保险公司破产概率建模及上界估计

姓 名: 何沃洲

学 号: 2017210719

联系方式: hwz17@mails.tsinghua.edu.cn

1 问题描述

考虑一种基本的保险公司运行问题。投保人平时按照一定的数额缴纳保险费。当事故发生时,保险公司就要理赔。假设在 t 时刻发生的理赔事件的个数为 $\{N(t): t \geq 0\}$ 。通常利用泊松过程来对它进行描述 第 k 个事件的理赔金额 Y_k 组成一个平稳且强相关的序列,且满足 $E(Y_k) = \mu > 0$ 。另外假设公司的原始资金为u > 0,投保人在每个时间单位需要支付的投保资金为 $c_1 > 0$ 。这样就可以用式子(1)来描述公司的资金风险

$$R(t) = u + c_1 t - \sum_{k=1}^{N(t)} Y_k \tag{1}$$

保险公司的破产时间 T可定义为公司首次出现负资产的时间

$$T = \inf\{t > 0: R(t) < 0\} \tag{2}$$

若 $T = \infty$,公司就不会出现破产。若 $T < \infty$,公司最终会破产。

其中式子(1)的财产计算式可以用含有分形布朗运动的式子(3)来近似

$$u + c_1 t - \sum_{k=1}^{N(t)} Y_k = u + c_2 t + \lambda^H B_H(t)$$
 (3)

 $B_H(t)$ 是一种分形布朗运动,跟一般的布朗运动相比,它不再满足独立增量性质。作为布朗运动一个主要的一般化结果,它满足以下性质^[2]:

$$E(B_H(t)B_H(s)) = \frac{1}{2}\sigma^2\{|t|^{2H} + |s|^{2H} - |t - s|^{2H}\}\tag{4}$$

$$E(B_H(t)) = 0 (5)$$

$$E(B_H^2(1)) = \sigma^2 \tag{6}$$

基于以上的结果,设

$$Q(t) = u + c_2 t + \lambda^H B_H(t) \tag{7}$$

$$\psi(u,t) = P\{\inf_{0 \le s \le t} (Q(s)) < 0\} \tag{8}$$

其中 $\psi(u,t)$ 描述了保险公司在时间 t 内出现破产的概率,也就是最终需要被估计的对象。

【问题 1】针对式子(3)中等号两边的财产变化表达式,分别编程仿真财产随时间的变化,比较两种随机模型的变化趋势。

【问题 2】计算估计 $\psi(u,t)$ 上界的表达式,编程生成随机样本得到实际统计的 $\psi(u,t)$,与计算得到的上界进行对比,验证上界的合理性。请变换所选的 u 和 H,得到多组对比数据,给出数据表格。

2 基本原理

2.1 保险公司财产的分形布朗运动近似

定义随机过程序列

$$Q^{(n)}(t) = u^{(n)} + c^{(n)}t - \sum_{k=1}^{N^{(n)}(t)} Y_k^{(n)}$$
(9)

对于任意 $n\in N$, $u^{(n)}>0$ 表示保险公司的原始资金, $c^{(n)}>0$ 表示投保速率, $N^{(n)}$ 表示赔偿事件的点过程, $\{Y_k^{(n)}:k\in N\}$ 则表示每次赔偿金额,令 $Y_k^{(n)}=\frac{1}{\omega(n)}Y_k$,其中

$$\frac{1}{\varphi(n)} \sum_{k=1}^{[nt]} (Y_k - \mu) \to Z_H \tag{10}$$

 $\{Y_k: k \in N\}$ 是一个满足分布F、均值为 μ 的平稳过程, $\varphi(n) = n^H L(n)$,函数L在无穷远处变化缓慢。

下面我们先证明

$$\frac{N(nt) - \lambda nt}{n^H} \to 0 \tag{11}$$

这等价于证明

$$P\left\{\sup_{0\leq s\leq t} \frac{N(nt)-\lambda nt}{n^H} > \varepsilon\right\} \xrightarrow{n\to\infty} 0 \tag{12}$$

