Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 8 - 26/08/2025

Sucesiones

Definición 3.5

Decimos que una sucesión a_n está acotada si $\exists K \in \mathbb{R}$ tal que $|a_n| \leq K$ para todo $n \in \mathbb{N}$. También decimos que la sucesión está acotada superiormente cuando existe un $K \in \mathbb{R}$ tal que $a_n < K$ para todo $n \in \mathbb{N}$, y de manera similar se define la acotación inferior.

Proposición 3.6

Si a_n tiene límite, entonces está acotada.

Demostración

Tomemos $\varepsilon > 0$ cualquiera, por ejemplo $\varepsilon = 1$. Como a_n converge, tenemos que:

• $\exists n_0 \in \mathbb{N} \text{ tal que } \forall n > n_0 : a_n \in E(L, 1)$

A partir de esto podemos deducir que:

• $|a_n| < |L| + 1$

Por lo tanto esta cota nos vale para todos los $n > n_0$. Veamos que podemos hacer con todos los elementos anteriores a n_0 :

$$\bullet \quad \{a_1,a_2,\ldots,a_{n_0}\}$$

Como es un conjunto finito, podemos tomar:

•
$$k = \max\{|a_1|, |a_2|, \dots, |a_{n_0}|\}$$

Y con esto podemos finalizar tomando:

•
$$K = \max\{k, |L| + 1\}$$

Esto concluye la prueba, pues con esto se tiene que:

• $|a_n| < K$ para todo $n \in \mathbb{N}$

Que significa que la sucesión a_n está acotada.

Observación: Para recordar mejor esta prueba, siempre lo ideal es pensar en el caso de una sucesión con todo positivo, a partir de la misma se puede derivar todo lo equivalente a ese razonamiento cuando la sucesión tiene términos negativos y hasta un límite negativo.

Definición 3.7

Decimos que el límite de a_n es infinito, $\lim_{n\to\infty} = +\infty$ sii:

• $\forall K > 0, \exists n_0 \in \mathbb{N} \text{ tal que } \forall n > n_0 : a_n > K$

De forma equivalente, definimos que el límite de a_n es menos infinito, $\lim_{n \to \infty} = -\infty$ sii:

• $\forall K < 0, \exists n_0 \in \mathbb{N} \text{ tal que } \forall n < n_0 : a_n < K$

Observación: Entonces tenemos que las sucesiones acotadas pueden ser convergentes o no. Qué pasa con las sucesiones no acotadas? La respuesta es que no necesariamente tienen límite más o menos infinito, por ejemplo, considerar el ejemplo de $a_n = (-1)^n$

Definición 3.8

Decimos que una sucesión a_n es:

- Mónotona creciente sii $a_{n+1} \ge a_n \quad \forall n \in \mathbb{N}$, o
- Mónotona decreciente sii $a_{n+1} \leq a_n \quad \forall n \in \mathbb{N}$

Cuando la desigualdad es estricta, decimos que la sucesión es estrictamente mónotona.

Teorema 3.9

Si a_n es una sucesión mónotona creciente y acotada superiormente, entonces tiene límite.

Demostración

Sea $L = \sup\{a_n : n \in \mathbb{N}\}$, es decir, el supremo del conjunto imagen de la sucesión. Sabemos que existe por el Axioma de Completitud en los reales (ya que el conjunto es no vacío y acotado). Ahora consideremos $\varepsilon > 0$, queremos probar que:

• $\exists n_0 \in \mathbb{N}$ tal que $\forall n > 0: a_n \in (L - \varepsilon, L]$ (pues no es necesario considerar lo que está "a la derecha" de L ya que es supremo)

Observemos que si no existe ningún elemento a_n en el intervalo dado, entonces tendríamos que:

- $L \frac{\varepsilon}{2}$ es cota superior, además: $L \frac{\varepsilon}{2} < L$

Por lo tanto, $L-\frac{\varepsilon}{2}$ es supremo, lo cual es absurdo pues L es el supremo. Entonces necesariamente tiene que existir un elemento $a_{n_0} \in E(L-\varepsilon, L]$.

Cómo a_n es monótona creciente, tenemos que todos los elementos "posteriores" a a_{n_0} cumplen con lo siguiente:

• $\forall a_n > a_{n_0} : a_n \in [a_{n_0}, L]$

Por lo tanto, a partir de n_0 , se cumple que $a_n \in (L-\varepsilon,L]$, como queríamos probar.

Observación: De forma análoga tenemos que toda sucesión mónotona decreciente acotada inferiormente tiene límite.