Защита информации

Криптографически стойкие ГПСЧ

Павел Юдаев

МГТУ им. Баумана, Кафедра ИУ-9

Москва, 2014

Раздел 2 - Поточные шифры и генераторы ПСЧ

Поточные шифры

генератор псевдослучайных чисел (ГПСЧ), pseudo random generator - это функция

 $G: \{0,1\}^s \to \{0,1\}^n$, где $n \gg s$, вычислимая за время poly(n)детерминированным алгоритмом.

Криптографически стойкие ГПСЧ

Опр.

поточный шифр:

$$c = E(k, m) = m \oplus G(k),$$

 $m = D(k, c) = c \oplus G(k)$

Задача

Может ли поточный шифр быть абсолютно стойким?

Недостатки поточных шифров.

1. Детерминированное шифрование.

Текст 1: "To: Bob. Some text" Текст 2: "To: Eve. Some text"

Шифротексты этих текстов совпадут, кроме одного фрагмента.

Криптографически стойкие ГПСЧ

Вывод: при шифровании трафика поточным шифром, необходимо согласовывать новый, независимый ключ для каждой сессии.

Поточные шифры

Недостатки поточных шифров.

2. Не обеспечивают контроль целостности данных.

$$c(m, F(k)) = m \oplus F(k)$$

Пусть злоум-к может менять шифротекст.
Пусть $c \to c'$: $c' = c \oplus p$, тогда $m' = m \oplus p$.

Получатель не может это обнаружить, если не использует дополнительные средства контроля.

Например, можно подменить адрес получателя сетевого пакета. В протоколе IPSec подмена адреса сетевого пакета приведет к тому, что сервер, расшифровав пакет, отправит расшифрованный текст другому получателю.

Раздел 2 - Поточные шифры и генераторы ПСЧ

Криптографически стойкие ГПСЧ

ГПСЧ

$$c = E(k, m) = m \oplus G(k)$$

ГПСЧ
$$G(k) \in PT$$

Стойкость поточного шифра зависит от используемого ГПСЧ.

Криптографически стойкие ГПСЧ

Опр.

РТ - класс детерминированных алгоритмов, имеющих полиномиальное время работы. Алгоритм $A \in \mathrm{PT}$, если $\exists poly \ p(n) : \forall x \in X : len(x) \leq n$ $time(A(x)) \leq p(n)$.

Задача разрешимости (decision problem) - задача, имеющая два ответа ДА и НЕТ.

Криптографически стойкие ГПСЧ

Пример

- 1) Дано описание функции f. Существует ли x: f(x) = 0?
- 2) Дана КНФ f. Существует ли x: f(x) = 1? (Задача выполнимости, SAT.)

Опр.

Задача поиска (search problem) - задача найти элемент множества, для которого выполнено заданное отношение, или установить, что таких элементов нет.

Пример

Дано описание функции f. Найти x: f(x) = 0.

Функция $\varepsilon(n)$ называется пренебрежимо малой, если \forall константы c > 0 существует константа $n_0 = n_0(c)$: $\varepsilon(n) < 1/n^c \ \forall n > n_0.$

Криптографически стойкие ГПСЧ

T.e. при $n \to \infty \ \forall poly(n) \ \varepsilon(n) = o(1/poly(n))$.

На практике, когда число *п* фиксировано, пользуются фиксированным ε , напр. $\varepsilon = 2^{-80}$.

 PPT - класс полиномиальных рандомизованных алгоритмов. Probabilistic polinomial time.

 $A \in \operatorname{PPT}$, если

- 1. Он имеет полиномиальное время работы, может "подбрасывать монету" и принимать случайные решения; И
- 2. Если задача имеет два ответа ДА и НЕТ (т.е. это задача разрешимости, decision problem), то алгоритм дает верный ответ с вероятностью больше 2/3.

Прим.:

можно требовать, чтобы алгоритм A давал правильный ответ с вероятностью более 1/2 + c, где c > 0 - любая константа. Тогда алгоритм, который дает правильный ответ с вероятностью более фикс. c' < 1, получается из алгоритма Aтак. Повторим алгоритм A t раз и примем решения простым большинством по t результатам.

Криптографически стойкие ГПСЧ

t не зависит от длины входа. t=t(c,c'), растет при c o 0 и при c' o 1. Для док-ва исп. неравенство Чебышева.

Р - класс задач, разрешимых детерминированными алгоритмами за полиномиальное время.

Опр.

