A high-order discontinuous Galerkin method for hyperbolic conservation laws on cut cell meshes

Florian Streitbürger¹

Joint work: Sandra May¹, Christian Engwer²,

 $^{\mathrm{1}}\mathsf{Department}$ of Mathematics, TU Dortmund University

²Applied Mathematics Münster, WWU Münster

Hirschegg 2021

- 13.09.2021 -

- General setting
 - Small cell problem
 - Cut cell model problem in 1D

- 2 Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations

3 Numerical results

Overview

- General setting
 - Small cell problem
 - Cut cell model problem in 1D
- Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations
- 3 Numerical results

Outline

- General setting
 - Small cell problem
 - Cut cell model problem in 1D
- 2 Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations
- 3 Numerical results

Task: Construction of a body-fitted mesh

Task: Construction of a body-fitted mesh

Unstructured triangle grid:

 Time-consuming for complicated geometries

Unstructured triangle grid:

Time-consuming for complicated geometries

Cut cell grid:

- + Grid generation is easy and cheap
- + Most cells are Cartesian cells

Unstructured triangle grid:

 Time-consuming for complicated geometries

Cut cell grid:

- + Grid generation is easy and cheap
 - Most cells are Cartesian cells
 - Cut cells irregular & arbitrarily small

The small cell problem

Background:

- Typically, explicit timestepping schemes are used for hyp. cons. laws
- CFL condition requires roughly $\Delta t = \mathcal{O}(h)$

Small cell problem:

■ Goal: Choose Δt based on size of Cartesian cells \Rightarrow stability issues on cut cells

The small cell problem

Background:

- Typically, explicit timestepping schemes are used for hyp. cons. laws
- CFL condition requires roughly $\Delta t = \mathcal{O}(h)$

Small cell problem:

■ Goal: Choose Δt based on size of Cartesian cells \Rightarrow stability issues on cut cells

Numerical example:

State of the art

Cell merging / Cell agglomeration (Krivodonova, Kronbichler, Kummer, Müller, etc.)

 \Rightarrow Moves complexity back into grid generation

State of the art

Cell merging / Cell agglomeration (Krivodonova, Kronbichler, Kummer, Müller, etc.)

⇒ Moves complexity back into grid generation

FV schemes:

- H-box method (Berger, Helzel, LeVeque)
- Flux redistribution (Colella et al.)
- Dimensionally split approach (Klein et al.)
- Mixed explicit implicit method (Berger & May)
- State redistribution (Berger & Giuliani)
- Active flux method (Helzel & Kerkmann)
- & more...

DG schemes:

- State redistribution (Berger & Giuliani)
- Ghost penalty (Fu & Kreiss)
- DoD stabilization

Outline

- General setting
 - Small cell problem
 - Cut cell model problem in 1D
- 2 Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations
- 3 Numerical results

Hyperbolic conservation laws in 1D

Time-dependent systems of hyperbolic conservation laws in 1D:

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{0}$$
 in $\Omega \times (0,T)$ $\mathbf{u}_0 = \mathbf{u}(\cdot,0)$.

- $\mathbf{u}: \Omega \times (0,T) \to \mathbb{R}^m$, $m \in \mathbb{N}$ vector of conserved variables
- $\mathbf{f}:\mathbb{R}^m o \mathbb{R}^m$ flux function

Hyperbolic conservation laws in 1D

Time-dependent systems of hyperbolic conservation laws in 1D:

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{0}$$
 in $\Omega \times (0, T)$ $\mathbf{u}_0 = \mathbf{u}(\cdot, 0)$.

- $\mathbf{u}: \Omega \times (0,T) \to \mathbb{R}^m$, $m \in \mathbb{N}$ vector of conserved variables
- $\mathbf{f}: \mathbb{R}^m o \mathbb{R}^m$ flux function

Examples:

- Burgers equation: $u_t + \left(\frac{1}{2}u^2\right)_x = 0$
- Euler equations: $\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{0}$ with

$$\mathbf{u} = \begin{pmatrix} \varrho \\ \varrho v \\ E \end{pmatrix} \quad \text{and} \quad \mathbf{f}(\mathbf{u}) = \begin{pmatrix} \varrho v \\ \varrho v^2 + p \\ (E+p)v \end{pmatrix}.$$

Model problem in 1D with two cut cells k_1 and k_2 :

with:

$$\mathcal{I}_{\mathsf{equi}} = \{1 \leq j \leq N | j \neq k\}, \, \mathcal{I}_{\mathsf{all}} = \mathcal{I}_{\mathsf{equi}} \cup \{k_1, k_2\}, \, \mathcal{I}_{\mathcal{N}} = \{k-1, k_1, k_2\}.$$

DG approach in space with finite-dimensional function space:

$$\mathcal{V}_h^p = \left\{ \mathbf{v}^h \in (L^2(\varOmega))^m \, \big| \, \mathbf{v}^h |_{I_j} \in P^p(I_j) \text{ for all } j \in \mathcal{I}_{\text{all}} \right\},$$

DG approach in space with finite-dimensional function space:

$$\mathcal{V}_h^p = \left\{ \mathbf{v}^h \in (L^2(\varOmega))^m \, \middle| \, \mathbf{v}^h |_{I_j} \in P^p(I_j) \text{ for all } j \in \mathcal{I}_{\mathsf{all}} \right\},$$

