

Inteligencia Artificial Representación de Conocimiento Redes Semántcas

Ing. Enrique González, PhD

Departamento de Ingeniería de Sistemas

Agenda – RdK

1 - Representación del Conocimiento

Conceptos y Definiciones

2 - Tipos de Representación

- Conocimiento Relacional
- Conocimiento Heredable
- Conocimiento Deductivo
- Conocimiento Procedimental

3 - Problemas de Representación

- Atributos Primitivas Conjuntos
- Problema Marco

4 - Taller

Redes Semánticas

Introducción – Semántica vs Sintaxis

Semántica

relación entre una palabra y aquello a lo que se refiere

Sintaxis

la forma en que las palabras se organizan

margarita es una flor

flor(margarita)

margarita tiene tallo

tienetallo(margarita)

 $\forall x$: flor(x) \rightarrow tienetallo(x)

toda flor tiene tallo

Introducción – Correspondencia RdK

Propiedades Deseables

- Suficiencia de la Representación
 - poder representar todos los tipos de conocimiento
- Suficiencia Deductiva
 - capacidad para generar nuevas estructuras de conocimiento
- Eficiencia Deductiva
 - poder agregar información a las estructuras de deducción
- Eficiencia en la Adquisición
 - facilidad para obtener información

Conocimiento Relacional

Bases de Datos

- tuplas que asocian datos en forma estructurada
- queries sobre un modelo relacional

Características

- posee poca suficiencia deductiva
- simple de entender y usar
- soporte para otros mecanismos más complejos

Jugador	Altura	Peso	Patea
Miguel	1.80	60	Derecha
Adith	1.78	63	Derecha
Juan Pablo	1.75	58	Derecha
Oscar	1.81	65	Izquierda

jugador(Miguel, 1.80, 60, Derecha)

Conocimiento Heredable

- Estructuras de Ranura y Relleno
 - Redes Semánticas
 - Sistemas de Marcos
 - Guiones
- Inferencia por Herencia
 - Objetos organizados en clases asimilables a conjuntos
 - "es-un" → relación de subconjunto
 - "instancia-de" → relación de pertenencia a un conjunto

Conocimiento Deductivo

- Lógica de Predicados
 - descripción formal mediante hechos y reglas para realizar inferencia lógica
 - apropiada para describir relaciones entre los objetos
 - facilita expresión de reglas

 $\forall x: hombre(x) \rightarrow mortal(x)$

Todos los hombres son mortales

 $\forall x,y : golpea(x,y) \rightarrow hacefalta(x)$

Si x golpea a y entonces x hace falta

Conocimiento Procedimental

- Reglas de Producción Sistemas Expertos
 - conjunto de reglas SI condición ENT acción
 - evaluadas simultáneamente
 - disparo selectivo
 - encadenamiento genera proceso de inferencia
- Programación Procedural
 - secuencia operativa a realizar
 - lenguajes imperativos (Java, C++, etc)

Características de los Atributos

- ¿Existen atributos generales?
 - Atributos especiales: "instancia-de" y "es-un"
 - herencia de propiedades
- ¿Existen relaciones entre atributos?
 - atributos pueden ser a la vez entidades representables

Inversos

Jerarquía de atributos es-un

- Razonar sobre los valores
 - tipo de valor
 - restricción del valor
 - reglas de cómputo
 - reglas que describen acciones si se conoce un valor

Atributos univaluados

atributos que toman un solo valor

Edad

Granularidad

- ¿A qué nivel se debe representar el conocimiento?
 - primitivas de bajo nivel de granularidad

padre(John, Susan) ← hijo(Susan, John)

primitivas que generan todas las posibilidades

vislumbró(John, Susan)

‡

ver(John, Susan, duracion(breve), tiempo(pasado))

Represenación e Conjuntos

- ¿Cómo se representan los conjuntos de objetos?
 - Problema de Ambigüedad Semántica
 - propiedad del conjunto vs propiedad de los miembros
 - elefante(grande)
 - Definición de un Conjunto
 - por Extensión
 - enumerar todos los elementos
 - fácil determinar igualdad y pertenencia
 - por Comprensión
 - regla general que describe a los elementos
 - no requiere conocer explícitamente todos los elementos

Problema Marco

- ¿Cómo se representan eficientemente de los hechos que cambian y de los que no al realizar una búsqueda?
 - Ejemplos
 - hecho que no puede cambiar
 - debajo(suelo, techo)
 - hechos que pueden cambiar
 - izquierda(silla, mesa)
 - frente(mesa, televisor)

RdK – Redes Semánicas

Conocimiento Heredable

Redes Semánticas

- Grafo que representa relaciones entre conceptos entre sí
 - relaciones de herencia "es-un" e "insancia-de"
- Grafo que asocia atributos a los conceptos
 - arcos representan atributos
 - nodos representan objetos y valores

"es-un" se refiere a que una clase esta contenida en otra

"instancia-de" significa que un elemento pertenece a una clase

Conocimiento Heredable - Redes Semánticas Ejemplo

TALLER – REDES SEMÁNTICAS

Redes Semánticas en Prolog

- Las instancias se representan por constantes
- Las clases se representan por constantes
- Una constante debe representar la clase inicial de la jerarquía
- Las relaciones clase-superclase se representan por hechos es_un
- es_un(<clase>,<super-clase>)
- Las relaciones instancia-clases se representan por hechos inst
- inst(<instancia>,<clase>)
- Cada propiedad se representa por un predicado ternario
- prop(<instancia o clase>,,propiedad>,<valor>)
- Las propiedades de una instancia son una lista de pares atributo-valor

TALLER – REDES SEMÁNTICAS

Actividad - Implementar en Prolog el Ejemplo de Redes Semánticas visto en Clase

- 1- Diseñar el mecanismo de herencia de propiedades utilizando Prolog.
- 2- Validar el correcto funcionamiento con el ejemplo base visto en clase.
- 3- Ampliar el ejemplo para crear una rama en la cuál un equipo de futbol es la instancia final de una jerarquía.

Bibliografía

- Russell & Norvig, Artificial Intelligence: A Modern Approach.
- E. Rich. Inteligencia Artificial. 1994.
- Jorge Baier, Redes Semanticas y PLN en Prolog. PUC de Chile, http://jabaier.sitios.ing.uc.cl/iic2612/leng_natural1.pdf.

Inteligencia Artificial Representación de Conocimiento Redes Semántcas

Ing. Enrique González, PhD

egonzal@javeriana.edu.co

Departamento de Ingeniería de Sistemas