

手写数字识别

主讲人: 龙良曲

Discrete Prediction

$$y = w * x + b$$

[up, left, down, right]

[dog, cat, whale, bird, ...]

Image Classification

Hand-written Digits Recognition

MNIST

- 7000 images per category
- train/test splitting: 60k vs 10k

Image

• [28,28,1]

■ →[784]

Input and Output

• x: [b, 784]

• prediction:

• fish =
$$[0, 0, 1, ...]$$

Regression VS Classification

- y = w * x + b
 - $y \in R^d$

- out = X@W + b
 - out: [0.1, 0.8, 0.02, 0.08]
- pred = argmax(out)
 - pred: 1
 - label: 2

Computation Graph

•
$$out = X@W + b$$

- X: [b, 784]
- W: [784, 10]
- b: [10]
- out: [b, 10]

It's Linear!

•
$$out = X@W + b$$

•
$$out = f(X@W + b)$$

• out = relu(X@W + b)

It's too simple!

•
$$out = relu(X@W + b)$$

- $\bullet h_1 = relu(X@W_1 + b_1)$
- $h_2 = relu(h_1@W_2 + b_2)$
- $out = relu(h_2@W_3 + b_3)$

Particularly

$$X = [v1, v2, ..., v784]$$

•
$$h_1 = relu(X@W_1 + b_1)$$

- *W*₁ : [784, 512]
- b_1 : [1, 512]

•
$$h_2 = relu(h_1@W_2 + b_2)$$

- W₂: [512, 256]
- *b*₂ : [256]

•
$$out = relu(h_2@W_3 + b_3)$$

- W_3 : [256, 10]
- *b*₃: [10]

 $[0, 0, 0.01, 0.1, 0.8, 0, \dots]$

Loss?

• *out*: [1, 10]

- Y/label: 0~9
 - eg.: $1 \rightarrow [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]$
 - eg.: $3 \rightarrow [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]$

- Euclidean Distance: $out \rightarrow Label$
 - MSE

In a nutshell

•
$$out = relu\{relu\{relu[X@W_1 + b_1]@W_2 + b_2\}@W_3 + b_3\}$$

- pred = argmax(out)
- loss = MSE(out, label)

- minimize loss
 - $[W_1', b_1', W_2', b_2', W_3', b_3']$

Deep Learning?

We have not seen it.

But we already master it.

• We will show you It's (almost) Deep Learning!

Classification Procedure

• Step1. Compute $[h_1, h_2, out]$

Step2. Compute Loss

• Step3. Compute gradient and update $[W_1', b_1', W_2', b_2', W_3', b_3']$

Step4. Loop

We need TensorFlow

27X Higher Throughput Than CPU Server on Deep Learning Inference

Workload: ResNet-50 | CPU: 1X Xeon E5-2690v4 @ 2.6 GHz | GPU: Add 1X Tesla P4 or V100

Next

Step1. Have fun on MNIST classification

Step2. and we learn TensorFlow

Step3. and we implement Step1. by ourselves!

下一课时

Enjoy MNIST!

Thank You.