MATH 325 Q1: LINEAR ALGEBRA III, PART 2

The invariant subspace generated by a vector.

We start from the following result.

Lemma. Let $\alpha: V \longrightarrow V$ be an F-linear map and $v \neq 0$ a vector in V. The subspace $W(\alpha, v)$ of V spanned by the set of vectors

$$\{v, \alpha(v), \alpha^2(v), \alpha^3(v), \dots\}$$

is α -invariant.

Proof. By construction, W is equal to the set of all finite linear combinations

$$\sum_{i=0}^{m} a_i \cdot \alpha^i(v) , \ a_i \in F , \ m \in \mathbb{N} ,$$

where we have set $\alpha^0 = \mathrm{id}_V$. Since

$$\alpha \left(\sum_{i=0}^{m} a_i \cdot \alpha^i(v) \right) = \sum_{i=0}^{m} a_i \cdot \alpha^{i+1}(v)$$

the subspace $W(\alpha, v)$ is α -invariant.

Remark. Note that $W(\alpha, v)$ is the smallest α -invariant subspace of V which contains the vector v. Clearly, it is of dimension ≥ 1 since $v \neq 0$.

Since $W(\alpha, v)$ is contained in V it has finite dimension. Hence for a big enough integer l > 0 the vectors

$$v = \alpha^0(v), \alpha(v), \dots, \alpha^l(v)$$

are linearly dependent, i.e. there are scalars $a_0, \ldots, a_l \in F$, which are not all equal zero, such that

$$\sum_{i=0}^{l} a_i \cdot \alpha^i(v) = 0.$$

Lemma. Let l be minimal with this property. Then $v, \alpha(v), \ldots, \alpha^{l-1}(v)$ is a basis of $W(\alpha, v)$.

Proof. By the assumption on l this set of vectors is linear independent and so we have only to show that they generate (or span) the subspace $W(\alpha, v)$. For this it is enough to show that any vector of the generating system $\{\alpha^i(v) \mid i \in \mathbb{N}\}$ is a linear combination these vectors.

This is clear for $\alpha^i(v)$ if $0 \le i \le l-1$ and we show it for $\alpha^{(l-1)+i}(v)$ by induction on $i \ge 0$.

The case i = 1 is clear. Indeed, the minimality of l implies that the last coefficient a_l in the above equality

$$a_0v + a_1\alpha(v) + a_2\alpha^2(v) + \dots + a_l\alpha^l(v) = 0$$

is not equal to 0. Therefore,

$$\alpha^{l}(v) = -\frac{1}{a_{l}}(a_{0}v + \alpha(v) + \dots + a_{l-1}\alpha^{l-1}(v)) \in W(\alpha, v).$$

Abusing notation we will denote below $\frac{a_0}{a_l}$ by $a_0, \ldots, \frac{a_{l-1}}{a_l}$ by a_{l-1} . Thus the above equality is of the form

$$\alpha^{l}(v) = -a_{0}v - a_{1}\alpha(v) + \dots - a_{l-1}\alpha^{l-1}(v). \tag{1}$$

Next, by the induction assumption we may assume that the vectors

$$v, \alpha(v), \ldots, \alpha^{(l-1)+i-1}(v)$$

are in the span of $v, \alpha(v), \ldots, \alpha^{l-1}(v)$. Using (1) we then get

$$\alpha^{l-1+i}(v) = \sum_{j=0}^{l-1} -a_j \cdot \alpha^{i-1+j}(v)$$

is a linear combination of the vectors $v, \alpha(v), \alpha^2(v), \ldots, \alpha^{l-1}(v)$.

The linear map α defines by restriction an F-linear map from $W(\alpha, v)$ to itself. Using (1) we see that this linear map has with respect to the basis $v, \alpha(v), \ldots, \alpha^{l-1}(v)$ the following $l \times l$ -matrix:

$$B = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \ddots & & \vdots & \vdots \\ \vdots & \ddots & & \vdots & \vdots \\ 0 & \dots & 1 & -a_{l-1} \end{pmatrix} . \tag{2}$$

The Cayley-Hamilton Theorem

The characteristic polynomial. Let

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

be a $n \times n$ -matrix over F.

Definition. The characteristic polynomial $P_A(T)$ of the matrix A is defined as the polynomial

$$\det (T \mathbf{I}_n - A) = \det \begin{pmatrix} T - a_{11} & \dots & -a_{1n} \\ -a_{21} & T - a_{22} & \dots & -a_{2n} \\ \vdots & & \ddots & \vdots \\ -a_{n1} & \dots & \dots & T - a_{nn} \end{pmatrix}$$

in the variable T, where I_n denotes the $n \times n$ -identity matrix.

