Année universitaire 2017/2018

### Examen de FIA 3éme année Licence

SIQ Durée: 1H30

### **Exercice: (6 points)**

- 1. Donnez une définition de l'intelligence artificielle. Précisez ce qui distingue l'IA des sciences cognitives?
- 2. Donnez la PEAS pour un agent responsable des lumières à une intersection?
- 3. Quel est l'état initial, le test de but, la fonction successeur et la fonction de coût pour un problème qui consiste à colorier une carte en utilisant seulement quatre couleurs de manière à ce qu'aucunes régions adjacentes n'est la même couleur?

### Exercice2: (8 points)

Soit le graphe suivant, la valeur portée sur chaque arc correspond au coût de passage d'une extrémité de l'arc à l'autre. On souhaite calculer le plus court chemin de A à H.



On a de plus la fonction heuristique h qui estime le coût pour atteindre H depuis chaque sommet. h est donnée par le tableau ci dessous.

| A | B | C | D | E | F | G | H | I | J |
|---|---|---|---|---|---|---|---|---|---|
| 9 | 7 | 3 | 2 | 6 | 1 | 2 | 0 | 4 | 6 |

- 1. Appliquez l'algorithme A\* avec la fonction h sur ce graphe.
- 2. Donnez le plus court chemin de A à H ainsi que sa valeur que vous avez trouvée dans la question précédente.

#### Exercice 3 (6 points):

On s'intéresse à un distributeur automatique de boissons. L'utilisateur inséré des pièces de monnaie pour un total de T dinars, puis il sélectionne une boisson, dont le prix est de P dinars (T et P étant des multiples de 5). Il s'agit alors de calculer la monnaie à rendre, sachant que le distributeur a en réserve E5 pièces de 5 dinars, E10 pièces de 10 dinars, E20 pièces de 20 dinars, E50 pièces de 50 dinars et E100 pièces de 10 dinars.

- 1. Modéliser ce problème sous la forme d'un CSP (Problème de satisfaction de contraintes).
- 2. Comment pourrait-on exprimer le fait que l'on souhaite que le distributeur rende le moins de pièces possibles ?
- 3. Supposons qu'un utilisateur a inséré une pièce de 200 dinars pour acheter une boisson de 30 dinars, sachant que le distributeur a en réserve 20 pièces de 5dinars, 12pièces de 10dinars, 5 pièces de 20 dinars, 3pièces de 5odinars et 2pièces de 100dinars:
  - a. Proposez un modèle CSP pour ce cas en se basant sur le modèle proposé précédemment.
  - b. Résolvez ce CSP à l'aide de l'algorithme SRA (Backtracking search).

Bon Courage C.NEHNOUH& KELLA A

#### **Solution**

- 1. L'intelligence artificielle est l'étude et la conception d'agents rationnels (ou "intelligents") à l'aide d'outils informatiques. Les sciences cognitives se concentrent sur la compréhension de l'intelligence dans les comportements humains, tandis que l'IA s'intéresse à sa reproduction dans des artefacts.
  - Mesure de performance : Le temps d'attente moyen des autos et des piétons.
  - Environnement : Les autos, les lumières, les routes, les piétons.
  - Effecteur : Les lumières pour les autos et pour les piétons.
  - Capteur : Pesé sur la route et bouton pour les piétons.
  - État initial : Carte vide
  - But : Carte où toutes les régions sont coloriées.
  - Fonction successeur : Colorier une région vide.
  - Fonction coût : 1 par assignation de couleur à une région

