M1522.002500 - 양자 컴퓨팅 및 정보의 기초

(Prof. Taehyun Kim)

Homework #4

Due date: 23:59, June. 11, 2019

Please hand in the homework before 6/12 in PDF or paper form.

Problem 4-1. Follow the procedure of proving Schmidt decomposition and give a summary or brief sketch of the proof. You can refer to any source including textbook, wiki, etc.

Problem 4-2. Prove the theorem 2.6 in lecture note 16.

Theorem 2.6: the sets $|\widetilde{\psi_i}\rangle$ and $|\widetilde{\varphi_j}\rangle$ generate the same density matrix if and only if $|\widetilde{\psi_i}\rangle = \sum_j u_{ij} |\widetilde{\varphi_j}\rangle$, where u_{ij} is a unitary matrix of complex numbers, with indices i and j, and we 'pad' whichever set of vectors $|\widetilde{\psi_i}\rangle$ and $|\widetilde{\varphi_j}\rangle$ with additional vectors 0 so that the two sets have the same number of elements.

Problem 4-3. Construct a density matrix that represents following state.

- (A) A particle is in $|0\rangle$ with probability 3/4 and in $|1\rangle$ with probability 1/4.
- (B) Alice throws a dice. If the result is 5 and 6, Alice sends $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$, if the result is 4, Alice sends $\frac{|00\rangle-|11\rangle}{\sqrt{2}}$, and if the result is 1, 2, and 3, Alice sends $|00\rangle$.

Problem 4-4. Purity of a density matrix ρ is defined as $tr(\rho^2)$. Prove that given state ρ is a pure state if and only if $tr(\rho^2) = 1$. Notice that when a unitary operator U is applied to ρ , the output state is $U\rho U^{\dagger}$.

Problem 4-5. Apply partial trace to density matrix of all 4 Bell states and show that the result is a mixed state. You can either choose first or second qubit.

Problem 4-6. In HW2, you mapped arbitrary two-level "pure" state on Bloch sphere. In the same way, you can map arbitrary two-level "density matrix" on and inside Bloch sphere.

- (A) Represent arbitrary density matrix $\rho = \begin{pmatrix} a & b^* \\ b & 1-a \end{pmatrix}$ in $\{I, \sigma_x, \sigma_y, \sigma_z\}$ basis, where $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, only with real coefficient, i.e., $\rho = \frac{\alpha I + n_x \sigma_x + n_y \sigma_y + n_z \sigma_z}{2}$. (n_x, n_y, n_z) is the point that maps given density matrix on and inside Bloch sphere.
- (B) Prove that a state is "on" Bloch sphere if and only if the state is pure. Also, prove that a state is located at the origin of Bloch sphere if and only if the state is maximally mixed. (in other words, purity = 1/2)
 - Hint) You can show that the distance from the origin is square-root of purity.
- (C) In reality, there are some unknown or inevitable process such as interaction with photon from environment that can cause stochastic evolution of given state. For some situation, we can model a density matrix with idle gate (no gate applied except time evolution) as $\rho(t) = \begin{pmatrix} \frac{2}{3} & \frac{\sqrt{2}}{3}e^{-\alpha t} \\ \frac{\sqrt{2}}{3}e^{-\alpha t} & \frac{1}{3} \end{pmatrix}, \alpha > 0$. Sketch the trajectory of the density matrix on and inside Bloch sphere and specify the initial & final state. This process is called "dephasing".

Problem 4-7. Prove that entropy of arbitrary density matrix is preserved under unitary quantum operation. Also, calculate the entropy of $\rho(t) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2}e^{-\alpha t} \\ \frac{1}{2}e^{-\alpha t} & \frac{1}{2} \end{pmatrix}, \alpha > 0.$

Problem 4-8. In general, Schrodinger's equation can be re-written under unitary map U that maps quantum states to other states, which corresponds to a frame change, i.e., $|\tilde{\psi}\rangle = U|\psi\rangle$ where $|\tilde{\psi}\rangle$ is the quantum state seen in new frame and $|\psi\rangle$ is in original frame. (ex: rotating reference frame, upside down, etc.) Prove that Schrodinger's equation still holds true in the new frame, in other words, $i\hbar \frac{\partial}{\partial t} |\tilde{\psi}\rangle = \tilde{H}|\tilde{\psi}\rangle$, where $\tilde{H} = UHU^{\dagger} - i\hbar U \frac{\partial U^{\dagger}}{\partial t}$.

Problem 4-9. Prove followings.

- (A) Define $P_1 = \{\pm I, \pm \sigma_x, \pm \sigma_y, \pm \sigma_z, \pm iI, \pm i\sigma_x, \pm i\sigma_y, \pm i\sigma_z\}$. Prove that this set is closed under multiplication. Also, prove that this set can be generated through matrix multiplication of elements in $\langle \sigma_x, \sigma_y, \sigma_z \rangle$
- (B) Prove that $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ satisfies $H\sigma H^{\dagger} \in P_1$ and $S\sigma S^{\dagger} \in P_1$ for $\forall \sigma \in P_1$.
- (C) Define $P_2 = \{\pm \sigma_m \otimes \sigma_n, \pm i\sigma_m \otimes \sigma_n, | m, n = 0 (\sigma_0 = I), x, y, z \}$. Prove that CNOT(target = 0, control =1) gate satisfies $CNOT\sigma CNOT^{\dagger} \in P_2$ for $\forall \sigma \in P_2$.

Hint) Block matrix form would simplify the calculation.