若 $\sup_{0 \le s \le t} \frac{N(nt) - \lambda nt}{n^H} > \varepsilon$,那么存在s满足 $0 \le s \le t$ 且

$$N(nt) - \lambda nt > \varepsilon n^H \tag{13}$$

或

$$N(nt) - \lambda nt \le \varepsilon n^H \tag{14}$$

对于不等式(13)可得

$$\sum_{k=1}^{[\lambda ns + \varepsilon n^H]} T_k < ns$$

$$\sum_{k=1}^{[nu]} (T_k - \frac{1}{\lambda}) < -\frac{\varepsilon n^H}{\lambda}$$

因此

$$\sup_{0 \le u \le \lambda t + \varepsilon n^{H-1}} \frac{1}{n^H} \left| \sum_{k=1}^{[nu]} \left(T_k - \frac{1}{\lambda} \right) \right| > \frac{\varepsilon}{\lambda}$$

因为 $\frac{1}{2}$ < H < 1, 对于平凡更新过程理论 $^{[3]}$, T_k 是独立同分布的随机变量序列,存在 λ > 0, 使得

$$\frac{1}{n^{\frac{1}{2}}L(n)} \sum_{k=1}^{[nt]} (T_k - \frac{1}{\lambda}) \xrightarrow{n \to \infty} B_H \tag{15}$$

故

$$\frac{1}{n^H} \sum_{k=1}^{[nu]} (T_k - \frac{1}{\lambda}) \xrightarrow{n \to \infty} 0 \tag{16}$$

对于不等式(14)可得

$$\sum_{k=1}^{[\lambda ns - \varepsilon n^H]} T_k > ns$$

$$P\left\{ \sup_{0 \le s \le t} \frac{N(nt) - \lambda nt}{n^H} > \varepsilon \right\} \xrightarrow{n \to \infty} 0$$

得证。

$$Q^{(n)}(t) = u^{(n)} + c^{(n)}t - \sum_{k=1}^{N^{(n)}(t)} Y_k^{(n)}$$

$$= u^{(n)} + t(c^{(n)} - \lambda n \frac{\mu}{\varphi(n)}) - \mu(\frac{N(nt) - \lambda nt}{\varphi(n)}) - \frac{1}{\varphi(n)} \sum_{k=1}^{N^{(n)}(t)} (Y_k - \mu)$$

上面已证

$$\mu(\frac{N(nt) - \lambda nt}{\varphi(n)}) \xrightarrow{n \to \infty} 0$$

根据文献[3]结论可得

$$\frac{1}{\varphi(n)} \sum_{k=1}^{N^{(n)}(t)} (Y_k - \mu) \xrightarrow{n \to \infty} \lambda^H Z_H(t)$$

因此

$$u^{(n)} + t(c^{(n)} - \lambda n \frac{\mu}{\varphi(n)}) - \mu(\frac{N(nt) - \lambda nt}{\varphi(n)})$$

依概率收敛到u + ct,即[4]

$$u^{(n)} + c^{(n)}t - \frac{1}{\omega(n)} \sum_{k=1}^{N^{(n)}(t)} Y_k^{(n)} \xrightarrow{n \to \infty} u + ct - \lambda^H Z_H(t)$$
 (17)

2.2 保险公司破产概率上界推导

引理 1 X_1 和 X_2 为连续的高斯随机过程,对于T > 0,如果有

$$E[X_1(t)X_1(t)] \ge E[X_2(t)X_2(t)], \ E[X_1(t)] = E[X_2(t)] = 0, E[X_1^2(t)] = E[X_2^2(t)]$$
 其中 $0 \le s, \ t < T$,则

$$P\{\sup_{0 \le s \le T} (X_1(s) - cs) > u\} \le P\{\sup_{0 \le s \le T} (X_2(s) - cs) > u\}$$

