PROBABILIDAD II

Grado en Matemáticas

Tema 5 Funciones características

Javier Cárcamo

Departamento de Matemáticas Universidad Autónoma de Madrid

javier.carcamo@uam.es

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

1

Tema 5: Funciones características

Descripción del tema

- 1. Números complejos.
- 2. La exponencial compleja.
- 3. Variables aleatorias complejas.
- 4. Funciones características.
- 5. Momentos y derivadas de la f.c.
- 6. Fórmulas de inversión.
- 7. Identificación de funciones características.
- 8. Aplicaciones.

Objetivos principales

- Entender la utilidad de las funciones características en la Teoría de la probabilidad.
- Identificar y saber manejar las funciones características de las distribuciones más importantes.

Un número complejo es un número que se puede expresar de la forma x + yi, donde x e y son reales e $i = \sqrt{-1}$ es la **unidad** imaginaria. El plano complejo es el cuerpo

$$\mathbb{C} = \{ z = x + yi : x, y \in \mathbb{R} \}.$$

Podemos representar cada número complejo $z=x+yi\in\mathbb{C}$ en el plano \mathbb{R}^2 identificando z con el vector (x, y).

La parte real del número complejo z = x + yi es x (Re(z) = x) y la parte imaginaria es y (Im(z) = y).

Javier Cárcamo Probabilidad II. Tema 5: Funciones características

1. Números complejos

El **conjugado** del número complejo z = x + yi es $\bar{z} = x - yi$.

Para $z, w \in \mathbb{C}$, tenemos,

- \bar{z} es una reflexión de z respecto al eje de abscisas $(\bar{\bar{z}}=z)$.
- $z \in \mathbb{R} \Leftrightarrow z = \bar{z}$.
- $\operatorname{Re}(z) = (z + \bar{z})/2$.
- $\operatorname{Im}(z) = (z \bar{z})/(2i)$.
- $\overline{z \pm w} = \overline{z} \pm \overline{w}$.
- $\overline{zw} = \overline{z}\overline{w}$.
- Si $w \neq 0$, $\overline{(z/w)} = \bar{z}/\bar{w}$.
- Si $z \neq 0$, $1/z = \bar{z}/(z\bar{z})$.

El **módulo** o **valor absoluto** del número complejo z = x + yi es

$$|z| = \sqrt{x^2 + y^2} = \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}.$$

Para $z, w \in \mathbb{C}$, tenemos,

- $|z| = 0 \Leftrightarrow z = 0$.
- $|z|^2 = z\bar{z}.$
- $|z + w| \le |z| + |w|$.
- |zw| = |z||w| y si $z \neq 0$, |1/z| = 1/|z|.
- $|w z| \ge |w| |z|$.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

5

1. Números complejos

El **argumento** del número complejo z = x + yi es

$$arg(z) = arctan(y/x).$$

(Entendiéndose la función arctan definida en los cuatro cuadrantes.)

Si $arctan(x) \in (-\pi/2, \pi/2) \ (x \in \mathbb{R})$, $arg(z) \in (-\pi, \pi]$ dada por:

$$\arg(z) = \begin{cases} \arctan(y/x), & \text{si } x > 0, \\ \arctan(y/x) + \pi, & \text{si } x < 0 \text{ e } y \ge 0, \\ \arctan(y/x) - \pi, & \text{si } x < 0 \text{ e } y < 0, \\ \pi/2, & \text{si } x = 0 \text{ e } y > 0, \\ -\pi/2, & \text{si } x = 0 \text{ e } y < 0, \\ \inf(\text{indefinido}, & \text{si } x = y = 0. \end{cases}$$

Javier Cárcamo

2. La exponencial compleja

La **representación en polares** del número complejo z = x + yi es $z = r \cos \theta + ir \sin \theta$, donde r = |z| y $\theta = \arg(z)$.

