WHAT IS CLAIMED IS:

- 1 1. A process for synthesizing photocurable
- 2 poly(ethynyl)carbosilane comprising the steps of:
- 3 a. mixing dichlorosilane and trichlorosilane reagents;
- 4 b. adding sub-stoichiometric amounts of alkali metal; and
- 5 c. adding excess sodium acetylide.

6

- 7 2. A process for synthesizing photocurable
- 8 poly(ethynyl)carbosilane comprising the steps of:
- 9 a. mixing dichlorosilane and trichlorosilane reagents in the
- 10 presence of methylene bromide;
- 11 b. adding sub-stoichiometric amounts of alkali metal; and
- 12 c. adding excess sodium acetylide.

- 14 3. A process for synthesizing photocurable poly(ethynyl)
- 15 carbosilane comprising the steps of:
- 16 a. mixing dichlorosilane and trichlorosilane reagents in the
- 17 presence of methylene bromide;

- 1 b. adding sub-stoichiometric amounts of sodium metal; and
- 2 c. adding excess sodium acetylide.

- 4 4. A process for synthesizing photocurable poly(ethynyl)
- 5 carbosilane comprising the steps of:
- 6 a. mixing dichloromethylsilane and trichlorophenylsilane
- 7 reagents in the presence of methylene bromide;
- 8 b. adding sub-stoichiometric amounts of sodium metal; and
- 9 c. adding excess sodium acetylide.

- 11 5. A process for synthesizing photocurable poly(ethynyl)
- 12 carbosilane comprising the steps of:
- 13 a. mixing dichloromethylsilane and trichlorophenylsilane
- 14 reagents in the presence of methylene bromide;
- 15 b. adding sub-stoichiometric amounts of molten sodium metal
- 16 under flowing argon gas; and
- 17 c. adding excess sodium acetylide dissolved in dimethyl
- 18 formamide.

- 1 6. A process for synthesizing photocurable poly(ethynyl)
- 2 carbosilane comprising the steps of:
- 3 a. forming a dispersion of sub-stoichiometric amounts of
- 4 alkali metal;
- 5 b. adding dichlorosilane and trichlorosilane reagents; and
- 6 c. adding excess sodium acetylide.

- 8 7. A process for synthesizing photocurable poly(ethynyl)
- 9 carbosilane comprising the steps of:
- 10 a. forming a dispersion of sub-stoichiometric amounts of
- 11 molten sodium metal in a solvent;
- 12 b. adding dichlorosilane and trichlorosilane reagents; and
- 13 c. adding excess sodium acetylide.

- 15 8. A process for synthesizing photocurable poly(ethynyl)
- 16 carbosilane comprising the steps of:
- 17 a. forming a dispersion of sub-stoichiometric amounts of
- 18 molten sodium metal in a solvent;

- 1 b. adding dichloromethylsilane and trichlorophenylsilane
- 2 reagents; and
- 3 c. adding excess sodium acetylide in dimethylbromide.

- 5 9. A process for synthesizing photocurable poly(ethynyl)
- 6 carbosilane comprising the steps of:
- 7 a. forming a dispersion of sub-stoichiometric amounts of
- 8 molten sodium metal in xylene;
- 9 b. adding dichloromethylsilane and trichlorophenylsilane
- 10 reagents; and
- 11 c. adding excess sodium acetylide in dimethylbromide.

- 13 10. A process for synthesizing photocurable poly(ethynyl)
- 14 carbosilane comprising the steps of:
- 15 a. forming a dispersion of sub-stoichiometric amounts of
- 16 molten sodium metal in xylene;
- 17 b. adding dichloromethylsilane and trichlorophenylsilane
- 18 reagents;

- 1 c. filtrating insoluble by-products;
- 2 d. evaporating xylene solvent from poly(chloro)carbosilane
- 3 polymer;
- 4 e. dissolving said aforementioned polymer in tetrahydro
- 5 furan; and
- 6 f. adding excess sodium acetylide dissolved in dimethyl
- 7 bromide.

