2. zápočtový test (45 minut)

Úvod do praktické fyziky NOFY055

6. a 7. ledna 2025

Příklad 1a - lineární regrese

Zadání:

V experimentu byla změřena závislost síly, napínající pružinu, na její délce, viz obrázek. Pro velikost síly, působící na pružinu, platí lineární vztah

$$F = k \cdot \Delta y$$
,

kde k je tuhost pružiny a $\Delta y = y - y_0$ je prodloužení pružiny v důsledku působení síly F.

Naměřená závislost byla proložena obecnou přímkou danou rovnicí $\lambda(x) = ax + b$ s následujícími parametry: a = 0.3354, $\sigma_a = 0.0014$, b = -7.2931, $\sigma_b = 0.0603$, cov(a, b) = -0.000084.

Určete tuhost pružiny a její délku v nezatíženém stavu.

Poznámky k řešení:

- (a) Jaké jsou jednotky parametrů a, σ_a, b, σ_b a cov(a, b)?
- (b) Jaký je vztah mezi tuhostí pružiny k, délkou nezatížené pružiny y_0 a nafitovanými parametry a, b? Pro výpočet chyb k a y_0 použijte tyto vztahy a metodu přenosu chyb.
- (c) Výsledky zapište ve správném tvaru a se správnou jednotkou SI!

(10 bodů)

Řešení:

Označme si sílu jako F a délku pružiny jako y. Závislost F(y) jsme nafitovali lineární funkcí s předpisem F = ay + b. Z obrázku vidíme, že jednotkou síly je [F] = N, zatímco jednotkou délky je [y] = cm. Parametr a tudíž musí mít jednotku $[a] = N \text{ cm}^{-1}$ a parametr b jednotku [b] = N. Totéž samozřejmě platí i pro (absolutní) chyby těchto parametrů σ_a a σ_b . Kovariance cov(a, b) má stejnou jednotku jako součin chyb $\sigma_a \sigma_b$, tj. $[\text{cov}(a, b)] = N^2 \text{cm}^{-1}$.

Lineární závislost působící síly na prodloužení pružiny si upravíme následovně.

$$F = k(y - y_0)$$

$$F = ky - ky_0$$
(1)

Rovnice (1) tedy odpovídá lineární funkci se směrnicí a=k a konstantním členem $b=-ky_0$. Dosazením do těchto vztahů vypočítáme tuhost pružiny k a její délku v nenapjatém stavu y_0 .

$$k = a$$
 (2)
 $k = 0.3354 \text{ N cm}^{-1} = 33.54 \text{ N m}^{-1}$

$$y_0 = -\frac{b}{a}$$
 (3)
 $y_0 = 21.74 \text{ cm} = 0.2174 \text{ m}$

Chyba tuhosti σ_k se přímo rovná chybě σ_a parametru a. Musíme si dát jen pozor na jednotku a zaokrouhlit výslednou chybu na 1 platnou číslici.

$$\sigma_k = \sigma_a$$
 (4)
 $\sigma_k = 0.0014 \text{ N cm}^{-1} = 0.14 \text{ N m}^{-1} \doteq 0.1 \text{ N m}^{-1}$

Chybu délky σ_{y_0} získáme použitím metody přenosu chyb na rovnici (3).

$$\sigma_{y_0}^2 = \left(\frac{\partial y_0}{\partial a}\sigma_a\right)^2 + \left(\frac{\partial y_0}{\partial b}\sigma_b\right)^2 + 2\left(\frac{\partial y_0}{\partial a}\right)\left(\frac{\partial y_0}{\partial b}\right)\cos(a,b)$$

$$\sigma_{y_0}^2 = \left(\frac{b}{a^2}\sigma_a\right)^2 + \left(-\frac{1}{a}\sigma_b\right)^2 + 2\left(\frac{b}{a^2}\right)\left(-\frac{1}{a}\right)\cos(a,b)$$

$$\sigma_{y_0} = \sqrt{\left(\frac{b}{a^2}\sigma_a\right)^2 + \left(-\frac{1}{a}\sigma_b\right)^2 - 2\frac{b}{a^3}\cos(a,b)}$$

$$\sigma_{y_0} = 0.09 \text{ cm} = 0.0009 \text{ m}$$
(5)

