Generalized Linear Models

Exponential Family of Distributions

A random variable Y has a distribution in the exponential family if its density takes the form:

$$f(Y; \theta, \phi) = exp\left\{\frac{Y\theta - b(\theta)}{a(\phi)} + c(Y, \phi)\right\}$$

for some specific functions $a(\cdot)$, $b(\cdot)$, $c(\cdot)$.

 $\theta-$ canonical (natural) parameter (parameter of interest).

 $\phi-$ scale (dispersion) parameter (nuisance parameter).

 $a(\phi)$ often has the form $a(\phi) = \frac{\phi}{w}$ for some known weight w.

This family includes several important distributions such as normal, binomial, poisson, gamma, inverse gaussian.....

Remarks:

We here assume the support of $f(Y; \theta, \phi) = \{y : f(y; \theta, \phi) > 0\}$ does not depend on θ .

•
$$f(Y; \theta, \phi) = exp\left\{\frac{Y \cdot \theta - b(\theta)}{a(\phi)} + c(Y, \phi)\right\}$$

• Loglikelihood: $\ell(\theta) = ln\{f(Y; \theta)\}$

• Score:
$$U(\theta) = \frac{\partial \ell}{\partial \theta}$$

• Observed information: $J(\theta) = -\frac{\partial^2 \ell}{\partial \theta \partial \theta^T}$

• Expected information: $I(\theta) = -E(\frac{\partial^2 \ell}{\partial \theta \partial \theta^T}) > 0$

Equalities:

$$E\{U(\theta)\} = E\left(\frac{\partial \ell}{\partial \theta}\right) = 0$$

$$Cov\{U(\theta)\} = Cov\left(\frac{\partial \ell}{\partial \theta}\right)$$
$$= E\left(\frac{\partial \ell}{\partial \theta} \frac{\partial \ell}{\partial \theta^T}\right) = -E\left(\frac{\partial^2 \ell}{\partial \theta \partial \theta^T}\right) = I(\theta)$$

Mean and Variance in the Exponential Family:

$$E(Y) = \mu = b'(\theta)$$

$$var(Y) = a(\phi)b''(\theta) = a(\phi)v(\mu) = \phi a^{-1}v(\mu)$$

Why?

$$\frac{\partial \ell}{\partial \theta} = \frac{1}{a(\phi)} [Y - b'(\theta)] \to E(Y) = b'(\theta)$$

$$\frac{\partial^2 \ell}{\partial \theta^2} = -\frac{b''(\theta)}{a(\phi)} \to var(Y) = a(\phi)b''(\theta)$$

Mean/Variance Relationship:

The exponential family assumes the variance $v(\mu)$ is a function of the mean μ .

Example 1 (Normal):

$$f(Y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(Y-\mu)^2}{2\sigma^2}}$$

$$= exp\{\frac{Y\mu - \frac{\mu^2}{2}}{\sigma^2} - \frac{Y^2}{2\sigma^2} - \frac{1}{2}ln2\pi\sigma^2\}$$
where $\theta = \mu, b(\theta) = \frac{\theta^2}{2}, \phi = \sigma^2, c(Y, \phi) = -\frac{Y^2}{2\sigma^2} - \frac{1}{2}ln2\pi\sigma^2,$

$$E(Y) = \mu, var(Y) = \sigma^2 = \phi \cdot 1, v(\mu) = 1.$$

Example 2 (Binomial):

$$Z \sim Bin(m, p), Y = \frac{Z}{m}.$$

$$f(Y; p) = {m \choose Z} p^{Z} (1-p)^{m-Z}$$

$$= {m \choose mY} p^{mY} (1-p)^{m(1-Y)}$$

$$= exp\{\frac{Yln(\frac{p}{1-p}) + ln(1-p)}{\frac{1}{m}} + ln\left(\frac{m}{mY}\right)\}$$

where

$$\theta = \ln(\frac{p}{1-p}), b(\theta) = -\ln(1-p) = \ln(1+e^{\theta}), a = m, \phi = 1,$$

$$E(Y) = \mu = p, Var(Y) = \frac{1}{m}p(1-p) = \frac{1}{m}\mu(1-\mu), v(\mu) = \mu(1-\mu).$$

Example 3 (Poisson):

$$f(Y; \mu) = \frac{\mu^{Y} e^{-\mu}}{Y!} = exp^{\{Y \ln \mu - \mu - \ln Y!\}}$$

$$\theta = \ln \mu, b(\theta) = \mu, a = 1, \phi = 1$$

$$E(Y) = \mu$$

$$Var(Y) = \mu$$

$$v(\mu) = \mu$$

Generalized Linear Models (GLMs)

Outcome: $Y \sim f(Y; \theta) \in \text{exponential family}$

Covariates: X_1, \dots, X_p

Objective: To model the relationship between the mean of Y and X's.

Three components of a GLM: random component, systematic component, link between μ and η .

1. Random component:

Observations $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ are independent, and follow a distribution in the canonical exponential family:

$$f(Y_i) = exp\left\{\frac{Y_i\theta_i - b(\theta_i)}{a_i(\phi)} + c(Y_i, \phi)\right\}$$

 \Rightarrow

$$E(Y_i) = \mu_i$$

2. Systematic component:

A linear predictor η is specified as a linear function of a set of covariates X_1, \dots, X_p .

$$\eta_i = \mathbf{X}_i^T \boldsymbol{\beta} \Rightarrow \boldsymbol{\eta} = \mathbf{X} \boldsymbol{\beta}$$

where
$$\pmb{\eta} = \left(\begin{array}{c} \eta_1 \\ \vdots \\ \eta_n \end{array} \right)$$
 , $\mathbf{X} = \left(\begin{array}{c} \mathbf{X}_1^T \\ \vdots \\ \mathbf{X}_n^T \end{array} \right)$.

3. Link between μ and η :

$$g(\mu_i) = \eta_i \iff g(\mu) = \eta$$

where $g(\cdot)$ is a monotonic differential function.

 $g(\cdot)$ is called the link function.

How do GLMs extend classical linear models?

