

UNIVERSITATEA BABEȘ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENȚĂ ARTIFICIALĂ

Rezolvarea problemelor de căutare

Strategii de căutare informată algoritmi evolutivi

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

B. Rezolvarea problemelor prin căutare

- Definirea problemelor de căutare
- Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Retele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme bazate pe reguli
- Sisteme hibride

Materiale de citit și legături utile

- capitolul 14 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- capitolul 7.6 din A. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Căutare locală

Tipologie

- Căutare locală simplă se reţine o singură stare vecină
 - □ Hill climbing → alege cel mai bun vecin
 - □ Simulated annealing → alege probabilistic cel mai bun vecin
 - □ Căutare tabu → reţine lista soluţiilor recent vizitate
- Căutare locală în fascicol (beam local search) se reţin mai multe stări (o populaţie de stări)
 - Algoritmi evolutivi
 - Optimizare bazată pe comportamentul de grup (Particle swarm optimisation)
 - Optimizare bazată pe furnici (Ant colony optmisation)

Algoritmi evolutivi

- □ Tipuri de algoritmi evolutivi
 - Algoritmi genetici
 - Strategii evolutive
 - Programare evolutivă
 - Programare genetică

Algoritmi genetici

- Aspecte teoretice
- Algoritm
 - Schema generală a unui AGS
 - Reprezentare şi operatori
- Exemplu
- Proprietăți
- Aplicaţii

Algoritmi genetici – aspecte teoretice

- Propuşi
 - J. Holland → AG simpli (AGS)
- Căutare
 - Concurenţială, ghidată de calitatea absolută a indivizilor
- Operatori de căutare
 - Selecţia
 - Încrucişarea ŞI mutaţia
- Elemente speciale
 - Accent deosebit pe încrucişare

Algoritmi genetici – schema generala

Algoritm generațional

```
Iniţializare P(0)
Evaluare(P(0))
g = 0;
while (not condiţie_stop) do
repeat

Selectarea a 2 părinţi p_1 şi p_2 din P(g)
Încrucişare(p_1, p_2) \rightarrow o_1 şi o_2

Mutaţie(o_1) \rightarrow o_1*

Mutaţie(o_2) \rightarrow o_2*

Evaluare(o_1*)

Evaluare(o_2*)

Adăugare o_1* şi o_2* în P(g+1)

until P(g+1) este plină
g++
endWhile
```

Algoritm steady-state

```
Iniţializare P
Evaluare(P)

while (not condiţie_stop) do

For i = 1 to |P|

Selectarea a 2 părinţi p_1 şi p_2 din P(g)
Încrucişare(p_1, p_2) \rightarrow o_1 şi o_2

Mutaţie(o_1) \rightarrow o_1^*

Mutaţie(o_2) \rightarrow o_2^*

Evaluare(o_1^*)

Evaluare(o_2^*)

B = Best(o_1^*, o_2^*)

W = Worst(o_1^*, o_2^*)

Dacă B e mai bun ca W, W \leftarrow B

EndFor
```

endWhile

Algoritm generational

- 1. Generarea aleatoare a unei populații (generația 0) cu *n* cromozomi
- Evaluarea tuturor cromozomilor
- 3. Crearea unei noi populații (generații) prin repetarea următorilor 4 pași
 - Selecţia, bazată pe fitness, a 2 părinţi
 - Încrucişarea părinţilor pentru obţinerea unui descendent cu o anumită probabilitate; dacă încrucişarea nu are loc, descendentul va fi:
 - Unul dintre părinți
 - Cel mai bun dintre părinți
 - Mutaţia cu o anumită probabilitate a fiecărui element al descendentului
 - Acceptarea descendentului şi plasarea lui în noua populaţie (generaţie)
- 4. Înlocuirea vechii populații cu noua populație (schimbul de generații)
- 5. Testarea condițiilor de terminare a căutării; dacă ele sunt satisfăcute, se returnează cea mai bună soluție din populația (generația) curentă
- 6. Ciclarea algoritmului întoarcerea la pasul 2

