Sound event detection with neural networks

Moritz Augustin

NI Group Meeting, 13th July 2018

Introduction

Two!Ears EU project

- Neural Information Processing Group General Sounds Database Earsignals
- Sound event database: NIGENS anechoic earsignals
- Binaural simulator software: scene mixtures varying noise & sources
- System expertise: Ivo
- Methods relied on
 - Linear feedforward models: logistic regression

 Trowitzsch, Mohr, Kashef, Obermayer 2017, IEEE Audio Speech Language Process.
 - Engineered features: temporal information via derivative statistics (500ms blocks)
- Extension in progress: nonlinear & temporal models
 - Deep neural networks

- Heiner Spieß, NI project
- Recurrent networks: long short-term memory Changbin Lu, Master thesis
- Feedforward (convolutional) neural networks Alessandro Schneider, Bachelor thesis
- Directly applicable to features with fine temporal resolution
- Representations learnt via supervised training
- Hypothesis: improved generalization performance over baseline model

Sounds from combined training+devel set only:

Data: Isolated Sounds

NIGENS:

human-labeled sounds (on/offsets) from 13 classes

Class	Waves (count)	min-max (sec)	Total time (min)
Alarm	49	0.9 – 64.6	16
Baby	40	1.7 - 123.4	18
Crash	50	1.7 – 48.3	8
Dog	45	<mark>0.2</mark> − 49.4	9
Engine	39	4.0 - 132.7	35
Scream	76	0.5 – 94.5	6
FemaleSpeech	100	1.2 – 5.1	5
Fire	51	2.4 – 162.1	45
Footsteps	42	3.0 – 33.0	19
Knock	40	0.6 - 14.4	2
MaleSpeech	100	1.5 – 5.0	4
Phone	40	1.0 - 65.0	12
Piano	42	2.3 – 196.0	15
Total	714	0.2 – 196.0	194
General class	303	0.2 - 180.6	92

Trowitzsch, Taghia, Kashef, Obermayer 2016, Zenodo: https://zenodo.org/record/168042

Data: Scenes

Correction (visualization wrong): ds1 amp > master > ds2 amp

left

right

- Mixtures: binaurally recorded simulated scene instance (min: 30sec)
- Master: **one** sound (of non-general class), e.g. Phone (<30sec: repeated)
- 0-3 distractors: random sounds (incl. general & master class)
- **Scene**: Fixed values of scene parameter (#src, azimuth, SNR)
- Scene instance: Scene with a specific sound mixture

Resulting scene instance (stereo mixture)

Data: Features

Left/right ratemap avgeraged

Left/right AMS averaged

concatenated & flattened:

 $\mathbf{x}_t \in \mathbb{R}^{160}$

Data: Validation

Multiconditional training as demonstrated: Trowitzsch, Mohr, Kashef, Obermayer 2017, IEEE Audio Speech Language Process.

Data: Heterogenities

Scene instance distribution highly skewed

- long sounds, e.g., fire/piano
- short sounds, e.g.,
 knock, (fe)maleSpeech
- min. mixture length 30 sec
- => choice of input history length

Label distribution variations

- across folds
- across classes (1-vs-all)
- => balanced training

Model 1: Multilayer Perceptron

Uniform weights Initialization, biases 0 Glorot & Bengio 2010

Dropout regularization
(see later slide)

Hinton et al 2012
Srivastava et al 2015

Architectural hyperparameters

- Input history length T (500ms, 5000ms, longer?) #layers (3, 4, 5, 6)
- #neurons_per_layer (50, 100, 200, 400)
- #dropout_rate (25%, 50%, 75%, 90%; same or increasing with depth)
- data_stride (fix: stride 167ms = 500ms/3, subsampling resolution independent of T)

