MACS 207b

1 La loi gaussienne

1.1 La loi gaussienne scalaire

Définition. Une v.a. X sur \mathbf{R} est dite **gaussienne standard** si sa loi de probabilité admet la densité $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$.

Définition. Soit $\sigma \in \mathbb{R}_+$ et $m \in \mathbb{R}$. On dit que la v.a. réelle Y suit la loi gaussienne $\mathcal{N}(m, \sigma^2)$ si $Y = \sigma X + m$ où X suit la loi gaussienne standard.

Proposition. Soit $X \sim \mathcal{N}(0,1)$. Sa transformée de Laplace est $\psi(z) = \mathbf{E} \exp(zX) = \exp\left(\frac{z^2}{2}\right)$.

Proposition. $Y \sim \mathcal{N}(m, \sigma^2)$ si et seulement si sa fonction caractéristique est $\phi(\lambda) = \psi(i\lambda) = \exp\left(im\lambda - \lambda^2 \frac{\sigma^2}{2}\right)$.

Proposition. Supposons $\sigma > 0$. Alors $Y \sim \mathcal{N}(m, \sigma^2)$ si et seulement si Y admet pour densité $f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$.

Proposition. Soit $Y \sim \mathcal{N}(m, \sigma^2)$, alors $\mathbf{E}Y = m$ et $Var(Y) = \sigma^2$.

Proposition. Soit $X_n \sim \mathcal{N}(m_n, \sigma_n^2)$ une suite de v.a, $X_n \xrightarrow{\mathcal{L}} X$. Alors $(m_n)_n$ et $(\sigma_n^2)_n$ convergent et en notant m et σ^2 leurs limite on a $X \sim \mathcal{N}(m, \sigma^2)$. Si par ailleurs $X_n \xrightarrow{\mathbf{P}} X$ alors la convergence a lieu dans \mathcal{L}^p pour tout p > 0.

Démonstration. Le premier point se démontre par l'utilisation de la fonction caractéristique. Pour le second on déduit du premier que tous les moments de $|X_n - X|$ sont bornés et on applique un argument d'intégrabilité uniforme.

1.2 La loi gaussienne vectorielle

Définition. Un vecteur aléatoire X sur \mathbf{R}^d est dit **gaussien** si $\forall u \in \mathbf{R}^d$, $\langle u \mid X \rangle$ est une v.a gaussienne.

Exemple. Le vecteur $X = (X_1, \dots, X_d)^T$ où les variables aléatoires X_i sont gaussiennes et indépendantes est gaussien. En effet, on sait que toute combinaison linéaire de v.a gaussienne indépendantes est gaussienne.

Soit $X = (X_1, ..., X_d)^T$ un vecteur aléatoire tel que $\mathbf{E}[\|X\|^2] < \infty$ et soit $m = \mathbf{E}X = (\mathbf{E}X_1, ..., \mathbf{E}X_d)^T$ et $\Gamma = (\text{Cov}(X_i, X_j))_{1 \le i, j \le d}$ sa moyennne et sa matrice de covariance respectivement. Il est alors clair que

$$\forall u \in \mathbf{R}^d, \mathbf{E} \langle u \mid X \rangle = \langle u \mid m \rangle$$
 et $\operatorname{Var}(\langle u \mid X \rangle) = u^{\mathsf{T}} \Gamma u$

(ce qui montre au passage que $\Gamma \in \mathcal{S}_d^+$, le cône des matrices $d \times d$ définies positives). Si le vecteur X est gaussien, la v.a $\langle u \mid X \rangle$ est gaussienne, et sa fonction caractéristique est $\mathbf{E} \left[e^{i\lambda \langle u \mid X \rangle} \right] = \exp \left(i\lambda \langle u \mid m \rangle - \lambda^2 \frac{u^{\mathsf{T}} \Gamma u}{2} \right)$. En particulier, en prenant $\lambda = 1$ nous obtenons la fonction caractéristique de $X: \phi(u) = \mathbf{E} \left[\exp(i\langle u \mid X \rangle) \right] = \exp \left(i\langle u \mid m \rangle - \frac{u^{\mathsf{T}} \Gamma u}{2} \right)$. La loi de X est ainsi entièrement déterminée par sa moyenne et par sa matrice de covariance. On note $X \sim \mathcal{N}(m, \Gamma)$.

Proposition. Les composantes d'un vecteur gaussien sont indépendantes si et seulement si elles sont décorrelées, i.e la matrice de covariance est diagonale.

Proposition. Soit $X \sim \mathcal{N}(m, \Gamma)$ sur \mathbf{R}^d et $H \in \mathfrak{M}_{n,m}$. Alors le vecteur aléatoire Y = HX suit la loi $\mathcal{N}(Hm, H\Gamma H^T)$.

Proposition. On a $\forall d \in \mathbb{N}^*, \forall m \in \mathbb{R}^d, \forall \Gamma \in \mathcal{S}_d^+, \exists X \sim \mathcal{N}(m, \Gamma).$

Démonstration. Écrire $\Gamma = HH^{\mathsf{T}}$ et poser X = m + HZ où Z est un vecteur dont les éléments dont des gaussiennes standard indépendantes.

Proposition. Si Γ est définie positive, alors $X \sim \mathcal{N}(m, \Gamma)$ a pour densité $f(x) = \frac{1}{\sqrt{\det(2\pi\Gamma)}} \exp\left(-\frac{(x-m)^T \Gamma^{-1}(x-m)}{2}\right)$.

2 Bases de la théorie des processus - Le mouvement brownien

2.1 Généralités

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilités. Soit $d \in \mathbf{N}^*$, $E = \mathbf{R}^d$ et $\mathcal{E} = \mathcal{B}(E)$.

On note $\mu: B \mapsto \mathbf{P}(X^{-1}(B))$ la loi de probabilité de X.

Soit T un "ensemble d'indices" qui représente le temps. En général $T = R_+$.

Définition. Un **processus** à valeurs dans (E, \mathcal{E}) indexé par **T** est une famille de v.a $X = (X_t)_{t \in \mathbf{T}}$ à valeurs dans (E, \mathcal{E}) . Pour tout $\omega \in \Omega$, l'application $t \mapsto X_t(\omega)$ est appelé **trajectoire** de X.

On parle ici de processus à temps continu.

La famille X peut-être vue comme une application $\Omega \to E^T$ de toutes les trajectoires possibles. Il faut donc définir une tribu sur E^T et caractériser la mesure.

Soit $t \in \mathbf{T}$, on pose $\mathcal{G}_t := \sigma(\xi_t)$ la tribu sur $E^{\mathbf{T}}$ engendrée par la projection $\xi_t \colon \begin{array}{ccc} E^{\mathbf{T}} & \to & E \\ x & \mapsto & x(t) \end{array}$. Cette

tribu est donc constituée des ensembles $\{x \in E^T \mid x(t) \in H\}$ où H parcourt \mathcal{E} .

Définition. La **tribu de Kolmogorov** est la tribu \mathcal{G} engendrée par la famille $\{\mathcal{G}_t\}_{t\in \mathbf{T}}$.

D'une manière équivalente, \mathcal{G} est la plus petite tribu rendant mesurables toutes les applications ξ_t où t parcourt \mathbf{T} . Avec cette construction $X \colon \Omega \to E^{\mathbf{T}}$ est \mathcal{F}/\mathcal{G} -mesurable de loi μ l'image de \mathbf{P} par X.

Étant donné une loi de probabilité μ sur (E^T, \mathcal{G}) , il est facile de construire un processus de loi μ : il suffit de prendre $(\Omega, \mathcal{F}, \mathbf{P}) = (E^T, \mathcal{G}, \mu)$ et de poser $X(\omega) = \omega$.

Ce processus est appelé processus canonique.

