Number Theory

Divisors

DEF: Let a, b and c be integers such that $a = b \cdot c$.

Then b and c are said to **divide** (or are **factors**) of a, while a is said to be a **multiple** of b (as well as of c). The pipe symbol "|" denotes "divides" so the situation is summarized by:

 $b \mid a \wedge c \mid a$.

NOTE: Students find notation confusing, and think of "|" in the reverse fashion, perhaps confuse pipe with forward slash "/"

Divisors. Examples

Q: Which of the following is true?

- 1. 77 | 7
- 2. 7 | 77
- 3. 24 | 24
- 4. 0 | 24
- 5. 24 | 0

Divisors. Examples

A:

- 1. 77 | 7: false bigger number can't divide smaller positive number
- 2. $7 \mid 77$: true because $77 = 7 \cdot 11$
- 3. 24 | 24: true because $24 = 24 \cdot 1$
- 4. 0 | 24: false, only 0 is divisible by 0
- 5. 24 | 0: true, 0 is divisible by every number (0 = 24 · 0)

Properties of Divisibility

- \triangleright If a|1, then $a=\pm 1$.
- If a|b and b|a, then $a = \pm b$. Any $b \neq 0$ divides 0.
- ➤ If a | b and b | c, then a | c e.g. 11 | 66 and 66 | 198 x 11 | 198
- If b|g and b|h, then b|(mg + nh)for arbitrary integers m and ne.g. b = 7; g = 14; h = 63; m = 3; n = 2hence 7|14 and 7|63

Prime Numbers

DEF: A number $n \ge 2$ *prime* if it is only divisible by 1 and itself. A number $n \ge 2$ which isn't prime is called *composite*.

Integer n can be factored as

$$-n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_n^{a_n}$$

where p_i is prime number

Q: Which of the following are prime? 0,1,2,3,4,5,6,7,8,9,10

Prime Numbers

- A: 0, and 1 not prime since not positive and greater or equal to 2
 - 2 is prime as 1 and 2 are only factors
 - 3 is prime as 1 and 3 are only factors.
 - 4,6,8,10 not prime as *non-trivially* divisible by 2.
 - 5, 7 prime.
 - $9 = 3 \cdot 3$ not prime.

Last example shows that not all odd numbers are prime.

Fundamental Theorem of Arithmetic

THM: Any number $n \ge 2$ is expressible as as a unique product of 1 or more prime numbers.

Note: prime numbers are considered to be "products" of 1 prime.

We'll need induction and some more number theory tools to prove this.

Q: Express each of the following number as a product of primes: 22, 100, 12, 17

Fundamental Theorem of Arithmetic

A: 22 = 2.11, 100 = 2.2.5.5, 12 = 2.2.3, 17 = 17

Convention: Want 1 to also be expressible as a product of primes. To do this we define 1 to be the "empty product". Just as the sum of nothing is by convention 0, the product of nothing is by convention 1.

→Unique factorization of 1 is the factorization that uses no prime numbers at all.

Primality Testing

Prime numbers are very important in encryption schemes. Essential to be able to verify if a number is prime or not. It turns out that this is quite a difficult problem. First try:

```
boolean isPrime(integer n)

if ( n < 2 ) return false

for(i = 2 to n - 1)

if( i \mid n ) // "divides"! not disjunction

return false

return true
```

Q: What is the running time of this algorithm?

Primality Testing

A: Assuming divisibility testing is a basic operation —so O(1) (this is an invalid assumption)— then above primality testing algorithm is O(n).

Q: What is the running time in terms of the input size *k*?

L9 11

Primality Testing

A: Consider n = 1,000,000. The input size is k = 7 because n was described using only 7 digits. In general we have $n = O(10^k)$. Therefore, running time is $O(10^k)$. REALLY HORRIBLE!

L9 12

Division

Remember long division?

