without the requirements of thermal denaturation or displacement by polymerization. While in one embodiment of this assay probe turnover may be facilitated by an exonucleolytic digestion by the cleavage agent, it is central to the present invention that the turnover does not <u>require</u> this exonucleolytic activity.

5

Choosing The Amount Of Overlap (Length Of The X Region)

One way of accomplishing such turnover can be envisioned by considering the diagram in Figure 29. It can be seen that the Tm of each oligonucleotide will be a function of the full length of that oligonucleotide: *i.e.*, the Tm of the invader = Tm(Y+X), and the Tm of the probe = $Tm_{(X+Y)}$ for the probe. When the probe is cleaved the X region is released, leaving the Z section. If the Tm of Z is less than the reaction temperature, and the reaction temperature is less than the $Tm_{(X+Z)}$, then cleavage of the probe will lead to the departure of Z, thus allowing a new (X+Z) to hybridize. It can be seen from this example that the X region must be sufficiently long that the release of X will drop the Tm of the remaining probe section below the reaction temperature: a G-C rich X section may be much shorter than an A-T rich X section and still accomplish this stability shift.

Designing Oligonucleotides Which Interact With The Y And Z Regions

If the binding of the invader oligonucleotide to the target is more stable than the binding of the probe (e.g., if it is long, or is rich in G-C basepairs in the Y region), then the copy of X associated with the invader may be favored in the competition for binding to the X region of the target, and the probe may consequently hybridize inefficiently, and the assay may give low signal. Alternatively, if the probe binding is particularly strong in the Z region, the invader will still cause internal cleavage, because this is mediated by the enzyme, but portion of the probe oligonucleotide bound to the Z region may not dissociate at the reaction temperature, turnover may be poor, and the assay may again give low signal.

It is clearly beneficial for the portions of the oligonucleotide which interact with the Y and Z regions so be similar in stability, i.e., they must have similar melting

25

20

20

25

5

temperatures. This is not to say that these regions must be the same length. As noted above, in addition to length, the melting temperature will also be affected by the base content and the specific sequence of those bases. The specific stability designed into the invader and probe sequences will depend on the temperature at which one desires to perform the reaction.

This discussion is intended to illustrate that (within the basic guidelines for oligonucleotide specificity discussed above) it is the <u>balance</u> achieved between the stabilities of the probe and invader sequences and their X and Y component sequences, rather than the absolute <u>values</u> of these stabilities, that is the chief consideration in the selection of the probe and invader sequences.

Design Of The Reaction Conditions

Target nucleic acids that may be analyzed using the methods of the present invention which employ a 5' nuclease as the cleavage means include many types of both RNA and DNA. Such nucleic acids may be obtained using standard molecular biological techniques. For example, nucleic acids (RNA or DNA) may be isolated from a tissue sample (e.g, a biopsy specimen), tissue culture cells, samples containing bacteria and/or viruses (including cultures of bacteria and/or viruses), etc. The target nucleic acid may also be transcribed in vitro from a DNA template or may be chemically synthesized or generated in a PCR. Furthermore, nucleic acids may be isolated from an organism, either as genomic material or as a plasmid or similar extrachromosomal DNA, or they may be a fragment of such material generated by treatment with a restriction endonuclease or other cleavage agents or it may be synthetic.

Assembly of the target, probe, and invader nucleic acids into the cleavage reaction of the present invention uses principles commonly used in the design of oligonucleotide base enzymatic assays, such as dideoxynucleotide sequencing and polymerase chain reaction (PCR). As is done in these assays, the oligonucleotides are provided in sufficient excess that the rate of hybridization to the target nucleic acid is very rapid. These assays are commonly performed with 50 fmoles to 2 pmoles of

20

25

5

each oligonucleotide per µl of reaction mixture. In the Examples described herein, amounts of oligonucleotides ranging from 250 fmoles to 5 pmoles per µl of reaction volume were used. These values were chosen for the purpose of ease in demonstration and are not intended to limit the performance of the present invention to these concentrations. Other (e.g., lower) oligonucleotide concentrations commonly used in other molecular biological reactions are also contemplated.

It is desirable that an invader oligonucleotide be immediately available to direct the cleavage of each probe oligonucleotide that hybridizes to a target nucleic acid. For this reason, in the Examples described herein, the invader oligonucleotide is provided in excess over the probe oligonucleotide; often this excess is 10-fold. While this is an effective ratio, it is not intended that the practice of the present invention be limited to any particular ratio of invader-to-probe (a ratio of 2- to 100-fold is contemplated).

Buffer conditions must be chosen that will be compatible with both the oligonucleotide/target hybridization and with the activity of the cleavage agent. The optimal buffer conditions for nucleic acid modification enzymes, and particularly DNA modification enzymes, generally included enough mono- and di-valent salts to allow association of nucleic acid strands by base-pairing. If the method of the present invention is performed using an enzymatic cleavage agent other than those specifically described here, the reactions may generally be performed in any such buffer reported to be optimal for the nuclease function of the cleavage agent. In general, to test the utility of any cleavage agent in this method, test reactions are performed wherein the cleavage agent of interest is tested in the MOPS/MnCl₂/KCl buffer or Mg-containing buffers described herein and in whatever buffer has been reported to be suitable for use with that agent, in a manufacturer's data sheet, a journal article, or in personal communication.

The products of the invader-directed cleavage reaction are fragments generated by structure-specific cleavage of the input oligonucleotides. The resulting cleaved and/or uncleaved oligonucleotides may be analyzed and resolved by a number of methods including electrophoresis (on a variety of supports including acrylamide or agarose gels, paper, etc.), chromatography, fluorescence polarization, mass

30