The University of Western Australia SCHOOL OF MATHEMATICS & STATISTICS

AMO TRAINING SESSIONS

2007 Australian Intermediate Mathematics Olympiad Problems with Solutions

1. Trevor's trailer has two wheels on its axle and carries a spare wheel. The three wheels are changed around from time to time. The three tyres have been worn for $25\,000\,\mathrm{km}$, $28\,000\,\mathrm{km}$ and $31\,000\,\mathrm{km}$, respectively. How many thousand kilometres has Trevor's trailer travelled?

Solution. Number the tyres 1, 2 and 3, so that the tyres have been worn 25 000 km, 28 000 km and 31 000 km, respectively, and let

x = thousands of km travelled on tyres 1 and 2

y = thousands of km travelled on tyres 1 and 3

z = thousands of km travelled on tyres 2 and 3.

Then

$$x + y = 25$$

$$x + z = 28$$

$$y + z = 31$$

$$\therefore 2(x + y + z) = 25 + 28 + 31$$

$$= 84$$

$$x + y + z = 42$$

The total distance travelled by Trevor's trailer is x + y + z = 42 thousand km.

2. The rectangle shown has sides of length 28 and 15. The diagonal is divided into 7 equal parts.

A

B

Find the area of the quadrilateral DEBF.

Solution.

Join all the marks on the diagonal to B and D as shown. The seven triangles on one side of the diagonal have equal bases and the same height. So they have the same area. Hence the rectangle is divided into 7 quadrilaterals of equal area.

Therefore, the area of DEBF is

$$\frac{28 \times 15}{7} = 4 \times 15 = 60.$$

3. When $113\,744$ and $109\,417$ are divided by a 3-digit positive integer N, the remainders are 119 and 292, respectively. Find N.

Solution. Dividing 113 744 by N gives remainder 119 $\implies N \mid (113744 - 119) = 113625$. Dividing 109 417 by N gives remainder 292 $\implies N \mid (109417 - 292) = 109125$. $\therefore N \mid \gcd(113625, 109125)$.

We find the gcd by the Euclidean Algorithm, via the following Division Table:

$$\begin{array}{c|ccccc} & 113 & 625 & 109 & 125 \\ 1 & 109 & 125 & 108 & 000 \\ \hline & 4500 & 1125 \\ 4 & 4500 & & & \\ \hline & 0 & & & \\ \end{array}$$

 \therefore gcd(113625, 109125) = 1125 (the last non-zero remainder in the table).

Now N is a 3-digit factor of 1 125, and it must be greater than 292 (the larger remainder). If the number formed by the last k digits of a number is divisible by 5^k , then the number itself is divisible by 5^k .

Since 1125 ends in $125 = 5^3$, we have $5^3 \mid 1125$.

So
$$1125 = 5^3 \times 9 = 5^3 \times 3^2$$
.

The 3-digit factors of 1125 are 1125/3 = 375, 1125/5 = 225 and 1125/9 = 125. The only one of these larger than 292 is 375.

$$\therefore N = 375.$$

4. ABC is a triangle with AB = 85, BC = 75 and CA = 40. A semicircle is tangent to AB and AC and its diameter lies on BC. Find the radius of the semicircle.

Solution.

Firstly, we need to sketch the triangle, with semicircle centre at O on BC and tangent point at P on AB. Simce AC is tangent to the semicircle, $\angle ACB$ is a right-angle. Observe also that $\triangle ACB$ is an 8:15:17 triangle, and that 8:15:17 is a Pythagorean triad (which also confirms the right angle at C).

We have

$$\angle OPB = \angle ACB = 90^{\circ}$$

$$\angle PBO = \angle CBA,$$

$$\therefore \triangle OPB \sim \triangle ACB,$$

$$\therefore \frac{OP}{OB} = \frac{AC}{AB}$$

$$\frac{r}{75 - r} = \frac{40}{85} = \frac{8}{17}$$

$$17r = 8(75 - r)$$

$$= 8 \cdot 75 - 8r$$

$$25r = 8 \cdot 75$$

$$r = 8 \cdot 3 = 24$$

(common angle) by the AA Rule.

5. Find x + y where x and y are non-zero solutions of the system of equations

$$y^{2}x = 15x^{2} + 17xy + 15y^{2}$$
$$x^{2}y = 20x^{2} + 3y^{2}.$$

Solution. Assume x and y are non-zero. Then we may divide the given equations through by xy to obtain:

$$y = 15\left(\frac{x}{y}\right) + 17 + 15\left(\frac{y}{x}\right) \tag{1}$$

$$x = 20\left(\frac{x}{y}\right) + 3\left(\frac{y}{x}\right) \tag{2}$$

Now let a = y/x and divide (1) by (2). Then

$$a = \frac{y}{x} = \frac{\frac{15}{a} + 17 + 15a}{\frac{20}{a} + 3a}$$
$$a\left(\frac{20}{a} + 3a\right) = \frac{15}{a} + 17 + 15a$$
$$20a + 3a^3 = 15 + 17a + 15a^2$$
$$3a + 3a^3 = 15 + 15a^2$$
$$a(1+a^2) = 5(1+a^2)$$
$$(a-5)(1+a^2) = 0$$

Now $1 + a^2 \neq 0$. So a - 5 = 0, i.e. a = 5. So, adding (1) and (2) we have

$$x + y = \frac{15}{a} + 17 + 15a + \frac{20}{a} + 3a$$
$$= \frac{35}{a} + 17 + 18a$$
$$= 7 + 17 + 90 = 114$$

6. When a positive integer N is written in base 4 it has three digits. When 3N is written in base 6 it also has three digits and has the same middle digit as N to base 4. Find the decimal sum of all such numbers N.

