3. Prozesse mit kontinuierlicher Zeit

3.1 Einführung

Wir betrachten nun Markov-Ketten $(X(t))_{t \in \mathbb{R}_0^+}$.

Wie beim Übergang von der geometrischen zur Exponentialverteilung können wir uns auch hier einen Grenzprozess vorstellen.

Wie dort folgt, dass die Aufenthaltsdauer im Zustand 0 gemessen in Schritten der diskreten Markov-Kette geometrisch verteilt ist und im Grenzwert $n \to \infty$ in eine kontinuierliche Zufallsvariable übergeht, die exponentialverteilt mit Parameter λ ist. Den Parameter λ bezeichnen wir auch als Übergangsrate.

Abbildung: Markov-Kette mit kontinuierlicher Zeit

Definition 153

Eine unendliche "Folge" von Zufallsvariablen X(t) ($t \in \mathbb{R}_0^+$) mit Wertemenge S nennen wir (diskrete) Markov-Kette mit kontinuierlicher Zeit, wenn gilt:

- S ist diskret, d.h. wir können ohne Einschränkung annehmen, dass $S \subseteq \mathbb{N}_0$.
- Die Zufallsvariablen erfüllen die Markovbedingung: Für alle $n \in \mathbb{N}_0$ und beliebige Zeitpunkte $0 \le t_0 < t_1 < \ldots < t_n < t$ und Zustände $s, s_0, \ldots, s_n \in S$ gilt

$$\Pr[X(t) = s \mid X(t_n) = s_n, \dots, X(t_0) = s_0] =$$

$$\Pr[X(t) = s \mid X(t_n) = s_n].$$
(13)

Eine Markov-Kette heißt zeithomogen, wenn für alle Zustände $i, j \in S$ und für alle $u, t \in \mathbb{R}_0^+$ gilt:

$$\Pr[X(t+u) = j \mid X(t) = i] = \Pr[X(u) = j \mid X(0) = i]$$

/466

Die Markov-Bedingung (13) besagt anschaulich Folgendes: Wenn wir den Zustand des Systems zu einer Reihe von Zeitpunkten $t_0 < t_1 < \ldots < t_n$ kennen, so ist für das Verhalten nach dem Zeitpunkt t_n nur der Zustand zur Zeit t_n maßgebend. Anders formuliert heißt dies: Wenn wir den Zustand des Systems zur Zeit t_n kennen, so besitzen wir bereits die gesamte relevante Information, um Wahrscheinlichkeiten für das zukünftige Verhalten zu berechnen. Die "Geschichte" des Systems, d.h. der "Weg", auf dem der Zustand zur Zeit t_n erreicht wurde, spielt dabei keine Rolle. Eine Markov-Kette mit kontinuierlicher Zeit ist also ebenso wie eine Markov-Kette mit diskreter Zeit gedächtnislos.

Wie schon bei diskreten Markov-Ketten werden wir uns auch bei Markov-Ketten mit kontinuierlicher Zeit auf zeithomogene Markov-Ketten beschränken und diese Eigenschaft im Folgenden stillschweigend voraussetzen.

Gedächtnislosigkeit der Aufenthaltsdauer

Sei Y die Aufenthaltsdauer in einem bestimmten Zustand, in dem sich die Markov-Kette zur Zeit t=0 befindet. Es gilt:

$$\begin{split} \Pr[Y \geq t] &= \Pr[X(t') = 0 \text{ für alle } 0 < t' < t \mid X(0) = 0] \\ &= \Pr[X(t'+u) = 0 \text{ für alle } 0 < t' < t \mid X(u) = 0] \\ &= \Pr[X(t'+u) = 0 \text{ für alle } 0 < t' < t \mid X(t'') = 0 \text{ f. a. } 0 \leq t'' \leq u] \\ &= \Pr[X(t') = 0 \text{ für alle } 0 < t' < t + u \mid X(t'') = 0 \text{ f. a. } 0 \leq t'' \leq u] \\ &= \Pr[Y \geq t + u \mid Y \geq u]. \end{split}$$

Die Aufenthaltsdauer Y erfüllt also die Bedingung der Gedächtnislosigkeit und muss daher nach Satz 105 exponentialverteilt sein.

