ELECTROMAGNETISME

Chapitre 2 : Dipôle électrostatique

Exercice 1 : Cristal de chlorure de sodium

Lorsqu'on applique un champ électrique à un monocristal de chlorure de sodium, les ions qui le composent se déplacent.

Soit $\vec{E} = E_0 \overrightarrow{u_x}$ le champ électrostatique imposé aux ions du cristal. Sous l'effet de ce champ, les ions Na^+ se déplacent en bloc selon Ox de δ_+ et les ions Cl^- de δ_- , le centre de l'ensemble restant immobile. On posera $x = \delta_+ - \delta_-$.

Avant tout déplacement, le moment dipolaire global du cristal est nul par symétrie de la répartition. On note N le nombre d'ions sodium et chlorure par unité de volume et e la valeur absolue de la charge de l'électron.

1) Montrer que ces déplacements ioniques se traduisent par un moment dipolaire réparti dans le volume du cristal, de densité volumique $\vec{P} = P \overrightarrow{u_x}$ et exprimer P en fonction de la charge élementaire e, de x et du nombre N de paires d'ions Na^+Cl^- par unité de volume.

L'expérience montre que la relation entre P et E est linéaire, de la forme $P=\varepsilon_0\chi_{ion}E$ où χ_{ion} est un coefficient positif caractéristique du cristal. Le groupe d'ions Na^+ est soumis à des forces de rappel élastique dont la moyenne par ion est de la forme $\vec{f}=-Kx\overrightarrow{u_x}$, les ions Cl^- étant soumis à des forces opposées.

- **2)** Exprimer la constante K en fonction de N, e, ε_0 et χ_{ion} .
- 3) Après suppression du champ \vec{E} , les deux groupes d'ions évoluent librement. Ecrire l'équation du mouvement d'un ion Na^+ et celle d'un ion Cl^- ; on désignera par m_+ et m_- leur masse respective.
- 4) Montrer que le mouvement relatif des deux ions est une oscillation à une pulsation ω_T que l'on exprimera en fonction de $N, e, \varepsilon_0, \chi_{ion}, m_+$ et m_- . Pour cela, on fera les combinaisons linéaires des équations du mouvement des deux ions qui permettent d'obtenir les équations vérifiées par $x_G = \frac{m_+\delta_+ + m_-\delta_-}{m_+ + m_-}$ et par $x = \delta_+ \delta_-$.