Math 146: Lecture 1

(The Units of a Ring form a Group) L. et R be a ring, and let R^{\times} be the set of units in R. Then R^{\times} is a group under the inherited multiplication.

Proof. Note that $1_R \in R^{\times}$, and it fulfills the property of the identity. Also, the ring guarentees our multiplication is associative, so nothing to prove there.

If u is a unit then, just note so is u^{-1} . We just check then the product of units is a unit, but this is clear as $(u_1u_2)^{-1} = u_2^{-1}u_1^{-1}$.

Definition A. ring R is called a field if:

- 1. R is commutative.
- 2. $R^{\times} = \{a \in R, a \neq 0\}.$

Definition I. If R is a ring, a zero-divisor in R is an element $a \in R$ such that there exists $b \in R, b \neq 0$ where either ab = 0 or ba = 0.

Example: In \mathbb{Z}_m the zero divisors are those elements with indices that are **not** relatively prime to m.

Lemma I. f R is a ring and $u \in R^{\times}$, then it is not a zero divisor.

Proof. Note for ub = 0, for $b \neq 0$, multiplication by the inverse has $b = (u)^{-1}0 = 0$, a contradiction. A symmetric case follows for the other part of the definition.

Definition A. commutative ring R is an integral domain is the only zero-divisor is 0.

Recall integral domains have cancellation.

Definition L. et R be a ring. A formal polynomial over \mathbb{R} is an expression of the form $\sum_{n=0}^{\infty} a_n x^n$ such that each a_n is in R, such that only finitely many a_n are nonzero. The largest n for which $a_n \neq 0$ is called the degree of F.

Definition W. e define addition of polynomials coefficient-wise. Multiplication is defined in the binomial context.