#### **Notebook Information**

• Name: Geron Simon A. Javier

• **Y&S:** BSCS 3B IS

Course: CSST 102 | Basic Machine Learning
Topic: Topic 2: Supervised Learning Techniques

• Due date: N/A

# Laboratory Exercise #2: Exercises for K-Nearest Neighbors (KNN) and Logistic Regression on Breast Cancer Diagnosis Dataset

## Exercise 1: Data Exploration and Preprocessing

```
[]: # Load necessary libraries
     import pandas as pd
     # Load the dataset, ensure flexibility in file path handling
     df = pd.read_csv('Breast Cancer Diagnosis Dataset with Tumor Characteristics.
     ⇔csv¹)
     # Check column names for consistency
     print("Column Names:", df.columns)
     # Display the first 10 rows
     print("First 10 Rows:")
     print(df.head(10))
     # Check for missing values
     print("Missing Values per Column:")
     print(df.isnull().sum())
     # Descriptive statistics
     print("Descriptive Statistics:")
     print(df.describe())
    Column Names: Index(['id', 'diagnosis', 'radius_mean', 'texture_mean',
    'perimeter_mean',
           'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
           'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
           'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
           'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
           'fractal_dimension_se', 'radius_worst', 'texture_worst',
           'perimeter_worst', 'area_worst', 'smoothness_worst',
           'compactness_worst', 'concavity_worst', 'concave points_worst',
           'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
          dtype='object')
    First 10 Rows:
```

```
id diagnosis
                         radius_mean
                                      texture_mean perimeter_mean
                                                                        area_mean
0
     842302
                                17.99
                                               10.38
                                                                122.80
                                                                            1001.0
                      М
     842517
                      М
                                20.57
                                               17.77
                                                                            1326.0
1
                                                                132.90
2
   84300903
                      М
                                19.69
                                               21.25
                                                                130.00
                                                                            1203.0
   84348301
                      М
                                11.42
                                               20.38
3
                                                                 77.58
                                                                             386.1
4
   84358402
                      М
                                20.29
                                               14.34
                                                                135.10
                                                                            1297.0
5
     843786
                      М
                                12.45
                                               15.70
                                                                 82.57
                                                                             477.1
                                18.25
                                               19.98
6
     844359
                                                                119.60
                                                                            1040.0
7
  84458202
                      М
                                13.71
                                               20.83
                                                                 90.20
                                                                             577.9
     844981
                      М
                                13.00
                                               21.82
                                                                             519.8
8
                                                                 87.50
9
   84501001
                      М
                                12.46
                                               24.04
                                                                 83.97
                                                                             475.9
   smoothness_mean
                     compactness_mean concavity_mean
                                                           concave points_mean
0
            0.11840
                                0.27760
                                                 0.30010
                                                                         0.14710
1
            0.08474
                                                                         0.07017
                                0.07864
                                                 0.08690
2
            0.10960
                                0.15990
                                                 0.19740
                                                                         0.12790
3
            0.14250
                                0.28390
                                                 0.24140
                                                                         0.10520
4
            0.10030
                                0.13280
                                                 0.19800
                                                                         0.10430
5
            0.12780
                                0.17000
                                                 0.15780
                                                                         0.08089
6
            0.09463
                                0.10900
                                                 0.11270
                                                                         0.07400
7
            0.11890
                                0.16450
                                                 0.09366
                                                                         0.05985
8
            0.12730
                                                 0.18590
                                                                         0.09353
                                0.19320
9
            0.11860
                                0.23960
                                                 0.22730
                                                                         0.08543
        texture_worst
                        perimeter_worst
                                            area_worst
                                                         smoothness_worst
                 17.33
                                                2019.0
                                                                    0.1622
0
                                   184.60
   . . .
                                                                    0.1238
1
                 23.41
                                   158.80
                                                1956.0
2
                 25.53
                                   152.50
                                                1709.0
                                                                    0.1444
   . . .
3
                 26.50
                                    98.87
                                                 567.7
                                                                    0.2098
   . . .
4
                 16.67
                                   152.20
                                                1575.0
                                                                    0.1374
   . . .
5
                 23.75
                                   103.40
                                                 741.6
                                                                    0.1791
   . . .
6
                 27.66
                                   153.20
                                                1606.0
                                                                    0.1442
   . . .
7
                 28.14
                                   110.60
                                                 897.0
                                                                    0.1654
   . . .
8
                 30.73
                                   106.20
                                                 739.3
                                                                    0.1703
9
                 40.68
                                    97.65
                                                 711.4
                                                                    0.1853
   compactness_worst
                        concavity_worst
                                           concave points_worst
                                                                   symmetry_worst
0
               0.6656
                                  0.7119
                                                          0.2654
                                                                            0.4601
1
               0.1866
                                  0.2416
                                                          0.1860
                                                                            0.2750
2
               0.4245
                                  0.4504
                                                                            0.3613
                                                          0.2430
3
               0.8663
                                  0.6869
                                                          0.2575
                                                                            0.6638
4
               0.2050
                                  0.4000
                                                          0.1625
                                                                            0.2364
5
               0.5249
                                  0.5355
                                                          0.1741
                                                                            0.3985
6
               0.2576
                                  0.3784
                                                          0.1932
                                                                            0.3063
7
                                                          0.1556
               0.3682
                                  0.2678
                                                                            0.3196
8
               0.5401
                                  0.5390
                                                          0.2060
                                                                            0.4378
9
               1.0580
                                  1.1050
                                                          0.2210
                                                                            0.4366
```

