INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 401/10, A01N 43/56, 43/74, 43/08, 43/40, C07D 405/10, 213/30, 307/42, 307/58, 413/10, 261/08

WO 99/07697 (11) Internationale Veröffentlichungsnummer:

A1 (43) Internationales Veröffentlichungsdatum:

18. Februar 1999 (18.02.99)

(21) Internationales Aktenzeichen:

PCT/EP98/04481

(22) Internationales Anmeldedatum:

20. Juli 1998 (20.07.98)

(30) Prioritätsdaten:

197 34 186.1

DE 7. August 1997 (07.08.97)

wigshafen (DE). OTTEN, Martina [DE/DE]; Gunterstrasse 28, D-67069 Ludwigshafen (DE). WALTER, Helmut [DE/DE]; Grünstadter Strasse 82, D-67283 Obrigheim (DE). WESTPHALEN, Karl-Otto [DE/DE]; Mausbergweg 58, D-67346 Speyer (DE).

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(75) Erfinder/Anmelder (nur für US): ENGEL, Stefan [DE/DE]; Koelerstrasse 8, D-55286 Wörrstadt (DE). RHEIN-HEIMER, Joachim [DE/DE]; Merziger Strasse 24, Ludwigshafen (DE). BAUMANN, [DE/DE]; Falkenstrasse 6 a, D-67373 Dudenhofen (DE). VON DEYN, Wolfgang [DE/DE]; An der Bleiche 24,

D-67435 Neustadt (DE). HILL, Regina, Luise [DE/DE]; Ziegelofenweg 40, D-67346 Speyer (DE). MAYER, Guido [DE/DE]; Gutlenthausstrasse 8, D-67433 Neustadt (DE). MISSLITZ, Ulf [DE/DE]; Mandelring 74, D-67433 Neustadt (DE). WAGNER, Oliver [DE/DE]; Rossinistrasse 7, D-67061 Ludwigshafen (DE). WITSCHEL, Matthias [DE/DE]; Wittelsbachstrasse 81, D-67061 Lud-

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, VN, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist: Veröffentlichung wird wiederholt falls Anderungen eintreffen.

(54) Title: SUBSTITUTED 4-BENZOYL-PYRAZOLES

(54) Bezeichnung: SUBSTITUIERTE 4-BENZOYL-PYRAZOLE

$$Q = \begin{pmatrix} X^1 & \text{Het} \\ R^2 & \text{Het} \end{pmatrix}$$

The invention relates to 4-benzoyl-pyrazoles of formula (I), in which the substituents R1, R2 and Q and the groups X1 and Het (57) Abstract have the meaning as given in the description. The invention also relates to their salts suited for use in agriculture, the methods and intermediary products required for producing compounds of formula (I), the products containing such compounds and salts, as well as the use of compounds of formula (I) and products containing them for destroying adventive plants.

4-Benzoyl-pyrazole der Formel (I), in der die Substituenten R¹, R², Q und die Gruppen X¹ sowie Het die in der Beschreibung genannte (57) Zusammenfassung Bedeutung haben, sowie deren landwirtschaftlich brauchbaren Salze, Verfahren und Zwischenprodukte zur Herstellung von Verbindungen der Formel (I), Mittel, welche diese enthalten, sowie die Verwendung der Verbindungen der Formel (I) und diese enthaltende Mittel zur Schadpflanzenbekämpfung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

АL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΛU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Tego
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

WO 99/07697 PCT/EP98/04481

Substituierte 4-Benzoyl-pyrazole

Beschreibung

5

Die vorliegende Erfindung betrifft substituierte 4-Benzoylpyrazole der Formel I

10

in der die Substituenten folgende Bedeutung haben:

15

R¹, R² Wasserstoff, Mercapto, Nitro, Halogen, Cyano, Rhodano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, $-OR^3$, $-OCOR^3$, $-OSO_2R^3$, $-S(O)_nR^3$, $-SO_2OR^3$, $-SO_2N(R^3)_2$, $-NR^3SO_2R^3$ oder $-NR^3COR^3$;

20

25

30

 R^3 Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, Phenyl oder Phenyl- C_1 - C_6 -alkyl; wobei die genannten Alkylreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

Hydroxy, Mercapto, Amino, Cyano, R³, -OR³, -SR³, -N(R³)₂, =NOR³, -OCOR³, -SCOR³, -NR³COR³, -CO₂R³, -COSR³, -CON(R³)₂, C₁-C₄-Alkyliminooxy, C₁-C₄-Alkoxyamino, C₁-C₄-Alkyl-carbonyl, C₁-C₄-Alkoxy-C₂-C₆-alkoxycarbonyl, C₁-C₄-Alkyl-sulfonyl, Heterocyclyl, Heterocyclyloxy, Phenyl, Benzyl, Hetaryl, Phenoxy, Benzyloxy und Hetaryloxy, wobei die acht letztgenannten Reste ihrerseits substituiert sein können;

35

n

0, 1 oder 2;

Q ein in 4-Stellung verknüpftes Pyrazol der Formel II,

40

PCT/EP98/04481 WO 99/07697 2

wobei

für Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_6 -Halogenalkyl; \mathbb{R}^4

für C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, Phenyl oder R^5 5 Phenyl das partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, 10 $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$;

für Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, R^6 $C_1-C_6-Alkylcarbonyl$, $C_1-C_6-Halogenalkylcarbonyl$, $C_1-C_6-Alkoxycarbonyl, C_1-C_6-Alkylsulfonyl,$ $C_1-C_6-Halogenalkylsulfonyl, Phenylcarbonyl, Phenyl$ carbonylmethyl, Phenoxycarbonyl oder Phenylsulfonyl,

wobei die vier letztgenannten Substituenten unsubstituiert sind oder der Phenylring jeweils partiell oder 20 vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, 25 C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy;

stehen;

eine geradkettige oder verzweigte $C_1-C_6-Alkylen-$, eine 30 X1 $C_2\text{-}C_6\text{-}\text{Alkenylen-}$ oder eine $C_2\text{-}C_6\text{-}\text{Alkinylenkette},$ wobei die genannten Alkylen-, Alkenylen- oder Alkinylenreste partiell halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

35 $-OR^7$, $-OCOR^7$, $-OCONHR^7$ oder $-OSO_2R^7$,

und wobei die genannten Alkenylenreste ausgenommen sind, bei denen sich die Doppelbindung in $\dot{\alpha}, \beta$ -Position zum Phenylring befindet und bei denen Het über die β -Position an die Doppelbindung gebunden ist;

Wasserstoff, C_1 - C_6 -Alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, \mathbb{R}^7 Phenyl, Phenyl- C_1 - C_6 -alkyl, wobei die genannten Alkyl-, Alkenyl oder Alkinylreste partiell oder vollständig 45 halogeniert sein können und/ oder durch einen oder mehrere der folgenden Reste substituiert sein können:

40

Hydroxy, Mercapto, Amino, Cyano, Nitro, Formyl, $\begin{array}{l} C_1\text{-}C_4\text{-}Alkylamino, } C_1\text{-}C_4\text{-}Dialkylamino, } C_1\text{-}C_4\text{-}Alkoxy-carbonyl, } C_1\text{-}C_4\text{-}Alkylcarbonyl, } C_1\text{-}C_4\text{-}Alkylcarbonyloxy, } \\ C_1\text{-}C_4\text{-}Alkyl, } C_1\text{-}C_4\text{-}Halogenalkyl, } C_1\text{-}C_4\text{-}Alkylthio, } C_1\text{-}C_4\text{-}Halogenalkylthio, } C_1\text{-}C_4\text{-}Halogenalkoxy; } \end{array}$

Het eine drei- bis sechsgliedrige, teilweise oder vollständig gesättigte, heterocyclische Gruppe oder eine drei- bis sechsgliedrige heteroaromatische Gruppe mit bis zu drei Heteroatomen ausgewählt aus der Gruppe:

Stickstoff, Sauerstoff oder Schwefel,

5

30

40

wobei die genannte heterocyclische oder heteroaromatische

Gruppe partiell oder vollständig halogeniert sein kann

und/oder durch R⁸ substituiert sein kann;

Wasserstoff, Hydroxy, Mercapto, Amino, Cyano,
Nitro, Formyl, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino,

C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylcarbonyloxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, wobei die Alkylreste in allen Fällen jeweils
durch einen oder mehrere der folgenden Reste substituiert
sein können:

Cyano, Formyl, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkylcarbonyloxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio

sowie deren landwirtschaftlich brauchbaren Salze.

35 Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung von Verbindungen der Formel I, Mittel welche diese enthalten, sowie die Verwendung der Verbindungen der Formel I und diese enthaltende Mittel zur Schadpflanzenbekämpfung.

Aus der Literatur, beispielsweise aus EP-A 282 944 sind 4-Benzoyl-pyrazole bekannt.

Die herbiziden Eigenschaften der bisher bekannten Verbindungen 45 sowie die Verträglichkeiten gegenüber Kulturpflanzen können jedoch nur bedingt befriedigen. Es lag daher dieser Erfindung

die Aufgabe zugrunde, neue, insbesondere herbizid wirksame, Verbindungen mit verbesserten Eigenschaften zu finden.

Demgemäß wurden die erfindungsgemäßen 4-Benzoyl-pyrazole der 5 Formel I sowie deren herbizide Wirkung gefunden.

Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Darüber hinaus wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwüngehtem Delanzenwuche mit den

10 fahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

Gegenstand der vorliegenden Erfindung sind auch Stereoisomere der Verbindungen der Formel I. Es werden sowohl reine Stereoisomere 15 als auch Gemische hiervon erfaßt.

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als Enantiomeren oder Diastereomerengemische vor. Gegenstand der 20 Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es auf die Art 25 des Salzes in der Regel nicht ankommt. Im allgemeinen kommen die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.

Es kommen als Kationen, insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium,

- 35 wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C_1 - C_4 -Alkyl oder Hydroxy- C_1 - C_4 -alkyl und/oder ein Phenyl oder Benzyl ersetzt sein können, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise
- 40 Tri(C_1 - C_4 -alkyl)-sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C_1 - C_4 -alkyl)-sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogen-

45 phosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen

von $C_1\text{-}C_4\text{-}Alkansäuren$, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

Verfahren A:

Umsetzungen von Pyrazolen der Formel II (mit R⁶ = H) mit einer aktivierten Carbonsäure IIIa oder einer Carbonsäure IIIb, die vorzugsweise in situ aktiviert wird, zu dem Acylierungsprodukt V und anschließende Umlagerung zu den erfindungsgemäßen Ver-

10 bindungen der Formel I.

HO
$$R^{1}$$
 Het R^{2} Het R

L¹ steht für eine nucleophil austauschbare Abgangsgruppe, wie 45 Halogen z.B. Brom, Chlor, Hetaryl, z.B. Imidazolyl, Pyridyl, Carboxylat, z.B. Acetat, Trifluoracetat etc.

Die aktivierte Carbonsäure kann direkt eingesetzt werden, wie im Fall der Carbonsäurehalogenide oder in situ erzeugt werden, z.B. mit Dicyclohexylcarbodiimid, Triphenylphosphin/Azodicarbonsäureester, 2-Pyridindisulfit/Triphenylphosphin, Carbonyldiimidazol etc.

Gegebenenfalls kann es von Vorteil sein, die Acylierungsreaktion in Gegenwart einer Base auszuführen. Die Reaktanden und die Hilfsbase werden dabei zweckmäßigerweise in äquimolaren Mengen 10 eingesetzt. Ein geringer Überschuß der Hilfsbase z.B. 1,2 bis 1,5 Moläquivalente, bezogen auf II, kann unter Umständen vorteilhaft sein.

Als Hilfsbasen eignen sich tertiäre Alkylamine, Pyridin oder
15 Alkalimetallcarbonate. Als Lösungsmittel können z.B. chlorierte
Kohlenwasserstoffe, wie Methylenchlorid, 1,2-Dichlorethan,
aromatische Kohlenwasserstoffe, wie Toluol, Xylol, Chlorbenzol,
Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran, Dioxan, polare aprotische Lösungsmittel, wie Acetonitril,
20 Dimethylformamid, Dimethylsulfoyid oder Ester wie Essigsäure-

20 Dimethylformamid, Dimethylsulfoxid oder Ester wie Essigsäureethylester oder Gemische hiervon verwendet werden.

Werden Carbonsäurehalogenide als aktivierte Carbonsäurekomponente eingesetzt, so kann es zweckmäßig sein, bei Zugabe dieses Reak25 tionspartners die Reaktionsmischung auf 0 bis 10°C abzukühlen.
Anschließend rührt man bei 20 bis 100°C, vorzugsweise bei 25 bis 50°C, bis die Umsetzung vollständig ist. Die Aufarbeitung erfolgt in üblicher Weise, z.B. wird das Reaktionsgemisch auf Wasser gegossen, das Wertprodukt extrahiert. Als Lösungsmittel eignen sich hierfür besonders Methylenchlorid, Diethylether und Essigsäureethylester. Nach Trocknen der organischen Phase und Entfernen des Lösungsmittels wird der rohe Enolester der Formel V vorzugsweise durch Chromatographie gereinigt. Es ist aber auch möglich, den rohen Enolester der Formel V ohne weitere Reinigung zur Umlage35 rung einzusetzen.

Die Umlagerung der Enolester der Formel V zu den Verbindungen der Formel I erfolgt zweckmäßigerweise bei Temperaturen von 20 bis 40°C in einem Lösungsmittel und in Gegenwart einer Base sowie 40 gegebenenfalls in Gegenwart einer Cyanoverbindung.

Als Lösungsmittel können z.B. Acetonitril, Methylenchlorid, 1,2-Dichlorethan, Dioxan, Essigsäureethylester, Toluol oder Gemische hiervon verwendet werden. Bevorzugte Lösungsmittel 45 sind Acetonitril und Dioxan.

Geeignete Basen sind tertiäre Amine wie Triethylamin, Pyridin oder Alkalicarbonate, wie Natriumcarbonat, Kaliumcarbonat, die vorzugsweise in äquimolarer Menge oder bis zu einem vierfachen Überschuß, bezogen auf den Ester, eingesetzt werden. Bevorzugt werden Triethylamin oder Alkalicarbonate verwendet.

Als Cyanoverbindungen kommen anorganische Cyanide, wie Natriumcyanid, Kaliumcyanid und organische Cyanoverbindungen, wie
Acetoncyanhydrin, Trimethylsilylcyanid in Betracht. Sie werden
10 in einer Menge von 1 bis 50 Molprozent, bezogen auf den Ester,
eingesetzt. Vorzugsweise werden Acetoncyanhydrin oder Trimethylsilylcyanid, z.B. in einer Menge von 5 bis 15, vorzugsweise
10 Molprozent, bezogen auf den Ester, eingesetzt.

15 Besonders bevorzugt werden Alkalicarbonate, wie Kaliumcarbonat, in Acetonitril oder Dioxan eingesetzt.

Die Aufarbeitung kann in an sich bekannter Weise erfolgen. Das Reaktionsgemisch wird z.B. mit verdünnter Mineralsäure, wie 20 5 %ige Salzsäure oder Schwefelsäure, angesäuert, mit einem organischen Lösungsmittel, z.B. Methylenchlorid, Essigsäureethylester extrahiert. Der organische Extrakt kann mit 5 bis 10 %iger Alkalicarbonatlösung, z.B. Natriumcarbonat-, Kaliumcarbonatlösung extrahiert werden. Die wäßrige Phase wird angesäuert und der sich bildende Niederschlag abgesaugt und/oder mit Methylenchlorid oder Essigsäureethylester extrahiert, getrocknet und eingeengt.

(Beispiele für die Darstellung von Estern von Hydroxypyrazolen und für die Umlagerung der Ester sind z.B. in EP-A 282 944 oder 30 US 4 643 757 genannt).

Verfahren B:

Umsetzungen von 4-Benzoyl-pyrazolen der Formel I (mit R^6 = H) mit 35 einer Verbindung der Formel IV (mit $R^6 \neq H$):

L² steht für eine nucleophil austauschbare Abgangsgruppe, wie Halogen, z.B. Brom, Chlor, Hetaryl, z.B. Imidazolyl, Pyridyl, Carboxylat, z.B. Acetat, Trifluoracetat, Sulfonat, z.B. Mesylat, Triflat etc.

Die Verbindungen der Formel IV können direkt eingesetzt werden, wie z.B. im Fall der Alkylhalogenide, Carbonsäurehalogenide, Sulfonsäurehalogenide, Carbonsäureanhydride und Sulfonsäureanhydride oder in situ erzeugt werden, z.B. aktivierte Carbonsäuren (mittels Carbonsäure und Dicyclohexylcarbodiimid, Carbonyldiimidazol etc.).

Die Ausgangsverbindungen werden in der Regel im äquimolaren Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, 15 die eine oder andere Komponente im Überschuß einzusetzen.

Gegebenenfalls kann es von Vorteil sein, die Umsetzung in Gegenwart einer Base durchzuführen. Die Reaktanden und die Hilfsbase werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt.

20 Ein Überschuß der Hilfsbase z.B. 1,5 bis 3 Moläquivalente, bezogen auf Ia, kann unter Umständen vorteilhaft sein.

Als Hilfsbasen eignen sich tertiäre Alkylamine, wie Triethylamin, Pyridin, Alkalimetallcarbonate, z.B. Natriumcarbonat, Kalium-

25 carbonat und Alkalimetallhydride, z.B. Natriumhydrid. Bevorzugt verwendet werden Triethylamin, Pyridin und Kaliumcarbonat.

Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid, 1,2-Dichlorethan, aromatische Kohlenwasser30 stoffe, z.B. Toluol, Xylol, Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran, Dioxan, polare aprotische Lösungsmittel, wie Acetonitril, Dimethylformamid, Dimethylsulfoxid oder Ester, wie Essigsäureethylester, oder Gemische hiervon in Betracht.

In der Regel liegt die Reaktionstemperatur im Bereich von 0°C bis zur Höhe des Siedepunktes des Reaktionsgemisches.

Die Aufarbeitung kann in an sich bekannter Weise erfolgen.

Die Benzoesäuren der Formel III sind neu,

35

40

wobei die Variablen folgende Bedeutung haben:

- $\begin{array}{lll} R^1, & R^2 & \text{Wasserstoff, Mercapto, Nitro, Halogen, Cyano, Rhodano,} \\ & & C_1-C_6-\text{Alkyl, C}_1-C_6-\text{Halogenalkyl, C}_1-C_6-\text{Alkoxy,} \\ & & & C_2-C_6-\text{Alkenyl, C}_2-C_6-\text{Alkinyl, -OR}^3, & -\text{OCOR}^3, & -\text{OSO}_2R^3,} \\ & & & & -\text{S}\left(\text{O}\right)_nR^3, & -\text{SO}_2\text{OR}^3, & -\text{SO}_2\text{N}\left(R^3\right)_2, & -\text{NR}^3\text{SO}_2R^3 & \text{oder -NR}^3\text{COR}^3;} \end{array}$
- Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl oder Phenyl
 C₁-C₆-alkyl; wobei die genannten Alkylreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:
- Hydroxy, Mercapto, Amino, Cyano, R³, -OR³, -SR³, -N(R³)2,

 =NOR³, -OCOR³, -SCOR³, -NR³COR³, -CO2R³, -COSR³, -CON(R³)2,

 C1-C4-Alkyliminooxy, C1-C4-Alkoxyamino, C1-C4-Alkylcarbonyl, C1-C4-Alkoxy-C2-C6-alkoxycarbonyl, C1-C4-Alkylsulfonyl, Heterocyclyl, Heterocyclyloxy, Phenyl, Benzyl,
 Hetaryl, Phenoxy, Benzyloxy und Hetaryloxy, wobei die

 acht letztgenannten Reste ihrerseits substituiert sein
 können;
 - n 0, 1 oder 2;

- 25 X^1 eine geradkettige oder verzweigte C_1 - C_6 -Alkylen-, eine C_2 - C_6 -Alkenylen- oder eine C_2 - C_6 -Alkinylenkette, wobei die genannten Alkyl-, Alkenyl- oder Alkinylreste partiell halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:
- $-OR^7, -OCOR^7, -OCONHR^7 oder -OSO_2R^7,$
- und wobei die genannten Alkenylenreste ausgenommen sind, bei denen sich die Doppelbindung in α,β -Position zum Phenylring befindet und bei denen Het über die β -Position an die Doppelbindung gebunden ist.
- R⁷ Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, Phenyl, Phenyl-C₁-C₆-alkyl, wobei die genannten Alkyl-, Alkenyl oder Alkinylreste partiell oder vollständig halogeniert sein können und/ oder durch einen oder mehrere der folgenden Reste substituiert sein können:
- Hydroxy, Mercapto, Amino, Cyano, Nitro, Formyl, $C_1-C_4-Alkylamino, \ C_1-C_4-Dialkylamino, \ C_1-C_4-Alkoxy-carbonyl, \ C_1-C_4-Alkylcarbonyloxy,$

 $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkylthio$, $C_1-C_4-Halogenalkylthio$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$;

Het eine drei- bis sechsgliedrige, teilweise oder vollständig gesättigte, heterocyclische Gruppe oder eine drei- bis sechsgliedrige heteroaromatische Gruppe mit bis zu drei Heteroatomen ausgewählt aus der Gruppe:

Stickstoff, Sauerstoff oder Schwefel,

wobei die genannte heterocyclische oder heteroaromatische Gruppe partiell oder vollständig halogeniert sein kann und/oder durch R8 substituiert sein kann;

Wasserstoff, Hydroxy, Mercapto, Amino, Cyano, Nitro, Formyl, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylcarbonyloxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, wobei die Alkylreste in allen Fällen jeweils durch einen oder mehrere der folgenden Reste substituiert sein können:

Cyano, Formyl, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkylcarbonyloxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy;

30 R9 Hydroxy oder ein hydrolysierbarer Rest.

Beispiele für hydrolysierbare Reste sind Alkoxy-, Phenoxy-, Alkylthio-, Phenylthioreste, die substituiert sein können, Halogenide, Hetarylreste, die über Stickstoff gebunden sind, 35 Amino-, Iminoreste, die substituiert sein können, etc.

