27.22.1 Let R be a domain and a a non-zero non-unit in R. Show that a is irreducible if and only if the principal ideal (a) is maximal in the set $\{(b) \mid b \text{ a non-zero non-unit in } R\}$. In particular, if R is a PID, then every irreducible element in R is a prime element.

Solution " \Longrightarrow "

Let a be irreducible.

Suppose (a) is not maximal in the given set so that there exists $b \neq a$ so that (b) > (a). But this implies that there exists $r \in R$ so that a = rb. Since a is irreducible and b is not a unit, we must have that r is a unit. But this means that there exists $s \in R$ such that $sr = 1 \implies sa = b \implies (b) \subseteq (a)$, a contradiction.

" = "

Let (a) be maximal in the given set

Suppose (a) = xy, for some non-zero $x, y \in R$, and suppose that x is not a unit. Then $(a) \subseteq (x)$. Since (a) was maximal, (a) = (x), so there exists $x \in R$ such that $x = xa \implies a = (xy)a \implies xy = 1$, so y is a unit.

- **27.22.2** Produce elements a and b in the domain $R := \{x + 2y\sqrt{-1} \mid x, y \in \mathbb{Z}\}$ having no gcd. Prove your elements do not have a gcd.
- **Solution** We claim that 8 and $4-4\sqrt{-1}$ do not have a gcd.

Notice that

$$8 = (2 - 2\sqrt{-1})(2 + 2\sqrt{-1}) = 2 \cdot 4$$
 and $4 - 4\sqrt{-1} = 2(2 - 2\sqrt{-1})$,

which mean that 4 and $2-2\sqrt{-1}$ divide both numbers.

2 and $1 - 1\sqrt{-1}$ are irreducible:

$$N(2) = N(a + 2b\sqrt{-1})N(c + 2d\sqrt{-1}) \implies 4 = (a^2 + 4b^2)(c^2 + 4d^2).$$

To get a non-trivial factorization, we need $a^2 + 4b^2 = 2$, but this isn't possible. Similarly,

$$N(1-1\sqrt{-1}) = N(a+2b\sqrt{-1})N(c+2d\sqrt{-1}) \implies 2 = (a^2+4b^2)(c^2+4d^2).$$

But 2 is prime, so there is no non-trivial factorization. Hence, both of these numbers are irreducible, so 2 and $1 - 1\sqrt{-1}$ are the unique (up to multiplication by a unit) divisors of $4 - 4\sqrt{-1}$.

All the numbers that divide both of them are $1, 2, 4, 1 - 1\sqrt{-1}$, and $2 - 2\sqrt{-1}$. It's clear that our only candidates for the gcd are 4 and $2 - 2\sqrt{-1}$, but

$$4 = 2 \cdot 2$$
 and $2 - 2\sqrt{-1} = 2 \cdot (1 - \sqrt{-1})$.

But $1 - \sqrt{-1}$ and 2 are irreducible, which means that these two numbers do not divide each other. Consequence, they do not have a gcd.

- **27.22.4** Show 1 is a gcd for 2 and t in $\mathbb{Z}[t]$, but there are no polynomials $f, g \in \mathbb{Z}[t]$ satisfying 1 = 2f + tg.
- **Solution** Let $e \in \mathbb{Z}[t]$ be so that $e \mid 2$ and $e \mid t$, so that there exist $f, g \in \mathbb{Z}[t]$ such that 2 = ef and t = eg.

If $e \approx 2$, then $t = eg \approx 2g$, but this is impossible since 2 is not a unit in \mathbb{Z} .

So, we have $f \approx 2$, which implies that e is a unit, which implies that $e \mid 1$, so 1 is a gcd for 2 and t.

There are no such $f, g \in \mathbb{Z}[t]$ satisfying 1 = 2f + tg. Otherwise, we require that g = 0 so that we have no non-constant terms, which leaves us with 1 = 2f. But as stated before, 2 is not a unit in \mathbb{Z} , so there is no such f that satisfies the equation.

27.22.6 Prove that the three conditions defining a Noetherian ring are indeed equivalent.

Solution (i) \Longrightarrow (ii)

Let R satisfy the ACC. We wish to show that every ideal is finitely generated.

Let \mathfrak{A} be an ideal in R, and let $a_1 \in \mathfrak{A}$.

If $(a_1) = \mathfrak{A}$, then we're done. If not, pick $a_2 \in \mathfrak{A} \setminus (a_1)$.

If $(a_1, a_2) = \mathfrak{A}$, then we're done. If not, pick $a_3 \in \mathfrak{A} \setminus (a_1, a_2)$.

This process generates a sequence

$$(a_1)\subseteq (a_1,a_2)\subseteq\cdots$$
.