 $\begin{array}{l} \textbf{D\'efinition} \ (\textbf{Lois fini-dimensionnelles}). \ \ \text{Soit} \ \mathcal{J} \ l\text{\'ensemble des parties finies de T} \ \text{et } I = \{t_1, \dots, t_n\} \in \mathcal{J} \ \text{où} \\ t_1 < t_2 < \dots < t_n. \ \ \text{Soit} \ \mu_I \ \text{la loi du vecteur} \ (X_{t_1}, \dots, X_{t_n}). \ \text{En notant} \ \mathcal{G}_I := \sigma(\xi_I) \ \text{la sous-tribu de } \mathcal{G} \ \text{engendr\'ee} \\ \text{par } \xi_I : \begin{array}{c} E^{\mathbf{T}} \ \rightarrow \ E^I \\ x \ \mapsto \ (x(t_1), \dots, x(t_n)) \end{array} , \ \text{la loi} \ \mu_I \ \text{peut \'etre d\'efinie sur} \ (E^I, \mathcal{G}_I) \ \text{comme \'etant l'image de } \mu \ \text{par } \xi_I. \end{array}$

Remarque. \mathcal{G}_I est la collection des ensembles $\{x \in E^{\mathbf{T}} \mid (x(t_1), \dots, x(t_n)) \in H\}$ où $H \in \xi^{\otimes I}$ est la tribu produit sur E^I . Donc \mathcal{G}_I peut être identifiée à $\mathcal{E}^{\otimes I}$ et on peut caractériser μ_I par $\forall H_1, \dots, H_n \in \mathcal{E}, \mu_I(H_1 \times \dots \times H_n) = \mathbf{P}(X_{t_1} \in H_1, \dots, X_{t_n} \in H_n)$.

Définition. La famille des **lois fini-dimensionnelles** de X est la famille des μ_I où I parcourt \mathcal{J} .

Proposition. Si deux lois μ et ν sur (E^T, \mathcal{G}) possèdent les mêmes lois fini-dimensionnelles alors elles sont égales.

Démonstration. \mathcal{G} est engendré par l'algèbre $\bigcup_{I \in \mathcal{J}} \mathcal{G}_I$. Comme μ et ν coïncident sur cette algèbre elles coïncident sur \mathcal{G} .

Proposition. Les lois fini-dimensionnelles satisfont la **condition de compatibilité** suivante : pour tout $I = \{t_1, \dots, t_n\}$ avec $t_1 < \dots < t_n$, pour $p \in [[1;n]]$ et $J = \{t_1, \dots, t_{p-1}, t_{p+1}, \dots, t_n\} \subset I$, pour toutes les familles (H_i) de \mathcal{E} , on a $\mu_I(H_1 \times \dots H_{p-1} \times E \times H_{p+1} \times \dots \times H_n) = \mu_I(H_1 \times \dots H_n)$.

Démonstration. Cf livre de Neveux.

La question est alors : étant donné une famille $(\mu_I)_{I \in \mathcal{J}}$ qui vérifie les conditions de compatibilité, existe-t-il un processus aléatoire dont les lois fini-dimensionnelles sont les μ_I ?

Théorème (**Kolmogorov**). Soit $(\mu_I)_{I \in \mathcal{J}}$ une famille de lois sur $(E^I, \mathcal{E}^{\otimes I})_{I \in \mathcal{J}}$. Si elle vérifie les conditions de compatibilité, $(\mu_I)_{I \in \mathcal{J}}$ est la famille de lois fini-dimensionnelles d'une unique mesure de probabilités μ sur (E^T, \mathcal{G}) .

 \checkmark Ici $E = \mathbf{R}^d$. Cela ne marche pas pour tous types de E.

Exemple. Prenons $E = \mathbf{R}$. Soit ν une mesure sur \mathbf{R} . Supposons $\mu_I = \otimes^n \nu$, avec $n = \operatorname{Card}(I)$. Alors il existe un processus aléatoire X tel que $\{\xi_t(X) = X_t\}_{t \in \mathbf{T}}$ soient des v.a i.i.d de loi U.

Définition. Soit X et X' deux processus définis sur le même espace de probabilités.

- On dit que X' est une **modification** de X si $\forall t \in T$, $P(X_t = X_t') = 1$.
- On dit que X et X' sont **indistinguables** si $P(\forall t \in T, X_t = X_t') = 1$ en admettant que $\{\forall t \in T, X_t = X_t'\} \in \mathcal{F}$.

Exemple. Soit $\Omega = \mathbf{T} = [0;1]$, $\mathcal{F} = \mathcal{B}([0;1])$ et **P** la mesure de Lebesgue sur $\mathbf{T} = [0;1]$. Posons de plus, pour tout $(t,\omega) \in \mathbf{T} \times \Omega$, $X_t(\omega) = \delta_{t,\omega} = \mathbf{1}_{\{t\}}(\omega)$ et $X_t'(\omega) = 0$.

Les deux processus n'ont pas la même trajectoire. Plus précisément $\forall t \in \mathbf{T}, \mathbf{P}(\omega \mid X_t(\omega) \neq X_t'(\omega)) = \mathbf{P}(\{t\}) = 0$ mais $\mathbf{P}(\omega \mid \exists t \in \mathbf{T}, X_t(\omega) \neq X_t'(\omega)) = \mathbf{P}([0;1]) = 1$.

Question: peut-on trouver une condition sur μ qui rende le processsus X continu, au moins avec la probabilité 1, i.e. "presque toutes les trajectoires sont continues", si cela a un sens? Non, comme le montre l'exemple précédent. En effet les lois fini-dimensionnelles de X et X' sont identiques. Donc X et X' ont la même loi μ .

Cet exemple montre que l'ensemble des processus continus n'est pas mesurable par la tribu de Kolmogorov. En effet, si $\mathcal{C}([0;1])$ était mesurable, on aurait $\mu(\mathcal{C}([0;1])) = 1$ car μ est la loi de $X' \in \mathcal{C}([0;1])$. En même temps $\mu(\mathcal{C}([0;1])) = 0$ car μ est la loi de X.

2.2 Le mouvement brownien

Définition. Un processus aléatoire est dit gaussien si toutes ses lois fini-dimensionnelles sont gaussiennes.

Définition. Un mouvement brownien au sens large (MBL) est un processus scalaire gaussien X sur $T = R_+$ tel que $\forall t \in T, E[X_t] = 0$ et $\forall t, s \in T, E[X_t X_s] = t \land s$ (minimum).

Proposition. Le MBL existe.

Démonstration. Il nous faudra prouver que les conditions de compatibilité sont satisfaites. Pour tout I = $\{t_1,\ldots,t_n\},t_1<\cdots< t_n$ il nous suffira de prouver que μ_I est une loi de probabilité. Ainsi μ_I pour tout $J\subset I$ sera la marginale correspondante de μ_I . Cela revient à prouver que $\Gamma := (t_i \wedge t_i)_{1 \leq i,j \leq n}$ est une matrice de

covariance, i.e une matrice semi-définie positive. En effet, avec $t_0 := 0$, $\forall x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$,

$$x^{\mathsf{T}}\Gamma_{l}x = \sum_{i,j=1}^{n} x_{i}x_{j}(t_{i} \wedge t_{j})$$

$$= \sum_{i,j=1}^{n} x_{i}x_{j} \sum_{l=1}^{i \wedge j} (t_{l} - t_{l-1}) \quad \text{avec } t_{0} = 0$$

$$= \sum_{i,j=1}^{n} x_{i}x_{j} \sum_{l=1,l \leq i \wedge j}^{n} (t_{l} - t_{l-1})$$

$$= \sum_{l=1}^{n} (t_{l} - t_{l-1}) \left(\sum_{i=l}^{n} x_{i}\right)^{2}$$

$$\geqslant 0$$

Définition. Soit $\sigma(X_t)$ la sous-tribu de \mathcal{F} engendrée par la v.a $\xi_t \circ X$. La tribu engendrée par $\{\sigma(X_s)\}_{0 \le s \le t}$, notée $\sigma(X_s, 0 \le s \le t)$ représente le **passé** de X antérieur à t.