Recall that conjugate (similar) matrices have the same characteristic polynomial: If S is an invertible matrix then

$$\begin{split} P_{S \cdot A \cdot S^{-1}}(T) &= \det \left(T \cdot \mathbf{I}_n - S \cdot A \cdot S^{-1} \right) \\ &= \det \left(T \cdot \left(S \cdot S^{-1} - S \cdot A \cdot S^{-1} \right) \right. \\ &= \det \left(S \cdot \left(T \, \mathbf{I}_n - A \right) \cdot S^{-1} \right) \\ &= \det \left(S \right) \cdot \det \left(T \, \mathbf{I}_n - A \right) \cdot \det \left(S^{-1} \right) \, = \, \det \left(T \, \mathbf{I}_n - A \right) \end{split}$$

(the last equation since $\det(S) \cdot \det(S^{-1}) = \det(S \cdot S^{-1}) = \det(I_n) = 1$).

Using this we can define the *characteristic polynomial* of an F-linear map $\alpha: V \longrightarrow V$ of a finite dimensional F-vector space into itself. If v_1, \ldots, v_n is a basis of V and A the matrix of α with respect to this basis we set

$$P_{\alpha}(T) := P_{A}(T).$$

Lemma. This definition does not depend on the choice of the basis.

Proof. Let v'_1, \ldots, v'_n be another basis and A' the matrix of α with respect to the new basis v'_1, \ldots, v'_n . Then, as we proved before, we have $A' = S^{-1} \cdot A \cdot S$, where $S = (s_{ij})$ is the base change matrix, i.e. $v'_i = \sum_{h=1}^n s_{hi}v_h$. Hence by the above remarks $P_A(T) = P_{A'}(T)$ and so $P_{\alpha}(T)$ does not depend on the choice of a basis of V.

Remark. Let A be a $n \times n$ -matrix and $\alpha_A : F^n \longrightarrow F^n$ be the F-linear map $v \mapsto A \cdot v$. Then A is the matrix of α_A with respect to the standard basis, and so $P_{\alpha_A}(T) = P_A(T)$, i.e. the characteristic polynomial of the linear map defined by a matrix A is equal to the characteristic polynomial of the matrix A.

Example. Let $B \in \mathcal{M}_{l \times l}(F)$, $C \in \mathcal{M}_{l \times (n-l)}(F)$, and $D \in \mathcal{M}_{(n-l) \times (n-l)}(F)$. Then $A = \begin{pmatrix} B & C \\ \mathcal{O}_{(n-l) \times l} & D \end{pmatrix}$ is a $n \times n$ -matrix, and we have

$$P_A(T) = \det (T \cdot \mathbf{I}_n - A) = \det \begin{pmatrix} T \cdot \mathbf{I}_l - B & C \\ O_{(n-l) \times l} & T \cdot \mathbf{I}_{n-l} - D \end{pmatrix}.$$

It follows that

$$P_A(T) = P_B(T) \cdot P_D(T)$$
.

The characteristic polynomial and the invariant subspace generated by a vector. Let $\alpha: V \longrightarrow V$ be a F-linear map and $v \neq 0$ a vector in V. Recall that there is an $l \geq 1$, such that

$$\{v, \alpha(v), \dots, \alpha^{l-1}(v)\}$$

is a basis of the α -invariant subspace $W(\alpha, v)$ of V spanned by $\alpha^i v$ where $i = 0, 1, 2, \ldots$ Hence there are in particular $a_0, \ldots, a_{l-1} \in F$, such that

$$\alpha^{l}(v) + \sum_{i=0}^{l-1} a_i \cdot \alpha^{i}(v) = 0.$$

The restriction of α to $W(\alpha, v)$ has then the matrix

$$B = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \ddots & & \vdots & \vdots \\ \vdots & \ddots & & \vdots & \vdots \\ 0 & \dots & 1 & -a_{l-1} \end{pmatrix}$$

with respect to this basis. Let us compute the characteristic polynomial $P_B(T)$. This is the determinant of

$$B = \begin{pmatrix} T & 0 & 0 & \dots & 0 & a_0 \\ -1 & T & 0 & \dots & 0 & a_1 \\ 0 & -1 & T & \dots & 0 & a_2 \\ & \vdots & \ddots & & \vdots & & \vdots \\ \vdots & & \ddots & & \vdots & \vdots \\ 0 & \dots & & -1 & T + a_{l-1} \end{pmatrix}.$$

We claim that

$$P_B(T) = T^l + a_{l-1}T^{l-1} + \dots + a_1T + a_0.$$

This is easily checked for l=1 or 2 and follows by induction using expansion by minors along the first row.

We can extend the basis $v, \alpha(v), \ldots, \alpha^{l-1}(v)$ of the subspace $W(\alpha, v) \subset V$ to a basis of V:

$$v, \alpha(v), \ldots, \alpha^{l-1}(v), v_{l+1}, \ldots, v_n$$
.

