Análise de Algoritmos

Em 1965 Jack Edmonds introduz a idéia de Complexidade Assintótica

A idéia da "ordem"

Complexidade Assintótica

A função T(x) é chamada de Complexidade Local

A Complexidade Assintótica fornece limites para T(x)

Complexidade Assintótica

Notação O

Sendo duas funções f(n) e g(n) não negativas, f, $g: N \rightarrow \mathbb{R}^m$ $m \ge 0$. Diz-se que f(n) é de ordem g(n), ou simplesmente f(n) é O(g(n)) se o crescimento de f(n) é, no máximo, tão rápido quanto o crescimento de

g(n).

Notação O

f(n) é limitada superiormente por um múltiplo real positivo de g(n) para valores grandes de n. Diz-se que f(n) é O(g(n)) quando:

existe uma constante real positiva c e um limite n_0 tais que $f(n) \le cg(n)$, para todo valor de $n \ge n_0$.

Notação O

Esta definição equivale a dizer que

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

existe e é finito.

$$\lim_{n \to \infty} \frac{\sqrt{n}}{n} = 0 \longrightarrow \sqrt{n} = O(n)$$

$$\lim_{n \to \infty} \frac{n}{\sqrt{n}} = \infty \longrightarrow n \text{ não \'e } O(\sqrt{n})$$

$$\lim_{n \to \infty} \frac{n}{2n} = \frac{1}{2} \longrightarrow n = O(2n)$$

$$\lim_{n \to \infty} \frac{2n}{n} = 2 \longrightarrow 2n = O(n)$$

1. 7n-2

Exige-se c > 0 e
$$n_0 \ge 1$$
 tal que $7n-2 \le c \cdot n$ para $n \ge n_0$

O que é verdade para, por exemplo, $c = 7 e n_0 = 1$

$$2.3n^3 + 20n^2 + 5$$

$$3n^3 + 20n^2 + 5 \notin O(n^3)$$

Exige-se c > 0 e
$$n_0 \ge 1$$
 tal que $3n^3 + 20n^2 + 5 \le c \cdot n^3$ para $n \ge n_0$

O que é verdade para, por exemplo, $c = 4 e n_0 = ?$

$$3.5n^3 + 2n^2 + 3n$$

1. 7n-2

Exige-se c > 0 e
$$n_0 \ge 1$$
 tal que $7n-2 \le c \cdot n$ para $n \ge n_0$

O que é verdade para, por exemplo, $c = 7 e n_0 = 1$

$$2.3n^3 + 20n^2 + 5$$

$$3n^3 + 20n^2 + 5 \notin O(n^3)$$

Exige-se c > 0 e
$$n_0 \ge 1$$
 tal que $3n^3 + 20n^2 + 5 \le c \cdot n^3$ para $n \ge n_0$

O que é verdade para, por exemplo, $c = 4 e n_0 = 21$

$$3.5n^3 + 2n^2 + 3n$$

1. 7n-2

Exige-se c > 0 e
$$n_0 \ge 1$$
 tal que $7n-2 \le c \cdot n$ para $n \ge n_0$

O que é verdade para, por exemplo, $c = 7 e n_0 = 1$

$$2.3n^3 + 20n^2 + 5$$

$$3n^3 + 20n^2 + 5 é O(n^3)$$

Exige-se c > 0 e
$$n_0 \ge 1$$
 tal que $3n^3 + 20n^2 + 5 \le c \cdot n^3$ para $n \ge n_0$

O que é verdade para, por exemplo, $c = 4 e n_0 = 21$

$$3.5n^3 + 2n^2 + 3n$$

$$5n^3 + 2n^2 + 3n \in O(n^3)$$

O que é verdade para, por exemplo, $c = 6 e n_0 = 3$

Operações c/ Assintóticas

Regra da Soma

Se um algoritmo A se divide em duas partes independentes, A_1 e A_2 , com complexidades dadas por $T_1(n)$ e $T_2(n)$ de *ordem O*(f(n)) e O(g(n)), respectivamente, então $T(n) = T_1(n) + T_2(n)$ e A será de ordem $O(\max \{ f(n), g(n) \})$.

