Intégrale à paramètres Td-Tp 12

Novembre 2023

Exercice 1

1. Justifier que pour x > 0 l'intégrale :

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt,$$

est bien définie.

- 2. Justifier que f est continue sur son domaine de définition.
- 3. Soit $x \in \mathbb{R}_+^*$. Calculer f(x) + f(x+1).
- 4. Déterminer une équivalent de f en 0^+ ainsi que la limite de f en $+\infty$.
- 1. On pose $h:(x,t)\mapsto \frac{t^{x-1}}{1+t}.$ Soit x>0. Déterminons un équivalent de h en 0^+ :

$$h(x,t) \underset{t\to 0^+}{\sim} t^{x-1} = \frac{1}{t^{1-x}}$$

Cette fonction est intégrable sur]0,1] si et seulement si 1-x<1 c'est à dire si et seulement si x>0. Ainsi f est bien définie sur \mathbb{R}_+^* .

- 2. Soit A > 0.
 - H1 $\forall x \in [1, +\infty[t \mapsto h(x, t) \text{ est une fonction mesurable.}$
 - **H2** $\forall t \in]0,1], x \mapsto h(x,t)$ est continue sur $[A,+\infty[$.
 - H3 : hypothèse de domination. Soit $x \in [A, +\infty[$ et $t \in]0,1]$:

$$|h(x,t)| \le \frac{t^{A-1}}{1+t} \le t^{A-1} = \varphi(t).$$

La fonction φ est intégrable sur]0,1] si et seulement si $1-A<1\Leftrightarrow A>0$. Donc $\varphi\in\mathcal{L}^1(]0,1],\mathbb{R}).$

On peut appliquer le théorème de continuité sous le signe intégrale. La fonction f est continue sur $[A, +\infty[$. Ainsi f est continue sur $\bigcup_{A>0} [A, +\infty[=\mathbb{R}^*_+]$.

3. Soit $x \in \mathbb{R}_{+}^{*}$. Alors :

$$f(x) + f(x+1) = \int_0^1 t^{x-1} dt = \frac{1}{x}.$$

4. Comme f est continue en 1, $\lim_{x\to 0} f(x+1) = f(1) < +\infty$. Ainsi en utilisant l'identité de la question 3, on déduit que

$$f(x) \sim \frac{1}{x}$$
.

f est une fonction positive. Ainsi,

$$\forall x \in \mathbb{R}_+^*, \qquad 0 \le f(x) \le \frac{1}{x}.$$

Donc $\lim_{x \to +\infty} f(x) = 0$.

On aurait pu utiliser un théorème d'interversion limite/intégrale, i.e. le théorème de convergence dominée ici.

Exercice 2

1. Justifier l'existence de la fonction :

$$F(x) = \int_0^{+\infty} e^{-t^2} \cosh(2xt) dt.$$

- 2. Déterminer F à l'aide d'une équation différentielle.
- 3. Déterminer F à l'aide d'une permutation série intégrale.
- 1. On pose $f:(x,t)\to e^{-t^2}\cosh(2xt)$. $t\mapsto f(x,t)$ est continue sur \mathbb{R}_+ . De plus :

$$\lim_{t \to +\infty} t^2 f(x, t) = 0.$$

Ainsi $f(x,t) = \frac{1}{t \to +\infty} \frac{1}{t^2}$. Par comparaison pour des fonctions positives, $t \mapsto f(x,t)$ est intégrable sur \mathbb{R} .

- 2. Nous souhaitons appliquer le théorème de dérivation sous le signe intégrale :
 - **H1** $\forall x \in \mathbb{R}, t \mapsto f(x,t)$ est mesurable sur \mathbb{R}_+ .
 - **H2** $\forall t \in \mathbb{R}_+, x \mapsto f(x,t)$ est de classe \mathcal{C}^1 et :

$$\frac{\partial}{\partial x}f(x,t) = 2te^{-t^2}\sinh(2xt).$$

Soit $x \in [-a, a]$ et $t \in \mathbb{R}_+$:

$$\left| \frac{\partial}{\partial x} f(x,t) \right| \le 2te^{-t^2} |\sinh(2at)| = \varphi_a(t).$$

De plus,

$$\lim_{t \to +\infty} t^2 \varphi_a(t) = 0$$

Ainsi $\varphi_a \in \mathcal{L}^1(\mathbb{R}_+, \mathbb{R})$.