Algoritmi genetici – schema generala

Algoritm steady-state

- Generarea aleatoare a unei populaţii cu n cromozomi
- Evaluarea tuturor cromozomilor
- 3. Crearea unei noi populații prin repetarea următorilor 4 pași
 - Selecţia, bazată pe fitness, a 2 părinţi
 - Încrucişarea părinţilor pentru obţinerea unui descendent cu o anumită probabilitate; dacă încrucişarea nu are loc, descendentul va fi:
 - Unul dintre părinți
 - Cel mai bun dintre părinți
 - Mutaţia cu o anumită probabilitate a fiecărui element al descendentului
 - Alegerea celui mai bun descendent B
 - Dacă B este mai bun decât cel mai slab individ al populaţiei W, atunci B îl înlocuieşte pe W
- 4. Testarea condițiilor de terminare a căutării; dacă ele sunt satisfăcute, se returnează cea mai bună soluție din populația (generația) curentă
- 5. Ciclarea algoritmului întoarcerea la pasul 2

Algoritmi genetici – reprezentare și operatori

- Reprezentare
 - Stringuri binare (iniţial), de numere întregi, de numere reale, de alte elemente
- Populaţia
 - μ părinţi, μ descendeţi
- Selecţia pentru recombinare
 - Propoţională cu fitness-ul
- Recombinarea
 - \blacksquare Cu n puncte de tăietură sau uniformă cu o probabilitate p_c fixată ce acţionează la nivel de cromozom
- Mutaţia
 - Bitwise bit-flipping cu o probabilitate p_m fixată pentru fiecare genă (bit)
- Selecţia pentru supravieţuire
 - Toţi descendenţii înlocuiesc părinţii

Algoritmi genetici – exemplu

Să se determine valoarea maximă a funcţiei

$$f: \{0,1,...,31\} \rightarrow Z, f(x) = x^2$$

- Configurarea AG
 - Stringuri binare de lungime 5, ex. $c=(10101) \rightarrow x=21$
 - O populaţie cu μ = 4 cromozomi
 - Selecţie proporţională prin ruletă
 - Încrucişare cu 1 punct de tăietură
 - Mutaţie tare
- Evaluare → optimizare prin maximizare

Iniţializare

No cromo- zom	Cromo zom
1	01101
2	11000
3	01000
4	10011
sumă	

Evaluare

No cromo- zom	Cromo zom	Valoa- rea x	Fitness f(x²)
1	01101	13	169
2	11000	24	576
3	01000	8	64
4	10011	19	361
sumă			1170

Selecţie

No cromo- zom	Cromo zom	Valoar ea x	Fitness f(x²)	P _{selSP} (i)	$\Sigma P_{selSP}(i)$
1	01101	13	169	169/117 0=0.14	0.14
2	11000	24	576	576/117 0=0.49	0.63
3	01000	8	64	64/1170 =0.06	0.69
4	10011	19	361	361/117 0=0.31	1.00
sumă			1170		

Algoritmi genetici – exemplu

Selecţie

No cromo- zom	Cromo zom	Valoa- rea x	Fitness	P _{selSP} (i)	$\Sigma P_{selSP}(i)$	r ₁ =0.5	$r_2 = 0.8$
1	01101	13	169	169/117 0=0.14	0.14		
2	11000	24	576	576/117 0=0.49	0.63	X	
3	01000	8	64	64/1170 =0.06	0.69		
4	10011	19	361	361/117 0=0.31	1.00		X
sumă			1170				

$$p_1 = c_2 = (11000)$$
 și $p_2 = c_4 = (10011)$

Încrucişare

No cromoz om	Cromo zomi părinți			Fitness (pt. fii)
2	11 <mark>000</mark>	11011	27	729
4	10011	10000	16	256

Mutaţie

No cromoz om	Cromo zomi fii	Cromo zomi fii*	Valoa- rea x (pt. fii*)	Fitness (pt. fii*)
01	11011	10011	19	361
02	10000	10010	18	324

Adăugarea în următoarea generație

No cromo- zom	Cromo zom
1	10011
2	10010
3	
4	

Selecţie

No cromo- zom	Cromo zom	Valoar ea x	Fitness f(x²)	P _{selSP} (i)	$\Sigma P_{selSP}(i)$	r ₁ =0.1	r ₂ =0.7
1	01101	13	169	169/117 0=0.14	0.14	X	
2	11000	24	576	576/117 0=0.49	0.63		
3	01000	8	64	64/1170 =0.06	0.69		
4	10011	19	361	361/117 0=0.31	1.00		X
sumă			1170				

