COMP30030: Introduction to Artificial Intelligence

Neil Hurley

School of Computer Science University College Dublin neil.hurley@ucd.ie

November 1, 2018

Overfitting I

- The training data contains information about the regularities in the mapping from input to output. But it also contains noise
- The target values may be unreliable.
- There will be accidental regularities just because of the particular training cases that were chosen.
- When we fit the model, it cannot tell which regularities are real and which are caused by sampling error.
- If the model is very flexible it can model the sampling error really well. This is a disaster.

Overfitting II

Regularisation I

- While the loss function captures the error incurred over the training instances, we are most interested in how well the system performs on unseen data.
- To avoid overfitting, we can include a regulisation term in the optimisation problem:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \mathcal{L}(y_j, \sum_{i=1}^{m} w_i x_i) + \lambda \mathcal{R}(\mathbf{w})$$

The regularisation term imposes some structure on the allowed solutions. For example, $\mathcal{R}(\mathbf{w}) = \|\mathbf{w}\|^2$ constrains the norm (size) of the weight vector. The constant λ determines the strength of the regularisation effect.

Classification Algorithms

- Many different classification algorithms can be formulated in the above manner:
 - 1 Logistic regression. (Logistic loss function)
 - 2 Ridge regression. (Square loss function)
 - 3 Support vector machines (SVMs) (Hinge loss function)

Optimisation

- The process as described above allows us to turn the learning problem into an optimisation problem.
- Since the weights \mathbf{w} can take values in \mathbb{R} , methods from calculus can be applied to solving these problems.
- In some cases (e.g. for squared loss function) it is possible to find an exact expression for the optimal weights.
- Otherwise, an approximate techniques, such as gradient descent is used to find the weights.

Ridge Regression I

- We could like to find the set of weights (w_0, w_1, \ldots, w_m) , that minimise the squared loss on the training set.
- The training set consists of a set of n instances which are m-dimensional vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ e.g.

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{im})^T$$

• We can gather these together into an $n \times m$ matrix, where the rows of the matrix are the feature vector for each instance.

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nm} \end{pmatrix}$$

■ Bear in mind that this is a **training** set of known instances — all of these x_{ij} are fixed known numbers.

Ridge Regression II

■ To obtain the output label, we need to compute:

$$w_0 + w_1 x_{i1} + w_2 x_{i2} + \dots w_m x_{im} = \hat{y}_i$$

- So far, we **do not know w** = $(w_0, w_1, ..., w_m)^T$. We want to find this vector so that the squared loss is minimised.
- For convenience, we can gather the bias into the matrix by adding a column of ones at the beginning:

Ridge Regression III

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nm} \end{pmatrix}$$

 Now we can write all the equations together into a single equation

$$Xw = \hat{y}$$

■ The squared loss requires that we minimise

$$\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Putting the above together, we get

$$\sum_{i=1}^{n} (y_i - \sum_{j=0}^{m} x_{ij} w_j)^2$$

Ridge Regression IV

In matrix vector notation, this can be written as

$$\|\mathbf{y} - \mathbf{X}\hat{\mathbf{y}}\|^2$$

■ In Ridge Regression, we add in a regularisation term, so, given some $\lambda > 0$, overall we want to minimise

$$\|\mathbf{y} - \mathbf{X}\hat{\mathbf{y}}\|^2 + \lambda \|\mathbf{w}\|^2$$

- This problem can be solved using multivariate calculus the unknowns are the w_i , so we differentiate w.r.t. w_i and set the result to zero:
- You might remember that

$$\frac{d}{dx}(f(x))^2 = 2f(x)\frac{d}{dx}f(x)$$

Solving Ridge Regression Optimisation I

 Using the above, the requirement in our problem is to compute

$$\frac{\partial}{\partial w_k} \left(\sum_{i=1}^n (y_i - \sum_{j=0}^m x_{ij} w_j)^2 + \lambda \sum_{j=0}^m w_j^2 \right)$$

$$= \sum_{i=1}^n \frac{\partial}{\partial w_k} \left((y_i - \sum_{j=0}^m x_{ij} w_j)^2 \right) + \lambda \sum_{j=0}^m \frac{\partial}{\partial w_k} w_j^2$$

$$= \sum_{i=1}^n 2(y_i - \sum_{j=0}^m x_{ij} w_j) \frac{\partial}{\partial w_k} \left(y_i - \sum_{j=0}^m x_{ij} w_j \right) + \lambda 2w_k$$

Solving Ridge Regression Optimisation II

$$= 2 \left(\sum_{i=1}^{n} (y_i - \sum_{j=0}^{m} x_{ij} w_j) (-x_{ik}) + \lambda w_k \right)$$
$$= 2 \left(\sum_{i=1}^{n} -y_i x_{ik} + \sum_{j=0}^{m} \sum_{i=1}^{n} x_{ij} x_{ik} w_j + \lambda w_k \right)$$

