Définitions

Relation n-aire

$$R \subseteq E_1 \times \ldots \times E_n$$

Relation n-aire sur E

$$R \subseteq E^n$$

Notation relation binaire

$$x R y :\Leftrightarrow (x,y) \in R$$

 $x \not R y :\Leftrightarrow (x,y) \notin R$

$$ightharpoonup R:=\{(x,y)\in \mathbb{N}^2\mid x=y+1\}.\ R\subseteq \mathbb{N}^2 \ ext{relation binaire sur } \mathbb{N}$$

Définitions

Soit $R \subseteq E^2$ relation binaire sur E

Réflexive
$$\forall x \in E$$
 $x R x$

Irréflexive $\forall x \in E$ $x \not R x$

Transitive $\forall x, y, z \in E$ $x R y$ et $y R z \Rightarrow x R z$

Symétrique $\forall x, y \in E$ $x R y \Rightarrow y R x$

Antisymétrique $\forall x, y \in E$ $x R y \Rightarrow y R x \Rightarrow x = y$

Soit
$$A := \{a, b, c\}$$

- 1. $R_1 := \{(a, b), (b, a), (a, a), (b, b), (b, c), (c, c)\}$ est réflexive
- 2. $R_2 := \{(a, b), (b, a), (c, c)\}$ est symétrique
- 3. $R_3 := \{(a,b), (b,c), (a,c), (b,b)\}$ est transitive
- 4. $R_4 := \{(a, c), (a, b)\}$ est irréflexive et antisymétrique

Relation d'équivalence

Relation d'équivalence

R réflexive, transitive et symétrique

Classe d'équivalence

$$[e]_R := \{x \in E \mid e R x\}$$

$$E := \{a, b, c\} \text{ et } R := \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$$
$$[a]_R = \{a, b\} \qquad [b]_R = \{a, b\} \qquad [c]_R = \{c\}$$

Relation d'équivalence

Relation d'équivalence vers partition

Si R relation d'équivalence sur E alors

$$\{[e]_R \in \mathcal{P}(E) \mid e \in E\}$$
 est une partition de E

Partition vers classe d'équivalence

Si P partition de E et

$$x R y : \Leftrightarrow \exists Z \in P \quad x \in Z \text{ et } y \in Z$$

alors R relation d'équivalence sur E

$$E := \{a, b, c, d, e\} \text{ et } P := \{\{a, b\}, \{c, d, e\}\}$$

Relations Ordre

Relation d'ordre

R réflexive, transitive et antisymétrique

Exemples

- ightharpoonup

 relation d'ordre sur $\mathbb N$
- ightharpoonup \subseteq relation d'ordre sur $\mathcal{P}(E)$
- ightharpoonup relation d'ordre sur \mathbb{Z}

 $a \mid b$ signifie « a divise b »

Ordre

Relation d'ordre totale

R relation d'ordre et $\forall x, y \in E \ x R y \text{ ou } y R x$

Ensemble ordonné

(E, R) ensemble ordonné : R relation d'ordre

totalement ordonné : R relation d'ordre totale

partiellement ordonné : R relation d'ordre non totale

- \blacktriangleright (\mathbb{N}, \leq) ensemble totalement ordonné
- ▶ $(\mathcal{P}(E), \subseteq)$ ensemble partiellement ordonné (si $|E| \ge 2$)
- $lackbox (\mathbb{Z},\ |\)$ partiellement ordonné car ni 2|3 ni 3|2

Ordre

Soient (E, \preceq) ensemble ordonné et $A \subseteq E$

t maximal de A

$$\forall x \in A \quad x \neq t \Rightarrow t \not \leq x$$

$$\iff \forall x \in A \quad t \leq x \Rightarrow x = t$$

t minimal de A

$$\forall x \in A \quad x \neq t \Rightarrow x \nleq t$$

$$\iff \forall x \in A \quad x \leq t \Rightarrow x = t$$

$$E := \{2, 3, 4, 5, 8, 12, 24, 25\}$$
 et $m \leq n :\Leftrightarrow m \mid n$.