Regra do Produto

Se $T_1(n)$ e $T_2(n)$ são de ordem O(f(n)) e O(g(n)), respectivamente, então $T(n) = T_1(n) \times T_2(n)$ é O(f(n)).

Resumo: Notação O

1. Se
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \in \Re^+$$
 então $f(n) \in O(g(n))$ e $g(n) \in O(f(n))$

2. Se
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
 então $f(n) \in O(g(n))$ e $g(n) \notin O(f(n))$

3. Se
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = +\infty$$
 então $f(n) \notin O(g(n))$ e $g(n) \in O(f(n))$

Notação Ω

Diz-se que $f(n) \in \Omega(g(n))$ quando:

existe uma constante real positiva d e um limite n_0 tais que

 $f(n) \ge d g(n)$, para todo valor de $n \ge n_0$.

Assintótica Ω

$$f(n) = 100n + 5 \in \Omega(g(n^2))$$
?

Para encontrar c, n_0 tal que $0 \le cn^2 \le 100n + 5$

$$100n + 5 \le 100n + 5n$$
 (para $n \ge 1$) = $105n$

Como *n* é positivo

$$cn^2 \le 105n \implies cn \le 105 \implies n \le 105/c$$

Contudo *n* não pode ser menor que uma constante!

Notação ⊕

Diz-se que que f(n) é Θ (g(n)), ou que f(n) é da ordem exata de g(n), se f(n) é tanto O(g(n)) como $\Omega(g(n))$.

Formalmente, $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$, o que equivale dizer que existem constantes c, d, n_1 e n_2 tais que:

$$f(n) \le cg(n)$$
, para todo $n \ge n_1$

e

$$f(n) \ge dg(n)$$
, para todo $n \ge n_2$

Assintótica ©

Notação o

Diz-se que f(n) é o(g(n)), $n \rightarrow \infty$, quando para toda constante positiva ε , existe uma constante n_0 tal que

$$f(n) < \varepsilon g(n)$$
, para $n \ge n_0$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Notação ω

Diz-se que f(n) é $\omega(g(n))$, $n \rightarrow \infty$, quando para toda constante positiva ϵ , existe uma constante n_0 tal que

$$f(n) > \varepsilon g(n)$$
, para $n \ge n_0$

$$\lim_{n\to\infty}\frac{g\left(n\right)}{f\left(n\right)}=0$$

Resumo Assintóticas

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\in[0,\infty)\qquad \qquad f(n)\ \acute{e}\ O(g(n))$$

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}\in[0,\infty)\qquad \longrightarrow \qquad f(n)=\Omega(g(n))$$

$$f(n) = \Theta(g(n)) \longrightarrow \begin{cases} f(n) = O(g(n)) \\ f(n) = \Omega(g(n)) \end{cases}$$

Exercícios

```
Fatorial_iterativo(n)
   se (n == 0) então escrever ("1");
   senão
        x=1;
        para i=1 até n fazer
x = x * i;
        Escrever(x); }
```

Resposta

Pior Caso e Melhor Caso:

$$T(n) = 1 + 1 + (n+1) + n = 2n + 3$$

Portanto, tanto no pior como no melhor caso, o algoritmo é O(n).

Assim, temos que o algoritmo é $\Theta(n)$

Funções Complexidade

Função	Nome	Função	Nome
С	Constante	n²	Quadrada
Log n	Logarítmica	n³	Cúbica
Log ² n	Log quadrada	2 ⁿ	Exponencial
n	Linear	n!	Fatorial

Crescimento

Crescimento

Sejam 5 algoritmos $A_1...A_5$ que resolvem um mesmo problema com um tempo de 1 ms em cada operação $T_{k}(n)$ é a complexidade do algoritmo K na entrada n

n	A ₁	A ₂	A ₃	A ₄	A ₅
	T(n)=n	T(n)=nlogn	$T(n)=n^2$	$T(n)=n^3$	$T(n)=2^n$
16	0,016s	0,064s	0,256s	4s	1m4s
32	0,032s	0,16s	1s	33s	46d
512	0,512s	9s	4m22s	1d13h	10 ¹³⁷ Séculos

