26 STM32F40xxx/41xxx devices bootloader

26.1 Bootloader V3.x

26.1.1 Bootloader configuration

The STM32F40xxx/41xxx bootloader is activated by applying Pattern 1 (described in *Table 2: Bootloader activation patterns*). The following table shows the hardware resources used by this bootloader.

Table 53. STM32F40xxx/41xxx configuration in system memory boot mode

Bootloader	Feature/Peripheral	State	Comment
		HSI enabled	The system clock frequency is 24 MHz using the PLL. The HSI clock source is used at startup (interface detection phase) and when USARTx interfaces are selected (once CAN or DFU bootloader is selected, the clock source is derived from the external crystal).
	RCC	HSE enabled	The system clock frequency is 60 MHz. The HSE clock source is used only when the CAN or the DFU (USB FS Device) interfaces are selected. The external clock must provide a frequency multiple of 1 MHz and ranging from 4 MHz to 26 MHz.
Common to all		-	The Clock Security System (CSS) interrupt is enabled for the CAN and DFU bootloaders. Any failure (or removal) of the external clock generates system reset.
bootioaders	RAM	-	8 Kbyte starting from address 0x20000000 are used by the bootloader firmware.
	System memory	-	29 Kbyte starting from address 0x1FFF 0000 contain the bootloader firmware.
	IWDG	-	The independent watchdog (IWDG) prescaler is configured to its maximum value. It is periodically refreshed to prevent watchdog reset (in case the hardware IWDG option was previously enabled by the user).
	Power	-	Voltage range is set to [1.62 V, 2.1 V]. In this range internal Flash write operations are allowed only in byte format (Half-Word, Word and Double-Word operations are not allowed). The voltage range can be configured in run time using bootloader commands.

AN2606 Rev 51 119/426

Table 53. STM32F40xxx/41xxx configuration in system memory boot mode (continued)

Bootloader	Feature/Peripheral	State	Comment	
	USART1	Enabled	Once initialized, the USART1 configuration is: 8 bits, even parity and 1 Stop bit.	
USART1 bootloader	USART1_RX pin	Input	PA10 pin: USART1 in reception mode. Used in input no pull mode.	
	USART1_TX pin	Output	PA9 pin: USART1 in transmission mode. Used in input no pull mode	
	USART3	Enabled	Once initialized, the USART3 configuration is: 8 bits, even parity and 1 Stop bit.	
USART3 bootloader (on PB10/PB11)	USART3_RX pin	Input	PB11 pin: USART3 in reception mode. Used in input pull-up mode.	
	USART3_TX pin	Output	PB10 pin: USART3 in transmission mode. Used in input pull-up mode.	
	USART3	Enabled	Once initialized, the USART3 configuration is: 8 bits, even parity and 1 Stop bit.	
USART3 bootloader (on PC10/PC11)	USART3_RX pin	Input	PC11 pin: USART3 in reception mode. used in input pull-up mode.	
	USART3_TX pin	Output	PC10 pin: USART3 in transmission mode. used in input pull-up mode.	
USARTx bootloaders	SysTick timer	Enabled	Used to automatically detect the serial baud rate from the host for USARTx bootloaders.	
CAN2 bootloader	CAN2	Enabled	Once initialized, the CAN2 configuration is: Baudrate 125 kbps, 11-bit identifier. Note: CAN1 is clocked during CAN2 bootloader execution because CAN1 manages the communication between CAN2 and SRAM.	
	CAN2_RX pin	Input	PB5 pin: CAN2 in reception mode. Used in alternate push-pull, pull-up mode.	
	CAN2_TX pin	Output	PB13 pin: CAN2 in transmission mode. Used in alternate push-pull, pull-up mode.	
	USB	Enabled	USB OTG FS configured in forced device mode	
DFU bootloader	USB_DM pin		PA11: USB DM line. Used in alternate push-pull, no pull mode.	
	USB_DP pin	Input/Output	PA12: USB DP line. Used in alternate push- pull, no pull mode. No external pull-up resistor is required	
CAN2 and DFU bootloaders	TIM11	Enabled	This timer is used to determine the value of the HSE. Once the HSE frequency is determined, the system clock is configured to 60 MHz using PLL and HSE.	

The system clock is derived from the embedded internal high-speed RC for USARTx bootloaders. This internal clock is also used for CAN and DFU (USB FS Device) but only for the selection phase. An external clock multiple of 1 MHz (between 4 and 26 MHz) is required for CAN and DFU bootloader execution after the selection phase.

Note:

Due to HSI deviation and since HSI is used to detect HSE value, the user must use low frequency rather than high frequency HSE crystal values (low frequency values are better detected due to larger error margin). For example, it is better to use 8 MHz instead of 25 MHz.

AN2606 Rev 51 121/426

26.1.2 Bootloader selection

The figure below shows the bootloader selection mechanism.

System Reset Disable all yes System Init (Clock, GPIOs, interrupt sources IWDG, SysTick) Configure Configure USB OTG FS USAŘTx device Execute BL USART_Loop 0x7F received on **USART**x for USARTx no HSE detected Frame detected no on CANx pin yes yes Disable all HSE detected no no interrupt sources Generate System USB cable reset Reconfigure System yes Detected clock to 60MHz Reconfigure System clock to 60MHz and Configure CAN USB clock to 48 MHz Execute BL_CAN_Loop for **Execute DFU** bootloader using USB CANx interrupts MS35012V3

Figure 30. Bootloader V3.x selection for STM32F40xxx/41xxx devices

4

26.1.3 Bootloader version

The following table lists the STM32F40xxx/41xxx devices V3.x bootloader versions:

Table 54. STM32F40xxx/41xxx bootloader V3.x versions

Bootloader version number	Description	Known limitations
V3.0	Initial bootloader version	 When a Read Memory command or Write Memory command is issued with an unsupported memory address and a correct address checksum (i.e. address 0x6000 0000), the command is aborted by the bootloader device, but the NACK (0x1F) is not sent to the host. As a result, the next 2 bytes (which are the number of bytes to be read/written and its checksum) are considered as a new command and its checksum⁽¹⁾. Option bytes, OTP and Device Feature descriptors (in DFU interface) are set to "g" instead of "e" (not erasable memory areas). After executing Go command (jump to user code) the bootloader resets AHB1ENR value to 0x0000 0000 and thus CCM RAM, when present, is not active (must be re-enabled by user code at startup)
V3.1	Fix V3.0 limitations. DFU interface robustness enhancement.	For the USART interface, two consecutive NACKs (instead of 1 NACK) are sent when a Read Memory or Write Memory command is sent and the RDP level is active. For the CAN interface, the Write Unprotect command is not functional. Use Write Memory command and write directly to the option bytes in order to disable the write protection. After executing Go command (jump to user code) the bootloader resets AHB1ENR value to 0x0000 0000 and thus CCM RAM, when present, is not active (must be re-enabled by user code at startup)

If the "number of data - 1" (N-1) to be read/written is not equal to a valid command code (0x00, 0x01, 0x02, 0x11, 0x21, 0x31, 0x43, 0x44, 0x63, 0x73, 0x82 or 0x92), then the limitation is not perceived from the host since the command is NACKed anyway (as an unsupported new command).

26.2 Bootloader V9.x

26.2.1 Bootloader configuration

The STM32F40xxx/41xxx bootloader is activated by applying Pattern 1 (described in *Table 2: Bootloader activation patterns*). *Table 55* shows the hardware resources used by this bootloader.

Note:

The bootloader version V9.0 is embedded only in STM32F405xx/415xx devices in WLCSP90 package.

Version V9.1 is populated in all packages of the product.

Table 55. STM32F40xxx/41xxx configuration in system memory boot mode

Bootloader	Feature/Peripheral	State	Comment
		HSI enabled	The system clock frequency is 60 MHz using the PLL. The HSI clock source is used at startup (interface detection phase) and when USART or SPI or I2C interfaces are selected (once CAN or DFU bootloader is selected, the clock source is derived from the external crystal).
	RCC	HSE enabled	The system clock frequency is 60 MHz. The HSE clock source is used only when the CAN or the DFU (USB FS Device) interfaces are selected. The external clock must provide a frequency multiple of 1 MHz and ranging from 4 MHz to 26 MHz.
Common to all		-	The Clock Security System (CSS) interrupt is enabled for the CAN and DFU bootloaders. Any failure (or removal) of the external clock generates system reset.
bootloaders	RAM	-	12 Kbyte starting from address 0x20000000 are used by the bootloader firmware
	System memory	-	29 Kbyte starting from address 0x1FFF0000, contain the bootloader firmware
	IWDG	-	The independent watchdog (IWDG) prescaler is configured to its maximum value. It is periodically refreshed to prevent watchdog reset (in case the hardware IWDG option was previously enabled by the user).
	Power	-	Voltage range is set to [1.62 V, 2.1 V]. In this range internal Flash write operations are allowed only in byte format (Half-Word, Word and Double-Word operations are not allowed). The voltage range can be configured in run time using bootloader commands.

Table 55. STM32F40xxx/41xxx configuration in system memory boot mode (continued)

Bootloader	Feature/Peripheral	State	Comment
	USART1	Enabled	Once initialized the USART1 configuration is: 8-bit, even parity and 1 Stop bit
USART1 bootloader	USART1_RX pin	Input	PA10 pin: USART1 in reception mode. Used in input no pull mode.
	USART1_TX pin	Output	PA9 pin: USART1 in transmission mode. Used in input no pull mode.
LIOADTO has the sales	USART3	Enabled	Once initialized the USART3 configuration is: 8-bit, even parity and 1 Stop bit
USART3 bootloader (on PB10/PB11)	USART3_RX pin	Input	PB11 pin: USART3 in reception mode. Used in input pull-up mode.
	USART3_TX pin	Output	PB10 pin: USART3 in transmission mode
	USART3	Enabled	Once initialized the USART3 configuration is: 8-bit, even parity and 1 Stop bit
USART3 bootloader (on PC10/PC11)	USART3_RX pin	Input	PC11 pin: USART3 in reception mode. Used in input pull-up mode.
	USART3_TX pin	Output	PC10 pin: USART3 in transmission mode. Used in input pull-up mode.
USARTx bootloaders	SysTick timer	Enabled	Used to automatically detect the serial baud rate from the host for USARTx bootloaders.
CAN2 bootloader	CAN2	Enabled	Once initialized the CAN2 configuration is: Baudrate 125 kbps, 11-bit identifier. Note: CAN1 is clocked during CAN2 bootloader execution because CAN1 manages the communication between CAN2 and SRAM.
	CAN2_RX pin	Input	PB5 pin: CAN2 in reception mode. Used in alternate push-pull, pull-up mode.
	CAN2_TX pin	Output	PB13 pin: CAN2 in transmission mode. Used in alternate push-pull, pull-up mode.
I2C1 bootloader	I2C1	Enabled	The I2C1 configuration is: I2C speed: up to 400 kHz, 7-bit address, slave mode, analog filter ON. Slave 7-bit address: 0b0111010x (where x = 0 for write and x = 1 for read).
	I2C1_SCL pin	Input/Output	PB6 pin: clock line is used in open-drain no pull mode.
	I2C1_SDA pin	Input/Output	PB7 pin: data line is used in open-drain no pull mode.
I2C2 bootloader	I2C2	Enabled	The I2C2 configuration is: I2C speed: up to 400 kHz, 7-bit address, slave mode, analog filter ON. Slave 7-bit address: 0b0111010x (where x = 0 for write and x = 1 for read).
	I2C2_SCL pin	Input/Output	PF1 pin: clock line is used in open-drain no pull mode.
	I2C2_SDA pin	Input/Output	PF0 pin: data line is used in open-drain no pull mode.

