- Indução estrutural
- Cálculo Proposicional
 - Sintaxe do Cálculo proposicional
 - Semântica do Cálculo proposicional
 - Sistema Formal de Dedução Natural
 - Correção e Completude do Sistema Formal de Dedução Natural

Índice O

Uma regra de inferência representa-se na forma

$$\frac{\varphi_1\cdots\varphi_n}{\varphi}$$
 nome

em que as fórmulas imediatamente acima do traço de inferência são chamadas as premissas da regra e a fórmula abaixo do traço de inferência é chamada a conclusão da regra de inferência.

As notações do tipo

$$\begin{array}{cccc} \rho & & & \\ \vdots & & & \vdots \\ \theta & & \text{ou} & & \theta \end{array}$$

representam árvores finitas de fórmulas construídas a partir das regras de inferência, de raiz θ , nas quais ρ ocorre como uma folha, uma ou mais vezes, sem qualquer anotação ou anotada com um corte, respetivamente.

Definição das regras de inferência

As regras de inferência do sistema formal de Dedução Natural para o Cálculo Proposicional (DNP) são as seguintes:

Regras de Introdução

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge I$$

Regras de Eliminação

$$\frac{\varphi \wedge \psi}{\varphi} \wedge_1 E \qquad \frac{\varphi \wedge \psi}{\psi} \wedge_2 E$$

$$\frac{\psi \ \psi \to \varphi}{\varphi} \to E$$

$$\frac{\varphi \neg \varphi}{\Box} \neg E$$

(continua)

Definição das regras de inferência (continuação)

Regras de Introdução

$$\frac{\varphi}{\varphi \vee \psi} \vee_1 I \qquad \frac{\psi}{\varphi \vee \psi} \vee_2 I$$

$$\begin{array}{ccc} & & & & \\ & & & \\ \vdots & & \vdots & \\ & & & \varphi & \\ \hline & & & \varphi \leftrightarrow \psi & \end{array} \leftrightarrow I$$

$$\frac{\perp}{\varphi}(\perp)$$

Regras de Eliminação

$$\frac{\varphi \ \varphi \leftrightarrow \psi}{\psi} \leftrightarrow_1 E$$

$$\frac{\psi \ \varphi \leftrightarrow \psi}{\varphi} \leftrightarrow_2 E$$

$$\frac{\perp}{\varphi}$$
 (RAA)

Exemplos

De seguida são apresentadas duas árvores finitas de fórmulas construídas a partir das regras de inferência de DNP.

Sejam $\varphi,\ \psi,\ \sigma\in\mathcal{F}^\mathit{CP}.$

$$\frac{\varphi \not \searrow \psi^{(1)}}{\varphi \land_{1} E} \qquad \frac{\varphi \not \searrow \psi^{(1)}}{\psi \land_{2} E} \qquad \psi \to (\varphi \to \sigma) \to E}{\varphi \to \sigma} \to E$$

$$\frac{\varphi \not \searrow \psi^{(1)}}{\varphi \land_{1} E} \qquad \varphi \to \sigma \to E$$

$$\frac{\varphi \not \searrow \psi^{(1)}}{\varphi \land_{2} E} \qquad \psi \to (\varphi \to \sigma) \to E$$

$$\frac{\varphi \not \searrow \psi^{(1)}}{\varphi \land_{1} E} \qquad \varphi \to \sigma \to E$$

Definição

O conjunto \mathcal{D}^{DNP} das derivações de DNP (também chamadas deduções ou demonstrações) é o conjunto de árvores finitas de fórmulas definido indutivamente pelas seguintes regras:

- **1** para cada $\varphi \in \mathcal{F}^{CP}$, uma regra base $\varphi \in \mathcal{D}^{DNP}$ representando φ a árvore cujo único nodo é φ .
- ② uma regra indutiva associada a cada uma das regras de inferência de DNP de tipo semelhante às dos seguintes exemplos para as regras de inferência → I e → E, respetivamente:

$$\bullet \ \ \text{Se} \quad \ \ \, \overset{\mathcal{G}}{\overset{\mathcal{D}}{\psi}} \in \mathcal{D}^{DNP}, \, \text{então} \quad \, \overset{\mathcal{F}}{\overbrace{\varphi \to \psi}} \to I \in \mathcal{D}^{DNP}$$

• Se
$$\begin{array}{c} D_1 \in \mathcal{D}^{DNP} \text{ e} & D_2 \\ \varphi \to \psi \in \mathcal{D}^{DNP}, \text{ então} \end{array}$$
 $\begin{array}{c} D_1 \\ \varphi & \varphi \to \psi \\ \hline \psi \end{array} \to \mathcal{E} \in \mathcal{D}^{DNP}$

Nota: As notações do tipo

representam derivações designadas D' de raiz θ . Tais derivações podem ter várias folhas. Nos dois últimos casos é assumido explicitamente que σ ocorre como folha de D' não anotada ou anotada com um corte, respetivamente.

