Basic Maths for Non-mathematicians

Peleg Bar Sapir

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{k=1}^{N} f(x_{k}) \Delta x$$

$$(AB)^{\top} = B^{\top} A^{\top} \qquad \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$$

$$\vec{v} = \sum_{i=1}^{n} \alpha_{i} \hat{e}_{i}$$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \qquad A = Q\Lambda Q^{-1}$$

$$\operatorname{Rot}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$T(\alpha \vec{u} + \beta \vec{v}) = \alpha T(\vec{u}) + \beta T(\vec{v}) \quad \langle \hat{e}_{i}, \hat{e}_{j} \rangle = \delta_{ij}$$

Chapter 1: Introduction

Definition

A **mathematical propostion** is a statement that can be either **true** or **false**.

Definition

A **mathematical propostion** is a statement that can be either **true** or **false**.

Example

 The Moon's radius is smaller than the Earth's radius (true)

Definition

A **mathematical propostion** is a statement that can be either **true** or **false**.

Example

- The Moon's radius is smaller than the Earth's radius (true)
- 1+2=3 (true)

Definition

A **mathematical propostion** is a statement that can be either true or false.

Example

- The Moon's radius is smaller than the Earth's radius (true)
- 1+2=3 (true)
- Protons have no electric charge (false)

Definition

A **mathematical propostion** is a statement that can be either true or false.

Example

- The Moon's radius is smaller than the Earth's radius (true)
- 1 + 2 = 3 (true)
- Protons have no electric charge (false)
- 13 > 37 (false)

Propositions can be grouped together with **operators** such as **and**, **or**.

Propositions can be grouped together with **operators** such as **and**, **or**.

 The and operator returns a true statement only if both the statements it groups are themselves true, otherwise it returns false.

Propositions can be grouped together with **operators** such as **and**, **or**.

- The and operator returns a true statement only if both the statements it groups are themselves true, otherwise it returns false.
- The **or** operator returns **true** if **at least** one of the statements it groups is true.

Example

$$1+2=3$$
 and $3-5=-2$ \Rightarrow true

Example

$$1+2=3$$
 and $3-5=-2$ \Rightarrow true $1+2=3$ and $2\times 4=7$ \Rightarrow false

Example

$$1+2=3$$
 and $3-5=-2$ \Rightarrow true $1+2=3$ and $2\times 4=7$ \Rightarrow false $\frac{10}{2}=1$ and $2^4=16$ \Rightarrow false

Example

$$1+2=3$$
 and $3-5=-2$ \Rightarrow true $1+2=3$ and $2\times 4=7$ \Rightarrow false $\frac{10}{2}=1$ and $2^4=16$ \Rightarrow false $7<5$ and $10+2=13$ \Rightarrow false

Example

$$1+2=3$$
 or $3>7$ \Rightarrow true

Example

$$1+2=3$$
 or $3>7$ \Rightarrow true $0+3=-1$ or $1=1$ \Rightarrow true

Example

$$1+2=3$$
 or $3>7$ \Rightarrow true $0+3=-1$ or $1=1$ \Rightarrow true $2\times 2=4$ or $2+0=2$ \Rightarrow true

Example

$$1+2=3$$
 or $3>7$ \Rightarrow true $0+3=-1$ or $1=1$ \Rightarrow true $2\times 2=4$ or $2+0=2$ \Rightarrow true $3\times 7=10$ or $\frac{1}{2}<\frac{1}{10}$ \Rightarrow false

Operators: Truth Table

We can summarize the behaviour of operators in a **truth table**:

A	В	AND	OR
true	true	true	true
true	false	false	true
false	true	false	true
false	false	false	false

Mathematical Notation

Other **notations** that will be used throughout this course:

Symbol	In words	
$\neg a$	not a	
$a \wedge b$	a and b	
$a \vee b$	a or b	
$a \Rightarrow b$	a implies b	
$a \Leftrightarrow b$	\boldsymbol{a} is equivalent to \boldsymbol{b}	
$\forall x$	For all x $()$	
$\exists x$	There exists x such that $()$	
a := b	\boldsymbol{a} is defined to be \boldsymbol{b}	

Definition

A **set** is a collection of **elements**. Elements of a set can be any concept - be it physical (a chair, a car, a tapir) or abstract (a number, an idea).

