1. Introducción

En este documento pretendemos analizar la función 91 de McCarthy a través de una generalización de la misma. La idea de este enfoque es abstraer las constantes por variables y luego razonar analíticamente sobre esta función generalizada con el objeto de poder encontrar expresiones cerradas para el valor de la función y para la cantidad de llamadas recursivas efectuadas para un argumento dado.

2. La función 91 de McCarthy

La función 91 de McCarthy se define matemáticamente como sigue:

$$M_{91}(n) = \begin{cases} n-10 & \text{si } n > 100 \\ M_{91}(M_{91}(n+11)) & \text{en otro caso} \end{cases}$$

Otra forma alternativa (y más concisa) de expresarla es así:

$$M_{91}(n) = (n-10) \cdot \mathbb{I}\{n > 100\} + M_{91}^2(n+11) \cdot \mathbb{I}\{n \le 100\}$$

En esta forma.

- lacksquare $\mathbb{I}\{p\}$ es un indicador booleano que vale 1 si y sólo si el predicado p es verdadero, y
- $\label{eq:Mg1} \blacksquare \ M_{91}^{\mathfrak{i}}(\mathfrak{n}) = \underbrace{M_{91}(M_{91}(\ldots M_{91}(\mathfrak{n})}_{\mathfrak{i} \ \text{veces}}\ldots)).$

2.1. Generalización

Podemos obtener una versión generalizada $M = M_{m,k,s,e}$ de la función 91 de McCarthy abstrayendo cada constante en una variable distinta:

$$M(n) = (n - s) \cdot \mathbb{I}\{n > m\} + M^{e}(n + k) \cdot \mathbb{I}\{n < m\}$$

Es claro entonces que M_{91} es un caso particular de M, dado que podemos generarla mediante la instanciación $M_{91} = M_{100,11,10,2}$.

3. Análisis

3.1. La relación entre k, s y e

El primer interrogante que surge es bajo qué condiciones la función M está bien definida. Esto es, cómo debe ser la relación entre las distintas variables de forma tal que M(n) tenga un valor numérico y no haya divergencia computacional al intentar calcular dicho valor (hecho que notaremos con el símbolo \bot). Para ello probaremos el siguiente resultado:

Teorema 1. Si $k \le (e-1) \cdot s$, se tiene que $M(n) = \bot$ para cualquier $n \le m$.

Demostración. Sea $n \le m$. Debe existir entonces un $c \in \mathbb{N}$ tal que

$$M(n) = M^{c}(m - k + i)$$

con $1 \le i \le k$. Esto corresponde al hecho sumar sucesivamente k al argumento hasta alcanzar el máximo valor posible antes de hacer el primer decremento por s. Desplegando la invocación más interna, que representa sumar una vez más k y agregar otras e llamadas, se tiene

$$M^{c}(m-k+i) = M^{c+e-1}(m+i)$$

Sea $e_0 = \min \{ a \in \mathbb{N} / m + i - as \le m \}$. Entonces,

$$\begin{array}{lcl} M^c(m-k+i) & = & M^{c+\varepsilon-1}(m+i) \\ & = & M^{c+\varepsilon-1-\varepsilon_0}(m+i-\varepsilon_0 s) \end{array}$$

Como sabemos que $k \le (e-1) \cdot s$, $m+i \le m+k \le m+(e-1) \cdot s$. Substrayendo $(e-1) \cdot s$ de ambos extremos, tenemos que $m+i-(e-1) \cdot s \le m$. De esto sigue que $e_0 \le e-1$, pues por definición es el menor número natural con dichas propiedades. Luego,

$$c+e-1-e_0 \geq c+e-1-(e-1)=c$$

El mismo razonamiento aplica para el argumento $m+i-e_0s \le m$. De esto se concluye que la cantidad de llamadas a M es creciente, con lo cual $M(n) = \bot$.

La interpretación fundamental de este resultado es que k debe valer por lo menos $(e-1)\cdot s+1$ para que M esté bien definida. En el caso de M_{91} , observamos que k toma el mínimo valor posible, pues $k=11=1\cdot 10+1=(e-1)\cdot s+1$.

- 3.2. Cálculo del valor de la función
- 3.3. Cálculo de llamadas recursivas cuando e = 2
- **3.3.1.** El caso fácil: k = s + 1
- 3.3.2. Obteniendo una expresión más general