数学笔记

BeBop

February 16, 2025

Contents

Ι	知识	只整理	5
1	微分	☆ 流形	7
	1.1	向量丛结构群的约化	7
		1.1.1 流形可定向与结构群可约化至 GL ⁺ (k, ℝ)	8
		1.1.2 黎曼度量与结构群可约化至正交群 $O(k)$	8
		$1.1.3$ 复向量丛与近复结构,与结构群可约化至 $\mathrm{GL}(k,\mathbb{C})$	9
	1.2	向量丛分类定理	9
		1.2.1 同伦的映射拉回同构的向量丛 (纤维丛)	9
	1.3	Kunnëth 公式与 Leray-Hirsch 定理	11
	1.4	微分流形中的同伦	
		1.4.1 连续映射同伦于光滑映射	
	1.5	Thom 同构、Thom 空间与 Thom 类	15
2	代数	(拓扑	17
	2.1	Brouwer 不动点定理与 Sperner 引理	17
	2.2	Invariance of domain	
	2.3	Poincaré Lemma	
	2.4	Excision Theorem in Signular Homology	
	2.5	紧支集上同调	26
II	杂	:题集萃	29
II	I §	易错知识	31
ΙV	⁷ д	及待整理 	33

4 CONTENTS

Part I 知识整理

Chapter 1

微分流形

1.1 向量丛结构群的约化

定义 1.1.1 (向量丛的定义). 设 E, M 为微分流形, $\pi: E \to M$ 为光滑满射, 且有 M 的升覆盖 $\{U_{\alpha}\}$ 及微分同胚 $\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$, 满足:

- 1. $\psi(\pi^{-1}(p)) = \{p\} \times \mathbb{R}^k, \ \forall p \in U_\alpha$
- 2. 当 $U_{\alpha} \cap U_{\beta} \neq \emptyset$ 时,存在光滑映射 $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(k,\mathbb{R})$,使得 $\psi_{\beta} \circ \psi_{\alpha}^{-1}(p, v) = (p, g_{\beta\alpha}(p)v)$.

则称:

- $E \neq M$ 上的光滑向量丛, k 为向量丛的秩, π 为丛投影;
- $\{(U_{\alpha}, \psi_{\alpha})\}$ 为局部平凡化, $g_{\beta\alpha}$ 为连接函数, $\mathrm{GL}(k, \mathbb{R})$ 为结构群;
- $E_p := \pi^{-1}(p)$ 为点 p 上的纤维.

对每个 E_p , 由条件I可知 E_p 上可自然定义一个线性空间结构, 这看似依赖于局部平凡化 ψ_{α} 的选取, 不过由条件2可知线性结构并不依赖局部平凡化的选取.

若存在 $GL(k,\mathbb{R})$ 的闭 Lie 子群 H, 使得 $g_{\beta\alpha}(p) \in H$, $\forall p \in U_{\alpha} \cap U_{\beta}$, 则 称结构群**可约化到于群** H.

连接函数 $g_{\beta\alpha}$ 在向量丛的定义中占据很重要的地位, 容易证明它满足性质:

$$g_{\alpha\alpha} = 1, \ \forall U_{\alpha}, \qquad g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1, \ \forall U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset.$$

反之, 若有一族光滑函数 $\{g_{\alpha\beta}\}$ 满足以上性质, 定义商空间 $E:=\sqcup_{\alpha}(U_{\alpha}\times\mathbb{R}^{k})/\sim$, 其中等价关系定义为: $(p,v_{\alpha})\in U_{\alpha}\times\mathbb{R}^{k},\ (q,v_{\beta})\in U_{\beta}\times\mathbb{R}^{k}$

$$(p, v_{\alpha}) \sim (q, v_{\beta}) \Leftrightarrow p = q, \ v_{\beta} = g_{\beta\alpha}(p)v_{\alpha}.$$

E 的拓扑由商拓扑给出,记 [p,v] 为 (p,v) 的等价类,定义 $\pi: E \to M$, $\pi([p,v]) = p$. 则 E 在投影映射 π 下成为 M 上的秩 k 的向量丛.

1.1.1 流形可定向与结构群可约化至 $GL^+(k,\mathbb{R})$

略

1.1.2 黎曼度量与结构群可约化至正交群 O(k)

流形 M 上的黎曼度量是指光滑 (0,2)-张量场 g, g 在每个点的切空间处都是内积. 下面就来说明 n 维流形 M 上存在黎曼结构与切丛 TM 的结构群可约化至正交群 O(n) 是等价的.

1°. 设 (M,g) 为一个黎曼流形, 取 M 的一个局部坐标覆盖 $\{(U_{\alpha}; x_{\alpha}^{1}, \ldots, x_{\alpha}^{n})\}$, 于是 $\frac{\partial}{\partial x_{\alpha}^{1}}, \ldots, \frac{\partial}{\partial x_{\alpha}^{n}}$ 成为 U_{α} 上的一组标架, 因为 U_{α} 上有度量结构, 我们可对标架做 Gram-Schmidt 正交化得到单位正交标架 $e_{1\alpha}, \ldots, e_{n\alpha}$, 令局部平凡 化映射为

$$\psi_{\alpha}: TU_{\alpha} \to U_{\alpha} \times \mathbb{R}^{n}$$
$$(p, a^{i}e_{i\alpha}|_{p}) \mapsto (p, a^{i}e_{i})$$

其中 e_1, \ldots, e_n 表示 \mathbb{R}^n 上的自然基底. 当 $U_\alpha \cap U_\beta \neq \emptyset$ 时,对每个点 $p \in U_\alpha \cap U_\beta$,因为 $\{e_{i\alpha}|_p\}$ 和 $\{e_{i\beta}|_p\}$ 都是 T_pM 的一组标准正交基,所以转移函数 $g_{\beta\alpha}(p)$ 是正交矩阵,因此结构群可被约化至 O(n).

 2° . 假设 TM 的结构群可约化至正交群, 设 $\{(U_{\alpha}, \psi_{\alpha})\}$ 是对应的平凡化, 即 ψ_{α} 是从 TU_{α} 到 $U_{\alpha} \times \mathbb{R}^{n}$ 的微分同胚, 令 $e_{i\alpha} = \psi^{-1}(U_{\alpha} \times \{e_{i}\})$, 其中 $\{e_{i}\}$ 为 \mathbb{R}^{n} 的自然基底. 我们得到了 TU_{α} 上处处线性无关的一组向量场 $\{e_{i\alpha}\}$, 命这组向量场构成 TU_{α} 的一个单位正交标架场, 这能唯一确定 TU_{α} 上的黎曼度量. 若 $U_{\alpha} \cap U_{\beta} \neq \emptyset$, 对 $\forall p \in U_{\alpha} \cap U_{\beta}$,

$$\langle e_{i\alpha}, e_{j\alpha} \rangle_p = \langle \psi_{\alpha}(e_{i\alpha}|_p), \psi_{\alpha}(e_{j\alpha}|_p) \rangle$$

$$= \langle g_{\alpha\beta}(p)\psi_{\beta}(e_{i\beta}|_p), g_{\alpha\beta}(p)\psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle \psi_{\beta}(e_{i\beta}|_p), \psi_{\beta}(e_{j\beta}|_p) \rangle$$

$$= \langle e_{i\beta}, e_{j\beta} \rangle_p$$

所以不同平凡化定义的黎曼结构是相容的,因此能定义一个整体的黎曼度量 g.

