Advanced Materials formula booklet

By: Ioannis Karras

Link to revision folder

Table of contents (contains links)

Atomic bonding (Lecture 1)	2
Crystallography and structure of metals (Lecture 2)	2
Lattice defects (Lecture 3)	3
Ceramics and polymers (Lecture 4)	3
Imaging (Lecture 5)	5
Mechanical testing (Lecture 6)	5
Electrical and thermal properties (Lecture 7)	6
Phase diagrams (Lecture 9)	8
Plastic deformation and strengthening (Lecture 10)	9
Failure (Lecture 11)	10
Composites and material indices (Lecture 13)	11

Atomic bonding (Lecture 1)

Fraction of ionic	$f_{ion} = 1 - e^{-\frac{(X_A - X_B)^2}{4}}$
bonding	where X_A and X_B are the electronegativities of the two bonded elements

Crystallography and structure of metals (Lecture 2)

Atomic packing factor	$APF = \frac{\text{volume of atoms in a unit cell}}{\text{total unit cell volume}}$ Note that face atoms are counted as half atoms, and corner atoms are counted as eighth atoms
Unit cell edge length for body-centered cubic	$a = \frac{4R}{\sqrt{3}}$
Unit cell edge length for face-centered cubic	$a = 2R\sqrt{2}$
Density of a metal with a unit cell	$\rho \approx \frac{\text{mass of atoms in a unit cell}}{\text{total unit cell volume}} = \frac{nA}{V_C N_A}$ n is the number of atoms associated with each unit cell A is the atomic weight V_C is the volume of the unit cell
	N_A is Avogadro's number, $6.02 \cdot 10^{23} \text{ mol}^{-1}$
Density of a metal in terms of atomic packing factor	$\rho \approx \mathit{APF} \cdot \rho_{atom} = \mathit{APF} \cdot \frac{m_{atom}}{V_{atom}}$ where m_{atom} is the mass of a single atom and V_{atom} is the volume of a single atom
Atomic packing factors for cubic lattices	sc: $APF = 0.52$ bcc: $APF = 0.68$ fcc: $APF = 0.74$

Lattice defects (Lecture 3)

Equilibrium density of vacancies	$c_V = \frac{N_V}{N} = e^{-\left(\frac{Q_V}{kT}\right)}$ where N_V is the number of vacancies, N is the number of atomic sites, Q_V is the vacancy formation energy, and k is the Boltzmann constant, $1.38\cdot 10^{-23}$ J/K
Number of atoms per unit volume	$N = \frac{N_A \rho}{M}$ where N_A is Avogadro's number, $6.02 \cdot 10^{23} \ \rm mol^{-1}, \ \rho$ is density, and M is molar mass
Dislocation density	$\rho = \frac{L}{V}$ where L is dislocation line length and V is volume
Mass fraction/weight percentage for a binary alloy	$C_A = rac{m_A}{m_A + m_B}$
Amount fraction/atomic percentage for a binary alloy	$C_{\!A}^* = rac{n_{\!A}}{n_{\!A} + n_{\!B}}$ where n is number of moles
Conversion between mass fraction and amount fraction	$C_A = \frac{C_A^* M_A}{C_A^* M_A + C_B^* M_B}$ $C_A^* = \frac{\frac{C_A}{M_A}}{\frac{C_A}{M_A} + \frac{C_B}{M_B}}$ where M is molar mass

Ceramics and polymers (Lecture 4)

Determination of	$\left \frac{r_{A+}}{r_{X-}} < 0.414$: Zinc blende structure
	$0.414 < \frac{r_{A+}}{r_{X-}} < 0.732$: Sodium chloride structure
ceramic structure	$\left \frac{r_{A+}}{r_{X-}} > 0.732$: Cesium chloride structure
	r_{A+} is the radius of the cation and r_{X-} is the radius of the anion

