

Task 3 Spark

Introduction

- Nowadays, large amounts of data are gathered and stored for its analysis
 - Data is the new petrol
- Massive data processing is needed for a wide variety of applications
 - Finances, Genetics, Marketing, Artificial Intelligence, etc.
- How can we process these humongous amounts of data in reasonable times?
 - One computer even with GPUs is not enough
 - Need of computer clusters

Introduction

- In addition to the computer cluster, we need a programming model to access and process large datasets:
 - Efficiently
 - In parallel
 - In a distributed way

Solution:

- Map-Reduce is a programming paradigm for data processing.
- Enables massive processing scalability using 100s or 1000s computers (nodes) in parallel.
- Based on two different tasks:
 - Map
 - Reduce
- Map-Reduces divides the workload in independent and isolated tasks that can run in parallel at each node.
- Input data is stored along all the cluster nodes using a distributed file system (HDFS)

- Divided in 2 phases:
 - Map:
 - Initial data is stored in chunks
 - Each chunk is processed independently by a Mapper task
 - Mappers produce Intermediate Outputs (IOs) that are assigned to Reducer tasks
 - Reduce:
 - Combining IOs into reducers is called "shuffling process"
 - Reducers process data and produce the final output

- The programmer implements the functionality of both Map and Reduce functions
- Data elements are always defined by a key-value tuple (K,V)
- Map and Reduce functions receive and produce key-value tuples

- Not all intermediate outputs are reduced together
- IOs with the same key are grouped in partitions
- Each partition is assigned to a reducer

- Task are distributed along nodes of cluster
- Communication and management is performed using communication networks
 - Overall performance depends highly on communications performance
- Typical topology is a tree
 - Data centers are distributed using a leaf-spine architectures
 - BW is higher between nodes on the same rack as opposed to nodes on other racks

Distributed programming frameworks for Big Data.

- Apache Hadoop: collection of tools that provide distributed storage and Map-Reduce processing for big data over commodity clusters.
 - Implemented in Java
 - ❖ Disk/Storage-oriented → HDFS (Hadoop File System)
- Apache Spark: multi-language engine for executing data engineering, data science, and machine learning tasks in a distributed way
 - Evolution of the Map-Reduce Paradigm
 - Memory-oriented Vs disk-oriented

Apache Spark (I)

- MapReduce problems:
 - Many problems aren't easily described as map-reduce
 - Persistence to disk typically slower than in-memory work
- Apache Spark:
 - Use of memory
 - Avoid saving intermediate results to disk
 - Cache data for repetitive queries (e.g. for machine learning)
 - Compatible with Hadoop

Apache Spark (II)

- Defines a set of operations (transformations and actions) that can be combined at any order
 - For example group by, map, filter, etc.
- Similar to Map-Reduce but based on RDD (Resilient Distributed Datasets)
 - Collections of objects distributed across a cluster that can be manipulated in parallel
- Lazy evaluation: Nothing computed until an action requires it.
- Fault tolerance by means of DAGs (Directed Acyclic Graph)
- Programming APIs in Python, Scala, R, SQL or Java

Resilient Distributed Datasets (RDDs)

- Collection of partitioned records
 - \star Immutable \rightarrow Read-only
 - Operations execute in parallel
- Partitions:
 - By default, equal to the number of CPU cores available in the cluster
 - Each partition reside in a single machine
 - Shuffle operations to move data from one partition to another
 - Stored in memory by default
 - Use of disk if necessary or explicitly defined

Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDDs)

- Transformations: build RDDs through deterministic operations on other RDDs
 - Include map, filter, join
 - Lazy operation
- Actions: return value or export data
 - Include count, collect, save
 - Triggers execution

Working with Spark and Python

Spark initialization and context creation:

```
from pyspark.sql import SparkSession

APP_NAME = "CAP-lab3"

SPARK_URL = "local[*]"

spark = SparkSession.builder.appName(APP_NAME).master(SPARK_URL).getOrCreate()

sc = spark.sparkContext
```


Loading data

- Creating a Spark RDD
 - Create from list of numbers using paralellize array = sc.parallelize([1,2,3,4,5,6,7,8,9,10], 2
 - RDDs cannot be printed unless they are reduced (lazy evaluation). The basic reduce operation is collect print(array.collect())
 - Create from text file using textFile quijote = sc.textFile("elquijote.txt") quijote.take(10)
 - Take method gets N first elements of RDD

Transformations

map

- Applies a function to each element of the RDD and returns a new RDD
- charsPerLine = quijote.map(lambda s: len(s))

flatMap:

- Applies a function to each element of the RDD, flattens the results and returns a new RDD
- allWords = quijote.flatMap(lambda s: s.split())

filter

- Returns a new RDD containing only the elements that satisfy a predicate.
- allWordsNoArticles = allWords.filter(lambda a: a.lower() not in ["el", "la"])

Transformations

sample:

- Samples a fraction of data randomly with or without replacement
- sampleWords = allWords.sample(withReplacement=True, fraction=0.2, seed=666)
- union
- distinct

Actions

- reduce:
 - Reduces elements of the RDD applying a binary operator
- collect
- take
- count
- takeOrdered

Key-Value RDDs

- RDDs indexed by a key. Similar to a Python dict.
- To build K-V RDDs lambda map function must return a tuple:
 - words = allWords.map(lambda e: (e,1))
- Reduce action can be performed over key-grouped values:
 - frequencies = words.reduceByKey(lambda a,b: a+b)

Other operations

Persistence:

- Unlike Hadoop, intermediate RDDs are nor preserved and each time we use and action the complete pipeline is executed
- Use cache() method to avoid this
- By default, only memory-level storage is used. To persist data in disk we must specify it
 - allWords.persist(StorageLevel.MEMORY_AND_DISK)
 - allWords.saveAsTextFile("palabras_parte2")

Spark SQL

- SQL-like Operations over Pandas dataframes
 - show
 - filter
 - select
 - where
 - groupby
- We can execute SQL queries over the dataframe directly:
 - spark.sql("select * from table limit 10").show()
- Pandas dataframes are not totally scalable when using Spark
 - Koalas dataframe library solves this

Assignments

- Execute provided Python notebook on Google Colab
- Answer questions and exercises proposed along the notebook
- Answer the questions in the provided template assignment

