Exercice 1.

Reconnaître les endomorphismes de \mathbb{R}^3 dans la liste suivante,

- 1. $f_1: (x, y, z) \longmapsto (x, xy, x z);$
- 2. $f_2: (x,y,z) \longmapsto (x+y,2x+5z,0)$;
- 3. $f_3: (x,y,z) \longmapsto (x-3y,x+y,z+2).$

EXERCICE 2.

Parmi les applications suivantes, lesquelles sont linéaires ?

- **1.** $id_E : E \longrightarrow E$, $u \longmapsto u$, où E est un \mathbb{K} -ev.
- **2.** $F: \mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R}), f \longmapsto \exp \circ f.$
- **3.** $G: \mathcal{C}(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R}), f \longmapsto f \times cos.$
- **4.** H : $\mathcal{C}^2(\mathbb{R}) \longrightarrow \mathcal{C}(\mathbb{R})$, f \longmapsto f" f.
- **5.** $j : F \longrightarrow E, u \mapsto u$, où F est un sev d'un \mathbb{K} -ev E.
- **6.** $T: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{n+1}, (u_k)_{k \in \mathbb{N}} \longmapsto (u_0, \dots, u_n).$
- 7. $S: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}, (u_k)_{k \in \mathbb{N}} \longmapsto (u_{k+1})_{k \in \mathbb{N}}.$

EXERCICE 3.

Soient f et q les endomorphismes de \mathbb{R}^2 définis par

$$g:(x,y)\longmapsto (y,x)$$
 et $f:(x,y)\longmapsto (x+y,2x)$.

- **1.** Montrer que f et g sont des isomorphismes de \mathbb{R}^2 . Déterminer f^{-1} et g^{-1} .
- **2.** On note $h = f \circ g g \circ f$. Justifier que $h \in \mathcal{L}(\mathbb{R}^2)$.
- **3.** A-t-on $f \circ g = g \circ f$? h est-elle injective?
- **4.** L'application h est-elle surjective?

Exercice 4.★

Soient E un \mathbb{R} -ev, $\mathfrak u$ et $\mathfrak v$ dans $\mathcal L(E)$ tels que

$$u \circ v - v \circ u = u$$
.

Etablir que, pour tout k dans \mathbb{N}^* :

$$u^k \circ v - v \circ u^k = ku^k.$$

EXERCICE 5.

Soit f, un endomorphisme de E. Pour tout entier $k \ge 2$, on note

$$f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}.$$

On suppose qu'il existe un entier $n\geqslant 2$ tel que f^n soit l'application identiquement nulle.

- 1. Soit $x \in \text{Ker}(I-f)$. Démontrer que $f^k(x) = x$ pour tout entier $k \geqslant 1$. En déduire que I-f est injectif.
- **2.** Simplifier les expressions

$$(I - f) \circ (I + f + f^2 + \dots + f^{n-1})$$

et $(I + f + f^2 + \dots + f^{n-1}) \circ (I - f)$

en utilisant les règles de calcul dans $\mathsf{L}(\mathsf{E})$ et en déduire que $\mathsf{I}-\mathsf{f}$ est un automorphisme.

3. Démontrer que, pour tout entier $k\geqslant 1$, l'endomorphisme $I-f^k$ est inversible. On précisera l'expression de son inverse.

Exercice 6.

Soit \mathbb{K} un corps. Pour $\sigma \in S_n$, on pose :

$$\begin{array}{cccc} f_\sigma : & \mathbb{K}^n & \longrightarrow & \mathbb{K}^n \\ & (x_1, \dots, x_n) & \longmapsto & (x_\sigma(1), \dots, x_\sigma(n)) \end{array}$$

On munit \mathbb{K}^n de la structure d'algèbre pour les opérations composante par composante.

- 1. Montrer que f_{σ} est un automorphisme d'algèbre.
- 2. Soit φ un automorphisme d'algèbre de $\mathbb{K}^n.$ Montrer qu'il existe $\sigma\in S_n$ tel que $\varphi=f_\sigma.$
- 3. Trouver les sous-espaces de \mathbb{K}^n stables par tous les endomorphismes f_σ avec $\sigma\in S_n.$

Exercice 7.

Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$(x, y, z) \longmapsto (2x - y, -x + y, x - z).$$

Prouver que f est un isomorphisme de \mathbb{R}^3 et expliciter son isomorphisme réciproque \mathbf{f}^{-1} .

Exercice 8.★

Soient f_k les fonctions de $\mathbb R$ dans $\mathbb R$ définies par

$$\forall k \in \{0, 1, 2\}, \ f_k : x \longmapsto x^k e^{2x}.$$

On note E le sous espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ engendré par ces trois vecteurs.

- 1. Quelles est la dimension de E ? En donner une base.
- 2. On note D l'opérateur de dérivation défini par

$$D: f \in E \longrightarrow f'$$
.

Prouver que $D \in \mathcal{L}(E)$.

3. Montrer que $D \in GL(E)$.

EXERCICE 9.

Soit Φ l'application de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$(x, y, z) \longmapsto (x + z, y - z, x + y + z, x - y - z).$$

- **1.** Montrer que Φ est linéaire.
- **2.** Φ est-elle injective?
- **3.** Etudier la surjectivité de Φ . Donner une base de $\text{Im}(\Phi)$.

Exercice 10.

Soient $\alpha \in \mathbb{R}$ et f_{α} l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 définie par

$$(x, y, z, t) \longmapsto (x + y + \alpha z + t, x + z + t, y + z).$$

Déterminer en fonction de $\alpha \in \mathbb{R}$ des bases des espaces vectoriels $\text{Ker}(f_{\alpha})$ et $\text{Im}(f_{\alpha})$.

Exercice 11.

Soit f
 l'endomorphisme de \mathbb{R}^3 défini par

$$f((x, y, z)) = (x, 0, y).$$

On note $(e_k)_{1 \leq k \leq 3}$ la base canonique de \mathbb{R}^3 .

- 1. Déterminer des bases de Im(f) et Ker(f).
- 2. On note $E=\big\{(x,y,0)\in\mathbb{R}^3\ ,\ (x,y)\in\mathbb{R}^2\big\}.$ Déterminer des bases des sousespaces vectoriels f(E) et $f^{-1}(E).$

Exercice 12.★

Soient E l'ensemble des applications continues de \mathbb{R}_+ dans \mathbb{R} et ψ l'application de E dans E qui à f associe l'application q de \mathbb{R}_+ dans \mathbb{R} définie par

$$\forall x \geqslant 0, \ g(x) = \int_0^x 2tf(t)dt.$$

- **1.** Justifier que E est un espace vectoriel réel pour les opérations usuelles sur les fonctions.
- 2. Quelle est la dimension de E?
- 3. Montrer que ψ est un endomorphisme de E.
- 4. Etudier l'injectivité puis la surjectivité de ψ . Formuler en termes de contreexemple les résultats précédents.
- **5.** Soit $\lambda \in \mathbb{R}$. Déterminer le sous-espace vectoriel $Ker(\psi \lambda id_F)$.

EXERCICE 13.

On considère $\mathbb C$ comme un $\mathbb R$ -espace vectoriel. On définit l'application u par

$$u: z \longmapsto iz - i\overline{z}$$
.

- **1.** Prouver que $u \in \mathcal{L}(\mathbb{C})$.
- **2.** Déterminer Ker(u) et Im(u).
- 3. Calculer u^2 .
- 4. En déduire que l'endomorphisme $\text{id}_\mathbb{C}+2u$ est inversible et calculer son inverse.

Exercice 14.

Soient E un \mathbb{C} -espace vectoriel, $u \in \mathcal{L}(E)$ et $X^2 + aX + b$ un polynôme à coefficients complexes.

