Statistica - 12ª lezione

4 maggio 2021

T-test per il valore atteso di un campione numeroso

IPOTESI: X_1, \ldots, X_n i.i.d. con n grande, $\mu_0 \in \mathbb{R}$ fissato

TESI: Posto $T_0 := \frac{\overline{X} - \mu_0}{S} \sqrt{n}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto H_0 se	se $\mu=\mu_0,$ $T_0\sim\dots$
$\mu = \mu_0$ oppure $\mu \le \mu_0$	$\mu > \mu_0$	$T_0 > Z_{1-\alpha}$	$z_{1-\alpha}$
$\mu = \mu_0$ oppure $\mu \ge \mu_0$	$\mu < \mu_0$	$T_0 < -\mathbf{z}_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ T_0 >z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline \end{array}$

X^2 -test per la varianza di un campione normale

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma_0 > 0$ fissato

TESI: Posto $X_0^2 := \frac{(n-1)S^2}{\sigma_0^2}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se	se $\sigma=\sigma_0,$ $X_0^2\sim\dots$
$\sigma = \sigma_0$ oppure $\sigma \leq \sigma_0$	$\sigma > \sigma_0$	$X_0^2 > \chi_{1-\alpha}^2(n-1)$	$ \begin{array}{c} $
$\sigma = \sigma_0$ oppure $\sigma \geq \sigma_0$	$\sigma < \sigma_0$	$X_0^2 < \chi_\alpha^2(n-1)$	$ \begin{array}{c} $
$\sigma = \sigma_0$	$\sigma eq \sigma_0$	$X_0^2 < \chi_{rac{lpha}{2}}^2(n-1)$ oppure $X_0^2 > \chi_{1-rac{lpha}{2}}^2(n-1)$	

X^2 -test per la varianza di un campione normale

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma_0 > 0$ fissato

TESI: Posto $X_0^2 := \frac{(n-1)S^2}{\sigma_0^2}$, questi sono test di significatività α :

H_0	H ₁	accetto H ₀ se	se $\sigma=\sigma_0,$ $X_0^2\sim\dots$
$\sigma = \sigma_0$ oppure $\sigma \leq \sigma_0$	$\sigma > \sigma_0$	$X_0^2 \leq \chi_{1-\alpha}^2(n-1)$	$\frac{1}{x_{1-\alpha}^2}$
$\sigma = \sigma_0$ oppure $\sigma \geq \sigma_0$	$\sigma < \sigma_0$	$X_0^2 \ge \chi_\alpha^2(n-1)$	
$\sigma = \sigma_0$	$\sigma eq \sigma_0$	$\chi_{\frac{\alpha}{2}}^{2}(n-1) \le \\ \le \chi_{0}^{2} \le \\ \le \chi_{1-\frac{\alpha}{2}}^{2}(n-1)$	

$$\begin{array}{lll} \textbf{IPOTESI:} & X_1, \dots, X_m & \text{i.i.d.} & \text{con} & X_i \sim \textit{N}(\mu_X, \sigma_X^2) \\ & & & & \\ Y_1, \dots, Y_n & \text{i.i.d.} & \text{con} & Y_j \sim \textit{N}(\mu_Y, \sigma_Y^2) \end{array} \right\} & \text{indipendenti}$$

$$X_1, \ldots, X_m$$
 i.i.d. con $X_i \sim N(\mu_X, \sigma_X^2)$ Y_1, \ldots, Y_n i.i.d. con $Y_j \sim N(\mu_Y, \sigma_Y^2)$ indipendenti

$$\Rightarrow \qquad \overline{X}_m \sim N\left(\mu_X, \frac{\sigma_X^2}{m}\right) \\ \Rightarrow \qquad \overline{Y}_n \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right) \quad \} \quad \text{indipendenti}$$

$$X_1, \ldots, X_m$$
 i.i.d. con $X_i \sim N(\mu_X, \sigma_X^2)$ Y_1, \ldots, Y_n i.i.d. con $Y_j \sim N(\mu_Y, \sigma_Y^2)$ indipendenti $\overline{X}_m \sim N\left(\mu_X, \frac{\sigma_X^2}{m}\right)$ $\overline{Y}_n \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$ indipendenti $\overline{Y}_n \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$ $\Rightarrow \overline{X}_m - \overline{Y}_n \sim N\left(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}\right)$

$$X_1,\ldots,X_m$$
 i.i.d. con $X_i\sim N(\mu_X,\sigma_X^2)$ Y_1,\ldots,Y_n i.i.d. con $Y_j\sim N(\mu_Y,\sigma_Y^2)$ indipendenti

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

$$H_1: \mu_X - \mu_Y > \delta$$

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

$$H_1: \mu_X - \mu_Y > \delta$$

ESEMPIO: Se $\delta_0 = 0$.

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X > \mu_Y$

$$H_1: \mu_X > \mu_Y$$

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

$$H_1: \mu_X - \mu_Y > \delta_0$$

ESEMPIO: Se $\delta_0 = 0$.

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X > \mu_Y$

$$H_1: \mu_X > \mu_Y$$

Userò la statistica test

$$Z_0 := \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$$

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

ESEMPIO: Se $\delta_0 = 0$,

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X > \mu_Y$

Userò la statistica test

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} \sim N(0, 1)$$
 se e solo se $\mu_X - \mu_Y = \delta_0$

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

ESEMPIO: Se $\delta_0 = 0$,

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X > \mu_Y$

Userò la statistica test

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} \sim N(0, 1)$$
 se e solo se $\mu_X - \mu_Y = \delta_0$

e la regola

"Rifiuto
$$H_0$$
 se $Z_0 > z_{1-\alpha}$ "

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

$$H_1: \mu_X - \mu_Y > \delta_0$$

ESEMPIO: Se $\delta_0 = 0$.

