dsc-phase-2-project (/github/kcoop610/dsc-phase-2-project/tree/main)
/ report.ipynb (/github/kcoop610/dsc-phase-2-project/tree/main/report.ipynb)

Table of Contents

- 1 King County Housing Market
 - 1.1 Overview
 - 1.2 Source Data
 - o 1.2.1 Import packages & style notebook
 - o 1.2.2 Load and understand dataset
- 2 Data Preprocessing
 - 2.1 Feature Engineering
 - 2.2 Data Types
 - 2.3 Missing Data
 - 2.4 Feature Exploration
 - 2.5 Final Feature Set
 - o 2.5.1 Grade & Condition Category Details
 - 2.6 Deal with Outliers
- 3 Explore
 - 3.1 Zipcode
 - 3.2 Looking for Linear Relationships
 - 3.3 Multicollinearity
- 4 Model
 - 4.1 Workflow & Defining Functions
 - 4.2 Model 1
 - 4.3 Model 2
 - 4.4 Model 3
 - 4.5 Model 4
 - 4.6 Model 5
 - 4.7 Recursive Feature Elimination
- <u>5 Model Interpretation</u>
- 6 Recommendations for King County Homeowners
- 7 Appendix
 - 7.1 Model 6 Excluding some zipcodes
 - <u>7.2 Folium</u>

King County Housing Market

Kristin Cooper | DTSC-FT-022221 | Instructor: James Irving

<u>Image Source (https://www.seattletimes.com/business/real-estate/king-county-home-prices-dropped-as-coronavirus-squelched-activity-but-now-the-market-may-be-picking-up/)</u>

Overview

This project intends to model the value of houses in King County, WA, USA in order to help homeowners decide which renovations - if any - would increase the resale potential of their home.

Source Data

The model has been created based on King County House Sales dataset describing houses sold between May 2014 and May 2015.

Import packages & style notebook

4/19/2021

```
# basic packages
In [1]:
           import pandas as pd
           pd.set_option('display.max_columns', 0)
           import numpy as np
           import matplotlib.pyplot as plt
           plt.style.use('bmh') #try also seaborn-darkgrid, fivethirtyeight
           %matplotlib inline
           import seaborn as sns
           import plotly.express as px
           import plotly.graph_objects as go
           from plotly.subplots import make subplots
           # stats packages
           import statsmodels
           import statsmodels.api as sm
           import statsmodels.stats.api as sms
           import statsmodels.formula.api as smf
           from statsmodels.formula.api import ols
           import scipy.stats as stats
           from sklearn.linear model import LinearRegression
           # styling notebook
           from IPython.core.display import HTML
           def css styling():
               styles = open("./styles/custom.css", "r").read()
               return HTML(styles)
           css styling()
```

Out[1]:

Load and understand dataset

```
In [2]:
```

```
df = pd.read_csv('data/kc_house_data.csv')
display(df.info())
display(df.head())
display(round(df.describe(),3))
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Ni	ıll Count	Dtype		
0	id	21597	non-null	int64		
1	date	21597	non-null	object		
2	price	21597	non-null	float64		
3	bedrooms	21597	non-null	int64		
4	bathrooms	21597	non-null	float64		
5	sqft_living	21597	non-null	int64		
6	sqft_lot	21597	non-null	int64		
7	floors	21597	non-null	float64		
8	waterfront	19221	non-null	float64		
9	view	21534	non-null	float64		
10	condition	21597	non-null	int64		
11	grade	21597	non-null	int64		
12	sqft_above	21597	non-null	int64		
13	sqft_basement	21597	non-null	object		
14	<pre>yr_built</pre>	21597	non-null	int64		
15	<pre>yr_renovated</pre>	17755	non-null	float64		
16	zipcode	21597	non-null	int64		
17	lat	21597	non-null	float64		
18	long	21597	non-null	float64		
	sqft_living15					
20	sqft_lot15	21597	non-null	int64		
dtype	es: float64(8),	int64(11), object(2)				
memo	ry usage: 3.5+ N	ИB				

None

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wat
_	o 7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
,	1 6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
	2 5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
;	3 2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
	4 1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
count	2.159700e+04	21597.000	21597.000	21597.000	21597.000	21597.000	21597.000
mean	4.580474e+09	540296.574	3.373	2.116	2080.322	15099.409	1.494
std	2.876736e+09	367368.140	0.926	0.769	918.106	41412.637	0.540
min	1.000102e+06	78000.000	1.000	0.500	370.000	520.000	1.000
25%	2.123049e+09	322000.000	3.000	1.750	1430.000	5040.000	1.000

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
50%	3.904930e+09	450000.000	3.000	2.250	1910.000	7618.000	1.500
75%	7.308900e+09	645000.000	4.000	2.500	2550.000	10685.000	2.000
max	9.900000e+09	7700000.000	33.000	8.000	13540.000	1651359.000	3.500

Data Preprocessing

To begin, the raw data needs a bit of manipulation to prepare it for visualization and modeling.

Feature Engineering

Some columns I find to have confusing names, so I renamed them to be more intuitive to me. This involved a bit of research from kingcounty.gov (https://www.kingcounty.gov/services/data.aspx).

Based on the columns available in the source data, I was able to also calculate a few features such as the home's age at sale, a boolean value for whether the house had renovations done, and how many years had passed since renovation, which I thought may be interesting to explore.

In [5]:

Create a column for Year Sold in order to calculate Age At Sale
df['year_sold'] = df['date_sold'].apply(lambda x: int(x[-4:]))
df['age_at_sale'] = df['year_sold'] - df['yr_built']

Create a categorical column to indicate if a house was renovated or 1
df['renovated?'] = np.where(df['yr_renovated']>0, 'Yes', 'No')
df.head()

df.head()

Out[5]:

		id	date_sold	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wat
_	0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
	1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
	2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
	3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
	4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	

In [6]:

Create a column for Years Since Renovated for houses that have indeed
df_renovated = df.loc[df['renovated?'] == 'Yes']
df_renovated['yrs_since_renovated'] = df_renovated['year_sold'] - df_redf['yrs_since_renovated']
df

<ipython-input-6-6d07e190143d>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-df_renovated['yrs_since_renovated'] = df_renovated['year_sold'] - df_

Out[6]:

	id	date_sold	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0

21597 rows × 25 columns

Data Types

Storing data as the appropriate type is important for mathematical calculations, modeling, and sorting.

```
In [7]:
```

```
In [8]:
```

```
# Update data types
df['id'] = df['id'].astype(object)
df['date_sold'] = pd.to_datetime(df['date_sold'])
df['price'] = df['price'].astype(int)
df['sqft_basement'] = df['sqft_basement'].astype(int)
df['zipcode'] = df['zipcode'].astype(object)

df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 25 columns):
```

	columns (total 25 columns	•	
#	Column	Non-Null Count	Dtype
0	id	21597 non-null	object
1	date_sold	21597 non-null	datetime64[ns]
2	price	21597 non-null	int64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	float64
9	view	21534 non-null	float64
10	condition	21597 non-null	int64
11	grade	21597 non-null	int64
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	int64
14	yr_built	21597 non-null	int64
15	<pre>yr_renovated</pre>	17755 non-null	float64
16	zipcode	21597 non-null	object
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	neighboring_sqft_living	21597 non-null	int64
20	neighboring_sqft_lot	21597 non-null	int64
21	year_sold	21597 non-null	int64
22	age_at_sale	21597 non-null	int64
23	renovated?	21597 non-null	object
24	<pre>yrs_since_renovated</pre>	744 non-null	float64
dtype	es: datetime64[ns](1), flo	oat64(8), int64(13), object(3)
memoi	ry usage: 4.1+ MB		

Missing Data

Missing data elements may sway calculations and confuse models, so I either filled or removed these from the raw set.

```
In [9]:
            # Look for null values, found in columns: waterfront, view, sqft basem
           df.isna().any()
Out[9]:
           id
                                       False
           date_sold
                                       False
           price
                                       False
           bedrooms
                                       False
           bathrooms
                                       False
           sqft_living
                                       False
           sqft lot
                                       False
           floors
                                       False
           waterfront
                                        True
           view
                                         True
           condition
                                       False
           grade
                                       False
           sqft above
                                       False
           sqft basement
                                       False
           yr built
                                       False
                                        True
           yr renovated
           zipcode
                                       False
           lat
                                       False
           long
                                       False
           neighboring sqft living
                                       False
           neighboring sqft lot
                                       False
           year sold
                                       False
           age at sale
                                       False
           renovated?
                                       False
           yrs since renovated
                                        True
           dtype: bool
In [10]:
            # Fix waterfront null values - vast majority of houses are not waterfro
           df['waterfront'].fillna(0, inplace=True)
            # Fix view null values - discrete categorical column, so created an "uı
           df['view'].fillna(0, inplace=True)
            # Fix yr renovated null values - continuous numeric column, so selected
           df['yr renovated'].unique()
           df['yr_renovated'].fillna(0, inplace=True)
           df['yr renovated'] = df['yr renovated'].astype(int)
            # Fix yrs since renovated null values - continuous numeric column, so :
           df['yrs since renovated'].fillna(999, inplace=True)
           df['yrs since renovated'] = df['yrs since renovated'].astype(int)
```

Feature Exploration

df['sqft basement'].fillna(0, inplace=True)

Two features that jumped out as interesting and needing some more detail were "Condition" and "Grade." I found some additional information about the King County grade and condition scales here (https://info.kingcounty.gov/assessor/esales/Glossary.aspx?type=r).

Fix sqft basement null values - after some exploration, decided to fi

```
In [11]: # Explore condition values
    display(df['condition'].value_counts())
    sns.scatterplot(data=df, x='condition', y='price')
    plt.xticks(ticks=range(6))
    plt.show();
```

```
3 14020
4 5677
5 1701
2 170
1 29
```

Name: condition, dtype: int64


```
Out[12]:
              0
                         1
              1
                         1
              2
                         1
                         2
              3
                         1
                        . .
              21592
                         1
              21593
                         1
              21594
                         1
              21595
                         1
              21596
```

Name: condition, Length: 21597, dtype: int64

In [13]: # Explore grade values
Appears to have a somewhat linear relationship with price, so I left
display(df['grade'].value_counts())
sns.scatterplot(data=df, x='grade', y='price',)
plt.xticks(ticks=range(14))
plt.show();

Name: grade, dtype: int64

In [14]:

df.head(2)

Out[14]:

	id	date_sold	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	water
0	7129300520	2014-10- 13	221900	3	1.00	1180	5650	1.0	
1	6414100192	2014-12- 09	538000	3	2.25	2570	7242	2.0	

Final Feature Set

At this point, we have a set of cleaned-up features and are ready to look for linear relationships with our target - sale price.

Summarized below are the features in our dataset:

- 1. id unique identifier for a house (not a predictor)
- 2. date_sold day when house was sold
- 3. **price** sale price of home
- 4. **bedrooms** number of bedrooms (1-11 in this sample)
- 5. **bathrooms** number of bathrooms (0.50-8.00 in this sample)
- 6. **sqft_living** square footage of the home
- 7. **sqft_lot** square footage of the lot
- 8. **floors** floors (levels) in house
- 9. waterfront whether or not the house has a view to a waterfront (1=True, 0=False)
- 10. **view** an index from 0 to 4 of how good the view of the property was
- 11. **condition** originally coded 1-5 (additional details below). For this model, I recoded to 0 (poor), 1 (average), and 2 (excellent)
- 12. **grade** represents the construction quality of improvements. Grades run from grade 1 (below minimum builting standards) to 13 (custom-designed mansion). 1-5 do not meet building code. Additional detail below.
- 13. **sqft_above** square footage of house apart from basement
- 14. **sqft_basement** square footage of the basement
- 15. **yr_built** year when the house was first built
- 16. **yr renovated** year when house was renovated
- 17. **zipcode** zipcode where home is located
- 18. lat latitude location of the house
- 19. **long** longitude location of the house
- 20. **neighboring_sqft_living** square footage of interior housing living space for the nearest 15 neighbors
- 21. **neighboring_sqft_lot** square footage of the land lots of the nearest 15 neighbors
- 22. **year_sold** extrapolated from date_sold column
- 23. **age_at_sale** calculated by the yr_sold minus yr_built
- 24. **renovated?** Yes/No if the house has been renovated, as determined by yr_renovated >
- 25. **yrs since renovated** calculated by yr sold minus yr renovated

Grade & Condition Category Details

click here to expand for details

Deal with Outliers

Outliers in the dataset are particularly messy when modeling, since they don't follow the same patterns as the vast majority of cases.

One very helpful statistic when looking for outliers is the Interquartile Range, which is a measure of dispersion between the 25th and 75th percentiles of the data. The box-and-whisker plot also calculates the "minimum" and "maximum" whiskers of the data. Any points that fall outside the whiskers are considered outliers.

I created a function to visualize outliers on multiple features, remove them, then revisualize the dispersion.


