1

Assignment 1

G Yashwanth Naik - EE18BTECH11017

Download all python codes from

https://github.com/yashwanthguguloth24/EE3025—DSP-lab/tree/main/Assignment1/codes

and latex-tikz codes from

https://github.com/yashwanthguguloth24/EE3025—DSP-lab/tree/main/Assignment1

1 PROBLEM

1.1. Let

$$x(n) = \left\{ \begin{array}{l} 1, 2, 3, 4, 2, 1 \\ \uparrow \end{array} \right\} \quad (1.1.1)$$

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2)$$
 (1.1.2)

1.2. Compute

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(1.2.1)

and H(k) using h(n).

1.3. Compute

$$Y(k) = X(k)H(k) \tag{1.3.1}$$

2 SOLUTION

2.1. We know that, the Impulse Response of the LTI system is the output of the system when Unit Impulse Signal is given as input to the system. So, using Eq (1.1.2) the Impulse Response of the System can be found as,

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2)$$
 (2.1.1)

where h(n) is an IIR Filter.

2.2. DFT of a Input Signal x(n) is

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(2.2.1)

For N = 6, The above expression can be written in matrix form as below:

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} \omega_{6}^{0} \omega_{6}^{0} & \omega_{6}^{0} & \omega_{6}^{0} & \omega_{6}^{0} & \omega_{6}^{0} \\ \omega_{6}^{0} \omega_{6}^{1} & \omega_{6}^{2} & \omega_{6}^{3} & \omega_{6}^{4} & \omega_{6}^{5} \\ \omega_{6}^{0} \omega_{6}^{2} & \omega_{6}^{4} & \omega_{6}^{6} & \omega_{6}^{8} & \omega_{6}^{10} \\ \omega_{6}^{0} \omega_{6}^{2} & \omega_{6}^{4} & \omega_{6}^{6} & \omega_{6}^{8} & \omega_{6}^{10} \\ \omega_{6}^{0} \omega_{6}^{4} & \omega_{6}^{8} & \omega_{6}^{12} \omega_{6}^{15} & \omega_{6}^{20} \\ \omega_{6}^{0} \omega_{6}^{5} & \omega_{6}^{10} \omega_{6}^{15} & \omega_{6}^{20} \omega_{6}^{25} \end{bmatrix} \begin{bmatrix} x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \end{bmatrix}$$

$$(2.2.2.2)$$

Where $\omega_N = e^{-j2\pi/N}$

$$\implies \omega_6 = e^{-j2\pi/6} = \frac{1 - j\sqrt{3}}{2}$$
 (2.2.3)

Using x(n) from Eq(1.1.1), we get

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} \omega_6^0 \omega_6^0 \ \omega_6^{12} \ \omega_6^{16} \ \omega_6^{20} \ \omega_6^{2$$

Simplifying the above equation we get,

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} 13+0j \\ -4-1.732j \\ 1+0j \\ -1+0j \\ 1+0j \\ -4+1.732j \end{bmatrix}$$
 (2.2.5)

2.3. DFT of a Impulse Response h(n) is

$$H(k) \triangleq \sum_{n=0}^{N-1} h(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(2.3.1)

Similarly, converting the above expression in

matrix form to find H(k)

$$\begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix} = \begin{bmatrix} \omega_6^0 \omega_6^0 \ \omega_6^0$$

Simplying we get,

$$\begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix} = \begin{bmatrix} 1.28125 + 0j \\ 0.51625 - 0.51418j \\ -0.07812 + 1.10956j \\ 3.84375 + 0j \\ -0.07182 - 1.10956j \\ 0.51625 + 0.51418j \end{bmatrix}$$
(2.3.3)

2.4. The magnitude and phase plots of X(k) and H(k)

tion of X(k) and H(k)

$$\begin{bmatrix} Y(0) \\ Y(1) \\ Y(2) \\ Y(3) \\ Y(4) \\ Y(5) \end{bmatrix} = \begin{bmatrix} X(0) \cdot H(0) \\ X(1) \cdot H(1) \\ X(2) \cdot H(2) \\ X(3) \cdot H(3) \\ X(4) \cdot H(4) \\ X(5) \cdot H(5) \end{bmatrix}$$
(2.5.2)

Computing the above expression we get,

$$\begin{bmatrix} Y(0) \\ Y(1) \\ Y(2) \\ Y(3) \\ Y(4) \\ Y(5) \end{bmatrix} = \begin{bmatrix} 16.6562 + 0j \\ -2.95312 + 1.16372j \\ -0.07812 + 1.10959j \\ -3.84375 - 9.27556j \\ -0.07812 - 1.10959j \\ -2.95312 - 1.16372j \end{bmatrix}$$
(2.5.3)

The magnitude and phase plots of Y(k) are

2.6. The following code plots all the above figures.

https://github.com/yashwanthguguloth24/ EE3025-DSP-lab/tree/main/ Assignment1/codes/ee18btech11017.py

2.5. We can now compute Y(k) using Eq (2.5.1)

$$Y(k) = X(k)H(k)$$
 (2.5.1)

So, Y(k) is obtained element wise multiplica-