Solution. Let the base 4 representation of N be $(abc)_4$ and the base 6 representation of 3N be $(dbe)_6$. Then in base ten we have:

$$N = (abc)_4 = 4^2a + 4b + c = 16a + 4b + c$$
$$3N = (dbe)_6 = 6^2d + 6b + e = 36d + 6d + e$$
(3)

where $1 \le a \le 3$, $0 \le b \le 3$, $0 \le c \le 3$, $1 \le d \le 5$, $0 \le e \le 5$.

From (3), we deduce $3 \mid e$, and hence e = 3e' where $e' \in \{0, 1\}$, so that (3) reduces to:

$$N = 12d + 2b + e'.$$

$$\therefore 12d + 2b + e' = N$$

$$= 16a + 4b + c$$

$$12d + e' = 16a + 2b + c$$

Now we find bounds for d:

$$12d + e' = 16a + 2b + c$$
≤ 16 · 3 + 2 · 3 + 3 = 57
∴ 12d ≤ 57

$$d \le 4$$

Also,

$$12d + e' = 16a + 2b + c \ge 16 \cdot 1$$
$$12d \ge 16 - e'$$
$$\ge 15$$
$$d \ge 2$$

Now let us enumerate the possibilities, specifying d and e' first, then determining feasible a, b, c and hence determining N:

d	e'	12d + e'	a	b	c	N = 12d + e' + 2b
4	1	49	3	0	1	49
4	0	48	3	0	0	48
3	1	37	2	2	1	41
			2	1	3	39
3	0	36	2	2	0	40
			2	1	2	38
2	1	25	1	3	3	31
2	0	24	1	3	2	30
			Total			316

Thus the required sum of all integers N with the required property is 316.

7. $x^2 - 19x + 94$ is a perfect square where x is an integer. Find the largest possible value of x.

Solution. Since $x^2 - 19x + 94$ is a perfect square, we have

$$x^2 - 19x + 94 = k^2$$
.

for some integer $k \geq 0$, or equivalently

$$x^{2} - 19x + 9 - k^{2} = 0.$$

$$\therefore x = \frac{19 \pm \sqrt{\Delta}}{2}$$

$$(4)$$

where Δ is the discriminant of (4). Now, x is an integer, and so

$$\Delta = (-19)^2 - 4 \cdot 1 \cdot (9 - k^2) = 4k^2 - 15$$

must itself be a perfect square, i.e.

$$4k^2-15=\ell^2, \qquad \text{for some integer } \ell \geq 0$$

$$4k^2-\ell^2=15$$

$$(2k-\ell)(2k+\ell)=15$$

Now $15 = 1 \times 15 = 3 \times 5$ and these are the only factorisations of 15 into two factors. So we have

$$2k - \ell = 1$$
 and $2k + \ell = 15 \Longrightarrow 4k = 16 \Longrightarrow k = 4$ or $2k - \ell = 3$ and $2k + \ell = 5 \Longrightarrow 4k = 8 \Longrightarrow k = 2$.

If
$$k = 4$$
 then $x = (19 \pm \sqrt{49})/2 = 13$ or 6.
If $k = 2$ then $x = (19 \pm \sqrt{1})/2 = 10$ or 9.

 \therefore the largest value x can be is 13.

8. A point P is marked inside a regular hexagon ABCDEF so that $\angle BAP = \angle DCP = 50^{\circ}$. Find $\angle ABP$.

Solution.

The internal angles of a regular hexagon are 120°. (Either use the fact that a regular n-gon has angles of size $180(n-2)/n^{\circ}$ $(=120^{\circ}, if n = 6), or use the property that one can form$ a regular hexagon from six equilateral triangles, in a fairly obvious way.)

 $\therefore \angle ABC = 120^{\circ} \text{ and } \angle BCP = 120^{\circ} - 50^{\circ} = 70^{\circ}.$

Now $\angle APC = 360^{\circ} - (50 + 70 + 120)^{\circ} = 120^{\circ}$, since angles of quadrilateral ABCP sum to 360° .

Observe $\exp \angle ABC = 360^{\circ} - \inf \angle ABC = 360^{\circ} - 120^{\circ} = 240^{\circ}$ (where $\exp \angle ABC = 360^{\circ} - 120^{\circ} = 240^{\circ}$) external angle as opposed to int $\angle \equiv \angle$ (internal) angle).

