Prijenos i razdjela električne energije Auditorne vježbe 1

Prof. dr. sc. Ivica Pavić

Izv. prof. dr. sc. Marko Delimar

Frano Tomašević, dipl.ing.

Kristina Baranašić, mag.ing.

ZADATAK 1. Korištenjem podataka sa slike odrediti sljedeće vrijednosti:

- a) Raspon (a) = <u>198 m</u>
- b) Provjes (f) = 3.5 m
- c) Sigurnosnu visinu (h_s) = 30 m
- d) Denivelaciju (h) = <u>28,213 m</u>

ZADATAK 2. Zadani su sljedeći podatci o AlČe užetu:

nazivni presjek 240/40 mm²	spec. težina 3.5·10 ⁻³ daN/(m·mm²)
stvarni presjek 282.58 mm²	temp.koefic. rastezanja 1.89·10 ⁻⁵ 1/K
promjer 21.9 mm	modul elastičnosti 7.7·10 ⁴ N/mm ²
dopušteno naprezanje 110 N/mm²	k_{leda} =1.8; σ_{max} = σ_{d} ; g=10 m/s ²

Raspon voda je 200 m.

Odredite:

- a) Najveći provjes vodiča prema jednadžbi parabole i jednadžbi lančanice
- b) Duljinu vodiča pri stanju maksimalnog provjesa prema jednadžbi parabole i jednadžbi lančanice
- c) Postotnu pogrešku približnog proračuna

- temperaturni raspon pri kojem se analizira stanje vodiča je od -20 °C do +40 °C
- maksimalno naprezanje užeta može nastupiti pri temperaturi -5°C (+ led) ili pri temperaturi -20°C.
- temperatura pri kojoj nastupa maksimalno naprezanje se određuje kriterijem kritičnog raspona:

$$a_{kr} = \sigma_{\text{max}} \cdot \sqrt{\frac{360 \cdot \beta}{\gamma_z^2 - \gamma_0^2}}$$

- ako je a > $a_{kr} \rightarrow \sigma_{max}$ nastupa pri -5°C + led
- ako je a $< a_{kr} \rightarrow \sigma_{max}$ nastupa pri -20°C

- Maksimalni provjes (f_{max}) može nastupiti pri temperaturi -5°C (+ led) ili pri +40°C
- Ta temperatura se određuje kriterijem kritične temperature:

$$\begin{split} \mathcal{G}_{kr} &= \frac{\sigma_Z}{\beta \cdot E} \cdot \left(1 - \frac{\gamma_0}{\gamma_z}\right) - 5 \\ \mathcal{G}_{kr} &< 40^{\circ}C \implies f_{\max} \mod +40^{\circ}C \\ \mathcal{G}_{kr} &> 40^{\circ}C \implies f_{\max} \mod -5^{\circ}C + \log +10^{\circ}C \end{split}$$

- Ukoliko σ_{max} nastupa pri -5°C + led tada je $\sigma_{Z} = \sigma_{max}$
- Inače je σ_7 potrebno odrediti korištenjem jednadžbe stanja.

• Ukoliko f_{max} nastupa pri -5°C (+ led) :
$$f_{\text{max}} = \frac{a^2 \cdot \gamma_Z}{8 \cdot \sigma_Z}$$

• Ukoliko f_{max} nastupa pri +40 °C:
$$f_{\text{max}} = \frac{a^2 \cdot \gamma_0}{8 \cdot \sigma_{+40^{\circ}C}}$$

RJEŠENJE:

$$\gamma_0 = 35 \cdot 10^{-3} \ N / m \cdot mm^2$$

$$\gamma_l = k \cdot \frac{0.18 \cdot \sqrt{d} \cdot g}{A}$$

$$\gamma_Z = \gamma_0 + \gamma_1 = 88.657 \cdot 10^{-3} \ N / m \cdot mm^2$$

$$a_{kr} = \sigma_{\text{max}} \cdot \sqrt{\frac{360 \cdot \beta}{\gamma_Z^2 - \gamma_0^2}} = 111.392 \, m$$

$$a > a_{kr}$$

najveće naprezanje nastupa pri -5°C uz dodatni zimski teret

$$\mathcal{G}_{kr} = \frac{\sigma_{\text{max}}}{\beta \cdot E} \cdot \left(1 - \frac{\gamma_0}{\gamma_Z}\right) - 5$$

$$\theta_{kr} = 40.75 \,^{\circ}C$$

$$\theta_{kr} > 40^{\circ}C$$

najveći provjes nastupa pri -5°C uz dodatni zimski teret

- a) Provjes užeta
- korištenjem jednadžbe lančanice:

$$f_{lan} = \frac{\sigma_{\text{max}}}{\gamma_Z} \cdot \left[ch \left(\frac{a \cdot \gamma_Z}{2 \cdot \sigma_{\text{max}}} \right) - 1 \right]$$
$$f_{lan} = 4.0320 \ m$$

korištenjem jednadžbe parabole:

$$f_{par} = \frac{a^2 \cdot \gamma_Z}{8 \cdot \sigma_{\text{max}}}$$
$$f_{par} = 4.0299 \, m$$

