R.4 Solving and Factoring

Quadratic Patterns

Difference of Squares

 $a^2 - b^2 = (a - b)(a + b)$

Example: $9x^2 - 64 = (3x + 8)(3x - 8)$

Difference of Cubes

 $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

(On the right side, first sign is same, second is opposite, last is +).

Example: $2^3 + 5^3 = (2+5)(2^2 - 10 + 5^2)$

Perfect Square Trinomial

Must satisfy requirement of $b^2 = 4ac$

Example: $x^2 + 6x + 9$

 $6^2 = 4*1*9 \to 36 = 36$

(x+3)(x+3)

Quadratic Methods

Factor By Grouping

 $3t^3 + 6t^2 + 2t + 4$

Take out common monomials for first 2 and last 2 (can rearrange nums)

 $3t^2(t+2) + 2(t+2)$

 $(3t^2+2)(t+2)$

Into 2 Binomials

$$x^2 + 7x + 12$$

Fill in last number of each paren: (+4)(+3) - have to add to 7, multiply to 12

 $x^2 + bx + c$

(+d) (+e) - D and E have to add up to B and multiply to C

Quadratic Formula : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Example: $x^2 + 3x + 2$

Example:
$$x + 3x$$

$$x = \frac{-3 \pm \sqrt{3^2 - 4 * 1 * 2}}{2 * 1}$$

$$x = \frac{-3 \pm \sqrt{1}}{2}$$

$$x = \frac{-3 \pm \sqrt{1}}{2}$$

Finally: -1 and -2 are returned from the formula.

Completing the Square

Example: $x^2 + 4x + 1$

1) Divide equation by a

Ex: Skip, a = 1

2) Move c to the opposite side of the equation

Ex: $x^2 + 4x = -1$

3) Create a perfect square trinomial by completing operations on each side

Ex: $x^2 + 4x + 4 = 3$

$$(x+2)^2 = \pm 3$$

 $(x+2)^2=\pm 3$ \rightarrow Resulting equation should follow the form $(x+p)^2=\pm q$ 4) $\sqrt{}$ equation Ex: $x+2=\pm 1.73$ 5) Solve for x Ex: x=-3.73 or x=-0.27

Ex:
$$x + 2 = \pm 1.73$$

Ex:
$$x = -3.73$$
 or $x = -0.27$