Proposition. Un processus X est un MBL si et seulement si il satisfait les conditions suivantes :

- (i) Il est à accroissement indépendants, i.e $\forall s, t \ge 0, X_{t+s} X_t$ est indépendant de $\sigma(X_u, 0 \le u \le t)$.
- (ii) Il est gaussien centré et $\forall t \ge 0$, $\mathbf{E}[X_t^2] = t$.

Par ailleurs les accroissements d'un MBL satisfont $\forall s,t\geqslant 0, X_{t+s}-X_t\stackrel{\mathcal{L}}{=} X_s-X_0\stackrel{\mathcal{L}}{=} X_s\sim \mathcal{N}(0,s).$

Démonstration. Si X est un MBL, il suffit de prouver le premier point. Comme la loi de X est caractérisée par les lois fini-dimensionnelles, il suffit de prouver $\forall t_0, \dots, t_{n+1}$ tel que $0 = t_0 < t_1 < \dots < t_n = t < t_{n+1} = t$ t+1, la v.a $X_{t_{n+1}}-X_{t_n}$ et le vecteur (X_{t_0},\ldots,X_{t_n}) sont indépendants comme $(X_{t_0},\ldots,X_{t_{n+1}})$ est gaussien. Le vecteur $(X_{t_0},\ldots,X_{t_{n+1}}-X_{t_n})$ l'est par transformation linéaire, et il suffit de prouver la décorréla-

tion $\forall i \in [[0;1]]$, $\mathbf{E}\left[(X_{t_{n+1}} - X_{t_n})X_{t_i}\right] = 0$. C'est immédiat : $\mathbf{E}\left[X_{t_{n+1}}X_{t_i}\right] - \mathbf{E}\left[X_{t_n}X_{t_i}\right] = t_{n+1} \wedge t_i - t_n \wedge t_i = t_i - t_i = 0$. Réciproquement, si les deux points sont satisfaits, il suffit de prouver que $\mathbf{E}\left[X_{t+s}X_{t}\right] = t$. En effet $\mathbf{E}[X_{t+s}X_t] = \mathbf{E}[(X_{t+s} - X_t)X_t] + \mathbf{E}|X_t^2| = \mathbf{E}[X_{t+s} - X_t]\mathbf{E}[X_t] + \mathbf{E}|X_t^2| = \mathbf{E}|X_t^2| = t.$

Enfin on sait que $X_{t+s} - X_t$ est gaussienne et il est facile de vérifier qu'elle est centrée et de variance s.

Théorème (Kolmogorov). Soit **T** un intervalle de **R** et $(X_t)_{t \in \mathbf{T}}$ un processus à valeurs dans $E^{\mathbf{T}}$. Supposons $\exists \alpha, \beta \in \mathbb{R}_+^*, \exists C > 0, \forall s, t \in \mathbb{T}, \mathbb{E}\left[\|X_t - X_s\|^{\beta}\right] \leqslant C|t - s|^{1 + \alpha}$. Alors X admet une modification $\tilde{X} = (\tilde{X}_t)_{t \in \mathbb{T}}$ dont toutes les trajectoires $t \mapsto \tilde{X}_t(\omega)$ sont continues.

Définition. Un **mouvement brownien (MB)** ou processus de Wiener est un MBL dont toutes les trajectoires sont continues et nulles en t = 0.

Proposition. Le MB existe.

Démonstration. Soit X un MBL. $\mathbf{E}\left[(X_s-X_t)^4\right]=(t-s)^2\mathbf{E}\left[U^2\right]$ où $U\sim\mathcal{N}(0,1)$. Donc $\mathbf{E}\left[(X_s-X_t)^4\right]=3(t-s)^2$ et on applique le théorème de Kolmogorov.

NB: On peut simuler un brownien avec un TCL fonctionnel.

Définition. Étant donné un entier $d \in \mathbb{N}^*$, un MB d-dimensionnel est un processus B à valeurs dans \mathbb{R}^d dont les composantes sont des MB indépendants.

Proposition. Soit B un MB, $s \in \mathbb{R}_+$ et $c \in \mathbb{R}^*$. Alors les processus $B^{(s)} = (B_t^{(s)})_t = (B_{t+s} - B_s)_{t \in \mathbb{T}}$ et $Y = (Y_t)_t = (cB_{t/c^2})_t$ sont des MB.

Proposition. Soit *B* un MB. Alors

$$\limsup_{t \to \infty} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} +\infty, \qquad \liminf_{t \to \infty} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} -\infty, \qquad \lim_{t \to \infty} \frac{B_t}{t} = 0$$

$$\limsup_{t \to 0} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} +\infty, \qquad \liminf_{t \to 0} \frac{B_t}{\sqrt{t}} \stackrel{\text{p.s.}}{=} -\infty.$$

De plus le processus donné par $Z_t = tB_{1/t}$ est un MBL.

Remarque. On peut prouver des résultats plus fins, comme $\limsup_{t\to\infty} \frac{B_t}{\sqrt{t\log\log t}} \stackrel{\text{p.s.}}{=} 1$ ou $\liminf_{t\to\infty} \frac{B_t}{\sqrt{t\log\log t}} \stackrel{\text{p.s.}}{=} -1$.

Démonstration. Soit $R := \limsup_{t \to \infty} \frac{B_t}{\sqrt{t}}$. On a $\forall s > 0$,

$$R = \limsup_{t \to \infty} \frac{B_{t+s}}{\sqrt{t+s}} = \limsup_{t \to \infty} \frac{B_{t+s}}{\sqrt{t}} = \limsup_{t \to \infty} \frac{B_{t+s} - B_s}{\sqrt{t}} \ .$$

Par conséquent R est indépendante de $\sigma(B_u, u \leq s)$ pour tout s. Donc R est indépendante de la tribu $\sigma(B)$ engendrée par B. Comme R est $\sigma(B)$ -mesurable, R est indépendant d'elle même : $\forall H \in \mathcal{B}(\mathbf{R}), \mathbf{P}(R \in H) = P(R \in H)^2$. Donc $P(R \in H)$ vaut 0 ou 1. Donc R = a avec proba 1 où $a \in [-\infty; +\infty]$.

Supposons $a < \infty$. Soit b > a quelconque. Comme R = a on peut vérifier que $\mathbf{P}\left(\frac{B_t}{\sqrt{t}} > b\right) \xrightarrow[t \to \infty]{} 0$. Mais par ailleurs $\frac{B_t}{\sqrt{t}} \sim \mathcal{N}(0,1)$, d'où une contradiction. Par conséquent $R = \infty$. La 2^e et la 3^e convergences se démontrent de la même façon.

Pour prouver la 3e convergence et le résultat sur $Z_t = tB_{1/t}$. Nous avons que Z_t est une gaussienne centrée. On peut prouver facilement que $\mathbb{E} Z_t Z_s = s \wedge t$. Z_t est continue sur $]0;\infty[$ car B_t est continue. Alors $\lim_{t\searrow 0} Z_t = \lim_{t\searrow 0} tB_{1/t} = \lim_{u\to\infty} \frac{B_u}{u} \stackrel{\mathrm{p.s.}}{=} 0$. Donc Z_t est un MBL dont presque toutes les trajectoires sont continues sur $[0;\infty[$. Nous avons alors $\limsup_{t\searrow 0} \frac{B_t}{\sqrt{t}} = \limsup_{t\to\infty} \frac{Z_t}{\sqrt{t}} = +\infty$.

Corrolaire. Avec probabilité 1 on a :

- (i) Le MB passe une infinité de fois par chaque point de R.
- (ii) Le MB n'est dérivable ni à droite pour tout $t \in \mathbb{R}_+$, ni à gauche pour tout $t \in \mathbb{R}_+^*$.