Bevorzugt sind Benzoesäurehalogenide IIIa mit L^1 = Halogen (\cong III mit R^9 = Halogen),

$$L^{1} \xrightarrow{R^{1}} R^{2}$$
 Illa

45

wobei die Variablen $R^1,\ R^2,\ X^1$ und Het die unter Formel III genannte Bedeutung haben und

L¹ Halogen, insbesondere Chlor oder Brom, bedeuten.

Ebenso bevorzugt sind Benzoesäuren der Formel IIIb (\triangleq III mit R^9 = Hydroxy),

5

$$HO$$
 R^1
 R^2
Het

10

wobei die Variablen \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{X}^1 und Het die unter Formel III genannte Bedeutung haben.

Ebenso bevorzugt sind Benzoesäureester der Formel IIIc (\triangleq III mit 15 R⁹ = C₁-C₆-Alkoxy),

$$\begin{array}{c|c} O \\ \hline M \\ \hline \\ R^1 \\ \hline \\ R^2 \\ \end{array} \begin{array}{c} X^1 \\ \hline \\ Het \\ \end{array} \hspace{1cm} \text{IIIc}$$

20

wobei die Variablen R^1 , R^2 , X^1 und Het die unter Formel III genannte Bedeutung haben und

25 M C₁-C₆-Alkoxy

bedeutet.

Die Verbindungen der Formel IIIa (mit L¹ = Halogen) können in 30 Analogie zu literaturbekannten Methoden (vgl. L.G. Fieser, M. Fieser "Reagents for Organic Synthesis", Bd. I, S. 767-769 (1967)) durch Umsetzung von Benzoesäuren der Formel IIIb mit Halogenierungsreagentien wie Thionylchlorid, Thionylbromid, Phosgen, Diphosgen, Triphosgen, Oxalylchlorid, Oxalylbromid dargestellt werden.

Die Benzoesäuren der Formel IIIb können u. a. durch Verseifung der Benzoesäureester der Formel IIIc (mit $M=C_1-C_6-Alkoxy$) erhalten werden.

40

Die erfindungsgemäßen Benzoesäureester der Formel IIIc sind nach verschiedenen literaturbekannten Methoden (z.B. a. G. Dittus in Houben-Weyl, Methoden der Organischen Chemie, Band VI/3, Sauerstoff-Verbindungen I, 4. Aufl., S. 493 ff., Georg Thieme Verlag,

45 1965; b. T. L. Gilchrist, Heterocyclenchemie, 2. Aufl., Verlag Chemie, 1995) darstellbar, wie in den nachfolgenden Beispielen illustriert.

Verfahren C:

Metallierung geeigneter Benzoesäureester IIIc in ortho-Position zur Esterfunktion mit starken, metallorganischen Basen und 5 anschließende 1,2-Addition einer Carbonylverbindungen V liefert die erfindungsgemäßen Benzoesäureester IIIe,

10 M
$$+$$
 Het $+$ Het

wobei R^{10} einen zur *ortho-*Metallierung geeigneten Substituenten R^1 darstellt (z.B. V. Snieckus, *Chem. Rev.*, 1990, 90, 879), bevorzugt Halogen und C_1 - C_6 -Alkoxy und

20 X²

25

eine geradkettige oder verzweigte C_1 - C_5 -Alkylen-, eine C_2 - C_5 -Alkenylen- oder eine C_2 - C_5 -Alkinylenkette bedeutet, wobei die genannten Alkylen-, Alkenylen- oder Alkinylenreste partiell halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

 $-OR^7$, $-OCOR^7$, $-OCONHR^7$ oder $-OSO_2R^7$.

Geeignete metallorganische Basen zur ortho-Metallierung der 30 literaturbekannten Benzoesäureester IIId sind z.B. Alkyllithiumverbindungen, bevorzugt n-Butyllithium oder sec-Butyllithium, Lithiumdialkylamide, bevorzugt Lithiumdiisopropylamid oder Natriumhexamethyldisilazid.

35 Als geeignete inerte Lösungsmittel kommen bei der direkten ortho-Metallierung z.B. Tetrahydrofuran, Diethylether, 1,2-Dimethoxyethan oder 1,4-Dioxan, Dimethylformamid, Dimethylsulfoxid, Methyl-tert-butylether oder auch Mischungen dieser Lösungsmittel in Betracht.

40

Die Reaktionstemperaturen können von -80 bis 100°C , vorzugsweise von -80 bis 40°C betragen.

Die Umsetzung der in situ erzeugten, ortho-metallierten Benzoe-45 säureester IIId mit den Aldehyden V werden bei Reaktionstemperaturen von -80 bis 100°C durchgeführt. Die erfindungsgemäßen Produkte IIIe enthalten eine Hydroxymethylen-Gruppe, die sich für weitere Derivatisierungen nach
literaturbekannten Methoden eignet. So kann die HydroxymethylenGruppe z.B. zur Methoxy-Gruppe methyliert werden.

Verfahren D:

1,3-dipolare Cycloaddition der Benzoesäureester IIIg mit gegebenenfalls substituierten Olefinen oder Acetylenen unter dehydratisierenden Bedingungen liefert die erfindungsgemäßen Benzoesäureester, wie beispielsweise IIIh.

Zur Dehydratisierung nach der Methode von Mukaiyama werden bevorzugt aromatische Isocyanate (z.B. T. Mukaiyama et al., J. Am. 30 Chem. Soc. 1960, 82, 5339), wie z.B. Phenylisocyanat oder 4-Chlorphenylisocyanat eingesetzt.

In der Variante nach Shimizu eignen sich ebenfalls aliphatische Chlorameisensäureester (z.B. T. Shimizu et al., Bull. Chem. Soc. 35 Jpn. 1986, 59, 2827), bevorzugt Ethylchloroformat.

Neuere Entwicklungen zeigen, daß z.B. auch N,N-Diethylaminoschwefeltrifluorid (DAST), (Methoxycarbonylsulfamoyl)-triethylammoniumhydroxid (Burgess Reagens), Phosphorylchlorid (z.B.

40 C. Mioskowski et al., Tetrahedron Letters 1997, 38, 1547) oder auch eine Kombination aus Di-tert-butyl-dicarbonat (Boc₂O) und 4-Dimethylaminopyridin (DMAP) (A. Hassner et al., Synthesis 1997, 309) erfolgreich als dehydratisierende Reagenzien zur Erzeugung von Nitriloxiden eingesetzt werden können.

Die auf diese Weise in situ gebildeten Nitriloxide können bei Raumtemperatur bis zur Siedetemperatur des verwendeten Lösungsmittels mit beliebig substituierten Olefinen oder Acetylen zu den erfindungsgemäßen Benzoesäureestern IIIc umgesetzt werden, wobei hier beispielsweise X¹ eine Methylengruppe und Het einen gegebenenfalls substituiertes Isoxazol- oder Isoxazolingerüst darstellt.

Die Durchführung der Cycloaddition erfolgt in inerten Lösungs-10 mitteln, wie beispielsweise Toluol, Chloroform oder Acetonitril.

Der Benzoesäureester IIIg kann durch Reduktion nach literaturbekannten Methoden aus IIIj erhalten werden, der durch Nitroolefinierung (z.B. a. V. V. Perekalin et al., Nitroalkenes, John 15 Wiley & Sons Ltd., New York 1994, b. A. G. M. Barrett et al., Chem. Rev. 1986, 86, 751) des entsprechenden Aldehyds IIIi hergestellt werden kann.

Nitro- Reduktion

No2

$$M$$
 R^1
 R^2
 R^2
 R^1
 R^2
 R^2
 R^3
 R^4
 R^4

Hervorzuheben sind die erfindungsgemäßen Verbindungen der Formel I, wobei die Gruppe X^1 entweder für eine C_1 - C_2 -Alkylen- oder 30 eine C_2 -Alkenylenkette steht und

Het eine drei- bis sechsgliedrige, teilweise oder vollständig gesättigte, heterocyclische Gruppe oder eine drei- bis sechsgliedrige heteroaromatische Gruppe mit bis zu drei Heteroatomen ausgewählt aus der Gruppe:

Stickstoff, Sauerstoff oder Schwefel,

wobei die genannte heterocyclische oder heteroaromatische Gruppe partiell oder vollständig halogeniert sein kann und/oder durch R⁸ substituiert sein kann,

darstellt.

35

45 Darüber hinaus sind die erfindungsgemäßen Verbindungen der Formel I hervorzuheben, wobei die Gruppe Het für eine fünf- oder sechsgliedrige, teilweise oder vollständig gesättigte hetero-

cyclische oder eine fünf- oder sechsgliedrige heteroaromatische Gruppe mit bis zu drei Heteroatomen ausgewählt aus der Gruppe Stickstoff, Sauerstoff oder Schwefel steht, wobei die genannte heterocyclische oder heteroaromatische Gruppe partiell oder vollständig halogeniert und/oder durch R⁸ substituiert sein kann;

Wasserstoff, Hydroxy, Mercapto, Amino, Cyano,
Nitro, Formyl, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino,
C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylcarbonyloxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, wobei die Alkylreste in allen Fällen jeweils
durch einen oder mehrere der folgenden Reste substituiert
sein können:

Cyano, Formyl, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkylcarbonyloxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkyl- C_1 - C_4

Die für die Substituenten R¹ - R¹⁰ oder als Reste an Phenyl-,
Hetaryl- und Heterocyclylringen genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der
25 einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also alle Alkyl-, Halogenalkyl-, Cycloalkyl-, Alkoxyalkyl-, Alkoxy-, Halogenalkoxy-, Alkyliminooxy-, Alkoxyamino-,
Alkylsulfonyl-, Halogenalkylsulfonyl, Alkylcarbonyl-, Halogenalkylcarbonyl, Alkoxycarbonyl-, Alkoxyalkoxycarbonyl-, Alkenyl-,
Cycloalkenyl-, Alkinyl-Teile können geradkettig oder verzweigt
sein. Sofern nicht anders angegeben tragen halogenierte
Substituenten vorzugsweise ein bis fünf gleiche oder verschiedene
Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor,
Chlor, Brom oder Iod.

Ferner bedeuten beispielsweise:

- C₁-C₄-Alkyl, sowie die Alkylteile von C₁-C₄-Alkylcarbonyl:
 Methyl, Ethyl, n-Propyl, 1-Methylethyl, Butyl, 1-Methyl propyl, 2-Methylpropyl und 1,1-Dimethylethyl;
 - C_1 - C_6 -Alkyl, sowie die Alkylteile von C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl und C_1 - C_6 -Alkylcarbonyl: C_1 - C_4 -Alkyl, wie voranstehend genannt, sowie Pentyl, 1-Methylbutyl, 2-Methylbutyl,
- 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl-

butyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-3-methylpropyl;

- C_1-C_4 -Halogenalkyl: einen C_1-C_4 -Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl,
- Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 10 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl,
- 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlor-15 propyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brom-
- methyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl 20 und Nonafluorbutyl;
- C_1 - C_6 -Halogenalkyl, sowie die Halogenalkylteile von C_1 - C_6 -Halogenalkylcarbonyl: C_1 - C_4 -Halogenalkyl wie voranstehend genannt, sowie 5-Fluorpentyl, 5-Chlorpentyl, 25 5-Brompentyl, 5-Iodpentyl, Undecafluorpentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl, 6-Iodhexyl und Dodecafluorhexyl;
- C_1-C_4 -Alkoxy, sowie die Alkoxyteile von C_1-C_4 -Alkoxyamino, $C_1-C_4-Alkoxy-C_2-C_6-alkoxycarbonyl$ und $C_1-C_4-Alkoxycarbonyl$: Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methyl-30 propoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy;
- C_1 - C_6 -Alkoxy, sowie die Alkoxyteile von C_1 - C_6 -Alkoxy- C_1 - C_6 alkyl, C_1 - C_6 -Alkoxy- C_2 - C_6 -alkyl, C_1 - C_4 -Alkoxy- C_2 - C_6 -alkoxy-35 carbonyl und C_1 - C_6 -Alkoxycarbonyl: C_1 - C_4 -Alkoxy wie voranstehend genannt, sowie Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methoxylbutoxy, 1,1-Dimethylpropoxy, 1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy,
- 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methyl-40 pentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy und
- 1-Ethyl-2-methylpropoxy; 45

 C_1 - C_4 -Halogenalkoxy: einen C_1 - C_4 -Alkoxyrest wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 5 2-Iodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 2,2-Difluorpropoxy, 10 2,3-Difluorpropoxy, 2,3-Dichlorpropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, 2,2,3,3,3-Pentafluorpropoxy, Heptafluorpropoxy, 1-(Fluormethyl)-2-fluorethoxy, 1-(Chlormethyl)-2-chlorethoxy, 1-(Brommethyl)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy und Nonafluorbutoxy;

 $C_1-C_4-Alkylsulfonyl$ ($C_1-C_4-Alkyl-S(=0)_2-$): Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl und 1,1-Dimethylethylsulfonyl; 20

15

 $C_1-C_6-Alkylsulfonyl: C_1-C_4-Alkylsulfonyl$ wie voranstehend genannt, sowie Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 2,2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, 1,1-Dimethylpropylsulfonyl, 25 1,2-Dimethylpropylsulfonyl, Hexylsulfonyl, 1-Methylpentylsulfonyl, 2-Methylpentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1,3-Dimethylbutylsulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutylsulfonyl, 3,3-Dimethylbutyl-30 sulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl, 1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl und 1-Ethyl-2-methylpropylsulfonyl;

35 $C_1\text{-}C_6\text{-}Halogenalkylsulfonyl: einen }C_1\text{-}C_6\text{-}Alkylsulfonylrest wie$ voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/ oder Iod substituiert ist, also Fluormethylsulfonyl, Difluormethylsulfonyl, Trifluormethylsulfonyl, Chlordifluormethylsulfonyl, Bromdifluormethyl-40 sulfonyl, 2-Fluorethylsulfonyl, 2-Chlorethylsulfonyl, 2-Bromethylsulfonyl, 2-Iodethylsulfonyl, 2,2-Difluorethylsulfonyl, 2,2,2-Trifluorethylsulfonyl, 2,2,2-Trichlorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2,2-difluorethylsulfonyl, 2,2-Dichlor-2-fluorethylsulfonyl, Pentafluorethyl-45 sulfonyl, 2-Fluorpropylsulfonyl, 3-Fluorpropylsulfonyl, 2-Chlorpropylsulfonyl, 3-Chlorpropylsulfonyl, 2-Brompropylsulfonyl, 3-Brompropylsulfonyl, 2,2-Difluorpropylsulfonyl,
2,3-Difluorpropylsulfonyl, 2,3-Dichlorpropylsulfonyl,

- 3,3,3-Trifluorpropylsulfonyl, 3,3,3-Trichlorpropylsulfonyl,
- 2,2,3,3,3-Pentafluorpropylsulfonyl, Heptafluorpropylsulfonyl,
- 5 1-(Fluormethyl)-2-fluorethylsulfonyl, 1-(Chlormethyl)-2-chlorethylsulfonyl, 1-(Brommethyl)-2-bromethylsulfonyl, 4-Fluor-butylsulfonyl, 4-Chlorbutylsulfonyl, 4-Brombutylsulfonyl, Nonafluorbutylsulfonyl, 5-Fluorpentylsulfonyl, 5-Chlorpentyl-

sulfonyl, 5-Brompentylsulfonyl, 5-Iodpentylsulfonyl, 6-Fluor-

- hexylsulfonyl, 6-Bromhexylsulfonyl, 6-Iodhexylsulfonyl und Dodecafluorhexylsulfonyl;
- C₁-C₄-Alkyliminooxy: Methyliminooxy, Ethyliminooxy, 1-Propyliminooxy, 2-Propyliminooxy, 1-Butyliminooxy und 2-Butyliminooxy;
 - C₃-C₆-Alkenyl: Prop-1-en-1-yl, Prop-2-en-1-yl, 1-Methyl-ethenyl, Buten-1-yl, Buten-2-yl, Buten-3-yl, 1-Methyl-prop-1-en-1-yl, 2-Methyl-prop-1-en-1-yl, 1-Methyl-prop-2-en-
- 1-yl, 2-Methyl-prop-2-en-1-yl, Penten-1-yl, Penten-2-yl, Penten-3-yl, Penten-4-yl, 1-Methyl-but-1-en-1-yl, 2-Methyl-but-1-en-1-yl, 3-Methyl-but-1-en-1-yl, 1-Methyl-but-2-en-1-yl, 2-Methyl-but-2-en-1-yl, 1-Methyl-but-3-en-1-yl, 2-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-1-yl, 3-Methyl-
- 25 but-3-en-1-yl, 1,1-Dimethyl-prop-2-en-1-yl, 1,2-Dimethyl-prop-1-en-1-yl, 1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-prop-1-en-2-yl, 1-Ethyl-prop-2-en-1-yl, Hex-1-en-1-yl, Hex-2-en-1-yl, Hex-3-en-1-yl, Hex-4-en-1-yl, Hex-5-en-1-yl, 1-Methyl-pent-1-en-1-yl, 2-Methyl-pent-1-en-1-yl, 3-Methyl-pent-1-en-
- 1-yl, 4-Methyl-pent-1-en-1-yl, 1-Methyl-pent-2-en-1-yl, 2-Methyl-pent-2-en-1-yl, 3-Methyl-pent-2-en-1-yl, 4-Methyl-pent-2-en-1-yl, 1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl, 3-Methyl-pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl,
- 1-Methyl-pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl, 3-Methylpent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl, 1,1-Dimethyl-but-2en-1-yl, 1,1-Dimethyl-but-3-en-1-yl, 1,2-Dimethyl-but-1-en-1-yl, 1,2-Dimethyl-but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl,
 - 1,3-Dimethyl-but-1-en-1-yl, 1,3-Dimethyl-but-2-en-1-yl,
 - 1,3-Dimethyl-but-3-en-1-yl, 2,2-Dimethyl-but-3-en-1-yl,
- 40 2,3-Dimethyl-but-1-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl,
 - 2,3-Dimethyl-but-3-en-1-yl, 3,3-Dimethyl-but-1-en-1-yl,
 - 3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-but-1-en-1-yl, 1-Ethyl-but-2-en-1-yl, 1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-1-en-1-yl,
- 2-Ethyl-but-2-en-1-yl, 2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl, 1-Ethyl-1-methyl-prop-2-en-1-yl,

19

1-Ethyl-2-methyl-prop-1-en-1-yl und 1-Ethyl-2-methyl-prop-2-en-1-yl;

