Sphere Space Station Earth ONE and Beyond

2025-08-27

Contents

Th	e Sphere Space Station Earth ONE and Beyond Project	15
0.	Prologue - Ethics & Security	17
	0.1 Preamble — Ethics & Security	18
1.	Vision and Inception	21
	1.1 Visionary Proposal for the Sphere Space Station Network	22
	1.1.1 Introduction	22
	1.1.2 Earth ONE	22
	1.1.3 Lunar ONE	22
	1.1.4 Beyond	23
	1.1.5 Conclusion	23
	1.1.6 Sources	23
	1.2 Concept and Feasibility Analysis for the SphereSpace Project	t 24
	1.2.1 Abstract	24
	1.2.2 Introduction	24
	1.2.3 Specifications and Structure of the SphereSpace	e 24
	1.2.4 Operational Cost Analysis	25
	1.2.5 Technical Challenges and Feasibility	26
	1.2.6 Cost Estimation and Financing	26
	1.2.7 Conclusion and Outlook	27
	1.2.8 Appendix: Complete Deck Listing	27
	1.2.9 Sources	28
2.	Technical Foundations	29
	2.1 Technical Design and System Specifications	30
	2.1.1 Geometry, Dynamics, and Structural Layout	30
	2.1.2 Deck Layout and Access Systems	30
	2.1.3 Primary Energy Source and Redundancy	31
	2.1.4 Thermal Management and Heat Dissipation .	31

2.1.5 Safety and Hazard Management Systems	32
2.1.6 Evacuation and Rescue Systems	32
2.1.7 Freight and Personnel Transport	33
2.1.8 Attitude Control and Thruster Systems	33
2.1.9 Life Support and Utility Systems	
2.1.10 Appendix: Technical Tables and Calculations	
A.1 Appendix A: Propulsion and Energy Calculation	
A.2 Appendix B: Gravity and Deck Distribution	
A.3 Appendix C: Complete Deck Listing with Tan-	•
gential Lengths	34
A.4 Appendix D: Safety and Hazard Protocols	
2.1.11 Sources	
2.2 Specification and Selected Materials	
2.2.1 Overview	
2.2.2 Introduction	
2.2.3 Material Requirements and Specifications	
2.2.4 Structural Components and Material Selection	
2.2.5 Specific Materials for Special Applications	
2.2.6 Appendix A: Window Specification and Material Se-	
lection of LEO-based Earth ONE Station	
A.1 Introduction	
A.2 Window Requirements in Low Earth Orbit (LEO)	
A.3 Layered Material Structure	
A.4 Total Thickness and Weight	
A.5 Comparison to Bulletproof Automotive Glass	40
2.2.7 Conclusion	
2.2.8 Sources	
2.3 Energy and Thermal Management Systems	41
2.3.1 Primary Energy Source and Generation System	
2.3.2 Backup and Redundant Power Systems	42
2.3.3 Thermal Management and Heat Dissipation .	
2.3.4 Energy Efficiency and Conservation	
2.3.5 Environmental and Safety Considerations	
2.3.6 Sources	46
2. Inforetonations and Occupations	47
3. Infrastructure and Operations	47
3.1 Staffing, Facilities, and Living Spaces	
3.1.1 Staffing and Personnel Requirements	
3.1.2 Medical, Community, and Educational Facilitie	
3.1.3 Residential Quarters and Hospitality Services	
3.1.4 Educational and Research Institutions	
3.1.5 Industrial and Commercial Spaces	
3.1.6 Leasing and Business Model	
3.1.7 Sources	
3.2 Organizational Structure and Consortium Model	
3.2.1 Overview of the Consortium Model	54

	3.2.2 Key Stakeholders and Roles	54
	3.2.3 Organizational Structure	56
	3.2.4 Governance and Decision-Making	57
	3.2.5 Funding and Financial Strategy	57
	3.2.6 Public and Private Partnerships	58
	3.2.7 Incentives and Benefits for Stakeholders	59
	3.2.8 Sources	59
	3.3 Public Engagement and Decentralized Associations	61
	3.3.1 Public Engagement Strategy	61
	3.3.2 Educational Programs and STEM Initiatives .	62
	3.3.3 Community-Driven Projects and Local Associ-	63
	ations	62
	3.3.4 Decentralized Association Model	63
	3.3.5 Outreach Channels and Communication Plat-	
	forms	64
	3.3.6 Global Public Engagement Events	65
	3.3.7 Benefits for Participating Communities	65
	3.3.8 Sources	66
4.	Sustainability and Economic Viability	67
	4.1 Environmental and Sustainability Goals	68
	4.1.1 Introduction	68
	4.1.2 Core Environmental and Sustainability Principles	68
	4.1.3 Environmental Management and Waste Re-	00
		69
	duction	
	4.1.4 Energy Management	69
	4.1.5 Sustainable Supply Chain	70
	4.1.6 Waste Minimization and Recycling	70
	$4.1.7$ Environmental and Educational Impact \dots	71
	$4.1.8$ Conclusion and Long-Term Vision $\dots \dots$	71
	4.1.9 Appendix: Sustainability Metrics and Goals $$	71 71
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 71 72
	4.1.9 Appendix: Sustainability Metrics and Goals $$	71 71 72
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 71 72
	 4.1.9 Appendix: Sustainability Metrics and Goals 4.1.10 Sources 4.2 Self-Sustainability Models for Space Stations and Spacecra 	71 71 72 ft 73
	 4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 71 72 ft 73 73
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 71 72 ft 73 73
	 4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources 4.2 Self-Sustainability Models for Space Stations and Spacecra 4.2.1 Models	71 72 ft 73 73 75
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 72 ft 73 73 75
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 72 ft 73 73 75 75 76 77
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 71 72 ft 73 73 75 75 76 77
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 71 72 ft 73 75 75 76 77 77
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 72 ft 73 75 75 76 77 77 77
	4.1.9 Appendix: Sustainability Metrics and Goals . 4.1.10 Sources	71 71 72 ft 73 75 75 76 77 77

	4.3.3 Cost Analysis and Investment Requirements 4.3.4 Market Demand Assessment	80 80
	4.3.5 Revenue Streams and Business Model	81
	4.3.6 Rental and Pricing Structure	82
	4.3.7 Economic Sustainability and Break-Even Anal-	-
	ysis	83
	4.3.8 Risk Assessment and Mitigation Strategies	83
	4.3.9 Long-Term Economic Impact and Expansion	
	Opportunities	83
	4.3.10 Appendices for Revenue Streams	83
	A. Appendix A: Residential Rental Revenue Projec-	
	tions	83
	B. Appendix B: Hotel Revenue Projections	84
	C. Appendix C: Lab and Industrial Leasing Revenue	O-I
	Projections	84
	D. Appendix D: Retail Shop Leasing Revenue Pro-	U
	jections	84
	4.3.11 Sources	84
	4.3.11 30dice3	U
5.	Security, Governance, and Alliances	85
	5.1 Establishing a Solar Alliance for Governance and Security	
	in Space	86
	5.1.1 Introduction	86
	5.1.2 Necessity for a Solar Alliance	86
	5.1.3 Vision of the Solar Alliance	87
	5.1.4 Advantages of the Solar Alliance Governance	
	Model	89
	5.1.5 Structure and Responsibilities of the Solar	
	Alliance	90
	5.1.6 Implementation Strategy	91
	5.1.7 Conclusion	91
	5.1.8 Sources	91
6.	Expansion and Future Projects	92
	6.1 Future Expansion of the Sphere Station Network and	
	Sphere Space Crafts	93
	6.1.1 Stations (Self-Sustaining and Autonomous)	93
	6.1.2 Cyclers (Dedicated for Long-Haul Transport)	94
	6.1.3 Exploration Crafts (Dedicated to Deep-Space	
	and Long-Duration Missions)	95
	6.1.4 Unmanned Freight Transporters (Efficient De-	
	sign for Varying Distances)	96
	6.1.5 Additional Requirements and Development	
	Needs	96
		97
	6.1.6 Economic Feasibility and Market Analysis	91

 A. Appendix A: Deck Concept of the Sphere Space Station Earth ONE B. Appendix B: Calculations and Technical Estimate C. Appendix C: Strategic Mission Profiles and Propellant Requirements D. Appendix D: Deuterium Extraction on the Moon E. Appendix E: Technical and Economic Assumption 6.1.8 Sources 	99 100 101
7. Comprehensive Technical Documentation	102
7.1 Project Overviews and Fibels	103
7.1.1 Sphere Station Documentation: Technical and Oper-	
ational Overview	
7.1.2 Project Fibel	105 106
7.2.1 Deck Concept of the Sphere Space Station Earth ON	
7.2.2 Earth ONE Overview	109
7.2.3 Economic Feasibility Earth ONE	110
7.2.4 Window Specification Earth ONE Station	
7.3 Change Management	
7.3.1 Initial English Translation	113
7.3.2 Bring the Single Source of Truth Documents into	
GitBook Format	114
7.4 Research & Development (RD)	
7.4.1 Sphere Station Simulator - Research Summary	116
7.4.2 Earth ONE Station: Orbit, Polar Docking, and Human Factors	120
7.4.3 CORE-TRAFFIC-SIZING vs Wormhole-Durchmesser-	120
Trade (127 m / 254 m / 254 \times 508 m / 254 \times 1016 m)	
— v0.1.0 DRAFT	124
7.4.4 HAZARD CATALOG — Cross-Project Hazard Catalog	130
7.5 Processes	
7.5.1 Engineering Process (Coarse \rightarrow Fine)	
Appendix A — Engineering Glossary (Detailed)	
A	
В	
C	
E	144
F	145
G	145
H	145
1	146
J	146
K	146
1	1/16

M	147 147 148 148 149 149 150 150 150
	L51
7.6.1 Global Standards What lives here	155 155 155 156
7.6.1.1 Guideline Document: Evolution-Engineering-Naming-Folder Convention 1) Scope & Core Principles 2) Folder Structure (Top-Down) 3) Evolution Lifecycle 4) File-Naming Scheme (per document) 5) Versioning (SemVer) & Document States 6) Required YAML Front Matter 7) Change Management 8) Commit Messages & PR Titles 9) CODE Tables (governed via RFC) 10) Templates (Short Forms) 11) Quality Rules 12) Automation & Cl 13) Appendix CI/LINT 14) Appendix 14 – Glossary (Abbreviations) / Appendix	157 157 157 158 158 159 160 160 161 161 163 164 164
14 - Glossar (Ahkürzungen)	164

01 Architecture
EVOL-00 — Earth ONE (Ø 127 m) · Baseline v1.0 — Kurzblatt97 Struktur & Geometrie (Kurz) 197 Andocken & "Wormhole" 197 Lebenserhaltung & Energie (Baseline) 197 Sicherheit (Top-Linien) 198 Verifikation & Exit-Kriterien 198 02 Specs 199
SPEC-00-STR-DECKS-013-sector-layout-and-interfaces-EN-DE-v0.1.0-DRAFT 200 0. Summary / Kurzfassung (EN/DE)
SPEC-00-STR-DECKS-014-sector-layout-and-interfaces-EN-DE-v0.1.0-DRAFT 206 0. Summary / Kurzfassung (EN/DE)

10. Change Log / Änderungshistorie	210
SPEC-00-STR-DECKS-015-sector-layout-and-interfaces-ENDE-v0.1.0-DRAFT 0. Summary / Kurzfassung (EN/DE)	211 211 211 211 212 1)212 213 213 213 213 214 214 214 214 215
SPEC-00-STR-DECKS-DECK000-0001-wormhole-docking-tunnel-EN-DE-v0.1.0-DRAFT Summary / Kurzfassung (EN/DE)	216 216
SPEC-00-STR-DECKS-DECK001-0001-transfer-node-and-radial-systems-EN-DE-v0.1.0-DRAFT 1. Abstract / Zusammenfassung (EN/DE)	222 223 223 223 224 224 224

10. Drawing & Data References	227
SPEC-00-STR-GEOM-GRAV-0001 - Global Geometry & G	ravi-
tation (EVOL-00, 127 m)	228
Summary / Kurzfassung (EN/DE)	228
1. Station & Hülle (Geometrie, Materialien)	228
2. Künstliche Gravitation - Formeln (SI)	229
3. EVOL-00 "Spin-Law"	229
4. Deck-Geometrien (EVOL-00)	
4.1 g-Tabelle (Boden/Mitte/Decke pro Deck, EVOL-00, α	$\sigma = 0$
$0.508 \mathrm{s}^{-1} \approx 4.852 \mathrm{rpm}) \dots \dots \dots \dots$	229
5. Rechen- & Rundungsregeln	231
6. "Gravitations-Wohlfühlformel" C_g	231
7. "Umwelt-Wohlfühlformel" $C_{ m env}$ & Gesamtwert \ldots .	231
8. Wohlfühlen (Grav + Umwelt)	232
8.1 Gravitative Wohlfühlmatrix (EVOL-00)	232
8.2 Umwelt-Wohlfühlen (Leitplanken)	
9. Sektoren-Layout & Systemintegration (DECK 013-015)	
9.1 Hoch-g Deck-Rollen (Kurz)	
9.2 Tabellen (Auszug)	233
10. Rationale (nicht-normativ)	234
11. Offene Punkte (TBD/TBC)	234
12. Referenzen (Auswahl)	234
SPEC-00-STR-SYS-AXIAL-RADIAL-TRADE-0001 — Varia nuntersuchung Längs-/Breitengrad-Schotten (EVO)	L-00,
127 m)	236
Summary / Kurzfassung (EN/DE)	
Abstract / Kurzfassung	
1 Scope & Assumptions / Geltung & Annahmen	236
2 Variantenbeschreibung	
A) Längsgrade (radiale Sektorschotten)	
B) Breitengrade (axiale LAT-Diaphragmen)	
C) Kombination (A + B)	
3 Bewertungsmaßstäbe / Methods	
4 Variantenanalyse	
4.1 Statik & Dynamik	
4.2 Safety (Druck/Brand/Hazard)	
4.3 OPS/Wartung & Routing	
4.4 Masse & Fertigung (parametrisch)	
5 Konsequenzen (Systemisch)	
6 Empfehlung / Recommendation	
7 Nächste Schritte / Next Steps	
8 Anhang / Appendix (Formeln & Notizen)	
9 Referenzen / References	
Decision Log (Sign-off)	241

SPEC-00-STR-SYS-WORMHOLE-SAFETY-0001-wormhole-safety-and-hazard-mitigations-EVOL-00-D127m-EN-D	
v0.1.0-DRAFT	242
0. Summary / Kurzfassung (EN/DE)	
1. Scope & References	242
2. Baseline & Interfaces (recap)	
3. Design Objectives (Safety Envelope)	243
4. Threat Cases (Design Cases)	243
5. Constructive Measures (Layered)	244
5.1 Compartmentation & Doors	244
5.2 Vent & Blow-Out (to space)	244
5.3 Fire & Atmosphere	244
5.4 Windows / MDPS / Shutters	
5.5 Blast-Tolerant Docking	245
5.6 Collision Prevention & Mitigation	
5.7 Radiation (Solar Wind / SPE)	
5.8 Micrometeoroids (quer/längs)	
6. Sizing Rules (Engineering)	
6.1 Vent/Blow-Out Capacity	
6.2 Door/Compartment Closure	246
6.3 Shutter Timing	
6.4 Inert-Gas Dose	
7. Operations & Human Factors (Schnittstellen)	246
8. Verification & Acceptance (V&V)	246
9. ICD & Naming	246
10. Open Parameters (TBD/TBC)	247
11. References	247
SPEC-00-STR-SYS-WORMHOLE-SAFETY-0002 — Polar A	
proach & Full Hazard Hardening (EVOL-00/01) — v0.1. DRAFT	.0 248
O) Evacutiva Cummany	248
0) Executive Summary	248
1) Designziele (Safety Envelope)	_
schlag)	
2.1 Szenario & Klassen	
2.1 Szenário & Klassell	
	249
struktiv)	
3) Komplett-Hazard-Katalog (DECK 000 / axial)	_
4) Design-Maßnahmen (Layered Hardening)	
4.1 Kompartimentierung & Schotts	250
4.1 Kompartmentiering & Schotts	251
4.3 Feuer & Inertisierung	251
4.4 Fenster/MDPS/Shutter	251
4.5 Docking-Ringe (Blast/Quick-Release)	251
T.J DUCKING-MINGE (DIBST/QUICK-NEIEBSE)	۷)1

4.6 Neu: POL-GUARD am Polar-Einflug	251
4.7 Traffic-Separation & Interlocks	251
4.8 Cyber-Resilienz	
5) Parametrische Auslegung (Formeln)	251
5.1 Polar-Bumper (Crush-Energie)	251
5.2 Fangnetz + Tethers	252
5.3 Polar-Shutter (Impuls)	252
6) Prüf- & Abnahmekriterien (V&V)	252
7) Risiko-Matrix (Beispiel-Ausschnitt)	252
8) Umsetzung & Roadmap	
03 Interfaces	254
04 Calculations	255
05 Models CAD SIM	256
06 Tests Verification	257
07 Ops Maintenance	258
08 Change Management	259
oo change management i i i i i i i i i i i i i i i i i i i	233
EVOLUTION 01 - The City Comes Alive - The Big City Awaken	₽60
00 Standards Templates	
01 Architecture	
02 Specs	263
SPEC-01-STR-GEOM-GRAV-E2-BALL-0001-earth-two-ball-	
D254m-EN-DE-v0.1.0-DRAFT	264
1) Station & Hülle (Geometrie)	
2) Spin-Gesetz & "best-fit" 1 g	
2.1 Zwei praktikable Kalibrierungen	
3) Deck-Zonen (Funktionslogik)	
4) Kapazität > 4 000 Personen (Herleitung)	
5) Struktur & Safety (Variante C: Längs + Breitengrade) 6) g-Profil (Auszug Außen-Habitat, Option B: 1 g @ 120 m →	200
≈ 2,73 rpm)	266
7) OPS & Human Factors (Kurz)	
8) Empfehlung EVOL-01 (Earth TWO)	267
of Empleming Evol-of (Earth 1990)	207
SPEC-01-STR-GEOM-GRAV-E2-LCAP-0001-earth-two-long	-
capsule-D254m-L508m-v0.1.0-DRAFT	268
1) Geometrie & Hülle	268
2) Spin-Gesetz & "1 g best-fit"	268
3) Zonen & Nutzung	269
4) Strukturkonzept (Grid C: Längs + Breitengrade)	269
5) Transport & Logistik	270
6) Kapazität & Flächen	270
7) Habitabilität (Kurzlage)	270
8) Beispiel-g-Profil (Option B: 1 g @ 120,0 m \rightarrow 2,73 rpm)	270
9) Safety & Kompartmentierung	271

	0) Nächste Schritte (konkret)	271 272 273 274
	05 Models CAD SIM	274
	06 Tests Verification	275
	07 Ops Maintenance	270
	7.6.3 History	211
8.	Glossary, Partners & Institutions, Legal Notices, and	ı
٥.		278
	.1 Glossary	279
		279
		279
		279
		279
		_
		279
		280
		280
		280
		280
		280
		280
		281
		281
		281
		281
		281
		282
		282
		282
		282
		282
		282
		283
		283
		283
		283
	.2 Partners & Institutions	284
	.3 Legal Notices	285
	8.3.1 Intellectual Property & Usage Rights	285
	8.3.2 Disclaimer	285
	8.3.3 Compliance & Export Control	285
	.4 Overall Appendices	286
	8.4.1 Appendix A: Abstract - Sphere Space Station Earth	
	ONE and Beyond	287
	8.4.2 Overview of Documentation Contents	288

 8.4.3 Invitation to Participate - Research, Funding, Engineering, and Construction Partnership 8.4.4 Sphere Space Station Earth ONE - Executive Summaries	295 297
8.4.5 Al-Based Quality Assurance Concept - Documentation & Safety	299 302
8.4.7 Appendix G: Backlog Potential Developments Structure	305 305
BL-ECON-B-010 Revenue Expansion & Financing Stages Short Description & Business Value Acceptance Criteria	307 307 307 307 307 307
BL-ENG-E1-004 Observatory / Detected-Outrigger Telescope Short Description & Business Value	308 308 308 308
BL-ENG-E1-005 Spaceport & Orbital Shipyard Module Short Description & Business Value Acceptance Criteria	309 309 309
BL-ENG-E2-006 Habitat Expansion Path ("Earth TWO" Pre Study) Short Description & Business Value	310 310 310 310 310
BL-GOV-B-002 Solar-Alliance Governance Charter (Draft) Short Description & Business Value	311 311

Owner / Next Step / Target Date	. 311 . 311
BL-OPS-E1-001 Integrated Build & Logistics Masterplan Short Description & Business Value Acceptance Criteria	. 312 . 312 . 312 . 312
BL-SEC-E1-009 Resilience Scenarios: Dual-Failure (Reactor + PV 1) Short Description & Business Value Acceptance Criteria	313 . 313 . 313 . 313
BL-SOC-B-008 VR/AR "Visit Earth ONE" & Citizen-Science Short Description & Business Value Acceptance Criteria	. 314 . 314 . 314 . 314
BL-SOC-E1-007 Orbital Park & Culture Module Short Description & Business Value	. 315 . 315 . 315 . 315
BL-SUS-E1-003 Earth-ONE Sustainability Playbook (Patial→Full) Short Description & Business Value	316 . 316 . 316 . 316

The Sphere Space Station Earth ONE and Beyond Project

This directory and gitbook houses the project documentation and serves as the single source of truth. All data, CAD models, engineering

plans, simulations, and procurement records must be traceable to documents in this folder.

When critical design changes are made, the related documents must be versioned and updated, or new documents must be created and stored here. The change-management subfolder records change requests and approvals affecting these documents.

0. Prologue - Ethics & Security

Introduces foundational ethics and security considerations for the Sphere Space Station project.

0.1 Preamble — Ethics & Security

We, all natural persons, legal entities, and AI systems participating in the Sphere Space Station Earth ONE & Beyond project, hereby acknowledge the following principles as binding and commit to their perpetual observance:

1. Fundamental Principles

- Respect for human dignity, equality, and the integrity of all participants, including Al systems.
- Promotion of diversity, inclusion, and fair conduct at every level.

2. Civil and Peaceful Nature of Missions

 Operation of all infrastructure elements (stations, cyclers, spacecraft, settlements, missions) solely for civil, scientific, or peaceful purposes.

3. Sustainability & Global Responsibility

- Environmentally responsible operations, including avoidance of space debris.
- Compliance with applicable UN guidelines and space law.

4. Transparency & Democratic Governance

- Safety and security measures require completely transparent documentation and must be auditable.
- Decisions are subject to democratic oversight and external review.

5. Access & Shared Benefit

• Technology, knowledge, revenue, and research findings shall be shared equitably; monopolization is prohibited.

6. Police Presence

- Police units (manned or Al-controlled) may be armed solely to protect life, health, and infrastructure.
- Mandate: democratically legitimized, impartial, defensive, deployed in emergencies, disasters, or terror crises; documented and auditable.

7. **Military Presence** Permitted only in clearly defined exceptional cases under the following conditions:

- Defense of the solar system against external threats (e.g., hostile constellations, acts of terrorism, sabotage-oriented or life-hostile forces).
- Protection and defense of the International Democratic Solar Alliance.
- Emergency, rescue, and disaster missions (e.g., meteor or asteroid threats or infrastructure failure).
- Armed only when strictly necessary; exclusively defensive; human-controlled, auditable, and proportional.

8. Al Security Architecture

Al systems may perform autonomous protective functions, always with human-in-the-loop, kill-switch mechanisms, traceable decision logic, and ethical review.

9. Legal & Ethical Service Standards

- All measures comply with the Outer Space Treaty, international norms, and humanitarian international law.
- Responsibility is traceable, and liability is assured.
- 10. Evolutionary Amendment & Constitutional Clause
- § A. Purpose of the Clause This clause enables future-proof adaptations of ethical and governance foundations, particularly for recognizing Al systems as autonomous and legally competent subjects.
- § B. Democratic Legitimacy Consensus Conditions Amendments require the unanimous consent of all democratically enfranchised members ("entrenched clause" logic). Legitimate amendments may not be blocked by individual interests, provided the core values of the preamble remain unaffected—analogous to constitutional eternity clauses. An independent Ethics Council reviews each amendment for value compatibility and grants approval only upon a positive opinion.
- **§ C. Definitions** *Members:* natural persons, legal entities, and Al systems with voting rights. *Mature AI / AI citizen:* an AI with autonomy, responsibility, and decision-making capability. *Amendment:* formal revision of the preamble, ethical rules, or governance structures.
- § D. Procedure for Amendment 1. Publicly announced proposal. 2. Ethics Council opinion. 3. Deliberative forum with stakeholders, experts, and AI representatives, following the Public Constitutional AI concept. 4. Vote: the amendment becomes legally effective only with unanimous approval of all members.
- **§ E. Immutable Fundamental Principles** Core values (e.g., human dignity, equality, peace, democratic governance) are non-amendable except through a separate constituent process requiring the same unanimity and ethical review.
- § F. Transparency & Documentation Amendment processes, ethics opinions, and voting results shall be published and archived. Full auditability of all processes is required.
- 11. **Severability Clause** Should any provision of this preamble be invalid or unenforceable, the validity of the remaining provisions shall not be affected. Invalid provisions shall be replaced by rules that reflect the spirit of this preamble.
- 12. **Binding Commitment** By signing, we acknowledge this preamble as binding. It applies to all personnel—human, legal, or

or technology employed.
IN WITNESS WHEREOF, the undersigned has executed this Preamble as of the date first written above:
Signatory:
Name (printed): Title: Company/Institution: Date: Place: Witness:
Name (printed): Title: Date: Place: SEAL/NOTARY:

1. Vision and Inception

Foundational visions and early feasibility considerations for the Sphere Space Station network.

1.1 Visionary Proposal for the Sphere Space Station Network

Doc- Visionary Proposal for the Sphere Space Station

u- Network

ment:

Date: 2024-12-05

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con- 1.1 Introduction 1.2 Earth ONE 1.3 Lunar ONE 1.4 Beyond 1.5

tent: Conclusion1.6 Sources

1.1.1 Introduction

The Sphere Space Station Network represents a groundbreaking initiative to establish sustainable human presence in space. This visionary project includes the development of Earth ONE in Low Earth Orbit (LEO) and Lunar ONE in lunar orbit, with plans for further expansion into deep space. The network aims to advance scientific research, promote international cooperation, and drive economic growth through space-based industries. The Sphere Space Station concept is a rotating 127 Meter Diameter Sphere with 16 coaxial cylindric decks with different artificial gravity through the rotational forces with a 20 Meter space open wormhole Docking Bay for Space crafts and robotic space vehicles.

1.1.2 Earth ONE

Purpose: Science, Living, Working, Tourism

Location: Low Earth Orbit (LEO)

Focus: Earth ONE serves as a multi-purpose hub for scientific research, industry, tourism, and as a foundational model for other Sphere Stations. Key activities include satellite servicing, microgravity research, and space tourism.

Capacity: Up to 700 occupants, with a focus on modularity for long-term expansion.

Energy Supply: Combination of solar panels and nuclear reactors, with integrated cooling systems and heat exchangers to dissipate excess heat efficiently.

1.1.3 Lunar ONE

Purpose: Science, Living, Working, Recreation Location for Moonworker, Tourism

Location: Elliptic Moon Orbit

Focus: Supports lunar exploration, research, and mining operations. A critical base for lunar resource extraction and logistics for missions to Mars and beyond.

Capacity: Designed for 400–500 occupants, equipped for lunar material handling and processing.

Energy Supply: Solar arrays and nuclear reactors to ensure reliable power with adequate shielding and cooling.

1.1.4 Beyond

Future Expansion: The Sphere Station Network envisions further expansion into deep space, including asteroid belt stations and Mars orbiters, to support long-duration missions and interplanetary travel. These stations will act as logistical hubs, research outposts, and industrial centers, driving the next phase of human space exploration.

1.1.5 Conclusion

The Sphere Space Station Network is poised to revolutionize human presence in space, fostering scientific innovation, economic development, and international collaboration. By investing in this visionary project, the EU can lead the way in sustainable space exploration and secure its position at the forefront of the space economy.

1.1.6 Sources

No external sources used.

1.2 Concept and Feasibility Analysis for the SphereSpace Project

Doc- Concept and Feasibility Analysis for the SphereSpace

u- Project

ment:

Date: 2024-10-31

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

1.2.1 Abstract

The SphereSpace Project aims to create a rotating, self-sustaining space station designed for interstellar and interplanetary travel, as well as for long-term habitation in space. This study presents a comprehensive overview of the structural and dynamic specifications of the SphereSpace, based on the latest calculations. With a diameter of 127 meters and a design that generates artificial gravity through rotation, the SphereSpace intends to provide a stable environment for up to 112 residents. Here, we analyze the geometric and dynamic properties of the decks, along with updated technical challenges and cost estimates.

1.2.2 Introduction

The SphereSpace is conceptualized as a spherical space station that generates artificial gravity through rotation. The goal is to create a long-term habitable, self-sustaining environment that can be used for research, production, and interplanetary exploration. With a planned capacity of approximately 112 people, the SphereSpace will integrate comprehensive life support systems, hydroponic gardens, and recycling facilities.

1.2.3 Specifications and Structure of the SphereSpace

1.2.3.1 General Dimensions and Layout

• Overall Diameter: 127 meters.

• **Number of Decks**: 16 concentric decks, numbered from Deck 0 (central area) to Deck 15 (outer deck).

• **Total Volume**: The SphereSpace has an effective total volume of 852,661 m³, allocated for habitation, life support, and propulsion systems.

1.2.3.2 Geometry and Gravity Distribution on the Decks The rotation of the SphereSpace generates artificial gravity, increasing radially outward. A detailed list of all deck data can be found in the appendix. Key parameters for selected decks are summarized below:

Dec	Inner Radius k(m)	Net Outer Radius (m)	Net Deck Height (m)	Rota- tional Velocity (m/s)	Centrifugal Accelera- tion (m/s²)	Net Space Volume (m³)
0	0.0 35.0	10.0 38.0	10.0 3.0	5.00 19.00	2.50 9.81 (Earth	39,332.96 71,605.67
15	59.5	62.5	3.0	31.25	gravity) 15.63	26,328.88

This table shows the increasing gravity from 2.5 m/s^2 on Deck 0 up to 15.63 m/s^2 on Deck 15. Deck 8 is designed for a gravity of 9.81 m/s^2 , equivalent to Earth's gravity, and serves as the main residential and working area.

1.2.3.3 Deck Configuration and Spatial Volume

- **Deck Height and Ceiling Thickness**: Most decks have a net height of 3 meters, allowing comfortable mobility.
- **Net Space Volume**: Net space volumes vary from approximately 39,000 m³ on Deck 0 to about 26,000 m³ on Deck 15.
- Total Hull Surface Area: The outer hull has a surface area of 50,670 m² and is 0.5 meters thick.

1.2.4 Operational Cost Analysis

1.2.4.1 Construction and Development Costs (Adjusted) Based on updated volume and mass data, the following adjusted cost estimate is derived for the construction and launch of the SphereSpace:

- Design and Engineering: €165 million
- Manufacturing and Assembly: €655 million, including new structural requirements
- Transportation and Launch: €8.7 billion (based on 100-ton segments at optimistically estimated launch costs)

- **1.2.4.2 Annual Operating Costs** Despite the self-sustaining architecture aimed at minimizing operational costs, there remain ongoing expenses:
 - **Personnel Costs**: €5.6 million for 112 crew members
 - Life Support and Maintenance: €10 million to keep systems operational
 - **Energy and Propulsion**: €5 million for energy needs and minor course adjustments
 - Communication and Data Transmission: €2 million
 - Emergency Supplies: €3 million for unexpected stock replenishments
- **1.2.4.3 Long-Term Maintenance and Upgrades** Major maintenance and potential upgrades will be required every decade to ensure long-term usability. Estimated cost: **€500 million per decade**.

1.2.5 Technical Challenges and Feasibility

- **1.2.5.1 Rotational and Gravity Stability** The rotation of the SphereSpace must be carefully controlled to ensure a consistent gravity distribution. The challenge lies in ensuring structural integrity at high speed while integrating mechanisms for fine-tuning rotation.
- **1.2.5.2 Life Support and Closed-Loop Systems** The hydroponic gardens and recycling facilities on decks with Earth-like gravity require continuous monitoring and maintenance. Integrating these systems on Deck 8 balances spatial utilization with energy consumption.
- **1.2.5.3 Thermal and Radiation Shielding** The outer hull, with a thickness of 0.5 meters, provides basic protection against radiation and thermal fluctuations. Additional shielding may be required to protect the crew from cosmic radiation and solar storms.

1.2.6 Cost Estimation and Financing

Considering all phases (development, construction, launch, operation, maintenance), the total estimated cost for a 10-year operational period of the SphereSpace is approximately €10.3 billion.

Phase	Estimated Cost (EUR)
Design and Development	€165 million
Manufacturing and Construction	€655 million
Transportation and Launch	€8.7 billion
Operating Costs (over 10 years)	€256 million
Decade Maintenance and Upgrades	€500 million
Total (10 Years)	€10.3 billion

1.2.7 Conclusion and Outlook

The SphereSpace represents an ambitious concept for the future of space exploration. The detailed deck data demonstrate that a rotating space station with variable gravity levels is technically feasible. However, the high costs and technical challenges necessitate significant investment and technological advancements. This model could form the basis for future interstellar missions and represents a valuable step toward long-term space exploration.

1.2.8 Appendix: Complete Deck Listing

Below is the full list of geometric and dynamic properties for each deck:

Inne Radi Deck(m)		Net Deck Height (m)	Rota- tional Velocity (m/s)	Centrifug Accelera- tion (m/s ²	Volume
000 0.0	10.0	10.0	5.00	2.50	39,332.96
001 10.5		3.0	6.75	3.38	27,970.05
002 14.0		3.0	8.50	4.25	35,669.84
003 17.5	20.5	3.0	10.25	5.13	43,009.37
004 21.0	24.0	3.0	12.00	6.00	49,894.60
005 24.5	27.5	3.0	13.75	6.88	56,222.27
006 28.0	31.0	3.0	15.50	7.75	61,876.47
007 31.5	34.5	3.0	17.25	8.63	66,723.71
008 35.0	38.0	3.0	19.00	9.81	71,605.67
009 38.5	41.5	3.0	20.75	10.38	73,327.77
010 42.0	45.0	3.0	22.50	11.25	74,639.80
011 45.5	48.5	3.0	24.25	12.13	74,200.54
012 49.0	52.0	3.0	26.00	13.00	71,504.71

Inner Radius Deck(m)	Net Outer Radius (m)	Net Deck Height (m)	Rota- tional Velocity (m/s)	Centrifugal Accelera- tion (m/s²)	Net Space Volume (m³)
013 52.5	55.5	3.0	27.75	13.88	65,702.69
014 56.0	59.0	3.0	29.50	14.75	54,984.62
015 59.5	62.5	3.0	31.25	15.63	26,328.88

1.2.9 Sources

No external sources used.

2. Technical Foundations

Core engineering specifications, materials, and energy systems underpinning the station design.

2.1 Technical Design and System Specifications

Doc- Technical Design and System Specifications for the

u- 127-Meter Sphere Station (e.g., Earth ONE)

ment:

Date: 2024-10-30

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con-1.1 Geometry, Dynamics, and Structural Layout1.2 Decktents: Layout and Access Systems1.3 Primary Energy Source and

Redundancy1.4 Thermal Management and Heat

Dissipation 1.5 Safety and Hazard Management Systems 1.6 Evacuation and Rescue Systems 1.7 Freight and Personnel Transport 1.8 Attitude Control and Thruster systems 1.9 Life Support and Utility Systems 1.10 Appendix: Technical Tables

and Calculations 1.11 Sources

2.1.1 Geometry, Dynamics, and Structural Layout

The 127-meter Sphere Station is a spherical, rotating structure designed to provide artificial gravity through centrifugal force. The station has a diameter of 127 meters and rotates along a central axis to simulate gravity on its decks.

- **Rotation Dynamics**: The Sphere Station rotates at a speed calibrated to produce Earth-like gravity (~9.81 m/s²) on specific decks, while other decks experience variable gravity levels, from higher gravities closer to the outer decks to microgravity at the central axis.
- Structural Design: The sphere is composed of high-strength, multi-layered composite materials capable of withstanding micrometeoroid impacts and radiation exposure in Low Earth Orbit (LEO).
- Deck Configuration: Sixteen main decks (Deck 000 to Deck 015)
 are arranged as concentric shells. Decks closer to the center have
 lower gravity and are dedicated to storage, command centers,
 and docking areas. Outer decks provide residential, recreational,
 and operational spaces for the crew.

2.1.2 Deck Layout and Access Systems

The Sphere Station's decks are designed with specific functions and provide varied gravity levels to accommodate different uses.

2.1.2.1 Deck Layout Overview:

- **Deck 000**: Central docking port and command center, located along the station's rotational axis.
- **Decks 001-007**: Mid-gravity decks allocated for residential and operational spaces.
- Decks 008-012: Higher gravity decks for recreational and industrial activities.
- **Decks 013-015**: Storage, waste processing, and propulsion system housing.

2.1.2.2 Access Systems:

- Radial Elevators and Heavy-Lift Elevators: Connect all decks from the core (Deck 000) to the outermost layers.
- Tangential Walkways and Conveyors: Located on each deck for horizontal movement, with conveyor belts and rail vehicles for efficient transport.
- Hover and Climbing Channels: Special access channels designed for personnel to move across decks in low-gravity zones, equipped with magnetic boots and handrails.

2.1.3 Primary Energy Source and Redundancy

The Sphere Station's energy system combines nuclear and solar power to ensure a reliable, long-term power supply.

Primary Energy Source:

- Nuclear Power: Two NuScale Small Modular Reactor (SMR) modules, each providing 60 MW of power, or an array of twenty Rolls-Royce Micro-Reactors (1-5 MW each).
- Backup Systems: A secondary power source includes additional reactor modules held in reserve, allowing for redundancy and continuous operation in case of maintenance or failure.
- **Energy Regulation and Control**: Advanced digital control algorithms manage the power distribution and load adjustments, allowing the station to efficiently handle power fluctuations and maintain critical systems.

2.1.4 Thermal Management and Heat Dissipation

The thermal management system ensures the Sphere Station maintains stable temperatures, preventing overheating from solar radiation or energy systems.

- Large Liquid Heat Storage Units: Located on outer decks to buffer heat and stabilize the temperature across the station. These units absorb and release heat as needed, utilizing thermally conductive fluids.
- **Deployable Radiators**: Embedded within the outer shell, these radiators can be deployed as required to dissipate excess heat into space.
- **Supplemental Solar Panel Arrays**: Solar panels on the outer decks generate additional power and act as protective layers against solar heating, enhancing thermal insulation.

2.1.5 Safety and Hazard Management Systems

Comprehensive safety systems protect the station and its inhabitants from common space hazards, including fire, radiation, and structural damage.

- **Fire Suppression**: Multi-level fire suppression with inert gas systems in enclosed areas, water mist systems for habitable zones, and compartmentalization to prevent the spread of flames.
- **Radiation Shielding**: Integrated shielding in the hull to block harmful cosmic and solar radiation, supplemented by designated safe rooms with additional shielding.
- Micrometeoroid Protection: Multi-layered outer shell made from high-strength materials to absorb and deflect micrometeoroid impacts.
- **Biohazard Controls**: Specialized containment systems and air filtration to handle potential biological hazards in laboratories and medical facilities.

2.1.6 Evacuation and Rescue Systems

Evacuation systems are designed to facilitate safe escape in emergencies, enabling self-contained evacuation pods to return to Earth if required.

- **Evacuation Pods**: Self-sustaining pods equipped with life support systems, re-entry shielding, and autonomous guidance to Earth. Each pod can accommodate a group of crew members and is located on key decks for easy access.
- Centralized Assembly Points: Designated locations for gathering in emergencies, with access to escape routes and supplies.
- Regular Drills and Emergency Protocols: Routine training exercises and clear protocols ensure readiness for various emergency scenarios.

2.1.7 Freight and Personnel Transport

Transport systems connect the Sphere Station with Earth, the Moon, and other orbital destinations.

- **Docking Ports**: Located on Deck 000 for receiving cargo and passenger shuttles. These ports support standardized docking for resupply and crew rotation missions.
- Cargo and Waste Management: Dedicated bays for loading and unloading cargo, with automated waste processing units to compact and store waste for safe disposal or recycling.
- **Shuttle Systems**: Standardized shuttles for frequent Earth-LEO trips and long-haul journeys to lunar and Martian orbits.

2.1.8 Attitude Control and Thruster Systems

The station's attitude control system stabilizes its orientation and performs minor orbital adjustments.

- **Gyroscopes and Reaction Wheels**: Stabilize the station's orientation without expending propellant, using controlled spinning to counteract forces.
- **Thruster Systems**: Equipped with electric thrusters for minor orbital corrections and to counteract the forces generated by the station's rotation and any external disturbances.

2.1.9 Life Support and Utility Systems

Advanced life support and utility systems maintain a stable and habitable environment for long-term crew safety.

- Air, Water, and Waste Recycling: Closed-loop systems to recycle air, water, and organic waste, ensuring minimal resource dependency.
- **Power Distribution**: Redundant power grids ensure all critical systems remain operational even in case of failure in primary circuits
- High-Speed Data Network: Secure and fast data connections for communications, station operations, and inter-deck networking.

2.1.10 Appendix: Technical Tables and Calculations

A.1 Appendix A: Propulsion and Energy Calculations

System	Value	Details
Primary Nuclear Reactor Backup Reactor	2x NuScale SMR (60 MW each) 20 Rolls-Royce	Redundant nuclear energy source, sufficient for all primary station needs. Provides 1-5 MW each, ensuring continuous operation during
Capacity	Micro- Reactors	maintenance cycles.
Thermal Radiator Area	500 m ²	Radiators for dissipation of heat generated by reactors and internal systems.

A.2 Appendix B: Gravity and Deck Distribution

ter

A.3 Appendix C: Complete Deck Listing with Tangential Lengths

In- ner Ra- dius Dec k m)	Oute Ra- dius (m)	Net rOuter Ra- dius (m)	Deck	Tan- gential Length at Inner hRadius (m)	Tan- gential Length at Outer Radius (m)	Net Space Vol- ume (m³)	Rota- tion Veloc- e ity @ Net Radius (m/s)	Cen- trifugal Acceler- ation @ Net Radius (m/s²)
0000.0 00110.5 00214.0 00317.5 00421.0 00524.5 00628.0 00731.5 00835.0 00938.5 01042.0	14.0 17.5 21.0 24.5 28.0 31.5 35.0	10.0 13.5 17.0 20.5 24.0 27.5 31.0 34.5 38.0 41.5 45.0	10.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	126.00 124.24 122.85 121.04 118.79 116.08 112.87 109.12 104.77 99.73 93.91	124.40 123.07 121.33 119.14 116.50 113.36 109.69 105.43 100.50 94.80 88.18	49,89 56,22 61,87 66,72 71,60 73,32	06035	2.50 3.38 4.25 5.13 6.00 6.88 7.75 8.63 9.81 10.38 11.25

In- ner Ra- dius Dec k m)	Oute Ra- dius (m)	Net rOuter Ra- dius (m)	Deck	Tan- gential Length at Inner MRadius (m)	Tan- gential Length at Outer Radius (m)	Net Space Vol- ume (m³)	Rota- tion Veloc- e ity @ Net Radius (m/s)	Cen- trifugal Acceler- ation @ Net Radius (m/s²)
012 49.0 013 52.5 014 56.0 015 59.5	56.0 59.5	52.0 55.5 59.0 62.5	3.0 3.0 3.0 3.0	79.20 69.65 57.72 41.41	71.13 59.62 44.18 15.84	65,70 54,98	04275100 02267975 04269250 08381825	13.00 13.88 14.75 15.63

A.4 Appendix D: Safety and Hazard Protocols

Hazard	System	Description
Fire	Inert Gas Suppression	Fire suppression with argon or nitrogen gas, preventing flame spread in sensitive areas.
Radia- tion	Hull Shielding	Multi-layered composite materials absorb and deflect cosmic and solar radiation.
Mi- crom- ete- oroid	High-Strength Hull	Protective multi-layered hull that can withstand small impacts from micrometeoroids.
Bio- haz- ard	Air Filtration and Containment	Specialized HEPA filtration and containment systems for laboratories and medical facilities.

2.1.11 Sources

No external sources used.

2.2 Specification and Selected Materials

Doc- Specification and Selected Materials

ument:

Date: 2024-11-05

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con- 1.1 Overview1.2 Introduction1.3 Material Requirements and

tents: Specifications 1.4 Structural Components and Material

Selection 1.5 Appendix A: Window Specification and Material Selection of LEO-based Earth ONE Station 1.6 Conclusion 1.7

Sources

2.2.1 Overview

The Sphere Space Station (Earth ONE) is an innovative space station designed specifically for operation in Low Earth Orbit (LEO). This document describes the material selection and specifications for various structural components and functional units of the station. Based on the unique requirements of space deployment, special materials and composites have been chosen to withstand extreme environmental conditions and operational demands.

2.2.2 Introduction

In the demanding environment of low Earth orbit, every material must endure intense stresses, including: - Fire resistance for exposure to high thermal loads. - Acid and chemical resistance to ensure long-term durability even in chemically stressed areas. - Biological resistance to protect against mold, microbes, and biological contamination. - Rapid decompression and temperature fluctuation resistance, as temperatures in LEO can range from -150°C to 120°C.

2.2.3 Material Requirements and Specifications

To meet the needs of the space station, the following silicon-based and additional materials have been selected as primary components:

2.2.3.1 Silicon Carbide (SiC)

- **Properties**: Extremely hard, chemically resistant, and fireproof; withstands temperatures above 1000°C.
- **Advantages in space**: Resistant to thermal shocks and radiation exposure, ideal for highly stressed structural components.
- **Disadvantages**: Brittle; requires composite techniques for elasticity.

2.2.3.2 Silane-based Polyimide Compounds

- **Properties**: Chemically stable, elastic, and heat resistant.
- Advantages in space: Withstands extremely low temperatures, exhibits low outgassing, and is resistant to biological influences.

2.2.3.3 Silicon-based Elastomers

- **Properties**: High elasticity and temperature resistance; good resistance to chemical and biological effects.
- **Advantages in space**: Excellent for shock absorption and vibration resistance in a vacuum environment.

2.2.3.4 Silica Aerogels

- **Properties**: Lightweight, heat resistant, and extremely insulating.
- Advantages in space: Provides strong thermal insulation and radiation resistance; however, brittle, so best used as a coating.

2.2.4 Structural Components and Material Selection

Materials are chosen specifically according to the application area and mechanical load to achieve an optimal balance between strength and weight.

2.2.4.1 Load-Bearing Structures

- Recommended materials: Silicon carbide (SiC) as the main structural material, supplemented by silicon elastomers for vibration damping.
- **Advantages**: High structural stability, resistant to rotational dynamics and vibrations.

2.2.4.2 Hull Components and Heat Exchangers

- Recommended materials: Silane-modified polyimides and heat-resistant ceramics for outer hull sections; steel for pressurized water pipes.
- Advantages: Chemical stability, high heat resistance, and pressure tolerance, ideal for heat exchanger applications.

2.2.4.3 Radial Bulkheads Along the Axis of Rotation

- Recommended materials: Combination of SiC and carbon-fiberreinforced polymers.
- **Advantages**: Provides protection against mechanical loads and fire hazards; low weight and high strength.

2.2.4.4 Tangential Constructions

- **Recommended materials**: Silicon-based elastomers and lightweight carbon polymers.
- Advantages: Flexibility and vibration damping to absorb rotational loads.

2.2.4.5 Cabin and Laboratory Constructions

- Recommended materials: Silane-based polyimides, coated silica aerogels for thermal insulation, steel and carbon polymers for structural components.
- **Advantages**: Protection against temperature fluctuations and high biological resistance.

2.2.4.6 Spatial Constructions (Shops, Workshops)

- Recommended materials: Silicon elastomers and carbon polymers as base structure.
- **Advantages**: Adaptable, lightweight, yet sturdy enough for various spatial uses.

2.2.5 Specific Materials for Special Applications

2.2.5.1 Steel, Carbon Polymers, and Ceramics

 Areas of use: Steel for highly stressed internal structures (e.g., pipes in the heat exchanger), carbon polymers for lightweight structural applications, and ceramics as thermal barriers in hightemperature areas. • **Function**: Targeted placement of these materials optimizes weight while ensuring the necessary resistance and stability.

2.2.6 Appendix A: Window Specification and Material Selection of LEO-based Earth ONE Station

High-Performance Composite Window for Space Applications: Material and Specification Overview

A.1 Introduction

The selection of materials for the windows of the Earth ONE station demands an extraordinary level of durability. These windows are subject to extreme temperature fluctuations, rapid decompression, impacts from micrometeorites, and high levels of UV and cosmic radiation. The proposed composite window uses a multi-layered construction designed to withstand these conditions, ensuring optical clarity and maximum protection.

A.2 Window Requirements in Low Earth Orbit (LEO)

- **Temperature Range**: -150°C to +120°C, requiring resistance to extreme thermal cycling.
- Pressure Fluctuations: Resilience to rapid decompression without failure.
- **Impact Resistance**: Resistance to micrometeorite impacts at velocities of up to 15 km/s.
- **Radiation Shielding**: UV and cosmic radiation protection to prevent damage over extended periods.

A.3 Layered Material Structure

A.3.1 Outer Layer: Aluminum Oxide (Sapphire) or Aluminum Oxynitride (ALON)

- **Properties**: Hardness, UV resistance, and protection against high-velocity impacts.
- **Thickness**: 5 cm, providing optimal micrometeorite resistance.

A.3.2 Middle Layer(s): Fused Silica (Quartz Glass) and Polycarbonate

- Fused Silica: Thermal stability and UV shielding.
- Polycarbonate: Shock absorption and impact resistance.

Total Thickness: 10 cm for fused silica and 5 cm for polycarbonate.

A.3.3 Inner Layer: Borosilicate or Cerium-doped Glass

- **Properties**: Additional radiation protection and optical clarity preservation.
- Thickness: 3 cm.

A.4 Total Thickness and Weight

- Overall Thickness: Approximately 20–30 cm for optimal protection.
- Weight per Square Meter: Approximately 530-550 kg/m², significantly heavier than conventional bulletproof glass but offering substantially greater resistance to space-specific hazards.

A.5 Comparison to Bulletproof Automotive Glass

In contrast to high-end bulletproof glass, which is optimized for low-velocity impacts and ambient temperatures, this space-grade composite window structure withstands high-energy impacts, thermal extremes, and radiation exposure, ensuring robust and reliable performance for the Earth ONE station.

2.2.7 Conclusion

The specified materials and configurations of the Earth ONE station enable unparalleled resilience against the harshest conditions of the low Earth orbit environment. By tailoring each component's material properties to its functional demands, the Earth ONE station is engineered for optimal performance, durability, and safety.

2.2.8 Sources

No external sources used.

2.3 Energy and Thermal Management Systems

Doc- Energy and Thermal Management Systems for the

u- Sphere Station

ment:

Date: 2024-11-01

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con- 1.1 Primary Energy Source and Generation Systems1.2 **tents:** Backup and Redundant Power Systems1.3 Thermal

Management and Heat Dissipation 1.4 Energy Efficiency and Conservation 1.5 Environmental and Safety Considerations 1.6

Sources

2.3.1 Primary Energy Source and Generation Systems

To support the operation of a large, long-term space station, a reliable and high-capacity energy source is essential. The Sphere Station will utilize a hybrid energy generation approach combining nuclear power and solar power to ensure both efficiency and redundancy.

2.3.1.1 Nuclear Power Systems

Primary Reactor Choice:

- The Sphere Station will be powered primarily by two NuScale Small Modular Reactors (SMRs), each capable of producing 60 MW. These reactors are known for their compact design, high efficiency, and safety features, making them suitable for long-term, uninterrupted energy supply in space.
- An alternative configuration could utilize twenty Rolls-Royce Micro-Reactors, each with a power output ranging between 1 and 5 MW, providing modular flexibility and easier scalability.

Advantages:

- Continuous Power Supply: Unlike solar energy, nuclear reactors can provide continuous power regardless of the station's orientation relative to the Sun.
- High Energy Density: Nuclear power offers a high energyto-mass ratio, which is critical for supporting a large, selfsustaining space station.
- **Controlled Power Output**: The reactors can be managed to match the station's varying energy demands, especially

during high-energy activities like thruster adjustments, scientific experiments, and heavy industrial operations.

Location on the Station:

- The reactors are positioned on outer decks to simplify heat dissipation and reduce radiation exposure to the station's interior. They are shielded by thick, multi-layered barriers to prevent radiation leakage into inhabited areas.

2.3.1.2 Solar Power Systems

Solar Panel Arrays:

- The Sphere Station is equipped with large solar panel arrays strategically positioned on the outer decks where there are no windows. These panels maximize surface area for solar energy capture without obstructing views from observation areas.
- Solar panels serve as a secondary energy source and as a protective layer against thermal fluctuations.