Molar mass of polymer chain molecule	$M=nM_{unit}$ where n is the number of repeating units and M_{unit} is the molar mass
Grain molecule	of a single repeating unit
Number-weighted average molar mass	$\langle M \rangle_n = \sum x_i M_i$
	where x_i is the fraction of all chains having molar mass M_i
	$DP = \frac{M}{M_{mon}}$
	where ${\it M}$ is the molar mass of the chain and ${\it M}_{mon}$ is the molar mass of a monomer
	For co-polymers:
Degree of polymerization (number of monomers in a	$DP = \frac{M}{\langle M_{mon} \rangle}$
chain)	where $\langle M_{mon} \rangle$ is the average molar mass of the monomers
	For a distribution of chain lengths:
	$\langle DP \rangle = \frac{\langle M \rangle_n}{M_{mon}} \text{ or } \langle DP \rangle = \frac{\langle M \rangle_n}{\langle M_{mon} \rangle}$
	where the angle brackets denote an average. $\langle M \rangle_n$ is the <i>number-weighted</i> average molar mass
Straightened chain	$L = Nd \sin\left(\frac{\theta}{2}\right)$
length	where N is the number of single bonds along the chain, d is the bond length, and θ is the bond angle
Average start to end	$r = d\sqrt{N}$
distance for a polymer chain	where d is the bond length and N is the number of single bonds along the chain
	$\rho_{sc} = f_c \rho_c + (1 - f_c) \rho_a$
Density of a semicrystalline polymer	where ρ_c is the density of the crystalline region, ρ_a is the density of the amorphous region, and f_c is the volume fraction of crystalline regions. Transposing for f_c ,
	$f_c = \frac{\rho_{sc} - \rho_a}{\rho_c - \rho_a}$
Crystallinity	$x = \frac{m_c}{m_{sc}} = \frac{f_c \rho_c}{\rho_{sc}} = \frac{\rho_c (\rho_{sc} - \rho_a)}{\rho_{sc} (\rho_c - \rho_a)}$
	where c is the crystalline region, a is the amorphous region, and sc is the whole semicrystalline polymer

Imaging (Lecture 5)

Interplanar spacing for a cubic crystal	$d_{hkl}=\frac{a}{\sqrt{h^2+k^2+l^2}}$ where a is the unit cell edge length and $h,k,$ and l are the Miller indices of the plane being considered
Bragg's law	$n\lambda = 2d_{hkl}\sin(\theta)$ n is the order of reflection, a positive integer λ is the x-ray wavelength 2θ , not θ , is the diffraction angle
Lens equation	$\frac{1}{d_i} + \frac{1}{d_0} = \frac{1}{f}$ where d_i is the distance from the lens to the image plane, d_0 is the distance from the lens to the object plane, and f is the focal length
Lens magnification	$M = \frac{d_i}{d_0}$
Mean intercept length for grain size	Draw many random lines. The mean intercept length is $\bar{l} = \frac{L_T}{PM}$ where L_T is the total length of all the lines, P is the total number of intercepts, and M is the magnification

Mechanical testing (Lecture 6)

Tensile/compressive stress	$\sigma = \frac{F_t}{A_0}$ where F_t is the force applied and A_0 is the initial cross sectional area of the specimen. $\sigma > 0$ for tensile stress and $\sigma < 0$ for compressive stress
Tensile/compressive strain	$\varepsilon = \frac{\Delta l}{l_0}$ where Δl is the elongation and l_0 is the initial specimen length
Hooke's law	$\sigma = E \varepsilon$ where E is the elastic modulus, or Young's modulus
Poisson's ratio	$\nu=-\frac{\Delta d/d_0}{\Delta l/l_0}=-\frac{\varepsilon_x}{\varepsilon_z}$ where d is the length perpendicular to a load and l is the length parallel to it

Shear stress	$\tau = \frac{F_s}{A_0}$
Shear strain	$\gamma = \frac{\Delta x}{h_0}$ where Δx is the displacement of one side and h_0 is the initial height
Hooke's law for shear	$ au = G \gamma$ where G is the shear modulus
Relationship between moduli for elastic isotropic materials	$G = \frac{E}{2(1+\nu)}$

Electrical and thermal properties (Lecture 7)

Resistance (Ohm's law)	$R = \frac{V}{I}$
	Unit: Ω . V is voltage and I is current
Resistivity	$\rho = \frac{RA}{L}$
	Unit: $\Omega m.~A$ is cross-sectional area and L is length
Conductance	$C = \frac{1}{R}$
	Unit: Ω^{-1}
Conductivity	$\sigma = \frac{1}{\rho}$
	Unit: $(\Omega m)^{-1}$
Current density	$J = \frac{I}{A}$
·	Unit: A/m^2 . A is cross-sectional area
Electric field intensity	$\mathcal{E} = \frac{V}{L}$
	Unit: V/m . L is length
Current density in terms of electron density	$J = n e v_d$
	where n is the electron density, $ e $ is the absolute value of electron charge, $1.6\cdot 10^{-19}$ C, and v_d is the net drift velocity
Net drift velocity	$v_d = \mu_e \mathcal{E}$
	where μ_e is the electron mobility

