

# **SmartSens**<sup>TM</sup>

# SC031GS 设计应用指南

(For COB)

V1.1

2018.3.15



## 目录

| 目录   | ŧ      |                          | 2  |
|------|--------|--------------------------|----|
| 1.   | 芯片简述   |                          | Δ  |
| 1.1. | 芯片栂    | 私述                       |    |
| 1.2. | 芯片内    | ·<br>可部框架                | 2  |
| 1.3. |        |                          |    |
| 1.5. | 1.3.1. | 睡眠模式                     |    |
|      | 1.3.1. | 复位模式                     |    |
| 1.4. | 配置接    | ξ□                       | 6  |
| 1.5. |        |                          |    |
|      | 1.5.1. | MIPI                     |    |
|      | 1.5.2. | LVDS                     |    |
| 1.6. | 锁相环    | ۲                        | 12 |
| 2.   |        | ļ                        |    |
| 2.1. |        | P位图(um)                  |    |
| 2.2  |        | econstructed wafer) 物理尺寸 |    |
| 3.   |        | (                        |    |
|      |        |                          |    |
| 4.   | 功能介绍   |                          |    |
| 4.1. | 4.1    | TROBE                    |    |
| 4.2. | 外触发    | 定全局曝光模式                  | 19 |
| 4.3. | 高动态    | 5模式                      | 21 |
|      | 4.3.1. | HDR 控制模式                 | 23 |
| 4.4. | AEC/A  | AGC                      | 23 |
|      | 4.4.1. | AEC/AGC 的控制策略            | 24 |
|      | 4.4.2. | AEC/AGC 控制寄存器说明          | 24 |
| 4.5. | GROU   | TP_HOLD                  | 29 |
| 4.6. | 黑电平    | <sup>左</sup> 控制(BLC)     | 29 |
| 4.7. | HDR (  | Calibration              | 30 |



### **Company Confidential**

设计应用指南

| 4.8.  | 视频           | 输出模式 | 31 |
|-------|--------------|------|----|
|       | 4.8.1.       | 读取顺序 | 31 |
|       | 4.8.2.       | 输出窗口 | 32 |
| 4.9.  | 帧率           | 计算   | 32 |
| 4.10. | 测试           | 模式   | 33 |
| 5 FE  | <b>法本</b> 面记 | 큪    | 2/ |



# 1. 芯片简述

### 1.1. 芯片概述

SC031GS 是一款 Global shutter CMOS 图像传感器,最高支持 640H×480V @ 240fps 的传输速率。SC031GS 输出黑白图像,有效像素窗口为 640H×480V,支持复杂的片上操作——例如窗口化、水平或垂直镜像化等。

SC031GS 可以通过标准的 I2C 接口进行配置。 SC031GS 可以通过 TRIGL 引脚实现外部控制曝光。

## 1.2. 芯片内部框架

图 1-1 展示了 SC031GS 图像传感器的功能模块。

### SC031GS Block Diagram



图 1-1 SC031GS 结构图

## 1.3.上电时序

DVDD 外部供电 1.5V, 上电时序要求如下:



图 1-2 上电时序图

说明:

1).T1>0ms, T2>1ms, T3>2ms, T4>2ms;

## 1.3.1. 睡眠模式

在睡眠模式下,寄存器保持不变。SC031GS 提供两种方式进入睡眠模式:

- 1) 将 XSHUTDN 拉低,此时不能访问寄存器。
- 2) 将寄存器 16'h0100[0]写入 0, 此时仍然可以访问传感器的寄存器。

地址 寄存器名 默认值 读/写 描述

16'h0100 Manual sleep mode 'b0 R/W 0: sleep enable
1: sleep disable

表 1-1 睡眠模式控制寄存器

## 1.3.2. 复位模式

在复位模式下,SC031GS 所有寄存器都重置为默认值; 通过将 SC031GS 寄存器 16'h0103 的 Bit[0]设置为 1 进入复位模式。

表 1-2 软复位控制寄存器

| 地址       | 寄存器名    | 默认值 | 读/写 | 描述               |
|----------|---------|-----|-----|------------------|
| 16'h0103 | Rst_pon | 'b0 | W   | Bit[0]: rst soft |



## 1.4. 配置接口

SC031GS 提供标准的 I2C 总线配置接口对寄存器进行读写, I2C 设备地址由 PAD SID0, SID1 的电平值决定,如表格 1-3 所示。

表 1-3 I2C 设备地址控制

| 7Bit I2C 设备地址 | SID0 | SID1 |
|---------------|------|------|
| 7'h30         | 低电平  | 低电平  |
| 7'h31         | 高电平  | 低电平  |
| 7'h32         | 低电平  | 高电平  |
| 7'h33         | 高电平  | 高电平  |

### 消息类型: 16-bit 地址、8-bit 数据和 7-bit 设备地址

| S | Slave<br>Address | R/W | Α | Sub<br>Address<br>[15:8] | А | Sub<br>Address<br>[7:0] | Α | data | A/Ã | Р |  |
|---|------------------|-----|---|--------------------------|---|-------------------------|---|------|-----|---|--|
|---|------------------|-----|---|--------------------------|---|-------------------------|---|------|-----|---|--|

#### I2C Write

| S | Slave<br>Address | 0 | Α | Sub<br>Address<br>[15:8] | Α | Sub<br>Address<br>[7:0] | Α | data | A/Ã | Р |  |
|---|------------------|---|---|--------------------------|---|-------------------------|---|------|-----|---|--|
|---|------------------|---|---|--------------------------|---|-------------------------|---|------|-----|---|--|

#### **I2C Read**



Slave to Master S: Start Condition A: Acknowledge

Master to Slave P: Stop Condition A: No-Acknowledge

Direction depends on the operation Sr: Restart Condition

#### I2C 时序





图 1-3 I<sup>2</sup>C 接口时序

#### 注意:

- 1) 图 1-3 是在 400kHz 模式下的 I2C 时序。
- 2) 判断上升沿起始或下降沿终止的电平阈值为 10%; 判断上升沿终止或下降沿起始的阈值为 90%。

| 符号      | 参数                 | 最小值  | 典型值 | 最大值 | 单位  |
|---------|--------------------|------|-----|-----|-----|
| fI2C    | 时钟频率               | C-Y  | _   | 400 | kHz |
| tlow    | 时钟低电平时间            | 1.3  | _   | _   | μs  |
| thigh   | 时钟高电平时间            | 0.6  | _   | _   | μs  |
| tsl2dov | SCL 拉低至输出数据有效间时间间隔 | 0.1  | _   | 0.9 | μs  |
| tbusft  | 下一个起始状态前总线空闲时间     | 1.3  | _   | _   | μs  |
| tscst0  | 起始条件保持时间           | 0.6  | _   | _   | μs  |
| tscst   | 起始条件建立时间           | 0.6  | _   | _   | μs  |
| tdiht   | 输入数据保持时间           | 0    | _   | _   | μs  |
| tdist   | 输入数据建立时间           | 0.1  | _   | _   | μs  |
| tscst1  | 终止条件建立时间           | 0.6  | _   | —   | μs  |
| tf/tr   | 下降上升时间比            | _    | _   | 0.3 | μs  |
| tdoht   | 输出数据保持时间           | 0.05 | _   | _   | μs  |

