MC448 — Análise de Algoritmos I

Cid Carvalho de Souza e Cândida Nunes da Silva

31 de Março de 2006

Cid Carvalho de Souza e Cândida Nunes da Silva

MC448 — Análise de Algoritmos I

Crescimento de funções

4□ ト 4 億 ト 4 億 ト 4 億 ト 9 0 0 0

Cid Carvalho de Souza e Cândida Nunes da Silva

MC448 — Análise de Algoritmos

Notação Assintótica

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - Problemas de aritmética de precisão arbitrária: número de bits (ou bytes) dos inteiros.
 - Problemas em grafos: número de vértices e/ou arestas
 - Problemas de ordenação de vetores: tamanho do vetor.
 - Busca em textos: número de caracteres do texto ou padrão de busca.
- Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos medindo número de operações.

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10 ⁹
n log n	200	3000	$4 \cdot 10^{4}$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n ²	10 ⁴	10 ⁶	10 ⁸	10^{12}	10^{18}
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$pprox 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

Classe O

Definição

 $O(g(n)) = \{f(n) :$ existem constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0\}$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

4 ロ ト 4 回 ト 4 直 ト 4 直 り 9 0 0

Cid Carvalho de Souza e Cândida Nunes da Silva

MC448 — Análise de Algoritmos I

Classe Ω

Definicão

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

→ロト→部ト→車ト→車 のQで

Classe O

Definicão

 $O(g(n)) = \{f(n) :$ existem constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0\}$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in O(n^2)$$

Valores de c e n_0 que satisfazem a definição são

$$c = \frac{1}{2} e n_0 = 7.$$

◆ロト ◆園 ト ◆恵 ト ◆恵 ・ 草 ・ 夕久 ○

Cid Carvalho de Souza e Cândida Nunes da Silva

MC448 — Análise de Algoritmos

Classe Ω

Definição

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Omega(n^2)$$

 $\overline{\text{Valores}}$ de c e n_0 que satisfazem a definição são

$$c = \frac{1}{14} e n_0 = 7.$$

Classe Θ

Definição

 $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Cid Carvalho de Souza e Cândida Nunes da Silv

AC448 — Análise de Algoritmos I

Classe o

Definição

 $o(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le f(n) < cg(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).

Exemplo:

 $1000n^2 \in o(n^3)$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \left\lceil \frac{1000}{c} \right\rceil + 1.$$

<ロ > → □ > → □ > → □ > → □ → ○ へ()

Classe ⊖

Definição

 $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Theta(n^2)$$

Valores de c_1 , c_2 e n_0 que satisfazem a definição são

$$c_1 = \frac{1}{14}$$
, $c_2 = \frac{1}{2}$ e $n_0 = 7$.

◆□▶◆□▶◆■▶◆■▶ ■ 900

Cid Carvalho de Souza e Cândida Nunes da Silva

MC448 — Análise de Algoritmos

Classe ω

Definição

 $\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0.\}$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2 \in \omega(n)$$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \lceil 1000c \rceil + 1.$$

Definições equivalentes

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
 $f(n) \in O(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Theta(g(n))$ se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$.
 $f(n) \in \omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

◆□▶ ◆圖▶ ◆薑▶ ◆薑▶ ■ 釣魚@

Cid Carvalho de Souza e Cândida Nunes da Silva

MC448 — Análise de Algoritmos I

Propriedades das Classes

Transitividade:

Se
$$f(n) \in O(g(n))$$
 e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$.
Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$.
Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.
Se $f(n) \in o(g(n))$ e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.
Se $f(n) \in \omega(g(n))$ e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$.

<ロト <部ト <きト <きト を 900

Cid Carvalho de Souza e Cândida Nunes da Silva

MC448 — Análise de Algoritmos

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

$$f(n) \in \Omega(f(n)).$$

$$f(n) \in \Theta(f(n)).$$

Simetria:

$$f(n) \in \Theta(g(n))$$
 se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

$$f(n) \in O(g(n))$$
 se, e somente se, $g(n) \in \Omega(f(n))$.

$$f(n) \in o(g(n))$$
 se, e somente se, $g(n) \in \omega(f(n))$.

Exemplos

Quais as relações de comparação assintótica das funções:

- 2^π
- log n
- n
- n log n
- \circ n^2
- $100n^2 + 15n$
- 2ⁿ