

APLICAÇÕES PRÁTICAS DA SUNBURN

Relatório Final para a disciplina de Sistemas Produtivos

Autores:

Jéssica Lima Motta Leonardo Mendes de Souza Lima Vinícius José Gomes de Araujo Felismino Pedro Paulo Ventura Tecchio

Salvador Bahia, Brasil

Setembro de 2020

RESUMO

SUMÁRIO

1	INTRODUÇÃO	5
	1.1 Objetivos	5
	1.2 Organização do relatório	5
	1.3 Resumo da empresa	5
2	A gestão das operações em ambiente industrial - primei-	
	ros conceitos	7
	2.1 Aplicação Prática	7
3	As medidas de desempenho de uma operação de produção	9
	3.1 Medidas de desempenho	9
	3.2 Tipos de Sistemas Produtivos	10
	3.3 Aplicação Prática	10
4	A estratégia de produção	11
	4.1 Sec1	11
	4.2 Aplicação Prática	12
5	Tipos de processos de produção industrial	13
	5.1 Sec1	13
	5.2 Aplicação Prática	15
6	O projeto do produto	17
	6.1 Sec1	17
	6.2 Aplicação Prática	17
7	Projetos de novas instalações produtivas (localização, ca-	
	pacidade e rede de operações)	19
	7.1 Cadeia de suprimentos: estrutura, verticalização e terceirização	19
	7.2 Aplicação Prática	20
8	O projeto do arranjo físico ("Lay-out")	23
	8.1 Sec1	23

	8.2 Aplicação Prática	23
9	Tecnologia - Recurso essencial para a competitividade da	
	empresa industrial	25
	9.1 Sec1	25
	9.2 Aplicação Prática	25
1(Introdução ao planejamento e controle da produção	27
	10.1 Sec1	27
	10.2 Aplicação Prática	27
11	l Planejamento agregado da produção	29
	11.1 Sec1	29
	11.2 Aplicação Prática	29
12	20 CONTROLE DOS ESTOQUES	31
	12.1 Sec1	31
	12.2 Aplicação Prática	31
13	BO MANUFACTURING RESOURCE PLANNING	33
	13.1 Sec1	33
	13.2 Aplicação Prática	33
14	4O FORNECIMENTO JUST IN TIME	35
	14.1 Sec1	35
	14.2 Aplicação Prática	35
15	O CONTROLE ESTATÍSTICO DE PROCESSOS	37
	15.1 Sec1	37
	15.2 Aplicação Prática	37
16	CONFIABILIDADE E MANUTENÇÃO DO SISTEMA	
	PRODUTIVO	39
	16.1 Sec1	39
	16.2 Aplicação Prática	39

17CONCLUSÃO	43
REFERÊNCIAS	43

1 INTRODUÇÃO

1.1 Objetivos

1.2 Organização do relatório

Este documento está organizado da seguinte forma, o capítulo

1.3 Resumo da empresa

A SunBurn é uma empresa de nome fictício que atua no desenvolvimento, implantação e operação de projetos de energia renovável. No Brasil, é sediada no sul do país e opera nas regiões Norte, Sul e Nordeste.

Os projetos da empresa, nos Ambientes de Contratação Regulada (ACR) e Contratação Livre (ACL), somam 642 Megawatts de potência vendida. Todos os empreendimentos são monitorados à distância por meio do Centro de Operações localizado na sede da SunBurn, na região Sul. A SunBurn estabelece um modelo de negócios com maior segurança e rentabilidade a seus investidores, mantendo o compromisso de fornecer energia limpa e confiável.

Os empreendimentos têm como característica fundamental a qualidade, apresentando altos fatores de capacidade e geração garantida. Aliado ao modelo de gestão da SunBurn, que segue os princípios do ESG (Environmental, Social and Corporate Governance), a alta tecnologia e profissionais qualificados garantem confiabilidade na operação.

A sustentabilidade é fator indissociável da estratégia de negócios da SunBurn. Nas regiões onde a empresa atua, as operações têm foco na redução de impactos ambientais, no desenvolvimento das comunidades da região e na segurança dos colaboradores.