- C_2 - C_6 -Alkenyl: C_3 - C_6 -Alkenyl wie voranstehend genannt, sowie Ethenyl;
 - C₃-C₆-Alkinyl: Prop-1-in-1-yl, Prop-2-in-1-yl, But-1-in-1-yl, But-1-in-3-yl, But-1-in-4-yl, But-2-in-1-yl, Pent-1-in-1-yl, Pent-1-in-3-yl, Pent-1-in-4-yl, Pent-1-in-5-yl, Pent-2-in-
- 1-yl, Pent-2-in-4-yl, Pent-2-in-5-yl, 3-Methyl-but-1-in-3-yl, 3-Methyl-but-1-in-4-yl, Hex-1-in-1-yl, Hex-1-in-3-yl, Hex-1-in-4-yl, Hex-1-in-5-yl, Hex-1-in-6-yl, Hex-2-in-1-yl, Hex-2-in-4-yl, Hex-2-in-5-yl, Hex-2-in-6-yl, Hex-3-in-1-yl, Hex-3-in-2-yl, 3-Methyl-pent-1-in-1-yl, 3-Methyl-pent-1-in-3-yl,
- 3-Methyl-pent-1-in-4-yl, 3-Methyl-pent-1-in-5-yl, 4-Methyl-pent-1-in-1-yl, 4-Methyl-pent-2-in-4-yl und 4-Methyl-pent-2-in-5-yl;
- C_2 - C_6 -Alkinyl: C_3 - C_6 -Alkinyl, wie voranstehend genannt, sowie Ethinyl:
 - C_3 - C_6 -Cycloalkyl: Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;
- 25 C₄-C₆-Cycloalkenyl: Cyclobuten-1-yl, Cyclobuten-3-yl, Cyclopenten-1-yl, Cyclopenten-3-yl, Cyclopenten-4-yl, Cyclopenten-4-yl, Cyclohexen-1-yl, Cyclohexen-3-yl und Cyclohexen-4-yl;
- Heterocyclyl, sowie die Heterocyclylreste in Heterocyclyloxy:

 drei- bis siebengliedrige, gesättigte oder partiell ungesättigte mono- oder polycyclische Heterocyclen, die ein bis
 drei Heteroatome ausgewählt aus einer Gruppe bestehend aus
 Sauerstoff, Stickstoff und Schwefel enthalten, wie Oxiranyl,
 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydro-
- thienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl,
- 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl,
- 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,3-Dihydrofuran-4-yl, 2,3-Dihydrofuran-5-yl, 2,5-Dihydrofuran-2-yl, 2,5-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrofuran-3-yl, 2,3-Dihydrofuran-3-yl,

thien-3-yl, 2,3-Dihydrothien-4-yl, 2,3-Dihydrothien-5-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 2,3-Dihydropyrrol-2-yl, 2,3-Dihydropyrrol-3-yl, 2,3-Dihydropyrrol-4-yl, 2,3-Dihydropyrrol-5-yl, 2,5-Dihydropyrrol-2-yl, 2,5-Dihydropyrrol-3-yl, 2,3-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-5 4-y1, 2,3-Dihydroisoxazol-5-y1, 4,5-Dihydroisoxazol-3-y1, 4,5-Dihydroisoxazol-4-yl, 4,5-Dihydroisoxazol-5-yl, 2,5-Dihydroisoxazol-3-yl, 2,5-Dihydroisoxazol-4-yl, 2,5-Dihydroxazol-5-yl, 2,3-Dihydroisothiazol-3-yl, 2,3-Dihydroisothiazol-4-y1, 2,3-Dihydroisothiazol-5-y1, 4,5-Dihydroiso-10 thiazol-3-y1, 4,5-Dihydroisothiazol-4-y1, 4,5-Dihydroisothiazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydropyrazol-3-yl, 2,3-Dihydropyrazol-4-yl, 2,3-Dihydropyrazol-5-yl, 4,5-Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-4-yl, 15 4,5-Dihydropyrazol-5-yl, 2,5-Dihydropyrazol-3-yl, 2,5-Dihydropyrazol-4-yl, 2,5-Dihydropyrazol-5-yl, 2,3-Dihydrooxazo1-2-y1, 2,3-Dihydrooxazo1-4-y1, 2,3-Dihydrooxazo1-5-y1, 4,5-Dihydrooxazol-2-yl, 4,5-Dihydrooxazol-4-yl, 4,5-Dihydrooxazol-5-yl, 2,5-Dihydrooxazol-2-yl, 2,5-Dihydrooxazol-4-yl, 20 2,5-Dihydrooxazol-5-yl, 2,3-Dihydrothiazol-2-yl, 2,3-Dihydrothiazol-4-yl, 2,3-Dihydrothiazol-5-yl, 4,5-Dihydrothiazol-2-yl, 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothiazol-5-yl, 2,5-Dihydrothiazol-2-yl, 2,5-Dihydrothiazol-4-yl, 2,5-Dihydrothiazol-5-yl, 2,3-Dihydroimidazol-2-yl, 2,3-Dihydro-25 imidazol-4-yl, 2,3-Dihydroimidazol-5-yl, 4,5-Dihydroimidazol-2-yl, 4,5-Dihydroimidazol-4-yl, 4,5-Dihydroimidazol-5-yl, 2,5-Dihydroimidazol-2-y1, 2,5-Dihydroimidazol-4-y1, 2,5-Dihydroimidazol-5-yl, 2-Morpholinyl, 3-Morpholinyl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 3-Tetrahydro-30 pyridazinyl, 4-Tetrahydropyridazinyl, 2-Tetrahydropyrimidinyl, 4-Tetrahydropyrimidinyl, 5-Tetrahydropyrimidinyl, 2-Tetrahydropyrazinyl, 1,3,5-Tetrahydrotriazin-2-y1, 1,2,4-Tetrahydrotriazin-3-y1, 1,3-Dihydrooxazin-2-yl, 1,3-Dithian-2-yl, 2-Tetrahydropyranyl, 3-Tetra-35 hydropyranyl, 4-Tetrahydropyranyl, 2-Tetrahydrothiopyranyl, 3-Tetrahydrothiopyranyl, 4-Tetrahydrothiopyranyl, 1,3-Dioxolan-2-yl, 3,4,5,6-Tetrahydropyridin-2-yl, 4H-1,3-Thiazin-2-yl, 4H-3,1-Benzothiazin-2-yl, 1,1-Dioxo-2,3,4,5-tetrahydrothien-2-yl, 2H-1,4-Benzothiazin-3-yl, 40 2H-1,4-Benzoxazin-3-yl, 1,3-Dihydrooxazin-2-yl,

Hetaryl, sowie die Hetarylreste in Hetaryloxy:
 aromatische mono- oder polycyclische Reste, welche neben
 Kohlenstoffringgliedern zusätzlich ein bis vier Stickstoff atome oder ein bis drei Stickstoffatome und ein Sauerstoff oder ein Schwefelatom oder ein Sauerstoff- oder ein Schwefel-

atom enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-3-yl, 1,3,4-Thiadiazol-2-yl, 1,3,4-Triazol-2-yl, 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridinyl, 3-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4,5-Tetrazin-3-yl, sowie die entsprechenden benzokondensierten Derivate.

15 Alle Phenyl-, Hetaryl- und Heterocyclylringe sind vorzugsweise unsubstituiert oder tragen ein bis drei Halogenatome und/oder einen oder zwei Reste aus folgender Gruppe:

Nitro, Cyano, Methyl, Trifluormethyl, Methoxy, Trifluormethoxy 20 oder Methoxycarbonyl.

In Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen der Formel I als Herbizide haben die Variablen vorzugsweise folgende Bedeutungen, und zwar jeweils für sich allein oder in 25 Kombination:

Nitro, Halogen, Cyano, Rhodano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, $-OR^3$ oder $-S(O)_nR^3$; besonders bevorzugt Nitro, Halogen wie z.B. Fluor, $Chlor oder Brom, C_1$ - C_6 -Halogenalkyl, $-OR^3$ oder $-SO_2R^3$;

Wasserstoff, Nitro, Halogen, Cyano, Rhodano, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Alkoxy-C_1-C_6-alkyl$, $C_2-C_6-Alkenyl$, $C_2-C_6-Alkinyl$, $-OR^3$ oder $-S(O)_nR^3$;

besonders bevorzugt Wasserstoff, Nitro, Halogen wie z.B. Fluor, Chlor oder Brom, $C_1\text{-}C_6\text{-}Alkyl$, $C_1\text{-}C_6\text{-}Halogenalkyl$, $-OR^3$ oder $-SO_2R^3$;

besonders bevorzugt Wasserstoff, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_2 - C_3 -Alkenyl, C_2 - C_3 -Alkinyl oder Phenyl; wobei die genannten Alkylreste partiell oder

vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

Hydroxy, Mercapto, Amino, Cyano, R³, -OR³, -SR³, -N(R³)2,

=NOR³, -OCOR³, -SCOR³, -NR³COR³, -CO2R³, -COSR³, -CON(R³)2,

C1-C4-Alkyliminooxy, C1-C4-Alkoxyamino, C1-C4-Alkylcarbonyl, C1-C4-Alkoxy-C2-C6-alkoxycarbonyl, C1-C4-Alkylsulfonyl, Heterocyclyl, Heterocyclyloxy, Phenyl, Benzyl,
Hetaryl, Phenoxy, Benzyloxy und Hetaryloxy, wobei die
acht letztgenannten Reste ihrerseits substituiert sein
können;

n 0, 1 oder 2, besonders bevorzugt 0 oder 2;

15 R⁴ Wasserstoff, C_1 - C_6 -Alkyl oder C_1 - C_6 -Halogenalkyl; besonders bevorzugt Wasserstoff, Methyl, Ethyl oder Trifluormethyl;

 R^5 $C_1-C_6-Alkyl$ oder $C_1-C_6-Halogenalkyl$; besonders bevorzugt Methyl, Ethyl, Propyl, Isopropyl, Butyl oder Isobutyl;

Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, Phenylcarbonylmethyl, oder Phenylsulfonyl, wobei der Phenylring der zwei letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy;

eine geradkettige oder verzweigte C₁-C₄-Alkylen-, eine Propenylen- oder Butenylen- oder eine C₂-C₄-Alkinylen-kette, besonders bevorzugt eine Methylen-, Ethylen-, Propylen-, Propenylen-, Ethinylen oder Propinylenkette, wobei die genannten Alkylen-, Alkenylen- oder Alkinylenreste partiell halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

 $-\text{OR}^7\,,\ -\text{OCOR}^7\,,\ -\text{OCONHR}^7\ \text{oder}\ -\text{OSO}_2\text{R}^7\,,$

und wobei die genannten Alkenylenreste ausgenommen sind, bei denen sich die Doppelbindung in α,β -Position zum Phenylring befindet und bei denen Het über die β -Position an die Doppelbindung gebunden ist;

45

Wasserstoff, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, Phenyl, Phenyl- C_1 - C_4 -alkyl, wobei die genannten Alkyl-, Alkenyl oder Alkinylreste partiell oder vollständig halogeniert sein können und/oder durch einen oder mehrere der folgenden Reste substituiert sein können:

5

10

25

35

45

Hydroxy, Mercapto, Amino, Cyano, Nitro, Formyl, $\begin{array}{l} C_1-C_4-Alkylamino, \ C_1-C_4-Dialkylamino, \ C_1-C_4-Alkoxy-carbonyl, \ C_1-C_4-Alkylcarbonyl, \ C_1-C_4-Alkylcarbonyloxy, \\ C_1-C_4-Alkyl, \ C_1-C_4-Halogenalkyl, \ C_1-C_4-Alkylthio, \\ C_1-C_4-Halogenalkylthio, \ C_1-C_4-Alkoxy, \ C_1-C_4-Halogenalkoxy; \\ \end{array}$

Wasserstoff, Hydroxy, Mercapto, Amino, Cyano, Nitro, Formyl, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, C₁-C₄-Alkylamino, C₁

Cyano, Formyl, C_1 - C_4 -Alkylamino, C_1 - C_4 -Dialkylamino, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkylcarbonyloxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy.

Insbesondere bevorzugt sind die Verbindungen der Formel Ia, wobei \mathbb{R}^1 in Position 2 und \mathbb{R}^2 in Position 4 des Phenylringes gebunden 30 sind.

$$Q \xrightarrow{R^1} X^1 \xrightarrow{\text{Het}} Ia$$

Außerordentlich bevorzugt sind die Verbindungen der Formel Ia, in der die Substituenten R^1 und R^2 und Q die oben genannte Bedeutung haben, X^1 für eine C_1 - C_2 -Alkylen- oder eine C_2 -Alkinylenkette 40 steht und

Het eine drei- bis sechsgliedrige, teilweise oder vollständig gesättigte, heterocyclische Gruppe oder eine drei- bis sechsgliedrige heteroaromatische Gruppe mit bis zu drei Heteroatomen ausgewählt aus der Gruppe:

Stickstoff, Sauerstoff oder Schwefel,

wobei die genannte heterocyclische oder heteroaromatische Gruppe partiell oder vollständig halogeniert sein kann und/oder durch R⁸ substituiert sein kann;

bedeutet.

Darüber hinaus sind die erfindungsgemäßen Verbindungen der Formel

10 Ia außerordentlich bevorzugt, in der die Substituenten R¹, R², Q

und X¹ die oben genannte Bedeutung haben und Het für eine fünfoder sechsgliedrige, teilweise oder vollständig gesättigte
heterocyclische oder eine fünf- oder sechsgliedrige heteroaromatische Gruppe mit bis zu drei Heteroatomen ausgewählt aus der

15 Gruppe

Stickstoff, Sauerstoff oder Schwefel

steht.

20

5

Insbesondere bevorzugt sind die Verbindungen Ib der Tabellen 1 bis 144.

25

30

35

40

Tabelle A

Ē	Nr.	X1	Het
5	1	CH ₂	Oxiranyl
3	2	CH ₂	3—Methyl-2-oxiranyl
	3	CH ₂	2-Oxetanyl
-	4	CH ₂	3-Hydroxy-3-methyl-2-oxetanyl
10	5	CH ₂	3-Hydroxy-3-ethyl-2-oxetanyl
	6	CH ₂	3-Hydroxy-3-propyl-2-oxetanyl
	7	CH ₂	3-Hydroxy-3-butyl-2-oxetanyl
	8	CH ₂	3-Methoxy-3-methyl-2-oxetanyl
15	9	CH ₂	3-Methoxy-3-ethyl-2-oxetanyl
<u> </u>	10	CH ₂	3-Methoxy-3-propyl-2-oxetanyl
	11	CH ₂	3-Methoxy-3-butyl-2-oxetanyl
<u> </u>	12	CH ₂	3-Trimethylsilyloxy-3-methyl-2-oxetanyl
20	13	CH ₂	3—Trimethylsilyloxy—3—ethyl—2—oxetanyl
	14	CH ₂	3—Trimethylsilyloxy—3—propyl—2—oxetanyl
T	15	CH ₂	3-Trimethylsilyloxy-3-butyl-2-oxetanyl
ļ	16	CH ₂	3-Oxetanyl
25	17	CH ₂	2-Furyl
	18	CH ₂	4,5-Dihydro-2-furyl
ŀ	19	CH ₂	2,3-Dihydro-2-furyl
30	20	CH ₂	3–Furyl
30	21	CH ₂	4,5-Dihydro-3-furyl
	22	CH ₂	2,3-Dihydro-3-furyl
	23	CH ₂	2—Thienyl
35	24	CH ₂	4,5-Dihydro-2-thienyl
	25	CH ₂	2,3—Dihydro—2—thienyl
	26	CH ₂	5Chlor-2-thienyl
	27	CH ₂	5-Methyl-2-thienyl
40	28	CH ₂	3-Thienyl
	29	CH ₂	4,5-Dihydro-3-thienyl
	30	CH ₂	2,3-Dihydro-3-thienyl
	31	CH ₂	2—Pyrrolyl
45	32	CH ₂	2,5—Dihydro—2—pyrrolyl
	33	CH ₂	3-Рупоі

Γ	Nr.	X ¹	Het
ļ	34	CH ₂	2,5—Dihydro—3—pyrrolyl
}	35	CH ₂	3–Isoxazolyl
5	36	CH ₂	4-Methyl-3-isoxazolyl
ŀ	37	CH ₂	5-Methyl-3-isoxazolyl
ţ	38	CH ₂	4,5—Dimethyl—3—isoxazolyl
ŀ	39	CH ₂	4,5-Dihydro-3-isoxazolyl
10	40	CH ₂	4-Methyl-4,5-dihydro-3-isoxazolyl
	41	CH ₂	5-Methyl-4,5-dihydro-3-isoxazolyl
	42	CH ₂	4,5-Dimethyl-4,5-dihydro-3-isoxazolyl
	43	CH ₂	4-Isoxazolyl
15	44	CH ₂	3-Methyl-4-isoxazolyl
	45	CH ₂	5-Methyl-4-isoxazolyl
	46	CH ₂	5-Cyclopropyl-4-isoxazolyl
20	47	CH ₂	5-Phenyl-4-isoxazolyl
20	48	CH ₂	3,5-Dimethyl-4-isoxazolyl
	49	CH ₂	4,5-Dihydro-4-isoxazolyl
	50	CH ₂	3-Methyl-4,5-dihydro-4-isoxazolyl
25	51	CH ₂	5-Methyl-4,5-dihydro-4-isoxazolyl
	52	CH ₂	3,5-Dimethyl-4,5-dihydro-4-isoxazolyl
	53	CH ₂	5—Isoxazolyi
	54	CH ₂	3-Methyl-5-isoxazolyl
30	55	CH ₂	4-Methyl-5-isoxazolyl
	56	CH ₂	3,4-Dimethyl-5-isoxazolyl
	57	CH ₂	4,5-Dihydro-5-isoxazolyl
	58	CH ₂	3—Methyl-4,5—dihydro-5-isoxazolyl
35	59	CH ₂	4-Methyl-4,5-dihydro-5-isoxazolyl
	60	CH ₂	3,4-Dimethyl-4,5-dihydro-5-isoxazolyl
	61	CH ₂	3-Isothiazolyl
40	62	CH ₂	4-Methyl-3-isothiazolyl
40	63	CH ₂	5-Methyl-3-isothiazolyl
	64	CH ₂	4-Isothiazolyl
	65	CH ₂	3-Methyl-4-isothiazolyl
45	66	CH ₂	5-Methyl-4-isothiazolyl
	67	CH ₂	5-Isothiazolyl
	68	CH ₂	3-Methyl-5-isothiazolyl

_			27
ſ	Nr.	X1	Het
	69	CH ₂	4-Methyl-5-isothiazolyl
	70	CH ₂	2–Oxazolyl
5	71	CH ₂	4-Oxazolyl
	72	CH ₂	5-Oxazolyl
ļ	73	CH ₂	2-Thiazolyl
	74	CH ₂	4-Thiazolyl
10	75	CH ₂	5—Thiazolyl
	76	CH ₂	3-Pyrazolyl
	77	CH ₂	4-Pyrazolyl
15	78	CH ₂	1-Methyl-3-pyrazolyl
15	79	CH ₂	1-Methyl-4-pyrazolyl
	80	CH ₂	1-Methyl-5-pyrazolyl
	81	CH ₂	2—Imidazolyl
20	82	CH ₂	1-Methyl-2-imidazolyl
	83	CH ₂	5-Methyl-[1,3,4]-2-oxadiazolyl
	84	CH ₂	5-Methyl-[1,2,4]-3-oxadiazolyl
	85	CH ₂	5-Methyl-[1,3,4]-2-thiadiazolyl
25	86	CH ₂	5-Methyl-[1,2,4]-3-thiadiazolyl
	87	CH ₂	[1,2,4]–3–triazolyl
	88	CH ₂	[1,2,3]—4—triazolyl
	89	CH ₂	2–Pyridyl
30	90	CH ₂	6-Chlor-2-pyridyl
	91	CH ₂	6-Methoxy-2-pyridyl
	92	CH ₂	6-Trifluormethyl-2-pyridyl
	93	CH ₂	3-Pyridyl
35	94	CH ₂	2-Chlor-3-pyridyl
	95	CH ₂	2-Methoxy-3-pyridyl
	96	CH ₂	4—Pyridyl
4.0	97	CH ₂	2-Chlor-4-pyridyl
40	98	CH ₂	2-Methoxy-4-pyridyl
	99	CH ₂	2-Ethoxy-4-pyridyl
	100	CH ₂	2-Methylthio-4-pyridyl
4		CH ₂	2-Trifluormethyl-5-pyridyl
78.	102	CH ₂	2–Pyrimidinyl
	103	CH ₂	3-Pyrimidinyl
40	96 97 98 99 100	CH ₂	4-Pyridyl 2-Chlor-4-pyridyl 2-Methoxy-4-pyridyl 2-Ethoxy-4-pyridyl 2-Methylthio-4-pyridyl 2-Trifluormethyl-5-pyridyl 2-Pyrimidinyl

	·		28
	Nr.	X ¹	Het
Ţ	104	CH ₂	4-Pyrimidinyl
ļ	105	CH ₂	2-Pyrazinyl
5	106	CH ₂	3-Pyridazinyl
	107	CH ₂	4-Pyridazinyl
ļ	108	CH ₂	2-(2 <i>H</i> -1,3-oxazinyl)
	109	CH ₂	2-(6H-1,3-oxazinyl)
10	110	CH ₂	4-(6H-1,3-oxazinyl)
	111	CH ₂	6-(6H-1,3-oxazinyl)
	112	CH ₂	[1,3,5]–2Triazinyl
15	113	CH ₂	[1,2,4]-3-Triazinyl
13	114	CH ₂	[1,2,4]–5–Triazinyl
	115	CH ₂	[1,2,4]-6-Triazinyl
	116	CHCH ₃	Oxiranyl
20	117	CHCH ₃	3-Methyl-2-oxiranyl
	118	CHCH ₃	2-Oxetanyl
	119	CHCH ₃	3-Hydroxy-3-methyl-2-oxetanyl
	120	CHCH ₃	3-Hydroxy-3-ethyl-2-oxetanyl
25	121	CHCH ₃	3-Hydroxy-3-propyl-2-oxetanyl
	122	CHCH ₃	3-Hydroxy-3-butyl-2-oxetanyl
	123	CHCH ₃	3-Methoxy-3-methyl-2-oxetanyl
	124	CHCH ₃	3-Methoxy-3-ethyl-2-oxetanyl
30	125	CHCH ₃	3-Methoxy-3-propyl-2-oxetanyl
	126	CHCH ₃	3-Methoxy-3-butyl-2-oxetanyl
	127	CHCH ₃	3-Trimethylsilyloxy-3-methyl-2-oxetanyl
	128	CHCH ₃	3—Trimethylsilyloxy—3—ethyl—2—oxetanyl
3.5	129	CHCH ₃	3-Trimethylsilyloxy-3-propyl-2-oxetanyl
	130	CHCH ₃	3—Trimethylsilyloxy—3—butyl—2—oxetanyl
	131	CHCH ₃	3-Oxetanyl
40	132	CHCH ₃	2–Furyl
41	133	CHCH ₃	4,5–Dihydro–2–furyl
	134	CHCH ₃	2,3–Dihydro–2–furyl
	135	CHCH ₃	3—Furyl
4	136	CHCH ₃	4,5–Dihydro–3–furyl
	137	CHCH ₃	2,3—Dihydro—3—furyl
	138	CHCH ₃	2—Thienyl