- 9 11. A process of forming a photo-curable pre-ceramic
- 10 polymer, poly(ethynyl)-carbosilane to silicon carbide
- 11 ceramic comprising the steps of:
- 12 a. reacting sodium acetylide with organo-chlorosilanes;
- 13 and
- 14 b. condensing (polymerizing) the resultant organo-
- 15 (ethynyl)chlorosilane product of step a with an excess
- 16 of an alkali metal.
- 17 12. A process of forming a photo-curable pre-ceramic

- polymer, poly(ethynyl)-carbosilane to silicon carbide
 ceramic comprising the steps of:
- 3 a. reacting sodium acetylide with organochloro-silanes;
- 4 and
- 5 b. condensing (polymerizing) the resultant organo-
- 6 ethynyl)chlorosilane product of step a with an excess of
- 7 an alkali metal sodium.
- 8 13. A process of forming a photo-curable pre-ceramic
- 9 polymer, poly(ethynyl)-carbosilane, to silicon carbide
- 10 ceramic comprising the steps of:
- 11 a. reacting sodium acetylide with a mixture of
- 12 organodichlorosilanes and organotrichlorosilanes;
- 13 and
- b. condensing (polymerizing) the resultant organo
- 15 (ethynyl)-chlorosilane product of step a with an excess
- of an alkali metal.

- 1 14. A process according to claim 1 in which the organo
- 2 chlorosilane is selected from a group of one or more of the
- 3 following: dichlorodimethylsilane, trichloro-phenylsilane
- 4 (tri-functional), and methyltrichlorosilane.

- 6 15. A process of forming a photo-curable pre-ceramic
- 7 polymer, poly(ethynyl)-carbosilane to silicon carbide
- 8 ceramic comprising the steps of:
- 9 a. reacting a sub-stoichiometric amount of an alkali metal
- 10 with organochloro-silanes; and
- 11 b. reacting the partially polymerized polyorganochloro-
- 12 silane with sodium acetylide.

- 14 16. A process of forming a photo-curable pre-ceramic
- 15 polymer, poly(ethynyl) carbosilane to silicon carbide
- 16 ceramic comprising the steps of:
- 17 a. reacting a sub-stoichiometric amount of sodium metal
- 18 with organochlorosilanes; and

b. reacting the partially polymerized polyorganochloro-
silane with sodium acetylide.
17. A process of forming a photo-curable pre-ceramic
polymer, poly(ethynyl)carbosilane to silicon carbide ceramic
comprising the steps of:
a. reacting a sub-stoichiometric amount of an alkali
metal with a mixture of organodichlorosilanes and
organotrichlorosilanes; and
b. reacting the partially polymerized polyorgano-
chlorosilane with sodium acetylide.
18.A process according to claim 5 in which the
organochlorosilane is selected from a group consisiting
of one or more of the following: dichlorodimethylsilane,
trichlorophenylsilane (tri-functional), and
methyltrichlorosilane.

- 1 19. A process of forming a photo-curable pre-ceramic
- 2 polymer, poly(ethynyl)silazane, to silicon nitride ceramic
- 3 comprising the steps of:
- 4 a. reacting sodium acetylide with organochlorosilanes;
- 5 and
- 6 b. condensing (polymerizing) the resultant organo-
- 7 (ethynyl)chlorosilane product of step a with ammonia.

- 9 20. A process of forming a photo-curable pre-ceramic
- 10 polymer, poly(ethynyl)-silazane to silicon nitride ceramic
- 11 comprising the steps of:
- 12 a. reacting sodium acetylide with organochloro-
- 13 silanes; and
- b. condensing (polymerizing) the resultant organo-
- 15 (ethynyl) chlorosilane product of step a with ammonia.

- 17 21. The process of preparing photocurable CERASETTM SZ
- 18 inorganic polymer comprising the step adding a photo-

1 initiator to CERASETTM SZ inorganic polymer.

2

- 3 22. The process of claim 21, in which said photo-initiator
- 4 is Camphorquinone.

5

- 6 23. The process of claim 21 in which said photo-initiator is
- 7 IRGACURE® 1800.

8

- 9 24. The process of preparing photocurable allylhydrido-
- 10 polycarbosilane polymer comprising the step of adding a
- 11 photo-initiator to allylhydridopolycarbosilane polymer.

12

- 13 25. The process of claim 24, in which said photo-initiator
- 14 is Camphorquinone.

15

- 16 26. The process of claim 24, in which said photo-initiator
- 17 is IRGACURE® 1800.

- 1 27. A process of forming a photo-curable pre-ceramic
- 2 polymer, poly(ethynyl)silazane, to silicon nitride ceramic
- 3 comprising the steps of:
- a. reacting sodium acetylide with a mixture of organo-
- 5 dichlorosilanes and organotrichlorosilanes; and
- 6 b. condensing (polymerizing) the resultant organo-
- 7 (ethynyl)chloro-silane product of step a with ammonia.

