Docket No.: 09086-00176-US

AMENDMENTS TO THE CLAIMS

1. (Previously presented) A zwitterionic transition metal compound of the formula I

$$\bigoplus_{L_n M} X X'$$

$$\bigoplus_{AR^1 m} X'$$

where

L are identical or different and are each a π -ligand or an electron donor, n is equal to 1, 2, 3 or 4,

M is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements,

X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms,

X' is a hydrocarbon group having 1-40 carbon atoms,

A is an atom of group Ib, IIb, IIIa, IIIb, IVa, Va, Vb, VIb, VIIb or VIIIb of the Periodic Table of the Elements,

 R^1 are identical or different and are each a perhalogenated C_1 - C_{40} -hydrocarbon radical, and m is equal to 1, 2, 3, 4 or 5.

NO. 3140 P. 4

Serial No. 09/851643

Docket No.: 09086-00176-US

- 2. (original) A transition metal compound as claimed in claim 1, wherein the radicals L are identical or different and are each a π -ligand.
- (original) A transition metal compound as claimed in claim 1, wherein the radicals L
 are identical or different and are each an unsubstituted or substituted
 cyclopentadienyl group.
- 4. (original) A transition metal compound as claimed in claim 1, wherein the radicals L are linked to one another via a bridge.
- 5. (original) A transition metal compound as claimed in claim 1, wherein n=2 when M is a metal atom of group IVb of the Periodic Table of the Elements.
- (original) A transition metal compound as claimed in claim 1, wherein
 M is a metal atom of group IVb of the Periodic Table of the Elements, n is equal to 2,

L are identical or different and are each a substituted or unsubstituted cyclopentadienyl group, where two radicals L are optionally linked to one another via a bridge Z and

Z is CR^2R^3 or SiR^2R^3 or a unit Si— $(CR^2R^3)_x$ —Si which links two fragments $L_nM^+XX^i$ —A— R^1_m with one another, where x is an integer from 0 to 10, X and X^i together form a three-membered to five-membered hydrocarbon chain which can be saturated or unsaturated and are unsubstituted or substituted by one or more C_1 - C_{20} -hydrocarbon radicals,

R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a C₁-C₂₀-alkyl group, a C₁-C₁₀-fluoralkyl group, a C₁-C₁₀-alkoxy group, a C₆-C₁₄-343224

NO. 3140 P. 5

Serial No. 09/851643

Docket No.: 09086-00176-US

aryl group, a C_6 - C_{10} -fluoroaryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} -arylalkenyl group, or R^2 and R^3 together with the atoms connected them form one or more rings, and R^2 and R^3 are optionally bonded to L;

A is an atom of group Ib, IIb, IIIa, IVa, Va, Vb of the Periodic Table of the Elements,

 R^1 are identical or different and are each a perfluorinated alkyl or aryl group having from 1 to 20 carbon atoms and m is equal to 2, 3 or 4.

(original) A transition metal compound as claimed in claim 6, wherein
 M is zirconium,

n is equal to 2,

L are identical or different and are each a substituted cyclopentadienyl group, where two radicals L are linked to one another via a bridge Z, where Z is $CR^2 R^3$ or $SiR^2 R^3$ and R^2 and R^3 are as defined in claim 6,

X and X' together form an unsaturated four-membered hydrocarbon chain whose hydrogen atoms are optionally replaced by C_1 - C_{20} -alkyl groups,

A is boron atom,

 R^1 are identical and are each a pentafluorophenyl group ($C_6 \ F_5$) and m is equal to 3.

8. (original) A catalyst component comprising at least one transition metal compound as claimed in claim 1.

Docket No.: 09086-00176-US

- (original) A catalyst component as claimed in claim 8, additionally containing a support.
- 10. (Previously presented) A process for preparing a compound according to claim 1 of the formula I,

$$\bigoplus_{\substack{L_nM \odot \\ AR^1 m}} X$$

where

L are identical or different and are each a π ligand or an electron donor, n is equal to 1, 2, 3 or 4,

M is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements,

X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms,

X' is a hydrocarbon group having 1-40 carbon atoms,

A is an atom of group Ib, IIb, IIIa, IIIb, IVa, Va, Vb, VIb, VIIb or VIIIb of the Periodic Table of the Elements,

 R^1 are identical or different and are each a perhalogenated C_1 - C_{40} -hydrocarbon radical, and m is equal to 1, 2, 3, 4 or 5, which comprises reacting a compound of the formula II

Docket No.: 09086-00176-US

with a compound of the formula III

and reacting the reaction product with a compound of the formula AR^1_m , where L, n, M, [X, B,]X, X', A, R^1 and m in the formulae II, III and AR^1_m are as defined for the formula I and Hal is a halogen atom.

11. (original) A zwiterionic transition metal compound of the formula

$$Z \stackrel{L}{\underset{L}{\longleftarrow}} (X \stackrel{C}{\longrightarrow} X') \stackrel{B^{\bigcirc}}{\longrightarrow} R_3^1$$

wherein: L and L' are identical or different and are each a substituted or unsubstituted cyclopentadienyl group;

- Z is a bridge linking together said L and L' and is a group of the formula $CR^2 R^3$ or SiR^2R^3 ;
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a C₁ C₂₀ -alkyl group, a C₁ -C₁₀ -fluoralkyl group, a C₁ -C₁₀ -alkoxy group, a C₆ -C₁₄ aryl group, a C₆ -C₁₀ -fluoroaryl group, a C₆ -C₁₀ -aryloxy group, a C₂ -C₁₀ alkenyl group, a C₇ -C₄₀ -arylalkyl group, a C₇ -C₄₀ -alkylaryl group, a C₈ -C₄₀ -

Docket No.: 09086-00176-US

arylalkenyl group, or R^2 and R^3 together with the atoms connected them form one or more rings, and R^2 and R^3 are optionally bonded to L;

M is a metal atom of group IVb of the Periodic Table of the Elements;

- X-X' is a 3- to 5-membered saturated or unsaturated hydrocarbon chain which is unsubstituted or substituted by one or more C_1 - C_{20} -hydrocarbon radicals; and the R^1 radicals are identical or different and are each a perfluorinated alkyl or aryl group having from 1 to 20 carbon atoms.
- (original) A catalyst system for olefin polymerization comprising a transition metal compound of claim 11 and, optionally, a catalyst support material.
- 13. (original) A catalyst system as claimed in claim 12, wherein said catalyst system is essentially free of an aluminoxane except when said catalyst support material is present and is a solid aluminoxane.
- 14. (original) The catalyst as claimed in claim 8, wherein M is titanium, zirconium or hafnium.
- 15. (original) The catalyst as claimed in claim 12, wherein M is zirconium.
- (original) The catalyst as claimed in claim 14, wherein an unsubstituted or M is Zr,

n is equal to 2,

Docket No.: 09086-00176-US

L are identical or different and are each a substituted cyclopentadienyl group, where two radicals L are linked to one another via a bridge Z, and

