

Design of error correcting codes for storage devices

Students: Dore Kleinstern, Noam Shilony

Supervisor: Rami Cohen

Semester: Winter, 2018

Date: 04/09/2019

Outline

- ► Low Density Parity Check codes
- ► Message passing algorithm
- q-ary Bit Measurement Channel
- Empirical and theoretical results
- Approximation models for the problem

Linear GF_q Block Codes

- \triangleright k information symbols \longrightarrow n code symbols
- ▶ Code word is generated from a generator matrix $G \in GF_q^{n \times k}$
- Dual matrix $H \in GF_q^{(n-k)\times n}$ Parity check matrix

Low Density Parity Check GF_q Codes

- ► Sparse matrix for parity check *H*
- Regular code d_v , d_c constants
- ► Parity Check:

$$\mathbf{1} \cdot v_1 + 3 \cdot v_3 = 0$$

$$\triangleright 2 \cdot v_2 + 3 \cdot v_4 = 0$$

Binary Erasure Channel (BEC)

- ► Binary Alphabet (0/1)
- Symmetric erasure probability ε
- ► Erasure (?) is an unknown state

 $[1\ 0\ 1\ 0] \rightarrow [1\ ?\ ?\ 0]$

Low Density Parity Check Binary Codes

- ► Parity Check:
 - $\triangleright v_1 \oplus v_3 = 0$
 - $\triangleright v_2 \oplus v_4 = 0$
- ▶ Iterative decoding of [??10] -
 - $\triangleright v_1 = 0 \oplus 1 = 1$
 - $\triangleright v_2 = 0 \oplus 0 = 0$

Implementation

- ► MATLAB
 - Convenient matrix operations
 - $ightharpoonup GF_q$ add-on for calculations
 - Concurrent simulations

Communications Toolbox™

Parallel Computing Toolbox™

Running Time ≈ 1 hour

BEC - Results

Code length = 1002

Code length = 2004

Reading from Flash Storage Device

Stored word in cell *011 Reading MSB to LSB

q-ary Bit-Measurement Channel (QBMC)

- $ightharpoonup q = 2^s$ symbols, each represented by s bits
- Partial erasure = some of the bits are unknown
 - Each partial erasure has its probability

$$\underbrace{\begin{bmatrix} 1 \ 0 \ 1 \ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \ ? \ ? \ ? \end{bmatrix}}_{3 \ bits \ erasure}$$

$$\underbrace{\begin{bmatrix} 1 \ 0 \ 1 \ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \ 0 \ 1 \ ? \end{bmatrix}}_{1 \ bits \ erasure}$$

Message Passing for LDPC over QBMC

- ▶ Generalized binary iterative decoding of BEC to q elements from GF_q
- ► Two main operations -
 - ► Sumset: $sumset(\{x,y\},\{a,b\}) = \{x+a,x+b,y+a,y+b\}$
 - ▶ Intersection: $intersection(\{x, y, z\}, \{x, a, b\}) = \{x\}$

Running Time ≈ 10 hours

Message Passing over QBMC - Results

Total erasure rate for q =4, ** n = 2004, ** uniform label distribution

Analytic Performance (Density Evolution)

- ► Tracking the probability of partial erasures as a function of the decoding iteration
- Evolution of distribution at each iteration of message passing considering labels distribution
- Threshold determined by probability of erasure at output

Running Time ≈ 10 hours

Density Evolution - Results

Approximation methods

- Tracking the exact probabilities is difficult as there are multiple messages
- Instead, we track the probabilities of certain subgroup sizes
 - ▶ Non erasure subgroup size is 1
- ▶ Using probabilistic models for uniform label distribution -
 - ▶ Balls and Bins
 - ► Union Model

Balls and Bins Model

- Throwing balls independently and uniformly to bins
- Number of balls product of the subgroups' sizes
- Number of bins q
- Number of non-empty bins is the size of the subgroup at output

Balls and Bins - Results

Running Time ≈ 15 hours

Union Model

- ▶ Similar to balls and bins, except independence assumption
- ► Given 3 elements $x, y, \overline{z} \in GF_q$ such that $y \neq z$ $\rightarrow x + y \neq x + z$
- ▶ Different elements in the same subgroup must go to different bins

Union Model - Results

Running Time ≈ 20 hours

Running Time ≈ 10 hours

Summary

- $ightharpoonup GF_q$ LDPC codes show good results under iterative decoding
- ▶ Better iterative-decoding performance as q increase
- The iterative method of "Message Passing" is fast, but empirical and analytical calculations are complex
- ► The Union model is a good approximation of the problem that can help us compute the thresholds efficiently

Future Research

- Optimize the precise algorithm for faster results
- Find a more accurate threshold by using higher resolution
- Better approximations than the Union Model with different label distribution

References

- 1. T. R. a. R. Urbanke, Modern Coding Theory, Cambridge: Cambridge University Press, 2008.
- 2. R. J. McEliece, "Finite Fields for Computer Scientists and Engineers," Kluwer Academic Publishers, 1987.
- 3. R. C. a. Y. Cassuto, "LDPC Codes for the q-ary Bit-Measurement Channel," Technion Israel Institute of Technology, Haifa, 2016.
- 4. R. C. a. Y. Cassuto, "Iterative decoding of LDPC codes over the qary partial erasure channel", *IEEE Transactions on Information Theory*, 2016.
- 5. R. H. Morelos-Zaragoza, The art of error correcting coding, John Wiley & Sons, 2002.
- 6. S. K. T. L. J. Nana Traore, "Message Passing Algortihm and Linear Programming Decoding for LDPC and Linear Block Codes," Aalborg University, Aalborg, 2007.
- 7. A. Shokrollahi, "LDPC Codes: An Introduction," Digital Fountain, Inc., Fremont, 2003.

Thank you for listening