1. The distribution of Y may come from a distribution in the exponential family other than normal.

2. The mean of Y is related to $\mathbf{X}^T\boldsymbol{\beta}$ via a link function $g(\cdot)$ other than the identity function, i.e., a transformed mean of Y is equal to $\mathbf{X}^T\boldsymbol{\beta}$

$$g(\mu_i) = \mathbf{X_i^T} \boldsymbol{\beta}$$

Example 1: (Linear model)

$$Y_i \overset{i.i.d}{\sim} N(\mu_i, \sigma^2)$$

$$\mu_i = \mathbf{X}_i^T \boldsymbol{\beta}$$

• Random component: $Y_i \sim N(\mu_i, \sigma^2)$

• Systematic component: $\eta_i = \mathbf{X}_i^T \boldsymbol{\beta}$

• Link: $\mu_i = \eta_i, -\infty < \mu_i < \infty, g(\mu_i) = \mu_i = \text{identity link}.$

Example 2: (Logistic regression) – for binary/proportion data

$$m_i Y_i \sim Binomial(m_i, \mu_i)$$

$$ln\left(\frac{\mu_i}{1-\mu_i}\right) = \mathbf{X}_i^T \boldsymbol{\beta}$$

• Random component: $m_i Y_i \sim Binomial(m_i, \mu_i)$

• Systematic component: $\eta_i = \mathbf{X}_i^T \boldsymbol{\beta}$

• Link: $g(\mu_i) = ln\left(\frac{\mu_i}{1-\mu_i}\right) = \text{logit link}.$

Interpretation of β_k in example 2 (often, not always):

 β_k : ln(OR) for one unit increase in X_k given the other X's are held constant.

Other link functions of interest:

• Probit: $\Phi^{-1}(\mu_i) = \mathbf{X}_i^T \boldsymbol{\beta}$. Note $\ln \left(\frac{\mu}{1-\mu} \right) \approx 1.70 \Phi^{-1}(\mu)$.

• Complementary log log: $ln\{-ln(1-p)\} = \mathbf{X}_i^T \boldsymbol{\beta}$

Example 3: (Poisson regression) – Log linear model for count data.

$$Y_i \sim Poisson(\mu_i)$$

$$ln\mu_i = \mathbf{X}_i^T \boldsymbol{\beta}$$

- Random component: $Y_i \sim Poisson(\mu_i)$
- Systematic component: $\eta_i = \mathbf{X}_i^T \boldsymbol{\beta}$
- Link: $g(\mu_i) = ln(\mu_i) = \log link$.

In many studies, $Y_i \sim Poisson(N_i, \lambda_i)$, where N_i =person-year, λ_i =incidence rate.

$$ln\lambda_i = \mathbf{X}_i^T \boldsymbol{\beta}$$

$$ln\mu_i = ln(N_i) + \mathbf{X}_i^T \boldsymbol{\beta}$$

 $ln(N_i)$ is an offset.

 $\beta_k = lnRR$ for one unit increase in X_k given the other X's are held constant.

Example of Logistic Regression (Low birth weight study)

A case-control study of mother's weight (in pounds) on the risk of delivering a low birth weight baby.

Outcome:
$$\begin{cases} 0 : \text{ birth weight } \geq 2500g \quad \text{(normal)} \\ 1 : \text{ birth weight } < 2500g \quad \text{(abnormal)} \end{cases}$$

Covariates:

LWT: mother's weight at the last menstrual period.

AGE: mother's age.

 μ : probability of delivering a low birth weight baby in the case-control sample.

Logistic model:

$$logit(\mu) = ln\left(\frac{\mu}{1-\mu}\right) = \beta_0 + \beta_1 LWT + \beta_2 AGE$$

Using the ML method,

$$logit(\mu) = ln\left(\frac{\mu}{1-\mu}\right) = 1.74 - 0.01 \cdot LWT - 0.04 \cdot AGE$$

-0.01 $ln(\widehat{OR})$ associated with 1lb increase in LWT at any given age.

 $\begin{array}{c} e^{-0.01} \\ = 0.99 \end{array} \quad \begin{array}{c} \widehat{OR} \text{ associated with } 1 lb \text{ increase in LWT at any} \\ \text{ given age.} \end{array}$

 $e^{-0.01 \times 10}$ = 0.90 \widehat{OR} associated with 10lb increase in LWT at any given age.

Canonical Link

Recall GLM:

• Y_1, \dots, Y_n indep, and $f(Y) = exp\{\frac{Y\theta - b(\theta)}{a(\phi)} + c(Y, \phi)\}.$

•
$$\mu = E(Y) = b'(\theta)$$
, $var(Y) = a(\phi)b''(\theta) = a(\phi)v(\mu)$.

•
$$g(\mu_i) = \eta_i = \mathbf{X}_i^T \boldsymbol{\beta}$$
.

Canonical Link:

 $g(\cdot)$ is a canonical link if $g(\cdot)$ satisfies $\theta_i = \eta_i$, i.e., $g(\cdot) = b'^{-1}(\cdot)$.

Properties of Canonical Link:

•
$$g'(\mu) = \frac{1}{v(\mu)}$$

• $\mathbf{X}^T\mathbf{Y} = \sum_{i=1}^n \mathbf{X_iY_i}$ is a sufficient statistics for β .

Examples:

Distribution	Model	Canonical link	Remarks
Normal	$\mu = \mathbf{X}^T \boldsymbol{\beta}$	$g(\mu) = \mu$	$\theta = \mu$
Binomial	$ln(\frac{\mu}{1-\mu}) = \mathbf{X}^T \boldsymbol{\beta}$	$g(\mu) = \ln(\frac{\mu}{1-\mu})$	$\theta = \ln(\frac{\mu}{1-\mu})$
Poisson	$ln(\mu) = \mathbf{X}^T \boldsymbol{\beta}$	$g(\mu) = ln(\mu)$	$\theta = ln(\mu)$
Gamma	$rac{1}{\mu} = \mathbf{X}^T oldsymbol{eta}$	$g(\mu) = \frac{1}{\mu}$	$\theta = \frac{1}{\mu}$

Estimation of β **in GLMs**

<u>Data</u>: n independent observations (Y_i, \mathbf{X}_i) where Y_i is an outcome and \mathbf{X}_i is a $(p+1) \times 1$ covariate vector.