1. On note r_1 et r_2 les deux racines (éventuellement confondues) de $X^2 + aX + b$. Montrer que

$$u^2 + au + b Id_E = (u - r_1 Id_E) \circ (u - r_2 Id_E) = (u - r_2 Id_E) \circ (u - r_1 Id_E)$$

- **2.** On pose $F = \text{Ker}(u^2 + au + b \text{ Id}_F)$, $F_1 = \text{Ker}(u r_1 \text{ Id}_F)$ et $F_2 = \text{Ker}(u r_2 \text{ Id}_F)$. Montrer que $F_1 \subset F$ et $F_2 \subset F$.
- 3. A partir de maintenant, on supose que les deux racines r_1 et r_2 sont distinctes. Montrer que $F = F_1 \oplus F_2$.
- **4. Application**: Dans cette question, on suppose que E est le C-espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb C$ de classe $\mathcal C^\infty$ et que $\mathfrak u$ est l'endomorphisme de $\mathbb E$ qui à f associe f'. On considère l'équation différentielle (\mathcal{E}) y'' + ay' + by = 0dont on cherche les solutions à valeurs complexes.
 - **a.** Montrer que toute solution de (\mathcal{E}) est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **b.** Montrer que l'ensemble des solutions de (\mathcal{E}) est F.
 - **c.** Déterminer F₁ et F₂.
 - **d.** En déduire le résultat du cours déjà connu : les solutions de (\mathcal{E}) sont les fonctions de \mathbb{R} dans \mathbb{C} du type $t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$ avec λ et μ décrivant \mathbb{C} .

EXERCICE 15.

Pour $f \in \mathcal{C}([0,1],\mathbb{R})$ et $x \in [0,1]$, on pose $\Phi(f)(x) = \bigcap_{x \in \mathbb{R}} \min(x,t) f(t) dt$.

- **1.** Prouver que Φ est un endomorphisme de $\mathcal{C}([0,1],\mathbb{R})$.
- **2.** En utilisant la relation de Chasles, trouver une autre expression de $\Phi(f)(x)$. En | et déduire que $\Phi(f)$ est de classe C^2 et exprimer $\Phi(f)''$ en fonction de f.
- **3.** En déduire Ker Φ et Im Φ .

Exercice 16.

On considère le sous-espace vectoriel F de $\mathcal{C}^1(\mathbb{R})$ engendré par la famille $\mathcal{B}=$ (sin, cos, sh, ch).

- **1.** Montrer que \mathcal{B} est une base de F.
- 2. On note D l'opérateur de dérivation. Montrer que F est stable par D. On notera d l'endomorphisme de F induit par D.
- **3.** On note M la matrice de d dans la base \mathcal{B} . Calculer M^n pour tout $n \in \mathbb{N}$.
- **4.** Montrer que d est un automorphisme de F. Écrire la matrice de d^{-1} dans la base \mathcal{B} .
- **5.** On note f = d Id. Déterminer l'image et le noyau de f.
- **6.** On note q = d + Id. Déterminer l'image et le noyau de $q \circ f$.

Exercice 17.

Déterminer une base du noyau et de l'image des applications linéaires définies par :

1.
$$f(x, y, z) = (2x + y + z, x + 2y + z, x + y + 2z)$$
;

2.
$$f(x, y, z) = (y + z, x + z, x + y)$$
;

3.
$$f(x, y, z) = (x + y + z, 2x - y - z, x + 2y + 2z)$$
;

4.
$$f(x, y, z) = (x + 2y - z, x + 2y - z, 2x + 4y - 2z)$$
.

EXERCICE 18.

Soient

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \ (x, y, z) \mapsto (x, y, 0),$$

 $g: \mathbb{R}^2 \to \mathbb{R}^3, \ (x, y) \mapsto (x - y, x + y, x + 2y)$

$$h: \mathbb{R}^3 \to \mathbb{R}, \ (x, y, z) \mapsto x - 3y + 2z.$$

- 1. Montrer que f, q et h sont linéaires.
- 2. Déterminer noyau et image dans chaque cas.

EXERCICE 19.

Soient E un \mathbb{R} -ev de dimension finie, f et q dans $\mathcal{L}(E)$. Etablir que

$$\operatorname{Im}(f) + \operatorname{Ker}(g) = E \iff \operatorname{Im}(g \circ f) = \operatorname{Im}(g).$$

Exercice 20.★

Soient E et F deux \mathbb{R} -ev, $f \in L(E,F)$ et $g \in \mathcal{L}(F,E)$ telles que

$$f \circ g \circ f = f$$
 et $g \circ f \circ g = g$.

