Q1 (5 marks)

Consider two dicrete charges $Q_1 = +q_{\rm el}$ at position \vec{r}_1 and $Q_2 = +q_{\rm el}$ at position \vec{r}_2 in vacuum, with $q_{\rm el} = {\rm const.} > 0$ (see figure below).

*a) Give the electrostatic force \vec{F}_q applied on a point charge $q=-q_{\rm el}$ at the position $\vec{r}_0=(0,0,0)$ (origin).

Deduce an expression for the electric field $\vec{E}(\vec{r}_0)$ at the position $\vec{r}_0 = (0, 0, 0)$ (origin) from the equation of \vec{F}_q .

b) Determine the electrostatic potential $\Phi(\vec{r}_0)$ generated by the above given charge constellation at the position $\vec{r}_0 = (0,0,0)$ (origin).

Q2	(4 marks)				
*a)	State Gauss's law in integral form for a continuous charge distribution with space charge density $\rho(\vec{r})$.				
b)	Deduce the differential form of Gauss's law from the integral form of subtask a). Give the units (in SI-units) of all physical quantities contained.				

Q3 (6 marks)

Consider two plate capacitors, whose interiors are partly filled with air $(\varepsilon = \varepsilon_0)$ and partly filled with a dielectric medium with permittivity ε_1 according to the figure below. Both capacitors have the area A and the height of the respective dielectric layer is h. Stray-fields are neglected.

*a) Calculate the electric capacitances C_1 and C_2 .

Continue on the next page

Now the capacitors are connected to form the circuit given below and the voltage U_0 is applied.

b) Calculate the total capacitance C_{tot} of the given circuit.

c) Calculate the electric field energy $W_{\rm el}$ stored in the capacitor aggregate as function of $C_{\rm tot}$ and U_0 .

Each of the mobile carriers has the charge q . The particle density of the mobile carrier in the material is n . Under the action of an electric field \vec{E} the carriers move at a modrift velocity \vec{v} .	iers
*a) Calculate the power P_{el} delivered by the electric field to one single mobile carrie	er.
*b) Calculate the power density p_{el} dissipated inside the material in terms of the girquantities.	ver

Q4 (3 marks)

$C_0 > 0$

Q6 (4 marks)

A charge carrier with charge 2q, mass m and initial velocity $\vec{v}_0 = v_0 \vec{e}_x$ enters a homogenous electric field $\vec{E} = E_y \vec{e}_y$ ($E_y > 0$) at the position x = 0.

Determine the velocity $\vec{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ of the charge carrier at the position x = b.

Q7 (3 marks)

*a) Determine the radius of the trajectory of a charge carrier with charge q, mass m and velocity $\vec{v} = v_0 \vec{e}_x$ in a homogenous and stationary magnetic field $\vec{B} = B_0 \vec{e}_z$ $(B_0 = \text{const.} > 0)$.

Note: Centripedal force $F_{\rm C}=m \frac{v^2}{r}$

b) How do the radiuses of the trajectories of an electron and a proton differ from each other if they move at the same velocity perpendicular to a homogenous and constant magnetic field? Justify your answer on the basis of the results of subtask a).

Q8 (4 marks)

Two electrons e_1 and e_2 enter a homogenous and constant magnetic field $\vec{B} = B_0 \vec{e}_z$ $(B_0 = \text{const.} > 0)$ at the position x = 0. The electrons have the initial velocities $\vec{v}_1 = v_0 \vec{e}_x$ and $\vec{v}_2 = 2v_0 \vec{e}_x$ respectively.

*a) Sketch qualitatively the trajectories of both electrons e_1 and e_2 in the figure below.

*b) The homogenous and constant magnetic field is replaced by a time-varying magnetic field $\vec{B} = B_0 \left(\frac{1}{2} + \frac{1}{2} \sin{(\omega t)} \right) \vec{e_z}$.

Sketch the trajectory of electron e_1 which enters the magnetic field at the initial velocitiy $\vec{v}_1 = v_0 \vec{e}_x$.

(Note: The electron stays in the field for several periods of oscillation.)

$\mathbf{Q9}$	(2 marks)
How	are magnetic fields generated?
Q10	(3 marks)
	e the Ampére-Maxwell circuital law in differential form and name all physical quan-
tities	contained.

