Вычислите:

13.4. a)
$$\sqrt{\frac{1}{4} \cdot \frac{25}{9}}$$
; b) $\sqrt{\frac{9}{49} \cdot \frac{1}{16}}$;

B)
$$\sqrt{\frac{9}{49} \cdot \frac{1}{16}}$$
;

6)
$$\sqrt{1\frac{9}{16}\cdot\frac{49}{81}}$$
;

6)
$$\sqrt{1\frac{9}{16} \cdot \frac{49}{81}}$$
; r) $\sqrt{3\frac{1}{16} \cdot 2\frac{14}{25}}$.

13.5. a)
$$\sqrt{5^4}$$
; 6) $\sqrt{(-2)^8}$; B) $\sqrt{2^{12}}$; r) $\sqrt{(-5)^2}$.

6)
$$\sqrt{(-2)^8}$$

B)
$$\sqrt{2^{12}}$$
;

r)
$$\sqrt{(-5)^2}$$
.

13.6. a)
$$\sqrt{3^4 \cdot 5^2}$$
; 6) $\sqrt{2^6 \cdot 7^4}$; B) $\sqrt{7^2 \cdot 3^6}$; r) $\sqrt{2^4 \cdot 5^2}$.

6)
$$\sqrt{2^6 \cdot 7^4}$$
:

B)
$$\sqrt{7^2 \cdot 3^6}$$

$$\mathbf{r}) \sqrt{2^4 \cdot 5^2}$$

Используя свойства квадратного корня, найдите с помощью таблицы квадратов значение выражения:

13.7. a)
$$\sqrt{115600}$$
; B) $\sqrt{608400}$;

B)
$$\sqrt{608 \ 400}$$
;

6)
$$\sqrt{577600}$$
; r) $\sqrt{902500}$.

r)
$$\sqrt{902\ 500}$$
.

13.8. a)
$$\sqrt{20,25}$$
; 6) $\sqrt{43,56}$; B) $\sqrt{96,04}$; F) $\sqrt{37,21}$.

6)
$$\sqrt{43,56}$$
;

B)
$$\sqrt{96.04}$$

$$\Gamma$$
) $\sqrt{37,21}$

13.9. Найдите значение выражения:

а)
$$\sqrt{a^2}$$
, если $a = 15$:

а)
$$\sqrt{a^2}$$
, если $a = 15$; в) $-3\sqrt{b^6}$, если $b = 2$;

б)
$$2\sqrt{a^4}$$
, если $a = 7$

б)
$$2\sqrt{a^4}$$
, если $a = 7$; г) $5\sqrt{y^8}$, если $y = -2$.

Упростите выражение*:

13.10. a)
$$\sqrt{9a^{16}}$$
; 6) $\sqrt{36b^8}$; B) $\sqrt{49c^4}$; r) $\sqrt{81d^6}$.

6)
$$\sqrt{36b^8}$$
;

B)
$$\sqrt{49c^4}$$

r)
$$\sqrt{81d^6}$$

13.11. a)
$$-5\sqrt{4x^2}$$
; B) $-0.1\sqrt{100z^8}$;

B)
$$-0.1\sqrt{100z^8}$$

б)
$$-3\sqrt{9y^6}$$
;

$$\Gamma) \ -\sqrt{0.25t^2}.$$

13.12. a)
$$\sqrt{x^2y^4}$$
; 6) $\sqrt{z^6t^8}$; B) $\sqrt{m^{12}n^{16}}$; r) $\sqrt{p^8q^{10}}$.

6)
$$\sqrt{z^6 t^8}$$

B)
$$\sqrt{m^{12}n^{16}}$$
;

$$\Gamma) \sqrt{p^8q^{10}}.$$

13.13. a)
$$\sqrt{25a^4b^6}$$
;

B)
$$\sqrt{36m^2n^8}$$
;

6)
$$\sqrt{\frac{81}{49}p^{12}q^{26}}$$
; r) $\sqrt{\frac{1}{4}r^{18}s^2}$.

$$\Gamma) \ \sqrt{\frac{1}{4}} r^{18} s^2 \, .$$

13.14. a)
$$\sqrt{\frac{4a^2}{b^6}}$$
; 6) $\sqrt{\frac{169a^{18}}{25b^{30}}}$; B) $\sqrt{\frac{49a^{18}}{81b^6}}$; r) $\sqrt{\frac{576a^{12}}{25b^{26}}}$

$$\text{ 6) } \sqrt{\frac{169a^{18}}{25b^{30}}};$$

B)
$$\sqrt{\frac{49a^{18}}{81b^6}}$$
;

$$\Gamma) \ \sqrt{\frac{576a^{12}}{25b^{26}}}$$

^{*}Всюду в этом параграфе предполагается, что переменные принимают только положительные значения.