注意到我们能用单位分解在任意微分流形上构造黎曼度量, 这表明任意 微分流形切丛的结构群都能约化到正交群.

1.1.3 复向量丛与近复结构,与结构群可约化至 $GL(k,\mathbb{C})$

设 $M \in m$ 维流形, M 上的复向量丛 E 在定义上仅需要把纤维 \mathbb{R}^k 改为 \mathbb{C}^k 、结构群改为 $\mathrm{GL}(k,\mathbb{C})$.

但如果把 \mathbb{C}^k 视为 \mathbb{R}^{2k} , 则结构群可约化至 $\mathrm{GL}(2k,\mathbb{R})$ 的子群

$$\left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \mid |A|^2 + |B|^2 > 0 \right\}$$

我们仍把这个子群记为 $GL(k,\mathbb{C})$. 可以证明实的秩为 2k 的向量丛 E 为复的秩为 k 的向量丛当且仅当结构群可约化至 $GL(k,\mathbb{C})$.

我们也可以从近复结构的视角理解复向量丛, 若实的秩为 2k 的向量丛 E 上存在自同构 J (即 $\pi \circ J = \pi$), 使得 $J^2 = -\mathrm{id}$, 则称 J 为 M 的近复结构. 可以证明 M 为复向量丛当且仅当 M 上存在近复结构.

一方面若 M 为复向量丛, 则可以逐点定义 $J_p(p,v)=(p,\sqrt{-1}v)$, 因为转移映射是复线性变换, 所以 J_p 良定, 且 $J_p^2=-\mathrm{id}$; 另一方面我们可以适当修改平凡化 ψ_α 使得 J 可局部表示为

$$J_{\alpha}(p, v_{\alpha}) = \left(p, \begin{pmatrix} & -I_{k} \\ I_{k} & \end{pmatrix} v_{\alpha}\right)$$

因为 $g_{\alpha\beta} \cdot J_{\beta} = J_{\alpha} \cdot g_{\alpha\beta}$, 所以

$$\begin{pmatrix} & -I_k \\ I_k & \end{pmatrix} \cdot g_{\alpha\beta}(p) = g_{\alpha\beta}(p) \cdot \begin{pmatrix} & -I_k \\ I_k & \end{pmatrix} \Rightarrow g_{\alpha\beta}(p) = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$

从而结构群可约化至 $GL(k,\mathbb{C})$.

1.2 向量从分类定理

1.2.1 同伦的映射拉回同构的向量丛 (纤维丛)

定义 1.2.1 (拉回丛的定义). 设 $f: X \to Y$, 且有向量丛 $p: E \to Y$, 则可以定义 X 上的拉回丛 $p': f^*E \to X$, 其中

$$f^*E := \{(x, e) \in X \times E \mid f(x) = p(e)\}$$

为 $X \times E$ 的子集, 且赋予子拓扑结构. 丛投影为映射到第一个分量的投影映射. 每根纤维的线性结构由 E 上每根纤维的线性结构给出. (有模糊的地方)

命题 1.2.2 (同伦的映射拉回同构的向量丛). 现有向量丛 $p: E \to Y$, 设 $f \simeq q: X \to Y$ 为同伦的光滑映射, 则拉回丛 f*E 与 q*E 丛同构.

在证明之前, 我们先分析一下命题. 设 $H: X \times [0,1] \to Y$ 是从 f 到 g 的 光滑伦移, 即 $H|_{X \times \{0\}} = f$, $H|_{X \times \{1\}} = g$. 则有 $X \times [0,1]$ 上的拉回丛 H^*E , 且 $H^*E|_{X \times \{0\}} = f^*E$, $H^*E|_{X \times \{1\}} = g^*E$. 因此为了证明 $f^*E \cong g^*E$, 只需证明:

命题 1.2.3 (向量丛在柱空间的上下底的限制是同构的). 当 X 仿紧时,对任意 $X \times [0,1]$ 上的向量丛 E, $E|_{X \times \{0\}} \cong E|_{X \times \{1\}}$.

证明. 我们需要两个关于向量丛的事实:

(1): 若 $p: E \to X \times [a,b]$ 在 $X \times [a,c]$ 和 $X \times [c,b]$ 上分别是平凡的,则 E 在整个 $X \times [a,b]$ 上平凡.

只需分别写出在 $X \times [a,c]$ 和 $X \times [c,b]$ 上的平凡化 h_1 和 h_2 , 并修改 h_2 使得它们在 $p^{-1}(X \times \{c\})$ 上匹配, 则 h_1 和修改后的 h_2 合并成整个 $X \times [a,b]$ 上的平凡化.

(2): 对于向量丛 $p: E \to X \times [0,1]$, 存在 X 的开覆盖 $\{U_{\alpha}\}$ 使得 E 在每个 $U_{\alpha} \times [0,1]$ 上都是平凡的.

对任意 $x \in X$, 存在 $U_{x,1}, \ldots, U_{x,k}$ 以及 $0 = t_0 < t_1 < \cdots < t_k = 1$ 使得 E 在 $U_{x,i} \times [t_{i-1}, t_i]$ 上平凡,令 $U_x = U_{x,1} \cap \cdots \cap U_{x,k}$,则由(1)知 E 在 $U_x \times [0,1]$ 上平凡.

下面我们来证明该命题, 由 (2) 我们可以取 X 的开覆盖 $\{U_{\alpha}\}$ 使得 E 在每个 $U_{\alpha} \times [0,1]$ 上平凡. 因为 X 是第二可数空间, 不妨设 $\{U_{\alpha}\} = \{U_{n}\}_{n=1}^{\infty}$, 也即开覆盖为可数开覆盖. 取从属于 $\{U_{n}\}$ 的单位分解 $\{\rho_{n}\}$ (这里为使下标一致我们牺牲了 $\sup \rho_{n}$ 的紧性). 记

$$\varphi_n = \rho_1 + \rho_2 + \cdots + \rho_n$$

特别地令 $\varphi_0 \equiv 0$, $\varphi_\infty \equiv 1$. 则每个 φ_i 都能定义图流形

$$X_i := \{(x, \varphi_i(x)) \mid x \in X\} \subset X \times [0, 1]$$

每个含入 $\iota_i: X_i \hookrightarrow X \times [0,1]$ 都定义了一个拉回丛 $E_i:=\iota_i^*E=E|_{X_i}$. 特别地 $X_0=X\times\{0\},\,X_\infty=X\times\{1\},\,\iota_0^*E=E|_{X\times\{0\}},\,\iota_\infty^*E=E|_{X\times\{1\}}.$ 因为 X_{j-1} 到 X_j 仅改变了 U_j 所对应的图像 (supp $\rho_j\subset U_j$). 而 E 在 $U_j\times[0,1]$ 上是平凡的,所以

