Matplotlib's math rendering engine

matplotilb's math rendering engine
$$U_{\delta_1, \alpha_2}^{2\beta} = \alpha_2^{\alpha_2} \qquad U_{\delta_2, \alpha_3}^{2\beta} = \alpha_2^{\alpha_3}$$

$$W_{\delta_{1}\rho_{1}\sigma_{2}}^{3\beta} = U_{\delta_{1}\rho_{1}}^{3\beta} + \frac{1}{8\pi^{2}} \int_{\alpha_{2}}^{\alpha_{2}} d\alpha'_{2} \left[\frac{U_{\delta_{1}\rho_{1}}^{2\beta} - \alpha'_{2}U_{\rho_{1}\sigma_{2}}^{1\beta}}{U_{\rho_{1}\sigma_{2}}^{0\beta}} \right]$$

$$\alpha_i > \beta_i$$
, $\alpha_{i+1}^J = \sin(2\pi f_j t_i) e^{-5t_i/\tau}$, ...

$$\frac{3}{4}$$
, $\binom{3}{4}$, $\frac{3}{4}$, $\left(\frac{5-\frac{1}{x}}{4}\right)$, ...

Radicals: $\sqrt{2}$, $\sqrt[3]{x}$, ...

Fonts:

Accents:

 \acute{a} , \ddot{a} , \breve{a} , \ddot{a} , \ddot{a} , \ddot{a} , \ddot{a} , xyz, xyz, ... Greek, Hebrew:

$$\alpha$$
, β , χ , δ , λ , μ , Δ , Γ , Ω , Φ , Π , Υ , ∇ , \aleph , \beth , \urcorner , \beth ,

 \coprod , \int , \oint , \prod , \sum , log, sin, \approx , \oplus , \star , \propto , ∞ , ∂ , \Re ,