Используя свойства квадратных корней, найдите значение числового выражения:

13.15. a)
$$\sqrt{32} \cdot \sqrt{2}$$
; B) $\sqrt{63} \cdot \sqrt{7}$;

B)
$$\sqrt{63}\cdot\sqrt{7}$$
;

6)
$$\sqrt{45} \cdot \sqrt{5}$$
; r) $\sqrt{10} \cdot \sqrt{90}$.

r)
$$\sqrt{10} \cdot \sqrt{90}$$

13.16. a)
$$\sqrt{1,3} \cdot \sqrt{5,2}$$
; b) $\sqrt{0,1} \cdot \sqrt{10}$;

B)
$$\sqrt{0.1} \cdot \sqrt{10}$$
;

6)
$$\sqrt{2.8} \cdot \sqrt{0.7}$$
; r) $\sqrt{4.5} \cdot \sqrt{50}$.

r)
$$\sqrt{4.5} \cdot \sqrt{50}$$

13.17. a)
$$\sqrt{0.05} \cdot \sqrt{45}$$
; b) $\sqrt{2.7} \cdot \sqrt{1.2}$;

B)
$$\sqrt{2.7} \cdot \sqrt{1.2}$$
:

6)
$$\sqrt{1.92} \cdot \sqrt{3}$$
; Γ) $\sqrt{16.9} \cdot \sqrt{0.4}$.

r)
$$\sqrt{16.9} \cdot \sqrt{0.4}$$
.

$$6) \ \frac{\sqrt{108}}{\sqrt{12}}$$

B)
$$\frac{\sqrt{117}}{\sqrt{52}}$$
;

r)
$$\frac{\sqrt{999}}{\sqrt{111}}$$

13.19. a)
$$\frac{\sqrt{2}}{\sqrt{50}}$$
; 6) $\frac{\sqrt{75}}{\sqrt{192}}$; B) $\frac{\sqrt{72}}{\sqrt{242}}$; r) $\frac{\sqrt{147}}{\sqrt{27}}$.

6)
$$\frac{\sqrt{75}}{\sqrt{192}}$$
;

B)
$$\frac{\sqrt{72}}{\sqrt{242}}$$

r)
$$\frac{\sqrt{147}}{\sqrt{27}}$$
.

013.20. Вычислите:

a)
$$\left(\frac{1}{2}\right)^2 + \left(\frac{2}{\sqrt{3}}\right)^{-4} \cdot (3)^{-2}$$
;

a)
$$\left(\frac{1}{2}\right)^2 + \left(\frac{2}{\sqrt{3}}\right)^{-4} \cdot (3)^{-2};$$
 B) $\left(\sqrt{6}\right)^{-4} + \left(\frac{6}{\sqrt{2}}\right)^{-2} \cdot \left(\frac{1}{2}\right)^{-3};$

6)
$$\left(\frac{\sqrt{2}}{3}\right)^{-2} - \left(\frac{3}{\sqrt{2}}\right)^{-4} : (3)^{-3}; \quad \text{r) } \left(\frac{3}{4}\right)^{-1} \cdot \left(\sqrt{6}\right)^{2} - \left(\frac{1}{\sqrt{5}}\right)^{-2}.$$

r)
$$\left(\frac{3}{4}\right)^{-1} \cdot \left(\sqrt{6}\right)^2 - \left(\frac{1}{\sqrt{5}}\right)^{-2}$$

13.21. Найдите значение выражения наиболее рациональным способом:

a)
$$\sqrt{13^2-12^2}$$
;

a)
$$\sqrt{13^2-12^2}$$
: B) $\sqrt{41^2-40^2}$:

6)
$$\sqrt{25^2-24^2}$$
; r) $\sqrt{85^2-84^2}$.

$$\mathbf{r)} \ \sqrt{85^2 - 84^2}.$$

Найдите значение выражения:

13.22. a)
$$\sqrt{8^2 + 15^2}$$
; B) $\sqrt{5^2 + 12^2}$;

B)
$$\sqrt{5^2+12^2}$$

6)
$$\sqrt{145^2 - 144^2}$$
; r) $\sqrt{313^2 - 312^2}$.

r)
$$\sqrt{313^2-312^2}$$
.

13.23. a)
$$\sqrt{72,5^2-71,5^2}$$
; B) $\sqrt{98,5^2-97,5^2}$;

B)
$$\sqrt{98.5^2-97.5^2}$$

6)
$$\sqrt{6,8^2-3,2^2}$$

6)
$$\sqrt{6.8^2-3.2^2}$$
; r) $\sqrt{21.8^2-18.2^2}$.

013.24. Найдите значение выражения:

B)
$$\sqrt{\frac{98}{176^2-112^2}}$$
;

$$6) \sqrt{\frac{149^2-76^2}{457^2-384^2}};$$

6)
$$\sqrt{\frac{149^2-76^2}{457^2-384^2}}$$
; r) $\sqrt{\frac{145,5^2-96,5^2}{193,5^2-31,5^2}}$.