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X > \mu_Y$

$$H_1: \mu_X > \mu_Y$$

Userò la statistica test

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} \sim N(0, 1)$$
 se e solo se $\mu_X - \mu_Y = \delta_0$

e la regola

"Rifiuto
$$H_0$$
 se $Z_0 > z_{1-\alpha}$ "

Questo è un test di significatività α !

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

SIGNIFICATIVITÀ = $\mathbb{P}_{H_0 \text{ vera}}$ ("rifiuterò H_0 ")

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se} \ \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{SIGNIFICATIVIT\`A} &= \mathbb{P}_{H_0 \text{ vera}} \left(\text{``rifiuter\'o } H_0 \text{''} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}} > z_{1-\alpha} \right) \end{split}$$

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se} \ \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{SIGNIFICATIVIT\`A} &= \mathbb{P}_{H_0 \text{ vera}} \left(\text{``rifiuter\'o } H_0 \text{'`} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left(\underbrace{\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}}_{\sim \textit{N}(0,1)} > z_{1-\alpha} \right) \end{split}$$

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se} \ \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{SIGNIFICATIVIT\`A} &= \mathbb{P}_{H_0 \text{ vera}} \left(\text{``rifiuter\'o } H_0 \text{''} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}} > z_{1-\alpha} \right) \end{split}$$

 $= 1 - \Phi(z_{1-\alpha})$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ " SIGNIFICATIVITÀ $= \mathbb{P}_{H_0 ext{ vera}}$ ("rifiuterò H_0 ")

$$= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$$
$$= 1 - \Phi(z_{1-\alpha}) = 1 - (1-\alpha)$$

$$H_0: \mu_X - \mu_Y = \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0$$
 "Rifiuto H_0 se $Z_0:=\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha}$ "

SIGNIFICATIVITÀ =
$$\mathbb{P}_{H_0 \text{ vera}}$$
 ("rifiuterò H_0 ")
= $\mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$
= $1 - \Phi(z_{1-\alpha}) = 1 - (1 - \alpha)$
= α

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

SIGNIFICATIVITÀ =
$$\mathbb{P}_{H_0 \text{ vera}}$$
 ("rifiuterò H_0 ")
$$= \mathbb{P}_{\mu_X - \mu_Y = \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$$

$$= 1 - \Phi(z_{1-\alpha})$$

$$= \alpha$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA = $\mathbb{P}_{H_0 \text{ falsa}}$ ("rifiuterò H_0 ")

$$\begin{split} H_0: \mu_X - \mu_Y &= \delta_0 \qquad \text{vs.} \qquad H_1: \mu_X - \mu_Y > \delta_0 \\ \text{``Rifiuto } H_0 \ \ \text{se } \ Z_0: &= \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \text{'`} \\ \text{POTENZA} &= \mathbb{P}_{H_0 \ \text{falsa}} \left(\text{``rifiuter\'o } H_0 \text{'`} \right) \\ &= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right) \end{split}$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA = $\mathbb{P}_{H_0 ext{ falsa}}$ ("rifiuterò H_0 ")
$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left(rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{2} + rac{\sigma_Y^2}{2}}} > z_{1-lpha}
ight)$$

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > Z_{1-\alpha} + \frac{\delta_0 - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right)$$

 $H_0: \mu_X - \mu_Y = \delta_0$ vs. $H_1: \mu_X - \mu_Y > \delta_0$

"Rifiuto
$$H_0$$
 se $Z_0 := \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha}$ "

POTENZA = $\mathbb{P}_{H_0 \text{ falsa}}$ ("rifiuterò H_0 ")

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$$

$$= \mathbb{P}_{\mu_{X} - \mu_{Y} > \delta_{0}} \left(\underbrace{\frac{\overline{X}_{m} - \overline{Y}_{n} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}}}_{N(0,1)} > z_{1-\alpha} + \frac{\delta_{0} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} \right)$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò H_0 ")

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}}\left(\frac{\overline{X}_{m} - \overline{Y}_{n} - \delta_{0}}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} > z_{1-\alpha}\right)$$

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}}\left(\frac{\overline{X}_{m} - \overline{Y}_{n} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}} > z_{1-\alpha} + \frac{\delta_{0} - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}}\right)$$

$$\sqrt{\frac{\delta_X}{m} + \frac{\delta_Y}{n}}$$

$$= 1 - \Phi \left(z_{1-\alpha} + \frac{\delta_0 - (\mu_X - \mu_Y)}{\sqrt{\sigma_X^2 + \frac{\sigma_Y^2}{\gamma^2}}} \right)$$

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò H_0 ")

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}}\left(\frac{\overline{X}_{m}-\overline{Y}_{n}-\delta_{0}}{\sqrt{\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}}}>Z_{1-\alpha}\right)$$

$$\left(\overline{X}_{m}-\overline{Y}_{n}-(\mu_{X}-\mu_{Y})\right)$$

$$= \mathbb{P}_{\mu_{X}-\mu_{Y}>\delta_{0}}\left(\frac{\overline{X}_{m}-\overline{Y}_{n}-(\mu_{X}-\mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}}} > z_{1-\alpha} + \frac{\delta_{0}-(\mu_{X}-\mu_{Y})}{\sqrt{\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}}}\right)$$

$$= \Phi\left(-z_{1-\alpha} + \frac{(\mu_{X}-\mu_{Y})-\delta_{0}}{\sqrt{\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{n}}}\right)$$

6/22

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$ "Rifiuto H_0 se $Z_0:=rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}} > z_{1-lpha}$ "

POTENZA =
$$\mathbb{P}_{H_0 \text{ falsa}}$$
 ("rifiuterò H_0 ")

