Introduction to Algorithms: 6.006 Massachusetts Institute of Technology

Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 4: Hashing

Lecture 4: Hashing

Review

	Operations $O(\cdot)$						
	Container	Static	Dynamic	Order			
Data Structure	build(X)	find(k)	insert(x)	find_min()	find_prev(k)		
			delete(k)	find_max()	find_next(k)		
Array	n	n	n	n	n		
Sorted Array	$n \log n$	$\log n$	n	1	$\log n$		

• Idea! Want faster search and dynamic operations. Can we find (k) faster than $\Theta(\log n)$?

• Answer is no (lower bound)! (But actually, yes...!?)

Comparison Model

• In this model, assume algorithm can only differentiate items via comparisons

• Comparable items: black boxes only supporting comparisons between pairs - can't look @ actual values. Only only only look only the only look of a conty value of some value is bigger than Goal: Store a set of n comparable items, support find (k) operation the other.

Running time is **lower bounded** by # comparisons performed, so count comparisons!

eaves Decision Tree ______ able to return any of the n elems (find(E)) ______ countries all other ______ or that the key is not present - Hence # leaves counting all other • Any algorithm can be viewed as a **decision tree** of operations performed -1

• An internal node represents a **binary comparison**, branching either True or False

For a comparison algorithm, the decision tree is binary (draw example)

• A leaf represents algorithm termination, resulting in an algorithm **output**

• A root-to-leaf path represents an execution of the algorithm on some input

ullet Need at least one leaf for each **algorithm output**, so search requires $\geq n+1$ leaves

2 Lecture 4: Hashing

Comparison Search Lower Bound

- What is worst-case running time of a comparison search algorithm?
- running time \geq # comparisons \geq max length of any root-to-leaf path \geq height of tree
- What is minimum height of any binary tree on $\geq n$ nodes? \longrightarrow \bigcirc ($\log n$)
- Minimum height when binary tree is complete (all rows full except last)
- Height $\geq \lceil \lg(n+1) \rceil 1 = \Omega(\log n)$, so running time of any comparison sort is $\Omega(\log n)$
- Sorted arrays achieve this bound! Yay!
- More generally, height of tree with $\Theta(n)$ leaves and max branching factor b is $\Omega(\log_b n)$
- To get faster, need an operation that allows super-constant $\omega(1)$ branching factor. How??

- Exploit Word-RAM O(1) time random access indexing! Linear branching factor!
- **Idea!** Give item **unique** integer key k in $\{0, \dots, u-1\}$, store item in an array at index k
- Associate a meaning with each index of array
- If keys fit in a machine word, i.e. $u \leq 2^w$, worst-case O(1) find/dynamic operations! Yay!
- 6.006: assume input numbers/strings fit in a word, unless length explicitly parameterized
- Anything in computer memory is a binary integer, or use (static) 64-bit address in memory But space O(u), so really bad if $n \ll u$... :
- Example: if keys are ten-letter names, for one bit per name, requires $26^{10} \approx 17.6 \text{ TB}$ space
- How can we use less space?

Hashing

- Idea! If $n \ll u$, map keys to a smaller range $m = \Theta(n)$ and use smaller direct access array
- **Hash function**: $h(k) : \{0, ..., u 1\} \to \{0, ..., m 1\}$ (also hash map)
- Direct access array called **hash table**, h(k) called the **hash** of key k
- If $m \ll u$, no hash function is injective by pigeonhole principle

- Always exists keys a, b such that $h(a) = h(b) \rightarrow \textbf{Collision}!$:(
- Can't store both items at same index, so where to store? Either:
 - store somewhere else in the array (open addressing)

 * complicated analysis, but common and practical
 - store in another data structure supporting dynamic set interface (**chaining**)

 \Rightarrow stored items of same kays h(a) = h(b) will be stored

in another DS

Chaining

- Idea! Store collisions in another data structure (a chain)
- If keys roughly evenly distributed over indices, chain size is $n/m = n/\Omega(n) = O(1)!$
- If chain has O(1) size, all operations take O(1) time! Yay!
- If not, many items may map to same location, e.g. h(k) = constant, chain size is $\Theta(n)$:(
- Need good hash function! So what's a good hash function?

- Heuristic, good when keys are uniformly distributed!
- ullet m should avoid symmetries of the stored keys
- Large primes far from powers of 2 and 10 can be reasonable
- Python uses a version of this with some additional mixing
- If $u \gg n$, every hash function will have some input set that will a create O(n) size chain
- Idea! Don't use a fixed hash function! Choose one randomly (but carefully)!

A vrivasal rosh on

Lecture 4: Hashing

Universal (good, theoretically):

$$h_{ab}(k) = (((ak+b) \bmod p) \bmod m)$$

point (max) is the previous but (max) od (max) od (max) does (max) trainst

Hash Family $\mathcal{H}(p,m)=\{h_{ab}\,|\,a,b\in\{0,\dots,p-1\}\text{ and }a\neq 0\}$ fixed, with a and b chosen from range $\{0,\dots,p-1\}$

• \mathcal{H} is a Universal family: $\Pr\{h(k_i) = h(k_j)\} \leq 1/m$ $\forall k_i \neq k_j \in \{0, \dots, u-1\}$ in Other Why is universality useful? Implies short chain lengths! (in expectation)

• Why is universality district: implies short chain lengths: (in expectation)

• X_{ij} indicator random variable over $h \in \mathcal{H}$: $X_{ij} = 1$ if $h(k_i) = h(k_j)$, $X_{ij} = 0$ otherwise

• Size of chain at index $h(k_i)$ is random variable $X_i = \sum_{j} X_{ij}$ | i.f. k_i k_j collides

• Expected size of chain at index $h(k_i)$ • Expected size of chain at index

$$\leq 1 + \sum_{i \neq i}^{j \neq i} 1/m = 1 + (n-1)/m$$

• If n/m far from 1, rebuild with new randomly chosen hash function for new size m

Same analysis as dynamic arrays, cost can be amortized over many dynamic operations

• So a hash table can implement dynamic set operations in expected amortized O(1) time! :)

	Operations $O(\cdot)$						
	Container	Static	Dynamic	Order			
Data Structure	build(X)	find(k)	insert(x)	find_min()	find_prev(k)		
			delete(k)	find_max()	find_next(k)		
Array	n	n	n	n	n		
Sorted Array	$n \log n$	$\log n$	n	1	$\log n$		
Direct Access Array	u	1	1	u	u		
Hash Table	$n_{(e)}$	$1_{(e)}$	$1_{(a)(e)}$	n	n		

to K : "

111