COMP-2650-01 Assignment #2

- 1. (a) (5 pts) Prove by algebraic method whether $\overline{a} + ab + a\overline{c} + a\overline{b}\overline{c} = \overline{a} + \overline{b} + \overline{c}$.
 - (b) (5 pts) Find the CPOS of $f(x, y, z) = (x + \overline{y})y + \overline{x}z + \overline{x + y} + \overline{y}(\overline{x + z})$. Solution:

(a)
$$\overline{a} + ab + a\overline{c} + a\overline{b}\overline{c} = \overline{a} + \overline{b} + \overline{c}$$

LHS = $\overline{a} + ab + a\overline{c} + a\overline{b}\overline{c}$
= $\overline{a} + a(b + \overline{c} + \overline{b}\overline{c})$ distributivity
= $\overline{a} + a(b + \overline{b}\overline{c} + \overline{c})$ commutativity
= $\overline{a} + a(b + \overline{c} + \overline{c})$ no name
= $\overline{a} + a(b + \overline{c})$ idempotency
= $\overline{a} + b + \overline{c}$ no name

 $\therefore LHS \neq RHS$

$$\therefore \overline{a} + ab + a\overline{c} + a\overline{b}\overline{c} \neq \overline{a} + \overline{b} + \overline{c}$$

(b) CPOS of
$$f(x, y, z) = (x + \overline{y})y + \overline{x}z + \overline{x + y} + \overline{y}(\overline{x + z})$$

 $f(x, y, z) = (x + \overline{y})y + \overline{x}z + \overline{x} + \overline{y} + \overline{y}(\overline{x + z})$
 $= (x + \overline{y})y + \overline{x}z + \overline{x} + \overline{y} + \overline{y}(\overline{x}z)$ DeMorgan's Law
 $= xy + \overline{y}y + \overline{x}z + \overline{x} + \overline{y} + \overline{y}x\overline{z}$ Distributivity
 $= xy + 0 + \overline{x}z + \overline{x} + \overline{y} + \overline{y}x\overline{z}$ Complementation
 $= xy + \overline{x}z + \overline{x} + \overline{y} + \overline{y}x\overline{z}$ Identity element
 $= xy(z + \overline{z}) + \overline{x}z(y + \overline{y}) + \overline{x} + \overline{y}(z + \overline{z}) + \overline{y}x\overline{z}$ Complementation
 $= xyz + xy\overline{z} + \overline{x}yz + \overline{x} + \overline{y}z + \overline{x} + \overline{y}z + \overline{x} + \overline{y}z + \overline{x} + \overline{y}z$ Distributivity/Commutativity
 $= m_7 + m_6 + m_3 + m_1 + m_1 + m_0 + m_0$
 $= \Sigma m(0, 1, 3, 6, 7)$
 $= \overline{IM}(2, 4, 5)$

- 2. Let $f(w, x, y, z) = \sum m(1, 3, 8, 11, 12, 13, 15)$ and $d(w, x, y, z) = \sum m(7, 9)$. $\{d(w, x, y, z) \text{ defines the don't care conditions of } f\}$.
 - (a) (5 pts) Find the minimal SOP of f.
 - (b) (5 pts) Find the minimal POS of f.
 - (c) (5+5 pts) Design a circuit from the minimal POS of f. The circuit should contain only NOR gates.

Solution:

(a) K-MAP (SOP)

WX \ YZ	00	01	11	10
00		1	1	
01			X	
11	1	1	1	
10	1	X	1	

Group 1 Group 2 Group 3

Group 1

W	X	y	Z
0	0	0	1
0	0	1	1
1	0	0	1
1	0	1	1

\sim	\sim
Group	2

\mathbf{W}	X	y	Z
1	1	0	0
1	1	0	1
1	0	0	0
1	0	0	1

 $w\overline{y}$

Group 3

W	X	y	Z
0	0	1	1
0	1	1	1
1	1	1	1
1	0	1	1

yz

 $\overline{x}z$ $\therefore \underline{Minimal\ SOP}: \overline{x}z + w\overline{y} + yz$

(b) K-MAP (POS)

WX\YZ	00	01	11	10
00	0			0
01	0	0	X	0
11				0
10		X		0

Group 1 Group 2 Group 3

Group 1

W	X	у	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0

Group 2

\mathbf{w}	X	y	Z
0	1	0	0xs
0	1	0	1
0	1	1	1
0	1	1	0

 $w+\overline{x}$

Group 3

W	X	y	Z
0	0	1	0
0	1	1	0
1	1	1	0
1	0	1	0

 $\overline{y}+z$

w+z $\therefore \frac{\text{Minimal POS: } (w+z)(w+\overline{x})(\overline{y}+z)}{}$

(c) POS of
$$f(w, x, y, z) = (w+z)(w+\overline{x})(\overline{y}+z)$$

$$= \frac{(w+z)(w+x)(y+z)}{(w+z)(w+\overline{x})(\overline{y}+z)}$$

$$= \overline{(w+z)} + \overline{(w+\overline{x})} + \overline{(\overline{y}+z)}$$

$$= \overline{(w+z)} + \overline{(w+\overline{x})} + \overline{(y+z)}$$

$$= \overline{(w+z)} + \overline{(w+z)} + \overline{(w+z)} \overline{(w$$

- 3. Let $f(w, x, y, z) = \prod M(4, 9, 12, 13, 14)$ and $d(w, x, y, z) = \sum m(5, 6, 11, 15)$. {[d(w, x, y, z) defines the don't care conditions of f}.
 - (a) (5 pts) Find the minimal SOP of f.
 - (b) (5 pts) Find the minimal SOI of f.
 - (c) (5+5 pts) Design a circuit from the minimal SOP of f. The circuit should contain only NAND gates.

Solution:

(a) K-MAP (SOP)

WX \ YZ	00	01	11	10
00	1	1	1	1
01		X	1	X
11			X	
10	1		X	1

Group 1 Group 2

Group 1

W	X	у	Z
0	0	0	0
0	0	1	0
1	0	0	0
1	0	1	0

Group 2

W	X	y	Z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1

 $\overline{w}z$

 $\overline{x} \overline{z}$

 \therefore Minimal SOP: $\overline{x} \overline{z} + \overline{w}z$

(b) K-MAP (POS)

WX\YZ	00	01	11	10
00				
01	0	X		X
11	0	0	X	0
10		0	X	

Group 1
Group 2

Group 1

W	X	у	Z
0	1	0	0
0	1	1	0
1	1	0	0
1	1	1	0

Group 2

W	X	у	Z
1	1	0	1
1	1	1	1
1	0	0	1
1	0	1	1

 $\overline{x} + z$

 $\overline{w} + \overline{z}$

 \therefore Minimal POS: $(\overline{x} + z)(\overline{w} + \overline{z})$

(c) SOP of
$$f(w, x, y, z) = \overline{x} \overline{z} + \overline{w}z$$

$$= \overline{\overline{x}} \overline{z} + \overline{\overline{w}}z$$

$$= \overline{x} \overline{z} \bullet \overline{w}z$$

$$= \overline{x} \overline{z} \uparrow \overline{\overline{w}}z$$

$$= (\overline{x} \uparrow \overline{z}) \uparrow (\overline{w} \uparrow z)$$

$$= ((x \uparrow 1) \uparrow (z \uparrow 1)) \uparrow ((w \uparrow 1) \uparrow z)$$

