# On Data Manifolds Entailed by Structural Causal Models

**Thomas Melistas** 

## **Overview**

- Data Manifolds & Riemannian metric
- A Recap on Structural Causal Models (SCMs)
- Riemannian Manifolds for SCMs
- Application to Counterfactual Explanations

#### **Data Manifolds**

- <u>Manifold Hypothesis</u>: Many high-dimensional real world datasets lie along low-dimensional latent manifolds inside that high-dimensional space
- The geometric structure of the data manifold is a powerful inductive bias
- Under smoothness conditions, generative models entail data manifolds in which we can use differential geometry & exploit geometric structure for distances, interpolations, etc.

## Motivating the use of Riemannian metric (through a VAE case study)

• Points **A** and **B** are in fact closer to each other than **C**, we just measure distance incorrectly!



Figure 1: *Left:* An example of how latent space distances do not reflect actual data distances. *Right:* Shortest paths on the surface spanned by the generator do not correspond to straight lines in the latent space, as is assumed by the Euclidean metric.

## Motivating the use of Riemannian metric (through a VAE case study)

- ullet  $\mathbf{x} \in \mathcal{X}, \mathbf{z} \in \mathcal{Z},$  sufficiently smooth generator  $f: \mathcal{Z} o \mathcal{X}: \mathbf{x} = f(\mathbf{z})$
- ullet We consider a smooth latent curve:  $\gamma_t:[0,1] o \mathcal{Z}$  and we map it to  $\mathcal{X}$  through f to measure lengths in input space



• We can find shortest path by solving ODEs that use the Riemannian metric

$$\mathbf{M}_{\gamma} = \mathbf{J}_{\gamma}^{\mathbf{T}} \mathbf{J}_{\gamma}$$
, where  $\mathbf{J}_{\gamma} = rac{\partial f}{\partial \mathbf{z}} \Big|_{\mathbf{z}=\gamma}$ 

## Motivating the use of Riemannian metric (through a VAE case study)

- The smoothness assumptions for VAEs involve:
  - twice differentiable activation functions
  - large data dimension (to apply the previous to stochastic generator)
- They use the Riemannian metric for (i) k-means, (ii) interpolations, (iii) different latent probability distribution, (iv) Riemannian random walks



Figure 6: The result of k-means comparing the distance measures. For the decision boundaries we used 7-NN classification.

## What is a Riemannian manifold?

- A d-dimensional smooth manifold  $\mathcal{M}$  equipped with a Riemannian metric  $\mathbf{M}:\mathcal{M}\to\mathcal{S}^d_{++}, \qquad$  with  $\mathcal{S}^d_{++}$  being a symmetric positive definite matrix
- ullet The length of a smooth curve  $\gamma_t:[0,1] o \mathcal{M}$  is:

$$L(\gamma) = \int_0^1 \sqrt{\dot{\gamma}(t)^T \mathbf{M}(\gamma(t)) \dot{\gamma}(t)} dt, \qquad \qquad \dot{\gamma}(t) = \frac{d}{dt} \gamma(t)$$

ullet The Riemannian distance betweeen  $p,q\in\mathcal{M}$  is:

$$d_{\mathbf{M}}(p,q) = \inf\{L(\gamma)|\gamma(0) = p, \gamma(1) = q\}$$

• Riemannian volume measure: magnitude of local distortion at  $p \in \mathcal{M}$ :

$$\mathrm{Vol}_{\mathbf{M}}(p) := \sqrt{\det\! \mathbf{M}(p)}$$

## **Pullback metric**

- It is used when we do not have a metric for a space
- For a smooth mapping between manifolds  $\phi: \mathcal{W} \to \mathcal{M}$ , we can define a Riemannian metric for  $\mathcal{W}$  as:

$$\mathbf{W}(w) := \mathbf{J}\phi(w)^T\mathbf{M}(\phi(w))\mathbf{J}\phi(w),$$

where  $\mathbf{J}\phi(w)$  is the jacobian of  $\phi$  at  $w\in\mathcal{W}$ 

• if  $\phi$  is a diffeomorphism (immersion + injective):

$$d_{\mathbf{W}}(p,q) = d_{\mathbf{M}}(\phi(p),\phi(q))$$

#### **Structural Causal Models**

- ullet An SCM  $\mathcal{M}:=(\mathbf{S},P_{\mathbf{U}})$  consists of:
- (i) structural assignments  $\mathbf{S} = \{f_i\}_{i=1}^d$ , s.t.  $X_i := f_i(\mathbf{X}_{pa(i)}, U_i)$ ,
- (ii) a joint distribution  $P_{\mathbf{U}}(U_1,\ldots,U_d)=\prod_{i=1}^d P(U_i)$  over mutually independent noise variables

