Machine Learning 2019

袁欣

2019年5月28日

1 朴素贝叶斯与 EM 算法

1.1 朴素贝叶斯实验数据

读入朴素贝叶斯实验数据,并进行展示。

```
da <- read.csv("data.csv")
da.train <- da[1:14, ]
da.test <- da[15, ]</pre>
```

• 数据展示

No	Age	Income	Student	Credit_rating	Class.buys_computer
1	<=30	High	No	Fair	No
2	<=30	High	No	Excellent	No
3	31-40	High	No	Fair	Yes
4	>40	Medium	No	Fair	Yes
5	>40	Low	Yes	Fair	Yes
6	>40	Low	Yes	Excellent	No
7	31-40	Low	Yes	Excellent	Yes
8	<=30	Medium	No	Fair	No
9	<=30	Low	Yes	Fair	Yes
10	>40	Medium	Yes	Fair	Yes
11	<=30	Medium	Yes	Excellent	Yes
12	31-40	Medium	No	Excellent	Yes
13	31-40	High	Yes	Fair	Yes
14	>40	Medium	No	Excellent	No
15	<=30	Medium	Yes	Fair	

1.2 朴素贝叶斯简介

朴素贝叶斯分类器(naive Bayes classifier)采用了"属性条件独立性假设":对已知类别,假设所有属性相互独立。换而言之,假设每个属性独立地对分裂结果发生影响。

• 代码实现

```
naiveBayes <- function(da, Classn = 6, Factorn = c(2:5)){</pre>
  Class <- levels(as.factor(da[, Classn]))</pre>
  Pc <- vector(length = length(Class))</pre>
  for(i in 1:length(Class)){
    Pc[i] <- (length(da[which(da[, Classn] == Class[i]), Classn]) + 1)/(nrow(da) + 2)
  Pc <- data.frame(Class = Class, P = Pc)
  Factorlist <- list()</pre>
  k <- 1
  for(i in Factorn){
    Classi <- levels(as.factor(da[, i]))</pre>
    temp <- as.data.frame(matrix(nrow = length(Classi), ncol = nrow(Pc) + 1))</pre>
    temp[, 1] <- Classi
    for(j in 1:length(Classi)){
      for(t in 1:length(Class)){
        temp[j, t + 1] <- (length(da[which(da[, i] == Classi[j] & da[, Classn] == Class[t]), i]) + 1)
      }
    colnames(temp) <- c("Class", Pc$Class)</pre>
    Factorlist[[k]] <- temp</pre>
    k <- k+1
  }
  names(Factorlist) <- colnames(da[, Factorn])</pre>
  return(list(Pc = Pc, Factorlist = Factorlist))
}
mymodel <- naiveBayes(da.train, 6, c(2:5))</pre>
predictnB <- function(da, mymodel, Factorn = c(2:5)){</pre>
  #
 factors <- colnames(da[, Factorn])</pre>
```

1 朴素贝叶斯与 EM 算法

```
Classn <- nrow(mymodel$Pc)
P <- data.frame(Classn = mymodel$Pc$Class, P = 1)
for(i in 1:Classn){
   for(j in 1:length(factors)){
      temp <- mymodel$Factorlist[factors[j]][[1]]
      ind <- which(temp$Class == da[,factors[j]])
      P$P <- as.numeric(P$P * temp[ind, -1])
   }
}
return(P)
}</pre>
knitr::kable(predictnB(da.test, mymodel, c(2:5)))
```

Classn	Р
No	0.0004036
Yes	0.0014952

由上表可以看出 Yes 的概率大于 No 的概率, 所以测试样本应该会买电脑。

1.3 EM 算法实验数据

$geom_point(aes(x = 12, y = 8), color = "blue", size = 3)$

1.4 EM 算法估计高斯混合分布参数