Problem (3.6)

Let (X, \mathcal{E}, μ) be a finite measure space, and let (f_n) be a sequence of functions from $\mathcal{M}(\mathcal{E})$ such that $\{f_n|n \in \mathbb{N}\}$ is uniformly integrable. Define a new sequence (g_n) of functions by:

$$g_n := n^{-1} \sum_{j=1}^n f_j$$

Show then, that the set $\{g_n|n\in\mathbb{N}\}$ likewise is uniformly integrable.

Proposition 3.1.4. A subset \mathcal{H} of $\mathcal{M}(\mathcal{E})$ is uniformly integrable, if and only if it satisfies the following two conditions:

- (i) $\sup_{f \in \mathcal{H}} \int_X |f| d\mu < \infty$.
- (ii) $\forall \epsilon > 0 \exists \delta > 0 \forall A \in \mathcal{E} : \mu(A) \leq \delta \Longrightarrow \sup_{\delta \in \nu} \int_{\Lambda} |f| d\mu \leq \epsilon.$

Solution

We show uniform integrability by Proposition 3.1.4. For $A \in \mathcal{E}$ we have, that

$$\int_{A} |g_{n}| d\mu = n^{-1} \int_{A} \left| \sum_{j=1}^{n} f_{j} \right| d\mu$$

$$\leq n^{-1} \int_{A} \sum_{j=1}^{n} |f_{j}| d\mu$$

$$\stackrel{5 \cdot 2 \cdot 9}{=} n^{-1} \sum_{j=1}^{n} \int_{A} |f_{j}| d\mu$$

$$\leq \sup_{m \in \mathbb{N}} \int_{A} |f_{m}| d\mu$$

$$\leq k < \infty$$

for any $n \in \mathbb{N}$. Then it follows that

$$\sup_{n \in \mathbb{N}} \int_A |g_n| \, d\mu \le \sup_{m \in \mathbb{N}} \int_A |f_m| \, d\mu$$

This especially holds for A = X, and we have that $\{g_n | n \in \mathbb{N}\}$ satisfies condition (i) in 3.1.4.

To prove the second condition, we let $\epsilon > 0$. Since $\{f_n | n \in \mathbb{N}\}$ is uniformly integrable, and thus satisfies condition (ii) in 3.1.4, we can choose $\delta > 0$ such that:

$$\forall A \in \mathcal{E} : \mu(A) \leq \delta \Longrightarrow \sup_{n \in \mathbb{N}} \int_{A} |f_n| \, d\mu \leq \epsilon$$

From this it follows that:

$$\forall A \in \mathcal{E} : \mu(A) \le \delta \Longrightarrow \sup_{n \in \mathbb{N}} \int_A |g_n| \, d\mu \le \epsilon$$

Which shows that $\{g_n|n\in\mathbb{N}\}$ satisfies condition (ii) in Proposition 3.1.4, and thus the proof is done.