

Inbetriebnahme einer freien Software zur Satellitenbahnvorhersage und Ansteuerung einer Hochleistungsantenne

STUDIENARBEIT

über das dritte Studienjahr

im Studiengang Elektrotechnik, Nachrichten- und Kommunikationstechnik

> an der DHBW Ravensburg Campus Friedrichshafen

> > von

Sarah Brückner, Maximilian Stiefel und Hannes Bohnengel

15. Juli 2016

Bearbeitungszeitraum: Oktober - Dezember 2015

April - Juni 2016

Betreuer: Dipl.-Ing. (DH) Hardy Lau

Kurfassung

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Abstract

Translation of "Kurzfassung" comes here...

Erklärung

Hannes Bohnengel

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2015.

Wir versichern hiermit, dass wir unsere Studienarbeit mit dem Thema:

Inbetriebnahme einer freien Software zur Satellitenbahnvorhersage und Ansteuerung einer Hochleistungsantenne

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben. Wir versichern zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Friedrichshafen, den 12. Mai 2016	
,	
Sarah Brückner	_
	_
Maximilian Stiefel	

Inhaltsverzeichnis

Formelgrößen und Einheiten
Abkürzungen
1 Einleitung
2 Hintergründe
2.1 Bahnmechanik
2.1.1 Die Keplerschen Gesetze
2.1.2 Die Bahnelemente
2.1.3 Vorhersagemodelle
3 GPredict
3.1 Übersicht
3.2 Grafische Oberfläche
3.3 Inbetriebnahme unter Windows
3.4 Inbetriebnahme unter Linux
4 Zusammenfassung und Ausblick
Abbildungsverzeichnis
Tabellenverzeichnis
Literatur- und Quellenverzeichnis
A Detemblett VV7

Formelgrößen und Einheiten

Formelzeichen	Einheit	Abkürzung	Physikalische Größe
R	Ohm	Ω	Elektrischer Widerstand
U	Volt	V	Elektrische Spannung
P	Watt	W	Elektrische Leistung
f	Hertz	Hz	Frequenz
D	Bit	-	Daten
1	Meter	m	Länge
_	Dezibel	dB	Logarithmisches Maß (Pseudoeinheit)

Abkürzungen

GPL General Public License

1 Einleitung

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Aliquam sed finibus sapien. Cras sapien purus, tempus vel lorem nec, egestas auctor urna. Morbi iaculis felis eget mi sollicitudin consectetur sit amet sit amet turpis. Donec malesuada risus sit amet erat euismod dignissim. Etiam faucibus eleifend est in molestie. Maecenas nec elit at purus vulputate tincidunt. Vivamus pulvinar viverra porttitor. Fusce aliquet tristique enim, eget sollicitudin ex tincidunt vel. Praesent turpis erat, consequat at finibus eget, ultrices vel neque. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque turpis nulla, suscipit at mauris quis, rhoncus pharetra ligula. Suspendisse leo lorem, imperdiet a vehicula at, porta eu mauris.

2 Hintergründe

2.1 Bahnmechanik

2.1.1 Die Keplerschen Gesetze

Seit der Antike galt die Erklärung der Bewegung der Planeten und die Vorhersage dieser als eine große Herausforderung. Theorien von Ptolemaios mit seinem geozentrischen Weltbild und Kopernikus mit seinem heliozentrischen Weltbild führten bereits im 16. Jahrhundert zu brauchbaren Modellen zur Vorhersage der Planetenbewegungen. Diese Modelle unterlagen jedoch Ungenauigkeiten, "die in mit Instrumenten des 16. Jahrhunderts bereits messbaren Breichen lagen" (siehe S. 20 in **Raumflugm**). Der mathematische

Abbildung 2.1: Johannes Kepler (1571-1630), Quelle: Wiki:Kepler

Aufwand hinter diesen Modellen war enorm. Selbst das kopernikanische Weltbild, dass einige Vereinfachnugen mit sich brachte, bediente sich der Überlagerung einer Vielzahl von Kreisbwegungen, um das Verhalten der Planeten zu erklären. Resignierend zog sich zu der Zeit die katholische Kirsche und mit ihr viele Gelehrte auf den Standpunkt zurück, dass "die Frage, welche der Theorien die korrekte sei, [...] schlicht unbeantwortbar" wäre (siehe S. 21 in **Raumflugm**).