Table 55. STM32F40xxx/41xxx configuration in system memory boot mode (continued)

Bootloader	Feature/Peripheral	State	Comment
I2C3 bootloader	I2C3	Enabled	The I2C3 configuration is: I2C speed: up to 400 kHz, 7-bit address, slave mode, analog filter ON. Slave 7-bit address: 0b0111010x (where x = 0 for write and x = 1 for read).
	I2C3_SCL pin	Input/Output	PA8 pin: clock line is used in open-drain no pull mode.
	I2C3_SDA pin	Input/Output	PC9 pin: data line is used in open-drain no pull mode.
	SPI1	Enabled	The SPI1 configuration is: slave mode, Full Duplex, 8-bit MSB, Speed up to 8 MHz, Polarity: CPOL Low, CPHA Low, NSS hardware.
CDM hashandar	SPI1_MOSI pin	Input	PA7 pin: Slave data Input line, used in push-pull, pull-down mode
SPI1 bootloader	SPI1_MISO pin	Output	PA6 pin: Slave data output line, used in push-pull, pull-down mode
	SPI1_SCK pin	Input	PA5 pin: Slave clock line, used in push-pull, pull-down mode
	SPI1_NSS pin	Input	PA4 pin: slave chip select pin used in push-pull, pull-down mode.
	SPI2	Enabled	The SPI2 configuration is: Slave mode, Full Duplex, 8-bit MSB, Speed up to 8 MHz, Polarity: CPOL Low, CPHA Low, NSS hardware.
ODIO ha alla a da a	SPI2_MOSI pin	Input	PI3 pin: Slave data Input line, used in push- pull, pull-down mode
SPI2 bootloader	SPI2_MISO pin	Output	PI2 pin: Slave data output line, used in push-pull, pull-down mode
	SPI2_SCK pin	Input	PI1 pin: Slave clock line, used in push-pull, pull-down mode
	SPI2_NSS pin	Input	PI0 pin: slave chip select pin used in push- pull, pull-down mode.
	USB	Enabled	USB OTG FS configured in forced device mode
DFU bootloader	USB_DM pin		PA11: USB DM line. Used in alternate push-pull, no pull mode.
	USB_DP pin	Input/Output	PA12: USB DP line. Used in alternate push- pull, no pull mode. No external pull-up resistor is required
CAN2 and DFU bootloaders	TIM11	Enabled	This timer is used to determine the value of the HSE. Once the HSE frequency is determined, the system clock is configured to 60 MHz using PLL and HSE.

The system clock is derived from the embedded internal high-speed RC for USARTx, I2Cx and SPIx bootloaders. This internal clock is also used for CAN and DFU (USB FS Device)

but only for the selection phase. An external clock multiple of 1 MHz (between 4 and 26 MHz) is required for CAN and DFU bootloader execution after the selection phase.

Note:

Due to HSI deviation and since HSI is used to detect HSE value, the user must use low frequency rather than high frequency HSE crystal values (low frequency values are better detected due to larger error margin). For example, it is better to use 8 MHz instead of 25 MHz.

AN2606 Rev 51 127/426

26.2.2 Bootloader selection

The figure below shows the bootloader selection mechanism.

System Reset System Init (Clock, GPIOs, IWDG, SysTick) Configure USB OTG FS device Configure I2Cx Disable all interrupt sources Configure SPIx Configure yes USARTx Execute 0x7F received on BL USART Loo **USART**x p for USARTx no ves Frame detected on CANx HSE detected yes HSE detected no Generate System yes reset Yes USB cable Detected Reconfigure System clock to 60MHz and Disable all Disable all interrupt USB clock to 48 MHz interrupt sources no yes Reconfigure System **Execute DFU** clock to 60MHz Execute
BL_I2C_Loop for
I2Cx 12Cx Address bootloader using Detected USB interrupts Configure CAN no Execute Disable all BL CAN Loop for interrupt sources CANx Plx detects Synchro mechanism Execute BL_SPI_Loop for MS35012V2

Figure 31. Bootloader V9.x selection for STM32F40xxx/41xxx

26.2.3 Bootloader version

The following table lists the STM32F40xxx/41xxx devices V9.x bootloader versions.

Table 56. STM32F40xxx/41xxx bootloader V9.x versions

Bootloader version number	Description	Known limitations
V9.0	This bootloader is an updated version of bootloader v3.1. This new version of bootloader supports I2C1, I2C2, I2C3, SPI1 and SPI2 interfaces. The RAM used by this bootloader is increased from 8Kb to 12Kb. The ID of this bootloader is 0x90. The connection time is increased.	 For the USART interface, two consecutive NACKs (instead of 1 NACK) are sent when a Read Memory or Write Memory command is sent and the RDP level is active. For the CAN interface, the Write Unprotect command is not functional. Use Write Memory command and write directly to the option bytes in order to disable the write protection. After executing Go command (jump to user code) the bootloader resets AHB1ENR value to 0x0000 0000 and thus CCM RAM, when present, is not active (must be re-enabled by user code at startup)
V9.1	This bootloader is an updated version of bootloader v9.0 that will be populated in all packages even the one embedding the V3.1 bootloader version. It contains fixes of the known limitations of the V9.0	None

AN2606 Rev 51 129/426

71 Device-dependent bootloader parameters

The bootloader protocol command set and sequences for each serial peripheral are the same for all STM32 devices. However, some parameters depend on device and bootloader version:

- PID (Product ID)
- Valid RAM memory addresses (RAM area used during bootloader execution is not accessible) accepted by the bootloader when the Read Memory, Go and Write Memory commands are requested.
- System Memory area.

Table 155 shows the values of these parameters for each STM32 device.