Zapišme výsledek ve správném tvaru.

$$k=(33.5\pm0.1)~{\rm N~m^{-1}}$$
 případně: $k=(33.5\pm0.1)~{\rm kg~s^{-2}}$
$$y_0=(21.74\pm0.09)~{\rm cm}$$
 případně: $y_0=(217.4\pm0.9)\times10^{-3}~{\rm m}$

Příklad 2a - odhady parametrů

Zadání:

V tabulce je uvedeno 8 změřených hodnot rychlosti proudící kapaliny.

n	$v \; ({\rm cm} \; {\rm s}^{-1})$
1	3.89
2	3.38
3	7.08
4	3.32
5	4.40
6	1.76
7	5.85
8	3.07

- (a) Vypočítejte nejlepší odhad očekávané hodnoty a standardní odchylky náhodné proměnné v.
- (b) Nakreslete graf hustoty pravděpodobnosti náhodné proměnné v.
- (c) Určete průměrnou rychlost proudící kapaliny a její chybu. Výsledek zapište **ve správném tvaru**!

(5 bodů)

Řešení:

(a) Očekávanou hodnotu $\hat{\mu}_v$ odhadneme jako aritmetický průměr naměřených hodnot v_n .

$$\hat{\mu}_v \equiv \bar{v} = \frac{1}{N} \sum_{n=1}^N v_n$$

$$\bar{v} = \frac{1}{8} \sum_{n=1}^8 v_n = 4.09375 \text{ cm s}^{-1}$$
(1)

Odchylku $\hat{\sigma}_v$ vypočítáme pomocí vzorce pro nepředpojatý odhad standardní odchylky.

$$\hat{\sigma}_v = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (v_n - \bar{v})^2}$$

$$\hat{\sigma}_v = \sqrt{\frac{1}{7} \sum_{n=1}^{8} (v_n - \bar{v})^2}$$
(2)

$$\hat{\sigma}_v = \sqrt{\frac{1}{N-1} \left(\sum_{n=1}^N v_n^2 - N\bar{v}^2 \right)}$$

$$\hat{\sigma}_v = \sqrt{\frac{1}{7} \left(\sum_{n=1}^8 v_n^2 - 8\bar{v}^2 \right)} \doteq 1.68 \text{ cm s}^{-1}$$
(3)

(b) V předchozím bodě jsme implicitně předpokládali, že náhodná proměnná má normální rozdělení $N(\mu_v, \sigma_v)$. Graf hustoty pravděpodobnosti je tedy gaussián s očekávanou hodnotou $\hat{\mu}_v$ a standardní odchylkou $\hat{\sigma}_v$. Postačí nakreslit gaussián centrovaný okolo střední hodnoty 4.1 cm s⁻¹ s pološířkou $w = 2\sqrt{2 \ln 2} \sigma \doteq 4.0$ cm s⁻¹.

(c) Chybu odhadu $\hat{\mu}_v$ určíme pomocí přenosu chyb
 jako chybu aritmetického průměru.

$$\sigma_{\bar{v}} = \frac{\hat{\sigma}_v}{\sqrt{N}} = \frac{\hat{\sigma}_v}{\sqrt{8}} \doteq 0.59 \text{ cm s}^{-1}$$
 (4)

Průměrnou rychlost proudění a její chybu zaokrouhlíme na desetiny c
m $\rm s^{-1}$ a výsledek zapíšeme ve správném tvaru následovně.

$$\bar{v} = (4.1 \pm 0.6) \text{ cm s}^{-1}$$

Příklad 1b - lineární regrese

V experimentu byla změřena závislost délky pružiny na hmotnosti závaží, kterým byla pružina zatížena, viz obrázek. Pro velikost síly, působící na pružinu, platí lineární vztah

$$F = k \cdot \Delta y$$
,

kde k je tuhost pružiny a $\Delta y = y - y_0$ je prodloužení pružiny v důsledku působení síly F = mg.

