DSA5103 Optimization Problem for Data Modelling

Nonlinear Programming A general nonlinear programming problem (NLP) is to minimize/maximize a function f(x), subject to equality constraints $g_i(x) = 0$, $i \in [m]$, and inequality constraints $h_j(x) \leq 0$, $j \in [p]$. Here, f, g_i , and h_i are functions of the variable $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$. The term definitions are as follows:

- f: Objective function
- $g_i(x) = 0$: Equality constraints
- $h_i(x) < 0$: Inequality constraints

It suffices to discuss minimization problems since minimizing f(x) is equivalent to maximizing -f(x).

Feasible Set

$$S = \{x \in \mathbb{R}^n \mid g_1(x) = 0, \dots, g_m(x) = 0, h_1(x) < 0, \dots, h_p(x) < 0\}.$$

A point in the feasible set is a feasible solution or feasible point where all constraints are satisfied; otherwise, it is an infeasible solution or infeasible point. When there is no constraint, $S = \mathbb{R}^n$, we say the NLP is unconstrained.

Local and Global Minimizer Let S be the feasible set. Define $B_{\epsilon}(y) = \{x \in \mathbb{R}^n \mid ||x - y|| < \epsilon\}$ to be the open ball with center y and radius ϵ . Here, $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$

1. A point $x^* \in S$ is said to be a **local minimizer** of f if there exists $\epsilon > 0$ such that

$$f(x^*) \le f(x) \quad \forall x \in S \cap B_{\epsilon}(x^*).$$

2. A point $x^* \in S$ is said to be a **global minimizer** of f if

$$f(x^*) \le f(x) \quad \forall x \in S.$$

Interior point Let $S \subseteq \mathbb{R}^n$ be a nonempty set. An point $x \in S$ is called an interior point of S if

$$\exists \epsilon > 0 \quad s.t. \quad B_{\epsilon}(x) \subseteq S.$$

Gradient Vector Let $S \subseteq \mathbb{R}^n$ be a nonempty set. Suppose $f: S \to \mathbb{R}$, and x is an interior point of S such that f is differentiable at x. Then the gradient vector of f at x is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}.$$

Hessian Matrix Let $S \subseteq \mathbb{R}^n$ be a nonempty set. Suppose $f: S \to \mathbb{R}$, and x is an interior point of S such that f has second-order partial derivatives at x. Then the **Hessian** of f at x is the $n \times n$ matrix:

$$H_f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}.$$

- The *ij*-entry of $H_f(x)$ is $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$.
- In general, $H_f(x)$ is not symmetric. However, if f has continuous second-order derivatives, then the Hessian matrix is symmetric since ∂x_i and ∂x_j are interchangeable.

Positive (Semi)Definite Let A be a real $n \times n$ matrix.

- 1. A is said to be positive semidefinite if $x^T Ax > 0, \forall x \in \mathbb{R}^n$.
- 2. A is said to be **positive definite** if $x^T A x > 0$, $\forall x \neq 0$.
- 3. A is said to be **negative semidefinite** if -A is positive (semi)definite.
- 4. A is said to be **negative definite** if -A is positive definite.
- 5. A is said to be **indefinite** if A is neither positive nor negative semidefinite.

Eigenvalue Test Theorem Let A be a real symmetric $n \times n$ matrix.

- 1. A is positive semidefinite iff every eigenvalue of A is nonnegative
- 2. A is **positive definite** iff every eigenvalue of A is positive.
- A is negative semidefinite iff every eigenvalue of A is nonpositive. 4. A is negative definite iff every eigenvalue of A is negative.
- 5. A is indefinite iff it has both a positive eigenvalue and a negative eigenvalue.

Proof for: A is positive semidefinite iff every eigenvalue of A is nonnegative

(Forward) Suppose A is positive semidefinite, show that its eigenvalues are nonnegative. By definition, a Hermitian matrix A is positive semidefinite if for all nonzero vectors $x \in \mathbb{C}^n$

$$x^*Ax \ge 0$$

Let λ be an eigenvalue of A with corresponding eigenvector x such tha $Ax = \lambda x$. Taking the inner product of both sides

$$x^* A v = v^* (\lambda x) = \lambda (x^* x)$$

Since v^*v (the squared norm of v) is always positive for nonzero v, the above equation implies $\lambda \geq 0$

(Backward) Since A is Hermitian, it has an orthonormal basis of eigenvectors $\{q_1, q_2, \ldots, q_n\}$ with corresponding real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

For any vector x, we can express it in terms of the eigenvectors as:

$$x = \sum_{i=1}^{n} c_i q_i$$

for some scalars c_i , and compute the quadratic form

$$x^* A x = \left(\sum_{i=1}^n c_i^* q_i^*\right) A \left(\sum_{j=1}^n c_j q_j\right)$$

Expanding the expression using the orthonormality of the eigenvectors

$$x^*Ax = \sum_{i=1}^n \lambda_i |c_i|^2$$

Since we are given that all eigenvalues $\lambda_i \geq 0$, and the squared magnitudes $|c_i|^2$ are nonnegative, it follows that:

$$x^*Ax > 0 \quad \forall x \neq 0$$

Thus, A is positive semidefinite.

Necessary and Sufficient Conditions

 $\mathbb{R}^n \to \mathbb{R}$ is nonlinear and differentiable. A point x^* is called a **stationary point** of f if $\nabla f(x^*) = 0$. Necessary condition: Confine our search for global minimizers within the set of stationary points If x^* is a local minimizer of f, then

- 1. x^* is a stationary point, i.e., $\nabla f(x^*) = 0$ 2. The Hessian $H_f(x^*)$ is positive semidefinite

Sufficient condition: Verify that a point is indeed a local minimizer If the following conditions hold, then x^* is a local minimizer of f. 1. x^* is a stationary point, i.e., $\nabla f(x^*) = 0$ 2. The Hessian $H_f(x^*)$ is positive definite,

Convex set A set $D \in \mathbb{R}^n$ is said to be a convex set if for any two points x and y in D, the line segment joining x and u also lies in D. That is.

$$x, y \in D \Rightarrow \lambda x + (1 - \lambda)y \in D \quad \forall \lambda \in [0, 1].$$

Strictly convex function

Let $D \subseteq \mathbb{R}^n$ be a convex set. Consider a function $f: D \to \mathbb{R}$.

- 1. The function f is said to be **convex** if $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$, $\forall x, y \in D$, $\lambda \in [0, 1]$. 2. The function f is said to be **strictly convex** if $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y)$, for all distinct $x, y \in D$, $\lambda \in (0, 1).$

For a convex f It holds that

- 1. any local minimizer is a global minimizer.
- 2. if f is strictly convex, then the global minimizer is unique

Test for convexity of a differentiable function

Suppose that f has continuous second partial derivatives on an open convex set D in \mathbb{R}^n

- 1. The function f is convex on D iff the Hessian matrix $H_f(x)$ is positive semidefinite at each $x \in D$.
- 2. If $H_f(x)$ is positive definite at each $x \in D$, then f is strictly convex on D.
- 3. If $H_f(\hat{x})$ is indefinite at some point $\hat{x} \in D$, then f is not a convex nor a concave function on D.

Eigenvalue Decomposition: The eigenvalue decomposition of $A \in \mathbb{S}^n$ is given by:

$$A = Q\Lambda Q^T = \begin{bmatrix} Q_{\cdot 1} & \cdots & Q_{\cdot n} \end{bmatrix}^{\lambda_1} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} Q_{\cdot 1} & \cdots & Q_{\cdot n} \end{bmatrix}^T$$

where Q is an orthogonal matrix whose **columns** are eigenvectors of A, Λ is a diagonal matrix with eigenvalues of A or

Change of bases using eigenvectors Denote the ith column of orthogonal matrix Q as q_i . Change the bases to $\{q_1, q_2\}$

• For any vector x, $x = Q(Q^T x)$, so its representation becomes

$$\tilde{x} = Q^T x = \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$$

• Since $y = Ax = Q\Sigma Q^T x$, the representation of y is

$$\tilde{y} = \Sigma \tilde{x} = \begin{bmatrix} \lambda_1 \tilde{x}_1 \\ \lambda_2 \tilde{x}_2 \end{bmatrix}$$

Hence, the linear transformation results in a scaling of λ along the eigenvector associated with λ .

Statistical Properties Let $x_1,\ldots,x_n\in\mathbb{R}^p$ be n observations of a random variable x.

• Mean vector: $\mu=\bar{x}=\frac{1}{n}\sum_{i=1}^nx_i\in\mathbb{R}^p$

- (Sample/Empirical) Covariance matrix: $\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \mu)(x_i \mu)^T \in \mathbb{R}^{p \times p}$ (Covariance matrices are symmetric and positive semidefinite)
- Standard deviation (for p=1): $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2}$

PCA

- PCA is often used to reduce the dimensionality of large data sets while preserving as much information as
- possible.PCA allows us to identify the principal directions in which the data varies.

Let $x_1, \ldots, x_n \in \mathbb{R}^p$ be n observations of a random variable x and

$$X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}.$$

The mean vectors of x_i and $Q^T x_i$ (for i = 1, ..., n) are, respectively,

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Q^T x_i = Q^T \mu.$$

Consequently, the associated covariance matrices are, respectively.

$$\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T,$$

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (Q^T x_i - Q^T \mu) (Q^T x_i - Q^T \mu)^T = Q^T \Sigma Q.$$

Optimization problem of PCA

$$\max_{Q \in \mathbb{R}^{p \times k}, \ Q^T Q = I} \operatorname{trace}(Q^T \Sigma Q).$$

Let the eigenvalue decomposition of Σ be

$$\Sigma = \begin{bmatrix} q_1 & \cdots & q_p \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_p \end{bmatrix} \begin{bmatrix} q_1 & \cdots & q_p \end{bmatrix}^T,$$

where

Then

$$\lambda_1 \geq \cdots \geq \lambda_p \geq 0$$

$$Q = [q_1 \quad \cdots \quad q_k]$$
.

Standard PCA workflow

- 1. Make sure the data X are rows = observations and columns = variables.
- Standardize the columns of X.
- $3. \ \ \operatorname{Run} \ [Q, X_{\hbox{\tt new}}, d, \operatorname{tsquared}, \operatorname{explained}] = \operatorname{pca}(X).$
- 4. Using the variance in "explained", choose k (usually 1, 2, or 3) components for visual analysis.
 - For example, if d = (1.9087, 0.0913), explained= (95.4, 4.6), one may choose k = 1 as the first principal component carries 95.4% of the information.
 - For example, if d = (2.9108, 0.9212, 0.1474, 0.0206), explained = (72.8, 23.0, 3.7, 0.5), one may choose k=2 as the first two principal components carry 95.8% of the information.
- 5. Plot $X_{\text{new}}(:, 1), \ldots, X_{\text{new}}(:, k)$ on a k-dimensional plot.

Lecture 2

Gradient Descent Method Given $x_0 \in \mathbb{R}^n$, for $k = 0, 1, 2, \ldots$ do:

$$\begin{split} r_k &= Ax_k - b, \\ \alpha_k &= \frac{(r_k, r_k)}{(Ar_k, r_k)}, \\ k+1 &= x_k - \alpha_k r_k. \end{split}$$

Gradient Descent Method Example: Ax = b where A is Symmetric Positive Definite

$$f(x) = \|x - x_{\star}\|_{A}^{2} = (A(x - x_{\star}), (x - x_{\star})) = (x - x_{\star})^{T} A(x - x_{\star}),$$

where x_{\star} is the solution of

$$Ax = b$$
.

It is obvious that

$$f(x) = 0$$
 if and only if $x = x_{\star}$.

Denote

$$x = x_0 + \delta_0$$
.

Then.

$$\begin{split} f(x) &= f(x_0) + (A\delta_0, \delta_0) + 2\delta_0^T (Ax_0 - b) \\ &= f(x_0) + \delta_0^T A\delta_0 + 2\delta_0^T r_0, \end{split}$$

$$r_0 = Ax_0 - b$$
.

It is clear that

$$f(x) \le f(x_0)$$

only if

$$\delta_0^T r_0 \leq 0$$
,

in particular,

is the negative of the gradient direction $-\nabla f$ at the point x_0 . The negative of the gradient direction is locally the direction that yields the fastest rate of decrease for f. Hence, we can

$$\delta_0 = -\alpha_0 r_0$$

so that

$$\begin{split} f(x) &= f(x_0) + \alpha_0^2 (Ar_0, r_0) - 2\alpha_0 r_0^T r_0 \\ &= f(x_0) + \alpha_0^2 r_0^T Ar_0 - 2\alpha_0 r_0^T r_0 \leq f(x_0), \end{split}$$

provided

$$\alpha_0 \geq 0$$
.

