AED2 - Aula 16 Radix sort e bucket sort

Radix sort

Na última aula vimos o counting sort,

- cuja ideia central é contar o número de predecessores de cada chave
 - o para posicionar corretamente os elementos no vetor ordenado.
- Ele é muito eficiente para ordenar conjuntos de elementos
 - cujas chaves são inteiros pequenos.
- Por inteiros pequenos, queremos dizer
 - o valores inteiros entre 0 e R 1,
 - sendo R da ordem do número de elementos do conjunto.

Uma alternativa para ordenar conjuntos,

- quando suas chaves são grandes
 - o é dividir as chaves em pedaços menores
 - e realizar a ordenação por etapas.
- Chamamos cada um desses pedaços de dígito
 - o e seu tamanho deriva da base (radix) utilizada.
 - Note que, esses dígitos não precisam pertencer ao conjunto {0, ..., 9}.
- Essa é a ideia central dos métodos de ordenação radix sort.

Os métodos radix sort

- também são chamados de ordenação digital,
 - o por ordenar as chaves dígito-a-dígito,
 - ou strings caracter-a-caracter.
- Eles variam de acordo com a ordem em que consideramos os dígitos, i.e.,
 - se vamos dos mais significativos para os menos,
 - o u dos menos para os mais significativos.

MSD radix sort

• Bônus, conteúdo extra

Neste método vamos ordenar o conjunto indo

- do dígito mais significativo até o menos significativo,
 - o i.e., percorremos cada chave da esquerda para a direita.
- Em cada etapa podemos usar uma variante do algoritmo da separação,
 - o que estudamos junto do quickSort.
- Esta variante só considera o dígito corrente
 - o e divide o conjunto em R subconjuntos,

- sendo R o número de possibilidades de valor de um dígito.
- Um caso particular, e mais simples, deste método
 - o em que o dígito tem tamanho 1
 - e R vale 2^1 = 2
 - o é o binary quicksort.

```
const int bitsword = 32;
const int bitsdigit = 1;
const int digitsword = bitsword / bitsdigit;
const int Base = 1 << bitsdigit;</pre>
int digit(int a, int d)
  // return (int)((a >> (bitsdigit * (digitsword - 1 - d))) & (Base - 1));
   return (int)((a >> (bitsword - 1 - d)) & (Base - 1));
}
int digit2(int a, int d)
  // return (int)(a / exp2(bitsdigit * (digitsword - 1 - d))) % Base;
   return (int)(a / exp2(bitsword - 1 - d)) % Base;
}
// p indica a primeira posicao, r indica a ultima, d indica o digito corrente
void quicksortBin(int v[], int 1, int r, int d)
   int i, j;
   i = 1;
   j = r;
   if (r <= 1 || d > bitsword)
       return;
   while (j > i)
       while (digit(v[i], d) == 0 \&\& i < j)
       while (digit(v[j], d) == 1 \&\& j > i)
           j--;
       troca(&v[i], &v[j]);
   }
   if (digit(v[r], d) == 0)
       j++;
   quicksortBin(v, 1, j - 1, d + 1);
   // quicksortBin(v, l, j - 1, d + bitsdigit);
   quicksortBin(v, j, r, d + 1);
   // quicksortBin(v, j, r, d + bitsdigit);
}
```

```
void MSDradixSort(int v[], int n)
{
   quicksortBin(v, 0, n - 1, 0);
}
```

Eficiência de tempo:

- Uma observação importante para analisar os método radix sort
 - o é que nenhum dígito é verificado mais de uma vez.
 - Assim, radix sort é linear no número de dígitos.
- O(n * bitsword)

Eficiência de espaço:

- memória adicional da ordem de bitsword,
 - o por conta da profundidade máxima da recursão.

Estabilidade:

Não é estável.

LSD radix sort

Este método é interessante para ordenar

- um vetor v[0 .. n 1] de chaves,
 - o sendo todas do mesmo comprimento.
- Se as chaves são strings de caracteres,
 - o estamos falando do problema de colocá-las em ordem lexicográfica.

Nele vamos ordenar o conjunto indo

- do dígito menos significativo até o mais significativo,
 - o i.e., percorremos cada chave da direita para a esquerda.
- Em cada etapa ordenamos todo o conjunto
 - o considerando um dígito por etapa
 - o e usando um método de ordenação estável,
 - de preferência o counting sort,
 - por levar tempo linear, ser estável,
 - e funcionar bem com chaves pequenas (dígitos).

Primeiro veremos uma versão do LSD radix sort

- que trabalha com vetores de caracteres (strings) de mesmo tamanho,
 - sendo cada string uma chave.

Exemplo:

Original	3° Dígito	2° Dígito	1° Dígito
123	123	123	123
KNG	KDA	KDA	FFU
FFU	RFD	KDV	KDA
KDV	KNG	RFD	KDV
RFD	FFU	FFU	KNG
KDA	KDV	KNG	RFD

Observe que na última coluna todas as chaves estão ordenadas.