Usando la **fórmula de Euler**, $e^{i\theta} = \cos \theta + i \sin \theta$, $z = re^{i\theta}$.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

2. La exponencial compleja

La **fórmula de Euler**, $e^{i\theta} = \cos \theta + i \sin \theta$, $\theta \in \mathbb{R}$.

$$ullet |e^{i heta}|=1 \quad {\sf y} \quad \overline{e^{i heta}}=e^{-i heta}.$$

•
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}.$$
•
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}.$$

$$\bullet \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Para $z = x + iy \in \mathbb{C}$, la función **exponencial compleja** de z,

$$e^z = e^{x+iy} := e^x e^{iy} = e^x (\cos y + i \sin y) = e^x \cos y + i e^x \sin y.$$

- $e^0=1$, $e^{z+w}=e^ze^w$ y $e^z\neq 0$, para todo $z\in \mathbb{C}$.
- Para todo $z \in \mathbb{C}$, $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.
- Para todo $z \in \mathbb{C}$, $e^z = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$.
- Si $z_n o z$, entonces $e^z = \lim_{n o \infty} \Big(1 + \frac{z_n}{n}\Big)^n$.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

a

3. Variables aleatorias complejas

$$Z:(\Omega,\mathcal{F},\mathrm{P})\longrightarrow\mathbb{C}$$
 aplicación.

Sean $X = \operatorname{Re}(Z)$, $Y = \operatorname{Im}(Z)$ parte real e imaginaria de Z, es decir $X, Y : (\Omega, \mathcal{F}, P) \longrightarrow \mathbb{R}$ y

$$Z = X + iY$$

Z se dice **variable aleatoria compleja** si es medible cuando en $\mathbb C$ se considera la σ -álgebra boreliana asociada a la topología usual.

Nota: Z v.a. compleja si y solo si (X, Y) es un vector aleatorio bidimensional (es decir, si X e Y son v.a. unidimensionales).

Diremos que Z es **integrable** si X e Y son integrables. En tal caso, la **esperanza de** Z se define

$$EZ = EX + iEY.$$

Propiedades de la esperanza de v.a. complejas

- **1** Si Z integrable, entonces $EZ \in \mathbb{C}$.
- 2 Z integrable si y solo si $E|Z| < \infty$.
- **3 Linealidad:** Si Z_1 , Z_2 v.a. complejas integrables y $a, b \in \mathbb{C}$, entonces $aZ_1 + bZ_2$ es integrable y

$$E(aZ_1 + bZ_2) = aEZ_1 + bEZ_2.$$

- 4 Si Z es integrable, entonces $|EZ| \le E|Z|$.
- **5 Teorema de convergencia dominada:** Si $Z_n \to Z$ y $|Z_n| \le U$ v.a. integrable, entonces Z_n y Z son integrables y

$$EZ = \lim_{n\to\infty} EZ_n.$$

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

11

4. Funciones características

Sea X una variable aleatoria. Se llama **función característica (f.c.)** de X a la función $\varphi_X : \mathbb{R} \to \mathbb{C}$ dada por

$$\varphi_X(t) = \mathrm{E}(e^{itX}), \quad t \in \mathbb{R}.$$

Notas:

- **11** $\varphi_X(t)$ es una función bien definida para todo $t \in \mathbb{R}$.
- $|\varphi_X(t)| \leq 1.$
- **3** $\varphi_X(0) = 1$.
- **5** Si $X =_d Y$, entonces $\varphi_X(t) = \varphi_Y(t)$, $t \in \mathbb{R}$.

Observación: Veremos más adelante que la función característica de una v.a. X, φ_X , caracteriza su distribución de probabilidad P_X . Es decir, en el punto anterior se puede escribir un "si y solo si".

Propiedades básicas

- $\varphi_X(-t) = \overline{\varphi_X(t)}$. $(\varphi_X(t) \in \mathbb{R} \text{ si y solo si } \varphi_X(t) \text{ es par.})$
- Cambio de origen y escala: Sea Y = aX + b con $a, b \in \mathbb{R}$. Se tiene $\varphi_Y(t) = e^{itb}\varphi_X(at)$. En particular, $\varphi_{-X}(t) = \overline{\varphi_X(t)}$.

Una v.a. X se dice **simétrica** si $X =_d -X$. Si X tiene densidad f(x) y es simétrica, entonces f(x) es par $(f(x) = f(-x), x \in \mathbb{R})$.

• Caso de v.a. simétricas: Si X tiene densidad par, entonces $\varphi_X(t) = \mathbb{E}(\cos tX) \in \mathbb{R}, \ t \in \mathbb{R}.$

X simétrica, entonces $\varphi_X(t)$ es real ($\iff \varphi_X$ es par).

