xcy

写在前面

梳理一下关于树的知识点, 配一些你们都能秒切的题目.

Basics

树是什么

无环的无向连通图.

树是什么

无环的无向连通图.

由于它没有环,就会有很多优秀的性质,比如说连接任意两点有且 只有一个.

Skills 00000 0000 00000 00000

树是什么

无环的无向连通图.

由于它没有环,就会有很多优秀的性质,比如说连接任意两点有且只有一个.

既然我们知道树是什么了,就可以做几道不需要更多关于树的知识的题目了.

- $\wedge n \times m$ 的网格, 每个格子有一个数, 为 $1 \sim n \times m$ 的排列.
- 一个区间 $[l,r](1 \le l \le r \le n \times m)$ 是好的,当且仅当数值在该区间内的格子,构成一棵树(有公共边的格子连边).

统计好区间数.

 $n, m \le 2 \times 10^3, n, m \le 2 \times 10^5.$

Solution

图是树当且仅当无环, 且|E| = |V| - 1.

Solution

图是树当且仅当无环, 且|E| = |V| - 1.

two pointers, LCT维护无环, 线段树判|E|=|V|-1(每个点存|V|-|E|, 看它是否= 1, 森林一定 \geq 1, 故只需要查min及其个数即可).

CF650E Clockwork Bomb

给出两棵n个结点的有标号树.

每次操作删去第一棵树的一条边, 再加上一条边, 需要保证此时还 是一棵树

构造一种操作序列. 将第一棵树变成第二棵树.使得操作数最小.

 $n < 5 \cdot 10^5$.

Skills 00000 0000 00000 00000 000000

Solution

对于两棵树中都出现的边, 它们不需要改变. 它们会形成森林. 用并查集把它们缩起来.

Solution

对于两棵树中都出现的边, 它们不需要改变. 它们会形成森林. 用并查集把它们缩起来.

在新生成的树上删边, 连边即可. 注意需要保证每次操作后都还是一棵树. 一种可行的方法是从下往上修改每个点的父边, 这样既不会成环, 也不会使图不连通. $O(n \times \alpha(n))$.

Luogu P4824 概率充电器

给出一棵n个节点的树,每个点i有 q_i 的概率直接带电,对于每条边(a,b),有 $p_{a,b}$ 的概率通电,电流能从带电的点经由通电的边到达其他的点. 求带电的节点期望个数.

$$n \le 5 \cdot 10^5.$$

Solution

只要求每个点带电的概率就行.

Solution

只要求每个点带电的概率就行.

先dfs一次, 求出每个点子树内的点使它带电的概率, 再换根dp做一次. O(n).

CF1039D You Are Given a Tree

有一棵n个点的树.

一个简单路径的集合被称为"k合法"当且仅当: 树的每个点至多属于其中一条路径(可以不属于), 且每条路径恰好包含k个点.

对于 $k \in [1, n]$, 求出"k合法"路径集合的最多路径数.

 $n \le 10^5.$

Solution

 $O(n^2)$ 就是对每个k都从下往上贪心选链.

Solution

 $O(n^2)$ 就是对每个k都从下往上贪心选链.

然后发现 $k \geq \sqrt{n}$ 时答案 $\leq \sqrt{n}$, 于是 $(\sqrt{n}, n]$ 那部分按答案分一下块, 每块二分其右端点. $O(n\sqrt{nlogn})$.

Concepts

树的直径

定义: 树上最长的链.

定义: 树上最长的链.

求法:

定义: 树上最长的链.

求法:

1. 贪心. 从树上任意一个点开始, dfs一次, 找出离它最远的点, 再从这个点dfs, 求出的最长链就是直径.

定义: 树上最长的链.

求法:

1. 贪心. 从树上任意一个点开始, dfs一次, 找出离它最远的点, 再从这个点dfs, 求出的最长链就是直径. 证明:

定义: 树上最长的链.

求法:

1. 贪心. 从树上任意一个点开始, dfs一次, 找出离它最远的点, 再从这个点dfs, 求出的最长链就是直径. 证明: 自己想一下.

定义: 树上最长的链.

