Supporting Information

Mechanistic Insight into Hydrocarbons Synthesis via CO₂ Hydrogenation on γ-Fe₅C₂ Catalysts

Haozhi Wang^{a,b,c}, Xiaowa Nie^{a*}, Yuan Liu^c, Michael J. Janik^d, Xiaopeng Han^{c*}, Yida Deng^c, Wenbin Hu^{b,c}, Chunshan Song^{a,e}, and Xinwen Guo^{a*}

^aState Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

^bJoint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

^cSchool of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China

^dEMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

^eDepartment of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China.

Authors to whom all correspondence should be addressed:

Email: niexiaowa@dlut.edu.cn; xphan@tju.edu.cn; guoxw@dlut.edu.cn.

Figure S1. (a) Possible active sites examined for CO₂ hydrogenation to hydrocarbons on χ -Fe₅C₂(510) and (b) Side view of the χ -Fe₅C₂(510) model to show the fixed and relaxed atomic layers in structural optimization. (purple: Fe; yellow: top-layer carbon; blue: sub-layer carbon.)

Figure S2. Top and side views of the most stable adsorption configurations of CO₂, H, CO, H₂O, CH₄, C₂H₄ and C₂H₆ on the χ -Fe₅C₂(510) surface. (purple: Fe; black: C of adsorbates; red: O; white: H; gray: C of χ -Fe₅C₂ catalyst.)

Figure S3. The initial, transition, and final states associated with CO₂ direct dissociation and initial hydrogenation on the χ -Fe₅C₂(510) surface. (purple: Fe; black: C of adsorbates; red: O; white: H; gray: C of χ -Fe₅C₂ catalyst.)

Figure S4. The COHP analysis for the interaction of the bonds between the adsorbates and substrate in the transition states for (a) CO₂ and (b) CO hydrogenation over χ -Fe₅C₂(510).

Figure S5. Corresponding structures of transition states and intermediates for C_2 hydrocarbons formation on the χ -Fe₅C₂(510) surface. (purple: Fe; black: C of adsorbates; white: H; gray: C of χ -Fe₅C₂ catalyst.)

(a) States involved in C-vacancy formation

$$CH_3^* + H^* \rightarrow CH_4(g)$$

(b) CO₂ chemistry on the surface with a C-vacancy

Figure S6. The initial, transition, and final states associated with (a) C vacancy formation on the χ -Fe₅C₂(510) surface and (b) CO₂ dissociation and hydrogenation on the χ -Fe₅C₂(510) surface with a C-vacancy. (purple: Fe; black: C of adsorbates; red: O; white: H; gray: C of χ -Fe₅C₂ catalyst.)

Figure S7. The initial, transition, and final states associated for OH* and H₂O* formation on the interfacial site of χ -Fe₅C₂(510) and iron oxide. (purple: Fe; red: O of iron oxide catalyst; orange: O of adsorbates; white: H; gray: C of χ -Fe₅C₂ catalyst.)

Table S1. Impact of k-point on CO_2 adsorption energy and initial hydrogenation energetics.

	<i>k</i> -1	point
	3×3×1	1×1×1
CO ₂ adsorption energy/eV	-0.68	-0.68
$E_{\rm act}$ (eV) for CO ₂ to HCOO*	0.80	0.84
$E_{\rm act}$ (eV) for CO ₂ to COOH*	1.26	1.28

Table S2. The calculated lattice parameter of Fe₅C₂ unit cell.

bulk	а	b	С	α	β	γ
Fe ₅ C ₂	11.46 Å	4.47 Å	4.96 Å	90°	97.59°	90°
Ref ³⁰	11.55 Å	4.51 Å	4.99 Å	90°	97.63°	90°

Table S3. Key structural parameters for initial, transition, and final states involved in the "CO" pathway for methane synthesis from CO₂ hydrogenation on the χ -Fe₅C₂(510) surface. (Distances are in Angstroms, and angles are in degrees.)

CO ₂ * → CO* + O*			CO* → C* + O*				
parameters	IS	TS	FS	parameters	IS	TS	FS
C-O ₁	1.34	1.77	3.25	C-O ₁	1.21	1.81	2.49
C-O ₂	1.30	1.23	1.19				
∠O ₁ -C-O ₂	124.1	115.6	96.1				
C* + H* → CH*			CH* + H* → CH ₂ *				
parameters	IS	TS	FS	parameters	IS	TS	FS
C-H _{surf}	2.49	1.49	1.11	C-H ₁	1.11	1.11	1.11
				C-H _{surf}	2.51	1.45	1.28
				∠H ₁ -C-H _{surf}	91.5	91.5	92.8
$CH_2* + H* \rightarrow CH_3*$			CH ₃ * + H* → CH ₄ *				
parameters	IS	TS	FS	parameters	IS	TS	FS
C-H _{1surf}	2.65	1.64	1.13	C-H _{1surf}	2.73	1.41	1.12
∠H2-C-H _{surf}	83.40	96.31	104.43	∠H ₂ -C-H _{surf}	79.57	90.28	107.47
∠H ₁ -C-H _{surf}	135.3	93.3	105.2	∠H ₁ -C-H _{surf}	63.2	99.5	108.0