Etablir que

$$E = Ker(f) \oplus Im(g)$$
 et $F = Ker(g) \oplus Im(f)$.

Exercice 21.

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications linéaires. Que pensez vous des propositions suivantes ?

- **1.** $Ker(g \circ f) = Ker(f) \cap Ker(g)$;
- 2. $Ker(g \circ f) \subset Ker(f)$;
- 3. $Ker(g \circ f) \subset Ker(f)$;
- **4.** $Im(f) \subset Ker(g)$ si et seulement si $g \circ f = 0$.

Exercice 22.★★

Soient E un espace vectoriel sur $\mathbb K$ et f appartenant à $\mathcal L(E).$ Montrer l'équivalence suivante

$$Ker(f^2) = Ker(f)$$
 si et seulement si $Im(f) \cap Ker(f) = \{0\}$.

EXERCICE 23.

Soient E un \mathbb{K} -ev, f et g deux endomorphismes de E tels que f \circ g = id_{E} .

- **1.** Etablir que f est surjective et q injective.
- 2. Montrer que $p = g \circ f$ est un projecteur de E.
- **3.** Etablir que Im(p) = Im(g) et Ker(p) = Ker(f).
- **4.** Montrer que

$$Ker(f) \oplus Im(g) = E$$
.

Exercice 24.

Soient E un \mathbb{K} -ev et $f \in \mathcal{L}(E)$. Montrer que

$$Ker(f) \cap Im(f) = f(Ker(f \circ f)).$$

EXERCICE 25.

Soit u un endomorphisme de E, pour tout entier naturel p, on notera $I_p=\text{Im}\,u^p$ et $K_p=\text{Ker}\,u^p.$

- **1.** Montrer que : $\forall p \in \mathbb{N}$, $K_p \subset K_{p+1}$ et $I_{p+1} \subset I_p$.
- 2. On suppose que E est de dimension finie et u injectif. Déterminer I_p et K_p pour tout $p\in\mathbb{N}.$
- **3.** On suppose que E est de dimension finie $n \in \mathbb{N}$.
 - a. Montrer qu'il existe un plus petit entier naturel $r \leqslant n$ tel que : $K_r = K_{r+1}$.
 - **b.** Montrer qu'alors : $I_r = I_{r+1}$ et que : $\forall p \in \mathbb{N}$, $K_r = K_{r+p}$ et $I_r = I_{r+p}$.
 - **c.** Montrer que : $E = K_r \oplus I_r$.
- **4.** Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que $K_r=K_{r+1}$?

Exercice 26.

Soient f et g deux endomorphismes d'un espace vectoriel $\mathsf{E}.$

- **1.** Montrer que si $g \circ f$ est surjective, alors g est surjective.
- 2. Montrer que si g est surjective et E = Im f + Ker g, alors $g \circ f$ est surjective.
- 3. Formuler des énoncés similaires pour l'injectivité.

Exercice 27.

Soient u et v deux endomorphismes d'un espace vectoriel E qui commutent.

- **1.** Montrer que Im $\mathfrak u$ et Ker $\mathfrak u$ sont stables par $\mathfrak v$.
- **2.** On suppose que $E= {\rm Ker}\, \mathfrak u \oplus {\rm Ker}\, \nu$. Montrer que ${\rm Im}\, \mathfrak u \subset {\rm Ker}\, \nu$ et que ${\rm Im}\, \nu \subset {\rm Ker}\, \mathfrak u$.
- **3.** Montrer que les inclusions précédentes sont des égalités si E est de dimension finie.

EXERCICE 28.

Soient E et F deux espaces vectoriels, $f \in \mathcal{L}(E,F)$, G et H deux sous-espaces vectoriels de E.

- **1.** Montrer que f(G + H) = f(G) + f(H).
- **2.** Montrer que si G et H sont en somme directe et que f est injective, alors $f(G \oplus H) = f(G) \oplus f(H)$.

