A quick quick explaination:

 Υ decays were split into five classes, and mode-by-mode efficiencies are plotted on each of five pages. A sixth page shows $\tau^+\tau^-$ events split up by how they decay. On the last page are aggregate efficiencies of all events, with all the proper correlations taken into account.

Talk to you Wednesday!

A (not-actually) quick explaination:

This document illustrates the efficiency of these cuts:

as a function of decay mode. Since there are $N^{???}$ different possible decay trees for inclusive $\Upsilon \to \text{anything}$, the decay trees are divided into one of these classes:

$b\bar{b}$ decays to	X ggg or X gg	$X gg\gamma$	$X e^+e^-$	$X \mu^+ \mu^-$	$X \tau^+ \tau^-$
PHOTOS was used					
in the $b\bar{b}$ decay					
PHOTOS wasn't used					

Each of these classes will be presented on a separate page. For the $\Upsilon(1S)$, there is only one way to decay to the specified mode (two in the case of PHOTOS, as there may be one or two photons), but for the $\Upsilon(2S)$ and $\Upsilon(3S)$, there are many cascade chains to get to the specified final state; the efficiency of each of these subclasses will be determined, plotted, and used for later calculations.

These subclasses are singletons for e^+e^- and $\mu^+\mu^-$ but very large sets for ggg, $gg\gamma$, and $\tau^+\tau^-$. Breaking up ggg and $gg\gamma$ would be difficult, since they can decay to nearly anything. Fortunately, it's unnecessary: ggg are highly efficient and the efficiency of $gg\gamma$ depends mostly on the spectrum of the high-energy photon. But $\tau^+\tau^-$ have widely-varying efficiencies which depend strongly on the decay topology, so I split these up into 111 sub-subclasses: the top ten τ decays + 1 "everything else", all squared to let the two sides of the event decay independently.

At the bottom of each page, I calculate the aggregate efficiency for each class, combining subclasses (and subsubclasses) according to their PDG branching fractions, which I vary according to their PDG uncertainties. This calculation is done with a toy Monte Carlo which takes all correlations into account: leptonic branching fractions are equal, and τ^- decays are equal to their conjugate τ^+ decays. All other inputs were determined using independent data and are therefore varied independently.

PHOTOS-ified modes couldn't be varied this way, since PDG branching fractions integrate over soft photons. So PHOTOS's mode-by-mode branching fractions were taken directly from the MC— not fluctuated. The efficiencies listed on the bottoms of each page have non-PHOTOfied and PHOTOfied modes combined, and just to tune this effect, I fluctuated the overall normalization of PHOTOfied to non-PHOTOfied modes by 30%. (We can change that later.) Non-PHOTOfied modes are usually far more numerous than PHOTOfied ones, so it's reasonable to give the non-PHOTOfied ones more attention. (Only for final-state leptons are the PHOTOfied modes actually significant—for these, I had to adjust my PDG leptonic branching fraction to avoid double-counting. This is a detail.)

The last variable I fluctuated was the ratio of events that decay to ggg versus those that decay to $gg\gamma$. This is a QED calculation, but just because it doesn't hurt, I varied it up and down 33%. (The nominal value is 0.03 $gg\gamma$ to ggg.) This relates two distinct classes (two pages), so it only comes into the calculation of "branching fraction to this set of modes" on the bottom-right of the page. It's the blue error. (The black error that preceds it comes from PDG uncertainties.)

On the last page, I put everything together to calculate the total efficiency and hadronic efficiency of these cuts. To get all the correlations right, I did it in one big toy MC, combining all classes. I still vary PDG uncertainties, PHOTOSification probability, and $\mathcal{B}(\frac{gg\gamma}{ggg})$, and often the overall uncertainties are less than what they would seem from the individual pages, since there are many large correlations. I repeated each calculation using Istvan's 6/15/04 $\mathcal{B}_{\mu\mu}$.

(Incidentally, this hadronic efficiency is really the hadronic efficiency, defined as the rest of the world defines it: so $\Upsilon(3S) \to \pi^0 \pi^0 \Upsilon(1S)$, $\Upsilon(1S) \to e^+ e^-$ is counted as hadronic, and $\Upsilon(1S) \to \tau^+ \tau^- \to 10$ tracks is counted as leptonic. We get the expected behavior that hadronic efficiencies are better known than total efficiencies.)

(Also on the last page, I didn't break $\tau^+\tau^-$ up into sub-subclasses because this didn't make much difference: the top ten decay modes of the τ are all known to better than 1% of the total τ width, so even though their efficiencies depend very much on mode, the modes are properly modelled in the Monte Carlo.)

This work is the result of a lot of internal cross-checks (that's why it's so late), and I claim that I can explain any relationship in the results. We'll see!

Resonance	Cut efficiency	Statisical Error	Variation with PDG mode uncertainties	Variation with fluctuating PHOTOS 30%	Branching fraction to this set of modes
$\Upsilon(1S)$	99.752%	$\pm~0.016$	± 0	± 0	$89.783\% \pm 0.084 \pm 0.93$
$\Upsilon(2S)$	99.821%	$\pm~0.014$	$\pm\ 0.0034$	$\pm~0.0001$	$91.48\% \pm 0.26 \pm 0.81$
$\Upsilon(3S)$	99.823%	$\pm~0.014$	$\pm\ 0.0017$	$\pm~0.0001$	$90.91\% \pm 0.30 \pm 0.70$

