Class Exercise (Kalman Filter) Introduction to Data Assimilation

Exercise 8b (KF with a Linear Advection Equation)

Consider a one-dimensional linear advection model on a periodic domain of length 360 m ($L_a = -180 \le x_{axis} < L_b = 180$). The model has a constant advection speed, μ =1 m/s, the grid spacing is Δ x = 1 m and the time step Δ t = 1 s.

The true initial state $\mathbf{x_0^t}$ is sampled from a normal distribution with mean equal to a square wave (use sqrwv.m in D2L), variance equal to zero and spatial de-correlation length of 45 m. Yes, we assume here that the true state, $\mathbf{x^t}$ is without system noise.

The initial forecast states \mathbf{x}_0^f , however are generated by drawing a sample from a normal distribution with mean \mathbf{x}_0^t , variance equal to 0.5 and spatial de-correlation length of 45 m similar to the length scale of \mathbf{x}_0^t .

- 1) Construct \mathbf{x}_0^t , \mathbf{x}_0^f and $\mathbf{P}_0^f = \mathbf{Q}$. Use gcorr.m (and gauss.m) can be found in D2L -- to generate the correlation matrix, $\boldsymbol{\rho}$. Also use mvnrnd.m to draw the sample.
- 2) Construct a time-independent state transition matrix **M** using Lax-Wendorff scheme to solve the advection equation:

$$\frac{\partial a}{\partial t} = -\mu \frac{\partial a}{\partial x}$$

$$a_i^{k+1} = a_i^k - \frac{\mu \Delta t}{2\Delta x} \left(a_{i+1}^k - a_{i-1}^k \right) + 2 \left(\frac{\mu \Delta t}{2\Delta x} \right)^2 \left(a_{i+1}^k + a_{i-1}^k - 2a_i^k \right)$$

where *k* and *i* denote time and position, respectively.

- 3) Construct the observation operator assuming that there are a) zero measurements, b) nobs=20 measurements across the domain (i.e., starting from grid point 1 to N=360 at interval of N/nobs) every 5 timesteps. Assume a measurement error variance of 0.01 (and a diagonal error covariance, **R**).
- 4) Find an optimal estimate $\mathbf{x}_{k=1,300}^a$ using a Kalman Filter and using measurements in (3) and assuming for now that $\mathbf{Q} = \mathbf{0}$. Plot your results (truth, forecast, analysis and observation/s) for all grid points and for iteration 5, iteration 150, and iteration 300. Provide comments on your results.
- 5) Do (4) but now assume $\mathbf{Q} = \sigma^2 \boldsymbol{\rho}$.

Note: This is a continuation of Exercise 8a (fonts in red are the new tasks).