K-Means Clustering and Gaussian Mixture Model

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the clustering task and the K-means algorithm
 - Know what the unsupervised learning is
 - Understand the K-means iterative process
 - Know the limitation of the K-means algorithm
- Understand the Gaussian mixture model
 - Know the multinomial distribution and the multivariate Gaussian distribution
 - Know why mixture models are useful
 - Understand how the parameter updates are derived from the Gaussian mixture model
- Understand the EM algorithm
 - Know the fundamentals of the EM algorithm
 - Know how to derive the EM updates of a model

EM ALGORITHM

Inference with Latent Variables

- Difference between classification and clustering
- Let's say
 - {X,Z}: complete set of variables
 - X: observed variables
 - Z: hidden (latent) variables
 - θ : parameters for distributions
 - $P(X|\theta) = \sum_{Z} P(X, Z|\theta) \rightarrow \ln P(X|\theta) = \ln \{\sum_{Z} P(X, Z|\theta)\}$
 - Any problem here?
 - The locations of summation and log make this complicated
 - Eventually, we want to exchange the locations of the two operators
- What we want to know is
 - The values of Z and θ
 - Optimizing $P(X|\theta) = \sum_{Z} P(X, Z|\theta)$
 - The interacting terms for the optimization

Probability Decomposition

- $l(\theta) = \ln P(X|\theta) = \ln \{\sum_{Z} P(X, Z|\theta)\} = \ln \{\sum_{Z} q(Z) \frac{P(X, Z|\theta)}{q(Z)}\}$
 - Use the Jensen's inequality

•
$$\ln\{\sum_{Z} q(Z) \frac{P(X, Z|\theta)}{q(Z)}\} \ge \sum_{Z} q(Z) \ln \frac{P(X, Z|\theta)}{q(Z)}$$

- = $\sum_{Z} q(Z) \ln P(X, Z|\theta) q(Z) \ln q(Z)$
 - Recall the second term?

•
$$H(X) = -\sum_{X} P(X = x) \log_b P(X = x)$$

• =
$$E_{q(Z)} \ln P(X, Z|\theta) + H(q)$$

•
$$Q(\theta, q) = E_{q(Z)} \ln P(X, Z|\theta) + H(q)$$

- This hold for any distribution of q
- This is only the lower bound of $l(\theta)$
 - Need to make it tight!
 - How to?

Jensen's Inequality

When $\varphi(x)$ is concave

$$\varphi(\frac{\sum a_i x_i}{\sum a_j}) \ge \frac{\sum a_i \varphi(x_i)}{\sum a_j}$$

When $\varphi(x)$ is convex

$$\varphi(\frac{\sum a_i x_i}{\sum a_j}) \le \frac{\sum a_i \varphi(x_i)}{\sum a_j}$$