분광색차특성에 미치는 초기스펙트르의 영향

정유철, 리광혁

경공업공장들을 비롯하여 인민경제의 여러 부문에서 색차계를 리용하여 색제품의 질을 평가하기 위한 연구가 활발해지는데 맞게 분광기능을 가진 색차계[4, 5]를 개발하는것은 매우 중요한 문제로 나서고있다. 선행연구[1]에서는 가시선반사스펙트르의 예측에서 초기스펙트르의 영향을 고찰하였다.

우리는 이에 기초하여 초기스펙트르가 색차특성에 미치는 영향을 평가하여 분광색차계의 성능을 개선하기 위한 연구를 하였다.

1. 역해석수법에 의한 가시선반사스펙트르의 예측

가시선반사스펙트르로부터 색갈을 알아내는 방법은 많이 알려졌다.[2, 3] 그러나 주어진 색에 해당한 가시선반사스펙트르를 예측하는것은 하나의 색갈에 많은 스펙트르가 대응되는것으로 하여 매우 어려운 문제이다. 만일 색자리표외에 다른 정보를 더 보충하면 이 문제를 쉽게 해결할수 있다. 이 가능성을 확인하기 위한 계산절차는 다음과 같다.[1]

- ① 목적하는 R_0 , G_0 , B_0 값을 설정한다.
- ② 적당한 초기스펙트르벡토르 $Sp^0(i)$, $i=1 \sim n$ 을 가정하고 k=0으로 한다.
- ③ 다음식에 의하여 색자리표를 계산한다.

$$\begin{cases} R_k = \sum_{i=1}^n Sp^k(i)S_R(i) \\ G_k = \sum_{i=1}^n Sp^k(i)S_G(i) \\ B_k = \sum_{i=1}^n Sp^k(i)S_B(i) \end{cases}$$

$$(1)$$

그림 1. 파장에 따르는 색함수

여기서 식 (1)은 색자리표 RGB를 계산하는 방법[2]에 기초한것인데 $S_R(i)$, $S_G(i)$, $S_B(i)$ 는 색함수(그림 1)에 대응되는 벡토르이다.

④ 다음식에 의하여 색성분차를 구한다.

$$\begin{cases} \Delta R_k = R_k - R_0 \\ \Delta G_k = G_k - G_0 \\ \Delta B_k = B_k - B_0 \end{cases}$$
 (2)

(5) 다음식으로 스펙트르벡토르를 수정한다.

$$Sp^{k}(i) = Sp^{k-1}(i) + \Delta R_k S_R(i) + \Delta G_k S_G(i) + \Delta B_k S_B(i)$$
 (3)

⑥ 다음식으로 총오차 δ 를 구하고 정해진 한계값보다 작으면 (\hat{I}) 로 가고 크면 k를 증가시키고 (\hat{I}) 구 (\hat{I}) 구 한복한다.

$$S = [(\Delta R_k)^2 + (\Delta G_k)^2 + (\Delta B_k)^2]^{1/2}$$
(4)

⑦ 스펙트르벡토르 $Sp^m(i)$ 을 출력한다. 이렇게 출력된 스펙트르벡토르는 초기에 설정된 색자리표 (R_0, G_0, B_0) 을 정확히 반영하게 된다.

이상의 절차에 따라 각이한 색자리표 (R_0, G_0, B_0) 에 대한 계산을 해보면 순환회수 150에서는 오차가 각이하게 나타나지만 250이상에서는 모든 총오차가 0.000 1이하로 된다는것을 알수 있다.

2. 분광색차특성에 미치는 초기스펙트르의 영향

각이한 초기스펙트르에 의하여 발생된 예측스펙트르의 모양이 분광색차특성에 어떤 영향을 주는가를 보았다. 색자리표 $(R_0=0.3,\ G_0=0.6,\ B_0=0.4)$ 를 가지는 록색을 목적하는 색으로 설정하였을 때 각이한 초기스펙트르에 대한 예측스펙트르들은 그림 2와 같다.

그림 2. 각이한 초기스펙트르(1)를 리용하여 예측한 록색의 가시선반사스펙트르들(2) ㄱ)~ㅁ)는 각각 밝은 록색, 청색, 황색, 흰색, 검은 록색에 해당한 경우

그림 2에서 1은 초기스펙트르이고 2는 예측스펙트르이다. 그림 2의 ㄱ)~ㅁ)의 예측스 펙트르들은 모두 록색을 주는 가시선반사스펙트르들이다.

그림 2에서 보는바와 같이 초기스펙트르의 모양이 크게 변하여도 파장 500~550nm구 간에서 봉우리의 모양은 크게 변하지 않는다. 따라서 각이한 초기스펙트르에 의하여 발생 된 예측스펙트르의 모양은 색갈과 밀접한 련관을 가지고있다.

이 관계를 정량적으로 보기 위하여 초기스펙트르들에 대한 예측스펙트르의 색자리표 RGB, $L^*a^*b^*$ 과 목적하는 색자리표 $(R_0=0.3,\ G_0=0.6,\ B_0=0.4)$ 와의 색차값들을 비교하였다.(표)

•	초기	RGB			$L^*a^*b^*$			색차값
	스펙트르	R	G	В	L^*	a^*	b^*	一つでは
	목표색	0.300 0	0.600 0	0.400 0	78.739	-36.017	15.734	0.00
	٦)	0.298 2	0.601 2	0.398 9	78.776	-36.398	15.930	0.43
	L)	0.300 2	0.601 3	0.399 0	78.801	-36.197	15.962	0.29
	L)	0.303 3	0.599 2	0.401 1	78.736	-35.527	15.597	0.51
	ㄹ)	0.302 6	0.599 9	0.399 1	78.760	-35.796	15.892	0.27

0.302 7 0.600 7 0.400 3 78.799

표. 각이한 초기스펙트르에 대한 예측스펙트르의 색자리표와 목표색자리표들과 색차값들

표에서 보는바와 같이 각이한 초기스펙트르에 대하여 예측스펙트르의 모양은 약간씩 달라지지만 그 색차값은 0.5이하로 같은 색으로 평가된다. 즉 얻어진 예측스펙트르의 색갈은 목적하는 색과 일치한다. 이러한 경향성은 목적하는 색을 각이하게 설정해도 류사하게 나타난다. 따라서 색자리표로부터 가시선반사스펙트르를 얻으려면 대략적인 초기스펙트르를 알아야 한다는것을 알수 있다.

-35.799

15.802

0.24

맺 는 말

색자료로부터 가시선반사스펙트르를 얻자면 대략적인 초기스펙트르를 알아야 한다. 예 측스펙트르는 측정되는 색갈을 정확히 표현한다.

참 고 문 헌

- [1] 정유철; 과학기술전당통보, 58, 1, 38, 주체107(2018).
- [2] 정유철; 계산화학, **김일성**종합대학출판사, 157, 주체106(2017).
- [3] Q. Hu et al.; IEEE Trans. Image Process, 15, 1, 228, 2006.
- [4] 秦国治; 涂料工业, 4,83,2015.

□)

[5] 曹科武; 涂料工业, 5, 34, 2015.

주체108(2019)년 7월 5일 원고접수

Effect of Initial Spectrum on Characteristics of Spectroscopic Color Difference

Jong Yu Chol, Ri Kwang Hyok

To get a visible reflection spectrum from color data, it must be known about the rough initial spectrum. The value of color difference is represented correctly from this spectrum.

Key words: visible reflection spectrum, color coordination, color difference meter