ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 14
Cap 3.3 – Definição de algoritmo
e Cap 4.1 – Linguagens Decidíveis

Profa. Ariane Machado Lima ariane.machado@usp.br

Cap 3.3 – A definição de algoritmo

Tese de Church-Turing

Noção intuitiva de algoritmos

é igual a

algoritmos de máquina de Turing

Terminologia para descrever Máquinas de Turing

- Mudança de foco no curso: algoritmos
 - Máquina de Turing como modelo
 - Precisamos estar convencidos de que podemos descrever qualquer algoritmo com uma máquina de Turing

Terminologia para descrever Máquinas de Turing

- 3 níveis de descrição de algoritmos:
 - Descrição formal: detalhes da máquina: estados, função de transição, etc.
 - Descrição de implementação: escrito em língua natural para descrever como a máquina move a cabeça da fita, lê e escreve dados, etc (sem descrever estados ou função de transição)
 - Descrição de alto nível: escrito em língua natural para descrever um algoritmo, omitindo detalhes de implementação

Exemplo – descrição formal (se o nr de zeros de uma cadeia é uma potência de 2)

Agora, damos a descrição formal de $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{aceita}}, q_{\text{rejeita}})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{aceita}}, q_{\text{rejeita}}\},$
- $\Sigma = \{0\} e$
- $\Gamma = \{0, x, \bot\}.$
- Descrevemos δ com um diagrama de estados (veja a Figura 3.8).
- Os estados inicial, de aceitação e de rejeição são q_1 , $q_{\rm aceita}$ e $q_{\rm rejeita}$.

Exemplo – descrição de implementação (se o nr de zeros de uma cadeia é uma potência de 2)

EXEMPLO 3.7

Aqui descrevemos uma máquina de Turing (MT) M_2 que decide $A = \{0^{2^n} | n \ge 0\}$, a linguagem consistindo em todas as cadeias de 0s cujo comprimento é uma potência de 2.

M_2 = "Sobre a cadeia de entrada w:

- 1. Faça uma varredura da esquerda para a direita na fita, marcando um 0 não, e outro, sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, rejeite.
- 4. Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Exemplo – descrição de alto nível (se um polinômio sobre x tem raiz inteira)

- M_1 = "A entrada é um polinômio p sobre a variável x.
 - 1. Calcule o valor de p com x substituída sucessivamente pelos valores $0, 1, -1, 2, -2, 3, -3, \ldots$ Se em algum ponto o valor do polinômio resulta em 0, aceite."

Terminologia para descrever Máquinas de Turing

- Até agora usamos as descrições formais e de implementação
- Passaremos a usar mais a descrição de alto nível
 - Objetos (O) convertidos em cadeias (<O>)
 - Vários objetos em uma única cadeia (<O₁, O₂, ...,
 O_k>)
 - Assumimos que as MTs são capazes de decodificar essas cadeias

Descrição de alto nível de Máquinas de Turing

```
• M = " ...
```

- Primeira linha: entrada da máquina
 - w é cadeia
 - <w> é objeto codificado em cadeia implicitamente
 MT testa se a codificação está ok, senão rejeita

Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- 2. Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

Codificação:

- G = (N,E) onde N é o conjunto de nós e E é o conjunto de arestas
- <G> = lista de nós (números decimais) e lista de arestas (pares desses números)

$$\langle G \rangle =$$
 (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

Detalhes de implementação (só desta vez...)

- Teste da codificação:
 - Duas listas, uma de decimais e outra de pares de decimais
 - Lista de nós não deve te repetições
 - Lista de arestas só pode ter nós da lista de nós
- Obs.: distinção de elementos exemplo 3.12 do livro

Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- 2. Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

 Estágio 1: M marca o primeiro nó com um ponto no dígito mais à esquerda Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- 2. Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

- Estágios 2 e 3:
 - a) Varre a lista de nós procurando um nó não marcado com ponto (n₁)
 - Marca n₁ com sublinhado
 - b) Varre a lista de nós novamente procurando um nó marcado com ponto (n₂)
 - Marca n₂ com sublinhado
 - c) Varre a lista de arestas procurando uma aresta entre n₁ e n₂
 - Se acha, tira o sublinhado de n₁ e n₂ e marca n₁ com ponto e volta para o início do estágio 2 (tirando os dois sublinhados)
 - Senão, move o sublinhado de n₂ para outro nó marcado (chame esse de n₂) e repete o passo c)
 - d)Se acabarem os nós marcados (n₁ não está conectado a nenhum nó marcado até o momento)
 - Se ainda houver nós não marcados, move o sublinhado de n₁ para o próximo nó não marcado e repete os passos b) e c).
 - Senão vai para o estágio 4 (não conseguiu marcar nenhum nó novo)