Ein deutscher Mathematiker und Astronom, Johannes Kepler, war hier anderer Auffassung. Er war überzeugter Kopernikaniker und stand im Dienste des Kaisers Rudolph II.

Schließlich gelang es ihm aus seinen Beobachtungen drei einfache Gesetze herzuleiten. Seine Gesetze führten zu Vorhersagen der Planetenbewegungen nie da gewesener Präzision, welche er seinem Dienstherr widmend in den Rudolphinischen Tabellen niederschrieb. Steiner und Schlagerl schreiben in Ihrem Buch "Raumflugmechanik", dass ohne die Vorarbeit Keplers keine Weltraumtechnik je existiert hätte (vgl. S. 21 in Raumflugm). Die drei Gesetze lauten:

- 1. Keplersches Gesetz: Die Planeten umlaufen die Sonne auf elliptischen Bahnen. In einem der Brennpunkte dieser Ellipsen befindet sich die Sonne.
- 2. Keplersches Gesetz: Die Linie von der Sonne zu einem Planeten überstreicht in gleichen Zeiten gleiche Flächen.
- 3. Keplersches Gesetz: Die Quadrate der Umlaufzeiten zweier Planeten verhalten sich zueinander so wie die Kuben der großen Halbachsen ihrer Bahnellipsen.

Kepler starb 1630 und damit 12 Jahre vor Isaac Newtons (1642-1726) Geburt. Mit seinen Werken hinterließ Kepler Newton alles, um das Gravitationsgesetz später herleiten zu können.

Das erste Keplersche Gesetz

Durch die Annahme Planeten bewegen sich auf Ellipsen anstatt auf Kreisen, brach Kepler ein tausende Jahre altes Paradigma. Das mit der Ellipse war allerdings nicht seine Idee. Bereits im 11. Jahrhundert nahm ein arabischer Gelehrter namens Al-Zarkali (1029-1087) eine elliptische Bahn an, um die unregelmäßige Bewegung des Merkurs erklären zu können. Kepler kannte diese Idee durch die Lehren des Mathematikers und Astronomen Peuerbach (1423-1461), welcher die Ellipsen-Theorie im Abendland verbreitete.

Zunächst soll die Ellipse an sich betrachtet werden. Die einfachste Möglichkeit eine Ellipse zu konstruieren besteht darin zwei Nägel in einer Holzplatte mit einem Stück Schnur mit einer Schlaufe zu verbinden. Das Stück Schnur muss länger sein als der Abstand zwischen beiden Nägeln. Nimmt man nun einen Bleistift und drückt ihn in der Schlaufe gegen die Schnur, kann man die beiden Nägel mit Kontakt der Bleistiftspitze zum Holzbrett umrunden. Hält man die Schnur konstant auf Spannung, so ergibt sich eine Ellipse. Darüber hinaus muss der Punkt auf welchem die Schlaufe am Bleistift anliegt höher sein, als der

Abschluss der Nagelköpfe. Im übertragenden Sinne beschreibt die folgende Mengendefinition dieses Experiment mit Bezug zu Abbildung 2.2.

$$E = \{P | \overline{F_1P} + \overline{F_2P} = 2a = konstant\}$$
 (2.1)

 F_1 und F_2 heißen Brennpunkte der Ellipse. M ist der Mittelpunkt der Ellipse. S_1 und S_2 sind die Haupt-, S_3 und S_4 die Nebenscheitel. Die Strecke $\overline{MS_1}$ ist gleich der Strecke $\overline{MS_2}$.

