OBLIKOVANJE RELACIJSKOG MODELA – II dio

IV predavanje

Dr.sc. Emir Mešković

Armstrongovi aksiomi

- Projektant sheme baze podataka specificira funkcijske zavisnosti koje su mi semantički očigledne, ali obično vrijede i brojne druge funkcijske zavisnosti koje mogu biti izvedene iz početnih funkcijskih zavisnosti
- Korištenjem Armstrongovih aksioma izvode se nove funkcijske zavisnosti
- Neka je R relacijska shema, neka su X, Y, Z i V skupovi atributa i neka vrijedi:
- $X \subseteq R, Y \subseteq R, Z \subseteq R, V \subseteq R$

A-1 REFLEKSIVNOST

- ▶ Ako je $Y \subseteq X$, tada vrijedi $X \to Y$
 - Možemo reći da uvijek vrijedi $X \rightarrow X$ aksiom o trivijalnoj funkcijskoj zavisnosti
- $\to X \to X \Rightarrow \pi_X(\sigma_{X=x}(r))$ uvijek sadrži najviše jednu n-torku
 - ightharpoonup Uvijek postoji $X \rightarrow X$ u r

os <u>(matBr,</u>	<u>þrezime,</u>	ime,	postBr,	<u>nazivGrad)</u>
12345	Pirić	Damir	75000	Tuzla
23456	Đurić	Maja	71000	Sarajevo
34567	Pejić	Dino	72000	Zenica
45678	Pirić	Damir	71000	Sarajevo

$$\sigma_{postBr=71000}(os) = oso$$
 (matBr prezime, ime, postBr, nazivGrad)
23456 Đurić Maja 71000 Sarajevo
45678 Pirić Damir 71000 Sarajevo

$$\pi_{postBr}(oso) = osob \quad (postBr)$$
71000

A-1 REFLEKSIVNOST

- ▶ Ako je $Y \subseteq X$, tada r zadovoljava $X \to Y$
- ▶ $\text{Iz } t_i(X) = t_j(X) \text{ i } Y \subseteq X \text{ proizilazi } t_i(Y) = t_j(Y)$
- Prema tome $\pi_{Y}(\sigma_{X=x}(r))$ uvijek sadrži najviše jednu n-torku

	os <u>(matBr,</u>	<u> prezime, </u>	ime,	<u>þostBr,</u>	<u>nazivGrad)</u>
$X = \{prezime, ime\}$	12345	Pirić	Damir	75000	Tuzla
$Y = \{prezime\}$	23456	Đurić	Maja	71000	Sarajevo
. (p. 020)	34567	Pejić	Dino	72000	Zenica
	45678	Pirić	Damir	71000	Sarajevo
$\sigma_{prezime}$ = 'Pirić' \wedge ime = 'Damir	·(os) = os ₁ os <u>1(matBr,</u>	prezime,	ime,	postBr,	nazivGrad)
	12345	Pirić	Damir	75000	Tuzla
$\pi_{prezime}(os_1) = os_2$ (prez	45678 <u>:ime)</u> rić	Pirić	Damir	71000	Sarajevo

A-2 UVEĆANJE

- Ako u relaciji r vrijedi $X \to Y$ i ako je $Z \subseteq R$ tada vrijedi i $XZ \to Y$ u r
 - Možemo uvećati lijevu stranu funkcijske zavisnosti
- ▶ U relaciji os(OS) vrijedi matBr \rightarrow ime i prezime \subset OS
 - ▶ U relaciji os vrijedi i matBr, prezime → ime

os <u>(matBr,</u>	prezime,	ime,	postBr,	nazivGrad)	
12345	Pirić	Damir	75000	Tuzla	
23456	Đurić	Maja	71000	Sarajevo	
34567	Pejić	Dino	72000	Zenica	
45678	Pirić	Damir	71000	Sarajevo	

A-2 UVEĆANJE

- Ako r zadovoljava $X \to Y$, tada $\pi_Y(\sigma_{X=x}(r))$ sadrži najviše jednu n-torku za svaku vrijednost x od X
- Ako je $Z \subseteq R$ tada je $\sigma_{XZ=xz}(r) \subseteq \sigma_{X=x}(r)$, odnosno $\pi_{Y}(\sigma_{XZ=xz}(r)) \subseteq \pi_{Y}(\sigma_{X=x}(r))$
- Prema tome $\pi_{Y}(\sigma_{XZ=xz}(r))$ ima najviše jednu n-torku
 - r mora zadovoljavati $XZ \rightarrow Y$