⇒ Semi-discrete problem:

$$\text{Find } \mathbf{u}^h \in V_h^p \text{ s.t.: } \left(d_t \mathbf{u}^h(t), \mathbf{w}^h \right)_{L^2} + a_h \left(\mathbf{u}^h(t), \mathbf{w}^h \right) = 0 \quad \forall \, \mathbf{w}^h \in \mathcal{V}_h^p,$$

with

$$\begin{split} a_h(\mathbf{u}^h, \mathbf{w}^h) &= -\sum_{j \in \mathcal{I}_{\text{all}}} \int_j \mathbf{f}(\mathbf{u}^h) \cdot \partial_x \mathbf{w}^h \, \mathrm{d}x \\ &+ \sum_{j=0}^N \mathcal{H}(\mathbf{u}_j, \mathbf{u}_{j+1})(x_{j+\frac{1}{2}}) \cdot \left[\!\left[\mathbf{w}^h\right]\!\right]_{j+\frac{1}{2}} + \mathcal{H}(\mathbf{u}_{k_1}, \mathbf{u}_{k_2})(x_{\text{cut}}) \cdot \left[\!\left[\mathbf{w}^h\right]\!\right]_{\text{cut}}. \end{split}$$

DG approach in space with finite-dimensional function space:

$$\mathcal{V}_h^p = \left\{ \mathbf{v}^h \in (L^2(\varOmega))^m \, \middle| \, \mathbf{v}^h |_{I_j} \in P^p(I_j) \text{ for all } j \in \mathcal{I}_{\mathsf{all}} \right\},$$

⇒ Semi-discrete problem:

$$\text{Find } \mathbf{u}^h \in V_h^p \text{ s.t.: } \left(d_t \mathbf{u}^h(t), \mathbf{w}^h \right)_{L^2} + a_h \left(\mathbf{u}^h(t), \mathbf{w}^h \right) = 0 \quad \forall \, \mathbf{w}^h \in \mathcal{V}_h^p,$$

with

$$\begin{split} a_h(\mathbf{u}^h, \mathbf{w}^h) &= -\sum_{j \in \mathcal{I}_{\text{all}}} \int_j \mathbf{f}(\mathbf{u}^h) \cdot \partial_x \mathbf{w}^h \, \mathrm{d}x \\ &+ \sum_{j=0}^N \mathcal{H}(\mathbf{u}_j, \mathbf{u}_{j+1})(x_{j+\frac{1}{2}}) \cdot \left[\!\left[\mathbf{w}^h\right]\!\right]_{j+\frac{1}{2}} + \mathcal{H}(\mathbf{u}_{k_1}, \mathbf{u}_{k_2})(x_{\text{cut}}) \cdot \left[\!\left[\mathbf{w}^h\right]\!\right]_{\text{cut}}. \end{split}$$

⇒ Later: Use explicit RK scheme in time of suitable order

Goal

Goal: Develop a penalty stabilization for general hyperbolic conservation laws on cut cell meshes:

Find
$$\mathbf{u}^h \in V_h^p$$
 s.t.:

$$(d_t \mathbf{u}^h(t), \mathbf{w}^h)_{L^2} + a_h (\mathbf{u}^h(t), \mathbf{w}^h) + J_h(\mathbf{u}^h(t), \mathbf{w}^h) = 0 \quad \forall \mathbf{w}^h \in \mathcal{V}_h^p$$

Goal

Goal: Develop a penalty stabilization for general hyperbolic conservation laws on cut cell meshes:

Find
$$\mathbf{u}^h \in V_h^p$$
 s.t.:

$$\left(d_t \mathbf{u}^h(t), \mathbf{w}^h\right)_{L^2} + a_h \left(\mathbf{u}^h(t), \mathbf{w}^h\right) + J_h(\mathbf{u}^h(t), \mathbf{w}^h) = 0 \quad \forall \, \mathbf{w}^h \in \mathcal{V}_h^p$$

with the following properties:

- Stable scheme that solves the small cell problem
- $lue L^2$ -stability for the semi-discrete scheme
- **Expected** order of convergence: Order p+1 for \mathcal{V}_h^p
- Monotone scheme for piecewise constant polynomials

Overview

- General setting
 - Small cell problem
 - Cut cell model problem in 1D
- 2 Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations
- 3 Numerical results

Outline

- 1 General setting
 - Small cell problem
 - Cut cell model problem in 1D
- 2 Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations
- 3 Numerical results

Consider the linear advection equation with $\beta > 0$

Consider the linear advection equation with $\beta > 0$

Update formulas for $\mathcal{V}_h^0+{\sf expl.}$ Euler:

$$u_{k-1}^{n+1} = u_{k-1}^n - \frac{\beta \Delta t}{h} \{ u_{k-1}^n - u_{k-2}^n \}$$

$$u_{k_1}^{n+1} = u_{k_1}^n - \frac{\beta \Delta t}{\alpha h} \{ u_{k_1}^n - u_{k-1}^n \}$$

$$u_{k_2}^{n+1} = u_{k_2}^n - \frac{\beta \Delta t}{(1-\alpha)h} \{ u_{k_2}^n - u_{k_1}^n \}$$

