RECEIVED CENTRAL FAX GENTER

ATTACHMENT A

JUL 2 4 2008

Claims 1 - 15: (Cancelled)

- 16. (Currently Amended) A process for preparing a catalyst solid for olefin polymerization comprising a finely divided support, an aluminoxane, a metallocene compound product, and an organometallic compound, wherein the process consists essentially of: comprises
 - combining the finely divided support with the aluminoxane to form a modified support,
 - removing excess aluminoxane not bound to the modified support,
 - drying the modified support, and subsequently
 - reacting a metallocene compound of formula (I),

where

M is zirconium, hafnium or titanium;

X are identical or different and are each, independently of one another, hydrogen or halogen or a group -R, -OR, -OSO₂CF₃, -OCOR, -SR,

-NR₂ or -PR₂, where R is linear or branched C1-C20-alkyl, C3-C20-cycloalkyl which may bear C₁-C₁₀-alkyl one ormore radicals substituents, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C7-C20-arylalkyl and may contain one or more heteroatoms from groups 13 - 17 of Periodic Table of the Elements or one or unsaturated bonds, with the more two radicals X also being able to be joined to one another;

L is a divalent bridging group selected from the group consisting of C₁-C₂₀-alkylidene, C₃-C₂₀-cycloalkylidene, C₆-C₂₀-arylidene, C₇-C₂₀-alkylarylidene and C₇-C₂₀-arylalkylidene radicals which may contain heteroatoms from groups 13 - 17 of the Periodic Table of the Elements or is a silylidene group having up to 5 silicon atoms;

R¹ and R² are identical or different and are each, independently of one another, hydrogen or linear or branched C₁-C₂₀-alkyl or C₃-C₂₀-cycloalkyl which may bear one or more C₁-C₁₀-alkyl radicals as substituents, C₆-C₂₀-aryl, C₇-C₄₀-alkylaryl or C₇-C₄₀-arylalkyl and may contain one or more heteroatoms from groups

13 - 17 of the Periodic Table of the Elements or one or more unsaturated bonds;

T and T' are divalent groups of the formulae (II), (III), (IV), (V), (VI) or (VII),

where

the atoms denoted by the symbols * and ** are in each case joined to the atoms of the compound of the formula (I) which are denoted by the same symbol; and

 R^5 and R^6 are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl which may bear one or

more C1-C10-alkyl radicals as substituents, C_6-C_{40} -aryl, C_7-C_{40} -alkylaryl or C_7-C_{40} arylalkyl and may contain one or more heteroatoms from groups 13 - 17 of the Periodic Table of the Elements or one or more unsaturated bonds or two radicals R5 or R5 and R6 are joined to one another to form a saturated or unsaturated C3-C20 ring;

with at least one organometallic compound of formula (VIII)

$$M^{1} (R^{7})_{r} (R^{8})_{s} (R^{9})_{t}$$
 (VIII)

where

- $\mathbf{M}^{\mathbf{I}}$ is an alkali metal, an alkaline earth metal or a metal of group 13 of the Periodic Table:
- R7 is hydrogen, C₁-C₁₀-alkyl, C₃-C₁₀-cycloalkyl, C_6-C_{15} -aryl, alkylaryl or arylalkyl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part;
- R⁸ and R⁹ are each hydrogen, halogen, C1-C10alkyl, C_3-C_{10} -cycloalkyl, C_6-C_{15} -aryl, alkylaryl, arylalkyl or alkoxy each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl. part;

r is an integer from 1 to 3;

and

s and t are integers from 0 to 2, where the sum r+s+t corresponds to the valence of M³; wherein the organometallic compounds of formula (VIII) comprise at least one branched alkyl radical comprising up to 10 carbon atoms, or a cycloalkyl radical comprising from 3 to 10 carbon atoms;

to form a reaction product which is added to the modified support, wherein the finely divided support and aluminoxane are combined in suspension, and the reaction product and the modified support are contacted in suspension with the suspension medium being removed by evaporation after the reaction product is contacted with the modified support.

