ASSIGNMENT 4

Stephen Smitshoek

2022-04-18

Markdown Basics

Favorite Foods

- 1. Pizza
- 2. Cous Cous
- 3. Nachos

${\bf Images}$

Figure 1: All Cases (Log Plot)

Add a Quote

Tis but a flesh wound

Add an Equation

PV = nRT

Add a Footnote

1

Add Citations

- $\bullet\,$ Lander, Jared (2021). R for Everyone. Addison-Wesley.
- Field, Andy (2012). Discovering Statistics Using R. SAGE Publications Inc.

Inline Code

NY Times COVID-19 Data

¹This is a footnote

R4DS Height vs Earnings

Tables

Knitr Table with Kable

60

Table 1: One Ring to Rule Them All

Height (Inches)

70

65

75

name	race	$in_fellowship$	ring_bearer	age
Aragon	Men	TRUE	FALSE	88
Bilbo	Hobbit	FALSE	TRUE	129
Frodo	Hobbit	TRUE	TRUE	51
Galadriel	Elf	FALSE	FALSE	7000
Sam	Hobbit	TRUE	TRUE	36
Gandalf	Maia	TRUE	TRUE	2019
Legolas	Elf	TRUE	FALSE	2931
Sauron	Maia	FALSE	TRUE	7052
Gollum	Hobbit	FALSE	TRUE	589

Pandoc Table

Warning: package 'pander' was built under R version 4.1.3

## ##						
# # # # # # # # # # # # # # # # # # #		name		in_fellowship	ring_bearer	age
		Aragon	Men	TRUE	FALSE	88
		Bilbo	Hobbit	FALSE	TRUE	129
		Frodo	Hobbit	TRUE	TRUE	51
		Galadriel	Elf	FALSE	FALSE	7000
		Sam	Hobbit	TRUE	TRUE	36
		Gandalf	Maia	TRUE	TRUE	2019
		Legolas	Elf	TRUE	FALSE	2931
		Sauron	Maia	FALSE	TRUE	7052
## ## ##		Gollum	Hobbit	FALSE	TRUE	589
##	т.	 -	r		 -	

References

Assignment 04 Code

```
title: "ASSIGNMENT 4"
author: "Stephen Smitshoek"
date: '2022-04-20'
output:
  pdf document: default
  html document: default
  word document: default
bibliography: bibliography.bib
# Markdown Basics
## Favorite Foods
1. Pizza
1. Cous Cous
1. Nachos
## Images
![All Cases (Log Plot)](C:/Users/sksmi/PeytoAccess/Personal/Bellevue/DSC520/
dsc520/completed/assignment04/plots/10-all-cases-log.png) {height=50%}
## Add a Ouote
> Tis but a flesh wound
## Add an Equation
$$
PV=nRT
$$
## Add a Footnote
^[This is a footnote]
## Add Citations
* Lander, Jared (2021). R for Everyone . Addison-Wesley.
* Field, Andy (2012). Discovering Statistics Using R . SAGE Publications
Inc.
# Inline Code
```{r include=FALSE}
setwd('C:/Users/sksmi/PeytoAccess/Personal/Bellevue/DSC520/dsc520')
library(ggplot2)
covid df <- read.csv("data/nytimes/covid-19-data/us-states.csv")</pre>
covid df$date <- as.Date(covid df$date)</pre>
california df <- covid df[which(covid df$state == "California"),]</pre>
ny df <- covid df[which(covid df$state == "New York"),]</pre>
florida df <- covid df[which(covid df$state == "Florida"),]
NY Times COVID-19 Data
```{r echo=FALSE}
ggplot(data=florida df, aes(x=date, group=1)) +
  geom_line(aes(y = cases, colour = "Florida")) +
```

```
geom line(data=ny df, aes(y = cases,colour="New York")) +
  geom line(data=california df, aes(y = cases, colour="California")) +
  scale colour manual ("",
                      breaks = c("Florida", "New York", "California"),
                      values = c('darkred', 'darkgreen', 'steelblue')) +
 xlab(" ") + ylab("Cases") + scale y log10()
## R4DS Height vs Earnings
```{r echo=FALSE}
setwd('C:/Users/sksmi/PeytoAccess/Personal/Bellevue/DSC520/dsc520')
library(ggplot2)
heights df <- read.csv("data\\r4ds\\heights.csv")</pre>
ggplot(heights df, aes(x=height, y=earn, col=sex)) + geom point() +
ggtitle("Height vs. Earnings") + xlab("Height (Inches)") + ylab("Earnings
(Dollars)")
Tables
Knitr Table with Kable
```{r echo=FALSE}
name <- c("Aragon", "Bilbo", "Frodo", "Galadriel", "Sam", "Gandalf",</pre>
"Legolas", "Sauron", "Gollum")
race <- c("Men", "Hobbit", "Elf", "Hobbit", "Maia", "Elf", "Maia",</pre>
"Hobbit")
in fellowship <- c(TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE)
ring bearer <- c(FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE)
age <- c(88, 129, 51, 7000, 36, 2019, 2931, 7052, 589)
characters df <- data.frame(name, race, in fellowship, ring bearer, age)
knitr::kable(characters df, caption = 'One Ring to Rule Them All')
## Pandoc Table
```{r echo=FALSE}
library(pander)
pandoc.table(characters df, style='grid')
References
```

# Assignment 04 Backup