Resonance	Cut efficiency	Statisical Error	Variation with PDG mode uncertainties	Variation with fluctuating PHOTOS 30%	Branching fraction to this set of modes
$\Upsilon(1S)$	88.51%	$\pm~0.58$	± 0	± 0	$2.7769\% \pm 0.0026 \pm 0.93$
$\Upsilon(2S)$	89.16%	$\pm~0.60$	$\pm~0.042$	$\pm\ 0.0024$	$2.410\% \pm 0.032 \pm 0.80$
$\Upsilon(3S)$	89.18%	$\pm~0.68$	$\pm \ 0.091$	± 0.014	$2.091\% \pm 0.035 \pm 0.70$

Resonance	Cut efficiency	Statisical Error	Variation with PDG mode uncertainties	Variation with fluctuating PHOTOS 30%	Branching fraction to this set of modes
$\Upsilon(1S)$	5.87%	$\pm~0.63$	± 0	$\pm~0.29$	$2.479\% \pm 0.050$
$\Upsilon(2S)$	7.95%	± 0.77	$\pm~0.061$	$\pm~0.67$	$2.04\% \pm 0.14$
$\Upsilon(3S)$	5.48%	± 0.67	$\pm \ 0.11$	± 0.28	$2.30\% \pm 0.17$

Resonance	Cut efficiency	Statisical Error	Variation with PDG mode uncertainties	Variation with fluctuating PHOTOS 30%	Branching fraction to this set of modes
$\Upsilon(1S)$	2.81%	$\pm~0.33$	± 0	± 0.83	$2.480\% \pm 0.050$
$\Upsilon(2S)$	3.83%	± 0.51	$\pm~0.076$	$\pm~0.82$	$2.04\% \pm 0.14$
$\Upsilon(3S)$	4.37%	$\pm \ 0.54$	± 0.11	± 1.03	$2.31\% \pm 0.18$

Resonance	Cut efficiency	Statisical Error	Variation with PDG mode uncertainties	Variation with fluctuating PHOTOS 30%	Branching fraction to this set of modes
$\Upsilon(1S)$	66.5%	± 1.1	± 0	$\pm~0.11$	$2.480\% \pm 0.050$
$\Upsilon(2S)$	70.1%	± 1.2	$\pm~0.32$	$\pm~0.092$	$2.04\% \pm 0.14$
$\Upsilon(3S)$	67.8%	± 1.3	± 0.32	$\pm~0.056$	$2.32\% \pm 0.18$

Resonance	Cut efficiency	Statisical Error	Variation with PDG mode uncertainties	Variation with fluctuating PHOTOS 30%	Branching fraction to this set of modes
$\Upsilon(1S)$	66.4%	± 1.1	$\pm \ 0.088$	$\pm~0.12$	$2.481\% \pm 0.050$
$\Upsilon(2S)$	70.5%	± 1.2	$\pm~0.44$	$\pm~0.084$	$2.04\% \pm 0.14$
$\Upsilon(3S)$	69.3%	± 1.4	± 0.52	$\pm \ 0.091$	$2.32\% \pm 0.17$

$\Upsilon(1S)$		stat	vary modes	vary PHOTOS 30%	vary $\mathcal{B}(\frac{gg\gamma}{ggg})$ 33%
(PDG $\mathcal{B}_{\mu\mu}$) (Istvan's $\mathcal{B}_{\mu\mu}$)	$\epsilon_{\Upsilon} = 0.9380$ $\epsilon_{\Upsilon} = 0.9378$	± 0.0008	$\pm \begin{array}{c} 0.0009 \\ 0.0009 \end{array}$	± 0.0039	± 0.0010
$\Upsilon(1S) \to \text{hadrons}$					
(PDG $\mathcal{B}_{\mu\mu}$) (Istvan's $\mathcal{B}_{\mu\mu}$)	$\epsilon_{\Upsilon \to had} = 0.9942$ $\epsilon_{\Upsilon \to had} = 0.9942$	± 0.0003	$\pm \begin{array}{c} 0 \\ 0 \end{array}$	± 0	$\pm~0.0011$
$oxed{\Upsilon(2S)}$					
(PDG $\mathcal{B}_{\mu\mu}$) (Istvan's $\mathcal{B}_{\mu\mu}$)	$\epsilon_{\Upsilon} = 0.9500$ $\epsilon_{\Upsilon} = 0.9365$	$\pm \ 0.0007$	$\pm \begin{array}{c} 0.0025 \\ 0.0011 \end{array}$	± 0.0033	$\pm~0.0008$
$\Upsilon(2S) \to \text{hadrons}$					
(PDG $\mathcal{B}_{\mu\mu}$) (Istvan's $\mathcal{B}_{\mu\mu}$)	$\epsilon_{\Upsilon \to \text{had}} = 0.9785$ $\epsilon_{\Upsilon \to \text{had}} = 0.9781$	$\pm \ 0.0005$	$\pm \ \begin{array}{l} 0.0006 \\ 0.0006 \end{array}$	$\pm\ 0.0012$	$\pm~0.0009$
$oxed{\Upsilon(3S)}$					
(PDG $\mathcal{B}_{\mu\mu}$) (Istvan's $\mathcal{B}_{\mu\mu}$)	$\epsilon_{\Upsilon} = 0.9448$ $\epsilon_{\Upsilon} = 0.9325$	$\pm \ 0.0007$	$\pm \ \frac{0.0030}{0.0017}$	$\pm~0.0034$	$\pm~0.0009$
$\Upsilon(3S) \to \text{hadrons}$					
(PDG $\mathcal{B}_{\mu\mu}$) (Istvan's $\mathcal{B}_{\mu\mu}$)	$\epsilon_{\Upsilon \to \text{had}} = 0.9850$ $\epsilon_{\Upsilon \to \text{had}} = 0.9829$	$\pm \ 0.0004$	$\pm \ \begin{array}{l} 0.0006 \\ 0.0006 \end{array}$	$\pm~0.0008$	$\pm~0.0008$