- Para entender o motivo, considere a penúltima coluna e observe que
 - o se remover dela todos os elementos que não começam com K
 - os elementos restantes já estão em ordem.
- De fato, em cada etapa deste método
 - o todas as chaves estão ordenadas
 - com relação apenas aos dígitos já considerados.
- Como a ordenação utilizada em cada etapa é estável,
 - esta propriedade invariante se mantém e propaga
 - para mais um dígito a cada nova etapa.

No algoritmo a seguir,

- W é o comprimento, em dígitos, de cada chave (string),
- R é o universo de valores que cada dígito pode assumir.
 - Note que, R < 256, já que cada dígito corresponde a um byte.

```
typedef unsigned char byte;

// Rearranja em ordem lexicográfica um vetor v[0 .. n - 1]

// de strings. Cada v[i] é uma string v[i][0 .. W - 1]

// cujos elementos pertencem ao conjunto 0 .. R - 1.

void ordenacaoDigital(byte *v[], int n, int W, int R)

{
   int *fp, d, r, i;
   byte **aux;
   fp = malloc((R + 1) * sizeof(int));
   aux = malloc(n * sizeof(byte *));

   for (d = W - 1; d >= 0; d--)
   {
      for (r = 0; r <= R; r++)</pre>
```

```
fp[r] = 0;
       for (int i = 0; i < n; i++)
           r = v[i][d];
          fp[r + 1] += 1;
       // agora fp[r] é a frequência de r-1
       for (r = 1; r <= R; r++)
           fp[r] += fp[r - 1];
      // agora fp[r] é a freq dos predecessores de r
      // logo, a carreira de elementos iguais a r
       // deve começar no indice fp[r]
      for (i = 0; i < n; i++)
           r = v[i][d];
           aux[fp[r]] = v[i];
           fp[r]++;
       }
      // aux[0..n-1] está em ordem crescente considerando
       // apenas os digitos entre d .. W - 1
      for (i = 0; i < n; i++)
          v[i] = aux[i];
  }
  free(fp);
  free(aux);
}
```

Invariante e corretude:

- No início de cada iteração do laço externo as strings estão ordenadas
 - o com relação aos subvetores v[i][d+1 .. W 1], para i = 0, ..., n.

Eficiência de tempo:

- Uma observação importante para analisar os método radix sort
 - o é que nenhum dígito é verificado mais de uma vez.
 - Assim, radix sort é linear no número de dígitos.
- O((n + R) * W), sendo
 - o no número de chaves,
 - R o número de valores que cada dígito pode assumir,
 - W o número de dígitos em cada chave.
- Este método é preferível às ordenações O(n lg n) quando
 - \circ R = O(n) e W = o(lg n),
 - sendo que o(lg n) indica assintoticamente menor que lg n.

Eficiência de espaço:

memória adicional da ordem de (n + R).

Estabilidade:

- É estável.
 - o desde que o método escolhido para ordenar cada dígito seja estável.
 - o Isso porque, neste caso, em nenhuma etapa
 - elementos com a mesma chave serão invertidos.

Agora veremos uma versão semelhante do LSD radix sort

- que trabalha com vetores de inteiros,
 - sendo cada inteiro uma chave.
- Esta versão manipula explicitamente os bits das chaves
 - o para obter cada dígito.

```
const int bitsword = 32;
const int bitsdigit = 8;
const int digitsword = bitsword / bitsdigit;
const int digitsword = bitsword / bitsdigit;
const int Base = 1 << bitsdigit;

int digit(int a, int d)
{
    return (int)((a >> (bitsdigit * (digitsword - 1 - d))) & (Base - 1));
}

- Calcular digits com operações em bits
    bitsdigit = 8

a [1] 22 33 44

digitsword = 4

digitsword - 1 - d = 4 - 1 - 1 = 2

bitsdigit * (digitsword - 1 - d) = 8 + 2 = 16

a >> (bitsdigit * (digitsword - 1 - d)) = a >> 16

a [1] 22
```

```
Base = 1 << bitsdigit = 1 << 8
     Bare 0 ... 0 0 ... 0 0 ... 0 1 0 ... 0
 (Bak-1) 0 ... 0, 0 ... 0 0 ... 00 1 ... 1
              a >> (bits git * (digitsword - 1 - d)) & (Base-1)
         Q 0 ... 0 0 ... 0 22
int digit2(int a, int d)
  return (int)(a / exp2(bitsdigit * (digitsword - 1 - d))) % Base;
}
void LSDradixSort(int v[], int n)
  int r, i, d;
  int *fp, *aux;
  fp = malloc((Base + 1) * sizeof(int));
  aux = malloc(n * sizeof(int));
  for (d = digitsword - 1; d >= 0; d--)
      for (r = 0; r \le Base; r++)
         fp[r] = 0;
      for (i = 0; i < n; i++)
         r = digit(v[i], d);
         fp[r + 1] += 1;
      // agora fp[r] é a frequência de r-1
      for (r = 1; r \leftarrow Base; r++)
         fp[r] += fp[r - 1];
      // agora fp[r] é a freq dos predecessores de r
      // logo, a carreira de elementos iguais a r
      // deve começar no indice fp[r]
      for (i = 0; i < n; ++i)
         r = digit(v[i], d);
         aux[fp[r]] = v[i];
         fp[r]++; // *
      }
      // aux[0..n-1] está em ordem crescente considerando
```

```
// apenas os digitos entre d .. digitsword - 1
    for (i = 0; i < n; i++)
        v[i] = aux[i];
}
free(fp);
free(aux);
}</pre>
```