表 1-4 I2C 接口时序详细参数

## 1.5. 数据接口

SC031GS 提供两种数据接口: MIPI、 LVDS。

### 1.5.1. MIPI

SC031GS 提供串行视频端口 (MIPI)。图 1-4 是 MIPI/LVDS 数据接口示意图, 其中 Sensor 支持 1/2lane 来传输图像 8/10/12bit 数据。





图 1-4 MIPI/LVDS 接口示意图

图 1-5 是 MIPI 底层数据包的简略示意图,其中分别展示了一个短数据包和长数据包的传输过程。



图 1-5 MIPI 底层数据包示意图

图 1-6 展示了 MIPI 长、短数据包结构示意图。其中数据标识 DI(Data Identifier)用来区分不同的数据包类型。图 1-7 展示了 MIPI 工作在 2lane 模式下的数据包传输示意图,需要注意的是,在 2lane 模式下传输的一行数据包个数必须是偶数。图 1-8 中,DI 包括两部分,分别是虚拟通道(VC)和数据类型(DT)。默认情况下,Sensor 给出的 MIPI 数据 VC 值都是 0,而 DT 值如表 1-5 所示。





图 1-6 MIPI 长/短数据包结构示意图



图 1-7 MIPI 2-lane 模式数据包传输示意图



图 1-8 MIPI 数据包 DI 结构

表 1-5 MIPI 数据类型

| DT    | 描述            |
|-------|---------------|
| 8'h00 | 帧起始短包         |
| 8'h01 | 帧结束短包         |
| 8'h2a | 8-bit 模式下数据长包 |



| DT    | 描述             |  |
|-------|----------------|--|
| 8'h2b | 10-bit 模式下数据长包 |  |
| 8'h2c | 12-bit 模式下数据长包 |  |

表 1-6 是 MIPI 调整相关寄存器。

表 1-6 MIPI 同步调整寄存器

| 功能                | 寄存器名     | 描述                             |
|-------------------|----------|--------------------------------|
| MIPI pad 引脚输出(高位) | 16'h3000 | Bit[3:0]: pad_ctrl             |
|                   |          | 4'h0:MIPI pad 引脚输出             |
|                   |          | 4'hf:DVP pad 引脚输出              |
| MIPI pad 引脚输出(低位) | 16'h3001 | Bit[7:0]: pad_ctrl             |
|                   |          | 8'hff:DVP pad 引脚输出             |
|                   |          | 8'h00:MIPI pad 引脚输出            |
| MIPI fifo read 使能 | 16'h4603 | Bit[0]: mipi_read_dis          |
|                   |          | 0~mipi read from fifo enable   |
|                   |          | 1~mipi read from fifo enable   |
| MIPI lane 数量      | 16'h3018 | Bit[7:5]: mipi lane num-1      |
|                   | 0        | 3'h0∼ 1 lane mode              |
|                   | ( )      | 3'h1~2 lane mode               |
| MIPI 输出数据模式       | 16'h3031 | Bit[3:0]: mipi bit mode        |
|                   |          | 4'h8∼ raw8 mode                |
|                   |          | 4'ha~ raw10 mode               |
|                   |          | 4'hc~ raw12 mode               |
| MIPI clock 设置     | 16'h303f | Bit[7]: pclk sel               |
|                   |          | 1'b0~ sel pll_pclk             |
| MIPI 模式下 FIFO 设置  | 16'h3c00 | Bit[2]: fifo mode              |
|                   |          | 1'b0∼ fifo data for mipi       |
| LP 模式驱动           | 16'h3650 | Bit[1:0]: LP 模式驱动能力调整,默认       |
|                   |          | 10                             |
| HS 模式驱动           | 16'h3651 | Bit[2:0]: HS 模式驱动能力调整,默        |
|                   |          | 认 101                          |
| MIPI Lane 0&1 延时  | 16'h3652 | Bit[7]: lane0 相位反向,默认 0        |
|                   |          | Bit[6:4]~lane0 延时,100ps/step,默 |
| V, Y              |          | 认 3'b100                       |
|                   |          | Bit[3] ~ lane1 相位反向,默认 0       |
|                   |          | Bit[2:0]~lane1 延时,100ps/step,默 |
|                   |          | 认 3'b100                       |
| MIPI Clock 延时     | 16'h3654 | Bit[3] ~ 时钟反向,默认 0             |
|                   |          | Bit[2:0]~ 时钟延时,100ps/step,默    |
|                   |          | 认 3'b100                       |



#### 1.5.2. LVDS

SC031GS 提供串行视频端口(LVDS),其数据接口与 MIPI 数据接口复用,通过寄存器控制选择输出 LVDS 格式数据。支持 1/2 个 Data lane 来传输图像 8/10/12 bit 数据,默认先传输数据(8/10 bit)的 HSB 位。接口示意图如图 1-4 MIPI/LVDS 接口示意图所示。

SC031GS LVDS 传输顺序为: 上电复位后 → first active line → second active line → ... → last acvtive line → only one dummy line-→ next frame first active line →...。 LVDS 输出时在行开始插入 line sav 同步编码,行结束处插入 line eav 同步编码,使用 dummy line 做帧结束标识。 LVDS 同步编码数据结构如图 1-9 所示。



图 1-9 LVDS 每个 lane 数据结构示意图(以 10bit 为例)

- 1) 图中的 10'h010,10'h080 分别是 Dummy0 data,Dummy1 data,可由寄存器控制。
- 2) 1lane 及 2lane 模式的 lane 数据结构与图 1-9 一样。

SC031GS LVDS 同步编码信息为 8bit 数据,放在数据高 8bit 传输,同步编码信息如表 1-7 所示。

| 默认值   | 描述              |
|-------|-----------------|
| 8'hab | Dummy line SAV  |
| 8'hb6 | Dummy line EAV  |
| 8'h80 | Active Line SAV |
| 8'h9d | Active Line EAV |

