Contents

1	Schema	2
	1.1 Entity Sets	2
	1.2 Relations	2
	1.3 Tables	2
2	Lemmas	3
3	$x \bmod evenDivisor \neq 0$	7
4	Entity Logic	7
	4.1 Entity Set	8
	4.2 Relationship	
5	Case Theory	9
6	Buchberger	11

1 Schema

1.1 Entity Sets

function(<u>function-id</u>, oddCoefficient, oddAddend, evenDivisor) evaluation(<u>eval-id</u>, <u>function-id</u>, value) chain(<u>chain-id</u>, <u>eval-id</u>, chain) loop(loop-id, <u>chain-id</u>, loop, stabilization)

1.2 Relations

evaluation (function, chain) | [1..1] \rightarrow [0..n], [0..m]

1.3 Tables

evaluation(function-id, chain-id, value)

2 Lemmas

$$Converge(x_n, L) := (\forall \varepsilon > 0)(\exists N)[n > N \to |x_n - L| < \varepsilon]$$

$$Diverge(x_n) := (\forall L)(\exists \varepsilon > 0)(\forall N)[n > N \to |x_n - L| \ge \varepsilon]$$

Lemma 1. $(2^k, 2^k m + 2^k - \ell), 2 \le \ell \le 2^k - 2$ Proof. § $x \equiv 1 \pmod{2}$. x, $2^k x + 2^k m + 2^k - \ell,$ $2^{k-1} x + 2^{k-1} m + 2^{k-1} - \frac{\ell}{2},$ $2^k (2^{k-1} x + 2^{k-1} m + 2^{k-1} - \frac{\ell}{2}) + 2^k m + 2^k - \ell$ $2^{2k-1} x + 2^{2k-1} m + 2^{2k-1} - \ell 2^{2k-1} + 2^k m + 2^k - \ell$ Lemma 2. (a, b, 2) goes to infinity if and only if (b, a, 2) does

Proof. § (a, b, 2) goes to infinity.
§ $x \equiv 1 \pmod{2}$ § a, b even $x, ax + b, a'x + b', a(a'x + b') + b = aa'x + ab' + b, a'^2x + a'b' + b', \dots$ $x, bx + a, b'x + a', bb'x + ba' + a, b'^2x + b'a' + a'$ § a, b odd

 $x, ax + b, (ax + b)', a(ax + b)' + b, (a(ax + b)' + b)', a(a(ax + b)' + b)' + b, \dots$ $x, bx + a, (bx + a)', b(bx + a)' + a, (b(bx + a)' + a)', b(b(bx + a)' + a)' + a, \dots$

Lemma 3. (4, 4k + 2, 2), k = 1, ...

Proof. § $x \equiv 1 \pmod{2}$. The iterations of this function are x, 4x+4k+2, 2x+2k+1, 8x+12k+6, 4x+6k+3, 16x+28k+14, 8x+14k+7, 32x+60k+30, 16x+30k+15, 64x+124k+62, 32x+62k+31, 128x+252k+126, 64x+126k+63, 256x+508k+254, 128x+254k+127, 512x+1020k+510,.... We can rewrite these as <math>x, 2x+2k+1, 4x+4k+2+2k+1, 8x+8k+4+4k+2+2k+1,..., or even x, 2x+2k+1, 2(2x+2k+1)+2k+1, 4(2x+2k+1)+2(2k+1)+2k+1,... Hence, we can see that the sequence of odd numbers in this sequence is $\left\{2^{\ell}(2x+2k+1)+\sum_{m=0}^{\ell}m(2k+1)\right\}_{\ell=1}^{\infty}$, and the sequence of even numbers is double this. Since both sequences approach infinity as $\ell \to \infty$, this sequence of iterations goes to infinity.

