	Hist	ory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 157, 1 (2019)	15-Apr-2019

 $Q(\beta^-)=-7634.48\ 7;\ S(n)=13000.3\ 22;\ S(p)=9589.1\ 9;\ Q(\alpha)=-8559.2\ 5$ 2017Wa10 $S(2n)=23583\ 7,\ S(2p)=16347.3\ 4$ (2017Wa10).

See 1994Wi05, 1993Wi21, 1990Ha13 and 1984KoZH for $Q(\varepsilon)$ (50Mn) obtained for studies of super-allowed β decay. These values include atomic corrections.

Other reactions:

1991Wi13: ${}^{50}\text{Ti}(\pi^+,\pi^-)$, E=450 MeV, measured $\sigma(\theta=5^\circ)$ at LAMPF using Large Acceptance Spectrometer, deduced mass dependence for cross sections for the double-isobaric-analog state.

1973De29: 50 Cr(γ ,n), E=20.43-22.22 MeV, measured σ by activation. Monochromatic γ rays from H(p, γ); FWHM=122 keV. Related results to the width of dipole state in 50 Cr.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 142 primary references dealing with various aspects of nuclear structure.

Added in proofs: PRC accepted paper (April 9, 2019) by M.M. Giles et al used in the present evaluation, is now published as Phys. Rev. C 99, 044317 (2019).

⁵⁰Cr Levels

Isospin (T) From ⁵²Cr(p,t).

Cross Reference (XREF) Flags

		B 50Mn C 50Mn D 24Mg(E 28Si(2	decay (2.65×10 ¹⁷ y):? ε decay (283.19 ms) ε decay (1.75 min) 32 S, α 2pγ) 8 Si, α 2pγ) 16 O, α 2pγ), 12 C, 2pγ) He,n)	H I J K L M	$^{48}\text{Ti}(^{16}\text{O},^{14}\text{C})$ $^{50}\text{V}(p,n\gamma)$ $^{50}\text{Cr}(\gamma,\gamma'),(\text{pol }\gamma,\gamma')$ $^{50}\text{Cr}(e,e')$ $^{50}\text{Cr}(n,n'\gamma)$ $^{50}\text{Cr}(p,p')$ $^{50}\text{Cr}(p,p'\gamma)$	O P Q R S T U	50 Cr(d,d') 50 Cr(3 He, 3 He') 50 Cr(α,α') 50 Cr($\alpha,\alpha'\gamma$) 52 Cr(p,t) 54 Fe(p,p α) Coulomb excitation
E(level) [†]	$J^{\pi \#}$	T _{1/2} &	XREF			Co	omments
0.0 ^b	0+	>1.3×10 ¹⁸ y	ABCDEFGHIJKLMNOPQRS	TU	%2ε=?		
783.31 ^b 10	2+	9.08 ps 28	ABCDEFGHIJKLMNOPQRS	STU	1985No03 who mean lower limit on $T_{1/2}$ f (1985No03), >1.3×1 Evaluated rms charge r (2013An02). Evaluated $\delta < r^2 > (^{50}\text{Cr},^5)$ $\mu = +1.24$ 6 (2000Er06, Q=-0.36 7 (1975To06, XREF: A(?). J ^{π} : E2 783.3 γ to 0 ^{$+$} . $T_{1/2}$: weighted average from experimental valifetime $\tau = 13.3$ ps 6 accepted April 9, 20	for 0 <i>v</i> 0 ¹⁸ y radius 5 ² Cr)= 2014S,2016 ed me alues (M.M.19, R	

 $^{50}_{24}\mathrm{Cr}_{26}$ -2 From ENSDF $^{50}_{24}\mathrm{Cr}_{26}$ -2

Adopted Levels, Gammas (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2} &	S	XREF	Comments
1881.42 ^b 19	4+	2.20 ps <i>33</i>		CDEF HI KLMNOPQRS U	(28 Si,α2py) dataset); 13.2 ps 4 (2000Er01,2000Er06, DSAM in Coul. ex.); 12.6 ps 21 (1974Br04, RDDS in 40 Ca(16 Q,2pαγ)); 12.1 ps 12 (1973De09, RDDS in 40 Ca(12 C,2pγ)); 10 ps 2 (1972Ra14, DSAM in Coul. ex.); and the following mean lifetimes deduced by evaluators from B(E2)↑ measurements in Coulomb excitation: 13.5 ps 7 (B(E2)=0.102 5 in 1975To06); 12.1 ps 11 (B(E2)=0.115 10 in 1972Ra14); 15.2 ps 17 (B(E2)=0.092 14 in 1971DaZM); 12.1 ps 13 (B(E2)=0.115 12 in 1966Mc18,1961Mc18); 9.6 ps 19 (B(E2)=0.15 3 in 1960An09); and τ=14.9 ps 8 from B(E2)=0.093 5 in (e,e') (1983Li02). Omission of seemingly discrepant values of 9.6 ps 19 from 1960An09 and 15.2 ps 17 from 1971DaZM gives the same weighted average. Value is 9.11 ps +28−20 in 2016Pr01 evaluation. μ: from transient-magnetic fields (TF) in Coul. ex. (2000Er06). Others: +1.28 22 (1994Pa34, TF in (40 Ca,2pγ)); +0.9 3 (1987Pa28, TF in Coul. ex.); +1.2 2 (ion implantation PAC, 1977Fa07). Q: reorientation method in Coul. ex. (1975To06). μ=+3.1 5 (2000Er06,2014StZZ) B(E4)↑=0.000451 (1983Li02) B(E4) from (e,e'). J ^π : stretched E2 1098.1γ to 2+; L(p,t)=4. T _{1/2} : unweighted average of 3.4 ps 5 (M.M. Giles et al., Phys. Rev. C, accepted April 9, 2019, RDDS in 40 Ca(12 C,2pγ)); 1.47 ps 16 (2004Br42, DSAM in 28 Si(28 Si,α2p)); 1.7 ps 5 (1998Br34, DSAM in 28 Si(28 Si,α2p)); 1.7 ps 5 (1998Br34, DSAM in 28 Si(28 Si,α2p)); 2.22 ps 49 (2000Er06,2000Er01, DSAM in Coulomb excitation); 2.22 ps 28 (1973De09, RDDS in 40 Ca(12 C,2pγ)). Other: <2.8 ps (1974Br04, RDDS). Weighted average is 1.80 ps 26 with reduced χ²=4.4 as compared to critical χ²=2.4. μ: from transient-magnetic fields (TF) in Coul. ex. (2000Er06, Other: +1.7 4 (1994Pa34,TF in (40 Ca,2pγ)) is in disagreement.
2924.6 <i>4</i>	2+	9.4 fs <i>14</i>		HI KLMNOPQ S	J^{π} : E2 2924 γ to 0 ⁺ ; L(p,t)=2 from 0 ⁺ . $T_{1/2}$: from DSAM in (p,p' γ).
3161.3 4	2+	10.9 fs <i>16</i>		k MNOPQ S	XREF: k(3160)M(3156). $T_{1/2}$: from DSAM in (p,p' γ). J^{π} : $L(\alpha,\alpha')=L(p,t)=2$ from 0^{+} .
3164.06 ^b 25	6+	0.80 ps 23		CDEF k N R	μ =+3.2 10 (1994Pa34,2014StZZ) XREF: k(3160). J ^π : from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},\alpha2\text{p}\gamma$); stretched E2 1282.5 γ to 4 ⁺ .
3324.56 22	4+	97 fs 25	0.032	C EF K MNOPQ S	T _{1/2} : weighted average of 0.69 ps <i>14</i> from DSAM in 28 Si(28 Si,α2pγ) (1998Br34) and 1.25 ps 28 from RDDS in (12 C,2pγ) (1973De09). μ: from g=0.54 <i>16</i> (1994Pa34, TF in (40 Ca,2pγ)). J ^π : L(α,α')=L(d,d')=4 from 0 ⁺ . T _{1/2} : from DSAM in (p,p'γ). Other: <0.7 ps from RDM in (12 C,2pγ). B(E4)=0.000192 (1983Li02) in (e,e').