Now, $\operatorname{ext} \angle ABC = 2\angle APC$ and $BA = BC \implies P$ lies on the circle centred at B, and passing through A and C.

 $\therefore BA = BP$ (radii of same circle) and so $\triangle ABP$ is isosceles.

 $\therefore \angle APB = \angle BAP = 50^{\circ}.$

 $\therefore \angle ABP = 180^{\circ} - (50 + 50)^{\circ} = 80^{\circ}.$

9. Find a prime p with the property that for some larger prime q, both 2q - p and 2q + pare prime. Prove that there is only one such p.

Solution. First observe that $p \neq 2$, since $p = 2 \implies 2q + p = 2q + 2 = 2(q + 1)$ which is not prime since we are given $q > p \implies q > 0$.

If p=3, we can find prime quadruples (p,q,2q-p,2q+p), e.g.

$$(3,5,7,13), (3,7,11,17), (3,13,23,29), (3,17,31,37), \dots$$

Now suppose p is a prime, p > 3 and has the required property, i.e. there is q > p such that p, q, 2q - p, 2q + p are all prime.

Consider these primes modulo 6.

Then 2/p and $2/q \implies p, q \not\equiv 0, 2, 4 \pmod{6}$.

Also 3/p and $3/q \implies p, q \not\equiv 3 \pmod{6}$.

 $\therefore p, q \equiv 1 \text{ or } 5 \pmod{6} \text{ (and note } 5 \equiv -1 \pmod{6}).$

So we have two cases to consider: $p \equiv q \equiv \pm 1 \pmod{6}$ or $-p \equiv q \equiv \pm 1 \pmod{6}$.

Case 1. $p \equiv q \equiv \pm 1 \pmod{6}$. Here $2q + p \equiv \pm 3 \pmod{6} \implies 3 \mid 2q + p$ so that 2q + p is not prime, since 2q + p > p > 3.

Case 2. $-p \equiv q \equiv \pm 1 \pmod{6}$. Here $2q - p \equiv \pm 3 \pmod{6} \implies 3 \mid 2q - p$ so that 2q - p is not prime, since 2q - p > q > p > 3.

So in either case, p > 3 leads to a contradiction, and hence there is no p with the required property for p > 3.

Thus the only prime p with the property is p = 3 (for which there are many prime quadruples (p, q, 2q - p, 2q + p) where q > p).

10. In a triangle ADC, DC = 65 and altitudes DB and CE have lengths 33 and 63, respectively. Prove that the lengths of AB and AE cannot both be integers.

Investigation

Find AB and AE.

In a triangle A'D'C', D'C' = 65k and altitudes D'B' and C'E' have lengths 33k and 63k, respectively. Is there a value for k so that A'B' and A'E' are integers? If not, explain why. If so, find all such values of k. 5

Solution.

Let u = DE, v = BC, x = AE and y = AB. Then by Pythagoras' Theorem we have

$$u^{2} = 65^{2} - 63^{2}$$

$$= (65 - 63)(65 + 63) = 2 \cdot 128 = 2^{8}$$

$$\therefore u = 2^{4} = 16$$

$$v^{2} = 65^{2} - 33^{2}$$

$$= (65 - 33)(65 + 33) = 32 \cdot 98 = 2^{6} \cdot 7^{2}$$

$$\therefore v = 2^{3} \cdot 7 = 56$$

Also, by Pythagoras' Theorem,

$$33^2 + y^2 = (x+16)^2 = x^2 + 32x + 16^2$$
(5)

$$63^2 + x^2 = (y+56)^2 = y^2 + 112y + 56^2 \tag{6}$$

Adding (5) and (6) and cancelling $x^2 + y^2$ from both sides gives

$$33^{2} + 63^{2} = 32x + 112y + 16^{2} + 56^{2}$$

$$32x + 112y = (33^{2} - 16^{2}) + (63^{2} - 56^{2})$$

$$= 17 \cdot 49 + 7 \cdot 119 = 2 \cdot 7^{2} \cdot 17$$

$$16x + 56y = 7^{2} \cdot 17$$
(7)

Now suppose $x, y \in \mathbb{Z}$. Then 2 divides the LHS of (7) but does not divide the RHS of (7) – a contradiction. So AB = y and AE = x cannot both be integers. Investigation

In $\triangle A'D'C'$, the first applications of Pythagoras' Theorem with 33,63,65 replaced by 33k,63k,65k, respectively, result in D'E'=16k and C'B'=56k.

$$\therefore \triangle D'B'C' \sim \triangle DBC$$
 and $\triangle D'E'C' \sim \triangle DEC$.

$$\therefore \angle B'C'D' = \angle BCD$$
 and $\angle E'D'C' = \angle EDC$.

 $\therefore \triangle A'B'D' \sim \triangle ABD$ and $\triangle A'E'C' \sim \triangle AEC$.

 $A'B' = \frac{77}{8}k$ and $A'E' = \frac{147}{8}k$.

So A'B', $A'E' \in \mathbb{Z}$ if and only if $8 \mid k \in \mathbb{N}$.