求法:

- 1. 贪心. 从树上任意一个点开始, dfs一次, 找出离它最远的点, 再从这个点dfs, 求出的最长链就是直径. 证明: 自己想一下.
- 2. DP. 对每个点维护其子树中的最长链和次长链长度, dfs, 回溯时把当前点的最长链传到父亲更新父亲的最长链或次长链.

定义: 树上最长的链.

求法:

- 1. 贪心. 从树上任意一个点开始, dfs一次, 找出离它最远的点, 再从这个点dfs, 求出的最长链就是直径. 证明: 自己想一下.
- 2. DP. 对每个点维护其子树中的最长链和次长链长度, dfs, 回溯时把当前点的最长链传到父亲更新父亲的最长链或次长链.

时间复杂度都是O(n)的.

维护, 及查询子树直径:

把dfs序求出来(用于查询子树直径), 线段树维护, pushup时取4个点对中最远的那个.

用RMQ求LCA可做到O(nlogn).

维护, 及查询子树直径:

把dfs序求出来(用于查询子树直径), 线段树维护, pushup时取4个点对中最远的那个.

用RMQ求LCA可做到O(nlogn).

性质:

- 1. 从树的任意一点出发, 最长链一定能到直径的一个端点.
- 2. 在树上再连上一个点, 直径至少有一个端点是不变的.

树的重心

定义: 树上最大儿子子树最小的点.

树的重心

定义: 树上最大儿子子树最小的点.

求法: O(n)dfs.

树的重心

定义: 树上最大儿子子树最小的点.

求法: O(n)dfs.

性质:

- 1. 一个点是重心当且仅当它所有子树的大小 $\leq \frac{n}{2}$.
- 2. 一个点是重心当且仅当它是树上到所有点距离之和最小的点.
- 3. 把两棵树用一条边连起来, 新的树的重心一定在连接原来两棵树重心的路径上.
 - 4. 一棵树添加/删除一个叶子, 其重心最多只移动一条边的距离.

dfs序.

dfs序. 性质: 任意一棵子树中的点在dfs序中都是连续的.

dfs序. 性质: 任意一棵子树中的点在dfs序中都是连续的.

树链的并: 树链的并集(其中的每个点, 每条边只记录一次).

dfs序. 性质: 任意一棵子树中的点在dfs序中都是连续的.

树链的并: 树链的并集(其中的每个点, 每条边只记录一次).

性质:若干个点到点x的树链的并,等于它们到x的链之和,减去把它们按dfn排序后相邻两点LCA到x的链之和.

Luogu P3320 [SDOI2015]寻宝游戏

给定一棵n个点的树. 每个点有一个状态 $w_i \in \{0,1\}$, 一开始所有点状态都是0. 边有长度.

m次操作, 每次操作将一个点的状态异或1.

每次操作后问从任意一个点出发,在树上随意走,经过所有状态 为1的点后回到出发点所走过路程的最小值.

 $n, m \le 10^5$, 边的长度 $\le 10^9$.

设状态为1的点为 $x_1, x_2, ..., x_k$. 发现要求的是这些点到 $LCA(x_1, x_2, ..., x_k)$ 的树链的并.

设状态为1的点为 $x_1, x_2, ..., x_k$. 发现要求的是这些点到 $LCA(x_1, x_2, ..., x_k)$ 的树链的并.

把 $\{x_k\}$ 按dfn排序,则相当于求到 $LCA(x_1,x_k)$ 的树链的并.

设状态为1的点为 $x_1, x_2, ..., x_k$. 发现要求的是这些点到 $LCA(x_1, x_2, ..., x_k)$ 的树链的并.

把 $\{x_k\}$ 按dfn排序,则相当于求到 $LCA(x_1,x_k)$ 的树链的并.

