Homework Problem

Duprove: $\forall M$, if M'is (ξ, ξ) -dp wrt seR then M-is (ξ, ξ) -dp wrt all $S \in R$

Homework Problem

Duprove: $\forall M$, if M'is (ξ, ξ) -dp wrt seR then M-is (ξ, ξ) -dp wrt all $S \in R$

Let
$$R = \{a, b_1, b_2\}$$
 be the range of R .

Let $R = \{a, b_1, b_2\}$ be the range of R. Let x, x' be Neighboring databases.

M(x) = a with prob. 1-2S b_1 " " S

Let E=S

Homework Problem
$$M(x) = \begin{cases} a & \text{wp } 1-25 \\ b_1 & \text{wp } 5 \\ b_2 & \text{wp } 5 \end{cases}$$

2=3

 $M(\kappa') = \begin{cases} a & wp 1 \end{cases}$

Homework Problem
$$E = S, S > 0$$

$$M(x) = \begin{cases} a & \text{wp } 1-2S \\ b_1 & \text{wp } S \\ b_2 & \text{wp } S \end{cases}$$

$$M(x') = \begin{cases} a & \text{wp } 1 \end{cases}$$

$$\frac{1}{\text{pr} \int M(x) = a} = 1 - 2s$$

 $Pr\left[M(x)=a\right]=1-2S$ $Pr\left[M(x')=a\right]=1$

Homework Problem
$$E = S, S > 0$$

$$M(x) = \begin{cases} a & \text{wp } 1-2S \\ b_1 & \text{wp } S \end{cases}$$

$$M(x') = \begin{cases} a & \text{wp } 1 \end{cases}$$

$$M(x') = \begin{cases} a & \text{wp } 1 \end{cases}$$

$$C(ain 1 \quad M \cdot 1s) \quad (\xi S) - dp \quad \forall S \in \mathbb{R}$$

$$Pr \left[M(x) = a \right] = 1 - 2S$$

$$Pr \left[M(x') = a \right] = 1$$

$$Pr \left[M(x') = a \right] = 1 \leq (1+\epsilon)(1-2S) + S \leq (1+s)(1-2s) + S \leq 1$$

Homework Problem
$$E = S, \quad J > 0$$

$$M(x) = \begin{cases} a & \text{wp } 1 - 2S \\ b_1 & \text{wp } S \\ b_2 & \text{wp } S \end{cases}$$

$$M(x') = \begin{cases} a & \text{wp } 1 \end{cases}$$

$$C(a \text{ in } 1 \quad M \cdot 1s \quad (\xi S) - dp \quad \forall S \in \mathbb{R}$$

$$Pr(M(x) = b_1) = S$$

$$Pr(M(x') = b_1) = S$$

$$Pr(M(x') = b_1) = S \quad \Leftrightarrow \quad 0 + S = e^{\epsilon} Pr(M(x') = b_1) + S$$

$$Pr(M(x') = b_1) = 0 \quad \Leftrightarrow \quad e^{\epsilon} \cdot S + S$$

Homework Problem E=3, \$>0 $M(x) = \begin{cases} a & \text{wp } 1-25 \\ b_1 & \text{wp } 5 \\ b_2 & \text{wp } 5 \end{cases}$ $M(x') = \begin{cases} a & wp 1 \end{cases}$ Claim Z Let $S = \{b_1, b_2\}$ Then $Pr(M(x) \in S] \neq e^{\epsilon} Pr(M(x) \in S) + S$

More DP fechniques

- 1. Composition, Advanced Composition
- 2. Sparse Vector
- 3. Blum-Ligett-Roth (BLR):
 release a sanifized database
 that is DP, and accurate
 for a large family of queries
- 4. DP => generalization

Basic composition

• Setting:

- M_i be (ϵ_i, δ_i) -differentially private
- M applies $M_1, ..., M_t$ on its input (the inner $M_1, ..., M_t$ use independent randomness).
- Basic composition theorem [DMNS06, DL09]:
 - M is $(\sum_i \epsilon_i, \sum_i \delta_i)$ -differentially private
- Basic composition suggests that ϵ (and to a lesser account δ) can be treated as a 'privacy budget':
 - Split 'privacy budget' ϵ into smaller budget $\sum_i \epsilon_i$; allocate portion ϵ_i to mechanism M_i
 - Spend your budget carefully!
- More refined theorems (later):
 - Advanced composition [DRV10]
 - Optimal composition [KOV15, MV15]

Composition in differential privacy

- How do we define it?
 - Both choice of databases and algorithms is adaptive and adversarial [DRV10]

Thx: Guy Rothblum

What is privacy loss?

