NEC

NPN SILICON POWER TRANSISTOR 2SC2333

DESCRIPTION

The 2SC2333 is NPN silicon triple diffused transistor designed for switching regulator, DC-DC converter and ultrasonic appliance applications.

FEATURES

- High speed switching.
- Low collector saturation voltage.
- Specified of reverse biased SOA with inductive loads.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures

55450 °O						
Storage Temperature						
Junction Temperature 150 °C Maximum						
Maximum Power Dissipation ($T_c = 25$ °C)						
Total Power Dissipation						
Maximum Voltages and Currents ($T_a = 25$ °C)						
V_{CBO}	Collector to Base Voltage	500 V				
V_{CEO}	Collector to Emitter Voltage	400 V				
V_{EBO}	Emitter to Base Voltage	7.0 V				
1 _{C(DC)}	Collector Current (DC)	2.0 A				
I _{C (pulse)}	Collector Current (pulse)*	4.0 A				
IB(DC)	Base Current (DC)	1.0 A				
* PW ≨ 350 μs, Duty Cycle ≦ 10 %						

PACKAGE DIMENSIONS in millimeters (inches) 10.7 MAX. 0.00 (0.421 MAX.) 0.00 (0.421 MAX.) 0.00 (0.394) 1.3±0.2 0.0051) 0.5±0.2 0.0051) 0.8±0.3 0.0031) 0.5±0.2 0.0051) 0.8±0.3 0.0031) 0.5±0.2 0.0051) 0.8±0.3 0.0031) 0.5±0.2 0.0051) 0.5±0.2 0.5±0.2 0.0051) 0.5±0.2 0.5±0.

ELECTRICAL CHARACTERISTICS (T_a = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
ton	Turn On Time			1.0	μs	$I_{C} = 0.5 \text{ A}, I_{B1} = -I_{B2} = 0.1 \text{ A}$
t _{stg}	Storage Time			2.5	μs	$R_L = 300 \Omega$, $V_{CC} = 150 V$
tf	Fall Time			1.0	μs	See Test Circuit.
hFE1	DC Current Gain**	20		80	_	V _{CE} = 5.0 V, I _C = 0.1 A
hFE2	DC Current Gain**	10			_	$V_{CE} = 5.0 \text{ V}, I_{C} = 0.5 \text{ A}$
VCE(sat)	Collector Saturation Voltage**			1.0	V	IC=0.5 A, IB=0.1 A
VBE(sat)	Base Saturation Voltage* *			1.2	V	IC = 0.5 A, IB = 0.1 A
VCEO(SUS)	Collector to Emitter Sustaining Voltage	400			V	$I_{C} = 0.5 \text{ A}, I_{B} = 0.1 \text{ A}, L = 1 \text{ mH}$
VCEX(SUS)1	Collector to Emitter Sustaining Voltage	450			V	I_{C} = 0.5 A, I_{B1} = $-I_{B2}$ = 0.1 A, T_{a} = 125 $^{\circ}$ C L = 180 μ H, Clamped
V _{CEX} (SUS)2	Collector to Emitter Sustaining Voltage	400			V	$I_C = 1.0 \text{ A}, I_{B1} = 0.2 \text{ A}, -I_{B2} = 0.2 \text{ A},$ $T_a = 125 ^{\circ}\text{C}, L = 180 \mu\text{H}, Clamped}$
Ісво	Collector Cutoff Current			10	μΑ	$V_{CB} = 400 \text{ V}, I_{E} = 0$
CER	Collector Cutoff Current			1.0	mA	$V_{CE} = 400 \text{ V}, R_{BE} = 51 \Omega, T_{a} = 125 ^{\circ}\text{C}$
ICEX1	Collector Cutoff Current			10	μA	$V_{CE} = 400 \text{ V}, V_{BE(OFF)} = -5.0 \text{ V}$
CEX1	Collector Cutoff Current			1.0	mA	$V_{CE} = 400 \text{ V}, V_{BE(OFF)} = -5.0 \text{ V},$ $T_a = 125 \text{ °C}$
1 _{EBO}	Emitter Cutoff Current			10	μΑ	V _{EB} = 5.0 V, I _C = 0

^{**}Pulse Test : PW ≤ 350 µs, Duty Cycle ≤ 2 %/Pulsed

Classification of hFE1

Rank	М	L	К
Range	20 to 40	30 to 60	40 to 80

Test Conditions : $V_{CE} = 5.0 \text{ V}$, $I_{C} = 0.1 \text{ A}$

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME (t_{on} , t_{stg} , t_f) TEST CIRCUIT

