Mathematical Logic Concise Notes

MATH60132

Arnav Singh

Content from prior years assumed to be known.

Mathematics Imperial College London United Kingdom December 2, 2022

Contents

1	Pro	positional Logic	2
	1.1	Propositional formula	2
	1.2	A formal system for propositional logic	
	1.3	Soundness and completeness of L	
2	\mathbf{Pre}	dicate Logic	5
	2.1	Structures	5
	2.2	First-order languages	
	2.3	Bound and free variables in formula	
	2.4	The formal system $K_{\mathcal{L}}$	
	2.5		9
	2.6	Equality	_
	2.7	Examples and applications	
3	Set	theory	12
	3.0	Basic set theory	12
	3.1	Cardinality	
	3.2	Axioms for set theory	
	3.3	Well orderings	
	0.0	Ordinals	

1 Propositional Logic

1.1 Propositional formula

Definition 1.1.1. Proposition - a statement, either True (T), (1) or False (F), (0), represented using propositional variables

Connectives and Truth Tables

For $\{p, \ldots, q\}$ a set of propositions, combine them using the following connectives

- 1. **Negation** $(\neg p)$
- 2. Conjunction $(p \land q)$
- 3. **Disjunction** $(p \lor q)$
- 4. Implication $p \rightarrow q$
- 5. Biconditional $p \leftrightarrow q$

p	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	0	0	0	1
0	1	0	1	1	0
1	0	0	0	1	0
1	1	1	0	1	1

Definition 1.1.2. A propositional formula is obtained in the following way

- Any propositional variable a formula
- if ϕ, ψ are formulas then so are

$$(\neg \phi), \ (\phi \lor \psi), \ (\phi \land \psi), \ (\phi \to \psi), \ (\phi \leftrightarrow \psi)$$

• Any formula arises this way

Definition 1.1.3. Let $n \in \mathbb{N}$

- A truth function of n variables a function $f: \{T, F\}^n \to \{T, F\}$
- Suppose ϕ a formula with variables amongst p_1, \ldots, p_n

$$F_{\phi}: \{T, F\}^n \to \{T, F\}$$

whose values at $(x_1, ..., x_n)$ is the truth value of ϕ when p_i has value x_i for i = 1, ..., n F_{ϕ} the **truth function** of ϕ

Definition 1.1.4. We have the following

- A propositional formula ϕ a **tautology** if its truth function F_{ϕ} always has value T
- Say ϕ, ψ are logically equivalent (LE) if they have the same truth function, $(F_{\phi} = F_{\psi})$

Lemma 1.1.7. There are 2^{2^n} truth functions of n variables

Definition 1.1.8. Say a set of connectives is **adequate** if for every $n \ge 1$, every truth function of n variables is the truth function of some formula involving only connectives from the set and variables p_1, \ldots, p_n

Theorem 1.1.9. *Set* $\{\neg, \lor, \land\}$ *is adequate*

Corollary 1.1.10. Suppose χ a formula whose truth function not always F. Then χ logically equivalent to formula in disjunctive normal form.

Corollary 1.1.11. The following set of connectives are adequate

- $\{\neg, \lor\}$
- $\{\neg, \wedge\}$
- \bullet \neg , \rightarrow

We also have the **(NOR)** connective $\{\downarrow\}$ is adequate

p	q	$p \downarrow q$
Т	Т	F
Τ	F	F
F	Т	F
F	F	T

1.2 A formal system for propositional logic

Definition 1.2.1. • A formal deduction system Σ has the following

- An alphabet $A \neq \emptyset$ of symbols
- A non-empty set \mathcal{F} of the set of all finite sequence, **strings**, of elements of A the **formulas** of Σ
- A subset $A \subseteq \mathcal{F}$ called the **axioms** of Σ
- A collection of **deduction rules**
- A **proof** in Σ a finite sequence of formulas in \mathcal{F} ϕ_1, \ldots, ϕ_n such that each ϕ_i either an axiom, or obtained from $\phi_1, \ldots, \phi_{i-1}$ using one of the deduction rules.
- The last, or any, formula in a proof a **theorem** of Σ . Write $\vdash_{\Sigma} \phi$.

Definition 1.2.2. The formal system \mathcal{L} for propositional logic has the following

- A **Alphabet** consisting of
 - variables, p_1, \ldots, p_n
 - $\ connective, \ \{\neg, \rightarrow\}$
 - punctuation,), (
- Formulas: finite strings of symbols from alphabet as follows
 - any variable p_i a formula
 - if ϕ , ψ formulas then so are $(\neg \pi)$ and $()\phi \rightarrow \psi)$
 - Any formula arises this way
- Axioms, suppose ϕ, ψ, χ are L-formulas. We have the following axioms for \mathcal{L}

$$(A1) (\phi \rightarrow (\psi \rightarrow \phi))$$

(A2)
$$((\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi)))$$

$$(A3) (((\neg \psi) \rightarrow (\neg \phi)) \rightarrow (\phi \rightarrow \psi))$$

- Deduction rule
- (MP) **Modus Ponens**. From ϕ and $(\phi \to \psi)$, deduce ψ

Definition 1.2.4. Suppose Γ a set of L-formulas

- A deduction from Γ a finite sequence of L-formulas ϕ_1, \ldots, ϕ_n s.t each ϕ_i either an axiom, a formula in Γ or obtained from previous formulas via MP
- Write Γ ⊢_L φ if there is a deduction from Γ ending in φ. Say φ a consequence of Γ.
 ∅ ⊢_L φ same as ⊢_L φ

Theorem 1.2.5. (Deduction Theorem)

Suppose Γ a set of L-formulas and ϕ , ψ L-formulas.