Model 2: Convolutional neural net

- Input history length T (500ms, 5000ms, longer?)
- #convolutional_layers (fix: 3)
- #featuremaps_per_convlayer (increasing with depth)
- #convolution_winsizes (fix: 3x3 / 3x3x3 with stride 1)
- #pooling_winsizes (fix to 2 with stride 2)
- #fullyconnected_layers (2, 3, 4, 5)
- #neurons_per_fc_layer (fix: 100)
- #dropout rate (increasing with depth)
- data stride (fix: stride 167ms = 500ms/3, subsampling resolution independent of T)

Methodological choices

- Max-pooling
- ReLU transfer
- Sigmoidal output
- Batch normalization
- Dropout regularization

Model 3: Long short-term memory

- Simple RNN cannot learn long-term relationships (vanishing gradient)
- Solution: LSTM (here: no peepholes) or Gated Recurrent Units (GRU)

Transformation per time step

$$(\mathbf{h}_t, \mathbf{c}_t) = \boldsymbol{\phi}(\mathbf{x}_t, \mathbf{h}_{t-1}, \mathbf{c}_{t-1})$$

$$\mathbf{h}_t \in \mathbb{R}^{N_{ ext{cells}}}$$
 $\mathbf{x}_t \in \mathbb{R}^{N_{ ext{input}}}$

$$\mathbf{c}_t \in \mathbb{R}^{N_{ ext{cells}}}$$

Vanilla LSTM:

cell state $\mathbf{c}_t = \mathbf{g}_f \odot \mathbf{c}_{t-1} + \mathbf{g}_i \odot \widetilde{\mathbf{c}}_t$

cell state candidate $\widetilde{\mathbf{c}_t} = \mathbf{tanh} \left(\mathbf{W}_c \, \mathbf{x}_t + \mathbf{R}_c \, \mathbf{h}_{t-1} + \mathbf{b}_c \right)$

forget gate $\mathbf{g}_f = \boldsymbol{\sigma} \left(\mathbf{W}_f \, \mathbf{x}_t + \mathbf{R}_f \, \mathbf{h}_{t-1} + \mathbf{b}_f \right)$

input gate $\mathbf{g}_i = \boldsymbol{\sigma} \left(\mathbf{W}_i \, \mathbf{x}_t + \mathbf{R}_i \, \mathbf{h}_{t-1} + \mathbf{b}_i \right)$

output gate $\mathbf{g}_o = \boldsymbol{\sigma} \left(\mathbf{W}_o \, \mathbf{x}_t + \mathbf{R}_o \, \mathbf{h}_{t-1} + \mathbf{b}_o \right)$

layer output $\mathbf{h}_t = \mathbf{g}_o \odot \mathbf{tanh}(\mathbf{c}_t)$ (=recurrent input for next time step)

T: backpropagation length

Learning:

Backpropagation through time

Forward pass: O(T) => effectively: very deep feedforward

network (T layers)

Model 3: Long short-term memory

Initialization

Random weights

Glorot & Bengio 2010

- Feedforward (FC & input-to-hidden LSTM): <u>uniform</u>
- Recurrent (hidden-to-hidden LSTM): orthogonal
- Biases 0 (except forget gate: bias 1)

 Gers et al 1999

Saxe et al 2013

Statefulness

 cell state and output: saved and resumed between consecutive batches

Architectural hyperparameters

- #LSTM_layers (2, 3, 4)
- #FC layers (fix: 2)
- #neurons_per_LSTM_layer (50, 100, 200, 400)
- #neurons_per_FC_layer (50, 100, 200, 400)
- #dropout_rate_LSTM (25%, 50%, 75%, 90%; same or increasing with depth)
- #dropout_rate_FC (25%, 50%, 75%, 90%; same or increasing with depth)
- Input time history T for truncated backpropagation

Dropout regularization

- Effective regularization by randomly dropping neurons
- Trained model corresponds to averaging the ensemble ($2^{N_{
 m neurons}}$ large)

standard neural net

after applying dropout

MLP/Convnet: dropout directly applicable

Hinton et al 2012 Srivastava et al 2015

LSTM: more challenging because of temporally dependent states

Recurrent Dropout

Recently: recurrent dropout technique developed Gal & Ghahramani 2015

- Interpretation: variational inference for posterior weight distribution
- Implemented in deep learning frameworks but not in CuDNN