Pdf of Y_i :

$$f(Y_i) = exp\left\{\frac{Y_i\theta_i - b(\theta_i)}{\phi a_i^{-1}} + c(Y_i, \phi)\right\}$$

GLM:

$$g(\mu_i) = \mathbf{X}_i^T \boldsymbol{\beta}$$

where $\mu_i = E(Y_i) = b'(\theta_i)$.

loglikelihood of β :

Score Equation of β :

$$U(\beta) = \frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} \frac{\partial \ell_{i}}{\partial \theta_{i}} \frac{\partial \theta_{i}}{\partial \mu_{i}} \frac{\partial \mu_{i}}{\partial \eta_{i}} \frac{\partial \eta_{i}}{\partial \beta}$$
$$= \frac{1}{\phi} \sum_{i=1}^{n} \frac{1}{a_{i}^{-1} v(\mu_{i}) [g'(\mu_{i})]^{2}} g'(\mu_{i}) (Y_{i} - \mu_{i}) \mathbf{X}_{i}$$

Denote
$$w_i = \{a_i^{-1}v(\mu_i)[g'(\mu_i)]^2\}^{-1}$$
, then

$$U(\boldsymbol{\beta}) = \frac{1}{\phi} \sum_{i=1}^{n} w_i g'(\mu_i) (Y_i - \mu_i) \mathbf{X}_i.$$

Denote

$$W = \begin{pmatrix} w_1 \\ w_n \end{pmatrix}, \Delta = \begin{pmatrix} g'(\mu_1) \\ w_n \end{pmatrix}$$
$$U(\beta) = \frac{1}{\phi} \mathbf{X}^T \mathbf{W} \Delta (\mathbf{Y} - \boldsymbol{\mu})$$

Note $U(\beta)$ is a nonlinear eq in β .

Special case: Canonical Link

Recall

$$g'(\mu) = \frac{1}{v(\mu)} \Longrightarrow w_i = a_i v(\mu)$$

$$U(\beta) = \frac{1}{\phi} \sum_{i=1}^{n} a_i (Y_i - \mu_i) \mathbf{X}_i$$

If $a_i = 1$ (linear, logistic, Poisson)

$$U(\beta) = \frac{1}{\phi} \mathbf{X}^T (\mathbf{Y} - \mu) = 0$$
$$\iff \mathbf{X}^T \mathbf{Y} = \mathbf{X}^T \mu$$

Note:

- 1. X^TY is sufficient statistics for β .
- 2. $X^T \mu$ is its expectation.

For example: Linear
$$\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = 0$$
 For example: Logistic
$$\sum \mathbf{X}_i^T(Y_i - \frac{e^{\mathbf{X}_i^T\boldsymbol{\beta}}}{1 + e^{\mathbf{X}_i^T\boldsymbol{\beta}}}) = 0$$
 Poisson
$$\sum \mathbf{X}_i^T(Y_i - e^{\mathbf{X}_i^T\boldsymbol{\beta}}) = 0$$

Observed information:

$$J(\beta) = -\frac{\partial^2 \ell}{\partial \beta \partial \beta^T}$$

Recall

$$\frac{\partial \ell}{\partial \boldsymbol{\beta}} = \frac{1}{\phi} \sum w_i g'(\mu_i) (Y_i - \mu_i) \mathbf{X}_i$$

$$J(\boldsymbol{\beta}) = \frac{\partial \ell}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} = \frac{1}{\phi} \sum \mathbf{X}_i w_i g'(\mu_i) \frac{\partial \mu_i}{\partial \boldsymbol{\beta}^T}$$

$$-\frac{1}{\phi} \sum \mathbf{X}_i (Y_i - \mu_i) \frac{\partial (w_i g'(\mu_i))}{\partial \boldsymbol{\beta}^T}$$

$$= \frac{1}{\phi} \sum \mathbf{X}_i w_i^T - \frac{1}{\phi} \sum \mathbf{X}_i (Y_i - \mu_i) \frac{\partial (w_i g'(\mu_i))}{\partial \boldsymbol{\beta}^T}$$

$$= \frac{1}{\phi} \mathbf{X}^T \mathbf{W} \mathbf{X} - \frac{1}{\phi} \sum \mathbf{X}_i (Y_i - \mu_i) \frac{\partial (w_i g'(\mu_i))}{\partial \boldsymbol{\beta}^T}$$

Expected Information:

$$I(\beta) = E\{J(\beta)\} = \frac{1}{\phi} \mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X} = \frac{1}{\phi} \sum_{i=1}^{n} \mathbf{X}_{i}^{\mathrm{T}} \mathbf{W}_{i} \mathbf{X}_{i}$$

Canonical Link:

$$I(\beta) = J(\beta)$$

Why?

Large Sample Properties:

Under some regularity conditions,

(1).
$$\widehat{\boldsymbol{\beta}} \xrightarrow{p} \boldsymbol{\beta}$$
.

(2).
$$\sqrt{n}(\widehat{\beta}-\beta) \xrightarrow{d} N\{0, I_o^{-1}(\beta)\}$$
, where $I_o(\beta) = \lim_{n \to \infty} \frac{1}{n}I(\beta)$.

(3). For large $n, \hat{\beta} \sim N\{\beta, I^{-1}(\beta)\}$ approximately.

Example 1 (Linear regression):

$$Y_i \sim N(\mu_i, \sigma^2), \mu_i = \mathbf{X}_i^T \boldsymbol{\beta}, v(\mu_i) = 1.$$

Score equation:

$$\mathbf{X}^{T}(\mathbf{Y} - \boldsymbol{\mu}) = 0 \iff \mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

$$\implies \hat{\boldsymbol{\beta}} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{Y} = (\sum_{i=1}^{n} \mathbf{X}_{i}^{T}\mathbf{X}_{i})^{-1} \sum_{i=1}^{n} \mathbf{X}_{i}^{T}Y_{i}$$

Information matrix:

$$I(\beta) = \frac{1}{\sigma^2} (\mathbf{X}^T \mathbf{X})$$
$$\widehat{\boldsymbol{\beta}} \sim N\{\boldsymbol{\beta}, I^{-1}(\boldsymbol{\beta})\} = N\{\boldsymbol{\beta}, \sigma^2 (X^T X)^{-1}\}$$

Example 2 (Logistic regression):

$$m_i Y_i \sim Bin(m_i, \mu_i), log(\frac{\mu_i}{1-\mu_i}) = \mathbf{X}_i^T \boldsymbol{\beta}, v(\mu_i) = \mu_i (1-\mu_i), a_i = m_i, \phi = 1.$$

Score equation:

$$U(\boldsymbol{\beta}) = \sum_{i=1}^{n} \mathbf{X}_{i} m_{i} (Y_{i} - \mu_{i}) = \sum_{i=1}^{n} \mathbf{X}_{i} m_{i} (Y_{i} - \frac{e^{\mathbf{X}_{i}^{T} \boldsymbol{\beta}}}{1 + e^{\mathbf{X}_{i}^{T} \boldsymbol{\beta}}})$$

Information matrix:

$$I(\beta) = \mathbf{X}^{\mathrm{T}}\mathbf{W}\mathbf{X} = \sum_{i} \mathbf{X}_{i}^{\mathrm{T}}\mathbf{W}_{i}\mathbf{X}_{i}$$

where $\mathbf{W} = diag\{m_i v(\mu_i)\} = diag\{m_{\mu_i}(1 - \mu_i)\}$

Note: $\hat{\boldsymbol{\beta}} \sim N\{\boldsymbol{\beta}, (\mathbf{X}^T\mathbf{W}\mathbf{X})^{-1}\}$ approximately for large n.

