Projet

Mettre en place un arrosage automatique à partir d'un Arduino permettant de programmer 3 électrovannes selon différents programmes.

Il s'agit d'un système autonome mais robuste et qui ne plante pas, sans Raspberry pi ni interface WEB .

Boutons Physiques

Un bouton physique permet de forcer un cycle d'arrosage.

Un sélecteur 5 positions permet de choisir le programme à suivre.

Un module horloge permet à l'arduino d'être à l'heure.

Un bouton physique permet un reset.

Un bouton physique permet de réinitialiser l'horloge (lorsqu'on change la pile) Une led de contrôle permet de voir l'activité de l'arduino

La programmation

Un programme est composée d'une suite de déclencheurs qui définissent des plages de fonctionnement pour chaque vanne indépendamment les unes des autres, c'est très souple.

4 programmes différents sont possibles.

Côté Arduino

En fonction de l'heure et du programme en cours, l'arduino active des relais qui actionnent l'ouverture des électrovannes .

Une sécurité empêche un arrosage trop (coupure automatique)

Le matériel utilisé est décrit dans les pages suivantes avec les liens utilisés pour la connexion à l'ardiuno.

Le programme peut-être adapté , notamment les pins GPIO utilisées.

Électrovanne

Par mesure de sécurité, une électrovanne principale permet le fermeture de l'ensemble du système.

C'est celle qui correspond au premier GPIO utilisé pour le relais.

Remarque : pour ouvrir une Sortie, l'Arduino active l'électrovanne principale ainsi qu'un secondaire correspondant à la sortie.

Les pages suivantes décrivent le matériel utilisé, un schéma très simplifié de montage (il n'y a qu'une résistance, le reste n'est que de la connexion directe)

Il y a des liens pour l'utilisation du module horloge et la connexion des boutons

Électronique

Arduino nano

Module horloge DS3231

https://circuitdigest.com/ microcontroller-projects/ interfacing-ds3231-rtcwith-arduino-and-diydigital-clock

Plaque de 4 relais

Commutateur 5 positions

Boutons poussoir

https:// www.framboise314.fr/lebouton-poussoir-uncomposant-banal-ocombien-etonnant/

Led et résistance de $10\,K\Omega$ pour surveiller l'état de l'Arduino

http://ritonduino.blogspot.com/ 2019/10/raspberry-pi-unbouton-power-off.html

Alimentations

Prévoir une alimentation 5v, 1.5A pour l'Arduino

Ainsi qu'une alimentation 12V 2A pour alimenter les électrovannes

Arrosage

Nourrice 3 voies et bouchon

4 Électrovannes 12v normalement fermée

- + Tuyaux et embout de jardinage
- + Système d'arrosage type goutte à goutte

Schéma de fonctionnement

Montage électronique

Les boutons et le sélecteur sont utilisés sans résistance, on utilise la résistance interne de entrées de l'Arduino

à la manière de ce bouton (voir le lien plus haut)

touts les pins sont décrits dans le programme :

#define pin_bypass 2 #define pin_horloge 3 de changement de pile) #define pin_vanne 4 //pin du bouton pour forcer un cycle d'arrosage // pin du bouton qui réinitialise l'horloge (en cas

//pour le premier relai de l'électrovanne // pins : 4,5,6,7

#define pin_selecteur_programme 9 // 9, 10, 11 12 (4 positions)

Pour le connexion du module horloge DS3231, voir le lien.

SDA au pin analogique 4 de L'Arduino SCL au pin analogique 5 de L'Arduino VCC au pin 5v de L'Arduino GND au pin Ground de L'Arduino

Pour la connexion de la led, voir le lien, mais c'est entre pins 8 (TX) et 6 (GND)