			29
Γ	Nr.	X ¹	Het
r	139	CHCH ₃	4,5-Dihydro-2-thienyl
5	140	CHCH ₃	2,3-Dihydro-2-thienyl
	141	CHCH ₃	5-Chlor-2-thienyl
	142	CHCH ₃	5-Methyl-2-thienyl
	143	CHCH ₃	3-Thienyl
Ī	144	CHCH ₃	4,5-Dihydro-3-thienyl
10	145	СНСН3	2,3—Dihydro-3-thienyl
Ī	146	CHCH ₃	2–Pyrrolyl
	147	CHCH ₃	2,5—Dihydro—2—pyrrolyl
15	148	CHCH ₃	3-Рупоі
13	149	CHCH ₃	2,5–Dihydro–3–pyrrolyl
	150	CHCH ₃	3—Isoxazolyl
	151	CHCH ₃	4-Methyl-3-isoxazolyl
20	152	CHCH ₃	5-Methyl-3-isoxazolyl
	153	CHCH ₃	4,5-Dimethyl-3-isoxazolyl
	154	CHCH ₃	4,5-Dihydro-3-isoxazolyl
	155	CHCH ₃	4-Methyl-4,5-dihydro-3-isoxazolyl
25	156	CHCH ₃	5-Methyl-4,5-dihydro-3-isoxazolyl
	157	CHCH ₃	4,5-Dimethyl-4,5-dihydro-3-isoxazolyl
	158	CHCH ₃	4-Isoxazolyl
	159	CHCH ₃	3-Methyl-4-isoxazolyl
30	160	CHCH ₃	5-Methyl-4-isoxazolyl
	161	CHCH ₃	5-Cyclopropyl-4-isoxazolyl
	162	CHCH ₃	5-Phenyl-4-isoxazolyl
	163	CHCH ₃	3,5-Dimethyl-4-isoxazolyl
35	164	CHCH ₃	4,5-Dihydro-4-isoxazolyl
	165	CHCH ₃	3-Methyl-4,5-dihydro-4-isoxazolyl
	166	CHCH ₃	5-Methyl-4,5-dihydro-4-isoxazolyl
40	167	CHCH ₃	3,5—Dimethyl—4,5—dihydro—4—isoxazolyl
40	168	CHCH ₃	5—Isoxazolyl
	169	CHCH ₃	3-Methyl5-isoxazolyl
	170	CHCH ₃	4-Methyl-5-isoxazolyl
45	171	CHCH ₃	3.4-Dimethyl-5-isoxazolyl
	172	CHCH ₃	4.5-Dihydro-5-isoxazolyl
	173	CHCH ₃	3-Methyl-4,5-dihydro-5-isoxazolyl

Г		X ¹	30 Het
-	Nr.		4-Methyl-4,5-dihydro-5-isoxazolyl
	174	CHCH ₃	3,4-Dimethyl-4,5-dihydro-5-isoxazolyl
5	175	CHCH ₃	3–Isothiazolyl
ŀ	176	CHCH ₃	4-Methyl-3isothiazolyl
ŀ	177	CHCH ₃	5-Methyl-3-isothiazolyl
	178 179	CHCH ₃	4—Isothiazolyl
10		CHCH ₃	3-Methyl-4-isothiazolyl
<u> </u>	180		5-Methyl-4-isothiazolyl
ŀ	181	CHCH ₃	5-Isothiazolyl
	182	CHCH ₃	3-Methyl-5-isothiazolyl
15	183	CHCH ₃	4-Methyl-5isothiazolyl
	184	CHCH ₃	2–Oxazolyl
	185	CHCH ₃	4-Oxazolyl
	186	CHCH ₃	5-Oxazolyl
20	187		2—Thiazolyl
	188	CHCH ₃	4—Thiazolyl
	189	CHCH ₃	5—Thiazolyl
25	190	CHCH ₃	3-Pyrazolyl
25	191	CHCH ₃	4-Pyrazolyl
	192 193	CHCH ₃	1-Methyl-3-pyrazolyl
	193	CHCH ₃	1—Methyl—4—pyrazolyl
30	195	CHCH ₃	1—Methyl-5-pyrazolyl
	196	CHCH ₃	2–Imidazolyl
	197	CHCH ₃	1-Methyl-2-imidazolyl
	198	CHCH ₃	5-Methyl-[1,3,4]-2-oxadiazolyl
35	199	CHCH ₃	5-Methyl-[1,2,4]-3-oxadiazolyl
	200	CHCH ₃	5-Methyl-[1,3,4]-2-thiadiazolyl
	201	CHCH ₃	5-Methyl-[1,2,4]-3-thiadiazolyl
	202	CHCH ₃	[1,2,4]–3–triazolyl
40	203	CHCH ₃	[1,2,3]-4-triazolyl
	204	CHCH ₃	2–Pyridyl
	205	CHCH ₃	6-Chlor-2-pyridyl
4 -		CHCH ₃	6-Methoxy-2-pyridyl
45	207	CHCH ₃	6-Trifluormethyl-2-pyridyl
	208	CHCH ₃	3–Pyridyl
	200	10110113	

			31
Γ	Nr.	X ¹	Het
 	209	CHCH ₃	2-Chlor-3-pyridyl
	210	CHCH ₃	2-Methoxy-3-pyridyl
5	211	CHCH ₃	4-Pyridyl
	212	CHCH ₃	2-Chlor-4-pyridyl
ŀ	213	CHCH ₃	2-Methoxy-4-pyridyl
ľ	214	CHCH ₃	2-Ethoxy-4-pyridyl
10	215	CHCH ₃	2-Methylthio-4-pyridyl
	216	CHCH ₃	2-Trifluormethyl-5-pyridyl
	217	CHCH ₃	2—Pyrimidinyl
15	218	CHCH ₃	3—Pyrimidinyl
12	219	CHCH ₃	4Pyrimidinyl
	220	CHCH ₃	2-Pyrazinyl
	221	CHCH ₃	3-Pyridazinyl
20	222	CHCH ₃	4-Pyridazinyl
	223	CHCH ₃	2-(2 <i>H</i> -1,3-oxazinyl)
	224	CHCH ₃	2-(6H-1,3-oxazinyl)
	225	CHCH ₃	4-(6H-1,3-oxazinyl)
25	226	CHCH ₃	6-(6H-1,3-oxazinyl)
	227	CHCH ₃	[1,3,5]–2–Triazinyl
	228	CHCH ₃	[1,2,4]–3–Triazinyl
	229	CHCH ₃	[1,2,4]-5-Triazinyl
30	230	CHCH ₃	[1,2,4]-6-Triazinyl
	231	СНОН	Oxiranyl
	232	СНОН	3-Methyl-2-oxiranyl
	233	СНОН	2-Oxetanyl
35	234	СНОН	3-Hydroxy-3-methyl-2-oxetanyl
	235	СНОН	3-Hydroxy-3-ethyl-2-oxetanyl
	236	СНОН	3-Hydroxy-3-propyl-2-oxetanyl
4.0	237	СНОН	3-Hydroxy-3-butyl-2-oxetanyl
40	238	СНОН	3—Methoxy-3-methyl-2-oxetanyl
	239	СНОН	3-Methoxy-3-ethyl-2-oxetanyl
	240	СНОН	3-Methoxy-3-propyl-2-oxetanyl
45	241	СНОН	3-Methoxy-3-butyl-2-oxetanyl
	242	СНОН	3—Trimethylsilyloxy—3—methyl—2—oxetanyl
	243	СНОН	3-Trimethylsilyloxy-3-ethyl-2-oxetanyl

٢	Nr.	X ¹	Het
	244	СНОН	3—Trimethylsilyloxy-3-propyl-2-oxetanyl
5	245	СНОН	3—Trimethylsilyloxy—3—butyl—2—oxetanyl
	246	СНОН	3-Oxetanyl
F	247	СНОН	2–Furyl
Ì	248	СНОН	4,5–Dihydro–2–furyl
	249	СНОН	2,3-Dihydro-2-furyl
10	250	СНОН	3-Furyl
	251	СНОН	4,5—Dihydro—3—furyl
ŀ	252	СНОН	2,3–Dihydro–3–furyl
15	253	СНОН	2-Thienyl
15	254	СНОН	4,5—Dihydro—2—thienyl
ļ	255	СНОН	2,3-Dihydro-2-thienyl
ţ	256	СНОН	5-Chlor-2-thienyl
20	257	СНОН	5-Methyl-2-thienyl
	258	СНОН	3-Thienyl
	259	СНОН	4,5-Dihydro-3-thienyl
	260	СНОН	2,3-Dihydro-3-thienyl
25	261	СНОН	2—Pyrrolyl
	262	СНОН	2,5-Dihydro-2-pyrrolyl
	263	СНОН	3-Pyrrol
	264	СНОН	2,5–Dihydro–3–pyrrolyl
30	265	СНОН	3–Isoxazolyl
	266	СНОН	4-Methyl-3-isoxazolyl
	267	СНОН	5-Methyl-3-isoxazolyl
	268	СНОН	4,5—Dimethyl—3—isoxazo!yl
35	269	СНОН	4,5-Dihydro-3-isoxazolyl
	270	СНОН	4-Methyl-4,5-dihydro-3-isoxazolyl
	271	СНОН	5-Methyl-4,5-dihydro-3-isoxazolyl
40	272	СНОН	4,5-Dimethyl-4,5-dihydro-3-isoxazolyl
	273	СНОН	4-Isoxazolyl
	274	СНОН	3-Methyl-4-isoxazolyl
	275	СНОН	5-Methyl-4-isoxazolyl
45	276	СНОН	5-Cyclopropyl-4-isoxazolyl
	277	СНОН	5-Phenyl-4-isoxazolyl
	278	СНОН	3,5—Dimethyl—4—isoxazolyl

BINGHOUSE MAD CONTRACT I

Γ	Nr.	X ¹	Het
-	279 -	СНОН	4,5—Dihydro-4-isoxazolyl
<u> </u>	280	СНОН	3-Methyl-4,5-dihydro-4-isoxazolyl
5	281	СНОН	5-Methyl-4,5-dihydro-4-isoxazolyl
	282	СНОН	3,5—Dimethyl—4,5—dihydro—4—isoxazolyl
f	283	СНОН	5-Isoxazolyl
t	284	СНОН	3-Methyl-5-isoxazolyl
10	285	СНОН	4-Methyl-5-isoxazolyl
ŀ	286	СНОН	3,4-Dimethyl-5-isoxazolyl
ļ	287	СНОН	4,5—Dihydro—5—isoxazolyl
	288	СНОН	3-Methyl-4,5-dihydro-5-isoxazolyl
15	289	СНОН	4-Methyl-4,5-dihydro-5-isoxazolyl
	290	СНОН	3,4-Dimethyl-4,5-dihydro-5-isoxazolyl
	291	СНОН	3-Isothiazolyl
20	292	СНОН	4-Methyl-3-isothiazolyl
	293	СНОН	5-Methyl-3-isothiazolyl
i	294	СНОН	4-Isothiazolyl
	295	СНОН	3-Methyl-4-isothiazolyl
25	296	СНОН	5-Methyl-4-isothiazolyl
	297	СНОН	5Isothiazolyl
	298	СНОН	3-Methyl-5-isothiazolyl
	299	СНОН	4-Methyl-5-isothiazolyl
30	300	СНОН	2-Oxazolyl
	301	СНОН	4-Oxazolyl
	302	СНОН	5-Oxazolyl
	303	СНОН	2-Thiazolyl
35	304	СНОН	4-Thiazolyl
	305	СНОН	5—Thiazolyl
	306	СНОН	3-Pyrazolyl
40	307	СНОН	4-Pyrazolyl
40	308	СНОН	1-Methyl-3-pyrazolyl
	309	СНОН	1-Methyl-4-pyrazolyl
	310	СНОН	1-Methyl-5-pyrazolyl
45	311	СНОН	2-Imidazolyl
	312	СНОН	1-Methyl-2-imidazolyl
	313	СНОН	5-Methyl-[1,3,4]-2-oxadiazolyl

	Nr.	X ¹	Het
	314	СНОН	5-Methyl-[1,2,4]-3-oxadiazolyl
Γ	315	СНОН	5-Methyl-[1,3,4]-2-thiadiazolyl
5	316	СНОН	5-Methyl-[1,2,4]-3-thiadiazolyl
	317	СНОН	[1,2,4]3triazolyl
	318	СНОН	[1,2,3]—4—triazoly1
[319	СНОН	2-Pyridyl
10	320	СНОН	6-Chlor-2-pyridyl
	321	СНОН	6-Methoxy-2-pyridyl
	322	СНОН	6-Trifluormethyl-2-pyridyl
15	323	СНОН	3-Pyridyl
	324	СНОН	2-Chlor-3-pyridyl
	325	СНОН	2-Methoxy-3-pyridyl
	326	СНОН	4-Pyridyl
20	327	СНОН	2–Chlor–4–pyridyl
	328	СНОН	2-Methoxy-4-pyridyl
	329	СНОН	2-Ethoxy-4-pyridyl
	330	СНОН	2-Methylthio-4-pyridyl
25	331	СНОН	2-Trifluormethyl-5-pyridyl
	332	СНОН	2–Pyrimidinyl
	333	СНОН	3—Pyrimidinyl
	334	СНОН	4-Pyrimidinyl
30	335	СНОН	2-Pyrazinyl
	336	СНОН	3—Pyridazinyl
	337	СНОН	4-Pyridazinyl
3-	338	СНОН	2-(2 <i>H</i> -1,3-oxazinyl)
35	339	СНОН	2-(6H-1,3-oxazinyl)
į	340	СНОН	4-(6H-1,3-oxazinyl)
į	341	СНОН	6-(6H-1,3-oxazinyl)
40	342	СНОН	[1,3,5]-2-Triazinyl
	343	СНОН	[1,2,4]—3—Triazinyl
	344	СНОН	[1,2,4]5-Triazinyl
	345	СНОН	[1,2,4]–6–Triazinyl
45	346	CHOCH ₃	Oxiranyl
	347	CHOCH ₃	3-Methyl-2-oxiranyl
	348	СНОСН3	2—Oxetanyl

BNSDOCID WO COCTOCTALL

_		1	35 Het
L	Nr.	X ¹	
	349	CHOCH₃	3-Hydroxy-3-methyl-2-oxetanyl
_ [350	CHOCH ₃	3—Hydroxy—3—ethyl—2—oxetanyl
5	351	CHOCH₃	3-Hydroxy-3-propyl-2-oxetanyl
	352	CHOCH ₃	3-Hydroxy-3-butyl-2-oxetanyl
	353	CHOCH ₃	3-Methoxy-3-methyl-2-oxetanyl
10	354	CHOCH ₃	3—Methoxy—3—ethyl—2—oxetanyl
10	355	CHOCH ₃	3-Methoxy-3-propyl-2-oxetanyl
	356	CHOCH ₃	3-Methoxy-3-butyl-2-oxetanyl
	357	СНОСН3	3-Trimethylsilyloxy-3-methyl-2-oxetanyl
15	358	CHOCH ₃	3-Trimethylsilyloxy-3-ethyl-2-oxetanyl
13	359	CHOCH ₃	3—Trimethylsilyloxy—3—propyl—2—oxetanyl
	360	CHOCH ₃	3-Trimethylsilyloxy-3-butyl-2-oxetanyl
	361	CHOCH ₃	3—Oxetanyl
20	362	СНОСН3	2–Furyl
	363	СНОСН3	4,5–Dihydro–2–furyl
	364	CHOCH ₃	2,3—Dihydro—2—furyl
	365	CHOCH ₃	3–Furyl
25	366	CHOCH ₃	4,5-Dihydro-3-furyl
	367	CHOCH ₃	2,3-Dihydro-3-furyl
	368	CHOCH ₃	2-Thienyl
	369	CHOCH ₃	4,5-Dihydro-2-thienyl
30	370	CHOCH ₃	2,3-Dihydro-2-thienyl
	371	CHOCH ₃	5-Chlor-2-thienyl
	372	CHOCH₃	5-Methyl-2-thienyl
	373	CHOCH ₃	3—Thienyl
35	374	CHOCH ₃	4,5-Dihydro-3-thienyl
	375	CHOCH ₃	2,3-Dihydro-3-thienyl
	376	CHOCH ₃	2—Pyrrolyl
4.0	377	CHOCH ₃	2,5—Dihydro–2–pyrrolyl
40	378	CHOCH ₃	3—Pyrrol
	379	CHOCH ₃	2,5-Dihydro-3pyrrolyl
	380	CHOCH ₃	3—Isoxazolyl
45		CHOCH ₃	4-Methyl-3-isoxazolyl
3.7	382	СНОСН3	5-Methyl-3-isoxazolyl
	383	CHOCH ₃	4,5-Dimethyl-3-isoxazolyl

ſ	Nr.	X ¹	Het
-	384	CHOCH ₃	4,5-Dihydro-3-isoxazolyl
ŀ	385	CHOCH ₃	4-Methyl-4,5-dihydro-3-isoxazolyl
5	386	CHOCH ₃	5-Methyl-4,5-dihydro-3-isoxazolyl
-	387	CHOCH ₃	4,5-Dimethyl-4,5-dihydro-3-isoxazolyl
Ī	388	CHOCH₃	4–Isoxazolyl
ļ	389	CHOCH₃	3—Methyl—4—isoxazolyl
10	390	CHOCH ₃	5-Methyl-4-isoxazolyl
	391	CHOCH ₃	5-Cyclopropyl-4-isoxazolyl
f	392	CHOCH ₃	5—Phenyl—4—isoxazolyl
15	393	CHOCH ₃	3,5—Dimethyl-4-isoxazolyl
13	394	CHOCH ₃	4,5—Dihydro—4—isoxazolyl
Ì	395	СНОСН3	3-Methyl-4,5-dihydro-4-isoxazolyl
İ	396	CHOCH ₃	5-Methyl-4,5-dihydro-4-isoxazolyl
20	397	СНОСН3	3,5—Dimethyl-4,5-dihydro-4-isoxazolyl
	398	CHOCH ₃	5-Isoxazolyl
	399	CHOCH ₃	3-Methyl-5-isoxazolyl
	400	CHOCH ₃	4-Methyl-5-isoxazolyl
25	401	CHOCH ₃	3,4—Dimethyl—5—isoxazolyl
	402	CHOCH ₃	4,5—Dihydro–5–isoxazolyl
	403	СНОСН3	3-Methyl-4,5-dihydro-5-isoxazolyl
	404	CHOCH ₃	4-Methyl-4,5-dihydro-5-isoxazolyl
30	405	CHOCH ₃	3,4—Dimethyl—4,5—dihydro—5—isoxazolyl
	406	CHOCH ₃	3-Isothiazolyl
,	407	CHOCH₃	4-Methyl-3-isothiazolyl
	408	CHOCH ₃	5-Methyl-3-isothiazolyl
35	409	CHOCH ₃	4-Isothiazolyl
	410	СНОСН3	3-Methyl-4-isothiazolyl
	411	CHOCH ₃	5-Methyl-4-isothiazolyl
40	412	CHOCH ₃	5—Isothiazolyl
40	413	CHOCH ₃	3-Methyl-5-isothiazolyl
	414	CHOCH ₃	4-Methyl-5-isothiazolyl
	415	CHOCH ₃	2-Oxazolyl
45	416	CHOCH ₃	4-Oxazolyl
	417	CHOCH ₃	5-Oxazolyl
	418	CHOCH ₃	2-Thiazolyl