Example 3 (Poisson regression):

$$Y_i \sim Poisson(\mu_i), ln(\mu_i) = \mathbf{X}_i^T \boldsymbol{\beta}, v(\mu_i) = \mu_i, a_i = 1, \phi = 1.$$

Score equation:

$$U(\boldsymbol{\beta}) = \sum \mathbf{X}_i (Y_i - \mu_i) = \sum \mathbf{X}_i (Y_i - e^{\mathbf{X}_i^T \boldsymbol{\beta}})$$

information matrix:

$$I(\beta) = \mathbf{X}^{\mathrm{T}}\mathbf{W}\mathbf{X} = \sum_{i} \mathbf{X}_{i}^{\mathrm{T}}\mathbf{W}_{i}\mathbf{X}_{i},$$

where $W = diag(\mu_i)$.

How to solve the score equations?

1. Newton-Raphson method

Let $\beta^{[k]}$ denote the kth approximation for the MLE $\hat{\beta}$. The (k+1)th approximation is given by

$$\beta^{[k+1]} = \beta^{[k]} - \left(\frac{\partial^{2}\ell}{\partial\beta\partial\beta^{T}}\Big|_{\beta=\beta^{[k]}}\right)^{-1} U(\beta^{[k]})$$

$$\iff \beta^{[k+1]} = \beta^{[k]} - \left(\frac{\partial^{2}\ell}{\partial\beta\partial\beta^{T}}\Big|_{\beta=\beta^{[k]}}\right)^{-1} \frac{\partial\ell}{\partial\beta}\Big|_{\beta=\beta^{[k]}}$$

$$\iff \beta^{[k+1]} = \beta^{[k]} + J^{-1}(\beta^{[k]})U(\beta^{[k]})$$

Iterations proceed until convergence.

2. Fisher - Scoring method

$$\beta^{[k+1]} = \beta^{[k]} - \left(E\left[\frac{\partial^{2} \ell}{\partial \beta \partial \beta^{T}}\right] \right)^{-1} |_{\beta = \beta^{[k]}} U(\beta^{[k]})$$

$$\iff \beta^{[k+1]} = \beta^{[k]} - \left(E\left[\frac{\partial^{2} \ell}{\partial \beta \partial \beta^{T}}\right] \right)^{-1} |_{\beta = \beta^{[k]}} \frac{\partial \ell}{\partial \beta} |_{\beta = \beta^{[k]}}$$

$$\iff \beta^{[k+1]} = \beta^{[k]} + I^{-1}(\beta^{[k]}) U(\beta^{[k]})$$

Iterations proceed until convergence.

Notes:

- 1. The Fisher scoring is often simpler than the Newton-Raphson and is widely used.
- 2. For canonical links, these two methods are identical.

Rationale of the Newton-Raphson method:

The MLE $\hat{\beta}$ satisfies $U(\hat{\beta}) = 0$. Let $\beta^{[k]}$ be the kth approximation of $\hat{\beta}$.

$$\Rightarrow 0 = U(\widehat{\beta}) \approx U(\beta^{[k]}) + \frac{\partial^{2} \ell}{\partial \beta \partial \beta^{T}} \Big|_{\beta = \beta^{[k]}} (\widehat{\beta} - \beta^{[k]})$$

$$\Rightarrow \frac{\partial^{2} \ell}{\partial \beta \partial \beta^{T}} \Big|_{\beta = \beta^{[k]}} (\widehat{\beta} - \beta^{[k]}) \approx -U(\beta^{[k]})$$

$$\Rightarrow \widehat{\beta} \approx \beta^{[k]} - (\frac{\partial^{2} \ell}{\partial \beta \partial \beta^{T}})^{-1} \Big|_{\beta = \beta^{[k]}} U(\beta^{[k]})$$

Recall Fisher - Scoring:

$$\beta^{[k+1]} = \beta^{[k]} + I^{-1}(\beta^{[k]})U(\beta^{[k]})$$

$$I(\beta^{[k]})\beta^{[k+1]} = I(\beta^{[k]})\beta^{[k]} + U(\beta^{[k]})$$

$$\Rightarrow \frac{1}{\phi}(\mathbf{X}^T \mathbf{W}^{[k]} \mathbf{X})\beta^{[k+1]} = \frac{1}{\phi}(\mathbf{X}^T \mathbf{W}^{[k]} \mathbf{X})\beta^{[k]}$$

$$+ \frac{1}{\phi}(\mathbf{X}^T \mathbf{W}^{[k]} \Delta^{[k]} (Y - \mu^{[k]})$$

$$\Rightarrow (\mathbf{X}^T \mathbf{W}^{[k]} \mathbf{X})\beta^{[k+1]} = \mathbf{X}^T \mathbf{W}^{[k]} \{\mathbf{X}\beta^{[k]} + \Delta^{[k]} (Y - \mu^{[k]})\}$$

$$\Rightarrow (\mathbf{X}^T \mathbf{W}^{[k]} \mathbf{X})\beta^{[k+1]} = \mathbf{X}^T \mathbf{W}^{[k]} \mathbf{Z}^{[k]}$$

where we have the working vector:

$$\begin{cases} \mathbf{Z}^{[k]} &= \mathbf{X}\boldsymbol{\beta}^{[k]} + \boldsymbol{\Delta}^{[k]} (Y - \mu^{[k]}) \\ \mathbf{Z}_{i}^{[k]} &= \mathbf{X}_{i}\boldsymbol{\beta}^{[k]} + g'(\mu_{i}^{[k]})(Y - \mu_{i}^{[k]}) \end{cases}$$

Recall iterative score equations:

$$(\mathbf{X}^T \mathbf{W}^{[k]} \mathbf{X}) \boldsymbol{\beta}^{[k+1]} = \mathbf{X}^T \mathbf{W}^{[k]} \boldsymbol{Z}^{[k]}$$

where

$$\begin{cases} \text{working vector :} & \mathbf{Z} = \eta + \Delta(\mathbf{Y} - \mu) \\ \text{working dependent variable:} & Z_i = \eta_i + g'(\mu_i)(Y_i - \mu_i) \end{cases}$$

This has the same form as the normal equations for using weighted least squares to fit a linear model with

a dependent variable:
$$Z_i = \mathbf{X}_i^T \boldsymbol{\beta} + g'(\mu_i) \cdot (Y_i - \mu_i)$$

covariates: \mathbf{X}_i

weights:
$$w_i = [a_i^{-1}v(\mu_i)(g'(\mu_i)^2]^{-1}$$

Note:

- 1. Unlike the standard linear models, Z_i and w_i depend on β .
- 2. An alternative way to construct the working vector:

$$g(Y_i) \approx g(\mu_i) + g'(\mu_i)(Y_i - \mu_i)$$

$$= \mathbf{X}_i^T \boldsymbol{\beta} + g'(\mu_i)(Y_i - \mu_i)$$

$$= Z_i$$

3. Iterative reweighted least squares (IWLS): The score equations $\mathbf{U}(\boldsymbol{\beta}) = 0$ can be solved by iteratively fitting $Z_i = \mathbf{X}_i^T \boldsymbol{\beta} + \epsilon_i$, where $\epsilon_i \sim N(0, w_i^{-1})$. Z_i and w_i are updated at each iteration.

