Algorithmen und Datenstrukturen

Kapitel 6: Weiterführende Entwurfs- & Analysetechniken

Prof. Dr. Peter Kling Wintersemester 2020/21

Übersicht

1 Überblick

2 Dynamische Programmierung

3 Gierige Algorithmen

1) Überblick

Generische Entwurfs- & Analyseansätze

- · haben viele algorithmische Probleme gesehen...
 - kleinstes Element, Sortieren, DB-Suche, Graph-Traversierung, Graph-Strukturen, ...
- ...und viele algorithmische Ansätze...
 - inkrementell, Divide & Conquer, Randomisierung, systematisch Traversierung, gierig, Tabellen, Reduktion, ...
- · ...und viele Analyseansätze
 - * Invarianten, Induktion, Potentialfunktionen, Master Theorem(e), amortisierte Analyse, ...

Können wir da etwas
Ordnung rein bringen?

Fragen

- · Welche Ansätze gibt es? Was unterscheidet sie?
- · Was ist jeweils die grundsätzliche Herangehensweise?
- · Wann ist welches Verfahren sinnvoll?

Typische algorithmische Ansätze

Systematische Suche

≈ "Schau dir alles an..."

- Divide & Conquer ≈ "Zerlege Probleme in Teilprobleme!"
- Dynamische Programmierung
- ≈ "Tu nie etwas zweimal!"

Gierige Verfahren

≈ "Schau niemals zurück!"

· (Lokale Suche)

≈ "Denke global, handle lokal!"

Algorithmen und <mark>D</mark>atenstrukturen └─Überblick

└─Typische algorithmische Ansätze

Systematische Suche

Systematische Suche

Systematische Suche

Systematische Suche

Sinde A Compere "Zurieg mektene in relignetieren"

Gering Verfahren

Gering Verfahren

Gering Verfahren

Johns eine Statisch

"Derke global, handle lokalf"

 zur lokalen Suche siehe z.B. Wikipedia; sie fällt hier etwas heraus, da es sich (typischerweise) um heuristische Algorithmen handelt, für die man also keine oder nur schwache Optimalitätsgarantien geben kann; sie ist aber von immenser Bedeutung in der Praxis (z. B. im maschinellen Lernen) und Gegenstand aktiver Forschung

Systematische Suche

Prinzip

Durchsuche den gesamten Lösungsraum. Auch bekannt als "Brute-Force" Ansatz.

Vorteile

· sehr einfach

Nachteile

- sehr Zeitaufwendig
- · schlecht für große Instanzen

Mögliche Anwendungen:

- · Suche in unsortierter Liste
- Suche per Broadcasting in unstrukturierten, verteilten Systemen <u>Stichwort:</u> Peer-to-Peer Systeme
- Rucksackproblem

Systematische Suche: Rucksackproblem

Algorithmisches Problem

- · Eingabe:
 - n Objekte und Rucksack mit Kapazität W
 - Objekt i hat Gewicht (weight) w_i und Wert (value) v_i
- <u>Ausgabe:</u> Menge *M* von Objekten die zusammen in den Rucksack passen und maximalen Gesamtwert haben.

Lösung per systematische Suche

- · iteriere über alle Teilmengen M von Objekten
- merke die Menge M mit bisher maximalem Wert $\sum_{i \in M} v_i$...
- ...für die $\sum_{i \in M} w_i \leq W$ gilt

 \rightsquigarrow Laufzeit $O(2^n)$

Divide & Conquer

Prinzip

- · Problem in Teilprobleme aufteilen
- · Teilprobleme rekursiv lösen
- · Lösung aus Teillösungen zusammensetzen

Vorteile

- elegant
- Pseudocode oft einfach
- oft gute Laufzeit

Nachteile

- · Wie Teillösungen zusammensetzen?
 - Mit Geschick und Übung!
- Wie Laufzeit analysieren?
 - Meist Standardschema, also auch Übung!

Mögliche Anwendungen:

- Mergesort, Quicksort
- Binary Search
- · Multiplikation großer Zahlen
- Matrizenmultiplikation
- Selektion
- · Dichtestes Punktpaar

Algorithmen und Datenstrukturen Lüberblick

Divide & Conquer

- · Matrizenmultiplikation: Cormen (3rd) Ch. 4.2
- · Selektion: Cormen (3rd) Ch. 9

Prinzip

- · Problem in Teilprobleme aufteilen
- · Teilprobleme rekursiv lösen
- · Lösung aus Teillösungen zusammensetzen

Äh, hatten wir das nicht gerade?

