Exercícios

- 1. Faça gráficos das seguintes funções (para sua referência, os gráficos são mostrados para cada item):
 - (a) $f(x) = e^{-3x/2}$, para -2 < x < 2.

(b) $f(x) = \cos(8x) + \cos(x)$, para $0 < x < 2\pi$

(c) $f(x) = x^3 - 2x^2 + 15$, para -4 < x < 4

(d) $f(x) = \cos(4x + \pi/6)$, para $0 < x < 2\pi$

(e)
$$f(x) = 2x^4 - 3x^2 + 10x$$
, para $-4 < x < 4$

(f)
$$f(x) = \left(\sqrt{\cos(x)} \cdot \cos(200x) + \sqrt{|x|} - 0.7\right) \cdot (4 - x^x)^{0.01}$$
, para $-2 < x < 2$

2. O movimento de um objeto lançado a um ângulo θ é descrito pelas equações:

$$x = x_0 + v_0 \cos(\theta)t \tag{1}$$

$$x = x_0 + v_0 \cos(\theta)t$$

$$y = y_0 + v_0 \sin(\theta)t - \frac{1}{2}gt^2$$
(1)

em que (x_0, y_0) é a posição inicial, v_0 é a velocidade de lançamento em metros por segundo (m/s), t é o tempo (em segundos) desde o lançamento, e g é a constante de gravitação (aproximadamente $9.8m/s^2$).

- (a) Faça gráficos do lançamento de um projétil a $100^{m/s}$, com ângulos de 30^{o} , 45^{o} e 60^{o} (no Scilab, os valores devem ser expressos em radianos: $30^{\circ} = \pi/6, 45^{\circ} = \pi/4, 60^{\circ} = \pi/3$). Assuma como posição inicial de lançamento o ponto (0,0). Use cores diferentes para cada ângulo, e pesquise na Internet como adicionar uma legenda ao gráfico.
- (b) Com relação ao item (a), qual lançamento foi mais alto? Qual o mais distante? Algum lançamento atingiu a posição aproximada de (746.9, 200.1) (coloque esse ponto no gráfico como referencia)?

- (c) Imagine que à frente dos lançamentos há um plano inclinado (uma montanha, digamos), que inicia na posição (100,0), com uma inclinação de $15^o(\pi/12)$. Acrescente no gráfico uma reta que represente esse plano inclinado.
- (d) Com relação ao item (c), identifique visualmente e destaque no gráfico a posição aproximada que cada lançamento atinge o plano inclinado.

3. A tabela a seguir mostra os valores de Idade e Índice de Massa Corporal (IMC) para uma amostra de 10 indivíduos de uma mesma cidade.

Idade	28	44	32	33	30	33	42	29	30	33
IMC	25,47	30,04	26,2	22,64	22,18	26,98	24,78	19,43	23,53	24,64

- (a) Calcule a média, mediana e desvio padrão para cada uma das duas colunas de dados (Idade e IMC).
- (b) Faça o gráfico de dispersão de IMC em função de Idade. Coloque rótulo nos eixos e título no gráfico.
- (c) Calcule o coeficiente de correlação e o coeficiente de determinação entre IMC e idade.
- (d) Acrescente a reta de regressão ao gráfico feito no item (b)

- (e) Analisando o gráfico, e os coeficientes de correlação e determinação, o que você pode concluir a respeito da associação entre Idade e IMC para essa amostra?
- 4. Duas escalas comuns de temperatura são a Celsius (a que mais usamos aqui no Brasil) e a Fahrenheit (muito usada nos E.U.A.). Sabemos que se pode converter de uma escala para a outra por meio de equações lineares. Essas equações são bem conhecidas, mas para esse exercício, vamos tentar obte-las a partir de uma tabela que expressa a mesma temperatura em duas escalas:

Celsius	100	75	50	25	0
Fahrenheit	212	167	122	77	32

- (a) Usando regressão linear, encontre fórmulas para a conversão de Celsius para Fahrenheit, e de Fahrenheit para Celsius.
- (b) Pesquise na Internet fórmulas para conversão entre essas duas escalas, e compare os resultados que você obteve.
- (c) Você consegue imaginar qual é o coeficiente de correlação entre essas duas variáveis (sem calcular)? Por que?