Bestimmung der Aufenthaltswahrscheinlichkeiten

Wie zuvor bei Markov-Ketten mit diskreter Zeit interessieren wir uns auch bei kontinuierlichen Markov-Ketten für die Wahrscheinlichkeit, mit der sich das System zur Zeit t in einem bestimmten Zustand befindet. Dazu gehen wir von einer Startverteilung q(0) mit $q_i(0) := \Pr[X(0) = i]$ für alle $i \in S$ aus und definieren die Aufenthaltswahrscheinlichkeit $q_i(t)$ im Zustand i zum Zeitpunkt t durch $q_i(t) := \Pr[X(t) = i]$.

Zur Bestimmung dieser Wahrscheinlichkeiten verwenden wir zum einen die soeben gezeigte Tatsache, dass die Aufenthaltsdauer in jedem Zustand i exponentialverteilt sein muss.

Weiter bezeichnen wir mit ν_{ij} die Übergangsrate vom Zustand i in den Zustand j, sowie $\nu_i := \sum_{j \in S} \nu_{ij}$.

Wir betrachten nun ein kleines Zeitintervall dt. Dann ergibt sich die Änderung der Aufenthaltswahrscheinlichkeit in diesem Zeitintervall als Summe aller "zufließenden" abzüglich aller "abfließenden" Wahrscheinlichkeiten. Für alle Zustände $i \in S$ gilt

$$\operatorname{d} q_i(t) = \left(\sum_{j} q_j(t) \cdot \nu_{ji} - q_i(t)\nu_i\right) \cdot \operatorname{d} t. \tag{14}$$

$$\overset{\text{Änderung}}{=} \operatorname{Zufluss} \overset{\text{Abfluss}}{=} \operatorname{Abfluss}$$

Das Lösen des Differentialgleichungssystems (14) ist meist sehr aufwändig. Wir werden es im Folgenden durch Betrachtung des Grenzwertes für $t \to \infty$ zu gewöhnlichen linearen Gleichungen vereinfachen.

Definition 154

Zustand j ist von i aus erreichbar, wenn es ein $t \ge 0$ gibt mit

$$\Pr[X(t) = j \mid X(0) = i] > 0$$
.

Eine Markov-Kette, in der je zwei Zustände i und j untereinander erreichbar sind, heißt irreduzibel.

Satz 155

Für irreduzible kontinuierliche Markov-Ketten existieren die Grenzwerte

$$\pi_i = \lim_{t \to \infty} q_i(t)$$

für alle $i \in S$, und ihre Werte sind unabhängig vom Startzustand. Ohne Beweis.

Wenn für $t \to \infty$ Konvergenz erfolgt, so gilt

$$\lim_{t \to \infty} \frac{\mathsf{d}\,q_i(t)}{\mathsf{d}\,t} = 0,$$

da sich $q_i(t)$ für genügend große t "so gut wie nicht mehr" ändert. Diese Gleichung setzen wir in die Differentialgleichungen (14) ein und erhalten

$$0 = \sum_{i} \pi_{j} \nu_{ji} - \pi_{i} \nu_{i}$$

für alle $i \in S$.

Dieses Gleichungssystem hat immer die triviale Lösung $\pi_i = 0$ für alle $i \in S$. Wir suchen jedoch eine Wahrscheinlichkeitsverteilung, und π muss deshalb zusätzlich die Normierungsbedingung $\sum_{i \in S} \pi_i = 1$ erfüllen. Bei Markov-Ketten mit endlicher Zustandsmenge S führt dieses Verfahren immer zum Ziel. Wenn S jedoch unendlich ist, gibt es Fälle, in denen $\pi_1 = \pi_2 = \ldots = 0$ die einzige Lösung darstellt und wir somit keine gültige Wahrscheinlichkeitsverteilung erhalten.