表 1-7 LVDS 数据同步信息编码示意表

备注:以 10bit 为列,Active Line SAV 为 10'h200

表 1-8 LVDS 调整相关寄存器

| 功能                | 寄存器地址名   | 描述                       |
|-------------------|----------|--------------------------|
| LVDS pad 引脚输出(高位) | 16'h3000 | BIT[3:0]: pad_ctrl[11:8] |
|                   |          | 4'hf~DVP pad 引脚输出        |
|                   |          | 4'h0~LVDS pad 引脚输出       |
| LVDS pad 引脚输出(低位) | 16'h3001 | BIT[7:0]: pad_ctrl[7:0]  |
|                   |          | 8'hff~DVP pad 引脚输出       |
|                   |          | 8'h00~LVDS pad 引脚输出      |
| LVDS/MIPI 功能切换    | 16'h3022 | BIT[3]:mipi_lvds_mode    |
|                   |          | 1'b1 ~ LVDS              |
|                   |          | 1'b0 ~ MIPI              |



寄存器地址名 功能 描述 MIPI fifo read 使能 16'h4603 Bit[0]: mipi\_read\_dis 0~mipi read from fifo enable 1~mipi read from fifo enable LVDS lane 数量 16'h3018 BIT[7:5]:lane\_num-1  $3'h0 \sim 1$  lane mode  $3'h1 \sim 2$  lane mode LVDS 输出数据模式 16'h302b BIT[6:5]:bitsel\_man 2'b0 ~ raw 8 mode 2'b1 ~ raw 10 mode 2'b10 ~ raw 12 mode LVDS CLOCK 设置 16'h303f Bit[7]: pclk sel 1'b0 ~ sel pll pclk LVDS bit 设置 16'h4b00 BIT[3]:r\_bit\_flip\_i, 1'b1 ~ HSB first 1'b0 ~ LSB first DUMMY0 data {16'h4b02[3:0],16'h4b03} Dummy0 data DUMMY1 data {16'h4b04[3:0],16'h4b05} Dummy1 data LVDS 驱动 16'h3651 Bit[2:0]:LVDS 驱动能力调整,默认 101 LVDS Lane 0&1 延时 16'h3652 Bit[7]: lane0 相位反向 Bit[6:4]: lane0 延时, 100ps/step Bit[3]: lane1 相位反向 Bit[2:0]: lane1 延时, 100ps/step LVDS Clock 延时 16'h3654 Bit[3]: 时钟反向 Bit[2:0]: 时钟延时, 100ps/step

## 1.6.锁相环

SC031GS 的 PLL 模块允许的输入时钟频率范围为  $6^{\sim}27MHz$ ,其中 VCO 输出频率 ( $F_{VCO}$ ) 的范围为 100MHz-1200MHz。 PLL 结构示意图在图 1-18 展示。



图 1-10 PLL 控制示意图



# 2. 芯片引脚信息

## 2.1. 芯片脚位图(um)



图 2-1 引脚图

表 2-1 列出了 SC031GS 图像传感器 Pad 坐标描述。

表 2-1 SC031GS Pad 坐标描述

| Pad No. | Pad Name  | X-axis   | Y-axis  | Bonding Area Size |
|---------|-----------|----------|---------|-------------------|
| 1       | TRIGL     | -54.9    | 1462.05 | 70.2x70.2         |
| 2       | DOGND     | -205.2   | 1462.05 | 70.2x70.2         |
| 3       | DVDD      | -355.5   | 1462.05 | 70.2x70.2         |
| 4       | AVDD      | -511.2   | 1462.05 | 70.2x70.2         |
| 5       | AGND      | -672.75  | 1462.05 | 70.2x70.2         |
| 6       | FSYNC     | -823.05  | 1462.05 | 70.2x70.2         |
| 7       | OTPPGM    | -1564.2  | 1462.05 | 70.2x70.2         |
| 8       | DVDD      | -1777.95 | 969.3   | 70.2x70.2         |
| 9       | DOGND     | -1777.95 | 819     | 70.2x70.2         |
| 10      | LEDSTROBE | -1777.95 | 668.7   | 70.2x70.2         |
| 11      | SDA       | -1777.95 | 518.4   | 70.2x70.2         |
| 12      | SCL       | -1777.95 | 346.5   | 70.2x70.2         |
| 13      | EXTCLK    | -1777.95 | 196.2   | 70.2x70.2         |
| 14      | LREF      | -1777.95 | 45.9    | 70.2x70.2         |
| 15      | PCLK      | -1777.95 | -120.6  | 70.2x70.2         |



| 16 | DOGND      | -1777.95 | -298.8   | 70.2x70.2 |
|----|------------|----------|----------|-----------|
| 17 | DVDD       | -1777.95 | -449.1   | 70.2x70.2 |
| 18 | D<0>       | -1777.95 | -637.65  | 70.2x70.2 |
| 19 | D<1>       | -1777.95 | -787.95  | 70.2x70.2 |
| 20 | DOVDD      | -1777.95 | -938.25  | 70.2x70.2 |
| 21 | D<2>       | -1777.95 | -1088.55 | 70.2x70.2 |
| 22 | D<3>       | -1777.95 | -1238.85 | 70.2x70.2 |
| 23 | DOVDD      | -1528.2  | -1462.05 | 70.2x70.2 |
| 24 | DOGND      | -1339.2  | -1462.05 | 70.2x70.2 |
| 25 | D<4>(md0n) | -1044    | -1462.05 | 70.2x70.2 |
| 26 | D<5>(md0p) | -893.7   | -1462.05 | 70.2x70.2 |
| 27 | DVDD       | -743.4   | -1462.05 | 70.2x70.2 |
| 28 | D<6>(mcn)  | -518.4   | -1462.05 | 70.2x70.2 |
| 29 | D<7>(mcp)  | -368.1   | -1462.05 | 70.2x70.2 |
| 30 | DOGND      | -217.8   | -1462.05 | 70.2x70.2 |
| 31 | D<8>(md1n) | -67.5    | -1462.05 | 70.2x70.2 |
| 32 | D<9>(md1p) | 82.8     | -1462.05 | 70.2x70.2 |
| 33 | DOVDD      | 233.1    | -1462.05 | 70.2x70.2 |
| 34 | D<10>      | 383.4    | -1462.05 | 70.2x70.2 |
| 35 | D<11>      | 533.7    | -1462.05 | 70.2x70.2 |
| 36 | DOGND      | 684      | -1462.05 | 70.2x70.2 |
| 37 | AGND       | 834.3    | -1462.05 | 70.2x70.2 |
| 38 | AVDD       | 997.2    | -1462.05 | 70.2x70.2 |
| 39 | TXVDD      | 1777.95  | -670.5   | 70.2x70.2 |
| 40 | VREFH      | 1777.95  | -520.2   | 70.2x70.2 |
| 41 | VREFN      | 1777.95  | -369.9   | 70.2x70.2 |
| 42 | VREFN1     | 1777.95  | -219.6   | 70.2x70.2 |
| 43 | VREF1      | 1777.95  | -69.3    | 70.2x70.2 |
| 44 | AVDD       | 1777.95  | 81       | 70.2x70.2 |
| 45 | VREFGS     | 1777.95  | 231.3    | 70.2x70.2 |
| 46 | RSTM       | 1777.95  | 381.6    | 70.2x70.2 |
| 47 | AGND       | 1777.95  | 531.9    | 70.2x70.2 |
| 48 | AGND       | 1595.7   | 1462.05  | 70.2x70.2 |
| 49 | AVDD       | 1445.4   | 1462.05  | 70.2x70.2 |
| 50 | ATM        | 1295.1   | 1462.05  | 70.2x70.2 |
| 51 | XSHUTDN    | 1144.8   | 1462.05  | 70.2x70.2 |
| 52 | DOGND      | 994.5    | 1462.05  | 70.2x70.2 |
| 53 | SID0       | 844.2    | 1462.05  | 70.2x70.2 |
| 54 | SID1       | 693.9    | 1462.05  | 70.2x70.2 |
| 55 | DVDD       | 543.6    | 1462.05  | 70.2x70.2 |
| 56 | TRIGS      | 119.7    | 1462.05  | 70.2x70.2 |
|    |            |          |          |           |