• Independencia: X_1, \ldots, X_n v.a. independientes Se tiene:

$$\varphi_{X_1+\cdots+X_n}(t)=\varphi_{X_1}(t)\cdot\cdots\cdot\varphi_{X_n}(t).$$

Nota: El recíproco no es cierto.

Aplicación importante: Suma de variables i.i.d.

• Continuidad: φ_X es una función uniformemente continua.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

10

4. Funciones características. Ejemplos

- 1) X = c c.s. (constante), $\varphi_X(t) = e^{itc}$.
- **2** $X \sim B(1; p), \qquad \varphi_X(t) = (q + pe^{it}).$
- 3 $X \sim B(n; p), \qquad \varphi_X(t) = (q + pe^{it})^n.$
- A $X \sim P(\lambda)$, $\varphi_X(t) = e^{\lambda(e^{it}-1)}$.
- 5 $X \sim \mathsf{G}(p), \qquad \varphi_X(t) = \frac{p}{1 qe^{it}}.$
- **6** $X \sim BN(r; p), \qquad \varphi_X(t) = \left(\frac{p}{1 qe^{it}}\right)^r.$
- 7 $X \sim U(a,b), \qquad \varphi_X(t) = \frac{e^{itb} e^{ita}}{it(b-a)}.$

En particular,

$$-X\sim U(-1,1), \qquad \varphi_X(t)=\frac{\sin t}{t}.$$

$$-X \sim U(-c,c), \qquad \varphi_X(t) = \frac{\sin tc}{tc}.$$

4. Funciones características. Ejemplos

8 X con densidad triangular $f(x) = \max\{1 - |x|, 0\}$,

$$\varphi_X(t)=2\left(\frac{1-\cos t}{t^2}\right).$$

①
$$X \sim \mathsf{Exp}(a), \qquad \varphi_X(t) = \left(1 - \frac{it}{a}\right)^{-1}.$$

- ① X Cauchy $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$, $\varphi_X(t) = e^{-|t|}$.
- ① $X \sim \mathsf{Gamma}(\alpha, \beta) \ (\alpha, \beta > 0)$

$$f(x) = \frac{x^{\alpha - 1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)}, (x > 0), \qquad \varphi_X(t) = \left(1 - \frac{it}{\beta}\right)^{-\alpha}.$$

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

15

4. Funciones características. Dibujos

4. Funciones características. Dibujos

4. Funciones características. Dibujos

18

Idea: Si todo fuera maravilloso...

$$\varphi_X(t) = \mathrm{E}e^{itX}$$

... y la derivada de la esperanza fuera la esperanza de la derivada:

$$\varphi'_{X}(t) = \operatorname{E}[iXe^{itX}] \qquad \Longrightarrow \qquad \varphi'_{X}(0) = i\operatorname{E}X$$

$$\varphi''_{X}(t) = \operatorname{E}[(iX)^{2}e^{itX}] \qquad \Longrightarrow \qquad \varphi''_{X}(0) = i^{2}\operatorname{E}X^{2}$$

$$\varphi'''_{X}(t) = \operatorname{E}[(iX)^{3}e^{itX}] \qquad \Longrightarrow \qquad \varphi'''_{X}(0) = i^{3}\operatorname{E}X^{3}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\varphi^{(k)}_{X}(t) = \operatorname{E}[(iX)^{k}e^{itX}] \qquad \Longrightarrow \qquad \varphi^{(k)}_{X}(0) = i^{k}\operatorname{E}X^{k}$$

Conclusión: En un mundo ideal, derivando sucesivamente la f.c. φ_X (y evaluando las derivadas en 0) obtendríamos (salvo las constantes i^k) los momentos de la variable aleatoria X.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

10

5. Momentos y derivadas de la f.c.

Teorema: Derivación bajo el signo integral

Sea I intervalo real, (Ω, \mathcal{F}, P) espacio de probabilidad y $f: I \times \Omega \longrightarrow \mathbb{C}$ función que cumple

- (a) $\forall t \in I \ f(t, \bullet) : \Omega \longrightarrow \mathbb{C} \text{ v.a. compleja integrable.}$
- (b) $\forall \omega \in \Omega \ f(\bullet, \omega) : I \longrightarrow \mathbb{C}$ derivable.
- (c) $\exists g: \Omega \longrightarrow \mathbb{R}^+$ v.a. positiva e integrable tal que

$$|f'(t,\omega)| \leq g(\omega), \quad \forall t \in I, \, \forall \omega \in \Omega.$$

Definimos la función
$$H(t) = \int_{\Omega} f(t, \omega) dP(\omega).$$

Se tiene que H es derivable y

$$H'(t) = \int_{\Omega} f'(t,\omega) dP(\omega).$$

Teorema: Momentos de la v.a. y derivadas de la f.c.

