線上消費性產業 資訊分析系統

一以電商平台 Olist 為例

指導老師:黃登揚、蔡智勇老師

成 員 :鄭偉鑅、梁雪樺、李儒育

黃怡家、簡智弘、何舜華、王怡文

2021/12/29 財團法人自強工業科學基金會

TEAM MEMBER

何舜華 物流小組

梁雪樺 銷售小組

黄怡家 評價小組

王怡文 物流小組

簡智弘 評價小組

李儒育 銷售小組

鄭偉鑅 ^{組長}

專題成果網站

https://ec-study.allen-cheng.com/

議程

- ▶ 專題:目標、挑戰、實作
- ▶ 成果:
 - ▶ 銷售組
 - ▶ 物流組
 - ▶ 評價組
- ▶ 總結: 將成果設計成完整的營運系統

專題的目標

用這門課教授的技術 完成數據分析與機器學習的研究案例

最大限度地讓每個組員都能參與到所有環節

不只單純的研究成果更要真實的呈現歷程

專題的挑戰

等同三組專題的工作量 除了原始資料相同以外,各小組的 觀點、想法、研究方式、模型全部不同

同時管理三個專題的資訊、議題、任務與目標 如期完成外, 還要將成果整合

Object

How we made it?

Deadline

專題的實作

展現「勝任工作的能力」

把專題當業界工作裡的「專案」看待

用專案管理思維,模擬真實工作環境「邊移動邊開火」逐步推進完成度

參考過去從事軟體工作使用過的「敏捷開發」 減少障礙、提升效率、緊盯進度如期完成

Olist電商概況

Olist成立於2015年,致力於將小型零售商與各大電商網站連接

超過10,000商家加入,平台以收取月費、產品傭金、運費為商業模式

銷售於180個國家、10幾個不同的購物網,包括巴西前三大及Amazon

物流、銷售管理、廣告投放、客戶服務等一站整合式服務

Olist dataset (連結)

8個表格、52個欄位、約9萬多筆資料 時間橫跨 2016 年八月~ 2018 年十月

資料分析架構

研究議題

olist store

評價

預測商品的評價結果為 「好評」或「負評」?

各組的成果

銷售組

影響銷售量的關鍵因子

李儒育、梁雪樺

研究動機

分析出關鍵銷售量因素,將會在實務上的效果 帶來更大利益。

- ▶ 能夠更快速應對消費者的需求, **針對痛點** 規劃營運及精準行銷
- ▶ 有助與商戶**聯合推出行銷方案**
- ▶ 了解有實力商戶類型, **有助開發商戶上架**

電商平台賣家

電商營運要點:

銷售量

目標:

增加產品銷售量

方法:

找到造成銷售量差距的 關鍵因子

詳細說明:

銷售量趨勢圖

- 1. 銷售量集中在04, 佔全年40%
- 2. 找出銷售量成因可助提高其他時段銷量

資料處理及分析流程

研究過程

資料預處理流程

連結資料表

將kaggle Olist資料集有關 運營資料整理成一份綜合 資料

-資料欄位共65

空值資料處理

確認資料是否有 NA 值及 刪除

離群值處理

- 1. 對欄位做敘述統計分析
- 2. 窺探資料分布情 形並將**極端值刪**
- 3. **删除**與分析較無 關的欄位

-剩餘欄位共26欄

特徵轉換

- 1. 為賣家銷售量重新編碼。Q3以上=高Q1以下= 低,其餘刪除
- 利用單價、交易量進行潛在類別分析(LCA)將相近進行歸類,71類歸類為6類產品
- 3. **RFM分析**, R(最近的一次消費), F(消費頻率) , M(消費金額)來評量客戶潛在價值
- 利用交易量高低、產品單價高低生成出4種商品型態

-轉換後欄位共30欄

資料預處理-特徵轉換

RFM

R 最後消費日	F消費頻率	M 總消費金額	
較 近	高	較 高	4級客戶
較 遠	低	高	3級客戶
較 近	高	低	2級客戶
較 遠	低	低	1級客戶

▶ 商品型態

\$ 交易量	1 單價	形態		
**	高	獲利商品	*	4級商品
**	低	薄利多銷商品		3級商品
小	高	奢侈商品		2級商品
小	低	淘汰商品	-	1級商品

