CC Week 5

Prepared for: 7th Sem, CE, DDU

Prepared by: Niyati J. Buch

Ref. Book 1: Compiler: Principles, techniques and tools by Aho, Ullman and Sethi, 2nd Ed., Pearson Education Ref. Book 2: Advanced Compiler Design & Implementation By Steven S Muchnick

Contents

- Copy Propagation
 - Local Copy Propagation
 - Example 1
 - Example 2
 - Global Copy Propagation

Copy Propagation

Copy propagation is a transformation that, given an assignment x ← y for some variables x and y, replaces later uses of x with uses of y, as long as intervening instructions have not changed the value of either x or y.

Example of Copy Propagation

(a) Example of a copy assignment to propagate, namely, $b \leftarrow a$ in **B1**

(b) the result of doing copy propagation on it.

Phases of Copy Propagation

- Copy propagation can reasonably be divided into local and global phases,
 - the first operating within individual basic blocks
 and
 - the latter across the entire flow- graph,
- or it can be accomplished in a single global phase.

Example 1: Basic block of 5 instructions

Position	Code Before	ACP	Code After
		Ø	
1	b ← a		b ← a
		{ ⟨b,a⟩}	
2	c ← b + 1		c ← a + 1
		$\{\langle b, a \rangle\}$	
3	d ← b		d ← a
		$\{\langle b, a \rangle, \langle d, a \rangle\}$	
4	b ← d + c		b ← a + c
		{(d,a)}	
5	b ← d		b ← a
		$\{\langle d,a\rangle,\langle b,a\rangle\}$	

- The first column shows the position
- The second column shows a basic block of five instructions before applying the ACP algorithm
- The third column shows the value of ACP at each step
- The fourth column shows the result of applying ACP
- ACP = Available Copy Propagation

Example 2

• This is the flow graph **before** copy propagation.

After local copy propagation

 This is the flow graph after local copy propagation.

Global Copy Propagation

- To perform global copy propagation, we first do a data-flow analysis to determine which copy assignments reach uses of their left-hand variables unimpaired, i.e., without having either variable redefined in between.
- We define the set **COPY(i)** to consist of the instances of copy assignments occurring in block i that reach the end of block i.
- We define KILL(i) to be the set of copy assignment instances killed by block i.

COPY(i) and KILL(i)

- COPY(i) is a set of quadruples (u, v, i, pos),
 - such that $\mathbf{u} \leftarrow \mathbf{v}$ is a copy assignment
 - and pos is the position in block i where the assignment occurs,
 - and neither u nor v is assigned to later in block i.
- KILL(i) is the set of quadruples (u, v, blk, pos)
 - such that u ← v is a copy assignment occurring at position
 pos in block blk ≠ i.

Find COPY(i) and KILL(i) for given flow graph

COPY(i) using set notation

- COPY(entry) = Ø
- COPY(B1) = {(d, c, B1, 2)}
- $COPY(B2) = \{(g, e, B2, 2)\}$
- $COPY(B3) = \emptyset$
- $COPY(B4) = \emptyset$
- COPY(B5) = Ø
- COPY(B6) = Ø
- COPY(exit) = Ø

COPY(i) using vector representation

- COPY(entry) = <00>
- COPY(B1) = <10>
- COPY(B2) = <01>
- COPY(B3) = <00>
- COPY(B4) = <00>
- COPY(B5) = <00>
- COPY(B6) = <00>
- COPY(exit) = <00>

Bit position	COPY
1	$\{(d, c, B1, 2)\}$
2	$\{(g, e, B2, 2)\}$

KILL(i) using set notation

- KILL(entry) = Ø
- KILL(B1) = $\{(g, e, B2, 2)\}$
- KILL(B2) = \emptyset
- KILL(B3) = \emptyset
- KILL(B4) = \emptyset
- KILL(B5) = \emptyset
- KILL(B6) = {(d, c, B1, 2)}
- KILL(exit) = Ø

KILL(i) using vector representation

- KILL(entry) = <00>
- KILL(B1) = <01>
- KILL(B2) = <00>
- KILL(B3) = <00>
- KILL(B4) = <00>
- KILL(B5) = <00>
- KILL(B6) = <10>
- KILL(exit) = <00>