Supongamos que $\mathrm{E}|X|^n < \infty$ para algún $n \in \mathbb{N}$. Se tiene:

(a) φ_X es derivable hasta el orden n y

$$\varphi_X^{(k)}(t) = i^k \int_{\Omega} X^k e^{itX} dP, \quad k = 1, \dots, n.$$

En particular, $\varphi_X^{(k)}(0) = i^k E X^k$, k = 1, ..., n.

(b) Para k = 1, ..., n, $\varphi_X^{(k)}$ es uniformemente continua.

Observación: El recíproco de este teorema no es cierto en general. Hay ejemplos de v.a. tales que existe $\varphi_X'(0)$ pero $\mathrm{E}|X|=\infty$.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

21

5. Momentos y derivadas de la f.c.

Nota (importante de cara a las aplicaciones): Supongamos que $f:(-a,a)\longrightarrow \mathbb{C}$ admite derivadas en t=0 hasta el orden n. Usando el desarrollo de McLaurin, tenemos

$$f(t) = f(0) + f'(0)t + \frac{f''(0)}{2!}t^2 + \cdots + \frac{f^{(n)}(0)}{n!}t^n + R_n(t),$$

donde $R_n(t) = o(t^n)$ $(t \to 0)$, es decir, $R_n(t)/t^n \to 0$, si $t \to 0$.

Si $\mathrm{E}|X|^n < \infty$, entonces φ_X es n veces derivable y por tanto

$$\varphi_X(t) = \sum_{k=0}^n \frac{i^k E X^k}{k!} t^k + o(t^n), \quad t \to 0.$$

Ejemplo: Supongamos que $X_1, X_2, \ldots,$ v.a. i.i.d. integrables de media μ . Calcular

$$\lim_{n\to\infty} \varphi_{S_n/n}(t)$$
, donde $S_n = X_1 + \cdots + X_n$.

5. Momentos y derivadas de la f.c.

Teorema: Momentos de la v.a. y derivadas de la f.c.

Si existe $\varphi_X^{(2n)}(0)$, entonces $\mathrm{E}|X|^{2n} < \infty$.

Lema (previo a la demostración:) En las condiciones del Teorema anterior, se tiene

$$\varphi_X''(0) = \lim_{h \to 0} \int_{\Omega} \left(\frac{e^{ihx} - e^{-ihx}}{2h} \right)^2 dP.$$

En general,

$$\varphi_X^{(2n)}(0) = \lim_{h \to 0} \int_{\Omega} \left(\frac{e^{ihx} - e^{-ihx}}{2h} \right)^{2n} dP.$$

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

23

5. Momentos y derivadas de la f.c.

Teorema: Desarrollo en serie de la f.c.

Supongamos que existe un $\rho>0$ tal que $\mathrm{E} e^{\rho|X|}<\infty$. La función φ_X admite un desarrollo en serie de potencias

$$\varphi_X(t) = \sum_{n=0}^{\infty} \frac{i^n E X^n}{n!} t^n, \quad |t| \le \rho.$$

Aplicaciones:

- **1** $X \sim N(0, 1)$.
- 2 X con distribución de Laplace o doble exponencial.
- **3** $X \sim \text{Gamma}(\alpha, \beta)$.

Observación: Conocida la distribución de una variable aleatoria X, podemos calcular (al menos teóricamente) su función característica, φ_X .

Las **fórmulas de inversión** tratan el problema inverso, es decir, conocida la f.c. φ_X , se trata de encontrar la distribución de probabilidad de la v.a. X.

