# Dynamical principles of synaptic receptor sharing across spines in a dendritic branch

#### **Rahul Gupta**

Cian O'Donnell Lab,

Department of Computer Sciences University of Bristol, United Kingdom

#### **Dendritic spines and Synaptic AMPA receptors**



#### Factors controlling synaptic receptor distribution amongst spines



#### Approach:

1st: Study the Machinery

2<sup>nd</sup>: Study the response of the machinery to **Inputs** 

#### Molecular Machinery for AMPA receptor trafficking: Three Principle Mechanisms

1. Membrane Receptor Diffusion: Lateral 2-D Brownian diffusion

$$D_{AMPA} \approx 0.1 \mu m^2 . s^{-1}$$
  
 $D_{AMPA} \approx 0.01 \mu m^2 . s^{-1}$  (PSD)



2. Membrane Receptor Trafficking: Exocytosis and Endocytosis



3. Intracellular Receptor Trafficking: Motor protein-assisted vesicular transport



#### Coarse-Grain Rate Mass Model: Compartment-based Reaction-Diffusion Approach



Simpler mechanical perspective: bare essentials of the trafficking and binding processes

## A system of Linear ODEs: With nonlinear reaction terms for Receptor-PSD95 Binding and Unbinding

$$\frac{dR_{PSDB}}{dt} = Bind. (PSD95 - R_{PSDB}). R_{PSDF} - Unbind. R_{PSDB}$$

$$\frac{dR_{PSDF}}{dt} = -\frac{h_{PSD\to ESM}}{A_{PSD}}R_{PSDF} + \frac{h_{ESM\to PSD}}{A_{PSD}}R_{ESM} - Bind. (PSD95 - R_{PSDB}).R_{PSDF} + Unbind.R_{PSDB}$$

$$\frac{dIR_{spine}}{dt} = A_{ESM}.Endo_{spine}.R_{ESM} - Exo_{spine}.IR_{spine} - Retrgd_{spine}.IR_{spine} + Antrgd_{spine}$$

$$\frac{dR_{ESM}}{dt} = -\frac{h_{ESM\to PSD}}{A_{ESM}}R_{ESM} - \frac{h_{ESM\to Neck}}{A_{ESM}}R_{ESM} + \frac{h_{PSD\to ESM}}{A_{ESM}}R_{PSDF} + \frac{h_{Neck\to ESM}}{A_{ESM}}R_{Neck} - Endo_{spine}.R_{ESM} + \frac{Exo_{spine}.IR_{spine}}{A_{ESM}}$$

$$\frac{dR_{Neck}}{dt} = -\frac{h_{Neck\to ESM}}{A_{Neck}}R_{Neck} - \frac{h_{Neck\to Dend}}{A_{Neck}}R_{Neck} + \frac{h_{ESM\to Neck}}{A_{Neck}}R_{ESM} + \frac{h_{Dend\to Neck}}{A_{Neck}}R_{Dend}$$

$$\frac{dIR_{dend}}{dt} = A_{dend}.Endo_{dend}.R_{Dend} - Exo_{dend}.IR_{dend} - Retrgd_{dend}.IR_{dend} + Antrgd_{dend}$$

$$\frac{dR_{Dend}^{l}}{dt} = -\frac{h_{Dend\to Neck}}{A_{Dend}}R_{Dend}^{l} - \frac{h_{Dend\to Dend}}{A_{Dend}}R_{Dend}^{l} + \frac{h_{Neck\to Dend}}{A_{Dend}}R_{Neck} + \frac{h_{Dend\to Dend}}{A_{Dend}}R_{Dend}^{l-1}$$

$$-Endo_{Dend}.R_{Dend}^{l} + \frac{Exo_{Dend}.IR_{Dend}^{l}}{A_{Dend}}$$

#### A recurrent structure for steady-state solutions



#### BAM!!!!

Reduces hours of numerical simulation for steady-state to seconds and minutes, for large to larger dendritic arbours.

