Homework for Wednesday, October 14

1 Type theory and lambdas

- What are the types of the following expressions? (If you get stuck, think about what sorts of syntactic frames these expressions occur in.)
 - 1. devour
 - 2. fond
 - 3. part of New Brunswick
 - 4. show Porky
 - 5. white cat from Providence
- Evaluate the following claims.
 - \triangleright If the expressions are equal, show how to derive the latter from the former by applications of α -, β -, or η equivalence.
 - ⊳ If not, say why not.
 - 1. $(\lambda x. \lambda y. licks' x y) q v \equiv licks' q v$
 - 2. $(\lambda x. f x y) y \equiv f y y$
 - 3. $(\lambda x. \lambda y. f x y) y \equiv \lambda z. f y z$
 - 4. $\lambda x. kiss' x \equiv \lambda y. \lambda x. kiss' y x$
 - 5. $\lambda x. kiss' x \equiv \lambda x. \lambda y. kiss' y x$
- Simplify the following expressions as much as possible.
 - \triangleright Show (and justify) each step in your calculation (you might have to do more than one β -reduction!).
 - ightharpoonup Exploit lpha-equivalences as needed to avoid variable capture.
 - \triangleright Be careful. Some of these are tricky.
 - 1. $(\lambda P.\lambda x.P x) run'$
 - 2. $(\lambda R.Rab)(\lambda y.\lambda x.kiss'yx)$
 - 3. $(\lambda f.fx)(\lambda y.\lambda x.gxy)$
 - 4. $(\lambda \mathcal{P}.\mathcal{P}(\lambda p.p))(\lambda k.k (meows'x))$
 - 5. $(\lambda m. \lambda n. m (\lambda f. n (\lambda x. f x))) (\lambda k. k (left')) (\lambda k. k x)$
- Any function f has a type that we can write as $\langle \sigma, \tau \rangle$ (for some type σ and some type τ). Can a function ever apply to itself? Why or why not?

2 Composition inside DP

- Calculate [Uni is a big white cat from Providence], labeling each node in the tree with its type and denotation (as in the Oct 5 handout).
 - ▷ Assume the available combination operations are Functional Application (FA) and Predicate Modification (PM).
 - ▷ Assume whatever semantics you like for is and a (so long as it works!).
 - ▶ Indicate which composition operation (FA or PM) you used to interpret each binary-branching node.
- Now, suppose that you only have **FA** in your toolbox.
 - Devise a silent morpheme PRED_∅ which allows you to give a meaning for [Uni is a big white cat from Providence] anyway.
 - □ Give a derivation (again labeling each node).
 - ▷ Did you get the same result as before?
- Both the grammar with **FA** and **PM** and the grammar with **FA** and PRED $_{\emptyset}$ can glue this sentence together in a way you might not have expected. For example, the tree below is interpretable using **FA** and **PM**.

- ▷ Assign an interpretation to the tree, giving a type and meaning to each numbered node.
- ▷ Does the interpretation differ from the previous examples?
- ▷ Do you find this structure plausible? Why or why not?