So R satisfies the ACC, the process must terminate after finitely many steps, so \mathfrak{A} is finitely generated.

$$(ii) \Longrightarrow (iii)$$

Suppose every ideal is finitely generated. We wish to show that R satisfies the maximal principle.

Let S be a non-empty set of ideals, and let \mathcal{C} be a chain in S. Then $\bigcup \mathcal{C}$ is an upper bound: Indeed, it is an ideal, and by assumption it's finitely generated. Each of its generators must lie in some element in \mathcal{C} , and since the chain is totally ordered, there exists an element in \mathcal{C} that contains all of them, so $\bigcup \mathcal{C} \in \mathcal{C} \subseteq S$.

Thus, every chain has an upper bound in S, so by Zorn's lemma, S has a maximal element, so R has the maximal principle.

$$(iii) \Longrightarrow (i)$$

Let R satisfy the maximal principle. We want to show that it satisfies the ACC.

Let $\{\mathfrak{A}_i\}$ be a sequence of ideals in R. Now consider the set $S = \{\mathfrak{A}_i \mid i \geq 1\}$. By assumption, this has a maximal element \mathfrak{A}_n . This implies that if $i \geq n$, $\mathfrak{A}_i = \mathfrak{A}_n$, so R satisfies the ACC.

27.22.9 A commutative ring R is called Artinian if it satisfies the following condition (called the $descending \ chain \ condition$ or DCC): Any chain of ideals

$$\mathfrak{A}_1 \supseteq \mathfrak{A}_2 \supseteq \cdots \supseteq \mathfrak{A}_n \supseteq \cdots$$

(countable) in R stabilizes, i.e., there exists an integer N such that $\mathfrak{A}_{N+i} = \mathfrak{A}_N$ for all $i \geq 0$. Equivalently, there exist no infinite chains

$$\mathfrak{B}_1 > \mathfrak{B}_2 > \cdots > \mathfrak{B}_n > \cdots$$

Show that R is Artinian if and only if it satisfies the *minimal principle* which says that any non-empty collection of ideals in R has a minimal element (under set inclusion).

Solution " \Longrightarrow "

Suppose R is Artinian, and let S be a non-empty collection of ideals in R.

Suppose that S has no minimal element. Then for every $\mathfrak{A}_i \in S$, we can find $\mathfrak{A}_{i+1} < \mathfrak{A}_i$. Since S is non-empty, we can pick any ideal in S to be \mathfrak{A}_1 . Then we have

$$\mathfrak{A}_1 > \mathfrak{A}_2 > \cdots$$

But this violates the fact that R is Artinian because this sequence must stabilize, a contradiction. Hence, S must contain some minimal element.

"⇐="

Suppose R satisfies the minimal principle. We would like to show that R is Artinian.

Let $\{\mathfrak{A}_i\}$ be a sequence of ideals with

$$\mathfrak{A}_1 \supseteq \mathfrak{A}_2 \supseteq \cdots$$

Now consider $S = \{\mathfrak{A}_i \mid i \geq 1\}$. This has a minimal element \mathfrak{A}_n , by assumption. Hence, if $i \geq n$, $\mathfrak{A}_i = \mathfrak{A}_n$, so the chain stabilizes, i.e., R is Artinian.

27.22.10 If R is a domain, show that it is Artinian if and only if it is a field.

Solution " \Longrightarrow "

Let R be Artinian.

It suffices to show that R is a division ring, i.e., every non-zero element is a unit.

Let $x \in R$. Suppose x is a non-zero non-unit, so that (x) < R, and consider the chain

$$(x) \supseteq (x^2) \supseteq \cdots$$

Since R is Artinian, this sequence must stabilize, so there exists $n \ge 1$ such that $x^n = x^{n+1} \implies x^n(x-1) = 0$. Since R is a domain, we have $x^n = 0$ or x - 1 = 0. Again, because R is a domain, the first case implies that x = 0, which can't happen. But in the other case, x = 1, which is impossible since we assumed x to be non-unit. Hence, x must be a unit, so R is a field.

"← "

Let R be a field, and let $\mathfrak{A}_1, \mathfrak{A}_2, \ldots < R$ be a sequence of ideals with

$$\mathfrak{A}_1 \supset \mathfrak{A}_2 \supset \cdots$$

None of these ideals can be trivial. Otherwise, if $\mathfrak{A}_n = \{0\}$, then $\mathfrak{A}_{n+i} = \{0\}$ for all $i \geq 1$.

Since the sequence does not stabilize, there exists $n \ge 1$ so that $\mathfrak{A}_n > \mathfrak{A}_{n+1}$. In particular, there exists a non-zero element $x \in \mathfrak{A}_n \setminus \mathfrak{A}_{n+1}$. But x is a unit, which implies that $\mathfrak{A}_n = R$, a contradiction. Hence, this sequence must stabilize.