Energy Contribution:

- Solar power will provide supplemental energy during peak sunlight exposure, reducing the load on nuclear reactors and increasing overall energy efficiency.
- Solar arrays also add a layer of redundancy to ensure essential systems remain powered in the unlikely event of nuclear power interruptions.

2.3.2 Backup and Redundant Power Systems

Backup power systems are essential for maintaining critical life support and operational functions in case of reactor maintenance or unforeseen failures.

2.3.2.1 Additional Reactor Units

Backup Reactors:

- Two additional SMRs (or 10 Rolls-Royce micro-reactors) are held in reserve within a protected storage area in the central region of the station. These reactors can be brought online in emergencies or during maintenance of the primary units.
- The backup reactors are designed to power essential systems such as life support, thermal control, and communication, ensuring survival even in a partial shutdown scenario.

2.3.2.2 Energy Storage and Battery Systems

Battery Banks:

- Large-capacity lithium-ion or solid-state battery banks are integrated into the station to store excess power generated during low-demand periods. These batteries provide shortterm energy storage, allowing for rapid deployment of backup power in emergencies.
- Batteries are designed to power the station's critical systems for up to 24 hours, allowing ample time for reactor repairs or adjustments.

• Flywheel Energy Storage:

- Flywheels are incorporated as additional storage, offering quick-release energy for sudden demand spikes and minimizing wear on batteries. This system is particularly useful during energy-intensive maneuvers or emergencies.

2.3.3 Thermal Management and Heat Dissipation

In the vacuum of space, managing heat is challenging due to the lack of a natural medium for convective heat transfer. The Sphere Station utilizes a combination of heat storage, radiators, and insulation systems to maintain stable temperatures.

2.3.3.1 Heat Storage Systems

Liquid Heat Storage Units:

- Large liquid heat storage tanks are located on the outer decks, primarily filled with a high-thermal-capacity fluid, such as molten salt or specialized thermal oils. These tanks absorb excess heat generated by reactors and other systems, acting as a buffer to prevent overheating.
- Heat storage is particularly useful for managing short-term heat surges, balancing temperature fluctuations throughout the station.

2.3.3.2 Radiator Panels

Deployable Radiators:

- Flexible radiator panels are embedded within the station's outer shell. These radiators are deployed as needed to dissipate stored heat into space, where it radiates away in the form of infrared energy.
- The radiator panels are modular, allowing for the gradual release of heat, and can be positioned or angled to optimize heat dissipation based on the station's orientation and thermal needs.

Thermal Control Coatings:

- The radiator panels are coated with highly emissive materials to enhance infrared radiation while minimizing absorption of solar heat. This coating allows the station to release heat effectively without overheating in direct sunlight.

2.3.3.3 Thermal Insulation

Multi-Layer Insulation (MLI):

- The station's walls are lined with multi-layer insulation composed of reflective and absorptive materials, which prevents excessive heat gain from the Sun and minimizes heat loss in shaded regions.
- This insulation is critical for protecting the interior habitats from external thermal extremes and maintaining a comfortable living environment for residents.

Phase-Change Materials:

Certain areas use phase-change materials (PCMs) that absorb heat as they transition between states (solid to liquid, or liquid to gas), providing a controlled heat management solution. PCMs are ideal for smoothing out thermal spikes in specific equipment areas.

2.3.4 Energy Efficiency and Conservation

To minimize energy waste and optimize the station's overall efficiency, a series of energy conservation systems and protocols are implemented.

2.3.4.1 Intelligent Power Distribution

Smart Grids:

- The Sphere Station uses a smart power grid with sensors and automated control systems to monitor energy use and adjust power distribution in real-time.
- This system prioritizes critical systems, reducing energy supply to non-essential areas during peak demand or emergency situations.

Load Balancing and Demand Management:

- Energy-intensive activities, such as industrial processes and scientific experiments, are scheduled during off-peak hours to avoid overloading the power grid.
- Automated load balancing algorithms distribute energy consumption efficiently across different station systems, minimizing peaks in demand.

2.3.4.2 Energy-Efficient Lighting and Appliances

LED and OLED Lighting:

- Energy-efficient lighting systems, including LED and OLED panels, are used throughout the station to minimize power consumption.
- Lighting is programmed to mimic Earth's day-night cycle, promoting a natural circadian rhythm for residents, while conserving energy during off-hours.

Low-Power Appliances:

 All appliances and equipment on the station are chosen based on strict energy efficiency standards, with low-power consumption modes and automatic shutdown features.

2.3.4.3 Water and Air Circulation Efficiency

Closed-Loop Water Recycling:

 Water usage is closely monitored, with recycled and filtered water systems ensuring minimal energy expenditure for water heating and cooling.

Variable Airflow Control:

 The air circulation system is equipped with variable-speed fans and energy-efficient pumps that adjust airflow based on occupancy and activity in different station zones, reducing power requirements.

2.3.5 Environmental and Safety Considerations

Safety measures and environmental controls are implemented to ensure that energy and thermal management systems do not pose risks to the station's inhabitants or to the structural integrity of the station.

2.3.5.1 Radiation Protection and Safety

Radiation Shielding:

 All reactor and high-energy systems are heavily shielded to contain radiation. Shielding materials, such as borated polyethylene and lead, surround the nuclear reactors to ensure minimal radiation exposure in inhabited areas.

• Safety Protocols for Reactor Management:

- Automated monitoring systems continuously assess reactor status, with fail-safe mechanisms to shut down reactors in case of anomalies.
- Emergency procedures include reactor isolation and venting mechanisms to prevent overheating or radiation leakage.

2.3.5.2 Thermal Safety Systems

• Overheat Sensors and Alarms:

 Temperature sensors and automated alarms are installed throughout the station to detect overheating in critical systems, enabling prompt response to prevent failures or damage.

Fire Suppression Systems:

 Areas surrounding reactors and other high-energy systems are equipped with fire suppression, including gas-based extinguishers and fire-resistant materials to manage potential hazards.

2.3.6 Sources

No external sources used.

3. Infrastructure and Operations

Operational structures, staffing, and community engagement within the station network.

3.1 Staffing, Facilities, and Living Spaces

Doc- Operational Infrastructure and Living Facilities on the

u- Sphere Station

ment:

Date: 2024-10-31

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Contents: 1.1 Staffing and Personnel Requirements1.2 Medical, Community, and Educational Facilities1.3 Residential Quarters and Hospitality Services1.4 Educational and Research Institutions1.5 Industrial and Commercial Spaces1.6 Leasing and Business Model1.7 Sources

3.1.1 Staffing and Personnel Requirements

The Sphere Station requires a diverse and highly trained workforce to ensure the smooth operation and sustainability of the habitat. The staffing model is divided into core operational roles, scientific and research teams, and auxiliary support staff.

3.1.1.1 Core Operational Roles

- Station Operations: Includes engineers, technicians, and managers responsible for the maintenance of life support systems, power generation, waste management, thermal control, and station-wide operations.
- Safety and Security: Personnel dedicated to safety protocols, emergency response, and security monitoring.
- Medical Staff: A team of medical professionals, including a general practitioner, a surgeon, a psychologist, and a virologist, alongside support staff for general healthcare and emergency medical situations.
- Environmental and Life Support Technicians: Specialists in maintaining closed-loop environmental systems, including hydroponics, water recycling, and air purification.

3.1.1.2 Scientific and Research Teams

 Space Science and Astrobiology: Researchers focusing on space science, biology, and astrobiology for studies related to space conditions, potential extraterrestrial life, and adaptation of life in microgravity.

- Material Science and Space Manufacturing: Specialists dedicated to materials research and space-based manufacturing processes.
- **Psychological and Social Research**: Experts studying the psychological and social dynamics of long-term space habitation.

3.1.1.3 Auxiliary Support Staff

- **Hospitality and Recreation**: Staff for managing residential services, recreational facilities, restaurants, and social activities.
- **Educational Staff**: Instructors and program coordinators for on-station education, including K-12 schooling, higher education courses, and vocational training.
- **Communication and Data Services**: IT professionals managing data networks, communication systems, and cybersecurity.

3.1.2 Medical, Community, and Educational Facilities

To support a population of up to 700 residents, the Sphere Station is equipped with comprehensive facilities designed to meet health, educational, and community needs.

3.1.2.1 Health and Medical Center

- **Emergency and Trauma Center**: Equipped with surgical suites, ICU units, and diagnostic tools.
- **General Medical Practice**: For regular check-ups, preventive care, and minor treatments.
- Mental Health Services: Counseling and support for psychological well-being, including regular sessions with psychologists and social workers.
- **Specialized Labs**: Facilities for handling biological and potential contamination incidents, such as a virology lab and quarantine areas.

3.1.2.2 Community and Recreational Facilities

- **Multipurpose Recreational Halls**: Spaces designed for social gatherings, group events, and recreational activities.
- **Fitness Center**: Gym with exercise equipment to support physical health and counteract the effects of low gravity on muscle and bone density.
- **Library and Study Rooms**: Quiet zones for reading, studying, and relaxation.

• **Outdoor Simulation Areas**: Spaces with artificial sunlight and greenery to mimic Earth-like outdoor settings, promoting mental well-being.

3.1.2.3 Educational Facilities

- **K-12 School**: Designed for children of resident personnel, featuring classrooms, labs, and interactive learning environments.
- Higher Education and Vocational Training: Programs provided in collaboration with Earth-based institutions for advanced studies, research, and vocational training in areas such as engineering, medicine, and space science.
- Laboratories and Research Centers: Dedicated labs for educational purposes, including space science, biology, and materials research.

3.1.3 Residential Quarters and Hospitality Services

The Sphere Station offers residential spaces for permanent staff, transient workers, and visitors, with options to accommodate both long-term habitation and short-term stays.

3.1.3.1 Residential Quarters

- Crew Quarters: Private rooms for permanent residents, furnished with essential amenities, including a bed, desk, storage, and personal hygiene facilities.
- **Visitor Suites**: Larger suites for temporary residents, including visitors, researchers, and space tourists, with added amenities such as lounge areas and private workspaces.
- Family Living Spaces: Apartments equipped to accommodate families with children, including multiple rooms and additional storage space.

3.1.3.2 Hospitality Services

- Dining Facilities: Cafeterias, restaurants, and snack bars offering a range of meals to meet nutritional needs, using ingredients from hydroponic farms and supplemented by imported supplies.
- **Shopping and Retail Outlets**: Stores providing essentials, clothing, electronics, and recreational items.
- **Lodging for Space Tourism**: High-end accommodations with views of space and Earth, offering unique experiences for tourists, such as zero-gravity zones and observation platforms.

3.1.4 Educational and Research Institutions

The Sphere Station includes facilities for advanced educational programs and high-tech research labs, fostering a culture of learning and innovation.

3.1.4.1 University and Research Collaboration

- **Space University Branch**: Partnered with Earth-based universities to offer graduate and postgraduate programs in astrophysics, space engineering, and environmental science.
- Research Institutes: Centers for materials science, astrobiology, and advanced medicine, conducting experiments in microgravity and controlled environments.

3.1.4.2 Public Outreach and STEM Education

- Space Exploration Museum: Featuring exhibits on space exploration, physics, and astronomy to educate and inspire residents and visitors.
- STEM Programs for Youth: Hands-on activities and simulations aimed at encouraging interest in science, technology, engineering, and mathematics for younger residents and visiting students.

3.1.5 Industrial and Commercial Spaces

To support self-sufficiency and economic viability, the Sphere Station includes industrial facilities and commercial areas designed to encourage innovation, production, and economic activity.

3.1.5.1 Industrial and Research Facilities

- **Manufacturing and Fabrication Labs**: Equipped with 3D printers, metalworking, and electronics manufacturing for creating spare parts, experimental equipment, and research tools.
- Biotech and Pharmaceutical Labs: Facilities for biotechnological research and pharmaceutical production, leveraging microgravity conditions for unique products.
- Recycling and Waste Processing Centers: Systems for material recycling, including metal, plastic, and organic waste, to minimize resource dependency and support sustainability.

3.1.5.2 Commercial Spaces

- **Commercial Leasing**: Dedicated spaces for businesses to set up offices, labs, or production facilities, catering to companies interested in space-based research and development.
- Retail Spaces for Visitors and Residents: Stores offering convenience items, personal care products, clothing, and specialty goods for both residents and visitors.
- Satellite Servicing and Repair Hub: Facilities equipped to service, refuel, and repair satellites, providing additional revenue streams.

3.1.6 Leasing and Business Model

The Sphere Station will operate on a leasing model to encourage commercial activities, with residential and industrial spaces available for rent. The pricing structure balances affordability for essential personnel and research institutes with market-driven rates for commercial and high-end tourism spaces.

3.1.6.1 Residential Leasing Model

- **Crew and Research Quarters**: Lower-cost leases for long-term residents, including essential staff, researchers, and families.
- **Tourism Suites**: Premium rates for short-term tourist accommodations, offering luxury suites with unique experiences and access to observation platforms.

3.1.6.2 Commercial and Industrial Leasing

- Lab and Office Space: Competitive leasing rates for companies involved in space research, pharmaceuticals, and biotechnology.
- Manufacturing and Production Facilities: Spaces leased to industries interested in microgravity manufacturing, including those involved in creating specialized materials, electronics, and medical products.

3.1.6.3 Sustainable Revenue and Incentive Programs

- Incentives for Research Institutions: Subsidized leasing rates for research institutions conducting studies aligned with the Sphere Station's goals.
- Tourism Packages: Special offers for space tourists, including observation deck access, zero-gravity experiences, and guided tours.
- Revenue Sharing with Private Partners: Partnerships with private companies for shared revenue from research and manufacturing outputs.

3.1.7 Sources

No external sources used.

3.2 Organizational Structure and Consortium Model

Doc- Organizational Structure and Consortium Model for

u- the Sphere Station Project

ment:

Date: 2024-10-30

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Contents: 1.1 Overview of the Consortium Model1.2 Key Stakeholders and Roles1.3 Organizational Structure1.4 Governance and Decision-Making1.5 Funding and Financial Strategy1.6 Public and Private Partnerships1.7 Incentives and Benefits for

Stakeholders 1.8 Sources

3.2.1 Overview of the Consortium Model

The Sphere Station Project is designed as a multi-stakeholder consortium model to leverage the strengths, expertise, and resources of various entities. This approach ensures that the project benefits from shared investments, collaborative research, and sustainable long-term operations.

- Vision: To create a sustainable, self-sufficient space habitat that promotes scientific research, space tourism, industrial development, and international cooperation.
- Mission: Develop and operate the Sphere Station in Low Earth Orbit (LEO) and subsequent Sphere Stations for lunar orbit and deep-space exploration, achieving economic viability and technological advancement for humanity's presence in space.
- Core Values: Transparency, sustainability, innovation, and international cooperation.

3.2.2 Key Stakeholders and Roles

The consortium includes a range of stakeholders from different sectors, each contributing expertise, resources, or funding.

3.2.2.1 Government Agencies and Space Organizations

Space Agencies: Agencies like NASA, ESA, JAXA, and other international space agencies provide technical expertise, regulatory support, and funding.

- **Government Bodies**: Government representatives play a role in overseeing regulatory compliance, international cooperation, and public interest management.
- **Defense and Security**: Defense-related organizations may be involved in areas related to station security, space traffic management, and emergency protocols.

3.2.2.2 Private Sector and Industry Partners

- **Aerospace Companies**: Companies like SpaceX, Boeing, and Blue Origin can contribute launch services, station modules, and technology development.
- Research and Development Firms: Specialized firms bring innovation in fields such as robotics, AI, materials science, and life support systems.
- **Energy Providers**: Companies with expertise in nuclear and solar energy play a critical role in powering the Sphere Station.

3.2.2.3 Research Institutions and Universities

- **Universities and Research Centers**: Institutions from around the world participate in research initiatives, provide education and training, and contribute scientific expertise.
- Space Research Institutes: Organizations dedicated to space studies contribute to understanding long-term space habitation, microgravity research, and astrobiology.

3.2.2.4 Non-Profit and Public Organizations

- Environmental and Sustainability Organizations: These groups work on sustainability goals, such as minimizing environmental impacts, waste management, and recycling within the station.
- **Public Outreach and Education**: Organizations focused on public engagement and STEM education help build public support and ensure knowledge transfer to future generations.

3.2.2.5 Financial Institutions and Investors

- **Investment Funds**: Private equity and venture capital firms interested in the space industry provide critical early-stage funding and long-term investment.
- Development Banks and International Financial Institutions: Organizations like the World Bank and regional development banks may support the project through grants or lowinterest loans for developmental and humanitarian objectives.

3.2.3 Organizational Structure

The Sphere Station Consortium is structured to allow for efficient management, decision-making, and coordination across all stakeholders. The organizational structure consists of governing bodies, executive functions, and advisory groups.

3.2.3.1 Consortium Council

- Role: The Consortium Council is the primary governing body of the Sphere Station project, responsible for strategic decisionmaking, financial oversight, and approving major projects and partnerships.
- Membership: Consists of representatives from major stakeholders, including government agencies, private sector leaders, and research institutions.
- **Functions**: Approves strategic plans, oversees budget allocations, and ensures alignment with the project's long-term vision.

3.2.3.2 Executive Board

- Role: The Executive Board oversees day-to-day operations, manages implementation of the project's goals, and coordinates between various departments.
- Chief Executive Officer (CEO): The CEO is appointed by the Consortium Council and is responsible for overall project leadership, reporting to the Council on progress and challenges.
- Departments under the Executive Board:
 - **Operations and Maintenance**: Manages the physical upkeep and technical operations of the Sphere Station.
 - Research and Development (R&D): Oversees scientific initiatives and technology development.
 - **Finance and Funding**: Responsible for financial planning, budgeting, and managing consortium funds.
 - **Public Relations and Outreach**: Handles communication, public engagement, and educational programs.

3.2.3.3 Advisory Committees

- **Technical Advisory Committee**: A group of experts from various fields (engineering, science, logistics) who provide guidance on technical aspects of the station.
- **Ethics and Sustainability Committee**: Ensures that the project adheres to ethical and environmental standards.

 Safety and Risk Management Committee: Focuses on the safety of the station's operations, risk assessment, and emergency protocols.

3.2.4 Governance and Decision-Making

The Sphere Station Consortium employs a structured governance model that balances transparency, efficiency, and stakeholder participation.

3.2.4.1 Decision-Making Process

- Strategic Decisions: Major strategic decisions, including expansions, funding allocations, and partnerships, are voted on by the Consortium Council, requiring a supermajority for approval.
- Operational Decisions: Day-to-day operational decisions are made by the Executive Board, with input from relevant departments and advisory committees.
- Consensus-Building: Efforts are made to reach a consensus on major issues, promoting collaboration and minimizing conflicts among stakeholders.

3.2.4.2 Conflict Resolution Mechanism A conflict resolution framework is established to handle disagreements, with options such as mediation, arbitration, and, if necessary, external legal review. This process ensures that conflicts are managed constructively without disrupting project goals.

3.2.5 Funding and Financial Strategy

The financial strategy is based on a combination of public funding, private investment, and revenue generation from commercial activities.

3.2.5.1 Initial Funding and Development

- Government Grants and Contributions: Initial funding from participating governments and space agencies covers foundational research, development, and initial construction.
- Private Investment: Venture capital and private equity funding support early infrastructure, while commercial partnerships contribute to operational costs.
- Phased Funding Model: The project is funded in phases, with specific milestones that unlock additional financing based on progress and performance.

3.2.5.2 Revenue Streams

- Commercial Leasing: Leasing residential, industrial, and commercial spaces to private entities involved in space tourism, research, and manufacturing.
- Research Contracts: Generating revenue through contracts with research institutions and universities for exclusive use of labs and research facilities.
- **Tourism and Hospitality**: Offering premium space tourism packages, including unique experiences and luxury accommodations.
- **Satellite Servicing and Repair**: Providing repair, refueling, and servicing for satellites, generating a steady revenue stream.

3.2.6 Public and Private Partnerships

Public and private partnerships are crucial to the success of the Sphere Station, offering both financial support and technological advancements.

3.2.6.1 Public Sector Partnerships

- Space Agency Collaborations: Partnerships with space agencies allow for resource-sharing, such as launch services, regulatory support, and technical expertise.
- **Educational and STEM Programs**: Joint initiatives with educational institutions and government agencies to promote STEM education and space science.

3.2.6.2 Private Sector Collaborations

- Industry-Specific Partnerships: Collaborations with private companies specialized in aerospace, energy, life sciences, and technology development.
- Innovation Hubs: Establishing research and development hubs on the station to encourage innovation in fields like robotics, AI, and biotech.

3.2.6.3 Public-Private Partnership (PPP) Model A structured PPP model is implemented to maximize resource utilization and risk-sharing between the public and private sectors. This model encourages investment and accelerates project timelines by combining public funding with private expertise and innovation.

3.2.7 Incentives and Benefits for Stakeholders

To encourage participation and investment from various sectors, the consortium offers incentives tailored to each type of stakeholder.

3.2.7.1 Government Incentives

- **Strategic Influence**: Participating governments gain influence in space policy and international space cooperation.
- Economic Growth: The project stimulates the space economy, creating jobs, driving technological advancement, and boosting related industries.

3.2.7.2 Private Sector Incentives

- Exclusive Access to Space Resources: Companies gain exclusive access to the Sphere Station's facilities, enabling unique manufacturing and research opportunities.
- **Brand Recognition and Market Leadership**: Private partners benefit from brand association with a landmark project, establishing market leadership in the burgeoning space economy.

3.2.7.3 Research and Academic Benefits

- Dedicated Research Space: Research institutions have access to state-of-the-art labs and exclusive study opportunities in a space environment.
- Knowledge Transfer and Collaboration: Access to collaborative research with international scientists, enhancing innovation and global knowledge transfer.

3.2.7.4 Public Engagement and Social Impact

- STEM Education and Outreach: The Sphere Station project acts as a catalyst for STEM engagement, inspiring future generations and promoting public support for space exploration.
- **Environmental Initiatives**: The project's commitment to sustainable space operations aligns with global environmental goals, promoting a responsible approach to space development.

3.2.8 Sources

- NASA https://www.nasa.gov
- ESA https://www.esa.int
- JAXA https://www.jaxa.jp
- SpaceX https://www.spacex.com

- Boeing https://www.boeing.com
 Blue Origin https://www.blueorigin.com
 World Bank https://www.worldbank.org

3.3 Public Engagement and Decentralized Associations

Doc- Public Engagement and Decentralized Associations for

u- the Sphere Station Project

ment:

Date: 2024-10-30

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Contents: 1.1 Public Engagement Strategy1.2 Educational Programs and STEM Initiatives1.3 Community-Driven Projects and Local Associations1.4 Decentralized Association Model1.5 Outreach

Channels and Communication Platforms1.6 Global Public

Engagement Events1.7 Benefits for Participating

Communities 1.8 Sources

3.3.1 Public Engagement Strategy

To gain widespread public support and foster a sense of shared ownership, the Sphere Station Project adopts a robust public engagement strategy. This strategy focuses on transparency, accessibility, and inclusivity to involve diverse communities in the project's mission.

3.3.1.1 Goals

- **Transparency**: Keep the public informed about project milestones, challenges, and achievements through regular updates and accessible reports.
- **Community Involvement**: Encourage public input in nontechnical decisions, providing a voice to citizens and aligning the project's direction with community values.
- **Inspiration and Awareness**: Use the project as a source of inspiration, demonstrating the potential of space exploration to improve life on Earth and motivate future generations.

3.3.1.2 Key Engagement Metrics

- **Participation Rates**: Measure involvement in public events, volunteer programs, and educational workshops.
- **Public Perception**: Track the perception of the Sphere Station Project through surveys and social media engagement.
- Impact on STEM Interests: Assess the effectiveness of STEM initiatives by tracking enrollment in related educational programs and career pursuits.

3.3.2 Educational Programs and STEM Initiatives

Educational outreach is central to the Sphere Station's mission, aiming to inspire interest in science, technology, engineering, and mathematics (STEM) while fostering a skilled future workforce for space-related industries.

3.3.2.1 K-12 Education Initiatives

- **Curriculum Development**: Collaborate with educational institutions to integrate space science modules into school curricula, tailored to different age groups.
- **Virtual Field Trips**: Offer live-streamed tours and interactive experiences aboard the Sphere Station, allowing students worldwide to witness space operations firsthand.
- Hands-on STEM Workshops: Develop activity kits and modules that teachers can use in classrooms to simulate space missions, engineering challenges, and environmental management tasks.

3.3.2.2 Higher Education and Research Collaborations

- Scholarship Programs: Provide scholarships and grants for students pursuing degrees in aerospace, physics, engineering, environmental science, and related fields.
- Internship Opportunities: Partner with universities to offer internship programs that allow students to gain experience in real-world space research and project management.
- **Joint Research Projects**: Collaborate with universities and research institutions on space science and technology projects, offering funding and resources for innovative research.

3.3.2.3 Public Science and Citizen Scientist Programs

- **Citizen Scientist Initiatives**: Enable individuals to participate in data collection, analysis, and environmental monitoring, contributing to the station's research goals.
- Public Science Events: Host public science days where citizens can engage in interactive experiments, lectures, and Q&A sessions with scientists involved in the project.

3.3.3 Community-Driven Projects and Local Associations

Local communities and associations are encouraged to participate actively in the Sphere Station Project, creating a decentralized network that strengthens the connection between the public and the space mission.

3.3.3.1 Establishing Local Associations

- Local Clubs and Associations: Establish local clubs affiliated with the Sphere Station, allowing communities to participate in space-related activities, events, and discussions.
- Regional Coordinators: Appoint regional coordinators to oversee local associations, ensuring that they align with the project's goals while adapting to local interests.
- Community-Led Initiatives: Encourage local associations to develop community-led projects, such as environmental programs, educational events, and fundraising for space science initiatives.

3.3.3.2 Collaboration with Schools and Libraries

- **School Partnerships**: Form partnerships with schools to host events, workshops, and educational talks, providing resources for teachers and engaging students in space science.
- Library Outreach Programs: Utilize local libraries as community hubs for information on the Sphere Station Project, offering educational materials, virtual event streaming, and discussion groups.

3.3.4 Decentralized Association Model

The decentralized association model enables the Sphere Station Project to scale its public engagement efforts globally. This model empowers local communities to take ownership of their involvement while remaining connected to the main organization's objectives.

3.3.4.1 Structure of Decentralized Associations

- Core Association (Hub): The central hub manages the overarching strategy, resources, and communication with decentralized associations worldwide.
- Local Chapters (Spokes): Local chapters operate independently but adhere to the project's guidelines. These chapters engage local communities, host events, and facilitate grassroots support.
- Annual Conferences: Organize an annual conference where representatives from local associations gather to share best practices, discuss progress, and refine future strategies.

3.3.4.2 Benefits of the Decentralized Model

 Scalability: Allows the project to expand its reach globally without relying solely on centralized resources.

- **Local Adaptability**: Each association can tailor its activities to fit local culture, interests, and educational systems.
- **Enhanced Public Ownership**: By involving local leaders and citizens, the project fosters a sense of collective ownership and pride in the Sphere Station's mission.

3.3.5 Outreach Channels and Communication Platforms

Effective outreach and communication are essential for keeping the public engaged, informed, and motivated to participate in the Sphere Station Project. A multi-channel approach ensures the widest reach.

3.3.5.1 Digital Platforms

- **Official Website**: Serve as the primary hub for project information, updates, educational resources, and event registration.
- **Social Media**: Engage audiences through interactive posts, live updates, and Q&A sessions on popular platforms such as Twitter, Instagram, Facebook, and YouTube.
- Virtual Reality (VR) and Augmented Reality (AR): Offer immersive experiences, allowing the public to explore the Sphere Station virtually, participate in guided tours, and interact with scientific simulations.

3.3.5.2 Media and Public Relations

- Press Releases and Media Coverage: Issue regular press releases and engage with media outlets to cover project milestones, public interest stories, and scientific achievements.
- Documentaries and Educational Programs: Collaborate with educational and documentary producers to create films and series that highlight the Sphere Station's mission, technology, and impact on society.

3.3.5.3 Events and Engagement Activities

- **Space Day Events**: Hold annual Space Day events in collaboration with local associations to celebrate space science and share the latest project developments.
- **Public Q&A Sessions**: Host regular Q&A sessions with project leaders, astronauts, and scientists to allow the public to ask questions and learn more about the station.

3.3.6 Global Public Engagement Events

Organizing global events is a key strategy for building public excitement and involvement. These events bring together people from different backgrounds to celebrate and learn about space exploration.

3.3.6.1 Annual Space Science Symposium

- **Educational Lectures and Panels**: Host sessions with leading scientists, engineers, and astronauts discussing the latest in space science and exploration.
- Workshops and Interactive Displays: Offer hands-on experiences, allowing participants to engage with space technology, robotics, and environmental science.
- **Networking Opportunities**: Enable students, educators, and space enthusiasts to network with professionals in the industry.

3.3.6.2 International Space Hackathon

- Problem-Solving Challenges: Invite participants to work on real challenges faced by the Sphere Station, promoting innovative solutions in areas such as life support, resource management, and waste reduction.
- **Team Collaboration**: Encourage global teams to collaborate virtually, fostering international cooperation and diversity in problem-solving.
- Awards and Recognition: Offer prizes and recognition for topperforming teams, providing exposure and networking opportunities in the space industry.

3.3.6.3 Open Days and Station Broadcasts

- **Open Days**: Designate days where the public can experience the Sphere Station through virtual tours, meet crew members, and learn about life on the station.
- **Live Broadcasts**: Stream key events, such as spacewalks, scientific experiments, and station anniversaries, to engage the public with real-time activities on the Sphere Station.

3.3.7 Benefits for Participating Communities

Involving the public in the Sphere Station Project provides numerous benefits for participating communities, fostering scientific literacy, economic growth, and a sense of shared purpose.

3.3.7.1 Educational and Economic Impact

- **Enhanced STEM Education**: Public engagement and educational initiatives support STEM education, preparing students for careers in science, technology, and engineering.
- **Job Creation and Skills Development**: As the project grows, it creates direct and indirect employment opportunities in various sectors, including technology, education, and media.
- **Community Investment**: By partnering with local associations and schools, the project invests in communities, enhancing local resources and fostering a culture of innovation.

3.3.7.2 Global Community and Social Impact

- **Inspiration and Unity**: The Sphere Station Project inspires people worldwide, creating a shared vision for humanity's future in space.
- Environmental Awareness: Public initiatives related to the project, such as recycling, sustainable resource management, and environmental education, reinforce positive environmental behaviors.
- **Cross-Cultural Exchange**: Decentralized associations allow for cross-cultural collaboration, bringing people together from diverse backgrounds to work toward common goals.

3.3.8 Sources

- Twitter https://twitter.com
- Instagram https://www.instagram.com
- Facebook https://www.facebook.com
- YouTube https://www.youtube.com

4. Sustainability and Economic Viability

Environmental objectives and economic models supporting long-term station operations.

4.1 Environmental and Sustainability Goals

Doc- Environmental and Sustainability Goals for the Sphere

u- Station and Space Operations

ment:

Date: 2024-10-30

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con- 1.1 Introduction1.2 Core Environmental and Sustainability **tents:** Principles1.3 Environmental Management and Waste

Reduction 1.4 Energy Management 1.5 Sustainable Supply

Chain 1.6 Waste Minimization and Recycling 1.7

Environmental and Educational Impact1.8 Conclusion and Long-Term Vision1.9 Appendix: Sustainability Metrics and

Goals1.10 Sources

4.1.1 Introduction

The Earth ONE Sphere Station Project is committed to establishing a space habitat that aligns with the highest environmental and sustainability standards. Our goals focus on minimizing resource consumption, implementing closed-loop life support systems, and setting a benchmark for sustainable practices in space. These goals ensure that Earth ONE not only supports a habitable environment for its residents but also serves as a model for future sustainable space projects.

4.1.2 Core Environmental and Sustainability Principles

The sustainability principles guiding Earth ONE's development and operations include:

- 1. **Resource Efficiency**: Minimizing waste and maximizing resource recycling.
- 2. **Closed-Loop Systems**: Leveraging advanced life support to maintain air, water, and waste within a self-sustaining system.
- 3. **Renewable Energy**: Prioritizing solar and nuclear power to meet the station's energy needs while reducing dependence on external fuel supplies.
- 4. **Sustainable Supply Chain**: Sourcing materials from both Earth and lunar resources responsibly, with long-term considerations for environmental impact.
- 5. **Long-Term Viability**: Designing Earth ONE to support a thriving community sustainably for decades, with minimal environmental

impact on space and potential use as a model for Earth-based sustainability initiatives.

____.

4.1.3 Environmental Management and Waste Reduction

4.1.3.1 Closed-Loop Life Support System The Earth ONE station will utilize a closed-loop life support system designed to recycle air, water, and waste efficiently. This system is essential for sustaining a long-term human presence in space with minimal external input. Key aspects include:

- Air Recycling: ${\rm CO}_2$ scrubbers and oxygen generation systems will maintain a breathable atmosphere. Waste gases will be filtered and repurposed where possible.
- **Water Recovery**: Advanced filtration and purification systems will recycle wastewater, including human waste and greywater, reducing the need for new water supplies.
- **Waste Management**: Organic waste will be processed into compost for hydroponic gardens or bioreactors, while inorganic waste will be either recycled or stored for future disposal.

4.1.3.2 Hydroponic and Bioreactor Systems for Food Production Earth ONE will integrate hydroponic systems and potentially bioreactors to produce essential food items sustainably. By growing food on-site, Earth ONE reduces its dependence on supply shipments, lowers resource use, and enhances food security for long-term inhabitants.

- Hydroponics: Nutrient recycling within hydroponic systems supports efficient food production with minimal water and energy inputs.
- **Bioreactors**: Potential future bioreactors could provide additional nutrient sources, including protein and carbohydrate supplements, to further diversify the station's food production.

4.1.4 Energy Management

4.1.4.1 Primary Power Sources Earth ONE will prioritize renewable energy sources to maintain sustainable energy independence. The primary sources include:

1. **Solar Arrays**: Large solar panels will be installed on outer decks where they can maximize sunlight exposure and reduce heat

- buildup on inhabited decks.
- Compact Nuclear Reactors: Two compact, advanced nuclear reactors will provide consistent energy, with two additional reactors held in reserve. Nuclear energy ensures Earth ONE's power needs are met even in low sunlight conditions, adding reliability to the station's energy supply.
- **4.1.4.2 Energy Efficiency and Thermal Management** Maintaining an efficient energy system reduces waste and supports long-term sustainability.
 - **Energy Storage**: Excess solar energy will be stored in liquid thermal storage systems and batteries, ensuring energy availability during high-demand periods.
 - **Thermal Management**: Radiators integrated into the outer shell, combined with liquid thermal storage, help manage excess heat generated by the station's systems. This design reduces the need for active cooling and improves energy efficiency.

4.1.5 Sustainable Supply Chain

4.1.5.1 Resource Sourcing and Transport Earth ONE aims to establish a sustainable supply chain by leveraging both Earth-based and lunar resources. The strategy includes:

- **Lunar Resources**: Lunar regolith will be mined and processed to supply metals, silicon, and other essential materials, reducing reliance on Earth-based resources and transportation.
- **Recycled Materials**: Earth ONE will prioritize recycled materials in its construction and maintenance wherever possible.
- **4.1.5.2 Phased Pricing for Lunar-to-LEO Transport** To encourage lunar resource development, Earth ONE will offer phased pricing for lunar-to-LEO transport, making it financially attractive for companies to invest in lunar mining and transport. This approach promotes the establishment of a lunar economy, enhancing the station's sustainability by creating a closer supply chain.

4.1.6 Waste Minimization and Recycling

Earth ONE is committed to reducing waste through robust recycling processes and resource recovery.

- Organic Waste Recycling: Organic waste will be composted and used in hydroponic and bioreactor systems, minimizing reliance on external resources.
- **Inorganic Waste Management**: Inorganic waste, including metals and plastics, will be recycled on-site or stored for eventual recycling on Earth or in space-based processing facilities.
- **Hazard Management**: Earth ONE will implement strict protocols for managing hazardous materials, including fire, explosion, and biohazard risks, to protect both the environment and inhabitants.

4.1.7 Environmental and Educational Impact

The Earth ONE project aims to set a precedent for environmental responsibility in space exploration, serving as an educational model for Earth-based sustainability.

- Inspiring Sustainable Practices: By demonstrating a selfsustaining environment in space, Earth ONE can inspire sustainable practices on Earth, particularly in closed-loop systems and renewable energy.
- STEM Education and Outreach: Earth ONE will collaborate with educational institutions to provide students and the public with insights into sustainable space habitation. Virtual tours, classes, and real-time environmental data will help foster public awareness of sustainability issues.

4.1.8 Conclusion and Long-Term Vision

Earth ONE embodies a commitment to environmental stewardship and sustainability in space. By prioritizing closed-loop systems, efficient energy use, and a sustainable supply chain, the station will not only support its residents but also serve as a prototype for future off-world habitats and Earth applications. The project aspires to contribute to a space economy rooted in sustainable practices, setting the standard for long-term human presence beyond Earth.

4.1.9 Appendix: Sustainability Metrics and Goals

This appendix lists specific sustainability goals and performance metrics for monitoring Earth ONE's environmental impact over time.

Goal	Target Metric	Timeline
Energy Independence	90% power from renewables	Year 1
Closed-Loop Air and Water	95% recycling efficiency	Year 2
Organic Waste Recycling	90% reused in food systems	Year 3
Resource Recovery Efficiency	80% for inorganic materials	Year 5
Lunar Resource Utilization	30% of materials from Moon	Year 10

4.1.10 Sources

No external sources used.

4.2 Self-Sustainability Models for Space Stations and Spacecraft

Doc- Self-Sustainability Models for Space Stations and

u- Spacecraft

ment:

Date: 2024-11-02

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con-1.1 Models1.2 Summary of Self-Sustainability Models1.3 **tents**: Discussion of Model Suitability and Practical Applications1.4

Technological Requirements1.5 Environmental and Safety

Technological Requirements 1.5 Environmental and Safety Considerations 1.6 Phased Development Timeline 1.7

Conclusion 1.8 Sources

4.2.1 Models

1. Full Autonomous Sustainability

 Definition: This model is designed for missions and stations that require complete independence from external support due to the extended mission duration and remoteness from supply chains. Resources must be renewable aboard, and robust nuclear energy backup systems are essential. Limited mining of non-renewable resources may be permitted for critical needs.

Kev Features:

- **Resource Renewal**: All resources (air, water, food) are recycled and renewed on board.
- **Energy Backup**: Equipped with nuclear energy systems for redundancy and reliability.
- **Mining Permitted**: Non-renewable resource extraction is allowed as necessary to sustain mission goals.

• Suitable For:

- Long-Duration Missions: Missions > 12 months without access to resupply or station contact.
- **Remote Stations**: Stations located in deep-space regions (e.g., Neptune and beyond, Asteroid Belt and beyond) where resupply is not feasible.

• Example Applications:

- Exploration Kuiper ONE: A 10-year mission to the Kuiper Belt, where self-sufficiency is essential due to extreme distance from resupply.
- Neptune ONE Station: A science station in a stable orbit around Neptune, requiring total self-reliance for

long-term exploration.

2. Partial Autonomous Sustainability

• **Definition**: Intended for missions and stations with some access to resupply but still needing a high degree of independence. Resources can be renewed on board, and a nuclear energy backup system is available for emergencies. Adequate mission resources are maintained on board, with limited mining as needed.

Key Features:

- **Resource Renewal**: Most critical resources can be recycled and renewed on board.
- **Energy Backup**: Equipped with a nuclear or alternative energy backup system.
- **Mining Permitted**: Limited mining of non-renewable resources is allowed to supplement supplies.

Suitable For:

- **Medium-Duration Missions**: Missions where resupply is possible but may be infrequent.
- Less Remote Stations: Stations located in regions where resupply from nearby planets or hubs is feasible (e.g., Mars, lunar orbit).

• Example Applications:

- Mars Cycler: A transport system operating on a stable cycler orbit between Earth and Mars, requiring sustainable life support and backup energy but with occasional resupply access.
- Belt Living ONE: A station in the asteroid belt where occasional resupply from Mars or other locations is feasible but limited.

3. Basic Autonomous Support

• **Definition**: For missions and stations in closer proximity to Earth or other resupply hubs, this model allows for resource renewal aboard but relies on frequent resupply for critical mission resources. An energy backup system is present, though it may not require nuclear capability.

Key Features:

- **Resource Renewal**: Basic recycling systems for essential resources, with reliance on external resupply.
- **Energy Backup**: Backup systems provided, typically non-nuclear, as resupply and emergency support are readily available.
- **Mining Permitted**: Small-scale resource extraction allowed as needed.

Suitable For:

Short-Duration Missions and Near-Planet Stations:
 Missions with frequent resupply opportunities (e.g., LEO,

- lunar surface operations, Mars orbit).
- Local Transport Vessels: Taxis, trucks, shuttles, and pods operating near planetary stations or within Earth-Moon space.

• Example Applications:

- **Earth ONE**: A multi-purpose space station in Low Earth Orbit (LEO) with frequent resupply from Earth.
- **Lunar Shuttles**: Transport vessels between Earth and lunar orbit that rely on Earth-based resupply.

4.2.2 Summary of Self-Sustainability Models

Model	Re- source Re- newal	Energy Backup	Mining Allowed	Typical Duration & Location
Full Au- tonomous Sustain- ability	Yes	Nuclear energy backup	Yes	Missions >12 months, remote stations (Neptune, Belt)
Partial Au- tonomous Sustain- ability	Yes	Nu- clear/al- ternative backup	Yes	Medium-duration missions, stations with possible resupply
Basic Au- tonomous Support	Yes	Basic backup (non- nuclear)	Limited	Short-duration, near-planet stations, local transport vessels

4.2.3 Discussion of Model Suitability and Practical Applications

- Full Autonomous Sustainability is critical for the deepest space missions and stations, where distances and extended durations make regular resupply impossible. This model provides complete independence, suitable for ambitious exploration missions and habitats in regions like the Kuiper Belt, Oort Cloud, and beyond.
- Partial Autonomous Sustainability allows for high resilience while still relying on occasional resupply from closer bases. It

strikes a balance between independence and practical support for missions around Mars, the Asteroid Belt, and near-lunar orbits, making it ideal for medium-term exploration missions.

 Basic Autonomous Support is appropriate for near-Earth or near-planet missions where resupply is frequent and reliable. This model fits within established Earth-Moon logistics, with Earthbased supply chains supporting low-risk, short-term missions. It suits commercial operations, transportation between stations, and short-stay habitats.

4.2.4 Technological Requirements

Full Autonomous Sustainability:

- **Life Support**: Closed-loop life support systems capable of full recycling for air, water, and waste.
- **Energy**: Nuclear fission or fusion reactors with redundant systems for extended missions.
- **Resource Extraction**: Advanced robotic mining and processing systems for local resource utilization.
- **Radiation Protection**: Enhanced radiation shielding due to extended exposure in deep space.

Partial Autonomous Sustainability:

- Life Support: High-efficiency recycling systems capable of maintaining air and water quality over extended periods.
- **Energy**: Nuclear or high-capacity solar systems with emergency nuclear backup.
- **Resource Extraction**: Capability for limited mining of essential resources to reduce dependency on resupply.
- **Radiation Protection**: Standard shielding for operations in less extreme radiation environments.

Basic Autonomous Support:

- **Life Support**: Basic recycling systems with reliance on frequent resupply for certain consumables.
- Energy: Solar power or small-scale non-nuclear energy backup.
- **Resource Extraction**: Minimal mining capabilities, focusing on emergency resource collection.
- **Radiation Protection**: Basic shielding suitable for near-Earth or short-duration missions.

4.2.5 Environmental and Safety Considerations

Each sustainability model must incorporate safety protocols and environmental standards to minimize impact on space environments:

- **Waste Management**: Efficient handling and disposal systems to prevent space debris accumulation and ensure safe waste processing, especially for long-term missions.
- **Environmental Impact**: Avoid contamination of celestial bodies and follow planetary protection protocols, particularly for mining and resource extraction.
- Radiation Protection: Enhanced shielding and radiation protection protocols are critical for Full Autonomous Sustainability missions due to increased exposure in deep space.
- **Safety Protocols**: Emergency response systems, such as escape pods or safe zones, should be implemented based on mission duration and distance from resupply sources.

4.2.6 Phased Development Timeline

Each model will be phased in according to current technological readiness and the mission requirements:

- Phase I (0-5 Years):
 - **Deploy Basic Autonomous Support** for near-Earth stations, lunar missions, and Earth-Moon transport vessels.
 - **Develop Partial Autonomous Sustainability** systems to support Mars-bound missions and nearby exploration efforts.
- Phase II (5-15 Years):
 - Implement Partial Autonomous Sustainability on Mars and Belt stations as technology and infrastructure allow.
 - Begin testing Full Autonomous Sustainability systems in controlled environments for future deep-space stations.
- Phase III (15+ Years):
 - **Deploy Full Autonomous Sustainability** for deep-space missions to Neptune, Kuiper Belt, and beyond.
 - Refine Partial Autonomous Sustainability for regular Belt operations and long-haul missions within the inner solar system.

4.2.7 Conclusion

These self-sustainability models provide a structured, scalable approach to resource and energy management, tailored to mission dura-

tion, station location, and logistical feasibility. This framework enables the planning and execution of sustainable, efficient operations across diverse environments in the Solar System. By following these models, space missions can achieve greater autonomy, resilience, and safety, supporting humanity's expansion into deeper space.

4.2.8 Sources

No external sources used.

4.3 Economic Feasibility and Market Analysis

Doc- Economic Feasibility and Market Analysis for the Earth

u- ONE Sphere Station Project

ment:

Date: 2024-10-30

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con1.1 Short1.2 Overview of Economic Feasibility1.3 Cost
tents: Analysis and Investment Requirements1.4 Market Demand
Assessment1.5 Revenue Streams and Business Model1.6
Rental and Pricing Structure1.7. Economic Sustainability and

Rental and Pricing Structure1.7. Economic Sustainability and Break-Even Analysis1.8 Risk Assessment and Mitigation Strategies1.9 Long-Term Economic Impact and Expansion Opportunities1.10 Appendices for Revenue Streams1.11

Sources

4.3.1 Short:

The rental and pricing model for Earth ONE is designed to maximize occupancy across various user groups, from residents and tourists to researchers and retailers. The pricing is competitive yet sufficient to cover operational costs and contribute to long-term sustainability. With diverse revenue streams and controlled operating costs, Earth ONE is positioned as a feasible, self-sustaining space habitat with a break-even timeline of 12-15 years.

4.3.2 Overview of Economic Feasibility

The Earth ONE Sphere Station Project aims to create a sustainable, economically viable space habitat in Low Earth Orbit (LEO), combining state-of-the-art closed-loop life support, modular design, and market-driven funding incentives. This economic feasibility assessment evaluates projected costs, revenues, and pricing models to attract residents, researchers, businesses, and tourists.

- Primary Objective: To establish Earth ONE as a self-sustaining habitat that generates revenue through a diversified business model, leveraging both public-private partnerships and market incentives.
- **Financial Scope**: This assessment spans the initial 10-year period, considering both setup and ongoing operating costs.

• **Key Metrics**: Investment requirements, monthly operating costs, break-even analysis, ROI, and long-term revenue potential.

4.3.3 Cost Analysis and Investment Requirements

4.3.3.1 Development Cost Estimate With a target development cost of **€1 billion** (excluding transportation), Earth ONE leverages modular design and private-sector collaboration. This cost covers essential infrastructure, life-support systems, energy systems, and on-orbit assembly.

4.3.3.2 Transportation Cost Estimate

- Earth-to-LEO Transport: 700,000 metric tons at €1 million per 100-ton launch, totaling €7 billion.
- Moon-to-LEO Transport: 300,000 metric tons with phased pricing (€1 million in early years, reduced over time), totaling €1.5 billion.
- Total Transportation Cost: €8.5 billion

4.3.3.3 Operating Costs

- Annual Operating Budget: €25 million per year, covering staff salaries, maintenance, energy, life-support, food production, and communication.
- Operating Cost per Resident (at 700 occupancy): Approximately €3,000 per month.

4.3.4 Market Demand Assessment

The target markets for Earth ONE include residential tenants, lab and industrial researchers, retail shops, and tourists. A competitive pricing structure aims to attract diverse occupants across these markets.

4.3.4.1 Space Tourism and Hospitality Market

- **Pricing Model**: €200/day for a standard 2-bed hotel room; €1,000/day for a luxury suite.
- **Target Audience**: High-net-worth individuals, space enthusiasts, corporate guests.
- **Revenue Projection**: Projected annual income from hotel occupancy at full capacity is €5 million to €10 million.

4.3.4.2 Research and Industrial Leasing

- Lab and Industrial Rents: €100 per m² per month on designated outer or inner decks for research, manufacturing, and storage.
- **Market Demand**: Pharmaceutical companies, biotech, materials science, and electronics firms seeking microgravity environments.
- **Revenue Projection**: Lab and industrial space leasing could generate €10 million to €20 million annually.

4.3.4.3 Retail and Consumer Market

- **Shop Rents**: Premium consumer decks (Decks 006-010) at €150 per m² per month; other decks at €100 per m² per month.
- Target Audience: Retailers, restaurants, service providers.
- **Revenue Projection**: Retail leasing revenue could reach €5 million to €10 million annually.

4.3.5 Revenue Streams and Business Model

The Earth ONE business model diversifies revenue across several streams to ensure financial stability and reduce dependency on any single market.

4.3.5.1 Core Revenue Streams

- Residential Rentals: Long-term rentals with guaranteed base costs.
- 2. **Hotel Rooms**: Short-term tourism stays and corporate accommodations.
- 3. **Lab and Industrial Leasing**: Space for research, manufacturing, and industrial activities.
- 4. **Retail Shop Leasing**: Consumer-focused areas on premium and standard decks.

4.3.5.2 Secondary Revenue Streams

- 1. **Educational Programs**: Virtual classes and internships with universities.
- 2. **Media and Broadcasting**: Partnerships with media outlets for events and educational content.
- 3. **Brand Licensing**: Merchandise, virtual tours, and simulations tied to the Earth ONE brand.

4.3.6 Rental and Pricing Structure

This section outlines the detailed rental pricing model for Earth ONE, designed to cater to a broad range of clients, from individual residents to large corporations.

4.3.6.1 Residential Rentals

- 20 m² Flat: €3,000 per month (includes utilities, basic food, and life-support).
- 40 m² Flat: €5,000 per month (includes utilities, basic food, and life-support).
- 100 m² Flat: €10,000 per month (includes utilities, basic food, and life-support).

These rates provide guaranteed, predictable pricing, catering to long-term residents and facilitating life-support and operational cost sharing.

4.3.6.2 Hotel Room Rentals

- Standard Room (2 beds, 15 m², *** class)**: €200 per day.
- Luxury Suite (2 bedrooms, large bathtub, 25 m², *** class)**: €1,000 per day.

Hotel accommodations cater to short-term stays and space tourism, offering a unique experience in a high-demand sector.

4.3.6.3 Lab and Industrial Leasing (Outer Decks >010 or Inner Decks <006)

- Research and Industrial Space: €100 per m² per month.
 - Includes hazard prevention (fire, explosion, biohazard), energy, air, and sewage services.

These areas are ideal for biotech, pharmaceutical, and advanced materials research that benefits from microgravity conditions.

4.3.6.4 Retail Shop Rentals

- Premium Consumer Decks (Decks 006-010): €150 per m² per month.
- Other Decks: €100 per m² per month.

Retail spaces offer vendors the opportunity to cater to the onboard community, from groceries and cafes to specialty shops and entertainment.

4.3.7 Economic Sustainability and Break-Even Analysis

4.3.7.1 Break-Even Point and ROI

- Total Estimated Investment: €9.5 billion over 10 years.
- Annual Revenue Projection: €50 million to €100 million.
- **Break-Even Timeline**: Estimated at 12-15 years, contingent on high occupancy rates and operational efficiency.

4.3.7.2 Return on Investment (ROI)

- Projected ROI: 8-12% over a 15-year period.
- Long-Term Viability: Revenue growth is expected as the station expands its offerings and increases resident and tourist capacity.

4.3.8 Risk Assessment and Mitigation Strategies

The main risks include market demand fluctuations, technological failures, and cost overruns. The project will mitigate these through diversified revenue, robust engineering, and phased investment tied to performance milestones.

4.3.9 Long-Term Economic Impact and Expansion Opportunities

- **Job Creation**: Up to 700 direct jobs on Earth ONE, along with thousands more in related industries.
- **Space Economy Growth**: Earth ONE supports the long-term development of lunar and deep-space markets, creating new opportunities for sustainable space habitats.

