Fall-2023 5304 PrEx04

Wan

November 7, 2023

This exercise is related to LecN5 and LecN6.

1 Q1: True or False

1.1 a: If A and B are SPD then A+B is also SPD

True. Using the operation property of inner product $\langle (A+B)u,u\rangle = \langle Au,u\rangle + \langle Bu,u\rangle > 0$

1.2 b: When A is SPD then its inverse is also SPD

True. There are 2 ways to show.

Way1: 2nd part def of SPD and property of eigen val.

A matrix is SPD if it is symmetric and its eigenvalues are positive. Then, use the fact that the eigenvalues of A^{-1} are (1/eigenvalues of A).

Way2: Use 1st part def of SPD and the property of inner product.

ア 製物道 if
$$(A^{-1}u,u)^{-20}$$
 \forall $u \neq 0$. Rep A 13 sPD.

/ $A^{-1}u = v \rightarrow u = Av$, A $v = A^{-1}u \neq 0$

(A $^{-1}u,u = v \rightarrow u = Av$, A $v = A^{-1}u \neq 0$

(A $^{-1}u,u = v \rightarrow u = Av$, A $v = Av$) $v = Av$ $v = A$

1.3 c: If $A = GG^T$ is the Cholesky factorization of A, what can you say about det(A)

 $\det(A) = \det(GG^T) = \det(G)\det(G^T) = \det(G)\det(G) = \det(G)^2$ just the square of the product of the diagonal entries of G. Notes: A can do GGT implying that A is SPD.

1.4 d: If X is a full-rank $n \times k$ matrix iff X^TX is SPD True.

Direction 1 (2 ways): If X is a full-rank $n \times k$ matrix, then X^TX is SPD. Way1:

Way2: Use property of inner product.

$$(X^{T}Xu,u)=(Xu,Xu)$$
 $(Ax,y)=(x,A^{H}y)$
 $(Xu,Xu)>0$ for $\forall u\neq 0$. because x full rank

Direction 2: If X^TX is SPD, then X is a full-rank $n \times k$ matrix.

1.5 e: The Cholesky factorization of A exists iff A is SPD.

True.

Direction 1: If A is SPD, then the Cholesky factorization of A exists. This is proved in class.

Direction 2: If the Cholesky factorization of A exists, then A is SPD. Premise: G and GT always full rank because:

Yes - If the Cholesky facrtorization of X exists then $X = GG^T$ - where G is lower triangular with positive diagonal entries -- G is therefore of full column rank and thus $X = GG^T$ is SPD from one of the results seen in class.

undo thanks 1 Uodated 35 minutes aco by Yousef Saad

Then, We can use the conclusion from d that: if X is a full-rank matrix iff X^TX is SPD.

Let $X = G^T$, then $(G^T)^TG^T = GG^T$ is SPD, then $A = GG^T$ is also SPD.

2 Q2

2 Consider the following matrix A whose inverse is also given where τ just stands for 10^{-4} :

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & -\tau \\ 0 & 1 & 1 \end{pmatrix}; \qquad A^{-1} = \frac{1}{\tau} \begin{pmatrix} 2+\tau & -2 & 2-\tau \\ -1 & 1 & -1+\tau \\ 1 & -1 & 1 \end{pmatrix}$$

Find a vector v such that $||Av||_{\infty} = \tau$ and $||v||_{\infty} = 2$.

Copyright ©2023, the University of Minnesota.

Deduce a lower bound for $||A^{-1}||_{\infty}$ and for $\kappa_{\infty}(A)$.

2

Calculate $\kappa_{\infty}(A)$ (3 digits accuracy OK).

2.1 Find vector v, 2 ways

Way1: tao is 0 and A becomes singular

[et
$$T=0$$
 B) A becomes singular. Think about which V an give for $I|AV||_{\infty}=2$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 双原 A 可以发记 columns
$$2\Gamma_1 = \Gamma_2 - \Gamma_3 \quad \text{[Think about which } V$$
 之间的线性失意: $2\Gamma_1 = \Gamma_2 - \Gamma_3 \quad \text{[Think about which } V$
$$V = \begin{bmatrix} -2 & 1 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$
 where $||V||_{\infty} = 2$.

Way2: utilize matrix-vector product

~ AAT=1,新闻这个工.

2.2 Deduce lower bound for norm-inf invA and kapa-inf $\bf A$

$$\frac{\| \mathbf{v} \|_{\infty}}{2} = \| \mathbf{A}^{-1} \cdot \mathbf{A} \mathbf{v} \|_{\infty} \leq \| \mathbf{A}^{-1} \|_{\infty} \| \mathbf{A} \mathbf{v} \|_{\infty}$$

$$\| \mathbf{A}^{-1} \|_{\infty} \geq \frac{2}{C}$$

$$L_{>|oner|bound|}$$

2.3 Calculate kapa-inf A

$$\begin{aligned}
& \text{kapa}_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty} \\
&= (3+7) \cdot \frac{1}{7} \cdot 6 \\
&= \frac{18}{7} + 6.
\end{aligned}$$