第四部分 机器学习技巧和经验 / Machine Learning Tips and Tricks

翻译&校正 | 韩信子@ShowMeAI

编辑 | 南乔@ShowMeAI

原文作者 | https://stanford.edu/~shervine

本节原文超链

[1]度量 / Metrics

1.1 分类评价指标 Classification metrics

在二分类问题中,下面这些主要度量标准对于评估模型的性能非常重要。

■ 混淆矩阵 Confusion matrix

混淆矩阵可以用来评估模型的整体性能情况。定义如下:

预测类别

		T	-
实 际	+	TP ,True Positives 真阳性	FN ,False Negatives Type II error 假阴性
类 别	-	FP, False Positives Type I error 假阳性	TN, True Negatives 真阴性

■ 主要度量标准 Main metrics

下标总结了评估分类模型的常用度量标准:

性能度量	公式	说明
Accuracy	TP+TN TP+TN+FP+FN	模型总体性能
Precision	TP TP+FP	预测为正样本的准确度
Recall Sensitivity	TP TP+FN	真正样本的覆盖度
Specificity	TN TN+FP	真负样本的覆盖度
F1 score	$\frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$	混合度量,对于不平衡类别非常有效

■ 受试者工作曲线 ROC

受试者工作曲线(receiver operating curve, ROC),以真阳率(True Positive Rate, TPR) 为纵轴,以假阳率(False Positive Rate, FPR) 横轴,并进过调整阈值绘 制而成。下表汇总了坐标轴的度量标准:

性能度量	公式	等价形式
True Positive Rate, TPR	TP TP+FN	Recall, sensitivity
False Positive Rate, FPR	FP TN+FP	1-specificity

AUC

受试者工作曲线的之下的部分 (The area under the receiving operating curve, AUC / AUROC),即 ROC 曲线下的部分。如下图所示:

1.2 回归评价指标 Regression metrics

■ 基本性能度量 Basic metrics

给定一个回归模型 f,下面的度量标准通常用来评估模型的性能:

全部平方和	解释平方和	残差平方和
$SS_{tot} = \sum_{i=1}^{m} (y_i - \overline{y})^2$	$SS_{reg} = \sum_{i=1}^{m} (f(x_i) - \overline{y})^2$	$SS_{res} = \sum_{i=1}^{m} (y_i - f(x_i))^2$

■ 确定性系数 Coefficient of determination

确定性系数 (记作 R^2 或 r^2),用以衡量模型复现观测结果的能力,定义如下:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

■ 主要度量标准 Main metrics

以下度量标准常用于评估回归模型的性能(考虑到了变量的数量 n):

Mallow's Cp	AIC	BIC	Adjusted R ²
$\frac{SS_{res} + 2(n+1)\widehat{\sigma}^2}{m}$	$2[(n+2) - \log(L)]$	$\log(m)(n+2) - 2\log(L)$	$1 - \frac{(1 - R^2)(m - 1)}{m - n - 1}$

备注: L 代表似然, $\hat{\sigma}^2$ 代表方差。

[2]模型选择 / Model Selection

◎ □词汇 Vocabulary

在选择模型时,将数据分为以下 3个不同的部分:

	验证集	
Training set	Validation set	Testing set
用于模型训练 通常为数据集的 80 %	用于模型评估 通常为数据集的 20% 又叫做留出集或者开发集	用于模型预测 使用未知数据

选定模型,在整个数据集上进行训练,并在测试集(未见过的数据)上进行测试。如图:

■ 交叉验证 Cross-validation

交叉验证(Cross-validation),是一种不必特别依赖于初始训练集的模型选择方法。

下表汇总了几种不同的方式:

k-fold	Leave-p-out
在k – 1 个子集上训练	在n – p个子集上训练
在剩余的一个子集中评估	在剩余的p个子集评估模型
通常 k = 5 或 10	p = 1 时又叫做留一法