Definition

A **set** is a collection of **elements**. Elements of a set can be any concept - be it physical (a chair, a car, a tapir) or abstract (a number, an idea).

Note

In this course we consider only **mathematical objects** as elements of sets.

Definition

A **set** is a collection of **elements**. Elements of a set can be any concept - be it physical (a chair, a car, a tapir) or abstract (a number, an idea).

Note

In this course we consider only **mathematical objects** as elements of sets.

Sets can have a **finite** or **infinite** number of elements.

Sets are denoted with curly brackets.

Sets are denoted with curly brackets.

Example

$$\left\{1,2,3,4\right\},\quad \left\{-4,\frac{3}{7},0,\pi,i,0.1\right\},\quad \left\{\text{all even numbers}\right\}.$$

The order of elements in a set does not matter.

The order of elements in a set **does not matter**.

Example

The following sets are all identical:

$$\{1,2,3,4\} = \{1,3,2,4\} = \{2,1,4,3\} \,.$$

The order of elements in a set does not matter.

Example

The following sets are all identical:

$$\{1,2,3,4\} = \{1,3,2,4\} = \{2,1,4,3\}$$
.

Note

There is no repetition in sets, i.e. $\{1,1,3,3,3,3,5\}$ is not a proper set, contrary to e.g. $\{1,3,5\}$.

Sets can be denoted as conditions, using a vertical separator to denote **conditions** .

Sets can be denoted as conditions, using a vertical separator to denote **conditions** .

Example

The following set contains all odd numbers between 0 and 10:

$$\{x \text{ is odd } | 0 < x < 10\}.$$

Sets can be denoted as conditions, using a vertical separator to denote **conditions** .

Example

The following set contains all odd numbers between 0 and 10:

$$\{x \text{ is odd } | 0 < x < 10\}.$$

It can also be written explicitly:

$$\{1,3,5,7,9\}$$
.

Sets are usually denoted with an uppercase latin letter, while their elements as lowercase latin or greek letters. The notation \in means that an element belongs to a set.

Sets are usually denoted with an uppercase latin letter, while their elements as lowercase latin or greek letters. The notation \in means that an element belongs to a set.

Example

For the two sets

$$A=\left\{ 1,2,5,7\right\} ,\quad B=\left\{ \text{even numbers}\right\} ,$$

all the following propostions are true:

$$\begin{aligned} &1 \in A, \quad 2 \in A, \quad 5 \in A, \quad 7 \in A, \\ &2 \in B, \quad 1 \notin B, \quad 5 \notin B, \quad 7 \notin B. \end{aligned}$$

The number of elements in a set (also called its denoted with two vertical bars.

The number of elements in a set (also called its denoted with two vertical bars.

Example

$$S = \{-3, 0, -2, 7, 1\} \Rightarrow |S| = 5.$$

The Empty Set

An important special set is the **empty set**, which is the set containing no elements. It is denoted by \emptyset , and has the unique property that

$$|\emptyset| = 0.$$

If a set A contains all the elements in a set B (and perhaps additional elements), then B is said to be a **subset** of A, and A a **superset** of B.

If a set A contains all the elements in a set B (and perhaps additional elements), then B is said to be a **subset** of A, and A a **superset** of B.

Example

The sets

$$A = \{0, -3\}, \quad B = \{5, -3, 1\}, \quad C = \{-2, 2, 1\},$$

are some of the subsets of

$$D = \{0, -3, 5, 1, 2, -2\}.$$

Equivalently, D is a superset of A, B and C.

Note

All sets are supersets and subsets of themselves. This is a direct consequence of the definition of supersets and subsets.

We denote that A is a superset of B as

$$B \subseteq A$$
.

A **Venn Diagram** representation of this fact looks as following:

If for some two sets A, B both $A \subseteq B$ and $B \subseteq A$, then the sets are identical.

Formally, this fact is written as

$$A \subseteq B \land B \subseteq A \Leftrightarrow A = B$$
.

Definition

The **intersection** of two sets A and B is the set of all elements that are **both** in A and in B.

Definition

The **intersection** of two sets A and B is the set of all elements that are **both** in A and in B.

Example

Given the sets

$$A = \{1, 2, 5, 6, 7\}, B = \{-1, 0, 1, 5, 10, 13, 15\},\$$

the intersection of A and B is $\{1, 5\}$.