IWLS algorithm for GLMs

1. Calculate an initial value for the linear predictor.

$$\eta^{(0)} = \mathbf{X}^T \boldsymbol{\beta}^{(0)} = g(Y)$$

For example:

* In Poisson regression, $\eta_i^{(0)} = ln(Y_i + \frac{1}{2}).$

* In logistic regression where $y_i \sim bin(m_i, p_i)$, $\eta_i^{(0)} = ln(\frac{Y_i + \frac{1}{2}}{m_i - Y_i + \frac{1}{2}})$ which is called the empirical logit.

2. Calculate fitted values, variances and link derivatives.

$$\mu^{(0)} = g^{-1} \{ \eta^{(0)} \}$$

$$v^{(0)} = v \{ \mu^{(0)} \}$$

$$\Delta^{(0)} = diag \{ g'(\mu_i^{(0)}) \}$$

3. Calculate working weights and working vectors.

$$W^{(0)} = diag(w_i^{(0)})$$
 where $w_i^{(0)} = \frac{a_i}{v(\mu_i^{(0)})\{g'(\mu_i^{(0)})\}^2}$.
$$Z^{(0)} = \eta^{(0)} + \Delta^{(0)}(Y - \mu^{(0)}).$$

- 4. Solve for $\beta^{(1)}$: WLS regression of $Z^{(0)}$ on ${\bf X}$ with weights $w^{(0)}$.
- 5. Set $\eta^{(1)} = \mathbf{X}^T \beta^{(1)}$ and go to 2. Iterations continue until convergence, i.e. $||\beta^{(k+1)} \beta^{(k)}|| < 10^{-6}$.
- 6. $c\hat{o}v(\hat{\beta}) = \frac{1}{\phi}(\mathbf{X}^T\hat{\mathbf{W}}\mathbf{X})^{-1}$ at convergence.

Deviance

Recall GLM:

$$g(\mu_i) = \mathbf{X}_i^T \boldsymbol{\beta},\tag{1}$$

where β is $p' \times 1$ and p' << n.

Deviance:

$$D = 2\phi \{ \ell(\hat{\beta}_s) - \ell(\hat{\beta}_M) \}$$

where ϕ is the scale parameter, $\hat{\beta}_s$ is the MLE under the saturated model, and $\hat{\beta}_M$ is the MLE under (1).

Scaled Deviance:

$$D^* = \frac{D}{\phi} = 2\{\ell(\hat{\beta}_s) - \ell(\hat{\beta}_m)\}$$

Remarks:

- 1. The saturated model is the model with the number of parameters equal to the number of observations, i.e., $\widehat{\beta}_s$ is an $n \times 1$ vector.
- 2. The saturated model gives the best fit to the data and yields the largest loglikelihood function.
- 3. It is uninformative since it does not summarize the data but simply repeats them in full.
- 4. The deviance measures the discrepancy of the fitted model from the observed data, i.e., how good the model fits the data.

 $\begin{array}{ll} \operatorname{large} D & \Rightarrow & \operatorname{poor} \operatorname{fit} \\ \operatorname{small} D & \Rightarrow & \operatorname{good} \operatorname{fit} \end{array}$

Deviances of Common Distributions

1. Normal with σ^2 known:

$$D = 2\phi \{\ell(\hat{\beta}_s) - \ell(\hat{\beta}_m)\}$$

$$= 2\sigma^2 \{-\frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - Y_i)^2$$

$$-[-\frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \hat{\mu}_i)^2]\}$$

$$D = \sum_{i=1}^n (Y_i - \hat{\mu}_i)^2$$

$$= RSS$$

2. Binomial: $Y_i \sim B(m_i, p_i)$

$$D = 2\phi\{\ell(\hat{\beta}_{s}) - \ell(\hat{\beta}_{m})\}$$

$$= 2\{\sum_{i=1}^{n} [Y_{i} \ln(\frac{Y_{i}}{m_{i}}) + (m_{i} - Y_{i}) \ln(\frac{m_{i} - Y_{i}}{m_{i}}) + \ln\left(\frac{m_{i}}{Y_{i}}\right)]$$

$$- \sum_{i=1}^{n} [Y_{i} \ln(\frac{\hat{\mu}_{i}}{m_{i}}) + (m_{i} - Y_{i}) \ln(\frac{m_{i} - \hat{\mu}_{i}}{m_{i}}) + \ln\left(\frac{m_{i}}{Y_{i}}\right)]\}$$

$$D = 2 \sum_{i=1}^{n} \{Y_{i} \ln(\frac{Y_{i}}{\hat{\mu}_{i}}) + (m_{i} - Y_{i}) \ln(\frac{m_{i} - Y_{i}}{m_{i} - \hat{\mu}_{i}})\}$$

$$= 2 \sum_{i=1}^{n} \ln(\frac{O_{i}}{E_{i}})$$

where $\hat{\mu}_i = m_i \hat{p}_i = m_i g^{-1}(\mathbf{X}_i^T \hat{\boldsymbol{\beta}})$.

Relationship between LR stat. and Deviance stat.

Full Model:

$$g(\mu) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \beta_{k+1} X_{k+1} + \dots + \beta_p X_p$$

Reduced Model:

$$g(\mu) = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$$

Hypothesis:

 $H_0 : \beta_{k+1} = \cdots = \beta_p = 0$

 H_1 : \neq 0 some where

$$\chi_{LR}^2 = D_{n-(k+1)}^* (\widehat{reduced}) - D_{n-(p+1)}^* (\widehat{full}) \sim \chi^2(p-k)$$

Why?

$$\chi_{LR}^{2} = 2[\ell(\widehat{full}) - \ell(\widehat{reduced})]$$

$$= 2[\ell(\widehat{\beta}) - \ell(\widehat{\beta}^{0})]$$

$$= 2[\ell(\widehat{\beta}_{s}) - \ell(\widehat{\beta}^{0})] - 2[\ell(\widehat{\beta}_{s}) - \ell(\widehat{\beta})]$$

$$= D^{*}(\widehat{reduced}) - D^{*}(\widehat{full})$$

The d.f. of $D^*(\widehat{reduced})$ is n-(k+1) while the d.f. of $D^*(\widehat{full})$ is n-(p+1). So χ^2_{LR} has p-k degree of freedom.