資料處理後的變數

訂單相關:

item_countorder_purchase_time_day
ororder_purchase_timeday
ororder_purchase_day
order_purchase_dayofweek
order_purchase_hour
order_purchase_month
order_purchase_year
total_freight_value
total_item_price
total_payment_value

買賣家相關:

customer_state_region_type RFM_type seller_level seller_state_region_type

物流相關:

delivery_efficiency
estimated_logistics_using_hours
geo_distance
is_delivered_delayed
is_shipping_delayed
logistics_delay_hours
total_delivered_waiting_day
total_logistics_using_hours
total_package_volume
total_package_weight_g

買家評分相關:

review_score review_type

產品內容相關:

product_category6 product_type4

依變數: seller_level

機器學習

原始模型

- ▶ 30個欄位一併放入模型測 試
- XGBoost 與 CatBoost 準確率皆有不錯表現
- ▶ 變項資料量大所以進行特 **徵篩選以減少欄位**

(>0.7)與完全不相關 (<0.1)的欄位剔除

▶ 將變項減至10欄

特徵篩選

集群分析

03

- ▶ 用Kmean**集群分析**產生2個新 欄位
- ▶ 利用12個欄位再次測試

資料調整-集群分析

KMean Value集群分析應用:

欄位[total_item_price]、[total_payment_value]、[total_freight_value] 進行集群處理成新變項:

- ▶ 透過Elbow Method 匯出下圖,發現其值於第4類後的差異趨緩,故選擇分4群
- ▶ 透過Kmean集群分析進行非監督式學習獲得新變項[Kmean_value]

欄位[total_freight_value]、[total_package_volume]、[geo_distance] [total_package_weight_g]、 進行集群處理成新變項:

- ▶ 透過Elbow Method 匯出下圖,發現其值於第4類後的差異趨緩,故選擇分4群
- ▶ 透過Kmean集群分析進行非監督式學習獲得新變項[Kmean_package]

160

140

Distortion 100

80

60

研究結果

模型適配

挑選模型及測試結果:

- 在CatBoost測試前後變化約+0.27%,變項減少18欄(-40%)。欄位縮減後 提升機器學習的分析效率,且準確率也上升。
- CatBoost在效能上比 XGBoost 和 LightGBM等Boosting方法 更優, 他同時 支援 CPU 和 GPU 運算,提高分析效率。
- CatBoost解決了梯度偏差(Gradient Bias)以及預測偏移(Prediction shift)的問題,減少0verfitting發生,提高算法的準確性和泛化能力。

	X:30 原始model	X:10	X:12
模型	測試準確率	測試準確率	測試準確率
CartTree	0.688	0.689	0.682
ExtraTrees	0.702	0.699	0.709
XGBoost	0.799	0.774	0.792
CatBoost	0.726	0.720	0.728

影響銷量關鍵特徵

決策樹的模型顯示, **產品型態**為首要關鍵, 其次之為**價格、地區、品類**及**運費**

- ▶ 方向1(橙色): 平台賣方所在的地區於巴西屬於人口密集(63%)及買家偏向低運費
- ▶ 方向2(紅色): 買家對價格敏感度較高, 接受度普遍在 USD\$92以下
- ▶ 方向3(綠色): 買家偏好於價格在USD\$92以下的商品及某幾項品類

主關鍵產品型態

次關鍵 運費費用 賣家地點 價格實惠 產品類別

購買綜合因素

詳細說明:

建議

結論與建議

技術結論: 經特徵工程後, 模型欄位縮減-40%(提升機器學習效率)且準確度提高

+0.27%(提升機器學習準確度)

倉儲物流: 區域設物流倉庫 針對 某品類增加庫存

開發商戶: 針對不同品類開發更多 價格合適商戶進駐 **免運費活動**免運費活動設定免運的門檻可增加買家客單價及下單意慾

主題活動非旺季時定期以生活用品周3C家電周等主題舉辦平台活動

品牌型象: 嬰幼童用品、休閒保健可引入更多品牌及大品牌

專業徵才:在找業務開發時, 針對熟 悉最受歡迎的品類的人員進行招 聘。

嬰幼童用品、休閒保健需要對品牌 熟悉度高的人員

物流組 預測訂單是否延遲?