E(level) [†]	${\sf J}^{\pi \#}$	T _{1/2} &	XR	EF	Comments
3594.63 25	2+,3,4+	30 fs 5	h	MNOPQ	XREF: h(3600)M(3587).
	_ ,-,.				J^{π} : 1713.2 γ to 4 ⁺ , 2811.2 γ to 2 ⁺ can only have
					mult=D or E2 by RUL.
	. 1				$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3611.4 <i>4</i>	4 ⁺	6 fs 4	E h	MNOPQ S	XREF: h(3600)M(3602).
					J^{π} : L(p,t)=4 from 0 ⁺ . $T_{1/2}$: from DSAM in (p,p' γ).
3628.9 5	1+	0.305 eV 13	в Ј	MN	J^{π} : dipole 3628.7 γ to 0 ⁺ ; $\sigma(\theta)$ in (p,p') (1989Wi13);
					expected 1 ⁺ from shell-model predictions (see
					1989Wi13).
					$T_{1/2}$: from Γ_0 =0.205 eV 9 in (γ, γ') . Other: 5 fs 3 in
3698.2 5	2+	12.8 fs <i>18</i>		MNOPQ S	$(p,p'\gamma)$. J^{π} : L(p,t)=2; M1+E2 2914.8 γ to 2 ⁺ .
3096.2 3	۷	12.0 18 10		more 3	$L(\alpha, \alpha') = L(p, p') = L(^3He, ^3He') = 4$ for a 3698 20 level
					inconsistent, if it is the same level as seen in other
					reactions.
					$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3792.1 <i>4</i>	(5^+)	9.0 ps <i>14</i>	EF	MNO	XREF: M(3786).
					J^{π} : $J^{\pi}=5^+$ from $p\gamma(\theta)$ in $(p,p'\gamma)$; $L(p,p')=4$; and absence of this level in (α,α') . However (4^-) cannot be
					ruled out as proposed by 1998Br34 from $\gamma(\theta)$ in
					($^{28}\text{Si},\alpha2\text{py}$).
					$T_{1/2}$: from RDM in ($^{16}O, \alpha 2p\gamma$). Other: >73 fs from
					DSAM in $(p,p'\gamma)$.
3825.7 <i>3</i>	$(6)^{+}$	<0.7 ps	C EF	MNOPqRs	XREF: q(3844)s(3832).
					J^{π} : logft=5.0 from 5 ⁺ ; angular distribution of the 661.76
					keV γ corresponds to $\Delta I=0$ dipole or stretched quadrupole transition.
					$T_{1/2}$: inconsistent with 3.5 ps +35-14 (1973De09) from
					RDM in (12 C,2p γ). Other: <1.4 ps from RDDS in
					1974Br04 in (16 O, α 2p γ).
3844.4 <i>4</i>	$2^+,3,4^+$	0.22 ps 6		MNOPq s	XREF: q(3844)s(3832).
					J^{π} : 1962.9 γ to 4 ⁺ and 683.4 γ to 2 ⁺ can only have
					mult=D or E2 by RUL. $T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3850 <i>20</i>	0+		B G		XREF: B(3827).
					J^{π} : L(³ He,n)=0.
3875.4 <i>3</i>	$(4^+,5,6^+)$	0.62 ps 21	E	MNOPQ	XREF: M(3867).
					J^{π} : γ s to 4 ⁺ and 6 ⁺ .
3895.4 <i>10</i>	0^{+}	24 ps +14-10	Н	MNOPQ S	J^{π} : L(p,t)=0. L(α , α')=L(d,d')=L(3 He, 3 He')=4 for 3898 20 is inconsistent if it is the same level as in other
					reactions.
					$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
3937.3 4	$2^+,3,4^+$	2.2 fs 10		MNOPQ S	J^{π} : 2055.5 γ to 4 ⁺ and 3153.7 γ to 2 ⁺ can only have
					mult=D or E2 by RUL.
4040	(n+)				$T_{1/2}$: from DSAM in $(p,p'\gamma)$.
4040	(0 ⁺) 3 ⁻	0.56 mg 11		N MNODO C	J^{π} : $\sigma(\theta)$ in (p,p') (1989Wi13). J^{π} : $L(\alpha,\alpha')=L(d,d')=L(p,p')=L(^{3}He,^{3}He')=3$ from 0^{+} .
4051.7 5	3	0.56 ps <i>11</i>		MNOPQ S	$T: L(\alpha, \alpha) = L(\alpha, \alpha) = L(\beta, \beta) = L$
					B(E3)(from g.s.)=0.0033 13 (2002Ki06 evaluation)
					deduced from β_3 in (α, α') (1990Ba23).
4068.2 22	0+	6.5 fs <i>17</i>		MN S	E(level): 4068.8 5 from (p,t).
					J^{π} : L(p,t)=0.
4129.9 5	$(1,2^+)$	0.18 ps 6	Н	MN	$T_{1/2}$: from DSAM in $(p,p'\gamma)$. XREF: H(4150).
1127.7 3	(1,2)	0.10 ps 0			

