Multi-Level Logic Optimization

Multi-Level Logic Synthesis

• Two Level Logic:

$$F1 = \overline{x}yz\overline{w} + \overline{x}y\overline{z}\overline{w} + xyzw + xy\overline{z}$$
$$= \overline{x}y\overline{w} + xyzw + xy\overline{z}$$

- Espresso
- Programmable Logic Array (PLA)
- Multilevel Logic:

$$F2 = g(a + b\overline{c}) + c$$

Standard Cell

Multi-level Logic

• Standard cell implementation:

3

Different Placement

Local Optimization

Circuit Restructuring

Representation Choices

- How to represent the function?
- How to represent the implementation?

Two-level logic:

two issues are merged

Multi-level logic:

- merged view (representation and implementation are one)
- . separated view

Boolean Network

- Directed Acyclic Graph (DAG)
- Primary Input (PI)
- Primary Output (PO)
- Intermediate node : logic function f_i, variable y_i
- Edge
- Fan-in, transitive fan-in
- Fan-out, transitive fan-out

- (1) Sum-of-Product abc'+a'bd+b'd'+b'e'f adv:
 - easy to manipulate and minimize
 - many algorithms available disady:
 - not representative of logic complexity
 f = ad+ae+bd+be+cd+ce
 f' = a'b'c'+d'e'
 - not easy to estimate if logic becoming simpler

(2) factored form: Any depth of sum of productEx: aa'ab'cab+c'd

(a+b)(c+a'+de)+f

A CMOS complex gate implementing f = ((a+bc)(c+d))'
2 * literal count = transistors#

adv:

- natural multi-level representation
- good estimate of the complexity of function
- represent both the function and its complement

disadv:

- more difficult to manipulate than two-level form
- lack of the notion of optimality

(3) NAND or NOR form

A simple gate implementation of f = ((a+bc)(c+d))'

adv:

- simple data structure storage -save fast simulation
- efficient optimization strategies for rulebased logic optimization
- complete with inverter count disady:
 - The network is finely decomposed in a particular way and this may obscure some natural structures.

Multi-level Logic Optimization

- Technology independent
 - Decomposition/Restructuring

Algebraic (Boolean) (SIS)

Functional

- Node optimization
- Technology dependent
 - Technology mapping

Technology Independent Phase

Restructuring

Basic Operations:

1. decomposition (single function)

$$x = ab$$

$$y = c+d$$

2. extraction (multiple funciton)

$$f = (az+bz')cd+e$$

$$g = (az+bz')e'$$

$$h = cde$$

$$f = xy + e$$

$$g = xe' \qquad h = ye$$

$$x = az+bz$$
, $y = cd$

Technology Independent Phase

3. factoring (series-parallel decomposition)

$$f = ac+ad+bc+bd+e$$

$$\downarrow \downarrow$$

$$f = (a+b)(c+d)+e$$

4. substitution

$$g = a + b$$

$$f = a + bc$$

$$f = g(a+c)$$

boolean

$$x + x' = 1$$

$$x x' = 0$$

$$(a+b)(a+c)$$

$$=a+ac+ba+cb$$

5. collapsing

$$f = ga+g'b$$

$$g = c+d$$

$$f = ac + ad + bc'd'$$

$$g = c + d$$

"Division" plays a key role in all these operations.

Division

Division plays a key role in all restructuring operations

- Boolean divide
- Algebraic divide

Algebraic and Boolean Operations

- Algebraic operations:
 - Algebra of expression involving real numbers
 - Those rules that are common to the algebra of real numbers and Boolean Algebra
- Boolean operations:
 - All laws of Boolean Algebra

Boolean Algebra

- Rules hold for Boolean Algebra only
 - Idempotency
 - $a \cdot a = a^2$ (real number)
 - $a \cdot a = a$ (Boolean Algebra)
 - Complementation
 No direct correspondence in real field
 - Distributivity of "+" over " "
 a + bc = (a+b)(a+c) in Boolean Algebra
 Not in real number
 - Absorptiona + ab = a in Boolean AlgebraNot in real number

Boolean Divide

• Def 1: p is a Boolean divisor of f if $q \neq \phi$ and r exists such that

$$f = pq + r$$

(p is said to be a factor of f if $r = \phi$)

- (1) q is called the quotient, f/p
- (2) r is called the remainder
- (3) q and r are not unique

Let
$$\overline{} = (f, d, r)$$

• Def 2 : g is a Boolean divisor of f if there exists h such that

$$f \subseteq gh + e \subseteq f + d (d : don't care)$$

Boolean Divide

• Theorem 1

A logic function g is a Boolean factor of a logic function of $f \ll g$

• Theorem 2 If $f \cdot g \neq \phi$, then g is a Boolean divisor of f.

$$g \bigcirc f = gq + r$$

too many Divisor (factors)!

