1 Finite-dimensional case

Let \mathbb{M}_n be the $n \times n$ matrix algebra. For each $A \in \mathbb{M}_n$ we write $\lambda(A) = (\lambda_1(A), \dots, \lambda_n(A))$ for the eigenvalues of A in decreasing order (with multiplicities).

Proposition 1.1. Let $A_j, B_j \in \mathbb{M}_n^+$, j = 1, 2, be such that $A_1A_2 = A_2A_1$ and $B_1B_2 = B_2B_1$. Then for every $\theta \in (0, 1)$,

$$\lambda \left((A_1^{\theta} A_2^{1-\theta})^{1/2} (B_1^{\theta} B_2^{1-\theta}) (A_1^{\theta} A_2^{1-\theta})^{1/2} \right) \prec_{\log} \lambda \left(A_1^{1/2} B_1 A_1^{1/2} \right)^{\theta} \lambda \left(A_2^{1/2} B_2 A_2^{1/2} \right)^{1-\theta}, \tag{1.1}$$

that is,

$$\prod_{i=1}^{k} \lambda_{i} \left((A_{1}^{\theta} A_{2}^{1-\theta})^{1/2} (B_{1}^{\theta} B_{2}^{1-\theta}) (A_{1}^{\theta} A_{2}^{1-\theta})^{1/2} \right) \leq \prod_{i=1}^{k} \lambda_{i} \left(A_{1}^{1/2} B_{1} A_{1}^{1/2} \right)^{\theta} \lambda_{i} \left(A_{2}^{1/2} B_{2} A_{2}^{1/2} \right)^{1-\theta}$$

for all k = 1, ..., n with equality for k = n.

Proof. Since equality for k=n is immediate from a simple computation of determinants, it suffices to prove the case k=1, by the familiar technique using antisymmetric tensor powers. Moreover, by continuity we may assume that A_j, B_j are invertible. Then it suffices to prove that if $||A_1^{1/2}B_1A_1^{1/2}|| = ||A_2^{1/2}B_2A_2^{1/2}|| = 1$ then $||(A_1^{\theta}A_2^{1-\theta})^{1/2}(B_1^{\theta}B_2^{1-\theta})(A_1^{\theta}A_2^{1-\theta})^{1/2}|| \le 1$, that is, if $B_j \le A_j^{-1}$ for j=1,2 then $B_1^{\theta}B_2^{1-\theta} \le (A_1^{\theta}A_2^{1-\theta})^{-1}$. But this is immediate as $B_1^{\theta}B_2^{1-\theta} = B_1\#_{1-\theta}B_2 \le A_1^{-1}\#_{1-\theta}A_2^{-1} = (A_1^{\theta}A_2^{1-\theta})^{-1}$.

Corollary 1.2. Let A_j, B_j, θ be as in Proposition 1.1. Then for every z > 0 and k = 1, ..., n,

$$\log \sum_{i=1}^{k} \left(\lambda_{i} \left((A_{1}^{\theta} A_{2}^{1-\theta})^{1/2} (B_{1}^{\theta} B_{2}^{1-\theta}) (A_{1}^{\theta} A_{2}^{1-\theta})^{1/2} \right) \right)^{z}$$

$$\leq \theta \log \sum_{i=1}^{k} \left(\lambda_{i} \left(A_{1}^{1/2} B_{1} A_{1}^{1/2} \right) \right)^{z} + (1-\theta) \log \sum_{i=1}^{k} \left(\lambda_{i} \left(A_{2}^{1/2} B_{2} A_{2}^{1/2} \right) \right)^{z}. \tag{1.2}$$

In particular,

$$\log \operatorname{Tr} \left((A_1^{\theta} A_2^{1-\theta})^{1/2} (B_1^{\theta} B_2^{1-\theta}) (A_1^{\theta} A_2^{1-\theta})^{1/2} \right)^z$$

$$\leq \theta \log \operatorname{Tr} \left(A_1^{1/2} B_1 A_1^{1/2} \right)^z + (1-\theta) \log \operatorname{Tr} \left(A_2^{1/2} B_2 A_2^{1/2} \right)^z.$$
(1.3)