High	E(level) [†]	$J^{\pi \#}$	T _{1/2} &	XREF		Comments
493.0 8 2+						
4207 7 4282 7 4367.5 5 1.39 ps 35 EF M OPQ S F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.39 ps 35 EF M OPQ S F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.39 ps 35 EF M OPQ S F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.39 ps 35 EF M OPQ S NREF: O(4570)P(4570)Q(4570)S(4540), F. L(p,p)=L(x(a')=L(p,p')=L(x(b)=x)+(x)=x) 1.4543 12 3 12 12 12 12 12 12	4102.0.0	2+		wyon		
4282 7	4193.0 8	2+		MNOP	Q s	
4382.7 4367.2° 4 5 - 1.39 ps 35	4207.7			м	6	
4367.2 · 4 · 5 · 1.39 ps 35					5	AREI: 8(4200).
4523.8 /5 (4*) 4563.3 /5 4663.3 /5 4666 7 2* MNOPQ S XREE: O(46SD)P(4570)Q(45		5-	1.39 ps <i>35</i>		0 S	J^{π} : L(p,t)=L(\alpha,\alpha')=L(p,p')=L(^3He,^3He')=5 from 0 ⁺ .
F: L(p,t)=L(a,a')=L(p,p')=L(³He,³He')=3 from 0°. 4676 7						J^{π} : 1363 γ to 6 ⁺ and 3740.5 γ to 2 ⁺ .
4663 7 2 t	4546.3 <i>12</i>	3-		MNOP	Q S	
According to the content of the c						J^{π} : L(p,t)=L(α,α')=L(p,p')=L(3 He, 3 He')=3 from 0 ⁺ .
Effective from (pp') First Lay First		2+			10	VDEE: 0(4690)D(4690)O(4690)
4700	4070 /	2		n OP	Ų	
4700 (1*) 4731 5 0 1* G M S XREF: (64740), E(level): weighted average of 4728 7 from (p,p') and 4733 5 from (p,0). 17°: Lp(p,1)=L(3 ³ He,n)=0. 18°: Sylvan (p,p') and 4733 5 from (p,0). 18°: Lp(p,1)=L(3 ³ He,n)=0. 18°: Lp(p,1)=Lp(p,						
E(level): weighted average of 4728 7 from (p,p') and 4733 5 from (p,t). J^{\pm} : $L(p,t) = L(P_t,n) = 0$.	4700	(1^{+})				
from (p,1). J ^r : L(p,1)=L(² He,n)=0. μ ^{+4,3,7} (1994 ^{p,34} ,2014StZZ) J ^r : Δ1=2, E2 y to 6 ⁺ ; spin=2 from γ(θ) in (¹⁶ O ₁ α2pγ). μ ⁺ g=+0.54 9 from TF in (⁴⁰ Ca,2pγ) (1994 ^{p,34} ,2014StZZ) J ^r : Δ1=2, E2 y to 6 ⁺ ; spin=2 from γ(θ) in (¹⁶ O ₁ α2pγ). μ ⁺ g=+0.54 9 from TF in (⁴⁰ Ca,2pγ) (1994 ^{p,34} ,2014StZZ) J ^r : L(μ,1)=L(α,α')=2. 4807 5 4807 5 4807 5 4807 7 4807 7 4906 7 4906 7 4906 7 4906 7 4906 7 4907 1 4906 7 4907 1 4907 1 4908 7 4908 7 4909 1 49	4731 5	0_{+}		G M	S	
4744.9 ^b 4 8 ⁺ 0.28 ps 7 DEF R μ +4.3 τ (1994 μ 34, 2014StZZ) 4755 τ 4 μ 6 Po S 4766 τ 2 H OPQ S 4807 τ 6 S 4906 τ 4924 τ (4 ⁺) 4906 τ 4924 τ (4 ⁺) 4907 τ 4 τ 6 τ 8 Def R M opq 4908 τ 7 τ 8 Def R M opq 4909 τ 1						
4744.9 b 4 8 b 0.28 ps 7 DEF R						
JF: ΔJ=2, E2 γ to 6*; spin=2 from γ(θ) in (\frac{1}{9}0, α2pγ), μ: g=+0.54 9 from TF in (\frac{4}{9}0 α2pγ), μ: g=+0.54 9 from TF in (\frac{4}{9}0 α2pγ), (1994Pa34). 4807 5	4744 0 h 4	0+	0.20 7	DEE	D	
4755 7 4766 5 2 ⁺	4/44.9° 4	8.	0.28 ps /	DEF	K	
4755 7 4766 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 6 5 2+ 4766 7 4, 476 1 4, 476 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 4, 477 1 5 5 5 5 6, 477 1 5 5 5 6, 477 1 5 6, 477 1 5 6, 477 1 5 6, 477 1 5 6, 477 1 5 6, 477 1 5 6, 477 1 5 6, 477 1 5 6, 477 1 5 6, 477 1 6						$J: \Delta J = 2$, $EZ \gamma$ to θ ; spin=2 from $\gamma(\theta)$ in $(-0, \alpha Z p \gamma)$.
4766 5 2^+	4755 <i>7</i>			М		μ . g-+0.34 γ from 11 iii (Ca,2p γ) (17741 a34).
4807 5		2+			Q S	E(level): weighted average of 4772 7 from (p,p') and 4763 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
from (p,t). from (p,t)-to for a level at 4940 20. from (p,t)-to for a level at 4940 20. from (p,t)-to for a level at 940 20. from (p,t)-to for a level at 940 policy from (p,t). from (p,t)-to for a level at 940 policy from (p,	4007.5				6	
4906 7 4924 7 (4 ⁺) 4961 7 (4 ⁺) 4961 7 (4 ⁺) 497.1 4 1(+) 497.1 4 1(+) 5039 10 5138 10 5207 10 5213.4 ^c 4 (6 ⁻) 5223 10 5336 10 5336 10 5336 10 5336 10 5445 10 5559 7 10 5445 10 5559 7 10 5445 10 55623 10 M opq XREF: o(4940)p(4940)q(4940). J ^τ : $L(\alpha_{\alpha}\alpha') = L(^3He, ^3He') = 4$ for a level at 4940 20. J ^τ : $L(\alpha_{\alpha}\alpha') = L(^3He, ^3He') = 4$ for a level at 4940 20. J ^τ : $L(\alpha_{\alpha}\alpha') = L(^3He, ^3He') = 4$ for a level at 4940 20. J ^τ : $L(\alpha_{\alpha}\alpha') = L(^3He, ^3He') = 4$ for a level at 4940 20. J ^τ : $L(\alpha_{\alpha}\alpha') = L(^3He, ^3He') = 4$ for a level at 4940 20. T _{1/2} : from $\Gamma_0 = 0.070$ eV 7 in (γ, γ') . XREF: s(5040). XREF: s(5040). M SXREF: s(5040). M SXREF: s(5040). M SZREF: s(5040). XREF: s(5040).	4807.5			M	5	
4924 7 (4*) 4961 7 (4*) 4961 7 (4*) 4961 7 (4*) 4961 8 Popq 497.1 4 $1^{(+)}$ 5015 10 5039 10 5078 10 5093 10 5198 10 5207 10 5213.4° 4 (6°) 5213.4° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 4 (6°) 5213.6° 5 (6°) 5213.6° 6 (6°) 5213.6° 6 (6°) 5213.6° 7 (6°) 52	4906 7			M		nom (p,t).
4961 7 (4 ⁺)		(4^{+})			q	XREF: o(4940)p(4940)q(4940).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,		•	-	
4997.1 4 $1^{(+)}$ 0.140 eV 14 B J M J^{π} : log $ft=5.9$ from 0^+ ; spin=1 from $\gamma(\theta)$ in (γ,γ') . 5015 10 5039 10 5053 10 5053 10 5078 10 5093 10 5198 10 5207 10 5213.4 ^C 4 (6 ⁻) 0.42 ps 7 E J ^π : 846.2γ to 5 ⁻ and 1421.1γ to 5 ⁺ ; band assignment. 5233 10 4 ⁺ 5297 10 5297 10 5297 10 5297 10 5336 10 5376 10 5445 10 5445 10 5597 10 5523 10 M 5523 10 M 5523 10 M 5523 10 M 5524 10 M 5527 10 M 5528 10 M 5529 10 M 529 10 M 520 10 M	4961 7	(4^{+})		М ор	q	
5015 10		(1)				
5015 10 5039 10 5053 10 5078 10 5093 10 5198 10 5207 10 5213 4c 4 (6-) 0.42 ps 7 E J ^π : 846.2γ to 5- and 1421.1γ to 5+; band assignment. 5233 10 5250 10 5272 10 5272 10 5272 10 5297 10 5336 10 5376 10 5445 10 5445 10 5547 10 5548 10 55597 10 55597 10 5611 10 5623 10 M S XREF: s(5040). M S XREF:	4997.1 <i>4</i>	1(+)	0.140 eV <i>14</i>	B J M		
5039 10	5015 10			м		$I_{1/2}$: from $I_0 = 0.0/0 \text{ eV} / \text{in } (\gamma, \gamma)$.
5053 10 5078 10 5078 10 5093 10 5198 10 5207 10 5213.4° 4 (6⁻) 0.42 ps 7 E J ^π : 846.2γ to 5⁻ and 1421.1γ to 5⁺; band assignment. 5233 10 4⁺ M OPQ L: L(α,α')=L(p,p')=L(³He,³He')=4 for a level at 5230 20. M 5272 10 M 5272 10 M 5297 10 M 5336 10 5336 10 5336 10 5336 10 5336 10 5345 10 5445 10 M 5445 10 M 5549 10 5548 10 M 5597 10 5611 10 M 5623 10 M M 5623 10					S	XREF: s(5040).
5093 10 5198 10 5207 10 5213.4° 4 (6-) 0.42 ps 7 E J ^π : 846.2γ to 5- and 1421.1γ to 5+; band assignment. 5233 10 4+ M 5297 10 M 5297 10 M 5336 10 5376 10 5445 10 5445 10 5548 10 55548 10 5597 10 5611 10 5623 10						
5198 10 5207 10 5213.4° 4 (6°) 0.42 ps 7 E J ^{π} : 846.2 γ to 5 ° and 1421.1 γ to 5 °; band assignment. 5233 10 4° M OPQ L: $L(\alpha,\alpha')=L(p,p')=L(^3He,^3He')=4$ for a level at 5230 20 . M 5272 10 M 5297 10 M 5336 10 M 5376 10 M 5429 10 M 5445 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M 5597 10 M 5623 10 M M M 5623 10						
5207 10						
5213.4 c 4 (6 $^{-}$) 0.42 ps 7 E J $^{\pi}$: 846.2 γ to 5 $^{-}$ and 1421.1 γ to 5 $^{+}$; band assignment. 5233 10 4 $^{+}$ M OPQ L: $L(\alpha,\alpha')=L(p,p')=L(^{3}He,^{3}He')=4$ for a level at 5230 20. 5250 10 M M 5297 10 M M 5336 10 M M 5376 10 M M 5429 10 M M 5445 10 M Opq XREF: o(5450)p(5450)q(5450). 5455 10 M Opq XREF: o(5450)p(5450)q(5450). 5548 10 M Opq XREF: o(5450)p(5450)q(5450).						
5233 10 4 ⁺ M OPQ L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. 5250 10 5272 10 M 5297 10 M 5336 10 5376 10 5445 10 5445 10 5455 10 5548 10 5597 10 5623 10 M 5623 10 M OPQ L: L(α,α')=L(p,p')=L(³ He, ³ He')=4 for a level at 5230 20. M XREF: o(5450)p(5450)q(5450). XREF: o(5450)p(5450)q(5450). XREF: o(5450)p(5450)q(5450).		(6 ⁻)	0.42 ps 7			I^{π} : 846.2v to 5 ⁻ and 1421.1v to 5 ⁺ : hand assignment
5250 10 5272 10 5297 10 5336 10 5376 10 5429 10 5445 10 5455 10 548 10 5597 10 5623 10 M M M M M M M M M M M M M			0.12 ps /		0	
5297 10 5336 10 5376 10 5429 10 5445 10 5455 10 5548 10 5597 10 5623 10 M M M M M M M M M M M M M		-				
5336 10 5376 10 5429 10 5445 10 5455 10 5548 10 5597 10 5623 10 M M M M M M M M M M M M M				M		
5376 10 5429 10 5445 10 M opq XREF: o(5450)p(5450)q(5450). 5455 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M opq XREF: o(5450)p(5450)q(5450). M opq XREF: o(5450)p(5450)q(5450)q(5450)q(5450). M opq XREF: o(5450)p(5450)q(
5429 10 5445 10 M opq XREF: o(5450)p(5450)q(5450). 5455 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M opq XREF: o(5450)p(5450)q(5450). M opq XREF: o(5450)p(5450)q(5						
5445 10						
5455 10 M opq XREF: o(5450)p(5450)q(5450). 5548 10 M 5597 10 M 5611 10 M 5623 10 M					q	XREF: o(5450)p(5450)q(5450).
5597 10 M 5611 10 M 5623 10 M				М ор		XREF: o(5450)p(5450)q(5450).
5611 10 M 5623 10 M						
5623 10 M						
Continued on next page (footnotes at end of table)						
				Continue	ed on nex	t page (footnotes at end of table)

