Homework Topic: Regression Analysis & Random Forest

Week: 03 (Class date: 5-Nov-22)

1. จากการศึกษาเพื่อพยากรณ์จำนวนวันเฉลี่ยที่นักท่องเที่ยวใช้ในการพักผ่อน ซึ่งมีความสัมพันธ์กับจำนวนปี ที่ทำงาน (Years of working) และรายได้ต่อปี (Yearly income) จงใช้ข้อมูลในไฟล์ HW04.xlsx เพื่อ สร้างโมเดล Linear Regression ของข้อมูลดังกล่าวโดยใช้ Azure Machine Learning

Y : จำนวนวันเฉลี่ยที่นักท่องเที่ยวใช้ในการท่องเที่ยว

X1 : จำนวนปีที่ทำงาน

X2 : รายได้ต่อปี

1) แสดงหน้าจอการเตรียมข้อมูล

1.1) เริ่มต้นจากการตรวจสอบค่า Missing Value พบว่าข้อมูลชุดนี้ไม่มีค่า Missing value จึงข้ามขั้นตอนการ clean data ได้เลย

Student Name: Puriwat Sangrawee

Student ID: **65056071**

1.2) จากนั้นทำการเลือกคอลัมน์เฉพาะที่จำเป็นเพื่อนำไปเทรนโมเดลในขั้นตอนถัดไป

2) แสดงภาพผลการวัดประสิทธิภาพโมเดล

สำหรับข้อมูลชุดนี้ เมื่อกำหนดค่าพารามิเตอร์ต่างๆ เท่ากัน และทำการเปรียบเทียบ ระหว่างข้อมูลที่ผ่านและไม่ผ่านการ **Normalize** พบว่า ประสิทธิภาพเท่ากัน จึงแสดงผลเฉพาะวิธีนี้

2. ในการพิจารณาวงเงินกู้ของธนาคารแห่งหนึ่งจะพิจารณาจากปัจจัยหลายๆ อย่างเช่น การศึกษา สถานะภาพ เพศ และอื่น ๆ จากข้อมูลการกู้เงินของลูกค้าจำนวน 614 รายที่ธนาคารเก็บไว้ (Train_loan.csv) ให้ทำการสร้างโมเดลโดยใช้ Azure Machine Learning เพื่อพิจารณาอนุมัติการกู้เงิน ของธนาคารดังกล่าวโดยใช้หลักการต่าง ๆ ของวิทยาการข้อมูลอย่างครบถ้วน และตอบคำถามต่อไปนี้ โดยใช้ Logistic Regression (แบ่งข้อมูล Train:Test 70:30, Random seed = 1234)

- >>>ข้อมูลชุดดังกล่าวประกอบด้วยข้อมูลเริ่มต้น 13 คอลัมน์ 614 รายการ
- 1. ในขั้นตอนแรก เราจะทำการ Explore/Replace Missing Value กันก่อน

และเพื่อให้เราสามารถใช้ประโยชน์จากชื่อมูลได้อีย่างเต็มที่ เราจะไปเปลี่ยนข้อมูลต้นทางจาก categorical เป็น Numerical เพื่อให้นำมาเข้าสมการได้ โดยการเปลี่ยนแปลงเป็นไปตามด้านล่าง จากนั้นอัพโหลด dataset เข้ามาใหม่

Column	Old value	New Value		
Married	Yes (True)	1		
	No (False)	0		
Dependency	3+	3		
Education	Graduated	1		
	Not Graduated	0		
Self_Employed	Yes (True)	1		
	No (False)	0		
Gender	Male	1		
	Female	2		
Property	Rural	1		
	Urban	2		
	Semiurban	3		

แต่เนื่องจากเกิด Error บางอย่างใน Program ทำให้ผมไม่สามารถใช้คำสั่ง Normalize ได้ (ผมลองใช้แล้ว หากเลือกแค่กับ column ApplicantIncome คอลัมน์เดียวจะใช้ได้ครับ รูปแบบอื่นคือใช้ไม่ได้เลย บางทีก็ Error SMOTE หรือ Clean Missing data แบบไม่ทราบสาเหตุ ทั้ง ๆ ที่ทำเหมือนตัวอย่างในห้องเรียน) ผม เลยขออนุญาตทำ Min-Max Normalize ก่อน Import dataset ครับ

ภาพรวมของข้อมูล Preview Profile

oan_ID	Gender	Married	Depen	Educati	Self_E	Applica	Applica	Coappli	Coappli	LoanA	LoanA	Loan_A	Loan_A	Credit	Proper	Loan_S.
P001002	1	0	0	1	0	5849	0.07	0	0	null	null	360	0.744	1	2	true
P001003	1	1	1	1	0	4583	0.055	1508	0.036	128	0.172	360	0.744	1	1	false
P001005	1	1	0	1	1	3000	0.035	0	0	66	0.082	360	0.744	1	2	true
P001006	1	1	0	0	0	2583	0.03	2358	0.057	120	0.161	360	0.744	1	2	true
P001008	1	0	0	1	0	6000	0.072	0	0	141	0.191	360	0.744	1	2	true
P001011	1	1	2	1	1	5417	0.065	4196	0.101	267	0.373	360	0.744	1	2	true

