Lecture 14

Sorting in Linear Time: Lower Bounds for Sorting, Counting Sort, and Radix Sort

Fundamental Question

- > Suppose that we just designed an algorithm that takes time f(n) to solve some problem, where n:= Problem Size
- > Is it the best solution?
- > Desirable result:
 - Every algorithm for solving the problem must take time at least $\Omega(f(n))$... Problem Lower Bound
- > Time taken by an algorithm=Problem Lower bound
 - We have the BEST possible algorithm

Prior Knowledge: Lower Bounds on Algorithm

- > An Algorithm A for a Problem P is said to have a lower bound f_A if worst-case \max_i time for Algorithm A on instance i of size $n \ge f_A(n)$.
- > **How to Prove:** Construct instance *i* taking large time, $\forall n$.
- > Problem Lower Bound:
 - A Problem P is said to have a lower bound if every possible algorithm has lower bound f.
 - More algebraically, the algorithm that takes the minimum worst-case time (min_A) must have time bigger (max_i) than f(n).
 - \rightarrow i.e. $min_A max_i$ time for algorithm A on instance i of size $n \ge f(n)$.
 - Clearly, Every algorithm will have time bigger than f(n) for a problem P.
 - It means that f to be problem lower bound for this problem P.
- > How to Prove: we need to create BAD instances i must be constructed $\forall n, \forall A$

Trivial & Non-Trivial Problem Lower Bound

- > Trivial
 - Most problems have $\Omega(n)$ lower bound, n=instance size
 - n time is required to at least read all the input No matter what algorithm is used.
 - > In few problem uninteresting problems, this may not apply.
- > Non-Trivial
 - Very difficult on RAM (Random Access Machines)
 - Space of all possible algorithms is huge, tricky to analyze
 - > RAM has many instructions
 - > Many Control flow patterns, looping, recursion
- > Space of algorithms is easier to analyze on simpler computational models.

The Decision Tree Model

- > Input
 - A sequence of numbers $x_1, x_2, ..., x_n$. Already read.
- > Program: Labelled Tree
 - Non-leaf node labels: i, j
 - Edge Labels: <, >, ≠, ≤, ≥
 - Leaf node Labels: value to be output
- > Program tree for sorting 3 numbers
- Execution: Begins at the root, At node i:j, x_i is compared with x_j. Execution follows branch with the appropriate label. Leaf node shows the output
 - For example: $x_1=20$, $x_2=30$, $x_3=10$
- > Time taken by the program: Number of comparisons performed. Worst-case time=length of longest path in the program tree, Average case time=Average root-leaf path length

Our Claim: Sorting takes time $\Omega(n \log n)$ in the decision tree model?

> Proof:

- Suppose that Input $x = \pi(1, 2, 3, ..., n)$ where π is permutation.
- Thus, $(1, 2, 3, ..., n) = \pi^{-1}(x)$. Clearly, the algorithm must output the answer π^{-1} for this input
- Thus, π^{-1} must appear as the label of at least one leaf. This holds for all permutations → tree at least has n! leaves.
- Each tree node can only have at most 3 outgoing edges: with labels $\langle , = \text{ or } \rangle$. Thus, height is $\geq \log_3 n!$.
- Only 2 edges will be used if input is permutation of (1,2,3,...,n). So, height ≥ $\log_2 n! \ge \log(n/2)^{n/2}$

Can we do better?

- > *Linear sorting algorithms*
 - Counting Sort
 - Radix Sort
 - Bucket sort Self learning
- > Make certain assumptions about the data
- > Linear sorts are NOT "comparison sorts"

Counting Sort Algorithm

Given Input Size is 'n' Given Range is 'k' e.g. (1-5) i.e. k=5 A non-comparison algorithm If range is not provided then 2 1 2 3 1 2 4 k Occurrence count 1 2 2 3 1 1	
i.e. k=5	
A non-comparison algorithm 2 3	
If range is not provided then 3 1	
take maximum element of array 4 1	
5 0	
Sorted Array is => 1 1 2 2 2 3 4	
Time Complexity: O(n + k) input size + range	
Space Complexity: O(k) k is an extra variable	
Linear Time sorting	
Disadvantage:	
1. Cannot go out of range	
2. If elements are like	
2 20000 3 6 7	
We have to check the occurrence by taking extra space 20000 required by	1
checking the occurrence of 2, 3, 4, 520000	
If range is given then COUNTING SORT is the best choice.	

