SET B

Name: Utkarish kuman Mishno 33 Student University Roll No.:	Printed Pages: 1
School of Engineering First Sessional Examination, Odd Semes	
B. Tech: ALL Branch	ster (AS: 2023-24
	Semester: 1

Q.1	SECTION 'A' N.1. Attempt all parts of the following:	Course Objective	Mar ks
a)	Define Involuntary matrix with example.	CO1	1
b)	Define Canonical form of matrix.	C01	1
c)	For what value of k the rank of $A = \begin{bmatrix} I & 7 \\ -3 & 3k \end{bmatrix}$ is 1	CO1	1
d)	If $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$ then find A-1 by using	CO1	1
	Cayley's Hamilton theorem.	603	-
e)	Find 10 th derivative of $(2x+3)^{-1}$	CO2	1
-	SECTION 'B'	Course	Mai
	i.2. Attempt any two parts of the owing: For what value of λ and μ the equation	Objective	ks

	Find the rank of the matrix by reducing it to normal form $A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 9 & 10 & 11 & 12 \end{bmatrix}$ Find the Eigen value and Eigen vector of matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	C01	10
	normal form	C01	10
fo			
	SECTION 'C' N.3. Attempt any one part of the llowing	Course Objective	Mar ks
d)	If $u = log(x^3 + y^3 + z^3 - 3xyz)$ then show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^3 u = -\frac{9}{(x+y+z)^3}$	CO2	7.5
c)	Examine the vector $X_1=(1,-1,1)$, $X_2=(2,1,1)$, $X_3=(3,0,2)$ for linear dependence. If dependent, find the relation between them.	CO1	7.5
b)	$A = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$	CO1	7.5