Table 155. Bootloader device-dependent parameters

STM32 Series	Device	PID	BL ID	RAM	System memory
	STM32F05xxx and STM32F030x8	0x440	0x21	0x20000800 - 0x20001FFF	0x1FFFEC00 - 0x1FFFF7FF
	STM32F03xx4/6	0x444	0x10	0x20000800 - 0x20000FFF	
	STM32F030xC	0x442	0x52	0x20001800 - 0x20007FFF	0x1FFFD800 - 0x1FFFF7FF
F0	STM32F04xxx	0x445	0xA1	NA	0x1FFFC400 - 0x1FFFF7FF
F0	STM32F070x6	0x445	0xA2	NA	0x1FFFC400 - 0x1FFFF7FF
	STM32F070xB	0x448	0xA2	NA	0x1FFFC800 - 0x1FFFF7FF
	STM32F071xx/072xx	0x448	0xA1	0x20001800 - 0x20003FFF	0x1FFFC800 - 0x1FFFF7FF
	STM32F09xxx	0x442	0x50	NA	0x1FFFD800 - 0x1FFFF7FF

389/426

Table 155. Bootloader device-dependent parameters (continued)

STM32 Series		Device	PID	BL ID	RAM	System memory
		Low-density	0x412	NA	0x20000200 - 0x200027FF	
		Medium-density	0x410	NA	0x20000200 - 0x20004FFF	
	STM32F10xxx	High-density	0x414	NA	0x20000200 - 0x2000FFFF	0x1FFFF000 - 0x1FFFF7FF
F1		Medium-density value line	0x420	0x10	0x20000200 - 0x20001FFF	
		High-density value line	0x428	0x10	0x20000200 - 0x20007FFF	
	STM32F105xx/1	07xx	0x418	NA	0x20001000 - 0x2000FFFF	0x1FFFB000 - 0x1FFFF7FF
	STM32F10xxx XL-density		0x430	0x21	0x20000800 - 0x20017FFF	0x1FFFE000 - 0x1FFFF7FF
F2	STM32F2xxxx		0x411	0x20	0x20002000 -	0x1FFF0000 -
12	OTWOZI ZXXX		UX-TT	0x33	0x2001FFFF	0x1FFF77FF
	STM32F373xx		0x432	0x41	0x20001400 - 0x20007FFF	
	STM32F378xx			0x50	0x20001000 - 0x20007FFF	
	STM32F302xB(C)/303xB(C)		0x422	0x41	0x20001400 - 0x20009FFF	
	STM32F358xx		0,422	0x50		
F3	STM32F301xx/3	02x4(6/8)	0x439	0x40	0x20001800 -	0x1FFFD800 -
	STM32F318xx		08439	0x50	0x20003FFF	0x1FFFF7FF
	STM32F303x4(6/8)/ 334xx/328xx		0x438	0x50	0x20001800 - 0x20002FFF	
	STM32F302xD(E	E)/303xD(E)	0x446	0x40	0x20001800 - 0x2000FFFF	
	STM32F398xx		0x446	0x50	0x20001800 - 0x2000FFFF	

Table 155. Bootloader device-dependent parameters (continued)

STM32 Series	Device	PID	BL ID	RAM	System memory
	STM32F40xxx/41xxx	0x413	0x31	0x20002000 - 0x2001FFFF	
	STIVI32F40XXX/4TXXX	0x413	0x91	0x20003000 - 0x2001FFFF	
	STM32F42xxx/43xxx	0x419	0x70	0x20003000 -	
	311/132F42XXX/43XXX	0,419	0x91	0x2002FFFF	
	STM32F401xB(C)	0x423	0xD1	0x20003000 - 0x2000FFFF	
	STM32F401xD(E)	0x433	0xD1	0x20003000 - 0x20017FFF	
F4	STM32F410xx	0x458	0xB1	0x20003000 - 0x20007FFF	0x1FFF0000 - 0x1FFF77FF
	STM32F411xx	0x431	0xD0	0x20003000 - 0x2001FFFF	
	STM32F412xx	0x441	0x90	0x20003000 - 0x2003FFFF	
	STM32F446xx	0x421	0x90	0x20003000 - 0x2001FFFF	
	STM32F469xx/479xx	0x434	0x90	0x20003000 - 0x2005FFFF	
	STM32F413xx/423xx	0x463	0x90	0x20003000 - 0x2004FFFF	
	STM32F72xxx/73xxx	0x452	0x90	0x20004000 - 0x2003FFFF	0x1FF00000 - 0x1FF0EDBF
F7	STM32F74xxx/75xxx	0x449	0x70	0x20004000 - 0x2004FFFF	0x1FF00000 - 0x1FF0EDBF
	31W32F/4XXX//3XXX	0x449	0x90	0x20004000 - 0x2004FFFF	0x1FF00000 - 0x1FF0EDBF
	STM32F76xxx/77xxx	0x451	0x93	0x20004000 - 0x2007FFFF	0x1FF00000 - 0x1FF0EDBF

391/426

Table 155. Bootloader device-dependent parameters (continued)

STM32 Series	Device	PID	BL ID	RAM	System memory
	STM32G03xxx/04xxx	0x466	0x52	0x20001000 - 0x20001FFF	0x1FFF0000 - 0x1FFF1FFF
	STM32G07xxx/08xxx	0x460	0xB2	0x20002700 - 0x20009000	0x1FFF0000 - 0x1FFF6FFF
G0	STM32G0B0xx	0x467	0xD0	0x20004000 - 0x20020000	0x1FFF0000 - 0x1FFF6FFF 0x1FFF8000 - 0x1FFFEFFF
	STM32G0B1xx/0C1xx	0x467	0x92	0x20004000 - 0x20020000	0x1FFF0000 - 0x1FFF6FFF 0x1FFF8000 - 0x1FFFEFFF
	STM32G05xxx/061xx	0x456	0x51	0x20001000 - 0x20002000	0x1FFF0000 - 0x1FFF1FFF
	STM32G431xx/441xx	0x468	0xD4	0x20004000 - 0x20005800	0x1FFF0000 - 0x1FFF7000
G4	STM32G47xxx/48xxx	0x469	0xD5	0x20004000 - 0x20018000	0x1FFF0000 - 0x1FFF7000
	STM32G491xx/A1xx	0x479	0xD2	0x20004000 - 0x2001C000	0x1FFF0000 - 0x1FFF7000
	STM32H72xxx/73xxx	0x483	0x91	0x20004100 - 0x2001FFFF 0x24004000 - 0x2404FFFF	0x1FF00000 - 0x1FF1E7FF
H7	STM32H74xxx/75xxx	0x450	0x90	0x20004100 - 0x2001FFFF 0x24034000 - 0x2407FFFF	0x1FF00000 - 0x1FF1E7FF
	STM32H7A3xx/B3xx	0x480	0x90	0x20004100 - 0x2001FFFF 0x24034000 - 0x2407FFFF	0x1FF00000 - 0x1FF13FFF
	STM32L01xxx/02xxx	0x457	0xC3	NA	0x1FF00000 - 0x1FF00FFF
	STM32L031xx/041xx	0x425	0xC0	0x20001000 - 0x20001FFF	0x1FF00000 - 0x1FF00FFF
LO	STM32L05xxx/06xxx	0x417	0xC0	0x20001000 - 0x20001FFF	0x1FF00000 - 0x1FF00FFF
	STM32L07xxx/08xxx	0x447	0x41	0x20001000 - 0x20004FFF	0x1FF00000 -
	G TIVIOZEU/ AAA/UUAAX	UX 44 7	0xB2	0x20001400 - 0x20004FFF	0x1FF01FFF

