Foundation of Cryptography (0368-4162-01), Lecture 6 More on Zero Knowledge

Iftach Haitner, Tel Aviv University

December 20, 2011

Non-Interactive Zero Knowledge

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message ZK proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in BPP$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Interaction is crucial for ZK

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message ZK proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in BPP$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message ZK proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in BPP$.

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{\langle (P(w_x^2), V^*)(x) \rangle\}_{x \in \mathcal{L}},$ for any $\{w_x^1 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2 : (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message ZK proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in BPP$.

Adaptive NIZK

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (\mathsf{P}(w_x^1),\mathsf{V}^*)(x)\rangle\}_{x\in\mathcal{L}}\approx_{\mathcal{C}} \{\langle (\mathsf{P}(w_x^2),\mathsf{V}^*)(x)\rangle\}_{x\in\mathcal{L}},$ for any $\{w_x^1: (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2: (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$
 - Witness Hiding

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message ZK proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in BPP$.

Adaptive NIZK

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (\mathsf{P}(w_x^1),\mathsf{V}^*)(x)\rangle\}_{x\in\mathcal{L}}\approx_{\mathsf{C}} \{\langle (\mathsf{P}(w_x^2),\mathsf{V}^*)(x)\rangle\}_{x\in\mathcal{L}},$ for any $\{w_x^1: (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2: (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$
 - Witness Hiding
 - Non-interactive "zero knowledge"

Definition

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* PPT's (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in \text{poly s.t.}$

Completeness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P(x,w_x,c))=1] \geq 2/3$, for every $(x,w_x) \in R_{\mathcal{L}}$

Soundness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,\mathsf{P}^*(x,c))=1] \leq 1/3,$ for any P^* and $x \notin \mathcal{L}$

ZK: $\exists \text{ PPT S s.t. } \{(x, c, P(x, w_x, c))\}_{x \in \mathcal{L}, c \leftarrow \{0, 1\}^{p(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}, \text{ for any } \{w_x \colon (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* PPT's (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in \text{poly s.t.}$

Completeness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P(x,w_x,c))=1] \ge 2/3$, for every $(x,w_x) \in R_{\mathcal{L}}$

Soundness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$

ZK: $\exists \text{ PPT S s.t. } \{(x, c, P(x, w_x, c))\}_{x \in \mathcal{L}, c \leftarrow \{0, 1\}^{p(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}, \text{ for any } \{w_x \colon (x, w_x) \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$

c – common (random) reference string (CRRS)

NIZK in HBM

Definition

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* PPT's (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists \rho \in \text{poly s.t.}$

Completeness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P(x,w_x,c))=1] \geq 2/3$, for every $(x,w_x) \in R_{\mathcal{L}}$

Soundness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$

- c common (random) reference string (CRRS)
- CRRS is chosen by the simulator

Definition

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* PPT's (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists \rho \in \text{poly s.t.}$

Completeness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P(x,w_x,c))=1] \geq 2/3$, for every $(x,w_x) \in R_{\mathcal{L}}$

Soundness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$

- *c* common (random) reference string (CRRS)
- CRRS is chosen by the simulator
- What does the definition stands for?

Definition

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* PPT's (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists \rho \in \text{poly s.t.}$

Completeness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P(x,w_x,c))=1] \ge 2/3$, for every $(x,w_x) \in R_{\mathcal{L}}$

Soundness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$

- *c* common (random) reference string (CRRS)
- CRRS is chosen by the simulator
- What does the definition stands for?
- Soundness holds also against the simulated CRRS

Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

The *non interactive* PPT's (P, V) is a NIZK for $\mathcal{L} \in NP$, if $\exists p \in \text{poly s.t.}$

Completeness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P(x,w_x,c))=1] \geq 2/3$, for every $(x,w_x) \in R_{\mathcal{L}}$

Soundness: $\Pr_{c \leftarrow \{0,1\}^{p(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$

- c common (random) reference string (CRRS)
- CRRS is chosen by the simulator
- What does the definition stands for?
- Soundness holds also against the simulated CRRS
- Amplification?