Abbildung 2.2: Ellipse, Quelle: Wikipedia zusätzlich eigener Überarbeitung

Man spricht bei der Länge dieser Strecke von der **großen Halbachse a**. Beide Strecken ergeben zusammen die Hauptachse $\overline{S_1S_2}$. Analog gibt es hierzu die Nebenachse, welche durch die Strecke $\overline{S_3S_4}$ bestimmt wird. Die **kleinen Halbachsen** sind $\overline{MS_3}$ und $\overline{MS_4}$. Diese haben die Längen **b**. Eine Ellipse kann auch als Stauchung eines Kreises mit dem Faktor $\frac{b}{a}$ angesehen werden.

Die numerische Exzentrizität e' ist ein Maß für die Schlankheit der Ellipse. Sie ist definiert als

$$e' = -\frac{e}{a} \tag{2.2}$$

Je größer die lineare Exzentrizität e im Verhältnis zu der großen Halbachse a wird, desto schlanker wird die Ellipse, da die Brennpunkte weiter vom Mittelpunkt entfernt sind. Das Wort numerisch gibt bei der Exzentrizität e' an, dass diese sich auf eine andere Größe (die große Halbachse) bezieht. Für eine Ellipse gilt 0 < e' < 1. Für den Fall e' = e = 0 hat die Ellipse die selbe Erscheinung wie ein Kreis, da die Brennpunkte F_1 und F_2 im Mittelpunkt

M liegen. Für e' = 1 entartet die Ellipse zu einer Geraden, da die kleine Halbachse b zu 0 wird. Um das zu zeigen wird die obige Gleichung noch mal herangezogen.

$$e'^2 = \frac{e^2}{a^2} = \frac{a^2 - b^2}{a^2} = 1 - \left(\frac{b}{a}\right)^2$$
 (2.3)

Des Weiteren besitzt jede Ellipse einen Halbparameter p. Geht man davon aus, dass es einen Abstand p' gibt, welcher p bis zu einer die Ellipse umschließende Kreislinie verlängert, so gelten folgende Gleichungen

$$\frac{p}{p'} = \frac{b}{a} \tag{2.4}$$

Mit dem Satz eines alten Freudes folgt

$$p' = \sqrt{a^2 - e^2} \tag{2.5}$$

Jetzt ist klar, dass gilt

$$p = \frac{b}{a} \cdot p' = \frac{b}{a} \sqrt{a^2 - e^2} = \frac{b^2}{a}$$
 (2.6)

Was nun noch fehlt ist "eine Gleichung, also eine analytische Beschreibung der Punkte einer Ellipse" (siehe S.22 in Raumflugm). Eine solche Gleichung ergibt sich mit dem Schnitt einer Ebene mit einem Kegel. Die Neigung der Schnittebene zur Kegelgrundfläche sei α . Der Öffnungswinkel des Kegels sei ϵ . Jetzt passiert etwas, dass das räumliche Denkvermögen herausfordert. In den Kegel wird eine (Dandelinsche) Kugel eingeschrieben. Diese Kugel berühre die Ebene im Punkt F und tangiere den Kegelmantel entlang eines Breitenkreises. Es ist einzusehen, dass der Punkt F auf der Hauptachse der Ellipse liegt. Der Schnittpunkt der entstehenden Ellipse und der Normale zur Hauptachse im Punkt F ist der Punkt F0. P stellt einen beliebigen Punkt auf der Ellipse dar. Die Verbindungslinie zwischen F1 und F2 hat zur Hauptachse die Neigung F3. Der Abstand zwischen F4 und F4 ist F5 und F6 sind die Abstände der Punkte F7 und F8 zum Berührkreis der Kugel gemessen entlang des Kegelmantels.