Division

THM: Let a be an integer, and d be a positive integer. There are unique integers q, r with $r \in \{0,1,2,...,d-1\}$ satisfying

$$a = dq + r$$

The proof is a simple application of long-division. The theorem is called the *division algorithm* though really, it's long division that's the algorithm, not the theorem.

L9 14

Greatest Common Divisor Relatively Prime

DEF Let a,b be integers, not both zero. The greatest common divisor of a and b (or gcd(a,b)) is the biggest number d which divides both a and b.

Equivalently: gcd(a,b) is smallest number which divisibly by any x dividing both a and b.

DEF: a and b are said to be **relatively prime** if gcd(a,b) = 1, so no prime common divisors.

L9 15

Greatest Common Divisor Relatively Prime

- Q: Find the following gcd's:
- 1. gcd(11,77)
- $2. \gcd(33,77)$
- 3. gcd(24,36)
- 4. gcd(24,25)

Greatest Common Divisor Relatively Prime

A:

- 1. gcd(11,77) = 11
- 2. gcd(33,77) = 11
- 3. gcd(24,36) = 12
- 4. gcd(24,25) = 1. Therefore 24 and 25 are relatively prime.

NOTE: A prime number are relatively prime to all other numbers which it doesn't divide.

L9 17

Euclidean algorithm

- Find the GCD of two numbers a and b, a<b/li>
- Use fact if a and b have divisor d so does a-b, a-2b ...
 - A=a, B=b
 - while B>0
 - R = A mod B
 - A = B, B = R
 - return A

Example GCD(1970,1066)

•
$$1970 = 1 \times 1066 + 904$$

•
$$1066 = 1 \times 904 + 162$$

•
$$904 = 5 \times 162 + 94$$

•
$$162 = 1 \times 94 + 68$$

•
$$94 = 1 \times 68 + 26$$

•
$$68 = 2 \times 26 + 16$$

•
$$26 = 1 \times 16 + 10$$

•
$$16 = 1 \times 10 + 6$$

•
$$10 = 1 \times 6 + 4$$

•
$$6 = 1 \times 4 + 2$$

•
$$4 = 2 \times 2 + 0$$

Modular Arithmetic

There are two types of "mod" (confusing):

- the mod function
 - Inputs a number a and a base b
 - Outputs a mod b a number between 0 and b
 - -1 inclusive
 - This is the remainder of a÷b
 - Similar to Java's % operator.
- the (mod) congruence
 - Relates two numbers a, a' to each other relative some base b
 - $-a \equiv a' \pmod{b}$ means that a and a' have the same remainder when dividing by b

Similar to Java's "%" operator except that answer is always positive. E.G.

-10 mod 3 = 2, but in Java -10%3 = -1.

Q: Compute

- 1. 113 mod 24
- 2. -29 mod 7

A: Compute

1. 113 mod 24:

2. -29 mod 7

A: Compute

1. 113 mod 24:

2. -29 mod 7

A: Compute

1. 113 mod 24:

2. -29 mod 7

A: Compute

1. 113 mod 24:

2. -29 **mod** 7

(mod) congruence Formal Definition

DEF: Let a, a' be integers and b be a positive integer. We say that a is congruent to a' modulo b (denoted by $a \equiv a$ ' (mod b) iff $b \mid (a - a')$.

Equivalently: $a \mod b = a' \mod b$

Q: Which of the following are true?

- 1. $3 \equiv 3 \pmod{17}$
- 2. $3 \equiv -3 \pmod{17}$
- 3. $172 \equiv 177 \pmod{5}$
- 4. $-13 \equiv 13 \pmod{26}$

(mod) congruence

A:

- 1. $3 \equiv 3 \pmod{17}$ True. any number is congruent to itself (3-3 = 0, divisible by all)
- 2. $3 \equiv -3 \pmod{17}$ False. (3-(-3)) = 6 isn't divisible by 17.
- 3. 172 ≡ 177 (mod 5) True. 172-177 = -5 is a multiple of 5
- 4. $-13 \equiv 13 \pmod{26}$ True: -13-13 = -26 divisible by 26.