2 A gestão das operações em ambiente industrial primeiros conceitos

O pacote de valor é definido como sendo um conjunto de bens e serviços fornecidos, em variadas proporções, para os clientes. Desta forma as empresas que prestam serviços ou fornecem produtos passam a fornecer outros itens que agregam e consolidam as relações com seus clientes. Apesar do pacote de valor fortalecer essas relações é necessário que as empresas expandam os mesmos fornecendo mais benefícios aos clientes.

INPUTS PROCESSOS OUTPUT

Figura 1: Fluxo da geração do pacote de valor.

Fonte: baseado no Slack, 2006.

O modelo de input-processo-output da figura 1 auxilia a compreensão da atividade da produção. Os *inputs* representam recursos do processo produtivo, divididos em recursos de transformação(informações, matéria prima, componentes e clientes) e recursos transformadores(equipamentos, máquinas, construções e equipe de trabalhadores). O Processo envolve todo o procedimento de transformação dos recursos, planejamento, projeto e controle e é a parte que é executada dentro da empresa. O *Output* é a saída, o pacote de valor(bens ou serviços) destinado ao cliente ou distribuidora. (SLACK; CHAMBERS; JOHNSTON, 2006).

2.1 Aplicação Prática

O pacote de valor da empresa SunBurn revolve entorno da produção e venda de energia elétrica bem como serviços agregados. No território nacional, esta empresa produz energia elétrica através da produção solar e eólica, a qual é fornecida para a empresa distribuidora regionalmente instalada.

Acredita-se que o pacote de valor da empresa pode ser expandido através da integração das tecnologias de produção de forma que ela possa garantir o fornecimento da energia que vende mesmo quando algum incidente ocorra na geração através de uma das tecnologias. O atual uso de diferentes fontes limpas de energia aumenta deve apenas ser realizado de

forma integrada de forma a criar uma redundância do sistema de produção da Sunburn. Esta integração pode então ser vendida como um serviço adicional de aumento na garantia da entrega de energia para o cliente.

A SunBurn já possui um estudo para a formação de micro-geradoras de energia elétrica, as quais são implantadas direto no cliente final. Tal modo de produção viabiliza a redução dos custos agregados na transmissão e distribuição de energia elétrica para o cliente, além de possibilitar uma redundância local no fornecimento de energia para o cliente em questão. Esse modo de geração de energia, poderá ser amplamente utilizado pela SunBurn após a regulamentação local da venda de energia elétrica produzida por essas micro-geradoras para as empresas de transmissão e distribuição. A SunBurn poderá oferecer os seus serviços de regulação, controle e manejo do fornecimento de energia para os seus clientes que possuam usinas micro-geradoras, de forma que os clientes possam vender o excedente de energia gerado em seus territórios.

INPUTS OUTPUTS PROCESSOS Recursos a serem transformados Raios solares Vento Recursos de transformação Conversão da energia Energia elétrica destinada solar / eólica em energia Equipamentos ao cliente de conversão Painéis solares **Funcionários** Transformadores Instalações

Figura 2: Diagrama do Input-processo-output

MACRO PROCESSO

Fonte: Autoria própria

O Macro processo da empresa pode ser observado na figura 2. Os recursos de energia renovável somados aos recursos transformadores compõem os *Inputs* que serão usados e transformados pela etapa de processos. Possuindo estes recursos, a empresa realiza o processo de conversão da energia atual em elétrica, para assim gerar a saída(*Output*) que é destinada ao cliente.

