Time-Series Constraints: Improvements and Application in CP and MIP Contexts

Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Pierre Flener, M. Andreína Francisco R., Justin Pearson, and Helmut Simonis

May 31, 2016

Conclusion

Time-series constraint

Automata simplification

A time-series constraint $g_f - \sigma(\langle X_1, \dots, X_n \rangle, M)$ where every X_i is over $D_i \subset \mathbb{Z}$ is specified by

- A pattern, a regular expression over the alphabet {<,=,>},
 e.g. Peak = '<(<|=)*(>|=)*>'.
 Currently 22 patterns in the framework
- ► A feature, a function over a subseries, e.g. one. Currently 5 features in the framework
- ► An aggregator, a function over a feature sequence, e.g. Sum. Currently 3 aggregators in the framework

¹Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for describing and synthesising structural time-series constraints. Constraints 21(1), 22-40 (January 2016): summary on p. 723 of LNCS 9255, Springer, 2015

NbPeak

Example

 $NbPeak(\langle 4, 3, 5, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 1 \rangle, 3)$ holds!

Automata for time-series constraints

Every time-series constraint can be encoded as an automaton with three accumulators: D(potential), C(current), R(aggregation)

Automaton for the g f peak constraints.

Feature f	id_f	\min_f	\max_f	ϕ_{f}	δ_f^i
one	1	1	1	max	0

Aggregator g	$default_{g,f}$	
Sum	0	

Automaton instantiation

When f is one and g is Sum the automaton becomes

Obviously, this automaton can be simplified

Automata simplifications

Goal

- Reduce the number of accumulators and aggregate as early as possible
- Simplify the automata at the stage of their synthesis

Three simplification types

- Simplifications coming from the properties of patterns, ex.: aggregate-once
- Simplifications coming from the properties of the feature/aggregator pairs, ex.: immediate-aggregation
- Removing the never used accumulators.

"Aggregate-once" simplification

What is the "Aggregate-once" simplification?

It allows to compute the feature value of a curent pattern occurrence only once and, possibly, earlier than the end of a pattern occurrence.

When is the simplification applicable?

There must exist a transition on which the value of the feature from the current pattern occurrence is known.

Example: counting number of peaks

- 1. First peak is detected upon consuming s_5
- 2. Second peak is detected upon consuming s_9

Background

Two automata for nb peak

Percentage of simplified constraints

Simplification	Percentage		
aggregate once	28.9 %		
immediate aggreg.	45.9 %		
other properties	11.6 %		
unchanged automata	13.6 %		

Input

Input

- ▶ Time-series variables X_i with i in [0, n-1] over their domains $[a_i, b_i]$
- An automaton with accumulators for a time-series constraint with
 - a set of states Q;

Automata simplification

- an input alphabet Σ;
- ▶ an *m*-tuple of integer accumulators with their initial values $I = \langle I_1, \ldots, I_m \rangle;$
- ▶ a transition function $\delta: Q \times Z^m \times \Sigma \rightarrow Q \times Z^m$.

Goal

Goal

A way to generate a model for an automaton with linear or linearisable accumulator updates, for example containing min and max.

Linear decomposition of automata without accumulators

Côté, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular constraint with integer programming. In: CPAIOR 2007. LNCS, vol. 4510, pp. 29–43. Springer (2007)

Introduced variables: S_i over Σ with $i \in [0, n-2]$.

