Introducción a la Acústica Definición y cuantificación del sonido

Sergi Soler Rocasalbas

sergi@aurea-acustica.com

SONIDO

Cualquier señal acústica perceptible por nuestro oído.

¿RUIDO o SONIDO?

- SONIDO: señal que lleva información. (Agradable)
- RUIDO: señal no deseada. (Desagradable)

PERO ALGUNAS VECES:

- RUIDO TAMBIÉN APORTA INFORMACIÓN.
 - FUNCIONAMIENTO DE UNA MÁQUINA. (MOTOR, SIERRA, COCHE...)

SO.

- 1. m. Impressió produïda en l'òrgan de l'oïda per les vibracions elàstiques d'un cos que es propaguen en tots els medis materials en forma d'ones.
- 2. Esp. Sensació produïda en l'òrgan de l'oïda deguda a impulsions que ocorren regularment (oposat a *soroll*, degut a impulsions irregulars o confuses).
- 3. Forma d'energia que produeix aquesta sensació en l'òrgan de l'oïda.

sonido.

- 1. m. Impresión producida en el órgano del oído por las vibraciones elásticas de un cuerpo que se propagan en todos los medios materiales en forma de ondas.
- 2. Esp. Sensación producida en el órgano del oído debida a impulsiones que ocurren regularmente (opuesto a *ruido*, debido a impulsiones irregulares o confusas).
- 3. Forma de energía que produce esta sensación en el órgano del oído.

• El concepto de onda:

Velocidad de propagación.

Ondas Longitudinales:

Ondas Transversales:

The subsequent direction of motion of individual particles of a medium is the same as the direction of vibration of the source of the disturbance.

El caso acústico: ondas longitudinales de presión en el aire

A vibrating tuning fork will force air within a pipe to begin vibrating back and forth in a direction parallel to the energy transport; sound is a longitudinal wave.

Presión Estática vs. Presión Acústica:

DEFINICIÓN CIENTÍFICA DEL SONIDO:

El sonido no es más que una fluctuación de la presión en el interior de un fluido debida al desplazamiento de las moléculas en torno a su punto de equilibrio, que es el valor estático de presión atmosférica ($Po \approx 2.10^5$ Pa en el aire).

A que se debe la propagación ?

Masa y elasticidad:

$$=$$
 \longrightarrow $F = m \cdot a$

De estas características depende la velocidad del sonido.

CICLO:

Desplazamiento completo de la molécula.

LONGITUD DE ONDA (λ):

Es la distancia entre zonas consecutivas en estados idénticos de compresión o depresión.

PERÍODO (T):

El equivalente temporal a la longitud de onda: el tiempo entre zonas consecutivas en estados idénticos de compresión o depresión.

FRECUENCIA (f):

Número de ciclos en una unidad de tiempo.

Generalmente se toma en ciclos por segundo o Hertz.

Es la inversa del período.

$$T = \frac{1}{f} \quad [seg]$$

VELOCIDAD DEL SONIDO (c):

- Es una constante para un medio determinado y para una temperatura concreta.
- La velocidad del sonido en el aire obedece aproximadamente la expresión:

$$c = 331.4 + 0.607 \cdot t$$

- Donde t es la temperatura en grados centígrados.
- Ejemplos:

$$c_{0^{\circ}C} = 331.4 m/s$$
 $c_{22^{\circ}C} = 345 m/s$

LA RELACIÓN ENTRE LA FRECUENCIA Y LA LONGITUD DE ONDA ES:

$$\lambda = \frac{c}{f}$$

Ejemplos:

f = 100 Hz___ $\lambda = 3'45 \text{ m}$

$$f = 1000 \text{ Hz}$$
 $\Delta = 34.5 \text{ cm}$

$$f = 10000 \text{ Hz} \ _\lambda = 3'45 \text{ cm}$$

VELOCIDAD DE PROPAGACIÓN DEL SONIDO EN OTROS MATERIALES:

MATERIAL	Vel.Propagación				
	m/seg				
Aluminio	6.300				
Latón	4.700				
Cobre	5.000				
Hierro	4.350				
Plomo	2.050				
Niquel	5.850				
Plata	3.700				
Acero	6.100				
Vidrio (Pyrex)	5.600				
Cuarzo	5.750				
Hielo	3.200				
Corcho	500				
Pino	3.500				
Agua dulce	1.481				
Agua salada	1.500				
Alcohol	1.150				
Mercurio	1.450				
Glicerina	1.980				
Aire (20°C)	332				
Hidrógeno	1.270				
Vapor	405				

LA MAYORÍA DE SONIDOS REALES COTIENEN MUCHAS FRECUENCIAS :

La representación gráfica del contenido frecuencial de un sonido se llama espectro:

Podemos hablar de bandas frecuenciales (en Hz) que ocupan los sonidos.