Man sieht nun, dass die Größen r, s und θ von P abhängig sind. Es interessiere nun die mathematische Funktion $r(\theta)$, welche die Ellipsenbahn beschreibe (vgl. S.23 in **Raumflugm**). Betrachtet wird nun zunächst die zweidimensionale Zeichnung rechts oben in Abb. 2.4. Mit ein bisschen Nachdenken sieht man, dass

$$(s_0 - s) \cdot \cos(\epsilon) = r \cdot \cos(\theta) \cdot \cos(\alpha) \tag{2.7}$$

Abbildung 2.3: Kegelschnitt, Quelle: S.24 in Raumflugm

Doch woher kommt der Ausdruck $r \cdot cos(\theta)$? Hierzu werfe man einen Blick auf die zweidimensionale Abbildung der Schnittfläche/Ellipse links unten im Bild. Dieses Bild setze man nun in Relation zum Bild darüber. Der Abstand $r \cdot cos(\theta)$ lässt sich nun auf die Hauptachse der Ellipse projizieren. r, die Projektionslinie für P die Hauptachse und F bilden nun eine rechtwinkliges Dreieck aus. Der Rest ist Trigonometrie.

In der Darstellung rechts unten in Abb. 2.4 ist folgende Beziehung auffindbar.

$$R^2 + s^2 = R^2 + r^2 (2.8)$$

Das bedeutet, dass s durch r in Gleichung 2.7 ersetzt werden kann.

$$(s_0 - r) \cdot \cos(\epsilon) = r \cdot \cos(\theta) \cdot \cos(\alpha) \tag{2.9}$$

Ausmultiplizieren ergibt

$$s_0 cos(\epsilon) - rcos(\epsilon) = rcos(\theta) cos(\alpha)$$
 (2.10)

Sortieren führt zu

$$s_0 cos(\epsilon) = rcos(\theta) cos(\alpha) + rcos(\epsilon)$$
 (2.11)

Ausklammern und auflösen bringt

$$r = \frac{s_0 cos(\epsilon)}{cos(\theta)cos(\alpha) + cos(\epsilon)}$$
(2.12)

Die entstandene Gleichung 2.12 kann nun noch durch die Zusammenhänge $p = s_0$ (Halbparameter) und $e' = \frac{\cos(\alpha)}{\cos(\epsilon)}$ vereinfacht werden (vgl. S. 24 in **Raumflugm**). Hierzu dividiert man Gleichung 2.12 durch $\cos(\epsilon)$.

$$r = \frac{s_0}{1 + \frac{\cos(\alpha)}{\cos(\epsilon)}\cos(\theta)} = \frac{p}{1 + e'\cos(\theta)}$$
 (2.13)

Fertig ist die mathematische Version des ersten Keplerschen Gesetzes.

Das zweite Keplersche Gesetz

Abbildung 2.4: Kegelschnitt, Quelle: S.26 in Raumflugm

Gleichung 2.13 liefert noch keine Aussage über die zeitliche Änderung von r und θ . Um eine Aussage über die zeitliche Änderung dieser Variablen treffen zu können, kann Keplers zweites Gesetz herangezogen werden: Die Fläche, welche die Verbindungslinie zwischen Sonne und einem Planet überstreicht ist zeitlich konstant. Die Fläche ΔA , die in einem Zeitintervall Δt durch strichen wird ist genau

$$\Delta A = \frac{1}{2} \left| \vec{r} \times \dot{\vec{r}} \right| \Delta t + F(\Delta t^2)$$
 (2.14)

Die beiden Vektoren r und $\dot{r}\Delta t$ spannen eine Fläche auf, welche ein Parallelogramm beschreibt. Das Kreuzprodukt ergibt einen Vektor dessen Länge dieser Fläche entspricht.

Die Hälfte davon ist die Fläche des Dreiecks, die gesucht wird. Der Ausdruck $\dot{r}\Delta t$ ist dabei sehr ungenau und beschreibt eigentlich nur die Änderung des Vektors r. Aus diesem Grund kommt noch der Fehlerterm F hinzu, der die Krümmung der Ellipse berücksichtigt. Bezieht man sich im nächsten Schritt auf infinitesimale Elemente, die wirklich gegen Null gehen, so erreicht man die gewünschte Genauigkeit. Der Fehlerterm wird überflüssig.

$$dA = \frac{1}{2} \left| \vec{r} \times \dot{\vec{r}} \right| dt \tag{2.15}$$

Man führt nun eine für jeden Planeten individuelle Konstante h ein, da sich das Verhältnis $\frac{dA}{dt}$ nicht verändern darf.

$$2dA = h \cdot dt \tag{2.16}$$

Um das mathematische Äquivalent zu dem sprachlich formulierten zweiten Gesetz zu erhalten, soll wie beim ersten Gesetz eine Abhängigkeit zu r und θ hergestellt werden. Zu diesem Zweck wird die Gleichung einer Koordinatentransformation in Zylinderkoordinaten unterworfen (vgl. S. 25 f. in **Raumflugm**). Es gilt also

$$x = r\cos(\theta), y = r\sin(\theta)$$
 und $z = z$.