|   | fractal_dimension_worst | Unnamed: 32 |
|---|-------------------------|-------------|
| 0 | 0.11890                 | NaN         |
| 1 | 0.08902                 | NaN         |
| 2 | 0.08758                 | NaN         |
| 3 | 0.17300                 | NaN         |
| 4 | 0.07678                 | NaN         |
| 5 | 0.12440                 | NaN         |
| 6 | 0.08368                 | NaN         |
| 7 | 0.11510                 | NaN         |
| 8 | 0.10720                 | NaN         |
| 9 | 0.20750                 | NaN         |
|   |                         |             |

## [10 rows x 33 columns]

Missing Values per Column:

| missing values per column: |     |  |  |  |  |
|----------------------------|-----|--|--|--|--|
| id                         | 0   |  |  |  |  |
| diagnosis                  |     |  |  |  |  |
| radius_mean                |     |  |  |  |  |
| texture_mean               |     |  |  |  |  |
| perimeter_mean             |     |  |  |  |  |
| area_mean                  |     |  |  |  |  |
| smoothness_mean            |     |  |  |  |  |
| compactness_mean           |     |  |  |  |  |
| concavity_mean             |     |  |  |  |  |
| concave points_mean        |     |  |  |  |  |
| symmetry_mean              |     |  |  |  |  |
| fractal_dimension_mean     |     |  |  |  |  |
| radius_se                  | 0   |  |  |  |  |
| texture_se                 | 0   |  |  |  |  |
| perimeter_se               | 0   |  |  |  |  |
| area_se                    | 0   |  |  |  |  |
| smoothness_se              | 0   |  |  |  |  |
| compactness_se             | 0   |  |  |  |  |
| concavity_se               | 0   |  |  |  |  |
| concave points_se          | 0   |  |  |  |  |
| symmetry_se                |     |  |  |  |  |
| fractal_dimension_se       | 0   |  |  |  |  |
| radius_worst               | 0   |  |  |  |  |
| texture_worst              | 0   |  |  |  |  |
| perimeter_worst            | 0   |  |  |  |  |
| area_worst                 | 0   |  |  |  |  |
| smoothness_worst           | 0   |  |  |  |  |
| compactness_worst          | 0   |  |  |  |  |
| concavity_worst            |     |  |  |  |  |
| concave points_worst       |     |  |  |  |  |
| symmetry_worst             |     |  |  |  |  |
| fractal_dimension_worst    |     |  |  |  |  |
| Unnamed: 32                | 569 |  |  |  |  |
| 1                          |     |  |  |  |  |

