UNIVERSITY OF ABERDEEN SESSION 2014–2015

Degree Examination in EG3521 Engineering Thermodynamics $0^{\rm th}$ May 2015 00.00-00.00

Notes: (i) Ca

- (i) Candidates ARE permitted to use the approved calculator.
- (ii) Candidates ARE permitted to use steam tables, which will be provided.
- (iii) Candidates ARE permitted to use refrigerant tables, which will be provided.
- (iv) Candidates ARE permitted to use psychrometric chart, which will be provided.
- (v) Data sheets are attached to the paper.

PLEASE NOTE THE FOLLOWING

- (i) You **must not** have in your possession any material other than that expressly permitted in the rules appropriate to this examination. Where this is permitted, such material **must not** be amended, annotated or modified in any way.
- (ii) You **must not** have in your possession any material that could be determined as giving you an advantage in the examination.
- (iii) You **must not** attempt to communicate with any candidate during the exam, either orally or by passing written material, or by showing material to another candidate, nor must you attempt to view another candidate's work.

Failure to comply with the above will be regarded as cheating and may lead to disciplinary action as indicated in the Academic Quality Handbook (www.abdn.ac.uk/registry/quality/appendix7x1.pdf) Section 4.14 and 5.

Candidates must attempt all questions.

- (a) The volume ratios of compression and expansion for a diesel engine are 15.3 and 7.5, respectively. The pressure and temperature at the beginning of the compression are 1 bar and 27 °C. Assume that the volume at the end of the isentropic compression is 1 m³, determine:
 - (i) Mean effective pressure $\left(\text{MEP} = \frac{W_{\text{net}}}{V_{\text{max}} V_{\text{min}}}\right);$ [7 marks]
 - (ii) Cycle efficiency $\left(\eta_{\text{Diesel}} = \frac{W_{\text{net}}}{\text{Heat Supplied}}\right)$. [3 marks]
- (b) In an ideal air-standard Brayton cycle, air enters the compressor at 0.1 MPa and 15°C and leaves at 1 MPa. Assuming that the maximum temperature of the cycle is 1100°C:
 - (i) Sketch Pv (pressure \times specific volume) and Ts (temperature \times specific entropy) diagrams for the cycle, numbering each stage; [2 marks]
 - (ii) Calculate the temperature of the fluid leaving the compressor and the turbine; [2 marks]
 - (iii) Determine the efficiency of the cycle $\left(\eta_{\text{Brayton}} = \frac{W_{\text{net}}}{\text{Heat Supplied}}\right);$ [2 marks]
 - (iv) For the efficiency of the compressor and the turbine of 80% and 85%, respectively, and the pressure drop between the compressor and the turbine of 15 kPa, calculate the work in the compressor and turbine, and the efficiency of the cycle.

 [4 marks]

Assume that air behaves as an ideal gas with the following properties: $MW = 29 \text{ g.mol}^{-1}$, $C_p = 1.005 \text{ kJ.}(\text{kg.K})^{-1}$ and $C_v = 0.718 \text{ kJ.}(\text{kg.K})^{-1}$, where MW is the molar mass and C_p and C_v are the heat capacities at constant pressure and volume, respectively. Also, given the following relations for isentropic operations:

$$TV^{\gamma-1} = \text{constant}, \ TP^{\frac{1-\gamma}{\gamma}} = \text{constant and} \ PV^{\gamma} = \text{constant}, \ \text{with } \gamma = \frac{C_p}{C_v}$$

(a) A geothermal power station operating with Rankine cycle uses propane (n-C₃) as working fluid to produce power (W_T) in a turbine with efficiency (η_T) of 90%. Propane is vaporised by geothermal water (i.e., brine, A-B in the diagram) at 90°C. After condensed, propane is driven to a heat exchanger and the cycle continues. The mass flow rate of propane (\dot{m}_{C3}) is 250 kg.s⁻¹ and the heat capacity at constant pressure (C_p) of brine is 3565.5 J.(kg.K)⁻¹. Conditions for propane and brine flows are described in the Table below.

Stage	P	\mathbf{T}	State	Quality	h	S
	(bar)	$(^{o}\mathbf{C})$			$(\mathrm{kJ.kg^{-1}})$	$(\mathrm{kJ.(kg.K})^{-1})$
1	40	100	(a)	_	(b)	(c)
\parallel 2	10	_	_	(d)	(e)	(f)
3	_	_	(\mathbf{g})	_	(h)	(i)
4	(j)	_	(k)	_	(l)	_
\mathbf{A}	_	90	_	_	_	_
В	_	30	_	_	_	_

Table 1: Conditions of propane and brine in the cycle.

- (i) In this Table, determine (a)-(l). [6 marks]
- (ii) Calculate the power produced by the turbine (W_T) and the heat extracted in the condenser (Q_C) in MW. [2 marks]

- (iii) Calculate the mass flow rate of brine (A-B) in $kg.s^{-1}$. [2 marks]
- (iv) Sketch the Ts (temperature \times specific entropy) diagram for the process indicating the liquid and vapour saturated lines and each stage of the n-C₃ Rankine cycle. [3 marks]

To solve this problem, you should assume that the saturated liquid streams are incompressible, and therefore dh = vdP (where h, v and P are specific enthalpy, volume and pressure, respectively). Quality of the vapour is expressed as

$$x_j = \frac{\Psi_j - \Psi_f}{\Psi_g - \Psi_f}$$
 with $\Psi = \{h, s\}$,

where s is the entropy. Efficiency of the turbine (η_{Turbine}) is given by,

$$\eta_{\text{Turbine}} = \frac{h_2 - h_1}{h_{2s} - h_1}$$

where h_{2s} is the enthalpy of stream 2 assuming ideal turbine performance (i.e., reversible expansion).