It is obvious, we have

$$f(x) \le f(x_0), \quad \forall 0 \le \alpha \le \frac{2(r_0, r_0)}{(Ar_0, r_0)}$$

The optimal α shall satisfy

$$f(x) = \min_{\alpha_0 \in \mathbb{R}} f(x_0) + \alpha_0^2 (Ar_0, r_0) - 2\alpha_0 r_0^T r_0,$$

$$\alpha_0 = \frac{(r_0, r_0)}{(Ar_0, r_0)} \ge 0.$$

Therefore, we conclude

If
$$x = x_0 - \alpha_0 r_0$$
, then $f(x) \le f(x_0)$.

Kantorovich Inequality Let B be any Symmetric Positive Definite real matrix and λ_{\max} and λ_{\min} its largest and

$$\frac{(Bx,x)(B^{-1}x,x)}{(x,x)^2} \leq \frac{(\lambda_{\max} + \lambda_{\min})^2}{4\lambda_{\max}\lambda_{\min}}, \quad \forall x \neq 0.$$

Kantorovich Inequality Proof

Clearly, it is equivalent to show that the result is true for any unit vector x. Since B is symmetric, we have

$$B = Q^T DQ$$

where Q is orthogonal and

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix},$$

$$\lambda_{\max} = \lambda_1 \ge \cdots \ge \lambda_n = \lambda_{\min} > 0$$

We have

$$(Bx, x)(B^{-1}x, x) = (DQx, Qx)(D^{-1}Qx, Qx).$$

Setting

$$y = Qx = [y_1 \quad \cdots \quad y_n]^T, \quad \beta_i = y_i^2.$$

Note that $\sum_{i=1}^{n} \beta_i = 1$, and

$$\lambda = (Dy, y) = \sum_{i=1}^{n} \beta_i \lambda_i$$

is a convex combination of the eigenvalues $\lambda_i,\ i=1,\cdots,n,$ and furthermore, the following relation holds,

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y),$$

with

$$\psi(y) = (D^{-1}y, y) = \sum_{i=1}^{n} \beta_i \frac{1}{\lambda_i}.$$

Noting that

$$\psi(y) \leq \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}, \quad \text{(since } \sum_{i=1}^n \beta_i = 1, \text{proved later)}$$

therefore,

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y) \le \lambda \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}\right).$$

The maximum of the right-hand side is reached for

$$\lambda = \frac{\lambda_1 + \lambda_n}{2}$$

yielding

$$(Bx, x)(B^{-1}x, x) = \lambda \psi(y) \le \lambda \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}\right)$$
$$\le \frac{\lambda_1 + \lambda_n}{4} \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_n}\right)$$

Proof for $\psi(y) \leq \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\lambda}{\lambda_1 \lambda_n}$

$$0 < \lambda_n \leq \cdots \leq \lambda_i \leq \cdots \leq \lambda_1, \quad i = 1, \dots, n,$$

we have for any $i = 1, \ldots, n$ that

$$\lambda_1 \ge \lambda_i > 0, \quad \lambda_i - \lambda_n \ge 0, \quad i = 1, \dots, n,$$

which gives

$$\lambda_1(\lambda_i - \lambda_n) > \lambda_i(\lambda_1 - \lambda_n),$$

i.e.,

$$\lambda_1 \lambda_n \leq \lambda_i (\lambda_1 + \lambda_n - \lambda_i),$$

and

$$\frac{1}{\lambda_i} \le \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n}.$$

Note that

$$\beta_i \ge 0, \quad \sum_{i=1}^n \beta_i = 1,$$

we get

$$\beta_i \frac{1}{\lambda_i} \le \beta_i \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n},$$

and so.

$$\sum_{i=1}^{n} \beta_i \frac{1}{\lambda_i} \le \sum_{i=1}^{n} \beta_i \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n}$$
$$= \frac{1}{\lambda_1} + \frac{1}{\lambda_n} - \frac{\sum_{i=1}^{n} \beta_i \lambda_i}{\lambda_1 \lambda_n}.$$

This lemma helps to establish the following result regarding the convergence rate of the method.

Theorem Let A be a Symmetric Positive Definite matrix. Then, the A-norms of the error vectors

$$d_{L} = x_{\star} - x_{L} = -A^{-1}r_{L}$$

generated by the Gradient Descent Algorithm satisfy the relation

$$\|d_{k+1}\|_A \le \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} \|d_k\|_A$$

and so,

$$\lim_{k\to\infty} \|d_k\|_A = 0,$$

which gives

$$\lim_{k\to\infty} d_k = 0,$$

i.e., the algorithm converges for any initial guess x_0

Proof First, we have

$$\|d_k\|_A^2 = (Ad_k, d_k) = (-r_k, d_k) = (r_k, A^{-1}r_k).$$

Then we have

$$\|d_{k+1}\|_A^2 = (Ad_{k+1}, d_{k+1}) = (-r_{k+1}, d_{k+1})$$

and by simple substitution

$$\begin{split} d_{k+1} &= d_k + \alpha_k r_k, \\ \|d_{k+1}\|_A^2 &= (-r_{k+1}, d_k + \alpha_k r_k), \\ &= (-r_{k+1}, d_k) - \alpha(r_{k+1}, r_k), \\ &= (-r_{k+1}, d_k), \end{split}$$

$$(r_{k+1}, r_k) = 0.$$

Thus.

$$\begin{split} \|d_{k+1}\|_A^2 &= (-r_{k+1}, d_k), \\ &= (-r_k + \alpha_k A r_k, d_k), \\ &= (-r_k, d_k) + \alpha_k (A r_k, d_k), \\ &= (r_k, A^{-1} r_k) - \alpha_k (A r_k, A^{-1} r_k), \\ &= (r_k, A^{-1} r_k) - \frac{(r_k, r_k)^2}{(A r_k, r_k)}, \\ &= \|d_k\|_A^2 \left(1 - \frac{(r_k, r_k)}{(A r_k, r_k)} \times \frac{(r_k, r_k)}{(r_k, A^{-1} r_k)}\right). \end{split}$$

The result follows by applying the Kantorovich inequality

Unconstrained problem

To minimize a differentiable function f

$$\min_{x \in \mathbb{R}^n} f(x)$$

Recall that a global minimizer is a local minimizer, and a local minimizer is a stationary point.

• We may try to find stationary points x, i.e., $\nabla f(x) = 0$ for solving an unconstrained problem.

• When it is difficult to solve $\nabla f(x) = 0$, we look for an approximate solution via iterative methods.

A general algorithmic framework

Choose $x^{(0)}$ and repeat

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}, \quad k = 0, 1, 2, \dots$$

until some stopping criteria is satisfied.

- x⁽⁰⁾ initial guess of the solution.
- $\bullet ~~\alpha_k > 0$ is called the step length/step size/learning rate.
- $p^{(k)}$ is a search direction.

Descent Direction
The search direction $p^{(k)}$ should be a descent direction at $x^{(k)}$

• We say $p^{(k)}$ is a descent direction at $x^{(k)}$ if

$$\nabla f(x^{(k)})^T p^{(k)} < 0$$

ullet The function value f can be reduced along this descent direction with "appropriate" step length

$$\exists \delta > 0$$
 such that $f(x^{(k)} + \alpha_k p^{(k)}) < f(x^{(k)}) \quad \forall \alpha_k \in (0, \delta)$

Algorithm 1 Steepest Descent Method

- 1: Initialization: Choose initial point $x^{(0)}$, tolerance $\epsilon > 0$, set $k \leftarrow 0$.
- 2: while $\|\nabla f(x^{(k)})\| > \epsilon$ do
- Find the step length α_k (e.g., by a certain line search rule).
 - Update the solution:

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$$

- Increment $k \leftarrow k + 1$.
- 6: end while
- 7: Output: $x^{(k)}$ (approximate solution)

One may choose to use a constant step length (say $\alpha_k = 0.1$), or find it via line search rules:

• Exact line search

· Backtracking line search

Exact line search

Exact line search tries to find α_k by solving the one-dimensional problem:

$$\min_{\alpha > 0} \quad \varphi(\alpha) := f(x^{(k)} + \alpha p^{(k)})$$

• In general, exact line search is the most difficult part of the steepest descent method.

• If f is a simple function, it may be possible to obtain an analytical solution for α_k by solving $\varphi'(\alpha)=0$. Contour plot A contour is a fixed height $f(x_1, x_2) = c$.

Algorithm 2 Steepest Descent Method with Exact Line Search

1: Initialization: Choose initial point $x^{(0)}$, tolerance $\epsilon > 0$, set $k \leftarrow 0$.

2: while
$$\|\nabla f(x^{(k)})\| > \epsilon$$
 do

Compute search direction: $p^{(k)} = -\nabla f(x^{(k)})$.

Find optimal step length:

$$\alpha_k = \arg\min_{\alpha > 0} f(x^{(k)} + \alpha p^{(k)})$$

5: Update the solution:

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

Increment $k \leftarrow k + 1$.

7: end while

8: Output: $x^{(k)}$ (approximate solution)

Properties of steepest descent method with exact line search

Let $\{x^{(k)}\}$ be the sequence generated by the steepest descent method with exact line search.

Monotonic decreasing property:

$$f(x^{(k+1)}) < f(x^{(k)})$$
 if $\nabla f(x^{(k)}) \neq 0$.

• Suppose f is a coercive function with continuous first-order derivatives on \mathbb{R}^n . Then some subsequence of $\{x^{(k)}\}$

The limit of any convergent subsequence of $\{x^{(k)}\}\$ is a stationary point of f

Backtracking Line Search

Backtracking line search starts with a relatively large step length and iteratively shrinks it (i.e., "backtracking") until the Armijo condition holds.

Algorithm 3 Backtracking Line Search

1: Choose $\bar{\alpha} > 0$, $\rho \in (0,1)$, $c_1 \in (0,1)$; Set $\alpha \leftarrow \bar{\alpha}$.

2: repeat

3: Until

$$f(x^{(k)} + \alpha p^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T p^{(k)}$$

▶ Armijo Condition

 $\alpha \leftarrow \rho \alpha$

5: until Armijo condition holds

6: return $\alpha_k = \alpha$

 $p^{(k)}$ is a descent direction:

$$\nabla f(x^{(k)})^T p^{(k)} < 0$$

The Armijo condition:

$$f(\boldsymbol{x}^{\left(k\right)} + \alpha \boldsymbol{p}^{\left(k\right)}) \leq f(\boldsymbol{x}^{\left(k\right)}) + c_{1} \alpha \nabla f(\boldsymbol{x}^{\left(k\right)})^{T} \boldsymbol{p}^{\left(k\right)}$$

ensures a reasonable amount of decrease in the objective function.

Example parameter choices

$$\bar{\alpha} = 1$$
, $\rho = 0.9$, $c_1 = 10^{-4}$

Algorithm 4 Steepest Descent Method with Backtracking Line Search

1: Choose $x^{(0)}$, $\epsilon > 0$, $\bar{\alpha} > 0$, $\rho \in (0,1)$, $c_1 \in (0,1)$; Set $k \leftarrow 0$.

2: while $\|\nabla f(x^{(k)})\| > \epsilon$ do

Compute search direction: $p^{(k)} = -\nabla f(x^{(k)})$.

Set $\alpha \leftarrow \bar{\alpha}$.

5:

Until Armijo condition holds:

$$f(x^{(k)} + \alpha p^{(k)}) \le f(x^{(k)}) + c_1 \alpha \nabla f(x^{(k)})^T p^{(k)}$$

 $\alpha \leftarrow \rho \alpha$.

8: until Armijo condition holds

 $\alpha \iota \leftarrow \alpha$.

10: Update the solution:

$$x^{(k+1)} = x^{(k)} + \alpha_k p^{(k)}$$

Increment $k \leftarrow k+1$.

12: end while

13: return $x^{(k)}$

Steepest Descent Method for Multivariate Linear Regression

Algorithm 5 Steepest Descent for Multivariate Linear Regression

1: Choose $\beta_0^{(0)}, \beta^{(0)} = (\beta_1^{(0)}, \dots, \beta_n^{(0)})^T$ and $\epsilon > 0$; Set $k \leftarrow 0$.

2: while $\|\nabla L(\beta_0^{(k)}, \beta^{(k)})\| > \epsilon$ do

Determine step length α_k .