何舜華、王怡文

研究動機

雙11貨物爆量「卡關」 電商:延遲3至5天配達

記者 張凜科 林旼叡 / 攝影 何佳陽 報導 發佈時間: 2021/11/18 18:18 最後更新時間: 2021/11/18 19:30

雙11購物節買氣強強液,不過很多消費者抱怨,到現在都還沒收到包裹!送貨卡關狀況非常數重,就連賣家也大喊無奈,明明收到盯 單就出貨了,卻因為物流塞車還被買家與會速度太慢,電商平台也在官網公告,因為貧量實在太多,會延退3至5天配達,要大家耐心 等候。

電商主打「24小時到貨」 屬「交易重要事項」

三級警戒民眾宅在家, 電商訂單爆滿, 物流公司貨送不完, 消費糾紛頻傳!

行政院消保處統計,從5月中旬,已累計86件延遲或沒收到貨投訴,第一名是PChome 24H有58件,佔案件量67%。第二名是鰕皮16件,以及富邦momo有9件。

有網友表示,自5/25在PChome 24H下單,卡貨近一個月,仍未收到貨。也有網友無奈說,「廣告24hr,已經變成240hr了」。在臉書上,也有人成立「**每日關心PChome 24h出貨進度**」,以戲謔哽圖揶揄PChome 24H的塞貨狀況。

有71%消費者認為快速到貨能大幅提升下單意願

Olist市場研究 表示, 購買撤回 的原因, 有55% 延遲交貨是導 致

Olist市場研究表示,不到24小時內發貨的產品,轉化率平均提高了48%

雙 11 檔期, 消費者平均多 等 3~5 天, 甚 至長達一個月 才能拿到包裹

研究目的

電商賣家

物流3大重點:快!省!準!

機器學習預測「新的訂單出現時, 是否會延遲」,以提早做應對

訂單延遲

2017年 11月24日 訂單延遲 數最多 辦公用品 平均等待 時間最久

平均等待 223**小**時 消費者 從下訂單到 取貨需要等 約9-10天

Delay 8.1% Ontime 91.9%

每日訂單延遲次數及延遲率

變數選擇

Package_volume Package_weight

Seller_state(類別)
Customer_state(類別)
Geo_distance

原始共15欄, 97,879筆資料

Item_count
Category_type
Category_name

Item_price
Item_freight_value
Total_payment_value

purchase_yearweek purchase_month purchase_dayofweek purchase_Time_day(類別)

資料預處理

空值處理

▲刪除空白或NULL欄位

Stage 2

資料清洗

- ▲ 觀察資料分布情形
- ▲ 刪除離群值

類別型編碼

▲將 Seller_state、
Customer_state、
Time_day轉成Label
Encoding或One Hot
Encoding

模型調校

最原始dataset

Logistic_analytics_v0 15欄位, 因數據不平衡 (非延遲:延遲=10:1) 模型呈現失衡 延遲訂單準確率: 5%

	測試集 預測準確率
非延遲訂單	0.81
延遲訂單	0.56

資料標準化後 dataset

Logistic_analytics_v2 擷取常態分配的 20%~80% 找出主要訓練模型

Random forests or CatBoost

延遲訂單準確率: 59%

	測試集 預測準確率
非延遲訂單	1.0
延遲訂單	0.05

資料平衡化後 dataset

Logistic_analytics_v1 訓練集資料做過採樣

(非延遲:延遲=1:1)

延遲訂單準確率: 55%

	測試集 預測準確率
非延遲訂單	0.81
延遲訂單	0.58

特徵工程❷特徵提取

增加新變項:考量當地季節與文化

▲節慶(is_festival)

