Insper

Elementos de Sistemas

"A verdadeira viagem de descoberta não consiste em buscar novas paisagens, mas em ter um novos olhos." "Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages, mais à avoir de nouveaux yeux."

Marcel Proust (1871–1922) escritor francês apud Nisan, N. & Schocken, S. 2005. Elements of Computing Systems

Objetivos

Objetivos do curso

ESSENCIAIS

- Implementar um computador digital simples a partir de componentes eletrônicos.
- Integrar as camadas de programação e execução de um computador simples.
- Trabalhar de forma colaborativa no desenvolvimento de um sistema computacional.

COMPLEMENTARES

- Compreender a evolução da informática.
- Descrever como dados e instruções são armazenados e tratados em computadores.
- Entender questões relacionadas a desempenho, operação e manutenção de sistemas digitais

Ideia inicial do curso

Tem online de graça e oficial (até a metade do livro)

https://www.nand2tetris.org/course

Histórico do Curso

Curso idealizado e desenvolvido pelo Prof. Luciano Soares que ministrou as aulas em 2016 e 2017-a

lpsoares@insper.edu.br

Posteriormente ministrado pelo Prof. Rafael Corsi até 2021 rafael.corsi@insper.edu.br

2022-1

Renan Trevisoli renantd@insper.edu.br

• 3s : Elementos de Sistemas

Alex Fukunaga Prof. Auxiliar

3s: Elementos de Sistemas5s: Computação Embarcada

Lícia Sales

Laboratório Informática

3s : Elementos de Sistemas 3s : Robórica Computacional

Rogério Cuenca

Laboratório Informática

3s : Elementos de Sistemas 3s : Robórica Computacional

2022-1

Horários das aulas:

Quartas – 13h30 Sextas – 7h30

Atendimento:

- Segundas - 09h00

Plano de ensino

Verificar o plano de aprendizagem no Blackboard. Lá você encontrará mais informações de:

- Rubricas;
- Avaliações;
- Cronograma das atividades;
- Horário de atendimento;
- Bibliografia.

https://insper.blackboard.com/

Formato do curso

Insper

Estudo prévio

Vocês deverão estudar a teoria por conta, antes das aulas!

- Leitura/Teoria
- Vídeos
- Livros

Projetos / APS

- No final vocês terão desenvolvido um computador do ZERO (hardware e software)
- 9 APS no total
- APS em grupo (5/6 alunos)
 - Cada aluno será avaliado individualmente
- Desenvolvimento colaborativo/ágil
 - Cada aluno terá seu papel no grupo
 - Facilitador/ Desenvolvedor

Avaliações

- 4 Individuais (2 em Aula + AI + AF)
 - acumular 50 pontos de HW
 - acumular 50 pontos de SW

Mescla de Teoria e prática

- Projetos
 - Duas notas: Grupo e Individual
 - Grupo só pode ter um projeto < C
 - Individual no máximo 2 < C
 - Médias Individual e Grupo ≥ C

Cronograma

Elementos de Sistemas

	Quarta	Sexta	
Introdução	16/02	18/02	Álgebra Booleana
Álgebra Booleana	23/02	25/02	Álgebra Booleana
	•	04/03	Álgebra Booleana
AV1	09/03	11/03	B - Lógica booleana
B - Lógica booleana	16/03	18/03	C - ULA
C - ULA	23/03	25/03	D - Seq
D - Seq	30/03	01/04	E - ASM
Al-AV2	06/04	•	
E - ASM	13/04	•	
E - ASM	20/04	•	
E - ASM	27/04	29/04	F - CPU
F - CPU	04/05	06/05	F - CPU
G - Assembler	11/05	13/05	AV3
G - Assembler	18/05	20/05	G - Assembler
H - VM	25/05	27/05	H - VM
H - VM	01/06	03/06	I - VM Translator
I - VM Translator	08/06	10/06	CPU real
AF - AV4	15/06		

Ferramental

git + github

- Todo o desenvolvimento do projeto deve ser entregue pelo github.
 - trabalho em equipe
 - avaliações (A2-AI, A3 e A4-AF)
 -

github - projects

Muito git!

Site da disciplina

https://insper.github.io/Z01.1/

- Teoria
- Exercícios
- Laboratórios
- Projetos
- Simulados
- E muito mais!

Repositório da disciplina

http://github.com/insper/Z01.1

Projetos (fonte)

MS Teams

Iremos usar para aulas, projetos, atendimentos e muito mais!