3 As medidas de desempenho de uma operação de produção

3.1 Medidas de desempenho

Para medir o desempenho de uma operação produtiva é necessário o uso de indicadores para isso foi criado um sistema chamado de *Balanced Scorecard (BSC)*, este é utilizado por ser considerado o mais equilibrado na aferição dos indicadores de desempenho da operação. Na Figura 3 tem-se uma versão adaptada do BSC, e os indicadores são os seguintes:

 Indicadores financeiros, de particular interesse para os acionistas e proprietários do negócio;

 Indicadores da percepção do cliente sobre os produtos e sobre o negócio, os quais se traduzem em decisões de compra;

 Indicadores dos processos internos da operação, os quais são comparados com os parâmetros operacionais a serem observados;

 Indicadores de aprendizagem e crescimento, que refletem a habilidade que a operação tem para aprender, mudar e melhorar, a fim de manter-se sustentável ao longo do tempo.

Indicadores do
Cliente

Estratégia

Indicadores de
Processos Internos

Indicadores de
Processos Internos

Figura 3: Balanced Scorecard (BSC)

Fonte: Adaptado de (KAPLAN; NORTON, 1996)

3.2 Tipos de Sistemas Produtivos

3.3 Aplicação Prática

4 A estratégia de produção

Neste capítulo será explicado como formular a estratégia de produção de uma empresa industrial visando atender o seu objetivo geral de desempenho. Uma estratégia de produção consiste em converter as intenções contidas em ações práticas como projetos concretos, planos e melhorias. Para isso, será explicado como a função de produção tem importância estratégica para a organização industrial e como definir o conteúdo que estará presente na estratégia visando atender o objetivo geral de desempenho escolhido.

Por fim, a seção 4.2 mostrará como foi elaborado a estratégia de produção da empresa SunBurn.

4.1 Sec1

A estratégia de operações analisa o processo global da função de produção da empresa industrial como um todo. Por isso, ela preocupa-se, se existir, com as outras partes da corporação, com as outras partes da unidade de negócio (marketing, finanças, recursos humanos entre outras) e com o local onde o negocio esta inserido (concorrentes, clientes externos etc). Além disso, tem o objetivo de manter a área de operações adaptadas às mudanças desses fatores ambientais, portanto, a operação enfrentará melhor os problemas futuros. Com isso, é garantido que as organizações possa ter níveis sustentáveis de vantagens competitivas (CORRêA; CORRêA, 2000).

Ainda segundo o autor, a matriz *importância x desempenho*, conforme mostra a Figura 4, é uma ferramenta que deve ser utilizada para a priorização dos objetivos da função de operações. Essa matriz, possui duas dimensões: uma delas refere-se à importância relativa dada pelos clientes aos critérios de desempenho, utilizando a escala de nove pontos e a outra envolve uma classificação, também com uma escala de nove pontos, do desempenho de cada objetivo contra os níveis de desempenho atingidos pelos concorrentes.

UO SM₁ SM₂ SM3 Outros Competências não exploradas Desempenho comparado à concorrência Oportunidades em FP1 outros segmentos de mercado FP2 FP3 Outros Excesso Excesso Vantagem Oportunidades Melhor que (urgente?) (útil?) competitiva UO - Unidade de Operações (manutenção) 2 FP - Família de Produtos SM - Segmento de Mercado 3 Adequado 2 Adequado 1 Melhorar 2 2 Oportunidades igual a 3 3 Critérios de 3 desempenho 6 6 Melhorar 1 Urgência Urgência 0 ela concorrência não exploradas Oportunidades máxima Pior que 8 8 **Oportunidades** Menos importante Qualificador Ganhador de pedidos Importância dada 10 9 8 2 pelo cliente 6 5

Figura 4: Matriz importância x desempenho

Fonte: (CORRêA; CORRêA, 2000)

O cruzamento das duas dimensões (importância dos critérios para o mercado e desempenho nos critérios comparado à concorrência) permite identificar regiões específicas na matriz, conforme mostrado na figura acima.

4.2 Aplicação Prática

5 Tipos de processos de produção industrial

Nesta seção será discutida a classificação dos diversos tipos de empresas industriais partindo de seus processos de produção. Esta tarefa é importante na concepção de novas instalações industriais, pois permite identificar e reconhecer as características básicas da empresa industrial de acordo com o seu processo produtivo. Por fim, na seção 5.2 será mostrado a aplicação prática referente ao tipo de processo adotado pela SunBurn.