#### BAM BAM!!!!

Greatly helpful in reducing 8-dimensional parameter space into 5-dimensional parameter space, for quick model optimization, under homogeneous spine condition.

$$R_{Dend}^{i-2,*} = \alpha_1^{i-2} \cdot R_{Dend}^{i-3,*} + \alpha_2^{i-2}$$

$$R_{Dend}^{i-3,*} = \alpha_1^{i-3}.R_{Dend}^0 + \alpha_2^{i-3}$$

#### **Explicit expressions of Recurrence Solution**

$$R_{PSDB}^{*} = \frac{Bind. PSD95. R_{PSDF}^{*}}{Bind. R_{PSDF}^{*} + Unbind}$$

$$R_{PSDF}^* = \nu. R_{ESM}^*, \nu = \frac{h_{ESM \to PSD}}{h_{PSD \to ESM}}$$

$$IR_{spine}^* = \lambda_1^{spine}.R_{ESM}^* + \lambda_2^{spine}, \quad \lambda_1^{spine} = \frac{A_{ESM}.Endo_{spine}}{Exo_{spine} + Retrgd_{spine}}$$
 and  $\lambda_2^{spine} = \frac{Antrgd_{spine}}{Exo_{spine} + Retrgd_{spine}}$ 

$$R_{ESM}^* = \eta_1 R_{Neck}^* + \eta_2$$

$$\eta_{1} = \frac{h_{Neck \to ESM}}{\left(h_{ESM \to PSD} + h_{ESM \to Neck} - \nu. h_{PSD \to ESM} + A_{ESM}. Endo_{spine} - \lambda_{1}^{spine}. Exo_{spine}\right)}$$

$$\eta_{2} = \frac{\lambda_{2}^{spine}.Exo_{spine}}{\left(h_{ESM\rightarrow PSD} + h_{ESM\rightarrow Neck} - \nu.h_{PSD\rightarrow ESM} + A_{ESM}.Endo_{spine} - \lambda_{1}^{spine}.Exo_{spine}\right)}$$

**UOB** Oper

#### **Explicit expressions of Recurrence Solution**

$$\begin{split} R_{Neck}^* &= \gamma_1 \ R_{Dend}^* + \gamma_2 \\ \gamma_1 &= \frac{h_{Dend \to Neck}}{(h_{Neck \to ESM} + h_{Neck \to Dend} - \eta_1. h_{ESM \to Neck})} \\ \gamma_2 &= \frac{\eta_2. h_{ESM \to Neck}}{(h_{Neck \to ESM} + h_{Neck \to Dend} - \eta_1. h_{ESM \to Neck})} \end{split}$$

$$IR_{dend}^* = \lambda_1^{dend} \cdot R_{dend}^* + \lambda_2^{dend} + \lambda_2^{dend}$$
,  $\lambda_1^{dend} = \frac{A_{dend} \cdot Endo_{dend}}{Exo_{dend} + Retrgd_{dend}}$  and  $\lambda_2^{dend} = \frac{Antrgd_{dend}}{Exo_{dend} + Retrgd_{dend}}$ 

$$\begin{split} R_{Dend}^{i,*} &= \alpha_{1}^{i}.R_{Dend}^{i-1,*} + \alpha_{2}^{i} \\ \alpha_{1}^{i} &= \frac{h_{Dend \rightarrow Dend}}{\left(h_{Dend \rightarrow Neck} + h_{Dend \rightarrow Dend} - \gamma_{1}.h_{Neck \rightarrow Dend} + A_{Dend}.Endo_{Dend} - \lambda_{1}^{dend}.Exo_{Dend}\right)} \\ \alpha_{2}^{i} &= \frac{\gamma_{2}.h_{Neck \rightarrow Dend} + \lambda_{2}^{dend}.Exo_{Dend}}{\left(h_{Dend \rightarrow Neck} + h_{Dend \rightarrow Dend} - \gamma_{1}.h_{Neck \rightarrow Dend} + A_{Dend}.Endo_{Dend} - \lambda_{1}^{dend}.Exo_{Dend}\right)} \end{split}$$

