全角運動量が保存するために,

$$[\hat{H}, \hat{\boldsymbol{L}} + \hat{\boldsymbol{S}}] = 0 \tag{0.0.1}$$

を満たすSが Dirac 方程式に含まれていると考える. スピン演算子を次のように導入する.

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} \sigma_x & 0\\ 0 & \sigma_x \end{pmatrix} \tag{0.0.2}$$

$$\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} \sigma_y & 0\\ 0 & \sigma_y \end{pmatrix} \tag{0.0.3}$$

$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} \sigma_z & 0\\ 0 & \sigma_z \end{pmatrix} \tag{0.0.4}$$

 $\sigma_i \; (i=x,y,z)$ は Pauli 行列である.このようにスピン演算子を導入すると,これらは交換関係

$$[\alpha_i, \hat{S}_j] = i\hbar \varepsilon_{ijk} \alpha_k \tag{0.0.5}$$

$$[\beta, \hat{S}_i] = 0 \tag{0.0.6}$$

を満たすため

$$[\hat{H}, \hat{S}_x] = i\hbar c(\alpha_y \hat{p}_z - \alpha_z \hat{p}_y) \tag{0.0.7}$$

$$[\hat{H}, \hat{S}_y] = i\hbar c(\alpha_z \hat{p}_x - \alpha_x \hat{p}_z) \tag{0.0.8}$$

$$[\hat{H}, \hat{S}_x] = i\hbar c(\alpha_x \hat{p}_y - \alpha_y \hat{p}_x) \tag{0.0.9}$$

であり,

$$[\hat{H}, \hat{L}_x + \hat{S}_x] = [\hat{H}, \hat{L}_y + \hat{S}_y] = [\hat{H}, \hat{L}_z + \hat{S}_z] = 0$$
(0.0.10)

が成り立つ. よって、Dirac 方程式において

$$[\hat{H}, \hat{\boldsymbol{L}} + \hat{\boldsymbol{S}}] = 0 \tag{0.0.11}$$

であり、全角運動量 $m{J} = m{L} + m{S}$ が保存が保存される.ここで、 $m{S} = \frac{\hbar}{2} m{\sigma}$ はスピン角運動量である.

以上の議論では、スピンの存在が自然に導入された。この議論に用いた要請は

· スピンの存在のために用いた要請 **-**

- 1. Lorentz 共変性
- 2. 状態の時間発展が時間の1階微分で表されること

である. 1 は Schrödinger 方程式と相対論の矛盾を解決するために用いた. 2 は波動関数の確率解釈を可能にするために用いた. 以上の要請から Dirac 方程式が導かれ、その式にはスピンの存在が内包されていた.

Dirac 方程式の平面波解

$$\psi_{\uparrow}^{+} = e^{i(kz - \omega t)} \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \psi_{\downarrow}^{+} = e^{i(kz - \omega t)} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \psi_{\uparrow}^{-} = e^{i(kz - \omega t)} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \psi_{\downarrow}^{-} = e^{i(kz - \omega t)} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$$
(0.0.12)

に \hat{S}_z を作用させるてみると,

$$\begin{cases} \hat{S}_z \psi_{\uparrow}^+ &= \frac{\hbar}{2} \psi_{\uparrow}^+ \\ \hat{S}_z \psi_{\downarrow}^+ &= -\frac{\hbar}{2} \psi_{\downarrow}^+ \end{cases}$$
 (0.0.13)

$$\begin{cases} \hat{S}_z \psi_{\uparrow}^- &= \frac{\hbar}{2} \psi_{\uparrow}^- \\ \hat{S}_z \psi_{\downarrow}^- &= -\frac{\hbar}{2} \psi_{\downarrow}^- \end{cases}$$
(0.0.14)

が成り立つ. つまり、平面波解は \hat{S}_z の固有状態であることがわかる.