РР - класс задач, разрешимых рандомизированными алгоритмами за полиномиальное время. Если задача имеет два ответа, то вероятность правильного ответа алгоритма - более 1/2.

 $BPP \subseteq PP$. (Bounded probabilistic polynomial)

Это класс задач, которые разрешимы рандомизированными алгоритмами за полиномиальное время. При этом, если задача имеет два ответа ДА и НЕТ, то алгоритм дает верный ответ с вероятностью больше константы 2/3.

Криптографически стойкие ГПСЧ

Что дает BPP по сравнению с PP? Пусть вероятность правильного ответа c = 2/3 нам не достаточна. Хотим достичь c' < 1. Для этого алгоритм из BPP повторим t раз и примем решение простым большинством по t результатам. Здесь t не зависит от длины входа. t = t(c, c'), растет при $c \rightarrow 1/2$ и при $c' \rightarrow 1$.)

Пусть можно точно предсказать следующие значения ГПСЧ. T.e.

Криптографически стойкие ГПСЧ

$$\exists i, \ \exists A \in \mathrm{PT} : G(k)|_{1,...i} \xrightarrow{A} G(k)|_{i+1,...,n}$$

Если злоумышленник знает $m|_{1...i}$ и $c|_{1...i}$, тогда $G(k)|_{1...i} = m|_{1...i} \oplus c|_{1...i}$ и находит $G(k)|_{i+1,...n}$.

Если $\exists i, A : G(k)|_{1} \xrightarrow{i} \stackrel{A}{\rightarrow} G(k)|_{i+1}$, то дешифрование бит за битом.

Обозн.: $k \stackrel{\mathcal{K}}{\leftarrow} \mathcal{K}$ - случайный равновероятный выбор элемента kиз множества K

Криптографически стойкие ГПСЧ

Опр.

ГПСЧ $G: K \to \{0,1\}^n$ называется предсказуемым, если существует алгоритм $A \in \mathrm{PPT}$, не пренебрежимо малая функция $\gamma(n)$ и $\exists i(n), \ 0 < i < n-1 :$ при $k \stackrel{R}{\leftarrow} K P[A(G(k)|_{1,...,i}) = G(k)|_{i+1}] > 1/2 + \gamma(n).$

 $P[\cdot]$ вычисляется по случайному выбору ключа k и алгоритму Α.

Задача

Дать определение непредсказуемого ГПСЧ.

Задача

Пусть $G: K \to \{0,1\}^n: \forall k \ XOR(G(k)) = 0$. Является ли он предсказуемым?

Статистические тесты:

- тест на случайность: количество серий из 0 и серий из 1 длины k для разных k
- тест на случайность: количество фикс. шаблонов длины k

Криптографически стойкие ГПСЧ

- тест на равномерность, проверка гипотезы о законе распределения с. в.: сравнить количество всевозможных пар битов; можно для троек и т.д. (тест по критерию Пирсона χ^2)
- тест на автокорреляцию, для любого сдвига она мала: пусть $s_i \in \{0,1\}$ - символы последовательности.

$$C(t) = rac{1}{N} \sum_{i=0}^{N-1} (2s_i - 1)(2s_{i+t} - 1) = \left\{ egin{array}{ll} 1 & ext{if } t = 0 \ < eta/\sqrt{N} & ext{if } t
eq 0 \end{array}
ight.$$

тест Maurer'a: степень возможного сжатия посл-ти.

Обзор: Википедия, Тестирование псевдослучайных последовательностей.

Криптографически стойкие ГПСЧ

Однако из стат. тестов не следует, что этот PRG непредсказуемый!

Пример

 $X_n = frac((n + X_0)\sqrt{2})$ - равномерный на [0,1], т.к. $\sqrt{2}$ иррациональное число, но предсказуемый.

Пример

LCG - linear congruent generator, и LFBR - linear feedback shift register. Статистически хорошие, но все их параметры злоум-к однозначно определяет по довольно короткой псевдослучайной посл-ти.

Пример

LCG в простейшем виде: $X_{n+1} = (aX_n + b) \mod m$ параметры: a, b, m

Пусть m известно, a, b - нет. Если знаем X_1, X_2, X_3 , решаем систему 2 линейных уравнений относительно a, b.

Криптографически стойкие ГПСЧ

Найти m тоже легко:

http://security.stackexchange.com/questions/4268/cracking-a-linear-congruential-generator

Раздел 2 - Поточные шифры и генераторы ПСЧ

алгоритм A назовем *оракулом* для ГПСЧ G, если он принимает на вход значение G(k) и выдает значение 0 или 1 со следующим смыслом: A(G(k)) = 0, если A считает G(k) не случайной последовательностью, A(G(k)) = 1 иначе. (Или наоборот.)

