שיעור 6 אי-כריעות משפט הרדוקציה

 $L_{
m acc}$ 6.1 הגדרה

 $L_{\text{acc}} = \{ \langle M, w \rangle \mid w \in L(M) \} \in RE \backslash R$

 $L_{
m halt}$ 6.2 הגדרה

 $L_{ ext{halt}} = \{\langle M, w
angle \mid w$ עוצרת על א $M \} \in RE \backslash R$

 $L_{
m d}$ 6.3 הגדרה

 $L_{d} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \} \notin RE$

 $L_{
m acc} \in RE$ 6.1 משפט

 $L_{\rm acc} \in RE$.

 $L_{
m acc}\in$ לכן לכן , $L_{
m acc}$ את מכיוון ש- מכיוון ש- , $L(U)=L_{
m acc}$, לכן המכונת טיורינג האוניברסלית אשר מקבלת את .RE

 $L_{\mathsf{halt}} \in RE$ 6.2 משפט

 $L_{\text{halt}} \in RE$.

. תעצור ותקבל. עצרה ודחתה, U' שהיא למעשה U פרט למקום שבו U עצרה ודחתה, U' תעצור ותקבל.

 $:L_{
m halt}$ את מקבלת U' נוכיח כי

 $x \in L_{\mathrm{halt}}$ אם

w אוצרת על M -ו $x = \langle M, w \rangle \Leftarrow$

x עוצרת ומקבלת את $U' \Leftarrow$

אם מקרים: $x \notin L_{\mathrm{halt}}$

- x את דוחה את $U' \Leftarrow x \neq \langle M, w \rangle$
- .x עוצרת על $U' \Leftarrow w$ לא עוצרת לא M -ו $x = \langle M, w \rangle$

$L_{ m d} otin RE$ 6.3 משפט

$L_{\rm d} \notin RE$.

הוכחה:

 $L_{
m d}\in RE$ נניח בשלילה כי

 $.L_{
m d}$ את המקבלת את $\exists \Leftarrow$

$$.L(M_d) = L_d \Leftarrow$$

 $:\!\!\langle M_d
angle$ על M_d על

- $L(M_{
 m d})
 eq L_{
 m d} \Leftarrow \langle M_{
 m d}
 angle
 otin L_{
 m d} \Leftarrow \langle M_{
 m d}
 angle \in L(M_{
 m d})$ אם •
- $L(M_{\mathrm{d}})
 eq L_{\mathrm{d}} \Leftarrow \langle M_{\mathrm{d}} \rangle \in L_{\mathrm{d}} \Leftarrow \langle M_{\mathrm{d}} \rangle \notin L(M_{\mathrm{d}})$ אם •

 $L_{
m d} \notin RE$ ולכן ולכן $L(M_{
m d}) = L_{
m d}$ שיבלנו סתירה לכך בשני המקרים קיבלנו

משפט 6.4 לא כריעה $L_{ m acc}$

$$L_{\rm acc} = \{\langle M, w \rangle \mid w \in L(M)\} \notin R$$
.

:מחסומ

 $L_{
m acc}$ את המכריעה המ"ט המכריעה ותהי ותהי בשלילה כי $L_{
m acc} \in R$

.(6.3 כפי שהוכחנו מ"ט $M_{
m d}$ כפי שהוכחנו כפתירה לכך ש- $L_{
m d}$ לבטתירה מ"ט $M_{
m d}$ כפי שהוכחנו משפט $M_{
m d}$

$M_{ m d}$ התאור של

:x על קלט $=M_{
m d}$

- . דוחה. $\langle M \rangle$ בודקת האם אם לא $x = \langle M \rangle$
 - $\langle x \rangle = \langle \langle M \rangle
 angle$ מחשבת את (2
 - $:\langle M,\langle M
 angle
 angle$ על הזוג $M_{
 m acc}$ את מריצה (3
 - . אם $M_{
 m acc}$ אם $M_{
 m acc}$ אם •
 - . אם $M_{
 m d} \Leftarrow$ דוחה $M_{
 m acc}$ מקבלת •

 $:\!L_{
m d}$ מכריעה את מכריעה $M_{
m d}$

 $x \in L_{\mathrm{d}}$ אם

$$\langle M \rangle \notin L(M) \text{ -1 } x = \langle M \rangle \Leftarrow$$

$$\langle M, \langle M
angle
angle$$
 דוחה את הזוג $M_{
m acc} \Leftarrow$

.x את מקבלת $M_{
m d}$

אם $x \notin L_{\mathsf{d}}$ שני מקרים:

x את דוחה $M_{\mathrm{d}} \Leftarrow x \neq \langle M \rangle$ (1) מקרה

$$\langle M \rangle \in L(M)$$
 -ו $x = \langle M \rangle$:(2) מקרה

$$\langle M, \langle M \rangle
angle$$
 מקבלת את את $M_{
m acc} \Leftarrow$

x דוחה את M_{d} ∈

משפט 6.5 לא כריעה L_{halt}

 $L_{ ext{halt}} = ig\{\langle M, w
angle \mid w$ עוצרת על $M ig\}
otin R$.

