Simulation Coverage to Date

- 1. Simulation components and simulation mechanics (manual simulation).
- 2. Data collection, distribution fitting, parameter estimation, goodness of fit tests.
- 3. Running models and analysis Steady state vs. terminating analysis, initial conditions, warm-up period, Output analysis.
- 4. Verification and validation

Simulation fundamentals → Specific implementation (Arena)

<u>Data</u>
Interarrivals
Service times
Breakdowns
Repair times
...

Dist. Fitting

Goodness-of

- 12.71.1.1771.13.1

-fit tests

Simulation Model

Event driven model

- Event list
- Functions
 - Generation of random
 - Interarrivals
 - Service times
 - Breakdowns
 - Repair times

•....

Simulation Simulation Simulation Samples of system

 X_1

replications

Warm-up

 \mathbf{X}_2

X_n

Output Analysis

- How does the computer generate observations from various distributions specified after input analysis?
- There are two main components to the generation of observations from probability distributions.

1.

Random number generation –

Random Number Generator -

- One early method the midsquare method (von Neumann and Metropolis 1940)
 - Start with a four digit positive integer Z₀.
 - Square Z_0 to get an integer with up to eight digits (append zeros if less than eight).
 - Take the middle four digits as the next four digit integer Z_1 .
 - Place a decimal point to the left of Z_1 to form the first "U(0,1)" observation.
 - Repeat

- The prior method does not work well.
 - Degenerates to zero.
- What are good methods?

- Linear Congruential Generators (LCGs).
- ullet A LCG generates a sequence of integers Z_1 , Z_2 , Z_3 , ... using the following recursive formula,

- Since the mod m operation is used, all Z_i 's will be between 0 and m-1.
- To get the "U(0,1)" random observations each Z_i generated is divided by m.

 \bullet So are the U_i 's really U(0,1) random observations?

In-class Exercise

- Let m=63, a=22, c=4 and $Z_0 = 19$.
 - Generate the first five "U(0,1)" observations.

- How many have heard of the term "random number seed"?
- What is the notation for the seed for a LCG?

- The random number "stream" can be controlled with the seed.
 - Each time the same seed is used, the sequence of U(0,1) observations generated is identical.

Since the "stream" of random numbers generated is reproducible, random number generation procedures are also referred to as _

- \bullet m, a, and c are the parameters of the random number generator.
 - There can be an infinite number of different implementations of a LCG.
- lacktriangle The values used for m, a, and c determine whether the generator is good or bad.

- The stream or sequence of numbers produced by a generator should pass statistical tests for randomness.
 - An outside observer should not be able to tell the difference (statistically) between a stream of pseudo random numbers and an actual random number stream.

Example - Random Number Generation

i	22*Z _{i-1} + 4	Z _i	Ui	i	22*Z _{i-1} + 4	Z _i	Ü _i	i	22*Z _{i-1} + 4	Z _i	U _i	i	22*Z _{i-1} + 4	Z _i	U _i
0	<u> </u>	19		16	356	41	0.6508	32	840	21	0.3333	48	400	22	0.3492
1	422	44	0.6984	17	906	24	0.3810	33	466	25	0.3968	49	488	47	0.7460
2	972	27	0.4286	18	532	28	0.4444	34	554	50	0.7937	50	1038	30	0.4762
3	598	31	0.4921	19	620	53	0.8413	35	1104	33	0.5238	51	664	34	0.5397
4	686	56	0.8889	20	1170	36	0.5714	36	730	37	0.5873	52	752	59	0.9365
5	1236	39	0.6190	21	796	40	0.6349	37	818	62	0.9841	53	1302	42	0.6667
6	862	43	0.6825	22	884	2	0.0317	38	1368	45	0.7143	54	928	46	0.7302
7	950	5	0.0794	23	48	48	0.7619	39	994	49	0.7778	55	1016	8	0.1270
8	114	51	0.8095	24	1060	52	0.8254	40	1082	11	0.1746	56	180	54	0.8571
9	1126	55	0.8730	25	1148	14	0.2222	41	246	57	0.9048	57	1192	58	0.9206
10	1214	17	0.2698	26	312	60	0.9524	42	1258	61	0.9683	58	1280	20	0.3175
11	378	0	0.0000	27	1324	1	0.0159	43	1346	23	0.3651	59	444	3	0.0476
12	4	4	0.0635	28	26	26	0.4127	44	510	6	0.0952	60	70	7	0.1111
13	92	29	0.4603	29	576	9	0.1429	45	136	10	0.1587	61	158	32	0.5079
14	642	12	0.1905	30	202	13	0.2063	46	224	35	0.5556	62	708	15	0.2381
15	268	16	0.2540	31	290	38	0.6032	47	774	18	0.2857	63	334	19	0.3016

