Exercise 1: Use the following code to read in the Harvard Forest Dataset HF143 Data. It is in the file datasoil.txt. It consists of soil properties along three transects in Harvard Forest, collected by Richard Bowden, Charles McClaugherty and, Timothy Sipe.

a. Look at the output. Is a decent amont of the variability explained by the first 4 factors? Use the test of hypothesis of sufficient numbers of factors to find a suitable number of factors to use. What proportion of the variability in the data is explained by the factor analysis?

Solution:

Cleaning the data, we exclude the first four columns since they are not numerical. The first column of data ff.thickness seems to have a lot of missing values. Experimenting with how we can clean up the data, I found that trying to impute the missing values ff.thickness with the mean, MLR estimation or even just removing the whole column we were able to retain a lot of the observations. Unfortunately It seems as though with 300 plus observations the factor analysis algorithm becomes unstable (I'd imagine it is problematic for the cholesky-esque factorization that is needed to compute the loadings). So I ended up just removing the first four columns and removing any observations with NAs, reducing the number of observations to 155.

Running the factor analysis with for 4 factors, with varimax rotation, we find that the data is highly variable (at least when we consider only orthogonal rotations) since the first and largest factor only explains 16.4% of the variance, with only about 44% of the variance being explained by the first four factors. The factor analysis with only 4 factors rejects the hypothesis that 4 factors are sufficient with a p-value of 4.43e-12. Interestingly a minimum of 8 factors were necessary in order to accept the null hypothesis at an $\alpha = .05$, In that case it's clear that adding more factors is explaining the variance little by little, until we've explained a majority of the variance.

Code:

```
f <- file.choose()
dat <- read.csv(f, header=TRUE)
dat <- dat[,5:23]
dat <- na.omit(dat)
out <- factanal (dat, factors = 4, rotation = "varimax", scores = "regression")
out <- factanal (dat, factors = 4, rotation = "varimax", scores = "regression")
factanal(x = dat, factors = 4, scores = "regression", rotation = "varimax")
Uniquenesses:
          ff.thickness
                                   bulk.density
                                                                soil.mass
                  0.311
                                           0.922
                                                                    0.560
                                                                       om
                  0.045
                                           0.219
                                                                    0.149
                    no3
                                           n.min
                                                                     nitr
                  0.961
                                           0.879
                                                                    0.936
```

mg	k	soil.moisture
0.007	0.703	0.369
ph.h2o	ph.cac12	
0.622	0.292	
p	nh4	
0.727	0.884	
cec	ca	
0.815	0.476	
soil.moisture.capacity		
0.720		

Loadings:

Factor1	Factor2	Factor3	Factor4
0.239	0.752	-0.221	-0.133
-0.226		0.106	
	0.383	-0.146	-0.519
-0.182			0.575
-0.437			0.713
0.932	0.215		-0.197
0.864	0.157		
0.875	0.246		-0.156
0.367	-0.152	0.288	0.179
0.176	-0.248		0.152
			0.165
-0.102	-0.149		0.290
			-0.229
	0.354	0.185	-0.157
-0.201	-0.121	0.620	0.291
	0.274	0.946	-0.138
	-0.113	0.533	
0.361	0.684	-0.151	-0.101
0.214	0.479		
Factor2	Factor3	Factor4	
	0.239 -0.226 -0.182 -0.437 0.932 0.864 0.875 0.367 0.176 -0.102 -0.201	$\begin{array}{cccc} 0.239 & 0.752 \\ -0.226 & & & & \\ 0.383 \\ -0.182 & & & & \\ -0.437 & & & & \\ 0.932 & 0.215 \\ 0.864 & 0.157 \\ 0.875 & 0.246 \\ 0.367 & -0.152 \\ 0.176 & -0.248 \\ -0.102 & -0.149 \\ & & & & \\ -0.201 & -0.121 \\ 0.274 & & & \\ -0.113 \\ 0.361 & 0.684 \\ 0.214 & 0.479 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SS loadings 3.125 1.904 1.806 1.567

