Vibration Sensor

Technical Specification

_	
Battery Life	5 years @ 1 messages / 24 Hr.
Battery Type	3.6 V 1200mah, can be repeatable (14250)
Protection Class	IP65, IP68
Sample Time	1 – 99 Hrs. / message
Communication	LoRaWAN 1km, OTTA, ABP CLASS A
Configuration	NFC, app configuration for IPhone, Android Phone
Measurement sensor	Vibration ±16g, 0.5% error
	Vibration Freq range 10 – 10,000 Hz
	Temperature 100 C, resolution, ±1 C error
Measurement unit	Velocity mm/s, Gravity mg, Acceleration mm/s^2
Hour counter	0 – 99,999 Hr
Detect Motor status	Star Motor, Stop Motor by start/stop vibration threshold
Password	4-digit password
Alarm function	Low battery Vb<20%,
	Alarm vibration threshold limit, user can select unit
	mm/s, mm/s^2, g
	Alarm Temperature threshold limit,
	low RSSI
Save last time config	Dd/mm/yy,hh:mm:ss
Installation Method	1/4 – 28 UNF

Dimension

Module Operation

Module ประกอบด้วย MEMS Sensor สำหรับวัดความสั้นสะเทือน (Vibration) โดย Output ของการวัดค่าเป็น Velocity (mm/s), Acceleration (mm/s^2), Gravity (mg) และ Temperature Sensor (C) สำหรับวัดอุณหภูมิเกลียว โลหะที่ใช้เชื่อต่อกับ Motor ไฟฟ้าเพื่อวัดความร้อนที่ Motor Case

ช่องทางสื่อสารมีได้ 2 แบบคือ

- 1. LoRaWan ใช้ส่งข้อมูลระยะไกล โดยส่งข้อมูลตาม Sampling time ที่กำหนด และส่งเมื่อมีการเปลี่ยนแปลง สถานะของมอเตอร์ Run/Stop หรือเมื่อเกิดการแจ้งเตือน Alarm ต่างๆ
- 2. NFC เป็นช่องทางสำหรับตั้งค่า Config ของ Module และสามารถอ่านค่า Vibration, Temperature ขณะนั้นได้ตลคดเวลา

Vibration sensor จะทำงานอยู่ตลอดเวลา เพื่อตรวจสอบสภาวะการทำงานของมอเตอร์ เมื่อ Sensor พบว่าค่าการ สั่นสะเทือน (Vibration) มากว่าค่า Start Motor Threshold แล้วให้บันทึกสถานะเป็น Motor Run และทำการนับเวลา การทำงานของ Motor แล้วเก็บค่าสะสมไว้ที่ Hour Counter Reg. เมื่อ Sensor พบว่าค่าการสั่นสะเทือนต่ำกว่าค่า Stop Motor Threshold แล้วให้บันทึกสถานะเป็น Motor Stop และทำการหยุดนับเวลาการทำงานของ Motor

Vibration Alarm Status ผู้ใช้งานสามารถกำหนดค่า Alarm Threshold สำหรับการแจ้งเตือนความผิดปรกติที่ เกิดขึ้น โดยสามารถใช้ข้อมูลการสั่นสะเทือนตาม ISO 10816-3 เป็นตัวกำหนดได้ และเมื่อเกิดการแจ้งเตือนแล้วให้ส่งการแจ้ง เตือนผ่าน LoRaWan ทันทีจำนวน 3 ครั้ง และทำซ้ำทุกๆ Sampling Time จนกว่าจะมีการสั่งหยุดการแจ้งเตือนผ่าน Pause Alarm จากทาง LoRaWan หรือตรวจไม่พบบัญหาอีก

Class I machines may be separate driver and driven, or coupled units comprising operating machinery up to approximately 15kW(approx 20hp).

Class I machinery (electrical motors 15kW (20hp) to 75kW(100hp), without special foundation, or Rigidly mounted engines or machines up to 300kW (400hp) mounted on special foundations.

Class III machines are large prime movers and other large machinery with large rotating assemblies mounted on rigid and heavy foundation which are reasonably stiff in the direction of vibration.

Class IV includes large prime movers and other large machinery with large rotating assemblies mounted on foundations which are relatively soft in the direction of the measured vibration (i.e.,turbine generators and gas turbines greater than 10MW (approx. 13500hp) output.