◆ What will happen after the 63rd number is generated?

- The example LCG demonstrates <u>cycling</u> in the prior table.
 - Since m=63, it can generate at most 63 numbers before it repeats the same sequence.
- This small random number generator has <u>full period</u> since it generates all possible (m=63) numbers before cycling.

- Theorem (Hull and Dobell 1962)
 - The LCG $Z_i = (aZ_{i-1} + c) mod m$ has full period if and only if the following three conditions hold.
 - The only positive integer that exactly divides both m and c is 1.
 - 2. If q is a prime number that divides m, then q divides a-1.
 - 3. If 4 divides m, then 4 divides a-1.
- The parameters of the LCG dictate the period length of the LCG as well as other properties of the numbers generated.

- ◆ The example (m = 63) generator has full period but bad statistical properties (next slide).
- ◆ A good random number generator will have values for m, a, and c such that full or close to full period is obtained, as well as good statistical properties.
 - Crystal Ball

Crystal Ball Demo

- Types of LCGs
 - When c = 0, the LCG is called a
 - When c ≠ 0, the LCG is called a
- Most LCGs implemented are multiplicative
 - Can't have full period.
- How is m selected.
 - A large period is desired \rightarrow m=2³¹ (based on a 32 bit word size).
 - In <u>computing</u>, "word" is a term for the natural unit of data used by a
 particular computer design. A word is simply a fixed-sized group of <u>bits</u>
 that are handled together by the machine.

- ♦ With m=2³¹ it has been proven that the period can be at most 2²⁹ (25% of the values are cycled and gaps may be present).
- m has been selected as the largest prime number less than $m=2^{31}$, which is 2,147,483,647 = 2^{31} -1.
 - A period of m-1 can be guaranteed if the parameter a is primitive element modulo m.
 - The smallest integer k for which a^k-1 is evenly divisible by m is k=m-1.

- Selections for a that are primitive element modulo m and have been in use are:
 - **16,807**
 - **630,360,016**

- Recent (2001) evidence has demonstrated that LCGs with m=2,147,483,647 = 2³¹ -1, and a=16,807 or a=630,360,016 can show poor statistical properties over small sample sizes.
- Additionally, because of the availability of more computing power, more complex simulations are possible.
 - Cycle lengths of 2³¹ may be too small.
- 64 bit word generators have been developed.

- Additionally, other types of random number generators have been developed.
 - More general congruences

$$Z_i = g(Z_{i-1}, Z_{i-2}, ...) \pmod{m}$$

e.g.,
$$g(Z_{i-1}, Z_{i-2}, ...) = a_1 Z_{i-1} + a_2 Z_{i-2} + ... + a_q Z_{i-q}$$

- Composite generators
 - Combine outputs from separate random number streams to create a new stream.
- Other types of generators

Microsoft Excel 2010

 U_{1i}, U_{2i}, U_{3i} are the ith random numbers from three separate generators.

$$U_i$$
 = fractional part of $U_{1i} + U_{2i} + U_{3i}$

Arena implements a random number generation method called a <u>combined multiple recursive generator</u> (a <u>composite</u> <u>generator</u>).

$$A_n = (1403580A_{n-2} - 810728A_{n-3}) \mod 4294967087$$

$$B_n = (527612B_{n-1} - 1370589B_{n-3}) \mod 4294944443$$

$$Z_n = (A_n - B_n) \mod 4294967087$$

$$U_n = \frac{Z_n}{4294967088}$$
 if $Z_n > 0$

$$U_n = \frac{4294967087}{4294967088}$$
 if $Z_n = 0$

How many seeds are required?

