Глава 9

Геометрия в векторных пространствах над $\mathbb R$ или $\mathbb C$

§ 9.1 Положительно и отрицательно определенные формы и сигнатура формы

Далее $K=\mathbb{R}$ или $K=\mathbb{C}$ и V — векторное пространство над K.

• Мн.-во положит. определ. форм: $\overline{\mathrm{SBi}}_{>0}(V) = \{\sigma \in \overline{\mathrm{SBi}}(V) \mid \forall \, v \in V \setminus \{0\} \, \big(\sigma(v,v) > 0\big)\}.$ Мн.-во отрицат. определ. форм: $\overline{\mathrm{SBi}}_{<0}(V) = \{\sigma \in \overline{\mathrm{SBi}}(V) \mid \forall \, v \in V \setminus \{0\} \, \big(\sigma(v,v) < 0\big)\}.$

Пусть $\sigma \in \overline{\mathrm{SBi}}(V)$; тогда $\sigma \in \overline{\mathrm{SBi}}_{>0}(V) \Leftrightarrow -\sigma \in \overline{\mathrm{SBi}}_{<0}(V)$.

• Мн. пол. опред. матриц: $\overline{\mathrm{SMat}}_{>0}(n,K) = \{s \in \overline{\mathrm{SMat}}(n,K) \mid \forall v \in K^n \setminus \{0\} \ (v^{\mathsf{T}} \cdot s \cdot \overline{v} > 0)\}.$ Мн. отр. опред. матриц: $\overline{\mathrm{SMat}}_{<0}(n,K) = \{s \in \overline{\mathrm{SMat}}(n,K) \mid \forall v \in K^n \setminus \{0\} \ (v^{\mathsf{T}} \cdot s \cdot \overline{v} < 0)\}.$

Пусть $\sigma \in \overline{\mathrm{SBi}}(V)$, $\dim V < \infty$ и $e \in \mathrm{OB}(V)$; тогда

- $\star \ \sigma \in \overline{\mathrm{SBi}}_{>0}(V) \Leftrightarrow \forall v \in V \setminus \{0\} \left((v^e)^\mathsf{T} \cdot \sigma_{e,e} \cdot \overset{\smile}{v^e} > 0 \right) \Leftrightarrow \sigma_{e,e} \in \overline{\mathrm{SMat}}_{>0}(n,K);$
- $\star \ \sigma \in \overline{\mathrm{SBi}}_{<0}(V) \Leftrightarrow \forall \, v \in V \setminus \{0\} \left((v^e)^\mathsf{T} \cdot \sigma_{e,e} \cdot \overline{v^e} < 0 \right) \Leftrightarrow \sigma_{e,e} \in \overline{\mathrm{SMat}}_{<0}(n,K).$

Пусть $\sigma \in \overline{\mathrm{SBi}}(V)$, $n = \dim V < \infty$ и $e \in \mathrm{OOB}(V, \sigma)$, то есть $\sigma_{e,e}$ — диагонал. матрица и $\forall \, v \in V \left(\sigma(v,v) = \sum\limits_{1 \leq i \leq n} \sigma_{i,i} |v^i|^2 \right)$; тогда $\sigma \in \overline{\mathrm{SBi}}_{>0}(V) \Leftrightarrow \forall \, i \in \{1,\ldots,n\} \left(\sigma_{i,i} > 0 \right)$.

Пример для случая $V=\mathrm{C}^0([\alpha;\beta],K)$: $\sigma\colon (f,g)\mapsto \int_{\alpha}^{\beta}s(x)f(x)\overline{g(x)}\mathrm{d}x$, где $s\in V$ и $\forall\,x\in[\alpha;\beta]\,\big(s(x)>0\big)$; тогда $\sigma\in\overline{\mathrm{SBi}}_{>0}(V)$ (здесь важна непрерывность функций).

- Следствия из теоремы об ортогональном дополнении и теоремы Лагранжа. В сделанных выше предположениях для любых $\sigma \in \overline{\mathrm{Bi}}(V)$ имеем следующие факты:
- (1) если $\sigma\in\overline{\mathrm{SBi}}_{>0}(V)$ и $U\leq V$, то $U\cap U^\perp=\{0\}$ и, если $\dim U<\infty$, то форма $\sigma|_{U\times U}$ невырождена и $V=U\oplus U^\perp$;
- (2) если $n=\dim V<\infty$, то $\sigma\in\overline{\mathrm{SBi}}_{>0}(V)\Leftrightarrow\exists\,e\in\mathrm{OB}(V)\,\big(\sigma_{e,e}=\mathrm{id}_n\big);$
- (3) если $n=\dim V<\infty$ и $e\in \mathrm{OB}(V)$, то $\sigma\in \overline{\mathrm{SBi}}_{>0}(V)\Leftrightarrow \exists\,g\in \mathrm{GL}(n,K)\, \big(\sigma_{e,e}=g^\mathsf{T}\cdot\overline{g}\big).$

Доказательство.

- (1) $U\cap U^\perp\subseteq\{v\in V\mid \sigma(v,v)=0\}=\{0\}.$ Если $\dim U<\infty$, то по пунктам (3) и (4) теоремы ортогональном дополнении получаем, что $\sigma|_{U\times U}$ невырождена и $V=U\oplus U^\perp.$
- (2), (3) Если $\sigma \in \overline{\mathrm{SBi}}_{>0}(V)$, то по пункту (2) теоремы Лагранжа имеем $\mathrm{OnOB}(V,\sigma) \neq \varnothing$.
- (2) Пусть $e \in \mathrm{OnOB}(V, \sigma)$; тогда $\sigma_{e,e} = \mathrm{id}_n$ (так как $\forall i \in \{1, \dots, n\} \ (\sigma_{i,i} > 0)$).
- (3) Если $e \in \mathrm{OB}(V)$, то пусть $\widehat{e} \in \mathrm{OnOB}(V,\sigma)$ и $g = \mathrm{c}_{\widehat{e}}^{\widehat{e}}$; тогда $\sigma_{e,e} = (\mathrm{c}_{\widehat{e}}^{\widehat{e}})^\mathsf{T} \cdot \sigma_{\widehat{e},\widehat{e}} \cdot \overline{\mathrm{c}_{\widehat{e}}^{\widehat{e}}} = g^\mathsf{T} \cdot \overline{g}$.
- (2), (3) Если $\sigma_{e,e} = g^{\mathsf{T}} \cdot \overline{g}$, где $g \in \mathrm{GL}(n,K)$ (в частности, $\sigma_{e,e} = \mathrm{id}_n$), то $\sigma_{e,e} \in \overline{\mathrm{SMat}}_{>0}(n,K)$ (так как $\sigma_{e,e} \in \overline{\mathrm{SMat}}(n,K)$ и $\forall \, v \in K^n \setminus \{0\} \, \big(v^{\mathsf{T}} \cdot \sigma_{e,e} \cdot \overline{v} = (g \cdot v)^{\mathsf{T}} \cdot \overline{(g \cdot v)} = \sum_{1 \leq i \leq n} |(g \cdot v)^i|^2 > 0 \big);$

здесь используется то, что $g\in \mathrm{GL}(n,K)$); отсюда следует, что $\sigma\in \overline{\mathrm{SBi}}_{>0}(V).$

Из пункта (3) следствия получаем, что $\overline{\mathrm{SMat}}_{>0}(n,K) = \{g^{\mathsf{T}}\cdot \overline{g} \mid g \in \mathrm{GL}(n,K)\}$ и $\overline{\mathrm{SMat}}_{<0}(n,K) = \{-g^{\mathsf{T}}\cdot \overline{g} \mid g \in \mathrm{GL}(n,K)\}$; так как $\det(g^{\mathsf{T}}\cdot \overline{g}) = |\det g|^2 > 0$, отсюда следует, что $\forall s \in \overline{\mathrm{SMat}}_{>0}(n,K)$ ($\det s > 0$) и $\forall s \in \overline{\mathrm{SMat}}_{<0}(n,K)$ ($(-1)^n \det s > 0$).