 $X_i$ : an **endogenous** variable (observed)

 $\mathbf{X}_{pa(i)}$ : the parents of  $X_i$  (its direct *causes*, endogenous)

 $U_i$ : an **exogenous** variable (unobserved)

## **Structural Causal Models**

- ullet  $X_i$  is caused by parent variables  $\mathbf{X}_{pa(i)}$  and exogenous noise variables  $U_i$
- ullet Since the causal graph is acyclic we can substitute parents recursively and obtain x=f(u) (reduced form mapping)
- ullet The entailed observational distribution is  $P_{\mathbf{X}}(\mathbf{X}=x):=P_{\mathbf{U}}(\mathbf{U}=f^{-1}(x))$



#### Interventional distributions

- Hard interventions  $\mathcal{J}:=do(\mathbf{X}_{\mathcal{I}}=\theta)$  fix a subset of endogenous variables  $\mathcal{I}$  to  $\theta\in\mathbb{R}^{|\mathcal{I}|}$ , s.t.  $\mathbf{S}^{\mathcal{J}}=\theta_i$  for intervened variables
- ullet This entails the interventional distribution  $P_{\mathbf{X}}^{\mathcal{J}}$

#### **Counterfactual distributions**

- Counterfactuals refer to the efect of a hypothetical intervention  ${\mathcal J}$  to an observation x
- To compute the counterfactual, we change the structural assignments  ${f S}^{\mathcal J}$  as before, but instead of sampling from  $P_{{f U}}$ , we compute the posterior  $P_{{f U}|x}$
- ullet this colapses to a single realization  $u=f^{-1}(x)$  and counterfactual  $x^{CF}$  (f is invertible)
- To define a distribution, we consider a space of interventions  $\mathcal{H}:=\{do(\mathbf{X}_{\mathcal{I}}=\theta)|\theta\in\Delta\}, \qquad \Delta \text{ being the possible interventions}$

## **SCMs Entail Smooth Manifolds**

- Sufficient conditions for the SCMs to induce observational, interventional and counterfactual smooth manifolds
- All are true for three popular classes of SCMs (restrictred functional classes on S):
  - $\circ$  Additive noise models (ANMs):  $\mathbf{S} := f_i(\mathbf{X}_{pa(i)}) + U_i$
  - $\circ$  Post-nonlinear models:  $\mathbf{S} := g_i(f_i(\mathbf{X}_{pa(i)}) + U_i), \quad g_i$  invertible
  - $\circ$  Location-scale noise models:  $\mathbf{S}:=f_i(\mathbf{X}_{pa(i)})+g_i(\mathbf{X}_{pa(i)})U_i,$   $g_i$  strictly positive

## **Exogenous space smoothness**

- The exogenous space  $\mathcal U$  is a d-dimensional smooth manifold, if the support of every  $P_{U_i}$  is a  $d_i$ -dimensional smooth manifold, where  $d=\sum_i d_i$
- Typical choices for  $P_{U_i}$  include Gaussian, Gamma distributions, etc. whose support is an open interval of  $\mathbb R$ , a 1-dimensional smooth manifold

## **Endogenous space smoothness**

- As we showed before, for acyclic SCMs:  $\mathcal{X} = f(\mathcal{U})$ , we further want:
  - $\circ f_i$  differentiable,  $\partial_{U_i} f_i(X_{pa_i}, U_i)$  non vanishing (immersion)

$$\circ \ f_i(X_{pa_i},u_i^{(1)}) 
eq f_i(X_{pa_i},u_i^{(2)}) \ orall u_i^{(1)} 
eq u_i^{(2)}$$
 (injective)

