基于潜在狄利克雷分配模型的语义搜索方法

张桐

CONTENTS

03 总结

LDA

Latent Dirichlet allocation (潜在狄利克雷分配)是一种用于离散数据集合的概率生成模型。 常被用于在自然语言处理中对语料库进行建模,进而实现文档聚类、主题挖掘、情感分析、推 荐系统等功能;在图像处理领域也有应用。

关键概念:

- 词语:一个离散数据例如 "北京"、"天安门"
- 主题:词语的概率分布 例如 {"北京": 0.7, "天安门": 0.3}
- 文档: 离散数据的集合 例如 {"北京", "天安门"}
- 语料库: 文档的集合例如 {{"北京", "天安门"}, {"北京"}}

LDA:基本思想

在 LDA 中,一篇文档的生成过程为:

- 根据参数 β 生成 K 个主题 φ 例如 [
 {"经济": 0.5, "钱": 0.5},
 {"政治": 0.3, "国家": 0.7},
 {"体育": 0.8, "足球": 0.2}
]
- 2. 根据参数 α 生成主题编号的分布 θ 例如 {0: 0.3, 1: 0.3, 2: 0.4}
- 3. 根据主题的分布 θ 生成主题编号 z 例如 2
- 4. 根据主题 ϕ_z 生成一个词语 例如 "足球"
- 5. 重复 3~4 步,直到达到要求词语数

LDA: 基本思想

在 LDA 中,一篇文档的生成过程为:

- 根据参数 β 生成 K 个主题 φ 例如 [
 {"经济": 0.5, "钱": 0.5},
 {"政治": 0.3, "国家": 0.7},
 {"体育": 0.8, "足球": 0.2}
 1
- 2. 根据参数 α 生成主题编号的分布 θ 例如 {0: 0.3, 1: 0.3, 2: 0.4}
- 3. 根据主题的分布 θ 生成主题编号 z 例如 2
- 4. 根据主题 ϕ_z 生成一个词语 例如 "足球"
- 5. 重复 3~4 步,直到达到要求词语数

数学语言:

- 1. $\phi \sim Dirichlet(\beta)$
- 2. $\theta \sim Dirichlet(\alpha)$
- 3. $z \sim Multinomial(\theta)$
- 4. $w \sim Multinomial(\phi_z)$

Dirichlet 分布是 Multinomial 的共轭先验分布,即,在先验 Dirichlet 分布观察了服从 Multinomial 分布的随机变量 x 后,后验分布仍能保持 Dirichlet 分布,超参数 α 变为:

$$\alpha + \sum_{i=1}^{n} x_i$$

Gibbs 抽样

根据定义可以得到 θ , \vec{z} , \vec{w} 的联合分布:

$$p(\theta, \vec{z}, \vec{w} | \alpha, \beta) = p(\theta | \alpha) \prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n, \beta)$$

对 θ 积分可得 \vec{w} , \vec{z} 的联合分布:

$$p(\overrightarrow{w}, \overrightarrow{z} | \alpha, \beta) = \int p(\theta | \alpha) \prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n, \beta)) d\theta$$

根据联合分布可以得到相应的 Gibbs 抽样公式:

$$p(z_{i} = k | \vec{z}_{\neg i}, \vec{w}) \propto \frac{n_{m, \neg i}^{(k)} + \alpha_{k}}{\sum_{k=1}^{K} \left(n_{m, \neg i}^{(k)} + \alpha_{k}\right)} \cdot \frac{\left(n_{k, \neg i}^{(t)} + \beta_{t}\right)}{\sum_{t=1}^{V} \left(n_{k, \neg i}^{(t)} + \beta_{t}\right)}$$

其中 z_i 表示第 i 个词的主题, $\vec{z}_{\neg i}$ 表示其它词语的主题, $n_m^{(k)}$ 表示 m 文档中出现 k 主题的次数, $n_k^{(t)}$ 表示 k 主题中出现 t 词的次数。

相似度度量: 主题分布-主题分布

• 余弦相似度

$$S_C(\theta_i, \theta_j) = \frac{\theta_i \cdot \theta_j}{\|\theta_i\| \|\theta_j\|}$$

• Kullback-Leibler 散度 (相对熵)

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) \log \frac{P(x)}{Q(x)}$$

分类分布:

$$D_{KL}(\theta_i||\theta_j) = \sum_{k=1}^n \theta_{ik} \log \frac{\theta_{ik}}{\theta_{jk}}$$

Jensen-Shannon 散度:

$$D_{JS}(P||Q) = \frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M)$$

分类分布:

$$D_{JS}(\theta_i||\theta_j) = \frac{1}{2}D_{KL}(\theta_i||\frac{\theta_i + \theta_j}{2}) + \frac{1}{2}D_{KL}(\theta_j||\frac{\theta_i + \theta_j}{2})$$

