Titre du document

Sous-titre du document

 $Texte\ central$

REALISÉ PAR ETUDIANT 1 ET ETUDIANT 2

Contents

Conten	rts .
	I. Raisonnement par programmation dynamique
	1 - Première étape
	II. La PLNE à la rescousse
	1 - Modélisation
	2 - Implantation et tests

I. Raisonnement par programmation dynamique

1 - Première étape

Question 1:

Si l'on a calculé tous les T(j,l), pour savoir si il est possible de colorier la ligne l_i entière avec la séquence entière il suffit de de regarder T(m-1,k), si ce dernier vaut vrai alors il est possible de colorier la ligne entière avec la séquence entière. Si il vaut faux alors ce n'est pas possible.

Question 2:

• Cas $l = 0, j \in \{0, ..., m-1\}$: Vrai

• Cas $l \ge 1$, $j < s_l - 1$: Faux

• Cas $l \ge 1$, $j = s_l - 1$:

– Si l=1 alors Vrai

– Si $l \neq 1$ alors Faux

Question 3:

La relation de récurrence permettant de calculer T(j,l) est la suivante:

$$T(j,l) = T(j - (s_l + 1), l - 1)$$

En effet si l'on se trouve à la case j et que l'on veut savoir si il est possible de colorier la sous séquence $(s_1, ..., s_l)$ il faut pouvoir colorier s_l case(s) et laisser une case de séparation entre les coloration de $s_{l-1}ets_l$, il faut donc regarder si l'on peut colorier la ligne de la case 0 à $j-s_l-1$ avec la sous séquence $(s_1, ..., s_{l-1})$

area in some sequence $(s_1,, s_{t-1})$					
instances	nb_cLines	time	$\mathrm{nb}_{c}Col$	nbCases	
0	6	0.0006148815155029297	7	20	
1	9	0.0023577213287353516	9	25	
2	74	0.24366474151611328	54	400	
3	39	0.16124892234802246	90	481	
4	112	0.321256160736084	112	625	
5	52	0.34999847412109375	61	675	
6	102	0.9388997554779053	100	900	
7	102	0.6064395904541016	76	1054	
8	115	0.7676417827606201	98	1400	
9	239	9.089713335037231	334	2500	
10	364	13.922056198120117	349	9801	

II. La PLNE à la rescousse

1 - Modélisation

Question 10:

- x_{ij} vaut 1 si la case (i, j) est coloriée en noir et 0 si coloriée en noir.

- y_{ij}^t vaut 1 si le t_{ieme} bloc de la ligne l_i commence à la case (i, j) et 0 sinon.

- z_{ij}^t vaut 1 si le t_{ieme} bloc de la colonne c_j commence à la case (i, j) et 0 sinon.

Par conséquent on a : $y_{ij}^t = 1 \Rightarrow \sum_{k=j}^{j+s_t-1} x_{ik} = s_t$

Et donc $\sum_{k=j}^{j+s_t-1} x_{ik} = y_{ij}^t \times s_t$

Par conséquent la condition est: $\sum_{k=j}^{j+s_t-1} x_{ik} \geq y_{ij}^t \times s_t$

Avec le même raisonnement on a pour les colonnes: $\sum\limits_{k=i}^{i+s_t-1} x_{kj} \geq z_{ij}^t \times s_t$

Question 11:

On a: $y_{ij}^t = 1 \Rightarrow \sum_{k=i}^{j+s_t} y_{ik}^{t+1} = 0$

et $y_{ij}^t = 0 \Rightarrow \sum_{k=j}^{j+s_t} y_{ik}^{t+1} \in \{0, 1\}$

Et donc la condition est: $y_{ij}^t + \sum_{k=i}^{j+s_t} y_{ik}^{t+1} \leq 1$

Avec le même raisonnement on a pour les colonnes: $z_{ij}^t + \sum\limits_{k=i}^{i+s_t} z_{kj}^{t+1} \leq 1$

Question 12:

Min z = ?

$$\begin{split} \mathbf{z} &= ? \\ & \begin{cases} \sum_{k=j}^{j+s_t-1} x_{ik} \geq y_{ij}^t \times s_t \mid \forall i \in \{0,1,2,...,N-1\}, \forall t \in \{1,2,...,k_i\} \\ \sum_{k=i}^{i+s_t-1} x_{kj} \geq z_{ij}^t \times s_t \mid \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ y_{ij}^t + \sum_{k=j}^{j+s_t} y_{ik}^{t+1} \leq 1 \mid \forall i \in \{0,1,2,...,N-1\}, \forall t \in \{1,2,...,k_i\} \\ z_{ij}^t + \sum_{k=i}^{i+s_t} z_{kj}^{t+1} \leq 1 \mid \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ \sum_{j=0}^{M-1} y_{ij}^t = 1 \mid \forall i \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ \sum_{i=0}^{N-1} z_{ij}^t = 1 \mid \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \\ x_{ij} \in \{0,1\} \mid \forall i \in \{0,1,2,...,N-1\}, \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_i\} \\ z_{ij}^t \in \{0,1\} \mid \forall i \in \{0,1,2,...,N-1\}, \forall j \in \{0,1,2,...,M-1\}, \forall t \in \{1,2,...,k_j\} \end{cases} \end{split}$$

2 - Implantation et tests

Question 13:

(N'oublions pas que j commence à 0 et termine à M-1)

- Pour une ligne l_i le l^{ieme} bloc ne peut commencer avant la case $(i, \sum_{n=1}^{l-1} (s_n+1))$, ni commencer après la case $(i, M - s_l - \sum_{n=l+1}^{k_i} (s_n + 1))$.