$$E_{j-1}|_{X_{j-1}\cap(U_j\times[0,1])} \cong (X_{j-1}\cap(U_j\times[0,1]))\times\mathbb{R}^n$$

$$\cong (X_j\cap(U_j\times[0,1]))\times\mathbb{R}^n$$

$$\cong E_j|_{X_j\cap(U_j\times[0,1])}$$

且能取同构映射 ψ_j 使得在 $\operatorname{supp} \rho_j$ 之外为恒等 (此处用空间 X 中的集合指代图流形对应的集合),因此 ψ_j 能用恒同映射光滑延拓至整个向量丛,于是

$$\psi_j: E_{j-1} \cong E_j.$$

定义从 $E|_{X\times\{0\}}$ 到 $E|_{X\times\{1\}}$ 的映射:

$$\psi := \cdots \circ \psi_2 \circ \psi_1^1$$

因为对每个 $x \in X$ 存在 x 的开领域 V 使得仅有有限个 ρ_n 在 V 上非零,因此在 V 上 ψ_1, ψ_2, \cdots 仅有有限项不是恒同映射,从而良定义,而这给出了从 $E|_{X \times \{0\}}$ 到 $E|_{X \times \{1\}}$ 的同构.

注. 注意到在证明过程中并没有用到纤维具体是什么, 因此该证明可以逐字逐句地推广至一般纤维丛的同伦不变性.

1.3 Kunnëth 公式与 Leray-Hirsch 定理

定理 1.3.1 (Kunnëth 公式). 设流形 M 有有限好覆盖, F 是任意流形,则

$$H^*(M \times F) \cong H^*(M) \otimes H^*(F)$$

证明概要. 设 $\pi: M \times F \to M, \rho: M \times F \to F$ 为乘积流形到两个分量的投影,则可以定义

$$\psi: H^*(M) \otimes H^*(F) \to H^*(M \times F)$$
$$\omega \otimes \tau \mapsto \pi^* \omega \wedge \rho^* \tau$$

由 M-V 论证, 可以得到如下交换图:

¹终于知道为什么 Hatcher 上是递减定义的了.

前两个圈的交换性显然,第三个圈的交换性需要用到 d* 的表达式. 由五引理能得到归纳递推,归纳奠基是平凡的. □

定理 1.3.2 (Leray-Hirsch 定理). 设 $\pi: E \to M$ 为纤维丛, 纤维为 F, 若存在 E 上的微分形式 $\{e_1, \ldots, e_n\}$ 满足将它们限制在每个纤维 F_x 上都能得到 $H^*(F_x)$ 的一组基, 则

$$H^*(E) \cong H^*(M) \otimes \{e_1, \dots, e_n\} \cong H^*(M) \otimes H^*(F).$$

证明概要. 这里的关键在于不存在 E 到 F 的整体投影 ρ , 也就无法通过这个方式定义 $\rho^*: H^*(F) \to H^*(E)$ 了. 但是借助 $\{e_1, \ldots, e_n\}$ 我们可以构造合适的映射 $\tilde{\rho^*}$, 做法如下: 固定某个点 $x \in M$, 也即固定某个纤维 F_x , 取 $H^*(F_x)$ 的一组基 $\{f_1, \ldots, f_n\}$, 定义:

$$\tilde{\rho^*}: H^*(F) \to H^*(E)$$
$$\sum_i a_i f_i \mapsto \sum_i a_i e_i.$$

于是可以定义:

$$\tilde{\psi}: H^*(M) \otimes H^*(F) \to H^*(E)$$

$$\omega \otimes \tau \mapsto \pi^* \omega \wedge \tilde{\rho^*} \tau$$

归纳递推仍由 M-V 论证给出;

因为 good cover 中的每个开集都同伦于单点, 而同伦映射诱导同构的拉回丛 (注意这里是纤维丛的版本), 因此 good cover 同时也是 locally trivialization. 故 $\pi^{-1}(U_{\alpha}) \cong U_{\alpha} \times F$, 从而 $H^*(\pi^{-1}(U_{\alpha})) \cong H^*(U_{\alpha}) \otimes H^*(F)$, 这给出了归纳奠基.

注. 实际上当底空间 M 连通时, 定理的条件可弱化为 $\{e_1, \ldots, e_n\}$ 限制在某个纤维 F_x 上得到 $H^*(F_x)$ 的一组基. 因为对不同的两点 x, y, 有道路 $\gamma: [0,1] \to M$ 将他们相连, 于是嵌入映射 $\iota_x: F_x \hookrightarrow E$ 和 $\iota_y: F_y \hookrightarrow E$ 同伦. 因此拉回映射 $\iota_x^*: H^*(E) \to H^*(F_x)$ 与 $\iota_y^*: H^*(E) \to H^*(F_y)$ 相等.

注. 这里的同构 $H^*(E) \cong H^*(M) \otimes H^*(F)$ 并不保持环结构 (例如?) 因此只能说 $H^*(E)$ 可看成 $H^*(M)$ -模.

注. 存在不满足 Leray-Hirsch 定理条件的纤维丛, 比如 Hopf 纤维化:

$$S^1 \longrightarrow S^3$$

$$\downarrow$$

$$S^2$$

其中

$$H^*(S^3) \neq H^*(S^1) \otimes H^*(S^2)$$

1.4 微分流形中的同伦

1.4.1 连续映射同伦于光滑映射

定理 1.4.1 (用光滑映射逼近连续映射). 设 $f:M^m\to\mathbb{R}^n$ 为任意连续映射, $\varepsilon:M\to\mathbb{R}_{>0}$ 为任意误差函数. 则存在光滑映射 $g:M\to\mathbb{R}^n$ 满足 $||f(x)-g(x)||<\varepsilon(x),\ \forall x\in M$.

证明. 对 M 中任一点 p, 存在开邻域 U_p 使得

$$||f(q) - f(p)|| < \varepsilon(p), \quad \varepsilon(q) > \frac{1}{2}\varepsilon(p), \quad \forall q \in U_p.$$

记 $\{\rho_p\}$ 为从属于开覆盖 $\{U_p\}$ 的单位分解, 定义

$$g(x) = \sum_{p} \rho_p(x) f(p) = \sum_{U_p \ni x} \rho_p(x) f(p).$$

则 g(x) 是 M 到 \mathbb{R}^n 的光滑映射且满足

$$||g(x) - f(x)|| = \left| \left| \sum_{p} \rho_{p}(x) f(p) - \sum_{p} \rho_{p}(x) f(x) \right| \right|$$

$$= \left| \left| \sum_{U_{p} \ni x} \rho_{p}(x) \left(f(p) - f(x) \right) \right| \right|$$

$$\leqslant \sum_{U_{p} \ni x} \rho_{p}(x) \left| \left| f(p) - f(x) \right| \right|$$

$$\leqslant \sum_{U_{p} \ni x} \rho_{p}(x) \varepsilon(x)$$

$$= \varepsilon(x).$$

g(x) 即为所求.