Consider the linear advection equation with $\beta > 0$

Update formulas for $\mathcal{V}_h^0+{\sf expl.}$ Euler:

$$u_{k-1}^{n+1} = u_{k-1}^n - \frac{\beta \Delta t}{h} \{ u_{k-1}^n - u_{k-2}^n \}$$

$$\begin{split} u_{k_1}^{n+1} = & u_{k_1}^n - \frac{\beta \Delta t}{\alpha h} \underbrace{\{u_{k_1}^n - u_{k-1}^n\}}_{\sim \mathcal{O}(\frac{(1+\alpha)h}{2})} & \text{unstable update} \\ u_{k_2}^{n+1} = & u_{k_2}^n - \frac{\beta \Delta t}{(1-\alpha)h} \{u_{k_2}^n - u_{k_1}^n\} \end{split}$$

Consider the linear advection equation with $\beta > 0$

Update formulas for $\mathcal{V}_h^0 + \exp$ l. Euler:

$$u_{k-1}^{n+1} = u_{k-1}^n - \frac{\beta \Delta t}{h} \{ u_{k-1}^n - u_{k-2}^n \}$$

$$u_{k_1}^{n+1} = u_{k_1}^n - \frac{\beta \Delta t}{\alpha h} \underbrace{\{u_{k_1}^n - u_{k-1}^n\}}_{\sim \mathcal{O}(\frac{(1+\alpha)h}{2})} \underline{ \qquad} \text{unstable update}$$

Idea of DoD stabilization

Our approach

$$J_h^0(u^h, w^h) = \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] \left[\! \left[w^h \right] \! \right]_{\mathsf{cut}}$$

with $\eta_{k_1} \sim 1 - \alpha$.

Idea of DoD stabilization

Our approach

$$J_h^0(u^h,w^h) = \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] \left[\! \left[w^h \right] \! \right]_{\mathsf{cut}}$$

with $\eta_{k_1} \sim 1 - \alpha$.

- Adds additional flux on edge x_{cut}
- **E** Evaluates inflow neighbor u_{k-1} outside of its support
- Shifts mass from cell k-1 directly into cell k_2
- lacksquare Restores the proper domain of dependence on k_2

Stabilized update formulas

Unstabilized update formulas

Stabilized update formulas

Unstabilized update formulas

$$\begin{split} u_{k-1}^{n+1} = & u_{k-1}^n - \frac{\beta \Delta t}{h} \{u_{k-1}^n - u_{k-2}^n\} \\ u_{k_1}^{n+1} = & u_{k_1}^n - \frac{\beta \Delta t}{\alpha h} \{u_{k_1}^n - u_{k-1}^n\} \triangle \quad \text{unstable update} \\ u_{k_2}^{n+1} = & u_{k_2}^n - \frac{\beta \Delta t}{(1-\alpha)h} \{u_{k_2}^n - u_{k_1}^n\} \triangle \quad \text{lack of information} \end{split}$$

Stabilized update formulas; $1 - \eta_{k_1} \sim \alpha$

$$\begin{split} u_{k-1}^{n+1} &= u_{k-1}^n - \frac{\beta \Delta t}{h} \{u_{k-1}^n - u_{k-2}^n\}, \\ u_{k1}^{n+1} &= u_{k_1}^n - \frac{\beta \Delta t}{\alpha h} (1 - \eta_{k_1}) \{u_{k_1}^n - u_{k-1}^n\}, \\ u_{k2}^{n+1} &= u_{k2}^n - \frac{\beta \Delta t}{(1 - \alpha)h} \{u_{k_2}^n - (1 - \eta_{k_1}) u_{k_1}^n - \eta_{k_1} u_{k-1}^n\} \end{split}$$

L^2 -stability

$$J_h^0(u^h,w^h) = \beta \eta_{k_1} \left[u_{k-1}(x_{\mathrm{cut}}) - u_{k_1}(x_{\mathrm{cut}}) \right] \left[\!\left[w^h \right]\!\right]_{\mathrm{cut}}$$

- Problem: When using \mathcal{V}_h^p , p>0 adding J_h^0 destroys the L^2 -stability
- Next goal: Restore L²-stability

L^2 -stability

$$J_h^0(u^h,w^h) = \beta \eta_{k_1} \left[u_{k-1}(x_{\mathrm{cut}}) - u_{k_1}(x_{\mathrm{cut}}) \right] \left[\! \left[w^h \right] \! \right]_{\mathrm{cut}}$$

- Problem: When using \mathcal{V}_h^p , p>0 adding J_h^0 destroys the L^2 -stability
- Next goal: Restore L²-stability
- Theoretical and numerical investigations yield to the following term:

$$J_h^1(u^h, w^h) = \beta \eta_{k_1} \int_{k_1} \left[u_{k-1}(x) - u_{k_1}(x) \right] \left[\partial_x w_{k-1}(x) - \partial_x w_{k_1}(x) \right] dx$$

Full stabilization given by:

$$J_h(u^h, w^h) = J_h^0(u^h, w^h) + J_h^1(u^h, w^h)$$

Theoretical properties

Theorem

DoD stabilized scheme is:

- Conservative on a patch (cut cell + neighbor)
- \blacksquare L^2 stable in semi-discrete form
- Monotone using a first-order scheme

Outline

- General setting
 - Small cell problem
 - Cut cell model problem in 1D
- 2 Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations
- 3 Numerical results

Extension of J_h^0

Q: How to extend that to non-linear equations?

