DSC 257R - UNSUPERVISED LEARNING

REPRESENTATIONS AND DISTANCES

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

A ChemCam Observation

A ChemCam Observation

# wave	shot1	shot2	shot3	shot4	shot5	shot6
240.811	2.97E+11	2.61E+11	3.45E+11	2.99E+11	2.93E+11	3.07E+11
240.86501	1.50E+11	1.32E+11	1.22E+11	1.17E+11	6.16E+10	9.10E+10
240.918	1.06E+11	1.31E+11	8.70E+10	7.35E+10	1.04E+11	7.50E+10
240.972	1.09E+11	1.09E+11	1.67E+11	1.92E+11	1.43E+11	1.75E+11
241.02699	3.59E+11	4.78E+11	5.33E+11	4.23E+11	4.35E+11	5.27E+11
241.07899	8.83E+11	9.92E+11	1.13E+12	1.01E+12	1.04E+12	1.08E+12
241.133	1.06E+12	1.18E+12	1.42E+12	1.26E+12	1.28E+12	1.38E+12
241.188	7.63E+11	8.49E+11	1.06E+12	9.59E+11	9.22E+11	1.02E+12
241.24001	2.88E+11	3.21E+11	4.30E+11	4.09E+11	3.71E+11	4.04E+11
241.29401	1.88E+11	1.79E+11	2.78E+11	2.30E+11	1.85E+11	2.15E+11
241.34801	3.14E+11	4.13E+11	4.12E+11	4.25E+11	4.04E+11	3.66E+11
241.401	4.71E+11	5.03E+11	5.99E+11	4.97E+11	5.12E+11	5.65E+11
241.45599	3.62E+11	3.52E+11	3.61E+11	3.50E+11	3.69E+11	4.13E+11
241.508	1.10E+11	1.65E+11	1.89E+11	1.72E+11	1.27E+11	1.92E+11
241.562	5.23E+10	6.94E+10	1.30E+11	3.23E+10	6.19E+10	9.61E+10

A single observation can be represented by a 6144-dimensional vector.

Problem: Scaling Consider these two observations:

Problem: Scaling

Consider these two observations:

$$x_j' = \frac{x_j}{\sum_i x_i}$$

The normalized vectors can be thought of probability distributions.

Problem: Scaling

Consider these two observations:

• One solution: **normalize** each vector to sum to 1:

$$x_j' = \frac{x_j}{\sum_i x_i} \cdot$$

The normalized vectors can be thought of **probability distributions.**

• Modified input space: the space of probability distributions over m=6144 outcomes, also known as the **probability simplex:**

$$\Delta_m = \left\{ (p_1, \dots, p_m) : p_i \ge 0, \sum_i p_i = 1 \right\}.$$

L_1 Distance

The ℓ_1 distance between vectors $x, z \in \mathbb{R}^m$ is

$$||x - z||_1 = \sum_{i=1}^m |x_i - z_i|.$$

L_1 Distance

The ℓ_1 distance between vectors $x, z \in \mathbb{R}^m$ is

$$||x - z||_1 = \sum_{i=1}^m |x_i - z_i|.$$

Example: distributions p, q

A Popular Distance Function Between Distributions

Let p, q be probability distributions over a set of m outcomes.

The Kullback-Leibler divergence or relative entropy between p, q is:

$$KL(p,q) = \sum_{i=1}^{m} p_i \log \frac{p_i}{q_i}.$$

A ChemCam Observation

What if the wavelength measurements are noisy and bleed into neighboring values?

Some Ways of Handling Noise

Alternative distance function
 E.g., Earthmover or Wasserstein distance.

Some Ways of Handling Noise

Alternative distance function
 E.g., Earthmover or Wasserstein distance.

Alternative representation, e.g., using binning or blurring