ГПСЧ $G: K \to \{0,1\}^n$ называется криптографически стойким, если $\forall A \in \mathrm{PPT}$ при $k \xleftarrow{R} K$, $r \xleftarrow{R} \{0,1\}^n$ величина

Криптографически стойкие ГПСЧ

 $Adv[A,G] := |P[A(G(k)) = 1] - P[A(r) = 1]| < \varepsilon(n)$, где $\varepsilon(n)$ пренебрежимо малая функция.

 $P[\cdot]$ вычисляется по случайному выбору k и r и алгоритму A.

Т.е., применяя алгоритмы из РРТ, результат вычисления G(k) при $k \stackrel{R}{\leftarrow} K$ не удается (не известен алгоритм) отличить от результата выбора r при $r \xleftarrow{R} \{0,1\}^n$.

Задача

пусть $G: K \to \{0,1\}^n$ такой, что (G(k))[1] = 0 для 2/3 ключей из K. Пусть оракул A выдает 1, если x[1] = 0, иначе 0. Найдите, чему равно Adv[A, G] = |P[A(G(k)) = 1] - P[A(r) = 1]|.

Утверждение

Если генератор псевдослучайных чисел предсказуемый, то он не криптостойкий.

Док-во

G - предсказуемый $\Rightarrow \exists$ алгоритм , предсказывающий следующий бит с вероятностью более $1/2+\gamma$, где γ не пренебрежимо малая величина.

Определим оракул B: если $A(X|_{1,...,i})=X|_{i+1}$, выдать 1, иначе 0. Тогда

$$P(B(r)=1)=1/2$$
 $P(B(G(k))=1)>1/2+\gamma$, значит $Adv[B,G]>\gamma$, ч.т.д.

Следствие: криптостойкий ГПСЧ непредсказуемый.

Теорема 1 (Теорема Yao, 1982)

Пусть $G: K \to \{0,1\}^n$ - ГПСЧ. Пусть $\forall i \in \{0,..,n-1\}$ G не предсказуемый в позиции i+1. Тогда G - криптостойкий ГПСЧ.

Криптографически стойкие ГПСЧ

Без доказательства.

Как построить генератор длинных посл-тей ПСЧ?

Псевдослучайные функции (ПСФ)

Пусть
$$K = \{0,1\}^k$$
, $X = \{0,1\}^n$, $Y = \{0,1\}^m$.

Опр.

Функция $f: K \times X \to Y$ - это псевдослучайная функция [по второму аргументу], если

 $f\in \mathrm{PT}$ и orall оракула $A\in \mathrm{PPT}$ при $k\xleftarrow{R}K$, $r\xleftarrow{R}\left\{ arphi \,:\, X o Y
ight\}$ величина

$$Adv(A, f) = |P[A(f(k, \cdot)) = 1] - P[A(r(\cdot)) = 1]| < \varepsilon(n)$$
, пренебрежимо малой функции.

 $T.e. \,$ оракул из класса PPT не может отличить эту функцию от случайной.

$$P[A(f(k,\cdot))=1]$$
:

Бросили монеты, получили k. Бросили монеты, получили r. A вычисляет $f(k,\cdot)$ в poly(n) числе точек x по своему выбору. Выдает результат.

Криптографически стойкие ГПСЧ

Этот результат усредняется по всем k и алгоритму A.

 $P[A(r(\cdot)) = 1]$ - аналогично, в тех же точках x.

Задача

Пусть K, X, Y - конечные множества. Найти мощность множеств

$$\{f(\cdot):X \to Y\}$$
 и $\{\mathsf{ПСФ}\ f(k,\cdot):X \to Y,\ k \in K\}.$

Задача

Пусть $f: K \times X \to \{0,1\}^{128}$ - псевдослучайная функция. Будет ли следующая функция псевдослучайной:

$$f'(k,x) = \left\{ egin{array}{ll} 0^{128} & ext{если x=0} \\ F(k,x) & ext{иначе} \end{array}
ight.$$

Пусть $f: K \times \{0,1\}^n \to \{0,1\}^n$ - ПСФ. Тогда следующая конструкция с использованием ПСФ в режиме счетчика будет криптостойким ГПСЧ:

$$G: K \to \{0,1\}^{nt}$$

 $G(k) = f(k,0)||f(k,1)||...||f(k,t-1)$

Шифр: $c = m \oplus G(k)$. Криптостойкий? В каком смысле?

