Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum

Úloha č. A20

Název úlohy: Fourierovská infračervená spektroskopie

Jméno: Michal Grňo Obor: FOF

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0-3	
Teoretická část	0-2	
Výsledky a zpracování měření	0-9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 20	

Posuzoval: dne:

1 Pracovní úkoly

- 1. Proměřte rotačně-vibrační absorpční spektrum oxidu uhelnatého ve spektrální oblasti 2000 2500 cm⁻¹. Polohy absorpčních pásů zpracujte graficky a lineární regresí určete parametry vystupující v modelu pružného rotátoru pro základní vibrační stav molekuly a první excitovaný vibrační stav. Z těchto parametrů určete vzdálenosti jader uhlíku a kyslíku v základním a prvním excitovaném vibračním stavu.
- 2. Spočtěte teplotní a tlakové rozšíření absorpčních pásů, určete rozdíl vibrační frekvence pro isotopomery $^{12}\mathrm{C}^{16}\mathrm{O}$ a $^{13}\mathrm{C}^{16}\mathrm{O}$. Porovnejte tyto hodnoty s rozlišením použitého spektrálního přístroje.
- 3. Změřte spektrum bez vzorku, určete oblasti absorpce oxidu uhličitého a vodních par v optické dráze spektrometru. Interpretujte nejvýraznější pásy absorpce CO₂.
- 4. Proměřte spektra propustnosti polyetylénové a polypropylénové folie a interpretujte nejvýraznější pásy.
- 5. Proměřte spektra propustnosti a odrazivosti skleněné a safírové destičky. Diskutujte rozdíl mezi oběma vzorky.

2 Teoretická část

Infračervená spektroskopie je nástroj používaný k identifikaci molekul přítomných v látce podle módů jejich mechanických kmitů. Konkrétně Fourierovská infračervená spektroskopie detekuje změny ve spektru průchozího elektromagnetického záření způsobené interakcí s kmitající molekulou.

U jednoduchých molekul lze v jejich spektru pozorovat tři charakteristické oblasti – nízkofrekvenční pás P odpovídající oblasti, kde se rotační energie a energie fotonu skládají, střední pás Q odpovídající vibračním přechodům beze změny rotačního stavu (a kvantového čísla J), vysokofrekvenční oblast R, kde energie fotonů přispívá jak vibračním, tak rotačním stavům. [1]

Z vlnočtu pásů, který naměříme pomocí spektroskopie, lze snadno vypočítat jejich energii:

$$E = hc\tilde{\nu},\tag{1}$$

kde h je Planckova konstanta, c rychlost světla a $\tilde{\nu} = \lambda^{-1}$ vlnové číslo. U dvouatomové molekuly pro energii odpovídající pásům P a R při stavu J v základním stavu platí vztah:

$$\frac{R_J - P_J}{2J + 1} \frac{1}{h} = (2B_1 - 3D_1) - D_1 (2J + 1)^2,$$
(2)

a pro molekuly v excitovaném stavu:

$$\frac{R_{J-1} - P_{J+1}}{2J+1} \frac{1}{h} = (2B_0 - 3D_0) - D_0 (2J+1)^2,$$
(3)

kde $B_{0,1}$ a $D_{0,1}$ jsou konstanty charakteristické pro danou molekulu [1]. Pokud známe závislosti $R_J(J)$ a $P_J(J)$, tyto konstanty lze určit lineární regresí z rovnic (2) a (3).

3 Výsledky měření

3.1 CO

Jako první vzorek jsme měřili transmitanci kyvety se stěnami z CaF_2 obsahující CO pod tlakem 7 mbar. Měření bylo předem kalibrováno na transmitanci vzduchu a probíhalo na rozsahu 2000 až $2500\,\mathrm{cm}^{-1}$ při rozlišení $0,35\,\mathrm{cm}^{-1}$. Protože se mezi kalibrací a měřením změnil podíl CO_2 v měřeném prostoru, bylo kromě spektra CO viditelné i spektrum CO_2 . V obou případech byla jasně rozlišitelná pásma P a R, pásmo Q nebylo pozorováno. Zatímco v případě CO jsou jasně rozlišitelná absorpční maxima odpovídající pásům P_J a R_J pro celočíselné hodnoty J, spektrum CO_2 vykazuje určitou míru překryvu a jeho maxima nejsou jasně oddělená. Naměřené spektrum bylo zaneseno do grafu na obrázku č. 1.

Naměřená absorpční maxima jsme potom odstředu očíslovali a jejich vlnočet jsme převedli na energii podle vzorce (1). Pás P začíná od jedničky $P_1 = 4.288 \cdot 10^{-20} \,\mathrm{J}$ a pokračuje k vyšším hodnotám (v grafu doleva), pás R začíná od nuly $R_0 = 4.280 \cdot 10^{-20} \,\mathrm{J}$ a pokračuje k nižším hodnotám (v grafu doprava). Takto vypočtené a očíslované energie P_J a R_J jsme v závislosti na jejich kvantovém čísle J vynesli do grafu na obrázku č. 2 nahoře.

Následně jsme podle vzorců (2) a (3) vynesli závislost $(P_a - R_b) / h (2J + 1)$ na $(2J + 1)^2$ do grafu na obrázku č. 2 dole. Pomocí lineární regrese metodou nejmenších čtverců jsme nalezli konstanty B_0, B_1, D_0, D_1 .

 $^{^1}$ Nízkofrekvenční pás P bude v nižších hodnotách $f \propto \tilde{\nu},$ v grafu to ovšem znamená, že bude vpravo...

 $^{^2...}$ pás R bude naopak mít vysoké hodnoty $\tilde{\nu}$ a v grafu bude vlevo.

Obrázek 1: Měření transmitance CO.

Obrázek 2: Energie pásů P a R v CO.

Obrázek 3: Měření transmitance vzduchu

Obrázek 4: Měření transmitance polymerových folií. Rysy způsobené fluktuací složení vzduchu jsou vykresleny světlejší a méně sytou barvou.

\mathbf{A}	hodnota	směr. odch.
$2B_1 - 3D_1 [10^{11} \mathrm{s}^{-1}]$	-1.1424	0.0001
$2B_1 - 3D_1 [10^{11} \mathrm{s}^{-1}]$	-1.1319	0.0001
$D_1 [10^5 \mathrm{s}^{-1}]$	-1.83	0.10
$D_0 \ [10^5 \mathrm{s}^{-1}]$	-1.86	0.10
B_1	-57119281923	3904107
B_0	-56593656850	3865002

Tabulka 1: Konstanty charakteristické pro molekulu CO získané regresí

4 Diskuse

Bylo to špatně protože (??)

5 Závěr

Bylo to hezké. assadfasd

6 Literatura

[1] P. Hlídek, *Infračervená spektroskopie*. září 2017. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_420.pdf.