- Z is $CR^2 R^3$ or $SiR^2 R^3$ or a unit Si— $(CR^2 R^3)_x$ —Si which links two fragments $L_n M^+$ XX'A— R^1_m with one another, where x is an integer from 0 to 10,
- X and X' together form a three-membered to five-membered (C_3 - C_5)-alkyl chain which is saturated or unsaturated and optionally substituted by C_1 - C_{20} -hydrocarbon radicals,

A is a metal of group Ib, IIb, IIIb, IVa, Vb, of the Periodic Table of the Elements,

R¹ are identical or different and are each a pentafluorinated alkyl or aryl group having

from 1 to 20 carbon atoms,

R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a C₁ - C₂₀ -alkyl group, a C₁ -C₁₀ -fluoralkyl group, a C₁ -C₁₀ -alkoxy group, a C₆ -C₁₄ - aryl group, a C₆ -C₁₀ -fluoroaryl group, a C₆ -C₁₀ -aryloxy group, a C₂ -C₁₀ - alkenyl group, a C₇ -C₄₀ -arylalkyl group, a C₇ -C₄₀ -alkylaryl group, a C₈ -C₄₀ - arylalkenyl group and

m is equal to 3.

17. (original) The catalyst as claimed in claim 8, wherein

M is zirconium,

n is equal to 2,

L are identical or different and are each a substituted cyclopentadienyl group, where two radicals L are bonded to one another via a bridge Z, where Z is $CR^2 R^3$ or $SiR^2 R^3$,

Docket No.: 09086-00176-US

X and X' together form an unsaturated four-membered (C_4)-alkyl chain whose hydrogen atoms can also be replaced by C_1 - C_{20} -alkyl groups,

A is a boron atom,

 R^1 are identical and are each a pentafluorophenyl group (C_6F_5),

 R^2 and R^3 are identical or different and are each a hydrogen atom, a halogen atom, a C_1 - C_{20} -alkyl group, a C_1 - C_{10} -fluoralkyl group, a C_1 - C_{10} -alkoxy group, a C_6 - C_{14} - aryl group, a C_6 - C_{10} -fluoroaryl group, a C_6 - C_{10} -aryloxy group, a C_2 - C_{10} - alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_7 - C_{40} -alkylaryl group, a C_8 - C_{40} - arylalkenyl group and m is equal to 3.

18. (original)The compound as claimed in claim 1, wherein the transition metal compound of the formula I is selected from the group consisting of bis(cyclopentadienyl)Zr⁺CH₂CHCHCH₂B'(C₆F₅)₃;

bis(methylcyclopentadienyl) Zr^+ CH₂ CHCHCH₂ B $^-$ (C₆ F₅)₃;

bis(n-butylcyclopentadienyl)Zr+ CH2 CHCHCH2 B- (C6 F5)3;

 $bisindenylZr^{+}\ CH_{2}\ CHCHCH_{2}\ B^{-}(C_{6}\ F_{5})_{3};$

(tert-butylamido)dimethyl(tetramethyl- η^5 -cyclopentadienyl)silaneZr $^+\mathrm{CH_2}$

CHCHCH₂ B⁻ (C₆ F₅)₃;

bis(2-methylbenzoindenyl)Zr+ CH2 CHCHCH2 B- (C6 F5)3;

dimethylsilanediylbis(2-methylindenyl)Zr+ CH2 CHCHCH2 B- (C6 F5)3;

dimethylsilanediylbisindenylZr+ CH2 CHCHCH2 B+ (C6 F5)3;

 $dimethylsilanediylbis (2-methylbenzoindenyl) Zr^{+} CH_{2} \ CHCHCH_{2} \ B^{-} (C_{6} \ F_{5})_{3};$

 $dimethyl silane diyl (2-methylbenzo indenyl) (2-methyl indenyl) Zr^+ CH_2 \ CHCHCH_2$

Docket No.: 09086-00176-US

B' $(C_6 F_5)_3$;

 $dimethyl silane diyl (2-methylbenzo indenyl) (2-methyl-4-phenyl indenyl) Zr^+ \, CH_2$

CHCHCH₂ B' (C₆ F₅)₃;

dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+ CH2 CHCHCH2 B- (C6

F5)3;

dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+ CH2 CHCHCH2 B* (C6 F5)3;

dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+ CH2 CHCHCH2 B

 $(C_6 F_5)_3;$

dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+ CH2 CHCHCH2 B (C6

 $F_5)_3;$

isopropylidene(cyclopentadienyl)(fluorenyl)Zr+ CH2 CHCHCH2 B (C6 F5)3;

isopropylidene(cyclopentadienyl)(indenyl)Zr+ CH2 CHCHCH2 B (C6 F5)3;

[4-n⁵-cyclopentadienyl-4,7,7-trimethyl-(n⁵-4,5,6,7-tetrahydroindenyl)Zr⁺ CH₂

CHCHCH₂ B $^{-}$ (C₆ F₅)₃;

dimethylsilanediylbis(2-methylindenyl) Zr^{+} OCH₂ CH₂ CH₂ B $^{-}$ (C₆ F₅)₃;

dimethylsilanediylbisindenylZr⁺ OCH₂ CH₂ CH₂ B⁻ (C₆ F₅)₃;

dimethylsilanediylbis(2-methylbenzoindenyl)Zr+ OCH2 CH2 CH2 B- (C6 F5)3;

dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr⁺ OCH₂ CH₂ CH₂

 $B^{*}(C_6 F_5)_3;$

 $dimethyl silane diyl (2-methylbenzo indenyl) (2-methyl-4-phenyl indenyl) Zr^+ \ OCH_2$

 $CH_2 CH_2 B^- (C_6 F_5)_3;$

dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr⁺ OCH₂ CH₂ CH₂ B⁻ (C₆

F₅)₃;

Docket No.: 09086-00176-US

dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr⁺ OCH₂ CH₂ CH₂ B⁺ (C₆ F₅)₃;
dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr⁺ OCH₂ CH₂ CH₂ B⁺
(C₆ F₅)₃;
dimethylsilanediylbis(2-methylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁺ (CF₃)₃;
dimethylsilanediylbisindenylZr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃;
dimethylsilanediylbis(2-methylbenzoindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr⁺ CH₂ CHCHCH₂
B⁻ (CF₃)₃;
dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr⁺ CH₂
CHCHCH₂ CH₂ B⁻ (CF₃)₃;
dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻

dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃;

dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃; dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃;

dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃; dimethylsilanediylbis(2-methylindenyl)Zr⁺ CH₂ C(CH₃)C(CH₂)CH₂ B⁻ (CF₃)₃; dimethylsilanediylbisindenylZr⁺ CH₂ C(CH₃)C(CH₃)CH₂ B⁻ (CF₃)₃; dimethylsilanediylbis(2-methylbenzoindenyl)Zr⁺ CH₂ C(CH₃)C(CH₃)CH₂ B⁻