Далее
$$n = \dim V < \infty$$
 и $\sigma \in \overline{\mathrm{SBi}}(V)$.

- Критерий Сильвестра. В сделанных выше предположениях для любых $e\in \mathrm{OB}(V)$ имеем следующие факты, в которых для любых $i\in \{1,\dots,n\}$ через cm_i обозначен i-й угловой минор матрицы $\sigma_{e,e}$ (то есть $cm_i=\det\sigma_{(e_1,\dots,e_i),(e_1,\dots,e_i)}$):
- (1) $\sigma \in \overline{SBi}_{>0}(V) \Leftrightarrow \forall i \in \{1, \ldots, n\} (cm_i > 0);$
- (2) $\sigma \in \overline{\mathrm{SBi}}_{<0}(V) \Leftrightarrow \forall i \in \{1,\ldots,n\} ((-1)^i cm_i > 0).$

Доказательство.

(1) Если $\sigma\in \overline{\mathrm{SBi}}_{>0}(V)$, то для любых $U\leq V$ выполнено $\sigma|_{U\times U}\in \overline{\mathrm{SBi}}_{>0}(U)$, и, значит, для любых $i\in\{1,\ldots,n\}$ выполнено $\sigma|_{\langle e_1,\ldots,e_i\rangle\times\langle e_1,\ldots,e_i\rangle}\in \overline{\mathrm{SBi}}_{>0}(\langle e_1,\ldots,e_i\rangle)$, поэтому $\sigma_{(e_1,\ldots,e_i),(e_1,\ldots,e_i)}\in \overline{\mathrm{SMat}}_{>0}(i,K)$. В итоге имеем $\forall\,i\in\{1,\ldots,n\}\ (cm_i>0)$.

Если $\forall\,i\in\{1,\ldots,n\}$ $(cm_i>0)$, то к e можно применить процесс ортогонализации Грама—Шмидта. В результате получим \widehat{e} , где $\widehat{e}\in \mathrm{OOB}(V,\sigma)$ и $\sigma_{\widehat{e},\widehat{e}}$ — диагон. матрица с числами $cm_1,\frac{cm_2}{cm_1},\ldots,\frac{cm_n}{cm_{n-1}}$ на диагонали; эти числа положительны, поэтому $\sigma\in\overline{\mathrm{SBi}}_{>0}(V)$.

- $(2) \ \sigma \in \overline{\mathrm{SBi}}_{<0}(V) \Leftrightarrow -\sigma \in \overline{\mathrm{SBi}}_{>0}(V) \Leftrightarrow \forall \, i \in \{1,\dots,n\} \, \big((-1)^i cm_i > 0 \big); \, \mathbf{B} \ \mathsf{последнем}$ переходе используются пункт (1) и то, что $\det \big(-\sigma_{(e_1,\dots,e_i),(e_1,\dots,e_i)} \big) = (-1)^i cm_i.$
- Положительный и отрицательный индексы инерции формы $\sigma\colon \mathrm{ind}_{>0}(\sigma) = \max\{\dim U\mid U\leq V\,\wedge\,\sigma|_{U\times U}\in\overline{\mathrm{SBi}}_{>0}(U)\}$ и $\mathrm{ind}_{<0}(\sigma) = \max\{\dim U\mid U\leq V\,\wedge\,\sigma|_{U\times U}\in\overline{\mathrm{SBi}}_{<0}(U)\}.$
- Закон инерции Сильвестра. В сделанных выше предположен. для любых $e\in \mathrm{OOB}(V,\sigma)$ имеем следующие факты:
- (1) $\operatorname{ind}_{>0}(\sigma) = |\{i \in \{1, \dots, n\} \mid \sigma(e_i, e_i) > 0\}|;$
- (2) $\operatorname{ind}_{<0}(\sigma) = |\{i \in \{1, \dots, n\} \mid \sigma(e_i, e_i) < 0\}|;$
- (3) $\operatorname{ind}_{>0}(\sigma) + \operatorname{ind}_{<0}(\sigma) = \operatorname{rk}(\sigma).$

Доказательство.

Используя перенумерацию базисных векторов, можно считать, что $\sigma(e_1,e_1)>0,\ldots,$ $\sigma(e_p,e_p)>0,$ $\sigma(e_{p+1},e_{p+1})<0,\ldots,\sigma(e_{p+q},e_{p+q})<0$ и $\sigma(e_{p+q+1},e_{p+q+1})=0,\ldots,$ $\sigma(e_n,e_n)=0,$ где $p,q\in\{0,\ldots,n\}$ и $p+q\leq n;$ тогда $p=|\{i\in\{1,\ldots,n\}\mid\sigma(e_i,e_i)>0\}|,$ $q=|\{i\in\{1,\ldots,n\}\mid\sigma(e_i,e_i)<0\}|$ и $p+q=\operatorname{rk}(\sigma_{e,e}).$

(1) Если $U \leq V$ и $\sigma|_{U \times U} \in \overline{\mathrm{SBi}}_{>0}(U)$, то $U \cap \langle e_{p+1}, \ldots, e_n \rangle = \{0\}$, и, значит, $\dim U = \dim(U + \langle e_{p+1}, \ldots, e_n \rangle) - \dim\langle e_{p+1}, \ldots, e_n \rangle \leq n - (n-p) = p$; в итоге $\mathrm{ind}_{>0}(\sigma) \leq p$. Далее, пусть $U = \langle e_1, \ldots, e_p \rangle$; тогда $\sigma|_{U \times U} \in \overline{\mathrm{SBi}}_{>0}(U)$, поэтому $\mathrm{ind}_{>0}(\sigma) \geq \dim U = p$.

(2) Равенство $\operatorname{ind}_{<0}(\sigma)=q$ доказывается так же, как равенство $\operatorname{ind}_{>0}(\sigma)=p$ в пункте (1).

(3) $\operatorname{ind}_{>0}(\sigma) + \operatorname{ind}_{<0}(\sigma) = p + q = \operatorname{rk}(\sigma_{e,e}) = \operatorname{rk}(\sigma).$

Из закона инерции Сильвестра следует, что числа $|\{i\in\{1,\dots,n\}\mid \sigma(e_i,e_i)>0\}|$ и $|\{i\in\{1,\dots,n\}\mid \sigma(e_i,e_i)<0\}|$, где $e\in\mathrm{OOB}(V,\sigma)$, не зависят от e.

Общий факт об изоморфизме между вект. пространствами с $\bar{}$ -билинейной формой: пусть K — поле с инволюцией, V — векторное пространство над K, $n=\dim V<\infty$, $\sigma\in\overline{\mathrm{Bi}}(V)$ и $e\in\mathrm{OB}(V)$; тогда из формулы $\forall\,v,w\in V\left(\sigma(v,w)=(v^e)^\mathsf{T}\cdot\sigma_{e,e}\cdot\overline{w^e}\right)$ следует, что $\binom{V\to K^n}{v\mapsto v^e}$ — изоморфизм между (V,σ) и $\left(K^n,\left((v,w)\mapsto v^\mathsf{T}\cdot\sigma_{e,e}\cdot\overline{w}\right)\right)$.

