Klasifikacija slika

PREPOZNAVANJE (PASMINA) PSA I MAČKE

Gayatri Čaklović Branimir Jungić Lena Kamenjaš Mislav Kuzmić

Uvod - Klasifikacija

- Problem svrstavanja objekata po kategorijama
 - Broj kategorija je mali
 - Razmještaj na osnovu skupa za treniranje
- Problemu se pristupa kroz nadzirano učenje
- Poznati problem
 - Svstavanje e-Maila u spam ili ne-spam kategoriju

Uvod - Problem

- Inspiracija: Kaggle natjecanje
 - Dogs vs. Cats [2013.]
- Korišten skup podataka sa stranica Sveučilišta u Oxfordu
- Ciljevi
 - Napraviti binarni klasifikator kategorija mačka ili pas
 - Izgraditi klasifikator za 37 kategorija
 - 25 kategorija pasa
 - 12 kategorija mačaka

Opis problema

- Korišteni skup podataka sastoji se od dvije cjeline: anotacije i 7390 slika
- Anotacije
 - Trimap (tri boje) po jedna boja za
 - Prednji dio slike
 - Pozadina
 - Neodređeni dio
 - xml datoteke označavaju položaj glave životinje
 - list.txt lista s imenima slika i pripadnim oznakama
- U implementaciji korišten list.txt

Model za binarno klasificiranje

- Implementacija korištenjem PyTorch framework-a
- 43 sloja
- Prethodno preprocesiranje slika
- ullet Uz oznaku baza = Conv2d BatchNorm2d ReLU
- neuronska mreža modela izgleda

```
3 * baza - MaxPool2d - 4 * baza - MaxPool2d - 3 * baza - MaxPool2d - 2 * (Linear - BatchNorm1d - ReLU - Dropout2d) - Linear - Sigmoid.
```

Modeli za klasificiranje u kategorije

- Model zasnovan na konvolucijskoj neuronskoj mreži (CNNModel)
 - 43 sloja
 - Prethodno preprocesiranje slika
 - Neuronska mreža, uz istu oznaku za bazu

$$baza = Conv2d - BatchNorm2d - ReLU$$

Model zasnovan na ResNet-50 modelu (ResNetModel)

```
2 * baza - MaxPool2d - 3 * baza - MaxPool2d - 5 * baza - MaxPool2d - Linear - BatchNorm1d - ReLU - Dropout - Linear - BatchNorm1d - ReLU - Dropout - Linear - LogSoftMax.
```

Rezultati

- Treniranje i testiranje binarnog klasifikatora i CNNModela izvršeno je na računalu sa sljedećim specifikacijama:
 - Intel Core i7-7700HQ [procesor]
 - 8 GB RAM [memorija]
 - Nvidia Geforce GTX 1050 TI (4GB) [grafička kartica]
- Treniranje i testiranje ResNetModela izvršeno je na Google Colabu
- Slijede rezultati po modelima

Rezultati - binarna klasifikacija

- Trajanje treniranja 475 minuta
- Model je treniran kroz 32 epohe
- Točnost modela
 - Skup za treniranje 94.5 %
 - Skup za testiranje 92.3 %
- Matrica konfuzije za testne podatke

	Predviđene	Predviđeni
	mačke	psi
Stvarne mačke	924	61
Stvarni psi	95	948

Točnost i gubitak kroz epohe učenja binarnog klasifikatora

Vizualizacija parametara - treniranje binarnog klasifikatora

Naučene težine (lijevo) i pristranost (desno) za prvi sloj mreže kroz epohe

Pristranost 34. sloja kroz epohe

Predikcija - binarni klasifikator

predicted: cat

predicted: cat

predicted: cat

predicted: cat

predicted: dog

predicted: dog

Rezultati - CNNModel

- Trajanje treniranja 342 minute
- Model je treniran kroz 32 epohe
- Točnost modela
 - Skup za testiranje 86.6 %
- Na sljedećem slajdu matrica konfuzije za ovaj model

Točnost i gubitak kroz epohe učenja CNNModela

Predikcija - CNNModel

predicted: english_setter

predicted: miniature_pinscher

predicted: german shorthaired

predicted: yorkshire_terrier

predicted: ragdoll

predicted: scottish_terrier

Rezultati - ResNetModel

- Trajanje treniranja 20 minuta
- Model je treniran kroz 40 epoha
- Točnost modela mačke
 - Skup za testiranje 65.76 %
- Točnost modela -psi
 - Skup za testiranje 76.29%
- Na sljedećem slajdu matrica konfuzije za ovaj model

Histogram - mačke

Histogram - psi

Zaključak - moguća poboljšanja

- Treniranje težina preko SVM-a
 - Otkrivanje bitnih značajki slike
 - Ubacivanje naučenih težina u neuronsku mrežu
- Kombinacija klasifikatora
 - Klasifikator bi prvo predvidio pas/mačka, zatim predviđao pasminu ovisno o tom odgovoru
- Poboljšanje ResNetModela
 - Prethodno preprocesiranje slika

russian blue

pomeranian