Carbon Prices and the Skill Premium

Andreas Fuster EPFL & SFI

Vincenzo Pezone Tilburg Gazi Kabas Tilburg

Kasper Roszbach Norges Bank

The views expressed here are those of the authors, and not necessarily those of the Norges Bank.

Climate policies and Firms

Firms must comply with climate policies for the foreseeable future

- Which climate policy & at which intensity?
- Internalize negative externalities ⇒ Lower carbon emissions
- Concerns: Economic activity, pass-through on firms' stakeholders

1

Climate policies and Firms

Firms must comply with climate policies for the foreseeable future

- Which climate policy & at which intensity?
- Internalize negative externalities ⇒ Lower carbon emissions
- Concerns: Economic activity, pass-through on firms' stakeholders

We study how higher EU ETS carbon price affects workers

- Consequences for employees are important for the welfare and firm performance
- Being a market-based policy, ETS allows firms to use different margins of adjustment
- Ex ante, the effect is not obvious!

Price shock: A regulation change that reduces the supply of emission permits

Price shock: A regulation change that **reduces the supply of emission permits** After an increase in carbon price due to the regulation change,

- 1. Workers who work for ETS firms with the highest excess permits experience wage increases
 - ightarrow Firms and workers share the surplus generated by higher carbon prices

Price shock: A regulation change that **reduces the supply of emission permits** After an increase in carbon price due to the regulation change,

- 1. Workers who work for ETS firms with the highest excess permits experience wage increases
 - \rightarrow Firms and workers share the surplus generated by higher carbon prices
- 2. Higher carbon price increases the wages of workers who have STEM education
 - ightarrow Higher carbon price increases marginal revenue of workers who can reduce the emissions
 - \rightarrow The effect is larger for workers with better outside options

Price shock: A regulation change that **reduces the supply of emission permits** After an increase in carbon price due to the regulation change,

- 1. Workers who work for ETS firms with the highest excess permits experience wage increases
 - \rightarrow Firms and workers share the surplus generated by higher carbon prices
- 2. Higher carbon price increases the wages of workers who have STEM education
 - ightarrow Higher carbon price increases marginal revenue of workers who can reduce the emissions
 - \rightarrow The effect is larger for workers with better outside options
- 3. STEM workers at firms with surplus enjoy the highest increase
 - \rightarrow Two channels interact with each other

Price shock: A regulation change that **reduces the supply of emission permits** After an increase in carbon price due to the regulation change,

- 1. Workers who work for ETS firms with the highest excess permits experience wage increases
 - \rightarrow Firms and workers share the surplus generated by higher carbon prices
- 2. Higher carbon price increases the wages of workers who have STEM education
 - ightarrow Higher carbon price increases marginal revenue of workers who can reduce the emissions
 - \rightarrow The effect is larger for workers with better outside options
- 3. STEM workers at firms with surplus enjoy the highest increase
 - → Two channels interact with each other
- 4. No effects on hiring/separation
- 5. Carbon prices contributes to the wage differentials across workers and firms

2

What we know so far

Climate policies:

EU ETS & Firm behavior: Decline in emissions without a worsening in performance (Martin et al. 2014, Calel&Dechezlepretre 2016, Marin et al. 2018, Bolton et al. 2023, Dechezlepretre et al. 2023, Colmer et al. 2024)

Other climate policies & Labor markets: Restrictions on emissions may reduce labor demand (Walker 2013, Martin et al. 2014, Vona et al. 2018, Azevedo et al. 2023)

- \rightarrow Document the effects of carbon price on wages and underlying channels
- \rightarrow Market-based policies vs hard-cap regulations

What we know so far

Climate policies:

EU ETS & Firm behavior: Decline in emissions without a worsening in performance (Martin et al. 2014, Calel&Dechezlepretre 2016, Marin et al. 2018, Bolton et al. 2023, Dechezlepretre et al. 2023, Colmer et al. 2024)

Other climate policies & Labor markets: Restrictions on emissions may reduce labor demand (Walker 2013, Martin et al. 2014, Vona et al. 2018, Azevedo et al. 2023)

- ightarrow Document the effects of carbon price on wages and underlying channels
- \rightarrow Market-based policies vs hard-cap regulations
- Determinants of wage differences among workers and firms (Acemoglu 1998, Autor et al. 2003, Acemoglu et al. 2012)
 - \rightarrow Carbon prices may influence these differences due to skills and policy design
 - ightarrow Importance of the design of the carbon market