Démonstration. Pour (i), utiliser les convergences de la proposition précédente conjointement avec la continuité du MB.

Pour (ii), prenons
$$t > 0$$
. Pour $s > 0$ nous avons $\frac{B_{t+s} - B_t}{s} = \frac{1}{\sqrt{s}} \cdot \frac{B_{t+s} - B_t}{\sqrt{s}}$, mais $Z_s := B_{t+s} - B_t$ est un MB. Comme $\limsup_{s \searrow 0} \frac{Z_s}{\sqrt{s}} \stackrel{\text{p.s.}}{=} +\infty$ on a le résultat.

2.3 Mesurabilité du MB

On peut considérer un processus $X \colon \Omega \to E^{\mathbf{T}}$ où $\mathbf{T} = \mathbf{R}_+$ comme une application $\Omega \times \mathbf{T} \to E$ qui, à chaque couple $(\omega, t) \in \Omega \times \mathbf{T}$, associe $X_t(\omega)$. Si on adopte ce point de vue, on est amené à considérer la mesurabilité de X par rapport à la tribu-produit $\mathcal{F} \otimes \mathcal{B}(\mathbf{T})$.

Définition. Un processus $X = (X_t, t \in \mathbf{T})$ à valeurs dans E est dit **mesurable** si l'application $(\omega, t) \mapsto X_t(\omega)$ est mesurable de $(\Omega \times \mathbf{T}, \mathcal{F} \otimes \mathcal{B}(\mathbf{T})$ dans (E, \mathcal{E}) .

En présence de mesurabilité, les trajectoires $t \mapsto X_t(\omega)$ à ω fixé sont mesurables pour la tribu $\mathcal{B}(\mathbf{T})$. En particulier, le bruit blanc n'est pas mesurable en ce sens (bien qu'il soit mesurable au sens de Kolmogorov) car ses trajectoires sont trop irrégulières si ν n'est pas un Dirac. Aucune trajectoire de ce processus n'est borélienne.

Quand le processus X est mesurable, l'intégrale $\int_a^b \varphi(X_t(\omega)) dt$ a un sens pour toute fonction mesurable φ , et par Fubini $\mathbf{E} \left[\int_a^b \varphi(X_t(\omega)) dt \right] = \int_a^b \mathbf{E} \varphi(X_t(\omega)) dt$ si $\int_a^b \mathbf{E} |\varphi(X_t(\omega))| dt < \infty$.

Notation. Si $\forall \omega \in \Omega, t \mapsto X_t(\omega)$ est continue à droite (resp. à gauche), on dit que le processus est continu à droite (resp. à gauche). On écrira càd, resp. càg.

Proposition. Si un processus *X* est continu à gauche ou à droite, il est mesurable (par rapport à la tribu produit).

Démonstration. Supposons X continu à gauche. Pour tout $n \in \mathbb{N}$, soit $X_n(t) := X\left(\frac{\lfloor nt \rfloor}{n}\right)$. Alors on peut vérifier que $X_n(t) \xrightarrow[n \to \infty]{} X(t)$. Or $X_n(t)$ est toujours mesurable. Donc X l'est par passage à la limite.

Corrolaire. Le MB est mesurable.

Notre but est maintenant de construire une intégrale de type $\int_0^t \varphi(s) dB_s$ où B est un MB et où φ est une fonction déterministe qui appartient à une classe appropriée.

2.4 Rappels sur les fonctions à variations finies

Soit $C_0(\mathbf{R}_+)$ (resp. $C_0^+(\mathbf{R}_+)$) l'ensemble des fonctions continues (resp. continues croissantes) issues de zéro. Soit $\pi_t = \{t_0, \dots, t_n\}$, $0 = t_0 < t_1 < \dots < t_n = t$ une subdivision finie de l'intervalle [0;t].

Définition. La **variation approchée** d'une fonction $f \in C_0(\mathbf{R}_+)$ sur la subdivision π_t est $V_1(f, \pi_t, t) := \sum_{i=1}^n |f(t_i) - f(t_{i-1})|$. La fonction f est dit à **variation finie** si $\forall t, V_1(f, t) := \sup_{\pi_t} V_1(f, \pi_t, t)$ est finie.

Proposition. Si $f \in \mathcal{C}_0(\mathbf{R}_+)$ est à variations finies, alors elle s'écrit d'une manière unique $f = f_+ - f_-$ où :

- (i) $f_+ \in C_0^+(\mathbf{R}_+), f_- \in C_0^+(\mathbf{R}_+),$
- (ii) $\forall f'_+, f'_- \in C_0^+(\mathbf{R}_+)$ telles que $f = f'_+ f'_-$ on a $f'_+ f_+ = f'_- f_- = 0$.

Nous savons que si $g \in \mathcal{C}_0^+(\mathbf{R}_+)$ alors la fonction d'ensemble $\mu(]a;b]) := g(b) - g(a)$ pour tout $a \leq b$ est une mesure (de Radon) positive sur \mathbf{R}_+ . Soit df_+ et df_- les mesures associées à f_+ et f_- de cette façon. Pour toute fonction borélienne φ sur \mathbf{R}_+ qui satisfait $\int |\varphi| df_+ < \infty$ et $\int |\varphi| df_- < \infty$, nous écrirons $\int \varphi df := \int \varphi df_+ - \int \varphi df_- = \int \varphi (df_+ - df_-)$. C'est l'intégrale de Lebesgue-Stieltjes par rapport à une fonction à variation finie.

2.5 Variation quadratique d'un MB

Définition. La variation quadratique approchée d'une fonction $f \in C_0(\mathbf{R}_+)$ sur la subdivision π_t est $V_2(f, \pi_t, t) := \sum_{i=1}^n (f(t_i) - f(t_{i-1}))^2$.

Proposition. Si f est à variation finie alors $V_2(f, \pi_t, t) \underset{|\pi_t| \to 0}{\longrightarrow} 0$ où $|\pi_t| := \max_i |t_i - t_{i-1}|$.

Démonstration. Comme f est continue sur [0;t], elle est uniformément continue, i.e $\forall \varepsilon > 0, \exists \eta > 0, \forall t_1, t_2 \in [0;t], |t_1 - t_2| < \eta \implies |f(t_1) - f(t_2)| < \varepsilon$. Par conséquent, si $|\pi_t| < \eta$,

$$V_2(f,\pi_t,t) \leqslant \varepsilon \sum_{i=1}^n |f(t_i) - f(t_{i-1})| = \varepsilon V_1(f,\pi_t,t) \leqslant \varepsilon V_1(f,t).$$

Comme ε est quelconque, on a le résultat.

Théorème. Sur tout intervalle [0;1] où t0, presque toutes les trajectoires d'un MB sont à variation infinie.

Démonstration. On montre $\forall t > 0$, $V_2(B, \pi_t, t) \xrightarrow[|\pi_t| \to 0]{\mathcal{L}^2} t$ (*). En effet, soit $Y_n := \sum_{i=1}^n \left(B_{t_i} - B_{t_{i-1}}\right)^2$. En écrivant $B_{t_i} - B_{t_{i-1}} = \sqrt{t_i - t_{i-1}} Z_i$ où $Z_i \sim \mathcal{N}(0, 1)$ et où les Z_i sont indépendantes, on a $\mathbf{E} Y_n = t$ et

$$\operatorname{Var}(Y_n) = \sum_{i=1}^n \operatorname{Var}\left(\left(B_{t_i} - B_{t_{i-1}}\right)^2\right) = \operatorname{Var}\left(Z_1^2\right) \sum_{i=1}^n (t_i - t_{i-1})^2 \leqslant \operatorname{Var}\left(Z_1^2\right) |\pi_t| \sum_{i=1}^n (t_i - t_{i-1}) = \operatorname{Var}\left(Z_1^2\right) |\pi_t| t$$

qui tend vers 0 avec $|\pi_t|$, d'où (*).