- ullet Interventions entail (d-m)-dimensional smooth manifolds  $(m=|\mathcal{I}|)$ , without additional constraints
- The counterfactual space  $\mathcal{X}^{\mathcal{H}|x}$  is a m-dimensional smooth manifold, without additional constraints
  - $\circ$  only causal descendants of intervened variables need to have differentiable  $f_i$
  - $\circ$  no constraints on  ${f U}$

# SCMs Entail (Riemannian) Data Manifolds

- In previous VAE example, a locally Euclidian metric is regularized to have large volume measure on sparse feature space  $\rightarrow$  Curves crossing low data density regions will have large length
- ullet  $\mathcal U$  isometric to  $\mathcal X$  if previous constraints exist
- ullet For any Riemannian metric  ${f M}_{\mathcal U}$  exists a pullback  ${f M}_{\mathcal X}$  and vice-versa for mapping f

# Locally Euclidian in ${\mathcal X}$

- ullet Inductive bias: The exogenous noise  $oldsymbol{U}$  should be similar if it leads to similar observations (in a locally euclidian sense)
- Intuitively, places more weight in differences in outcomes
- Good choice when noise merely represents stochasticity
- ullet The pullback metric  ${f M}_{\mathcal U}$  defines a metric in the exogenous space  ${\mathcal U}$  grounded on the observed space  ${\mathcal X}$

# Locally Euclidian in ${\cal U}$

- ullet Inductive bias: The observables old X should be similar if they were produced from similar noise (in a locally euclidian sense)
- Intuitively, places more weight in differences in causes
- To be a meaningful metric, noise must be meaningful itself (e.g. deviation from a trend in ANMs)

## Regularizing the Riemannian metric

- ullet We want: large volume measure  ${
  m Vol}_{f M}(p)$  (magnitude of local distortion at p) in regions with low data density
- The Riemannian metric is scaled as:

$$\operatorname{Vol}_{\lambda_{\mathbf{X}}\mathbf{M}}(x) = rac{\operatorname{Vol}_{\mathbf{M}}(x)}{lpha \cdot p_{\mathbf{X}}(x) + eta},$$

where lpha, eta hyperparameters that determine the local curvature as a function of data density  $p_{\mathbf{X}}$ 

- ullet For the interventional manifold we scale by the density of the interventional  $P_{\mathbf{X}}^{\mathcal{J}}$
- ullet For the counterfactual we scale by the observational  $p_{f X} o$  assumes "realistic" counterfactuals

# **Counterfactual Explanations**

- Not counterfactuals in the causal sense
- ullet Assume a classifier  $h:\mathcal{X} o 0,1$
- For a x, s.t. h(x)=0, search for the closest positively classified x':

$$rgmin_{x' \in \mathcal{X}} \quad d(x,x'), \qquad h(x') = 1$$

ullet The distance function d encodes desired similarity

## Desiderata for counterfactual explanations

- Realistic (supported by observed data):
  - $\circ$  Plausible path of change x o x' (important for Algorithmic Recourse [1])
  - $\circ$  We use Riemannian distance for d o there exists a shortest curve
- Causally grounded:
  - Prior works (i) search for interventions [2] or (ii) use backtracking counterfactuals [3]
     but do not consider data manifold

<sup>[1]</sup> Poyiadzi, et al. "Feasible and actionable counterfactual explanations." AI, Ethics, Society 2020

<sup>[2]</sup> Karimi et al. "Algorithmic recourse: from counterfactual explanations to interventions" 2021.

<sup>[3]</sup> von Kügelgen et al. "Backtracking counterfactuals", CLeaR 2023.