Sendo \mathcal{D}^{DNP} um conjunto definido indutivamente, existe um teorema de indução estrutural para \mathcal{D}^{DNP} .

A definição indutiva de \mathcal{D}^{DNP} é determinista, como tal, existe um teorema de recursão estrutural para \mathcal{D}^{DNP} .

Os sub-objetos de uma derivação ${\it D}$ são derivações e são designados subderivações de ${\it D}$.

Definições

Numa derivação *D*:

- a raiz de D é chamada a conclusão de D;
- as folhas de D são chamadas as hipóteses de D;
- as folhas de D anotadas com um corte são chamadas as hipóteses canceladas (ou cortadas) e as folhas de D sem qualquer anotação chamadas as hipóteses não canceladas (ou não cortadas) de D.

Definição

Uma fórmula φ diz-se derivável a partir de um conjunto Γ de fórmulas, ou consequência sintática de Γ , se existir uma derivação $D \in \mathcal{D}^{DNP}$ com conclusão φ e cujas hipóteses não canceladas pertencem a Γ . Em tal caso, escreve-se

$$\Gamma \vdash \varphi$$

e diz-se que D é uma derivação de φ a partir de Γ .

Definição

Uma fórmula φ diz-se um teorema de DNP se existir uma derivação D de φ cujo conjuntode hipóteses não canceladas é vazio. Em tal caso, escreve-se

$$\vdash \varphi$$

e diz-se que D é uma derivação de φ .

Notar que $\vdash \varphi$ significa $\emptyset \vdash \varphi$ para qualquer $\varphi \in \mathcal{F}^{CP}$.

Exemplo

Considere-se a seguinte derivação que se denota por *D*:

$$\frac{\varphi \cancel{\psi}^{(1)}}{\varphi} \xrightarrow{\wedge_1 E} \frac{\varphi \cancel{\psi}^{(1)}}{\psi} \xrightarrow{\wedge_2 E} \psi \rightarrow (\varphi \rightarrow \sigma) \rightarrow E}{\varphi \rightarrow \sigma} \rightarrow E}$$

$$\frac{\sigma}{(\varphi \land \psi) \rightarrow \sigma} \xrightarrow{\to I^{(1)}}$$

Então,
$$\psi \to (\varphi \to \sigma) \vdash (\varphi \land \psi) \to \sigma$$
.

Neste exemplo:

- o conjunto de hipóteses de D é $\{\varphi \land \psi, \ \psi \rightarrow (\varphi \rightarrow \sigma)\}$,
- o conjunto de hipóteses canceladas de D é $\{\varphi \wedge \psi\}$,
- o conjunto de hipóteses não canceladas de D é $\{\psi \to (\varphi \to \sigma)\}$,
- a conclusão de D é $(\varphi \wedge \psi) \rightarrow \sigma$.

$$\varphi \wedge \psi \qquad \psi \rightarrow (\varphi \rightarrow \sigma)$$

Tal derivação poderia ser representada por:

$$(\varphi \wedge \overset{D}{\psi}) o \sigma$$

Na representação de consequências sintáticas utilizaremos abreviaturas análogas às utilizadas para representação de consequências semânticas. Assim, dadas fórmulas $\varphi, \varphi_1, ..., \varphi_n$ e dados conjuntos de fórmulas Γ e Δ , escreveremos:

- $\mathbf{0} \ \varphi_1,...,\varphi_n \vdash \varphi$ como abreviatura para $\{\varphi_1,...,\varphi_n\} \vdash \varphi$;
- ② Γ, φ_1 , ..., φ_n $\vdash \varphi$ como abreviatura para Γ ∪ { φ_1 , ..., φ_n } $\vdash \varphi$;
- **3** $\Gamma, \Delta \vdash \varphi$ como abreviatura para $\Gamma \cup \Delta \vdash \varphi$.