E(level) [†]	$J^{\pi \#}$	T _{1/2} &		XRE	EF	Comments			
5684 10					M				
5731 10			g		M	XREF: g(5710). J^{π} : L(³ He,n)=0 for a level at 5710 gives 0 ⁺ for one of the levels at 5731 or 5741.			
5741 10			g		M opq	XREF: g(5710)o(5760)p(5760)q(5760).			
5780 <i>10</i>					M opq	XREF: o(5760)p(5760)q(5760).			
5813 10					M				
5835 <i>10</i> 5859 <i>10</i>					M M				
5903 10					M				
5931.2 5	1+ <i>a</i>	0.073 eV 6		J	M				
5944 10	_				M				
5957 10					M				
5983 10	3-				M OPQ	XREF: O(5990)P(5990)Q(5990).			
5998.0 ^c 5	(7-)	<0.35 ps	E			J ^π : L(α , α')=L(d,d')=L(3 He, 3 He')=3. J ^π : 784.6 γ to (6 ⁻), 1630.9 γ to 5 ⁻ ; band assignment. T _{1/2} : effective half-life=0.28 ps 7 from DSAM in (28 Si, α 2p γ).			
6003 10					M				
6027 [‡] 10 6032 10 6071 10 6083 10					M M M M				
6116 [‡] <i>10</i>					M				
6123 10					M				
6138 <i>10</i>					M opq	XREF: o(6150)p(6150)q(6150).			
6175 <i>10</i>					M				
6202 10					M				
6226 [‡] 10					M				
6230 10					M				
6243 <i>10</i> 6272 <i>10</i>					M M				
6305 10					M				
6330 10					M				
6340.6 ^b 5	10+	0.76 ps <i>14</i>	DEF		R	J ^{π} : ΔJ=2, E2 1595.7 γ to 8 ⁺ ; spin=10 from $\gamma(\theta)$ in (16 O, α 2p γ); band assignment.			
6342 10					M				
6376 10					M	- 2 2			
6450 20	3-				M OPQ	J^{π} : $L(\alpha, \alpha') = L(p, p') = L(^{3}He, ^{3}He') = L(d, d') = 3$.			
6650 20 6754.5 5	3 ⁻ 10 ⁺	0.111 ps <i>21</i>	DE		M OPQ	J ^π : L(α , α')=L(d,d')=L(3 He, 3 He')=3. J ^π : Δ J=2, E2 2009.6 γ to 8 ⁺ ; 414.1 γ to 10 ⁺ ; band assignment.			
6790 20	3-				M OPQ	J^{π} : $L(\alpha, \alpha') = L(d, d') = L(^3He, ^3He') = L(p, p') = 3.$			
6950.6 ^d 5	11+	0.49 ps 4	DEF			J ^{π} : ΔJ=1, M1 610.2 γ to 10 ⁺ ; spin=11 from $\gamma(\theta)$ in (16 O, α 2p γ); band assignment.			
7340	$(1^+)^{@}$				M				
7360 20	3-				M OPQ	$J^{\pi}: L(\alpha, \alpha') = L(d, d') = 3.$			
7600.8 5	$1^{+@a}$	0.334 eV <i>37</i>		J	M	XREF: M(7610).			
7613.1 ^d 5	12+	0.111 ps <i>10</i>	DEF			J ^{π} : ΔJ=1, M1 662.2 γ to 11 ⁺ ; spin=12 from $\gamma(\theta)$ in (¹⁶ O, α 2p γ); band assignment.			
7645.7 5	1 ^{+a}	0.118 eV <i>14</i>		J					
7.78×10^3	$(1^+)^{@}$				M				
7860 20	3-			_	M OPQ	J^{π} : $L(\alpha, \alpha') = L(d, d') = L(^{3}He, ^{3}He') = 3$.			
7948.2 <i>4</i>	1 ^{+a}	1.76 eV <i>10</i>		J					
			Contin	med	on next nag	e (footnotes at end of table)			

