Design and Analysis of Algorithms Lab Academic Year: 2020 - 21

Dr. Praveen Kumar Alapati Sri. G. Brahmaiah (Ph.D. Scholar) Brahmaiah20pcse001@mahindrauniversity.edu.in praveenkumar.alapati@mahindrauniversity.edu.in

Department of Computer Science and Engineering Ecole Centrale School of Engineering

DAA Lab 5 Due Date: March 14, 2021

- Develop a program for the Defective Chessboard problem (N=1024, 2048, and 4096). Use gettimeofday() for calculating runtime (the average of 5 runs).
- Develop a program to multiply two square-matrices of order 1024 X 1024 using Strassen's Matrix Multiplication. Use gettimeofday() for calculating runtime (the average of 5 runs).

Bonus Problem Statements:

- Given an array of n numbers and a positive integer i, write a program to find the i^{th} smallest element that runs in O(n) time.
- ② Given two sorted arrays, each consisting of n numbers, write a program to find the median of 2n elements that runs in $\mathcal{O}(\log n)$ time.

Logic: Defective Chessboard

A chessboard that has one unavailable square. We have to cover the remaining squares using triominos.

(Triomino is an L shaped object and it is formed with three squares.)

Black color square is the defective one.

Number of triomino's required for an $n \times n$ defective chess board: $\frac{n^2-1}{3}$.

8 X 8 Defective Chessboard

- Divide the chessboard into 4 equal parts.
- Identify the part which has the defective square and put a triomino that cover all the remaining three parts.
- Now assume that all 4 parts are defective chessboards.
- Repeat the steps 1 to 3 until all the squares are covered with triominos.

Defective Chessboard: Analysis

$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + \mathcal{O}(1)$$

$$= 4 \cdot T\left(\frac{n}{2}\right) + constant$$

$$= 4 \cdot T\left(\frac{n}{2}\right) + constant$$

$$= \Theta(n^2)$$

Reasoning:

From case 1 of Master Theorem, where a=4, b=2, and f(n)= $\mathcal{O}(1)$ $n^{\log_b a} = n^{\log_2 4}$ $f(n) = n^{\log_2 4 - \epsilon}$, where $\epsilon = 2$

So, f(n) is polynomially less than $n^{\log_2 4} = n^2$.

$$T(n) = \Theta(n^2)$$

Logic: Strassen's Matrix Multiplication

$$M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$
 $M_2 = (A_{21} + A_{22}) \cdot B_{11}$
 $M_3 = A_{11} \cdot (B_{12} - B_{22})$
 $M_4 = A_{22} \cdot (B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12}) \cdot B_{22}$
 $M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$
 $C_{11} = M_1 + M_4 - M_5 + M_7$
 $C_{12} = M_3 + M_5$
 $C_{21} = M_2 + M_4$
 $C_{22} = M_1 - M_2 + M_3 + M_6$

Strassen's Matrix Multiplication

Strassen's Matrix Multiplication: Analysis

$$T(n) = 7 \cdot T\left(\frac{n}{2}\right) + 18 \cdot \mathcal{O}\left(\frac{n^2}{4}\right)$$
$$= 7 \cdot T\left(\frac{n}{2}\right) + \mathcal{O}\left(n^2\right)$$
$$= 7 \cdot T\left(\frac{n}{2}\right) + c \cdot n^2$$
$$= \Theta(n^{2.81})$$

Reasoning:

From case 1 of Master Theorem, where a=7, b=2, and f(n)= $\mathcal{O}(n^2)$ $n^{\log_b a} = n^{\log_2 7}$

$$f(n) = n^{\log_2 7 - \epsilon}$$
, where $\epsilon = 0.81$

So, f(n) is polynomially less than $n^{\log_2 7} = n^{2.81}$.

$$T(n) = \Theta(n^{2.81})$$

DAA Lab Submission Guide Lines

- ▶ Mail-ID: cs203.daa.mec@gmail.com (Doubt Clarification).
- Submission Link will be shared.
- ► Late Submission (<=3-Days):50% weightage will be given.
- Write a readme file to understand your solutions.
- Submit source files only (C or JAVA).

Lab Weightage - 30%.

Lab Instructor: Sri. Brahmaiah G

DAA (Design and Analysis of Algorithms) Lab

Reference Books:

- Introduction to Algorithms, 3rd edition, T.H.Cormen, C.E.Leiserson, R.L.Rivest and C.Stein.
- Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekaran.
- Algorithms, 4th edition, Robert Sedgewick.
- Design and Analysis of Computer Algorithms, Aho, Ullman, and Hopcroft.

Web Resources:

- Algorithms by Robert Sedgewik
- Algorithms by Abdul Bari
- MIT Open Courseware Videos on Algorithms
- Oata Structures and Algorithms