

Ethernet

- Es la tecnología de red de área local más utilizada al día de hoy: Cientos de millones de dispositivos Ethernet se han vendido en el mundo.
- A 45 años de su invención sigue siendo mejor que su más cercano competidor en las siguientes áreas:
 - Velocidad de transferencia de datos
 - Calidad de señal
 - Escalabilidad de la red
 - Adaptabilidad de los dispositivos
 - ► https://www.versatek.com/blog/2018-update-ethernet-cabling-still-better-wifi/

Ethernet

► Los estándares actuales de Ethernet (IEEE 802.3bz), pueden alcanzar tasas de transferencia de hasta 2.5Gbps y 5Gbps

Ethernet y el modelo OSI

Un poco de Historia

- Inventado por Robert Metcalfe en las instalaciones de Xerox Palo Alto Research Center, PARC, en California, en 1973.
 - ▶ Pensado inicialmente para comunicar estaciones de trabajo e impresoras laser.
 - Otros conceptos que definió Metcalfe junto con Ethernet fueron:
 - ▶ Detección de colisiones/collision detect.
 - ▶ Detectar la portadora/carrier sense.
 - Acceso múltiple/multiple Access.
- ► El estándar original de 10Mbps fue publicado en 1980 por DIX.
- La IEEE publico su estándar 802.3 basado en el de DIX en 1985 este se convertiría en el estándar oficial para Ethernet.
- Ethernet: The Definitive Guide by Charles E. Spurgeon

Un poco de Historia

- La primera red experimental de Metcalfe se llamó Red Alto Aloha. En 1973 Metcalfe cambió el nombre a "Ethernet", para dejar en claro que el sistema podía admitir cualquier computadora, no solo Altos, y señalar que sus nuevos mecanismos de red habían evolucionado mucho más allá del sistema Aloha.
- ► Eligió basar el nombre en la palabra "éter" como una forma de describir una característica esencial del sistema: el medio físico (es decir, un cable) transporta bits a todas las estaciones, de la misma forma que el antiguo "éter luminífero". Una vez se pensó que propagaba ondas electromagnéticas a través del espacio. Por lo tanto, nació Ethernet ".

Estándar IEEE802.3

IEEE 802.3

- Desarrollado por la IEEE.
 - ▶ Específicamente por el Ethernet Working Group.
 - ▶ Dependiente del IEEE Computer Society
 - http://www.ieee802.org/3/
 - https://standards.ieee.org/standard/802_3-2015.html

IEEE 802.3

- El estándar solo especifica la capa Física y la de Enlace de Datos.
- Entre otras cosas define:
 - ► Control de acceso al medio (MAC)
 - ▶ Base de información de administración (MIB)
 - ► Las Interfaces Independientes de Medios (MII)
 - Los tipos de medios (cable, fibra óptica)

Application
Presentation
Session
Transport
NWK
DLL
LLC y MAC

IEEE 802.3

- ▶ IEEE se encarga del desarrollo del estándar así como de la administración y distribución de las direcciones MAC, necesarias para interconectar los dispositivos a nivel de enlace de datos.
 - https://standards.ieee.org/products-services/regauth/index.html
 - https://youtu.be/0nlkxVfyxL4

Varias versiones del estándar

IEEE Standard	Ratification Date	Explanation
802.3ac	1998	Frame size increased to 1522 bytes.
802.3ae	2002	10 Gb/s standard, multiple versions over fiber.
802.3af	2003	Power over Ethernet (PoE). DC power distribution over the UTP medium to power wireless access points up to 15 watts.
802.3an	2006	10 Gbps over UTP.
802.3ap	2008	1 Gbps and 10 Gb/s over PCB backplanes
802.3at/au	2009	PoE enhancements and isolation. Power boost to the 30-45 watt range.
802.3av	2009	10 Gbps Ethernet Passive Optical Network (EPON)
802.3ba	2010	40/100 Gbps over fiber.

Capa física

Existen variaciones de la capa física de Ethernet, diferentes versiones del estándar implementan cambios en la capa física.

Pin	Pair	Color	telephone	10BASE-T[32] 100BASE-TX[33]	1000BASE-T[34] onwards	PoE mode A	PoE mode B
1	3	white/green		TX+	BI_DA+	48 V out	
2	3	green		TX-	BI_DA-	48 V out	
3	2	white/orange		RX+	BI_DB+	48 V return	
4	1	o blue	ring	unused	BI_DC+		48 V out
5	1	white/blue	tip	unused	BI_DC-		48 V out
6	2	orange		RX-	BI_DB-	48 V return	
7	4	white/brown		unused	BI_DD+		48 V return
8	4	brown		unused	BI_DD-		48 V return

Velocidades mas comunes

Nombre	Velocidad	Versión del Estándar
10BASE-T	10Mbps	802.3i
100BASE-TX	100Mbps	802.3u
1000BASE-T	1000Mbps	802.3ab
10GBASE-T	10000Mbps	802.3an

Cable UTP y Conector RJ-45

Capa Física

Capa Física

RJ45

Figure 10. Theoretical PHY Block Diagram in 100Base-TX Mode

Capa de Enlace de Datos - DLL

- La DLL de Ethernet esta dividida en dos subcapas:
 - ▶ LLC Logical Link Control, la cual provee:
 - ► Mecanismos de multiplexado.
 - ► Control de Flujo.
 - Mecanismos de gestión de errores de solicitud de repetición automática (ARQ).
 - ▶ MAC Medium Access Controller, la cual provee:
 - Direccionamiento.
 - ▶ Mecanismos de control de acceso al medio.

