CS132 Lecture 20 Orthogonal Projections

April 21, 2015

()

1 / 19

Outline

1 Orthogonal Decomposition Theorem

2 Properties of Orthogonal Projections

() CS132 Lecture 20 April 21, 2015 2 / 19

Orthogonal projection in \mathbb{R}^2

• Recall Example 3 of section 6.2: the orthogonal projection of a point in \mathbb{R}^2 onto a line L through the origin.

The orthogonal projection of y onto a line L through the origin.

$$\hat{\mathbf{y}} = proj_L \mathbf{y} = \frac{\mathbf{y}^T \mathbf{u}}{\mathbf{u}^T \mathbf{u}} \mathbf{u}$$

() CS132 Lecture 20 April 21, 2015 3 / 19

Orthogonal projection in \mathbb{R}^n

• Analogue in \mathbb{R}^n : orthogonal projection of a point in \mathbb{R}^n onto a subspace W (through the origin by definition)

The orthogonal projection of y onto a line L through the origin.

The orthogonal projection of y onto W.

- exists a unique decomposition $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, such that $\hat{\mathbf{y}}$ is the unique vector in W
 - for which $\mathbf{y} \hat{\mathbf{y}}$ is orthogonal to W.
 - \hat{y} closet to y.

Orthogonal Complements

Definition (Orthogonal Complement)

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be **orthogonal to** W. The set of all vectors \mathbf{z} that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (read as "W perpendicular").

The orthogonal projection of y onto W.

() CS132 Lecture 20 April 21, 2015 5 / 19

An example in \mathbb{R}^5

Example 1

Let $\{u_1,\ldots,u_5\}$ be an orthogonal basis for \mathbb{R}^5 and let

$$\mathbf{y} = c_1\mathbf{u}_1 + \cdots + c_5\mathbf{u}_5$$

Consider the subspace $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$, and write \mathbf{y} as the sum of a vector \mathbf{z}_1 in W and a vector \mathbf{z}_2 in W^{\perp} .

Solution Write

$$\mathbf{y} = \underbrace{c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2}_{\mathbf{Z}_1} + \underbrace{c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5}_{\mathbf{Z}_2}$$

where $\mathbf{z}_1 = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$ is in $Span\{\mathbf{u}_1, \mathbf{u}_2\}$ and $\mathbf{z}_2 = c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 + c_5 \mathbf{u}_5$ is in $Span\{\mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$.

CS132 Lecture 20 April 21, 2015 6 /

An example in \mathbb{R}^5 (Continue)

To show that \mathbf{z}_2 is in W^{\perp} , it suffices to show that \mathbf{z}_2 is orthogonal to the vectors in the basis $\{\mathbf{u}_1,\mathbf{u}_2\}$ for W. (From Section 6.1.) Using properties of the inner product, compute

$$\mathbf{z}_{2}^{T}\mathbf{u}_{1} = (c_{3}\mathbf{u}_{3} + c_{4}\mathbf{u}_{4} + c_{5}\mathbf{u}_{5})^{T}\mathbf{u}_{1}$$

$$= c_{3}\mathbf{u}_{3}^{T}\mathbf{u}_{1} + c_{4}\mathbf{u}_{4}^{T}\mathbf{u}_{1} + c_{5}\mathbf{u}_{5}^{T}\mathbf{u}_{1}$$

$$= 0$$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_3, \mathbf{u}_4$, and \mathbf{u}_5 . A similar calculation shows that $\mathbf{z}_2^T \mathbf{u}_2 = 0$. Thus \mathbf{z}_2 is in W^{\perp} .

Question?

Do we really need to know $\{\mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$, i.e. the orthogonal basis for W^{\perp} , to compute this decomposition?

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

() CS132 Lecture 20 April 21, 2015 7 / 19

Theorem (Theorem 8)

Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n can be written uniquely in the from

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y}^T \mathbf{u}_p}{\mathbf{u}_p^T \mathbf{u}_p} \mathbf{u}_p$$
 (2)

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

() CS132 Lecture 20 April 21, 2015 8 / 19

The vector $\hat{\mathbf{y}}$ in (1) is called the **orthogonal projection of y onto** W and often is written as $proj_W \mathbf{y}$.

The orthogonal projection of y onto W.

() CS132 Lecture 20 April 21, 2015 9 / 1

Proof.

Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ be any othogonal basis for W, and define $\hat{\mathbf{y}}$ by (2). Then $\hat{\mathbf{y}}$ is in W because $\hat{\mathbf{y}}$ is a linear combination of the basis $\mathbf{u}_1,\ldots,\mathbf{u}_p$. Let $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$. Since \mathbf{u}_1 is orthogonal to $\mathbf{u}_2,\ldots,\mathbf{u}_p$, it follows from (2) that

$$\mathbf{z}^{\mathsf{T}}\mathbf{u}_1 = (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}}\mathbf{u}_1 = \mathbf{y}^{\mathsf{T}}\mathbf{u}_1 - \left(\frac{\mathbf{y}^{\mathsf{T}}\mathbf{u}_1}{\mathbf{u}_1^{\mathsf{T}}\mathbf{u}_1}\right)\mathbf{u}_1^{\mathsf{T}}\mathbf{u}_1 = \mathbf{y}^{\mathsf{T}}\mathbf{u}_1 - \mathbf{y}^{\mathsf{T}}\mathbf{u}_1 = 0$$

Thus \mathbf{z} is orthogonal to \mathbf{u}_1 . Similarly, \mathbf{z} is orthogonal to each \mathbf{u}_j in the basis for W. Hence \mathbf{z} is orthogonal to every vector in W, i.e., \mathbf{z} is in W^{\perp} . To show that the decomposition in (1) is unique, suppose \mathbf{y} can also be written as $\mathbf{y} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$, with $\hat{\mathbf{y}}_1$ in W and \mathbf{z}_1 in W^{\perp} . Then $\hat{\mathbf{y}} + \mathbf{z} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$, and so

$$\hat{\mathbf{y}} - \hat{\mathbf{y}}_1 = \mathbf{z}_1 - \mathbf{z}$$

This equality shows that the vector $\mathbf{v} = \hat{\mathbf{y}} - \hat{\mathbf{y}}_1$ is in W and in W^{\perp} . Hence $\mathbf{v}^T \mathbf{v} = 0$, which shows that $\mathbf{v} = 0$. Therefore $\hat{\mathbf{y}} = \hat{\mathbf{y}}_1$ and $\mathbf{z}_1 = \mathbf{z}$.