Update parameters:

$$\beta_0^{(k+1)} = \beta_0^{(k)} - \alpha_k \sum_{i=1}^n ((\beta^{(k)})^T x_i + \beta_0^{(k)} - y_i)$$

for j = 1, 2, ..., p do

$$\beta_j^{(k+1)} = \beta_j^{(k)} - \alpha_k \sum_{i=1}^n ((\beta^{(k)})^T x_i + \beta_0^{(k)} - y_i) x_{ij}$$

end for

Increment $k \leftarrow k + 1$.

8: end while 9: return $\beta_0^{(k)}, \beta^{(k)} = (\beta_1^{(k)}, \dots, \beta_p^{(k)})^T$.

Normal Equation

$$\min_{\beta_0,\beta_1,...,\beta_p} L(\beta_0,\beta_1,...,\beta_p) = \frac{1}{2} \sum_{i=1}^n \left(\beta^T x_i + \beta_0 - y_i\right)^2$$

$$\hat{X}^T \hat{X} \hat{\beta} = \hat{X}^T Y$$

How to solve

$$\hat{X}^T \hat{X} \hat{\beta} = \hat{X}^T Y$$

Case 1. When $\hat{X}^T\hat{X}$ is invertible, the normal equation implies that

$$\hat{\beta} = (\hat{X}^T \hat{X})^{-1} \hat{X}^T Y$$

is the unique solution of linear regression.

This often happens when we face an over-determined system — number of training examples n is much larger than

We have many training samples to fit but do not have enough degree of freedom.

Case 2. When $\hat{X}^T\hat{X}$ is not invertible, the normal equation will have infinite number of solutions.

 $\hat{X}^T\hat{X}$ is not invertible when we face an under-determined problem — n < p.

We have too many degrees of freedom and do not have enough training samples We can apply any method for solving a linear system (e.g., Gaussian elimination) to obtain a solution.

Classification Binary classification:

• Email: spam/not spam

• Student: fail/pass We usually assign:

label
$$\begin{cases} 0, & \text{normal state/negative class, e.g., not spam} \\ 1, & \text{abnormal state/positive class, e.g., spam} \end{cases}$$

However, the label assignment can be arbitrary

$$0 = \text{not spam}, 1 = \text{spam}$$
 or $0 = \text{spam}, 1 = \text{not spam}$

Data: $x_i \in \mathbb{R}^p$, $y_i \in \{0, 1\}$, $i = 1, 2, \dots, n$. Multi-class classification:

• Iris flower (3 species: Setosa, Versicolor, Virginica)

Optical character recognition

Data: $x_i \in \mathbb{R}^p, y_i \in \{1, ..., K\}, i = 1, 2, ..., n.$

Linear Regression vs. Logistic Regression

Linear Regression

• Data $x_i, y_i \in \mathbb{R}$

• Fit: $f(x) = \beta^T x + \beta_0 = \hat{\beta}^T \hat{x}$, where $\hat{\beta} = [\beta_0; \beta]$, $\hat{x} = [1; x]$

Logistic Regression

• Data $x_i, y_i \in \{0, 1\}$

$$f(x) = g(\hat{\beta}^T \hat{x})$$

where

$$g(z) = \frac{1}{1 + e^{-z}} \quad (logistic function)$$

so.

$$f(x) = g(\hat{\beta}^T \hat{x}) = \frac{1}{1 + e^{-(\beta^T x + \beta_0)}}$$

Logistic Regression Decision Rule

$$f(x) = g(\hat{\beta}^T \hat{x}), \quad g(z) = \frac{1}{1 + e^{-z}}$$

$$f(x) = p(y = 1|x; \hat{\beta})$$

Predict y = 1 (class 1) if:

$$f(x) \ge 0.5$$
 i.e., $\hat{\beta}^T \hat{x} \ge 0$

Predict y = 0 (class 0) if:

$$f(x) < 0.5$$
 i.e., $\hat{\beta}^T \hat{x} < 0$

Decision Boundary
The set of all $x \in \mathbb{R}^p$ such that:

is called the decision boundary between classes 0 and 1.

The logistic regression has a linear decision boundary; it is:

- a point when p=1
- a line when p=2
- a plane when p=3

• in general a (p-1)-dimensional subspace

Maximum Likelihood Estimation

Data (x_i, y_i), i = 1, 2, ..., n, x_i ∈ ℝ^p, y_i ∈ {0, 1}.
The likelihood of a single training example (x_i, y_i) is:

$$\text{probability}(x_i \in \text{class } y_i) = \begin{cases} p(y_i = 1 | x_i; \hat{\beta}) = f(x_i), & \text{if } y_i = 1 \\ p(y_i = 0 | x_i; \hat{\beta}) = 1 - f(x_i), & \text{if } y_i = 0 \end{cases}$$

$$= f(x_i)^{y_i} [1 - f(x_i)]^{1-y_i}$$

• Assuming independence of training samples, the likelihood is:

$$\prod_{i=1}^{n} f(x_i)^{y_i} [1 - f(x_i)]^{1-y_i}$$

Want to find β̂ to maximize the log-likelihood:

$$L(\hat{\beta}) = -\log \left(\prod_{i=1}^{n} f(x_i)^{y_i} [1 - f(x_i)]^{1-y_i} \right)$$

$$= -\sum_{i=1}^{n} \left(y_i \log f(x_i) + (1-y_i) \log (1-f(x_i)) \right)$$

For a single training example (x_i, y_i) , the cost is:

$$-y_i \log f(x_i) - (1 - y_i) \log(1 - f(x_i))$$

$$= \begin{cases} -\log f(x_i), & \text{if } y_i = 1\\ -\log(1 - f(x_i)), & \text{if } y_i = 0 \end{cases}$$

Simplifying the Cost Function

$$\log\left(\frac{f(x_i)}{1 - f(x_i)}\right) = \log\left(\frac{\frac{1}{1 + e^{-\hat{\beta}T\hat{x}_i}}}{1 - \frac{1}{1 + e^{-\hat{\beta}T\hat{x}_i}}}\right)$$

$$= \log(e^{\hat{\beta}T\hat{x}_i}) = \hat{\beta}^T\hat{x}_i$$

$$\log(1 - f(x_i)) = \log\left(1 - \frac{1}{1 + e^{-\hat{\beta}T\hat{x}_i}}\right)$$

$$= \log\left(\frac{1 + e^{\hat{\beta}T\hat{x}_i} - 1}{1 + e^{\hat{\beta}T\hat{x}_i}}\right)$$

$$= -\log\left(1 + e^{\hat{\beta}T\hat{x}_i}\right)$$

Gradient of the cost function

• Cost function

$$L(\beta_0, \beta_1, \dots, \beta_p) = \sum_{i=1}^n \log(1 + e^{\beta_0 + \beta^T x_i}) - y_i(\beta_0 + \beta^T x_i)$$
$$\beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

• Calculate

$$\begin{split} \frac{\partial}{\partial \beta_0} L &= \sum_{i=1}^n \left(\frac{1}{1+e^{-\left(\beta_0+\beta^T x_i\right)}} - y_i \right) = \sum_{i=1}^n (f(x_i) - y_i) \\ \frac{\partial}{\partial \beta_1} L &= \sum_{i=1}^n \left(\frac{1}{1+e^{-\left(\beta_0+\beta^T x_i\right)}} - y_i \right) x_{i1} = \sum_{i=1}^n (f(x_i) - y_i) x_{i1} \\ \frac{\partial}{\partial \beta_2} L &= \sum_{i=1}^n \left(\frac{1}{1+e^{-\left(\beta_0+\beta^T x_i\right)}} - y_i \right) x_{i2} = \sum_{i=1}^n (f(x_i) - y_i) x_{i2} \\ \vdots \end{split}$$

$$\frac{\partial}{\partial \beta_p}L = \sum_{i=1}^n \left(\frac{1}{1+e^{-\left(\beta_0+\beta^T x_i\right)}} - y_i\right) x_{ip} = \sum_{i=1}^n (f(x_i) - y_i) x_{ip}$$

Solution may not exist

The solution (global minimizer) of the minimization problem

$$\min_{\beta_{0},\beta_{1},...,\beta_{p}} \sum_{i=1}^{n} \log(1 + e^{\beta_{0} + \beta^{T} x_{i}}) - y_{i}(\beta_{0} + \beta^{T} x_{i})$$

may not exist. (Regularization will help solve this issue)

Example. $n = 1, x_1 = -1, y_1 = 0$. Then the cost function

$$L(\beta_0, \beta_1) = \log(1 + e^{\beta_0 - \beta_1})$$

We can see that min L=0. However, this value cannot be attained

Multi-class classification: one-vs-rest

Idea: transfer multi-class classification to multiple binary classification problems Data: $x_i \in \mathbb{R}^p, y_i \in \{1, \dots, K\}, i = 1, 2, \dots, n$. For each $k \in \{1, 2, \dots, K\}$

- 1. Construct a new label $\tilde{y}_i = 1$ if $y_i = k$ and $\tilde{y}_i = 0$ otherwise
- 2. Learn a binary classifier f_k with data x_i , \tilde{y}_i

Multi-class classifier predicts class k where k achieves the maximal value

$$\max_{k \in \{1, 2, \dots, K\}} f_k(x)$$

- Underfitting: a model is too simple and does not adequately capture the underlying structure of the data
- Overfitting: a model is too complicated and contains more parameters that can be justified by the data; it does not generalize well from training data to test data
- Good fit: a model adequately learns the training data and generalizes well to test data

Ridge regularization

In linear/logistic regression, over-fitting occurs frequently. Regularization will make the model simpler and works well for most of the regression/classification problems.

· Ridge regularization:

$$\lambda \|\beta\|^2 = \lambda \sum_{j=1}^p \beta_j^2$$

 λ : regularization parameter, $\|\beta\|^2$: regularizer

- It is differentiable. It forces β_i's to be small
- Extreme case: suppose λ is a huge number, it will push all β_i 's to be zero and the model will be naive

Ridge regularized problems

Logistic regression + ridge regularization (Gradient methods can be used, a solution exists)

$$\min_{\beta_0,\beta_1,...,\beta_p} \sum_{i=1}^n \log(1 + e^{\beta_0 + \beta^T x_i}) - y_i(\beta_0 + \beta^T x_i) + \lambda \sum_{i=1}^p \beta_j^2$$

• Linear regression + ridge regularization (Apply either normal equation or gradient methods)

$$\min_{\beta_0, \beta_1, \dots, \beta_p} \frac{1}{2} \sum_{i=1}^{n} (\beta^T x_i + \beta_0 - y_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Lasso regularization

• Lasso (Least Absolute Shrinkage and Selection Operator) regularization:

$$\lambda \|\beta\|_1 = \lambda \sum_{j=1}^p |\beta_j|$$

- It is non-differentiable. It forces some β_j's to be exactly zero
 It can be used for feature selection (model selection). It selects important features (removing non-informative or redundant features)
- $\bullet~$ When λ is larger, fewer features will be selected

Lasso regularized problems

• Logistic regression + lasso regularization (Gradient methods are no longer applicable)

$$\min_{\beta_0,\beta_1,...,\beta_p} \sum_{i=1}^n \log(1+e^{\beta_0+\beta^T x_i}) - y_i(\beta_0+\beta^T x_i) + \lambda \sum_{j=1}^p |\beta_j|$$

• Linear regression + lasso regularization (Gradient methods are no longer applicable)

$$\min_{\beta_0,\beta_1,...,\beta_p} \frac{1}{2} \sum_{i=1}^n (\boldsymbol{\beta}^T \boldsymbol{x}_i + \beta_0 - \boldsymbol{y}_i)^2 + \lambda \sum_{j=1}^p |\beta_j|$$

ullet In the following, we always assume $eta_0=0$. Note that the intercept should be zero $eta_0=0$ if the data is standardized. Given feature matrix $X \in \mathbb{R}^{n \times p}$ and response vector $Y \in \mathbb{R}^p$, the famous lasso problem:

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|X\beta - Y\|^2 + \lambda \|\beta\|_1$$

Lecture 4

Definition: A vector norm on \mathbb{R}^n is a function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ satisfying:

- $\begin{array}{lll} 1. & \|x\| \geq 0 & \forall x \in \mathbb{R}^n, \, \mathrm{and} \, \|x\| = 0 \iff x = 0 \\ 2. & \|\alpha x\| = |\alpha| \|x\| & \forall \alpha \in \mathbb{R}, \, x \in \mathbb{R}^n \\ 3. & \|x + y\| \leq \|x\| + \|y\| & \forall x, \, y \in \mathbb{R}^n \end{array}$

Examples:

- $$\begin{split} \bullet & \|x\|_1 = \sum_{i=1}^n |x_i| \quad (\ell_1 \text{ norm}) \\ \bullet & \|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} \quad (\ell_2 \text{ norm}) \end{split}$$
- $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad 1 \le p < \infty \quad (\ell_p \text{ norm})$
- $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$ (ℓ_{∞} norm)
- $||x||_{W,p} = ||Wx||_p$, where W is a fixed nonsingular matrix, $1 \le p \le \infty$

Inner product

The trace of a square matrix $C \in \mathbb{R}^{n \times n}$ is

$$\operatorname{Tr}(C) = \sum_{i=1}^{n} C_{ii}.$$

For matrices $A, B \in \mathbb{R}^{m \times n}$, define the standard inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^T B) = \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}.$$

Properties:

- $||A||_F^2 := \langle A, A \rangle \ge 0$
- $\langle A, \hat{A} \rangle = 0$ if and only if A = 0
- $\langle C, aA + bB \rangle = a \langle C, A \rangle + b \langle C, B \rangle$ $\langle A + B, A + B \rangle = \langle A, A \rangle + 2 \langle A, B \rangle + \langle B, B \rangle$

(i.e.,
$$||A + B||_F^2 = ||A||_F^2 + 2\langle A, B \rangle + ||B||_F^2$$
)

Projection onto a closed convex set

Theorem (Projection theorem): Let C be a closed convex set of \mathbb{R}^n

(1) For every z, there exists a unique minimizer of

$$\min_{x \in C} \frac{1}{2} ||x - z||^2,$$

denoted as $\Pi_C(z)$, the projection of z onto C

(2) $x^* := \Pi_C(z)$ is the projection of z onto C if and only if

$$\langle z - x^*, x - x^* \rangle \leq 0 \quad \forall x \in C.$$

(1) By definition, there exists $x_k \in C$ such that

$$\min_{x \in C} \|z - x\| \le \|z - x_k\| < \min_{x \in C} \|z - x\| + \frac{1}{k}.$$

It follows that $\{x_k\}$ is bounded. Since C is closed, there exists a convergent subsequence $\{x_{k_l}\}$ such that $x_{k_l} \to x^* \in C$.

$$||z - x^*|| = \min_{x \in C} ||z - x||.$$

For uniqueness, suppose $x^* \neq \tilde{x}$ both satisfy $x^*, \tilde{x} \in C$ and

$$||z - x^*|| = ||z - \tilde{x}|| = \min_{x \in C} ||z - x||.$$

$$2\|z - x^*\|^2 = \|z - x^*\|^2 + \|z - \tilde{x}\|^2 = 2\left\|z - \frac{x^* + \tilde{x}}{2}\right\|^2 + \frac{1}{2}\|x^* - \tilde{x}\|^2.$$

Since C is convex, $\frac{x^* + \tilde{x}}{2} \in C$. Thus,

$$\left\|z - \frac{x^* + \tilde{x}}{2}\right\|^2 \ge \min_{x \in C} \|z - x\|^2 = \|z - x^*\|^2,$$

which implies

$$2\|z - x^*\|^2 \ge 2\|z - x^*\|^2 + \frac{1}{2}\|x^* - \tilde{x}\|^2.$$

Thus, $\|x^* - \tilde{x}\|^2 \le 0$ and hence $x^* = \tilde{x}$. (2) Now, let $x^* = \Pi_C(z)$, and for any $x \in C$, since C is convex,

$$\lambda x + (1 - \lambda)x^* \in C, \quad \forall \lambda \in (0, 1).$$

By minimality,

$$||z - x^*||^2 \le ||z - (\lambda x + (1 - \lambda)x^*)||^2$$

Expanding the right-hand side,

$$\|z - (\lambda x + (1 - \lambda)x^*)\|^2 = \|z - x^*\|^2 - 2\lambda\langle z - x^*, x - x^*\rangle + \lambda^2\|x - x^*\|^2.$$

$$0 \le -2\lambda \langle z - x^*, x - x^* \rangle + \lambda^2 ||x - x^*||^2$$

Dividing by $\lambda > 0$ and taking $\lambda \to 0^+$, we get

$$\langle z - x^*, x - x^* \rangle < 0.$$

Conversely, if $\langle z - x^*, x - x^* \rangle < 0 \quad \forall x \in C$, then

$$\|z - x\|^2 = \|z - x^*\|^2 + 2\langle z - x^*, x^* - x \rangle + \|x - x^*\|^2 > \|z - x^*\|^2$$

thus x^* minimizes ||z - x|| over C.

arg min

The notation

$$\arg\min_{x} f(x)$$

denotes the solution set of x for which f(x) attains its minimum (argument of the minimum).

Extended real-valued function

Let \mathcal{X} be a Euclidean space (e.g., $\mathcal{X} = \mathbb{R}^n$ or $\mathbb{R}^{m \times n}$). Let $f: \mathcal{X} \to (-\infty, +\infty]$ be an extended real-valued function.

1. The effective domain of f is defined as

$$\mathrm{dom}(f) := \{x \in \mathcal{X} \mid f(x) < +\infty\}.$$

- 2. f is said to be **proper** if $dom(f) \neq \emptyset$.
- 3. f is said to be closed if its epi-graph

$$epi(f) := \{(x, \alpha) \in \mathcal{X} \times \mathbb{R} \mid f(x) \leq \alpha\}$$

is closed.

4. f is said to be convex if its epi-graph is convex.

Extended real-valued function (continued)

• For a real-valued function $f: \mathcal{X} \to \mathbb{R}$, the convexity of epi(f) coincides with the following condition:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in \text{dom}(f), \ \lambda \in [0, 1].$$

(Exercise: $(1) \iff (2)$)

• A convex function $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ can be extended to a convex function on all of \mathbb{R}^n by setting $f(x) = +\infty$ for

Proof of Exercise $(1) \iff (2)$

 $(1) \Rightarrow (2)$:

Assume epi(f) is convex. Take any $(x, f(x)) \in \text{epi}(f)$ and $(y, f(y)) \in \text{epi}(f)$. For any $\lambda \in [0, 1]$, by convexity of epi(f),

$$\lambda(x, f(x)) + (1 - \lambda)(y, f(y)) = (\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)) \in epi(f).$$

Hence.

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Thus, (2) holds.

 $(2) \Rightarrow (1)$: Assume

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in \text{dom}(f), \ \lambda \in [0, 1].$$

Let $(x, \alpha), (y, \beta) \in \operatorname{epi}(f)$. Then $f(x) \leq \alpha$ and $f(y) \leq \beta$.

For any $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \lambda \alpha + (1 - \lambda)\beta.$$

Therefore.

$$(\lambda x + (1 - \lambda)y, \lambda \alpha + (1 - \lambda)\beta) \in epi(f),$$

which shows epi(f) is convex. Thus, (1) holds.

Indicator function

Let C be a nonempty set in \mathcal{X} .

The indicator function of C is

$$\delta_C(x) = \begin{cases} 0, & \text{if } x \in C, \\ +\infty, & \text{if } x \notin C. \end{cases}$$

Let $f(x) = \delta_C(x)$.

Then:

- dom(f) = C, and f is proper.
- $\operatorname{epi}(f) = C \times [0, +\infty)$ is closed if C is closed.
- epi(f) is convex if C is convex.

Dual/polar cone

Definition (Cone):

A set $C \subseteq \mathcal{X}$ is called a **cone** if $\lambda x \in C$ when $x \in C$ and $\lambda \geq 0$.

Definition (Dual and polar cone):

The dual cone of a set $C \subseteq \mathcal{X}$ is

$$C^* := \{ y \in \mathcal{X} \mid \langle x, y \rangle \ge 0 \quad \forall x \in C \}.$$

The polar cone of C is $C^{\circ} = -C^*$.

If $C^* = C$, then C is said to be **self-dual**.

C* is always a convex cone, even if C is neither convex nor a cone.

Normal cone

Definition (Normal cone):

Let C be a convex set in X and $\bar{x} \in C$. The normal cone of C at $\bar{x} \in C$ is defined by

$$N_C(\bar{x}) := \{z \in \mathcal{X} \mid \langle z, x - \bar{x} \rangle \leq 0 \quad \forall x \in C\}.$$

By convention, we let $N_{C}(\bar{x}) = \emptyset$ if $\bar{x} \notin C$.

Proposition:

Let $C \subseteq \mathcal{X}$ be a nonempty convex set and $\bar{x} \in C$. Then:

- N_C(x̄) is a closed convex cone.
- 2. If $\bar{x} \in \text{int}(C)$ (interior point), then $N_C(\bar{x}) = \{0\}$.
- If C is a cone, then N_C(x̄) ⊆ C⁰.

Proof:

(1) Proof of closeness:

Let $\{z_k\}$ be a sequence in $N_C(\bar{x})$ such that

$$z_k \, \to \, z \quad (\text{in norm}) \, .$$

We want to show $z \in N_{C}(\bar{x})$. Since $z_{k} \in N_{C}(\bar{x})$, we have

$$\langle z_k, x - \bar{x} \rangle \le 0 \quad \forall x \in C, \quad \forall k.$$

Fix $x \in C$. By continuity of the inner product and $z_k \to z$,

$$\langle z_k, x - \bar{x} \rangle \rightarrow \langle z, x - \bar{x} \rangle.$$

Since each $\langle z_k, x - \bar{x} \rangle \leq 0$, taking limits gives

$$\langle z, x - \bar{x} \rangle \leq 0.$$

Thus $z \in N_C(\bar{x})$. Hence, $N_C(\bar{x})$ is closed.

First, we prove that $N_C(\bar{x})$ is a cone. Let $z \in N_C(\bar{x})$ and $\lambda \geq 0$. By definition,

$$\langle z, x - \bar{x} \rangle \le 0 \quad \forall x \in C$$

implies

$$\langle \lambda z, x - \bar{x} \rangle = \lambda \langle z, x - \bar{x} \rangle \le 0 \quad \forall x \in C.$$

Thus $\lambda z \in N_C(\bar{x})$.

Next, if $z_1, z_2 \in N_C(\bar{x})$, then

$$\langle z_1, x - \bar{x} \rangle \leq 0 \quad \text{and} \quad \langle z_2, x - \bar{x} \rangle \leq 0 \quad \forall x \in C.$$

Adding, we get

$$\langle z_1+z_2, x-\bar x\rangle \leq 0 \quad \forall x \in C,$$

so $z_1+z_2\in N_C(\bar{x})$. Therefore, $N_C(\bar{x})$ is convex. (2) Let $z\in N_C(\bar{x})$. Since $\bar{x}\in \mathrm{int}(C)$, there exists $\epsilon>0$ such that $\bar{x}+tz\in C$ for all $|t|<\epsilon$. By definition of the normal

$$0 \ge \langle z, (\bar{x} + tz) - \bar{x} \rangle = t ||z||^2$$

For small positive t>0, $t\|z\|^2\geq 0$, so $t\|z\|^2\leq 0$. Hence, $\|z\|^2=0$, thus z=0. Therefore, $N_C(\bar x)=\{0\}$. (3) Suppose C is a cone. Then for any $x \in C$, $\bar{x} + x \in C$. For any $z \in N_C(\bar{x})$, we have

$$\langle z, x \rangle = \langle z, (\bar{x} + x) - \bar{x} \rangle \leq 0 \quad \forall x \in C.$$

Hence, $z \in C^{\circ}$. Thus, $N_C(\bar{x}) \subseteq C^{\circ}$.

Proposition:

Let $C \subseteq \mathcal{X}$ be a nonempty closed convex set. Then for any $y \in C$,

$$u \in N_C(y) \iff y = \Pi_C(y+u),$$

where $\Pi_C(\cdot)$ is the projection onto C.

Proof:

" \Rightarrow " Suppose $u \in N_C(y)$. Then

$$\langle u, x - y \rangle \le 0 \quad \forall x \in C.$$

$$\langle (y+u)-y, x-y \rangle < 0 \quad \forall x \in C,$$

which implies that $y = \Pi_C(y + u)$.

" \Leftarrow " Suppose $y = \Pi_C(y + u)$. Then for all $x \in C$,

$$\langle u, x - y \rangle = \langle (y + u) - y, x - y \rangle \le 0,$$

which implies $u \in N_C(y)$.

Subdifferential

Definition:

Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a convex function.

We call v a subgradient of f at $x \in dom(f)$ if

$$f(z) > f(x) + \langle v, z - x \rangle \quad \forall z \in \mathcal{X}.$$

The set of all subgradients at x is called the **subdifferential** of f at x, denoted by

$$\partial f(x) = \{ v \mid f(z) \ge f(x) + \langle v, z - x \rangle \quad \forall z \in \mathcal{X} \}.$$

By convention, $\partial f(x) = \emptyset$ for any $x \notin \text{dom}(f)$.