Caso discreto

Teorema: Fórmula de inversión para variables con valores en $\mathbb Z$

Sea X una v.a. con soporte en \mathbb{Z} y con f.c. φ_X . Se tiene:

$$P(X = n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itn} \varphi_X(t) dt, \quad n \in \mathbb{Z}.$$

$$\mathrm{P}(X=n)=rac{1}{2\pi}\int_0^{2\pi}e^{-itn}arphi_X(t)\,dt,\quad n\in\mathbb{Z}.$$

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

25

6. Fórmulas de inversión

Teorema: Fórmula de inversión de Lévy

Sea X una v.a. con f.c. φ_X y f.d. F_X . Para todo $a,b \in \mathbb{R}$ con a < b, se tiene

$$\frac{\mathrm{P}(X=a) + \mathrm{P}(X=b)}{2} + \mathrm{P}(a < X < b) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) \, dt.$$

En particular, si $a,b\in C_F$ (puntos de continuidad de F_X)

$$F_X(b) - F_X(a) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt.$$

Corolario 1: Teorema de unicidad

Sean X e Y v.a. no necesariamente definidas sobre el mismo espacio de probabilidad. Si $\varphi_X = \varphi_Y$, entonces $X =_d Y$.

Corolario 2: Variables simétricas

X es v.a. simétrica si y solo si φ_X real (si y solo si φ_X par).

6. Fórmulas de inversión: Caso $\varphi_X \in \mathcal{L}(-\infty, \infty)$

Nota: X v.a. con f.d. F_X y f.c. φ_X . Tenemos, para $a < b \in C_{F_X}$

$$F_X(b) - F_X(a) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt.$$

En general $\int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt$ no existe.

Es decir,
$$\frac{e^{-ita}-e^{-itb}}{it} \varphi_X(t) \notin \mathcal{L}(-\infty,\infty)$$

Teorema: Fórmula de inversión cuando $\varphi_X \in \mathcal{L}(-\infty, \infty)$

Supongamos que $arphi_X \in \mathcal{L}(-\infty,\infty)$. Para $a < b ext{ con } a,b \in \mathcal{C}_{F_X}$,

$$F_X(b) - F_X(a) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \varphi_X(t) dt.$$

En particular,

$$F_X(b) - F_X(a) \le \frac{k(b-a)}{2\pi}$$
, donde $k = \int_{-\infty}^{\infty} |\varphi_X(t)| dt$.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

27

6. Fórmulas de inversión: Caso $\varphi_X \in \mathcal{L}(-\infty, \infty)$

Teorema: Continuidad de F_X

Si $\varphi_X \in \mathcal{L}(-\infty, \infty)$, entonces F_X es continua ($C_{F_X} = \mathbb{R}$).

Teorema: Derivabilidad de F_X

Supongamos que $\varphi_X \in \mathcal{L}(-\infty, \infty)$. Se tiene,

(a) F_X es derivable y

$$F_X'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt.$$

(b) F_X' es uniformemente continua y por tanto $F_X(x) = \int_{-\infty}^x F_X'(u) \, du$. En particular, X tiene densidad

$$f(x) = F_X'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt.$$

Ejemplos:

- 1 Si X es de Cauchy, entonces $\varphi_X(t)=e^{-|t|}\in\mathcal{L}(-\infty,\infty)$.
- 2 X v.a. con f.c. $\varphi_X(t) = 2(1-\cos t)/t^2 \in \mathcal{L}(-\infty,\infty)$.

7. Identificación de funciones características

Problema: Dada $\varphi: \mathbb{R} \longrightarrow \mathbb{C}$, ¿cómo saber si φ es la f.c. de alguna variable aleatoria?

- Si $\varphi(0) \neq 1$, entonces φ no es f.c.
- Si existe $t_0 \in \mathbb{R}$ tal que $|\varphi(t_0)| > 1$, entonces φ no es f.c.

Teorema de Bochner-Herglotz

Sea $\varphi: \mathbb{R} \longrightarrow \mathbb{C}$. φ es la f.c. de alguna v.a. si y solo si

- (1) $\varphi(0) = 1$.
- (2) φ es continua en t=0.
- (3) φ es definida positiva, es decir, para todo $n \in \mathbb{N}$, para todo $t_1, \ldots, t_n \in \mathbb{R}$, y, para todo $z_1, \ldots, z_n \in \mathbb{C}$, se tiene

$$\sum_{i=1}^n \sum_{j=1}^n \varphi(t_i - t_j) z_i \overline{z}_j \ge 0.$$

Nota: El teorema anterior es de interés teórico, pero poco práctico.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

20

7. Identificación de funciones características

Problema: Dada $\varphi: \mathbb{R} \longrightarrow \mathbb{C}$, ¿cómo saber si φ es la f.c. de alguna variable aleatoria?

