Определение теплоты испарения жидкости

1 Цель работы:

1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса.

2 В работе используются:

термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчетный микроскоп.

3 Экспериментальная установка:

4 Теоретическая часть:

Испарением называется переход вещества из жидкого в газообразное состояние. Оно происходит на свободной поверхности жидкости. При испарении с поверхности вылетают молекулы, образуя над ней пар. Для выхода из жидкости молекулы должны преодолеть силы молекулярного сцепления. Кроме того, при испарении совершается работа против внешнего давления P, поскольку объем жидкости меньше объема пара. Не все молекулы жидкости способны совершить эту работу, а только те из них, которые обладают достаточной кинетической энергией. Поэтому переход части молекул в пар приводит к обеднению жидкости быстрыми молекулами, т. е. к ее охлаждению. Чтобы испарение проходило без изменения температуры, к жидкости нужно подводить тепло. Количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется молярной теплотой испарения (парообразования).

Теплоту парообразования жидкостей можно измерить непосредственно при помощи калориметра. Такой метод, однако, не позволяет получить точных результатов из- за неконтролируемых потерь

тепла, которые трудно сделать малыми. В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}. (1)$$

Здесь P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарения жидкости, V_2 — объем пара, V_1 — объем жидкости. Найдя из опыта dP/dT, T, V_2 и V_1 , можно определить L путем расчета. Вели- чины L, V_2 и V_1 в формуле должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю.

В нашем приборе измерения производятся при давлениях ниже атмосферного. В этом случае задача существенно упрощается.

В таблице для ряда жидкостей приведены: температура, при которой давление насыщенных паров равно атмосферному, величины V_2 и V_1 , входящие в (1), а также константы а и b в уравнении Вандер-Ваальса.

Вещество	$T_{\text{кип}}$	V_1 ,	V_2 ,	b	a	a/V_2^2
		10^{-6}	10^{-3}	10^{-6}		
	K	$\frac{\text{M}^3}{\text{моль}}$	$\frac{\text{M}^3}{\text{моль}}$	$\frac{\text{M}^3}{\text{моль}}$	$\frac{\Pi a \cdot M^6}{MOЛЬ^2}$	кПа
Вода	373	18	31	26	0.4	0.42
CCl_4	350	97	29	126	1.95	2.3
Этиловый эфир	307	104	25	137	1.8	2.9
Этиловый спирт	351	58	29	84	1.2	1.4

Из таблицы видно, что V_1 не превосходит 0.5% от V_2 . При нашей точности опытов величиной V_1 в (1) можно пренебречь.

Обратимся теперь к V_2 , которое в дальнейшем будем обозначать просто V. Объем V связан с давлением и температурой уравнением Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT.$$

Из рассмотрения таблицы следует, что b одного порядка с V_1 . В уравнении Ван-дер-Ваальса величиной b следует пренебречь. Пренебреже- ние членом a/V^2 по сравнению с P вносит ошибку менее 3%. При давлении ниже атмосферного ошибки становятся еще меньше. Таким образом, при давлениях ниже атмосферного уравнение Ван-дер-Ваальса для насыщенного пара мало отличается от уравнения Клапейрона. Положим поэтому

$$V = \frac{RT}{P}. (2)$$

Подставляя (2) в (1), пренебрегая V_1 и разрешая уравнение относительно L, найдем

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}.$$

Эта формула является окончательной.

В нашем опыте температура жидкости измеряется термометром, давление пара определяется при помощи манометра, а производные dP/dT или $d(\ln P)/d(1/T)$ находятся графически как угловой коэффициент касательной к кривой P(T) или соответственно к кривой, у которой по оси абсцисс отложено 1/T, а по оси ординат $\ln P$.

5 Обработка результатов измерений:

Исследуемая жидкость — вода. Давление пара находится по следующей формуле:

$$P = \rho g \Delta h$$
,

где ρ — плотность ртути, $\Delta h = h_1 - h_2$ — разница высот в ртуртном манометре.