EXEMPLO 3.23

Seja A a linguagem consistindo em todas as cadeias representando grafos nãodirecionados que são conexos. Lembre-se de que um grafo é *conexo* se todo nó pode ser atingido a partir de cada um dos outros nós passando pelas arestas do grafo. Escrevemos

 $A = \{\langle G \rangle | G \text{ \'e um grafo não-direcionado conexo} \}.$

O que se segue é uma descrição de alto nível de uma MT M que decide A.

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o.
- Repita o seguinte estágio até que nenhum novo nó seja marcado:
- 3. Para cada nó em G, marque-o, se ele estiver ligado por uma aresta a um nó que já esteja marcado.
- **4.** Faça uma varredura em todos os nós de *G* para determinar se eles estão todos marcados. Se estiverem, *aceite*; caso contrário, *rejeite*."

Detalhes de implementação (só desta vez...)

- Estágio 4: varre a lista de nós verificando se todos estão com ponto
 - Se sim, entra em um estado de aceitação
 - senão, entra em um estado de rejeição

Cap 4 – Decidibilidade

Cap. 4.1 – Linguagens Decidíveis

Problemas decidíveis concernentes a linguagens regulares

- Problema da aceitação de uma cadeia w por um AFD B
- Como escrever esse problema em forma de uma linguagem?

Problemas decidíveis concernentes a linguagens regulares

- Problema da aceitação de uma cadeia w por um AFD B
- Como escrever esse problema em forma de uma linguagem?
- A_{AFD} = {<B,w> | B é um AFD que reconhece a cadeia w}
- Mostrar que A_{AFD} é decidível é o mesmo que provar que o problema de aceitação é decidível

TEOREMA 4.1

 A_{AFD} é uma linguagem decidível.

IDÉIA DA PROVA Simplesmente precisamos apresentar uma MT M que decide A_{AFD} .

- M = "Sobre a entrada $\langle B, w \rangle$, onde B é um AFD, e w, uma cadeia:
 - 1. Simule B sobre a entrada w.
 - 2. Se a simulação termina em um estado de aceitação, *aceite*. Se ela termina em um estado de não-aceitação, *rejeite*."

Prova (só alguns detalhes)

Primeiro, vamos examinar a entrada $\langle B, w \rangle$. Ela é uma representação de um AFD B juntamente com uma cadeia w. Uma representação razoável de B é simplesmente uma lista de seus cinco componentes, Q, Σ , δ , q_0 e F. Quando M recebe sua entrada, M primeiro determina se ela representa apropriadamente um AFD B e uma cadeia w. Se não, M rejeita.

Então, M realiza a simulação diretamente. Ela mantém registro do estado atual de B e da posição atual de B na entrada w escrevendo essa informação na sua fita. Inicialmente, o estado atual de B é q_0 e a posição atual de B sobre a entrada é o símbolo mais à esquerda de w. Os estados e a posição são atualizados conforme a função de transição especificada δ . Quando M termina de processar o último símbolo de w, M aceita a entrada se B estiver em um estado de aceitação; M rejeita a entrada se B estiver em um estado de não-aceitação.

 $A_{AFN} = \{\langle B, w \rangle | B \text{ \'e um AFN que aceita a cadeia de entrada } w \}.$

 $A_{AFN} = \{\langle B, w \rangle | B \text{ \'e um AFN que aceita a cadeia de entrada } w\}.$

TEOREMA 4.2

 A_{AFN} é uma linguagem decidível.

PROVA

- N = "Sobre a entrada $\langle B, w \rangle$ onde B é um AFN, e w, uma cadeia:
 - 1. Converta AFN B para um AFD equivalente C, usando o procedimento para essa conversão dado no Teorema 1.39.
 - 2. Rode a MT M do Teorema 4.1 sobre a entrada $\langle C, w \rangle$
 - 3. Se M aceita, aceite; caso contrário, rejeite."

 $A_{\mathsf{EXR}} = \{\langle R, w \rangle | \ R \text{ \'e uma expressão regular que gera a cadeia } w \}.$

 $A_{\mathsf{EXR}} = \{\langle R, w \rangle | \ R \text{ \'e uma expressão regular que gera a cadeia } w \}.$

TEOREMA 4.3

A_{EXR} é uma linguagem decidível.

