DIC L21: Power (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

5.1. Introduction (4)

- Average power dissipation
 - When a gate is

$$P_{switching} = \frac{CV_{DD}^2}{T} = CV_{DD}^2 f_{sw}$$

- Most gates do not switch every clock cycle.
 - Let $f_{sw} = \alpha f$, where α is the activity factor.
 - Then, the dynamic power is written as

$$P_{switching} = \alpha C V_{DD}^2 f$$

5.1. Introduction (5)

Power dissipation sources

$$P_{total} = P_{dynamic} + P_{static}$$

Dynamic power

$$P_{dynamic} = P_{switching} + P_{shortcircuit}$$

Static power

$$P_{static} = (I_{sub} + I_{gate} + I_{junct} + I_{contention})V_{DD}$$

5.1. Dynamic power (1)

- Example 5.1
 - 50M logic transistors (Average width: 12 λ)
 - Activity factor = 0.1
 - 950M memory transistors (Average width: 4λ)
 - Activity factor = 0.02
 - 1.0 V 65 nm process (λ is 25 nm.)
 - $C = 1 \text{ fF/}\mu\text{m} \text{ (gate)} + 0.8 \text{ fF/}\mu\text{m} \text{ (diffusion)}$
 - Estimate the switching power when operating at 1 GHz.

5.1. Dynamic power (2)

- Example 5.1
 - 50M logic transistors (Average width: 12 λ)
 - Activity factor = 0.1
 - 950M memory transistors (Average width: 4λ)
 - Activity factor = 0.02
 - 1.0 V 65 nm process (λ is 25 nm.)
 - $C = 1 \text{ fF/}\mu\text{m} \text{ (gate)} + 0.8 \text{ fF/}\mu\text{m} \text{ (diffusion)}$
 - Estimate the switching power when operating at 1 GHz.

5.1. Dynamic power (3)

Remember that

$$P_{switching} = \alpha C V_{DD}^2 f$$

- Try to minimize:
- Activity factor (α)
- Capacitance (C)
- Suply voltage (V_{DD}^2)
- Frequency (f)

5.1. Dynamic power (3)

- Activity factor estimation
 - Define P_i to be the probability that node i is 1. Also, $\overline{P_i} = 1 P_i$.
 - Then,

- Completely random data has $P_i = 0.5$ and $\alpha = 0.25$.
 - (It is the maximum value of $\overline{P_i}$ P_i .)
- Data is often not completely random.

5.1. Dynamic power (4)

- Switching probability
 - Activity factor of the output is $\overline{P_Y}$ P_Y .

Gate	P_{Y}
AND2	$P_{\mathcal{A}}P_{B}$
AND3	$P_{A}P_{B}P_{C}$
OR2	$1 - \overline{P}_{\mathcal{A}}\overline{P}_{\mathcal{B}}$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\!\mathcal{A}}\overline{P}_{\!\mathcal{B}}$
XOR2	$P_{\mathcal{A}}\overline{P}_{B} + \overline{P}_{\mathcal{A}}P_{B}$

Table 5.1

5.1. Dynamic power (4)

- Example 5.2
 - A 4-input AND is built out of two levels of gates.
 - Estimate the activity factor at each node if the inputs have P = 0.5.

5.1. Dynamic power (6)

Clock gating

- The best way to reduce the activity is to turn off the clock to registers in unused blocks.
- Saves clock activity ($\alpha = 1$)
- Eliminates all switching activity
 in the block

Fig. 5.7

5.1. Dynamic power (6)

Capacitance

- Gate capacitance ("Gate" is not a contact in this context.)
 - Fewer stages of logic
 - Small gate sizes
- Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with invertes of buffers rather than complex gates