Livros de referência

The Elements of Computing SystemsNoam Nisan
Shimon Schocken

Computer Organization and DesignDavid A. Patterson

John L. Hennessy

SSD Insper

- Robótica e Elementos De Sistemas
- Retirar no Insper/ receber em casa (enviamos por e-mail!)
- Marcar com Licia/Rogério para testar no computador de vocês (ideal já usar nas aulas)
- Atividade complementar
 - 04 e 11/03

Entregas

Aproximadamente uma por semana/quinzena

em grupo

duas notas: grupo e individual

Hardware

DE0-CV

Insper

Aula 1 – Organização Básica de Computadores

Aula 1

- Conhecer a organização básica de computadores;
- Refletir sobre o impacto da computação na sociedade;

Atividades:

- Montar grupos
- Mural

Conteúdos: Organização de Computadores;

Usuário

Os usuários veem as aplicações, porém esse é um resultado de uma série de desenvolvimentos.

E vocês como engenheiros de computação, serão capazes de compreender e produzir sistemas computacionais

Snake

Pong

Insper

Evolução da Computação

ENIAC (1946)

Fortran (1957) primeira linguagem largamente usada

Intel 4004 @ 0,1 MIPS (1971) primeiro microprocessador comercial

US Department of Energy and IBM @ 200 petaflops (2019) supercomputador mais rápido no mundo

Em cerca de meio século evoluímos muito

Evolução da Eletrônica

Válvulas 1904

Primeiro transistor 1947

IBM

Próximos nós

Hardware e Software

HW

Desenvolvimento da CPU

Ferramentas de SW para programar a CPU

Começando

Visão Geral

https://prezi.com/view/InQMPs4wjxMtznUGIW6L/

Camadas de abstração

Muitas vezes usamos algo sem saber como funciona:

- Não temos tempo de estudar;
- Não temos interesse de compreender;
- Não temos conhecimento básico para entender;
- Não temos acesso ao mecanismos interno;

Assim abstraímos o funcionamento de algo e simplesmente usamos. Falamos que é uma caixa preta (black box).

Se as interfaces entre as camadas de abstração forem bem definidas, podemos futuramente mudar uma camada e mesmo assim tudo continuar funcionando.

Camadas de rede

TCP/IP model Protocols and services		OSI model
Application	HTTP, FTTP,	Application
	Telnet, NTP,	Presentation
	DHCP, PING	Session
Transport	TCP, UDP	Transport
Network	IP, ARP, ICMP, IGMP	Network
Network	<u></u>	Data Link
Interface	Ethernet	Physical

Camadas OpenGL (gráfico)

Game / 3D Software

DirectX

OpenGL

Device Driver

Hardware Abstraction Layer (HAL)

Graphics Card / Chipset

Camadas de um computador

????

Montar grupos

Criar grupos de: 5/6 pessoas

- os grupos ficam até o final do semestre
- realizar a atividade de forma colaborativa!

Realizar a atividade (filets/ mural)

Ordene os filetes no mural de forma que as camadas de abstrações mais básicas estejam na base e as mais complexas na parte superior.

Linguagem de Máquina **Linguagem Assembly Unidade Central de Processamento Transistores** Lógica Combinacional **Unidade Lógica Aritmética** Linguagem de Alto Nível **Aplicação Portas Lógicas** Lógica Sequencial (Memória) Linguagem de Máquina Virtual Sistema Operacional

Caso não saiba, pesquise na Internet do que se trata.

Níveis de Abstração

Software

Hardware

Arquitetura de Computador

Insper

Com os filetes montados, associe os logos/imagens às camadas

1		7		13	Mac OS
2	? python™	8	VirtualBox	14	RISC-V°
3	ARM	9	SPARC	15	A — out
4		10		16	
5	×86	11	×64	17	RYZEN
6	.NET Core	12	S	18	Insper

Responda em grupo as seguintes perguntas:

- 1. De forma geral, quais dos níveis de abstração vocês acham que mais mudaram/evoluíram nos últimos 50 anos.
- 2. Quais seriam as mudanças que vocês visualizam para os próximos 10 anos? E para os próximos 50 anos?

Grupo	Tema
A	Educação
В	Justiça
С	Ciência
D	Energia
Е	Economia
F	Meio ambiente
G	Saúde
I	Turismo
	Agricultura
J	Comunicações

Responda em grupo as seguintes perguntas:

- 3. Como o tema foi afetado pela evolução da computação?
- 4. O que mais influenciou e viabilizou mudanças, a evolução do Hardware ou do Software?
- 5. O que mais impactou o tema, os grandes servidores ou a computação móvel?

Hollerith

O senso dos Estados Unidos de 1880 levou 7,5 anos. A automatização era claramente necessária. Foi quando Herman Hollerith, propôs o uso de sua máquina de tabular para os cálculos.

A empresa do Hollerith viria a se transforma na:

Tabulador Eletrônico de Hollerith, 1902 (www.census.gov)

Reflexão

Alguns fundamentos dificilmente mudam

As implementações normalmente evoluem

O estilo de vida das pessoas pode mudar

Próxima Aula

• Estudar Dados Digitais (site da disciplina)

Insper

www.insper.edu.br