Algebraic Divide

• Def 3:

f is an algebraic expression if f is a set of cubes such that no one cube contains another.

Ex: a + ab is not an algebraic expression because a contains ab.ab + bd is an algebraic expression

• Def 4:

f • g is an algebraic product if f and g are algebraic expression and have disjoint support (no input variable in common). Otherwise,
f • g is a Boolean product.

Ex:

Weak Division

Given f and p, return q and r such that pq is an algebraic product and

$$f = pq + r$$

Algebraic Divide

Weak-Div (f, p) $U = set \{U_i\}$ of cubes in f with literals not in p deleted $V = set \{V_i\}$ of cubes in f with literals in P deleted $\mathcal{U}^{i} = \{V_{i} \subseteq V : U_{i} = p_{i}\}$ $q \equiv \cap \mathcal{U}^i$ r = f - pqEx: f = ac + ad + ae + bc +bd +be +a'bp = a + bU = a + a + a + b + b + b + bV = c + d + e + c + d + e + a $\mathcal{U}^{a} = c + d + e$ $\mathcal{U}^{b} = c + d + e + a$ $q = \mathcal{U} \cap \mathcal{U}^b = c + d + e \quad r = f - pq = a'b$

Division

• Substitution : knows divisor ? Yes

• Extraction : knows divisor ? No

• Factor : knows divisor ? No

• Decomposition: knows divisor? No

Boolean Division

Theorem

f1 = hx + e be a cover of an incompletely specified function (f, d, r). Suppose $x'g+xg'\subseteq d$ where g is any function. Then, f2 = hg + e is also a cover.

- Algorithm
 - 1. $f = h \cdot g + e$ (where h = f/g)
 - 2. use a new variable x to represent g, $f = h \cdot x + e$
 - 3. form the don't care set, xg' + x'g
 - 4. minimize f with the don't care
 - 5. quotient f/x (quotient = the terms of f with x)

 remainder = the terms of f

 without x)

Substitution

• An existing node in a network may be a useful divisor in another node.

Algebraic Substitution

- Dividing the function f_i at node i by f_j or f_j' at node j pair-wise.
- If f_j is a divisor of f_i $f_i = g \cdot y_j + r$

No need to try all pairs

(Cases where f_j is not an algebraic divisor of f_i)

- 1. f_i contains a literal not in f_i
- 2. f_j contains more terms than f_i
- 3. for any literal, the count in f_i exceed that in f_i
- 4. f_i is f_i's transitive fan-in (cycle)

Boolean Substitution

• Ex:

$$f = a + bc$$

 $g = a + b$
substituting g into f (Let $X = a + b$)
 $DC = X(a + b)' + X'(a + b)$
minimize $(a + bc) \cdot DC'$ (force X to appear in f)
 $=> (a + bc)(X(a + b)' + X'(a + b))'$
using Don't Care $= X(a + b)' + X'(a + b)$

- A minimum cover is a + bc. But it does not contain X or X'
- force X (or X') to remain in f
 => f = a + Xc

$$f = a + gc$$
$$g = a + b$$

Division

• Substitution : knows divisor ? Yes

• Extraction : knows divisor ? No

• Factor : knows divisor ? No

• Decomposition: knows divisor? No

- Kernel: for finding divisor (algebraic)
 - What is kernel?
 - Kernel algorithm
 - kernel intersection
- Too many divisor, but much smaller number of kernel.

• Definition:

An expression is cube-free if no cube divides the expressions evenly.

Ex:

```
a + bc is cube-freeab + ac is not cube-freeabc is not cube-free
```

Definition:

The kernel of an expression f are the set of expression

 $K(f) = \{ f/c \mid f/c \text{ is cube free and c is a cube} \}$ Ex:

```
f = acb + acd + e a kernel

f/a = cb + cd not a kernel

f/ac = b + d a kernel
```

• Definition:

A cube c used to obtain the kernel k=f/c is a co-kernel c(f) denotes the set of co-kernel.

Ex:

$$f = adf + aef + bdf + bef + cdf + cef + g$$
$$= (a + b + c)(d + e)f + g$$

kernel	co-kernel
a+b+c	df,ef
d+e	af,bf,cf
(a+b+c)(d+e)	f
(a+b+c)(d+e)f+g	1

• Theorem:

f and g have a common multiple-cube divisor d

$$<=>\exists h_f \in \mathcal{K}(f) h_g \in \mathcal{K}(g)$$

such that $d = h_f \cap h_g$

Ex:

$$f_1 = ab (cl + f + g) + m$$

 $f_2 = ai (cl + f + j) + k$
 $K(f_1) = \{ cl + f + g \}$
 $K(f_2) = \{ cl + f + j \}$
 $K(f_1) \cap K(f_2) = cl + f$

common multiple cube divisor cl + f

The level of a kernel

A kernel is level-0 if it has no kernels except itself.