• Теорема о классификации пространств с формой. Пусть $K=\mathbb{R}$ или $K=\mathbb{C}$, V,Y — вект. пространства над K, $\dim V, \dim Y < \infty$, $\sigma \in \overline{\mathrm{SBi}}(V)$ и $\varphi \in \overline{\mathrm{SBi}}(Y)$; тогда $(V,\sigma) \cong (Y,\varphi) \Leftrightarrow \left(\dim V = \dim Y \, \wedge \, \operatorname{ind}_{>0}(\sigma) = \operatorname{ind}_{>0}(\varphi) \, \wedge \, \operatorname{ind}_{<0}(\sigma) = \operatorname{ind}_{<0}(\varphi)\right)$.

Доказательство.

Если $n=\dim V=\dim Y,\ p=\mathrm{ind}_{>0}(\sigma)=\mathrm{ind}_{>0}(\varphi)$ и $q=\mathrm{ind}_{<0}(\sigma)=\mathrm{ind}_{<0}(\varphi)$, то пусть $e\in\mathrm{OnOB}(V,\sigma)$ и $h\in\mathrm{OnOB}(Y,\varphi)$; тогда $\sigma_{e,e}$ и $\varphi_{h,h}$ — диагональные матрицы с числами $1,\ldots,1$ (p штук), $-1,\ldots,-1$ (q штук) и $0,\ldots,0$ (n-p-q штук) на диагонали (здесь используется закон инерции Сильвестра); из указанного выше общего факта получаем, что $(V,\sigma)\cong \left(K^n,\left((v,w)\mapsto\sum_{1\le i< p}v^i\overline{w^i}-\sum_{p+1\le i\le p+q}v^i\overline{w^i}\right)\right)\cong (Y,\varphi).$

Если $(V,\sigma)\cong (Y,\varphi)$, то $V\cong Y$ и $\dim V=\dim Y$. Пусть $a\in \mathrm{Iso}((V,\sigma),(Y,\varphi))$; тогда $\forall\,v\in V\ \big(\sigma(v,v)=\varphi(a(v),a(v))\big)$; отсюда следует, что $\mathrm{ind}_{>0}(\sigma)=\max\{\dim U\mid U\le V\land\land\sigma|_{U\times U}\in\overline{\mathrm{SBi}}_{>0}(U)\}=\max\{\dim a(U)\mid a(U)\le Y\land\varphi|_{a(U)\times a(U)}\in\overline{\mathrm{SBi}}_{>0}(a(U))\}=\max\{\dim X\mid X\le Y\land\varphi|_{X\times X}\in\overline{\mathrm{SBi}}_{>0}(X)\}=\mathrm{ind}_{>0}(\varphi)$; аналогично $\mathrm{ind}_{<0}(\sigma)=\mathrm{ind}_{<0}(\varphi)$.

ullet Сигнатура формы σ ($\sigma \in \overline{\mathrm{SBi}}(V)$): $(\mathrm{ind}_{>0}(\sigma),\mathrm{ind}_{<0}(\sigma))$ (или $\mathrm{ind}_{>0}(\sigma)-\mathrm{ind}_{<0}(\sigma)$). Исследование кривых и поверхностей второго порядка при помощи квадратичных форм.

Описание алгоритма исследования кривых и поверхностей второго порядка над $\mathbb R$ при помощи большой и малой квадратичных форм имеется в § 2 главы VIII учебника Д.В. Беклемишева «Курс аналитической геометрии и линейной алгебры».

§ 9.2 Предгильбертовы пространства

ullet Предгильбертово пространство — вект. простр.-во над $\mathbb R$ или $\mathbb C$ с положит. определенной формой. Обозначение формы: $(|\)$. Примеры: $(v|w)=v^{\mathsf T}\cdot\overline w,\ (f|g)=\int_{0}^{\beta}f(x)\overline{g(x)}\mathrm{d}x.$

Обозначения: $\flat = \flat_{(|)}$, $\sharp = \sharp^{(|)}$, $\mathrm{OOB}(V) = \mathrm{OOB}(V, (|))$, $\mathrm{OnOB}(V) = \mathrm{OnOB}(V, (|))$; обозн.-е матрицы Грама с σ сохраняется, то есть $(\sigma_{(v_1, \ldots, v_m), (w_1, \ldots, w_m)})_{j_1, j_2} = (v_{j_1}|w_{j_2})$.

Обозначения в квантовой механике (в них V — предгильберт. пр.-во над $\mathbb C$ и $v,w\in V$):

- $\star \ \langle v \, | \, w \rangle = (w \, | \, v) = \overline{(v \, | \, w)}$ (тогда $\big((v,w) \mapsto \langle v \, | \, w \rangle \big) \in \mathrm{Bi}(\overline{V},V,\mathbb{C})$);
- $\star \ \langle v \, | = lat v -$ бра-вектор, |w
 angle = w кет-вектор (тогда $(\langle v \, |)(|w
 angle) = \langle v \, |w
 angle$);
- $\star \ |v\rangle\langle w| = |v\rangle \otimes \langle w| = v \otimes \flat w \ (\text{тогда} \ \forall \, u \in V \ (u\langle v \, | \, w\rangle = |u\rangle\langle v \, | \, w\rangle = (|u\rangle\langle v|)(w)), \text{ а также}$ $\forall \, x \in V \ (\langle v \, | \, w\rangle \flat \, x = \langle v \, | \, w\rangle\langle x \, | = (\flat \, v) \circ (|w\rangle\langle x \, |))); \text{ если } \langle v \, | \, v\rangle = 1, \text{ то } \mathrm{proj}_{\mathbb{C}_{v}} = |v\rangle\langle v|.$
- Евклидово/унитарное пространство конечномерное вект. пространство над $\mathbb{R}/$ над \mathbb{C} с полож. опред. формой, то есть конечномерное предгильбертово простр.-во над $\mathbb{R}/$ над $\mathbb{C}.$

Пусть V — евклидово/унитарное пространство, $n=\dim V$ и $e,\widetilde{e}\in \mathrm{OnOB}(V)$; тогда $\sigma_{e,e}=\sigma_{\widetilde{e},\widetilde{e}}=\mathrm{id}_n$ и $(\mathrm{c}_{\widetilde{e}}^e)^{\mathrm{T}}\cdot \mathrm{c}_{\widetilde{e}}^e=\mathrm{id}_n$ ($\Rightarrow |\det\mathrm{c}_{\widetilde{e}}^e|=1$); таким образом, $\mathrm{c}_{\widetilde{e}}^e-$ ортогональная матрица $(\mathrm{c}_{\widetilde{e}}^e\in \mathrm{O}(n))$ /унитарная матрица $(\mathrm{c}_{\widetilde{e}}^e\in \mathrm{U}(n))$.