Application
Presentation
Session
Transport
NWK
DLL
PHY

LLC

MAC

Formato de la trama de Ethernet

Preámbulo
8 bytes
Header de MAC
14 bytes
Datos
46 a 1500 bytes
4 bytes

Preámbulo: 7 bytes 0xAA + 1 byte 0xAB(SFD)

► Tráiler: 4 bytes CRC32

Header de MAC

Dirección MAC de destino origen 6 bytes Dirección MAC de

EtherType 2 bytes

- ▶ Una dirección MAC de Ethernet identifica de forma única a todos los dispositivos Ethernet del mundo. Cada proveedor que crea dispositivos de red (por ejemplo, dispositivos inalámbricos, enrutadores y switches) preprograma estas direcciones en sus dispositivos.
- Una dirección MAC puede tener otros nombres, incluida la dirección física (en Windows), la dirección Ethernet y la dirección de hardware. Como sea que lo llame, esta dirección es una secuencia de 6 bytes que se puede representar como una cadena hexadecimal de 12 caracteres.

Ejemplo

EtherType

EtherType:

- Proporciona un identificador por el cual el software de comunicaciones puede diferenciar entre varios tipos de protocolos. Se usa un manejador de protocolo diferente para diferentes funciones, y el Ethertype identifica el mensaje como perteneciente a una u otra familia de protocolos.
- ▶ https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml

Ethertype (decimal)	Ethertype (hex) ∑	Exp. Ethernet (decimal) 🖫	Exp. Ethernet (octal) 🖫	Description 🖫	Reference 🖫
0000	0000-05DC	-	=	IEEE802.3 Length Field	[Neil Sembower]
0257	0101-01FF	4	=	Experimental	[Neil Sembower]
0512	0200	512	1000	XEROX PUP (see 0A00)	[Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "PUP: An Internetwork Architecture", XEROX Palo Alto Research Center, CSL-79-10, July 1979; also in IEEE Transactions on Communication, Volume COM-28, Number 4, April 1980.] [Neil Sembower]
0513	0201	-	-	PUP Addr Trans (see 0A01)	[Neil Sembower]
	0400			Nixdorf	[Neil Sembower]
1536	0600	1536	3000	XEROX NS IDP	["The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specification", AA-K759B-TK, Digital Equipment Corporation, Maynard, MA. Also as: "The Ethernet - A Local Area Network", Version 1.0, Digital Equipment Corporation, Intel Corporation, Xerox Corporation, September 1980. And: "The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specifications", Digital, Intel and Xerox, November 1982. And: XEROX, "The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specification", X3T51/80-50, Xerox Corporation, Stamford, CT., October 1980.][Neil Sembower]
	0660			DLOG	[Neil Sembower]
	0661			DLOG	[Neil Sembower]
2048	0800	513	1001	Internet Protocol version 4 (IPv4)	[RFC7042]
2049	0801	-	-	X.75 Internet	[Neil Sembower]
0050	2222			ino	

Construyendo la LAN con Ethernet - Hub

Hubs

► Conectan físicamente todos los dispositivos al bus, son baratos y no requieren fuente de poder, aunque provocan algunos problemas de seguridad y de ancho de banda debido a que cada mensaje enviado por un dispositivo es recibido por todos los demás dispositivos conectados al Hub.

Construyendo la LAN con Ethernet -Switch

Switch

► El Switch, al igual que el Hub, conecta varias computadoras a una LAN, pero a diferencia del Hub, el Switch cuenta con una tabla y la lógica digital necesaria para poder identificar las los dispositivos conectados a partir de su dirección MAC; esto agrega seguridad a la red y mejora el uso del ancho de banda.

Construyendo la LAN con Ethernet -Router

Router

- ▶ Un Router es un dispositivo que envía paquetes de datos entre diferentes redes. El router revisa la dirección de red (dirección IP) en los paquetes y reenvía el paquete a otro router hasta que el paquete llega a la red a la cual fue enviado; así es como se conecta la LAN al internet.
- Muchos Routers modernos también cuentan con puertos para hacer las veces de un Switch así como algunas de estas funcionalidades:
 - ▶ DHCP
 - ▶ Firewall
 - Wireless

