Hack The Paradies

Challenge:

Bodenfeuchtigkeitssensoren und smartes Routing

Team:

Sofia Moya
Raúl Hernández
Daniel Loos
Oliver Mothes (Mentor)

Problembeschreibung (Allgemein)

- N Gießstellen
- M Gießfahrzeuge (Fassungsvermögen Q m^3)
- O Mitarbeiter (O=M)
- P Schichten

 Ziel: Finden von einer zusammenhängenden Tour, welche N Gießstellen erreicht (Start und Ziel sind der gleiche Ort) mit minimaler Distanz (minimales Gewicht)

Problembeschreibung (Jena)

- 173 Gießstellen
- 1 Gießfahrzeug
- 1 Mitarbeiter
- 2 Schichten

LIVE DEMO

Kürzeste Wege in Graphen

• Graph: Straßennetzwerk

- Knoten (Kreuzungen)
- Kanten (Straßen verbinden Kreuzungen)

• Erweiterter Graph: "Hinzufügen" der Gießstellen und

Zuordnung zu <u>nächsten</u> Knoten des Graphs

Berechnung des Kürzesten Weges von

 zu einem Zielpunkt durch den Graph

Kürzeste Tour in einem Graphen

 Finden der Kürzesten Wege zwischen Gießstellen mit kleinster Summe

1. Lösungsansatz: Testen aller Permutationen

2. Lösungsansatz: Hamiltonkreise? Eulertouren?

→ aktuell: nur Straßendistanz in Berechnungen

Gießstellen und dazugehörige Informationen

Position: Euklidische Distanzen

Distanzen im Straßennetz

Feuchtigkeit Gewichtung durch Priorisierung

Baumart individueller Wasserbedarf

Baumalter individueller Wasserbedarf

• Baumhöhe, Umfang individueller Wasserbedarf

• Gebiet Straßenbegleitgrün oder Park oder ... ?

→ indiziert Wurzelausbreitung und

Bodenbeschaffenheit

• ...

→ Informationen beeinflussen Route

Zusätzliche externe Abhängigkeiten

- Verkehrsdichte
- Wetter
- Saisonalität (Winter vs. Sommer, etc.)
- •

App