Considérons une suite de subdivisions π^n_t telle que $|\pi^n_t| \underset{n \to \infty}{\longrightarrow} 0$. Les v.a Y_n associées tendent dans \mathcal{L}^2 , donc en probabilité, vers t. Par conséquent il existe une sous-suite $\left(\pi^{\varphi(n)}_t\right)$ telle que $V_2(B, \pi^{\varphi(n)}_t, t) \xrightarrow[n \to \infty]{p.s.} t > 0$. La proposition précédente nous dit que sur cet ensemble de proba $1, B_t$ n'est pas à variation finie. \square

Conclusion : on ne peut pas utiliser la théorie de Lebesgue pour construire des intégrales du type $\int_0^t \varphi(s) dB_s.$

2.6 L'intégrale de Wiener

L'intégrale de Wiener est définie sur l'espace de Hillbert $L^2(\mathbf{R}_+)$ des fonctions de carré intégrable par rapport à la mesure de Lebesgue sur \mathbf{R}_+ . C'est une isométrie entre cet espace et l'espace de Hilbert \mathcal{L}^2 des variables aléatoires qui ont un 2nd moment fini. Rappelons que ces deux espaces sont munis des normes

respectives
$$\|\varphi\|_{L^2(\mathbf{R}_+)} = \left(\int_{\mathbf{R}_+} \varphi(s)^2 \, \mathrm{d}s\right)^{\frac{1}{2}} \text{ et } \|X\|_{\mathcal{L}^2} = \left(\mathbf{E}\left[X^2\right]\right)^{\frac{1}{2}}.$$

Théorème (Intégrale de Wiener). Soit *B* un MB. Il existe un opérateur linéaire isométrique $I: L^2(\mathbf{R}_+) \to$ \mathcal{L}^2 , unique à une classe d'équivalence près pour l'égalité presque partout, et qui satisfait $I(\mathbf{1}_{]s;t]} = B_t - B_s$ pour tous $0 \le s \le t$. Par ailleurs $\mathbf{E}[I(\varphi)] = 0$ pour tout $\varphi \in L^2(\mathbf{R}_+)$. Nous écrivons $I(\varphi) = \int_{\mathbf{R}_+} \varphi(t) \, \mathrm{d}B_t$.

Remarque. Dire que *I* est une isométrie revient à dire $\forall \varphi \in L^2(\mathbf{R}_+)$, $\mathbf{E}[I(\varphi)^2] = \int \varphi^2(x) dx$.

 $D\acute{e}monstration$. Dans un premier temps, nous construisons I sur l'ensemble $\mathcal E$ des fonctions en escalier, i.e de la forme $\varphi = \sum_{i=1}^{n} a_i \mathbf{1}_{[t_{i-1};t_i]}$ où $0 \le t_0 < t_1 < ... < t_n$. Par linéarité $I(\varphi) = \sum_{i=1}^{n} a_i \left(B_{t_{i-1}} - B_{t_i} \right)$. Aussi nous avons sur \mathcal{E} ,

$$||I(\varphi)||_{\mathcal{L}^2}^2 = \mathbf{E}\left[\left(\sum_{i=1}^n a_i(B_{t_{i-1}} - B_{t_i})\right)^2\right] = \sum_{i=1}^n a_i^2(t_i - t_{i-1}) = ||\varphi||_{L^2(\mathbf{R}_+)}^2.$$

Comme \mathcal{E} est dense dans $L^2(\mathbf{R}_+)$, l'opérateur I se prolonge d'une manière unique en une isométrie sur $L^2(\mathbf{R}_+)$. Il reste à prouver que $\mathbf{E}[I(\varphi)] = 0$ pour tout $\varphi \in L^2(\mathbf{R}_+)$. Le résultat est évident sur \mathcal{E} .

Soit $(\varphi_n)_n$ une suite de \mathcal{E} qui tend vers φ dans $L^2(\mathbf{R}_+)$. On a

$$|\mathbf{E}[I(\varphi)]| = |\mathbf{E}[I(\varphi - \varphi_n)]| \leqslant \mathbf{E}|I(\varphi - \varphi_n)| \leqslant ||I(\varphi - \varphi_n)||_{\mathcal{L}^2} = ||\varphi - \varphi_n||_{L^2(\mathbf{R}_+)}$$

en utilisant $\mathbf{E}|X| \leqslant \left(\mathbf{E}[X^2]\right)^{1/2}$ et I est une isométrie. Comme $|\varphi-\varphi_n|_{L^2(\mathbf{R}_+)} \longrightarrow 0$ nous avons le résultat.

Proposition. On a
$$\forall \varphi \in L^2(\mathbf{R}_+), I(\varphi) \sim \mathcal{N}\left(0, \|\varphi\|_{L^2(\mathbf{R}_+)}^2\right)$$
.

Démonstration. On sait que $\mathbf{E}[I(\varphi)] = 0$ et $\mathbf{E}[I(\varphi)^2] = \|\varphi\|_{L^2(\mathbf{R}_+)}^2$. Reste à établir la gaussianité. Pour ceci il suffit d'approximer φ par une suite de fonctions dans \mathcal{E} (dont les intégrales de Wiener sont par construction des gaussiennes) et de passer à la limite en utilisant un résultat du chapitre sur la loi gaussienne. 🗆

3 Martingales et martingales locales

3.1 Régularisation

Il est utile qu'une (sous-)martingale soit la plus régulière possible.

Théorème (Régularisation). Soit $X = (X_t)$ une sous-martingale pour la filtration standard $\mathcal{F} = (\mathcal{F}_t)$. Si $t \mapsto EX_t$ est continue à gauche, alors (X) admet une modification, càdlàg qui est une (\mathcal{F}_t)-sous-martingale. En particulier, toute martingale admet une modification.

Dans toute la suite du cours, les sous-martingales sur $T = R_+$ seront supposées càdlàg et la filtration standard.

3.2 Théorème d'arrêt

Lemme. Soit *X* une v.a intégrable. Soit ζ une famille de tribus de \mathcal{F} . Alors la famille $\{\mathbf{E}[X \mid \mathcal{G}], \mathcal{G} \in \zeta\}$ est uniformément intégrable.

Lemme. Soit *X* et *Y* deux v.a intégrables par une tribu \mathcal{G} . Si $\forall A \in \mathcal{G}$, $\mathbf{E}[\mathbf{1}_1 X] \geqslant \mathbf{E}[\mathbf{1}_1 Y]$ alors $X \geqslant Y$ p.s.

Théorème (Théorème d'arrêt 1). Soit $X = (X_t)$ une martingale et soit ϑ et ς deux temps d'arrêt tels que $\vartheta \leqslant \varsigma \leqslant K$ où K est constante. Alors X_{ς} et X_{ϑ} sont dans \mathcal{L}^1 et $\mathbf{E}[X_{\varsigma} \mid \mathcal{F}_{\vartheta}] = X_{\vartheta}$ p.s.

Ce théorème se généralise facilement sur une martingale.

Théorème (Théorème d'arrêt 2). Soit $X = (X_t)$ une martingale telle que $X_t = \mathbf{E}[Z \mid \mathcal{F}_t]$ p.s, où $Z \in \mathcal{L}^1$. Si $\vartheta \leqslant \varsigma$ sont deux temps d'arrêt, alors $X_{\varsigma}, X_{\vartheta} \in \mathcal{L}^1$ et $\mathbf{E}[X_{\varsigma} \mid \mathcal{F}_{\vartheta}] = X_{\vartheta}$ p.s.

Théorème. Si X est une \mathcal{F}_t -martingale et ς est un temps d'arrêt, alors le processus arrêté $X^{\varsigma} = (X_{t \wedge \varsigma})_{t \in \varsigma}$ est une martingale.