Proof. Since log-majorization \prec_{\log} implies weak majorization \prec_w (see [2, Prop. 4.1.6]), it follows from (1.1) that

$$\sum_{i=1}^{k} \lambda_{i} \left((A_{1}^{\theta} A_{2}^{1-\theta})^{1/2} (B_{1}^{\theta} B_{2}^{1-\theta}) (A_{1}^{\theta} A_{2}^{1-\theta})^{1/2} \right)^{z}$$

$$\leq \sum_{i=1}^{k} \lambda_{i} \left(A_{1}^{1/2} B_{1} A_{1}^{1/2} \right)^{z\theta} \lambda_{i} \left(A_{2}^{1/2} B_{2} A_{2}^{1/2} \right)^{z(1-\theta)}$$

$$\leq \left[\sum_{i=1}^k \lambda_i \left(A_1^{1/2} B_1 A_1^{1/2}\right)^z\right]^{\theta} \left[\sum_{i=1}^k \lambda_i \left(A_2^{1/2} B_2 A_2^{1/2}\right)^z\right]^{1-\theta},$$

which gives (1.2).

Proposition 1.3. For every $\rho, \sigma \in \mathbb{M}_n^+$ with $\rho \neq 0$ and for evert z > 0, the function $\alpha \mapsto D_{\alpha,z}(\rho \| \sigma)$ is monotone increasing on $(0,\infty)$, where $D_{1,z}(\rho \| \sigma) := D_1(\rho \| \sigma) = D(\rho \| \sigma) / \text{Tr } \rho$.

Proof. Since $\lim_{\alpha\to 1} D_{\alpha,z}(\rho\|\sigma) = D_1(\rho\|\sigma)$ for any z>0 [6, Prop. III.36], it suffices to show the monotone increasing of $\alpha\mapsto D_{\alpha,z}(\rho\|\sigma)$ on (0,1) and on $(1,\infty)$ separately. First, let z>0, $\alpha_1,\alpha_2\in(0,1)$ and $\theta\in(0,1)$. Applying (1.3) with $A_j:=\rho^{\alpha_j/z}$ and $B_j:=\sigma^{(1-\alpha_j)/z}$ we have

$$\begin{split} \log Q_{\theta\alpha_1 + (1-\theta)\alpha_2, z}(\rho \| \sigma) \\ &= \log \operatorname{Tr} \left(\rho^{\frac{\theta\alpha_1 + (1-\theta)\alpha_2}{2z}} \sigma^{\frac{1-\theta\alpha_1 - (1-\theta)\alpha_2}{z}} \rho^{\frac{\theta\alpha_1 + (1-\theta)\alpha_2}{2z}} \right)^z \\ &= \log \operatorname{Tr} \left(\left[\left(\rho^{\frac{\alpha_1}{z}} \right)^{\theta} \left(\rho^{\frac{\alpha_2}{z}} \right)^{1-\theta} \right]^{1/2} \left[\left(\sigma^{\frac{1-\alpha_1}{z}} \right)^{\theta} \left(\sigma^{\frac{1-\alpha_2}{z}} \right)^{1-\theta} \right] \left[\left(\rho^{\frac{\alpha_1}{z}} \right)^{\theta} \left(\rho^{\frac{\alpha_2}{z}} \right)^{1-\theta} \right] \right)^z \\ &\leq \theta \log \operatorname{Tr} \left(\rho^{\frac{\alpha_1}{z}} \sigma^{\frac{1-\alpha_1}{z}} \rho^{\frac{\alpha_1}{z}} \right)^z + (1-\theta) \log \operatorname{Tr} \left(\rho^{\frac{\alpha_2}{z}} \sigma^{\frac{1-\alpha_2}{z}} \rho^{\frac{\alpha_2}{z}} \right)^z \\ &= \theta \log Q_{\alpha_1, z}(\rho \| \sigma) + (1-\theta) \log Q_{\alpha_2, z}(\rho \| \sigma). \end{split}$$

This implies that $\alpha \mapsto \log Q_{\alpha,z}(\rho \| \sigma)$ is convex on (0,1). Here we may assume that $s(\rho) \not\perp s(\sigma)$, since otherwise $D_{\alpha,z}(\rho \| \sigma) = \infty$ for all $\alpha > 0$. Then $Q_{\alpha,z}(\rho \| \sigma) > 0$ for all $\alpha \in (0,1)$ and $\lim_{\alpha \to 1} Q_{\alpha,z}(\rho \| \sigma) \leq \operatorname{Tr} \rho$. Therefore,

$$\alpha \mapsto D_{\alpha,z}(\rho \| \sigma) = \frac{\log Q_{\alpha,z}(\rho \| \sigma) - \log \operatorname{Tr} \rho}{\alpha - 1}$$

is increasing on (0,1).