- ullet Норма: $\|v\|=\sqrt{(v\,|\,v)}.$ Утверждение: $v
 eq 0\Rightarrow \|v\|>0$ и $\|cv\|=\sqrt{(cv\,|\,cv)}=|c|\,\|v\|.$ Гильбертово простр.-во полное (относ.-но $\|\ \|$) предгильбертово пр.-во. Примеры: $\ell_{\mathbb{R}}^2,\,\ell_{\mathbb{C}}^2.$
- ullet Теорема о свойствах нормы. Пусть V предгильбертово пространство; тогда
- (1) $\forall \, v, w \in V \, ig(|(v \, | \, w)| \leq \|v\| \, \|w\| ig) \,$ (это неравенство Коши–Буняковского–Шварца);
- (2) $\forall\,v,w\in V\left(\|v+w\|\leq\|v\|+\|w\|\right)$ (это неравенство треугольника);
- (3) если $n=\dim V<\infty$, то для любых $e\in \mathrm{OnOB}(V)$ и $v\in V$ выполнено $v=\sum\limits_{1\leq i\leq n}(v\,|\,e_i)e_i$, а также $\|v\|^2=\sum\limits_{1\leq i\leq n}|(v\,|\,e_i)|^2$ (это равенство Парсеваля).

Доказательство.

(1) Доказательство при помощи матрицы Грама. Матрица $\sigma_{(v,w),(v,w)}$ необратима (если v и w зависимы) или положительно определена (если v и w независимы), поэтому имеем $\det \sigma_{(v,w),(v,w)} \geq 0$, то есть $\det \left(\frac{\|v\|^2}{\|v\|^2} \frac{(v|w)}{\|w\|^2} \right) \geq 0$, и, значит, $\|v\|^2 \|w\|^2 \geq |(v|w)|^2$.

- значит, $|(v|w)| = ||v|| |(e_1|w)| = ||v|| |(w^e)^1| \le ||v|| \sqrt{|(w^e)^1|^2 + |(w^e)^2|^2} = ||v|| ||w||.$
- (2) $\|v+w\|^2 = (v+w\|v+w) = \|v\|^2 + 2\operatorname{Re}((v\|w)) + \|w\|^2 \le \|v\|^2 + 2|(v\|w)| + \|w\|^2$; по пункту (1) получаем, что $\|v+w\|^2 \le \|v\|^2 + 2\|v\|\|w\| + \|w\|^2 = (\|v\| + \|w\|)^2$.
- (3) Для любых $i \in \{1, \dots, n\}$ выполнено $(v^e)^i = ((v^e)^1 e_1 + \dots + (v^e)^n e_n | e_i) = (v | e_i)$. Альтернативное доказательство: $v^e = (\sharp(\flat v))^e = \sigma^{e,e} \cdot ((\flat v)_e)^\mathsf{T} = ((v | e_1) \dots (v | e_n))^\mathsf{T}$.

Второе альтернативное доказательство: используем лемму об ортогональном проекторе для случая U=V и $e\in \mathrm{OnOB}(V)$ (отметим, что $\mathrm{proj}_V=\mathrm{id}_V$).

Следствие из того, что $v^e = \left((v \, | \, e_1) \, \dots \, (v \, | \, e_n) \right)^{\mathsf{T}} \colon \|v\|^2 = \sum_{1 \leq i \leq n} |(v^e)^i|^2 = \sum_{1 \leq i \leq n} |(v \, | \, e_i)|^2.$

Пусть $K=\mathbb{R}$ и V — евклидово пр.-во или $K=\mathbb{C}$ и V — унитарное пр.-во, $n=\dim V$ и $e\in \mathrm{OnOB}(V);$ тогда $\binom{V o K^n}{v\mapsto v^e}$ — изоморфизм между $(V,(\,|\,))$ и $\left(K^n,\left((v,w)\mapsto \sum\limits_{1\leq i\leq n}v^i\overline{w^i}\right)\right).$

Отметим факты (без доказательства) о гильбертовых пространствах (в них $K=\mathbb{R}$ или $K=\mathbb{C},\ V$ — сепарабельное гильбертово простр.-во над K и $\dim V=\infty$; сепарабельность означает, что в V существует счетное всюду плотное подмножество).

* Обозначим $\mathrm{OnOB}(V) = \{e \in \mathrm{Map}(\mathbb{N},V) \mid \forall j_1,j_2 \in \mathbb{N} \left((e_{j_1}|e_{j_2}) = \delta_{j_1,j_2} \right) \land \left(\text{замыкание} \right.$ подпространства $\langle \{e_1,e_2,\ldots\} \rangle \right) = V \}$; тогда $\mathrm{OnOB}(V) \neq \varnothing$.

 \star Пусть $e\in \mathrm{OnOB}(V)$; тогда $\forall\,v\in V$ $\Big(v=\sum\limits_{1\leq i<\infty}(v\,|\,e_i)e_i\,\wedge\,\|v\|^2=\sum\limits_{1\leq i<\infty}|(v\,|\,e_i)|^2\Big)$, а также $\Big(V o\ell_K^2\ v\mapsto ((v\,|\,e_1),(v\,|\,e_2),\ldots)\Big)$ — изоморфизм гильбертовых пространств между V и ℓ_K^2 .

 \mathcal{L} Далее V — предгильбертово пространство и U,U' < V.

• Метрика: $\mathrm{dist}(v,w) = \|v-w\|$ (V — метрич. пр.-во относит.-но dist). Расстояние между подмн.-вами: $\mathrm{dist}(X,Y) = \inf\{\mathrm{dist}(x,y) \mid x \in X \land y \in Y\}$. Теор. о расстоян. и проекциях.

Теорема о расстояниях и проекциях. В сделанных выше предположен. имеем след. факты:

- (1) $\forall v, v' \in V \left(\text{dist}(v + U, v' + U') = \text{dist}(v v', U + U') \right);$
- (2) если $\dim U < \infty$, то $\forall v \in V \left(\operatorname{dist}(v, U) = \operatorname{dist}(v, \operatorname{proj}_U(v)) \right)$;
- (3) если $\dim V < \infty$, то $\operatorname{proj}_U + \operatorname{proj}_{U^{\perp}} = \operatorname{id}_V$ и $\forall v \in V \left(\operatorname{dist}(v, U) = \|\operatorname{proj}_{U^{\perp}}(v)\|\right)$;
- (4) если $m=\dim U<\infty$, то для любых $e\in \mathrm{OnOB}(U)$ и $v\in V$ выполнено $\mathrm{proj}_U(v)=\sum\limits_{1\leq i\leq m}(v\,|e_i)e_i$, а также $\|v\|^2\geq \sum\limits_{1\leq i\leq m}|(v\,|e_i)|^2$ (это неравенство Бесселя).

Доказательство.

- (1) $\operatorname{dist}(v+U,v'+U') = \inf\{\|(v-u)-(v'+u')\| \mid u \in U \land u' \in U'\} = \inf\{\|(v-v')-w\| \mid w \in U+U'\} = \operatorname{dist}(v-v',U+U').$
- (2) Пусть $u \in U$; тогда $(v \mathrm{proj}_U(v)) \perp (\mathrm{proj}_U(v) u)$ и, значит, $\|v u\|^2 = \|v \mathrm{proj}_U(v)\|^2 + \|\mathrm{proj}_U(v) u\|^2$; это выражение минимально, если и только если $u = \mathrm{proj}_U(v)$. В итоге имеем $\mathrm{dist}(v, U) = \inf\{\|v u\| \mid u \in U\} = \mathrm{dist}(v, \mathrm{proj}_U(v))$.
- (3) Так как $v=(v-\operatorname{proj}_U(v))+\operatorname{proj}_U(v)$, где $v-\operatorname{proj}_U(v)\in U^\perp$ и $\operatorname{proj}_U(v)\in U=U^{\perp\perp}$, получаем, что $v-\operatorname{proj}_U(v)=\operatorname{proj}_{U^\perp}(v)$ и $\operatorname{dist}(v,U)=\|v-\operatorname{proj}_U(v)\|=\|\operatorname{proj}_{U^\perp}(v)\|$.
- (4) Используем лемму об ортогональном проекторе. Далее, $\mathrm{proj}_U(v) \perp (v \mathrm{proj}_U(v))$ и, значит, $\|v\|^2 = \|\mathrm{proj}_U(v)\|^2 + \|v \mathrm{proj}_U(v)\|^2 \geq \|\mathrm{proj}_U(v)\|^2 = \sum_{1 \leq i \leq m} |(v|e_i)|^2$.