Γ	Nr.	X ¹	Het
-	419	CHOCH ₃	4-Thiazolyl
ŀ	420	CHOCH ₃	5-Thiazolyl
5	421	CHOCH ₃	3-Pyrazolyl
ŀ	422	CHOCH ₃	4-Pyrazolyl
Ì	423	CHOCH ₃	1-Methyl-3-pyrazolyl
}	424	CHOCH ₃	1-Methyl-4-pyrazolyl
10	425	CHOCH ₃	1-Methyl-5-pyrazolyl
	426	CHOCH ₃	2—Imidazolyl
	427	CHOCH ₃	1-Methyl-2-imidazolyl
	428	CHOCH₃	5-Methyl-[1,3,4]-2-oxadiazolyl
15	429	CHOCH ₃	5-Methyl-[1,2,4]-3-oxadiazolyl
	430	CHOCH ₃	5-Methyl-[1,3,4]-2-thiadiazolyl
	431	CHOCH ₃	5-Methyl-[1,2,4]-3-thiadiazolyl
20	432	CHOCH ₃	[1,2,4]–3–triazolyl
20	433	CHOCH ₃	[1,2,3]-4-triazolyl
	434	CHOCH ₃	2–Pyridyl
	435	CHOCH ₃	6-Chlor-2-pyridyl
25	436	CHOCH ₃	6-Methoxy-2-pyridyl
	437	CHOCH ₃	6-Trifluormethyl-2-pyridyl
	438	CHOCH ₃	3—Pyridyl
	439	CHOCH ₃	2-Chlor-3-pyridyl
30	440	CHOCH ₃	2-Methoxy-3-pyridyl
	441	CHOCH ₃	4Pyridyl
	442	CHOCH ₃	2-Chlor-4-pyridyl
	443	CHOCH ₃	2-Methoxy-4-pyridyl
35	444	CHOCH ₃	2-Ethoxy-4-pyridyl
	445	CHOCH ₃	2-Methylthio-4-pyridyl
	446	CHOCH ₃	2-Trifluormethyl-5-pyridyl
40	447	CHOCH ₃	2—Pyrimidinyl
40	448	CHOCH ₃	3-Pyrimidinyl
	449	CHOCH ₃	4-Pyrimidinyl
	450	CHOCH₃	2-Pyrazinyl
45	451	CHOCH₃	3-Pyridazinyl
	452	CHOCH ₃	4-Pyridazinyl
	453	CHOCH ₃	2-(2H-1,3-oxazinyl)

	Nr.	X ¹	Het
 	454	CHOCH ₃	2-(6H-1,3-oxazinyl)
F	455	CHOCH ₃	4–(6H–1,3–oxazinyl)
5	456	CHOCH ₃	6–(6H–1,3–oxazinyl)
	457	CHOCH ₃	[1,3,5]–2—Triazinyl
	458	CHOCH ₃	[1,2,4]–3–Triazinyl
	459	CHOCH ₃	[1,2,4]–5–Triazinyl
10	460	CHOCH ₃	[1,2,4]–6–Triazinyl
	461	CHOCOCH ₃	Oxiranyl
	462	CHOCOCH ₃	3-Methyl-2-oxiranyl
1.	463	CHOCOCH₃	2-Oxetanyl
15	464	CHOCOCH ₃	3-Hydroxy-3-methyl-2-oxetanyl
	465	CHOCOCH ₃	3-Hydroxy-3-ethyl-2-oxetanyl
	466	CHOCOCH ₃	3-Hydroxy-3-propyl-2-oxetanyl
20	467	CHOCOCH ₃	3-Hydroxy-3-butyl-2-oxetanyl
	468	CHOCOCH₃	3-Methoxy-3-methyl-2-oxetanyl
ļ	469	CHOCOCH ₃	3-Methoxy-3-ethyl-2-oxetanyl
	470	CHOCOCH ₃	3-Methoxy-3-propyl-2-oxetanyl
25	471	CHOCOCH ₃	3-Methoxy-3-butyl-2-oxetanyl
	472	CHOCOCH₃	3-Trimethylsilyloxy-3-methyl-2-oxetanyl
	473	CHOCOCH ₃	3-Trimethylsilyloxy-3-ethyl-2-oxetanyl
	474	CHOCOCH ₃	3-Trimethylsilyloxy-3-propyl-2-oxetanyl
30	475	CHOCOCH ₃	3-Trimethylsilyloxy-3-butyl-2-oxetanyl
	476	CHOCOCH ₃	3-Oxetanyl
	477	CHOCOCH ₃	2–Furyl
	478	CHOCOCH ₃	4,5–Dihydro–2–furyl
35	479	CHOCOCH ₃	2,3—Dihydro—2—furyl
	480	CHOCOCH ₃	3–Furyl
	481	CHOCOCH ₃	4,5–Dihydro–3–furyl
40	482	CHOCOCH ₃	2,3–Dihydro–3–furyl
40	483	CHOCOCH₃	2-Thienyl
	484	CHOCOCH ₃	4,5—Dihydro—2—thienyl
	485	CHOCOCH₃	2,3-Dihydro-2-thienyl
45	486	CHOCOCH₃	5-Chlor-2-thienyl
	487	CHOCOCH₃	5-Methyl-2-thienyl
	488	CHOCOCH ₃	3—Thienyl

Г		X¹	Het
-	Nr.	CHOCOCH ₃	4,5-Dihydro-3-thienyl
-	489	CHOCOCH ₃	2,3-Dihydro-3-thienyl
5	490	CHOCOCH ₃	2–Pyrrolyl
- }	491	CHOCOCH ₃	2,5—Dihydro—2—pyrrolyl
}	492	CHOCOCH ₃	3-Pyrrol
-	493	CHOCOCH ₃	2,5-Dihydro-3-pyrrolyl
10	494	CHOCOCH ₃	3-Isoxazolyl
ļ	495	 	4-Methyl-3-isoxazolyl
}	496	CHOCOCH ₃	5-Methyl-3-isoxazolyl
}	497	CHOCOCH ₃	4,5—Dimethyl—3—isoxazolyl
15	498	CHOCOCH ₃	4,5-Dihydro-3-isoxazolyl
ì	499	CHOCOCH ₃	4-Methyl-4,5-dihydro-3-isoxazolyl
	500	CHOCOCH ₃	5-Methyl-4,5-dihydro-3-isoxazolyl
	501	CHOCOCH ₃	4,5—Dimethyl-4,5—dihydro-3-isoxazolyl
20	502	CHOCOCH ₃	4-Isoxazolyl
	503 504	CHOCOCH ₃	3-Methyl-4-isoxazolyl
	505	CHOCOCH ₃	5-Methyl-4-isoxazolyl
25	506	CHOCOCH ₃	5-Cyclopropyl-4-isoxazolyl
23	507	CHOCOCH ₃	5-Phenyl-4-isoxazolyl
	508	CHOCOCH ₃	3,5-Dimethyl-4-isoxazolyl
	509	CHOCOCH ₃	4,5-Dihydro-4-isoxazolyl
30	510	CHOCOCH ₃	3-Methyl-4,5-dihydro-4-isoxazolyl
	511	CHOCOCH ₃	5-Methyl-4,5-dihydro-4-isoxazolyl
	512	CHOCOCH ₃	3,5-Dimethyl-4,5-dihydro-4-isoxazolyl
	513	CHOCOCH ₃	5-Isoxazolyl
35	514	CHOCOCH ₃	3-Methyl-5-isoxazolyl
	515	CHOCOCH ₃	4-Methyl-5-isoxazolyl
	516	CHOCOCH ₃	3,4-Dimethyl-5-isoxazolyl
	517	CHOCOCH ₃	4,5—Dihydro–5—isoxazolyl
40	518	CHOCOCH ₃	3-Methyl-4,5-dihydro-5-isoxazolyl
	519	CHOCOCH ₃	4-Methyl-4,5-dihydro-5-isoxazolyl
	520	CHOCOCH ₃	3,4-Dimethyl-4,5-dihydro-5-isoxazolyl
45		CHOCOCH ₃	3—Isothiazolyl
33	522	CHOCOCH ₃	4-Methyl-3-isothiazolyl
	523	CHOCOCH ₃	5-Methyl-3-isothiazolyl

_	40			
	Nr.	X ¹	Het	
	524	СНОСОСН3	4-Isothiazolyl	
	525	СНОСОСН3	3-Methyl-4-isothiazolyl	
5	526	CHOCOCH ₃	5-Methyl-4-isothiazolyl	
	527	CHOCOCH ₃	5-Isothiazolyl	
	528	CHOCOCH ₃	3-Methyl-5-isothiazolyl	
	529	CHOCOCH ₃	4-Methyl-5-isothiazolyl	
10	530	CHOCOCH ₃	2-Oxazolyi	
Γ	531	CHOCOCH ₃	4-Oxazolyl	
Γ	532	CHOCOCH ₃	5-Oxazolyl	
15	533	CHOCOCH ₃	2-Thiazolyl	
	534	CHOCOCH ₃	4-Thiazolyl	
	535	CHOCOCH ₃	5-Thiazolyl	
	536	CHOCOCH ₃	3-Pyrazolyl	
20	537	CHOCOCH ₃	4-Pyrazolyl	
ſ	538	CHOCOCH ₃	1-Methyl-3-pyrazolyl	
Ţ	539	CHOCOCH ₃	1-Methyl-4-pyrazolyl	
	540	CHOCOCH ₃	1-Methyl-5-pyrazolyl	
25	541	CHOCOCH ₃	2—Imidazolyl	
Ī	542	CHOCOCH ₃	1-Methyl-2-imidazolyl	
Í	543	CHOCOCH ₃	5-Methyl-[1,3,4]-2-oxadiazolyl	
	544	CHOCOCH ₃	5-Methyl-[1,2,4]-3-oxadiazolyl	
30	545	CHOCOCH ₃	5-Methyl-[1,3,4]-2-thiadiazolyl	
	546	CHOCOCH₃	5-Methyl-[1,2,4]-3-thiadiazolyl	
	547	CHOCOCH ₃	[1,2,4]3triazolyl	
	548	CHOCOCH ₃	[1,2,3] 4 triazolyl	
35	549	CHOCOCH ₃	2–Pyridyl	
	550	CHOCOCH ₃	6-Chlor-2-pyridyl	
	551	CHOCOCH ₃	6-Methoxy-2-pyridyl	
40	552	CHOCOCH ₃	6-Trifluormethyl-2-pyridyl	
10	553	CHOCOCH₃	3—Pyridyl	
	554	CHOCOCH₃	2-Chlor-3-pyridyl	
	555	CHOCOCH ₃	2-Methoxy-3-pyridyl	
45	556	CHOCOCH ₃	4-Pyridyl	
	557	CHOCOCH ₃	2-Chlor-4-pyridyl	
	558	CHOCOCH ₃	2-Methoxy-4-pyridyl	

٢	Nr.	X ¹	Het
 	559	CHOCOCH₃	2-Ethoxy-4-pyridyl
F	560	CHOCOCH ₃	2-Methylthio-4-pyridyl
5	561	CHOCOCH ₃	2-Trifluormethyl-5-pyridyl
<u> </u>	562	CHOCOCH ₃	2-Pyrimidinyl
F	563	CHOCOCH ₃	3-Pyrimidinyl
ŀ	564	CHOCOCH ₃	4-Pyrimidinyl
10	565	CHOCOCH ₃	2-Pyrazinyl
	566	CHOCOCH ₃	3-Pyridazinyl
-	567	CHOCOCH ₃	4-Pyridazinyl
15	568	CHOCOCH ₃	2-(2 <i>H</i> -1,3-oxazinyl)
13	569	CHOCOCH ₃	2-(6 <i>H</i> -1,3-oxazinyl)
Ì	570	CHOCOCH ₃	4-(6H-1,3-oxazinyl)
	571	CHOCOCH ₃	6-(6H-1,3-oxazinyl)
20	572	CHOCOCH ₃	[1,3,5]—2—Triazinyl
	573	CHOCOCH ₃	[1,2,4]–3–Triazinyl
!	574	CHOCOCH ₃	[1,2,4]–5–Triazinyl
	575	CHOCOCH ₃	[1,2,4]–6–Triazinyl
25	576	CHOSO ₂ CH ₃	Oxiranyl
	577	CHOSO ₂ CH ₃	3-Methyl-2-oxiranyl
	578	CHOSO ₂ CH ₃	2-Oxetanyl
	579	CHOSO ₂ CH ₃	3-Hydroxy-3-methyl-2-oxetanyl
30	580	CHOSO ₂ CH ₃	3-Hydroxy-3-ethyl-2-oxetanyl
	581	CHOSO ₂ CH ₃	3-Hydroxy-3-propyl-2-oxetanyl
	582	CHOSO ₂ CH ₃	3-Hydroxy-3-butyl-2-oxetanyl
35	583	CHOSO ₂ CH ₃	3—Methoxy–3-methyl–2-oxetanyl
33	584	CHOSO ₂ CH ₃	3—Methoxy–3—ethyl–2—oxetanyl
	585	CHOSO ₂ CH ₃	3—Methoxy–3-propyl–2-oxetanyl
	586	CHOSO ₂ CH ₃	3-Methoxy-3-butyl-2-oxetanyl
40	587	CHOSO ₂ CH ₃	3—Trimethylsilyloxy—3—methyl—2—oxetanyl
	588	CHOSO ₂ CH ₃	3-Trimethylsilyloxy-3-ethyl-2-oxetanyl
	589	CHOSO ₂ CH ₃	3—Trimethylsilyloxy—3—propyl—2—oxetanyl
	590	CHOSO ₂ CH ₃	3-Trimethylsilyloxy-3-butyl-2-oxetanyl
45	591	CHOSO ₂ CH ₃	3-Oxetanyl
	592	CHOSO ₂ CH ₃	2–Furyl
	593	CHOSO ₂ CH ₃	4,5–Dihydro–2–furyl

			42
٢	Nr.	\mathbf{X}^1	Het
	594	CHOSO ₂ CH ₃	2,3–Dihydro–2–furyl
	595	CHOSO ₂ CH ₃	3-Furyl
5	596	CHOSO ₂ CH ₃	4,5—Dihydro—3—furyl
ľ	597	CHOSO ₂ CH ₃	2,3-Dihydro-3-furyl
	598	CHOSO ₂ CH ₃	2-Thienyl
Ī	599	CHOSO ₂ CH ₃	4,5-Dihydro-2-thienyl
10	600	CHOSO ₂ CH ₃	2,3-Dihydro-2-thienyl
Ī	601	CHOSO ₂ CH ₃	5-Chlor-2-thienyl
Ì	602	CHOSO ₂ CH ₃	5-Methyl-2-thienyl
	603	CHOSO ₂ CH ₃	3-Thienyl
15	604	CHOSO ₂ CH ₃	4,5-Dihydro-3-thienyl
	605	CHOSO ₂ CH ₃	2,3-Dihydro-3-thienyl
	606	CHOSO ₂ CH ₃	2-Pyrrolyl
20	607	CHOSO ₂ CH ₃	2,5—Dihydro–2–pyrrolyl
	608	CHOSO ₂ CH ₃	3Pyrrol
	609	CHOSO ₂ CH ₃	2,5-Dihydro-3-pyrrolyl
	610	CHOSO ₂ CH ₃	3—Isoxazolyl
25	611	CHOSO ₂ CH ₃	4-Methyl-3-isoxazolyl
	612	CHOSO ₂ CH ₃	5-Methyl-3-isoxazolyl
	613	CHOSO ₂ CH ₃	4,5-Dimethyl-3-isoxazolyl
	614	CHOSO ₂ CH ₃	4,5–Dihydro–3–isoxazolyl
30	615	CHOSO ₂ CH ₃	4-Methyl-4,5-dihydro-3-isoxazolyl
	616	CHOSO ₂ CH ₃	5-Methyl-4,5-dihydro-3-isoxazolyl
	617	CHOSO ₂ CH ₃	4,5-Dimethyl-4,5-dihydro-3-isoxazolyl
	618	CHOSO ₂ CH ₃	4—Isoxazolyl
35	619	CHOSO ₂ CH ₃	3-Methyl-4-isoxazolyl
	620	CHOSO ₂ CH ₃	5-Methyl-4-isoxazolyl
	621	CHOSO ₂ CH ₃	5-Cyclopropyl-4-isoxazolyl
40	622	CHOSO ₂ CH ₃	5-Phenyl-4-isoxazolyl
40	623	CHOSO ₂ CH ₃	3,5—Dimethyl—4—isoxazolyl
	624	CHOSO ₂ CH ₃	4,5-Dihydro-4-isoxazolyl
	625	CHOSO ₂ CH ₃	3-Methyl-4,5-dihydro-4-isoxazolyl
45	626	CHOSO ₂ CH ₃	5-Methyl-4,5-dihydro-4-isoxazolyl
	627	CHOSO ₂ CH ₃	3,5-Dimethyl-4,5-dihydro-4-isoxazolyl
	628	CHOSO ₂ CH ₃	5Isoxazolyl

Nr.	X^1	
		Het
629	CHOSO ₂ CH ₃	3-Methyl-5-isoxazolyl
630	CHOSO ₂ CH ₃	4-Methyl-5-isoxazolyl
631		3,4-Dimethyl-5-isoxazolyl
632		4,5-Dihydro-5-isoxazolyl
633		3-Methyl-4,5-dihydro-5-isoxazolyl
634		4-Methyl-4,5-dihydro-5-isoxazolyl
635	CHOSO ₂ CH ₃	3,4—Dimethyl-4,5-dihydro-5-isoxazolyl
636	CHOSO ₂ CH ₃	3-Isothiazolyl
637	CHOSO ₂ CH ₃	4-Methyl-3-isothiazolyl
638	CHOSO ₂ CH ₃	5-Methyl-3-isothiazolyl
639	CHOSO ₂ CH ₃	4-Isothiazolyl
640	CHOSO ₂ CH ₃	3-Methyl-4-isothiazolyl
641	CHOSO ₂ CH ₃	5-Methyl-4-isothiazolyl
642	CHOSO ₂ CH ₃	5-Isothiazolyl
643	CHOSO ₂ CH ₃	3-Methyl-5-isothiazolyl
644	CHOSO ₂ CH ₃	4-Methyl-5-isothiazolyl
645	CHOSO ₂ CH ₃	2-Oxazolyl
646	CHOSO ₂ CH ₃	4-Oxazolyl
647	CHOSO ₂ CH ₃	5-Oxazolyl
648	CHOSO ₂ CH ₃	2—Thiazolyl
649	CHOSO ₂ CH ₃	4—Thiazolyl
650	CHOSO ₂ CH ₃	5-Thiazolyl
651	CHOSO ₂ CH ₃	3-Pyrazolyl
652	CHOSO ₂ CH ₃	4-Pyrazolyl
653	CHOSO ₂ CH ₃	1-Methyl-3-pyrazolyl
654	CHOSO ₂ CH ₃	1-Methyl-4-pyrazolyl
655	CHOSO ₂ CH ₃	1-Methyl-5-pyrazolyl
656	CHOSO ₂ CH ₃	2—Imidazolyl
657	CHOSO ₂ CH ₃	1-Methyl-2-imidazolyl
658	CHOSO ₂ CH ₃	5-Methyl-[1,3,4]-2-oxadiazolyl
659	CHOSO ₂ CH ₃	5-Methyl-[1,2,4]-3-oxadiazolyl
660	CHOSO ₂ CH ₃	5-Methyl-[1,3,4]-2-thiadiazolyl
661	CHOSO ₂ CH ₃	5-Methyl-[1,2,4]-3-thiadiazolyl
662	CHOSO ₂ CH ₃	[1,2,4]—3—triazolyl
663	CHOSO ₂ CH ₃	[1,2,3]—4—triazolyl
	631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 669 660 661 662	631 CHOSO ₂ CH ₃ 632 CHOSO ₂ CH ₃ 633 CHOSO ₂ CH ₃ 634 CHOSO ₂ CH ₃ 635 CHOSO ₂ CH ₃ 636 CHOSO ₂ CH ₃ 637 CHOSO ₂ CH ₃ 638 CHOSO ₂ CH ₃ 639 CHOSO ₂ CH ₃ 640 CHOSO ₂ CH ₃ 641 CHOSO ₂ CH ₃ 642 CHOSO ₂ CH ₃ 643 CHOSO ₂ CH ₃ 644 CHOSO ₂ CH ₃ 645 CHOSO ₂ CH ₃ 646 CHOSO ₂ CH ₃ 647 CHOSO ₂ CH ₃ 648 CHOSO ₂ CH ₃ 650 CHOSO ₂ CH ₃ 651 CHOSO ₂ CH ₃ 652 CHOSO ₂ CH ₃ 653 CHOSO ₂ CH ₃ 654 CHOSO ₂ CH ₃ 655 CHOSO ₂ CH ₃ 656 CHOSO ₂ CH ₃ 657 CHOSO ₂ CH ₃ 658 CHOSO ₂ CH ₃ 659 CHOSO ₂ CH ₃ 660 CHOSO ₂ CH ₃ 661 CHOSO ₂ CH ₃ 661 CHOSO ₂ CH ₃