E(level) [†]	$J^{\pi \#}$	K		XR	EF		Comments			
7.98×10^3	$(1^+)^{@}$				M					
8045.8 5	1 ^{+a}	0.238 eV 26		J						
8121.5 5	1 ^{+a}	0.094 eV 11		J						
8.27×10^3	$(1^+)^{\textcircled{@}}$				M					
8360 <i>50</i> 8425 <i>7</i>	6 ⁺		G			S	T=2			
0123 7	O					3	J^{π} : isobaric analog state from ⁵² Cr(p,t).			
8527.6 <i>4</i>	1^{+a}	0.85 eV 11		J			(1)//			
8638?	$(1^+)^{@}$				M	S	XREF: M(8650).			
8680 20	3-		G		M OPC		J^{π} : $L(\alpha, \alpha') = L(d, d') = L(^{3}He, ^{3}He') = 3.$			
8748 <i>6</i>	4+					S	T=2			
8813 <i>6</i>	2+					S	J^{π} : isobaric analog state from 52 Cr(p,t). T=2			
0013 0	2					3	J^{π} : isobaric analog state from ⁵² Cr(p,t).			
8885.6 <i>5</i>	1 ⁺ a	0.53 eV 5		J			or isocario analog state from Crypton			
9007.9 5	$1^{+}@a$	0.286 eV 34		J	M		XREF: M(9010).			
9208.3 5	$1^{+}@a$	0.37 eV 9		J	M		XREF: M(9190).			
9327.1 ^b 5	(12^{+})		DE				J^{π} : $\Delta J=(2)$, (Q) 2572.6 γ to 10 ⁺ and 1713.8 γ to 12 ⁺ ; band assignment.			
9409.5 5	$1^{+}@a$	0.81 eV 13		J	M		XREF: M(9400).			
9579.1 <i>5</i>	$1^{+}@a$	0.30 eV 6		J	M		XREF: M(9570).			
9642.2 ^d 6	13 ⁺	0.05 ps 2	DE				J ^{π} : ΔJ=2, E2 2692.0 γ to 11 ⁺ ; ΔJ=1, D 2028.9 γ to 12 ⁺ .			
9719.1 5	1 ^{+@a}	1.42 eV <i>17</i>		J	M		XREF: M(9710).			
9900 50	2+		G		M		J^{π} : L(³ He,n)=2, but 1 ⁺ in (p,p').			
9914.8 ^d 6	14+	0.22 ps 4	DE				J^{π} : $\Delta J=2$, E2 γ to 12 ⁺ ; $\Delta J=1$, D γ to 13 ⁺ .			
10.11×10^3	$(1^+)^{@}$				M					
10.24×10^3	$(1^+)^{\textcircled{0}}$				M					
10.38×10^3	$(1^+)^{\textcircled{@}}$				M					
10500 <i>50</i>	$(1^+)^{@}$		G		M		XREF: M(10520).			
							E(level): from 48 Ti(3 He,n).			
10750 30	2 ⁺	0.62	G				J^{π} : L(³ He,n)=2.			
10797.5 6	13 ⁽⁺⁾	<0.62 ps	DE				J^{π} : $\Delta J=1$, D γ to 12^+ .			
10.82×10 ³ 11013.9 6	(1 ⁺) [@] 13 ⁺	0.06 ps <i>1</i>	DE		M		J^{π} : $\Delta J=1$, D 3400.5 γ to 12 ⁺ ; $\Delta J=2$, E2 2204.2 from			
11013.9 0	13	0.00 ps 1	DE				15^+ .			
11060 <i>50</i>	(1 ⁺) [@]		G		M		XREF: M(11020).			
11.18×10^3	$(1^+)^{@}$				M		,			
$11.4 \times 10^3 I$. ,		G							
11530 50	0+		G				J^{π} : L(³ He,n)=0.			
11660	$(1^+)^{\textcircled{@}}$				M		50			
11680 20	0+		G				E(level): IAS of $3230,(0)^+$ level in 50 V from $1975Bo14$ in $(^3He,n)$.			
							J^{π} : L(³ He,n)=0.			
11.82×10^3	$(1^+)^{@}$				M					
11870 20	0+		G				J ^{π} : L(³ He,n)=0. E(level): IAS of 3462,(0) ⁺ level in ⁵⁰ V from 1975Bo14 in (³ He,n).			
12.30×10^3	$(1^+)^{@}$				M		E(level): multiplet.			
12391.5 6	15(+)		DE				J^{π} : $\Delta J=1$, D 2476.9 γ to 14 ⁺ .			
12542.0 7	(14^{+})		DE				J^{π} : 4927.9 γ to 12 ⁺ ; 2492.1 γ from 16 ⁺ .			
			Continu	ed (on next	page	(footnotes at end of table)			

E(level) [†]	$\mathrm{J}^{\pi \#}$	T _{1/2} &	XREF		Comments
12680 <i>50</i> 12790 <i>50</i> 12950 <i>50</i>			G G G		
13218.4 ^d 6	15 ⁺	0.021 ps +7-4	DE		J^{π} : $\Delta J=2$, E2 3578.7 γ to 13 ⁺ ; $\Delta J=1$, D 3304.8 γ to 14 ⁺ .
13222 6	0+		G	S	T=3 XREF: S(13220). E(level): from ⁵² Cr(p,t); IAS of 4815,(0) ⁺ level in ⁵⁰ V from 1975Bo14 in (³ He,n). J ^π : L(³ He,n)=0.
13495.3 <i>21</i>			E		3 . E(110,11)=0.
13641.0 6	$14^{(+)}$		D		J^{π} : $\Delta J=1$, D 2627.1 γ to 13 ⁽⁺⁾ .
13900 20	0^{+}		G		J^{π} : L(³ He,n)=0.
13920.8 <i>12</i>	15 ⁽⁺⁾	<0.076 ps	DE		J^{π} : $\Delta J=1$, D 4005.8 γ to 14 ⁺ .
14500 <i>30</i>			G		
14570 <i>30</i>			G		
14900 20	0_{+}		G		J^{π} : L(³ He,n)=0.
15034.2 ^d 7	16 ⁺	<0.021 ps	DE		J^{π} : $\Delta J=2$, E2 5121 γ to 14 ⁺ .
15809.0 <i>6</i>	16 ⁺	<0.05 ps	DE		J^{π} : $\Delta J=2$, E2 2168.1 γ to 14 ⁺ .
16049.4 7	$17^{(+)}$		D		J^{π} : $\Delta J=2$, Q 2830.9 γ to 15 ⁺ .
17669.2 <i>16</i>	(16,17)		D		J^{π} : 3748.2 γ to 15 ⁽⁺⁾ .
17790.0 <i>12</i>	(16,17)		D		J^{π} : 5398.2 γ to 15 ⁽⁺⁾ .
17956.6 ^d 10	18 ⁺	<0.07 ps	DE		J^{π} : $\Delta J=2$, E2 2922.3 γ to 16 ⁺ .

[†] From a least-squares fit to γ -ray energies for levels connected by γ transitions, unless otherwise noted.

[‡] Unresolved doublet; spacing <5 keV.

[#] From 24 Mg(32 S, $\alpha 2$ p γ), except as noted, based on $\gamma(\theta)$ and $\gamma\gamma(\theta)$ measurements together with band associations from $\gamma\gamma$ coincidence data. $^{@}$ 1⁺ from (p,p') E=201 MeV (1989Wi13), interpreted as spin-flip transition from forward angle cross sections.

[&]amp; $T_{1/2}$ from DSAM, as given in 28 Si(28 Si, α 2p γ) dataset, width from (γ , γ'), except as noted.

^a From $\gamma(\theta, \text{pol})$ in (γ, γ') (2016Pa04).

^b Band(A): g.s. band.

^c Seq.(B): γ cascade based on 5⁻.

^d Seq.(C): γ cascade based on 11^+ .

γ (50Cr)

See $(p,p'\gamma)$ and ^{50m}Mn β^+ decay for possible but unobserved transitions.