Table S4. Key structural parameters for initial, transition, and final states involved in the "HCOO" pathway for methane synthesis from CO_2 hydrogenation on the χ -Fe₅C₂(510) surface. (Distances are in Angstroms, and angles are in degrees.)

$CO_2^* + H^* \rightarrow HCOO^*$			HCOO* → HCO* + O*				
parameters	IS	TS	FS	parameters	IS	TS	FS
C-H _{surf}	2.47	1.56	1.10	C-O ₁	1.30	1.31	1.33
∠H-C-O ₁	86.92	102.27	119.07	C-O ₂	1.33	1.88	3.52
∠H-C-O ₂	141.8	120.6	115.5	$\angle O_1$ -C- O_2	123.1	109.3	90.7
HCC	HCO* → CH* + O*			HCOO* + H* → H ₂ COO*			
parameters	IS	TS	FS	parameters	IS	TS	FS
C-O	1.39	1.92	4.07	C-H _{surf}	2.98	1.24	1.11
С-Н	1.11	1.10	1.10	∠H-C-O ₁	54.19	104.94	109.39
∠H-C-O	109.9	90.3	80.5	\angle H-C-O ₂	89.3	109.4	108.0
HCO* + H* → H ₂ CO*			$H_2COO^* \rightarrow H_2CO^* + O^*$				
HCO;	* + H* >]	H ₂ CO*		H_2CO	$O^* \rightarrow H_2O$	$CO^* + O^*$	
parameters	* + H * → 1 IS	H ₂ CO*	FS	H ₂ CO parameters	$O^* \rightarrow H_2O$ IS	TS	FS
			FS 1.14	_	_	1	FS 1.37
parameters	IS	TS		parameters	IS	TS	
parameters C-H ₁	IS 1.11	TS 1.11	1.14	parameters C-O ₁	IS 1.42	TS 1.28	1.37
parameters C-H ₁ C-H _{surf} ∠H ₁ -C-H _{surf}	IS 1.11 2.57	TS 1.11 1.54 90.3	1.14 1.11	parameters C-O ₁ C-O ₂	IS 1.42 1.43	TS 1.28 2.20	1.37 3.62
parameters C-H ₁ C-H _{surf} ∠H ₁ -C-H _{surf}	IS 1.11 2.57 73.7	TS 1.11 1.54 90.3	1.14 1.11	parameters C-O ₁ C-O ₂	IS 1.42 1.43	TS 1.28 2.20	1.37 3.62
parameters C-H ₁ C-H _{surf} ∠H ₁ -C-H _{surf} H ₂ CC	IS 1.11 2.57 73.7 → CH ₂	TS 1.11 1.54 90.3 * + O *	1.14 1.11 104.8	parameters C-O ₁ C-O ₂	IS 1.42 1.43	TS 1.28 2.20	1.37 3.62
parameters C-H ₁ C-H _{surf} ∠H ₁ -C-H _{surf} H ₂ CC parameters	IS 1.11 2.57 73.7 → CH ₂ IS	TS 1.11 1.54 90.3 * + O * TS	1.14 1.11 104.8 FS	parameters C-O ₁ C-O ₂	IS 1.42 1.43	TS 1.28 2.20	1.37 3.62

Table S5. Key structural parameters for initial, transition, and final states involved in the "COOH" pathway for methane synthesis from CO_2 hydrogenation on the χ -Fe₅C₂(510) surface. (Distances are in Angstroms, and angles are in degrees.)

$CO_2^* + H^* \rightarrow COOH^*$			COOH* → CO* + OH*				
parameters	IS	TS	FS	parameters	IS	TS	FS
O-H _{surf}	3.71	1.44	0.98	C-O ₁	1.32	1.24	1.18
∠H-O ₁ -C	156.58	95.80	106.61	C-O ₂	1.35	1.84	4.04
∠O ₁ -C-O ₂	124.1	123.7	112.1	∠O ₁ -C-O ₂	112.1	106.8	91.5

Table S6. Relative stabilities of adsorbed CH_x^* (x = 1-3, E_x) species with respect to surface C^* species.

Relative stabilities	χ -Fe ₅ C ₂ (510)
E_{I}	0.29
E_2	1.19
E_3	1.54