Frequency Domain Analysis mode เมื่อเกิด Vibration alarm แล้วให้ Module ทำการอ่านข้อมูลการ สั่นสะเทือนจาก MEMS sensor ที่ความถี่ Sampling 10,000 Hz เพื่อทำการวิเคราะห์ หาค่า Peak Amplitude และความถี่ ที่เกิด Peak บันทึกค่าจำนวน 16 ลำดับแรกจะถูกส่งผ่านทาง LoRaWan เมื่อมีการแจ้งเตือนไปยังระบบ Server เพื่อใช้ในการ วิเคราะห์

Example Chart ที่ Plot จากข้อมูลที่ส่งมา

Temperature Alarm เมื่อ Sensor วัดอุณหภูมิวัดได้ค่ามากกว่า Temperature Alarm Threshold แล้วให้ทำ การแจ้งเตือนสถานะ Alarm ผ่าน LoRaWan ทันทีจำนวน 3 ครั้ง และทำซ้ำทุกๆ Sampling Time จนกว่าจะมีการสั่งหยุด จากทาง LoRaWan

Hour Counter Alarm เมื่อ module นับค่าชั่วโมงการทำงานขอมอเตอร์ครบกำหนด Hour Counter Alarm แล้ว ให้ทำการแจ้งเตือนผ่าน LoRaWan ทุก Sampling Time

Payload FORMAT

ข้อมูลส่งผ่าน LoRaWan ใช้รูปแบบของ Payload Cayenne เป็น Reference ในการออกแบบ โดยมีตารางข้อมูลดังนี้

Payload Cayenne (https://docs.mydevices.com/docs/lorawan/cayenne-lpp)

1 Byte	1 Byte	N Bytes	1 Byte	1 Byte	M Bytes	•••
Data1 Ch.	Data1 Type	Data1	Data2 Ch.	Data2 Type	Data 2	

Data Types conform to the IPSO Alliance Smart Objects Guidelines, which identifies each data type with an "Object ID". However, as shown below, a conversion is made to fit the Object ID into a single byte.

LPP_DATA_TYPE = IPSO_OBJECT_ID - 3200

(https://technical.openmobilealliance.org/OMNA/LwM2M/LwM2MRegistry-old.html)

Data Channel	Data Type	Description	Size (Bute)	Tuna	Unit	******
	(LPP)	Description	Size (Byte)	Type	Onit	range
255	1	FW version	1	Uint8		
254	1	Device reset	1	Uint8		
253	2	Batter Voltage	2	Uint16	0.01V/Lsb	0-500
252	2	CPU Temperature	2	int16	0.01C/Lsb	0-15000
251	133	last update Time	6		yy/mm/dd hh:mm:ss	
1	113	xyz Accelerometer	6		0.001 G Signed MSB per axis	
2	113	xyz Velocity	6		0.01 mm/s Signed MSB per axis	
3	113	Accelerometer Motor Fail threshold	6		0.001 G Signed MSB per axis	
4	113	Accelerometer at Fail	6		0.001 G Signed MSB per axis	
5	113	Accelerometer Motor run threshold	6		0.001 G Signed MSB per axis	
6	0	Accelerometer threshold unit	1	Uint8	g, mm/s,inch/s	0,1,2
7	100	Hour counter	4	Uint32	hour	0-99999
8	2	Temperature	2	int16	0.01C/Lsb	0-15000
9	2	Temperature threshold	2	int16	0.01C/Lsb	0-15000
10	0	Alarm delay	1	Uint8	1s/Lsb	0-100
11	1	Alarm Status	1	Uint8		
12	1	Pause alarm	1	Uint8		
13	100	Report interval time	2	Uint16	minute	
14	113	FFT x Accelerometer[0]			0.001 G Signed MSB per axis	
15	113	FFT x Accelerometer[0] Hz	2		Hz	
16	113	FFT x Accelerometer[1]	2		0.001 G Signed MSB per axis	
17	113	FFT x Accelerometer[1] Hz	2		Hz	
18	113	FFT x Accelerometer[2]	2		0.001 G Signed MSB per axis	
19	113	FFT x Accelerometer[2] Hz	2		Hz	
20	113	FFT x Accelerometer[3]	2		0.001 G Signed MSB per axis	
21	113	FFT x Accelerometer[3] Hz	2		Hz	
22	113	FFT x Accelerometer[4]	2		0.001 G Signed MSB per axis	
23	113	FFT x Accelerometer[4] Hz	2		Hz	

