

Tropospheric and lonsopheric delays

Ann Chen The University of Texas at Austin

* With contributions from many colleagues: Heresh Fattahi, Eric Fielding, David Bekaert, Simran Sangha, Roger Michaelides, David Sandwell

Example interferograms: QUIZ - where is the tectonic signal?

Sentinel-1 1 fringe = 28 mm

Troposphere

- Radar waves are refracted
 - Pressure
 - Temperature
 - -Water vapor

It is the double difference in tropospheric delays between two pixels at two SAR acquisition times that matters!

Tropospheric noise characteristics

height difference (km)

Emardson, T., M. Simons, and F. Webb, Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation, Journal of Geophysical Research: Solid Earth, 108(B5), 2003a.

 10^{3}

Stratified tropospheric delays

Turbulent tropospheric delays

- Uncorrelated in time
- Almost unpredictable
- Power-law spectrum

Atmospheric correction

- Options:
 - Weather models
 May not have enough accuracy and/or temporal and spatial resolution
 - Filtering (in time or space or both)
 May remove real deformation signals e.g., earthquakes
 - Topography-correlated models
 May remove real deformation signals e.g., volcano inflation

Ionospheric delay in repeat-pass interferometry

Ionospheric delay is dispersive:

$$\Delta r_{iono} = -\frac{40.3}{f^2} TEC$$

TEC – varies daily and with the 11-year solar cycle

Ionospheric delay correction using split-spectrum method

Estimated Ionospheric phase delay

Before Filtering

Due to small difference between f_L and f_H , small noise in $\Delta\phi_{L,H}$ amplifies in $\Delta\phi_{iono}$

Variance of the estimated ionospheric delay

$$\sigma_{iono}^2 = \sigma_{\Delta\phi_{L,H}}^2 \frac{f_L^2 f_H^2}{(f_H^2 - f_L^2)^2} \frac{f_L^2 + f_H^2}{f_0^2}$$

ALOS-1 (FBD)
$$\begin{cases}
f_0 = 1.3GHz \\
f_L = 1.3GHz - 3.5MHz \\
f_H = 1.3GHz + 3.5MHz
\end{cases}$$

Mw 8.8 2010 Maule

ALOS-1 FBS (28 MHz) 20100225-20100412

Split range-spectrum technique was used to decouple the ionospheric delay from ground displacement signal.

Ionosphere ramp for L-band ALOS-2