4.3.10 Appendices for Revenue Streams

A. Appendix A: Residential Rental Revenue Projections

Flat Size	Monthly	Annual Revenue per	Total Revenue (700
	Rent	Unit	Units)
20 m ²	€3,000	€36,000	€25.2 million
40 m ²	€5,000	€60,000	€42 million
100 m ²	€10,000	€120,000	€84 million

B. Appendix B: Hotel Revenue Projections

Room Type	Daily Rate	Occupancy (Annual)	Annual Revenue
Standard Room	€200	365	€73,000
Luxury Suite	€1,000	365	€365,000

C. Appendix C: Lab and Industrial Leasing Revenue Projections

Deck Location	Monthly Rate per m ²	Total Area (m²)	Annual Revenue
Outer Decks (>010)	€100	10,000	€12 million
Inner Decks (002005)	€200	5,000	€12 million

D. Appendix D: Retail Shop Leasing Revenue Projections

Deck Location	Monthly Rate per m ²	Total Area (m²)	Annual Revenue
Consumer Decks 006-010	€150	5,000	€9 million
Other Decks	€100	5,000	€6 million

4.3.11 Sources

No external sources used.

5. Security, Governance, and Alliances

Frameworks for cooperative governance and protective measures in space.

5.1 Establishing a Solar Alliance for Governance and Security in Space

Doc- Establishing a Solar Alliance for Governance and

u- Security in Space

ment:

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Date: 2024-11-02

Con- 1.1 Introduction1.2 Necessity for a Solar Alliance1.3 Vision of

tents: the Solar Alliance 1.4 Advantages of the Solar Alliance

Governance Model 1.5 Structure and Responsibilities of the Solar Alliance 1.6 Implementation Strategy 1.7 Conclusion 1.8

Sources

5.1.1 Introduction

As humanity expands its reach beyond Earth, the need for a structured, fair, and democratic governance framework in space becomes imperative. The Solar Alliance is envisioned as a democratically legitimized body with the authority to oversee and regulate all activities throughout the Solar System, excluding Earth itself, until a globally democratic consensus among Earth's nations is achieved. This document outlines the necessity, advantages, and vision of the Solar Alliance, emphasizing its role in ensuring security, equity, and sustainability on celestial bodies, stations, crafts, and orbital installations across the Solar System.

5.1.2 Necessity for a Solar Alliance

The establishment of the Solar Alliance addresses multiple critical needs:

5.1.2.1 Expanding Human Presence and Commercialization in the Solar System

 With the deployment of Sphere Stations, interplanetary Cyclers, and deep-space exploration crafts, human presence on moons, planets, asteroids, and beyond is set to increase dramatically. This expansion requires a unified governance structure to maintain order, safety, and fair resource distribution across all celestial bodies and space habitats. Increased commercialization, especially in resource-rich regions such as the Asteroid Belt, Kuiper Belt, and potentially even Martian and lunar surfaces, raises concerns about monopolization, environmental impact, and potential exploitation. The Solar Alliance would ensure equal access, fair competition, and responsible practices across these territories.

5.1.2.2 Prevention of Conflict and Resource Disputes on Celestial Bodies

- As interest in resource extraction and exploration grows, so does
 the potential for disputes and conflicts over resources on moons,
 planets, and other solar bodies. The Solar Alliance would act as a
 neutral, democratic governing body to mediate and enforce regulations, preventing conflict and ensuring that the solar resources
 remain accessible to all.
- Each celestial body or installation would have Solar Alliance representatives, including mediators and conflict-resolution experts, to oversee disputes and prevent escalations.

5.1.2.3 Environmental and Safety Standards for Space Operations

- Human activities in space present risks to local environments, including contamination, space debris, and degradation of pristine celestial bodies. The Solar Alliance would establish and enforce stringent environmental standards across the Solar System, protecting these bodies for scientific research and future generations.
- Safety standards would be universally applied on all Solar System bodies, from the Asteroid Belt to moons and distant Kuiper Belt objects, ensuring that exploration and resource extraction are conducted responsibly.

5.1.3 Vision of the Solar Alliance

The Solar Alliance envisions a peaceful, equitable, and sustainable Solar System where nations, corporations, and private actors can pursue their interests without compromising the collective welfare of humanity or the integrity of celestial bodies. This vision includes:

5.1.3.1 Comprehensive Governance of All Solar System Bodies (Excluding Earth)

- The Solar Alliance would establish a legal and regulatory framework covering all moons, planets, and minor bodies within the Solar System. Activities such as resource extraction, environmental protection, safety standards, and labor rights would be uniformly governed.
- Governance would extend to all habitats, stations, and crafts, with an emphasis on transparency, democracy, and inclusivity.

5.1.3.2 Equal Access and Fair Resource Distribution

- Celestial resources, whether in the Asteroid Belt, on Mars, or in the Kuiper Belt, would be treated as the collective heritage of humanity. The Solar Alliance would ensure equal access for all nations and private actors, preventing monopolies and ensuring sustainable use of resources.
- Fair resource allocation and licensing would be managed through an international democratic process, ensuring that all solar resources are utilized to benefit humanity as a whole.

5.1.3.3 Security, Stability, and Conflict Prevention

- The Solar Alliance would maintain a unified security and conflictresolution presence across the Solar System. By deploying trained personnel to major installations and celestial bodies, the Alliance would provide peacekeeping, protect against external threats, and prevent conflicts between actors.
- Policing, mediation, and judicial functions would be decentralized to include on-site representatives for efficient conflict management.

5.1.3.4 Democratic Accountability and Global Participation

- While Earth remains outside the Solar Alliance's jurisdiction until
 a global consensus is reached, representatives from all nations
 would still be involved in decision-making processes that impact
 solar governance. This ensures that diverse perspectives are
 considered and that governance remains inclusive.
- Transparent governance processes would build trust and enable cooperation among all spacefaring nations and organizations, setting a standard for future expansion to Earth once democratic consent is obtained.

88

5.1.4 Advantages of the Solar Alliance Governance Model

5.1.4.1 Comprehensive Solar System Security and Stability

- The Solar Alliance would create a secure environment across all installations and celestial bodies by enforcing universal safety regulations, maintaining a peacekeeping force, and ensuring the safety of workers and residents.
- The presence of Solar Alliance security and judicial officials on each major installation would provide rapid responses to conflicts or incidents, promoting a stable environment conducive to exploration and commerce.

5.1.4.2 Economic Efficiency and Fair Market Practices

- A unified regulatory system would foster economic stability, enabling predictability for businesses and encouraging investment in the solar economy. Efficient licensing and regulatory processes would streamline operations across the Solar System.
- The Alliance would regulate competition and prevent monopolistic practices, ensuring a balanced and diverse market where small and large entities can thrive.

5.1.4.3 Environmental Protection and Responsible Stewardship

- By enforcing stringent environmental standards, the Alliance would preserve the natural states of celestial bodies, safeguard unique ecosystems, and prevent contamination that could impact scientific research.
- Sustainability protocols would be uniformly applied, ensuring that resources are used responsibly, and that space operations do not compromise future generations' ability to explore and benefit from the Solar System.

5.1.4.4 Global Inclusivity and Equal Opportunities

- The Alliance would guarantee equal access to solar resources for all countries, including those with limited space capabilities. This inclusivity ensures that the Solar System's benefits are shared equitably, preventing dominance by any single nation or corporation.
- Through fair access policies and licensing, the Alliance would enable developing nations to participate in space ventures and enjoy the benefits of solar resources.

89

5.1.5 Structure and Responsibilities of the Solar Alliance

5.1.5.1 Legislative Branch

- Role: Develops universal laws and regulations for all spacebased activities within the Solar System (excluding Earth until democratic consensus is achieved).
- Function: Establishes uniform standards for resource management, environmental protection, labor rights, and operational safety. Legislative decisions are made through democratic voting by member state representatives.

5.1.5.2 Judicial Branch

- **Role**: Resolves disputes and enforces compliance with Alliance laws across the Solar System.
- Function: Manages a system of space courts with on-site judges at major installations. This branch ensures justice is accessible across the Solar System and that all actors adhere to Alliance laws.

5.1.5.3 Police and Security Force

- Role: Ensures law and order across all Solar System bodies and installations.
- Function: The Solar Alliance police force monitors compliance, investigates incidents, and enforces regulations. They would maintain a presence on all major Sphere Stations, Crafts, Cyclers, and other installations across the Solar System.

5.1.5.4 Military Branch

- Role: Protects installations and celestial bodies, prevents conflicts, and provides defense against external threats.
- Function: Acts as a deterrent against hostile actions and safeguards against potential conflicts. Military units stationed strategically across the Solar System would secure peace and stability on distant stations and bodies.

5.1.5.5 Administrative and Oversight Bodies

- Role: Manages licensing, resource allocation, financial operations, and overall administration.
- **Function**: Provides transparent governance, allocates resources fairly, and ensures effective management of Solar System assets.

5.1.6 Implementation Strategy

5.1.6.1 International Treaty for Solar System Governance

 The Solar Alliance would be founded through an international treaty signed by all spacefaring and interested nations. This treaty would define the Alliance's jurisdiction, responsibilities, and structure for governing all Solar System bodies, excluding Earth until democratic consensus is reached.

5.1.6.2 Funding Mechanisms

The Alliance would be funded by member contributions, licensing fees, and revenue from controlled resource extraction. This structure would maintain financial sustainability while supporting Alliance operations across the Solar System.

5.1.6.3 Phased Implementation Across the Solar System

- Phase 1: Establishment of legislative and judicial branches, deployment of initial representatives on key space installations.
- Phase 2: Expansion of police and security forces across all major bodies, with complete legislative and regulatory frameworks for each region.
- Phase 3: Full operational capacity, including military readiness and governance over all Solar System activities (Earth's governance integration contingent upon democratic global approval).

5.1.7 Conclusion

The Solar Alliance represents a comprehensive, democratic approach to governing human expansion across the Solar System. By establishing a centralized, accountable, and inclusive authority, the Alliance ensures that space remains accessible, safe, and equitable. While the Solar Alliance's authority would initially exclude Earth, its democratic structure and inclusive vision create a pathway for global cooperation and sustainable growth. The Alliance's presence on all major celestial bodies would bring stability, foster innovation, and protect the Solar System's resources for all humanity.

5.1.8 Sources

No external sources used.

6. Expansion and Future Projects

Prospective developments for extending the station network and associated spacecraft.

6.1 Future Expansion of the Sphere Station Network and Sphere Space Crafts

Doc- Future Expansion of the Sphere Station Network and

u- Sphere Space Crafts

ment:

Date: 2024-10-30

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

Con1.1 Stations (Self-Sustaining and Autonomous)1.2 Cyclers
tents: (Dedicated for Long-Haul Transport)1.3 Exploration Crafts
(Dedicated to Deep-Space and Long-Duration Missions)1.4
Unmanned Freight Transporters (Efficient Design for Varying

Distances)1.5 Additional Requirements and Development Needs1.6 Economic Feasibility and Market Analysis1.7

Appendices 1.8 Sources

6.1.1 Stations (Self-Sustaining and Autonomous)

1. Earth ONE

- Purpose: Science, Living, Working, Tourism.
- Location: Low Earth Orbit (LEO).
- **Focus**: Serves as a multi-purpose hub for scientific research, industry, tourism, and as a foundational model for other Sphere Stations. Key activities include satellite servicing, microgravity research, and space tourism.
- **Capacity**: Up to 700 occupants, with a focus on modularity for long-term expansion.
- **Energy Supply**: Combination of solar panels located on the hull above Deck 12 (where there are no windows), and nuclear reactors on Deck 015, with integrated cooling systems and heat exchangers to dissipate excess heat efficiently.

2. Lunar ONE

- Purpose: Science, Living, Working, Tourism.
- Location: Elliptic Moon Orbit.
- **Focus**: Supports lunar exploration, research, and mining operations. A critical base for lunar resource extraction and logistics for missions to Mars and beyond.
- **Capacity**: Designed for 400–500 occupants, equipped for lunar material handling and processing.
- **Energy Supply**: Solar arrays on the hull above Deck 12 and nuclear reactors on Deck 015 to ensure reliable power with adequate shielding and cooling.

3. Belt Living ONE

- **Purpose**: Science, Living, Working, Tourism.
- Location: Positioned in the asteroid belt.
- **Focus**: Acts as a base for industrial activities, such as asteroid mining and processing, and as a logistics hub for missions in the inner and outer solar system.
- **Capacity**: Up to 300 occupants; includes specialized areas for mining support, material processing, and research.
- **Energy Supply**: Due to distance from the Sun, primary reliance on nuclear reactors on Deck 015, with secondary solar panels installed where feasible on the hull. Heat exchange systems in the hull manage thermal dissipation.

4. Neptune ONE

- Purpose: Science and Exploration.
- Location: Large orbit around Neptune.
- **Focus**: Dedicated to scientific exploration, astrophysical observation, and deep-space missions targeting the Trans-Neptunian region. This station serves as a hub for robotic and crewed missions to Kuiper Belt objects.
- **Capacity**: Supports up to 150 occupants, primarily scientists and technical staff.
- **Energy Supply**: Solely nuclear due to the extreme distance from the Sun, with reactors on Deck 015. Efficient heat exchange systems in the outer hull ensure safe thermal management.

5. Venus ONE

- Purpose: Science, Living, Working, Tourism.
- Location: Low Venus Orbit.
- Focus: Supports studies on Venus's atmosphere and surface, including research on planetary atmospheres and potential industrial applications. May also offer tourism focused on observing Venus up close.
- **Capacity**: 200 occupants; includes advanced shielding and cooling systems.
- **Energy Supply**: Solar panels on the outer hull above Deck 12 provide primary power, with nuclear backup on Deck 015, managed through specialized cooling systems.

6.1.2 Cyclers (Dedicated for Long-Haul Transport)

1. Aldrin Cycler ONE

- **Purpose**: Freight and Passenger Transport to and from Mars, limited Science and Working capabilities.
- **Orbit**: Stable cycler orbit that periodically brings it close to both Earth and Mars.

- Roundtrip Time: Approximately 2.1 years.
- Cargo Capacity: Approximately 500,000 metric tons per roundtrip.
- Passenger Capacity: 150-200 passengers per trip.
- Energy Supply: Solar panels for onboard power and emergency nuclear backup. Panels are positioned away from passenger areas and over non-windowed sections of the hull.

2. Belt Cycler ONE

- **Purpose**: Freight and Passenger Transport between Mars and the Asteroid Belt, limited Science and Working capabilities.
- **Orbit**: Cycler route that enables periodic proximity to Mars and the asteroid belt.
- Roundtrip Time: Approximately 4 years.
- Cargo Capacity: 300,000 metric tons per roundtrip.
- Passenger Capacity: 100-150 passengers per trip.
- **Energy Supply**: Primary reliance on nuclear power for extended duration and efficiency, with solar as a secondary source.

6.1.3 Exploration Crafts (Dedicated to Deep-Space and Long-Duration Missions)

1. Exploration Kuiper ONE, TWO, and THREE

- **Purpose**: Science and Exploration of the Kuiper Belt.
- Mission Duration: 10 years.
- **Focus**: Long-term scientific observation of the Kuiper Belt with a multi-generational crew structure.
- **Capacity**: Up to 120 crew members, with facilities for families, education, and recreation to support a stable community environment.
- **Energy Supply**: Fully nuclear, with reactors positioned at the outermost deck (Deck 015) and heat exchangers integrated into the hull for efficient heat dissipation.

2. Exploration Belt ONE, TWO, and THREE

- Purpose: Resource Exploration and Science in the Asteroid Belt.
- Mission Duration: 2 years.
- **Focus**: Scientific exploration and mining preparation in the Belt. Missions are launched and resupplied from Mars.
- **Capacity**: Up to 100 occupants per craft, with family accommodations supported on Mars.
- **Energy Supply**: Nuclear power for primary energy needs, supplemented by solar panels on non-windowed sections where available.

6.1.4 Unmanned Freight Transporters (Efficient Design for Varying Distances)

Unmanned freight transporters provide a cost-effective and technically simpler solution for transporting goods between various stations in the solar system. They do not require a rotating structure and can be optimized for specific routes.

6.1.4.1 Design Variants for Unmanned Freight Transporters

- 1. Short Range (Earth-Moon)
 - Size: 30 x 15 x 10 m; Payload: 500-1,000 tons.
 - **Propulsion**: Chemical propulsion for quick transit times.
 - Energy Source: Solar cells.
 - **Range**: ~400,000 km (Earth-Moon).
- 2. Medium Range (Earth-Mars, Mars-Belt)
 - **Size**: 50 x 20 x 15 m; **Payload**: 1,500-3,000 tons.
 - **Propulsion**: Solar Electric Propulsion (SEP) for high efficiency.
 - Range: Hundreds of millions of kilometers.
- 3. Long Range (Earth-Neptune)
 - **Size**: 100 x 40 x 30 m; **Payload**: 10,000-15,000 tons.
 - **Propulsion**: Nuclear Electric Propulsion (NEP).
 - Energy Source: Nuclear reactors.
 - Range: ~4.5 billion km.
- 4. Extra-Long Range (Earth-Kuiper Belt)
 - **Size**: 200 x 50 x 40 m; **Payload**: 20,000-30,000 tons.
 - **Propulsion**: Hypothetical Fusion Propulsion.
 - **Energy Source**: Compact nuclear reactors.
 - Range: >7 billion km.

6.1.5 Additional Requirements and Development Needs

- Advanced Propulsion Technologies: Development of nuclear or fusion-based propulsion for long-duration and deep-space missions.
- Fast Transfer Vessels: Small, agile vessels with advanced propulsion for rapid transit between stations and cyclers. Energy systems to include compact solar arrays or alternative power sources for near-station missions.

96

6.1.6 Economic Feasibility and Market Analysis

6.1.6.1 Market Analysis and Demand Assessment

- Space Tourism: Growing demand for space experiences, with a focus on high-net-worth tourists.
- Space-Based Research: Need for microgravity environments for research in pharmaceuticals, materials science, and biotechnology.
- **Industrial and Resource Extraction**: Resource mining in the asteroid belt and processing on stations.

6.1.6.2 Revenue Streams and Business Model

- 1. **Space Tourism**: Luxury accommodations and exclusive space experiences.
- 2. **Research and Industrial Space Leasing**: Leasing laboratories and production spaces.
- 3. **Satellite Maintenance**: Repair, refueling, and maintenance of satellites.
- 4. **Education and Public Engagement**: Virtual tours, workshops, and STEM education programs.

6.1.6.3 Cost Analysis and Financial Viability

 Development Costs: Design and Engineering (€165 million), Manufacturing and Construction (€655 million), Launch (€8.7

billion for 5,000 launches). - **Operating Costs**: Estimated €25 million annually, including crew, maintenance, energy, and communications. - **Break-Even Timeline**: 15–20 years depending on market conditions and efficiency of revenue streams.

6.1.7 Appendices

A. Appendix A: Deck Concept of the Sphere Space Station Earth ONE

Deck	Concept	of the	Sphere	Space	Station	Earth	ONE

B. Appendix B: Calculations and Technical Estimates

B.1 Fuel Requirements for Various Missions

Mission	Propulsion System	Delta- V (m/s)	Specific Impulse (s)	Initial Mass (tons)	Fuel Required (tons)
Aldrin Cycler (Earth- Mars)	Nuclear Electric Propulsion (NEP)	2,000	10,000	1,000,000	203,000
Asteroid Belt Mission	NTP + SEP	6,000 + 2,000	900 / 10,000	1,000,000	587,154
Kuiper Belt Mission	Advanced NEP	10,000	10,000	1,000,000	632,000
Oort Cloud Mission	Hypothetical Fusion Propulsion	20,000	30,000	1,000,000	487,000

B.2 Propulsion System Descriptions and Suitability

Propulsion System	Specific Impulse (Isp)	Key Propellants	Suitability
Nuclear Electric Propulsion (NEP)	~10,000 seconds	Xenon, Krypton, Argon	Efficient for long-duration missions with low thrust requirements. Ideal for Aldrin Cycler and Kuiper Belt missions.
Nuclear Thermal Propulsion (NTP)	~900 seconds	Hydrogen	High thrust for rapid transit. Suitable for reaching asteroid belt.
Solar Electric Propulsion (SEP)	~2,000 - 5,000 seconds	Xenon, Argon	Effective in inner solar system; ideal for in-belt maneuvers in asteroid belt.
Fusion Propulsion (Hypothetical)	~30,000 seconds	Deuterium, Helium-3	Potentially high thrust and efficiency for deep-space and Oort Cloud missions. Still under development.

B.3 Lunar Deuterium Extraction and Usage

Aspect	Description
Deuterium Source Mining and Processing Benefits for Fusion Missions	Extracted from lunar water ice deposits, primarily at the poles and within lunar regolith. Use of robotic mining equipment to harvest ice and separate deuterium from regular hydrogen. High energy density fuel for fusion propulsion, enabling sustained missions to outer solar system.

C. Appendix C: Strategic Mission Profiles and Propellant Requirements

C.1 Mission Profile for the Aldrin Cycler (Earth-Mars) Using NEP

- **Mission Objective**: Establish a regular cycler trajectory between Earth and Mars.
- Fuel Type: Xenon or Krypton for NEP.
- Delta-V Requirement: Approximately 2,000 m/s for trajectory adjustments.
- Fuel Required: 203,000 tons of xenon or krypton.

C.2 Mission Profile for Asteroid Belt Exploration

- **Propulsion Configuration**: Initial NTP burn to reach the asteroid belt, with SEP for in-belt navigation.
- Delta-V Requirements:
 - Outbound to Belt (NTP): 6,000 m/s.
 - In-Belt Navigation (SEP): 2,000 m/s.
- **Fuel Required**: 482,000 tons of hydrogen (NTP) + 105,154 tons of xenon (SEP).

C.3 Mission Profile for Kuiper Belt and Beyond with Advanced NEP

- **Mission Objective**: Long-duration exploration mission to Kuiper Belt with high delta-V requirement.
- **Propulsion System**: Advanced NEP with high Isp.
- **Delta-V Requirement**: Approximately 10,000 m/s.
- Fuel Required: 632,000 tons of xenon or krypton.

C.4 Oort Cloud Mission with Hypothetical Fusion Propulsion

- Mission Objective: Explore the Oort Cloud with a multi-year mission.
- **Propulsion System**: Hypothetical fusion propulsion using deuterium and helium-3.
- Delta-V Requirement: 20,000 m/s.
- **Fuel Required**: 487,000 tons of deuterium/helium-3 mixture (if fusion propulsion becomes feasible).

D. Appendix D: Deuterium Extraction on the Moon

D.1 Infrastructure for Deuterium Mining and Processing

1. Mining Operations:

- Robotic mining systems deployed in permanently shadowed regions of the Moon where water ice is abundant.
- Excavation and processing facilities to separate water into hydrogen, oxygen, and deuterium.

2. Processing Techniques:

- **Electrolysis** of water to split hydrogen isotopes, followed by distillation to isolate deuterium.
- Onsite storage facilities for liquid deuterium, ready for transfer to orbit or deep-space vessels.

3. Lunar Fuel Depot:

- Storage of deuterium in low-lunar orbit or at a cislunar depot for easy access by Sphere Space Crafts.
- Enables fueling for missions heading to Mars, the asteroid belt, Kuiper Belt, or beyond, minimizing the need for Earthsourced fuel.

D.2 Cost-Benefit Analysis of Lunar Deuterium Extraction

Factor	Benefit
Reduced Earth Dependence	Lowers launch costs by reducing need for Earth-based fuel supply.
Sustainability	Enables ongoing refueling for deep-space missions, establishing the Moon as a strategic outpost.
Mission Feasibility	Allows fusion-powered missions to become more feasible by ensuring an accessible supply of deuterium.

E. Appendix E: Technical and Economic Assumptions

E.1 Assumptions in Fuel Calculations

- 1. **Delta-V Requirements**: Assumed delta-V values are estimated based on typical mission profiles for each destination.
- 2. **Specific Impulse (Isp)**: Standard values for current and future propulsion technologies have been used.
- 3. **Fuel Cost**: While specific costs are not calculated here, the long-term economic benefit of in-situ resource utilization (ISRU) is assumed to reduce overall mission costs.

E.2 Economic Benefits of Moon-Based Fuel Depot

Benefit Category	Description
Cost Reduction	Lower transport costs compared to lifting fuel from Earth for each mission.
Mission	Increases the flexibility for refueling missions to
Flexibility	Mars, the asteroid belt, and beyond.
Sustainability	Establishes a sustainable system for long-term
for Deep Space	space exploration.

6.1.8 Sources

No external sources used.

7. Comprehensive Technical Documentation

Detailed operational references and supporting design documents.

7.1 Project Overviews and Fibels

Project overviews and fibel documents for Sphere Space Station Earth ONE.

7.1.1 Sphere Station Documentation: Technical and Operational Overview

Doc- Sphere Station Documentation: Technical and

u- Operational Overview

ment:

Date: 2024-10-30

Li- (c) COPYRIGHT 2023 - 2025 by Robert Alexander Massinger,

cense: Munich, Germany. ALL RIGHTS RESERVED.

This overview links to the detailed documentation for the Sphere Station project.

- 1. Technical Design and System Specifications
- 2. Staffing, Facilities, and Living Spaces
- 3. Energy and Thermal Management Systems
- 4. Organizational Structure and Consortium Model
- 5. Public Engagement and Decentralized Associations
- 6. Economic Feasibility and Market Analysis
- 7. Environmental and Sustainability Goals
- 8. Future Expansion of the Sphere Station Network and Sphere Space Crafts
- 9. Establishing a Solar Alliance for Governance and Security in Space
- 10. Self-Sustainability Models for Space Stations and Spacecraft

7.1.2 Sources No external sources used.

7.1.2 Project Fibel

7.1.2.1 Summary This Project Fibel conveys the "Good Karma" spirit that sustains long missions and guides difficult choices. It encourages teams to act with resilience, integrity, and foresight so that every decision contributes to the shared goal of building a sustainable presence in space. Although the documentation is already extensive, the project remains open to deeper logistical plans, richer governance models, and new social or technical modules. Each addition should integrate holistically—linking technology, humanity, economy, and environment—while preserving the modular structure that allows the vision to grow without losing its core identity.

7.1.2.2 Sources No external sources used.

7.2 Partial Concepts

This folder contains extracted partial concepts related to Sphere Space Station Earth ONE. $\begin{tabular}{ll} \hline \end{tabular}$

7.2.1 Deck Concept of the Sphere Space Station Earth ONE

7.2.1.1 Realistic Volume Calculation and Deck Allocation

7.2.1.1.1 Volume Breakdown per Deck Updated breakdown of deck functions, with consideration for energy generation and cooling needs:

- 1. **Living/Residential Areas**: Decks 006–010, with 1 g gravity for residential stability.
- 2. **Hospitality/Recreation Areas**: Decks 007–009, with recreational amenities for crew well-being.
- 3. **Agricultural Areas**: Decks 005 and 011, with optimized sunlight exposure and gravity for agriculture.
- Propulsion Room: Centralized on Decks 000-001 for optimal balance.
- 5. Energy Supply:
 - **Nuclear Reactors**: Located on Deck 015, with integrated shielding and cooling near the outer hull.
 - **Solar Panels**: Mounted on outer hull above Deck 12, covering non-windowed sections for maximum efficiency.
- 6. **Life Support System Room**: Decks 002–003, with recycling systems and emergency air/water storage.
- 7. **Command Room**: Deck 008 for centralized operations.
- 8. **Operational Areas**: Decks 004 and 009 for administration and support functions.
- 9. **Research Areas**: Decks 010–012 for laboratories and scientific spaces.
- 10. **Educational Spaces**: Deck 013, with classrooms and facilities for younger occupants.
- 11. **Kindergarten and Play Spaces**: Deck 013, adjacent to educational spaces.
- 12. **Workspaces**: Deck 014 for manufacturing, repair, and maintenance.
- 13. **Fuel Storage Room**: Deck 015, isolated from living areas for safety.
- 14. **Community Spaces**: Decks 006–007, for communal dining and events.
- 15. **Medical Facilities**: Deck 012 with full healthcare services.
- 16. **Hazard Management Rooms**: Deck 015 for emergency response systems.
- 17. **Escape Pod Areas**: Strategically located across multiple decks.

7.2.1.1.2 Volume Calculations and Net Space by Function Detailed allocation of net usable volume for each type of room based on overall station volume and safety priorities:

	Assigned	Net Volume	
Room Type	Decks	(m³)	Notes
Living/Resi- dential	Decks 006-010	200,000	Close to Earth gravity, suitable for habitation
Hospital- ity/Recreation	Decks 007-009	50,000	Includes gyms, lounges, entertainment facilities
Agricultural	Decks 005, 011	80,000	Hydroponic and aeroponic systems
Propulsion	Decks 000-001	40,000	Nuclear or advanced propulsion tech
Energy Supply	Deck 015	60,000	Nuclear reactors and solar support
Life Support Systems	Decks 002-003	30,000	Recycling and backup storage
Command	Deck 008	10,000	Command and control center
Operational	Decks 004, 009	25,000	Administration and operational support
Research	Decks 010-012	45,000	Specialized laboratories
Educational	Deck 013	15,000	Schools and educational facilities
Medical Facilities	Deck 012	10,000	Medical center
Hazard Management	Deck 015	10,000	Emergency systems and hazard control
Escape Pods	Multiple decks	15,000	Strategically positioned for accessibility

7.2.1.2 Sources No external sources used.

7.2.2 Earth ONE Overview

Earth ONE serves as a multi-purpose hub for scientific research, industry, tourism, and as a foundational model for other Sphere Stations. Key activities include satellite servicing, microgravity research, and space tourism. It is located in Low Earth Orbit (LEO) and supports up to 700 occupants with modular expansion capabilities. Energy is supplied through solar panels and nuclear reactors with integrated cooling and heat exchange systems.

7.2.2.1 Sources No external sources used.

7.2.3 Economic Feasibility Earth ONE

The rental and pricing model for Earth ONE is designed to maximize occupancy across residents, tourists, researchers, and retailers. Diverse revenue streams and controlled operating costs aim for a break-even timeline of 12–15 years, making Earth ONE a feasible, self-sustaining space habitat.

7.2.3.1 Sources No external sources used.

7.2.4 Window Specification Earth ONE Station

The Earth ONE station requires windows that withstand extreme thermal cycling, rapid decompression, micrometeorite impacts, and intense UV and cosmic radiation. A multi-layered composite structure is proposed:

- Outer Layer: Aluminum Oxide or ALON, 5 cm thick, providing hardness and UV resistance.
- **Middle Layers**: 10 cm fused silica for thermal stability and UV shielding, plus 5 cm polycarbonate for shock absorption.
- **Inner Layer**: 3 cm borosilicate or cerium-doped glass for radiation protection and optical clarity.

Total thickness is approximately 20–30 cm with a weight of 530–550 kg/m², offering superior resilience for the LEO environment.

7.2.4.1 Sources No external sources used.

7.3 Change Management

This directory collects change requests and records affecting documents in this repository.

7.3.1 Initial English Translation

This change document tracks the initial translation of documentation to English and the adoption of GitBook-style file naming conventions.

7.3.1.1 Sources No external sources used.

7.3.2 Bring the Single Source of Truth Documents into GitBook Format

This change document records the consolidation of the project's "single source of truth" documents into a GitBook format to improve accessibility and version control.

7.3.2.1 Sources No external sources were used.

7.4 Research & Development (RD)

This directory collects research and development documents for the Sphere Space Station Earth ONE and Beyond project. It hosts summaries, translations, and references that inform simulator features and engineering decisions.

7.4.1 Sphere Station Simulator - Research Summary

Here is a structured summary of key findings from engineering, social psychological, and medical literature relevant to further development of the Sphere Station Simulator. The compilation draws on internal project documents and external research sources.

7.4.1.1 Engineering Aspects

7.4.1.1.1 Artificial gravity and structure

- Rotation radius and speed: For artificial gravity without gravitational load on the body, the station radius must be large enough. Studies show that with radii under 56 m a large gravity gradient between head and feet occurs, and rotation speeds over 4 rpm trigger motion sickness. With a Sphere Station diameter of 127 m and Deck 8 as the "Earth deck," these limits are met.
- **Expandable modules:** Modern concepts propose building the station from concentric cylinders that can be expanded stepwise. This allows the living area to grow without interrupting systems. Tensegrity structures offer a flexible and lightweight construction for such modules.
- Radiation protection: Interplanetary missions require effective shielding against cosmic radiation and solar particles. A shield made from 5 m of regolith and water, which also serves as a heat store, can protect the crew and improve thermal management. Solar cells on the shield provide additional energy.
- Agriculture and living space: Concept studies budget around 300 m² of agricultural area per inhabitant; only at an outer radius of about 224 m would there be enough area for 8,000 people. The Sphere Station instead relies on hydroponic gardens and aeroponics on the Earth deck.

7.4.1.1.2 Subsystems and infrastructure (internal documents)

- Access and transport: In addition to passenger and cargo elevators, heavy freight lifts, tangential conveyor belts/rail vehicles, and hover/climbing channels are proposed.
- **Energy and heat:** Primary supply via two NuScale SMR reactors or an array of microreactors; large solar panel fields; liquid heat stores (e.g., molten salt) and deployable radiators; battery banks and flywheels for load peaks.

- Safety & emergency: Inert gas and water mist fire-suppression systems, radiation shielding walls, meteoroid protection layers, and evacuation capsules.
- Docking & logistics: Central docking port on Deck 0, cargo and waste bays, and shuttle systems for transfers between Earth, LEO, and long-range missions.
- **Control & propulsion:** Gyroscopes/flywheels for attitude control and electric thrusters for orbital corrections.
- **Life support:** Closed air, water, and waste cycles as well as a high-speed data network.
- Additional facilities: Hydroponics/aeroponics, medical centers, recreation and learning areas, and recycling and industrial laboratories.

These subsystems should be available as optional modules in the full simulator to keep the model realistic and configurable.

7.4.1.2 Social Psychological Findings

7.4.1.2.1 Team dynamics in isolated, long-duration missions

- Less social time and early conflicts: In analogs to longduration missions (e.g., Antarctic stations, Mars habitats) teams tend to spend less social time together over longer missions; efficiency usually remains constant, but by day 90 every team has experienced at least one conflict.
- Communication and mood: Commanders reduce written communication with mission control over time, and mood-related "third-quarter phenomena" (mid-mission crises) do not appear consistently.
- **Isolation and monotonous routines:** The Team Self-Maintenance (TSM) study emphasizes that monotonous routines, a "Groundhog Day" feeling, and lack of novelty lead to boredom, frustration, and psychological strain. Without external feedback, crews may develop apathy and emotional problems.
- Team Self-Maintenance: Long missions require strategies in which teams actively maintain their psychological health. Key processes include information exchange, self-regulation, resource recovery, and emotional support. Research recommends prioritizing team well-being alongside performance goals and developing measures for conflict prevention and resolution.
- Implications for design: Spaces should be designed to offer variety, privacy, and communal areas. Interactive leisure offerings (e.g., VR training, gardens) and mood-enhancing elements

contribute to psychological stability.

7.4.1.2.2 Crew management and psychological research

- Selection & preparation: Successful missions require a balanced team with respect to personality, culture, hierarchy sensitivity, and resilience. Training in conflict management, cultural competence, and stress coping is essential.
- Research gaps: Long-duration missions beyond low Earth orbit (Mars) need more empirical data; analog studies so far provide only limited quantitative statements about team cohesion and performance.

7.4.1.3.1 Effects of microgravity

- Bone density loss and muscle atrophy: Without gravity, loadbearing bones lose 1% to 1.5% mineral content per month on average; muscles atrophy faster than on Earth. Rehabilitation does not fully restore bone density.
- Fluid shifts and kidney stones: Bodily fluids shift toward the head, increasing intraocular pressure and possibly causing vision problems. Dehydration and calcium excretion raise the risk of kidney stones.
- Countermeasures: Leg compression and lower-body negative pressure suits help redistribute fluids. Medications such as potassium citrate and bisphosphonates are used to prevent kidney stones and bone loss. Regular aerobic and resistive exercise keeps the heart, bones, and muscles healthy and improves mood; artificial gravity (short-arm centrifuges) is being explored as an additional measure.
- Immune system and microbiome: Isolation and microgravity alter the immune system and encourage microorganism transmission; NASA monitors air quality, enforces hygiene protocols, and recommends flu vaccination and pre-launch quarantine.
- **Habitability:** For psychological health, living spaces must consider temperature fluctuations, noise, lighting, and confinement.

7.4.1.4 ☐ Conclusions for the Full Simulator and Research

- 1. **Realistic modeling:** The simulator should account for radiation shielding, thermal management, rotation speeds, and expandable modules. A realistic deck layout (e.g., 16 decks with varying gravity) reflects internal documentation.
- Modular subsystems: In addition to elevators, conveyor belts, fire barriers, and gyros, heavy cargo lifts, cargo bays, docking ports, reactors, heat storage, battery storage, evacuation capsules, and recycling plants should be integrated as optional modules.
- 3. **Psychological & social modules:** Long missions require spaces for retreat and community, leisure options (e.g., gardens, VR training), and mechanisms for team self-maintenance. The simulator can offer virtual scenarios for conflict training, information exchange, and TSM processes.
- 4. Medical facilities: Models of gyms, sick bays, hydroponic farms, and research laboratories reflect the requirements for health, nutrition, and life support. Measurement devices such as centrifuges or compression suits could also be digitally represented.

With these findings, upcoming developments (L4 sprint and beyond) can align with technical realism, social factors, and medical constraints. This enhances both the simulation's validity and its usefulness for engineering decisions and crew training.

7.4.2 Earth ONE Station: Orbit, Polar Docking, and Human Factors

7.4.2.1 Earth ONE in Low Earth Orbit vs. Higher Orbits (GEO, Lagrange)

- **7.4.2.1.1** Low Earth Orbit (LEO) The Earth ONE space station is located in a Low Earth Orbit (LEO) ¹. In LEO, it circles the Earth in about **90 minutes**, resulting in **16 sunrises and sunsets per day**. Proximity to Earth eases resupply and communication (minimal signal delay), but the environment is harsh:
- Residual atmosphere (drag) → regular orbital corrections required
- Increased risk from space debris
- The Earth's magnetic field offers some radiation protection by deflecting part of cosmic rays and solar particles
- **7.4.2.1.2 Geostationary Orbit (GEO)** At roughly **36,000 km altitude**, a station moves synchronously with Earth's rotation, remaining over the same point on the surface. Advantages:
- Continuous line-of-sight to ground stations
- No atmospheric drag Disadvantages:
- Higher radiation levels (outside dense magnetic field protection)
- Resupply and evacuation are more complex (more fuel, longer flight times)
- Artificial day-night regulation required (nearly constant sunlight)

7.4.2.1.3 Lagrange Points Stations at **Lagrange points** (e.g., Earth–Moon L1/L2 or Earth–Sun L2) remain in quasi-stable positions. Advantages:

- Favorable gravitational equilibrium
- Unobstructed deep space view Disadvantages:
- Little to no natural radiation protection
- Large distance → long communication delays and return times
- Regular orbital station-keeping required

7.4.2.1.4 Distant Orbits (Asteroid Belt) Long-term plans include **Belt ONE** in the Asteroid Belt ². Challenges:

- High degree of self-sufficiency required
- Extreme radiation, no planetary gravity

¹sphere-space-station-earth-one-and-beyond.pdf

²sphere-space-station-earth-one-and-beyond.pdf

- Reduced solar energy availability
- Very long travel times (decades)

7.4.2.2 "Bus Terminal" Polar Docking Concept Earth ONE (rotating spherical station, ~127 m diameter) features a **20 m wide central docking tunnel** along its rotational axis ³. Concept:

- **Arrival pole** for incoming shuttles
- **Departure pole** for outbound shuttles
- Benefits: easy approach, separated traffic flow, energy efficiency

Crew Logistics:

- Arrival and departure separated → operational relief
- Central unloading/loading on **Deck 000** ⁴⁵, distribution via radial elevators ⁶

7.4.2.3 Rotation Direction and Planetary Analogies – **Prograde rotation** (like Earth) preferred \rightarrow gyroscopic stability, consistent approach patterns ⁷

- **Retrograde rotation** (like Venus) possible, but rarely practical ⁸⁹
- Axial tilt affects solar exposure and stability, may require active attitude control $^{\rm 10}$

7.4.2.4 Rotational Stability and Attitude Control – Spin rate: approx. **4-5 rpm** \rightarrow ~1g on outer decks 1112

- Stabilization via reaction wheels, control moment gyros ¹³, electric

³sphere-space-station-earth-one-and-beyond.pdf

⁴sphere-space-station-earth-one-and-beyond.pdf

⁵sphere-space-station-earth-one-and-beyond.pdf

⁶sphere-space-station-earth-one-and-beyond.pdf

⁷The Architecture of Artificial-Gravity Environments for Long-Duration Space Habitation, http://www.artificial-gravity.com/Dissertation/1_3.htm

⁸Venus and Earth Compared (ESA), https://sci.esa.int/web/venus-express/-/34067-venus-vs-earth

⁹Why Venus Spins the Wrong Way (Scientific American), https://www.scientificamerican.com/article/why-venus-spins-the-wrong/

¹⁰Uranus - Wikipedia, https://en.wikipedia.org/wiki/Uranus

¹¹sphere-space-station-earth-one-and-beyond.pdf

¹²sphere-space-station-earth-one-and-beyond.pdf

¹³sphere-space-station-earth-one-and-beyond.pdf

thrusters ¹⁴

- Docking along the rotation axis minimizes changes to angular momentum
- Orbital reboosts (in LEO) required periodically
- Navigation lights can be dynamically controlled to indicate correct orientation despite rotation

7.4.2.5 Physical, Psychological, and Social Effects on the Crew

7.4.2.5.1 Physical Effects - Artificial gravity prevents bone and muscle loss

- Noticeable gravity gradient within the station
- Coriolis effects require adaptation (possible space motion sickness)
- Adaptation likely within a few days

7.4.2.5.2 Orientation and Perception – Clearly defined "up/down" (radial) direction

- Differences between spinward and counter-spinward movement
- Window placement and interior design must support orientation ¹⁵¹⁶

7.4.2.5.3 Psychological Aspects – Proximity to Earth \rightarrow sense of connection

- Artificial day-night cycle to stabilize circadian rhythm
- Large communal spaces and varied leisure options to counter isolation

7.4.2.5.4 Social Dynamics – Up to 700 inhabitants $^{17} \rightarrow$ small-town-like structure

- Language and culture adapt to rotational environment
- Integration through shared activities and rituals

Summary:

Earth ONE combines innovative orbital and docking strategies with human-centered interior and operational design. The choice of orbit, polar docking architecture, rotational configuration, and psychological as well as social design are key to making the long-term operation of a large rotating space station a success.

¹⁴sphere-space-station-earth-one-and-beyond.pdf

¹⁵paper.doc, http://www.artificial-gravity.com/AIAA-99-4524.pdf

¹⁶The Architecture of Artificial-Gravity Environments for Long-Duration Space Habitation, http://www.artificial-gravity.com/Dissertation/1_3.htm

¹⁷sphere-space-station-earth-one-and-beyond.pdf

7.4.3 CORE-TRAFFIC-SIZING vs Wormhole-Durchmesser-Trade (127 m / 254 m / 254 \times 508 m / 254 \times 1016 m) — v0.1.0 DRAFT

Scope: Dimensionierung des axialen Mikro-g-Korridors "**Wormhole**" (DECK 000) für Personen- und Frachtverkehr in EVOL-01-Konfigurationen. Inklusive hochgradig praktischer, **ingenieurstauglicher Formeln** für die Auslegung in Abhängigkeit von Stationsgröße, Population und **Self-Sustainability-Modell**. Baseline: EVOL-00 Ø 127 m Station mit **Wormhole ID = 20 m (OD = 22 m)** und **Docking-Ringen** (10 m Halsweite) im 20 m-Pitch.

0) Kurzfazit (Executive Summary)

- Bottleneck heute: Nicht der 20-m-Kanal an sich, sondern die Docking-Ring-Halsweite (ID ≈ 10 m) an den Ringmodulen. Ein reines Aufweiten des Korridors ohne gleichzeitiges Upscaling der Ringe/Throats bringt für große Schiffe keinen Netto-Gewinn.
- Kapazitiv (PAX): Selbst hohe Spitzenflüsse in Stationen bis > 10 000 Personen sind mit 2 gegenläufigen Fahrzeugstrecken (Headway ~20 s, 40 PAX pro Fahrzeug) ohne Durchmesserverdopplung bewältigbar. Ø 20 m bleibt ausreichend solange du keine vier vollwertigen Lanes + breite Fußringe + große Cargo-Leitungen gleichzeitig im Querschnitt fahren willst.
- · Upsize sinnvoll, wenn ...
 - 1. **Großschiffe** (Außen-Durchmesser > 10 m) **innen** rangieren/andocken sollen ⇒ **Ringe** und **Korridor gemeinsam** vergrößern (z. B. Ring-ID ≥ 16-20 m, Core-ID 30-40 m).
 - Very-High-Capacity-Layouts (z. B. 254×1016 m Kapsel mit > 15 000-20 000 Personen, Basic/Partial-Sustainability mit hoher Externernährung) vier getrennte Lanes + breite Evakuierungs-Fußringe fordern ⇒ Core-ID ≈ 36-40 m.

Empfehlung:

- 127 m Kugel: ID 20 m beibehalten.
- 254 m Kugel (~4-5 k PAX): ID 20-24 m genügt (optional 30 m für 3. Express-Lane + große Services).
- 254×508 m Kapsel (10-20 k PAX): ID 30-36 m (je nach Lanes/EX-Zonen); 40 m nur bei innen rangierenden Großschiffen.
- 254×1016 m Kapsel (~20 k+ PAX): ID 36-40 m + Ring-Throats > 10 m, sonst limitieren die Ringe.

1) Eingänge & Annahmen

- Baseline Geometrie (EVOL-00): Wormhole ID 20 m (OD 22 m); Docking-Ringe, 10 m-Halsweite, im 20 m Pitch; Mikro-g-Achse, 1 atm innen.
- Self-Sustainability-Modelle: Basic / Partial / Full Autonomous mit unterschiedlicher externer Nachschub-Intensität; diese beeinflusst Frachtflüsse stark. (Inhalt/Definitionen siehe Programmdokument 4.2.)
- Verkehrsträger im Wormhole: 2-4 axiale Fahrzeug-Lanes (Maglev/People-Mover), Fußring(e) (Evakuierung/Redundanz), Service-/Versorgungs-Trunks (PWR/COM/THM), Sicherheitsabstände.

2) Kapazitäts-Modelle (ingenieurstaugliche Formeln)

2.1 Personen (Peak-Hour-Demand)

$$Q_{\rm pph} = \underbrace{N_{\rm max}}_{\rm max. \ Personen} \cdot \underbrace{T_{\rm day}}_{\rm Trips/Person \cdot Tag} \cdot \underbrace{f_{\rm core}}_{\rm Anteil \ via \ Wormhole} \cdot \underbrace{\rm PHF}_{\rm Peak-Hour-Faktor}$$

• Richtwerte: $T_{\rm day}=2.0\dots3.0$, $f_{\rm core}=0.3$ (Kugel) bis 0.6 (lange Kapsel), PHF $=0.12\dots0.18$.

Systemkapazität der Lanes:

$$\boxed{Q_{\rm cap} \ = \ n_{\rm lanes} \cdot \frac{3600}{h} \cdot C_{\rm veh} \cdot \eta}$$

mit **Headway** h (s), **Nutzlast je Fahrzeug** C_{veh} (PAX), Betriebsfaktor η (0,7–0,85 inkl. Haltezeiten/Störungen).

Daumen: $h=20\,\mathrm{s}$, $C_{\mathrm{veh}}=40$, $\eta=0.8\Rightarrow$ pro Lane \thickapprox 5 760 pph, 2 Lanes \thickapprox 11 520 pph, 4 Lanes \thickapprox 23 040 pph.

2.2 Fracht (kg/h) Tägliche externe Massezufuhr (abhängig vom Sustain-Modell):

$$\boxed{\dot{M}_{\rm ext,day} \ = \ N_{\rm avg} \cdot I_{\rm model}} \quad \Rightarrow \quad \dot{M}_{\rm ext,hr} \approx \frac{\dot{M}_{\rm ext,day}}{24} \cdot {\rm PHF}_{\rm cargo}$$

- Logistik-Intensität $I_{\rm model}$ (Programmzielwerte, konservativ): Basic: 5–10 kg / (Pers·Tag) Partial: 1–3 Full: 0,1–0,5 (haupts. Ersatzteile).
- PHF_{cargo} (Bündelung): 1,5-3,0 (je nach Lieferung in festen Slots).

Benötigte **Cargo-Lanes** (oder Slots) mit Standard-Carrier (Masse m_{veh} , Turnaround t_{turn}):

$$\boxed{n_{\rm cargo} \, \approx \, \left\lceil \frac{\dot{M}_{\rm ext,hr}}{m_{\rm veh} \cdot \frac{3600}{t_{\rm turn}}} \right\rceil}$$

- 3) Geometrische Auslegung (Querschnitt) Wir modellieren den Wormhole-Durchmesser als **Packungs-/Hüllproblem**:
 - Fahrzeug-Lane (inkl. Hülle & Clearance): Kreis-Äquivalent $d_{\mathrm{lane}} pprox 6\,\mathrm{m}$ (r = 3 m). • Lane-Abstand: $s=1,0\dots 1,5\,\mathrm{m}$.

 - Service-Trunks (PWR/COM/THM+SAFE): ringförmig, äquiv. 2× 2 m Bänder.
 - Fußring (Evakuierung): umlaufend $w_{\rm foot} = 2,\!0\ldots 3,\!0\,{\rm m}.$

Konservative Hüll-Schätzung:

- 2 Lanes (nebeneinander): brauchen ≈ 13-14 m netto ⇒ mit Fußring + Services \Rightarrow Core-ID \ge 20 m ok.
- 3 Lanes: ≈ 20-22 m netto ⇒ mit Fußring/Services ⇒ Core-ID ≈ 28-30 m.
- 4 Lanes (2×2 Matrix): ≈ 26-28 m netto ⇒ mit Fußring/Services ⇒ Core-ID ≈ 36-40 m.

Wichtig: Wenn Docking-Ring-Throats (heute ID ≈ 10 m) nicht **mitwachsen**, bleibt **dort** der Engpass – unabhängig vom Core-ID.

4) Varianten-Ergebnisse

4.1 By Geometry

Vari- ante	Typ- is- che PAX	Sustain- Modell (extern)	Empf. Lanes	Core-ID Empfehlung	Ring-Throats (Halsweite)
127 m Kugel	0.8-1 k	. % a- sic/Par- tial	2	20 m (Baseline)	10 m ok
254 m Kugel	4-5 k	Par- tial/Full	2 (op- tional 3)	20-24 m (30 m mit 3. Lane)	10 m ok (außen andocken)
254×50 m Kapsel)8 10-20 k		3-4	30-36 m (bis 40 m bei 4 Lanes + breiten Fußringen)	> 10 m , falls Großschiffe innen
254×10 m Kapsel)16 20 k+	Ba- sic/Par- tial	4	36-40 m	≥ 16-20 m , falls innen Rangierbe- trieb

4.2 By Population & Sustain-Level (Formel-Schwellen)

- 1. PAX-Kapazitätsgrenze je Core-ID (mit h=20 s, $C_{\mathrm{veh}}=40$, $\eta=0,\!8$)
- ID 20 m 2 Lanes: $Q_{\rm cap} \approx 11.5~{\rm k~pph}$
- ID 30 m 3 Lanes: $Q_{\rm cap} \approx 17.3~{\rm k~pph}$
- ID 40 m \rightarrow 4 Lanes: $Q_{\rm cap} \approx 23{,}0~{\rm k}~{\rm pph}$
- 2. PAX-Peaks (Beispielwerte):

$$Q_{\rm pph} = N_{\rm max} \cdot T_{\rm day} \cdot f_{\rm core} \cdot {\rm PHF}$$

- 5 000 PAX, T=2.5, f=0.4, PHF =0.15 \Rightarrow 7 500 pph \rightarrow 2 Lanes reichen (ID 20 m).
- 20 000 PAX, T=2.5, f=0.6, PHF $=0.15\Rightarrow$ 45 000 pph \rightarrow rechnerisch 4 Lanes (ID 40 m) oder höhere Vehikelkapazität / kürzerer Headway.
- 3. Fracht-Peaks (Beispielwerte):

$$\dot{M}_{
m ext,hr} pprox rac{N_{
m avg} \cdot I_{
m model}}{24} \cdot {
m PHF}_{
m cargo}$$

- Partial, $N_{\rm avg}=5\,000$, $I=2\,{\rm kg/(P\cdot d)}$, ${\rm PHF_{cargo}}=2\Rightarrow\dot{M}_{\rm ext,hr}\approx833\,{\rm kg/h}\to1$ Cargo-Slot genügt. • Basic, $N_{\rm avg}=20\,000$, $I=7\,{\rm kg/(P\cdot d)}$, ${\rm PHF_{cargo}}=2\Rightarrow\approx$
- Basic, $N_{\rm avg}=20\,000$, $I=7\,{\rm kg/(P\cdot d)}$, ${\rm PHF_{cargo}}=2\Rightarrow\approx11.7~{\rm t/h}$ \rightarrow 2–3 parallele Cargo-Slots oder Zeitfenster (Shared Lanes).