Gemäß der Definition von Zylinderkoordinaten darf man jetzt den Vektor \vec{r} auch anders schreiben:

$$\vec{r} = r \, \vec{e_r} + z \, \vec{e_z} \tag{2.17}$$

wobei folgendes generell über Zylinderkoordinatensysteme bekannt ist:

$$\vec{e_r} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \end{pmatrix}, \vec{e_\theta} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \\ 0 \end{pmatrix} \text{ und } \vec{e_z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Die Vektoren stehen allesamt senkrecht aufeinander, was man sieht, wenn man das Skalarprodukt bildet. Das liegt daran, dass das Skalarprodukt über die Summe der Längen der Vektoren multipliziert mit dem Kosinus des Winkels den sie einschließen definiert wird, welcher bei $\frac{\pi}{2}$ bekanntlich Null ist. Da auch die Ableitung des Vektors \vec{r} (Geschwindigkeit) gesucht ist beginnt man zu differenzieren. Man wende hier zunächst die Summenregel, dann auf den ersten Ausdruck noch die Produkt- und die Kettenregel, da $\vec{e_r}$ von θ abhängt und diese wiederum von t. Es folgt

$$\dot{\vec{r}} = \dot{r}\,\vec{e_r} + r\,\dot{\vec{e_r}} + \dot{z}\,\vec{e_z} \tag{2.18}$$

Setzt man nun

$$\dot{\vec{e_r}} = \dot{\theta} \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \\ 0 \end{pmatrix} = \dot{\theta} \, \vec{e_\theta}$$

in Gleichung 2.18 ein, so ergibt sich

$$\dot{\vec{r}} = \dot{r}\,\vec{e_r} + r\,\dot{\theta}\,\vec{e_\theta} + \dot{z}\,\vec{e_z} \tag{2.19}$$

Man wählt nun die z-Achse geschickt, so dass diese senkrecht auf der Trägerebene der Ellipse steht (vgl. S.26 in **Raumflugm**). Durch diesen Schachzug gilt für die zu betrachtenden Gleichungen z=0. Jetzt fällt Gleichung 2.15 in sich zusammen

$$\frac{dA}{dt} = \frac{1}{2} \left| \vec{r} \times \dot{\vec{r}} \right| = \frac{1}{2} \left| r \, \vec{e_r} \times \left(\dot{r} \, \vec{e_r} + r \, \dot{\theta} \, \vec{e_\theta} \right) \right| \tag{2.20}$$

Durch die Bilinearität des Kreuzprodukts folgt

$$\frac{dA}{dt} = \frac{1}{2} \left| \dot{r} \, r \, \left(\vec{e_r} \times \vec{e_r} \right) + r \, r \, \dot{\theta} \, \left(\vec{e_r} \times \vec{e_\theta} \right) \right| \tag{2.21}$$

Die Tatsache, dass das Kreuzprodukt eines Vektors mit sich selbst den Nullvektor ergibt und dem Umstand, dass $\vec{e_r} \perp \vec{e_\theta} \perp \vec{e_z}$ ist, führt zu

$$\frac{dA}{dt} = \frac{1}{2} \left| r^2 \dot{\theta} \, \vec{e_z} \right| = \frac{1}{2} \, r^2 \, \dot{\theta} = h = konstant \tag{2.22}$$

2.1.2 Die Bahnelemente

Die Bahnelemente dienen der Beschreibung einer Bewegung eines Himmelskörpers auf einer Umlaufbahn (meist einer Ellipse). Dieser Körper unterliegt den Keplerschen Gesetzen. Wird die Bewegung eines Himmelskörpers durch äußere Einflüsse (z.B. Gravitationskraft der Sonne) nicht gestört, so kann sie durch sechs Größen beschrieben werden. Diese Größen sind die Bahnelemente. Zwei Bahnelemente beschreiben die Form der Bahn, drei legen die Lage der Bahn im dreidimensionalen Raum fest und ein Bahnelement gibt an zu welcher Zeit sich der Himmelskörper wo auf der Bahn befunden hat.

