

	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	$d_1 = 373$	θ_1
2	-90	0	0	$ heta_2$
3	0	$a_2 = 340$	0	θ_3
4	-90	0	$d_4 = 338$	$ heta_4$
5	90	0	0	$ heta_5$
6	-90	0	0	θ_6

	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	$d_1 = 373$	θ_1
2	-90	0	0	θ_2
3	0	$a_2 = 340$	0	θ_3
4	-90	0	$d_4 = 338$	$ heta_4$
5	90	0	0	$ heta_5$
6	-90	0	0	θ_6

$$\theta_1 = \cos^{-1}(\frac{Wy}{Wx})$$

$$\theta_1 = \cos^{-1}(\frac{Wy}{Wx})$$

$$\theta_2 = \frac{2}{\pi} - (\phi_1 - \phi_2)$$

$$= \frac{2}{\pi} - \left[cos^{-1}\left(\frac{Wco^2 - d_1^2 - Wc1^2}{2 \times d1 \times Wc1}\right) - cos^{-1}\left(\frac{d_4^{'2} - Wc1^2 - a_2^{'2}}{2 \times Wc1 \times a_2^{'}}\right)\right]$$

$$\begin{aligned} \theta_2 &= \frac{2}{\pi} - (\phi_1 - \phi_2) \\ &= \frac{2}{\pi} - \left[cos^{-1} \left(\frac{Wco^2 - d_1^2 - Wc1^2}{2 \times d1 \times Wc1} \right) - cos^{-1} \left(\frac{d_4^2 - Wc1^2 - a_2^2}{2 \times Wc1 \times a_2} \right) \right] \end{aligned}$$