- (b) Air contained in a piston-cylinder system undergoes three consecutive processes,
 - Process 1–2: Isobaric cooling with P₁=69 kPa and V₁=0.11 m³;
 - Process 2–3: Isochoric heating with P₃=345 kPa;
 - Process 3–1: Polytropic expansion, with PV = constant.
 - (i) Calculate V_2 (in m^3). [2 marks]
 - (ii) Calculate the work (in kJ) for each process. [3 marks]
 - (iii) Sketch the PV (pressure \times volume) diagram for these processes. [2 marks]

(a) The energy conservation equation for a steady flow device with one inlet and one outlet can be written in the form:

$$\dot{Q} - \dot{W}_s = \dot{m} \left(c_p T_{\text{outlet}} + \frac{u_{\text{outlet}}^2}{2} \right) - \dot{m} \left(c_p T_{\text{inlet}} + \frac{u_{\text{inlet}}^2}{2} \right).$$

- (i) Explain what the fluxes on the right-hand side of this equation represent. [2 marks]
- (ii) What assumptions are required to derive this equation? [4 marks]
- (b) The equation given above is valid for steady flow devices with one inlet and one outlet. Under the same modelling assumptions, state a modified version of this formula that is valid for steady flow devices with one inlet (whose properties are labelled 1) and two outlets (labelled 2 and 3). State an equation that represents steady mass conservation in this case.

 [4 marks]
- (c) Gas in a steady flow device with a circular inlet and two circular outlets does shaft work at a rate of 400 kW. The remaining known inlet and outlet properties are:

Property	Inlet 1	Outlet 2	Outlet 3	Units
Diameter, d	0.05	0.2	0.5	m^2
Volume flux, q	1.8	0.5	20	m^3/s
Temperature, T	80	70	30	$^{\circ}\mathrm{C}$
Pressure, p	200		110	kPa

If the gas behaves like an ideal gas with a gas specific gas constant $R = 250 \,\mathrm{J/(kg.K)}$ and specific heat capacity $c_p = 1000 \,\mathrm{J/(kg.K)}$, then:

- (i) Calculate the fluid velocity through each inlet and outlet; [3 marks]
- (ii) Calculate the gas pressure at outlet 2; [5 marks]
- (iii) Determine whether the steady flow device heats the gas or whether the gas heats the steady flow device. [2 marks]

(a) A change in enthalpy dh, entropy ds and pressure dp in an ideal gas are related through

$$dh = Tds + Vdp$$

where T is the absolute temperature and V is the specific volume.

Show that the change in entropy between the inlet and outlet of a compressor is given by

$$s_{\text{outlet}} - s_{\text{inlet}} = c_p \ln \left(\frac{T_{\text{outlet}}}{T_{\text{inlet}}} \right) - R \ln \left(\frac{p_{\text{outlet}}}{p_{\text{inlet}}} \right).$$

Here c_p is the specific heat capacity at constant pressure and R is the specific gas constant, which can both be assumed to be constant. [6 marks]

(b) If the flow through the compressor is isentropic, then show that

$$rac{T_{
m outlet}}{T_{
m inlet}} = \left(rac{p_{
m outlet}}{p_{
m inlet}}
ight)^{1-1/\gamma},$$

where γ is the ratio of the specific heat capacities.

[4 marks]

(c) An ideal gas with $R = 260 \,\mathrm{J/(kg\,K)}$ and $c_p = 900 \,\mathrm{J/(kg\,K)}$ flows through a well designed compressor in which the steady flow energy equation is given by

$$\dot{W}_s = \dot{m} \left(h_{\text{inlet}} - h_{\text{outlet}} \right).$$

The compressor is doing work on the gas at a rate of $500 \,\mathrm{kW}$, while the mass flux through the compressor is $4 \,\mathrm{kg/s}$. If the compressor has an inlet with pressure $p_{\mathrm{inlet}} = 100 \,\mathrm{kPa}$ and temperature $T_{\mathrm{inlet}} = 25 \,\mathrm{^{\circ}C}$, and an outlet with pressure $p_{\mathrm{outlet}} = 350 \,\mathrm{kPa}$, then:

- (i) Calculate the actual gas temperature at the outlet. [3 marks]
- (ii) Determine the isentropic efficiency of the compressor. [7 marks]

An air stream with relative humidity of $0.01\,\mathrm{kg}$ water/kg dry air passes through a duct at the rate of $1.2\,\mathrm{kg}\,\mathrm{s}^{-1}$. In the duct the air is first heated from 5°C to 20°C by heating coils and then humidified via the injection of hot steam. Air leaves the device at 25°C with a relative humidity of 60%. The air pressure is $101.325\,\mathrm{kPa}$ throughout.

- (a) Determine the rate of heat addition in the heating section. [5 marks]
- (b) Determine the specific humidity of the air after the humidifying section. [2 marks]
- (c) Determine the mass flow rate of steam required in the humidifying section. [5 marks]
- (d) Explain why adding steam may be beneficial in this process. [2 marks]
- (e) Sketch and identify the evolution of the different stages of this process on rough axes of a psychrometric chart. [6 marks]

You may assume that $c_p = 1005 \,\mathrm{J/(kg~K)}$, $R_a = 287 \,\mathrm{J/(kg~K)}$, while the enthalpy of saturated water vapour is 2510.1 kJ/kg at 5°C and 2537.4 kJ/kg at 20°C.

END OF PAPER

Appendix A: Physical Constants and Conversion Factors

PHYSICAL CONSTANTS

```
Avogadro's number, N_A=6.023\times 10^{26} molecules/kgmole Boltzmann's constant, k=1.381\times 10^{-23} J/(molecule·K) Electron charge, e=1.602\times 10^{-19} C Electron mass, m_e=9.110\times 10^{-31} kg Faraday's constant, F=96,487 kC/kgmole electrons = 96,487 kJ/(V·kgmole electrons) Gravitational acceleration (standard), g=32.174 ft/s² = 9.807 m/s² Gravitational constant, k_G=6.67\times 10^{-11} m³/(kg·s²) Newton's second law constant, g_c=32.174 lbm·ft/(lbf·s²) = 1.0 kg·m/(N·s²) Planck's constant, \hbar=6.626\times 10^{-34} J·s/molecule Stefan-Boltzmann constant, \sigma=0.1714\times 10^{-8} Btu/(h·ft²·R⁴) = 5.670\times 10^{-8} W/(m²·k⁴) Universal gas constant \Re=1545.35 ft·lbf/(lbmole·R) = 8314.3 J/(kgmole·K) = 8.3143 kJ/(kgmole·K) = 1.9858 Btu/(lbmole·R) = 1.9858 kcal/(kgmole·K) = 1.9858 cal/(gmole·K) = 0.08314 bar·m³/(kgmole·K) = 82.05 L·atm/(kgmole·K) Velocity of light in a vacuum, c=9.836\times 10^8 ft/s = 2.998\times 10^8 m/s
```