Modular Arithmetic

Congruence

- $-a \equiv b \mod n$ says when divided by n that a and b have the same remainder
- It defines a relationship between all integers
 - a ≡ a
 - $a \equiv b$ then $b \equiv a$
 - $a \equiv b$, $b \equiv c$ then $a \equiv c$

Cont.

addition

- (a+b) mod n \equiv (a mod n) + (b mod n)

subtraction

 $- a-b \mod n \equiv a+(-b) \mod n$

multiplication

- a*b mod n
- derived from repeated addition
- Possible: $a*b \equiv 0$ where neither a, b ≡ 0 mod n
 - Example: 2*3 =0 mod 6

Cont.

Division

- b/a mod n
- multiplied by inverse of a: b/a = b*a⁻¹ mod n
- $-a^{-1*}a \equiv 1 \mod n$
- $-3^{-1} \equiv 7 \mod 10$ because $3*7 \equiv 1 \mod 10$
- Inverse does not always exist!
 - Only when gcd(a,n)=1

Modular Arithmetic

• An Addition Table in Z_{12}

Plus	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1[1	2	3	4	5	6	7	8	9	10	11	0
2	2	3	4	5	6	7	8	9	10	11	0	1
3	3	4	5	6	7	8	9	10	11	0	1	2
4	4	5	6	7	8	9	10	11	0	1	2	3
5	5	6	7	8	9	10	11	0	1	2	3	4
6	6	7	8	9	10	11	0	1	2	3	4	5
7	7	8	9	10	11	0	1	2	3	4	5	6
8	8	9	10	11	0	1	2	3	4	5	6	7
9	9	10	11	0	1	2	3	4	5	6	7	8
10	10	11	0	1	2	3	4	5	6	7	8	9
11	11	0	1	2	3	4	5	6	7	8	9	10

Additive Inverse Property

- -a + -a = 0
- What is the meaning of -a in Z_{12} ?
 - If a = 5 then 5 + -5 = 0 translates to -5 + 7 = 0
 - If a = 3 then 3 + -3 = 0 translates to -3 + 9 = 0
- Then -a can be translated as (n a)

• The Additive Inverse Property

The same pattern holds for other n

Multiplicative Inverse Property

- -a * 1/a = 1
- What is the meaning of 1/a in Z_n ?
 - $Z_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$
 - There are no fractions
 - Can we find numbers to multiply a given element in Z_{12} such that the product will be one?
 - Definition of division tells us that
 if 1/a = k then k * a = 1

A Multiplication Table in Z₁₂

Times	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11[0	11	10	9	8	7	6	5	4	3	2	1

Modular Arithmetic

- The Multiplicative Inverse Property: Z₁₂
 - Only 1, 5, 7 and 11 have inverses
 - 5 and 7 are the inverses of each other
 - Both 1 and 11 are their own inverses
 - Why don't the other numbers have inverses?
 - Conjectures?
 - Test with other mods: Try mods 5, 6, 7, 8, 9, 10and 11
 - But, before you start, look at the table again and look for more patterns.

• A Multiplication Table in Z_{12}

Times	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

- The Multiplicative Inverse Property: Z_n
 - For n = 11, 10, 9, 8, 7, 6, 5,...
 - Which numbers have inverses and which do not?
 - Is there a pattern to this?
 - Is there a number in every mod that has a multiplicative inverse (aside from 1)?
 - Let's look...

• A Multiplication Table in Z_{11}

Times	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1[0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	1	3	5	7	9
3[0	3	6	9	1	4	7	10	2	5	8
4	0	4	8	1	5	9	2	6	10	3	7
5	0	5	10	4	9	3	8	2	7	1	6
6	0	6	1	7	2	8	3	9	4	10	5
7	0	7	3	10	6	2	9	5	1	8	4
8	0	8	5	2	10	7	4	1	9	6	3
9	0	9	7	5	3	1	10	8	6	4	2
10	0	10	9	8	7	6	5	4	3	2	1