设 dis_x 表示x到根的距离. 则上述等于

 $(dis_1 + dis_2 - dis_{LCA(1,2)} + dis_3 - dis_{LCA(2,3)} + ...) - dis_{LCA(1,n)}$ 、×2即是答案.

$$\frac{1}{2} \left(\sum_{i=1}^{k-1} (dis_i + dis_{i+1} - 2dis_{LCA(i,i+1)}) + (dis_1 + dis_k - 2dis_{LCA(1,k)}) \right).$$

上式可化为

$$\frac{1}{2} \left(\sum_{i=1}^{k-1} (dis_i + dis_{i+1} - 2dis_{LCA(i,i+1)}) + (dis_1 + dis_k - 2dis_{LCA(1,k)}) \right).$$

这个式子只和相邻两点的距离, 1和k的距离有关.

上式可化为

$$\frac{1}{2} \left(\sum_{i=1}^{k-1} (dis_i + dis_{i+1} - 2dis_{LCA(i,i+1)}) + (dis_1 + dis_k - 2dis_{LCA(1,k)}) \right).$$

这个式子只和相邻两点的距离, 1和k的距离有关.

用set维护加点, 删点即可. O(mlogn).

欧拉序: dfs每次回溯时都把父亲加入序列.

欧拉序: dfs每次回溯时都把父亲加入序列. 用于RMQ维护LCA.

欧拉序: dfs每次回溯时都把父亲加入序列. 用于RMQ维护LCA.

括号序列: dfs时每个点进栈, 出栈都加入序列一次.

欧拉序: dfs每次回溯时都把父亲加入序列. 用于RMQ维护LCA.

括号序列: dfs时每个点进栈, 出栈都加入序列一次.

用于树上莫队. 设点x在括号序列中第一次, 第二次出现的位置分别是 st_x, ed_x . 令 $st_x < st_y$, 若LCA(x,y) = x, 则相当于查询 st_x, st_y , 若 $LCA(x,y) \neq x$, 则相当于查询 ed_x, st_y . 序列上如果一个点的左右括号都出现了, 就不计它的贡献.

prufer序列: 对于一棵无根树, 不断找到编号最小的度数为1的点, 把它的父亲加入序列, 然后把它删掉, 直到剩下2个点, 这样得到的长度为(n-2)的序列就是prufer序列.

prufer序列: 对于一棵无根树, 不断找到编号最小的度数为1的点, 把它的父亲加入序列, 然后把它删掉, 直到剩下2个点, 这样得到的长度为(n-2)的序列就是prufer序列.

无根树与prufer序列一一对应.

prufer序列: 对于一棵无根树, 不断找到编号最小的度数为1的点, 把它的父亲加入序列, 然后把它删掉, 直到剩下2个点, 这样得到的长度为(n-2)的序列就是prufer序列.

无根树与prufer序列一一对应.

关于prufer序列的性质:

prufer序列: 对于一棵无根树, 不断找到编号最小的度数为1的点, 把它的父亲加入序列, 然后把它删掉, 直到剩下2个点, 这样得到的长度为(n-2)的序列就是prufer序列.

无根树与prufer序列一一对应.

关于prufer序列的性质:

1. n个点无根树的棵数: n^{n-2} .

prufer序列: 对于一棵无根树, 不断找到编号最小的度数为1的点, 把它的父亲加入序列, 然后把它删掉, 直到剩下2个点, 这样得到的长度为(n-2)的序列就是prufer序列.

无根树与prufer序列一一对应.

关于prufer序列的性质:

- 1. n个点无根树的棵数: n^{n-2} .
- 2. n个点有根树的棵数: n^{n-1} .

prufer序列: 对于一棵无根树, 不断找到编号最小的度数为1的点, 把它的父亲加入序列, 然后把它删掉, 直到剩下2个点, 这样得到的长度为(n-2)的序列就是prufer序列.

无根树与prufer序列一一对应.

关于prufer序列的性质:

- 1. n个点无根树的棵数: n^{n-2} .
- 2. n个点有根树的棵数: n^{n-1} .
- 3. n个点, 其中点i度数为 d_i 的无根树的棵数: $\frac{(n-2)!}{\prod_i(d_i-1)!}$

Luogu P2624 [HNOI2008]明明的烦恼

给出标号为1到n的点,以及其中k个点最终的度数 d_i ,允许在任意两点间连线,可产生多少裸度数满足要求的树?

$$k \le n \le 10^3.$$

设left =
$$(n-2) - \sum_i (d_i - 1)$$
, 则 $Ans = \frac{(n-2)!}{\prod_i (d_i - 1)! \times left} \times left^{n-k}$.

