MA 222: Elementary Number Theory and Algebra End Semester Examination: **PART A**

1.	No partial marking for any question except question 6 and 7.
2.	In question no. 6 and 7, if only one option is written which is correct then 1 mark will be awarded. No mark will be given if incorrect option is written with or without the correct options.
1.	Number of elements of order 4 in the groups $U(\mathbb{Z}_{250})$ and $U(\mathbb{Z}_{16})$ are, respectively [1]
	Answer: 2 and 4. Solution: Since $250 = 2 \times 5^3$, there is a primitive root modulo 250 and hence $U(\mathbb{Z}_{250})$ is a cyclic group. Therefore, the number of 4-order elements in it is $\phi(4) = 2$. The group $U(\mathbb{Z}_{16}) = \{1, 3, 5, 7, 9, 11, 13, 15\}$ has 4 elements of order 4 namely, 3, 5, 11, and 13.
2.	Let $S^1 = \{z \in \mathbb{C} : z = 1\}$ be the circle group under multiplication. Let $f : S_3 \to S^1$ be a non-trivial non-injective group homomorphism. Then, what is the order of $\ker(f)$? [1]
	Answer: 3. Solution: Since $\ker(f)$ is a normal subgroup of S_3 , it has three possibilities (1), A_3 , and S_3 . Also, f is a non-trivial and non-injective group homomorphism, therefore $\ker(f)$ cannot be (1) or S_3 . Hence $\ker(f) = A_3$ and the order of $\ker(f) = A_3 = 3$.
3.	Consider the following two statements: [1] I: A field F is finite if and only if char(F) is a prime number. II: A field F is infinite if and only if char(F) is zero. Which of the following statement(s) is(are) TRUE? (A) I is TRUE (B) I is FALSE (C) II is TRUE (D) II is FALSE
	Answer: (B) and (D). Solution: For a prime p , $\mathbb{F}_p(x) := \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in \mathbb{Z}_p[x], g(x) \neq 0 \right\}$, the field of fractions of $\mathbb{Z}_p[x]$, is an infinite field with characteristic p . Thus, both the statements are false.
4.	The number of elements in the set $\{x \in A_5 : x^4 = (1)\}$ is equal to [1]
	Answer: 16. Solution: The set contains the even permutations from S_5 of order 1, 2, and 4. In S_5 , elements of order 4 are 4-cycles only, which are not even permutations. Whereas, 2-cycles

and product of two 2-cycles are of order 2. Also, 2-cycles are not even permutations. For counting elements which are product of two 2-cycles, notice that after choosing first 2-cycle in $({}^5C_2 =) 10$ ways, we need to choose 2 symbols from remaining 3 symbols in $({}^3C_2 =) 3$ ways. Since elements like $(1\ 2)(3\ 4)$ and $(3\ 4)(1\ 2)$ are same, we divide by 2, to get the total number of elements which are product of two 2-cycles equal to $\frac{10\times 3}{2} = 15$. The identity is the only element of order 1 in any group, therefore, we get the total number

5. How many primitive roots modulo 162 are there?

of elements in the set equal to 15 + 1 = 16.

Answer: 18.

Solution: Since $162 = 2 \times 3^4$, we have a primitive root modulo 162 and there are $\phi(\phi(162)) = 18$ primitive roots modulo 162.

6. Which of the following is(are) field(s)?

[2]

(A)
$$\mathbb{Z}_2[x]/(x^4+x+1)$$
 (B) $\mathbb{Z}[x]/(5,x)$ (C) $\mathbb{R}[x]/(x^3+2)$ (D) $\mathbb{Z}_4[x]/(x^3+1)$

(C)
$$\mathbb{R}[x]/(x^3+2)$$

D)
$$\mathbb{Z}_4[x]/(x^3 +$$

Answer: (A) and (B).