D'après le théorème de dérivation sous le signe intégrale, F est \mathcal{C}^1 sur \mathbb{R} et $\forall x \in \mathbb{R}$:

$$F'(x) = \int_0^{+\infty} 2te^{-t^2} \sinh(2xt)dt.$$

Intégrons par partie. On pose :

$$u'(t) = 2te^{-t^2},$$
 $u(t) = -e^{-t^2},$ $v(t) = \sinh(2xt),$ $v'(t) = 2x\cosh(2xt)$

 $u, v \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$. On peut intégrer par partie :

$$F'(x) = \left[-e^{-t^2} \sinh(2x) \right]_0^{+\infty} + 2x \int_0^{+\infty} e^{-t^2} \cosh(2xt) dt$$
$$= 2xF(x).$$

Ainsi F est solution de l'équation différentielle F' - 2xF = 0. Il s'agit d'une équation différentielle d'ordre 1 avec a(x) = -2x qui est continue. Les solutions sont de la forme :

$$\forall x \in \mathbb{R}, \qquad F(x) = ke^{x^2}, \qquad \text{avec } k \in \mathbb{R}$$

De plus,
$$F(0) = \int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$
. Donc $\forall x \in \mathbb{R}, \quad F(x) = \frac{\sqrt{\pi}}{2} e^{x^2}$.

3. On développe cosh en série entière. Alors :

$$\cosh(2xt) = \sum_{k=0}^{+\infty} \frac{2^{2n}}{(2n)!} (xt)^{2n}.$$

On définit la série de fonction :

$$\forall t \in \mathbb{R}, \forall n \in \mathbb{N}, \qquad u_n(t) = \frac{2^{2n}}{(2n)!} (xt)^{2n}.$$

On souhaite intervertir série et intégrale.

- H1 $\forall n \in \mathbb{N}$, la fonction u_n est mesurable car continue.
- **H2** Calculons :

$$\int_0^{+\infty} |u_n(t)| dt = \frac{2^{2n} |x|^{2n}}{(2n)!} \int_0^{+\infty} t^{2n} e^{-t^2} dt.$$

Estimons la dernière intégrale. Soit $n \in \mathbb{N}^*$. On pose $I_n = \int_0^{+\infty} t^{2n} e^{-t^2} dt$. On écrit :

$$I_n = \int_0^{+\infty} t^{2n-1} t e^{-t^2} dt$$
. On pose :

$$u'(t) = te^{-t^2},$$
 $u(t) = -\frac{1}{2}e^{-t^2},$ $v(t) = t^{2n-1},$ $v'(t) = (2n-1)t^{2n-2}.$

u et v sont de classe \mathcal{C}^1 sur \mathbb{R}_+ . On peut intégrer par partie :

$$I_n = \int_0^{+\infty} t^{2n} e^{-t^2} dt = \left[-\frac{1}{2} t^{2n-1} e^{-t^2} \right]_0^{+\infty} + \frac{(2n-1)}{2} \int_0^{+\infty} t^{2(n-1)} e^{-t^2} dt = \frac{2n-1}{2} I_{n-1}$$

On démontre par récurrence que $I_n=\frac{(2n)!}{2^{2n}n!}I_0=\frac{(2n)!}{2^{2n}n!}\frac{\sqrt{\pi}}{2}$. On obtient donc $\int_0^{+\infty}|u_n(t)|dt=\frac{1}{n!}\frac{\sqrt{\pi}}{2}|x|^{2n}$. Il s'agit d'une série entière donc le rayon de convergence est $R=+\infty$

On peut donc appliquer le théorème de Fubini-Lebesgue :

$$F(x) = \int_0^{+\infty} \sum_{k=0}^{+\infty} \frac{2^{2n}}{(2n)!} (xt)^{2n} dt$$

$$= \sum_{k=0}^{+\infty} \int_0^{+\infty} \frac{2^{2n}}{(2n)!} (xt)^{2n} dt$$

$$= \sum_{k=0}^{+\infty} \frac{\sqrt{\pi}}{2} \frac{x^{2n}}{n!}$$

$$= \frac{\sqrt{\pi}}{2} e^{x^2}.$$

Exercice 3

1. Justifier l'existence de l'intégrale :

$$I = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

2. On définit pour $x \in \mathbb{R}_+$:

$$F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-xt} dt.$$

Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.