Merken der Lösungen von häufigen Teilproblemen!

Prinzip

(Abgrenzung gegenüber D&D)

- · formuliere Problem rekursiv
- · vermeide mehrfache Berechnung von Teilergebnissen
- · Verwende "bottom-up" Implementierung

Prinzip

(Abgrenzung gegenüber D&D)

- formuliere Problem rekursiv
- · vermeide mehrfache Berechnung von Teilergebnissen
- verwende "bottom-up" Implementierung

Vorteile

- · einfache Implementierung
 - · mittels Tabelle
- meist einfache Analyse

Nachteile

- · Finden einer passenden Rekursion?
 - Mit Geschick und Übung!
- Laufzeit oft suboptimal
- Speicherplatz oft suboptimal

Mögliche Anwendungen:

- · Längste gemeinsame Teilfolge
- Rucksackproblem
- APSP

- Matrixketten-Multiplikation
- · Optimale binäre Suchbäume

Prinzip - formuliere Problem - vermeide mehrfache - verwende _bottom-u	Berechnung von Teilergebnissen
Vorteile - einfache Implementierung - mittels Tabelle - meist einfache Analyse	Nachteile - Finden einer passenden Rekursion? - Mt Geschick und übeng! - Laufzeit oft suboptimal - Speicherplatz oft suboptimal
Mögliche Anwendungen: - Längste gemeinsame Teilfo - Rucksackproblem - APSP	lge - Matrixketten-Multiplikation - Optimale binäre Suchbäume

- · Längste gemeinsame Teilfolge: Cormen (3rd) Ch. 15.4
- Rucksackproblem: siehe Unterkapitel zu Dynamischer Programmierung
- · Matrixketten-Multiplikation: Cormen (3rd) Ch. 15.2
- · Optimale binäre Suchbäume: Cormen (3rd) Ch. 15.5

Gierige Verfahren

Prinzip

- · typischerweise für Optimierungsprobleme
 - finde zulässige Lösung...
 - · ...die bzgl. einer bestimmten Zielfunktion optimal ist
- · baue Lösungen iterativ in "kleinen" Schritten:
 - treffe in jedem Schritt gierige (aktuell beste)...
 - · ...und irreversible Entscheidung

Vorteile

- · meist sehr einfach...
 - · ...wenn es denn funktioniert
- · meist sehr effizient

Nachteile

- · Aber wann funktioniert es?
- Und wie beweist man es?

Mögliche Anwendungen:

- · minimale Spannbäume (Prim/Kruskal)
- · kürzeste Pfade (Dijkstra)

- fraktionales Rucksackproblem
- Scheduling

Gierige Verfahren

- · man kann im übrigen durchaus argumentieren, dass Dijkstra ein Algorithmus nach dem Prinzip der dynamischen Programmierung ist
- gierige Algorithmen sind meist ein guter Startpunkt, wenn man versucht ein Optimierungsproblem zu lösen
- es gibt eine starke und sehr allgemeine Theorie zu gierigen Algorithmen; Stichwort Matroide (siehe auch Cormen (3rd) Ch. 16.4); Matroide sind nicht Teil dieses Kurses!

Prinzip

(Abgrenzung gegenüber D&D)

- formuliere Problem rekursiv
- · vermeide mehrfache Berechnung von Teilergebnissen
- · verwende "bottom-up" Implementierung

Typisches Anwendungsgebiet

- Optimierungsprobleme
- · optimale Lösung zusammensetzbar aus optimalen Teillösungen
- · jedes Teilproblem kann ggfs. mehrfach vorkommen

Beispielproblem 1: Längste gemeinsame Teilfolge

Definition 6.1

Seien $X = (x_1, x_2, ..., x_m)$ und $Y = (y_1, y_2, ..., y_n)$ zwei Folgen über einem endlichen Alphabet Σ . Dann heißt Y Teilfolge von X, wenn es Indizes $i_1 < i_2 < \cdots < i_n$ gibt mit $x_{i_j} = y_j$ für alle $j \in \{1, 2, ..., n\}$

Y B C A C

Y ist Teilfolge von X...