Contributions to resistivity are additive	Total resistivity is the sum of resistivities due to temperature, impurities, and dislocations
	$ ho_{total} = ho_{temp} + ho_{imp} + ho_{disloc}$
Intrinsic conductivity	$\sigma = n_i e (\mu_e + \mu_h)$
	where n_i is the intrinsic carrier concentration, equal to both the electron concentration n and the hole concentration p . μ_e is electron mobility and μ_h is hole mobility
	For n-type:
	$\sigma = n e \mu_e$
	For p-type:
Extrinsic conductivity	$\sigma = p e \mu_h$
	n is electron concentration, p is hole concentration, μ_e and μ_h are electron and hole mobilities respectively, and $ e $ is the absolute value of electron charge, $1.6 \cdot 10^{-19}$ C
	$Q = mc\Delta T$
Heat required for a	$Q = nC\Delta T$
Heat required for a temperature change	where c is specific heat capacity (per mass) and c is molar heat capacity. Heat capacities can be fixed-volume (c_v or c_v) or fixed-pressure (c_p or c_p)
Dependence of fixed-	$C_v = AT^3$
volume molar heat	where A is a constant
capacity on temperature at low temperatures	For solid metallic elements, above the Debye temperature θ_D , C_v levels off at approximately $3R$, where R is the gas constant, 8.314J/(mol K)
	Linear:
	$\frac{\Delta L}{L_0} = \alpha_l \Delta T$
	where ΔL is the increase in length, L_0 is the initial length, and α_l is the linear expansion coefficient
Thermal expansion	Volume:
	$\frac{\Delta V}{V_0} = \alpha_v \Delta T$
	where ΔV is the increase in volume, V_0 is the initial volume, and α_v is the volume expansion coefficient
	$\sigma = E \alpha_l \Delta T$
Thermal stress	where α_l is the linear expansion coefficient and ${\it E}$ is the elastic modulus

Thermal shock resistance	$TSR \approx \frac{\sigma_f k}{E \alpha_l}$ where σ_f is fracture strength, k is thermal conductivity, E is the elastic modulus, and α_l is the linear expansion coefficient
Heat flux in steady state heat flow	$q = \frac{\frac{dQ}{dt}}{A} = \frac{H}{A} = \frac{k(T_H - T_C)}{L}$ H is heat current (power) A is the area through which the heat flows k is thermal conductivity T_H is the temperature of the hot end T_C is the temperature of the cold end L is the length of the heat flow path
Contributions to thermal conductivity are additive	Total conductivity is the sum of conductivities due to the lattice and due to free electrons $k=k_{lattice}+k_{electron}$
Relationship between electrical and thermal conductivity for metals (Wiedemann-Franz law)	$L = \frac{k}{\sigma T}$ where L is a constant which is approximately the same for all metals. k is thermal conductivity and σ is electrical conductivity. The theoretical value of L is $2.44 \cdot 10^{-8} \; \Omega \text{W/K}^2$

Phase diagrams (Lecture 9)

Mass fraction of each phase in a two-phase region	$W_A = \frac{\text{length from the point to the other phase on the tie line}}{\text{total length of the tie line}} = \frac{ c_B - c_0 }{ c_B - c_A }$
Gibbs phase rule	number of degrees of freedom + number of phases in equilibrium = number of constituents + 1

	eutectic $L \rightarrow S_1 + S_2 \qquad \frac{L}{S_1 + S_2}$
Special phase transformations	eutectoid $S_1 \rightarrow S_2 + S_3$ $S_2 + S_3$
	peritectic $S_1 + L \rightarrow S_2$ S_2

Plastic deformation and strengthening (Lecture 10)

Theoretical yield strength for a defect-free material	$\sigma_{th} = \frac{E}{20}$	
Theoretical critical shear stress	$\tau_{th} = \frac{G}{20}$	
Percent cold work	$\%CW = \frac{A_0 - A_d}{A_0} \cdot 100\%$ where A_0 is the original area of the cross-section that experiences deformation and A_d is the cross-sectional area after deformation	
Total strength due to different factors is additive	$\sigma = \sigma_0 + \Delta \sigma_{ss} + \Delta \sigma_{disl} + \Delta \sigma_{gb} + \Delta \sigma_p$	
Dependence of yield strength on work hardening	$\sigma_y = \sigma_0 + \Delta \sigma_{disl} = \sigma_0 + M\alpha Gb\sqrt{\rho}$ where M is the Taylor factor, α is the interaction coefficient, G is the shear modulus, and b is the length of the Burgers vector	
Dependence of yield strength on grain size (Hall-Petch relation)	n size	

	Coherent:
Contribution to yield strength from particle strengthening	$\Delta \sigma_{ m p, coh} \propto rac{\gamma r}{I+2r}$
	where γ is the interface energy, I is the distance between particles, and r is the particle radius
	Incoherent:
	$\Delta \sigma_{ m p,inchoh} \propto \frac{Gb}{I}$
	where G is the shear modulus, b is the length of the Burgers vector, and I is the distance between particles
Relation between Brinell and Vickers hardness	$HB \approx 0.95 HV$
Relation between	$UTS \approx c_{emp}HB$
ultimate tensile strength and Brinell hardness	where c_{emp} is a constant that depends on material type