LSTM with *variational* Dropout

$$\mathbf{c}_t = \mathbf{g}_f \odot \mathbf{c}_{t-1} + \mathbf{g}_i \odot \widetilde{\mathbf{c}}_t$$

$$\widetilde{\mathbf{c}}_t = \mathbf{tanh} \left(\mathbf{W}_c \, \mathbf{x}_t + \mathbf{R}_c \left(\mathbf{m} \, \mathbf{0} \, \mathbf{h}_{t-1} \right) + \mathbf{b}_c \right)$$

$$\mathbf{g}_f = \boldsymbol{\sigma} \left(\mathbf{W}_f \, \mathbf{x}_t + \mathbf{R}_f \left(\mathbf{m} \odot \mathbf{h}_{t-1} \right) + \mathbf{b}_f \right)$$

$$\mathbf{g}_i = \boldsymbol{\sigma} \left(\mathbf{W}_i \, \mathbf{x}_t + \mathbf{R}_i \left(\mathbf{m} \, \mathbf{o} \, \mathbf{h}_{t-1} \right) + \mathbf{b}_i \right)$$

$$\mathbf{g}_o = \boldsymbol{\sigma} \left(\mathbf{W}_o \, \mathbf{x}_t + \mathbf{R}_o \left(\mathbf{m} \odot \mathbf{h}_{t-1} \right) + \mathbf{b}_o \right)$$

$$\mathbf{h}_t = \mathbf{g}_o \odot anh\left(\mathbf{c}_t
ight)$$

cell state

cell state candidate

forget gate

input gate

output gate

output/recurrent input

New: LSTM with variational Dropout (cuDNN compatible)

$$\mathbf{c}_t = \mathbf{g}_f \odot \mathbf{c}_{t-1} + \mathbf{g}_i \odot \widetilde{\mathbf{c}}_t$$

$$\widetilde{\mathbf{c}}_t = \mathbf{tanh} \left(\mathbf{W}_c \, \mathbf{x}_t + \left(\mathbf{M} \odot \mathbf{R}_c \right) \mathbf{h}_{t-1} + \mathbf{b}_c \right)$$

$$\mathbf{g}_f = \boldsymbol{\sigma} \left(\mathbf{W}_f \, \mathbf{x}_t + \left(\mathbf{M} \odot \mathbf{R}_f \right) \mathbf{h}_{t-1} + \mathbf{b}_f \right)$$

$$\mathbf{g}_i = \boldsymbol{\sigma} \left(\mathbf{W}_i \, \mathbf{x}_t + \left(\mathbf{M} \odot \mathbf{R}_i \right) \mathbf{h}_{t-1} + \mathbf{b}_i \right)$$

$$\mathbf{g}_o = \boldsymbol{\sigma} \left(\mathbf{W}_o \, \mathbf{x}_t + \left(\mathbf{M} \odot \mathbf{R}_o \right) \mathbf{h}_{t-1} + \mathbf{b}_o \right)$$

$$\mathbf{h}_{t}=\mathbf{g}_{o}\odot anh\left(\mathbf{c}_{t}
ight)$$

$$\mathbf{m} \in \{0,1\}^{N_{\text{cells}}}$$
 Binary dropout mask for recurrent input, sampled once per forward/backward pass [per mini-batch]

$$\mathbf{M} = egin{pmatrix} \mathbf{m}^T \ dots \ \mathbf{m}^T \end{pmatrix} \in \{0,1\}^{N_{\mathrm{cells}},N_{\mathrm{cells}}}$$

Remark: input dropout as for feedforward networks (also sampled once per pass)