- b) Duljina užeta
- korištenjem jednadžbe lančanice:

$$l_{lan} = \frac{2 \cdot \sigma_{\text{max}}}{\gamma_Z} \cdot sh\left(\frac{a \cdot \gamma_Z}{2 \cdot \sigma_{\text{max}}}\right)$$
$$l_{lan} = 200.2166 \, m$$

korištenjem jednadžbe parabole:

$$l_{par} = a \cdot \left(1 + \frac{a^2 \cdot \gamma_Z^2}{24 \cdot \sigma_{\text{max}}^2} \right)$$
$$l_{par} = 200.2165 \, m$$

- c) Postotne pogreške približnog računa
- provjes užeta:

$$\Delta f = \frac{f_{par} - f_{lan}}{f_{lan}} = -0.052\%$$

duljina užeta:

$$\Delta l = \frac{l_{par} - l_{lan}}{l_{lan}} = -5 \cdot 10^{-5} \%$$

ZADATAK 3. Odredite montažne tablice za AlČe uže. Zadani su sljedeći podatci:

nazivni presjek 240/40 mm²	spec. težina 3.5·10 ⁻³ daN/(m·mm²)
stvarni presjek 282.58 mm²	temp.koefic. rastezanja 1.89·10 ⁻⁵ 1/K
promjer 21.9 mm	modul elastičnosti 7.7·10 ⁴ N/mm ²
dopušteno naprezanje 110 N/mm²	k_{leda} =1.8; σ_{max} = σ_{d} ; g=10 m/s ²

Raspon voda je 170 m.

RJEŠENJE

$$\gamma_0 = 35 \cdot 10^{-3} \ N / m \cdot mm^2$$

$$\gamma_l = k \cdot \frac{0.18 \cdot \sqrt{d} \cdot g}{A} = 53.657 \ N / m \cdot mm^2$$

$$\gamma_Z = \gamma_0 + \gamma_l = 88.657 \cdot 10^{-3} \ N / m \cdot mm^2$$

$$a_{kr} = \sigma_{\text{max}} \cdot \sqrt{\frac{360 \cdot \beta}{\gamma_Z^2 - \gamma_0^2}} = 111.392 \, m$$

$$a > a_{kr}$$

najveće naprezanje nastupa pri -5°C uz dodatni zimski teret

Početno stanje:

$$\mathcal{G}_1 = -5^{\circ}C$$

$$\gamma_1 = \gamma_Z = 88.657 \ N/m \cdot mm^2$$

$$\sigma_1 = \sigma_{\text{max}} = 110 \ N/mm^2$$

Iz kritične temperature:

• jednadžbom stanja zategnutog vodiča je dana funkcionalna ovisnost temperature okoline i naprezanja vodiča:

$$\frac{\sigma_1 - \sigma_2}{E} + \beta \cdot (\vartheta_1 - \vartheta_2) = \frac{a^2}{24} \cdot \left(\frac{\gamma_1^2}{\sigma_1^2} - \frac{\gamma_2^2}{\sigma_2^2} \right)$$

• poznavanjem jednog (početnog) stanja vodiča (σ_1) pri nekoj temperaturi (ϑ_1) moguće je odrediti stanje (σ_2) vodiča pri bilo kojoj drugoj temperaturi (ϑ_2)

korištenjem jednadžbe stanja:

$$\frac{\sigma_1 - \sigma_2}{E} + \beta \cdot (\vartheta_1 - \vartheta_2) = \frac{a^2}{24} \cdot \left(\frac{\gamma_1^2}{\sigma_1^2} - \frac{\gamma_2^2}{\sigma_2^2}\right)$$

uvrštavanjem poznatih vrijednosti dobije se:

$$\mathcal{G}_{2} = \mathcal{G}_{1} + \frac{\sigma_{1} - \sigma_{2}}{\beta \cdot E} + \frac{a^{2}}{24 \cdot \beta} \cdot \left(\frac{\gamma_{2}^{2}}{\sigma_{2}^{2}} - \frac{\gamma_{1}^{2}}{\sigma_{1}^{2}}\right)$$

$$\mathcal{G}_{2} = \frac{78047.840}{\sigma_{2}^{2}} - 0.687 \cdot \sigma_{2} + 29.199$$