引理 2 假设 B 是一个标准布朗运动,并且 $u \ge 0$, $c \ge 0$,则

$$P\{\inf_{s\geq 0}(u+cs+B(s))<0\}=\exp(-2uc)$$

用 $\Phi(x)$ 表示标准正态分布函数,为了简化形式,设 $E[B_H^2(1)] = 1$, $\lambda = 1$ 。

令 B 表示标准布朗运动,构造高斯随机过程

$$Y(s) = B(s^{2H}), s \ge 0$$
 (18)

显然

$$E[Y(s)] = 0, \quad E[Y^2(s)] = s^{2H}, \quad E[Y(s)Y(t)] = s^{2H}, 0 \le s \le t$$
 (19)

对于凸函数 $x^{2H}(\frac{1}{2} < H < 1)$,

$$E[B_H(s)B_H(t)] \ge E[Y(s)Y(t)] \tag{20}$$

由引理1可得

$$P\{\sup_{0 \le s \le t} (B_H(s) - cs) > u\} \le P\{\sup_{0 \le s \le t} (Y(s) - cs) > u\}$$
 (21)

故

$$P\{\inf_{0 \le s \le t} (u + cs - B_H(s)) < 0\} \le P\{\inf_{0 \le s \le t} (u + cs - Y(s)) < 0\}$$

$$= P\{\inf_{0 \le s \le t^{2H}} (u + cs^{1/2H} + B(s)) < 0\}$$

$$= P\{\inf_{s \ge t^{-2H}} (u + cs^{-1/2H} + B(\frac{1}{s})) < 0\}$$

$$= P\{\inf_{s \ge t^{-2H}} (us + cs^{1-1/2H} + sB(\frac{1}{s})) < 0\}$$

 $= P\left\{\inf_{s \geq t^{-2H}} \left(us + cs^{1-1/2H} + B(s)\right) < 0\right\} \quad (利用时间可逆性sB\left(\frac{1}{s}\right)$ 为标准布朗运动)

$$\leq P\{\inf_{s \geq t^{-2H}} (us + ct^{1-2H} + B(s)) < 0\}$$
 (利用 $\frac{1}{2} < H < 1$)

$$= P \big\{ \inf_{s \geq t^{-2H}} \left(ct^{1-2H} + ut^{-2H} + B(t^{-2H}) + B(s) - B(t^{-2H}) + u(s-t^{-2H}) \right) < 0 \big\}$$

$$=\frac{t^{2H}}{\sqrt{2\pi}}\int_{-\infty}^{-ct^{1-2H}-ut^{-2H}}e^{-\frac{t^{2H}x^2}{2}}\mathrm{d}x+\frac{t^{2H}}{\sqrt{2\pi}}\int_{-ct^{1-2H}-ut^{-2H}}^{\infty}e^{-2u(ct^{1-2H}+ut^{-2H}+x)-\frac{t^{2H}x^2}{2}}\mathrm{d}x$$

$$= 1 - \Phi(ut^{-2H} + ct^{1-H}) + \exp(-2uct^{1-2H})[1 - \Phi(ut^{-2H} + ct^{1-H})] \quad (利用引理 2)$$

即得到破产概率 $\psi(u,t) = P\{\inf_{0 \le s \le t} \left(Q(s)\right) < 0\}$ 的上界[5]

$$P\{T(Q) \le t\} \le 1 - \Phi\left(\frac{u + ct}{\sigma(\lambda t)^H}\right) + \exp\left(\frac{-2uct}{\sigma^2(\lambda t)^{2H}}\right) \left[1 - \Phi\left(\frac{u - ct}{\sigma(\lambda t)^H}\right)\right] \tag{22}$$

其中 $\sigma^2 = E(B_H^2(1))$ 。

对于较大的u,这个上界可以进一步简化地近似为

$$\psi_h(u,t) \approx 2\left[1 - \Phi\left(\frac{u+ct}{\sigma(\lambda t)^H}\right)\right]$$
 (23)