```
Assignment: ASSIGNMENT 4
Name: Smitshoek, Stephen
Date: 2022-04-18
Load the ggplot2 package
library(ggplot2)
theme set(theme minimal())
Load the `data/r4ds/heights.csv` to
heights df <- read.csv("data/r4ds/heights.csv")</pre>
https://ggplot2.tidyverse.org/reference/geom boxplot.html
Create boxplots of sex vs. earn and race vs. earn using `geom point()` and
`geom boxplot()`
sex vs. earn
ggplot(heights df, aes(x=sex, y=earn)) + geom point() + geom boxplot()
race vs. earn
ggplot(heights df, aes(x=race, y=earn)) + geom point() + geom boxplot()
https://qqplot2.tidyverse.org/reference/geom bar.html
Using `geom bar()` plot a bar chart of the number of records for each
`sex`
ggplot(heights df, aes(sex)) + geom bar()
Using `geom bar()` plot a bar chart of the number of records for each race
ggplot(heights df, aes(race)) + geom bar()
Create a horizontal bar chart by adding `coord flip()` to the previous
plot
ggplot(heights df, aes(race)) + geom bar() + coord flip()
https://www.rdocumentation.org/packages/ggplot2/versions/3.3.0/topics/
geom path
Load the file `"data/nytimes/covid-19-data/us-states.csv"` and
assign it to the `covid df` dataframe
covid df <- read.csv("data/nytimes/covid-19-data/us-states.csv")</pre>
Parse the date column using `as.Date() ``
covid df$date <- as.Date(covid df$date)</pre>
Create three dataframes named `california df`, `ny df`, and `florida df`
containing the data from California, New York, and Florida
california df <- covid df[which(covid df$state == "California"),]</pre>
ny df <- covid df[which(covid df$state == "New York"),]</pre>
florida df <- covid df[which(covid df$state == "Florida"),]</pre>
Plot the number of cases in Florida using `geom_line()`
ggplot(data=florida df, aes(x=date, y=cases, group=1)) + geom line()
Add lines for New York and California to the plot
ggplot(data=florida df, aes(x=date, group=1)) +
 geom line(aes(y = cases)) +
 geom line(data=ny df, aes(y = cases)) +
 geom line(data=california df, aes(y = cases))
```

```
Use the colors "darkred", "darkgreen", and "steelblue" for Florida, New
York, and California
ggplot(data=florida df, aes(x=date, group=1)) +
 geom line(aes(y = cases), color = 'darkred') +
 geom line(data=ny df, aes(y = cases), color='darkgreen') +
 geom line(data=california df, aes(y = cases), color='steelblue')
Add a legend to the plot using `scale colour manual`
\#\# Add a blank (" ") label to the x-axis and the label "Cases" to the y axis
ggplot(data=florida df, aes(x=date, group=1)) +
 geom line(aes(y = cases, colour = "Florida")) +
 geom line(data=ny df, aes(y = cases,colour="New York")) +
 geom line(data=california df, aes(y = cases, colour="California")) +
 scale colour manual ("",
 breaks = c("Florida", "New York", "California"),
 values = c('darkred', 'darkgreen', 'steelblue')) +
 xlab(" ") + ylab("Cases")
Scale the y axis using `scale y log10()`
ggplot(data=florida df, aes(x=date, group=1)) +
 geom_line(aes(y = cases, colour = "Florida")) +
 geom line(data=ny df, aes(y = cases,colour="New York")) +
 geom line(data=california df, aes(y = cases, colour="California")) +
 scale colour manual ("",
 breaks = c("Florida", "New York", "California"),
 values = c('darkred', 'darkgreen', 'steelblue')) +
 xlab(" ") + ylab("Cases") + scale y log10()
```



