Goodness-of-fit Statistics

1. Deviance Statistic:

$$D = 2\phi \{ \ell(\hat{\beta}_s) - \ell(\hat{\beta}_M) \}$$

Normal: $D = \sum_{i=1}^{n} (Y_i - \hat{\mu}_i)^2$

Binomial: $D = 2\sum_{i=1}^{n} \{Y_i \ln(\frac{Y_i}{\widehat{\mu}_i}) + (m_i - Y_i) \ln(\frac{m_i - Y_i}{m_i - \widehat{\mu}_i})\}$

Poisson: $D = 2\sum_{i=1}^{n} \{Y_i \ln(\frac{Y_i}{\widehat{\mu}_i}) - (Y_i - \widehat{\mu}_i)\}$

For grouped data, $D \sim \chi^2(n-p)$ approximately.

2. Pearson Statistic:

$$X^{2} = \sum_{i=1}^{n} \frac{(Y_{i} - \hat{\mu}_{i})^{2}}{v(\hat{\mu}_{i})}$$

Normal:
$$X^2 = \sum_{i=1}^{n} (Y_i - \hat{\mu}_i)^2 = D$$

Binomial:
$$X^2 = 2 \sum_{i=1}^{n} \frac{(Y_i - \hat{\mu}_i)^2}{m_i \hat{\mu}_i (1 - \hat{\mu}_i)}$$

Poisson:
$$X^2 = 2 \sum_{i=1}^{n} \frac{(Y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$$

For grouped data, $X^2 \sim \chi^2(n-p)$ approximately.

Remarks:

1. X^2 is a quadratic approximation of D.

2.
$$X^2 = \sum w_i (Z_i - \mathbf{X}_i^T \hat{\boldsymbol{\beta}})^2$$
 at convergence.

3. For two nested models,

$$D_R - D_F \rightarrow \chi^2$$

$$X_R^2 - X_F^2 \rightarrow \chi^2 ?$$

Quasi-likelihood Functions

Question:

- 1. Given the first two moments of Y: $E(Y) = \mu$, $Var(Y) = a^{-1}\phi v(\mu)$.
- 2. Assume $g(\mu) = \mathbf{X}^T \boldsymbol{\beta}$.

How to construct a likelihood of μ or β ?

Answer: Quasi-likelihood function.

Quasi-Score:

$$U = \frac{Y - \mu}{a^{-1}\phi v(\mu)}$$

Remarks:

- (1). For an exponential family distribution, $U = \frac{\partial \ell}{\partial \mu}$. (Why?)
- (2). Properties of U:

$$\begin{cases} E(U) = 0 \\ E(U^2) = -E(\frac{\partial U}{\partial \mu}) = \frac{1}{a^{-1}\phi v(\mu)} \end{cases}$$

Why are these properties important?

Log Quasi-likelihood (QL) [Wedderburn, 1974]:

$$Q(\mu;Y) = \int_{Y}^{\mu} \frac{Y - u}{a^{-1}\phi v(u)} du$$

Remarks:

- (1) For fixed ϕ , $Q(\mu; Y)$ behaves like a log likelihood function.
- (2) Some special cases (see the next page).

Table 9.1. Quasi-likelihoods associated with some simple variance functions

Variance func $V(\mu)$	ction Quasi-likelihood $Q(\mu;y)$	Canonical parame $ heta$	ter Distribution name	$Range \ restrictions$
. 1	$-(y-\mu)^2/2$	μ	Normal	
μ	$y\log\mu-\mu$	$\log \mu$	Poisson	$\mu > 0, \ y \ge 0$
μ^2	$-y/\mu - \log \mu$	$-1/\mu$	Gamma	$\mu > 0, \ y > 0$
μ^3	$-y/(2\mu^2) + 1/\mu$	$-1/(2\mu^2)$	Inverse Gaussian	$\mu > 0, \ y > 0$
μ^{ζ}	$\mu^{-\zeta} \Big(\frac{\mu y}{1-\zeta} - \frac{\mu^2}{2-\zeta} \Big)$	$\frac{1}{(1-\zeta)\mu^{\zeta-1}}$		$\mu>0,\ \zeta\neq0,1,2$
$\mu(1-\mu)$	$y\log\left(\frac{\mu}{1-\mu}\right) + \log(1-\mu)$	$\log\left(\frac{\mu}{1-\mu}\right)$	$\operatorname{Binomial}/m$	$0 < \mu < 1, \ 0 \le y \le 1$
$\mu^2(1-\mu)^2$	$(2y-1)\log\left(\frac{\mu}{1-\mu}\right) - \frac{y}{\mu} - \frac{1-y}{1-\mu}$			$0 < \mu < 1, \ 0 < y < 1$
$\mu + \mu^2/k$	$y\log\left(\frac{\mu}{k+\mu}\right) + k\log\left(\frac{k}{k+\mu}\right)$	$\log\left(\frac{\mu}{k+\mu}\right)$	Negative binomial	$\mu > 0, \ y \ge 0$

(3) For many common distributions, a QL is identical to a log-likelihood function. However, it is likely that a QL exists but a log likelihood does not, since one may specify an arbitrary variance function.

(4)
$$\frac{\partial Q(\mu;Y)}{\partial \mu} = \frac{Y-\mu}{a^{-1}\phi v(\mu)}$$

Quasi-Deviance

Quasi-Deviance:

$$D(\mu; Y) = -2\phi Q(\mu; Y) = 2 \int_{\mu}^{Y} \frac{Y - u}{a^{-1}v(u)} du$$

Remarks:

- (1). $D(\mu; Y) \geq 0$.
- (2). $D(\mu; Y)$ does not depend on ϕ .

Quasi-score function for β :

$$\mathbf{U}(\boldsymbol{\beta}) = \frac{1}{\phi} \mathbf{D}^T V^{-1} (Y - u)$$

where $\mathbf{D} = \frac{\partial \mu}{\partial \boldsymbol{\beta}^T}$. Why?

