Tối ưu nguyên

Đỗ Ngọc Minh Thư

Ngày 9 tháng 5 năm 2024

NỘI DUNG

1 Ý tưởng về phương pháp cắt

2 Thuật toán Gomory cho bài toán nguyên hoàn toàn

Giới thiệu

Ta xét:

(P) Min
$$\langle c, x \rangle$$

s.t
$$\begin{cases} Ax = b, \\ x_j \ge 0, j = 1, 2, ..., n. \end{cases}$$
 (1)

Ta ký hiệu tập $F \subset \mathbb{R}^n$ là miền xác định của bài toán (P).

Giới thiệu

$$(P^{N}) \quad \text{Min} \quad \langle c, x \rangle$$

$$\text{s.t} \quad \begin{cases} Ax = b, \\ x_{j} \geq 0, j = 1, 2, ..., n. \\ x_{j} \text{ nguyên}, j = 1, 2..., n_{1} \ (n_{1} \leq n). \end{cases}$$

$$(2)$$

Ta gọi:

 P^N là bài toán tối ưu nguyên.

 F^N là miền xác định của bài toán.

Ta kí hiệu co(F) là bao lồi của đa diện lồi F

Định lý 1.1

Giả sử F là một đa diện lồi, F^N là tập các điểm nguyên của nó, R là bao lồi của F^N (tức là $R = co(F^N)$) khi đó:

- 1) R là một đa diện nguyên.
- 2) $R^N = F^N$.
- 3) Tập R^* các phương án chấp nhận được của đa diện R chứa trong R^N :

$$R^* \subseteq R^N$$

Hệ quả 1.1

Giả sử X là phương án tựa tối ưu của bài toán Q (bài toán tối ưu tuyến tính có miền xác định là đa diện R, khi đó X cũng là phương án tối ưu của bài toán P^N . Vì vậy để giải bài toán quy hoạch tuyến tính nguyên P^N ta đi giải bài toán Q.

Định lý 1.2

Giả sử L là một đa diện lồi, U là một đa diện lồi nguyên và $U^N = F^N$, khi đó :

$$U = R = co(F^N)$$

Ví dụ minh họa:

BÀI TOÁN (P^N)	BÀI TOÁN (P)	BÀI TOÁN (Q)
$Max(x_1+x_2)$	$Max(x_1+x_2)$	$Max(x_1+x_2)$
$2x_1 + 11x_2 \le 38$ (a)	$2x_1 + 11x_2 \le 38$ (a)	$x_2 \leq 3$
$x_1 + x_2 \le 7$ (b)	$x_1 + x_2 \le 7$ (b)	$x_1 + x_2 \le 5$
$4x_1 - 5x_2 \le 5$ c	$4x_1 - 5x_2 \le 5$ (c)	$x_1 - x_2 \le 1$
$x_j \ge 0$	$x_j \ge 0$	$x_j \ge 0$
x_j nguyên		
Max = 5	Max = 7	Max = 5
Tối ưu là 2 điểm	Tối ưu là một đoạn	Tối ưu là đoạn
(2;3);(3;2)	$[(\frac{13}{3}, \frac{8}{3}); (\frac{40}{9}; \frac{23}{9})]$	[(2;3);(3;2)]

Khái niệm lát cắt đúng

Giả sử bài toán P^N là bài toán quy hoạch nguyên nào đó và phương án tựa tối ưu của bài toán quy hoạch tuyến tính tương ứng X không thoả mãn điều kiện nguyên, tức là $X \notin F^N$. Khi đó, bất đẳng thức:

$$\sum_{j} a_{j} x_{j} \leq \beta$$

được gọi là lát cắt đúng nếu thỏa mãn hai điều kiện.

- 1) Điều kiện cắt:
- X không thỏa mãn điều kiện (20), tức là $Ax > \beta$.
- 2) Điều kiện đúng:

Nếu X là phương án của bài toán tối ưu nguyên thì X thỏa mãn điều kiện (20), tức là $F^N \subset \{X \mid aX \leq \beta\}$.

Khái niệm lát cắt đúng

Nói cách khác, lát cắt thêm vào sẽ không cắt đi một phương án nguyên nào của bài toán.

Ý tưởng phương pháp cắt của Danzig

Việc giải một bài toán P^N là một quá trình gồm nhiều bước:

- a) $\mathring{\text{O}}$ bước thứ r, giải bài toán bài toán quy hoạch tuyến tính phụ $P_r, r = 0, 1, \dots$ với $F_0 = F$
- b) Tập các điểm nguyên của tất cả các đa diên lồi là như nhau:

$$F_0^N = F_1^N = F_2^N = \dots = F_r^N = \dots$$

Do đó, nếu phương án tối ưu X_r^* của bài toán P_r thoả mãn điều kiện nguyên thì nó cũng là phương án tối ưu X_0 của bài toán xuất phát P_0^N và quá trình kết thúc.