Extension of J_h^0

Q: How to extend that to non-linear equations?

Our interpretation:

$$\Rightarrow J_h^0 = \eta_{k_1} \left[\mathcal{H}(u_{k-1}, u_{k_2})(x_{\mathsf{cut}}) - \mathcal{H}(u_{k_1}, u_{k_2})(x_{\mathsf{cut}}) \right] \left[\!\left[w^h \right]\!\right]_{\mathsf{cut}}$$

Extension of J_h^0

Q: How to extend that to non-linear equations?

Our interpretation:

$$\Rightarrow J_h^0 = \eta_{k_1} \left[\mathcal{H}(u_{k-1}, u_{k_2})(x_{\mathsf{cut}}) - \mathcal{H}(u_{k_1}, u_{k_2})(x_{\mathsf{cut}}) \right] \left[\!\left[w^h \right]\!\right]_{\mathsf{cut}}$$

Considering non-linear systems ⇒ Two possible flow directions

$$\begin{split} J_h^0(\mathbf{u}^h, \mathbf{w}^h) &= \eta_{k_1} \left[\mathcal{H}(\mathbf{u}_{k-1}, \mathbf{u}_{k_2})(x_{k-\frac{1}{2}}) - \mathcal{H}(\mathbf{u}_{k-1}, \mathbf{u}_{k_1})(x_{k-\frac{1}{2}}) \right] \cdot \left[\! \left[\mathbf{w}^h \right] \! \right]_{k-\frac{1}{2}} \\ &+ \eta_{k_1} \left[\mathcal{H}(\mathbf{u}_{k-1}, \mathbf{u}_{k_2})(x_{\mathsf{cut}}) - \mathcal{H}(\mathbf{u}_{k_1}, \mathbf{u}_{k_2})(x_{\mathsf{cut}}) \right] \cdot \left[\! \left[\mathbf{w}^h \right] \! \right]_{\mathsf{cut}} \end{split}$$

Extension of J_h^1

- Again: Adding J_h^0 destroys the L^2 -stability
- \Rightarrow Derive missing terms by L^2 -stability proof

$$J_h^1(\mathbf{u}^h, \mathbf{w}^h) = \eta_{k_1} \sum_{j \in \mathcal{I}_N} \mathbf{K}(j) \int_{k_1} (\mathcal{H}(\mathbf{u}_{k-1}, \mathbf{u}_{k_2}) - \mathbf{f}(\mathbf{u}_j)) \cdot \partial_x \mathbf{w}_j dx$$
$$+ \eta_{k_1} \sum_{j \in \mathcal{I}_N} \mathbf{K}(j) \int_{k_1} (\mathcal{H}_a(\mathbf{u}_{k-1}, \mathbf{u}_{k_2}) \mathbf{u}_j) \cdot \partial_x \mathbf{w}_{k-1} dx$$
$$+ \eta_{k_1} \sum_{j \in \mathcal{I}_N} \mathbf{K}(j) \int_{k_1} (\mathcal{H}_b(\mathbf{u}_{k-1}, \mathbf{u}_{k_2}) \mathbf{u}_j) \cdot \partial_x \mathbf{w}_{k_2} dx.$$

- J_h^1 controls the mass distribution within the small cut cell k_1 and its neighbors k-1 and k_2
- Note: For lin adv equation $J_h^1(\mathbf{u}^h,\mathbf{w}^h)$ reduces to known term

Properties for non-linear equations

Theorem

Properties of DoD stabilization transfer to non-linear equations when monotone fluxes are used:

- Conservative on a patch (cut cell + neighbor)
- L^2 stable in semi-discrete form for scalar hyperbolic equations
- First order scheme is monotone for scalar hyperbolic equations

Overview

- General setting
 - Small cell problem
 - Cut cell model problem in 1D
- 2 Domain of dependence (DoD) stabilization
 - DoD stabilization for linear advection equation
 - Extension to non-linear equations
- 3 Numerical results

Test setup

Between 0.1 and 0.9 we split each cell in a pair of cut cells

Two test cases:

- Case 1 (' $\alpha = 10^{-\square}$ '): Same cut cell fraction for all cut cell pairs
- Case 2 ('rand α '): Choose $\alpha_k = 10^{-2} X_k$ with X_k being uniformly distributed random number in (0,1)

For convergence tests of non-linear equations we will use the concept of manufactured solutions.

Burgers equation: convergence test

Burgers equation $u_t + \left(\frac{1}{2}u^2\right)_x = g$ with the manufactured solution

$$u(x,t) = \sin(4\pi(x-t))$$

Burgers equation: stability test

Initial data:

$$u_0(x) = \sin(4\pi(x + 0.5))$$

Burgers equation: stability test

Initial data:

$$u_0(x) = \sin(4\pi(x + 0.5))$$

Solution (T = 0.1):

Burgers equation stability test

Initial data:

$$u_0(x) = \begin{cases} 0 & \text{if } x < \frac{1}{3} \\ 2 & \text{if } \frac{1}{3} \le x < \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} \le x \end{cases}$$

Burgers equation stability test

Initial data:

$$u_0(x) = \begin{cases} 0 & \text{if } x < \frac{1}{3} \\ 2 & \text{if } \frac{1}{3} \le x < \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} \le x \end{cases}$$

Solution (T = 0.15):