Suppose $\Gamma \cup \{\phi\} \vdash_L \psi \text{ then } \Gamma \vdash_L (\phi \to \psi)$

Corollary 1.2.6. (Hypothetical syllogism)

Suppose ϕ, ψ, χ L-formulas, and $\vdash_L (\phi \to \psi)$ and $\vdash_L (\psi \to \chi)$ Then $\vdash_L (\phi \to \chi)$

Proposition 1.2.7. Suppose ϕ, ψ are L-formulas. Then

- 1. $\vdash_L ((\neg \phi) \to (\psi \to \phi))$
- 2. $\{(\neg \psi), \psi\} \vdash_L \phi$
- 3. $\vdash_L (((\neg \phi) \rightarrow \phi) \rightarrow \phi)$

1.3 Soundness and completeness of L

Theorem 1.3.1. (Soundness of L)

Suppose ϕ a theorem of L. Then ϕ a tautology

Definition 1.3.2. A propositional valuation v an assignment of truth values to the propositional variables p_1, \ldots, p_n So

$$v(p_i) = T, F \quad i \in \mathbb{N}$$

Theorem 1.3.3. (Generalisation of Soundness)

Suppose Γ a set of formulas and ϕ a formula with $\Gamma \vdash_L \phi$ Suppose v a valuation with $v(\psi) = T, \forall \psi \in \Gamma$ Then $v(\phi) = T$

Theorem 1.3.4. (Completeness (adequacy) of L)

Suppose ϕ a tautology, i.e. $v(\phi) = T, \forall v$. Then $\vdash_L \phi$

Definition 1.3.6. A set Γ of L-formulas is **consistent** if there is no L-formula ϕ such that $\Gamma \vdash_L \phi$ and $\Gamma \vdash_L (\neg \phi)$

Proposition 1.3.7. Suppose Γ a consistent set of L-formulas and $\Gamma \not\vdash_L \phi$ Then $\Gamma \cup \{(\neg \phi)\}$ is consistent

Proposition 1.3.8. (Lindenbaum Lemma)

Suppose Γ a set of L-formulas. Then there is a consistent set of formulas $\Gamma^* \supseteq \Gamma$ s.t for every ϕ either $\Gamma^* \vdash_L \phi$ or $\Gamma^* \vdash_L (\neg \phi)$. Say Γ^* is **complete**

Lemma 1.3.9. Let Γ^* as above. Then \exists valuation v s.t for every L-formula ϕ , $v(\phi) = T$ iff $\Gamma^* \vdash_L \phi$

Corollary 1.3.10. Suppose Δ a consistent set of L-formulas, and $\Delta \not\vdash_L \phi$ Then there is a valuation v s.t $v(\Delta) = T$ and $v(\phi) = F$

Corollary 1.3.11. Suppose Δ a set of L-formulas and ϕ an L-formula. Then

- 1. Δ consistent iff there is a valuation v with $v(\Delta) = T$, and
- 2. $\Delta \vdash_L \phi$ iff, for every valuation v with $v(\Delta) = T$, we have $v(\phi) = T$

Theorem 1.3.12. (Compactness theorem for L)

Suppose Δ a set of L-formulas. The following are equivalent

- 1. There is a valuation v s.t $v(\Delta) = T$
- 2. For every finite subset $\Delta_0 \subseteq \Delta$, there is a valuation w s.t $w(\Delta_0) = T$

2 Predicate Logic

2.1 Structures

Definition 2.1.1. Suppose A a set and $n \in \mathbb{N}_{\geq 1}$

• An n-ary relation on A a subset

$$\overline{R} \subseteq A^n = \{(a_1, \dots, a_n) \mid a_i \in A\}$$

• An n-ary function on A a function

$$\overline{f}:A^n\to A$$

Definition 2.1.2. A first-order structure A consists of

- A non-empty set A, the domain of A
- A set of relations on A

$$\{\overline{R}_i \subseteq A^{n_i} \mid i \in I\}$$

• A set of functions on A

$$\{\overline{f}_j: A^{m_j} \to A \mid j \in J\}$$

• A set of constants, elements of A

$$\{\overline{c}_k \mid k \in K\}$$

I, J, K simply indexing sets, which can be empty

$$(n_i \mid i \in I), \ (m_j \mid j \in J), \ K$$

called the **signature** of ADenote the structure by

$$\mathcal{A} = \left\langle A; (\overline{R}_i \mid i \in I), (\overline{f}_j \mid j \in J), (\overline{c}_k \mid k \in K) \right\rangle$$
$$= \left\langle domain; relations, functions, constants \right\rangle$$

