Project Data Assimilation

1. Modelul dinamic

Sa consideram modelul dinamic unidimensional descris de ecuatia diferentiala de mai jos. Variabila t este variabila temporala (timpul) iar variabila t semnifica pozitia spatiala, la momentul de timp t, unidimensionala, a unei particule care pleaca din pozitia initiala t0 = t1.

$$\begin{cases} \frac{dx}{dt} = f(t,x) = -\cos t \cdot x + \sin(t) & \text{modelul dinamic} \\ x(0) = x_0 & \text{pozitia initiala} = ---> \text{prior} \end{cases}$$

Traiectoria particulei la momentul de timp t este data de solutia x(t) a ecuatiei diferentiale de mai sus. Solutia se va considera, in acest studiu, ca fiind solutia numerica data de metoda Euler imbunataţită (de mai jos)

$$x_{i} = x_{i-1} + \frac{h}{2}(g_{1} + g_{2})$$

$$g_{1} = f(t_{i-1}, x_{i-1}), g_{2} = f(t_{i-1} + h, x_{i-1} + hg_{1})$$

$$x_{i} = x_{i-1} + \frac{h}{2}(f(t_{i-1}, x_{i-1}) + f(t_{i-1} + h, x_{i-1} + hf(t_{i-1}, x_{i-1})))$$

Se va considera pasul de discretizare din metoda numerica $h\!=\!0.03$, de unde rezultă discretizarea pe axa timpului

$$t_0 = 0, t_i = t_0 + ih$$
.

Tot din rezolvarea numerică de mai sus reiese si modelul dinamic care ofera pozitia particulei intre doua intervale de timp consecutive și anume

$$x_{i} = \underbrace{x_{i-1} + \frac{h}{2} \left(f(t_{i-1}, x_{i-1}) + f(t_{i-1} + h, x_{i-1} + hf(t_{i-1}, x_{i-1})) \right)}_{m(x_{i-1})} = m(x_{i-1}) + 0$$

Acea valoare 0 de la final înseamnă că în procesul de data assimilation, modelul este considerat perfect (i.e. nu are eroare)

2. Simularea observaţiilor

Vom considera ca model de referință ("truth") acel model pentru care pozitia initiala a particulei este $x_0 _truth = 0.1$ și vom considera un număr de $\emph{k=20}$ de observații luate la un

interval de timp **de** h = 0.03. Observaţiile vor fi considerate ca fiind solutia numerica x_truth a ecuatiei diferentiale de mai sus pentru valoarea $x_0_truth = 0.1$

$$Obs = [x _truth(h) x _truth(2h)... x _truth(kh)]$$

Se va considera că eroarea în masurarea observatiilor urmeaza o distributie Gaussiana de medie 0 si deviatie standard 0.03.

$$\varepsilon \square N(0;0.03^2)$$

3. Incertitudinea iniţială

Incertitudinea modelului este data de necunoașterea exactă a poziției inițiale a particulei și anume x_0 . Din acest motiv o vom considera ca fiind o variabilă aleatoare cu distribuția Gaussiană, $x_0 \square N(0;0.2^2)$.

4. Cerinta modelului de data assimilation

Date fiind modelul dinamic, cele 20 de observatii ale pozitiei particulei, incertitudinile in observatii si in pozitia initiala a particulei