## Backtracking on the data manifold

ullet The structural assignments ullet do not change (no interventions), but the exogenous noise variables ullet are modified (conditioned to the initial ullet )

$$\min_{u\in\mathcal{U}} \hspace{0.1in} d(f^{-1}(x),u), \hspace{0.1in} ext{s.t.} \hspace{0.1in} h(f(u))=1$$

- We search along the exogenous space  $\mathcal U$ , using the scaled (with  $p_{\mathbf U}$ ) Riemannian distance  $d_{\lambda_U \mathbf M}$  as d to optimize
- ullet Without loss of generality we can use the pullback metric from  ${\mathcal X}$

## Causal Algorithmic Recourse on the data manifold

• Interventions are recommended, the following must be optimized:

$$\min_{\mathcal{J}\in\mathcal{H}} \ \ d(x,\mathbb{CF}(x,\mathcal{J})), \quad ext{s.t.} \quad h(\mathbb{CF}(x,\mathcal{J}))=1,$$

where  $\mathbb{CF}$  maps factuals to counterfactuals under  $\mathcal J$  interventions on  $\mathbf X_{\mathcal I}$ , and  $d(x,\mathbb{CF}(x,do(\mathbf X_{\mathcal I}=\theta)))=\|x_{\mathcal I}-\theta\|$ 

- We search on counterfactual manifold  $\mathcal{X}^{\mathcal{H}|x}$ , scaling the Riemannian metric  $\mathbf{M}$  (with the observational  $p_{\mathbf{X}}$ ) and taking the pullback  $\mathbf{M}'$  via the counterfactual mapping  $\mathbb{CF}$
- ullet We use  $d_{\mathbf{M}'}$  as d and optimize

## How to optimize along the manifold

- Compute Riemannian distances by solving for the geodesic  $\gamma^*$ :

$$\gamma(0)=u_0, \gamma(1)=u_1$$
, s.t.  $d_{\mathbf{M}}(u_0,u_1):=\mathcal{L}(\gamma^*)$ 

• We can compute  $\gamma^*$  by solving the ODEs (binary value problem)

## **Experiments**

- Datasets (tabular): COMPAS recidivism, Adult demographic
- Models for assignments: Additive Noise Models (using MLPs with 1 hidden layer)
- ullet Modeling probability density of f U with kernel density estimation
- Linear classifiers & NN classifiers (2 hidden layers)

#### **Baselines**

- Wachter [1]: objective function  $\min_\delta \lambda \|\delta\|_2 + l(h(x+\delta),1)$  l cross-entropy loss, gradually anneald  $\lambda$
- REVISE [2]: above, but optimization in the latent space of a VAE
- FACE [3]: search on a weighted nearest-neighbor graph
- Karimi [4]: (see algorithmic recourse in previous slide)
- Backtracking [5]: (see backtracking counterfactuals in previous slide) euclidian distances in  ${\cal U}$
- [1] Wachter, et al. "Counterfactual explanations without opening the black box: Automated decisions and the gdpr." 2017
- [2] Joshi, et al. Towards realistic individual recourse and actionable explanations in black-box decision making systems. 2019.
- [3] Poyiadzi, et al. "Feasible and actionable counterfactual explanations." AI, Ethics, Society 2020
- [4] Karimi et al. "Algorithmic recourse: from counterfactual explanations to interventions" 2021.
- [5] von Kügelgen et al. "Backtracking counterfactuals", CLeaR 2023.

#### **Evaluation metrics**

- $L_2$ :  $l_2$  distance between factual and counterfactual
- $L_{\mathcal{U}}$ ,  $L_{\mathcal{X}}$ : Riemannian distance where metric is locally Euclidian in  $\mathcal{U}$  and scaled by  $\lambda_{\mathbf{U}}$  (and  $\mathcal{X}$  by  $\lambda_{\mathbf{X}}$  respectively)
- $L_{\mathcal{M}}$ : Riemannian distance induced by a data manifold constructed using kernel density estimation, with a locally Euclidean metric in feature space

Table 1. Experimental results: Counterfactual examples.