2.2 First-order languages

Definition 2.2.1. A first-order-language \mathcal{L} has an alphabet of symbols of the following types I, J, K

$$\begin{array}{cccc} \text{Variables} & x_0 & x_1 \\ \text{Connectives} & \neg & -i \\ \text{Punctuation} & (\) & , \\ \text{Quantifier} & \forall & \\ \text{Relation symbols} & R_i, \ i \in I \\ \text{Function symbols} & f_j, j \in J \\ \text{Constant symbols} & c_k, k \in K \end{array}$$

indexing sets, which could have $J, K = \emptyset$

- Each R_i comes equipped with arity n_i
- Each f_j comes equipped with arity m_j

$$(n_i \mid i \in I) \quad (m_j \mid j \in J), \quad K$$

Above called the **signature** of \mathcal{L}

Definition 2.2.2. A term of \mathcal{L} defined as follows

- Any variable is a term
- Any constant symbol is a term
- If f an m-ary function symbol of \mathcal{L} and t_1, \ldots, t_m are terms then

$$f(t_1,\ldots,t_m)$$

 $also\ a\ term$

• Any term arises this way

Definition 2.2.3. Use previous notation

• An atomic formula of \mathcal{L} is of the form

$$R(t_1,\ldots,t_n)$$

Where R an n-ary relation symbol of \mathcal{L} and t_1, \ldots, t_n are terms

- ullet Formulas of ${\cal L}$ are defined as follows
 - Any atomic formula is a formula
 - If ϕ , ψ are L-formulas, then

$$(\neg \phi), \ (\phi \to \psi), \ (\forall x)\phi$$

are L-formulas, where x is any variable

- Every L-formula arises in this way

Definition 2.2.4. Suppose ϕ, ψ are L-formulas

- $(\exists x) \phi$ means $(\neg(\forall x)(\neg \phi))$
- $(\phi \lor \psi)$ means $((\neg \phi) \to \psi)$

Definition 2.2.5. (Interpretation)

Suppose \mathcal{L} a first-order-language with relation symbols, R_i of arity $n_i, i \in I$, functions symbols f_j of arity $m_j, j \in J$ and constant symbols $c_k, k \in K$

An L-structure is a structure

$$\mathcal{A} = \left\langle A; (\overline{R}_i \mid i \in I), (\overline{f}_j \mid j \in J), (\overline{c}_k \mid k \in K) \right\rangle$$

of the same signature as \mathcal{L} The correspondence

$$R_i \leftrightsquigarrow \overline{R_i}, \quad f_j \leftrightsquigarrow \overline{f_j}, \quad c_k \leftrightsquigarrow \overline{c_k}$$

called an interpretation of \mathcal{L}

Definition 2.2.6. (Valuation)

With the same notation, suppose A an L-structure. A valuation in A is a function v from the set of terms of L to A satisfying

- $v(c_k) = \overline{c_k}$
- if t_1, \ldots, t_m are terms of \mathcal{L} and f a m-ary function symbol then

$$v(f(t_1,\ldots,t_m)) = \overline{f}(v(t_1),\ldots,v(t_m)),$$

where \overline{f} an interpretation of f in A

Lemma 2.2.7. Suppose A an \mathcal{L} -structure and $a_0, a_1, \ldots \in A$. Then there is a unique valuation v in A with $v(x_l) = a_l, \forall l \in \mathbb{N}$ where variables of \mathcal{L} are x_0, x_1, \ldots

Definition 2.2.8. Suppose A an L-structure and x_l any variable. Suppose v, w are valuations in A. Say v, w are x_l -equivalent if $v(x_m) = w(x_m)$, whenever $m \neq l$

Definition 2.2.9. Suppose A an L-structure and v a valuation in A Define for an L-formula ϕ what is meant by v satisfies ϕ in A

- Atomic formulas. Suppose R an n-ary relation symbol and t_1, \ldots, t_n are terms of \mathcal{L} Then v satisfies the atomic formula $R(t_1, \ldots, t_n) \iff \overline{R}(v(t_1), \ldots, v(t_n))$ holds in \mathcal{A}
- Suppose ϕ, ψ are \mathcal{L} -formulas

v satisfies $(\neg A)$ in $\mathcal{A} \iff v$ does not satisfy ϕ in \mathcal{A} v satisfies $(\phi \to \psi)$ in $\mathcal{A} \iff$ it is not the case that v satisfies ϕ in \mathcal{A} and v does not satisfy ψ in \mathcal{A} v satisfies $(\forall x_l)\phi$ in $\mathcal{A} \iff$ whenever w a valuation in \mathcal{A} which is x_l – equivalent to v, then w satisfies ϕ in \mathcal{A}

Notation:

If v satisfies ϕ write $v[\phi] = T$ if not write $v[\phi] = F$ If every valuation in \mathcal{A} satisfies ϕ say that ϕ is **true** in \mathcal{A} or \mathcal{A} a model of ϕ Write $A \models \phi$, if $\mathcal{A} \models \phi$ for every \mathcal{L} -structure \mathcal{A} say that ϕ is **logically valid**, and write $\models \phi$

Definition 2.2.13. Suppose χ an \mathcal{L} -formula involving propositional variables p_1, \ldots, p_n . Suppose \mathcal{L} a first-order language and ϕ_1, \ldots, ϕ_n are \mathcal{L} -formulas.