 $L_{
m halt}$ את מ"ט המכריעה את הוכחה: נניח בשלילה כי $L_{
m halt} \in R$ ותהי

. (בסתירה לכך ש- $L_{\rm acc} \notin R$ כפי שהוכחנו במשפט $M_{\rm acc}$ כפי שהוכחנו במשפט לבנות מ"ט $M_{\rm acc}$ כדי לבנות מ"ט מ

$M_{ m acc}$ אור של

x על קלט $=M_{\rm acc}$

- .x על $M_{
 m acc}$ על (1
- . דוחה $M_{\mathrm{acc}} \Leftarrow$ דוחה M_{halt} דוחה •
- מריצה את על u על מקבלת מריצה $M_{\mathrm{acc}} \leftarrow M_{\mathrm{halt}}$ מריצה אם •

<u>אבחנה</u>

 $:L_{
m acc}$ את מכריעה $M_{
m acc}$

 $x \in L_{\mathrm{acc}}$ אם

$$\langle w \rangle \in L(M)$$
 -1 $x = \langle M, w \rangle \Leftarrow$

x את מקבלת מקבלת את מקבלת מקבלת $M_{\mathrm{halt}} \Leftarrow$

.x מקבלת את מקבלת $M_{
m acc}$

אם מקרים: $x \notin L_{\mathrm{acc}}$

 $x \neq \langle M, w \rangle$:(1) מקרה

x דוחה את $M_{\mathrm{halt}} \Leftarrow$

.x דוחה את $M_{\mathrm{acc}} \Leftarrow$

(2): מקרים: $\langle w \rangle \notin L(M)$ ו- $x = \langle M, w \rangle$ שני מקרים:

 $M_{
m acc} \Leftarrow x$ דוחה את $M_{
m acc} \Leftarrow w$ דוחה את לא עוצרת על M לא עוצרת על M לא עוצרת על M לא מקבלת את $M_{
m acc} \Leftrightarrow M_{
m halt} \Leftrightarrow M_{
m acc}$ דוחה את M

 $L_{
m acc} \notin R$ -ם בסתירה לכך ש $L_{
m acc}$ מכריעה את מכריעה $M_{
m acc}$ לכן $L_{
m halt} \notin R$

משפט 6.6

$$\begin{array}{ccc} L_{\rm acc} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm acc} \notin RE \ , \\ L_{\rm halt} \in RE \backslash R & \Rightarrow & \bar{L}_{\rm halt} \notin RE \ , \\ L_{\rm d} \notin RE \backslash R \ . \end{array}$$

6.1 מ"ט המחשבת את פונקציה

הגדרה 6.4 מ"ט המחשבת פונקציה

 $x \in \Sigma^*$ אם לכל אם f את מחשבת M מיט כי אומרים $f: \Sigma^* \to \Sigma^*$ אם פונקציה בהינתן בהינתן הייט

- וגם f(x) אם בסוף החישוב של $q_{
 m acc}$ מגיעה מגיעה M
 - f(x) על סרט הפלט של M רשום •

6.1 הערה

מ"ט שמחשבת פונקציה עוצרת תמיד.

הגדרה 6.5 מ"ט המחשבת פונקציה

f אומרים מ"ט המחשבת אם חישבה $f:\Sigma^* o\Sigma^*$ אומרים כי בהינתן פונקציה

דוגמה 6.1

$$f_1(x) = xx (6.1)$$

.חשיבה $f_1(x)$

דוגמה 6.2

$$f_2(x) = \begin{cases} x & |x| \text{ in } \\ xx & |x| \text{ in } \end{cases}$$
 (6.2)

.חשיבה $f_2(x)$

דוגמה 6.3

$$f_3(x) = \begin{cases} \langle M' \rangle & x = \langle M \rangle \\ \langle M^* \rangle & x \neq \langle M \rangle \end{cases}$$
 (6.3)

כאשר

- .ט שמקבלת כל קלט M^*
- מ"ט המקבלת את השפה M' ullet

$$L(M') = \{ w \in \Sigma^* \mid ww \in L(M) . \}$$

ואם כן, (M^*) חשיבה כי ניתן לבנות מ"ט שבודקת האם (M) האם (M^*) אם לא, מחזירה קידוד קבוע שבודקת המשכפלים את הקלט בתחילת הקידוד (M) ע"י הוספת מעברים המשכפלים את הקלט בתחילת הקידוד (M)

דוגמה 6.4

$$f_4(x) = \begin{cases} 1 & x = \langle M \rangle \land \langle M \rangle \in L(M) \\ 0 & \text{אחרת} \end{cases}$$
 (6.4)

