Codici a blocco

Introduzione ai codici lineari: definizione di campo

▶ Un campo è una struttura composta da un insieme non vuoto F e da due operazioni binarie *interne*: *somma* e *prodotto*. Per ogni $\alpha, \beta, \gamma \in F$ vale

Somma

$$\alpha + \beta \in F$$

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

$$\alpha + \beta = \beta + \alpha$$

$$0 \in F, \alpha + 0 = \alpha, \alpha - \alpha = 0$$

Prodotto (2)

$$\alpha * \beta \in F$$

$$(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$$

$$\alpha * \beta = \beta * \alpha$$

$$1 \in F, \alpha * 1 = \alpha, \forall \alpha \neq 0 \ \alpha * \alpha^{-1} = 1$$

$$\alpha * (\beta + \gamma) = \alpha * \beta + \alpha * \gamma$$

Introduzione ai codici lineari: i campi di Galois

- Un campo di Galois GF(q) è un campo con un *numero finito* q di elementi.
- ► GF(2) è il campo definito su {0,1} con somma modulo 2 ("XOR") e prodotto modulo 2 ("AND").
- Una volta definito GF(2), si può costruire lo spazio vettoriale $V_n = GF(2)^n$, lo spazio di tutte i possibili 2^n vettori di n cifre binarie su cui valgono le operazioni definite per GF(2).

Codici a blocco lineari su GF(2)

Sia $\mathbf{u} = [u_1, u_2, \dots, u_k]$ una generica parola di k cifre binarie. Il codice a blocco lineare $\mathcal{C}(k, n) \subset \mathcal{V}_n$ è l'insieme delle 2^k parole $\mathbf{x} = [x_1, x_2, \dots, x_n]$ di n cifre binarie ottenute con la trasformazione lineare

$$\mathbf{x} = \mathbf{uG} \tag{3}$$

dove **G** è una matrice $k \times n$ di cifre binarie.

▶ **G** è la *matrice generatrice* del codice.

Codici a blocco lineari su GF(2)

Siano \mathbf{g}_i (i = 1, 2, ..., k) le righe di \mathbf{G} , \mathbf{x} è la combinazione lineare delle righe \mathbf{g}_i .

$$\mathbf{x} = \sum_{i=1}^{k} u_i \mathbf{g}_i \tag{4}$$

Perché ci siano 2^k parole di codice distinte è necessario che **G** abbia rango $k \Longrightarrow$ le righe di **G** sono linearmente indipendenti e costituiscono una base per il sottospazio vettoriale $\mathcal{C} \subset \mathcal{V}_n$.

Proprietà dei codici lineari a blocchi

- Alcune semplici proprietà derivano direttamente dalla linearietà dei codici:
 - 1. Ogni parola di codice è una combinazione lineare di righe della matrice generatrice.
 - 2. Il codice a blocchi è costituito da tutte le possibili combinazioni delle righe della matrice generatrice.
 - 3. La somma di due parole di codice è ancora una parola di codice.
 - 4. La *n*-pla di tutti zeri è sempre una parola di codice.
 - 5. Se x è una parola di codice, anche -x è una parola di codice.

Distanza di Hamming

- La distanza di Hamming $d(\mathbf{x}_1, \mathbf{x}_2)$ tra due vettori di n elementi \mathbf{x}_1 e \mathbf{x}_2 è il numero di posizioni in cui le due parole sono diverse tra loro.
- La distanza di Hamming è una metrica.
 - 1. $d(\mathbf{x}_1, \mathbf{x}_2) \geq 0$
 - 2. $d(\mathbf{x}_1, \mathbf{x}_2) = 0 \Leftrightarrow \mathbf{x}_1 = \mathbf{x}_2$
 - 3. $d(\mathbf{x}_1, \mathbf{x}_2) = d(\mathbf{x}_2, \mathbf{x}_1)$
 - 4. $d(\mathbf{x}_1, \mathbf{x}_3) \leq d(\mathbf{x}_1, \mathbf{x}_2) + d(\mathbf{x}_2, \mathbf{x}_3)$
- ▶ II peso di Hamming di un vettore $\mathbf{x}_0 \in \mathcal{V}_n$ è $w(\mathbf{x}_0) = d(\mathbf{x}_0, \mathbf{0}_n)$
- La distanza minima di un codice C è la minima distanza di Hamming calcolata fra tutte le possibili parole che appartengono a C.

