THE TRAVEL TIME TO INFINITY IN PERCOLATION

Wai-Kit Lam University of Minnesota Based on Joint work with M. Damron, J. Hanson and X. Wang

INTRODUCTION

Consider $(\mathbb{Z}^2, \mathcal{E}^2)$. Let $(t_e)_{e \in \mathcal{E}^2}$ be i.i.d. nonnegative edge weights. For a lattice path γ , define $T(\gamma) = \sum_{e \in \gamma} t_e$.

Questions:

- 1. \exists an infinite self-avoiding path γ starting at 0 such that $T(\gamma) < \infty$?
- 2. For which distribution F of t_e does such a path exist, where $F(t) = \mathbf{P}(t_e \le t)$?

A generalization of Bernoulli bond percolation.

- Easy case: $F(0) > p_c = \frac{1}{2}$. In this case, $\mathbf{P}(\exists \text{ infinite path of } e \text{ with } t_e = 0) = 1.$

Connect such an infinite path to 0. Answer to 1. is yes.

- Similarly, if $F(0) < p_c$, then answer is no.
- Difficult case: $F(0) = p_c$.

REFORMULATION

Consider $\partial B(n) := \{x \in \mathbb{Z}^2 : ||x||_{\infty} = n\}$. Define

$$T(0, \partial B(n)) = \inf_{\gamma:0\to\partial B(n)} T(\gamma).$$

By monotonicity, $\rho := \lim_{n \to \infty} T(0, \partial B(n))$ exists. Fact: the answer to 1. is yes if and only if $\rho < \infty$. **Question**: When is $\rho < \infty$?

PREVIOUS WORK

From now on, always assume $F(0) = p_c$.

- (Chayes-Chayes-Durrett, '86) t_e Bernoulli $\Rightarrow \mathbf{E}T(0, \partial B(n)) \asymp \log n$.
- (Chayes, '91) $\forall \delta > 0$, $T(0, \partial B(n))/n^{\delta} \to 0$. (Also true in higher dimensions.)
- (Kesten-Zhang, '97) Showed a Gaussian CLT for $T(0,\partial B(n))$ when t_e is "almost" Bernoulli.

PREVIOUS WORK (CONT.)

(Zhang, '99) It is possible to have $\rho < \infty$ or $\rho = \infty$. Specifically, for a > 0, define

$$F_a(t) = \begin{cases} 1 & \text{if } t^a > 1 - p_c, \\ t^a + p_c & \text{if } 0 \le t^a \le 1 - p_c, \\ 0 & \text{otherwise,} \end{cases}$$

and for b > 0, define

$$G_b(t) = \begin{cases} 1 & \text{if } e^{-\frac{1}{t^b}} > 1 - p_c, \\ e^{-\frac{1}{t^b}} + p_c & \text{if } 0 \le e^{-\frac{1}{t^b}} \le 1 - p_c, \\ 0 & \text{otherwise.} \end{cases}$$

- For a small, if $t_e \sim F_a$, then $\rho < \infty$.
- If b > 1 and $t_e \sim G_b$, then $\rho = \infty$.

Intuition: When a is small, w.h.p., $t_e \approx 0$. Can construct an infinite path such that most edges take extremely low weights.

When a is large, $F_a \approx G_b$. Zhang conjectured the following:

Conjecture (Zhang). For sufficiently large a>0, if $t_e \sim F_a$, then $\rho=\infty$.

(Yao, '14, '18) Consider the triangular lattice T and put the random weights on the vertices instead of the edges.

Theorem (Yao). On \mathbb{T} , if t_v is Bernoulli with $F(0) = p_c$, then

(a)
$$\frac{T(0,\partial B(n))}{\log n} \to \frac{1}{2\sqrt{3}\pi} \quad \text{a.s.,}$$

(b)

$$\frac{\operatorname{Var}(T(0,\partial B(n)))}{\log n} \to \frac{2}{3\sqrt{3}\pi} - \frac{1}{2\pi^2}.$$

- (a) can be seen as a strong law of large numbers.
- The proof uses the conformal loop ensemble of Camia and Newman.