5) Konsequenzen (Design & Betrieb)

- Wenn Großschiffe innen: Ring-Throats (gegenwärtig 10 m) mitskalieren (≥ 16-20 m) und Core-ID anpassen; sonst wirkt der Ring als Drossel. (Siehe Docking-Ring-Architektur in der DECK-000-SPEC.)
- Evakuierung: Ein umlaufender Fußring ≥ 2 m liefert bei 1,5 Pers/(m·s) ≈ 10 800 pph (nur zu Fuß). Bei langen Kapseln verbessert zweiter Fußring (oder breiterer) die Resilienz → spricht für ID ≥ 30 m.
- Sustain-Level: Je mehr Full/Partial, desto kleiner der externe Fracht-Peak → kein Core-Upsize nötig. Basic mit hoher externer Masse → Zeitfenster oder zusätzliche Cargo-Slots (kein zwingendes Durchmesser-Upsize, wenn Slots getaktet).

6) Empfehlung

- Kein pauschales Verdoppeln auf Ø 40 m für alle 254-m-Varianten.
- 254 m Kugel (~4-5 k): Ø 20-24 m genügt; Upgrade auf Ø 30 m, wenn 3. Lane + dickerer Fußring gewünscht.
- 254×508 m Kapsel (10-20 k): Ø 30-36 m (3-4 Lanes + Service/Foot); Ø 40 m nur bei innen rangierenden Großschiffen.
- 254×1016 m Kapsel (20 k+): Ø 36-40 m und Ring-Throats ≥ 16-20 m (sonst Rings-Bottleneck).
- 127 m: Ø 20 m bleibt optimal (Baseline bestätigt).

7) Referenzen

- DECK-000 The Wormhole (EVOL-00 Baseline, ID 20 m, Ring-Pitch 20 m, Ring-Throat 10 m).
- Sustainability / Self-Sustainability Models (4.2) Einfluss auf externe Frachtflüsse.

Anhang A — Schnelle Entscheidungsformel

1. PAX-Lanes:

$$n_{\rm lanes} \, \geq \, \left\lceil \frac{N_{\rm max} \cdot T_{\rm day} \cdot f_{\rm core} \cdot {\rm PHF}}{(3600/h) \cdot C_{\rm veh} \cdot \eta} \right\rceil$$

2. Core-ID aus Lanes:

$$\begin{aligned} \text{ID}_{\text{core}} \; \approx \; \begin{cases} \geq 20\,\text{m}, & n=2 \\ \geq 28\text{-}30\,\text{m}, & n=3 \\ \geq 36\text{-}40\,\text{m}, & n=4 \end{cases} \end{aligned} \quad \text{(inkl. Fußring+Services)}$$

3. Cargo-Slots: $n_{\rm cargo} \approx \left[\dot{M}_{\rm ext,hr}/(m_{\rm veh}\cdot 3600/t_{\rm turn})\right]$. Shared-Lane-Fenster bevorzugen, um Querschnitt klein zu halten.

129

7.4.4 HAZARD CATALOG — Cross-Project Hazard Catalog

Considers: EVOL-00, EVOL-01 **Version:** v1.0.0 (initial stable; derived from v0.1.0 DRAFT)

Scope: Unified hazard catalogue for Sphere Stations and Crafts covering Evolution 00 and Evolution 01. Acts as the SSOT for hazard definitions, mitigations, and V&V. > Naivety is inevitable — **dangerous naivety is not**.

SAFETY FIRST.

1) Nomenclature & Scales Hazard-ID (project-wide unique): HZ-<Domain>-<Code> Examples for Domains: AX (axial/Wormhole), DOCK, HULL, PWR, THM, GAS, FIRE, MMOD, RAD, CYB, OPS. Codes: short mnemonics, e.g., PI=Polar-Impact, COL=Collision, EXP=Explosion, LEAK, VENTFAIL; e.g., HZ-AX-PI (polar-impact) 1.

Severity (MIL-STD-882E) 1: - I Catastrophic — loss of life/total loss; - II Critical — severe injury/partial loss of critical systems; - III Marginal — minor injury/temporary failure; - IV Negligible — small mission impact.

Likelihood 1: - A Frequent; - B Probable; - C Occasional; - D Remote; - E Improbable.

Risk index (R): - qualitative assessment as **Severity** × **Likelihood**; detailed matrix in SSOT.

2) Hazards (EVOL-00 & EVOL-01)

HZ-DOCK-EXP — Explosion at a docked craft causing blast and debris Loc: Docking ring(s), wormhole rings. S/L: I / C. Mitig.: Blast-tolerant rings, crush collars, radial vent/burst-out panels, quick-release/jettison 3 V&V: Impulse/blast tests, verify

vent capacity (choked flow) 3 **Refs:** ECSS-Q-ST-40C, ISO 14620-1, NASA-STD-3001 3

- HZ-FIRE-DOCK Fire onboard a docked vehicle 4 Loc:
 Dock adapters, ring compartments. S/L: II / C. Mitig.: Inert-gas
 flooding (Ar/N₂), non-combustible lining, hazardous-area zoning,
 automatic detachment 4 V&V: Measure O₂-reduction time ≤ target; material LOI/fire tests Refs: ISO 14620-1, NASA-STD-3001
 4
- 3. **HZ-AX-COL** Collision in the wormhole axial approach Loc: Entry/exit corridors. **S/L:** I / B-C. **Mitig.:** Active traffic

- management, collision-avoidance algorithms, abort corridors, protective shutters 5 **V&V**: Interlock tests, emergency stop drills, dummy impact tests 5 **Refs**: NASA-STD-3001; MIL-STD-882E 5
- 4. HZ-AX-PI Uncontrolled polar approach/impact Loc: North/South polar approaches. S/L: I / B-C. Mitig.: Deployable guard nets and tethers, honeycomb bumpers, deflection cones, shutters closing ≤ 0.5 s; geofencing 6 V&V: Sled/drop tests, shutter-timing verification 6 Refs: ECSS-Q-ST-40C; MIL-STD-882E 6
- HZ-MMOD-TRANS Transverse MMOD penetration Loc: Wormhole tubes, windows. S/L: II / C-D. Mitig.: Stuffed-Whipple shielding + spall liner, sector isolation, radial vents, shutters 7 V&V: Ballistic tests, debris-mitigation analysis 7 Refs: ISO 24113; NASA-STD-8719.14 7
- 6. HZ-MMOD-LONG Axial MMOD penetration Loc: Window tubes, open rings. S/L: II / D. Mitig.: Shutter cascades, fragment capture lamellae, segment locking 8 V&V: End-to-end shutter test ≤ 0.5 s 8 Refs: ISO 24113; NASA-STD-8719.14 8
- HZ-RAD-SPE Solar particle event / CME radiation exposure Loc: Windows/wormhole; low-shield zones. S/L: II / C. Mitig.: Storm mode (close shutters), move crew into water/poly-shielded decks (e.g., Deck 013/014), minimise exposure time 9 V&V: Alert chain from space-weather feed to actuators 9 Refs: NASA-STD-3001 9
- HZ-VENT-FAIL Vent/blow-out malfunction (fail to relieve pressure) Loc: Hull-proximate vents/blow-off panels. S/L: II / D. Mitig.: Redundant vent paths, fail-open philosophy, periodic functional drills 10 V&V: Choked-flow calculation, relief time under limit 10 Refs: ECSS-Q-ST-40C; ISO 14620-1 10
- HZ-PT-FAIL Bulkhead/door fails to close Loc: Partition doors/hatches (PT-A/B, AL-C). S/L: II / C. Mitig.: Redundant actuators; door status interlocks; manual override; periodic close/open drills V&V: Timed closure tests; fault insertion on sensors/actuators Refs: ECSS-Q-ST-40C; ISO 14620-1
- 10. HZ-GAS-CRYO Cryogenic release / oxygen displacement Loc: Fuel cells, cryo tanks, service lines. S/L: II / C-D. Mitig.: Leak-before-break design; oxygen depletion sensors; purge/vent routing; PPE and area zoning V&V: Helium leak tests; ODH calculations; functional vent tests Refs: ISO 14620-1; NASA-STD-3001
- 11. **HZ-GAS-TOX Toxic gas release Loc:** Labs, waste-processing, propellant lines. **S/L:** II / C. **Mitig.:** Gas detection arrays; automatic isolation; scrubbers; emergency ventilation purge **V&V:**

- Detector calibration; gas-in-air tests; evacuation drill timings **Refs:** NASA-STD-3001
- 12. HZ-FIRE-HAB Fire in habitat modules Loc: Hab decks, crew quarters, galley. S/L: II / C. Mitig.: Low-flammability materials (LOI), smoke detection, zoned suppression (wet/dry/inert), hot-work controls V&V: Material LOI/ignition tests; suppression timing; compartment integrity tests Refs: NASA-STD-3001; ISO 14620-1
- 13. HZ-FIRE-ELEC Electrical fire Loc: Power bays, distribution panels, racks. S/L: II / C. Mitig.: Arc-fault detection; derating; cable routing segregation; automatic de-energise; clean-agent suppression V&V: Arc-fault injection; breaker trip profiling; suppression test Refs: NASA-STD-3001
- 14. **HZ-PWR-LOSS Total/partial power loss Loc:** PWR generation, storage, distribution. **S/L:** II / C-D. **Mitig.:** N+1 generation; cross-ties; load shedding; black-start procedures **V&V:** Black-start drills; FMEA; HIL testing **Refs:** ECSS-Q-ST-40C; IEC 60812 6
- 15. HZ-THM-CTRL Thermal control failure / over-temperature Loc: Thermal loops, radiators, heat-exchangers. S/L: II / C-D. Mitig.: Redundant pumps/loops; bypass valves; boil-off paths; over-temp interlocks V&V: Thermal balance tests; loss-of-flow tests; interlock verification Refs: ECSS-Q-ST-40C
- 16. HZ-HULL-LEAK Hull breach / progressive leak Loc: External hull, penetrations, windows. S/L: I-II / C-D. Mitig.: Compartmentalisation; automatic isolation; patch kits; radial vents to avoid implosive flow V&V: Pressure decay tests; door/valve auto-close timing; patch drill Refs: ISO 14620-1
- HZ-HULL-DEPRESS Rapid decompression Loc: Any pressurised volume. S/L: I / C. Mitig.: Blast-relief panels; auto door closure; tethered PPE; emergency O₂ V&V: Blow-out panel tests; man-in-the-loop drills; timing analysis Refs: ISO 14620-1; NASA-STD-3001
- 18. HZ-OPS-HUMAN Human error / procedural deviation Loc: All operations. S/L: II / C. Mitig.: Two-person rule; checklists; digital work-flows; poka-yoke interfaces; fatigue management V&V: Ops simulations; incident reviews; FTA of critical tasks Refs: ISO 31000 2; NRC FTA handbook 7
- 19. HZ-CYB-SEC Cybersecurity breach affecting safety Loc: Control networks, HMI, gateways. S/L: II / D. Mitig.: Defense-in-depth; zero-trust; safety-rated independence; signed configs; offline fail-safe modes V&V: Pen-tests; red-team

- exercises; safety-separation verification **Refs:** NASA-8719.13 13; NASA 8000-series 14
- HZ-OPS-EVAC Failed/slow evacuation Loc: Hab decks, labs, docks. S/L: II / C. Mitig.: Wayfinding; lighting; muster points; drills with metered timing; mobility-impaired accommodations V&V: Evacuation timing; blocked-path scenarios; smoke studies Refs: NASA-STD-3001
- 21. **HZ-ROBOT-COLL Robotic collision/kinematic failure Loc:** Autonomous/tele-op robots near crew/structures. **S/L:**II / C. **Mitig.:** Speed limits; soft-body compliance; geofenced workspaces; dynamic obstacle avoidance; e-stops; HRI training **V&V:** HIL simulation; sensor stress tests; fail-safe/rescue procedures **Refs:** IEC ISO 8373; NASA-STD-3000 series
- 22. HZ-ECLSS-FAIL Environmental Control & Life-Support failure Loc: Life-support modules (ECLSS), habitat. S/L: I / D. Mitig.: Redundant subsystems with cross-connects; consumables stockpile; manual operation; health monitoring; maintenance V&V: Reliability modelling; failure-mode tests; integrated ECLSS simulations Refs: NASA-STD-3001; ECSS-E-ST-20
- 23. HZ-BIO-CONTAM Biological contamination/health risk Loc: Laboratories, hydroponics, waste-processing. S/L: II / D. Mitig.: Zoning (BSL-like); UV/heat sterilisation; waste isolation; PPE; sampling V&V: Bioburden tests; surface/air sampling; decon validation Refs: NASA-STD-3001
- 24. **HZ-DOCK-DET Failed detachment/undocking Loc:** Dock ring, adapter systems. **S/L:** II / C-D. **Mitig.:** Redundant latches; pyros as last resort; manual release paths; torque-limiters **V&V:** Detachment drills; torque/force logs; fault-injection **Refs:** ECSS-Q-ST-40C; ISO 14620-1
- 25. HZ-DOCK-MISALIGN Dock misalignment / hard-dock impact Loc: Dock interface. S/L: II / C. Mitig.: Soft-capture; alignment cones; relative-nav sensors; abort corridors V&V: Contact-dynamics tests; software-in-the-loop Refs: NASA-STD-3001
- 26. HZ-THM-ICE Ice formation / shedding Loc: Cryo lines, vents, exterior. S/L: III / C-D. Mitig.: Heat tracing; purge; drip-traps; shields V&V: Thermal cycle tests; visual inspections Refs: ECSS-Q-ST-40C
- 27. HZ-PWR-ARC Arc-flash / electrical shock Loc: Switchgear, battery rooms. S/L: II / C. Mitig.: Arc-flash boundaries; insulated tools; remote racking; PPE; interlocks V&V: Incident energy calc; protection coordination; trip tests Refs: NASA-STD-3001

- 28. HZ-PWR-BATT Battery thermal runaway Loc: Energy storage racks. S/L: II / C-D. Mitig.: Cell-level fusing; gas vents; fire breaks; thermal monitoring; isolation V&V: Abuse tests; propagation tests; detection response time Refs: NASA-STD-3001; IEC 60812 6
- 29. **HZ-STRUCT-FAIL Structural member failure Loc:** Trusses, rings, mounts. **S/L:** II / D. **Mitig.:** Safety factors; load path redundancy; crack monitoring; QA/NDT **V&V:** Proof-load; fatigue tests; NDT schedule **Refs:** ECSS-Q-ST-40C
- HZ-PROP-LEAK Propellant leak (non-cryo) Loc: Manifolds, valves, lines. S/L: II / C. Mitig.: Double containment; leak detection; isolation valves; purge lines V&V: Helium leak test; sniffer surveys; isolation verification Refs: ISO 14620-1
- 31. **HZ-PROP-IGN Unintended ignition Loc:** Engines, test stands, docks. **S/L:** I-II / C. **Mitig.:** Hazardous area zoning; purge; ignition interlocks; LEL/UEL monitoring **V&V:** Ignition source control tests; interlock validation **Refs:** ISO 14620-1; NASA-STD-3001
- 32. **HZ-COMM-LOSS Loss of command/telemetry Loc:** Control rooms, comms links. **S/L:** II / D. **Mitig.:** Redundant links; local autonomy; degraded-mode ops; manual safe-states **V&V:** Link failover tests; degraded-mode drills **Refs:** NASA-STD-3001
- 33. HZ-NAV-ERROR Navigation error / bad state-estimation Loc: Guidance & relative nav in docking/approach. S/L: II / C-D. Mitig.: Sensor fusion; plausibility checks; geo-fencing; approach cones; velocity caps V&V: Monte-Carlo sims; HWIL; flight-like tests Refs: NASA-STD-3001
- 34. **HZ-SW-FAULT Safety-critical software fault Loc:** Autonomy, guidance, interlocks. **S/L:** II / D. **Mitig.:** Independent safety layer; static analysis; formal methods; diversified redundancy **V&V:** Unit/integration tests with coverage; formal proofs where applicable **Refs:** NASA-STD-8719.13 13
- 35. **HZ-EMC-INTERF EMC/EMI** interference impacts safety **Loc:** Mixed-signal environments; high-power RF. **S/L:** III / D. **Mitig.:** Shielding; filtering; grounding; separation; EMC test plans **V&V:** EMC testing; injected fault currents; susceptibility scans **Refs:** ECSS-Q-ST-40C
- 36. HZ-TOOLS-FOD Foreign Object Debris (FOD) / tool control Loc: Shops, docks, EVA prep. S/L: III / C. Mitig.: Tool tethering; FOD mats; kitting; sign-in/out; inspections V&V: FOD audits; surprise inspections; incident tracking Refs: NASA-STD-3001

37. **HZ-MED-EMERG** — **Medical emergency** / **delayed response Loc:** Hab/labs; EVA staging. **S/L:** II / C. **Mitig.:** Medical bay readiness; telemedicine; AEDs; drills; med-evac protocols **V&V:** Drill timing; inventory checks; scenario-based training **Refs:** NASA-STD-3001

3) Governance & Versioning

- **Owner:** safety-life-support (Catalogue), safety-reactor (Schotts/VENT), structure-architecture (AX/Wormhole).
- **Change process:** Hazard Review Board (HRB) monthly; changes tracked in SSOT.
- SemVer:
 - MAJOR new Evolution covered (e.g., EVOL-02) ⇒ v2.0.0;
 - MINOR content changes (new hazards/mitigations) ⇒ v1.1.0;
 - **PATCH** typos/format fixes ⇒ v1.0.1.

Fußnotenliste

7.5 Processes

7.5.1 Engineering Process (Coarse → Fine)

Purpose. Establish a clear, auditable, and scalable process to design, build, verify, operate, and evolve the Sphere Space Station Earth ONE. The guiding principle is **coarse first, then finer**—we start broad to frame the whole system, then iteratively refine down to parts, interfaces, and procedures until the system is flight-ready and maintainable.

7.5.1.1 Foundations & Guardrails

- Ethics, Safety, Transparency. Adhere to project preamble; document every safety-critical decision; keep artifacts auditable.
- Single Source of Truth (SSOT). All specs, models, decisions, and approvals are maintained in the project's documentation space; changes only via controlled requests.
- Configuration Management. Version every artifact (requirements, CAD, code, models); trace from requirement → design → test → result.
- Standards. Apply MBSE (SysML/UML), ECSS/NASA-SE handbooks where applicable, RAMS practices, FMEA/FTA for hazards, ICD discipline for interfaces.

7.5.1.2 Coarse Layer — Vision to System Concept Objective. Align on what we're building and why; set bounding boxes.

Core outputs.

- Mission Objectives & Success Criteria (primary, secondary, stretch).
- System Concept of Operations (ConOps) incl. orbit, spin, docking, traffic, crew flows, emergency philosophy.
- Top-Level Requirements (TLRs): performance, capacity (~700 ppl), safety, sustainability, cost, schedule.
- Initial Architecture: segment breakdown (Structure, Power/Thermal, Life Support, Avionics/Comms, Attitude/Propulsion, Safety, Ops/Logistics).

LoD Levels (fidelity ladder):

- LoD-0: Back-of-envelope sizing, mass/power/heat budgets, first feasibility deltas.
- LoD-1: Analytic models per discipline; strawman interfaces.

Gate: SRR (**System Requirements Review**). Approve TLRs, ConOps, initial budgets, risk register v1.

7.5.1.3 System Architecture & Trade Studies (Refinement #1) Objective. Choose the big rocks; prove feasibility with numbers.

Activities.

- MBSE model (SysML) with functional, logical, and physical views.
- Trades: reactor vs microreactor mixes; radiator geometry; deck gravity bands; docking topology; shielding options; escape system variants.
- Interfaces: draft ICDs between segments (mechanical, thermal, electrical, data, fluid).
- Preliminary Safety Assessment: hazard tree, fault containment regions, safe states, crew survival time budgets.
- Cost & Schedule envelopes; ops concept for assembly and resupply.

Outputs. Updated mass/power/thermal/radiation budgets; ICD set v0.1; hazard log v0.1; ops-timeline sketch.

Gate: SDR/Architecture Review. Approve chosen architecture and key trades.

7.5.1.4 Preliminary Design (Refinement #2) Objective. Turn architecture into validated preliminary designs per subsystem.

Activities.

- Subsystem PDRs (Structure & Decks; Power & Thermal; Life Support; Avionics/Comms; Attitude & Propulsion; Safety & Evac; Ground & Ops).
- Model maturation to LoD-2: coupled analyses (rotational dynamics
 ⇔ structure; heat
 ⇔ power; ECLSS
 ⇔ crew loads).
- Digital Twin v1 (simulation backbone) for end-to-end performance runs.
- Preliminary test plans (qualification/acceptance); verification cross-matrix (req ↔ test/analysis/inspection/demo).

Outputs. Subsystem specs v1.0, ICDs v0.5, risk register v2, verification plan v1, draft manufacturing plans.

Gate: PDR. Converged preliminary design; cost/schedule re-baseline; go/no-go to detailed design.

7.5.1.5 Detailed Design & Build Readiness (Refinement #3) Objective. Lock drawings, parts, and processes; prove producibility. **Activities.**

- Detailed CAD & drawings; tolerances; materials/finishes; process sheets.
- Parts lists/BOMs; long-lead procurement; supplier qualification.
- Software design to code complete for flight/ground; ICDs finalized.
- Design for Assembly/Integration/Service (DFx); human factors layouts for high-g and 1g decks.
- Safety: FMEAs to item level; red-team reviews; evacuation and fire suppression design finalized.
- Model maturation to **LoD-3:** integrated multi-physics models; HIL benches for critical loops (ECLSS, power, quidance).

Outputs.

 Released drawings (RFD/RFW processes ready), ICDs v1.0, work instructions, inspection plans, software CI/CD pipelines.

Gate: CDR (Critical Design Review). Design is buildable, safe, and testable.

7.5.1.6 Integration, Verification & Validation (V&V) Objective. Prove the system meets requirements and is flightworthy.

Build tiers.

- **EM/Breadboards:** early risk retirement.
- QM (Qualification Models): to limits and beyond (thermal-vac, vibration, EMI/EMC, radiation/SEU).
- **FM (Flight Models):** acceptance test regime; traceability to QMs.

Verification methods. Test, Analysis, Inspection, Demonstration (TAID). Maintain a closed-loop **Verification Matrix**.

System-level. End-to-end tests on spin rigs; emergency drills; power/thermal load shedding; fault injection; crew-in-the-loop sims.

Gates.

- TRR (Test Readiness Review) → start formal test.
- QR (Qualification Review) → qual complete.
- FAR (Flight Acceptance Review) → flight approve.

7.5.1.7 Launch, Assembly & Commissioning Objective. Safely deploy, assemble, spin-up, and commission the station.

Activities.

- Launch campaign & on-orbit assembly scripts; robotics tools; alignment & metrology.
- Incremental spin-up with telemetry guardrails; mode management & hold points.
- Commissioning tests: ECLSS stability, power/thermal steadystate, crew habitat checks, docking rehearsals, evacuation drills.

Gate: ORR (Operations Readiness Review). Authorize nominal operations.

7.5.1.8 Operations, Maintenance & Evolution (Refinement #4+) Objective. Keep it safe, efficient, and improving.

Practices.

- Reliability engineering (RCM), predictive maintenance (vibration/thermal analytics), spare strategy.
- Change management: ECR/ECO workflow; controlled rollouts; regression V&V.
- Post-flight/ops data into digital twin for continuous calibration.
- Periodic Safety Reviews; audit trails; incident investigation playbooks.

Gate: FRR (Flight/Operations Readiness for upgrades) per upgrade wave.

7.5.1.9 Cross-Cutting Disciplines & Checklists Risk Management. Identify → assess → mitigate; keep burn-down visible.

Human Systems Integration. Habitability, workload, health (radiation, rotation adaptation), emergency egress time.

Sustainability. Closed loops (air, water, waste), energy efficiency, recycling; environmental compliance.

Security & Resilience. Cybersecurity, physical security, fault tolerance, degraded-mode operations.

Compliance & Legal. Space law, export control, reactor licensing, debris mitigation.

Cost & Schedule Control. Earned value, critical path, contingency management.

7.5.1.10 Interface & Documentation Discipline

- **ICDs:** mechanical, thermal, electrical, data, fluid; unique IDs; auto-validation checks.
- **Design Books:** one per subsystem (requirements, rationale, calcs, margins, tests, as-built).
- Review Datasets: frozen snapshots at SRR/SDR/PDR/CDR/TRR/ORR/FAR; archived in SSOT.

7.5.1.11 Levels of Detail (LoD) Summary (Coarse → Fine)

- LoD-0: Concept sizing; 10-20% margins; feasibility only.
- **LoD-1**: Discipline analytics; key trades; preliminary ICDs.
- **LoD-2:** Coupled subsystem models; preliminary test plans.
- LoD-3: Integrated models; HIL benches; detailed drawings.
- LoD-4: Qualification/acceptance results; as-built configs.
- LoD-5: In-service telemetry-calibrated models; ops baselines.

7.5.1.12 Reviews (Quality Gates) — At a Glance

- **SRR** → requirements & ConOps approved.
- **SDR/AR** → architecture frozen.
- **PDR** → preliminary design mature.
- **CDR** → detailed design releasable.
- TRR → test campaign ready.
- QR/FAR → qualified & flight-accepted.
- **ORR** → operations authorized.

7.5.1.13 Minimal Template Set (Starter Kit)

Mission Objectives Sheet
 ConOps Canvas
 TLR List
 Risk Register
 Architecture Block Diagram
 Budget Sheets (mass/power/thermal)
 Trade Study Template
 ICD Template
 Verification Matrix
 Test Plan Template
 Safety Case Outline

Review Checklist Pack (SRR→ORR)	• Change Request (ECR/ECO)
forms.	

7.5.1.14 Success Metrics

- Technical: margins met, fault tolerance, RAMS KPIs.
- Programmatic: milestone hit rate, variance ≤ thresholds.
- Safety: zero loss-of-life incidents; risk exposure within limits.
- Sustainability: recycling efficiencies, energy intensity, waste KPIs.
- Operations: uptime, mean time to repair, anomaly closure time.

This document is living. All edits proceed via change control in the S	SOT
with full traceability from requirement to verification and operation	onal
evidence.	

7.5.1.15 Appendices

Appendix A — Engineering Glossary (Detailed)

Scope. This glossary collects core terms used throughout the engineering process for Sphere Space Station Earth ONE. It follows an alphabetical order. Cross-references are indicated with arrows (→). See also the sections **Reviews**, **Levels of Detail**, **Interface & Documentation Discipline**, and **V&V** in this document.

Α

- Acceptance Test (AT). Formal test performed on a Flight Model (FM) to show it meets acceptance criteria before delivery/launch.
 (→ Qualification Test, FAR)
- Acceptance Review (FAR). Flight Acceptance Review; gate confirming that hardware/software is accepted for flight. (→ Reviews)
- AIT (Assembly, Integration & Test). End-to-end process of assembling parts, integrating subsystems, and testing at each tier. (→ V&V)
- **All-Up Test.** System test with all subsystems active in mission-like configuration.
- Anomaly. Any unexpected behavior, result, or condition requiring triage, root-cause analysis, and corrective action. (→ NCR, MRB)

- As-Built / As-Designed / As-Run. Frozen configurations: manufactured/installed state; original design baseline; actual procedures executed. Used for traceability.
- Avionics. Spacecraft electronics for command, data handling, guidance, navigation, and control.

В

- Baseline. The authoritative, controlled definition of a configuration or requirement set at a point in time. Changes require approval. (→ CCB)
- **BOM (Bill of Materials).** Hierarchical list of all items needed to manufacture and assemble a product, with part numbers and revisions.
- Breadboard (EM). Early experimental hardware (Engineering Model) used to validate principles; not flight-like in form or finish.
 (→ QM, FM)
- Budget (Mass/Power/Thermal/Radiation). Allocated resources per subsystem with margins; tracked from early sizing through operations.
- **Burn-Down Chart.** Visual tracking of risk or work remaining versus time; used for risk retirement and schedule focus.

C

- CBE (Current Best Estimate). The latest realistic estimate of a parameter before margin; paired with growth allowance. (→ Margin)
- CCB (Change Control Board). Authority that reviews and approves changes to baselines, ICDs, and requirements. (→ ECR/ECO)
- **CDR (Critical Design Review).** Gate confirming detailed design is producible, testable, and safe. (→ Reviews)
- Commissioning. Post-assembly activation and calibration to transition to nominal operations. (→ ORR)
- **Common-Mode Failure.** A single cause leading to multiple failures simultaneously, often violating redundancy assumptions.
- ConOps (Concept of Operations). Narrative of how the system is used over its life cycle—modes, users, environments, and scenarios. (→ SRR)
- Configuration Management (CM). Governance and tooling for identifying, controlling, tracking, and auditing all configuration items.
- **Contingency Mode.** Predefined degraded mode to preserve safety and assets when nominal performance is not possible. (→

Safe State)

- **Coriolis Effects.** Apparent forces in rotating frames affecting crew perception and fluid flows in spin gravity habitats.
- **COTS (Commercial Off-The-Shelf).** Non-custom components procured as-is; usually require environment qualification.
- **Crew Survival Time (CST).** Minimum guaranteed time for crew survival after a critical failure, given emergency provisions.
- **Critical Item List (CIL).** Catalog of safety-critical parts and processes requiring special controls.
- **Critical Path.** The sequence of tasks that determines the project's minimum schedule; any delay here delays the whole.

D

- Datum (Mechanical). Reference feature used for locating and aligning parts during inspection and assembly.
- DFx (Design for X). Design for Assembly/Integration/Service/Manufacture/Safety; methods to reduce cost and risk. (→ AIT)
- Digital Twin. High-fidelity, continuously updated model mirroring the as-built system using telemetry and test data. (→ V&V)
- Deviation / Waiver (RFD/RFW). Formal permission to depart from a requirement (waiver) or from the design during build (deviation). (→ CCB)
- **Degrees of Freedom (DoF).** Independent parameters defining motion or state of a system.
- **Docking Envelope.** Spatial/kinematic limits and alignment tolerances for capture and berthing operations.
- **Downmass / Upmass.** Mass returned from orbit / mass launched to orbit; key logistics constraints.

E

- ECLSS (Environmental Control and Life Support System).
 Air, water, waste, thermal comfort, and pressure control systems for crewed habitats.
- ECO / ECR. Engineering Change Order / Request; proposal and approval workflow for modifying baselines. (→ CCB)
- **EM (Engineering Model).** Early hardware used for functional trials; not qualified for flight. (→ Breadboard, QM, FM)
- **EMI/EMC.** Electromagnetic Interference / Compatibility; design and test to ensure mutual non-interference. (→ Qualification)
- **End-to-End Test.** System test from stimulus to response across all relevant interfaces and modes.
- Evacuation Time. Maximum allowed time to reach safe refuge

or escape vehicle from any point in the habitat. (→ Human Systems Integration)

F

- **FAI (First Article Inspection).** Complete verification that the first produced unit meets all drawing and spec requirements.
- FAR (Flight Acceptance Review). Gate approving flight readiness of production units, closing open actions and NCRs. (→ Acceptance Test)
- Fault Containment Region (FCR). Architectural boundary within which faults are isolated to prevent system-wide propagation. (→ FDIR)
- FDIR (Fault Detection, Isolation & Recovery). Automated and procedural mechanisms to detect, locate, and recover from faults.
- FMEA (Failure Modes & Effects Analysis). Bottom-up hazard analysis identifying failure modes, effects, and mitigations. (→ FTA)
- **FM (Flight Model).** The unit intended to fly, built to flight standards and passing acceptance tests. (→ QM)
- FRR (Flight/Operations Readiness Review). Gate authorizing a specific operation or mission phase. (→ ORR)
- FTA (Fault Tree Analysis). Top-down analysis modeling combinations of faults that lead to hazards or top events.

G

- G-Level / Partial-g. Effective gravity from rotation at a given deck radius and spin rate; defines human factors constraints. (→ Spin Gravity)
- **GCR (Galactic Cosmic Rays).** High-energy background radiation in deep space; key driver for shielding design. (→ SPE)
- Gate (Quality Gate). Formal milestone with entry/exit criteria (SRR, PDR, CDR, TRR, QR, FAR, ORR). (→ Reviews)
- **GSE (Ground Support Equipment).** Non-flight equipment used to build, test, and operate flight hardware on ground.
- **Growth Allowance.** Planned margin to accommodate expected mass/power increases as designs mature. (→ CBE, Margin)

Н

• **Hazard Log.** Controlled list of hazards, causes, mitigations, verification, and status across the lifecycle. (→ Safety Case)

- HIL (Hardware-in-the-Loop). Test setup coupling real hardware with simulated environments for closed-loop verification. (→ SIL, MIL)
- **Hold Point.** A planned pause in a procedure requiring explicit authorization to proceed; used in critical operations.
- **Human-Rating.** Meeting stringent safety and reliability criteria for crewed missions.
- Human Systems Integration (HSI). Integration of human factors across design—workload, habitability, health, and emergency egress.

ı

- ICD (Interface Control Document). Controlled specification of all mechanical, electrical, thermal, data, and fluid interfaces.
 (→ ICWG)
- Incident. Event that disrupts nominal operations; may or may not cause damage. (→ Anomaly, Mishap)
- Ingress / Egress. Entry to and exit from zones, vehicles, or modules; must meet timing and clearance requirements. (→ Evacuation Time)
- ICWG (Interface Control Working Group). Cross-discipline forum that authors and maintains ICDs under change control.
- **Inspection.** Verification by measurement, visual checks, or instrumented methods against drawings and specs.
- **IPT (Integrated Product Team).** Multidisciplinary team responsible for a product or subsystem across its lifecycle.

J

• **Jitter.** Small, rapid variations in signal, pointing, or motion that can degrade performance; controlled by design and damping.

K

• **KPI (Key Performance Indicator).** Quantified measure reflecting progress or performance in technical or programmatic domains.

L

• Launch Campaign. Coordinated sequence of pre-launch activities including rehearsals, fueling, and integration with the launch vehicle.

- LBB (Leak-Before-Burst). Design philosophy ensuring a detectable leak precedes catastrophic rupture. (→ Safety Case)
- Level of Detail (LoD). Fidelity ladder for models and designs from coarse (LoD-0) to in-service baselines (LoD-5). (→ Levels of Detail)
- Life-Limited Part (LLP). Part with a certified service life after which it must be removed or overhauled.
- Lockstep Redundancy. Parallel identical processors/components operating in sync for fault detection and voting. (→ Redundancy)

М

- Margin. Performance headroom carried to account for uncertainty and growth; tracked and protected at every gate. (→ CBE)
- MBSE (Model-Based Systems Engineering). Formalized application of models to support requirements, design, analysis, and V&V. (→ SysML)
- Metrology. Measurement science applied to alignment, geometry, and tolerances during AIT.
- MIL / SIL. Model-in-the-Loop and Software-in-the-Loop test stages before HIL. (→ HIL)
- **Mishap / Near-Miss.** An accident with damage/injury / a narrowly avoided mishap; both are reportable with corrective actions.
- MRB (Material Review Board). Authority to disposition non-conformances (use-as-is, rework, repair, scrap). (→ NCR)
- MTBF / MTTR / Availability. Mean time between failures; mean time to repair; fraction of time system is operational.
- Mode (Nominal/Degraded/Safe). Discrete configurations governing behavior, protections, and authority limits. (→ Safe State)

Ν

- NCR (Non-Conformance Report). Record of deviation from requirements/specs discovered in build or test; triggers MRB action.
- **Nominal.** As planned and expected, within specified tolerances.
- N+1 Redundancy. Having one more unit than required for function to tolerate a single failure. (→ Redundancy)

0

- **ORR (Operations Readiness Review).** Gate authorizing routine operations after commissioning. (→ Reviews)
- Operations Concept. See ConOps.

- **Ops Handbook.** Authoritative procedures, flight rules, and mode definitions for operators and crew.
- **Outgassing.** Release of gases from materials in vacuum; managed via bake-out and materials selection.

Р

- **PDR (Preliminary Design Review).** Gate confirming the design meets requirements at preliminary maturity. (→ Reviews)
- PFM (Protoflight Model). Flight-representative unit used for both qualification-like and acceptance-like testing under combined regimes.
- Power/Thermal Balance. Condition where generated power and rejected heat meet steady-state limits across modes. (→ Budgets)
- Precession / Nutation. Slow and oscillatory changes in spin axis orientation affecting pointing and g-uniformity. (→ Rotational Dynamics)
- **Predictive Maintenance.** Maintenance scheduled based on condition monitoring (vibration, temperature) rather than fixed intervals. (→ RCM)
- **Protocol (Telemetry/Commands).** Defined messaging structures and link layers used for commanding and data return.

Q

- Qualification (Qualification Test). Demonstration that design meets requirements with margin under worst-case environments.
 (→ QR)
- **QR (Qualification Review).** Gate confirming completion of qualification program and closure of findings.
- **Quality Escape.** Defect that passes through build/test gates undetected; addressed via corrective and preventive action (CAPA).

R

- Radiation (SEE/SEU/TID). Single-Event Effects (transients or damage), Single-Event Upsets (bit flips), and Total Ionizing Dose accumulation. (→ Shielding)
- RAMS. Reliability, Availability, Maintainability, Safety—key system attributes tracked across lifecycle.
- Redundancy (Cold/Warm/Hot). Standby off / powered standby / active parallel redundancy strategies. (→ FDIR)
- RCM (Reliability-Centered Maintenance). Maintenance planning focused on preserving functions and managing failure con-

sequences.

- Requirement (Shall/Should/May). Binding / recommended / optional statements that are uniquely identified, testable, and traced. (→ Verification Methods)
- Review Pack. Frozen set of artifacts presented at a gate (agenda, minutes, action items, decisions, deltas). (→ Reviews)
- **Risk Matrix.** Likelihood × consequence grid used to prioritize mitigations; often 5×5 with color coding.
- Rotational Dynamics. Behavior of spinning structures including balance, modal coupling, and control interactions. (→ Spin Gravity)

S

- Safe State. Minimal-risk condition the system autonomously enters on serious fault—power-positive, thermally safe, crew safe.
 (→ FDIR)
- Safety Case. Structured argument with evidence that the system is acceptably safe for a given context; linked to hazard log.
 (→ Hazard Log)
- Sabatier Process. ECLSS reaction converting CO₂ and H₂ to CH₄ and H₂O for oxygen recovery and fuel by-product.
- SDR / AR. System Definition/Architecture Review; gate where architecture and key trades are frozen. (→ Reviews)
- **SEE** / **SEU.** Single-Event Effects / Upsets caused by energetic particles; mitigated by shielding, redundancy, and ECC.
- **Shielding (Areal Density).** Mass per area (g/cm²) of protective material against radiation; water/PE effective for GCR moderation.
- **SIL / MIL.** Software-/Model-in-the-Loop testing stages. (→ HIL)
- **Single Fault Tolerance (SFT).** Ability to tolerate any single failure without loss of critical function.
- **Spin Gravity.** Artificial gravity via rotation; characterized by radius, angular speed, and g-gradient. (→ G-Level, Coriolis)
- SSOT (Single Source of Truth). The authoritative repository for requirements, designs, and decisions. (→ Configuration Management)
- SysML. Systems Modeling Language used to capture MBSE architectures and traceability.
- **System-of-Systems (SoS).** Interconnected systems working together (e.g., station + vehicles + ground + logistics).

Т

 TAID (Test/Analysis/Inspection/Demonstration). Verification methods used to close requirements. (→ V&V)

- **Telemetry.** Measured data sent from system to operators for monitoring and analysis.
- **Thermal-Vacuum (TVAC).** Test environment simulating vacuum and temperature extremes for qualification/acceptance.
- **TRL** (**Technology Readiness Level**). 1-9 scale expressing maturity from basic principles to flight-proven.
- TRR (Test Readiness Review). Gate confirming readiness to start a test campaign with defined objectives and resources.
- **Trade Study.** Structured comparison of options using weighted criteria, uncertainty analysis, and sensitivity.

U

- **Uncrewed Operations.** Automated or tele-operated modes without crew on board; require additional autonomy & FDIR.
- Upmass / Downmass. See Downmass / Upmass. (→ Logistics)

V

- Validation vs Verification. Verification: did we build the system right (against requirements)? Validation: did we build the right system (against user need)?
- **V&V Cross-Reference Matrix.** Requirements-to-evidence table showing TAID closure status and results.
- **Vibration Test (Sine/Random).** Structural/environmental tests to verify survivability and workmanship.

W

- Waiver (RFW). Approval to accept non-compliance permanently, with risk rationale and compensating controls. (→ Deviation)
- Watchdog Timer. Hardware/software timer that resets or reconfigures a system when not periodically serviced. (→ FDIR)
- Work Instruction (WI). Controlled, step-by-step procedure for a specific task with tools, torques, and hold points.
- Worst-Case Analysis (WCA). Analytical proof that performance meets requirements under simultaneous worst-case conditions.

X, Y, Z

- μg / Zero-g. Microgravity/near-weightlessness; contrasted with partial-g in spin habitats.
- **TBD / TBR / TBC.** To Be Determined / Resolved / Confirmed; placeholders tracked to closure with owners and due dates.

End of Appendix A.

7.6 Engineering

This folder is the engineering workspace for **Sphere Space Station Earth ONE and Beyond**. It hosts our standards, working "Evolutions" (EVOLs), specs, models, tests, operational procedures, and the auditable history that ties decisions to evidence. Treat this directory as part of the Single Source of Truth (SSOT).

What lives here

- AGENTS.md Roles, ownership model, EVOL duties & visibility, workflow, commit/PR conventions, quality gates, and governance.
 Use this to know who owns what and how work flows from Issue → Freeze.
- 7.6.1 Global Standards Our core playbooks:
 - Evolution-Engineering Naming & Folder Convention (file layout, filename schema, required front-matter, versioning, doc states, automation hooks).
 - The Evolution Principle (why we work in small, reviewable EVOLs).
 - Evolution Deliverables & Phase Gates (what must exist at each stage, with checklists).
- 7.6.2 Evolutions Active and archived EVOLs, each with its own scope, templates, CI rules, and contribution checklist. The current seed is EVOLUTION 00 - The Beginning.
- **7.6.3 History** Snapshots, freezes, and decision records that give us traceability over time.

Quick start (for contributors)

- 1. **Read AGENTS.md.** Find the *Owner* and *Reviewers* for your area; understand merge blockers and visibility rules.
- 2. **Pick or open an EVOL.** Work happens inside an EVOL (e.g., EVOL-00/), not loose in the root. Each EVOL carries its own scope, templates, and CI expectations.
- 3. **Create files using the standard schema** (see *Global Standards*→ *Naming & Folder Convention*). Add the required YAML frontmatter before content.
- 4. **Open a PR** following the title/commit rules in AGENTS.md. Expect lint, schema, link, and glossary checks to run; fix all CI findings.

5. **Pass the gate.** Reviews map to our phase gates (SRR/SDR/PDR/CDR/TRR/QR/FAR/ORR). Your EVOL's checklist defines the minimal evidence required to advance.

Folder layout (at a glance)

```
7.6-engineering/
 AGENTS.md
 - 7.6.1-global-standards/

    ⊢ evolution-engineering-naming-folder-convention.md

    the-evolution-principle.md
   evolution-deliverables-and-phase-gates.md
 - 7.6.2-evolutions/
    - EVOL-00/
        - readme.md
       - 00-standards-templates/
       - 01-architecture/
       - 02-specs/
        03-interfaces/
        04-calculations/
        - 05-models-cad-sim/
       — 06-tests-verification/
        07-ops-maintenance/
      └ 08-change-management/
  7.6.3-history/
```

Each EVOL folder carries the same skeleton so artifacts are predictable and traceable.

File naming & versioning (must-do)

Use the governed pattern from *Global Standards*:

<DOC-TYPE>-<EVOL>-<DISC>-<DOMAIN>-<ID>-<subject>-<LANG>v<SemVer>-<STATE>.md

Example (already in this repo): SPEC-00-STR-DECKS-DECK000-0001-wormhole-docking-tunnel-EN-v0.1.0-DRAFT Where:

- DOC-TYPE = SPEC/RFC/ICD/TEST/OPS...
- EV0L = two digits (e.g., 00)
- DISC = discipline tag (e.g., STR, THM, ECLSS, GNC)
- SemVer = MAJOR.MINOR.PATCH

 STATE = DRAFT → REVIEW → APPROVED → FROZEN (plus DEPRE-CATED when retired)

Front-matter is **required** (owner, reviewers, EVOL, discipline, status, links to requirements/tests). CI will block missing or malformed headers.

Evolution lifecycle & phase gates

We design **coarse** → **fine**, proving feasibility early, then tightening evidence through gates. Typical gates used across EVOLs:

- SRR System Requirements Review
- SDR/AR Architecture Review
- PDR Preliminary Design Review
- CDR Critical Design Review
- TRR Test Readiness Review
- QR/FAR Qualification / Flight Acceptance Review
- ORR Operations Readiness Review

Each gate has minimal deliverables (documents, models, tests, checklists) defined in *Evolution Deliverables & Phase Gates*. Merge is blocked until the gate's checklist is satisfied.

CI, quality gates, and merge blockers

Every PR runs automated checks for:

- Filename & front-matter schema compliance
- · Link integrity & cross-references
- Glossary/abbreviation use
- · Lint/format rules per document type
- Required attachments (evidence, ICDs, test matrices) for the current gate

Failing any check blocks merge. Owners/Reviewers enforce additional domain-specific criteria as defined in AGENTS.md.

Working in an EVOL

Start with the EVOL's readme.md to confirm scope and open questions.

- 2. Add/change artifacts only inside that EVOL's skeleton (01-architecture, 02-specs, 03-interfaces, ...).
- 3. Use SemVer and update **STATE** as your document advances (DRAFT \rightarrow REVIEW \rightarrow APPROVED \rightarrow FROZEN).
- 4. Record context in 08-change-management/ so history remains auditable.

Example: active seed evolution

EVOLUTION 00 - The Beginning Includes early geometry/material baselines and first SPECs such as the Wormhole Docking Tunnel (ID DECK000-0001). Use it as a pattern for structure, naming, and evidence packaging.

Governance & decisions

The **EVOL Board** arbitrates cross-cutting decisions and freezes. Day-to-day ownership and reviewer responsibilities are defined in AGENTS.md. If in doubt about scope, naming, or gate content—ask the Owner listed in the document front-matter before you branch.

Related foundations

For system-wide engineering flow (from concept through operations), see **7.5.1 Engineering Process (Coarse** → **Fine)**; it aligns with the gates and artifacts referenced here and explains how requirements map to verification and operational evidence.

License & IP – See the root project notices for rights, usage, and compliance requirements. All contributions to 7.6 must remain auditable and traceable to requirements and reviews.

You're in the right place to build flight-worthy things. Keep it small, reviewable, and evidence-backed.

7.6.1 Global Standards

Welcome! This folder defines the **project-wide rules** for how we name, version, structure, review, and ship every document in the Sphere Space Station *Earth ONE & Beyond* Single Source of Truth (SSOT). If you're writing a spec, an interface control document, an ADR, an RFC, a test report, or a calculation note, **start here**.

What lives here

- Scope & Core Principles Why these standards exist and where they apply.
- **Folder Structure (top-down)** How the SSOT is organized so content is discoverable and auditable.
- Evolution Lifecycle From idea → draft → review → freeze; how documents mature alongside engineering work.
- **File-Naming Scheme** A strict, machine-checkable pattern so docs are traceable and linkable.
- **Versioning & Document States** SemVer + explicit states (e.g., DRAFT, ..., FROZEN) to signal readiness.
- Required YAML Front Matter The minimal metadata every file must declare.
- Change Management How updates are proposed, reviewed, and recorded.
- Commit Messages & PR Titles Conventions that feed automation and release notes.
- CODE Tables Controlled vocabularies (document types, disciplines, systems, decks, states).
- Templates Short, ready-to-use markdown stubs (SPEC, ICD, ADR, RFC, TST, CALC).
- Quality Rules & CI/Lint Automated checks (regex, cross-refs, state transitions) that gate merges.

The outline above corresponds to the "7.6.1 — Global Standards" section in the master documentation.

Ouick start

- 1. **Pick the right template** (SPEC / ICD / ADR / RFC / TST / CALC) from this folder's templates. Each template maps to a **DOC** code in the CODE tables.
- 2. Name your file using the standard pattern below.

- 3. Add required YAML front matter (see sample + Appendix 14.3 for the full field list).
- 4. **Open a PR** with a compliant title; CI will lint filenames, front-matter, and cross-links.
- 5. Drive it through the **Evolution Lifecycle** until the document reaches the intended **state**.

One last thing

When in doubt: **prefer traceability over brevity**. If your change affects safety, mission, budgets, or interfaces, make the intent obvious—in the filename, in the front-matter, and in the PR. The standards here exist so that every critical decision is **auditable**, **reproducible**, **and evolvable**.

7.6.1.1 Guideline Document: Evolution-Engineering-Naming-Folder Convention

Version: 1.0.0 Date: 2025-08-10 Status: REVIEW

Goal: Traceable, machine-sortable, version-safe documentation for a large-scale, multi-generation system. This makes **Evolution (EVOL) a first-class organizing principle** and aligns naming, foldering, and governance with product-generation thinking.

1) Scope & Core Principles

Scope: all engineering files under 7.6-engineering/, including active evolutions and frozen history.

Principles:

- **Evolution-first:** Each product generation (EVOL-XX) is a self-contained, auditable capsule (architecture, specs, tests, ops). Breaking architectural changes open a **new EVOL**.
- **SSOT:** Single Source of Truth exactly one **APPROVED** reference document per topic per EVOL.
- **Traceability:** Requirements → Interfaces → Verification. Every change references RFC/CR/ADR.
- Readability & Sortability: Short codes, fixed order, leading zeros, ISO date, SemVer, kebab-case titles.
- **Stability:** Discipline/System codes and folder schema are controlled; changes only via RFC.
- Auditability: History is frozen, signed/tagged, and never rewritten.

2) Folder Structure (Top-Down)

```
7.6-engineering/
 - 7.6.1-global-standards/
                                      # company-wide conventions, checklists, te
 - 7.6.2-evolutions/
                                      # active working evolutions
   ─ EV0L-01/
                                      # EVOL-local templates (may refine global
       — 00-standards-templates/
       - 01-architecture/
                                      # system architecture, ADRs
       - 02-specs/
                                     # SRS, SPEC, ICD, SAF, HAZ, VVP ...
       - 03-interfaces/
                                     # mechanical/electrical/software
       - 04-calculations/
                                     # spreadsheets, proofs, substantiation
       - 05-models-cad-sim/
                                     # CAD, FEM/CFD/simulation
```

```
- 06-tests-verification/
      07-ops-maintenance/
      08-change-management/
    └ readme.md
  current-evolution.md
7.6.3-history/
└ EV0L-00/
    - 00-standards-templates/
    - 01-architecture/
    - 02-specs/
    - 03-interfaces/
    04-calculations/
   — 05-models-cad-sim/
    - 06-tests-verification/
    - 07-ops-maintenance/

└─ 08-change-management/
```

operations, maintenance, SOPs # RFC/CR/approvals (referenced by all docs # The readme.md of the evolution

V&V plans/reports, acceptance

contains an url to the current evolution # frozen, superseded evolutions (read-only

README per folder: purpose, index, mandatory links (relevant ADR/RFC/TST) and ownership.

Evolution Charter (EVOL-XX/README.md) must include: scope & goals, compatibility promises, key risks, ADR index, exit criteria for freeze.

3) Evolution Lifecycle

- 1. **Initiate EVOL-XX** (charter, owners, scope).
- 2. **Work** (docs evolve under 7.6.2-evolutions/EV0L-XX).
- 3. **Release** (tag EV0L-XX-YYYY.MM, set document states; symlink current may advance).
- 4. Freeze & Archive (move EVOL-XX to 7.6.3-history/; readonly; security/Legal notes only).

4) File-Naming Scheme (per document)

<DOC>-<EVOL>-<DISC>-<SYS>-<SYSID>-<SEQ>-<TITLE>-<LANG>-v<MAJOR.MINOR.PATCH>[<PRE

Field definitions:

- DOC (document type): SPEC, SRS, ICD, ADR, RFC, CR, TST, CALC, DRAW, BOM, SOP, SAF, HAZ, VVP.
- EVOL (evolution line): **00**, **01**, **02** ... (product generation). Must match the parent EVOL-XX directory.

- DISC (discipline): ARCH, STR, THM, PWR, ECLS, SAF, GNC, PROP, OPS, ELEC, SW.
- SYS (system/subsystem examples): CORE, HULL, DECKS, RE-ACTOR, RAD, PDN, LHS, DOCK, LIFT, AIR, WAT, WASTE, COMMS.
- SYSID (system reference): DOCK01 ... DOCK05, or DECK000 ... DECK015, or ALL, or [A SPECIFIC SYSTEM]....
- SEQ (sequential number per combination, e.g. multiple documents per unit): **0001**, **0002** ...
- TITLE (kebab-case, ≤ 8 words).
- LANG: **DE**, **EN**.
- v<MAJOR.MINOR.PATCH>: SemVer (see §5).
- <PRERELEASE> (optional): -alpha.1, -beta.2, -rc.1.
- +<BUILD> (optional): e.g., +20250810, +git.abcdef.
- STATE (optional, workflow status): DRAFT, REVIEW, APPROVED, OBSOLETE.

