ASSOUAD DIMENSION & FRACTAL GEOMETRY

Box dimension: $X \subseteq IR^d$ (bounded) Q: How big " is X at small scales? Fix r>o (scale) Nr(x) = "r-covering number" of X. = min. number of r-balls needed to cover X. Guess: N_r(x) ~ r-dimension dim_B X = limsup log Nr(X) -log r C UPPER BOX DIMENSION

Associate dimension: key idea: "local" box dimension Fix 0 < r < R (< 1) covering bocalisations Scale scale Fix xc & X, cover B(x, R) N X. inf | 5 > 0: $N_r(B(x,R)\cap X) \leq C(\frac{R}{r})^{s}$ FC70: Vx VocraR: = dim X. Assouad dimension

local r-cover:

R

R

R-ball

Example: X = { h: nEN} U for . ER

dim_B $X = \frac{1}{2}$ Gap size: $\frac{1}{n} - \frac{1}{n+1} \approx \frac{1}{n^2} \approx r$ $N_r(X) \approx 1 + r^{-\frac{1}{2}} \approx r^{-\frac{1}{2}}$

(all countable sets have Handonf duniersion O). $dim_{H} X = 0$

 $\dim_{B} X = \frac{1}{2}$

 $dim_A X = 1$

Proof: dimax < 1 is clear.

For loner bound: Lix SE(0,1)

:] Get the logic right VC70 JXEX JOSTSRS1 want to show:

 $N_r(B(x,R) \cap X) > C(\frac{R}{r})$

Let C > 0. choose x = 0. Choose R > 0 Small.

The second of the s All gaps below R is # are $\leq R^2$. Therefore $N_r(B(o,R) \cap X) \approx \frac{R}{r} > C(\frac{R}{r})^s$ for R small enough. whole interval Therefore dim X > 1. [O,R]

Barie properties:

- 1) Monotone: X = Y => dim X ≤ dim X Y
- ① Open sets: $X \subseteq IR^d$ open $\emptyset = > dim_A X = d$.
- 3) bi-lipschtz: $f: \mathbb{R}^d \to \mathbb{R}^d \Longrightarrow \dim_A f(X) = \dim_A X$ proporty
 bi-lipschitz $\forall X \subseteq \mathbb{R}^d$
- $\frac{1}{2}|x-y| \leq |f(x)-f(y)| \leq C|x-y|$
- 4 Lipschitz: It is NOTTRUE that!

 property

 f Lipschitz => dim_A f(x) \le dim_A X.

5) Product sets: X S IR, Y S IR Then $X \times Y = \{(x,y) : x \in X, y \in Y\}$ SIR e-g. X = contor set Y = [0,1] Guess:

dim X × Y = dim X + dim Y ? dim X x Y & dim X + dim X. din_A x x y > din_A X + din_L Y "lower dimension"

let s>dimAX, t>dimAY let (x,y) & XxY, ocr < R (arbitrary). r-cover of YnB(y,R) by $\leq C(\frac{R}{r})^{t}$ 2525 r-cover of XnB(x,R) by $\leq C\left(\frac{R}{r}\right)^{S}$ r-balls Build cover of XxX with $\leq C\left(\frac{R}{r}\right)^{s} \times C\left(\frac{R}{r}\right)^{t} \times 20 = 20c^{2}\left(\frac{R}{r}\right)^{s+t}$

dimAXXXX = dimAX + dimAX ? why not TyR (x,y)Cannot guarantee $N_{-}(B(x,R) \cap X)$ and Nr(B(y,R)nY) both big for same O<r<R.

Tangents:

(think of tangents curve) of a differentiable curve)

To define a tangent, we need to "localise" and use a suitable "notion of convergence."

X = 1Rd compact, non-empty

To localise: choose xEX, R>0. Then

Apply $T: T(z) = \frac{1}{R}(z-x)$

Conneter T(x) n B(0,1) (a compact set).

For X, Y = IR d compact, non-empty $d_{\mu}(X,Y) = \inf \{ S > 0 : X \subseteq Y_{S}, Y \subseteq X_{S} \}$ Xs = "f-neighbourhood" of X $= \left\{ z \in \mathbb{R}^d : \exists x \in X : |x - z| < \delta \right\}$ Then (K(IRd), dye) is a complete metric space. non-empty compact subsets of Rd

E is a weak tangent to X Definition: if there exits a sequence x_n , R_n such that $T_n(x) \cap B(o,1) \rightarrow E$ in alge. $\frac{1}{2}(X-x_n)$ theorem (Mackay-Tyson 2011) If E is a weak tangent to X, then may be very simple or regular dina X > dina E.

