Rainbow matchings for 3-uniform hypergraphs

Xiaofan Yuan

School of Mathematics Georgia Institute of Technology

Joint work with Hongliang Lu and Xingxing Yu

June 3, 2021 SCMS Seminar

Erdős Matching Conjecture

Erdős Matching Conjecture, 1965

For positive integers k, n, s, if H is a k-graph on n vertices and $\nu(H) < s$, then

$$e(H) \leq \max \left\{ \binom{ks-1}{k}, \binom{n}{k} - \binom{n-s+1}{k} \right\}.$$

Erdős Matching Conjecture

Erdős Matching Conjecture, 1965

For positive integers k, n, s, if H is a k-graph on n vertices and $\nu(H) < s$, then

$$e(H) \leq \max \left\{ \binom{ks-1}{k}, \binom{n}{k} - \binom{n-s+1}{k} \right\}.$$

Theorem (Erdős, 1965)

The conjecture is true for $n > n_0(k, s)$.

Erdős Matching Conjecture

- Frankl, 2013 The conjecture is true for n > (2s - 1)k - s.
- Frankl and Kupavskii, 2018 The conjecture is true for $s \ge s_0$ and $n \ge \frac{5}{2}(s-1)k - \frac{2}{2}(s-1)$.

For 3-graphs:

• Frankl, 2017

The conjecture is true for k = 3.

Rainbow Matching

Conjecture (Huang, Loh and Sudakov, 2012; independently by Aharoni and Howard)

Let F_1, \ldots, F_t be k-graphs on [n]. If

$$|F_i| > \max\left\{ \binom{n}{k} - \binom{n-t+1}{k}, \binom{kt-1}{k} \right\}$$

for all $1 \le i \le t$, then there is a 'rainbow' matching of size t: one that contains exactly one edge from each family.

Rainbow Matching

Conjecture (Huang, Loh and Sudakov, 2012; independently by Aharoni and Howard)

Let F_1, \ldots, F_t be k-graphs on [n]. If

$$|F_i| > \max\left\{ \binom{n}{k} - \binom{n-t+1}{k}, \binom{kt-1}{k} \right\}$$

for all $1 \le i \le t$, then there is a 'rainbow' matching of size t: one that contains exactly one edge from each family.

Theorem (Huang, Loh and Sudakov, 2012)

The conjecture above is true for $n > 3k^2t$.

Rainbow Matching

Conjecture

Let F_1, \ldots, F_t be k-graphs on [n]. If

$$\delta_1(F_i) > \binom{n-1}{k-1} - \binom{n-t}{k-1}$$

for all $1 \le i \le t$, then there is a 'rainbow' matching of size t.

Definition

 $\delta_1(H)$: minimum vertex degree in H

Dirac Type Problem

Theorem (Dirac, 1952)

A simple graph G with n vertices $(n \ge 3)$ is Hamiltonian if $\delta(G) \ge n/2$. In particular, if n is even, then G contains a perfect matching.

Theorem (Kühn, Osthus and Treglown, 2013; independently, Khan, 2013)

There exists an $n_0 \in \mathbb{N}$ such that the following holds. Suppose that H is a 3-uniform hypergraph whose order $n > n_0$ is divisible by 3. If

$$\delta_1(H) > \binom{n-1}{2} - \binom{2n/3}{2}$$

then H has a perfect matching.

Our Result

Theorem (Lu, Yu, and Y., 2021)

Let $n \in 3\mathbb{Z}$ be sufficiently large, and let $\mathcal{F} = \{F_1, \dots, F_{n/3}\}$ be a family of 3-graphs such that $|V(F_i)| = n$ and $V(F_i) = V(F_1)$ for $i \in [n/3]$. If

$$\delta_1(F_i) > \binom{n-1}{2} - \binom{2n/3}{2}$$

for $i \in [n/3]$, then \mathcal{F} admits a rainbow matching.

- We convert it to the problem of finding a perfect matching in a balanced (1, 3)-partite 4-graph.
- For any integer $k \geq 3$, a k-graph H is (1, k-1)-partite if there exists a partition of V(H) into sets V_1, V_2 (called partition classes) such that for any $e \in E(H)$, $|e \cap V_1| = 1$ and $|e \cap V_2| = k-1$.
- A (1, k-1)-partite k-graph with partition classes V_1, V_2 is balanced if $(k-1)|V_1| = |V_2|$.