|                        | LINEAR CLASSIFIER |       |                   |                   |                   |       |                   |                   |                   | NN CLASSIFIER |                   |                   |                   |       |                   |                   |  |  |
|------------------------|-------------------|-------|-------------------|-------------------|-------------------|-------|-------------------|-------------------|-------------------|---------------|-------------------|-------------------|-------------------|-------|-------------------|-------------------|--|--|
|                        | ADULT             |       |                   |                   | COMPAS            |       |                   |                   |                   | ULT           | COMPAS            |                   |                   |       |                   |                   |  |  |
| METHOD                 | $L_{\mathcal{M}}$ | $L_2$ | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ | $L_{\mathcal{M}}$ | $L_2$ | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ | $L_{\mathcal{M}}$ | $L_2$         | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ | $L_{\mathcal{M}}$ | $L_2$ | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ |  |  |
| WACHTER                | 7.38              | 1.65  | 5.76              | 5.86              | 2.47              | 0.80  | 3.00              | 2.66              | 3.83              | 1.88          | 6.59              | 6.89              | 2.90              | 0.81  | 2.75              | 2.68              |  |  |
| BACKTR                 | 3.12              | 1.69  | 5.47              | 6.07              | 4.11              | 0.83  | 2.85              | 2.80              | 3.51              | 1.92          | 6.40              | 7.00              | 2.53              | 0.85  | 2.83              | 2.81              |  |  |
| FACE                   | 3.29              | 1.85  | 5.50              | 5.69              | 2.31              | 0.85  | 2.88              | 2.71              | 5.01              | 2.10          | 7.02              | 6.78              | 2.25              | 0.85  | 3.73              | 2.54              |  |  |
| REVISE                 | 5.64              | 2.18  | 9.02              | 8.71              | 2.22              | 0.92  | 2.57              | 2.53              | 3.87              | 2.21          | 6.35              | 6.46              | 2.55              | 0.96  | 2.83              | 2.90              |  |  |
| OURS $L_{\mathcal{U}}$ | 2.79              | 1.71  | 3.21              | 3.48              | 2.77              | 0.84  | 2.33              | 2.33              | 3.25              | 1.95          | 4.02              | 4.58              | 2.74              | 0.86  | 2.51              | 2.52              |  |  |
| OURS $L_{\mathcal{X}}$ | 2.75              | 1.70  | 3.43              | 3.48              | 2.18              | 0.81  | 2.35              | 2.27              | 3.64              | 1.94          | 4.29              | 4.36              | 2.19              | 0.83  | 2.41              | 2.51              |  |  |

Table 2. Experimental results: Algorithmic recourse.

| LINEAR CLASSIFIER      |                   |       |                   |                   |                   |        |                   |                   | NN CLASSIFIER     |       |                   |                   |                   |       |                   |                   |  |  |
|------------------------|-------------------|-------|-------------------|-------------------|-------------------|--------|-------------------|-------------------|-------------------|-------|-------------------|-------------------|-------------------|-------|-------------------|-------------------|--|--|
|                        | ADULT             |       |                   |                   |                   | COMPAS |                   |                   |                   | Adult |                   |                   |                   |       | COMPAS            |                   |  |  |
| МЕТНОО                 | $L_{\mathcal{M}}$ | $L_2$ | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ | $L_{\mathcal{M}}$ | $L_2$  | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ | $L_{\mathcal{M}}$ | $L_2$ | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ | $L_{\mathcal{M}}$ | $L_2$ | $L_{\mathcal{U}}$ | $L_{\mathcal{X}}$ |  |  |
| KARIMI ET AL.          | 2.68              | 1.49  | 4.04              | 4.05              | 1.33              | 0.75   | 2.62              | 2.63              | 3.47              | 1.84  | 5.63              | 5.66              | 1.37              | 0.79  | 2.68              | 2.69              |  |  |
| OURS $L_{\mathcal{U}}$ | 1.29              | 1.58  | 1.48              | 1.48              | 1.19              | 0.79   | 2.25              | 2.29              | 0.86              | 1.92  | 1.15              | 1.15              | 1.20              | 0.85  | 2.20              | 2.23              |  |  |
| Ours $L_{\mathcal{X}}$ | 1.09              | 1.58  | 1.31              | 1.32              | 1.17              | 0.79   | 2.27              | 2.27              | 1.13              | 1.91  | 1.52              | 1.52              | 1.22              | 0.85  | 2.23              | 2.19              |  |  |

## **Results**

- ullet Closer in  $L_{\mathcal{U}}$ ,  $L_{\mathcal{X}}$  as expected
- $L_{\mathcal{M}}$  shows that they generalize despite functional assumptions (ANMs)

Thank you for your attention

# **Questions**

• Would this work with deep mechanisms (i.e. VAE, GAN, Diffusion) for high-dimensional variables (i.e. images)?