Proposição

Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e Γ e Δ subconjuntos de \mathcal{F}^{CP} . Então:

- **a)** se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$;
- **b)** se $\Gamma \vdash \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \varphi$;
- c) se $\Gamma \vdash \varphi$ e $\Delta, \varphi \vdash \psi$, então $\Delta, \Gamma \vdash \psi$;
- **d)** $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$;
- **e)** se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Gamma \vdash \varphi$, então $\Gamma \vdash \psi$.

Demonstração

- (a) Seja $\varphi \in \Gamma$. Então, a árvore de fórmulas com um único nodo, φ , é uma derivação cuja conclusão é φ e cujo conjunto de hipóteses não canceladas é $\{\varphi\}$, que é um subconjunto de Γ . Assim, por definição de consequência sintática, $\Gamma \vdash \varphi$.
- b), c) e e): Exercício.

Demonstração (continuação)

d) Se $\Gamma \vdash \varphi \rightarrow \psi$, então existe uma derivação D de $\varphi \rightarrow \psi$ a partir de Γ .

Reciprocamente, se $\Gamma, \varphi \vdash \psi$, existe uma derivação D de ψ a partir de $\Gamma \cup \{\varphi\}$. Então, a derivação

onde todas as ocorrências de φ (como folha) em D são canceladas, com a aplicação de \to I, é uma derivação de $\varphi \to \psi$ a partir de Γ .

Definição

Seja $\Gamma \subseteq \mathcal{F}^{CP}$. Diz-se que:

- Γ é sintaticamente inconsistente se $\Gamma \vdash \bot$;
- Γ é sintaticamente consistente se $\Gamma \not\vdash \bot$.

Exemplos

• $\Gamma = \{p_1 \lor p_2, \ p_1 \lor \neg p_2, \neg p_1 \land p_2\}$ é sintaticamente inconsistente, porque

$$\underline{p_1 \vee \neg p_2} \quad \frac{p_1 \wedge p_2}{\neg p_1 \wedge p_2} \wedge_1 E \qquad \frac{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_1 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_2 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_2 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_2 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_2 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_2 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_2 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_2}{\neg p_2} \wedge_2 E \qquad \neg p_2 \stackrel{\neg p_1 \wedge p_$$

- $\Gamma = \{p_1 \rightarrow p_2, p_2 \rightarrow p_1\}$ é sintaticamente consistente;
- $\Gamma = \{p_1 \land p_2, p_2 \lor \neg p_1, \neg p_1 \to \neg p_2\}$ é sintaticamente consistente.

Proposição

Seja $\Gamma \subseteq \mathcal{F}^{CP}$. As seguintes afirmações são equivalentes:

- Γ é sintaticamente inconsistente;
- 2 para alguma fórmula φ , $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$;
- **3** para qualquer fórmula ψ , $\Gamma \vdash \psi$.

Demonstração

Vamos demonstrar que (1) implica (2), que (2) implica (3) e que (3) implica (1).

▶ Admitindo por hipótese que $\Gamma \vdash \bot$, existe uma derivação $\overset{D}{\bot}$ cujas hipóteses não canceladas pertencem a Γ . Então para qualquer fórmula φ

$$\begin{array}{cccc} & & & & & D \\ \frac{\bot}{\varphi} \bot E \in \mathcal{D}^{DNP} & & & & \frac{D}{\bot} \bot E \in \mathcal{D}^{DNI} \end{array}$$

Logo
$$\Gamma \vdash \varphi \in \Gamma \vdash \neg \varphi$$
.

Demonstração (continuação)

Vamos demonstrar que (1) implica (2), que (2) implica (3) e que (3) implica (1).

Admitindo por hipótese que $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$, existem derivações $\begin{matrix} D_1 & D_2 \\ \varphi & e & \neg \varphi \end{matrix}$ cujas hipóteses não canceladas pertencem a Γ . Então para qualquer fórmula ψ

Logo $\Gamma \vdash \psi$.

▶ Se, por hipótese, $\Gamma \vdash \psi$ para toda a fórmula ψ , então, em particular fazendo

$$ψ=\bot$$
, existe uma derivação $\overset{D}{\bot}$. Logo $\Gamma\vdash\bot$.

Correção e Completude do Sistema Formal de Dedução Natural