24	113	FFT x Accelerometer[5]	2	0.001 G Signed MSB per axis
25	113	FFT x Accelerometer[5] Hz	2	Hz
26	113	FFT x Accelerometer[6]	2	0.001 G Signed MSB per axis
27	113	FFT x Accelerometer[6] Hz	2	Hz
28	113	FFT x Accelerometer[7]	2	0.001 G Signed MSB per axis
29	113	FFT x Accelerometer[7] Hz	2	Hz
30	113	FFT x Accelerometer[8]	2	0.001 G Signed MSB per axis
31	113	FFT x Accelerometer[8] Hz	2	Hz
32	113	FFT x Accelerometer[9]	2	0.001 G Signed MSB per axis
33	113	FFT x Accelerometer[9] Hz	2	Hz
34	113	FFT x Accelerometer[10]	2	0.001 G Signed MSB per axis
35	113	FFT x Accelerometer[10] Hz	2	Hz
36	113	FFT x Accelerometer[11]	2	0.001 G Signed MSB per axis
37	113	FFT x Accelerometer[11] Hz	2	Hz
38	113	FFT x Accelerometer[12]	2	0.001 G Signed MSB per axis
39	113	FFT x Accelerometer[12] Hz	2	Hz
40	113	FFT x Accelerometer[13]	2	0.001 G Signed MSB per axis
41	113	FFT x Accelerometer[13] Hz	2	Hz
42	113	FFT x Accelerometer[14]	2	0.001 G Signed MSB per axis
43	113	FFT x Accelerometer[14] Hz	2	Hz
44	113	FFT x Accelerometer[15]	2	0.001 G Signed MSB per axis
45	113	FFT x Accelerometer[15] Hz	2	Hz
46	113	FFT y Accelerometer[0]	2	0.001 G Signed MSB per axis
47	113	FFT y Accelerometer[0] Hz	2	Hz
48	113	FFT y Accelerometer[1]	2	0.001 G Signed MSB per axis
49	113	FFT y Accelerometer[1] Hz	2	Hz
50	113	FFT y Accelerometer[2]	2	0.001 G Signed MSB per axis
51	113	FFT y Accelerometer[2] Hz	2	Hz
52	113	FFT y Accelerometer[3]	2	0.001 G Signed MSB per axis
53	113	FFT y Accelerometer[3] Hz	2	Hz
54	113	FFT y Accelerometer[4]	2	0.001 G Signed MSB per axis
55	113	FFT y Accelerometer[4] Hz	2	Hz
56	113	FFT y Accelerometer[5]	2	0.001 G Signed MSB per axis
57	113	FFT y Accelerometer[5] Hz	2	Hz
58	113	FFT y Accelerometer[6]	2	0.001 G Signed MSB per axis
59	113	FFT y Accelerometer[6] Hz	2	Hz
60	113	FFT y Accelerometer[7]	2	0.001 G Signed MSB per axis
61	113	FFT y Accelerometer[7] Hz	2	Hz
62	113	FFT y Accelerometer[8]	2	0.001 G Signed MSB per axis
63	113	FFT y Accelerometer[8] Hz	2	Hz
64	113	FFT y Accelerometer[9]	2	0.001 G Signed MSB per axis
65	113	FFT y Accelerometer[9] Hz	2	Hz
66	113	FFT y Accelerometer[10]	2	0.001 G Signed MSB per axis

