Modelos estadísticos II: Modelos lineales generalizados

Técnicas estadísticas avanzadas para la conservación de la biodiversidad - Universidad de Huelva

David García Callejas 01/2021

 Hasta ahora: modelos lineales con variable respuesta continua y residuos normales

```
## fish exposureDurationMin mortality
## 1 1 3 1
## 2 2 3 3 1
## 3 3 1
## 4 4 3 1
## 5 5 3 1
## 6 6 3 1
```

- Hasta ahora: modelos lineales con variable respuesta continua y residuos normales
- ¿podemos modelar variables con respuestas discretas? Por ejemplo, mortalidad de peces en función de tiempo de exposición a temperaturas de 5ºC:

##		fish	${\tt exposureDurationMin}$	mortality
##	1	1	3	1
##	2	2	3	1
##	3	3	3	1
##	4	4	3	1
##	5	5	3	1
##	6	6	3	1

```
ggplot(gupp, aes(x = exposureDurationMin,y = mortality)) +
  geom_point(position = position_jitter(width = .3,height = .03))
```


- ¿Podemos aplicar una regresión lineal a estos datos?
- ¿la relación entre X e Y es lineal?

- ¿Podemos aplicar una regresión lineal a estos datos?
- ¿la relación entre X e Y es lineal?
- ¿esperamos que los residuos sean normales?

```
lmgupp <- lm(mortality ~ exposureDurationMin, data = gupp)
ggplot(gupp, aes(x = exposureDurationMin,y = mortality)) +
  geom_point(position = position_jitter(width = .3,height = .03)) +
  geom_smooth(method = "lm")</pre>
```


- Para valores muy bajos o muy altos de exposición, la mortalidad es < 0 o > 1

- Para valores muy bajos o muy altos de exposición, la mortalidad es < 0 o > 1
- ¿y los residuos?

- Para valores muy bajos o muy altos de exposición, la mortalidad es < 0 o > 1
- ¿y los residuos?

- $\, \blacksquare \,$ Para valores muy bajos o muy altos de exposición, la mortalidad es < 0 o > 1
- ¿y los residuos?

En este caso, queremos modelar la probabilidad de mortalidad en función del tiempo de exposición a temperaturas bajas, con una función limitada entre $0\ y\ 1$

Este tipo de modelos, que permiten modelar respuestas *no normales*, se llaman **Modelos lineales generalizados** (*Generalized Linear Models*, GLM).

Tienen tres componentes:

Distribución estadística de la variable respuesta

Este tipo de modelos, que permiten modelar respuestas *no normales*, se llaman **Modelos lineales generalizados** (*Generalized Linear Models*, GLM).

Tienen tres componentes:

- Distribución estadística de la variable respuesta
- Variables predictoras

Este tipo de modelos, que permiten modelar respuestas *no normales*, se llaman **Modelos lineales generalizados** (*Generalized Linear Models*, GLM).

Tienen tres componentes:

- Distribución estadística de la variable respuesta
- Variables predictoras
- Función de enlace

 En un modelo con variable respuesta binaria, la distribución es la distribución binomial.

- En un modelo con variable respuesta binaria, la distribución es la distribución binomial.
- Las variables predictoras son equivalentes a un modelo lineal.

- En un modelo con variable respuesta binaria, la distribución es la distribución binomial.
- Las variables predictoras son equivalentes a un modelo lineal.
- La función de enlace nos permite modelar nuestra respuesta $a+b\cdot x_i$ en el intervalo [0,1], en vez de que tome cualquier valor entre $[-\infty,\infty]$

Función de enlace

Usamos la función logística:

$$Pr(mortalidad_i) = \frac{e^{a+bx_i}}{1+e^{a+bx_i}}$$

 La función enlace se aplica a la variable respuesta, por lo que reordenamos la ecuación previa:

$$Pr(mortalidad_i) = p_i = g(a + bx_i)$$
$$g^{-1}(p_i) = a + bx_i$$
(1)

La función inversa de la logística se llama "logit". Esta, por fin, es nuestra función de enlace:

$$logit(p_i) = a + bx_i$$

De esta manera, para cualquier valor de a, b, x_i , la respuesta estará acotada entre [0, 1].

Función de enlace: Transforma la estimación del modelo para que se ajuste a la distribución de la variable respuesta.

Ya tenemos todos los ingredientes para ajustar nuestro primer GLM

que se corresponde con

$$logit(Pr(mortalidad_i)) = a + b \cdot exposure_i$$

summary(glm1)

```
##
## Call:
## glm(formula = mortality ~ exposureDurationMin, family = "binomial",
      data = gupp)
##
## Deviance Residuals:
      Min
                10 Median
                                 30
                                         May
## -2.3332 -0.8115 0.3688 0.7206 1.5943
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      -1.66081 0.40651 -4.086 4.40e-05 ***
## exposureDurationMin 0.23971
                               0.04245 5.646 1.64e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 209.55 on 159 degrees of freedom
## Residual deviance: 164.69 on 158 degrees of freedom
## ATC: 168.69
##
## Number of Fisher Scoring iterations: 4
```

coef(glm1)

```
## (Intercept) exposureDurationMin
## -1.6608075 0.2397113
```

Estos coeficientes están en escala logit. No se pueden interpretar como probabilidades de manera directa, sino que debemos "deshacer" la función de enlace para recuperar probabilidades estándar. La función inversa de la logit es la función logística, que se aplica en R con el comando plogis.