## 2.2 RW(Reconstructed wafer) 物理尺寸

Max total die count:2128ea

Film frame: compact disco stainless SUS420

Carrier tape: UV tape



表 2-2 RW 物理尺寸表

| Parameter                                     | Description                                        |
|-----------------------------------------------|----------------------------------------------------|
| Wafer Diameter                                | 200mm(8'')                                         |
| Grinding Thickness                            | 150um±10um                                         |
| Singulated Die Size                           | $X=3723.8$ um $\pm 20$ um, $Y=3092$ um $\pm 20$ um |
| Bond Pad Size                                 | X=77.4um,Y=77.4um                                  |
| Bond Pad Opening                              | X=70.2um,Y=70.2um                                  |
| Minimum Bond Pad Pitch                        | 150um                                              |
| Optical Array(Optical center from die center) | X=38.98um,Y= -172.66um                             |
| RW Offset                                     | $(X1-X2)/2=0\pm 5$ mm; $(Y1-Y2)/2=0\pm 5$ mm;      |
| Placement Accuracy X, Y, Theta                | X,Y( $\pm$ 50um) Theta<1 $^{\circ}$                |
| Maximum Total Die Count                       | 2128ea                                             |
| RW Layout                                     | X=48 Y=57                                          |



# 3. 典型应用电路

如图 3-1 所示,提供了 MIPI&DVP 典型应用电路供参考。



图 3-1 SC031GS MIPI/DVP 接口典型应用电路





图 3-2 电源供电和滤波连接方式



图 3-3 SC031GS 推荐 Power Tree

#### 注意:

1) SC031GS 芯片分三路电源供电: DOVDD 外接 1.8V, AVDD 外接 2.8V, DVDD 外接 1.5V。 其中, AVDD 必须单独外接 2.8V 电源, 在每个 AVDD 引脚附近放三个电容(推荐电容组合 22uF+0.1uF+10nF)。DOVDD 外接 1.8V 电源, 在每个 DOVDD 引脚附近放三个电容(推荐电容组合 10uF+0.1uF+10nF)。DVDD 外接 1.5V 电源, 在每个 DVDD 引脚附近放三个电容(推荐电容组合 10uF+0.1uF+10nF),分别滤除低频和高频的电源纹波。电容大小可参考图 3-2 提供的电容大小数据;



- 2) RSTM、VREFGS、VREF1、VREFN、VREFN1、VREF 必须外接两个电容至地,分别滤除低频和高频的电源纹波,电容需要靠近芯片引脚,并且尽可能远离I/O翻转信号,如EXTCLK、TRIG、MIPI 线对、DVP DATA、PCLK。VREFH、VREFN 上分别接一个肖特基二极管到 AVDD、GND,二极管规格:正向导通电压不超过 200mV@1mA(推荐型号 RB521CS-30);
- 3) XSHUTDN 由主控芯片控制,低电平有效;
- 4) EXTCLK 可以采用有源晶振供给 EXTCLK 端, 也可以由主控直接给 EXTCLK 端提供时钟信号, 信号频率范围 6-27MHz;
- 5) MIPI 信号走线要求:
  - a) MIPI的差分线阻抗控制标准是100 $\Omega$ ,误差不能大于 $\pm$ 10%。
  - b) 避免直角走线,以免产生反射,影响高速传输性能。
  - c) 参考层: MIPI信号线下方一定要有参考层(推荐用地层),且一定要保证参考层的连续性(即在MIPI信号线下方的参考层不能被分割或有间隙,不能被其它走线截断),最好是有一整片的地层,如果做不到,至少要保证MIPI信号线下方的参考层比MIPI信号线每边要宽4W以上(W即MIPI信号走线宽度)。
  - d) 等长: MIPI线对之间的长度误差是要控制在10mil以内,线对与线对之间的长度误差控制在100mil以内; 等长是为了保证两个差分信号能同时到达接收端。做等长时,要注意对称性,绕蛇形线时不能太密集,应为4W,等长尽量在焊盘附件解决,以倒角形式来走线,不能随意改变线宽和线距。
  - e) 对称性: MIPI线对要始终保持等长和等距。对称是为了保证走线阻抗一致,减少反射。对称性不好会使信号失真,导致不稳定或无图。
  - f) 远离干扰: MIPI线对之间要保持至少2W以上的间距, MIPI信号线应远离其它高速信号(并行数据线、时钟线等), 至少保持3W以上的距离且绝不能平行走线。对开关电源这一类的干扰源更应远离。
  - g) 过孔: MIPI信号线尽量不要打过孔,如有过孔则线对上的两根线都要有(保持对称性),信号线换层后参考层也要在靠近信号线的过孔处打孔换层;
- 6) DVP 信号走线要求:
  - a) EXTCLK、PCLK 走线需要做包地处理;
  - b) AVDD 的走线尽可能远离 EXTCLK、PCLK、DATA 信号;



## 4. 功能介绍

#### 4.1. LED STROBE

SC031GS 支持 LED STROBE 功能,当 SC031GS Pixel 处于曝光期间时,PAD LEDSTROBE 置于高电平,以驱动外部 LED。

| 功能            | 寄存器地址         | 说明                    |
|---------------|---------------|-----------------------|
| LED STROBE 使能 | 16'h3361[7:6] | LED STROBE 使能控制       |
|               |               | 2'b11~LED STROBE 功能关闭 |
|               |               | 2'b00~LED STROBE 功能打开 |

表 4-1 LED STROBE 控制寄存器

## 4.2. 外触发全局曝光模式

外触发全局曝光模式是主控芯片通过 TRIGL 信号触发曝光,以实现多个 sensor 同步曝光及视频数据输出。当 TRIGL 信号由低电平变为高电平时,SC031GS 开始曝光,曝光结束后输出图像数据,帧率受外部控制。