剖分

重链剖分: 用于树链剖分, 让时间复杂度乘上logn, 把一些树上问题转化为序列上的问题.

剖分

重链剖分: 用于树链剖分, 让时间复杂度乘上logn, 把一些树上问题转化为序列上的问题.

长链剖分: 一般用于优化和树的深度相关的树上DP. 有时可代替点分治.

剖分

重链剖分: 用于树链剖分, 让时间复杂度乘上logn, 把一些树上问题转化为序列上的问题.

长链剖分: 一般用于优化和树的深度相关的树上DP. 有时可代替点分治.

实链剖分: LCT用的.

BZOJ4855 [JSOI2016]轻重路径

一棵n个点的有根二叉树,对它跑一边重链剖分. 如果u两个儿子的大小一样, 认为左儿子为重儿子。

q次操作,每次删掉一个当前二叉树的叶子,每次操作后输出重儿子的编号和.

删除一个点之后, 如果以u两个儿子为根的子树大小一样, 重儿子保持不变.

 $n, q \le 2 \cdot 10^5.$

- 先对原树树剖,在一次删点操作后从根节点开始二分,如果一条边从重边变成轻边,必然有 $size_u \leq \frac{1}{2}size_n$ (取等号是特判对应儿子消失),二分后,将这个位置作为顶端递扫寻找。容易发现这样操作的次数 < logn 次。
- 判定一条边是否从重边变成轻边的依据是父亲的重儿子之前指向 u ,同时删除节点后有 $size_u+1=size_{another_son}$,注意特判 u 是父亲子树最后一个节点的情况。
- 时间复杂度 O(nlog²n)

Luogu P5290 [十二省联考2019]春节十二响

给定一棵n个点,以1为根的树.每个点有权值 w_i .需要把所有点划分到若干个集合中,满足每个集合内不存在两点互为祖先/后代.每个集合的权值为其内点的权值的最大值.一种划分的权值为划分出的所有集合的权值之和.求划分的权值的最小值.

$$n \le 2 \cdot 10^5.$$

对于任意一条到根的链或其子链, 其上的所有点一定分属不同的集合. 每条链用堆存权值, 合并两条链时从大到小依次合并. 这样相当于做了长链剖分. O(nlogn).

倍增.

倍增.

RMQ.

倍增.

RMQ. 在欧拉序上用RMQ维护深度最小的点, 查询时找到两点在欧拉序上第一次出现的位置.

倍增.

RMQ. 在欧拉序上用RMQ维护深度最小的点, 查询时找到两点在欧拉序上第一次出现的位置. O(nlogn) - O(1).

倍增.

RMQ. 在欧拉序上用RMQ维护深度最小的点, 查询时找到两点在欧拉序上第一次出现的位置. O(nlogn) - O(1).

Tarjan.

倍增.

RMQ. 在欧拉序上用RMQ维护深度最小的点, 查询时找到两点在欧拉序上第一次出现的位置. O(nlogn) - O(1).

Tarjan. 离线. dfs, 用并查集维护, 搞完一个点后把它的并查集合并到它父亲上. 查LCA时看当前点要查的那个点是否被访问过, 如果被访问过, 它所在并查集的根就是这两个点的LCA.

倍增.

RMQ. 在欧拉序上用RMQ维护深度最小的点, 查询时找到两点在欧拉序上第一次出现的位置. O(nlogn) - O(1).

Tarjan. 离线. dfs, 用并查集维护, 搞完一个点后把它的并查集合并到它父亲上. 查LCA时看当前点要查的那个点是否被访问过, 如果被访问过, 它所在并查集的根就是这两个点的LCA. $O(n \times \alpha(n))$.

Luogu P4211 [LNOI2014]LCA

给定一棵n个点,以1为根的树. dep_i 表示点i的深度, $dep_1=1$. q次询问,每次询问给定 $l\ r\ z$,求 $\sum_{i=l}^r dep_{LCA(i,z)}$. $n,q \leq 5 \cdot 10^4$.

