

Université Pierre et Marie Curie Parcours MSA Processus Stochastiques

Année 2013 - 2014

TD N°6 : Développement de Van Kampen

Modèle à trois états d'une enzyme

On considère d'abord une enzyme unique qui peut être trouvée dans trois différents états A, B or C. Les transitions entre ces différents états sont données par :

$$A \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} B$$

$$B \stackrel{k_2}{\rightleftharpoons} C$$

$$C \stackrel{k_3}{\rightleftharpoons} A$$

1) Ecrire les équations maîtresses pour les probabilités de trouver l'enzyme dans les états A, B, ou C au temps t, que l'on appellera respectivement $p_A(t)$, $p_B(t)$ and $p_C(t)$.

On considère maintenant un système fermé contenant un nombre total fixe N d'enzymes du type ci-dessus.

- 2) Ecrire l'équation maîtresse satisfaite par la probabilité $p_{n_A,n_B,n_C}(t)$ d'avoir n_A enzymes dans l'état A, n_B enzymes dans l'état B et n_C enzymes dans l'état C au temps t (sans tenir compte de la contrainte $N = n_A + n_B + n_C$). On prendra bien soin de lister l'ensemble des situations conduisant, par les diverses transitions possibles, à la configuration (n_A, n_B, n_C) .
- **3)** Justifier, sans effectuer de calcul, que la solution de cette équation maîtresse doit être de la forme suivante :

$$p_{n_A,n_B,n_C}(t) = \frac{N!}{n_A! \, n_B! \, n_C!} p_A(t)^{n_A} p_B(t)^{n_B} p_C(t)^{n_C}. \tag{1}$$

- 4) Déduire de l'expression (1), la valeur moyenne et la variance des variables aléatoires n_i en fonction de $p_i(t)$ où $i = \{A, B, C\}$. Calculer aussi la covariance entre n_i et n_j .
- 5) On souhaite maintenant effectuer un calcul des fluctuations autour des concentrations moyennes des différentes espèces d'enzymes dans un développement dans la taille du système. On écrit donc :

$$n_i = \Omega C_i(t) + \sqrt{\Omega} \, \xi_i$$

où Ω est le volume du système, $C_i(t)$ est la concentration moyenne de l'espèce i, et ξ_i est une variable aléatoire qui décrit les fluctuations de la variable n_i , $i = \{A, B, C\}$.

On écrit alors la probabilité $p_{n_A,n_B,n_C}(t)$ sous la forme :

$$p_{n_A,n_B,n_C}(t) = p \left(\Omega C_A(t) + \sqrt{\Omega} \xi_A, \Omega C_B(t) + \sqrt{\Omega} \xi_B, \Omega C_C(t) + \sqrt{\Omega} \xi_C, t \right)$$
$$= \Pi(\xi_A, \xi_B, \xi_C, t)$$

- a) Calculer $\partial \Pi(\xi_A, \xi_B, \xi_C, t)/\partial t$ en fonction de $\partial p_{n_A, n_B, n_C}(t)/\partial t$, des $\partial \Pi(\xi_A, \xi_B, \xi_C, t)/\partial \xi_i$ et des $\partial C_i(t)/\partial t$ avec $i = \{A, B, C\}$.
- b) Déterminer les expressions, dans la limite de grand volume Ω et à l'ordre $1/\Omega$, des probabilités (par exemple : $p_{n_A+1,n_B-1,n_C}(t)$) intervenant dans l'équation maîtresse dérivée au 2) en fonction des $\Pi(\xi_A,\xi_B,\xi_C,t)$ et de leurs dérivées premières et secondes par rapport aux ξ_i .
- c) Déduire des questions précédentes le développement de l'équation maîtresse à l'ordre $\sqrt{\Omega}$ et montrer que l'on retrouve un résultat attendu.
- 6) Effectuer alors le développement à l'ordre suivant, Ω^0 , et en déduire une équation de Fokker-Planck dans les variables ξ_A , ξ_B et ξ_C , qui approxime l'équation maîtresse initiale. Quel type de solution s'attend-on à avoir pour cette équation?