Algoritmi genetici – exemplu

Selecţie

No cromo- zom	Cromo zom	Valoa- rea x	Fitness f(x²)	P _{selSP} (i)	$\Sigma P_{selSP}(i)$	r ₁ =0.5	r ₂ =0.8
1	01101	13	169	169/117 0=0.14	0.14	X	
2	11000	24	576	576/117 0=0.49	0.63		
3	01000	8	64	64/1170 =0.06	0.69		
4	10011	19	361	361/117 0=0.31	1.00		X
sumă			1170				

$$p_1 = c_1 = (01101)$$
 și $p_2 = c_4 = (10011)$

Încrucişare

No cromoz om	Cromo zomi părinți	Cromo zomi fii		
1	01101	01011	11	121
4	10011	10101	21	441

Mutaţie

No cromoz om	Cromo zomi fii	Cromo zomi fii*	Valoa- rea x (pt. fii*)	Fitness (pt. fii*)
01	01011	00011	3	9
o2	10101	10111	23	529

Adăugarea în următoarea generație

No cromo- zom	Cromo zom
1	10011
2	10010
3	00011
4	10111

Algoritmi genetici – proprietați

- Cromozomi liniari de aceeaşi dimensiune
- Evidenţiază avantajele combinării informaţiilor de la părinţi buni prin încrucişare
- Numeroase variante
- Numeroşi operatori (selecţie, încrucişare, mutaţie)
- Nu sunt foarte rapizi
- Euristici bune pentru probleme de combinatorică

Algoritmi genetici – aplicații

- Probleme de combinatorică
- Optimizări în proiectarea compoziției materialelor şi a formei aerodinamice a vehiculelor (auto, aeriene, navale, trenuri)
- Optimizări în proiectarea structurală şi funcţională a clădirilor (locuinţe, fabrici, etc)
- Optimizări în robotică
- Optimizări în proiectarea circuitelor digitale

Strategii evolutive

- Aspecte teoretice
- Algoritm
 - Schema generală
 - Reprezentare şi operatori
- Exemplu
- Proprietăți
- Aplicaţii

Strategii evolutive – aspecte teoretice

- Propuse
 - n în anii '60-'70 în Germania de către Bienert, Rechenberg și Schwefel
- Căutare
 - Concurenţială, ghidată de calitatea absolută a indivizilor
- Operatori de căutare
 - Selecţia
 - Încrucişarea ŞI mutaţia
- Elemente speciale
 - Auto-adaptarea parmetrilor (în special a parametrilor mutaţiei)

Strategii evolutive – schema generala

```
Iniţializare P(0)
Evaluare(P(0))
g = 0;
while (not condiţie_stop) do
    repeat
        Selectarea a 2 părinți p_1 și p_2 din P(g)
        Încrucişare(p_1, p_2) \rightarrow o_1
        Mutaţie(o_1, param) \rightarrow o_1^*, param'
        Evaluare(o_1*)
        Adăugare o_1^* în P(g+1)
    until P(g+1) este plină
    q++
endWhile
```


- Reprezentare
 - Reală
 - Codează şi rata de mutaţie
- Populaţia
 - μ părinţi, λ descendeţi
- Selecţia pentru recombinare
 - Uniformă aleatoare
- Recombinarea
 - Discretă sau intermediară
- Mutaţia
 - Perturbare Gaussiană
 - Auto-adaptare a pasului de mutaţie
- Selecţia pentru supravieţuire
 - (μ,λ) sau (μ+λ)

- Pp. că dorim minimizarea funcției $f:R^n \rightarrow R$
- Reprezentare
 - 3 părţi:
 - □ Variabile obiect: $x_1, x_2, ..., x_n$ cu $x_i \in R \rightarrow$ reprezentare reală
 - Parametri posibili ai SE:
 - Paşi de mutaţie: $\sigma_1, ..., \sigma_{n(\sigma)}$
 - Unghiuri de rotație $\omega_1,...,\ \omega_{n(\alpha)}$
 - Completă
 - $n(\sigma)=n$, $n(\alpha)=n(n-1)/2-n$ r de perechi (i,j), i,j=1,2,...,n