Table 155. Bootloader device-dependent parameters (continued)

STM32 Series	Device	PID	BL ID	RAM	System memory
	STM32L1xxx6(8/B)	0x416	0x20	0x20000800 - 0x20003FFF	
	STM32L1xxx6(8/B)A	0x429	0x20	0x20001000 -	
L1	STM32L1xxxC	0x427	0x40	0x20007FFF	0x1FF00000 - 0x1FF01FFF
	STM32L1xxxD	0x436	0x45	0x20001000 - 0x2000BFFF	
	STM32L1xxxE	0x437	0x40	0x20001000 - 0x20013FFF	
	STM32L412xx/422xx	0x464	0xD1	0x20002100 - 0x20008000	0x1FFF0000 - 0x1FFF6FFF
	STM32L43xxx/44xxx	0x435	0x91	0x20003100 - 0x2000BFFF	0x1FFF0000 - 0x1FFF6FFF
	STM32L45xxx/46xxx	0x462	0x92	0x20003100 - 0x2001FFFF	0x1FFF0000 - 0x1FFF6FFF
L4	STM32L47xxx/48xxx	0x415	0xA3	0x20003000 - 0x20017FFF	0x1FFF0000 -
L4		0,415	0x92	0x20003100 - 0x20017FFF	0x1FFF6FFF
	STM32L496xx/4A6xx	0x461	0x93	0x20003100 - 0x2003FFFF	0x1FFF0000 - 0x1FFF6FFF
	STM32L4Rxx/4Sxx	0x470	0x95	0x20003200 - 0x2009FFFF	0x1FFF0000 - 0x1FFF6FFF
	STM32L4P5xx/Q5xx	0x471	0x90	0x20004000 - 0x2004FFFF	0x1FFF0000 - 0x1FFF6FFF
L5	STM32L552xx/562xx	0x472	0x92	0x20004000 - 0x2003FFFF	0x0BF90000 - 0x0BF97FFF
WD	STM32WB10xx/15xx	0x495	0xD5	0x20005000 - 0x20040000	0x1FFF0000 - 0x1FFF7000
WB	STM32WB30xx/35xx/50xx/WB55xx	0x494	0xB1	0x20004000 - 0x2000BFFF	0x1FFF0000 - 0x1FFF7000
WL	STM32WLE5xx/WL55xx	0x497	0xC4	0x20002000 - 0x2000FFFF	0x1FFF0000 - 0x1FFF3FFF
U5	STM32U575xx/ STM32U585xx	0x482	0x92	0x20004000 - 0x200BFFFF	0x0BF90000 - 0x0BF9FFFF

72 Bootloader timings

This section presents the typical timings of the bootloader firmware to be used to ensure correct synchronization between host and STM32 device.

Two types of timings are described:

- STM32 device bootloader resources initialization duration.
- Communication interface selection duration.

After these timings the bootloader is ready to receive and execute host commands.

72.1 Bootloader startup timing

After bootloader reset, the host must wait until the STM32 bootloader is ready to start detection phase with a specific interface communication. This time corresponds to bootloader startup timing, during which resources used by bootloader are initialized.

Figure 95. Bootloader Startup timing description

Table 156. Bootloader startup timings (ms) for STM32 devices

Device		Minimum bootloader startup	HSE timeout	
STM32F03xx4/6		1.612	NA	
STM32F05xxx and STM32F030x8 device	es	1.612	NA	
STM32F04xxx	0.058	NA		
STM32F071xx/072xx		0.058	NA	
STM32F070x6	HSE connected	3	200	
31M32F070X0	HSE not connected	230	200	
STM32F070xB	HSE connected	6	200	
STIVISZFU/UXD	HSE not connected	230	200	

Table 156. Bootloader startup timings (ms) for STM32 devices (continued)

Device		Minimum bootloader startup	HSE timeout	
STM32F09xxx	2	NA		
STM32F030xC		2	NA	
STM32F10xxx		1.227	NA	
STM32F105xx/107xx	PA9 pin low	1.396	NIA	
STM32F105xx/107xx	PA9 pin high	524.376	NA	
STM32F10xxx XL-density		1.227	NA	
CTM22F2may	V2.x	134	NA	
STM32F2xxxx	V3.x	84.59	0.790	
OTMOS[204::://200::4/0/0)	HSE connected	45	500.5	
STM32F301xx/302x4(6/8)	HSE not connected	560.8	560.5	
OTM20F200P/O\/200P/O\	HSE connected	43.4	0.000	
STM32F302xB(C)/303xB(C)	HSE not connected	2.36	2.236	
OTMOSEGGO DESVICES D	HSE connected	7.53	NA	
STM32F302xD(E)/303xD	HSE not connected	146.71	NA	
STM32F303x4(6/8)/334xx/328xx		0.155	NA	
STM32F318xx		0.182	NA	
STM32F358xx		1.542	NA	
OTMO05070	HSE connected	43.4	0.000	
STM32F373xx	HSE not connected	2.36	2.236	
STM32F378xx	1	1.542	NA	
STM32F398xx		1.72	NA	
OTM20540/44	V3.x	84.59	0.790	
STM32F40xxx/41xxx	V9.x	74	96	
STM32F401xB(C)	1	74.5	85	
STM32F401xD(E)		74.5	85	
STM32F410xx		0.614	NA	
STM32F411xx	74.5	85		
STM32F412xx		0.614	180	
STM32F413xx/423xx		0.642	165	
	V7.x	82	97	
STM32F429xx/439xx	V9.x	74	97	
STM32F446xx		73.61	96	
STM32F469xx/479xx		73.68	230	
STM32F72xxx/73xxx		17.93	50	