The symbol denoting intersection is \cap . An intersection can be formally defined as

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

(read: "the intersection of A and B is the set containing all elements x, such that x is in A and x is in B")

A Venn diagram visualization of $A \cap B$ (green area):

If the intersection of two sets is empty $(A \cap B = \emptyset)$, then the sets are said to be **disjoint**:

Definition

The **union** of two sets A, B is the set of all elements that are either in A or in B (or both).

Definition

The **union** of two sets A, B is the set of all elements that are either in A or in B (or both).

Example

The union of the sets

$$A = \{-5, 7, 1\}, B = \{10, -2, -5, 2\},\$$

is

$$A \cup B = \{10, -2, -5, 2, 7, 1\}.$$

The symbol denoting union is \cup . A union can be formally defined as

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

(read: "the union of A and B is the set containing all elements x, such that x is in A or x is in B")

A Venn diagram visualization of $A \cup B$ (purple area):

The number of elements in a union of two sets A and B is

$$|A \cup B| = |A| + |B| - |A \cap B|$$

The number of elements in a union of two sets A and B is

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Note

If A,B are disjoint, $|A \cup B| = |A| + |B|$ (because $|A \cap B| = 0$).

Definition

The **difference** of A and B is the set of all elements in A that **are not** elements of B. This is written as A - B (or sometimes $A \setminus B$).

Definition

The **difference** of A and B is the set of all elements in A that **are not** elements of B. This is written as A - B (or sometimes $A \setminus B$).

Example

For the sets

$$A = \left\{1, 5, 9, 10\right\}, \ B = \left\{-3, 2, 5, 9, 13\right\},$$

The differences are

$$A - B = \{1, 10\}, B - A = \{-3, 2, 13\}.$$

Formally:

$$A - B = \{x \mid x \in A, \ x \notin B\}$$

Formally:

$$A - B = \{ x \mid x \in A, \ x \notin B \}$$

A Venn diagram visualization of A - B (orange area):

Definition

The **complement** of a set A in reltaion to a superset $Z\supset A$ is the difference Z-A, and is denoted $A^{\mathbf{c}}$.

Definition

The **complement** of a set A in reltaion to a superset $Z \supset A$ is the difference Z-A, and is denoted $A^{\mathbf{c}}$.

Example

For the sets

$$Z = \{1, 2, 3, 4, 5\}, A = \{1, 2, 3\},\$$

The complement of A in relation to Z is

$$A^{c} = \{4, 5\}$$

Formally:

$$A^{\mathsf{c}} = \left\{ x \in Z \mid x \notin A \right\}.$$

Formally:

$$A^{\mathsf{c}} = \left\{ x \in Z \mid x \notin A \right\}.$$

A Venn diagram representation:

Power Sets

Definition

The set of all subsets of a given set A is called the **powerset of** A .

Power Sets

Definition

The set of all subsets of a given set A is called the **powerset of** A .

Example

All the subsets of $A=\{1,2,3\}$ are:

$$\emptyset,\left\{1\right\},\left\{2\right\},\left\{3\right\},\left\{1,2\right\},\left\{1,3\right\},\left\{2,3\right\},\left\{1,2,3\right\}.$$

Thus, the power set of A is

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$$

Power Sets

Note

The empty set \emptyset is a subset of all sets. Each set is also a subset of itself.

Some important number sets, which will be used frequently in the course (all with infinite number of elements):

• The natural numbers (symbol: \mathbb{N}). These are the numbers $1, 2, 3, \ldots$

- The natural numbers (symbol: \mathbb{N}). These are the numbers $1, 2, 3, \ldots$
- The integers (symbol: \mathbb{Z}). These are the "whole numbers" (i.e. not fractions). They include all the natural numbers together with their negatives (i.e. $-1, -2, -3, \ldots$) and 0.

- The natural numbers (symbol: \mathbb{N}). These are the numbers $1, 2, 3, \ldots$
- The integers (symbol: \mathbb{Z}). These are the "whole numbers" (i.e. not fractions). They include all the natural numbers together with their negatives (i.e. -1, -2, -3, ...) and 0.
- The rational numbers (symbol: \mathbb{Q}). As their name suggests, they are ratios between two integers (e.g. $\frac{1}{2}$, $\frac{-5}{3}$, $\frac{7}{13}$).

