ÁLGEBRA (LCC) UNIDAD 3 - MATRICES

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN FING - UNCUYO

Conceptos

DEFINICIÓN (MATRICES)

Si m y n son enteros positivos, definimos una matriz $m\times n$ como un arreglo rectangular

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn}
\end{pmatrix}$$

en al cual cada elemento de la matriz es un número.

- El elemento a_{ij} está ubicado en el i—ésimo fila y en la j—ésima columna.
- Una matriz $m \times n$ tiene m renglones y n columnas. Si m = n la matriz se llama cuadrada de orden n.
- En una matriz cuadrada de orden n, los elementos $a_{11}, a_{22}, \ldots, a_{nn}$ se denominan elementos de la diagonal principal.

Las matrices pueden denotarse con

- letra mayúscula: A, B, C, \ldots
- un elemento representativo: $(a_{i,j}), (b_{i,j}), (c_{i,j}), \dots$

DEFINICIÓN (MATRICES IGUALES)

Dos matrices $A=(a_{i,j})$ y $B=(b_{i,j})$ son iguales si

- 1. tienen el mismo tamaño: $m \times n$.
- 2. $a_{ij} = b_{ij}$ para $1 \le i \le m$ y $1 \le j \le n$.

EJEMPLO

Las matrices
$$A=\left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right)$$
 y $B=\left(\begin{array}{cc} 1 & 3 \\ x & 5 \end{array}\right)$ son iguales si, y sólo si $x=2$.

Tipos de matrices

1. Matriz columna o vector columna: sólo tiene una columna. Por ejemplo:

$$\left(\begin{array}{c} 7 \\ -2 \\ 8 \end{array}\right)$$

y puede denotarse con mayúscula (matriz) o con minúscula (vector).

2. Matriz fila o vector fila: sólo tiene una fila.

Por ejemplo:

$$(-1 \ 2 \ 5 \ -3)$$

y puede denotarse con mayúscula (matriz) o con minúscula (vector).

- 3. Matriz cero o nula: es la matriz de $n \times m$ donde todos sus elementos son cero.
- 4. Matriz identidad I_n : es la matriz cuadrada de orden n cuyos elementos de la diagonal principal son todos 1 y los restantes elementos son todos 0.

EJEMPLO DE MATRIZ IDENTIDAD

- Si n = 1, $I_1 = (1)$
- Si n=2, $I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- Si n = 3, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

TIPOS DE MATRICES

5. Matriz diagonal: es una matriz cuadrada en la que todos los elementos fuera de la diagonal principal son ceros. Por ejemplo:

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

TIPOS DE MATRICES

6. Matriz triangular superior: es una matriz cuadrada en la que todos los elementos abajo de la diagonal principal son ceros. Por ejemplo:

$$\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right)$$

7. Matriz triangular inferior: es una matriz cuadrada en la que todos los elementos arriba de la diagonal principal son ceros. Por ejemplo:

$$\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right)$$

SUMA DE MATRICES

Sean $A=(a_{i,j})$ y $B=(b_{i,j})$ dos matrices de tamaño $m\times n$. Definimos la suma A+B como la matriz de tamaño $m\times n$ dada por

$$A + B = (a_{i,j} + b_{i,j})$$

La suma de dos matrices de diferente tamaño no está definida.

EJEMPLO

$$\left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right) + \left(\begin{array}{cc} -3 & 2 \\ -1 & 5 \end{array}\right) = \left(\begin{array}{cc} -2 & 5 \\ 1 & 10 \end{array}\right)$$

Multiplicación por un escalar

Sea $A=(a_{i,j})$ una matriz de tamaño $m\times n$ sea c un escalar. Definimos la multiplicación por un escalar cA es la matriz de tamaño $m\times n$ dada por

$$cA = (ca_{i,j})$$

El escalar $\it c$ lo vamos a considerar número real.

Se puede utilizar la expresión -A para el producto escalar (-1)A.

EJEMPLOS

$$1. \ 5\left(\begin{array}{cc} 1 & 3\\ 2 & 5 \end{array}\right) = \left(\begin{array}{cc} 5 & 15\\ 10 & 25 \end{array}\right)$$

2.
$$(-3)$$
 $\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} -3 & -9 \\ -6 & -15 \end{pmatrix}$

Observación importante

- El conjunto de las matrices de tamaño $m \times n$ junto con la suma y la multiplicación por un escalar definidas anteriormente, es un espacio vectorial. Por lo tanto, se cumplen todos los axiomas de la definición.
- La matriz cero es el neutro para la suma.
- La matriz -A es el opuesto aditivo.

Multiplicación de matrices

Sea $A=(a_{i,j})$ una matriz de tamaño $m\times n$ y sea $B=(b_{i,j})$ una matriz de tamaño $n\times p$. Definimos el producto AB como la matriz de tamaño $m\times p$ dada por

$$AB = (c_{i,j})$$

donde

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \ldots + a_{in} b_{nj}$$

- Esta definición significa que el elemento en el i-ésimo renglón y en la j-ésima columna del producto AB se obtiene al multiplicar los elementos del i-ésimo renglón de A por los elementos correspondientes de la j-ésima columna de B y luego sumar los resultados.
- El producto de dos matrices está definido cuando el número de columnas de la primera matriz es igual al número de renglones de la segunda matriz.

