Exercise Sheet 1

Mengxuan Wu

September 17, 2023

Question 1

Question 1.1

(after) iteration j	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]	A[9]
1	1	5	6	23	42	45	2	24	8
2	1	2	6	23	42	45	5	24	8
3	1	2	5	23	42	45	6	24	8
4	1	2	5	6	42	45	23	24	8
5	1	2	5	6	8	45	23	24	42
6	1	2	5	6	8	23	45	24	42
7	1	2	5	6	8	23	24	45	42
8	1	2	5	6	8	23	24	42	45

(Assuming the array index starts from 1)

Question 1.2

Loop invariant: After iteration j, the subarray A[1...j] contains the smallest j elements of A[1...n] in sorted order.

Initialisation: After the first iteration, j = 1. The algorithm finds the smallest element in the original array A[1..n] and swap it with A[1]. The subarray A[1..j] is now A[1], which contains the smallest element in sorted order.

Maintenance: In iteration j, the algorithm swaps the smallest element in subarray A[j..n] with element A[j]. Since the subarray A[1..j-1] already

contains the smallest elements of A[1..n] in sorted order, the subarray A[1..j] now contains the smallest j elements of A[1..n] in sorted order.

Termination: The loops ends with n-1 iteration(s). Then the sub-array A[1..n-1] contains the smallest n-1 elements in the array A[1..n] in sorted order. Therefore, the last element A[n] must be the largest element in the array A[1..n]. The array A[1..n] is now sorted.

Question 1.3

SELEC	CTION-SORT (A)	Cost	Times
1: n =	= A.length	c_1	1
2: for	j = 1 to n - 1 do	c_2	n
3:	smallest = j	c_3	n-1
4:	for $i = j + 1$ to n do	c_4	$n + (n-1) + \dots + 2 = \frac{n^2 + n - 2}{2}$
5:	if $A[i] < A[\text{smallest}]$ then smallest = i	c_5	$(n-1) + (n-2) + \dots + 1 = \frac{n^2 - n}{2}$
6:	exchange $A[j]$ with $A[\text{smallest}]$	c_6	n-1

In both the **best case** and the **worst case**, the runtime of the SelectionSort is

$$T(n) = c_1 + c_2 n + c_3 (n-1) + c_4 \left(\frac{n^2 + n - 2}{2}\right) + c_5 \left(\frac{n^2 - n}{2}\right) + c_6 (n-1)$$

$$= \left(\frac{c_4 + c_5}{2}\right) n^2 + \left(c_2 + c_3 + \frac{c_4}{2} - \frac{c_5}{2} + c_6\right) n + \left(c_1 - c_3 - c_6\right)$$

$$= n^2 + 3n - 2$$

For InsertionSort, the runtime for the **best case** is 5n-4 and the runtime for the **worst case** is $\frac{3}{2}n^2 + \frac{7}{2}n - 4$ (from lecture slides).

For the **best case**, InsertionSort is better. Because InsertionSort finishes in linear time, while SelectionSort finishes in quadratic time.

For the **worst case**, both algorithms have quadratic runtime. However, as the coefficient of n^2 in SelectionSort is smaller than that in InsertionSort, SelectionSort is better.