Corrigé du CC1

Exercice 1.

a) Soit $a, b \in \mathbb{R}$ et soit f la fonction définie sur \mathbb{R} par $f(x) = a\cos(\pi x) + b\sin(\pi x/2)$. Montrer que f est T-périodique, pour une période T à préciser.

Pour tout $x \in \mathbb{R}$,

$$f(x+4) = a\cos(\pi(x+4)) + b\sin(\frac{\pi}{2}(x+4))$$

= $a\cos(\pi x + 4\pi) + b\sin(\frac{\pi x}{2} + 2\pi)$
= $a\cos(\pi x) + b\sin(\pi x/2) = f(x)$,

car les fonctions cos et sin sont 2π périodiques. Donc f est 4-périodique.

b) On suppose que f est représentée par la courbe ci-dessous. Déterminer les réels a et b. Il apparaît sur la représentation graphique de f que f(0) = -0, 5 et f(1) = -1, 5 (on peut aussi utiliser : f(-1) = 2, 5, f(2) = -0, 5...)

Comme cos(0) = 1 et sin(0) = 0, f(0) = -0.5 donne a = -0.5.

Comme $\cos(\pi) = -1$ et $\sin(\pi/2) = 1$, f(1) = -1, 5 donne

$$-a + b = -1, 5$$
.

Donc b = -1, 5 + a = -1, 5 - 0, 5 = -2.

Exercice 2. a) Déterminer (sous la forme d'un intervalle ou d'une réunion d'intervalles) le sous-ensemble de \mathbb{R} défini par la condition sur x suivante : $|x| \leq |x-3|$.

La fonction carré étant strictement croissante sur \mathbb{R}_+ , on a

$$|x| \le |x-3| \iff |x|^2 \le |x-3|^2$$

$$\iff x^2 \le (x-3)^2$$

$$\iff x^2 \le x^2 - 6x + 9$$

$$\iff 6x \le 9$$

$$\iff x < 3/2.$$

Le sous-ensemble de \mathbb{R} cherché est $S =]-\infty, 3/2]$.

Remarque. D'autres arguments sont possibles pour la résolution de cette inéquation. Par exemple on peut utiliser le fait que |b-a| est la distance entre a et b sur la droite réelle.

b) Même question pour la condition $x^2 - 1 > 4$

On a

$$x^2 - 1 > 4 \iff x^2 - 5 > 0 \iff (x - \sqrt{5})(x + \sqrt{5}) > 0 \iff x > \sqrt{5} \text{ ou } x < -\sqrt{5}.$$
 Ici $S =]-\infty, -\sqrt{5}[\cup]\sqrt{5}, +\infty[.$

Exercice 3. Résoudre l'équation $\sqrt{2x+3} = x$.

On a

(1)
$$\sqrt{2x+3} = x \iff \begin{cases} x^2 = 2x+3 \\ x \ge 0 \end{cases} \iff \begin{cases} x^2 - 2x - 3 \\ x \ge 0 \end{cases}$$

L'équation du second degré $x^2-2x-3=0$ a pour discriminant $\Delta=4+12=16$. Cette équation a deux solutions réelles, qui sont

$$x_1 = \frac{2+4}{2} = 3$$
 et $x_2 = \frac{2-4}{2} = -1$.

-1 ne convient pas à cause de la condition $x \ge 0$ dans (1). L'équation $\sqrt{2x+3} = x$ a donc 3 comme unique solution.

Exercice 4. On considère la fonction $h: x \mapsto \frac{x^2 + 3x + 2}{x^3 + x^2}$.

a) Quel est l'ensemble de définition de h?

 D_h est l'ensemble des nombres réels x tels que $x^3 + x^2 \neq 0$. Or

$$x^3 + x^2 = 0 \iff x^2(x+1) = 0 \iff x = 0 \text{ ou } x = -1.$$

Donc $D_h = \mathbb{R} \setminus \{0, -1\}$

b) Déterminer $\lim_{x \to -\infty} h(x)$ et $\lim_{x \to 0} h(x)$.

$$h(x) = \frac{x^2(1 + \frac{3}{x} + \frac{2}{x^2})}{x^3(1 + \frac{1}{x})} = \frac{1 + \frac{3}{x} + \frac{2}{x^2}}{x(1 + \frac{1}{x})}.$$

Lorsque x tend vers $-\infty$, $1 + \frac{3}{x} + \frac{2}{x^2}$ tend vers 1 et $x(1 + \frac{1}{x})$ tend vers $-\infty$. On a donc $\lim_{x \to -\infty} h(x) = 0$.

Lorsque x tend vers 0, x^2+3x+2 tend vers 2, et $x^3+x^2=x^2(x+1)$ tend vers 0_+ (c'est-à-dire : tend vers 0 en ne prenant que des valeurs positives). Donc $\lim_{x\to 0} h(x) = +\infty$.

c) Trouver une simplification de h(x).

Les solutions de l'équation du second degré $x^2 + 3x + 2 = 0$ sont -1 et -2; $x^2 + 3x + 2$ se factorise en (x+1)(x+2). D'où, pour tout $x \in \mathbb{R} \setminus \{0,-1\}$,

$$h(x) = \frac{(x+1)(x+2)}{(x+1)x^2} = \frac{x+2}{x^2}.$$

Exercice 5. On considère les fonctions $u: x \mapsto (x+1)^{1/4}$ et $v: x \mapsto x^4 - 1$.

a) Donner l'ensemble de définition de u et celui de v.

 $(x+1)^{1/4}$ est défini si $x+1 \ge 0$: $D_u = [-1, +\infty[; D_v = \mathbb{R}.$

b) Déterminer l'ensemble de définition de $v \circ u$ et calculer $v \circ u(x)$.

Comme v est définie sur \mathbb{R} , $D_{v \circ u} = D_u = [-1, +\infty[$. Pour $x \in [-1, +\infty[$,

$$v \circ u(x) = v(u(x)) = v((x+1)^{1/4}) = ((x+1)^{1/4})^4 - 1 = (x+1) - 1 = x$$
.

c) Déterminer l'ensemble de définition de $u \circ v$ et calculer $u \circ v(x)$.

$$D_{u \circ v} = \{ x \in D_v \mid v(x) \in D_u \} = \{ x \in \mathbb{R} \mid x^4 - 1 \ge -1 \} = \mathbb{R},$$

car $x^4 \ge 0$ donc $x^4 - 1 \ge -1$ pour tout $x \in \mathbb{R}$. On a, pour tout $x \in \mathbb{R}$,

$$u \circ v(x) = u(x^4 - 1) = ((x^4 - 1) + 1)^{1/4} = (x^4)^{1/4} = |x|.$$