- The natural numbers (symbol: \mathbb{N}). These are the numbers $1, 2, 3, \ldots$
- The integers (symbol: \mathbb{Z}). These are the "whole numbers" (i.e. not fractions). They include all the natural numbers together with their negatives (i.e. $-1, -2, -3, \ldots$) and 0.
- The rational numbers (symbol: \mathbb{Q}). As their name suggests, they are ratios between two integers (e.g. $\frac{1}{2}$, $\frac{-5}{3}$, $\frac{7}{13}$).
- The real numbers (symbol: \mathbb{R}). These are all the numbers on the number line (e.g. $2, \pi, \frac{\sqrt{3}}{17}, \sqrt{5}, -7.2, e^{\pi}$). A proper definition of the real numbers is beyond the scope of this course.

Additionaly, the **Complex Numbers** are the set of all numbers

$$z = a + bi$$
,

where a and b are both real numbers, and i is the imaginary unit, i.e. $i=\sqrt{-1}$.

The complex number set has the notation \mathbb{C} .

Table summary:

Symbol	Name	Definition
N	Natural numbers	$\{1, 2, 3, 4, \dots\}$
\mathbb{Z}	Integers	$\{0, \pm x \mid x \in \mathbb{N}\}$
\mathbb{Q}	Rational numbers	$\left\{\frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}\right\}$
\mathbb{R}	Real numbers	Not in this course
\mathbb{C}	Complex numbers	$\left\{a+ib\mid a,b\in\mathbb{R},i=\sqrt{-1}\right\}$

Note

The relations between these sets are

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

 $(\mathsf{the}\;\mathsf{symbol}\;\subset\;\mathsf{means}\;"\mathsf{a}\;\mathsf{proper}\;\mathsf{subset}")$

Note

The relations between these sets are

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

(the symbol \subset means "a proper subset")

Note

Although each of these sets is infinite, the actual number of elements in $\mathbb R$ and $\mathbb C$ is bigger than the number of elements in $\mathbb N,\mathbb Z$ and $\mathbb Q.$ There are different kinds of infinities.

Intervals

The | interval [a,b] is the subset of $\mathbb R$ defined as

$$[a,b] = \left\{ x \in \mathbb{R} \mid a \le x \le b \right\}.$$

Example

The interval I = [-5,3] is the set of all real numbers that are greater than or equal to -5 and are smaller than or equal 3.

Some examples:

$$-5.1 \notin I, -5 \in I, 0 \in I, 2 \in I, 3 \in I, 4 \notin I.$$

Intervals

The interval (a,b) is the subset of $\mathbb R$ defined as

$$[a,b] = \left\{ x \in \mathbb{R} \mid a < x < b \right\}.$$

(i.e. same as [a, b] but excluding the actual values a and b)

Example

The interval I=(-5,3) is the set of all real numbers that are **greater than** -5 and are **smaller than** 3. Some examples:

$$-5.1 \not \in I, \ -5 \not \in I, \ 0 \in I, \ 2 \in I, \ 3 \not \in I, \ 4 \not \in I.$$

Intervals

Similarly, the interval [a,b) is the subset of $\mathbb R$ defined as

$$[a,b) = \{ x \in \mathbb{R} \mid a \le x < b \},\,$$

and the interval (a,b] is the subset of $\mathbb R$ defined as

$$(a,b] = \left\{ x \in \mathbb{R} \mid a < x \le b \right\}.$$

(i.e. in the notation for intervals a square bracket means "less/more than or equal to", while a round braket means "less/more than" - without the "equal to" part)

Definition

The **cartesian product** of two sets A,B (denoted $A \times B$) is the set of all possible **ordered** pairs, where the first component is an element of A and the second component is an element of B.

Definition

The **cartesian product** of two sets A,B (denoted $A \times B$) is the set of all possible **ordered** pairs, where the first component is an element of A and the second component is an element of B.

Example

Consider
$$A=\{1,2,3\}\,,\,\,B=\{x,y\}.$$
 Then:

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Note

The cartesian product of two sets A,B is not commutative, i.e.

$$A \times B \neq B \times A$$
,

unless A=B or any one of the sets (or both) is the empty set.