Failure (Lecture 11)

Maximum stress at a crack tip	$\sigma_{max}\approx 2\sigma_0\sqrt{\frac{a}{\rho_t}}$ where σ_0 is the applied stress, ρ_t is the radius of curvature of the crack tip, and a is either the length of a surface crack or half the length of an internal crack	
Critical stress for crack propagation in a brittle material	$\sigma_c = \sqrt{\frac{2E\gamma_s}{\pi a}}$ where E is the elastic modulus, γ_s is the specific surface energy, and a is either the length of a surface crack or half the length of an internal crack	
Fracture toughness	$K_{Ic} = Y\sigma_c\sqrt{\pi a}$ where Y is a parameter approximately equal to 1 for thick specimens, σ_c is the critical stress above, and a is either the length of a surface crack or half the length of an internal crack	
Stress intensity factor	$K_I = Y\sigma\sqrt{\pi a}$ as for fracture toughness, but for any stress. Catastrophic crack growth occurs when $K_I \geq K_{Ic}$	

	Rectangular cross-section:	
Flexural strength	$\sigma_{fs} = \frac{3F_fL}{2bd^2}$ where F_f is the load at fracture, L is the distance between support points, and b and d are as indicated in the figure	Possible cross sections F d Rectangular Circular
	Circular cross-section: σ_{p} where R is the radius of the spec	$f_{fs} = rac{F_f L}{\pi R^3}$ cimen

Composites and material indices (Lecture 13)

Longitudinal elastic modulus for a fiber/lamellar composite or upper bound for all composites	$E_{c\parallel}=f_1E_1+f_2E_2$ where f is volume fraction, E is elastic modulus, and the subscripts represent different phases. This situation is iso-strain
Ratio of load carried by fibers and the matrix phase for longitudinal loading	$\frac{F_f}{F_m} = \frac{E_f f_f}{E_m f_m}$ where f is volume fraction, E is elastic modulus, and the subscripts represent different phases
Transverse elastic modulus for a fiber/lamellar composite or lower bound for all composites	$\frac{1}{E_{c\perp}} = \frac{f_1}{E_1} + \frac{f_2}{E_2}$ where f is volume fraction, E is elastic modulus, and the subscripts represent different phases. This situation is iso-stress
Density of a composite	$\rho_c = f_1 \rho_1 + f_2 \rho_2$ where f is volume fraction and the subscripts represent different phases
General tensile stress for a fiber composite with longitudinal applied stress	$\sigma(\varepsilon) = f_m \sigma_m(\varepsilon) + f_f \sigma_f(\varepsilon) = f_m \sigma_m(\varepsilon) + f_f E_f \varepsilon$ where f is volume fraction, ε is strain, $\sigma(\varepsilon)$ is the stress of a phase at a certain strain, and E is elastic modulus. The subscript m represents the matrix and the subscript f represents the fibers

Violal atmospheric of a fibour	$\sigma_{\rm y,c} = f_m \sigma_{\rm y,m} + f_f E_f \varepsilon_{\rm y,m}$				
Yield strength of a fiber composite with longitudinal applied stress	f_m and f_f are the volume fractions of the matrix and fibers respectively $\sigma_{\rm v,m}$ is the yield strength of the matrix				
	E_f is the elastic modulus of the fibers				
	$arepsilon_{ m y,m}$ is the yield strain of the matrix				
Tensile strength of a fiber composite with	$\sigma^* = f_m \sigma_m' + f_f \sigma_f^*$ $f_m \text{ and } f_f \text{ are the volume fractions of the matrix and fibers respectively}$				
longitudinal applied stress	σ'_m is the stress on the matrix at the failure strain of the fibers σ^*_f is the fracture strength of the fibers				
	Member		Loading	Index	
	Beam	Stiffness	Tension / compression	E/ρ	
			Torsion	G/ ho	
			Bending	$E^{1/3}/\rho E^{1/2}/\rho$	
		Buckling	Compression	${\it E}^{\scriptscriptstyle 1/2}/ ho$	
Material indices for	Panel	Stiffness	Bending	$E^{1/3}/\rho$	
lightweight structures					
	Beam	Strength*	Tension / compression	$\sigma_{_{_{V}}}/\rho$	
		Strength*	Bending	$\sigma_{_{V}}^{^{2/3}}/\rho$	
	Panel	Strength*	Bending	$\sigma_{_{_{_{\hspace{-0.05cm}V}}}}^{^{1/2}}/ ho$	
	Spring	Resilience		$\sigma_y^2/E\rho$	
	* Either yield strength or failure strength				