 0$	$^{1}y_{2} = 0$	$^{1}z_{2}=0$	$^{1}\gamma_{2}=c_{1}$	$^{1}\beta_{2}=c_{2}$	$^{1}\theta_{2}$

- 1. Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.
- 3. Sobre los ejes de actuación establecer los sistema de referencias que rescriban las relaciones de movimiento entre una junta y un eslabón.

i	х	У	Z	γ(r,x)	$\beta(p,y)$	α(y,z)
0_1	$^{0}x_{1}=0$	$^{0}y_{1}=0$	${}^0z_1 = h_0$	0	0	$^{0} heta_{1}$
1_2	$^{1}x_{2}=0$	$y_2 = 0$	$^{1}z_{2}=0$	$^{1}\gamma_{2}=0$	$^{1}\theta_{2}$	$\alpha_2 = 0$
2_3	$^2x_3 = 0$	$^2y_3 = 0$	$^{2}z_{3}=L_{2}$	$^2\gamma_3 = 0$	$^{2}\theta_{3}$	$2\alpha_3 = 0$

- 1. Determinar el sistema inercial.
- 2. Encontrar los ejes de acción de los actuadores.

i	х	У	Z	γ(r,x)	$\beta(p,y)$	$\alpha(y,z)$
0_1	$\int_{0}^{0} x_{1} = 0$	$^{0}y_{1}=0$	$^{0}z_{1}=h_{0}$	$^{0}\gamma_{1}=0$	$^{0}\beta_{1}=0$	$^0\! heta_{\!\scriptscriptstyle 1}$
1_2	$x_2 = 0$	$y_2 = 0$	$^{1}z_{2}=0$	$^{1}\gamma_{2}=0$	$^{1} heta_{2}$	$\alpha_2^1 = 0$
2_3	$^2x_3 = 0$	$^2y_3 = 0$	$^{2}z_{3}=L_{2}$	$^2\gamma_3 = 0$	$^{2}\theta_{3}$	$2\alpha_3 = 0$
3_P	$0 x_P = 0$	$y_P = 0$	$^3 z_P = L_3$	$3\gamma_P = 0$	$3\beta_P = 0$	$^{3}\alpha_{P}=0$

- Determinar el sistema inercial.
- Encontrar los ejes de acción de los actuadores.
- 3. Sobre los ejes de actuación establecer los sistema de referencias que rescriban las relaciones de movimiento entre una junta y un eslabón.