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > z_{1-\alpha} \right)$$

$$= \mathbb{P}_{\mu_X - \mu_Y > \delta_0} \left(\frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} > Z_{1-\alpha} + \frac{\delta_0 - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \right)$$

$$= \Phi\left(-z_{1-\alpha} + \frac{(\mu\chi - \mu\gamma) - \delta_0}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}}\right) \quad \text{crescente in } m, n!$$

Per i due campioni normali precedenti, questi sono tutti test di livello α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se	<i>p</i> -value
$\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \le \delta_0$	$\mu_{X} - \mu_{Y} > \delta_{0}$	$Z_0 > z_{1-\alpha}$	$1-\Phi(z_0)$
$\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \ge \delta_0$	$\mu_{X} - \mu_{Y} < \delta_{0}$	$Z_0 < -z_{1-\alpha}$	Φ(z ₀)
$\mu_X - \mu_Y = \delta_0$	$\mu_{X} - \mu_{Y} \neq \delta_{0}$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	2 $[1 - \Phi(z_0)]$

$$Z_0 := \frac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$$

Per i due campioni normali precedenti, questi sono tutti test di livello α :

H ₀	H ₁	rifiuto H_0 se	<i>p</i> -value
$\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \leq \mu_{Y}$	$\mu_X > \mu_Y$	$Z_0 > z_{1-\alpha}$	$1-\Phi(z_0)$
$\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \ge \mu_{Y}$	$\mu_{X} < \mu_{Y}$	$Z_0 < -z_{1-\alpha}$	Φ(z ₀)
$\mu_{X} = \mu_{Y}$	$\mu_X \neq \mu_Y$	$ Z_0 >z_{1-\frac{\alpha}{2}}$	2 $[1 - \Phi(z_0)]$

$$Z_0 := rac{\overline{X}_m - \overline{Y}_n}{\sqrt{rac{\sigma_X^2}{m} + rac{\sigma_Y^2}{n}}}$$

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

$$H_1: \mu_X - \mu_Y > \delta$$

senza conoscere il valore di σ_X e σ_Y !

OBIETTIVO: Fissato $\delta_0 \in \mathbb{R}$, fare un test per le ipotesi

$$H_0: \mu_X - \mu_Y = \delta_0$$
 vs. $H_1: \mu_X - \mu_Y > \delta_0$

senza conoscere il valore di σ_X e σ_Y !

Teorema (non dimostrato)

Se i due campioni normali precedenti hanno $\sigma_X = \sigma_Y$, allora

$$\frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{S_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}} \sim t(m + n - 2)$$

dove S_p^2 è la *varianza pooled*

$$S_p^2 := \frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}$$

Per i due campioni normali precedenti, con in più l'ipotesi $\sigma_X = \sigma_Y$, questi sono tutti test di livello α :

H ₀	H ₁	rifiuto H_0 se
$\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \le \delta_0$	$\mu_{X} - \mu_{Y} > \delta_{0}$	$T_0 > t_{1-\alpha}(m+n-2)$
$\mu_X - \mu_Y = \delta_0$ oppure $\mu_X - \mu_Y \ge \delta_0$	$\mu_{X} - \mu_{Y} < \delta_{0}$	$T_0 < -t_{1-\alpha}(m+n-2)$
$\mu_X - \mu_Y = \delta_0$	$\mu_{X} - \mu_{Y} \neq \delta_{0}$	$ T_0 > t_{1-\frac{\alpha}{2}(m+n-2)}$

$$\mathcal{T}_0 := rac{\overline{X}_m - \overline{Y}_n - \delta_0}{\sqrt{\mathcal{S}_p^2 \left(rac{1}{m} + rac{1}{n}
ight)}}$$

Per i due campioni normali precedenti, con in più l'ipotesi $\sigma_X = \sigma_Y$, questi sono tutti test di livello α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \leq \mu_{Y}$	$\mu_X > \mu_Y$	$T_0 > t_{1-\alpha}(m+n-2)$
$\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \ge \mu_{Y}$	$\mu_{X} < \mu_{Y}$	$T_0 < -t_{1-\alpha}(m+n-2)$
$\mu_{X} = \mu_{Y}$	$\mu_X \neq \mu_Y$	$ T_0 >t_{1-\frac{\alpha}{2}(m+n-2)}$

$$T_0 := \frac{\overline{X}_m - \overline{Y}_n}{\sqrt{S_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}$$

Per i due campioni normali precedenti, con in più l'ipotesi $\sigma_X = \sigma_Y$, questi sono tutti test di livello α :

H ₀	H ₁	rifiuto H_0 se
$\mu_{X} = \mu_{Y}$ oppure $\mu_{X} \le \mu_{Y}$	$\mu_X > \mu_Y$	$T_0 > t_{1-\alpha}(m+n-2)$
$\mu_X = T_0 \sim ???$ quando $\mu_X - \mu_Y \neq \delta_0$ oppul $\mu_X \geq T_0 \Rightarrow I$ la potenza non si sa calcolare		
$\mu_{X} = \mu_{Y}$	$\mu_X \neq \mu_Y$	$ T_0 >t_{1-\frac{\alpha}{2}(m+n-2)}$

$$\mathcal{T}_0 := rac{\overline{X}_m - \overline{Y}_n}{\sqrt{\mathcal{S}_p^2\left(rac{1}{m} + rac{1}{n}
ight)}}$$

Ma come si fa a capire se $\sigma_X = \sigma_Y$?

Test differenza medie x pop. normali indipendenti

Ma come si fa a capire se $\sigma_X = \sigma_Y$?