CS132 Lecture 20 April 21, 2015

Example 2

Let
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$

is an orthogonal basis for $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

Solution The orthogonal projection of ${\bf y}$ onto W is

$$\hat{\mathbf{y}} = \frac{\mathbf{y}^{T} \mathbf{u}_{1}}{\mathbf{u}_{1}^{T} \mathbf{u}_{1}} \mathbf{u}_{1} + \frac{\mathbf{y}^{T} \mathbf{u}_{2}}{\mathbf{u}_{2}^{T} \mathbf{u}_{2}} \mathbf{u}_{2}$$

$$= \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{15}{30} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$

- 4日 > 4個 > 4目 > 4目 > 目 り900

() CS132 Lecture 20

April 21, 2015

Also

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$

Theorem 8 ensures that $\mathbf{y} - \hat{\mathbf{y}}$ is in W^{\perp} . To check? The desired decomposition of \mathbf{y}

$$\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}$$

() CS132 Lecture 20 April 21, 2015 12 / 19

Corollary (Theorem 10)

If $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y}^{T} \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{y}^{T} \mathbf{u}_{2}) \mathbf{u}_{2} + \dots + (\mathbf{y}^{T} \mathbf{u}_{p}) \mathbf{u}_{p}$$
(3)

if $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_p]$, then

$$proj_W \mathbf{y} = UU^T \mathbf{y} \text{ for all } \mathbf{y} \text{ in } \mathbb{R}^n$$
 (4)

Proof.

Formula (3) follows immediately from (2) in Theorem 8. Also, (3) shows that $proj_W \mathbf{y}$ is a linear combination of the columns of U using the weights $\mathbf{y}^T \mathbf{u}_1, \dots, \mathbf{y}^T \mathbf{u}_p$. The weights can be written as $\mathbf{u}_1^T \mathbf{y}, \dots, \mathbf{u}_p^T \mathbf{y}$, showing that they are the entries in $U^T \mathbf{y}$ and justifying (4).

CS132 Lecture 20 April 21, 2015 13 / 19

Theorem (The Best Approximation Theorem)

Let W be a subspace of \mathbb{R}^n , let \mathbf{y} be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \tag{5}$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

 $\hat{\mathbf{y}}$ is called **the best approximation to y by elements of** W. In particular, if $\mathbf{y} \in W$, then $\hat{\mathbf{y}} = \mathbf{y}$.

- "closeness" depends on the measure of length which is induced by inner product, so does the measure of angle on which "orthogonality" depends.
- $\hat{\mathbf{y}}$ is the unique minimizer of $\|\mathbf{y} \mathbf{v}\|$ over W, independent of the particular orthogonal basis of W to compute it.

(1) CS132 Lecture 20 April 21, 2015 14 / 19

The Best Approximation Theorem

Proof.

Take \mathbf{v} in W distinct from $\hat{\mathbf{y}}$. See the figure. Then $\hat{\mathbf{y}} - \mathbf{v}$ is in W. By Theorem 8, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to W. In particular, $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{y}} - \mathbf{v}$ (which is in W). Since

$$\mathbf{y} - \mathbf{v} = (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \mathbf{v})$$

the Pythagorean Theorem gives

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{v}\|^2$$

Now $\|\hat{\mathbf{y}} - \mathbf{v}\|^2 > 0$ because $\hat{\mathbf{y}} - \mathbf{v} \neq 0$, and so inequality (5) follows immediately.

The Best Approximation Theorem

The orthogonal projection of y onto W is the closest point in W to y.

() CS132 Lecture 20

16 / 19

Example 3

If
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$, as

in Example 2, then the closest point in W to \mathbf{y} is

$$\hat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y}^T \mathbf{u}_2}{\mathbf{u}_2^T \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}$$

() CS132 Lecture 20 April 21, 2015 17 / 19

Example 4

The distance from a point \mathbf{y} in \mathbb{R}^n to a subspace W is defined as the distance from \mathbf{y} to the nearest point in W. Find the distance from \mathbf{y} to $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$, where

$$\mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \ \mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Solution By the Best Approximation Theorem, the distance from \mathbf{y} to W is $\|\mathbf{y} - \hat{\mathbf{y}}\|$, where $\hat{\mathbf{y}} = proj_W \mathbf{y}$. Since $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a orthogonal basis for W,

$$\hat{\mathbf{y}} = \frac{15}{30}\mathbf{u}_1 + \frac{-21}{6}\mathbf{u}_2 = \frac{1}{2} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} - \frac{7}{2} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}$$

₹□▶₹₫₽₹₫₽₹₫₽₹₫₽

() CS132 Lecture 20 April 21, 2015 18 / 19

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$
$$\|\mathbf{y} - \hat{\mathbf{y}}\|^2 = 3^2 + 6^2 = 45$$

The distance from **y** to *W* is $\sqrt{45} = 3\sqrt{5}$.

CS132 Lecture 20 April 21, 2015 19 /