

Reinforcement Learning on Reconfigurable Hardware: Overcoming Material Variability in Laser Material Processing

Giulio Masinelli^{1,2}, Chang Rajani¹, Patrik Hoffmann¹, Kilian Wasmer¹, and David Atienza²

¹Laboratory for Advanced Materials Processing (LAMP), Swiss Federal Laboratories for Materials Science and Technology (Empa), Thun, Switzerland.

²Embedded Systems Laboratory (ESL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract

Surface roughness and alloy variability make laser welding hard to tune by hand or with fixed-setpoint controllers. To address this issue, we embed a reinforcement-learning policy in a Xilinx Zynq FPGA, closing the loop in $\approx 3\,\mu\mathrm{s}$ and retraining off-board between welds. On 316L steel the policy self-adapts, raising conduction-mode reward up to 23% on sand-blasted and 7% on mixed surfaces versus optimised constant power.

Motivation

- Laser welding underpins automotive, aerospace, medical devices.
- Small changes in surface finish shift optimal power by tens of watts.
- An on-chip RL controller delivers deterministic, μ s-scale reactions and removes time-consuming trial-and-error tuning.

Learning curves

exceeds it on rough and mixed surfaces, achieving +22-23% cumulative reward. Exploration noise is visible only in training runs; test-only runs confirm stable gains.

Overview of method

- $Sensors \rightarrow FPGA$: $100 \, \mathrm{kS \, s^{-1}}$ photodiodes feed an 8-bit MLP that outputs laser-power commands every 10 ms window (< 4 $\mu \mathrm{s}$ compute).
- $FPGA \rightarrow Server$: episodic data drive SAC+QAT training; fresh weights return over Ethernet before the next weld, enabling continuous on-line improvement.

Qualitative results: melt-pool cross-sections

Learned policy yields wider, deeper conduction-mode pools without keyhole defects on both brushed and sand-blasted zones, indicating better fusion and lower porosity risk than constant-power welding.

Conclusions

- First μ s-latency RL control of laser welding on reconfigurable hardware.
- No preset depth targets or heavy reward engineering required.
- Adapts across surface finishes; concept scales to other laser processes and alloys.

Reference

G. Masinelli, C. Rajani, P. Hoffmann, K. Wasmer, D. Atienza, "Reinforcement Learning on Reconfigurable Hardware: Overcoming Material Variability in Laser Material Processing," IEEE Int. Conf. on Robotics and Automation (ICRA),