Montažne tablice

σ_2 [N/mm ²]	θ ₂ [°C]	f [m]
100	-31.696	1.264
95	-27.418	1.331
90	-22.995	1.405
85	-18.394	1.488
80	-13.566	1.580
75	-8.451	1.686
70	-2.963	1.806
65	3.017	1.945
60	9.659	2.107
55	17.215	2.299
50	26.068	2.529
45	36.826	2.810
40	50.499	3.161
35	68.867	3.613
30	95.309	4.215

Montažne krivulje:

ZADATAK 4. Izračunajte naprezanje AlČe voda pri temperaturi 10 °C. Zadani su sljedeći podatci:

nazivni presjek 240/40 mm²	spec. težina 3.5·10 ⁻³ daN/(m·mm²)
stvarni presjek 282.58 mm²	temp.koefic. rastezanja 1.89·10 ⁻⁵ 1/K
promjer 21.9 mm	modul elastičnosti 7.7·10 ⁴ N/mm ²
dopušteno naprezanje 110 N/mm²	k_{leda} =1.8; σ_{max} = σ_{d} ; g=10 m/s ²

Raspon voda je 150 m.

RJEŠENJE

$$\gamma_0 = 35 \cdot 10^{-3} \ N/m \cdot mm^2$$

$$\gamma_1 = k \cdot \frac{0.18 \cdot \sqrt{d} \cdot g}{A} = 53.657 \ N/m \cdot mm^2$$

$$\gamma_2 = \gamma_0 + \gamma_2 = 88.657 \cdot 10^{-3} \ N/m \cdot mm^2$$

$$a_{kr} = \sigma_{\text{max}} \cdot \sqrt{\frac{360 \cdot \beta}{\gamma_Z^2 - \gamma_0^2}} = 111.392 \, m$$

$$a > a_{kr}$$

najveće naprezanje nastupa pri -5°C uz dodatni zimski teret

Početno stanje:

$$\theta_1 = -5^{\circ}C$$

$$\gamma_1 = \gamma_Z = 88.657 \ N/m \cdot mm^2$$

$$\sigma_1 = \sigma_{max} = 110 \ N/mm^2$$

Uvrštavanjem poznatih podataka u jednadžbu stanja:

$$\frac{\sigma_1 - \sigma_2}{E} + \beta \cdot (\vartheta_1 - \vartheta_2) = \frac{a^2}{24} \cdot \left(\frac{\gamma_1^2}{\sigma_1^2} - \frac{\gamma_2^2}{\sigma_2^2}\right)$$

Dobije se:

$$\frac{110 - \sigma_2}{77000} + 1.89 \cdot 10^{-5} \cdot (-5 - 10) = \frac{150^2}{24} \cdot \left| \frac{\left(88.657 \cdot 10^{-3}\right)^2}{110^2} - \frac{\left(35 \cdot 10^{-3}\right)^2}{\sigma_2^2} \right|$$

Sređivanjem navedenog izraza dobije se:

$$\sigma_2^3 - 41.275 \cdot \sigma_2^2 - 88429.880 = 0$$

NEWTONOVA METODA:

Približavanje rješenju preko tangenti:

Postupak rješavanja:

Korak 1. Odabrati proizvoljnu točku na krivulji s koordinatama (x_0, y_0) , te iz nje povući tangentu na krivulju. Jednadžba tangente u toj točki je:

$$y - y_0 = f'(x_0) \cdot (x - x_0) = y'(x_0) \cdot (x - x_0)$$

Korak 2. Odrediti presjecište tangente s osi apsica čime se dobije nova točka s koordinatama T $(x_1, 0)$. Vrijednost x_1 je moguće izračunati pomoću sljedećeg izraza:

$$y_T - y_0 = y_0' \cdot (x_T - x_0)$$

$$-y_0 = y_0' \cdot (x_1 - x_0) \longrightarrow x_1 = x_0 - \frac{y_0}{y_0'}$$

Korak 3. Podizanjem okomice iz te točke se dobije nova točka na krivulji $T1(x_1, y_1)$. Povlačenjem tangente iz T1 je moguće dobiti vrijednost x_2 koja će biti još bliže traženom rješenju(x). Postupak se ponavlja dok se ne dobije vrijednost (x_n) koja će zadovoljavati traženu točnost ε , odnosno dok ne bude ispunjen uvjet da je:

$$\Delta x_n = x_n - x_{n-1} < \varepsilon$$

Primjena Newtonove metode na zadanu jednadžbu:

$$\sigma_2^3 - 41.275 \cdot \sigma_2^2 - 88429.880 = 0$$

, odnosno na jednadžbu:

$$y = x^3 - 41.275 \cdot x^2 - 88429.880$$

ITERATIVNI POSTUPAK:

- Za točnost je odabrana vrijednost ε =0.01.
- 1. <u>Iteracija:</u>

$$x_0 = 70$$
 — pretpostavljena vrijednost
 $y_0 = 52322.620$
 $y' = 3 \cdot x^2 - 82.550 \cdot x$
 $y'_0 = 8921.5$
 $x_1 = x_0 - \frac{y_0}{y'_0} = 64.135$
 $\Delta x_1 = x_1 - x_0 = -5.865$

2. <u>Iteracija:</u>

$$y_{1} = 5600.117$$

$$y'_{1} = 7045.550$$

$$x_{2} = x_{1} - \frac{y_{1}}{y'_{1}} = 63.340$$

$$\Delta x_{2} = x_{2} - x_{1} = -0.795$$

3. <u>Iteracija:</u>

$$y_2 = 93.920$$

 $y'_2 = 6807.150$
 $x_3 = x_2 - \frac{y_2}{y'_2} = 63.326$
 $\Delta x_3 = x_3 - x_2 = -0.014$

4. <u>Iteracija:</u>

$$y_3 = -1.351$$

$$y_1' = 6802.986$$

$$x_4 = x_3 - \frac{y_3}{y_3'} = 63.326$$

$$\Delta x_4 = x_4 - x_3 = -0.0002$$

Iz navedenog slijedi da je naprezanje pri temperaturi θ_2 =10 °C jednako:

$$\sigma_2 = 63.326 \, N / mm^2$$

ZADATAK 5. Odredite duljinu užeta pri stanju maksimalnog naprezanja. Zadani su sljedeći podatci o AlČe užetu:

nazivni presjek 360/57 mm²	spec. težina 3.5·10 ⁻³ daN/(m·mm²)
stvarni presjek 360.2/57.3 mm²	temp.koefic. rastezanja 1.89·10 ⁻⁵ 1/K
promjer 26.6 mm	modul elastičnosti 7.7·10 ⁴ N/mm ²
dopušteno naprezanje 110 N/mm²	k_{leda} =1.0; σ_{max} = σ_{d} ; g=10 m/s ²

Raspon voda je 200 m.

RJEŠENJE

$$\gamma_0 = 34.5 \cdot 10^{-3} \ N / \left(m \cdot mm^2 \right)$$

$$\gamma_l = k \cdot \frac{0.18 \cdot \sqrt{d} \cdot g}{A}$$

$$\gamma_Z = \gamma_0 + \gamma_l = 56.736 \cdot 10^{-3} \ N / \left(m \cdot mm^2 \right)$$

$$a_{kr} = \sigma_{\text{max}} \cdot \sqrt{\frac{360 \cdot \beta}{\gamma_Z^2 - \gamma_0^2}} = 201.448 \ m$$

$$a < a_{kr} \longrightarrow \text{najveće naprezanje nastupa pri -20°C}$$

• stanje za koje se računa duljina užeta: $\mathcal{G}=-20~^{\circ}C$ $\gamma=\gamma_0$ $\sigma=\sigma_{\max}=110~N/mm^2$

korištenjem jednadžbe za proračun duljine užeta po paraboli:

$$l = a \cdot \left(1 + \frac{a^2 \cdot \gamma_0^2}{24 \cdot \sigma_{\text{max}}^2}\right)$$
$$l = 200.033 \, m$$

ZADATAK 6. Odredite i komentirajte uvjete pri kojima nastupa najveći provjes, te u tim uvjetima izračunajte provjes, relativni provjes, duljinu i otpust vodiča za AlČe uže pri rasponu od 200m. Podatci vodiča su:

nazivni presjek 50/8 mm²	spec. težina 3.7·10 ⁻³ daN/(m·mm²)
stvarni presjek 48.3/8 mm²	temp.koefic. rastezanja 1.89·10 ⁻⁵ 1/K
promjer 9.6 mm	modul elastičnosti 7.7·10 ⁴ N/mm ²
dopušteno naprezanje 90 N/mm²	k_{leda} =1.0; σ_{max} = σ_{d} ; g=10 m/s ²

RJEŠENJE:

 stanje pri kojem nastupa maksimalni provjes je određeno kriterijem kritične temperature:

 $\theta_{kr} = \frac{\sigma_z}{\beta \cdot E} \cdot \left(1 - \frac{\gamma_0}{\gamma_z} \right) - 5$

kako bi se kritična temperatura mogla odrediti potrebno je znati naprezanje σ_z . Korištenjem kriterija kritičnog raspona se provjerava da li je $\sigma_z = \sigma_{max}$.

$$\gamma_0 = 37 \cdot 10^{-3} \ N / (m \cdot mm^2)$$

$$\gamma_l = k \cdot \frac{0.18 \cdot \sqrt{d} \cdot g}{A}$$

$$\gamma_z = \gamma_0 + \gamma_l = 136.060 \cdot 10^{-3} \ N / (m \cdot mm^2)$$

$$a_{kr} = \sigma_{\text{max}} \cdot \sqrt{\frac{360 \cdot \beta}{\gamma_Z^2 - \gamma_0^2}} = 56.699 \ m$$

$$a > a_{kr} \longrightarrow \sigma_z = \sigma_{\text{max}}$$

primjenom kriterija kritične temperature:

$$\mathcal{S}_{kr} = \frac{\sigma_{\text{max}}}{\beta \cdot E} \cdot \left(1 - \frac{\gamma_0}{\gamma_Z}\right) - 5$$

$$\mathcal{S}_{kr} = 40.025 \, ^{\circ}C$$

$$\mathcal{S}_{kr} > 40 \, ^{\circ}C$$

najveći provjes nastupa pri -5°C uz dodatni zimski teret

korištenjem jednadžbe parabole:

$$f = \frac{a^2 \cdot \gamma_Z}{8 \cdot \sigma_{\text{max}}}$$

$$f = 7.559 \, m$$

$$\varphi = \frac{f}{a} \cdot 100\%$$

$$\varphi = 3.78 \, \%$$

duljina užeta i relativni otpust:

$$l = a \cdot \left(1 + \frac{a^2 \cdot \gamma_Z^2}{24 \cdot \sigma_{\text{max}}^2} \right)$$

$$l = 200.762 \, m$$

$$\lambda = \frac{l - a}{a} \cdot 1000 \, \%$$

$$\lambda = 3.8 \, \%$$

ZADATAK 7. Zadani su sljedeći podatci o AlČe užetu:

nazivni presjek 240/40 mm²	spec. težina 3.5·10 ⁻³ daN/(m·mm²)
stvarni presjek 282.58 mm²	temp.koefic. rastezanja 1.89·10 ⁻⁵ 1/K
promjer 21.9 mm	modul elastičnosti 7.7·10 ⁴ N/mm ²
dopušteno naprezanje 110 N/mm²	k_{leda} =2.0; σ_{max} = σ_{d} ; g=10 m/s ²

- a) Izračunajte najveći provjes vodiča pri rasponu od 200m. Poznato je da je a>a_{kr.}
- b)Odredite duljinu i relativni otpust vodiča pri temperaturi ϑ =15 °C ukoliko je naprezanje pri toj temperaturi σ = 49.668 N/mm² (uz raspon a=200m)

RJEŠENJE:

a) Iz uvjeta a> $a_{kr.}$ slijedi da je $\sigma_{max} = \sigma_{-5} = 110 \text{N/mm}^2$

$$\gamma_0 = 0.035 \ N / \left(m \cdot mm^2 \right)$$

$$\gamma_z = \gamma_0 + \gamma_l = \gamma_0 + k_{leda} \cdot 0.18 \cdot \frac{\sqrt{d \cdot g}}{A} N / (m \cdot mm^2)$$

$$\gamma_z = 94.6 \cdot 10^{-3} \ N / \left(m \cdot mm^2 \right)$$

$$\mathcal{G}_{kr.} = \frac{110}{1.89 \cdot 10^{-5} \cdot 7.7 \cdot 10^{4}} \cdot \left(1 - \frac{0.0350}{0.0946}\right) - 5^{\circ}C$$

$$\mathcal{G}_{kr} = 42.621 \,^{\circ} C$$

$$\theta_{kr} > 40 \,^{\circ}C$$

Najveći provjes nastupa pri -5°C uz dodatni zimski teret

$$f_{\text{max}} = \frac{a^2 \cdot \gamma_Z}{8 \cdot \sigma_{\text{max}}}$$

$$f_{\text{max}} = 4.3 \, m$$

b)
$$l_{15} = a \cdot \left(1 + \frac{a^2 \cdot \gamma_0^2}{24 \cdot \sigma_{15}^2}\right) = 200 \cdot \left(1 + \frac{200^2 \cdot 0.035^2}{24 \cdot 49.668^2}\right)$$
$$l_{15} = 200.166 \, m$$
$$\lambda_{15} = \frac{l_{15} - a}{a} = 0.828 \,\%$$