Exercice 29.

Soient E un espace vectoriel et $f\in\mathcal{L}(E).$ Montrer l'équivalence suivante :

$$E = Im f + Ker f \Leftrightarrow Im f = Im f^2$$

Exercice 30.

Soient E un espace vectoriel et f, g deux projecteurs de E.

- **1.** Montrer que Im f = Im g si et seulement si $f \circ g = g$ et $g \circ f = f$.
- **2.** Donner une condition nécessaire et suffisante pour que $\operatorname{Ker} f = \operatorname{Ker} g$.

EXERCICE 31.

Soient E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que les propositions suivantes sont équivalentes :

- (i) $E = Im f \oplus Ker f$;
- (ii) $E = \operatorname{Im} f + \operatorname{Ker} f$;
- (iii) $\operatorname{Im} f = \operatorname{Im} f^2$;
- (iv) $\operatorname{Ker} f = \operatorname{Ker} f^2$.

Exercice 32.

Soit E un espace vectoriel de dimension finie. Montrer l'équivalence entre les propositions suivantes :

- (i) il existe $f \in \mathcal{L}(E)$ tel que Ker $f = \text{Im}\, f$;
- (ii) dim E est paire.

EXERCICE 33.

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- **1.** Montrer que Ker $f \subset \text{Ker } g \circ f$.
- **2.** Montrer que Im $g \circ f \subset \text{Im } g$.
- **3.** Montrer que $g \circ f = 0 \iff \text{Im } f \subset \text{Ker } g$.

Exercice 34.★

Soient E un espace vectoriel sur $\mathbb K$ de dimension finie et f un endomorphisme de E. On souhaite prouver l'équivalence des deux propriétés suivantes :

(*) Il existe un projecteur
$$p$$
 de E tel que $f = p \circ f - f \circ p$
(**) $f^2 = 0$

- 1. Supposons (*) vérifiée. Prouver que $p \circ f \circ p = 0$, puis que $f = p \circ f$. En déduire que (**) est vérifiée.
- 2. Supposons (**) vérifiée. Soit S un supplémentaire de Ker f dans E et p le projecteur sur Ker(f) parallèlement à S. Prouver la propriété (*).

Exercice 35.★★

Soit E un espace vectoriel sur $\mathbb K$ de dimension finie $\mathfrak n$. Un endomorphisme $\mathfrak u$ de E est dit nilpotent s'il existe $\mathfrak p\in \mathbb N$ tel que $\mathfrak u^p=\mathfrak 0$.

- 1. Donner des exemples d'endomorphismes nilpotents de \mathbb{R}^2 puis de $\mathbb{R}^3.$
- 2. Montrer qu'un endomorphisme nilpotent n'est jamais un isomorphisme.
- **3.** Soit $u \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \exists p_x \in \mathbb{N}, u^{p_x}(x) = 0.$$

Montrer que u est nilpotent.

4. Montrer que si $\mathfrak u$ est un endomorphisme nilpotent alors $id_E - \mathfrak u \in GL(E)$.

Exercice 36.★

Soient E un espace vectoriel sur $\mathbb K$ de dimension 3 et f appartenant à $\mathcal L(\mathsf E)$.

- 1. On suppose dans cette question que $f^2 = 0$ et $f \neq 0$. Calculer le rang de f.
- 2. On suppose dans cette question que $f^3=0$ et $f^2\neq 0$. Calculer le rang de f.

Exercice 37.★★

Soient E un espace vectoriel sur \mathbb{K} et u un endomorphisme de E.

1. On suppose dans cette question l'existence d'un *projecteur* p de E tel que

$$u = p \circ u - u \circ p$$
.

- a. Démontrer que $p \circ u \circ p = 0$. On précisera de quel 0 il s'agit.
- **b.** Prouver que $u \circ p = 0$.
- **c.** En déduire que $u^2 = 0$.
- **2.** On suppose dans cette question que $u^2 = 0$.
 - **a.** Démontrer que $Im(\mathfrak{u}) \subset Ker(\mathfrak{u})$.
 - ${\bf b.}\;$ Soient H et S deux sous-espaces vectoriels supplémentaires dans E tels que

$$Im(\mathfrak{u}) \subset H \subset Ker(\mathfrak{u}).$$

En notant q la projection sur H parallèlement à S , reconnaître l'application linéaire $q\circ u-u\circ q.$

3. Donner une condition *nécessaire et suffisante* pour qu'il existe un projecteur p de E tel que

$$u = p \circ u - u \circ p$$
.