Now set the derivative to zero (we can drop the constant 2):

$$\sum_{i=1}^{n} y_{i} x_{ik} - \left(\sum_{i=0}^{m} \sum_{i=1}^{n} x_{ij} x_{ik} w_{j} + \lambda w_{k} \right) = 0$$

- There is one equation here for each (unknown) value of w_k , so m+1 equations in total.
- It is easier to write these together in a matrix vector equation:

$$X^T y - X^T X w - \lambda I w = 0$$

Solving Ridge Regression Optimisation III

Or:

$$(X^TX + \lambda I)\mathbf{w} = X^T\mathbf{y}$$

Which can be solved as:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Example I

- Suppose m = 2, and that the **bias is zero** i.e. $w_0 = 0$.
- So, each feature vector is just a 2-dimensional vector $\mathbf{x}_i = (x_{i1}, x_{i2})$.
- Suppose we are carrying out **binary classification**, and the labels are $y \in \{-1,1\}$.
- Suppose we have a training set of 4 instances. Say:

$$\mathbf{x}_1 = (4,1)$$
 $y_1 = 1$ $\mathbf{x}_2 = (-1,2)$ $y_2 = 1$ $\mathbf{x}_3 = (0,-1)$ $y_3 = -1$ $\mathbf{x}_4 = (3,-2)$ $y_4 = -1$

Example II

■ The goal is to find w_1 and w_2 , so that the line

$$w_1x+w_2y=0$$

Separates the two classes (i.e. the line is the set of points (x, y) that satisfy this equation).

Let's do the algebra:

$$X^{T}X = \begin{pmatrix} 4 & -1 & 0 & 3 \\ 1 & 2 & -1 & -2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ -1 & 2 \\ 0 & -1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 26 & -4 \\ -4 & 10 \end{pmatrix}$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{y} = \begin{pmatrix} 4 & -1 & 0 & 3 \\ 1 & 2 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$$

Example III

■ Take $\lambda = 1$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda\mathbf{I} = \left(\begin{array}{cc} 2\mathbf{6} + \mathbf{1} & -\mathbf{4} \\ -\mathbf{4} & 10 + \mathbf{1} \end{array}\right) = \left(\begin{array}{cc} 2\mathbf{7} & -\mathbf{4} \\ -\mathbf{4} & 11 \end{array}\right)$$

$$(X^{T}X + \lambda I)^{-1} = \frac{1}{27 \times 11 - (-4) \times (-4)} \begin{pmatrix} 9 & 4 \\ 4 & 25 \end{pmatrix}$$
$$= \frac{1}{281} \begin{pmatrix} 11 & 4 \\ 4 & 27 \end{pmatrix}$$

Therefore:

$$\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \frac{1}{281} \begin{pmatrix} 11 & 4 \\ 4 & 27 \end{pmatrix} \begin{pmatrix} 0 \\ 6 \end{pmatrix} = \frac{1}{281} \begin{pmatrix} 24 \\ 162 \end{pmatrix}$$
$$= \begin{pmatrix} 0.0854 \\ 0.5765 \end{pmatrix}$$

Ridge Regression Result

Ridge Regression Result

Training and Test Sets I

- Given a set of training instances, with their desired outputs,
 Machine Learning analysts typically divide it into two disjoint sets a training set and a test set.
- Typically, the training set contains 80% of the instances and the test set the remaining 20% (chosen randomly).
- The training set is used to train the weights of the algorithm, by minimising the regularised loss function the optimisation technique may achieve low error rates on the training set.
- The test set is then used to test how well the trained algorithm generalises to <u>unseen</u> examples. The error will typically be higher on the test set instances but this error is closer to the expected performance of the classifier when it is used in practise.

Classification Algorithm Performance

Some performance measures Confusion Matrix

A confusion matrix shows the number of correct and incorrect predictions made by the classification model compared to the actual outcomes (target value) in the data. The matrix is NxN, where N is the number of target values (classes). Performance of such models is commonly evaluated using the data in the matrix. The following table displays a 2x2 confusion matrix for two classes (Positive and Negative).

Confusion Matrix		Target			
		Positive	Negative		
Model	Positive	а	b	Positive Predictive Value	a/(a+b)
	Negative	С	d	Negative Predictive Value	d/(c+d)
		Sensitivity	Specificity	Accuracy = (a+d)/(a+b+c+d)	
		a/(a+c)	d/(b+d)		

- Accuracy: the proportion of the total number of predictions that were correct.
- . Positive Predictive Value or Precision: the proportion of positive cases that were correctly identified.
- Negative Predictive Value: the proportion of negative cases that were correctly identified.
- . Sensitivity or Recall: the proportion of actual positive cases which are correctly identified.
- Specificity: the proportion of actual negative cases which are correctly identified.