MAGNITUDES FUNDAMENTALES DE LA ACÚSTICA:

Sobre las partículas: Sobre la onda acústica:

•<mark>Velocidad (u)</mark>.

Aceleración (a).

Desplazamiento (d).

•Densidad (ρ).

Presión (p).

∙Intensidad (I).

La energía de las ondas acústicas :

 Cuantificar la amplitud de las ondas acústicas solo en <u>presión</u> o en <u>velocidad</u> no nos da una idea exacta de la energía que contiene la onda.

$$E = Ec + Ep$$

 Esta energía se habrá producido por una Fuente Acústica caracterizada por su potencia acústica:

$$W = \frac{E}{t}$$

y se repartirá por el espacio según la divergencia de la onda acústica y los obstáculos que se encuentre ésta en su propagación.

(La energía no se crea ni se destruye...)

• La energía de las ondas acústicas :

La magnitud que si nos da idea de la energía de la onda acústica se llama <u>Intensidad Acústica</u>:

$$I_{r inst} = \frac{dE_r}{dt \cdot dA}$$

$$dE_r = F_r \cdot dr = p_t \cdot dA \cdot dr$$

$$p_t = p_a + p$$

$$p_a = presión atmosférica (estática)$$

P = presi'on sonora

$$I_{rinst} = p_t \frac{dr}{dt} = p_t \cdot u_r = p_a \cdot u_r + p \cdot u_r$$

$$\frac{dr}{dt} = u_r$$
, velocidad de las partículas en la dirección r

$$I_r = \overline{p \cdot u_r}$$

La energía de las ondas acústicas :

Por definición la <u>Intensidad Acústica</u> es la potencia por unidad de superficie:

Relación entre magnitudes :

En el aire y en campo libre la relación entre la presión y la intensidad es:

$$I = \frac{p^2}{\rho \cdot c} \qquad \longrightarrow \text{Impedancia del aire: } Z = \frac{p}{u} = \rho \cdot c$$

Demostración:
$$u = \frac{p}{\rho \cdot c}$$

$$\left| \vec{I} \right| = p \cdot \vec{u} = \frac{\overline{p}^2}{\rho \cdot c} = \frac{p_{rms}^2}{\rho \cdot c}$$

• Relación entre magnitudes :

Cada material tiene su impedancia.

Por consiguiente la relación entre presión i velocidad depende del medio de propagación.

La interferencia con otras ondas también cambia la impedancia que ve la onda.

MATERIAL	Imped. Característica				
	Pa⋅seg/m				
Aluminio	17.000.000				
Latón	40.000.000				
Cobre	44.500.000				
Hierro	33.500.000				
Plomo	23.200.000				
Niquel	51.500.000				
Plata	39.000.000				
Acero	47.000.000				
Vidrio (Pyrex)	12.900.000				
Cuarzo	15.300.000				
Hielo	2.950.000				
Corcho	120.000				
Pino	1.570.000				
Agua dulce	1.480.000				
Agua salada	1.540.000				
Alcohol	910.000				
Mercurio	19.700.000				
Glicerina	2.500.000				
Aire (20℃)	415				
Hidrógeno	114				
Vapor	242				

• Cuantificación de las magnitudes de amplitud :

• Cuantificación de las magnitudes de amplitud :

El valor eficaz o RMS

$$p = \sqrt{\frac{1}{T_{\text{int.}}} \int_{T_{\text{int.}}} p_{inst.}^{2} \cdot dt}$$

Cuantificación de las magnitudes de amplitud :

El valor eficaz o RMS

• El Pascal (Pa) como unidad en la medida de la amplitud :

(Por ser la presión lo más fácilmente mesurable)

1.- No sigue la sensación subjetiva del oído humano:

Doblar la presión:

Tono de X Pa

Tono de 2·X Pa

Tono de 4·X Pa

Doblar la sonoridad:

Tono de X Pa

Tono de 3'16·X Pa

Tono de 10·X Pa

2.- Da una idea absoluta de la amplitud de presión acústica.