 $\langle M \rangle$ לא עוצרת על M -ו $x=\langle M \rangle$ לא קלטים כי ייתכנו קלטים $f_4(x)$

6.2 רדוקציות

הגדרה 6.6 רדוקציות

בהינתן שתי שפות , $L_2 \subseteq \Sigma^*$ אומרים כי ניתנת לרדוקציה ל- בהינתן שתי שפות בהינתן אומרים כי $L_1, L_2 \subseteq \Sigma^*$

$$L_1 \leqslant L_2$$
,

:המקיימת $f:\Sigma^*\to\Sigma^*$ המקיימת פונקציה ל

- חשיבה f (1
- $x \in \Sigma^*$ לכל (2

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2 \ .$$

דוגמה 6.5

נתונות השפות

$$L_1 = \left\{ x \in \{0, 1\}^* \mid \mathsf{ink'} \mid x \mid \right\} \; ,$$
 $L_2 = \left\{ x \in \{0, 1\}^* \mid \mathsf{ink'} \mid x \mid \right\} \; .$

הוכיחו כי

$$L_1 \leqslant L_2$$
.

פתרון:

נגדיר את הפונקציה

$$f(x) = egin{cases} 1 & \text{iik} & |x|, \\ 10 & \text{iik} & |x| \end{cases}$$

הוכחת הנכונות:

$$f(x) \in L_2$$
 אי-אגי $|f(x)| \Leftarrow f(x) = 1 \Leftarrow x$ אוגי $|x| \Leftarrow x \in L_1$

$$f(x) \notin L_2$$
 אי-אוגי $|f(x)| \Leftarrow f(x) = 10 \Leftarrow x$ אי-אוגי $|x| \Leftarrow x \notin L_1$

משפט 6.7 משפט הרדוקציה

לכל שתי שפות $L_1,L_2\subseteq \Sigma^*$ אם קיימת רדוקציה

$$L_1 \leqslant L_2$$

אזי התנאים הבאים מתקיימים:

$$L_1 \in R \quad \Leftarrow \quad L_2 \in R \quad (1)$$

$$L_1 \in RE \iff L_2 \in RE$$
 (2)

$$L_1 \notin R \implies L_2 \notin R$$
 (3)

$$L_1 \notin RE \implies L_2 \notin RE$$
 (4)

הוכחה: מכיוון ש-

$$L_1 \leqslant L_2$$

:קיימת פונקציה f חשיבה המקיימת

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$$

 $x \in \Sigma^*$ לכל

f מ"ט המחשבת את M_f

$$L_1 \in R \Leftarrow L_2 \in R$$
 נוכיח (1)

 $.L_2$ את מכריעה את מ"ט M_2 תהי $.L_1$ את המכריעה את M_1 נבנה מ"ט המכריעה את

M_1 התאור של

x על קלט $=M_1$

- M_f בעזרת f(x) את מחשבת . 1
- . מריצה את f(x) על M_2 את מריצה . 2

 ${\it L}_1$ את מכריעה את מכריעה ${\it M}_1$

- x את מקבלת את מקבלת את מקבלת $M_2 \Leftarrow f(x) \in L_2 \Leftarrow x \in L_1$ אם
 - $A_1 \leftarrow f(x)$ אם את דוחה את $M_2 \leftarrow f(x) \notin L_2 \leftarrow x \notin L_1$ אם •

$\underline{L_1} \in RE \Leftarrow L_2 \in RE$ נוכיח (2)

 $.L_2$ את המקבלת מ"ט M_2 תהי $.L_1$ את המקבלת את המקבלת את נבנה מ"ט

L_1 התאור של

x על קלט $= M_1$

- M_f בעזרת f(x) את מחשבת .1
- . מריצה את f(x) על M_2 את מריצה .2

 $:\!L_1$ את מקבלת את נוכיח כי

- x את את מקבלת את מקבלת את מקבלת $M_2 \Leftarrow f(x) \in L_2 \Leftarrow x \in L_1$ אם •
- $A_1 \leftarrow f(x)$ את את את לא מקבלת את לא $M_2 \leftarrow f(x) \notin L_2 \leftarrow x \notin L_1$ אם •

(3)

כלל 6.1

אם רדוקציה שקיימת ומראים שפה אחרת אם בוחרים אם , $L \in RE$ אם להוכיח כי שפה לשהי שקיימת הדוקציה •

$$L \leqslant L'$$
.

לדודמה:

$$L \leqslant L_{\rm acc}$$

(R' כנ"ל לגבי)

אם רדוקציה שקיימת פיימת אחרת שפה בוחרים בוחרים שקיימת רדוקציה בוחכיח להוכיח להוכיח שפה לשהי בוחרים שפה רדוקציה ש

$$L' \leqslant L$$
.

לדוגמה

$$L_{\rm d} \leqslant L$$

(R') (כנ"ל לגבי