D5: Turing Machines

Sec 101: MW 3:00-4:00pm DOW 1018

IA: Eric Khiu

Computability Recap

- We are interested in "what problems can / can't a computer compute"
- First, we structured what we mean by "problem" by introducing formal languages
- ▶ Next, we started to tackle what "computer" means
 - ▶ We started by looking at DFAs as computational devices
 - ▶ It turns out that DFAs are a little too limited to be a general representation of a computer
 - ► Now we introduce Turing Machines

Agenda

- Turing Machines
- Decidability
- Counting and Diagonalization

Turing Machines

Finite Automata vs Turing Machines

Definition and Representation

- ▶ We define a Turing machine as the 7-tuple $(Q, \Sigma, \Gamma, q_0, q_{accept}, q_{reject}, \delta)$
 - * Q is a finite set of **states**
 - * $q_0 \in Q$ is the **initial state**
 - * $F = \{q_{accept}, q_{reject}\} \subseteq Q$ are the **final** (accept/reject) states
 - * Σ is the **input alphabet**
 - * $\Gamma \supseteq \Sigma \cup \{\bot\}$ is the tape alphabet $(\bot \not\in \Sigma)$ is the blank symbol)
 - * $\delta: (Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the **transition function**

Warning: The input string cannot contain the blank symbol \bot and any other symbols in $\Gamma \setminus \Sigma!$

- ► Turing machines can be represented with state diagrams or pseudocode
 - ► Turing machines are computationally equivalent to many programming languages
 - ▶ It then makes sense to use pseudocode to specify a Turing machine

TL; DPA

- We introduced the Turing machines and compared it against finite automata.
- ▶ We learned how to define a TM using the seven 7-tuple $(Q, \Sigma, \Gamma, q_0, q_{accept}, q_{reject}, \delta)$.
- ▶ We established that we represent a TM using a state-transition diagram or pseudocode.
- ► Useful tool: https://turingmachine.io/

Decidability

Decidability and Turing Machines

- \blacktriangleright For a language A, we say Turing machine M decides A if:
 - ightharpoonup For all $x \in A$, M accepts x
 - ▶ For all $x \notin A$, M rejects x
 - ► And *M* halts on all input
- ► Language A is decidable if there exists a TM that decides A
- ▶ We call this TM a decider of A

TM State Diagram Practice

- Does this TM accept/ reject/ loops on the following input strings?
 - **>** 8
 - **▶** 01
 - **110**
- ▶ What language over $\Sigma = \{0,1\}$ does this TM decides, if any?
 - None. Observe that if the input strings start with 1, the TM will always loop. In other words, it fails to halt on input of form $1(0|1)^*$

Proving Decidability

- We have established that a language L is decidable iff there exists some TM that decides L, so proving decidability = construct a TM
- ► Reminder 1: When we say "give an algorithm", you need to prove the correctness, this applies to TM algorithms too
- \blacktriangleright Reminder 2: To prove that a TM M decides L, we need to prove
 - For all $x \in L$, M accepts x
 - For all $x \notin L$, M rejects x
 - ► *M* halts on all input
- **Discuss:** Suppose we know some decider exists for some language, can we use it in the decider we want to construct?
 - ▶ Yes! Think of it like a *global helper function* that everyone has access to

Decidability Proof Using Known Deciders

- ▶ Suppose both S and T are both decidable languages. Prove that $L = S \setminus T$ is decidable
- Since we know that S and T are decidable, we know there exists some TMs, say D_S and D_T that decide S and T respectively.
- \blacktriangleright We can call those deciders in the TM (decider), D_L we want to build!

- ▶ Before we start writing the algorithm, let's start drafting the correctness analysis first (you'll find it useful later)
 - \blacktriangleright $x \in S \setminus T \Rightarrow \cdots \Rightarrow D_L$ accepts $x \leftarrow We$ want this to happen

- ▶ Before we start writing the algorithm, let's start drafting the correctness analysis first (you'll find it useful later)
 - $\blacktriangleright x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow \cdots \Rightarrow D_L \text{ accepts } x$

- ▶ Before we start writing the algorithm, let's start drafting the correctness analysis first (you'll find it useful later)
 - \blacktriangleright $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S \text{ accepts } x \text{ and } D_T \text{ rejects } x \Rightarrow ... \Rightarrow D_L \text{ accepts } x$
- ▶ Otherwise, if
 - ▶ $x \notin S \setminus T \Rightarrow \cdots \Rightarrow D_L$ rejects $x \leftarrow We$ want this to happen

