

EARLY DYNAMIC COLLISION AVOIDANCE SYSTEM

Ryan Baker
Garrett Chinsomboon
Graham Fletcher
George Yuchi

12/14/2011

Georgialnstitute
of Technology

Project Overview

- System that detects impending collisions
- Determines reaction time
- Weather detection
- Warns driver of impending collisions
- Designed for highway conditions
- Real-time headway time display
- Final cost of \$1760

System Overview Diagram

Block Diagram

Final Product: Laser Rangefinder

Laser Rangefinder RS-100 by Opti-Logic

- Opti-Logic RS-100 with increased rep rate
- 19200 baud serial connection to laptop
- Custom weather-proof enclosure

Final Product: OBD Scanner

OBD II Scanner

- Capable of querying any parameter provided by ECU
- 115200 baud serial connection to laptop

Final Product: Environmental Sensors

Hydreon RT-50A Rain Tracker

- Infrared detection of rain
- 5V Analog Output
- 10-bit accuracy

Sensirion SHT 15 Temperature/humidity sensor

- Digital 2 Wire interface/I²C
- Response time < 1 sec
- Mounted inside chassis

Final Product: Interface and Mobile Device

Android GUI and Alert

- Android Open Accessory Development Kit
- Interpretation of data from Arduino

Arduino Mega ADK

- Sensor data collection and dissemination to Android
- Serial communication with computer

Final Product: Computer Vision

- Logitech C-600 Webcam
- Detects presence and position of lead vehicles
- Provides context for distance readings

Mobile Device

Asynchronous Fused Kalman Filter

Time update equations:

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1}^{-}$$

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

Measurement update equations:

$$K_{k} = P_{k}^{-}H^{T}(HP_{k}^{-}H^{T} + R)^{-1}$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(z_{k} - H\hat{x}_{k}^{-})$$

$$P_{k} = (I - K_{k}H)P_{k}^{-}$$

States:
$$x = \begin{bmatrix} \text{range}_k \\ \text{range}_{k-1} \\ \text{velocity}_k \\ \text{velocity}_{k-1} \end{bmatrix}$$

States:
$$x = \begin{vmatrix} \text{range}_k \\ \text{range}_{k-1} \\ \text{velocity}_k \\ \text{velocity}_{k-1} \end{vmatrix}$$
 Transition Matrix: $A = \begin{vmatrix} 2 & -1 & -dt & dt \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$

Asynchronous Fused Kalman Filter

General Kalman filter update procedure:

Asynchronous Fused Kalman Filter

Asynchronous Kalman filter update procedure:

Software Overview

Original Objectives

Method of predicting impending collisions

Auditory/visual warnings

Weather/environmental factors

Weather-proof enclosure to protect external parts

Completed Objectives

Method of predicting impending collisions 🗸

Mathematical algorithms

Auditory/visual warnings 🗸

Android displays pertinent data and emits alerts

- Implementation of environmental sensors
- Role of environmental sensor data in reaction time calculations

Weather-proof enclosure to protect external parts 🗸

- Sensors physically insulated
- Laser insulated with weather proof materials

Final Cost

Previous Expenses	Cost
Senior Design Budget Total	\$495
Parts contributed by members	\$1250
Additional Expenses	Cost
Wires, Misc. Cables and Connectors	\$14
USB Hub	\$24
Waterproofing Materials	\$10
Phone Mount	\$15
Final Project Total	\$1808

Future Work

Adaptive cruise control abilities

- Engage the car system to automatically brake
- Regulate vehicle velocity

Servo installation

Adjust the laser based on computer vision

Radar rangefinder application

Wider field of view for vehicle detection

Accurate road condition detection

Real-time ice detection using radar