Table 156. Bootloader startup timings (ms) for STM32 devices (continued)

Device		Minimum bootloader startup	HSE timeout	
STM32F74xxx/75xxx			16.63	50
STM32G03xxx/04xxx			0.390	NA
STM32G07xxx/08xxx			0.390	NA
STM32G0Bxxx/Cxxx			0.390	NA
STM32G05xxx/061xx			0.390	NA
STM32G4xxxx			0.390	NA
STM32H72xxx/73xxx			53.975	NA
STM32H74xxx/75xxx			53.975	2
STM32H7A3xx/B3xx			53.975	NA
STM32L01xxx/02xxx			0.63	NA
STM32L031xx/041xx			0.62	NA
STM32L05xxx/06xxx			0.22	NA
STM32L07xxx/08xxx		V4.x	0.61	NA
STWISZEU/XXX/UOXXX		V11.x	0.71	NA
STM32L1xxx6(8/B)A			0.542	NA
STM32L1xxx6(8/B)			0.542	NA
STM32L1xxxC			0.708	80
STM32L1xxxD			0.708	80
STM32L1xxxE			0.708	200
STM32L43xxx/44xxx			0.86	100
STM32L45xxx/46xxx			0.86	NA
	V10.x	LSE connected	55	100
STM32L47xxx/48xxx	V 10.X	LSE not connected	2560	100
31W32L47XXX/40XXX	V9.x	LSE connected	55.40	100
	V 9.X	LSE not connected	2560.51	100
STM32L412xx/422xx			0.86	NA
STM32L496xx/4A6xx			76.93	100
STM32L4P5xx /Q5xx			NA	NA
STM32L4Rxx/4Sxx			NA	NA
STM32L552xx/562xx		0.390	NA	
STM32WB10xx/15xx/30xx/35xx/50xx/55xx		0.390	NA	
STM32WLE5xx/WL55xx			0.390	NA
STM32U575xx/85xx			0.390	NA

72.2 USART connection timing

USART connection timing is the time that the host must wait for between sending the synchronization data (0x7F) and receiving the first acknowledge response (0x79).

Figure 96. USART connection timing description

- Receiving any other character different from 0x7F (or line glitches) will cause bootloader to start
 communication using a wrong baudrate. Bootloader measures the signal length between rising edge of first
 1 bit in 0x7F to the falling edge of the last 1 bit in 0x7F to deduce the baudrate value
- Bootloader does not re-align the calculated baudrate to standard baudrate values (i.e. 1200, 9600, 115200...).

Note:

For STM32F105xx/107xx line devices, PA9 pin (USB_VBUS) is used to detect the USB host connection. The initialization of USB peripheral is performed only if PA9 is high at detection phase which means that a host is connected to the port and delivering 5 V on the USB bus. When PA9 level is high at detection phase, more time is required to initialize and shutdown the USB peripheral. To minimize bootloader detection time when PA9 pin is not used, keep PA9 state low during USART detection phase from the moment the device is reset until a device ACK is sent.

Table 157. USART bootloader minimum timings (ms) for STM32 devices

Device	One USART byte sending	USART configuration	USART connection
STM32F03xx4/6	0.078125	0.0064	0.16265
STM32F05xxx and STM32F030x8 devices	0.078125	0.0095	0.16575
STM32F04xxx	0.078125	0.007	0.16325
STM32F071xx/072xx	0.078125	0.007	0.16325
STM32F070x6	0.078125	0.014	0.17
STM32F070xB	0.078125	0.08	0.23
STM32F09xxx	0.078125	0.07	0.22
STM32F030xC	0.078125	0.07	0.22

AN2606 Rev 51 397/426

Table 157. USART bootloader minimum timings (ms) for STM32 devices (continued)

Device		One USART byte sending	USART configuration	USART connection
STM32F10xxx	STM32F10xxx		0.002	0.15825
STM32F105xx/107xx	PA9 pin low	0.070405	0.007	0.16325
31W32F103XX/107XX	PA9 pin High	0.078125	105	105.15625
STM32F10xxx XL-density		0.078125	0.006	0.16225
CTM20F0.gagy	V2.x	0.070405	0.000	0.40505
STM32F2xxxx	V3.x	0.078125	0.009	0.16525
CTM22F204yy/202y4/6/0\	HSE connected	0.079125	0.002	0.45925
STM32F301xx/302x4(6/8)	HSE not connected	0.078125	0.002	0.15825
STM32F302xB(C)/303xB(C)	HSE connected	0.078125	0.002	0.15825
31W32F3U2XB(C)/3U3XB(C)	HSE not connected	0.076125	0.002	0.13623
STM32F302xD(E)/303xD		0.078125	0.002	0.15885
STM32F303x4(6/8)/334xx/328	Вхх	0.078125	0.002	0.15825
STM32F318xx		0.078125	0.002	0.15825
STM32F358xx		0.15625	0.001	0.3135
STM32F373xx	HSE connected	0.078125	0.002	0.15825
	HSE not connected	0.070125	0.002	0.13023
STM32F378xx		0.15625	0.001	0.3135
STM32F398xx		0.078125	0.002	0.15885
STM32F40xxx/41xxx	V3.x	0.078125	0.009	0.16525
311/1321-40333/41333	V9.x	0.076125	0.0035	0.15975
STM32F401xB(C)		0.078125	0.00326	0.15951
STM32F401xD(E)		0.078125	0.00326	0.15951
STM32F410xx		0.078125	0.002	0.158
STM32F411xx		0.078125	0.00326	0.15951
STM32F412xx		0.078125	0.002	0.158
STM32F413xx/423xx		0.078125	0.002	0.158
STM32F429xx/439xx	V7.x	0.078125	0.007	0.16325
31W32F429XX/439XX	V9.x	0.076125	0.00326	0.15951
STM32F446xx		0.078125	0.004	0.16
STM32F469xx/479xx		0.078125	0.003	0.159
STM32F72xxx/73xxx		0.078125	0.070	0.22
STM32F74xxx/75xxx		0.078125	0.065	0.22
STM32G03xxx/04xxx		0.078125	0.01	0.11
STM32G07xxx/08xxx		0.078125	0.01	0.11

