Chapter 3 Transport Layer

Yaxiong Xie

Department of Computer Science and Engineering University at Buffalo, SUNY

Adapted from the slides of the book's authors

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Chapter 3: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

reliable service abstraction

reliable service implementation

Complexity of reliable data transfer protocol will depend (strongly) on characteristics of unreliable channel (lose, corrupt, reorder data?)

reliable service implementation

Sender, receiver do *not* know the "state" of each other, e.g., was a message received?

unless communicated via a message

Reliable data transfer protocol (rdt): interfaces

Reliable data transfer: getting started

We will:

- incrementally develop sender, receiver sides of reliable data transfer protocol (rdt)
- consider only unidirectional data transfer
 - but control info will flow in both directions!

Reliable data transfer: Protocol States

use finite state machines (FSM) to specify sender, receiver

Channel model: Reliable Channel

reliable service abstraction

- underlying channel perfectly reliable
 - no bit errors
 - no loss of packets

rdt1.0: reliable transfer over a reliable channel

- *separate* FSMs for sender, receiver:
 - sender sends data into underlying channel
 - receiver reads data from underlying channel

rdt1.0: reliable transfer over a reliable channel

- *separate* FSMs for sender, receiver:
 - sender sends data into underlying channel
 - receiver reads data from underlying channel

Reliable data transfer protocol (rdt): interfaces

Channel model: channel with bit errors

- underlying channel may flip bits in packet
 - checksum (e.g., Internet checksum) to detect bit errors

rdt2.0: channel with bit errors

- underlying channel may flip bits in packet
 - checksum to detect bit errors
- *the* question: how to recover from errors?
 - acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
 - negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
 - sender retransmits pkt on receipt of NAK

stop and wait

sender sends one packet, then waits for receiver response

rdt2.0: channel with bit errors

rdt2.0: FSM specifications

rdt2.0: FSM specification

Note: "state" of receiver (did the receiver get my message correctly?) isn't known to sender unless somehow communicated from receiver to sender

that's why we need a protocol!

rdt2.0: operation with no errors

rdt2.0: corrupted packet scenario

rdt2.0: no errors VS. corrupted packets

rdt2.0 has a fatal flaw!

what happens if ACK/NAK corrupted?

- sender doesn't know what happened at receiver!
- can't just retransmit: possible duplicate

rdt2.0: corrupted ACK

rdt2.0 has a fatal flaw!

what happens if ACK/NAK corrupted?

- sender doesn't know what happened at receiver!
- can't just retransmit: possible duplicate

handling duplicates:

- sender retransmits current pkt if ACK/NAK corrupted
- sender adds sequence number to each pkt
- receiver discards (doesn't deliver up) duplicate pkt

stop and wait

sender sends one packet, then waits for receiver response

rdt2.0: corrupted ACK

rdt2.1: summary

sender:

- seq # added to pkt
- two seq. #s (0,1) will suffice. Why?
- must check if received ACK/NAK corrupted
- twice as many states
 - state must "remember" whether "expected" pkt should have seq # of 0 or 1

receiver:

- must check if received packet is duplicate
 - state indicates whether 0 or 1 is expected pkt seq #
- note: receiver can not know if its last ACK/NAK received OK at sender

rdt2.1: sender, handling garbled ACK/NAKs

rdt2.1: receiver, handling garbled ACK/NAKs

rdt2.2: a NAK-free protocol

- same functionality as rdt2.1, using ACKs only
- instead of NAK, receiver sends ACK for last pkt received OK
 - receiver must explicitly include seq # of pkt being ACKed
- duplicate ACK at sender results in same action as NAK: retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

rdt2.0: NAK-free

New channel assumption: underlying channel can also lose packets (data, ACKs)

checksum, sequence #s, ACKs, retransmissions will be of help ...
 but not quite enough

Q: How do *humans* handle lost sender-to-receiver words in conversation?

Approach: sender waits "reasonable" amount of time for ACK

- retransmits if no ACK received in this time
- if pkt (or ACK) just delayed (not lost):
 - retransmission will be duplicate, but seq #s already handles this!
 - receiver must specify seq # of packet being ACKed
- use countdown timer to interrupt after "reasonable" amount of time

timeout

rdt3.0 sender

rdt3.0 sender

rdt3.0 in action

rdt3.0 in action

(d) premature timeout/ delayed ACK

rdt3.0: Efficiency

rdt3.0: Efficiency

- *U* _{sender}: *utilization* fraction of time sender busy sending
- example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet
 - time to transmit packet into channel:

$$D_{trans} = \frac{L}{R} = \frac{8000 \text{ bits}}{10^9 \text{ bits/sec}} = 8 \text{ microsecs}$$

rdt3.0: stop-and-wait operation

rdt3.0: stop-and-wait operation

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R}$$

$$= \frac{.008}{30.008}$$

$$= 0.00027$$

- rdt 3.0 protocol performance stinks!
- Protocol limits performance of underlying infrastructure (channel)

rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, "in-flight", yet-to-be-acknowledged packets

- range of sequence numbers must be increased
- buffering at sender and/or receiver

(a) a stop-and-wait protocol in operation

Pipelining: increased utilization

