Rings and Modules

Nachiketa Kulkarni

Contents

1	Intr	roduction to Rings
		Definition of a Ring
		1.1.1 Examples
	1.2	Properties of Rings
		Homomorphisms and Isomorphisms
		1.3.1 Properties of Ring Homomorphisms
		1.3.2 Ideals

Chapter 1

Introduction to Rings

1.1 Definition of a Ring

A ring R is a set with two binary operations, + and \times , satisfying the following conditions:

- (R, +) is an abelian group.
- \times is associative.
- × distributes over +.

A Ring is said to be commutative if $a \times b = b \times a$ for all $a, b \in R$.

A Ring is said to have a multiplicative identity if there exists an element $1 \in R$ such that $1 \times a = a \times 1 = a$ for all $a \in R$.

Subrings: A subset S of a ring R is called a subring if:

- ullet S is closed under addition and multiplication.
- S contains the additive identity 0 of R.
- For every $a \in S$, $-a \in S$.

1.1.1 Examples

- Trivial Ring: Take any abelian group (G, +) and define multiplication as $a \times b = 0$ for all $a, b \in G$, where 0 is the identity of the group.
- Integers: The set of integers $\mathbb Z$ with usual addition and multiplication forms a ring. Also, the quotient group $\mathbb Z/n\mathbb Z$ is a ring for any integer n.
- Hamiltonian Quaternions: The set of quaternions $\mathbb{H}=1,i,j,k$, where $i^2=j^2=k^2=-1$.
- **Polynomial Rings:** Fix a commutative ring R. The set of polynomials with coefficients in R, denoted R[x], forms a ring with addition and multiplication defined as usual.

1.2 Properties of Rings

Proposition: If R is a ring, then the following hold:

- 1. 0a = a0 = 0 for all $a \in R$.
- **2.** (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- 3. If the ring has a multiplicative identity 1, then it is unique.
- **4.** (-1)a = -a for all $a \in R$.

More Definitions: Consider a ring R:

- A non-zero element $a \in R$ is called a **zero divisor** if there exists a non-zero $b \in R$ such that either ab = 0 or ba = 0.
- Assume R has a multiplicative identity 1. An element $a \in R$ is called a **unit** if there exists an element $b \in R$ such that ab = ba = 1. The set of all units in R is denoted by R^{\times} .
- A Ring R with identity is called an integral domain if it has no zero divisors and $1 \neq 0$.

Proposition: If R is an integral domain, then the following hold:

- 1. R^{\times} is a group under multiplication.
- 2. R is a field if multiplication is commutative and every non-zero element is a unit, i.e., $R^{\times} = R \{0\}$.
- 3. A zero divisor cannot be a unit and vice versa.

Proof: If a is a zero divisor, then there exists a non-zero b such that ab=0. Now, assume a is a unit, then there exists c such that ac=1. But:

$$b = (ca)b = c(ab) = c0 = 0$$

1.3 Homomorphisms and Isomorphisms

Let R and S be rings. A ring homomorphism is a function $\phi:R\to S$ such that:

- 1. The map ϕ preserves addition: $\phi(a+b) = \phi(a) + \phi(b)$ for all $a,b \in R$.
- 2. The map ϕ preserves multiplication: $\phi(ab) = \phi(a) + \phi(b)$ for all $a, b \in R$.

The kernel of a ring homomorphism ϕ , $\ker(\phi)$, is the set of elements in R that map to 0 in S. The Image of a ring homomorphism ϕ , $\operatorname{Im}(\phi)$, is the set of elements in S that are images of elements in R. A bijective ring homomorphism is called a **ring isomorphism**, denoted by $R\cong S$.

1.3.1 Properties of Ring Homomorphisms

Let R and S be rings and $\phi:R\to S$ be a ring homomorphism. Image of ϕ is denoted by $\text{Im}(\phi)$ and kernel of ϕ is denoted by ker.

Proposition: $Im(\phi)$ is a subring of S.

Proof: $Im(\phi)$ is a subring of S because:

- Closure under addition: If $x,y\in \text{Im}(\phi)$, then there exist $a,b\in R$ such that $\phi(a)=x$ and $\phi(b)=y$. Now, $\phi(a+b)=\phi(a)+\phi(b)=x+y$, hence $x+y\in \text{Im}(\phi)$.
- Closure under multiplication: If $x,y\in \text{Im}(\phi)$, then there exist $a,b\in R$ such that $\phi(a)=x$ and $\phi(b)=y$. Now, $\phi(ab)=\phi(a)\phi(b)=xy$, hence $xy\in \text{Im}(\phi)$.
- · Associativity of Addition and Multiplication Inherited from the ring.
- Additive Identity $\phi(0) = 0$

Hence, $Im(\phi)$ is a subring of S.

Proposition: $\ker(\phi)$ is a subring of R. Also, if $\alpha \in R$, then $\{r\alpha, \alpha r\} \in \ker(\phi)$, $\forall r \in R$.

Proof: Part 1 of the proof is same as above. For the second part, let $\phi(\alpha) = 0$ and $\phi(r) = a$.

$$0 = 0a = \phi(\alpha)\phi(r) = \phi(\alpha r) \qquad \qquad 0 = a0 = \phi(r)\phi(\alpha) = \phi(r\alpha)$$

1.3.2 Ideals

Definition: Let R be a ring, I be a subgroup of R. Let $r \in R$:

- 1. $rI = \{ra \mid a \in R\}$ and $Ir = \{ar \mid a \in R\}$
- 2. A subgroup I is called a left Ideal of R if:
 - I is a subring of R.
 - I is closed under left multiplication by elements from R, i.e., $rI\subseteq I$

The right Ideal is similarly defined.

3. If I is a botha left Ideal and right Ideal, then it is called an Ideal (two sided) of R.