当 SC031GS 工作在外触发全局曝光模式时,主控芯片通过 TRIGL 引脚触发曝光。根据曝光时间的控制方法,外触发全局曝光模式分为外部触发全局 Master Mode,外触发全局 Slave Mode。

外触发全局 Master Mode 模式下,通过寄存器{16'h3e01,16'h3e02}控制曝光时间,具体时序如图 4-1。



图 4-1 外触发全局 Master Mode 模式时序图

注释:

- 1) EXP Rows 以行为单位,EXP Rows = {16'h3e01,0x3e02[7:4]} + 16'h3226
- 2) 当 TRIGL 上升沿发生后,经过寄存器 16'h3226 所配置的行数后,(不建议调整,该段时间会进行多次 Pixel 复位操作,以获取更高的图像质量) SC031GS 开始曝光
- 3) Start of frame N 表示曝光结束及开始读取并传输图像数据
- 4) Active Rows 时读出芯片图像数据,由寄存器控制,以行为单位
- 5) Blank Rows 时读出芯片图像数据之后的消隐时间,由寄存器控制,以行为单位

外触发全局 Slave Mode 模式下,曝光时间由 TRIGL 高电平时间控制,当 TRIGL 的上升 沿发生时,SC031GS 开始曝光,当 TRIGL 的下降沿发生时,SC031GS 结束曝光,接着开始读出视频数据,具体时序如图 4-2。



图 4-2 外部触发全局 Slave Mode 模式时序图

注释:

- 1) 曝光时间等于 TRIGL 高电平持续时间;
- 2) 当 TRIGL 上升沿发生后, SC031GS 开始曝光;
- 3) Start of frame N 表示曝光结束及开始读取并传输图像数据;
- 4) Active Rows 时读出芯片图像数据,由寄存器控制,以行为单位;
- 5) Blank Rows 时读出芯片图像数据之后的消隐时间,由寄存器控制,以行为单位;

表 4-2 外部触发全局曝光控制寄存器

| 功能           | 寄存器地址       | 说明             |
|--------------|-------------|----------------|
| Trigger 模式使能 | 16'h3222[1] | Trigger 模式使能控制 |
|              |             | 1~Trigger 模式打开 |
|              |             | 0~Trigger 模式关闭 |



| 功能            | 寄存器地址               | 说明                                      |
|---------------|---------------------|-----------------------------------------|
| Slave mode 使能 | 16'h3222[0]         | Slave mode 使能控制                         |
|               |                     | 1~Slave mode                            |
|               |                     | 0~Master mode                           |
| Active Rows   | {16'h3202,16'h3203} | Active Rows = ({16'h 3206, 16'h 3207} – |
|               | {16'h3206,16'h3207} | {16'h 3202, 16'h 3203} + 1 +            |
|               | 16'h3248            | 16'h3249 – 16'h3248 + 1 +               |
|               | 16'h3249            | {16'h324c,16'h324d} —                   |
|               | {16'h324a,16'h324b} | {16'h324a,16'h324b} + 1)                |
|               | {16'h324c,16'h324d} |                                         |
| Blank Rows    | {16'h3218,16'h3219} | Blank Rows = {0x3218,0x3219} x2         |

## 4.3. 高动态模式

SC031GS 提供两种曝光模式: 1. Normal mode 2. HDR mode,如图 4-3 所示。







图 4-3 HDR 功能说明

Normal mode 下,输出值随曝光线性变化,芯片可感应到的最大曝光为 L1。

HDR mode 下,输出值随曝光分为两段。在曝光较小时(小于 HDR point),输出值随曝光变化敏感,灵敏度高;在曝光较大时(大于 HDR point),输出值随 Light 变化不敏感,可响应更大的曝光范围,可分辨的最大曝光为 L2。因此,开启高动态模式后,动态范围可以增加 20\*log(L2/L1)。

SC031GS HDR mode 有两种控制方法: 1.Master mode; 2.Slave mode, 具体可参见图 4-4 所示。

## HDR Master Mode控制模式





## 4.3.1. HDR 控制模式

表 4-3 HDR 模式控制寄存器

| 功能            | 寄存器地址               | 说明              |
|---------------|---------------------|-----------------|
| HDR 模式使能      | 16'h3220[6]         | HDR 模式使能控制      |
|               | 0.                  | 1~HDR 模式打开      |
| ,             |                     | 0~HDR 模式关闭      |
| Slave Mode 使能 | 16'h3222[0]         | Slave mode 使能控制 |
|               |                     | 1~Slave mode    |
|               |                     | 0~Master mode   |
| TOTAL 曝光时间    | {16'h3e01,16'h3e02} | 以 1/16 行为单位     |
| HDR 曝光时间      | {16'h3e31,16'h3e32} | 以 1/16 行为单位     |

### 4.4. AEC/AGC

AEC/AGC 都是基于亮度进行调节的,AEC 调节曝光时间,AGC 调节增益值,最终使图像



亮度落在设定亮度阈值范围内。

### 4.4.1. AEC/AGC 的控制策略

SC031GS 本身没有 AEC 功能,需要通过后端平台实现 AEC/AGC。

在整个 AEC/AGC 过程中,不是独立的调整 sensor 的曝光时间或者增益,调整策略为:曝光时间优先,曝光时间已经最长无法继续调整时,调整增益。

以图像过暗的情况为例,调控的先后顺序为: ①不开启任何增益,直到曝光时间达到上限; ②曝光时间达到上限后,再开始调用自动增益控制。需要明确指出的是,增益开启,将直接导致平均噪声呈倍数放大: 而曝光时间加大,则有助于提升信噪比。

反之,当图像过亮时,则优先关闭增益,当所有增益关闭,图像仍旧过亮,才会降低曝 光时间。

曝光时间与增益是一个交互的调节体系,在调试的时候,应该综合考虑。

### 4.4.2. AEC/AGC 控制寄存器说明

AEC/AGC 的控制寄存器如表 4-4 所示。

表 4-4 增益/曝光的手动控制寄存器

| 功能       | 寄存器地址               | 说明                        |
|----------|---------------------|---------------------------|
|          | A 0 '               | Normal 模式下的曝光时间, HDR 模式下的 |
| 曝光时间     | {16'h3e01,16'h3e02} | 总曝光时间。                    |
|          |                     | 以 1/16 行为单位               |
| HDR 曝光时间 | {16'h3e31,16'h3e32} | 以 1/16 行为单位               |