- 9 28. A process according to claim 27 in which the
- 10 organochlorosilane is selected from a group consisting of
- 11 one or more of the following: dichlorodimethylsilane,
- 12 trichlorophenylsilane (tri-functional) and methyltri
- 13 chlorosilane.

- 15 29. A process of forming a photo-curable pre-ceramic
- 16 polymer, poly(ethynyl)-silazane to silicon nitride ceramic
- 17 comprising the steps of:
- 18 a. reacting a sub-stoichiometric amount of ammonia

1	with organo-chlorosilanes; and
2	b. reacting the partially polymerized polyorgano
3	chlorosilazane with sodium acetylide.
4	
5	30. A process of forming a photo-curable pre-ceramic
6	polymer, poly(ethynyl)-silazane to silicon nitride ceramic
7	comprising the steps of;
8	a. reacting a sub-stoichiometric amount of ammonia
9	with organo-chlorosilanes; and
10	b. reacting the partially polymerized polyorgano
11	chlorosilazane with
12	sodium acetylide.
13	
14	31. A process of forming a photo- curable pre-ceramic
15	polymer, poly(ethynyl)-silazane to silicon nitride ceramic
16	comprising the steps of:
17	a. reacting a sub-stoichiometric amount of ammonia
18	with with a mixture of organodichlorosilanes and

1	organotrichlorosilanes; and
2	b. reacting the partially polymerized polyorganoc
3	hlorosilazane with sodium acetylide.
4	
5	32. A process for fabricating a ceramic matrix composites
6	comprising the steps of:
7	a. preparing a solution of thermoplastic photo-curable
8	pre-ceramic polymer;
9	b. passing a pre-preg through said solution of
10	thermoplastic photo-curable pre-ceramic polymer;
11	c. applying said pre-preg to a shaped mandrel;
12	d. using light energy to induce cross-linking of said
13	photo-curable pre-ceramic polymer after application to
14	said mandrel whereby said thermoplastic pre-ceramic
15	polymer is curved; and
16	e. pyrolyzing said cured thermoplastic pre-ceramic
17	polymer matrix composite material.

- 1 33. A single-step fabrication of continuous ceramic fiber
- 2 ceramic matrix composites employing a thermoplastic
- 3 photo-curable pre-ceramic polymer in which the component is
- 4 shape by a variety of standard composite fabrication
- 5 techniques, such as filament winding, tape winding, and
- 6 woven cloth winding comprising steps of:
- 7 a. passing ceramic fiber monofilament, tow, mat, or
- 8 woven cloth through a solution of said thermoplastic
- 9 photo-curable pre-ceramic polymer;
- 10 aa. applying ceramic fiber monofilament, tow, mat, or
- woven cloth to a shaped mandrel;
- 12 bb. using photo-energy of the ultraviolet, visible or
- infrared light spectrum to induce cross-linking
- 14 (curing) of the photo-curable pre-ceramic polymer
- after application to said mandrel; and
- 16 cc. either partially or completely pyrolyzing the now
- 17 cured pre-ceramic polymer matrix composite
- 18 material.

- 1 35. A process for synthesizing ceramic matrix composites
- 2 according to claim 34 in which the pre-ceramic polymer is
- 3 poly(ethynyl)carbosilane.

- 5 36. A process for synthesizing ceramic matrix composites
- 6 according to claim 34 in which the pre-ceramic polymer
- 7 yields silicon carbide upon pyrolysis.

8

- 9 37. A process for synthesizing ceramic matrix composites
- 10 according to claim 34 in which the pre-ceramic polymer
- 11 yields an oxide ceramic upon pyrolysis.

12

- 13 38. A process for synthesizing ceramic matrix composites
- 14 according to claim 34 in which the pre-ceramic polymer
- 15 yields titanium carbide upon pyrolysis.

- 17 39. A process for synthesizing ceramic matrix composites
- 18 according to claim 34 in which the pre-ceramic polymer

1 yields aluminum nitride upon pyrolysis.

2

- 3 40. A process for synthesizing ceramic matrix composites
- 4 according to claim 34 in which the pre-ceramic polymer
- 5 yields silicon nitride upon pyrolysis.

6

- 7 41. A process for synthesizing ceramic matrix composites
- 8 according to claim 34 in which the pre-ceramic polymer
- 9 yields aluminum oxide upon pyrolysis.