12月聖誕假期

2月嘉年華月

3-4月聖周慶祝活動

5月母親節

6月同志大遊行與聖約翰節

8月父親節

11月黑色購物節

▲雨季(is_	rain)
12-4	月	

	RF 測試集 預測準確率	CAT 測試集 預測準確率
非延遲訂單	0.81	0.73
延遲訂單	0.60	0.68

特徵工程

增加新變項:集群Cluster

▲集群1

Package_volume Freight_value Item_price

K-means 分3群

▲集群2

Geo_distance
Package_weight
Item_price

K-means 分3群

	RF 測試集 預測準確率	CAT 測試集 預測準確率
非延遲訂單	0.82	0.73
延遲訂單	0.59	0.68

特徵工程♥特徵選擇

降低維度:刪減變項,參考決策樹關鍵因子

	RF 測試集 預測準確率	CAT 測試集 預測準確率
非延遲訂單	0.8	0.71
延遲訂單	0.6	0.65

Model調校

特徵工程:集群後的 dataset

Logistic_analytics_v4 嘗試新增變數集群 延遲訂單準確率:59-60%左右

特徵工程: 節慶與雨季後的 dataset

Logistic_analytics_v3 新增變數 (是否為雨季、是否為節慶月) 延遲訂單準確率: 60%左右

特徵工程:降維度後的 dataset

Logistic_analytics_v5 使用GridSearchCV來找出模型 超參數的最佳組合 延遲訂單準確率: 61% 提高模型運算速度

模型整體準確率結果表

變項組合 模型名稱	X:15 原始model	X:13 資料預處理 資料平衡化	X:17 集群增加變項 -	X:8 數據降維 最佳超參數組合	
Random forests	92%	79%	79%	79%	
CatBOOST	92%	73%	73%	70%	

結論與建議

使用Random forests

預測模型準確度高達 79%

並將延遲訂單準確度自0.05提升至0.61

因Olist Kaggle數據集限制模型變項建立、集群分析等,故考量合理性與可行性來調整模型後,準確率提升幅度較小。

服務補救 提早傳簡訊告知可能延遲, 並準備小禮

物給消費者,降低消費者負面觀感

事先考量商品備貨,提早安排倉儲、物流量能,準時將商品送到消費者手中

拉長行銷戰線,提供每日不同的商品折扣 活動,讓消費者不需等到活動當日下單,也 同樣享有折扣,達到物流疏散作用

評價組

預測商品為「好評」與「負評」

黄怡家、簡智弘

研究動機

- ★ 根據《Forbes》報導, 94% 的消費者會避開有負面評價的公司
- ★ 對於收到 1-1.5 星評價的企業, 研究顯示他們的營收會比一般企業少33%
- ★ 流失客戶的百分比會隨著負評數的增加而上升:
 - ⇒ 1個負面評論會帶走22%的潛在客戶
 - ⇒ 3 個負面評論會流失 59.2% 的潛在客戶
 - ⇒ 超過 4 個負面評論會流失 70% 的潛在客戶

研究目的

- 預測商品的評價結果為「好評」或「負評」
- 做為電商平台篩選新進賣家所販售商品的依據
- ▶ 維護電商平台的聲譽, 進而提高買家的購買意願

分析流程

評價分數分佈圖

評價分數:1~5顆星星

「好評」和「負評」分佈圖

「**好評**」:4~5顆星星 ;「**負評**」:1~2顆星星

買家購買的商品數量分佈圖

Item_Count: 買家一筆訂單的商品購買數量

買家購買的商品種類&評價好壞之比例

Category 1 \Rightarrow Fashion & Accessory
Category 2 \Rightarrow Electronic Device & Home Appliance
Category 3 \Rightarrow Art & Music & Book

Category $4 \Rightarrow$ Office Furniture & Home Decoration Category $5 \Rightarrow$ Baby Goods & Food & Health Supplement Category $6 \Rightarrow$ Tools & Others

買家購買商品的價格&評價好壞之分佈

由於商品價格懸殊過大 $(0.85 \sim 6735)$, 故採用四分位數來劃分出 4 大區間 Q1=39.9; Q2=74.9; Q3=134.9

變數選擇

product_volume product_weight product_height product_length product_width

seller_state seller_state_region_type geo_distance product_category_name_english
self_defined_product_category

approved_waiting_hrs (order_approved_at - order_purchase_timestamp)
seller_to_logistics_hrs (order_delivered_carrier - approved at)
total_shipping_hrs (order_delivered_customer_date - order_approved_at)