A substitution instance of χ is obtained by replacing each p_i in χ by ϕ_i . Call the result θ

Theorem 2.2.14. We have

- θ an \mathcal{L} -formula, and
- if χ a tautology, then θ is logically valid

Note: not all logically valid formulas arise this way

2.3 Bound and free variables in formula

Definition 2.3.1. Suppose ϕ, ψ are \mathcal{L} -formulas, with $(\forall x_i)\phi$ occurring as a sub-formula of ψ

- Say ϕ the **scope** of a that quantifier $(\forall x_i)$ here in ψ An occurrence of a variable x_j in ψ is **bound** if it is in the scope of a quantifier $(\forall x_j)$ in ψ or it is the x_j here in $(\forall x_j)$
- Otherwise, it is a **free** occurrence of x_j . Variables having a free occurrence in ψ are called **free** variables of ψ
- A formula with no free variables called a **closed formula** or a **sentence**, of \mathcal{L}

Definition 2.3.2. If ψ an \mathcal{L} -formula with free variables amongst x_1, \ldots, x_n , might write

$$\psi(x_1,\ldots,x_n)$$

instead of ψ . If t_1, \ldots, t_n are terms, by

$$\psi(t_1,\ldots,t_n)$$

we denote the \mathcal{L} -formula obtained by replacing each free occurrence of x_i in ψ by t_i

Theorem 2.3.3. Suppose ϕ closed \mathcal{L} -formula and \mathcal{A} an \mathcal{L} -structure. Then either $A \models \phi$ or $A \models (\neg \phi)$. More generally if ϕ has free variables amongst x_1, \ldots, x_n and v, w valuations in \mathcal{A} with

$$v(x_i) = w(x_i), \quad i = 1, \dots, n$$

Then $v[\phi] = T \iff w[\phi] = T$. Allow n = 0, for no free variables

Remark 2.3.4. If A an L-structure and $\psi(x_1, \ldots, x_n)$ an L-formula, whose free variables are amongst x_1, \ldots, x_n and $a_1, \ldots, a_n \in A$ for domain A, then we write

$$A \models \psi(a_1, \ldots, a_n)$$

to mean $v[\psi] = T$ for every valuation v in A with

$$v(x_i) = a_i, \quad i = 1, \dots, n$$

Definition 2.3.5. Let ϕ an \mathcal{L} -formula, x_i a variable, t an \mathcal{L} -term.

Say that t is **free for** x_i in ϕ if there is no variable x_j in t s.t x_i has a free occurrence within the scope of a quantifier $(\forall x_j)$ in ϕ

Theorem 2.3.6. Suppose $\phi(x_1)$ an \mathcal{L} -formula, possibly with other free variables. Let t be a term free for x_1 in ϕ , then

$$\models ((\forall x_1)\phi(x_1) \rightarrow \phi(t))$$

In particular, if A an \mathcal{L} -structure, with $A \models (\forall x_1 \phi(x_1),)$ then $A \models \phi(t)$

Lemma 2.3.7. Suppose v a valuation in \mathcal{A} . Let v' be the valuation in \mathcal{A} which is x_1 -equivalent to v with $v'(x_1) = v(t)$. Then $v'[\phi(x_1)] = T \iff v[\phi(t)] = T$

2.4 The formal system $K_{\mathcal{L}}$

Definition 2.4.1. Suppose \mathcal{L} a first-order language. The formal system $K_{\mathcal{L}}$ has, as formulas, \mathcal{L} -formulas, and the following

- Axioms. For L-formulas, ϕ, ψ, χ
- $(A1) \ (\phi \rightarrow (\psi \rightarrow \phi))$
- (A2) $((\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi)))$
- (A3) $(((\neg \psi) \rightarrow (\neg \phi)) \rightarrow (\phi \rightarrow \psi))$
- (K1) $((\forall x_i)\phi(x_i) \to \phi(t))$, where t a term free for x_i in ϕ and ϕ can have other free variables
- (K2) $((\forall x_i)(\phi \to \psi) \to (\phi \to (\forall x_i)\psi))$, if x_i is not free in ϕ
 - Deduction rules:
- (MP) Modus Ponens. From ϕ and $\phi \to \psi$, deduce ψ
- (Gen) **Generalisation**. From ϕ , deduce $(\forall x_i)\phi$

A **proof** in $K_{\mathcal{L}}$ a finite sequence of \mathcal{L} -formulas, each of which an axiom or deduced from previous formulas in proof using a deduction rule.

A **theorem** of $K_{\mathcal{L}}$ the last (or any) formula in some proof.

Write: $\vdash_{K_{\mathcal{L}}} if \phi$ a theorem in $K_{\mathcal{L}}$

Definition 2.4.2. Suppose Σ a set of \mathcal{L} -formulas and ψ an \mathcal{L} -formula. A **deduction** of ψ from Σ a finite sequence of formulas, ending with ψ , each of which is one of

- an axiom
- a formula in Σ
- obtained from earlier formulas using a deduction rule, with restriction that when Gen applied, it does not involve a variable occurring freely in Σ

Write $\Sigma \vdash_{K_{\mathcal{L}}} \psi$ if there is a deduction from Σ to ψ

Remark 2.4.3. We have

- if Σ consists of closed formulas, do not need to worry about the restriction on Gen
- $\phi \vdash_{K_{\mathcal{L}}} \psi$ if there is a deduction from Σ to ψ
- Without the restriction would have

$$\{\phi\} \vdash (\forall x_i)\phi, \ not \ sensible$$

• Should have, if $\Sigma' \subseteq \Sigma$ and $\Sigma' \vdash \phi \implies \Sigma \vdash \phi$, So we modify the definition accordingly

Theorem 2.4.4. Suppose ϕ an \mathcal{L} -formula, which is a substitution instance of a propositional tautology χ , then

$$\vdash_{K_{\mathcal{L}}} \phi$$

Theorem 2.4.5. (Soundness of $K_{\mathcal{L}}$)