3.2 Warteschlangen

Für ein System mit m Servern und einer gemeinsamen Warteschlange hat sich die Bezeichnung X/Y/m-Warteschlange eingebürgert. Dabei ersetzt man X und Y durch Buchstaben, die jeweils für eine bestimmte Verteilung stehen. Beispielsweise bezeichnet "D" eine feste Dauer (von engl. deterministic), "M" die Exponentialverteilung (das M kommt von memoryless, dem englischen Wort für gedächtnislos) und "G" eine beliebige Verteilung (von engl. general). X gibt die Verteilung der Zeit zwischen zwei ankommenden Jobs an, während Y für die Verteilung der eigentlichen Bearbeitungszeit eines Jobs auf dem Server steht (ohne Wartezeit).

3.2.1 M/M/1-Warteschlangen

Abbildung: Modellierung einer M/M/1–Warteschlange

Diese Markov-Kette ist irreduzibel, und im Gleichgewichtszustand gelten die Gleichungen

$$\begin{array}{lll} 0 & = & \lambda \pi_{k-1} + \mu \pi_{k+1} - (\lambda + \mu) \pi_k \text{ für alle } k \geq 1 \\ 0 & = & \mu \pi_1 - \lambda \pi_0. \end{array}$$

Wir definieren die Verkehrsdichte $\rho := \frac{\lambda}{\mu}$ und erhalten:

$$\pi_k = \rho \pi_{k-1} = \ldots = \rho^k \pi_0.$$

Damit:

$$1 = \sum_{i=0}^{\infty} \pi_i = \pi_0 \cdot \sum_{i=0}^{\infty} \rho^i = \pi_0 \cdot \frac{1}{1-\rho} \quad \Rightarrow \quad \pi_0 = 1 - \rho.$$

Dabei haben wir angenommen, dass $\rho < 1$ ist. Für $\rho \geq 1$ konvergiert das System nicht. Da in diesem Fall $\lambda \geq \mu$ gilt, kommen die Jobs schneller an, als sie abgearbeitet werden können. Intuitiv folgt daraus, dass die Warteschlange immer größer wird.

Für $\rho < 1$ erhalten wir als Endergebnis

$$\pi_k = (1 - \rho)\rho^k$$
 für alle $k \in \mathbb{N}_0$.

Aus diesem Resultat können wir einige interessante Schlussfolgerungen ziehen. Zunächst betrachten wir die Zufallsvariable

N :=Anzahl der Jobs im System (wartend + in Bearbeitung).

Für N gilt (die Berechnung von $\mathbb{E}[N]$ und $\mathrm{Var}[N]$ erfolgt mit den schon bei der geometrischen Verteilung in Abschnitt 3 verwendeten Summenformeln)

$$\mathbb{E}[N] = \sum_{k>0} k \cdot \pi_k = \frac{\rho}{1-\rho} \quad \text{und} \quad \text{Var}[N] = \frac{\rho}{(1-\rho)^2}.$$
 (15)

Abbildung 4 zeigt $\mathbb{E}[N]$ als Funktion von ρ . Man erkennt, wie das System für $\rho \to 1$ divergiert.

Abbildung: Mittlere Anzahl der Jobs in einer M/M/1–Warteschlange

Für eine weitergehende Analyse der Leistung des Systems definieren wir für den i-ten Job (bezüglich der Reihenfolge, mit der die Jobs im System ankommen):

$$R_i := Antwortzeit$$
 (Gesamtverweildauer im System).

Der Wert von R_i hängt natürlich vom Zustand des Systems zur Ankunftszeit des Jobs ab. Betrachten wir das System jedoch im Gleichgewichtszustand, so können wir den Index i auch weglassen und einfach von der Antwortzeit R sprechen. Bei der Berechnung von R hilft uns der folgende Satz.

Theorem 156

(Formel von Little) Für Warteschlangen-Systeme mit mittlerer Ankunftsrate λ , bei denen die Erwartungswerte $\mathbb{E}[N]$ und $\mathbb{E}[R]$ existieren, gilt

$$\mathbb{E}[N] = \lambda \cdot \mathbb{E}[R].$$

Hierbei werden keine weiteren Annahmen über die Verteilung der Ankunfts- und Bearbeitungszeiten getroffen.