相似度度量: 文档-主题分布

除了使用主题分布来度量文档相似度外,我们也可以使用一篇文档的主题分布生成另一篇文档的概率来作为相似度的度量:

$$S_p = \prod_{w \in W_i} \sum_{k=1}^n p(w|z_k) p(z_k|W_j)$$

其中 W_i 是被生成的文档, W_j 则是另一篇文档。

实验结果

语料库

维基百科自由的百科全书

中文维基百科词条

预处理:

- 1. 语料切分
- 2. XML 格式转换
- 3. 简繁转换
- 4. 分词

主题数

- 主题数会对语义搜索的准确度产生影响
- 在不同的相似度度量和分词策略下,最佳的主题数也会有所不同

相似度度量

生成概率 > 余弦相似度 > Jensen-Shannon 散度

对于短文本来说,推断出的主题分布会丢失部分语义,导致匹配效果不佳,而使用生成概率作为相似度度量避免了对短文本进行主题分布推断

分词策略

- 过滤低频词会影响冷门文档的语义搜索效果
- 过滤高频词和停用词不影响语义搜索效果,但会导致训练同等准确度的模型耗费更多时间
- 查询文本中的错误中文分词会影响语义搜索效果,考虑所有分词路径能获得更好的效果

模型效果

平均准确度 0.9934

"Windows"

	score	title	
909	0.082623	Windows XP	
361 0.054110		Windows 98	
364	0.046134	Microsoft Windows	
518	0.042010	Windows 2.0	
366	0.041702	Windows 2000	
363	0.041036	Windows NT	
359	0.040210	Windows 3.1x	
360	0.039409	Windows 95	
318	0.034390	Windows 1.0	
317	0.033375	微软	
841	0.029918	文件扩展名	
384	0.029840	Microsoft Office	
362	0.024675	蓝屏死机	
473	0.018100	DirectX	
40	0.014506	操作系统	
250	0.013086	Delphi	
365	0.011742	DOS	
475	0.011730	OpenGL	
300	0.010910	Visual Basic	
746	0.009846	电视	

"计算机"

title	score	
计算机语言	0.000080	719
编程语言	0.000076	145
计算机程序	0.000023	50
NTFS	0.000022	371
计算语言学	0.000021	67
第一代编程语言	0.000021	486
阿基米德	0.000020	330
程序设计	0.000017	49
操作系统	0.000015	40
数据结构	0.000015	31
Forth	0.000012	391
信息管理系统	0.000012	432
计算机科学	0.000011	4
软件	0.000010	975
数学家	0.000010	246
算法	0.000009	704
聂耳	0.000009	836
多用户	0.000009	357
自然语言	0.000008	273
计算	0.000007	30

"数学"

title	score	
数学家	0.036766	246
心理学	0.018464	23
运算数学	0.013222	57
离散数学	0.012739	136
数学	0.012165	0
信息管理系统	0.011743	432
生物学家	0.010759	990
空间科学	0.010258	285
数理逻辑	0.010184	138
信息科学	0.007001	14
邪教	0.005620	825
严重急性呼吸系统综合症	0.005544	163
汉斯·莫拉维克	0.005520	287
家政学	0.005188	665
皮埃尔-西蒙-拉普拉斯	0.005168	425
允禵	0.004730	883
AutoCAD	0.004482	741
工程学	0.004433	592
氧	0.004380	724
弗兰西斯·培根	0.004241	451

"中国"

title	score	
华侨华人	0.026731	71
中国人	0.026729	302
知识产权	0.023569	539
约翰·哈比森	0.020306	986
洛杉矶	0.018618	861
黑龙江省	0.013442	105
中国朝代	0.012939	831
朝鲜的称号	0.012937	370
安徽省	0.012691	96
湖北省	0.012543	107
四川省	0.012486	115
中华人民共和国	0.012248	32
法国	0.012044	149
武则天	0.011602	791
华国籍	0.011364	721
四人帮	0.011356	446
中华人民共和国各省级行政区人口列表	0.011350	101
江泽区	0.011348	389
中华人民共和国历史	0.011196	60
胡锦涛	0.011147	516

总结

本实验研究了基于潜在狄利克雷分配模型的语义搜索方法的实际效果,对不同相似度度量、分词策略和主题数下的模型效果进行了对比和分析,提供了一种对中文语料库进行语义搜索的可行方法。

后续研究方向:

- 主题数的自动选取
- 与基于 BERT、word2vec 等词嵌入 (word embedding) 模型的语义搜索方法进行比较
- 将词嵌入模型与 LDA 模型结合,替换 LDA 所使用的整数词编码
- 增大实验语料规模

参考文献:

- Blei, David M. "Latent Dirichlet Allocation," 2003, 30.
- Towne, W. Ben, Carolyn P. Rosé, and James D. Herbsleb. "Measuring Similarity Similarly: LDA and Human Perception." ACM Transactions on Intelligent Systems and Technology 8, no. 1 (January 31, 2017): 1–28. https://doi.org/10.1145/2890510.
- 靳志辉. "LDA数学八卦". 2013.

