7. Hausaufgabe – Theoretische Grundlagen der Informatik 3

WS 2012/2013

Stand: 05.12.2012

Abgabe: 13.12.2012 in der Vorlesung

Hausaufgabe 1 5 Punkte

Gegeben sind die folgenden Formeln $\varphi_1, \varphi_2, \varphi_3$ über der Signatur $\{E, P\}$ mit einem 2-stelligen Relationssymbol E und einem 1-stelligen Relationssymbol P. Markieren Sie welche Variable durch welchen Quantor gebunden ist und geben Sie die freien Variablen an.

(i)
$$\varphi_1 = \forall x \forall y \forall z \Big(\big(E(x, y) \land E(y, z) \to E(x, z) \big) \land \exists x E(x, x) \Big)$$

(ii) $\varphi_2 = \forall y \Big(E(x, y) \to \forall x \big(E(y, x) \to P(x) \big) \Big) \to \forall y \big(E(x, y) \to P(y) \big)$

$$(iii) \ \varphi_3 = \exists y \big(E(x,y) \land P(y) \big) \to \exists y \Big(E(x,y) \land \big(\neg \exists x (E(y,x) \land P(x)) \land P(y) \big) \Big)$$

Hausaufgabe 2 5 Punkte

Wir betrachten die Strukturen $\mathcal{N} = (\mathbb{N}, +^{\mathcal{N}}, \cdot^{\mathcal{N}}, 0^{\mathcal{N}}, 1^{\mathcal{N}})$ und $\mathcal{Z} = (\mathbb{Z}, +^{\mathcal{Z}}, \cdot^{\mathcal{Z}}, 0^{\mathcal{Z}}, 1^{\mathcal{Z}})$, wobei $+, \cdot$ 2-stellige Funktionssymbole und 0,1 Konstantensymbole sind, die wie üblich auf \mathbb{N} bzw. \mathbb{Z} interpretiert werden.

- (i) Geben Sie einen Homomorphismus von \mathcal{N} nach \mathcal{Z} an.
- (ii) Zeigen Sie, dass kein Homomorphismus von \mathcal{Z} nach \mathcal{N} existiert.

Hausaufgabe 3 5 Punkte

Seien $\mathfrak A$ und $\mathfrak B$ σ -Strukturen und sei $h:A\to B$ ein Homomorphismus von $\mathfrak A$ nach $\mathfrak B$. Zeigen Sie, dass das Bild h(A) in $\mathfrak B$ eine Substruktur $\mathfrak B_{h(A)}\subseteq \mathfrak B$ induziert.

Hausaufgabe 4

Sei $\mathcal{M} = (\{0,1\} \times \mathbb{N}, <^{\mathcal{M}})$, wobei für alle $(i,n), (i',n') \in \{0,1\} \times \mathbb{N}$ gilt, dass $(i,n) <^{\mathcal{M}} (i',n')$ genau dann, wenn i < i' oder wenn i = i' und n < n' gilt.

Definieren Sie eine Struktur $\mathcal{N}=(\mathbb{N},<^{\mathcal{N}})$, sodass \mathcal{M} isomorph zu \mathcal{N} ist.