

Longest Chain vs. Most Work: Which Takes Precedence?

Understanding "Work Done" in Blockchain

- In Proof-of-Work blockchains like Bitcoin, "work done" refers to the total computational effort (hashing power) expended to build a chain of blocks.
- Each block's "work" is based on the mining difficulty at the time it was mined: higher difficulty means more hashes (and thus more energy) were required to find a valid block [1] [2].

Longest Chain Rule vs. Most Work Rule

- **Misconception:** The "longest chain" is often thought to be the chain with the most blocks. However, the correct rule is that nodes adopt the chain with the **most cumulative work**, not necessarily the one with the most blocks [1] [3] [2].
- **Why?** Difficulty can change over time. For example, if one chain has more blocks but was mined during a period of low difficulty, it might actually represent less work than a shorter chain mined at higher difficulty.

Example Scenario

Chain	Blocks	Difficulty	Total Work (Hashes)	Adopted?
Chain A	100	Low	1,000,000	No
Chain B	95	High	2,000,000	Yes (more work)

• Even though Chain A is longer, Chain B is adopted because it represents more total work [1] [2]

Why Does "Most Work" Take Precedence?

- The chain with the most work is the one that required the most computational effort to build, making it the most secure and tamper-resistant.
- This prevents attackers from creating a long but low-difficulty chain to overtake the main chain, ensuring network security [1] [3].

Example: Trailing Zeroes in Proof of Work

- When mining, the goal is to find a hash of the block header (including the nonce) that is **below a target value**.
- This is usually visualized as finding a hash with a certain number of leading zeros (not trailing zeros) [4] [5].

• The more leading zeros required, the harder it is to find a valid hash, increasing the work needed.

Example

• Suppose the target for a valid hash is any hash starting with four zeros:

o Valid hash: 0000a3f9b2c...

o Invalid hash: 1f3b9a7c...

• The probability of finding a hash with more leading zeros decreases exponentially, making the mining process more difficult as the network's total hash rate increases [4] [5].

Table: Longest Chain vs. Most Work

Rule	What It Means	Which Wins?
Longest Chain	Most blocks	Not always correct
Most Work (Chainwork)	Most total computational effort (hashes)	Always takes precedence

Key Takeaways

- The **chain with the most cumulative work** (not necessarily the most blocks) is considered the valid chain in Bitcoin and similar blockchains [1] [3] [2].
- Mining difficulty and proof-of-work ensure that creating a valid block requires finding a hash below a certain target, often visualized as requiring a number of leading zeros in the hash ^[4]
- This system secures the blockchain against attacks and ensures consensus across the network.

- 1. https://learnmeabitcoin.com/technical/blockchain/longest-chain/
- 2. https://bitcoin.stackexchange.com/questions/29742/strongest-vs-longest-chain-and-orphaned-blocks
- 3. https://cryptoservices.github.io/blockchain/consensus/2019/05/21/bitcoin-length-weight-confusion.html
- 4. https://stackoverflow.com/questions/47554039/when-checking-a-bitcoin-block-why-do-you-get-a-lea-ding-prefix-of-zeros-once-you
- 5. https://www.johndcook.com/blog/2025/06/20/bitcoin-proof-of-work/