- The constants found in this generator have been selected to give a long cycle length and good statistical properties.
 - Statistical tests of randomness have been passed.
 - Plots of random numbers up to 45 dimensions have been constructed with no patterns.
 - Cycle length = 3.1×10^{57} (too long for cycling to ever occur today).

- Controlling random number generation.
 - For a LCG the seed can be specified.

Arena – No provision for specifying seeds (six required).

• The 3.1 x 10⁵⁷ stream is broken up into 1.8 x 10¹⁹ separate streams of length 1.7 x 10³⁸. Each stream is further separated into substreams (2.3 x 10¹⁵ substreams of length 7.6 x 10²².

- ◆ Instead of specifying seeds, streams (1 to 1.8 x 10¹९) are specified.
 - Default stream is stream 10.
- Within a single random number stream each replication starts at the next substream.

To specify a stream in Arena a distribution must be specified using an Expression.

- Generating "random" or pseudorandom observations from theoretical distributions.
 - Exponential,
 - Normal,
 - Uniform besides U(0,1),
 - Etc.
- ullet Start with a simple example of a discrete distribution. Let X be a discrete random variable with the following probability mass function

Next consider the partitioning of the interval [0,1]

◆ If we generate a U(0,1) observation what is the probability it wall fall in each interval A,B, C?

The interval presented earlier represents the vertical axis for the cumulative distribution function of X or $F(x_i)$.

The distribution function F(x) provides a way to map a U(0,1) observation to specific values according to the probabilities specified in F(x).

- Discrete Inverse Transform Algorithm
 - 1. Generate a U(0,1) observation U.
 - Find y (among the discrete values of X) such that y is the smallest value with $F(y) \ge U$.
 - 3. **Set X=y.**
- Verbal interpretation For what value of x is F(x) first greater than U?

In-class Exercise

If the mass function for a discrete random variable is

$$P(X = i) = \begin{cases} 0.25 & \text{for } i = 1\\ 0.25 & \text{for } i = 2\\ 0.4 & \text{for } i = 3\\ 0.1 & \text{for } i = 4 \end{cases}$$

 Generate the first four observations of this random variable if the first four U(0,1) observations are 0.35, 0.87, 0.28, 0.36.

- The discrete inverse transform algorithm is general and applies to any discrete random variable with a finite number of possible outcomes.
- Other non-finite discrete distributions have properties which call for other methods.

- Examples (inverse transform)
 - Bernoulli random variables
 - p = probability of success.
 - 1. Generate $U \sim U(0,1)$.
 - 2. If $U \le p$ set X=1, else X=0.
 - Discrete Uniform(i,j) random variables
 - 1. Generate $U \sim U(0,1)$.
 - 2. Set $X = i + \lfloor (j-i+1)U \rfloor$

Demo in Excel

 \bullet Poisson random variable with mean λ (infinite number of possible outcomes)

1. Let
$$a = e^{-\lambda}$$
, $b = 1$, set $i = 0$.

2. Generate $U_{i+1} \sim U(0,1)$,

$$\operatorname{set} b = b * U_{i+1}$$

if b < a set n = i and return else go to 3.

3. Set
$$i = i + 1$$
, go to 2.

This is a method called acceptance-rejection.

- Continuous Random Variables
 - The inverse transform method is also used for continuous random variables.
- Inverse transform algorithm verbal.
 - For a continuous random variable X with distribution function F, first generate U~U(0,1) and then find the value of X that gives F(X)=U.

- ◆ Finding X that gives F(X)=U.
 - The function F can be inverted to obtain F⁻¹ which will be a function of U.
 - If u=F(x), then $x=F^{-1}(u)$.

