

Introduction to Deep Learning (I2DL)

Exercise 7: Pytorch

Overview

- Exercise 6
 - Leaderboard
 - Case Study
- Deep Learning Frameworks
 - Static vs Dynamic
- Exercise 7
 - Pytorch, Tensorboard, Pytorch Lightning
- Outlook and Exam

Exercise 6 – Leaderboard

Exercise 1	Exercise 3	Exercise 4	Exercise 5	Exercise 6	Exercise 7	Exercise 8	Exercise 9	Exercise 10	Exercise 11	
#			User					Score		
1			u1051					62.88		
2			u1048					59.08		
3			u1785					57.45		
4			u1120					56.75		
5			u0111					56.59		
6			u1005					56.32		

CIFAR10 - Leaderboard

RANK	MODEL	PERCENTAGE † CORRECT	PERCENTAGE ERROR	FLOPS	PARAMS	ECE	EXTRA TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	EffNet-L2 (SAM)	99.70	0.30				~	Sharpness- Aware Minimization for Efficiently Improving Generalization	C	Ð	2020
2	ViT-H/14	99.5	0.5		632M		~	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	O	Ð	2020
3	ViT-L/16	99.42	0.58		307M		~	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	O	Ð	2020
4	BiT-L (ResNet)	99.37	0.63				~	Big Transfer (BiT): General Visual Representation Learning	O	Ð	2019
5	LaNet	99.03	0.97		45		×	Sample-Efficient Neural Architecture Search by Learning Action Space for Monte Carlo Tree Search	C	Ð	2019

Case Study: Power of Transformations

```
In [5]: import random
        class SaltPepper:
            def __init__(self, grains=64, prob=0.5):
                self.grains = grains
                self.prob = prob
            def __call__(self, image):
                if random.uniform(0,1) < self.prob:</pre>
                    rows = np.random.randint(0, image.shape[0], size=self.grains)
                    cols = np.random.randint(0. image.shape[1]. size=self.grains)
                    q = self.qrains // 2
                    image[rows[:q], cols[:q]] = 255
                     image[rows[g:], cols[g:]] = 0
                return image
In [6]: #Retrieve an image from the dataset and flip it
        image = dataset[1890]['image']
        transform = SaltPepper(64.1.0)
        image flipped = transform(image)
        #Show the two images
        plt.figure(figsize = (2.2))
        plt.subplot(1, 2, 1)
        plt.imshow(image.astype('uint8'))
        plt.axis('off')
        plt.subplot(1, 2, 2)
        plt.imshow(image flipped.astype('uint8'))
        plt.axis('off')
        plt.title("Left: Original Image, Right: Flipped image")
        plt.show()
```

Left: Original Image, Right: Flipped image


```
In [7]: class RandomRoll:
    def __init__(self, dx=(-8,8), dy=(-8,8), prob=0.5):
        self.dx = dx
        self.dy = dy
        self.prob = prob

def __call__(self, image):
        if random.uniform(0,1) < self.prob:
            x = random.randint(self.dx[0], self.dx[1])
            y = random.randint(self.dy[0], self.dy[1])
            return np.roll(image, (x, y), axis=(0,1))
        return image</pre>
```

```
In [8]: #Retrieve an image from the dataset and flip it
    image = dataset[1]['image']
    transform = RandomRoll((-8,8), (-8,8), 1.0)
    image_flipped = transform(image)

#Show the two images
    plt.figure(figsize = (2,2))
    plt.subplot(1, 2, 1)
    plt.imshow(image.astype('uint8'))
    plt.axis('off')
    plt.subplot(1, 2, 2)
    plt.imshow(image_flipped.astype('uint8'))
    plt.axis('off')
    plt.axis('off')
    plt.axis('off')
    plt.axis('off')
    plt.axis('off')
    plt.axis('off')
    plt.show()
```