UNIT DEFINITIONS

```
1 coulomb (C) = 1 A·s
                                                                      1 ohm (\Omega) = 1 \text{ V/A}
1 dyne = 1 \text{ g} \cdot \text{cm/s}^2
                                                                      1 pascal (Pa) = 1 \text{ N/m}^2
1 erg = 1 dyne·cm
                                                                      1 poundal = 1 lbm \cdot ft/s^2
1 farad (F) = 1 \text{ C/V}
                                                                      1 siemens (S) = 1 A/V
1 henry (H) = 1 \text{ Wb/A}
                                                                      1 slug = 1 lbf \cdot s^2/ft
1 hertz (Hz) = 1 cycle/s
                                                                      1 tesla (T) = 1 Wb/m^2
1 joule (J) = 1 \text{ N} \cdot \text{m}
                                                                      1 volt (V) = 1 W/A
                                                                      1 watt (W) = 1 J/s
1 lumen = 1 candela·steradian
                                                                      1 weber (Wb) = 1 V·s
1 lux = 1 lumen/m<sup>2</sup>
1 newton (N) = 1 \text{ kg} \cdot \text{m/s}^2
```

CONVERSION FACTORS

Length	Energy
$1 \text{ m} = 3.2808 \text{ ft} = 39.37 \text{ in} = 10^2 \text{ cm} = 10^{10} \text{ Å}$	$1 J = 1 N \cdot m = 1 kg \cdot m^2/s^2 = 9.479 \times 10^{-4} Btu$
$1 \text{ cm} = 0.0328 \text{ ft} = 0.394 \text{ in} = 10^{-2} \text{ m} = 10^{8} \text{ Å}$	1 kJ = 1000 J = 0.9479 Btu = 238.9 cal
$1 \text{mm} = 10^{-3} \text{m} = 10^{-1} \text{cm}$	$1 \text{ Btu} = 1055.0 \text{ J} = 1.055 \text{ kJ} = 778.16 \text{ ft} \cdot \text{lbf} = 252 \text{ cal}$
1 km = 1000 m = 0.6215 miles = 3281 ft	$1 \text{ cal} = 4.186 \text{ J} = 3.968 \times 10^{-3} \text{ Btu}$
1 in = 2.540 cm = 0.0254 m	1 Cal (in food value) = $1 \text{ kcal} = 4186 \text{ J} = 3.968 \text{ Btu}$
1 ft = 12 in = 0.3048 m	$1 \text{ erg} = 1 \text{ dyne} \cdot \text{cm} = 1 \text{ g} \cdot \text{cm}^2/\text{s}^2 = 10^{-7} \text{J}$
1 mile = 5280 ft = 1609.36 m = 1.609 km	$1 \text{ eV} = 1.602 \times 10^{-19} \text{J}$

(Continued)

CONVERSION FACTORS

(Continued)

Area

$$1 m^2 = 10^4 cm^2 = 10.76 ft^2 = 1550 in^2$$

$$1 ft^2 = 144 in^2 = 0.0929 m^2 = 929.05 cm^2$$

$$1 cm^2 = 10^{-4} m^2 = 1.0764 \times 10^{-3} ft^2 = 0.155 in^2$$

$$1 in^2 = 6.944 \times 10^{-3} ft^2 = 6.4516 \times 10^{-4} m^2 = 6.4516 cm^2$$

Volume

$$\begin{split} 1 \text{ m}^3 &= 35.313 \text{ ft}^3 = 6.1023 \times 10^4 \text{ in}^3 = 1000 \text{ L} = 264.171 \text{ gal} \\ 1 \text{ L} &= 10^{-3} \text{m}^3 = 0.0353 \text{ ft}^3 = 61.03 \text{ in}^3 = 0.2642 \text{ gal} \\ 1 \text{ gal} &= 231 \text{ in}^3 = 0.13368 \text{ ft}^3 = 3.785 \times 10^{-3} \text{ m}^3 \\ 1 \text{ ft}^3 &= 1728 \text{ in}^3 = 28.3168 \text{ L} = 0.02832 \text{ m}^3 = 7.4805 \text{ gal} \\ 1 \text{ in}^3 &= 16.387 \text{ cm}^3 = 1.6387 \times 10^{-5} \text{ m}^3 = 4.329 \times 10^{-3} \text{ gal} \end{split}$$

Mass

1 kg =
$$1000 \, \text{g}$$
 = $2.2046 \, \text{lbm}$ = $0.0685 \, \text{slug}$
1 lbm = $453.6 \, \text{g}$ = $0.4536 \, \text{kg}$ = $3.108 \times 10^{-2} \, \text{slug}$
1 slug = $32.174 \, \text{lbm}$ = $1.459 \times 10^4 \, \text{g}$ = $14.594 \, \text{kg}$

Force

1 N =
$$10^5$$
 dyne = 1 kg·m/s² = 0.225 lbf
1 lbf = 4.448 N = 32.174 poundals
1 poundal = 0.138 N = 3.108 × 10^{-2} lbf

Power

$$\begin{array}{l} 1~W=1~J/s=1~kg\cdot m^2/s^3=3.412~Btu/h=1.3405~\times\,10^{-3}~hp\\ 1~kW=1000~W=3412~Btu/h=737.3~ft\cdot lbf/s=1.3405~hp\\ 1~Btu/h=0.293~W=0.2161~ft\cdot lbf/s=3.9293~\times\,10^{-4}~hp\\ 1~hp=550~ft\cdot lbf/s=33000~ft\cdot lbf/min=2545~Btu/h=746~W\\ \end{array}$$