dtype: int64

# Descriptive Statistics:

| 202011 | # 1 1                |                   |                   |                  |
|--------|----------------------|-------------------|-------------------|------------------|
|        | id radius_           |                   | perimeter_mean    | area_mean \      |
| count  | 5.690000e+02 569.00  | 0000 569.000000   | 569.000000        | 569.000000       |
| mean   | 3.037183e+07 14.12   | 7292 19.289649    | 91.969033         | 654.889104       |
| std    | 1.250206e+08 3.52    | 4049 4.301036     | 24.298981         | 351.914129       |
| min    |                      | 9.710000          |                   | 143.500000       |
| 25%    | 8.692180e+05 11.70   |                   |                   | 420.300000       |
|        |                      |                   |                   |                  |
| 50%    | 9.060240e+05 13.37   |                   |                   | 551.100000       |
| 75%    | 8.813129e+06 15.78   |                   |                   | 782.700000       |
| max    | 9.113205e+08 28.11   | 0000 39.280000    | 188.500000        | 2501.000000      |
|        |                      |                   |                   |                  |
|        | smoothness_mean comp | actness_mean conc | avity_mean conca  | ve points_mean \ |
| count  | 569.000000           |                   | 569.000000        | 569.000000       |
|        |                      |                   |                   |                  |
| mean   | 0.096360             | 0.104341          | 0.088799          | 0.048919         |
| std    | 0.014064             | 0.052813          | 0.079720          | 0.038803         |
| min    | 0.052630             | 0.019380          | 0.000000          | 0.000000         |
| 25%    | 0.086370             | 0.064920          | 0.029560          | 0.020310         |
| 50%    | 0.095870             | 0.092630          | 0.061540          | 0.033500         |
| 75%    | 0.105300             | 0.130400          | 0.130700          | 0.074000         |
|        |                      |                   |                   |                  |
| max    | 0.163400             | 0.345400          | 0.426800          | 0.201200         |
|        |                      |                   |                   |                  |
|        | symmetry_mean t      | exture_worst peri | meter_worst are   | a_worst \        |
| count  | 569.000000           | 569.000000        | 569.000000 569    | .000000          |
| mean   | 0.181162             | 25.677223         | 107.261213 880    | . 583128         |
| std    | 0.027414             | 6.146258          |                   | . 356993         |
| min    |                      | 12.020000         |                   | . 200000         |
|        |                      |                   |                   |                  |
| 25%    | 0.161900             | 21.080000         |                   | .300000          |
| 50%    | 0.179200             | 25.410000         | 97.660000 686     | .500000          |
| 75%    | 0.195700             | 29.720000         | 125.400000 1084   | .000000          |
| max    | 0.304000             | 49.540000         | 251.200000 4254   | .000000          |
|        |                      |                   |                   |                  |
|        | smoothness_worst com | pactness_worst co | ncavity_worst \   |                  |
| count  | 569.000000           | 569.000000        | 569.000000        |                  |
|        |                      |                   |                   |                  |
| mean   | 0.132369             | 0.254265          | 0.272188          |                  |
| std    | 0.022832             | 0.157336          | 0.208624          |                  |
| min    | 0.071170             | 0.027290          | 0.000000          |                  |
| 25%    | 0.116600             | 0.147200          | 0.114500          |                  |
| 50%    | 0.131300             | 0.211900          | 0.226700          |                  |
| 75%    | 0.146000             | 0.339100          | 0.382900          |                  |
|        |                      |                   |                   |                  |
| max    | 0.222600             | 1.058000          | 1.252000          |                  |
|        |                      |                   |                   |                  |
|        | concave points_worst | v                 | ractal_dimension_ |                  |
| count  | 569.000000           | 569.000000        | 569.0             | 00000            |
| mean   | 0.114606             | 0.290076          | 0.083946          |                  |
| std    | 0.065732             | 0.061867          | 0.018061          |                  |
| min    | 0.000000             | 0.156500          | 0.055040          |                  |
| 25%    | 0.064930             | 0.250400          | 0.071460          |                  |
|        |                      |                   |                   |                  |
| 50%    | 0.099930             | 0.282200          | 0.08              | 80040            |

```
75%
                       0.161400
                                        0.317900
                                                                  0.092080
                       0.291000
                                        0.663800
                                                                  0.207500
    max
           Unnamed: 32
                   0.0
    count
                   NaN
    mean
    std
                   NaN
    min
                   NaN
    25%
                   NaN
    50%
                   NaN
    75%
                   NaN
                   NaN
    max
    [8 rows x 32 columns]
[]: #@title ## **Task: Summarize the Dataset:**
     # Number of instances and features
     print(f'Number of Instances: {df.shape[0]}')
     print(f'Number of Features: {df.shape[1]}')
     # Breakdown of target variable (diagnosis)
     print("Diagnosis Breakdown (M = Malignant, B = Benign):")
     print(df['diagnosis'].value_counts())
     # Display missing values for further action
     missing_values = df.isnull().sum()
     print("Missing Values:")
     print(missing_values[missing_values > 0])
    Number of Instances: 569
    Number of Features: 33
    Diagnosis Breakdown (M = Malignant, B = Benign):
    diagnosis
    В
         357
         212
    Name: count, dtype: int64
    Missing Values:
    Unnamed: 32
                   569
    dtype: int64
[]: #0title ## **3. Preprocessing:**
     from sklearn.preprocessing import StandardScaler
     # Drop irrelevant columns
     if 'id' in df.columns:
         df = df.drop(columns=['id'])
```

```
if 'Unnamed: 32' in df.columns:
    df = df.drop(columns=['Unnamed: 32'])

# Convert Diagnosis column to binary (M -> 1, B -> 0)
df['diagnosis'] = df['diagnosis'].map({'M': 1, 'B': 0})

# Check for any missing values before scaling
missing_values = df.isnull().sum()
if missing_values.any():
    print("There are still missing values. Consider handling them before scaling.

-")
else:
    # Normalize features
    scaler = StandardScaler()
    features = df.drop(columns=['diagnosis'])
    scaled_features = scaler.fit_transform(features)
```