Left: Original Image, Right: Flipped image

Case Study: Power of Transformations

```
In [9]: class RandomSpeckle:
             def init (self, std=0.1, prob=0.5):
                 self.std = std
                 self.prob = prob
             def call (self. image):
                 if random.uniform(0,1) < self.prob:</pre>
                     row,col,ch = image.shape
                     gauss = np.random.randn(row,col,ch)
                     gauss = gauss.reshape(row.col.ch)
                     noisy = image + image * random.uniform(0.0, self.std) * gauss
                     return noisy
                 return image
In [10]: #Retrieve an image from the dataset and flip it
         image = dataset[1000]['image']
         transform = RandomSpeckle(prob=1.0)
         image flipped = transform(image)
         #Show the two images
         plt.figure(figsize = (2,2))
         plt.subplot(1, 2, 1)
```

Left: Original Image, Right: Flipped image

plt.imshow(image.astype('uint8'))

plt.imshow(image_flipped.astype('uint8'))

plt.axis('off')

plt.axis('off')

plt.show()

plt.subplot(1, 2, 2)

Final Training with parameters:

- num_layers
- hidden_size
- Regularization
- Learning rate

```
In [18]: trafo = ComposeTransform([
             rescale transform.
             normalize transform.
             RandomHorizontalFlip(),
             RandomSpeckle(prob=0.4),
             SaltPepper(prob=0.4).
             RandomRoll(prob=0.4),
             flatten transform])
         traf_dataset = ImageFolderDataset(
             mode='train',
             root=cifar root.
             download_url=download_url,
             transform=trafo
         data = DataLoader(
             dataset=traf dataset.
             batch size=512,
             shuffle=True.
             drop last=True
In [19]: best_model = ClassificationNet(activation=Relu(), num_layer=3, hidden_size=258, reg=6.357358814407898e-06)
         solver = Solver(best_model, data, dataloaders['val'], learning_rate=5.535943214549563e-05)
         solver.train(epochs=500, patience=21)
```

plt.title("Left: Original Image, Right: Flipped image")

Limiting Factors

Computational Power

- Specialized Architectures
 - CNN

Proper Initialization

RANK	MODEL	PERCENTAGE T	PERCENTAGE ERROR	FLOPS	PARAMS	ECE	EXTRA TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	EffNet-L2 (SAM)	99.70	0.30				~	Sharpness- Aware Minimization for Efficiently Improving Generalization	O	Ð	2020
2	ViT-H/14	99.5	0.5		632M		~	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	O	Ð	2020
3	ViT-L/16	99.42	0.58		307M		~	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	C	Ð	2020
4	BiT-L (ResNet)	99.37	0.63				~	Big Transfer (BiT): General Visual Representation Learning	C	Ð	2019
5	LaNet	99.03	0.97		45		×	Sample-Efficient Neural Architecture Search by Learning Action Space for Monte Carlo Tree Search	C	Ð	2019

Deep Learning Frameworks

The two big ones

- Tensorflow Google
 - As well as Keras
- Pytorch Facebook

Other examples

- CNTK Microsoft
- Mxnet Apache
- Jax Google

Handling of Computation Graph

	Tensorflow	Pytorch		
Graph Creation	Static/Eager	Dynamic/On Runtime		
Similar to	С	Python		

Framework Conversion

See: https://github.com/microsoft/MMdnn

Pytorch: Overview

Easy Device Assignment

```
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

print(f"Original device: {x.device}") # "cpu", integer

tensor = x.to(device)
print(f"Current device: {x.device}") #"cpu" or "cuda", double

cpu
Original device: cpu
Current device: cpu
```

Datasets: Torchvision

Torchvision

 torchvision.datasets contains many datasets, such as ImageNet, FashionMNIST, etc.

