CSE 318: Artificial Intelligence Sessional Assignment 4: Decision Tree Analysis

Sayaad Muzahid Masfi 2105066

July 10, 2025

1 Introduction

This report presents a comparative analysis of decision tree performance using three different splitting criteria: Information Gain (IG), Information Gain Ratio (IGR), and Normalized Weighted Information Gain (NWIG). The analysis evaluates classification accuracy, tree complexity, and the effects of maximum tree depth on two datasets: Iris and Adult.

2 Methodology

2.1 Datasets

• Iris Dataset: 150 instances, 4 attributes

• Adult Dataset: 32,561 instances, 14 attributes

2.2 Experimental Setup

• 80% training, 20% testing split

• 20 iterations per configuration

• Maximum tree depths tested: 0 (no pruning) to 5 (10 for Iris)

• Splitting criteria: IG, IGR, NWIG

2.3 Splitting Criteria

• Information Gain (IG):

$$IG(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

• Information Gain Ratio (IGR):

$$IGR(S, A) = \frac{IG(S, A)}{IV(A)}$$

where IV(A) is the intrinsic value of attribute A.

• Normalized Weighted Information Gain (NWIG):

$$NWIG(S,A) = \frac{IG(S,A)}{\log_2(k+1)} \left(1 - \frac{k-1}{|S|}\right)$$

where k is the number of unique values of attribute A.

3 Results

3.1 Iris Dataset

Table 1: Iris Dataset Performance						
Criterion	Max Depth	Avg Accuracy	Avg Nodes	Avg Depth		
IG	0	0.9450	15.3	5.4		
IG	2	0.9317	5.0	2.0		
IG	5	0.9450	14.1	4.8		
IGR	0	0.9450	15.3	5.3		
IGR	2	0.9350	5.0	2.0		
IGR	5	0.9450	14.4	4.9		
NWIG	0	0.9467	29.5	7.1		
NWIG	2	0.9567	5.0	2.0		
NWIG	5	0.9450	20.1	5.0		

3.2 Adult Dataset

Table 2: Adult Dataset Performance						
Criterion	Max Depth	Avg Accuracy	Avg Nodes	Avg Depth		
IG	0	0.8321	7098.7	53.2		
IG	2	0.8017	7.1	2.0		
IG	5	0.8302	258.9	5.0		
IGR	0	0.8194	8885.0	63.2		
IGR	2	0.8069	7.0	2.0		
IGR	5	0.8329	245.2	5.0		
NWIG	0	0.8160	6113.0	58.4		
NWIG	2	0.8124	7.0	2.0		
NWIG	5	0.8380	379.6	5.0		

Figure 1: Iris Dataset: Accuracy vs Max Depth

4 Analysis

4.1 Performance Comparison

- Iris Dataset: All criteria perform similarly, with NWIG showing slightly better accuracy at depth 2 (95.67% vs 93.17% for IG and 93.50% for IGR).
- Adult Dataset: NWIG achieves the highest accuracy (83.80%) at depth 5, outperforming both IG (83.02%) and IGR (83.29%).

4.2 Tree Complexity

- For both datasets, tree size grows exponentially with depth when unpruned (depth 0).
- NWIG produces larger trees than IG and IGR at higher depths, particularly noticeable in the Iris dataset.

4.3 Optimal Depth

- Iris: Depth 2–3 provides optimal balance between accuracy and complexity.
- Adult: Depth 3–5 shows best performance, with accuracy plateauing beyond depth 3.

5 Discussion

The results demonstrate that:

• NWIG generally provides the best accuracy, especially for the more complex Adult dataset.

Figure 2: Iris Dataset: Tree Size vs Max Depth

- IGR produces more compact trees but may sacrifice some accuracy.
- Moderate pruning (depth 2–5) achieves better performance than both unpruned and heavily pruned trees.
- Dataset characteristics significantly impact the relative performance of different criteria.

6 Conclusion

Based on the analysis:

- Recommended Criterion: NWIG for best accuracy, IGR for simpler trees.
- Optimal Depth: 3–5 for most scenarios.
- Dataset Consideration: Choice of criterion should consider dataset complexity.

Figure 3: Adult Dataset: Accuracy vs Max Depth

Figure 4: Adult Dataset: Tree Size vs Max Depth

Figure 5: Comparison of Criteria at No Pruning (Depth 0)