

IN THE CLAIMS

Please cancel claims 1-3, 11-13, 23 and 24 without prejudice or disclaimer of their subject matter, amend claims 4, 5, 9, 14, 15, 19, 21, 25 and 26 as follows:

Claims 1-3. (Canceled)

1 4. (Currently Amended) [[The]] A thin film transistor ~~of claim 3, comprising a~~
2 ~~source electrode, a drain electrode, a gate electrode, and a semiconductor layer;~~
3 ~~wherein one of the source electrode, the drain electrode, and the gate electrode~~
4 ~~comprises an aluminum-based metal layer, a titanium layer, and a diffusion prevention layer~~
5 ~~interposed between the titanium and the aluminum-based layers;~~
6 ~~wherein the diffusion prevention layer is a titanium nitride layer; and~~
7 wherein the titanium nitride layer contains 5 to 85 wt% of nitrogen.

1 5. (Currently Amended) The thin film transistor of claim [[3]] 4, wherein the
2 titanium nitride layer has a thickness of about 100 to 600Å.

1 6. (Original) The thin film transistor of claim 5, wherein the titanium nitride layer
2 has a thickness of about 100 to 400Å.

1 7. (Original) The thin film transistor of claim 6, wherein the titanium nitride layer
2 has a thickness of 200 to 400Å.

1 8. (Original) The thin film transistor of claim 7, wherein the titanium nitride layer
2 has a thickness of about 300Å.

1 9. (Currently Amended) [[The]] A thin film transistor ~~of claim 1~~, comprising a
2 source electrode, a drain electrode, a gate electrode, and a semiconductor layer, wherein one
3 of the source electrode, the drain electrode, and the gate electrode comprises an
4 aluminum-based metal layer, a titanium layer, and a diffusion prevention layer interposed
5 between the titanium and the aluminum-based layers, and wherein the aluminum-based metal
6 layer is made of an aluminum alloy containing about 0.5 to 5 wt% of one element being
7 selected from the group consisting of silicon, copper, neodymium, platinum, and nickel.

1 10. (Original) The thin film transistor of claim 9, wherein the aluminum-based metal
2 layer is made of an aluminum-silicon alloy containing about 2 wt% of silicon.

Claims 11-13. (Canceled)

1 14. (Original) [[The]] A flat panel display ~~of claim 13~~, comprising a plurality of
2 sub-pixels driven by thin film transistors, each of the thin film transistors comprising a
3 source electrode, a drain electrode, a gate electrode, and a semiconductor layer;
4 wherein at least one of the source electrode, the drain electrode, and the gate electrode
5 comprises an aluminum-based metal layer, a titanium layer, and a diffusion prevention layer
6 interposed between the aluminum-based metal layer and the titanium layer;
7 wherein the diffusion prevention layer is a titanium nitride layer; and

8 wherein the titanium nitride layer contains 5 to 85 wt% of nitrogen.

1 15. (Currently Amended) The flat panel display of claim [[13]] 14, wherein the
2 titanium nitride layer has a thickness of about 100 to 600Å.

1 16. (Original) The flat panel display of claim 15, wherein the titanium nitride layer
2 has a thickness of about 100 to 400Å.

1 17. (Original) The flat panel display of claim 16, wherein the titanium nitride layer
2 has a thickness of 200 to 400Å.

1 18. (Original) The flat panel display of claim 17, wherein the titanium nitride layer
2 has a thickness of about 300Å.

1 19. (Currently Amended) [[The]] A flat panel display of claim 11, comprising a
2 plurality of sub-pixels driven by thin film transistors, each of the thin film transistors
3 comprising a source electrode, a drain electrode, a gate electrode, and a semiconductor layer,
4 wherein at least one of the source electrode, the drain electrode, and the gate electrode
5 comprises an aluminum-based metal layer, a titanium layer, and a diffusion prevention layer
6 interposed between the aluminum-based metal layer and the titanium layer, and wherein the
7 aluminum-based metal layer is made of an aluminum alloy containing about 0.5 to 5 wt% of
8 one element being selected from the group consisting of silicon, copper, neodymium,
9 platinum, and nickel.

1 20. (Original) The flat panel display of claim 19, wherein the aluminum-based metal
2 layer is made of an aluminum-silicon alloy containing about 2 wt% of silicon.

1 21. (Currently Amended) A flat panel display, comprising:
2 driving circuits disposed along edges of said display;
3 a plurality of sub-pixels driven by thin film transistors; and
4 conductive lines connecting the driving circuits disposed along edges of said display
5 to each of said plurality of sub-pixels, wherein said conductive lines comprise an
6 aluminum-based metal layer, a titanium layer, and a diffusion prevention layer interposed
7 between the aluminum-based metal layer and the titanium layer;
8 wherein the diffusion prevention layer is a titanium nitride layer; and
9 wherein said titanium nitride layer is 300 Å thick.

10 22. (Original) The flat panel display of claim 21, wherein the diffusion prevention
11 layer and the titanium layer are orderly formed on opposite sides of the aluminum-based
12 metal layer.

Claims 23-24. (Canceled)

1 25. (Currently Amended) The display of claim [[24]] 22, said conductive lines being
2 subjected to a heat treatment of 380°C.

1 26. (Currently Amended) A process for making a flat panel display, comprising:
2 disposing driving circuits along edges of said display;
3 arranging a plurality of sub-pixels driven by thin film transistors; and
4 operatively connecting electrically conductive lines between the driving circuits
5 disposed along edges of said display and each of said plurality of sub-pixels, wherein said
6 conductive lines comprise an aluminum-based metal layer, a titanium layer, and a diffusion
7 prevention layer interposed between the aluminum-based metal layer and the titanium layer;
8 wherein the titanium nitride layer contains 5 to 85 wt% of nitrogen.

1 27. (Previously Presented) The process of claim 26, comprised of orderly forming
2 the diffusion prevention layer and the titanium layer on opposite sides of the
3 aluminum-based metal layer.

1 28. (Previously Presented) The process of claim 26, wherein the diffusion prevention
2 layer is a titanium nitride layer.