Servirebbe un test per le ipotesi

$$H_0: \sigma_X \neq \sigma_Y$$
 vs. $H_1: \sigma_X = \sigma_Y$

(evidenza forte per $\sigma_X = \sigma_Y \quad \Rightarrow \quad$ sarebbe meglio)

Test differenza medie x pop. normali indipendenti

Ma come si fa a capire se $\sigma_X = \sigma_Y$?

Servirebbe un test per le ipotesi

$$H_0: \sigma_X \neq \sigma_Y$$
 vs. $H_1: \sigma_X = \sigma_Y$ (evidenza forte per $\sigma_X = \sigma_Y$ \Rightarrow sarebbe meglio)

o almeno per

$$H_0: \sigma_X = \sigma_Y$$
 vs. $H_1: \sigma_X \neq \sigma_Y$ (evidenza forte per $\sigma_X \neq \sigma_Y$)

Test differenza medie x pop. normali indipendenti

Ma come si fa a capire se $\sigma_X = \sigma_Y$?

Servirebbe un test per le ipotes

$$H_0: \sigma_X \neq \sigma_Y$$
 vs. $H_1: \sigma_X = \sigma_Y$ evidenza forte per $\sigma_X = \sigma_Y$ \Rightarrow sarebbe meglio)

o almeno per

$$H_0: \sigma_X = \sigma_Y$$
 vs. $H_1: \sigma_X \neq \sigma_Y$ (evidenza forte per $\sigma_X \neq \sigma_Y$)

Purtroppo si sa fare solo questo!

Teorema (non dimostrato)

Se i due campioni normali precedenti hanno $\sigma_X = \sigma_Y$, allora

$$F_0 := \frac{S_X^2}{S_Y^2}$$

ha densità di Fisher con m-1 e n-1 gradi di libertà (f(m-1, n-1))

Teorema (non dimostrato)

Se i due campioni normali precedenti hanno $\sigma_X = \sigma_Y$, allora

$$F_0 := \frac{S_X^2}{S_Y^2}$$

ha densità di Fisher con m-1 e n-1 gradi di libertà (f(m-1,n-1))

Un test di significatività α per le ipotesi

$$H_0: \sigma_X = \sigma_Y \quad \left(\Leftrightarrow \frac{\sigma_X^2}{\sigma_Y^2} = 1 \right) \quad \text{vs.} \quad H_1: \sigma_X > \sigma_Y \quad \left(\Leftrightarrow \frac{\sigma_X^2}{\sigma_Y^2} > 1 \right)$$

è dato dalla regola

"Rifiuto
$$H_0$$
 se $F_0 > f_{1-\alpha}(m-1, n-1)$ "

• supp
$$f(h, k) = [0, +\infty)$$

- supp $f(h, k) = [0, +\infty)$
- i quantili con $\alpha \geq 90\%$ sono tabulati:

$$f_{0.975}(3,7) = 5.890$$

	Tavola dei quantil 0.975 della distribuzione F(m,n)																								
		n																							
m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	26	28	2
1	647.8	38.506	17.443	12.218	10.007	8.813	8.073	7.571	7.209	6.937	6.724	6.554	6.414	6.298	6.200	6.115	6.042	5.978	5.922	5.871	5.786	5.717	5.659	5.610	5.
2	799.5	39.000	16.044	10.649	8.434	7.260	6 542	6.059	5.715	5.456	5.256	5.096	4.965	4.857	4.765	4.687	4.619	4.560	4.508	4.461	4.383	4.319	4.265	4.221	4.1
3	864.2	39.166	15.439	9.979	7.764	6.599	5.890	5.416	5.078	4.826	4.630	4.474	4.347	4.242	4.153	4.077	4.011	3.954	3.903	3.859	3.783	3.721	3.670	3.626	3.
4	899.6	39.248	15.101	9.604	7.388	6.227	5.523	5.053	4.718	4.468	4.275	4.121	3.996	3.892	3.804	3.729	3.665	3.608	3.559	3.515	3.440	3.379	3.329	3.286	3.:
5	921.8	39.298	14.885	9.364	7.146	5.988	5.285	4.817	4.484	4.236	4.044	3.891	3.767	3.663	3.576	3.502	3.438	3.382	3.333	3.289	3.215	3.155	3.105	3.063	3.
6	937.1	39.331	14.735	9.197	6.978	5.820	5.119	4.652	4.320	4.072	3.881	3.728	3.604	3.501	3.415	3.341	3.277	3.221	3.172	3.128	3.055	2.995	2.945	2.903	2.5
7	948.2	39.356	14 624	9.074	6.853	5.695	4 995	4 529	4 197	3.950	3.759	3.607	3.483	3 380	3 203	3 210	3.156	3 100	3.051	3.007	2 9 3 4	2 874	2.824	2.782	2:

- supp $f(h, k) = [0, +\infty)$
- i quantili con $\alpha \geq 90\%$ sono tabulati

- supp $f(h, k) = [0, +\infty)$
- i quantili con $\alpha \geq 90\%$ sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$

- supp $f(h, k) = [0, +\infty)$
- i quantili con $\alpha \geq 90\%$ sono tabulati

- supp $f(h, k) = [0, +\infty)$
- i quantili con $\alpha \geq 90\%$ sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$

- supp $f(h, k) = [0, +\infty)$
- i quantili con $\alpha \geq$ 90% sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$

- supp $f(h, k) = [0, +\infty)$
- i quantili con $\alpha \geq$ 90% sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$

Proprietà della densità di Fisher:

• supp
$$f(h, k) = [0, +\infty)$$

• i quantili con $\alpha \geq$ 90% sono tabulati

$$\bullet \begin{cases} f_{\alpha}(h,k) > 1 & \text{se } \alpha > 50\% \\ 0 < f_{\alpha}(h,k) < 1 & \text{se } \alpha < 50\% \end{cases}$$

