

Universidade de Aveiro

Departamento de Eletrónica, Telecomunicações e Informática

Compiladores

 $N^{\underline{o}}Mec:$ Nome:

1. Sobre o alfabeto $A = \{a, b, c\}$, considere a linguagem L_1 , definida pelo autómato finito M_1 , a linguagem L_2 , definida pela gramática regular G_2 (cujo símbolo inicial é S_2), e a linguagem L_3 .

$$S_2 \to a X$$

 $X \to b \mid b c b X \mid b S_2$ $L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$

$$L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$$

(a) Das seguintes afirmações apenas uma **não** é verdadeira. Assinale-a

 $ab \in L_1$

 $cabb \in L_1$

 $abab \in L_1$

 $abcbb \in L_1$

(b) Determine um autómatos finito determinista equivalente a M_1 .

(c) Obtenha um autómato finito, determinista ou não determinista, mas não generalizado, que reconheça a linguagem $L_5 = L_1 \cdot L_2$. Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.

	$abcc^*bb^*$	
	$abc^*(bb)^*$	
Das seg L_3 . Ass		apenas uma é uma gramática regular que representa a lir
	$ \begin{array}{ c c c } S \rightarrow a b C B \\ C \rightarrow c \mid c C \\ B \rightarrow \varepsilon \mid b b B \end{array} $	
	$egin{array}{c c} S ightarrow a b c C \ C ightarrow B \mid c C \ B ightarrow arepsilon \mid b b B \ \end{array}$	
	:)(bb)*)*	
	,,(,,,	
	que $L_3 \subset L_1$. (No lato (\subseteq).) Apresen	ote que se trata do subconjunto em sentido estrito (⊂) e te os passos intermédios e/ou o raciocínio adequados para j
sentido	que $L_3 \subset L_1$. (No lato (\subseteq).) Apresen	
sentido	que $L_3 \subset L_1$. (No lato (\subseteq).) Apresen	

- 2. Na linguagem Java um literal numérico inteiro pode ser escrito nas bases 2, 8, 10 e 16. Os prefixos 0b, 0 e 0x são usados para representar, respetivamente, as bases 2, 8 e 16. A base 10 não tem prefixo. Por exemplo, 0b11, 0743, 1299 e 0x12fD são literais numéricos válidos e 0b2 e 028 são inválidos.
 - (.) Apresente uma expressão regular que represente os padrões válidos para os literais numéricos em Java. Pode definir a expressão regular pretendida a partir de outras mais simples.

[1-9][0-9]* ([0] ([b][0-1]+ [0-7]* [xX][0-9a-fA-F]+))	