注. 这个定理是单位分解的一个重要应用.

注. 若 f 的像集 f(M) 包含于 \mathbb{R}^n 的某个开集 U 中,则也可使 $g(M) \subset U$. 具体做法是稍微修改一下误差函数. 令

$$\varepsilon_1(x) := \min \left\{ \varepsilon(x), \frac{1}{2} d(f(x), \mathbb{R}^n \backslash U) \right\}$$

以新误差函数 ε_1 构造的 g 自动满足 $g(M) \in U$.

定理 1.4.2 (用光滑映射逼近连续映射且保持在某个闭集不动). 设 $f: M^m \to \mathbb{R}^n$ 为连续映射,且在闭子集 A 的某个开邻域 U_0 内光滑,则对任意误差函数 $\varepsilon: M \to \mathbb{R}_{>0}$,存在光滑映射 $g: M \to \mathbb{R}^n$ 满足 $||f(x) - g(x)|| < \varepsilon(x), \forall x \in M$ 且 $f|_A = g|_A$.

证明. 主要的构造思路保持不变, 但开覆盖有些许变化. 对任意 $p \in M \setminus A$, 取开邻域 $U_p \subset M \setminus A$ 使得

$$||f(q) - f(p)|| < \varepsilon(p), \quad \varepsilon(q) > \frac{1}{2}\varepsilon(p), \quad \forall q \in U_p.$$

设 $\{\rho_0\} \cup \{\rho_p\}_{p \notin A}$ 为从属于开覆盖 $\{U_0\} \cup \{U_p\}_{p \notin A}$ 的单位分解, 令

$$g(x) = \rho_0(x)f(x) + \sum_{p \notin A} \rho_p(x)f(p).$$

则因为

$$f(x) = \rho_0(x)f(x) + \sum_{p \notin A} \rho_p(x)f(x),$$

可以验证 q 满足定理要求.

注. 同上一个注一样, 该定理可以加强使逼近前后的像集在同一个开集中.

定理 1.4.3 (任意连续映射都同伦于一个光滑映射). 任意光滑流形间的连续映射 $f: M^m \to N^n$ 均同伦于某一个光滑映射 $g: M \to N$.

证明. f 在局部上可以看成是 M 到 \mathbb{R}^n 的连续映射, 用之前的定理可以在局部上用光滑映射逼近 f, 则局部上可以用直线同伦连接 f 与光滑映射, 对每个点的局部都如此考虑即可.

1.5 Thom 同构、Thom 空间与 Thom 类

设 $\pi: E \to M$ 是 M 上的秩为 k 的可定向向量丛, 在 Bott & Tu 的书中我们知道存在 $\Phi \in H^k_{cv}(E)$ 使得

$$\mathcal{T}: H^{*-k}(M) \to H^*_{cv}(E)$$

 $\omega \mapsto \pi^* \omega \wedge \Phi$

是同构. 下面我们将用相对上同调以及 Thom 空间的语言重新描述 Thom 同构.

由定理 2.5.3,

Chapter 2

代数拓扑

2.1 Brouwer 不动点定理与 Sperner 引理

我们首先叙述 Brouwer 不动点定理与 Sperner 引理:

定理 2.1.1 (Brouwer 不动点定理). 设 $f \in \mathbb{R}$ 作闭球 B^n 到自身的连续映射,则 f 必有不动点.

引理 2.1.2 (Sperner 引理). 设 $K = [v_0, \ldots, v_n]$ 是 n 维单纯形, 考虑其三角剖分 T, 将 T 的顶点 (n+1) 染色,即定义 $\lambda: V(T) \to \{0, \ldots, n\}$,且满足对任意指标子集 $\{i_0, \ldots, i_k\} \subseteq \{0, \ldots, n\}$, λ 在 $[v_{i_0}, \ldots, v_{i_k}]$ 上的限制的值域包含于 $\{i_0, \ldots, i_k\}$. 则一定存在 $u_0, \ldots, u_n \in V(T)$,使得 $[u_0, \ldots, u_n]$ 是三角剖分 T 的单形,且 $\lambda(u_i)$ 互不相同.

Figure 2.1: Sperner 引理示意图

它们一个是拓扑的定理,一个是组合的定理,看似没有联系,但实际上我们能证明它们是等价的:

等价性的证明. 由于 $B^n \cong K$, 我们将 Brouwer 不动点定理的叙述改为 K 到自身的连续映射 f 必有不动点.

1°:Sperner 引理 ⇒ Brouwer 不动点定理

设 $K = [v_0, ..., v_n]$ 是 n 维单形, 对 $\forall x \in K$, $x = \sum_i \alpha_i v_i$, $\alpha_i \ge 0$, $\sum_i \alpha_i = 1$. 设 $f(x) = \sum_i \beta_i v_i$, 定义染色映射 $\lambda(x)$ 为使得 $\alpha_i \ge \beta_i$ 且 $\alpha_i \ne 0$ 的最小下标 i. 我们首先观察到在任意集合 $\{i_0, ..., i_k\} \subseteq \{0, ..., n\}$ 中, 对 $\forall x \in [v_{i_0}, ..., v_{i_k}]$, x 的坐标 α 满足 $\alpha_i = 0$, $i \notin \{i_0, ..., i_k\}$, 因此 $\lambda(x)$ 只可能在 $\{i_0, ..., i_k\}$ 中取值.

固定染色 λ , 取重心重分 K^0, K^1, \ldots , 则在每一个 K^j 中 λ 均满足引理条件,于是存在异色单形 $\Delta^j = [u^j_0, \ldots, u^j_n]$,不妨设 $\lambda(u^j_i) = i$. 因为 K 是紧集,因此 $\{u^j_0\}_j$ 存在收敛子列,不妨设就为序列本身,由重心重分的性质知 Δ^j 的直径趋于零,因此对所有 i, $\{u^j_i\}_j$ 均收敛于同一点 u, 即 $u = \lim_{j \to \infty} u^j_i$, $\forall i = 0, \ldots, n$. 由染色的定义知 u^j_i 的 v_i 坐标不等于零且大于等于 $f(u^j_i)$ 的,根据极限的保号性知 u 的所有坐标 α_i 大于等于 f(u) 对应的坐标 β_i ,但因为 $\sum_i \alpha_i = \sum_i \beta_i = 1$,所以 $\alpha_i = \beta_i$,因此 u = f(u) 是 f 的不动点.