• i quantili con $\alpha \le 10\%$ si ricavano da

$$f_{\alpha}(h,k) = \frac{1}{f_{1-\alpha}(k,h)}$$

$$\mathbb{P}_{\sigma_X = \sigma_Y} \Big(\frac{S_X^2}{S_Y^2} \le \frac{1}{f_{1-\alpha}(n-1, m-1)} \Big)$$

$$\mathbb{P}_{\sigma_X = \sigma_Y} \Big(\frac{S_X^2}{S_Y^2} \le \frac{1}{f_{1-\alpha}(n-1, m-1)} \Big)$$

$$= \mathbb{P}_{\sigma_X = \sigma_Y} \left(\frac{S_Y^2}{S_X^2} \ge f_{1-\alpha}(n-1, m-1) \right)$$

$$\mathbb{P}_{\sigma_X = \sigma_Y} \left(\frac{S_X^2}{S_Y^2} \le \frac{1}{f_{1-\alpha}(n-1, m-1)} \right)$$

$$\begin{split} &= \mathbb{P}_{\sigma_X = \sigma_Y} \Big(\frac{S_Y^2}{S_X^2} \ge f_{1-\alpha}(n-1, m-1) \Big) \\ &= 1 - \mathbb{P}_{\sigma_X = \sigma_Y} \Big(\frac{S_Y^2}{S_Y^2} < f_{1-\alpha}(n-1, m-1) \Big) \end{split}$$

$$\mathbb{P}_{\sigma_X = \sigma_Y} \left(\frac{S_X^2}{S_Y^2} \le \frac{1}{f_{1-\alpha}(n-1, m-1)} \right)$$

$$= \mathbb{P}_{\sigma_X = \sigma_Y} \left(\frac{S_Y^2}{S_X^2} \ge f_{1-\alpha}(n-1, m-1) \right)$$

$$= 1 - \mathbb{P}_{\sigma_X = \sigma_Y} \left(\underbrace{\frac{S_Y^2}{S_X^2}}_{f(n-1, m-1)} < f_{1-\alpha}(n-1, m-1) \right)$$

$$= 1 - (1 - \alpha)$$

DIMOSTRAZIONE (della relazione di reciproco):

 $= \alpha$

$$\mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{X}^{2}}{S_{Y}^{2}} & \leq \frac{1}{f_{1-\alpha}(n-1,m-1)}\right)$$

$$= \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\frac{S_{Y}^{2}}{S_{X}^{2}} \geq f_{1-\alpha}(n-1,m-1)\right)$$

$$= 1 - \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{Y}^{2}}{S_{X}^{2}} & \leq f_{1-\alpha}(n-1,m-1)\right)$$

$$= 1 - (1 - \alpha)$$

$$\mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{X}^{2}}{S_{Y}^{2}} \leq \frac{1}{f_{1-\alpha}(n-1,m-1)} \\ f(m-1,n-1) = \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\frac{S_{Y}^{2}}{S_{X}^{2}} \geq f_{1-\alpha}(n-1,m-1) \right) \\ = 1 - \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{Y}^{2}}{S_{X}^{2}} < f_{1-\alpha}(n-1,m-1) \\ f(n-1,m-1) \end{array}\right) \\ = 1 - (1-\alpha) \\ = \alpha$$

$$\mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{X}^{2}}{S_{Y}^{2}} \leq \frac{1}{f_{1-\alpha}(n-1,m-1)} \right)$$

$$= \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\frac{S_{Y}^{2}}{S_{X}^{2}} \geq f_{1-\alpha}(n-1,m-1)\right)$$

$$= 1 - \mathbb{P}_{\sigma_{X}=\sigma_{Y}}\left(\begin{array}{c} \frac{S_{Y}^{2}}{S_{X}^{2}} \leq f_{1-\alpha}(n-1,m-1) \right)$$

$$= 1 - (1-\alpha)$$

$$= \alpha$$

$$\Rightarrow f_{\alpha}(m-1,n-1) \equiv \frac{1}{f_{1-\alpha}(n-1,m-1)}$$

Per i due campioni normali precedenti, questi sono tutti test di livello α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$\sigma_{\mathcal{X}} = \sigma_{\mathcal{Y}}$ oppure $\sigma_{\mathcal{X}} \leq \sigma_{\mathcal{Y}}$	$\sigma_{X} > \sigma_{Y}$	$F_0 > f_{1-\alpha}(m-1, n-1)$
$ \begin{aligned} \sigma_{\chi} &= \sigma_{\gamma} \\ \text{oppure} \\ \sigma_{\chi} &\geq \sigma_{\gamma} \end{aligned} $	$\sigma_{X} < \sigma_{Y}$	$F_0 < f_{\alpha}(m-1, n-1)$
$\sigma_{X} = \sigma_{Y}$	$\sigma_X \neq \sigma_Y$	$F_0 < f_{rac{lpha}{2}}(m-1,n-1)$ oppure $F_0 > f_{1-rac{lpha}{2}}(m-1,n-1)$

$$F_0 := \frac{S_X^2}{S_Y^2}$$

Per i due campioni normali precedenti, questi sono tutti test di livello α :

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$ \begin{aligned} \sigma_{\chi} &= \sigma_{\gamma} \\ \text{oppure} \\ \sigma_{\chi} &\leq \sigma_{\gamma} \end{aligned} $	$\sigma_{X} > \sigma_{Y}$	$F_0 > f_{1-\alpha}(m-1, n-1)$
$\sigma_{X} = \sigma_{Y}$ Vanno controll $\sigma_{X} \leq \sigma_{Y}$	ate entrambe!	$F_0 < f_{\alpha}(m-1, n-1)$
$\sigma_{X} = \sigma_{Y}$	$\sigma_X \neq \sigma_Y$	$F_0 < f_{rac{lpha}{2}}(m-1,n-1)$ oppure $F_0 > f_{1-rac{lpha}{2}}(m-1,n-1)$

$$F_0 := \frac{S_X^2}{S_Y^2}$$

Per i due campioni normali precedenti, questi sono tutti test di livello α :

