α. Η f ορίζεται στο \mathbb{R} . Για κάθε $x \in \mathbb{R}$ είναι

$$f'(x) = (x^2)' = 2x$$

β. Είναι $D_f = \mathbb{R}$. Για κάθε $x \in \mathbb{R}$ έχουμε

$$f'(x) = (x^3)' = 3x^2$$

- γ. $D_f = \mathbb{R}$. Για κάθε $x \in \mathbb{R}$: $f'(x) = (x^7)' = 7x^6$
- δ. Για να ορίζεται η fπρέπει $x\geq 0.$ Για κάθε $x\in (0,+\infty)$ ισχύει ότι

$$f'(x) = \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

ε. Για να ορίζεται η f πρέπει $x \neq 0$. Για κάθε $x \neq 0$ είναι

$$f'(x) = \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

- στ. $D_f = \mathbb{R}$. Για κάθε $x \in \mathbb{R}$: $f'(x) = (\eta \mu x)' = συν x$
- ζ. $D_f = \mathbb{R}$. Για κάθε $x \in \mathbb{R}$: f'(x) = (συν x)' = -ημ x
- η. Για να ορίζεται η f πρέπει $x \neq \kappa \pi + \frac{\pi}{2}$. Για κάθε $x \in \mathbb{R} \left\{\kappa \pi + \frac{\pi}{2}\right\}$ έχουμε

$$f'(x) = (\varepsilon \varphi x)' = \frac{1}{\sigma \upsilon v^2 x}$$