

Delaunay and proximity in space

- Delaunay triangulation allows to model the notion of proximity between points
- Each point is thus connected to nearby points around it
- Be careful, they are not all the closest!

158

160

 Voronoi diagram

• Given a set E of points in \mathbb{R}^k , the partitioning of \mathbb{R}^k into cells composed of points having the same nearest neighbour in E is called a Voronoi diagram of E

160

158

159

Voronoi diagram

- Possible construction:
 - V_i : intersection of half-spaces $h_{ij}{}^i$ where h_{ij} is the mediator of segment P_iP_j and $h_{ij}{}^i$ is the half-space delimited by h_{ij} containing $_{Pi}$

In practice we will proceed differently!

Duality between Voronoi and Delaunay

161 162

Duality between Voronoi and Delaunav

- Each Voronoi vertex is located at the center of the circumscribed circle of a Delaunay triangle
- Two Voronoi vertices are connected if they are associated with adjacent triangles

163

Coordinates of the centre of the circle circumscribed to a triangle ABC

- Useful for displaying the Voronoi diagram
- 1st possibility:
 - Write the equation of the mediator for each
 - ex: For the edge AB, set of points M such that $MA^2=MB^2$
 - Solving a system of 2 equations with 2 unknowns (it is enough to take 2 mediators)
 - Numerically unstable

164

163

164

Coordinates of the centre of the circle circumscribed to a triangle ABC

- ^{2nd} possibility:
 - Let's consider the angles

$$\hat{A} = \widehat{CAB} \ \hat{B} = \widehat{ABC} \ \hat{C} = \widehat{BCA}$$

- Then the barycentric coordinates of the centre H of the circumscribed circle with respect to A, B and C are elegantly expressed:

 $H(tan\hat{B}+tan\hat{C},tan\hat{C}+tan\hat{A},tan\hat{A}+tan\hat{B})$

- Reminder:

$$\tan(\widehat{ABC}) = \frac{\sin(\widehat{ABC})}{\cos(\widehat{ABC})} = sign((\overrightarrow{BC} \times \overrightarrow{BA}) \cdot \overrightarrow{k}) \frac{\left\|\overrightarrow{BC} \times \overrightarrow{BA}\right\|}{\overrightarrow{BC} \cdot \overrightarrow{BA}}$$
 165

Coordinates of the centre of the circle circumscribed to a triangle ABC

 $H = Barycenter((A, \tan \hat{B} + \tan \hat{C}), (B, \tan \hat{C} + \tan \hat{A}), (C, \tan \hat{A} + \tan \hat{B}))$

$$\tan(\widehat{ABC}) = \frac{\sin(\widehat{ABC})}{\cos(\widehat{ABC})} = sign((\overrightarrow{BC} \times \overrightarrow{BA}) \cdot \overrightarrow{k}) \frac{\left\| \overrightarrow{BC} \times \overrightarrow{BA} \right\|}{\overrightarrow{BC} \cdot \overrightarrow{BA}}$$

 $Barycenter((A, \alpha a), (B, \alpha b), (C, \alpha c))$

$$= Barycenter((A, a), (B, b), (C, c))$$

- Ensure to have no more denominators in the expression of your barvcentric coordinates (normalization performed afterwards)

166

165

166

Duality between Voronoi and Delaunay

- · Each Delaunay vertex is dual to one Voronoi cell
- Each Delaunay edge is dual to a Voronoi edge
- Each Voronoi vertex is dual to a Delaunay triangle

Duality between Voronoi and Delaunay

- Which data structure for Voronoi?
 - Walking around a Voronoi face is performed by walking through the faces/edges incident at a Delaunay vertex.
 - To move from one Voronoi cell to an adjacent cell is like moving from a Delaunay vertex to an adjacent vertex.

167

Use of Voronoi Center for line reconstruction from a 2D point set (Crust)

- Let consider a set of points sampled on a line
- The points are not ordered
- How to approximate the input line with a polygonal line?

169

Use of Voronoi Center for line reconstruction from a point set (Crust)

- If the sampling is dense enough, Delaunay encloses a good candidate
- How to remove the edges crossing the shape?

169

170

Use of Voronoi Center for line reconstruction from a point set (Crust)

- Add points as far as possible from the input line
 - Points located on the internal and external skeleton of the shape
 - Centers of maximal empty circles

171

Use of Voronoi Center for line reconstruction from a point set (Crust)

- The Voronoi centers are close to the shape skeleton
 - Let's add them to break edges that cross the shape while preserving the boundaries

172

171 172

Use of Voronoi Center for line reconstruction from a point set (Crust)

- Keep the edges that join initial input points
- Correctness of the algorithm if the input point set is locally denser than a given proportion ε of the distance to the skeleton (ε-sampling)

174

Local Feature Size (lfs)

and ε- sampling
• Given ε, an ε-sampling of a shape is a set

of samples P_i such that for each x there is a i such that $||x-P_i|| \le \epsilon lfs(x)$

173

175 176

Need to filter Voronoi centers
 Consider only the poles!

 ie. Voronoi vertices certified to be far from the surface by one of the point samples

177 178

Poles

- Let V_x be the Voronoi's cell of a point x

- Positive pole p⁺: Voronoi Vertex of V_x further away from x

- Vector pole xp⁺: approximation of the normal direction at x

- The negative pole p⁻: farthest vertex of V_x in the opposite direction to the vector xp⁺

179 180

Crust in 3D

• Adding poles in the 3D triangulation

Amenta et al 98

 Reconstructed surface composed of Delaunay faces relying on 3 input point samples

18