Vector of real-valued fields

Real-valued evolutionary parameters

- Selecţia părinţilor (pentru reproducere)
 - Uniformă aleatoare
 - Fiecare individ are aceeaşi probabilitate de a fi selectat

Reproducerea

- Combină doi sau mai mulţi părinţi
- Crează un singur descendent

	2 părinți	Câte 2 părinți pentru fiecare element <i>x_i</i> al unui cromozom
$z_i = (x_i + y_i)/2$	Intermediară locală	Intermediară globală
z_i este fie x_i , fie y_i (alegerea fiind aleatoare)	Discretă locală	Discretă globală

Mutaţia

- Parametrii σ se coevoluează cu soluţia x
- Mutaţie Gaussiană
 - \Box σ este evoluat în σ'
 - $= x_i' = x_i + N(0, \sigma')$
- Nu este necesar ca parametrii σ să evolueze (să se modifice) cu aceeași frecvență ca soluția (x)
- Noua pereche (x',σ') se evaluează de 2 ori:
 - x' este bună dacă evaluarea f(x') este bună
 - σ este bun dacă x este bună

- □ Cum este evoluat pasul de mutaţie din σ în σ' ? → diferite metode
 - Regula succesului 1/5

 - \square Se modifică σ după fiecare k iterații astfel:
 - $\sigma = \sigma / c$, daca $p_s > 1/5$
 - $\sigma = \sigma * c$, dacă $p_s < 1/5$
 - $\sigma = \sigma$, dacă $p_s = 1/5$,
 - \square unde $0.8 \le c \le 1$
 - Regula auto-adaptării
 - \Box Mutație necorelată cu un singur parametru σ
 - \Box Mutaţie necorelată cu n parametri σ
 - Mutaţie corelată

- f u Mutație necorelată cu un singur parametru σ
 - Cromozomi de forma: $(x_1, x_2, ..., x_n, \sigma)$
 - Mutaţie

$$\sigma' = \sigma * exp(\tau * N(0,1))$$

$$x_i' = x_i + \sigma' * N(0,1)$$

- Unde τ rata de învăţare
 - de obicei $\tau = 1/(n^{1/2})$
- Dacă $\sigma' < \varepsilon_0 \rightarrow \sigma' = \varepsilon_0$

- Mutaţie necorelată cu n parametri σ
 - Cromozomi de forma: $(x_1, x_2, ..., x_n, \sigma_1, \sigma_2, ..., \sigma_n)$
 - Mutaţie

$$\sigma'_{i} = \sigma_{i} * exp(\tau'*N(0,1) + \tau*N_{i}(0,1))$$

$$= x_i' = x_i + \sigma_i' * N_i(0,1)$$

- unde:
 - τ' rata globală de învăţare
 - τ rata individuală de învăţare
 - de obicei $\tau' = 1/((2n)^{1/2})$ și $\tau = 1/((2n^{1/2})^{1/2})$
- dacă $\sigma' < \varepsilon_0 \rightarrow \sigma' = \varepsilon_0$

- Mutație corelată cu *n*+*k* parametri
 - Cromozomi de forma: $(x_1, x_2, ..., x_n, \sigma_1, \sigma_2, ..., \sigma_n, \omega_1, \omega_2, ..., \omega_k)$,
 - unde k=n(n-1)/2
 - Matricea de covariaţie **C** este definită prin:

$$c_{ij} = \begin{cases} \sigma_i^2, & \text{dacă } i = j \\ 0, & \text{dacă } i \text{ și } j \text{ nu sunt corelate} \\ \frac{1}{2} (\sigma_i^2 - \sigma_j^2) * \tan(2\omega_{ij}), & \text{dacă } i \text{ și } j \text{ sunt corelate} \end{cases}$$

Mutaţie

$$\sigma'_i = \sigma_i * exp(\tau' * N(0,1) + \tau * N_i(0,1))$$

$$\mathbf{x}' = \mathbf{x} + \mathbf{N}(0, \mathbf{C}')$$

unde:

•
$$\mathbf{x} = (x_1, x_2, ..., x_n)$$

- C' matricea de covariaţie C după mutarea valorilor ω
- τ' rata globală de învăţare
- τ rata inteligentă de învățare
- de obicei $\tau' = 1/((2n)^{1/2})$ și $\tau = 1/((2n^{1/2})^{1/2})$ și $\beta \approx 5^{\circ}$

