Advanced Statistical Computing

Fall 2016

Steve Qin

Outline

- Collapsing, predictive updating
- Sequential Monte Carlo

Collapsing and grouping

- Want to sample from $\mathbf{X} = (x_1, x_2, ..., x_d)$
- Regular Gibbs sampler:
 - Sample $x_1^{(t+1)}$ from $\pi(x_1^{(t+1)} | x_2^{(t)}, x_3^{(t)}, ..., x_d^{(t)})$,
 - Sample $x_2^{(t+1)}$ from $\pi(x_2^{(t+1)} | x_1^{(t)}, x_3^{(t)}, ..., x_d^{(t)})$,
 - **—** ...
 - Sample $x_d^{(t+1)}$ from $\pi(x_d^{(t+1)} | x_2^{(t)}, x_3^{(t)}, ..., x_{d-1}^{(t)})$,
- Alternatively:
 - Grouping: $\mathbf{X}_{d-1}' = (x_{d-1}, x_d)$.
 - Collapsing, i.e., integrate out x_d : $\mathbf{X}^- = (x_1, x_2, ..., x_{d-1})$

The three-schemes

Some theory

- Hilbert space $L_2(\pi)$ of functions h().
- Define $\langle h, g \rangle = E_{\pi} \{ h(x)g(x) \}$, thus $||h|| = \text{var}_{\pi}(h)$.
- Define forward operator F as

$$Fh(x) = \int K(x, y)h(y)dy = E_{\pi} \{h(x^{(t+1)}) | x^{(t)} = x\}.$$

$$||F|| = \sup_{h} ||Fh(x)|| \text{ for all fuentions with } E(h^2) = 1.$$

• The convergence of Markov chains is tied to the norms of the corresponding forward operators.

Three-scheme theorem

- Standard F_s : $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_d$;
- Grouping F_g : $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow \{x_{d-1}, x_d\}$,
- Collapsing F_c : $x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{d-1}$.

Theorem The norms of the three forward operators are ordered as

$$||F_c|| \le ||F_g|| \le ||F_s||$$

Examples

- Murray's data
- Bivariate Gaussian with mean 0 and unknown covariance matrix Σ

standard

$$\sum |y_{obs}, y_{mis},$$
 $y_{mis}|y_{obs}, \sum$

collapsing

$$y_{mis,i} \mid y_{obs}, y_{mis,[-i]}.$$

Remarks

- Avoid introducing unnecessary parameters into a Gibbs sampler,
- Do as much analytical work as possible,
- However, introducing some clever auxiliary variables can greatly improve computation efficiency.

Sequential Monte Carlo

We wish to evaluate an integral

$$\theta = \int_{\aleph} h(x)\pi(x)dx = E_{\pi}[h(X)].$$
assume $h(x) \ge 0$.

- Riemann sum (on grid points) as approximation.
- Alternatively, use Monte Carlo. Select random samples uniformly on its support.

An example

$$f(x,y) = 0.5e^{-90(x-0.5)^2 - 45(y+0.1)^4} + e^{-45(x+0.4)^2 - 60(y-0.5)^2}$$

 Both grid-point method and vanilla Monte Carlo methods wasted resources on "boring" desert area.

The basic idea

- Marshall (1956) suggested that one should focus on the region(s) of "importance" so as to save computational resources—*importance sampling*.
- Essential in high-dimensional models.

The algorithm

- To evaluate $\mu = E_{\pi}[h(X)] = \int_{S} h(x)\pi(x)dx$.
 - Draw $x^{(1)},...,x^{(m)}$ from a trial distribution g().
 - Calculate the *importance weight*

$$w^{(j)} = \pi(x^{(j)})/g(x^{(j)}), \text{ for } j = 1,...,m.$$

- Approximate μ by $\hat{\mu} = \frac{w^{(1)}h(x^{(1)}) + \dots + w^{(m)}h(x^{(m)})}{w^{(1)} + \dots + w^{(m)}}$.
- Remark: $\hat{\mu}$ is better than the unbiased estimator $\tilde{\mu} = \frac{1}{m} \{ w^{(1)} h(x^{(1)}) + \dots + w^{(m)} h(x^{(m)}) \}.$ why?

An example (cont.)

Use proposal function

$$g(x,y) \propto 0.5e^{-90(x-0.5)^2-10(y+0.1)^2} + e^{-45(x+0.4)^2-60(y-0.5)^2},$$

with $(x,y) \in [-1,1] \times [-1,1],$ a truncated
mixture of bivariate Gaussian

$$0.46 \mathcal{N} \left[\left(\begin{array}{c} 0.5 \\ -0.1 \end{array} \right), \; \left(\begin{array}{cc} \frac{1}{180} & 0 \\ 0 & \frac{1}{20} \end{array} \right) \right] + 0.54 \mathcal{N} \left[\left(\begin{array}{c} -0.4 \\ 0.5 \end{array} \right), \; \left(\begin{array}{cc} \frac{1}{90} & 0 \\ 0 & \frac{1}{120} \end{array} \right) \right]$$

Vanilla Monte Carlo

$$\hat{\mu} = 0.1307$$

 $std(\hat{\mu}) = 0.009$

Importance Sampling

$$\hat{\mu} = 0.1259$$

$$std(\hat{\mu}) = 0.0005$$

• Basic principle in Monte Carlo: carry out analytical computation as much as possible.