3 仿真实验与数据验证

3.1 保险公司财产随机模型的变化趋势

针对第 1 部分问题描述中提到的保险公司财产两个随机模型,分别设置参数如下面表 1 和表 2 所示,观察两者的变化趋势如图 1 所示

图 1 保险公司财产两种随机模型的变化趋势(参数见下表)

表1 模型1财产计算式参数

原始资金u	投保速率 c	泊松过程参数入	赔偿金均值µ	赔偿金标准差σ
5	0.01	0.1	0.1	0.01

表 2 模型 2 分形布朗运动近似的参数

原始资金u	С	λ	Н
5	0.01	0.1	0.6

对于两种模型中的参数,很多文献都给出了估计方法,但在此只观察大致的变化趋势。

3.2 破产概率及其上界估计的验证

为了验证 2.2 节推导得出的上界估计,这里利用 Monte-Carlo 方法进行验证。这里研究的 u 和 H 参数分别有u \in {30,40,50,60}, H \in {0.6,0.7,0.8,0.9},其它参数设置如下

表 3 破产概率及其上界估计验证的参数设置

时间 t	С	λ	标准差σ
5	1	0.1	10

其中 $\sigma^2 = E(B_H^2(1))$ 可认为是分形布朗运动的标准差。

对于每组数据,分别进行 1000 次独立实验,时间轴等分为 1000 等份,得到的破产概率 $\psi(u,t)$ 及其上界估计 $\psi_h(u,t)$ 及近似 $\psi_{ha}(u,t)$ 如表 4 所示。

u	Н	$\psi(u,t)$	$\psi_h(u,t)$	$\psi_{ha}(u,t)$
30	0.6	0.147	0.20177	0.18268
40	0.6	0.053	0.094479	0.086659
50	0.6	0.017	0.039119	0.036258
60	0.6	0.009	0.014264	0.013333
30	0.7	0.171	0.28071	0.25660
40	0.7	0.097	0.15662	0.14468
50	0.7	0.050	0.080095	0.074632
60	0.7	0.024	0.037432	0.035130
30	0.8	0.160	0.36215	0.33414
40	0.8	0.104	0.23037	0.21433
50	0.8	0.052	0.13778	0.12909
60	0.8	0.031	0.077308	0.072869
30	0.9	0.183	0.44147	0.41094
40	0.9	0.107	0.30999	0.29044
50	0.9	0.080	0.20837	0.19633
60	0.9	0.035	0.13387	0.12676

表 4 破产概率及其上界估计的验证

其中上表的破产概率上界表示为:

$$\psi_h(u,t) = 1 - \Phi\left(\frac{u+ct}{\sigma(\lambda t)^H}\right) + \exp\left(\frac{-2uct}{\sigma^2(\lambda t)^{2H}}\right) \left[1 - \Phi\left(\frac{u-ct}{\sigma(\lambda t)^H}\right)\right]$$
(24)

上界的简化形式近似为

$$\psi_{ha}(u,t) = 2\left[1 - \Phi\left(\frac{u+ct}{\sigma(\lambda t)^H}\right)\right]$$
 (25)

从表 4 可以看出, 2.2 节计算得到的上界估计及其近似具有合理性。

参考文献

- [1] 樊平毅, 随机过程理论与应用[M]. 2005, 北京: 清华大学出版社.
- [2] Mandelbrot, B.B.a.V.N., J., Fractional Brownish motions, fractional noises and applications[J]. SIAM Rev., 1968. **10**: p. 422-427.
- [3] Billingsley, P., Convergence to Probability Measures[M]. 1968: John Wiley and Sons.
- [4] Asmussen, S., Approximations for the probability of ruin within finite time[M]. 1984: Scan. Actuarial J.
- [5] Michna, Z., *Self-similar processes in collective risk theory*[J]. Journal of applied mathematics and stochastic analysis, 1998. **11**(4): p. 429-448.