### Exercice2: (8 points)

| Etape | Choix     | Ouverts                                                    | Fermés                              |
|-------|-----------|------------------------------------------------------------|-------------------------------------|
| Init  |           | $\{A(0,9)\}$                                               | Ø                                   |
| 1     | A(0, 9)   | ${B(2,9); C(5,8); E(3,9)}$                                 | $\{A(0,9)\}$                        |
| 2     | C(5, 8)   | $\{B(2,9); E(3,9); D(9,11); F(9,10); G(14,16)\}$           | ${A(0,9); C(5,8)}$                  |
| 3     | B(2, 9)   | ${E(3,9); \mathbf{D(7,9)}; F(9,10); G(14,16)}$             | ${A(0,9); C(5,8); B(2,9)}$          |
| 4     | E(3, 9)   | $\{D(7,9); F(9,10); G(14,16); C(4,7); I(14,18)\}$          | ${A(0,9); B(2,9); E(3,9)}$          |
| 5     | C(4,7)    | $\{D(7,9); \mathbf{F}(8,9); \mathbf{G}(13,15); I(14,18)\}$ | ${A(0,9); B(2,9); E(3,9); C(4,7)}$  |
| 6     | D(7,9)    | $\{F(8,9); G(13,15); I(14,18)\}$                           | ${A(0,9);B(2,9);E(3,9);C(4,7);}$    |
|       |           |                                                            | $D(7,9)$ }                          |
| 7     | F(8,9)    | $\{G(13, 15); I(14, 18); H(10, 10)\}$                      | ${A(0,9); B(2,9); E(3,9); C(4,7);}$ |
|       |           |                                                            | D(7,9); F(8,9)                      |
| 8     | H(10, 10) |                                                            |                                     |

- A l'initialisation, on met dans Ouverts, le sommet de départ;
- A chaque étape on choisit dans Ouverts un sommet s tel que f(s) = g(s) + h(s) soit minimal. Pour tous les voisins v de s, si v n'appartient ni à Ouverts ni à Fermés, on ajoute v à Ouverts. Sinon on remet v dans Ouverts avec une nouvelle valeur de g(v) seulement si g(s) + cout(s->v) est inférieur à la valeur de g(v) mémorisée.
- A l'étape 3, après sélection du sommet B, la valeur de g(D) dans Ouverts passe de 9 à 7;
- A l'étape 4, après sélection du sommet E, la valeur de g(C) passe de 5 à 4 et C passe des Ferm'es aux Ouverts;
- A l'étape 5, les valeur de g de F et G dans Ouverts passent respectivement de 9 à 8 et de 14 à
- leplus court chemin de A à H est A pour un coût de 10.

### Exercice3: (6 points)

#### 1.

Les variables :  $V = \{E5, E10, E20, E50, E100\}.$ 

Les domaines : spécifient que la quantité de pièces retournées, pour un type de pièce donné, est comprise entre 0 et le nombre de pièces de ce type que l'on a en réserve :

$$D_{E5} = \{0,1,...,E5\}$$

$$D_{E10} = \{0,1,...,E10\}$$

$$D_{E20} = \{0,1,..., E20\}$$

$$D_{E50} = \{0,1,..., E50\}$$

$$D_{E100} = \{0,1,..., E100\}$$

Les contraintes spécifient que la somme à retourner doit être égale àla somme insérée moins le prix à payer :  $C = \{5*E5 + 10*E10 + 20*E20 + 50*E50 + 100*E100 = T-P\}.$ 

Pour exprimer le fait que l'on souhaite que le distributeur rende le moins de pièces possibles, on pourrait ajouter à ce CSP une fonction "objectif" à minimiser :

f(E) = E5 + E10 + E20 + E50 + E100.

# 3.a.

$$\begin{split} V &= \{E5, E10, E20, E50, E100\}. \\ D_{E5} &= \{0,1,..., 20\} \\ D_{E10} &= \{0,1,..., 12\} \\ D_{E20} &= \{0,1,2,3,4,5\} \\ D_{E50} &= \{0,1,2,3\} \\ D_{E100} &= \{0,1,2\} \\ C &= \{5*E5+10*E10+20*E20+50*E50+100*E100=\textbf{170}\}. \\ \text{Minimiser la fonction objectif: } f(E) &= E5+E10+E20+E50+E100. \end{split}$$

# 3.b.

$$A = \{ \}$$
 $X = A \cup \{(E100, 2)\}$ 
 $A = A \cup \{(E100, 1)\}$ 

$$X = A U \{(E50, 3)\} X = A U \{(E50, 2)\} A = A U \{(E50, 1)\}$$

$$X = A \cup \{(E20, 5)\} X = A \cup \{(E20, 4)\} X = A \cup \{(E20, 3)\} A = A \cup \{(E20, 1)\} A = A \cup \{(E$$

$$X = A U \{(E10, 12)\}$$
 ......  $A = A U \{(E10, 6)\}$  .....  $A = A U \{(E10, 0)\}$ 

## **Solution:**

 $A = \{(E100, 1), (E50, 1), (E20, 1), (E10, 0), (E5, 0)\}\}.$