2°:Sperner 引理 ← Brouwer 不动点定理

设 $K = [v_0, ..., v_n]$ 是 n 维单形, λ 为满足引理要求的染色, T 是 K 的一个三角剖分, 则可以定义单纯映射 $f: K \to K$ 如下: 对 $\forall x \in V(T)$, 定义 $f(x) = v_{\lambda(x)}$, 若 $x = \sum_{i=0}^k \alpha_i x_i$, 其中 $[x_0, ..., x_k]$ 为 T 的 k 维单形, 定义 $f(x) = \sum_{i=0}^k \alpha_i v_{\lambda(x_i)}$.

若 T 中没有 n 维异色单形,则 f 的像集包含于 ∂K 中,且对于每个 (n-1) 维面 $[v_0, \ldots, \hat{v_i}, \ldots, v_n]$ 均有 $f([v_0, \ldots, \hat{v_i}, \ldots, v_n]) \subset [v_0, \ldots, \hat{v_i}, \ldots, v_n]$. 不妨设 $\sum_{i=0}^n v_i = 0$,即 K 的重心是原点.定义 $g: \partial K \to \partial K$,g(x) 为射线 xO 与 ∂K 的另一个交点,类比对径映射.则 $g([v_0, \ldots, \hat{v_i}, \ldots, v_n]) \cap [v_0, \ldots, \hat{v_i}, \ldots, v_n] = \emptyset$ 则 $g \circ f$ 是 K 到自身的连续映射,但没有不动点,与Brouwer 不动点定理矛盾.

现在我们回到 Sperner 引理本身的证明

证明. 对维数 n 做归纳, 我们证明对任意维数异色单形的个数均为奇数. 当 n=1 时, $K=[v_0,v_1]$ 可看做闭区间 [0,1], 设 $v_0=x_0 < x_1 < \cdots < x_m=v_1$ 是剖分 T 中的点, 则 #异色单形 = # $\{i \mid \lambda(x_{i-1}) \neq \lambda(x_i)\}$. 而

$$1 = \lambda(v_1) - \lambda(v_0) = \sum_{i=1}^{m} \lambda(x_i) - \lambda(x_{i-1}) = \sum_{\lambda(x_{i-1}) \neq \lambda(x_i)} \lambda(x_i) - \lambda(x_{i-1})$$

因此#异色单形是奇数.

假设维数为 n-1 时命题成立, 我们称 T 中的 (n-1) 维单形 $[x_0, \ldots, x_{n-1}]$ 为一个好单形, 若 $\{\lambda(x_0), \ldots, \lambda(x_{n-1})\} = \{0, \ldots, n-1\}$. 对 T 中的 n 维单形 $\Delta_n = [u_0, \ldots, u_n]$, 令 $c(\Delta_n)$ 为 Δ_n 中好单形的个数, 记 $S = \{\lambda(u_0), \ldots, \lambda(u_n)\}$, 则

$$c(\Delta_n) = \begin{cases} 0, \{0, \dots, n-1\} \nsubseteq S \\ 2, \{0, \dots, n-1\} = S \\ 1, \{0, \dots, n\} = S \end{cases}$$

于是异色单形个数的奇偶性与 $\sum_{\Delta_n\subset T}c(\Delta_n)$ 的奇偶性相同. 而当好单形在 $\overset{\circ}{K}$ 内时, 它是两个 n 单形的公共面; 当好单形在 ∂K 上时, 它仅为一个 n 单形的面. 因此异色单形个数的奇偶性与 ∂K 上好单形的个数的奇偶性相同, 根据条件好单形仅在 $[v_0,\ldots,v_{n-1}]$ 中出现, 由归纳假设知 $[v_0,\ldots,v_{n-1}]$ 中好单形有奇数个, 命题成立.

2.2 区域不变性定理 (Invariance of domain)

该定理也是拓扑中的重要定理,有人说它是欧式空间的内蕴性质,用它可以 区分不同维数的欧式空间.

定理 2.2.1. 设 U 为 \mathbb{R}^n 中的开子集, $f: U \to \mathbb{R}^n$ 为连续单射, 则 f(U) 为 \mathbb{R}^n 的开子集且 f 为开映射, 即 f 为 U 到 f(U) 的同胚.

2.3 Poincaré Lemma 的另一种表述形式

引理 2.3.1 (d-Poincaré lemma). 若整体有 $d\omega = 0$, 则方程 $d\eta = \omega$ 局部有解, 即在每点处存在邻域使得方程有解.

引理 2.3.2 ($\overline{\partial}$ -Poincaré lemma). 若整体有 $\overline{\partial}\omega = 0$, 则方程 $\overline{\partial}\eta = \omega$ 局部有解, 即在每点处存在邻域使得方程有解.

注. 因此若整体有 $d\omega = 0$, 但方程 $d\eta = \omega$ 在整体上没有解, 这就表明空间本身限制的整体解的存在性, 也就是说我们检测到一个拓扑上的障碍.

2.4 切除定理 (Excision Theorem)

定理 2.4.1 (切除定理表述 1). 设 $Z \subset A \subset X$ 满足 $\overline{Z} \subset A^{\circ}$, 则空间偶的嵌入 $(X - Z, A - Z) \hookrightarrow (X, A)$ 诱导了相对同调群之间的同构:

$$H_n(X-Z,A-Z) \xrightarrow{\cong} H_n(X,A), \quad n \ge 0.$$

这个定理有一个等价的表述:

定理 2.4.2 (切除定理表述 2). 设 $A, B \subset X$ 且满足 $A^{\circ} \cup B^{\circ} = X$, 则空间偶的嵌入 $(B, A \cap B) \hookrightarrow (X, A)$ 诱导了相对同调群之间的同构:

$$H_n(B, A \cap B) \xrightarrow{\cong} H_n(X, A), \quad n \ge 0.$$

注. 两种表述靠 B = X - Z(Z = X - B) 相互转化.

为了证明这个定理, 我们需要先证明同调的"局部性"(locality principal).

设 X 是一个拓扑空间, 我们称 X 的子集族 $\mathfrak{U} = \{U_j\}_{j \in J}$ 是一个覆盖, 若 $\{U_i^\circ\}_{j \in J}$ 构成一个开覆盖 (注意 U_j 本身不必是开集).

定义 2.4.3 (U-small chains).

