Satz 1.11.6 Sei 4: 6 3 G' ein Homomorphismus. (a) Der Kern von 4 ist eine Untergruppe von G. (6) Zwei Elemente a,6 E . haben genau dann dasselbe Bild unter 4, falls mindestens eine der folgenden Bedingungen erfullt ist. a6 1 € ker 4, 6a 1 € ker 4, a 6 € Ker 4, 6 a € Ker 4. (c) Genau für ker 4 = {e} ist 4 injektiv. Beweis. Laut 1.11.4 gilt (und wird in Ubungsaufgaben bewiesen) 4(e) = e' (1.5) 4(a-1) = 4(a)-1 für alle a E a. (1.6) (a) Aus (1.5) folgt e & ker 4 * Ø ... Weiters gill für alle x, y & kex 4, wegen $\Psi(xy^{-1}) = \Psi(x) \cdot \Psi(y^{-1}) \stackrel{(A.6)}{=} \Psi(x) \cdot \Psi(y)^{-1} = e'e'$ = e', dann xy E ker 4; es er füllt also ker 4 das Untergruppenkriterium 199 (6) Es ist 4(a) = 4(6) aquivalent zu e' = 4(a) . 4(6) -1 = 4(a6-1) also a6 " E Ker 4"... Laut Definition von Ker 4. Die aleichwertigkeit der restlichen Bedingungen kann analog nachgewiesen werden... durch hinschauen.

	Nach	(6)	ist	Kec	4	= }	e !	i t	UK	6	die	_1	nje	eunv	i ta	T	VOV	Y	
Kenn	zeic	hneno	d,																
Ange	enom	men,	4 (a) =	4	(6)	1	50	(311	t								
									(+·		+								
e' =	Ψ	(a).	4(6.)-1 =	= (Y (a	6	1)	=		a6	-1	=	e :	> (a =	6	,	
		laut				11					-								
Ange	enonn	men,	4	st.	inje	ktiv	,	al	50		a	+	6	=>	Ψ	(a)	#	Ψ(65
		= e																	T
									•										
								7											
	7																		
														2					
																			-
											-								
																			Ŧ
																7			1
							H												
													-		-				