- 3. Déterminer la limite de F en $+\infty$.
- 4. En admettant la continuité de F en 0 déterminer la valeur de I.
- 5. (pour les plus rapides). Justifier que F est continue en 0.
- 1. On souhaite intégrer par partie. On pose :

$$u'(t) = \sin(t),$$
 $u(t) = 1 - \cos(t),$ $v(t) = \frac{1}{t},$ $v'(t) = -\frac{1}{t^2}.$

u etv sont de classe \mathcal{C}^1 sur \mathbb{R}_+ . De plus,

$$[u(t)v(t)]_0^{+\infty} = 0$$

Ainsi $\int_{R_+} u'v$ et $\int_{\mathbb{R}_+} uv'$ sont de même nature. Découpons l'intégrale en 2 :

— sur [0,1]. On a:

$$u(t)v'(t) \underset{t\to 0^+}{\sim} \frac{1}{2}.$$

Ainsi la fonction uv' est prolongeable par continuité en 0 en posant $(uv')(0) = \frac{1}{2}$. Ainsi uv' est intégrable sur [0,1].

— Sur $[1, +\infty[$:

$$\left| u(t)v'(t) \right| \le \frac{2}{t^2}.$$

Par comparaison dans le cadre des fonctions positives, uv' est intégrable sur $[1, +\infty[$. Donc $uv' \in \mathcal{L}^1(\mathbb{R}_+, \mathbb{R})$ et $u'v \in \mathcal{L}^1(\mathbb{R}_+, \mathbb{R})$. Ce qui répond à la question.

- 2. On pose $f(x,t) = \frac{\sin(t)}{t}e^{-xt}$. Soit A > 0
 - On peut majorer:

$$\left| \frac{\sin(t)}{t} \right| e^{-xt} \le e^{-At} = \varphi_A(t)$$

La fonction $\varphi_A \in \mathcal{L}^1(\mathbb{R}_+, \mathbb{R})$.

— Soit $t \in \mathbb{R}_+^*$, la fonction $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 et :

$$\forall \forall t \in \mathbb{R}_+^*, \ x \in \mathbb{R}_+, \quad \frac{\partial}{\partial x} f(x, t) = -\sin(t)e^{-xt}.$$

De plus pour $x \in [A, +\infty[$:

$$\left| \frac{\partial}{\partial x} f(x, t) \right| \le e^{-At} = \varphi_A(t)$$

On a déjà précisé que $\varphi_A \in \mathcal{L}^1(\mathbb{R}_+, \mathbb{R})$.

D'après le théorème de dérivabilité sous le signe intégrale, f est de classe \mathcal{C}^1 sur $[A, +\infty[$ et :

$$f'(x) = \int_0^{+\infty} \frac{\partial}{\partial x} f(x, t) dt$$
$$= \int_0^{+\infty} -\sin(t)e^{-xt} dt$$
$$= -\operatorname{Im}\left(\int_0^{+\infty} e^{it} e^{-xt} dt\right)$$
$$= -\frac{1}{1+x^2}$$

Ainsi il existe $c \in \mathbb{R}$ tel que :

$$\forall x \in \mathbb{R}_{+}^{*}, \qquad F(x) = -\arctan(x) + c.$$

Déterminons la constante à l'aide de la question 2).

3. D'après la question précédente

$$-\lim_{x \to +\infty} f(x,t) = 0$$

— Pour $x \in [A, +\infty[$ (avec A > 0) et $t \in \mathbb{R}_+$:

$$|f(x,t)| \le e^{-At} = \varphi_A(t).$$

De plus $\varphi_A \in \mathcal{L}^1(\mathbb{R}_+, \mathbb{R})$.