 ∞

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^{\dagger}	$\alpha^{\&}$	Comments
783.31	2+	783.3 1	100	0.0 0+	E2			B(E2)(W.u.)=19.3 <i>6</i> E _γ : weighted average of 783.3 <i>I</i> from ⁵⁰ Mn ε decay (1.75 min), 783.6 <i>3</i> from (³² S, α 2pγ), 783.3 <i>3</i> from (²⁸ Si, α 2pγ), 783.3 <i>5</i> from (γ , γ), 783.4 2 from (p,p' γ), and 783.3 2 from (α , α ' γ). Others: 778 2 from (p,n γ) and 783 <i>I</i> from (n,n' γ).
1881.42	4+	1098.1 2	100	783.31 2+	E2			Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$), and RUL. B(E2)(W.u.)=14.7 +26–19 E _{γ} : weighted average of 1098.0 2 from $^{50}\text{Mn}\ \varepsilon$ decay (1.75 min), 1097.9 3 from ($^{32}\text{S}, \alpha 2\text{p}\gamma$), 1098.2 3 from ($^{28}\text{Si}, \alpha 2\text{p}\gamma$), 1097.9 5 from ($^{16}\text{O}, \alpha 2\text{p}\gamma$), 1098.2 3 from (p,p' γ), and 1098.1 2 from ($\alpha, \alpha'\gamma$). Other: 1107 3 from (p,n γ).
2924.6	2+	2141.5 4	100 5	783.31 2 ⁺	(M1(+E2))	-0.03 6		Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$), and RUL. B(M1)(W.u.)=0.22 +5-4 E _{γ} : others: 2138 <i>I</i> from (n,n' γ), 2140 <i>5</i> from (p,n γ).
		2924 2	9.0 24	0.0 0+	E2			Mult.: D(+Q) from $\gamma(\theta)$ in $(p,p'\gamma)$; $\Delta \pi$ =no from level scheme. B(E2)(W.u.)=2.1 +11-8
3161.3	2+	2378.3 5	100	783.31 2 ⁺	M1+E2	+0.24 9		Mult.: Q from $\gamma(\theta)$ in $(p,p'\gamma)$ and M2 ruled out by RUL. B(E2)(W.u.)=3.4 +38-22; B(M1)(W.u.)=0.142 +30-24
3164.06	6 ⁺	1282.5 2	100	1881.42 4 ⁺	E2			Mult., δ : D+Q from p $\gamma(\theta)$ in (p,p' γ); M2 ruled out by RUL. B(E2)(W.u.)=19 +8-4
								E _γ : weighted average of 1282.4 <i>3</i> from ⁵⁰ Mn ε decay (1.75 min), 1282.3 <i>3</i> from (32 S,α2pγ), 1282.1 <i>3</i> from (28 Si,α2pγ), 1282.6 <i>5</i> from (16 O,α2pγ), 1282.7 7 from (p,p'γ), and 1282.7 2 from (α,α'γ). Mult.: from γ(θ,pol) in (16 O,α2pγ), γγ(DCO) in (32 S,α2pγ),
								and RUL.
3324.56	4 ⁺	161 ^b	≤3	3164.06 6+	[E2]		0.0674	$\alpha(K)=0.0596; \ \alpha(L)=0.00583$
		1443.3 2	100 7	1881.42 4+	(M1(+E2))	-0.02 +16-52		$E_{\gamma}I_{\gamma}$: possible γ from 1.75-min ⁵⁰ Mn decay only. B(M1)(W.u.)=0.073 28
					//			E _γ : weighted average of 1443.3 2 from ⁵⁰ Mn ε decay (1.75 min), 1443.3 3 from (²⁸ Si, α 2p γ), 1443.1 5 from (¹⁶ O, α 2p γ), and 1442.7 7 from (p,p' γ).
		2541.0 <i>3</i>	0.8	783.31 2 ⁺	[E2]			Mult.: D(+Q) from $\gamma(\theta)$ in (p,p' γ); $\Delta\pi$ =no from level scheme. B(E2)(W.u.)=0.039 +30-16
3594.63	2+,3,4+	1713.2 <i>3</i>	70 10	1881.42 4+				$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ).

γ (50Cr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ^{\dagger}	Comments
3594.63	$2^+,3,4^+$	2811.2 <i>3</i>	100 10	783.31 2+			
3611.4	4+	449 ^{ab} 2	$\approx 8^a$	3164.06 6+	[E2]		
		449 ^{ab} 2	$\approx 8^{a}$	3161.3 2+	[E2]		
		1729.9 ^a 3	100 ^a 11	1881.42 4 ⁺			
3628.9	1+	2845.5 [@] 6	49 [@] 1	783.31 2+	[M1] [@]		E_{γ} : weighted average of 2845.0 5 from (γ, γ') and 2846.1 6 from $(p, p'\gamma)$. I_{γ} : from (γ, γ') . Others: 50 5 from ⁵⁰ Mn ε decay, 50 22 from $(p, p'\gamma)$.
		3628.7 7	100	0.0 0+	M1		E_{γ} : weighted average of 3628.0 5 from (γ, γ') and 3629.3 5 from $(p, p'\gamma)$.
	- 1						Mult.: from $\gamma(\theta)$ and polarization asymmetry in (γ, γ') .
3698.2	2+	2914.8 5	100	783.31 2 ⁺	M1+E2	+0.71 23	B(E2)(W.u.)=6.4 +41-33; B(M1)(W.u.)=0.046 +20-14
.=	(5±)	465.0.5	100.0	222456 4	D 0		Mult., δ : D+Q from p $\gamma(\theta)$ in (p,p' γ); M2 ruled out by RUL.
3792.1	(5 ⁺)	467.8 5	100 9	3324.56 4+	D+Q		E_{γ} : weighted average of 467.9 5 from (16 O,α2pγ) and 467.7 8 from (p,p'γ). I_{γ} : from (p,p'γ) (1968Mo07). Others: 100 <i>16</i> from (16 O,α2pγ), 100 <i>11</i> from
							1972Ra14 in $(p,p'\gamma)$. Mult.: from $\gamma(\theta)$ in $(p,p'\gamma)$.
		1910.8 8	100 12	1881.42 4+	(M1+E2)	-0.47 16	E _{γ} : weighted average of 1910.9 9 from (16 O, α 2p γ) and 1910.7 8 from
		1910.6 6	100 12	1001.42 4	(MIT+E2)	-0.47 10	$(p,p'\gamma)$.
							I_{γ} : weighted average of 79 9 from $(p,p'\gamma)$ (1968Mo07) and 79 16 from
							($^{16}\text{O},\alpha2\text{p}\gamma$). Other: 133 23 from 1972Ra14 in (p,p' γ) is in disagreement.
							Mult., δ : D+Q from p $\gamma(\theta)$ in (p,p' γ); RUL forbids M2. But $\gamma(\theta)$ data in
							$(^{28}\text{Si},\alpha 2\text{p}\gamma)$, suggesting pure dipole, is in disagreement with results from $(\text{p},\text{p}'\gamma)$.
3825.7	$(6)^{+}$	661.6 <i>3</i>	100 4	3164.06 6+			E _{γ} : weighted average of 661.5 3 from ⁵⁰ Mn ε decay (1.75 min), 661.5 3
							from (28 Si, α 2p γ), 661.7 5 from (16 O, α 2p γ), and 661.9 6 from (α , $\alpha'\gamma$). Other: 662 2 from (p,p' γ).
							I_{γ} : from ⁵⁰ Mn β^+ decay (1.75 min).
		1944.4 <i>3</i>	15.2 20	1881.42 4+			E_{γ} : weighted average of 1944.5 5 from ⁵⁰ Mn ε decay (1.75 min) and 1944.4
							3 from $(^{28}\text{Si},\alpha2\text{py})$.
2044-4	2+ 2 4+	(02.4.10	22.6	21612 2+			I_{γ} : from ⁵⁰ Mn β^+ decay (1.75 min).
3844.4	2+,3,4+	683.4 <i>10</i> 1962.9 <i>4</i>	22 <i>6</i> 100 <i>11</i>	3161.3 2 ⁺ 1881.42 4 ⁺			
		3060.9 6	50 11	783.31 2 ⁺			
3875.4	$(4^+,5,6^+)$	551.0 3	≈33	3324.56 4 ⁺			E_{γ} : from (²⁸ Si, α 2p γ). Other: 550 2 from (p,p' γ).
7075.1	(1,5,0)	711.1 3	67 17	3164.06 6 ⁺			E _y : from (28 Si, α 2p γ). Other: 711.1 6 from (p,p $'\gamma$).
		1993.8 <i>37</i>	100 33	1881.42 4 ⁺			E _y : from (28 Si, α 2py). Other: 1993.8 6 from (p,p'y).
3895.4	0+	732^{ab} 2	$\approx 5^a$	3161.3 2+	[[[2]		B(E2)(W.u.)=0.5 +15-4
0093.4	U	3112.0 10	≈3 100 40	783.31 2 ⁺	[E2] [E2]		B(E2)(W.u.)=0.05 +13-4 B(E2)(W.u.)=0.007 +6-3
		3112.0 10	100 40	763.31 2	[E2]		Mult., δ : δ (J=1)=-0.09 29, δ (J=2)=+0.34 13 from p γ (θ) in (p,p' γ) which suggests D(+Q), but ΔJ^{π} requires E2 if the parent level is the same one as the 0^+ ,3895 level in (p,t).
3937.3	$2^{+},3,4^{+}$	1014.3 9	≈17	2924.6 2 ⁺			(h, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1911.1		101110					
3937.3	,- ,	2055.5 4	100 17	1881.42 4 ⁺			