A kernel is level-n if it has at least one level n-1 kernel but no kernel (except itself) of level n or higher.

Ex:

$$f = (a+b+c)(d+e)f + g$$

kernel	level
a+b+c	0
d+e	0
(a+b+c)(d+e)	1
(a+b+c)(d+e)f + g	2

- Why need to define level of kernel?
 - sometimes it is nearly as effective to compute a certain subset of kernel
 - computation time and quality trade off

Kernel Algorithm

```
literal index ↓ expression
Kernel(j
   R = \phi
   for (i=j; i \le n; i++){
     if (l<sub>i</sub> appears in more than one cube)
         c = largest cube dividing g/\{l_i\} evenly
         if (l_k \notin c \text{ for all } k < i)
            R = R \cup Kernel (i+1, g/(\{l_i\} \cup c))
   R = R \cup \{g\}
   Return R
```

• The literals in the support of f are numbered from 1 to n.

Kernel Algorithm

f = abcd+abce+adfg+aefg+abde+acdef+beg

co-kernel	kernel
1	a((bc+fg)(d+e)+de(b+cf)))+beg
a	(bc+fg)(d+e)+de(b+cf)
ab	c(d+e)+de
abc	d+e
abd	c+e
abe	c+d
ac	b(d+e)+def
acd	b+ef

Note: f/bc = ad+ae = a(d+e).

Kernel Intersection

Kernel Intersection

$$K = \{ \kappa_1, \kappa_2, \dots, \kappa_n \}$$

- Form a new expression IF(k) which corresponds to the set K of kernel
 - associate each distinct cube with a new literal
 - each kernel corresponds to a cube of the new function
 - Then, every element in the set of co-kernel of IF(K) corresponds to a unique kernel intersection.

Example

Ex:

Let
$$t_1 = abc$$

 $t_2 = de$
 $t_3 = fg$
 $t_4 = fh$
 $t_5 = gh$

$$K_1 = abc + de + fg = t_1t_2t_3$$

 $K_2 = abc + de + fh = t_1t_2t_4$
 $K_3 = abc + fh + gh = t_1t_4t_5$
 $IF(K) = t_1t_2t_3 + t_1t_2t_4 + t_1t_4t_5$
Co-kernel of $(IF(k)) = \{t_1, t_1t_2, t_1t_4\}$

Kernel Extraction

- Kernel extraction (k, n)
 - 1. Find all kernels of all functions and generate all kernel intersections.
 - 2. Choose one with best "value".
 - 3. Create a new node with this as function.
 - 4. Algebraically substitute new node everywhere.
 - 5. Repeat 1,2,3,4 until value < threshold.
- Step1: Selection of level of kernel determines speed and quality trade off.
- Step2:

area-value(y) = freq(y) * literal(y) - literal(y) - freq(y)

Factor

- Factor(F)
 - 1. If |F| = 1 return False
 - 2. $D = Choose_Divisor(F)$
 - 3. (Q,R) = Divide(F,D)
 - 4. Return. Factor(Q)*Factor(D) + Factor(R)
- Efficiency and quality

Step2:

Divisor: 1. choose literal factor

- 2. choose one level-0 kernel
- 3. choose the best kernel

Step3:

Algebraic divide

Boolean divide

Decomposition

Decomposition

- similar to factoring, except that each divisor is formed as a new node
- For each method of factoring, we have the associated method for decomposition.

Example

Ex:
$$f_1 = ab(c(d+e)+f+g)+h$$

 $f_2 = ai(c(d+e)+f+j)+k$
- extraction(level-0 kernel)
 $\alpha \circ (f_1) = \{d+e\}$
 $\alpha \circ (f_2) = \{d+e\}$
 $\alpha \circ (f_1) \cap \alpha \circ (f_2) = \{d+e\}$
 $1 = d+e$
 $1 = ab(cl+f+g)+h$
 $1 = ai(cl+f+j)+k$
- extraction (level-0 kernel)
 $\alpha \circ (f_1) = \{cl+f+g\}$
 $\alpha \circ (f_2) = \{cl+f+j\}$
 $\alpha \circ (f_1) \cap \alpha \circ (f_2) = \{cl+f\}$
 $\alpha = cl+f$ $1 = d+e$
 $1 = ab(m+g)+h$
 $1 = ab(m+g)+h$

Example (cont.)

- cube extraction

$$n = am$$

 $m = cl+f$
 $l = d+e$
 $f1 = b(n+ag)+h$
 $f2 = i(n+aj)+k$

$$2*1-2-1 = -1$$

$$m = cl+f$$

$$3*1-3-1 = -1$$

$$1 = b(n+ah)+h$$

$$f2 = i(n+aj)+k$$

Example (cont.)

eliminate -1 (collapsing)