Proportion Var 0.164 0.100 0.095 0.082

Cumulative Var 0.164 0.265 0.360 0.442

Test of the hypothesis that 4 factors are sufficient. The chi square statistic is 230.17 on 101 degrees of freedom. The p-value is $4.43\,e{-}12$

out <- factanal (dat, factors = 8, rotation = "varimax", scores = "regression")
out

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 SS loadings 2.666 2.050 1.839 1.401 1.366 1.221 1.007

Proportion	Var	0.140	0.108	0.097	0.074	0.072	0.064	0.053
Cumulative	Var	0.140	0.248	0.345	0.419	0.491	0.555	0.608

Test of the hypothesis that 7 factors are sufficient. The chi square statistic is 80.73 on 59 degrees of freedom. The p-value is 0.0317

b. Look at the factor loading. Can you roughly interpret the loadings on the first factor? Is it always possible to do so? Why or why not?

Solution:

Stat 461: Homework 6

Looking at the magnitudes of the loadings we find that the first factor seems to heavily emphasize the c,n, and om variables. Looking at the documentation provided by the data we can see that theses variables correspond to percent carbon, percent nitrogen, and percent organic matter. Given that these are primary factors in evaluating soil health/fertility, it seems like this first factor maybe telling us this about our data. It is not always possible to interpret the loadings on any of the factors, most of the time the first factor will be the easiest to interpret, as it captures the most variance (is able to most of the signal in the data). It really depends on the signal to noise ratio that is found in the data. Data that are entirely noise will result in practically useless, uninterpretable loadings

c. Try a promax rotation, What is this and how does it differ from varimax rotation? Did the proportion of variation explained or the hypothesis test change by much? Why is this result reasonable? Why did it show factor correlations for promax and not for varimax?.

Solution:

Using the promax parameter allows for non-orthogonal factors. Generally when we do factor analysis, we want to generate the following factorization for our data X,

$$X = L'F + E$$

With varimax the columns of F are orthogonal, with promax the columns of F are allowed to be non-orthogonal. Performing the factor analysis with promax rotation we find that, allowing for non-orthogonal factors does not significantly effect the analysis with respect to the amount of variance explained, and similarly we need 8 factors in order to accept the null hypothesis at an $\alpha = .05$. Factor correlations are displayed by promax because, in this case the factors are allowed to be correlated because of the non-orthogonality.

Code:

```
out <- factanal(dat, factors = 4, rotation = "promax", scores = "regression")
Call:
factanal(x = dat, factors = 4, scores = "regression", rotation = "promax")
Uniquenesses:
           ff.thickness
                                   bulk.density
                                                                soil.mass
                  0.311
                                           0.922
                                                                    0.560
                      c
                                               n
                                                                       om
                  0.045
                                           0.219
                                                                    0.149
                    no3
                                           n.min
                                                                     nitr
                  0.961
                                           0.879
                                                                    0.936
                                                            soil.moisture
                                               k
                     mg
                  0.007
                                           0.703
                                                                    0.369
                  ph.h2o
                                         ph.cac12
                   0.622
                                            0.292
                                              nh4
                   0.727
                                            0.884
                     cec
                   0.815
                                            0.476
 soil.moisture.capacity
                   0.720
Loadings:
                         Factor1 Factor2 Factor3 Factor4
ff.thickness
                          0.115
                                  0.865
                                           0.120
bulk.density
                         -0.202
soil.mass
                                  0.319
                                          -0.439
                         -0.187
ph.h2o
                                  0.282
                                           0.706
ph.cac12
                                  0.161
                         -0.311
                                           0.827
                                  0.119
                          0.877
                                          -0.229
c
                          0.862
                                  0.133
n
                          0.822
                                  0.167
om
                                          -0.168
                          0.419
                                  -0.199
                                                    0.180
p
                                                   -0.130
nh4
                          0.238
                                  -0.260
                          0.131
                                           0.164
no3
n.min
                                           0.283
nitr
                                          -0.225
cec
                                  0.344
                                                    0.302
                         -0.142
                                  -0.127
                                           0.267
                                                    0.566
ca
                                  0.140
mg
                                          -0.124
                                                    1.010
k
                                  -0.217
                                                    0.480
soil.moisture
                          0.252
                                  0.774
                                           0.116
soil.moisture.capacity
                          0.136
                                  0.530
                                                    0.131
                Factor1 Factor2 Factor3 Factor4
SS loadings
                  2.747
                           2.220
                                    1.771
                                            1.755
Proportion Var
                  0.145
                                    0.093
                                            0.092
                           0.117
Cumulative Var
                  0.145
                           0.261
                                   0.355
                                            0.447
```

