Tree Balancing Techniques

Dr. Manjusri Wickramasinghe

Preliminaries

What is a tree data structure?

• What is the purpose of using a tree data structure?

What is tree balancing?

Balanced trees

Unbalanced trees

Are there any issues with having unbalanced trees?

Tree Balancing...(1)

 The process of converting a tree structure into a one that is close to being full binary tree or is a full tree.

- Tree balancing methods fall into two categories as
 - Global balancing
 - Local balancing

Tree Balancing...(2)

- Global balancing is the process of restructuring the tree once all the operations on it is complete. These type of techniques affect the entire tree.
 - E.g. DSW Algorithm

- Local balancing restructures the tree at each insert and delete operation if a height imbalance occurs. These type of techniques affect only a local part of the tree.
 - E.g. AVL Trees, Red Black Trees

Tree Balancing...(3)

• How are trees balanced?

Rotations...(1)

Rotations...(2)

• Exercise :- Rotation 30 about its parent.

Rotations...(3)

```
function rightRotate(Node child, Node GP, Node Par)
{
    if(Par != root)
        set GP as parent of child
        set right subtree of child as left child of Par
        set Par as right subtree of child
}
```


Rotations...(4)

• Rotations are symmetrical, so the right rotation can be converted to a left rotation and vice verse.

 A tree can be balanced using the single rotation once or multiple times. Sometimes the multiple case is also called with other names such as the double rotation.

DSW Algorithm

Overview...(1)

 DSW stands for Day, Stout and Warren which attribute to the inventors of this algorithm

This is a global balancing algorithm

 Works on a tree which has no pending operations. The algorithms always creates trees that are perfectly balanced or close to being perfectly balance.

Overview...(2)

- The DSW algorithm consists of two phases as given below
 - 1. Create vine
 - 2. Create a balanced tree

Creating a Vine (Backbone)...(1)

```
function createVine(Node root) {
   tmp = root;
   while (tmp != null) {
      if (tmp has left child)
         right rotate left child around tmp
         update tmp to the child which just became parent
      else
         tmp = tmp.right
```

Creating a Vine (Backbone)...(2)

Exercise :- Convert to a backbone

Create a Balanced Tree

```
function CreateBalancedTree(int numOfNodes) {
   int m = 2^(lg2(numOfNodes + 1)) - 1;
   make n - m right rotations
   while (m > 1)
        m = m/2
        make m left rotations starting top of vine
}
```


Questions?