H ₀	H ₁	accetto H ₀ se
$\sigma_{\mathcal{X}} = \sigma_{\mathcal{Y}}$ oppure $\sigma_{\mathcal{X}} \leq \sigma_{\mathcal{Y}}$	$\sigma_{X} > \sigma_{Y}$	$F_0 \leq f_{1-\alpha}(m-1, n-1)$
$ \begin{aligned} \sigma_{X} &= \sigma_{Y} \\ \text{oppure} \\ \sigma_{X} &\geq \sigma_{Y} \end{aligned} $	$\sigma_{X} < \sigma_{Y}$	$F_0 \geq f_{\alpha}(m-1, n-1)$
$\sigma_{X} = \sigma_{Y}$	$\sigma_X \neq \sigma_Y$	$f_{\frac{\alpha}{2}}(m-1, n-1) \leq \\ \leq F_0 \leq \\ \leq f_{1-\frac{\alpha}{2}}(m-1, n-1)$

$$F_0 := \frac{S_X^2}{S_Y^2}$$

PROBLEMA: Calcolare il p-value dell'F-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs. $H_1:\sigma_X>\sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m=4 misure X_i e n=18 misure Y_j abbiamo trovato $f_0=2.903$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs. $H_1:\sigma_X>\sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato $f_0 = 2.903$

$$2.903 \equiv f_{1-\alpha}(3,17)$$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs. $H_1:\sigma_X>\sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3, 17)$$

 $\Rightarrow 0.9 < 1 - \alpha$

							la	dei -	quan	t(li 0.	9 dell	la dis	tribu	zic
_											n			
n	1	2	3	4	٠		_	15	16	17	18	19	20	
1	39.86	8.526	5 .538	4.5			1	3.073	3.048	3.026	3.007	2.990	2.975	2.
2	49.50	9.000	5.462	4.3			1	2.695	2.668	2.645	2.624	2.606	2.589	2.
3	53.59	9.162	5.391	4.1			1	2.490	2.462	2.437	2.416	2.397	2.380	2.
4	55.83	9.243	5.343	4.1			1	2.361	2.333	2.308	2.286	2.266	2.249	2.
5	57.24	9.293	5.309	4.0				2.273	2.244	2.218	2.196	2.176	2.158	2.
	E0 00	0.220	E 20E	4.0				2 200	2 470	2452	0.490	2 400	2.004	

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs. $H_1:\sigma_X>\sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3, 17)$$

 $\Rightarrow 0.9 < 1 - \alpha < 0.95$

	la dei quanti(i 0.9										95 della distribuzi				
m	1	2	3	4				15	16	17	18	19	20	:	
1	161.45	18.513	10.128	7.7			10	4.543	4.494	4.451	4.414	4.381	4.351	4.	
2	199.50	19.000	9.552	6.9			19	3.682	3.634	3,592	3.555	3.522	3.493	3.	
3	215.71	19.164	9.277	6.5			4	3.287	3.239	3.197	3.160	3.127	3.098	3.	
4	224.58	19.247	9.117	6.3			2	3.056	3.007	2.965	2.928	2.895	2.866	2.	
5	230.16	19.296	9.013	6.2			i8	2.901	2.852	2.810	2.773	2.740	2.711	2.	
o	200 00	40.990	0.044	D 4.			0	2 700	0.744	2000	0.004	2 020	2.500	٠.	

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs. $H_1:\sigma_X>\sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3, 17)$$

 $\Rightarrow 0.9 < 1 - \alpha < 0.95$
 $\Rightarrow 0.05 < \alpha < 0.1$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs. $H_1:\sigma_X>\sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}>f_{1-lpha}(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 2.903$$

$$2.903 \equiv f_{1-\alpha}(3,17)$$

$$\Rightarrow$$
 0.9 < 1 - α < 0.95

$$\Rightarrow$$
 0.05 < *p*-value < 0.1

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs. $H_1: \sigma_X < \sigma_Y$ "rifiuto H_0 se $F_0:= \frac{S_X^2}{S_Y^2} < f_{\alpha}(m-1,n-1)$ " se dopo $m=4$ misure X_i e $n=18$ misure Y_j abbiamo trovato

 $f_0 = 0.021$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs. $H_1: \sigma_X < \sigma_Y$ "rifiuto H_0 se $F_0:= \frac{S_X^2}{S_Y^2} < f_{\alpha}(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3,17)$$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y$$
 vs. $H_1:\sigma_X<\sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}< f_lpha(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3, 17)$$

 $\Rightarrow \frac{1}{0.021} = \frac{1}{f_{\alpha}(3, 17)}$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y \qquad ext{vs.} \qquad H_1:\sigma_X<\sigma_Y$$
 "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}< f_lpha(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3, 17)$$

$$\Rightarrow \frac{1}{0.021} = \frac{1}{f_{\alpha}(3, 17)}$$

$$\Rightarrow 47.619 = f_{1-\alpha}(17, 3)$$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs. $H_1: \sigma_X < \sigma_Y$ "rifiuto H_0 se $F_0:= rac{S_X^2}{S_Y^2} < f_lpha(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3, 17)$$

$$\Rightarrow \frac{1}{0.021} = \frac{1}{f_{\alpha}(3, 17)}$$

$$\Rightarrow 47.619 = f_{1-\alpha}(17, 3)$$

$$\Rightarrow 1 - \alpha > 0.995$$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0:\sigma_X=\sigma_Y \qquad ext{vs.} \qquad H_1:\sigma_X<\sigma_Y$$
 "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2}< f_lpha(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3,17)$$