Defining a cartesian product formally:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Defining a cartesian product formally:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

The number of elements in a cartesian product is

$$|A\times B|=|A|\cdot |B|.$$

Defining a cartesian product formally:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

The number of elements in a cartesian product is

$$|A \times B| = |A| \cdot |B|.$$

The definition of a cartesian product can be expanded to $n \in \mathbb{N}$ sets A_1, A_2, \dots, A_n :

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}$$

The definition can be made more compact by the use of the product symbol \prod :

$$\prod_{i=1}^{n} A_i = \{(a_1, a_2, \dots, a_i) \mid a_i \in A_i, i = 1, 2, \dots, n\}.$$

The definition can be made more compact by the use of the product symbol \prod :

$$\prod_{i=1}^{n} A_i = \{(a_1, a_2, \dots, a_i) \mid a_i \in A_i, i = 1, 2, \dots, n\}.$$

Note

The symbol \prod is a generalized product notation. It will be discussed in more details later in the course.

A cartesian product of the same set is written in an similar way to a power. For example

$$\mathbb{R} \times \mathbb{R} = \mathbb{R}^2,$$

$$\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3.$$

These are, respectively, sets of pairs of real numbers, e.g. $\left(-3,1\right),\left(\pi,2\right),\left(-\frac{\sqrt{7}}{13},0\right)$, and triples of real numbers, e.g. $\left(1,2,-\pi\right),\left(-6,\frac{1}{\sqrt{\pi}},0.2\right),\left(\frac{1}{51},\sqrt{3},-4\right).$

Example

For the set $A = \{a, b\}$,

$$A^{3} = \{(aaa), (aab), (aba), (abb), (baa), (bab), (bba), (bbb)\}.$$

Example

For the set $A = \{a, b\}$,

$$A^{3} = \{(aaa), (aab), (aba), (abb), (baa), (bab), (bba), (bbb)\}.$$

For the set $B=\{1,2,3\}$,

$$B^{2} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}.$$

Definition

A **relation** between two sets A and B is a way to "connect" the elements in the two sets in pairs. It is a subset of the cartesian product $A \times B$.

Definition

A **relation** between two sets A and B is a way to "connect" the elements in the two sets in pairs. It is a subset of the cartesian product $A \times B$.

Example

An example relation between the sets $A=\{1,2,3,4,5\}$ and $B=\{\alpha,\beta,\gamma\}$ is

$$R = \{(1, \alpha), (2, \alpha), (3, \beta), (3, \gamma), (5, \gamma)\}.$$

The previous relation can be visually represented as following:

The previous relation can be visually represented as following:

Note

Notice how not all elements are connected, and some elements in each set are connected to the same element in the other set.

Reversed Relations

The previous relation can be reversed, yielding a subset of $B \times A$:

$$R^{-1} = \{(\alpha, 1), (\alpha, 2), (\beta, 3), (\gamma, 3), (\gamma, 5)\}.$$

Reversed Relations

The previous relation can be reversed, yielding a subset of $B \times A$:

$$R^{-1} = \{(\alpha, 1), (\alpha, 2), (\beta, 3), (\gamma, 3), (\gamma, 5)\}.$$

Graphically:

Definition

A **function** between the sets A,B is a relation in which for every element $a\in A$ there is exactly **one** connection to an element $b\in B$.

Definition

A **function** between the sets A,B is a relation in which for every element $a\in A$ there is exactly **one** connection to an element $b\in B$.

Example

A function from a set A to a set B:

Example

A relation which is **NOT** a function from A to B:

Two additional terms that are used interchangeably with function are **transformation** and **map** .

Note

A function can have more than one element $a \in A$ connected to the same element $b \in B$. The only restriction is that no element $a \in A$ is connected to **more than one** element $b \in B$.

A common notation to a function f connecting between elements of the sets A and B is

$$f: A \longrightarrow B$$
.

A common notation to a function f connecting between elements of the sets A and B is

$$f: A \longrightarrow B$$
.

A common notation to a function f connecting between elements of the sets A and B is

$$f: A \longrightarrow B$$
.