#### AEC 控制说明如下:

- 1) AEC 的调节步长为一行曝光时间,一行行曝光时间等于行长乘以 TP(其中的 TP 为 Pixel clock 的一个周期),行长=寄存器{16'h320c,16'h320d}的值。
- 2) 曝光时间及增益都是在第一帧(第 N 帧)写入,第三帧(第 N+2 帧)生效。
- 3) 曝光时间上限不能超过当前帧长减去 6 行,帧长 = 寄存器{16'h320e,16'h320f}的值,即在同一时刻,写入的{16'h3e01,16'h3e02[7:4]}值最大为{16'h320e,16'h320f}-6。如果曝光时间大于等于帧长,为了避免时序错误而闪烁,sensor 会自动加大真实帧长(此时真实帧长会在{16'h320e,16'h320f}基础上按需加一个值),以避免闪烁,但同时也带来帧率的下降。

AGC 控制方法有两种,具体说明如下:

- 1) 16'h3e03 设置为 8'h03 时的 Gain mapping: gain 值 = {16'h3e08,16'h3e09}/8'h10。
- 2) 16'h3e03 设置为 8'h0b 时对应的模拟 gain 值如表 4-5 所示,数字 gain 值如表 4-6 所示。



SC031GS 具有 Digital Fine Gain, Digital Fine Gain 的精度为 1/128, 以 1/16 的精度为例, 列出 digital gain 的控制如下表 4-6 所示。

表 4-5 模拟 gain 值控制寄存器

|       | Coarse gain | Fine gain( | 16'h3E09) |            |
|-------|-------------|------------|-----------|------------|
| Items | (16'h3E08)  | bit[7:0    |           | Total gain |
|       | bit[4:2]    | 寄存器值       | 增益        |            |
| 增益控制  | 增益 X1       | 10         | 1         | 1          |
|       | 寄存器值: 0     | 11         | 1.0625    | 1.0625     |
|       |             | 12         | 1.125     | 1.125      |
|       |             | 13         | 1.1875    | 1.1875     |
|       |             | 14         | 1.25      | 1.25       |
|       |             | 15         | 1.3125    | 1.3125     |
|       |             | 16         | 1.375     | 1.375      |
|       |             | 17         | 1.4375    | 1.4375     |
|       |             | 18         | 1.5       | 1.5        |
|       |             | 19         | 1.5625    | 1.5625     |
|       |             | 1a         | 1.625     | 1.625      |
|       |             | 1b         | 1.6875    | 1.6875     |
|       |             | 1c         | 1.75      | 1.75       |
|       |             | 1d         | 1.8125    | 1.8125     |
|       |             | 1e         | 1.875     | 1.875      |
|       |             | 1f         | 1.9375    | 1.9375     |
|       | 增益 X2       | 10         | 1         | 2          |
|       | 寄存器值:1      | 11         | 1.0625    | 2.125      |
|       | 6,00        | 12         | 1.125     | 2.25       |
|       |             | 13         | 1.1875    | 2.375      |
| A     |             | 14         | 1.25      | 2.5        |
|       | )           | 15         | 1.3125    | 2.625      |
| , 0   |             | 16         | 1.375     | 2.75       |
|       |             | 17         | 1.4375    | 2.875      |
|       |             | 18         | 1.5       | 3          |
| >     |             | 19         | 1.5625    | 3.125      |
|       |             | 1a         | 1.625     | 3.25       |
|       |             | 1b         | 1.6875    | 3.375      |
|       |             | 1c         | 1.75      | 3.5        |
|       |             | 1d         | 1.8125    | 3.625      |
|       |             | 1e         | 1.875     | 3.75       |
|       |             | 1f         | 1.9375    | 3.875      |
|       | 增益 X4       | 10         | 1         | 4          |



|       | Coarse gain | Fine gain(1 | 16'h3E09) |            |
|-------|-------------|-------------|-----------|------------|
| Items | (16'h3E08)  | bit[7:0     | )]        | Total gain |
|       | bit[4:2]    | 寄存器值        | 增益        |            |
|       | 寄存器值: 3     | 11          | 1.0625    | 4.25       |
|       |             | 12          | 1.125     | 4.5        |
|       |             | 13          | 1.1875    | 4.75       |
|       |             | 14          | 1.25      | 5          |
|       |             | 15          | 1.3125    | 5.25       |
|       |             | 16          | 1.375     | 5.5        |
|       |             | 17          | 1.4375    | 5.75       |
|       |             | 18          | 1.5       | 6          |
|       |             | 19          | 1.5625    | 6.25       |
|       |             | 1a          | 1.625     | 6.5        |
|       |             | 1b          | 1.6875    | 6.75       |
|       |             | 1c          | 1.75      | 7          |
|       |             | 1d          | 1.8125    | 7.25       |
|       |             | 1e          | 1.875     | 7.5        |
|       |             | 1f          | 1.9375    | 7.75       |
|       | 增益 X8       | 10          | 1         | 8          |
|       | 寄存器值:7      | 11          | 1.0625    | 8.5        |
|       |             | 12          | 1.125     | 9          |
|       |             | 13          | 1.1875    | 9.5        |
|       |             | 14          | 1.25      | 10         |
|       |             | 15          | 1.3125    | 10.5       |
|       |             | 16          | 1.375     | 11         |
|       |             | 17          | 1.4375    | 11.5       |
|       | 2.0         | 18          | 1.5       | 12         |
|       |             | 19          | 1.5625    | 12.5       |
| 44    | <b>Y</b>    | 1a          | 1.625     | 13         |
|       |             | 1b          | 1.6875    | 13.5       |
|       |             | 1c          | 1.75      | 14         |
| X     |             | 1d          | 1.8125    | 14.5       |
| V.    |             | 1e          | 1.875     | 15         |
| ,     |             | 1f          | 1.9375    | 15.5       |

表 4-6 数字 gain 值控制寄存器

| Items | Digital<br>gain(16'h3E06<br>) bit[3:0] | Fin gain(16'h3E0'<br>bit[7:0]<br>寄存器值 | 7) 增益 | Total gain |
|-------|----------------------------------------|---------------------------------------|-------|------------|
| 增益控制  | 增益 X1                                  | 80                                    | 1     | 1          |