-	44			
Ĺ	Nr.	X ¹	Het	
	664	CHOSO ₂ CH ₃	2–Pyridyl	
	665	CHOSO ₂ CH ₃	6-Chlor-2-pyridyl	
5	666	CHOSO ₂ CH ₃	6-Methoxy-2-pyridyl	
	667	CHOSO ₂ CH ₃	6-Trifluormethyl-2-pyridyl	
[668	CHOSO ₂ CH ₃	3–Pyridyl	
_ [669	CHOSO ₂ CH ₃	2-Chlor-3-pyridyl	
10	670	CHOSO ₂ CH ₃	2-Methoxy-3-pyridyl	
ſ	671	CHOSO ₂ CH ₃	4-Pyridyl	
	672	CHOSO ₂ CH ₃	2–Chlor–4–pyridyl	
15	673	CHOSO ₂ CH ₃	2-Methoxy-4-pyridyl	
13	674	CHOSO ₂ CH ₃	2-Ethoxy-4-pyridyl	
	675	CHOSO ₂ CH ₃	2-Methylthio-4-pyridyl	
	676	CHOSO ₂ CH ₃	2—Trifluormethyl—5—pyridyl	
20	677	CHOSO ₂ CH ₃	2Pyrimidinyl	
	678	CHOSO ₂ CH ₃	3Pyrimidinyl	
	679	CHOSO ₂ CH ₃	4—Pyrimidinyl	
	680	CHOSO ₂ CH ₃	2-Pyrazinyl	
25	681	CHOSO ₂ CH ₃	3—Pyridazinyl	
,	682	CHOSO ₂ CH ₃	4-Pyridazinyl	
	683	CHOSO ₂ CH ₃	2-(2 <i>H</i> -1,3-oxazinyl)	
	684	CHOSO ₂ CH ₃	2-(6 <i>H</i> -1,3-oxazinyl)	
30	685	CHOSO ₂ CH ₃	4-(6 <i>H</i> -1,3-oxazinyl)	
	686	CHOSO ₂ CH ₃	6–(6H–1,3–oxazinyl)	
	687	CHOSO ₂ CH ₃	[1,3,5]-2-Triazinyl	
	688	CHCSO ₂ CH ₃	[1,2,4]–3–Triazinyl	
35	689	CHOSO ₂ CH ₃	[1,2,4]-5-Triazinyl	
	690	CHOSO ₂ CH ₃	[1,2,4]-6-Triazinyl	
	691	CH ₂ CH ₂	Oxiranyl	
40	692	CH ₂ CH ₂	3-Methyl-2-oxiranyl	
40	693	CH ₂ CH ₂	2-Oxetanyl	
	694	CH ₂ CH ₂	3—Hydroxy–3—methyl–2—oxetanyl	
	695	CH ₂ CH ₂	3-Hydroxy-3-ethyl-2-oxetanyl	
45	696	CH ₂ CH ₂	3-Hydroxy-3-propyl-2-oxetanyl	
	697	CH ₂ CH ₂	3-Hydroxy-3-butyl-2-oxetanyl	
	698	CH ₂ CH ₂	3-Methoxy-3-methyl-2-oxetanyl	

			45
٢	Nr.	X ¹	Het
 	699	CH ₂ CH ₂	3—Methoxy—3—ethyl—2-oxetanyl
H	700	CH ₂ CH ₂	3-Methoxy-3-propyl-2-oxetanyl
5	701	CH ₂ CH ₂	3-Methoxy-3-butyl-2-oxetanyl
<u> </u>	702	CH ₂ CH ₂	3—Trimethylsilyloxy-3-methyl-2-oxetanyl
	703	CH ₂ CH ₂	3—Trimethylsilyloxy—3—ethyl—2—oxetanyl
t	704	CH ₂ CH ₂	3—Trimethylsilyloxy—3—propyl—2—oxetanyl
10	705	CH ₂ CH ₂	3-Trimethylsilyloxy-3-butyl-2-oxetanyl
ł	706	CH ₂ CH ₂	3-Oxetanyl
}	707	CH ₂ CH ₂	2–Furyl
	708	CH ₂ CH ₂	4,5-Dihydro-2-furyl
15	709	CH ₂ CH ₂	2,3—Dihydro—2—furyl
	710	CH ₂ CH ₂	3–Furyl
	711	CH ₂ CH ₂	4,5–Dihydro–3–furyl
20	712	CH ₂ CH ₂	2,3–Dihydro–3–furyl
20	713	CH ₂ CH ₂	2-Thienyl
	714	CH ₂ CH ₂	4,5-Dihydro-2-thienyl
	715	CH ₂ CH ₂	2,3-Dihydro-2-thienyl
25	716	CH ₂ CH ₂	5-Chlor-2-thienyl
	717	CH ₂ CH ₂	5-Methyl-2-thienyl
	718	CH ₂ CH ₂	3—Thienyl
	719	CH ₂ CH ₂	4,5—Dihydro—3—thienyl
30	720	CH ₂ CH ₂	2,3-Dihydro-3-thienyl
	721	CH ₂ CH ₂	2—Pyrrolyl
	722	CH ₂ CH ₂	2,5–Dihydro–2–pyrrolyl
	723	CH ₂ CH ₂	3—Pyrrol
35	724	CH ₂ CH ₂	2,5–Dihydro–3–pyrrolyl
	725	CH ₂ CH ₂	3—Isoxazolyl
	726	CH ₂ CH ₂	4-Methyl-3-isoxazolyl
40	727	CH ₂ CH ₂	5-Methyl-3-isoxazolyl
40	728	CH ₂ CH ₂	4,5-Dimethyl-3-isoxazolyl
	729	CH ₂ CH ₂	4,5-Dihydro-3-isoxazolyl
	730	CH ₂ CH ₂	4-Methyl-4,5-dihydro-3-isoxazolyl
45	731	CH ₂ CH ₂	5-Methyl-4,5-dihydro-3-isoxazolyl
	732	CH ₂ CH ₂	4,5-Dimethyl-4,5-dihydro-3-isoxazolyl
	733	CH ₂ CH ₂	4Isoxazolyl

Nr.	X ¹	Het
734	CH ₂ CH ₂	3-Methyl-4-isoxazolyl
735	CH ₂ CH ₂	5-Methyl-4-isoxazolyl
736	CH ₂ CH ₂	5-Cyclopropyl-4-isoxazolyl
737	CH ₂ CH ₂	5-Phenyl-4-isoxazolyl
738	CH ₂ CH ₂	3,5-Dimethyl-4-isoxazolyl
739	CH ₂ CH ₂	4,5-Dihydro-4-isoxazolyl
740	CH ₂ CH ₂	3-Methyl-4,5-dihydro-4-isoxazolyl
741	CH ₂ CH ₂	5-Methyl-4,5-dihydro-4-isoxazolyl
742	CH ₂ CH ₂	3,5—Dimethyl—4,5—dihydro—4—isoxazolyl
743	CH ₂ CH ₂	5Isoxazolyl
744	CH ₂ CH ₂	3-Methyl-5-isoxazolyl
745	CH ₂ CH ₂	4-Methyl-5-isoxazolyl
746	CH ₂ CH ₂	3,4-Dimethyl-5-isoxazolyl
747	CH ₂ CH ₂	4,5-Dihydro-5-isoxazolyl
748	CH ₂ CH ₂	3-Methyl-4,5-dihydro-5-isoxazolyl
749	CH ₂ CH ₂	4-Methyl-4,5-dihydro-5-isoxazolyl
750	CH ₂ CH ₂	3,4-Dimethyl-4,5-dihydro-5-isoxazolyl
751	CH ₂ CH ₂	3-Isothiazolyl
752	CH ₂ CH ₂	4-Methyl-3-isothiazolyl
753	CH ₂ CH ₂	5-Methyl-3-isothiazolyl
754	CH ₂ CH ₂	4—Isothiazolyl
755	CH ₂ CH ₂	3-Methyl-4-isothiazolyl
756	CH ₂ CH ₂	5-Methyl-4-isothiazolyl
757	CH ₂ CH ₂	5-Isothiazolyl
758	CH ₂ CH ₂	3-Methyl-5-isothiazolyl
759	CH ₂ CH ₂	4-Methyl-5-isothiazolyl
760	CH ₂ CH ₂	2Oxazolyl
761	CH ₂ CH ₂	4-Oxazolyl
762	CH ₂ CH ₂	5-Oxazolyl
763	CH ₂ CH ₂	2-Thiazolyl
764	CH ₂ CH ₂	4—Thiazolyl
765	CH ₂ CH ₂	5—Thiazolyl
766	CH ₂ CH ₂	3Pyrazolyl
767	CH ₂ CH ₂	4-Pyrazolyl
768	CH ₂ CH ₂	1-Methyl-3-pyrazolyl
	734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767	734

י יי ריים אוג בי בער פואן

Γ	Nr.	X ¹	Het
}-	769	CH ₂ CH ₂	l-Methyl-4-pyrazolyl
5	770	CH ₂ CH ₂	1-Methyl-5-pyrazolyl
	<i>7</i> 71	CH ₂ CH ₂	2—Imidazolyl
	772	CH ₂ CH ₂	1-Methyl-2-imidazolyl
	773	CH ₂ CH ₂	5-Methyl-[1,3,4]-2-oxadiazolyl
ŀ	774	CH ₂ CH ₂	5-Methyl-[1,2,4]-3-oxadiazolyl
10	775	CH ₂ CH ₂	5-Methyl-[1,3,4]-2-thiadiazolyl
f	776	CH ₂ CH ₂	5-Methyl-[1,2,4]-3-thiadiazolyl
ŀ	777	CH ₂ CH ₂	[1,2,4]-3-triazolyl
	778	CH ₂ CH ₂	[1,2,3]—4—triazolyl
15	779	CH ₂ CH ₂	2—Pyridyl
Ì	780	CH ₂ CH ₂	6-Chlor-2-pyridyl
	781	CH ₂ CH ₂	6-Methoxy-2-pyridyl
20	782	CH ₂ CH ₂	6-Trifluormethyl-2-pyridyl
	783	CH ₂ CH ₂	3-Pyridyl
	784	CH ₂ CH ₂	2-Chlor-3-pyridyl
	785	CH ₂ CH ₂	2-Methoxy-3-pyridyl
25	786	CH ₂ CH ₂	4-Pyridyl
	787	CH ₂ CH ₂	2-Chlor-4-pyridyl
	788	CH ₂ CH ₂	2-Methoxy-4-pyridyl
	789	CH ₂ CH ₂	2-Ethoxy-4-pyridyl
30	790	CH₂CH₂	2-Methylthio-4-pyridyl
	791	CH ₂ CH ₂	2-Trifluormethyl-5-pyridyl
	792	CH ₂ CH ₂	2—Pyrimidinyl
	793	CH ₂ CH ₂	3—Pyrimidinyl
35	794	CH ₂ CH ₂	4-Pyrimidinyl
	795	CH ₂ CH ₂	2—Pyrazinyl
	796	CH ₂ CH ₂	3—Pyridazinyl
40	7 97	CH ₂ CH ₂	4-Pyridazinyl
	798	CH ₂ CH ₂	2–(2 <i>H</i> –1,3–oxazinyl)
	799	CH ₂ CH ₂	2–(6 <i>H</i> –1,3–oxazinyl)
	800	CH ₂ CH ₂	4–(6 <i>H</i> –1,3–oxazinyl)
45	801	CH ₂ CH ₂	6–(6 <i>H</i> –1,3–oxazinyl)
	802	CH ₂ CH ₂	[1,3,5]–2–Triazinyl
	803	CH ₂ CH ₂	[1,2,4]-3-Triazinyl

Γ	Nr.	X ¹	Het
F	804	CH ₂ CH ₂	[1,2,4]–5–Triazinyl
5	805	CH₂CH₂	[1,2,4]–6–Triazinyl
	806	—c≡c—	Oxiranyl
	807	—c≡c—	3-Methyl-2-oxiranyl
	808	—C≣C —	2-Oxetanyl
	809	_c≡c_	3-Hydroxy-3-methyl-2-oxetanyl
10	810	—C≡C—	3-Hydroxy-3-ethyl-2-oxetanyl
	811	C≡C	3-Hydroxy-3-propyl-2-oxetanyl
t	812	-c≡c-	3-Hydroxy-3-butyl-2-oxetanyl
	813	-c≡c-	3-Methoxy-3-methyl-2-oxetanyl
15	814	-c≡c-	3-Methoxy-3-ethyl-2-oxetanyl
	815	—C≣C—	3-Methoxy-3-propyl-2-oxetanyl
	816	-c≡c-	3-Methoxy-3-butyl-2-oxetanyl
20	817	-c≡c-	3-Trimethylsilyloxy-3-methyl-2-oxetanyl
20	818	—C≡C—	3-Trimethylsilyloxy-3-ethyl-2-oxetanyl
	819	-c≡c-	3-Trimethylsilyloxy-3-propyl-2-oxetanyl
	820	-C≣C-	3-Trimethylsilyloxy-3-butyl-2-oxetanyl
25	821	-c≡c-	3—Oxetanyl
	822	-c≡c-	2–Furyl
	823	-c≡c-	4,5-Dihydro-2-furyl
	824	_c≡c_	2,3—Dihydro—2—furyl
30	825	C≣C	3–Furyl
	826	C≣C	4,5-Dihydro-3-furyl
	827	C≡C	2,3-Dihydro-3-furyl
	828	C≣C	2—Thieny!
35	829	-c≡c-	4,5-Dihydro-2-thienyl
	830	-c≡c-	2,3—Dihydro—2—thienyl
40	831	C≣C	5-Chlor-2-thienyl
	832	c≡c	5-Methyl-2-thienyl
	833	-c≡c-	3—Thienyl
	834	—c≡c—	4,5-Dihydro-3-thienyl
45	835	-c≡c-	2,3-Dihydro-3-thienyl
	836	C≡C	2–Pyrrolyl
	837	—C≡C—	2,5—Dihydro—2—pyrrolyl
	838	-c≡c	3-Рупоі

			49
Γ	Nr.	X1	Het
	839	C≡C	2,5—Dihydro—3–pyrrolyl
5	840	-C≣C-	3Isoxazolyl
	841	—C≣C—	4-Methyl-3-isoxazolyl
	842	—C≣C—	5-Methyl-3-isoxazolyl
	843	—C≣C—	4,5-Dimethyl-3-isoxazolyl
	844	C≣C	4,5—Dihydro—3—isoxazolyl
10	845	—C≡C—	4-Methyl-4,5-dihydro-3-isoxazolyl
- -	846	-C≡C-	5-Methyl-4,5-dihydro-3-isoxazolyl
ľ	847	-C≣C-	4,5-Dimethyl-4,5-dihydro-3-isoxazolyl
	848	—C≡C—	4—Isoxazolyl
15	849	-c≡c-	3-Methyl-4-isoxazolyl
}	850	—c≡c—	5—Methyl-4—isoxazolyl
ļ	851	—C≣C—	5-Cyclopropyl-4-isoxazolyl
20	852	-C≡C	5-Phenyl-4-isoxazolyl
2	853	-C≣C-	3,5—Dimethyl—4-isoxazolyl
	854	-c≡c-	4,5-Dihydro-4-isoxazolyl
	855	-c≡c-	3-Methyl-4,5-dihydro-4-isoxazolyl
25	856	-C≡C-	5-Methyl-4,5-dihydro-4-isoxazolyl
	857	_c≡c—	3,5-Dimethyl-4,5-dihydro-4-isoxazolyl
	858	-c≡c	5-Isoxazolyl
	859	-c≡c-	3-Methyl-5-isoxazolyl
30	860	-c≡c-	4-Methyl-5-isoxazolyl
	861	-c≡c-	3,4—Dimethyl—5—isoxazolyl
	862	—C≡C—	4,5–Dihydro–5–isoxazolyl
	863	-c≡c-	3-Methyl-4,5-dihydro-5-isoxazolyl
35	864	-c≡c-	4-Methyl-4,5-dihydro-5-isoxazolyl
	865	-C≡C-	3,4-Dimethyl-4,5-dihydro-5-isoxazolyl
40	866	—C≣C—	3-Isothiazolyl
	867	-c≡c-	4-Methyl-3-isothiazolyl
	868	-c≡c-	5-Methyl-3-isothiazolyl
	869	-C≡C-	4Isothiazolyl
	870	C≡C	3-Methyl-4-isothiazolyl
45	871	-C≡C-	5-Methyl-4-isothiazolyl
	872	-C≡C-	5—Isothiazolyl
	873	—C≣C—	3-Methyl-5-isothiazolyl

	Nr.	X ¹	Het
5	874	-C≡C-	4-Methyl-5-isothiazolyl
	875	—C≡C—	2–Oxazolyl
	876	-C≣C -	4–Oxazolyl
	877	—C≡C—	5-Oxazolyl
{	878	-c≡c-	2—Thiazolyl
10	879	—C≡C—	4-Thiazolyl
10	880	—C≡C—	5—Thiazolyl
ĺ	881	—C≡C—	3-Pyrazolyl
	882	-c≡c-	4-Pyrazolyl
15	883	—c≡c—	l-Methyl-3-pyrazolyl
	884	—c≡c—	1—Methyl—4—pyrazolyl
	885	-c≡c-	l-Methyl-5-pyrazolyl
ĺ	886	—C≣C—	2—Imidazolył
20	887	-c≡c-	1-Methyl-2-imidazolyl
	888	_C≣C—	5-Methyl-[1,3,4]-2-oxadiazolyl
	889	-c≡c-	5-Methyl-[1,2,4]-3-oxadiazolyl
	890	-C≡C-	5-Methyl-[1,3,4]-2-thiadiazolyl
25	891	_c≡c_	5-Methyl-[1,2,4]-3-thiadiazolyl
	892	-c≡c-	[1,2,4]–3–triazoly1
	893	—C≡C—	[1,2,3]—4—triazolyl
	894	-c≡c-	2-Pyridyl
30	895	-c≡c-	6-Chlor-2-pyridyl
	896	—c≡c —	6-Methoxy-2-pyridyl
	897	—c≡c—	6-Trifluormethyl-2-pyridyl
35	898	—c≡c—	3-Pyridyl
35	899	—C≡C—	2-Chlor-3-pyridyl
ļ	900	—C≡C—	2-Methoxy-3-pyridyl
	901	—C≣C—	4-Pyridyl
40	902	C≡C	2-Chlor-4-pyridyl
	903	—c≡c—	2-Methoxy-4-pyridyl
Ì	904	C≡C	2-Ethoxy-4-pyridyl
	905	C≡C	2-Methylthio-4-pyridyl
45	906	-c≡c-	2—Trifluormethyl—5—pyridyl
	907	—C≡C—	2–Pyrimidinyl
	908	C≡C	3-PyrimidinyI

INSPOCID WO CONTROL

Γ	Nr.	X¹	Het
-	909	-C≡C-	4-Pyrimidinyl
r	910	-c≡c-	2-Pyrazinyl
5	911	C≡C	3-Pyridazinyl
ľ	912	C≡C	4-Pyridazinyl
ľ	913	-c≡c-	2-(2 <i>H</i> -1,3-oxazinyl)
İ	914	-c≡c-	2-(6H-1,3-oxazinyl)
10	915	-C≡C-	4-(6H-1,3-oxazinyl)
	916	_C≣C—	6-(6H-1,3-oxazinyl)
Ì	917	-c≡c-	[1,3,5]–2–Triazinyl
15	918	-c≡c-	[1,2,4]–3–Triazinyl
	919	-c≡c-	[1,2,4]-5-Triazinyl
	920	-c≡c-	[1,2,4]-6-Triazinyl

Die folgenden Tabellen 1 - 144 basieren auf den 4-Benzoylpyrazolen der Formel Ib.

5
$$R^1$$
 X^1 Het R^2 Ib R^3 R^4 R^5

Tabelle 1: Verbindungen 1.1 - 1.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 15 Chlor, R^5 Methyl und R^6 Wasserstoff bedeutet und die Substituente x^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 2: Verbindungen 2.1 - 2.920

- 20 Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Chlor, R^5 Ethyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 3: Verbindungen 3.1 3.920Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Chlor, R^5 n-Propyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 4: Verbindungen 4.1 - 4.920Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Chlor, \mathbb{R}^5 Methyl und \mathbb{R}^6 Methyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der 35 Tabelle A entsprechen.

Tabelle 5: Verbindungen 5.1 - 5.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

Chlor, R⁵ Ethyl und R⁶ Methyl bedeutet und die Substituente X¹

40 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 6: Verbindungen 6.1 - 6.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 45 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 7: Verbindungen 7.1 - 7.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und ${\rm R}^2$ Chlor, ${\rm R}^5$ Methyl und ${\rm R}^6$ Ethyl bedeutet und die Substituente ${\tt X^1}$ und Het für jede einzelne Verbindung jeweils einer Zeile der 5 Tabelle A entsprechen.

Tabelle 8: Verbindungen 8.1 - 8.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und ${\ensuremath{\mathsf{R}}}^2$ Chlor, ${\ensuremath{\mathsf{R}}}^5$ Ethyl und ${\ensuremath{\mathsf{R}}}^6$ Ethyl bedeutet und die Substituente $10~{
m X}^{
m l}$ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 9: Verbindungen 9.1 - 9.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und 15 R^2 Chlor, R^5 n-Propyl und R^6 Ethyl bedeutet und die Substituente ${\tt X^1}$ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 10: Verbindungen 10.1 - 10.920

- 20 Verbindungen der allgemeinen Formel Ib, in der R1 Chlor und ${\ensuremath{\text{R}}}^2$ Chlor, ${\ensuremath{\text{R}}}^5$ Methyl und ${\ensuremath{\text{R}}}^6$ Methylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 11: Verbindungen 11.1 11.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und ${\rm R}^2$ Chlor, ${\rm R}^5$ Ethyl und ${\rm R}^6$ Methylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

30 Tabelle 12: Verbindungen 12.1 - 12.920 Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und ${
m R}^2$ Chlor, ${
m R}^5$ n-Propyl und ${
m R}^6$ Methylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils 35 einer Zeile der Tabelle A entsprechen.