扫描线. 考虑加一个点会对每个点产生什么贡献. 然后转化为至根路径加, 至根路径查询. 树剖即可.

如果强制在线, 就把线段树可持久化.

Luogu P5305 [GXOI/GZOI2019] 旧词

给定一棵n个点,以1为根的树. dep_i 表示点i的深度, $dep_1 = 1$. 给定常数k.

$$q$$
次询问,每次询问给定 x,y , 求 $\sum_{i\leq x} dep^k_{LCA(i,y)}$. $n,q\leq 5\cdot 10^4, 1\leq k\leq 10^9$.

把 dep^k 差分一下,然后按树剖的那个序列做一下前缀和.

有时可代替点分治.

有时可代替点分治.

时间复杂度是O(nlogn)的.

有时可代替点分治.

时间复杂度是O(nlogn)的.

证明:

Skills 0000 •000

有时可代替点分治.

时间复杂度是O(nlogn)的.

证明:每次合并只会访问小的集合,且合并后的集合大小至少为小的集合的2倍.即每个元素最多被访问logn次.

BZOJ4855 [JSOI2016]轻重路径(加强版)

题意不变, 要求时间复杂度为O(nlogn).

每个点分开算贡献.

Skills 0000 0000

每个点分开算贡献.

对于一个点x, 若它只有一个儿子, 该儿子在被删之前一直有贡献. 若它有两个儿子u,v, $siz_u \geq siz_v$, 则x重儿子的变化只可能发生在它子树内的最后 $siz_v \times 2$ 个操作(不包括删除x本身的操作).

用Splay维护每个点被删除的时间, $O(siz_v)$ 暴力算最后 $siz_v \times 2$ 个操作的影响, 因为前面那 $(siz_u - siz_v)$ 个操作(这些操作中重儿子相同), 需要差分, 最后再求前缀和. Splay启发式合并即可.

用Splay维护每个点被删除的时间, $O(siz_v)$ 暴力算最后 $siz_v \times 2$ 个操作的影响, 因为前面那 $(siz_u - siz_v)$ 个操作(这些操作中重儿子相同), 需要差分, 最后再求前缀和. Splay启发式合并即可.

由于 siz_v 都是相对u较小的子树, 根据重链剖分相关理论, $\sum siz_v$ 在O(n)级别.

用Splay维护每个点被删除的时间, $O(siz_v)$ 暴力算最后 $siz_v \times 2$ 个操作的影响, 因为前面那 $(siz_u - siz_v)$ 个操作(这些操作中重儿子相同), 需要差分, 最后再求前缀和. Splay启发式合并即可.

由于 siz_v 都是相对u较小的子树, 根据重链剖分相关理论, $\sum siz_v$ 在O(n)级别.

O(nlogn).

◆ロ → ◆部 → ◆注 → 注 り へ ○

点分治

一般用于解决树上路径相关的问题.

点分治

一般用于解决树上路径相关的问题.

两种计算信息的方法: 先把子树信息全部算出来, 再对于每个子树, 剔除该子树内部的信息; 依次合并每个子树的信息.

Luogu P2664 树上游戏

给定一棵树, 每个点有一个颜色 c_i , 设s(i,j)表示点i到点j的路径的颜色数量, 设 $sum_i = \sum_{j=1}^n s(i,j)$. 对 $i \in [1,n]$, 求出所有的 sum_i . $n, c_i \leq 10^5$.

发现一个颜色第一次出现时, 它会产生它子树大小的贡献.

发现一个颜色第一次出现时, 它会产生它子树大小的贡献.

点分治, 用第一种计算信息的方法. 对每个分治中心x, 先算出每个点到根的答案. 进入每棵子树k时, 把子树内的点的贡献消去, 然后对于子树内的一个点, 首先把它到x(不包括x)的颜色所产生的贡献都消去(即这些颜色第一次出现时的子树大小之和), 然后统计当前点到x(不包括x)的颜色数量num, 使答案加上 $num \times (siz_x - siz_k)$.

