REAL ANALYSIS

MATH 131, HARVEY MUDD COLLEGE PROF. FRANCIS SU

TODAY: CONSTRUCTION OF IR

09/15/14 - Francis Edward Su 3 - Construction of R

Recall: (has "holes":

$$1 \qquad x^2 = 2 \quad \text{no sol'n in } \mathbb{R}$$

Construction of IR - Dedekind cuts 1872 Cauchy sequences

· LEAST UPPER BOUND

Defin Say $E \subset S$ ordered. If $\exists \beta \in S$ s.t. $\forall \times \in E$ we have $\times \leq \beta$ then say E is bounded above, call & an upper bound of E. [define lower bd similarly.]

Ex. Q= neg rat'ls < Q. Has upper bd. 17 & others.

Defin. If Baes s.t.

Ox is an u.b. of E

2) If Y < & then Vis not u.b. of E.

Then a is called a least upper bd (lub) of E or the <u>supremum</u> of E. Write: | a = sup E.

EX, S=Q. sup {=1,1,2} = 2. sup {r: r<2} = 2. $Sup \ Q_{-} = 0. \qquad Sup \ \{r: r^2 < 2\} \ \text{Northernoon}$ Know: $r^2=2$ has no <u>sol'n</u> in \mathbb{R} Why does $A=\frac{5}{2}r: r^2=2\frac{7}{2}$ have no l.u.b.?

Well, say p is an $\underline{u.b}$. for A.

Then we exhibit a smaller u.b. $q=p-\frac{p^2-2}{p+2}=\frac{2p+2}{p+2}$.

Why not $\frac{p+\sqrt{2}}{2}$?

- Defn A sof S has the least upper property if every nonempty subset of S that has an u.b. has a least u.b. (in S).
- · D does not have the l.u.b. property.

 But IR will...

· Construct R (Dedekind)

Defh. A cut & is a subset of Q s.t.

- (1) $\alpha \neq \phi$, (non-trivial)
- 2) If $p \in X$, $g \in \mathbb{R}$ and g = p then $g \in X$. (closed downward)
- 3) If pex then per fursome red. (no largest member)

EX.
$$\propto = Q_{-}$$
 is a cut.
 $\gamma = \{v: v \leq 2\}$ is not a cut.

* Let R = { 2 : a is a cut }. Let's endow it with orithmetic & order

& in way extends Q.

· Define: α < β to mean α ⊊ β. Check: order.

- · Define: a+B = { r+s: red & seB}. check satisfies field axioms

Al. X+B is a cut

AZ. X+B=B+X follows from comm. of + in Q

means \
Checking:

check
$$\alpha+0=\alpha$$

Means

Checking:

A3. $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$

0+0 cd A4. 3 id. for + is Q =0

• Define: $\alpha \cdot \beta$ first for positive cuts $\{\alpha: \alpha > 0^{*}\} = \mathbb{R}_{+}$

If a, B & TR+, let a B = { p: p < rs for some red} sep .

y, s > 0}

let 1* = {q: q< 1}.

CHECK: muH. axioms, dist law

extend to products of (-)(+)=(-) in natural way. (-)(-)=(+)

check axioms again'.

Thm. IR is ordered field with 1.u.b. property.

IR contains Q as subfield!

FACT: IR is only such.