- We define a (1,3)-partite 4-graph H with respect to $\mathcal F$ by letting
 - $V(H) = P \cup Q$, where $P = V(F_i)$ and $Q = \{v_1, \dots, v_{n/3}\}$, and
 - $N_H(v_i) = F_i$, for each $i \in [n/3]$.
- Then we have

$$\delta_1(N_H(v_i)) > \binom{n-1}{2} - \binom{2n/3}{2}$$

for each $i \in [n/3]$.

For the case when H is close to H_0 , we prove the conjecture is true for k = 3 and all $t \in [n/3]$ (by induction).

- Base: $t \le n/200$, greedy construction
- $t \ge n/400$
 - \diamond *H* is close to H_0 at every vertex
 - \diamond *H* is not close to H_0 at some vertices

When H is not close to H_0 , we follow an approach by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov.

- Find an absorber M_{abs}
- Find an almost perfect matching M' in $H \setminus V(M_{abs})$
 - \diamond Find perfect fractional matchings in random subgraphs of $H-V(M_{abs})$
 - Convert to an almost perfect matching
- Use M_{abs} to extend M' to a perfect matching

When H is not close to H_0 , we follow an approach by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov.

• Find an absorber M_{abs}

E

- Find an almost perfect matching M' in $H \setminus V(M_{abs})$
 - \diamond Find perfect fractional matchings in random subgraphs of $H V(M_{abs})$
 - Convert to an almost perfect matching
- Use M_{abs} to extend M' to a perfect matching

Absorbing Lemma

Lemma

Let $n \in 3\mathbb{Z}$ be large enough and let H be a (1,3)-partite 4-graph with partition classes Q,P such that 3|Q|=|P| and

$$\delta_1(H) \geq \frac{n}{3} \left(\binom{n-1}{2} - \binom{2n/3}{2} + 1 \right).$$

Let ρ, ρ' be constants such that $0 < \rho' \ll \rho \ll 1$. Then H has a matching M' such that $|M'| \leq \rho n$ and, for any subset $S \subseteq V(H)$ with $|S| \leq \rho' n$ and $3|S \cap Q| = |S \cap R|$, $H[S \cup V(M)]$ has a perfect matching.

When H is not close to H_0 , we follow an approach by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov.

- Find an absorber M_{abs}
- Find an almost perfect matching M' in $H \setminus V(M_{abs})$
 - \diamond Find perfect fractional matchings in random subgraphs of $H V(M_{abs})$
 - Convert to an almost perfect matching
- Use M_{abs} to extend M' to a perfect matching

Almost Perfect Matching

- Form a random subgraph $R \subseteq H$ by taking each vertex with probability $n^{-0.9}$. We take $n^{1.1}$ independent copies of R.
- With high probability, all those copies have certain properties, for example, containing a perfect fractional matching.
- Those properties enable us to perform another round of random sampling to find a spanning subgraph satisfying the conditions of a 'Rödl Nibble' theorem .

When H is not close to H_0 , we follow an approach by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov.

- Find an absorber M_{abs}
- Find an almost perfect matching M' in $H \setminus V(M_{abs})$
 - \diamond Find perfect fractional matchings in random subgraphs of $H V(M_{abs})$
 - Convert to an almost perfect matching
- Use M_{abs} to extend M' to a perfect matching

Fractional Matching

Lemma

Let ρ, ε be constants with $0 < \varepsilon \ll 1$ and $0 < \rho < \varepsilon^{12}$, and let H be a (1,3)-partite 4-graph with partition classes Q,P (with 3|Q|=|P|). Suppose

$$d_{H}(\{u,v\}) > {n-1 \choose 2} - {2n/3 \choose 2} - \rho n^{2}$$

for any $v \in Q$ and $u \in P$. If H contains no independent set S with $|S \cap Q| \ge n/3 - \varepsilon^2 n$ and $|S \cap P| \ge 2n/3 - \varepsilon^2 n$, then H contains a perfect fractional matching.

