Phonetic Analysis and Tempo Adjustments for Improved Speech Recognition in Dysarthric Speakers

Feifei Xiong · Jon Barker · Heidi Christensen IEEE ICASSP-2019

Mid-Evaluation Presentation

Saketh Reddy Vemula - 2022114014 Viswanath Vuppala - 2022101084

Introduction

Dysarthria Signs and symptoms Inability to speak louder Slow and/or than a whisper, slurred speech or to speak loudly Abnormal speech rhythm Rapid speech that is difficult to understand Strained, raspy or nasal sounding voice Monotonous speech Difficulty in moving the Uneven speech volume facial muscles or the tongue

- Increased respiration frequency
- Inadequate Pauses
- Breathy or hoarse voice
- Reduced speech
- Deviations in pitch and volume
- Mis-articulated Sounds

Earlier Conclusions

Presented Speech tempo adjustment for improved performance of ASR trained on typical speech

Objectives

- Analyze dysarthric speech at the phonetic level, specifically tempo.
- Implement phoneme-based tempo adjustments to assess their impact on automatic speech recognition (ASR) performance.
- Evaluate the effectiveness of phoneme-based tempo modifications in improving ASR accuracy for dysarthric speakers.

Dataset Overview

TORGO Database: Acoustic and articulatory speech from speakers with dysarthria

Phoneme Grouping

Vowels	V1: Short Vowels	AH AO AX EH IH UH		
	V2: Medium Vowels	AE		
	V3: Long Vowels	AA ER IY UW		
	V4: Diphtongs	AW AY EY OW OY		

Consonants	C1: Glides	LRWY		
	C2: Unvoiced Stops	KPT		
	C3: Voiced Stops	BDG		
	C4: Nasals	MNNG		
	C5: Unvoiced Fricatives	F S SH TH		
	C6: Voiced Fricatives	DH V Z ZH		
	C7: Unvoiced Affricatives	СН		
	C8: Voiced Affricatives	JH		
	C9: Aspirates	HH		
	Silence	bel el del gel kel nol nolo pel tl		
	Inconsistencies	sill lab2 a ahl ahn aor ee et ff h nh o rly		

Google Sheet

Phoneme duration Analysis
Control (CTL) Speakers

Speakers

Phoneme Energy (Loudness) Analysis

Overall Average Energy and duration

Post Mid Presentation

Place of Articulation Comparision

Speaker-wise Place of Articulation Analysis

Speech Tempo Ratios by Place of Articulation

Overall Place of Articulation Comparision

Speaker-wise Manner of Articulation Analysis

Speech Tempo Ratios by Manner of Articulation

Overall Manner of Articulation Comparision

Objectives

Speech Tempo Adjustment for ASR

Test Stage $\overline{\mathcal{R}_{d\leftarrow c}}$:

Training Stage

$$\mathcal{R}_{d \leftarrow c}(p) = \frac{T_d(p)}{T_c(p)}$$

Speech Tempo Adjustment for ASR - Signal Domain

Test Stage $\overline{\mathcal{R}_{d\leftarrow c}}$

Results

Session	Model	WER before Tempo-Adjustment	WER after Tempo- Adjustment	Average Original Duration (s)	Average Adjusted Duration (s)
M01_Session_1_headMic	facebook/wav2vec2-base-960h	1.0332	1.0165	4.7500	3.9738
M02_Session1_arrayMic	facebook/wav2vec2-base-960h	1.0083	0.9809	2.6993	2.5054
M04_Session2_headMic	facebook/wav2vec2-base-960h	1.0237	1.0327	4.5883	3.6116
M01_Session1_headMic	jonatasgrosman/wav2vec2-large- xlsr-53-english	0.9829	0.9096	4.7500	3.9738
M02_Session1_arrayMic	jonatasgrosman/wav2vec2-large- xlsr-53-english	1.0934	1.1123	2.6993	2.5054
M04_Session2_headMic	jonatasgrosman/wav2vec2-large- xlsr-53-english	1.0302	1.0738	4.6133	3.6295

Results

Future Scope and Limitations

Test Stage

$$\overline{\mathcal{R}_{d\leftarrow c}}$$
 :

Training Stage

$$\mathcal{R}_{d \leftarrow c}(p) = \frac{T_d(p)}{T_c(p)}$$

References

- [1] H. Kim, M. H. Johnson, J. Gunderson, A. Perlman, T. Huang, K. Watkin, S. Frame, H. V. Sharma, and X. Zhou. Uaspeech, 2023.
- [2] F. Rudzicz, A. K. Namasivayam, and T. Wolff. The torgo database of acoustic and articulatory speech from speakers with dysarthria. Lang. Resour. Eval.,
- 46(4):523–541, Dec. 2012.
- [3] G. Schu, P. Janbakhshi, and I. Kodrasi. On using the ua-speech and torgo databases to validate automatic dysarthric speech classification approaches, 2022.
- [4] F. Xiong, J. Barker, and H. Christensen. Phonetic analysis of dysarthric speech tempo and applications to robust personalised dysarthric speech recognition. In ICASSP 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5836–5840, 2019.

Codes link

Thank You