$$\Rightarrow \quad \frac{1}{0.021} = \frac{1}{f_{\alpha}(3,17)}$$

$$\Rightarrow$$
 47.619 = $f_{1-\alpha}(17,3)$

$$\Rightarrow$$
 1 – α > 0.995

$$\Rightarrow$$
 α < 0.005

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs. $H_1: \sigma_X < \sigma_Y$ "rifiuto H_0 se $F_0:=rac{S_X^2}{S_Y^2} < f_lpha(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = 0.021$$

$$0.021 \equiv f_{\alpha}(3,17)$$

$$\Rightarrow \quad \frac{1}{0.021} = \frac{1}{f_{\alpha}(3,17)}$$

$$\Rightarrow$$
 47.619 = $f_{1-\alpha}(17,3)$

$$\Rightarrow$$
 1 – α > 0.995

$$\Rightarrow$$
 p-value < 0.005

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y \qquad \text{vs.} \qquad H_1: \sigma_X \neq \sigma_Y$$
 "accetto H_0 se $\frac{f_{\alpha}}{2}(m-1,n-1) < F_0:= \frac{S_X^2}{S_Y^2} < \frac{f_{1-\frac{\alpha}{2}}(m-1,n-1)}{2}$ "

se dopo m = 4 misure X_i e n = 18 misure Y_j abbiamo trovato

$$f_0 = \dots$$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y \qquad \text{vs.} \qquad H_1: \sigma_X \neq \sigma_Y$$
 "accetto H_0 se $f_{\frac{\alpha}{2}}(m-1,n-1) < F_0:=\frac{S_X^2}{S_Y^2} < f_{1-\frac{\alpha}{2}}(m-1,n-1)$ "

se dopo m = 4 misure X_i e n = 18 misure Y_i abbiamo trovato

$$f_0 = \dots$$

• se
$$f_0 < 1$$
,

$$f_0 \equiv f_{\frac{\alpha}{2}}(3,17)$$

PROBLEMA: Calcolare il *p*-value dell'*F*-test con

$$H_0: \sigma_X = \sigma_Y$$
 vs. $H_1: \sigma_X \neq \sigma_Y$

$$\text{``accetto H_0 se $f_{\frac{\alpha}{2}}(m-1,n-1) < F_0 := \frac{S_X^2}{S_Y^2} < f_{1-\frac{\alpha}{2}}(m-1,n-1)$''}$$

se dopo m = 4 misure X_i e n = 18 misure Y_i abbiamo trovato

$$f_0 = \dots$$

• se
$$f_0 < 1$$
,

$$f_0 \equiv f_{\frac{\alpha}{2}}(3,17)$$

• se
$$f_0 > 1$$
,

$$f_0 \equiv f_{1-\frac{\alpha}{2}}(3,17)$$

Test differenza medie x pop. numerose indipendenti

Test differenza medie x pop. numerose indipendenti

IPOTESI:

$$X_1, \dots, X_m$$
 i.i.d. con m grande Y_1, \dots, Y_n i.i.d. con n grande M indipendenti

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}} \approx N(0, 1)$$

Test differenza medie x pop. numerose indipendenti

IPOTESI:

$$X_1, \dots, X_m$$
 i.i.d. con m grande Y_1, \dots, Y_n i.i.d. con n grande Y_n, \dots, Y_n i.i.d. con Y_n grande Y_n, \dots, Y_n i.i.d. con Y_n grande

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}} \approx N(0, 1)$$

 \Rightarrow Z-test per $\mu_X - \mu_Y$ approssimati

IPOTESI:

$$X_1, \ldots, X_m$$
 i.i.d. con m grande, $X_i \sim B(1, q_X)$ Y_1, \ldots, Y_n i.i.d. con n grande, $Y_j \sim B(1, q_Y)$ indip.

$$X_1, \ldots, X_m$$
 i.i.d. con m grande, $X_i \sim B(1, q_X)$ Y_1, \ldots, Y_n i.i.d. con n grande, $Y_j \sim B(1, q_Y)$ indip.

$$\Rightarrow \frac{\overline{X}_m - \overline{Y}_n - (q_X - q_Y)}{\sqrt{\hat{P}(1 - \hat{P})(\frac{1}{m} + \frac{1}{n})}} \approx N(0, 1) \quad \text{con} \quad \hat{P} = \frac{m\overline{X}_m + n\overline{Y}_n}{m + n}$$

$$X_1, \ldots, X_m$$
 i.i.d. con m grande, $X_i \sim B(1, q_X)$ Y_1, \ldots, Y_n i.i.d. con n grande, $Y_j \sim B(1, q_Y)$ indip.

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (q_X - q_Y)}{\sqrt{\hat{P}(1 - \hat{P})(\frac{1}{m} + \frac{1}{n})}} \approx N(0, 1) \quad \text{con} \quad \hat{P} = \frac{m\overline{X}_m + n\overline{Y}_n}{m + n}$$

 \Rightarrow Z-test per $q_X - q_Y$ approssimati

$$X_1, \ldots, X_m$$
 i.i.d. con m grande, $X_i \sim B(1, q_X)$ Y_1, \ldots, Y_n i.i.d. con n grande, $Y_j \sim B(1, q_Y)$ indip.

$$\Rightarrow \quad \frac{\overline{X}_m - \overline{Y}_n - (q_X - q_Y)}{\sqrt{\hat{P}(1 - \hat{P})\left(\frac{1}{m} + \frac{1}{n}\right)}} \approx N(0, 1) \quad \text{ con } \quad \hat{P} = \frac{m\overline{X}_m + n\overline{Y}_n}{m + n}$$