- X A B A C A B C
- ...mit $(i_1, i_2, i_3, i_4) = (2, 4, 5, 7)$

Algorithmisches Problem: Längste gemeinsame Teilfolge

- Eingabe: Folgen $X = (x_1, x_2, \dots, x_m)$ und $Y = (y_1, y_2, \dots, y_n)$
- · Ausgabe: längste Folge Z die Teilfolge von X und Y ist

Längste gemeinsame Teilfolge: Beispiel & Brute-Force

Triviale Lösung: Brute-Force

- überprüfe alle $2^{\min\{m,n\}}$ Teilfolgen der kleineren Folge
- → exponentielle Laufzeit

Längste gemeinsame Teilfolge: Rekursion

Theorem 6.1

Seien $X=(x_1,\ldots,x_m)$ und $Y=(y_1,\ldots,y_n)$ zwei Folgen und sei $Z=(z_1,\ldots,z_k)$ eine längste gemeinsame Teilfolge von X und Y. Dann gilt:

- (a) Ist $x_m = y_n$, dann ist $z_k = x_m = y_n$ und $(z_1, ..., z_{k-1})$ ist eine längste gemeinsame Teilfolge von $(x_1, ..., x_{m-1})$ und $(y_1, ..., y_{n-1})$.
- (b) Ist $x_m \neq y_n$ und $z_k \neq x_m$, dann ist Z eine längste gemeinsame Teilfolge von (x_1, \ldots, x_{m-1}) und Y.
- (c) Ist $x_m \neq y_n$ und $z_k \neq y_n$, dann ist Z eine längste gemeinsame Teilfolge von X und (y_1, \ldots, y_{n-1}) .
 - X A B A C A B C
 - Y B A C C A B B C

Seien $X = (x_1, \dots, x_n)$ und $Y = (y_1, \dots, y_n)$ zwei Folgen und sei $Z = (x_1, \dots, x_n)$ eine Einelge geweinsamer Einelge von $Y = (x_1, \dots, x_n)$ eine Einelge geweinsamer Einelge von $Y = (x_1, \dots, x_n)$, and seine stag $x_1 = x_2 = y_1$ and (x_1, \dots, x_n) , and $x_1 = y_2 = x_1 = y_1$. (b) lett $x_1 = x_1 = y_1 = x_1 = y_2 = y_2 = y_2$. (c) lett $x_1 = x_1 = y_2 = y_2 = y_3 = y_3$

Längste gemeinsame Teilfolge: Rekursion

Z ? ? ... ? C

• siehe Cormen (3rd) Theorem 15.1 für Ausformulierung dieser Beweisskizze

Längste gemeinsame Teilfolge: Rekursion \rightarrow Rekursionsformel

- gegeben $X = (x_1, \dots, x_m)$ und $Y = (y_1, \dots, y_n)$
- sei C[i, j] die Länge einer längsten gemeinsamen Teilfolge von (x_1, \ldots, x_i) und (y_1, \ldots, y_i)
- · mit Hilfe von Theorem 6.1 folgt:

$$C[i,j] = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ C[i-1,j-1]+1 & \text{, falls } i,j > 0 \text{ und } x_i = y_j \\ \max \left\{ C[i-1,j], C[i,j-1] \right\} & \text{, falls } i,j > 0 \text{ und } x_i \neq y_j \end{cases}$$

Anmerkung

- · können das natürlich Rekursiv implementieren
- <u>aber</u>: dann wird jedes C[i, j] mehrfach neu berechnet
 → ineffizient

 $\label{eq:controlled} \begin{aligned} & \operatorname{Solver}(x) = \operatorname{Returnion Features formed } \\ & \operatorname{spigstan} = (x, -y_0) \operatorname{not} r + (y_0, -y_0) \\ & \cdot \operatorname{se}(z)_i \text{ dis Large einer Largetze geneinsamen Relidige von } \\ & \cdot \operatorname{se}(z)_i, \text{ dis Large einer Largetze geneinsamen Relidige von } \\ & \cdot \operatorname{min Nife von Theorem 6.1 folgs.} \\ & \cdot \operatorname{clist}_i = 0 \operatorname{oder}_i = 0 \\ & \cdot \operatorname{clist}_i = 0 \operatorname{oder}_i = 0 \\ & \cdot \operatorname{clist}_i = 0 \operatorname{oder}_i = 0 \\ & \cdot \operatorname{clist}_i = 0 \operatorname{oder}_i + 0 \\ & \cdot \operatorname{clist}_i = 0 \\ & \cdot \operatorname{clist}_i = 0 \operatorname{oder}_i + 0 \\ & \cdot \operatorname{clist}_i = 0$

Längste gemeinsame Teilfolge: Rekursion →

• Insbesondere wird C[i,j] in verschiedenen Zweigen des Rekursionsbaums ständig neu berechnet!