Eficiência de tempo:

- Uma observação importante para analisar os método radix sort
 - o é que nenhum dígito é verificado mais de uma vez.
 - o Assim, radix sort é linear no número de dígitos.
- O((n + Base) * digitsword), sendo
 - o no número de chaves,
 - Base o número de valores que cada dígito pode assumir,
 - o digitsword o número de dígitos em cada chave.
- Se os dígitos forem pequenos e as chaves grandes
 - a eficiência tende a O(n lg n).
- Já se os dígitos forem grandes em relação às chaves
 - o a eficiência tende a O(n).
- Por exemplo, tome n = 1 bilhão.
 - Se bitsdigit = 1 (Base = 2) e bitsword = 32,
 - temos digitsword = 32, que é maior que lg 10^9.
 - Se bitsdigit = 16 (Base = 265536) e bitsword = 32,
 - temos digitsword = 4, que é uma pequena constante.

Eficiência de espaço:

• memória adicional da ordem de (n + Base).

Estabilidade:

É estável.

Bucket sort

Este é um método eficiente para ordenar um conjunto com n elementos

- distribuídos uniformemente num intervalo de tamanho k.
- Primeiro, dividimos o intervalo de tamanho k em n baldes
 - o e associamos com cada balde
 - uma fração de valor igual a k/n.
- Então colocamos cada elemento em seu respectivo balde.
- Em seguida ordenamos os elementos de cada balde,
 - o que deve levar tempo constante,
 - já que cada balde deve ter um número pequeno de elementos,

- uma vez que estes vieram de uma distribuição uniforme.
- Por fim, percorremos os baldes em ordem
 - o e os elementos de cada balde, também em ordem,
 - copiando eles de volta para o vetor original.


```
#define lim_inf 0
#define lim_sup 1

void bucketSort(double v[], int n)
{
    int i, j, k;
    Celula *p, *nova, *morta;
    Celula **b = (Celula **)malloc(n * sizeof(Celula *));
    // inicializando cada balde com uma lista com um nó cabeça
    for (j = 0; j < n; j++)
    {
        b[j] = (Celula *)malloc(sizeof(Celula));
        b[j]->prox = NULL;
    }
    // coloca cada elemento no balde correspondente
```

```
for (i = 0; i < n; i++)
    j = (int)(v[i] * n);
    // j = (int)((double)(v[i] - lim_inf) / (lim_sup - lim_inf) * n);
    p = b[j];
    // já insere o elemento na ordem correta dentro do balde
    while (p->prox != NULL \&\& p->prox->chave < v[i])
        p = p \rightarrow prox;
    nova = (Celula *)malloc(sizeof(Celula));
    nova->chave = v[i];
    nova->prox = p->prox;
    p->prox = nova;
}
//põe os elementos dos baldes de volta no vetor
i = 0;
for (j = 0; j < n; j++)
    p = b[j] - prox;
    while (p != NULL)
        v[i++] = p->chave;
        p = p \rightarrow prox;
    }
}
for (j = 0; j < n; j++)
    p = b[j];
    while (p != NULL)
        morta = p;
        p = p - > prox;
        free(morta);
    }
}
free(b);
```

Eficiência de tempo esperado é O(n),

}

- apenas se as chaves forem uniformemente distribuídas.
- Sem essa hipótese o tempo de pior caso do algoritmo é O(n^2),
 - o pois muitos elementos podem se acumular num mesmo balde,
 - o e a ordenação deste pode levar tempo quadrático,
 - dependendo do método utilizado.
- Diante disso, vale a pena usar um método de ordenação O(n lg n),
 - para ordenar cada balde?
 - Em geral não, pois são esperados poucos elementos por balde,
 - e métodos como insertionSort são melhores para n pequeno.

Eficiência de espaço:

- memória adicional da ordem de n,
 - o pois são utilizados n baldes e
 - o n células, uma para cada elemento.

Estabilidade:

- A estabilidade depende da implementação da ordenação intrabalde.
- O código que estudamos não é estável, mas uma pequena modificação
 - o na inserção/ordenação intra balde pode corrigir isso.
 - Que modificação é essa?