 $\mathcal{S} x \equiv 0 \pmod{2}$. Then, x reduces to an odd factor that initiates the above sequence.

```
Lemma 4. (4k+2,4,2)
 Proof. \mathcal{S} x \equiv 1 \pmod{2}
 \overline{x,4xk} + 2x + 4,
 2xk + x + 2,8k^2x + (8x + 8)k + 2x + 8,
 4k^2x + (4x + 4)k + x + 4, 16k^3x + (24x + 16)k^2 + (12x + 24)k + 2x + 12,
 8k^3x + (12x + 8)k^2 + (6x + 12)k + x + 6, 32k^4x + (64x + 32)k^3 + (48x + 64)k^2 + 6
 (16x+48)k+2x+16,
 16k^4x + (32x + 16)k^3 + (24x + 32)k^2 + (8x + 24)k + x + 8,64k^5x + (160x + 24)k^2 + (16
 64)k^4 + (160x + 160)k^3 + (80x + 160)k^2 + (20x + 80)k + 2x + 20
 32 * k^5 * x + (80 * x + 32) * k^4 + (80 * x + 80) * k^3 + (40 * x + 80) * k^2 + (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 20) * (10 * 2
 (x + 40) * k + x + 10,...
                 x
 2kx + x + 2.
 4k^2x + (4x+4)k + x + 4
 8k^3x + (12x + 8)k^2 + (6x + 12)k + x + 6
16k^4x + (32x + 16)k^3 + (24x + 32)k^2 + (8x + 24)k + x + 8
 32k^5x + (80x + 32)k^4 + (80x + 80)k^3 + (40x + 80)k^2 + (10x + 40)k + x + 10, \dots
 x,
 2kx + x + 2,
 4k^2x + (4x + 4)k + x + 4,
8k^{3}x + (12x + 8)k^{2} + (4x + 4)k + (2x + 8)k + x + 6,
16k^{4}x + (32x + 16)k^{3} + (12x + 8)k^{2} + (12x + 24)k^{2} + (4x + 4)k + (2x + 8)k + (2x + 12)k +
 x + 8,
 32k^5x + (80x + 32)k^4 + (32x + 16)k^3 + (48x + 54)k^3 + (12x + 8)k^2 + (12x + 24)k^2 + (16x + 48)k^2 +
 (4x+4)k + (2x+8)k + (2x+12)k + (2x+16k) + x + 10...
                 (2k)^{\ell}x + (something) + x + 2\ell
 Lemma 5. (2k+1, 2(k-1)+1), x=2k+1, k \pmod{2} = 0???
 Proof. 2k + 1, (2k + 1)^2 + 2k - 1 = 4k
```

Lemma 6. We can say nothing of (a, a, 2).

Proof. § $a \pmod{2} \equiv 1$, and $x \pmod{2} \equiv 1$. The chain of this function at x is x, ax + a. Since $ax + a \pmod{2} \equiv 0$, we can say nothing more here, nor

can we say anything when we start with an x for which $x \mod 2 \equiv 0$, since it merely reduces to the odd case.

 \mathfrak{F} $a\pmod{2} \equiv 0$ and $x\pmod{2} \equiv 1$. The chain of this function at x starts as x, ax + a. Since $a\pmod{2} \equiv 0$, this becomes a'x + a', where a' is a stripped of its factors of 2. Then, $a'x + a'\pmod{2} \equiv 0$, and, again, we can do nothing more.

 $\mathcal{F}(x) \pmod{2} \equiv 0$. Then, x reduces to an odd factor that initiates the above process and of which we can say nothing.

Lemma 7. $(o, e, 2) \rightarrow \infty \forall x$

Proof. $\mathcal{F}(x) \pmod{2} \equiv 1$. Then, $ox + e \pmod{2} \equiv 1$. We continue to feed these odd numbers back into the function, and the sequence goes to infinity. $\mathcal{F}(x) \pmod{2} \equiv 0$. Then, $x \pmod{2} \equiv 0$ are odd factor x' that initiates the above sequence, taking it to infinity.

Lemma 8. (e, eh, 2), where e is an even positive integer and h $\pmod{2} \equiv 0$, goes to infinity.

Proof. § $x \pmod{2} \equiv 1$. The chain of this function starts as x, ex + eh, x + h. If $h \pmod{2} \equiv 1$, then $x + h \pmod{2} \equiv 0$, and we can't continue the sequence. If $h \pmod{2} \equiv 0$, then x + h is odd, and we can continue the sequences as $e(x+h) + eh, x + 2h, e(x+2h) + eh, \ldots$, which can be split into the two sequences $\{x + kh\}_{k=0}^{\infty}$ and $\{e(x+kh) + eh\}_{k=0}^{\infty}$, which both diverge. § $x \pmod{2} \equiv 0$. Then, x reduces to an odd factor that initiates the above sequences.