- ▶ Before we start writing the algorithm, let's start drafting the correctness analysis first (you'll find it useful later)
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S$ accepts x and D_T rejects $x \Rightarrow ... \Rightarrow D_L$ accepts x
- ▶ Otherwise, if
 - $\blacktriangleright x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow \cdots \Rightarrow D_L \text{ rejects } x$

- ▶ Before we start writing the algorithm, let's start drafting the correctness analysis first (you'll find it useful later)
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S$ accepts $x \text{ and } D_T$ rejects $x \Rightarrow ... \Rightarrow D_L$ accepts $x \Rightarrow ... \Rightarrow D_L$
- ▶ Otherwise, if
 - \blacktriangleright $x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow D_S \text{ rejects } x \text{ or } D_T \text{ accepts } x \Rightarrow \cdots \Rightarrow D_L \text{ rejects } x$
- \blacktriangleright We want these two to be the only cases to ensure D_L halts on all input

TM Algorithm

- \blacktriangleright Construct D_L to make this happens:
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S$ accepts x and D_T rejects $x \Rightarrow ... \Rightarrow D_L$ accepts x
 - ▶ $x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow D_S$ rejects x or D_T accepts $x \Rightarrow \cdots \Rightarrow D_L$ rejects x

```
D_L = "On input x:

Run D_S and D_T on x

If D_S(x) accepts and D_T(x) rejects then

Accept

Reject"
```

```
D_L = "On input x:

Run D_S and D_T on x

If D_S(x) accepts and D_T(x) rejects then

Accept

Reject
```

- ▶ We just need to complete our proof draft now!
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S$ accepts $x \land D_T$ rejects $x \Rightarrow ... \Rightarrow D_L$ accepts $x \Rightarrow ... \Rightarrow D_L$
 - ▶ $x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow D_S \text{ rejects } x \lor D_T \text{ accepts } x \Rightarrow \cdots \Rightarrow D_L \text{ rejects } x$

```
D_L = "On input x:

Run D_S and D_T on x

If D_S(x) accepts and D_T(x) rejects then

Accept

Reject
```

Now explain what happen here

- ▶ We just need to complete our proof draft now!
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S \text{ accepts } x \land D_T \text{ rejects } x \Rightarrow ... \Rightarrow D_L \text{ accepts } x$
 - ▶ $x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow D_S \text{ rejects } x \lor D_T \text{ accepts } x \Rightarrow \cdots \Rightarrow D_L \text{ rejects } x$

```
D_L = "On input x:

Run D_S and D_T on x

If D_S(x) accepts and D_T(x) rejects then

Accept

Reject
```

- ▶ We just need to complete our proof draft now!
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S$ accepts $x \land D_T$ rejects $x \Rightarrow x$ satisfies both conditions to enter the if block, causing D_L to accept $\Rightarrow D_L$ accepts x
 - ▶ $x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow D_S \text{ rejects } x \lor D_T \text{ accepts } x \Rightarrow \cdots \Rightarrow D_L \text{ rejects } x$

```
D_L = "On input x:

Run D_S and D_T on x

If D_S(x) accepts and D_T(x) rejects then

Accept

Reject
```

- We just need to complete our proof draft now!
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S$ accepts $x \land D_T$ rejects $x \Rightarrow x$ satisfies both conditions to enter the if block, causing D_L to accept $\Rightarrow D_L$ accepts x
 - ▶ $x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow D_S \text{ rejects } x \lor D_T \text{ accepts } x \Rightarrow \cdots \Rightarrow D_L \text{ rejects } x$

Now explain what happen here

```
D_L = "On input x:

Run D_S and D_T on x

If D_S(x) accepts and D_T(x) rejects then

Accept

Reject
```

- We just need to complete our proof draft now!
 - ▶ $x \in S \setminus T \Rightarrow x \in S \land x \notin T \Rightarrow D_S$ accepts $x \land D_T$ rejects $x \Rightarrow x$ satisfies both conditions to enter the if block, causing D_L to accept $\Rightarrow D_L$ accepts x
 - ▶ $x \notin S \setminus T \Rightarrow x \notin S \lor x \in T \Rightarrow D_S$ rejects $x \Rightarrow x$ satisfies neither conditions to enter the if block, causing D_L to reject $\Rightarrow D_L$ rejects x
 - lacktriangle Additionally, D_L halts on all inputs because if it doesn't enter the if-block, it rejects