Subdifferential and optimization

Subgradient is an extension of the gradient:

• If f is differentiable at x, then

$$\partial f(x) = {\nabla f(x)}.$$

Proof:

Suppose $v \in \partial f(x)$. Then

$$f(x+h) \ge f(x) + \langle v, h \rangle \quad \forall h.$$

Take $h = t(v - \nabla f(x))$ with t > 0, and use Taylor's expansion:

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + o(\|h\|)$$

$$\langle \nabla f(x), h \rangle + o(||h||) \ge \langle v, h \rangle.$$

Dividing by t and letting $t \to 0^+$, we conclude $v = \nabla f(x)$.

Theorem:

Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a proper convex function.

Then $\bar{x} \in \mathcal{X}$ is a global minimizer of $\min_{x \in \mathcal{X}} f(x)$ if and only if

$$0 \in \partial f(\bar{x})$$
.

Proof:

By the subgradient inequality,

$$f(z) \ge f(\bar{x}) + \langle v, z - \bar{x} \rangle \quad \forall z \in \mathcal{X}.$$

Take $v = 0 \in \partial f(\bar{x})$, then

$$f(z) \ge f(\bar{x}),$$

so \bar{x} is a global minimizer.

Lipschitz continuous

Definition (Lipschitz continuous): A function $F: \mathbb{R}^n \to \mathbb{R}^m$ is said to be locally Lipschitz continuous if for any open set $\mathcal{O} \subseteq \mathbb{R}^n$, there exists a constant L such that

$$||F(x) - F(y)|| \le L||x - y|| \quad \forall x, y \in \mathcal{O}$$

If $\mathcal{O} = \mathbb{R}^n$, then F is called globally Lipschitz continuous.

- f(x) = |x|, $x \in \mathbb{R}$ is globally Lipschitz continuous with Lipschitz constant L = 1.
- $f(x) = x^2$, $x \in \mathbb{R}$ is locally Lipschitz continuous but not globally Lipschitz continuous.

Fenchel conjugate

Definition:

Let $f: \mathcal{X} \to [-\infty, +\infty]$.

The (Fenchel) conjugate of f is defined as

$$f^*(y) = \sup\{\langle y, x \rangle - f(x) \mid x \in \mathcal{X}\}, \quad y \in \mathcal{X}.$$

Remark:

- f* is always closed and convex, even if f is neither convex nor closed.
- If $f: \mathcal{X} \to (-\infty, +\infty]$ is closed and proper convex, then

$$(f^*)^* = f.$$

Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a closed proper convex function. The following are equivalent:

- 1. $f(x) + f^*(y) = \langle x, y \rangle$ 2. $y \in \partial f(x)$ 3. $x \in \partial f^*(y)$

The equivalence $y \in \partial f(x) \iff x \in \partial f^*(y)$ means that ∂f^* is the **inverse** of ∂f (in the sense of multi-valued mappings).

Moreau envelope and proximal mapping

Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a closed proper convex function. We define:

• Moreau envelope (Moreau-Yosida regularization) of f at x:

$$M_f(x) = \min_{y} \left\{ f(y) + \frac{1}{2} ||y - x||^2 \right\}.$$

Proximal mapping of f at x:

$$P_f(x) = \arg\min_{y} \left\{ f(y) + \frac{1}{2} \|y - x\|^2 \right\}.$$

Properties:

M_f(x) is differentiable, and its gradient is

$$\nabla M_f(x) = x - P_f(x).$$

- $P_f(x)$ exists and is unique.
- $M_f(x) \leq f(x)$.
- $\operatorname{arg\,min}_x f(x) = \operatorname{arg\,min}_x M_f(x)$

(The Moreau envelope is a way to smooth a possibly non-differentiable convex function.)

Example 1: Projection onto a closed convex set

Let $C \subseteq \mathcal{X}$ be a nonempty closed convex set, and $f(x) = \delta_C(x)$ (indicator function). Its proximal mapping:

$$P_{f}(x) = \arg\min_{y \in \mathcal{X}} \left\{ \delta_{C}(y) + \frac{1}{2} \|y - x\|^{2} \right\} = \arg\min_{y \in C} \frac{1}{2} \|y - x\|^{2} = \Pi_{C}(x),$$

where $\Pi_C(x)$ denotes projection onto C. Its Moreau envelope:

$$M_f(x) = \frac{1}{2} ||x - \Pi_C(x)||^2.$$

Example 2: Huber function and soft thresholding

Let $f(x) = \lambda |x|$, $x \in \mathbb{R}$. Then its Moreau envelope (Huber function) is

$$M_f(x) = \begin{cases} \frac{1}{2}x^2, & |x| \le \lambda, \\ \lambda|x| - \frac{\lambda^2}{2}, & |x| > \lambda. \end{cases}$$

Its proximal mapping (soft thresholding):

$$P_f(x) = \operatorname{sign}(x) \max\{|x| - \lambda, 0\}.$$

Soft thresholding operator

The soft thresholding operator $S_{\lambda}:\mathbb{R}^n \to \mathbb{R}^n$ is defined as:

$$S_{\lambda}(x) = \begin{bmatrix} \operatorname{sign}(x_1) \max\{|x_1| - \lambda, 0\} \\ \operatorname{sign}(x_2) \max\{|x_2| - \lambda, 0\} \\ \vdots \\ \operatorname{sign}(x_n) \max\{|x_n| - \lambda, 0\} \end{bmatrix}$$

for any $x = [x_1, \ldots, x_n] \in \mathbb{R}^n$ and $\lambda > 0$.

Moreau decomposition

Theorem (Moreau decomposition):

Let $f: \mathcal{X} \to (-\infty, +\infty]$ be a closed proper convex function and f^* its Fenchel conjugate. Then, for any $x \in \mathcal{X}$,

$$x = P_f(x) + P_{f^*}(x),$$

$$\frac{1}{2} \|x\|^2 = M_f(x) + M_{f^*}(x).$$

Example: Let $C\subseteq\mathcal{X}$ be a nonempty closed convex cone. Take $f(x)=\delta_C(x)$, so $f^*(x)=\delta_{C^0}(x)$. Therefore,

$$x = \Pi_C(x) + \Pi_{C^{0}}(x).$$

Remarks

- M_f(·) is always differentiable, even if f is non-differentiable.
- \bullet $P_f(\cdot)$ is important for optimization algorithms (e.g., accelerated proximal gradient methods).
- For many regularizers, Pf(·) and Mf(·) have explicit expressions.

A proximal point view of gradient methods

To minimize a differentiable function $\min_{\beta} f(\beta)$, the gradient update is

$$\beta^{(k+1)} = \beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}).$$

The gradient step can be equivalently written as ((linear approximation + proximal term):

$$\beta^{\left(k+1\right)} = \arg\min_{\beta} \left\{ f(\beta^{\left(k\right)}) + \langle \nabla f(\beta^{\left(k\right)}), \beta - \beta^{\left(k\right)} \rangle + \frac{1}{2\alpha_k} \|\beta - \beta^{\left(k\right)}\|^2 \right\}.$$

Optimizing composite functions

$$\min_{\beta \in \mathbb{R}^p} f(\beta) + g(\beta),$$

where:

- $f: \mathbb{R}^p \to \mathbb{R}$ is convex, differentiable, ∇f is L-Lipschitz continuous, $g: \mathbb{R}^p \to (-\infty, +\infty]$ is closed, proper convex, possibly non-differentiable.

Example (Lasso):

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{2} ||X\beta - Y||^2 + \lambda ||\beta||_1,$$

where the first term is $f(\beta)$ and the second is $g(\beta)$. Since g is non-differentiable, gradient methods alone cannot be

Proximal gradient step

Gradient step (if $g(\beta)$ disappears):

$$\beta^{(k+1)} = \beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}).$$

or equivalently,

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ f(\beta^{(k)}) + \langle \nabla f(\beta^{(k)}), \beta - \beta^{(k)} \rangle + \frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2 \right\}.$$

Proximal gradient step for f + g:

$$\boldsymbol{\beta}^{\left(k+1\right)} = \arg\min_{\boldsymbol{\beta}} \left\{ f(\boldsymbol{\beta}^{\left(k\right)}) + \langle \nabla f(\boldsymbol{\beta}^{\left(k\right)}), \boldsymbol{\beta} - \boldsymbol{\beta}^{\left(k\right)} \rangle + g(\boldsymbol{\beta}) + \frac{1}{2\alpha_k} \left\| \boldsymbol{\beta} - \boldsymbol{\beta}^{\left(k\right)} \right\|^2 \right\}.$$

After ignoring constant terms and completing the square:

$$\beta^{(k+1)} = \arg\min_{\beta} \left\{ \frac{1}{2\alpha_k} \left\| \beta - \left(\beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}) \right) \right\|^2 + g(\beta) \right\}.$$

That is.

$$\beta^{(k+1)} = P_{\alpha_k g} \left(\beta^{(k)} - \alpha_k \nabla f(\beta^{(k)}) \right),\,$$

where $P_{\alpha_k g}$ denotes the proximal operator associated to $\alpha_k g$.

Derivation (completing the square):

$$\langle \nabla f(\beta^{(k)}), \beta \rangle + \frac{1}{2\alpha_k} \|\beta - \beta^{(k)}\|^2$$

$$= \langle \nabla f(\beta^{(k)}) - \frac{1}{\alpha_L} \beta^{(k)}, \beta \rangle + \frac{1}{2\alpha_L} \|\beta\|^2 + \text{constant}.$$

Convergence Rate of PG:

In convex problems, PG method satisfies

$$f(\boldsymbol{\beta}^{\left(k\right)}) + g(\boldsymbol{\beta}^{\left(k\right)}) - \min_{\boldsymbol{\beta} \in \mathbb{R}^p} (f(\boldsymbol{\beta}) + g(\boldsymbol{\beta})) \leq O\left(\frac{1}{k}\right).$$

If stopping condition

$$f(\beta^{(k)}) + g(\beta^{(k)})$$
 - optimal value $< 10^{-4}$,

then around $O(10^4)$ iterations needed.

Algorithm 6 Proximal Gradient (PG) Method

- 1: **Initialization:** Choose initial point $\beta^{(0)}$, step size $\alpha > 0$, set $k \leftarrow 0$.
- 2: while not converged do
- Update the iterate:

$$\beta^{(k+1)} = P_{\alpha g} \left(\beta^{(k)} - \alpha \nabla f(\beta^{(k)}) \right)$$

- Increment $k \leftarrow k+1$.
- 5: end while
- 6: Output: $\beta^{(k)}$ (approximate solution)

Algorithm 7 Accelerated Proximal Gradient (APG) Method

- 1: **Initialization:** Choose initial point $\beta^{(0)}$, set $t_0 = t_1 = 1$, step size $\alpha > 0$, set $k \leftarrow 0$.
- 2: while not converged do
- Compute extrapolated point:

$$\bar{\beta}^{(k)} = \beta^{(k)} + \frac{t_k - 1}{t_{k+1}} \left(\beta^{(k)} - \beta^{(k-1)} \right)$$

Proximal step:

$$\beta^{(k+1)} = P_{\alpha g} \left(\bar{\beta}^{(k)} - \alpha \nabla f(\bar{\beta}^{(k)}) \right)$$

Update:

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

- Increment $k \leftarrow k + 1$.
- 7: end while
- 8: Output: $\beta^{(k)}$ (approximate solution)

Convergence Rate of APG:

In convex problems, APG method satisfies

$$f(\beta^{(k)}) + g(\beta^{(k)}) - \min_{\beta \in \mathbb{R}^p} (f(\beta) + g(\beta)) \le O\left(\frac{1}{k^2}\right)$$

If stopping condition

$$f(\beta^{(k)}) + g(\beta^{(k)})$$
 – optimal value $\leq 10^{-4}$,

then around $O(10^2)$ iterations needed

Accelerated Proximal Gradient (APG) Methods

- Backtracking line search can also be used for finding step length α_k .
 For simplicity, we often take a constant step length. It should satisfy

$$\alpha \in \left(0, \, \frac{1}{L}\right),$$

where L is the Lipschitz constant of $\nabla f(\cdot)$ (typically unknown).

