Adjoints

Stephen Liu

June 12, 2018

Abstract

We should think about adjunctions as an interesting comparison of two categories that is somewhat more general and of a different nature than an equivalence of categories. Following [Lei14], we'll be looking at three different ways of understanding adjoint functors and showing that they are equivalent.

Hom-Set Definition

Definition (Adjoint Functors). Given a pair of functors $F: \mathscr{A} \to \mathscr{B}$ and $G: \mathscr{B} \to \mathscr{A}$, we say F is left adjoint to G, and G right adjoint to F, written $F \dashv G$ if there is a natural isomorphism $t_{A,B}: \mathscr{B}(F(A),B) \to \mathscr{A}(A,G(B))$ for each A in \mathscr{A} and B in \mathscr{B} . An adjunction between F and G is a choice of natural isomorphism $t_{A,B}$.

So this means for each $g: F(A) \to B$, we have a map $t_{A,B}(g): A \to G(B)$. We shall call this isomorphism the transpose of g (Leinster denotes this \overline{g}) and this process "transposing" g. Similarly, for each $f: A \to G(B)$, we have a map $t_{A,B}^{-1}(f): F(A) \to B$.

Naturality

Let's take a closer look at what naturality means. In words it would mean that the transpose of a composition of two maps is equal to the composition of the transpose of the two maps. We have four options here:

- 1. naturality of t with respect to A
- 2. naturality of t^{-1} with respect to F(A)
- 3. naturality of t^{-1} with respect to B

4. and finally naturality of t with respect to G(B).

Let's first take a look at naturality of t with respect to A:

We have the following data (left), and applying $t_{A',B}$ on $g \circ Ff$ and on them separately we get the commutative triangle on the right:

So $t_{A',B}(g \circ F(f)) = t_{A,B}(g) \circ f$ (here $t_{A',F(A)}(F(f)) = f$).

Similarly for 2, 3, and 4, we have the following data yielding the following commutative triangles:

naturality of t^{-1} with respect to F(A):

We begin with the map $Ff: F(A') \to F(A)$, and taking the preimage, we get the following data and corresponding commutative triangle:

So $t_{A',B}^{-1}(g \circ f) = t_{A,B}^{-1}(g) \circ Ff$. naturality of t^{-1} with respect to B:

So $t_{A,B'}^{-1}(Gg \circ f) = g \circ t_{A,B}^{-1}(f)$. Finally, naturality of t with respect to G(B):

So $t_{A,B'}(g \circ f) = Gg \circ t_{A,B}(f)$.

We call this understanding of adjoint functors the Hom-Set Definition because the important bit here is this isomorphism between the Hom-Sets of $\mathscr A$ and $\mathscr B$.

There are a whole class of examples of adjoint functors that are the forgetful and free functors between algebraic theories. We'll be looking at one of these:

Example (Abelianization of Groups). There is an adjunction

where U is the forgetful inclusion functor from the category of abelian groups to the category of groups, and F is the free functor from the category of groups to the category of abelian groups. For a group G in \mathbf{Grp} , F(G) is the abelianization of the group G, or G/G' where G' is the commutator subgroup of G (see my writeup at [Liu18] for details). This abelianization gives rise to the universal property that for any group homomorphism ϕ out of G to an abelian group A, there is a unique $\overline{\phi}: G/G' \to A$ such that

 $\phi = \overline{\phi} \circ \pi$ where π is the canonical quotient map from G to G/G'. This universal property is what allows us to specify what $t_{G,A}: \mathbf{Ab}(F(G),A) \to \mathbf{Grp}(G,U(A))$ should do: $t_{G,A}(\overline{\phi}) = \overline{\phi} \circ \pi = \phi$, and $t_{G,A}^{-1}(\phi) = \overline{\phi}$.

Units and Counits Definition

Definition (Unit and Counit of an Adjunction). Given $A \in \mathscr{A}$ and the identity map $1_{F(A)}$, $t_{A,F(A)}(1_{F(A)})$ defines the isomorphism $\eta_A : A \to GF(A)$. Similarly, given $B \in \mathscr{B}$ and the identity map $1_{G(B)}$, $t_{G(B),B}^{-1}(1_{G(B)})$ defines the isomorphism $\varepsilon_B : FG(B) \to B$. Together, η_A and ε_B define the natural transformations

$$\eta: 1_{\mathscr{A}} \to G \circ F, \qquad \varepsilon: F \circ G \to 1_{\mathscr{B}}$$

called the unit and counit of the adjunction, respectively.

