Statistical Rethinking Chapter 4 problems

___Name: Ruijuan Li

For 03/17/16

4E1

the first one is the likelihood

4E2

two, mu and sigma

4E3

dens(prior)

this formula should look very similar to the one on P83

4M1 for the model definition below, simulate observed heights from the prior.

```
library(rethinking)

## Loading required package: rstan

## Loading required package: ggplot2

## Warning: package 'ggplot2' was built under R version 3.2.4

## rstan (Version 2.9.0-3, packaged: 2016-02-11 15:54:41 UTC, GitRev: 05c3d0058b6a)

## For execution on a local, multicore CPU with excess RAM we recommend calling

## rstan_options(auto_write = TRUE)

## options(mc.cores = parallel::detectCores())

## Loading required package: parallel

## rethinking (Version 1.58)

sample_mu <- rnorm(1e4, 0, 10)

sample_sigma <- runif(1e4, 0, 10)

prior <- rnorm(1e4, sample_mu, sample_sigma)</pre>
```


4M2 translate the model into a map formula

```
data("Howell1")
d <- Howell1
d <- d[d$age >=18,]
m <- map(
    alist(
        height ~ dnorm(mu, sigma),
        mu ~ dnorm(0, 10),
        sigma ~ dunif(0, 10)
),
    data = d # prblem...
)</pre>
```

For 03/24/16

4E4

second line

4E5

three, alpha, beta, and sigma

4M3

```
yi ~ Normal(mui, sigma)
mui = a+b*xi
a \sim Normal(0, 50)
b \sim Normal(0, 10)
sigma \sim \text{Uniform}(0, 50)
4M4
hi ~ Normal(mui, sigma1)
mui = a + b*xi
a \sim Normal(mu2, sigma2)
b ~ Normal(mu3, sigma3)
sigma \sim Uniform(n, m)
4M5
mu2 = 120
b > 0
4M6
sigma \le 64
sigma2 \le 64
```

For 03/31/16

4H1 predicted height or mean of height???

```
# import data
library(rethinking)
data("Howell1")
d <- Howell1

# model fit, normal linear regression

model1 <- map(
    alist(
        height ~ dnorm(mu, sigma),
        mu <- a + b*weight,
        a ~ dnorm(178, 100),
        b ~ dnorm(0, 10),
        sigma ~ dunif(0, 50)</pre>
```

```
),
  data=d)
# plot the model
plot(height ~ weight, data=d)
abline(a=coef(model1)["a"], b = coef(model1)["b"])
     180
     140
     100
                    10
                                 20
                                             30
                                                         40
                                                                      50
                                                                                  60
                                               weight
# extract samples to form a posterior
post <- extract.samples(model1)</pre>
colnames(post)
## [1] "a"
                         "sigma"
# predict average height values
mu.link <- function(weight) post$a + post$b*weight</pre>
weight.seq \leftarrow c(46.95, 43.72, 64.78, 32.59, 54.63)
mu <- sapply(weight.seq, mu.link)</pre>
mu.mean <- apply(mu, 2, mean)</pre>
mu.mean
## [1] 158.2656 152.5699 189.7069 132.9433 171.8085
mu.HPDI <- apply(mu, 2, HPDI, prob=0.89)</pre>
mu.HPDI
```

[,4]

[,5]

[,3]

##

[,2]

|0.89 157.4682 151.8393 188.2628 132.3282 170.7646 ## 0.89 | 159.0689 153.2819 191.0779 133.6071 172.8326

[,1]

4H2

```
# get data
d2 <- d[d$age < 18, ]
nrow(d2)
## [1] 192</pre>
```

(a)

```
# fit a linear regression model
model2 <- map(
    alist(
        height ~ dnorm(mu, sigma),
        mu <- a + b*weight,
        a ~ dnorm(138, 100),
        b ~ dnorm(0, 10),
        sigma ~ dunif(0, 50)
    ),
data=d2)

# plot
plot(height ~ weight, data=d2)
abline(a=coef(model2)["a"], b = coef(model2)["b"])</pre>
```


extract slope values b
post2 <- extract.samples(model2)
dens(post2\$b*10)</pre>


```
HPDI(post2$b*10)

## |0.89    0.89|
## 26.00450 28.19752

mean(post2$b)*10

## [1] 27.18334

# [1] 27.18586
# |0.89    0.89|
# 26.05893 28.25237
```