Tabelle 13: Verbindungen 13.1 - 13.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und ${\rm R}^2$ Chlor, ${\rm R}^5$ Methyl und ${\rm R}^6$ Ethylcarbonyl bedeutet und die 40 Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 14: Verbindungen 14.1 - 14.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 45 Chlor, R^5 Ethyl und R^6 Ethylcarbonyl bedeutet und die Substituente ${\tt X^1}$ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 15: Verbindungen 15.1 - 15.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Chlor, R⁵ n-Propyl und R⁶ Ethylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils 5 einer Zeile der Tabelle A entsprechen.

Tabelle 16: Verbindungen 16.1 - 16.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Chlor, R⁵ Methyl und R⁶ Methylsulfonyl bedeutet und die

10 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 17: Verbindungen 17.1 - 17.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und

15 R² Chlor, R⁵ Ethyl und R⁶ Methylsulfonyl bedeutet und die

Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 18: Verbindungen 18.1 - 18.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 19: Verbindungen 19.1 19.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Chlor, \mathbb{R}^5 Methyl und \mathbb{R}^6 Ethylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 20: Verbindungen 20.1 - 20.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Chlor, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Ethylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der 35 Tabelle A entsprechen.

Tabelle 21: Verbindungen 21.1 - 21.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Chlor, R⁵ n-Propyl und R⁶ Ethylsulfonyl bedeutet und die 40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 22: Verbindungen 22.1 - 22.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

45 Chlor, R⁵ Methyl und R⁶ 4-Methylphenylsulfonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 23: Verbindungen 23.1 - 23.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Chlor, \mathbb{R}^5 Ethyl und \mathbb{R}^6 4-Methylphenylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer 5 Zeile der Tabelle A entsprechen.

Tabelle 24: Verbindungen 24.1 - 24.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 4-Methylphenylsulfonyl bedeutet und die 10 Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 25: Verbindungen 25.1 - 25.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 15 Methylsulfonyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 26: Verbindungen 26.1 - 26.920

- 20 Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Methylsulfonyl, R^5 Ethyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 27: Verbindungen 27.1 27.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 28: Verbindungen 28.1 - 28.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Methylsulfonyl, R⁵ Methyl und R⁶ Methyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 29: Verbindungen 29.1 - 29.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Methylsulfonyl, R⁵ Ethyl und R⁶ Methyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 30: Verbindungen 30.1 - 30.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und 45 \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 31: Verbindungen 31.1 - 31.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Ethyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 32: Verbindungen 32.1 - 32.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Methylsulfonyl, R⁵ Ethyl und R⁶ Ethyl bedeutet und die

10 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 33: Verbindungen 33.1 - 33.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und 15 \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 34: Verbindungen 34.1 - 34.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Methylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 35: Verbindungen 35.1 35.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Methylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 36: Verbindungen 36.1 - 36.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

Methylsulfonyl, R⁵ n-Propyl und R⁶ Methylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer 35 Zeile der Tabelle A entsprechen.

Tabelle 37: Verbindungen 37.1 - 37.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

Methylsulfonyl, R⁵ Methyl und R⁶ Ethylcarbonyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 38: Verbindungen 38.1 - 38.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 45 Methylsulfonyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Ethylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen. Tabelle 39: Verbindungen 39.1 - 39.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer 5 Zeile der Tabelle A entsprechen.

Tabelle 40: Verbindungen 40.1 - 40.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die 10 Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 41: Verbindungen 41.1 - 41.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 15 Methylsulfonyl, R^5 Ethyl und R^6 Methylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 42: Verbindungen 42.1 - 42.920

- 20 Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Methylsulfonyl, R^5 n-Propyl und R^6 Methylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 43: Verbindungen 43.1 43.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Methylsulfonyl, R^5 Methyl und R^6 Ethylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

30

Tabelle 44: Verbindungen 44.1 - 44.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

Methylsulfonyl, R⁵ Ethyl und R⁶ Ethylsulfonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils

35 einer Zeile der Tabelle A entsprechen.

Tabelle 45: Verbindungen 45.1 - 45.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethylsulfonyl bedeutet und 40 die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 46: Verbindungen 46.1 - 46.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 45 Methylsulfonyl, R^5 Methyl und R^6 4-Methylphenylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 47: Verbindungen 47.1 - 47.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Methylsulfonyl, R^5 Ethyl und R^6 4-Methylphenylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung 5 jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 48: Verbindungen 48.1 - 48.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Methylsulfonyl, R^5 n-Propyl und R^6 4-Methylphenylsulfonyl bedeutet 10 und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 49: Verbindungen 49.1 - 49.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 15 Trifluormethyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 50: Verbindungen 50.1 - 50.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 51: Verbindungen 51.1 51.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 52: Verbindungen 52.1 - 52.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Trifluormethyl, R^5 Methyl und R^6 Methyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 53: Verbindungen 53.1 - 53.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Trifluormethyl, R⁵ Ethyl und R⁶ Methyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 54: Verbindungen 54.1 - 54.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und 45 \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils Zeile der Tabelle A entsprechen.

Tabelle 55: Verbindungen 55.1 - 55.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Trifluormethyl, R^5 Methyl und R^6 Ethyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils 5 einer Zeile der Tabelle A entsprechen.

Tabelle 56: Verbindungen 56.1 - 56.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Trifluormethyl, R⁵ Ethyl und R⁶ Ethyl bedeutet und die

10 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 57: Verbindungen 57.1 - 57.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und 15 \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 58: Verbindungen 58.1 - 58.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Methylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 59: Verbindungen 59.1 59.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Methylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 60: Verbindungen 60.1 - 60.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R² Chlor, R⁵ n-Propyl und R⁶ Methylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 61: Verbindungen 61.1 - 61.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

Trifluormethyl, R⁵ Methyl und R⁶ Ethylcarbonyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils
einer Zeile der Tabelle A entsprechen.

Tabelle 62: Verbindungen 62.1 - 62.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

45 Trifluormethyl, R⁵ Ethyl und R⁶ Ethylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 63: Verbindungen 63.1 - 63.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer 5 Zeile der Tabelle A entsprechen.

Tabelle 64: Verbindungen 64.1 - 64.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die 10 Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 65: Verbindungen 65.1 - 65.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

15 Trifluormethyl, R⁵ Ethyl und R⁶ Methylsulfonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 66: Verbindungen 66.1 - 66.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 67: Verbindungen 67.1 67.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Ethylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 68: Verbindungen 68.1 - 68.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

Trifluormethyl, R⁵ Ethyl und R⁶ Ethylsulfonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils

35 einer Zeile der Tabelle A entsprechen.

Tabelle 69: Verbindungen 69.1 - 69.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethylsulfonyl bedeutet und 40 die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 70: Verbindungen 70.1 - 70.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Chlor und R²

45 Trifluormethyl, R⁵ Methyl und R⁶ 4-Methylphenylsulfonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 71: Verbindungen 71.1 - 71.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Chlor und R^2 Trifluormethyl, R^5 Ethyl und R^6 4-Methylphenylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung 5 jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 72: Verbindungen 72.1 - 72.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Chlor und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 4-Methylphenylsulfonyl bedeutet 10 und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 73: Verbindungen 73.1 - 73.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 15 Chlor, \mathbb{R}^5 Methyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 74: Verbindungen 74.1 - 74.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 75: Verbindungen 75.1 75.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Chlor, R^5 n-Propyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

30

Tabelle 76: Verbindungen 76.1 - 76.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Chlor, R⁵ Methyl und R⁶ Methyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der 35 Tabelle A entsprechen.

Tabelle 77: Verbindungen 77.1 - 77.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Chlor, R⁵ Ethyl und R⁶ Methyl bedeutet und die Substituente

40 X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 78: Verbindungen 78.1 - 78.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und 45 \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 79: Verbindungen 79.1 - 79.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Chlor, R^5 Methyl und R^6 Ethyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle 5 A entsprechen.

Tabelle 80: Verbindungen 80.1 - 80.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Ethyl bedeutet und die Substituente \mathbb{X}^1 und 10 Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 81: Verbindungen 81.1 - 81.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und 15 \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 82: Verbindungen 82.1 - 82.920

- 20 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Chlor, R^5 Methyl und R^6 Methylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 83: Verbindungen 83.1 83.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Chlor, R^5 Ethyl und R^6 Methylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 84: Verbindungen 84.1 - 84.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Chlor, R⁵ n-Propyl und R⁶ Methylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 85: Verbindungen 85.1 - 85.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Chlor, R⁵ Methyl und R⁶ Ethylcarbonyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 86: Verbindungen 86.1 - 86.920
Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²
45 Chlor, R⁵ Ethyl und R⁶ Ethylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 87: Verbindungen 87.1 - 87.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils 5 einer Zeile der Tabelle A entsprechen.

Tabelle 88: Verbindungen 88.1 - 88.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 Methyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die

10 Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 89: Verbindungen 89.1 - 89.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und 15 \mathbb{R}^2 Chlor, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 90: Verbindungen 90.1 - 90.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 91: Verbindungen 91.1 91.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Chlor, R^5 Methyl und R^6 Ethylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

30 Tabelle 92: Verbindungen 92.1 - 92.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Chlor, R^5 Ethyl und R^6 Ethylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der

35 Tabelle A entsprechen.

Tabelle 93: Verbindungen 93.1 - 93.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethylsulfonyl bedeutet und die

40 Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 94: Verbindungen 94.1 - 94.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2

45 Chlor, R^5 Methyl und R^6 4-Methylphenylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 95: Verbindungen 95.1 - 95.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 Ethyl und \mathbb{R}^6 4-Methylphenylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer 5 Zeile der Tabelle A entsprechen.

Tabelle 96: Verbindungen 96.1 - 96.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Chlor, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 4-Methylphenylsulfonyl bedeutet und

10 die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 97: Verbindungen 97.1 - 97.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und 15 R^2 Methylsulfonyl, R^5 Methyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 98: Verbindungen 98.1 - 98.920

- 20 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Methylsulfonyl, R^5 Ethyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 99: Verbindungen 99.1 99.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Methylsulfonyl, R^5 n-Propyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

30

Tabelle 100: Verbindungen 100.1 - 100.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Methylsulfonyl, R⁵ Methyl und R⁶ Methyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 101: Verbindungen 101.1 - 101.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Methylsulfonyl, R⁵ Ethyl und R⁶ Methyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 102: Verbindungen 102.1 - 102.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und 45 \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 103: Verbindungen 103.1 - 103.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Methylsulfonyl, R^5 Methyl und R^6 Ethyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 104: Verbindungen 104.1 - 104.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Methylsulfonyl, R⁵ Ethyl und R⁶ Ethyl bedeutet und die

10 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 105: Verbindungen 105.1 - 105.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und

15 R² Methylsulfonyl, R⁵ n-Propyl und R⁶ Ethyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 106: Verbindungen 106.1 - 106. 920

20 Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²

Methylsulfonyl, R⁵ Methyl und R⁶ Methylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

25 Tabelle 107: Verbindungen 107.1 - 107.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Methylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 108: Verbindungen 108.1 - 108.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²

Methylsulfonyl, R⁵ n-Propyl und R⁶ Methylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 109: Verbindungen 109.1 - 109.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Ethylcarbonyl bedeutet und die 40 Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 110: Verbindungen 110.1 - 110.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 45 Methylsulfonyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Ethylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen. Tabelle 111: Verbindungen 111.1 - 111.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, R^5 n-Propyl und R^6 Ethylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer 5 Zeile der Tabelle A entsprechen.

Tabelle 112: Verbindungen 112.1 - 112.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, R^5 Methyl und R^6 Methylsulfonyl bedeutet und die ${f 10}$ Substituente ${f X^1}$ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 113: Verbindungen 113.1 - 113.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 ${f 15}$ Methylsulfonyl, ${f R}^{f 5}$ Ethyl und ${f R}^{f 6}$ Methylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 114: Verbindungen 114.1 - 114.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, R^5 n-Propyl und R^6 Methylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 115: Verbindungen 115.1 115.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, R^5 Methyl und R^6 Ethylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 116: Verbindungen 116.1 - 116.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, R^5 Ethyl und R^6 Ethylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer 35 Zeile der Tabelle A entsprechen.

Tabelle 117: Verbindungen 117.1 - 117.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Methylsulfonyl, R^5 n-Propyl und R^6 Ethylsulfonyl bedeutet und die 40 Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 118: Verbindungen 118.1 - 118.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 45 Methylsulfonyl, R^5 Methyl und R^6 4-Methylphenylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 119: Verbindungen 119.1 - 119.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Methylsulfonyl, R^5 Ethyl und R^6 4-Methylphenylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung 5 jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 120: Verbindungen 120.1 - 120.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²

Methylsulfonyl, R⁵ n-Propyl und R⁶ 4-Methylphenylsulfonyl bedeutet

10 und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 121: Verbindungen 121.1 - 121.920
Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²
15 Trifluormethyl, R⁵ Methyl und R⁶ Wasserstoff bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 122: Verbindungen 122.1 - 122.920

- 20 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Trifluormethyl, R^5 Ethyl und R^6 Wasserstoff bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 123: Verbindungen 123.1 123.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Wasserstoff bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 124: Verbindungen 124.1 - 124.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Trifluormethyl, R⁵ Methyl und R⁶ Methyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 125: Verbindungen 12.1 - 125.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Trifluormethyl, R⁵ Ethyl und R⁶ Methyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 126: Verbindungen 126.1 - 126.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 45 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen. Tabelle 127: Verbindungen 127.1 - 127.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Trifluormethyl, R⁵ Methyl und R⁶ Ethyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 128: Verbindungen 128.1 - 128.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R² Trifluormethyl, R⁵ Ethyl und R⁶ Ethyl bedeutet und die

10 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 129: Verbindungen 129.1 - 129.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und 15 \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Ethyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 130: Verbindungen 130.1 - 130.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Methyl und \mathbb{R}^6 Methylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 131: Verbindungen 131.1 131.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Methylcarbonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 132: Verbindungen 132.1 - 132. 920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²

Trifluormethyl, R⁵ n-Propyl und R⁶ Methylcarbonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer 35 Zeile der Tabelle A entsprechen.

Tabelle 133: Verbindungen 133.1 - 133.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²

Trifluormethyl, R⁵ Methyl und R⁶ Ethylcarbonyl bedeutet und die

40 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 134: Verbindungen 134.1 - 134.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 45 Trifluormethyl, R^5 Ethyl und R^6 Ethylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen. Tabelle 135: Verbindungen 135.1 - 135.920

Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Trifluormethyl, R^5 n-Propyl und R^6 Ethylcarbonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer 5 Zeile der Tabelle A entsprechen.

Tabelle 136: Verbindungen 136.1 - 136.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²

Trifluormethyl, R⁵ Methyl und R⁶ Methylsulfonyl bedeutet und die

10 Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 137: Verbindungen 137.1 - 137.920

Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 15 Trifluormethyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 138: Verbindungen 138.1 - 138.920

- 20 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 Methylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.
- 25 Tabelle 139: Verbindungen 139.1 139.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Trifluormethyl, R^5 Methyl und R^6 Ethylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 140: Verbindungen 140.1 - 140.920

Verbindungen der allgemeinen Formel Ib, in der R¹ Methyl und R²

Trifluormethyl, R⁵ Ethyl und R⁶ Ethylsulfonyl bedeutet und die Substituente X¹ und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 141: Verbindungen 141.1 - 141.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 Trifluormethyl, R^5 n-Propyl und R^6 Ethylsulfonyl bedeutet und die 40 Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 142: Verbindungen 142.1 - 142.920 Verbindungen der allgemeinen Formel Ib, in der R^1 Methyl und R^2 45 Trifluormethyl, R^5 Methyl und R^6 4-Methylphenylsulfonyl bedeutet und die Substituente X^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 143: Verbindungen 143.1 - 143.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 Ethyl und \mathbb{R}^6 4-Methylphenylsulfonyl bedeutet und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung 5 jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 144: Verbindungen 144.1 - 144.920 Verbindungen der allgemeinen Formel Ib, in der \mathbb{R}^1 Methyl und \mathbb{R}^2 Trifluormethyl, \mathbb{R}^5 n-Propyl und \mathbb{R}^6 4-Methylphenylsulfonyl bedeutet 10 und die Substituente \mathbb{X}^1 und Het für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich – sowohl als Isomerengemische als auch in Form der 15 reinen Isomeren – als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser 20 Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen I bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen 25 eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris 30 spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis 35 guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot 40 esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum 45 tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao,

Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays.

Darüber hinaus können die Verbindungen I auch in Kulturen, die 5 durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die 10 Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter 15 darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen 20 Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Als inerte Zusatzstoffe kommen im Wesentlichen in Betracht:

30 Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanz-lichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate,

35 alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Ketone wie Cyclohexanon oder stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon oder Wasser.

40 Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die substituierten 4-Benzoyl-pyrazole als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

- 5 Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Lauryletherund Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta-
- 10 und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder
- 15 Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Trägerstoff hergestellt werden.

25

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk,

30 Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere 35 feste Trägerstoffe.

Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Die Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew.-%,

40 vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs.
Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100 %,
vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Die erfindungsgemäßen Verbindungen I können beispielsweise wie 45 folgt formuliert werden:

I 20 Gewichtsteile der Verbindung Nr. 26.39 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

20 Gewichtsteile der Verbindung Nr. 26.39 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

20 Gewichtsteile des Wirkstoffs Nr. 26.39 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

30
IV 20 Gewichtsteile des Wirkstoffs Nr. 26.39 werden mit
3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes
einer Ligninsulfonsäure aus einer Sulfit-Ablauge und
60 Gewichtsteilen pulverförmigen Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines
Verteilen der Mischung in 20000 Gewichtsteilen Wasser enthält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs
enthält.

3 Gewichtsteile des Wirkstoffs Nr. 26.39 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew. % des Wirkstoffs enthält.

40

45

V

- VI 20 Gewichtsteile des Wirkstoffs Nr. 26.39 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
- VII 1 Gewichtsteil der Verbindung Nr. 26.39 wird in einer

 Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon,

 20 Gewichtsteilen ethoxyliertem Isooctylphenol und

 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man
 erhält ein stabiles Emulsionskonzentrat.
- 15 VIII 1 Gewichtsteil der Verbindung Nr. 26.39 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol® EM 31 (nicht ionischer Emulgator auf der Basis von ethoxyliertem Ricinusöl). Man erhält ein stabiles Emulsionskonzentrat.
- 20 Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die substituierten 4-Benzoylpyrazole mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam 25 ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, (Het)-Aryloxyalkansäure und deren Derivate, Benzoesäure und deren Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexandione, Hetaryl-Aryl-Ketone, 30 Benzylisoxazolidinone, Meta-CF3-phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexan-1,3-dionderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren 35 und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- oder Heteroaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, Phenyl-
- propionsäure und deren Derivate, Pyrazole, Phenylpyrazole,
 40 Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone,
 Triazolinone, Triazolcarboxamide, Uracile in Betracht.
- Außerdem kann es von Nutzen sein, die Verbindungen I allein

 45 oder in Kombination mit anderen herbiziden auch noch mit
 weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen,
 beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder

phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0, vorzugsweise 0.01 bis 1.0 kg/ha aktive Substanz (a. S.)

