The Yoneda lemma

Sachi, transcribed by Soham

August 2016

• Covariant hom-functor: $\mathsf{Hom}(a,-)$, with the action on morphisms given by maps $\mathsf{Hom}(a,x) \to \mathsf{Hom}(a,y)$,

$$f \mapsto (- \circ f).$$

• Contravariant hom-functor: $\mathsf{Hom}(-,a)$, with the action on morphisms given by maps $\mathsf{Hom}(a,x) \leftarrow \mathsf{Hom}(a,y)$,

$$f \mapsto (f \circ -).$$

Definition. We say that a functor $F: C \to \mathsf{Set}$ is representable if there exists a natural transformation such that

$$\alpha: F \simeq \mathsf{Hom}(a, -).$$

Examples:

• Forgetful functors, e.g. $F: \mathsf{Grp} \to \mathsf{Set}$. Notice that $\mathsf{Hom}(\mathbb{Z}, G)$ is completely determined by where 1 goes, so it is sort of like the set of maps from a one-point test space. So elements of $\mathsf{Hom}(\mathbb{Z}, G)$ correspond to elements of G.

All of this is trivial, of course.