Längste gemeinsame Teilfolge: Pseudocode

Erinnerung

```
C[i,j] = \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } j = 0 \\ C[i-1,j-1] + 1 & \text{, falls } i,j > 0 \text{ und } x_i = y_j \\ \max \left\{ C[i-1,j], C[i,j-1] \right\} & \text{, falls } i,j > 0 \text{ und } x_i \neq y_j \end{cases}
```

Algorithmus 6.1: LCSUBSEQ(X, Y)

```
1 m \leftarrow \text{length}(X)

2 n \leftarrow \text{length}(Y)

3 \text{for } i \leftarrow 0 \text{ to } m : C[i, 0] \leftarrow 0

4 \text{for } j \leftarrow 0 \text{ to } n : C[0, j] \leftarrow 0

5 \text{for } i \leftarrow 1 \text{ to } m

6 \text{for } j \leftarrow 1 \text{ to } n

7 \text{"berechne } C[i, j] \text{ nach obiger Formel"}

8 \text{return } C
```


• LCSUBSEQ steht für "longest common subsequence"

Längste gemeinsame Teilfolge: Pseudocode

Längste gemeinsame Teilfolge: Beispiel & Extraktion

- · ausfüllen der Tabelle mittels Rekursion
- Extraktion längster Teilfolge: speichere zusätzlich "Richtung"

	j	0	1	2	3	4	5	6
i		Уј	В	D	С	А	В	А
0	Xi	0	0	0	0	0	0	0
1	А	0	↑ 0	↑ 0	↑ 0	<u></u>	← 1	<u></u>
2	В	0	<u></u>	← 1	← 1	1	₹ 2	← 2
3	С	0	1	1	₹ 2	← 2	† 2	† 2
4	В	0	<u> </u>	† 1	† 2	† 2	₹ 3	← 3
5	D	0	1	₹ 2	† 2	† 2	† 3	† 3
6	А	0	† 1	† 2	† 2	₹ 3	† 3	<u> </u>
7	В	0	<u></u>	† 2	† 2	† 3	<u> </u>	↑ 4

Wie gut ist dieser DP-Ansatz?

Theorem 6.2

Für zwei Folgen X und Y der Längen n und m berechnet Algorithmus LCSUBSEQ die Länge einer längsten gemeinsamen Teilfolge in Laufzeit $\Theta(n \cdot m)$.

Theorem 6.3

Gegeben die Ausgabe-Tabelle von Algorithmus LCSUBSEQ, kann eine längste gemeinsame Teilfolge in Laufzeit $\Theta(n+m)$ bestimmt werden.

Beispielproblem 2: Rucksackproblem

Algorithmisches Problem

Erinnerung

- Eingabe:
 - n Objekte und Rucksack mit Kapazität W
 - Objekt i hat Gewicht (weight) wi und Wert (value) vi
- <u>Ausgabe:</u> Menge *M* von Objekten die zusammen in den Rucksack passen und maximalen Gesamtwert haben.

Beispiel für Rucksackgröße W = 6								
	Größe	5	2	1	3	7	4	
	Wert	11	5	2	8	14	9	

- Objekte 1 und 3 passen und haben Gesamtwert 13 → Optimal?
- · Objekte 2, 3 und 4 passen und haben Gesamtwert 15!