67	113	FFT y Accelerometer[10] Hz	2	Hz
68	113	FFT y Accelerometer[11]	2	0.001 G Signed MSB per axis
69	113	FFT y Accelerometer[11] Hz	2	Hz
70	113	FFT y Accelerometer[12]	2	0.001 G Signed MSB per axis
71	113	FFT y Accelerometer[12] Hz	2	Hz
72	113	FFT y Accelerometer[13]	2	0.001 G Signed MSB per axis
73	113	FFT y Accelerometer[13] Hz	2	Hz
74	113	FFT y Accelerometer[14]	2	0.001 G Signed MSB per axis
75	113	FFT y Accelerometer[14] Hz	2	Hz
76	113	FFT y Accelerometer[15]	2	0.001 G Signed MSB per axis
77	113	FFT y Accelerometer[15] Hz	2	Hz
78	113	FFT z Accelerometer[0]	2	0.001 G Signed MSB per axis
79	113	FFT z Accelerometer[0] Hz	2	Hz
80	113	FFT z Accelerometer[1]	2	0.001 G Signed MSB per axis
81	113	FFT z Accelerometer[1] Hz	2	Hz
82	113	FFT z Accelerometer[2]	2	0.001 G Signed MSB per axis
83	113	FFT z Accelerometer[2] Hz	2	Hz
84	113	FFT z Accelerometer[3]	2	0.001 G Signed MSB per axis
85	113	FFT z Accelerometer[3] Hz	2	Hz
86	113	FFT z Accelerometer[4]	2	0.001 G Signed MSB per axis
87	113	FFT z Accelerometer[4] Hz	2	Hz
88	113	FFT z Accelerometer[5]	2	0.001 G Signed MSB per axis
89	113	FFT z Accelerometer[5] Hz	2	Hz
90	113	FFT z Accelerometer[6]	2	0.001 G Signed MSB per axis
91	113	FFT z Accelerometer[6] Hz	2	Hz
92	113	FFT z Accelerometer[7]	2	0.001 G Signed MSB per axis
93	113	FFT z Accelerometer[7] Hz	2	Hz
94	113	FFT z Accelerometer[8]	2	0.001 G Signed MSB per axis
95	113	FFT z Accelerometer[8] Hz	2	Hz
96	113	FFT z Accelerometer[9]	2	0.001 G Signed MSB per axis
97	113	FFT z Accelerometer[9] Hz	2	Hz
98	113	FFT z Accelerometer[10]	2	0.001 G Signed MSB per axis
99	113	FFT z Accelerometer[10] Hz	2	Hz
100	113	FFT z Accelerometer[11]	2	0.001 G Signed MSB per axis
101	113	FFT z Accelerometer[11] Hz	2	Hz
102	113	FFT z Accelerometer[12]	2	0.001 G Signed MSB per axis
103	113	FFT z Accelerometer[12] Hz	2	Hz
104	113	FFT z Accelerometer[13]	2	0.001 G Signed MSB per axis
105	113	FFT z Accelerometer[13] Hz	2	Hz
106	113	FFT z Accelerometer[14]	2	0.001 G Signed MSB per axis
107	113	FFT z Accelerometer[14] Hz	2	Hz
108	113	FFT z Accelerometer[15]	2	0.001 G Signed MSB per axis
109	113	FFT z Accelerometer[15] Hz	2	Hz

Alarm Status Reg.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	0	0	RUN	LB	HRAL	TAL	VAL

VAL: Vibration Threshold Alarm Bit0 = 0 (Normal), Bit0 = 1 (Alarm)

TAL: Temperature ALARM Bit1 = 0 (Normal), Bit1 = 1 (Alarm)

HRAL: Hour counter alarm Bit2= 0 (Normal), = 1 (Alarm)

LB: LOW BATTERY ALARM Bit3 = 0 (Normal), Bit3 = 1 (Alarm)

RUN: Motor run status Bit4 =0 (Stop), 1(Run)

Pause Alarm Status Reg.

I	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	0	0	0	RUN	LB	HRAL	TAL	VAL

Write 1 to bit that want to pause the alarm

Format Data xyz Acceleration/Velocity

X 2byte	Y 2 byte	Z 2 byte
Х	Х	Х

Data 6 Byte ที่ส่งมาของ Acceleration/Velocity จะแบ่งเป็นแกน x, y, z ของแต่ละแกนโดยแบ่งแกนละ 2 byte

NFC & APP Operation

App Support เพื่อให้ผู้ใช้งานสามารถกำหนดค่า ตรวจสอบสถานะหน้างานโดยไม่ผ่าน LoRaWan โดย App มี รองรับทั้ง IPHONE & Android Phone ที่มี Module NFC เมื่อทำการตั้งค่าผู้ใช้งานจำเป็นต้องใส่ค่า Password สำหรับ อุปกรณ์นั้นๆเพื่อให้สามารถเชื่อมต่อผ่าน NFC ได้

เมื่อสามารถเชื่อมต่อได้แล้ว Application สามารถอ่านค่าเขียนสถานะต่างๆได้ ยกเว้นค่า key สำหรับระบบ LoRaWan ที่ไม่สามารถกำหนดค่าเองได้ ทุกครั้งที่มีการเขียนค่าไปยัง Module ให้ App นำค่าเวลาขณะนั้นจาก Mobile Phone เขียนเป็นค่า last update time reg. เพื่อใช้สำหรับตรวจสอบบันทึกเวลาที่มีเปลี่ยนแปลง

PRIMUS Support Application Operation

สำหรับในกระบวนการผลิตต้องการ Application Support โดยจำเป็นต้องสามารถเปลี่ยนแปลงหรือกำหนดค่าที่ จำเป็นคือ

- 1. MCU Firmware ต้องมีค่า Reg. เป็นค่า Default หลังทำการ Burn โปรแกรม
- 2. Key ต่างๆสำหรับ LoRa Network ใช้
- 3. มี Master Pass สำหรับเชื่อมต่อ NFC ในการบวนการผลิต หรือแก้ไขในกรณีจำ Password ไม่ได้คือ 37005
- 4. สารมารถสั่งเขียนเป็นค่าเริ่มต้นได้เพื่อใช้สำหรับหลังการทดสอบ QC