■ dacă
$$\sigma' < \varepsilon_0 \rightarrow \sigma' = \varepsilon_0$$

■ dacă
$$|\omega'_{ij}| > \pi \rightarrow \omega'_{ij} = \omega'_{ij} - 2 \pi \operatorname{sign}(\omega'_{ij})$$

Strategii evolutive – reprezentare și operatori

- Selecţia de supravieţuire
 - Aplicată după crearea a λ descendeţi din μ părinţi prin recombinare şi mutaţie
 - Alegerea celor mai buni µ indivizi din
 - Mulţimea copiilor SE (μ,λ)
 - Selecţie "uitucă"
 - Are performanţe mai bune
 - Mulţimea părinţilor şi copiilor SE(μ+λ)
 - Selecţie elitistă
 - De obicei, $\lambda = 7 * \mu$ (→ presiune de selecţie mare)

Strategii evolutive – proprietăți

Caracteristici

- cromozomi liniari de aceeaşi dimensiune
- oferă viteză de lucru
- lucrează cu vectori de numere reale
- se bazează pe o teorie matematică fundamentată
- evoluează şi parametrii algoritmului în sine (autoadaptează parametrii mutaţiei)

SE iniţiale

- SE(μ+λ), cu μ=1, λ=1
- Căutare locală de tip Hill Climbing
- Dar, cromozomul codează şi:
 - rata de mutaţie
 - strategie de modificare pentru deviaţia standard a distribuţiei mutaţiei

Strategii evolutive - aplicații

- Probleme de optimizare numerică
- Optimizarea formei lentilelor necesare refracţiei luminii
- Distribuţia lichidului într-o reţea sangvină
- Curba Brachystochrone
- Rezolvarea cubului Rubik

Programare evolutivă

- Aspecte teoretice
- Algoritm
 - Schema generală
 - Reprezentare şi operatori
- Proprietăţi
- Aplicaţii

Programare evolutivă – aspecte teoretice

- Propusă
 - n în SUA în anii 1960 de către D. Fogel
- Căutare
 - □ Concurenţială, ghidată de calitatea relativă a indivizilor → selecţia de supravieţuire
- Operatori de căutare
 - Selecţia
 - DOAR mutaţia
- Elemente speciale
 - AE fără recombinare
 - Auto-adaptarea parametrilor (similar SE)

Programare evolutivă – schema generală


```
Iniţializare P(0)

Evaluare(P(0))

g = 0;

while (not condiţie_stop) do

Pentru fiecare cromozom c_i din P(g)

Mutaţie(c_i, param) \rightarrow o_i, param'

Evaluare(o_i)

Alegerea probabilistică a \mu cromozomi dintre c_1,...,c_{\mu}, o_1,...,o_{\mu} şi adăugarea lor în P(g+1)

g++

endWhile
```


- Reprezentare
 - Reală
 - Codează şi parametrii mutaţiei (pasul de mutaţie)
- Populaţia
 - μ părinți, $\lambda = \mu$ descendeți
- Selecţia pentru mutaţie
 - Deterministă
- Mutaţia
 - Perturbare Gaussiană
 - Auto-adaptare a parametrilor
- Selecţia pentru supravieţuire
 - (μ+μ) probabilistică

□ Pp că dorim optimizarea funcției $f:R^n \rightarrow R$

- Reprezentarea cromozomilor
 - 2 părţi:
 - \square Variabile object: $x_1, x_2, ..., x_n$
 - \square Paşi de mutaţie: $\sigma_1, ..., \sigma_n$
 - Completă
 - \Box ($X_1, ..., X_n, \sigma_1, ..., \sigma_n$)

- Selecţia părinţilor (pentru mutaţie)
 - Fiecare părinte produce prin mutație un descendent → selecție
 - deterministă
 - ne-bazată pe calitatea (fitnessul) indivizilor