Exercice 38.★

Soient E un espace vectoriel de dimension $\mathfrak n$ et f une application linéaire de E dans lui-même. Montrer que les deux assertions qui suivent sont équivalentes :

1.
$$Ker(f) = Im(f)$$
.

2.
$$f^2 = 0$$
, $n = 2 rg(f)$.

Exercice 39.

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E nilpotent d'indice $\mathfrak n.$ On pose

$$\begin{array}{ccc} \Phi: & \mathcal{L}(\mathsf{E}) & \longrightarrow & \mathcal{L}(\mathsf{E}) \\ & g & \longmapsto & f \circ g - g \circ f \end{array}$$

- 1. Montrer que $\Phi^p(g)=\sum\limits_{k=0}^p (-1)^k {p\choose k} f^{p-k}\circ g\circ f^k$. En déduire que Φ est nilpotent.
- 2. Soit $a\in\mathcal{L}(E)$. Montrer qu'il existe $b\in\mathcal{L}(E)$ tel que $a\circ b\circ a=a$. En déduire l'indice de nilpotence de Φ .

EXERCICE 40.

On note $E = \mathbb{R}^4$,

$$F = \{(x, y, z, t) \in E \mid z = y + t = 0\}$$

et G = $\{(x, y, z, t) \mid x = y + z = 0\}$.

- 1. Prouver que F et G sont des plans vectoriels de E.
- 2. Montrer que F et G sont supplémentaires dans E.
- **3.** Donner les expressions analytiques de p et s, respectivement projecteur sur F parallèlement à G et symétrie par rapport à F parallèlement à G.

Exercice 41.★

On note $E=\mathbb{R}^\mathbb{R}, \mathcal{A}$ le sous-espace vectoriel de E constitué des fonctions affines et on pose

$$\mathcal{N} = \bigg\{ f \in E \mid f(0) = f(1) = 0 \bigg\}.$$

- 1. Montrer que les sous-espaces vectoriel $\mathcal A$ et $\mathcal N$ sont supplémentaires dans $\mathsf E$.
- 2. Expliciter le projecteur sur \mathcal{A} parallèlement à \mathcal{N} .
- 3. Expliciter la symétrie par rapport à \mathcal{A} parallèlement à \mathcal{N} .

Exercice 42.★

Soient E un espace vectoriel sur \mathbb{K} , p et q deux projecteurs de E.

1. Prouver que

$$p \circ q + q \circ p = 0$$
 si et seulement si $p \circ q = q \circ p = 0$.

2. Montrer que p + q est un projecteur si et seulement si

$$p \circ q = q \circ p = 0$$
.

3. On suppose que p+q est un projecteur de E. Montrer que

$$Im(p+q) = Im(p) \oplus Im(q)$$

et

$$Ker(p + q) = Ker(p) \cap Ker(q)$$
.

Exercice 43.★

Soient E un espace vectoriel sur \mathbb{K} , p et q deux projecteurs de E tels que $p \circ q = q \circ p$.

- 1. Prouver que $\psi = p \circ q$ est un projecteur de E.
- 2. Montrer que $Im(\psi) = Im(p) \cap Im(q)$.
- 3. Etablir que $Ker(\psi) = Ker(p) + Ker(q)$.

Exercice 44.★★

Soit E un espace vectoriel de dimension finie et A une partie finie de GL(E) stable par composition. On pose $p=\frac{1}{|A|}\sum_{f\in A}f$. Montrer que p est un projecteur.

Exercice 45.

Soit E un \mathbb{K} -espace vectoriel et p un projecteur de E. Pour quelles valeurs de $\lambda \in \mathbb{K}$, Id $+\lambda p$ est-il un automorphisme ?