```
In [15]:
           def plot_iqr(df, col, title=None, marker_height=930, line_height=900):
               Parameters:
               df = pd.dataframe, main data source
               col = column name to plot (x axis)
               title = title for graph
               marker height = int, where to place marker based on highest y-value
               line height = int, where to end vertical line markers (default=900)
               Returns:
               Histogram with marginal box plot, markers and labels at max fence a
                to show where there are outliers in your dataset
               # Calculating min, max, Q1, and Q3 interquartile ranges on price c\epsilon
               iqr = stats.iqr(df[col])
               q1 = np.quantile(a=df[col], q=.25)
               minimum = q1-1.5*iqr
               q3 = np.quantile(a=df[col], q=.75)
               maximum = q3+1.5*iqr
               if minimum < df[col].min():</pre>
                   min_fence = df[col].min()
               else:
                   min_fence = minimum
               if maximum > df[col].max():
                   max fence = df[col].max()
               else:
                   max fence = maximum
               # Create a variable formatted with commas
               min fence str = '{:,}'.format(int(min fence))
               max_fence_str = '{:,}'.format(int(max_fence))
               # Visualize distribution of target, showing outliers on the high e
               fig = px.histogram(df, x=df[col], marginal='box',
                                    title=title)
               fig.update layout(plot bgcolor='#f2f2f2', bargap=0.1, height=500,
                                  title font size=18, font size=12)
               # max marker
               fig.add trace(go.Scatter(x=np.array(max fence), y=np.array(marker l
                                         text=max fence str, mode='text',
                                         name=('Max Fence: {}'.format(max fence st)
               fig.add shape(type='line', x0=max fence, y0=0, x1=max fence, y1=lir
               # min marker
               fig.add trace(go.Scatter(x=np.array(min fence), y=np.array(marker l
                                         text=(min fence str), mode='text',
                                         name=('Min Fence: {}'.format(min fence st)
               fig.add shape(type='line', x0=min fence, y0=0, x1=min fence, y1=lir
               fig.show()
               print('Min: ', df[col].min(), 'Max: ', df[col].max())
```

In [16]: # Remove bedroom outlier
df = df[df['bedrooms'] != 33]

In [17]: plot_iqr(df, target, title='Price Distribution Before Outlier Removal')

Price Distribution Before Outlier Removal

Min: 78000 Max: 7700000

In [18]: # Removed outliers above max fence
df_outliers_removed = df[df.price < 1129500]</pre>

In [19]:

Price Distribution After Outlier Removal

Min: 78000 Max: 1120000

In [20]:

Lot Size Distribution Before Outlier Removal

Min: 520 Max: 1651359

In [21]:

Removed outliers above max fence
df_outliers_removed = df_outliers_removed['sqft_lot

In [22]:

Checking new distribution
plot_iqr(df_outliers_removed, col='sqft_lot', title='Lot Size Distribut

Lot Size Distribution After Outlier Removal

Min: 520 Max: 18265

In [23]:

Home Size Distribution (excl basement) Before Outlier Remo

Min: 370 Max: 5370

In [24]:

Neighboring Lot Size Distribution Before Outlier Removal

Min: 651 Max: 196591

In [25]:

Remove outliers above max fence
df_outliers_removed = df_outliers_removed['neighbor

In [26]:

Neighboring Lot Size Distribution After Outlier Removal

Min: 651 Max: 14859

Explore

Now that the source data has been cleaned up, we use more descriptive statistics to better understand our data and draw initial ideas of what features might impact our target, price.

Zipcode

Since King County includes the metro area of Seattle, WA, I had a hunch that proximity to the city center would influence house price, so I wanted to visualize this.

Out[27]:

	zipcode	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vie
0	98001	268933	3.465704	2.069495	1877	8544	1.480144	0.0	0.0469
1	98002	232821	3.309278	1.819588	1619	7254	1.335052	0.0	0.0000
2	98003	283161	3.339844	2.008789	1864	9098	1.308594	0.0	0.1992
3	98004	833037	3.381679	1.944656	1965	9503	1.270992	0.0	0.0305
4	98005	704517	3.660194	2.223301	2284	10271	1.174757	0.0	0.0097

```
# Took a public data file containing the shapes of zipcodes in King Colpha
In [28]:
           # geojson file source: https://data.seattle.gov/dataset/Zip-Codes/dk58-
           # Parsed just the zipcodes in our source dataset from the public geojs
           # into an updated json with just the necessary data for mapping
           # inspiration from: https://towardsdatascience.com/visualizing-data-at-
           import json
           with open('data/kc_zipcode_map.geojson', 'r') as jsonFile:
               kczipcodes = json.load(jsonFile)
           geozips = []
           for i in range(len(kczipcodes['features'])):
               if kczipcodes['features'][i]['properties']['ZIP'] in list(zipcodes_
                   geozips.append(kczipcodes['features'][i])
           new_json = dict.fromkeys(['type', 'features'])
           new json['type'] = 'FeatureCollection'
           new json['features'] = geozips
           open('data/updated kc zipcode map.json', 'w').write(
```

json.dumps(new json, sort keys=True, indent=4, separators=(',',

```
In [29]:
           # Checking the format of the new json file to find what I can map to tl
           with open('data/updated kc zipcode map.json', 'r') as f:
                kc geojson = json.load(f)
           kc_geojson['features'][0]
Out[29]:
           {'geometry': {'coordinates': [[[-122.21842289674088, 47.43750364859679!
                [-122.21896085798723, 47.43750323467437],
                [-122.21957512310345, 47.43750274754203],
                [-122.22159770707769, 47.43750114891263],
                [-122.22159948023497, 47.43495688786757],
                [-122.22170516151417, 47.43495715523315],
                [-122.22360892800278, 47.434961994316446],
                [-122.22373457127979, 47.434962099304876],
                [-122.22587769127573, 47.434963881291935],
                [-122.22612385037388, 47.43508413516542],
                [-122.22618863127923, 47.43511744801654],
                [-122.22628847403791, 47.43516579242339],
                [-122.2262886113923, 47.43516566719561],
                [-122.22648870399131, 47.43497890626116],
                [-122.22661342094158, 47.43486319441269],
                [-122.22671888296699, 47.434764385764986],
                [-122.2267982615053, 47.4346914367485],
                [-122.22690814577896, 47.43458841811856],
                [-122.22695898576944, 47.43454345348303],
                [-122.22701850789504, 47.434483939093646],
                [-122.2270844426768, 47.43441818005568],
                [-122.22714578795132, 47.43435055127265],
                [-122.22718410846879, 47.434310491103155],
                [-122.22726053540013, 47.43422142788365],
                [-122.22732069522594, 47.43414785273184],
                [-122.2273813395292, 47.434072901411746],
                [-122.22739692376065, 47.43405137660248],
                [-122.22743197734336, 47.434001801752046],
                [-122.22748358336494, 47.43392915432964],
                [-122.22751222433438, 47.43388583251501],
                [-122.2275442872729, 47.433838012733155],
                [-122.22758834146777, 47.43376677212654],
                [-122.22764006809757, 47.43367959868589],
                [-122.22768243768654, 47.43360153347239],
                [-122.22772417248696, 47.43351876184484],
                [-122.22776248474769, 47.433440316901844],
                [-122.22780573224404, 47.43333858560033],
                [-122.22787700091527, 47.43315130309473],
                [-122.22787886231515, 47.43306932215706],
                [-122.22790029497183, 47.43302107143945],
                [-122.22791802063026, 47.43296571778834],
                [-122.22793994389957, 47.43287929255673],
                [-122.22796339899458, 47.43277400009597],
                [-122.22797936792988, 47.43269068325332],
                [-122.2279888524406, 47.43262981826024],
                [-122.22799990716845, 47.43255183198607],
                [-122.22802949768368, 47.431544010204405],
                [-122.22802920794217, 47.431539979039805],
                [-122.22787176095208, 47.43139888046443],
                [-122.22787424969577, 47.431333263770256],
                [-122.2276848179994, 47.43124110416986],
               [-122.2275208963031, 47.43112941443359],
```

```
[-122.17834708191135, 47.43034756875706],
  [-122.1783505528658, 47.430347547242015],
  [-122.17846427833116, 47.43034680194246],
  [-122.17866119065798, 47.430345532922416],
  [-122.17910664418226, 47.43034263384648],
  [-122.17914344659857, 47.43034238800509],
  [-122.17933789301365, 47.43034112461348],
  [-122.17973890672259, 47.430338500647004],
  [-122.1804548393713, 47.430333810796824],
  [-122.1807175207457, 47.430332088187065],
  [-122.18101421656355, 47.43033015165284],
  [-122.18126834061248, 47.430328726006174],
  [-122.18186936708582, 47.430324564752304],
  [-122.1824760528623, 47.43032036386599],
  [-122.18381065635054, 47.43031108703317],
  [-122.18513637357684, 47.43030186953662],
  [-122.18562808104285, 47.43029844959363],
  [-122.18633995609471, 47.430293501425865],
  [-122.18634367936257, 47.43029347665566],
  [-122.18634252206351, 47.43033136937003],
  [-122.18634213332096, 47.430343991887234],
  [-122.1864030535048, 47.43034403431523],
  [-122.18646391577916, 47.43034407740155],
  [-122.18673470709918, 47.4303442656362],
  [-122.18695109938896, 47.430344417509275],
  [-122.18697938093798, 47.430344436492256],
  [-122.18699149625252, 47.43034444348621],
  [-122.1873026307398, 47.43034465977605],
  [-122.18750464016938, 47.430344799821604],
  [-122.18765666969955, 47.430344907504974],
  [-122.18779194533518, 47.43034499890506],
  [-122.1877923040555, 47.43032740426942],
  [-122.18783250830195, 47.430327342400304],
  [-122.18791685559383, 47.430327208069166],
  [-122.1880158456088, 47.43032705317466],
  [-122.18845758689822, 47.43032666619356],
  ...]],
 'type': 'Polygon'},
'properties': {'COUNTY': '033',
'OBJECTID': 1,
'SHAPE Area': 228012909.32990217,
'SHAPE Length': 117508.21171773598,
'ZIP': 98031,
'ZIPCODE': '98031'},
'type': 'Feature'}
```

```
In [30]: # Create a string column with formatted price to put in visualization
zipcodes df['$price'] = zipcodes df['price'].apply(lambda x: '${:,}'.fc
```

```
def zipcodes_map(df, color, hoverdata=None, title=None, labels=None):
In [31]:
               Parameters:
               df - pd.Dataframe, main data to read
               color - str, column name in df to visualize
               hoverdata - list, column names to display on map
               labels - optional dict, {hoverdata: display name} to display more
               title - optional str, title for map
               Returns:
               Choropleth map
                , , ,
               fig = px.choropleth_mapbox(data_frame=df, locations='zipcode', cent
                                           color=color, color_continuous_scale='der
                                           geojson=kc_geojson, featureidkey='proper
                                           hover_data=hoverdata, labels=labels,
                                           title=title, height=700, width=900, opac
               fig.update_layout(mapbox_style='carto-positron')
               fig.update_geos(fitbounds='locations', visible=False)
               fig.write image((f'images/zipmap {color}.png'))
               fig.show()
```

Average House Sale Price(\$), King County

Looking for Linear Relationships

Going into the modeling step, it helps to have a sense of what individual features appear to have a linear relationship with sale price. In this section, we visualize the relationship between each feature and sale price. I also looked for any significant difference in these relationships between houses that had been renovated vs. houses that had not.

In [33]:

df_outliers_removed.head(2)

Out[33]:

	id	date_sold	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	water
0	7129300520	2014-10- 13	221900	3	1.00	1180	5650	1.0	
1	6414100192	2014-12- 09	538000	3	2.25	2570	7242	2.0	

In [34]:

bedrooms Relationship with Price

bathrooms Relationship with Price

sqft_living Relationship with Price

sqft_lot Relationship with Price

floors Relationship with Price waterfront Relationship with Price

view Relationship with Price

condition Relationship with Price

grade Relationship with Price

sqft_above Relationship with Price

sqft_basement Relationship with Price

yr_built Relationship with Price

lat Relationship with Price

long Relationship with Price

neighboring_sqft_living Relationship with Price

neighboring_sqft_lot Relationship with Price

year_sold Relationship with Price

In [35]:

yr_renovated Relationship with Price

In [36]:

yrs_since_renovated Relationship with Price

The following features appear to have a relatively significant linear relationship with Price:

- bedrooms
- bathrooms
- sqft_living
- grade
- sqft_above
- sqft_basement
- neighboring_sqft_living

Looking in overall King County and by individual zipcode, houses that have had renovations have a higher median price, which supports the idea that renovating improves the value of a house.

Multicollinearity

When constructing a linear regression model with multiple independent variables, it's important to look for multicollinearity between the independent variables. If a model includes multiple features that are actually related to each other, their impact on the target may be overstated in the model.

In this section, I look for multicollinearity within my preprocessed dataset.