Training Set Size: 455 samples Testing Set Size: 114 samples

## Exercise 2: Implementing K-Nearest Neighbors (KNN) Model

```
# Accuracy
     accuracy = accuracy_score(y_test, y_pred)
     print(f'Accuracy: {accuracy * 100:.2f}%')
     # Confusion matrix
     conf_matrix = confusion_matrix(y_test, y_pred)
     print('Confusion Matrix:')
     print(conf_matrix)
     # Classification report
     print('Classification Report:')
     print(classification_report(y_test, y_pred, target_names=['Benign',_
      Accuracy: 95.61%
    Confusion Matrix:
    [[71 1]
     [ 4 38]]
    Classification Report:
                  precision recall f1-score
                                                 support
                       0.95
                                 0.99
                                           0.97
                                                       72
          Benign
       Malignant
                       0.97
                                 0.90
                                           0.94
                                                       42
        accuracy
                                           0.96
                                                      114
                                           0.95
       macro avg
                       0.96
                                 0.95
                                                      114
    weighted avg
                       0.96
                                 0.96
                                           0.96
                                                      114
[]: #@title ## **2. Experiment with Different n_neighbors:**
     import matplotlib.pyplot as plt
     from sklearn.metrics import accuracy_score
     # Define a list of different neighbor values to experiment with
     neighbors = [3, 5, 7, 9]
     accuracies = []
     # Iterate over different n_neighbors values
     for n in neighbors:
         knn = KNeighborsClassifier(n_neighbors=n)
         knn.fit(X_train, y_train)
         y_pred = knn.predict(X_test)
         # Calculate accuracy for each model
         accuracy = accuracy_score(y_test, y_pred)
```

```
accuracies.append(accuracy)
# Plot accuracy vs n_neighbors
plt.plot(neighbors, accuracies, marker='o', color='blue', linestyle='--')
plt.xlabel('n_neighbors')
plt.ylabel('Accuracy')
plt.title('Accuracy for Different n_neighbors')
# Highlight the optimal n_neighbors
optimal_n = neighbors[accuracies.index(max(accuracies))]
optimal_acc = max(accuracies)
plt.axvline(x=optimal_n, color='red', linestyle='--', label=f'Optimal_
\rightarrown={optimal_n}')
plt.legend()
plt.show()
# Print the best n_neighbors
print(f'The optimal n_neighbors is {optimal_n} with an accuracy of {optimal_acc_
 →* 100:.2f}%.')
```



The optimal n\_neighbors is 5 with an accuracy of 95.61%.