- APG methods enjoy the same computational cost per iteration as PG methods.
- · Iteration complexity

APG:
$$O\left(\frac{1}{k^2}\right)$$
, PG: $O\left(\frac{1}{k}\right)$

APG for Lasso

$$\min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|X\beta - Y\|^2 + \lambda \|\beta\|_1 \quad \text{(lasso problem)},$$

where

$$f(\beta) = \frac{1}{2} ||X\beta - Y||^2, \quad g(\beta) = \lambda ||\beta||_1.$$

Then

$$\nabla f(\beta) = X^T (X\beta - Y)$$
 with Lipschitz constant $L = \lambda_{\max}(X^T X)$.

Choose step length $\alpha = 1/L$.

APG iterations:

$$\bar{\beta}^{(k)} = \beta^{(k)} + \frac{t_k - 1}{t_{k+1}} (\beta^{(k)} - \beta^{(k-1)}),$$

$$\beta^{\left(k+1\right)} = S_{\lambda/L} \left(\bar{\beta}^{\left(k\right)} - \frac{1}{L} X^{T} (X \bar{\beta}^{\left(k\right)} - Y) \right),\,$$

where $S_{\lambda/L}$ is the soft-thresholding operator.

APG is also applicable to "logistic regression + lasso regularization"

Restart Strategy

- To speed up APG, restart the algorithm after a fixed number of iterations.
- ullet Use the latest iterate as the starting point for a new APG round.
- A reasonable choice is to restart every 100 or 200 iterations.

Lecture 5

- $\begin{tabular}{ll} \textbf{Idea of Support Vector Machine (SVM)} \\ \bullet & \textbf{Data: } x_i \in \mathbb{R}^p, & y_i \in \{-1,1\} \text{ (instead of } \{0,1\} \text{ in logistic regression)}, & i=1,\ldots,n. \\ \bullet & \textbf{The two classes are assumed to be linearly separable.} \end{tabular}$

 - Aim: Learn a linear classifier: f(x) = sign(β^T x + β₀).
 - Question: What is the "best" separating hyperplane
 - SVM answer: The hyperplane with maximum margin
 - Margin = distance to the closest data points.

For the separating hyperplane with maximum margin:

Distance to positive class = Distance to negative class.

Normal Cone of a Hyperplane

Hyperplane:

$$H = H_{\beta,\beta_0} = \{ x \in \mathbb{R}^p \mid \beta^T x + \beta_0 = 0 \},$$

which is:

- · A linear decision boundary,
- A (p 1)-dimensional subspace, closed, convex.

For any $\bar{x} \in H$, the normal cone:

$$N_{H}(\bar{x}) = \{\lambda \beta \mid \lambda \in \mathbb{R}\}.$$

We can show that:

$$\beta \in N_H(\bar{x}), \text{ i.e., } \langle \beta, z - \bar{x} \rangle \leq 0 \quad \forall z \in H.$$

(Since for any $z, \bar{x} \in H$, $\beta^T z + \beta_0 = \beta^T \bar{x} + \beta_0 = 0$).

Distance of a Point to a Hyperplane

To compute distance of x to hyperplane H:

Distance =
$$\frac{|\beta^T x + \beta_0|}{\|\beta\|}.$$

Key steps:

- 1. Projection $\bar{x} = \Pi_H(x)$ implies $x \bar{x} \in N_H(\bar{x}) \Rightarrow x \bar{x} = \lambda \beta$.
- 2. Use that $\bar{x} \in H$: $\beta^T \bar{x} + \beta_0 = 0$.

3. Solve for λ and compute distance. Important: The distance is invariant to scaling of β , β_0 .

Maximize Margin

Define the margin:

$$\gamma(\beta, \beta_0) = \min_{i=1,\dots,n} \frac{|\beta^T x_i + \beta_0|}{\|\beta\|}.$$

Constraints:

$$\beta^T x_i + \beta_0 \ge 0$$
 when $y_i = 1$,

$$\beta^T x_i + \beta_0 \le 0$$
 when $y_i = -1$,

or equivalently:

$$y_i(\beta^T x_i + \beta_0) \ge 0, \quad \forall i \in [n].$$

Therefore, the optimization becomes:

$$\max_{\beta,\beta_0} \left\{ \min_{i=1,...,n} \frac{|\beta^T x_i + \beta_0|}{\|\beta\|} \right\} \quad \text{subject to} \quad y_i(\beta^T x_i + \beta_0) \geq 0 \quad \forall i.$$

Simplify the Optimization Problem

$$\max_{\beta,\beta_0} \frac{1}{\|\beta\|} \quad \text{s.t.} \quad y_i(\beta^T x_i + \beta_0) \ge 0, \quad \min_i |\beta^T x_i + \beta_0| = 1.$$

Thus, equivalent to:

$$\min_{\beta,\beta_0} \|\beta\|^2 \quad \text{subject to} \quad y_i(\beta^T x_i + \beta_0) \ge 1, \quad \forall i.$$

- " \Rightarrow " relies on $y_i \in \{-1, 1\}$.
 " \Leftarrow " we minimize $\|\beta\|$.

SVM is a quadratic programming (QP) problem — it can be solved by generic QP solvers:

$$\min_{\beta,\beta_0} \quad \frac{1}{2} \|\beta\|^2 \quad \text{s.t.} \quad y_i(\beta^T x_i + \beta_0) \ge 1 \quad \forall i \in [n].$$

- Later, we will discuss the Lagrangian duality and derive the dual problem.
- The dual problem will help us use kernels (introduced later).
- ullet The dual problem also provides a more efficient algorithm, especially when $n \ll p$.

Support vectors are data points x_i satisfying tight constraints:

$$y_i(\beta^T x_i + \beta_0) = 1.$$

- · Support vectors must exist.
- Number of support vectors \ll sample size n.
- Removing a support vector may change the hyperplane

Lagrangian

For a general nonlinear programming problem (NLP) (called primal problem (P)):

(P)
$$\min_{x \in \mathbb{R}^p} f(x)$$
 s.t. $g_i(x) = 0, i \in [m], h_j(x) \le 0, j \in [l].$

Define the Lagrangian:

$$L(x,v,u) = f(x) + \sum_{i=1}^m v_i g_i(x) + \sum_{j=1}^l u_j h_j(x),$$

where $v = [v_1, ..., v_m] \in \mathbb{R}^m, u = [u_1, ..., u_l] \in \mathbb{R}^l_+$.

Define the Lagrange dual function:

$$\theta(v, u) = \min_{x \in \mathcal{X}} L(x, v, u).$$

Properties of the Lagrangian Dual Function

- To compute θ(v, u), solve min_x L(x, v, u).
- If f, g_i , and h_i are convex and differentiable, may use $\partial L/\partial x = 0$.
- θ(v, u) is always concave even if (P) is non-convex.
- For any feasible x, $\theta(v, u) \leq f(x)$ (weak duality).

Lagrangian Dual Problem

The dual function $\theta(v, u)$ provides a lower bound:

$$\theta(v, u) \le f(x)$$
 for all primal feasible x.

Therefore, we search for the largest lower bound:

(D)
$$\max_{u \in \mathbb{R}} \theta(v, u)$$
 s.t. $v \in \mathbb{R}^m, u \in \mathbb{R}^l_+$.

 v_i , u_j are called dual variables or Lagrange multipliers.

Primal and Dual Relationship

For primal problem (P) and dual problem (D):

$$(\mathbf{P}) \quad \min_{x \in \mathbb{R}^p} f(x) \quad \text{s.t.} \quad g_i(x) = 0, \quad h_j(x) \leq 0,$$

$$\text{(D)}\quad \max_{v,u}\theta(v,u)=\min_{x}\left(f(x)+\sum_{i=1}^{m}v_{i}g_{i}(x)+\sum_{i=1}^{l}u_{j}h_{j}(x)\right).$$

- Weak duality: Optimal value for (D)

 Optimal value for (P).
 Strong duality: Under certain conditions, (D) optimal value = (P) optimal value. KKT Assumptions:
 - f, h_j : $\mathbb{R}^p \to \mathbb{R}$ are differentiable and convex

 - $g_i: \mathbb{R}^p \to \mathbb{R}$ are affine: $g_i(x) = a_i^T x + b_i$ Slater's condition holds: there exists \hat{x} such that

$$g_i(\hat{x}) = 0, \quad \forall i, \quad h_i(\hat{x}) < 0, \quad \forall j$$

Under these assumptions, strong duality holds and there exist solutions x^* and (u^*, v^*) satisfying the KKT conditions:

$$\nabla f(x^*) + \sum_{i=1}^{m} v_i^* \nabla g_i(x^*) + \sum_{j=1}^{l} u_j^* \nabla h_j(x^*) = 0$$

$$g_i(x^*) = 0, \quad h_j(x^*) \le 0, \quad u_i^* \ge 0, \quad u_j^* h_j(x^*) = 0, \quad \forall i, j$$

KKT points and Complementary slackness:

- (x^*, u^*, v^*) (or simply x^*) is called a **KKT point** if it satisfies the KKT conditions. (x^*, u^*, v^*) is a KKT solution if and only if x^* is optimal for (P) and (u^*, v^*) is optimal for (D)

$$u_j^* h_j(x^*) = 0 \quad \forall j$$

Complementary slackness means: • $h_j(x^*) < 0 \Rightarrow u_j^* = 0$

- $u_i^* > 0 \Rightarrow h_i(x^*) = 0$

Dual of SVM:

Consider the primal SVM problem:

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 \quad \text{s.t.} \quad 1 - y_i(\beta^T x_i + \beta_0) \le 0, \quad \forall i$$

Step 1: Write the Lagrangian:

$$L(\beta, \beta_0, \alpha) = \frac{1}{2} \|\beta\|^2 + \sum_{i=1}^{n} \alpha_i (1 - y_i (\beta^T x_i + \beta_0))$$

where $\alpha_i \geq 0$. Step 2: The dual function is

$$\theta(\alpha) = \min_{\beta,\beta_0} L(\beta,\beta_0,\alpha)$$

Expanding:

$$L = \frac{1}{2} \left\| \boldsymbol{\beta} \right\|^2 - \sum_{i=1}^n \alpha_i y_i x_i^T \boldsymbol{\beta} - \left(\sum_{i=1}^n \alpha_i y_i \right) \boldsymbol{\beta}_0 + \sum_{i=1}^n \alpha_i$$

Setting the gradient to zero:

$$\frac{\partial}{\partial \beta} L = \beta - \sum_{i=1}^{n} \alpha_i y_i x_i = 0$$

$$\frac{\partial}{\partial \beta_0} L = -\sum_{i=1}^n \alpha_i y_i = 0$$

Thus:

$$\beta = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Substituting into L, we get:

$$\theta(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

The dual problem becomes

$$\max_{\alpha} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \quad \text{s.t.} \quad \sum_{i=1}^n \alpha_i y_i = 0, \quad \alpha_i \geq 0$$

KKT conditions for SVM:

$$\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} x_{i} = \beta^{*}, \quad \sum_{i=1}^{n} \alpha_{i}^{*} y_{i} = 0$$
$$y_{i}((\beta^{*})^{T} x_{i} + \beta_{0}^{*}) \ge 1, \quad \alpha_{i}^{*} \ge 0$$
$$\alpha_{i}^{*} (1 - y_{i}((\beta^{*})^{T} x_{i} + \beta_{0}^{*})) = 0$$

Given α^* :

$$\beta^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$

Choose any support vector x_k with $\alpha_k^* > 0$, then

$$\beta_0^* = y_k - \sum_{i=1}^n \alpha_i^* y_i \langle x_i, x_k \rangle$$

Support vectors and sparsity:

- $\alpha_i^* > 0 \Rightarrow y_i((\beta^*)^T x_i + \beta_0^*) = 1$ Most α_i^* are 0; thus the solution is sparse.

Decision boundary:

The decision boundary is

$$0 = \left(\beta^*\right)^T x + \beta_0^* = \sum_{i=1}^n \alpha_i^* y_i \langle x_i, x \rangle + \beta_0^* = \sum_{\alpha_i^* > 0} \alpha_i^* y_i \langle x_i, x \rangle + \beta_0^*$$

Thus, the decision boundary depends only on support vectors.