- 17. (Previously Presented) The process for preparing a catalyst solid for olefin polymerization as claimed in claim 16, wherein the finely divided support comprises functional groups, and the finely divided support and an amount of the aluminoxane are selected so that essentially the total amount of the aluminoxane used has reacted with the functional groups of the finely divided support.
- 18. (Previously Presented) The process for preparing a catalyst solid for olefin polymerization as claimed in claim 16, wherein the organometallic compound of

- formula (VIII) is triisobutylaluminum, diisobutylaluminum hydride or a mixture of the two compounds.
- 19. (Previously Presented) A catalyst solid obtained by the process as claimed in claim 16.
- 20. (Previously Presented) A catalyst system for polymerizing olefins, comprising said catalyst solid as claimed in claim 19.
- 21. (Previously Presented) A process for polymerizing olefins which comprises using the catalyst system as claimed in claim 20.
- 22. (Previously Presented) A process for preparing a catalyst solid for olefin polymerization as claimed in claim 17, wherein the organometallic compound of formula (VIII) which is used is triisobutylaluminum, diisobutylaluminum hydride or a mixture of the two compounds.
- 23. (Previously Presented) A catalyst solid obtained by the process as claimed in claim 22.
- 24. (Previously Presented) A process for polymerizing olefins which comprises using the catalyst system as claimed in claim 23.
- 25. (Currently Amended) A process for preparing a catalyst solid for olefin polymerization comprising a finely divided support, an aluminoxane, a metallocene

compound product, and an organometallic compound, wherein the process consists essentially of: comprises

- combining the finely divided support with the aluminoxane to form a modified support,
- removing excess aluminoxane not bound to the modified support,
- drying the modified support, and subsequently
- reacting a metallocene compound of formula (I),

where

- M is zirconium, hafnium or titanium;
- x are identical or different and are each, independently of one another, hydrogen or halogen or a group -R, -OR, -OSO₂CF₃, -OCOR, -SR, -NR₂ or -PR₂, where R is linear or branched C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl which may bear

more C₁-C₁₀-alkyl radicals

or

substituents, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl and may contain one or more heteroatoms from groups 13-17 of the Periodic Table of the Elements or one or more unsaturated bonds, with the two radicals X also being able to be joined to one another;

- L is a divalent bridging group selected from the group consisting of C₁-C₂₀-alkylidene, C₃-C₂₀-cycloalkylidene, C₆-C₂₀-arylidene, C₇-C₂₀-alkylarylidene and C₇-C₂₀-arylalkylidene radicals which may contain heteroatoms from groups 13 17 of the Periodic Table of the Elements or is a silylidene group having up to 5 silicon atoms;
- R¹ and R² are identical or different and are each, independently of one another, hydrogen or linear or branched C₁-C₂₀-alkyl or C₃-C₂₀-cycloalkyl which may bear one or more C₁-C₁₀-alkyl radicals as substituents, C₆-C₂₀-aryl, C₇-C₄₀-alkylaryl or C₇-C₄₀-arylalkyl and may contain one or more heteroatoms from groups 13 17 of the Periodic Table of the Elements or one or more unsaturated bonds;
- T and T' are divalent groups of the formulae (II), (III), (IV), (V), (VI) or (VII),

where

the atoms denoted by the symbols * and ** are in each case joined to the atoms of the compound of the formula (I) which are denoted by the same symbol; and

 R^5 and R^6 are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl which may bear one or more C_1 - C_{10} -alkyl radicals as substituents, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl or C_7 - C_{40} -arylalkyl and may contain one or more heteroatoms from groups 13 - 17 of the Periodic Table of the Elements or one or more unsaturated bonds or two radicals R^5 or

R5 and R6 are joined to one another to form a saturated or unsaturated C3-C20 ring;

with at least one organometallic compound of formula (VIII)

$$M^{1}(R^{7})_{r}(R^{8})_{s}(R^{9})_{t}$$
 (VIII)

where

 M^1 is an alkali metal, an alkaline earth metal or a metal of group 13 of the Periodic Table;

Ŕ7 is hydrogen, C₁-C₁₀-alkyl, C₃-C₁₀-cycloalkyl, C6-C15-aryl, alkylaryl or arylalkyl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part;