Euler equations: convergence test

Manufactured solution (in primitive variables):

$$\begin{pmatrix} \varrho \\ v \\ p \end{pmatrix} = \begin{pmatrix} 2 + \sin(2\pi(x-t)) \\ \sin(2\pi(x-t)) \\ 2 + \cos(2\pi(x-t)) \end{pmatrix}$$

Euler equations: Sod shock tube test

Sod shock tube test:

$$(\varrho, \varrho v, E) = \begin{cases} (1, 0, 2.5) & \text{if } x < 0, \\ (0.125, 0, 0.25) & \text{otherwise.} \end{cases}$$

Euler equations: Sod shock tube test

Sod shock tube test:

$$(\varrho, \varrho v, E) = \begin{cases} (1, 0, 2.5) & \text{if } x < 0, \\ (0.125, 0, 0.25) & \text{otherwise.} \end{cases}$$

Solution (T = 0.4) for test case 2 ('rand α '):

Resumé

Summary:

- Stable scheme for hyperbolic conservation laws on cut cell meshes
- Monotone for scalar conservation laws + \mathcal{V}_h^0
- Semi-discrete scheme is L^2 stable for \mathcal{V}_h^p
- Numerical results: robust behavior + correct order of convergence

S. May, F. Streitbürger

DoD Stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension.

Under review. Preprint available: [arXiv:2107.03689]

🗎 C. Engwer, S. May, C. Nüßing, F. Streitbürger

A stabilized discontinuous Galerkin cut cell method for discretizing the linear transport equation.

SIAM J. Sci. Comput., 42(6):A3677-A3703, 2020.

Future plans:

Extend the formulation to non-linear equations in higher dimensions

Thank you for your attention!

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 439956613 (Hypercut).

References

S. May, F. Streitbürger

DoD Stabilization for non-linear hyperbolic conservation laws on cut cell meshes in one dimension.

Under review. Preprint available: [arXiv:2107.03689]

F. Streitbürger, C. Engwer, S. May, A. Nüßing

Monotonicity considerations for stabilized DG cut cell schemes for the unsteady advection equation.

In F.J. Vermolen and C. Vuik, editors, Numerical Mathematics and Advanced Applications ENUMATH 2019, pages 929–937. Springer International Publishing, 2021.

C. Engwer, S. May, C. Nüßing, F. Streitbürger

A stabilized discontinuous Galerkin cut cell method for discretizing the linear transport equation.

SIAM J. Sci. Comput., 42(6):A3677-A3703, 2020.

P. Fu, G. Kreiss

High order cut discontinuous Galerkin methods for hyperbolic conservation laws in one space dimension.

SIAM J. Sci. Comput., 43(4):A2404-A2424, 2021.

A. Giuliani

A two-dimensional stabilized discontinuous Galerkin method on curviliniear embedded boundary grids.

Under review. Preprint available: [arXiv:2102.01857].

BACKUP

The small cell problem

Task: Construction of a body-fitted mesh

One possible way: unstructured triangle grid

⇒ Time-consuming for complicated geometries }

Alternative: Cut cell meshes

- + Grid generation is easy and cheap
- + Most cells are Cartesian cells
 - Cut cells irregular & arbitrarily small
- ⇒ Small cell problem

Background:

- Typically, explicit timestepping schemes are used for hyp. cons. laws
- CFL condition requires roughly $\Delta t = \mathcal{O}(h)$

The small cell problem:

■ Goal: Choose Δt based on size of Cartesian cells \Rightarrow stability issues on cut cells

Overview: Equations

■ Linear advection equation: $f(u) = \beta u$ with $\beta \in \mathbb{R}$ constant

$$\Rightarrow u_t + \beta u_x = 0$$

 \blacksquare Burgers equation: $f(u)=\frac{1}{2}u^2$

$$\Rightarrow u_t + (\frac{1}{2}u^2)_x = 0$$

lacksquare Linear system: $\mathbf{f}(\mathbf{u}) = \mathbf{A}\mathbf{u}$ with constant matrix $\mathbf{A} \in \mathbb{R}^{n imes n}$

$$\Rightarrow \mathbf{u}_t + \mathbf{A}\mathbf{u}_x = 0$$

Overview: Equations

Compressible Euler equations satisfy

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{0}$$

with

$$\mathbf{u} = \begin{pmatrix} \varrho \\ \varrho v \\ E \end{pmatrix} \quad \text{and} \quad \mathbf{f}(\mathbf{u}) = \begin{pmatrix} \varrho v \\ \varrho v^2 + p \\ (E+p)v \end{pmatrix}.$$

- Conserved variables:
 - ϱ : density, v: velocity, p: pressure, E: energy
- Equation of state:

$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\varrho v^2$$

■ We set $\gamma = 1.4$ in our numerical tests.