Example 1. $(2,8,2) \to \infty \forall x \text{ and } (2,12,2) \to \infty \forall x$

Lemma 9. (eh, e, 2), where e is an even positive integer and h $\pmod{2} \equiv 0$, goes to infinity.

Proof. § $x \pmod{2} \equiv 1$. This function's chain at x begins as x, ehx + e, hx + 1. If $h \pmod{2} \equiv 1$, then $hx + 1 \pmod{2} \equiv 0$, and we can't continue the sequence. If $h \pmod{2} \equiv 0$, then $hx + 1 \pmod{2} \equiv 1$, and the sequence continues as $eh^2x + eh + e, h^2x + h + 1, eh^3x + eh^2 + eh + e, \dots$, which can be split into the two sequences $\left\{h^kx + \sum_{\ell=0}^{k-1} h^\ell\right\}_{k=1}^{\infty}$ and $\left\{eh^kx + \sum_{\ell=0}^{k-1} eh^\ell\right\}_{k=1}^{\infty}$, both of which go to infinity.

 $\mathcal{F}(x) \pmod{2} \equiv 0$. Then, x reduces to an odd factor that initiates the above sequences.

Let $(x_n) = \left\{h^k x + \sum_{\ell=0}^{k-1} h^\ell\right\}_{k=1}^{\infty}$ and $\mathcal{F}(Converge(x_n, L))$. Then, for every $\varepsilon > 0$, there is an $N \in \mathbb{N}$, such that $|x_n - L| < \varepsilon$ when n > N.

Let
$$L \in \mathbb{R}$$
 and let $\varepsilon = \frac{1}{2} \left(h^k x + \sum_{\ell=0}^{k-1} h^\ell \right)$.

Example 2. $(12,2,2) \to \infty \forall x \text{ and } (12,6,2) \to \infty \forall x$

FIX: ... We could just look at the result of stripping an even number of all its factors of 2.

3 $x \mod evenDivisor \neq 0$

$$(3,7,3)$$
 $3,16,16/3$

c > 1

$$f(x) = \begin{cases} e_1(x) & x \pmod{c} = c - 1 \\ e_2(x) & x \pmod{c} = c - 2 \\ \vdots & & \\ e_{n-1}(x) & x \pmod{c} = 2 \\ e_n(x) & x \pmod{c} = 1 \\ x/c & x \pmod{c} = 0 \end{cases}$$

c = 2

$$f(x) = \begin{cases} 3n+1 & x \pmod{2} \equiv 1\\ x/2 & x \pmod{2} \equiv 0 \end{cases}$$

c = 2

$$f(x) = \begin{cases} 2n+1 & x \pmod{2} \equiv 1\\ x/2 & x \pmod{2} \equiv 0 \end{cases}$$

c = 3

$$f(x) = \begin{cases} 3n+2 & x \pmod{3} \equiv 2\\ 3n+1 & x \pmod{3} \equiv 1\\ x/3 & x \pmod{3} \equiv 0 \end{cases}$$

or

$$f(x) = \begin{cases} 3n+1 & x \pmod{3} \equiv 2\\ 3n+2 & x \pmod{3} \equiv 1\\ x/3 & x \pmod{3} \equiv 0 \end{cases}$$

This would have only one value a=3. The others are determined from a.

4 Entity Logic

STUFF TO READ

4.1 Entity Set

Let S be a set. $s \in S$ is an instance of S. There is a set of attributes A(S) containing functions $f_i : E \to \mathbb{R}$ and relations $R_i : E \to \{True, False\}, i \in \mathbb{N}$.

e.g., $s \in S$, or: John(s) = True, Smith(s) = True, ...But then is John the attribute, or name?

