Nomenclature for Bayesian sampling driven classical mechanics force field parameterization paper

Bryce C. Manubay

March 13, 2017

I. Molecules

Index	SMILES	C_count	O_count	AlkEthOH_id	IUPAC_names
0	С	1	1	AlkEthOH_c0	methane
15	сс	2	1	AlkEthOH_c38	ETHANE
339	CC(C)0	3	2	AlkEthOH_c488	Propan-2-ol
603	ссс	3	1	AlkEthOH_c901	PROPANE
789	сссо	3	2	AlkEthOH_c11	Propan-1-ol
804	ссо	2	2	AlkEthOH_c11	ethanol
805	ссос	3	2	AlkEthOH_c11	Methoxyethane
896	со	1	2	AlkEthOH_c12	methanol
897	сос	2	2	AlkEthOH_c12	Methoxymetha
912	0	0	2	AlkEthOH_c13	oxidane
105	C1COC1	3	2	AlkEthOH_r131	Oxetane

Figure 1: The molecules being used as the test set for this initial parameterization. Each row entry includes the SMILES string, C and O composition, ID from the AlkEthOH set and the IUPAC name for a given molecule.

II. Parameters **(Names given by the forcefield, will indicate differently in paper. See Nomenclature section)

- A. Bond:
 - 1. 'k': the bonded force constant $\left(\frac{kcal}{mol\cdot^2}\right)$
 - 2. 'length': the equilibrium bond length ()
- B. Angle:
 - 1. 'k': the angular force constant $\left(\frac{kcal}{mol \cdot rad^2}\right)$
 - 2. 'length': the equilibrium bond angle (rad)
- C. Angle:
 - 1. 'idivfi': barrier height divisor for torsional term i
 - 2. 'ki': force constant for torsional term i $\left(\frac{kcal}{mol}\right)$
 - 3. 'phasei': phase angle for torsional term i (\deg)
 - 4. 'periodicityi': periodicity of torsional term i

III. How many parameters?

- A. Bonds (total of 5 unique SMIRKS -> 10 parameters)
 - 1. [#6X4:1] [#6X4:2] (C-C)
 - 2. [#8:1] [#1:2] (O-H)
 - 3. [#6X4:1] [#8X2:2] (C-O)
 - 4. [#6X4:1] [#1:2] (C-H)
 - 5. [#6X4:1] [#8X2H0:2] (C-O where the O is bonded to another C, so ether type C-O)
- B. Angles (total of 3 unique SMIRKS -> 6 parameters)
 - 1. [#1:1] [#6X4:2] [#1:3]
 - 2. [*:1] [#8:2] [*:3]
 - 3. [*:1] [#6X4:2] [*:3]
- C. Torsions (torsion parameters need to be counted on a individual SMIRKS basis)
 - 1. [#1:1] [#6X4:2] [#6X4:3] [#6X4:4]
 - a. 1 term
 - b. 4 total parameters
 - 2. [#6X4:1] [#6X4:2] [#8X2H0:3] [#6X4:4]
 - a. 2 terms
 - b. 8 total parameters
 - 3. [*:1] [#6X4:2] [#6X4:3] [*:4]
 - a. 1 term
 - b. 4 total parameters
 - 4. [#1:1] [#6X4:2] [#6X4:3] [#1:4]
 - a. 1 term
 - b. 4 total parameters
 - 5. [*:1] [*:2] [*:3] [*:4]

- a. 1 term
- b. 4 total parameters
- 6. [#1:1] [#6X4:2] [#6X4:3] [#8X2:4]
 - a. 2 terms
 - b. 8 total parameters
- 7. [*:1] [#6X4:2] [#8X2:3] [#1:4]
 - a. 1 term
 - b. 4 total parameters
- 8. [#6X4:1] [#6X4:2] [#8X2H1:3] [#1:4]
 - a. 2 terms
 - b. 8 total parameters
- D. 60 total parameters

IV. Nomenclature:

- A. Probability Terms:
 - 1. $\hat{\Theta}$: denotes some set of parameters
 - 2. $Pr\left(\hat{\Theta}|O\right)$: posterior probability distribution; prob of some parameter set given observables
 - 3. $L\left(O|\hat{\Theta}\right)$: Likelihood function; prob of observing some observable given parameters
 - 4. $pr\left(\hat{\Theta}\right)$: prior probability; probability of parameter set based on prior knowledge
- B. Parameters:
 - 1. Bonds:
 - a. k_B : the bonded force constant $\left(\frac{kcal}{mol\cdot^2}\right)$
 - b. x_0 : the equilibrium bond length ()
 - 2. Angles:
 - a. k_{θ} : the angular force constant $\left(\frac{kcal}{mol \cdot rad^2}\right)$
 - b. θ_0 : the equilibrium bond angle (deg)
 - 3. Torsions:
 - a. $idiv f_i$: barrier height divisor for torsional term i
 - b. k_i : force constant for torsional term i $\left(\frac{kcal}{mol}\right)$
 - c. ψ_i : phase angle for torsional term i (deg)
 - d. τ_i : periodicity of torsional term i
- C. Observables:
 - 1. Bonds:
 - a. μ_B : mean bond length of a bond distribution ()
 - b. σ_B^2 : variance in bond length of a bond distribution (2)

2. Angles:

- a. μ_{θ} : mean bond angle of an angle distribution (rad)
- b. σ_{θ}^2 : variance in bond angle of an angle distribution (rad^2)

3. Torsions:

- a. A_i : Fourier coefficient of the i^{th} term
- b. ψ_i : phase angle of the i^{th} term
- c. τ_i : periodicity of the i^{th} term