Exercice 46.

Soient p et q deux projecteurs d'un espace vectoriel E qui commutent.

- **1.** Montrer que $p + q p \circ q$ et $p \circ q$ sont des projecteurs.
- **2.** Montrer que $Ker(p \circ q) = Ker p + Ker q$ et que $Im(p \circ q) = Im p \cap Im q$.
- 3. Montrer que $\text{Ker}(\mathfrak{p}+\mathfrak{q}-\mathfrak{p}\circ\mathfrak{q})=\text{Ker}\,\mathfrak{p}\cap\text{Ker}\,\mathfrak{q}$ et que $\text{Im}(\mathfrak{p}+\mathfrak{q}-\mathfrak{p}\circ\mathfrak{q})=\text{Im}\,\mathfrak{p}+\text{Im}\,\mathfrak{q}.$

Exercice 47.

Soient H_1 et H_2 deux sous-espaces supplémentaires de $\mathcal{L}(\mathbb{R}^n)$ vérifiant la propriété suivante :

$$\forall (f,g) \in H_1 \times H_2, \ f \circ g + g \circ f = 0$$

- 1. Justifier qu'il existe $(p_1, p_2) \in H_1 \times H_2$ tel que $p_1 + p_2 = Id$.
- **2.** Montrer que p_1 et p_2 sont des projecteurs.
- 3. Montrer que dim $H_1 \leqslant (n \operatorname{rg} p_2)^2$ et dim $H_2 \leqslant (n \operatorname{rg} p_1)^2$.
- **4.** Quel est le nombre de choix possibles pour le couple (H_1, H_2) ?

Exercice 48.★

Soient E et F deux espaces vectoriels, f et g deux applications linéaires de rang fini de E dans F.

1. Montrer que

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \leq \operatorname{rg}(f+g) \leq \operatorname{rg}(f) + \operatorname{rg}(g).$$

2. Prouver que rg(f + g) = rg(f) + rg(g) si et seulement si

$$Im(f) \cap Im(g) = \{0\}$$
 et $Ker(f) + Ker(g) = E$.

Exercice 49.

Soient E un espace vectoriel réel de dimension $\mathfrak n$, f et g deux endomorphismes tels que

$$f + g = id_E$$
 et $rg(f) + rg(g) \le n$.

1. Montrer que

$$E = Im(f) \oplus Im(g)$$
.

2. Après avoir justifié l'égalité f o $g=g\circ f$, prouver que f et g sont des projecteurs de E.

EXERCICE 50.

Soient E un K-ev de dimension finie, f et q deux endomorphismes de E.

1. Etablir que

$$\dim(\operatorname{Ker}(f \circ g)) \leq \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(g)).$$

2. Montrer que l'inégalité précédente est une égalité si et seulement si $Ker(f) \subset Im(g)$.

Exercice 51.

Soient $u,v\in\mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Déterminer le rang de l'endomorphisme de $\mathcal{L}(E)$ $\Phi:f\mapsto v\circ f\circ u$.

Exercice 52.

Soient $f\in\mathcal{L}(E,F)$, $g\in\mathcal{L}(F,G)$ et $h\in\mathcal{L}(G,H)$ où E,F,G,H sont des espaces vectoriels de dimension finie. Montrer que

$$rg(g\circ f)+rg(h\circ g)\leqslant rg(h\circ g\circ f)+rg(g)$$

EXERCICE 53.

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E dont l'image est une droite vectorielle vect(\mathfrak{u}) avec $\mathfrak{u}\neq \mathfrak{O}_E$. On pose alors :

$$\forall x \in E, f(x) = \varphi(x)u$$

Montrer que ϕ est une forme linéaire sur E et qu'il existe $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$.

Exercice 54.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n, avec $n\geqslant 2$. On rappelle que E^* est l'ensemble des formes linéaires sur E.