Luogu P2664 树上游戏(加强版)

题意不变, 要求时间复杂度为O(n).

考虑每种颜色对答案的贡献.

考虑每种颜色对答案的贡献.

对每种颜色, 把该颜色的点删掉, 就会形成一个森林. 对于森林中的每个点, 若它所在的树的大小为Siz, 则这种颜色会对这个点产生(n-Siz)的贡献.

考虑每种颜色对答案的贡献.

对每种颜色, 把该颜色的点删掉, 就会形成一个森林. 对于森林中的每个点, 若它所在的树的大小为Siz, 则这种颜色会对这个点产生(n-Siz)的贡献.

故 $sum_i = nk - \sum Siz$, 其中k为颜色数, $\sum Siz$ 为删掉每种颜色后该点所在的树的大小之和. 树上差分搞一下就行.

树分块

树分块

DFS 序分块

通过 DFS 序每 \sqrt{N} 个点分成一块,好写,非常有利于与 DFS 序有关的题目,且严格保证了块的大小,不保证块直径

Height 分块

通过 ${
m Depth}$ 每 $\sqrt{{
m Hmax}}$ 分成一块,好写,严格保证块直径,不保证块大小,保证连通

Size 分块

检验父亲所在的 size 是否小于 \sqrt{N} ,小于就加入,否则新开一块,严格保证块直径,大小,连通性,不保证块个数

王室联邦分块

参加下文,保证块直径,大小,个数,不保证联通

Luogu P2325 [SCOI2005]王室联邦

一个国家有n个城市, 编号为1..n. 它们形成了一棵树. 现在你要把它们分成若干个省, 每个省的城市数在[B,3B]内.

每个省必须有一个省会,这个省会可以位于省内,也可以在该省外. 但是该省的任意一个城市到达省会所经过的道路上的城市(除了最后一个城市,即该省省会)都必须属于该省.

一个城市可以作为多个省的省会.

n可以开到 10^6 .

对树进行dfs. 对于一个点x, 每棵子树返回的没有分成块的点数是 $\leq B$ 的. 依次遍历每棵子树, 一旦访问到的没有分成块的点数 $\geq B$, 就把这些点分成一块, 并设其省会为x. 最后把剩下的那些没有分成块的点, 连同根一起分入最后创建的那个块中. 这样那个块中的点数也不会超过3B. 时间复杂度O(n).

Luogu P2137 Gty的妹子树

n个点,以1为根的有根树,每个点有点权 w_i .m个操作,操作分3种:

- 1.0ux, 询问以u为根的子树中, 严格大于x的数的个数.
- 2.1ux, 把u的权值改为x.
- 3.2ux,添加一个点,编号为当前编号最大点的编号+1,父亲为u,权值为x.

 $n, m \le 3 \cdot 10^4$. 强制在线.

像王室联邦那样分块, 块之间认一下祖先后代关系. 每块内维护一个set. 加点时, 如果其父亲所在块大小<3B就加进它父亲所在的块内, 否则给它新开一个块(此时这个新块只有它一个元素).

 $O(m\sqrt{n}logn)$.

Skills

虚树

构建方法: 先把原树的根加入虚树, 再把关键点按dfn排序, 依次加入虚树, 顺便加入LCA.

构建方法: 先把原树的根加入虚树, 再把关键点按dfn排序, 依次加入虚树, 顺便加入LCA.

由于建出的虚树只含关键点及其LCA(顶多还有一个原树的根), 点数是O(k)级别的, 其中k是关键点数.

证明LCA的个数也是O(k)级别的:

证明LCA的个数也是O(k)级别的:

因为关键点按dfn排序了,对于排序后的任意3个点 x_1,x_2,x_3 , $LCA(x_1,x_2)$ 和 $LCA(x_2,x_3)$ 都在 x_2 到根的路径上,即 $LCA(x_1,x_2,x_3)$ 一定等于两者中的其中一个.