Дополнительные факты (без док.-ва) о гильберт. пр.-вах (в них V — гильберт. пр.-во):

- \star форма (|) топологически невырождена (это теорема Рисса-Фреше);
- \star пусть $U\leq V$ и U замкнуто; тогда U гильбертово пространство относит.-но $(\,|\,)|_{U\times U}$, $U=U^{\perp\perp}$ и $V=U\oplus U^{\perp}$, а также для V и U выполнены пункты (2), (3), (4) теоремы о расстояниях и проекциях (без требований $\dim U<\infty$ и $\dim V<\infty$).
- ullet Метод наименьших квадратов: замена системы $a\cdot v=y$ ($a\in \mathrm{Mat}(p,n,\mathbb{R})$ и $\mathrm{rk}(a)=n$) на систему $a\cdot v=\mathrm{proj}_X(y)$, где $X=\{a\cdot v\mid v\in \mathbb{R}^n\}$ (тогда $\exists!\ v\in \mathbb{R}^n$ ($a\cdot v=\mathrm{proj}_X(y)$)).

Далее V — предгильбертово пространство над \mathbb{R} .

- Угол между векторами $(v,w \in V \setminus \{0\})$: $\angle(v,w) = \arccos \frac{(v \mid w)}{\|v\| \|w\|}$. Угол между вектором и подпространством $(v \in V \setminus \{0\}, \ U \leq V, \ U \neq \{0\}, \ \dim U < \infty)$: $\angle(v,U) = \arccos \frac{\|\operatorname{proj}_U(v)\|}{\|v\|}$. Корректность определений углов: $-\|v\| \|w\| \leq (v \mid w) \leq \|v\| \|w\|$ и $0 \leq \|\operatorname{proj}_U(v)\| \leq \|v\|$. Формула для скалярного произведения: $(v \mid w) = \|v\| \|w\| \cos \angle(v,w)$.
- Теорема косинусов: $\|v-w\|^2 = \|v\|^2 + \|w\|^2 2\|v\|\|w\| \cos \angle(v,w)$.

 Псевдоевклидово/псевдоунитарное пространство сигнатуры (p,q) конечномерное вект.
- Псевдоевклидово/псевдоунитарное пространство сигнатуры (p,q) конечномерное вект простр.-во над $\mathbb{R}/$ над \mathbb{C} с невырожд. $\overline{}$ -симметричн. $\overline{}$ -билинейн. формой сигнатуры (p,q).

Пусть V — псевдоевклидово/псевдоунитарное пр.-во сигнатуры (p,q) и $e,\widetilde{e}\in \mathrm{OnOB}(V);$ тогда $\sigma_{e,e}=\sigma_{\widetilde{e},\widetilde{e}}=\left(egin{array}{c} \mathrm{id}_p & 0 \\ 0 & -\mathrm{id}_q \end{array}\right)$ и $\left(\mathrm{c}_{\widetilde{e}}^e\right)^{\mathsf{T}}\cdot\left(egin{array}{c} \mathrm{id}_p & 0 \\ 0 & -\mathrm{id}_q \end{array}\right)\cdot\overline{\mathrm{c}_{\widetilde{e}}^e}=\left(egin{array}{c} \mathrm{id}_p & 0 \\ 0 & -\mathrm{id}_q \end{array}\right)\left(\Rightarrow |\det\mathrm{c}_{\widetilde{e}}^e|=1\right).$

Пусть $K=\mathbb{R}$ и V — псевдоевклидово пространство сигнатуры (p,q) или $K=\mathbb{C}$ и V — псевдоунитарное пространство сигнатуры (p,q), n=p+q и $e\in \mathrm{OnOB}(V)$; тогда $\binom{V\to K^n}{v\mapsto v^e}$ — изоморфизм между $(V,(\,|\,))$ и $\binom{K^n,((v,w)\mapsto \sum\limits_{1\leq i\leq p}v^i\overline{w^i}-\sum\limits_{p+1\leq i\leq n}v^i\overline{w^i})}{p+1\leq i\leq n}$ (отметим, что $v^e=\sigma^{e,e}\cdot((bv)_e)^{\mathrm{T}}=((v\,|\,e_1)\,\ldots\,(v\,|\,e_p)-(v\,|\,e_{p+1})\,\ldots\,-(v\,|\,e_n))^{\mathrm{T}}).$

§ 9.3 Ориентация, объем, векторное произведение

Далее V — векторное пространство над $\mathbb R$ и $n=\dim V<\infty$.

- ullet Отн.-е одинаковой ориентированности $(e,\widetilde{e}\in \mathrm{OB}(V))$: $e\stackrel{\mathrm{or}}{\sim}\widetilde{e}\Leftrightarrow \det c_{\widetilde{e}}^{\widetilde{e}}>0$. Утверждение: $\stackrel{\mathrm{or}}{\sim}$ отношение эквивалентности на множ.-ве $\mathrm{OB}(V)$ и, если $V\neq \{0\}$, то $|\mathrm{OB}(V)/\stackrel{\mathrm{or}}{\sim}|=2$.
- * Рефлексивность: $\det c_e^e = 1$. Симметричность: $\det c_{\widetilde{e}}^e = \frac{1}{\det c_{\widetilde{e}}^e}$. Транзитивность: $\det c_{\widetilde{e}}^{\widetilde{e}} = \det c_{\widetilde{e}}^{\widetilde{e}} \cdot \det c_{e}^{\widetilde{e}}$. Кол.-во классов: $e \in \mathrm{OB}(V)$; тогда $\mathrm{OB}(V)/^{\mathrm{or}} = \{[e]_{\mathrm{or}}, [(-e_1, e_2, \dots, e_n)]_{\mathrm{or}}\}$.
- Альтернативное опр.-е: $e \stackrel{\text{or}}{\sim} \widetilde{e} \Leftrightarrow (e \text{ и } \widetilde{e} \text{ можно соединить непрерывной кривой в } \mathrm{OB}(V)).$
- Ориентация пр.-ва V выбор эл.-та $OB_{>0}(V)$ мн.-ва $OB(V)/\stackrel{\text{or}}{\sim}$. Знак набора векторов:

 $\mathrm{sign}(v_1,\dots,v_n) = \begin{cases} 1, \ (v_1,\dots,v_n) \in \mathrm{OB}_{>0}(V) \\ -1, \ (v_1,\dots,v_n) \in \mathrm{OB}_{<0}(V). \ \text{Теор. о знаке базиса и формах объема.} \\ 0, \ (v_1,\dots,v_n) \notin \mathrm{OB}(V) \end{cases}$

Теорема о знаке базиса и формах объема. Пусть V — векторное простр.-во с ориентацией и $e \in \mathrm{OB}(V)$; тогда для любых $\widetilde{e} \in \mathrm{OB}(V)$ выполнено $\mathrm{sign}(\widetilde{e}) \operatorname{vol}^{\widetilde{e}} = |\det \mathrm{c}^{\widetilde{e}}_e| \operatorname{sign}(e) \operatorname{vol}^e$, а также мн.-во $\mathrm{VF}_{>0}(V)$, равное $\mathbb{R}_{>0} \operatorname{sign}(e) \operatorname{vol}^e$, не зависит от выбора упорядоч. базиса e. Доказательство.