Decidability Proof Exercise

- ▶ Show that for any decidable language $L, L \cup \{\varepsilon\}$ is also decidable.
- Let D_L be the decider for L. We want a decider D for $L \cup \{\varepsilon\}$ with the following behavior
 - ▶ $x \in L \cup \{\epsilon\} \Rightarrow x \in L \lor x = \epsilon \Rightarrow \cdots \Rightarrow D(x)$ accepts
 - $\blacktriangleright x \notin L \cup \{\varepsilon\} \Rightarrow x \notin L \land x \neq \varepsilon \Rightarrow \cdots \Rightarrow D(x) \text{ rejects}$

Decidability Proof Exercise

Desired Behavior

- $x \in L \cup \{\varepsilon\} \Rightarrow x \in L \lor x = \varepsilon \Rightarrow \cdots \Rightarrow D(x)$ accepts
- $x \notin L \cup \{\varepsilon\} \Rightarrow x \notin L \land x \neq \varepsilon \Rightarrow \cdots \Rightarrow D(x)$ rejects

- 1. D = "On input x:
- 2. if $x = \varepsilon$ then accept
- 3. Run D_L on x
- 4. if $D_L(x)$ accepts then accept
- 5. else reject"

Correctness proof

- ▶ $x \in L \cup \{\varepsilon\} \Rightarrow x \in L \lor x = \varepsilon \Rightarrow D_L(x)$ accepts or D accepts on line $2 \Rightarrow D(x)$ accepts
- ▶ $x \notin L \cup \{\varepsilon\} \Rightarrow x \notin L \land x \neq \varepsilon \Rightarrow x$ satisfies neither condition to enter the if-block on line 2 or line 4 \Rightarrow Enter line 5 \Rightarrow D(x) rejects

Decidability Concept Check 1

T/F: Given a TM M, there can be more than one distinct language L decided by M.

- ► False, a TM can decide either zero or one languages
- ▶ Deciders are required to halt on all inputs, so any TM that does not halt on some input is not a decider ⇒ Decide zero language
- Now, consider TMs that are decider. The language of a decider is the set of all (finite-length) string that the machine accepts.
 - ▶ Suppose for contradiction that M decides L_1 and L_2 where $L_1 \neq L_2$
 - ▶ WLOG, $\exists x \in L_1 \setminus L_2$, i.e., $x \in L_1 \cap \overline{L_2}$
 - ▶ Since $x \in L_1$, M must accept x
 - ▶ But since $x \notin L_2$, M must reject x
 - ► Contradiction!

Decidability Concept Check 2

T/F: Given a decidable language L, there can be more than one distinct TM M that decides L.

- \blacktriangleright True. Consider an arbitrary decidable language L and a TM that decides it M
- \blacktriangleright Construct a different TM M' that begins by transitioning one cell right, then one cell left, not writing either time, then has an identical transition function to M
- ► Since M' is defined differently, $M' \neq M$
- ► However, *M'* and *M* both decide *L*
- ► In fact, there are infinite TM for any decidable language

Recognizability

- \blacktriangleright For a language A, we say Turing machine M recognizes A if:
 - For all $x \in A$, M accepts x
 - For all $x \notin A$, M does not accept x (this could mean reject or loop!)
- ► For DFAs, deciding and recognizing are the same
 - ► The TM ceases execution when it reaches accept or reject rather than the end of the input string, which leads to this distinction

TL; DPA

- We discussed the notion of decidable language- a language that is decidable by a Turing machine.
- \blacktriangleright To prove that a TM decides a language L, we show that it
 - ightharpoonup Accepts all $x \in L$
 - ▶ Rejects all $x \notin L$
 - ► Halts on all inputs

Counting and Diagonalization

203 Recap: (Un)countable Infinity

- ▶ **Definition:** An infinite set X is countably infinite if you can map each $x \in X$ to a unique natural number (enumerating)
 - ▶ More formally, there is a function f such that $f: X \to \mathbb{N}$ is one-to-one (i.e. f is an *injective* function)
- ► If we cannot write such a function, then the set is uncountably infinite and "strictly larger than" the set of natural numbers

Definition: An infinite set X is countably infinite if you can map each $x \in X$ to a unique natural number (enumerating)

Proving Uncountably Infinite

- ▶ We use Cantor's diagonalization argument to prove that a set is uncountably infinite
- **Ex:** Prove that the set of infinite-length binary sequence is uncountably infinite
- Suppose, for the sake of contradiction, that the set of infinite-length binary sequence $S = \{s_1, s_2, ...\}$ is countably infinite, so we can list/ enumerate every sequence in an infinite table