最常用的模型选择方法是 k 折交叉验证,将训练集划分为 k 个子集,在 k-1 个子集上训练模型,在剩余的一个子集上评估模型,用这种划分方式重复训练 k 次。

交叉验证损失是 k 次 k 折交叉验证的损失均值。

■ 正则化 Regularization

正则化方法可以解决高方差问题,避免模型对于训练数据产生过拟合。

下表汇总了常用的正则化方法:

LASSO	Ridge	Elastic Net
将系数收缩为 0 有利于变量选择	使系数更小	在变量选择和小系数之间进行权衡
$ \theta _1 \leqslant 1$	$ \theta _2 \leqslant 1$	$(1-\alpha) \theta _1 + \alpha \theta _2^2 \leqslant 1$
$\dots + \lambda \theta _1$ $\lambda \in \mathbb{R}$	$ \dots + \lambda \theta _2^2 $ $ \lambda \in \mathbb{R} $	$\dots + \lambda [(1 - \alpha) \theta _1 + \alpha \theta _2^2]$ $\lambda \in \mathbb{R}, \ \alpha \in [0,1]$

[3]诊断 / Diagnostics

■偏差 Bias

模型的偏差,表示模型预测值和真实值之间的差距。

■ 方差 Variance

模型的方差,表示给定数据点的模型预测结果的波动程度。

■偏差/方差权衡 Bias/variance tradeoff

模型越简单,偏差越高;模型越复杂,方差越高。

	欠拟合 Underfitting	模型状态正常 Just right	过拟合 Overfitting
症状	高训练误差 训练误差接近于测试误差 高偏差	训练误差略低于测试误差	极低训练误差 训练误差远低于测试误差 高方差
回归图			my
分类图			
深度学习插图	Validation Training Epochs	Error Validation Training Epochs	Error Validation Training Epochs
可能的 补救措施	模型复杂性 添加更多特征 训练更长时间	//	实施正则化 获得更多数据

■ 错误分析 Error analysis

分析当前模型和完美模型之间性能差异的根本原因。

■ 烧蚀分析 Ablative analysis

可以分析当前和基线模型 (baseline model) 之间性能差异的根本原因。

Awesome Al Courses Notes Cheat Sheets

Machine Learning **CS229**

Deep Learning CS230

Natural Language Processing CS224n

Computer Vision CS231n

Deep Reinforcement Learning

Neural Networks for NLP CS11-747

DL for Self-Driving Cars 6.S094

Stanford

Stanford

Stanford

Stanford

UC Berkeley

CMU

MIT

是 ShowMeAI 资料库的分支系列,覆盖最具知名度的 TOP20+门 AI 课程,旨在为读者和 学习者提供一整套高品质中文速查表,可以点击【这里】查看。

斯坦福大学(Stanford University)的 Machine Learning(CS229)和 Deep Learning (CS230)课程,是本系列的第一批产出。

本批两门课程的速查表由斯坦福大学计算机专业学生 Shervine Amidi 总 结整理。原速查表为英文,可点击【这里】查看, ShowMeAI 对内容进行 了翻译、校对与编辑排版,整理为当前的中文版本。

有任何建议和反馈,也欢迎通过下方渠道和我们联络(*-3-)

CS229 | Machine Learning @ Stanford University

监督学习

Supervised Learning

无监督学习 Unsupervised Learning

中文速查表链接

深度学习

机器学习技巧和经验 Deep Learning

Tips and Tricks

中文速查表链接

中文速查表链接

CS230 | Deep Learning @ Stanford University

卷积神经网络

CNN

循环神经网络

RNN

深度学习技巧与建议

Tips and Tricks

中文速查表链接

GitHub

ShowMeAl

中文速查表链接

中文速查表链接

概率统计

中文速查表链接

线性代数与微积分

Probabilities /Statistics

中文速查表链接

Linear Algebra and Calculus

中文速查表链接

https://github.com ShowMeAl-Hub/

ShowMeAI 研究中心

扫码回复"速查表

下载最新全套资料