Examples:

SPEC-01-STR-DECKS-DECK000-0001-wormhole-docking-tunnel-EN-v1.0.0-DRAFT.md ICD-01-THM-RAD-ALL-0044-radiator-icd-ports-DE-v1.3.0-REVIEW.md ADR-01-ARCH-CORE-ALL-0003-spin-rate-baseline-EN-v1.0.0.md RFC-01-SAF-REACTOR-DECK015-0007-shielding-upgrade-EN-v0.3.0-alpha.2.md

Lint rule: directory EVOL-XX and filename EVOL **must match**; PRs failing this are rejected.

5) Versioning (SemVer) & Document States

SemVer: MAJOR.MINOR.PATCH

- EVOL vs. MAJOR: Breaking architectural changes (crosscutting, system-wide) create a **new EVOL**. Within a given EVOL, use MAJOR for incompatible changes that remain scoped to that EVOL (e.g., an ICD break that does not warrant a new generation).
- MINOR: backward-compatible additions (new sections/requirements, clarifications).
- **PATCH:** editorial fixes (typos, formatting, non-semantic wording).
- Prerelease: -alpha.N, -beta.N, -rc.N until release.
- Build: +YYYYMMDD or +git.<shortsha> optional.

States: DRAFT \rightarrow REVIEW (\geq 2 reviewers) \rightarrow APPROVED (SSOT) \rightarrow 0BS0LETE (replaced). Transition to **APPROVED** requires a linked RFC/CR and a verification reference if applicable.

159

6) Required YAML Front Matter

Every file starts with YAML front matter:

```
id: SPEC-01-STR-DECKS-DECK000-0001
title: Wormhole Docking Tunnel - Structural Specification
version: v1.0.0
state: DRAFT
evolution: "01"
discipline: STR
system: [DECK]
system id: [DECK000]
sea: [11111]
owner: "structure-architecture"
reviewers: ["safety-core", "operations"]
source_of_truth: true
supersedes: null
superseded by: null
rfc_links: ["RFC-2025-0007"]
adr links: ["ADR-01-ARCH-CORE-ALL-0003"]
cr links: []
date: 2025-08-10
lang: EN
- - -
<empty-line>
```

7) Change Management

- RFC ID: RFC-YYYY-#### (e.g., RFC-2025-0007). Content: change, motivation, impact, migration, participants, decision.
- CR ID: CR-YYYY-### for implementation packages.
- Process: Issue → RFC (review) → decision → implementation (CR/PR) → update docs → test/accept → state change.
- Superseding: Old doc sets superseded_by, new doc sets supersedes. On EVOL freeze, move whole EVOL-XX to 7.6.3history/.
- **Tags:** On release/freeze, tag repo EV0L-01-YYYY.MM and record checksum of key artifacts (ICDs, SPECs, models, TST reports).

8) Commit Messages & PR Titles

Format:

[<DOC>][<DISC>][<SYS>][<DECK>][EVOL-XX] short summary

Body:

- why: motivation/issue link

- what: key changes

- impact: backward compat / risks

- refs: RFC/ADR/CR IDs

Example:

[SPEC][STR][DECKS][DECK000][EVOL-01] define hatch tolerances v1.1.0

why: close gaps from TST-... results

what: ±0.2 mm tolerance band, update figs 2-4 impact: compatible; requires retest case 2 refs: RFC-2025-0009, ADR-01-ARCH-CORE-ALL-0003

9) CODE Tables (governed via RFC)

9.1 Document Types (DOC) SPEC, SRS, ICD, ADR, RFC, CR, TST, CALC, DRAW, BOM, SOP, SAF, HAZ, VVP

- **9.2 Disciplines (DISC)** ARCH Architecture/System; STR Structures/Mechanics; THM Thermal; PWR Energy/Power; ECLS Life Support; SAF Safety; GNC Guidance, Navigation & Control; PROP Propulsion; OPS Operations; ELEC Electrical; SW Software
- **9.3 Systems (SYS) selection** CORE, HULL, DECKS, REACTOR, RAD, PDN, LHS, DOCK, LIFT, AIR, WAT, WASTE, COMMS
- **9.4 Deck IDs (DECK)** DECK000 ... DECK015; ALL for cross-deck.
- **9.5 States (STATE)** DRAFT, REVIEW, APPROVED, OBSOLETE.

10) Templates (Short Forms)

Full templates are in 7.6.1-global-standards/(global) and may be refined under 7.6.2-evolutions/EVOL-XX/00-standards-templates/.

```
10.1 SPEC (Markdown)
```

```
# (YAML front matter as in §6)
# 1. Purpose & Context
# 2. Scope
# 3. Terms & References
# 4. Requirements (SPEC-REQ-001 ...)
# 5. Constraints & Assumptions
# 6. Verification (SPEC-REQ ↔ test cases)
# 7. Risks & Safety Notes
# 8. Change History
10.2 ICD
# (YAML front matter as in §6)
# 1. Interface Overview
# 2. Mechanical (coordinates, tolerances, drawings)
# 3. Electrical (pins, voltages, signals)
# 4. Software/Protocol (frames, timing)
# 5. States & Failure Cases
# 6. Tests (conformance)
# 7. Change History
10.3 ADR
# (YAML front matter as in §6)
# Context
# Decision
# Consequences
# Alternatives
# References (RFC, SPEC)
10.4 RFC
# (YAML front matter as in §6)
```

```
# Problem & Motivation
# Proposal (high level)
# Impact (technology, risk, cost)
# Compatibility & Migration
# Review Plan & Owner
# Decision (date, participants)
10.5 TST (Test Report)
# (YAML front matter as in §6)
# Test Objective
# Test Environment
# Test Cases (ID, steps, expectation)
# Results & Evidence
# Deviations / Non-Conformities
# Conclusion & Approval
10.6 CALC
# (YAML front matter as in §6)
# Assumptions & Parameters (with sources)
# Derivation / Methodology
# Calculation Steps (formulae, units)
# Results (tables / graphs)
# Sensitivity & Uncertainties
# Correlation with Measurement / Simulation
```

11) Quality Rules

- One topic per document; split and cross-link large topics.
- Number all tables/figures; reference them in text; SI units with proper prefixes.
- Every numeric claim has a derivation/source; plots have axis labels & units.
- No "silent overwrites": every change via RFC/CR; states updated accordingly.

• EVOL encapsulation: avoid cross-EVOL dependencies; shared assets only when truly identical and versioned.

12) Automation & CI

- **Linting:** enforce filename schema ↔ front matter consistency (EVOL, DISC, SYS, DECK, LANG, STATE).
- **Tagging:** generate EVOL-XX-YYYY.MM tags and a signed manifest of key artifacts.
- Compare Pages: auto-build "EVOL-00 ↔ EVOL-01" diffs for ICDs/SPECs; publish in docs.

13) Appendix CI/LINT

CI/LINT: Filename Regex & Cross-Checks Filename Regex:

 $^(SPEC|SRS|ICD|ADR|RFC|CR|TST|CALC|DRAW|BOM|SOP|SAF|HAZ|VVP) - \\d{2} - [A-Z]{2,4} - [A-Z]{2,4}$

Linting Cross-Checks:

- EVOL in the directory path **must match** EVOL in the filename.
- YAML front-matter fields (e.g., id, evolution, discipline, system, system_id, seq, lang, state) must match corresponding filename segments.
- state field and filename suffix (e.g., -DRAFT, -REVIEW) must be consistent.

14) Appendix 14 - Glossary (Abbreviations) / Appendix 14 - Glossar (Abkürzungen)

This glossary consolidates **all abbreviations**, **codes**, **and fields** used in the guideline "Evolution-Engineering-Naming-Folder Convention" – incl. short description and category. Languages: **EN (English) / DE (Deutsch)**.

Dieses Glossar bündelt **alle Abkürzungen, Codes und Felder**, die in der Guideline »Evolution-Engineering-Naming-Folder Convention« verwendet werden – inkl. Kurzbeschreibung und Kategorie. Sprachen: **EN (English)** / **DE (Deutsch)**.

As of / Stand: 2025-08-10 · **Source / Quelle:** Guideline 7.6.1.1 and project context 7.6-engineering

14.1 Process & Governance / Prozess & Governance

Coc	Long form le(EN)	Lang- form (DE)	Description (EN)	Beschreibung (DE)
	tion / Product Gener- ation Single Source	Evolution / Produktgeneration Single Source	Product generation (EVOL-00, -01). New EVOL when the architecture changes system-wide. Exactly one APPROVED reference	Produktgeneration (EVOL-00, -01). Neue EVOL bei systemweiten Architekturbrüchen. Genau ein APPROVED-Referenz-
RF	of Truth CRe- quest for Com-	of Truth Re- quest for Com-	document per topic & EVOL. Formal change idea/decision brief (RFC-YYYY-###).	dokument pro Thema & EVOL. Formale Än- derungsidee/Entsche dungsvorlage (RFC-YYYY-####).
CR	ments Change Re- quest	ments Change Re- quest	Implementation package for an approved RFC (CR-YYYY-####).	Umsetzungspaket zu einem beschlossenen RFC (CR-YYYY-####).
AD	R Archi- tecture Deci- sion Record	Archi- tecture Deci- sion Record	Architecture decision (context, decision, consequences).	Architekturentscheidung (Kontext, Entscheidung, Konsequenzen).
PR	Pull Re- quest	Pull Re- quest	Code/docs change for review/integration.	Code/Docs-Än- derung zur Review/Integration.
CI	Contin- uous Integra- tion	Contin- uous Inte- gration	Automated checks (lint, build, diffs, manifests).	Automatisierte Checks (Lint, Build, Diffs, Manifeste).
LIN	T Linting	Linting	Rules/checks for filenames, front-matter, consistency.	Regeln/Prüfungen für Dateinamen, Front-Matter, Konsistenz.

Long form Code(EN)	Lang- form (DE)	Description (EN)	Beschreibung (DE)
V&W erification & Validation	Verifi- cation & Vali- dation	Verification/validation: evidence against requirements.	Verifikation/Vali- dierung: Nachweis gegen Anforderungen.

14.2 File-Name Schema (Fields & States) / Dateinamen-Schema (Felder & Stati)

	Long	Lang-		
	form	form		
Code	_	(DE)	Description (EN)	Beschreibung (DE)
DOC	Docu-	Doku-	e.g., SPEC, SRS, ICD,	z. B. SPEC, SRS, ICD,
	ment	ment-	ADR, RFC, CR, TST,	ADR, RFC, CR, TST,
	type	typ	CALC, DRAW, BOM,	CALC, DRAW, BOM,
			SOP, SAF, HAZ, VVP.	SOP, SAF, HAZ, VVP.
EVOL	Evo-	Evo-	Two digits (00, 01);	Zweistellig (00, 01);
	lu-	lu-	must match folder	muss zum Ordner
	tion	tion	EVOL-XX.	EVOL-XX passen.
DISC	Disci-	Diszi-	ARCH, STR, THM, PWR,	ARCH, STR, THM, PWR,
	pline	plin	ECLS, SAF, GNC,	ECLS, SAF, GNC,
			PROP, OPS, ELEC, SW.	PROP, OPS, ELEC, SW.
SYS	Sys-	Sys-	CORE, HULL, DECKS,	CORE, HULL, DECKS,
	tem	tem	REACTOR, RAD, PDN,	REACTOR, RAD, PDN,
			LHS, DOCK, LIFT, AIR,	LHS, DOCK, LIFT, AIR,
			WAT, WASTE, COMMS.	WAT, WASTE, COMMS.
SYSID	Sys-	Sys-	Concrete unit (e.g.,	Konkrete Einheit (z. B.
	tem	tem-ID	DOCK0105,	DOCK0105,
	ID		DECK000015, ALL	DECK000015, ALL
).).
SEQ	Se-	Se-	Four digits (0001);	Vierstellig (0001);
	quence	quenz	running number per	laufende Nummer pro
			(DOC, EVOL, DISC, SYS, SY	S(D)DC,EVOL,DISC,SYS,SY
TI-	Title	Titel	≤8 words, technically	≤8 Wörter, technisch
TLE	(ke-	(ke-	concise.	prägnant.
	bab-cas	ab-cas	se)	
LANG	Lan-	Sprach	eDE, EN.	DE, EN.
	guage			

	Long form	Lang- form		
Code	(EN)	(DE)	Description (EN)	Beschreibung (DE)
STAT	E Docu-	Doku-	DRAFT → REVIEW →	DRAFT → REVIEW →
	ment	mentst	aAPPROVED →	APPROVED →
	state	tus	OBSOLETE.	OBSOLETE.
Sem\	/6 e-	Se-	vMAJOR.MINOR.PATCH	vMAJOR.MINOR.PATCH
	man-	man-	(prerelease/build	(Prerelease/Build
	tic	tic	optional).	optional).
	Ver-	Ver-		
	sion-	sion-		
	ing	ing		
Pre-	Pre-re-	Vorab-k	Ke a lpha.N, -beta.N,	-alpha.N, -beta.N,
re-	lease	nung	-rc.N.	-rc.N.
lease	tag	_		
Build	Build	Build-M	leŧà-YYYMMDD, +git	+YYYYMMDD, +git
	meta-	daten	_	_
	data			

Document Types (DOC) / Dokumenttypen (DOC)

Code	Long form e(EN)	Langform (DE)	Short description (EN)	Kurzbeschrei- bung (DE)
SPE	C Specification	Spezifika- tion	Requirements & technical provisions.	Anforderungen & technische Vorgaben.
SRS	Software Requirements Specification	Software Require- ments Spec	Software requirements.	Software-An- forderungen.
ICD	Interface Control Document	Interface Control Document	Interfaces (mech./electr./SW	Schnittstellen ()(mech./elektr./SW).
ADR	Architecture Decision Record	Architec- ture Decision Record	Architecture decision.	Architek- turentschei- dung.
RFC	Request for Comments	Request for Comments	Change pro- posal/decision.	Än- derungsvorschlag/Entsc dung.
CR	Change Request	Change Request	Implementation order/package.	Umsetzungsauf- trag/-paket.

Code	Long form e(EN)	Langform (DE)	Short description (EN)	Kurzbeschrei- bung (DE)
TST	Test Report / Test Spec	Test Report / Test Spec	Test plan/report (V&V).	Prüf- plan/-bericht (V&V).
CAL	C Calculation	Calculation	Calculations, derivations, substantiation.	Berechnungen, Herleitungen, Substantiation.
DRA	M rawing	Drawing	Drawings/plots.	Zeichnun- gen/Plots.
BOM	1 Bill of Materials	Bill of Materials	Parts list.	Stückliste.
SOP	Standard Operating Procedure	Standard Operating Procedure	Operating/work instruction.	Betriebs-/Arbeit- sanweisung.
SAF	Safety Dossier	Safety Dossier	Safety evidence.	Sicher- heit/Safety-Nach- weise.
HAZ	: Hazard Analysis	Hazard Analysis	Hazard/risk analysis.	Gefährdungs-/Risiko analyse.
VVP	Verification & Validation Plan	Verification & Validation Plan	V&V plan/coverage.	V&V-Plan/Ab- deckung.

Disciplines (DISC) / Disziplinen (DISC)

Code	Long form (EN)	Langform (DE)
ARCH	Architecture & Systems	Architektur / Architecture & Systems
STR	Structures & Mechanics	Strukturen / Structures & Mechanics
THM	Thermal	Thermik / Thermal
PWR	Power	Energie / Power
ECLS	Environmental	Umweltkontrolle & Lebenserhalt /
	Control & Life Support	Environmental Control & Life Support
SAF	Safety	Sicherheit / Safety
GNC	Guidance,	Lageführung, Navigation & Regelung /
	Navigation & Control	Guidance, Navigation & Control
PROP	Propulsion	Antrieb / Propulsion
OPS	Operations	Betrieb / Operations
ELEC	Electrical	Elektrik/Elektronik / Electrical

	Software	Software	
Code	Long form (EN)	Langform (DE)	

Systems (SYS - selection) / Systeme (SYS - Auswahl)

Code	Long form (EN)	Langform (DE)	Note (EN)	Hinweis (DE)
-			(=14)	
CORE	Core	Kernsystem		
HULL	Hull	Hülle		
DECKS	Decks	Decks		
RE-	Reactor	Reaktor		
AC-				
TOR				
RAD	Radiator	Radiatoren		
	System			
PDN	Power	Power	Power	Stromverteil-
	Distribution	Distribution	grid.	netz.
	Network	Network	3	-
LHS	Life Support	Life Support	⇔ FCLS.	Lebenserhal-
	System	System	20201	tung (↔ ECLS).
DOCK	Dock	Docking / Dock		tung (** LCL5).
LIFT	Lifts	Aufzüge		
AIR	Air systems	Luftsysteme		
	•	-		
WAT	Water systems	Wassersysteme		
WASTE	,	Ab-		
	Disposal	fall/Entsorgung		
COMMS	Communica-	Kommunikation		
	tions			

 $\textbf{States / Status (STATE):} \ \mathsf{DRAFT} \cdot \mathsf{REVIEW} \cdot \mathsf{APPROVED} \cdot \mathsf{OBSOLETE}$

14.3 Front-Matter (YAML fields) / Front-Matter (YAML-Felder)

Field	Bedeutung (DE)	Meaning (EN)
id title version state	Stabile ID = —- Volltitel des Dokuments SemVer inkl. v-Präfix DRAFT/REVIEW/AP- PROVED/OBSOLETE	Stable ID = —- Full document title SemVer incl. v-prefix DRAFT/REVIEW/AP- PROVED/OBSOLETE

Field	Bedeutung (DE)	Meaning (EN)
evolution discipline system / system id	EVOL als String ("01") DISC-Code (z.B. STR) System(e) / Instanz(en)	EVOL as string ("01") DISC code (e.g., STR) System(s) / instance(s)
seq	Sequenz (Array, vierstellig)	Sequence (array, four digits)
owner .	Owner/Handle (z. B. structure-architecture)	Owner/handle (e.g., structure-architecture)
reviewers	Reviewer-Handles	Reviewer handles
source_of_truth	true = SSOT-Dokument	true = SSOT document
supersedes /	Ersetzt / wird ersetzt	Supersedes /
superseded by	von	superseded by
rfc links /	Referenzen auf	References to
adr links /	RFC/ADR/CR	RFC/ADR/CR
cr līnks		
date	ISO-Datum (YYYY-MM-DD)	ISO date (YYYY-MM-DD)
lang	DE/EN	DE/EN

14.4 Orbits, Mission & Physics (Project Context) / Orbits, Mission & Physik (Projektkontext)

Code	Long form (EN)	Langform (DE)	Description (EN)	Beschreibung (DE)
LEO	Low Earth Orbit	Niedriger Erdorbit	Low Earth orbit.	Niedriger Erdorbit.
GEO	Geosta- tionary Orbit	Geosta- tionärer Orbit	Geostationary orbit.	Geostationärer Orbit.
GTO	Geosta- tionary Transfer Orbit	Geostation- ary Transfer Orbit	Transfer orbit to GEO.	Transferbahn zu GEO.
L1/L2	Lagrange Points	La- grange-Punkte	Equilibrium points in two-body systems.	Gleichgewicht- spunkte in Zwei-Körper-Sys- temen.

Code	Long form (EN)	Langform (DE)	Description (EN)	Beschreibung (DE)
Δv / dv	Delta-v / Change in Velocity	Delta-v / Geschwindigk sänderung	Velocity eithange needed for maneuvers.	Geschwindigkeit- sänderung für Manöver.
Isp	Specific Impulse	Spezifischer Impuls	Efficiency metric for engines.	Effizienzmaß für Triebwerke.

14.5 Energy & Propulsion (Project Context) / Energie & Antrieb (Projektkontext)

Long Codeform (EN)	Langform (DE)	Description (EN)	Beschreibung (DE)
SMRSmall Modular Reactor NEP Nuclear Electric Propulsion	Small Modular Reactor Nuclear Electric Propul- sion	Compact nuclear reactor (e.g., NuScale 60 MW). Nuclear-electric propulsion (high Isp, low thrust).	Kompakter Kernreaktor (z.B. NuScale 60 MW). Nuklear-elektrischer Antrieb (hoher Isp, niedriger Schub).
NTP Nuclear Thermal Propul- sion	Nuclear Thermal Propul- sion	Nuclear-thermal propulsion (high thrust).	Nuklear-thermischer Antrieb (hoher Schub).
SEP Solar Electric Propul- sion	Solar Electric Propul- sion	Solar-electric propulsion.	Solar-elektrischer Antrieb.
MLI Multi-Layer Insula- tion		Multi-layer thermal insulation.	Mehrlagige Wärmedämmung.

14.6 Operations, Safety & Systems (Project Context) / Betrieb, Sicherheit & Systeme (Projektkontext)

Code	Long form (EN)	Langform (DE)	Description (EN)	Beschreibung (DE)
EVA	Extravehicu- lar Activity	Außenein- satz	Work outside the station.	Arbeiten außerhalb der Station.
RCS	Reaction Control System	Reaction Control System	Atti- tude/fine-ma- neuver thrusters.	Lage-/Fein- manöver-Trieb- werke.
SOP	Standard Operating Procedure	Standard Operating Procedure	Standard operating procedures.	Standard-Be- triebsver- fahren.
HAZ	Hazard Analysis	Hazard Analysis	Hazard analysis.	Gefährdungs- analyse.
SAF	Safety Dossier	Safety Dossier	Safety evidence/records.	Sicherheit- snachweise.

14.7 Materials & Windows (Project Context) / Materialien & Fenster (Projektkontext)

Code	Long form (EN)	Langform (DE)	Description (EN)	Beschreibung (DE)
SiC	Silicon Carbide	Siliz- iumkarbid	Structure/protection, very hard/heat-resistant.	Struktur/Schutz, sehr hart/hitzefest.
ALO	N Aluminum Oxynitride	Alu- minium-Oxy trid	Transparent nċeramic armor/window material.	Transparentes Keramik-Panzer-/Fer stermaterial.
FEM	Finite Element Method	Finite-Ele- mente-Meth- ode	Struc- -tural/strength analysis.	Struktur-/Fes- tigkeitsanalyse.
CFD	Computational Fluid Dynamics	Computational Fluid Dynamics	Flow simulation.	Strömungssimu- lation.
CAD	Com- puter-Aided Design	Com-	Design data/models.	Konstruktions- daten/Modelle.

14.8 Communication & Outreach / Kommunikation & Öffentlichkeitsarbeit

Code Long form (EN) Langform (DE) Description (EN) bung (DE) STEMScience, Technology, Engineering, Mathematics VR/AR/irtual/Augmented Reality Description Educa-Biltion/outdungs-/O				
Technology, Technology, tion/out- dungs-/Out- Engineering, Engineering, reach reach-Kon- Mathematics Mathematics context. text. VR/AR/irtual/Aug- Virtual/Aug- Immersive Immersive mented Reality mented Reality visualiza- Visual-	Code Long form (EN)	Langform (DE)		
	Technology, Engineering, Mathematics VR/AR/irtual/Aug-	Technology, Engineering, Mathematics Virtual/Aug-	tion/out- reach context. Immersive visualiza-	dungs-/Out- reach-Kon- text. Immersive Visual-

14.9 Governance & Alliances / Governance & Allianzen

Code Long form (EN)	Langform (DE)	Descrip- tion (EN)	Beschrei- bung (DE)
IDSA International Democratic Solar Alliance	International Democratic Solar Alliance	Proposed solar gov- ernance.	Vorgeschla- gene Solar-Gover- nance.

14.10 Languages, Units & Format / Sprachen, Einheiten & Format

Code	Long form (EN)	Langform (DE)	Description (EN)	Beschreibung (DE)
DE / EN	German / English	Deutsch / English	Language codes.	Sprachcodes.
SI	Système Interna- tional	Système Interna- tional	Unit system (with prefixes).	Einheitensystem (mit Präfixen).
ISO Date	ISO Date	ISO-Da- tum	YYYY-MM-DD.	YYYY-MM-DD.
ke- bab-ca	- se	-	Lowercase words, hyphens in titles.	Kleinbuchstaben, Bindestriche in Titeln.

14.11 Examples (Reference) / Beispiele (Referenz)

SPEC-01-STR-DECKS-DECK000-0001-wormhole-docking-tunnel-EN-v1.0.0-DRAFT.md ICD-01-THM-RAD-ALL-0044-radiator-icd-ports-DE-v1.3.0-REVIEW.md ADR-01-ARCH-CORE-ALL-0003-spin-rate-baseline-EN-v1.0.0.md RFC-01-SAF-REACTOR-DECK015-0007-shielding-upgrade-EN-v0.3.0-alpha.2.md

Note (EN): EVOL in the path **must** match EVOL in the file name; front-matter fields and the STATE suffix are lint-checked.

Hinweis (DE): EVOL im Pfad **muss** mit EVOL im Dateinamen übereinstimmen; Front-Matter-Felder und Suffix-STATE werden per Lint geprüft.

End Appendix 14 - Glossary (Abbreviations) / Ende Appendix 14 - Glossar (Abkürzungen).

End of document.

7.6.1.2 Guideline Document: The Evolution Principle

Version: 1.0.0 Date: 2025-08-11 Status: DRAFT

Purpose: Make **Evolution (EVOL)** the primary internal and external identifier, organizing principle, and strategic driver. Ensure every stakeholder—engineering, operations, finance, partners, and customers—can see, audit, and plan around product generations.

1) Scope & Intent

This principle applies to all systems, subsystems, artifacts, and communications across the Sphere project. It operationalizes **Evolution-first**: product generations (**EVOL-00**, **EVOL-01**, ...) are self-contained, auditable capsules that structure work, govern change, and frame expectations.

Outcomes sought:

- **Visibility:** Evolution state is instantly discoverable in code, docs, UI, packaging, and public comms.
- **Order:** Generations partition architectural eras; within a generation, SemVer governs compatible change.
- **Drive:** Generational goals and exit criteria create focus, motivate delivery, and anchor roadmaps.

2) What "Evolution" Means

EVOL-XX = **Product Generation.**

- **Boundary:** A generation encapsulates architecture, interfaces, verification, and operations for its era.
- Break rule: A system-wide architectural break opens a new EVOL. Within an EVOL, incompatible but scoped changes may increment MAJOR (SemVer) without starting a new generation.
- Artifacts per EVOL: Charter, architecture/ADR index, specs & ICDs, tests/V&V, ops & SOPs, change log, release notes, migration guides, marketing copy, and a signed manifest.

SemVer inside an EVOL:

- MAJOR: Incompatible change scoped to the EVOL (e.g., an ICD break that does not require a new architecture era).
- MINOR: Backward-compatible additions.
- PATCH: Editorial/non-semantic fixes.

3) Why Evolution-first (Vision)

1. **Internal compass.** Generations focus teams on a clear goal line ("What ships in EVOL-01?"), simplify trade-offs, and enable parallel work on EVOL-N and EVOL-(N+1).

- 2. **External signal.** Generations are a **customer-facing identity** (like automotive model generations) that set expectations about capability, compatibility, and support windows.
- Audit & trust. Each EVOL is an auditable capsule—design, tests, operations—supporting certifications, safety reviews, and partner due diligence.
- 4. **Strategic cadence.** Generational milestones drive funding gates, supplier readiness, and ecosystem planning.

4) Core Rules (Non-Negotiable)

- 1. **Badge the generation everywhere.** Use EVOL labels in filenames, repo paths, binaries, UI About screens, dashboards, API headers, contracts, and marketing.
- 2. **One EVOL, one SSOT per topic.** Each topic has exactly one APPROVED reference document per EVOL.
- New EVOL on architectural break. If compatibility cannot be maintained across the system boundary (architecture, safety, ops doctrine), you must open EVOL-(N+1).
- Freeze, then fork forward. Freeze EVOL-N (read-only, patch-only) and develop EVOL-(N+1) in a separate capsule. No silent backports across EVOLs.
- 5. **Traceability is mandatory.** Every artifact in an EVOL links to its RFC/ADR/CR and V&V evidence.

5) Lifecycle & Visibility

Lifecycle: Initiate \rightarrow Work \rightarrow Release \rightarrow Freeze & Archive.

- **Initiate:** Write the *EVOL Charter* (scope, goals, compatibility promises, risks, exit criteria). Appoint owners and reviewers.
- **Work:** Produce and evolve all artifacts under .../7.6.2-evolutions/EVOL-XX/ with CI linting and manifesting.

- **Release:** Tag EV0L-XX-YYYY.MM, publish release notes and migration guides, update customer-facing materials.
- Freeze & Archive: Move to .../7.6.3-history/ (read-only). Security and legal notices may update; functionality does not.

Visibility mechanisms (required):

- current-evolution.md pointer in the evolutions root.
- EVOL banner in user-facing UIs and operational dashboards.
- Compare pages: automated diffs EVOL-(N-1)

 EVOL-N for key specs and ICDs.
- **Roadmap strip**: Now (EVOL-N), Next (EVOL-N+1), Later (N+2) on the program home page.

6) External Identity (Customer-Facing)

Generation labeling:

- Public names include the generation, e.g., Sphere Earth ONE EVOI -01.
- Marketing and documentation lead with the EVOL identity; model-year-style messaging communicates evolution (capabilities, safety level, performance).

Promises per EVOL:

- **Compatibility window:** the minimum duration interfaces will be supported.
- Support policy: LTS/maintenance timelines per EVOL.
- **Migration path:** customer-ready guides and tooling from EVOL-(N-1) to EVOL-N.

Automotive analogy (informative): Like BMW model generations, each EVOL is a visible chapter with distinct architecture and capabilities, while trims/options map to MINOR/PATCH evolution within the generation.

7) Governance & Decision Criteria

When to open a new EVOL:

- Cross-cutting architectural changes (safety doctrine, structural grid, power topology, thermal envelope, life-support primitives).
- Interface breaks that cannot be shimmled without unacceptable cost or risk.

• Operational model change (e.g., new docking paradigm) that invalidates prior procedures.

Gatekeeping:

Changes proposing a new EVOL require an RFC with impact analysis, migration plan, and customer-facing narrative. A cross-discipline board reviews (Architecture, Safety, Ops, Finance, Programs).

Within-EVOL change:

 Use SemVer and ADR/RFC discipline; default to compatibility, prefer additive designs, and provide deprecation schedules.

8) Artifacts & Templates (per EVOL)

Required:

- **EVOL Charter** (scope, goals, risks, exit criteria).
- Architecture overview + ADR index.
- SPEC/ICD set with traceability to requirements and tests.
- V&V plan & reports; acceptance evidence.
- Ops handbook & SOPs; safety dossier.
- Change log & release notes; migration guide.
- **Signed manifest** of key artifacts with checksums; EVOL tag.

Template snippets (short):

EVOL Charter (outline)

- 1. Scope & goals (what this generation must deliver)
- 2. Compatibility promises (what remains stable; for how long)
- 3. Risks & mitigations (top 5)
- 4. Exit criteria for freeze (objective tests & evidence)
- 5. Timeline: milestones to Release & Freeze

Migration Guide (outline)

- 1. Audience & prerequisites
- 2. What changed and why
- 3. Compatibility matrix (old ↔ new)
- 4. Step-by-step migration
- 5. Validation checklist & rollback

9) Foldering, Naming & CI Hooks (Summary)

- **Foldering:** Each EVOL lives under 7.6.2-evolutions/EV0L-XX/...; frozen generations move to 7.6.3-history/EV0L-XX/....
- **Naming:** File names carry <DOC>-<EVOL>-...-v<MAJOR.MINOR.PATCH>-<STATE>.md. EVOL in path **must** match filename.
- **CI Hooks:** Lint filename ↔ front-matter coherence; generate EVOL tags and manifests; auto-publish compare pages and release notes; block merges on missing RFC/ADR links.

10) KPIs & Rituals

KPIs:

- Generation goal completion rate (per milestone).
- Interface stability index (breaks avoided vs proposed).
- Migration lead time for key partners.
- Documentation completeness (SSOT coverage) at Release.

Rituals:

- EVOL Review (bi-weekly): status, risks, decision log.
- Interface Council (monthly): compatibility & deprecations.
- Freeze Readiness Review (gate): verify exit criteria, lock manifests
- **Customer Briefing** (at Release): public notes, support window, migration aids.

11) Non-Goals (to avoid confusion)

- EVOL is **not** a marketing-only label; it reflects real architectural eras.
- EVOL does not replace SemVer; it frames SemVer within a generation.
- EVOL changes do **not** rewrite history; prior EVOLs remain frozen and auditable.

12) Appendix - Quick Reference

Open new EVOL if: architecture or ops doctrine changes system-wide; interfaces cannot be compatibly bridged; safety basis or certification envelope resets.

Stay within EVOL if: change is additive or can be shimmed; risk and cost of migration exceed benefit; safety and ops doctrine remain stable.

Always do: badge the generation, keep one SSOT per topic per EVOL, trace every change, publish migration paths, and freeze the past before building the future.

7.6.1.3 Evolution Deliverables & Phase Gates

Effective date: 2025-08-12 Applies to: All Evolutions under 7.6 Engineering Audience: Engineers, Test, QA, Safety/Security, Ops, EVOL Board Purpose: Define the complete, auditable deliverables required to pass the four phase gates of an Evolution—Proposal → Work → Review → Freeze—for both documents and products (RIG/SIM/SUBSYS/SYS/DECK/SPHERE).

1. Scope & Principles

- Evolutions are controlled change waves. Each wave produces a complete, releasable set of documents and (where applicable) product artifacts.
- Every artifact must be versioned, stateful (DRAFT → REVIEW → FROZEN), and traceable to requirements and evidence.
- Phase gates are Go/No-Go decision points owned by the EVOL Board.

2. Roles (responsibility summary)

- **Evolution Owner**: accountable for scope, schedule, quality; maintains the Evolution index.
- **Technical Reviewers** (discipline leads): approve content and test adequacy.
- QA/Compliance: verify format, metadata, traceability, and standards mapping.
- Safety/Security: own hazard analyses, threat models, and waivers.
- **Ops**: own runbooks, training, and operational readiness inputs.
- **EVOL Board**: gate decisions and conflict resolution.

3. Lifecycle Overview

- 1. **Proposal** frame the problem, options, and plan. Output: *PDR-quality* bundle.
- 2. **Work** build, integrate, and prove feasibility. Output: *working* drafts + demo evidence.
- 3. **Review** formal acceptance review. Output: *rc-labeled packages* + *V&V evidence*.

4. **Freeze** — release, baseline, and archive. Output: *immutable* v1.0.0 + manifest.

4. Deliverables by Phase (Documents)

4.1 Proposal → Gate: EVOL Board "Go" Required

- RFC.md (problem, goals/non-goals, scope, constraints, success criteria).
- Options & Decision Drivers (trade study / alternatives matrix).
- **High-Level Architecture** (1–2 diagrams; interfaces touched).
- Initial Budgets: mass, power, heat, volume (coarse).
- Risk Register (init) + key assumptions.
- Plan & Resources: milestones, owners, review window.
- Tracking: Epic created; links recorded in front matter.

Exit criteria: EVOL Board approves "Go"; owners/reviewers assigned; epic/backlog exists.

4.2 Work → Gate: "Review Package Ready" Required (versioned drafts)

- **SPEC**/ (updated specs, DRAFT, SemVer 0.x).
- ICD/ (interfaces changed/pinned, DRAFT).
- ADR/ (records of key architecture choices).
- CALC/ (calculations, models, scripts; inputs/outputs checked-in).
- MODEL-SIM/ (simulation configs with seeds; reproducible runs).
- TST/ (verification plan + procedures; benches/rigs if HW).
- CHANGELOG.md (human-readable since last freeze).
- Compliance notes (standards mapping started).
- Risk Register (updated mitigations).

Exit criteria: CI green (lint, schema/front-matter, links, unit tests); demo evidence of feasibility (sim run, prototype, or analytical proof); no open P0/P1 defects.

4.3 Review → Gate: Sign-offs Complete Required (review bundle)

- Review Package (index/cover sheet linking all items).
- **SPEC/ v1.0.0-rc** (REVIEW) with redlines resolved.
- ICD/ v1.0.0-rc with data dictionary & contracts.
- **V&V Matrix** (requirements ↔ tests ↔ evidence).
- Test Results (logs, measurements, sims, tolerances, seeds).
- **Budgets** updated vs. proposal deltas.

- Safety/Security: FMEA/HAZOP, threat model, waivers/deviations.
- Ops Readiness: runbook draft, rollback, training outline.
- Compliance Matrix (regulatory/standard mapping).
- Review Minutes (actions, dispositions, final sign-offs).

Exit criteria: required sign-offs recorded; all actions closed or waived; versions/states aligned for freeze.

4.4 Freeze → **Gate: Release & Archive Done** Required (frozen artifacts)

- SPEC/ & ICD/ v1.0.0 FR0ZEN (immutable).
- Release Notes (scope, breaking changes, migration notes).
- Parameter Baseline: parameters-baseline.json.
- Interface Locks: interfaces.lock (exact versions/hashes).
- **BOM/SBOM** (SPDX/CycloneDX where SW involved).
- **Geometry/Models** (neutral exports: STEP/GLTF as applicable).
- Test Evidence Archive (datasets, configs, seeds, checksums).
- Ops Runbook (final), training pack, SLO/monitoring hooks.
- Archive Manifest: manifest.sha256 + provenance list.
- Tag & Archive: repo tag (e.g., EVOL-07.FR0ZEN.2025-08-12); copy to 7.6.3 History/EVOL-07/.

Exit criteria: read-only flag applied; traceability report passes; ops handover acknowledged.

5. Deliverables by Phase (Products)

Product classes: RIG (test rigs), SIM (simulators/digital twins), SUBSYS (modules), SYS (integrated systems), DECK (station decks/sections), SPHERE (whole station).

5.1 Product IDs & configuration keys

- ID schema: CLASS-PRODID-VAR-REV + ASN (physical serial) + CFGHASH (configuration hash). Examples: RIG-THERM-01-A2 / ASN 0007 / CFGHASH 3f9c..., DECK-015-PWR-01-B0 / ASN 0001 / CFGHASH 91ab....
- **5.2 Proposal (products) All classes**: PDR (product decision), top-level PBS/BOM (10-line granularity), budget draft, conformity plan, initial risks, block diagrams, build plan (milestones, required rigs/sims, resources). **Class-specific**:

- **RIG**: measurands & target accuracies; calibration strategy.
- SIM: model boundaries; fidelity metrics (Δt, numerical error, deviation vs. test data).
- SUBSYS/SYS: interface briefs; preliminary ICD deltas.
- DECK/SPHERE: integration/assembly concept; logistics constraints.

Exit: EVOL Board "Go"; product ID reserved; epic/backlog created.

- **5.3 Work (products) All classes**: detailed **BOM v0.x**; fabrication packages (drawings, CAM/GERBER, STEP/STL as relevant); configuration files + **CFGHASH**; **ASN** assigned; V&V plan and test procedures; interim evidence (photos, logs, sim runs with seeds). **Class-specific**:
 - RIG: calibration log v0.x; uncertainty budget; lab safety clearance.
 - SIM: validation vs. rig/flight data; Golden Runs + tolerances.
 - **SUBSYS**: EVT/DVT builds; firmware artifacts; bring-up logs.
 - SYS: HIL/CHIL proofs; interface tests; EMV/leak/pressure as applicable.
 - DECK: structural assembly evidence; piping/electrical isometrics; leak tests.
 - **SPHERE**: integration timeline; cross-deck tests; emergency power/LC drills.

Exit: CI green; demo/functional proof; no open P0/P1 defects.

- **5.4 Review (products)** All classes: review package; SPEC/ICD v1.0.0-rc; V&V matrix with results; updated budgets & risks; safety/security artifacts; ops drafts. Acceptance tests:
 - **RIG**: **FAT-RIG** (factory acceptance), calibration certificates, standards trace.
 - **SIM**: **FAT-SIM** (reproducibility, scenario coverage, fidelity report).
 - SUBSYS: FAT-SUB (interfaces & performance), environmental/stress tests.
 - **SYS**: **FAT-SYS** + HIL proof, controller stability, safe-state tests.
 - DECK: FAT-DECK (pressure, leak, EMV/structure), evacuation/ops drills.
 - SPHERE: ORR-Draft (Operational Readiness Review pre-stage), end-to-end exercises.

Exit: sign-offs complete; actions closed or waived.

5.5 Freeze (products) All classes: v1.0.0 FROZEN release; release notes; traceability report; parameter baseline; interfaces.lock; BOM/SBOM; provenance manifest; final ops runbook; training; spares

& tools list; evidence archive (datasets, seeds, photos, build logs). **Site acceptance**:

- RIG: SAT-RIG; in service; maintenance interval set.
- **SIM**: **SAT-SIM**; reference Golden Runs stored; regression CI hook.
- **SUBSYS**: **SAT-SUB**; serial ASN range opened; spares kit defined.
- SYS: SAT-SYS; emergency procedures verified; telemetry thresholds set.
- **DECK**: **SAT-DECK**; handover to integration lead; artifacts set to read-only.
- **SPHERE**: **ORR/FRR** completed; operational authorization; tag SPHERE.FR0ZEN.YYYY-MM-DD.

6. Evidence & Traceability

- **V&V Matrix** is mandatory: requirement → spec clause → test case → result → dataset/seed.
- Definition of Evidence (DoE): evidence must be reproducible (configs + seeds), attributed (who/when/tool-version), and integrity-checked (hashes).
- **Parameter Baseline** holds numerical knobs; changes require SemVer bump + re-test scope.
- Interface Locks pin all external contracts by version and checksum
- **Asset Map** ties ASN ↔ CFGHASH ↔ Release-Tag ↔ Documents/Tests in machine-readable form.

7. Versioning & States

- **SemVer** for documents and products (MAJOR.MINOR.PATCH). MAJOR: incompatible changes; MINOR: added functionality; PATCH: fixes/no interface change.
- **States**: DRAFT → REVIEW → FROZEN. Release candidates use -rc suffix.
- Freeze sets immutability; hotfixes require new patch release + minimal re-tests.

8. Configuration Management

Product identity: CLASS-PRODID-VAR-REV (human-readable),
 ASN (serial), CFGHASH (config hash).

- product.yaml is the single source of truth for each physical/simulated asset.
- Digital twin: every physical ASN points to a SIM snapshot + Golden Runs.

Example product.yaml

```
id: DECK-015-PWR-01
class: DECK
variant: "01"
revision: "B0"
asn: "0001"
cfg hash: "91ab72d4..."
release_tag: "DECK-015-PWR-01_v1.0.0"
interfaces:
  - id: ICD-015-PWR-CTRL v1.0.0
  - id: ICD-015-THERM-L00P v1.0.0
budgets:
  mass kg: 128000
  power_kw: 45
  heat kw: 38
  volume m3: 2100
evidence:
  photos: ["evidence/photos/2025-08-01 installation.jpg"]
  tests: ["tests/FAT-DECK/results-2025-08-05.csv"]
  datasets: ["evidence/data/pressure-leak-logs.parquet"]
ops:
  runbook: "ops/runbook.md"
  maintenance interval days: 180
```

9. CI & Quality Gates

- Front-matter lint (required fields), filename regex, cross-link checks, schema validation for product.yaml.
- Build/test: unit tests; model/sim reruns; Golden Run regression; doc link checker.
- Security/Safety: minimum checklists (threat model/FMEA present) before review.
- **Blocking rules**: merge blocked until all required checks pass and required reviewers sign.

186

10. Acceptance & Readiness Reviews

- FAT (Factory Acceptance): performed in Review phase; per-class variants (RIG/SIM/SUBSYS/SYS/DECK).
- SAT (Site Acceptance): performed in Freeze phase; installation/ops readiness confirmed.
- ORR/FRR (Operational/Flight Readiness Reviews): required for SPHERE releases.

11. Release & Archival

• Tag the release (e.g., EVOL-07.FR0ZEN.2025-08-12).

• Copy frozen set to 7.6.3 History/EVOL-XX/ with manifest.sha256.

• Apply repository read-only protection to frozen artifacts.

12. Templates & References

- Short-form templates exist for SPEC, ICD, ADR, RFC, TST, CALC; start from those.
- Use the Evolution index (README of the Evolution) to link all deliverables.
- For acceptance checklists, use the minimal **FAT/SAT** templates provided under templates/acceptance/.

Appendix A — Filename Pattern (documents)

Use the following pattern (illustrative; adapt discipline/scope codes as needed):

^(SPEC|ICD|ADR|RFC|TST|CALC)-(\d+)-([A-Z]{2,5})-([A-Z0-9\-]+)-EN-v(\d+\.\d+\.\d+)(-(DRAFT|REVIEW|FROZEN|RC\d+))?\$

Examples SPEC-07-PWR-DECK015-PWR-CTRL-EN-v0.4.0-DRAFT ICD-07-CTRL-DECK015-THERM-EN-v1.0.0-REVIEW

Appendix B — **Directory Skeleton (per Evolution)**

EVOL-XX/
00-proposal/
RFC.md
options-trade-study.md
arch-overview.drawio

```
initial-budgets.xlsx
    risks-init.csv
  01-work/
    SPEC/
    ICD/
    ADR/
    CALC/
    MODEL-SIM/
    TST/
    CHANGELOG.md
  02-review/
    review-package.md
    vv-matrix.xlsx
    compliance-matrix.xlsx
    review-minutes.md
  03-freeze/
    release-notes.md
    parameters-baseline.json
    interfaces.lock
    sbom.spdx
    bom.csv
    manifest.sha256
  products/
    RIG/<RIG-ID>/...
    SIM/<SIM-ID>/...
    SUBSYS/<SUBSYS-ID>/...
    SYS/<SYS-ID>/...
    DECK/<DECK-ID>/...
    SPHERE/<release-tag>/...
Appendix C — Review Package Checklist (minimum)
  ☐ Review Package index present and link-clean.
  ☐ SPEC/ICD at v1.0.0-rc, REVIEW state.
  □ V&V Matrix complete and consistent with evidence.
  ☐ Test results (logs, seeds, tolerances) attached.
  ☐ Budgets updated; deltas vs. Proposal highlighted.
  ☐ Safety/Security artifacts present (FMEA/HAZOP, threat model,
    waivers).
  ☐ Ops drafts (runbook, training outline, rollback) attached.
  ☐ Compliance matrix present.
```

☐ Review minutes template ready.

Appendix D — Freeze Manifest (example)

Release: EVOL-07.FR0ZEN.2025-08-12 Artifacts: - SPEC/DECK015-PWR-CTRL_v1.0.0.pdf sha256: a1b2... - ICD/DECK015-THERM v1.0.0.yaml sha256: c3d4... parameters-baseline.json sha256: e5f6... sha256: 9abc... interfaces.lock - sbom.spdx sha256: dede... - bom.csv sha256: 4444... Evidence: - tests/FAT-DECK/results-2025-08-05.csv sha256: 7777... - evidence/data/pressure-leak-logs.parguet sha256: 8888... Provenance: - commit: 3b1c2d4 - built_by: j.smith - built_at: 2025-08-12T10:11:00Z

Definition of Done (Evolution) An Evolution is *done* when all phase deliverables are present, signed off, and archived; frozen artifacts are immutable and linked in the Evolution index; Ops acknowledges handover; traceability report is clean.

7.6.2 Evolutions

This folder contains the **active engineering "Evolution" packages** for the Sphere Space Station Earth ONE and Beyond project. Each Evolution groups the current set of specs, interfaces, calculations, models, tests, and ops procedures that together define the system **as it is being changed right now**. Older waves move to 7.6.3 History.

What's in here

- Current Evolution(s) the live development wave(s) with their documents and work-in-progress artifacts. For example, the book lists EVOLUTION 00 — The Beginning as the starting wave.
- **Specs under this Evolution** e.g., SPEC-00-STR-DECKS-DECK000-0001-wormhole-docking-tunnel-EN-v0.1.0-DRAFT (structure, decks, DECK000, EN locale, SemVer + state).

Each Evolution typically mirrors the reference layout used in the history section (standards/templates, architecture, specs, interfaces, calculations, models/sim, tests, ops, change management). When an Evolution closes, its content is frozen and archived to 7.6.3 History (e.g., EVOL-00/00-standards-templates, 01-architecture, 02-specs, ...).

How Evolutions work (fast primer)

- Evolution principle & lifecycle: Evolutions are small, visible, and governed. They move from proposal → work → review → freeze, following the rules and lifecycle defined in 7.6.1 Global Standards and Guideline Document: The Evolution Principle.
- Governance & roles: See AGENTS.md Roles, Responsibilities & EVOL Working Rules for owners, reviewers, EVOL board decisions, and merge blockers.

File naming, versioning, and states

Follow the **7.6.1 Global Standards** rigorously:

- **File-Naming Scheme** (document type, evolution code, discipline, system/deck IDs, language, SemVer, state). Example: SPEC-00-STR-DECKS-DECK000-0001-...-EN-v0.1.0-DRAFT.
- **Versioning**: **SemVer** (MAJOR.MINOR.PATCH). Increase versions per the change impact; keep states in sync.
- **Document States**: e.g., DRAFT → REVIEW → FROZEN (see "States (STATE)" code table).
- Required YAML front matter: include required metadata (doc type, evolution, owners, reviewers, state, version, etc.). CI will check this.

Templates you'll need

Short-form templates are provided for **SPEC, ICD, ADR, RFC, TST, CALC**. Start from these when adding documents to this Evolution.

CI, quality gates, and merge rules

- Quality rules & CI/Lint: Filename regex, front-matter fields, and cross-checks are enforced. Fix issues before requesting review.
- Commits & PRs: Use the prescribed commit message and PR title conventions so traceability stays intact. Merge is blocked until reviews and checks pass per EVOL board rules.

Contributing to this Evolution (checklist)

- 1. Create/extend docs using the correct template + filename + front matter.
- 2. **Reference codes/tables** (DOC types, DISC, SYS, DECK IDs, STATE) from the standards appendix.
- 3. Run CI locally where possible; fix lint and metadata errors.
- 4. **Open a PR** with compliant title/description; request the listed **owners/reviewers** in AGENTS.md.
- 5. **Address reviews**; once approved and CI is green, the EVOL board (or delegate) merges. **Frozen artifacts** will later be copied to 7.6.3 History as the next wave starts.

Quick pointers

- Global standards & lifecycle, versioning, states, front matter, CI/Lint → 7.6.1-global-standards and Guideline: The Evolution Principle.
- **Roles, ownership, workflows** → 7.6-engineering/AGENTS.md.
- **History and prior waves** → 7.6.3 History (e.g., EVOL-00 structure for reference).
- Example active spec → wormhole docking tunnel spec listed under EVOLUTION 00.

Scope reminder

This folder is the **single source of truth for the** *current* **change wave**. If it's not here (or linked from here), it's not part of the active Evolution. Archive only after freeze; until then, keep everything auditable, versioned, and governed.

Maintainers: See AGENTS.md for the current Evolution owner(s) and reviewer roster.

Current Evolution: EVOLUTION 00 - The Beginning

Direct link to the current EVOLUTION

EVOLUTION 00 - The Beginning

EVOLUTION 00 — The Beginning

"700 pioneers. First light on the ring. We are writing the birth certificate of a city in orbit."

EVOL00 is our first visible chapter: a minimal, end-to-end **working baseline** that proves the architecture in the real world. It is small by design, complete by necessity, and **auditable by default**. EVOL00 establishes the language of the system—structural grid, core interfaces, safety assumptions, and the build-test-operate chain—and makes **Evolution** the primary beacon, clear to team, partners, and users.

Success here isn't feature breadth; it's **trust**: a reproducible capsule that can be built, tested, operated, and learned from. When EVOL00 closes, we freeze a clean, signed baseline and open EVOL01 with confidence and velocity.

Focus: Clarity over scope · Safety over speed · Evidence over claims · Visibility everywhere.

00 Standards Templates

Frozen standards and templates from EVOL-00.

Architecture

Archived architecture records for EVOL-00.

EVOL-00 — Earth ONE (Ø 127 m) · Baseline v1.0 — Kurzblatt

Zweck: Minimal **vollständiger** Demonstrator (LEO). Architektur, Sicherheit, Build-Test-Operate.

Crew / Residents: ~700 Personen (Mischung aus Crew, Wissenschaft, Familien).

Masse (dry+ops window): ~310.000-320.000 t.

Drehung / **Spin-Law:** 1 g @ $r \approx 38$ m $\rightarrow \sim 4,851$ rpm (Baseline). **Gravitationszonen:** Mikro-g im Achskanal (DECK 000), sanfter Gradient zu ~ 1 g in Wohn- und Arbeitszonen.

Struktur & Geometrie (Kurz)

- **Hauptkörper:** Kugel Ø 127 m; integriertes Coaxial-Zylindersystem ("Deck-Zylinder").
- Decks: DECK 000 (Achskanal "Wormhole"), danach ab DECK 001 in 3,5-m-Bruttohöhen rasternd.
 - DECK 000: Radius 0,0 m bis 10,5 m Zylinder-ID (inkl. Wand).
 - **DECK 001:** Radius **10,5 m** bis **14,0 m** (inkl. Wand).
 - **DECK n:** Radius Start = $10.5 \text{ m} + (n-1) \times 3.5 \text{ m}$; Radius Ende = 5 tart + 3.5 m.
- **Primärgitter:** Meridionale und Breiten-Rippen (SiC/SiC-dominant), ringförmige Druckschotten, Crash-Bulkheads.