Fractional Matching

- We bound the size of independent sets in each random induced subgraph using a hypergraph container result. ("not close to the extremal graph")
- Using the Strong Duality Theorem, we would like to convert this problem to finding a perfect matching in a stable family, and deal with it by Tutte-Berge formula.

Fractional Matching

- We bound the size of independent sets in each random induced subgraph using a hypergraph container result. ("not close to the extremal graph")
- Using the Strong Duality Theorem, we would like to convert this problem to finding a perfect matching in a stable family, and deal with it by Tutte-Berge formula.

 So we need to take the first round of random sampling more carefully such that each induced subgraph taken is balanced.

Balanced Induced Subgraphs

Lemma

Let $S \subset V(H)$ be a set of vertices such that

$$|S \cap Q| = n^{0.99}/3$$
 and $|S \cap P| = n^{0.99}$.

Let R_+^i be chosen from V(H) by taking each vertex uniformly at random with probability $n^{-0.9}$, for each $i \in [n^{1.1}]$, independently.

Define
$$R_{-}^{i} = R_{+}^{i} \cap (V(H) \setminus S), 1 \leq i \leq n^{1.1}$$
.

Then, with probability 1 - o(1), there exist R_i , $i \in [n^{1.1}]$, such that $R_-^i \subseteq R_+^i \subseteq R_+^i$ and R_-^i is balanced.

E)

Proof Idea

When H is not close to H_0 , we follow an approach by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov.

- Find an absorber M_{abs}
- Find an almost perfect matching M' in $H \setminus V(M_{abs})$
 - \diamond Find perfect fractional matchings in random subgraphs of $H-V(M_{abs})$
 - Convert to an almost perfect matching
- Use M_{abs} to extend M' to a perfect matching

Almost Perfect Matching

Theorem (Pippenger and Spencer, 1989)

For every integer $k \geq 2$ and real $r \geq 1$ and a > 0, there are $\gamma = \gamma(k,r,a) > 0$ and $d_0 = d_0(k,r,a)$ such that for every n and $D \geq d_0$ the following holds: Every k-uniform hypergraph H = (V,E) on a set V of n vertices in which all vertices have positive degrees and which satisfies the following conditions:

- (1) For all vertices $x \in V$ but at most γn of them, $d(x) = (1 \pm \gamma)D$;
- (2) For all $x \in V$, d(x) < rD;
- (3) For any two distinct $x, y \in V$, $d(x, y) < \gamma D$; contains a cover of at most (1 + a)(n/k) edges.

Almost Perfect Matching

Lemma

Let $\sigma > 0$ and $0 < \rho \le \varepsilon/3 \ll 1$. Let H be a (1,3)-partite 4-graph with partition classes Q,P, where |Q|=n/3 and |P|=n. Suppose H is not ε -close to $H_{1,3}(n,n/3)$ and

$$d_{H}(\lbrace u,v\rbrace) \geq \binom{n-1}{2} - \binom{2n/3}{2} - \rho n^{2}$$

for any $v \in Q$ and $u \in P$. Then H contains a matching covering all but at most σn vertices.

When H is not close to H_0 , we follow an approach by Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov.

- Find an absorber M_{abs}
- Find an almost perfect matching M' in $H \setminus V(M_{abs})$
 - \diamond Find perfect fractional matchings in random subgraphs of $H-V(M_{abs})$
 - Convert to an almost perfect matching
- Use M_{abs} to extend M' to a perfect matching

Thus the balanced (1,3)-partite 4-graph H defined by \mathcal{F} has a perfect matching, and hence the following holds.

Theorem (Lu, Yu, and Y., 2021)

Let $n \in 3\mathbb{Z}$ be sufficiently large, and let $\mathcal{F} = \{F_1, \dots, F_{n/3}\}$ be a family of 3-graphs such that $|V(F_i)| = n$ and $V(F_i) = V(F_1)$ for $i \in [n/3]$. If

$$\delta_1(F_i) > \binom{n-1}{2} - \binom{2n/3}{2}$$

for $i \in [n/3]$, then \mathcal{F} admits a rainbow matching.

Thank you!

Xiaofan Yuan

School of Mathematics Georgia Institute of Technology

xyuan@gatech.edu