Neural network optimization

 $BAC = \frac{Sensitivity + Specificity}{2}$

averaged over the 13 classes

- Optimization objective: balanced accuracy (not differentiable)
- Cost function: cross entropy averaged over classes
 - class weights to balance the uneven training distribution
- Adam: modern mini-batch stochastic gradient descent Kingma & Ba 2015
 - Adaptive learning rate per parameter
 - Adaptive momentum per parameter
- Early stopping (free lunch) regularization
 - Stop when validation performance (avg. across the last few epochs) decreases
- Learning rate and batch size: hyperparams that don't affect cost function
 - Values first chosen s.t. training is most efficient
 - Fine tune them after cross validation based hyperparameter optimization

Hyperparameter Optimization

Bergstra & Bengio 2012

 $BAC = \frac{Sensitivity + Specificity}{2}$

- Approach: randomly sample hyperparameters
- Evaluation hyperparams. w.r.t. partial cross yalidation performance
 - Performance measure: balanced accuracy / averaged over the 13 classes
 - First level: single 5-1 train-validation split => discard trash
 - Second level: two fixed (of 6) 5-1 splits => keep best 30% models
 - Third level: three (of 6) 5-1 splits => take best hyperparam. comb.
 - Fourth level: fine-tuning of learning rate, batch size, regularization strength
 - Final model: trained on all 6 folds, evaluated on test data

1/8 of each class' sounds mixed together in 80 scenes (random nSrc, SNR, azimuth)

1/8 of sounds for each class mixed together in 126 scenes (systematically parametrized)

Preliminary Results

- For comparison: block-interprete labels
- Trowitzsch, Mohr, Kashef, Obermayer 2017, IEEE Audio Speech Language Process.
- Class i active in last 500ms (with 75% coverage)? Then y_i=1 else 0
- Baseline model: logistic regression with L1 regularization
 - One feature vector for each block of size 500ms (2/3 overlap)
 - Features: statistical moments of ratemap/AMS and temporal derivatives thereof
 - Subsampling of data due to memory requirements of glmnet (here: harmless)
 - Cross validation Performance: 79.5 % nSrc-weighted balanced accuracy v2
 - Validation performance of fold 1: 78.7% nSrc-weighted BAC₂ (>= BAC₂ [probably])
- Current state (beginning of hyperparameter search):
 - LSTM: 82.3 % balanced accuracy of full CV (fold 1: 83.4% BAC, 81.7 % BAC₂) fold 6 (only slightly better, yet to be improved

$$BAC = \frac{Sensitivity + Specificity}{2}$$

$$BAC_2 = 1 - \sqrt{(1 - Sensitivity^2) + (1 - Specificity)^2}$$

averaged over the 13 classes

Best model so-far (setting2)

- Backprop length T = 25sec (2500 frames)
- Batch size = 40
- LSTM layers: 3
- LSTM cells per layer: 581

- FC layers: 2
- Neurons per FC layer: 192
- Dropout rate: 10%
- Learning rate: default (0.001)

Challenges

- Limited resources
 - Despite: math cluster's GPUs & NVIDIA's donations mediated through Youssef
 - Consequence: hyperparameter space will be sampled rather coarsely
- Implementation complexity: specificities of data set and framework
 - One pipeline is already running, the second one almost
- Changes in design / methodology on the fly
 - Hopefully we have reached a stable configuration

Outlook

- Results for ConvNet and MLP model variants
 - Investigate effect of input history length T (and check input subsampling factor)
- More hyperparameter combinations for LSTM (level 1)
- (Partial) cross validation results (levels 2+3)
- Fine-tuning (level 4)
- Test set evaluation: effect of scene parameters (SNR, azimuth)
- Instant labels (=original labels; neural network models applicable)
- Change from Adam to problem-specific optimization:
 - Superconvergence (by large learning rates) Smith & Topin 2017
 - Learning to learn gradient descent by gradient descent

Andrychowicz et al 2016

Contributions

- Heiner (NI project): data pipeline, LSTM, visualizations
- Changbin (Master Thesis): LSTM, preliminary results
- <u>Alessandro</u> (Bachelor Thesis): ConvNet
- <u>Ivo</u>: Dataset design, baseline (glmnet) model, supervision
- Moritz: MLP, ConvNet, supervision