 $(CF_3)_3$; dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl) Zr^+ CH_2

dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+ CH2

343224

 $C(CH_3)C(CH_3)CH_2 B^{-}(CF_3)_3;$

Docket No.: 09086-00176-US

 $C(CH_3)C(CH_3)CH_2 B^-(CF_3)_3;$

 $dimethyl silaned iyl (2-methyl indenyl) (4-phenyl indenyl) Zr^+\ CH_2$

 $C(CH_3)C(CH_3)CH_2$ B' $(CF_3)_3$;

dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+ CH2 C(CH3)C(CH3)CH2 B

(CF₃)₃;

 $dimethyl silane diylbis (2-methyl-4,6-diisopropylindenyl) Zr^+\ CH_2$

 $C(CH_3)C(CH_3)C_2 B^-(CF_3)_3;$

 $dimethylsilaned iylbis (2-methyl-4-naphthylindenyl) Zr^+\ CH_2\ C(CH_3)C(CH_3)CH_2$

B (CF₃)₃,

methylphenylmethylene(fluorenyl)(cyclopentadienyl)Zr $^+$ CH $_2$ CHCHCH $_2$ B $^-$ (C $_6$

 $F_5)_3;$

diphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+ CH2 CHCHCH2 B (C6 F5)3;

isopropylidene(3-methylcyclopentadienyl)(fluorenyl)Zr+ CH2 CHCHCH2 B- (C6

F₅)₃;

 $dimethyl silaned iyl (3-tert-butyl cyclopenta dienyl) (fluorenyl) Zr^+ CH_2 \ CHCHCH_2$

 $B^{-}(C_6 F_5)_3;$

diphenylsilanediyl(3-(trimethylsilyl)cyclopentadienyl)(fluorenyl)Zr+ CH2

CHCHCH₂ B^{-} (C₆ F_5)₃;

phenylmethylsilanediylbis(2-methylindenyl) Zr^+CH_2 CHCHCH₂ B $^-(C_6F_5)_3$;

phenylmethylsilanediylbisindenylZr+ CH2 CHCHCH2 B- (C6 F5)3;

phenylmethylsilanediylbis(2-methyl-4,5-benzoindenyl) Zr^{+} CH₂ CHCHCH₂ B $^{-}$ (C₆

F₅)₃;

phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr* CH₂

Docket No.: 09086-00176-US

CHCHCH₂ B $(C_6 F_5)_3$;

phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl)

Zr+ CH2 CHCHCH2 B (C6 F5)3;

 $phenylmethylsilanediyl (2-methylindenyl) (4-phenylindenyl) Zr^{+} CH_{2} \ CHCHCH_{2}$

 $B'(C_6F_5)_3;$

phenylmethylsilanediylbis(2-methyl-4-phenylindenyl) Zr^+ CH_2 CHCHCH_2 B^- (C_6

 $F_5)_3;$

phenylmethylsilanediylbis(2-ethyl-4-phenylindenyl)Zr+ CH2 CHCHCH2 B- (C6

 $F_5)_3;$

phenylmethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+ CH2 CHCHCH2

 $B^*(C_6F_5)_3;$

 $phenylmethylsilanediylbis (2-methyl-4-naphthylindenyl) Zr^+\ CH_2\ CHCHCH_2\ B^-$

 $(C_6 F_5)_3$;

ethylenebis(2-methylindenyl)Zr+ CH2 CHCHCH2 B- (C6 F5)3;

ethylenebisindenylZr+ CH2 CHCHCH2 B- (C6 F5)3;

ethylenebis(2-methyl-4,5-benzoindenyl)Zr+ CH2 CHCHCH2 B (C6 F5)3;

ethylene(2-methyl-4,5-benzoindenyl)(2-methylindenyl) Zr^+ CH_2 $CHCHCH_2$ B^-

 $(C_6 F_5)_3;$

ethylene(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl) Zr^+ CH₂

CHCHCH₂ B^- (C₆ F_5)₃,

ethylene(2-methylindenyl)(4-phenylindenyl)Zr+ CH2 CHCHCH2 B (C6 F5)3;

ethylenebis(2-methyl-4,5-benzoindenyl)Zr+ CH2 CHCHCH2 B- (C6 F5)3;

ethylenebis(2-methyl-4-phenylindenyl) Zr^* CH_2 $CHCHCH_2$ B^* $(C_6$ $F_5)_3$;

Docket No.: 09086-00176-US

ethylenebis(2-methyl-4,6-diisopropylindenyl) Zr^+ CH₂ CHCHCH₂ B $^+$ (C₆ F₅)₃; ethylenebis(2-methyl-4-naphthylindenyl) Zr^+ CH₂ CHCHCH₂ B $^+$ (C₆ F₅)₃; ethylenebis(2-ethyl-4-phenylindenyl) Zr^+ CH₂ CHCHCH₂ B $^+$ (C₆ F₅)₃; ethylenebis(2-ethyl-4,6-diisopropylindenyl) Zr^+ CH₂ CHCHCH₂ B $^+$ (C₆ F₅)₃; ethylenebis(2-ethyl-4-naphthylindenyl) Zr^+ CH₂ CHCHCH₂ B $^+$ (C₆ F₅)₃; dimethylsilanediylbis(2-ethyl-4-phenylindenyl) Zr^+ CH₂ CHCHCH₂ B $^+$ (C₆ F₅)₃; dimethylsilanediylbis(2,3,5-trimethylcyclopentadienyl) Zr^+ CH₂ CHCHCH₂ B $^+$ (C₆ F₅)₃;

- 1. 6-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃]}hexane;
- 1,6-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr $^+$ CH $_2$ CHCHCH $_2$ B $^-$ (C $_6$ F $_5$) $_3$]}hexane;
- 1,6-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃]}hexane;
- 1,6-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl) Zr^+ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃]}hexane;
- 1,6-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃]}hexane;
- 1,2-{bis[methylsilylbis(2-methyl-4-phenylindenyl) Zr^+ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃]}ethane;
- 1,2-{bis[methylsilylbis(2-ethyl-4-phenylindenyl) Zr^+ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃]} ethane;
- 1,2-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr+ CH2 CHCHCH2 B' (C6

Docket No.: 09086-00176-US

 F_5 ₃]}ethane;

1,2-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr+ CH2 CHCHCH2 B- (C6

 F_5)₃]} ethane; and

 $1,2-\{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl)Zr^+\ CH_2$

CHCHCH₂ B^{-} (C₆ F_5)₃]} ethane.