证明LCA的个数也是O(k)级别的:

因为关键点按dfn排序了, 对于排序后的任意3个点 x_1, x_2, x_3 , $LCA(x_1, x_2)$ 和 $LCA(x_2, x_3)$ 都在 x_2 到根的路径上, 即 $LCA(x_1, x_2, x_3)$ 一定等于两者中的其中一个.

因为已按dfn排序, x_2 一定在以 $LCA(x_1,x_3)$ 为根的子树内, 即 $LCA(x_1,x_3) = LCA(x_1,x_2,x_3)$.

虚树

证明LCA的个数也是O(k)级别的:

因为关键点按dfn排序了,对于排序后的任意3个点 x_1,x_2,x_3 , $LCA(x_1,x_2)$ 和 $LCA(x_2,x_3)$ 都在 x_2 到根的路径上,即 $LCA(x_1,x_2,x_3)$ 一定等于两者中的其中一个.

因为已按dfn排序, x_2 一定在以 $LCA(x_1,x_3)$ 为根的子树内, 即 $LCA(x_1,x_3) = LCA(x_1,x_2,x_3)$.

故只要算dfn相邻的两点的LCA, 就是所有的LCA了.

Skills

000000

CF925E May Holidays

给定一棵n个点的有根树,每个点有一个权值 t_i 和颜色(黑/白).m次操作,操作有两种类型:

- 1. 翻转一个点的颜色.
- 2. 询问有多少个点x满足: x为黑色, x的白色后代数 $> t_x$.

 $n, m \le 10^5, |w_i|, |z| \le 10^9, \text{ BR5s.}$

设 $w_i = t_i$ -子树内白点数, 1操作即翻转点的颜色, 并将点到根的路径上的 $w_i + 1 - 1$, 2操作即查询 $w_i > 0$ 的黑点的个数.

设 $w_i = t_i$ -子树内白点数, 1操作即翻转点的颜色, 并将点到根的路径上的 $w_i + 1 - 1$, 2操作即查询 $w_i > 0$ 的黑点的个数.

把每k个操作分成一块, 建虚树. 虚树上的一条边对应原树上的一条路径, 且该路径在这k个操作中点权变化是一样的. 对于虚树上的每条边, 把点权排序后存到一个数组中, 进行1操作时对它打全局标记即可. 时间复杂度 $O(nlogn\frac{m}{k})$ (建虚树)+O(km)(1操作)+O(klognm)(2操作)+ $O(n\frac{m}{k})$ (每个块操作完后把信息更新到原树上), $k=\sqrt{n}$ 时理论复杂度最优, 为 $O(m\sqrt{nlogn})$.

设 $w_i = t_i$ -子树内白点数, 1操作即翻转点的颜色, 并将点到根的路径上的 $w_i + 1 - 1$, 2操作即查询 $w_i > 0$ 的黑点的个数.

把每k个操作分成一块,建虚树.虚树上的一条边对应原树上的一条路径,且该路径在这k个操作中点权变化是一样的.对于虚树上的每条边,把点权排序后存到一个数组中,进行1操作时对它打全局标记即可.时间复杂度 $O(nlogn\frac{m}{k})$ (建虚树)+O(km)(1操作)+O(klognm)(2操作)+ $O(n\frac{m}{k})$ (每个块操作完后把信息更新到原树上), $k=\sqrt{n}$ 时理论复杂度最优,为 $O(m\sqrt{nlogn})$.

注意被修改的点的颜色变化.

Luogu P2137 Gty的妹子树(加强版)

题意不变, $n, m \leq 2 \cdot 10^5$, 不强制在线.

把操作分块. 每块操作前先算出每个点的答案. 块内暴力算2操作的影响. RMQ求LCA就可以做到 $O(m\sqrt{m})$.

把操作分块. 每块操作前先算出每个点的答案. 块内暴力算2操作的影响. RMQ求LCA就可以做到 $O(m\sqrt{m})$.

如果强制在线就只能倍增求LCA了. 这是 $O(m\sqrt{m}logn)$ 的.

用于解决一类问题: 边带权的图上, 一个点只经过边权 $\geq x$ 或 $\leq x$ 的边, 能到达哪些点.

