Problem: Congruent Triangles – Bài Tập: Tam Giác Bằng Nhau

Nguyễn Quản Bá Hồng*

Ngày 24 tháng 10 năm 2023

Mục lục

1	Congruent Triangles – Bài Tập: Tam Giác Bằng Nhau	1
2	Pythagore Theorem – Định Lý Pythagore	2
3	Miscellaneous	2
Тъ	si liên	2

1 Congruent Triangles – Bài Tập: Tam Giác Bằng Nhau

- 1 ([HM23], 3.1., p. 26). Cho 2 điểm A, B chạy trên Ox, Oy sao cho OA + OB = m. Chứng minh đường trung trực của đoạn thẳng AB luôn đi qua 1 điểm cố định.
- 2 ([HM23], 3.2., p. 27). Cho $\triangle ABC$ nhọn có điểm M là trung điểm AC. Lấy điểm K thuộc đoạn BM sao cho AK = BC. AK giao BC tại L. Chứng minh LK = BL.
- 3 ([HM23], 3.3., p. 27). Cho $\triangle ABC$ có AB = AC, $\widehat{A} = 40^{\circ}$. Diểm K thuộc cạnh AC sao cho $\widehat{KBC} = 30^{\circ}$. Diểm L nằm trong $\triangle ABC$ sao cho $\widehat{ABL} = 30^{\circ}$, AL là phân giác \widehat{BAC} . Chứng minh AK = AL.
- 4 ([HM23], 3.4., p. 27). Cho $\triangle ABC$ có $\widehat{A}=60^\circ$, 2 điểm E,F thuộc tia BA,CA sao cho BE=CF=BC. I là tâm đường tròn nội tiếp $\triangle ABC$. Chứng minh E,F,I thẳng hàng.
- $\textbf{5} \ ([\text{HM23}], \ 3.5., \ \text{p. 28}) \textbf{.} \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{c\'o} \ \textit{dt\'ong} \ \textit{cao} \ \textit{AH}. \ \textit{Bi\'et} \ \widehat{\textit{ABC}} = 75^{\circ}, \ \textit{AH} = \frac{1}{2} \textit{BC}. \ \textit{Ch\'etng} \ \textit{minh} \ \Delta \textit{ABC} \ \textit{c\^{a}n}.$
- 6 ([HM23], 3.6., p. 28). Cho $\triangle ABC$ có trực tâm H, M là trung điểm BC. Đường thẳng qua H vuông góc HM cắt AB,AC lần lượt ở P,Q. Chứng minh HP=HQ.
- 7 ([HM23], 3.7., p. 29). Cho ΔABC với điểm N nằm trong ΔABC sao cho $\widehat{A}B\widehat{N}=\widehat{A}C\widehat{N}$. M là trung điểm BC. NH,NK là đường vuông góc hạ từ N xuống AB,AC. Chứng minh ΔMHK cân.
- $\textbf{8} \ ([\text{HM23}], \ 3.8., \ \text{p. 29}). \ \textit{Cho} \ \Delta \textit{ABC} \ \textit{can tại} \ \textit{A}, \ \textit{dường phân giác} \ \textit{BE.} \ \textit{F} \in \textit{BC sao cho} \ \widehat{\textit{BEF}} = 90^{\circ}. \ \textit{Chứng minh} \ \textit{BF} = 2\textit{CE}.$
- 9 ([HM23], 3.9., p. 30). Cho $\triangle ABC$ cân tại A, điểm M nằm trong $\triangle ABC$ sao cho $\widehat{AMB} = \widehat{AMC}$. Chứng minh AM là phân giác \widehat{A} .
- 10 ([HM23], 3.10., p. 30). Cho $\triangle ABC$ là trung điểm BC. Dựng 2 tam giác vuông cân AEB, AFC bên ngoài $\triangle ABC$. Chứng minh $\triangle MEF$ vuông cân.
- 11 ([HM23], 3.11., p. 31). Cho $\triangle ABC$ vuông tại A, M là trung điểm AB, H là hình chiếu vuông góc hạ từ M xuống BC. Điểm K thuộc đoạn AM sao cho AK = BH. Chứng minh $\triangle CHK$ cân.
- 12 ([HM23], 3.12., p. 31). Cho $\triangle ABC$ vuông cân tại A. Vẽ $\triangle BCK$ cân tại C sao cho C,K nằm khác phía đối với AB, $\widehat{BCK}=30^{\circ}$. Tính \widehat{BAK} .
- 13 ([HM23], 3.13., p. 32). Cho $\triangle ABC$. Lấy $M \in AC, N \in AB$ sao cho $\widehat{MBC} = 2\alpha = 2\widehat{ABM}, \widehat{BCN} = 2\beta = 2\widehat{ACN}$. P là giao điểm của BM, CN. Biết PM = PN. Chứng minh $\triangle ABC$ vuông hoặc cân.
- 14 ([HM23], 3.14., p. 32). Cho $\triangle ABC$, M là trung điểm BC. Dựng 2 tam giác vuông cân ABE, ACF bên ngoài $\triangle ABC$. Chứng minh $AM \bot EF$.
- 15 ([HM23], 3.15., p. 33). Cho $\triangle ABC$ có đường cao AH, M, N là chân đường vuông góc hạ từ H xuống AB, AC. Biết MB = NC. Chứng minh $\triangle ABC$ cân.

