- Note that the model output above does not indicate in any way if our zero-inflated model is an improvement over a standard negative binomial regression.
- We can determine this by running the corresponding standard negative binomial model and then performing a Vuong test of the two models.
- We use the MASS package to run the standard negative binomial regression.

```
library(MASS)
summary(m2 <- glm.nb(count ~ child + camper, data = zinb))</pre>
```

##

Coefficients:

```
## (Intercept) 1.073 0.242 4.42 9.7e-06 ***

## child -1.375 0.196 -7.03 2.1e-12 ***

## camper1 0.909 0.284 3.21 0.0013 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.5
```

Estimate Std. Error z value Pr(>|z|)

```
wuong(m1, m2)

## Vuong Non-Nested Hypothesis Test-Statistic: 1.702

## (test-statistic is asymptotically distributed N(0,1) und

## null that the models are indistinguishible)

## in this case:

## model1 > model2, with p-value 0.0444
```

- ► The log odds of being an excessive zero would decrease by 1.67 for every additional person in the group.
- ▶ In other words, the more people in the group the less likely that the zero would be due to not gone fishing.
- ▶ Put plainly, the larger the group the person was in, the more likely that the person went fishing.
- The Vuong test suggests that the zero-inflated negative binomial model is a significant improvement over a standard negative binomial model.