Pressure

$$\begin{split} 1 & Pa = 1 \text{ N/m}^2 = 1 \text{ kg/(m \cdot s^2)} = 1.4504 \times 10^{-4} \text{ lbf/in}^2 \\ 1 & \text{ lbf/in}^2 = 6894.76 \, Pa = 0.068 \, \text{atm} = 2.036 \, \text{in Hg} \\ 1 & \text{ atm} = 14.696 \, \text{lbf/in}^2 = 1.01325 \times 10^5 \, Pa \\ & = 101.325 \, \text{kPa} = 760 \, \text{mm Hg} \\ 1 & \text{ bar} = 10^5 \, Pa = 0.987 \, \text{atm} = 14.504 \, \text{lbf/in}^2 \\ 1 & \text{ dyne/cm}^2 = 0.1 \, Pa = 10^{-6} \, \text{bar} = 145.04 \times 10^{-7} \, \text{lbf/in}^2 \\ 1 & \text{ in Hg} = 3376.8 \, Pa = 0.491 \, \text{lbf/in}^2 \\ 1 & \text{ in H}_2O = 248.8 \, Pa = 0.0361 \, \text{lbf/in}^2 \\ \end{split}$$

MISCELLANEOUS UNIT CONVERSIONS

Specific Heat Units

 $1 \ Btu/(lbm \cdot {}^{\circ}F) = 1 \ Btu/(lbm \cdot R)$ $1 \ kJ/(kg \cdot K) = 0.23884 \ Btu/(lbm \cdot R) = 185.8 \ ft \cdot lbf/(lbm \cdot R)$ $1 \ Btu/(lbm \cdot R) = 778.16 \ ft \cdot lbf/(lbm \cdot R) = 4.186 \ kJ/(kg \cdot K)$

Energy Density Units

1 kJ/kg = $1000 \,\text{m}^2/\text{s}^2 = 0.4299 \,\text{Btu/lbm}$ 1 Btu/lbm = $2.326 \,\text{kJ/kg} = 2326 \,\text{m}^2/\text{s}^2$

Energy Flux

1 W/m² = 0.317 Btu/(h·ft²) 1 Btu/(h·ft²) = 3.154 W/m²

Heat Transfer Coefficient

1 W/($m^2 \cdot K$) = 0.1761 Btu/($h \cdot ft^2 \cdot R$) 1 Btu/($h \cdot ft^2 \cdot R$) = 5.679 W/($m^2 \cdot K$)

Thermal Conductivity

1 W/(m·K) = 0.5778 Btu/(h·ft·R) 1 Btu/(h·ft·R) = 1.731 W/(m·K)

Temperature

$$\begin{split} T(^{\circ}\text{F}) &= \frac{9}{5} \, T(^{\circ}\text{C}) + 32 = T(\text{R}) - 459.67 \\ T(^{\circ}\text{C}) &= \frac{5}{9} \, [T(^{\circ}\text{F}) - 32] = T(\text{K}) - 273.15 \\ T(\text{R}) &= \frac{9}{5} \, T(\text{K}) = (1.8) T(\text{K}) = T(^{\circ}\text{F}) + 459.67 \\ T(\text{K}) &= \frac{5}{9} \, T(\text{R}) = T(\text{R})/1.8 = T(^{\circ}\text{C}) + 273.15 \end{split}$$

Density

$$\begin{split} &1 \, lbm/ft^3 = 16.0187 \, kg/m^3 \\ &1 \, kg/m^3 = 0.062427 \, lbm/ft^3 = 10^{-3} \, g/cm^3 \\ &1 \, g/cm^3 = 1 \, kg/L = 62.4 \, lbm/ft^3 = 10^3 \, kg/m^3 \\ &\textbf{Viscosity} \\ &1 \, Pa \cdot s = 1 \, N \cdot s/m^2 = 1 \, kg/(m \cdot s) = 10 \, poise \\ &1 \, poise = 1 \, dyne \cdot s/cm^2 = 1 \, g/(cm \cdot s) = 0.1 \, Pa \cdot s \\ &1 \, poise = 2.09 \times 10^{-3} \, lbf \cdot s/ft^2 = 6.72 \times 10^{-2} \, lbm/(ft \cdot s) \end{split}$$

1 centipoise = 0.01 poise = 10^{-3} Pa·s 1 lbf·s/ft² = 1 slug/(ft·s) = 47.9 Pa·s = 479 poise 1 stoke = 1 cm²/s = 10^{-4} m²/s = 1.076×10^{-3} ft²/s 1 centistoke = 0.01 stoke = 10^{-6} m²/s = 1.076×10^{-5} ft²/s 1 m²/s = 10^4 stoke = 10^6 centistoke = 10.76 ft²/s