13.25. Докажите, что:

a)
$$20\sqrt{\frac{a}{400}} = \sqrt{a};$$

a)
$$20\sqrt{\frac{a}{400}} = \sqrt{a};$$
 B) $\sqrt{c} = \frac{1}{15} \cdot \sqrt{225c};$

6)
$$\sqrt{b} = \frac{1}{12} \cdot \sqrt{169b}$$
;

6)
$$\sqrt{b} = \frac{1}{13} \cdot \sqrt{169b}$$
; r) $12 \cdot \sqrt{\frac{d}{144}} = \sqrt{d}$.

13.26. Зная, что $\sqrt{60} \approx 7,7$, найдите приближённое значение

a)
$$\sqrt{0.6}$$
;

б)
$$\sqrt{240}$$
;

б)
$$\sqrt{240}$$
; в) $\sqrt{6000}$; г) $\sqrt{540}$.

r)
$$\sqrt{540}$$
.

13.27. Зная, что $\sqrt{90} \approx 9.5$, найдите приближённое значение выражения

a)
$$\sqrt{810}$$
;

6)
$$\sqrt{360} + 2$$
;

B)
$$\sqrt{2250}$$
;

6)
$$\sqrt{360}$$
 + 2; B) $\sqrt{2250}$; r) $\sqrt{9000}$ - 4.

Найдите, если это возможно, такие целые числа a и b, что:

013.28. a)
$$(3-5\sqrt{2})^2 = a + b\sqrt{2}$$
; B) $(\sqrt{2}+7\sqrt{3})^2 = a + b\sqrt{6}$;

B)
$$(\sqrt{2} + 7\sqrt{3})^2 = a + b\sqrt{6}$$
;

6)
$$(2-3\sqrt{3})^2 = a - b\sqrt{3};$$

6)
$$(2-3\sqrt{3})^2 = a - b\sqrt{3};$$
 r) $(3\sqrt{20} - 2\sqrt{15})^2 = a + b\sqrt{3}.$

013.29. a)
$$(1 - a\sqrt{3})^2 = b - 12\sqrt{3};$$
 B) $(a - 3\sqrt{5})^2 = b + 12\sqrt{5};$

B)
$$(a - 3\sqrt{5})^2 = b + 12\sqrt{5}$$
;

6)
$$(a + 3\sqrt{2})^2 = 13 + b\sqrt{2}$$
;

6)
$$(a + 3\sqrt{2})^2 = 13 + b\sqrt{2}$$
; Γ) $(5 - a\sqrt{6})^2 = 49 - b\sqrt{6}$.

\circ13.30. Найдите целые числа a и b такие, что справедливо равен-CTBO:

a)
$$(a + b\sqrt{2})^2 = 3 + 2\sqrt{2}$$
;

6)
$$\left(a\sqrt{2} + b\sqrt{3}\right)^2 = 11 + 4\sqrt{6}$$
;

B)
$$(a - b\sqrt{3})^2 = 7 - 4\sqrt{3}$$
;

r)
$$(a\sqrt{2} - b\sqrt{5})^2 = 22 - 4\sqrt{10}$$
.

Упростите выражение:

013.31. a)
$$\sqrt{3-2\sqrt{2}}$$
;

6)
$$\sqrt{7 + 4\sqrt{3}}$$
;

B)
$$\sqrt{7-2\sqrt{6}}$$
;

$$\Gamma$$
) $\sqrt{5-2\sqrt{6}}$.

013.32. a)
$$\sqrt{2x-1+2\sqrt{x(x-1)}}$$
, $x \ge 1$;

6)
$$\sqrt{2x-1-2\sqrt{x(x-1)}}$$
, $x \ge 1$.

- •13.33. Докажите, что $\sqrt{16+6\sqrt{7}}+\sqrt{32-10\sqrt{7}}$ натуральное число.
 - 13.34. Докажите, что:

a)
$$a\sqrt{b}=\begin{bmatrix} -\sqrt{a^2b},\ \text{если}\ a<0,\ \sqrt{a^2b},\ \text{если}\ a>0; \end{bmatrix}$$

б)
$$\sqrt{ab} = \begin{bmatrix} -a\sqrt{b}, \text{ если } a < 0, \\ a\sqrt{b}, \text{ если } a > 0. \end{bmatrix}$$

Найдите все допустимые значения переменных, входящих в тождество:

13.35. a)
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
;

6)
$$\sqrt{a \cdot b} = \sqrt{-a} \cdot \sqrt{-b}$$
;

B)
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{-b}$$
;

$$\Gamma) \sqrt{ab} = \sqrt{-a} \cdot \sqrt{b}.$$

13.36. a)
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}};$$

$$6) \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{-b}};$$

$$B) \sqrt{\frac{a}{b}} = \frac{\sqrt{-a}}{\sqrt{-b}};$$

r)
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{-a}}{\sqrt{b}}$$
.