Por ejemplo, si queremos saber la probabilidad de mortalidad de un pez en condiciones basales, sin exposición a temperaturas de 5° C, el modelo sería:

$$logit(y_i) = a + b \cdot 0 = a$$
$$y_i = plogis(a)$$
(2)

En R:

```
a <- coef(glm1)[1]
plogis(a)
```

```
## (Intercept)
## 0.1596536
```

O si queremos saber la probabilidad de mortalidad de un pez tras 12 minutos de exposición:

$$logit(y_i) = a + b \cdot 12$$

 $y_i = plogis(a + b \cdot 12)$

```
a <- coef(glm1)[1]; b <- coef(glm1)[2]
plogis(a + b*12)</pre>
```

```
## (Intercept)
## 0.7713109
```

Si el modelo es apropiado, esta probabilidad debe ser similar a las probabilidades obtenidas directamente de los datos:

```
sum(gupp$mortality[gupp$exposureDurationMin == 12]) /
nrow(gupp[gupp$exposureDurationMin == 12,])
```

```
## [1] 0.725
```

Interpretar resultados: El paquete effects da los coeficientes en probabilidades

```
library(effects)
allEffects(glm1)
```

```
## model: mortality ~ exposureDurationMin
##
## exposureDurationMin effect
## exposureDurationMin
## 3 6.8 10 14 18
## 0.2805624 0.4923079 0.6761874 0.8449003 0.9342568
```

plot(allEffects(glm1))

Comprobación de los residuos del modelo

plot(glm1)

Comprobación de los residuos del modelo: paquete DHARMa

library(DHARMa)
simulateResiduals(glm1,plot = TRUE)

Pasos para generar GLMs:

Análisis exploratorio: Visualización de los datos

- Análisis exploratorio: Visualización de los datos
- Ajuste del modelo (cuidado con el argumento "family"!)

- Análisis exploratorio: Visualización de los datos
- Ajuste del modelo (cuidado con el argumento "family"!)
- Comprobación: summary, residuos (e.g. con DHARMa)

- Análisis exploratorio: Visualización de los datos
- Ajuste del modelo (cuidado con el argumento "family"!)
- Comprobación: summary, residuos (e.g. con DHARMa)
- Transformar coeficientes (e.g. con allEffects)

- Análisis exploratorio: Visualización de los datos
- Ajuste del modelo (cuidado con el argumento "family"!)
- Comprobación: summary, residuos (e.g. con DHARMa)
- Transformar coeficientes (e.g. con allEffects)
- Visualizar modelo (e.g. con allEffects o visreg)

Los modelos de regresión logística se pueden aplicar también a datos de proporciones

gupp.prop

```
## # A tibble: 4 x 3
##
    exposureDurationMin alive dead
##
                  <int> <int> <int>
## 1
                     3
                          29
                                11
## 2
                     8
                          16 24
                    12 11 29
## 3
                    18
                           2
                                38
## 4
```

Ajustamos el modelo usando cbind(positivos, negativos) como variable respuesta. En este caso, la probabilidad es de mortalidad, por lo que nuestro "positivo" es el número de muertes.

```
coef(glm1)

## (Intercept) exposureDurationMin
## -1.6608075 0.2397113

coef(glm.prop)

## (Intercept) exposureDurationMin
## -1.6608075 0.2397113
```

Otro ejemplo con datos de proporciones

```
country mortality gdp
##
## 1
        Afghanistan
                           154 2848
            Albania
                                863
## 2
                            32
## 3
            Algeria
                            44 1531
## 4 American Samoa
                            11
                                 NΑ
## 5
            Andorra
                            NA
                                NΑ
## 6
             Angola
                           124
                                355
```

```
ggplot(gdp, aes(x = gdp, y = mortality)) +
  geom_point()
```


summary(gdp.glm)

```
##
## Call:
## glm(formula = cbind(mortality, 1000 - mortality) ~ gdp, family = binomial,
##
      data = gdp)
##
## Deviance Residuals:
      Min
           1Q Median
                                         Max
## -9.2230 -3.5163 -0.5697 2.4284 13.5849
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.657e+00 1.311e-02 -202.76 <2e-16 ***
              -1.279e-04 3.458e-06 -36.98 <2e-16 ***
## gdp
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 6430.2 on 192 degrees of freedom
## Residual deviance: 3530.2 on 191 degrees of freedom
   (14 observations deleted due to missingness)
## AIC: 4525.8
##
## Number of Fisher Scoring iterations: 5
```

Coeficientes:

allEffects(gdp.glm)

```
## model: cbind(mortality, 1000 - mortality) ~ gdp
##
## gdp effect
## gdp
## 40 10000 20000 30000 40000
## 0.0652177296 0.0191438829 0.0054028095 0.0015096074 0.0004206154
```

Visualización del modelo:

Residuos:

simulateResiduals(gdp.glm,plot = TRUE)

Welcome to the real world!

