

Mathematical Induction

Pau Rivera

S11/S12: MW 1100-1230

S11/S12: MW 1630-1730

Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k + 1)$ is true for all positive integers k.

Example: Prove that $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$ for all positive integers n

BASIS STEP: Show
$$P(1)$$
 1, because 1 is the first positive integer $\frac{1(1+1)}{2} = 1$

INDUCTIVE STEP:

Assume P(k):
$$\frac{k(k+1)}{2}$$

Show P(k+1): $\frac{(k+1)(k+2)}{2}$
 $P(k)$: $1+2+3+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

P(k): $\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}$

term after k

from 1 to k

$$\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2} \checkmark$$

Example: Prove that $1+2+4+\cdots+2^n=2^{n+1}-1$ for all nonnegative integers n

BASIS STEP: Show
$$P(0)$$

$$2^{0+1} - 1 = 1$$

$$0, because 0 is the first nonnegative integer$$

INDUCTIVE STEP:

Assume P(k):
$$2^{k+1} - 1$$

Show P(k+1): $2^{k+2} - 1$
 $1 + 2 + 4 \dots + 2^k + 2^{k+1} = 2^{k+2} - 1$ $P(k+1)$
summation $(2^{k+1}-1) + 2^{k+1} = 2^{k+2} - 1 = 2^{k+2} - 1$ term after 2^k
 $2(2^{k+1}) - 1 = 2^{k+2} - 1 \checkmark$

Tips

- For Basis Step, prove *P*(*initial value*)
 - Substitute *initial value of n*
- For Inductive Step, assuming P(k) is true, show that P(k+1) is also true
 - 1. Since you assume that P(k) is true, start from P(k)
 - 2. Substitute k + 1 to the formula for getting the next term in the series.
 - Ex: $1+2+4+\cdots+2^n=2^{n+1}-1$ the formula to get the next term is 2^n substitute k+1 to n, 2^{k+1}
 - 3. Add the result of number 2 to P(k)
 - Ex: If $P(k): 2^{k+1} 1$ $(2^{k+1} - 1) + 2^{k+1}$
 - 4. Simplify the result of number 3 to make it look exactly like P(k + 1).

Exercise - Formulas

- 1. Provide an explicit formula to get the sum of the first n positive odd integers.
- 2. Prove that your explicit formula in number 1 is correct using Mathematical Induction.
- 3. Prove the explicit formula of the summation of j^3 from 1 to n using Mathematical Induction.

Questions?