Sequence	1st bit	2 nd bit	3 rd bit	4 th bit	5 th bit	•••
s_1	0	1	1	0	0	•••
s_2	0	0	0	0	0	•••
s_3	1	0	1	0	1	•••
S_4	1	1	0	1	0	•••
:						

Definition: An infinite set X is countably infinite if you can map each $x \in X$ to a unique natural number (enumerating)

Proving Uncountably Infinite

Now, construct a sequence d as follows: 1st bit of s is opposite of 1st bit of sequence 1, 2nd bit of s is opposite of 2nd bit of sequence 2, ... ith bit of s is opposite of ith bit of sequence i

Sequence	1st bit	2 nd bit	3 rd bit	4 th bit	5 th bit	•••
s_1	0	1	1	0	0	•••
s_2	0	0	0	0	0	•••
<i>S</i> ₃	1	0	1	0	1	•••
S_4	1	1	0	1	0	•••
:						

$$d = 1,1,0,0,...$$

Poll: The existence of *d* contradict the assumption that...

A. d is an *infinite-length* binary sequence

B. $S = \{s_1, s_2, ...\}$ is a set of *all* infinite-length binary sequence

C. $S = \{s_1, s_2, ...\}$ is countably infinite

Since we arrive at a contradiction, S must be uncountably infinite

Diagonalization Practice

- Let x, y be binary strings of the same length n over $\Sigma = \{0,1\}$. The *Hamming distance* between x and y, written $d_H(x,y)$ is the number of position $i \in \{1,2,...,n\}$ for which $x_i \neq y_i$. For example, $d_H(11100,10101) = 2$ because the two strings only different in the second and fifth characters.
- Consider an infinite list of infinite binary sequences

$$s_1 = b_{11}b_{12}b_{13} \dots$$

 $s_2 = b_{21}b_{22}b_{23} \dots$
 $s_3 = b_{31}b_{32}b_{33} \dots$
 \vdots

- where each $b_{ij} \in \{0,1\}$. Cantor's diagonalization argument shows that the sequence $\overline{b_{11}}$ $\overline{b_{22}}$ $\overline{b_{33}}$ has Hamming distance at least one from every sequence in the list, where \overline{b} is the complement of b.
- Construct a binary sequence that have infinite Hamming distance from every sequence in the list, i.e., it differ from each sequence in an infinite number of positions
 - ▶ Hint: There are infinitely many prime numbers; if p and q are distinct primes, then $p^n \neq q^m$ for all pairs of n, m > 0.

Diagonalization Practice

Hints:

- 1. There are infinitely many prime numbers
- 2. Let p, q be primes and n, m > 0. If $p \neq q$, then $p^n \neq q^m$ for all pairs of n, m.
- ▶ **Key:** Flip different bits from different sequences, but infinitely many from each
- ▶ Let p_k be the k^{th} prime number. Flip all $(p_k)^1$, $(p_k)^2$, ... bits from the k^{th} sequence
- ► For example, the first prime number is 2 so we flip the 2^{nd} , 4^{th} , 8^{th} , ... bits in the first sequence. Since s_1 is infinite-length, $d_H(s, s_1) = \infty$.

	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	•••
	bit									
S_1	0	1	1	0	0	1	0	1	1	•••
s_2	0	0	0	0	0	1	1	1	1	•••
:										•••
S		0		1				0		•••

Diagonalization Practice

Hints:

- 1. There are infinitely many prime numbers
- 2. Let p,q be primes and n,m > 0. If $p \neq q$, then $p^n \neq q^m$ for all pairs of n,m.
- ▶ **Key:** Flip different bits from different sequences, but infinitely many from each
- ▶ Let p_k be the k^{th} prime number. Flip all $(p_k)^1$, $(p_k)^2$, ... bits from the k^{th} sequence
- ► For example, the first prime number is 2 so we flip the 2^{nd} , 4^{th} , 8^{th} , ... bits in the first sequence. Since s_1 is infinite-length, $d_H(s, s_1) = \infty$.
- ► The second prime is 3 so we flip the 3^{rd} , 9^{th} , 27^{th} , ... bits in the second sequence. Again, we have $d_H(s, s_2) = \infty$