- Measured by the 'privacy loss' parameter ϵ
- Fix adjacent x^0 , x^1 , draw $C \leftarrow M(x_0)$
 - Is C more likely to come from x^0 or x^1

"19" more likely as output on x^0 than on x^1

"40" more likely as output on x^1 than on x^0

- Define $Loss(C) = \ln \left[\frac{\Pr[M(x^0) = C]}{\Pr[M(x^1) = C]} \right]$
 - $(\varepsilon, 0) DP$: w.p. 1 over C, $|Loss(C)| \le \varepsilon$
 - $(\varepsilon, \delta) DP^*$: $w.p.1 \delta \ over \ C$, $|Loss(C)| \le \varepsilon$

Log of likelihood ratio

What is privacy loss?

• Fix adjacent x^0 , x^1 , draw $C \leftarrow M(x_0)$

$$Loss(C) = \ln \left[\frac{\Pr[M(x^0) = C]}{\Pr[M(x^1) = C]} \right]$$

- In multiple independent executions *loss* accumulates
 - Worst case: $Loss = \varepsilon$ for every execution (as in analysis of basic composition)
 - This is pessimistic: Loss can be positive, negative \rightarrow cancellations
 - Random variable, has a mean ([DDN03, DRV10]...)

$$RR_{\varepsilon}(x) = \begin{cases} x_i & wp. & \frac{e^{\varepsilon}}{e^{i}+1} \\ 7x_i & wp. & \frac{1}{e^{i}+1} \end{cases}$$

50 -ε ≤ C; ≤ ε

In
$$\left[\frac{\Pr[Y_i=0|X_i=0]}{\Pr[Y_i=0|X_i=1]}\right] = \ln\left(\frac{e^{\epsilon}}{e^{\epsilon}}\right) = \epsilon$$

In $\left[\frac{\Pr[Y_i=0|X_i=1]}{\Pr[Y_i=0|X_i=0]}\right] = \ln\left(e^{\epsilon}\right) = \epsilon$

So $-\epsilon < \epsilon, \epsilon < \epsilon$
 $\epsilon < \epsilon < \epsilon$

Privacy Loss in Randomized Response

$$E[C_i] = \varepsilon \cdot \frac{e^{\varepsilon}}{e^{\varepsilon} + 1} - \varepsilon \left[\frac{1}{e^{\varepsilon} + 1}\right] \approx \frac{\varepsilon(1+\varepsilon-1)}{e^{\varepsilon} + 1} \sim \varepsilon^2$$

so
$$\mathbb{E}\left[\frac{1}{2}C_{i}\right] = \frac{1}{2}\mathbb{E}\left[C_{i}\right] \sim K \cdot \epsilon^{2}$$

.. Expected cumulative loss
$$E[\xi_{C_i}] \sim K\epsilon^2$$

and $|\xi_{C_i}| \leq \epsilon$

So this is a Moutingale

Azuma's Inequality

Let C, Cz, .. Ck be real valued r.v.'s satisfying this c-Lyshitz property: Yj

Then
$$Y+3D$$

Then Yt >0

 $Pr\left[\sum_{i=1}^{k} c_{i} > E\left[\sum_{i=1}^{k} c_{i}\right] + t\right] \leq 2^{-\frac{1}{2}K\xi^{2}}$

Azuma's Inequality

Let C, Cz, .. Ck be real valued r.v.'s satisfying this c-Lyshitz properby: Yi

Then
$$\forall t \geq 0$$

Pr $\left[\sum_{i=1}^{k} C_i \right] \geq E\left[\sum_{i=1}^{k} C_i \right] + t \right] \leq 2$

Then $\forall t \geq 0$

Pr $\left[\sum_{i=1}^{k} C_i \right] \geq E\left[\sum_{i=1}^{k} C_i \right] + t \right] \leq 2$

Then $\exists x \in \mathbb{Z}$

Then

so we have $(\epsilon', \delta) - d\rho$ We have $E\left[\frac{2}{i}c_{i}\right] \sim KE^{2}$ choose t≈ VKlog's € gives Pr[= KE2 + VKlog's E] = S

Advanced Composition [DRV10]

Composing k pure-DP algorithms (each ε_0 -DP):

$$\varepsilon_g = O\left(\sqrt{k \cdot \ln \frac{1}{\delta_g}} \cdot \varepsilon_0 + k \cdot \varepsilon_0^2\right)$$
 with all but δ_g probability.

Dominant if $k \ll \frac{1}{\epsilon_0^2}$

Dominant if $k \gg \frac{1}{\epsilon_0^2}$

For all δ_a simultaneously