Computational Analysis of Sound and Music

Machine Learning

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

- Machine Learning
 - Introduction
 - Application Scenarios
 - Learning Paradigms
- Machine Learning Pipeline

Introduction

- Human intelligence
 - "mental quality that consists of the abilities to learn from experience, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one's environment." [1]

- Human learning
 - "Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences."

Introduction

- Artificial Intelligence
 - Agent (machine)
 - Perceive and react to environments
 - Performs actions to achieve goals [2]
- Levels of AI
 - Narrow/weak AI (single task, limited context)
 - Examples: Voice assistants, self-driving cars, chat bots
 - Artificial general intelligence (AGI)
 - Multiple task
 - Knowledge generalization across tasks

Introduction

- Machine Learning (ML)
 - Sub-field of AI
 - "...give computers the ability to learn without being explicitly programmed" [3]
 - Learning structures in given (un)labeled data to make predictions on new / unseen data
- Paradigm change
 - Before: Use domain knowledge to design (general-purpose) features
 - Now: Learn suitable representations (features) & models (classification) jointly by analyzing (annotated) data

Application Scenarios

- Computational finance (credit scoring, algorithmic trading)
- Computer vision (face & object recognition, motion detection)
- Computational biology (tumor detection, drug discovery, DNA sequencing)
- Energy (price & load forecasting)
- Predictive maintenance (automotive, aerospace, manufacturing)
- Natural language processing (sentiment classification, text search, translation)
- Machine listening (music transcription, instrument recognition, sound event detection, acoustic scene classification)

Learning Paradigms

- Goal
- Find hidden structure and patterns in data
- No annotations available
- Clustering
 - Grouping of similar data instances

- Challenges
 - What is the optimal number of clusters?

Unsupervised Learning

k-means clustering

- k-means clustering
 - Initialize k randomly (here: k = 3) \rightarrow number of clusters

- k-means clustering
 - Assignment: assign each data point to its closest mean

- k-means clustering
 - Assignment: assign each data point to its closest mean

- k-means clustering
 - Update: update mean by average over all assigned data points

- k-means clustering
 - Assignment: re-assign data points to closest mean

- k-means clustering
 - Repeat until convergence

Learning Paradigms

Supervised Learning

- Predict one or multiple categorical labels from features
 - Examples → music genre, instrument(s), key
- Feature space (Example: 2 classes)

- k-nearest neighbors classifier
 - Training → Store all examples

- k-nearest neighbors classifier
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k closest training data items

$$k = 3 \rightarrow ? = \blacktriangle$$

- k-nearest neighbors classifier
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k closest training data items

$$k = 11 \to ? =$$

- k-nearest neighbors classifier
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k closest training data items
 - Distance measures
 - Euclidean distance
 - Cosine distance, ...

$$k = 11 \rightarrow ? =$$

Learning Paradigms

Supervised Learning (Regression)

- Goal
- Predict a dependent (response)
 variable given one or multiple
 independent variables (features)
- Continuous quantities
- Examples
 - Univariate (linear) regression

$$y \sim \beta_0 + \beta_1 \cdot x$$

- β_0 (bias)
- β_1 (weight)

Outline

- Machine Learning
 - Introduction
 - Application Scenarios
 - Learning Paradigms
- Machine Learning Pipeline

Machine Learning Pipeline

Machine Learning Pipeline (Data Split)

- Training Set
 - Model learns from this data

Machine Learning Pipeline (Data Split)

- Training Set
 - Model learns from this data
- Validation / Development Set
 - Used to fine-tune the model (hyper)parameters
 - Model occasionally sees but does not learn from this data

Machine Learning Pipeline (Data Split)

- Training Set
 - Model learns from this data
- Validation / Development Set
 - Used to fine-tune the model (hyper)parameters
 - Model occasionally sees but does not learn from this data
- Test set
 - Only used once after the model training & tuning is completed
 - Should reflect the targeted real-world use case for the model
- Common split ratios
 - 80/10/10% or even 98/1/1% (for large datasets)

Machine Learning Pipeline (Data Collection & Pre-Processing)

- Data collection
 - Check for available data resources for given (or related) task
 - Collect / record / annotate new data
 - Ensure data variability
 - Example (from acoustic condition monitoring) → include different motor engine types & conditions, recording locations, microphones, ...
- Data cleanup / pre-processing
 - Remove errors, silence, empty files, ...
 - Balance dataset (proportions among class examples)
 - Normalize (depends on the model)

Machine Learning Pipeline (Model Selection)

- Many models and approaches exist
 - Types (SVM, GMM, logistic regression, DNNs)
 - Hyperparameters (SVM kernel functions, DNN layer types)
- Often constrained by the use-case / task
 - Model complexity (memory, training time, training data amount)
- Feature pre-processing depends on model type
- Use simple models for simple tasks

Machine Learning Pipeline (Model Training)

- Iterative process
 - (Random) parameter initialization
 - Use (batches of) training data to iteratively improve model predictions (optimization)
 - Learn from examples
 - Update model parameters according to loss function
 - Monitor improved performance
 - Repeat until convergence

Machine Learning Pipeline (Model Validation)

- Regular model evaluation each or multiple training iteration
 - Optimize model (hyper)parameters
 - Detect overfitting on training data
 - Stop the training

Machine Learning Pipeline (Model Testing)

- Example: Binary classification evaluation
 - True/false positives (TP/FP)
 - True/false negatives (TN/FN)
 - Metrics
 - Precision
 - Recall
 - Accuracy
 - F-score

Fig-D1-4

Programming session

Fig-A2-13

References

Images

Fig-D1-1: https://i.stack.imgur.com/hsilO.png (https://i.stack.imgur.com/hsilO.png (https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)

Fig-D1-2: Neural Network Zoo (https://www.asimovinstitute.org/wp-content/uploads/2019/04/NeuralNetworkZoo20042019.png)

Fig-D1-3: https://www.educative.io/api/edpresso/shot/6668977167138816/image/5033807687188480

Fig-D1-4: Virtanen, T., Plumbley, M. D., & Ellis, D. (Eds.). (2018). Computational Analysis of Sound Scenes and Events. Cham, Switzerland: Springer International Publishing, p. 170, Fig. 6.7

References

References

- [1] Introducing Machine Learning. (2016). Retrieved from https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/i/88174 92991v00 machine learning section1 ebook.pdf
- [2] S. Legg, M. Hutter (2007). Universal Intelligence: A Definition of Machine Intelligence. Minds & Machines. 17 (4): 391-444.
- [3] L. Samuel (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development. 3(3), 210-229