9

γ (50Cr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	Comments
4051.7	3-	441 ^{ab} 2	≈5 ^a	3611.4	4+	[E1]	$B(E1)(W.u.)=2.7\times10^{-4}+34-17$
		458 <mark>b</mark> 2	≈2	3594.63		. ,	
		890.6 5	41 7	3161.3		[E1]	B(E1)(W.u.)=0.00027 +17-10
		1126.9 5	100 9	2924.6	2+	[E1]	B(E1)(W.u.)=0.00032 +12-10
		3267.4 <i>14</i>	45 16	783.31	2+	[E1]	$B(E1)(W.u.)=5.9\times10^{-6} +43-28$
4068.2	0^{+}	441 ^{ab} 2	≈7 ^a	3628.9	1+		
		3284.8 22	100 25	783.31		[E2]	
4129.9	$(1,2^+)$	500 2	≈2	3628.9			
		1205.3 4	38 6		2+		
		4130 ^b 3	≈100	0.0	0^{+}		
4193.0	2+	494 <i>ab</i> 2	≈10 ^a		2+		
		1268.3 8	35 5		2+		
		3410.1 20	40 10	783.31			
		4193 ^b 3	≈100		0_{+}		
4367.2	5-	542 [#]	61 [#]	3825.7	$(6)^{+}$		
		575.3 [#] 3	100 #	3792.1	(5^+)		
		755 [#]		3611.4	4+		
		1042 [#]	34 [#]	3324.56			
		1203 [#] 1	37 [#]	3164.06			
		2485 [#]	32 [#]	1881.42			
4523.8	(4^{+})	732^{ab} 2	≈15 ^a	3792.1			
4323.0	(4)	1363^{ab} 2	$\approx 38^a$	3164.06			
		1363 ^{ab} 2					
		1599 2	≈38 ^a		2 ⁺		
		3740.5 <i>20</i>	≈15 100 23	2924.6 783.31			
4546.3	3-	494 ^{ab} 2	$\approx 33^a$		3-		
4340.3	3	1384.8 15	≈33°° ≈100		3 2 ⁺		
		1622 2	≈67	2924.6			
		2665 ^b	≤80	1881.42			
		3763 <i>3</i>	83 33	783.31			
4653.3		955 2	≈33	3698.2			
		1493 <mark>b</mark> 2	≈10	3161.3			
		1730.0 ^{ab} 3	323 ^a 36	2924.6			
		3870 2	100 29	783.31			
4744.9	8+	1580.8 <i>3</i>	100	3164.06		E2	B(E2)(W.u.)=19 +6-4
							E_{γ} : weighted average of 1580.5 3 from (32 S,α2pγ), 1580.9 3 from (28 Si,α2pγ), 1581.1 5 from (16 O,α2pγ), and 1581.2 5 from ($^{\alpha}$,α'γ).
							Multi-from $\alpha(0, pq)$ in $(^{16}O, \alpha^2pq)$ and $(^{16}O, \alpha^2pq)$ and $(^{16}O, \alpha^2pq)$ in $(^{32}S, \alpha^2pq)$

10

Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$).

γ (50Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
4997.1	1(+)	4213.8 [@] 5	100 [@] 10	783.31	2+	[M1] [@]	
		4996.7 [@] 5	100 [@]	0.0	0^{+}	$(M1)^{@}$	Mult.: from $\gamma(\theta)$ and polarization asymmetry in (γ, γ') .
5213.4	(6^{-})	846.2 [#] <i>3</i>	100 [#] 10	4367.2	5-	()	
	(-)	1388 [#]		3825.7	$(6)^{+}$		
		1421.1# 3	80 [#] 7	3792.1	(5 ⁺)		
5931.2	1+	5930.8 [@] 5	100	0.0	0+	M1 [@]	Mult.: from $\gamma(\theta)$ and polarization asymmetry in (γ, γ') .
5998.0	(7-)	784.6 [#] 3	68 [#] 18	5213.4	(6-)	1.11	That is not yet and polarization asymmetry in (7,7).
3770.0	(,)	1630.9 [#] 3	100# 18		5-		
6340.6	10 ⁺	1595.7 2	100	4744.9	8+	E2	B(E2)(W.u.)=6.6 +15-10
							E _γ : weighted average of 1595.2 3 from (32 S,α2pγ), 1595.9 3 from (28 Si,α2pγ), 1595.7 5 from (16 O,α2pγ), and 1596.5 5 from (α,α'γ).
							Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$).
6754.5	10 ⁺	414.1 5	15.3 <i>14</i>	6340.6	10^{+}		E_{γ} : unweighted average of 414.5 3 from ($^{32}S_{,\alpha}2p\gamma$) and 413.6 3 from ($^{28}S_{i,\alpha}2p\gamma$).
							I_{γ} : weighted average of 18 6 from (32 S, α 2p γ) and 15.2 14 from (28 Si, α 2p γ).
		2009.6 3	100 10	4744.9	8+	E2	E_{γ} : weighted average of 2009.3 3 from ($^{32}S_{,\alpha}2p\gamma$) and 2009.8 3 from ($^{28}S_{i,\alpha}2p\gamma$).
							I_{γ} : from (²⁸ Si, α 2p γ). Other: 100 12 from (³² S, α 2p γ).
							Mult.: Q from $\gamma\gamma$ (DCO) and $\gamma\gamma$ (ADO) in (32 S, α 2p γ), $\gamma\gamma$ (ADO) in (28 Si, α 2p γ); M2 ruled out by RUL.
6950.6	11+	196.0 4	3.0 3	6754.5	10 ⁺	(M1)	B(M1)(W.u.)=0.174 22
							E_{γ} : weighted average of 196.3 3 from ($^{32}S_{,}\alpha^{2}p\gamma$) and 195.6 3 from ($^{28}S_{i},\alpha^{2}p\gamma$). I_{γ} : weighted average of 3.4 11 from ($^{32}S_{,}\alpha^{2}p\gamma$) and 3.0 3 from ($^{28}S_{i},\alpha^{2}p\gamma$).
							γ : weighted average of 3.4 11 from ($^{-5}$, α 2p γ) and 3.0 3 from ($^{-5}$ Si, α 2p γ). Mult.: D from $\gamma\gamma$ (DCO) and $\gamma\gamma$ (ADO) in (32 Si, α 2p γ); $\Delta\pi$ =no from level scheme.
		610.2 <i>3</i>	100.0 15	6340.6	10 ⁺	M1	B(M1)(W.u.)= $0.192\ 16$
							E_{γ} : weighted average of 610.3 3 from (32 S,α2pγ), 610.1 3 from (28 Si,α2pγ), and 609.9 5 from (16 O,α2pγ).
							I_{γ} : from (²⁸ Si, α 2p γ). Others: 100 11 from (¹⁶ O, α 2p γ), 100 10 from (³² S, α 2p γ).
							Mult.: from $\gamma(\theta, \text{pol})$ in ($^{16}\text{O}, \alpha 2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ in ($^{32}\text{S}, \alpha 2\text{p}\gamma$).
7600.8	1+	7600.2 [@] 5	100	0.0	0^{+}	$M1^{@}$	
7613.1	12 ⁺	662.2 3	100.0 15	6950.6	11+	M1	B(M1)(W.u.)=0.66 6
							E_{γ} : weighted average of 662.4 3 from (32 S,α2pγ), 662.2 3 from (28 Si,α2pγ), and 661.8 5 from (16 O,α2pγ).
							I_{γ} : other: 100 10 from ($^{32}S, \alpha 2p\gamma$) and ($^{16}O, \alpha 2p\gamma$).
		1070.0.3	20.2	(240.6	10+	[[2]	Mult.: from $\gamma(\theta,\text{pol})$ in ($^{16}\text{O},\alpha2\text{p}\gamma$), $\gamma\gamma(\text{DCO})$ and $\gamma\gamma(\text{ADO})$ from ($^{32}\text{S},\alpha2\text{p}\gamma$).
		1272.2 <i>3</i>	2.9 3	6340.6	10 ⁺	[E2]	B(E2)(W.u.)=4.0 8 E _y : weighted average of 1272 <i>I</i> from (32 S, α 2py) and 1272.2 <i>3</i> from (28 Si, α 2py).
							I_{γ} : weighted average of 1272 I from ($^{32}S_{,\alpha}2p\gamma$) and 1272.2 S from ($^{28}S_{,\alpha}2p\gamma$). Up: I_{γ} : weighted average of 4.3 IS from ($^{32}S_{,\alpha}2p\gamma$) and 2.8 S from ($^{28}S_{,\alpha}2p\gamma$). Other: I_{γ} : weighted average of 4.3 IS from ($^{32}S_{,\alpha}2p\gamma$) and 2.8 IS from ($^{28}S_{,\alpha}2p\gamma$).
7645.7	1+	7645.1 [@] 5	100	0.0	0+	M1 [@]	$\operatorname{Hom}(O,\alpha 2py).$
7948.2	1+ 1+	7164.5 [@] 5	27 [@] 2	783.31			
1948.2	1	/104.5 - 3	21 - 2	/83.31	2.	[M1]	

Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and $\gamma\gamma$ (DCO) in (28 Si, α 2p γ); M2 ruled out by

 E_{γ} : unweighted average of 3303.3 3 from ($^{32}S_{\gamma}\alpha^{2}p\gamma$) and 3306.3 3 from ($^{28}S_{\gamma}\alpha^{2}p\gamma$).

