Algebra Qualifying Exam Spring 1991

All rings are assumed to have a multiplicative identity, denoted 1. The fields \mathbb{Q} , \mathbb{R} and \mathbb{C} are the fields of rational, real and complex numbers, respectively.

- **1.** Let G be a finite group, N a normal subgroup of G, and let $g \in G N$. If p is a prime with $q^p \in N$, prove that the cyclic group < q > has a subgroup of order p.
- **2.** If p is prime, prove that the center of any non-identity finite p-group is non-trivial.
- **3.** Prove that any simple group of order 60 is isomorphic to the alternating group A_5 .
- **4.** Let R be the polynomial ring $\mathbb{Z}[x]$, and let M be the ideal in R generated by the elements $2, x \in R$. Prove that M is a maximal ideal in R.
- **5.** Let p be a prime and let $R = \left\{ \frac{a}{b} \in \mathbb{Q} | p \nmid b \right\}$. If M is the principal ideal in R generated by p, prove that M is the *unique* maximal ideal in R. (*Hint:* Show that any element not in M is a unit in R.)
- **6.** Let $f(x) = x^5 2 \in \mathbb{Q}[x]$, and let ω be a complex primitive fifth root of unity. Show that $\mathbb{Q}(\omega, \sqrt[5]{2})$ is a splitting field for f(x).
- 7. Let $f(x) = x^5 1 \in \mathbb{Q}[x]$. Prove that the Galois group of F(x) over \mathbb{Q} is nonabelian.
- 8. Let V be an n-dimensional vector space over a field F, and let $\mathcal{B} = \{x_1, x_2, \dots, x_n\}$ be a basis for V. Let V^* denote the dual space of V, that is, V^* is the vector space $Hom_F(V, F)$ of all linear transformations $\lambda: V \to F$. Define elements $\lambda_1, \dots, \lambda_n$ of V^* by setting

$$\lambda_i \left(\sum_{j=1}^n a_j x_j \right) = a_i,$$

 $1 \le i \le n, a_j \in F$, and put $\mathcal{B}^* = \{\lambda_1, \dots, \lambda_n\}$. Show that \mathcal{B}^* is a basis of V^* .

9. Let V be an n-dimensional vector space over a field F, and let

$$V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_n = 0$$

be a chain of subspaces of V, with $\dim(V_i/V_{i+1})=1$ for $i=0,1,\ldots,n-1$. Suppose that $T:V\to V$ is linear transformation satisfying $T(V_i)\subseteq V_{i+1}$ for all $i=0,1,\ldots,n-1$. Compute the characteristic polynomial of T.