Progetto di Linguaggi

Prof.ssa Isabella Mastroeni

Dipartimento d'Informantica Università degli Studi di Verona Anno Accademico 2017-2018

Macchina di Turing deterministica

Una macchina di Turing deterministica (MdT) è una quintipla $T = \langle Q, q_0, F, \Sigma, \delta \rangle$ dove:

- Q è un insieme finito di stati;
- q_0 t.c. $q_0 \in Q$ è lo stato iniziale;
- F t.c. $F \subseteq Q$ sono gli stati finali;
- Σ è un alfabeto finito;
- $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R, -\}$ è detta funzione di transizione; L corrisponde ad un movimento a sinistra della testina, R corrisponde ad un movimento a destra della testina mentre corrisponde a nessun movimento della testina.

Progetto

Il progetto consiste nell'implementazione di un interpretere di MdT utilizzando \mathbb{K} framework. Agli studenti viene già fornita la sintassi dell'interprete e la configurazione nel file $\mathtt{mdt.k.}$ Gli studenti dovranno completare la specifica \mathbb{K} con la semantica dinamica dell'interprete riguardante l'esecuzione della MdT.

Esempio di specifica di MdT

Si consideri il seguente file example.mdt contenente un esempio di specifica di Mdt che deve essere letta ed eseguita dall'interprete specificato nel file mdt.k.

```
1, 2, 3, 4, 5
                            // Stati della MdT
1
2
   Final: 5
                            // Stato finale
   Initial: 1
                            // Stati iniziale
   (1, "a", 2, "b", R)
                            // Transizioni
   (2, "b", 3, "c", R)
   (3, "c", 4, "d", R)
   (4, "d", 5, "e", R)
   "a", "b", "c", "d"
10
                            // Configurazione del nastro iniziale
```

Gli stati vengono identificati come interi. I possibili movimenti della testina posso essere L (left), R (right) e – (none). L'alfabeto è formato da caratteri. Le transizioni sono quintuple formate da stato corrente, simbolo in input, stato successivo, simbolo di output e movimento sulla testina, come mostrato in Figura 1. Il simbolo in input può contiene un simbolo speciale "*" che corrisponde a qualsiasi carattere. Si assume che la MdT abbia solamente uno stato finale ed uno stato iniziale.

Figure 1: Esempio di transizione

Configurazione in \mathbb{K} framework

La configurazione fornita allo studente è la seguente:

```
<T>
  <k> $PGM:Program </k>
  <tape> .Map </tape>
  <current-state> 0 </current-state>
  <current-position> 0 </current-position>
  <transitions> .Map </transitions>
  <states> .Set </states>
  <final-state> 0 </final-state>
  <initial-state> 0 </initial-state>
</T>
```

dove:

- <tape> è una mappa contenente il nastro della MdT. Le chiavi sono le posizione sul nastro mentre i valori sono i caratteri scritto nella posizione associata della MdT;
- <current-state> è lo stato corrente della MdT;
- <current-position> è la posizione corrente del nastro della MdT;
- <transitions> è l'insieme della transizioni della MdT;
- <final-state> è lo stato finale della MdT;
- <initial-state> è lo stato iniziale della MdT;

Esecuzione

L'esecuzione del file example.mdt dovrà produrre la seguente configurazione K finale.

```
<T>
  1
        <k> . </k>
  3 < tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "e" </tape > 0 | -> "b" 1 | -> "c" 2 | -> "d" 3 | -> "e" </tape > 0 | -> "e" </table
  4 <current-state> 5 </current-state>
  5 <current-position> 4 </current-position>
       <transitions>
        ( 4 , "d" ) |-> ( 5 , "e" , R )
       ( 3 , "c" ) |-> ( 4 , "d" , R )
       (2, "b") |-> (3, "c", R)
10 ( 1 , "a" ) |-> ( 2 , "b" , R )
```

```
11  </transitions>
12  <states>
13  SetItem (1) SetItem (2) SetItem (3) SetItem (4) SetItem (5)
14  </states>
15  <final-state> 5  </final-state>
16  <initial-state> 1  </initial-state> </T>
```

Modalità di consegna

Il progetto dovrà essere svolto utilizzando $\mathbb K$ framework versione 4 da un gruppo massimo di due studenti. Eventuali copiature comporteranno l'annullamento del progetto per tutti gli studenti coinvolti. Gli studenti dovranno consegnare, via e-mail istituzionale a

vincenzo.arceri@univr.it

un archivio chiamato

linguaggi_<matricola_studente1>_<matricola_studente2>

contenente:

- il file mdt.k contenente la specifica K commentata dell'interprete di MdT;
- tre file d'esempio chiamati example_i, $i \in [1..3]$, ciascuno contenente un esempio di specifica di MdT.

La consegna del progetto potrà essere effettuata con due possibili scadenze, oltre le quali **non** sarà possibile effettuare l'esame di Linguaggi con la formula "Esame scritto + Progetto":

- entro il 5 Febbraio 2018 ore 23.59;
- entro il 25 Febbraio 2018 ore 23.59.

Per i soli studenti che consegneranno il progetto entro il 5 Febbraio 2018: tali studenti non sono tenuti a rispondere alla domanda riguardante $\mathbb K$ framework dell'esame scritto (i.e. verrà dato punteggio pieno a quella domanda).

L'oggetto della mail dovrà essere

"[Linguaggi] Consegna progetto <matricola_studente1> <matricola_studente2>"