Rucksackproblem: Herleitung einer Rekursion

- · sei O eine optimale zulässige Teilmenge der *n* Objekte
 - also $\sum_{i \in O} w_i \leq W...$
 - ...und $\sum_{i \in O} v_i$ maximal
- sei OPT(i, w) der Wert einer optimalen Lösung...
 - · ...wenn wir nur Objekte 1 bis i packen dürfen und...
 - · ...maximal Gewicht w erlaubt ist
- beachte: $OPT(n, W) = \sum_{i \in O} v_i$

Unterscheiden zwei Fälle

Fall 1: *n* ∉ *O*

• dann gilt OPT(n, W) = OPT(n - 1, W)

Fall 2: $n \in O$

• dann gilt $OPT(n, W) = v_n + OPT(n - 1, W - w_n)$

Rucksackproblem: Die Rekursion als Formel

```
\mathsf{OPT}(i,w)
= \begin{cases} 0 & \text{, falls } i = 0 \text{ oder } w = 0 \\ \mathsf{OPT}(i-1,w) & \text{, falls } i,w > 0 \text{ und } w_i > w \\ \max \big\{ \mathsf{OPT}(i-1,w), v_i + \mathsf{OPT}(i-1,w-w_i) \big\} & \text{, falls } i,w > 0 \text{ und } w_i \leq w \end{cases}
```

Algorithmus 6.2: KNAPSACKDP(n, W)

```
1 for i \leftarrow 0 to n: A[i, 0] \leftarrow 0

2 for w \leftarrow 0 to W: A[0, w] \leftarrow 0

3 for i \leftarrow 1 to n

4 for w \leftarrow 1 to W

5 "berechne A[i, w] nach obiger Formel (A statt OPT)"

6 return A[n, W]
```

 $\begin{aligned} & \text{OPT}(t,w) \\ & \text{OPT}(t-tw) \\ & \text{ont} & \text{OPT}(t-tw) \\ & \text{ont} & \text{OPT}(t-tw) \\ & \text{ont} & \text{OPT}(t-tw), w + \text{OPT}(t-tw-w)\}, & \text{ont} & \text{tw} & \text{ont} & \text{ont} \\ & \text{ont} & \text{OPT}(t-tw), w + \text{OPT}(t-tw-w)\}, & \text{ont} & \text{tw} & \text{ont} & \text{ont} \\ & \text{ont} & \text{ont} & \text{ont} & \text{ont} & \text{ont} \\ & \text{ont} & \text{ont} & \text{ont} & \text{ont} & \text{ont} \\ & \text{ont} & \text{ont} & \text{ont} & \text{ont} \\ & \text{ont} & \text{ont} & \text{ont} & \text{ont} \\ & \text{ont} & \text{ont} & \text{ont} & \text{ont} \\ & \text{ont} & \text{ont} \\ & \text{ont} & \text{ont} & \text{ont} \\ & \text{ont} \\ & \text{ont} & \text{ont} \\ & \text{ont$

m: Die Rekursion als Formel

Rucksackproblem: Die Rekursion als Formel

- · man könnte hier "schummeln" und $\mathsf{OPT}(i,w)$ für w<0 als $-\infty$ definieren
- · dann kann man sich den mittleren Sonderfall sparen
- · im Englischen heißt das Rucksackproblem "Knapsack Problem"

Rucksackproblem: Beispiel

i	Wi	Vi
n	3	3
n-1	4	7
:	7	3
	1	2
	2	3
:	1	1
2	3	4
1	5	2

0	1							W
0	2	3	5	7	9	10	12	13
0	2	3	5	7	9	10	12	13
0	2	3	5	6	7	9	10	10
0	2	3	5	6	7	9	10	10
0	1	3	4	5	7	8	8	8
0	1	1	4	5	5	5	5	6
0	0	0	4	4	4	4	4	6
0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0

Rucksackproblem: Beispiel

 um die einzupackenden Objekte zu bekommen, würde man sich auch hier entsprechende "Zeiger" speichern, ähnlich wie wir es bei den längsten gemeinsamen Teilfolgen gesehen haben

Wie gut ist dieser DP-Ansatz?

Theorem 6.4

Für n Objekte und einen Rucksack der Größe W berechnet Algorithmus KNAPSACKDP den Wert einer optimalen Lösung des Rucksackproblems in Laufzeit $\Theta(n \cdot W)$.

Theorem 6.5

Gegeben die Ausgabe-Tabelle von Algorithmus KNAPSACKDP, kann eine Objektemenge mit optimalem Wert die in den Rucksack passt in Laufzeit $\Theta(n+m)$ bestimmt werden.