19. (original) The catalyst as claimed in claim 8, wherein the transition metal compound of the formula I is selected from the group consisting of

bis(cyclopentadienyl)Zr* CH2 CHCHCH2 B' (C6 F5)3;

bis(methylcyclopentadienyl)Zr⁴ C₂ CHCHCH₂ B¹ (C₆ F₅)₃;

bis(n-butyleyclopentadienyl) Zr^+ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃;

bisindenylZr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃;

(tert-butylamido)dimethyl(tetramethyl- η^5 -cyclopentadienyl)silane Zr^+ CH₂ CHCHCH₂ B^{*} (C₆ F₅)₃;

bis(2-methylbenzoindenyl)Zr⁺ CH₂ CHCHCH₂ B^{*} (C₆ F₅)₃;

dimethylsilanediylbis(2-methylindenyl)Zr+ CH2 CHCHCH2 B- (C6 F5)3;

dimethylsilanediylbisindenylZr+ CH2 CHCHCH2 B (C6 F5)3;

dimethylsilanediylbis(2-methylbenzoindenyl)Zr+ CH2 CHCHCH2 B+ (C6 F5)3;

dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr⁺ CH₂ CHCHCH₂

B' $(C_6 F_5)_3$;

dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+ CH2

CHCHCH₂ B $(C_6 F_5)_3$;

dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆

F5)3;

Docket No.: 09086-00176-US

dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+ CH2 CHCHCH2 B- (C6 F5)3; dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr CH2 CHCHCH2 B $(C_6 F_5)_3;$ dimethylsilanediylbis(2-methylbenzoindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃; dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr+ CH2 CHCHCH2 B (CF₃)₃; dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+ CH2 $CHCHCH_2 B^-(CF_3)_3;$ dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B $(CF_3)_3;$ dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B (CF₃)₃; dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr⁺ CH₂ CHCHCH₂ B (CF₃)₃; dimethylstlanediylbis(2-methyl-4-naphthylindenyl)Zr+ CH2 CHCHCH2 B (CF3)3; dimethylsilanediylbis(2-methylindenyl)Zr⁺ CH₂ C(CH₃)C(CH₃)CH₂ B (CF₃)₃; dimethylsilanediylbisindenylZr⁴ CH₂ C(CH₃)C(CH₃)CH₂ B⁻ (CF₃)₃; dimethylsilanediylbis(2-methylbenzoindenyl)Zr⁺ CH₂ C(CH₃)C(CH₃)CH₂ B⁻ $(CF_3)_3;$ dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr⁺ CH₂ $C(CH_3)C(CH_3)CH_2 B (CF_3)_3;$ dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr⁺ CH₂ $C(CH_3)C(CH_3)CH_2$ B $(CF_3)_3$; dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+ CH2

Docket No.: 09086-00176-US

 $C(CH_3)C(CH_3)CH_2 B^{-}(CF_3)_3;$ dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+ CH2 CHCHCH2 B (C6 $F_5)_3$; isopropylidene(cyclopentadienyl)(fluorenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃; isopropylidene(cyclopentadienyl)(indenyl)Zr+ CH2 CHCHCH2 B (C6 F5)3; [4-η⁵-cyclopentadienyl-4,7,7-trimethyl-(η⁵-4,5,6,7-tetrahydroindenyl)Zr⁺ CH₂ CHCHCH₂ B $(C_6 F_5)_3$; dimethylsilanediylbis(2-methylindenyl)Zr+OCH2 CH2 CH2 B-(C6 F5)3; dimethylsilanediylbisindenylZr⁺ OCH₂ CH₂ C₂ B⁻ (C₆ F₅)₃; dimethylsilanediylbis(2-methylbenzoindenyl)Zr⁺ OCH₂ CH₂ CH₂ B (C₆ F₅)₃; dimethylsilanediyl(2-methylbenzoindenyl)(2-methylindenyl)Zr OCH2 CH2 CH2 $B^{-}(C_6F_5)_3;$ dimethylsilanediyl(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl)Zr+ OCH2 $CH_2 CH_2 B^* (C_6 F_5)_3;$ dimethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr+OCH2 CH2 CH2 B (C6 $F_5)_3;$ dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr⁺ OCH₂ CH₂ CH₂ B⁻ (C₆ F₅)₃; dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr OCH2 CH2 CH2 B $(C_6 F_5)_3;$ dimethylsilanediylbis(2-methylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃; dimethylsilanediylbisindenylZr⁺ CH₂ CHCHCH₂ B⁻ (CF₃)₃; dimethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+ CH2 C(CH3)C(CH3)CH2 B $(CF_3)_3;$

Docket No.: 09086-00176-US

dimethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+ CH2 $C(CH_3)C(CH_3)CH_2 B (CF_3)_3;$ dimethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+ CH2 C(CH3)C(CH3)CH2 B (CF₃)₃; methylphenylmethylene(fluorenyl)(cyclopentadienyl)Zr+ CH2 CHCHCH2 B- (C6 $F_5)_3$; diphenylmethylene(fluorenyl)(cyclopentadienyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃; isopropylidene(3-methylcyclopentadienyl)(fluorenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃; dimethylsilanediyl(3-tert-butylcyclopentadienyl)(fluorenyl)Zr⁺ CH₂ CHCHCH₂ $B^{-}(C_6 F_5)_3$; diphenylsilanediyl(3-(trimethylsilyl)cyclopentadienyl)(fluorenyl)Zr⁺ CH₂ CHCHCH₂ \mathbf{B}^{-} (C₆ F₅)₃; phenylmethylsilanediylbis(2-methylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃; phenylmethylsilanediylbisindenylZr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃; phenylmethylsilanediylbis(2-methyl-4,5-benzoindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ $F_5)_3;$ phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr⁺ CH₂ CHCHCH₂ B $^{-}$ (C₆ F₅)₃; phenylmethylsilanediyl(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl) $Zr^+ CH_2 CHCHCH_2 B^- (C_6 F_5)_3$; phenylmethylsilanediyl(2-methylindenyl)(4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ $B^{-}(C_6 F_5)_3;$