 \Rightarrow Z-test per $q_X - q_Y$ approssimati

In alternativa: Z-test per campioni numerosi, ma convergenza a N(0,1) più lenta

Inferenza non parametrica

Supponiamo che

 X_1, X_2, \dots, X_n i.i.d. con $X_i \sim f$, f densità incognita

Inferenza non parametrica

Supponiamo che

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim f$, f densità incognita

Vogliamo fare inferenza su tutta f (e non solo su un suo parmetro)

Inferenza non parametrica

Supponiamo che

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim f$, f densità incognita

Vogliamo fare inferenza su tutta f (e non solo su un suo parmetro)

Ci sono due modi:

- metodi grafici
- test non parametrici

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i *quantili empirici*

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & \text{se } n\gamma \in \mathbb{N} \end{cases}$$

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i quantili empirici

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma
floor + 1)} & ext{se } n\gamma
otin \mathbb{N} \ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a q_{γ}^{X}

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma Z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

dalle tavole allora i *quantili empirici*

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma
floor + 1)} & ext{se } n\gamma
otin \mathbb{N} \ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma+1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a q_{γ}^{X}

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i quantili empirici

$$\widehat{Q}_{\gamma}^{X} = \begin{cases}
X_{(\lfloor n\gamma \rfloor + 1)} & \text{se } n\gamma \notin \mathbb{N} \\
\frac{1}{2} \left(X_{(n\gamma)} + X_{(n\gamma + 1)} \right) & \text{se } n\gamma \in \mathbb{N}
\end{cases}$$

convergono in probabilità a q_{γ}^{X}

dall'esperimento

OSSERVAZIONE I: Se $X \sim N(\mu, \sigma^2)$, allora

$$X = \sigma Z + \mu \quad \text{con} \quad Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

 $\Rightarrow \quad q_{\gamma}^{X} = \sigma z_{\gamma} + \mu \quad \text{per ogni} \quad \gamma$

OSSERVAZIONE II (più difficile): Se inoltre

$$X_1, X_2, \dots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

allora i quantili empirici

$$\hat{Q}_{\gamma}^{X} := egin{cases} X_{(\lfloor n\gamma
floor + 1)} & ext{se } n\gamma
otin \mathbb{N} \ rac{1}{2} \Big(X_{(n\gamma)} + X_{(n\gamma + 1)} \Big) & ext{se } n\gamma \in \mathbb{N} \end{cases}$$

convergono in probabilità a q_{γ}^{X}

$$\Rightarrow$$
 \hat{q}_{γ}^{X} e z_{γ} si devono allineare!

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}^X_{\gamma} = \hat{q}^X_{\frac{k}{n}}$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big)$$

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece $\gamma=\frac{k-0.5}{n}$ con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X=\hat{q}_{\frac{k}{n}}^X=\frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece $\gamma=\frac{k-0.5}{n}$ con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X=\hat{q}_{\frac{k-0.5}{n}}^X=x_{(k)}$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$
 Se invece $\gamma=\frac{k-0.5}{n}$ con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X = x_{(k)} \qquad \text{più semplice.} \ldots$$

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece
$$\gamma = \frac{k-0.5}{n}$$
 con $k = 1, 2, ..., n$:

$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(\hat{q}_{\frac{k-0.5}{n}}^X, Z_{\frac{k-0.5}{n}}\right)$$

con
$$k = 1, 2, ..., n$$

Se
$$\gamma = \frac{k}{n}$$
 con $k = 1, 2, ..., n$:
$$\hat{q}_{\gamma}^{X} = \hat{q}_{\frac{k}{n}}^{X} = \frac{1}{2} (x_{(k)} + x_{(k+1)}) \qquad \text{complicato!}$$

Se invece
$$\gamma = \frac{k-0.5}{n}$$
 con $k = 1, 2, ..., n$:

$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{\rho}}^X = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(\hat{q}_{\frac{k-0.5}{n}}^{X}, z_{\frac{k-0.5}{n}}\right) = \left(x_{(k)}, z_{\frac{k-0.5}{n}}\right) \quad \text{con } k = 1, 2, \dots, n$$

Se
$$\gamma=\frac{k}{n}$$
 con $k=1,2,\ldots,n$:
$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k}{n}}^X = \frac{1}{2}\big(x_{(k)}+x_{(k+1)}\big) \qquad \text{complicato!}$$

Se invece
$$\gamma = \frac{k-0.5}{n}$$
 con $k = 1, 2, ..., n$:

$$\hat{q}_{\gamma}^X = \hat{q}_{\frac{k-0.5}{n}}^X = x_{(k)}$$
 più semplice...

NORMAL QQ-PLOT = grafico dei punti

$$\left(\hat{q}_{\frac{k-0.5}{n}}^{X}, z_{\frac{k-0.5}{n}}\right) = \left(x_{(k)}, z_{\frac{k-0.5}{n}}\right) \quad \text{con } k = 1, 2, \dots, n$$

punti quasi allineati \Rightarrow è verosimile che $X_i \sim N(\mu, \sigma^2)$

Si può fare (con R) un test per le ipotesi

 H_0 : le X_i hanno densità normale vs. H_1 : H_0 è falsa

Si può fare (con R) un test per le ipotesi

 H_0 : le X_i hanno densità normale vs. H_1 : H_0 è falsa

p-value alto \Rightarrow non possiamo escludere X_i normali

Si può fare (con R) un test per le ipotesi

 H_0 : le X_i hanno densità normale vs. H_1 : H_0 è falsa

p-value alto \Rightarrow non possiamo escludere X_i normali

p-value basso \Rightarrow normalità delle X_i poco verosimile

Non posso rifiutare la gaussianità

Non posso rifiutare la gaussianità

Devo rifiutare la gaussianità