1.

a.

if L is regular language, so $L=\{0^n:n=2^k\ for\ some\ k>1\}$ m be the constant in the pumping lemma, so $\omega=0^{2^m}\epsilon\ L$, $|\omega|=2^m\geq m$, so all possible x,y,z $\omega=xyz$, $|xy|\leq m$, $|y|\geq 1$.

Case:

$$x=0^r \ , \ y=0^s \ , \ z=0^{2^m-r-s} \ , r+s \le m \ , s \ge 1$$
 Let i=2, so $\omega=xy^2z=0^{2^m+s}$ Because $2^m<2^m+s \le 2^m+m < 2^m+2^m=2^{m+1}$

 $2^m+s \neq 2^K$, so i=2, $\omega=0^{2^m+s} \notin L$, so L is not regular language.

b.

if L is regular language, so L = {abb, aab, aaab,......}

because $n(a) \neq n(b)$, so m be the constant in the pumping lemma,

$$\omega = a^{\mathrm{m}}b^{\mathrm{m-s}}$$
,

Case when $\omega = aaabbbb$, x=aa,y=a,z=bbbb,

i=2,
$$\omega = xy^2z = (aa)(a)^2(bbbb) = aaaabbbb,$$

Then n(a)=n(b)=4;

So L is not regular language.

2.

a.

let L1 =
$$\{a^nb^n: n > 0\}$$
, L2 = $\{a^nb^m: n > 0, m > 0\}$;

then because L2 is regular language

L2 is regular by the L2 = aa^*bb^* ;

So L = L1UL2 = $\{a^n b^n : n > 0\} \cup \{a^n b^m : n > 0, m > 0\}$ is regular language;

b.

because $L = \{ a^n b^m : n \le m \le 2n \}$, if L is regular language

let m be as in pumping length

 $w = a^m b^m$, then let w = xyz be in pumping lemma,

When i=2,
$$y=a^k$$
, $w = xy^2z = a^{m+k}a^m$

Because m+k > m, so L is not regular language.

C.

L is regular language, so $L = \{0^n : n = 2k \text{ for some } k > 1\}$

The regular expression is $L = 000(00)^*0$;

3.

As when L1 = $\{a^nb^m : n = m\}$,L1 is not a regular language

L2 =
$$\{a^n b^m : n \neq m\}$$
, L2 is not a regular language

But when L1U L2, the expression is L = a^*b^* ;

This is regular language;

4.

The definition of symmetric difference of two sets that:

 $S_1 \ominus S_2 = (S_1 \cap \overline{S_2}) \cup (S_2 \cap \overline{S_1})$.

Because of since regular sets are closed under union, intersection, and complement.