AI in Built Environment DCP4300

Lec09: Computer Vision

Part A

Dr. Chaofeng Wang
Jianhao Gao (TA)
University of Florida
College of Design Construction and Planning

Applications of Computer Vision

Face recognition

Autonomous driving

Disease diagnosis

3D reconstruction

Applications of Computer Vision

Classification

Applications of Computer Vision

Segmentation

Images

What we see

What the computer sees

A 256x256 RGB image is a 256x256x3 matrix

Images

Visual Illusion: https://www.youtube.com/watch?v=9Gw23ayxY-I

Images

Vision

It started from the research on cat's vision system

Vision

simple features

complex features

The early-stage computer vision

- Edge Detection
- Dilation, Erosion
- •Perspective Transformation
- •Cropping
- Scaling, Interpolations, And Re-Sizing
- Thresholding
- Sharpening
- Blurring
- •Contours
- Line Detection
- Blob Detection

•...

https://opencv.org/

The early-stage computer vision

My first computer vision project

Key points in the history of computer vision

1950 1960 1970 1980 1990 2000 2010 2020

1989, Convolutional Neural Networks (CNN/ConvNet)

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.

Yann LeCun demonstrating LeNet 1, 1993

Key points in the history of computer vision

Key points in the history of computer vision

https://en.wikipedia.org/wiki/AlexNet

A 24x24 image can be expanded as a vector $[x_1, x_2, ... x_{576}]$

X_1 B_1 \mathbf{X}_2 0.3 B_2 X_3 B_3 X_4 0.4 B_4 X_5 0.8 B_5 X_{576}

A brute way...

Convolutional layer

A 2D convolution operation

Input: 5x5x1

Kernel: 3x3

Stride: 1 (size of the 'slide')

Padding: 0

Output: 3x3x1

Purpose: extracting features.

Convolutional layer

Padded

https://github.com/vdumoulin/conv_arithmetic

Input: 5x5x1

Kernel: 3x3

Stride: 1 (size of the 'slide')

Padding: 1

Output: 5x5x1

Purpose: extracting features.

Learn features hierarchically

The first layers of CNN detect general features: Edges, Corners, Circles, Blobs colors, ...

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.

Learn features hierarchically

As it goes deeper into the CNN, it starts to detect more concrete things such as eyes, faces, and full objects.

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.

Learn features hierarchically

More concrete things ...

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.

Pooling layer

Max pooling Average pooling L2-norm polling

. . .

Max pooling

Purpose: extracting dominant feature and reduce dimensionality

Pooling layer

Max pooling Average pooling L2-norm pooling

. . .

Average pooling

Purpose: extracting dominant feature and reduce dimensionality

Pooling layer

Max pooling
Average pooling
L2-norm pooling

. . .

L2-norm pooling

Purpose: extracting dominant feature and reduce dimensionality

What is a good model?

Dropout layer

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Purpose: fight overfitting

Popular deep CNN architectures

Build one from scratch (ResNet)

https://www.analyticsvidhya.com/blog/2021/08/how-to-code-your-resnet-from-scratch-in-tensorflow/

Transfer Learning

The weights in a pretrained neural network is the leaned knowledge.

So a deep CNN trained on a large dataset contains knowledge (weights) that can be used to understand basic features in any given new image. This is the concept of transfer learning.

To do transfer learning, we

- Freeze the first layers of the pretrained neural network. These are the layers that detect general features that are common across all domains.
- Then we finetune the deeper layers with our own training data and add new layers to classify new categories included in our training dataset.

Transfer Learning: Fine tuning

Take a pre-trained model (with learned weights) as base model

Base model

Add a header and train with the base model's weights frozen

Base model New header

Unfreeze the base model and train

Base model New header

Demo: Classification of satellite images

Will do this demo in a Jupyter notebook on Google Colab:

https://colab.research.google.com/drive/1EKUEZEVgtWTfDTdR1grtAorMq3ZGLxmR?usp=sharing

Gabled

Hipped