Table 157. USART bootloader minimum timings (ms) for STM32 devices (continued)

Device		One USART byte sending	USART configuration	USART connection
STM32G0Bxxx/Cxxx		0.078125	0.01	0.11
STM32G05xxx/061xx		0.078125	0.01	0.11
STM32G4xxxx		0.078125	0.003	0.159
STM32H72xxx/73xxx		0.078125	0.072	0.22825
STM32H74xxx/75xxx		0.078125	0.072	0.22825
STM32H7A3xx/B3xx		0.078125	0.072	0.22825
STM32L01xxx/02xxx		0.078125	0.016	0.17
STM32L031xx/041xx		0.078125	0.018	0.174
STM32L05xxx/06xxx		0.078125	0.018	0.17425
STM32L07xxx/08xxx	V4.x	0.078125	0.017	0.173
STWISZLU/XXX/UOXXX	V11.x	0.078125	0.017	0.158
STM32L1xxx6(8/B)A	•	0.078125	0.008	0.16425
STM32L1xxx6(8/B)		0.078125	0.008	0.16425
STM32L1xxxC		0.078125	0.008	0.16425
STM32L1xxxD		0.078125	0.008	0.16425
STM32L1xxxE		0.078125	0.008	0.16425
STM32L412xx/422xx		0.078125	0.005	0.2
STM32L43xxx/44xxx		0.078125	0.003	0.159
STM32L45xxx/46xxx		0.078125	0.07	0.22
STM32L47xxx/48xxx	V10.x	0.078125	0.003	0.159
31W32L47XXX/40XXX	V9.x	0.078125	0.003	0.159
STM32L496xx/4A6xx		0.078125	0.003	0.159
STM32L4Rxx/4Sxx		NA	NA	NA
STM32L4P5xx/4Q5xx		NA	NA	NA
STM32L552xx/562xx		0.078125	0.01	0.11
STM32WB10xx/15xx/30xx/35xx/50xx/55xx		0.078125	0.003	0.159
STM32WLE5xx/WL55xx		0.078125	0.001	0.110
STM32U575xx/85xx		0.078125	0.001	NA

72.3 USB connection timing

USB connection timing is the time that the host must wait for between plugging the USB cable and establishing a correct connection with the device. This timing includes enumeration and DFU components configuration. USB connection depends on the host.

399/426

Figure 97. USB connection timing description

Note:

For STM32F105xx/107xx devices, if the external HSE crystal frequency is different from 25 MHz (14.7456 MHz or 8 MHz), the device performs several unsuccessful enumerations (with connect / disconnect sequences) before being able to establish a correct connection with the host. This is due to the HSE automatic detection mechanism based on Start Of Frame (SOF) detection.

Table 158. USB bootloader minimum timings (ms) for STM32 devices

Device		USB connection
STM32F04xxx		350
STM32F070x6		TBD
STM32F070xB		320
	HSE = 25 MHz	460
STM32F105xx/107xx	HSE = 14.7465 MHz	4500
	HSE = 8 MHz	13700
STM32F2xxxx	·	270
STM32F301xx/302x4(6/8)		300
STM32F302xB(C)/303xB(0	C)	300
STM32F302xD(E)/303xD		100
STM32F373xx		300
STM32F40xxx/41xxx	V3.x	270
31W32F4UXXX/41XXX	V9.x	250
STM32F401xB(C)	·	250
STM32F401xD(E)		250
STM32F411xx		250
STM32F412xx		380
STM32F413xx/423xx		350

Table 158. USB bootloader minimum timings (ms) for STM32 devices (continued)

Device		USB connection
STM32F429xx/439xx	V7.x	250
51W32F429XX/439XX	V9.x	250
STM32F446xx		200
STM32F469xx/479xx		270
STM32F72xxx/73xxx		320
STM32F74xxx/75xxx		230
STM32G0B1xx/C1xx		300
STM32G4xxxx		300
STM32H72xxx/73xxx		53.9764
STM32H74xxx/75xxx		53.9764
STM32H7A3xx/B3xx		53.9764
STM32L07xxx/08xxx		140
STM32L1xxxC		849
STM32L1xxxD		849
STM32L412xx/422xx		820
STM32L43xxx/44xxx		820
STM32L45xxx/46xxx		330
STM32L47xxx/48xxx	V10.x	300
31W32L47XXX/40XXX	V9.x	300
STM32L496xx/4A6xx	·	430
STM32L4P5xx/4Q5xx		NA
STM32L4Rxx/4Sxx		NA
STM32L552xx/L562xx		300
STM32WB30xx/35xx/50xx	/55xx	300
STM32U575xx/85xx		300

72.4 I2C connection timing

I2C connection timing is the time that the host must wait for between sending I2C device address and sending command code. This timing includes I2C line stretching duration.

Figure 98. I2C connection timing description

Note:

For I2C communication, a timeout mechanism is implemented and it must be respected to execute bootloader commands correctly. This timeout is implemented between two I2C frames in the same command (eg: for Write memory command a timeout is inserted between command sending frame and address memory sending frame). Also the same timeout period is inserted between two successive data receptions or transmissions in the same I2C frame. If the timeout period is elapsed a system reset is generated to avoid bootloader crash.