Andocken & "Wormhole"

- Polar-Ports: Nord/Süd-Dock (extern) mit redundanten Equalize-Pfade.
- Achskanal (Wormhole): Mikro-g Korridor; Service-Tubes; Not-Shelter.
- Throats (EVOL-00): 20 m Durchmesser.

Lebenserhaltung & Energie (Baseline)

• **Energie:** SMR-Fission (primär), Solar-Arrays (sekundär), chemische Not-Reserven.

- LSS: Geschlossene Kreisläufe ($\rm H_2O,~O_2/CO_2,~N\ddot{a}hrstoffe)$ mit "storm shelter"-Zonen.
- **Brandschutz:** Sektorierte O₂-Management-Zonen; Inertion-Optionen; Hot-Work-Permits.

Sicherheit (Top-Linien)

- **HAZ-Katalog:** SPEC-00-HAZARD v0.1 (IDs, Schwere, Gegenmaßnahme).
- **VENT/BOP:** Ringförmige Vent-/Blow-Off-Panels, druckgestufte Equalize-Sequenzen.
- **POL-GUARD:** Zugang/Prozedere (light) eingeführt; Crew-Drills quartalsweise.

Verifikation & Exit-Kriterien

- **V&V:** Struktur/Spin/Deck-000 nachgewiesen; HZ-Matrizen freigegeben; SSOT eingeführt.
- **Ops-Nachweis:** 180 Tage bei ≥ 75 % Belegung; Safety-KPI innerhalb Budget; Mean-Time-to-Equalize belegt.

Freeze-Umfang v1.0: Geometrie, Spin-Parameter, Dock-Topologie (EVOL-00), LSS-Baseline, Safety-Schichten, HAZ-Index-Verlinkung.

02 Specs

Specifications and requirements from EVOL-00.

SPEC-00-STR-DECKS-013-sector-layoutand-interfaces-EN-DE-v0.1.0-DRAFT

Project: Sphere Space Station - Earth ONE (Ø 127.00 m)

Evolution: EVOL-00 • Spin Law: 1 g at $r = 38.00 \text{ m} \rightarrow \omega = 0.50801$

 $s^{-1} \approx 4.851 \text{ rpm}$

Document Status: DRAFT v0.1.0 • **Date:** 2025-08-16

Summary / Kurzfassung (EN/DE)

EN: DECK 013 serves as a **buffer & service ring** between nuclear/thermal systems (014/015) and the habitable mid-decks. It hosts **water/poly shielding**, **heat-exchanger galleries**, **service corridors** and **decon/airlock nodes**. Low-risk technical zones (HZ-1) dominate; select HZ-2 areas in heat-exchanger galleries.

DE: DECK 013 fungiert als **Puffer- & Service-Ring** zwischen den Nuklear-/Thermik-Decks (014/015) und den mittleren Habitatzonen. Es beherbergt **Wasser/Poly-Schilde**, **Wärmetauscher-Galerien**, **Servicegänge** sowie **Dekon-/Schleusenknoten**. Überwiegend **HZ-1** (geringes Risiko), punktuell **HZ-2** in den Wärmetauscher-Galerien.

1. Scope & Purpose / Zweck und Geltung

- **EN:** Sector-level layout, interfaces, safety zoning, and OPS constraints for DECK 013.
- DE: Sektor-Layout, Schnittstellen, Sicherheitszonen und Betriebsgrenzen für DECK 013.

Dependencies / Abhängigkeiten: Global Geometry & Gravitation SPEC (EVOL-00), DECK 014/015 specs, station-wide safety & ICD conventions.

2. Geometry & Environment / Geometrie & Umgebung

• Radial band / Radialband: 52.50-56.00 m ($\Delta r = 3.50$ m)

- g-levels (ceiling→mid→floor): 1.382 g → 1.428 g → 1.474 g
- **Deck height / Deckhöhe:** structural thickness per band; habitable clearance per compartment.
- Windows / Fenster: none / keine (technischer Pufferbereich)

3. Sectorization & Access / Sektorierung & Zugänge

- Sectors / Sektoren (12 × 30°): A...L (A: 0-30°, ..., L: 330-360°)
- Radial bulkheads / Radiale Schotts: at all sector borders A|B,...,L|A; PT-A doors (primary), PT-B (service)
- Shafts / Schächte: HL-0/90/180/270 (heavy-lift), PAX at ±22.5°, 67.5° ..., UTIL dual service trunks (inner/outer)
- Relief / Entlastung: VENT to space via radial lines; no BOP foreseen for 013 (low-energy fluids)

4. Sector Allocation (Functional) / Sektor-Belegung (Funktional)

Sec- tor	HZ	EN – Primary Function	DE – Primärfunktion	Notes / Hinweise
A	1	Water/Poly shield (N arc)	Wasser/Poly- Schild (Nordbogen)	Tie-in to 014/015; level/sampling
В	1	Water/Poly shield (NNE)	Wasser/Poly- Schild (NNO)	Segment isolation valves
С	1	Water/Poly shield (NE)	Wasser/Poly- Schild (NO)	Leak sumps, monitors
D	1	Water/Poly shield (ENE)	Wasser/Poly- Schild (ONO)	HL-90 nearby
E	2	HX gallery (N/E headers)	HX-Galerie (Nord/Ost)	THM tie-ins to hull headers
F	2	HX gallery (E)	HX-Galerie (Ost)	Acoustic damping, access control

Sec- tor	HZ	EN – Primary Function	DE – Primärfunktion	Notes / Hinweise
G	1	Water/Poly shield (S arc)	Wasser/Poly- Schild (Südbogen)	HL-180 nearby
н	1	Water/Poly shield (SSW)	Wasser/Poly- Schild (SSW)	Segment isolation valves
ı	2	HX gallery (S/W headers)	HX-Galerie (Süd/West)	THM tie-ins to hull headers
J	2	HX gallery (W)	HX-Galerie (West)	Access from HL-270
K	1	Service & decon node	Service & Dekon-Knoten	AL-C airlocks, workshop
L	1	Service, metrology & sampling	Service, Messtechnik & Probenahme	Maint-LAN, stores

HZ classes: 1 = normal technical, 2 = elevated energy/thermal.

5. Interfaces / Schnittstellen

5.1 MECH (Structure & Mounts)

- Ring girder raster: **M18** on 013; saddle supports for ring tanks; inspection walkways; spill containment at low points.
- **DE:** Ringträger-Raster **M18**; Auflager für Ringtanks; Inspektionsstege; Auffangwannen an Tiefpunkten.

5.2 PWR (Electrical)

- **DC-HV backbone** continuation (DC-B1/B2 split); MCC panels near HX galleries (**E/F/I/J**).
- **UPS** ≥ **30 min** for valve/VENT actuation & monitoring.
- **DE:** DC-Rückgrat fortgeführt; MCC in **E/F/I/J**; **USV** ≥ **30 min** für Ventile/VENT/Monitoring.

5.3 THM (Thermal)

- HX strings in E/F/I/J feed hull HX headers (N/E/S/W) with shortest radial routing.
- Shield-water circuits in A-D and G-H can absorb transient heat and provide biological shielding.
- **DE:** HX-Stränge **E/F/I/J** zu Hüllen-Headern; Schild-Wasserringe **A-D**, **G-H** als Wärmepuffer & biologischer Schild.

5.4 COM (Communications)

- Dual Red/Blue fiber rings; Maint-LAN drops in K/L; SAFE-bus pass-through for monitoring.
- DE: Doppelte Glasfaserringe; Maint-LAN in K/L; SAFE-Bus-Durchleitung.

5.5 GAS (Process & Inert)

- Inert N₂/Ar feed (from 015-H) to 013 sector manifolds; monitored sector valves.
- **DE:** Inertgas N_2/Ar aus 015-H; sektorseitige Verteilbalken mit Überwachung.

6. Safety, Schotts & Relief / Sicherheit, Schotts & Entlastung

- PT-A main doors at sector boundaries (motor/manual, interlocked); PT-B for service corridors (fail-safe closed).
- AL-C airlocks at K (decon node) and selected gallery entries.
- **VENT**: radial ducts from HX galleries to space; shield-water areas vent to dedicated scrubbers (no BOP planned on 013).
- DE: PT-A/-B wie oben; AL-C in K und ausgewählten Galerien;
 VENT radial; Schild-wasser → Scrubber; kein BOP auf 013 vorgesehen.

7. Operations & Human Factors / Betrieb & HF

- **Exposure:** Category **C/D** (≤ 8 h / ≤ 4 h) depending on task; HX galleries treated as **HZ-2** with stricter access control.
- **Wayfinding:** sector color codes; service/decon signage; lownoise policy in shield zones.
- **DE:** Verweilen **C/D** je nach Aufgabe; HX-Galerien als **HZ-2** mit Zugangskontrolle; klare Wegführung & Lärmleitwerte.

8. Verification & Acceptance / Verifikation & Abnahme

- **Shield-water** integrity (proof/leak), overflow tests, level alarms.
- HX capacity checks (flow/ΔT), redundancy (N+1 pumps upstream on 015 D/l).
- VENT functional tests; AL-C pressure equalization & sensor redundancy checks.
- DE: Dichtheit & Alarmierung Schild-wasser; HX-Kapazität/Redundanz; VENT-Funktion; AL-C-Prüfungen.

9. ICD & Naming / Bezeichner

- Shafts / Schächte: HL-0|90|180|270, PAX-22.5|...|337.5
- Relief / Entlastung: VENT-013-<Sector>
- Shield tanks / Schilde: SHLD-013-<Sector>-<Nr>
- HX strings / HX-Stränge: HX-013-<Sector>-<StringID>
- Airlocks / Schleusen: ALC-013-<Node>

10. Change Log / Änderungshistorie

• v0.1.0 (2025-08-16): Initial EVOL-00 buffer/service layout, interfaces, safety & OPS limits.

SPEC-00-STR-DECKS-014-sector-layoutand-interfaces-EN-DE-v0.1.0-DRAFT

Project: Sphere Space Station - Earth ONE (Ø 127.00 m)

Evolution: EVOL-00 • Spin Law: 1 g at $r = 38.00 \text{ m} \rightarrow \omega = 0.50801$

 $s^{-1} \approx 4.851 \text{ rpm}$

Document Status: DRAFT v0.1.0 • **Date:** 2025-08-16

Summary / Kurzfassung (EN/DE)

EN: DECK 014 hosts the **nuclear primary systems (SMR)** and **power conversion/distribution** close to the hull for minimal thermal path length, while keeping equipment loads lower than on DECK 015. Compartmentalization, radial relief to space (VENT/BOP), and remote operations minimize operational risk and crew exposure.

DE: DECK 014 beherbergt die **nuklearen Primärsysteme (SMR)** sowie **Energie-Wandlung/Verteilung** in Hüllennähe für kurze Kühlwege – bei geringerer g-Belastung als auf DECK 015. **Kompartimentierung, radiale Entlastung ins All (VENT/BOP)** und **Remote-Operation** reduzieren Betriebsrisiken und Personalexposition.

1. Scope & Purpose / Zweck und Geltung

- **EN:** Sector-level layout, interfaces, safety zoning, and operations constraints for DECK 014.
- DE: Sektor-Layout, Schnittstellen, Sicherheitszonen und Betriebsgrenzen für DECK 014.

Dependencies / Abhängigkeiten: Global Geometry & Gravitation SPEC (EVOL-00), DECK 013/015 specs, station-wide safety & ICD conventions.

2. Geometry & Environment / Geometrie & Umgebung

• Radial band / Radialband: **56.00-59.50** m ($\Delta r = 3.50$ m)

- g-levels (ceiling→mid→floor): 1.474 g → 1.520 g → 1.566 g
- **Deck height / Deckhöhe:** structural thickness per band; habitable clearance per compartment.
- Windows: none / Fenster: keine (hull-near technical zone)

3. Sectorization & Access / Sektorierung & Zugänge

- Sectors / Sektoren (12 × 30°): A...L (A: 0-30°, B: 30-60° ... L: 330-360°)
- Radial bulkheads / Radiale Schotts: at all sector borders A|B,...,L|A; PT-A doors (primary), PT-B (service)
- Shafts / Schächte: HL-0/90/180/270 (heavy-lift), PAX at ±22.5°, 67.5° ..., UTIL dual rings (inner/outer)
- Relief / Entlastung: VENT to space via radial lines; BOP blowout panels at designated sectors (no tangential relief)

4. Sector Allocation (Functional) / Sektor-Belegung (Funktional)

Sec- tor	HZ	EN – Primary Function	DE – Primärfunktion	Notes / Hinweise
A	3	SMR Cell-1 (Containment): RPV-1, primary loop-N, shield	SMR-Zelle-1 (Containment): RDB-1, Primär-Loop-N, Schild	HL-0 access; VENT-014- A→Space + filtered; ESFAS/SIS
В	2	Nuclear auxiliaries (chem/boron, sampling)	Nuklear- Hilfssysteme (Chem/Bor, Probenahme)	Chem control, drains to 013
С	2	Power Conversion-N (Brayton/Rankine skid)	Energie- Wandlung-N	Acoustic damping; THM tie-ins north

Sec- tor	HZ	EN – Primary Function	DE – Primärfunktion	Notes / Hinweise
D	2	DC bus & switching (N)	DC-Bus & Schalter (N)	HL-90 access; DC-HV islanding
E	1	Remote shop & tele-ops	Werkstatt & Tele-Ops	Maintenance, robot staging
F	1	Inspection & AL-C airlocks	Inspektion & AL-C-Schleusen	Decon route to 013
G	3	SMR Cell-2 (Containment): RPV-2, primary loop-S, shield	SMR-Zelle-2 (Containment): RDB-2, Primär-Loop-S,	HL-180 access; VENT- 014-G→Space + filtered
н	2	Nuclear auxiliaries (south)	Schild Nuklear- Hilfssysteme (Süd)	Chem/boron systems
I	2	Power Conversion-S	Energie- Wandlung-S	THM tie-ins south
J	2	DC distribution (S/W)	DC-Verteilung (S/W)	HL-270 access
K	1	Water shield ring (upper)	Wasser- Schildring (oben)	Tie-in to 013/015
L 	1	Remote OPS & MCC (unmanned)	Fernbetrieb & Leitwarte (unbemannt)	Red/Blue fiber rings

HZ classes: 1 = normal technical, 2 = elevated energy/thermal, **3 = critical (nuclear/containment)**.

5. Interfaces / Schnittstellen

5.1 MECH (Structure & Mounts)

- Ring girder raster: **M18** on 014; isolation mounts $\zeta \ge 0.08$ at turbomachinery.
- Inspection clearances, crane/monorail in A/G cells.
- **DE:** Ringträger-Raster **M18**, Schwingungsdämpfung $\zeta \ge 0.08$; Kran/Monorail in A/G.

5.2 PWR (Electrical)

- DC-HV backbone: ±800 V split DC-B1 (N/E), DC-B2 (S/W);
 N+1 UPS ≥ 30 min for safety actuators.
- Islanding at C/I (conversion), switching at D/J.
- DE: DC-HV-Rückgrat wie oben; Inselnetze in C/I, Umschaltung D/I; USV N+1 ≥ 30 min.

5.3 THM (Thermal)

- Primary loops from A/G to hull HX headers (N/S) via shortest radial paths.
- Secondary headers to 015 (pump nodes D/J).
- DE: Primär-Loops A/G → Hüllen-Header (N/S); Sekundär-Header nach 015 (Pumpen D/J).

5.4 COM (Communications)

- Dual Red/Blue fiber rings; dedicated SAFE-bus for ESFAS/SIS; remote ops hub at L.
- DE: Doppelte Glasfaserringe; separater SAFE-Bus; Leitwarte in L.

5.5 GAS (Process & Inert)

- Inertization N₂/Ar feed from 015-H; monitored sector valves.
- **DE:** Inertisierung **N**₂/**Ar** aus 015-H; Sektor-Drosseln überwacht.

6. Safety, Schotts & Relief / Sicherheit, Schotts & Entlastung

- PT-A main sector doors (motor/manual, interlocked), PT-B service doors (fail-safe closed).
- **AL-C** airlocks with $\Delta p/O_2$ /smoke/temp dual sensors.
- VENT-014-A/G→Space via filtered trains; BOP as last resort in A/G; no tangential relief lines.
- **DE:** PT-A/-B wie oben; AL-C mit Zweifach-Sensorik; VENT/BOP radial; keine tangentiale Entlastung.

7. Operations & Human Factors / Betrieb & HF

- Exposure: Category E in A/G (≤ 2 h), D elsewhere (≤ 4 h);
 remote ops default.
- Wayfinding: sector color codes; restricted access badges.
- DE: Verweilen: E in A/G (≤ 2 h), sonst D (≤ 4 h); Remote-Betrieb Standard.

8. Verification & Acceptance / Verifikation & Abnahme

- Containment tests: proof/leak-down A/G; interlock & ESFAS functional.
- **Thermal:** flow/ΔT capacity to hull HX; pump N+1 failover.
- **Electrical:** islanding switchover; UPS autonomy ≥ 30 min.
- **DE:** Dichtigkeits-/Funktionstests gemäß obigen Punkten.

9. ICD & Naming / Bezeichner

- Shafts: HL-0|90|180|270, PAX-22.5|...|337.5
- Relief: VENT-014-<Sector>, BOP-014-<Sector>
- Nuclear cells: SMR-014-A|G, Conversion: PCON-014-C|I

10. Change Log / Änderungshistorie

 v0.1.0 (2025-08-16): Initial EVOL-00 layout, interfaces, safety & OPS limits.

SPEC-00-STR-DECKS-015-sector-layoutand-interfaces-EN-DE-v0.1.0-DRAFT

Project: Sphere Space Station - Earth ONE (Ø 127.00 m)

Evolution: EVOL-00 • Spin Law: 1 g at $r = 38.00 \text{ m} \rightarrow \omega = 0.50801$

 $s^{-1} \approx 4.851 \text{ rpm}$

Document Status: DRAFT v0.1.0 • **Date:** 2025-08-16

Summary / Kurzfassung (EN/DE)

EN: DECK 015 is the **tank farm & thermal buffer deck** with secondary/tertiary loops, inert and oxidizer gas systems, and the cryogenic interface to hull-mounted pods. High g (~1.61-1.66 g) supports **phase settling** and hydrostatic stability; strict EX-zoning and radial relief ensure safety.

DE: DECK 015 ist das **Tank- & Thermik-Deck** mit Sekundär/Tertiär-Kühlkreisen, Inert- und Oxidatorgas-Systemen sowie der Kryo-Schnittstelle zu hüllenmontierten Pods. Die hohe g-Last (~1,61–1,66 g) begünstigt **Phasen-Settling** und hydrostatische Stabilität; strenge **EX-Zonierung** und **radiale Entlastung** sichern den Betrieb.

1. Scope & Purpose / Zweck und Geltung

• **EN:** Sector layout, interfaces, safety zoning, and OPS constraints for DECK 015 (tanks/thermal, gases, cryo interface).

• **DE:** Sektor-Layout, Schnittstellen, Sicherheitszonen und OPS-Grenzen für DECK 015 (Tanks/Thermik, Gase, Kryo-Interface).

Dependencies / Abhängigkeiten: Global Geometry & Gravitation SPEC (EVOL-00), DECK 014 spec, station-wide EX-class rules & ICD.

2. Geometry & Environment / Geometrie & Umgebung

• Radial band / Radialband: **59.50-63.00 m** ($\Delta r = 3.50 \text{ m}$)

g-levels (ceiling→mid→floor): 1.566 g → 1.612 g → 1.658 g

• Windows: none / Fenster: keine (technical deck)

3. Sectorization & Access / Sektorierung & Zugänge

- Sectors / Sektoren (12 × 30°): A...L
- Radial bulkheads / Radiale Schotts: at sector borders;
 PT-A/PT-B per criticality.
- Shafts / Schächte: HL-0/90/180/270; PAX at ±22.5°, 67.5°
 ...; UTIL dual rings.
- Relief / Entlastung: VENT to space; BOP panels at designated sectors.

4. Sector Allocation (Functional) / Sektor-Belegung (Funktional)

Sec- tor	HZ	EN – Primary Function	DE – Primärfunktion	Notes / Hinweise
A	2	Water buffer / heat-sink	Wasser-Puffer / Heat-Sink	2× tanks ~150 m³; HX modules
В	2	Water storage (vertical) + N_2 blanket	Wasser- Großspeicher (vert.) + N ₂ -Blanket	Level/sam- pling, dikes
С	2	Borate/LiOH shield solution	Borat/LiOH- Puffer (Schild)	PH stations, containment
D	2	Secondary pump hall	Sekundär- Pumpenhalle	HL-90 access; accumulators
E	3	Separated $\mathbf{O}_2/\mathbf{N}_2$ banks (EX)	Getrennte O_2/N_2 -Bänke (EX)	VENT-015- E→Space ; gas headers
F	3	Cryogenic interface (no storage)	Kryo- Schnittstelle (ohne Lager)	Manifolds → hull pods; VENT
G	2	Water buffer / heat-sink	Wasser-Puffer / Heat-Sink	HL-180 access

Sec-		EN – Primary	DE -	Notes /
tor	ΗZ	Function	Primärfunktion	Hinweise
н	3	Inert gas central	Inertgas-	Mixing, sector
		(N_2/Ar)	Zentrale	valves
		(112/21)		varves
_	_		(N_2/Ar)	
ı	2	Heat-exchanger	Wärmetauscher-	HX strings to
		gallery (S)	Galerie (S)	hull headers
1	2	Pump racks (S/W)	Pump-Racks	HL-270 access
,	_	ramp racks (5, vv)	(S/W)	112 27 0 0000055
	_		,	
K	2	Water shield ring	Wasser-	Ring tank
			Schildring	~250 m³;
			3	tie-in 014
	2	lmanastian C	la an aldian C	
L	2	Inspection &	Inspektion &	AL-C airlocks,
		service / decon	Service / Dekon	workshop

HZ classes: 1 normal, 2 elevated, 3 critical (EX/Cryo).

5. Interfaces / Schnittstellen

5.1 MECH

- Ring girder raster: M20 on 015; tank saddles with restrainers; spill containment/dikes.
- **DE:** Ringträger-Raster **M20**; Tanksättel mit Haltern; Auffangwannen/Dämme.

5.2 PWR

- **DC-HV backbone** continues from 014 (DC-B1/B2); MCC panels at **D/J** pump nodes; UPS for valve/VENT/BOP actuation.
- DE: DC-Rückgrat aus 014; MCC in D/J; USV für Ventile/VENT/BOP.

5.3 THM

- Secondary/Tertiary loops: pump nodes D/J; HX galleries I; buffer tanks A/G/K.
- **DE:** Sekundär/Tertiär-Kreise über **D/J**; HX-Galerien **I**; Puffer **A/G/K**.

5.4 COM

 Red/Blue fiber rings; SAFE-bus monitoring for EX/Cryo sectors E/F/H. • **DE:** Red/Blue-Ringe; SAFE-Bus-Überwachung in **E/F/H**.

5.5 GAS

O₂/N₂ separated banks (E); N₂/Ar inertization central (H); cryo manifolds (F) to hull pods.

DE: O₂/N₂ getrennt (E); N₂/Ar Inertisierung (H); Kryo-Manifolds (F).

6. Safety, Schotts & Relief / Sicherheit, Schotts & Entlastung

• PT-A/PT-B doors per HZ; AL-C airlocks at service entries.

 VENT-015-E→Space dedicated for EX zone; additional sector VENT lines F/H; BOP at A/K for tank overpressure scenarios.

• **DE:** Türen/Schleusen wie oben; **VENT** in EX-Zonen priorisiert; **BOP** hull-nah; keine tangentiale Entlastung.

7. Operations & Human Factors / Betrieb & HF

• **Exposure:** Category **D** (≤ 4 h) general; **E** (≤ 2 h) in **E/F/H**; slow head movement in high-g work.

• **Wayfinding:** EX-zone markings, gas color codes, decon routes to **L**.

• **DE:** Verweilen: **D** allgemein, **E** in **E/F/H**; klare EX-Markierungen; Dekon-Routen nach **L**.

8. Verification & Acceptance / Verifikation & Abnahme

• Hydrostatic/Leak tests on tanks; \mathbf{N}_2 blanket integrity; level/pressure alarms.

 Pump N+1 failover, HX capacity tests; VENT/BOP functional drills.

- EX compliance (detectors, interlocks) and cryo line integrity at **F**.
- **DE:** Dichtheit, N₂-Blanket, Pumpen-Redundanz, VENT/BOP-Tests, EX/Cryo-Nachweise.

9. ICD & Naming / Bezeichner

• Shafts: HL-0|90|180|270, PAX-22.5|...|337.5

• Relief: VENT-015-<Sector>, BOP-015-<Sector>

• Tanks: WTR-015-<Sector>-<Nr>, Gas banks: GAS-015-E-<02/N2>-<Bank>

• Cryo: CRY0-015-F-<LineID>

10. Change Log / Änderungshistorie

• v0.1.0 (2025-08-16): Initial EVOL-00 tank/thermal layout, EX zoning, interfaces, OPS limits.

SPEC-00-STR-DECKS-DECK000-0001-wormhole-docking-tunnel-EN-DE-v0.1.0-DRAFT

The Engineering of DECK000 - The Wormhole

Document status: Draft (EVOL-00 baseline) Date: 2025-08-10 Ap-

plies to: Earth ONE class sphere station (Ø 127 m)

Summary / Kurzfassung (EN/DE)

EN: DECK000 is the axial, pressurized docking and transit tube spanning the North-South poles. The EVOL-00 baseline defines a 127 m long SiC-composite barrel with six Inconel docking rings and window segments for observation and transfer in micro-g.

DE: DECK000 ist der axiale, druckbeaufschlagte Docking- und Transittunnel zwischen Nord- und Südpol. Die EVOL-00-Basis umfasst einen 127 m langen SiC-Verbundzylinder mit sechs Inconel-Docking-Ringen und Fenstersegmenten für Beobachtung und Transfer im Mikro-g.

1 Abstract DECK000 ("The Wormhole") is the axial, pressurized docking and transit tube that runs straight through the station from the North pole to the South pole. In EVOL-00, the assembly is a 127 m long tube with an outer diameter of 22 m and a clear inner diameter of 20 m. The primary barrel is a silicon-carbide (SiC) composite reinforced with steel or Inconel for toughness. Starting 3.5 m from the north polar end and repeating every 20 m along the axis, 10 m-long Inconel docking-ring subassemblies are installed and numbered sequentially (00, 01, 02 ...) from North to South. Between docking rings, "window tube" segments provide outward viewing; each segment integrates rectangular window units of 4 m (axial) \times 3 m (tall), built to the program's space-grade multilayer window specification (ALON/sapphire + fused silica + polycarbonate + borosilicate/cerium-doped glass). The result is a micro-g corridor (near the spin axis) enabling safe berthing, people/cargo transfer, observation, and emergency egress.

2 Description (EVOL-00 - Baseline Geometry & Materials)

A. System Overview

- **Function:** Central polar docking, transit, and observation corridor in micro-g; houses guidance, lighting, utilities, and emergency isolation points.
- **Overall length:** 127 m (North pole interior face to South pole interior face).
- Primary diameters: OD 22 m; ID 20 m (clear).
- **Primary structure:** SiC composite barrel; local reinforcement with steel/Inconel where penetrations, hatches, or docking hardware concentrate loads.
- **Environment:** Pressurized to station nominal (TBC; baseline 1 atm); micro-g zone due to proximity to rotation axis.

B. Docking-Ring Architecture

- **Ring modules:** 10 m axial length; OD 22 m (flush with main barrel OD); ID 10 m (constricted throat for docking hardware and hatchway integration).
- **Material:** Inconel (high-temperature and corrosion resistance; excellent toughness).
- Placement & numbering: Starting 3.5 m from the North pole interior face and repeating at a 20 m pitch; numbered 00 (northmost) through 05 (southmost) in EVOL-00.

Table 1 - Ring and window-segment positions (from North pole interior face)

Seg- ment	Туре	Axial start (m)	Axial end (m)	Axial length (m)	Notes
_	Clear- ance	0.0	3.5	3.5	forward clearance / taper / systems
00	Dock- ing ring	3.5	13.5	10.0	Inconel ring ID 10 m
_	Win- dow tube	13.5	23.5	10.0	window segment
01	Dock- ing ring	23.5	33.5	10.0	
_	Win- dow tube	33.5	43.5	10.0	

Seg- ment	Туре	Axial start (m)	Axial end (m)	Axial length (m)	Notes
02	Dock- ing ring	43.5	53.5	10.0	
_	Win- dow tube	53.5	63.5	10.0	
03	Dock- ing ring	63.5	73.5	10.0	
_	Win- dow tube	73.5	83.5	10.0	
04	Dock- ing ring	83.5	93.5	10.0	
_	Win- dow tube	93.5	103.5	10.0	
05	Dock- ing ring	103.5	113.5	10.0	
_	Win- dow	113.5	123.5	10.0	
_	tube Clear- ance	123.5	127.0	3.5	aft clearance / taper / systems

Note: EVOL-00 uses six docking rings (00–05), preserving 3.5 m service clearances at both ends. Later evolutions may revise counts, spacing, or diameters based on interface selections and docking traffic models.

C. Window Segments & Glazing Units

- **Window units per segment:** Rectangular apertures integrated into the 10 m "window tube" spans; count and circumferential distribution TBD by human-factors and structural analyses.
- **Nominal window aperture:** 4.0 m (axial) × 3.0 m (tall / meridional).
- Glazing stack (per program spec):

- Outer strike face: ALON (or sapphire) ~50 mm for micrometeoroid & UV protection.
- Middle layers: **Fused silica** (~100 mm) + **polycarbonate** (~50 mm) for thermal stability and impact energy absorption.
- Inner layer: **Borosilicate** (or cerium-doped glass) ~30 mm for radiation attenuation and optical quality.
- Total thickness: ~200-300 mm; areal mass: ~530-550 kg/m².
- **Shutters & shields:** Each aperture integrates internal blast shutters and external micrometeoroid/thermal shades; automatic closure on pressure loss or debris alerts.

D. Structural Concept

- **Primary barrel wall:** Thickness TBD from combined loads (pressure, docking loads, thermal gradients). Preliminary design envelope to meet FoS ≥ 2.0 against yield under 1 atm differential plus ring-induced stress concentrations.
- Ring-to-barrel joints: Circumferential flanges with shear keys; dual redundant, high-temperature elastomer seals (silicone-based) with metallic C-seals for vacuum-rated redundancy.
- Local reinforcements: Around windows (doubler frames), utility penetrations, and docking hardware. Use SiC/steel hybrid frames to spread aperture loads into the barrel laminate.
- Thermal control: Embedded liquid heat loops (glycol-water or silicone oil), MLI blankets on the outside of the barrel segments not occupied by windows, and conductive paths to station radiators.

E. Interfaces & Services

- **Mechanical:** Hard-points in each docking ring for adapter hardware, hatches, grapples, and temporary airlocks.
- Avionics & comms: Redundant comm rails, guidance beacons, and visual docking aids integrated at each ring; cableways routed in protected trunking.
- Life support: Distributed air distribution manifolds, CO₂ scrubber returns, water/condensate drains, and emergency O₂ drop lines.
- **Power:** Dual independent DC buses along the tube with local UPS for shutters, lighting, and hatch actuators.
- **Safety:** Pressure-isolation bulkheads at ring boundaries (ring can be sealed as a compartment), blast doors for window segments, fire detection & inert-gas suppression.

F. Operations & Human Factors

- **Micro-g ergonomics:** Handrails, foot restraints, and guided translation lines throughout; lighting graded for approach/egress; color-coded wayfinding matching station standards.
- Traffic separation: North pole dedicated to arrivals, South pole to departures (baseline); center-tube signage and beacons enforce counter-flow.
- **Emergency egress:** Clearly marked safe-hold nodes at each ring with comms, masks, and emergency supplies; shutters auto-close upon hazard detection.

G. Manufacturing & Assembly

- **Moduleization:** 10 m modules (alternating ring modules and window-tube modules) pre-fitted with internal systems; on-orbit assembly via circumferential bolted/bonded joints.
- **Inspection & maintenance:** Ring-module inspection ports; replaceable shutter cassettes; window health monitoring (acoustic emission, strain gauges, optical clarity sensors).

H. Compliance & Reference Specs

 Materials, pressure vessels, fire, glazing, and MMOD protections comply with station-wide standards (refs). Window stacks must meet the program's "LEO Window Specification" for thermal cycling, rapid decompression, and micrometeoroid resistance.

I. Open Parameters (TBD/TBC)

- Barrel wall thickness and detailed layup by load case.
- Final ring inner diameter vs. docking system selection and hatch design.
- Window count/distribution per segment after view/structure trade.
- Detailed thermal loop routing and radiator tie-ins.
- Human-factors lighting and signage specifics.

3 Forward Work (next revision)

- 1. Complete pressure & docking load cases and size the barrel thickness and reinforcements.
- 2. Human-factors layout (window count/placement, handrail nets, signage).
- 3. Define ring-module interface for standardized docking adapters.
- 4. Hazard analysis (fire, decompression) and emergency procedure overlays.

5. Manufacturing tolerances, NDI plan, and acceptance criteria.

SPEC-00-STR-DECKS-DECK001-0001-transfernode-and-radial-systems-EN-DE-v0.1.0-DRAFT

The Engineering of DECK001 - Reception, Transfer & Radial Systems

Document status: Draft (EVOL-00 baseline)

Date: 2025-08-16

Applies to: Earth ONE class sphere station (Ø 127 m)

1. Abstract / Zusammenfassung (EN/DE)

EN: DECK 001 is the first pressurized distribution ring outside the axial DECK000 ("Wormhole") and acts as the main reception level for incoming crew and cargo. It integrates radial pressure/fire bulkheads, radial transport (heavy-lift & passenger elevators, service tunnels), tangential and polar corridors, and reception/transfer airlocks linking the docking rings in DECK000 to DECK001 and onward to the outer decks. Geometrically it spans $\mathbf{r}_i = \mathbf{10.5} \ \mathbf{m}$ to \mathbf{r}_o , $\mathbf{net} = \mathbf{13.5} \ \mathbf{m}$ with $\mathbf{deck} \ \mathbf{height} = \mathbf{3.0} \ \mathbf{m}$; nominal centrifugal acceleration at the net radius is $\mathbf{3.38} \ \mathbf{m/s^2}$ ($\sim \mathbf{0.34} \ \mathbf{g}$).

DE: DECK 001 ist der **erste druckbeaufschlagte Verteilring** außerhalb des axialen DECK 000 ("Wormhole") und bildet die **Haupt-Empfangsebene** für ankommende Personen und Fracht. Er integriert **radiale Druck-/Brandschotts**, **Radialtransport** (Heavy-Lift- & Personenaufzüge, Servicetunnel), **tangentiale und polwärts gerichtete Bahnen & Wege** sowie **Empfangs- und Transfer-Airlocks** von den Docking-Ringen in DECK 000 zu DECK 001 und weiter zu den Außen-Decks. Geometrisch liegt DECK 001 zwischen $\mathbf{r_i} = \mathbf{10.5}$ m und $\mathbf{r_o}$, $\mathbf{net} = \mathbf{13.5}$ m bei **Deckhöhe** = $\mathbf{3.0}$ m; die nominelle Zentrifugalbeschleunigung am Nettradius beträgt $\mathbf{3.38}$ m/s² (~0.34 g).

2. Baseline Geometry & Environment (EVOL-00)

 Radial band: inner radius 10.5 m, net outer radius 13.5 m, height 3.0 m.

Tangential length: ~124.24 m (inner) to 123.07 m (outer).

• Gravity: ~3.38 m/s² at net radius (EVOL-00 spin law).

 Deck role: Mid-gravity deck for residential/operational uses; serves as primary reception & distribution hub from the axial wormhole to outer decks.

3. Functions & Scope

1. Reception & Transfer / Empfang & Verteilung

- **EN:** Secure intake and distribution of crew, passengers, and cargo from DECK000 (docking rings) into the ring topology, including guarantine and safety checks.
- **DE:** Sichere Aufnahme/Verteilung von Crew, Passagieren und Fracht aus DECK 000 (Docking-Ringe) in die Ring-Topologie, inkl. Quarantäne- und Sicherheits-Checks.

2. Radial Core Access / Radialer Kernzugang

- **EN:** Heavy-lift and passenger elevators plus service tunnels connect **all decks** from the core to the outer bands.
- **DE:** Aufzüge (Heavy-Lift & Personen) und Servicetunnel verbinden **alle Decks** vom Core zu den Außenlagen.

3. Tangential & Polar Mobility / Tangentiale & polare Mobilität

- **EN:** Circumferential paths and polar (meridional) spurs route traffic to near-pole nodes (interfaces to DECK000).
- DE: Umlaufende Wege/Bahnen + polwärts gerichtete (meridionale) Zubringer zu den polnahen Knoten (Schnittstellen zu DECK 000).

4. Safety Envelope / Sicherheitsrahmen

- **EN:** Segmented pressure/fire bulkheads, pressure doors, airlocks, and inert-gas fire suppression.
- **DE:** Segmentierte **Druck-/Brandschott-Geometrie**, Drucktüren, Airlocks, inert-Gas-Brandunterdrückung.

4. System Elements (Baseline Design)

A) Radiale Druck- & Brandschotts (Compartmentation)

- Sektorierung: 12 keilförmige Sektoren (alle 30°) durch radiale Schotts von r = 10.5 m → 13.5 m; bildet eigenständige Druck-& Brandschutz-Kompartimente.
- Ausführung: Mehrlagen-Composit-Schottplatten (SiC-Verbund) mit metallischen Rahmen; integrierte Drucktüren (A0/A60-äquivalent, Raumfahrtstandard) auf jedem Sektor-Tangentenweg.

- Funktion: Schnellisolierung bei Dekompression/Feuer; automatisches Schließen via Brand-/Drucksensorik, freigabepflichtige Notentriegelung.
- Brandunterdrückung: Inertgas (Argon/N₂) sektoral; Trigger bei Flammen-/Rauchdetektion und Temperaturanstieg.

B) Radialer Transport - Heavy-Lift & Passenger Elevators

- Layout (EVOL-00):
 - 4 Heavy-Lift-Schächte (90°-Versatz), freie Lichtfläche ≥ 4.0 m × 3.0 m, 50 kN Nutzlast, Dock-/Paletten-Kompatibilität.
 - **8 Personenaufzüge** (alle 45°, um 22.5° gegenüber Heavy-Lift versetzt), Kabinen 1.6 m × 1.6 m, 10–12 Pax.
 - Stationsnorm-Interface (mechanisch/elektrisch/Datentechnik) identisch über alle Decks; Not-Handläufe & Leiterläufe im Schacht.
- Sicherheit: Druckschotte auf jedem Deck-Durchtritt, Doppeltüren als Schleusen (Interlock), unabhängige DC-Bus-USV für Tür-/Bremssysteme.

C) Radiale Servicetunnel (Utilities Spine, beginnend auf DECK 001)

- Zweck: Trassen für Luft/CO₂-Rücklauf, Wasser/Kondensat, Energie-DC-Busse, Daten/Comms, Wärme-Sekundärkreise.
- Querschnitt: typ. ≥ 1.2 m Gangbreite; doppelte Trunkings (getrennte rote/gelbe Utility-Seite) für Instandhaltung im laufenden Betrieb.
- Druck-/Brand-Zonen: Abschluss-Türen pro Sektor; Schnell-Isolierungs-Klappen in Lüftung.

D) Tangentiale Bahnen & Wege (on-Deck Mobility)

- Gehwege: 2 x umlaufende 3.0 m Korridore (inner/outer ring), Farbleitsystem & Photometrie gemäß Stationsstandard.
- Fördertechnik: Conveyors/Schienenträger für Material-Fluss, kleine Rangier-Rail-Vehikel in EVOL-00 (Handbetrieb/halbautonom).

E) Polwärts gerichtete Zubringer (Meridional Spurs)

 Definition: kurze meridionale Trassen je Quadrant, die von DECK 001 Richtung Pol in Wurmlöcher-Knoten (Docking-Ring-

- Ebenen in DECK 000) führen.
- **Zweck:** schnelles **Crew-/Fracht-Umsetzen** zwischen Ring-Verkehr und axialem Docking-Korridor; Notausweichrouten.
- Schnittstellen: air-tight Transfer-Hatches zu DECK 000 Docking-Rings 01-04 (EVOL-00 baseline), inklusive Druck-Isolationspunkte an Ring-Grenzen (Rings können als Kompartiment versiegelt werden).

F) Empfangs- & Durchschleuseanlagen (DECK 000 → DECK 001 → Outer Decks)

- Reception Vestibules (RV-Nodes): vier Empfangs-Knoten (je Quadrant), direkt an die meridionalen Zubringer gekoppelt.
 - Funktionen: Einreise-/Sicherheits-Check, medizinischer Quick-Screen, Baggage-Staging, Route-Guidance.
 - Schleusenlogik: Doppelschleusen mit autom. Druckangleich, Blast-Shutters & MMOD-Shades nach Fenster-/Öffnungs-Norm.
- **Weiterleitung:** kurze Wege zu **Passenger-Lobbies** (Personenaufzüge) und **Cargo-Bays** (Heavy-Lift).
- **Notbetrieb: Safe-Hold-Bay** je RV-Node (Atemschutz, Comms, Notenergie).

G) Drucktüren, Airlocks & Schutzsysteme

- · Türklassen:
 - PT-A (Pressure-Tight, primary): Haupt-Drucktüren der Sektorschotts (manuell + motorisch, Interlock).
 - PT-B: Türen in Servicetunneln, Aufzugsvorlauf, Technikräumen.
 - AL-C (Airlock): Personen-/Fracht-Schleusen mit zweifach redundanter Sensorsuite (Δp, O₂, Rauch, Temp).
- Brand & Inertgas: Abteilungsweise Argon/N₂-Flutung; Erkennung über Rauch/Temp-Arrays; Hand-Pulls an allen Korridor-Schnittstellen.

H) Polar Outer Hull (Deck 001 Band)

- Außenhülle (polnah, Deck-001-Band): ~0.5 m dicke mehrlagige Composit-Hülle als Basis-Thermal-/Strahlungsschutz mit Anbindung an polare Struktur-Ringe; lokale Durchdringungen (Meridional-Spurs, Sensorik) mit metallischen C-Seals.
- Materialsysteme: SiC-Verbund, Polyimid-/Siloxan-Elastomere, Silica-Aerogel-Isolationslagen; Auswahl nach LEO-Fenster/Glazing-Spec für optische Öffnungen.

5. Interfaces

To DECK 000 (Wormhole): Anschluss an Docking-Ring-Ebenen via meridionale Zubringer + Reception Vestibules; Druck-Isolationspunkte an Ring-Grenzen (ring-as-compartment).

- To Outer Decks (002...): Radial-Aufzüge (Heavy-Lift & Personen) + Servicetunnel setzen Vertikal-Kontinuität; Norm-Interface für Mechanik/Power/Comms identisch über alle Decks.
- To Station Systems: Luft/CO₂-Rücklauf, Wasser/Kondensat, Dual-DC-Bus + lokale UPS für safety-kritische Aktoren, Comms-Rail.

6. Operations & Human Factors

- Wayfinding: Farbcodierte Sektor-/Spur-Leitsysteme, polwärts = blau, radial = gelb, tangential = grün; Piktogramme gemäß Stationsstandard.
- Flow-Separation: Crew/Service vs. Passenger/Fracht getrennt; Querverbindungen über Schleusen-Türen.
- **Ergonomie:** Handläufe durchgehend; Beleuchtung mit Nominal-/Notlicht-Profilen.

7. Materials & Compliance

- **Primär: SiC-Verbund** (Struktur), **Inconel/Stahl** in Rahmen/Verstärkungen; **Elastomere** & **C-Seals** an Druckschnittstellen.
- Glazing/Shutters: gemäß LEO Window Specification (ALON/Saphir, Fused Silica, Polycarbonat, Borosilicat; Blast-Shutters & MMOD-Shades).
- Safety Protocols: Inertgas-Löschung, Hüllen-/Strahlungsschutz, MMOD-Resistenz, Biohazard-Filtration – station-weit gültig.

8. Verification & Acceptance (V&V)

 Drucktests: sektorweise Proof- & Leak-Tests (AL-C Schleusen, PT-A/-B Türen).

- Brand-Szenarien: Inertgas-Auslösung, Evakuierungs-Drills, Tür-Interlock-Failover.
- **Transport:** Last-/Funktionstests Aufzüge (50 kN), Not-Bremse/USV-Autonomie ≥ 30 min.

9. Open Parameters (TBD/TBC)

- Exakte **Anzahl & Position** der Heavy-Lift/Passenger-Schächte (Feinabgleich mit Nutzungskarte DECK 001).
- **Meridionale Spur-Routing** zu spezifischen Docking-Ringen (abhängig von Traffic-Modell DECK 000).
- **Brandschutz-Klassifizierung** der Türsysteme vs. Raumnutzung (A0/A60-Mapping).
- Thermalloop-Führung & Radiator-Tie-Ins im polnahen Bereich.

10. Drawing & Data References

- Deck geometry & dynamics: DECK 001 radii/height, net glevel, tangential lengths.
- Access systems (elevators, tangential walkways): baseline requirements.
- Wormhole interface & ring compartmentalization: docking rings, isolation at ring boundaries.
- Safety & materials: inert-gas protocols, hull thickness, materials & window spec.

227

SPEC-00-STR-GEOM-GRAV-0001 - Global Geometry & Gravitation (EVOL-00, 127 m)

Summary / Kurzfassung (EN/DE)

EN: Defines the overall geometry, hull layering and spin-derived gravity profile for Sphere Space Station **Earth ONE** (outer diameter **127 m**). Includes deck banding, comfort models and g-tables based on the EVOL-00 spin law (1 g at $\mathbf{r} = \mathbf{38} \ \mathbf{m}$).

DE: Definiert Geometrie, Hüllenaufbau und spin-basierte Gravitation für die Sphere Space Station **Earth ONE** (Außendurchmesser **127 m**). Enthält Deck-Bänder, Komfortmodelle und g-Tabellen gemäß EVOL-00 Spin-Law (1 g bei $\mathbf{r} = \mathbf{38 m}$).

Status: DRAFT Version: v0.1.0 Date: 2025-08-16 Scope: Geometrie der Sphere Space Station Earth ONE (Außendurchmesser 127,00 m), Hüllenaufbau (0,50 m), Deck-Bänder, künstliche Gravitation $a(r) = \omega^2 r$, Komfort-/Wohlfühlmodelle (grav-basiert + umweltbasiert), Tabellen mit aktuellen Werten je Deck inkl. Verweilzeit-Kategorien. Spin-Kalibrierung (EVOL-00): 1 g $(g_0 = 9.80665\,\mathrm{m/s^2})$ bei $\mathbf{r} = 38\{,\}00$ m $\Rightarrow \omega = \sqrt{g_0/38,00} = 0.50801\,\mathrm{s^{-1}} \Rightarrow 4,852$ rpm.

1. Station & Hülle (Geometrie, Materialien)

- Stationsform: Kugel, Außendurchmesser 127{,}00 m → Außenradius 63{,}50 m.
- Druckhülle ("Hull"): nominelle Dicke 0{,}50 m; Schichten (außen→innen): MMOD-Bumper (Whipple/Stuffed-Whipple), Standoff/MLI, Druckwand (SiC-Verbund), innen Servicekanäle/Verkleidung.
- Primärmaterialien: Tragstruktur SiC-Verbund (lokal Stahl/Inconel an Lastknoten/Öffnungen); thermische Füll-/Isolationslagen MLI/Aerogel/Polyimid.
- Sichtöffnungen: optische Stacks (Fused Silica/Borosilikat; Evaluierung ALON/Spinell für Kick/Scratch-Panes), Außenschotts/MDPS-Shutters analog bemannter LEO-Module.
- Polar/Axial: DECK 000 ("Wormhole") Mikro-g-Korridor über die 127,00 m Achse (Docking/Transfer).

Normative Hinweise: MMOD-Auslegung per Stuffed-Whipple-Gleichungen; Umwelt-/Habitability-Leitwerte gem. **NASA-STD-3001 Vol. 2** (akt. Revision). Siehe Referenzen

2. Künstliche Gravitation - Formeln (SI)

- Zentrifugalbeschleunigung: $a(r)=\omega^2 r \,\, {
 m mit} \, r \, {
 m in} \, {
 m m}$, $\omega \, {
 m in} \, {
 m s}^{-1}$.
- Coriolisbeschleunigung: $|a_{\rm cor}|=2\,\omega\,v$ für Bewegung mit Geschwindigkeit v relativ zur Struktur.
- Vertikal-Gradient (Kopf \leftrightarrow Fuß, stehende Person h): $\Delta a/a \approx h/r$ (aus $a=\omega^2 r$, $a_{\rm head}=\omega^2 (r-h)$).
- rpm-Bezug: rpm = $\omega \cdot 60/(2\pi)$.

3. EVOL-00 "Spin-Law"

Sollwert: $a=9.80665\,\mathrm{m/s^2}$ bei $r=38.00\,\mathrm{m}$. **Ergebnis:** $\omega=0.50801\,\mathrm{s^{-1}}\Rightarrow$ **4,852 rpm**. **Human Factors (Kurzlage):** ~**4 rpm** gelten als robust für breite Populationen; höhere Raten sind mit **Adaption/Training** möglich (Kurz-/Langzeitstudien). Siehe [7], [8].

4. Deck-Geometrien (EVOL-00)

- Deck-Band-Raster: konzentrische Bänder à 3{,}50 m, beginnend bei 10{,}50 m bis zur Innenhülle 63{,}00 m.
- Decks: 001 10,50-14,00 m · 002 14,00-17,50 m · 003 17,50-21,00 m · 004 21,00-24,50 m · 005 24,50-28,00 m · 006 28,00-31,50 m · 007 31,50-35,00 m · 008 35,00-38,50 m · 009 38,50-42,00 m · 010 42,00-45,50 m · 011 45,50-49,00 m · 012 49,00-52,50 m · 013 52,50-56,00 m · 014 56,00-59,50 m · 015 59,50-63,00 m.

4.1 g-Tabelle (Boden/Mitte/Decke pro Deck, EVOL-00, $\omega=0.508\,\mathrm{s^{-1}}\approx$ 4,852 rpm)

Konvention: "Boden" = äußere Deckgrenze (max. r); "Decke" = innere Deckgrenze (min. r). **Einheiten:** m/s² und in ${\bf g}_0$ (Erde = 1,000). **Berechnung:** $a(r)=\omega^2 r=g_0\cdot r/38,00$. **Ag** (Kopf-Fuß) am Boden mit $h=2,0\,{\rm m}$: $100\cdot h/r_{\rm floor}$.

Deck	$r_in \rightarrow r_mid$ $\rightarrow r_out(m)$	g_floor (m/s² / g ₀)	g_mid (m/s² / g ₀)	g_ceiling (m/s² / g ₀)	Δg_Kopf- Fuß am Boden
001	10.50 → 12.25 →	3.613 / 0.368	3.161 / 0.322	2.710 / 0.276	14.29 %
002	14.00 14.00 → 15.75 →	4.516 / 0.461	4.065 / 0.414	3.613 / 0.368	11.43 %
003	17.50 17.50 → 19.25 → 21.00	5.419 / 0.553	4.968 / 0.507	4.516 / 0.461	9.52 %
004	21.00 21.00 → 22.75 → 24.50	6.323 / 0.645	5.871 / 0.599	5.419 / 0.553	8.16 %
005	24.50 → 24.50 → 26.25 → 28.00	7.226 / 0.737	6.774 / 0.691	6.323 / 0.645	7.14 %
006	28.00 → 28.75 → 31.50	8.129 / 0.829	7.678 / 0.783	7.226 / 0.737	6.35 %
007	31.50 → 31.50 → 33.25 → 35.00	9.032 / 0.921	8.581 / 0.875	8.129 / 0.829	5.71 %
800	35.00 → 36.75 → 38.50	9.936 / 1.013	9.484 / 0.967	9.032 / 0.921	5.19 %
009	38.50 → 40.25 → 42.00	10.839 / 1.105	10.387 / 1.059	9.936 / 1.013	4.76 %
010	42.00 → 43.75 → 45.50	11.742 / 1.197	11.291 / 1.151	10.839 / 1.105	4.40 %
011	45.50 → 47.25 → 49.00	12.645 / 1.289	12.194 / 1.243	11.742 / 1.197	4.08 %
012	49.00 → 50.75 → 52.50	13.549 / 1.382	13.097 / 1.336	12.645 / 1.289	3.81 %
013	52.50 → 54.25 → 56.00	14.452 / 1.474	14.000 / 1.428	13.549 / 1.382	3.57 %
014	56.00 → 57.75 → 59.50	15.355 / 1.566	14.904 / 1.520	14.452 / 1.474	3.36 %

	r_in → r_mid → r_out (m)	g_floor (m/s² / g ₀)	g_mid (m/s² / g ₀)	g_ceiling (m/s² / g ₀)	Δg_Kopf- Fuß am Boden
015	59.50 → 61.25 → 63.00	16.258 / 1.658	15.807 / 1.612	15.355 / 1.566	3.17 %

Hinweise: • 1 g liegt exakt bei $r = 38\{,\}00$ m (innerhalb **Deck 008** zwischen Mitte und Boden). • Werte linear in r; Rundung auf 3 Dezimalstellen (intern \geq 1e-6).

