Gegeben sei das Anfangswertproblem

$$x' = \frac{x^2}{1 + t^2}$$
, $x(0) = c$, wobei c>0 ein positiver Parameter ist. (1)

- a) Man zeige: Ist I ein offenes Intervall mit $0 \in I$ und ist $\varphi : I \to \mathbb{R}$ eine Lösung des gegebenen Anfangswertproblems, so hat φ keine Nullstelle.
- b) Man finde ein offenes Intervall I mit $0 \in$ I und eine Lösung $\varphi_c: I \to \mathbb{R}$.
- c) Man setze ϕ c zu einer maximalen Lösung $\widetilde{\varphi}_c$: $]t^-(c); t^+(c)[\to \mathbb{R}$ fort. Wie lauten die Entweichzeiten $t^-(c)$ und $t^+(c)$ und wie verhält sich $\widetilde{\varphi}_c$ für $t \to t^-(c)$ und $t \to t^+(c)$?

Zu a)

Wegen $1+t^2\geq 1\ \forall t\in\mathbb{R}$ ist $f\colon\mathbb{R}^2\to\mathbb{R}$; $(t,x)\to\frac{x^2}{1+t^2}$ eine wohldefinierte stetig differenzierbare Funktion. Nach dem globalen Existenz- und Eindeutigkeitssatz hat für jedes $\left(\tau,\xi\right)\in\mathbb{R}^2$ das Anfangswertproblem $x'=f(t,x),\ x(\tau)=\xi$ eine eindeutig definierte maximale Lösung $\lambda_{(\tau,\xi)}\colon I_{(\tau,\xi)}\to\mathbb{R}$. Speziell für $\xi=0$ ist $\mathbb{R}\to\mathbb{R},\ t\to 0$ Lösung von $x'=f(t,x)=\frac{x^2}{1+t^2};\ x(\tau)=0$ und da diese Lösung auf \mathbb{R} existiert ("richtiges" Randverhalten für max. Lsg.), ist es die maximale Lösung $\lambda_{(\tau,0)}$. Für c>0 sind die Graphen $\Gamma\left(\lambda_{(0,c)}\right)=\{\left(t,\lambda_{(0,c)}(t)\right)\colon t\in I_{(0,c)}\}$ und $\Gamma\left(\lambda_{(0,0)}\right)=\{(t,0)\colon t\in\mathbb{R}\}$ disjunkt – da z.B. für $\tau=0$ die Lösungen verschieden sind. Da jede Lösung $\varphi\colon I\to\mathbb{R}$ eine Einschränkung von $\lambda_{(0,c)}$ ist, hat auch φ keine Nullstelle.

Zu b)

Mit Trennen der Variablen

$$\int_{c}^{\varphi_c(t)} \frac{1}{x^2} dx = \frac{-1}{x} \Big|_{c}^{\varphi_c(t)} = \int_{0}^{t} \frac{1}{1+s^2} ds = \arctan(s) \Big|_{0}^{t}, \text{ also}$$

$$\frac{-1}{\varphi_c(t)} - \frac{-1}{c} = \arctan(t) - \arctan(0), \text{ also } \varphi_c(t) = \frac{1}{\frac{1}{c} - \arctan(t)} \text{ (ist für t=0 definiert.)}$$

Wegen arctan(0)=0 ist dies in einer Umgebung von 0 definiert und zwar

i) Für
$$\frac{1}{c} \ge \frac{\pi}{2}$$
 ist $\frac{1}{c} - \arctan(t) > 0$ für alle $t \in \mathbb{R}$, also ist $\varphi_c : \mathbb{R} \to \mathbb{R}$; $t \to \frac{1}{\frac{1}{c} - \arctan(t)}$ wohldefiniert und wegen

$$\varphi'_{c}(t) = \frac{-\frac{-1}{1+t^{2}}}{\left(\frac{1}{c} - \arctan(t)\right)^{2}} = \frac{\left(\varphi_{c}(t)\right)^{2}}{1+t^{2}}, \ \varphi_{c}(0) = c \text{ eine Lösung von (1). Da } \varphi_{c}(t)$$

schon auf $\mathbb R$ definiert ist, also das Randverhalten einer maximalen Lösung hat, gilt $\varphi_c=\lambda_{(0,c)}$.

ii) Für
$$0 < \frac{1}{c} < \frac{\pi}{2}$$
 hat $\frac{1}{c}$ – arctan(t) nur eine Nullstelle bei $t = \tan\left(\frac{1}{c}\right) > 0$, also ist φ_c :] – ∞ ; $\tan(\frac{1}{c})$ [$\to \mathbb{R}$; $t \to \frac{1}{\frac{1}{c} - \arctan(t)}$ wohldefiniert, $\varphi_c(0)$ =c und
$$\varphi'_c(t) = \frac{-\frac{-1}{1+t^2}}{\left(\frac{1}{c} - \arctan(t)\right)^2} = \frac{(\varphi_c(t))^2}{1+t^2} f \ddot{u} r t \in] - \infty$$
; $\tan(\frac{1}{c})$ [, somit eine

Lösung von (1)

Da $\lim_{t \to \tan(\frac{1}{c})} \varphi_c(t) = \infty$ und da die untere Intervallgrenze $-\infty$ ist, gilt $\varphi_c = \lambda_{(0,c)}$, denn

 ϕ_c hat das Randverhalten einer maximalen Lösung und ist als Lösung von (1) somit die gesuchte maximale Lösung.

Zu c)

Wir haben in b) die maximalen Lösungen gefunden:

i) Für
$$\frac{1}{c} \geq \frac{\pi}{2}$$
 ist dies $\widetilde{\varphi}_c = \lambda_{(0,c)} \colon \mathbb{R} \to \mathbb{R}; \ t \to \frac{1}{\frac{1}{c} - \arctan(t)}$, also $t^-(c) = -\infty, \ t^+(c) = \infty$ und $\lim_{t \to -\infty} \widetilde{\varphi}_c(t) = \frac{1}{\frac{1}{c} + \frac{\pi}{2}}$ bzw.
$$\lim_{t \to \infty} \widetilde{\varphi}_c(t) = \begin{cases} \frac{1}{\frac{1}{c} + \frac{\pi}{2}} f \ddot{u} r \frac{1}{c} > \frac{\pi}{2} \\ \infty \ f \ddot{u} r \frac{1}{c} = \frac{\pi}{2} \end{cases}$$

ii) Für
$$0 < \frac{1}{c} < \frac{\pi}{2}$$
 ist dies
$$\widetilde{\varphi}_c = \lambda_{(0,c)} :] - \infty; \tan\left(\frac{1}{c}\right) [\to \mathbb{R}; \ t \to \frac{1}{\frac{1}{c} - \arctan(t)}, \text{ also}$$

$$t^{-}(c) = -\infty, \ t^{+}(c) = \tan\left(\frac{1}{c}\right) \text{ und } \lim_{t \to -\infty} \widetilde{\varphi}_c(t) = \frac{1}{\frac{1}{c} + \frac{\pi}{2}} \text{ bzw.}$$

$$\lim_{t \to \tan\left(\frac{1}{c}\right)} \widetilde{\varphi}_c(t) = \infty.$$