

EXAMENES 14 27 Mayo 2020, preguntas y respuestas

Representación do Coñecemento e Razoamento Automático (Universidade da Coruña)

SOLUCIÓN PRUEBA PRIMERA OPORTUNIDAD

EVIDENCIA_1: HIGIENE PERSONAL (E1)

EVIDENCIA_2: DISTANCIA DE SEGURIDAD (E2)

EVIDENCIA_3: GUANTES DE LÁTEX (E3)

EVIDENCIA_4: MASCARILLAS DE QUIRÓFANO (E4)

HIPÓTESIS_1: Protegerse de una posible infección (H1)

HIPÓTESIS_2: Evitar contagiarse y contagiar a los demás (H2)

HIPÓTESIS_3: Minimizar ser contagiado por contacto (H3)

HIPÓTESIS_4: Evitar contagiar a otros aunque uno esté infectado (H4)

MARCO DE DISCERNIMIENTO: $\Theta = \{H1, H2, H3, H4\}$

E1 \rightarrow M1 (H1, H2) = M1 (A)

 \rightarrow M1 (H1, H2, H3, H4) = M1 (Θ 1)

E2 \rightarrow M2 (H2, H3, H4) = M2 (B)

 \rightarrow M2 (H1, H2, H3, H4) = M2 (Θ 2)

E3 \rightarrow M3 (H1, H3) = M3 (C)

 \rightarrow M3 (H1, H2, H3, H4) = M3 (Θ 3)

E4 \rightarrow M4 (H4) = M4 (D)

 \rightarrow M4 (H1, H2, H3, H4) = M4 (Θ 4)

Ya que todos los expertos están cualitativamente de acuerdo, podemos combinar las evidencias, independientemente de los expertos, procurando resolver los conflictos —si existen- al fiinal. Para ello, y dado que el modelo es asociativo, combinamos primero (E1 con E3) = TABLA-1, y (E2 con E4) = TABLA-2

TABLA-1

E3 \downarrow con E1 \rightarrow	(H1, H2)	(H1, H2, H3, H4)		
	M1(A)	M1 (Θ1)		
(H1, H3)	(H1)	(H1, H3)		
M3(C)	M1 (A) × M3 (C)	M1 (Θ 1) $ imes$ M3 (C)		
(H1, H2, H3, H4) (H1,H2)	(H1, H2, H3, H4)		
M3 (⊕3)	M1 (A) × M3 (⊖3)	M1 (Θ 1) \times M3 (Θ 3)		

TABLA-2

E4 \downarrow con E2 \rightarrow	(H2, H3, H4)	(H1, H2, H3, H4)		
	M2(B)	M2 (Θ2)		
(H4)	(H4)	(H4)		
M4(D)	M2 (B) × M4 (D)	M2 (Θ 2) × M4 (D)		
(H1, H2, H3, H4)	(H2,H3, H4)	(H1, H2, H3, H4)		
M4 (Θ4)	M2 (B) \times M4 (Θ 4)	M2 (Θ 2) × M4 (Θ 4)		

Ahora, después de observar las tablas, tenemos que identificar que H4 aparece dos veces, por lo tanto, al combinar ambas Tablas:

TABLA DE RESULTADOS GENÉRICOS

TABLA-1→				
	(H1)	(H1, H3)	(H1,H2)	(H1, H2, H3, H4)
TABLA-2 ↓	M1 (A) × M3 (C)	M1 (Θ 1) \times M3 (C)	M1 (A) × M3 (Θ3)	M1 (Θ 1) \times M3 (Θ 3)
(H4)	Ø	Ø	Ø	(H4)
M2 (B) \times M4 (D) +	$(M1 (A) \times M3 (C))$	$(M1 (\Theta1) \times M3 (C))$	(M1(A) X M3(Θ3))	$(M1(\Theta1) \times M3(\Theta3))$
M2 (Θ 2) × M4(D)	X	Χ	Х	X
	$(M2 (B) \times M4 (D) +$			
	M2 (Θ 2) × M4(D))			
(H2,H3, H4)	Ø	(H3)	(H2)	(H2, H3, H4)
M2 (B) \times M4 (Θ 4)	M1 (A) × M3 (C)	M1 (Θ 1) $ imes$ M3 (C)	M1 (A) × M3 (Θ3)	M1 (Θ 1) \times M3 (Θ 3)
	X	Χ	Х	Χ
	M2 (B) \times M4 (Θ 4)			
(H1, H2, H3, H4)	(H1)	(H1, H3)	(H1, H2)	(H1, H2, H3, H4)
M2 (Θ 2) × M4 (Θ 4)	M1 (A) × M3 (C)	M1 (Θ 1) \times M3 (C)	M1 (A) × M3 (Θ3)	M1 (Θ 1) \times M3 (Θ 3)
	X	Х	X	Х
	M2 (Θ 2) × M4 (Θ 4)	M2 (Θ 2) × M4 (Θ 4)	M2 (Θ 2) × M4 (Θ 4)	M2 (Θ 2) × M4 (Θ 4)

Ahora ya podemos empezar a calcular:

	M1[A]	M1[Θ1]	M2[B]	M2[Θ2]	M3[C]	M3[Θ3]	M4[D]	M4[Θ4]
EXPERTO 1	0,7	0,3	0,9	0,1	0,6	0,4	0,9	0,1
EXPERTO 2	0,6	0,4	0,8	0,2	0,5	0,5	0,9	0,1
EXPERTO 3	0,8	0,2	0,9	0,1	0,4	0,6	0,8	0,2

	K1	K2	К3	K4	K	1-K
EXPERTO 1	0,378	0,162	0,252	0,038	0,830	0,170
EXPERTO 2	0,270	0,180	0,270	0,024	0,744	0,256
EXPERTO 3	0,256	0,064	0,384	0,058	0,762	0,238

	H1	H2	Н3	H4	H1H2	H1H3	H2H3H4	H1H2H3H4	SUMA
EXPERTO 1	0,025	0,148	0,095	0,635	0,016	0,011	0,063	0,007	1,000
EXPERTO 2	0,023	0,094	0,063	0,703	0,023	0,016	0,063	0,016	1,000
EXPERTO 3	0,027	0,362	0,060	0,403	0,040	0,007	0,091	0,010	1,000

	EXPERTO 1			EXPERTO 2			EXPERTO 3		
HIPOTESIS	CRED	PLAU	PLAU INT-CONF		PLAU	INT-CONF	CRED	PLAU	INT-CONF
H1	0,025	0,059	0,025-0,059	0,023	0,078	0,023-0,078	0,027	0,084	0,027-0,084
H2	0,148	0,195	0,148-0,195	0,094	0,195	0,094-0,195	0,362	0,503	0,362-0,503
Н3	0,095	0,176	0,095-0,176	0,063	0,156	0,063-0,156	0,060	0,168	0,060-0,168
H4	0,635	0,705	0,635-0,705	0,703	0,781	0,703-0,781	0,403	0,503	0,403-0,503

COMO RESULTADO DEL ESTUDIO, EL COMITÉ ASESOR DE EXPERTOS EMITIRÁ A LA OMS EL SIGUIENTE INFORME: "Después de haber analizado los datos disponibles, todas las medidas contempladas contribuyen a prevenir un rebrote de la pandemia. No obstante, el uso generalizado de mascarillas de quirófano parece ser el método más eficaz para evitar una nueva epidemia".