

KGISL INSTITUTE OF TECHNOLOGY

(Approved By AICTE, New Delhi, Affiliate to Anna University

Recognized by UGC, Accredited by NBA(IT)

265, KGISL Campus, Thudiyalur Road, Saravanampatti, Coimbatore-641035.)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

NAAN MUDHALVAN - INTERNET OF THINGS

FLOOD MONITORING AND EARLY WARNING

NAME: Aakash B D

REG NO: 711721243001

NM ID: au711721243001

TEAM MENTOR: Mr. Mohankumar M

TEAM EVALUATOR: Ms. Akilandeeshwari M

Phase 3: Development Part 1

FLOOD MONITORING AND EARLY WARNING

Materials and Components Needed:

- 1. IoT Sensors and Hardware
- 2. Communication Modules
- 3. Data Processing and Storage
- 4. Early Warning Platform
- **5.** Programming and Development Tools
- 6. Sensors Calibration Tools
- 7. Power Management
- 8. Enclosures and Mounting Hardware
- 9. Cables and Wiring
- 10. Data Visualization and User Interface
- 11. Community Engagement Tools
- 12. Security Measures
- 13. Documentation and Manuals
- 14. Project Budget

Procedure:

1. Sensor Selection and Configuration:

- Choose suitable water level sensors and IoT hardware.
- Configure the sensors to measure water levels and calibrate them to ensure accurate data collection.

2. Sensor Deployment:

- Identify flood-prone areas where sensor deployment is necessary.
- Install the water level sensors at chosen locations, ensuring they are securely mounted and adequately protected from environmental elements and vandalism.

3. Sensor Data Collection:

- Develop a Python script (or use a relevant programming language) to run on the IoT sensors.
- Configure the script to collect water level data at regular intervals.

4. Data Transmission:

- Implement a data transmission module in the script to send collected data to the early warning platform.
- Choose an appropriate communication protocol (e.g., Wi-Fi, LoRa, cellular) based on the deployment area's connectivity.

5. Early Warning Platform Development:

- Create the Early Warning Platform that will receive, process, and analyze data from the sensors.
- Develop the platform using suitable hardware and software, such as web servers, cloud services, and development tools.

6. Data Reception and Analysis:

- Configure the early warning platform to receive incoming sensor data.
- Analyze the data to detect water level changes and other relevant parameters (e.g., rainfall data, weather forecasts).

7. Alert Generation:

- Set predefined thresholds for water levels that trigger alerts.
- Create alert mechanisms to disseminate warnings to the public, emergency responders, and relevant authorities.

8. Data Storage and Visualization:

- Establish a database to store historical sensor data for analysis and reference.
- Develop data visualization tools and dashboards for real-time monitoring and decision-making.

9. Testing and Calibration:

- Test the sensors' data collection and transmission capabilities.
- Monitor the system for any issues and fine-tune the sensor configurations as needed.
- Calibrate sensors as required to maintain data accuracy.

10. Community Engagement:

- Conduct educational campaigns to raise awareness in flood-prone communities.
- Provide training on early warning system usage and flood preparedness.

11. Maintenance and Scalability:

- Implement regular maintenance routines for sensors, communication equipment, and the early warning platform.
- Plan for scalability by deploying additional sensors in new flood-prone areas.

12. Security and Compliance:

- Implement cyber security measures to protect data and communications.
- Ensure compliance with relevant regulations and environmental protection requirements.

13. Documentation and Manuals:

- Create documentation for sensor installation, maintenance, and troubleshooting.
- Develop user manuals for the early warning platform and community engagement materials.

14. Monitoring and Continuous Improvement:

- Continuously monitor the system's performance and data accuracy.
- Collect feedback from the community and stakeholders to make necessary improvements.

• Regularly update the early warning platform and sensors to enhance system reliability and effectiveness.

Python Scripts

```
import time
import requests
# Sensor Configuration
sensor_id = "sensor001" # Unique identifier for the sensor
sensor_location = "River XYZ"
sensor_interval = 15 # Interval in minutes for data collection
# Early Warning Platform API Endpoint
api_endpoint = "https://your-early-warning-api.com/data"
while True:
  # Simulate data collection (replace with actual sensor code)
  water_level = 5.3 # Replace with your sensor's data collection logic
  # Create a data payload
  data = {
    "sensor_id": sensor_id,
    "location": sensor_location,
    "water_level": water_level
  }
  try:
    # Send data to the early warning platform
    response = requests.post(api_endpoint, json=data)
    if response.status_code == 200:
      print("Data sent successfully")
    else:
```

print(f"Data transmission failed with status code: {response.status_code}")

except requests.exceptions.RequestException as e:

print(f"Request error: {e}")

time.sleep(sensor_interval * 60) # Convert minutes to seconds

fritzing

Schematic Diagram for IoT based Flood Monitoring and Early Warning

CONCLUSION:
In conclusion, Flood Monitoring and Early Warning systems are indispensable
tools in mitigating the devastating impacts of floods. These innovative solutions leverage
technology, data, and community engagement to enhance public safety, minimize property
damage, and foster long-term resilience in the face of climate-related disasters. By providing timely alerts and promoting preparedness, these systems not only save lives but also serve as
cornerstones for sustainable development. As the world faces increasing climate
uncertainties, the continued advancement and implementation of these systems are
imperative for the well-being and security of communities worldwide.