A neural network model for detecting intrusions or attacks on a computer network

Steven Smith P13167208

Wednesday 11th May - 3pm

What is to come?

- Overview of the problem
- The training data
- The data transformation techniques used
- The method of construction
- The experiments
- The results

Network Intrusion Detection

- Network Security of great importance
 - Our lives are in the web
 - Risks Litigation, Financial, Injury or Death
 - Hacked systems regularly reported in the press

- Network Intrusion Detection Systems
 - Good/Normal Connections
 - Bad/Attacking Connections

Neural Network based Intrusion Detection

- Supervised neural network to classify network activity
- Neural Network configuration
 - Difficult to determine ideal parameters
 - Trial and error
- Progress in evolutionary approaches
 - Particle swarm optimisation
 - Genetic algorithms

KDD Cup 1999 Data

- The Third International Knowledge Discovery and Data Mining Tools Competition
 - Build predictive model determine bad vs good connections
 - intrusions simulated in a military network environment
- CSV containing 10% of the data
 - 494021 rows
 - 41 Dimension
 - 23 classifications

More about the data

- 38 of 41 dimensions contain numeric data
 - 32 are Interval, Continuous
 - 6 are Discrete, 0 or 1
- 3 of 41 dimensions contain nominal data
 - Protocol_type, service, flag
- Result contains nominal data
 - 23 classes including normal and smurf.

Data Transformation

- 4 nominal columns
 - Lookup script ("if then else" mapping to ordinal value)
- Matlab data transformation functions
 - Each dimension treated equally
 - Mapminmax
 - Mapstd
 - RemoveConstantRows
 - PerformPCA

More Data Transformation

- Result column converted from single value to array
- Maintain distribution in training datasets
 - 280790/494021 ≈ 57% 'smurf' attacks
 - 97278/494021 ≈ 20% 'normal' usage
- New generated smaller dataset
 - $\approx 5700/10000 \approx 57\%$ 'smurf' attacks
 - $\approx 2000/10000 \approx 20\%$ 'normal' usage
 - First x rows of the classification

Method of construction

- Limited time, too may combinations
 - Limited set of perturbable parameters
- Nprtool Pattern recogition tool
 - 'patternnet' defaults
 - 'trainscg' Scaled conjugate gradient BP
 - 'crossentropy' performance
 - 'softmax' output activation function
 - Random subsampling cross validation (10/90)

Parameters tested

- Network topology, hidden layers, number of neurons in each layer
- The size of the training and validation dataset.
- The normalizing functions mapminmax and mapstd
- Principal Component analysis on or off
- Training vs Validation sizes (10/90, 50/50, 90/10, 30/70, 70/30)
- Maximum number of epochs 100 or 250
- The hidden layer activation functions 15 functions (compet, elliotsig, hardlim, hardlims, logsig, netinv, poslin, purelin, radbas, radbasn, satlin, satlins, softmax, tansig, tribas).
- Number of folds for random subsampling
 - -10
 - maximum of 100 whilst performance continues to improve.

Experiments 1-9

- Test a combination of parameters
 - Aim to reduce options down to a single choice
 - 15 activation functions down to 1
 - 2 normalizing functions down to 1
- Generates a table of data
- Ranking results
 - Percentage Error
 - Cross Entropy Performance

Experiments 10 - 14

- Mapminmax, no PCA
- Activation function radbas
- 5 Topologies
 - [35 35]; [20 20 20 20]; [20 20 20]; [15 15 15 15]; 20
- 5 training vs validation splits
 - -10/90, 50/50, 90/10, 30/70, 70/30
- maximum of 100 folds whilst performance continues to improve

Final Results Table

$Hidden\ Layers/Neurons$	Train/Val Ratio	Per formance	$\%\ Error$	No. of Errors	$No.\ of\ Network \ Connections$
35×35	30/70	0.000238848	0.007847845	3877	3395
$20 \times 20 \times 20 \times 20$	30/70	0.000248808	0.007949055	3927	2440
$20 \times 20 \times 20$	30/70	0.00024774	0.008113015	4008	2040
$20 \times 20 \times 20$	70/30	0.000256067	0.008244589	4073	2040
20	10/90	0.000251437	0.008291146	4096	1240
Table 2: The best performing Neural Networks (top 5 rows)					

The chosen neural network

- 'patternnet' defaults
- 39×20×23 using radbas and softmax
- Trainscg scaled conjugate gradient BP
- removeconstantrows, mapminmax
- training/validation ratio of 10/90
- 96.3% accuracy classifying normal connections
- 99% accuracy classifying bad connections.

Any questions?