Coursera Data Science Project: Statistical Inference (Part 2)

Rob Rolleston

August 23, 2015

Introduction

This is the project for the statistical inference class. In it, I will use simulation to explore inference and do some simple inferential data analysis. The project consists of two parts:

- 1. A simulation exercise.
- 2. Basic inferential data analysis (this report)

Basic Inferential Data Analysis

Load and explore data

Some inspection of the ToothGrowth data indicates it has 60 observations of 3 values: len, supp, dose. The 'supp' value is a factor with only 2 levels: OJ, VC. The 'dose' value, although a number, actually has only 3 values: 0.5, 1, 2. For processing, this value was converted to a factor.

```
ToothGrowth_tbl$dose <- as.factor(ToothGrowth_tbl$dose)
```

Data Summary

A faceted set of histograms

```
ggplot(ToothGrowth_tbl, aes(x=len)) +
  geom_histogram(color="black", fill="white") +
  facet_grid(supp ~ dose) +
  ggtitle("Histograms of 'len' by 'supp' (OJ|VC) and 'dose' (0.5|1|2) ")
```


The basic question is: "Is ToothGrowth 'len' affected by 'supp' or 'dose'?"

Assumption: These observations are from a population of 60 individuals. There are no paired samples.

The mean, sd, and count of values of 'len' are:

```
## Source: local data frame [6 x 5]
## Groups: supp
##
##
     supp dose
               mean
                            sd n
## 1
           0.5 13.23 4.459709 10
             1 22.70 3.910953 10
##
  2
       OJ
##
  3
       OJ
             2 26.06 2.655058 10
## 4
       VC
           0.5
               7.98 2.746634 10
## 5
       VC
             1 16.77 2.515309 10
## 6
       VC
             2 26.14 4.797731 10
```

Compare tooth growth by supp and dose

Different doses of supp will be compared using a t-test. To aid understanding about what is being tested, the figure below contains two sets of box plots; one for each of the the 'sup': 'OJ' and 'VC. Each set contains 3 box plots, one for each of the doses: '0.5', '1', and '2'. The null hypothesis is: **There is no difference in the means of samples**

print(supp_by_dose)

```
## Source: local data frame [6 x 5]
##
##
     supp dose1 dose2 pvalue
                                   HO
## 1
       OJ
              .5
                     1 0.0001 Reject
## 2
       OJ
              .5
                     2 0.0000 Reject
## 3
       OJ
                     2 0.0392 Reject
               1
## 4
       VC
              .5
                     1 0.0000 Reject
## 5
       VC
              .5
                     2 0.0000 Reject
## 6
       VC
                     2 0.0001 Reject
```

As can be seen graphically, and confirmed by the p-values and rejection of the null hypothesis: For each supplement, the amount of the 'dose' does indeed have a statistically different effect on the mean of the 'len'.

Different 'supp' at each 'dose' will be compared using a t-test. To aid understanding about what is being tested, the figure below contains three sets of box plots; one for each of the the 'dose': '0.5', '1', and '2'. Each set contains 2 box plots, one for each of the 'sup': 'OJ' and 'VC: . The null hypothesis is: **There is no difference in the means of samples**

```
dose_by_supp <- tbl_df(data.frame(matrix(ncol=4, nrow=3)))
colnames(dose_by_supp) <- c("dose", "supp1", "supp2", "pvalue")
dose_by_supp[1,] <- c(".5", "0J", "VC",
    t.test(len~supp, data=droplevels(filter(ToothGrowth_tbl, dose==.5)))[3]$p.value)
dose_by_supp[2,] <- c("1", "0J", "VC",
    t.test(len~supp, data=droplevels(filter(ToothGrowth_tbl, dose==1)))[3]$p.value)
dose_by_supp[3,] <- c("2", "0J", "VC",
    t.test(len~supp, data=droplevels(filter(ToothGrowth_tbl, dose==2)))[3]$p.value)
dose_by_supp$pvalue <- round(as.numeric(dose_by_supp$pvalue), 4)
dose_by_supp <- mutate(dose_by_supp, HO = ifelse(pvalue > 0.05, "Accept", "Reject"))
ggplot(ToothGrowth_tbl, aes(x=dose, y=len, fill=supp)) + geom_boxplot()
```


print(dose_by_supp)

```
## Source: local data frame [3 x 5]
##
##
     dose supp1 supp2 pvalue
                                   HO
## 1
       .5
             OJ
                    VC 0.0064 Reject
## 2
        1
             OJ
                    VC 0.0010 Reject
## 3
        2
             OJ
                    VC 0.9639 Accept
```

As can be seen graphically, and confirmed by the p-values and rejection or acception of the null hypothesis: For the 'doses' 0.5 and 1, the 'supp' does indeed have a statistically different effect on the mean of the 'len'. for the dose of 2, there is no difference.

Conclusions

The only case where changing the supp or the dose does not affect the len is when the dose for each supp==2 (p-vale=0.96). In all other cases the p-value is less than 0.05, and thus the null hypothesis is rejected.