The EU ETS is a cap-and-trade program

- The EU sets an annual emission amount and issues allowances accordingly
 - \rightarrow 40% of emissions in the EU
 - \rightarrow Phase 1 (2005-2007), Phase 2 (2008-2012), Phase 3 (2013-2020), Phase 4 (2021-2030)
- Phase 3: Single, EU-wide cap on emissions in place of the previous system of national caps
- Main participation criteria: Installation's thermal input capacity of more than 20 MW
- Firms submit their allowances by April 30 for the previous year
 - ightarrow Participants can keep or sell their unused permits
 - ightarrow Not submitting leads to a fine of 100 euros per tonne + allowance

- In Phase 3, 43% of allowances are allocated for free. The rest is auctioned.
- ullet Free allocation = Historical activity imes Benchmark imes Carbon leakage imes Linear reduction

- In Phase 3, 43% of allowances are allocated for free. The rest is auctioned.
- ullet Free allocation = Historical activity imes Benchmark imes Carbon leakage imes Linear reduction
- Historical activity: Median activity level of the installation in earlier phases.

- In Phase 3, 43% of allowances are allocated for free. The rest is auctioned.
- ullet Free allocation = Historical activity imes Benchmark imes Carbon leakage imes Linear reduction
- Historical activity: Median activity level of the installation in earlier phases.
- Benchmark: Average emission of the best 10 percent installations in that product.

- In Phase 3, 43% of allowances are allocated for free. The rest is auctioned.
- ullet Free allocation = Historical activity imes Benchmark imes Carbon leakage imes Linear reduction
- Historical activity: Median activity level of the installation in earlier phases.
- Benchmark: Average emission of the best 10 percent installations in that product.
- Carbon leakage: Sectors exposed to carbon leakage receive higher free allowances.

Share of free allocation calculated based on benchmarks per sector	2013	2014	2015	2016	2017	2018	2019	2020
Electricity production	0%	0%	0%	0%	0%	0%	0%	0%
Industry sectors	80%	72.9%	65.7%	58.6%	51.4%	44.2%	37.1%	30%
Industry sectors deemed exposed to carbon leakage	100%	100%	100%	100%	100%	100%	100%	100%

- In Phase 3, 43% of allowances are allocated for free. The rest is auctioned.
- ullet Free allocation = Historical activity imes Benchmark imes Carbon leakage imes Linear reduction
- Historical activity: Median activity level of the installation in earlier phases.
- Benchmark: Average emission of the best 10 percent installations in that product.
- Carbon leakage: Sectors exposed to carbon leakage receive higher free allowances.
- Linear reduction reduces total allowances every year

Year	2013	2014	2015	2016	2017	2018	2019	2020
Linear reduction factor (electricity generators)	1	0.9826	0.9652	0.9478	0.9304	0.9130	0.8956	0.8782
Cross sectoral correction factor (non-electricity generators)	0.9427	0.9263	0.9098	0.8930	0.8761	0.8590	0.8417	0.8244

Data

- ETS, labor market, firm characteristics, individual characteristics
 - 1. ETS transactions log: Carbon emissions, free allowances (EUTL)
 - Labor market: Wage components, hours obtained from employee-employer matched data (CBS)
 - 3. Firm characteristics: Balance sheet, income statement, sector (CBS)
 - 4. Individual characteristics: Education, age (CBS)
 - 5. We manually match EUTL variables with CBS variables
- 2014-2020 (Phase 3), annual

New Rules in 2017

- The carbon price until 2017 was deemed to be too low to incentivize the firms (€5)
 - → Weak economic activity & structural oversupply
- In 2015, the Market Stability Reserve (MSR) is announced to start operations in 2019
 - ightarrow MSR's main purpose is to absorb the oversupply of allowances
- In Feb 2017, the EU increases the MSR's absorption capacity significantly
 - ightarrow Absorption of 24% of unused allowances instead of 12% if unused is above a threshold
 - → Permanent cancellation of allowances
 - ightarrow Legally introduced in Nov 2017
- These changes have increased the carbon prices in ETS substantially!

