Bayesian Q-learning with Assumed Density Filtering

Heejin Jeong and Daniel D. Lee

Department of Electrical and System Engineering, University of Pennsylvania

INTRODUCTION

Bayesian Reinforcement Learning (BRL)

Markov Decision Process : $\mathcal{M} = \langle S, A, P, R, \gamma \rangle$

Goal: To maximize its expected total discounted future reward

Action-Value : $Q^{\pi}(s,a) = \mathbf{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t r_t \, | s_0 = s, a_0 = a]$

Optimality: $V^*(s) = \max_{a} Q^*(s, a)$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \mathbf{E}_{s' \sim P(\cdot | s, a)} [r(s, a) + \gamma V^{*}(s')] = \mathbf{E}_{s' \sim P(\cdot | s, a)} [r(s, a) + \gamma \max_{a' \in A} Q^{*}(s', a')]$$

$$\mathsf{Immediate} \quad \mathsf{Future}$$

BRL leverages methods from Bayesian inference to incorporate information into the learning process.

Off-policy Temporal Difference (TD) Learning:

action policy ≠ target policy — long term future outcomes ≈ temporally successive predictions

Kalman Temporal Difference (Geist et al.), **KTD-Q**: a Bayesian approach to *off-policy TD learning* which approximates the value function using the *Kalman filtering scheme* - $Q^*(s, a) \approx Q^*(s, a; \theta)$, θ : hidden states and r: indirect observation – and *Unscented Transform* for the nonlinearity of the max operator.

Bayesian Q-learning with Assumed Density Filtering

Q-learning

The most popular off-policy TD learning - After observing a reward r_t and the next state s_{t+1} ,

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right)$$
TD target TD error

Belief Updates on Q-values

0.00

- $Q_{s,a} \sim \mathcal{N}(\mu_{s,a}, \sigma_{s,a}^2)$ where $[\mu_{s,a}, \sigma_{s,a}] \neq [\mu_{s',a'}, \sigma_{s',a'}]$ if $s \neq s'$ or $a \neq a'$
- For One-step Temporal Difference (TD) Learning, we observe r,s'

Assumed Density Filtering Q-learning (ADFQ)

Assumed Density Filtering (ADF): approximating a true posterior to a tractable parametric distribution in Bayesian networks by minimizing the reverse Kullback-Leibler divergence

$$\hat{p}_{Q_{s,a}}(q|\theta,r,s') \neq Gaussian \xrightarrow{\mathsf{ADF}} \approx p_{Q_{s,a}}(q|\theta^{(new)}) = \mathcal{N}\left(q; \mathbf{E}_{q \sim \hat{p}_{Q_{s,a}}(\cdot)}[q] , \mathrm{Var}_{q \sim \hat{p}_{Q_{s,a}}(\cdot)}[q]\right)$$

TD error for b

- Simple analytic solutions for |A|>2 are not known/available.
- Algorithm with numerically computed solutions : ADFQ-Numeric

Approximated ADFQ (ADFQ-Approx)

When $\sigma^2 \ll 1$, $\phi(\cdot) \approx \delta(\cdot)$ (dirac delta function) and $\Phi(\cdot) \approx H(\cdot)$ (Heaviside function). Define a function $f(\cdot)$ - the approximation of the term inside the summation, $c_{\tau,b}\phi(\cdot) \prod \Phi(\cdot)$:

$$f(q; \mu, \sigma) = \begin{cases} \frac{1}{\sigma} \phi\left(\frac{q-\mu}{\sigma}\right) & \text{for } q \in [\mu - \epsilon, \mu + \epsilon], \epsilon \ll 1 \\ 0 & \text{otherwise} \end{cases}$$

Then, $\hat{p}_{Q_{s,a}}(q|\theta,r,s') \approx \hat{p}_{Q_{s,a}}(q) = \frac{1}{Z} \sum_{b \in A} c_{\tau,b} f(q;\bar{\mu}_{\tau,b},\bar{\sigma}_{\tau,b}) \text{ for } q \in (-\infty,+\infty)$

Applying ADF, new mean and variance are:

$$\mathbf{E}_{q \sim \hat{p}_{Q_{s,a}}(\cdot)}[q] = \frac{\sum_{b} c_{\tau,b} \bar{\mu}_{\tau,b}}{\sum_{b} c_{\tau,b}} \quad \text{Var}_{q \sim \hat{p}_{Q_{s,a}}(\cdot)}[q] = \frac{\sum_{b} c_{\tau,b} \bar{\sigma}_{\tau,b}^{2}}{\sum_{b} c_{\tau,b}} \quad \text{Just a linear combination of IVW mean/variance!}$$

Algorithm Complexity

Algorithm	Time per step	Space	Algorithm	Time per step	Space
Q-learning	O(A)	O(S A)	ADFQ-Numeric	O(m A)	O(S A)
KTD-Q	$O(S ^2 A ^3)$	$O(S ^2 A ^2)$	ADFQ-Approx	$\mathbf{O}(\mathbf{A})$	O(S A)