Mutaţia

- Singurul operator care introduce variaţie în PE
- Cromozomul $(x_1, ..., x_n, \sigma_1, ..., \sigma_n)$
- Modificări de tip Gaussian

$$\sigma_i' = \sigma_i * (1 + \alpha * N_i(0,1))$$

$$x_i' = x_i + \sigma_i' N_i(0,1)$$

- □ α ≈ 0.2 rata de învăţare
- Limitări

□ dacă
$$\sigma' < \varepsilon_0 \rightarrow \sigma' = \varepsilon_0$$

- Selecţia de supravieţuire
 - Populația (la momentul t) are μ părinți care produc μ descendeți
 - Campionat "fiecare cu fiecare" (round-robin)
 - Fiecare soluţie s_i , $i=1,2,...,\mu^2$ din cei μ părinţi şi μ descendeţi este comparată cu alte q soluţii (diferite de s) alese aleator (din aceeaşi mulţime a părinţilor şi urmaşilor)
 - \square Pentru fiecare soluție s_i se stabilește de câte ori a câștigat un meci jucat

$$p_{i} = \sum_{l=1}^{q} p_{il},$$

$$p_{il} = \begin{cases} 1, & f(s_{i}) \text{ e mai bun ca } f(s_{l}) \\ 0, & \text{altfel} \end{cases}$$

- \Box Se aleg cele mai bune μ soluţii (cu cele mai multe jocuri câştigate p_i)
- Parametrul q reglează presiunea de selecţie
 - \Box de obicei q = 10
- → procesul de căutare este ghidat de calitatea *relativă* a indivizilor

Programare evolutivă – proprietăți

- Cromozomi liniari de aceeaşi dimensiune
- Algoritmi evolutivi fără recombinare
- Auto-adaptare a paremtrilor (similar SE)
- Cadru foarte permisiv: orice reprezentare şi mutaţie poate funcţiona bine
 - Mutaţie uniformă
 - Mutaţie Cauchy
 - Mutaţie Lévy

Programare evolutivă – aplicații

- Învăţare automată cu maşini cu stări finite
- Optimizare numerică
- Distribuţia şi planificarea traficului în reţele
- Projectarea farmaceutică
- Epidemiologie
- Detecţia cancerului
- Planificare militară
- Procesarea semnalelor

Programare genetică

- Aspecte teoretice
- Algoritm
 - Schema generală
 - Reprezentare şi operatori
- Exemplu
- Aplicaţii

Programare genetică – aspecte teoretice

Propusă

- În SUA în anii 1990 de către J. Koza
- Evoluarea de programe → evaluarea unui individ implică execuţia programului codat în cromozom

Căutare

- Concurenţială, ghidată de calitatea absolută a indivizilor
- Operatori de căutare
 - Selecţia
 - Recombinarea SAU mutaţia
- Elemente speciale
 - Cromozomi ne-liniari (arbori sau grafe) şi de dimensiuni diferite
 - Pot folosi mutaţia (dar nu e neapărat necesar)

Programare genetică – schema generală


```
Iniţializare P(0)
Evaluare(P(0))
q = 0;
while (not condiţie_stop) do
     repeat
           Selectarea a 2 părinți p_1 și p_2 din P(g)
           Încrucişare(p_1, p_2) \rightarrow o_1 şi o_2
           Mutaţie(o_1) \rightarrow o_1^*
           Mutaţie(o_2) \rightarrow o_2^*
           Evaluare(o_1*)
           Evaluare(o_2*)
          Adăugare o_1^* și o_2^* în P(g+1)
     until P(q+1) este plină
     g++
endWhile
```


- Reprezentare
 - Structuri arborescente de dimensiune variabilă
- Populaţia
 - μ părinţi, μ descendeţi
- Selecţia pentru recombinare
 - Propoţională cu fitness-ul
- Recombinarea
 - Schimbul de sub-arbori
- Mutaţia
 - Schimbări aleatoare în arbore
- Selecţia pentru supravieţuire
 - Schema generaţională toţi descendenţii înlocuiesc părinţii
 - Schema steady-state cu elitism

- Reprezentare
 - Potenţialele soluţii sub forma unor arbori → implicaţii:
 - Indivizi adaptivi
 - Dimensiunea cromozomilor nu este prefixată
 - Dimensiunea cromozomilor depinde de adâncimea şi factorul de ramificare al arborilor
 - Gramatici specifice domeniului problemei de rezolvat
 - Necesitatea definirii exacte a unei gramatici reprezentative pentru problema abordată
 - Gramatica trebuie să permită reprezentarea oricărei soluţii posibile/potenţiale