TABLE A-16 Properties of Saturated Propane (Liquid–Vapor): Temperature Table

		Specific Volume m ³ /kg			Internal Energy kJ/kg				Entro kJ/kg		
Temp. °C	Press.	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor $v_{ m g}$	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid $h_{ m f}$	Evap. $h_{\rm fg}$	Sat. Vapor $h_{\rm g}$	Sat. Liquid s _f	Sat. Vapor	Temp.
-100	0.02888	1.553	11.27	-128.4	319.5	-128.4	480.4	352.0	-0.634	2.140	-100
-90	0.06426	1.578	5.345	-107.8	329.3	-107.8	471.4	363.6	-0.519	2.055	-90
-80	0.1301	1.605	2.774	-87.0	339.3	-87.0	462.4	375.4	-0.408	1.986	-80
-70	0.2434	1.633	1.551	-65.8	349.5	-65.8	453.1	387.3	-0.301	1.929	-70
-60	0.4261	1.663	0.9234	-44.4	359.9	-44.3	443.5	399.2	-0.198	1.883	-60
-50	0.7046	1.694	0.5793	-22.5	370.4	-22.4	433.6	411.2	-0.098	1.845	-50
-40	1.110	1.728	0.3798	-0.2	381.0	0.0	423.2	423.2	0.000	1.815	-40
-30	1.677	1.763	0.2585	22.6	391.6	22.9	412.1	435.0	0.096	1.791	-30
-20	2.444	1.802	0.1815	45.9	402.4	46.3	400.5	446.8	0.190	1.772	-20
-10	3.451	1.844	0.1309	69.8	413.2	70.4	388.0	458.4	0.282	1.757	-10
0	4.743	1.890	0.09653	94.2	423.8	95.1	374.5	469.6	0.374	1.745	0
4	5.349	1.910	0.08591	104.2	428.1	105.3	368.8	474.1	0.410	1.741	4
8	6.011	1.931	0.07666	114.3	432.3	115.5	362.9	478.4	0.446	1.737	8
12	6.732	1.952	0.06858	124.6	436.5	125.9	356.8	482.7	0.482	1.734	12
16	7.515	1.975	0.06149	135.0	440.7	136.4	350.5	486.9	0.519	1.731	16
20	8.362	1.999	0.05525	145.4	444.8	147.1	343.9	491.0	0.555	1.728	20
24	9.278	2.024	0.04973	156.1	448.9	158.0	337.0	495.0	0.591	1.725	24
28	10.27	2.050	0.04483	166.9	452.9	169.0	329.9	498.9	0.627	1.722	28
32	11.33	2.078	0.04048	177.8	456.7	180.2	322.4	502.6	0.663	1.720	32
36	12.47	2.108	0.03659	188.9	460.6	191.6	314.6	506.2	0.699	1.717	36
40	13.69	2.140	0.03310	200.2	464.3	203.1	306.5	509.6	0.736	1.715	40
44	15.00	2.174	0.02997	211.7	467.9	214.9	298.0	512.9	0.772	1.712	44
48	16.40	2.211	0.02714	223.4	471.4	227.0	288.9	515.9	0.809	1.709	48
52	17.89	2.250	0.02459	235.3	474.6	239.3	279.3	518.6	0.846	1.705	52
56	19.47	2.293	0.02227	247.4	477.7	251.9	269.2	521.1	0.884	1.701	56
60	21.16	2.340	0.02015	259.8	480.6	264.8	258.4	523.2	0.921	1.697	60
65	23.42	2.406	0.01776	275.7	483.6	281.4	243.8	525.2	0.969	1.690	65
70	25.86	2.483	0.01560	292.3	486.1	298.7	227.7	526.4	1.018	1.682	70
75	28.49	2.573	0.01363	309.5	487.8	316.8	209.8	526.6	1.069	1.671	75
80	31.31	2.683	0.01182	327.6	488.2	336.0	189.2	525.2	1.122	1.657	80
85	34.36	2.827	0.01011	347.2	486.9	356.9	164.7	521.6	1.178	1.638	85
90	37.64	3.038	0.008415	369.4	482.2	380.8	133.1	513.9	1.242	1.608	90
95	41.19	3.488	0.006395	399.8	467.4	414.2	79.5	493.7	1.330	1.546	95
96.7	42.48	4.535	0.004535	434.9	434.9	454.2	0.0	457.2	1.437	1.437	96.7

Source: Tables A-16 through A-18 are calculated based on B. A. Younglove and J. F. Ely, "Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane and Normal Butane," J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987, pp. 577–598.

748 Tables in SI Units

 TABLE A-17
 Properties of Saturated Propane (Liquid-Vapor): Pressure Table

	Specific Volume m³/kg			Internal kJ/l			Enthalpy kJ/kg		Entro kJ/kg		
Press.	Temp. °C	Sat. Liquid $v_{\rm f} imes 10^3$	Sat. Vapor $v_{ m g}$	Sat. Liquid $u_{\rm f}$	Sat. Vapor $u_{\rm g}$	Sat. Liquid h_{f}	Evap. h_{fg}	Sat. Vapor $h_{\rm g}$	Sat. Liquid $s_{\rm f}$	Sat. Vapor $s_{\rm g}$	Press.
0.05	-93.28	1.570	6.752	-114.6	326.0	-114.6	474.4	359.8	-0.556	2.081	0.05
0.10	-83.87	1.594	3.542	-95.1	335.4	-95.1	465.9	370.8	-0.450	2.011	0.10
0.25	-69.55	1.634	1.513	-64.9	350.0	-64.9	452.7	387.8	-0.297	1.927	0.25
0.50	-56.93	1.672	0.7962	-37.7	363.1	-37.6	440.5	402.9	-0.167	1.871	0.50
0.75	-48.68	1.698	0.5467	-19.6	371.8	-19.5	432.3	412.8	-0.085	1.841	0.75
1.00	-42.38	1.719	0.4185	-5.6	378.5	-5.4	425.7	420.3	-0.023	1.822	1.00
2.00	-25.43	1.781	0.2192	33.1	396.6	33.5	406.9	440.4	0.139	1.782	2.00
3.00	-14.16	1.826	0.1496	59.8	408.7	60.3	393.3	453.6	0.244	1.762	3.00
4.00	-5.46	1.865	0.1137	80.8	418.0	81.5	382.0	463.5	0.324	1.751	4.00
5.00	1.74	1.899	0.09172	98.6	425.7	99.5	372.1	471.6	0.389	1.743	5.00
6.00	7.93	1.931	0.07680	114.2	432.2	115.3	363.0	478.3	0.446	1.737	6.00
7.00	13.41	1.960	0.06598	128.2	438.0	129.6	354.6	484.2	0.495	1.733	7.00
8.00	18.33	1.989	0.05776	141.0	443.1	142.6	346.7	489.3	0.540	1.729	8.00
9.00	22.82	2.016	0.05129	152.9	447.6	154.7	339.1	493.8	0.580	1.726	9.00
10.00	26.95	2.043	0.04606	164.0	451.8	166.1	331.8	497.9	0.618	1.723	10.00
11.00	30.80	2.070	0.04174	174.5	455.6	176.8	324.7	501.5	0.652	1.721	11.00
12.00	34.39	2.096	0.03810	184.4	459.1	187.0	317.8	504.8	0.685	1.718	12.00
13.00	37.77	2.122	0.03499	193.9	462.2	196.7	311.0	507.7	0.716	1.716	13.00
14.00	40.97	2.148	0.03231	203.0	465.2	206.0	304.4	510.4	0.745	1.714	14.00
15.00	44.01	2.174	0.02997	211.7	467.9	215.0	297.9	512.9	0.772	1.712	15.00
16.00	46.89	2.200	0.02790	220.1	470.4	223.6	291.4	515.0	0.799	1.710	16.00
17.00	49.65	2.227	0.02606	228.3	472.7	232.0	285.0	517.0	0.824	1.707	17.00
18.00	52.30	2.253	0.02441	236.2	474.9	240.2	278.6	518.8	0.849	1.705	18.00
19.00	54.83	2.280	0.02292	243.8	476.9	248.2	272.2	520.4	0.873	1.703	19.00
20.00	57.27	2.308	0.02157	251.3	478.7	255.9	265.9	521.8	0.896	1.700	20.00
22.00	61.90	2.364	0.01921	265.8	481.7	271.0	253.0	524.0	0.939	1.695	22.00
24.00	66.21	2.424	0.01721	279.7	484.3	285.5	240.1	525.6	0.981	1.688	24.00
26.00	70.27	2.487	0.01549	293.1	486.2	299.6	226.9	526.5	1.021	1.681	26.00
28.00	74.10	2.555	0.01398	306.2	487.5	313.4	213.2	526.6	1.060	1.673	28.00
30.00	77.72	2.630	0.01263	319.2	488.1	327.1	198.9	526.0	1.097	1.664	30.00
35.00	86.01	2.862	0.009771	351.4	486.3	361.4	159.1	520.5	1.190	1.633	35.00
40.00	93.38	3.279	0.007151	387.9	474.7	401.0	102.3	503.3	1.295	1.574	40.00
42.48	96.70	4.535	0.004535	434.9	434.9	454.2	0.0	454.2	1.437	1.437	42.48