Section 1

NIZK in HBM

NIZK in HBM

•000000

Hidden Bits Model (HBM)

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

NIZK in HBM

Hidden Bits Model (HBM)

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof. Let c^H be the "hidden" CRSS:

- Prover sees c^H , and outputs a proof π and a set on indices T.
- Verifier only sees the bits in c^H that are indexed by \mathcal{I}
- Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRSS c^H

NIZK in HBM

Hidden Bits Model (HBM)

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof. Let c^H be the "hidden" CRSS:

- Prover sees c^H , and outputs a proof π and a set on indices T.
- Verifier only sees the bits in c^H that are indexed by \mathcal{I}
- Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRSS c^H

Soundness, completeness and ZK are naturally defined.

Hidden Bits Model (HBM)

A CRRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof. Let c^H be the "hidden" CRSS:

- Prover sees c^H , and outputs a proof π and a set on indices $\mathcal I$
- Verifier only sees the bits in c^H that are indexed by \mathcal{I}
- Simulator outputs a proof π , a set of indices $\mathcal I$ and a partially hidden CRSS c^H

Soundness, completeness and ZK are naturally defined.

We give a NIZK for HC - Directed Graph Hamiltonicity, in the HBM, and then transfer it into a NIZK in the standard model.

Implies a (standard model) NIZK for all NP

Useful Matrix

• Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1

• Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1

Adaptive NIZK

 Hamiltonian matrix: an n × n adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)

Useful Matrix

• Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1

- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)
- An $n^3 \times n^3$ Boolean matrix is called *useful*: if it contains a generalized $n \times n$ Hamiltonian sub matrix, and all the other entries are zeros

- Permutation matrix: an n × n Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an n x n adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)
- An n³ × n³ Boolean matrix is called useful: if it contains a generalized n × n Hamiltonian sub matrix, and all the other entries are zeros

Claim 3

Let T be a random $n^3 \times n^3$ Boolean matrix where each entry is 1 w.p n^{-5} . Hence, $\Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$.

Proving Claim 3

• The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains *exactly* n ones.

Useful Matrix

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$.

Useful Matrix

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.

Useful Matrix

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.

- The expected one entries in T is $n^6 \cdot n^{-5} = n$ and by extended Chernoff bound, w.p. $\theta(1/\sqrt{n})$ T contains exactly n ones.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.
- A random permutation matrix forms a cycle wp 1/n (there are n! permutation matrices and (n 1)! of them form a cycle)

NIZK for Hamiltonicity in HBM

NIZK for Hamiltonicity in HBM

• Common input: a directed graph G = ([n], E)

NIZK in HBM

NIZK for Hamiltonicity in HBM

NIZK for Hamiltonicity in HBM

- Common input: a directed graph G = ([n], E)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5}

NIZK in HBM

0000000

NIZK for Hamiltonicity in HBM

- Common input: a directed graph G = ([n], E)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} ??

NIZK for Hamiltonicity in HBM

NIZK for Hamiltonicity in HBM

- Common input: a directed graph G = ([n], E)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} ??

Algorithm 4 (P)

Input: G and a cycle C in G. A CRRS $T \in \{0, 1\}_{n^3 \times n^3}$

- If T not useful, set $\mathcal{I}=n^3\times n^3$ (i.e., reveal all T) and $\phi=\perp$ Otherwise, let H be the (generalized) $n\times n$ sub matrix containing the hamiltonian cycle in T.
- 2 Set $\mathcal{I} = T \setminus H$ (i.e., , reveal the bits of T outside of H)
- **③** Choose ϕ ← Π_n , s.t. C is mapped to the cycle in H
- **4** Add all the entries in H corresponding to non edges in G (with respect to ϕ) to \mathcal{I}
- **5** Output $\pi = (\mathcal{I}, \phi)$

NIZK for Hamiltonicity in HBM

NIZK for Hamiltonicity in HBM cont.

Algorithm 5 (V)

Input: a graph G, index set $\mathcal{I} \subseteq [n^3] \times [n^3]$, ordered set $\{T_i\}_{i \in \mathcal{I}}$ and a mapping ϕ

- If all the bits of T are revealed and T is not useful, accept.
 Otherwise,
- **2** Verify that $\exists n \times n$ submatrix $H \subseteq T$ with all entries in $T \setminus H$ are zeros.
- **3** Verify that $\phi \in \Pi_n$, and that all the entries of H not corresponding (according to ϕ) to edges of G are zeros

NIZK for Hamiltonicity in HBM

NIZK for Hamiltonicity in HBM cont.

