Natural Language Processing

The Transformer architecture

Marco Kuhlmann

Department of Computer and Information Science

Attention is all you need

- Recurrent neural networks implement a sequential model of computation in that it processes sequence elements one by one.
- In contrast, attention facilitates direct access to all elements, independently of sequence length.
- The **Transformer** is an encoder–decoder architecture that drops recurrent neural networks and exclusively uses attention.

can be parallelised

Example translation

Multi-head attention in the encoder

Multi-head attention in the encoder

Multi-head attention in the decoder

Multi-head attention in the decoder

Cross-attention

Cross-attention

Position-wise feed-forward network

Parameters are shared across positions, but not across blocks.

Normalise-and-add wrapper

Further details

- Token representations are defined on word pieces computed using byte-pair encoding.
- Embeddings are augmented by position encodings. approximate encoding of absolute positions
- Training the model uses several tricks related to batching, masking, loss, and regularisation.
 - for details and PyTorch code, see the 'Annotated Transformer'

Translation performance

	BLEU	FLOPs
GNMT + RL (Wu et al., 2016)	39.92	$1.4 \cdot 10^{20}$
ConvS2S (Gehring et al., 2017)	40.46	$1.5 \cdot 10^{20}$
MoE (Shazeer et al., 2017)	40.56	$1.2\cdot 10^{20}$
Transformer (big model)	41.80	$2.4 \cdot 10^{19}$