Réécriture de patrons de requêtes fondée sur des alignements d'ontologies

Pascal GILLET

Cassia Trojahn - Ollivier Haemmerlé

Institut de Recherche en Informatique de Toulouse - Equipe MELODI

Université

de Toulouse

CNRS INPT UPS

UTI

Système SWIP

Contexte: système SWIP fondé sur des patrons de

requêtes

Base de connaissance

Système SWIP

Problématique:

Patrons spécifiques à la source

de données

 Patrons construits manuellement

Base de connaissance

Système SWIP

Problématique:

 Intégration d'une nouvelle base de connaissance

 Réécriture des patrons à la main

Une autre base de connaissance

Objectif

- Proposer un mécanisme automatique pour générer des patrons de requêtes dans le système SWIP
 - Patrons initiaux
 - Alignements d'ontologies

Interrogation de graphes RDF (exemple)

Liste des Westerns dont la musique a été composée par Ennio

Interrogation de graphes RDF (exemple)

Liste des Westerns dont la musique a été composée par Ennio


```
PREFIX ex: http://example.org/

SELECT ?film WHERE {
  ?film ex:genre ex:Western .
  ?film ex:composer ex:Ennio_Morricone .}
```

Interrogation de graphes RDF (exemple)

Liste des Westerns dont la musique a été composée par Ennio

PREFIX ex: http://example.org/

SELECT ?film WHERE {
 ?film ex:genre ex:Western .
 ?film ex:composer ex:Ennio_Morricone .}

```
?film
ex:Pour_une_poignée_de_dollars
ex:Le_Bon,_la_Brute_et_le_Truand
ex:Il_était_une_fois_dans_l'Ouest
```

Alignement d'ontologies

- Alignement: Un alignement A entre deux ontologies O₁ et
 O₂ est un ensemble de correspondances entre des entités de O₁ et de O₂.
 - Un alignement est directionnel
- Correspondance: {e, e', r, n}
 - e et e' sont des entités de O₁ et O₂
 - r est une relation d'équivalence (≡), ou de subsomption (≤, ≥)
 - n est une mesure de confiance

Alignement d'ontologies (exemple)

O₁: Cinéma IRIT

 O_2 : DBpedia

Alignement d'ontologies (exemple)

O₁: Cinéma IRIT

 O_2 : DBpedia

Correspondances complexes

- Les correspondances simples peuvent ne pas suffire:
 - Manque d'expressivité
- Correspondances complexes:

• $\forall x, O_1$:Court_metrage(x) $\equiv O_2$:Film(x) $\land O_2$:duration(x, y) $\land y \leq 59$

- $\forall x, O_1$:Biopic(x) $\equiv O_2$:Film(x) $\land O_2$:Celebrity(y) $\land O_2$:topic(x, y)
- On peut passer de DL à FOL, et inversement (si le fragment DL est respecté)

Alignement d'ontologies (Etat de l'Art)

 Classification générale des approches pour les correspondances simples [Rahm & Bernstein, 2001]:

Méthodes terminologiques	Labels, commentaires		
Méthodes sémantiques	Interprétation logique		
Structure interne	Ensemble des valeurs possibles des propriétés (attributs et relations). Propriétés transitives, symétriques, etc.		
Structure externe	Position des entités dans les hiérarchies		
Similarité des instances	Intersection des ensembles d'instances		
Approches combinées			

- Correspondances complexes:
 - Patrons de correspondances complexes [Scharffe, 2009, Ritze et al., 2009]

Système SWIP: principe des patrons

- Objectif: rendre plus efficace l'étape de construction finale de la requête SPARQL
- Prototype d'une famille de requêtes typiques
- Un patron est un graphe RDF

Approches pour la réécriture des patrons (i)

Objectif: trouver une fonction de transformation T t.q.

T(A, P) = P', avec A un alignement, P et P' des ensembles de patrons

Correspondances simples:

$$P' \leftarrow P$$

Pour chaque $e \in P'$, **Si** $\exists \{e, e', r, n\} \in A$, **Alors** $e \leftarrow e'$

Pascal GILLET 2 juillet 2013

16/22

Approches pour la réécriture des patrons (ii)

- Correspondances complexes: tout sous-graphe dans
 P a potentiellement une correspondance dans A
 - Sous-graphe de plus haut niveau: sous-patron
 - Sous-graphe de plus bas niveau: entité (concept ou propriété)
- P' ← P
- Pour chaque sous-patron sp ∈ P'
 - **Si** \exists {sp, sp', r, n} ∈ A
 - sp ← sp'
 - Sinon Pour chaque triplet t ∈ sp
 - Si $\exists \{t, t', r, n\} \in A$
 - $t \leftarrow t'$
 - Sinon Pour chaque entité e dans t
 - Si ∃ {e, e', r, n} ∈ A Alors e ← e'

Expérimentations – Correspondances simples (i)

- SWIP fournit des patrons pour Music et Cinéma IRIT
- Croisement avec d'autres ontologies: DBpedia, JEDFILM, Movie, BBC Program
- Outils testés: 24 systèmes d'alignement (OAEI) ne produisant que des correspondances simples
- Merge des alignements / paire d'ontologies

	•				
	Alignement obtenu			Transformation des patrons	
Paire d'ontologies	#correspond.	#entités sources distinctes	Couverture ontologie source	#entités remplacées	#sous-patrons remplacés
Music - DBPedia (249 * 2213)	207	168	67%	25/60 soit 41%	2/27 (5 patrons)

Problème d'incomplétude de la transformation !

Expérimentations – Correspondances complexes (ii)

 Aujourd'hui: très peu d'outils produisent des correspondances complexes!

- ComplexMapping [Ritze et al., 2009]
 - Patrons de correspondances complexes
 - Exemple de correspondance entre Music et DBpedia:

 \forall x,z (catalogue_number(x,z) $\leftrightarrow \exists$ y (crewMember(x,y) ^ numberOfVisitors(y,z))) ???

Expérimentations – Correspondances complexes (iii)

- Correspondances complexes réalisées à la main pour Cinéma IRIT→DBpedia, et Music→DBpedia :
 - Découpage des patrons en sous-graphes (en général, sous-graphe = sous-patron)
 - Recherche d'un énoncé logique équivalent dans l'ontologie cible
- Exemples entre Cinéma IRIT et DBpedia:

- Résultat obtenu: 2 nouveaux jeux de patrons pour DBpedia sur les domaines du cinéma et de la musique
 - Taux de transformation ≈ 90 %
 - Music: 20/23 sous-graphes, Cinéma IRIT: 45/51 sous-graphes

Conclusion

- Approches de réécriture automatique de patrons de requêtes:
 - Correspondances simples insuffisantes
 - Correspondances complexes nécessaires
 - Alignements complexes réalisés à la main
 - Nouvelle ressource pour l'évaluation des approches d'alignements complexes
- Evolutions SWIP à court terme:
 - Support de la disjonction et des instances dans les patrons

Perspectives

- Proposer une approche pour un système d'alignement capable de générer des correspondances complexes avec les méthodes suivantes:
 - Définition de (nouveaux) patrons de correspondances complexes
 - Détection de correspondances entre instances
 - Interaction avec l'utilisateur
 - Apprentissage automatique de nouveaux patrons