Algorithm 5 (V)

Input: a graph G, index set $\mathcal{I} \subseteq [n^3] \times [n^3]$, ordered set $\{T_i\}_{i \in \mathcal{I}}$ and a mapping ϕ

- If all the bits of T are revealed and T is not useful, accept.
 Otherwise,
- **2** Verify that $\exists n \times n$ submatrix $H \subseteq T$ with all entries in $T \setminus H$ are zeros.
- **3** Verify that $\phi \in \Pi_n$, and that all the entries of H not corresponding (according to ϕ) to edges of G are zeros

Claim 6

The above protocol is a perfect NIZK for HC in the HBM, with perfect completeness and soundness error $1 - \Omega(n^{-3/2})$

NIZK for Hamiltonicity in HBM

Proving Claim 6

Completeness: Clear

NIZK in HBM

NIZK for Hamiltonicity in HBM

Proving Claim 6

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G.

NIZK for Hamiltonicity in HBM

Proving Claim 6

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of *H* to the edges of *G*. Hence, ϕ^{-1} maps the the cycle in H to an Hamiltonian cycle in G

NIZK for Hamiltonicity in HBM

Proving Claim 6

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G. Hence, ϕ^{-1} maps the the cycle in H to an Hamiltonian cycle in G
- Zero knowledge?

NIZK for Hamiltonicity in HBM

Algorithm 7 (S)

Input: G

• Choose T at random, according to the right distribution.

Adaptive NIZK

- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **5** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **6** Output $\pi = (T, \mathcal{I}, \phi)$

NIZK in HBM

Algorithm 7 (S)

Input: G

• Choose T at random, according to the right distribution.

Adaptive NIZK

- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **5** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **6** Output $\pi = (T, \mathcal{I}, \phi)$
 - Perfect simulation for non useful T's.

NIZK for Hamiltonicity in HBM

Algorithm 7 (S)

Input: G

- Choose *T* at random, according to the right distribution.
- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- **4** Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **3** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **o** Output $\pi = (T, \mathcal{I}, \phi)$
 - Perfect simulation for non useful T's.
 - For useful T, the location of H is uniform in the real and simulated case.

NIZK for Hamiltonicity in HBM

Algorithm 7 (S)

Input: G

- Choose *T* at random, according to the right distribution.
- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **5** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **o** Output $\pi = (T, \mathcal{I}, \phi)$
 - Perfect simulation for non useful T's.
 - For useful T, the location of H is uniform in the real and simulated case.
 - ϕ is a random element in Π_n is both cases

Algorithm 7 (S)

Input: G

- Choose *T* at random, according to the right distribution.
- 2 If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \perp$. Otherwise,
- **4** Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **3** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **o** Output $\pi = (T, \mathcal{I}, \phi)$
 - Perfect simulation for non useful T's.
 - For useful T, the location of H is uniform in the real and simulated case.
 - ϕ is a random element in Π_n is both cases
 - Hence, the simulation is perfect

Section 2

From HBM to Standard NIZK

trapdoor permutations

Definition 8 (trapdoor permutations)

A triplet of PPT's (G, f, Inv) is called (enhanced) family of trapdoor permutation (TDP), if the following holds:

- **①** *G*: $\{0,1\}^n \mapsto \{0,1\}^n$ for every $n \in \mathbb{N}$.
- 2 $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $pk \in \{0, 1\}^n$.
- **1** Inv $(sk, \cdot) \equiv f_{G(sk)}^{-1}$ for every $sk \in \{0, 1\}^n$
- For any PPT A, $\Pr_{x \leftarrow \{0,1\}^n, sk \leftarrow \{0,1\}^n, x = G(sk)}[A(pk, x) = f_{pk}^{-1}(x)] = \text{neg}(n)$

trapdoor permutations

Definition 8 (trapdoor permutations)

A triplet of PPT's (G, f, Inv) is called (enhanced) family of trapdoor permutation (TDP), if the following holds:

- **1 G**: $\{0,1\}^n \mapsto \{0,1\}^n$ for every $n \in \mathbb{N}$.
- 2 $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $pk \in \{0,1\}^n$.
- **③** Inv(sk, ·) $\equiv f_{G(sk)}^{-1}$ for every $sk \in \{0,1\}^n$
- For any PPT A, $\Pr_{x \leftarrow \{0,1\}^n, sk \leftarrow \{0,1\}^n, x = G(sk)}[A(pk, x) = f_{nk}^{-1}(x)] = \text{neg}(n)$
 - For our purposes, somewhat less restrictive requirements will do