D'après le théorème de convergence dominée, on obtient

$$\lim_{x \to +\infty} F(x) = 0.$$

En particulier, on en déduit que $c=\frac{\pi}{2}$

4. Si la fonction F est continue en 0, on en déduit que

$$F(0) = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}.$$

5. Montrons que F est continue en 0.

On décompose F en deux morceaux :

$$F(x) = \underbrace{\int_{0}^{1} f(x,t)dt}_{F_{1}(x)} + \underbrace{\int_{1}^{+\infty} f(x,t)dt}_{F_{2}(x)}.$$

— Étudions la continuité de la fonction F_1 . Le plus simple est de reprendre la preuve de la dérivabilité :

$$\left| \frac{\partial}{\partial x} f(x, t) \right| = \left| -\sin(t)e^{-xt} \right| \le 1 = \psi(t)$$

La fonction $\psi \in \mathcal{L}^1([0,1],\mathbb{R})$. D'après le théorème de dérivabilité sous le signe intégrale, la fonction F_1 est continue en 0.

— Pour résoudre le problème pour F_2 , on passe dans les complexes. On note :

$$F_{2i}(x) = \int_{1}^{+\infty} \frac{e^{it}}{t} e^{-tx} dt$$

On pose:

$$u'(t) = e^{t(i-x)},$$
 $u(t) = \frac{1}{i-x}e^{t(i-x)},$ $v(t) = \frac{1}{t},$ $v'(t) = -\frac{1}{t^2}.$

 $u, v \in \mathcal{C}^1([1, +\infty[, \mathbb{C})])$. On intègre par partie. Ainsi

$$F_{2i}(x) = -\frac{e^{i-x}}{i-x} + \frac{1}{i-x} \int_{1}^{+\infty} \frac{e^{t(i-x)}}{t^2} dt$$

On pose $G(x) = \int_1^{+\infty} \frac{e^{t(i-x)}}{t^2} dt$ et $g(x,t) = \frac{e^{t(i-x)}}{t^2}$. Alors

- Soit $x \in [0,1]$ la fonction $t \mapsto g(x,t)$ est mesurable.
- Soit $t \in [1, +\infty[$ la fonction $x \mapsto g(x, t)$ est continue sur [0, 1].
- De plus $\forall x \in [0,1], \ \forall t \in [1,+\infty[$:

$$|g(x,t)| \le \frac{1}{t^2} = \psi_2(t)$$

La fonction ψ_2 est intégrable sur $[1, +\infty[$. D'après le théorème de continuité sous le signe intégrale, la fonction G puis F_{2i} est continue sur [0, 1].

Ainsi la fonction F est continue en 0.

Exercice 4

Pour $x \in \mathbb{R}$, on pose

$$F(x) = \int_0^{+\infty} \frac{\ln(x^2 + t^2)}{1 + t^2} dt.$$

- 1. Justifier que la fonction F est continue sur son domaine de définition.
- 2. Montrer que F est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.
- 3. Déterminer F à l'aide de sa dérivée.
- 1. Comme f est paire, on se contente d'étudier f pour $x \in [0, +\infty[$. Montrons que f est continue sur $[0, +\infty[$.

On se place sur [0, b] avec b > 0:

- **H1** Pour $x \in [0, b]$, la fonction $t \mapsto \frac{\ln(x^2 + t^2)}{1 + t^2}$ est mesurable sur $[0, +\infty[$ car continue presque partout.
- **H2** Pour presque tout $t \in [0, +\infty[$ $(t \neq 0), x \mapsto \frac{\ln(x^2+t^2)}{1+t^2}$ est continue sur [0, b].
- **H3** Pour $t \in [0, +\infty[$ et $x \in [0, b],$

$$\left| \frac{\ln(x^2 + t^2)}{1 + t^2} \right| \le \frac{\max\left(-\ln(t^2), \ln(t^2 + b^2)\right)}{1 + t^2}.$$

La fonction $t\mapsto \frac{\ln\left(t^2+b^2\right)}{1+t^2}$ est intégrable sur $[0,+\infty[$ car continue sur $[0,+\infty[$ et

$$\frac{\ln(t^2 + b^2)}{1 + t^2} = \mathop{o}_{t \to +\infty} \left(\frac{1}{t^{3/2}}\right),$$

intégrable au voisinage de $+\infty$ par comparaison aux intégrales de Riemann.

La fonction $t \mapsto \frac{-\ln(t^2)}{1+t^2}$ est intégrable sur $[0, +\infty[$ car continue sur $]0, +\infty[$ et intégrable au voisinage de 0^+ car

$$\frac{-\ln\left(t^2\right)}{1+t^2} \underset{t\to 0^+}{\sim} -2\ln(t)$$

est intégrable en 0^+ , en $+\infty$ on a

$$\frac{-\ln\left(t^2\right)}{1+t^2} = \underset{t \to +\infty}{o} \left(\frac{1}{t^{3/2}}\right).$$

La fonction $t\mapsto \frac{\max\left(-\ln(t^2),\ln(t^2+b^2)\right)}{1+t^2}$ est donc intégrable sur $[0,+\infty[$ comme maximum de deux fonctions intégrables.

