計算物理学 第三単元レポート

61908697 佐々木良輔

4-A.(e), (f)

プログラムについて

プログラムは基本的に教材として配布された wave.f90 を用いている。ただし標準入力によるデータ入力は使い勝手が悪かったため、定数はソースコードにベタ書きへ変更した変更したソースコードはソースコードに示す。また厳密解を出力するプログラムの PAD 図は図のようになる。そのソースコードはソースコードである。

図 1 厳密解の出力プログラムの PAD 図

結果

表 1 に計算条件を示す。ここで dt は数値解の安定性条件が最も厳しくなる条件 3 で安定となるように定めた。図 2、図 3 に各条件での $\langle x \rangle$ 、 $\langle (x-\langle x \rangle)^2 \rangle$ の数値解及び厳密解を示す。また図 4、図 5 に t=0.05 での Δx^2 対 $\langle x \rangle$ 、 $\langle (x-\langle x \rangle)^2 \rangle$ の数値解及び厳密解のグラフを示す。

図 2 $\langle x \rangle$ の数値解と厳密解

図 $3 \ \langle (x-\langle x \rangle)^2 \rangle$ の数値解と厳密解

表 1

条件	Δx	dt	σ	k_0	L
1	1/64	1.0×10^{-5}	0.1	20	4
2	1/128	"	"	"	"
3	1/256	<i>"</i>	"	"	"

考察

Gauss 波束の期待値,分散の厳密解は

$$\langle x \rangle = x_0 + k_0 t \tag{1}$$

$$\langle (x - \langle x \rangle)^2 \rangle = \sigma^2 \left(1 + \frac{t^2}{4\sigma^4} \right)$$
 (2)

であった. 図 2, 図 3 から期待値と分散がそれぞれ線形, 二次曲線的な振る舞いをしていることがわかる. また Δx が小さくなるほど数値解が厳密解に近づいていることもわかる.

また図 4 と図 5 を見ると数値解の誤差が Δx^2 に比例している様子がわかる. また数値解と Δx^2 の関係はそれぞれ最小二乗法により

$$y = -7.856 \times 10^3 x + 0.5000 \tag{3}$$

$$y = -2.541 \times 10^3 x + 0.07247 \tag{4}$$

となったので $\Delta x \rightarrow 0$ での期待値と分散は

$$\langle x \rangle = 0.5000 \tag{5}$$

$$\langle (x - \langle x \rangle)^2 \rangle = 0.07247 \tag{6}$$

となる. 一方で厳密解から得られる期待値と分散は

$$\langle x \rangle = -0.5 + 20 \times 0.05 = 0.5$$
 (7)

$$\langle (x - \langle x \rangle)^2 \rangle = 0.1^2 \left(1 + \frac{0.05^2}{4 \times 0.1^4} \right) = 7.25 \times 10^{-2}$$
 (8)

となり、それぞれ相対誤差は 0.000~%、 $4.138\times10^{-2}~\%$ となり、良く一致していることがわかる.