3) Gierige Algorithmen

Gierige Algorithmen

Prinzip

- · typischerweise für Optimierungsprobleme
 - · finde zulässige Lösung...
 - · ...die bzgl. einer bestimmten Zielfunktion optimal ist
- · baue Lösungen iterativ in "kleinen" Schritten:
 - · treffe in jedem Schritt gierige (aktuell beste)...
 - ...und irreversible Entscheidung

Am Beispiel minimaler Spannbäume:

- · <u>Probleminstanz:</u> gewichteter, ungerichteter zusammenhängender Graph
- · Zulässige Lösungen: Spannbäume
- · Zielfunktion: Gewicht eines Spannbaums
- · Gesucht: Spannbaum mit minimalem Gewicht

Gierige Algorithmen: Idee & Prim

- bestimme Lösung durch sukzessives Erweitern bereits gefundener Teillösungen
- Algorithmus von Prim bestimmt minimalen Spannbaum durch sukzessives Hinzufügen von Kanten
- 2) Erweiterung durch lokal optimale Wahl
- 2) Prim wählt leichteste Kante, die isolierten Knoten mit Teilbaum verbindet
- Analyse muss zeigen, dass lokal optimale Wahlen zu global optimaler Lösung führt
- 3) Analyse mit Hilfe von Schnitten zeigt, dass durch lokal optimale Wahl erzeugter Teilbaum immer in minimalem Spannbaum enthalten ist

Gierige Algorithmen: Idee & Kruskal

- bestimme Lösung durch sukzessives Erweitern bereits gefundener Teillösungen
- Algorithmus von Kruskal bestimmt minimalen Spannbaum durch sukzessives Hinzufügen von Kanten
- Erweiterung durch lokal optimale Wahl
- 2) Kruskal wählt leichteste Kante, die Zusammenhangskomponenten verbindet
- Analyse muss zeigen, dass lokal optimale Wahlen zu global optimaler Lösung führt
- 3) Analyse mit Hilfe von Schnitten zeigt, dass durch lokal optimale Wahl erzeugter Teilbaum immer in minimalem Spannbaum enthalten ist

Beispielproblem 1: Gieriges 1-Prozessor Scheduling

Gegeben

- ein Prozessor und *n* Jobs
- · keine Parallelität: Prozessor bearbeitet zu jedem Zeitpunkt \leq 1 Jobs
- · angefangene Jobs können nicht abgebrochen werden
- j-ter Job hat Größe pi

Gesucht

Abarbeitungsreihenfolge, so dass durchschnittliche Bearbeitungszeit minimal ist.

Algorithmen und Datenstrukturen Ligierige Algorithmen

Beispielproblem 1: Gieriges 1-Prozessor

- wenn man Jobs nicht abbrechen darf, spricht man von nonpreemptive Scheduling
- · p_j: das "p" steht für processing volume

Abarbeitungsreihenfolge & Bearbeitungszeit

- Bearbeitungszeit C_j von Job j: Zeitpunkt, zu dem Job j vollständig bearbeitet ist
- Abarbeitungsreihenfolge kann als Permutation $\pi: \{1,2,\ldots,n\} \rightarrow \{1,2,\ldots,n\}$ modelliert werden
 - Bearbeitungszeit Job $\pi(1)$: $C_{\pi(1)} = p_{\pi(1)}$
 - Bearbeitungszeit Job π (2): $C_{\pi(2)} = C_{\pi(1)} + p_{\pi(2)}$
 - Bearbeitungszeit Job $\pi(3)$: $C_{\pi(3)} = C_{\pi(2)} + p_{\pi(3)}$
 - ...

• C_i: das "C" steht für completion time

Abarbeitungsreihenfolge & Bearbeitungszeit

- Bearbeitungszeit C_j von Job j: Zeitpunkt, zu dem Job j vollständig bearbeitet ist
- Abarbeitungsreihenfolge kann als Permutation $\pi: \{1,2,\ldots,n\} \rightarrow \{1,2,\ldots,n\}$ modelliert werden
 - Bearbeitungszeit Job $\pi(1)$: $C_{\pi(1)} = p_{\pi(1)}$
 - Bearbeitungszeit Job $\pi(2)$: $C_{\pi(2)} = C_{\pi(1)} + p_{\pi(2)}$
 - Bearbeitungszeit Job $\pi(3)$: $C_{\pi(3)} = C_{\pi(2)} + p_{\pi(3)}$
 - ...

• C_i: das "C" steht für completion time

Wie gut ist gieriges Scheduling?

