

CSE 471: Machine Learning

Regression Algorithms: Linear Regression

Tajkia Nuri Ananna January 30, 2023

Lecturer, Metropolitan University

Table of contents

1. Use of Linear Regression

2. Terminologies

 ${\it 3. \ Linear \ Regression \ Example}\\$

Use of Linear Regression

Use of Linear Regression

Use of Linear Regression

Find out the **factors** effecting the annual sales

Predict the Annual Outcome

Annual Sale

Terminologies

Terminologies

Based on the amount of rainfall, how much would be the crop yield?

Independant and Dependant variable

Our motive is to find a relationship between the dependant and independant variable!

Linear Regression

Types of Linear Regression

There are Two types of linear regression.

Simple Linear Regression

- Single dependant and independent variable
- We use simple linear equation: $\hat{y} = \beta_0 + \beta_1 x$, where x = independant variable or feature, = dependant variable or outcome and $\beta_0 =$ constant and $\beta_1 =$ Regression Coefficient
- We can also represent it in the following form: y = mx + c

Types of Linear Regression

There are Two types of linear regression.

Multiple Linear Regression

- Single dependant variable and multiple independent variable
- We use simple linear equation:
 - $\hat{y} = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_m x_m$, where x = independant variable or feature, y = dependant variable or outcome and $\alpha_0 to \alpha_m$ = Regression Coefficient

Linear Regression Example

Linear Regression Example

X	У
1	3
2	4
3	5
4	7

Linear Regression Example

Solution

• We have to find a relationship, $Y = \beta_0 + \beta_1 X$

$$\bullet \ \beta_1 = \frac{\sum xy - \frac{\sum x \sum Y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

•
$$\beta_0 = \frac{\sum y - \beta_1 \sum x}{n}$$