^{*}Independent Researcher, Ben Tre City, Vietnam

- **16** ([HM23], 3.16., p. 33). Cho \widehat{xOy} . A, B chạy trên Ox, Oy sao cho OA OB = m. Chứng minh trung trực AB đi qua 1 điểm cố định.
- 17 ([HM23], 3.17., p. 33). Cho $\triangle ABC$ vuông tại A, đường cao AH. E thuộc tia AH, K thuộc tia đối của tia HA sao cho AE = HK. $K\dot{e}$ đường thẳng qua E song song BC cắt AC tại F. Chứng minh $\widehat{BKF} = 90^{\circ}$.
- **18** ([HM23], 3.18., p. 33). Cho ΔABC có đường phân giác AA'. Lấy 2 điểm M, N nằm trong ΔABC sao cho AA' là trung trực của MN. Lấy C', B' là 2 điểm đối xứng với M qua AB, AC. Chứng minh AN là trung trực của B'C'.
- 19 ([HM23], 3.19., p. 33). Cho ΔABC vuông tại A, đường cao AH. I, J là tâm đường tròn nội tiếp ΔABH, ΔACH. IJ cắt AB, AC lần lượt ở E, F. Chứng minh A là tâm đường tròn ngoại tiếp ΔEFH.
- **20** ([HM23], 3.20., p. 34). Cho $\triangle ABC$, dựng $\triangle ABZ$, $\triangle ACY$ đều bên ngoài $\triangle ABC$. Vẽ $\triangle BCX$ cân tại X bên ngoài $\triangle ABC$ sao cho $\widehat{BXC}=120^{\circ}$. Chứng minh $AX \perp YZ$.
- 21 ([HM23], 3.21., p. 34). Cho $\triangle ABC$, I là tâm đường tròn nội tiếp. BE, CF là 2 đường phân giác trong. Biết IE = IF. Chứng minh $\widehat{BAC} = 60^{\circ}$ hoặc $\triangle ABC$ cân.
- 22 ([HM23], 3.22., p. 34). Cho ΔABC , I là tâm đường tròn nội tiếp. AD, BE, CF là 3 đường phân giác. Biết ID = IE = IF. Chứng minh ΔABC đều.
- 23 ([HM23], 3.23., p. 34). Cho $\triangle ABC$, $\widehat{A}=60^{\circ}$. Dường phân giác BE, CF. Chứng minh BF+CE=BC.
- **24** ([HM23], 3.24., p. 34). Cho $\triangle ABC$, đường phân giác AD. Lấy E, F thuộc cạnh AB, AC sao cho $\triangle BDE$ cân tại $B, \triangle CDF$ cân tại C. Chứng minh $EF \parallel BC$.
- 25 ([HM23], 3.25., p. 34). Cho $\triangle ABC$, $\widehat{ABC} = 70^{\circ}$, $\widehat{ACB} = 50^{\circ}$. Lấy điểm D nằm khác phía A đối với BC sao cho $\widehat{CBD} = 40^{\circ}$, $\widehat{BCD} = 20^{\circ}$. Chứng minh $AD \perp BC$.
- 26 ([HM23], 3.26., p. 34). Cho $\triangle ABC$. Kẻ đường cao BE, CF. X, Y, Z lần lượt là trung điểm EF, BF, CE. K là giao điểm của đường thẳng qua Y vuông góc BX, đường thẳng qua Z vuông góc CX. Chứng minh K thuộc trung trực BC.
- 27 ([HM23], 3.27., p. 34). Cho ΔABC , 3 đường cao AD, BE, CF cắt nhau tại H. X,Y,Z,T là chân đường vuông góc hạ từ D xuống AB, BE, CF, AC. Chứng minh X,Y,Z,T thẳng hàng.

2 Pythagore Theorem – Định Lý Pythagore

3 Miscellaneous

Tài liêu

[HM23] Trần Quang Hùng and Đào Thị Hoa Mai. *Tuyển Chọn Các Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 7 Hình Học*. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2023, p. 114.