Ý tưởng phương pháp cắt của Danzig

c) Nếu X_r^* không thoả mãn điều kiện nguyên thì X_r^* không phải là phương án của bài toán P_{r+1} , tức là $X_r^* \notin F_{r+1}$.

Chuyển từ bước r sang bước r+1, tức là chuyển từ bài toán P_r sang P_{r+1} khi X_r^* không nguyên được thực hiện nhờ một lát cắt đúng $a_r x < \beta_r$.

Việc bổ sung lát cắt này vào ràng buộc của bài toán P_r sẽ chuyển đa diên lồi F_r thành F_{r+1} .

Ta xét bài toán tối ưu nguyên hoàn toàn:

$$(P^{N}) \quad \operatorname{Max}\langle c, x \rangle$$

$$\operatorname{s.t} \begin{cases} Ax = b, \\ x_{j} \geq 0, j = 1, 2, ..., n. \\ x_{j} \operatorname{nguy\hat{e}n}, j = 1, 2..., n. \end{cases}$$
(3)

Đinh nghĩa 2.1

Giả sử hệ véc-tơ $\{A^j, j \in J\}$ là cơ sở tương ứng với phương án cực biên ban đầu của bài toán P^N , các véc-tơ A^j và các biến x_j với $j \in J$ được gọi là các véc tơ cơ sở và biến cơ sở; còn các véc-tơ A^j và các biến x_j mà $j \notin J$ được gọi là các véc-tơ tự do và các biến tự do (biến phi cơ sở).

Giả sử X là phương án tối ưu của bài toán P^N , từ đó ta có thể biểu diễn các biến cơ sở qua Các biến phi cơ sở:

$$x_i = x_{i0} + \sum_{j \in N} x_{ij}(-x_j), i = \overline{0, m}.$$
 (4)

Định lý 2.1

Giả sử X có x_{i0} không nguyên với $1 \le i \le n$ và:

1)

$$z_i \equiv z_i(X) = -\{x_{i0}\} + \sum_{j \in \mathbb{N}} (-\{x_{ij}\})(-x_j), i = \overline{1, n}.$$
 (5)

- 2) x là phương án của bài toán P^N .
- Khi đó:
- a) z_i nguyên.
- *b*) $z_i \ge 0$.

Hệ quả 2.1

Giả sử X(L,C) không thoả mãn điều kiện nguyên, như vậy đối với i nào đó $(1 \le i \le 0)$ x_{i0} không nguyên . Khi đó các hệ thức (5) và $z_i \ge 0$ xác định một lát cắt đúng.

Dấu hiệu bài toán không có lời giải

Hình: \overline{P} không có lời giải

Dấu hiệu bài toán không có lời giải

Về sau ta sẽ giả thiết:

- 1) Hàm mục tiêu $x_0 \equiv CX$ bị chặn trên F.
- 2) Nếu tập hợp các phương án tối ưu của P khác trống thì nó phải bị chặn, tức là nếu bài toán P giải được thì bài toán \overline{P} cũng giải được.

Thuật toán Gomory

Bước 1: Giải bài toán $P \equiv P_0$ đã cho bằng phương pháp đơn hình đối ngẫu.

- Nếu P_0 không giải được thì P_0^N cũng không giải được.
- Nếu P_0 giải được và nghiệm của nó thỏa mãn điều kiện nguyên thì nó cũng là phương án tối ưu của P_0^N , còn nếu chưa thỏa điều kiện thì chuyển sang bước 2.

Thuật toán Gomory

Bước 2: Chọn dòng đầu tiên ứng với thành phần không nguyên: $k = min\{i | i \in \{1,...,n\}, x_{i0}^r \text{không nguyên}\}$ và xây dựng lát cắt đúng:

$$\begin{cases} x_{n+r+1} = -\{x_{k0}^r\} + \sum_{j \in N_r} (-\{x_{kj}^r\}) (-x_j) \\ x_{n+r+1} \geq 0 \\ x_{n+r+1} \text{ nguyên} \end{cases}$$

Thêm lát cắt vào bảng đơn hình và tiếp tục giải bài toán P_{r+1}^N . **Bước 3:** Sau khi tính toán với lát cắt nếu được phương án tối ưu thỏa mãn điều kiện nguyên thì thuật toán dừng lại. Nếu không thỏa mãn thì quay lại bước 2 cứ lần lượt như vậy thực hiện các bước lặp $r \geq 0$ cho đến khi thỏa mãn điều kiện.

Tính hữu hạn của thuật toán

Định lý 2.2

Giả sử có các điều kiên sau:

- 1) Tính nguyên của hàm mục tiêu $x_0 \equiv CX$ được đảm bảo và x_0 được xét khi chọn dòng xây dựng lát cắt đúng.
- 2) Một trong các khẳng định sau là đúng:
- i) Hàm mục tiêu x_0 bị chặn dưới trên F_0 .
- ii) Bài toán P_0^N có ít nhất một phương án X'.

Khi đó thuật toán Gomory thứ nhất kết thúc sau một số hữu hạn bước lặp lớn.