	1st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	•••
	bit	bit	bit	bit	bit	bit	bit	bit	bit	
s_1	0	1	1	0	0	1	0	1	1	•••
s_2	0	0	0	0	0	1	1	1	1	•••
:										•••
S		0	1	1				0	0	•••

Diagonalization Practice

Hints:

- There are infinitely many prime numbers
- 2. Let p, q be primes and n, m > 0. If $p \neq q$, then $p^n \neq q^m$ for all pairs of n, m.
- ► Key: Flip different bits from different sequences, but infinitely many from each
- ▶ Let p_k be the k^{th} prime number. Flip all $(p_k)^1$, $(p_k)^2$, ... bits from the k^{th} sequence
- ► For example, the first prime number is 2 so we flip the 2^{nd} , 4^{th} , 8^{th} , ... bits in the first sequence. Since s_1 is infinite-length, $d_H(s, s_1) = \infty$.
- ► The second prime is 3 so we flip the 3^{rd} , 9^{th} , 27^{th} , ... bits in the second sequence. Again, we have $d_H(s, s_2) = \infty$
- ▶ By hint 1, we can keep this going because we have infinite primes
- ▶ By hint 2, since $p_i \neq p_j \Rightarrow (p_i)^n \neq (p_j)^m$ for all pairs of n, m, there is no collisions in the index of bits flipped
- ▶ Therefore, $d_H(s, s_k) = \infty$ for all k = 1, 2, ..., as desired.

Definition: An infinite set X is countably infinite if you can map each $x \in X$ to a unique natural number (enumerating)

Proving Countably Infinite 1

- ► To prove that a set is countably infinite, we can demonstrate a way to enumerate the elements
- **Ex:** Show that the set consisting of all the (finite-length) ASCII strings is countable.
 - \blacktriangleright Hint: There are 128 ASCII characters which is a **finite alphabet**, thus the number of strings of length k is 128^k
- ► Enumerate: Shortlex list the strings by length, then lexicographical order
- Create a list of all strings of each length, then concatenate them together

Length	List	Number of elements	Index of last element	
0	$[\varepsilon]$	$128^0 = 1$	1	
1	['a', 'b',]	$128^1 = 128$	129	
:	:	:	:	
k	['aaa', 'aba',]	128 ^k	$\sum_{i=0}^{k} 128^k \leftarrow \text{This is}$	finite!

Therefore, we can map finite-length ASCII strings to natural numbers ⇒ Countably infinite

Definition: An infinite set X is countably infinite if you can map each $x \in X$ to a unique natural number (enumerating)

Proving Countably Infinite 2

- Now, prove that the set of all decidable languages over a given alphabet Σ is countable
- Hint: A TM can be represented by a finite-length ASCII string
- Previous: Proven set of all finite-length ASCII strings is countably infinite ⇒ set of all TM is countably infinite ⇒ we can assign TM to natural numbers
- ► Know: Each decidable language has at least one unique TM that decides it
 - ▶ Previous: No two TMs decide the same language
 - ▶ In fact, we have infinitely many TM for one language, but we just need one here
- Map each decidable language arbitrarily to one TM that decides it
- ► Thus, we can map decidable languages through TM to natural numbers ⇒ countably infinite

Existence of Undecidable Languages

- We've shown in lecture the existence of undecidable languages, we now present a counting argument
- ▶ Previous: the set of decidable languages is countably infinite
- ► The set of strings a TM decides is $L(M) \subseteq \Sigma^*$, so the set of all languages is $\mathcal{P}(\Sigma^*)$
 - Power set of countably infinite set is uncountably infinite (will prove this in HW3)
 - ► The set of all languages is uncountably infinite
- ► Therefore, there must exists some undecidable languages

Set of ALL languages, $\mathcal{P}(\Sigma^*)$ (uncountably infinite)

Decidable languages (countably infinite)

There must exists undecidable languages

Back Matter

- ▶ In lecture, we proved the existence of undecidable languages using the diagonalization method.
- ► The idea of diagonalization is not limited to reason about the countability of an infinite sets, we could also use it to prove undecidability a language.
- For example, we can use it to prove that the language $L_{ACC} = \{(\langle M \rangle, x) : M \text{ is a TM that halts on } x.\}$ is undecidable.