Bit position	COPY
1	$\{(d, c, B1, 2)\}$
2	$\{(g, e, B2, 2)\}$

Initialize CPin

• $CPin(x) = \emptyset$ if x = entry

CPin(x) = U otherwise, where U = U COPY(i) for all i

CPin for all blocks

- CPin(entry) = \emptyset | <00>
- CPin(B1) = {(d, c, B1, 2),(g, e, B2, 2)} | <11>
- CPin(B2) = {(d, c, B1, 2),(g, e, B2, 2)} | <11>
- CPin(B3) = {(d, c, B1, 2),(g, e, B2, 2)} | <11>
- $CPin(B4) = \{(d, c, B1, 2), (g, e, B2, 2)\} \mid <11>$
- CPin(B5) = {(d, c, B1, 2),(g, e, B2, 2)} | <11>
- CPin(B6) = {(d, c, B1, 2),(g, e, B2, 2)} | <11>
- CPin(exit) = {(d, c, B1, 2),(g, e, B2, 2)} | <11>

Data-flow equations for CPin(i) and CPout(i)

- Next, we define data-flow equations for CPin(i) and CPout(i) that represent the sets of copy assignments that are available for copy propagation on entry to and exit from block i, respectively.
- A copy assignment is available on entry to block i if it is available on exit from all predecessors of block i, so the pathcombining operator is intersection.
- A copy assignment is available on exit from block j if it is either in COPY(j) or it is available on entry to block j and not killed by block j, i.e., if it is in CPin(j) and not in KILL(j)

Data-flow equations

- CPin(i) = ∩ CPout(j) where j ∈ pred(i)
- CPout(i) = COPY(i) U (CPin(i) KILL(i))
- Equivalent:

$$CPout(i) = COPY(i) \ \bigcup (CPin(i) \ \bigcap \overline{KILL(i)})$$

Substituting CPout into CPin, we obtain:

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(j) \ \textbf{\textbf{U}} \ (CPin(j) \ \textbf{\textbf{\textbf{\upalpha}}} \ \overline{KILL(j)})$$

Our work-list order

- Since this is a forward problem, we manage our work-list in a <u>reverse post-order</u> (i.e. preorder means each block before its successors) order.
- One such order is entry, B1,
 B2, B4, B6, B3, B5, exit.

Applying iterative analysis for block entry

CPin(entry) = <00>

as per the equation as no predecessor is available.

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- entry is predecessor of B1
- CPin(B1) = COPY(entry) U (CPin(entry) KILL(entry))
- $CPin(B1) = <00> \cup (<00> <00>)$
- CPin(B1) = <00>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

B1 and B5 are predecessors of B2

CPin(B2) = <10>

```
• CPin(B2) = (COPY(B1) \cup (CPin(B1) - KILL(B1)))

\cap (COPY(B5) \cup (CPin(B5) - KILL(B5)))

• CPin(B2) = (<10> \cup (<11> - <01>))

\cap (<00> \cup (<11> - <00>))

= (<10> \cup <10>) \cap (<00> \cup <11>)

= <10> \cap <11>
```

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- B2 is predecessor of B4
- CPin(B4) = COPY(B2) U (CPin(B2) KILL(B2))
- CPin(B4) = <01> U (<11> <00>)= <01> U <11>
- CPin(B4) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- B4 is predecessor of B6
- CPin(B6) = COPY(B4) U (CPin(B4) KILL(B4))
- CPin(B6) = <00> ∪ (<11> <00>) = <00> ∪ <11>
- CPin(B6) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- B2 is predecessor of B3
- CPin(B3) = COPY(B2) U (CPin(B2) KILL(B2))
- CPin(B3) = <01> U (<11> <00>)= <01> U <11>
- CPin(B3) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

B3 and B4 are predecessors of B5

```
• CPin(B5) = (COPY(B3) \cup (CPin(B3) - KILL(B3)))

\cap (COPY(B4) \cup (CPin(B4) - KILL(B4)))
```

CPin(B5) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

B5 and B6 are predecessors of exit

CPin(exit) = <01>

Cpin(i)

	Pass 1	Pass 2
CPin(entry)	<00>	<00>
CPin(B1)	<11>	<00>
CPin(B2)	<11>	<10>
CPin(B3)	<11>	<11>
CPin(B4)	<11>	<11>
CPin(B5)	<11>	<11>
CPin(B6)	<11>	<11>
CPin(exit)	<11>	<01>

CPin(entry) = <00>

as per the equation as no predecessor is available.