With respect to this basis α is represented by the matrix

$$A = \left(\begin{array}{c} B & C \\ O_{(n-l) \times l} & D \end{array}\right),\,$$

where C is in $M_{l\times(n-l)}(F)$ and $D\in M_{(n-l)\times(n-l)}(F)$. Hence by Example above we have

$$P_{\alpha}(T) = P_{A}(T) = P_{B}(T) \cdot P_{D}(T) = \left(T^{l} + \sum_{i=0}^{l-1} a_{i} T^{i}\right) \cdot P_{D}(T).$$
 (3)

Matrix polynomials. Let $f(T) = \sum_{i=0}^{n} a_i T^i$ be a polynomial in one variable T over the field F, and A an $n \times n$ -matrix over F. The matrix f(A) is then defined by evaluating the polynomial f(T) at A, i.e.

$$f(A) := \sum_{i=0}^{n} a_i \cdot A^i = I_n + a_1 \cdot A + a_2 \cdot A^2 + \dots + a_n \cdot A^n$$

(by A^0 is the $n \times n$ -identity matrix \mathbf{I}_n understood). We will need the following facts.

Lemma. Let $f(T) = \sum_{i=0}^{m} a_i T^i$ and $g(T) = \sum_{i=0}^{n} b_i T^i$ be two polynomials and A a $n \times n$ -matrix. Then:

(i) Matrices f(A) and g(A) commute with each other, i.e.

$$f(A) \cdot g(A) = g(A) \cdot f(A)$$
.

(ii) If $W \subset F^n$ is A-invariant then it is also f(A)-invariant.

Proof. Exercise.
$$\Box$$

Similarly we can define the polynomial of a linear map $\alpha: V \longrightarrow V$. If $f(T) = \sum_{i=0}^{n} a_i T^i$ then

$$f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i,$$

where $\alpha^0 = \mathrm{id}_V$ is understood. For instance, if $f(T) = 3T^3 + 10T^2 - 1$ then $f(\alpha)$ is the F-linear map

$$v \longmapsto 3 \cdot \alpha(\alpha(\alpha(v))) + 10 \cdot \alpha(\alpha(v)) - v$$
.

We have then also the analog of the lemma above:

$$f(\alpha) \circ g(\alpha) = g(\alpha) \circ f(\alpha)$$
 (4)

for all polynomials f(T), g(T), and if $W \subseteq V$ is an α -invariant subspace then it is also an $f(\alpha)$ -invariant subspace.

The Cayley-Hamilton Theorem.

If
$$n = 2$$
 and $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ then

$$P_A(T) = (T - a_{11}) \cdot (T - a_{22}) - a_{21} \cdot a_{12} = T^2 - (a_{11} + a_{22})T + (a_{11} \cdot a_{22} - a_{12} \cdot a_{21})$$
 is a quadratic polynomial.

Exercise. Show that that $P_A(A) = 0$.

We now prove that this is true for all $n \times n$ -matrices:

Theorem (Cayley-Hamilton). Let $\alpha:V\longrightarrow V$ be a linear map. Then

$$P_{\alpha}(\alpha) = 0$$
.

In particular, we have $P_A(A) = 0$ for all $n \times n$ -matrices A.

Proof. Note that $P_{\alpha}(\alpha)$ is a map from V to V and we need to show that this is zero map, i.e. if $v \in V$ then $P_{\alpha}(\alpha)(v) = 0$.

This is clear for v = 0, so let $v \neq 0$. Let $n = \dim V$ and $1 \leq l \leq n$ be the dimension of the α -invariant subspace $W(\alpha, v)$ generated by α . By (3) we have

$$P_{\alpha}(T) = \left(T^{l} + \sum_{i=0}^{l-1} a_i T^{i}\right) \cdot P_D(T),$$

where the $a_i \in F$ are such that

$$\alpha^{l}(v) + \sum_{i=0}^{l-1} a_{i}\alpha^{i}(v) = 0,$$

and D is a matrix in $M_{n-l}(F)$.

Hence $P_{\alpha}(\alpha) = \left(\alpha^{l} + \sum_{i=0}^{l-1} a_{i}\alpha^{i}\right) \cdot P_{D}(\alpha)$, and so by (4) we have

$$P_{\alpha}(\alpha) = P_{D}(\alpha) \cdot \left(\alpha^{l} + \sum_{i=0}^{l-1} a_{i} \alpha^{i}\right).$$

Hence we compute

$$P_{\alpha}(\alpha)(v) = P_{D}(\alpha) \left[\left(\alpha^{l}(v) + \sum_{i=0}^{l-1} a_{i} \alpha^{i}(v) \right) \right] = P_{D}(\alpha)(0) = 0$$

as claimed. \Box