Chebychev series for calculating Arctangent

1 Preliminaries

We make use of the following trigonometric relations

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{1}$$

$$A + B = \tan^{-1} \left[\frac{\tan A + \tan B}{1 - \tan A \tan B} \right] \tag{2}$$

and we find the quadrature

$$I = \int_0^1 \frac{\tan^{-1} x}{x} T_0(x) \frac{\mathrm{d}x}{\sqrt{1 - x^2}}$$
 (3)

algebraically. In eq (3) we substitute $x = 2t/(1+t^2)$ to find

$$I = \int_0^1 (\tan^{-1} Pt + \tan^{-1} Qt) \frac{dt}{t}$$
 (4)

where P and Q are roots of $\alpha^2 - 2\alpha - 1 = 0$. Writing u for Pt and then Qt and then replacing u by 1/u we find

$$I = \frac{\pi}{2} \ln \frac{1}{q} \tag{5}$$

where q is the postive root of $q^2 + 2q - 1 = 0$.

$$\int_0^1 T_n(x) T_n(x) \frac{\mathrm{d}x}{\sqrt{1 - x^2}} = \frac{\pi}{4} (1 + \delta_{n.0})$$
 (6)

where $\delta_{n,m}$ is the Kronecker delta symbol (=1 if n = m and =0 otherwise).

The arctangent $tan^{-1}(x)$ can be represented as a series of odd order Chebychev polynomials in x or as x times a series of even order Chebychev polynomials in x. We consider both.

2 Odd expansion of Arctangent

Determination of the odd series coefficients can be done by a relatively well known trick. The odd series expansion should become identical to the Maclaurin expansion when the number of terms is infinite. From de Moivre's theorem $T_{2n+1}(x) = \frac{1}{2}[(x+iy)^{2n+1} + (x-iy)^{2n+1}]$ where $x = \cos\theta \ y = \sin\theta$. Hence $\sum_{0}^{\infty} k^{2n+1}T_{2n+1}(x)$ is the sum of the $(2n+1)^{\text{th}}$ power coefficients in the series for $\frac{1}{2}[\tan^{-1}k(x+iy) + \tan^{-1}k(x-iy)]$ with multipliers $\frac{(-1)^n}{2n+1}$. This sum is $\frac{1}{2}\tan^{-1}[2xk/(1-k^2)]$ which is equal to $\frac{1}{2}\tan^{-1}x$ if $k^2+2k-1=0$. For the Chebychev expansion to converge the root of magnitude smaller than 1 must be chosen; this is q as defined above. Hence the odd series with N+1 terms (up to T_{2N+1}) is

$$\tan^{-1} x \approx P_O(x) = \sum_{n=0}^{N} a_n T_{2n+1}(x)$$
 (7)

where $a_n = \frac{2}{2n+1}q^{2n+1}(-1)^n$.

3 Even expansion of Arctangent

The expansion given by x times an even series with N+1 terms (up to T_{2N}) is

$$\tan^{-1} x \approx P_E(x) = x \sum_{1}^{N} b_n T_{2n}(x) + \frac{x}{2} b_0 T_0(x)$$
 (8)

where the coefficients b_n are to be determined; we need to relate them to a_n . From the recurrence relations for Chebychev polynomials we find

$$(1+E)b_n = 2a_n \tag{9}$$

where E is a shift operator that increases the subscript by 1.

$$b_n = \frac{2}{1+E}a_n + K {10}$$

where K is an arbitrary constant and the inverse of 1 - E is interpreted by the binomial theorem. Comparison of eq (5) and (10) with n = 0 shows that K = 0. From these equations we find

$$P_E(x) - P_O(x) = -[(1+E)^{-1}a_{N+1}]T_{2N+1}(x)$$
(11)

$$P_E(x) - P_O(x) = 2(-1)^{-N} \left[\frac{q^{2N+3}}{2N+3} + \frac{q^{2N+5}}{2N+5} + \dots \right] \mathcal{T}_{2N+1}(x)$$
 (12)

4 Coefficients of powers of x

4.1 Odd series

The coefficient of x^{2j+1} in $\mathcal{T}_{2m+1}(x)$ is

$$G_{j,m} = 2^{2j} \frac{2m+1}{2j+1} \left[{}^{m+j} C_{m-j} \right] (-1)^{m-j}$$
(13)

where C denotes a binomial coefficient. The coefficient of x^{2j+1} in the odd series expansion is $\sum_{m=j}^{N} G_{j,m} a_m$. With the expression already found for a_m , the equation $q^2 + 2q - 1 = 0$ satisfied by q and the substitution k = m - j in this sum we find that D_j is the factor $\frac{(-1)^j}{2j+1}(1-q^2)^{2j+1}$ multiplied by the sum of the first N+1-j terms of $(1-q^2)^{-2j-1}$ expressed as a power series in q^2 .

4.2 Even series

We get the powers of the even series from eq (12) relating the odd and even expansions.

We add $(-1)^j 2^{2j+1} \frac{2N+1}{2j+1} {N+j \choose N-j} \left[\frac{q^{2N+3}}{2N+3} + \ldots \right]$ to D_j . The expression in the second pair of square brackets is one half of the difference between $\ln \frac{1}{q}$ and the first N+1 terms in the expansion of $\ln \frac{1+q}{1-q}$ as a series in q. However this expression and the difference alluded to for the powers in the odd expansion should not be used to find the coefficients numerically to avoid cancellation.