Diagram

Finding "F Inverse"

In-class Exercise

If $X \sim \text{exponential with mean } \frac{1}{\lambda} \text{ then } F(x) = 1 - e^{-\lambda x}$ for $x \ge 0$, and 0 otherwise.

What is $F^{-1}(u)$?

- General continuous inverse transform algorithm
 - 1. Generate $U \sim U(0,1)$.
 - 2. Set $X=F^{-1}(U)$.

Examples

Why does the algorithm work?

In-class Exercise

For U(0,1) observations 0.142, 0.432, 0.550, and 0.712 generate observations from an exponential distribution with a mean= 10, and observations from a U(50,100) distribution.

- Not all distribution functions have closed form distribution functions (e.g., normal distribution), and not all distribution functions can be inverted to get $F^{-1}(U)$ in closed form.
- Other methods of random variate generation.

52

ullet Composition — When the distribution F can be expressed as a convex combination of other distribution functions F_1, F_2, \ldots and it is straightforward to generate observations from F_1, F_2, \ldots

Algorithm

- Generate a positive integer j with probability p_j .
- Return X with distribution F_i .

Example.

- Convolution Can be used when the desired random variable can be expressed as the sum of other independent random variables.
- Example
 - $X \sim m$ -Erlang with mean μ .
 - Then $X = Y_1 + Y_2 + ... + Y_m$
 - Where the Y_i are independent, identically distributed exponential random variables with mean μ/m .

- - Generate $U_1, U_2, ..., U_m$ as independent U(0,1) random variates.
 - Set

$$X = \frac{-\mu}{m} \ln(\prod_{i=1}^{m} U_i)$$

Why is this correct?

Normal Random Variates

- Cannot use the inverse transform algorithm for the standard normal distribution (μ = 0, σ² = 1).
- No formula for F(x)
- Only need to generate Normal(0,1)

Box-Muller Method

U₁, U₂ are independent U(0,1) random variables

$$Z_{1} = \sqrt{-2 \ln U_{1}} \cos(2\pi U_{2})$$

$$Z_{2} = \sqrt{-2 \ln U_{1}} \sin(2\pi U_{2})$$

Why Does it Work?

- X, Y independent standard normal random variables
- Consider the point (X, Y) in polar coordinates

$$R^2 = X^2 + Y^2$$
$$\tan \theta = \frac{Y}{X}$$

Why Does it Work?

Notes on Box-Muller Method

- Faster methods exist
 - Generally more complicated

- Caution when using with a single LCG
 - U₁, U₂ no longer independent (if adjacent)
 - Solution: use multiple LCG's or another form of generator, e.g. composite

Box-Muller LCG Example

U_{i-1} and U_i from the same LCG

- Simulation models are used to estimate system performance measures.
- System performance = f(system parameters, system design).
 - Simulation is an approximation of the function f.
- Since there are random system components each run of the simulation produces an observation of the value of f.
- To get more precision about the value of f, more simulation runs can be performed.

- If there is high system variance then many runs may be required to get the necessary precision.
 - Runs times may be too long.
 - Simulation cannot respond fast enough.

- Can you reduce the variance in the system?
- However, since there is control over the pseudo random number generators (or streams in Arena), it may be possible to use this control to reduce the variance in certain situations.

- Comparison of two systems.
 - Interested in the difference in the performance of two systems.
 - Intuition
 - The differences in two variations of a system are due to
 - 1. Changes in the system and or system parameters.
 - 2. The realization of random components in the system (e.g., failure times, inspection results,...)

Try to minimize the differences observed between two systems caused by differences in random components (e.g., arrival times, process times, etc.).