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

TDP

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

•
$$\mathbb{Z}_n = [n]$$
 and $\mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$

NIZK in HBM

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in [n]: \gcd(x, n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)

Adaptive NIZK

NIZK in HBM

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in [n]: \gcd(x, n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)

Adaptive NIZK

• For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

TDP

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 9 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in \mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \text{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

NIZK in HBM

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)

Adaptive NIZK

• For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 9 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in\mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \mathrm{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

Factoring is easy \implies RSA is easy.

example, RSA

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n]$ and $\mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in P$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 9 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in\mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \mathrm{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

Factoring is easy \implies RSA is easy. Other direction?

The transformation

Let (P_H, V_H) be a HBM NIZK for \mathcal{L} , and let p(n) be the length of the CRRS used for $x \in \{0, 1\}^n$.

Adaptive NIZK

Let (G, f, Inv) be a TDP and let b be an hardcore bit for f.

The transformation

The transformation

Let (P_H, V_H) be a HBM NIZK for \mathcal{L} , and let p(n) be the length of the CRRS used for $x \in \{0, 1\}^n$.

Let (G, f, Inv) be a TDP and let b be an hardcore bit for f.

We construct a NIZK (P,V) for \mathcal{L} , with the same completeness and "not too large" soundness error.

The protocol

Algorithm 10 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRRS $c = (c_1, \dots, c_p) \in \{0, 1\}^{np}$, where n = |x| and p = p(n).

- Choose $sk \leftarrow U_n$, set pk = G(sk) and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{p(n)} = f_{pk}^{-1}(c_p)))$
- 2 Let $(\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x, w, c^H)$ and output $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

The protocol

Algorithm 10 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRRS $c = (c_1, \dots, c_p) \in \{0, 1\}^{np}$, where n = |x| and p = p(n).

- Choose $sk \leftarrow U_n$, set pk = G(sk) and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{p(n)} = f_{pk}^{-1}(c_p)))$
- 2 Let $(\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x, w, c^H)$ and output $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

Algorithm 11 (V)

Input: $x \in \mathcal{L}$, CRRS $c = (c_1, \dots, c_p) \in \{0, 1\}^{np}$, and $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$, where n = |x| and p = p(n).

- Verify that $pk \in \{0,1\}^n$ and that $f_{pk}(z_i) = c_i$ for every $i \in \mathcal{I}$
- **2** Return $V_H(x, \pi_H, \mathcal{I}, c^H)$, where $c_i^H = b(z_i)$ for every $i \in \mathcal{I}$.

The transformation

Claim 12

Assuming that (P_H, V_H) is a NIZK for $\mathcal L$ in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for $\mathcal L$ with the same completeness, and soundness error α .

Claim 12

Assuming that (P_H, V_H) is a NIZK for $\mathcal L$ in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for $\mathcal L$ with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $Pr[b(U_n) = 1] = \frac{1}{2}$).

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that *b* is unbiased (i.e.,

$$\Pr[b(U_n) = 1] = \frac{1}{2}$$
).

For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \dots, b(f_{pk}^{-1}(c_p))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^p$.

NIZK in HBM

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n)=1]=\frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)),\ldots,b(f_{pk}^{-1}(c_p))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^p$.

Completeness: clear

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n)=1]=\frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)),\ldots,b(f_{pk}^{-1}(c_p))\right)_{c \leftarrow \{0,1\}^{np}}$ is

Completeness: clear

uniformly distributed in $\{0,1\}^p$.

• Soundness: follows by a union bound over all possible choice of $pk \in \{0, 1\}^n$.

Claim 12

Assuming that (P_H, V_H) is a NIZK for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a NIZK for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $Pr[b(U_n) = 1] = \frac{1}{2}$).

For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \dots, b(f_{pk}^{-1}(c_p))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^p$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of $pk \in \{0,1\}^n$.
- Zero knowledge:?

Proving zero knowledge

Algorithm 13 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - $pk \leftarrow G(U_n)$
 - Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.