Docket No.: 09086-00176-US

phenylmethylsilanediylbis(2-methyl-4-phenylindenyl)Zr+ CH2 CHCHCH2 B- (C6 $F_5)_3;$ phenylmethylsilanediylbis(2-ethyl-4-phenylindenyl) Zr^+ CH_2 $CHCHCH_2$ B^* (C_6 $F_5)_3;$ phenylmethylsilanediylbis(2-methyl-4,6-diisopropylindenyl)Zr+ CH2 CHCHCH2 $B^{-}(C_6 F_5)_3;$ phenylmethylsilanediylbis(2-methyl-4-naphthylindenyl)Zr+ CH2 CHCHCH2 B $(C_6 F_5)_3;$ ethylenebis(2-methylindenyl) Zr^+ CH_2 $CHCHCH_2$ $B^ (C_6$ $F_5)_3$; ethylenebisindenyl Zr^+ CH_2 $CHCHCH_2$ $B^ (C_6$ $F_5)_3$; ethylenebis(2-methyl-4,5-benzoindenyl)Zr+ CH2 CHCHCH2 B (C6 F5)3; ethylene(2-methyl-4,5-benzoindenyl)(2-methylindenyl)Zr+ CH2 CHCHCH2 B- $(C_6 F_5)_3;$ ethylene(2-methyl-4,5-benzoindenyl)(2-methyl-4-phenylindenyl) Zr^{*} CH_{2} CHCHCH₂ B $(C_6 F_5)_3$; ethylene(2-methylindenyl)(4-phenylindenyl) Zr^+ CH_2 $CHCHCH_2$ $B^ (C_6$ $F_5)_3$; ethylenebis(2-methyl-4,5-benzoindenyl)Zr+ CH2 CHCHCH2 B* (C6 F5)3; ethylenebis(2-methyl-4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B⁻ (C₆ F₅)₃; ethylenebis(2-methyl-4,6-diisopropylindenyl)Zr+CH2 CHCHCH2 B-(C6 F5)3; ethylenebis(2-methyl-4-naphthylindenyl) Zr^+ CH₂ CHCHCH₂ B $^-$ (C₆ F₅)₃; ethylenebis(2-ethyl-4-phenylindenyl) Zr^+ CH_2 $CHCHCH_2$ $B^ (C_6$ $F_5)_3$; ethylenebis(2-ethyl-4,6-diisopropylindenyl) Zr^+ CH₂ CHCHCH₂ B * (C₆ F₅)₃; ethylenebis(2-ethyl-4-naphthylindenyl)Zr+ CH2 CHCHCH2 B (C6 F5)3;

Docket No.: 09086-00176-US

dimethylsilanediylbis(2-ethyl-4-phenylindenyl) Zr^+ CH₂ CHCHCH₂ B (C₆ F₅)₃; dimethylsilanediylbis(2,3,5-trimethylcyclopentadienyl) Zr^+ CH₂ CHCHCH₂ B (C₆ F₅)₃;

- 1. 6-{bis[methylsilylbis(2-methyl-4-phenylindenyl) Zr^+ CH₂ CHCHCH₂ B $^-$ (C₆
- $F_5)_3$]}hexane;
- 1,6-{bis[methylsilylbis(2-ethyl-4-phenylindenyl) Zr^+ CH₂ CHCHCH₂ B' (C₆ F₅)₃]}hexane;
- 1,6-{bis[methylsilylbis(2-methyl-4-naphthylindenyl)Zr $^+$ CH $_2$ CHCHCH $_2$ B $^-$ (C $_6$
- $F_5)_3$]}hexane;
- 1,6-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr⁺ CH₂ CHCHCH₂ B^{*} (C₆
- $F_5)_3$]}hexane;
- 1,6-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl) Zr^+ CH₂ CHCHCH₂ B (C₆ F₅)₃]}hexane;
- 1,2-{bis[methylsilylbis(2-methyl-4-phenylindenyl)Zr⁺ CH₂ CHCHCH₂ B^{*} (C₆ F₅)₃]}ethane;
- 1,2-{bis[methylsilylbis(2-ethyl-4-phenylindenyl)Zr $^+$ CH $_2$ CHCHCH $_2$ B $^-$ (C $_6$ F $_5$) $_3$]}ethane;
- 1,2-{bis[methylsilylbis(2-methyl-4,5-benzoindenyl)Zr $^+$ CH $_2$ CHCHCH $_2$ B $^-$ (C $_6$
- F₅)₃]}ethane; and

 F_5 ₃]}ethane;

1,2-{bis[methylsilyl(2-methyl-4-phenylindenyl)(2-methylindenyl) Zr^+ CH₂ CHCHCH₂ B * (C₆ F₅)₃]}ethane.

Docket No.: 09086-00176-US

- 20. (original) The compound as claimed in claim 1, wherein M is zirconium.
- 21. (original) The compound as claimed in claim 1, wherein M is a metal atom group IVb of the Periodic Table of Elements.
- [22. A transition metal compound of the formula IV

wherein

- L are identical or different and are each a substituted π ligand,
- n is equal to 1, 2, 3, or 4,
- <u>M</u> is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements.
- <u>X</u> is a heteroatom or a hydrocarbon group having 1-40 carbon atoms.
- X' is a hydrocarbon group having 1-40 carbon atoms.]
- The transition metal compound as claimed in claim 22, wherein the radicals L are identical or different and are each a substituted cyclopentadienyl group.

Docket No.: 09086-00176-US

- [24. The transition metal compound as claimed in claim 22, wherein the radicals L are linked to one another via a bridge.]
- [25. The transition metal compound as claimed in claim 22, wherein n is 2 when M is a metal atom of group IVb of the Periodic Table of the Elements.]
- [26. The transition metal compound as claimed in claim 22, wherein
- M is a metal atom of group IVb of the Periodic Table of the Elements, n is equal to 2,
- L are identical or different and are each a substituted cyclopentadienyl group,

 where two radicals L are optionally linked to one another via a bridge Z and
- Z is CR^2R^3 or SiR^2R^3 or a unit Si- $(CR^2R^3)_x$ -Si which links two fragments

 LuMXX 'A- R^1_m with one another, where x is an integer from 0 to 10,
- X and X' together form a three-membered to five-membered hydrocarbon chain which

 can be saturated or unsaturated and are unsubstituted or substituted by one or

 more C1-C20-hydrocarbon radicals.
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a

 C1-C20-alkyl group, a C1-C10-fluoralkyl group, a C1-C10-alkoxy group, a C6-C14
 aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl

 group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl

 group, or R² and R³ together with the atoms connected them form one or more

 rings, and R² and R³ are optionally bonded to L.]

Docket No.: 09086-00176-US

- [27. The transition metal compound as claimed in claim 22, wherein
- M is zirconium,
- n is equal to 2.
- I. are identical or different and are each a substituted cyclopentadienyl group,

 where two radicals L are linked to one another via a bridge Z, where Z is

 CR²R³ or SiR²R³ and
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a

 C₁-C₂₀-alkyl group, a C₁-C₁₀-fluoralkyl group, a C₁-C₁₀-alkoxy group, a C₆-C₁₄
 aryl group, a C₆-C₁₀-fluoroaryl group, a C₆-C₁₀-aryloxy group, a C₂-C₁₀-alkenyl

 group, a C₇-C₄₀-arylalkyl group, a C₇-C₄₀-alkylaryl group, a C₈-C₄₀-arylalkenyl

 group, or R² and R³ together with the atoms connected them form one or more

 rings, and R² and R³ are optionally bonded to L.
- X and X' together form an unsaturated four-membered hydrocarbon chain whose hydrogen atoms are optionally replaced by C1-C20-alkyl groups.]
- [28. A process for preparing the compound as claimed in claim 22, which comprises reacting a compound of the formula II

Docket No.: 09086-00176-US

with a compound of the formula III

and reacting the reaction product with a compound of the formula AR^{1}_{m} , where L, n, M, X and X' in the formulae II and III are defined for the formula IV and Halis a halogen atom.

[29. A transition metal compound of the formula IV'

where

L and L' are identical or different and are each a π ligand or an electron donor.

is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements.

X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms.

X' is a hydrocarbon group having 1-40 carbon atoms.