When used in practice, a common notation to show that an element $x \in A$ is connected to another element $y \in B$ is

$$f(x) = y$$

i.e. the function f applied to the element $x\in A$ returns the element $y\in B.$

Real Functions

In part 3 of the course we will deal with functions of the form

$$f: \mathbb{R} \longrightarrow \mathbb{R},$$

Real Functions

In part 3 of the course we will deal with functions of the form

$$f: \mathbb{R} \longrightarrow \mathbb{R},$$

Example

The functions

$$f_1(x) = 2x^2 - 5$$
, $f_2(x) = \sin\left(\frac{x}{3}\right)$, $f_3(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

are all real functions.

Plotting Real Functions

We can plot a real function f on a cartesian coordinate system by drawing a dot in each coordinate (x,y), where x is an element in the domain of f, and y is its image (i.e. f(x) = y).

Plotting Real Functions

Example

Plotting the function $f(x) = x^2 - x - 1.5$:

Injective, Surjective and Bijective Functions

A function is called **injective** if each of the elements in its **image** is connected to by a single element in its **domain**.

Injective, Surjective and Bijective Functions

A function is called **injective** if each of the elements in its **image** is connected to by a single element in its **domain**.

Injective, Surjective and Bijective Functions

A function is called **surjective** if all of the elements in its **image** are connected to by some element in its **domain**.

A function is called **surjective** if all of the elements in its **image** are connected to by some element in its **domain**.

A function that is both **injective** and **surjective** is called **bijective** .

Example

Let's look at a few examples of real injective, surjective and bijective functions over \mathbb{R} :

• f(x) = x, injective + surjective = bijective.

Example

Let's look at a few examples of real injective, surjective and bijective functions over \mathbb{R} :

• $f(x) = x^2$, neither injective nor surjective.

Example

Let's look at a few examples of real injective, surjective and bijective functions over \mathbb{R} :

• $f(x) = x^3 - 2x^2$, surjective.

Example

Let's look at a few examples of real injective, surjective and bijective functions over \mathbb{R} :

• $f(x) = e^x$, injective.

Example

Let's look at a few examples of real injective, surjective and bijective functions over \mathbb{R} :

• $f(x) = \sin(x)$, neither injective nor surjective.

Note

Every non-surjective function can be made surjective by excluding the elements its image that are not connected to by any element in its domain.

For example, the function $f(x)=\sin(x)$ is not surjective as a function $f:\mathbb{R}\to \mathbb{R}$, but is surjective as a function $f:\mathbb{R}\to [-1,1].$

Functions may have several arguments and return several arguments.

Functions may have several arguments and return several arguments.

Example

The following functions take as input three real numbers, and return a single real number $(f: \mathbb{R}^3 \to \mathbb{R})$. The return value of some functions for a triplet of real numbers, (-5,7,1), are:

•
$$f(x, y, z) = x + y + z \Rightarrow f(-5, 7, 1) = -5 + 7 + 1 = 3$$

Functions may have several arguments and return several arguments.

Example

The following functions take as input three real numbers, and return a single real number $(f: \mathbb{R}^3 \to \mathbb{R})$. The return value of some functions for a triplet of real numbers, (-5,7,1), are:

- $f(x, y, z) = x + y + z \Rightarrow f(-5, 7, 1) = -5 + 7 + 1 = 3$
- $f(x, y, z) = x^2 y^2 \Rightarrow f(-5, 7, 1) = 25 49 = -24$

Functions may have several arguments and return several arguments.

Example

The following functions take as input three real numbers, and return a single real number $(f: \mathbb{R}^3 \to \mathbb{R})$. The return value of some functions for a triplet of real numbers, (-5,7,1), are:

•
$$f(x, y, z) = x + y + z \Rightarrow f(-5, 7, 1) = -5 + 7 + 1 = 3$$

•
$$f(x, y, z) = x^2 - y^2 \Rightarrow f(-5, 7, 1) = 25 - 49 = -24$$

•
$$f(x, y, z) = \frac{x}{\sqrt{y} + z} \Rightarrow f(-5, 7, 1) = \frac{5}{\sqrt{7} + 1}$$

