M311S24 Problem Set 2 Franchi-Pereira, Philip

- Problem 1.a Let S be a semigroup with some (not necessarily unique) left neutral element e_L , and such that any element a has a left inverse b_L with respect to e_L . Show that S is in fact a group.
 - **Lemma 1** All left inverses b_L with respect to e_L in S are also right inverses.
 - Proof Note that since $b_L \in S$, then it too has an inverse, denoted by b_L^{-1} , such that $b_L^{-1}b_L = e_L$. Then by associativity and the definition of our inverses:

$$b_L a = e_L = b_L^{-1} b_L = b_L^{-1} (e \, b_L) = b_L^{-1} ((b_L a) b_L)$$
$$= (b_L^{-1} b_L) (a b_L) = e(a b_L) = a b_L$$

- **Lemma 2** If e_L is a left neutral of S, then it is also a right neutral.
 - Proof Since $e_L \in S$, it has a left inverse: $e_L e_L = e_L$. By Lemma 1, it must also have a right inverse, e_R , such that $e_L e_R = e_L$. But then we see that $e_R = e_L e_R = e_L$, and so the neutral element e is unique.
- **Lemma 3** The every element $a \in S$ has a left inverse b_L and right inverse b_R , then $b_L = b_R = b$.
 - Proof Note that $b_L = b_L e = b_L (ab_r)$, and by associativity, $b_L (ab_r) = (b_L a)b_R = eb_R = b_R$. Therefore $b_L = b_R$.
- **Lemma 4** The inverse of any element $a \in S$ is unique, denoted by a^{-1} .
 - Proof Let b_0, b_1 be inverses of a. Then by similar logic to the previous lemma,

$$b_1 = b_1 e = b_1(ab_0)$$
 and by associativity $b_1(ab_0) = (b_1 a)b_0 = eb_0 = b_0$

Since the semigroup S contains a unique identity element, every element in S has a unique inverse, and the operation over S, Δ is associative, then by definition S is actually a group

1.b Let S be a semigroup which has a left neutral e_L and such that any element a has a right inverse b_R with respect to e_L . Is S necessarily a group? Prove or give a counter-example.

Counter Example: Let $\phi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \phi(a,b) \mapsto b$. We will show that ϕ is associative

$$(ab)c = (b)c = (bc) = c$$

$$a(bc) = a(c) = (ac) = c$$

So \mathbb{Z} , ϕ is a semigroup. Furthermore, every integer can be a left neutral element, since for any $b \in \mathbb{Z}$, all elements $a \in \mathbb{Z}$ by definition give $\phi(a, b) =$

b. Finally, every element $a \in \mathbb{Z}$ has a right inverses with respect to e_L . Since e_L can be any integer, any $a, b \in \mathbb{Z}$ produces e_L .

However, ϕ is not a group. The only choice of right neutral element such that ae = a, $a, e \in \mathbb{Z}$ is a itself, but any integer can be left neutral. Therefore there is no unique neutral element, and so ϕ is not a group.

- Problem 2.a Let G be a group such that for all $g \in G$, $g^2 = e$. Prove that G is abelian.
 - Proof: Let $a, b \in G$. To show that ab = ba, note that the inverse of ab is ba, since (ba)(ab) = b(aa)b = bb = e. Note also that $(ba)^2 = e$ by definition. It follows that ab = e(ab) = ((ba)(ba))(ab) = (ba)((ba)(ab)) = (ba)e = ba.
 - 2.b Suppose, instead we have for all $g \in G$, $g^3 = e$. Is G necessarily abelian? Prove or give a counterexample.
 - Problem 3 Let G be finite group and let 2|o(G). Prove that G has an odd number of elements of order 2. In particular G has at least one element of order 2.
 - Problem 4 Let H and K be subgroups of a group. Prove that $H \cap K$ is a subgroup of G.

Proof: For all $a, b \in H \cap K$, $a, b \in H$. Since H is also a group, then clearly $ab^{-1} \in H$. Likewise, $a, b \in K$, so $ab^{-1} \in K$. Since ab^{-1} is in both H and $K, ab^{-1} \in H \cap K$. Therefore by BB.Corollary 3.2.3, $H \cap K$ is a subgroup of G.

Problem 5 Fill out the table. The first row of the table was computed using Python.

(m,n)	md(m,n)	qt(m,n)
(987654321, 7531)	1326	131145
(987654321, -7531)	1326	-131145
(-987654321, 7531)	-1326	-131146
(-987654321, -7531)	6205	131146

Problem 6 Let a and b be positive integers. Let a = h(a, b), b = k(a, b). Take any pair ω , γ with $\omega a + \gamma b = (a, b)$. Show that $(\omega, \gamma) = 1$ and (h, k) = 1.