Q11 (4 marks)

Consider an almost closed conductor loop with length b and width c mounted on a fixed axis of rotation. The conductor loop is placed in a homogenous and constant magnetic field (see figure below).

$$\vec{B} = B_0 \vec{e}_z$$
 mit $B_0 = \text{const.} > 0$

The y-axis is the axis of rotation of the conductor loop and it is tilted by the angle φ towards the x-y-plane, i.e. the vectorial surface $\vec{A}(t)$ and the z-axis confine the angle φ . The constant electric current I is flowing conterclockwisely trough the conductor loop.

*a) Which of the parts C_1, C_2, C_3, C_4, C_5 of the conductor loop are contributing to the total mechanical torque applied on it?

The conductor loop is rotating with the constant angular velocity ω around the y-axis and the vectorial surface $\vec{A}(t)$ is described by:

$$\vec{A}(t) = b c \left(\cos \left(\omega t\right) \vec{e_z} + \sin \left(\omega t\right) \vec{e_x}\right)$$

*b) Calculate the magnetic moment \vec{m} of the ring current flowing through the conductor loop in terms of the given physical quantities.

*c) Calculate the mechanical torque \vec{M} acting on the conductor loop.								

1. Problem (15 marks)

Consider a sphere with radius R, electric permittivity $\varepsilon = \varepsilon_1$ and the constant space charge density $\rho(\vec{r}) = \rho_0$ for $r \in [0, R]$ ($|\vec{r}| = r$). The center of the sphere is located at the origin of the coordinate system. The sphere is placed in vacuum.

There is no charge $(\rho(\vec{r}) = 0)$ outside of the sphere $(r \in [R, \infty])$.

- *a) Calculate the total charge Q(V(r)) enclosed by the surface of a spherical control volume $\partial V(r)$ for $0 \le r \le \infty$. Distinguish between the different regions.
- *b) Calculate the dielectric displacement field $\vec{D}(r)$ (magnitude and direction) in the region $0 \le r \le \infty$ in terms of the given physical quantities.

The electric charges inside the sphere generate an electrostatic potential $\Phi(\vec{r})$ outside of the sphere, which is equal to the electrostatic potential of a point charge located at the origin, which carries the same amount of charge as the sphere's total charge.

- *c) Give the electrostatic potential $\Phi(\vec{r})$, which is generated by the sphere in the region r > R.
- d) Calculate the electrostatic potential $\Phi(\vec{r})$ inside the sphere $(0 \le r \le R)$. Choose the reference potential Φ_0 in such way, that the potential function is continuous at the surface of the sphere (r = R).
- e) Draw a qualitative graph of the electrostatic potential $\Phi(\vec{r})$. Label the position r = R on the r-axis and give the corresponding value along the Φ -axis.
- f) Determine the electrostatic potential $\Phi(\vec{r}=0)$ in the center of the sphere, if the radius R is shrinked to one half of the original value, whereby it carries still the same amount of charge.
- g) How do we term the electrostatic potential, which is obtained in the limits $R \to 0$?

2. Problem (15 marks)

A coaxial cable is used for the power supply of a load (represented by the Ohmic resistance R). The constant and homogenous electric current I is flowing through the inner conductor to the load and back through the outer conductor. Both cables are assumed to be ideal conductors. The inner conductor has the radius R_1 . The ring-shaped outer conductor is extended over the region $R_2 \leq r \leq R_3$. Both conductors are separated by air and exhibit the length L ($L >> R_3$).

- *a) Calculate the electric current density in the inner conductor $\vec{j_i}$ and in the outer conductor $\vec{j_a}$ under the assumption that the electric current I is homogenous and stationary.
- b) Calculate the magnetostatic field $\vec{H}(r)$, which is generated by the electric current I in the region $0 < r < \infty$. Choose an appropriate coordinate system and distinguish between the different regions.
- c) Draw a qualitative graph of the magnitude of the magnetostatic field $\vec{H}(r)$ depending on the radial distance r for $0 < r < \infty$. Label the positions R_1 , R_2 and R_3 on the r-axis.
- *d) Calculate the power loss P_{el} at the load resistance R. What is causing this loss?
- *e) Which is the characteristic electrical property of coaxial cabels, that is benefical for the transmission of signals?