Solution: (A) Let $f(x) = x^4 + x + 1$. Clearly, f(x) has no linear factor as it has no root in \mathbb{Z}_2 . The remaining possibility for factorization of f(x) is a product of two quadratic polynomials, say $f(x) = (ax^2 + bx + c)(dx^2 + ex + f)$. But this factorization is not possible for any a, b, c, d, e, and f in \mathbb{Z}_2 . Therefore, f(x) is irreducible over $\mathbb{Z}_2[x]$. Since $\mathbb{Z}_2[x]$ is a PID and $x^4 + x + 1$ is irreducible over $\mathbb{Z}_2[x]$, hence $\mathbb{Z}_2[x]/(x^4 + x + 1)$ is a field.

- **(B)** Since (5, x) is a maximal ideal in integral domain $\mathbb{Z}[x]$, therefore $\mathbb{Z}[x]/(5, x)$ is a field.
- (C) The polynomial $x^3 + 2$ has a real root, therefore it is reducible over $\mathbb{R}[x]$. Since $\mathbb{R}[x]$ is PID, $(x^3 + 2)$ is not a maximal ideal. Hence, $\mathbb{R}[x]/(x^3 + 2)$ is not a field.
- (D) In $\mathbb{Z}_4[x]/(x^3+1)$, $2+(x^3+1)$ is a zero divisor as $(2+(x^3+1))(2+(x^3+1))=0+(x^3+1)$. Therefore, $\mathbb{Z}_4[x]/(x^3+1)$ is not a field.
- 7. Consider the following two statements:

[2]

I: There is NO injective (one-one) group homomorphism from $U(\mathbb{Z}_8)$ to \mathbb{Z}_8 .

II: There is NO surjective (onto) group homomorphism from \mathbb{Z}_8 to $U(\mathbb{Z}_8)$.

Which of the following statement(s) is(are) TRUE? (A) I is TRUE (B) I is FALSE

(C) II is TRUE

(D) II is FALSE

Answer: (A) and (C).

Solution: Statement I: Suppose there is an injective group homomorphism Φ from $U(\mathbb{Z}_8)$ to \mathbb{Z}_8 . Then $\Phi(U(\mathbb{Z}_8))$ will be isomorphic to $U(\mathbb{Z}_8)$. Since, \mathbb{Z}_8 is cyclic and $\Phi(U(\mathbb{Z}_8))$ is a subgroup of \mathbb{Z}_8 , so $\Phi(U(\mathbb{Z}_8))$ is also cyclic. But $\Phi(U(\mathbb{Z}_8))$ can't be cyclic as $U(\mathbb{Z}_8)$ is not cyclic. Therefore, there is no injective group homomorphism from $U(\mathbb{Z}_8)$ to \mathbb{Z}_8 .

Statement II: Let Ψ be a surjective group homomorphism from \mathbb{Z}_8 to $U(\mathbb{Z}_8)$. Then, the quotient group $\mathbb{Z}_8/\ker(\Psi)$ is isomorphic to $U(\mathbb{Z}_8)$. Since \mathbb{Z}_8 is cyclic, so $\mathbb{Z}_8/\ker(\Psi)$ is also cyclic. But $\mathbb{Z}_8/\ker(\Psi)$ can't be cyclic as $U(\mathbb{Z}_8)$ is not cyclic. Thus, there is no surjective group homomorphism from \mathbb{Z}_8 to $U(\mathbb{Z}_8)$.

8. Write down the last two digits of 3^{1492} .

[2]

Answer: 41

Solution: Since gcd(3, 100) = 1, $3^{\phi(100)} \equiv 1 \pmod{100}$. We know that $\phi(100) = 40$, then $3^{40} \equiv 1 \pmod{100}$. Consider

$$3^{1492} = 3^{1480+12} \equiv 3^{12} \pmod{100}$$

 $\equiv (-19)(-19)(-19) \equiv -59 \equiv 41 \pmod{100}.$

9. Consider the group $(\mathbb{Q}, +)$ and its subgroup $(\mathbb{Z}, +)$. Consider the following statements: [2] I: For every positive integer n, \mathbb{Q}/\mathbb{Z} has a unique subgroup of order n.

