

Implementation of the MLP Kernel

Cheng-Yuan Liou* and Wei-Chen Cheng

Department of Computer Science and Information Engineering
National Taiwan University
Republic of China
*cyliou@csie.ntu.edu.tw

25th, Nov., 2008 17:40-19:00 Auckland

SIR kernel $\mathbf{y}^{(p,2)}$ $x^p = y^{(p,0)}$ $\mathbf{y}^{(p,1)}$ $y^{(p,3)} = y^{(p,L)}$ calibration sector ata Module Module Module W_{2} W_1 W_3

Related works

Year	People	Contribution
1992	Boser	Support vector machine
1994	Liou, Yu	ICONIP, Weight design, upper bound $n_{\!\scriptscriptstyle m} < \! \left\lceil \frac{\left\ Y^{m-1} \right\ }{n_{m-1}} \right ceil$
1995	Liou, Yu	ICNN, Perth, AIR
2000	Liou, Chen, Huang	ICS, SIR
2007	Liou, Cheng	ICONIP

$||Y^{m-1}|| \ll ||Y^m||$, many-to-one mapping

ICONIP 2008 Liou, C.-Y.

$$\mathbf{W}_{\mathrm{m}}$$
 by design, $n_{m} < \left\lceil \frac{\left\| Y^{m-1} \right\|}{n_{m-1}} \right\rceil$ and $\left\| Y^{L} \right\| = \left\| C \right\|$ guaranteed (Liou and Yu, 1994, ICONIP, Seoul)

 W_m by training, SIR (Liou, Chen, Huang, 2000, ICS) (Liou, Cheng, 2007, ICONIP)

The reason why the training is layer after layer independently.

[Liou and Yu, 1995, ICNN, Perth]

ICNN, 1995, Perth, AIR tree

Conclusions of AIR, 1995

- BP can not correct the latent error neurons by adjusting their succeeding layers.
- AIR tree can trace the errors in a latent layer that near the front input layer.
- The front layers must send right signals to their succeeding layers.
- The front layer must be trained layer after layer in order to get right signals.
- Split the function of supervised BP, categorization and calibration.
- Reduced number of representations. $||Y^{m-1}|| << ||Y^m||$

AIR, 1995

- Supervised BP
- Identified the function of MLP
 - Classification =
 Categorization + Calibration
 Differences of classes class labels

Liou, C.-Categorize Calibrate

ICONIP 2008

Weight design ICONIP, 1994, Seoul

- Weight design for each layer
- Number of neurons (E.B. Baum 1988)
 - Upper bound $\left\lceil \frac{P}{D} \right\rceil$ for first hidden layer
 - $n_m < \left\lceil \frac{\left\| Y^{m-1} \right\|}{n_{m-1}} \right\rceil$ for hidden layers
 - $-\left\|Y^{L}\right\| = \left\|C\right\|$ the number of classes, guaranteed

Continuous border

1st hidden layer

Devise training for layers SIR, ICS 2000

- Categorization sector
- Using differences between classes implicitly

$$E^{rep} = \frac{-1}{2} \left\| \mathbf{y}^{(p,m)} - \mathbf{y}^{(q,m)} \right\| \text{ Inter-class}$$

$$E^{att} = \frac{1}{2} \|\mathbf{y}^{(p,m)} - \mathbf{y}^{(q,m)}\|$$
 Intra-class

Update by the following two equations,

$$\nabla W_{1} \leftarrow \eta_{1} \frac{\partial E^{att}(x^{p}, x^{q})}{\partial W_{1}} - \eta_{2} \frac{\partial E^{rep}(x^{r}, x^{s})}{\partial W_{1}}$$

$$W_{1} \leftarrow W_{1} - \nabla W_{1}$$

In this work, we set,

$$\eta_1 = 0.01, \eta_2 = 0.1$$

This means that the force of repelling is stronger than attracting.

 $\mathbf{x}^{p} = \mathbf{y}^{(p,0)} \quad \mathbf{y}^{(p,1)}$ W_{1}

ICONIP 2008

Liou, C.-Y.

17

Two-Class Problem

• The border of the data is

$$(x_1)^3 + \frac{1}{10}x_1 = x_2$$

• All input values are in the range [-1,1].

Two-Class Problem

- The number of neuron of SIR kernel is five, $n_m=5$.
- The supervised BP uses two hidden layers which consists of five neurons, $n^{MLP}_{1}=n^{MLP}_{2}=5$.
- SVM kernel: $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u}^T \mathbf{v} + 1)^3$

Three-Class Problem

ICONIP 2008 Liou, C.-Y. 20

Three-Class Problem

- SOM is used for analyzing the output of each layer. The y is the output of each layer.
- The class color of input pattern are plotted on the winner neuron.

Three-Class Problem

Three-class problem, $n_m=5$

Real World Data

- Patterns in a whole dataset are divided into 5 partitions.
- The testing accuracy is the average of the 5-fold cross validation.
- The SVM uses a Gaussian kernel.
- The parameters, C and gamma are in the list.

Real World Data

	SIR kernel		SVM		Supervised BP	
	(n_m, L_{\max})	$\left(n_1^c,n_2^c\right)$	С	γ	n_1^{MLP}	n_2^{MLP}
iris	(11,5)	(5,3)	50	0.05	20	10
Wisconsin Breast Cancer	(30,7)	(5,1)	50	0.05	30	10
Parkinsons	(20,5)	(5,1)	50	0.05	30	10
TCONTP 2008			Liou C -Y			25

ICONIP 2008 Liou, C.-Y. 25

Real World Data

	Training Accuracy			Testing Accuracy			
	SIR kernel	Supervised BP	SVM	SIR kernel	Supervised BP	SVM	
iris	100%	99.67%	97.50%	97.33%	94.66%	96.00%	
Wisconsin Breast Cancer	100%	98.89%	97.53%	96.00%	95.57%	96.42%	
Parkinsons	100%	98.33%	99.87%	91.28%	88.20%	92.82%	
ICONIP 2008		1	Liou, CY.			26	

Summary

- Class to point, guaranteed, $||Y^L|| = ||C||$
- Widely separated class points
- Weights by design or training
- Class labels are not used.
- SIR kernel can be used in SVM.
- Hairy network techniques can be used in the calibration sector.
- Suitable for multiple classes problem.

Thank You

Implementation of the MLP Kernel

Cheng-Yuan Liou* and Wei-Chen Cheng

Department of Computer Science and Information Engineering
National Taiwan University
Republic of China
*cyliou@csie.ntu.edu.tw