|            | Digital       | Fin gain(16'h3E( | 07)    |            |
|------------|---------------|------------------|--------|------------|
| Items      | gain(16'h3E06 | bit[7:0]         |        | Total gain |
|            | ) bit[3:0]    | 寄存器值             | 増益     |            |
|            | 寄存器值: 0       | 88               | 1.0625 | 1.0625     |
|            |               | 90               | 1.125  | 1.125      |
|            |               | 98               | 1.1875 | 1.1875     |
|            |               | a0               | 1.25   | 1.25       |
|            |               | a8               | 1.3125 | 1.3125     |
|            |               | b0               | 1.375  | 1.375      |
|            |               | b8               | 1.4375 | 1.4375     |
|            |               | c0               | 1.5    | 1,5        |
|            |               | c8               | 1.5625 | 1.5625     |
|            |               | d0               | 1.625  | 1.625      |
|            |               | d8               | 1.6875 | 1.6875     |
|            |               | e0               | 1.75   | 1.75       |
|            |               | e8               | 1.8125 | 1.8125     |
|            |               | f0               | 1.875  | 1.875      |
|            |               | f8               | 1.9375 | 1.9375     |
|            | 增益 X2         | 80               | 1      | 2          |
|            | 寄存器值: 1       | 88               | 1.0625 | 2.125      |
|            |               | 90               | 1.125  | 2.25       |
|            |               | 98               | 1.1875 | 2.375      |
|            |               | a0               | 1.25   | 2.5        |
|            |               | a8               | 1.3125 | 2.625      |
|            |               | , b0             | 1.375  | 2.75       |
|            |               | b8               | 1.4375 | 2.875      |
|            |               | c0               | 1.5    | 3          |
|            | , 0           | c8               | 1.5625 | 3.125      |
| _          |               | d0               | 1.625  | 3.25       |
|            |               | d8               | 1.6875 | 3.375      |
| Λ.         |               | e0               | 1.75   | 3.5        |
|            |               | e8               | 1.8125 | 3.625      |
| <i>Y</i> . |               | f0               | 1.875  | 3.75       |
|            |               | f8               | 1.9375 | 3.875      |
|            | 增益 X4         | 80               | 1      | 4          |
|            | 寄存器值:3        | 88               | 1.0625 | 4.25       |
|            |               | 90               | 1.125  | 4.5        |
|            |               | 98               | 1.1875 | 4.75       |
|            |               | a0               | 1.25   | 5          |
|            |               | a8               | 1.3125 | 5.25       |
|            |               | b0               | 1.375  | 5.5        |



|            | Digital       | Fin gain(16'h3E( | <b>)7</b> ) |            |
|------------|---------------|------------------|-------------|------------|
| Items      | gain(16'h3E06 |                  | ,,,         | Total gain |
| Items      | ) bit[3:0]    | 寄存器值             | 増益          | Total gain |
|            |               | b8               | 1.4375      | 5.75       |
|            |               | c0               | 1.5         | 6          |
|            |               | c8               | 1.5625      | 6.25       |
|            |               | d0               | 1.625       | 6.5        |
|            |               | d8               | 1.6875      | 6.75       |
|            |               | e0               | 1.75        | 7          |
|            |               | e8               | 1.8125      | 7.25       |
|            |               | f0               | 1.875       | 7,5        |
|            |               | f8               | 1.9375      | 7.75       |
|            | 增益 X8         | 80               | 1           | 8          |
|            | 寄存器值:7        | 88               | 1.0625      | 8.5        |
|            |               | 90               | 1.125       | 9          |
|            |               | 98               | 1.1875      | 9.5        |
|            |               | a0               | 1.25        | 10         |
|            |               | a8               | 1.3125      | 10.5       |
|            |               | b0               | 1.375       | 11         |
|            |               | b8               | 1.4375      | 11.5       |
|            |               | c0               | 1.5         | 12         |
|            |               | (c8)             | 1.5625      | 12.5       |
|            |               | d0               | 1.625       | 13         |
|            |               | d8               | 1.6875      | 13.5       |
|            |               | , e0             | 1.75        | 14         |
|            |               | e8               | 1.8125      | 14.5       |
|            | 6.0           | f0               | 1.875       | 15         |
|            |               | f8               | 1.9375      | 15.5       |
| _          | 增益 X16        | 80               | 1           | 16         |
|            | 寄存器值: F       | 88               | 1.0625      | 17         |
| P. C.      |               | 90               | 1.125       | 18         |
|            |               | 98               | 1.1875      | 19         |
| <i>Y</i> , |               | a0               | 1.25        | 20         |
|            |               | a8               | 1.3125      | 21         |
|            |               | b0               | 1.375       | 22         |
|            |               | b8               | 1.4375      | 23         |
|            |               | c0               | 1.5         | 24         |
|            |               | c8               | 1.5625      | 25         |
|            |               | d0               | 1.625       | 26         |
|            |               | d8               | 1.6875      | 27         |
|            |               | e0               | 1.75        | 28         |



| Items | Digital gain(16'h3E06 ) bit[3:0] | Fin gain(16'h3E0'<br>bit[7:0]<br>寄存器值 | 7) 增益  | Total gain |
|-------|----------------------------------|---------------------------------------|--------|------------|
|       |                                  | e8                                    | 1.8125 | 29         |
|       |                                  | f0                                    | 1.875  | 30         |
|       |                                  | f8                                    | 1.9375 | 31         |

## 4.5. GROUP\_HOLD

SC031GS 具有 Group hold 功能,Group hold 指的是把寄存器打包在一帧特定时刻生效的功能。

使用方法: 寄存器 16'h3812 写 8'h00,需要打包生效的寄存器写入对应值,寄存器 16'h3812 写 8'h30。备注:①需要打包生效的寄存器最多支持 10 个 ②打包生效的时刻为 16'h3812 写 8'h30 之后第一个帧内生效时刻(帧延迟为 0 时),帧内生效时刻由寄存器{16'h3235,16'h3236} 控制,{16'h3235,16'h3236}==16'h0 时表示帧开始。

| 功能     | 寄存器名                | 描述                  |
|--------|---------------------|---------------------|
| 帧内生效时刻 | {16'h3235,16'h3236} | 帧内生效时刻,以行为单位,       |
| 2.7,   |                     | 当该值等于0时表示帧开始        |
|        |                     | Bit[7:0]:帧延迟控制,生效时间 |
| 帧延迟控制  | 16'h3802            | 帧延迟控制,写0表示不做        |
|        |                     | 帧延迟,写1表示一帧延迟        |

表 4-7 Group hold 控制寄存器

## 4.6. 黑电平控制(BLC)

SC031GS 像素阵列包含 12 条黑行,这些黑行可以为补偿消除算法提供数据。数字图像处理首先要减去黑电平数据,BLC 算法可以从黑行数据中估算黑电平的补偿值,而彩色像素的值会减去各自色彩通道的黑电平补偿值。如果在一些特定的像素点,这样的减法得到了负值,那么将结果置 0。

默认情况下,改变增益值后会重新进行 BLC 操作。

黑电平有两种计算模式: 手动 BLC 和自动 BLC。在手动模式下,补偿值由寄存器指定; 在自动模式下,补偿值通过黑行计算得到。

| 功能     | 寄存器名     | 描述                                  |
|--------|----------|-------------------------------------|
| BLC 使能 | 16'h3900 | Bit[0]: blc_enable<br>0~ bypass BLC |
|        |          | 1~ BLC enable                       |

表 4-8 BLC 控制寄存器



| 功能        | 寄存器名                      | 描述                                                                                                                                                               |
|-----------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 自动 BLC 使能 | 16'h3902                  | Bit[6]: blc_auto_en 0~ manual mode 1~ auto mode                                                                                                                  |
| BLC 通道选择  | {16'h3928[0],16'h3905[6]} | 16'h3928[0]:  0~ use 8 channel offset mode  1~ use 4 channel offset mode  16'h3905[6]: one channel enable  0~ use 8 or 4 channel offset  1~ use one channel mode |
| BLC 目标值   | {16'h3907[4:0],16'h3908}  | BLC target                                                                                                                                                       |

