Instruction of using MidtermScript.r

Dan Jin. Oct. 15, 2012

To run this script, please copy MidtermScript.r to the same fold where containing two input data files, then type the following lines in R.

```
source("MidtermScript.r")
result.ls=list()
result.ls=control.function()
```

Result of this script:

- 1. return one list, **result.ls**, that includes all results required.
- 2. create **5 plots** in png format. (See below for more details)

Summary of the content in result.ls:

- 1. \$beta.MLE: beta.MLE (note: includes all beta.MLE for each test);
- \$pval: p value (note: includes all p value for each test);
- 3. \$hits.ls: all genotype marker (marker number and their p value) significant than Bonferroni correction;
- 4. \$hit.set.ls: distinct sets;
- 5. \$sig.hit.ls: the most significant marker in each set (marker number and the associated p value);
- 6. \$sig.hit.ls: MAF for the most significant genotype markers in each set;
- 7. \$sig.hit.GWAS: the most significant genotype marker in GWAS overall (marker number and its p value);
- 8. \$corr.ls: correlation of Xa between this marker and one of the markers to its left and right colomn. correlation of Xa between this marker and marker 409

Structure of result.ls:

```
result.ls
|-$beta.MLE
|-$pval
|-$hits.ls
|-$position
|-$pval
|-$hit.set.ls
|-$sig.hit.ls
|-$position
|-$pval
|-$MAF
|-$sig.hit.GWAS
|-$position
|-$pval
```

```
-$corr.ls
-position.left
-corr.left
-position.right
-corr.right
-corr.409
```

List of .png image files.

- 1. Q2-Histogram of the phenotypes.png
- 2. Q3-beta.a_hat.png
- 3. Q3-beta.d_hat.png
- 4. Q5-Manhattan Plot.png
- 5. Q6-Manhattan Plot with Bonferroni correction.png

The following is a quick view of the data in result.ls:

```
> source("MidtermScript.r")
> result.ls=list()
> result.ls=control.function()
> result.ls
$beta.MLE
          [,1]
                    [,2]
                               [,3]
                                         [,4]
                                                   [,5]
[1,] 0.1906589 -1.6173730 -0.83658533 -1.5872665 -2.1088089 -0.8319530
[2,] -1.8521048 1.0918100 -0.37447354 0.4522081 1.0114511 -0.2210134
[3,] -0.3843263 0.7963517 0.04401317 0.1032542 0.1349533 0.2534198
. . .
$pval
  [1] 4.944906e-02 6.673668e-03 8.579912e-01 8.044802e-01 3.694046e-01
$s1
$hits.ls
$hits.ls$positon
[1] 186 193 202 204 206 213 274 277 281 282
[15] 291 292 294 296 298 300 301 302 808 811
                                              282
                                                   283
                                                       284
                                                            287
                                                                 290
                                                       816 818 819
                                                   813
[29] 820 822 1166 1167 1173 1174 1182 1185 1188 1191
$hits.ls$pval
[1] 4.457882 13.070888 4.798361 4.823398 9.372000 5.431085
                                                            4.388118
[8] 5.712318 5.178458 6.710362 6.134569 6.665158 6.701824
                                                            4.833773
[15] 6.401800 6.704053 6.704053 6.423896 6.742694 6.727083 6.521027
[22] 6.484797 8.734447 14.781594 4.694469 13.914018 14.524456 14.476910
[29] 14.205841 5.413049 4.995273
                                5.081697 5.635441 5.560703 15.262291
[36] 5.394543 5.619389 5.536150
$s2
```

```
$hit.set.ls
$hit.set.ls[[1]]
[1] 186 193 202 204 206 213
$hit.set.ls[[2]]
[1] 274 277 281 282 283 284 287 290 291 292 294 296 298 300 301 302
$hit.set.ls[[3]]
[1] 808 811 813 816 818 819 820 822
$hit.set.ls[[4]]
[1] 1166 1167 1173 1174 1182 1185 1188 1191
$s3
$sig.hit.ls
$sig.hit.ls$position
[1] 193 298 811 1182
$sig.hit.ls$pval
[1] 8.493990e-14 1.808449e-07 1.653509e-15 5.466501e-16
$sig.hit.ls$MAF
[1] 0.222 0.288 0.430 0.259
$s4
$siq.hit.GWAS
$sig.hit.GWAS$position
[1] 1182
$sig.hit.GWAS$pval
[1] 5.466501e-16
$s5
$corr.ls
$corr.ls$position.left
[1] 1112
$corr.ls$corr.left
[1] -0.02848561
$corr.ls$position.right
[1] 1185
$corr.ls$corr.right
[1] 0.568552
$corr.ls$corr.409
[1] -0.0005280443
```