• A Multiplication Table in Z_{10}

Times	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

A Multiplication Table in Z₉

Times	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1[0	1	2	3	4	5	6	7	8
2	0	2	4	6	8	1	3	5	7
3	0	3	6	0	3	6	0	3	6
4	0	4	8	3	7	2	6	1	5
5	0	5	1	6	2	7	3	8	4
6	0	6	3	0	6	3	0	6	3
7[0	7	5	3	1	8	6	4	2
8	0	8	7	6	5	4	3	2	1

A Multiplication Table in Z₈

Times	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

• A Multiplication Table in Z₇

Times	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

• A Multiplication Table in Z₆

Times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

A Multiplication Table in Z₅

Times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

• A Multiplication Table in Z_n: Summary

$\mathbf{Z}_{\mathbf{n}}$	Have Inverse	Don't Have Inverse
12	1, 5, 7, 11	0, 2, 3, 4, 6, 8, 9, 10
11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	0
10	1, 3, 7, 9	0, 2, 4, 5, 6, 8
9	1, 2, 4, 5, 7, 8	0, 3, 6
8	1, 3, 5, 7	0, 2, 4, 6
7	1, 2, 3, 4, 5, 6	0
6	1, 5	0, 2, 3, 4
5	1, 2, 3, 4	0

• A Multiplication Table in Z_n: Summary

$\mathbf{Z}_{\mathbf{n}}$	Have Inverse	Don't Have Inverse
12	1, 5, 7, 11	0 , 2, 3, 4, 6, 8, 9, 10
11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	0
10	1, 3, 7, 9	0, 2, 4, 5, 6, 8
9	1, 2, 4, 5, 7, 8	0, 3, 6
8	1, 3, 5, 7	0, 2, 4, 6
7	1, 2, 3, 4, 5, 6	0
6	1, 5	0, 2, 3, 4
5	1, 2, 3, 4	0

Multiplication Table in Z_n: Summary

- 0 never has an inverse
 - The Multiplicative Property of Zero holds
- 1 is always its own inverse
- -1 in the form of (n 1) is also always its own inverse

• A Multiplication Table in Z_n: Summary

$\mathbf{Z}_{\mathbf{n}}$	Have Inverse	Don't Have Inverse
12	1, 5, 7, 11	0, 2, 3, 4, 6, 8, 9, 10
11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	0
10	1, 3, 7, 9	0, 2, 4, 5, 6, 8
9	1, 2, 4, 5, 7, 8	0, 3, 6
8	1, 3, 5, 7	0, 2, 4, 6
7	1, 2, 3, 4, 5, 6	0
6	1, 5	0, 2, 3, 4
5	1, 2, 3, 4	0

- A Multiplication Table in Z_n: Summary
 - The numbers that have inverses in Z_n are relatively prime to n
 - That is: gcd(x, n) = 1
 - The numbers that do NOT have inverses in Z_n have common prime factors with n
 - That is: gcd(x, n) > 1

- A Multiplication Table in Z_n: Summary
 - The results have implications for division:
 - Some divisions have no answers
 - $-3 * x = 2 \mod 6$ has no solutions => 2/3 has no equivalent in Z_6
 - Some division have multiple answers
 - $-2*2=4 \mod 6 \Rightarrow 4/2=2 \mod 6$
 - $-2*5=4 \mod 6 \Rightarrow 4/2=5 \mod 6$
 - Only numbers that are relatively prime to n will be uniquely divisible by all elements of Z_n

- A Multiplication Table in Z_n: Summary
 - The results have implications for division:
 - Zero divisors exist in some mods:
 - $3 * 2 = 0 \mod 6 => 0/3 = 2 \mod 0/2 = 3 \mod 6$
 - $3 * 6 = 0 \mod 9 => 0/3 = 6 \mod 0/6 = 3 \mod 9$

Extended Euclidean Algorithm

- calculates not only GCD but x & y:
 - ax + by = d = gcd(a, b)
- useful for later crypto computations
- follow sequence of divisions for GCD but assume at each step i, can find x &y:

```
r = ax + by
```