Lemma 6.1

Werden n Jobs gemäß der Permutation π bearbeitet, so beträgt die durchschnittliche Bearbeitungszeit

$$P(\pi) := \frac{1}{n} \cdot \sum_{j=1}^{n} (n-j+1) \cdot p_{\pi(j)}.$$

Lemma 6.2

Eine Permutation π führt genau dann zu einer minimalen durchschnittlichen Bearbeitungszeit, wenn $p_{\pi(1)} \leq p_{\pi(2)} \leq \cdots \leq p_{\pi(n)}$.

Algorithmen und Datenstrukturen LGierige Algorithmen

└─Wie gut ist gieriges Scheduling?

From 3.3 in particular to the production of the

Wie gut ist gieriges Scheduling?

• Beweis von Lemma 6.1 erfolgt per vollständiger Induktion über *n*

Beweis Lemma 6.2

- · Beweis per Widerspruch: Annahme π optimal aber...
- ...existiert i mit $p_{\pi(i)} > p_{\pi(i+1)}$
- sei $\tilde{\pi}$ wie π , außer dass $\tilde{\pi}(i) = \pi(i+1)$ und $\tilde{\pi}(i+1) = \pi(i)$
- · nach Lemma 6.1 gilt

$$n \cdot P(\pi) - n \cdot P(\tilde{\pi})$$

$$= \sum_{j=1}^{n} (n - j + 1) \cdot p_{\pi(j)} - \sum_{j=1}^{n} (n - j + 1) \cdot p_{\tilde{\pi}(j)}$$

$$= (n - i + 1) \cdot p_{\pi(i)} + (n - i) \cdot p_{\pi(i+1)} - (n - i + 1) \cdot p_{\tilde{\pi}(i)} - (n - i) \cdot p_{\tilde{\pi}(i+1)}$$

$$= p_{\pi(i)} - p_{\pi(i+1)} > 0$$

• Widerspruch zur Optimalität von π ! $\frac{4}{7}$

Beweis Lemma 6.2

Beweis per Widerspruch: Annahme # optimal aber. sei $\bar{\pi}$ wie π , außer dass $\bar{\pi}(i) = \pi(i+1)$ und $\bar{\pi}(i+1) = \pi(i)$

Widerspruch zur Optimalität von #1 46

- strenggenommen zeigen wir hier nur " π optimal" \implies " π ist sortiert"
- · die Rückrichtung folgt natürlich direkt, da alle sortierten π zur gleichen durchschnittlichen Bearbeitungszeit führen

Beispielproblem 2: Gieriges Mehr-Prozessor Scheduling

Gegeben

- *m* identische Prozessor und *n* Jobs
- · keine Parallelität (auf einem Prozessor)
- · angefangene Jobs können nicht abgebrochen werden
- j-ter Job hat Größe pj

Gesucht

Aufteilung der Jobs auf Prozessoren sowie für jeden Prozessor eine Abarbeitungsreihenfolge der ihm zugewiesenen Jobs, so dass die durchschnittliche Bearbeitungszeit minimal ist.

Beispiel für Mehr-Prozessor Scheduling

- m = 3 Prozessoren
- n = 9 Jobs
 - $p_1 = 3$, $p_2 = 5$, $p_3 = 6$, $p_4 = 10$, $p_5 = 11$, $p_6 = 14$, $p_7 = 15$, $p_8 = 18$, $p_9 = 20$

Schedule 1: durchschnittliche Bearbeitungszeit 18, 33

Beispiel für Mehr-Prozessor Scheduling

- $\cdot m = 3$ Prozessoren
- n = 9 Jobs
 - $p_1 = 3$, $p_2 = 5$, $p_3 = 6$, $p_4 = 10$, $p_5 = 11$, $p_6 = 14$, $p_7 = 15$, $p_8 = 18$, $p_9 = 20$

Schedule 2: durchschnittliche Bearbeitungszeit 18, 33

Wie gut ist gieriges Mehr-Prozessor Scheduling?

Lemma 6.3

Betrachte eine Permutation π mit $p_{\pi(1)} \leq p_{\pi(2)} \leq \cdots \leq p_{\pi(n)}$. Betrachte den Schedule, der Jobs gemäß π scheduled und dabei Job $\pi(i)$ auf Prozessor $i \mod m$ zuweist. Der so konstruierte Scheduling besitzt die minimale durchschnittliche Bearbeitungszeit.

Beweisskizze.