What is \mathbb{N} as an entity set or as a database? $A(\mathbb{N}) = \{prime, composite, even, odd, numPrimeFactors, f_1(x, t_2, ..., t_n), f_2(x, t_2, ..., t_n), ..., y \text{ s.t. } R(x, y), ...\}$

 $A(MOVEMENT) = \{velocity, momentum, friction, force, normal_force, \dots\}$

What about constants of physics? What is there to be said *about* them? $A(\{G, c, h, k, \dots\}) = \{\dots\}$

An entity set is what we say about a thing. A database is what we must say about at least two things.

4.2 Relationship

Definition 1. Let E be an entity set, $e_1, e_2 \in E$, and $a \in A(E)$. We call a the **primary key** of E if $a(e_1) = a(e_2) \longleftrightarrow e_1 = e_2$.

Theorem 1. Let $f: A \to B$ be a function. Then, f is injective if and only if f is a primary key for the entity set of A.

Proof. Let $f: A \rightarrow B$ be an injective function. Then, $\forall x, y \in A$, $f(x) = f(y) \rightarrow x = y$. Since f is a function, we have that $x = y \rightarrow f(x) = f(y)$, and, hence, f is a primary key of A.

Let $f \in A(A)$ be a primary key. So, $\forall x, y \in A, f(x) = f(y) \longleftrightarrow x = y$. Put $B = \mathbb{R}$. Then, $f : A \mapsto B$ is an injective function.

Definition 2. Let $f: A \to B$ be a mapping. We call f ill-defined if for some $x = y \in A$, $f(x) \neq f(y)$.

Definition 3. Let E_1 and E_2 be entity sets, and let P the primary key of E_1 . We call P a **foreign key** of E_2 if $Px \forall x \in E_1$ and $Py \forall y \in E_2$.

Definition 4. An ER-diagram is a graph with entity sets E_1, \ldots, E_n as vertices and with foreign keys $P_1, \ldots, P_m, m \leq \binom{n}{2}$ as edges.

5 Case Theory

Definition 5. Let $f: A \to B$ be a function and $c \in B$ a constant. We call a formula of the form $P(x) \to f(x) = c$ a case of f. If P is a modulus over some $n \in \mathbb{N}$, we call such a case a **modular case** or a **modular n-case**. Moreover, we call a function defined only by modular cases a **modular function**.

Definition 6. Let $f: A \to B$ be a function. If f can be defined by an atomic formula, then, we call f a **whole function**. If f can defined by n cases, then we call f a **piecewise function** or an **n-piece function**.

Definition 7. Let $f: A \to B$ be an *n*-piece function defined by cases C_1, \ldots, C_n . If one case C_i , $1 \le i \le n$, is a modular *m*-case defined as $x \equiv 0 \pmod{m} \to f(x) = \frac{x}{m}$, then we call f a **stripping function**.

Example 3. The function $f: \mathbb{N} \to \mathbb{N}$ given by

$$f(x) = \begin{cases} 3x + 1 & x \equiv 1 \pmod{2} \\ \frac{x}{2} & x \equiv 0 \pmod{2} \end{cases}$$

is a modular 2-piece stripping function defined by the cases $x \equiv 1 \pmod{2} \to f(x) = 3x + 1$ and $x \equiv 0 \pmod{2} \to f(x) = \frac{x}{2}$.

Theorem 2. Let $f: A \to B$ be a whole function, where A and B are finite. Then, f is an n-piece function.

Proof. Let $f: A \to B$, where $|A| = n \le m = |B|$, be a function given by the formula f(x) = b for some $b \in B$. We have $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$. Then,

$$f(x) = \begin{cases} f(x) = b_1 & x = a_1 \\ f(x) = b_2 & x = a_2 \\ \vdots & & \vdots \\ f(x) = b_n & x = a_n \end{cases}.$$

That is, we may define f as $\bigwedge_{i=1}^{n} x = a_i \to f(x) = b_i$.