Proof: Let d=(a,b), the GCD of a and b. Then a=kd, b=kd and $\omega a+\gamma b=d$. It follows that $\omega a+\gamma b=\omega(hd)+\gamma(kd)=(\omega h+\gamma k)d=d$. Then by BB A3.6.n, $(\omega h+\gamma k)=1$ and so by definition, $(\omega,\gamma)=1$ and (h,k)=1.

- Problem 7 Let a, b, a_1, b_1 be non-zero integers. Assume that (a, b) = 1 and $(a_1, b_1) = 1$ and that $ab_1 = a_1b$ show that either $a = a_1$, $b = b_1$ or $a = -a_1$, $b = -b_1$.
- Problem 8 Find (a, b) and ω and γ such that $(\omega, \gamma) = (a, b)$ for (1) a = 26460, b = 126000 and (2) a = 12091, b = 8439

Note: The role of qt was performed by a//b in Python, and md by a%b in Python.

1. a = 26460, b = 126000. As provided, this is 0. Assuming instead that a is the larger value of the two, then instead we have:

$$126000 = 26460(4) + 20160$$
$$26460 = 20160(1) + 6300$$
$$20160 = 6300(3) + 1260$$
$$6300 = 1260(5) + 0$$

So gcd(126000, 26460) = 1260.

2.
$$a = 12091, b = 8439$$

$$12091 = 8439(1) + 3652$$

$$8439 = 3652(2) + 1135$$

$$3652 = 1135(3) + 247$$

$$1135 = 247(4) + 147$$

$$247 = 147(1) + 100$$

$$147 = 100(1) + 47$$

$$100 = 47(2) + 6$$

$$47 = 6(7) + 5$$

$$6 = 5(1) + 1$$

$$5 = 1(5) + 0$$

Therefore these two numbers are relatively prime.

Problem 9.a The set $a\mathbb{Z} \cap b\mathbb{Z}$ is by definition the set of common multiples of a and b. Cite a result that shows that $a\mathbb{Z} \cap b\mathbb{Z}$ is a subgroup of \mathbb{Z} . Why is this subgroup non-trivial?

In Problem 4 we proved that the intersection of two subgroups is itself a subgroup. It is nontrivial since $0, ab, -ab \in a\mathbb{Z}$ and $0, ab, -ab \in b\mathbb{Z}$, so it is clearly not empty.

9.b Use our results on subgroups of \mathbb{Z} to show that the smallest positive common multiple of a and bis in fact the least common multiple.

Proof: Let $m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$, the set of all multiples of both a and b. This set is clearly not empty, since both $a\mathbb{Z}$ and $b\mathbb{Z}$ contain ab. Take $m\mathbb{Z} \cap \mathbb{N}$, denoted $m\mathbb{Z}^+$. Clearly every element in it is positive, and so by the Well Ordering Principle, this set has a smallest element, l, such that for all $x \in m\mathbb{Z}^+$, $l \leq x$. However, since every element in $m\mathbb{Z}^+$ is a common multiple of both a and b, then l must be the smallest positive common multiple of a, b

9.c Take a = h(a, b) and b = k(a, b). Which previous result shows that h and k are relatively prime?

This was shown directly in Problem 6.

9.d Let c be a common multiple of a and b. Certainly (a,b)|c so we have c = n(a,b). Show that k|n and h|n. What result allows us to conclude that hk|n?

Proof: Since c is a multiple of a and a = h(a, b), then there must exist some m_1 such that $c = m_1 h(a, b)$. Likewise c is a multiple of b and so there must be an m_2 such that $c = m_2 k(a, b)$. By the result of Problem 6, h and k are relatively prime, and so $c = m_3 h k(a, b)^{**}$ for some m_3 . Therefore hk|n

9.e Show that [a, b] = hk(a, b).

Proof: First note that ab = (h(a,b))(k(a,b)) = hk(a,b)(a,b).

Problem 10 The positive numbers a and b are such that a+b=57 and [a,b]=680. What are a and b?

a=17 and b=40. First, find all the prime factors of 680. This is made easier by the fact that it is even, and so 680/2/2/2=85. Then, factoring out 5, 85/5=17, so 680=2*2*2*5*17. Since a+b=57, a=17 and b=40. Since a and b do not share factors, (a,b)=1 and $[a,b]=\frac{|ab|}{(a,b)}=\frac{|ab|}{1}=680$.

Problem 11

Problem 12 We are given that n(n+30) a perfect square. What are the possible values of n?