- · Analogon von Lemma 6.1 gilt für jeden Prozessor
- → wenn Prozessor i ≥ 2 Jobs mehr als Prozessor i' hat...
 ...besserer Schedule durch verschieben des ersten Jobs von i auf i'
- vertauschen des j-ten Jobs zwischen Prozessoren i und i' ändert die durchschnittliche Bearbeitungszeit nicht
- durchschnittliche Bearbeitungszeit auf einem Prozessor minimal bei aufsteigender Sortierung (Lemma 6.2)

2021-02-25

· Analogon von Lemma 6.1 gilt für jeden Prozesson --- wenn Prozessor i > 2 Jobs mehr als Prozessor i' hat.

Wie gut ist gieriges Mehr-Prozessor Scheduling?

Wie gut ist gieriges Mehr-Prozessor Scheduling?

• wir gehen hier davon aus, dass die Prozessoren von 0 bis m-1nummeriert sind

Ist gierig immer gut?

- betrachte wieder *m* Prozessoren und *n* Jobs
- · neues Ziel: minimiere spätesten Endzeitpunkt

Schedule 1: Endzeitpunkt 40

└─Ist gierig immer gut?

· man nennt dieses Kriterium in der Literatur "Makespan"

Ist gierig immer gut?

- betrachte wieder *m* Prozessoren und *n* Jobs
- · <u>neues Ziel:</u> minimiere spätesten Endzeitpunkt

Schedule 2: Endzeitpunkt 34

2021-02-25

└─Ist gierig immer gut?

· man nennt dieses Kriterium in der Literatur "Makespan"

Ok, aber wie schlimm kann das schon werden...

Instanz:

- · m Prozessoren
- $m \cdot (m-1)$ Jobs der Größe 1
- · 1 Job der Größe m

Greedy Schedule:

Endzeitpunkt 2m - 1

Algorithmen und Datenstrukturen Ligierige Algorithmen

└─Ok, aber wie schlimm kann das schon werden...

- Greedy ist also um einen Faktor 2 1/m schlechter als der optimale Algorithmus
- in der Tat ist dies auch die schlimmste Instanz; d. h. für keine andere Instanz wird der Faktor zwischen dem Greedy-Schedule und dem optimalen Schedule schlimmer als 2-1/m
- man sagt deshalb, dass Greedy eine Approximationsgüte von 2-1/m besitzt

Ok, aber wie schlimm kann das schon werden...

Instanz:

- · m Prozessoren
- $m \cdot (m-1)$ Jobs der Größe 1
- · 1 Job der Größe m

Optimaler Schedule: Endzeitpunkt m

Algorithmen und Datenstrukturen —Gierige Algorithmen

└─Ok, aber wie schlimm kann das schon werden...

- Greedy ist also um einen Faktor 2 1/m schlechter als der optimale Algorithmus
- in der Tat ist dies auch die schlimmste Instanz; d. h. für keine andere Instanz wird der Faktor zwischen dem Greedy-Schedule und dem optimalen Schedule schlimmer als 2-1/m
- man sagt deshalb, dass Greedy eine Approximationsgüte von 2-1/m besitzt

Wie wird man besser?

Wie können wir den Algorithmus für das schlechte Beispiel reparieren?

- · führe Greedy Schedule aus, aber...
- · ...sortiere die Jobs zuerst absteigend nach ihrer Größe
- → nie schlechter als 4/3 · OPT
 - Beweis z. B. in Methoden des Algorithmenentwurfes (Master Modul Informatik)

Worst-case Instanz?

- · m Maschinen
- je zwei Jobs der Länge m + 1, m + 2, ..., 2m und...
- · …ein Job der Länge *m*
- → um Faktor 4/3 schlechter als OPT

Algorithmen und Datenstrukturen Lierige Algorithmen

└─Wie wird man besser?

• <u>Gute Übung:</u> Zeige, dass die Worst-case Instanz tatsächlich um den Faktor 4/3 schlechter ist als OPT!

Ein Beispiel aus der Praxis

Datenkompression:

- · reduziert Größe von Dateien
- viele Verfahren für unterschiedliche Anwendungen MP3, MPEG, JPEG, ...
- · Greedy-Verfahren: Huffman-Kodierung

😈 Takeaway für Greedy-Algorithmen

- · schön, einfach, elegant
- · leider nicht immer optimal
- · typischerweise ein erster Schritt im Algorithmendesign