- \blacktriangleright Suppose for contradiction that L_{ACC} is decidable with a decider H.
- In the following table, we list all Turing machines (which we know is countable) down the rows $M_1, M_2, ...$ and all their description across the columns $\langle M_1 \rangle, \langle M_2 \rangle, ...$

- ► The entries tells whether the machine in a given row accepts the input in a given column
 - ► The entry is *accept* if the machine accepts the input
 - ► The entry is blank if it rejects or loops on that input

- Now, we construct a similar table to capture the behavior of H (decider for L_{ACC}) on each pair of input $(M_i, \langle M_i \rangle)$, i.e.,
 - ▶ The entry is *accept* if M_i accepts $\langle M_i \rangle$
 - ▶ The entry is *reject* if M_i rejects or loops on $\langle M_i \rangle$
- ▶ For example,

Table 1: (i,j) entry = $M_i(\langle M_i \rangle)$

Table 2: (i,j) entry = $H(M_i, \langle M_j \rangle)$

- ▶ Now, construct a "diagonal" Turing machine *D* as follows:
 - ▶ D calls H as a subroutine to determine what M does when the input to M is its own description $\langle M \rangle$
 - ▶ Once *D* has this information, it does the opposite
- Essentially, we are constructing a row for TM D in Table 2 by flipping the diagonal, i.e., $(D,j) = \neg H(M_j, \langle M_j \rangle)$
- ► The contradiction occurs where the point at the point of the question mark where the entry must be the opposite of itself
- In essence, H cannot be a decider of L_{ACC} because it fails to predict $D(\langle D \rangle)$ (i.e., the '?' on Table 2 is undefined)

```
D = \text{``on input } (\langle M \rangle):
       1: Run H on input (\langle M, \langle M \rangle \rangle)
       2: if H accepts then
                 reject
       4: else
                  accept"
       \langle M_1 \rangle
                 \langle M_2 \rangle
                          \langle M_3 \rangle
                                    \langle M_4 \rangle
M_1
      accept
                reject
                         accept
                                   reject
                                                   accept
M_2
      accept
                          accept
                accept
                                   accept
                                                   accept
      reject
                reject
                          reject
                                    reject
                                                    reject
M_4
                          reject
      accept
               accept
                                    reject
                                                   accept
D
      reject reject accept accept
```

Table 2: (i,j) entry = $H(M_i, \langle M_j \rangle)$

- ▶ Warning: Don't get confused by the notion of running a machine on its own description!
 - ► This is similar to running a program with itself as input, something that does occasionally occur in practice: e.g., a compiler
- ▶ In our case, we have

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \Leftrightarrow H(D, \langle D \rangle) \text{ rejects} \\ reject & \text{if } D \text{ accepts } \langle D \rangle \Leftrightarrow H(D, \langle D \rangle) \text{ accepts} \end{cases}$$

- \blacktriangleright Since D's design ensures that H's prediction is always wrong, H cannot exists as a decider for L_{ACC}
- \blacktriangleright Therefore, there do not exists a decider for L_{ACC} and hence it's undecidable

Equivalence of 2-Tape Machines

2-Tape Turing Machines

- ► A two tape Turing Machine is very similar to a one tape, except that it has two input tapes with one head over each tape
- ► This means for each step of execution, the transition function looks at both heads, writes a character to each tape, and moves each head left or right
- (Aside) When a computation device is equivalent to the classic Turing Machine, we call it Turing Complete
 - ▶ Some examples: C++, Python, Java, Conway's Game of Life
 - ► Staff favorites: Minecraft, origami, PowerPoint, Magic: the Gathering

Q: Is a 2-Tape TM Turing complete, i.e., equivalent to a 1-Tape TM?

Proof of Equivalence

- ► Equivalence proofs need to show two directions:
 - ► Machine one can simulate every function of machine two
 - ► Machine two can simulate every function of machine one
- Direction 1: 2-tape machines can simulate one-tape machines
 - ▶ Ignore the second tape

Simulating a 2-Tape Machine on a 1-Tape

▶ Let \mathcal{M} be an arbitrary 2-tape Turing Machine and Let \mathcal{T} be an arbitrary 1-tape Turing Machine

Schematic of the tape for T:

$$\cdots$$
 \bullet \cdots # \cdots # \cdots # \cdots # Contents of Tape 2

- Pseudocode:
 - 1. Put the tape in the correct format # $\overset{\bullet}{w_1}, \cdots, w_n$ # $\overset{\bullet}{\perp}$ #
 - 2. Have \mathcal{T} scan from the first # to the third # to find the values under the heads
 - 3. Make a second pass, updating the heads according to \mathcal{M} 's transition function
 - 4. If \mathcal{T} tries to overwrite the middle #, shift the entire second tape down one cell