10 Nachfolgend werden die Synthesen einiger Edukte und Produkte beschrieben.

15

2,4-Dichlor-3-((2-pyridyl)-(hydroxymethyl)-phenyl)-(1-ethyl-5-hydroxy-1H-pyrazol-4-yl)-methanon

Stufe a: 2,4-Dichlor-3-((2-pyridyl)-(hydroxymethyl))-benzoesäuretert-butylester

4.0 g (39.6 mmol) Diisopropylamin werden in 120 ml Tetrahydro20 furan bei -20°C für 40 min mit 25,0 ml (40,0 mmol) 1,6 M n-Butyl-lithium-Lösung in Hexan gerührt. Bei -75°C wird eine Lösung von 10,0 g (40,5 mmol) 2,4-Dichlorbenzoesäure-tert-butylester in 30 ml Tetrahydrofuran zugetropft und 1,5 h gerührt. Man tropft eine Lösung aus 4,3 g (40,5 mmol) 2-Formylpyridin in 20 ml Tetrahydropyran zu und rührt 2.5 h bei Raumtemp. Die Mischung wird in 500 ml gesättigte, wäßrige Ammoniumchlorid-Lösung gegeben und mit Essigsäureethylester extrahiert. Die vereinigten Extrakte werden mit Wasser gewaschen, über Natriumsulfat getrocknet, filtriert und i. Vak. vom Lösungsmittel befreit. Das Rohprodukt wird durch
30 Chromatographie an Kieselgel mit Cyclohexan/Essigsäureethylester gereinigt. Ausbeute: 7,5 g; ¹H-NMR, δ [ppm], (DMSO-d₆): 1,5 (s), 6,5 (m), 7,2 (m); 7,5 (m), 7,9 (m), 8,4 (d)

Stufe b: 2,4-Dichlor-3-((2-pyridyl)-(hydroxymethyl))-benzoesäure

35
3,5 g (9,9 mmol) 2,4-Dichlor-3-((2-pyridyl)-(hydroxymethyl))benzoesäure-tert-butylester werden in 120 ml Toluol und 60 ml
Wasser mit 1,9 g p-Toluolsulfonsäure 9 h am Rückfluß erhitzt.
Nach Abkühlen trennt man die organische Phase ab und versetzt
40 die wäßrige Phase mit einer Lösung aus 23,8 g Natriumdihydrogenphosphat in 280 ml Wasser und extrahiert mit Essigsäureethylester. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und i. Vak. vom Lösungsmittel
befreit. Ausbeute: 1,9 g; ¹H-NMR, δ [ppm], (DMSO-d₆): 6,5 (m),
45 7,2 (m), 7,5 (d), 7,6 (d), 7,95 (m), 8,4 (d), 13,5 (breites s)

- Stufe c: (2,4-Dichlor-3-((2-pyridyl)-(hydroxymethyl)-phenyl)-(1ethyl-5-hydroxy-1H-pyrazol-4-yl)-methanon (Tabelle 2, Beispiel 319; Verb. Nr. 2.319)
- 5 1,7 g (5,7 mmol) 2,4-Dichlor-3-((2-pyridyl)-(hydroxymethyl))benzoesäure, 0,6 g (5.7 mmol) 1-Ethyl-5-hydroxy-1H-pyrazol und 1,2 g (5,7 mmol) N,N-Dicyclohexylcarbodiimid werden in 25 ml Acetonitril 3 d bei Raumtemp. gerührt. Das Reaktionsgemisch wird in 50 ml 2 %iger, wäßriger Natriumhydrogencarbonat-Lösung auf-
- 10 genommen, filtriert und mit Essigsäureethylester extrahiert. Die vereinigten, organischen Phasen werden über Natriumsulfat getrocknet, filtriert und i. Vak. vom Lösungsmittel befreit. Das Zwischenprodukt wird in 10 ml 1,4-Dioxan gelöst, mit 1,0 g (7,1 mmol) Kaliumcarbonat versetzt und 8 h am Rückfluß erhitzt.
- 15 Nach dem Abkühlen wird das Reaktionsgemisch in 80 ml Wasser aufgenommen, mit Methyl-tert-butylether extrahiert. Das Produkt wird durch Ansäuern mit verdünnter, wäßriger Salzsäure aus der wäßrigen Phase gefällt. $^{1}\text{H-NMR}$, δ [ppm], (DMSO-d₆): 1,3 (t), 4,0 (q), 6,6 (s), 7,2 (s), 7,3 (m), 7,4 (d), 7,5 (a), 7,8 (d), 20 7,9 (m), 8,0 (d)
 - 2,4-Dichlor-3-((2-furyl)-(hydroxymethyl)-phenyl)-(1-ethyl-5hydroxy-1H-pyrazol-4-yl)-methanon
- 25 Diese Verbindung wurde analog zu den oben angegebenen Arbeitsvorschriften dargestellt. $^{1}\text{H-NMR}$, δ [ppm], (DMSO-d₆): 1,3 (t), 3,9 (q), 6,3 (m), 6,4 (breites s); 6,4 (m), 6,5 (m), 7,3 (s), 7,4 (d), 7,6 (m)
- 30 Stufe a: 2,4-Dichlor-3-((2-furyl)-(hydroxymethyl))-benzoesäuretert-butylester
 - 4,0 g (39,6 mmol) Diisopropylamin in 80 ml Tetrahydrofuran werden bei -20°C für 15 min mit 19 ml (30,4 mmol) 1,6 M n-Butyllithium-
- 35 Lösung in Hexan behandelt. Nach Abkühlen auf -75°C tropft man eine Lösung aus 7,5 g (30,4 mmol) 2,4-Dichlorbenzoesäure-tert-butylester in 20 ml Tetrahydrofuran zu und rührt für 12 h bei Raumtemp. Man versetzt das Reaktionsgemisch mit einer Lösung aus 2,9 g (30,2 mmol) 2-Formylfuran in 15 ml Tetrahydrofuran und
- 40 rührt weitere 12 h bei Raumtemp. Die Mischung wird in 300 ml gesättigter, wäßriger Natriumchlorid-Lösung aufgenommen und mit Essigsäureethylester extrahiert. Die vereinigten, organischen Phasen werden über Natriumsulfat getrocknet, filtriert und
 - i. Vak. vom Lösungsmittel befreit. Ausbeute: 9,2 g; ¹H-NMR,
- 45 δ [ppm], (CDC1₃): 1,6 (s), 3,6 (d), 6,2 (m), 6,3 (m), 7,4 (m), 7,7 (d), 7,4 (m), 7,5 (d)

Stufe b: 2,4-Dichlor-3-((2-furyl)-(methoxymethyl))-benzoesäuretert-butylester

3,0 g (8,8 mmol) 2,4-Dichlor-3-((2-furyl)-(hydroxymethyl))5 benzoesäure-tert-butylester werden in 40 ml Tetrahydrofuran bei
Raumtemp. 1 h mit 0,4 g (16,6 mmol) Natriumhydrid gerührt. Man
tropft 6,3 g (43,8 mmol) Iodmethan zu und rührt weitere 3 h bei
Raumtemp. Das Reaktionsgemisch wird in 100 ml gesättigter, wäßriger Natriumchlorid-Lösung aufgenommen, mit Methyl-tert-butylether
10 extrahiert, über Natriumsulfat getrocknet, filtriert und i. Vak.
vom Lösungsmittel befreit. Das Rohprodukt wird durch Chromatographie an Kieselgel mit Cyclohexan/Essigsäureethylester
gereinigt. Ausbeute: 2,7 g; ¹H-NMR, δ [ppm], (CDCl₃): 1,6 (s),
3,5 (s), 6,2 (m), 6,3 (m), 7,4 (m), 7,5 (d)

Stufe c: 2,4-Dichlor-3-((2-fury1)-(methoxymethy1))-benzoesäure

- 2,3 g (6,4 mmol) 2,4-Dichlor-3-((2-furyl)-(methoxymethyl))benzoesäure-tert-butylester werden in 50 ml Methanol und 15 ml

 20 Wasser mit 0,7 g (16,1 mmol) Natriumhydroxid 4 h am Rückfluß
 erhitzt. Man gibt 5,0 ml 10 %ige, wäßrige Natriumhydroxid-Lösung
 zu und erhitzt weitere 3 h. Nachdem das Reaktionsgemisch i. Vak.
 eingeengt worden ist, gibt man 50 ml Wasser zu und extrahiert
 das Reaktionsgemisch mit Dichlormethan. Die wäßrige Phase wird

 25 mit 10 %iger, wäßriger Salzsäure angesäuert und das Produkt mit
 Essigsäureethylester extrahiert. Die vereinigten organischen
 Phasen werden über Natriumsulfat getrocknet, filtriert und
 i. Vak. vom Lösungsmittel befreit. Ausbeute 1,8 g
- 30 Stufe d: (2,4-Dichlor-3-((2-furyl)-(methoxymethyl)-phenyl)-(1-ethyl-5-hydroxy-1H-pyrazol-4-yl)-methanon (Tabelle 2, Beispiel 362; Verb. Nr. 2.362)
- 1,4 g (4.7 mmol) 2,4-Dichlor-3-((2-furyl)-(methoxymethyl))35 benzoesäure, 0,5 g (4,7 mmol) 1-Ethyl-5-hydroxy-1H-pyrazol und
 1,0 g (4,7 mmol) N,N-Dicyclohexylcarbodiimid werden in 10 ml
 Acetonitril 24 h bei Raumtemp. gerührt. Das Reaktionsgemisch
 wird in eine 2 %ige, wäßrige Natriumhydrogencarbonat-Lösung eingerührt, mit Essigsäureethylester extrahiert, über Natriumsulfat
 40 getrocknet, filtriert und i. Vak. vom Lösungsmittel befreit.
 Das Zwischenprodukt wird durch Chormatographie an Kieselgel mit
 Essigsäureethylester/Cyclohexan gereinigt (Ausbeute: 0,5 g), in
 3 ml 1,4-Dioxan gelöst, mit 0,2 g (1,2 mmol) Kaliumcarbonat
 versetzt und 4 h am Rückfluß erhitzt. Das Reaktionsgemisch wird
 45 i. Vak. eingeengt, in 40 ml Wasser aufgenommen und mit Methylenchlorid extrahiert. Das Produkt wird durch Ansäuern der wäßrigen

Phase mit 10 %iger, wäßriger Salzsäure gefällt. Ausbeute: 190 mg; Fp. 92 bis 93°C.

(2,4-Dichlor-3-((3-furyl)-(hydroxymethyl)-phenyl)-(1-ethyl-5-5 hydroxy-1H-pyrazol-4-yl)-methanon (Tabelle 2, Beispiel 250; Verb. Nr. 2.250)

Diese Verbindung wird analog zu den oben angegebenen Arbeitsvorschriften dargestellt. $^{1}H-NMR$, δ [ppm], (DMSO-d₆): 1,3 (t), 10 3,9 (q), 6,1 (breites s), 6,4 (s), 6,5 (s), 7,3 (breites s.), 7,4 (d), 7,5 (s), 7,5 (d), 7,6 (s)

(2,4-Dichlor-3-((3-furyl)-(methoxymethyl)-phenyl)-(1-ethyl-5hydroxy-1H-pyrazol-4-yl)-methanon (Tabelle 2, Beispiel 365; 15 Verb. Nr. 2.365)

Diese Verbindung wird analog zu den oben angegebenen Arbeitsvorschriften dargestellt. $^{1}H-NMR$, δ [ppm], (DMSO-d₆): 1,3 (t), 3,3 (s), 3,9 (q), 6,1 (s), 6,4 (s), 7,3 (breites s), 7,4 (d), 20 7,5 (s), 7,6 (d), 7,6 (s)

2,4-Dichlor-3-(3-(5H-furanon)methyl)phenyl)-(1-ethyl-5-hydroxy-1H-pyrazol-4-yl)methanon

25 Stufe a: 2,4-Dichlor-3-(3-(5H-furanon)methyl)benzoesäure

Die Lösung von 13 g (0,038 mol) 2,4-Dichlor-3-(3-furyl)hydroxymethylbenzoesäure-tert-butylester (analog Bsp. 2.362 Stufe a) und 1,8 g p-Toluolsulfonsäure in 370 ml Toluol werden 6 h refluxiert.

30 Anschließend wird auf 100 ml 10 % Natronlauge gegeben und mit Essigester extrahiert. Die wäßrige Phase wird mit Salzsäure angesäuert und mit Essigester mehrmals extrahiert. Die vereinigten organischen Phasen werden mit Wasser gewaschen, getrocknet und eingeengt. Es verbleiben 4,8 g (45 %) der Titelverbindung Fp.

35 196°C.

Stufe b: 2,4-Dichlor-3-(3-(5H-furanon)methyl)phenyl)-(1-ethyl-5hydroxy-1H-pyrazol-4-y1)methanon

40

1,1 g (0,0035 mol) 2,4-Dichlor-3-(3-(5H-furanon)methyl)benzoesäure, 0,4 g (0,0035 mol) 1-Ethyl-5-hydroxy-1H-pyrazol und 0,72 g
(0,0035 mol) Dicyclohexylcarbodiimid werden 12 h bei Raumtemperatur in 15 ml Acetonitril gerührt. Das Reaktionsgemisch
wird auf 100 ml 2 %iger wäßriger Natriumhydrogencarbonat-Lösung
gegeben und mit Essigester extrahiert. Die organische Phase wird
getrocknet und eingeengt.

1 g des so erhaltenen Rückstandes und 0,5 g (0,0034 mol) Kalium10 carbonat in 5 ml Dioxan werden 5 h refluxiert. Nach dem Abkühlen wird mit 60 ml Wasser verdünnt und nacheinander mit Methylenchlorid und Methyl-tert-butylether extrahiert. Die wäßrige Phase wird abgetrennt, mit HCl angesäuert und der Niederschlag abgesaugt (23 %; Fp. 90-93°C).

15

Tabelle 145

25	Nr.	R ⁵	R ⁶	Het	Fp. [°C]	¹ H-NMR [ppm]
	145.1	CH ₃	Н	5-Methyl-4,5-di- hydro-3-isoxazolyl	90	
30	145.2	CH ₃	Н	5-Chlormethyl-4,5- dihydro-3-isoxazolyl	93	
	145.3	CH ₃	i-Propyl	5-Chlormethyl-4,5- dihydro-3-isoxazolyl	72	
	145.4	CH ₃	SO ₂ CH ₃	5-Chlormethyl-4,5- dihydro-3-isoxazolyl	87	
35	145.5	C ₂ H ₅	н	4,5-Dihydro-3- isoxazolyl	136	
	145.6	C ₂ H ₅	н	5-Methyl-4,5-dihydro- 3-isoxazolyl	92	
	145.7	C ₂ H ₅	i-Propyl	5-Methyl-4,5-dihydro- 3-isoxazolyl	66	

40 Anwendungsbeispiele

Die herbizide Wirkung der substituierten 4-Benzoyl-pyrazole der Formel I ließ sich durch Gewächshausversuche zeigen:

45 Als Kulturgefäße dienten Plastiktöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

- 2um Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,5 bzw. 0,25 kg/ha a.S.
- 20 Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

30 Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Deutscher Name	Englischer Name	
5 Chenopodium album	Weißer Gänsefuß	lambsquarters (goosefoot)	
Echinochloa crus-galli	Hühnerhirse	barnyardgrass	
Setaria faberii	Borstenhirse	giant foxtail	
Setaria viridis	Grüne Borstenhirse	green foxtail	
0 Zea mays	Mais	corn	

Selektive herbizide Aktivität bei Nachauflaufanwendung im Gewächshaus

Oben genannte Unkräuter werden von Verbindung Nr. 145.5 im Nachauflauf bei Aufwandmengen von 0,5 bzw. 0,25 kg/ha a.S. sehr gut bekämpft.

Patentansprüche

4-Benzoyl-pyrazole der Formel I

5

$$Q = \begin{pmatrix} X^1 & \text{Het} \\ R^2 & \text{Het} \end{pmatrix}$$

10

15

in der die Substituenten folgende Bedeutung haben:

R1, R2 Wasserstoff, Mercapto, Nitro, Halogen, Cyano, Rhodano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, -OR³, $-OCOR³, -OSO_2R³, -S(O)_nR³, -SO_2OR³, -SO_2N(R³)_2, \\ -NR³SO_2R³ oder -NR³COR³;$

 $R^3 \qquad \text{Wasserstoff, C_1-C_6-$Alkyl, C_1-C_6-$Halogenalkyl,} \\ C_2$-C_6-$Alkenyl, C_2-C_6-$Alkinyl, Phenyl oder Phenyl-\\ C_1-C_6-$alkyl; wobei die genannten Alkylreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:$

Hydroxy, Mercapto, Amino, Cyano, R³, -OR³, -SR³, -N(R³)², =NOR³, -OCOR³, -SCOR³, -NR³COR³, -CO₂R³, -COSR³, -CON(R³)², C¹-C⁴-Alkyliminooxy, C¹-C⁴-Alkoxy-amino, C¹-C⁴-Alkylcarbonyl, C¹-C⁴-Alkoxy-C²-C⁶-alkoxy-carbonyl, C¹-C⁴-Alkylsulfonyl, Heterocyclyl, Heterocyclyloxy, Phenyl, Benzyl, Hetaryl, Phenoxy, Benzyloxy und Hetaryloxy, wobei die acht letztgenannten Reste ihrerseits substituiert sein können;

n 0, 1 oder 2;

0

ein in 4-Stellung verknüpftes Pyrazol der Formel II,

40

wobei

für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl;

 R^5 für C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, Phenyl oder Phenyl das partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy;

für Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkylcarbonyl, C_1 - C_6 -Halogenalkylcarbonyl, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkylsulfonyl, C_1 - C_6 -Halogenalkylsulfonyl, Phenylcarbonyl, Phenylcarbonylmethyl, Phenoxycarbonyl oder Phenylsulfonyl,

wobei die vier letztgenannten Substituenten entweder unsubstituiert sind oder der Phenylring jeweils partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy;

30 stehen;

5

10

15

20

25

eine geradkettige oder verzweigte C_1 - C_6 -Alkylen-, eine C_2 - C_6 -Alkenylen- oder eine C_2 - C_6 -Alkinylenkette, wobei die genannten Alkylen-, Alkenylen- oder Alkinylenreste partiell halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

 $-OR^7$, $-OCOR^7$, $-OCONHR^7$ oder $-OSO_2R^7$,

und wobei die genannten Alkenylenreste ausgenommen sind, bei denen sich die Doppelbindung in α,β -Position zum Phenylring befindet und bei denen Het über die β -Position an die Doppelbindung gebunden ist.

45

40

sowie deren landwirtschaftlich brauchbaren Salze.

 C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy;

 $C_1-C_4-Alkoxycarbonyl, C_1-C_4-Alkylcarbonyl,$

 C_1-C_4 -Alkylcarbonyloxy, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkylthio,

5

2. 4-Benzoyl-pyrazole der Formel I nach Anspruch 1, in der

Nitro, Halogen, Cyano, Rhodano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, -OR³ oder -S(O)_nR³ bedeutet;

 ${\tt R}^2$ für Wasserstoff oder einen wie voranstehend unter ${\tt R}^1$ genannten Rest steht.

4-Benzoyl-pyrazole der Formel Ia nach Anspruch 1 oder 2,

$$Q \xrightarrow{R^1} X^1 \xrightarrow{\text{Het}} Ia$$

in der die Substituenten R^1 , R^2 , Q, X^1 und Het die unter Anspruch 1 genannte Bedeutung haben.

20 4. 4-Benzoyl-pyrazole der Formel Ia nach Anspruch 3, in der X^1 für eine C_1 - C_2 -Alkylen- oder C_2 -Alkinylenkette steht.

5. 4-Benzoyl-pyrazole der Formel Ia nach Anspruch 1 und 3, in der Het eine fünf- oder sechsgliedrige, teilweise oder vollständig gesättigte heterocyclische oder eine fünf- oder sechsgliedrige heteroaromatische Gruppe mit bis zu drei Heteroatomen ausgewählt aus der Gruppe

30 Stickstoff, Sauerstoff oder Schwefel steht.

6. Verfahren zur Herstellung von 4-Benzoyl-pyrazolen der Formel I gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man ein Pyrazol der Formel IIa, in der die Substituenten R⁵ und R⁴ die unter Anspruch 1 genannte Bedeutung haben,

mit einer aktivierten Carbonsäure IIIa oder mit einer Carbon-45 säure IIIb, WO 99/07697 86 PCT/EP98/04481

wobei die Substituenten R¹, R², X¹ und Het die in Anspruch 1
genannte Bedeutung haben und L¹ für eine nucleophil austauschbare Abgangsgruppe steht, acyliert und das Acylierungsprodukt gegebenenfalls in Gegenwart eines Katalysators zu den Verbindungen I umlagert und falls gewünscht zur Herstellung von 4-Benzoyl-pyrazolen der allgemeinen Formel I mit R⁶ ≠ H mit einer Verbindung der Formel IV,

$$L^2$$
- R^6 (mit $R^6 \neq H$)

- in der R^6 die unter Anspruch 1 genannte Bedeutung hat mit Ausnahme von Wasserstoff und L^2 für eine nucleophil austauschbare Abgangsgruppe steht, umsetzt.
- 7. Aktivierte Carbonsäuren der Formel IIIa und Carbonsäuren der Formel IIIb gemäß Anspruch 5, wobei die Substituenten R¹, R², X¹ und Het die in Anspruch 1 genannte Bedeutung haben und L¹ für eine nucleophil austauschbare Abgangsgruppe steht.
- 8. Mittel, enthaltend eine herbizid wirksame Menge mindestens eines 4-Benzoyl-pyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.
- 35 9. Verfahren zur Herstellung von herbizid wirksamen Mitteln gemäß Anspruch 8, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines 4-Benzoyl-pyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel mischt.
- Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines 4-Benzoyl-pyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.

11. Verwendung der 4-Benzoyl-pyrazole der Formel I und deren landwirtschaftlich brauchbaren Salze gemäß den Ansprüchen 1 bis 5 als Herbizide.

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D401/10 A01N43/56

C07D261/08

C07D405/10

C07D213/30

A01N43/74 C07D307/42

A01N43/08 C07D307/58 A01N43/40 C07D413/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C070 A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category 1	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	FR 2 053 017 A (MERCK AND CO., INC.) 21 May 1971 see page 1 see page 10 - page 22; examples	7
X	BOHLMANN F ET AL: "Synthesis of naturally occuring hydroxyacetophenone derivatives" CHEM. BER. (CHBEAM);72; VOL.105 (3); PP.863-73. XP002088289 Tech. Univ. Berlin;0rgChem. Inst.; Berlin; Ger. see page 864; example 9	7

Further documents are listed in the continuation of box C	χ Patent family members are listed in annex	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family	
Date of the actual completion of the international search	Date of mailing of the international search report	
16 December 1998	12/01/1999	
Name and mailing address of the ISA	Authorized officer	
European Patent Office. P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Paisdor, B	

Form PCT/ISA/210 (second sheet) (July 1992)