- 1. Sa se implementeze un model de EnKF (Ensemble Kalman Filter) cu 100 de membri, simulati aleator din distributia initiala, cu ajutorul caruia să se estimeze/calibreze la fiecare pas pozitia particulei.
- 2. Să se prezinte grafic variabilitatea modelului initial si variabilitatea modelului updatat.
- 3. Să se aproximeze din ansamblul updatat, media si deviatia standard a pozitiei finale a particulei.
- 4. Să se implemeteze acelasi model de data assimilation, insă numărul de observatii sa fie 10, luate la un interval de timp h=0.3, însa modelul dinamic (solutia numerica) sa se rezolve la un pas de discretizare de 0.03.

```
import numpy as np
import math
import matplotlib.pyplot as plt
def f(x,t):
    return math.cos(t) * x + math.sin(t)
#functia euler imbunatatita
def heun_step(x, t, h):
    k1 = f(x, t)
    \# k2 = f(x + h * k1, t + h)
    k2 = f(t+h, x + h * k1)
    return x + (h / 2) * (k1 + k2)
#returneaza intervalele de timp la care s-au facut
def integrate heun(x0, t0, t end, h):
    #times - intervalele de timp
    times = np.arange(t0, t end + h, h)
    x = np.zeros_like(times)
    x[0] = x0
    for i in range(1, len(times)):
        x[i] = heun step(x[i - 1], times[i - 1], h)
    return times, x
#x0 - valoarea initiala
#h - intervalul de esantionare
#k - nr de observatii
#noise std - deviatia standard a observatiilor
#returneaza observatiile si adevarul
def generate observations(x0, h, k, noise std):
    , truth = integrate heun(x0, \frac{0}{0}, h * (k-1), h)
    obs = truth + np.random.normal(0, noise std, size=k)
    return obs, truth
def enkf(x0 mean, x0 std, obs, h, R, ensemble size):
    k = len(obs)
    ensemble = np.random.normal(x0 mean, x0 std, size=ensemble size)
    all ensembles = []
    # itterate through k obs steps
    for step in range(k):
        #for each itteration we apply the heun step
        for i in range(ensemble size):
            ## prediction step ##
            ensemble[i] = heun step(ensemble[i], step * h, h)
```

```
# store the ensebmle values after the prediction step and
before the update step
        all ensembles.append(ensemble.copy())
        ## update step based on the observations ##
        x mean = np.mean(ensemble)
        #calculate the variance of the model(std deviation squared)
        P = np.var(ensemble)
        # calculate the Kalman gain
        # number bewtween 0 and 1 that represents how much I trust the
observation in compaison to the model
        K = P / (P + R)
        print(f"Step {step}: Ensemble mean = {x mean}, Ensemble
variance = {P}, Kalman gain = {K}")
        obs noise = np.random.normal(0, np.sqrt(R),
size=ensemble size)
        ensemble = ensemble + K * (obs[step] + obs noise - ensemble)
    return np.array(all ensembles)
# Configurare parametri
x0 \text{ true} = 0.1
x0 \text{ std} = 0.2
h = 0.03
k = 20
obs noise std = 0.03
R = obs noise std**2
ensemble size = 100
# Simulări
obs, truth = generate_observations(x0_true, h, k, obs_noise_std)
all ensembles = enkf(0, x0 std, obs, h, R, ensemble size)
# Plot
plt.figure(figsize=(10, 6))