По теореме о формах объема $\operatorname{vol}^{\widetilde{e}} = \det \operatorname{c}^{\widetilde{e}}_{\widetilde{e}} \operatorname{vol}^{e};$ кроме того, $\operatorname{sign}(\widetilde{e}) = \operatorname{sign}(\det \operatorname{c}^{\widetilde{e}}_{\widetilde{e}}) \operatorname{sign}(e).$ В итоге получаем, что $\operatorname{sign}(\widetilde{e}) \operatorname{vol}^{\widetilde{e}} = \operatorname{sign}(\det \operatorname{c}^{\widetilde{e}}_{\widetilde{e}}) \det \operatorname{c}^{\widetilde{e}}_{\widetilde{e}} \operatorname{sign}(e) \operatorname{vol}^{e} = |\det \operatorname{c}^{\widetilde{e}}_{\widetilde{e}}| \operatorname{sign}(e) \operatorname{vol}^{e}.$ Далее, $\mathbb{R}_{>0} \operatorname{sign}(\widetilde{e}) \operatorname{vol}^{\widetilde{e}} = \{c \mid \det \operatorname{c}^{\widetilde{e}}_{\widetilde{e}}| \operatorname{sign}(e) \operatorname{vol}^{e} \mid c \in \mathbb{R}_{>0}\} = \mathbb{R}_{>0} \operatorname{sign}(e) \operatorname{vol}^{e}.$

Далее V — псевдоевклидово пространство сигнатуры (p,q) с ориентацией и n=p+q.

• Каноническая форма объема в V: $\operatorname{vol} = \operatorname{sign}(e) \sqrt{|\det \sigma_{e,e}|} \operatorname{vol}^e$, где $e \in \operatorname{OB}(V)$ (далее доказана незав.-сть от e); если $e \in \operatorname{OnOB}_{>0}(V)$ (= $\operatorname{OnOB}(V) \cap \operatorname{OB}_{>0}(V)$), то $\operatorname{vol} = \operatorname{vol}^e$.

- Корректность определения объема. Объем в координатах $(e \in \mathrm{OB}(V))$: $\mathrm{vol}(v_1,\dots,v_n) = \mathrm{sign}(e) \sqrt{|\det \sigma_{e,e}|} \sum_{1 \le j_1,\dots,j_n \le n} \varepsilon_{j_1,\dots,j_n} v_1^{j_1} \cdot \dots \cdot v_n^{j_n}$. Лемма об объеме и матрице Грама.
- $\star \; \mathrm{sign}(\widetilde{e}) \sqrt{|\det \sigma_{\widetilde{e},\widetilde{e}}|} \, \mathrm{vol}^{\widetilde{e}} = |\det \mathbf{c}_{e}^{\widetilde{e}}| \, \mathrm{sign}(e) \sqrt{(\det \mathbf{c}_{\widetilde{e}}^{e})^{2} |\det \sigma_{e,e}|} \, \mathrm{vol}^{e} = \mathrm{sign}(e) \sqrt{|\det \sigma_{e,e}|} \, \mathrm{vol}^{e}.$

Пусть $e \in \mathrm{OB}(V)$ и $\widehat{e} \in \mathrm{OnOB}(V)$; тогда $\sigma_{e,e} = (c_e^{\widehat{e}})^\mathsf{T} \cdot \begin{pmatrix} \mathrm{id}_p & 0 \\ 0 & -\mathrm{id}_q \end{pmatrix} \cdot c_e^{\widehat{e}}$ и, значит, $\det \sigma_{e,e} = (-1)^q (\det c_e^{\widehat{e}})^2$, поэтому $\mathrm{sign}(\det \sigma_{e,e}) = (-1)^q$ и $|\det \sigma_{e,e}| = (-1)^q \det \sigma_{e,e}$.

Альтернативное определ.-е объема: $\operatorname{vol} = \operatorname{vol}^e$, где $e \in \operatorname{OnOB}_{>0}(V)$. Корректность: если $e, \widetilde{e} \in \operatorname{OnOB}_{>0}(V)$, то $\det \operatorname{c}_{\widetilde{e}}^{\widetilde{e}} = 1$ (так как $|\det \operatorname{c}_{\widetilde{e}}^{\widetilde{e}}| = 1$ и $\det \operatorname{c}_{\widetilde{e}}^{\widetilde{e}} > 0$) и, значит, $\operatorname{vol}^{\widetilde{e}} = \operatorname{vol}^e$. Следствие из альтернативного определения: пусть $e \in \operatorname{OB}(V)$ и $\widehat{e} \in \operatorname{OnOB}_{>0}(V)$; тогда $\operatorname{vol} = \operatorname{vol}^{\widehat{e}} = \det \operatorname{c}_{\widehat{e}}^{\widehat{e}} \operatorname{vol}^e = \operatorname{sign}(\det \operatorname{c}_{\widehat{e}}^{\widehat{e}}) |\det \operatorname{c}_{\widehat{e}}^{\widehat{e}}| \operatorname{vol}^e = \operatorname{sign}(e) \sqrt{|\det \sigma_{e,e}|} \operatorname{vol}^e$.

Лемма об объеме и матрице Грама. В сделанных выше предположениях для любых $\overline{v_1,\dots,v_n}\in V$ имеем следующие факты:

- (1) $\operatorname{vol}(v_1, \dots, v_n) = \operatorname{sign}(v_1, \dots, v_n) \sqrt{|\det \sigma_{(v_1, \dots, v_n), (v_1, \dots, v_n)}|};$
- (2) $\forall w_1, \dots, w_n \in V \left(\text{vol}(v_1, \dots, v_n) \cdot \text{vol}(w_1, \dots, w_n) = (-1)^q \det \sigma_{(v_1, \dots, v_n), (w_1, \dots, w_n)} \right).$

Доказательство.

- (1) Если векторы v_1,\dots,v_n зависимы, то требуемая формула верна, так как $0=0\cdot 0$; иначе $e=(v_1,\dots,v_n)\in \mathrm{OB}(V)$; в сист. координат, связанной с e, имеем $\mathrm{vol}(v_1,\dots,v_n)=\mathrm{sign}(e)\sqrt{|\det\sigma_{e,e}|}\,\mathrm{vol}^e(v_1,\dots,v_n)=\mathrm{sign}(v_1,\dots,v_n)\sqrt{|\det\sigma_{(v_1,\dots,v_n),(v_1,\dots,v_n)}|}.$
- (2) Пусть $e \in \mathrm{OB}(V)$; тогда $\mathrm{vol}(v_1,\ldots,v_n) \cdot \mathrm{vol}(w_1,\ldots,w_n) = |\det \sigma_{e,e}| \det \left(v_1^e \ldots v_n^e\right) \cdot \mathrm{vol}(w_1,\ldots,w_n)$
- $\cdot \det(w_1^e \dots w_n^e) = (-1)^q \det((v_1^e \dots v_n^e)^\mathsf{T} \cdot \sigma_{e,e} \cdot (w_1^e \dots w_n^e)) = (-1)^q \det(v_1,\dots,v_n), (w_1,\dots,w_n).$

Из доказанной леммы следует, что в случае попарно ортогональных векторов v_1,\dots,v_n имеем $\operatorname{vol}(v_1,\dots,v_n)=\operatorname{sign}(v_1,\dots,v_n)\sqrt{|(v_1\,|\,v_1)|}\cdot\dots\cdot\sqrt{|(v_n\,|\,v_n)|}.$

Далее V — евклидово пространство и $m \in \mathbb{N}_0$.