3.3 Convergences, inégalités maximales

Théorème. Soit X une sous-martingale telle que sup, $EX_t^+ < \infty$. Alors X_t converge p.s vers une v.a $X_{\infty} \in$ \mathcal{L}^1 .

Corrolaire. Toute sous-martingale positive *X* converge p.s vers une v.a $X_{\infty} \ge 0$.

Théorème (Inégalités maximales). Soit X une sous-martingale. Alors $\forall a > 0, \forall t \ge 0, \mathbf{P} \left| \sup_{s \in [0;1]} X_s > a \right| \le$ $\frac{\mathbf{E}[X_t]}{a}$. Si X est une martingale ou une sous-martingale positive et si $\forall t \geq 0, X_t \in \mathcal{L}^p$ avec p > 1, alors $\forall \overset{u}{a} > 0, \forall t \geqslant 0,$

$$\left\| \sup_{s \in [0;1]} |X_s| \right\|_p \leqslant \frac{p}{p-1} \|X_t\|_p \qquad \text{et} \qquad \left\| \sup_{t \in \mathbf{R}_+} |X_t| \right\|_p \leqslant \frac{p}{p-1} \|X_t\|_p$$

où $||Z||_p := (\mathbf{E}[|Z|^p])^{1/p}$.

Théorème. Soit X une martingale bornée dans \mathcal{L}^p où p > 1, i.e $\sup_{t \in T} \mathbf{E}[|X_t|^p] < \infty$. Alors X converge p.s et dans \mathcal{L}^p .

Théorème. Soit X une martingale. Alors les trois assertions suivantes sont équivalentes :

- (i) La famille $(X_t)_{t \in \mathbb{R}_+}$ est uniformément intégrable.
- (ii) X_t converge dans \mathcal{L}^1 pour $t \longrightarrow \infty$.
- (iii) $\exists Z \in \mathcal{L}^1, X_t = \mathbf{E}[Z \mid \mathcal{F}_t] \text{ p.s.}$

Par ailleurs, pour tout temps d'arrêt ς , $X_{\varsigma} = \mathbf{E}[Z \mid \mathcal{F}_{\varsigma}]$ où Z est la v.a décrite en (iii).

3.4 Martingales de carré intégrable

Définition. Une martingale (X_t) est dite de carré intégrable si $\forall t \ge 0$, $\mathbf{E}[X_t^2] < \infty$.

Par extension directe du cas discret, nous avons :

- $\forall s \in [0; t[, \mathbf{E} \mid (X_t X_s)^2 \mid \mathcal{F}_s] = \mathbf{E} \mid X_t^2 X_s^2 \mid \mathcal{F}_s],$
- X_t est à accroissements orthogonaux : $\forall 0 \le u < v \le s < t$, $\mathbf{E}[(X_t X_s)(X_v X_u)] = 0$. Pour toute subdivision $0 = t_0 \le t_1 < \ldots < t_n = t$, $\mathbf{E}[(X_t X_0)^2] = \sum_{i=1}^n \mathbf{E}[(X_{t_i} X_{t_{i-1}})^2]$.

On s'intéresse dans toute la suite à l'espace

$$\mathbf{H}_c^2 = \left\{ X \mid X \text{ est une martingale continue}, X_0 = 0, \sup_t \mathbf{E} X_t^2 < \infty \right\}$$
.

Plus exactement, \mathbf{H}_c^2 est l'ensemble des classes d'équivalence à l'indistinguabilité près.

Théorème. Soit $X \in \mathbf{H}_c^2$. Alors :

- (i) $X_t \xrightarrow[t \to \infty]{} X_{\infty}$ p.s et dans \mathcal{L}^2 .
- (ii) Soit (X^n) une suité d'éléments de \mathbf{H}_c^2 telle que $X_{\infty}^n \underset{t \to \infty}{\longrightarrow} Z$ dans \mathcal{L}^2 . Alors $\exists X \in \mathbf{H}_c^2$ telle que $Z = X_{\infty}$ p.s et $\forall t, X_t^n \longrightarrow X_t$ dans \mathcal{L}^2 .
- (iii) L'espace \mathbf{H}_c^2 est un Hilbert muni du produit scalaire $\langle X \mid Y \rangle = \mathbf{E}[X_{\infty}Y_{\infty}]$.

Exemple (Temps d'atteinte d'un niveau). Soit $a, b \ge 0$ et $X_t := B_t - bt$ où B est un MB. On note $\zeta_a := \inf\{t \mid B_t = bt\}$ $X_t = a$ } et $T_a := \inf\{t \mid B_t = a\}.$

1) Posons $\forall t \geq 0, \forall u \in R, M_t^u := \mathbf{E}\left(uB_t - \frac{u^2t}{2}\right)$. Montrer que $(M_t^u)_{t \in \mathbf{R}_+}$ est une martingale. Quelle est son espé-

On a vu que X sur \mathbf{R} est un MB ssi $\forall \theta \in \mathbf{R}, M_t^{\theta} := \exp(i\theta X_t - \frac{\theta^2 t}{2})$ est une martingale.

- 2) En choisissant convenablement u, calculer $\mathbf{E}[e^{-\lambda \zeta_a} \mathbf{1}_{\zeta_a < \infty}]$, $\lambda \geqslant 0$. Indication : appliquer le théorème d'arrêt $\hat{a} Z_a \wedge u \ et \ 0.$
- 3) En déduire $P[\varsigma_a < \infty]$. Qu'obtient-on en prenant b = 0?
- 4) Posons $S_t = \sup\{B_u \mid u \in [0;t]\}$. Montrer que $T_a \stackrel{\mathcal{L}}{=} a^2 T_1$ et $T_1 \stackrel{\mathcal{L}}{=} \frac{1}{\varsigma^2}$.

3.5 Les martingales locales

(Paraphrase du poly de J.F. Le Gall, cours du master de Paris Sud)

Définition. Un processus réel $X = (X_t)_{t \in T}$ est une martingale locale s'il existe une suite croissante de temps d'arrêts $(\varsigma_n)_{n\in\mathbb{N}}$, qui tend vers ∞ , telle que pour tout $n\in\mathbb{N}$, le processus arrêté $(X^{\varsigma_n})=(X_{t\wedge\varsigma_n})$ est une martingale. $(\varsigma_n)_{n\in\mathbb{N}}$ est appelé suite localisante pour la martingale locale X. Un temps d'arrêt ς pour lequel X^2 est une martingale **réduit** X.

Notation. On note:

- M l'ensemble des martingales,
- \mathcal{M}_c l'ensemble des martingales continues,
- Mloc l'ensemble des martingales locales,
- \mathcal{M}_c^{loc} l'ensemble des martingales locales continues.

Remarque. Un processus $X \in \mathcal{M}^{loc}$ n'est pas forcément dans \mathcal{L}^1 . S'il est dans \mathcal{L}^1 il n'est pas forcément dans \mathcal{M} . Il le devient par localisation.

Proposition. (i) $\mathcal{M} \subset \mathcal{M}^{loc}$,

- (ii) Si $X \in \mathcal{M}^{loc}$ et X est càdlàg, alors pour tout temps d'arrêt ς , $X^{\varsigma} \in \mathcal{M}^{loc}$ (stabilité par arrêt).
- (iii) L'ensemble $\mathcal{M}^{loc}_{c\grave{a}dl\grave{a}g}$ est un espace vectoriel.

Démonstration. (i) Prendre $\varsigma_n = n$.

- (ii) D'après le paragraphe précédent, si $X \in \mathcal{M}$ et X est càd alors $X^{\varsigma} \in \mathcal{M}$.
- (iii) Soit $X, Y \in \mathcal{M}^{loc}_{c\grave{a}dl\grave{a}g}$ et soit (ς_n) et (ν_n) deux suites localisantes pour X et Y respectivement. Alors $X^{\varsigma_n \wedge \nu_n} \in \mathcal{M}, Y^{\varsigma_n \wedge \nu_n} \in \mathcal{M}$ et par suite $(X + Y)^{\varsigma_n \wedge \nu_n} \in \mathcal{M}$.