Now, let $f: A \to B$, where |A| = n > m = |B|, be a function given by the formula f(x) = b, where $b \in B$. We have $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$. Then,

$$f(x) = \begin{cases} f(x) = b_1 & x = a_1 \\ f(x) = b_2 & x = a_2 \end{cases}$$

$$\vdots$$

$$f(x) = b_m & x = a_m \\ f(x) = b_{i_1} & x = a_{m+1} \\ f(x) = b_{i_2} & x = a_{m+2} \end{cases}$$

$$\vdots$$

$$f(x) = b_{i_{n-m}} & x = a_n$$

where $1 \le i_j \le m$ for j = 1, ..., n - m. That is, we may define f as

$$\left(\bigwedge_{i=1}^{m} x = a_i \to f(x) = b_i\right) \wedge \left(\bigwedge_{i=m+1}^{n} \left(\bigwedge_{j=1}^{n-m} x = a_i \to f(x) = b_{i_j}\right)\right).$$

Theorem 3. Let $f: A \to B$ be a whole function, where $|A| < \aleph_0 \le |B|$. Then, f is an n-piece function.

Proof. Let f, A, and B be as such. Then, $A = \{a_1, \ldots, a_n\}$ and we may define f with the formula f(x) = b for some $b \in B$. Then, for some $b_1, \ldots, b_n \in B$,

$$f(x) = \begin{cases} f(x) = b_1 & x = a_1 \\ f(x) = b_2 & x = a_2 \\ \vdots & & \\ f(x) = b_n & x = a_n \end{cases},$$

and we may define f as $\bigwedge_{i=1}^{n} x = a_i \to f(x) = b_i$.

Definition 8. Let $f: A \to B$ be a function. If f is not piecewise, then a definition of f in cases requires an infinite number of cases. We say that such a function is ∞ -piece.

Theorem 4. Let $f: A \to B$ be a whole function, where A is infinite. Then, f is an ∞ -piece function.

Proof. Let $f:A\to B$ be as such, and suppose A is infinite. We have $A = \{a_0, a_1, \dots\}$. Suppose we define f with the cases $f(a_0) = b_0$, $f(a_1) = b_0$ $b_1, \ldots, f(a_n) = b_n$ for some $b_1, \ldots, b_n \in B$. Then, there is an $a_{n+1} \in A$ at which f is not defined. Thus, we are no longer talking about f but rather a function $g: S \to B$, where $S \subset A$ is finite. Therefore, f is ∞ -piece.

Examples. The successor function $S: \mathbb{N} \to \mathbb{N}$ given by S(x) = x + 1 is ∞ -piece.

$$f: \mathbb{N} \to \mathbb{R}, f(x) = \sum_{n=1}^{x} \frac{1}{n}$$

Any function whose domain contains \mathbb{N} .

$$\zeta: \{s \in \mathbb{C} \mid \Re(s) > 1\} \to \mathbb{C}, \ \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Buchberger 6

$$S_{ij} = \frac{\operatorname{lcm}\{g_i, g_j\}}{g_i} f_i - \frac{\operatorname{lcm}\{g_i, g_j\}}{g_j} f_j$$

$$f_i = p_1, \dots, p_n, f_j = p_1, \dots, p_m$$

$$p_i, p_j$$
 $C = \operatorname{lcm}\{p_i, p_j\}$

$$\begin{aligned} p_i, p_j \\ S_{ij} &= \frac{\text{lcm}\{p_i, p_j\}}{p_i} f_i - \frac{\text{lcm}\{p_i, p_j\}}{g_j} f_j \\ 6 &= 2 \cdot 3, 15 = 3 \cdot 5 \end{aligned}$$

$$S_{ij} = \frac{(2 \cdot 3/2)6 - (2 \cdot 3/3)15}{g_j}$$

$$S_{1,2} = (2 \cdot 3/2)6 - (2 \cdot 3/3)15 = 18 - 30 = -12$$

$$f^{-1}(x) = \begin{cases} \{2x\} & x \equiv 0, 1, 2, 3, 5\\ \{2x, \frac{x-1}{3}\} & x \equiv 4 \end{cases} \pmod{6}$$

$$\mathcal{S} \ x \equiv 4 \pmod{6}$$

$$2x \equiv 2 \pmod{6}, x \equiv 1 \pmod{6}$$

$$x - 1 \equiv 3 \pmod{6}, \frac{x - 1}{3} \equiv 1 \mod{6}$$

$$\mathcal{S} \ x \equiv 5 \pmod{6}$$
$$2x \equiv 4 \pmod{6}, \frac{x-1}{3} \equiv 4 \pmod{6}$$