Factor Correlations:

Factor1 Factor2 Factor3 Factor4

0.191

-0.108

Factor1

```
Factor2
          0.119
                   1.000
                          -0.184
                                    0.133
Factor3
          0.191
                  -0.184
                           1.000
                                   -0.564
Factor4
         -0.108
                   0.133
                          -0.564
                                    1.000
Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 230.17 on 101 degrees of freedom.
The p-value is 4.43e-12
```

d. What does the plot of scores tell you? What are scores?

0.119

1.000

Solution:

Scores of an observations we can see how much of each factor influences it. Considering the score plots, we can see any trends among the factors as well as to see if any outliers have affected our factor analysis. With both factor analysis' there do not appear to be extreme outliers which define each factor. There seems to be a grouping of observations with high 1 factor scores, however the factor does not seem to be defined by outliers, there is a good spread of observations across both factors.

Figure 2: Promax Score Plot

Exercise 2: Using the same dataset as in problem one, run a principal components analysis. Use a screeplot to select the number of important PCs. Do the number of PCs seem to match what you got with the factor analysis. Do the loadings look similar ot those from the factors you calculated in b and c? Why do you think this happened?

Solution:

Performing the principal component analysis we get the following screeplot. Considering the 'keep PCs' which contribute to 10 percent or more of the variance explained we see that PCA gives us around 8 or 9 components. This agrees with our factor analysis. Considering the loadings, from the PCA we do see some similarity among the first factor, with respect to the loadings from the factor analysis.

Figure 3: PCA Scree Plot

Code:

> summary (PCAout)

Importance of components:

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5
Standard deviation	2.109532	1.5167763	1.4306648	1.22197267	1.21023194
Proportion of Variance	0.234217	0.1210848	0.1077264	0.07859038	0.07708744
Cumulative Proportion	0.234217	0.3553018	0.4630282	0.54161858	0.61870601

	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10
Standard deviation	1.08320125	0.96211091	0.92438319	0.86923383	0.80643962
Proportion of Variance	0.06175394	0.04871881	0.04497286	0.03976671	0.03422868
Cumulative Proportion	0.68045996	0.72917877	0.77415163	0.81391834	0.84814701

	Comp. 11	Comp. 12	Comp.13	Comp. 14	Comp.15
Standard deviation	0.75520074	0.68643519	0.6613945	0.62964684	0.57675458
Proportion of Variance	0.03001727	0.02479965	0.0230233	0.02086606	0.01750768
Cumulative Proportion	0.87816428	0.90296393	0.9259872	0.94685329	0.96436097

	Comp. 16	Comp. 17	Comp. 18	Comp. 19
Standard deviation	0.49299528	0.44332640	0.403017189	0.274109644
Proportion of Variance	0.01279181	0.01034412	0.008548571	0.003954531
Cumulative Proportion	0.97715278	0.98749690	0.996045469	1.000000000

```
PCAout$loadings
Loadings:
```

