

Mn-Zn

Large Size Ferrite Cores for High Power

Please be sure to read this manual thoroughly before using the products.

The products listed on this catalog are intended for use in general electronic equipment (AV equipment, telecommunications equipment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equipment, industrial robots) under a normal operation and use condition.

The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require a more stringent level of safety or reliability, or whose failure, malfunction or trouble could cause serious damage to society, person or property.

When using the products for specific purposes, please first make confirmations in areas such as safety, reliability, and quality.

Please understand that we are not in a position to be held responsible for any damage or the like caused by any use exceeding the range or conditions of this specification sheet or by any use in the specific applications.

- (1) Aerospace/Aviation equipment
- (2) Transportation equipment (electric trains, ships, etc.)
- (3) Medical equipment
- (4) Power-generation control equipment
- (5) Atomic energy-related equipment
- (6) Seabed equipment
- (7) Transportation control equipment

- (8) Public information-processing equipment
- (9) Military equipment
- (10) Electric heating apparatus, burning equipment
- (11) Disaster prevention/crime prevention equipment
- (12) Safety equipment
- (13) Other applications that are not considered general-purpose applications

When using this product in general-purpose standard applications, you are kindly requested to take into consideration securing protection circuit/equipment or providing backup circuits, etc to ensure higher safety.

Large Size Ferrite Cores for High Power

Product compatible with RoHS directive Halogen-free

Overview of the UU Series

FEATURES

- Large size cores for transformers with large power outputs.
- Ocan also be used in reactors.

APPLICATION

- Large size industrial equipment, transformers for consumer equipment
- Reactors

PART NUMBER CONSTRUCTION

■ RANGE OF USE AND STORAGE TEMPERATURE

Temperat	Temperature range							
Operating temperature	Storage temperature							
(°C)	(°C)							
-30 to +105	-30 to +85							

- OROHS Directive Compliant Product: See the following for more details.https://product.tdk.com/info/en/environment/rohs/index.html
- O Halogen-free: Indicates that CI content is less than 900ppm, Br content is less than 900ppm, and that the total CI and Br content is less than 1500ppm.

Mn-Zn **UU Cores**

SHAPES AND DIMENSIONS

PE	22	UU	7	79 :	×	12	29	×	3	31
					,					
Mat	erial	Core shape	W	dth		Height asser			Thick	cness

Part No.	Dimensions (mm)									
	Α	2B	С	E	2F	Н	R ₁	R ₂	E×2F(mm ²)	
PE22 UU79×129×31 PC40 UU79×129×31	79.0±2.5	129.0±2.5	31.5±1.0	34.0min.	85.0±1.5	22.0±1.0	5	22	2980	
PE22 UU100×151×30 PC40 UU100×151×30	100.0±3.0	151.0±2.5	30.0±1.0	39.0min.	90.0±1.5	30.0±1.5	5	30	3600	
PE22 UU101×115×25 PC40 UU101×115×25	101.0±3.0	115.0±2.5	25.4±1.0	50.0min.	64.0±1.5	25.0±1.0	5	25	3260	
PE22 UU120×160×20 PC40 UU120×160×20	120.0±3.0	160.0±2.5	20.0±1.0	59.0min.	100.0±1.5	30.0±1.5	5	35	6000	
PE22 UU80×150×30N PC40 UU80×150×30N	80.0±2.5	150.0±2.5	30.0±1.0	39.0min.	110.0±1.5	20.0±1.0	1	0	4400	

	Effective parame	eter					Electrical characteristics
Part No.	Core factor C1 (mm ⁻¹)	C ₂ ×10 ⁻² (mm ⁻³)	Effective cross-sectional area Ae (mm²)	Effective magnetic path length ℓ e (mm)	Effective core volume Ve (mm³)	Weigh	AL-value (nH/N²) 1kHz 0.4A/m 23°C
PE22 UU79×129×31 PC40 UU79×129×31	0.44605	0.06437	693	309	214220	1080 1080	4790±25% 6030±25%
PE22 UU100×151×30 PC40 UU100×151×30	0.38801	0.04241	915	355	324860	1630 1630	5540±25% 6990±25%
PE22 UU101×115×25 PC40 UU101×115×25	0.47757	0.07373	648	309	200350	1000 1000	4480±25% 5640±25%
PE22 UU120×160×20 PC40 UU120×160×20	0.69041	0.11507	600	414	248550	1240 1240	3140±25% 3960±25%
PE22 UU80×150×30N PC40 UU80×150×30N	0.60472	0.00101	600	363	217700	1095 1095	3570±25% 4500±25%

Mn-Zn UU series Part No.: PE22 UU79X129X31

SHAPES AND DIMENSIONS

Dimensions in mm

Effective pa	Effective parameter										
Core factor Effective magnetic path length ength engline in the core volume engline englin								AL-value			
C1	C2×10-2	ℓe	Ae	Ve	A min.*	Acw					
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm²)	(mm ³)	(mm ²)	(mm ²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C			
0.44605	0.06437	309	693	214220	693LB*	2980	1080	4790±25%			

^{*} The symbol followed A min. value shows minimum cross-sectional area part. L is outer pole part, B is the back part.