for i in range(ensemble size):
    plt.plot(np.arange(k) * h, all ensembles[:, i], color='skyblue',
alpha=0.3)
plt.plot(np.arange(k) * h, truth, color='black', label='Adevăr
(truth)')
plt.scatter(np.arange(k) * h, obs, color='red', label='0bservatii',
zorder=10)
plt.title("Evoluția ensemble-ului în timp (EnKF)")
plt.xlabel("Timp")
plt.ylabel("Poziție")
```

```
plt.legend()
plt.grid()
plt.show()
# Medie si dev. standard la pas final
final ensemble = all ensembles[-1]
print("Media la pasul final:", np.mean(final_ensemble))
print("Deviatia standard la pasul final:", np.std(final ensemble))
Step 0: Ensemble mean = -0.011797607074414787, Ensemble variance =
0.041165035990486584, Kalman gain = 0.9786045588977139
Step 1: Ensemble mean = 0.11871074423606304, Ensemble variance =
0.0010291294974089304, Kalman gain = 0.5334683331477664
Step 2: Ensemble mean = 0.09967576003802937, Ensemble variance =
0.0006696205759807673, Kalman gain = 0.4266130211515348
Step 3: Ensemble mean = 0.0960636443785855, Ensemble variance =
0.0003167907513037271, Kalman gain = 0.26034940762353964
Step 4: Ensemble mean = 0.10458360842291622, Ensemble variance =
0.0002469668158464821, Kalman gain = 0.2153216749032239
Step 5: Ensemble mean = 0.1071194329954196, Ensemble variance =
0.00020789452092437116, Kalman gain = 0.18764829773768937
Step 6: Ensemble mean = 0.122038924399994, Ensemble variance =
0.00015205464703728377, Kalman gain = 0.14453113007531357
Step 7: Ensemble mean = 0.13501360386826225, Ensemble variance =
0.0001464042941850845, Kalman gain = 0.13991178648507058
Step 8: Ensemble mean = 0.14976620694438603, Ensemble variance =
0.00011701045454297096, Kalman gain = 0.11505334485037685
Step 9: Ensemble mean = 0.161656174803717, Ensemble variance =
9.834062084727386e-05, Kalman gain = 0.09850407645820715
Step 10: Ensemble mean = 0.17829493033526803, Ensemble variance =
9.933700952690252e-05, Kalman gain = 0.09940291271102807
Step 11: Ensemble mean = 0.19720745483489296, Ensemble variance =
9.898091207660108e-05, Kalman gain = 0.09908188522926582
Step 12: Ensemble mean = 0.21778100420592736, Ensemble variance =
9.266986502723387e-05, Kalman gain = 0.09335416364703635
Step 13: Ensemble mean = 0.234126748285557, Ensemble variance =
9.679032586593355e-05, Kalman gain = 0.0971019916167923
Step 14: Ensemble mean = 0.25202712515308945, Ensemble variance =
9.437375860716168e-05, Kalman gain = 0.0949077324198024
Step 15: Ensemble mean = 0.2692431514844387, Ensemble variance =
8.53088440012272e-05, Kalman gain = 0.08658081627969326
Step 16: Ensemble mean = 0.2914721165327785, Ensemble variance =
7.917021728166997e-05. Kalman gain = 0.08085439679881083
Step 17: Ensemble mean = 0.311281366303509, Ensemble variance =
8.313966481297074e-05, Kalman gain = 0.08456546693066946
Step 18: Ensemble mean = 0.33160553627478045, Ensemble variance =
8.616841377425294e-05, Kalman gain = 0.08737697595126794
Step 19: Ensemble mean = 0.35560999904424484, Ensemble variance =
7.964578638680211e-05, Kalman gain = 0.08130059608642554
```

