CHAPTER 5:

CONCLUSION AND FUTURE WORK

5.1 Synthesis of Outcomes

The deployed feedback system achieved **94% compliance with initial design objectives**, delivering quantifiable improvements over traditional manual feedback collection. Key performance indicators are summarized below:

Expected vs Achieved Results

Metric	Target	Actual	Deviation	Explanation
Input	98%	98.7%	+0.7%	Achieved through improved keypad debounce
Accuracy				filtering algorithms.
Cloud	≤2	1.8	+10%	TLS handshakes were optimized for faster
Latency	seconds	seconds		HTTP communication cycles.
Battery Life	72 hours	68 hours	-5.6%	ESP32's deep sleep mode still incurred
				leakage currents despite optimization.
Unit Cost	₹2,940	₹2,780	+5.4%	Cost savings achieved via bulk purchases and
				lean component sourcing.

Table 5.1

Pedagogical Outcomes

- 40% reduction in faculty administrative time, surpassing the projected 30%.
- 92% educator satisfaction, indicating strong user acceptance and operational simplicity.
- 99.3% data accuracy across over 5,000 entries, verifying robust cloud synchronization and minimal input mismatches.

Key Deviations and Root Causes

- Power Management: The ESP32's deep sleep current (~150μA) still represented 62% of standby power usage, suggesting firmware improvements to reduce unnecessary wake events are essential.
- Environmental Constraints: In 8% of classroom deployments, LCD readability suffered due to sunlight glare. The fix—an anti-glare film—incurred an unplanned cost of ₹10 per unit.

• Connectivity Challenges: Rural schools using the 2.4GHz Wi-Fi band experienced latency spikes >5s due to RF congestion. A dynamic channel-hopping algorithm was implemented to mitigate this.

Educational Impact

The system significantly shortened the **feedback-action loop**, enabling **course corrections to be made 53% faster** compared to traditional paper methods. This agility allows instructors to tailor their teaching approach in near real-time.

5.2 Strategic Development Pathways

To enhance functionality, reach, and sustainability, the following hardware, software, and deployment strategies are proposed:

Hardware Enhancements

1. Multi-Modal Input Expansion

- Add capacitive touch inputs alongside the keypad to allow students to draw/write qualitative feedback.
- o Estimated cost: ₹335 per unit addition.

2. Energy Harvesting Capability

- o Integrate solar panels (5V/100mA) for continuous charging in sunlit environments.
- o Target: **Perpetual battery life** in daylight classrooms with no grid dependency.

Software Optimization

1. On-Device Predictive Analytics

- Deploy TinyML models directly on the ESP32 to detect behavioral trends (e.g., sudden drops in student satisfaction).
- o Anticipated accuracy: 85%, allowing limited cloud dependence and faster response.

2. Dynamic Quality of Service (QoS)

Prioritize education-related data packets during school hours using custom network
 shaping protocols, reducing impact from non-critical traffic.

Scalability Frameworks

1. Mesh Networking Support

 Enable communication between multiple feedback units using ESP-NOW, facilitating robust synchronization in low-bandwidth areas (<1 Mbps).

2. Blockchain Integration

 Implement a lightweight blockchain ledger (e.g., using Hyperledger Fabric) to ensure tamper-proof feedback logs, particularly useful for faculty audits.

Pedagogical Expansion

1. Multilingual Capability

- Enable Unicode font rendering on LCD screens to support Hindi, Tamil, Bengali,
 and other regional languages using custom ROM chips.
- o Estimated cost addition: ₹100 per unit.

2. LMS Integration

Develop middleware for seamless Moodle integration, allowing automatic syncing
 of course codes and real-time student feedback into learning platforms.

Sustainability Initiatives

1. Circular Economy Adoption

o Introduce e-waste pipelines to recover and recycle up to 78% of rare-earth elements used in key components like LCDs and PCBs.

2. Carbon Offset Program

Partner with reforestation NGOs to neutralize 2.1kg of CO₂ emissions per unit,
 including manufacturing and logistics footprint.

Strategic Vision

This feedback system lays the groundwork for a scalable, eco-conscious, and inclusive **educational IoT infrastructure**. Future iterations aim to:

- Serve over 10,000 classrooms nationwide
- Operate in low-connectivity rural zones

- Provide real-time educational feedback with embedded intelligence
- Support local languages and dialects
- Maintain accessibility with per-unit cost < ₹3,000

The system aspires to **bridge the "last meter" of digital education**, not just through connectivity but through intelligent, adaptive tools designed for the real-world dynamics of Indian classrooms.