Next, let $\alpha_1, \alpha_2 \in (1, \infty)$ and $\theta \in (0, 1)$. We may assume that $s(\rho) \leq s(\sigma)$, since otherwise $D_{\alpha,z}(\rho \| \sigma) = \infty$ for all $\alpha \geq 1$. Apply (1.3) with $A_j := \rho^{\alpha/z}$ and $B_j := (\sigma^{-1})^{\alpha_j - 1}$ (where σ^{-1} is the generalized inverse of σ); then we have

$$\begin{split} \log Q_{\theta\alpha_1 + (1-\theta)\alpha_2, z}(\rho \| \sigma) \\ &= \log \operatorname{Tr} \left(\rho^{\frac{\theta\alpha_1 + (1-\theta)\alpha_2}{2z}}(\sigma^{-1})^{\frac{\theta\alpha_1 + (1-\theta)\alpha_2 - 1}{z}} \rho^{\frac{\theta\alpha_1 + (1-\theta)\alpha_2}{2z}} \right)^z \\ &\leq \theta \log \operatorname{Tr} \left(\rho^{\frac{\alpha_1}{z}}(\sigma^{-1})^{\frac{\alpha_1 - 1}{z}} \rho^{\frac{\alpha_1}{z}} \right)^z + (1-\theta) \log \operatorname{Tr} \left(\rho^{\frac{\alpha_2}{z}}(\sigma^{-1})^{\frac{\alpha_2 - 1}{z}} \rho^{\frac{\alpha_2}{z}} \right)^z \\ &= \theta \log Q_{\alpha_1, z}(\rho \| \sigma) + (1-\theta) \log Q_{\alpha_2, z}(\rho \| \sigma). \end{split}$$

Since $\lim_{\alpha \searrow 1} Q_{\alpha,z}(\rho \| \sigma) = \operatorname{Tr} \rho$, the function $\alpha \mapsto D_{\alpha,z}(\rho \| \sigma)$ is increasing on $(1,\infty)$.

2 von Neumann algebra case

Let \mathcal{M} be a semi-finite von Neumann algebra with a faithful normal semi-finite trace τ . Let $\widetilde{\mathcal{M}}$ denote the space of τ -measurable operators affiliated with \mathcal{M} . For each $a \in \widetilde{\mathcal{M}}$ we write $\mu_t(a)$ for the (tth) generalized s-number of a (see [1]). Below we consider operators $a \in \widetilde{\mathcal{M}}$ satisfying

(*)
$$a \in \mathcal{M}$$
 or $\mu_t(a) \le Ct^{-\gamma}$ $(t > 0)$ for some $C, \gamma > 0$.

For each $a \in \widetilde{\mathcal{M}}$ with (*) we define [1]

$$\Lambda_t(a) := \exp \int_0^t \log \mu_s(a) \, ds, \qquad t > 0.$$

Note that $\Lambda_t(a)$, t > 0, are well defined in $[0, \infty)$ whenever a satisfies (*).

Lemma 2.1. If $a, b \in \widetilde{\mathcal{M}}$ satisfies (*), then $|a|^p$ (p > 0) and ab satisfy (*) too.

Proof. Easy since $\mu_t(ab) \leq ||a|| \mu_t(b)$ if $a \in \mathcal{M}$, $\mu_t(|a|^p) = \mu_t(a)^p$, and $\mu_t(ab) \leq \mu_{t/2}(a)\mu_{t/2}(b)$ (see [1, Lemma 2.5]).

