Chapter 3 - L^p Spaces

Salvador Castagnino scastagnino@itba.edu.ar

Exercise 3.

Let's suppose that ϕ is not convex in (a,b) then there exist $x,y\in(a,b)$ and $t_0\in[0,1]$ such that

$$\phi((1-t_0)x+t_0y) > (1-t_0)\phi(x)+t_0\phi(y)$$

and assume x < y. Let's define $g, h : [0, 1] \to R$ such that,

$$g(t) = \phi((1-t)x + ty)$$

$$h(t) = (1 - t) \phi(x) + t\phi(y)$$

and let f = h - g. We define the nonempty sets $A = \{t \in [0, t_0) \mid f(t) = 0\}$ and $B = \{t \in (t_0, 1] \mid f(t) = 0\}$ given that f(0) = f(1) = 0, and let $t_a = \sup A$ and $t_b = \inf B$, we want to see that $t_a \in A$ and $t_b \in B$. Let $\{a_n\}$ and $\{b_n\}$ be sequences in A and B which converge to t_a and t_b respectively, by continuity of f we can see that

$$0 = \lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(t_a)$$

With this and the fact that $t_a < t_0 < t_b$ as $f(t_0) < 0$ we have that $t_a \in A$ and the proof for $t_b \in B$ is analogous. Now by the definition of t_a and t_b we have that f(t) < 0 for all $t \in (t_a, t_b)$. Finally we take $x' = (1 - t_a)x + t_ay$ and $y' = (1 - t_b)x + t_by$ and by working algebraically over $f\left(\frac{t_a + t_b}{2}\right) < 0$ we arrive at the following inequality

$$\phi\left(\frac{x'+y'}{2}\right) > \frac{\phi\left(x'\right) + \phi\left(y'\right)}{2}$$

which is a clear contradiction, as we wanted. This concludes the proof.

Observation This proof shows that to see that convexity holds it suffices to show that given each pair of points $x, y \in (a, b)$ there exists a $t \in [0, 1]$ (not necessarily $\frac{1}{2}$) such that $\phi((1-t)x + ty) \leq (1-t)\phi(x) + t\phi(y)$.

Exercise 4. Let f be a complex measurable function on X and μ a positive measure on X, define

$$\phi(p) = \int_X |f|^p d\mu = ||f||_p^p \quad (0$$

and now let $E = \{p: \phi(p) < \infty\}$ and assume $0 < \|f\|_{\infty}$. Let's begin by characterizing E. Let $0 and <math>x \in [0, \infty)$ then $x^p < x^s$ iff 1 < x and $x^s < x^p$ iff x < 1. With this in mind if $0 < r < p < s < \infty$ then $|f|^p \le \max\{|f|^r, |f|^s\} \le |f|^r + |f|^s$ and we get,

$$\int_{X} |f|^p d\mu \le \int_{X} |f|^r d\mu + \int_{X} |f|^s d\mu$$

Suppose that $s, r \in E$ then $p \in E$, which proves statement (a).

As a consequence of (a) we see that E is a connected set and with this in mind, supposing E is nonempty, we can see that E is an interval with endpoints $a = \inf E$ and $b = \sup E$, this interval will be closed or not if E contains them or not, but for sure $E^o = (a, b)$.

To prove that $\log \phi$ is convex in E^o we start by proving that the composition is well defined, in other words, ϕ is never zero. If $\phi(p) = 0$ for some $p \in E^o$ then |f| = 0 a.e. on X and this implies $||f||_{\infty} = 0$ contradicting our assumption, thus the composition is well defined and we proceed to prove convexity. Take $x, y \in (a, b)$ and $t \in (0, 1)$. By the properties of the logarithm we get,

$$(1-t)\log\phi\left(x\right) + t\log\phi\left(t\right) = \log\left(\phi\left(x\right)^{1-t}\phi\left(y\right)^{t}\right)$$

given that the logarithm is a nondecreasing function, convexity holds if and only if

$$\phi\left((1-t)x+ty\right) \le \phi\left(x\right)^{1-t}\phi\left(y\right)^{t}$$

rewriting ϕ on both sides in terms of Lp norms we get the following,

$$||f^{(1-t)x}f^{ty}||_1 \le ||f^{(1-t)x}||_{(1-t)^{-1}}||f^{ty}||_{t^{-1}}$$

Given that $1 \le (1-t)^{-1}$ and $1 \le t^{-1}$ are conjugate exponents, the last inequality holds by Holder's inequality and this concludes the proof.

To prove that ϕ is continuous in E we start by noticing that $\log \phi$ is convex in (a,b) which implies convexity of ϕ in (a,b) which in turn implies continuity of ϕ in (a,b), so we only need to prove continuity on a and b, in case they are elements of E.