```
In [40]:
           def multicollinearity(data, min correlation=0.75, figsize=(12,10), anno
               Parameters:
               data - pd.DataFrame, primary dataset to read from
               min correlation - float (0-1), the smallest correlation between two
               figsize - tuple, width and height of the resulting figure (default:
               annot - bool, overlay figure with the correlation values for each
               Dataframe of feature pairs with correlation >= min correlation
               Heatmap of feature correlations
               import seaborn as sns
               df = data.corr().abs().stack().reset index().sort values(0, ascendi
               df['pairs'] = list(zip(df.level 0, df.level 1))
               df = df.set index('pairs').drop(columns=['level 0', 'level 1'])
               df.columns = ['correlation']
               df.drop duplicates(inplace=True)
               mask = np.triu(np.ones like(data.corr(), dtype=bool))
               cmap = sns.diverging palette(240, 0, sep=60, s=75, as cmap=True)
               f, ax = plt.subplots(figsize=figsize)
               sns.heatmap(data.corr().abs(), center=0, linewidths=.3, mask=mask,
                           cmap=cmap, square=True)
               return df[df.correlation > min correlation]
```

In [41]:

multicollinearity(df_outliers_removed, annot=False)

Out[41]:

correlation

pairs	
(price, price)	1.000000
(yr_renovated, yrs_since_renovated)	0.999962
(yr_built, age_at_sale)	0.999879
(sqft_lot, neighboring_sqft_lot)	0.871084
(sqft_above, sqft_living)	0.843652


```
In [42]:
           # Remove one out of each multicollinear pair from the apparent feature:
           apparent_features.remove('yr_renovated')
           apparent features.remove('sqft above')
           apparent_features
Out[42]:
           ['bedrooms',
            'bathrooms',
            'sqft living',
            'floors',
            'view',
            'grade',
            'sqft_basement',
            'lat',
            'neighboring sqft living',
            'yrs_since_renovated']
           # Create a new df with one out of each multicollinear pair removed
In [43]:
           df_simplified = df_outliers_removed.drop(columns=['date_sold', 'yr_reno
                                                             'neighboring_sqft_lot
           df simplified.info()
           <class 'pandas.core.frame.DataFrame'>
           Int64Index: 17744 entries, 0 to 21596
           Data columns (total 20 columns):
                                         Non-Null Count Dtype
            #
                Column
            0
                id
                                          17744 non-null
                                                          object
            1
                price
                                          17744 non-null int64
            2
                bedrooms
                                          17744 non-null int64
            3
                bathrooms
                                          17744 non-null float64
            4
                sqft living
                                          17744 non-null int64
            5
                sqft_lot
                                         17744 non-null int64
            6
                floors
                                          17744 non-null float64
            7
                waterfront
                                          17744 non-null float64
            8
                view
                                          17744 non-null float64
            9
                condition
                                          17744 non-null int64
            10 grade
                                          17744 non-null int64
            11
                sqft basement
                                          17744 non-null int64
            12
                zipcode
                                          17744 non-null object
            13
                                          17744 non-null float64
                lat
            14
                                          17744 non-null float64
               long
               neighboring sqft living 17744 non-null int64
            16
               year sold
                                          17744 non-null int64
            17
               age at sale
                                          17744 non-null int64
            18
                renovated?
                                          17744 non-null object
            19 yrs since renovated
                                         17744 non-null int64
```

memory usage: 3.5+ MB

dtypes: float64(6), int64(11), object(3)

Model

Now that data has been fully preprocessed and explored, it's time to begin modeling!

Workflow & Defining Functions

Workflow:

- 1. Create baseline dataframe "df"
- 2. Identify categorical columns and columns to drop from model, put both into lists "columns_cat", "drop_cols"
- 3. One-hot encode categorical columns to create "df_ohe"
- 4. Model using "df_ohe" and "target"
- 5. Interpret results:
 - A. R2 should be adequate (looking for \sim 0.65 and above)
 - B. P-values for each feature should be below 0.05 alpha
 - C. Residuals should be normally distributed (qq plot)
 - D. Residuals should be homoskedastic (scatterplot of residuals)

Repeat until model is maximized.

```
In [44]:
           # Function corresponding to workflow step 3
           def onehotencode(df, columns cat, drop cols=[]):
               Parameters:
               df = pd.dataframe to model
               columns cat = list of categorical columns to one-hot encode
               drop_cols = (optional) any columns from overall df to drop before a
               Returns:
               Dataframe with categorical columns one-hot encoded, original column
               and column names with periods replaced with underscores
               df ohe = pd.get dummies(df.drop(columns=drop cols), columns=columns
               new cols = []
               for col in df ohe.columns:
                   new cols.append(col.replace('.', ' '))
               df ohe.columns = new cols
               return df ohe
```

```
In [45]:
           # Function corresponding to workflow step 4
           def model(df, target):
                111
               Parameters:
               df = pd.dataframe, with categorical variables one-hot encoded
               target = string, column name of dependent variable
               exclude cols = list, columns to exclude from model, due to multicol
               Returns:
               Model summary
               QQ plot (to check that residuals are normally distributed)
               Scatter plot of residuals (to check that residuals are homoskedast:
               formula_predictors = ' + '.join(df.drop(columns=target).columns)
               formula = target + ' ~ ' + formula_predictors
               model = ols(formula=formula, data=df).fit()
               display(model.summary())
               fig, ax = plt.subplots(ncols=2, figsize=(10,5))
               sm.graphics.gqplot(data=model.resid, fit=True, line='45', ax=ax[0],
               ax[0].set title('QQ Plot -\n check for normally distributed residuation)
               ax[1].scatter(model.predict(df), model.resid)
               ax[1].axhline(y=0, color='black')
               ax[1].set title('Scatterplot of Errors -\n check for homoskedastici
               plt.tight layout()
               plt.show();
               return model
```

Model 1

The first model I ran used the raw data before outlier removal. While the R2 value was quite high, indicating that the model was describing $\sim\!80\%$ of the variance in sale price, the residuals were quite abnormally distributed. This is when I investigated outliers and realized that there were quite a few.

In [46]:

df.head(2)

Out[46]:

	id	date_sold	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	water
0	7129300520	2014-10- 13	221900	3	1.00	1180	5650	1.0	
1	6414100192	2014-12- 09	538000	3	2.25	2570	7242	2.0	

```
In [47]: # identify df
m1_df = df.copy()

# Identify categorical and drop columns
m1_columns_cat = ['floors', 'waterfront', 'condition', 'zipcode']
m1_drop_cols = ['id', 'renovated?', 'year_sold', 'date_sold']

# one-hot encode categorical columns
m1_df_ohe = onehotencode(df=m1_df, columns_cat=m1_columns_cat, drop_col_m1_df_ohe.head()