NI limit vs. AL-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn UU series Part No.: PC40 UU79X129X31

SHAPES AND DIMENSIONS

Dimensions in mm

Effective parameter										
Core factor Effective magnetic path length length Effective cross-sectional area Effective cross-sectional area Effective cross-sectional cross-sectional area Minimum cross-sectional cross-sectional area Winding cross-sectional area Win							AL-value			
C1	C2×10-2	ℓe	Ae	Ve	A min.*	Acw				
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm²)	(mm ³)	(mm²)	(mm²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C		
0.44605	0.06437	309	693	214220	693LB*	2980	1080	6030±25%		

The symbol followed A min. value shows minimum cross-sectional area part.
 L is outer pole part, B is the back part.

NI limit vs. AL-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn UU series Part No.: PE22 UU100X151X30

SHAPES AND DIMENSIONS

Dimensions in mm

Effective pa	Effective parameter										
Core factor Effective magnetic path length ength engline in the core volume engline englin								AL-value			
C ₁	C2×10 ⁻²	ℓe	Ae	Ve	A min.*	Acw					
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm²)	(mm ³)	(mm ²)	(mm²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C			
0.38801	0.04241	355	915	324860	900L*	3600	1630	5540±25%			

The symbol followed A min. value shows minimum cross-sectional area part.
 L is outer pole part, B is the back part.

NI limit vs. AL-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn UU series Part No.: PC40 UU100X151X30

SHAPES AND DIMENSIONS

Dimensions in mm

Effective pa	Effective parameter										
Core factor Effective magnetic path length Effective magnetic path Cross-sectional area Effective cross-sectional area Effective cross-sectional cross-sectional area Winding cross-sectional area Weigh (approx.)								AL-value			
C1	C2×10-2	ℓe	Ae	Ve	A min.*	Acw					
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm²)	(mm ³)	(mm²)	(mm ²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C			
0.38801	0.04241	355	915	324860	900L*	3600	1630	6990±25%			

The symbol followed A min. value shows minimum cross-sectional area part.
 L is outer pole part, B is the back part.

NI limit vs. AL-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn UU series Part No.: PE22 UU101X115X25

SHAPES AND DIMENSIONS

Dimensions in mm

Effective pa	Effective parameter										
Core factor Effective magnetic path length Effective cross-sectional area Effective cross-sectional area Effective cross-sectional area Minimum cross-sectional area Winding c								AL-value			
C1	C2×10-2	ℓe	Ae	Ve	A min.*	Acw					
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm²)	(mm ³)	(mm ²)	(mm²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C			
0.47757	0.07373	309	648	200350	635L*	3260	1000	4480±25%			

^{*} The symbol followed A min. value shows minimum cross-sectional area part. L is outer pole part, B is the back part.

NI limit vs. AL-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn UU series Part No.: PC40 UU101X115X25

SHAPES AND DIMENSIONS

Dimensions in mm

Effective pa	Effective parameter										
Core factor Effective magnetic path length Effective magnetic path Cross-sectional area Effective cross-sectional area Effective cross-sectional cross-sectional area Winding cross-sectional area Weigh (approx.)								AL-value			
C1	C2×10-2	ℓe	Ae	Ve	A min.*	Acw					
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm²)	(mm ³)	(mm²)	(mm²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C			
0.47757	0.07373	309	648	200350	635L*	3260	1000	5640±25%			

^{*} The symbol followed A min. value shows minimum cross-sectional area part. L is outer pole part, B is the back part.

NI limit vs. A∟-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

A Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn UU series Part No.: PE22 UU120X160X20

SHAPES AND DIMENSIONS

Dimensions in mm

Effective parameter										
Core factor Effective magnetic path length Effective cross-sectional area Effective core volume cross-sectional area Minimum cross-sectional area Winding cross-sectional area (approx.)								AL-value		
C1	C2×10-2	ℓe	Ae	Ve	A min.*	Acw				
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm ²)	(mm ³)	(mm²)	(mm ²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C		
0.69041	0.11507	414	600	248550	600LB*	6000	1240	3140±25%		

^{*} The symbol followed A min. value shows minimum cross-sectional area part. L is outer pole part, B is the back part.

NI limit vs. A∟-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.

Mn-Zn UU series Part No.: PC40 UU120X160X20

SHAPES AND DIMENSIONS

Dimensions in mm

Effective pa	Effective parameter										
Core factor Effective magnetic path length Effective cross-sectional area Effective cross-sectional area Effective cross-sectional cross-sectional area Winding cross-sectional cross-sectional area Winding								AL-value			
C1	C2×10-2	ℓe	Ae	Ve	A min.*	Acw					
(mm ⁻¹)	(mm ⁻³)	(mm)	(mm²)	(mm ³)	(mm²)	(mm²)	(g)	(nH/N ²) 1kHz 0.4A/m 23°C			
0.69041	0.11507	414	600	248550	600LB*	6000	1240	3960±25%			

^{*} The symbol followed A min. value shows minimum cross-sectional area part. L is outer pole part, B is the back part.

NI limit vs. A∟-value

The 20% and 40% graph shows when a 20% and 40% drop from the initial AL-value has been made due to the DC superimposition.

Please be sure to request delivery specifications that provide further details on the features and specifications of the products for proper and safe use. Please note that the contents may change without any prior notice due to reasons such as upgrading.