Раздел 2 - Поточные шифры и генераторы ПСЧ

Семантическая стойкость

Семантическая стойкость шифра (semantic security) с одноразовым ключом

Эксперимент SS:

- 1. Система выбирает случайное значение бита $b \stackrel{R}{\leftarrow} \{0,1\}$. Оно секретное.
- 2. Злоумышленник выбирает длину n и отправляет два сообщения $m_0 \neq m_1$ длины n.
- 3. Система вычисляет $c = E(k, m_b)$ и отправляет его злоум-ку.
- 4. Злоум-к $A \in PPT$ анализирует c и выдает результат бит b'.
- 5. Если b' = b, A достиг успеха.

Один запрос, ответ.

Шифр наз. семантически стойким для одноразового ключа, если в этом эксперименте вероятность успеха A не более $\frac{1}{2} + \varepsilon(n)$,

Криптографически стойкие ГПСЧ

где $\varepsilon(n)$ - пренебр. малая, вероятность вычисляется по случайным выборам: k, bалгоритма A и шифрования E.

Эквивалентно:

$$Adv_{SS}(A, E_{OTK}) = |P(b' = 1|b = 1) - P(b' = 1|b = 0)| < \varepsilon(n).$$

Т.е. семантическая стойкость шифра с одноразовым ключом: при однократном использовании ключа вероятность того, что "эффективный" злоум-к правильно укажет, ш/т какого из двух сообщений равной длины он получил, отличается от вероятности угадать (1/2) не более чем на пренебрежимо малую величину.

Пример

Пусть оракул A по шифротексту может точно определить значение бита открытого текста, например m[1]. Тогда строится эксперимент: $m_0[1] = 0, m_1[1] = 1$. Анализируем шифротекст...

$$Adv_{SS}(A, E_{OTK}) = |P(b' = 1|b = 1) - P(b' = 1|b = 0)| = |1 - 0| = 1$$

Пусть A может определить не бит m[1], а значение некоторой функции от m. Тот же сценарий: m_0 , m_1 , где функция принимает разные значения.

Теорема 2

Пусть $G: K \to \{0,1\}^*$ - криптостойкий ГПСЧ. Тогда поточный шифр на основе G(k) семантически стойкий при одноразовом ключе.

Криптографически стойкие ГПСЧ

И \forall алгоритма A, пытающегося взломать шифр,

 \exists алгоритм B атаки на ГПСЧ:

 $Adv_{SS}(A, E) \leq 2 \cdot Adv_{PRG}(B, G).$

Идея доказательства: $|m_0| = |m_1|$ и

Док-во

Цель: $Adv_{SS}(A, E) \leq 2 \cdot Adv_{PRG}(B, G) = 2\varepsilon(n)$.

Криптографически стойкие ГПСЧ

Обозн.
$$W_q :=$$
 событие: $b' = 1|b = q$. $Adv_{SS}(A, E) = |P_A(W_1) - P_A(W_0)|$.

Такая же атака на одноразовый блокнот.

Обозн. $R_q :=$ событие: b' = 1 | b = q для нее.

Док-во (Продолжение)

Algorithm B:

Криптографически стойкие ГПСЧ

$$Adv_{PRG}(B, G) = |P(B(r) = 1) - P(B(G(k)) = 1)| =$$

$$= |P_A(R_0) - P_A(W_0)|$$

Аналогично для $P(R_1), P(W_1)$ - подаем в $A m_1 \oplus y$.

Док-во (Продолжение)

$$Adv_{SS}(A, E) = |P_A(W_1) - P_A(W_0)| \le$$

$$\le |P_A(W_1) - P_A(R_1)| + |P_{OTP}(R_1) - P_{OTP}(R_0)| + |P_A(R_0) - P_A(W_0)| =$$

$$= 2 \cdot Adv_{PRG}(B, G)$$

Криптографически стойкие ГПСЧ

Ч.т.д.

Некоторые итоги:

- А. Стойкость шифров с одноразовым ключом:
- А.1. Абсолютная стойкость к атаке с известным шифротекстом.

- А.2. Семант. стойкость к атаке с известным шифротекстом.
- B. -
- С. Шифры:
- С.1. Алфавитные.
- С.2. Одноразовый блокнот.
- С.3. Поточные шифры, ГПСЧ.

Криптографически стойкие ГПСЧ

Литература к лекции

нет