Computational Fluid Dynamics

Assignment Catalogue

AM5630 Assignment 1

Aakash R -ME14B149

February 6, 2017

Contents

1	Problem statement	į
	1.1 Boundary condition:	
	1.2 Initial condition:	
2	Governing Equations	
	2.1 PDE	
	2.1 PDE	
3	Pseudo Code	
4	Results	
	4.1 Case A	
	4.2 Case B	
	4.3 Case C	
5	Appendix A-Code	
	5.1 File - ME14B149_ Input.m	
	5.2 File - ME14B149_ Assignment.m	
6	Appendix B - Code Links	

1 Problem statement

Given a rod of Length ${\bf L}$, with boundary conditions, initial conditions as follows:

1.1 Boundary condition:

$$T(0,t) = 0^{\circ}C \tag{1}$$

$$T(L,t) = 1^{\circ}C \tag{2}$$

1.2 Initial condition:

$$T(x,0) = 0^{\circ}C \tag{3}$$

Compute the temperature for t = 0s to 20s for various values of $\Delta T = 0.1s, 0.01s, 0.001s$.

2 Governing Equations

2.1 PDE

$$\frac{\delta T}{\delta t} = \alpha \frac{\delta^2 T}{\delta x^2} \tag{4}$$

2.2 Finite difference formulation using FTCS scheme

$$T_i^{n+1} = T_i^n + \alpha \Delta t \frac{(T_{i+1}^n - 2T_i^n + T_{i-1}^n)}{(\Delta x)^2}$$
 (5)

3 Pseudo Code

- 1. Initialize the variables $\alpha, \Delta t, T, \Delta x, N_x, L$. (Note here T is a matrix with N_x columns ,and $20/(\Delta t) + 1 = N_y$ rows)
- 2. For n = 2 to N_y execute the statements 3 and 4.
- 3. For i = 2 to $N_x 1$ execute statement 4.
- 4. $T[i][n+1] = T[i][n] + \frac{\alpha \Delta t}{(\Delta x)^2} (T[i+1][n] 2T[i][n] + T[i-1][n])$
- 5. end

4 Results

4.1 Case A

Assumptions : $N_x = 200, \Delta t = 0.1s$

 $1.\ \mathrm{At}\ 0.1\mathrm{s}$

$2. \ \mathrm{At} \ 0.5 \mathrm{s}$

3. At 1s

4. At 5s

5. At 10s

6. At 20s

4.2 Case B

Assumptions : $N_x = 200, \Delta t = 0.01s$

Results:

4.3 Case C

Assumptions : $N_x = 200, \Delta t = 0.001s$

Results:

5 Appendix A-Code

5.1 File - $ME14B149_{-}$ Input.m

Input Variables

```
L = 10 ; % Length of rod in meters
t = 2000; % Max time of observation in seconds
alpha = .1; % SI units

Nx = 200; % No of grid points in space
dt = .01; % Time differential in seconds
dx = (L/(Nx-1)); % Distance differential in m
```

5.2 File - ME14B149_ Assignment.m

Contents

- CFD Assignment -Intro
- Variable initialization -1
- CSFT scheme
- Plotting data for t = 0.1, 0.5, 1, 5, 10, 15, 20 s

CFD Assignment -Intro

One dimentional unsteady heat conduction equation

```
close ;
clear ;
clc;
```

Variable initialization

```
ME14B149_Input % Running input file

m = round(t/dt + 1); % No of grid points in time
T = zeros(m,Nx); % Grid generation ,Initial condition
T(:,1) = 1; %Boundary condition
T(:,Nx) = 0; %Boundary condition
```

CSFT scheme

```
\begin{split} dT/dt &= alpha \; d2T/d2x \; Tn + 1(i) = Tn(i) \; + \; alpha*dt(Tn(i+1) + 2*Tn(i) + Tn(i-1))/dx2 \\ &\text{for n = 2:m} \\ &\text{for i = 2:(Nx-1)} \\ &T(n,i) = T(n-1,i) \; + \; alpha*dt*(T(n-1,i+1) - 2*T(n-1,i) + T(n-1,i-1))/dx/dx; \\ &\text{\%pause;} \\ &\text{end} \\ &\text{end} \end{split}
```

Plotting data for t = 0.1, 0.5, 1, 5, 10, 15, 20 s

```
total = 20;
step = 5;
j = (0:step:total)/dt;
plot(0:dx:L , T(0.1/dt+1,:),0:dx:L , T(0.5/dt+1,:),0:dx:L , T(1/dt+1,:), ...
0:dx:L , T(5/dt+1,:), 0:dx:L, T(10/dt+1,:),0:dx:L , T(15/dt+1,:),0:dx:L , T(20/dt+1,:));
xlabel('Length along rod')
ylabel('Temperatures')
legend('At 0.1s','At 0.5s','At 1s','At 5s','At 10s','At 15s','At 20s');
s1 = num2str(dt);
s2 = 'For dt =';
s3 = strcat(s2,s1,'s');
title(s3);
```

Sample Result

6 Appendix B - Code Links

Matlab Code: https://github.com/RAAKASH/Intro-to-CFD-.git