- 11 42. Single-step fabrication of continuous ceramic fiber
- 12 ceramic matrix composites employing a thermoplastic
- 13 photo-curable pre-ceramic polymer in which the component is
- 14 shape by a variety of standard composite fabrication
- 15 techniques, such as filament winding, tape winding, and
- 16 woven cloth winding under inert atmosphere comprising steps
- 17 of:
- 18 a. passing ceramic fiber monofilament, tow, mat, or

1	woven cloth through a solution of said thermoplastic
2	photo-curable pre-ceramic polymer;
3	b. applying ceramic fiber monofilament, tow, mat, or
4	woven cloth to a shaped rotating mandrel;
5	c. use of a heated or unheated compaction roller to
6	press the thermoplastic pre-ceramic polymer onto the
7	mandrel;
8	d. using ultraviolet, visible, or infrared light to
9	induce cross-linking (curing) of the photo-curable pre
10	ceramic polymer thereby rendering a thermoset polymer;
11	e. either partially or completely pyrolyzing the now
12	cured pre-ceramic polymer matrix material; and
13	f. followed by the final heat treatment of the shaped
14	ceramic matrix composite "brown body".

43. A process for synthesizing ceramic matrix composites
according to claim 42 in which the pre-ceramic polymer is

18 poly(ethynyl)carbosilane.

- 1 44. A process for synthesizing ceramic matrix composites
- 2 according to claim 42 in which the pre-ceramic polymer
- 3 yields an oxide ceramic upon pyrolysis.

- 5 45. A process for synthesizing ceramic matrix composites
- 6 according to claim 42 in which the pre-ceramic polymer
- 7 yields silicon nitride upon pyrolysis.

8

- 9 46. A process for synthesizing ceramic matrix composites
- 10 according to claim 42 in which the pre-ceramic polymer
- 11 yields titanium carbide upon pyrolysis.

12

- 13 47. A process for synthesizing ceramic matrix composites
- 14 according to claim 42 in which the pre-ceramic polymer
- 15 yields aluminum nitride upon pyrolysis.

- 17 48. A process for synthesizing ceramic matrix composites
- 18 according to claim 42 in which the pre-ceramic polymer

16

17

18

1

2	
3	49. A process for synthesizing ceramic matrix composites
4	according to claim 42 in which the pre-ceramic polymer
5	yields aluminum oxide upon pyrolysis.
6	
7	50. Single-step fabrication of continuous ceramic fiber
8	ceramic matrix composites employing a thermoplastic
9	photo-curable pre-ceramic polymer in which the component is
10	shape by a variety of standard composite fabrication
11	techniques, such as filament winding, tape winding, and
12	woven cloth winding, comprising steps of:
13	a. passing ceramic fiber monofilament, tow, mat, or
14	woven cloth through a solution of said thermoplastic

photo-curable pre-ceramic polymer;

woven cloth to a moving flat substrate;

yields silicon carbide upon pyrolysis.

c. using a compaction roller to press the thermo-

applying ceramic fiber monofilament, tow, mat, or

1	plastic pre-ceramic polymer coated ceramic fiber onto
2	flat substrate;
3	d. using photo-light of the ultraviolet, visible, or
4	infrared light spectrum to induce cross-linking curing)
5	of the photo-curable pre-ceramic polymer thereby
6	rendering a thermoset polymer; and
7	e. either partially or completely pyrolyzing the now
8	cured pre-ceramic polymer matrix coated ceramic fiber
9	material.
10	
11	51. A process for synthesizing ceramic matrix composites
12	according to claim 50 in which the pre-ceramic polymer is
13	poly(ethynyl)carbosilane.
14	
15	52. A process for synthesizing ceramic matrix composites
16	according to claim 50 in which the pre-ceramic polymer
17	yields an oxide ceramic upon pyrolysis.
18	

- 1 53. A process for synthesizing ceramic matrix composites
- 2 according to claim 50 in which the pre-ceramic polymer
- 3 yields silicon nitride upon pyrolysis.

- 5 54. A process for synthesizing ceramic matrix composites
- 6 according to claim 50 in which the pre-ceramic polymer
- 7 yields titanium carbide upon pyrolysis.

8

- 9 55.A process for synthesizing ceramic matrix composites
- 10 according to claim 50 in which the pre-ceramic polymer
- 11 yields aluminum nitride upon pyrolysis.
- 12 56. A process for synthesizing ceramic matrix composites
- 13 according to claim 50 in which the pre-ceramic polymer
- 14 yields silicon carbide upon pyrolysis.

- 16 57. A process for synthesizing ceramic matrix composites
- 17 according to claim 50 in which the pre-ceramic polymer
- 18 yields aluminum oxide upon pyrolysis.