A-2 UVEĆANJE

	os <u>(matBr,</u>	prezime,	ime,	postBr,	nazivGrad)
$X = \{postBr\}$	12345	Pirić	Damir	75000	Tuzla
$Y = \{nazivGrad\}$	23456	Đurić	Maja	71000	Sarajevo
$Z = \{matBr\}$	34567	Pejić	Dino	72000	Zenica
2 (macbi)	45678	Pirić	Damir	71000	Sarajevo
$\sigma_{\text{postBr} = 71000}(\text{os}) = \text{oso}_{1}$	oso _l <u>(matBr,</u>	prezime,	ime,	postBr,	nazivGrad)
postBr = /1000(03) 030	23456	Đurić	Maja	71000	Sarajevo
	45678	Pirić	Damir	71000	Sarajevo
$\pi_{nazivGrad}(oso_1) = oso_2 $					
$\sigma_{\text{postBr}} = 71000 \land \text{matBr} = 234$	$_{56}(os) = oso_3$				
	oso <u>3(matBr,</u>	<u> þrezime,</u>	ime,	postBr,	nazivGrad)
	23456	Đurić	Maja	71000	Sarajevo
$\pi_{nazivGrad}(oso_3) = oso_4$	<u>(nazivGrad)</u> Sarajevo				

A-3 TRANZITIVNOST

- lacktriangle Ako u relaciji r vrijedi X o Y i Y o Z tada vrijedi i X o Z u r
- $X \to Z$ je tranzitivna zavisnost
- ▶ U relaciji os(OS) vrijedi $matBr \rightarrow postBr$ i $postBr \rightarrow nazivGrad$
 - ▶ U relaciji os vrijedi i matBr → nazivGrad

os <u>(matBr,</u>	prezime,	ime,	postBr,	<u>nazivGrad)</u>
12345	Pirić	Damir	75000	Tuzla
23456	Đurić	Maja	71000	Sarajevo
34567	Pejić	Dino	72000	Zenica
45678	Pirić	Damir	71000	Sarajevo

A-3 TRANZITIVNOST

- Neka r zadovoljava $X \rightarrow Y$ i $Y \rightarrow Z$
- Neka su t_1 i t_2 n-torke iz r
 - $t_1(X) = t_2(X) \rightarrow t_1(Y) = t_2(Y)$
 - $t_1(Y) = t_2(Y) \rightarrow t_1(Z) = t_2(Z)$
- Zbog toga
 - $t_1(X) = t_2(X) \rightarrow t_1(Z) = t_2(Z)$
 - r zadovoljava $X \rightarrow Z$

A-3 TRANZITIVNOST

	os <u>(r</u>	matBr,	prezime,	ime,	postBr,	<u>nazivGrad)</u>
	`	12345	Pirić	Damir	75000	Tuzla
$X = \{matBr\}$	t_1	23456	Đurić	Maja	71000	Sarajevo
$Y = \{postBr\}$	•	34567	Pejić	Dino	72000	Zenica
$Z = \{nazivGrad\}$		45678	Pirić	Damir	71000	Sarajevo
,	t_2	23456	Đurić	Goran	71000	Sarajevo

$$t_1(matBr) = t_2(matBr) \rightarrow t_1(postBr) = t_2(postBr)$$

 $t_1(postBr) = t_2(postBr) \rightarrow t_1(nazivGrad) = t_2(nazivGrad)$

- Zbog toga
 - $t_1(matBr) = t_2(matBr) \rightarrow t_1(nazivGrad) = t_2(nazivGrad)$
 - ▶ os zadovoljava matBr → nazivGrad

Pravila koja proizilaze iz Armstrongovih aksioma

- Neka je R relacijska shema, neka su X, Y, Z i V skupovi atributa i neka vrijedi:
- $X \subseteq R, Y \subseteq R, Z \subseteq R, V \subseteq R$
- Pravilo unije (pravilo o aditivnosti)
- Pravilo dekompozicije (pravilo o projektivnosti)
- Pravilo o pseudotranzitivnosti

P-1 Pravilo unije

▶ Ako u relaciji r vrijedi $X \to Y$ i $X \to Z$, tada vrijedi i $X \to YZ$ u r ($X \to Y \cup Z$)

os <u>(matBr,</u>	prezime,	ime,	postBr,	nazivGrad)
12345	Pirić	Damir	⁷ 5000	Tuzla
23456	Đurić	Maja	71000	Sarajevo
34567	Pejić	Dino	72000	Zenica
45678	Pirić	Damir	71000	Sarajevo