If $\vdash_{K_{\mathcal{L}}} \phi$, then $\models \phi$, that is it is logically valid

Corollary 2.4.6. (Consistency of $K_{\mathcal{L}}$)

There is no formula, ϕ , with $\vdash_{K_{\mathcal{L}}} \phi$ and $\vdash_{K_{\mathcal{L}}} (\neg \phi)$

Theorem 2.4.8. (Deduction theorem)

Supposed \mathcal{L} a first-order language, Σ a set of \mathcal{L} -formulas, and ϕ, ψ are \mathcal{L} -formulas. Then if $\Sigma \cup \{\phi\} \vdash_{K_{\mathcal{L}}} \psi \implies \Sigma \vdash_{K_{\mathcal{L}}} (\phi \to \psi)$

2.5 Gödel's completeness theorem

Definition 2.5.1. A set Σ of \mathcal{L} -formulas is **consistent** if there is no formula ϕ with

$$\Sigma \vdash_{K_{\mathcal{L}}} \phi, \quad \Sigma \vdash_{K_{\mathcal{L}}} (\neg \phi)$$

By Soundness/2.4.7, \varnothing is consistent so $K_{\mathcal{L}}$ is consistent

Remark 2.5.2. If Σ inconsistent, then

$$\Sigma \vdash_{K_{\mathcal{L}}} \chi$$
, $\forall L$ -formula χ

Proposition 2.5.2. Suppose Σ a consistent set of closed L-formulas and ϕ a closed L-formula.

- 1. Comparing 1.3.7, if $\Sigma \not\vdash_{K_{\mathcal{L}}} \phi$, then $\Sigma \cup \{(\neg \phi)\}$ is consistent
- 2. Comparing the Lindenbaum lemma (1.3.8), there is a consistent set $\Sigma^* \supseteq \Sigma$ of closed L-formulas such that for every closed L-formula ϕ , either $\Sigma^* \vdash_{K_{\mathcal{L}}} \psi$ or $\Sigma^* \vdash_{K_{\mathcal{L}}} (\neg \phi)$

Theorem 2.5.3. (Model existence theorem)

Suppose Σ a consistent set of closed L-formulas. Then there is a countable L-structure A such that

$$A \models \Sigma, i.e \ A \models \sigma, \forall \sigma \in \Sigma$$

Theorem 2.5.4. Let Σ a set of closed L-formulas, ϕ a closed L-formula. If every model Σ is a model of ϕ , then $\Sigma \vdash_{K_{\mathcal{L}}} \phi$. That is

if
$$A \models \Sigma$$
, or $A \models \sigma, \forall \sigma \in \Sigma \implies A \models \phi$, then $\Sigma \vdash_{K_{\mathcal{L}}} \phi$

Theorem 2.5.5. (Gödel's completeness theorem for $K_{\mathcal{L}}$) If ϕ an L-formula with $\models \phi$, then ϕ a theorem of $K_{\mathcal{L}}$ i.e. $\vdash_{K_{\mathcal{L}}} \phi$

Corollary 2.5.6. (Compactness theorem for $K_{\mathcal{L}}$)

Suppose Σ a set of closed L-formulas and every finite subset of Σ has a model. Then Σ has a model.

2.6 Equality

Definition 2.6.1. Suppose \mathcal{L}^E a first-order language with a distinguished binary relation symbol E

- An \mathcal{L}^E -structure in which E is interpreted as equality = is a **normal** \mathcal{L}^E -structure
- The following are axioms of equality, Σ_E
 - $-(\forall x_1)E(x_1,x_1)$
 - $(\forall x_1)(\forall x_2)(E(x_1, x_2) \to E(x_2, x_1))$
 - $(\forall x_1)(\forall x_2)(\forall x_3)(E(x_1, x_2) \to (E(x_2, x_3) \to E(x_1, x_3)))$
 - For each n-ary relation symbol R of \mathcal{L}^E

$$(\forall x_1, \dots, x_n)(\forall y_1, \dots, y_n)((R(x_1, \dots, x_n) \land E(x_1, y_1) \land \dots \land E(x_n, y_n)) \rightarrow R(y_1, \dots, y_n))$$

- For each m-ary function symbol f of \mathcal{L}^E

$$(\forall x_1,\ldots,x_m)(\forall y_1,\ldots,y_m)((E(x_1,y_1))\wedge\ldots\wedge E(x_m,y_m))\to E(f(x_1,\ldots,x_m),f(y_1,\ldots,y_m))$$

Remark 2.6.2. Some remarks/defs

- If A a normal \mathcal{L}^E -structure, then $A \models \Sigma_E$
- Suppose $A = \langle A; \overline{E}, ... \rangle$ an \mathcal{L}^E -structure and $A \models \Sigma_E$. Then \overline{E} an equivalence relation on A Denote for $a \in A$

$$\hat{a} = \{ b \in A \mid \overline{E}(a, b) \text{ holds} \}$$

the equivalence class of a. Let

$$\hat{A} = \{\hat{a} \mid a \in A\}$$

Make \hat{A} into an \mathcal{L}^E -structure $\hat{\mathcal{A}}$

- if R an n-ary relation symbol, $\hat{a}_1, \ldots, \hat{a}_n \in \hat{A}$ Say $\overline{R}(\hat{a}_1, \ldots, \hat{a}_n)$ holds in $\hat{A} \iff \overline{R}(a_1, \ldots, a_n)$ holds in A, this is well defined by Σ_E
- Similarly, if f an m-ary function symbol and $\hat{a}_1, \ldots, \hat{a}_m \in \hat{A}$ let

$$\overline{f}(\hat{a}_1,\ldots,\hat{a}_m) = \overline{f}(\widehat{a_1,\ldots,a_m})$$