Codici a blocco in forma sistematica

 Quando il codice è in forma sistematica la matrice generatrice del codice ha la seguente forma

$$\mathbf{G} = [\mathbf{I}_k, \mathbf{P}] \tag{5}$$

▶ La matrice **P**, di dimensioni $k \times (n - k)$ è la *matrice di parità*.

Esempio: codice a ripetizione R = 1/3

► Codice a ripetizione R = 1/3

Bit in ingresso	Parola codificata
1	[111]
0	[000]

La matrice generatrice del codice è

$$\mathbf{G} = [111] \tag{6}$$

La distanza minima del codice è $d_{min} = 3$.

Esempio: codice a controllo di parità R = 7/8

- Codice a a controllo di parità R = 7/8. Ogni 7 bit ne aggiunge uno di controllo di parità: 1 se il numero di '1' è dispari, 0 se il numero di '1' è pari.
- La matrice generatrice del codice è

$$\mathbf{G} = [\mathbf{I}_7, \mathbf{1}_7] \tag{7}$$

- ▶ il prodotto $\mathbf{u}\mathbf{1}_7 = \sum_{i=1}^7 u_i$ può essere scritto come una somma modulo 2 e quindi vale 0 se il il numero di '1' è pari e 1 altrimenti.
- La distanza minima del codice è $d_{min} = 2$. Dimostrazione.

Codici a blocco in forma sistematica

Definizione: Due codici lineari $C_1(k, n)$ e $C_2(k, n)$ in GF(2) sono equivalenti se uno è ottenuto dall'altro attraverso una permutazione delle posizioni del codice;

Teorema 1: Due matrici generatici G_1 and G_2 in GF(2) generano due codici equivalenti se una può essere ottenuta dall'altra da una sequenza di operazioni di questo tipo:

- 1. Permutazione delle righe;
- 2. Combinazione lineare di righe;
- 3. Permutazione delle colonne.

Teorema 2: Qualsiasi codice lineare a blocchi è equivalente ad un codice in forma sistematica.

Codici a blocco in forma sistematica

▶ Dato il sottospazio $\mathcal{C} \subset \mathcal{V}_n$ di dimensione k esiste un sottospazio ortogonale (null space) $\mathcal{C}^{\perp} \subset \mathcal{V}_n$ di dimensione n-k, definito dalla matrice \mathbf{H} di dimensioni $n-k \times n$ tale che

$$\mathbf{G}\mathbf{H}^T = \mathbf{0}_{k,n-k} \tag{8}$$

La base di \mathcal{C}^{\perp} è costituita dalle n-k righe della matrice \mathbf{H} , per cui ogni elemento $\mathbf{t} \in \mathcal{C}^{\perp}$ può essere rappresentato

$$\mathbf{t} = \mathbf{vH} = \sum_{i=1}^{n-k} v_i \mathbf{h}_i \tag{9}$$

Per ogni $\mathbf{x} \in \mathcal{C}$ e per ogni $\mathbf{t} \in \mathcal{C}^{\perp}$ si ha

$$\mathbf{xt}^T = \mathbf{uGH}^T \mathbf{v}^T = 0 \tag{10}$$

Matrice di controllo di parità

- La matrice **H** è la *matrice di controllo di parità* del codice.
- ightharpoonup Per costruzione, per ciascun $\mathbf{x} \in \mathcal{C}$ vale

$$xH^{T} = uGH^{T} = 0. (11)$$

La matrice la matrice di controllo di parità non è unica. Se **G** è sistematica si può utilizzare la relazione

$$[\mathbf{A}, \mathbf{B}] \left[\begin{array}{c} \mathbf{C} \\ \mathbf{D} \end{array} \right] = \mathbf{AC} + \mathbf{BD} \tag{12}$$

per trovare

$$\mathbf{H} = \left[\mathbf{P}^T, \mathbf{I}_{n-k} \right]. \tag{13}$$

Esempi: codice a ripetizione e a controllo di parità

Per il codice a ripetizione R=1/3 si ha k=1, n=3 e n-k=2, per cui la matrice la matrice di controllo di parità è

$$\mathbf{H} = \begin{bmatrix} \mathbf{P}^T, \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}. \tag{14}$$

Per il codice a controllo di parità R=7/8 si ha k=7, n=8 e n-k=1, per cui la matrice la matrice di controllo di parità è

$$\mathbf{H} = \left[\mathbf{P}^T, \mathbf{I}_1 \right] = \mathbf{I}_8^T. \tag{15}$$