5.1 Sec1

As unidades produtivas podem variar desde o volume de produção (alto, médio ou baixo) até a variedade de seus produtos (alta, média ou baixa). Por isso, pode se dizer que as variáveis volume e variedade são dependentes entre si, por exemplo, operações de alto volume em geral têm baixa variedade de produtos e vice-versa. Portanto, existe uma relação inversa entre o volume e a variedade do produto (SLACK et al., 2009).

A figura 5 nos mostra como os cinco tipos de processos existentes estão arranjados de acordo com o espectro variedade-volume. Além disso, as características de cada um destes processos serão descritos com base no volume e variedade, descendo pela diagonal que parte do canto superior esquerdo até canto inferior direito. Em outras palavras, os processos serão descritos a seguir partindo das empresas com uma maior variedade e baixo volume até uma empresa com baixa variedade e alto volume.

Figura 5: Matiz Variedade x Volume: Definindo os cinco tipos de processos produtivos ALTERAR A IMAGEM E O TITULO

Fonte: Adptado de (SLACK et al., 2009)

O processo de projeto é caracterizado por possuir baixo volume, pois demora longos períodos para serem concluídos, e possuírem grande variedade entre os produtos entregues, como por exemplo, a construção de uma represa dificilmente haverá represas parecidas devido a questões geográficas de cada represa implantada.

O jobbing são também conhecido como oficinas pois possuem trabalhos feitos sob encomenda e por serem semi-artesanais. Um mesmo operador pode participar do processo de construção do produto do começo ao fim. Semelhante ao projeto, esse processo também possui grande variedade e baixo volume, e ao contrário deste não demora longos períodos para que o produto chegue na sua fase final, de entrega para o cliente. Um exemplo desse processo são as empresas de móveis planejados.

Já o processo por lotes ou bateladas, que é onde se encontra a maioria das empresas, é um

estágio intermediário, das empresas que expandiram sua capacidade de produção (jobbing) mas ainda não se encontram no estágio de grandes unidades de produção automatizada. O termo lote refere-se a produtos contáveis, como por exemplo: bolas de futebol e lápis, já o termo batelada trata-se de produtos contínuos que para terem individualidade é necessário que sejam colocados em recipientes, como por exemplo: gasolina e leite.

Os processos de produção em linha/massa possuem como característica principal a linha de fabricação/montagem, onde o produto percorre as várias estações de trabalho. Nesse tipo de processo tem-se um grande volume produzido e em contrapartida pouca variedade. Exemplo de fábrica que emprega este processo são as de fabricação de bicicletas.

E por último, no processo contínuo tem como característica serem quase sempre fluidos (gases, pastas, líquido e misturas) e que são processados no interior de tubulações e vasos fechados, além de possuírem elevada automação o que por sua vez acaba restringindo a quantidade de mão de obra operando as máquinas. Um exemplo deste processo são as refinarias de petróleo.

5.2 Aplicação Prática

- 6 O projeto do produto
- 6.1 Sec1
- 6.2 Aplicação Prática

7 Projetos de novas instalações produtivas (localização, capacidade e rede de operações)

7.1 Cadeia de suprimentos: estrutura, verticalização e terceirização

A cadeia de suprimentos de um processo produtivo é a relação da empresa com seus fornecedores e clientes, e a relação destes com seus fornecedores e clientes como descrita na Figura 6. Nesta figura é possível perceber que os fornecedores que lidam diretamente com a operação são os de primeira camada, e os fornecedores dos fornecedores compõem a segunda camada, e estes fazem parte da montante do processo. Igualmente para o lado jusante, que tem os clientes de primeira camada, contato direto com a operação, e clientes dos clientes, que são os de segunda camada.

Além disso nota-se que fornecedores e clientes de primeira camada fazem parte da rede imediata de fornecimento, e a rede completa é chamada de rede total de suprimentos.

