Day One Assignment

Name: Anushka Gupta SRN: PES2UG20CS060

Class: 5A

Date: 04 July 2022

Problem Statement 1
Problem Statement 2
Problem Statement 3
Problem Statement 4

Problem Statement 1

Check whether the dataset in <code>gen1.csv</code> is monotonic and find correlation using the same(spearman/Pearson)

Problem Statement 2

Use the WEKA Explorer and justify the values

- 1. MCC
- 2. Kappa Stats
- 3. ROC Curve Value

For the different pre-defined datasets present under

C:\\Program Files\\Weka-3-8-6\\data\\diabetes.arff

MCC It's a correlation between predicted classes and ground truth.

- +1 denotes a perfect model
- -1 denotes a poor model
- 0 denotes that the classifier is no better than a random flip of a fair coin

Kappa Statistics is the ratio of the proportion of times that the appraisers agree (corrected for chance agreement) to the maximum proportion of times that the appraisers could agree (corrected for chance agreement).

ROC Curve Value are frequently used to show in a graphical way the connection/trade-off between clinical sensitivity and specificity for every possible cutoff for a test or a combination of tests. In addition the area under the ROC curve gives an idea about the benefit of using the test(s) in question.

- 0.7 to 0.8 is considered acceptable
- 0.8 to 0.9 is considered excellent
- 0.9+ is considered outstanding

The ROC Curve Value and PRC Area is considered excellent for this data.

MCC value being +0.450 suggests that the model is fairly good.

Problem Statement 3

Calculate Mean, Median and mode for columns rainfall, temp, VP, PET in R

Columns	Mean	Median	Mode
Rainfall	149.5608	78.12	
Temp	25.15173	24.8	

Columns	Mean	Median	Mode
VP	48.51165	46.01	
PET	5.79288	5.46	

```
> data <- read.csv("gen1.csv")
> result.mean <- mean(data$temp)
> print(result.mean)
[1] 25.15173
> result.median <- median(data$temp)
> print(result.median)
[1] 24.8
>
```

```
> result.mean <- mean(data$vp)
> print(result.mean)
[1] 48.51165
> result.median <- median(data$vp)
> print(result.median)
[1] 46.01
>
```

```
> result.mean <- mean(data$rainfall, na.rm = TRUE)
> print(result.mean)
[1] 149.5608
> result.median <- median(data$rainfall, na.rm = TRUE)
> print(result.median)
[1] 78.12
>
```

```
G:/My Drive/Semester_5/Summer_Course/tableau/[01] dayOne/Assignment/

> data <- read.csv("gen1.csv")
> mode = function(){
+ return(sort(table(data$temp))[1])
+ }
> mode()
20.99
1
> mode = function(){
+ return(sort(table(data$vp))[1])
+ }
> mode()
10.98
1
> mode = function(){
+ return(sort(table(data$PET))[1])
+ }
> mode()
4.31
1
> mode = function(){
+ return(sort(table(data$rainfall))[1])
+ }
> mode()
0.05
1
```

Problem Statement 4

Plot histogram for temp, vp, PET in R

Histogram of v\$temp

Histogram of v\$vp

Histogram of v\$PET

Day One Assignment 8