EJEMPLO

El producto AB es

$$AB = \begin{pmatrix} -1 & 3\\ 4 & -2\\ 5 & 0 \end{pmatrix} \begin{pmatrix} -3 & 2\\ -4 & 1 \end{pmatrix} = \begin{pmatrix} -9 & 1\\ -4 & 6\\ -15 & 10 \end{pmatrix}$$

Realicemos el producto BA

Propiedad importante

En general, la multiplicación de matrices NO es conmutativa.

$$AB \neq BA$$

EJEMPLO

El producto AB es

$$AB = \begin{pmatrix} -1 & 3 \\ 4 & -2 \\ 5 & 0 \end{pmatrix} \begin{pmatrix} -3 & 2 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} -9 & 1 \\ -4 & 6 \\ -15 & 10 \end{pmatrix}$$

Realicemos el producto BA

Propiedad importante

En general, la multiplicación de matrices NO es conmutativa.

$$AB \neq BA$$

UNIDAD 3 - MATRICES 11 / 2

 Si necesitamos encontrar sólo una fila o una columna del producto AB, no necesitamos realizar todo el producto.

$$j-$$
ésima columna de $AB=A((j-)$ ésima columna de B) $i-$ ésima fila de $AB=((i-)$ ésima fila de $A)B$

En otras palabras, Si a_1, a_2, \ldots, a_m son las filas de la matriz A y b_1, b_2, \ldots, b_n son las columnas de la matriz B entonces

$$AB = A(b_1|b_2|\dots|b_n) = (Ab_1|Ab_2|\dots|Ab_n)$$

$$AB = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} B = \begin{pmatrix} a_1B \\ a_2B \\ \vdots \\ a_mB \end{pmatrix}$$

Otra forma de escribir la multiplicación de matrices.

Sea
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 y $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$. Entonces
$$Ax = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
$$= x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{mn} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

El producto Ax es una CL de las columnas de A con los coeficientes que provienen de la matriz x.

UNIDAD 3 - MATRICES

13 / 20

PROPIEDADES DE LA MULTIPLICACIÓN

Sean A,B y C matrices con tamaño tales que los productos matriciales dados están bien definidos y sea c un escalar. Entonces, valen las siguientes propiedades.

- **1.**A(BC) = (AB)C
- 2. A(B+C) = AB + AC
- 3. (A + B)C = AC + BC
- **4**. c(AB) = (cA)B = A(cB)
- $5. AI_n = A$
- 6. $I_n A = A$

Demostración Demostrar 2 y 5.

POTENCIA DE MATRICES

Para la multiplicación repetida de matrices cuadradas, utilizaremos la misma notación exponencial usada con los números reales. Es decir,

- $A^0 = I_n$
- $A^1 = A$
- $A^2 = AA$
- $A^k = AA \dots A$ (con k factores)

Con estas definiciones obtenemos las propiedades.

- $A^j A^k = A^{j+k}$
- $\bullet \ (A^j)^k = A^{jk}$

OBSERVACIÓN

La potencia de una matriz diagonal es la matriz diagonal cuyos elementos de la diagonal principal son las potencias de los elementos correspondientes de la matriz original.

Transpuesta de una matriz

Sea A una matriz $m \times n$. La transpuesta de A, denota como A^T , se define como la matriz $n \times m$ que se obtiene al escribir las columnas de A como filas.

EJEMPLO

Si
$$A = \begin{pmatrix} -1 & 3 \\ 4 & -2 \\ 5 & 0 \end{pmatrix}$$
, entonces

$$A^T = \left(\begin{array}{rrr} -1 & 4 & 5 \\ 3 & -2 & 0 \end{array}\right)$$

Propiedades

Sean A y B matrices con tamaño tales que las operaciones dadas están bien definidos y sea c un escalar. Entonces, valen las siguientes propiedades.

- 1. $(A^T)^T = A$
- 2. $(A + B)^T = A^T + B^T$
- 3. $(cA)^T = c(A^T)$
- **4**. $(AB)^T = B^T A^T$

Demostración Demostrar 1.

Las propiedades 2 y 4 pueden generalizarse. Por ejemplo,

$$(A+B+C)^T = A^T + B^T + C^T$$

у

$$(ABC)^T = C^T B^T A^T$$

Matriz simétrica

Sea $A=(a_{ij})$ una matriz cuadrada. Decimos que A es una matriz simétrica si

$$A = A^T$$

es decir, $a_{ij} = a_{ji}$.

EJEMPLO

La matriz
$$A = \begin{pmatrix} -1 & 2 & 4 \\ 2 & 8 & 3 \\ 4 & 3 & 0 \end{pmatrix}$$
 es simétrica.

TEOREMA

Sea A una matriz cuadrada.

- 1. La matriz $B = AA^T$ es una matriz simétrica.
- 2. La matriz $A + A^T$ es una matriz simétrica.

Demostración

Matriz antisimétrica

Sea $A=(a_{ij)}$ una matriz cuadrada. Decimos que A es una matriz antisimétrica si

$$A^T = -A$$

es decir,

$$a_{ji} = -a_{ij}$$

EJEMPLO

La matriz

$$A = \left(\begin{array}{ccc} 0 & 2 & 4 \\ 2 & 0 & 3 \\ 4 & 3 & 0 \end{array}\right)$$

es antisimétrica.

¿Cómo debe ser la diagonal principal de una matriz antisimétrica?

TEOREMA

Sea ${\cal A}$ una matriz cuadrada. La matriz ${\cal A} - {\cal A}^T$ es una matriz antisimétrica.

DEFINICIÓN (TRAZA)

La traza de una matriz cuadrada de orden n, se denota tr(A), es la suma de los elementos de la diagonal principal. Es decir,

$$tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$$

TEOREMA

Sean A y B matrices de orden n y sea c un escalar. Entonces, valen las siguientes propiedades.

- 1. tr(A+B) = tr(A) + tr(B)
- 2. tr(cA) = ctr(A)
- 3. $tr(A^T) = tr(A)$
- 4. tr(AB) = tr(BA)

Demostración