Connection to Q-learning

Suppose that $c_{\tau,b} = 0 \ \forall b \neq \operatorname{argmax}_b \mu_{s,b}$, we can correspond the learning rate of Q-learning to the following: $\bar{\sigma}_{s,b}^2 = (2\sigma_{s,b})^2 - 1$

$$\bar{\alpha} \equiv \frac{\bar{\sigma}_{b^*}^2}{\gamma^2 \sigma_{s',b^*}^2} = \left(1 + \left(\frac{\gamma \sigma_{s',b^*}}{\sigma_{s,a}}\right)^2\right)^{-1}$$

EXPERIMENTS

Algorithms ($\gamma = 0.9$)

- ADFQ with behavior policies BS (Bayesian Sampling), semi-BS (performs BS with a small probability and greedily selects an action otherwise), ϵ -greedy
- Q-learning with behavior policies ϵ -greedy and Boltzmann (softmax)
- KTD-Q with behavior policies ϵ -greedy and its active learning scheme.

Domains

- Loop (Fig.1): |S|=9, |A|=2, non-episodic, deterministic
- Mini-Maze (Fig.2): |S|=112, |A|=4, r=# of collected Flags at the Goal (F: Flag locations, S: starting point, G: goal), episodic, stochastic,
- Grid5x5 & Grid10x10 : |S|=25 or 100, |A|=4, r=1 at the Goal (S: starting point, G: goal), episodic, stochastic,

Fig.1 Loop domain

Fig.2 Mini-Maze domain

Semi-greedy Evaluation

: Learning was paused at every $T_H/100$ step and the current policy was semi-greedily evaluated (ϵ -greedy with $\epsilon=0.1$). In the evaluation, the maximum # of steps is bounded by $T_H/50$, and for the episodic domains, it is also terminated when G is reached. The results were averaged over 10 trials.

Total Cumulative Rewards

: $\sum_{t=1,\dots,T} r_t$, and averaged over 10 trials

	Loop	Grid 5x5	Grid 10x10	Mini-Maze
Q-learning, ϵ -greedy	302.4 ± 12.1	150.6 ± 3.8	45.6 ± 3.9	239.7 ± 81.4
Q-learning, Boltzmann	288.2 ± 17.4	61.6 ± 5.5	18.0 ± 1.9	106.1 ± 10.4
ADFQ-Approx, ϵ -greedy	338.0 ± 0.0	178.1 ± 5.5	82.7 ± 5.0	274.8 ± 80.3
ADFQ-Approx, semi-BS	329.2 ± 13.8	$\boldsymbol{184.7 \pm 4.5}$	80.9 ± 7.1	264.0 ± 67.3
ADFQ-Approx, BS	333.2 ± 3.2	135.9 ± 5.7	51.5 ± 3.3	180.9 ± 47.8
KTD-Q, ϵ -greedy	281.6 ± 5.2	0.6 ± 1.8	0.0 ± 0.0	20.5 ± 16.4
KTD-Q, active learning	157.4 ± 7.4	18.8 ± 2.7	8.0 ± 1.9	55.4 ± 8.6

DISCUSSION

Contributions

- Regularization with Uncertainty Information in the Q update: Unlike the Q-learning algorithm, the ADFQ algorithms incorporate the information of all possible actions for the next state with weights depending on TD errors and uncertainty measures $\sigma_{s',b}$ ↑ then contribution to the update \downarrow .
- Connection to Q-learning showed Q-learning could be a special case of our algorithm.
- Computational Efficiency.
- No deterministic/stochastic environment assumption: As the experiment results show, the ADFQ algorithms can work well on stochastic environments.
- Only two hyperparameters initial variance and the discount factor: Other BRL algorithms tend to require many hyperparameters to be chosen.

Limitations

- Convergence analysis is not provided in this paper.
- Applied domains are limited to finite state and action spaces. We are currently extending our method to continuous domains

FEATURED REFERENCE

- X. Boyen and D. Koller. Tractable inference for complex stochastic processes. *In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence*, Berkeley, CA, 1998.
- P. S. Maybeck. Stochastic models, estimation and control. *Academic Press*, chapter 12.7, 1982.
- M. Opper. A bayesian approach to online learning. On-Line Learning in Neural Networks, 1999.
- R. S. Sutton. Learning to predict by the methods of temporal differences. *Machine Learning*, 3(1):9–44, 1988.
- Watkins, C. J., and Dayan, P. 1992. Q-learning. *In Machine Learning*, 279–292. M. Geist and P. Olivier. Kalman temporal differences. *Journal of artificial intelligence research*, 39: 483–532, 2010.

CONTACT: Heejin Jeong (heejinj@seas.upenn.edu), Daniel Lee (ddlee@seas.upenn.edu)