

- ✓ *N*-processes ring
- \checkmark one distinguished process P_0
- ✓ $P_1 \div P_{N-1}$ processes are equal and behave uniformly
- ✓ s_i = current local state of a given process P_i
- \checkmark every process P_i knows the state of its left neighbor (s_{i-1} for 1 \le i \le N-1 and s_{N-1} for P_0)
 - instantaneous communication

Notion of privilege.

- when a process has the *privilege*, it is authorized to *make a move* (change its local state, enter the critical section)
- the system satisfies following properties:
 - 1. There must be at least one privilege in the system.
 - 2. During an infinite time every process should be able to receive a privilege infinitely many times.
- the legal (global) state must satisfy:
 - 3. There is only one privilege in the system.

for P_0 : if $s_0 = s_{N-1}$ then P_0 has the privilege and $s_0 = (s_0 + 1)_{\text{mod } K}$

for P_i : if $s_i \neq s_{i-1}$ then P_i has the privilege and $s_i = s_{i-1}$; $1 \le i \le N-1$

(3)

Possible failure scenario:

let's assume a transient failure has set the system into an illegal state:

What is the stabilization time?

O This algorithm needs $O(N^2)$ system steps before reaching a legal global state.