Diese Bahnelemente reichen in der Praxis nicht aus, um die Position eines Himmelskörpers z.B. eines Satelliten mit einem Vorhersagemodell berechnen zu können. Aus diesem Grund werden die Bahnelemente meist um von Vorhersagemodellen benötigten Informationen ergänzt. Im Folgenden werden die Bahnelemente in Ihrer Bedeutung anhand der Abbildung 2.5 erläutert.

Abbildung 2.5: Bahnelemente, Quelle: [1]

Gestalt der Bahn

Um die Gestalt der Bahn zu beschreiben wird die **numerische Exzentrizität e** und die Angabe der Länge der **großen Halbachse a** benötigt.

Lage der Bahn

Zeitlicher Bezug

- Unter der Inklination (i) versteht man den Winkel zwischen Bahn- (blau) und Äquatorebene (grün). Der Schnittpunkt mit der Äquatorebene ergibt die Konotenlinie.
- Die Rektaszension des aufsteigenden Knotens (Ω) ist jener Winkel, der zwischen einer Geraden vom Brennpunkt (B) zum Frühlingspunkt (γ) und einer Geraden vom Brennpunkt zum aufsteigenden Knoten (Ω) ausgebildet wird.
- Die **Periapsisdistanz** r_{min} stellt den Abstand des Perigäums (P) zum Brennpunkt dar. Das Perigäum ist der Punkt auf der Bahn, welcher den geringsten Abstand zum

Brennpunkt hat.

- Apogäum: Im Gegenzug zu dem Perigäum definiert das Apogäum den größten Erdabstand den der Satellit erreichen kann.
- Argument des Perigäums: Unter dem Argument des Perigäum versteht man den Winkel zwischen der Knotenlinie und der Apsidenlinie, welche die beiden Punkte Perigäum mit Apogäum verbindet.
- Exzentrizität: Dadurch dass ein Orbit nicht wie ein Kreis beschreiben lässt, wird ein Maß benötigt, welches die Form beschreibt. Die Exzentrizität gibt an, wie weit die beiden Brennpunkte vom Mittelpunkt der Ellipse entfernt sind und beschreibt somit die Form des Orbits.
- Mittlere Anomalie: Die Mittlere Anomalie sagt aus, wo sich der Satellit vom Referenzpunkt Perigäum auf seiner Bahn befindet.
- Große Halbache: Die Große Halbachse beschreibt die Größe der Bahn.

2.1.3 Vorhersagemodelle

3 GPredict

3.1 Übersicht

GPredict ist eine freie Software zur Satellitenverfolgung und Orbitvorhersage und steht als Quellcode oder bereits fertig kompiliertes Programm für Windows, Mac OS und Linux zur Verfügung. Die Software ist in C geschrieben und unter der GNU General Public License (GPL) lizenziert, somit kann sie frei verändert und an die entsprechenden Nutzervoraussetzungen angepasst werden.

In Abbildung 3.1 ist das Prinzip eines Satellitenverfolgungsprogramms zu sehen (die blauen Blöcke stellen hierbei die Funktionalität des Programms dar). Zunächst wird an Hand der Keplerschen Bahnelemente und dem aktuellen Zeitpunkt die absolute Position des Satelliten berechnet. Daraufhin wird der Vektor, der von der Bodenstation zum Satelliten zeigt, bestimmt. Nun können Azimut und Elevation dieses Vektors für die Ansteuerung der Antenne verwendet werden.