	Comp.1	Comp.2	Comp.3	Comp.4	 Comp.19
ff.thickness	0.318	0.212		0.137	
bulk . density	-0.145		0.195	0.345	
soil.mass	0.186	0.297	0.313	-0.167	
ph.h2o	-0.168		-0.188	0.240	
ph.cac12	-0.320			0.224	
c	0.415	-0.174	-0.135		
n	0.333	-0.275	-0.190	0.146	
om	0.405	-0.207	-0.127		
p		-0.430		0.268	
nh4		-0.168	-0.314	-0.306	
no3			-0.406	-0.177	
n.min	-0.151	-0.127		0.512	
nitr		0.160	0.355	0.168	
cec	0.140		0.200	-0.169	
ca	-0.195	-0.364	0.219		
mg		-0.389	0.375	-0.107	
k		-0.385	0.337	-0.163	
soil.moisture	0.339	0.138		0.132	
soil.moisture.capacity	0.231		0.116	0.356	

We see that the first component of the PCA again favors variables c, n, and om similarly to the factor analysis loadings. The rest of the loadings do not look particularly similar. This makes sense that they are not exactly the same. PCA generates loadings by solving the eigenvalue eigenvector problem on the correlation matrix, factor analysis generates loadings via an algorithm which minimizes the error in the following factorization,

$$\Sigma_x = LL' + D$$
.

Exercise 3: Below is the covariance matrix based on N = 150 first year college students.

a. Try to make up two or three reasonable path analysis models for this data. Draw a structural diagram for each. Also, list all of the parameters of each model.

Solution:

Here is my first attempt at a structural diagram. It seems as though IQ and EdMot are exogenous variables, they seem to be outside variables used for predicting student success in metrics like GPA, and SAT scores. In this case we have six regression parameters, three error variances, and three covariances. This is the following structural diagram,

Figure 4: First Structural Diagram

My second structural diagram uses school performance metrics like GPA and SAT scores to predict IQ and EdMot, sort of the inverse of the previous diagram. Here we assume that GPA, and SAT Scores are exogenous and IQ and EdMot are endogenous(seems unlikely but we'll test it anyway). This structural diagram has six regression parameters, two error variances, and one covariance.

GPAelec SAT

Figure 5: Second Structural Diagram

My third structural diagram uses GPA to predict IQ, EdMot, and SAT Scores. In this model we are treating GPA as an exogenous variable and the rest as endogenous. This model continues six regression parameters and three error variances, and three covariances.

Figure 6: Third Structural Diagram

b, Using lavaan, run each model. Which model seems to fit the data best? how good is the fit of the model?

Solution:

Calling AIC on the fitted models we find that the second structure diagram has the

best fit. Interestingly this is the model with the least degrees of freedom/parameters. All models had Standardized Root Mean Square Residual of 0 and CFI and TLI goodness of fit values of 1.

Code:

> myModel1 <- '	
+ #regressions	
+ GPAreq ~ IQ + EdMot	
+ GPAelec ~ IQ + EdMot	
+ SAT ~ IQ + EdMot	
+ ' > fit1 <- sem(myModel1, sample.cov = M, san	anle nobe - 150)
> summary (fit1, fit.measures=TRUE)	ipic.iious = 130)
	tions
lavaan 0.6-10 ended normally after 40 itera	110 11 8
Estimator	ML
Optimization method	NLMINB
Number of model parameters	12
Number of moder parameters	12
Number of observations	150
	100
Model Test User Model:	
Test statistic	0.000
Degrees of freedom	0
Ç	
Model Test Baseline Model:	
Test statistic	461.731
Degrees of freedom	9
P-value	0.000
User Model versus Baseline Model:	
G (GEL)	1 000
Comparative Fit Index (CFI)	1.000
Tucker-Lewis Index (TLI)	1.000
I adillatibated and Information Cuitagia	
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0)	-635.396
Loglikelihood unrestricted model (H1)	-635.396
Logitketinood uniestiteted model (III)	-033.390
Akaike (AIC)	1294.791
Bayesian (BIC)	1330.919
Sample-size adjusted Bayesian (BIC)	1292.941
Sumple size adjusted Bayesian (Bie)	12,2.,,11
Root Mean Square Error of Approximation:	
RMSEA	0.000
	0.000
90 Percent confidence interval – lower	0.000
90 Percent confidence interval – upper	0.000
$P-value RMSEA \le 0.05$	NA