Carbon Prices

Conceptual Framework

• Firm's profit

$$p \times f(A_f, L_{ft}, K_{ft}) - w_{ift}L_{ft} - p_c \times (C_{ft}(A_f) - F_s)$$

Conceptual Framework

• Firm's profit

$$p \times f(A_f, L_{ft}, K_{ft}) - w_{ift}L_{ft} - p_c \times (C_{ft}(A_f) - F_s)$$

• Nash bargaining determines the wages, yielding:

$$\max_{w_i} (w_i - \omega_i)^{\beta} (V_j(\mathbf{p}_c) + V_i(\mathbf{p}_c) - w_i)^{(1-\beta)}$$

where w_i : salary; ω_i : outside option; V_i : Firm-level surplus; V_i : Worker-level surplus

Straightforward to show that

$$\frac{\partial w_i}{\partial V_j} > 0; \quad \frac{\partial w_i}{\partial V_i} > 0; \quad \frac{\partial^2 w_i}{\partial V_i \partial \omega_i} > 0$$

9

Conceptual Framework

• Firm's profit

$$p \times f(A_f, L_{ft}, K_{ft}) - w_{ift}L_{ft} - p_c \times (C_{ft}(A_f) - F_s)$$

• Nash bargaining determines the wages, yielding:

$$\max_{w_i} (w_i - \omega_i)^{\beta} (V_j(\mathbf{p_c}) + V_i(\mathbf{p_c}) - w_i)^{(1-\beta)}$$

where w_i : salary; ω_i : outside option; V_i : Firm-level surplus; V_i : Worker-level surplus

Straightforward to show that

$$\frac{\partial w_i}{\partial V_j} > 0;$$
 $\frac{\partial w_i}{\partial V_i} > 0;$ $\frac{\partial^2 w_i}{\partial V_i \partial \omega_i} > 0$

- 1. p_c can increase OR decrease firm surplus, hence wages
- 2. Workers related to carbon efficiency can have higher wages
 - →Especially workers with better outside options

Empirical Strategy

Exploit the increase in carbon prices in a matched difference-in-differences setting:

$$y_{it} = \beta ETS_i \times Post_t + \gamma_i + \delta_t + \epsilon_{it}$$

Event-study version:

$$y_{it} = \sum_{\tau=-3}^{3} \frac{oldsymbol{eta_{ au}}}{oldsymbol{\mathcal{E}TS_{i}}} imes \mathbb{1}(t=t^*+ au) + \gamma_{i} + \delta_{t} + \epsilon_{it}$$

- $ETS_i = 1$ for firms/workers that participate into ETS program, $ETS_i = 0$ for matched units
- $Post_t$: =1 if year \geq 2018
- y_{it} : log(hourly wages) (but also log(wages), earnings, and employment)

Empirical Strategy

Exploit the increase in carbon prices in a matched difference-in-differences setting:

$$y_{it} = \beta ETS_i \times Post_t + \gamma_i + \delta_t + \epsilon_{it}$$

Event-study version:

$$y_{it} = \sum_{\tau=-3}^{3} \frac{oldsymbol{eta_{ au}}}{oldsymbol{\mathcal{E}TS_{i}}} imes \mathbb{1}(t=t^*+ au) + \gamma_{i} + \delta_{t} + \epsilon_{it}$$

- $ETS_i = 1$ for firms/workers that participate into ETS program, $ETS_i = 0$ for matched units
- $Post_t$: =1 if year \geq 2018
- y_{it} : log(hourly wages) (but also log(wages), earnings, and employment)

Matching is done at two levels:

- Worker level: two lags of log(wage), age, part-time, tenure, and gender dummies
- Firm level: industry, log(# employees), and profits per worker

Balance Test

- ETS firms are larger and more profitable, workers are older and earn more
- Differences become insignificant after matching

Sample:		Full Sample		Matched Sample			
Variable	Control	Treated	Difference	Control	Treated	Difference	
Age_{t-1}	42.82	44.395	1.575	45.166	45.173	0.007	
	(0.125)	(0.408)	(0.426)	(0.218)	(0.272)	(0.348)	
$log(Wage_{t-1})$	10.302	10.796	0.494	10.84	10.876	0.036	
	(0.020)	(0.040)	(0.045)	(0.035)	(0.026)	(0.044)	
$log(Wage_{t-2})$	10.257	10.756	0.498	10.804	10.833	0.029	
	(0.020)	(0.037)	(0.042)	(0.032)	(0.025)	(0.040)	
log(Size)	5.461	8.382	2.921	6.286	6.248	-0.038	
	(0.133)	(0.330)	(0.355)	(0.152)	(0.127)	(0.198)	
Profits/Employment	20.33	48.759	28.429	79.800	68.625	-11.175	
	(1.255)	(13.779)	(13.798)	(12.304)	(11.806)	(17.028)	
N	2,868,897	162,543	3,031,440	23,001	23,001	46,002	

Baseline Effect

- Virtually no effect on wages
- Coefficients small in magnitude and insignificant