# model
model1 = model(df=m1_df_ohe, target=target)
model1
```

Dep. Variable:	price	R-squared:	0.811
Model:	OLS	Adj. R-squared:	0.810
Method:	Least Squares	F-statistic:	988.9
Date:	Mon, 19 Apr 2021	Prob (F-statistic):	0.00
Time:	16:40:17	Log-Likelihood:	-2.8942e+05
No. Observations:	21596	AIC:	5.790e+05
Df Residuals:	21502	BIC:	5.798e+05
Df Model:	93		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-7.957e+07	7.77e+06	-10.247	0.000	-9.48e+07	-6.44e+07
bedrooms	-2.965e+04	1611.781	-18.395	0.000	-3.28e+04	-2.65e+04
bathrooms	2.485e+04	2642.547	9.405	0.000	1.97e+04	3e+04
sqft_living	104.6241	14.430	7.250	0.000	76.340	132.908
sqft_lot	0.2356	0.038	6.140	0.000	0.160	0.311
view	5.617e+04	1737.455	32.331	0.000	5.28e+04	5.96e+04
grade	5.721e+04	1823.525	31.372	0.000	5.36e+04	6.08e+04
sqft_above	105.6866	14.468	7.305	0.000	77.329	134.044
sqft_basement	26.3853	14.282	1.847	0.065	-1.609	54.380
yr_built	2.944e+04	2344.800	12.556	0.000	2.48e+04	3.4e+04
yr_renovated	-2603.6528	366.441	-7.105	0.000	-3321.904	-1885.402
lat	1.678e+05	6.32e+04	2.654	0.008	4.39e+04	2.92e+05
long	-1.402e+05	4.55e+04	-3.081	0.002	-2.29e+05	-5.1e+04
neighboring_sqft_living	11.3473	2.888	3.929	0.000	5.686	17.009
neighboring_sqft_lot	-0.1401	0.060	-2.320	0.020	-0.258	-0.022

age_at_sale	3.026e+04	2343.988	12.910	0.000	2.57e+04	3.49e+04
yrs_since_renovated	-5332.7640	745.714	-7.151	0.000	-6794.418	-3871.110
floors_1_5	-2.412e+04	4421.401	-5.455	0.000	-3.28e+04	-1.55e+04
floors_2_0	-5.478e+04	3683.704	-14.872	0.000	-6.2e+04	-4.76e+04
floors_2_5	4.085e+04	1.33e+04	3.062	0.002	1.47e+04	6.7e+04
floors_3_0	-8.399e+04	8236.229	-10.197	0.000	-1e+05	-6.78e+04
floors_3_5	2.526e+04	6.09e+04	0.415	0.678	-9.41e+04	1.45e+05
waterfront_1_0	6.888e+05	1.47e+04	46.924	0.000	6.6e+05	7.18e+05
condition_1	6325.3138	1.16e+04	0.547	0.584	-1.63e+04	2.9e+04
condition_2	6.136e+04	1.22e+04	5.044	0.000	3.75e+04	8.52e+04
zipcode_98002	4.025e+04	1.44e+04	2.790	0.005	1.2e+04	6.85e+04
zipcode_98003	-2.28e+04	1.29e+04	-1.767	0.077	-4.81e+04	2492.235
zipcode_98004	7.324e+05	2.35e+04	31.231	0.000	6.86e+05	7.78e+05
zipcode_98005	2.655e+05	2.51e+04	10.595	0.000	2.16e+05	3.15e+05
zipcode_98006	2.429e+05	2.05e+04	11.858	0.000	2.03e+05	2.83e+05
zipcode_98007	2.161e+05	2.59e+04	8.355	0.000	1.65e+05	2.67e+05
zipcode_98008	2.2e+05	2.46e+04	8.955	0.000	1.72e+05	2.68e+05
zipcode_98010	1.026e+05	2.2e+04	4.663	0.000	5.95e+04	1.46e+05
zipcode_98011	5.644e+04	3.2e+04	1.766	0.077	-6203.843	1.19e+05
zipcode_98014	9.732e+04	3.51e+04	2.771	0.006	2.85e+04	1.66e+05
zipcode_98019	6.111e+04	3.46e+04	1.764	0.078	-6774.196	1.29e+05
zipcode_98022	3.94e+04	1.91e+04	2.060	0.039	1903.619	7.69e+04
zipcode_98023	-4.499e+04	1.19e+04	-3.789	0.000	-6.83e+04	-2.17e+04
zipcode_98024	1.594e+05	3.09e+04	5.156	0.000	9.88e+04	2.2e+05
zipcode_98027	1.623e+05	2.1e+04	7.717	0.000	1.21e+05	2.04e+05
zipcode_98028	4.605e+04	3.1e+04	1.483	0.138	-1.48e+04	1.07e+05
zipcode_98029	2.063e+05	2.4e+04	8.581	0.000	1.59e+05	2.53e+05
zipcode_98030	5746.2275	1.42e+04	0.405	0.686	-2.21e+04	3.36e+04
zipcode_98031	1.3e+04	1.48e+04	0.880	0.379	-1.6e+04	4.2e+04
zipcode_98032	-2193.5419	1.72e+04	-0.128	0.898	-3.58e+04	3.14e+04
zipcode_98033	3.139e+05	2.66e+04	11.792	0.000	2.62e+05	3.66e+05
zipcode_98034	1.41e+05	2.85e+04	4.938	0.000	8.5e+04	1.97e+05
zipcode_98038	5.462e+04	1.59e+04	3.425	0.001	2.34e+04	8.59e+04
zipcode_98039	1.272e+06	3.17e+04	40.127	0.000	1.21e+06	1.33e+06
zipcode_98040	4.768e+05	2.07e+04	23.012	0.000	4.36e+05	5.17e+05
zipcode_98042	1.794e+04	1.36e+04	1.321	0.187	-8681.716	4.46e+04
zipcode_98045	1.334e+05	2.95e+04	4.528	0.000	7.57e+04	1.91e+05

zipcode_98052	1.866e+05	2.72e+04	6.864	0.000	1.33e+05	2.4e+05
zipcode_98053	1.581e+05	2.91e+04	5.427	0.000	1.01e+05	2.15e+05
zipcode_98055	2.775e+04	1.65e+04	1.686	0.092	-4517.456	6e+04
zipcode_98056	7.378e+04	1.79e+04	4.128	0.000	3.87e+04	1.09e+05
zipcode_98058	2.231e+04	1.56e+04	1.435	0.151	-8168.084	5.28e+04
zipcode_98059	7.172e+04	1.75e+04	4.090	0.000	3.74e+04	1.06e+05
zipcode_98065	1.008e+05	2.72e+04	3.710	0.000	4.75e+04	1.54e+05
zipcode_98070	-4.504e+04	2.07e+04	-2.177	0.030	-8.56e+04	-4480.383
zipcode_98072	9.449e+04	3.18e+04	2.973	0.003	3.22e+04	1.57e+05
zipcode_98074	1.469e+05	2.58e+04	5.705	0.000	9.64e+04	1.97e+05
zipcode_98075	1.527e+05	2.48e+04	6.169	0.000	1.04e+05	2.01e+05
zipcode_98077	7.344e+04	3.31e+04	2.220	0.026	8612.514	1.38e+05
zipcode_98092	-2.176e+04	1.29e+04	-1.686	0.092	-4.71e+04	3543.375
zipcode_98102	4.427e+05	2.75e+04	16.101	0.000	3.89e+05	4.97e+05
zipcode_98103	2.624e+05	2.58e+04	10.175	0.000	2.12e+05	3.13e+05
zipcode_98105	4.005e+05	2.64e+04	15.150	0.000	3.49e+05	4.52e+05
zipcode_98106	9.627e+04	1.91e+04	5.046	0.000	5.89e+04	1.34e+05
zipcode_98107	2.684e+05	2.66e+04	10.100	0.000	2.16e+05	3.2e+05
zipcode_98108	8.213e+04	2.11e+04	3.899	0.000	4.08e+04	1.23e+05
zipcode_98109	4.199e+05	2.74e+04	15.348	0.000	3.66e+05	4.73e+05
zipcode_98112	5.516e+05	2.43e+04	22.722	0.000	5.04e+05	5.99e+05
zipcode_98115	2.61e+05	2.62e+04	9.971	0.000	2.1e+05	3.12e+05
zipcode_98116	2.259e+05	2.13e+04	10.606	0.000	1.84e+05	2.68e+05
zipcode_98117	2.386e+05	2.65e+04	9.001	0.000	1.87e+05	2.91e+05
zipcode_98118	1.272e+05	1.86e+04	6.835	0.000	9.07e+04	1.64e+05
zipcode_98119	4.038e+05	2.58e+04	15.626	0.000	3.53e+05	4.54e+05
zipcode_98122	2.76e+05	2.3e+04	11.977	0.000	2.31e+05	3.21e+05
zipcode_98125	1.261e+05	2.83e+04	4.461	0.000	7.07e+04	1.82e+05
zipcode_98126	1.384e+05	1.96e+04	7.074	0.000	1e+05	1.77e+05
zipcode_98133	8.565e+04	2.92e+04	2.935	0.003	2.85e+04	1.43e+05
zipcode_98136	1.888e+05	2.01e+04	9.415	0.000	1.49e+05	2.28e+05
zipcode_98144	2.254e+05	2.14e+04	10.519	0.000	1.83e+05	2.67e+05
zipcode_98146	6.529e+04	1.79e+04	3.647	0.000	3.02e+04	1e+05
zipcode_98148	3.445e+04	2.44e+04	1.415	0.157	-1.33e+04	8.22e+04
zipcode_98155	6.544e+04	3.03e+04	2.156	0.031	5959.083	1.25e+05
zipcode_98166	1.872e+04	1.64e+04	1.143	0.253	-1.34e+04	5.08e+04
zipcode_98168	3.924e+04	1.73e+04	2.266	0.023	5301.345	7.32e+04

zipcode_98177	1.293e+05	3.05e+04	4.244	0.000	6.96e+04	1.89e+05
zipcode_98178	5185.1794	1.79e+04	0.290	0.772	-2.99e+04	4.03e+04
zipcode_98188	7816.5705	1.84e+04	0.426	0.670	-2.82e+04	4.38e+04
zipcode_98198	-1.89e+04	1.39e+04	-1.359	0.174	-4.62e+04	8364.745
zipcode 98199	3.05e+05	2.52e+04	12.121	0.000	2.56e+05	3.54e+05

1.995	Durbin-Watson:	20759.003	Omnibus:
4237764.288	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	4.144	Skew:
3.60e+08	Cond. No.	71.123	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.6e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Out[47]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fe/

Model 2

This model runs with the same features as model 1, but trained on a dataset without outliers.

This model's R2 score improved to .84, and the residuals appear much more normally distributed. Now I notice that some features have p-values greater than 0.05 and decide to deal with them and rerun the model.

In [48]:

df_simplified.head(2)

Out[48]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
0	7129300520	221900	3	1.00	1180	5650	1.0	0.0	0.0
1	6414100192	538000	3	2.25	2570	7242	2.0	0.0	0.0

In [49]:

```
# identify df
m2_df = df_simplified.copy()

# Identify categorical and drop columns
m2_columns_cat = ['floors', 'waterfront', 'condition', 'zipcode']
m2_drop_cols = ['id', 'renovated?', 'year_sold']

# one-hot encode categorical columns
m2_df_ohe = onehotencode(df=m2_df, columns_cat=m2_columns_cat, drop_col
m2_df_ohe.head()