Reminder: DoD stabilization

Quick reminder: DoD stabilization

■ Add penalization J_h on semi-discrete formulation in space:

$$(d_t u^h(t), w^h)_{L^2} + a_h (u^h(t), w^h) + J_h(u^h(t), w^h) = 0 \quad \forall w^h \in V_h^p$$

 \Rightarrow Able to use explicit time stepping schemes on cut cell meshes with Δt chosen according to cartesian cells

Reminder: DoD stabilization

Quick reminder: DoD stabilization

lacksquare Add penalization J_h on semi-discrete formulation in space:

$$(d_t u^h(t), w^h)_{L^2} + a_h (u^h(t), w^h) + J_h(u^h(t), w^h) = 0 \quad \forall w^h \in V_h^p$$

- \Rightarrow Able to use explicit time stepping schemes on cut cell meshes with $\varDelta t$ chosen according to cartesian cells
 - Split $J_h(u^h(t), w^h)$ in two terms:

$$J_h(u^h(t), w^h) = J_h^0(u^h(t), w^h) + J_h^1(u^h(t), w^h)$$

- $J_h^0(u^h(t),w^h)$: Redistributes mass <u>between</u> the small cut cell and its neighbors
- $J_h^1(u^h(t), w^h)$: Redistributes mass <u>within</u> the small cut cell

DoD stabilization for lin adv equation in 1D

Linear advection equation:

$$u_t + \beta u_x = 0$$

For case of positive $\beta > 0 + \mathcal{V}_h^1 + \text{model problem}$:

$$\begin{split} J_h^0 &= \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] \left[\! \left[w_h \right] \! \right]_{\mathsf{cut}} \\ J_h^1 &= -\beta \eta_{k_1} \int_{k_1} \left[u_{k-1}(x) - u_{k_1}(x) \right] \partial_x w_{k_1}(x) \, \mathrm{d}x \end{split}$$

with

$$\eta_{k_1} \sim 1 - \alpha$$
.

Piecewise constant polynomials & explicit Euler

$$\begin{split} \text{Scalar conservation law:} \qquad & u_t + f(u)_x = 0 \\ & u_{k-1}^{n+1} = & u_{k-1}^n - \frac{\Delta t}{h} \{\mathcal{H}(u_{k-1}^n, u_{k_1}^n) - \mathcal{H}(u_{k-2}^n, u_{k-1}^n)\}, \\ & u_{k_1}^{n+1} = & u_{k_1}^n - \frac{\Delta t}{\alpha h} \{\mathcal{H}(u_{k_1}^n, u_{k_2}^n) - \mathcal{H}(u_{k-1}^n, u_{k_1}^n)\}, \\ & u_{k_2}^{n+1} = & u_{k_2}^n - \frac{\Delta t}{(1-\alpha)h} \{\mathcal{H}(u_{k_2}^n, u_{k+1}^n) - \mathcal{H}(u_{k_1}^n, u_{k_2}^n)\} \end{split}$$

Piecewise constant polynomials & explicit Euler

$$\begin{split} \text{Scalar conservation law:} \qquad & u_t + f(u)_x = 0 \\ & u_{k-1}^{n+1} = & u_{k-1}^n - \frac{\Delta t}{h} \{\mathcal{H}(u_{k-1}^n, u_{k_1}^n) - \mathcal{H}(u_{k-2}^n, u_{k-1}^n)\}, \\ & u_{k_1}^{n+1} = & u_{k_1}^n - \frac{\Delta t}{\alpha h} \{\mathcal{H}(u_{k_1}^n, u_{k_2}^n) - \mathcal{H}(u_{k-1}^n, u_{k_1}^n)\}, \\ & u_{k_2}^{n+1} = & u_{k_2}^n - \frac{\Delta t}{(1-\alpha)h} \{\mathcal{H}(u_{k_2}^n, u_{k+1}^n) - \mathcal{H}(u_{k_1}^n, u_{k_2}^n)\} \end{split}$$

Difference for lin adv equation

For the special case of linear advection $(\beta > 0)$:

Extension of formulation for \mathcal{V}_h^p

$$\begin{split} J_h(u^h, w^h) &= \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] [\![w_h]\!]_{\mathsf{cut}} \\ &+ \beta \eta_{k_1} \int_{k_1} \left[u_{k-1}(x) - u_{k_1}(x) \right] \left[\partial_x w_{k-1}(x) - \partial_x w_{k_1}(x) \right] \mathrm{d}x \,. \end{split}$$

Difference for lin adv equation

For the special case of linear advection $(\beta > 0)$:

Extension of formulation for \mathcal{V}_h^p

$$\begin{split} J_h(u^h, w^h) &= \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] [\![w_h]\!]_{\mathsf{cut}} \\ &+ \beta \eta_{k_1} \int_{k_1} \left[u_{k-1}(x) - u_{k_1}(x) \right] \left[\partial_x w_{k-1}(x) - \partial_x w_{k_1}(x) \right] \mathrm{d}x \,. \end{split}$$

Compare to formulation for \mathcal{V}_h^1

$$\begin{split} J_h(u^h, w^h) &= \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] [\![w_h]\!]_{\mathsf{cut}} \\ &- \beta \eta_{k_1} \int_{k_1} \left[u_{k-1}(x) - u_{k_1}(x) \right] \partial_x w_{k_1}(x) \, \mathrm{d}x \, . \end{split}$$

Difference for lin adv equation

For the special case of linear advection ($\beta>0$): Extension of formulation for \mathcal{V}_h^p

$$\begin{split} J_h(u^h, w^h) &= \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] [\![w_h]\!]_{\mathsf{cut}} \\ &+ \beta \eta_{k_1} \int_{k_1} \left[u_{k-1}(x) - u_{k_1}(x) \right] \left[\frac{\partial_x w_{k-1}(x)}{\partial_x w_{k-1}(x)} - \partial_x w_{k_1}(x) \right] \mathrm{d}x \,. \end{split}$$