Example

The function $f: \mathbb{Z} \times \mathbb{N} \longrightarrow \mathbb{Q}$ is defined as

$$f(p,q) = \frac{p}{q}.$$

Example

The function $f: \mathbb{Z} \times \mathbb{N} \longrightarrow \mathbb{Q}$ is defined as

$$f(p,q) = \frac{p}{q}.$$

•
$$f(1,2) = \frac{1}{2}$$
,

Example

The function $f: \mathbb{Z} \times \mathbb{N} \longrightarrow \mathbb{Q}$ is defined as

$$f(p,q) = \frac{p}{q}.$$

- $f(1,2) = \frac{1}{2}$,
- $f(-5,2) = -\frac{5}{2} = -2.5$,

Example

The function $f: \mathbb{Z} \times \mathbb{N} \longrightarrow \mathbb{Q}$ is defined as

$$f(p,q) = \frac{p}{q}.$$

- $f(1,2) = \frac{1}{2}$,
- $f(-5,2) = -\frac{5}{2} = -2.5$,
- $f(0,13) = \frac{0}{13} = 0.$

Functions can be **composed** together, generating new functions.

Functions can be **composed** together, generating new functions.

Example

Consider the functions

$$f(x) = x^2, \quad g(x) = \sin(x).$$

We can compose the two functions in two ways:

Functions can be **composed** together, generating new functions.

Example

Consider the functions

$$f(x) = x^2, \quad g(x) = \sin(x).$$

We can compose the two functions in two ways:

•
$$g_1(x) = f(g(x)) = [\sin(x)]^2$$
, and

Functions can be **composed** together, generating new functions.

Example

Consider the functions

$$f(x) = x^2, \quad g(x) = \sin(x).$$

We can compose the two functions in two ways:

- $g_1(x) = f(g(x)) = [\sin(x)]^2$, and
- $g_2(x) = g(f(x)) = \sin(x^2)$.

We denote a composition of two functions $f:A\to B$ and $g:B\to C$ as

$$g \circ f : A \to C$$
.

Note

For a composition to be valid, the **domain** of the second function (here g) must be the same as the **image** of the first function.

Example A graphical representation of composing two functions: 3

Example A graphical representation of composing two functions: $g \circ f$ 3

Definition

A **graph** is a mathematical structure composed of **nodes** connected to other nodes by **edges** .

Definition

A **graph** is a mathematical structure composed of **nodes** connected to other nodes by **edges** .

Example

A graph with 5 nodes and 7 edges:

In the graphical representation of a graph, the actual position of nodes does not matter - what matters are the connections (edges) between them.

In the graphical representation of a graph, the actual position of nodes does not matter - what matters are the connections (edges) between them.

Definition

A graph in which edges have directions is called a directed graph .

Definition

A graph in which edges have directions is called a directed graph .

Example

A directed graph with 4 nodes and 6 edges:

Definition

A **path** in a graph is a sequence of edges in which each edge shares a vertex with the previous edge (except the first edge).

Definition

A **path** in a graph is a sequence of edges in which each edge shares a vertex with the previous edge (except the first edge).

Example

A path in a graph (note that the nodes are labeled):

Definition

When the start and end vertices coincide the path is known as a **circle**. A directed circle is known as a **cycle**.

Definition

If one or more pathes exist between two vertices a,b in a graph, the number of edges in the shortest path is defined to be the **distance** between the two vertices, and is denoted as $\operatorname{dist}(a,b)$.

Example

In the following graph three paths between vertices a and b are shown. The number of edges in the shortest path, highlighted in red, is defined as the distance $\mathrm{dist}(a,b)$, and is equal to 3.

Definition

A **tree** is a graph with no circles.

Definition

A tree is a graph with no circles.

Example

A tree (notice that no circles are present):

Some trees have a distinctive **root** node, and are known as **rooted trees**. A node that is "branched" from a higher level node is called a **child node**. The last level nodes are called **leaves** (singular: leaf). The rest of the nodes are known as **inner nodes**.

Example

A rooted tree, with the root node highlighted in red and the leaves in green:

Definition

A tree with 2 children per node (except the leaves) is called a **binary tree**. Similarly, trees can be ternary, quaternary, etc.

Example

A binary tree:

Rooted trees are used to describe hierarchies, e.g. in biological systematics, organisations or nested directories of data.

Definition

The **complete graph** K_n is the graph with n vertices where every pair of different vertices is connected by an edge (Also called a **clique**).

Definition

The **complete graph** K_n is the graph with n vertices where every pair of different vertices is connected by an edge (Also called a **clique**).

Example

The cliques K_1, \ldots, K_6 :

 K_1

 K_2

 K_3

 K_4

 K_5

5

 K_6