This also well defined by Σ_E

- if c a constant symbol, then interpret c as \hat{c} in \hat{A} , where \bar{c} the interpretation in A

Lemma 2.6.3. Suppose A an \mathcal{L}^E -structure with $A \models \Sigma_E$. Let v a valuation in A. Let \hat{A} be as given above. Let \hat{v} be the valuation in \hat{A} with

$$\hat{v}(x_i) = \widehat{v(x_i)}$$

Then for every \mathcal{L}^E -formula, ϕ, \hat{v} satisfies ϕ in $\hat{\mathcal{A}} \iff v$ satisfies ϕ in \mathcal{A} In particular, if ϕ is closed, then $\mathcal{A} \models \phi \iff \hat{\mathcal{A}} \models \phi$

Lemma 2.6.4. Suppose Δ a set of closed \mathcal{L}^E -formulas

Then Δ has a **normal model**, that is a normal \mathcal{L}^E -structure, \mathcal{B} with $\mathcal{B} \models \sigma, \forall \sigma \in \Delta \iff \Delta \cup \Sigma_E$ has a model

Theorem 2.6.5. (Compactness theorem for normal models)

Suppose \mathcal{L}^E a countable language with equality, and Δ a set of closed \mathcal{L}^E -formulas such that every finite subset of Δ has a normal model. Then Δ has a normal model

Notation: Write $\mathcal{L}^{=}$ instead of \mathcal{L}^{E} and $x_{1} = x_{2}$ instead of $E(x_{1}, x_{2})$

Theorem 2.6.6. (Countable downward Löwnenheim-Skolem theorem)

Suppose $\mathcal{L}^{=}$ a countable first-order language, with equality and \mathcal{B} a normal $\mathcal{L}^{=}$ -structure

Then there is a countable normal $\mathcal{L}^=$ -structure \mathcal{A} such that, for every closed $\mathcal{L}^=$ -formula, ϕ , $\mathcal{B} \models \phi \iff \mathcal{A} \models \phi$

2.7 Examples and applications

We let $\mathcal{L}^{=}$ be a first-order language with equality and binary relation symbol \leq

Definition 2.7.1. We have

• A linear order $A = \langle A; \leq_A \rangle$ a normal model of

$$\phi_1: (\forall x_1)(\forall x_2)(((x_1 \le x_2) \land (x_2 \le x_1)) \leftrightarrow (x_1 = x_2))$$

$$\phi_2: (\forall x_1)(\forall x_2)(\forall x_3)(((x_1 \le x_2) \land (x_2 \le x_3)) \to (x_1 \le x_3))$$

$$\phi_3: (\forall x_1)(\forall x_2)((x_1 \le x_2) \lor (x_2 \le x_1))$$

• it is dense if also

$$\phi_4: (\forall x_1)(\forall x_2)(\exists x_3)(\underbrace{(x_1 < x_2)}_{((x_1 \le x_2) \land (x_1 \ne x_2))} \to ((x_1 < x_3) \land (x_3 < x_2)))$$

• it is without endpoints if

$$\phi_5 : (\forall x_1)(\exists x_2)(x_1 < x_2) \phi_6 : (\forall x_1)(\exists x_2)(x_2 < x_1)$$

Let $\Delta = \{\phi_1, \ldots, \phi_6\}$

- $Q = \langle \mathbb{Q}; \langle \rangle$ a normal model of Δ
- $\mathcal{R} = \langle \mathbb{R}; \langle \rangle$ also a model of Δ

Theorem 2.7.2. We have

- 1. For every closed $\mathcal{L}^=$ -formula $\phi \ \mathcal{Q} \models \phi \iff \mathcal{R} \models \phi$
- 2. There is an algorithm which decides, given a closed $\mathcal{L}^=$ -formula ϕ , whether $\mathcal{Q} \models \phi$ or $\mathcal{Q} \not\models \phi$, that is $\mathcal{Q} \models (\neg \phi)$ (by 2.3.3)

Definition 2.7.3. We have

- 1. Linear orders $A = \langle A; \leq_A \rangle$ and $B = \langle B; \leq_B \rangle$ are **isomorphic** if there is a bijection $\alpha : A \to B$ such that $\forall a, a' \in A, a \leq_A a' \iff \alpha(a) \leq_B \alpha(a')$
- 2. if A, B isomorphic and ϕ closed, then $A \models \phi \iff B \models \phi$

Theorem 2.7.4. (Cantor)

If \mathcal{A}, \mathcal{B} countable dense linear orders without endpoints, then \mathcal{A}, \mathcal{B} are isomorphic

Lemma 2.7.5. (Los-Vaught test)

Let $\Sigma = \Sigma_E \cup \Delta$. Then for every closed $\mathcal{L}^=$ -formula ϕ we have either $\Sigma \vdash_{K_{\mathcal{L}}=} \phi$ or $\Sigma \vdash_{K_{\mathcal{L}}=} (\neg \phi)$. Say that Σ is **complete**