 I_{ν} : from (^{32}S , $\alpha 2p\gamma$). Mult.: from $\gamma(DCO)$ in ($^{32}S,\alpha 2p\gamma$).

B(E2)(W.u.)=0.34 +40-16

 I_{γ} : also from ($^{32}S, \alpha 2p\gamma$).

Comments

 E_{γ} : unweighted average of 2028.1 3 from (32 S, α 2p γ) and 2029.7 3 from (28 Si, α 2p γ).

 E_{γ} : weighted average of 273.3 3 from ($^{32}S_{,\alpha}2p\gamma$) and 272.9 3 from ($^{28}S_{i,\alpha}2p\gamma$).

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in ($^{32}S,\alpha2p\gamma$), and $\gamma\gamma(ADO)$ in ($^{28}Si,\alpha2p\gamma$).

 E_{ν} : unweighted average of 2300.9 3 from ($^{32}S_{.}\alpha^{2}p\nu$) and 2303.2 3 from ($^{28}S_{i}\alpha^{2}p\nu$).

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in (32S, α 2p γ) and (28Si, α 2p γ).

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in ($^{32}S,\alpha2p\gamma$) and ($^{28}Si,\alpha2p\gamma$).

Mult.: Q from $\gamma(ADO)$ in ($^{28}Si_{,}\alpha 2p\gamma$); M2 ruled out by RUL.

 I_{γ} : other: 44 4 from ²⁴Mg(³²S, α 2p γ) is in disagreement.

 E_{γ} : unweighted average of 3577.1 10 from ($^{32}S,\alpha 2p\gamma$) and 3580.3 10 from ($^{28}Si,\alpha 2p\gamma$).

Mult.: Q from $\gamma\gamma$ (ADO) in (²⁸Si, α 2p γ); M2 ruled out by RUL.

Mult.: from $\gamma\gamma(DCO)$ and $\gamma\gamma(ADO)$ in ($^{32}S,\alpha2p\gamma$).

9642.2 13^{+}

3853[#] 2 2627.1[‡] 3 100 11013.9

2302.0 12

 E_{γ}^{\dagger}

7947.4[@] 5

8045.1[@] 5

8120.8[@] 5

7743.1[@] 5

8527.4[@] 5

8884.8[@] 5

9007.0[@] 5

9207.4[@] 5

1713.8[‡] 3

2572.6‡ 3

9408.5[@] 5

9578.1[@] 5

2028.9 8

2987‡ 1

 $E_i(level)$

7948.2

8045.8

8121.5

8527.6

8885.6

9007.9

9208.3

9327.1

9409.5

9579.1

9642.2

12

1+

1+

1+

1+

1+

 13^{+}

 (12^{+})

 I_{γ}^{\dagger}

100[@]

100

100

100[@]

100

100

100

85‡ 25

100‡ 35

<50[‡]

100

100

100[#] 10

4.8# 10

39[@] 6

 E_f

 $0.0 0^{+}$

 0^{+}

 12^{+}

 10^{+}

 10^{+}

 0_{+}

12+

0.0 0^{+}

0.0

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

0.0 0^{+}

7613.1

6754.5

6340.6

7613.1

0.0 0^{+}

0.0

783.31 2⁺

Mult.

M1[@]

M1[@]

M1[@]

[M1]

 $M1^{@}$

 $M1^{@}$

 $M1^{@}$

 $M1^{@}$

(Q)

 $M1^{@}$

 $M1^{@}$

D

E2

D

E2

D

E2

9718.1[@] 5 1+ 9719.1 100 0.0 0^{+} 15[#] 2 14+ 273.1 *3* 9642.2 13+ 9914.8

2692.0[#] 3 6950.6 11^{+}

M1[@] D

100[#] 10 7613.1 12^{+}

E2 13(+) 3183.9[‡] 3 10797.5 100 7613.1 12^{+} D D

3400.5[‡] *3* 100‡ 7613.1 11013.9 13+ 12+ 100‡ 14 $15^{(+)}$ 1593.6[‡] 3 10797.5 $13^{(+)}$ 12391.5 2476.9# 3 40 9 9914.8 14+ 12+

4927.9[‡] 10 100 7613.1 12542.0 (14^{+}) 13218.4 15^{+} 2204.2‡ 3 100 10 11013.9 13+ 3304.8 15 54 5 9914.8 14^{+}

3578.7 16 54 9 9642.2 13^{+} 13495.3

 $14^{(+)}$ 13⁺

Mult.: from $\gamma\gamma$ (ADO) in (32 S, α 2p γ).

D

13641.0

RUL.

Adopted Levels, Gammas (continued)

 γ (50Cr) (continued)

γ (50Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π	Mult.	Comments
13920.8	15(+)	4005.8 [‡] 10	100	9914.8	14+	D	Mult.: from $\gamma\gamma$ (DCO) and $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and (28 Si, α 2p γ).
15034.2	16 ⁺	1815.8 <i>4</i>	30 5	13218.4	15 ⁺		E_{γ} : weighted average of 1815.5 3 from ($^{32}S,\alpha 2p\gamma$) and 1816.2 3 from ($^{28}Si,\alpha 2p\gamma$). I_{γ} : weighted average of 29 5 from ($^{32}S,\alpha 2p\gamma$) and 33 7 from ($^{28}Si,\alpha 2p\gamma$).
		2492.1 [‡] <i>3</i>	9 [‡] 5	12542.0	(14^{+})		
		5121 2	100 [#] 22	9914.8	14+	E2	E_{γ} : unweighted average of 5119.1 <i>10</i> from (32 S, α 2p γ) and 5123.4 <i>10</i> from (28 Si, α 2p γ). Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and M2 ruled out by RUL.
15809.0	16 ⁺	2168.1 [‡] 3 2590.5 [‡] 3	38 [‡] 11 100 [‡] 22	13641.0 13218.4		E2	Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ) and M2 ruled out by RUL.
16049.4	17 ⁽⁺⁾	2830.9 [‡] <i>3</i>	100	13218.4	15 ⁺	Q	Mult.: Q from $\gamma\gamma$ (ADO) in (32 S, α 2p γ).
17669.2	(16,17)	3748.2 10	100	13920.8	$15^{(+)}$		***
17790.0	(16,17)	5398.2 10	100	12391.5	$15^{(+)}$		
17956.6	18 ⁺	2922.3 7	100	15034.2	16+	E2	E_{γ} : unweighted average of 2921.6 3 from ($^{32}S_{,\alpha}2p\gamma$) and 2923.0 3 from ($^{28}S_{i,\alpha}2p\gamma$).

[†] From 50 Cr(p,p' γ), except as noted. ‡ From 24 Mg(32 S, α 2p γ). # From 28 Si(28 Si, α 2p γ). @ From (γ , γ'),(pol γ , γ'). Mult. are based on γ (θ ,pol) data (2016Pa04).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Seq.(C): γ cascade based on 11^+

 $^{50}_{24}{\rm Cr}_{26}$