Abbildung 3.1: Prinzip eines Satellitenverfolgungsprogramms [2]

Zur Berechnung der Satellitenposition wird auf den NORAD SGP4/SDP4 Algorithmus zurückgegriffen (siehe Abschnitt XXX). Um hierfür zu jedem Zeitpunkt die aktuellen Kepler-Elemente des zu verfolgenden Satelliten zu kennen, gibt es unter GPredict die Möglichkeit einer automatischen Aktualisierung über HTTP, FTP oder aus dem lokalen Verzeichnis.

Bei GPredict ist im Gegensatz zu anderen Satellitenverfolgungsprogrammen wie SatPC32 kein Limit an zu verfolgenden Satelliten und Bodenstationen gegeben. Durch die Verwendung von Modulen kann außerdem unkompliziert zwischen verschiedenen Konfigurationen gewechselt werden. Die Orbitvorhersage eines Satelliten lässt sich sowohl grafisch als auch tabellarisch darstellen, wobei durch die Einstellungen verschiedenster Parameter eine sehr individuelle Anzeige erreicht werden kann [3].

3.2 Grafische Oberfläche

Abbildung 3.2: Standardoberfläche von GPredict

Abbildung 3.2

- Radio Control
- Rotator Control
- Sky at a Glance
- Time Controller
- Modul-Einstellungen (Configure)
- Polar View
- Single Sat View (Pass Details)

- 3.3 Inbetriebnahme unter Windows
- 3.4 Inbetriebnahme unter Linux

4 Zusammenfassung und Ausblick

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean porttitor mi purus, sit amet efficitur velit semper sit amet. Mauris et pulvinar nunc, id maximus metus. Suspendisse convallis sapien nisi, sed maximus quam gravida eu. Duis faucibus elit non nunc posuere dignissim. Sed ullamcorper fringilla felis ac mollis. Nunc blandit tristique auctor. Praesent elementum dictum nulla et vulputate. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Integer sed rutrum lacus. Morbi tincidunt dui at augue molestie rhoncus. Curabitur sagittis sed sapien quis vestibulum. Cras dictum sem quam, nec tincidunt augue tempor et [4]. Morbi consectetur, dui id scelerisque consequat, velit tortor gravida eros, ac hendrerit massa magna sit amet lacus. Quisque mattis nulla diam, sed efficitur mi fermentum vitae. Nam vestibulum iaculis rhoncus.

Donec feugiat augue leo, a malesuada tortor laoreet eu. Praesent dictum tortor eu egestas sodales. Maecenas rhoncus pretium leo ut sodales. Praesent blandit sit amet ante posuere malesuada. Vestibulum egestas sit amet ex et placerat. In sed dapibus sem, placerat interdum mi. Sed eget eros ante. Duis varius molestie eleifend. Suspendisse eu aliquet velit. Nulla facilisi. Morbi eu sapien in odio viverra luctus.

Abbildungsverzeichnis

2.1	Bahnelemente	2
2.2	Ellipse	4
2.3	Kegelschnitt	6
2.4	Kegelschnitt	7
2.5	Bahnelemente	0
3.1	Prinzip eines Satellitenverfolgungsprogramms [2]	2
3.2	Standardoberfläche von GPredict	3
Alle	hier nicht eigens nachgewiesenen Abbildungen stammen von den Autoren.	

Tabellenverzeichnis

Literatur- und Quellenverzeichnis

- [1] W. F. Inc. (2016). Bahnelement, Adresse: https://de.wikipedia.org/wiki/Bahnelement (besucht am 01.05.2016).
- [2] GPredict User Manual. Adresse: https://sourceforge.net/projects/gpredict/files/Gpredict/1.3/gpredict-user-manual-1.3.pdf/download (besucht am 01.05.2016).
- [3] Sourceforge.net: GPredict 1.3. Adresse: https://sourceforge.net/projects/gpredict/files/Gpredict/1.3/ (besucht am 01.05.2016).
- [4] D. F.-J. Kauffels, Lokale Netze, Deutsch, 12. Aufl. Bonn: MITP-Verlag GmbH, 2000.

A Datenblatt XYZ