- 1. Soient ϕ et ψ deux éléments non nuls de E* tels que $Ker(\phi) = Ker(\psi)$. Montrer qu'il existe un réel non nul λ tel que $\psi = \lambda \phi$.
- 2. Soit H un hyperplan de E. Montrer que l'ensemble D(H) des éléments de E* dont le noyau contient H est un sous-espace vectoriel de E* dont on précisera la dimension.
- **3.** On appelle *transvection* de E tout endomorphisme f de E possédant les deux propriétés suivantes :
 - ightharpoonup Ker(f Id) est un hyperplan de E;
 - ▶ $Im(f Id) \subset Ker(f Id)$.

On appelle $Ker(f - Id_F)$ la base de f et $Im(f - Id_F)$ la direction de f.

- **a.** Soit φ un élément non nul de E* et u un vecteur non nul de Ker (φ) . Pour tout vecteur x de E, on pose $f(x) = x + \varphi(x)u$. Justifier l'existence de u et montrer que f est une transvection dont on précisera la base et la direction.
- **b.** Réciproquement, soit f une transvection de E. Montrer qu'il existe un élément non nul φ de E* et un vecteur u non nul de Ker (φ) tels que $f(x) = x + \varphi(x)u$ pour tout $x \in E$.

EXERCICE 55.

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et ϕ_1, \ldots, ϕ_n des formes linéaires sur E. On suppose qu'il existe $x \in E$ non nul tel que

$$\forall i \in [1,n], \ \phi_i(x) = 0$$

Montrer que la famille (ϕ_1, \ldots, ϕ_n) est liée.

Exercice 56.

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et ϕ_1, \ldots, ϕ_m des formes linéaires sur E $(m \leqslant n)$. Montrer que

$$\dim \left(\bigcap_{i=1}^{m} \operatorname{Ker} \varphi_{i}\right) + \operatorname{rg}(\varphi_{1}, \dots, \varphi_{m}) = n$$

Exercice 57.★

Soient E un espace vectoriel sur \mathbb{K} , f et g deux formes linéaires sur E non nulles.

1. Prouver que

$$Ker(f) \subset Ker(g)$$

si et seulement si il existe $\lambda \in \mathbb{K}^*$ tel que $g = \lambda f$.

2. En déduire une *condition nécessaire et suffisante* pour que f et g définissent le même hyperplan H. En déduire toutes les équations de H.

EXERCICE 58.

Soit E un \mathbb{R} -espace vectoriel. Soit $\mathfrak{u}\in\mathcal{L}(E)$ tel que $\mathfrak{u}^2-3\mathfrak{u}+2\operatorname{Id}_E=0$.

- 1. Montrer que $u\in GL(E)$ et exprimer u^{-1} en fonction de u.
- **2.** On pose $f = u Id_E$ et $g = 2 Id_E u$. Montrer que $f \circ g = g \circ f = 0$.
- $\bf 3.$ Vérifier que f et g sont des projecteurs.
- **4.** Montrer que $\operatorname{Im} f = \operatorname{Ker} g$ et $\operatorname{Im} g = \operatorname{Ker} f$.
- **5.** Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Ker} g$ et $E = \operatorname{Im} f \oplus \operatorname{Im} g$.

Exercice 59.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension $n\geqslant 1$ qui commute avec tous les endomorphismes de E, c'est-à-dire

$$\forall g \in \mathcal{L}(E), \quad f \circ g = g \circ f$$

- 1. Soit u un vecteur non nul de E. Justifier l'existence d'un supplémentaire H_u de vect(u) dans E. Quelle est la dimension de H_u ?
- 2. En considérant le projecteur p_u sur vect(u) parallèlement à H_u , montrer qu'il existe $\lambda_u \in \mathbb{K}$ tel que $f(u) = \lambda_u u$.
- 3. Soit $\nu \in E$ non colinéaire à u. On montre de même qu'il existe $\lambda_{\nu} \in \mathbb{K}$ tel que $f(\nu) = \lambda_{\nu}\nu$. Montrer que $\lambda_{u} = \lambda_{\nu}$. On pourra considérer le vecteur $u + \nu$.
- 4. Reprendre la question précédente lorsque ν est non nul et colinéaire à u.
- **5.** En déduire que les endomorphismes de E commutant avec tous les endomorphismes sont les homothéties.