Proposition 2.2. Let $a_j, b_j \in \widetilde{\mathcal{M}}_+$, j = 1, 2, be such that a_j, b_j satisfy (*) and $a_1a_2 = a_2a_1$, $b_1b_2 = b_2b_1$. Then for every $\theta \in (0, 1)$ and any t > 0,

$$\Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta})^{1/2} \right) \le \Lambda_t (a_1^{\theta} b_1^{\theta}) \Lambda_t (a_2^{1-\theta} b_2^{1-\theta}). \tag{2.1}$$

In particular,

$$\Lambda_t \left((a_1^{1/2} a_2^{1/2})^{1/2} (b_1^{1/2} b_2^{1/2}) (a_1^{1/2} a_2^{1/2})^{1/2} \right) \le \Lambda_t (a_1^{1/2} b_1 a_1^{1/2})^{1/2} \Lambda_t (a_2^{1/2} b_2 a_2^{1/2})^{1/2}. \tag{2.2}$$

Proof. For any $k \in \mathbb{N}$, since

$$\begin{split} & \big((a_1^{\theta} a_2^{1-\theta})^{1/2} (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta})^{1/2} \big)^k \\ & = (a_1^{\theta} a_2^{1-\theta})^{1/2} (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta}) (b_1^{\theta} b_2^{1-\theta}) \cdots (a_1^{\theta} a_2^{1-\theta}) (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta})^{1/2} \\ & = (a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} (b_1^{\theta} a_1^{\theta}) (a_2^{1-\theta} b_2^{1-\theta}) \cdots (b_1^{\theta} a_1^{\theta}) (a_2^{1-\theta} b_2^{1-\theta}) b_1^{\theta} (a_1^{\theta} a_2^{1-\theta})^{1/2}, \end{split}$$

we have, by [1, Theorem 4.2] with Lemma 2.1,

$$\Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta})^{1/2} \right)^k \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t (b_1^{\theta} a_1^{\theta})^{k-1} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{k-1} \Lambda_t \left(b_1^{\theta} (a_1^{\theta} a_2^{1-\theta})^{1/2} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t (b_1^{\theta} a_1^{\theta})^{k-1} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{k-1} \Lambda_t \left(b_1^{\theta} (a_1^{\theta} a_2^{1-\theta})^{1/2} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t (b_1^{\theta} a_2^{\theta})^{k-1} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{k-1} \Lambda_t \left(b_1^{\theta} a_2^{1-\theta} \right)^{1/2} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t (b_1^{\theta} a_2^{\theta})^{k-1} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{k-1} \Lambda_t \left(b_1^{\theta} a_2^{1-\theta} \right)^{1/2} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t (b_1^{\theta} a_2^{\theta})^{k-1} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{k-1} \Lambda_t \left(b_1^{\theta} a_2^{1-\theta} \right)^{1/2} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t (b_1^{\theta} a_2^{\theta})^{k-1} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{k-1} \Lambda_t \left(b_1^{\theta} a_2^{1-\theta} \right)^{1/2} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t (b_1^{\theta} a_2^{\theta})^{k-1} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{k-1} \Lambda_t \left(b_1^{\theta} a_2^{1-\theta} \right)^{1/2} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \\
\leq \Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \right) \Lambda_$$

so that

$$\begin{split} & \Lambda_t \big((a_1^{\theta} a_2^{1-\theta})^{1/2} (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta})^{1/2} \big) \\ & \leq \Lambda_t \big((a_1^{\theta} a_2^{1-\theta})^{1/2} b_2^{1-\theta} \big)^{1/k} \Lambda_t (b_1^{\theta} a_1^{\theta})^{1-\frac{1}{k}} \Lambda_t (a_2^{1-\theta} b_2^{1-\theta})^{1-\frac{1}{k}} \Lambda_t \big(b_1^{\theta} (a_1^{\theta} a_2^{1-\theta})^{1/2} \big)^{1/k}. \end{split}$$

Letting $k \to \infty$ gives (2.1). When $\theta = 1/2$, (2.1) is rewritten as (2.2).

Remark 2.3. In view of Proposition 1.1 what we would like to obtain is

$$\Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta})^{1/2} \right) \le \Lambda_t \left(a_1^{1/2} b_1 a_1^{1/2} \right)^{\theta} \Lambda_t \left(a_2^{1/2} b_2 a_2^{1/2} \right)^{1-\theta}, \qquad t > 0. \tag{2.3}$$

Since $\Lambda_t(a_j^r b_j^r) \leq \Lambda_t(a_j b_j)^r$ for any $r \in (0,1)$ by [5], we have from (2.1)

$$\Lambda_t \left((a_1^{\theta} a_2^{1-\theta})^{1/2} (b_1^{\theta} b_2^{1-\theta}) (a_1^{\theta} a_2^{1-\theta})^{1/2} \right) \le \Lambda_t \left(a_1 b_1^2 a_1 \right)^{\frac{\theta}{2}} \Lambda_t \left(a_2 b_2^2 a_2 \right)^{\frac{1-\theta}{2}},$$

which is weaker than (2.3)

From now on, let \mathcal{M} be a general (σ -finite) von Neumann algebra.