- at end find GCD value and also x & y
- if GCD(a,b)=1 these values are inverses

Finding Inverses

```
EXTENDED EUCLID (m, b)
1. (A1, A2, A3) = (1, 0, m);
  (B1, B2, B3) = (0, 1, b)
2. if B3 = 0
  return A3 = gcd(m, b); no inverse
3. if B3 = 1
  return B3 = gcd (m, b); B2 = b^{-1} \mod m
4. O = A3 div B3
5. (T1, T2, T3) = (A1 - Q B1, A2 - Q B2, A3 - Q B3)
6. (A1, A2, A3) = (B1, B2, B3)
7. (B1, B2, B3) = (T1, T2, T3)
8. goto 2
```

Example

```
How to find the inverse of 550 in GF(1759),
let us use a = 1759 and b = 550 and
solve for 1759x + 550y = gcd(1759, 550).
The results are shown in Table on next slide
Thus, we have
1759 \times (-111) + 550 \times 355
               = -195249 + 195250 = 1.
```

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B1	B2	B3
	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

From above results; we have $1759 \times (-111) + 550 \times 355 = -195249 + 195250 = 1$.

Finding Inverses in Z_n

- The numbers that have inverses in Z_n are relatively prime to n
- We can use the Euclidean Algorithm to see if a given "x" is relatively prime to "n"; then we know that an inverse does exist.
- How can we find the inverse without looking at all the remainders? A problem for large n.

Finding Inverses in Z_n

- Convert 1 = x * 26 + y * 15 to mod 26 and we get:
- $-1 \mod 26 \equiv (y * 15) \mod 26$
- Then if we find y we find the inverse of 15 in mod 26.
- So we start from 1 and work backward...

Alternative method for finding Modular Inverse

- Using the Extended Euclidean Algorithm
 - Formalizing the backward steps we get this formula:
 - $y_0 = 0$
 - $y_1 = 1$
 - $y_i = (y_{i-2} [y_{i-1} * q_{i-2}]); i > 1$
 - Related to the "Magic Box" method

Step 0	26 = 1 * 15 + 11	$y_0 = 0$
Step 1	15 = 1 * 11 + 4	$y_1 = 1$
Step 2	11 = 2 * 4 + 3	$y_2 = (y_0 - (y_1 * q_0))$ = 0 - 1 * 1 mod 26 = 25
Step 3	4 = 1 * 3 + 1	$y_3 = (y_1 - (y_2 * q_1))$ = 1 - 25 * 1 = -24 mod 26 = 2
Step 4	3 = 3 * 1 + 0	$y_4 = (y_2 - (y_3 * q_2))$ = 25 - 2 * 2 mod 26 = 21
Step 5	Note: q _i is in red above	$y_5 = (y_3 - (y_4 * q_3))$ = 2 - 21 * 1 = -19 mod 26 = 7

Using the Extended Euclidean Algorithm

$$-y_0 = 0$$

$$-y_1 = 1$$

$$-y_i = (y_{i-2} - [y_{i-1} * q_{i-2}]); i > 1$$

- Try it for...
 - 13 mod 22
 - $-17 \mod 97$

Using the Extended Euclidean Algorithm

```
-22 = 1 * 13 + 9 	 y[0] = 0
-13 = 1 * 9 + 4 	 y[1] = 1
-9 = 2 * 4 + 1 	 y[2] = 0 - 1 * 1 mod 22 = 21
-4 = 4 * 1 + 0 	 y[3] = 1 - 21 * 1 mod 22 = 2
- Last Step : 	 y[4] = 21 - 2 * 2 mod 22 = 17
```

- Check: 17 * 13 = 221 = 1 mod 22

Using the Extended Euclidean Algorithm

- Check: 40 * 17 = 680 = 1 mod 97

Prime Factorisation

- to factor a number n is to write it as a product of other numbers: n=a × b × c
- note that factoring a number is hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes

- eg. 91=7×13 ; 3600=24×32×52
$$a = \prod_{i=1}^{n} p^{i}$$

EULER'S TOTIENT FUNCTION

 $\phi(n)$ is the number of non-negative integers less than n which are relatively prime to n.

n	$\phi(n)$	n	$\phi(n)$	n	$\phi(n)$
1	0	10	4	19	18
2	1	11	10	20	8
3	2	12	4	21	12
4	2	13	12	22	10
5	4	14	6	23	22
6	2	15	8	24	8
7	6	16	8	25	20
8	4	17	16	26	12
9	4	18	6	27	18

Some Important Values of $\phi(n)$:

n	$\phi(n) =$	Conditions
p	p-1	p prime
p^n	$p^n - p^{n-1}$	p prime
$s \cdot t$	$\phi(s) \cdot \phi(t)$	gcd(s,t)=1
$p \cdot q$	$(p-1)\cdot(q-1)$	p,q prime

Fermat's Little Theorem: If p is prime and $p \not | a$ then $a^{p-1} \equiv 1 \mod p$.

$$a \mid a^6 \mod 7$$
 $2 \mid 2^6 = 64 \equiv 1 \mod 7$
 $3 \mid 3^6 = 729 \equiv 1 \mod 7$
 $4 \mid 4^6 = 4,096 \equiv 1 \mod 7$
 $5 \mid 5^6 = 15,6251 \equiv 1 \mod 7$

-where p is prime and gcd(a,p) = 1

Euler's Theorem

- a generalisation of Fermat's Theorem
- $a^{\emptyset(n)} \mod n = 1$
 - where gcd(a, n) = 1
- eg.
 - $-a=3; n=10; \varnothing (10)=4;$
 - hence $3^4 = 81 = 1 \mod 10$
 - $-a=2; n=11; \varnothing (11)=10;$
 - -hence $2^{10} = 1024 = 1 \mod 11$

Primitive Roots

- Suppose GCD(a,n)=1
- Euler's theorem: If n and a are positive integers and a is relatively prime to n then, a^{Ø(n)}(mod n)=1
- Consider m such that a^m mod n=1
 - there may exist such $m < \emptyset(n)$
 - once powers reach *m*, cycle will repeat
- if smallest is m= ø(n) then a is called a primitive
 root
 - the powers of a are relatively prime to n

Examples:

1. If *n*=7 then 3 is the primitive root for 7 Because powers of 3 (from 1 to 6) are 3,2,6,4,5,1 in modulo 7. Here every number (mod7) occurs except 0.

2. If *n*=13 then 2 is the primitive root for 13 Because powers of 2 are 2,4,8,3,6,12,11, 9,5,10,7... every number in (mod13) occurs except 0.

Example cont...

If n=14 then Z_{14}^{\times} is the congruence classes $\{1,3,5,9,11,13\}$ Which are relatively prime to 14 \emptyset (14) = 6

n	n	n ²	n ³	n ⁴	n ⁵	n ⁶	(mod 14)
1:	1						
3:	3	9	13	11	5	1	
5:	5	11	13	9	3	1	
9:	9	9	11	1			
11:	11	11	9	1			
13:	13	13	1				

Hence 3 and 5 are the primitive roots (mod14)

Discrete Logarithms

- the inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- that is to find x where $a^x = b \mod p$
- written as x=log_a b mod p
- if a is a primitive root then always exists, otherwise may not
 - $-x = log_3 4 \mod 13$ (x satisfying $3^x = 4 \mod 13$) has no solution
 - $-x = log_2 3 mod 13 = 4 by trying successive powers$
- whilst exponentiation is relatively easy, finding discrete logarithms is generally a **hard** problem

Group

- a set of elements or "numbers"
 - may be finite or infinite
- with some operation whose result is also in the set (closure)
- obeys:
 - associative law: (a.b).c = a.(b.c)
 - has identity e:
 e.a = a.e = a
 - has inverses a^{-1} : $a \cdot a^{-1} = e$
- if commutative a.b = b.a
 - then forms an abelian group

