$N\acute{e}v$:, $NEPTUN-k\acute{o}d$:					
Pontszám:	,	Csoportszám:		Gyakorlatvezető:	

Programtervező Informatikus BSc Numerikus módszerek 2. zárthelyi 2017. május 15.

1. $(8+2\ pont)$ Határozza meg intervallumonkénti polinomok segítségével azt az S másodfokú spline-t amelyre

$$S(-1) = 0$$
 $S(0) = -1$ $S(2) = 1$ $S'(2) = 0$

Írja fel a spline-t az $1, x, x^2, (x-0)_+^2$ globális bázisban!

2. (6 pont) Határozza meg a következő mátrix általánosított inverzét!

$$A = \left(\begin{array}{cccc} 2 & -1 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{array}\right)$$

3. (6 pont) A legkisebb négyzetek módszerével határozza meg az

pontokra négyzetesen legjobban illeszkedő egyenest!

4. (6+2 pont) Mutassa meg, hogy a következő kvadratúra formula interpolációs típusú! Newton-Cotes típusú a formula? Ha igen, zárt, vagy nyílt?

$$\int_{-1}^{3} f(x) dx \approx \frac{4}{3} (2f(0) - f(1) + 2f(2))$$

5. (6+4 pont) Alkalmazzon érintő-, trapéz- és Simpson-formulát az

$$\int_0^1 \cos\left(\frac{\pi}{2}x\right) dx$$

integrál közelítésére! Hány trapézformulát kell alkalmazni a 10^{-2} pontosság eléréséhez? (Számításai során használhatja a $\pi^2/4 < 5/2$ közelítést és további felső becsléseket, hogy a formulák számát egész számmal tudja megbecsülni).

- 6. (2+2+2+2+2 pont) Válaszoljon az alábbi kérdésekre!
 - Definiálja az $\Omega_n = \{x_0, x_1, \dots, x_n\}$ felosztásra vonatkozó *l*-edfokú spline-t!
 - Hogyan definiáljuk az A túlhatározott mátrix általánosított inverzét? Mikor létezik?
 - Írja fel az (x_i, y_i) (i = 1, ..., n) pontokra legjobban illeszkedő $a_2x^2 + a_1x + a_0$ egyenletű parabola meghatározásához a Gauss-féle normálegyenletet (legkisebb négyzetek módszere)!
 - Definiálja az interpolációs típusú kvadratúra formulát!
 - Mikor mondjuk azt, hogy egy kvadratúra formula egy F függvényosztályra pontos?

Fogalmazza meg az $f:\mathbb{R}^n\to\mathbb{R}$ típusú függvény lokális szélsőértékének létezésére vonatkozó elsőrendű szükséges feltételt!

Fogalmazza meg az $f:\mathbb{R}^n\to\mathbb{R}$ típusú függvény lokális szélsőértékének létezésére vonatkozó másodrendű elégséges feltételt!

Írja fel az $f(x,y) = x^y + y^2 \cos(x-1)$ függvény a = (1,3) ponthoz tartozó elsőfokú Taylorpolinomját!