Algèbre

Martin Andrieux

1 Groupes

Définition -

Soit $H \subset G$, H est un sous-groupe de G si :

- H ≠ ∅
- H est stable par ·
- 1 ∈ H
- $\forall \alpha \in H, \alpha^{-1} \in H$

Théorèmes -

- \bullet Les sous-groupes de $\mathbb Z$ sont de la forme $\mathfrak n\mathbb Z$
- Tout groupe fini de cardinal $\mathfrak n$ est isomorphe à un sous-groupe de $\mathfrak S_{\mathfrak n}$
- L'intersection de deux sous-groupes est un sous-groupe.

Définition -

Pour $A \subset G$, il existe un plus petit sous-groupe de G contenant A, c'est le sous-groupe engendré par A, noté $\langle A \rangle$.

Théorème de Lagrange -

Le cardinal de tout sous-groupe divise le cardinal du groupe.

En particulier, pour x dans G, le cardinal de $\langle x \rangle$, aussi appelé ordre de x, divise le cardinal de G.

2 Anneaux

Définition -

Soit $B \subset A$, B est un sous-anneau de A si :

- B ≠ ∅
- \bullet B est stable par \cdot et +
- 1 ∈ B

Définition

Un *corps* est un anneau dans lequel tous les éléments non nuls sont inversibles.

Soit A un anneau, on note A^* l'ensemble des éléments inversibles de A. A^* est un groupe pour la loi \cdot .

Définition -

Soit A un anneau, on dit que x et y sont des diviseurs de 0 si $x \neq 0$, $y \neq 0$ et xy = 0.

Si A ne possède pas de diviseur de 0, il est dit intègre.

3 Arithmétique

Définition -

Soit $I \subset A$ avec A un anneau. On dit que I est un $id\acute{e}al$ à gauche (resp à droite), si pour tout x de I et pour tout a de A, $ax \in I$ (resp $xa \in I$). Si I est un idéal à gauche et à droite, on dit qu'il est $bilat\`{e}re$.

Définition

Soit A un anneau, A est dit principal si les idéaux de A sont de la forme $\mathfrak{a}A$ avec $\mathfrak{a}\in A$. Ces idéaux sont appelés $id\acute{e}eaux$ principaux

Lemme chinois

Si
$$1 \wedge b = 1$$
, alors

$$\mathbb{Z}/_{\mathfrak{a}\mathbb{Z}} \times \mathbb{Z}/_{\mathfrak{b}\mathbb{Z}} = \mathbb{Z}/_{\mathfrak{a}\mathfrak{b}\mathbb{Z}}$$

Lemme de Gauss -

Si $a, b, c \in A$, on a:

$$\begin{cases} a|bc \\ a \wedge b = 1 \end{cases} \implies a|c$$