- 一个 n-单形 $\sigma: \Delta^n \to X$ 被称为 \mathfrak{U} -small 的, 若 $\operatorname{Im} \sigma$ 在某个 U_i 中.
- 一个 n-复形 $c = \sum_i n_i \sigma_i$ 被称为 \mathfrak{U} -small 的, 若每个 σ_i 都是 \mathfrak{U} -small 的.
- 所有 \mathfrak{U} -small 的 n-复形构成 $C_n(X)$ 的一个子群, 记为

$$C_n^{\mathfrak{U}}(X) := \{ c \in C_n(X) \mid c \text{ is } \mathfrak{U}\text{-small} \}.$$

若 A ⊂ X, 记

$$C_n^{\mathfrak{U}}(X,A) := \frac{C_n^{\mathfrak{U}}(X)}{C_n^{\mathfrak{U}}(A)}.$$

若记 $\iota_j:U_j\hookrightarrow X$ 为 U_j 到 X 的嵌入, 那么 $C_n^{\mathfrak{U}}(X)$ 也可以被定义为

$$C_n^{\mathfrak{U}}(X) = \operatorname{Im}\left(\bigoplus_{j \in J} C_n(U_j) \xrightarrow{\oplus_j(\iota_j)_*} C_n(X)\right).$$

这一概念的关键在于我们可以仅用 U-small 的链来计算原空间的同调群,这体现了同调群的局部性.

定理 2.4.4 (Locality Principle/Small Chain Theorem). 设 $\mathfrak{U} \not \in X$ 的一个覆盖,则链复形的嵌入映射

$$C_n^{\mathfrak{U}}(X) \subset C_n(X)$$

诱导了同调群之间的同构.

这个定理的证明需要用到重心剖分, 其证明过程有些繁琐, 所以我们跳过该定理的证明, 先看如何用这个定理推导出切除定理.

Proof of the Excision Axiom using small chains:

我们证明切除定理的表述 2, 令 $\mathfrak{U} = \{A, B\}$. 链复形的嵌入映射 $C_n^{\mathfrak{U}}(X) \subset C_n(X)$ 诱导了链复形短正合列之间的一个态射:

$$0 \longrightarrow C_*(A) \longrightarrow C_*^{\mathfrak{U}}(X) \longrightarrow C_*^{\mathfrak{U}}(X)/C_*(A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow C_*(A) \longrightarrow C_*(X) \longrightarrow C_*(X)/C_*(A) \longrightarrow 0$$

因为中间竖直的映射诱导了同调群之间的同构映射 (定理2.4.4), 由根据短正合引长正合、同调群的自然性、五引理, 我们得到右侧竖直映射诱导了同调群的同构, 由此转化为比较 $C_*(B,A\cap B)$ 和 $C_*^{\mathfrak{u}}(X)/C_*(A)$.

注意到

$$C_*^{\mathfrak{U}}(X) = C_*(A) + C_*(B) \subset C_*(X),$$

 $C_*(A \cap B) = C_*(A) \cap C_*(B).$

因此

$$\frac{C_*(B)}{C_*(A \cap B)} = \frac{C_*(B)}{C_*(A) \cap C_*(B)} \cong \frac{C_*(A) + C_*(B)}{C_*(A)} = \frac{C_*^{\mathfrak{U}}(X)}{C_*(A)}.$$

中间的同构源自同态基本定理.

因此链映射

$$C_*(B, A \cap B) \to C_*^{\mathfrak{U}}(X)/C_*(A)$$

诱导了同调群之间的同构, 原命题成立.

Proof of Locality Principle. ¹ 我们需要引入重心重分 (或叫重心剖分) 这一操作, 需要分几步定义:

Step 1: 首先定义什么是 n-单形 Δ^n 的重心重分. 为了方便我们使用坐标描述, 我们将 Δ^n 嵌入底空间 \mathbb{R}^n , 可用顶点集表示为 $[v_0, \dots, v_n]$, 其中的点可以表示为 $P = \sum_{i=0}^n t_i v_i$, $0 \le t_i \le 1$, $\sum_{t_0}^n t_i = 1$ 是点 P 的 n+1 个坐标.

我们知道从几何图形上看 Δ^n 重心重分后是一些更小块的 n-单形 (带符号), 但是为了规范叙述重心重分, 我们需要将重分后的对象视为 $LC_n(Y)$ 中的元素, 其中 Y 是某个欧氏空间中的凸集². 也即, 我们把原始的 Δ^n 视为 id : $\Delta^n \to \Delta^n$, 重分后得到 $S\Delta^n \in LC_n(Y)$.

¹证明源自 Hacter 的 Algebraic Topology, 此处是我总结凝练的个人理解.

 $^{^2}$ 这里我很纠结到底用不用书上的记号, 我原本想把每个 Δ^n 视为 $C_n(\Delta^n)$ 中的元素, 但这样得不到一个链复形, S 和 T 无法定义在一个统一的 $C_*(?)$. 加上线性映射这一条件也是必要的, 否则映射的像就不是规则的图形了.

1° 锥映射 (cone map): 设 $b \in \mathbb{R}^n$ 中的某一个点, 定义以 b 为顶点的锥映射, 写为

$$b: [v_0, \ldots, v_n] \mapsto [b, v_0, \ldots, v_n]$$

因此 $b([v_0,...,v_n])$ 中坐标为 $(t_0,...,t_{n+1})$ 的点是

$$t_0 b + \sum_{t=1}^{n+1} t_i v_i = t_0 b + (1 - t_0) \sum_{t=1}^{n+1} \frac{t_i}{1 - t_0} v_i.$$

2° 重心重分映射 $S:LC_n(\Delta^n)\to LC_n(\Delta^n)$. 设 λ 是一个 n-单形, 记 b_λ 为 λ 的重心, 即所有坐标都取 $\frac{1}{n+1}$ 的点. 我们归纳地定义

$$S\lambda = \begin{cases} [\varnothing] &, n = -1; \\ b_{\lambda}S(\partial\lambda) &, n \ge 0. \end{cases}$$

S 在小维数单形上的作用:

- $\stackrel{.}{=}$ n = -1, $\mathbb{I}\mathbb{I}$ $\lambda = [\varnothing]$ $\mathbb{I}\mathbb{I}$, $S[\varnothing] = [\varnothing]$;
- $\stackrel{\text{def}}{=} n = 0$, $\mathbb{H} \lambda = [w_0] \mathbb{H}$, $b_{\lambda} = w_0$, $S[w_0] = w_0 S \partial [w_0] = w_0 ([\varnothing]) = [w_0]$;
- $\stackrel{\text{def}}{=} n = 1$, $\mathbb{P} \lambda = [w_0, w_1]$ $\mathbb{P} h$, $S[w_0, w_1] = b_{\lambda} S([w_1] [w_0]) = [b_{\lambda}, w_1] [b_{\lambda}, w_0]$.

下面归纳地证明 S 是链映射, 即 $S\partial = \partial S$.

- 当 *n* > 0 时,

$$\partial S\lambda = \partial b_{\lambda}(S\partial\lambda)$$

 $= S\partial\lambda - b_{\lambda}\partial(S\partial\lambda)$ 因为 $\partial b_{\lambda} = \mathbb{1} - b_{\lambda}\partial$
 $= S\partial\lambda - b_{\lambda}(S\partial\partial\lambda)$ 因为归纳假设 $\partial S(\partial\lambda) = S\partial(\partial\lambda)$
 $= S\partial\lambda$ 因为 $\partial\partial = 0$.