Таблица 1: Нагревание Таблица 2: Охлаждение

T, K	H_1 , mm	H_2 , mm	Δh , mm	<i>P</i> , Па
294.00	53.45	24.60	28.85	3838.86
295	52.20	24.80	27.40	3645.92
296	53.40	24.40	29.00	3858.82
297	54.25	23.55	30.70	4085.03
298	55.00	22.10	32.90	4377.77
299	55.60	22.30	33.30	4430.99
300	56.15	21.35	34.80	4630.59
301	57.05	21.10	35.95	4783.61
302	57.75	20.15	37.60	5003.16
303	58.75	19.25	39.50	5255.98
304	59.55	18.30	41.25	5488.84
305	60.50	17.50	43.00	5721.70
306	61.95	16.40	45.55	6061.01
307	62.70	15.35	47.35	6300.53
308	63.70	14.50	49.20	6546.69
309	65.00	13.15	51.85	6899.31
310	66.00	12.20	53.80	7158.78
311	67.10	11.05	56.05	7458.17
312	67.70	9.45	58.25	7750.91
313	70.00	8.00	62.00	8249.90

 $\overline{T,K}$ H_1 , MM H_2 , mm Δh , mm $P, \Pi a$ 8382.96 313 70.50 7.50 63.00 312 7784.18 68.6010.10 58.50311 11.05 7577.93 68.0056.95310 66.60 12.00 54.60 7265.23 309 65.55 13.0552.50 6985.80 308 64.85 13.6551.20 6812.82 307 48.35 6433.59 63.2514.90 47.25 6287.22 30662.5015.25 5974.52 305 61.20 16.30 44.90 304 60.1017.6542.45 5648.52 303 59.25 18.1041.155475.54302 58.85 19.05 39.80 5295.90 301 57.55 20.15 37.40 4976.55 300 57.00 20.95 36.054796.92 299 57.50 22.00 35.50 4723.73 298 55.10 22.50 32.60 4337.85297 54.80 23.05 4224.75

23.85

24.05

25.15

31.75

30.05

28.60

27.20

3998.54

3805.60

3619.31

Построим графики в координатах T,P и в координатах $1/T,\ln P$ и найдем угловой коэффициент по методу наименьших квадратов:

296

295

294

53.90

52.65

52.35

Рис. 1: График в координатах T, P (нагрев)

Рис. 2: График в координатах T, P (охлаждение)

Угловые коэффициенты графика в координатах T, P: $a_{\text{наг}_1} = 236.7; \ a_{\text{охл}_1} = 240.2.$

Рис. 3: График в координатах 1/T, $\ln P6$ (нагрев)

 $a_{\text{\tiny HA\Gamma}_1} = 236.7; \ a_{\text{\tiny OXЛ}_1} = 240.2.$

Рис. 4: График в координатах 1/T, $\ln P6$ (охлаждение)

Угловые коэффициенты графика в координатах $1/T, \ln P$: Угловые коэффициенты рассчитаны при помощи функции SLOPE() общий вид которой:

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

 $a_{\text{наг}_2} = -4931.7, \, a_{\text{охл}_2} = -4940.3.$ Оценим погрешности:

$$\varepsilon_{h_1} = \varepsilon_{h_1} = 0.017 = 1.7\%$$

$$\varepsilon_P = \sqrt{\varepsilon_{h_1}^2 + \varepsilon_{h_2}^2} = 0.024 = 2.4\%$$

$$\varepsilon_T = 0.0003 = 0.03\%$$

$$\varepsilon_L = \sqrt{\varepsilon_T^2 + \varepsilon_P^2} = 0.024 = 2.4\%$$

Рассчитаем теплоту испарения жидкости по формуле:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}.$$

$$L_{\text{har}_1} = 44298 \text{ Дж} = 44.30 \text{ кДж}$$

$$L_{\text{охл}_1} = 47673 \text{ Дж} = 47.67 \text{ кДж}$$

$$L_{\text{har}_2} = 40976 \text{ Дж} = 40.98 \text{ кДж}$$

$$L_{\text{охл}_2} = 41051 \text{ Дж} = 41.05 \text{ кДж}$$

Результат косвенного вычисления L по коэффициенту наклона прямой более точен во втором случае.

$$L_{
m Har} = 40,98 \pm 0.98 \; {
m кДж}$$
 $L_{
m ONJ} = 41.05 \pm 0.98 \; {
m кДж}$

Таблбичное значение теплоты испарения воды для 1 моля:

$$L_{
m Tagn} = 2.3 {
m Mдж/\ K} {
m K} {
m F} * 18 {
m F}/{
m MOJ} {
m B} = 41.4\ {
m K} {
m J} {
m K}/{
m MOJ} {
m B}$$

С учетом погрешности полученные значения совпали с табличными