 \underline{Z} is

Docket No.: 09086-00176-US

=BR₂, -AIR², -Ge-, -O-, -S-, =SO, =SO₂, -NR₂, =CO₂, =PR² or =P(O)R², where R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a C₁-C₂₀-alkyl group, a C₁-C₁-fluoroalkyl group, a C₁-C₁₀-alkoxy group, a C₆-C₁₀-aryl group, a C₆-C₁₀-fluoroaryl group, a C₆-C₁₀-aryloxy group, a C₂-C₁₀-alkenyl group, a C₇-C₄₀-arylalkyl group, a C₇-C₄₀-alkylaryl group, a C₈-C₄₀-arylalkenyl group and x is a number from zero to 18, or R² and R³ together with the atoms-connecting them form one or more rings and R² or/and R³ can be bonded to L and M² is silicon, germanium or tin.]

Docket No.: 09086-00176-US

- [30. The transition metal compound as claimed in claim 29, wherein the radicals L are identical or different and are each an unsubstituted or substituted cylclopentadicnyl group.]
- [31. The transition metal compound as claimed in claim 29, wherein the radicals L are linked to one another via a bridge.]
- 132. The transition metal compound as claimed in claim 29, wherein n is 2 when M is a metal atom of group IVb of the Periodic Table of the Elements.
- [33. The transition metal compound as claimed in claim 29, wherein
- M is a metal atom of group IVb of the Periodic Table of the Elements, n is equal to

 2.
- L are identical or different and are each a substituted or unsubstituted

 cyclopentadienyl group, where two radicals L are optionally linked to one

 another via a bridge Z and
- \underline{Z} is $\underline{CR^2R^3}$ or $\underline{SiR^2R^3}$ or a unit $\underline{Si-(CR^2R^3)_x-Si}$ which links two fragments $\underline{L_0M^tXX}$, $A-R^1_m$ with one another, where x is an integer from 0 to 10.
- X and X' together form a three-membered to five-membered hydrocarbon chain which

 can be saturated or unsaturated and are unsubstituted or substituted by one or

 more C₁-C₂₀-hydrocarbon radicals.

Docket No.: 09086-00176-US

- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a

 C1-C20-alkyl group, a C1-C10-fluoralkyl group, a C1-C10-alkoxy group, a C6-C14
 aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl

 group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl

 group, or R² and R³ together with the atoms connected them form one or more

 rings, and R² and R³ are optionally bonded to L.]
- [34. The transition metal compound as claimed in claim 29, wherein
- M is zirconium.
- \underline{n} is 2,
- <u>are identical or different and are each a substituted cyclopentadienyl group,</u>

 where two radicals L are linked to one another via a bridge Z, where Z is CR^2R^3 or SiR^2R^3 ,
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a

 C1-C20-alkyl group, a C1-C10-fluoralkyl group, a C1-C10-alkoxy group, a C6-C14
 aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl

 group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl

 group, or R² and R³ together with the atoms connected them form one or more

 rings, and R² and R³ are optionally bonded to L.
- X and X' together form an unsaturated four-membered hydrocarbon chain whose hydrogen atoms are optionally replaced by C₁-C₂₀-alkyl groups.]

Docket No.: 09086-00176-US

[35. A transition metal compound of the formula IV

$$L_n M < \int_{X'}^{X}$$
 (IV)

wherein

- I are different if n is 2, 3 or 4, and are each a π ligand or electron donor.
- n is equal to 1, 2, 3, or 4,
- <u>M</u> is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements,
- X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms,
- X' is a hydrocarbon group having 1-40 carbon atoms.]
- [36. The transition metal compound as claimed in claim 35, wherein the radicals L are different and are each an unsubstituted or substituted cylclopentadienyl group.]
- [37. The transition metal compound as claimed in claim 35, wherein the radicals L are linked to one another via a bridge.]
- [38. The transition metal compound as claimed in claim 35, wherein n is 2 when M is a metal atom of group IVb of the Periodic Table of the Elements.]

Docket No.: 09086-00176-US

- [39. The transition metal compound as claimed in claim 35, wherein
- is a metal atom of group IVb of the Periodic Table of the Elements, n is equal to
 2,
- L are different and are each a substituted or unsubstituted cyclopentadienyl group, where two radicals L are optionally linked to one another via a bridge Z and
- \underline{Z} is CR^2R^3 or SiR^2R^3 or a unit $Si-(CR^2R^3)_x$ -Si which links two fragments $\underline{L}_aM^aXX^a$. A- R^1_m with one another, where x is an integer from 0 to 10,
- X and X' together form a three-membered to five-membered hydrocarbon chain which

 can be saturated or unsaturated and are unsubstituted or substituted by one or

 more C₁-C₂₀-hydrocarbon radicals,
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a C₁-C₂₀-alkyl group, a C₁-C₁₀-fluoralkyl group, a C₁-C₁₀-alkoxy group, a C₅-C₁₄-aryl group, a C₅-C₁₀-fluoroaryl group, a C₅-C₁₀-aryloxy group, a C₂-C₁₀-alkenyl group, a C₇-C₄₀-arylalkyl group, a C₇-C₄₀-alkylaryl group, a C₃-C₄₀-arylalkenyl group, or R² and R³ together with the atoms connected them form one or more rings, and R² and R³ are optionally bonded to L.]
- [40. The transition metal compound as claimed in claim 35, wherein
- M is zirconium,
- n is 2.

Docket No.: 09086-00176-US

- are different and are each a substituted cyclopentadienyl group, where two

 radicals L are linked to one another via a bridge Z, where Z is CR²R³ or SiR²R³

 and
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a C₁-C₂₀-alkyl group, a C₁-C₁₀-fluoralkyl group, a C₁-C₁₀-alkoxy group, a C₆-C₁₄-aryl group, a C₆-C₁₀-fluoroaryl group, a C₆-C₁₀-aryloxy group, a C₂-C₁₀-alkenyl group, a C₇-C₄₀-arylalkyl group, a C₇-C₄₀-alkylaryl group, a C₈-C₄₀-arylalkenyl group, or R² and R³ together with the atoms connected them form one or more rings, and R² and R³ are optionally bonded to L.
- X and X' together form an unsaturated four-membered hydrocarbon chain whose hydrogen atoms are optionally replaced by C1-C20-alkyl groups.]
- [41. A process for preparing the compound as claimed in claim 35, which comprises reacting a compound of the formula II

with a compound of the formula III

X₁₀ (III)

Docket No.: 09086-00176-US

and reacting the reaction product with a compound of the formula AR¹_m, where L, n,

M, X and X, in the formulae II and III are defined for the formula IV,

II al is a halogen atom.]

[42. A transition metal compound of the formula IV

wherein

- L are identical or different and are each a π ligand or electron donor.
- n is equal to 1, 2, 3, or 4,
- M is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements,
- X is a heteroatom, a C6-C14-aryl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group or a C2-C40-arylalkenyl group.
- X' or a hydrocarbon group having 1-40 carbon atoms.]