Lemma 2.4. Let $\psi, \varphi \in \mathcal{M}_*^+$ with $\psi \neq 0$, and assume that $s(\psi) \not\perp s(\varphi)$. Then for every z > 0, $Q_{\alpha,z}(\psi \| \varphi) > 0$ for all $\alpha \in (0,1)$, and $\alpha \mapsto Q_{\alpha,z}(\psi \| \varphi)$ is continuous on (0,1).

Proof. Assume that $Q_{\alpha,z}(\psi||\varphi) = 0$ for some z > 0 and $\alpha \in (0,1)$. Then $h_{\psi}^{\alpha/2z}h_{\varphi}^{(1-\alpha)/2z} = 0$ as a τ -measurable operator affiliated with $\mathcal{N} := \mathcal{M} \rtimes_{\sigma} \mathbb{R}$, where τ is the canonical trace on \mathcal{N} . Since $s(\psi) = s(h_{\psi}^{\alpha/2z})$ and $s(\varphi) = s(h_{\varphi}^{(1-\alpha)/2z})$, it is easy to see that $s(\psi) \perp s(\varphi)$. Hence the first assertion follows.

Next, since $p>0\mapsto a^p\in\widetilde{\mathcal{N}}$ is differentiable in the measure topology for any $a\in\widetilde{\mathcal{N}}_+$ (see, e.g., [3, Lemma 9.19]), we see that $\alpha\mapsto h_\psi^{\alpha/2z}h_\varphi^{(1-\alpha)/z}h_\psi^{\alpha/2z}$ is differentiable (hence continuous) on (0,1) in the measure topology. Hence by [3, Lemma 9.14], the function $\alpha\mapsto Q_{\alpha,z}(\psi\|\varphi)=\|h_\psi^{\alpha/2z}h_\varphi^{(1-\alpha)/z}h_\psi^{\alpha/2z}\|_z^z$ is continuous. Here, when z<1, note [1, Theorem 4.9(iii)] that $|\|a\|_z^z-\|b\|_z^z|\leq \|a-b\|_z^z$ for $a,b\in L^z(\mathcal{M})$.

Proposition 2.5. For every $\psi, \varphi \in \mathcal{M}_*^+$ with $\psi \neq 0$ and for any z > 0, the function $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ is monotone increasing and continuous on (0,1).

Proof. We may assume that $s(\psi) \not\perp s(\varphi)$; otherwise, $D_{\alpha,z}(\psi \| \varphi) = 0$ for all $\alpha \in (0,1)$. Then by Lemma 2.4, $Q_{\alpha,z}(\psi \| \varphi) \in (0,\infty)$ for all $\alpha \in (0,1)$, and $\alpha \mapsto Q_{\alpha,z}(\psi \| \varphi)$ is continuous on (0,1). Hence $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ is continuous on (0,1) too.

Let $\alpha_1, \alpha_2 \in (0, 1)$ and z > 0. Consider $\mathcal{N} := \mathcal{M} \rtimes_{\sigma} \mathbb{R}$ with the canonical trace τ . Apply (2.2) to $a_j := h_{\psi}^{\alpha_j/z}$ and $b_j := h_{\varphi}^{(1-\alpha_j)/z}$ in $\widetilde{\mathcal{N}}_+$ with t = 1; we then have

$$\int_{0}^{1} \log \mu_{s} \left(h_{\psi}^{\frac{\alpha_{1} + \alpha_{2}}{4z}} h_{\varphi}^{\frac{2 - \alpha_{1} - \alpha_{2}}{2z}} h_{\psi}^{\frac{\alpha_{1} + \alpha_{2}}{4z}} \right) ds$$

$$\leq \frac{1}{2} \left[\int_{0}^{1} \log \mu_{s} \left(h_{\psi}^{\frac{\alpha_{1}}{2z}} h_{\varphi}^{\frac{1 - \alpha_{1}}{z}} h_{\psi}^{\frac{\alpha_{1}}{2z}} \right) ds + \int_{0}^{1} \log \mu_{s} \left(h_{\psi}^{\frac{\alpha_{2}}{2z}} h_{\varphi}^{\frac{1 - \alpha_{2}}{z}} h_{\psi}^{\frac{\alpha_{2}}{2z}} \right) ds \right]. \tag{2.4}$$