27.22.11 Let R be a Noetherian ring. Show that $\varphi \colon R \to S$ is a ring epimorphism, then S is Noetherian.

Solution Let $\mathfrak{A}_1, \mathfrak{A}_2, \ldots$ be an increasing sequence of ideals in S. Since φ is epi, there exist $\mathfrak{B}_1, \mathfrak{B}_2, \ldots$ so that $\varphi(\mathfrak{B}_i) = \mathfrak{A}_i$ for every i.

If \mathfrak{B}_i is an ideal for every i, then \mathfrak{B}_i is an increasing sequence of ideals, which must stabilize since R is Noetherian. This implies that $\varphi(\mathfrak{B}_i) = \mathfrak{A}_i$ must stabilize also, which shows that S is Noetherian. So, it suffices to show that \mathfrak{B}_i is an ideal.

Let $x, y \in \mathfrak{B}_i$. Since \mathfrak{A}_i is an ideal and φ is a morphism, $\varphi(x+y) = \varphi(x) + \varphi(y) \in \mathfrak{A}_i \implies x+y \in \mathfrak{B}_i$.

Now let $r \in R$. Then $\varphi(rx) = r\varphi(x) \in \mathfrak{A}_i \implies rx \in \mathfrak{B}_i$.

Thus, \mathfrak{B}_i is ideal, and we're done.

27.22.13 Let R be a Noetherian domain. Show that any non-trivial ideal of R contains a finite product of non-zero prime ideals, i.e., if $0 < \mathfrak{A} < R$ is an ideal, then there exist non-zero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ in R such that $\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_n\subseteq \mathfrak{A}$.

Solution Let \mathfrak{A} be an ideal.

Suppose that the claim is not true, and that there is some ideal which does not contain a product of non-zero prime ideals. Now let S be the set where the claim is false, which is non-empty by assumption.

Any chain in S has an upper bound, i.e., the union of the chain, and this union is clearly contained in S. Otherwise, if \mathfrak{p} is in the union, it must be contained one of the elements of the chain.

By Zorn's lemma, S has a maximal element with respect to \subseteq , which we'll call \mathfrak{A} .

Now let $xy \in \mathfrak{A}$. Suppose $x, y \notin \mathfrak{A}$. Then $\mathfrak{A} + (x), \mathfrak{A} + (y) > \mathfrak{A}$, which means that $\mathfrak{A} + (x)$ and $\mathfrak{A} + (y)$ each contain some prime ideal $\mathfrak{p}_1, \mathfrak{p}_2$, since \mathfrak{A} was maximal in S. But

$$\mathfrak{p}_1\mathfrak{p}_2 \subset (\mathfrak{A} + (x))(\mathfrak{A} + (y)) = \mathfrak{A} + (xy) = \mathfrak{A},$$

a contradiction. Thus, no $\mathfrak A$ should have existed, so S must have been empty to begin with.

- **27.22.15** An ideal \mathfrak{C} in a commutative ring R is called *irreducible* if whenever $\mathfrak{C} = \mathfrak{A} \cap \mathfrak{B}$ for some ideals \mathfrak{A} and \mathfrak{B} in R, then either $\mathfrak{C} = \mathfrak{A}$ or $\mathfrak{C} = \mathfrak{B}$. Show if R is Noetherian, then every ideal $\mathfrak{A} < R$ is a finite intersection of irreducible ideals of R, i.e., $\mathfrak{A} = \mathfrak{C}_1 \cap \cdots \cap \mathfrak{C}_n$, for some irreducible ideals \mathfrak{C}_i in R.
- **Solution** Suppose there exists an ideal which is not a finite intersection of irreducible ideals, and let S be the set of these ideals.

S is non-empty by assumption, and if $C \subseteq S$ is a chain, then $\bigcup C$ is an upper bound for C. Indeed, R is Noetherian, so C must stabilize, which means that $\bigcup C \in C$, so every chain has an upper bound in S. Zorn's lemma gives us a maximal element $\mathfrak{A} \in S$ with respect to \subseteq .

Then $\mathfrak A$ is not irreducible. If it were, then it is a finite intersection with itself, which is a contradiction since $\mathfrak A \in S$.

Hence, there exist $\mathfrak{B}, \mathfrak{C} > \mathfrak{A}$ so that $\mathfrak{A} = \mathfrak{B} \cap \mathfrak{C}$. But \mathfrak{A} was maximal in S, which means that \mathfrak{B} and \mathfrak{C} are finite intersections of irreducible ideals. But this implies that \mathfrak{A} is a finite intersection of irreducible ideals, a contradiction. Thus, S must have been empty to begin with.