Este patrón en los residuos indica **sobredispersión**. Los datos están más dispersos de lo que esperaríamos según el modelo. En este caso, para un gdp determinado, hay una variación muy grande en mortalidad infantil.

```
visreg(gdp.glm, scale = "response")
points(mortality/1000 ~ gdp, data = gdp)
```


Podemos comprobar la sobredispersión (o infradispersión) de manera explícita con DHARMa:

simres <- simulateResiduals(gdp.glm, refit = TRUE)</pre>

```
##
## DHARMa nonparametric dispersion test via mean deviance residual fit
## vs. simulated-refitted
```

##
data: simres
dispersion = 21, p-value < 2.2e-16
alternative hypothesis: two.sided</pre>

La sobredispersión se puede tratar explicitamente escogiendo otra distribución para la variable respuesta. En este caso, la distribución quasibinomial ayuda a modelar esta varianza extra

 Los valores medios de los coeficientes se mantienen con respecto al modelo binomial

allEffects(gdp.glm)

```
model: cbind(mortality, 1000 - mortality) ~ gdp
##
##
## gdp effect
## gdp
##
  40 10000 20000 30000
                                               40000
## 0.0652177296 0.0191438829 0.0054028095 0.0015096074 0.0004206154
```

allEffects(gdp.glm.qb)

```
##
   model: cbind(mortality, 1000 - mortality) ~ gdp
##
## gdp effect
## gdp
           40
                    10000 20000 30000
##
                                                       40000
  0.0652177296 0.0191438829 0.0054028095 0.0015096074 0.0004206154 39
```

• Pero los errores asociados sí varían

Más allá de la solución concreta, este ejemplo nos ayuda a pensar en la forma de las relaciones entre variables. No todas las relaciones son de naturaleza lineal

```
ggplot(gdp, aes(x = gdp, y = mortality)) +
  geom_point()
```


A veces es conveniente transformar la variable respuesta para acercarnos a una relación lineal

```
ggplot(gdp, aes(x = log(gdp), y = mortality)) +
  geom_point()
```



```
visreg(gdp.glm.log, scale = "response")
points(mortality/1000 ~ gdp, data = gdp)
```


plot(gdp.glm.log)

Este último modelo sigue sin ser ideal, pero con datos reales, a veces no es fácil llegar a modelos *perfectos*

• Ya conocemos la distribución normal $Y \sim N(\mu, \sigma^2)$, que es una distribución continua, y la binomial, que es una distribución discreta. Hay muchas otras distribuciones que podemos considerar para modelar datos ecológicos.

- Ya conocemos la distribución normal $Y \sim N(\mu, \sigma^2)$, que es una distribución continua, y la binomial, que es una distribución discreta. Hay muchas otras distribuciones que podemos considerar para modelar datos ecológicos.
- Uno de los tipos de datos más comunes que nos encontraremos son datos de conteos

- Ya conocemos la distribución normal $Y \sim N(\mu, \sigma^2)$, que es una distribución continua, y la binomial, que es una distribución discreta. Hay muchas otras distribuciones que podemos considerar para modelar datos ecológicos.
- Uno de los tipos de datos más comunes que nos encontraremos son datos de conteos

```
seedlings <- read.csv(here::here("datasets", "seedlings.csv"))
head(seedlings)</pre>
```

```
## X count row col light area
## 1 1 0 1 70.71854 0.50
## 2 2 1 1 1 2 88.26021 0.25
## 3 3 2 1 3 67.35133 0.50
## 4 4 4 3 1 4 67.57850 1.00
## 5 5 4 1 5 26.63098 0.25
## 6 6 3 1 6 15.79433 1.00
```

distribuciones continuas y discretas

- distribuciones continuas y discretas
- likelihood (WS p814)

- distribuciones continuas y discretas
- likelihood (WS p814)
- esquema general: distribución de residuos, fórmula, función de enlace

- distribuciones continuas y discretas
- likelihood (WS p814)
- esquema general: distribución de residuos, fórmula, función de enlace
- regresión logística (WS p701)

- distribuciones continuas y discretas
- likelihood (WS p814)
- esquema general: distribución de residuos, fórmula, función de enlace
- regresión logística (WS p701)
- regresión de conteos (poisson, negbin)

- distribuciones continuas y discretas
- likelihood (WS p814)
- esquema general: distribución de residuos, fórmula, función de enlace
- regresión logística (WS p701)
- regresión de conteos (poisson, negbin)
- selección de modelos (AIC)