Proposition. Soit $X \in \mathcal{M}^{loc}$. Supposons $X \ge 0$ et $\mathbf{E}X_0 < \infty$. Alors X est une surmartingale.

Démonstration. Soit (ς_n) une suite localisante. Soit 0 ≤ s ≤ t. Alors, en utilisant le lemme de Fatou il vient,

$$\mathbf{E}[X_t \mid \mathcal{F}_s] = \mathbf{E}[\lim_{n \to \infty} X_{t \land \sigma \varsigma_n} \mid \mathcal{F}_s]$$

$$\leq \lim_{n \to \infty} \mathbf{E}[X_{t \land \sigma \varsigma_n} \mid \mathcal{F}_s]$$

$$= \lim_{n \to \infty} X_{s \land \varsigma_n} \text{ p.s}$$

$$= X_s$$

Par ailleurs, en prenant s = 0, on a $\mathbf{E}X_t \leq \mathbf{E}X_0 < \infty$. Donc $X_t \in \mathcal{L}_1$.

Dans toute la suite on se limite à $\mathcal{M}_c^{\text{loc}}$.

Proposition. Soit $X \in \mathcal{M}_c^{loc}$. On suppose $\sup_t |X_t| \leq Z$ où $Z \in \mathcal{L}^1$. Alors $X \in \mathcal{M}$ et X converge p.s dans \mathcal{L}^1 vers une v.a X_{total} .

Démonstration. Soit (ς_n) une suite localisante pour X. Soit $0 \le s \le t$. Pour tout $A \in \mathcal{F}_s$, $\mathbf{E}[\mathbf{1}_A X_{t \land \varsigma_n}] = \mathbf{E}[\mathbf{1}_A X_{s \land \varsigma_n}]$. Or $\lim_n X_{t \land \varsigma_n} = X_t$, $\lim_n X_{s \land \varsigma_n} = X_s$ et les deux suites sont bornées par $Z \in \mathcal{L}_1$. Donc on peut passer à la limite : $\mathbf{E}[\mathbf{1}_A X_t] = \mathbf{E}[\mathbf{1}_A X_s]$. Le reste est un résultat connu. □

Corrolaire. Si $\forall T > 0, \exists Z_T \in \mathcal{L}^1$, $\sup_{0 \le t \le T} |X_t| \le Z_T$ alors $X \in \mathcal{M}_c$.

Démonstration. $X_{t \wedge T} \in \mathcal{M}_c^{loc}$ et X satisfait les conditions de la propriétés précédente. Donc $\forall T > 0, X_{t \wedge T} \in \mathcal{M}_c$. □

Corrolaire. Soit $X \in \mathcal{M}_c^{loc}$. La suite des temps d'arrêt $\varsigma_n = \inf\{t \geqslant 0 \mid |X_t| = n\}$ réduit X, et pour tout $n \in \mathbb{N}$, X^{ς_n} converge p.s et dans \mathcal{L}^1 quand $t \longrightarrow \infty$.

Démonstration. $X^{\varsigma_n} \in \mathcal{M}_c^{loc}$ et $|X^{\varsigma_n}| \leq n$. Il suffit d'appliquer la propriété précédente.

Nous allons montrer que si une martingale locale est à variation finie, elle est constante.

Rappel de notations $f \in \mathcal{C}^0(\mathbf{R}_+)$ à variation finie s'écrit $f = f_+ - f_-$. Les fonctions f_+ et f_- définissent des mesures positives $\mathrm{d} f_+$ et $\mathrm{d} f_-$. La variation totale de la mesure signée $\mathrm{d} f = \mathrm{d} f_+ - \mathrm{d}_-$ sera notée $|\mathrm{d} f| = \mathrm{d} f_+ + \mathrm{d} f_-$.

Théorème. Soit $X \in \mathcal{M}_c^{loc}$ telle que $X_0 = 0$. Si X est à variation finie, elle est indistinguable de 0.

Démonstration. Supposons *X* à variation finie. Posons $\forall n \in \mathbb{N}, \varsigma_n = \inf\{t \ge 0 \mid \int_0^t |dX_s| \ge n\}$. ς_n est un temps d'arrêt car $\int_0 |dX_s|$ est adapté et continu. Le processus $Y = X^{\varsigma_n}$ est dans \mathcal{M}_c^{loc} et il satisfait $|Y_t| = \left|\int_0^t dY_s\right| \le \int_0^\infty |dY_s| \le n$. Comme *Y* est borné, $Y \in \mathcal{M}_c$.

Pour tout $t \ge 0$, soit $\pi_t = \{0 = t_0 < t_1 < ... < t_p = t\}$ une subdivision de [0;t]. Alors

$$\begin{split} \mathbf{E}\left[Y_t^2\right] &= \sum_{i=1}^p \mathbf{E}\left[(Y_{t_i} - Y_{t_{i-1}})^2\right] \\ &\leqslant \mathbf{E}\left[\sup_{1\leqslant i \leqslant p} \left|Y_{t_i} - Y_{t_{i-1}}\right| \sum_{i=1}^p \left|Y_{t_i} - Y_{t_{i-1}}\right|\right] \\ &\leqslant n \mathbf{E}\left[\sup_{1\leqslant i \leqslant p} \left|Y_{t_i} - Y_{t_{i-1}}\right|\right] \end{split}$$

On fait $p \longrightarrow \infty$ et $|\pi_t| \longrightarrow 0$. Alors $\sup_{1 \le i \le p} |Y_{t_i} - Y_{t_{i-1}}| \longrightarrow 0$ par continuité de Y.

Comme $\left|Y_{t_i} - Y_{t_{i-1}}\right| \le n$ on applique la convergence dominée pour avoir $\mathbf{E}\left[Y_t^2\right] = 0$. Or $\mathbf{E}\left[Y_t^2\right] = \mathbf{E}\left[(X_t^{\varsigma_n})^2\right]$ et $\mathbf{E}\left[X_t^2\right] = \mathbf{E}\left[\lim_{n\to\infty}(X_t^{\varsigma_n})^2\right] \le \lim_n \mathbf{E}\left[(X_t^{\varsigma_n})^2\right] = 0$ avec le lemme de Fatou.

Rappelons que la variation d'un MB est infinie pour presque toutes les trajectoires.

3.6 Variation quadratique d'une martingale locale

Rappel : on note $C_0^+(\mathbf{R}_+)$ les processus continus croissants issus de 0.

Théorème (Meyer). Soit $X \in \mathcal{M}_c^{loc}$. Il existe un processus adapté de $C_0^+(\mathbf{R}_+)$, noté $(\langle X, X \rangle_t)_{t \geqslant 0}$, unique à l'indistinguabilité près, tel que $X^2 - \langle X, X \rangle \in \mathcal{M}_c^{loc}$. Par ailleurs, pour tout $t \geqslant 0$ et toute subdivision $\{0 = t_0^n < t_1^n < \ldots < t_{p_n}^n = t\}$ de [0;t] de pas tendant vers 0 quand $n \longrightarrow \infty$, on a

$$\sum_{i=1}^{p_n} \left(X_{t_i^n} - X_{t_{i-1}^n} \right)^2 \xrightarrow[n \to \infty]{\mathbf{P}} \langle X, X \rangle_t \ .$$

Le processus (X, X) est appelé la variation quadratique de X.

Remarque. Nous avons vu que $B_t^2 - t \in \mathcal{M}_c \subset \mathcal{M}_c^{loc}$. Par conséquent $\langle B, B \rangle_t = t$. Nous avons aussi établi la convergence dans le cas du MB. Le construction du MB est basée sur l'étude de cette convergence.

Proposition. Soit $X \in \mathcal{M}_c^{loc}$. Si ς est un temps d'arrêt alors $\langle X^{\varsigma}, X^{\varsigma} \rangle_t = \langle X, X \rangle_{t \wedge \varsigma}$.