Proving zero knowledge

Algorithm 13 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - $pk \leftarrow G(U_n)$
 - Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0, 1\}^n$ otherwise.
- Exists efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w_x)) \approx_c P(x, w_x)$

Proving zero knowledge

Algorithm 13 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - $pk \leftarrow G(U_n)$
 - Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0, 1\}^n$ otherwise.
- Exists efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w_x)) \approx_c P(x, w_x)$
- Distinguishing $P(x, w_x)$ from S(x) is hard

Adaptive NIZK

Adaptive NIZK

x is chosen after the CRRS.

Adaptive NIZK

x is chosen after the CRRS.

Completeness: $\forall f$: {0,1} $^{p(n)}$ \mapsto {0,1} n ∩ \mathcal{L} : Pr[V(f(c),c),P(f(c),w,c)) = 1] ≥ 2/3,

Adaptive NIZK

x is chosen after the CRRS.

Completeness: $\forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}$:

 $\Pr[V(f(c), c), P(f(c), w, c)) = 1] \ge 2/3,$

Soundness: $\forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$

 $\Pr[\mathsf{V}(f(c),c,\mathsf{P}^*((f(c),c)))=1 \land f(c) \notin \mathcal{L}] \leq 1/3$

```
x is chosen after the CRRS.
```

Completeness:
$$\forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}$$
:

$$\Pr[V(f(c), c), P(f(c), w, c)) = 1] \ge 2/3,$$

Soundness: $\forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$

$$\Pr[V(f(c), c, P^*((f(c), c))) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$$

ZK: \exists pair of PPT's (S_1, S_2) s.t.

 $\{(f(c), c, P(f(c), w_{f(c)}, c)\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}, \text{ for any } f \colon \{0, 1\}^{p(n)} \mapsto \{0, 1\}^n \cap \mathcal{L}. \text{ Where } S^f(n) \text{ is the output of }$

output of

$$2 x \leftarrow f(c)$$

$$\bigcirc$$
 Output $(x, c, S_2(x, c, s))$

```
x is chosen after the CRRS.
```

 Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.

Adaptive NIZK

```
x is chosen after the CRRS.
```

```
Completeness: \forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}:
                    Pr[V(f(c), c), P(f(c), w, c)) = 1] > 2/3,
Soundness: \forall f : \{0,1\}^{p(n)} \mapsto \{0,1\}^n \text{ and } P^*
                    \Pr[V(f(c), c, P^*((f(c), c))) = 1 \land f(c) \notin \mathcal{L}] < 1/3
            ZK: \exists pair of PPT's (S_1, S_2) s.t.
                    \{(f(c), c, P(f(c), w_{f(c)}, c)\}_{n \in \mathbb{N}} \approx_c \{S^t(n)\}_{n \in \mathbb{N}}, \text{ for }
                   anv f: \{0,1\}^{p(n)} \mapsto \{0,1\}^n \cap \mathcal{L}. Where S^f(n) is the
                    output of
                     \bigcirc (c,s) \leftarrow S_1(1^n)
                     x \leftarrow f(c)
                     Output (x, c, S_2(x, c, s))
```

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.
- Not every NIZK is adaptive (but the above protocol are).

Section 4

Special Soundness NIZK

Special Soundness NIZK

Part II

Proof of Knowledge

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L} \in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \text{poly s.t. } \forall x \in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \Pr[(P^*, V)(x) = 1]$.

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon \mathbb{N}\mapsto \mathbb{R}$, if $\exists t\in \text{poly s.t. } \forall x\in \mathcal{L}$ and deterministic algorithm $P^*, E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

A property of V

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon \mathbb{N}\mapsto \mathbb{R}$, if $\exists t\in \text{poly s.t. } \forall x\in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

- A property of V
- Why do we need it?

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon \mathbb{N}\mapsto \mathbb{R}$, if $\exists t\in \mathsf{poly}$ s.t. $\forall x\in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

- A property of V
- Why do we need it? Proving that you know the password

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in NP$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 14 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in NP$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon\mathbb{N}\mapsto\mathbb{R}$, if $\exists t\in \text{poly s.t.}\ \forall x\in\mathcal{L}$ and deterministic algorithm $P^*,\,E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\Pr[(P^*,V)(x)=1]$.

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

- A property of V
- Why do we need it? Proving that you know the password
- Relation to ZK

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 16

The ZK proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Claim 15

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 16

The ZK proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|F|}$.

Proof: ?