始上原的教条件收敛

(b)
$$\left[H_{0}^{\text{HT}} \frac{\left[h_{1}^{\text{H}}\right]}{h}\right] = \frac{\left[h_{1}^{\text{H}}\right]}{h} \Rightarrow \frac{1}{h} \left(n \geq 3\right) = 0$$
 原从 费不绝符 收敛 $2 + f(x) = \frac{f(x)}{x^{2}} + \frac{f(x)}{x^{2}} = \frac{f(x)}{x^{2}} = \frac{f(x)}{x^{2}}$ $\Rightarrow x > e$ 时, $f(x) < 0 \Rightarrow y = y = y = y$ 可见 $f(x) = 0$ 的 $f(x) =$

经原处教条件收敛

(13)
$$2f(x) = \ln x - \int x^{\frac{1}{2}} = \frac{1 - x^{\frac{1}{2}}}{x}$$
, $\frac{1}{2}x > 1 = 0 < 1$ $\frac{1}{2}$ \frac

(10) h-72日本 (1-cush) ~[之(九)] = 上上 PH 系, np 2p≥1 发散. 2p>1 收敛 而是(H) (1-cush) 在 p>0 H 收敛, 在 p≤0 H 1 发散

而是HP(1-cust)P在P=OH收敛,在PEOHI发散 焊上原从数P>之时绝对收敛,在PEOHI发散

TIS (1)
$$x = 24$$
 时 $\frac{2}{n} \frac{\sin nx}{n} = 0$
 $x + 24$ 时 $\left| \sum_{n=1}^{\infty} \frac{\sin nx}{n} \right| = \left| \frac{\cos \frac{x}{2} - \cos (\frac{nx}{2} + \frac{x}{2})x}{2 \sin \frac{x}{2}} \right| 有界 且 5) -> 0$

由 Dirichlet 判别法知 收敛

围五

Tz (1) ling n [ne-nx = e-x < | =) カンロ x=の財 外表呈然質数

$$\frac{17)}{\sin^{2}} \frac{|\cos nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\cos nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{2} \frac{|\sin nx|}{|\cos nx|} = \frac{1}{e^{x}} (1 = 0) \times 20$$

$$\frac{1}{e^{nx}} \leq \frac{1}{2(nx)^2} \Rightarrow \frac{x^2}{e^{nx}} \leq \frac{2}{n^2} - 發版級$$

$$e^{nx} \in \frac{1}{2(nx)^2} \Rightarrow e^{nx} \leq \frac{1}{n^2} - 数收録$$
(b) Here, $\pi N = [\frac{1}{n}] + \frac{1}{2} + \frac{1$

(b)
$$\forall c>>$$
, $\exists N= = = 1$ $\forall n>n/0 = 1$ $\Rightarrow n>n/0 = 1$ \Rightarrow