Since $h_{\psi}^{\frac{\alpha_1+\alpha_2}{4z}} h_{\varphi}^{\frac{2-\alpha_1-\alpha_2}{2z}} h_{\psi}^{\frac{\alpha_1+\alpha_2}{4z}}$ is in $L^z(\mathcal{M})$, note [1, Lemma 4.8] that

$$\mu_s \left(h_{\psi}^{\frac{\alpha_1 + \alpha_2}{4z}} h_{\varphi}^{\frac{2 - \alpha_1 - \alpha_2}{2z}} h_{\psi}^{\frac{\alpha_1 + \alpha_2}{4z}} \right) = s^{-1/z} \left\| h_{\psi}^{\frac{\alpha_1 + \alpha_2}{4z}} h_{\varphi}^{\frac{2 - \alpha_1 - \alpha_2}{2z}} h_{\psi}^{\frac{\alpha_1 + \alpha_2}{4z}} \right\|_z$$

so that

$$\log \mu_s \left(h_{\psi}^{\frac{\alpha_1 + \alpha_2}{4z}} h_{\varphi}^{\frac{2 - \alpha_1 - \alpha_2}{2z}} h_{\psi}^{\frac{\alpha_1 + \alpha_2}{4z}} \right)^z = -\log s + \log Q_{\frac{\alpha_1 + \alpha_2}{2}, z}(\psi \| \varphi). \tag{2.5}$$

Similarly,

$$\log \mu_s \left(h_{\psi}^{\frac{\alpha_j}{2z}} h_{\varphi}^{\frac{1-\alpha_j}{z}} h_{\psi}^{\frac{\alpha_j}{2z}} \right)^z = -\log s + \log Q_{\alpha_j, z}(\psi \| \varphi), \qquad j = 1, 2.$$
 (2.6)

Multiply z to both sides of (2.4) and insert (2.5) and (2.6) into it. Since $\int_0^1 (-\log s) ds = 1$, we then arrive at

$$1 + Q_{\frac{\alpha_1 + \alpha_2}{2}, z}(\psi \| \varphi) \le \frac{1}{2} \left[2 + \log Q_{\alpha_1, z}(\psi \| \varphi) + \log Q_{\alpha_2, z}(\psi \| \varphi) \right],$$

which implies that $\alpha \mapsto \log Q_{\alpha,z}(\psi \| \varphi)$ is midpoint convex on (0,1). Since midpoint convexity implies convexity for continuous functions, it follows that $\alpha \mapsto \log Q_{\alpha,z}(\psi \| \varphi)$ is convex on (0,1). Moreover, by [4, Theorem 1(vii)] we find that $\lim_{\alpha \nearrow 1} Q_{\alpha,z}(\psi \| \varphi) \le \psi(1)$. Therefore, the monotone increasing of $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ on (0,1) follows.

References

- [1] T. Fack and H. Kosaki, Generalized s-numbers of σ -measurable operators, Pacific J. Math. 123 (1986), 269–300.
- [2] F. Hiai, Matrix analysis: matrix monotone functions, matrix means, and majorization, *Interdisciplinary Information Sciences* **16** (2010), 139–248.
- [3] F. Hiai, Lectures on Selected Topics in von Neumann Algebras, EMS Press, Berlin, 2021.
- [4] S. Kato, On α -z-Rényi divergence in the von Neumann algebra setting, Preprint, 2023.
- [5] H. Kosaki, An inequality of Araki-Lieb-Thirring (von Neumann algebra case), *Proc. Amer. Math. Soc.* **114** (1992), 477–481.
- [6] M. Mosonyi and F. Hiai, Some continuity properties of quantum Rényi divergences, *IEEE Trans. Inform. Theory*, to appear, DOI 10.1109/TIT.2023.3324758.