# model
model2 = model(df=m2_df_ohe, target=target)
model2
```

Dep. Variable:	price	R-squared:	0.839
Model:	OLS	Adj. R-squared:	0.838
Method:	Least Squares	F-statistic:	1033.
Date:	Mon, 19 Apr 2021	Prob (F-statistic):	0.00
Time:	16:40:18	Log-Likelihood:	-2.2586e+05
No. Observations:	17744	AIC:	4.519e+05
Df Residuals:	17654	BIC:	4.526e+05
Df Model:	89		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-7.375e+06	4.21e+06	-1.753	0.080	-1.56e+07	8.71e+05
bedrooms	-5100.7303	953.008	-5.352	0.000	-6968.720	-3232.740
bathrooms	1.23e+04	1548.894	7.942	0.000	9265.770	1.53e+04
sqft_living	112.5430	2.078	54.153	0.000	108.469	116.617
sqft_lot	1.7058	0.276	6.187	0.000	1.165	2.246
view	3.349e+04	1167.618	28.679	0.000	3.12e+04	3.58e+04
grade	4.407e+04	1109.626	39.712	0.000	4.19e+04	4.62e+04
sqft_basement	-37.4964	2.346	-15.986	0.000	-42.094	-32.899
lat	-2.346e+04	3.98e+04	-0.590	0.555	-1.01e+05	5.45e+04
long	-6.642e+04	3.16e+04	-2.100	0.036	-1.28e+05	-4427.512
neighboring_sqft_living	31.3687	1.880	16.686	0.000	27.684	35.054
age_at_sale	546.3296	39.126	13.963	0.000	469.638	623.021
yrs_since_renovated	-31.0585	3.924	-7.916	0.000	-38.749	-23.368
floors_1_5	5054.4094	2558.085	1.976	0.048	40.311	1.01e+04
floors_2_0	-8577.4754	2276.565	-3.768	0.000	-1.3e+04	-4115.184

floors_2_5	-1.542e+04	8772.960	-1.758	0.079	-3.26e+04	1776.715
floors_3_0	-4.245e+04	4615.163	-9.198	0.000	-5.15e+04	-3.34e+04
floors_3_5	-5.505e+04	3.36e+04	-1.636	0.102	-1.21e+05	1.09e+04
waterfront_1_0	2.559e+05	2.01e+04	12.754	0.000	2.17e+05	2.95e+05
condition_1	4.203e+04	6822.888	6.161	0.000	2.87e+04	5.54e+04
condition_2	8.531e+04	7141.146	11.946	0.000	7.13e+04	9.93e+04
zipcode_98002	2.251e+04	7904.809	2.848	0.004	7018.178	3.8e+04
zipcode_98003	-2482.9584	7226.940	-0.344	0.731	-1.66e+04	1.17e+04
zipcode_98004	5.295e+05	1.51e+04	35.168	0.000	5e+05	5.59e+05
zipcode_98005	3.526e+05	1.55e+04	22.806	0.000	3.22e+05	3.83e+05
zipcode_98006	2.899e+05	1.26e+04	22.932	0.000	2.65e+05	3.15e+05
zipcode_98007	2.724e+05	1.55e+04	17.613	0.000	2.42e+05	3.03e+05
zipcode_98008	2.62e+05	1.51e+04	17.370	0.000	2.32e+05	2.92e+05
zipcode_98010	9.574e+04	1.61e+04	5.949	0.000	6.42e+04	1.27e+05
zipcode_98011	1.579e+05	1.96e+04	8.077	0.000	1.2e+05	1.96e+05
zipcode_98014	1.57e+05	2.82e+04	5.573	0.000	1.02e+05	2.12e+05
zipcode_98019	1.206e+05	2.17e+04	5.555	0.000	7.81e+04	1.63e+05
zipcode_98022	2.228e+04	1.27e+04	1.752	0.080	-2642.143	4.72e+04
zipcode_98023	-2.092e+04	6958.390	-3.007	0.003	-3.46e+04	-7284.324
zipcode_98024	1.769e+05	2.4e+04	7.383	0.000	1.3e+05	2.24e+05
zipcode_98027	2.504e+05	1.37e+04	18.299	0.000	2.24e+05	2.77e+05
zipcode_98028	1.425e+05	1.91e+04	7.454	0.000	1.05e+05	1.8e+05
zipcode_98029	2.55e+05	1.5e+04	16.979	0.000	2.26e+05	2.84e+05
zipcode_98030	1.456e+04	8039.296	1.811	0.070	-1198.775	3.03e+04
zipcode_98031	2.372e+04	8514.899	2.785	0.005	7025.391	4.04e+04
zipcode_98032	5703.5679	9545.055	0.598	0.550	-1.3e+04	2.44e+04
zipcode_98033	3.361e+05	1.65e+04	20.354	0.000	3.04e+05	3.68e+05
zipcode_98034	2.009e+05	1.77e+04	11.358	0.000	1.66e+05	2.36e+05
zipcode_98038	5.416e+04	1e+04	5.411	0.000	3.45e+04	7.38e+04
zipcode_98039	6.616e+05	3.62e+04	18.297	0.000	5.91e+05	7.32e+05
zipcode_98040	4.355e+05	1.34e+04	32.554	0.000	4.09e+05	4.62e+05
zipcode_98042	2.451e+04	8348.048	2.935	0.003	8142.304	4.09e+04
zipcode_98045	1.354e+05	1.96e+04	6.914	0.000	9.7e+04	1.74e+05
zipcode_98052	2.767e+05	1.68e+04	16.495	0.000	2.44e+05	3.1e+05
zipcode_98053	2.831e+05	1.9e+04	14.925	0.000	2.46e+05	3.2e+05
zipcode_98055	5.03e+04	9627.224	5.225	0.000	3.14e+04	6.92e+04
zipcode_98056	1.159e+05	1.07e+04	10.834	0.000	9.49e+04	1.37e+05

zipcode_98058	4.813e+04	9397.542	5.122	0.000	2.97e+04	6.66e+04
zipcode_98059	1.176e+05	1.07e+04	11.008	0.000	9.67e+04	1.39e+05
zipcode_98065	1.591e+05	1.74e+04	9.168	0.000	1.25e+05	1.93e+05
zipcode_98070	5.27e+04	2.22e+04	2.370	0.018	9116.386	9.63e+04
zipcode_98072	1.733e+05	2.02e+04	8.581	0.000	1.34e+05	2.13e+05
zipcode_98074	2.382e+05	1.61e+04	14.774	0.000	2.07e+05	2.7e+05
zipcode_98075	2.487e+05	1.59e+04	15.603	0.000	2.17e+05	2.8e+05
zipcode_98077	1.868e+05	2.42e+04	7.732	0.000	1.39e+05	2.34e+05
zipcode_98092	-1.468e+04	7654.292	-1.918	0.055	-2.97e+04	320.060
zipcode_98102	4.128e+05	1.65e+04	24.964	0.000	3.8e+05	4.45e+05
zipcode_98103	3.296e+05	1.6e+04	20.658	0.000	2.98e+05	3.61e+05
zipcode_98105	3.843e+05	1.63e+04	23.546	0.000	3.52e+05	4.16e+05
zipcode_98106	1.246e+05	1.15e+04	10.874	0.000	1.02e+05	1.47e+05
zipcode_98107	3.286e+05	1.63e+04	20.192	0.000	2.97e+05	3.6e+05
zipcode_98108	1.239e+05	1.24e+04	10.013	0.000	9.96e+04	1.48e+05
zipcode_98109	4.113e+05	1.67e+04	24.696	0.000	3.79e+05	4.44e+05
zipcode_98112	4.304e+05	1.51e+04	28.418	0.000	4.01e+05	4.6e+05
zipcode_98115	3.281e+05	1.62e+04	20.300	0.000	2.96e+05	3.6e+05
zipcode_98116	2.941e+05	1.3e+04	22.635	0.000	2.69e+05	3.2e+05
zipcode_98117	3.198e+05	1.64e+04	19.457	0.000	2.88e+05	3.52e+05
zipcode_98118	1.711e+05	1.12e+04	15.239	0.000	1.49e+05	1.93e+05
zipcode_98119	4.006e+05	1.58e+04	25.278	0.000	3.7e+05	4.32e+05
zipcode_98122	3.115e+05	1.4e+04	22.281	0.000	2.84e+05	3.39e+05
zipcode_98125	2.051e+05	1.74e+04	11.784	0.000	1.71e+05	2.39e+05
zipcode_98126	1.935e+05	1.18e+04	16.357	0.000	1.7e+05	2.17e+05
zipcode_98133	1.641e+05	1.81e+04	9.089	0.000	1.29e+05	1.99e+05
zipcode_98136	2.577e+05	1.21e+04	21.336	0.000	2.34e+05	2.81e+05
zipcode_98144	2.49e+05	1.3e+04	19.147	0.000	2.23e+05	2.74e+05
zipcode_98146	1.109e+05	1.06e+04	10.428	0.000	9.01e+04	1.32e+05
zipcode_98148	5.639e+04	1.31e+04	4.299	0.000	3.07e+04	8.21e+04
zipcode_98155	1.476e+05	1.88e+04	7.868	0.000	1.11e+05	1.84e+05
zipcode_98166	9.814e+04	1.01e+04	9.717	0.000	7.83e+04	1.18e+05
zipcode_98168	5.276e+04	1.03e+04	5.132	0.000	3.26e+04	7.29e+04
zipcode_98177	2.137e+05	1.88e+04	11.341	0.000	1.77e+05	2.51e+05
zipcode_98178	5.381e+04	1.05e+04	5.134	0.000	3.33e+04	7.44e+04
zipcode_98188	3.473e+04	1.03e+04	3.362	0.001	1.45e+04	5.5e+04
zipcode_98198	2.681e+04	7989.049	3.356	0.001	1.11e+04	4.25e+04

zipcode_98199	3.602e+05	1.56e+04	23.142	0.000	3.3e+05	3.91e+05
---------------	-----------	----------	--------	-------	---------	----------

1.999	Durbin-Watson:	1440.015	Omnibus:
5034.073	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	0.378	Skew:
5.62e+07	Cond. No.	5.498	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.62e+07. This might indicate that there are strong multicollinearity or other numerical problems.

Out[49]: <statsmodels.regression.linear model.RegressionResultsWrapper at 0x7fe0

Model 3

For model 3, I decided to make the following changes:

- Remove the following features from the model all together because of their high p-values: sqft_basement, lat and long, neighboring_sqft_lot
- Revise the "floor" feature to consider 0.5 story NOT part of the floor count. In other words,
 I will create an integer column for floors with the following options: 1 (1- or 1.5-story), 2
 (2- or 2.5-story), 3 (3- or 3.5-story). I made this decision because I noticed that the halffloor options had high p-values.

This model still has a high R2 at \sim 0.836. It turns out the "floors" feature still is not a good predictor, so I'll remove it in model 4. I also notice that "bedrooms" has a negative coefficient. I wonder how my model might be influenced by a ratio of bathrooms to bedrooms, rather than the raw number of either?

