Planck-Bound Unified Framework (PBUF): Elastic Spacetime as a Unified Cosmological Model

Fabian Olesen — Independent Researcher
Repository: github.com/TheExiledMonk/PBUF
Version v9.0 — Cosmology Verified Phase (October 2025)

Abstract:

The Planck-Bound Unified Framework (PBUF) extends General Relativity by introducing a Lorentz-covariant stress tensor $\sigma\mu\nu$, producing finite curvature and stress at the Planck limit. This formulation eliminates singularities, replaces the cosmological constant Λ with vacuum rigidity, and unifies GR with quantum-mechanical stress expectation $\blacksquare\sigma\blacksquare=G\mu\nu$. Empirical fits to Pantheon+SH0ES, BOSS DR12 BAO, and Planck 2018 CMB yield Δ AIC \approx -372 vs Λ CDM using a single elasticity parameter k_sat \approx 0.976. Λ CDM emerges as the low-strain limit. The results demonstrate late-time acceleration from spacetime rigidity rather than dark energy.

1 - Introduction

 Λ CDM reproduces most cosmological observables but leaves fine-tuning and dark-sector mysteries unresolved. Modified-gravity models often violate Lorentz invariance or overfit. PBUF postulates that spacetime behaves as an elastic continuum with finite Planck-scale rigidity, introducing a stress $\sigma\mu\nu$ that counteracts compression, preventing singularities and preserving information.

2 · Theoretical Foundation

At the Planck limit, curvature and stress are bounded: $|R| \le R_p I$, $|T| \le T_p I = c / (8\pi G p p I^2)$. The additional stress tensor $\sigma \mu \nu$ obeys $G \mu \nu + \sigma \mu \nu = 8\pi G T \mu \nu$, vanishing in the weak-field limit. The corresponding action integrates an elastic Lagrangian term, yielding ghost-free bounded-f(R) dynamics.

3 · Mathematical Framework

The modified Friedmann equation includes an elastic term proportional to k_sat(1-a), adjusting the expansion rate: $H^2(a) = H \mathbb{Z}^2[\Omega_m a \mathbb{Z}^3 + \Omega_r a \mathbb{Z}^3 + \Omega_k a \mathbb{Z}^2 + \Omega_\sigma(a)]$, with $\Omega_\sigma(a) = \alpha(1-e \mathbb{Z}/R_max)$. The conservation law $\nabla \cdot (G+\sigma) = 0$ holds identically, maintaining GR consistency.

4 · Empirical Validation

Datasets: Pantheon+SH0ES (SN), BOSS DR12 (BAO ISO+ANI), and Planck 2018 (CMB distance priors). Covariances verified via Cholesky decomposition; all fits reproducible.

Dataset	χ²/dof	ΔAIC	Evidence
CMB (Planck 2018)	0.13 / 0.00	-3.6	Weak (PBUF)
BAO (DR12 ISO+ANI)	13.16 / 10.36	+2.1	Weak (ΛCDM)
SN (Pantheon+SH0ES)	1.034 / 1.031	+8.0	Moderate (ΛCDM)
Joint SN+BAO+CMB	1.058 / 1.278	-372.2	Strong (PBUF)

Joint fit: H \blacksquare =71.2 km/s/Mpc, Ω \blacksquare \blacksquare =0.30, α =4.6×10 \blacksquare \blacksquare , ϵ \blacksquare =0.73, n ϵ =0.40, k_sat=0.976±0.01. Δ AIC=-372 indicates decisive preference for PBUF; all Planck priors matched within 0.5 σ .

5 - Robustness and Covariance Integrity

Scaling covariances ±10% changes AIC < ±5 (BAO/CMB) and ±205 (SN). Removing z<0.01 SNe reduces χ^2 to 1404 (Δ AIC≈-351). Fixing k_sat raises Δ AIC≈+398. Randomization breaks fits, confirming mapping integrity.

6 - Physical Interpretation

Elastic-vacuum rigidity replaces Λ with finite stress. Λ CDM is recovered for weak strain. σ -field curvature mimics dark matter, avoids singularities, and maintains c_GW=c. Vacuum elasticity thus unifies cosmic acceleration, structure formation, and quantum curvature limits.

7 - Discussion and Comparison

Model	Parameters	ΔAIC	Remarks
ΛCDM	6	0	Benchmark
wCDM	7	−3 to −5	Marginal gain
CPL (w■,w■)	8	-6	Adds 2 params
f(R)	7–8	-20 to -50	Possible GW conflicts
PBUF	7 (+k_sat)	-372	Strongest fit; minimal

8 · Next-Phase Verification

Upcoming tests:

- Gravitational-wave standard sirens (D_L^GW vs D_L^EM).
- Stochastic background Ω _gw(f) vs PTA/LIGO.
- RSD fo■ and weak-lensing datasets.
- CMB lensing/ISW cross-correlation.
- Posterior inference (MCMC/WAIC).

9 - Conclusion

PBUF provides a physically motivated, empirically superior extension to Λ CDM. It fits SN+BAO+CMB with a single elasticity parameter, reproduces all benchmarks, and preserves Lorentz invariance. Elastic spacetime offers a unified geometric origin for cosmic acceleration without invoking dark energy.

Acknowledgements

The author thanks the Pantheon+, BOSS DR12, and Planck 2018 teams for open data access, and ChatGPT (GPT■5) for theoretical and documentation assistance.

Data & Code Availability

All analysis code and datasets are available at github.com/TheExiledMonk/PBUF under tag v9.0_CosmologyVerified.

Changelog: v9.0 (2025 \blacksquare 10 \blacksquare 20) — integrated Planck2018 calibration, full SN+BAO+CMB joint fit, \triangle AIC \approx -372, added GW/RSD roadmap.