Algumas fórmulas úteis

Serie Aritmetica	Serie Geometrica	Serie Harmonica
$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \equiv O(n^2)$	$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1} \equiv O(x^{n})$	$\sum_{i=1}^{n} \frac{1}{k} = \ln n + O(1) \equiv O(\ln n)$
$\sum_{i=0}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} \equiv O\left(\frac{n^{3}}{3}\right)$	$\sum_{i=0}^{n} \frac{i}{2^i} = 2$	$\sum_{i=1}^{n} \frac{1}{k} = \ln n + O(1) \equiv O(\ln n)$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$
 Aproximação de Stirling

Algumas fórmulas úteis

$$\sum_{i=1}^{n} \log i$$

$$S_n = \log 1 + \log 2 + \log 3 + \dots + \log n$$

$$S_n = \log (1.2.3...n)$$

$$S_n = \log (n!)$$

$$\log (n!) = \Theta(n \log n) \qquad n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

Algumas fórmulas úteis

$$\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1}$$

$$S_n = \sum_{i=1}^{n-1} \left(\frac{1}{i} - \frac{1}{i+1} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n} \right)$$

$$S_n = 1 - \frac{1}{n}$$

Exercício

Considere o seguinte método para ordenar *n* números em uma lista L. O algoritmo faz uma busca linear e encontra o menor número na posição *i* de *L* e permuta este número com o que está na primeira posição de L. Em seguida encontra o 2º menor elemento e troca com o que está na segunda posição de L. Esta etapa é realizada para os primeiro n-1 elementos de L. Escreva o pseudocódigo para este algoritmo. Prove que ele ordena corretamente a lista (são necessários apenas *n*-1 passos no laço). Forneça a complexidade do algoritmo em notação assintótica.

Assumindo que o problema possa ser solucionado por algoritmos:

O *limite superior* da complexidade em tempo de um problema refere-se ao *tempo no pior caso do melhor algoritmo* para resolver este problema.

Exemplo: Ordenação por comparação

Algoritmos:

Mergesort - O(nlogn)

Quicksort – $O(n^2)$

O limite superior da complexidade da ordenação é $O(n\log n)$.

Assumindo que o problema possa ser solucionado por algoritmos:

O *limite inferior* da complexidade em tempo de um problema refere-se à melhor complexidade possível.

É um resultado teórico que determina não ser possível desenvolver um algoritmo *cuja complexidade de pior caso* seja menor que um certo limite estabelecido.

Exemplo: Ordenação por comparação

Ordenar três números inteiros a, b e c.

A complexidade é a profundidade de uma folha na árvore de decisão.

A complexidade de pior caso é a maior profundidade de uma folha = altura da árvore.

Relação entre o número de folhas e a altura de uma árvore binária completa é

folhas = 2altura

Número de **folhas =** n!, onde n é o número de elementos a serem ordenados.

Como a árvore de decisão não é necessariamente completa temos que:

$$n! \le 2$$
 altura $\Rightarrow \log_2 n! \le \log_2 2$ altura \Rightarrow altura $\ge \lceil \log_2 n! \rceil$

Aproximação de Stirling

Aproximação de Stirling

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\lceil \log_2(n!) \rceil \approx \log_2[\sqrt{2\pi n}] + \log_2[(\frac{n}{e})^n]$$

$$= O(n \log_2(\frac{n}{e}))$$

$$= O(n \log_2(n))$$

A complexidade de pior caso é dada pela altura da árvore. Assim:

 $O(n\log_2 n)$

Portanto, o limite inferior para o problema é $O(n\log n)$.

Existem limites inferiores naturais, como, por exemplo, o tamanho da entrada uma vez que o algoritmo deverá ler sua entrada.

Exemplo: limite inferior para soma de matrizes e para multiplicação de matrizes quadradas de ordem $n \in \Omega(n^2)$.

Algoritmo Ótimo

Um limite inferior para um problema P, a função I, é tal que a complexidade de pior caso de qualquer algoritmo que resolva P é $\Omega(I)$.

Se existir algoritmo A tal que A é O(I), então A é dito algoritmo ótimo para P.

Exercício

MergeSort é ótimo para a ordenação por comparações?

QuickSort é ótimo para a ordenação por comparações?