Par le théorème de continuité sous le signe intégral, f est continue sur [0,b] pour tout b>0, donc sur $\bigcup_{b>0}[0,b]=[0,+\infty[$.

2. On se place sur [a, b] avec 0 < a < b.

Pour $x \in [a, b]$, la fonction $t \mapsto \ln\left(1 + \frac{x^2 + t^2}{t^2}\right)$ est mesurable sur $[0, +\infty[$ car elle est continue.

- **H1** Pour $x \in [a, b]$, la fonction $t \mapsto \frac{\ln(x^2 + t^2)}{1 + t^2}$ est intégrable sur $[0, +\infty[$ car elle est continue sur $[0, +\infty[$ et, pour $x \in [a, b]$, $\ln\left(1 + \frac{x^2 + t^2}{t^2}\right) = o_{t \to +\infty}\left(t^{3/2}\right)$ est intégrable au voisinage de $+\infty$ par comparaison aux intégrales de Riemann.
- **H2** Pour $t \in [0, +\infty[$, la fonction $x \mapsto \frac{\ln(x^2+t^2)}{1+t^2}$ est dérivable sur [a, b] avec une dérivée donnée par

$$x \mapsto \frac{2x}{(x^2 + t^2)(1 + t^2)}.$$

— Pour $t \in [0, +\infty[$ et $x \in [a, b],$

$$\left| \frac{2x}{(x^2 + t^2)(1 + t^2)} \right| \le \frac{2b}{(a^2 + t^2)(1 + t^2)}.$$

La fonction $t\mapsto \frac{2b}{(a^2+t^2)(1+t^2)}$ est intégrable sur $[0,+\infty[$ car elle est continue sur $[0,+\infty[$ et $\frac{2b}{(a^2+t^2)(1+t^2)}=o_{t\to+\infty}(\frac{1}{t^2})$ est intégrable au voisinage de $+\infty$ par comparaison aux intégrales de Riemann.

Par le théorème de dérivation sous le signe intégrale, f est dérivable sur [a,b] et $\forall x \in [a,b]$,

$$f'(x) = \int_0^{+\infty} \frac{2x}{(x^2 + t^2)(1 + t^2)} dt.$$

Or si $x \neq 1$, $\frac{2x}{(x^2+t^2)(1+t^2)} = \frac{2x}{1-x^2} \left(\frac{1}{x^2+t^2} - \frac{1}{1+t^2} \right)$. Soit si $x \neq 1$,

$$f'(x) = \int_0^\infty \left(\frac{2}{1 - x^2} \frac{\frac{1}{x}}{1 + \left(\frac{t}{x}\right)^2} - \frac{2x}{1 - x^2} \frac{1}{1 + t^2} \right) dt$$
$$= \left[\frac{2}{1 - x^2} \arctan\left(\frac{t}{x}\right) - \frac{2x}{1 - x^2} \arctan(t) \right]_{t=0}^{+\infty}$$
$$= \frac{2}{1 - x^2} \frac{\pi}{2} - \frac{2x}{1 - x^2} \frac{\pi}{2} = \frac{\pi}{1 + x}$$

3. Pour $x \in [a, b], x \neq 1, f(x) = \pi \ln(1+x) + k$. f est dérivable donc continue sur [a, b].

$$\forall x \in [a, b], f(x) = \pi \ln(1 + x) + k.$$

Ceci étant valable pour tout $0 < a < b, \forall x \in]0, +\infty[$

$$f(x) = \pi \ln(1+x) + k.$$

Par parité et continuité de f sur $[0, +\infty[$, $\forall x \in \mathbb{R}, f(x) = \pi \ln(1 + |x|) + f(0)$. On utilise sympy pour calculer f(0).

$$f(0) = 2 \int_0^\infty \frac{\ln(t)}{1+t^2} dt = 2 \int_0^1 \frac{\ln(t)}{1+t^2} dt + \int_1^\infty \frac{\ln(t)}{1+t^2} dt.$$