NO. 3140 P. 33

Serial No. 09/851643

Docket No.: 09086-00176-US

- [43. The transition metal compound as claimed in claim 42, wherein the radicals L are different and are each an unsubstituted or substituted cylclopentadienyl group.]
- [44. The transition metal compound as claimed in claim 42, wherein the radicals L are linked to one another via a bridge.]
- The transition metal compound as claimed in claim 42, wherein n is 2 when M
 is a metal atom of group IVb of the Periodic Table of the Elements.]
- [46. The transition metal compound as claimed in claim 42, wherein
- M is a metal atom of group IVb of the Periodic Table of the Elements, n is equal to 2.
- L are different and are each a substituted or unsubstituted cyclopentadienyl group.

 where two radicals L are optionally linked to one another via a bridge Z and
- Z is CR²R³ or SiR²R³ or a unit Si-(CR²R³)_x-Si which links two fragments

 LoM'XX 'A-R¹_m with one another, where x is an integer from 0 to 10.
- X and X' together form a three-membered or five-membered hydrocarbon chain which

 can be saturated or unsaturated and are unsubstituted or substituted by one or

 more C₁-C₂₀-hydrocarbon radicals,
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a

 C1-C20-alkyl group, a C1-C10-fluoralkyl group, a C1-C10-alkoxy group, a C6-C14-

Docket No.: 09086-00176-US

aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C6-C40-arylalkenyl group, or R2 and R3 together with the atoms connected them form one or more rings, and R2 and R3 are optionally bonded to L.]

- [47. The transition metal compound as claimed in claim 42, wherein
- M is zirconium,
- $\underline{\mathbf{p}}$ is 2,
- L are different and are each a substituted cyclopentadienyl group, where two

 radicals L are linked to one another via a bridge Z, where Z is CR²R³ or SiR²R³

 and
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a

 C1-C20-alkyl group, a C1-C10-fluoralkyl group, a C1-C10-alkoxy group, a C6-C14
 aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl

 group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl

 group, or R² and R³ together with the atoms connected them form one or more

 rings, and R² and R³ are optionally bonded to L.]

Docket No.: 09086-00176-US

48. A compound selected from the group consisting of

Bis (methylcyclopentadienyl) ZrCH2CHCH2; Bis (n-butyl-cyclopentadienyl) 2rCH2CHCH2; BisindenylZrCH2CHCHCH2; (tert.butylamido)dimethyl(tetramethyl-n5-cyclopentadienyl)silan-Zr+CH2CHCHCH2; Bis(2-methylbenzoindenyl)ZrCH2CHCHCH2; Dimethylsilandiylbis (2-methyl-indenyl) ZrCH2CHCHCH2; Dimethylsilandiylbisindenylzr CH2CHCHCH2; Dimethylsilandiylbis (2-methylbenzoindenyl) ZrCH2CHCHCH2; Dimethylsilandiyl (2-methylbenzoindenyl) (2-methyl-indenyl) Dimethylsilandiy1(2-methylbenzoindenyl)(2-methyl-4-phenylindenyl) ZrCH2CHCHCH2 ; Dimethylsilandiyl (2-methlindenyl) (4-phenylindenyl) ZICH2CHCH2; Dimethylsilandiylbis (2-methyl-4-phenyl-indenyl) ZrCH2CHCHCH2; Dimethylsilandiylbis(2-methyl-4,6-diisopropyl-indenyl)2r+ Dimethylsilaniylbis(2-methyl-4-naphtyl-indenyl)ZrCH2CHCH2; Isopropyliden(cyclopentadienyl)(fluorenyl)2rCH2CHCHCH2; Isopropyliden(cyclopentadienyl)(indenyl)ZrCH2CHCH2; [4-(η5-Cyclopentadienyl)-4,7,7-trimethyl-(η5-4.5.6.7-tetrahydro indeny1) ZrCH2CHCHCH2; Dimethylsilandiylbis (2-methyl-indenyl) ZrOCH2CH2CH2; DimethylsilandiylbisindenylZrOCH2CH2CH2t . :Dimethylsilandiylbis(2-methylbenzoindenyl)ZrOCH2CH2CH2CH2; Dimethylsilandiyl (2-methylbenzoindenyl) (2-methyl-indenyl) Dimethylsilandiyl (2-methylbenzoindenyl) (2-methyl-4-phenylindenyl) ZrOCH2CH2CH2: Zroch2CH2CH2: Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)ZrOCH2CH2CH27 Dimethylsilandiylbis(2-methyl-4,6-diisopropyl-indenyl) ZrocH2CH2CH2; Dimethylsilandiylbis (2-methyl-indenyl) ZrCH2C (CH3) C (CH3) CH2; DimethylsilandiylbisindenylZrCH2C(CH3)C(CH3)CH2; Dimethylsilandiylbis (2-methylbenzoindenyl) Zr+CH2C (CH3) C (CH3) CH21 Dimethylsilandiyl(2-methylbenzoindenyl)(2-methyl-indenyl) ZrCH2C(CH3)C(CH3)CH21 Dimethylsilandiyl (2-methylbenzoindenyl) (2-methyl-4-phenylindenyl) ZrCH2C (CH3) C (CH3) CH2; 343224