PROVA A seguinte MT P decide A_{EXR} .

- P= "Sobre a entrada $\langle R,w\rangle$ onde R é uma expressão regular e w é uma cadeia:
 - 1. Converta a expressão regular R para um AFN equivalente A usando o procedimento para essa conversão dado no Teorema 1.54.
 - 2. Rode a MT N sobre a entrada $\langle A, w \rangle$.
 - 3. Se N aceita, aceite; se N rejeita, rejeite."

E para gramáticas regulares?

Problemas decidíveis concernentes a linguagens regulares

 Linguagens regulares são decidíveis (lembram da Hierarquia de Chomsky?)

Teste de vacuidade

$$V_{\mathsf{AFD}} = \{ \langle A \rangle | \ A \ \text{\'e um AFD e } L(A) = \emptyset \}.$$

Teste de vacuidade

$$V_{\mathsf{AFD}} = \{ \langle A \rangle | \ A \ \text{\'e um AFD e } L(A) = \emptyset \}.$$

TEOREMA 4.4

 V_{AFD} é uma linguagem decidível.

Teste de vacuidade

PROVA Um AFD aceita alguma cadeia sse é possível atingir um estado de aceitação a partir do estado inicial passando pelas setas do AFD. Para testar essa condição, podemos projetar uma MT T que usa um algoritmo de marcação similar àquele utilizado no Exemplo 3.23.

T = "Sobre a entrada $\langle A \rangle$ onde A é um AFD:

- 1. Marque o estado inicial de A.
- 2. Repita até que nenhum estado novo venha a ser marcado:
- 3. Marque qualquer estado que tenha uma transição chegando nele a partir de qualquer estado que já está marcado.
- 4. Se nenhum estado de aceitação estiver marcado, aceite; caso contrário, rejeite."

Equivalência de dois AFDs

$$EQ_{\mathsf{AFD}} = \{\langle A, B \rangle | \ A \ \mathsf{e} \ B \ \mathsf{s\~{ao}} \ \mathsf{AFDs} \ \mathsf{e} \ L(A) = L(B) \}.$$

Equivalência de dois AFDs

$$EQ_{\mathsf{AFD}} = \{\langle A, B \rangle | \ A \ \mathsf{e} \ B \ \mathsf{s\~{ao}} \ \mathsf{AFDs} \ \mathsf{e} \ L(A) = L(B) \}.$$

TEOREMA 4.5

 EQ_{AFD} é uma linguagem decidível.

Equivalência de dois AFDs

PROVA Para provar esse teorema, usamos o Teorema 4.4. Construímos um novo AFD C a partir de A e B, tal que C aceita somente aquelas cadeias que são aceitas ou por A ou por B, mas não por ambos. Conseqüentemente, se A e B reconhecem a mesma linguagem, C não aceitará nada. A linguagem de C é

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right).$$

Equivalência de dois AFDs

F = "Sobre a entrada $\langle A, B \rangle$, onde $A \in B$ são AFDs:

- 1. Construa o AFD C conforme descrito.
- 2. Rode a MT T do Teorema 4.4 sobre a entrada $\langle C \rangle$.
- 3. Se T aceita, aceite. Se T rejeita, rejeite."

 $A_{\mathsf{GLC}} = \{ \langle G, w \rangle | G \text{ \'e uma GLC que gera a cadeia } w \}$

 $A_{\mathsf{GLC}} = \{ \langle G, w \rangle | G \text{ \'e uma GLC que gera a cadeia } w \}$

TEOREMA 4.7

 A_{GLC} é uma linguagem decidível.

IDÉIA DA PROVA Para a GIC G e a cadeia w, queremos determinar se G gera w. Uma idéia é usar G para passar por todas as derivações para determinar se alguma delas é uma derivação de w. Essa idéia não funciona, pois uma quantidade infinita de derivações pode ter que ser testada. Se G não gera w, esse algoritmo nunca pararia. Essa idéia leva a uma máquina de Turing que é um reconhecedor, mas não um decisor, para A_{GLC} .

