Spelling and Phonetic Correction

Spelling Correction

- When a user types "carot", she/he may mean "carrot"
 - Spelling correction improves the effectiveness of information retrieval
- Among various alternative correct spellings for a misspelled query, choose the "nearest" one
 - How to define the "distance" between two words?
- When two correctly spelled queries are tied or nearly tied, select the one that is more common
 - More common in the document collection
 - More common among queries by other users
 - Classroom discussion: can you come up a new idea of "more common"?

Spelling Correction Functionalities

- On the query "carot", retrieve documents containing carot and any spell-corrected version of carot such as carrot and tarot
- Conduct query spelling correction only when the query term (carot) is not in the dictionary
- Conduct query spelling correction only when the query term (carot) returns fewer than a preset number of documents
- When the query term (carot) returns fewer than a preset number of documents, make a spelling suggestion to the user
 - "Do you mean carrot or tarot?"

Isolated-term or Context-sensitive

- Isolated-term correction corrects a single query term at a time, even when we have a multiple-term query
 - Edit distance
 - K-gram overlap
- Context-sensitive correction considers the whole multiple-term query in correction

Edit Distance (Levenshtein Distance)

- Given two character strings s1 and s2, the edit distance between them is the minimum number of edit operations required to transform s1 to s2
 - Edit operations: insertion, deletion, replacement
 - Different operations may carry different weights
 - Changing from a character to different other characters may carry different weights
- Classroom discussion: is the edit distance symmetric? That is, is the edit distance from s1 to s2 equal to the edit distance from s2 to s1? Why?

Edit Distance Computation

 Can be computed in time O(|s1| x |s2|) using dynamic programming

```
EDITDISTANCE(s_1, s_2)
 1 int m[|s_1|, |s_2|] = 0
 2 for i \leftarrow 1 to |s_1|
 3 do m[i, 0] = i
     for j \leftarrow 1 to |s_2|
    dom[0, j] = j
     for i \leftarrow 1 to |s_1|
                                                      Substitute a character
      do for j \leftarrow 1 to |s_2|
         do m[i, j] = \min\{m[i-1, j-1] + \text{if } (s_1[i] = s_2[j]) \text{ then } 0 \text{ else } 1\text{fi},
                               m[i-1, j] + 1,
                                                    Inserting a character into s1
                                                    Inserting a character into s2
10
      return m[|s_1|, |s_2|]
```

Example

			f		a		s		t	
		0	1	1		2	3	3	4	4
С		1	1	2	2	3	3	4	4	5
		1	2	1	2	2	3	3	4	4
a		2	2	2	1	3	3	4	4	5
		2	3	2	3	1	2	2	3	3
t		3	3	3	3	2	2	3	2	4
		3	4	3	4	2	3	2	3	2
s		4	4	4	4	3	2	3	3	3
		4	5	4	5	3	4	2	3	3

Spelling Correction as NN Search

- Given a set S of terms in the vocabulary and a query q, find the strings in S of least edit distance from q
- A naïve method
 - Compute the edit distance from q to each string in S
 - Select the one of the minimum distance
 - Very costly! $O(|q| \times \Sigma_{s \in S} |s|)$

Some Heuristic Approaches

- Consider only dictionary terms beginning with the same letter
- Consider the set of all rotations of the query string q
 - Use a permuterm index by omitting the end-ofword symbol \$
 - If q = mase, we consider sema, emas, …
- To find mare and mane that are close to mase, for each rotation, we omit a suffix of up to I characters, where I is a parameter

K-Gram Indices

- Heuristic: if two words have many common kgrams, they may be similar to each other
 - If there are multiple candidates, find the one with the least edit distance
- Example: query "bord"
 - Suggest "border"

K-gram Algorithm

- Search k-gram postings in the merge-sort way
- When a term t is met, compute the Jaccard coefficient between q and t on the fly
 - For sets A and B, the Jaccard coefficient is $|A \cap B| / |A \cup B| = |A \cap B| / (|A| + |B| |A \cap B|)$
 - For term "boardroom" and query "bord", since "boardroom" appears in 2 posting lists of 2-grams of "bord", the Jaccard coefficient is 2 / (8 + 3 3) = 3 / 8
 - "boardroom" and "bord" have 8 and 3 2-grams, respectively
 - If the Jaccard coefficient passes a threshold, add t into the candidate set

Variable length grams

- Large k values
 Shorter posting lists and smaller number of common grams between similar strings
- Variable length grams
 - Removing k-grams which are common for many words
 - Reducing false positives
 - Reducing index size

K-gram versus Vgram

Fixed-length 2-grams

Variable-length grams

[2,4]-gram dictionary

Using Vgram

- How to determine the terms in the dictionary?
 - Using the frequency information
- How to use vgram to correct spelling errors?
 - Using vgram matches/mismatches to compute the upper bound of edit distance
- Details in [Chen et al., VLDB' 07]
 - Not required in exam

Context-Sensitive Correction

- Query "flew form Vancouver"
 - Should be corrected to "flew from Vancouver"
- Using frequent combinations of words in query logs
 - Using bi-words statistics

Phonetic Correction

- How to correct misspelling caused by typing a query that sounds like the target term?
 - Example: Hermann and Herman
- "phonetic hashing" similar-sounding terms are hashed to the same value
 - First developed in international police departments in early 20th century

Soundex Algorithm

Idea

- Vowels are viewed as interchangeable in transcribing names
- Consonants with similar sounds (e.g., D and T) are put in equivalence classes → related names often have the same soundex codes

Algorithm

- Turn every term to be indexed into a four-character reduced form, build an inverted index from these reduced forms to the original terms called the soundex index
- Do the same with the query terms
- Search the soundex index

Four-Character Code

- The first character is a letter of the alphbet and the other three are digits between 0 and 9
- Algorithm
 - Retain the first letter of the term
 - Change all occurrences of the following letters to '0': A, E, I, O U, H, W, and Y
 - Change letters to digits as follows
 - B, F, P, V → 1
 - C, G, J, K, Q, S, X, $Z \rightarrow 2$
 - D, T \rightarrow 3
 - L \rightarrow 4
 - M, N \rightarrow 5
 - $R \rightarrow 6$
 - Repeatedly remove one out of each pair of consecutive identical digits
 - Remove all zeros from the resulting string, pad the resulting string with trailing zeros and return the first four positions, which will consist of a letter followed by three digits
- Example: Hermann → H655, Herman → H655, matched!

Summary

- Spelling correction is important in IR systems
- NN search using edit-distance
- K-gram and vgram
- Phonetic correction using soundex algorithms

To-do List

Read Section 6.2.2