Sorting by Efficiency - Event-Study Results

- Fairly large, positive effect on wages for efficient firms
- Conversely, inefficient firms experience negative effects (albeit insignificant)

Sorting by Efficiency – Results

- Significant effects on wages and hourly wages; marginally significant for earnings
 - ightarrow Only for efficient firms

Sample:	AII			Efficient				Inefficient				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
ETS×Post	0.009 (0.006)	0.009 (0.008)	928.0* (525.3)	0.006 (0.004)	0.029*** (0.010)	0.025** (0.010)	1145.0* (623.7)	0.001 (0.007)	-0.012 (0.010)	-0.024 (0.017)	-436.9 (1246.1)	-0.001 (0.007)
Observations R ²	313,316 0.932	313,316 0.846	322,014 0.844	322,014 0.399	82,366 0.935	82,366 0.863	84,350 0.865	84,350 0.400	75,607 0.933	75,607 0.840	77,812 0.845	77,812 0.390
Dep. Var.	$log(\frac{Wage}{Hours})$	log(Wage)	Earnings	Employed	$log(\frac{Wage}{Hours})$	log(Wage)	Earnings	Employed	$log(\frac{Wage}{Hours})$	log(Wage)	Earnings	Employed

Worker-Level Match-Specific Surplus

- In addition to firm-level cash flow (V_j) , the carbon price shock is likely to affect worker-level match-specific surplus (V_i) , and hence wages
- How does the carbon price shock affect worker-level match-specific surplus?
- An increase in carbon price can change the marginal revenue of certain workers
- If a worker is able to reduce emissions, her marginal revenue increases at ETS firms
- We hypothesize that STEM workers (engineering, math/physics, and computer science majors) are the most valuable to cut emissions (Vona et al. 2018, Saussay et al. 2023)
- Hence, the carbon price shock may increase the wages of STEM workers

STEM-Anecdotal Evidence

Education – Event-Study Results

- Positive effect of shock on wages only for STEM workers
- Small and insignificant for all the others (business, law, no degrees)

Education - Zooming in on STEM Workers

- Between STEM workers, we can also distinguish between graduates from research and applied universities
- Results are larger for research university graduates

Education – Results

- Null effects for Non-STEM graduates, similar to workers with no degrees at all
- Only STEM workers benefit from increase in carbon price

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ETS × Post	0.010 (0.006)	0.014 (0.011)	0.028 (0.015)	0.006 (0.010)	0.008 (0.011)	0.026** (0.012)	0.050** (0.018)	0.012 (0.010)
Observations	98,779	80,167	32,435	47,732	49,332	30,835	12,261	18,574
R ²	0.905 No	0.912	0.907	0.906	0.911	0.916	0.912 STEM	0.908 STEM
Sample	Degrees	Some Uni	Uni	Appl. Sc.	No STEM	STEM	Uni	Appl.

Outside Options

- Nash bargaining suggests that the effect of a worker-specific surplus on wage depends on the worker's outside options (ω_i)
- We use two proxies
 - 1. The fraction of STEM workers in the province
 - Intuition: A STEM worker should be in high demand if they leave the firm
 - 2. A dummy equal to one if the worker is a "switcher", i.e., has previously changed job
 - Intuition: Threat of quitting more credible

Outside Options - Results

- Distinguish workers between:
 - A. High vs low density of STEM graduates
 - B. Switchers vs non-switchers

A. Sorting by Density of STEM Graduates

B. Job Switchers vs Non-Switchers

Education vs Firm Efficiency

- Do these two channels interact?
- Yes: Effects are stronger for STEM workers at efficient firms

Extensive Margin Results

- Two approaches to test whether the increase in carbon price leads to changes in the extensive margin:
 - 1. Look at changes in the fraction of STEM workers (columns 1 and 2)
 - 2. Look at the likelihood that a hired/separated worker is STEM (columns 3 and 4)
- No significant effects
- ullet Suggests that, in the short run, labor supply is quite inelastic o the price (not quantity) captures the effect

	(1)	(2)	(3)	(4)
$ETS \times Post$	0.002	0.001	0.008	0.010
	(0.004)	(0.004)	(0.006)	(800.0)
Observations	1,926	1,926	294,174	278,496
R^2	0.944	0.952	0.101	0.144
Dep. Var.	STEM Total	STEM Hr. Total Hr.	STEM Hire	STEM Sep.

Conclusion

- Policies aimed at curbing emissions can have significant labor market effects
- These effects depend on worker characteristics and policy-design choices
- Therefore, these policies may contribute to the wage differentials across workers and firms