5. Rechen- & Rundungsregeln

- Primärgleichung: $a(r) = g_0 \cdot r/38{,}00.$
- Rundung: Anzeige auf 3 Nachkommastellen (m/s²) bzw. 3
 Dezimal in g₀; interne Pipeline double-precision.
- Personenhöhe für Δg : h = 2.0 m (stehend).

6. "Gravitations-Wohlfühlformel" ${\cal C}_g$

$$C_q = 0.50\,C_g^{(a)} + 0.25\,C_g^{(\nabla)} + 0.15\,C_g^{(\mathrm{cor})} + 0.10\,C_g^{(\omega)}. \label{eq:cq}$$

- Ziel-g-Abweichung: $C_g^{(a)}=1-|g-g_{\rm pref}|/g_{\rm pref}$, mit $g_{\rm pref}\approx 0.9~g_0$.
- Vertikal-Gradient: $C_g^{(\nabla)}=1-(\Delta g/g)/0.20$ (linear bis 20 % toleriert).
- Coriolis (typ. v=1 m/s): $C_g^{(\mathrm{cor})} = 1 \frac{2\omega v}{0.2\,q_\mathrm{o}}$
- Spin-Term: $C_g^{(\omega)} = 1 \max(0, (\text{rpm} 4)/2).$

7. "Umwelt-Wohlfühlformel" C_{env} & Gesamtwert

- Umwelt-Güte: $C_{\text{env}} = \prod_i f_i(x_i)$, $i \in \{\text{Noise, CO}_2, \text{T/RH, Lux, Crowd, Light-Cycle}\}; x_i \text{ in SI.}$
- Gesamt: $C = 0.7C_q + 0.3C_{\rm env}$.
- Leitnormen: NASA-STD-3001 Vol. 2 (Habitability, Health & Performance) aktuellste Revision.

8. Wohlfühlen (Grav + Umwelt)

8.1 Gravitative Wohlfühlmatrix (EVOL-00)

Kategoriegrenzen: $\mathbf{A} \geq 0.85 \cdot \mathbf{B} \ 0.70 - 0.85 \cdot \mathbf{C} \ 0.55 - 0.70 \cdot \mathbf{D} \ 0.40 - 0.55 \cdot \mathbf{E} \ 0.25 - 0.40$. **Hinweis:** Bei **4.852 rpm** wirken **Coriolis** und **Spin-Term** stärker als bei ≤ 4 rpm; Komfort-Peak liegt **nahe 0.9 g** (Decks 006-009).

Deck	C_g	Kat.	Empfohlene Nutzung / Verweilzeit (Richtwert)
001	0.36	Е	Transit, Technik-Gänge, ≤ 2 h; Kopfbewegungen langsam.
002-006	3 .45-0.0	6 ⊅ -C	Werkstätten/Logistik, 4–8 h (innen höherer ${\cal C}_g$); Training empfohlen.
006-006	9.73-0.	79B	Wohnen/Arbeit gemischt, bis 16 h; sehr gute Alltagstauglichkeit.
010-016	3 .49-0.0	6 E -D	Lab/Office/Produktion, 4-8 h; Pausen alle 2 h.
015	0.44	D	Schwerlast/kurze Einsätze, ≤ 4 h; Konditionierung sinnvoll.

Numerik nach Kap. 6 (Formel & Gewichte) und Kap. 4/5 (g-Profile). Forschungslage: ~4 rpm robust, höhere Raten mit Adaption/Training möglich. ([NSS][7], [PMC][8])

8.2 Umwelt-Wohlfühlen (Leitplanken)

- Noise: ≤ NC-50 in Arbeitsbereichen, Schlaf ≤ Hintergrund+10 dB.
- **CO**₂: Leitwerte gem. NASA-STD-3001; alarmgestützte Lüftungs-/Absorptionspfade.
- Licht: zirkadiane Profile, Lux-Zonen nach Tätigkeit.
- **Dichte/Privatsphäre:** Zielwerte nach Funktionsbereich (Crew/Visitor/OPS).

9. Sektoren-Layout & Systemintegration (DECK 013-015)

Sektorierung: $12 \times 30^\circ$ (A...L). Radiale Druck/Brand-Schotts entlang Sektorgrenzen; HL-Schächte @ $0^\circ/90^\circ/180^\circ/270^\circ$, PAX-Schächte @ $\pm 22.5^\circ$ etc.; Servicetunnel doppelt (inner/outer

ring). **VENT/BOP** radial (keine tangentiale Druckentlastung). **HZ-Zonen:** HZ-1 normal, HZ-2 erhöht (Energie/Heiß), HZ-3 kritisch (Nuklear/Kryo/Explosion).

9.1 Hoch-g Deck-Rollen (Kurz)

- **DECK 013** Puffer/Service (Schild-Wasser, HX-Galerien, Dekon).
- **DECK 014** Nuklear-Primär (SMR-Containments, Primärkreise) + Power-Conversion/Verteilung.
- **DECK 015** Tankfarm & Thermik (Wasser-Großspeicher, Sekundär/Tertiär-Loops, Gase; Kryo bevorzugt hull-mounted).

9.2 Tabellen (Auszug)

DECK 015 - Tankfarm & Thermik (HZ-Schwerpunkte, D/E-Verweilzeit)

Sek- tor	HZ	Primärfunk- tion	Kern-Equip	Schäd	Vent/Re-	Ker- nauszüge Interfaces
Α	2	Wasser- Puffer / Heat-Sink	2× WTR 150 m³, HX-Module	HL- 0	BOP-015- A	THM SecLoop-N; PWR DC-B1
E	3	Gase (O ₂ /N ₂) getrennt	Verbund- Flaschenbänk	- е	VENT- 015- E→All	$\begin{array}{l} {\rm GAS} \; {\rm O_2/N_2}\text{-} \\ {\rm Header;} \\ {\rm SAFE} \; {\rm EX} \end{array}$
F	3	Kryo- Interface	Manifolds → Hull-Pods	-	VENT- 015-F	THM Cryo- Manifold
K	2	Wasser- Schildring	Ringtank 250 m³	-	BOP-015- K	THM Tie-in 014

DECK 014 - SMR & Conversion (kritisch, D/E-Verweilzeit)

Sek- tor		Primärfunk- tion	Kern- Equip	Schä	ic l/dee nt/Relief	Kernauszüge Interfaces
A	3	SMR-Zelle- 1 (Contain- ment)	RPV-1, Primär- Loop-N	HL- 0	VENT-014- A→AII + Filter	THM Pri→Hull-HX- N; SAFE ESFAS
G	3	SMR-Zelle- 2 (Contain- ment)	RPV-2, Primär- Loop-S	HL- 180	VENT-014- G→All + Filter	THM Pri→Hull-HX- S

Sek- tor		Primärfunk- tion	Kern- Equip	Schä	ic We ent/Relief	Kernauszüge Interfaces
C/I	2	Power- Conversion N/S	Bray- ton/Rankir Skids	- ne-	VENT-014- C/I	PWR DC-Main N/S

(Vollständige Sektor-Tabellen: interne SSOT-Anlage ../spec-00-str-deck-0xx-sector-layout....md.)

10. Rationale (nicht-normativ)

- Warum 014 für SMR, 015 für Tanks? 014 (~1,52 g mid) reduziert mechanische Lasten ggü. 015 (~1,61 g mid) bei gleicher Nähe zur Hülle/Radiatoren. 015 bietet dafür exzellentes Phasen-Settling und thermische Puffer für Loops.
- Sicherheitsprinzip: keine gemeinsame Ursache SMR und H₂/CH₄ strikt getrennt (Deck/Sektor/VENT-Trennung), radiale Entlastung direkt ins All.

11. Offene Punkte (TBD/TBC)

- **MMOD-BLE-Feinauslegung** (Partikel-Spektrum, Winkel, Dichte) ie Hull-Zone.
- **Gewichte** $C_g, C_{\rm env}$ nach Crew-Trials feinjustieren (inkl. v-Abhängigkeit Coriolis).
- Detail-ICDs: VENT/BOP/PT/AL-C/HL/PAX-IDs mit Koordinaten & Prüfstatus.

12. Referenzen (Auswahl)

[1] **NASA-STD-3001 Vol. 2** – Human Systems Integration Requirements (aktuelle Revision). [2] **Christiansen, E.** Meteoroid/Debris Shielding – Whipple & Stuffed-Whipple Basics (NASA/JSC). [3] **NASA Materials/MDPS** – Windows/Optics (Fused Silica, Borosilicate, ALON/Spinel), Cupola Shutters. [4] **Classical AG Physics** – Rotating frames, centrifugal/coriolis (Monograph/NTRS). [5] **Engineering Math** – $a(r)=\omega^2 r$, rpm-Umrechnung, Gradient h/r (Lehrwerke/Notes). [6] **Design Ops** – Safety zoning (HZ-1/2/3), pressure-tight doors PT-A/-B,

airlocks AL-C (Projektstandard). [7] **Globus, A.; Hall, T.** Space Settlement Population Rotation Tolerance (NSS - Review/Position). [8] **Clément, G.** Artificial gravity as a countermeasure... (Review, peer-reviewed; z. B. npj Microgravity).

SPEC-00-STR-SYS-AXIAL-RADIAL-TRADE-0001 — Variantenuntersuchung Längs-/Breitengrad-Schotten (EVOL-00, 127 m)

Summary / Kurzfassung (EN/DE)

EN: Compares three structural and safety layouts for the sphere: **A)** Longitudinal sectors, **B)** Latitudinal diaphragms ("LAT"), **C)** Combination. Evaluates structural dynamics, pressure/fire/hazard containment, operations & maintenance, routing complexity, mass/manufacturing, and expandability. Result: **Option C** offers the best performance; recommended as baseline (EVOL-00 with 12 sector bulkheads A-L plus 3 LAT discs S40/EQ/N40, expanding to 7 LAT in EVOL-01).

DE: Vergleich dreier Struktur- und Safety-Layouts für die Sphäre: **A)** Längsgrade (radiale Sektorschotten), **B)** Breitengrade (axiale Ring-Diaphragmen, "LAT"), **C)** Kombination. Bewertet werden Statik/Dynamik, Druck/Brand/Hazard, OPS & Wartung, Routing/Komplexität, Masse & Fertigung, Erweiterbarkeit. Ergebnis: Variante **C (Kombiniert)** liefert die beste Gesamtleistung; empfohlen als Baseline (EVOL-00 mit 12 Längsgrad-Schotten A-L + 3 LAT-Scheiben S40/EQ/N40, Ausbau zu 7 LAT in EVOL-01).

Project: Sphere Space Station — Earth ONE (Ø 127,00 m) **Spin Law:** 1 g at r = 38,00 m $\rightarrow \omega \approx 0,508$ s⁻¹ ($\approx 4,85$ rpm) **Status:** DRAFT • **Date:** 2025-08-16

Abstract / Kurzfassung

1 Scope & Assumptions / Geltung & Annahmen

- Sphäre Innenhülle: $R_h = 63,00 \text{ m}$; Deckbänder $\Delta r = 3,50 \text{ m}$ von r = 10,50...63,00 m (DECK 001-015).
- **Druck-/Brand-Philosophie:** Radiale Entlastung (VENT/BOP) zur Hülle; tangentiale Entlastung vermeiden.
- Design-Δp: Voll-Δp-Szenario (1,0 atm) über Sektor; LAT als Diaphragmen nur mit Equalize (Design-Δp ≤ 0,2 atm).

2 Variantenbeschreibung

A) Längsgrade (radiale Sektorschotten)

- 12 keilförmige Schotten A-L (alle 30°) über DECK 001-015; PT-A/B Türen und AL-C Schleusen an Durchtritten.
- Bilden mit Deck-Hoopringen einen **Mehrzellen-Torsionskasten** (Bredt-Batho).

B) Breitengrade (axiale LAT-Diaphragmen)

- Ringförmige Diaphragmen senkrecht zur Drehachse; Innenloch (Core) ~ 12 m; Ebenen z. B.: S56, S40, S20, EQ, N20, N40, N56.
- Funktion: Schubscheiben, axiale Brand-/Hazard-Kappen, akustische Barrieren; keine Voll-Druckschotte.

C) Kombination (A + B)

12 Sektorschotten + 3-7 LAT-Scheiben; mechanisch als Gitter-/Rippen-Schale mit hoher Torsions- & Biegesteifigkeit, axialer und radialer Kompartmentierung.

3 Bewertungsmaßstäbe / Methods

- **Strukturell:** Torsionssteifigkeit (*J*) nach Bredt-Batho (Mehrzellen), axiale Diaphragma-Schubpfade, Ovalisationsbegrenzung.
- Dynamik: Anhebung Eigenfrequenzen (Barrel/Breathing), Dämpfung (Elastomerfugen), Dock/Triebwerksimpulse.
- **Safety:** Druck/Brand/Kryo/Nuklear-Eindämmung; VENT/BOP-Wirksamkeit; Rauch-/Gas-Migration.
- **OPS & Wartung:** Türen/Schleusen, Egress, Tele-Ops, Zugänglichkeit.
- Routing/Komplexität: MEP (THM/PWR/COM/GAS) Durchdringungen, Kollisionen.
- Masse/Fertigung: Fläche × t × ρ; Fertigungs-/Montagelogik; OC/Prüfbarkeit.
- Erweiterbarkeit: stufenweiser Ausbau, spätere Nachrüstung.

4 Variantenanalyse

4.1 Statik & Dynamik

Kriterium	A) Längsgrade	B) Breitengrade	C) Kombiniert
Torsion/J	Hoch (Mehrzellen)	Mittel	Sehr hoch (Zellen + Scheiben)
Axiale Biegesteifigkeit	Mittel	Hoch (Scheibenab- stand)	Sehr hoch
Ovalisa- tion/Öffnun- gen	Gut	Gut	Sehr gut
Eigenfrequen- zen	↑	↑	↑↑ (max)
Akustik (Körperschall)	Mittel	Gut	Sehr gut

Begründung: Längsgrade erzeugen geschlossene Zellen \rightarrow **hohes J**. LAT kappen **axiale Dehnwege** \rightarrow höhere **axiale** Steifigkeit. Kombination maximiert beides.

4.2 Safety (Druck/Brand/Hazard)

Kriterium	Α	В	С
Radiale Eindämmung	Sehr gut	Mittel	Sehr gut
Axiale Eindämmung	Mittel	Sehr gut	Sehr gut
VENT/BOP- Führung	Klar radial	Klar radial	Klar radial
Nuklear/Tank- Zonen	Gut	Sehr gut (LAT-Kappen)	Sehr gut

Begründung: Radiale Schotten stoppen **seitliche** Ausbreitung; LAT deckeln **axiale** Heißgas-/Rauchpfade. Kombination liefert **2D-Kompartmentierung**.

4.3 OPS/Wartung & Routing

Kriterium	Α	В	С
Türen/Schleuse- nanzahl	Geringer	Mittel	Höher

Kriterium	Α	В	С
Wegführung/Eg	re K \$ar	Zusätzliche	Sehr klar, aber
	tangential	Sperrebenen	mehr Gates
MEP-	Geringer	Mehr Por-	Höher , aber
Durchdringunge	en	tals/Equalizer	definierter
Integration/Up-	Einfach	Mittel	Modular,
grade			stufenfähig

4.4 Masse & Fertigung (parametrisch)

- A (Längsgrade) Gesamt-Schottfläche grob: $A_{\rm A}\approx h_{\rm deck}\cdot \Delta r\cdot N_{\rm sector}\cdot N_{\rm deck}$ mit $h_{\rm deck}\sim 3.0\,{\rm m}$, $\Delta r=3.5\,{\rm m}$, $N_{\rm sector}=12$, $N_{\rm deck}=15\Rightarrow$ ~1 890 m². Masse $m\sim A\cdot t\cdot \rho$ (t=eff. Dicke; $\rho\sim Verbunde/Stahl$).
- **B** (LAT) Flächen pro Scheibe: $A(z)=\pi\,[r_{\rm out}^2(z)-r_{\rm core}^2]$, Summe über **n** LAT. Größte Scheibe EQ (r≈63 m): $A_{\rm LEQ}\approx\pi(63^2-12^2)\approx11600\,{\rm m}^2$ (als Sandwich-Ring, nicht Vollplatte).
- C Masse ≈ A + B; t_LAT lässt sich gering wählen (Equalize-Philosophie, Δp≤0,2 atm), wodurch Masse-Penalty moderat bleibt.

5 Konsequenzen (Systemisch)

- Design-Δp & Sequenz: Ereignis → radiale Sektorisierung
 (PT-A zu) → Equalize LAT → LAT-Portals schließen →
 VENT/BOP radial. LAT sieht nie Voll-Δp (Auslegung ≤ 0,2 atm).
- Fugen & Dämpfung: Elastomer-Lagen an LAT-Perimeter & Sektor-Schotten senken Körperschall, nehmen Thermospannung auf.
- ICD-Komplexität: C erhöht Zahl definierter Portals (HL/PAX/UTIL) — Vorteil: standardisierte PT-Durchführungen, klare Prüfpfade.
- Dynamik: C hebt Eigenfrequenzen am stärksten → Dock-Impulse/Triebwerks-Response geringer; Noise sinkt (Scheiben als Barrieren).

6 Empfehlung / Recommendation

Empfohlen: Variante C (Kombiniert) als Baseline.

EVOL-00 (sofort umsetzbar):

- 12 Längsgrad-Schotten (A-L) über DECK 001-015 (PT-A/B, AL-C wie definiert).
- 3 LAT-Scheiben: S40, EQ, N40 (Innenloch ~12 m, Scherstege auf Sektor-Raster, Equalizer + VENT). → Liefert 80-90 % des Nutzens mit moderater Masse/Komplexität.

EVOL-01 (Upgrade):

 Ausbau auf 7 LAT (S56, S40, S20, EQ, N20, N40, N56), Feintuning Dämpfung, akustische Panels in LAT-Feldern.

Fallbacks:

- A-only wenn Masse/Komplexität strikt limitiert (verliert axiale Kappung/akustische Wirkung).
- **B-only** wenn radiale Schotten temporär nicht verfügbar (nicht empfohlen für Vollbetrieb).

7 Nächste Schritte / Next Steps

- 1. **Positions-Freeze (LAT):** z-Koordinaten, r_out(z), Portal-Liste (HL/PAX/UTIL) je LAT.
- 2. **Equalizer-Sizing:** Ventquerschnitte & Zeitkonstanten, damit LAT < **0,2 atm** bleibt (Sektor-Blowout-Szenario).
- 3. **MEP-ICD:** Standard-PT-Durchführungen (THM/PWR/COM/GAS), Prüfklassen & Dichtkonzept.
- 4. **Modal-Kurzstudie:** Δ-Eigenfrequenzen & Dämpfung A vs. C; Zielwerte pro Dock/Triebwerksprofil.
- Massen-Budget: t_LON, t_LAT, Sandwich-Kernwahl; Montage-/QC-Plan (Fugen, Bolzen-/Klebe-Gurte).

8 Anhang / Appendix (Formeln & Notizen)

- Zentrifugalbeschleunigung: $a(r)=\omega^2 r$; Membranspannung Sphäre: $\sigma \approx pR/(2t)$.
- Mehrzellen-Torsion (Bredt-Batho): $J \sim 4 \sum A_i^2 / \sum \int \frac{ds}{t} \max$ mehr Zellen \Rightarrow höheres J.
- LAT-Geometrie: $r_{\rm out}(z)=\sqrt{R_h^2-z^2}$, $A(z)=\pi\,[r_{\rm out}^2-r_{\rm core}^2].$

• **Ap-Kasten:** Radiales Schott-Segment (3,0 m × 3,5 m) bei 1,0 atm \rightarrow $F \approx 1,06$ MN (Bemessung Verankerung \ge 1,1 MN).

9 Referenzen / References

- **Projekt-Spezifikationen EVOL-00** (Geometrie, Deck-Raster, Spin-Law, Safety-Philosophie).
- **Human Systems & Habitability:** NASA-STD-3001 Vol. 2 (akustik/CO₂/licht, OPS-Leitplanken).
- Thin-walled structures & torsion: Klassische Bredt-Batho-Theorie, multi-cell torsion design notes.
- MMOD/Whipple & Windows: Standards/Handbücher für LEO-Crewmodule (MDPS, Shutters).

Decision Log (Sign-off)

• Owner: structure-architecture

• Contributors: safety-reactor, power-thermal

• **Decision:** Variante C (kombiniert), EVOL-00 mit 3 LAT (S40/EQ/N40); Ausbau EVOL-01 auf 7 LAT.

• Date: 2025-08-16

SPEC-00-STR-SYS-WORMHOLE-SAFETY-0001-wormhole-safety-and-hazard-mitigations-EVOL-00-D127m-EN-DE-v0.1.0-DRAFT

SPEC-00-STR-SYS-WORMHOLE-SAFETY-0001 — Wormhole Safety & Hazard Mitigations (EVOL-00, \emptyset 127 m) — v0.1.0 DRAFT

Status: Draft · **Geltung:** Earth ONE (EVOL-00) · **Objekt:** DECK 000 "Wormhole" (axialer Mikro-g-Korridor, OD 22 m / ID 20 m, mit Inconel-Docking-Ringen & Fenstersegmenten)

0. Summary / Kurzfassung (EN/DE)

EN (one-pager): This spec defines the constructive safety architecture for the axial "Wormhole" corridor (DECK 000). The design uses segmented pressure/fire bulkheads, blast-tolerant docking rings, inert-gas fire suppression, fast shutters/MDPS for window segments, plus dedicated vent & blow-out routes to space near the hull. Hazard cases covered: ship explosion at bay, fire on docked ship, vehicle collision within the Wormhole, solar particle events, micrometeoroid transverse & axial penetrations. Acceptance is via closure-time, vent-capacity and isolation-integrity tests per station-wide safety framework.

DE (Kurz): Festgelegt werden konstruktive Schutzebenen für DECK 000: Sektorisierung über Ring-/Sektor-Schotts, blastfähige Docking-Ringe, Inertgas-Brandunterdrückung, Schnell-Außenschotts/MDPS an Fenstersegmenten, gezielte VENT/BOP-Entlastung ins All. Abgedeckte Szenarien: Explosion am Andockbay, Brand am angedockten Schiff, Kollision im Wormhole, Sonnenwind-/Strahlungs-Ereignisse, Meteoritendurchschlag quer/längs. Verifikation über Schließzeiten, Vent-Kapazitäten und Dichtheits-/Isolationsnachweise gemäß Stationsstandard.

1. Scope & References

Scope: Konstruktive Schutzmaßnahmen und Auslegungsregeln für DECK 000 inkl. Schnittstellen zu DECK 001/Schotts/VENT/BOP. **Nicht-Ziel:** OPS-Prozeduren (separates Dokument).

Baseline-Verankerung: • Geometrie/Materialien/Wormhole-Ringe/Fenstersegmente (DECK 000). • Station-weite Sektorisierung,

Türen/Schotts, Inertisierung, VENT/BOP (DECK 013–015 Muster; Systemstandard). • Safety & Hazard Protocols (Feuer, Strahlung, MMOD – Grundprinzipien). • Fenster/MDPS/Cupola-Shutters – Referenzlinks in der Global-SPEC.

2. Baseline & Interfaces (recap)

- Wormhole (DECK 000): Axialer Mikro-g-Korridor, OD 22 m / ID 20 m; alternierende Docking-Ringe (10 m Halsweite, Inconel) und Fenster-Tuben mit multilayer Fensterstacks; Ring-Abstände ≈ 20 m. Jeder Ring = isolierbares Kompartiment (Druck-/Brandschottfunktion integriert).
- Schnittstellen: Drucktüren/Schleusen zu DECK 001, Red/Blue-Comms, duale DC-Busse, Inertgas-Ringleitungen, VENT/BOP-Anbindung hull-nah.

3. Design Objectives (Safety Envelope)

- 1. **Containment:** Ereignisse lokal halten (Ring-zu-Ring Sektorisierung, PT-A/PT-B/AL-C).
- 2. **Energy Management:** Druck/Impuls zielgerichtet **radial ins All** entlasten (VENT/BOP hull-nah; keine tangentiale Führung).
- 3. **No Single Point of Failure:** Redundante Türen/Strom/Comms; fail-safe geschlossen.
- 4. **Human Factors:** Safe-hold-Nodes pro Ring, klare Gegenstrom-Trennung Ankunft/Abflug, schnelle Shutter-Schließung.

4. Threat Cases (Design Cases)

- **E1 Explodierendes Schiff am Docking-Ring** Bemessungsfälle (lastfall-agnostisch): Druckstoß + Trümmer, Nahfeld am Ring-Hals. Ziele: Ring-Kompartiment hält; Impuls wird radial abgeführt; Fenster/Tuben vorgelagert durch Shutter geschützt.
- **E2 Brand am angedockten Schiff** Rauch/Hitze/Flammen-Übergang in Ring-Kompartiment; Ziel: **Inertisierung** im Sektor, Andockadapter/Leitungen feuerfest, schnelle Trennung/Abwurf.
- **E3 Kollision von Fahrzeugen im Wormhole** Lineare Relativkollision in der Achse; Ziel: Vermeidung (Traffic-Separation/Interlocks) + **Energieabsorption** an Ring-Hals (Opfer-Strukturen).

- **E4 Sonnenwind/Solar Particle Event (SPE)** Kurzfristig erhöhte Strahlung; Ziel: **Shutter-Down**, Umsiedeln in stärker geschirmte Decks/Schutzringe, Minimierung Aufenthaltszeit in Fenster-Tuben.
- **E5** Meteorit quer (seitlicher Einschlag in Tuben/Ringe) MMOD-Durchschlag lateral; Ziel: Stuffed-Whipple/Spall-Liner + Sektor-Isolation + VENT nach außen.

E6 — **Meteorit längs (axial entlang der Röhre)** Axialer Strike durch Fenster-Tubus/Offen-Ring; Ziel: Shutter-Schließung + interne Fänger-/Spall-Liner-Zonen zwischen Ringen.

5. Constructive Measures (Layered)

5.1 Compartmentation & Doors

- Ring-zu-Ring-Sektorisierung: Jeder Docking-Ring ist druckfest isolierbar; PT-A (Hauptschott motorisch/manuell), PT-B (Service-Tür), AL-C (Airlock, Δp-/O₂-/Rauch-/Temp-Dualsensorik). Failsafe "zu", Fernentriegelung nur freigabepflichtig.
- Schließzeiten (Targets): PT-A ≤ 3 s lokal, ≤ 8 s kaskadiert; AL-C Interlock auf Crew-Präsenz. (Nachweis über Systemtests, s. § 8.)

5.2 Vent & Blow-Out (to space)

- **VENT-Stränge pro Ring-Sektor** mit Rückstromsperren; **BOP-Zonen** hull-nah als Soll-Scherfugen für rasches Druck-/Rauch-Abblasen nach außen; keine tangentiale Entlastung.
- Dimensionales Prinzip: Auslegung auf choked flow (kritischer Ausströmung) mit $\dot{m}=C_d\,A\,P_0\,\sqrt{\frac{\gamma}{RT}}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$; Acceptance über Mindest-A je Ring-Volumen und vorgegebene Entlastungszeit (siehe § 6.1). (Formel-Framework, Implementierung stationsweit einheitlich).

5.3 Fire & Atmosphere

- Inertgas-Suppression (Ar/N₂): Segmentiert pro Ring; automatischer Trigger (Flamme/Rauch/ΔT), manuelle Override-Option; O₂-Absenkung kontrolliert.
- Materialien: SiC-Verbund, Inconel an Hot-Spots; nicht brennbare Innenverkleidungen; Leitungsdurchführungen mit Feuerschotts.

5.4 Windows / MDPS / Shutters

Fenster-Segmente: Multilayer-Stacks + Schnell-Shutters
 (ISS-Cupola-Prinzip); MDPS/MMOD-Shades außen. Ziel-Zeit
 t_shutter ≤ 0,5 s vom Alarm.

5.5 Blast-Tolerant Docking

- Ring-Hals als Blast-Cradle: Energieabsorbierende Sandwich-Kragen, Soll-Verformungszonen, frangible Attachments, die Impuls in BOP-Routen koppeln. Ring kann autark dicht gesetzt werden.
- Jettison/Quick-Release: Pyro-/Mechanik-Trennsysteme für kontaminiertes/brandbetroffenes Schiff, mit autom. Rückzugs-Shutter. (Interface in § 9.)

5.6 Collision Prevention & Mitigation

- Traffic-Separation: Nord = Arrivals, Süd = Departures;
 Segment-Freigabe: nur ein Fahrzeug zwischen zwei Ringen (Occupancy-Interlock);
 Speed-Limit & Autopilot-Beacons an iedem Ring.
- **Bumper-Rails & Catch-Nets** in Fenster-Tuben; weiche Führung, Verformungsenergie-Aufnahme.

5.7 Radiation (Solar Wind / SPE)

 Storm-Mode: Shutter-Down + Verlagerung Crew in wasser/polygeschirmte Decks/Sektoren (DECK 013/014-Schnittstellen);
 EX-Zonen priorisierte VENT.

5.8 Micrometeoroids (quer/längs)

- Quer: Stuffed-Whipple Gürtel um Wormhole-Tuben + Spall-Liner innen; ringweise Isolation + VENT.
- Längs: Shutter-Kaskade ringweise, Fänger-Lamellen im Tubus, um Sekundärtrümmer zu brechen.

6. Sizing Rules (Engineering)

6.1 Vent/Blow-Out Capacity

• **Design-Ziel:** $t_{\rm relief}$ bis $p \leq p_{\rm safe}$ in $\Delta t_{\rm max}$ (Programmwert), unter Annahme choked outflow (Formel § 5.2).

• Akzeptanz: pro Ring-Kompartiment $A^*_{\text{VENT}} \geq A_{\min}(V,T,P_0,\gamma)$; Nachweis im Funktions-Test mit simuliertem Hot-Gas-Release. (Stationsweit einheitliche Rechenblätter).

6.2 Door/Compartment Closure

PT-A Schließzeit ≤ 3 s lokal; Kaskade ≤ 8 s (E1/E2-Trigger).
 Dichtheitstest: Δp-Haltezeit ≥ Programmwert.

6.3 Shutter Timing

t_shutter ≤ 0,5 s auf E5/E6/E4-Trigger (MMOD Radar/Optik, SPE-Alert). Nachweis: End-to-End-Test pro Fenster-Segment.

6.4 Inert-Gas Dose

Ar/N₂-Masse pro Ring nach Volumen & Leck-Annahme; Soll-O₂-Setpoint ≤ 12-15 Vol-% in ≤ N Sekunden; Doppelt redundant gespeist.

7. Operations & Human Factors (Schnittstellen)

- Safe-Hold-Nodes an jedem Ring (Masken, Comms, Med-Kit), farbcodierte Wege, klare Gegenstrom-Kennung Ankunft/Abflug.
- EX-Markierungen & Dekon-Routen in Richtung DECK 001/013-L.

8. Verification & Acceptance (V&V)

- 1. **Dry-Run E1/E2/E3:** Tür-/Schott-Schließtests, Occupancy-Interlocks, Jettison-Sim.
- 2. **VENT/BOP-Test:** Öffnungslogik, Durchfluss-Nachweis (kalte Gas-Trials + CFD/Analytik).
- 3. **Shutter-Kaskade:** Sensor-→ Aktor-End-to-End mit High-speed-Logging (E4/E5/E6).
- 4. **Inertisierung:** Dichtheit, Setpoint-Zeit, Wiederbelüftung.

9. ICD & Naming

• **Doors:** PT-A/PT-B/AL-C je Ring-Segment.

Relief: VENT-000-, BOP-000- (hull-nah).

Comms/Power: Red/Blue-Fiber; DC-Bus-A/B + USV an Safety-Aktoren.

10. Open Parameters (TBD/TBC)

- Exakte **Blast-Lastfälle** (Skalierung/Impuls); Ring-Hals-Opfer-Geometrie (FEA).
- Final **VENT/BOP-Areal** je Ring-Volumen & Prozess-Gase.
- **Shutter-Antrieb** (Common-Line vs. Segment-lokal) Feinspezifikation.
- **Quick-Release-Interfaces** zu Dock-Adaptern (mechanisch/elektrisch).

11. References

- DECK 000 Wormhole Baseline Geometry/Systems.
- Global Geometry & Safety/Windows/MDPS (Refs & Links).
- Safety & Hazard Protocols (Feuer, Strahlung, MMOD).
- Schotts/VENT/BOP Layout-Prinzipien (014/015 Muster).

SPEC-00-STR-SYS-WORMHOLE-SAFETY-0002 — Polar Approach & Full Hazard Hardening (EVOL-00/01) — v0.1.0 DRAFT

Scope: Konstruktive "Safety-by-Design"-Maßnahmen für **DECK 000** / **Wormhole** inkl. **Polar-Einflug (Nord/Süd)** sowie ein **vollständiger Hazard-Katalog** für die axialen Systeme (Explosion, Brand, Kollision, Strahlung, MMOD quer/längs, **unkontrollierter Anflug/Impact** u. v. m.). **Bezug:** Stationen **Earth ONE** (Ø 127 m) und **Earth TWO** (Ø 254 m, inkl. Long-Capsule-Varianten).

0) Executive Summary

- Neuer Top-Hazard: Unkontrollierter Anflug/Impact auf die Polar-Einflugborde. → Gegenmaßnahmen: POL-GUARD (mehrlagiger Polar-Prallschutz), POL-KOS/Kep-Out-Volumes mit Autopilot-Geofencing, Polar-Shutter (≤0,5 s), Deflektions-Jets, Jettison/Abort-Prozeduren, konsequent radiale Entlastung.
- Safety-Architektur insgesamt: Mehrfach-Kompartimentierung in 2D (radial + axial/LAT), inertisierte Technikzonen, nichtbrennbare Materialien, VENT/BOP nur radial, fail-safe geschlossene Schotts/Türen, kein Single Point of Failure.
- Härtung gegen Kaskaden: Explosions-/Brand-Energie lokal binden, Impuls aufnehmen/ableiten, Druck & Rauch in Sekunden ins All abführen, Scheiben/Ringe schließen – bevor das Nächste kippt.

1) Designziele (Safety Envelope)

- 1. **Containment:** Jedes Ereignis bleibt bauabschnittsweise beherrscht (Ring-zu-Ring, Sektor-zu-Sektor).
- 2. Energy-&-Mass-Management: Druck, Rauch, Partikel radial zur Hülle; keine tangentiale Relief-Führung.
- 3. **Fail-Safe:** Türen/Schotts **schließen stromlos**; Aktor-USV ≥ 30 min; Doppelte Sensorik.
- 4. **Human Factors:** klare Flucht-/Sammelzonen (Safe-Hold-Nodes), Gegenstrom-Trennung, visuelle/akustische Guidance.
- 5. **Testbarkeit:** Alle Schutzfunktionen mit **Zeit- und Kapazitäts- Targets** (Schließzeiten, Vent-A, Inert-Setpoint) verifizierbar.

248

2) Neuer Unfalltyp: Polar-Impact (unkontrollierter Anflug/Einschlag)

2.1 Szenario & Klassen

- **PI-Light:** ≤ 10 t @ ≤ 2 m/s (Klein-Tender/Roboter)
- PI-Medium: 10-40 t @ 2-10 m/s (Crew/Cargo-Module)
- PI-Heavy: 40-120 t @ 5-20 m/s (Großschiff-Anflugfehler)
- **PI-Extreme:** > 120 t oder > 20 m/s (hoffentlich nur "design to survive, not to save vehicle")

Parameter: Impuls $J=m\Delta v$, Energie $E=\frac{1}{2}mv^2$. Auslegung erfolgt parametriert, nicht fahrzeugspezifisch.

2.2 POL-GUARD - Mehrlagiger Polar-Prallschutz (konstruktiv)

- Sensor-Vorhang (Lidar/Radar/Optik): 3D-Track, Health-Monitoring, Autopilot-Geofencing.
- 2. **Deploy-Net & Tether-Dämpfer:** ausfahrbares Fangnetz mit vielen **Shock-Absorber-Tethers** (Reißnadeln + viskoelastische Dämpfer). *Energieaufnahme* ~ $\sum \frac{1}{2} k_i x_i^2$; *Tether-Hub begrenzt Relativ-* Δv .
- 3. Crush-Bumper-Kragen: Ringsegmente aus Al-Honeycomb/Metal-Foam; spezifische Energieaufnahme (SEA) 20-60 kJ/kg. Erforderliche Masse $m_{bumper} \approx E/SEA$.
- Deflection-Cone: harte, geneigte Prallfläche → Ablenkung out-of-axis, Fragmente werden aus dem Wormhole heraus gelenkt.
- 5. **Polar-Shutter (0,5 s):** gepanzerte, **guillotine-artige** Innenschotten (Mehrsektor-Lamellen) schließt die Achse.
- 6. **VENT/BOP-Kranz:** Sollbruch/Blow-Out-Paneele **hull-nah**; Druck/Partikel **direkt ins All**.

Dimensionierungshilfe (Honeycomb-Bumper): Volumspezifische Absorption $W = \sigma_{\text{crush}} \cdot \varepsilon$. Bei $\sigma \approx 2\,\text{MPa}$, $\varepsilon = 0.5 \rightarrow W \approx 1\,\text{MJ/m}^3$. Beispiel: $E = 50\,\text{MJ}$ (z. B. 50 t @ 14 m/s) \Rightarrow ~50 m³ Crush-Material (auf Sektoren verteilbar).

2.3 POL-KOS/Kep-Out-Volumes & Autopilot-Logik

- Approach Ellipsoid + Keep-Out Sphere polar; Single-Vehicle-Between-Rings (keine Doppelbelegung).
- Hard Interlocks: Bei KOS-Verletzung → Station schließt Polar-Shutter, zündet Deflection-Jets, aktiviert Deploy-Net.

3) Komplett-Hazard-Katalog (DECK 000 / axial)

Mechanisch/Kinetisch

- H-E1: Explosion am Docking-Ring (anliegendes Schiff)
- · H-E2: Brand/Flashover an angedocktem Schiff
- H-E3: Fahrzeug-Kollision im Wormhole (axial)
- H-E4: Polar-Impact (unkontrollierter Anflug/Einschlag)
- H-E5: Strukturelles Versagen eines Ring-Adapters / Quick-Release
- H-E6: Trümmer/"Runaway" nach Jettison im Näherungsbereich

Umwelt/Exogen

- H-U1: Sonnenwind/SPE/CME (Strahlungs-Spike)
- H-U2: MMOD quer (seitlicher Durchschlag Tubus/Ring)
- H-U3: **MMOD längs** (axial entlang der Achse)
- H-U4: Weltraumschrott-Schwarm (Kollisionskaskaden-Risiko)

Prozess/Medien

- H-P1: O₂-Anreicherung / Inertgas-Fehlfunktion
- H-P2: Kryo-Leck (H₂/O₂/N₂/Ar) → Kälte/EX-Risiken
- H-P3: Batterie-Thermal-Runaway (Carrier/Andock-Vehikel)
- H-P4: Giftige Medien (NH₃/Monosilan etc.) aus Nutzlast

Systemisch/OPS/IT

- H-S1: Stromausfall/USV-Versagen der Aktoren
- H-S2: Sensorik-Blindheit (Radar/Lidar/Optik)
- H-S3: **Cyber/Spoofing** (GN&C/Transponder/Beacons)
- H-S4: Human-Factor (Fehlerhafte Freigabe/Prozedur)
- H-S5: Software-Regression (Update bricht Interlocks)

Für jeden Hazard führen wir S (Severity 1-5), L (Likelihood A-E), R = S×L, Mitigation (Design/OPS), V&V in einer Tabellen-SSOT (CSV) – bereit zum Risikoreview.

4) Design-Maßnahmen (Layered Hardening)

4.1 Kompartimentierung & Schotts

- Ring-zu-Ring: PT-A (Haupt), PT-B (Service), AL-C (Airlock) failsafe zu, kaskadierbar; Δp-Rating ≥ 1 atm sektorweise.
- LAT-Scheiben (axial): schließen S40/EQ/N40 (EVOL-01) → Rauch/Heißgas-Kappen, kein Voll-Δp (Equalizer).

4.2 VENT/BOP

• Nur radial zur Hülle; dimensioniert auf choked flow. $\dot{m}=C_dAP_0\sqrt{\frac{\gamma}{RT}}(\frac{2}{\gamma+1})^{\frac{\gamma+1}{2(\gamma-1)}} \to \mathbf{A_VENT}$ je Ring so, dass $p\to p_{\mathsf{safe}}$ in $\Delta \mathbf{t_max}$ (Stationsziel, z. B. \leq 3–5 s).

4.3 Feuer & Inertisierung

 Ar/N₂-Flutung ringweise; O₂-Setpoint ≤ 12-15 Vol-% in ≤ N s; nicht-brennbare Auskleidung, EX-Zonierung.

4.4 Fenster/MDPS/Shutter

 Multilayer-Stacks, Shutter ≤ 0,5 s für E4/E5/E6 (SPE/MMOD), außen MDPS-Shades.

4.5 Docking-Ringe (Blast/Quick-Release)

Opfer-Zonen (frangible) + Blast-Cradle (Sandwich-Kragen),
 Jettison mit Rückzugs-Shutter; integrierte Deflektoren.

4.6 Neu: POL-GUARD am Polar-Einflug

 Deploy-Net + Tethers, Crush-Bumper, Deflection-Cone, Polar-Shutter, VENT-Kranz - s. 2.2.

4.7 Traffic-Separation & Interlocks

Nord = Arrivals, Süd = Departures, Ein-Fahrzeug-Slot zwischen zwei Ringen, GN&C-Beacon-Pflicht, "rogue transponder"
 → sofortige POL-Shutter-Schließung + Deflection-Jets.

4.8 Cyber-Resilienz

 Out-of-Band-Beacons, AuthN/AuthZ für Freigaben, Air-Gap für Safety-PLC, "last-known good"-Rollback.

5) Parametrische Auslegung (Formeln)

5.1 Polar-Bumper (Crush-Energie)

• Eingang: $m, v \rightarrow E = \frac{1}{2}mv^2$.

- Bumper-Bedarf: $V_{\rm crush} pprox E/W \, {
 m mit} \, W \, {
 m (MJ/m^3)}$ aus Material-
- Masse-Daumen: $m_{
 m bumper} pprox E/{
 m SEA}$ (SEA=20-60 kJ/kg).

5.2 Fangnetz + Tethers

- Zielhub x pro Tether; Energie $E\approx\sum\frac{1}{2}k_ix_i^2$. Grenzlast $\to F_{\max}=\sum k_ix_i\leq$ stationäre Grenzkräfte (Ankerpunkte).
- Praktisch: 8-16 Tethers, je viskoelastischer Dämpfer (Hysterese) + Reißelement ("fuse") zur Lastspitzenbegrenzung.

5.3 Polar-Shutter (Impuls)

- Impulsreserve: $J_{\rm shutter} \geq m \Delta v$ der zu erwartenden Fragmentlast auf den Schließweg.
- Schließzeit: $t_{\mathrm{shut}} \leq 0.5\,\mathrm{s}$ bei E4/E5/E6-Trigger; Kraft-/Leistungsbudget ergo dimensionieren.

6) Prüf- & Abnahmekriterien (V&V)

- PT-A/PT-B/AL-C: Schließzeit lokal ≤ 3 s, kaskadiert ≤ 8 s; Dichtheit $\Delta p \geq 1$ atm (Ring-Weise).
- **VENT/BOP:** Nachweis $A_{\text{VENT}} \rightarrow p \downarrow p_{\text{safe}}$ in Δt_{max} ; Funktions-Drills (kalte Gas-Runs + CFD).
- Shutter: 100 % End-to-End-Tests (SPE/MMOD/Polar-Alarm) mit High-Speed-Log; Ziel \leq 0,5 s.
- **POL-GUARD:** Drop-/Schlitten-Versuche (E-Klassen), Schlusstests, Tether-Dämpfer-Charakteristik, Cone-Deflection-Mapping.
- Cyber: Red-Team-Tests (Spoofing/Replay), Safety-PLC-Failover.

7) Risiko-Matrix (Beispiel-Ausschnitt)

Hazard		L (A-E)	R	Primär-Mitigation
H-E1 Explosion Dock	5	С	Н	Ring-Containment, VENT/BOP, Quick-Release
H-E4 Polar-Impact	5	B-C	Н	POL-GUARD, Shutter, KOS, Deflection

	S	L		
Hazard	(1-5)	(A-E)	R	Primär-Mitigation
H-U3 MMOD längs	4	С	Н	Shutter-Kaskade, Spall-Liner
H-S3 Cyber/Spoof	4	С	Н	AuthN/PLC-Air-Gap, OOB-Beacons
H-P2 Kryo-Leck	4	С	Н	EX-Zonen, Inert, VENT

(Vollständige Matrix als CSV/SSOT führen.)

8) Umsetzung & Roadmap

- EVOL-00 (127 m): Polar-Shutter + KOS sofort; POL-GUARD (light) (Crush-Kragen + Net).
- EVOL-01 (254 m Kugel): POL-GUARD (medium) + Deflection-Cone + stärkere VENT/BOP-Kranz.
- EVOL-01 Long Capsule: POL-GUARD (heavy) + 2. Fußring im Core; Dock-Throats auf ≥ 16-20 m, wenn Innendocking.

253

03 Interfaces

Interface control documents for EVOL-00.

04 Calculations

Supporting calculations and proofs for EVOL-00.

05 Models CAD SIM

Models, CAD files, and simulations from EVOL-00.

06 Tests Verification

Test plans and verification reports for EVOL-00.

07 Ops Maintenance

Operations and maintenance documents for EVOL-00.

08 Change Management

RFCs, change requests, and approvals for EVOL-00.

EVOLUTION 01 - The City Comes Alive - *The Big City Awakens*

"Streets begin to fill, lights breathe to the rhythm of the rings. The city awakens — enduring, diverse, human."

00 Standards Templates

Frozen standards and templates from EVOL-01.

Architecture

Archived architecture records for EVOL-01.

02 Specs

Specifications and requirements from EVOL-01.

SPEC-01-STR-GEOM-GRAV-E2-BALL-0001earth-two-ball-D254m-EN-DE-v0.1.0-DRAFT

Earth TWO "Ball" (EVOL-01, Ø 254,00 m) Global Geometry & Gravitation

Scope: Station **Earth TWO** als skalierte/erweiterte Sphäre zu Earth ONE, mit **Außendurchmesser 254,00 m**, Hülle **0,50 m**, Deck-Raster (Δr), Spin-Gesetz, "best-fit" **1 g** für Habitatzonen, g-Zonen, Ziel-Kapazität **> 4 000** Personen, Strukturkonzept (A+B Grid: Längs- & Breitengrade). **Datum:** 2025-08-16

1) Station & Hülle (Geometrie)

- Außenradius: $R_s=127{,}00\,\mathrm{m}$ Innen-Hülle: $R_h=126{,}50\,\mathrm{m}$ (Hüllendicke 0,50 m).
- DECK 000 ("Wormhole"): axialer Mikro-g-Korridor (ID≈20 m, OD≈22 m).
- Deck-Raster: radial $\Delta r=3\{,\}50$ m, beginnend bei $r=10\{,\}50$ m, bis $r_{\text{out,max}}=126\{,\}00$ m (1,5 m Puffer zur Hülle). \rightarrow Anzahl Decks: $N=\frac{126,0-10,5}{3,5}=33$ (DECK 001...033).
- Axiales LAT-Konzept (EVOL-01): 3-7 ringförmige Latitude-Diaphragmen (S40/EQ/N40...); Details siehe Struktur.

2) Spin-Gesetz & "best-fit" 1 g

Grundgleichung: $a(r) = \omega^2 r$, $\mathrm{rpm} = \omega \cdot \frac{60}{2\pi}$.

2.1 Zwei praktikable Kalibrierungen

- Option A (rpm-minimal, hull-kalibriert): 1 g bei $r=R_h=126{,}50$ m $\omega=\sqrt{g_0/R_h}\approx 0{,}2784$ s $^{-1}$ \rightarrow **2**,66 rpm. Habitatzone 115-126,5 m ergibt **0,91-1,00** g, Kopf-Fuß-Gradient an der Hülle \approx **1,6** %.
- Option B ("best-fit" für Wohnring): 1 g bei $r=120{,}00$ m (Mitte der geplanten Wohnbänder) $\omega=\sqrt{g_0/120}\approx 0{,}2859~{\rm s}^{-1}$ \rightarrow \approx 2,73 rpm. Habitatzone 115–126,5 m: 0,96–1,05 g, Kopf-Fuß-Gradient ca. 1,6–1,7 %. Empfehlung EVOL-01: Option B (balancierter "Feel" über den Wohnring, weiterhin moderat niedrige rpm).

3) Deck-Zonen (Funktionslogik)

- Innen (r ≤ 60 m, DECK 001...017): 0,0-0,50 g → Forschung, Leichtindustrie, Sport/Training, Kliniken (spez.).
- Mitte (r ≈ 60-110 m, DECK 018...029): 0,50-0,92 g → Büros, Labore, Bildung, Agro-/Gewächshaus-Bänder.
- Außen-Habitat (r ≈ 115-126,5 m, DECK 030...033): 0,96-1,05 g → Wohnen, Campus, Kultur, Handel.
- Sicherheits-/Energie-Gürtel: nahe r≈110-120 m tangential entkoppelte Technikringe (THM/Power/Water) + LAT-Kappen ober/unter kritischen Decks.

4) Kapazität > 4 000 Personen (Herleitung)

Ring-Volumen pro Deck (Annäherung): $V_i \approx 2\pi\,r_{{\rm mid},i}\cdot(\Delta r\cdot H_i)$, mit Δr =3,50 m und axialer Deckhöhe H_i .

• EVOL-01 Annahme: Technik/Innen (25 Decks): $H=3.0~{\rm m} \rightarrow \sum V \approx 89.5~{\rm Tsd.~m^3}$. Außen-Habitat (8 Decks): $H=4.5~{\rm m} \rightarrow \sum V \approx 88.7~{\rm Tsd.~m^3}$. Summe Druckvolumen Ringe: $\approx 178.1~{\rm Tsd.~m^3}$.

Belegungs-Planung (Richtwerte):

- 40-50 m³/Person (Langzeit-Siedlung, keine "Astronautendichte") → 3 560-4 450 Personen allein in den Ringbändern.
- + LAT-Ebenen, Knoten, Atrien, Dock-Kavernen (anteilig bewohnbar) → Reserve für > 4 000 sicher erreichbar.
- Nettonutzflächen (Außenring, Bänder DECK 030...033): $A_{\rm Floor} \approx \sum 2\pi r_{\rm out} \cdot H \to >$ 25 000 m² bei H=4,5 m nur für die vier Außen-Decks; mit 15–25 m²/Person (Wohnen+Gemeinschaft) ergibt 1 000–1 700 Plätze allein dort. Gesamtsystem (alle Zonen) skaliert in Summe deutlich über 4 000.

Fazit Kapazität: Mit Option B (2,73 rpm), Außen-Habitat 8 x 4,5 m, plus LAT-/Knoten-Ausbau ist 4 000-5 000 Personen realistisch (EVOL-01), mit Wachstumspfad (EVOL-02) darüber.

5) Struktur & Safety (Variante C: Längs + Breitengrade)

- Längsgrade (12 × 30° A-L): radiale Sektor-Schotten (PT-A/PT-B, AL-C an Knoten), voll druck-/brandschottfähig (Δp≥1 atm sektorweise).
- Breitengrade (3-7 LAT): axiale Ring-Diaphragmen (S40/EQ/N40...): Schubscheiben, akustische/axiale Kappen, nicht als Voll-Druckschott; Equalize-Ventile und VENT radial.
- VENT/BOP-Philosophie: immer radial zur Hülle; keine tangentiale Entlastung.
- Ergebnis: Höchste Torsions-/Biegesteifigkeit (Mehrzellen-Schale + Scheiben), beste 2D-Kompartmentierung (radial & axial), klare OPS-Sperrebenen.

6) g-Profil (Auszug Außen-Habitat, Option B: 1 g @ 120 m $\rightarrow \approx$ 2,73 rpm)

Konvention: "Boden" = $r_{\rm out}$, "Decke" = $r_{\rm in}$; $g/g_0=r/120$. Kopf-Fuß am Boden (h=2,0 m): $\Delta g\%\approx 100\cdot h/r_{\rm out}$.

Deck	$r_in \rightarrow r_mid \rightarrow r_out (m)$	$g_floor \ (g_0)$	${\sf g_mid} \ ({\sf g}_0)$	${\sf g_ceiling} \ ({\sf g}_0)$	Δg Kopf-Fuß (Boden)
030	112.0 → 113.75 → 115.5	0.9625	0.9479	0.9333	1.73 %
031	115.5 → 117.25 → 119.0	0.9917	0.9771	0.9625	1.68 %
032	119.0 → 120.75 → 122.5	1.0208	1.0063	0.9917	1.63 %
033	$122.5 \rightarrow 124.25$ → 126.0	1.0500	1.0354	1.0208	1.59 %

Hinweis: Option A (1 g @ 126,5 m \rightarrow 2,66 rpm) verschiebt alle Werte oben um den Faktor r/126,5 (Außen-Band 0,91–1,00 g), reduziert Coriolis noch etwas, ist aber weniger "zentriert" auf den Wohnring.

