MAT 260 LINEAR ALGEBRA LECTURE 28

WING HONG TONY WONG

1.6 — More on linear systems and invertible matrices

Theorem 1 (1.6.23). Let $A\mathbf{x} = \mathbf{b}$ be a consistent system of linear equations, and let \mathbf{x}_1 be any fixed solution. Show that \mathbf{x} is a solution to $A\mathbf{x} = \mathbf{b}$ if and only if $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_0$ for some solution \mathbf{x}_0 to the equation $A\mathbf{x}_0 = \mathbf{0}$.

If we are solving multiple equations $A\mathbf{x} = \mathbf{b}_1$, $A\mathbf{x} = \mathbf{b}_2$, ..., $A\mathbf{x} = \mathbf{b}_k$ at the same time, then we can row reduce $(A|\mathbf{b}_1|\mathbf{b}_2|\cdots|\mathbf{b}_k)$.

Example 2. Solve the systems

$$x_1 + 2x_2 + 3x_3 = 4$$
 $x_1 + 2x_2 + 3x_3 = 1$
 $2x_1 + 5x_2 + 3x_3 = 5$ and $2x_1 + 5x_2 + 3x_3 = 6$.
 $x_1 + 8x_3 = 9$ $x_1 + 8x_3 = -6$

Theorem 3. If AB is an invertible matrix, and A and B are square matrices, then both A and B are invertible.

Example 4. What are the conditions on b_1, b_2, b_3 such that

$$x_1 + x_2 + 2x_3 = b_1$$
$$x_1 + x_3 = b_2$$
$$2x_1 + x_2 + 3x_3 = b_3$$

is consistent? How about

$$x_1 + x_2 + 2x_3 = b_1$$

 $x_1 + x_3 = b_2$?
 $x_2 + 3x_3 = b_3$

1.7 — Diagonal, triangular, and symmetric matrices

Example 5. Once again, recall the symbols for some subspaces of M_{nn} , the set of all $n \times n$ square matrices.

- Sets of $n \times n$ upper-triangular matrices: $\mathcal{U}_{nn} = \{A \in M_{nn} : a_{ij} = 0 \text{ for all } i > j\}.$
- Sets of $n \times n$ lower-triangular matrices: $\mathcal{L}_{nn} = \{A \in M_{nn} : a_{ij} = 0 \text{ for all } i < j\}.$
- Sets of $n \times n$ diagonal matrices: $\mathcal{D}_{nn} = \{A \in M_{nn} : a_{ij} = 0 \text{ for all } i \neq j\}.$
- Sets of $n \times n$ symmetric matrices: $\{A \in M_{nn} : a_{ij} = a_{ji} \text{ for all } i, j\}$, or $\{A \in M_{nn} : A^{\top} = A\}$.

Date: Monday, April 3, 2023.

• Sets of $n \times n$ skew-symmetric matrices: $\{A \in M_{nn} : a_{ij} = -a_{ji} \text{ for all } i, j\}$, or $\{A \in M_{nn} : A^{\top} = -A\}$.

Here are some properties of these matrices:

- If $A \in \mathcal{U}_{nn}$ (respectively $A \in \mathcal{L}_{nn}$ or $A \in \mathcal{D}_{nn}$), then A is invertible if and only if all diagonal entries are nonzero. Besides, if A is invertible, then $A^{-1} \in \mathcal{U}_{nn}$ (respectively $A^{-1} \in \mathcal{L}_{nn}$ or $A^{-1} \in \mathcal{D}_{nn}$), and all the diagonal entries in A^{-1} are reciprocals of those in A.
- If $A, B \in \mathcal{U}_{nn}$ (respectively $A, B \in \mathcal{L}_{nn}$ or $A, B \in \mathcal{D}_{nn}$), then $AB \in \mathcal{U}_{nn}$ (respectively $AB \in \mathcal{L}_{nn}$ or $AB \in \mathcal{D}_{nn}$). Also, the *ii*-th entry of AB is $a_{ii}b_{ii}$. Consequently, the *ii*-th entry of A^n is a_{ii}^n .
- If $A \in \mathcal{U}_{nn}$ (respectively $A \in \mathcal{L}_{nn}$), then $A^{\top} \in \mathcal{L}_{nn}$ (respectively $A^{\top} \in \mathcal{U}_{nn}$).
- If $A \in \mathcal{D}_{nn}$, then the *i*-th row of AB is the scalar product between a_{ii} and the *i*-th row of B, and the *j*-th column of BA is the scalar product between a_{ii} and the *j*-th column of B.
- $\mathcal{U}_{nn} \cap \mathcal{L}_{nn} = \mathcal{D}_{nn}$.
- If A and B are symmetric matrices, then A^{\top} , A+B, A-B, and kA are all symmetric.
- For all $m \times n$ matrices A, $A^{\top}A$ and AA^{\top} are both symmetric matrices.
- For all $n \times n$ matrices A, $A + A^{\top}$ is a symmetric matrix, while $A A^{\top}$ is a skew-symmetric matrix.

Theorem 6. If A and B are symmetric matrices, then AB is symmetric if and only if A and B commute.

Theorem 7. If A is an invertible symmetric matrix, then A^{-1} is also symmetric.