Olimpiada Națională de Matematică Etapa finală, Oradea, 18 aprilie 2011

CLASA a VII-a – BAREMURI

Problema 1. Determinaţi numerele naturale r cu proprietatea că există numerele naturale prime p şi q astfel încât $p^2 + pq + q^2 = r^2$. Soluţie. Relaţia din enunţ este echivalentă cu $(p+q)^2 = r^2 + pq$, care devine $(p+q+r)(p+q-r) = pq$
Problema 2. În patrulaterul convex $ABCD$ avem $m(\angle BCD) = m(\angle ADC) \geq 90^\circ$. Bisectoarele unghiurilor BAD şi ABC se intersectează în M . Demonstrați că dacă $M \in CD$, atunci M este mijlocul lui $[CD]$. Soluție. Cazul I. Dacă $AD \cap BC = \{E\}$, atunci punctul M este centrul cercului înscris în triunghiul ABE . 1 p. Rezultă că semidreapta (EM) este bisectoarea unghiului AEB . 1 p. Deoarece unghiurile ECD şi EDC sunt congruente, triunghiul EDC este isoscel cu baza $[DC]$ 1 p. Prin urmare $[EM]$ este mediană a triunghiului EDC , deci punctul M este mijlocul segmentului CD . 1 p. Cazul II. Dacă $AD \parallel BC$, atunci $m(\angle ADC) = m(\angle BCD) = 90^\circ$, deci $m(\angle MAB) + m(\angle MBA) = 90^\circ$, adică triunghiul MAB este dreptunghic în M . 1 p. Fie N mijlocul segmentului AB . Rezultă că triunghiul NAM este isoscel cu
baza $[AM]$, deci $\angle NMA \equiv \angle NAM \equiv \angle MAD$
$xt - yz = 1$ şi $\frac{x}{y} > \frac{a}{b} > \frac{z}{t}$, demonstraţi că $ab \ge (x+z)(y+t)$. Soluţie. Din $\frac{x}{y} > \frac{a}{b}$ rezultă că $xb > ya$, deci $xb - ya \ge 1$. Analog se
arată că $at - bz \ge 1$
Înmulțim prima inegalitate cu t , pe a doua cu y și adunăm relațiile obținute
deducem că $bxt - byz \ge t + y$, adică $b \ge t + y$
rezultă cerința problemei

Problema 4. Se consideră triunghiul ABC în care $m(\angle ABC) = 60^{\circ}$. Punctele M și D sunt situate pe laturile (AC), respectiv (AB), astfel încât $m(\angle BCA) = 2m(\angle MBC)$ și BD = MC. Determinați măsura unghiului $\angle DMB$.