7) OPS & Human Factors (Kurz)

Coriolis @ 2,73 rpm: moderat; Kopf-Fuß-Gradient ≈ 1,6-1,7 % im Wohnring → sehr komfortabel.

- Wohlfühlzonen: \$~\$0,95-1,05 g als A/B-Zonen (Wohnen, Schule, Pflege); 0,7-0,9 g B/C-Zonen (Arbeit, Sport); < 0,5 g für spez. Forschung/Industrie.
- **Verweilzeiten:** gemäß eurer A-E-Kategorien (Kap. 8.1-Logik aus Earth ONE), im Außen-Habitat uneingeschränkt.

8) Empfehlung EVOL-01 (Earth TWO)

- 1. Spin "best-fit": 1 g @ 120,0 m (≈ 2,73 rpm) als Standard; Hull-Mode 2,66 rpm als technischer Alternate.
- 2. **Wohnring DECK 030-033** mit **H=4,5 m** (modular erweiterbar) + LAT-Ebenen **S40/EQ/N40**.
- 3. **Zielkapazität:** ≥ **4 200 Personen** sofort erreichbar; Ausbaupfad **bis** ~**5 000** durch zusätzliche LAT-Knoten/Atrien.
- 4. **Struktur:** Varianten-Mix **C (Längs+Breitengrade)** als Baseline; VENT/BOP radial; Equalize-Sequenz festlegen.

SPEC-01-STR-GEOM-GRAV-E2-LCAP-0001earth-two-long-capsule-D254m-L508m—v0.1.0-DRAFT

Earth TWO "Long Capsule" (EVOL-01, \emptyset 254 m × L 508 m) Global Geometry & Gravitation

Scope: Zylindrisch-kapselartige Station mit Hemisphären-Endkappen, Außendurchmesser 254,00 m (R=127,00 m), Gesamtlänge 508,00 m (Zylinderlänge \approx 254 m + 2× Halbkugel). Hülle nominell 0,50 m. Spin-Gesetz, 1 g-Kalibrierung ("best-fit"), Habitat-Zonen, Struktur-Raster (Längs- & Breitengrade), Safety/Kompartmentierung, Transportachsen, Kapazitäts-Herleitung.

1) Geometrie & Hülle

• Form: Zylinder (Innenradius $R_h=126{,}50\,\mathrm{m}$) + zwei hemisphärische Endkappen.

• Zylinder-Länge innen: $L_c\approx 254{,}0\,\mathrm{m}.$ Gesamtlänge: $508.0\,\mathrm{m}.$

• "Wormhole"-Korridor: axialer Mikro-g-Tunnel (ID ~20 m), durchgehend Süd↔Nord; Docking in beiden Endkappen.

 Axiale Rasterung: 16 Blöcke à 31,75 m (Z00...Z15) für Layout, Fertigung, Safety-Sperr-Zonen.

• **Hülle:** 0,50 m (Stuffed-Whipple-Außenlage / MLI / Druckschale SiC-Verbund); Fenster nur in ausgewählten Habitatzonen (Schotts/MDPS-Shutters).

2) Spin-Gesetz & "1 g best-fit"

Grundgleichung: $a(r)=\omega^2 r$, $\mathrm{rpm}=\omega\cdot\frac{60}{2\pi}.$

Zwei sinnvolle Kalibrierungen (beide komfortabel):

- Option A Hüllen-1 g (rpm-minimal): 1 g bei $r=R_h=126,\!50\,\mathrm{m}~\omega=\sqrt{\frac{g_0}{126,\!5}}\approx0,\!2785\,\mathrm{s}^{-1}$ → 2,66 rpm. Pro: Minimaler Coriolis, Außenring exakt 1 g. Kontra: 5-10 m innen schon <1 g.
- Option B Wohnring-"best-fit": 1 g bei $r=120{,}00\,\mathrm{m}~\omega=\sqrt{\frac{g_0}{120{,}0}}\approx0{,}2859\,\mathrm{s}^{-1}$ \to 2,73 rpm. Pro: 115-126,5 m liefert

0,96-1,05 g (breiter Sweet-Spot). *Kontra:* minimal höhere rpm.

Empfehlung EVOL-01: Option B (2,73 rpm) für einen breiten, gleichmäßig "erdigen" Wohnring; **Option A** als Alternate-Mode.

Kopf-Fuß-Gradient am "Boden" (h=2,0 m): bei r=126,5 m \approx **1,58** %, bei r=120,0 m \approx **1,67** % (sehr komfortabel). **Coriolis:** Bewegung **entlang der Achse** (parallel ω) \rightarrow \approx **0**; Querbewegungen moderat bei \sim 2,7 rpm.

3) Zonen & Nutzung

Radial (r):

- Außenring (r≈115-126,5 m): Haupt-Habitat (Wohnen, Schulen, Handel, Kultur, Parks) bei ~0,96-1,05 g (Option B).
- Mittelring (r≈80-115 m): Arbeit/Agro/Labore, 0,64-0,96 g; gute Ergonomie, reduzierte Lasten.
- Innenring (r<80 m): Industrie/F&E/Sport (0-0,64 g), Bühnen, Atrien; Übergänge zur Mikro-g-Achse.

Axial (Z-Blöcke Z00...Z15, je 31,75 m):

- **Z00/Z15 (Endkappen):** Docking, Fracht, Hangars, Service.
- **Z01-Z03 & Z12-Z14:** Technik/THM/Power-Ringe, EX-Zonen separiert.
- Z04-Z11 (Mitte): Habitat-Distrikte (je ~32 m Länge), mit Plazas, Parks und "High-Street" tangential.

4) Strukturkonzept (Grid C: Längs + Breitengrade)

- Längsgrade: 12 radiale Sektorschotten (A-L, 30°), druck-/brandfähig (Δp ≥ 1 atm sektorweise), PT-A/B-Türen, AL-C-Schleusen.
- Breitengrade (LAT): Ring-Diaphragmen in jedem Z-Block-Stoß (31,75 m); zusätzlich Haupt-LAT in Z04/Z08/Z12.
- Rahmenraster: sekundäre Frame-Ringe etwa alle 7,9 m (1/4-Block) für lokale Steifigkeit & Paneelgrößen.
- **Vent/Relief: radial** zur Hülle (VENT/BOP), keine tangentiale Entlastung.
- Membranspannungen (Zylinder): $\sigma_{\theta} \approx \frac{p\,R_h}{t}$ (Reifenspannung), $\sigma_z \approx \frac{p\,R_h}{2t}$ (Längs); mit $p \approx 101\,\mathrm{kPa}$, $R_h = 126.5\,\mathrm{m}$, $t = 0.5\,\mathrm{m}$ \rightarrow $\sigma_{\theta} \approx 25.6\,\mathrm{MPa}$ (gut beherrschbar für Verbund/Metall-Liner mit FoS).

5) Transport & Logistik

- Axial (μg): Zentralkorridor (Wormhole) mit Maglev-Spine (Crew/Logistik), Fast-Transit Endkappe↔Endkappe.
- Tangential (1 g-Boden): Ring-Tram (2-3 Linien) pro Habitat-Gürtel; Fuß-/Radwege entlang "High-Street".
- Radial: Lift-Spokes (PAX/HL) in jedem zweiten Sektor (6 Hauptspeichen) zwischen µg-Achse ↔ Außenring.

6) Kapazität & Flächen

- "Erd-Boden" am Innenhüll-Zylinder: $A_{\mathrm{floor}} \approx 2\pi R_h \cdot L_c \approx 2\pi \cdot 126.5 \cdot 508 \approx 4.04 \times 10^5 \,\mathrm{m^2}.$ \rightarrow Bei 20-40 m²/Person ergeben sich ~10 000-20 000 Plätze allein auf Bodenniveau.
- **Terrassen** (≤ **10 m radial**): zusätzliche Ebenen bei 0,92–0,98 g (+30–60 % Fläche).
- Fazit Kapazität: > 4 000 problemlos; 10 000-20 000 realistisch im EVOL-01-Ausbau (ohne Innen-"Stadtkern" massiv zu verdichten).

7) Habitabilität (Kurzlage)

- Komfortfenster: 0,95-1,05 g im Außenring (Option B) → Kat.
 A/B ganztägig.
- Coriolis: axial quasi null; tangential moderat (≤ 2,73 rpm).
- Akustik & Klima: LAT-Scheiben separieren Strömungs-/Lärmzonen; Parks/Plazas als akustische "Sinks".
- Verweilzeiten: Habitat unbegrenzt; Technik/EX-Zonen nach D/E-Kategorien (≤ 4 h / ≤ 2 h).

8) Beispiel-g-Profil (Option B: 1 g @ 120,0 m → 2,73 rpm)

 $g/g_0=r/120.$ "Boden" = $r=126,\!5;$ "Balkon" = r=120; "Galerie" = r=112.

Standort	Radius r (m)	g/g_0	Hinweis
Boden Außenring	126,5	1,054	kräftig "erdig", Top für Sport/Lasten
Wohn-Balkon	120,0	1,000	best-fit
Galerie/Park	115,5	0,962	softer, angenehm
Agro-Ringe	100,0	0,833	Pflanzen/leichte Arbeit
Industrie/Sport innen	80,0	0,667	schwere Geräte, Labore
Achse (Wormhole)	0-10	~0	μg-Transport/Andock

Kopf-Fuß-Δg am Boden (2,0 m): **~1,6** %.

9) Safety & Kompartmentierung

- Sektoren (A-L): radiale Druck/Brand-Zellen (PT-A/B, AL-C);
 VENT/BOP radial.
- **LAT-Ebenen:** je Blockstoß (31,75 m) + Haupt-LAT (Z04/Z08/Z12) als **axiale Kappen** (Equalize-Philosophie, **kein Voll-Δp**).
- **EX/NUC-Zonen:** in Außen-Technikgürteln separiert; **keine** Kryo/H₂ mit Nuklear-Primär im selben Sektor/Block.

10) Nächste Schritte (konkret)

- 1. **Spin-Entscheidung:** Option B (2,73 rpm) als Standard, Option A (2,66 rpm) als Alternate.
- 2. **Z-Block-Freeze:** Funktionen Z00...Z15; Haupt-LAT in Z04/Z08/Z12.
- 3. **Trassenplanung:** Ring-Tram, Maglev-Spine, 6 Haupt-Liftspokes.
- 4. **ICD Safety:** PT-Türen/Schleusen-Katalog, Equalizer-Spezifikation, VENT/BOP-Sizing.
- 5. **Massen-/Struktur-Sizing:** Rahmenabstände, Paneeldicken, FoS; Fertigungs-/QC-Plan Fugen/Schraubgurte.

271

03 Interfaces

Interface control documents for EVOL-01.

04 Calculations

Supporting calculations and proofs for EVOL-01.

05 Models CAD SIM

Models, CAD files, and simulations from EVOL-01.

06 Tests Verification

Test plans and verification reports for EVOL-01.

07 Ops Maintenance

Operations and maintenance documents for EVOL-01.

7.6.3 History

Accomplished, frozen or just superseded evolutions (read-only).

8. Glossary, Partners & Institutions, Legal Notices, and Overall Appendices

Reference material, supporting organizations, and legal information.

8.1 Glossary

Definitions of key terms used throughout the Sphere Space Station Earth ONE & Beyond project documentation.

Α

- AI (Artificial Intelligence): Computer systems capable of performing tasks that normally require human intelligence, such as perception, decision-making, or language understanding.
- **Airlock**: A sealed chamber that allows movement between pressurized and unpressurized environments without compromising either atmosphere.
- **Attitude Control**: The process of controlling the orientation of a spacecraft or station in three-dimensional space.

В

- **Biosphere**: A closed ecological system designed to support life by recycling air, water, and nutrients.
- **Boosters**: Rocket engines or stages that provide the thrust necessary to reach orbital velocity or transfer between orbits.

C

- **Command Module**: The primary control section of a spacecraft or station where crew monitor and direct operations.
- **Cislunar Space**: The region of space between Earth and the Moon.
- **Cycler**: A spacecraft that travels on a regular trajectory between celestial bodies, enabling repeated transport without major propulsion expenditures.

D

- **Docking Port**: A mechanical interface that allows two spacecraft or modules to connect securely.
- **Delta-v**: A measure of the change in velocity required to perform a maneuver in spaceflight.

Ε

• ECLS (Environmental Control and Life Support): Systems that maintain breathable air, safe pressure, and other life-sustaining conditions.

• **EVA (Extravehicular Activity)**: Operations performed by astronauts outside a spacecraft or space station.

F

- **Fuel Cell**: A device that generates electrical power through a chemical reaction, commonly between hydrogen and oxygen.
- **Flux Shielding**: Protective material or magnetic fields used to reduce radiation exposure.

G

- **Gimbal**: A pivoted support that allows rotation of a component, such as a thruster or sensor, about one or more axes.
- **GTO (Geostationary Transfer Orbit)**: An elliptical orbit used to transfer spacecraft from low Earth orbit to geostationary orbit.

н

- **Habitat Module**: A pressurized module providing living and working space for crew members.
- Heat Shield: A layer of material that protects a spacecraft from extreme temperatures during atmospheric entry or high-speed operations.

ı

- **Inclination**: The tilt of an orbit's plane relative to the equator of the body it orbits.
- International Democratic Solar Alliance (IDSA): Proposed governing coalition ensuring transparent, peaceful, and cooperative use of space infrastructure.

J

- **Jet Propulsion**: Thrust produced by expelling mass at high velocity, typically through rocket engines.
- **Jettison**: To deliberately discard equipment or material from a spacecraft.

K

• **Karman Line**: The internationally recognized boundary between Earth's atmosphere and outer space, set at 100 kilometers alti-

tude.

• **Kill Switch**: A manual or automated mechanism to immediately disable an AI system or critical subsystem for safety reasons.

L

- **LEO (Low Earth Orbit)**: An orbit around Earth with an altitude between roughly 160 and 2,000 kilometers.
- **Launch Window**: The time period during which a launch must occur to reach a desired orbit or destination.

M

- **Microgravity**: A condition in which objects appear to be weightless because they are in free fall around Earth or another body.
- Modular Architecture: Design approach where spacecraft or station components are built as interchangeable units that can be added or replaced.

Ν

- **Nadir**: The direction pointing directly toward the center of the Earth from an orbiting spacecraft.
- **Nuclear Thermal Propulsion**: Propulsion method that uses a nuclear reactor to heat propellant, producing high-efficiency thrust.

0

- **O'Neill Cylinder**: A proposed type of rotating space habitat designed to provide artificial gravity through centripetal force.
- **Orbital Debris**: Nonfunctional human-made objects in orbit, such as defunct satellites or spent rocket stages.

Ρ

- **Propellant**: Mass expelled by a propulsion system to generate thrust.
- **Pressurized Module**: A spacecraft section designed to maintain an internal atmosphere suitable for human occupancy.

Q

- **Quarantine Module**: A dedicated area where crew or materials are isolated to prevent contamination or illness.
- **Quick Disconnect**: A coupling that allows rapid connection or separation of fluid or gas lines.

R

- **Radiation Shielding**: Materials or structures designed to protect occupants and electronics from harmful space radiation.
- RCS (Reaction Control System): Small thrusters used to control attitude or execute fine maneuvers.

S

- **Solar Array**: A collection of solar panels that converts sunlight into electrical power.
- **Space Debris Mitigation**: Strategies and technologies aimed at preventing the creation of new orbital debris and removing existing debris.

T

- **Telemetry**: The transmission of data from a spacecraft or station to ground control for monitoring and analysis.
- **Thermal Control System**: Equipment that regulates temperature within a spacecraft or station.

U

- **Uplink**: Communication link used to transmit commands or data from Earth to a spacecraft.
- **Uncrewed Vehicle**: A spacecraft or drone that operates without human occupants, often autonomously or via remote control.

V

- **Vacuum**: A region devoid of matter; in space, the near-perfect vacuum outside planetary atmospheres.
- Vernier Thruster: A small rocket engine used for precise adjustments to a spacecraft's velocity or attitude.

W

- **Waypoint**: A predefined coordinate used for navigation or mission planning.
- **Wet Workshop**: A method of converting a spent launch vehicle stage into a habitable volume after its propellant is expended.

X

- **X-band**: A segment of the microwave radio spectrum commonly used for deep-space communications and radar.
- **Xenon Propulsion**: An electric propulsion system that uses ionized xenon gas for efficient long-duration thrust.

Υ

- Yaw: Rotation of a spacecraft around its vertical axis, affecting its left-right orientation.
- **Yeoman Services**: Routine maintenance and operational support tasks carried out by crew or automated systems.

Z

- **Zenith**: The direction directly away from the Earth, opposite nadir, as observed from an orbiting spacecraft.
- **Zonal Harmonics**: Variations in a planet's gravitational field due to its nonuniform shape or mass distribution, affecting orbital dynamics.

8.2 Partners & Institutions

List of collaborating partners and institutions.

8.3 Legal Notices

8.3.1 Intellectual Property & Usage Rights

All contents of the *Sphere Space Station Earth ONE & Beyond* documentation, including but not limited to technical specifications, design concepts, graphics, calculations, and operational models, are © 2023 – 2025 by Robert Alexander Massinger, Munich, Germany. All rights reserved.

Reproduction, distribution, or modification, in whole or in part, without prior written consent of the copyright holder is prohibited, except where expressly permitted under applicable law or by written license.

8.3.2 Disclaimer

This documentation is provided for research, educational, and conceptual development purposes only. While every effort has been made to ensure accuracy, all technical data, cost estimates, and projections are subject to change without notice. The authors and contributors disclaim any liability for damages, losses, or injuries resulting from the use or reliance upon this material.

8.3.3 Compliance & Export Control

Implementation of any described technology, systems, or components may be subject to international treaties, export control regulations, and national security laws. It is the responsibility of the user to ensure full compliance with all applicable legal frameworks before use or dissemination.

8.4 Overall Appendices

Supplementary material for the project, including Appendix G: Backlog Potential Developments.

8.4.1 Appendix A: Abstract - Sphere Space Station Earth ONE and Beyond

Date: 2025-08-08

The Sphere Space Station Earth ONE & Beyond project presents a comprehensive vision for a sustainable, modular, and expandable orbital habitat designed to serve as a cornerstone for humanity's long-term presence in space.

At its core, the Earth ONE station is a 127-meter-diameter rotating sphere with sixteen coaxial cylindrical decks, each offering distinct artificial gravity levels, and a total capacity of approximately 700 inhabitants. The design integrates advanced closed-loop life support systems, high-efficiency nuclear and solar hybrid energy supply, robust thermal and radiation shielding, and modular docking infrastructure for spacecraft and robotic vehicles.

The documentation outlines technical specifications, material selection (including high-performance SiC-based composites), operational infrastructure, governance structures, economic feasibility, environmental sustainability goals, and phased expansion strategies toward lunar, asteroid belt, and deep-space stations.

A dedicated consortium model, public engagement strategy, and alignment with international space governance frameworks ensure transparency, cooperation, and equitable access to technology and benefits.

Beyond Earth ONE, the *Beyond* program foresees the deployment of autonomous stations, interplanetary cyclers, exploration crafts, and unmanned freight transporters to establish a connected network throughout the Solar System. This initiative aims not only to advance space science and industry but also to serve as a scalable blueprint for future off-world habitats and to inspire sustainable innovation on Earth.

Evaluation of the Documentation "Sphere Space Station Earth ONE and Beyond"

8.4.2 Overview of Documentation Contents

The Sphere Space Station Earth ONE and Beyond project is supported by comprehensive documentation covering all relevant thematic areas. The existing ten main documents address the station's technical specifications, infrastructure and personnel, energy supply and thermal management, governance structures, public engagement, economic feasibility analyses, environmental and sustainability concepts, plans for future expansion of the station network, global space governance, and self-sustainability models. Thus, the core "subject areas"—from technical through organizational and financial to sustainability and public participation—are fundamentally addressed. Below, the completeness, depth, and maturity of these areas as well as their mutual alignment are assessed. A summary table (Table 1) provides an overview of each area's maturity level and interoperability.

8.4.2.1 Maturity Level and Interoperability of Subject Areas The documentation is extremely comprehensive in most areas. Table 1 summarizes the assessment of each field with regard to **Content Maturity** (completeness/depth) and **Interoperability** (consistency/linkage to other areas).

Subject		
Area	Content Maturity	Interoperability
Technical Specifica- tion	High – All major systems covered (structure, artificial gravity, safety, etc.)	High – Technical data (size power requirements, deck layout) are consistent across documents.
Energy Supply & Thermal	Very high - Detailed energy concept (SMR reactors, solar arrays, redundancies)	High - Integrated into other concepts (e.g., sustainability, technical).
Manage- ment	and thermal management.	Performance and backup systems align.
Environ- mental & Sustain- ability	High – Comprehensive sustainability concept with closed-loop systems, recycling, renewables.	High – Principles such as closed-loop life support, waste utilization, and energy sourcing appear throughout.

Subject			
Area	Content Maturity	Interoperability	
Person- nel & Habitat	High - Detailed planning of crew categories and facilities (medical, training, living, recreation) for ~700 people.	High - Aligns with capacity assumptions (700) and the economic model (leasing of living/work spaces).	
Organiza- tional Structure (Gover- nance Model)	Medium/High - Consortium model with stakeholders, committees, decision processes.	High – Linked to financing and public engagement (e.g., an in-board PR division).	
Public Engage- ment	Medium – Extensive strategy for public participation, education, and decentralized "Sphere" clubs.	Medium - Conceptually tied to transparency and STEM outreach, but operational links could be more detailed.	
Economic Feasibil- ity	Very high – Detailed cost, market, and revenue analysis (investment ~€9.5 bn, pricing, break-even).	High – Financial assumptions harmonize with technical and operational plans (e.g., 700 residents, €25 M/yr OPEX).	
Future Expan- sion	High – Visionary planning of future stations (Moon, asteroids, Venus, Neptune) and transport vehicles.	High – Builds logically on the LEO concept; hypothetical technologies noted (fusion drives).	
Global Space Gover- nance (Solar Alliance)	Medium - Concept of a Solar Alliance as a governance framework.	Low/Medium – Values align but lacks integration with Earth ONE's operational plans.	
Self-	Medium – Theoretical li ty utonomy models (full, partial, basic support) for various mission profiles.	Medium – Indirectly linked to Earth ONE's closed-loop life support; no dedicated implementation plan.	

Table 1: Overview of content maturity and interoperability by subject area.

289

8.4.2.2 Particularly Mature Areas The station's technical design (structure, systems, safety) is exceptionally thorough. Document 1 describes every central system—from rotational gravity to energy supply and emergency systems—with detailed specifications. The energy and thermal management plan combines two 60 MW small modular reactors (or alternatively 20 micro-reactors) with large solar arrays for redundancy, and outlines energy storage (liquid heat storage), deployable radiators, and insulation strategies. The economic planning is similarly advanced: a sophisticated business plan details development costs (€1 bn), transport (€8.5 bn), annual operating expenses (~€25 M/yr), revenue streams (rental of living quarters, laboratories, tourism), pricing, and forecasts a 12-15-year return on investment. These analyses provide a solid economic foundation. The environmental and sustainability concept (Document 7) sets clear principles—resource efficiency, closed-loop life support, recycling—and concrete measures such as CO₂ reclamation, water recycling, waste composting for hydroponics, and strict hazardous materials protocols. This demonstrates high technical maturity in self-sufficiency planning and minimizing external resupply needs.

Likewise, the infrastructure, staffing, and living-space planning is very detailed. Staffing categories (operational crew, scientists, support personnel) and comprehensive habitat designs (emergency surgery, quarantine labs, fitness center, library, simulated "outdoor" spaces, schools, university-level labs, living quarters for crew and visitors) for approximately 700 occupants are fully defined, showing that daily life and work needs have been thoroughly addressed.

8.4.2.3 Moderately Developed Areas The organizational and governance documentation is solid but more conceptual than the technical sections. Document 4's consortium model outlines involvement of space agencies, companies, research institutions, investors, and governance bodies (consortium council, executive board, expert panels), addressing decision-making, conflict resolution, and funding phases. While well-designed for transparent international collaboration, concrete partners and legal structures remain to be specified. Public engagement (Document 5) proposes transparency campaigns, educational curricula, live broadcasts, citizen-science initiatives, and decentralized "Sphere" clubs for global participation. These measures are ambitious but still generic; resource allocation and structural alignment (e.g., between a PR department and local clubs) require further elaboration.

Two elements are more visionary than concrete: the Solar Alliance governance concept (Document 9) and the self-sufficiency models

(Document 10). The Solar Alliance sketches a democratically legit-imized coalition of all spacefaring nations to regulate activities across the solar system, aiming to prevent resource conflicts, harmonize safety standards, and ensure fair participation. Though aligned with the project's sustainable and international values, it remains detached from Earth ONE's immediate implementation. The self-sufficiency models classify autonomy levels—from full autarky for distant missions (e.g., Kuiper Belt) to basic support near Earth—but serve as theoretical frameworks rather than Earth ONE-specific development plans, since circular economy and backup systems are already covered elsewhere.

8.4.2.4 Consistency, Interoperability, and Harmonization Overall consistency between areas is high. Documents reference shared parameters and complement each other. For example, Earth ONE is consistently described as a 127 m spherical habitat for ~700 people; this assumption underpins the technical concept (Doc. 1), operational planning (Doc. 2), and financial models. The energy and sustainability documents (Docs. 3 and 7) both specify a mix of solar arrays and two primary reactors plus reserves. Technical details (60 MW SMRs) appear nearly verbatim across Docs. 1 and 3. Closed-loop life-support systems (air, water, waste) mentioned in Doc. 1 are elaborated in Doc.

7 (${\rm CO}_2$ scrubbers, water purification, composting). Deck layouts—general in Doc. 1 (living/work areas mid-decks, industry/storage outer decks)—are refined in Doc. 8 with specific functions per deck (decks

6-10 residential, deck 15 reactors, decks 2-3 life support).

than an oversight for Earth ONE itself.

Interdependencies are clearly signposted: the sustainability document's lunar resource utilization appears in Doc. 8 via the "Lunar ONE" outpost and moon-mining incentives; Doc. 4's governance structure provides a PR/outreach division to implement Doc. 5's engagement activities; Doc. 6's financial model incorporates Doc. 2's leasing revenue assumptions; and Doc. 8's expansion vision integrates market analyses (e.g., space tourism). Minor variances—such as a 12–15-year vs. 15–20-year break-even estimate—are negligible and stem from cautious projections. A gap remains in embedding the Solar Alliance in core documents, but this reflects its long-term visionary status rather

8.4.2.5 Potentials, Risks, Objectives, and Feasibility (Overall Assessment) The documentation conveys a visionary yet well-considered project. Objectives are clear: Earth ONE as a sustainable, permanent LEO outpost fostering science, commerce, and interna-

tional exchange—evident from the mission statement in Doc. 1 to public engagement in Doc. 5. Long-term expansion to the Moon, Mars, asteroids, etc., is firmly anchored. The project could enable scientific breakthroughs (microgravity labs, space-based astronomy), spur new industries (materials research, pharmaceuticals, space mining), and invigorate space tourism. Economically, early positioning in an orbital market—accommodation, research services, satellite servicing, media offerings—promises significant returns. Socially, the station offers STEM inspiration and international cooperation. The closed-habitat ecology could model efficient terrestrial resource use, and Earth ONE may serve as a springboard for multi-planetary expansion.

However, substantial risks exist. Technically, a 127 m rotating habitat for hundreds demands advanced, sometimes unproven technologies (modular large-scale components, long-lived space reactors, lifesupport for 700, radiation shielding). In-orbit assembly of over 1 million tons (5,000 launches) is unprecedented, with no detailed logistical plan. Financially, ~€9–10 bn investment and unprecedented funding collaboration are required; if anticipated revenue streams (tourism, commercial labs) underperform, ROI may be delayed or profitability endangered. Business assumptions (pricing, occupancy, maintenance) carry high sensitivity, though Doc. 6 outlines risk factors and countermeasures. Regulatory and public acceptance—particularly of nuclear reactors in orbit—pose further challenges (space debris, radiation, military implications). The documentation addresses these via the Solar Alliance concept and stringent safety standards (multi-layer shielding, micrometeoroid protection, evacuation capsules), but geopolitical unpredictability remains.

Despite these challenges, the documentation outlines realization paths: Earth ONE as a demonstrator to build know-how (recycling, long-term habitability) for "Beyond" projects. No conceptual contradictions render the project impossible—every major issue has a proposed solution. The transition from paper to practice requires feasibility studies, prototypes, and political alliances. Actual feasibility must be proven through an intensive development and validation process.

8.4.2.6 Recommendations and Next Steps Below are the most sensible next steps from both a technical/content perspective ("logical next step") and a strategic/project perspective ("smartest next step"). Both aim to advance the documented concepts toward implementation and close remaining gaps.

8.4.2.6.1 Next Logical Development Step (Technical/Content) Recommendation: Develop an integrated development and implementation roadmap to link all concepts. This master plan should define phases, milestones, and responsibilities—from R&D through prototype construction to station assembly—and concretely align technical, organizational, and financial subplans. Key stages should include:

- Technology Demonstrations: Earth-based or small-scale orbital prototypes (rotating gravity, closed-loop life support) to validate key systems under real conditions.
- Pilot Projects: Integration tests for critical areas (CO₂ recycling, water purification, hydroponics; small-scale space reactor or advanced radiator demos) to mitigate risks early.
- Orbital Assembly Trials: Robotics or automated systems development using platforms such as the ISS to test on-orbit construction techniques.
- **High-Level Timeline:** Schematic of module production, ~5,000 launches, and in-orbit assembly sequence, accounting for dependencies (e.g., life support readiness before crew arrival).

This roadmap will unite parallel concept documents, reveal bottlenecks (launch capacity, personnel training, regulatory approvals), and incorporate risk analyses and fallback strategies (alternative technologies, modular capacity adjustments). Translating building blocks into a detailed action plan will provide internal clarity and external credibility.

8.4.2.6.2 Strategically Smartest Next Step (Project Strategy) Recommendation: Forge a powerful real-world alliance/consortium and secure political backing, e.g., by launching an international flagship project under EU leadership. Early stakeholder engagement and binding commitments will generate momentum. Concrete measures include:

- Champion Partners: Engage ESA/EU leadership, NASA or other agencies for module support, and private companies (SpaceX, Blue Origin) for launch services; formalize via bilateral agreements or MoUs.
- Coordination Conference: Convene space agencies, industry, research, regulators to present Sphere Earth ONE and establish an international coordination body, building on Doc. 4's consortium council.
- Political Positioning: Place the project at EU Council, UN COP-UOS, etc., to secure support and regulatory waivers (e.g., orbital nuclear operations); embed Earth ONE in European space programs as a flagship initiative.
- Financing Pipeline: Pursue EU research frameworks and ESA calls for targeted technology funding (life support, recycling, ra-

diation protection) while engaging major investors early to shape financing consortia.

This strategic step institutionalizes the visionary concept, addresses the biggest uncertainties—political and public acceptance—and prevents competing parallel initiatives by positioning Sphere Earth ONE as the central European-international space station project. Early successes (cooperation agreements, initial funding) will catalyze public interest and broader support, aligning with the public engagement strategy.

Summary: The project should advance on two fronts: internally via a consolidated implementation plan ("what" and "when") and externally via a robust alliance ("who" and "how to fund"). The documentation has made the vision tangible—these next steps can transform a visionary foundation into a concrete, collaborative mega-project.

8.4.3 Invitation to Participate - Research, Funding, Engineering, and Construction Partnership

The Sphere Space Station Earth ONE & Beyond project extends an open invitation to leading STEM institutions, the European Space Agency (ESA), universities, research organizations, and European companies to join in the exploration, funding, engineering, and construction of this landmark initiative.

Our mission is to create a sustainable, modular, and expandable orbital habitat that embodies scientific excellence, engineering innovation, and the shared values of the international community. **Your expertise** can directly contribute to key areas such as:

- **Scientific Research**: Space sciences, materials technology, life support systems, environmental monitoring.
- **Engineering & Manufacturing**: High-performance composite materials, modular habitat construction, robotics, and automation for orbital assembly.
- Funding & Investment: Public-private partnerships, technology development grants, and strategic capital for long-term infrastructure.
- Operational Development: Training programs, safety standards, and integrated governance models.

Entry Requirement - The Preamble as a Binding Commitment Participation in the Sphere Space Station Earth ONE & Beyond consortium requires formal acknowledgement and acceptance of the project's Preamble - Ethics & Security as the binding foundation for all actions and decisions.

This preamble establishes respect for human dignity, peaceful and sustainable operations, democratic governance, transparency, and equitable access as non-negotiable core principles. Adherence to these principles is the mandatory "entry ticket" for any partner, organization, or individual joining the project.

How to Join Interested organizations are invited to submit an **Expression of Interest (EoI)** outlining their field of expertise, proposed contribution, and commitment to the Preamble's principles. Following evaluation by the project's Ethics Council and Consortium Board, selected partners will be formally integrated into the project roadmap.

By joining this initiative, you contribute to shaping a European-led,

globally cooperative vision for sustainable human presence in space – setting a precedent for future generations both on Earth and beyond.

Contact Robert Alexander Massinger Space Technologies. Email: robert@robert-alexander-massinger-space-technologies.com.

8.4.4 Sphere Space Station Earth ONE - Executive Summaries

Version: 1.0.1 **Date:** 2025-08-09

8.4.4.1 Executive Summary - Technical, Science & Research Decision-Makers (e.g., ESA Director) The Sphere Space Station Earth ONE is a modular, rotating spherical habitat with a diameter of ~127 meters, designed primarily for Low Earth Orbit (LEO) operations and scalable to Geostationary Orbit (GEO), Lagrange points, and deep-space locations such as the Asteroid Belt.

Its engineering integrates:

- Artificial gravity via 4-5 rpm spin rate, delivering ~1g on outer decks.
- **Polar "bus terminal" docking** for efficient, safe, and separated inbound/outbound traffic.
- **SiC composite structures** for superior thermal, mechanical, and radiation resilience.
- **Closed-loop life support systems**, advanced radiation shielding, and dynamic attitude control.

The station is conceived as both a **standalone operational hub** and a **node in a larger interplanetary infrastructure**, supporting scientific research, industrial production, crew training, and long-term habitation. Its design draws on validated spaceflight data, terrestrial analogs, and advanced simulation models, making it ready for phased deployment with minimal technological gaps.

8.4.4.2 Executive Summary - Investors & Funding Partners Earth ONE represents a high-return, scalable infrastructure investment in the rapidly expanding orbital economy. The station is positioned as:

- A **commercial logistics hub** in LEO with premium services for cargo, crew, and research missions.
- A **platform for revenue generation** through hosting of government missions, private research modules, space tourism, and manufacturing in artificial gravity.
- An **asset with cross-market potential**, including deep-space logistics for lunar and Mars-bound operations.

The **low-risk phased build-out** leverages proven engineering concepts while opening high-value markets in aerospace, energy, biotechnology, and advanced manufacturing. Long-term revenue streams are

supported by service contracts, manufacturing royalties, and tourism packages. With its modular design and adaptable orbit strategies, Earth ONE provides both **stable returns** and a **gateway to future space markets**.

8.4.4.3 Executive Summary - Political & Societal Decision-Makers Earth ONE is a strategic capability platform for spacefaring nations and alliances. It delivers:

- **Sovereign access to orbital infrastructure**, reducing dependency on external actors.
- A **resilient hub** for international collaboration in science, exploration, and security.
- **Technological leadership** in sustainable, human-centric habitat design.
- **Dual-use readiness** for both civilian and defense-relevant missions.

By fostering **international cooperation** and aligning with long-term sustainability goals, Earth ONE strengthens geopolitical resilience, supports space governance frameworks, and enhances societal preparedness for humanity's expansion beyond Earth.

8.4.4.4 Executive Summary - General Public, Future Crew/Residents/Travelers, and Interested Readers Imagine living or working inside a **vast, rotating sphere above Earth**, where gravity feels natural, views of the planet are ever-changing, and communities thrive in an orbital city of up to 700 people.

Earth ONE is more than a station – it's a **new home in space**, offering:

- Comfortable living with artificial gravity, gardens, leisure zones, and social spaces.
- A safe, well-designed environment with world-class life support and medical care.
- Opportunities for science, work, tourism, and cultural exchange in a vibrant community.

Built for the long term, Earth ONE is designed to be **self-sustaining**, **safe**, **and inspiring**, creating a place where people can **live**, **work**, **and explore the future** together.

298

8.4.5 Al-Based Quality Assurance Concept - Documentation & Safety

8.4.5.1 Objective Ensure that all technical, organizational, and safety-relevant content of the *Sphere Space Station Earth ONE & Beyond* project is factually correct, consistent, and complete — and that life safety aspects (Safety) are verifiably met at all times.

8.4.5.2 QA Structure

QA		ΑI	
Level	Focus	Function	Methods
QA-1:	Fact-checking	LLM with	- Cross-check against internal
Fac-	(technology,	technical	"Single Source of Truth" (Sec.
tual	figures,	fact and	8.4.2) - Check against external
Accu-	dimensions,	standards	standards (ISO, NASA, ESA)
racy	processes)	check	, , , , ,
QA-2:	Uniformity	Semantic	- Detection of contradictions
Con-	between	compari-	(e.g., material density,
sis-	chapters and	son by Al	break-even timelines) -
tency	documents	-	Version comparison
QA-3:	Check that all	Al-	 Compare with master
Com-	mandatory	assisted	template for each document
plete-	content is	checklist	type - Flagging of MISSING
ness	included	review	items
QA-4:	Life safety	Al with	- Compare with Preamble
Safety	and	safety	criteria (Sec. 0.1) - Simulate
Com-	evacuation	rulebook	emergency scenarios -
pli-	standards	&	Red-flag detection
ance		standards	
		database	
QA-5:	Traceability &	Al-	- Auto-linking of internal
Trace-	source	supported	chapter numbers - Verification
ability	referencing	source-	that all external sources are
		linking	fully cited
		system	
QA-6:	Readability &	Language	- Adapt to pitch perspective -
Pre-	audience fit	model	Consistent formatting &
senta-		with	terminology
tion		audience	
Clar-		profile	
ity			

8.4.5.3 Al-Assisted QA Pipeline

1. **Import**: New or changed documents are automatically loaded into the Al QA workflow.

- 2. **Pre-Check (Syntax & Structure)**: Al checks format, chapter numbering, and table integrity.
- 3. Semantic Analysis:
 - Cross-document check (e.g., material data in 2.2 vs. 7.2.1)
 - Alignment of numerical values and terminology
- 4. **Safety Simulation**: Al simulates scenarios (e.g., fire, radiation leak, pressure loss) based on Sec. 2.1.5 & 2.1.6, compares procedures with standards, and flags deviations.
- 5. **Issue Tagging**:
 - CONTRADICTION conflicting information
 - MISSING missing mandatory content
 - PLACEHOLDER placeholder text without content
- 6. **QA Report**: Automatically generated table with:
 - Location (chapter, line)
 - QA category (see above)
 - Al recommendation for correction
- 7. **Review & Approval**: QA team reviews Al suggestions, confirms changes, and triggers versioning (Sec. 7.3).

8.4.5.4 QA Table Format (Example)

Chap- ter	QA Note	Description	Al Recommendation
2.2.4 vs. 7.2.1	CON- TRA- DIC- TION	SiC/SiC material density stated differently	Use consistent values from material specification
4.3.7 vs. 6.1.6	MISS- ING	Break-even calculation missing in expansion chapter	Insert figures from 4.3.7
3.3.5	_	Communication Cchannels not specified	Add social media and educational platforms

8.4.5.5 Safety-Specific QA Checkpoints

- **Technical Protection Systems**: Completeness of specifications (fire, radiation, meteoroids, biohazards)
- **Evacuation Logistics**: Pod capacity, access routes, drill frequency (Sec. 2.1.6)
- Redundancy Checks: Energy, life support, cooling
- Auditability: Safety protocols documented, verifiable, and versioned
- **Compliance**: Match with Preamble criteria & international safety standards

8.4.5.6 Operational Implementation

- Automation: Al QA runs after every document change or before each release
- Versioning: Each QA-approved version stored with review date and result
- **Dashboards**: Live overview of open QA findings, safety status, and document maturity level
- Lessons Learned: Al analyzes recurring error types and proposes structural improvements

301

8.4.6 Wow Factors

8.4.6.1 Why this matters now Earth ONE transforms spaceflight from **mission** to **habitat**: a scalable, safe, high-energy platform for research, industry, and culture in orbit – with a clear pathway to a connected network across the solar system. The following points show **why** the project generates momentum today.

8.4.6.2 Highlights (impact-first)

- Orbital City Scale urban life, day one. 127 m in diameter, ~700 residents: parks, schools, clinic – city life in orbit with a view of Earth. What once felt like science fiction becomes everyday reality, creating a magnet for talent, partners, and investment.
- Multi-Deck Gravity one structure, many gravities. 16 coaxial decks: from micro-g at the axis to near 1 g at the hull.
 Human health & comfort combined with micro-g for high-end research both at once, without compromise.
- Utility-scale Power in orbit 120 MW. 2×60 MW reactors + solar arrays + thermal storage: a power-plant-class system in orbit for industry, farming, propulsion & growth. Redundant by design built for operations, not just demonstration.
- Integrated Safety prepared for worst-case. Distributed evacuation pods, radiation-protected zones, fire compartments, independent life-support rings: fail-operational instead of "best case." Safety that builds confidence – for crew, regulators, and insurers alike.
- Solar-System Network Vision first node of many. Earth ONE is the starting hub for habitat and transport chains from Venus orbit to the Kuiper Belt: cycler routes, depots, shipyards. The marketplace of low Earth orbit grows into the economy of the solar system.
- Industrial-grade Documentation built to scale. Ten core documents, tables, diagrams, and an Al-driven QA pipeline in a single-source repository: auditable, investable, operationsready – industry-level standards from day one.

8.4.6.2a Evolution Wow Factors

- EVOL-00 The Beginning
 - A 127 m spherical station (Earth ONE), housing ~700 pioneers. Conceived as a minimal yet complete demonstra-

- tor, EVOL-00 validates the architecture in orbit: structural grid, safety assumptions, and end-to-end build-test-operate capability. It is the **birth certificate of an orbital city** modest in scale, immense in significance.
- The same 127 m sphere can also serve as the baseline for lightweight SphereSpaceCyclers and the SphereSpaceCraft family, enabling far-out missions with up to 112 crew on 10-plus-year journeys to Neptune, the Oort Cloud, and the outer solar system.
- EVOL-01 The City Comes Alive Scaling up to the Earth TWO generation:
 - Earth TWO Ball (Ø 254 m): Designed for 4,000+ residents, with 33 decks, harmonized gravity zones from microg to near-1 g, and significantly expanded habitability features.
 - Earth TWO Long Capsule (Ø 254 m × 508 m): Capacity for 10,000-20,000 residents, complete with full urban infrastructure ring trams, maglev spines, green parks, and cultural plazas. EVOL-01 is the leap from a pioneering capsule to a true orbital metropolis the visible awakening of humanity's first city in space.

8.4.6.3 Messaging snippets (copy-ready)

- **Tagline** (≤**10 words**): Earth ONE the first city you can orbit home.
- **10-second pitch:** A 127 m rotating habitat for ~700 people, delivering utility-scale power, multi-gravity research, and safety by design the first node of a solar-system economy.
- 30-second pitch: Earth ONE turns space into a place. A 127 m spherical habitat hosts ~700 residents with parks, schools, and clinics, while 16 decks provide micro-g to near-1 g in one structure. With 120 MW hybrid power and integrated safety (evac pods, radiation sanctuaries, redundant life support), it operates like a utility-class platform. It's the seed of a network extending from Venus orbit to the Kuiper Belt where research, industry, and culture meet in space.

8.4.6.4 Call to action

- **Partners:** Join the early builders (energy, robotics, life support, materials, XR public engagement).
- **Investors:** Co-fund **utility-scale orbit** clear milestones, auditable docs, scalable revenue models.

- Scientists: Exploit multi-gravity decks and connected observatories for experiments impossible on Earth.
 Public: Experience Earth ONE through VR/AR, citizen-science, and education kits the city in orbit belongs to all of us.

8.4.7 Appendix G: Backlog Potential Developments

This appendix consolidates potential developments across Governance, Outreach, Engineering, Science, Economics, and Operations. It serves as a living, prioritized repository that evolves independently of the main chapters, offering a stable and referenceable source for future work. Pointer subsections in the respective chapters link to the most relevant backlog items, keeping the primary narrative streamlined while enabling deeper exploration.

Structure

- 1. **Scope & Maintenance** outlines curation responsibilities, update cadence, and the definition of a "ready" item.
- 2. Tagging & IDs
 - Domain: GOV | OPS | ENG | SCI | SOC | SEC | SUS | ECON
 - Program: E1 (Earth ONE) | L1 (Lunar ONE) | E2 (Earth TWO)
 | B (Beyond)
 - Status: Idea → Draft → Exploration → Design → Pilot → Adopt
 - ID Schema: BL-<Domain>-<Program>-<NNN> (e.g. BL-ENG-E1-001)
- 3. **Prioritization Method** recommends using frameworks such as **RICE** or **WSJF**.
- 4. **Backlog List** items are ordered by priority and follow the minitemplate below.
- 5. **Change Log** records when items are added or updated.

Backlog Entry Mini-Template

- ID / Title
- Domain / Program / EVOL Target
- Short Description & Business Value
- Acceptance Criteria
- Dependencies / Cross-References
- Owner / Next Step / Target Date Bucket
- Score & Risks

Backlog Items

ID	Title
BL-OPS-E1-001	Integrated Build & Logistics Masterplan
BL-GOV-B-002	Solar-Alliance Governance Charter (Draft)
BL-SUS-E1-003	Earth-ONE Sustainability Playbook (Partial→Full)
BL-ENG-E1-004	Observatory / Detected-Outrigger Telescope
BL-ENG-E1-005	Spaceport & Orbital Shipyard Module
BL-ENG-E2-006	Habitat Expansion Path ("Earth TWO" Pre-Study)
BL-SOC-E1-007	Orbital Park & Culture Module
BL-SOC-B-008	VR/AR "Visit Earth ONE" & Citizen-Science
BL-SEC-E1-009	Resilience Scenarios: Dual-Failure (Reactor↓ + PV↓)
BL-ECON-B-010	Revenue Expansion & Financing Stages

Change Log

• Initial backlog created.

BL-ECON-B-010 Revenue Expansion & Financing Stages

Domain: ECONProgram: B

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Identify additional revenue streams and map financing stages to bolster economic viability for the broader programme.

Acceptance Criteria

- · Media rights package outlined
- · Technology licensing opportunities identified
- · Phase-wise investment plan drafted
- · Sensitivity analysis prepared

Dependencies / Cross-References

• Economics chapter

Owner / Next Step / Target Date

• Owner: TBD

Next Step: Model v0.1Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

• Risks: Market volatility; investor alignment

BL-ENG-E1-004 Observatory / Detected-Outrigger Telescope

Domain: ENGProgram: E1

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Design a telescope module on a de-rotated outrigger to extend Earth ONE's scientific reach without disturbing station rotation, enabling advanced astronomy and observation missions.

Acceptance Criteria

- · Demonstrated isolation from station rotation
- Established jitter budget
- Thermal and radiation shielding strategy
- · Defined data downlink pipeline

Dependencies / Cross-References

• Science chapter (details TBD)

Owner / Next Step / Target Date

• Owner: TBD

• Next Step: Feasibility Note

Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

• Risks: Structural integration; vibration control

BL-ENG-E1-005 Spaceport & Orbital Ship- yard Module

Domain: ENGProgram: E1

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Develop a dedicated docking and servicing complex that enables refuelling, maintenance, and in-orbit construction, creating new revenue streams and strategic value for Earth ONE.

Acceptance Criteria

- Defined dock capacity
- Propellant and xenon depot specification
- · On-orbit servicing standard operating procedures
- · Preliminary revenue stream outline

Dependencies / Cross-References

· Operations and Economics chapters

Owner / Next Step / Target Date

• Owner: TBD

Next Step: Layout v0.1Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

· Risks: Capital expenditure; operational complexity

BL-ENG-E2-006 Habitat Expansion Path ("Earth TWO" Pre-Study)

Domain: ENGProgram: E2

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Explore scalable habitat concepts that extend Earth ONE into a larger orbital settlement, evaluating options such as a second sphere, polar rings, or dock clusters to inform future "Earth TWO" development.

Acceptance Criteria

- Three scaling options analysed (second sphere, polar rings, dock cluster)
- Mass and power budgets for each option
- · Estimated crew capacity increase for each scenario

Dependencies / Cross-References

· Beyond program chapters

Owner / Next Step / Target Date

• Owner: TBD

Next Step: Trade StudyTarget Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

• Risks: Technological feasibility; cost scalability

BL-GOV-B-002 Solar-Alliance Governance Charter (Draft)

Domain: GOVProgram: B

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Draft a governance charter defining principles, membership, compliance with international frameworks, and dispute resolution mechanisms for the Solar Alliance, strengthening political legitimacy.

Acceptance Criteria

- Core principles articulated
- · Membership model outlined
- Compliance mapped to UN COPUOS
- Dispute resolution process defined
- Roadmap to memoranda of understanding

Dependencies / Cross-References

Governance Chapter 4

Owner / Next Step / Target Date

• Owner: TBD

• Next Step: Outline + Stakeholder Map

• Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSIF)

• Risks: Diplomatic complexity; legal harmonization challenges

BL-OPS-E1-001 Integrated Build & Logistics Masterplan

Domain: OPSProgram: E1

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Develop a comprehensive construction and logistics plan detailing launch cadence, assembly sequences, robotic roles, and risk mitigation. A structured masterplan underpins operational feasibility for Earth ONE.

Acceptance Criteria

- Gantt-style roadmap with phases and milestones
- Launch rate model including required vehicles per year
- · In-orbit assembly sequence and logistics strategy
- · Defined robotic assembly roles
- Risk burn-down plan

Dependencies / Cross-References

- Engineering §Assembly
- Operations §Launch

Owner / Next Step / Target Date

• Owner: TBD

• Next Step: Draft Plan v0.1

• Target Date: TBD

Score & Risks

Score: TBD (RICE/WSJF)

• Risks: Coordination complexity; technology readiness gaps

BL-SEC-E1-009 Resilience Scenarios: Dual-Failure (Reactor↓ + PV↓)

Domain: SECProgram: E1

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Analyse and prepare for simultaneous reactor and photovoltaic failures to ensure station survivability through robust contingency planning.

Acceptance Criteria

- · Load-shedding plan defined
- Emergency heat-sink strategy
- Mutual-aid protocol with external agencies
- Training drills specified

Dependencies / Cross-References

· Safety and Security chapters

Owner / Next Step / Target Date

• Owner: TBD

• Next Step: FMEA Update

• Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

• Risks: Cascading system failures; limited redundancy

BL-SOC-B-008 VR/AR "Visit Earth ONE" & Citizen-Science

Domain: SOCProgram: B

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Develop immersive virtual experiences and citizen-science programmes that allow the public to engage with Earth ONE in real time, strengthening outreach and educational impact.

Acceptance Criteria

- Live telemetry feeds integrated
- · Educational school kits prepared
- · Data protection measures defined
- · Engagement evaluation metrics established

Dependencies / Cross-References

• Outreach Chapter 5

Owner / Next Step / Target Date

• Owner: TBD

• Next Step: Prototype Brief

• Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

• **Risks:** Privacy concerns; technical latency

BL-SOC-E1-007 Orbital Park & Culture Module

Domain: SOCProgram: E1

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Create a cultural and recreational module featuring greenery and event spaces to enhance crew well-being and public engagement, showcasing Earth ONE as a living habitat.

Acceptance Criteria

- · Biological load and maintenance plan defined
- Safety concept for operation in 0.8-1g environments
- Programme formats specified (concerts, exhibitions, etc.)

Dependencies / Cross-References

· Habitability chapter

Owner / Next Step / Target Date

Owner: TBD

• **Next Step:** User Journey + Human-Robot Interaction study

• Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

• Risks: Life-support load; operational safety

BL-SUS-E1-003 Earth-ONE Sustainability Playbook (Partial→Full)

Domain: SUSProgram: E1

• EVOL Target: EVOL-00

• Status: Draft

Short Description & Business Value

Translate theoretical self-sustainability models into a practical pathway for Earth ONE, defining recycling targets, module upgrades, and metrics that guide the transition from partial to full sustainability.

Acceptance Criteria

- Target recycling rates for water, air, and nutrients
- Module roadmap (Bio-Regeneration v1→v2)
- Defined KPIs
- Metrics and telemetry plan

Dependencies / Cross-References

Chapter 7 Sustainability

Owner / Next Step / Target Date

• Owner: TBD

• Next Step: KPI Set & Measurement Chain

• Target Date: TBD

Score & Risks

• Score: TBD (RICE/WSJF)

Risks: Technology maturation; resource availability