Reprezentare

- Gramatica conţine:
 - Setul de terminale specifică toate variabilele şi constantele problemei
 - Setul de funcţii conţine toţi operatorii care pot fi aplicaţi terminalelor:
 - Operatori aritmetici (+,-,*,/,sin, cos, log, ...)
 - Operatori de tip Boolean (and, or, not, ...)
 - Operatori de tip instrucţiune (if-then, for, while, set,...)
 - Regulile care asigură obţinerea unor soluţii potenţiale valide

De ex. arbori care codifică

- Formule logice
- Formule aritmetice
- Programe

Reprezentare

- exemplu de evoluare a unei expresii logice
 - Problemă: să se determine expresia logică identificată prin datele:

x1	x2	Output
0	0	0
0	1	1
1	0	1
1	1	0

- Setul de funcţii F = {AND, OR, NOT}
- □ Setul de terminale $T = \{x_1, x_2\}$, cu $x_1, x_2 \in \{True, False\}$
- Soluţie: $(x_1 \text{ AND NOT } x_2) \text{ OR (NOT } x_1 \text{ AND } x_2)$

Reprezentare

- exemplu de evoluare a unei expresii aritmetice
 - □ Problemă: să se determine expresia aritmetică identificată prin datele:

X	а	z	Output
1.5	2	0.7	0.52690
0.8	0.25	2	-2.48536
2	1	0.3	-1.21638

- □ Setul de funcţii $F = \{+,-,*,/, sin, exp, ln\}$
- □ Setul de terminale $T = \{x, a, z, 3.14\}$, cu $x, a, z \in \mathbf{R}$
- □ Soluţie: y = x*In(a)+sin(z)/exp(-x)-3.4

Iniţializarea cromozomilor

- Aleatoare, respectând
 - O limită a adâncimii maxime
 - Semantica dată de gramatică
- Problema "bloat" supraviţuirea arborilor foarte mari

Metode

- Metoda Full arbori compleţi
 - Nodurile de la adâncimea d < D_{max} se iniţializează aleator cu o funcţie din setul de funcţii F
 - Nodurile de la adâncimea $d = D_{max}$ se iniţializează aleator cu un terminal din setul de terminale T
- Metoda Grow arbori incompleţi
 - Nodurile de la adâncimea d < D_{max} se iniţializează aleator cu un element din F U T
 - Nodurile de la adâncimea $d = D_{max}$ se iniţializează aleator cu un terminal din setul de terminale T
- Metoda Ramped half and half
 - ½ din populație se creează cu metoda Full
 - ½ din populație se creează cu metoda Grow
 - Folosind diferite adâncimi

Evaluarea cromozomilor

- Necesitatea datelor de antrenament (cazuri de testare)
- Calculul diferenței între ce trebuie obţinut şi ceea ce se obţine de fapt
 - □ Expresii de tip Boolean → numărul ieşirilor corect prezise
 - Expresii aritmetice → media pătratelor diferenţelor între ieşirile corecte şi ieşirile prezise
 - □ Programe → numărul datelor de test corect procesate
- Criteriul de optim → minimizare
- Evaluarea poate penaliza:
 - Soluţiile invalide
 - Dimensiunea (prea mare a) arborilor

■ Evaluarea cromozomilor – exemplu

Problemă: să se determine expresia logică identificată prin datele:

$$C = (x_1 \text{ AND } x_2) \text{ OR (NOT } x_1 \text{ AND } x_2)$$

	x1	x2	Output real	Output calculat	Eroare = output real - output calculat
	0	0	0	0	0
	0	1	1	1	0
	1	0	1	0	1
	1	1	0	1	1
suma					2

- Selecţia pentru reproducere
 - Bazată pe fitness
 - Selecţie proporţională (bazată pe fitness)
 - Selecţie bazată pe ranguri
 - Selecţie prin turnir
 - În populaţii foarte mari
 - Se acordă ranguri indivizilor (pe bază de fitness) şi se stabilesc mai multe grupe
 - Grupa 1: cei mai buni x% din populaţie
 - Grupa 2: restul de (100-x)% din populaţie
 - Alegerea va fi făcută din:
 - grupa 1 în 80% din cazuri
 - grupa 2 în 20% din cazuri
 - Ex.
 - μ = 1000, x = 32%
 - μ = 2000, x = 16%
 - $\mu = 4000, x = 8\%$
 - µ = 8000, x = 4%