Primal vs Dual

Primal

$$\min_{\beta,\beta_0} \quad \frac{1}{2} \|\beta\|^2 \quad \text{s.t.} \quad y_i(\beta^T x_i + \beta_0) \geq 1, \quad i \in [n]$$

Classifier

$$f(x) = \operatorname{sign}(\beta^T x + \beta_0)$$

Dual

$$\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=i-1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \quad \text{s.t.} \quad \sum_{i=1}^{n} \alpha_i y_i = 0, \quad \alpha_i \geq 0, \quad i \in [n]$$

Classifier

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x_i, x \rangle + \beta_0\right)$$

Many α_i are zero (sparse solutions)

- ullet Optimize p+1 variables for primal, n variables for dual
- When $n \ll p$, it might be more efficient to solve the dual
- ullet Dual problem only involves $\langle x_i, x_j \rangle$ allowing the use of kernels

Feature mapping

· Recall feature expansion, for example,

$$x_i = \begin{bmatrix} x_{i1} \\ x_{i2} \end{bmatrix} \quad \mbox{feature expansion} \quad \begin{array}{c} \begin{bmatrix} x_{i1} \\ x_{i2} \\ x_{i1}^2 \\ x_{i2} \\ x_{i1} \end{bmatrix}$$

ullet Let ϕ denote the feature mapping, which maps from original features to new features

$$\phi\left(\begin{bmatrix}z_1\\z_2\\z_2\end{bmatrix}\right) = \begin{bmatrix}z_1\\z_2\\z_1\\z_2\\z_1z_2\end{bmatrix}$$

- Instead of using the original feature vectors x_i , we may apply SVM using new features $\phi(x_i)$ New feature space can be very high dimensional

Kernel: Primal

$$\min_{\beta, \beta_0} \quad \frac{1}{2} \|\beta\|^2 \quad \text{s.t.} \quad y_i(\beta^T x_i + \beta_0) \ge 1, \quad i \in [n]$$

Dual

$$\max_{\alpha} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \quad \text{s.t.} \quad \sum_{i=1}^n \alpha_i y_i = 0, \quad \alpha_i \geq 0, \quad i \in [n]$$

- For feature expansion, simply replace $\langle x_i, x_j \rangle$ with $\langle \phi(x_i), \phi(x_j) \rangle$
- Given a feature mapping ϕ , we define the corresponding kernel

$$K(a,b) = \langle \phi(a), \phi(b) \rangle, \quad a,b \in \mathbb{R}^p$$

- Usually computing K(a,b) may be very cheap, even though computing $\phi(a),\phi(b)$ may be expensive
- The dual of SVM only requires the computation of kernels $K(x_i,x_i)$. Explicitly calculating $\phi(x_i)$ is not necessary

Common kernels

• Polynomials of degree d

$$K(a,b) = (a^T b)^d$$

· Polynomials up to degree d

$$K(a, b) = (a^T b + 1)^d$$

• Gaussian kernel - polynomials of all orders

$$K(a, b) = \exp\left(-\frac{\|a - b\|^2}{2\sigma^2}\right), \quad \sigma > 0$$

Kernel

- SVM can be applied in high dimensional feature spaces, without explicitly applying the feature mapping
- The two classes might be separable in high dimensional space, but not separable in the original feature space
- Kernels can be used efficiently in the dual problem of SVM because the dual only involves inner products

SVM with soft constraints

When the two classes are not separable, no feasible separating hyperplane exists. We allow the constraints to be violated slightly (C > 0 is given)

$$\min_{\beta,\beta_0,\epsilon} \quad \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \epsilon_i \quad \text{s.t.} \quad y_i(\beta^T x_i + \beta_0) \geq 1 - \epsilon_i, \quad \epsilon_i \geq 0, \quad i \in [n]$$

$$\epsilon_i = \begin{cases} 1 - y_i(\boldsymbol{\beta}^T \boldsymbol{x}_i + \boldsymbol{\beta}_0), & \text{if } y_i(\boldsymbol{\beta}^T \boldsymbol{x}_i + \boldsymbol{\beta}_0) < 1 \\ 0, & \text{if } y_i(\boldsymbol{\beta}^T \boldsymbol{x}_i + \boldsymbol{\beta}_0) \geq 1 \end{cases} = \max\{1 - y_i(\boldsymbol{\beta}^T \boldsymbol{x}_i + \boldsymbol{\beta}_0), 0\}$$

SVM with soft constraints solves

$$\min_{\beta,\beta_0} \quad \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \max\{1 - y_i(\beta^T x_i + \beta_0), 0\}$$

(ridge regularization + hinge-loss function)

SVM vs. logistic regression

SVM with soft constraints

$$\min_{\beta,\beta_0} \quad C \sum_{i=1}^n \max\{1 - y_i(\beta^T x_i + \beta_0), 0\} + \frac{1}{2} \|\beta\|^2$$

Hinge-loss

$$\text{hinge-loss} = \max\{1-z,0\}, \quad z = y_i(\boldsymbol{\beta}^T \boldsymbol{x}_i + \boldsymbol{\beta}_0) \quad \text{hope } z \geq 1$$

Logistic regression with ridge regularization

$$\min_{\beta,\beta_0} \quad \sum_{i=1}^n \log \left(1 + e^{-z}\right) + \lambda \|\beta\|^2$$

Logistic-loss

logistic-loss =
$$\log(1 + e^{-z})$$
, $z = y_i(\beta^T x_i + \beta_0)$ hope $z \gg 0$

SVM with soft constraints: dual

SVM with soft constraints:

$$\min_{\beta,\beta_0,\epsilon} \quad \frac{1}{2} \left\|\beta\right\|^2 + C \sum_{i=1}^n \epsilon_i \quad \text{s.t.} \quad 1 - \epsilon_i - y_i (\beta^T x_i + \beta_0) \leq 0, \quad -\epsilon_i \leq 0, \quad i \in [n]$$

Find the dual problem. 1. For $\alpha \in \mathbb{R}^n_+$, $r \in \mathbb{R}^n_+$, the Lagrangian $L(\beta, \beta_0, \epsilon, \alpha, r)$ is

$$L = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \epsilon_i + \sum_{i=1}^n \alpha_i (1 - \epsilon_i - y_i (\beta^T x_i + \beta_0)) - \sum_{i=1}^n r_i \epsilon_i$$

2. The dual function is

$$\theta(\alpha, r) = \min_{\beta, \beta_0, \epsilon} L(\beta, \beta_0, \epsilon, \alpha, r)$$

By setting

$$\frac{\partial}{\partial \beta}L = \beta - \sum_{i=1}^n \alpha_i y_i x_i = 0, \quad \frac{\partial}{\partial \beta_0}L = -\sum_{i=1}^n \alpha_i y_i = 0 \quad \frac{\partial}{\partial \epsilon_i}L = C - \alpha_i - r_i = 0$$

We obtain

$$\theta(\alpha,r) = \begin{cases} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle, & \text{if } \sum_{i=1}^n \alpha_i y_i = 0 \text{ and } \alpha_i + r_i = C \\ -\infty, & \text{otherwise} \end{cases}$$

3. The dual probl

$$\max_{\alpha} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \quad \text{s.t.} \quad \sum_{i=1}^n \alpha_i y_i = 0, \quad 0 \leq \alpha_i \leq C, \quad i \in [n]$$

Lecture 6

Coordinate-wise Minimizer

Definition (Coordinate-wise minimizer)

For any $f: \mathbb{R}^n \to (-\infty, +\infty]$, we say \bar{x} is a coordinate-wise minimizer of f if $\bar{x} \in \text{dom} f$ and

$$f(\bar{x} + de_i) > f(\bar{x}) \quad \forall i \in [n], d \in \mathbb{R},$$

where $e_i \in \mathbb{R}^n$ is the *i*-th standard basis vector

Examples:

• When n=2:

$$f(\bar{x}_1 + d, \bar{x}_2) \ge f(\bar{x}_1, \bar{x}_2), \quad f(\bar{x}_1, \bar{x}_2 + d) \ge f(\bar{x}_1, \bar{x}_2) \quad \forall d \in \mathbb{R}$$

• When n = 3:

$$f(\bar{x}_1 + d, \bar{x}_2, \bar{x}_3) \ge f(\bar{x}_1, \bar{x}_2, \bar{x}_3),$$
 etc.

(1) is equivalent to

$$\bar{x}_i \in \arg\min_{x_i} f(\bar{x}_1, \dots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \dots, \bar{x}_n) \quad \forall i \in [n].$$

Question: Is a coordinate-wise minimizer a global minimizer?

Coordinate-wise Minimizer: Differentiable

Claim: A coordinate-wise minimizer \bar{x} of a convex function f is a global minimizer if f is differentiable at \bar{x} . **Proof:** Since f is differentiable at \bar{x} ,

$$\bar{x}_i \in \arg\min_{x_i} f(\bar{x}_1, \dots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \dots, \bar{x}_n)$$

implies

$$\nabla_i f(\bar{x}) = \frac{\partial}{\partial x_i} f(\bar{x}) = 0.$$

Thus, $\nabla f(\bar{x}) = (\nabla_1 f(\bar{x}), \dots, \nabla_n f(\bar{x})) = 0$, so \bar{x} is a global minimizer.

Question: Same question for non-differentiable f?

Coordinate-wise Minimizer: Non-Differentiable

Claim: A coordinate-wise minimizer \bar{x} of a convex function f is not necessarily a global minimizer when f is not

Example:

$$f(x_1, x_2) = \begin{cases} (x_1 + 10)^2 + (x_2 - 10)^2, & \text{if } x_1 \ge x_2, \\ (x_1 - 10)^2 + (x_2 + 10)^2, & \text{if } x_1 < x_2 \end{cases}$$
$$= x_1^2 + x_2^2 + 20|x_1 - x_2| + 200$$

The global minimizer is at (0,0)

Coordinate-wise Minimizer: Separable Non-Differentiable Claim: If the non-differentiable part is separable:

$$\min_{x\in\mathbb{R}^n} F(x) \coloneqq f(x) + \sum_{i=1}^n r_i(x_i),$$

where f is convex differentiable and each r_i is closed proper convex, then a coordinate-wise minimizer of F is a global

• Define
$$r(x) := \sum_{i=1}^{n} r_i(x_i)$$

$$\bar{x}_i \in \arg\min_{x_i} f(\bar{x}_1, \dots, x_i, \dots, \bar{x}_n) + r_i(x_i) \quad \forall i$$

implies

$$0 \in \nabla_i f(\bar{x}) + \partial r_i(\bar{x}_i) \quad \forall i \iff 0 \in \nabla f(\bar{x}) + \partial r(\bar{x}).$$

Coordinate Descent Method

Target problem:

$$\min_{x \in \mathbb{R}^n} F(x) := f(x) + \sum_{i=1}^n r_i(x_i),$$

where f is convex differentiable, and each r_i is closed proper convex.

Why this problem?

- A coordinate descent method will search for a coordinate-wise minimizer.
- In general, a coordinate-wise minimizer is not necessarily a global minimizer.
- For this target problem, a coordinate-wise minimizer is indeed a global minimizer.

Algorithm (Coordinate Descent Method)

Choose $x^{(0)} \in \text{dom}(F)$, set $k \leftarrow 0$.

Repeat until convergence:

$$\begin{split} x_1^{(k+1)} &\leftarrow \arg\min_{x_1} f(x_1, x_2^{(k)}, \dots, x_n^{(k)}) + r_1(x_1) \\ x_2^{(k+1)} &\leftarrow \arg\min_{x_2} f(x_1^{(k+1)}, x_2, x_3^{(k)}, \dots, x_n^{(k)}) + r_2(x_2) \\ &\vdots \\ x_n^{(k+1)} &\leftarrow \arg\min_{x_n} f(x_1^{(k+1)}, \dots, x_{n-1}^{(k+1)}, x_n) + r_n(x_n) \end{split}$$

Update $k \leftarrow k+1$. End (repeat)

Remarks

- $x^{(k)}$ has a subsequence converging to a global minimizer x^*
- Coordinates can be updated in any order (commonly cyclic).
- After updating $x_i^{(k+1)}$, use the new value immediately (no parallelization)
- Block coordinate descent generalizes this to groups of variables.
- No global convergence guarantee for non-convex F.

Lecture 7

Dimension Reduction

- Dimension reduction aims to represent each data point as a linear combination of a small number of basis vectors.
- Given n data points $a_1, a_2, \ldots, a_n \in \mathbb{R}^m$, dimension reduction looks for basis vectors

$$u_1, u_2, \ldots, u_r \in \mathbb{R}^m$$

such that each data point is well-approximated by a linear combination of the basis vectors:

$$a_j \approx \sum_{i=1}^r u_i v_{ji} \quad \text{or} \quad a_j \approx u_1 v_{j1} + u_2 v_{j2} + \dots + u_r v_{jr}, \quad j \in [n]$$

where $v_{ii} \in \mathbb{R}$.

Dimension reduction is equivalently written in matrix form:

$$[a_1, a_2, \dots, a_n] \approx [u_1, u_2, \dots, u_r] \begin{bmatrix} v_{11} & \cdots & v_{n1} \\ \vdots & \ddots & \vdots \\ v_{1r} & \cdots & v_{nr} \end{bmatrix}$$

$$A \in \mathbb{R}^{m \times n}$$
, $U \in \mathbb{R}^{m \times r}$, $V^T \in \mathbb{R}^{r \times n}$.