用于解决一类问题: 边带权的图上, 一个点只经过边权 $\geq x$ 或 $\leq x$ 的边, 能到达哪些点.

以 $\leq x$ 为例. 求出图的最小生成树. 如果除去边权> x的边后两点在最小生成树上连通(A), 则它们一定在原图上连通(B). 反之也成立.

用于解决一类问题: 边带权的图上, 一个点只经过边权 $\geq x$ 或 $\leq x$ 的边, 能到达哪些点.

以 $\leq x$ 为例. 求出图的最小生成树. 如果除去边权> x的边后两点在最小生成树上连通(A),则它们一定在原图上连通(B). 反之也成立.

证明:

用于解决一类问题: 边带权的图上, 一个点只经过边权 $\geq x$ 或 $\leq x$ 的边, 能到达哪些点.

以 $\leq x$ 为例. 求出图的最小生成树. 如果除去边权> x的边后两点在最小生成树上连通(A), 则它们一定在原图上连通(B). 反之也成立.

证明: $A \to B$ 显然. 下面证明 $B \to A$. 如果B成立而A不成立, 那么两点之间的路径不完全在最小生成树上, 即经过了边权 \geq 最小生成树上的路径边权的边. 而如果这条路径能使两点连通, 最小生成树上的路径一定能使两点连通.

用于解决一类问题: 边带权的图上, 一个点只经过边权 $\geq x$ 或 $\leq x$ 的边, 能到达哪些点.

以 $\leq x$ 为例. 求出图的最小生成树. 如果除去边权> x的边后两点在最小生成树上连通(A), 则它们一定在原图上连通(B). 反之也成立.

证明: $A \to B$ 显然. 下面证明 $B \to A$. 如果B成立而A不成立, 那么两点之间的路径不完全在最小生成树上, 即经过了边权 \geq 最小生成树上的路径边权的边. 而如果这条路径能使两点连通, 最小生成树上的路径一定能使两点连通.

于是只需考虑生成树上的边.

于是只需考虑生成树上的边.

发现进行Kruskal时, 是从小到大加边的. 建一棵树, 每加一条边(x,y), 在树上新加一个点t, 点权为所加边的边权, 然后连边(t,x), (t,y), 建成的树就是Kruskal重构树.

于是只需考虑生成树上的边.

发现进行Kruskal时, 是从小到大加边的. 建一棵树, 每加一条边(x,y), 在树上新加一个点t, 点权为所加边的边权, 然后连边(t,x), (t,y), 建成的树就是Kruskal重构树.

由此可发现Kruskal重构树是裸二叉堆.

Luogu P5109 归程

n点m边的无向图, 边有两个权值l,a, 分别表示长度和水位线.

q个询问,每个询问形如v p. 你会从v号点开车出发,只经过水位线不超过p的边. 如果走到死路,就停车步行. 步行所有边都可以走. 求你到1号点步行走的边的长度之和的最小值.

 $n \le 2 \cdot 10^5, m, q \le 4 \cdot 10^5,$ 强制在线.

求出以1号点为起点到所有点的最短路,设距离为 d_i . 按a建重构树. 重构树上每个点的 d_i 为其子树 d_i 的最小值.

求出以1号点为起点到所有点的最短路,设距离为 d_i . 按a建重构树. 重构树上每个点的 d_i 为其子树 d_i 的最小值.

询问时在重构树上从v出发, 倍增到最高的< p的点x, 答案就是它的 d_x .

Luogu P4899 [IOI2018]werewolf 狼人

n点m边的无向图. q个询问, 每个询问形如s e l r. 狼人需要从s走到e. 在s时必须是人形, 在e时必须是狼形. 人形时只能到编号 \in [1,r]的点, 狼形时只能到编号 \in [l,n]的点. 能且只能进行一次形态转换, 从人形转为狼形. 需要在[l,r]的点内进行转换. 问满足条件的路径是否存在.

$$n, q \le 2 \cdot 10^5, m \le 4 \cdot 10^5.$$

建最小,最大生成树的重构树,边权分别为两端点编号的最大,最小值.然后转化为两集合是否有交的问题了.主席树维护.

Thanks

