Lógica Quântica Lecture notes and exercise sheet 5

Curry-Howard-Lambek correspondence

Rui Soares Barbosa

2022-2023

Natural deduction system for intuitionistic logic

Formulae are built out of basic propositions with binary connectives \land (conjunction) and \supset (implication). A sequent is a judgement of the form

$$\Gamma \vdash A$$

where A is a formula and $\Gamma = \{A_1, \dots, A_n\}$ a finite set of formulae. We write Γ, A for $\Gamma \cup \{A\}$. The sequent above is meant to assert that A can be proved from assertions in Γ . Proofs are constructed using the following rules:

$$\overline{\Gamma, A \vdash A}$$
 Id

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ \land \text{-I} \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ \land \text{-E}_1 \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ \land \text{-E}_2$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \land \text{-I} \qquad \frac{\Gamma \vdash A \supset B \quad \Gamma \vdash A}{\Gamma \vdash B} \land \text{-E}$$

Exercise 1. Give proofs of:

- (a) $\vdash (A \land B) \supset A$
- (b) $\vdash ((A \supset B) \land (B \supset C)) \supset (A \supset C)$
- $(c) \vdash (A \supset (B \supset C)) \supset (B \supset (A \supset C))$
- (d) $\vdash (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$

Definition 1. A proof rule

$$\frac{\Gamma_1 \vdash A_1 \quad \cdots \quad \Gamma_k \vdash A_k}{\Delta \vdash B}$$

is said to be admissible if whenever there are proofs of each $\Gamma_i \vdash A_i \ (i=1,\ldots,n)$, there is a proof of $\Delta \vdash B$.

If a proof is admissible then it can be added to a proof system without altering whether a sequent is provable.

Exercise 2. Show that the following rules are admissible:

(a)
$$\frac{\Gamma \vdash A}{\Gamma, C \vdash A}$$
 Weakening

(b)
$$\frac{\Gamma \vdash A \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash B} \text{ Cut}$$

Simply-typed lambda-calculus

Let BaseTypes be a set of base types. Let Var be a countable set of variables. Types and terms in the simply-typed λ -calculus are given by the following syntax

$$\begin{array}{lll} \mathsf{Var} \ni x,y,\dots & \\ \mathsf{Types} \ni A,B,\dots & ::= & b \in \mathsf{BaseTypes} \mid A \longrightarrow B \mid A \times B \\ \mathsf{Terms} \ni t,u,\dots & ::= & x \mid tu \mid \lambda x.t \mid \langle t,u \rangle \mid \pi_1 t \mid \pi_2 t \end{array}$$

A typing judgement has the form

$$\Gamma \vdash t : A$$

where $\Gamma = \{x_1 : A_1, \dots, x_k : A_k\}$ is a type assignment to a finite set of variables, called a typing context. The judgement $\Gamma \vdash t : A$ asserts that the term t is given type A in the context Γ .

Typing judgements are derived by the following typing rules:

Exercise 3. Give (if possible) the most general type for the following lambda terms:

- (a) $\lambda x.\lambda y.xy$
- (b) $\lambda x.\lambda y.\lambda z.x(yz)$
- (c) $\lambda x.\lambda y.x$
- (d) $\lambda x.\lambda y.\langle x, \lambda z.y \rangle$
- (e) $\lambda x.x$
- (f) $\lambda x.\lambda y.xyy$
- (g) $\lambda x.xx$

Could you automate this exercise?

Exercise 4. Compute β -reductions of the following terms:

(a) $(\lambda x.\lambda y.xy)w(\lambda z.z)$

Exercise 5. Show that in the untyped λ -calculus, the term

$$\Omega = (\lambda x.x)(\lambda x.x)$$

has an infinite β -reduction sequence. Is it typable?

Exercise 6. Consider the formula $((A \supset B) \supset A) \supset A$

- (a) Check its validity by truth tables.
- (b) Is there a natural deduction proof of this formula? Equivalently, is there lambda-term of this type (for some types A, B)?

Exercise 7. What are the corresponding λ -terms to the proofs in 1?

Cartesian-closed categories

Definition 2. Let \mathbb{C} be a category with binary products, and let A, B be objects of \mathbb{C} . An exponential or hom-object is an object $A \Rightarrow B$ of \mathbb{C} together with an arrow $\operatorname{ev}_{A,B} \colon (A \Rightarrow B) \times A \longrightarrow B$ satisfying the following universal property: for any arrow $g \colon C \times A \longrightarrow B$ there is a unique arrow $\Lambda(g) \colon C \longrightarrow A \Rightarrow B$ satisfying

$$ev_{A,B} \circ (\Lambda(g) \times id_A) = g.$$

Exercise 8. If $A \Rightarrow B$ exists, what is $\Lambda(ev_{A,B})$ equal to?

Exercise 9. Show that the uniqueness requirement in the definition of exponential can be replaced by an equational requirement:

for all
$$h: C \longrightarrow (A \Rightarrow B)$$
, $\Lambda(ev_{A,B} \circ (h \times id_A)) = h$.

Exercise 10. Recall that a poset (P, \leq) can be seen as a category.

(a) Show that a Boolean algebra (seen as a posetal category) is cartesian closed.

Definition 3. A category **C** is *cartesian closed* if:

- it has a terminal object 1;
- any pair of objects A, B have a product $A \times B$;
- any pair of objects A, B have an exponential $A \Rightarrow B$.

Exercise 11. Let **C** be cartesian closed. Assuming you are given interpretations $[\![A]\!]$, $[\![B]\!]$, ... of A, B, ... as objects of **C**, give the interpretations of the (typable) terms from exercise 3.

Exercise 12. Use the lambda calculus to show that the objects $A \Rightarrow (B \Rightarrow C)$ and $(A \times B) \Rightarrow C$ are isomorphic in any cartesian closed category.