(b)

```
plot(height ~ weight, data=d2)
```



```
# use link to generate distribution of posterior values for mu
mu.link <- function(weight) post2$a + post2$b*weight
weight.seq <- seq(0, 40, by=1)
mu <- sapply(weight.seq, mu.link)
mu.mean <- apply(mu, 2, mean)
mu.HPDI <- apply(mu, 2, HPDI, prob=0.89)

# plot the distribution, the predicted mean, and the 89% interval
plot(height ~ weight, data=d2, col=col.alpha(rangi2, 0.5))</pre>
```

```
lines(weight.seq, mu.mean)
shade(mu.HPDI, weight.seq)
# 89% interval for the predicted heights
sim.height <- sim(model2, data = list(weight=weight.seq))</pre>
## [ 100 / 1000 ]
[ 200 / 1000 ]
[ 300 / 1000 ]
[ 400 / 1000 ]
[ 500 / 1000 ]
[ 600 / 1000 ]
[ 700 / 1000 ]
[ 800 / 1000 ]
[ 900 / 1000 ]
[ 1000 / 1000 ]
height.PI <- apply(sim.height, 2, PI, prob=0.89)
shade(height.PI, weight.seq)
```


(c)

the model doesn't fit the current data very well, because it seems children with weight below 10kg and above 35kg had a slower growth rate as compared to children with weight between 10 to 35. While I made the assumption of steady growth rate, a polymonial regression with a squred curve may fit the current data better and can possibly serve as a better model.

4H3

(a)

```
# import data
d <- Howell1
nrow(d)</pre>
```

[1] 544

```
# fit model
d$weight.log <- log(d$weight) # cannot standadize, produce 0, prohibit log transformation
model3 <- map(
    alist(
        height ~ dnorm(mu, sigma),
        mu <- a + b * weight.log,
        a~ dnorm(178, 100),
        b ~ dnorm(0, 100),
        sigma ~ dunif(0, 50)
    ),
data = d)

plot(d$height, d$weight.log)</pre>
```


(b)

```
plot(height ~ weight, data=Howell1,
col=col.alpha(rangi2, 0.4))

# the posterior from (a)
par(new=T)
plot(d$height, d$weight)
```



```
# use link to generate distribution of posterior values for mu
post3 <- extract.samples(model3)</pre>
mu.link <- function(weight) post3$a + post3$b*log(weight)</pre>
weight.seq \leftarrow seq(25, 70, by=1)
mu <- sapply(weight.seq, mu.link)</pre>
mu.mean <- apply(mu, 2, mean)</pre>
mu.HPDI <- apply(mu, 2, HPDI, prob=0.89)</pre>
# plot the distribution, the predicted mean, and the 89% interval
lines(weight.seq, mu.mean)
shade(mu.HPDI, weight.seq)
# 89% interval for the predicted heights
sim.height <- sim(model3, data = list(weight=weight.seq))</pre>
height.PI <- apply(sim.height, 2, PI, prob=0.89)
shade(height.PI, weight.seq)
weight.seq \leftarrowseq(25, 70, by=1)
pred_dat <- list(weight = weight.seq, weight.log=log(weight.seq))</pre>
mu <- link(model3, data = pred_dat)</pre>
```

```
mu.mean <- apply(mu, 2, mean)
mu.PI <- apply(mu, 2, PI, prob=0.89)
sim.height <- sim(model3, data = pred_dat)
height.PI <- apply(sim.height, 2, PI, prob=0.89)

plot(height ~ weight.s, d, col=col.alpha(rangi2, 0.5))
lines(weight.seq, mu.mean)
shade(mu.PI, weight.seq)
shade(height.PI, weight.seq)</pre>
```