- Each column of A is a data point.
- Each column of U is a basis vector.
 Each column of V^T contains the coordinates in the basis U.
- Typically, $r \ll \min(m, n)$.

Variants of Dimension Reduction

Dimension reduction mainly differs in:

- 1. Error measure can vary:
 - NMF uses $||A UV^T||^2 = ||A UV^T||_F^2$
- Alternative: ℓ_1 norm $\|A-UV^T\|_1$.

 2. Different constraints on U and V:
 NMF constraint: $U \geq 0, V \geq 0$ (nonnegative matrix factorization).
 - Orthogonal constraint: V^TV = I_r.
 - Symmetric constraint: V = U, then $A \approx UU^T$, with m = n.

NMF (Non-negative Matrix Factorization)

Given nonnegative matrix $A \in \mathbb{R}_{\perp}^{m \times n}$ and rank r, NMF finds nonnegative matrices $U \in \mathbb{R}_{\perp}^{m \times r}$, $V \in \mathbb{R}_{\perp}^{n \times r}$ solving:

$$\min_{U,V} \quad \frac{1}{2} \|A - UV^T\|_F^2 \quad \text{s.t.} \quad U \ge 0, \ V \ge 0$$

- The objective is non-convex w.r.t (U, V) but bi-convex.
- NMF is a popular dimension reduction technique.

Variants of NMF

- Standard NMF can vary by error measure, constraints, or regularization.
- Different variants are suited for different applications.

Model	Objective Function	Constraints
NMF	$\frac{1}{2} \ A - UV^T\ _F^2$	$U \ge 0, V \ge 0$
Symmetric NMF	$\frac{1}{8} \ A - UV^T\ _{\mathcal{D}}^2$	U > 0, V > 0, V = U

Algorithms for NMF

Focus: BCD-type (block coordinate descent) methods.

- \bullet BCD: \hat{U} and V are divided into blocks (columns, entries, etc.), updated successively.
- HALS (Hierarchical Alternating Least Squares) updates one column of U or V at a time.

Algorithm 8 HALS-1 Algorithm

- 1: for j = 1 to J do
- $v_j \leftarrow \arg\min_{v \geq 0} f(v_1, \dots, v_{j-1}, v, v_{j+1}, \dots, v_J, u_1, \dots, u_J)$
- $u_{i} \leftarrow \arg\min_{u>0} f(v_{1}, \dots, v_{J}, u_{1}, \dots, u_{i-1}, u, u_{i+1}, \dots, u_{J})$
- 4: end for

Algorithm 9 HALS-2 Algorithm

- 1: for j = 1 to J do
- 2: $v_i \leftarrow \arg\min_{v>0} f(v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_J, u_1, \dots, u_J)$
- 3: end for
- 4: for i = 1 to J do
- $u_j \leftarrow \arg\min_{u>0} f(v_1, \dots, v_J, u_1, \dots, u_{j-1}, u, u_{j+1}, \dots, u_J)$
- 6: end for

Update Orders:

$$\begin{aligned} & \text{HALS-1:} \ v_1 \rightarrow u_1 \rightarrow v_2 \rightarrow u_2 \rightarrow \cdots \rightarrow v_J \rightarrow u_J \\ & \text{HALS-2:} \ v_1 \rightarrow \cdots \rightarrow v_J \rightarrow u_1 \rightarrow \cdots \rightarrow u_J \end{aligned}$$

Lemma 1 (Solutions to subproblems of HALS methods)

Given a matrix $B \in \mathbb{R}^{M \times N}$ and a nonzero $v \in \mathbb{R}^N$, we have

$$\frac{[Bv]_+}{v^Tv} = \arg\min_{u \ge 0} \|B - uv^T\|^2$$

Similarly, given a $B \in \mathbb{R}^{M \times N}$ and a nonzero $u \in \mathbb{R}^M$,

$$\frac{[B^T u]_+}{u^T u} = \arg\min_{v > 0} \|B - uv^T\|^2$$

The unique optimal solution is guaranteed due to $v \neq 0$ or $u \neq 0$.

Algorithm 10 HALS-1-Modified

- 1: Initialize nonnegative matrices U and V.
- 2: repeat
- for j = 1 to J do $v_j \leftarrow [(A UV^T + u_j v_j^T)^T u_j]_+ / (u_j^T u_j)$
- $u_i \leftarrow [(A UV^T + u_i v_i^T)v_i]_+/(v_i^T v_i)$
- end for
- 7: until convergence criterion is reached

Algorithm 11 HALS-2-Modified

9: until convergence criterion is reached

```
1: Initialize nonnegative matrices U and V.
         for j = 1 to J do
             v_{i} \leftarrow [(A - UV^{T} + u_{i}v_{i}^{T})^{T}u_{i}]_{+}/(u_{i}^{T}u_{i})
4:
         for j = 1 to J do
u_j \leftarrow [(A - UV^T + u_j v_j^T)v_j]_+ / (v_j^T v_j)
         end for
```

If the columns of U^k and V^k remain nonzero throughout all the iterations of HALS-1 (or HALS-2), and the minimum of all subproblems is attained at each iteration, then every limit point of the sequence $\{(U^k,V^k)\}$ generated by HALS-1 (or HALS-2) is a stationary point of NMF.

ARkNLS: A Rank-k NLS based NMF Framework

$$U = \begin{bmatrix} U_1 & \cdots & U_q \end{bmatrix}, \quad V = \begin{bmatrix} V_1 & \cdots & V_q \end{bmatrix}, \quad U_i \in \mathbb{R}^{m \times k}, \quad V_i \in \mathbb{R}^{n \times k}$$

For simplicity, assume r/k = q is an integer. Then

$$f(U, V) = \|A - UV^T\|_F^2 = \|U_1V_1^T + \dots + U_qV_q^T - A\|_F^2$$

The optimization can be broken into solving:

$$\begin{split} V_i &= \arg\min_{V \geq 0} \left\| U_i V^T - \left(A - \sum_{\ell \neq i} U_\ell V_\ell^T \right) \right\|_F^2, \quad i = 1, \dots, q, \\ \\ U_i &= \arg\min_{U \geq 0} \left\| V_i^T U^T - \left(A - \sum_{\ell \neq i} U_\ell V_\ell^T \right)^T \right\|_F^2, \quad i = 1, \dots, q. \end{split}$$

Algorithm 12 ARkNLS: Alternating Rank-k Nonnegative Least Squares Framework for NMF

Require: Assume $A \in \mathbb{R}^{m \times n}$, $r \leq \min(m, n)$ given. 1: Initialize $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$ with $\{U, V\} > 0$. 2: Partition as in (2), where each block U_i , V_i has k columns. 3: Normalize the columns of U. 4: repeat for $i = 1, \ldots, q$ do Update V_i by solving rank-k NLS subproblem (3). end for for $i = 1, \ldots, q$ do Update U_i by solving rank-k NLS subproblem (4).

Convergence Property of ARkNLS

11: until a stopping criterion is satisfied

If U_i^k and V_i^k , for $i=1,\ldots,q$, are of full column rank throughout all iterations, and the unique minimizers in (3) and (4) are attained at each updating step, then every limit point of the sequence $\{(U,V)^{(k)}\}$ generated by ARkNLS algorithm is a stationary point of NMF.

ARkNLS is a general framework where k > 0 can be any integer. When k = 1, it reduces to HALS.

Subproblems (3) and (4)
The subproblems are NLS with multiple right-hand sides:

$$\min_{Y \ge 0} \|GY - B\|_F^2$$

• $G = U_i$, $B = A - \sum_{\ell \neq i} U_\ell V_\ell^T$ for (3),

• $G = V_i$, $B = (A - \sum_{\ell \neq i} U_{\ell} V_{\ell}^T)^T$ for (4).

Hence, solving (5) is the key problem in ARkNLS.

Recursive Formula for Rank-k NLS Problem

Problem (5) can be decoupled into independent NLS problems:

$$\min_{Y(:,j)\geq 0} \|GY(:,j) - B(:,j)\|_F^2$$

To solve (5) in closed-form, we first solve the rank-k NLS problem:

$$\min_{y \geq 0} \|Gy - b\|, \quad b \in \mathbb{R}^m, \quad G \in \mathbb{R}^{m \times k}, \quad \operatorname{rank}(G) = k.$$

Assume $G \in \mathbb{R}^{m \times k}$, $g_{k+1} \in \mathbb{R}^m$, and $b \in \mathbb{R}^m$ are given, and $[G \ g_{k+1}]$ has full column rank. Denote the unique solution of rank-k NLS (7) as $s(G, b) \in \mathbb{R}^k$

Then the unique solution to the rank-(k+1) NLS problem

$$\begin{bmatrix} y^\star \\ y^\star_{k+1} \end{bmatrix} = \arg \min_{y \geq 0, y_{k+1} \geq 0} \left\| \begin{bmatrix} G & g_{k+1} \end{bmatrix} \begin{bmatrix} y \\ y_{k+1} \end{bmatrix} - b \right\|$$

is given by

$$\begin{cases} y_{k+1}^{\star} = \frac{1}{\parallel g_{k+1} \parallel^2} [g_{k+1}^T (b - G \cdot s(G, b))]_+ \\ \\ y^{\star} = s(G, b - g_{k+1} y_{k+1}^{\star}) \end{cases}$$

Given a continuous convex function f(z), and two nonempty closed convex sets \mathcal{T} and \mathcal{C} with $\mathcal{T} \cap \mathcal{C} \neq \emptyset$,

$$\tilde{z} = \arg \min_{z \in \mathcal{T}} f(z)$$

Assume \tilde{z} is finite.

$$\min_{z \in \mathcal{T} \cap \mathcal{C}} f(z)$$

- If $\tilde{z} \in \mathcal{C}$, then $z^* = \tilde{z}$. If $\tilde{z} \notin \mathcal{C}$, there exists $z^* \in \mathcal{T} \cap C_{\text{edge}}$ with $f(z^*) = f(\tilde{z})$.

Proof of Lemma 5

Assume $\hat{z} \in \mathcal{T} \cap \mathcal{C}$ is finite and

$$\hat{z} = \arg\min_{z \,\in\, \mathcal{T} \,\cap\, \mathcal{C}} f(z)$$

$$z^* = (1 - t)\tilde{z} + t\hat{z} \in \mathcal{T} \cap C_{\text{edge}}$$

for some $t \in (0, 1)$. Since f is convex,

$$f(z^*) = f(\tilde{z}) = f(\hat{z})$$

thus z^* solves the problem

Assume $G \in \mathbb{R}^{m \times k}$, rank(G) = k, and $b \in \mathbb{R}^m$

Then the solution to the rank-k NLS problem (7) is unique.

Theorem 4 can be used to recursively derive solutions for any k > 1.

Corollary 7

$$G = \begin{bmatrix} g_1 & g_2 & g_3 \end{bmatrix} \in \mathbb{R}^{m \times 3}, \quad \text{rank}(G) = 3.$$

The unique solution to the rank-3 NLS problem

$$\begin{bmatrix} y_1^{\star} \\ y_2^{\star} \\ y_2^{\star} \end{bmatrix} = \arg\min_{y \ge 0} \|Gy - b\|$$

is given by

$$\begin{cases} y_3^{\star} = \frac{1}{\|g_3\|^2} [g_3^T (b - Gp)]_+ \\ \\ y_2^{\star} = \frac{1}{\|g_2\|^2} [g_2^T (b - g_3 y_3^{\star} - Gw)]_+ \\ \\ y_1^{\star} = \frac{1}{\|g_1\|^2} [g_1^T (b - g_2 y_2^{\star} - g_3 y_3^{\star})]_+ \end{cases}$$

where
$$\begin{split} w &= -g_2^T g_1 \left(\frac{b^T g_1 \|g_2\|^2 - b^T g_2 \, g_1^T g_2}{\|g_1\|^2 \|g_2\|^2 - (g_1^T g_2)^2} \right) \\ p &= \left(\frac{b^T g_2 \|g_1\|^2 - b^T g_1 \, g_1^T g_2}{\|g_1\|^2 \|g_2\|^2 - (g_1^T g_2)^2} \right) \end{split}$$
 and $\tilde{p} &= \left(\frac{b^T g_1 \|g_3\|^2 - b^T g_3 \, g_1^T g_2}{\|g_1\|^2 \|g_3\|^2 - (g_1^T g_3)^2} \right) p$