Notation. Si *A* est croissant on note $A_{\infty} = \lim_{t \to \infty} A_t$.

Théorème. Soit $X \in \mathcal{M}_c^{loc}$, $X_0 = 0$. Alors,

- 1) Si $X \in \mathbf{H}_c^2$, alors $\mathbf{E}[\langle X, X \rangle_{\infty}] = \mathbf{E}[X_{\infty}^2] < \infty$ et $X^2 \langle X, X \rangle$ est une martingale uniformément intégrable.
- 2) Si $\mathbf{E}[\langle X, X \rangle_{\infty}] < \infty$ alors $X \in \mathbf{H}_c^2$.

Rappelons que, quand $X \in \mathbf{H}_c^2$, $\mathbf{E}[\sup_t X_t^2] \leq 2 \sup_t \mathbf{E}[X_t^2]$.

...

3.7 Crochet de deux martingales locales

Rappelons que \mathcal{M}_c et \mathcal{M}_c^{loc} sont des espaces vectoriels.

Définition. Soit $X, Y \in \mathcal{M}_c^{loc}$. Le processus $\langle X, Y \rangle := \frac{1}{2} (\langle X + Y, X + Y \rangle - \langle X, X \rangle - \langle Y, Y \rangle)$ s'appelle le **crochet** de X et de Y.

Proposition. (i) $\langle X, Y \rangle$ est l'unique processus continu, issu de zéro et à variation finie tel que $XY - \langle X, Y \rangle \in \mathcal{M}_c^{loc}$.

- (ii) L'application $(X, Y) \mapsto \langle X, Y \rangle$ est bilinéaire symétrique.
- (iii) Pour toute subdivision $\{0 = t_0^n < t_1^n < ... < t_{p_n}^n = t\}$ de [0;t] dont le pas tend vers 0,

$$\sum_{i=1}^{p_n} \left(X_{t_i^n} - X_{t_{i-1}^n} \right) \left(Y_{t_i^n} - Y_{t_{i-1}^n} \right) \xrightarrow{\mathbf{P}}_{n \to \infty} \langle X, Y \rangle_t .$$

(iv) Pour tout temps d'arrêt ς , $\langle X^{\varsigma}, Y^{\varsigma} \rangle_t = \langle X^{\varsigma}, Y \rangle_t = \langle X, Y \rangle_{c \wedge t}$.

Proposition. Le produit scalaire dans \mathbf{H}_c^2 est $\langle X \mid Y \rangle = \mathbf{E}[\langle X, Y \rangle_{\infty}]$.

Définition. Deux martingales locales sont dites orthogonales si $\langle X, Y \rangle = 0$, i.e $XY \in \mathcal{M}_c^{loc}$.

Exemple. Deux MB indépendantes B et B' sont des martingales locales continues et orthogonales. En effet $X := \frac{B+B'}{\sqrt{2}} \in \mathcal{M}_c^{loc}$ et c'est un MB. Donc sa variation quadratique est $\langle X, X \rangle = t$. Par suite, $\langle B, B' \rangle_t = \langle X, X \rangle_t - \frac{\langle B, B' \rangle_t}{2} - \frac{\langle B', B' \rangle_t}{2} = 0$.

Théorème (Inégalité de Kumita-Watanabe). Soit $X,Y\in\mathcal{M}_c^{\mathrm{loc}}$ et soit H et K deux processus mesurables. Alors

$$\int_0^\infty |H_s| |K_s| |\mathrm{d}\langle X, Y\rangle_s| \leq \left(\int_0^\infty H_s^2 \,\mathrm{d}\langle X, X\rangle_s\right)^{\frac{1}{2}} \left(\int_0^\infty K_s^2 \,\mathrm{d}\langle Y, Y\rangle_s\right)^{\frac{1}{2}}$$

4 Intégrale stochastique

On veut définir $\int H_s dB_s$ avec B_s un MB.

Idée : $\sum H(t_i)(B(t_{i+1}) - B(t_i))$.

Problème : $\sum H(t_i)(B(t_{i+1}) - B(t_i))$ n'a pas la même limite.

Soit \mathbf{H}^2 l'ensemble des martingales de carré intégrable nulles en 0. Une martingale M_t est de carré in-

tégrable ssi $\sup_{t \in [0;+\infty[} \mathbf{E}[M_t^2] < +\infty$. Cela implique l'uniforme intégrabilité, qui implique $\exists M_\infty \in L^2, M_t \xrightarrow[t \to \infty]{} M_\infty$ et $\forall n \in \mathbf{N}^*, M_t^n = \mathbf{E}[M_\infty^n \mid \mathcal{F}_t]$.

On muni \mathbf{H}^2 d'un produit scalaire avec $\langle M | N \rangle = \mathbf{E}[M_{\infty}N_{\infty}] = \mathbf{E}[\langle M, N \rangle_{\infty}].$

Théorème. H² est un espace de Hilbert.

Définition. Processus progressivement mesurables : continus à droite et adaptés.

Notation. Soit $M \in \mathbf{H}^2$. On note $L^2(M)$ l'ensemble des processus prog. mes. tels que $\mathbf{E}\left[\int H_s \, \mathrm{d}\langle M, M \rangle_s\right] < +\infty$.

Remarque. $L^2(B) = \{ H \text{ prog. mes.} \mid \mathbf{E} \left[\int H_s^2 ds \right] < \infty \}.$

Définition.

$$\int_{0}^{t} H_{s} dM_{s} = \sum_{i=1}^{p-1} H_{i} (M_{t_{i+1} \wedge t} - M_{t_{i} \wedge t})$$

$$H.M: \begin{array}{c} \mathcal{E} \subset L^{2}(M) \to \mathbf{H}^{2} \\ H \mapsto (t \mapsto \int_{0}^{t} H_{s} dM_{s}) \end{array}$$

Lemme. $\forall H \in \mathcal{E}, ||H.M||_{H^2} = ||H||_{L^2(M)}$

Théorème. Soit $H \in L^2(M)$ et $N \in \mathbf{H}^2$. Alors

$$\langle H.M,N\rangle = H\langle M,N\rangle \iff \left\langle \int H_s \, \mathrm{d}M_s,N\right\rangle_t = \int_0^t H_s \, \mathrm{d}\langle M,N\rangle_s \; .$$

Corrolaire. • $\langle \int H_s dM_s, \int K_s dN_s \rangle = \int H_s K_s d\langle M, N \rangle_s$

• $(t \mapsto \int_0^t H_s \, dM_s) \in \mathbf{H}^2$, $\int K_s \, d\left(\int_0^s H_\sigma \, dM_\sigma\right) = \int K_s H_s \, dM_s$.

TODO

•••

Définition. $(M_t)_{t\geq 0}$ est une martingale locale issue de 0 si :

- $M_0 = 0$,
- il existe une suite de temps d'arrêts $(T_n)_{n\geqslant 1}$ telle que $\forall n, M^{T_n}$ soit une martingale uniformément intégrable.

Exemple. • MB sur [O;T] est une mg u.i : $\sup_{t \le T} \mathbf{E}[B_t^2] = T < +\infty$

• MB sur \mathbf{R}_+ qui n'est pas u.i : $T_n = n$, $B_t^{T_n} = B_{t \wedge T_n}$, sup $_{t \in \mathbf{R}_+} \mathbf{E}[(B_t^{T_n})^2] \leqslant n$, donc B^{T_n} est une mg u.i

TODO

Théorème (Formule de Itô). Soit $f \in \mathcal{C}^2$, $X_t = X_0 + M_t + A_t$ une semi-martingale. $(f(X_t)_{t \ge 0})$ une semi mg.

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dM_s + \int_0^t f'(X_s) dA_s + \frac{1}{2} \int_0^t f''(X_s) d\langle M \rangle_s$$