- ullet Неотрицательный объем в $V\colon |\mathrm{vol}|_m(v_1,\dots,v_m)=|\mathrm{vol}(v_1,\dots,v_m)|$ в $\langle v_1,\dots,v_m \rangle$, если v_1,\dots,v_m независимы ($|\mathrm{vol}|$ не зависит от ориентации); иначе $|\mathrm{vol}|_m(v_1,\dots,v_m)=0$.
- ullet Теорема о неотрицательном объеме в евклидовом пространстве. В сделанных выше предположениях для любых $v_1,\dots,v_m\in V$ имеем следующие факты:
- (1) $|\text{vol}|_m(v_1,\ldots,v_m) = \sqrt{\det \sigma_{(v_1,\ldots,v_m),(v_1,\ldots,v_m)}};$
- (2) если $m \geq 1$ и $\widehat{v}_m = v_m^{\cdot} \mathrm{proj}_{\langle v_1, \dots, v_{m-1} \rangle}(v_m) = \mathrm{proj}_{\langle v_1, \dots, v_{m-1} \rangle \perp}(v_m)$, то $|\mathrm{vol}|_m(v_1, \dots, v_m) = |\mathrm{vol}|_{m-1}(v_1, \dots, v_{m-1}) \cdot \|\widehat{v}_m\|$.

Доказательство.

- (1) Если векторы v_1,\dots,v_m зависимы, то требуемая формула верна, так как 0=0; иначе по предыдущей лемме $|\mathrm{vol}|_m(v_1,\dots,v_m)=|\mathrm{vol}(v_1,\dots,v_m)|=\sqrt{\det\sigma_{(v_1,\dots,v_m),(v_1,\dots,v_m)}}$ $(\sigma_{(v_1,\dots,v_m),(v_1,\dots,v_m)}\in\mathrm{SMat}_{>0}(m,\mathbb{R}),$ поэтому $\det\sigma_{(v_1,\dots,v_m),(v_1,\dots,v_m)}>0).$ (2) Из леммы об определителе матрицы Грама следует, что $\det\sigma_{(v_1,\dots,v_m),(v_1,\dots,v_m)}=$
- (2) Из леммы об определителе матрицы Грама следует, что $\det \sigma_{(v_1,...,v_m),(v_1,...,v_m)} = \det \sigma_{(v_1,...,v_{m-1}),(v_1,...,v_{m-1})} \cdot \|\widehat{v}_m\|^2$; извлекая корень, получаем требуемую формулу.

Далее V — псевдоевклидово простр.-во сигнатуры (p,q) с ориентацией и $n=p+q\geq 1$.

• Векторное произведение в $V\colon v_1\times\ldots\times v_{n-1}=\sharp \big(v_n\mapsto \operatorname{vol}(v_1,\ldots,v_n)\big);$ эквивалентное св.-во, определ. вектор $v_1\times\ldots\times v_{n-1}\colon \forall\, v_n\in V\, \big((v_1\times\ldots\times v_{n-1}\,|\,v_n)=\operatorname{vol}(v_1,\ldots,v_n)\big).$

Легко видеть, что
$$egin{pmatrix} V^{n-1} \to V \\ (v_1,\dots,v_{n-1}) \mapsto v_1 \times \dots \times v_{n-1} \end{pmatrix}$$
 — антисимм. полилин. оператор.

• Векторное произведение в координатах $(e \in \mathrm{OB}(V), i \in \{1, \dots, n\})$: $(v_1 \times \dots \times v_{n-1})^i = = \mathrm{sign}(e) \sqrt{|\det \sigma_{e,e}|} \sum_{1 \leq j_1, \dots, j_n \leq n} \sigma^{i,j_n} \varepsilon_{j_1, \dots, j_n} v_1^{j_1} \cdot \dots \cdot v_{n-1}^{j_{n-1}}$. Теорема о вект. произведении.

$$\star (v_1 \times \ldots \times v_{n-1})^i = \sum_{1 \le j_n \le n} \sigma^{i,j_n} (v_n \mapsto \operatorname{vol}(v_1,\ldots,v_n))_{j_n} = \sum_{1 \le j_n \le n} \sigma^{i,j_n} \operatorname{vol}(v_1,\ldots,v_{n-1},e_{j_n}) = \\ = \operatorname{sign}(e) \sqrt{|\det \sigma_{e,e}|} \sum_{1 \le j_n \le n} \sigma^{i,j_n} \varepsilon_{j_1,\ldots,j_n} v_1^{j_1} \cdot \ldots \cdot v_{n-1}^{j_{n-1}}.$$

Теорема о векторном произведении. В сделанных выше предположениях для любых $v_1,\dots,v_{n-1}\in V$ имеем следующие факты:

- $(1) \ v_1 \times \ldots \times v_{n-1} \in \langle v_1, \ldots, v_{n-1} \rangle^\perp \ \text{if} \ v_1 \times \ldots \times v_{n-1} \neq 0 \ \Leftrightarrow \ \big(v_1, \ldots, v_{n-1} \ \text{независимы}\big);$
- (2) если q=0, то $\|v_1 \times \ldots \times v_{n-1}\| = |\mathrm{vol}|_{n-1}(v_1,\ldots,v_{n-1})$ и, если векторы v_1,\ldots,v_{n-1} независимы, то $(v_1,\ldots,v_{n-1},v_1 \times \ldots \times v_{n-1}) \in \mathrm{OB}_{>0}(V)$;
- (3) для любых $w_1,\dots,w_{n-1}\in V$ выполнено $(v_1\times\dots\times v_{n-1}\,|\,w_1\times\dots\times w_{n-1})==(-1)^q\det\sigma_{(v_1,\dots,v_{n-1}),(w_1,\dots,w_{n-1})};$
- (4) если n=3 и q=0, то для любых $u,v,w\in V$ выполнено $(u\times v)\times w=(u\,|\,w)v-(v\,|\,w)u$ и $(u\times v)\times w+(v\times w)\times u+(w\times u)\times v=0.$

Доказательство.

В доказательстве пунктов (1), (2), (3) обозначим $v_n = v_1 \times \ldots \times v_{n-1}$.