- ▶ U relaciji os (OS) vrijedi mat $Br \rightarrow prezime i mat<math>Br \rightarrow ime$
 - ightharpoonup U relaciji os vrijedi i matBr o ime, prezime

Dokaz pravila unije

- Ako r zadovoljava $X \to Y$ i $X \to Z$, tada $\pi_Y(\sigma_{X=x}(r))$ i $\pi_Z(\sigma_{X=x}(r))$ imaju najviše jednu n-torku za svaku vrijednost x od X
- Ako $\pi_{YZ}(\sigma_{X=x}(r))$ ima više od jedne n-torke, tada bi barem jedna od projekcija $\pi_{Y}(\sigma_{X=x}(r))$ i $\pi_{Z}(\sigma_{X=x}(r))$ morala imati više od jedne n-torke
- Budući da $\pi_Y(\sigma_{X=x}(r))$ i $\pi_Z(\sigma_{X=x}(r))$ imaju najviše jednu n-torku
 - ightharpoonup r zadovoljava $X \rightarrow YZ$

Primjer za pravilo unije

	os <u>(matBr,</u>	prezime,	ime,	postBr,	<u>nazivGrad)</u>
$X = \{matBr\}$	12345	Pirić	Damir	75000	Tuzla
	23456	Đurić	Maja	71000	Sarajevo
$Y = \{ime\}$	34567	Pejić	Dino	72000	Zenica
$Z = \{prezime\}$	45678	Pirić	Damir	71000	Sarajevo

$$\pi_{ime}(\sigma_{matBr = 12345}(os)) = oso_1$$
 (ime)

Damir

$$\pi_{prezime}(\sigma_{matBr = 12345}(os)) = oso_2$$
 (prezime)
Pirić

$$\pi_{ime, prezime}(\sigma_{matBr = 12345}(os)) = oso_3$$
 (ime, prezime)

Damir Pirić

P-2 Pravilo dekompozicije

- Ako u relaciji r vrijedi $X \to Y$ i ako je $V \subseteq Y$, tada vrijedi i $X \to V$ u r
- ▶ Ili
- Ako u relaciji r vrijedi $X \to YZ$, tada vrijedi i $X \to Y$

os <u>(matBr,</u>	<u>þrezime,</u>	ime,	postBr,	<u>nazivGrad)</u>
12345	Pirić	Damir	75000	Tuzla
23456	Đurić	Maja	71000	Sarajevo
34567	Pejić	Dino	72000	Zenica
45678	Pirić	Damir	71000	Sarajevo

- ▶ U relaciji os (OS) vrijedi $matBr \rightarrow ime$, prezime
 - ightharpoonup U relaciji os vrijedi i matBr o prezime i mat<math>Br o ime

Dokaz pravila dekompozicije

- Ako r zadovoljava $X \to YZ$, tada $\pi_{YZ}(\sigma_{X=x}(r))$ ima najviše jednu n-torku za svaku vrijednost x od X
- Budući da $\pi_{Y}(\sigma_{X=x}(r))$ može imati najviše jednu n-torku
 - ightharpoonup r zadovoljava $X \rightarrow Y$

P-3 Pravilo o pseudotranzitivnosti

Ako u relaciji r vrijedi $X \to Y$ i $VY \to Z$, tada vrijedi i $XV \to Z$ u r

os <u>(matBr,</u>	prezime,	ime,	postBr,	nazivGrad,	adresa)
12345	Pirić	Damir	75000	Tuzla	Franjevačka 5
23456	Đurić	Maja	71000	Sarajevo	Kulina bana 8
34567	Pejić	Dino	72000	Zenica	Aske Borića bb
45678	Pirić	Damir	71000	Sarajevo	Ferhadija 14

- ▶ U relaciji os (OS) vrijedi mat $Br \rightarrow nazivGrad$ i nazivGrad, adresa \rightarrow postBr
 - ightharpoonup U relaciji os vrijedi i matBr, adresa ightharpoonup postBr

Dokaz pravila o pseudotranzitivnosti

- Neka r zadovoljava $X \rightarrow Y$ i $VY \rightarrow Z$
- Neka su t_1 i t_2 n-torke iz r

$$t_1(X) = t_2(X) \rightarrow t_1(Y) = t_2(Y)$$

$$t_1(VY) = t_2(VY) \rightarrow t_1(Z) = t_2(Z)$$

- ightharpoonup Iz $t_1(XV) = t_2(XV)$ može se izvesti

 - $t_1(V) = t_2(V) \qquad \Rightarrow \quad t_1(Y) = t_2(Y)$
- Odnosno:
- $t_1(XV) = t_2(XV) \Rightarrow t_1(VY) = t_2(VY) \Rightarrow t_1(Z) = t_2(Z)$
 - ightharpoonup r zadovoljava $XV \rightarrow Z$