Linear Decomposition

What do the values of S_i mean?

$$S_i = '>' \Leftrightarrow X_i > X_{i+1}, \forall i \in [0, n-2]$$

 $S_i = '=' \Leftrightarrow X_i = X_{i+1}, \forall i \in [0, n-2]$

$$S_i = ' < ' \Leftrightarrow X_i < X_{i+1}, \forall i \in [0, n-2]$$

Transition function constraints

Introduced variables: Q_i over Q with $i \in [0, n-1]$; T_i over $Q \times \Sigma$ with $i \in [0, n-2]$

Each transition constraint has a form:

$$Q_i = q \land S_i = \sigma \Leftrightarrow Q_{i+1} = \delta_1(q, \sigma) \land T_i = \langle q, \sigma \rangle, \\ \forall i \in [0, n-2], \ \forall q \in Q, \ \forall \sigma \in \Sigma$$

Initial state is fixed

$$Q_0 = q_0$$

Accumulator updates

Accumulator updates

 R_i over [a, b] with i in [0, n-1]; T_i over $Q \times \Sigma$ with i in [0, n-2].

- ► $R_0 = 0$
- $T_i = \langle r, \rangle \Rightarrow R_{i+1} = R_i + 1, \forall i \in [0, n-2]$
- $T_i = \langle q, \sigma \rangle \Rightarrow \mathsf{R}_{i+1} = \mathsf{R}_i, \forall i \in [0, n-2], \forall \langle q, \sigma \rangle \in (Q \times \Sigma) \setminus \langle r, \rangle$
- ▶ $M = R_{n-1}$

New variables for the linear model

New variables

- ▶ Q_i is replaced by 0-1 variables Q_i^q for all q in Q. $Q_i^q = 1 \Leftrightarrow Q_i = q$
- New constraint: $\sum_{q \in Q} Q_i^q = 1, \forall i \in [0, \dots, n-1]$
- ▶ The same procedure for T_i and S_i wrt their domains
- \triangleright X_i and R_i remain integer variables!
- ► Every constraint of the logical model is made linear by applying some standard techniques
- ▶ The linear model has O(n) variables and O(n) constraints

Implied constraints

Automata simplification

Implied constraints² improves propagation for constraints encoded via automata with at least one accumulator

- ▶ The implied constraints are generated offline
- ▶ The implied constraints are of the form:

$$\alpha_1 y_1 + \dots + \alpha_k y_k + \beta \ge 0$$

where the y_i are the accumulators of $\mathcal{A}(C, D, R)$ and the weights α_i and β are to be found

► Theoretically supported by Farkas' Lemma

²Francisco Rodríguez, M.A., Flener, P., Pearson, J.: Implied constraints for automaton constraints. In: GCAI 2015. EasyChair Epic Series in Computing, vol. 36, pp. 113-126. EasyChair (2015)

Automata simplification

Implied constraints

Improvements

The first version of ImpGen

- Only linear accumulator updates
- Manual selection

Improvements of the new version

- ► Can handle max and min in accumulators updates
- ► Automatic selection by ranking

Background Automata simplification Linear Decomposition Implied constraints Benchmark Conclusion

Benchmark CP

Goal

compare original and simplified automata

- ▶ For every time-series constraint maximise the result
- ▶ Time series of length 15 over [1,3]
- ► Timeout of 100 seconds

Staff scheduling application

- Satisfy the demand;
- ► Take into account business rules
- ► Respect union's rules
- ► Minimise the costs

Results for staff scheduling application

- P characterises complexity of the problem
- ► Consider $P \in \{10, 15, 20, 25, 30, 35, 40\}$
- ▶ 100 instances for every value of *P*

-	optimality gap										
		(р	mip							
	р	avg	max	avg	max	opt					
	20	3.42	9.67	2.28	18.77	27/100					
	30	3.20	8.02	2.04	6.34	26/100					
	40	3.51	17.32	1.97	10.47	18/100					

- ▶ In average MIP is always better
- ▶ The maximal gap sometimes is smaller for CP
- ▶ MIP can solve to optimality just few instances

Conclusion

Contributions of the paper

- A linear decomposition for time-series constraints with O(n) variables and O(n) constraints
- Simplified automata for time-series constraints
- ► New version of the generator of linear implied constraints which handles accumulator updates with min, max
- Benchmarks in the contexts of CP and MIP

Thank you for your attention! Questions?