0 1 1 1	ъ.	3.6	~	D 11 1
Standardized	Root	Mean	Square	Residual:

SRMR				0.000	
Parameter Est	imates:				
Standard er:	rors			Standard	
Information				Expected	
Information	saturated (h1)	model	St	tructured	
Regressions:					
	Estimate	Std . Err	z-value	P(> z)	
GPAreq ~					
IQ	0.032	0.018	1.799	0.072	
EdMot	0.181	0.035	5.142	0.000	
GPAelec ~					
IQ	0.159	0.014	11.284	0.000	
EdMot	0.239	0.028	8.652	0.000	
SAT ~					
IQ	0.280	0.143	1.951	0.051	
EdMot	2.335	0.281	8.309	0.000	
Covariances:					
	Estimate	Std.Err	z-value	P(> z)	
. GPAreq ~~				(1 1/	
. GPAelec	0.294	0.039	7.465	0.000	
. SAT	2.688	0.386	6.957	0.000	
. GPAelec ~~	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
. SAT	1.438	0.276	5.210	0.000	
Variances:					
	Estimate	Std . Err	z-value	P(> z)	
. GPAreq	0.487	0.056	8.660	0.000	
. GPAelec	0.300	0.035	8.660	0.000	
. SAT	31.168	3.599	8.660	0.000	
			. – – – – – –		
	, eq + GPAelec + PAreq + GPAelec				
+ Ediviot G	I Micq GI ACIEC	ı baı			
	(myModel2, samp	ole cov -	M sample	nobs - 150))
	t, fit.measures		wi, sampre		,,
	ended normally		' iteratio	n s	
Estimator				ML	
Optimization	n method			NLMINB	
=	odel parameters			9	
number of m	louer parameters			9	

Model Test User Model:

Number of observations

150

Test statistic Degrees of freed		0.000						
Model Test Baselin	ne Model:							
Test statistic				224.880				
P-value	Degrees of freedom P-value							
User Model versus	Baseline M	Model:						
Comparative Fit Tucker-Lewis Inc		1.000 1.000						
Loglikelihood and	Informatio	n Criteri	a :					
Loglikelihood u	ser model (H0)		-560.704				
Loglikelihood u			I1)	-560.704				
Akaike (AIC)				1139.409				
Bayesian (BIC)				1166.504				
Sample-size adj	usted Bayes	ian (BIC)		1138.021				
Root Mean Square	Error of A _I	proximati	on:					
RMSEA				0.000				
90 Percent conf	idence inte	rval – lo	wer	0.000				
90 Percent conf				0.000				
P-value RMSEA <=		•	•	NA				
Standardized Root	Mean Squar	e Residua	ıl :					
SRMR				0.000				
Parameter Estimate	es:							
Standard errors				Standard				
Information				Expected				
Information satu	urated (h1)	model	\mathbf{S} 1	tructured				
Regressions:	Estimate	Std . Err	z voluo	$\mathbf{D}(\mathbf{x} \mathbf{z})$				
IQ ~	Estimate	Stu. EII	z-value	P(> z)				
GPAreq	-2.387	0.393	-6.067	0.000				
GPAelec	3.917	0.289	13.537	0.000				
SAT	-0.012	0.038	-0.315	0.753				
EdMot ~								
GPAreq	-0.653	0.237	-2.751	0.006				
GPAelec	0.733	0.174	4.201	0.000				
SAT	0.134	0.023	5.786	0.000				
Covariances:	Estimata	Std E	z volus	D(> ~)				
. IQ ~~	Estimate	Std.Err	z-value	P(> z)				

