

Worm Club Research Update

Joey Doll May 9, 2011

Today

- Motivation and recap
- Progress update
- Debugging and fabrication tricks

Structure of the Cochlea

The Cochlear Hair Cell

Current Experimental Methods

0.5

1.0

Project image onto a photodiode Mechanics: 1kHz, 1mN/m

Kinetics: 5-10kHz, >50 mN/m

Cell Experiments

+ touch receptor neurons and other cells/molecules eventually

Device Designs

- Mechanics / Motility
 - $0.3 4 \, \text{mN/m}$
 - 2 20 kHz in water (20 100 kHz in air)
 - 3 30 pN RMS force noise
- Kinetics
 - 10 50 mN/m
 - 60 200 kHz in water (200 500 kHz in air)
 - 30 80 pN RMS force noise
- Both types
 - 300 nm thick, 1-2 um wide, 30-200 um long
 - On-chip actuation (thermal and piezoelectric)

Thermal Actuator Step Response

- 1) Measured using a 50kHz split photodiode detector with Anton, Tony and Robert Fettiplace
- 2) Anton is building a faster 500kHz photodiode detector
- 3) Time response limited by heater time constant piezoelectric will be faster

Debugging a Cantilever Process

- Shallow doping and surface damage
- Cracking and low yield
- Polymer goop
- Passivation

Shallow Doping and Surface Damage

- 1) Increased piezoresistor depth (15nm → 50nm)
- 2) Added an extra contact doping step (150nm deep)
- 3) New tool for release: plasma → HF vapor

Shallow Doping and Surface Damage

Recycled another image on the reticle (steppers are the greatest)

Cracking and Cantilever Yield

 $30 \pm 15\% (10-50\%)$ (n = 8 wafers)

 $70 \pm 17\% (51-91\%)$ (n = 4 wafers)

Polymer Goop

Polymers oxidize in oxygen plasma, right?

Polymer Goop

After 60min O2 plasma (apparently not)

After 2min O2/CF4/SF6 plasma (addition of fluorine allows the fluorocarbons to oxidize)

Polymer Goop

Related: Coat everything in LTO before etching (to prevent corrosion during hot water release and for protection from the fluorine)

The End Result

Poly-on-insulator Piezoelectectric actuator

Passivation

- Devices need to be insulated
 - Electrochemical corrosion
 - Shunt resistance
- Parylene
 - Somewhat conformal
 - >500nm thick to coat all exposed surfaces
 - Polymer → soft and squishy, water permeable
- Atomic layer deposition (ALD) metal oxides
 - Conformal and pinhole free for >4nm
 - Ceramic → hard, not very water permeable

Passivation

(Detailed ALD electrochemistry experiments are ongoing with Alex H.)

Conclusions

- Just finished releasing 8 wafers
 - 2 PE wafers done
 - ~3 good wafers
- Shipping the last batch to Michigan
 - 5 wafers today
 - 4 wafers Thurs

Questions?

E-Beam	Mag	Det	FWD	Spot	Tilt	01/11/11	———— 20 μm
5.00 kV	1.50 kX	CDM-E	5.730	3	-0.0°	11:36:44	