Summary

1.
$$E(Y) = \mu$$
, $var(Y) = a^{-1}\phi v(u)$

- 2. Model: $g(\mu) = \mathbf{X}^T \boldsymbol{\beta}$
- 3. Quasi-loglikelihood: $Q(\mu; Y) = \int_Y^{\mu} \frac{Y u}{a^{-1}\phi v(u)} du$

4.
$$U(\beta) = \frac{\partial Q(\mu;Y)}{\partial \beta}$$

5. Quasi-information matrix for β :

$$\mathbf{I}(\boldsymbol{\beta}) = -E\left\{\frac{\partial \mathbf{U}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}^T}\right\} = \frac{1}{\phi} \mathbf{D}^T V^{-1} \mathbf{D}$$

where
$$\mathbf{D} = \frac{\partial \mu}{\partial \boldsymbol{\beta}^T}$$
.

Data: Y_i , X_i $(i = 1, \dots, n)$

Quasi-Loglikelihood:
$$QL = \sum_{i=1}^{n} Q_i(\mu_i; Y_i) = \sum_{i=1}^{n} \int_{Y_i}^{\mu_i} \frac{Y_i - u}{a^{-1}\phi v(u)} du$$

Quasi-Deviance :
$$QDev = \sum_{i=1}^{n} d_i(\mu_i; Y_i) = 2 \sum_{i=1}^{n} \int_{\mu_i}^{Y_i} \frac{Y_i - u}{a^{-1}v(u)} du$$

Quasi-Score:
$$\mathbf{U}(\boldsymbol{\beta}) = \frac{1}{\phi} \sum_{i=1}^{n} \mathbf{D}_{i}^{T} V_{i}^{-1} (Y_{i} - \mu_{i})$$

Quasi-Information :
$$\mathbf{I}(\boldsymbol{\beta}) = \frac{1}{\phi} \sum_{i=1}^{n} \mathbf{D}_{i}^{T} V_{i}^{-1} \mathbf{D}_{i}$$

Theorem [Wedderburn 1974]:

Under some regularity conditions, the maximum quasi-likelihood estimator $\widehat{\beta}$, which satisfies $U(\widehat{\beta})=0$, is consistent and asymptotically normal. i.e.

(1).
$$\hat{\boldsymbol{\beta}} \stackrel{p}{\rightarrow} \boldsymbol{\beta}$$

(2).
$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\rightarrow} N\{0, \mathbf{I}^{-1}(\boldsymbol{\beta})\}$$

Questions:

- (1). If the variance function $V(\mu)$ is misspecified, is the solution $\widehat{\beta}$ of $U(\widehat{\beta}) = 0$ consistent? asymptotically normal?
- (2). Does $\widehat{\beta}$ depend on ϕ ?

Estimation of ϕ :

1.
$$\hat{\phi} = \frac{Pearson \chi^2}{n-p} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(Y_i - \hat{\mu}_i)^2}{a_i^{-1} v(\hat{\mu}_i)}$$

2.
$$\hat{\phi} = \frac{Deviance}{n-p} = \frac{1}{n-p} \sum_{i=1}^{n} d_i$$

Usually the first estimator is recommended.

Example (Wedderburn, 1974)

Outcome: the percentage of leaf blotch

Covariates: 10 varieties of barley, 9 sites. (see table)

Model:

$$logit(\mu) = \mathbf{X}^T \boldsymbol{\beta}$$

variance function:

(1).
$$\mu(1-\mu)$$

(2).
$$\mu^2(1-\mu)^2$$

Table 9.2. Incidence of R. secalis on the leaves of ten varieties of barley grown at nine sites: response is the percentage of leaf affected

	Variety										
Site	1	2	3	4	5	6	7	8	9	10	Mean
1	0.05	0.00	0.00	0.10	0.25	0.05	0.50	1.30	1.50	1.50	0.52
2	0.00	0.05	0.05	0.30	0.75	0.30	3.00	7.50	1.00	12.70	2.56
3	1.25	1.25	2.50	16.60	2.50	2.50	0.00	20.00	37.50	26.25	11.03
4	2.50	0.50	0.01	3.00	2.50	0.01	25.00	55.00	5.00	40.00	13.35
5	5.50	1.00	6.00	1.10	2.50	8.00	16.50	29.50	20.00	43.50	13.36
6	1.00	5.00	5.00	5.00	5.00	5.00	10.00	5.00	50.00	75.00	16.60
7	5.00	0.10	5.00	5.00	50.00	10.00	50.00	25.00	50.00	75.00	27.51
8	5.00	10.00	5.00	5.00	25.00	75.00	50.00	75.00	75.00	75.00	40.00
9	17.50	25.00	42.50	50.00	37.50	95.00	62.50	95.00	95.00	95.00	61.50
Mean	4.20	4.77	7.34	9.57	14.00	21.76	24.17	34.81	37.22	49.33	20.72

Source: Wedderburn (1974) taken from an unpublished Aberystwyth Ph.D thesis by J.F. Jenkyn.

Fig 1. Pearson residuals plotted against the linear predictor $\widehat{\eta} = \log(\frac{\widehat{\pi}}{1-\widehat{\pi}})$ for the 'binomial' fit to the leaf-blotch data using variance function $\widehat{\pi}(1-\widehat{\pi})$.

Fig. 9.1a. Pearson residuals plotted against the linear predictor $\hat{\eta} = \log(\hat{\pi}/(1-\hat{\pi}))$ for the 'binomial' fit to the leaf-blotch data.

Fig 2. Pearson residuals using variance function $\widehat{\pi}^2(1-\widehat{\pi})^2$ plotted against the linear predictor $\widehat{\eta} = \log(\frac{\widehat{\pi}}{1-\widehat{\pi}})$ for the leaf-blotch data .

				Van	riety				
1	2	3	4	5	6	7	8	9	10
0.00 (0.00)	-0.47 (0.47)	0.08 (0.47)	0.95 (0.47)	1.35 (0.47)	1.33 (0.47)	2.34 (0.47)	3.26 (0.47)	3.14 (0.47)	3.89

Fig. 9.2. Pearson residuals using the variance function $\pi^2(1-\pi)^2$ plotted against the linear predictor $\hat{\eta}$ for the leaf-blotch data.

Estimating Equations

Estimating Function:

 $e(Y; \theta)$ is an estimating function for $\theta(p \times 1)$ if $E[e(Y; \theta)] = 0$ for all θ ;

or $E[e(Y; \theta)|\mathbf{A}] = 0$ for all θ (more generally), where \mathbf{A} is some covariate vector.

e.g.