Compare to formulation for \mathcal{V}_h^1

$$\begin{split} J_h(u^h,w^h) &= \beta \eta_{k_1} \left[u_{k-1}(x_{\mathsf{cut}}) - u_{k_1}(x_{\mathsf{cut}}) \right] [\![w_h]\!]_{\mathsf{cut}} \\ &- \beta \eta_{k_1} \int_{k_1} \left[u_{k-1}(x) - u_{k_1}(x) \right] \partial_x w_{k_1}(x) \, \mathrm{d}x \, . \end{split}$$

We set

$$\mathbf{K}(k-1) = \mathbf{L}_{k_1}, \quad \mathbf{K}(k_1) = -\mathbf{I}^m, \quad \text{and} \quad \mathbf{K}(k_2) = \mathbf{R}_{k_1}.$$

Consider linear equation: $\mathbf{u}_t + \mathbf{A}\mathbf{u}_x = \mathbf{0}$

lacksquare Hyperbolicity \Rightarrow ${f A}$ is diagonalizable with ${f A}={f Q}{f \Lambda}{f Q}^{-1}$

We set

$$\mathbf{K}(k-1) = \mathbf{L}_{k_1}, \quad \mathbf{K}(k_1) = -\mathbf{I}^m, \quad \text{and} \quad \mathbf{K}(k_2) = \mathbf{R}_{k_1}.$$

Consider linear equation: $\mathbf{u}_t + \mathbf{A}\mathbf{u}_x = \mathbf{0}$

 \blacksquare Hyperbolicity $\Rightarrow \mathbf{A}$ is diagonalizable with $\mathbf{A} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}$

Define

$$\mathbf{I}_{ii}^{+} = \begin{cases} 1 & \text{if } \mathbf{\Lambda}_{ii} > 0, \\ \frac{1}{2} & \text{if } \mathbf{\Lambda}_{ii} = 0, \\ 0 & \text{if } \mathbf{\Lambda}_{ii} < 0, \end{cases} \quad \text{and} \quad \mathbf{I}_{ii}^{-} = \begin{cases} 0 & \text{if } \mathbf{\Lambda}_{ii} > 0, \\ \frac{1}{2} & \text{if } \mathbf{\Lambda}_{ii} = 0, \\ 1 & \text{if } \mathbf{\Lambda}_{ii} < 0. \end{cases}$$

We set

$$\mathbf{K}(k-1) = \mathbf{L}_{k_1}, \quad \mathbf{K}(k_1) = -\mathbf{I}^m, \quad \text{and} \quad \mathbf{K}(k_2) = \mathbf{R}_{k_1}.$$

Consider linear equation: $\mathbf{u}_t + \mathbf{A}\mathbf{u}_x = \mathbf{0}$

 \blacksquare Hyperbolicity \Rightarrow ${f A}$ is diagonalizable with ${f A}={f Q}{f \Lambda}{f Q}^{-1}$

Define

$$\mathbf{I}_{ii}^{+} = \begin{cases} 1 & \text{if } \mathbf{\Lambda}_{ii} > 0, \\ \frac{1}{2} & \text{if } \mathbf{\Lambda}_{ii} = 0, \\ 0 & \text{if } \mathbf{\Lambda}_{ii} < 0, \end{cases} \quad \text{and} \quad \mathbf{I}_{ii}^{-} = \begin{cases} 0 & \text{if } \mathbf{\Lambda}_{ii} > 0, \\ \frac{1}{2} & \text{if } \mathbf{\Lambda}_{ii} = 0, \\ 1 & \text{if } \mathbf{\Lambda}_{ii} < 0. \end{cases}$$

Then:

$$\mathbf{L}_{k_1} = \mathbf{Q}\mathbf{I}^+\mathbf{Q}^{-1}$$
 and $\mathbf{R}_{k_1} = \mathbf{Q}\mathbf{I}^-\mathbf{Q}^{-1}$.

We set

$$\mathbf{K}(k-1) = \mathbf{L}_{k_1}, \quad \mathbf{K}(k_1) = -\mathbf{I}^m, \quad \text{and} \quad \mathbf{K}(k_2) = \mathbf{R}_{k_1}.$$

Consider linear equation: $\mathbf{u}_t + \mathbf{A}\mathbf{u}_x = \mathbf{0}$

 \blacksquare Hyperbolicity $\Rightarrow \mathbf{A}$ is diagonalizable with $\mathbf{A} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{-1}$

Define

$$\mathbf{I}_{ii}^{+} = \begin{cases} 1 & \text{if } \mathbf{\Lambda}_{ii} > 0, \\ \frac{1}{2} & \text{if } \mathbf{\Lambda}_{ii} = 0, \\ 0 & \text{if } \mathbf{\Lambda}_{ii} < 0, \end{cases} \quad \text{and} \quad \mathbf{I}_{ii}^{-} = \begin{cases} 0 & \text{if } \mathbf{\Lambda}_{ii} > 0, \\ \frac{1}{2} & \text{if } \mathbf{\Lambda}_{ii} = 0, \\ 1 & \text{if } \mathbf{\Lambda}_{ii} < 0. \end{cases}$$

Then:

$$\mathbf{L}_{k_1} = \mathbf{Q}\mathbf{I}^+\mathbf{Q}^{-1}$$
 and $\mathbf{R}_{k_1} = \mathbf{Q}\mathbf{I}^-\mathbf{Q}^{-1}$.

