Logique

Séminaire - Cours

I Notions de logique

I. 1 Assertion, prédicat et négation

Définition (assertion):

Une assertion ou proposition est une phrase qui est ou bien vraie ou bien fausse. On dira que cette assertion a deux valeurs de vérité.

Remarque : On appelle cette logique « logique du tiers exclu » puisqu'on exclu les phrases avec deux valeurs de vérité.

Exemples:

- « 2 est un nombre impaire » \rightarrow FAUX.
- « 3 est un nombre premier » \rightarrow VRAI.
- « n est un entier pair » \rightarrow PROBLEME : la valeur de vérité dépend de n.

Définition (prédicat):

Une assertion prenant en compte un paramètre n est appelé un prédicat. On le note P(n).

Définition (négation) :

Si P est une assertion, on note $\neg P$ (ou non P) la négation de P.

P	$\neg P$
Vrai	Faux
Faux	Vrai

Remarque : Au lieu d'écrire « P est vraie », on écrit simplement « P ».

I. 2 Connecteurs logiques

À partir de deux propostions, on peut en former une troisième.

Définitions (conjonction et disjonction):

Soit P et Q deux propositions. Alors :

- (i) la proposition $P \wedge Q$ est vraie ssi P est vraie ET Q est vraie.
- (ii) la proposition $P \lor Q$ est vraie ssi l'une des deux proposition (ou les deux) est vraie.

P	Q	$P \wedge Q$	$P \lor Q$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

Définitions (implication et équivalence) :

Soient P et Q deux propositions.

- (i) L'implication « $P \Rightarrow Q$ » (on lit « P implication Q ») est fausse lorsque P est vraie et Q est fausse.
- (ii) L'équivalence « $P\Leftrightarrow Q$ » (on lit « P équivalence Q ») est vraie lorsque P et Q ont la même valeur de vérité.

P	Q	$P \Rightarrow Q$	$P \Leftrightarrow Q$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	V

Exemples:

- « 2 est pair \Rightarrow 3 est pair » \rightarrow Faux
- « 3 est pair \Rightarrow 2 est pair » \rightarrow Vrai

Définitions (implique, équivaut) :

Soient P et Q deux propositions.

- (i) Lorsque $P \Rightarrow Q$ est vraie, on dit « P implique Q » ou « si P alors Q ».
- (ii) Lorsque $P \Leftrightarrow Q$ est vraie, on dit « P équivaut à Q » ou « P si et seulement si Q ».

1. Théorèmes:

Soient P et Q deux propositions.

- (i) $\neg(\neg P) \Leftrightarrow P$
- (ii) $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$ (1ère loi de Morgan)
- (iii) $\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q \ (2^{\text{eme}} \text{ loi de Morgan})$
- (iv) $P \Rightarrow Q \Leftrightarrow \neg P \lor Q$
- (v) $\neg (P \Rightarrow Q) \Leftrightarrow P \land \neg Q$
- (vi) $P \Leftrightarrow Q \Leftrightarrow (P \Rightarrow Q) \land (Q \Rightarrow P)$
- (vii) $P \Leftrightarrow Q \Leftrightarrow \neg P \Leftrightarrow \neg Q$

Définition (réciproque et contraposée) :

Soient P et Q deux propositions.

- (i) La réciproque de l'implication $P \Rightarrow Q$ est l'implication $Q \Rightarrow P$.
- (ii) La contraposée de l'implication $P \Rightarrow Q$ est l'implication $\neg Q \Rightarrow \neg P$.

Exemple: Pythagore

- Théorème : si ABC est un triangle rectangle en A alors $AB^2 + AC^2 = BC^2$.
- Réciproque : si $AB^2 + AC^2 = BC^2$ alors ABC est un triangle rectangle en A.
- Contraposée : si $AB^2 + AC^2 \neq BC^2$ alors ABC n'est un triangle rectangle en A.

2. Théorème:

- Une implication et sa contraposée sont équivalentes.
- Deux propositions sont équivalentes si les implications dans les deux sens sont vraies.

I. 3 Quantificateurs

Définition (universel et existenciel):

- (i) Le quantificateur universel « \forall » se lit « pour tout ».
- (ii) Le quantificateur existenciel « \exists » se lit « il existe ».

Remarques:

- « ∃! » signifie « il existe un unique »
- La négation de « ∀ » est « ∃ » et vice versa.
- On peut intervertir les quantificateur de même nature.