On effectue le changement de variable $t = \frac{1}{u}$ pour $t \in [1, +\infty[$.

$$\int_{1}^{\infty} \frac{\ln(t)}{1+t^{2}} dt = \int_{0}^{1} \frac{\ln\left(\frac{1}{u}\right)}{1+\left(\frac{1}{u}\right)^{2}} \left(-\frac{1}{u^{2}}\right) du = -\int_{0}^{1} \frac{\ln(t)}{1+t^{2}} dt.$$

Donc f(0) = 0.

$$\forall x \in \mathbb{R}, \quad f(x) = \pi \ln(1 + |x|).$$

Exercice 5

Pour $n \in \mathbb{N}^*$ et $x \in]0, +\infty[$, on pose

$$I_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2 + x^2)^n}$$

1. Calculer la dérivée de la fonction I_n sur $]0, +\infty[$.

- 2. En déduire la valeur de $\int_0^{+\infty} \frac{\mathrm{d}t}{(t^2+1)^3}$.
- 1. Soit $n \in \mathbb{N}^*$. Soient a et A deux réels tels que 0 < a < A. On considère

$$F_n: \begin{cases} [a,A] \times \mathbb{R} & \to \mathbb{R} \\ (x,t) & \mapsto \frac{1}{(t^2+x^2)^n} \end{cases}$$

- **H1** Pour chaque x de [a, A], la fonction $t \mapsto F_n(x, t)$ est continue par morceaux et intégrable sur $[0, +\infty[$ car $F_n(x, t) \underset{t \to +\infty}{\sim} \frac{1}{t^{2n}} > 0$ avec 2n > 1.
- **H2** La fonction F_n admet sur $[a, A] \times [0, +\infty[$ une dérivée partielle par rapport à sa première variable x définie par :

$$\forall (x,t) \in [a,A] \times [0,+\infty[, \quad \frac{\partial F_n}{\partial x}(x,t) = \frac{-2nx}{(t^2+x^2)^{n+1}}.$$

- **H3** De plus, $\frac{\partial F_n}{\partial x}(x,t)$ vérifie les trois hypothèses :
 - Pour chaque $x \in [a, A]$, la fonction $t \mapsto \frac{\partial F_n}{\partial x}(x, t)$ est continue par morceaux sur $[0, +\infty[$,
 - Pour chaque $t \in [0, +\infty[$, la fonction $x \mapsto \frac{\partial F_n}{\partial x}(x, t)$ est continue sur [a, A],
 - Pour chaque $(x,t) \in [a,A] \times [0,+\infty[$,

$$\left|\frac{\partial F_n}{\partial x}(x,t)\right| = \frac{2nx}{(t^2 + x^2)^{n+1}} \le \frac{2nA}{(t^2 + a^2)^{n+1}} = \varphi(t),$$

où la fonction φ est continue par morceaux et intégrable sur $[0,+\infty[$ car $\varphi(t)=0$ $t\to+\infty$ $\left(\frac{1}{t^2}\right)$.

D'après le théorème de dérivation sous le signe intégrale, la fonction I_n est de classe \mathcal{C}^1 sur [a, A] et sa dérivée s'obtient par dérivation sous le signe somme. Ceci étant vrai pour tous réels a et A tels que 0 < a < A, on a montré que la fonction I_n est de classe \mathcal{C}^1 sur $]0, +\infty[$ et que

$$\forall x > 0, \quad I'_n(x) = -2nx \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2 + x^2)^{n+1}} = -2nx I_{n+1}(x).$$

Donc, on a

$$\forall n \in \mathbb{N}^*, \quad I'_n(x) = -2nxI_{n+1}(x).$$

2. Pour x > 0, on a

$$I_1(x) = \left[\frac{1}{x}\arctan\left(\frac{t}{x}\right)\right]_{t=0}^{+\infty} = \frac{\pi}{2x}.$$

Ensuite,

$$I_2(x) = -\frac{1}{2x}I_1'(x) = \frac{\pi}{4x^3},$$

puis

$$I_3(x) = -\frac{1}{4x}I_2'(x) = \frac{3\pi}{16x^5},$$

On a donc

$$I_3(1) = \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2+1)^3} = \frac{3\pi}{16}.$$