• Estimating E[h(x)].

draw independent samples: $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ...

$$\hat{I} = \frac{1}{m} \left\{ h(\mathbf{x}^{(1)}) + \dots + h(\mathbf{x}^{(m)}) \right\}.$$

• If $X=(x_1, x_2)$ and $E[h(x)|x_2]$ can be carried out analytically.

$$\tilde{I} = \frac{1}{m} \left\{ E[h(\mathbf{x}) \mid x_2^{(1)}] + \dots + E[h(\mathbf{x}) \mid x_2^{(m)}] \right\}.$$

• Both \hat{I} and \tilde{I} are unbiased.

$$E_{\pi}h(\mathbf{x}) = E_{\pi}[E\{h(\mathbf{x}) \mid x_2\}].$$

• But \tilde{I} should be preferred becasue

$$\operatorname{var}(\hat{I}) = \frac{\operatorname{var}\{h(\mathbf{x})\}}{m} \ge \frac{\operatorname{var}\{E[h(\mathbf{x}) \mid x_2]\}}{m} = \operatorname{var}(\tilde{I}).$$

due to

$$var\{h(\mathbf{x})\} = var\{E[h(\mathbf{x}) \mid x_2]\} + E\{var[h(\mathbf{x}) \mid x_2]\},\$$

• Conditioning an inferior estimator on the vale of sufficient statistics leads to the optimal estimator.

- For high dimensional problem, how to design trial distribution is challenging.
- Suppose the target density of $\mathbf{x} = (x_1, x_2, ..., x_d)$ can be decomposed as

$$\pi(\mathbf{x}) = \pi(x_1)\pi(x_2 \mid x_1)\cdots\pi(x_d \mid x_1,...,x_{d-1})$$
 then constructed trial density as

$$g(\mathbf{x}) = g_1(x_1)g_2(x_2 \mid x_1) \cdots g_d(x_d \mid x_1,...,x_{d-1})$$

$$w(\mathbf{x}) = \frac{\pi(x_1)\pi(x_2 \mid x_1) \cdots \pi(x_d \mid x_1, ..., x_{d-1})}{g_1(x_1)g_2(x_2 \mid x_1) \cdots g_d(x_d \mid x_1, ..., x_{d-1})}$$

Suggest a recursive way of computing and monitoring importance weight. Denote

$$\mathbf{X_t} = (x_1, x_2, \dots, x_t)$$

then we have

$$w_t(\mathbf{x_t}) = w_{t-1}(\mathbf{x_{t-1}}) \frac{\pi(x_t \mid \mathbf{x_{t-1}})}{g_t(x_t \mid \mathbf{x_{t-1}})}$$

- Advantages of the recursion scheme
 - Can stop generating further components of x if the partial weight is too small.
 - Can take advantage of $\pi(x_t | \mathbf{x_{t-1}})$ in designing $g_t(x_t | \mathbf{x_{t-1}})$
- However, the scheme is impractical since requires the knowledge of marginal distribution $\pi(x_t)$.

- Add another layer of complexity:
- Introduce a sequence of "auxiliary distributions" $\pi_1(x_1)\pi_2(\mathbf{x}_2)\pi_d(\mathbf{x})$ such that $\pi_t(\mathbf{x}_t)$ is a reasonable approximation of the marginal distribution $\pi(\mathbf{x}_t)$, for t = 1, ..., d -1 and $\pi_d = \pi$.
- Note the π_d are only required to be known up to a normalizing constant.

The SIS procedure

For
$$t = 2, ..., d$$
,

• Draw $X_t = x_t$ from $g_t(x_t | x_{t-1})$, and let

$$\mathbf{x}_{\mathbf{t}} = (\mathbf{x}_{\mathbf{t}-1}, x_t)$$

- Compute $u_t = \frac{\pi_t(\mathbf{x_t})}{\pi_{t-1}(\mathbf{x_{t-1}})g_t(x_t \mid \mathbf{x_{t-1}})}$ and let $w_t = w_{t-1}u_t$
- u_t : incremental weight.
- The key idea is to breaks a difficult task into manageable pieces.
- If w_t is getting too small, reject.

References

- Hammersley and Morton (1954).
- Rosenbluth and Rosenbluth (1955).
- Liu JS (2001)
- Doucet et al. (2001).

Arnaud Doucet Nando de Freitas Neil Gordon Editors

Sequential Monte Carlo Methods in Practice

Examples of SIS

- Growing a polymer
 - Self avoid walk
- Sequential imputation for statistical missing data problem.
- More and details of these examples, see Liu 2001.

A Self-Avoiding Walk of Length N=150

Future topics

- Multigrid Monte Carlo (MGMC), density-scaling Monte Carlo, hybrid Monte Carlo (HMC), evolutionary Monte Carlo, exchange Monte Carlo.
- Cluster method, data augmentation.

 Parameter expansion, multicanonical sampling, umbrella sampling, simulated tempering, multi-try Metropolis, particle filtering, ...