In erase memory command and read-out unprotect command, the duration of the operation must be taken into consideration when implementing the host side. After sending the code of pages to be erased, the host must wait until the bootloader device performs page erasing to complete the remaining steps of erase command.

rable red. 120 because minimum and annual controls					
Device	Start condition + one I2C byte sending	I2C line stretching	I2C connection	I2C timeout	
STM32F04xxx	0.0225	0.0025	0.0250	1000	
STM32F070x6	0.0225	0.0025	0.0245	1000	
STM32F070xB	0.0225	0.0025	0.0245	1000	
STM32F071xx/072xx	0.0225	0.0025	0.0250	1000	
STM32F09xxx	0.0225	0.0025	0.0245	1000	
STM32F030xC	0.0225	0.0025	0.0250	1000	
STM32F303x4(6/8)/334xx/328xx	0.0225	0.0027	0.0252	1000	

Table 159. I2C bootloader minimum timings (ms) for STM32 devices

Table 159. I2C bootloader minimum timings (ms) for STM32 devices (continued)

Dev	ice	Start condition + one I2C byte sending	I2C line stretching	I2C connection	I2C timeout
STM32F318xx		0.0225	0.0027	0.0252	1000
STM32F358xx		0.0225	0.0055	0.0280	10
STM32F378xx		0.0225	0.0055	0.0280	10
STM32F398xx		0.0225	0.0020	0.0245	1500
STM32F40xxx/41xxx		0.0225	0.0022	0.0247	1000
STM32F401xB(C)		0.0225	0.0022	0.0247	1000
STM32F401xD(E)		0.0225	0.0022	0.0247	1000
STM32F410xx		0.0225	0.0020	0.0245	1000
STM32F411xx		0.0225	0.0022	0.0247	1000
STM32F412xx		0.0225	0.0020	0.0245	1000
STM32F413xx/423xx		0.0225	0.0020	0.0245	1000
CTM22F42vac/42vac/	V7.x	0.0225	0.0033	0.0258	1000
STM32F42xxx/43xxx	V9.x	0.0225	0.0022	0.0247	1000
STM32F446xx		0.0225	0.0020	0.0245	1000
STM32F469xx/479xx		0.0225	0.0020	0.0245	1000
STM32F72xxx/73xxx		0.0225	0.0020	0.0245	1000
STM32F74xxx/75xxx		0.0225	0.0020	0.0245	500
STM32G03xxx/04xxx		0.0225	0.0020	0.0245	1000
STM32G07xxx/08xxx		0.0225	0.0020	0.0245	1000
STM32G0Bxx/Cxx		0.0225	0.0020	0.0245	1000
STM32G05xxx/061xx		0.0225	0.0020	0.0245	1000
STM32G4xxxx		0.0225	0.0020	0.0245	1000
STM32H72xxx/73xxx		0.0225	0.05	0.0745	1000
STM32H74xxx/75xxx		0.0225	0.05	0.0725	1000
STM32H7A3xx/7B3xx		0.0225	0.05	0.0745	1000
STM32L07xxx/08xxx		0.0225	0.0020	0.0245	1000
STM32L412xx/422xx		0.0225	0.0020	0.o245	1000
STM32L43xxx/44xxx		0.0225	0.0020	0.0245	1000
STM32L45xxx/46xxx		0.0225	0.0020	0.0245	1000
CTM22L47509/49509	V10.x	0.0225	0.0020	0.0245	1000
STM32L47xxx/48xxx	V9.x	0.0225	0.0020	0.0245	1000
STM32L496xx/4A6xx	•	0.0225	0.0020	0.0245	1000
STM32L4P5xx/4Q5xx		NA	NA	NA	NA

Table 159. I2C bootloader minimum timings (ms) for STM32 devices (continued)

Device	Start condition + one I2C byte sending	I2C line stretching	I2C connection	I2C timeout
STM32L4Rxx/4Sxx	NA	NA	NA	NA
STM32L552xx/L562xx	0.0225	0.0020	0.0245	1000
STM32WB10xx/15xx/30xx/35xx/50xx/55xx	0.0225	0.0020	0.0245	1000
STM32U575xx/85xx	0.0225	0.0020	0.0245	1000

72.5 SPI connection timing

SPI connection timing is the time that the host must wait for between sending the synchronization data (0xA5) and receiving the first acknowledge response (0x79).

Figure 99. SPI connection timing description

Table 160. SPI bootloader minimum timings (ms) for STM32 devices

Device	One SPI byte sending	Delay between two bytes	SPI connection
All products	0.001	0.008	0.01

Appendix A Example of function to use the "ExitSecureMemory" function

```
/**
************************
* @file main.c
******************
*/
/* Includes ------
---*/
#include "main.h"
/* Private function prototypes ------
static void ConfigClock(void);
void JUMP_WITHOUT_PARAM(uint32_t jump_address);
void JUMP WITH PARAM(uint32 t jump address, uint32 t magic, uint32 t
applicationVectorAddress);
/* Private functions ------
* @brief Main program
* @param None
* @retval None
int main (void)
 ConfigClock();
 uint32_t application_address
                                      = 0x08000800;
 uint32_t exit_secure_memory_address = 0x1FFF1E00;
 uint32 t magic number
                                   = 0 \times 08192 \text{A3C};
 uint32_t exit_with_magic_number = 0x0;
 if (exit with magic number)
  JUMP_WITH_PARAM(exit_secure_memory_address, magic_number,
application_address);
 }
```

```
else
 {
   JUMP WITHOUT PARAM(exit secure memory address);
  }
* @brief ConfigClock
* @param None
* @retval None
static void ConfigClock(void)
 /\star Will be developped as per the template of the needed project \star/
/**
* @brief JUMP_WITHOUT_PARAM
* @param jump address
* @retval None
void JUMP WITHOUT PARAM(uint32 t jump address)
 asm ("LDR R1, [R0]"); // jump_address
 asm ("LDR R2, [R0,#4]");
 asm ("MOV SP, R1");
 asm ("BX R2");
}
/**
* @brief JUMP WITH PARAM
* @param jump_address, magic, applicationVectorAddress
* @retval None
void JUMP_WITH_PARAM(uint32_t jump_address, uint32_t magic, uint32_t
applicationVectorAddress))
 asm ("MOV R3, R0"); // jump_address
 asm ("LDR R0, [R3]");
 asm ("MOV SP, RO");
 asm ("LDR R0, [R3,#4]");
 asm ("BX R0");
}
```

AN2606 Rev 51 407/426