21-R-KIN-MS-52

This broken fan only has one blade. Determine the moment of inertia of the broken fan blade at point O about an axis perpendicular to the page. The fan's shape can be approximated as a blade (cone with a semicircle) attached to a doughnut-shaped base. The base is $T_{base}=10cm$ tall. The blade is $T_{blade}=0.4cm$ thick. The entire fan is made of a plastic with density $0.92g/cm^3$

 $r_1 = 2cm$

 $r_2 = 7cm$

h = 17cm

 $r_3 = 8cm$

Solution:

Find the moment of inertia of individual components about O and sum them up.

Thickness T = 1cm, density $\rho = 0.0075kg/cm^3$

Shape i	A	В	С	D
Mass m_i	$\pi r_2^2 T_{base} \rho$	$\pi r_1^2 T_{base} \rho$	$2r_3T_{blade}\rho$	$\frac{1}{2}\pi r_3^2 T_{blade} \rho$
Moment of inertia, I_{zi}	$\frac{1}{2}m_{A}r_{1}^{2}$	$\frac{1}{2}m_{B}r_{2}^{2}$	See below	See below

For the triangle C, calculate the moment of inertia about an axis through its tip, and then add the inertia from the distance between O and the tip using the parallel axis theorem:

$$l = 2xtan(\theta)$$
. $\theta = arctan(\frac{r_3/2}{h})$

$$I_{zC} = \int_0^h \left(m_C \frac{l^2}{12} + m_C x^2 \right) dx + m_C r_2^2 = \int_0^h \left(m_C \frac{(2xtan(\theta))^2}{12} + m_C x^2 \right) dx + m_C r_2^2 = 1.350 * 10^4 g \cdot cm^2$$

$$I_A = 3.470 * 10^4 g \cdot cm^2$$

$$I_B = 2.312 * 10^2 g \cdot cm^2$$

For the semicircle D, integrate semicircle shell elements:

$$dV = \pi r T_{blade} dr$$

$$dm = \rho \pi r T dr$$

$$I_{zD} = \int_0^{r_3} (\rho \pi r^3 T_{blade} dr) + m_D (h + r_2)^2 = \rho \pi h r_3^2 + m_D (h + r_2)^2 = 2.445 * 10^4 g \cdot cm^2$$

$$I_{zO} = I_{zA} - I_{zB} + I_{zC} + I_{zD} = (...)g \cdot cm^2 * (1m/100cm)^2 * (1/1000kg/g) = 3.796 * 10^{-3}kg \cdot m^2$$