November 1, 2017

Note about Optimal Substructure

Chapters 5 of Dasgupta et al.

Optimal substructure

Let S' be the remaining sub-problem after the greedy choice.

A' is an optimal solution for S' \Leftrightarrow $A = A' \ U \{greedy\}$ is an optimal solution for S

Proofs in class:

- Activity selection (both \Leftarrow and \Rightarrow)
- Fractional knapsack (⇐)

Homework/exams: it is sufficient to prove \Rightarrow 2

Activity selection (\Longrightarrow)

Claim. If A' is an optimal solution for $S' = \{i \text{ in } S: s_i \ge f_I \}$ then A' $U\{I\}$ is an optimal solution for S.

Proof (by contradiction). If $A=A'U\{1\}$ is not optimal for S, then there is a solution $B=B'U\{1\}$ for S with more activities than A. B' is a solution for S' because the activities in B' are non overlapping. But |B'| > |A'|, which contradicts the optimality of A'.

Activity selection (\Leftarrow)

Claim. If A is optimal to S and A contains task 1, then $A' = A - \{1\}$ is optimal to $S' = \{i \text{ in } S: s_i \ge f_l\}$

Proof (by contradiction). If A' is not optimal for S', then there is a solution B' to S' with more activities than A'. Adding activity 1 to B' would yield a solution B to S with more activities than A contradicting the optimality of A.

4