MAIN RESULT 1: ASYMPTOTICS

Theorem 1 (Damron-L.-Wang, '17). For $t \in (0,1)$, define $F^{-1}(t) = \inf\{x : F(x) \ge t\}$. Suppose that $F(0) = p_c$ and write $X_n = T(0, \partial B(n))$. Then the following holds:

- $\rho < \infty$ if and only if $\sum_n F^{-1}(p_c + 2^{-n}) < \infty$.
- $\mathbf{E}X_1^{1+\varepsilon} < \infty \Rightarrow \mathbf{E}X_n \asymp \sum_{k=2}^{\log n} F^{-1}(p_c + 2^{-k}).$
- If $\mathbf{E}X_1^{2+\varepsilon} < \infty$, then

$$Var(X_n) \simeq \sum_{k=2}^{\log n} (F^{-1}(p_c + 2^{-k}))^2$$
.

- If $\mathbf{E} X_1^{2+\varepsilon} < \infty$, $\mathbf{E} X_n$, $\mathrm{Var}(X_n) \to \infty$, then $(X_n \mathbf{E} X_n)/\sqrt{\mathrm{Var}(X_n)} \Rightarrow N(0,1)$.
- If $\mathbf{E} X_1^{2+\varepsilon} < \infty$, $\mathbf{E} X_n \to \infty$ but the variance is bounded, then $X_n \mathbf{E} X_n \to Z$ for some r.v. Z.

Remark. Theorem 1 holds on any two dimensional lattice.

Applications:

- t_e Bernoulli: $F^{-1}(p_c + 2^{-n}) = 1$, so $\rho = \infty$.
- If F has a positive right derivative at 0 and $t_e \sim F$, then $\sum_n F^{-1}(p_c + 2^{-n}) < \infty$, and hence $\rho < \infty$.
- $t_e \sim F_a$: $F^{-1}(p_c + 2^{-n}) = 2^{-n/a}$, which is summable for all a. Therefore, $\rho < \infty$ for all a, and hence **Zhang's conjecture is false**.
- $t_e \sim G_b$: $F^{-1}(p_c + 2^{-n}) \approx n^{-1/b}$. Thus $\rho = \infty$ if and only if $b \ge 1$.

MAIN RESULT 2: UNIVERSALITY

Further universality results on the triangular lattice that improve Yao's results: define $I = \inf\{x > 0 : F(x) > p_c\}$, the infimum of the support of the law of t_v excluding 0.

Theorem 2 (Damron-Hanson-L., '19). On \mathbb{T} , when $F(0) = p_c$, we have

$$\frac{T(0,\partial B(n))}{\log n} o \frac{I}{2\sqrt{3}\pi}$$
 almost surely.

If we further assume $\mathbf{E}T(0,\partial B(1))^2<\infty$, then

$$\frac{\operatorname{Var}(T(0,\partial B(n)))}{\log n} \to I^2 \left(\frac{2}{3\sqrt{3}\pi} - \frac{1}{2\pi^2} \right)$$

Remark. 1. If one can prove the limit theorems for Bernoulli weights on \mathbb{Z}^2 , then the limit theorems hold for general weights on \mathbb{Z}^2 .

2. Does

$$\lim_{n \to \infty} \frac{T(0, \partial B(n))}{\sum_{k=2}^{\log n} F^{-1}(p_c + 2^{-k})} exists$$

when I = 0? (log n is not the correct order.)

Idea of the proof. For simplicity, assume that I=1. Say a vertex v is open if $t_v=0$, closed if $t_v\geq 1$.

- Using tools of Kesten-Sidoravicius-Zhang: can construct closed circuits (Γ_k) that surround 0; between Γ_k and Γ_{k+1} , w.h.p. \exists large open cluster that consists of a lot of branchings.
- Can construct a path using these open clusters. The path gains weight ≥ 1 when it passes Γ_k , but can be made ≈ 1 .
- The path constructed is a Bernoulli geodesic (under a suitable coupling). Original passage time ≈ Bernoulli passage time.