R⁸ and R⁹ are each hydrogen, halogen, C1-C10alkyl, C_3-C_{10} -cycloalkyl, C_6-C_{15} -aryl, alkylaryl, arylalkyl or alkoxy each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part;

is an integer from 1 to 3; r

and

s and t are integers from 0 to 2, where the sum r+s+t corresponds to the valence of M^3 ;

wherein the organometallic compounds of formula (VIII) comprise at least one branched alkyl radical comprising up to 10 carbon atoms, or a cycloalkyl radical comprising from 3 to 10 carbon atoms, and M^1 the molar ratio οf from the organometallic compounds of formula (VIII) to M from the metallocene compounds of formula (I) ranges from 800:1 to 1:1;

to form a reaction product which is added to the modified support, wherein the finely divided support and aluminoxane are combined in suspension, and the reaction product and the modified support are contacted in suspension with the suspension medium being removed by evaporation after the reaction product is contacted with the modified support.

- 26. (Previously Presented) The process according to claim 25, wherein the molar ratio of M¹ from the organometallic compounds of formula (VIII) to M from the metallocene compounds of formula (I) ranges from 200:1 to 2:1.
- 27. (Previously Presented) The process for preparing a catalyst solid for olefin polymerization as claimed in claim 25, wherein the finely divided support comprises functional groups, and the finely divided support and an amount of the aluminoxane are selected so that essentially the total amount of the aluminoxane used has reacted with the functional groups of the finely divided support.

- 28. (Previously Presented) The process for preparing a catalyst solid for olefin polymerization as claimed in claim 25, wherein the organometallic compound of formula (VIII) is triisobutylaluminum, diisobutylaluminum hydride or a mixture of the two compounds.
- 29. (Previously Presented) A catalyst solid obtained by the process as claimed in claim 25.
- 30. (Previously Presented) A catalyst system for polymerizing olefins, comprising said catalyst solid as claimed in claim 29.
- 31. (Previously Presented) A process for polymerizing olefins which comprises using the catalyst system as claimed in claim 30.
- 32. (Previously Presented) A process for preparing a catalyst solid for olefin polymerization as claimed in claim 27, wherein the organometallic compound of formula (VIII) which is used is triisobutylaluminum, diisobutylaluminum hydride or a mixture of the two compounds.
- 33. (Previously Presented) A catalyst solid obtained by the process as claimed in claim 32.
- 34. (Previously Presented) A process for polymerizing olefins which comprises using the catalyst system as claimed in claim 33.
- 35. (Currently Amended) A process for preparing a catalyst solid for olefin polymerization comprising a finely divided

support, an aluminoxane, a metallocene compound product, and an organometallic compound, wherein the process consists essentially of: comprises

- combining the finely divided support with the aluminoxane to form a modified support,
- removing excess aluminoxane not bound to the modified support,
- drying the modified support, and subsequently
- reacting a metallocene compound of formula (I),

where

- M is zirconium, hafnium or titanium;
- x are identical or different and are each, independently of one another, hydrogen or halogen or a group -R, -OR, -OSO₂CF₃, -OCOR, -SR, -NR₂ or -PR₂, where R is linear or branched

-NR₂ or -PR₂, where R is linear or branched C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl which may bear

one or more C_1 - C_{10} -alkyl radicals as substituents, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl or C_7 - C_{20} -arylalkyl and may contain one or more heteroatoms from groups 13 - 17 of the Periodic Table of the Elements or one or more unsaturated bonds, with the two radicals X also being able to be joined to one another;

- L is a divalent bridging group selected from the group consisting of C₁-C₂₀-alkylidene, C₃-C₂₀-cycloalkylidene, C₆-C₂₀-arylidene, C₇-C₂₀-alkylarylidene and C₇-C₂₀-arylalkylidene radicals which may contain heteroatoms from groups 13 17 of the Periodic Table of the Elements or is a silylidene group having up to 5 silicon atoms;
- R¹ and R² are identical or different and are each, independently of one another, hydrogen or linear or branched C₁-C₂₀-alkyl or C₃-C₂₀-cycloalkyl which may bear one or more C₁-C₁₀-alkyl radicals as substituents, C₆-C₂₀-aryl, C₇-C₄₀-alkylaryl or C₇-C₄₀-arylalkyl and may contain one or more heteroatoms from groups 13 17 of the Periodic Table of the Elements or one or more unsaturated bonds;
- T and T' are divalent groups of the formulae (II), (III), (IV), (V), (VI) or (VII),

where

the atoms denoted by the symbols * and ** are in each case joined to the atoms of the compound of the formula (I) which are denoted by the same symbol; and