- ▶ 2,3,5 sont des éléments minimaux de E
- ▶ 24 et 25 sont des éléments maximaux de E
- ▶ 2 est élément minimal de {2,4,12}, et 12 élément maximal

Ordre

Soit (E, \preceq) ensemble ordonné et $A \subseteq E$

t élément maximum de A

$$\forall x \in A \quad x \leq t$$

t élément minimum de A

$$\forall x \in A \quad t \leq x$$

- $lackbox{}(\mathbb{N},\leq)$ admet 0 pour minimum mais aucun maximum
- ▶ $(\mathcal{P}(E), \subseteq)$ admet \emptyset pour minimum et E pour maximum
- lackbox $(\mathbb{Z},\ |\)$ admet 1 pour minimum et 0 pour maximum

Ordre

Soit (E, \preceq) ensemble ordonné

Représentation graphique (Diagramme de Hasse)

- un point du plan pour chaque élément de E
- ▶ si $x \prec y$ alors x en dessous de y $x \prec y : \Leftrightarrow x \leq y$ et $x \neq y$
- ightharpoonup x et y reliés **ssi** $x \prec y$ et aucun $z \in E$ tel que $x \prec z \prec y$

Exemple

$$a \leq a, c, d$$

$$b \leq b, c, d, e, f, g, h$$

$$c \leq c$$

$$d \leq d$$

$$e \leq d, e, f, g$$

$$f \leq d, f, g$$

$$g \leq d, g$$

$$h \leq d, h$$

Ordre

Soit (E, \preceq) ensemble ordonné

Construction diagramme

- 1. le niveau initial est i=1
- 2. extraire les minimaux et les placer au niveau courant
- 3. réitérer au niveau suivant i + 1 autant que nécessaire
- 4. relier $x \ge y$ si x en dessous de y et aucun chemin de $x \ge y$

Exemple (à faire)

$$a \prec c$$
 $c \prec d$
 $a \prec d$ $e \prec f$
 $b \prec c$ $e \prec g$
 $b \prec d$

Ordre

Algorithme

```
i \leftarrow 1
 2 E<sub>1</sub> ← E
 з R_1 \leftarrow \prec
 4 tant que E_i \neq \emptyset faire
 5 \quad | \quad M_i \leftarrow \{x \in E_i \mid x \text{ minimal de } (E_i, R_i)\}

\begin{array}{c|cccc}
6 & E_{i+1} \leftarrow E_i \setminus M_i \\
7 & R_{i+1} \leftarrow R_i \cap (E_{i+1} \times E_{i+1})
\end{array}

 8 pour j de 1 à i-1 faire
             placer les points M_i au niveau j
             pour k de i - 1 à 1 faire
10
                     pour chaque x \in M_k faire
11
                       pour chaque y \in M_i faire
12
                      \begin{array}{|c|c|c|c|c|}\hline \mathbf{si} \times \forall y \ et \ pas \ de \ chemin \ de \times \grave{a} \ y \ \mathbf{alors} \\ \hline & \text{relier} \ x \ et \ y \end{array}
13
14
```

Ordre

Soit (E, \preceq) ensemble ordonné

$$\forall X \subseteq E \quad X \neq \emptyset \Rightarrow \exists \boldsymbol{m} \in \boldsymbol{X} \quad m \text{ minimal de } X$$

 \prec bon ordre

$$\forall X \subseteq E \quad X \neq \emptyset \Rightarrow \exists \boldsymbol{m} \in \boldsymbol{X} \quad m \text{ minimum de } X$$

Propriété

$$\preceq$$
 bon ordre \Leftrightarrow \preceq bien fondé et total

- ► (N, |) est bien fondé, mais pas un bon ordre (car 3 / 5 et 5 / 3)
- ▶ (\mathbb{N}, \leq) est bien ordonné
- $lackbox{ } (\mathbb{Q}^+,\leq)$ n'est pas bien fondé : inf de $\{q\in\mathbb{Q}^+\mid 2\leq q^2\}$ est $\sqrt{2}
 ot\in\mathbb{Q}^+$