Chapter 2: Matrix Algebra

1. Let
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 3 & -4 \\ -1 & 2 & 1 \end{pmatrix}$. Compute the matrix

- a. $2A B^T$
- b. *AB*
- c. BA
- d. *AC*

- e. CC^T
- $f C^T C$
- g. A^3
- h. B^2A^T
- 2. Suppose that A and B are nxn matrices. Simplify the expression

a.
$$(A+B)^2 - (A-B)^2$$

b.
$$A(BC-CD) + A(C-B)D - AB(C-D)$$

3. Let
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 8 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 5 & 2 & 1 \\ 1 & 8 & 0 & -6 \\ 1 & 4 & 3 & 7 \end{pmatrix}$.

- a. Compute AB
- b. Compute f(A) if $f(x) = x^2 3x + 2$
- 4. Find the inverse of each of the following matrices.

a.
$$\begin{pmatrix} 1 & 5 \\ 2 & -1 \end{pmatrix}$$

b.
$$\begin{pmatrix} 2 & 1 \\ 2 & -4 \end{pmatrix}$$

a.
$$\begin{pmatrix} 1 & 5 \\ 2 & -1 \end{pmatrix}$$
 b. $\begin{pmatrix} 2 & 1 \\ 2 & -4 \end{pmatrix}$ c. $\begin{pmatrix} 1 & -1 & 2 \\ -5 & 7 & -11 \\ -2 & 3 & -5 \end{pmatrix}$ d. $\begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 5 \\ -1 & 1 & 0 \end{pmatrix}$

$$d. \begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 5 \\ -1 & 1 & 0 \end{pmatrix}$$

5. Given $A^{-1} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 5 \\ 1 & 1 & 0 \end{pmatrix}$. Find a matrix X such that

a.
$$AX = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$

a.
$$AX = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
 b. $AX = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ c. $XA = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$

c.
$$XA = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$$

6. Find A when

a.
$$(3A)^{-1} = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$$

b.
$$(I + 2A)^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$

a.
$$(3A)^{-1} = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$$
 b. $(I + 2A)^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ c. $(A^{-1} - 2I)^{T} = -2\begin{pmatrix} 1 & 4 \\ 3 & 11 \end{pmatrix}$

7. Write the system of linear equations in matrix form and then solve them.

a.
$$\begin{cases} 2x - y = 4 \\ 3x + 2y = -4 \end{cases}$$

b.
$$\begin{cases} 2x + 3y + z = 10 \\ 2x - 3y - 3z = 22 \\ 4x - 2y + 3z = -2 \end{cases}$$

a.
$$\begin{cases} 2x - y = 4 \\ 3x + 2y = -4 \end{cases}$$
 b.
$$\begin{cases} 2x + 3y + z = 10 \\ 2x - 3y - 3z = 22 \\ 4x - 2y + 3z = -2 \end{cases}$$
 c.
$$\begin{cases} x + y = a \\ 2x + 3y = 1 - 2a \end{cases} (a \in R)$$

8. Find A^{-1} if

a.
$$A^2 - 6A + 5I = 0$$

b.
$$A^2 + 3A - I = 0$$
 c. $A^4 = I$

c.
$$A^4 = I$$

9. Solve for X

a.
$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} X = \begin{pmatrix} 1 & -1 \\ 3 & 3 \end{pmatrix}$$

b.
$$ABXC = B^T$$
 c. $AX^TBC = B$

c.
$$AX^TBC = B$$

(where A, B and C are nxn invertible matrices)

10. Compute
$$\begin{pmatrix} -1 & 3 \\ 0 & 1 \end{pmatrix}^{101}$$

- 11. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation, and assume that T(1,2) = (-1,1) and T(0,3) = (-3,3)
- a. Compute T(11,-5)
- b. Compute T(1,11)
- c. Find the matrix of T
- d. Compute $T^{-1}(2,3)$
- 12. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that the matrix of T is $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$.
- Find T(3,-2)
- 13. The (2;1)-entry of the product $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 2 & 5 & 1 \\ 4 & -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 2 & 1 \\ 2 & 3 & 2 \\ 5 & 1 & 0 \\ 0 & 4 & 2 \end{pmatrix}$