Primjer korištenja aksioma i pravila

- Uz pretpostavku da na relacijskoj shemi R = { A, B, C, D, E, F } vrijedi skup funkcijskih zavisnosti F = {A → CD, AB → E, D → F }, dokazati da vrijedi funkcijska zavisnost AB → EF
- ▶ A \rightarrow CD (pravilo dekompozicije) \Rightarrow A \rightarrow C \land A \rightarrow D
- ▶ $A \rightarrow D \land D \rightarrow F$ (aksiom o tranzitivnosti) $\Rightarrow A \rightarrow F$
- ▶ $A \rightarrow F$ (aksiom o uvećanju) $\Rightarrow AB \rightarrow F$
- ▶ $AB \rightarrow E \land AB \rightarrow F$ (pravilo unije) $\Rightarrow AB \rightarrow EF$

Pravilo o akumulaciji

- Dodatno pravilo koje omogućuje "algoritamski" pristup rješavanju sličnih zadataka
- Ako u relaciji r vrijedi $X \rightarrow VZ$ i $Z \rightarrow W$, tada vrijedi i $X \rightarrow VZW$ u r
- $\blacktriangleright X \rightarrow VZ$ (pravilo dekompozicije) $\Rightarrow X \rightarrow V \land X \rightarrow Z$
- $X \to Z \land Z \to W$ (aksiom o tranzitivnosti) $\Rightarrow X \to W$
- $X \to VZ \land X \to W$ (pravilo unije) $\Rightarrow X \to VZW$

Primjer korištenja pravila o akumulaciji

- ▶ Uz pretpostavku da na relacijskoj shemi R = $\{A, B, C, D, E\}$ vrijedi skup funkcijskih zavisnosti F = $\{A \rightarrow BD, B \rightarrow C, D \rightarrow E\}$, dokazati da vrijedi funkcijska zavisnost AE \rightarrow AC
 - Označimo lijevu stranu FZ s X (X=AE), a desnu stranu FZ s Y (Y=AC)
 - Dokaz se izvodi primjenom aksioma o refleksivnosti, pravila o akumulaciji i pravila o dekompoziciji
 - ▶ I. korak: $X \rightarrow X$
 - \rightarrow AE \rightarrow AE
 - 2. korak: pomoću pravila akumulacije "uvećavati desnu stranu FZ" sve dok desna strana ne sadrži Y
 - ightharpoonup AE
 ightharpoonup AE
 ightharpoonup AE
 ightharpoonup AE
 ightharpoonup AEBD
 - ▶ $AE \rightarrow AEBD \land B \rightarrow C \Rightarrow AE \rightarrow AEBDC$
 - 3. korak: kad (i ako) desna strana sadrži Y primijeniti pravilo dekompozicije
 - \rightarrow AE \rightarrow AEBDC \Rightarrow AE \rightarrow AC

Primjer korištenja pravila o akumulaciji (za vježbu)

- Uz pretpostavku da na relacijskoj shemi R = { L, M, N, P, Q, R } vrijedi skup funkcijskih zavisnosti F = {Q → R, M → PQ, PQL → N }, dokazati da vrijedi funkcijska zavisnost MLR → QN
- Uz pretpostavku da na relacijskoj shemi R = { L, M, N, P, Q, R } vrijedi skup funkcijskih zavisnosti F = {Q → R, M → PQ, PQL → N }, dokazati da vrijedi funkcijska zavisnost MQ → LN

Priroda funkcijskih zavisnosti - podsjetnik

- Postojanje funkcijske zavisnosti ne može se dokazati na osnovu postojećih podataka u relaciji
- Analizom podataka moguće je pretpostaviti da funkcijska zavisnost postoji
- Dokaz za postojanje funkcijske zavisnosti treba tražiti u značenju pojedinih atributa
- Funkcijske zavisnosti neće se promijeniti promjenom sadržaja relacije
- Dodavanjem ili ukidanjem funkcijskih zavisnosti mijenja se model baze podataka
- Prilikom konstrukcije modela javljaju se redundatne funkcijske zavisnosti koje je potrebno ukloniti

Potpuna funkcijska zavisnost

- ▶ Zadana je relacijska shema R i skupovi atributa X i Y iz R (X, $Y \subseteq R$)
- Neka u R vrijedi funkcijska zavisnost $X \rightarrow Y$
- Atribut ili skup atributa Y **potpuno je funkcijski ovisan** o atributu ili skupu atributa X relacijske sheme R ako:
 - Y funkcijski ovisi o čitavom X
 - Ne postoji pravi podskup od X koji funkcijski određuje Y