Cyclic Group

- define exponentiation as repeated application of operator
 - example: $a^3 = a.a.a$
- and let identity be: $e=a^0$
- a group is cyclic if every element is a power of some fixed element
 - $-ieb = a^k$ for some a and every b in group
- a is said to be a generator of the group

Ring

- a set of "numbers"
- with two operations (addition and multiplication) which form:
- an abelian group with addition operation
- and multiplication:
 - has closure
 - is associative
 - distributive over addition: a(b+c) = ab + ac
- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity and no zero divisors, it forms an integral domain

Field

- > a set of numbers
- > with two operations which form:
 - abelian group for addition
 - abelian group for multiplication (ignoring 0)
 - ring
- have hierarchy with more axioms/laws
 - group -> ring -> field

Group, Ring, Field

Finite (Galois) Fields

- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime pⁿ
- known as Galois fields
- denoted GF(pⁿ)
- in particular often use the fields:
 - -GF(p)
 - $-GF(2^n)$

Galois Fields GF(p)

- GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- these form a finite field
 - since have multiplicative inverses
 - find inverse with Extended Euclidean algorithm
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Polynomial Arithmetic

can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- nb. not interested in any specific value of x
- which is known as the indeterminate
- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coords mod p
 - poly arithmetic with coords mod p and polynomials mod m(x)

Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg let $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 - x + 1$ $f(x) + g(x) = x^3 + 2x^2 - x + 3$ $f(x) - g(x) = x^3 + x + 1$ $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- > could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are 0 or 1
 - eg. let $f(x) = x^3 + x^2$ and $g(x) = x^2 + x + 1$ $f(x) + g(x) = x^3 + x + 1$ $f(x) \times g(x) = x^5 + x^2$

Polynomial Division

- can write any polynomial in the form:
 - -f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $-r(x) = f(x) \bmod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is **irreducible** (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it:

```
Euclid(a(x), b(x))

if (b(x)=0) then return a(x);

else return

Euclid(b(x), a(x) mod b(x));
```

all foundation for polynomial fields as see next

Modular Polynomial Arithmetic

- can compute in field GF(2ⁿ)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- form a finite field
- can always find an inverse
 - can extend Euclid's Inverse algorithm to find

Example GF(2³)

Table 4.7 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

(a) Addition

		000	001	010	011	100	101	110	111
	+	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	x	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
100	x2	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x + 1	х	1	0

(b) Multiplication

		000	001	010	011	100	101	110	111
	×	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x+1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	х	x ²	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x ²	1	x
100	x ²	0	x ²	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	х	1	$x^2 + x$	x ²	x + 1

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

Computational Example

- in GF(2³) have (x^2+1) is $101_2 \& (x^2+x+1)$ is 111_2
- so addition is

$$-(x^2+1) + (x^2+x+1) = x$$

- $-101 \text{ XOR } 111 = 010_2$
- and multiplication is

$$-(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$$
$$= x^3+x+x^2+1 = x^3+x^2+x+1$$

- polynomial modulo reduction (get q(x) & r(x)) is
 - $-(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - 1111 mod 1011 = 1111 XOR 1011 = 0100₂

Using a Generator

- equivalent definition of a finite field
- a generator g is an element whose powers generate all non-zero elements
 - in F have 0, g^0 , g^1 , ..., g^{q-2}
- can create generator from root of the irreducible polynomial
- then implement multiplication by adding exponents of generator

Public-Key Cryptography

TRAPDOOR

Public Key Cryptography (PKC) is based on the idea of a **trapdoor** function $f: X \to Y$, i.e.,

- f is one-to-one,
- f is easy to compute,
- \bullet f is public,
- f^{-1} is difficult to compute,
- f^{-1} becomes easy to compute if a trapdoor is known.

Thus, although in conventional cryptography the prior exchange of keys is necessary, this is not so in public key cryptography.

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- is **asymmetric** because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Thank You...