Source: https://www.tensorflow.org/datasets/catalog/fashion_mnist

Easy Network Creation

```
import torch.nn as nn
# defining the model
class Net(nn.Module):
   def init (self, input size=1*28*28, output size=100):
       super(Net, self).__init__()
        self.fc1 = nn.Linear(input size, output size)
                                                        Where is the
   def forward(self, x):
                                                          backward
       x = self.fc1(x)
                                                             pass?
       return x
net = Net()
net = net.to(device)
                           Forwardpass
                                                    Backwardpass
                             f(x,y)
```

References on Pytorch

- Repository: https://github.com/pytorch/pytorch/
- Examples (very nice):
 https://github.com/pytorch/examples
- PyTorch for NumPy users: <u>https://github.com/wkentaro/pytorch-for-numpy-users</u>

Tensorboard: Simple Logging

Directly access tensorboard in your training loop

 Tensorboard generates the graph/timestamps etc. for you

Tensorboard: Visualize Networks

 Using a single forward pass, tensorflow can map and display your network graph

Document Everything!

Weight Initialization

 Histogram visualization for layer outputs can show off effects of weight initialization as shown in the lecture

Pytorch Lightning

Idea Behind PyTorch Lightning

Classify our code into three categories

- 1. Research code (the exciting part!, changes with new tasks, models etc.)
 → LightningModule
- 2. Engineering code (the same for all projects and models)

→ Trainer

3. Non-essential code (logging, organizing runs)

→ Callbacks

Lightning Module

PyTorch

```
# model
class Net(nn.Module):
 def __init__(self):
     self.layer 1 = torch.nn.Linear(28 * 28, 128)
     self.layer_2 = torch.nn.Linear(128, 10)
 def forward(self, x):
   x = x.view(x.size(0), -1)
   x = self.layer_1(x)
   x = F.relu(x)
   x = self.layer_2(x)
   return x
# train loader
mnist_train = MNIST(os.getcwd(), train=True, download=True,
                   transform=transforms.ToTensor())
mnist train = DataLoader(mnist train, batch size=64)
net = Net()
# optimizer + scheduler
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
scheduler = StepLR(optimizer, step_size=1)
for epoch in range(1, 100):
  model.train()
  for batch_idx, (data, target) in enumerate(train_loader):
     data, target = data.to(device), target.to(device)
     optimizer.zero_grad()
     output = model(data)
     loss = F.nll_loss(output, target)
     loss.backward()
     optimizer.step()
     if batch_idx % args.log_interval == 0:
         print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
             epoch, batch_idx * len(data), len(train_loader.dataset),
             100. * batch_idx / len(train_loader), loss.item()))
```

Methods that need to be implemented

- __init__
- forward
- training_step
- configure_optimizers

Optional methods

- validation_step
- validation_end
- Data handling

Trainer

PyTorch

PyTorch Lightning

- Initialize the model with hyperparamers for training (e.g. as a dictionary)
- 2. Trainer contains all code relevant for training our neural networks
- 3. Call the method .fit() for training the network

That's all you need to train you model ©

Pros/Cons

Advantages

- Better overview of the relevant code
- Nice debugging features
- Many automated options, like logging

Potential Problems

- Can have issues like any stock library
- Not always straightforward to add features yourself

Your tasks

- Go over all notebooks
 - There is no submission or code to implement
- Experiment yourself!
- Check out documentations

Optional Submission: CIFAR10 (again)

- We will open an optional leaderboard
 - TBD
- Rules (not enforced):
 - Use the previous Cifar10 dataset class in pytorch
 - No convolutional layers
- Use Piazza, especially if you have a successful approach, do a quick write up and discuss

Exam

- Exam date
 - **-** 10.02.22, 10:00
- Exam Format
 - Online
- Mock Exam
 - Uploaded

Chair of Visual Computing & Artificial Intelligence Department of Informatics Technical University of Munich

Note

- · During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Introduction to Deep Learning

Exam: IN2346 / endterm Date: Tuesday 23rd February, 2021

Examiner: Prof. Dr. Matthias Nießner Time: 08:00 – 09:30

	P 1	P 2	P 3	P 4	P 5	P 6	P 7	
ı								

Summary

- Monday 6.12: Watch Lecture 8
 - Training NNs 3
- No exercise submission
- Thursday 9.12: Tutorial 8
 - Autoencoder