e-g. X= { h: n ∈ N } v { o } Connider mxn[0,1] = {m: nzm} U{o} Therefore dim X z dim [0,1] = 1. ([0,1] is "simple" and easy to study)

let s > dim X. Want to show dim E & S. Proof: $=> \exists c>o[\forall o<r<R \ N_r(B(x,R)\cap X) \leq C(\frac{R}{r})^s$ Fix ZEE, OKTKK (2) Build cover of B(z, R') n E Find z-approximation of E by 7-1 $T(X) \cap B(0,1) = \frac{1}{c}(X-y) \cap B(0,1).$ Then, cover B(y,cR') n X at scale cr'. by $\leq \left(\frac{\langle R' \rangle}{\langle r' \rangle}\right)^s$ many sets.

r'-cover of B(z,R') n E $\leq C\left(\frac{2R'}{r'/n}\right)^{s}$ r'-balls=> dim_A E \le S, as required. B(Z,R') nE B(y,cR') n X

Theorem (Käenmäki-Ojala-Ross; 2018 IMRN)

(X S IR d, compact)

dim X = sup dim H E: E is a weak tangent to X

Note: o dim X z dim A E > dim H E

For all weak tangents E. (By Mackay-Tyson)

· "Sup" is in fact "max"

· Can even find weak tangent with positive

dim AX - dimensional Hausdorff measure.

Projections and dimension

Marstrand 1954 Mattila 1970s Kaufman. 1968

anto lines, son lines, son

TL for orthogonal projection onto L.

TILXELER

how to relate dim TLX and Question: dim X? X = C a line segment $TT_L(X) = \{0\}$ for L orthogonal to C. dim X = 1 $\dim \pi_L X = 0$. Condusion: we cannot say much for all X and all L, so we try to describe "generic"

Marstrand Projection Theorem (1954) X = 12 compact. (or Borel) dim HTLX = min { 1, dim HX} for alt all lines L.
almost Notes: . dim HTLX < min{1, dim HX} for all L. « "almost all" refers to 1D beloesque measure Proof Potential theoretic method + transversality.

Theorem (Fraser - Orponen 2017) X S IR compact. dimATIX > min{ 1, dimAX} for almost all L. 2) "almost all" can be upgraded to "all but an exceptional set of Hausdorff demension zero" (Orponen)
PLMS 2021

3 See Fraser (Israel 2018) for higher dimensional cose.

Proof: XCIR². Use Käenmäki-Ojala-Rossi to find weak targent E to X with dim HE = dim AX. claim: TLE is contained in a weak tangent of TILX for all L. They good approximation of E". generate sequence of increasingly good approximations X "contain very good approximation of MLE."

Use fact that $(K(B(0,1)), d_H)$ is compact to extract convergent subsequence giving a weak tangent F to TLX which contains TLE. (Mackay-Tyson) dinaTLX & dimy F (Monotonicity) > dim H TILE for almost - all L. 3 min { 1, dim HE} (Manstrand). = min { 1, dim X }.

Assouad dimension & Fractal Geometry

Exercises

- ① Let $X_p = \{ I_n p : n \in N \} \cup \{ 0 \}$ Where p > 0 is fixed.

 Prove that $\dim_B X_p = \frac{1}{1+p}$ and $\dim_A X_p = 1$.
- ② Let $X = \{2^{-n} : n \in \mathbb{N}\} \cup \{0\}$. Prove-that dim_A X = 0.
- 3 Let $X = \{2^{-\sqrt{n}} : n \in \mathbb{N}\} \cup \{0\}$.

 Colculate $\dim_A X$?
- Construct examples E, F⊆ [0,1]
 such that
 dim E×F < dim E + dim F.
 </p>

- (5) Construct $X \subseteq IR^2$ compact and $f:IR^2 \rightarrow IR^2$ hipschitz such that $\dim_A f(X) > \dim_A X$.
- 6) Show that $f:(K(\mathbb{R}^d), d_{\mathcal{H}}) \to \mathbb{R}$ defined by $f(X) = \dim_A X$ is not a continuous function.
- 7 Let f be as in the previous question. Show f is Borel measureable.
- (8) Show that "tangents are not enough".

 That is, construct $X \in [0,1]$ compact

 such that $\dim_A X > 0$ but $\dim_A E = 0$ for all E obtained as limits of $\frac{1}{R_n}(X-x) \cap B(0,1)$ for R_n varying

 and x fixed.

- O Prove that dim_A X ≤ d
 Sor all X ≤ IR d.
- De prove that ding X = ding X for all X SIRd where X is the dosure of X.
- Det f,g: [0,1] → IR be Continuous functions. Prove that dim BGfg = max {dim BGf, dim BGg}
 - where (f+g)(x) = f(x) + g(x)and $G_f = \{(x, f(x)) : x \in [0]\}$ is the "graph" of f.

- (12) Construct examples of continuous functions functions $f,g: [C_0,1] \rightarrow IR$ such that $din_A G_{f,g} > max din_A G_f, din_A G_g$.
- (13) Construct examples of continues functions f, 9: [0,1]=1 such that dim HGF = dim HGg = 1 but $\dim_{\mathcal{H}} G_{f+g} = 2$. (Hint: use weierst, on approximation thooms and Baire Category theorems] My does Baire Category not nock for Associal dimension?