3.- Resultan valores numéricos muy dispares:

Se define el Nivel de presión acústica (SPL) como:

$$NP=L_P=SPL=20\cdot\log\left(rac{p_{ef}}{p_0}
ight)$$
 dBspl $p_0=20\,\mu Pa=0.00002Pa$

Ejemplo:

$$p=1Pa \rightarrow NP = 20 \cdot log(1/20\mu Pa) = 93'98 dBspl \approx 94 dBspl$$

Propiedades matemáticas importantes del logaritmo:

$$A = \log B \Rightarrow B = 10^{A}$$

$$L_{p} = 20 \cdot \log \left(\frac{p_{ef}}{p_{0}}\right) \Rightarrow p_{ef} = p_{0} \cdot 10^{\frac{L_{p}}{20}}$$

$$\log(A \cdot B) = \log A + \log B$$

$$\log\left(\frac{A}{B}\right) = \log A - \log B$$

$$L_{p} = 20 \cdot \log\left(\frac{p_{ef}}{p_{0}}\right) = 20 \cdot \log(p_{ef}) - 20 \cdot \log(p_{0})$$

$$A \cdot \log B = \log(B^{A})$$

$$L_{p} = 20 \cdot \log\left(\frac{p_{ef}}{p_{0}}\right) = 10 \cdot \log\left(\frac{p_{ef}}{p_{0}}\right)^{2} = 10 \cdot \log\left(\frac{p_{ef}^{2}}{p_{0}^{2}}\right)$$

PROPIEDADES DE LOS dBspl.:

- 1.- Sigue mejor la sensación subjetiva del oído humano dado que es un valor energético y el oído es sensible a variaciones de energía y de forma logarítmica:
 - Relación con los cambios de sonoridad entre dos niveles:
 - +10 dBspl ≈ doblar la sonoridad.
 - +0'3 dBspl ≈ mínimo cambio de sonoridad perceptible.
- 2.- Dan una idea de la amplitud de presión acústica referenciada al umbral de audición humano.
 - El umbral de audición humano corresponde a los 0 dBspl.

3.- Resultan valores numéricos manejables:

- La intensidad también se puede expresar en decibelios (siempre) siguiendo la expresión:

$$NI = L_I = 10 \cdot \log \left(\frac{I}{I_0} \right)$$
 dB
$$I_0 = 1 pW / m^2$$

- En el caso de las ondas planas o esféricas sin interferencias se cumple que:

$$NP = NI = SPL$$

- Y al conocer la divergencia de la onda (esférica) podemos relacionar estos parámetros con la potencia de la fuente:

$$\vec{I} = \frac{W}{S} \to W = \vec{I} \cdot S$$

$$\vec{S} = \frac{4 \cdot \pi \cdot r^2}{2}$$

- Para divergencia esférica y midiendo a 28'2 cm (1m²) la relación entre presión y potencia de la fuente sigue la tabla.
- A veces se expresa la potencia de una fuente en dB, y está establecida como:

$$L_W = 10 \cdot \log \left(\frac{W}{W_0} \right)$$
 dB
 $W_0 = 1pW$

PRESIÓN			NIVEL DE PRESIÓN		POTENCIA	
100.000	Ра	194	190	dB	10.000.000	W
			180	dB	1.000.000	W
10.000	Ра	174	170	dB	100.000	W
			160	dB	10.000	W
1.000	Pa	154	150	dB	1.000	W
			140	dB	100	W
100	Ра	134	130	dB	10	W
			120	dB	1	W
10	Pa	114	110	dB	0,1	W
			100	dB	0,01	W
1	Ра	94	90	dB	0,001	W
			80	dB	0,0001	W
0,1	Pa	74	70	dB	0,00001	W
			60	dB	0,000001	W
0,01	Ра	54	50	dB	0,0000001	W
			40	dB	0,0000001	W
0,001	Pa	34	30	dB	0,00000001	W
			20	dB	0,000000001	W
0,0001	Ра	14	10	dB	0,0000000001	W
			0	dB	0,00000000001	W

