Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica - FEELT

Trabalho VI - Adaline

Prof.: Dr. Keiji Yamanaka

Aluno Matrícula

Pedro Paulo Costa Castro Alves 11721ECP017

1 Introdução

Trataremos aqui sobre uma rede neural do tipo "Adaline".

Suas principais características são: tem a função de ativação do tipo linear e a quantidade de ciclos é determinada pela precisão, um parâmetro que envolve a variação dos erros quadráticos da saída de cada ciclo.

Para este trabalho utilizaremos uma aplicação prática dos Adalines, um sistema recebe três entradas $(x_1 \cdots x_4)$ as quais servem de parâmetro para ativar duas válvulas, então estes dados passarão por um tratamento através do Adaline e retornar valores bipolares, 1 (ativa a válvula A) ou -1 (ativa a válvula B).

Figura 1: Esquema visual do sistema.

2 O Programa

Para a implementação do algoritmo fora concebido um programa em C, ele inicializa os pesos e o bias com valores entre 0 e 1 para cada treinamento, que é feito utilizando os valores já predefinidos. A taxa de aprendizado escolhida foi de 0.0025 e a Precisão de 10^{-6} . Após o treino podemos escolher fazer outro ou testar a rede (para valores já predefinidos também), e o programa fornece um gráfico do erro quadrático em função dos ciclos.

```
Rede Neural Adaline

Pesos Iniciais:

W0: 0.28

W1: 0.02

W2: 0.77

W3: 0.34

B: 0.42

Pesos Finais:

W0: 0.27

W1: 0.95

W2: 0.03

W3: 0.31

B: 1.84

Ciclos: 1095

Treinamento terminado, treinar novamente (s/n) ou testar rede(t)? (s/n)
```

Figura 2: Interface do programa.

3 Resultados

Realizamos cinco treinamentos em série, e estes foram os resultados obtidos para cada um deles:

Tabela 4.2 Resultado dos treinamentos do Adaline											
	Valores dos pesos iniciais					Valores dos pesos finais					
Treinamento	b	w1	w2	w3	w4	b	w1	w2	w3	w4	Número de ciclos
T1	0.93	0.90	0.24	0.86	0.40	1.84	0.03	0.44	0.60	0.56	1060
T2	0.94	0.76	0.10	0.48	0.25	1.84	0.24	0.88	0.03	0.15	1039
T3	0.95	0.75	1.00	0.48	0.39	1.84	0.91	0.96	0.31	0.40	1007
T4	0.96	0.40	0.98	0.95	0.17	1.84	0.82	0.23	0.41	0.66	1031
T5	0.96	0.65	0.96	0.49	0.41	1.84	0.05	0.54	0.53	0.46	1010

Figura 3: Resultados para cinco treinamentos.

Os gráficos dos dois primeiros erros quadráticos foram plotados, observemos como são idênticos, isso significa que a rede tem um bom comportamento, em ambos o erro tende a 5.

Figura 4: Gráfico do Erro Quadrático para o treinamento t1.

Figura 5: Gráfico do Erro Quadrático para o treinamento t2.

Finalmente, a rede foi testada para os valores predefinidos como se vê na tabela abaixo, todos os resultados foram iguais, então temos uma rede bem treinada com resultados satisfatórios.

Saída da rede Treinada											
	Entr	adas		Saida y							
X ₁	X ₂	Х3	X ₄	Treino1	Treino2	Treino3	Treino4	Treino5			
0,9694	0,6909	0,4334	3,4965	-1.00	-1.00	-1.00	-1.00	-1.00			
0,5427	1,3832	0,6390	4,0352	-1.00	-1.00	-1.00	-1.00	-1.00			
0,6081	-0,9196	0,5925	0,1016	1.00	1.00	1.00	1.00	1.00			
-0,1618	0,4694	0,2030	3,0117	-1.00	-1.00	-1.00	-1.00	-1.00			
0,1870	-0,2578	0,6124	1,7749	-1.00	-1.00	-1.00	-1.00	-1.00			
0,4891	-0,5276	0,4378	0,6439	1.00	1.00	1.00	1.00	1.00			
0,3777	2,0149	0,7423	3,3932	1.00	1.00	1.00	1.00	1.00			
1,1498	-0,4067	0,2469	1,5866	1.00	1.00	1.00	1.00	1.00			
0,9325	1,0950	1,0359	3,3591	1.00	1.00	1.00	1.00	1.00			
0,5060	1,3317	0,9222	3,7174	-1.00	-1.00	-1.00	-1.00	-1.00			
0,0497	-2,0656	0,6124	-0,6585	-1.00	-1.00	-1.00	-1.00	-1.00			
0,4004	3,5369	0,9766	5,3532	1.00	1.00	1.00	1.00	1.00			
-0,1874	1,3343	0,5374	3,2189	-1.00	-1.00	-1.00	-1.00	-1.00			
0,5060	1,3317	0,9222	3,7174	-1.00	-1.00	-1.00	-1.00	-1.00			
1,6375	-0,7911	0,7537	0,5515	1.00	1.00	1.00	1.00	1.00			

Figura 6: Tabela com as entradas e saídas do teste para a rede já treinada.