Docket No.: 09086-00176-US

```
Dimethylsilandiyl(2-methlindenyl)(4-phenylindenyl)
Zrch2c (CH3) C (CH3) CH21
Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)
ZrCH2C (CH3) C (CH3) CH2;
Dimethylsilandiylbis(2-methyl-4,6-diisopropyl-indenyl)
ZrCH2C (CH3) C (CH3) CH2;
Dimethylsilaniylbis(2-methyl-4-naphtyl-indenyl)
 ZrCH2C (CH3) C (CH3) CH2;
Methylphenylmethylen-(fluorenyl)(cyclopentadienyl)2rCH2CHCHCH2;
 Diphenylmethylen-(fluorenyl)(cyclopentadienyl)ZrCH2CHCHCH2;
 Isopropyliden-(3-methylcyclopentadienyl) (fluorenyl)
 ZrCH2CHCHCH2B-(C6Fs)3;
 Dimethylsilandiyl-(3-tert.-Butylcyclopentadienyl) (fluorenyl)
 ZrCH2CHCHCH2;
 Diphenylsilandiyl-(3-(trimethylsilyl)cyclopentadienyl)(fluorenyl)
 ZrCH2CHCHCH2)
 Phenylmethylsilandiylbis (e-methyl-indenyl) ZrCH2CHCHCH2;
 PhenylmethylsilandiylbisindenylZrCH2CH2HCH2;
 Phenylmethylsilandiylbis(2-methyl-4,5-benzoindenyl)ZrCH2CHCHCH2;
 Phenylmethylsilandiylbis(2-methyl-4,5-benzoindenyl)(2-methyl
  -indenyl)ZrCH2CHCHCH2
  Phenylmethylsilandiyl (2-methyl-4,5-benzoindenyl) (2-methyl-4
  -phenylindenyl) ZrCH2CHCHCH2;
  Phenylmethylsilaniyl(2-methylindenyl)(4-phenylindenyl)
  ZrCH2CHCHCH2;
  Phenylmethylsilandiylbis(2-methyl-4-phenyl-indenyl)2rCH2CHCHCH2;
  Phenylmethylsilandiylbis(2-ethyl-4-phenyl-indenyl)ZrCH2CHCH2;
  Phenylmethylsilandiylbis (2-methyl-4,6-diisopropyl-indenyl)
  ZrCH2CHCHCH2;
  Phenylmethylsilandiylbis(2-methyl-4-naphtyl-indenyl)ZrCH2CHCHCH2;
  Ethylenbis (2-methyl-indenyl) 2rCH2CHCHCH2;
  EthylenbisindenylZrCH2CHCHCH2;
  Ehtylenbis (2-methyl-4, 5-benzoindenyl) 2rCH2CHCHCH2;
  Ethylen (2-methyl-4,5-benzoindenyl) (2-methyl-indenyl) ZrCH2CHCHCH2;
  Ethylen (2-methyl-4,5-benzoindenyl) (2-methyl-4-phenylindenyl)
  ZYCH2CHCHCH2;
  Ethylen (2-methylindenyl) (4-phenylindenyl) ZrCH2CHCHCH2;
  Ethylenbis (2-methyl-4,5-benzoindenyl) ZrCH2CHCH2;
  Ethylenbis (2-methyl-4-phenyl-indenyl) ZrCH2CHCHCH2;
  Ethylenbis (2-methyl-4,6-disopropyl-indenyl) ZrCH2CHCHCH2;
```

Docket No.: 09086-00176-US

```
Ethylenbis (2-methyl-4-naphtyl-indenyl) ExCH2CHCH2:
Ethylenbis (2-ethyl-4-phenyl-indenyl) ZrCH2CHCHCHCH2+
Ethylenbis (2-ethyl-4,6-diisopropyl-indenyl) ZrCH2CHCHCH2;
Ethylenbis(2-ethyl-4-naphtyl-indenyl)ZrCH2CHCHCH2;
Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)ZrCH2CHCHCH2,
Dimethylsilandiylbis(2,3,5-trimethylcyclopentadienyl)
2rCH2CHCHCH2;
1,6-{Bis[methylsilyl-bis(2-methyl-4-phenyl-indenyl)2r+CH2CHCHCH2
B- (C6F5)3] hexan;
1,6-(Bis[methylsilyl-bis(2-ethyl-4-phenyl-indenyl)
Zr+CH2CHCHCH2B-(C6Fs) 3) } hexan,
1,6-{Bis[methylsilyl-bis(2-methyl-4-naphtyl-indenyl)Zr+CH2CHCH2
 B-(C6F5)3] } hexan:
 1,6-{Bis[methylsilyl-bis(2-methyl-4,5-benzoindenyl)2r*CH2CHCHCH2
 B-(C6F5)3] ) hexan;
 1,6-(Bis[methylsilyl-(2-methyl-4-phenyl-indenyl)(2-methyl-inde-
 nyl) Zr*CH2CHCHCH2B*(C6F5)3]) hexan;
 1,2-{Bis (methylsilyl-bis(2-methyl-4-phenyl-indenyl) 2r'CH2CHCH2
B-(C6F5)3])ethan;
 1.2- (Bis [methylsily1-bis (2-ethyl-4-phenyl-indenyl) 2r CH2CHCHCH2
 B-(C6F5)3] ethan;
 1,2-{Bis(methylsilyl-bis(2-methyl-4-naphtyl-indenyl)2r*CH2CHCHCH2
 B-(C6F5)3] }ethan;
 1,2-(Bis (methylsilyl-bis (2-methyl-4,5-benzoindenyl) Zr+CH2CHCHCH2
  B-(CsFs)3] lethan;and
  1,2-{Bis[methylsilyl-(2-methyl-4-phenyl-indenyl)(2-methyl-inde-
  nyl) Zr+CH2CHCHCH2B-(C6F5) 3] fethan
```

Docket No.: 09086-00176-US

[49. A transition metal compound of the formula IV

wherein

- <u>L</u> are identical or different and are each a π ligand or electron donor.
- n is equal to 1, 2, 3, or 4,
- <u>M</u> is a metal atom of group IIIb, IVb, Vb or VIb of the Periodic Table of the Elements.
- X is a heteroatom or a hydrocarbon group having 1-40 carbon atoms,
- X' is a hydrocarbon group having 1-40 carbon atoms,

with the proviso that at least on L is a substituted or unsubstituted indenyl.]

- [50. The transition metal compound as claimed in claim 49, wherein the radicals L are linked to one another via a bridge.]
- [51. The transition metal compound as claimed in claim 49, wherein n is 2 when M is a metal atom of group IVb of the Periodic Table of the Elements.]
- [52. The transition metal compound as claimed in claim 49, wherein

Docket No.: 09086-00176-US

- is a metal atom of group IVb of the Periodic Table of the Elements, n is equal to

 2.
 - where two radicals L are optionally linked to one another via a bridge Z and
- \underline{Z} is CR^2R^3 or SiR^2R^3 or a unit $Si-(CR^2R^3)_x$ -Si which links two fragments

 L₀M'XX 'A-R¹_m with one another, where x is an integer from 0 to 10,
- R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a C₁-C₂₀-alkyl group, a C₁-C₁₀-fluoralkyl group, a C₁-C₁₀-alkoxy group, a C₆-C₁₄-aryl group, a C₆-C₁₀-fluoroaryl group, a C₆-C₁₀-aryloxy group, a C₂-C₁₀-alkenyl group, a C₇-C₄₀-arylalkyl group, a C₇-C₄₀-alkylaryl group, a C₈-C₄₀-arylalkenyl group, or R² and R³ together with the atoms connected them form one or more rings, and R² and R³ are optionally bonded to L.]
- [53. The transition metal compound as claimed in claim 49, wherein
- M is zirconium,
- \underline{n} is 2,

where two radicals L are linked to one another via a bridge Z, wherein

Z is CR²R³ or SiR²R³ and

R² and R³ are identical or different and are each a hydrogen atom, a halogen atom, a

C1-C20-alkyl group, a C1-C10-fluoralkyl group, a C1-C10-alkoxy group, a C6-C14
aryl group, a C6-C10-fluoroaryl group, a C6-C10-aryloxy group, a C2-C10-alkenyl

group, a C7-C40-arylalkyl group, a C7-C40-alkylaryl group, a C8-C40-arylalkenyl

JUL. 1. 2004 9:51AM

Serial No. 09/851643

Docket No.: 09086-00176-US

group, or R^2 and R^3 together with the atoms connected them form one or more rings, and R^2 and R^3 are optionally bonded to L.]