- $\begin{array}{l} (1) \; \forall \, i \in \{1,\ldots,n-1\} \, \big((v_n \, | \, v_i) = \operatorname{vol}(v_1,\ldots,v_{n-1},v_i) = 0 \big), \; \text{поэтому} \; v_n \in \langle v_1,\ldots,v_{n-1}\rangle^\perp; \\ \text{далее,} \; v_n \neq 0 \; \Leftrightarrow \; \exists \, v \in V \, \big(\operatorname{vol}(v_1,\ldots,v_{n-1},v) \neq 0 \big). \; \text{Если} \; \exists \, v \in V \, \big(\operatorname{vol}(v_1,\ldots,v_{n-1},v) \neq 0 \big), \\ \text{то} \; v_1,\ldots,v_{n-1} \; \text{независимы} \; \big(\text{иначе} \; \forall \, v \in V \, \big(\operatorname{vol}(v_1,\ldots,v_{n-1},v) = 0 \big) \big). \; \text{Если} \; v_1,\ldots,v_{n-1} \\ \text{независимы,} \; \text{то} \; \operatorname{пусть} \; v \in V \; \mathsf{u} \; \big(v_1,\ldots,v_{n-1},v \big) \in \mathrm{OB}(V); \; \text{тогда} \; \operatorname{vol}(v_1,\ldots,v_{n-1},v) \neq 0. \end{array}$
- (2) Если v_1,\dots,v_{n-1} зависимы, то $\|v_n\|=0=|\mathrm{vol}|_{n-1}(v_1,\dots,v_{n-1})$. Пусть v_1,\dots,v_{n-1} независимы; тогда $v_n\neq 0$ и по пункту (2) теоремы о неотрицат. объеме в евклид. пр.-ве имеем $\|v_n\|^2=(v_1\times\dots\times v_{n-1}\,|\,v_n)=|\mathrm{vol}|_n(v_1,\dots,v_n)=|\mathrm{vol}|_{n-1}(v_1,\dots,v_{n-1})\cdot\|v_n\|$ (здесь $\widehat{v}_n=v_n-\mathrm{proj}_{\langle v_1,\dots,v_{n-1}\rangle}(v_n)=v_n$); сокращая на $\|v_n\|$, получаем, что $\|v_n\|=|\mathrm{vol}|_{n-1}(v_1,\dots,v_{n-1})$; кроме того, $\mathrm{vol}(v_1,\dots,v_n)=\|v_n\|^2>0 \Rightarrow (v_1,\dots,v_n)\in\mathrm{OB}_{>0}(V)$.

(3) Обозначим $w_n=w_1\times\ldots\times w_{n-1}$ и $s=\sigma_{(v_1,\ldots,v_{n-1}),(w_1,\ldots,w_{n-1})}.$ Пусть $(v_n\,|\,w_n)=0$; докажем, что $s\notin \mathrm{GL}(n-1,\mathbb{R})$ (значит, требуемая формула верна, так как $0=(-1)^q\cdot 0).$ Если v_1,\ldots,v_{n-1} или w_1,\ldots,w_{n-1} зависимы, то свойство $s\notin \mathrm{GL}(n-1,\mathbb{R})$ доказывается так же, как в теореме о базисах и невырожд. формах. Если v_1,\ldots,v_{n-1} и w_1,\ldots,w_{n-1} независимы, то $v_n\neq 0, \ w_n\neq 0$ и $w_n\in \langle v_n\rangle^\perp=\langle v_1,\ldots,v_{n-1}\rangle,$ поэтому $w_n=c_1v_1+\ldots+c_{n-1}v_{n-1},$ где $(c_1\ldots c_{n-1})\in \mathbb{R}_{n-1}\setminus\{0\},$ и, значит, $\forall\, j\in\{1,\ldots,n-1\}$ $(c_1(v_1\,|w_j)+\ldots+c_{n-1}(v_{n-1}\,|w_j)=0);$ итак, $(c_1\ldots c_{n-1})\cdot s=0,$ поэтому $s\notin \mathrm{GL}(n-1,\mathbb{R}).$ Пусть $(v_n\,|\,w_n)\neq 0;$ по пункту (2) леммы об объеме и матрице Грама имеем $(v_n\,|\,w_n)^2=$

Пусть $(v_n\,|\,w_n) \neq 0$; по пункту (2) леммы об объеме и матрице Грама имеем $(v_n\,|\,w_n)^2 = (v_1 \times \ldots \times v_{n-1}\,|\,w_n) \cdot (w_1 \times \ldots \times w_{n-1}\,|\,v_n) = \operatorname{vol}(v_1,\ldots,v_{n-1},w_n) \cdot \operatorname{vol}(w_1,\ldots,w_{n-1},v_n) = (-1)^q \det \sigma_{(v_1,\ldots,v_{n-1},w_n),(w_1,\ldots,w_{n-1},v_n)} = (-1)^q \det \begin{pmatrix} s & 0 \\ 0 & (v_n\,|\,w_n) \end{pmatrix} = (-1)^q \det s \, (v_n\,|\,w_n);$ сокращая на $(v_n\,|\,w_n)$, получаем, что $(v_n\,|\,w_n) = (-1)^q \det s$.

(4) Для любых $x \in V$ выполнено $((u \times v) \times w \, | \, x) = \operatorname{vol}(u \times v, w, x) = \operatorname{vol}(w, x, u \times v) = = (w \times x \, | \, u \times v) = \det \left(\frac{(w \, | \, u)}{(x \, | \, u)} \frac{(w \, | \, v)}{(x \, | \, u)} \right) = (u \, | \, w)(v \, | \, x) - (v \, | \, w)(u \, | \, x) = ((u \, | \, w)v - (v \, | \, w)u \, | \, x),$ поэтому $\flat \left((u \times v) \times w \right) = \flat \left((u \, | \, w)v - (v \, | \, w)u \right)$ и, значит, $(u \times v) \times w = (u \, | \, w)v - (v \, | \, w)u$. Используя доказанную формулу, получаем, что $(u \times v) \times w + (v \times w) \times u + (w \times u) \times v = = ((u \, | \, w)v - (v \, | \, w)u) + ((v \, | \, u)v - (w \, | \, u)v) + ((w \, | \, v)u - (u \, | \, v)w) = 0.$

и псевдовекторов (без выбора ориентации в V). Обозначим $\frac{t}{V}\mathbb{R}=\{c\in\operatorname{Func}(\operatorname{OB}(V),\mathbb{R})\mid\forall e,\widetilde{e}\in\operatorname{OB}(V)\left(c(\widetilde{e})=\operatorname{sign}(\det c_{\widetilde{e}}^{\widetilde{e}})\,c(e)\right)\}$ и $\frac{t}{V}V=\{v\in\operatorname{Func}(\operatorname{OB}(V),V)\mid\forall e,\widetilde{e}\in\operatorname{OB}(V)\mid(v(\widetilde{e})=\operatorname{sign}(\det c_{\widetilde{e}}^{\widetilde{e}})\,v(e))\}$ — простр.-ва псевдоскаляров и псевдовекторов над V соответ.; пусть $v_1,\ldots,v_n\in V$; тогда $(e\mapsto\sqrt{|\det\sigma_{e,e}|}\sum_{1\leq j_1,\ldots,j_n\leq n}\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\cdot\ldots\cdot v_n^{j_n})\in\frac{t}{V}\mathbb{R}$ (это объем)

В физике принят подход к объему и векторному произведению на языке псевдоскаляров

и $\left(e\mapsto\sqrt{|\det\sigma_{e,e}|}\sum\limits_{1\leq i,j_1,\ldots,j_n\leq n}\sigma^{i,j_n}\varepsilon_{j_1,\ldots,j_n}v_1^{j_1}\cdot\ldots\cdot v_{n-1}^{j_{n-1}}e_i\right)\in \frac{\pm}{V}V$ (это вект. произвед.-е).

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□