a) Find the inverse f^{-1} of the function f, expressed as a function of x. b) Graph f and f^{-1} together. c) Verify Eq. (1) by evaluating df/dx at x = a and

$$df^{-1}/dx \text{ at } x = f(a).$$
1. $f(x) = 2x + 3, \quad a = -1$
2. $f(x) = 5 - 4x, \quad a = 1/2$
3. $f(x) = (1/5)x + 7, \quad a = -1$
4. $f(x) = 2x^2, \quad x \ge 0, \quad a = 5$

In Exercises 1-4:

In Exercises 5–8, find $f^{-1}(x)$.

5.
$$f(x) = x^2 + 1$$
, $x \ge 0$
6. $f(x) = x^2$, $x \le 0$

$$y = x^2 + 1, x \ge 0$$

$$y = x^2, x \le 0$$

$$1$$

$$0$$

$$1$$

In Exercises 9–16, find $f^{-1}(x)$ and show that $f(f^{-1}(x)) =$ $f^{-1}(f(x)) = x.$ **10.** $f(x) = x^4, x \ge 0$ **9.** $f(x) = x^5$ 11. $f(x) = x^3 + 1$ **12.** f(x) = (1/2)x - 7/2**14.** $f(x) = 1/x^3$, $x \neq 0$

13. $f(x) = 1/x^2, x > 0$

- **18.** Graph the curve y = 1/x, x > 0 and notice its symmetry about the line y = x. Find the inverse of the function f(x) = 1/x. 19. One of the virtues of Eq. (1) is that it enables us to find values of df^{-1}/dx even when we do not have an explicit formula for the derivative. As a case in point, let $f(x) = x^2 - 4x - 3$, x > 2 and find the value of
- df^{-1}/dx at the point x = -3 = f(4). 20. Increasing functions and decreasing functions. As we saw in Section 4.2, a function f(x) increases on its domain if for any two points x_1 and x_2 in the domain, $x_2 > x_1 \qquad \Rightarrow \qquad f(x_2) > f(x_1).$ Similarly, a function decreases on its domain if for

any two points x_1 and x_2 in the domain, $x_2 > x_1 \Rightarrow f(x_2) < f(x_1).$ Show that increasing functions and decreasing functions are one-to-one. That is, show that $x_2 \neq x_1$ always implies $f(x_2) \neq f(x_1)$.