#### 4.7. HDR Calibration

为提高图像效果, SC031GS 在 HDR 模式下具有 HDRC 功能, 用于消除 HDR 模式带来的 图像噪声。

HDRC 功能打开时,SC031GS 要多读取一帧 HDR point 数据,图像读取时间会增加一倍。该模式下读取期间不能进行曝光,帧率由曝光时间(Texp)与读取时间(Tread)之和决定。HDRC 功能关闭时,帧率由曝光时间和读取时间中的较大者决定。

以 240fps(Tread=4.17ms) 为例, HDRC 功能打开时,一帧时间=Tread x 2 + Texp =8.34ms+Texp,如需 4.17ms 曝光时间,则一帧时间为 4.17x2+4.17=12.51ms,对应最高帧率 80fps,如需更长的曝光时间,会进一步降低帧率。HDRC 关闭时,曝光与读取可以同步进行,帧率只取决于二者中的较大者,如需实现 4.17ms 曝光,仍然可以达到 240fps。

表 4-9 HDRC 寄存器控制

| 功能                                      | 寄存器名                     | 描述                                              |
|-----------------------------------------|--------------------------|-------------------------------------------------|
| HDR point 数据读取使能                        | 16'h3222                 | Bit[5:4]:HDR point 数据读取使能                       |
| 20,0                                    |                          | 2'b00~不读取 HDR point 数据<br>2'b11~读取 HDR point 数据 |
| HDRC 功能控制                               | 16'h540a                 | Bit[3]: HDRC 功能控制                               |
| \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ |                          | 默认当 HDR point 数据读取功能打                           |
|                                         |                          | 开时 HDRC 功能自动打开,当 HDR                            |
| Y                                       |                          | point 数据读取功能关闭时 HDRC 功                          |
|                                         |                          | 能自动关闭,如需要改变 HDRC 功                              |
|                                         |                          | 能开关,把该寄存器 Bit 写 1                               |
| HDR point 均值自动计算使能                      | 16'h3906                 | Bit[6]: HDR point 均值自动计算使能                      |
|                                         |                          | 0~ HDR point 均值寄存器控制                            |
|                                         |                          | 1~ HDR point 均值自动计算                             |
| HDR point 均值寄存器值                        | {16'h393b[3:0],16'h393c} | HDR point 均值控制控制值                               |



## 4.8. 视频输出模式

## 4.8.1. 读取顺序

图 4-5 提供了芯片工作的时候,第一个读取的 pixel 位置,以及整个 array 的结构示意图。此图是在 A2 脚置于上方的时候得到(top view)。



图 4-5 像素阵列图一

SC031GS 提供镜像模式和倒置模式。前者会水平颠倒传感器的数据读出顺序;而后者会垂直颠倒传感器的读出顺序。如图 4-6 所示。



图 4-6 镜像和倒置实例

表 4-10 镜像和倒置模式控制寄存器

| 功能   | 寄存器地址          | 寄存器值  | 描述                    |
|------|----------------|-------|-----------------------|
| 镜像模式 | 16'h 3221[2:1] | 2'h 3 | Bit[2:1]: mirror ctrl |
|      |                |       | 2'b00~mirror off      |
|      |                |       | 2'b11~mirror on       |
|      |                |       | Bit[6:5]: flip ctrl   |
| 倒置模式 | 16'h 3221[6:5] | 2'h 3 | 2'b00~filp off        |
|      |                |       | 2'b11~flip on         |



## 4.8.2. 输出窗口

表 4-11 输出窗口寄存器

| 功能   | 寄存器名                 | 描述        |
|------|----------------------|-----------|
| 窗口宽度 | {16'h3208, 16'h3209} | 输出窗口宽度    |
| 窗口高度 | {16'h320a, 16'h320b} | 输出窗口高度    |
| 列起始  | {16'h3210, 16'h3211} | 输出窗口列起始位置 |
| 行起始  | {16'h3212, 16'h3213} | 输出窗口行起始位置 |

## 4.9. 帧率计算

图 4-7 为有效输出示意图,可以按照以下公式来计算图像帧率: 帧率  $=F_{PCLK}/(行长*帧长)$ 。其中  $F_{PCLK}$ 指的是 Pixel CLK 的时钟频率,行长包括图像水平方向上,有效区域宽度以及行消隐区宽度之和; 帧长包括图像竖直方向上,有效区域高度以及帧消隐区高度之和。



图 4-7 视频有效输出示意图

表 4-12 帧率相关寄存器

| 功能 | 寄存器名                | 描述      |
|----|---------------------|---------|
| 行长 | {16'h320c,16'h320d} | 一行数据的个数 |
| 帧长 | {16'h320e,16'h320f} | 一帧图像的行数 |



## 4.10. 测试模式

为方便测试, SC031GS 提供了灰度渐变测试模式, 如图 4-8 所示。



图 4-8 测试模式

表 4-13 测试模式控制寄存器

| 功能              | 寄存器地址       | 寄存器值              | 描述                                                                          |
|-----------------|-------------|-------------------|-----------------------------------------------------------------------------|
| <b>大空汇补供</b> -4 | 16'h4501[3] | 1 <sup>3</sup> b1 | Bit[3]: incremental pattern enable  0~ normal image  1~ incremental pattern |
| 灰度渐变模式          | 16'h3902[6] | 1'b0              | Bit[6]: blc auto enable  0~ manual BLC  1~aoto BLC                          |
|                 |             |                   |                                                                             |



# 5. 版本变更记录

| 版本  | 修改内容以及说明                                                                     | Owner and date           |
|-----|------------------------------------------------------------------------------|--------------------------|
| 1.0 | 初始版本                                                                         | Christina. Gao/2018.3.14 |
| 1.1 | 修改了 P16, "图 3- 2 SC031GS MIPI/DVP<br>接口典型应用电路",MIPI&DVP 电路都增<br>加了 2 个 diode | Christina. Gao/2018.3.15 |

#### 联系我们:

#### 总部:

地址:上海市徐汇区宜山路 900 号 A 座 1101 室

电话: 021-64853570 传真: 021-64853572-8004 邮箱: sales@smartsenstech.com

#### 美国分公司:

地址: 4340 Stevens Creek Blvd. Suite 280, San Jose, CA 95129

电话: +1 (408) 981-6626

#### 深圳分公司:

地址:深圳市龙岗区坂田街道五和大道南星河 WORLD B 座 2908.

电话: 0755-23739713

思特威技术支持邮箱:

support@smartsenstech.com