 R^5 and R^6 are identical or different and are each, independently of one another, hydrogen or halogen or linear or branched C_1 - C_{20} -alkyl or C_3 - C_{20} -cycloalkyl which may bear one or more C_1 - C_{10} -alkyl radicals as substituents, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl or C_7 - C_{40} -arylalkyl and may contain one or more heteroatoms from groups 13 - 17 of the Periodic Table of the Elements or one or more unsaturated bonds or two radicals R^5 or

R⁵ and R⁶ are joined to one another to form a saturated or unsaturated C3-C20 ring;

with at least one organometallic compound of formula (VIII)

$$M^{1} (R^{7})_{r} (R^{8})_{s} (R^{9})_{t}$$
 (VIII)

where

- is an alkali metal, an alkaline earth metal M^1 or a metal of group 13 of the Periodic Table;
- R^7 is hydrogen, C₁-C₁₀-alkyl, C₃-C₁₀-cycloalkyl, C₆-C₁₅-aryl, alkylaryl or arylalkyl each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part;
- R⁸ and R⁹ are each hydrogen, halogen, C1-C10alkyl, C_3-C_{10} -cycloalkyl, C_6-C_{15} -aryl, alkylaryl, arylalkyl or alkoxy each having from 1 to 10 carbon atoms in the alkyl part and from 6 to 20 carbon atoms in the aryl part;
- is an integer from 1 to 3; r

and

s and t are integers from 0 to 2, where the sum r+s+t corresponds to the valence of M3;

wherein the organometallic compounds of one comprise at least formula (VIII) branched alkyl radical comprising up to 10 carbon atoms, or a cycloalkyl radical comprising from 3 to 10 carbon atoms;

to form a reaction product which is added to the modified support, wherein the finely divided support and aluminoxane are combined in suspension, and the and the modified support reaction product contacted in suspension with the suspension medium being removed by evaporation after the reaction product is contacted with the modified support, and ofaluminum atomic ratio wherein the aluminoxanes to M from the metallocene compounds of formula (I) ranges from 20:1 to 500:1.

- (Previously Presented) The process according to claim aluminum from the wherein the atomic ratio of 35, aluminoxanes to M from the metallocene compounds of formula (I) ranges from 30:1 to 400:1.
- (Previously Presented) The process for preparing a catalyst solid for olefin polymerization as claimed in claim 35, wherein the finely divided support comprises functional groups, and the finely divided support and an amount of the aluminoxane are selected so that essentially the total amount of the aluminoxane used has reacted with the functional groups of the finely divided support.
- 38. (Previously Presented) The process for preparing a catalyst solid for olefin polymerization as claimed in

- claim 35, wherein the organometallic compound of formula (VIII) is triisobutylaluminum, diisobutylaluminum hydride or a mixture of the two compounds.
- 39. (Previously Presented) A catalyst solid obtained by the process as claimed in claim 35.
- 40. (Previously Presented) A catalyst system for polymerizing olefins, comprising said catalyst solid as claimed in claim 49.
- 41. (Previously Presented) A process for polymerizing olefins which comprises using the catalyst system as claimed in claim 40.
- 42. (Previously Presented) A process for preparing a catalyst solid for olefin polymerization as claimed in claim 37, wherein the organometallic compound of formula (VIII) which is used is triisobutylaluminum, diisobutylaluminum hydride or a mixture of the two compounds.
- 43. (Previously Presented) A catalyst solid obtained by the process as claimed in claim 42.
- 44. (Previously Presented) A process for polymerizing olefins which comprises using the catalyst system as claimed in claim 43.