Should travelers avoid flying airlines that have had crashes in the past?

An analysis by Mark Jin for **Almond FinTech**

1. Hypothesis Testing

We formulate the hypotheses as such:

→ Ho

There's no positive relationship in airline crash rates between 1985-1999 and 2000-2014.

→ H1

There is a positive relationship in airline crash rates between 1985-1999 and 2000-2014

Data Treatment

Add column for regional subsidiary

Remove dirty variables

 Fatal accidents and fatalities values are sparse and contains many outliers. Additionally, customers don't not want to fly with airlines with a high probability of crashing, whether the crashes involved fatalities is secondary

Calculate incident rate

• Calculate incidents per 1 billion available seat kilometer (ASK)

Is ASK Appropriate for Calculating Incident Rate?

On lower ASKs, incidents per ASK is lower in '00-'14 flights, evidence of safer flights.

On higher ASKs, incidents per ASK are about equal in both categories. But later versions of planes also likely have more seats than earlier versions of planes, thus increasing incidents per ASK despite having fewer incidents per flight.

How to Best Calculate Incident Rate?

→ Ideal

Calculate number of incidents per flight (takeoff, cruise, landing == 1 flight).

Crashes rarely happen during the cruise phase. Assuming the number of seats on a plane doesn't significantly affect a plane's crash rate.

→ Reality

ASK is the only denominator we can use in this dataset to obtain incident rates, so we must make do with what we have

Correlation Matrix

Insights

The correlations between an airline having regional_subsidiaries and incident rates are near 0.

There is a small correlation (0.37) between 85_99_incident rate and 00_14_incident rate

Relationship between Incident Rate in '85-'99 and '00-'14

Insights

Aeroflot, Ethiopian Airlines, and Pakistan International are outliers here that may be disproportionately affecting our dataset.

Remove them to observe changes in regression line fit.

Relationship between Incident Rate in '85-'99 and '00-'14 (no outliers)

Insights

Line poorly fits data

Heteroscedastic data is not appropriate for a linear regression model.

Attempt to treat data to be more homoscedastic.

Treating incident rates for heteroscedasticity

Calculating the log and square root of the incident rates. Square roots of the incident rates seems to be more homoscedastic, but neither treats low r-squared values.

This means that attempts at a linear regression will very poorly explain the relationship.

Conclusion

Insufficient evidence to form a meaningful relationship between the incidents in 85-99 and 00-14. Cannot reject Ho, i.e. I cannot suggest a relationship in airline crash rates between 1985-1999 and 2000-2014.

Incident rates are very very low. Even if there were to be a positive correlation between airline incidents in 85-99 and 00-14, it is still very safe to use such airlines

Ultimately, we don't have enough evidence to suggest travelers avoid flying airlines that have had crashes in the past, except for Aeroflot, Ethiopian Airlines, Pakistan International

Regression Results

LM for incidents_00_14_per_1b_ask and incidents_00_14_per_1b_ask

LM for sqrt_85_99 and sqrt_00_14

Dep. Variable:	incidents 00 14 pe	r 1b ask	R-s	quared:		0.13	36
Model:	= = =	OLS	Adi	. R-squared		0.12	20
Method:	Least	Squares	F-s	tatistic:		8.52	25
Date:				b (F-statis	tic):	0.0051	10
Time:		12:24:59	Log	-Likelihood		-161.3	37
No. Observations:		56	AIC			326.	.7
Df Residuals:		54	BIC			330.	.8
Df Model:		1					
Covariance Type:	n	onrobust					
	coef	std e	 rr	 t	 P> t	[0.025	0.975
const	2.8894	0.7	23	3.996	0.000	1.440	4.339
incidents_85_99_pe	r_1b_ask 0.1554	0.0	53			0.049	0.262
 Omnibus:	55.139	Durbin		======= on:		1.747	
Prob(Omnibus): 0.000 J		Jarque	Jarque-Bera (JB):			325.845	
Skew:	2.624	Prob(J	B):		1.7	5e-71	
	13.588	Cond. I	No		16.7		

Dep. Variable:		sqrt_85_99	R-squ	0.146			
Model:		0LS	Adj.	Adj. R-squared:			
Method: Date: Fr Time: No. Observations: Df Residuals:		Least Squares	F-statistic:			8.704	
		ri, 19 May 2023	Prob	(F-statistic)		0.00479	
		12:28:30	Log-Likelihood:			-75.256	
		53	AIC:			154.5 158.5	
		51	BIC:				
Df Model:		1					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	1.4673	0.269	5.463	0.000	0.928	2.007	
sqrt_00_14	0.4222	0.143	2.950	0.005	0.135	0.709	
mnibus: 1.404		Durbi	Durbin-Watson:				
Prob(Omnibus):	0.496	Jarqu	e-Bera (JB):		1.417	
Skew: 0.340		Prob(Prob(JB):				
Kurtosis: 2.577		Cond.	Cond. No.				

A p-value of 0.005 for these models indicate that there is a linear relationship between the 2 variables. However, the R-squared value being a very low 0.13 and 0.14 means that these models explain explains a very little amount of the variation in the dependent variable. With the R-squared values being so poor, there is a lack of confidence to extrapolate the findings the larger, actual population.