Figura 6: Cadeia de Suprimentos (supply chain)

Fonte: (GRANDE, 2015)

A importância de entender toda a rede é vital para a competitividade da empresa devido aos seguintes aspectos: identificar a relações imediatas, isso ajuda a conhecer melhor fornecedores e clientes; identificar elos significativos, saber quais partes da rede contribuem para alcançar os objetivos de desempenho valorizados pelos clientes finais, esta análise começa primeiramente pela parte da jusante e depois pela montante da rede a partir dos quais mais contribuem para o serviço do consumidor final, e por último, focar em questões de longo prazo, alguns elos dessa rede podem gerar situações como greves ou parada de máquina que ocasione uma interrupção no fluxo da operação, é importante estudar a possibilidade de ajudar ou substituir esse elo mais fraco.

7.2 Aplicação Prática

Para a SunBurn a escolha da localização onde seus parques de energia solar seriam implantados foi escolhida conforme os dois fatores fundamentais para esse tipo de sistema produtivo: um grande espaço e estudo prévio durante dois anos para verificar o índice de irradiação solar naquele local.

Por esses motivos a reunião Nordeste foi escolhida para implementar os parques solares, já que esta dispõe dos dois elementos fundamentais.

A cadeia de suprimentos da SunBurn encontra-se descrita na Figura 7. Nesta figura encontram-se definidas as relações da montante (fornecedores) e da jusante (cliente) com a operação produtiva. Também são identificados os fornecedores fixos e os sob cotação e demanda, além dos fluxos de serviço e de informação que existe entre cada elemento deste fluxograma.

Fornecedor (placas fotovoltaicas)

Fornecedor (peças do tracker)

Parque de energia solar

Chesf

Fornecedor (graxas lubrificantes)

Fornecedors fixos

Fornecedors sob cotação e demanda

Fluxo de serviço

Fluxo de informação

Figura 7: Cadeia de Suprimentos da SunBurn.

Fonte: Autoria própria.

- 8 O projeto do arranjo físico ("Lay-out")
- 8.1 Sec1
- 8.2 Aplicação Prática

- 9 Tecnologia Recurso essencial para a competitividade da empresa industrial
- 9.1 Sec1
- 9.2 Aplicação Prática

- 10 Introdução ao planejamento e controle da produção
- 10.1 Sec1
- 10.2 Aplicação Prática

- 11 Planejamento agregado da produção
- 11.1 Sec1
- 11.2 Aplicação Prática

12 O CONTROLE DOS ESTOQUES

- 12.1 Sec1
- 12.2 Aplicação Prática

$13 \ \ O \ \ MANUFACTURING \ \ RESOURCE \ \ PLAN-NING$

- 13.1 Sec1
- 13.2 Aplicação Prática

14 O FORNECIMENTO JUST IN TIME

- 14.1 Sec1
- 14.2 Aplicação Prática

15 O CONTROLE ESTATÍSTICO DE PROCES-SOS

- 15.1 Sec1
- 15.2 Aplicação Prática

16 CONFIABILIDADE E MANUTENÇÃO DO SISTEMA PRODUTIVO

- 16.1 Sec1
- 16.2 Aplicação Prática

17 CONCLUSÃO

REFERÊNCIAS

CORRêA, H. L.; CORRêA, C. A. Administração de Produção e Operações: Manufatura E Serviços: Uma Abordagem Estratégica . [S.l.]: Editora Atlas SA, 2000. Citado 2 vezes nas páginas 11 e 12.

GRANDE, P. D. M. M. Cadeia de suprimentos e logística empresarial. 2015. Disponível em: https://slideplayer.com.br/slide/3681708/>. Citado na página 19.

KAPLAN, R. S.; NORTON, D. P. Using the balanced scorecard as a strategic management system. 1996. Citado na página 10.

SLACK, N.; CHAMBERS, S.; JOHNSTON, R. Administração da produção. -10. reimpr. $S\~ao$ Paulo: Atlas, 2006. Citado na página 7.

SLACK, N. et al. Administração da produção. [S.l.]: Atlas São Paulo, 2009. v. 2. Citado 2 vezes nas páginas 13 e 14.