IDÉIA DA PROVA Para a GLC G e a cadeia w, queremos determinar se G gera w. Uma idéia é usar G para passar por todas as derivações para determinar se alguma delas é uma derivação de w. Essa idéia não funciona, pois uma quantidade infinita de derivações pode ter que ser testada. Se G não gera w, esse algoritmo nunca pararia. Essa idéia leva a uma máquina de Turing que é um reconhecedor, mas não um decisor, para A_{GLC} .

 $ar{P}$ ara tornar essa máquina de Turing um decisor, precisamos garantir que o algoritmo tenta somente uma quantidade finita de derivações. No Problema 2.26 (página 136), mostramos que, se G estivesse na forma normal de Chomsky, qualquer derivação de w teria 2n-1 passos, onde n é o comprimento de w. Nesse caso, verificar apenas as derivações com 2n-1 passos para determinar se G gera w seria suficiente. Existe somente uma quantidade finita de tais derivações. Podemos converter G para a forma normal de Chomsky, usando o procedimento dado na Seção 2.1.

PROVA A MT S para A_{GLC} segue.

- S = "Sobre a entrada $\langle G, w \rangle$, onde G é uma GLC, e w, uma cadeia:
 - 1. Converta G para uma gramática equivalente na forma normal de Chomsky.
 - 2. Liste todas as derivações com 2n-1 passos, onde n é o comprimento de w, exceto se n=0; nesse último caso, liste todas as derivações com 1 passo.
 - 3. Se alguma dessas derivações gera w, aceite; se não, rejeite."

PROVA A MT S para A_{GLC} segue.

- S = "Sobre a entrada $\langle G, w \rangle$, onde G é uma GLC, e w, uma cadeia:
 - 1. Converta G para uma gramática equivalente na forma normal de Chomsky.
 - 2. Liste todas as derivações com 2n-1 passos, onde n é o comprimento de w, exceto se n=0; nesse último caso, liste todas as derivações com 1 passo.
 - 3. Se alguma dessas derivações gera w, aceite; se não, rejeite."

Ineficiente, mas funciona!

- Resultados semelhantes para autômatos a pilhas, uma vez que é possível passar de uma representação para a outra
- Porém, não é uma boa ideia simular um AP diretamente em uma MT. Por quê?

 Linguagens livres de contexto são decidíveis (lembram da Hierarquia de Chomsky?)

Vacuidade de GLCs

$$V_{\mathsf{GLC}} = \{ \langle G \rangle | G \text{ \'e uma GLC e } L(G) = \emptyset \}.$$

TEOREMA 4.8

V_{GLC} é uma linguagem decidível.

Vacuidade de GLCs

IDÉIA DA PROVA

- Testar se a GLC gera alguma cadeia de terminais => testar se a variável inicial gera uma cadeia de terminais
- Marcar cada variável que gera uma cadeia de terminais
 - Terminais
 - Variáveis que estão no lado esquerdo de pelo menos uma regra cujo lado direito está todo marcado
- Verificar se a variável inicial está marcada

Vacuidade de GLCs

PROVA

- R = "Sobre a entrada $\langle G \rangle$, onde G é uma GLC:
 - 1. Marque todos os símbolos terminais em G.
 - 2. Repita até que nenhuma variável venha a ser marcada:
 - 3. Marque qualquer variável A onde G tem uma regra $A \rightarrow U_1U_2\cdots U_k$ e cada símbolo U_1,\ldots,U_k já tenha sido marcado.
 - 4. Se a variável inicial não está marcada, aceite; caso contrário, rejeite."

$$EQ_{\mathsf{GLC}} = \{ \langle G, H \rangle | G \in H \text{ são GLCs e } L(G) = L(H) \}.$$

$$EQ_{\mathsf{GLC}} = \{ \langle G, H \rangle | G \in H \text{ são GLCs e } L(G) = L(H) \}.$$

 Técnica semelhante a mostrar se dois AFDs são equivalentes?

$$EQ_{\mathsf{GLC}} = \{ \langle G, H \rangle | G \in H \text{ são GLCs e } L(G) = L(H) \}.$$

- Técnica semelhante a mostrar se dois AFDs são equivalentes?
- Problema: LLCs não são fechadas com relação às operações de complementação e intersecção!

$$EQ_{\mathsf{GLC}} = \{ \langle G, H \rangle | G \in H \text{ são GLCs e } L(G) = L(H) \}.$$

- Técnica semelhante a mostrar se dois AFDs são equivalentes?
- Problema: LLCs não são fechadas com relação às operações de complementação e intersecção!
- Na verdade, EQ_{GIC} é indecidível!