3 Set theory

3.0 Basic set theory

- Extensionality Sets A, B are equal $\iff \forall x, x \in A \iff x \in B$
- Natural numbers ; $\mathbb{N} = \{0, 1, \ldots\}$

$$0 = \varnothing \quad \dots, n+1 = \{0, \dots, n\}, \quad \dots$$

- Note that, for $m, n \in \mathbb{N}$

$$m < n \iff m \in n \iff m \subseteq n$$

- Ordered pairs. The **ordered pair** (x, y) is the set $\{\{x\}, \{x, y\}\}$
 - For example, for any $x, y, z, w, (x, y) = (z, w) \iff x = z$ and y = w
 - If A, B sets then

$$A\times B=\{(a,b)\mid a\in A,b\in B\}$$

$$A^0=\{\varnothing\},\quad A^1=A\quad A^2=A\times A,\quad \dots\quad A^{n+1}=A^n\times A,\quad \dots$$

$$\bigcup_{n\in \mathbb{N}}A^n=\{\text{finite sequences of elements of }A\}$$

• Functions. Think of $f:A\to B$ as a subset of $A\times B$

$$f: \underbrace{A}_{domf} \to \underbrace{B}_{ranf}$$

$$X \subseteq A$$
 define $f[X] = \{f(a) \mid a \in X\} \subseteq B$

• Set of functions from A to B is

$$B^A \subseteq \mathcal{P}(A \times B)$$

where \mathcal{P} is the powerset.

3.1 Cardinality

Definition 3.1.1. Sets A, B are equinumerous, or of the same cardinality, if there is a bijection $f: A \rightarrow B$

Write $A \approx B$ or |A| = |B|

Definition 3.1.2. We have

- A set is **finite** if it is equinumerous with some element $n = \{0, ..., n-1\}$ of \mathbb{N}
- A set A is countably infinite if it is equinumerous with \mathbb{N}
- Countable is finite or countably finite

Remark 3.1.3. (Basic facts)

- Every subset of countable set is countable
- A set A is countable \iff there is an injective function $f: A \to \mathbb{N}$
- $\bullet \ \ \textit{if} \ A, B \ \ \textit{countable} \ \ \textit{then} \ A \times B \ \ \textit{countable}$
- A_0, A_1, \ldots countable, then $\bigcup_{i \in \mathbb{N}} A_i$ countable. (requires axiom of choice)

Theorem 3.1.4. (Cantor)

There is no surjective function

$$f: X \to \mathcal{P}(X)$$

Definition 3.1.5. For sets A, B write $|A| \leq |B|$ or $A \leq B$, if there is injective function $f: A \to B$

Theorem 3.1.6. (Schröder-Bernstein)

Suppose A, B are sets, and $f: A \rightarrow B, g: B \rightarrow A$ are injective functions. Then $A \approx B$ i.e if $|A| \leq |B|, |B| \leq |A| \Longrightarrow |A| = |B|$

3.2 Axioms for set theory

Zermelo-Fraenkel axioms (ZF)

Axioms, that denote how we are allowed to build sets, expressed in a first-order language, with equality, using a single binary relation \in

Avoid the Russell Paradox

$$S = \{x \mid x \text{ a set and } x \notin x\}$$

If S a set, is $S \in S$?

$$(\exists S)(\forall x)((x \in S) \leftrightarrow (x \notin x))$$

leads to inconsistency!

Axiom 1 (Axiom of Extensionality).

Two sets are equal \iff they have the same elements

$$(\forall x)(\forall y)((x=y) \leftrightarrow (\forall z)((z \in x) \leftrightarrow (z \in y)))$$

Axiom 2 (Empty set axiom)

$$(\exists x)(\forall y)(y \notin x)$$

There is a unique set x with this property, \varnothing

Axiom 3 (Pairing axiom)

Given sets x, y we can form $z = \{x, y\}$

$$(\forall x)(\forall y)(\exists z)(\forall w)((w \in z) \leftrightarrow ((w = x) \lor (w = y)))$$

Axiom 4 (Union Axiom)

For any set A there is a set $B = \bigcup A$

$$(\forall A)(\exists B)(\forall x)((x \in B) \leftrightarrow (\exists z)((z \in A) \land (x \in z)))$$

So

$$B = \bigcup \{z \mid z \in A\}$$

Axiom 5 (Power set axiom)

For any set A, there is a set $\mathcal{P}(A)$ whose elements are the subsets of A

$$(\forall A)(\exists B)(\forall z)((z \in B) \leftrightarrow \underbrace{(z \subseteq A)}_{(\forall y)((y \in z) \to (y \in A))})$$

Axiom 6 (Axiom scheme of specification)

Suppose $P(x, y_1, \dots, y_r)$ a formula in our language then we have axiom

$$(\forall A)(\forall y_1)\dots(\forall y_r)(\exists B)(\forall x)((x\in B)\leftrightarrow((x\in A)\land P(x,y_1,\dots,y_r)))$$

This guarantees, we can form subset of A

$$B = \{x \in A \mid P(x, y_1, \dots, y_r) \text{ holds} \}$$

for all given sets A, y_1, \ldots, y_r

Definition 3.2.1. For set a define successor of a as

$$a^{\dagger} = a \cup \{a\}$$

A set A inductive if

$$((\varnothing \in A) \land (\forall x)((x \in A) \to (x^{\dagger} \in A)))$$

Axiom 7 (Axiom of infinity)

$$(\exists A)((\varnothing \in A) \land (\forall x)((x \in A) \rightarrow (x^{\dagger} \in A)))$$