3° id 和 S 的链同伦 $T: C_n(Y) \to C_{n+1}(Y)$, 我们归纳地定义

$$T\lambda = \begin{cases} 0 &, n = -1; \\ b_{\lambda}(\lambda - T\partial\lambda) &, n \geq 0. \end{cases}$$

$$\cdots \longrightarrow LC_{2}(Y) \longrightarrow LC_{1}(Y) \longrightarrow LC_{0}(Y) \longrightarrow LC_{-1}(Y) \longrightarrow 0$$

$$\downarrow s \qquad \downarrow s$$

T 在小维数单形上的作用:

- $\stackrel{\text{def}}{=} n = -1$, $\mathbb{H} \lambda = [\varnothing] \text{ iff}$, $T[\varnothing] = 0$;
- 当 n = 0, 即 $\lambda = [w_0]$ 时, $b_{\lambda} = w_0$, $T[w_0] = w_0([w_0] T\partial[w_0]) = w_0([w_0]) = [w_0.w_0]$;
- $\stackrel{\text{def}}{=} n = 1$, $\bowtie \lambda = [w_0, w_1] \bowtie T[w_0, w_1] = b_{\lambda} \Big([w_0, w_1] T([w_1] [w_0]) \Big) = [b_{\lambda}, w_0, w_1] [w_1, w_1] + [w_0, w_0].$

T 的几何解释如下: 将 $\Delta^n \times I$ 分成若干个 Δ^n , 满足下底 $\Delta^n \times \{0\}$ 仍为一整个 Δ^n (代表 id), 上底则成为重心重分后的图形 (代表 $S\Delta^n$). T 作用在某个 λ 上可能会出现 $[w_0, w_0]$ 这样的元素, 对此我们可以将前一个 w_0 视作时间参数 t=1 的点, 后一个视作 t=0 的点, 通过人为增添一个时间维度 (即乘以 I), 我们能更好地想象 T 的几何动机, T 实际作用的像是前文描述的图形在投影 $\Delta^n \times I \to \Delta^n$ 下的像. 下面归纳地验证 T 是连接 id 和 S 的链

Figure 2.2: 重心重分与恒同的链同论

同论, 即 $\partial T + T\partial = \mathbb{1} - S$:

- 当 n ≥ 0 时,

$$\partial T\lambda = \partial b_{\lambda}(\lambda - T\partial\lambda)
= (\lambda - T\partial\lambda) - b_{\lambda}\partial(\lambda - T\partial\lambda)$$
因为 $\partial b_{\lambda} = \mathbb{1} - b_{\lambda}\partial$
 $= \lambda - T\partial\lambda - b_{\lambda}\partial\lambda + b_{\lambda}\partial T\partial\lambda$
 $= \lambda - T\partial\lambda - b_{\lambda}\partial\lambda + b_{\lambda}(\partial\lambda - S\partial\lambda - T\partial\partial\lambda)$ 因为归纳假设
 $= \lambda - T\partial\lambda - b_{\lambda}(S\partial\lambda)$
 $= \lambda - S\lambda - T\partial\lambda.$

Step 2: 对一般的链 $\sigma: \Delta^n \to X$ 定义重心重分. 1° 定义 $S: C_n(X) \to C_n(X)$ 为

$$S\sigma = \sigma_{tt} S\Delta^{n}$$

Figure 2.3: 重心重分与恒同的链同论

下面的示意图能帮助我们理解 S 的定义. 下面验证 S 是一个链映射, 即 $\partial S = S\partial$:

$$\partial S\sigma = \partial \sigma_{\sharp} S\Delta^{n} = \sigma_{\sharp} \partial S\Delta^{n} = \sigma_{\sharp} S\partial \Delta^{n}$$

$$= \sigma_{\sharp} S \sum_{i=0}^{n} (-1)^{i} \Delta_{i}^{n}$$

$$= \sum_{i=0}^{n} (-1)^{i} \sigma_{\sharp} S\Delta_{i}^{n}$$

$$= \sum_{i=0}^{n} (-1)^{i} S(\sigma|_{\Delta^{n}})$$

$$= S\left(\sum_{i=0}^{n} (-1)^{i} \sigma|_{\Delta^{n}}\right) = S(\partial \sigma).$$

 2° 类似地定义 $T: C_n(X) \to C_{n+1}(X)$ 为

$$T\sigma = \sigma_{\rm t} T\Delta^n$$

下面验证 T 是一个链同伦, 即 $\partial T + T\partial = 1 - S$:

$$\partial T\sigma = \partial \sigma_{\mathsf{t}} T\Delta^n = \sigma_{\mathsf{t}} \partial T\Delta^n$$

$$= \sigma_{\sharp} (\mathbb{1} - S - T\partial) \Delta^{n}$$

$$= \sigma - S\sigma - \sigma_{\sharp} T\partial \Delta^{n} \qquad \text{和上面的过程类似}$$

$$= \sigma - S\sigma - T\partial \sigma.$$

Step 3: 迭代重心重分操作.

1° 可以证明对 Δ^n 做一次重心重分得到 (n+1)! 个小的 n-复形, 这些 n-复形的最大直径不超过原复形的 $\frac{n}{n+1}$. 这个仅依赖于维数的严格小于 1 的常数是重心重分的一个关键性质. 它保证了只要重分足够多次, 每个 n-复形的直径可以任意小.

现设 $\mathfrak{U} = \{U_{\alpha}\}_{\alpha}$ 是 X 的一个覆盖,则对单形 $\sigma: \Delta^{n} \to X$, $\{\sigma^{-1}U_{\alpha}\}_{\alpha}$ 构成 Δ^{n} 的一个开覆盖,因为 Δ^{n} 是完备度量空间,设 δ_{σ} 是 $\{\sigma^{-1}U_{\alpha}\}_{\alpha}$ 的 Lebesuge 数. 则当 m 充分大时, $S^{m}\Delta^{n}$ 中的每个单形的直径都小于 δ_{σ} . 对一般的链 $\sigma \in C_{n}(X)$,记 $m(\sigma)$ 为最小的使得 $S^{m}\sigma \in C_{n}^{\mathfrak{U}}(X)$ 的迭代数 m.

连接 $\mathbb{1}$ 和 S^m 的链同论是 $D_m = \sum_{i=0}^{m-1} TS^i$, 其验证如下:

$$\partial D_m + D_m \partial = \sum_{i=0}^{m-1} \partial T S^i + \sum_{i=0}^{m-1} T S^i \partial$$

$$= \sum_{i=0}^{m-1} (\mathbb{1} - S - T \partial) S^i + \sum_{i=0}^{m-1} T S^i \partial$$

$$= \sum_{i=0}^{m-1} (\mathbb{1} - S) S^i - \sum_{i=0}^{m-1} T \partial S^i + \sum_{i=0}^{m-1} T S^i \partial$$

$$= \mathbb{1} - S^m.$$

对一般的链 σ , 若定义 $S\sigma = S^{m(\sigma)}\sigma$, 则不能良定义链同论 $D\sigma$, 因为如果定义 $D\sigma = D_{m(\sigma)}\sigma$, 公式 $\partial D\sigma + D\partial\sigma = \partial D_{m(\sigma)}\sigma + D_{m(\partial\sigma)}\partial\sigma$, 下指标不全是 $m(\sigma)$.

