Лабораторная работа 1.1.6 Изучение электронного осциллографа 3 ноября 2023 г.

1. Цели и задачи

• ознакомление с устройством и работой осциллографа и изучение его основных характеристик

2. Оборудование

- осциллограф
- генераторы электрических сигналов
- соединительные кабели

3. Теория

Рис. 1. Электронно-лучевая трубка

4. Ход работы

2. Измерение частоты сигнала

Таблица 1. Измерения частот сигнала с помощью осциллографа

$ u_{_{\mathrm{3\Gamma}}}, \Gamma$ ц	T, дел	Time / Div, c	T, c	u, Гц	$\delta u,$ Гц	$ u - u_{\rm 3r}, \Gamma$ ц
$1 \cdot 10^3$	5,15	$2\cdot 10^{-4}$	$1{,}03\cdot10^{-3}$	$9,71\cdot 10^2$	$2,\!0\cdot 10^{-5}$	$2,\!91\cdot 10^1$
$1 \cdot 10^2$	5,15	$2\cdot 10^{-3}$	$1{,}03\cdot10^{-2}$	$9{,}71\cdot10^{1}$	$2,\!0\cdot 10^{-4}$	$2,\!91\cdot 10^0$
$1 \cdot 10^6$	5,10	$2\cdot 10^{-7}$	$1{,}02\cdot10^{-6}$	$9,\!80\cdot10^5$	$2,\!0\cdot 10^{-8}$	$1,\!96\cdot 10^4$
$1 \cdot 10^5$	5,10	$2\cdot 10^{-6}$	$1{,}02\cdot10^{-5}$	$9,\!80\cdot10^4$	$2,\!0\cdot 10^{-7}$	$1{,}96\cdot10^3$
$1 \cdot 10^4$	5,10	$2\cdot 10^{-5}$	$1{,}02\cdot10^{-4}$	$9,\!80\cdot10^3$	$2,\!0\cdot 10^{-6}$	$1,96\cdot 10^2$

Погрешность $\delta T = 0.1$ дел.

3. Измерение амплитуды сигнала

$$\delta U=0.1~{\rm дел}$$

$$U/{\rm Div}=5~{\rm B}$$

$$U/{\rm Div}=0.005~{\rm B}$$

$$U_{\rm min}=2~{\rm дел}=0.0100\pm0.0005~{\rm B}$$

$$\beta_{21}=20\lg\frac{U_{\rm max}}{U_{\rm min}}\approx66.0~{\rm дБ}$$

4. Фигуры Лисажу

Рис. 2. Наблюдаемые фигуры для разных отношений $\nu_y:\nu_x$

5. Изучение амплитудно-частотной характеристики осциллографа

Таблица 2. АЧХ при высоких частотах в режиме DC

u, Гц	U, B	K
$1,0\cdot 10^7$	10,0	1,00
$2.0 \cdot 10^7$	8,8	0,88
$2.5 \cdot 10^7$	7,2	0,72
$2.8 \cdot 10^7$	6,6	0,66
$3.0 \cdot 10^7$	6,2	0,62

Таблица 3. AЧХ при низких частотах в режимах DC и AC

u, Гц	U, B	Режим	K	
10	10,3	\overline{DC}	1,03	
10	10,1	\mathbf{AC}	1,01	
1	10,8	DC	1,08	
1	3,1	\mathbf{AC}	0,31	
5	10,4	DC	1,04	
5	9,0	AC	0,90	

$$U_0 = 10 \text{ B}$$

$$K = \frac{U}{U_0}$$

6. Изучение влияния АЧХ на искажение сигнала

Генератор частот в режиме прямоугольных испульсов.

Рис. 3. При $\nu = 10$ Гц

Рис. 4. При $\nu = 10 \ {\rm M} \Gamma {\rm g}$

7. Измерение фазо-частотных характеристик каналов осциллографа

Таблица 4. ФЧХ

u, Гц	$\lg u, \lg \Gamma$ ц	$ 2y_0 $, дел	$\left 2A_{y}\right $, дел	$\arcsin\left(rac{y_0}{A_y} ight)$, рад	$\Delta arphi$, рад
$1,0\cdot 10^4$	4,0	0,0	8,0	0,00	0,00
$1,0\cdot 10^5$	5,0	0,4	7,9	0,05	0,05
$2,0\cdot 10^5$	5,3	0,8	7,8	0,10	0,10
$4.0\cdot10^5$	5,6	1,6	7,8	0,21	0,21
$6.0 \cdot 10^5$	5,8	2,5	7,8	$0,\!33$	0,33
$8.0 \cdot 10^5$	5,9	$3,\!4$	7,7	0,46	0,46
$1,\!0\cdot 10^6$	6,0	4,4	7,7	0,61	0,61
$1,\!2\cdot 10^6$	6,1	5,1	7,7	$0,\!72$	0,72
$1,4\cdot 10^6$	6,1	5,8	7,7	0,85	0,85
$1,\!6\cdot 10^6$	6,2	6,7	7,8	1,03	1,03
$1.8 \cdot 10^6$	6,3	7,7	7,8	1,41	1,41

Рис. 5. График зависимости φ от $\lg \nu$

5. Вывод

В результате работы мы научились работать с осциллографом в разных режимах и диапазонах, а также пронаблюдали фигуры Лисажу.