Naměřená závislost byla proložena obecnou přímkou danou rovnicí $\lambda(x) = ax + b$ s následujícími parametry: a = 0.02894, $\sigma_a = 0.00017$, b = 21.94, $\sigma_b = 0.12$. Určete tuhost pružiny a její délku v nezatíženém stavu. Počítejte s velikostí tíhového zrychlení $g = 9.81 \text{ m s}^{-2}$.

Poznámky k řešení:

- (a) Jaké jsou jednotky parametrů a, σ_a, b, σ_b ?
- (b) Jaký je vztah mezi tuhostí pružiny k, délkou nezatížené pružiny y_0 a nafitovanými parametry a, b? Pro výpočet chyb k a y_0 použijte tyto vztahy a metodu přenosu chyb.
- (c) Výsledky zapište **ve správném tvaru** a se správnou jednotkou SI!

(5 bodů)

Řešení:

Označme si délku pružiny jako y a hmotnost závaží jako m. Závislost y(m) jsme nafitovali lineární funkcí s předpisem y=am+b. Z obrázku vidíme, že jednotkou je $[y]={\rm cm}$, zatímco jednotkou hmotnosti je $[m]={\rm g}$. Parametr a tudíž musí mít jednotku $[a]={\rm cm}\ {\rm g}^{-1}$ a parametr b jednotku $[b]={\rm cm}$. Totéž samozřejmě platí i pro (absolutní) chyby těchto parametrů σ_a a σ_b .

Lineární závislost působící síly na prodloužení pružiny si upravíme následovně.

$$mg = k(y - y_0)$$

$$y = \frac{g}{k}m + y_0 \tag{1}$$

Rovnice (1) tedy odpovídá lineární funkci se směrnicí a=g/k a konstantním členem $b=y_0$. Dosazením do těchto vztahů vypočítáme tuhost pružiny k a její délku v nenapjatém stavu y_0 .

$$k = \frac{g}{a}$$
 (2)
 $k = 338.98 \text{ m s}^{-2} \text{ g cm}^{-1} = 33.898 \text{ kg s}^{-2}$

$$y_0 = b$$
 (3)
 $y_0 = 21.94 \text{ cm} = 0.2194 \text{ m}$

Chybu tuhosti σ_k získáme použitím metody přenosu chyb na rovnici (2).

$$\sigma_k^2 = \left(\frac{\partial k}{\partial a}\sigma_a\right)^2$$

$$\sigma_k = \frac{g}{a^2}\sigma_a$$

$$\sigma_k = 1.99 \text{ m s}^{-2} \text{ g cm}^{-1} = 0.199 \text{ kg s}^{-2} \doteq 0.2 \text{ kg s}^{-2}$$

$$(4)$$

Chyba délky σ_{y_0} se přímo rovná chybě σ_b parametru b.

$$\sigma_{y_0} = \sigma_b$$

$$\sigma_{y_0} = 0.12 \text{ cm} \doteq 0.1 \text{ cm}$$

$$(5)$$

Zapišme výsledek ve správném tvaru, tj. s chybami zaokrouhlenými na 1 platnou číslici a středními hodnotami zaokrouhlenými na stejný řád platné číslice jako příslušné chyby.

$$k = (33.9 \pm 0.2) \ {\rm kg \ s^{-2}}$$

$$y_0 = (21.9 \pm 0.1) \ {\rm cm}$$
 případně: $y_0 = (219 \pm 1) \times 10^{-3} \ {\rm m}$

Příklad 2b - odhady parametrů

Zadání:

V tabulce je uvedeno 12 hodnot rychlosti proudící kapaliny změřených učitelem a 5 hodnot rychlosti proudící kapaliny následně změřených studentem.

n_1	$v \; (\text{cm s}^{-1})$	$ n_2 $	$v \text{ (cm s}^{-1})$
1	5.34	1	8.07
2	4.87	2	3.09
3	6.24	3	5.91
4	3.81	4	4.29
5	6.17	5	6.27
6	5.52		
7	5.33		
8	4.80		
9	7.09		
10	4.39		
11	5.84		
12	4.98		

- (a) Na základě měření provedeného učitelem vypočítejte nejlepší odhad očekávané hodnoty μ a standardní odchylky σ náhodné proměnné v.
- (b) Definujte konfidenční interval hodnot $(\mu 3\sigma, \mu + 3\sigma)$ neboli tzv. 3σ kritérium.
- (c) Otestujte, zda není žádná z hodnot naměřených studentem zatížená hrubou chybou.
- (d) Na základě všech spolehlivě naměřených hodnot (učitelem i studentem) vypočítejte nový nejlepší odhad očekávané hodnoty a standardní odchylky náhodné proměnné v.
- (e) Určete průměrnou rychlost proudící kapaliny a její chybu. Výsledek zapište **ve správném tvaru**!