. EdMot	-1.026	0.233	-4.399	0.000	
Variances:					
. IQ . EdMot	Estimate 4.421 1.607	0.510	z-value 8.660 8.660	0.000	
> myModel3 <- ' + IQ ~ GPAreq + + EdMot ~ GPAreq + SAT ~ GPAreq + '	eq + GPAelec + GPAelec				
> fit3 <- sem(myN > summary(fit3, f lavaan 0.6-10 end	it . measures	=TRUE)	_))
Estimator				ML	
Optimization me Number of model				NLMINB 12	
	•				
Number of obser	vations			150	
Model Test User N	Model:				
Test statistic Degrees of freed	dom			$0.000 \\ 0$	
Model Test Baseli	ne Model:				
Test statistic Degrees of freed P-value	lom			352.874 9 0.000	
User Model versus	Baseline M	Iodel:			
Comparative Fit Tucker-Lewis In)		1.000 1.000	
Loglikelihood and	Information	n Criteri	a :		
Loglikelihood u Loglikelihood u			[1)	-998.534 -998.534	
Akaike (AIC) Bayesian (BIC) Sample-size adj	usted Bayes	ian (BIC)		2021.067 2057.195 2019.217	
Root Mean Square	Error of Ap	proximati	on:		
RMSEA 90 Percent conf	idence inte	rval – lo	wer	$0.000 \\ 0.000$	

90 Percent conf P-value RMSEA <	0.000 NA				
Standardized Root	Mean Squar	e Residua	al:		
SRMR	0.000				
Parameter Estimat	es:				
Standard errors Information Information saturated (h1) model			St		
Regressions:					
IQ ~	Estimate	Std.Err	z-value	P(> z)	
GPAreq	-2.458	0.323	-7.610	0.000	
GPAelec	3.905	0.287	13.621	0.000	
EdMot ~	2.,, 0.0	0.207	10.021	0.000	
GPAreq	0.132	0.215	0.612	0.541	
GPAelec	0.873	0.191	4.569	0.000	
SAT ~					
GPAreq	5.869	0.688	8.528	0.000	
GPAelec	1.050	0.611	1.718	0.086	
Covariances:					
Covarrances.	Estimate	Std . Err	z-value	P(> z)	
. IQ ~~				- (· 1 – 1 /	
. EdMot	-1.058	0.256	-4.137	0.000	
. SAT	-0.243	0.770	-0.315	0.753	
. EdMot ~~					
. SAT	2.684	0.558	4.811	0.000	
Variances:					
variances.	Estimate	Std . Err	z-value	P(> z)	
. IQ	4.424	0.511	8.660	0.000	
. EdMot	1.966	0.227	8.660	0.000	
. SAT	20.082	2.319	8.660	0.000	
> AIC(fit1, fit2, df AIC fit1 12 1294.791 fit2 9 1139.409 fit3 12 2021.067	fit3)				

c. In your best fitting model, are any of the links candidates for removal? How could you determine this?

Solution:

From the summary report we can see that the link between SAT and IQ can likely be

a candidate for removal. The MLR which produces IQ finds that the SAT variable has a p-value of 0.753, considerably higher than the rest and insignificant at the $\alpha = .05$ level.

d. Why can't we use bootsrapping to get standard errors in this situation?

Solution:

In this situation we don't have the data, only the covariance/correlation matrix.

e. Is the model you selected at best recursive, or non-recursive? How can you tell?

Solution:

All of the models I selected are non-recursive. We setup up multiple regressions, and none of the results of those regressions feed into other regressions causing a loop or indirect effects.

f. Are there any indirect effects in your best model? What are they?

Solution:

My model has no indirect effects, IQ is directly modeled with GPA, and SAT and similarly with EdMot.

g, What variables in your best model are exogenous, and which are endogenous?

Solution:

Like previously stated the second model has GPA and SAT scores as exogenous variables and IQ and EdMot are endogenous.