ทำการเช็ค Missing Value สำหรับคอลัมน์ที่เพิ่มมาใหม่ (4 คอลัมน์)

จากนั้นจะทำการลบคอลัมน์ที่ไม่จำเป็นทิ้งไป (ประกอบด้วย4 คอลัมน์บนก่อน MMN และ Loan_ID)

และจากนั้นจะทำการเตรียมข้อมูลต่อด้วยการ Replace Missing value ตามตารางด้านล่าง

NO.	Col Name with Missing Value	How to Solve
1	Credit_History	Replace with Mode
2	Self_Employed	Replace with Mode (FALSE)
3	LoanAmout (MMN)	Replace with Mean
4	Dependents	Replace with Mode
5	Loan_Amount_Term (MMN)	Replace with Mode
6	Gender	Remove Entire Row
7	Married	Remove Entire Row

สำหรับขั้นตอนต่อจากนี้สามารถดูรายละเอียดเพิ่มเติมได้ใน Process flowchart (หน้า 5-6)

3. จากข้อมูลของผู้โดยสารเรือไททานิค จงใช้สร้างโมเดลทำนายการรอดชีวิตของผู้โดยสาร โดยใช้ Decision Forest และกำหนดค่าพารามิเตอร์ต่าง ๆ ดังรูป (แบ่งข้อมูล Train:Test 70:30, Random seed = 1234)

สังเกตค่า Model1

ทดลองทำการปรับพารามิเตอร์ของแบบจำลองดังนี้

 เพิ่มจำนวน Minimum number of samples per leaf node =5 ค่า Accuracy เปลี่ยนแปลงหรือไม่อย่างไร

สังเกตค่า Model2

2) จากข้อ 1) ทำการลด Maximum depth of the decision trees = 6 ค่า Accuracy เปลี่ยนแปลง หรือไม่อย่างไร

สังเกตค่า Model2

3) ควรเลือก Model ใดมาใช้งาน เพราะเหตุใด

ตามปกติแล้วการเลือกโมเดลใดขึ้นอยู่กับประเภทของงาน แต่ในกรณีนี้เป็นโมเดลที่เกี่ยวกับชีวิตคน อาจนำไปออกแบบระบบเครื่องจักร หรือการวางแผนบริหารจัดการบนเรื่อสำราญเพื่อป้องการการสูญเสีย ในลักษณะนี้ ค่า recall จึงมีความสำคัญเพิ่มขึ้น และค่าที่สามารถ cover ได้ทั้งค่า Precision และ recall ก็คือ F1 score ดังนั้นที่ Threshold 50% เราจะเลือกตัวที่ F1 Score สูงสุด <u>นั่นคือ</u> Model1

ข้อมูลส่วนใหญ่ set parameter เหมือน KDAI15 : Decision Tree Model แต่มีการเปลี่ยนแปลง Random Seed ใน split data เป็น 1234 เปลี่ยน Model Algorithm จาก Decision Tree เป็น Decision Forest

→ ดู Model Process Flowchart เพิ่มเติมที่หน้า 8-10

ฐปที่ 3-1 Process Flowchart และการ set ค่าใน Model 1

- 4. จากข้อมูลบ่งชี้การเกิดอาการปวดหลังส่วนล่างของผู้ป่วยจำนวน 310 คน ซึ่งประกอบไปด้วยแอตทริบิวต์ จำนวน 13 แอตทริบิวต์ (ไฟล์ Lower_back_pain.csv) ได้แก่
 - Class_att คือ ผลการวินิจฉัย โดย Abnormal หมายถึง มีอาการปวดหลังส่วนล่าง และ Normal หมายถึง ไม่มีอาการปวดหลังส่วนล่าง
 - แอตทริบิวต์อื่น ๆ ที่เป็นตัวแปรต้นจำนวน 12 แอตทริบิวต์ ซึ่งเป็นข้อมูลชนิดตัวเลข ให้นักศึกษาใช้เครื่องมือใน Azure Machine Learning ทำการจัดเตรียมข้อมูลและสร้างโมเดลในการ จำแนกว่าเป็นผู้ป่วยที่มีอาการปวดหลังส่วนล่าง (Abnormal) หรือ ไม่มีอาการปวดหลังส่วนล่าง (Normal) โดยใช้อัลกอริทึม Support Vector Machine (SVM) โดยกำหนดค่าพารามิเตอร์ที่เกี่ยวข้องดัง รูป พร้อมทั้งตอบคำถามต่อไปนี้ Two-Class Support Vecto... ∠ 団

- เนื่องจาก data ของเราไม่มี Missing Value เราจึงสามารถข้ามขั้นตอนการ Clean ไปได้ - เนื่องจาก data ของเรามีค่าในแต่ละ col ค่อนข้างใกล้เคียงกัน เราจึงไม่จำเป็นต้องทำการ Normalize
- ดู Process Flowchart จากหน้า 11

