Problem F Roots! Really?

Time Limit: 2 seconds

A quadratic equation

$$ax^2 + bx + c = 0$$

has two solutions x_+ and x_- , called roots, which are given by

$$x_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

The two roots may be real or complex, and they may be identical or distinct. Given a quadratic equation and an interval [s,t] (with $s \leq t$), we want to know if the equation has a real root in the interval [s,t]. That is, is it the case that $s \leq r \leq t$ where r is any of the roots x_- or x_+ ?

Input

The first line of the input contains an integer, N, the number of test cases $(1 \le N \le 1,000)$. Then follows N lines, each containing five integers, a, b, c, s, and t, with $-10^7 \le a$, b, c, s, $t \le 10^7$, $a \ne 0$, and $s \le t$.

Output

For each of the N test cases, output "Yes" if the equation $ax^2 + bx + c = 0$ has a real root in the interval [s,t]. Output "No" otherwise.

Sample Input

Sample Output

	•
3	Yes
1 0 0 -1 0	No
-1 5 -4 2 3	No
4 4 1 0 100	