## Exercise 3: Implementing Logistic Regression

```
[]: #@title ## **1. Train Logistic Regression:**
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import classification_report, accuracy_score, u
     # Logistic Regression
    logreg = LogisticRegression(max_iter=10000)
    logreg.fit(X_train, y_train)
     # Predict the test set
    y_pred_lr = logreg.predict(X_test)
     # Accuracy and classification report
    accuracy_lr = accuracy_score(y_test, y_pred_lr)
    print(f'Logistic Regression Accuracy: {accuracy_lr * 100:.2f}%')
     # Confusion matrix
    conf_matrix_lr = confusion_matrix(y_test, y_pred_lr)
    print('Confusion Matrix (Logistic Regression):')
    print(conf_matrix_lr)
     # Classification report
    print('Classification Report (Logistic Regression):')
    print(classification_report(y_test, y_pred_lr, target_names=['Benign',_
     Logistic Regression Accuracy: 97.37%
    Confusion Matrix (Logistic Regression):
    [[71 1]
     [ 2 40]]
    Classification Report (Logistic Regression):
                 precision
                              recall f1-score
                                                 support
          Benign
                      0.97
                                0.99
                                          0.98
                                                      72
       Malignant
                      0.98
                                0.95
                                          0.96
                                                      42
        accuracy
                                          0.97
                                                     114
                                          0.97
       macro avg
                      0.97
                                0.97
                                                     114
    weighted avg
                      0.97
                                0.97
                                          0.97
                                                     114
```

```
[]: #@title ## **2. Comparison of KNN and Logistic Regression:**
    import pandas as pd
     # Accuracy for KNN and Logistic Regression
    accuracy_knn = accuracy_score(y_test, y_pred)
    accuracy_lr = accuracy_score(y_test, y_pred_lr)
     # Precision, Recall, F1-Score for both models
    report_knn = classification_report(y_test, y_pred, target_names=['Benign',_
     report_lr = classification_report(y_test, y_pred_lr, target_names=['Benign',__
     # Create a comparison DataFrame
    comparison_df = pd.DataFrame({
         'Model': ['KNN', 'Logistic Regression'],
         'Accuracy': [accuracy_knn * 100, accuracy_lr * 100],
         'Precision (Benign)': [report_knn['Benign']['precision'], __
     →report_lr['Benign']['precision']],
         'Recall (Benign)': [report_knn['Benign']['recall'],
     →report_lr['Benign']['recall']],
         'F1-Score (Benign)': [report_knn['Benign']['f1-score'],
     →report_lr['Benign']['f1-score']],
         'Precision (Malignant)': [report_knn['Malignant']['precision'], ___
     →report_lr['Malignant']['precision']],
         'Recall (Malignant)': [report_knn['Malignant']['recall'], __
     →report_lr['Malignant']['recall']],
         'F1-Score (Malignant)': [report_knn['Malignant']['f1-score'],__
     →report_lr['Malignant']['f1-score']]
    })
     # Display the comparison
    print(comparison_df)
     # Determine which model performs better
    if accuracy_knn > accuracy_lr:
        print("KNN performs better in terms of accuracy.")
    elif accuracy_knn < accuracy_lr:</pre>
        print("Logistic Regression performs better in terms of accuracy.")
    else:
        print("Both models have the same accuracy.")
```

```
Model Accuracy Precision (Benign) Recall (Benign) \
0 KNN 94.736842 0.934211 0.986111
1 Logistic Regression 97.368421 0.972603 0.986111
```

## Exercise 4: Hyperparameter Tuning and Cross-Validation

```
[]: #@title ## **1. GridSearchCV for KNN:**
     from sklearn.model_selection import GridSearchCV
     # Defining the parameter grid for KNN
     param_grid = {'n_neighbors': [3, 5, 7, 9], 'weights': ['uniform', 'distance'],
     \rightarrow'p': [1, 2]}
     # Perform Grid Search with 5-fold cross-validation
     grid_search = GridSearchCV(KNeighborsClassifier(), param_grid, cv=5)
     grid_search.fit(X_train, y_train)
     # Output the best parameters and corresponding accuracy
     best_params = grid_search.best_params_
     best_score = grid_search.best_score_
     print(f'Best Parameters: {best_params}')
     print(f'Best Cross-Validation Accuracy: {best_score * 100:.2f}%')
    Best Parameters: {'n_neighbors': 3, 'p': 2, 'weights': 'uniform'}
    Best Cross-Validation Accuracy: 96.92%
[]: #@title ## **2. Cross-Validation for Logistic Regression:**
     from sklearn.model_selection import cross_val_score
     # Perform 5-fold cross-validation for Logistic Regression
     cv_scores = cross_val_score(logreg, scaled_features, df['diagnosis'], cv=5)
     # Output the mean cross-validated accuracy
     mean_cv_accuracy = cv_scores.mean()
     print(f'Cross-Validated Accuracy (Logistic Regression): {mean_cv_accuracy * 100:.
```

Cross-Validated Accuracy (Logistic Regression): 98.07%

## Exercise 5: Decision Boundary Visualization

#### []: LogisticRegression(max\_iter=10000)

```
[]: #@title ## **Task: Plot the Decision Boundary:**
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    def plot_decision_boundary(model, X, y, title):
        x_{min}, x_{max} = X[:, 0].min() - 1, X[:, 0].max() + 1
        y_{min}, y_{max} = X[:, 1].min() - 1, X[:, 1].max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),
                             np.arange(y_min, y_max, 0.01))
        # Predict on the mesh grid
        Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot decision boundary
        plt.contourf(xx, yy, Z, alpha=0.3, cmap=ListedColormap(('lightblue', ___
     →'lightcoral')))
        plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k', u
     plt.title(title)
        plt.xlabel('PCA Component 1')
```

```
plt.ylabel('PCA Component 2')
plt.show()

# Plot decision boundaries for KNN and Logistic Regression

plot_decision_boundary(knn_pca, X_pca_test, y_test_pca, title='KNN Decision_
→Boundary (PCA)')

plot_decision_boundary(logreg_pca, X_pca_test, y_test_pca, title='Logistic_
→Regression Decision Boundary (PCA)')
```