TABLE A-18 Properties of Superheated Propane

IABLE	: A-18 P	roperties	of Superi	neated Propa	ane				
<i>T</i> °C	<i>v</i> m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K		v m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K
	p =	0.05 bar $(T_{\text{sat}} = -$						= 0.01 -83.87°C	
Sat90	6.752 6.877	326.0 329.4	359.8 363.8	2.081 2.103		3.542	367.3	370.8	2.011
-80	7.258	339.8	376.1	2.169		3.617	339.5	375.7	2.037
-70 -60 -50	7.639 8.018 8.397	350.6 361.8 373.3	388.8 401.9 415.3	2.233 2.296 2.357		3.808 3.999 4.190	350.3 361.5 373.1	388.4 401.5 415.0	2.101 2.164 2.226
-40 -30 -20	8.776 9.155 9.533	385.1 397.4 410.1	429.0 443.2 457.8	2.418 2.477 2.536		4.380 4.570 4.760	385.0 397.3 410.0	428.8 443.0 457.6	2.286 2.346 2.405
-10 0 10 20	9.911 10.29 10.67 11.05	423.2 436.8 450.8 270.6	472.8 488.2 504.1 520.4	2.594 2.652 2.709 2.765		4.950 5.139 5.329 5.518	423.1 436.7 450.6 465.1	472.6 488.1 503.9 520.3	2.463 2.520 2.578 2.634
	p	$= 0.5 \text{ bar}$ $(T_{\text{sat}} = -$						r = 0.1 M -42.38°C	
Sat50 -40	0.796 0.824 0.863	363.1 371.3 383.4	402.9 412.5 426.6	1.871 1.914 1.976		0.4185	378.5 381.5	420.3 423.8	1.822 1.837
-30	0.903	396.0	441.1	2.037		0.4439	394.2	438.6	1.899
$-20 \\ -10$	0.942 0.981	408.8 422.1	455.9 471.1	2.096 2.155		0.4641 0.4842	407.3 420.7	453.7 469.1	1.960 2.019
0 10 20	1.019 1.058 1.096	435.8 449.8 464.3	486.7 502.7 519.1	2.213 2.271 2.328		0.5040 0.5238 0.5434	434.4 448.6 463.3	484.8 501.0 517.6	2.078 2.136 2.194
30 40 50 60	1.135 1.173 1.211 1.249	479.2 494.6 510.4 526.7	535.9 553.2 570.9 589.1	2.384 2.440 2.496 2.551		0.5629 0.5824 0.6018 0.6211	478.2 493.7 509.5 525.8	534.5 551.9 569.7 587.9	2.251 2.307 2.363 2.419
	p	$= 2.0 \text{ bar}$ $(T_{\text{sat}} = -$						r = 0.3 N -14.16°C	
Sat20 -10	0.2192 0.2251 0.2358	396.6 404.0 417.7	440.4 449.0 464.9	1.782 1.816 1.877		0.1496 0.1527	408.7 414.7	453.6 460.5	1.762 1.789
0 10 20	0.2463 0.2566 0.2669	431.8 446.3 461.1	481.1 497.6 514.5	1.938 1.997 2.056		0.1602 0.1674 0.1746	429.0 443.8 458.8	477.1 494.0 511.2	1.851 1.912 1.971
30 40 50	0.2770 0.2871 0.2970	476.3 491.9 507.9	531.7 549.3 567.3	2.113 2.170 2.227		0.1816 0.1885 0.1954	474.2 490.1 506.2	528.7 546.6 564.8	2.030 2.088 2.145
60 70 80 90	0.3070 0.3169 0.3267 0.3365	524.3 541.1 558.4 576.1	585.7 604.5 623.7 643.4	2.283 2.339 2.394 2.449		0.2022 0.2090 0.2157 0.2223	522.7 539.6 557.0 574.8	583.4 602.3 621.7 641.5	2.202 2.258 2.314 2.369

 TABLE A-18 (Continued)