Non-linear equations: $\mathbf{u}_t + \mathbf{f}_{\mathbf{u}}(\mathbf{u})\mathbf{u}_x = \mathbf{0}$

 \Rightarrow Linearize the (non-linear) Jacobian matrix $\mathbf{f_u}(\mathbf{u})$ by suitable average of \mathbf{u}_{k-1} and \mathbf{u}_{k_2}

Monotonicity

Theorem

Consider the model problem MP for a scalar conservation law

- using \mathcal{V}_h^0 with the DoD stabilization
- explicit Euler time stepping
- periodic boundary conditions.

If the numerical flux is a monotone flux and satisfies

$$|\mathcal{H}_a(u,v)| + |\mathcal{H}_b(w,u)| \le \frac{\nu h}{\Delta t} \quad \forall u, v, w.$$

Then, for the time step be given by $\Delta t = \frac{\nu h}{\lambda_{\rm max}}$ for $0 < \alpha < \nu < 1 - \alpha$, the scheme is monotone.

L^2 stability for the semi-discrete scheme

Theorem

Let $u^h(t)$ be the solution to the semi-discrete problem for the scalar equation $u_t + f(u)_x = 0$. Let the numerical flux be a monotone flux. Then, the solution satisfies for all $t \in (0,T)$

$$||u^h(t)||_{L^2(\Omega)} \le ||u^h(0)||_{L^2(\Omega)}.$$

Remark:

- ullet unstabilized semi-discrete scheme is also L^2 stable
- BUT: unstabilized scheme + explicit time stepping scheme ⇒ small cell problem

Challenge:

Design a stabilization term ${\cal J}_h$ that is L^2 stable and solves the small cell problem

Manufactured solutions

Concept of manufactured solutions:

For convergence tests we need smooth solutions

Problem: Non-trivial for non-linear hyperbolic equations, especially for the compressible Euler equations

- \Rightarrow Manufactured solutions: We select a smooth function $\mathbf{u}(x,t)$ that should be the solution of our system.
 - $\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x$ will probably not be zero but will result in a non-zero source term \mathbf{g}
- ⇒ For convergence tests of non-linear equations we then solve the system:

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{g}$$
 in $\Omega \times (0, T)$.

Limiter

Use TVDM generalized slope limiter by Cockburn & Shu $^{\rm 1}$ with modifications on cut cells:

1 Compute $(\tilde{m}()$ is minmod-function):

$$\begin{aligned} u_j^{\text{lim}}(x_{j-\frac{1}{2}}^+) &= \bar{u}_j - \tilde{m}(\bar{u}_j - u_j(x_{j-\frac{1}{2}}^+), \bar{u}_j - \bar{u}_{j-1}, \bar{u}_{j+1} - \bar{u}_j) \\ u_j^{\text{lim}}(x_{j+\frac{1}{2}}^-) &= \bar{u}_j + \tilde{m}(u_j(x_{j+\frac{1}{2}}^-) - \bar{u}_j, \bar{u}_j - \bar{u}_{j-1}, \bar{u}_{j+1} - \bar{u}_j) \end{aligned}$$

2 If

$$u_j^{\mathrm{lim}}(x_{j-\frac{1}{2}}^+) == u_j(x_{j-\frac{1}{2}}^+) \quad \&\& \quad u_j^{\mathrm{lim}}(x_{j+\frac{1}{2}}^-) == u_j(x_{j+\frac{1}{2}}^-)$$

do not limit. Otherwise, reduce u_i to P^1 . Limit linear polynomial.

3 Postprocess and additionally enforce

$$\begin{split} & \min \left(\bar{u}_{k-1}^n, \bar{u}_{k_1}^n, \bar{u}_{k_2}^n \right) \leq u_{k-1}(x_{\mathrm{cut}}) \leq \max \left(\bar{u}_{k-1}^n, \bar{u}_{k_1}^n, \bar{u}_{k_2}^n \right), \\ & \min \left(\bar{u}_{k-1}^n, \bar{u}_{k_1}^n, \bar{u}_{k_2}^n \right) \leq u_{k_2}(x_{k-\frac{1}{3}}) \leq \max \left(\bar{u}_{k-1}^n, \bar{u}_{k_1}^n, \bar{u}_{k_2}^n \right). \end{split}$$

 $^{^{1}\}mathsf{B.}\ \mathsf{Cockburn}\ \mathsf{and}\ \mathsf{C.-W.}\ \mathsf{Shu}.\ \mathsf{TVB}\ \mathsf{Runge-Kutta}\ \mathsf{local}\ \mathsf{projection}\ \mathsf{discontinuous}\ \mathsf{GalerkinFinite}\ \mathsf{Element}$

Numerical results in 2d

Setup:

- ightharpoonup N imes N grid
- \blacksquare Cut out lower right corner \Rightarrow Create a ramp with angle γ

Numerical results in 2d

Setup:

- ightharpoonup N imes N grid
- \blacksquare Cut out lower right corner \Rightarrow Create a ramp with angle γ
- Initial value: Sine-function parallel to ramp

Ramp $\gamma=5^\circ$

Ramp $\gamma = 35^{\circ}$