Nepotpuna funkcijska zavisnost

- ▶ Zadana je relacijska shema R i skupovi atributa X i Y iz R (X, Y $\subseteq R$)
- Neka u R vrijedi funkcijska zavisnost $X \rightarrow Y$
- Funkcijska zavisnost $X \to Y$ je **nepotpuna** ako postoji atribut ili skup atributa Z koji je podskup od X, za koji vrijedi $Z \to Y$
- ▶ Ili
- FZ $X \rightarrow Y$ je **nepotpuna** ako
- $(\exists Z)(Z \subset X) : Z \to Y$

Tranzitivna funkcijska zavisnost

Zadano je:

- ▶ Relacijska shema *R*
- ▶ Skupovi atributa $X, Y, Z \in R$
- Skup funkcijskih zavisnosti F

\blacktriangleright Atribut Z je tranzitivno ovisan o X ako vrijedi:

- $X \to Y$
- $Y \not\rightarrow Xi$
- $Y \rightarrow Z$ (proizilazi iz F)
- > Z ⊄ XY

Ključ relacije

- Relacijom se opisuje skup entiteta
- Entitet je "nešto" što se prema svojim karakteristikama može razlučiti od okoline
- Ključ relacije sadrži one atribute koji omogućuju da se pojedini entiteti mogu razlučiti od okoline
- Ključ relacije je atribut ili skup atributa koji nedvosmisleno određuje n-torke relacije
- ► Ključ relacijske sheme R je skup atributa K, K ⊆ R, koji ima sljedeća svojstva:
 - $ightharpoonup K
 ightharpoonup (R \ K) (također vrijedi i K
 ightharpoonup R)$
 - Ključ relacije ima svojstvo da funkcijski određuje atribute u preostalom dijelu relacijske sheme
 - ▶ Ne postoji K' \subset K za kojeg vrijedi K' \rightarrow R
 - Ključ je minimalan skup atributa koji funkcijski određuje atribute u preostalom dijelu relacijske sheme

Ključ relacije - primjer

radnik <u>(matBr,</u>	prezime,	ime,	jmbg)
12345	Pirić	Damir	1710977180025
23456	Đurić	Maja	1812982185011
34567	Pejić	Dino	0209979180016
45678	Pirić	Damir	2701981180001

- $\blacktriangleright Ključ: K_{radnik} = \{matBr\}$
- ▶ $matBr \rightarrow prezime$
- ▶ $matBr \rightarrow ime$
- ▶ $matBr \rightarrow jmbg$

- Za: K = {matBr, prezime} također vrijedi
- $\qquad \qquad \mathsf{K} \to \{ \mathsf{ime}, \mathsf{jmbg} \}$
 - Ali K nije ključ jer postoji K' = {matBr}, K' ⊂ K, za kojeg vrijedi
 - ▶ $K' \rightarrow \{ \text{ prezime, ime, jmbg } \}$

Ključevi relacije

- Mogući ključ (candidate key)
- Primarni ključ (primary key)
 odabire se jedan od mogućih ključeva
- Alternativni ključ (alternate key) ostali mogući ključevi

radnik <u>(matBr,</u>	prezime,	ime,	jmbg)
12345	Pirić	Damir	1710977180025
23456	Đurić	Maja	1812982185011
34567	Pejić	Dino	0209979180016
45678	Pirić	Damir	2701981180001

- Mogući ključevi: {matBr}, {jmbg}
- Primarni ključ: {matBr}
- Alternativni ključ: {jmbg}

Struktura relacije

- Relacijska shema se sastoji od
 - atributa koji su dio ključa (ključni atributi, ključni dio relacije)
 - atributa iz zavisnog dijela relacije (neključni atributi, neključni dio relacije)
- Ključ relacije ima svojstvo da funkcijski određuje preostali dio relacije

OSOBA <u>(matBr,</u>	prezime,	ime,	postBr,	nazivGrad)
12345	Pirić	Damir	75000	Tuzla
23456	Đurić	Maja	71000	Sarajevo
34567	Pejić	Dino	72000	Zenica
45678	Pirić	Damir	71000	Sarajevo

- $ightharpoonup Ključ: K_{OSOBA} = \{matBr\}$
 - ightharpoonup matBr ightharpoonup prezime

matBr
ightarrow ime

▶ $matBr \rightarrow postBr$

 $matBr \rightarrow nazivGrad$