```
df_simplified['floors'].value_counts()
In [50]:
Out[50]:
           1.0
                   9083
           2.0
                   6412
           1.5
                   1583
           3.0
                    565
                     95
           2.5
           3.5
                      6
           Name: floors, dtype: int64
In [51]:
           m3_df = df_simplified.copy()
           m3_df['floors'].replace(to_replace=1.5, value=1.0)
           m3_df['floors'].replace(to_replace=2.5, value=2.0)
           m3_df['floors'].replace(to_replace=3.5, value=3.0)
           m3_df['floors'] = m3_df['floors'].astype(int)
```

Dep. Variable:	price	R-squared:	0.836
Model:	OLS	Adj. R-squared:	0.835
Method:	Least Squares	F-statistic:	1094.
Date:	Mon, 19 Apr 2021	Prob (F-statistic):	0.00
Time:	16:40:19	Log-Likelihood:	-2.2605e+05
No. Observations:	17744	AIC:	4.523e+05
Df Residuals:	17661	BIC:	4.529e+05
Df Model:	82		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-3.782e+05	1.25e+04	-30.340	0.000	-4.03e+05	-3.54e+05
bedrooms	-4447.7715	955.074	-4.657	0.000	-6319.810	-2575.733
bathrooms	8812.7627	1539.750	5.724	0.000	5794.701	1.18e+04
sqft_living	98.7117	1.846	53.469	0.000	95.093	102.330
sqft_lot	1.7455	0.274	6.366	0.000	1.208	2.283
floors	649.7511	1721.665	0.377	0.706	-2724.882	4024.384
view	3.058e+04	1169.017	26.155	0.000	2.83e+04	3.29e+04
grade	4.713e+04	1106.215	42.608	0.000	4.5e+04	4.93e+04
neighboring_sqft_living	37.0663	1.869	19.827	0.000	33.402	40.731
age_at_sale	662.5125	37.996	17.437	0.000	588.038	736.987
yrs_since_renovated	-30.5891	3.955	-7.734	0.000	-38.342	-22.836
waterfront_1_0	2.586e+05	2.03e+04	12.759	0.000	2.19e+05	2.98e+05
condition_1	3.999e+04	6889.853	5.804	0.000	2.65e+04	5.35e+04
condition_2	8.089e+04	7207.739	11.223	0.000	6.68e+04	9.5e+04
zipcode_98002	2.063e+04	7777.515	2.652	0.008	5380.604	3.59e+04
zipcode_98003	-2727.4624	7182.281	-0.380	0.704	-1.68e+04	1.14e+04
zipcode_98004	5.067e+05	8826.363	57.405	0.000	4.89e+05	5.24e+05

zipcode_98005	3.315e+05	9599.283	34.538	0.000	3.13e+05	3.5e+05
zipcode_98006	2.675e+05	6714.362	39.836	0.000	2.54e+05	2.81e+05
zipcode_98007	2.512e+05	8783.199	28.598	0.000	2.34e+05	2.68e+05
zipcode_98008	2.386e+05	7249.038	32.917	0.000	2.24e+05	2.53e+05
zipcode_98010	7.805e+04	1.4e+04	5.573	0.000	5.06e+04	1.05e+05
zipcode_98011	1.394e+05	7925.218	17.584	0.000	1.24e+05	1.55e+05
zipcode_98014	1.156e+05	1.73e+04	6.688	0.000	8.17e+04	1.5e+05
zipcode_98019	9.346e+04	8699.750	10.742	0.000	7.64e+04	1.11e+05
zipcode_98022	1.082e+04	8519.365	1.270	0.204	-5877.676	2.75e+04
zipcode_98023	-1.835e+04	6345.992	-2.892	0.004	-3.08e+04	-5914.031
zipcode_98024	1.483e+05	1.83e+04	8.088	0.000	1.12e+05	1.84e+05
zipcode_98027	2.253e+05	7281.835	30.940	0.000	2.11e+05	2.4e+05
zipcode_98028	1.257e+05	7257.959	17.321	0.000	1.11e+05	1.4e+05
zipcode_98029	2.326e+05	6995.769	33.253	0.000	2.19e+05	2.46e+05
zipcode_98030	8448.7669	7294.682	1.158	0.247	-5849.527	2.27e+04
zipcode_98031	1.464e+04	7225.151	2.026	0.043	473.882	2.88e+04
zipcode_98032	-911.3142	9308.420	-0.098	0.922	-1.92e+04	1.73e+04
zipcode_98033	3.182e+05	6702.095	47.471	0.000	3.05e+05	3.31e+05
zipcode_98034	1.829e+05	6211.324	29.443	0.000	1.71e+05	1.95e+05
zipcode_98038	4.153e+04	6269.919	6.623	0.000	2.92e+04	5.38e+04
zipcode_98039	6.392e+05	3.41e+04	18.722	0.000	5.72e+05	7.06e+05
zipcode_98040	4.172e+05	8731.703	47.784	0.000	4e+05	4.34e+05
zipcode_98042	1.518e+04	6367.494	2.384	0.017	2696.238	2.77e+04
zipcode_98045	1.005e+05	8944.728	11.236	0.000	8.3e+04	1.18e+05
zipcode_98052	2.549e+05	6220.749	40.973	0.000	2.43e+05	2.67e+05
zipcode_98053	2.674e+05	7434.752	35.961	0.000	2.53e+05	2.82e+05
zipcode_98055	3.954e+04	7259.174	5.447	0.000	2.53e+04	5.38e+04
zipcode_98056	1.048e+05	6552.285	15.992	0.000	9.19e+04	1.18e+05
zipcode_98058	3.545e+04	6577.131	5.389	0.000	2.26e+04	4.83e+04
zipcode_98059	1.087e+05	6619.791	16.419	0.000	9.57e+04	1.22e+05
zipcode_98065	1.335e+05	7133.733	18.720	0.000	1.2e+05	1.48e+05
zipcode_98070	6.021e+04	2.14e+04	2.808	0.005	1.82e+04	1.02e+05
zipcode_98072	1.51e+05	8869.407	17.020	0.000	1.34e+05	1.68e+05
zipcode_98074	2.168e+05	6714.780	32.284	0.000	2.04e+05	2.3e+05
zipcode_98075	2.318e+05	7735.434	29.961	0.000	2.17e+05	2.47e+05
zipcode_98077	1.619e+05	1.55e+04	10.466	0.000	1.32e+05	1.92e+05
zipcode_98092	-1.79e+04	7246.019	-2.470	0.014	-3.21e+04	-3693.711

zipcode_98102	3.917e+05	1.04e+04	37.633	0.000	3.71e+05	4.12e+05
zipcode_98103	3.1e+05	6391.225	48.497	0.000	2.97e+05	3.22e+05
zipcode_98105	3.647e+05	8249.366	44.213	0.000	3.49e+05	3.81e+05
zipcode_98106	1.172e+05	6840.656	17.130	0.000	1.04e+05	1.31e+05
zipcode_98107	3.111e+05	7409.418	41.990	0.000	2.97e+05	3.26e+05
zipcode_98108	1.104e+05	7960.516	13.874	0.000	9.48e+04	1.26e+05
zipcode_98109	3.952e+05	1.05e+04	37.685	0.000	3.75e+05	4.16e+05
zipcode_98112	4.101e+05	8421.307	48.701	0.000	3.94e+05	4.27e+05
zipcode_98115	3.086e+05	6306.889	48.927	0.000	2.96e+05	3.21e+05
zipcode_98116	2.843e+05	7067.456	40.223	0.000	2.7e+05	2.98e+05
zipcode_98117	3.059e+05	6384.528	47.906	0.000	2.93e+05	3.18e+05
zipcode_98118	1.565e+05	6371.678	24.561	0.000	1.44e+05	1.69e+05
zipcode_98119	3.848e+05	8661.537	44.431	0.000	3.68e+05	4.02e+05
zipcode_98122	2.947e+05	7405.029	39.795	0.000	2.8e+05	3.09e+05
zipcode_98125	1.877e+05	6563.079	28.594	0.000	1.75e+05	2.01e+05
zipcode_98126	1.873e+05	6836.435	27.403	0.000	1.74e+05	2.01e+05
zipcode_98133	1.497e+05	6288.979	23.809	0.000	1.37e+05	1.62e+05
zipcode_98136	2.485e+05	7386.072	33.648	0.000	2.34e+05	2.63e+05
zipcode_98144	2.327e+05	7034.715	33.078	0.000	2.19e+05	2.46e+05
zipcode_98146	1.08e+05	7128.502	15.144	0.000	9.4e+04	1.22e+05
zipcode_98148	5.694e+04	1.21e+04	4.692	0.000	3.32e+04	8.07e+04
zipcode_98155	1.341e+05	6513.078	20.596	0.000	1.21e+05	1.47e+05
zipcode_98166	9.514e+04	7987.421	11.911	0.000	7.95e+04	1.11e+05
zipcode_98168	4.589e+04	7432.144	6.174	0.000	3.13e+04	6.05e+04
zipcode_98177	2.003e+05	7752.204	25.840	0.000	1.85e+05	2.16e+05
zipcode_98178	3.968e+04	7279.373	5.452	0.000	2.54e+04	5.4e+04
zipcode_98188	2.776e+04	8879.896	3.126	0.002	1.04e+04	4.52e+04
zipcode_98198	2.511e+04	7277.202	3.451	0.001	1.08e+04	3.94e+04
zipcode_98199	3.457e+05	7268.398	47.565	0.000	3.31e+05	3.6e+05

Omnibus: 1416.774 **Durbin-Watson:** 1.995

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 4711.536

Skew: 0.387 **Prob(JB):** 0.00

Kurtosis: 5.403 **Cond. No.** 5.69e+05

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.69e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Out[52]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fe(

Model 4

Removed floors feature, engineered a bath_to_bed_ratio feature by dividing the number of bedrooms into the number of bathrooms.

This appears to be the best model

In [54]: # <1 = more bedrooms than bathrooms
m4_df['bath_to_bed_ratio'] = m4_df['bathrooms'] / m4_df['bedrooms']
m4_df.sort_values('bath_to_bed_ratio')</pre>

Out[54]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
12029	2991000160	312500	4	0.50	2300	5570	2	0.0
12596	3812400455	291000	7	1.00	2350	8636	1	0.0
3609	809000945	563000	6	1.00	1730	2760	1	0.0
12327	5132000140	415000	6	1.00	1370	5080	1	0.0
13135	3693900155	950000	6	1.00	2330	5000	1	0.0
5364	6450304600	315000	1	2.25	1940	2550	2	0.0
5163	1720800305	611900	1	2.25	1220	2100	2	0.0
5577	537000130	360000	1	2.25	2060	10600	1	0.0
14173	7461400360	299000	1	2.50	1980	7521	1	0.0
4406	4083304190	680000	1	2.50	1820	3008	2	0.0

17744 rows × 21 columns

Bath-to-Bed Relationship with Price

Dep. Variable:	price	R-squared:	0.835
Model:	OLS	Adj. R-squared:	0.834
Method:	Least Squares	F-statistic:	1119.
Date:	Mon, 19 Apr 2021	Prob (F-statistic):	0.00
Time:	16:40:22	Log-Likelihood:	-2.2607e+05
No. Observations:	17744	AIC:	4.523e+05
Df Residuals:	17663	BIC:	4.529e+05
Df Model:	80		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-3.816e+05	1.21e+04	-31.668	0.000	-4.05e+05	-3.58e+05
sqft_living	99.6909	1.423	70.036	0.000	96.901	102.481
sqft_lot	1.6118	0.266	6.067	0.000	1.091	2.133
view	3.083e+04	1169.661	26.359	0.000	2.85e+04	3.31e+04
grade	4.758e+04	1096.709	43.383	0.000	4.54e+04	4.97e+04
neighboring_sqft_living	37.3070	1.865	20.006	0.000	33.652	40.962
age_at_sale	606.9057	33.769	17.972	0.000	540.716	673.096
yrs_since_renovated	-32.6901	3.933	-8.313	0.000	-40.398	-24.982
bath_to_bed_ratio	1.116e+04	3587.842	3.110	0.002	4126.911	1.82e+04
waterfront_1_0	2.588e+05	2.03e+04	12.759	0.000	2.19e+05	2.99e+05
condition_1	3.966e+04	6895.415	5.752	0.000	2.61e+04	5.32e+04
condition_2	8.138e+04	7206.443	11.292	0.000	6.73e+04	9.55e+04
zipcode_98002	2.086e+04	7785.311	2.679	0.007	5597.258	3.61e+04
zipcode_98003	-2521.5229	7187.976	-0.351	0.726	-1.66e+04	1.16e+04
zipcode_98004	5.069e+05	8836.059	57.369	0.000	4.9e+05	5.24e+05
zipcode_98005	3.32e+05	9604.672	34.564	0.000	3.13e+05	3.51e+05
zipcode_98006	2.674e+05	6720.724	39.791	0.000	2.54e+05	2.81e+05

zipcode_98007	2.508e+05	8789.835	28.528	0.000	2.34e+05	2.68e+05
zipcode_98008	2.382e+05	7248.756	32.860	0.000	2.24e+05	2.52e+05
zipcode_98010	7.868e+04	1.4e+04	5.614	0.000	5.12e+04	1.06e+05
zipcode_98011	1.397e+05	7933.118	17.614	0.000	1.24e+05	1.55e+05
zipcode_98014	1.156e+05	1.73e+04	6.678	0.000	8.17e+04	1.49e+05
zipcode_98019	9.443e+04	8704.060	10.849	0.000	7.74e+04	1.11e+05
zipcode_98022	1.119e+04	8526.948	1.313	0.189	-5519.668	2.79e+04
zipcode_98023	-1.824e+04	6347.397	-2.874	0.004	-3.07e+04	-5800.865
zipcode_98024	1.491e+05	1.84e+04	8.123	0.000	1.13e+05	1.85e+05
zipcode_98027	2.261e+05	7288.973	31.017	0.000	2.12e+05	2.4e+05
zipcode_98028	1.261e+05	7265.365	17.357	0.000	1.12e+05	1.4e+05
zipcode_98029	2.338e+05	7000.297	33.394	0.000	2.2e+05	2.47e+05
zipcode_98030	8777.5371	7301.698	1.202	0.229	-5534.509	2.31e+04
zipcode_98031	1.509e+04	7231.489	2.086	0.037	911.089	2.93e+04
zipcode_98032	-1586.7657	9317.368	-0.170	0.865	-1.98e+04	1.67e+04
zipcode_98033	3.185e+05	6708.822	47.472	0.000	3.05e+05	3.32e+05
zipcode_98034	1.831e+05	6212.141	29.478	0.000	1.71e+05	1.95e+05
zipcode_98038	4.21e+04	6275.090	6.708	0.000	2.98e+04	5.44e+04
zipcode_98039	6.383e+05	3.42e+04	18.677	0.000	5.71e+05	7.05e+05
zipcode_98040	4.174e+05	8739.701	47.761	0.000	4e+05	4.35e+05
zipcode_98042	1.527e+04	6373.348	2.396	0.017	2778.877	2.78e+04
zipcode_98045	1.009e+05	8952.249	11.272	0.000	8.34e+04	1.18e+05
zipcode_98052	2.551e+05	6226.716	40.976	0.000	2.43e+05	2.67e+05
zipcode_98053	2.677e+05	7412.366	36.109	0.000	2.53e+05	2.82e+05
zipcode_98055	3.999e+04	7267.565	5.503	0.000	2.57e+04	5.42e+04
zipcode_98056	1.048e+05	6557.332	15.976	0.000	9.19e+04	1.18e+05
zipcode_98058	3.532e+04	6582.387	5.366	0.000	2.24e+04	4.82e+04
zipcode_98059	1.084e+05	6626.033	16.362	0.000	9.54e+04	1.21e+05
zipcode_98065	1.343e+05	7133.682	18.820	0.000	1.2e+05	1.48e+05
zipcode_98070	6.139e+04	2.15e+04	2.861	0.004	1.93e+04	1.03e+05
zipcode_98072	1.509e+05	8876.015	17.002	0.000	1.34e+05	1.68e+05
zipcode_98074	2.171e+05	6719.535	32.306	0.000	2.04e+05	2.3e+05
zipcode_98075	2.319e+05	7737.718	29.969	0.000	2.17e+05	2.47e+05
zipcode_98077	1.616e+05	1.55e+04	10.438	0.000	1.31e+05	1.92e+05
zipcode_98092	-1.804e+04	7253.337	-2.487	0.013	-3.23e+04	-3822.278
zipcode_98102	3.934e+05	1.04e+04	37.814	0.000	3.73e+05	4.14e+05
zipcode_98103	3.114e+05	6374.014	48.855	0.000	2.99e+05	3.24e+05

		1.7				
zipcode_98105	3.655e+05	8253.952	44.288	0.000	3.49e+05	3.82e+05
zipcode_98106	1.176e+05	6848.009	17.173	0.000	1.04e+05	1.31e+05
zipcode_98107	3.128e+05	7403.620	42.251	0.000	2.98e+05	3.27e+05
zipcode_98108	1.115e+05	7968.205	13.988	0.000	9.58e+04	1.27e+05
zipcode_98109	3.967e+05	1.05e+04	37.798	0.000	3.76e+05	4.17e+05
zipcode_98112	4.111e+05	8426.073	48.783	0.000	3.95e+05	4.28e+05
zipcode_98115	3.094e+05	6311.806	49.012	0.000	2.97e+05	3.22e+05
zipcode_98116	2.854e+05	7073.440	40.346	0.000	2.72e+05	2.99e+05
zipcode_98117	3.07e+05	6388.542	48.053	0.000	2.94e+05	3.2e+05
zipcode_98118	1.572e+05	6377.261	24.649	0.000	1.45e+05	1.7e+05
zipcode_98119	3.867e+05	8664.253	44.628	0.000	3.7e+05	4.04e+05
zipcode_98122	2.96e+05	7405.831	39.970	0.000	2.81e+05	3.11e+05
zipcode_98125	1.881e+05	6568.448	28.632	0.000	1.75e+05	2.01e+05
zipcode_98126	1.881e+05	6839.037	27.510	0.000	1.75e+05	2.02e+05
zipcode_98133	1.499e+05	6293.221	23.814	0.000	1.38e+05	1.62e+05
zipcode_98136	2.494e+05	7391.070	33.749	0.000	2.35e+05	2.64e+05
zipcode_98144	2.334e+05	7041.412	33.153	0.000	2.2e+05	2.47e+05
zipcode_98146	1.08e+05	7133.991	15.142	0.000	9.4e+04	1.22e+05
zipcode_98148	5.782e+04	1.21e+04	4.759	0.000	3.4e+04	8.16e+04
zipcode_98155	1.343e+05	6519.235	20.601	0.000	1.22e+05	1.47e+05
zipcode_98166	9.514e+04	7994.902	11.900	0.000	7.95e+04	1.11e+05
zipcode_98168	4.603e+04	7436.070	6.190	0.000	3.15e+04	6.06e+04
zipcode_98177	2.006e+05	7757.477	25.859	0.000	1.85e+05	2.16e+05
zipcode_98178	3.971e+04	7286.481	5.450	0.000	2.54e+04	5.4e+04
zipcode_98188	2.77e+04	8888.464	3.116	0.002	1.03e+04	4.51e+04
zipcode_98198	2.504e+04	7281.961	3.439	0.001	1.08e+04	3.93e+04
zipcode_98199	3.467e+05	7274.187	47.665	0.000	3.32e+05	3.61e+05

 Omnibus:
 1416.204
 Durbin-Watson:
 1.996

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 4690.418

 Skew:
 0.388
 Prob(JB):
 0.00

 Kurtosis:
 5.396
 Cond. No.
 5.68e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.68e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Out[56]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fe0

Model 5

Just for comparison's sake, I decided to remove a few more features that didn't have a very clear linear relationship with price when they were plotted earlier: sqft_lot, yr_built, waterfront, condition.

The R2 on model 4 was higher, with no other significant changes to the model.

In [57]:

Dep. Variable:	price	R-squared:	0.831
Model:	OLS	Adj. R-squared:	0.831
Method:	Least Squares	F-statistic:	1116.
Date:	Mon, 19 Apr 2021	Prob (F-statistic):	0.00
Time:	16:40:23	Log-Likelihood:	-2.2627e+05
No. Observations:	17744	AIC:	4.527e+05
Df Residuals:	17665	BIC:	4.533e+05
Df Model:	78		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2.874e+05	1.2e+04	-23.884	0.000	-3.11e+05	-2.64e+05
bedrooms	-1.95e+04	2020.947	-9.650	0.000	-2.35e+04	-1.55e+04
bathrooms	3.649e+04	3345.536	10.908	0.000	2.99e+04	4.31e+04
sqft_living	100.1055	1.853	54.015	0.000	96.473	103.738
view	3.393e+04	1158.987	29.279	0.000	3.17e+04	3.62e+04
grade	4.77e+04	1109.237	43.007	0.000	4.55e+04	4.99e+04
neighboring_sqft_living	34.6454	1.891	18.317	0.000	30.938	38.353
age_at_sale	828.0506	33.009	25.085	0.000	763.349	892.752
yrs_since_renovated	-26.3559	3.960	-6.656	0.000	-34.118	-18.594
bath_to_bed_ratio	-8.323e+04	9581.438	-8.687	0.000	-1.02e+05	-6.45e+04
zipcode_98002	1.971e+04	7863.864	2.506	0.012	4294.347	3.51e+04
zipcode_98003	-3676.7764	7270.546	-0.506	0.613	-1.79e+04	1.06e+04
zipcode_98004	5.075e+05	8939.123	56.770	0.000	4.9e+05	5.25e+05
zipcode_98005	3.35e+05	9715.076	34.481	0.000	3.16e+05	3.54e+05
zipcode_98006	2.727e+05	6794.947	40.136	0.000	2.59e+05	2.86e+05

zipcode_98007	2.516e+05	8895.354	28.286	0.000	2.34e+05	2.69e+05
zipcode_98008	2.382e+05	7333.947	32.478	0.000	2.24e+05	2.53e+05
zipcode_98010	8.225e+04	1.42e+04	5.802	0.000	5.45e+04	1.1e+05
zipcode_98011	1.401e+05	8025.348	17.463	0.000	1.24e+05	1.56e+05
zipcode_98014	1.149e+05	1.75e+04	6.560	0.000	8.05e+04	1.49e+05
zipcode_98019	9.41e+04	8805.294	10.687	0.000	7.68e+04	1.11e+05
zipcode_98022	1.505e+04	8620.228	1.746	0.081	-1843.591	3.19e+04
zipcode_98023	-2.083e+04	6420.297	-3.244	0.001	-3.34e+04	-8246.150
zipcode_98024	1.469e+05	1.86e+04	7.909	0.000	1.1e+05	1.83e+05
zipcode_98027	2.226e+05	7348.816	30.290	0.000	2.08e+05	2.37e+05
zipcode_98028	1.262e+05	7350.049	17.176	0.000	1.12e+05	1.41e+05
zipcode_98029	2.273e+05	7035.861	32.310	0.000	2.14e+05	2.41e+05
zipcode_98030	6823.8567	7385.540	0.924	0.356	-7652.527	2.13e+04
zipcode_98031	1.464e+04	7314.976	2.001	0.045	297.807	2.9e+04
zipcode_98032	-1779.1308	9424.040	-0.189	0.850	-2.03e+04	1.67e+04
zipcode_98033	3.196e+05	6784.484	47.110	0.000	3.06e+05	3.33e+05
zipcode_98034	1.818e+05	6282.037	28.937	0.000	1.69e+05	1.94e+05
zipcode_98038	3.965e+04	6333.393	6.260	0.000	2.72e+04	5.21e+04
zipcode_98039	6.377e+05	3.46e+04	18.446	0.000	5.7e+05	7.06e+05
zipcode_98040	4.214e+05	8838.627	47.675	0.000	4.04e+05	4.39e+05
zipcode_98042	1.716e+04	6441.658	2.664	0.008	4535.068	2.98e+04
zipcode_98045	1.011e+05	9050.823	11.165	0.000	8.33e+04	1.19e+05
zipcode_98052	2.539e+05	6296.310	40.323	0.000	2.42e+05	2.66e+05
zipcode_98053	2.692e+05	7508.512	35.858	0.000	2.55e+05	2.84e+05
zipcode_98055	3.698e+04	7335.085	5.042	0.000	2.26e+04	5.14e+04
zipcode_98056	1.086e+05	6617.618	16.407	0.000	9.56e+04	1.22e+05
zipcode_98058	3.533e+04	6656.364	5.308	0.000	2.23e+04	4.84e+04
zipcode_98059	1.1e+05	6701.308	16.420	0.000	9.69e+04	1.23e+05
zipcode_98065	1.295e+05	7198.221	17.994	0.000	1.15e+05	1.44e+05
zipcode_98070	9.773e+04	2.16e+04	4.528	0.000	5.54e+04	1.4e+05
zipcode_98072	1.511e+05	8980.561	16.825	0.000	1.33e+05	1.69e+05
zipcode_98074	2.17e+05	6799.170	31.921	0.000	2.04e+05	2.3e+05
zipcode_98075	2.305e+05	7827.617	29.445	0.000	2.15e+05	2.46e+05
zipcode_98077	1.646e+05	1.57e+04	10.513	0.000	1.34e+05	1.95e+05
zipcode_98092	-1.94e+04	7331.307	-2.646	0.008	-3.38e+04	-5030.483
zipcode_98102	3.8e+05	1.04e+04	36.642	0.000	3.6e+05	4e+05
zipcode_98103	3.016e+05	6245.044	48.300	0.000	2.89e+05	3.14e+05

zipcode_98105	3.574e+05	8196.789	43.604	0.000	3.41e+05	3.73e+05
zipcode_98106	1.107e+05	6867.105	16.122	0.000	9.73e+04	1.24e+05
zipcode_98107	3.022e+05	7323.679	41.270	0.000	2.88e+05	3.17e+05
zipcode_98108	1.031e+05	7986.665	12.911	0.000	8.75e+04	1.19e+05
zipcode_98109	3.833e+05	1.05e+04	36.629	0.000	3.63e+05	4.04e+05
zipcode_98112	4.002e+05	8353.355	47.911	0.000	3.84e+05	4.17e+05
zipcode_98115	3.011e+05	6267.866	48.043	0.000	2.89e+05	3.13e+05
zipcode_98116	2.764e+05	7031.484	39.314	0.000	2.63e+05	2.9e+05
zipcode_98117	2.968e+05	6314.541	46.999	0.000	2.84e+05	3.09e+05
zipcode_98118	1.479e+05	6354.479	23.277	0.000	1.35e+05	1.6e+05
zipcode_98119	3.731e+05	8589.406	43.441	0.000	3.56e+05	3.9e+05
zipcode_98122	2.838e+05	7306.551	38.839	0.000	2.69e+05	2.98e+05
zipcode_98125	1.836e+05	6622.349	27.717	0.000	1.71e+05	1.97e+05
zipcode_98126	1.797e+05	6826.126	26.329	0.000	1.66e+05	1.93e+05
zipcode_98133	1.481e+05	6341.026	23.356	0.000	1.36e+05	1.61e+05
zipcode_98136	2.403e+05	7392.075	32.503	0.000	2.26e+05	2.55e+05
zipcode_98144	2.252e+05	6954.358	32.386	0.000	2.12e+05	2.39e+05
zipcode_98146	1.03e+05	7207.392	14.294	0.000	8.89e+04	1.17e+05
zipcode_98148	5.091e+04	1.23e+04	4.145	0.000	2.68e+04	7.5e+04
zipcode_98155	1.341e+05	6593.809	20.341	0.000	1.21e+05	1.47e+05
zipcode_98166	9.7e+04	8086.112	11.996	0.000	8.11e+04	1.13e+05
zipcode_98168	4.224e+04	7522.949	5.614	0.000	2.75e+04	5.7e+04
zipcode_98177	1.966e+05	7834.797	25.090	0.000	1.81e+05	2.12e+05
zipcode_98178	4.322e+04	7335.313	5.892	0.000	2.88e+04	5.76e+04
zipcode_98188	2.83e+04	8991.184	3.148	0.002	1.07e+04	4.59e+04
zipcode_98198	2.589e+04	7360.906	3.517	0.000	1.15e+04	4.03e+04
zipcode_98199	3.388e+05	7247.354	46.748	0.000	3.25e+05	3.53e+05

Omnibus: 1421.662 **Durbin-Watson:** 1.998

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 4902.836

Skew: 0.376 **Prob(JB):** 0.00

Kurtosis: 5.463 **Cond. No.** 2.03e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.03e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Out[57]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fe

Recursive Feature Elimination

One final model used recursive feature elimination to identify which features to keep. However, results did not provide conclusive evidence for or against any of the features in model 3.

