UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2016/1 Prova da área II

1-6	7	8	Total

Nome:	Cartão:	

${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

COORDENADAS CILÍNDRICAS E ESFÉRICAS

a) Coordenadas cilíndricas : ρ,φ,z

b) Coordenadas esféricas : r, θ, ϕ

Elipsóide:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Parabolóide Elíptico:
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Parabolóide Hiperbólico:
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Hiperbolóide de uma folha:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

$$\begin{array}{ll} {\rm Hiperbol\'oide} \\ {\rm de\ duas\ folhas:} \end{array} \quad -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \\ \end{array}$$

Tabela do operador $\vec{\nabla}$: f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais

F = F	$\vec{G}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$\vec{ abla}\cdot\left(f\vec{F} ight)=\left(\vec{ abla}f ight)\cdot\vec{F}+f\left(\vec{ abla}\cdot\vec{F} ight)$
6.	$\vec{ abla} imes \left(f \vec{F} ight) = \vec{ abla} f imes \vec{F} + f \vec{ abla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes \left(ec{ abla} f ight) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
	$ec{ abla}\left(ec{F}\cdotec{G} ight)=\left(ec{G}\cdotec{ abla} ight)ec{F}+\left(ec{F}\cdotec{ abla} ight)ec{G}+$

Algumas fórmulas:

Algumas formulas.				
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{d ec{B}}{ds} ight\ = \left\ rac{d ec{B}}{dt} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

• Questão 1 (1.0 ponto) Uma abelha se desloca com velocidade escalar constante ao longo de sua trajetória. Em um determinado instante sua velocidade (em m/s) é dada pelo vetor $\vec{v} = -3\vec{i} + 6\vec{j} + 2\vec{k}$. Sabendo que o módulo da aceleração neste instante vale 21 m/s², assinale a alternativa que melhor aproxima o valor da curvatura em m⁻¹:

- () 0, 2.
- () 0, 4.
- () 0, 7.
- () 1, 0.
- () 1, 5
- () 2,5

• Questão 2 (1.0 ponto) Considere a curva representada no gráfico abaixo:

Pode-se afirmar que:

- () A torção assume apenas valores positivos.
- () A torção assume apenas valores negativos.
- () A torção é nula em todos os pontos.
- () A torção não está bem definida em alguns pontos.
- () A torção assume valores positivos, negativos e zero.

• Questão 3 (1.0 ponto) Considere os campos escalares f(x,y,z) e g(x,y,z) e os campos vetoriais $\vec{F}(x,y,z)$, $\vec{G}(x,y,z)$ e $\vec{H}(x,y,z)$ relacionados pelas seguintes expressões:

$$\nabla^2 f = g$$
, $\nabla^2 g = -g$, $\vec{F} = \vec{\nabla} f$ e $\vec{G} = \vec{\nabla} g$, $\vec{H} = \vec{F} + \vec{G}$

Assinale a alternativa FALSA:

- $(\quad) \ \, \vec{\nabla} \times \vec{F} = \vec{\nabla} \times \vec{G}$
- $(\quad) \ \, \vec{\nabla} \cdot \vec{F} = g.$
- $(\quad) \ \, \vec{\nabla} \cdot \vec{H} = 2g.$
- $(\)\ \vec{\nabla}^2\left(\vec{\nabla}^2g f\right) = 0.$
- () $\vec{\nabla}(fg) = f\vec{G} + g\vec{F}$.

• Questão 4 (1.0 ponto) A componente tangencial da aceleração da trajetória dada por $\vec{r} = t^2 \vec{i} + t \vec{j} + t \vec{k}$ no ponto t=1 é:

- () $a_T = -\frac{2\sqrt{6}}{3}$.
- () $a_T = -\frac{\sqrt{6}}{3}$.
- () $a_T = 0$.
- () $a_T = \frac{2\sqrt{6}}{3}$.
- () $a_T = \frac{\sqrt{6}}{3}$.

• Questão 5 (1.0 pontos) Considere o campo vetorial \vec{F} dado abaixo.

Pode-se afirmar que

() $\int_C \vec{F} \cdot d\vec{r} = 0$ para qualquer circunferência C centrada na origem e raio menor que 1.

() Considere as curvas
$$C_1: \vec{r} = t\vec{i} + t\vec{j}$$
, $-1 \le t \le 1$, $C_2: \vec{r} = t\vec{i} - \vec{j}$, $-1 \le t \le 1$ e $C_3: \vec{r} = \vec{i} + t\vec{j}$, $-1 \le t \le 1$. Então
$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r} + \int_{C_3} \vec{F} \cdot d\vec{r}$$
.

- () Considere a curva $C: \vec{r}=t\vec{i}+t\vec{j}, -1 \leq t \leq 1$. Então $\int_C \vec{F} \cdot d\vec{r} = 0$.
- () Considere a curva $C: \vec{r} = \cos(t)\vec{i} + \sin(t)\vec{j}, \ 0 \le t \le 2\pi$. Então $\int_C \vec{F} \cdot d\vec{r} > 0$.
- () Nenhuma das anteriores.
- Questão 6 (1.0 ponto) Considere as seguintes duas curvas abertas:

$$C_1: \vec{r} = t\vec{i} + t^2\vec{j} + t^3\vec{k}, \qquad 0 \le t \le 1.$$

$$C_2: \vec{r} = \operatorname{sen}\left(\frac{\pi}{2}t\right)\vec{i} + (2^t - 1)\vec{j} + t\vec{k}, \qquad 0 \le t \le 1.$$

e o seguinte campo vetorial:

$$\vec{F} = (e^y + e^x)\vec{i} + xe^y\vec{j} + 3z^2\vec{k}.$$

Pode-se afirmar que:

- () Como o campo é convervativo, então $\int_{C_1} \vec{F} \cdot d\vec{r} = 0.$
- () Como o campo é convervativo, então $\int_{C_1} \vec{F} \cdot d\vec{r} + \int_{C_2} \vec{F} \cdot d\vec{r} = 0.$
- () Como o campo é convervativo, então $\int_{C_1} \vec{F} \cdot d\vec{r} \int_{C_2} \vec{F} \cdot d\vec{r} = 0.$
- () Como o campo não é convervativo, então $\int_{C_1} \vec{F} \cdot d\vec{r} \neq \int_{C_2} \vec{F} \cdot d\vec{r}.$
- () Como o campo não é convervativo, então $\int_{C_1} \vec{F} \cdot d\vec{r}$ e $\int_{C_2} \vec{F} \cdot d\vec{r}$ não podem ser calculadas.

• Questão 7 (2.0 pontos) Considere o campo vetorial radial $\vec{F}=r^2\vec{r}$ e S a superfície composta superiormente por $x^2+y^2+z^2=16$ e inferiormente por $\{(x,y,z);\ x^2+y^2\leq 16,\ z=0\}$ orientada para fora. Calcule o fluxo de \vec{F} através da superfície fechada S usando o Teorema da Divergência.

- Questão 8 (2.0 pontos) Use o teorema de Stokes para calcular a circulação dada por $\int_C \vec{v} \cdot d\vec{r}$, onde C é a circunferência $x^2 + y^2 = 1$ sob o plano xy orientada no sentido horário e $\vec{v} = (1+z^2)y\vec{i} + (y-x)\vec{j} + x^2y^2\vec{k}$ usando a) uma parametrização direta da curva.

 - b) o Teorema de Stokes.