Name:

1

Take-home Test

Open book, open notes. You may use your notebook, papers, and online resources. No working with classmates or other human help.

1. Given $m \angle E = 44$, and $m \angle GFH = 112$. Find $m \angle G$.

2. Given two vertical angles, $m \angle 1 = 4x + 5$, $m \angle 2 = \frac{9x - 7}{2}$. Find $m \angle 1$. For full credit, check by comparing to $m \angle 2$.

3. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: $\angle SPU$ is an obtuse angle.
- (b) True or False: \overrightarrow{SP} and \overrightarrow{PS} are opposite rays.
- (c) True or False: $\angle RPT$ and $\angle TPU$ are a linear pair.
- (d) True or False: $\angle SPT$ and $\angle RPS$ are adjacent.
- 4. Given two parallel lines and a transversal, as shown. Apply the theorem, "If a transversal intersects two parallel lines, then corresponding angles are congruent."

- (a) State the angle corresponding with $\angle 7$.
- (b) Given $m\angle 2 = 68^{\circ}$. Find $m\angle 3$.
- (c) In a proof, what reason would justify $\angle 4 \cong \angle 5$?
- (d) Given $m \angle 5 = 112^{\circ}$ and $m \angle 3 = 4x^{\circ}$. Find x.

30 November 2018

5. On the graph below, draw \overline{CD} , with C(-1,6) and D(7,3), labeling the end points. Determine and state the coordinates of the midpoint M of \overline{CD} and mark and label it on the graph.

6. Given \overline{ABC} , AC=24, and the point B partitions \overline{AC} in a ratio of 1:3.

Find AB.

7. Given \overrightarrow{KM} as shown on the number line, with K having the coordinate 2.2 and M the coordinate 5.1

(a) Find the value of the coordinate of the point L, the midpoint of \overline{KM} .

(b) The point J is collinear with \overrightarrow{KM} such that K is the midpoint of \overrightarrow{JM} . Mark J on the line and state the value of its coordinate.

8. Construct a duplicate of the given angle A. [Leave all construction marks.]

9. Construct a perpendicular to \overline{AB} through C.

10. Construct the angle bisectors of the angles of the triangle and their intersection, the incenter.

Name:

12. Given M(-7,10) and N(-2,-2), find the length of \overline{MN} .

- 13. Given $\triangle GEM$ with G(-9, -3), E(6, -3), and M(6, 5).
 - (a) Plot and label $\triangle GEM$ on the graph, labeling its vertices.
 - (b) Find the lengths of each side of the triangle. Show the substitution into the proper formulas for full credit.

14. Given right $\triangle EFG$ with $m\angle G=90^\circ,\ EG=8,\ {\rm and}\ m\angle E=43^\circ.$ Express each trig ratio as a fraction.

15. Find the slope of each line.

(a)
$$y = -3x - 7$$

(b)
$$2x - 3y = 9$$

16. Find the slope of the line through the points A(5,3) and B(7,-1).

- 17. Given the quadrilateral RSTU with R(-8,-1), S(2,-1), T(10,5), and U(0,5).
 - (a) Plot and label RSTU on the grid.
 - (b) Find the slope of the diagonals \overline{RT} and \overline{SU} .
 - (c) Theorem: A quadrilateral is a rhombus if and only if its diagonals are perpendicular.

Prove that RSTU is a rhombus.

- 18. Given the square EASY with E(-1,1), A(6,1), S(6,8), and Y(-1,8).
 - (a) Draw EASY on the graph, labeling the vertices.
 - (b) Find the area of EASY.
 - (c) Find the perimeter of EASY.

- 19. Given a circle O with radius 2.2.
 - (a) Find the circumference of O.
 - (b) Find the area of O.

- 20. Given the circle C with circumference 8π .
 - (a) Write down the formula for the circumference of a circle and solve for the radius yielding a circumference of 8π .
 - (b) Find the area of the circle.

21. On the graph, draw polygon ABCDEF with vertices A(-1, 1), B(4, 1), C(4, 5), D(9, 5), E(9, 8), and F(-1, 8). Find the perimeter and the area of the polygon.