TABLE	A-18 (C	Continued	()					
T	v	и	<i>h</i>	s	v	и	<i>h</i>	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	<i>p</i> =	$= 4.0 \text{ bar}$ $(T_{\text{sat}} = -$	= 0.4 N -5.46°C)		р		r = 0.5 M 1.74°C)	МРа
Sat.	0.1137	418.0	463.5	1.751	0.09172	425.7	471.6	1.743
0 10	0.1169 0.1227	426.1 441.2	472.9 490.3	1.786 1.848	0.09577	438.4	486.3	1.796
20	0.1283	456.6	507.9	1.909	0.1005	454.1	504.3	1.858
30	0.1338	472.2	525.7	1.969	0.1051	470.0	522.5	1.919
40	0.1392	488.1	543.8	2.027	0.1096	486.1	540.9	1.979
50	0.1445	504.4	562.2	2.085	0.1140	502.5	559.5	2.038
60	0.1498	521.1	581.0	2.143	0.1183	519.4	578.5	2.095
70	0.1550	538.1	600.1	2.199	0.1226	536.6	597.9	2.153
80	0.1601	555.7	619.7	2.255	0.1268	554.1	617.5	2.209
90	0.1652	573.5	639.6	2.311	0.1310	572.1	637.6	2.265
100	0.1703	591.8	659.9	2.366	0.1351	590.5	658.0	2.321
110	0.1754	610.4	680.6	2.421	0.1392	609.3	678.9	2.376
		$= 6.0 \text{ bar}$ $(T_{\text{sat}} =$	r = 0.6 M 7.93°C)	¶Pa	p		r = 0.7 M 13.41°C)	
Sat. 10 20	0.07680 0.07769 0.08187	432.2 435.6 451.5	478.3 482.2 500.6	1.737 1.751 1.815	0.06598	438.0 448.8	484.2 496.7	1.733 1.776
30	0.08588	467.7	519.2	1.877	0.07210	465.2	515.7	1.840
40	0.08978	484.0	537.9	1.938	0.07558	481.9	534.8	1.901
50	0.09357	500.7	556.8	1.997	0.07896	498.7	554.0	1.962
60	0.09729	517.6	576.0	2.056	0.08225	515.9	573.5	2.021
70	0.1009	535.0	595.5	2.113	0.08547	533.4	593.2	2.079
80	0.1045	552.7	615.4	2.170	0.08863	551.2	613.2	2.137
90	0.1081	570.7	635.6	2.227	0.09175	569.4	633.6	2.194
100	0.1116	589.2	656.2	2.283	0.09482	587.9	654.3	2.250
110	0.1151	608.0	677.1	2.338	0.09786	606.8	675.3	2.306
120	0.1185	627.3	698.4	2.393	0.1009	626.2	696.8	2.361
		$= 8.0 \text{ bar}$ $(T_{\text{sat}} = 1)$	$r = 0.8 \text{ M}$ 18.33°C	¶Pa	p		r = 0.9 M 22.82°C)	
Sat. 20 30	0.05776 0.05834 0.06170	443.1 445.9 462.7	489.3 492.6 512.1	1.729 1.740 1.806	0.05129	447.2 460.0	493.8 508.2	1.726 1.774
40	0.06489	479.6	531.5	1.869	0.05653	477.2	528.1	1.839
50	0.06796	496.7	551.1	1.930	0.05938	494.7	548.1	1.901
60	0.07094	514.0	570.8	1.990	0.06213	512.2	568.1	1.962
70	0.07385	531.6	590.7	2.049	0.06479	530.0	588.3	2.022
80	0.07669	549.6	611.0	2.107	0.06738	548.1	608.7	2.081
90	0.07948	567.9	631.5	2.165	0.06992	566.5	629.4	2.138
100	0.08222	586.5	652.3	2.221	0.07241	585.2	650.4	2.195
110	0.08493	605.6	673.5	2.277	0.07487	604.3	671.7	2.252
120	0.08761	625.0	695.1	2.333	0.07729	623.7	693.3	2.307
130	0.09026	644.8	717.0	2.388	0.07969	643.6	715.3	2.363
140	0.09289	665.0	739.3	2.442	0.08206	663.8	737.7	2.418

 TABLE A-18 (Continued)

IABLI	: A-18 (C	опиниеа)		
T	v	и	<i>h</i>	s	$egin{array}{cccc} v & u & h & s \\ { m m}^3/{ m kg} & { m kJ/kg} & { m kJ/kg} & { m kJ/kg} \cdot { m K} \end{array}$
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	
	p =	10.0 bas $(T_{\text{sat}} = 2)$	r = 1.0 N 26.95°C)	MPa	p = 12.0 bar = 1.2 MPa $(T_{\text{sat}} = 34.39^{\circ}\text{C})$
Sat. 30	0.04606 0.04696	451.8 457.1	497.9 504.1	1.723 1.744	0.03810 459.1 504.8 1.718
50 60	0.04980 0.05248 0.05505	474.8 492.4 510.2	524.6 544.9 565.2	1.810 1.874 1.936	0.03957 469.4 516.9 1.757 0.04204 487.8 538.2 1.824 0.04436 506.1 559.3 1.889
70	0.05752	528.2	585.7	1.997	0.04657 524.4 580.3 1.951 0.04869 543.1 601.5 2.012 0.05075 561.8 622.7 2.071
80	0.05992	546.4	606.3	2.056	
90	0.06226	564.9	627.2	2.114	
100	0.06456	583.7	648.3	2.172	0.05275 580.9 644.2 2.129 0.05470 600.4 666.0 2.187 0.05662 620.1 688.0 2.244 0.05851 640.1 710.3 2.300
110	0.06681	603.0	669.8	2.228	
120	0.06903	622.6	691.6	2.284	
130	0.07122	642.5	713.7	2.340	
140	0.07338	662.8	736.2	2.395	0.06037 660.6 733.0 2.355
_		1	40.97°C)		p = 16.0 bar = 1.6 MPa $(T_{\text{sat}} = 46.89^{\circ}\text{C})$
Sat. 50 60	0.03231 0.03446 0.03664	465.2 482.6 501.6	510.4 530.8 552.9	1.714 1.778 1.845	0.02790 470.4 515.0 1.710 0.02861 476.7 522.5 1.733 0.03075 496.6 545.8 1.804
70	0.03869	520.4	574.6	1.909	0.03270 516.2 568.5 1.871 0.03453 535.7 590.9 1.935 0.03626 555.2 613.2 1.997
80	0.04063	539.4	596.3	1.972	
90	0.04249	558.6	618.1	2.033	
100	0.04429	577.9	639.9	2.092	0.03792 574.8 635.5 2.058 0.03952 594.7 657.9 2.117 0.04107 614.8 680.5 2.176
110	0.04604	597.5	662.0	2.150	
120	0.04774	617.5	684.3	2.208	
130	0.04942	637.7	706.9	2.265	0.04259 635.3 703.4 2.233 0.04407 656.0 726.5 2.290 0.04553 677.1 749.9 2.346 0.04696 698.5 773.6 2.401
140	0.05106	658.3	729.8	2.321	
150	0.05268	679.2	753.0	2.376	
160	0.05428	700.5	776.5	2.431	
	<i>p</i> =	18.0 bar $(T_{\text{sat}} = 5)$	$r = 1.8 \text{ N}$ 52.30°C	MPa	p = 20.0 bar = 2.0 MPa $(T_{\text{sat}} = 57.27^{\circ}\text{C})$
Sat. 60 70	0.02441 0.02606 0.02798	474.9 491.1 511.4	518.8 538.0 561.8	1.705 1.763 1.834	0.02157 478.7 521.8 1.700 0.02216 484.8 529.1 1.722 0.02412 506.3 554.5 1.797
80	0.02974	531.6	585.1	1.901	0.02585 527.1 578.8 1.867 0.02744 547.6 602.5 1.933 0.02892 568.1 625.9 1.997
90	0.03138	551.5	608.0	1.965	
100	0.03293	571.5	630.8	2.027	
110	0.03443	591.7	653.7	2.087	0.03033 588.5 649.2 2.059 0.03169 609.2 672.6 2.119 0.03299 630.0 696.0 2.178
120	0.03586	612.1	676.6	2.146	
130	0.03726	632.7	699.8	2.204	
140	0.03863	653.6	723.1	2.262	0.03426 651.2 719.7 2.236 0.03550 672.5 743.5 2.293 0.03671 694.2 767.6 2.349
150	0.03996	674.8	746.7	2.318	
160	0.04127	696.3	770.6	2.374	
170	0.04256	718.2	794.8	2.429	0.03790 716.2 792.0 2.404 0.03907 738.5 816.6 2.459
180	0.04383	740.4	819.3	2.484	