Beweis:

[(Skizze)]Wir beobachten das System über einen (langen) Zeitraum (siehe Abbildung 5). In einer Zeitspanne der Länge t_0 seien $n(t_0)$ Anforderungen eingetroffen. N(t) gibt die Anzahl der Jobs an, die sich zum Zeitpunkt t im System befinden. Nun betrachten wir die beiden Größen

$$\sum_{i=1}^{n(t_0)} R_i \quad \text{und} \quad \int_0^{t_0} N(t) \, \mathrm{d} \, t.$$

Beide Größen messen "ungefähr" die in Abbildung 5 grau gefärbte Fläche.

Abbildung: Graphik zum Beweis des Satzes von Little

Beweis (Forts.):

Die rechte Größe misst sogar genau diese Fläche, bei der Summe wird hingegen bei den Jobs, die zur Zeit t_0 noch im System sind, die gesamte Aufenthaltsdauer gezählt, statt nur der Anteil bis zum Zeitpunkt t_0 . Für große t_0 ist der Unterschied dieser beiden Größen aber vernachlässigbar. Führt man daher den Grenzübergang $t_0 o \infty$ durch und normiert beide Größen mit $1/n(t_0)$, erhält man

$$\lim_{t_0 \to \infty} \frac{1}{n(t_0)} \sum_{i=1}^{n(t_0)} R_i = \lim_{t_0 \to \infty} \frac{1}{n(t_0)} \int_0^{t_0} N(t) dt$$
$$= \lim_{t_0 \to \infty} \frac{t_0}{n(t_0)} \cdot \frac{1}{t_0} \int_0^{t_0} N(t) dt.$$

Beweis (Forts.):

Mit

$$\overline{R}(t_0) := \frac{1}{n(t_0)} \sum_{i=1}^{n(t_0)} R_i, \quad \overline{N}(t_0) := \frac{1}{t_0} \int_0^{t_0} N(t) dt$$

und $\overline{\lambda}(t_0) := \frac{n(t_0)}{t_0}$ erhalten wir daraus wegen

$$\lambda = \lim_{t_0 \to \infty} \overline{\lambda}(t_0) = \lim_{t_0 \to \infty} \frac{n(t_0)}{t_0},$$

$$\mathbb{E}[R] = \lim_{t_0 \to \infty} \overline{R}(t_0) = \lim_{t_0 \to \infty} \frac{1}{n(t_0)} \sum_{i=1}^n R_i \quad \text{und}$$

$$\mathbb{E}[N] = \lim_{t_0 \to \infty} \overline{N}(t_0) = \lim_{t_0 \to \infty} \frac{1}{t_0} \int_0^{t_0} N(t) \, \mathrm{d} t$$

sofort die Behauptung.

Bei der Berechnung von $\mathbb{E}[R]$ haben wir verwendet, dass sich für lange Beobachtungszeiträume die relative Häufigkeit immer mehr dem Erwartungswert annähert. Man vergleiche dies mit dem Gesetz der großen Zahlen, Satz 63. Bei den Zufallsvariablen R_i ist allerdings die Unabhängigkeit nicht gesichert und ein formal korrekter Beweis von $\mathbb{E}[R] = \lim_{t_0 \to \infty} \overline{R}(t_0)$ würde deshalb aufwändiger. $\mathbb{E}[N] = \lim_{t_0 \to \infty} \overline{N}(t_0)$ gilt aufgrund ähnlicher Überlegungen.

Die obige Argumentation ist zweifellos ein wenig informell, sie sollte jedoch ausreichen, um die Hintergründe des Satzes zu verdeutlichen.

Mit Satz 156 ist die Berechnung von $\mathbb{E}[R]$ für die Markov-Kette aus Abbildung 3 kein Problem mehr. Aus (15) folgt

$$\mathbb{E}[R] = \frac{\mathbb{E}[N]}{\lambda} = \frac{\rho}{\lambda(1-\rho)}.$$
 (16)

Manchmal sieht man statt R auch die leicht abgewandelte Größe

$$W := (reine)$$
 Wartezeit.

Wegen der Linearität des Erwartungswerts ist die Berechnung von $\mathbb{E}[W]$ für M/M/1–Warteschlangen kein Problem:

$$\mathbb{E}[W] = \mathbb{E}[R] - \frac{1}{\mu} = \frac{\rho}{\mu(1-\rho)}.\tag{17}$$