#### **DATA 1: Fluorescence Recovery After Photobleaching (FRAP)**





## AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation

Michael A. Patterson<sup>a</sup>, Erzsebet M. Szatmari<sup>a</sup>, and Ryohei Yasuda<sup>a,b,1</sup>

<sup>a</sup>Department of Neurobiology and <sup>b</sup>Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710

Edited by Richard L. Huganir, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 28, 2010 (received for review December 3, 2009)



#### **DATA 2: Total Fluorescence Change under stimulation through Glutamate Uncaging**











#### **DATA 3: Fluorescence Recovery under Constant Photobleaching**





#### **Nonlinear Convex Optimization of Model Parameters**









| Parameters   | Optim Val |
|--------------|-----------|
| Exo Spine    | 0.0072    |
| Retrgd Spine | 0.0087    |
| Exo Dend     | 5.4599e-5 |
| Retrgd Dend  | 0.6160    |
| Bind PSD     | 2.3220    |







#### **Model Parameter Optimization for Restricted Neck**

### $p_{dend\ vs\ neck} = 0.0045$













### Control-Theoretic Approach for Time-dependent $Antrgd_{spine}$



$$\frac{d \ Antrgd_{spine}}{dt} = \vartheta \left( R_{ESM}^{setpoint} - R_{ESM}(t) \right)$$

$$R_{ESM}^{setpoint} = 10. \, \mu m^{-2}$$

If 
$$Antrgd_{spine}(t) < 0$$
:  $Antrgd_{spine} \equiv 0$   
 $Antrgd_{spine} \in \mathbb{R}^+$ 

If  $Antrgd_{spine}(t) > \Psi$ :  $Antrgd_{spine} \equiv \Psi$  $\Psi$  is the Resource-constrained upper-limit **Hard Bounds** 

#### **Learning Rate**

Option 1:  $\vartheta \in \mathbb{R}^+$ 

Option 2: 
$$\vartheta = \frac{\vartheta^{max} - \vartheta^{min}}{1 + exp(-\alpha.\varepsilon)} + \vartheta^{min}$$
$$\varepsilon = \left\| R_{ESM}^{setpoint} - R_{ESM}(t) \right\|_{1} - \varepsilon_{critical}$$



$$\vartheta^{max}=10$$
,  $\vartheta^{min}=10^{-4}$ ,  $\varepsilon_{critical}=2$ ,  $lpha=1000$ 

## $p_{dend\ vs\ neck} = 0.0045$ captures the data better when combined with $Antrgd_{spine}(t)$



#### Additional dynamics predicted:





#### **Acknowledgement**

#### **Research Funding:**

LEVERHULME TRUST \_\_\_\_\_

#### **Research Facility and Workspace:**





#### **Colleagues:**

Members, O'Donnell Lab Members, Computational Neuroscience Unit

#### Past Works: Synaptic Plasticity, Cortical Dynamics and Dopaminergic Neuromodulation





RESEARCH ARTICLE

Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion

Rahul Gupta\*

RESEARCH ARTICLE

Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period

Melissa Reneaux<sup>1©</sup>, Rahul Gupta<sup>1©</sup>, Karmeshu<sup>1,2</sup>\*





RESEARCH ARTICLE

Role of Heterogeneous Macromolecular Crowding and Geometrical Irregularity at Central Excitatory Synapses in Shaping Synaptic Transmission

Rahul Gupta<sup>1</sup>, Melissa Reneaux<sup>1</sup>, Karmeshu<sup>1,2</sup>\*

#### RESEARCH ARTICLE

Prefronto-cortical dopamine D1 receptor sensitivity can critically influence working memory maintenance during delayed response tasks

Melissa Reneaux®\*, Rahul Gupta®\*