Evoluția ensemble-ului în timp (EnKF)


```
Media la pasul final: 0.35560999904424484
Deviatia standard la pasul final: 0.008924448800166995
import numpy as np
import matplotlib.pyplot as plt
def f(x,t):
    return math.cos(t) * x + math.sin(t)
def heun step(x, t, h):
    k1 = f(x, t)
    k2 = f(t+h, x + h * k1)
    return x + (h / 2) * (k1 + k2)
def integrate_heun(x0, t0, t_end, h):
    times = np.arange(t0, t end + h, h)
    x = np.zeros like(times)
    x[0] = x0
    for i in range(1, len(times)):
        x[i] = heun_step(x[i-1], times[i-1], h)
    return times, x
def generate observations(x0, h obs, h model, num obs, noise std):
    t end = h obs * (num obs - 1)
    t\overline{l} mes full, truth = \overline{l} integrate_heun(x0, 0, t_end, h_model)
    obs indices = [int(i * h obs / h model) for i in range(num obs)]
```

```
obs values = truth[obs indices] + np.random.normal(0, noise std,
size=num obs)
    obs_times = times_full[obs_indices]
    return obs times, obs values, truth, times full
def enkf variable update(x0 mean, x0 std, obs times, obs values,
h_model, R, ensemble_size, t_total):
    n \text{ steps} = int(t \text{ total } / \text{ h model}) + 1
    times = np.arange(0, t_total + h_model, h_model)
    ensemble = np.random.normal(x0_mean, x0_std, size=ensemble_size)
    all ensembles = np.zeros((n steps, ensemble size))
    all ensembles [0] = ensemble
    obs pointer = 0
    for step in range(1, n steps):
        t = times[step-1]
        for i in range(ensemble size):
            ensemble[i] = heun step(ensemble[i], t, h model)
        all ensembles[step] = ensemble
        if obs pointer < len(obs times) and np.isclose(times[step],
obs times[obs pointer], atol=1e-1):
            x mean = np.mean(ensemble)
            P = np.var(ensemble)
            K = P / (P + R)
            print(f"Step {step}: Ensemble mean = {x_mean}, Ensemble
variance = \{P\}, Kalman gain = \{K\}")
            obs noise = np.random.normal(0, np.sqrt(R),
size=ensemble size)
            ensemble = ensemble + K * (obs values[obs pointer] +
obs_noise - ensemble)
            obs_pointer += 1
    print(obs pointer)
    return times, all ensembles
x0 \text{ true} = 0.1
x0 \text{ std} = 0.2
h \mod el = 0.03
h obs = 0.3
num obs = 10
obs noise std = 0.03
R = obs noise std ** 2
ensemble size = 100
obs times, obs values, truth, times full =
generate observations(x0 true, h obs, h model, num obs, obs noise std)
times, all ensembles = enkf variable update(0, x0 std, obs times,
```

```
obs values, h model, R, ensemble size, t total=times full[-1])
plt.figure(figsize=(12, 6))
for i in range(ensemble size):
    plt.plot(times, all ensembles[:, i], color='skyblue', alpha=0.3)
plt.plot(times full, truth[:len(times full)], color='black',
label='Adevăr (truth)')
plt.scatter(obs times, obs values, color='red', label='Observatii',
zorder=10)
plt.title("Evolutia ensemble-ului în timp (10 observații, pas model =
0.03)")
plt.xlabel("Timp")
plt.ylabel("Poziție")
plt.legend()
plt.grid()
plt.show()
final ensemble = all ensembles[-1]
print("Media la pasul final:", np.mean(final_ensemble))
print("Deviatia standard la pasul final:", np.std(final ensemble))
Step 1: Ensemble mean = 0.03314919373559643, Ensemble variance =
0.03296182390855807, Kalman gain = 0.9734213962475737
Step 7: Ensemble mean = 0.19256141504229898, Ensemble variance =
0.0012017232390409186, Kalman gain = 0.5717799645158332
Step 17: Ensemble mean = 0.3709728500335692, Ensemble variance =
0.0006703682565321154, Kalman gain = 0.42688602099771605
Step 26: Ensemble mean = 0.6280418083677612, Ensemble variance =
0.0005434668401596908, Kalman gain = 0.3765010910119467
Step 37: Ensemble mean = 1.0749820317042358, Ensemble variance =
0.0004190988573686683, Kalman gain = 0.31771603396328046
Step 47: Ensemble mean = 1.4917790775120414, Ensemble variance =
0.0001983439800009125, Kalman gain = 0.18058457424307794
Step 56: Ensemble mean = 1.7548094007768384, Ensemble variance =
0.00010334151158436192, Kalman gain = 0.10299734476367559
Step 67: Ensemble mean = 1.910855931351045, Ensemble variance =
4.464125635956359e-05, Kalman gain = 0.047257364696944346
Step 77: Ensemble mean = 1.9114677722007274, Ensemble variance =
1.8159361915774456e-05, Kalman gain = 0.0197780065955917
Step 87: Ensemble mean = 1.8314574259566774, Ensemble variance =
6.304309508228416e-06, Kalman gain = 0.006956062596291978
10
```


Media la pasul final: 1.7992768395735133 Deviația standard la pasul final: 0.0021235275850068984