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- entry is predecessor of B1
- CPin(B1) = COPY(entry) U (CPin(entry) KILL(entry))
- $CPin(B1) = <00> \cup (<00> <00>)$
- CPin(B1) = <00>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

B1 and B5 are predecessors of B2

CPin(B2) = <10>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- B2 is predecessor of B4
- CPin(B4) = COPY(B2) U (CPin(B2) KILL(B2))
- CPin(B4) = <01> U (<10> <00>)= <01> U <10>
- CPin(B4) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- B4 is predecessor of B6
- CPin(B6) = COPY(B4) U (CPin(B4) KILL(B4))
- CPin(B6) = <00> U (<11> <00>)= <00> U <11>
- CPin(B6) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

- B2 is predecessor of B3
- CPin(B3) = COPY(B2) U (CPin(B2) KILL(B2))
- CPin(B3) = <01> U (<10> <00>)= <01> U <10>
- CPin(B3) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

B3 and B4 are predecessors of B5

```
• CPin(B5) = (COPY(B3) \cup (CPin(B3) - KILL(B3)))

\cap (COPY(B4) \cup (CPin(B4) - KILL(B4)))
```

CPin(B5) = <11>

$$CPin(i) = \bigcap_{j \in pred(i)} COPY(i) \bigcup (CPin(j) \bigcap \overline{KILL(j)})$$

B5 and B6 are predecessors of exit

CPin(exit) = <01>

This completes one more iteration of iterative data flow analysis. There is no change during Pass 3, so we can stop as shown below.

	Pass 1	Pass 2	Pass 3	CPin() sets
CPin(entry)	<00>	<00>	<00>	Ø
CPin(B1)	<11>	<00>	<00>	Ø
CPin(B2)	<11>	<10>	<10>	{(d, c, B1, 2)}
CPin(B3)	<11>	<11>	<11>	{(d, c, B1, 2), (g, e, B2, 2)}
CPin(B4)	<11>	<11>	<11>	{(d, c, B1, 2), (g, e, B2, 2)}
CPin(B5)	<11>	<11>	<11>	{(d, c, B1, 2), (g, e, B2, 2)}
CPin(B6)	<11>	<11>	<11>	{(d, c, B1, 2), (g, e, B2, 2)}
CPin(exit)	<11>	<01>	<01>	{(g, e, B2, 2)}

Global Copy Propagation

- Given the data-flow information CPin() and assuming that we have already done local copy propagation, we perform global copy propagation as follows:
- For each basic block B, set ACP = {a ∈ Var x Var where ∃w ∈ integer such that <a@1, a@2, B, w> ∈ CPin(B)}.
- For each basic block B, perform the local copy-propagation algorithm.

• $CPin(B1) = \emptyset$

Position	Code Before	ACP	Code After
		Ø	
1	$c \leftarrow a + b$		$c \leftarrow a + b$
		Ø	
2	d ← c		d ← c
		$\{\langle \mathtt{d}, \mathtt{c} \rangle\}$	
3	e ← c * c		e ← c * c
		$\{\langle d,c \rangle\}$	

• CPin(B2) = {(d, c, B1, 2)}

Position	Code Before	ACP Code After	
		$\{\langle \mathtt{d}, \mathtt{c} angle \}$	
1	$f \leftarrow a + c$		$\texttt{f} \leftarrow \texttt{a} + \texttt{c}$
		$\{\langle \mathtt{d}, \mathtt{c} \rangle\}$	
2	g ← e		g ← e
		$\{\langle d, c \rangle, \langle g, e \rangle\}$	
3	a ← e + d		a ← e + c
		$\{\langle d, c \rangle, \langle g, e \rangle\}$	
4	a < c		a < c
		$\{\langle \mathtt{d}, \mathtt{c} \rangle, \langle \mathtt{g}, \mathtt{e} \rangle\}$	

CPin(B3) = {(d, c, B1, 2), (g, e, B2, 2)}

Position	Code Before	ACP	Code After	
		$\{\langle \mathtt{d}, \mathtt{c} \rangle, \langle \mathtt{g}, \mathtt{e} \rangle\}$		
1	h ← g + 1		$h \leftarrow e + 1$	
		$\{\langle d, c \rangle, \langle g, e \rangle\}$		

For block exit

• CPin(exit) = {(g, e, B2, 2)}

Position	Code Before	ACP	Code After
		$\{\langle g,e angle \}$	

Finally, we have