因此我们得先定义 $D\sigma := D_{m(\sigma)}\sigma$, 再形式地定义 $\rho: C_n(X) \to C_n^{\mathfrak{U}}(X)$,

$$\rho := \mathbb{1} - \partial D - D\partial$$

需要验证 ρ 是链映射, 即 $\partial \rho = \rho \partial$:

$$\begin{split} \partial \rho \sigma &= \partial \sigma - \partial \partial D \sigma - \partial D \partial \sigma \\ &= \partial \sigma - \partial D \partial \sigma \\ &= \partial \sigma - \partial D \partial \sigma - D \partial \partial \sigma \\ &= (\mathbb{1} - \partial D - D \partial) \partial \sigma = \rho \partial \sigma. \end{split}$$

由 ρ 的定义易知 D 是 $\mathbb{1}$ 与 ρ 的链同论.

最后验证 ρ 确实将 $C_n(\Delta^n)$ 中的元素映到 $C_n^{\mathfrak{U}}(X)$ 中:

$$\rho\sigma = \sigma - \partial D_{m(\sigma)}\sigma - D_{m(\partial\sigma)}\partial\sigma$$

$$= S^{m(\sigma)}\sigma + D_{m(\sigma)}\partial\sigma - D_{m(\partial\sigma)}\partial\sigma$$

$$= S^{m(\sigma)}\sigma + \sum_{m(\partial\sigma) \le i < m(\sigma)} TS^i\partial\sigma$$

因为 $\partial \sigma \subset \sigma$, 所以 $m(\partial \sigma) \leq m(\sigma)$, 由 $m(\sigma)$ 的定义以及 T 保持 $C_n^{\mathfrak{U}}(X)$ 不动, 等号末项属于 $C_n^{\mathfrak{U}}(X)$, 因此 ρ 就是我们想要的映射.

总结: 我们有嵌入映射 $\iota: C_n^{\mathfrak{U}}(X) \to C_n(X)$,然后我们又定义了 $\rho: C_n(\Delta^n) \to C_n^{\mathfrak{U}}(X)$,以及 $D: C_n(X) \to C_{n+1}(X)$,使得 $\partial D + D\partial = \mathbb{1} - \rho$. 显然 $\rho \iota = \mathbb{1}$,因此 $\rho \not \in \iota$ 的同伦逆,也即 $C_n^{\mathfrak{U}}(X) \hookrightarrow C_n(X)$ 诱导了同调群之间的同构.

2.5 紧支集上同调3

Let X be a topological space and K be a compact subset of X, then

$$C_c^i(X) := \bigcup_K C^i(X, X \setminus K) = \left\{ \varphi : C_i(X) \to \mathbb{Z} \mid \exists \text{ compact } K_\varphi \subset X \right\}$$
s.t. $\varphi = 0$ on chains in $X \setminus K_\varphi \subset C^i(X)$.

Define $\delta\varphi(\sigma) := \varphi(\partial\sigma)$, note if $\varphi \in C_c^i(X)$, then $\delta\varphi$ is also zero on all chains in $X \setminus K_{\varphi}$ and so $\delta\varphi \in C_c^{i+1}(X)$. Then we get a cochain subcomplex $C_c^*(X)$.

定义 2.5.1. $H_c^i(X) := H^i(C_c^*(X))$ is called the cohomology of X with compact support.

这个定义和紧支集 de Rham 上同调是一致的.

定理 2.5.2 (紧支集上同调与相对上同调⁴). $H_c^i(X) \cong \lim_{K \in I} H^i(X, X \setminus K)$ where K denotes a compact subset of X.

证明. Let $I = \{K \subset X \mid K \text{ compact}\}$, and then I is a directed set since it is partially ordered by inclusion, and the union of two compact sets is also compact. Let $K \subset L$ be compact subsets of X, then there is a homomorphism $f_{KL}: H^i(X, X \setminus K) \to H^i(X, X \setminus L)$ induced by inclusion. Note since each element of $\varinjlim H^i(X, X \setminus K)$ is represented by some cocycle $\varphi \in C^i(X, X \setminus K)$ for some compact K with $[\varphi] \in H^i_c(X)$, and such φ is the zero element in $\varinjlim H^i(X, X \setminus K)$ iff $\varphi = \delta \psi$ for some $\psi \in C^i(X, X \setminus L)$, and so $[\varphi] = 0$ in $H^i_c(X)$. Thus $H^i_c(X) \cong \varinjlim H^i(X, X \setminus K)$.

³这一段完全摘抄自https://people.math.wisc.edu/~lmaxim/Topnotes9.pdf ⁴有点抽象废话的意思,能增进我的理解,但是无法将其与其它更熟悉的概念联系起来.

定理 2.5.3 (紧支集上同调与一点紧化空间的约化上同调). Let $X^+ = X \cup \{\infty\}$ be one piont compactification of X. Then $H_c^*(X) \cong H^*(X^+, \infty) \cong \tilde{H}^*(X^+)$.

证明. Consider $U \stackrel{open}{\hookrightarrow} X \leftarrow X \setminus U$, we have a short exact sequence:

$$0 \longrightarrow \Omega_c^*(U) \longrightarrow \Omega_c^*(X) \longrightarrow \Omega_c^*(X \setminus U) \longrightarrow 0$$
$$\theta \longmapsto j_*\theta$$
$$\omega \longmapsto \iota^*\omega$$

where j_* means extension by zero, ι^* is the pull-back of $\iota: X \setminus U \hookrightarrow X$. So we can get a long exact sequence of cohomology with compact support:

$$\cdots \to H_c^n(U) \to H_c^n(X) \to H_c^n(X \setminus U) \to H_c^{n+1}(U) \to \cdots$$

In case of $X^+ = X \cup \{\infty\}\}$, we get:

$$\cdots \to H^n_c(X) \to H^n_c(X^+) \to H^n_c(\{\infty\}) \to H^{n+1}_c(X) \to \cdots$$

Since both X^+ and $\{\infty\}$ are compact, we have

$$\cdots \to H_c^n(X) \to H^n(X^+) \to H^n(\{\infty\}) \to H_c^{n+1}(X) \to \cdots$$

Thus

$$H^n_c(X) \cong H^n(X^+, \{\infty\}) \cong \tilde{H}^n(X^+).$$

类似的事情对于 de Rham 上同调也成立.

Part II 杂题集萃

Part III 易错知识

Part IV 亟待整理