1.
$$e(Y; \theta) = Y - \mu(\theta)$$

2.
$$e(Y; \boldsymbol{\theta}) = \mathbf{X}^T \{Y - \mu(\boldsymbol{\theta})\}$$

3. AR(1) model:

$$Y_t = \theta Y_{t-1} + \epsilon_t$$

where $\epsilon_t \sim N(0, \sigma^2)$. Then

$$e(Y_t; \theta) = Y_t - \theta Y_{t-1}.$$

4. Martingale (survival analysis):

$$E[e(Y_t; \boldsymbol{\theta})|\mathbf{A}_t] = 0$$

where $A_t = Y_1, \dots, Y_{t-1}$, the past history. Then

 $e(Y_t; \theta)$ = element of the cox model score equation.

Question

For each observation, one can construct an estimating equation. How to combine these n equations optimally into p equations?

Optimal Estimating Equation (Function)

Let

$$\mathbf{D}_{i} = -E\left[\frac{\partial e_{i}(Y_{i}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{T}} | \mathbf{A}_{i}\right]$$
$$V_{i} = var(e_{i}(Y_{i}; \boldsymbol{\theta}) | \mathbf{A}_{i}),$$

Then within the class of estimating function $c_i(\theta)e_i(\theta)$, the optimal estimating equation is

$$\mathbf{U}(\boldsymbol{\theta}; y) = \sum_{i} \mathbf{D}_{i}^{T} V_{i}^{-1} e_{i}(y; \boldsymbol{\theta}) = \mathbf{D}^{T} \mathbf{V}^{-1} \mathbf{e}$$

where $\mathbf{D} = (\mathbf{D}_1, \dots, \mathbf{D}_n)^T$, $\mathbf{V} = diag(V_1, \dots, V_n)$, and $\mathbf{e} = (e_1, \dots, e_n)^T$.

Optimal Linear Estimating Equation (Function)

Within the class of linear estimating functions:

$$s(\theta; \mathbf{Y}) = \mathbf{H}^T(\mathbf{Y} - \boldsymbol{\mu}(\boldsymbol{\theta}))$$

where $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ and $\mathbf{H} : n \times p$.

Then $U(\theta; Y) = D^T V^{-1} \{Y - \mu(\theta)\}$ is optimal.

What is the optimality criterion?

Let $\hat{\theta}$ satisfy $s(\hat{\theta}; Y) = 0$, and $\hat{\theta}_0$ satisfy $U(\hat{\theta}_0; Y) = 0$,

then $cov(\hat{\theta}) - cov(\hat{\theta}_0) \ge 0$ (nonnegative definite).

Examples of $U(\theta; Y) = D^T V^{-1} e$

Example 1 (GLM):

$$e(\beta; Y) = Y - \mu(\theta)$$

$$\theta = \beta$$
, $D = \frac{\partial \mu}{\partial \beta^T}$, $V = diag\{\phi a_i^{-1} v(\mu_i)\}$.

Then the optimal linear estimating equation

$$\mathbf{U}(\beta; Y) = \mathbf{D}^T \mathbf{V}^{-1} \{ \mathbf{Y} - \mu(\beta) \}$$

is the QL score equation. It is also the regular score equation for common GLMs.

Example 2 (AR1 Model):

$$Y_t = \theta Y_{t-1} + \epsilon_t$$

where $\epsilon_t \sim N(0, \sigma^2)$.

$$e(Y_t; \theta) = Y_t - \theta Y_{t-1}$$
.

$$D_t = ?$$

$$V_t = ?$$

$$U(\beta; Y) = ?$$

Why is $U(\theta; Y)$ optimal?

For simplicity, we here concentrate on linear estimating equations.

Recall $s(\theta; Y) = H^T \{Y - \mu(\theta)\}$, where H may depend on θ .

$$U(\theta; Y) = D^T V^{-1} \{Y - \mu(\theta)\}\$$

Noting
$$0 = s(\hat{\theta}) \approx s(\theta) - H^T D(\hat{\theta} - \theta)$$
, we have
$$\hat{\theta} - \theta = (H^T D)^{-1} H^T \{Y - \mu(\theta)\}.$$

Therefore,

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) = (\frac{1}{n}\mathbf{H}^T\mathbf{D})^{-1}\frac{1}{\sqrt{n}}\mathbf{H}^T\{\mathbf{Y} - \boldsymbol{\mu}(\boldsymbol{\theta})\} + o_p(1)$$

$$\stackrel{d}{\to} N(0, \boldsymbol{\Sigma})$$

where $\Sigma = \lim_{n\to\infty} (\frac{1}{n}\mathbf{H}^T\mathbf{D})^{-1}(\frac{1}{n}\mathbf{H}^T\mathbf{V}\mathbf{H})[\frac{1}{n}(\mathbf{H}^T\mathbf{D})^{-1}]^T$ is a sandwich estimator.

Suppose we have another estimator $\hat{\theta}_0$, which satisfies

$$\sqrt{n}(\widehat{m{ heta}}_0-m{ heta}) \stackrel{d}{\longrightarrow} N(\mathbf{0}, \Sigma_0),$$
 and $\Sigma_0=(\mathbf{D}^T\mathbf{V}^{-1}\mathbf{D})^{-1}.$

We need to show

$$\Sigma - \Sigma_0 \geq 0$$
.

This is equivalent to

$$(\mathbf{H}^T \mathbf{D})^{-1} (\mathbf{H}^T \mathbf{V} \mathbf{H}) (\mathbf{D}^T \mathbf{H})^{-1} - (\mathbf{D}^T \mathbf{V}^{-1} \mathbf{D})^{-1} \ge 0.$$

It is sufficient to show

$$\Sigma_0^{-1} - \Sigma^{-1} \ge 0,$$

i.e.

$$\mathbf{D}^{T}\mathbf{V}^{-1}\mathbf{D} - \mathbf{D}^{T}\mathbf{H}(\mathbf{H}^{T}\mathbf{V}\mathbf{H})^{-1}\mathbf{H}^{T}\mathbf{D}$$

$$= \mathbf{D}^{T}\{\mathbf{V}^{-1} - \mathbf{H}(\mathbf{H}^{T}\mathbf{V}\mathbf{H})^{-1}\mathbf{H}^{T}\}\mathbf{D}$$

* $\{V - H(H^TVH)^{-1}H^T\}$ is non-negative definite. (Why?)

Questions:

- 1. If the data Y have a likelihood $\ell(\theta)$, would the linear estimating equation $U(\theta; Y) = D^T V^{-1} \{ Y \mu(\theta) \}$ always be the optimal for θ ? (i.e. equals to the score equation $\frac{\partial \ell}{\partial \theta}$?)
- 2. Can you give a counter example, if no?