從原始資料取出與評價相關的欄位

- 共 22 欄位
- 共79,852 筆資料

資料處理過程

- 對數轉換: 使成為類常態分佈
- 資料編碼 (0.2~0.8): 使所有欄位權重一

致

- 嘗試多種抽樣方法及比例
 - (1) Oversampling
 - (2) Bootstrapping
- 抽樣完畢重新打亂資料排序

平衡化 平衡化 抽樣處理 新增/刪減變數

- -刪除空值
- 刪除不合理負數

- 離群值處理
- 類別轉數值: Label Coding
- 數值轉類別: One-Hot Coding

- 將名目型態欄位重新歸納
- 刪除無效資料欄位

模型適配

T/F 7:3 (44010/18861筆)

	X 數量:12 原始model 無抽樣	X 數量:12 分6大類&4大類 Bootstrapping	X 數量:12 分6大類&4大類 Oversampling	X 數量:13 新增評價相關 集群欄位
模型	測試準確率	測試準確率	測試準確率	測試準確率
DNN	77.3%	84.8%	88.7%	88.3%
Random Forests	82.0%	83.3.0%	89.0%	89.0%
XGBOOST	79.8%	83.1%	89.1%	88.5%
LightGBM	81.3%	82.5%	80.9%	89.1%

特徵工程

用 Elbow Method 做集群,新增速度 (y2) 欄位

- 距離 geo_distance
- 運送時間 total_shipping_hrs
- => 準度提升8%(從0.81變成0.89)

試降維度, 但準確率不增反減, 故保留

刪除欄位	In_geo_distance	In_total_shipping_hrs	In_geo_distance & In_total_shipping_hrs
準確度	0.88	0.87	0.86

模型預測最終結果

LightGBM	precision	recall	f1-score	support
0:負評	0.57 († <mark>45%</mark>)	0.39	0.46	2980
1:好評	0.92 († 4.3%)	0.96	0.94	21788
accuracy			0.89	24768

原始資料集的好/負評比率 0.877:0.123

- 隨機猜中 0 (負評) 的可能性為 12%
- 隨機猜中1(好評)的可能性為88%

經 LightGBM 模型調教:

- 預測 0 (負評) 的準確率上升 45%
- 預測 1 (好評) 的準確率上升 4.3%

降維度-特徵篩選

比較「評價分數」(self_defined_review_score) 與 其他 X 欄位的相關係數

- 將相關係數取絕對值 < 0.1 的欄位刪除
- 保留 In geo distance(準度僅微幅下降)
- 將原 13 個欄位減少至 5 個欄位
 - 1. seller_state_region_type
 - 2. ln_seller_to_logistics_hrs
 - 3. ln_total_shipping_hrs
 - 4. ln_geo_distance
 - 5. y2 (集群欄位)

欄位名稱	相關係數
self_defined_product_category	0.008191
In_item_price	-0.022346
In_product_length_cm	-0.012646
In_product_height_cm	-0.006426
In_product_width_cm	-0.00866
In_product_weight_cm	-0.017473
In_product_volume	-0.012412
In_approved_waiting_hrs	-0.011089
In_geo_distance	-0.03091

模型預測最終結果

X 數量:13 → X 數量:5

LightGBM	precision	recall	f1-score	support
0:負評	0.57 († <mark>45%</mark>)	0.39	0.46	2980
1:好評	0.92 († 4.3%)	0.96	0.94	21788
accuracy			0.89	24768

原始資料集的好/負評比率 0.877:0.123

- 隨機猜中 0 (負評) 的可能性為 12%
- 隨機猜中 1 (好評) 的可能性為 88%

經 LightGBM 模型調教:

- 預測 0 (負評) 的準確率上升 45%
- 預測 1 (好評) 的準確率上升 4.3%

結論與建議

電商平台內部人員

商務開發部門在招商時

⇒ 制定評價指標

(e.g. 負評比例需維持在幾個百分比以下)

賣家未能通過評價指標之門檻

⇒ 請營運部門針對問題提出改善建議

賣家

制定嚴格的訂單批准與出貨天數,降低買家給負評的風險

請賣家重新定位預販售之商品 (依售價、規格、內容調整), 或改善接單速率與出貨流程

請賣家提供預販售商品的過往銷售額(參考資料)/其他販售渠 道的商品聲量

總結:

將成果設計成完整的營運系統

THANKS FOR YOUR ATTENTION &

