Exercises Week 6

Advanced Machine Learning (02460) Technical University of Denmark Søren Hauberg

> March 2024 (Version 1.0)

1 Theoretical exercises

Exercise 6.1 (Spherical metric) Let $x_1 \in (0, \pi)$ and $x_2 \in [0, 2\pi)$ be the latent coordinates of the manifold spanned by the function $f: (0, \pi) \times [0, 2\pi) \to \mathbb{R}^3$

$$f(x_1, x_2) = \begin{pmatrix} \sin(x_1)\cos(x_2) \\ \sin(x_1)\sin(x_2) \\ \cos(x_1) \end{pmatrix}. \tag{1}$$

This will span the unit sphere.

- 1. Derive the Jacobian matrix of f.
- 2. Derive the metric associated with f according to Eq. 5.21 in the DGGM book.
- 3. Show that the metric is positive definite.

Exercise 6.2 (Quadratic metric) Consider a two-dimensional abstract manifold with the metric

$$\mathbf{G}_{\mathbf{x}} = \left(1 + \|\mathbf{x}\|^2\right) \mathbf{I}, \qquad \mathbf{x} \in \mathbb{R}^2. \tag{16}$$

Consider the points

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \mathbf{x}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{x}_3 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}. \tag{17}$$

- 1. Compute the local norms of the tangent vector $\mathbf{v}_1 = \begin{pmatrix} 1 & 0 \end{pmatrix}^{\mathsf{T}}$ assuming the point of tangency is \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 , respectively.
- 2. Compute the local angles between \mathbf{v}_1 and $\mathbf{v}_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}^{\mathsf{T}}$ in the same three points of tangency.

Exercise 6.3 (Euclidean metric) Consider the Euclidean metric of \mathbb{R}^d , i.e. $\mathbf{G} = \mathbf{I}$.

- 1. Derive the coefficients of the geodesics ODE of this metric (Eq. 7.20 in the DGGM book).
- 2. Derive the geodesic ODE.
- 3. What is the geodesic that connects points \mathbf{x}_1 and \mathbf{x}_2 ?

Exercise 6.4 (Quadratic metric) Consider a two-dimensional abstract manifold with the metric

$$\mathbf{G}_{\mathbf{x}} = \left(1 + \|\mathbf{x}\|^2\right) \mathbf{I}, \qquad \mathbf{x} \in \mathbb{R}^2. \tag{33}$$

- 1. Derive the coefficients of the geodesics ODE of this metric (Eq. 7.20 in the DGGM book). Hint: note that some terms of the metric are zero, which renders some coefficients to be zero as well.
- 2. Derive the geodesic ode.
- 3. Consider a geodesic c starting at $c_0 = \mathbf{0}$ and initial velocity $\dot{c}_0 = \mathbf{v}$. What is the acceleration \ddot{c}_0 ?

2 Programming exercises

Exercise 6.5 (Curve parametrizations) Consider a two-dimensional abstract manifold with the metric

$$\mathbf{G}_{\mathbf{x}} = \left(1 + \|\mathbf{x}\|^2\right) \mathbf{I}, \qquad \mathbf{x} \in \mathbb{R}^2. \tag{47}$$

- 1. Implement direct energy minimization for computing geodesics using piecewise straight lines to parameterize the solution curve.
- 2. Extend the previous implementation to also support third-order polynomials to parametrize the solution curve.

Exercise 6.6 (Density metrics) Consider the dataset available at

http://hauberg.org/weekendwithbernie/toybanana.npy

This consist of N = 992 observations in \mathbb{R}^2 . Consider the metric over \mathbb{R}^2 defined as

$$\mathbf{G}_{\mathbf{x}} = \frac{1}{p(\mathbf{x}) + \epsilon} \tag{48}$$

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{N}(\mathbf{x}|\mathbf{x}_n, \sigma^2 \mathbf{I}), \tag{49}$$

where $\sigma = 0.1$, and $\epsilon = 10^{-4}$ avoids dividing by zero.

- 1. Implement direct energy minimization for computing geodesics using piecewise straight lines to parameterize the solution curve.
- 2. Extend the previous implementation to also support third-order polynomials to parametrize the solution curve.