(10 bodů)

Řešení:

(a) Očekávanou hodnotu $\hat{\mu}_v$ odhadneme jako aritmetický průměr hodnot v_n naměřených učitelem.

$$\hat{\mu}_v \equiv \bar{v} = \frac{1}{N} \sum_{n=1}^N v_n$$

$$\bar{v} = \frac{1}{12} \sum_{n=1}^{12} v_n = 5.365 \text{ cm s}^{-1}$$
(1)

Odchylku $\hat{\sigma}_v$ vypočítáme pomocí vzorce pro nepředpojatý odhad standardní odchylky.

$$\hat{\sigma}_v = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (v_n - \bar{v})^2}$$

$$\hat{\sigma}_v = \sqrt{\frac{1}{11} \sum_{n=1}^{12} (v_n - \bar{v})^2}$$
(2)

$$\hat{\sigma}_v = \sqrt{\frac{1}{N-1} \left(\sum_{n=1}^N v_n^2 - N \bar{v}^2 \right)}$$

$$\hat{\sigma}_v = \sqrt{\frac{1}{11} \left(\sum_{n=1}^{12} v_n^2 - 12 \bar{v}^2 \right)} \doteq 0.89 \text{ cm s}^{-1}$$
(3)

(b) V předchozím bodě implicitně předpokládáme, že náhodná proměnná má normální rozdělení $N(\mu_v, \sigma_v)$. Konfidenční interval $(\hat{\mu}_v - 3\hat{\sigma}_v, \hat{\mu} + 3\hat{\sigma}_3)$ definující 3σ kritérium má následující hraniční hodnoty.

$$\hat{\mu}_v - 3\hat{\sigma}_v \doteq 2.69 \text{ cm s}^{-1}$$

 $\hat{\mu}_v + 3\hat{\sigma}_v \doteq 8.04 \text{ cm s}^{-1}$

- (c) Vidíme, že 4 z 5 hodnot naměřených studentem leží v konfidenčním intervalu. Hodnota $8.07~{\rm cm~s^{-1}}$ leží vně tohoto intervalu, je tedy pravděpodobně změřena s hrubou chybou a proto ji v dalších výpočtech vynecháme.
- (d) Dohromady máme k dispozici sadu 16 spolehlivých hodnot rychlosti v. Očekávanou hodnotu a standardní odchylku odhadneme stejným způsobem jako v bodě (a).

$$\hat{\mu}_v \equiv \bar{v} = \frac{1}{16} \sum_{n=1}^{16} v_n = 5.25 \text{ cm s}^{-1}$$

$$\hat{\sigma}_v = \sqrt{\frac{1}{15} \sum_{n=1}^{16} (v_n - \bar{v})^2}$$

$$\hat{\sigma}_v = \sqrt{\frac{1}{15} \left(\sum_{n=1}^{16} v_n^2 - 16\bar{v}^2\right)} \doteq 1.04 \text{ cm s}^{-1}$$

(e) Chybu odhadu $\hat{\mu}_v$ určíme pomocí přenosu chyb jako chybu aritmetického průměru.

$$\sigma_{\bar{v}} = \frac{\hat{\sigma}_v}{\sqrt{N}} = \frac{\hat{\sigma}_v}{\sqrt{16}} \doteq 0.26 \text{ cm s}^{-1}$$

$$\tag{4}$$

Průměrnou rychlost proudění a její chybu zaokrouhlíme na desetiny c
m $\rm s^{-1}$ a výsledek zapíšeme ve správném tvaru následovně.

$$\bar{v} = (5.2 \pm 0.3) \text{ cm s}^{-1}$$