II: There is exactly one group homomorphism from \mathbb{Q}/\mathbb{Z} to $(\mathbb{Q},+)$.

Which of the following is TRUE?

- (A) Both I and II are TRUE
- (B) Both I and II are FALSE
- (C) I is TRUE but II is FALSE
- (D) I is FALSE but II is TRUE

Answer: (A).

Solution: Statement I: Let n be any positive integer. Then $\mathbb{H}_n := \left\{ \frac{m}{n} + \mathbb{Z} : 0 \le m < n \right\}$ is a subgroup of \mathbb{Q}/\mathbb{Z} of order n. Let S_n be any subgroup of \mathbb{Q}/\mathbb{Z} of order n. Then for any $\frac{a}{b} + \mathbb{Z} \in S_n$ $(a \in \mathbb{Z}, b \in \mathbb{N}), n\left(\frac{a}{b} + \mathbb{Z}\right) = 0 + \mathbb{Z}, \text{ i.e., } b \mid n$. Now, by division algorithm, there exist $q \in \mathbb{Z}$ and $r \in \{0, 1, \ldots, b-1\}$ such that a = bq + r. Then $\frac{a}{b} + \mathbb{Z} = \frac{r}{b} + \mathbb{Z}$, where $b \mid n$ and $0 \le r < n$. This implies that $\frac{a}{b} + \mathbb{Z} \in \mathbb{H}_n$, which in turn implies that $S_n \subset \mathbb{H}_n$. But since S_n and \mathbb{H}_n are of same order, we get the unique subgroup of order n, i.e., $S_n = \mathbb{H}_n$. Statement II: Let f be a group homomorphism from \mathbb{Q}/\mathbb{Z} to $(\mathbb{Q}, +)$. Then $o(f(a)) \mid o(a)$, for all $a \in \mathbb{Q}/\mathbb{Z}$, since all the elements of \mathbb{Q}/\mathbb{Z} are of finite order. This implies that o(f(a)) is finite, for all $a \in \mathbb{Q}/\mathbb{Z}$. But $(\mathbb{Q}, +)$ has only one finite-order element, i.e., 0. Thus, f(a) = 0, for all $a \in \mathbb{Q}/\mathbb{Z}$. This gives exactly one group homomorphism from \mathbb{Q}/\mathbb{Z} to $(\mathbb{Q}, +)$.

10. What is the multiplicative inverse of $1 + x^2 + (x^3 + 2x + 1)$ in $\mathbb{Z}_3[x]/(x^3 + 2x + 1)$? [2]

Answer: $2x^2 + x + 2 + (x^3 + 2x + 1)$. **Solution:** Let $I = (x^3 + 2x + 1)$. Then

$$\mathbb{Z}_3[x]/I = \{ax^2 + bx + c + I : a, b, c \in \mathbb{Z}_3\}.$$

Let $ax^2 + bx + c + I$ be the multiplicative inverse of $1 + x^2 + I$ in $\mathbb{Z}_3[x]/I$. Then $(x^2 + 1 + I)(ax^2 + bx + c + I) = 1 + I$. We get $ax^4 + bx^3 + (a+c)x^2 + bx + c + I = 1 + I$. Also, $x^3 + I = -2x - 1 + I$ and substituting this in the above expression, we get

$$(c-a)x^2 - (a+b)x + (c-b) + I = 1 + I.$$

This implies $(c-a)x^2 - (a+b)x + (c-b) - 1 \in I$. Therefore, $(c-a)x^2 - (a+b)x + (c-b) - 1 = f(x)(x^3 + 2x + 1)$, for some $f(x) \in \mathbb{Z}_3[x]$. We have f(x) = 0, otherwise the degree of right-hand side will be greater than the degree of left-hand side. Therefore, $(c-a)x^2 - (a+b)x + (c-b) - 1 = 0$. Equating the coefficients on both side, we get a = 2, b = 1, and c = 2 and hence the multiplicative inverse of $1+x^2+I$ is $2x^2+x+2+I$. \square

• • •