Arena - With no CRN

Arena – With no CRN

Arena - With CRN

Arena - Results

No CRN (80 hrs. per rep.)				
Rep.	Mean = 5	Mean = 4.5	Difference	
1	10.55593259	19.15882425	8.602891651	
2	11.62190972	10.52054723	-1.101362492	
3	10.73667873	11.66566449	0.928985759	
4	9.441779109	9.447215439	0.0054363	
5	11.13851111	11.98255637	0.84404526	
6	10.12244579	13.31500819	3.19256239	
7	11.46097002	9.821655377	-1.63931464	
8	9.666154875	16.89704156	7.23088668	
9	9.678278443	26.04126443	16.3629859	
10	8.893112092	12.55677097	3.66365887	
11	13.89013848	13.37045172	-0.51968675	
12	11.5716041	13.75993899	2.1883348	
13	9.544192578	12.38687381	2.84268123	
14	11.11666579	9.011359994	-2.10530579	
15	8.859603189	10.53319565	1.67359245	
16	9.271500665	9.672631262	0.40113059	
17	8.68341031	9.642327162	0.95891685	
18	8.714678262	10.10640835	1.39173008	
19	11.22636828	16.00750627	4.78113799	
20	9.328160211	13.07080157	3.74264135	
Avg	10.276	12.948	2.672	
StdDev	1.326	4.091	4.234	

	With CRN (80 hrs. per rep.)				
Rep.	Mean = 5	Mean = 4.5	Difference		
1	10.55593259	13.44001444	2.884081849		
2	11.62190972	14.50311678	2.88120706		
3	10.73667873	14.20560421	3.468925471		
4	9.441779109	11.32154226	1.879763151		
5	11.13851111	13.64415642	2.505645311		
6	10.12244579	12.79783734	2.675391542		
7-	11.46097002	16.03953701	4.57856699		
8	9.666154875	11.39411414	1.727959263		
9	9.678278443	11.89496922	2.216690779		
10	8.893112092	12.87069329	3.977581201		
11	13.89013848	17.72575688	3.835618397		
12	11.5716041	14.83878646	3.267182361		
13	9.544192578	12.0015145	2.457321924		
14	11.11666579	14.76231143	3.645645634		
15	8.859603189	11.32017699	2.460573801		
16	9.271500665	11.1423295	1.870828831		
17	8.68341031	10.42226041	1.738850098		
18	8.714678262	10.52733463	1.812656364		
19	11.22636828	14.10493336	2.878565083		
20	9.328160211	14.19855829	4.87039808		
Avg	10.276	13.158	2.882		
StdDev	1.326	1.936	0.941		

Statistical Rationale for CRN

Let

 X_{1j} = Output (e.g., avg TIS) from the *jth* indepedent simulation replication from system 1.

 $X_{2j} = \overline{\text{Output from the } jth \text{ indepedent simulation replication from system 2.}$

The objective is to estimate

$$d = \mu_1 - \mu_2$$
, where $\mu_1 = E(X_1), \mu_2 = E(X_2)$.

Statistical Rationale for CRN

If n replications of each (system 1 and 2) simulation are performed, an estimate of *d* is

$$\overline{d}(n) = \frac{\sum_{j=1}^{n} d_j}{n} = \frac{\sum_{j=1}^{n} (X_{1j} - X_{2j})}{n}$$

Since the paired runs may be correlated but the runs are independent

$$Var[\overline{d}(n)] = Var\left[\sum_{j=1}^{n} d_j / n\right] = \frac{n * Var(d_j)}{n^2} = \frac{Var(X_{1j} - X_{2j})}{n}$$

$$= \frac{Var(X_{1j}) + Var(X_{2j}) - 2*Cov(X_{1j}, X_{2j})}{n}$$

Statistical Rationale for CRN

If $Cov(X_{1i}, X_{2i}) > 0$ then $Var[\overline{d}]$ is reduced.

CRN attempts to introduce this positive correlation.

It is possible that CRN can increase variance if negative correlations are induced.

To check let:

 $s_d^2(n)$ = Sample variance of the d_i 's. $s_{X_1}^2(n)$ = Sample variance of the X_{1j} 's. $s_{X_2}^2(n)$ = Sample variance of the X_{2j} 's.

If $s_d^2(n) < s_{X_1}^2(n) + s_{X_2}^2(n)$ then CRN is working as intended.