```
In [59]:
            rfe(m3_df_ohe, target, number=45)
Out[59]:
            { 'grade': True,
             'waterfront_1_0': True,
             'zipcode_98004': True,
             'zipcode 98005': True,
             'zipcode 98006': True,
             'zipcode 98007': True,
             'zipcode_98008': True,
             'zipcode_98011': True,
             'zipcode_98024': True,
             'zipcode 98027': True,
             'zipcode 98028': True,
             'zipcode_98029': True,
             'zipcode_98033': True,
             'zipcode_98034': True,
             'zipcode 98039': True,
             'zipcode_98040': True,
             'zipcode 98052': True,
             'zipcode_98053': True,
             'zipcode_98056': True,
             'zipcode 98059': True,
             'zipcode_98065': True,
             'zipcode 98072': True,
             'zipcode 98074': True,
             'zipcode 98075': True,
             'zipcode 98077': True,
             'zipcode_98102': True,
             'zipcode 98103': True,
             'zipcode 98105': True,
             'zipcode 98107': True,
             'zipcode 98109': True,
             'zipcode 98112': True,
             'zipcode_98115': True,
             'zipcode 98116': True,
             'zipcode 98117': True,
             'zipcode 98118': True,
             'zipcode 98119': True,
             'zipcode 98122': True,
             'zipcode_98125': True,
             'zipcode 98126': True,
             'zipcode 98133': True,
             'zipcode 98136': True,
             'zipcode_98144': True,
             'zipcode 98155': True,
             'zipcode 98177': True,
             'zipcode 98199': True,
             'bedrooms': False,
             'bathrooms': False,
             'sqft living': False,
             'sqft lot': False,
             'floors': False,
             'view': False,
             'neighboring sqft living': False,
             'age at sale': False,
             'yrs since renovated': False,
             'condition 1': False,
```

```
'condition_2': False,
'zipcode_98002': False,
'zipcode 98003': False,
'zipcode 98010': False,
'zipcode 98014': False,
'zipcode_98019': False,
'zipcode_98022': False,
'zipcode 98023': False,
'zipcode_98030': False,
'zipcode 98031': False,
'zipcode 98032': False,
'zipcode_98038': False,
'zipcode 98042': False,
'zipcode_98045': False,
'zipcode 98055': False,
'zipcode_98058': False,
'zipcode 98070': False,
'zipcode_98092': False,
'zipcode_98106': False,
'zipcode 98108': False,
'zipcode 98146': False,
'zipcode_98148': False,
'zipcode 98166': False,
'zipcode_98168': False,
'zipcode_98178': False,
'zipcode 98188': False,
'zipcode_98198': False}
```

Model Interpretation

Based on R2, p-values, and distribution of residuals, Model 4 was the most reliable and predictive linear model of house sale price. The following features together explain 83.6% of the variation in house sale price:

- Ratio of bathrooms to bedrooms
- Living space (sqft)
- Lot size (sqft)
- View
- Grade
- Condition
- Size of neighboring houses
- Age of house
- Years since renovation
- Waterfront
- Zipcode

As one may logically conclude, many of these factors have a positive relationship with price, meaning that as the variable increases, sale price also increases. Also logically, there is a negative relationship between the number of years since the renovation occurred and the sale price, meaning that more recent renovations tend to yield higher sale prices. The zipcode

where the house is located influences sale price, but not consistently. Some zipcodes have positive relationships with price while others have negative relationships, and the amount of influence varies.

Recommendations for King County Homeowners

Several factors that we found to influence house price are probably not in the homeowner's control, while others can be addressed by a renovation. Based on the model, three key recommendations for King County homeowners to consider when renovating their house are:

- Add living space consider finishing an unfinished basement if you have one, or adding on to your house.
- Add a full or half bath bring up your bathroom-to-bedroom ratio
- **Use high-quality materials** raise your home's grade rating by bringing in marble or quartz countertops, new cabinets, crown molding, wood flooring, luxury finishes, etc.

Appendix

Model 6 - Excluding some zipcodes

I noticed some zipcodes had poor p-values, so I wanted to see if they were throwing off the residuals of model 3. There was no significant change in the model.

