Definition: Probability Space

Probability Space

A probability space is a mathematical construct that provides a formal model for random phenomena.

Formal Definition

A probability space is a triple (Ω, \mathcal{F}, P) where:

- 1. Sample space Ω : A Set of all possible outcomes
- 2. -algebra \mathcal{F} : A collection of subsets of Ω (events) satisfying:
 - $\Omega \in \mathcal{F}$
 - If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (closed under complements)
- If $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (closed under countable unions) 3. **Probability measure** $P: \mathcal{F} \to [0,1]$ satisfying:
- - $P(\Omega) = 1$ (normalization)

 - $P(A) \ge 0$ for all $A \in \mathcal{F}$ (non-negativity) For disjoint events $A_1, A_2, \ldots: P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (countable additivity)

Properties

- $P(\emptyset) = 0$
- $P(A^c) = 1 P(A)$
- If $A \subseteq B$, then $P(A) \le P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Examples

- Coin flip: $\Omega = \{H, T\}, \mathcal{F} = 2^{\Omega}, P(H) = P(T) = 1/2$
- Die roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$, with uniform probability
- Continuous: $\Omega = [0, 1]$ with Lebesgue measure

Dependency Graph

Local dependency graph