 TABLE A-18 (Continued)

IADLI	: A-18 (C	опиниеа)					
T	v	u	<i>h</i>	s	<i>v</i>	u	<i>h</i>	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	<i>p</i> =	= 22.0 ba $(T_{\text{sat}} = 0)$	r = 2.2 M 61.90°C)	MPa	p =		ar = 2.4 66.21°C)	
Sat.	0.01921	481.8	524.0	1.695	0.01721	484.3	525.6	1.688
70	0.02086	500.5	546.4	1.761	0.01802	493.7	536.9	1.722
80	0.02261	522.4	572.1	1.834	0.01984	517.0	564.6	1.801
90	0.02417	543.5	596.7	1.903	0.02141	539.0	590.4	1.873
100	0.02561	564.5	620.8	1.969	0.02283	560.6	615.4	1.941
110	0.02697	585.3	644.6	2.032	0.02414	581.9	639.8	2.006
120	0.02826	606.2	668.4	2.093	0.02538	603.2	664.1	2.068
130	0.02949	627.3	692.2	2.153	0.02656	624.6	688.3	2.129
140	0.03069	648.6	716.1	2.211	0.02770	646.0	712.5	2.188
150	0.03185	670.1	740.2	2.269	0.02880	667.8	736.9	2.247
160	0.03298	691.9	764.5	2.326	0.02986	689.7	761.4	2.304
170	0.03409	714.1	789.1	2.382	0.03091	711.9	786.1	2.360
180	0.03517	736.5	813.9	2.437	0.03193	734.5	811.1	2.416
	<i>p</i> =	= 26.0 ba $(T_{\text{sat}} = T_{\text{sat}})$	r = 2.6 N 70.27°C	MPa	<i>p</i> =		ar = 3.0 77.72°C)	
Sat.	0.01549	486.2	526.5	1.681	0.01263	488.2	526.0	1.664
80	0.01742	511.0	556.3	1.767	0.01318	495.4	534.9	1.689
90	0.01903	534.2	583.7	1.844	0.01506	522.8	568.0	1.782
100	0.02045	556.4	609.6	1.914	0.01654	547.2	596.8	1.860
110	0.02174	578.3	634.8	1.981	0.01783	570.4	623.9	1.932
120	0.02294	600.0	659.6	2.045	0.01899	593.0	650.0	1.999
130	0.02408	621.6	684.2	2.106	0.02007	615.4	675.6	2.063
140	0.02516	643.4	708.8	2.167	0.02109	637.7	701.0	2.126
150	0.02621	665.3	733.4	2.226	0.02206	660.1	726.3	2.186
160	0.02723	687.4	758.2	2.283	0.02300	682.6	751.6	2.245
170	0.02821	709.9	783.2	2.340	0.02390	705.4	777.1	2.303
180	0.02918	732.5	808.4	2.397	0.02478	728.3	802.6	2.360
190	0.03012	755.5	833.8	2.452	0.02563	751.5	828.4	2.417
	<i>p</i> =	= 35.0 ba $(T_{\text{sat}} = 8)$	r = 3.5 M 86.01°C)	MPa	<i>p</i> =		ar = 4.0 93.38°C)	
Sat. 90 100	0.00977 0.01086 0.01270	486.3 502.4 532.9	520.5 540.5 577.3	1.633 1.688 1.788	0.00715 0.00940	474.7 512.1	503.3 549.7	1.574 1.700
110	0.01408	558.9	608.2	1.870	0.01110	544.7	589.1	1.804
120	0.01526	583.4	636.8	1.944	0.01237	572.1	621.6	1.887
130	0.01631	607.0	664.1	2.012	0.01344	597.4	651.2	1.962
140	0.01728	630.2	690.7	2.077	0.01439	621.9	679.5	2.031
150	0.01819	653.3	717.0	2.140	0.01527	645.9	707.0	2.097
160	0.01906	676.4	743.1	2.201	0.01609	669.7	734.1	2.160
170	0.01989	699.6	769.2	2.261	0.01687	693.4	760.9	2.222
180	0.02068	722.9	795.3	2.319	0.01761	717.3	787.7	2.281
190	0.02146	746.5	821.6	2.376	0.01833	741.2	814.5	2.340
200	0.02221	770.3	848.0	2.433	0.01902	765.3	841.4	2.397