```
In [60]:
           bad zips = [98002, 98003, 98022, 98023, 98031, 98032, 98042, 98092, 980
           m6 df = m3 df[m3 df.zipcode != bad zips[0]]
In [61]:
           for i in range(len(bad zips)):
               m6_df = m6_df[m6_df.zipcode != bad_zips[i]]
           display(m6 df.zipcode.value counts())
           98103
                    587
           98115
                    557
           98117
                    543
           98052
                    509
           98118
                   499
           98077
                     32
           98014
                     25
           98024
           98070
                     16
           98039
           Name: zipcode, Length: 61, dtype: int64
```

Dep. Variable:	price	R-squared:	0.820
Model:	OLS	Adj. R-squared:	0.819
Method:	Least Squares	F-statistic:	957.8
Date:	Mon, 19 Apr 2021	Prob (F-statistic):	0.00
Time:	16:40:28	Log-Likelihood:	-1.9705e+05
No. Observations:	15424	AIC:	3.942e+05
Df Residuals:	15350	BIC:	3.948e+05
Df Model:	73		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4.278e+05	1.35e+04	-31.608	0.000	-4.54e+05	-4.01e+05
bedrooms	-5071.8249	1041.571	-4.869	0.000	-7113.428	-3030.222
bathrooms	9146.2592	1684.957	5.428	0.000	5843.545	1.24e+04
sqft_living	102.4402	2.023	50.646	0.000	98.476	106.405
sqft_lot	1.7408	0.306	5.687	0.000	1.141	2.341
floors	2525.3954	1903.130	1.327	0.185	-1204.964	6255.755
view	2.951e+04	1246.493	23.678	0.000	2.71e+04	3.2e+04
grade	5.098e+04	1220.293	41.778	0.000	4.86e+04	5.34e+04
neighboring_sqft_living	41.5529	2.047	20.301	0.000	37.541	45.565
age_at_sale	770.1356	41.136	18.722	0.000	689.505	850.766
yrs_since_renovated	-27.5983	4.241	-6.507	0.000	-35.911	-19.285
waterfront_1_0	2.579e+05	2.1e+04	12.261	0.000	2.17e+05	2.99e+05
condition_1	3.895e+04	7457.958	5.222	0.000	2.43e+04	5.36e+04
condition_2	7.918e+04	7807.276	10.142	0.000	6.39e+04	9.45e+04
zipcode_98004	5.013e+05	9155.382	54.759	0.000	4.83e+05	5.19e+05
zipcode_98005	3.244e+05	9957.492	32.583	0.000	3.05e+05	3.44e+05

zipcode_98006	2.584e+05	6972.112	37.066	0.000	2.45e+05	2.72e+05
zipcode_98007	2.46e+05	9109.388	27.008	0.000	2.28e+05	2.64e+05
zipcode_98008	2.36e+05	7518.763	31.387	0.000	2.21e+05	2.51e+05
zipcode_98010	8.192e+04	1.45e+04	5.643	0.000	5.35e+04	1.1e+05
zipcode_98011	1.343e+05	8218.844	16.341	0.000	1.18e+05	1.5e+05
zipcode_98014	1.214e+05	1.79e+04	6.770	0.000	8.62e+04	1.57e+05
zipcode_98019	9.035e+04	9022.221	10.014	0.000	7.27e+04	1.08e+05
zipcode_98024	1.506e+05	1.9e+04	7.922	0.000	1.13e+05	1.88e+05
zipcode_98027	2.192e+05	7558.271	29.004	0.000	2.04e+05	2.34e+05
zipcode_98028	1.221e+05	7525.643	16.224	0.000	1.07e+05	1.37e+05
zipcode_98029	2.262e+05	7267.325	31.119	0.000	2.12e+05	2.4e+05
zipcode_98033	3.141e+05	6950.604	45.194	0.000	3e+05	3.28e+05
zipcode_98034	1.82e+05	6440.662	28.264	0.000	1.69e+05	1.95e+05
zipcode_98038	3.977e+04	6506.041	6.112	0.000	2.7e+04	5.25e+04
zipcode_98039	6.368e+05	3.54e+04	17.992	0.000	5.67e+05	7.06e+05
zipcode_98040	4.077e+05	9062.625	44.992	0.000	3.9e+05	4.26e+05
zipcode_98045	1.008e+05	9273.946	10.865	0.000	8.26e+04	1.19e+05
zipcode_98052	2.483e+05	6456.012	38.460	0.000	2.36e+05	2.61e+05
zipcode_98053	2.642e+05	7720.343	34.222	0.000	2.49e+05	2.79e+05
zipcode_98055	3.914e+04	7528.386	5.198	0.000	2.44e+04	5.39e+04
zipcode_98056	1.036e+05	6795.237	15.248	0.000	9.03e+04	1.17e+05
zipcode_98058	3.347e+04	6819.372	4.908	0.000	2.01e+04	4.68e+04
zipcode_98059	1.031e+05	6868.194	15.011	0.000	8.96e+04	1.17e+05
zipcode_98065	1.26e+05	7415.138	16.997	0.000	1.11e+05	1.41e+05
zipcode_98070	6.296e+04	2.22e+04	2.832	0.005	1.94e+04	1.07e+05
zipcode_98072	1.484e+05	9195.422	16.135	0.000	1.3e+05	1.66e+05
zipcode_98074	2.065e+05	6976.840	29.602	0.000	1.93e+05	2.2e+05
zipcode_98075	2.157e+05	8053.096	26.789	0.000	2e+05	2.32e+05
zipcode_98077	1.593e+05	1.6e+04	9.931	0.000	1.28e+05	1.91e+05
zipcode_98102	3.855e+05	1.08e+04	35.628	0.000	3.64e+05	4.07e+05
zipcode_98103	3.081e+05	6665.134	46.221	0.000	2.95e+05	3.21e+05
zipcode_98105	3.603e+05	8583.300	41.974	0.000	3.43e+05	3.77e+05
zipcode_98106	1.206e+05	7105.230	16.967	0.000	1.07e+05	1.34e+05
zipcode_98107	3.101e+05	7712.470	40.206	0.000	2.95e+05	3.25e+05
zipcode_98108	1.107e+05	8266.386	13.388	0.000	9.45e+04	1.27e+05
zipcode_98109	3.903e+05	1.09e+04	35.806	0.000	3.69e+05	4.12e+05
zipcode_98112	4.037e+05	8764.769	46.062	0.000	3.87e+05	4.21e+05

zipcode_98115	3.063e+05	6562.320	46.673	0.000	2.93e+05	3.19e+05
zipcode_98116	2.821e+05	7352.227	38.369	0.000	2.68e+05	2.97e+05
zipcode_98117	3.045e+05	6648.908	45.797	0.000	2.91e+05	3.18e+05
zipcode_98118	1.566e+05	6624.074	23.640	0.000	1.44e+05	1.7e+05
zipcode_98119	3.796e+05	9014.622	42.112	0.000	3.62e+05	3.97e+05
zipcode_98122	2.911e+05	7713.109	37.734	0.000	2.76e+05	3.06e+05
zipcode_98125	1.876e+05	6810.409	27.542	0.000	1.74e+05	2.01e+05
zipcode_98126	1.886e+05	7110.068	26.523	0.000	1.75e+05	2.03e+05
zipcode_98133	1.505e+05	6527.327	23.062	0.000	1.38e+05	1.63e+05
zipcode_98136	2.473e+05	7675.328	32.222	0.000	2.32e+05	2.62e+05
zipcode_98144	2.31e+05	7321.048	31.551	0.000	2.17e+05	2.45e+05
zipcode_98146	1.103e+05	7396.663	14.914	0.000	9.58e+04	1.25e+05
zipcode_98148	5.827e+04	1.26e+04	4.631	0.000	3.36e+04	8.29e+04
zipcode_98155	1.347e+05	6755.866	19.940	0.000	1.21e+05	1.48e+05
zipcode_98166	9.55e+04	8284.403	11.528	0.000	7.93e+04	1.12e+05
zipcode_98168	4.958e+04	7710.820	6.429	0.000	3.45e+04	6.47e+04
zipcode_98177	1.961e+05	8042.427	24.385	0.000	1.8e+05	2.12e+05
zipcode_98178	4.098e+04	7552.682	5.426	0.000	2.62e+04	5.58e+04
zipcode_98188	2.891e+04	9207.690	3.140	0.002	1.09e+04	4.7e+04
zipcode_98198	2.664e+04	7547.394	3.530	0.000	1.18e+04	4.14e+04
zipcode_98199	3.412e+05	7558.010	45.149	0.000	3.26e+05	3.56e+05

 Omnibus:
 1083.585
 Durbin-Watson:
 2.006

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 3388.328

 Skew:
 0.347
 Prob(JB):
 0.00

 Kurtosis:
 5.189
 Cond. No.
 4.94e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.94e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Out[62]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fe/

Folium

```
import folium
In [63]:
           def create_map(data, geojson, zips_col, mapped_feature):
               data = pd.DataFrame, main dataset to read from
               geojson = dict formatted geojson to source the shapes for zip code:
               zips col = string, column name where zipcodes are
               mapped feature = string, column name for feature to visualize
               m = folium.Map(location = [47.47, -121.84], zoom start=9)
               folium.Choropleth(geo data=geojson, data=data, key on='feature.pro;
                           columns=[zips_col, mapped_feature], fill_color='BuPu',
                           legend name=('Average Home ' + mapped feature.title() +
                                 ).add to(m)
               folium.LayerControl().add_to(m)
               m.add child(
                   folium.features.Tooltip(zipcodes df['zipcode']))
               return m
           # create_map(zipcodes_df, kc_geojson, 'zipcode', 'price')
```

In [64]: # Attempting to get markers and popups on the map; can't get it to worl # code source: https://www.kaggle.com/saidakbarp/nyc-property-sales-eda # from folium.plugins import MarkerCluster # marker cluster = MarkerCluster().add to(kc zipmap) for i in zipcodes df.iterrows(): # folium.Marker(location=[zipcodes df['lat'][i], zipcodes df['long # popup=zipcodes df['zipcode'][i], # tooltip="""Mean home price: \${}
 # Mean sq footage (living): {}
 # Mean year built: {}""".format(zipco # # zipco # from folium.plugins import MarkerCluster # marker cluster = MarkerCluster() # for i in range(len(data)): # location = [data['lat'][i],data['long'][i]] # tooltip = "Zipcode:{}
Click for more".format(data[zips]]: # folium.Marker(location, # popup="""<i>Mean home price: </i>

 # <i>Mean square footage (living): </i>
{}< # <i>Mean year built: </i>
{}
""".fc # # # tooltip=tooltip).add to(marker cluster) # marker cluster.add to(m)