

Recording from electrodes is key to neuroscience research, but the raw data require *spike sorting* — a computational technique for determining exactly when distinct neurons fire. Our lab develops ways to compare

One electrode

the accuracy of the many spike sorters available.

Electrode array (probe)

## **Sorting Spikes**

1 A needlelike probe with many electrodes picks up electrical pulses when nearby neurons fire, or "spike."

Voltage

Time

2 The signal from one electrode might look like this. The signal is a mixture of spikes from nearby neurons plus background noise.



**Neurons** 

The job of spike sorters is to automatically associate as many spikes as possible with their source neurons.

## **Benchmarking Spike Sorters**

There is little consensus on how various spike sorting software compare. To remedy this, we built SpikeForest, a large-scale web-facing tool that benchmarks sorter accuracy using *ground truth* data where some spikes are already known. This is how it works:

1 650 recordings with ground truth were collected and run through 10 sorters.

2 Sorter outputs were compared to their respective ground truths to count the number of faulty spikes.

3 The recordings were grouped with others sharing features such as brain region and probe type.



Examples of ground truth include data from a second nearby electrode that records just one neuron with 100% reliability.



4 Our interactive website shows the accuracy results in color in table form. The user can click on each result for details.