Teorema de Pólya

Sea $\varphi: \mathbb{R} \longrightarrow \mathbb{R}_+$. φ es la f.c. de alguna v.a. (simétrica) si

- (1) $\varphi(0) = 1$.
- (2) φ es continua en t=0.
- (3) φ es par.
- (4) φ es convexa y decreciente en $[0, \infty)$.

7. Identificación de funciones características

Normas a seguir para averiguar si φ es una f.c.

- 1 ¿Es φ una de las f.c. conocidas?
- - (1) $\varphi(t) = \phi(at)$, donde ϕ es la f.c. de X y $a \in \mathbb{R}$. Entonces, φ es la f.c. de aX.
 - (2) $\varphi(t) = \phi_1(t)\phi_2(t)$, donde ϕ_1 es la f.c. de X y ϕ_2 es la f.c. de Y. Entonces, φ es la f.c. de X + Y, con X e Y independientes.
 - (3) Si $\varphi(t) = e^{itb}\phi(at)$, donde ϕ es la f.c. de X y $a, b \in \mathbb{R}$. Entonces, φ es la f.c. de aX + b.
 - (4) $\varphi(t) = (\phi(t))^n$, donde ϕ es la f.c. de X y $n \in \mathbb{N}$. Entonces, φ es la f.c. de $X_1 + \cdots + X_n$, con X_1, \ldots, X_n v.a. i.i.d. como X.
- 3 Aplicar el Teorema de Pólya si se puede.
- 4 Sospechar que φ no es f.c.

Javier Cárcamo

Probabilidad II. Tema 5: Funciones características

21

8. Aplicaciones

Las funciones características tienen muchas aplicaciones. Se utilizan para demostrar importantes resultados límite del Cálculo de probabilidades, como veremos más adelante. También se utilizan en problemas relativos a distribuciones de probabilidad.

1 Distribuciones de sumas de v.a. independientes

$$\left\{ \begin{array}{l} X, Y \text{ independientes} \\ X \sim \mathsf{B}(n; p) \\ Y \sim \mathsf{B}(m; p) \end{array} \right\} \Longrightarrow X + Y \sim \mathsf{B}(n + m; p).$$

$$\left\{ \begin{array}{l} X, Y \text{ independientes} \\ X \sim \mathsf{P}(\lambda) \\ Y \sim \mathsf{P}(\mu) \end{array} \right\} \Longrightarrow X + Y \sim \mathsf{P}(\lambda + \mu).$$

$$\left\{ \begin{array}{l} X, Y \text{ independientes} \\ X \sim \mathsf{BN}(r; p) \\ Y \sim \mathsf{BN}(s; p) \end{array} \right\} \Longrightarrow X + Y \sim \mathsf{BN}(r + s; p).$$

1 Distribuciones de sumas de v.a. independientes

$$\left\{ \begin{array}{l} X,Y \text{ independientes} \\ X \sim \mathsf{Gamma}(a;k) \\ Y \sim \mathsf{Gamma}(a;l) \end{array} \right\} \Longrightarrow X+Y \sim \mathsf{Gamma}(a;k+l).$$

$$\left\{ \begin{array}{l} X,Y \text{ independientes} \\ X \sim \mathsf{N}(a;\sigma) \\ Y \sim \mathsf{N}(b;\tau) \end{array} \right\} \Longrightarrow X+Y \sim \mathsf{N}(a+b;\sqrt{\sigma+\tau}).$$

- 2 Otro tipo de problemas: Identificación de distribuciones
 - (1) ¿Existen v.a. X, Y ind. y con la misma distribución tal que $X Y \sim U(-1, 1)$?
 - (2) Sean X, Y v.a. independientes con la misma distribución de media 0 y varianza 1 tales que

$$\frac{X+Y}{\sqrt{2}}=_d X=_d Y.$$

Mostrar que la distribución común es necesariamente normal.