Definition 3.2.2. Let A an inductive set, can form using specification the set

$$\mathbb{N} = \{ x \in A \mid \text{ if } B \text{ is an inductive set then } x \in B \}$$

Theorem 3.2.3. We have

- 1. \mathbb{N} an inductive set, if B an inductive set then $\mathbb{N} \subseteq B$
- 2. Proof by induction works. Suppose P(x) a property of sets, that is a formula, such that
 - (a) $P(\emptyset)$ holds, and
 - (b) for every $k \in \mathbb{N}$, if P(k) holds, then $P(k^{\dagger})$ holds

Then P(n) holds for all $n \in \mathbb{N}$

3.3 Well orderings

Definition 3.3.1. A linear ordering $\langle A; \leq \rangle$ a well orderings or woset of every non-empty subset of A has a least element

$$(\forall X)(((X \subseteq A) \land (X \neq \varnothing)) \to (\exists x)((x \in X) \land (\forall y)((y \in X) \to (x \in y))))$$

Definition 3.3.2. Suppose A_1, A_2 are similar or isomorphic if there is a bijection

$$\alpha: A_1 \to A_2 \text{ s.t. } \forall a, b \in A_1, \text{ if } a <_1 b \iff \alpha(a) <_2 \alpha(b)$$

Write $A_1 \subseteq A_2$

Call α a similarity between A_1, A_2

Definition 3.3.3. Define the following

• The reverse-lexicographic product is

$$\mathcal{A}_1 \times \mathcal{A}_2 = \langle A_1 \times A_2; \leq \rangle$$

where $(a_1, a_2) \le (a'_1, a'_2) \iff a_2 <_2 a'_2 \text{ and } a_1 \le_1 a'_1$ In \mathcal{A}_2 replace each element by a copy of \mathcal{A}_1

• Regard A₁, A₂ as disjoint, by replacing them by similar orderings on disjoint sets, such as

$$A_1 \times \{0\} = \{(a,0) : a \in A_1\}$$

$$A_2 \times \{1\} = \{(a,1) : a \in A_2\}$$

 $Define \ sum$

$$\mathcal{A}_1 + \mathcal{A}_2 = \langle A_1 \cup A_2; \leq \rangle$$

Where \leq the union of \leq_1, \leq_2 and $a_1 \leq a_2, a_1 \in A_1, a_2 \in A_2$

Lemma 3.3.4. With this notation

- 1. $A_1 + A_2, A_1 \times A_2$ are linearly ordered sets
- 2. If A_1, A_2 are wosets then so are $A_1 + A_2, A_1 \times A_2$

3.4 Ordinals

Definition 3.4.1. Define the following

- 1. A set X a transitive set if every element of X is also a subset of X. That is if $y \in x \in X \implies y \in X$
- 2. A set α is an **ordinal** If
 - α a transitive set
 - the relation < on α given by, for $x, y \in \alpha$, we have that $x < y \iff x \in y$ a strict well ordering on α

Lemma 3.4.2. If α an ordinal then so is $a^{\dagger} = a \cup \{a\}$

Proposition 3.4.3. We have

- 1. if $n \in \omega$ then n an ordinal
- 2. ω a transitive set

Proposition 3.4.4. We have

- 1. If α an ordinal then $\alpha \notin \alpha$
- 2. If α an ordinal and $\beta \in \alpha$ then β an ordinal
- 3. If α, β ordinals and $\alpha \subseteq \beta$ then $\alpha \in \beta$
- 4. If α an ordinal, then $\alpha = \{\beta \mid \beta \text{ an ordinal and } \beta \in \alpha\}$

Definition 3.4.5. α, β ordinals, write $\alpha < \beta$ to mean $\alpha \in \beta$ and $\alpha \leq \beta \iff \alpha \subseteq \beta$

Theorem 3.4.6. Suppose α, β, γ are ordinals

- 1. If $\alpha < \beta, \beta < \gamma \implies \alpha < \gamma$
- 2. If $\alpha \leq \beta, \beta \leq \alpha \implies \alpha = \beta$
- 3. Exactly one of the following hold

$$\alpha < \beta$$
, $\alpha = \beta$, $\beta < \alpha$

4. if X a non-empty set of ordinals, then X has a least element δ , and moreover

$$\delta = \bigcap X$$

Corollary 3.4.7. We have

- 1. If X a non-empty set of ordinals, then $\bigcup X$ is an ordinal
- 2. ω is an ordinal

Theorem 3.4.8. If $\langle A; \leq \rangle$ a well ordered set, then there is a unique ordinal α which is similar to $\langle A; \leq \rangle$

Definition 3.4.9. Suppose $\langle A; \leq \rangle$ a woset. Say $X \subseteq A$ an **initial segment** of A if whenever $y < x < \in X$ then $y \in X$, it is proper if $X \neq A$

Lemma 3.4.10. Suppose $\langle A, \leq \rangle$ a woset. If $X \subset A$ is a proper initial segment of A there is $z \in A$ with X = A[z]

Proposition 3.4.11. Suppose $(A; \leq)$ a woset and and $f: A \to A$ which is order preserving and f[A] is an initial segment of A, then f(x) = x for all $x \in A$

15