1. a)
$$2x_1^2 + x_2^2 + x_1x_2 - 3x_1 - 5x_2 \ge \frac{3}{2}(x_1 - 1)^2 + \frac{1}{2}(x_2 - 5)^2 - 14$$

$$Aparently, when ||x|| \to +\infty, f(x) \to +\infty, therefore f(x) is coerive.$$

- b) f(x) doesn't have maximum. The minimum of f(x) is -14, when $x = {1 \choose 5}$.
- 2. a) Because there exists a ω_0 such that $y_i x_i^T \omega_0 > 0 \ \forall i = 0, 1, 2,$, there exist $\omega_1 = -\omega_0$ such that $-y_i x_i^T \omega_1 > 0 \ \forall i = 0, 1, 2,$ So f > mlog 2. Thus, f has a minimum.
 - b) $\forall \, \omega, \ \log(1+e^{-y_ix_i\omega}) > \log(e^{-y_ix_i\omega}) = -y_ix_i\omega.$ Let $h(\omega) = -y_{i_0}x_{i_0}\omega$. Log $(1+e^{-y_{i_0}x_{i_0}\omega}) > h(\omega)$. $\forall \, i \neq i_0, \ \log(1+e^{-y_ix_i\omega}) > 0, so \, f(\ \omega) > h(\omega).$ Let $S = \{\omega | |\omega| = 1\}$ be the unit sphere. Because $h(\omega)$ is continuous and bounded on S, $h(\omega)$ has minimum $h(\omega_1)$ on S. because there exists ω_0 such that $-y_{i_0}x_{i_0}\omega > 0$, so $h(\omega_1) > 0$. Let $h(\omega_1) = C$. Straightforward $\forall \, \omega, h(\omega) \geq C||\omega|| \geq 0$. So $f(\omega)$ has a minimum.
 - c) $\nabla f(\omega) = \sum_{i=0}^{m} \frac{e^{-y_i x_i^T \omega}}{1 + e^{-y_i x_i^T \omega}} (-y_i x_i^T)$
- 3. a) Let g(t) = f(td + x). $g(1) = g(0) + g'(0) + \frac{1}{2}g''(0) t^2 \ t \in (0, 1)$ $g'(0) = d \cdot \nabla f(x + td)$ $g''(0) = d \cdot \nabla^2 f(x + td) \cdot d^T$ $So, \ f(x + td) = f(x) + \nabla f(x + td) d^T + \frac{1}{2}d^T \cdot \nabla^2 f(x + td) d^T$
 - b) Let g(t) = f(x + td)so, $g''(t)dt^2 = \nabla^2 f(x + td)ddt^2$ $g''(t)dt = \nabla^2 f(x + td)d^2dt$ $\int_0^1 \nabla^2 f(x + td)d^2dt = \int_0^1 g''(t)dt = g'(1) - g'(0) = \nabla f(x + d)d - \nabla f(x)d$ So, $\nabla f(x + d) = \nabla f(x) + \int_0^1 \nabla^2 f(x + td)ddt$
- A is positive definite. D1 = 6, D2 = 7, D3 = 72.
 B is indefinite. D1 = 1, D2 = -2, D3 = 9.
 C is positive semidefinite. D3 = 0.