wass mark * Central tendency: Measures of central tendency are numeroical indices that attempts to answer the question: What is the typical value of the Observations in the distribution? popular measures of central Tendency Mean ___ Arithmatic mean (1) Median (2007) Geometria Mode Hapmonic Apithmatic mean: - Let us cosider n observations x1, x2, ... xn Arithmetic mean $X = \frac{\chi_1 + \chi_2 + \cdots + \chi_n}{\chi_n}$ * x = 16+18+19+20+22 = 25 = 19 n aladoch numerou of statistics (BBS)

Page (2)

ŀ			
	Age at first	Number of women	
	marriage Xi°	fi"	fixi
	11	17.	187
Ī	12_	28	336
	13	37	481
	14	52	728
	15	70	1050
	16	48	768
	17	36	612
	18	23	414
	19	11	209
	20	8	160
		五部二の二330	2 fixi= 4945
1			

Arrithmatic mean =
$$\frac{2 \text{ fix}^2}{2 \text{ fi}}$$

$$= \frac{4945}{330}$$

$$= 14.98$$

page 3

let us have a grouped data as follows:

	Class limits	Frequency	X;	fixi [
_	14.5 - 19.5	1	17	17
	19.5 - 24.5	6	22	132
		9	27	243
	24.5 -29.5	ე -	32	64
	29.5-34.5		27	74
	34.5-39.5	2	37	
1				•

30, Anithmatic mean $\overline{\chi} = \frac{2 \operatorname{fi} \chi_i^2}{2 \operatorname{fi}}$ $= \frac{50}{20}$ = 26.5

How worker date do The wonner

Some properties of Aruthmetic mean, -

1) Arithmetic mean is defendent on both origin and scale of measurement.

Proof: Let x be a quantifative variable taking on values $\chi_1, \chi_2, ..., \chi_n$. Let d'be a new variable taking on values d, d2, -.., dn such that

 $di = \frac{xi - a}{h}$ where a and h are the change of origin and scale transfectively.

中至xi° 二至a十九至di°.

* = 2 n + h 2 di.

* x = ma + h. d

Tratha

So, arithmetie mean is defendent on both origin and scale.

2 -> Ton and the Summetion. The and in from and it from any 1 from any 1

2) The algebraic sum of the deviations of the values x1, x2, ..., xn from their arithmetic mean is zero. that is $\frac{\pi}{2}(x_i-x)=0$

Priorof: L. His? (xi-x)

= (24-2)+(22-2)+...+(2n-2)

 $=(x_1+x_2+\cdots+x_m)-(\bar{x}+\bar{x}+\cdots+\bar{x})$

二点なっかえ

= 2 2 2 - 2 2 2 2 .

= R.H.S (priored)

Median

Median is that value in a data set which divides the set into two equal party where the data set is averaged in ascending on descending order.

Formula of median:

when n is not divinible by 2

Median = $\left(\frac{m+1}{2}\right)$ th value

Example:

let us have the values

13, 17, 12, 16, 19

At first we have to arrange the values either in ascending order or descending order.

12,13,16,17,19

Here, n = 5 which is not divisible by 2 So, median = (n+1)th value = (5+1)th value

page 7

=
$$(\frac{6}{2})$$
 th value
= 3rd value
OWI 3rd value is 16.
So Median = 16.

Let us add another value with the data set which is 10. So the new data set is

Here, n = 6 which is divisible by 2. So median = $\frac{m}{2}$ th value $+(\frac{n}{2}+1)$ th value $\frac{n}{2}$

$$= \frac{\left(\frac{6}{2}\right) + 1}{2} + \frac{\left(\frac{6}{2} + 1\right) + 1}{2} + \frac{1}{2} +$$

$$=\frac{13+16}{2}$$

median.