Week 4 Wednesday Worksheet

Valentino Aceves

April 24, 2024

Hypothesis Testing for β_1

$$H_0: \beta_1 = c$$
 vs. $H_1: \beta_1 \neq c$

In hypothesis testing, we make an assumption or initial guess about what the slope could be. Most of the time, we test $\beta_1 = 0$ because this would mean there is no relationship between X and Y.

Under the null hypothesis, we have the test statistic

$$\hat{t} = \frac{\hat{b}_1 - \beta_1}{SE(\hat{b}_1)} \sim t(d.f. = n - 2)$$

 β_1 is interpretable into "real world" values (eg. salary), however \hat{t} is not. \hat{t} is β_1 transformed to be interpretable in the "t-world" with respect to what we are testing it against. Think of \hat{t} as β_1 but in the "t-world" instead of the "real world". Its also basically a z-score.

Let $\alpha = \text{significance level}$. Let $t_c = t_{(1-\frac{\alpha}{2},n-2)}$ be the $(1-\frac{\alpha}{2})$ quantile of the t(n-2) distribution. For two-sided hypothesis test, that is

$$P(t(n-2) > t_c) = P(t(n-2) < -t_c) = \frac{\alpha}{2}$$

For two sided tests, we **reject the null hypothesis** when our t-statistic is "more extreme" than the t-value or when the p-value is less than our significance level.

$$|\hat{t}| > t_c \longleftrightarrow P(|t(n-2)| > |\hat{t}|) = p < \alpha$$

Interpretation

How do we make sense of p-value? By formal definition, p-value is the probability of drawing another sample and compute another estimate β_1 such that this new β_1 is at least as "extreme" as the one you actually computed/observed using your current sample, assuming the null is true. In other words: Assuming our null hypothesis is true, p is the probability of drawing a sample to give us our \hat{b}_1 . p is \hat{t} in the "probability world".

We reject the null hypothesis when $p < \alpha$. This is saying that we drew a sample that was so extreme, it has less than an α % chance of occurring if we assume the null hypothesis is true.

We want to prove ourselves wrong with hypothesis testing. If $p > \alpha$, we fail to reject the null hypothesis.

 t_c is to \hat{t} as α is to p. t_c and α are the threshold to reject the null hypothesis but in the "t-world" and "probability world" respectively. \hat{t} and p is the regression's \hat{b}_1 but transformed to be interpretable in the "probability world" and "t-world" respectively. Mathematically, p is the probability that anything greater \hat{t} were to occur in the t(n-2) distribution (t-world). α is the probability that anything greater than t_c were to occur in the t(n-2) distribution.

$$P(|t(n-2)| > |\hat{t}|) = p$$
 $P(t(n-2) > t_c) = P(t(n-2) < -t_c) = \frac{\alpha}{2}$

Confidence Interval

$$[\hat{b}_1 - t_c \cdot SE(\hat{b}_1) \ , \ \hat{b}_1 + t_c \cdot SE(\hat{b}_1)]$$

where $t_c = t_{(1-\frac{\alpha}{2},n-2)}$. If β_1 is outside of the confidence interval, we would reject the null hypothesis.

Null Hypothesis	Alternative Hypothesis	Critical Value t_c	Rejection Rule
$H_0: \beta = c$	$H_1: \beta \neq c$	$t_c(1-lpha/2,m)$	$\hat{t} < -t_c$ or $\hat{t} > t_c$
$H_0: \beta = c$	$H_1: \beta > c$	$t_c(1-lpha,m)$	$\hat{t} > t_c$
$H_0: eta = c$	$H_1: \beta < c$	$t_c(1-lpha,m)$	$\hat{t} < -t_c$

Test statistic

confidence level

$$\hat{t} = \frac{\hat{b} - c}{\widehat{se}(b)}$$

 α

Hypothesis Testing Using *p*-Values

Null	Alternative	Which	p-value	Rejection
Hypothesis	Hypothesis	Tail?	Calculation	Rule
$H_0: \beta = c$ $H_0: \beta = c$ $H_0: \beta = c$	$H_1: \beta \neq c$ $H_1: \beta > c$ $H_1: \beta < c$	Two-tail test Right-tail test Left-tail test	$p = P(t(d.f) > \hat{t})$ $p = P(t(d.f) > \hat{t})$ $p = P(t(d.f) < \hat{t})$	$p < \alpha$ $p < \alpha$ $p < \alpha$

Test statistic				
depends on c				
$\hat{t} = rac{\hat{b} - c}{\hat{Se}(b)}$				

Depends on
$$H_1 \ (
eq, >, <)$$

$$d.f. = N-2$$

 $\begin{array}{c} \text{Depends on} \\ p \text{ and } \alpha \end{array}$