1 Introduction

This report shows a comparison between the results of running several different reinforcement learning algorithms and policies on the three state problem, running on a simulated environment. All the implementation is provided by libPG library. To make the comparison as fair as possible, every algorithm uses a specifically tuned-up set of parameters values $(\kappa, \alpha, \lambda \text{ and } \epsilon)$, which were found by exhaustive search.

With softmax policy, the temperature decaying function used was $T(t) = \frac{1}{(1+\kappa t)^2}$, where t is the current time step and κ is a constant. Similarly, with ϵ -greedy policy, the ϵ decaying function used was $\epsilon(t) = \frac{1}{(1+\kappa t)^2}$. In both cases the constant κ defines how fast the used policy becomes greedier with time, when selecting next actions. The others parameters, α and λ , stands for step size and eligibility traces, respectively.

The results of each algorithm and policy combination were averaged over 100 runs and the temporal difference discount used was $\gamma = 0.6$ in all cases.

2 The Three State Problem

The three state simulator is a common place three-state POMDP employed by Baxter et al and is implemented in libPG.

3 Value Controllers

The main idea of using SARSA and Q-Learning (as defined in sections 7.5 and 7.6 of [Sutton and Barto]) to approach the three state problem is to understand which policy evaluation approach (i.e. on-policy or off-policy) performs better in this case. Also, since action selection influences the results, we tried both softmax and ϵ -greedy policies. Below, it is presented the algorithms and the corresponding resulting graphs.

3.1 SARSA(λ) with Softmax Decaying Temperature Policy

Figure 1: $SARSA(\lambda)$ with softmax policy (decaying temperature)

3.2 SARSA(λ) with Constant ϵ ϵ -Greedy Policy

Figure 2: SARSA(λ) with ϵ -greedy policy (constant ϵ)

3.3 SARSA(λ) with Decaying ϵ ϵ -Greedy Policy

Figure 3: SARSA(λ) with ϵ -greedy policy (decaying ϵ)

3.4 Q-Learning(λ) with Decaying Temperature Softmax Policy

Figure 4: Q-Learning(λ) with softmax policy (decaying temperature)

3.5 Q-Learning(λ) with Constant ϵ ϵ -Greedy Policy

Figure 5: Q-Learning(λ) with ϵ -greedy policy (constant ϵ)

3.6 Q-Learning(λ) with Decaying ϵ ϵ -Greedy Policy

Figure 6: Q-Learning(λ) with ϵ -greedy policy (decaying ϵ)

3.7 Binary Controller

Figure 7: Binary controller

4 Policy Gradient Controllers

Natural Actor-Critics method (as defined in [Peters, Vijayakumar and Schaal]) was also used in comparison with value methods.

4.1 NAC Transform

Figure 8: NAC Transform

5 Conclusion

Among value based algorithms, SARSA behaved slightly better than Q-Learning when using the same policy. But, in both algorithms, ϵ -greedy with decaying ϵ performed better than softmax with decaying temperature. The worst result was achieved with ϵ -greedy with constant ϵ , as expected.

Natural Actor-Critics was the best of all methods by far, converging very quickly to the optimum solution, being the most suited algorithm for the three state problem.

References

[Sutton and Barto] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction

[Peters, Vijayakumar and Schaal] Jan Peters, Sethu Vijayakumar, Stefan

Schaal. $Natural\ Actor-Critic$