Let $\{p_n\}$ be a sequence in (a, b) which converges to a and let's suppose $a \in E$, we will show that $\phi(p_n)$ converges to $\phi(a)$, the proof for b is analogous. By linearity of the integral and properties of the absolute value we get

$$|\phi(p_n) - \phi(a)| = |\int_X |f^{p_n}| - |f^a| d\mu| \le \int_X ||f^{p_n}| - |f^a|| d\mu \le \int_X |f^{p_n} - f^a| d\mu$$

Also, by continuity of the exponential we know that f^{p_n} converges pointwise to f^a as n goes to infinity so it suffces to find a real function $g \in L^1(\mu)$ such that $|f^{p_n}| \leq g$. Let $g = |f^a| + |f^{p_M}|$ with p_M the greatest element of the sequence $\{p_n\}$ which exists given the convergence of the sequence. Then we can see that $a \leq p_n \leq p_M$ for all $1 \leq n$ and as mentioned above we have

$$|f|^{p_n} \le \max\{|f|^a, |f|^{p_M}\} \le |f|^a + |f|^{p_M} = g$$

Finally by Lebesgue's Dominated Convergence Theorem we get that

$$\int_X |f^{p_n} - f^a| \, d\mu \to 0$$

which concludes the proof of (b).

Observation

Let $0 < r < p < s < +\infty$ with p-r = s-p which is the same as 2p = r+s then using Holder's inequality we get,

$$||f||_p^p = ||f^p||_1 = ||f^{\frac{r}{2}}f^{\frac{s}{2}}||_1 \le ||f^{\frac{r}{2}}||_2 ||f^{\frac{s}{2}}||_2 = (||f||_r^r ||f||_s^s)^{\frac{1}{2}}$$

thus,

$$||f||_p^p \le \sqrt{||f||_r^r ||f||_s^s}$$

Exercise 5. In order to prove that $||f||_p \le ||f||_r$ if 0 we start by looking at case in which both <math>p and r are finite. For every $x \in (0, \infty)$ the function x^c is twice differentiable and we have that

$$(x^c)'' = (x^{c-1}c)' = c(c-1)x^{c-2}$$

Observe that if $1 \leq c$, the expression above is nonnegative for all $x \in (0,\infty)$ and thus x^c convex over that interval. With this in mind and the fact that $\mu\left(\Omega\right) = 1$ and $1 \leq \frac{r}{p}$ we will use Jensen's Inequality to prove the result. Let $A = \{x \in \Omega | f\left(x\right) \neq 0\}$ (the integral over it's complement is exactly 0 and in this way $|f|\left(A\right) \subset (0,\infty)$), then

$$||f||_p = \left(\int_A |f|^p d\mu\right)^{\frac{r}{r_p}} \le \left(\int_A |f|^{\frac{r_p}{p}} d\mu\right)^{\frac{1}{r}} = ||f||_r$$

and this concludes the proof for the finite case.

Now let $r=\infty$, this case is much simpler. By definition of the essential supremum we have that $|f| \leq ||f||_{\infty}$ almost everywhere and using the fact that $\mu(\Omega) = 1$ we get,

$$||f||_p = \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}} \le \left(\int_{\Omega} ||f||_{\infty}^p d\mu\right)^{\frac{1}{p}} = ||f||_{\infty}$$

Exercise 7.

Let $0 , an example for the inclusion <math>L^{s}(\mu) \subset L^{p}(\mu)$ can easily be constructed using Ex.5.

Let $X=(1,\infty)$ and m the Lebesgue Measure, we see thath neither of the inclusions hold observing that, on the one hand, $\frac{1}{x} \notin L^1(1,\infty)$ and $\frac{1}{x} \in L^2(1,\infty)$ and on the other, (the example i gave had an error, i'm working on it ...).

The remaining inclusion is more interesting, we take X = N with the counting measure over the power set of N. Observe that all measurable functions in this case will be just sequences of complex numbers so if $f = \{a_n\}$ we have,

$$||f||_p^p = \int_X |f|^p d\mu = \sum_{n=1}^\infty |a_n|^p$$

Suppose $\{a_n\} \in \ell^p(N)$ then the sequence $\{|a_n|^p\}$ converges to 0 and thus there exists a natural number M such that $|a_n|^p < 1$ for all M < n. Given that $1 < \frac{s}{p}$ we have that $|a_n|^s = (|a_n|^p)^{\frac{s}{p}} < |a_n|^p$ for all n greater than M and with that in mind we get,

$$\sum_{n=1}^{\infty} |a_n|^s = \sum_{n=1}^{M} |a_n|^s + \sum_{n=M+1}^{\infty} |a_n|^s < \sum_{n=1}^{M} |a_n|^s + \sum_{n=M+1}^{\infty} |a_n|^p < \infty$$

As we wanted, $\{a_n\} \in \ell^p(N)$, which concludes the proof.

Exercise 10. Given that $fg \geq 1$ and both f and g are positive we have $f \geq \frac{1}{q}$ and using Holder's inequality and the fact that $\mu(\Omega) = 1$,

$$1 = \|1\|_1 = \|g^{\frac{1}{2}}g^{-\frac{1}{2}}\|_1 \le \|g^{\frac{1}{2}}\|_2 \|g^{-\frac{1}{2}}\|_2 = (\|g\|_1 \|g^{-1}\|_1)^{\frac{1}{2}} \le (\|g\|_1 \|f\|_1)^{\frac{1}{2}}$$

thus,

$$1 \le \int_{\Omega} f \, d\mu \int_{\Omega} g \, d\mu$$