- Recombinarea (încrucişarea)
 - Cu punct de tăietură

Mutaţie

■ Mutaţie de tip Koza → Înlocuirea unui nod (intern sau frunză) cu un nou sub-arbore

$$p=(x+y)*(z-\sin(x))$$

$$f=(x+y)*sin(x+4)$$

Programarea genetică – proprietăți

- Folosirea cromozomilor ne-liniari
- Necesită lucrul cu populații foarte numeroase
 - Algoritmi înceţi
- Comparaţie AG şi PG
 - Forma cromozomilor
 - AG cromozomi liniari
 - PG cromozomi ne-liniari
 - Dimensiunea cromozomilor
 - AG fixă
 - PG variabilă (în adâncime sau lăţime)
 - Schema de creare a descendenţilor
 - □ AG încrucişare şi mutaţie
 - PG încrucişare sau mutație

Programare genetică – aplicații

Învăţare automată

- probleme de regresie
 - Predicţii de curs valutar
 - Previziunea vremii
- probleme de clasificare (învăţare supervizată)
 - Proiectarea circuitelor digitale
 - Recunoaşterea imaginilor
 - Diagnosticare medicală
- probleme de clusterizare (învăţare nesupervizată)
 - Analiza secvenţelor de ADN
 - Cercetări şi studii de piaţă (segmentarea pieţei)
 - Analiza reţelelor sociale
 - Analiza rezultatelor căutărilor în Internet

Programare genetică – variante

- Linear Genetic Programming
- Gene Expression Programming
- Cartesian Genetic Programming
- Grammatical Evolution
- Multi Expression Programming
- Traceless Genetic Programming
- Mai multe detalii despre GP si variantele sale în cursurile dedicate învăţării automate

Recapitulare

Generational GA	Steady – state GA		
Initialization(pop)	Initialization(pop)		
Evaluation(pop)	Evaluation(pop)		
g = 0;			
While (not stop_condition) do	While (not stop_condition) do		
Repeat			
p1=Selection(pop)	p1=Selection(pop)		
p2=Selection(pop)	p2=Selection(pop)		
Crossover(p1,p2) =>o1 and o2	Crossover(p1,p2) =>o1 and o2		
Mutation(o1) => o1*	Mutation(o1) => o1*		
Mutation(o2) => o2*	Mutation(o2) => o2*		
Evaluation(o1*)	Evaluation(o1*)		
Evaluation(o2*)	Evaluation(o2*)		
Add o1* and o2* into popAux	Best(o1*,o2*) replaces Worst(pop)		
Until popAux is full.			
pop ← popAux			
EndWhile	EndWhile		
SE	PE		
Initialization(pop)	Initialization(pop)		
Evaluation(pop)	Evaluation(pop)		
g = 0;	g = 0;		
While (not stop_condition) do	While (not stop_condition) do		
Repeat	For all cromozoms c from pop		
p1=Selection(pop)			
p2=Selection(pop)			
Crossover(p1,p2) =>o1			
Mutation(o1,param) => o1*, param*	Mutation(c,param) => o1*, param*		
Evaluation(o1*)	Evaluation(o1*)		
Add o1* into popAux	Add o1* into popAux		
Until popAux contains λ cromozoms			
$pop \leftarrow Best\mu(popAux) //SE(\mu,\lambda)$	pop ← RoundRobin(popAux)		
$pop \leftarrow Best\mu(popUpopAux) //SE(\mu+\lambda)$			
EndWhile	EndWhile		

18

Recapitulare

- Reprezentare şi fitness
 - Dependente de problemă
- Operatori de căutare
 - Selecţia pentru reproducere şi pentru supravieţuire
 - Dependentă de fitness
 - Independentă de reprezentare
 - Încrucişarea şi mutaţia
 - Dependente de reprezentare
 - Independente de fitness
 - Probabilitatea de încrucişare
 - Acţionează la nivel de cromozom
 - Probabilitatea de mutaţie
 - Acţionează la nivel de genă

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop