LSH used in Approximate Similarity Search

Under Edit Distance Using Locatlity Sensitive

Hashing

Define Hash functions

We define hash functions $h_{\rho}(x)$ using an underlying function ρ So if $\rho_1=\rho_2$ then $h_{\rho 1}(x)=h_{\rho 2}(x)$

Calculating the hashed string

$$\begin{aligned} p &= 1/8 \\ p_a &= \sqrt{p/1+p} = 1/3 \\ p_r &= \sqrt{p}/(\sqrt{1+p} - \sqrt{p}) = 1/2 \end{aligned}$$

$$(r_1, r_2) \leftarrow \rho_1(x_i, |s|)$$

$$r_1 \leq p_a \implies \\ \mathbf{hash-insert}, \ append \perp \\ r_1 > p_a, r_2 \leq p_r \implies \\ \mathbf{hash-replace}, \ append \perp \& i++ \end{aligned}$$

$$r_1 > p_a, r_2 > p_r \implies \\ \mathbf{hash-match}, \ append \ x_i \& i++ \end{aligned}$$

x_i	s	$\rho_1(x_i, s)$
a	0	(0.1, 0.7)
b	0	(0.6, 0.3)
c	0	(0.7, 0.6)
\$	0	(0.1, 0.4)
a	1	(0.9, 0.6)
b	1	(0.8, 0.3)
с	1	(0.5, 0.9)
\$	1	(0, 0.1)
a	2	(0.1, 0.7)
b	2	(0.8, 0.2)
С	2	(0.1, 0.9)
\$	2	(0.1, 0.3)
a	3	(0.6, 0.8)
b	3	(0.9, 0.4)
с	3	(0.2, 0.8)
\$	3	(0.8, 0.7)
a	4	(0.2, 0.3)
b	4	(0.1, 0.1)
с	4	(0.7, 0.4)
\$	4	(0.9, 0.5)
a	5	(0.5, 0.6)
b	5	(0.1, 0.5)
С	5	(0.4, 0.6)
\$	5	(0.6, 0)

Figure 1: hash function

Calculating the hashed string

```
x=abc
x_1 = a, \ s = "", \rho_1(a, 0) = (0.1, 0.7)
\implies r_1 \le p_a \implies \text{hash-insert}
x_1 = a, \ s = "\bot", \rho_1(a, 1) = (0.9, 0.6)
\implies r_1 > p_a, \ r_2 > p_r \implies \text{hash-match}
x_2 = b, \ s = "\bot a", \rho_1(b, 2) = (0.8, 0.2)
\implies r_1 > p_a, \ r_2 \le p_r \implies \text{hash-replace}
x_2 = b, \ s = "\bot a \bot ", \rho_1(b, 3) = (0.9, 0.4)
\implies r_1 > p_a, \ r_2 \le p_r \implies \text{hash-replace}
x_1 > p_2, \ r_2 \le p_r \implies \text{hash-replace}
x_2 = b, \ s = "\bot a \bot ", \rho_1(b, 3) = (0.9, 0.4)
\implies r_1 > p_2, \ r_2 \le p_r \implies \text{hash-replace}
...
```

The final hash values

$$egin{aligned} x = abc & h_{
ho1}(x) = ota a ot ot ot \ y = bac & h_{
ho1}(y) = ot a ot ot ot ot \ z = cba & h_{
ho1}(z) = c ot ot a \end{aligned}$$

x & y have matching hash strings

Analysis of the hash values

x = abc

$X_{i(x,k,\rho)}$	s	$\tau_k(x,\rho)$
а	0	hash-insert
а	1	hash-match
b	2	hash-replace
С	3	hash-insert
С	4	hash-replace
\$	5	hash-replace

y=bac

—Dac		
$y_{i(y,k,\rho)}$	s	$\tau_k(y,\rho)$
b	0	hash-replace
a	1	hash-match
С	2	hash-insert
С	3	hash-insert
С	4	hash-replace
\$	5	hash-replace

Analysing Grid Walk

When $x_{i(x,k,\rho)} \neq y_{i(y,k,\rho)}$

$\tau_k(x,\rho)$	$\tau_k(y,\rho)$	$\sigma(x, y, a)$
$T_k(x, p)$	$\gamma_k(y, p)$	$g_k(x, y, \rho)$
hash-replace	hash-replace	replace
hash-replace	hash-insert	delete
hash-insert	hash-replace	insert
hash-insert	hash-insert	loop
hash-match	-	stop
-	hash-match	stop

When $x_{i(x,k,\rho)} = y_{i(x,k,\rho)}$

$\tau_k(x,\rho)$	$\tau_k(y,\rho)$	$g_k(x, y, \rho)$
hash-match	hash-match	match
hash-replace	hash-replace	match
hash-insert	hash-insert	loop

Gridpath for x and y

X	$\tau_k(x, \rho 1)$	у	$ au_k(y, ho 1)$	$g_k(x, y, \rho 1)$
а	hash-insert	b	hash-replace	insert
а	hash-match	а	hash-match	match
b	hash-replace	С	hash-insert	delete
С	hash-insert	С	hash-insert	loop
С	hash-replace	С	hash-replace	match
\$	hash-replace	\$	hash-replace	match

Transformations

Greedily apply sequence of edits (remove match and loop) to x. So for the above case, we would have insert(b) at a and delete at b.

Bounds of Collision Probabilities

Lemma 14: If x and y satisfy $ED(x,y) \le r$, then $Pr_{\rho}(h_{\rho}(x) = h_{\rho}(y)) \ge p^{r} - 2/n^{2}$.

Lemma 15: If x and y satisfy $ED(x,y) \ge cr$, then $Pr_{\rho}(h_{\rho}(x) = h_{\rho}(y)) \le (3p)^{c}r$.

This gives us $(r, cr, p^r - 2/n^2, (3p)^c r)$ -sensitive family.