Counting Sort

- > Assumptions:
 - n integers which are in the range $[0 \dots r]$
 - r is in the order of n, that is, r=O(n)
- > Idea:
 - − For each element x, find the number of elements $\leq x$
 - *Place x into its correct position in the output array*

Step 1 Find the number of times A[i] appears in A

Step 2 Find the number of elements $\leq A[i]$,

Algorithm

- > Start from the last element of A
- > Place A[i] at its correct place in the output array
- > Decrease C[A[i]] by one

Cnew 2 2 4 7 7 8

Example

Example (Cont!!!)

	1	2	3	4	5	6	7	8
В	0	0		2	3	3	3	
					4			
\mathbf{C}	\bigcap	2	2	1	7	Q		

	1	2	3	4	5	6	7	8	
В	0	0		2	3	3	3	5	
	0	1	2	3	4	5			
C	0	2	3	4	7	7			

COUNTING-SORT

```
Alg.: COUNTING-SORT(A, B, n, k)
1.
               for i \leftarrow 0 to r
                   do C[i] \leftarrow 0
2.
3.
               for j \leftarrow 1 to n
                   do C[A[j]] \leftarrow C[A[j]] + 1 B
4.
                C[i] contains the number of elements equal to i
5.
               for i \leftarrow 1 to r
6.
                   do C[i] \leftarrow C[i] + C[i-1]
7.
                C[i] contains the number of elements \leq i
8.
9.
               for j \leftarrow n downto 1
10.
                   do B[C[A[j]]] \leftarrow A[j]
11.
                          C[A[i]] \leftarrow C[A[i]] - 1
```


Analysis of Counting Sort

```
Alg.: COUNTING-SORT(A, B, n, k)
1.
                for i \leftarrow 0 to r
                    do C[i] \leftarrow 0
               for j \leftarrow 1 to n
3.
                                                                             O(n)
                     do C[A[j]] \leftarrow C[A[j]] + 1
5.
                C[i] contains the number of elements equal to i
               for i \leftarrow 1 to r
6.
                    do C[i] \leftarrow C[i] + C[i-1]
                                                                             O(r)
8.
                 C[i] contains the number of elements \leq i
9.
                for j \leftarrow n downto 1
                                                                             O(n)
10.
                    do B[C[A[j]]] \leftarrow A[j]
11.
                           C[A[i]] \leftarrow C[A[i]] - 1
                                                              Overall time: O(n + r)
```


Analysis of Counting Sort

 \rightarrow Overall time: O(n + r)

> In practice we use COUNTING sort when r = O(n)

 \Rightarrow running time is O(n)

Radix Sort: Radix means the base

	LSB:unit sorted	10th place to sort	100th Place: MSB
904	001	001	001
046	062	904	005
005	904	005	046
074	074	046	062
062	005	062	074
001	046	074	904
	046 005 074 062	904 001 046 062 005 904 074 074 062 005	904 001 001 046 062 904 005 904 005 074 074 046 062 005 062

- 1. Equate elements according to the maximum number by padding 0
- 2. Consider the right most digit of each value i.e. LSB
- 3. Focus only the LSB to sort
- 4. Focus on the 10th position digit without changing the position of value
- 5. Focus to sort the 100th position or MSB digits Sorted array

Time Complexity: O(dn)

Space Complexity: O(n + 2d) = O(n + k)

Radix Sort

> Represents keys as d-digit numbers in some base-k

$$key = x_1 x_2 ... x_d$$
 where $0 \le x_i \le k-1$

> Example: key=15

$$key_{10} = 15$$
, $d=2$, $k=10$ where $0 \le x_i \le 9$

$$key_2 = 1111, d=4, k=2$$
 where $0 \le x_i \le 1$

Radix Sort

> Assumptions	326
d = O(1) and $k = O(n)$	453
	608
> Sorting looks at one column at a time	835
– For a d digit number, sort the <u>least significant</u> digit first	751
- Continue sorting on the <u>next least significant</u> digit,	435
> until all digits have been sorted	704
- Requires only d passes through the list	690

RADIX-SORT

Alg.: RADIX-SORT(A, d)

for $i \leftarrow 1$ to d

do use a stable sort to sort array A on digit i

Analysis of Radix Sort

> Given n numbers of d digits each, where each digit may take up to k possible

values, RADIX-SORT correctly sorts the numbers in O(d(n+k))

- One pass of sorting per digit takes O(n+k) assuming that we use **counting sort**
- There are d passes (for each digit)

Analysis of Radix Sort

> Given n numbers of d digits each, where each digit may take up to k

possible values, RADIX-SORT correctly sorts the numbers in

$$O(d(n+k))$$

- Assuming d=O(1) and k=O(n), running time is O(n)

Thank You!!!

Have a good day