We have important triangle identities associated with the unit and counit.

Proposition 1 (Triangle Identities). Given an adjunction $F \dashv G$ with unit η and counit ε , the triangles

commute.

Proof. We prove the equivalent statement that the triangles

commute for all $A \in \mathscr{A}$ and $B \in \mathscr{B}$.

For the triangle on the left, we use naturality of t^{-1} with respect to F(A) that we explained above where we replace f with η_A and g with $1_{GF(A)}$. So we have the following data giving rise to the commutative triangle on the right:

Now by definition $t_{GF(A),F(A)}^{-1}(1_{GF(A)}) = \varepsilon_{F(A)}$, and $t_{A,F(A)}^{-1}(1_{GF(A)} \circ \eta_A) = t_{A,F(A)}^{-1}(\eta_A)$ and by definition, $t_{A,F(A)}(1_{F(A)}) = \eta_A$, so $t_{A,F(A)}^{-1}(\eta_A) = 1_{F(A)}$. So from the triangle we get $1_{F(A)} = \varepsilon_{F(A)} \circ F(\eta_A)$, proving the commutative triangle.

Similarly, for the triangle on the right, we use naturality of t with respect to G(B) that we explained above where we replace f with $1_{FG(B)}$ and g with ε_B . So we from the resulting commutative triangle we have

$$t_{G(B),B}(\varepsilon_B \circ 1_{FG(B)}) = G(\varepsilon_B) \circ t_{G(B),FG(B)}(1_{FG(B)}).$$

And again, by definition $t_{G(B),FG(B)}(1_{FG(B)}) = \eta_{G(B)}$ and $t_{G(B),B}(\varepsilon_B \circ 1_{FG(B)}) = t_{G(B),B}(\varepsilon_B) = 1_{G(B)}$, so $1_{G(B)} = G\varepsilon_B \circ \eta_{G(B)}$, proving the identity.

It turns out the unit and counit determine the whole adjunction.

Proposition 2. Given an adjunction $t_{A,B}: \mathscr{B}(F(A),B) \to \mathscr{A}(A,G(B))$ for any $g: F(A) \to B$, $t_{A,B}(g) = Gg \circ \eta_A$, and for any $f: A \to G(B)$, $t_{A,B}^{-1}(f) = \varepsilon_B \circ Ff$.

REFERENCES 7

Proof. For any $g: F(A) \to B$, by naturality, $t_{A,B}(g) = t_{A,B}(g \circ 1_{F(A)})$ which by naturality of t with respect to GF(A), is equal to $Gg \circ \eta_A$. Similarly, for any $f: A \to G(B)$, $t_{A,B}^{-1}(f) = t_{A,B}^{-1}(1_{G(B)} \circ f)$ which by naturality of t^{-1} with respect to FG(B), is equal to $\varepsilon_B \circ Ff$.

Using this fact, we can equivalently define adjunctions by specifying pairs of units and counits.

Theorem 1. Given functors $F: \mathcal{A} \to \mathcal{B}$, $G: \mathcal{B} \to \mathcal{A}$, there is a bijection between adjunctions $F \dashv G$ and pairs of units and counits (η, ε) that satisfy the triangle identities.

Proof. We have already shown that given an adjunction t, we can define natural transformations η, ε that satisfy the triangle identites. Now, we just need to show that given unit and counit η, ε , we can uniquely define a natural isomorphism $t_{A,B}: \mathscr{B}(F(A),B) \to \mathscr{A}(A,G(B))$ for all $A \in \mathscr{A}$, for all $B \in \mathscr{B}$.

Given $g: F(A) \to B$, define $t_{A,B}(g) = Gg \circ \eta_A$, and given $f: A \to G(B)$, define $t_{A,B}^{-1}(f) = \varepsilon_B \circ Ff$. We need to show that t and t^{-1} are well-defined, mutually inverse, natural, and that η, ε are in fact their unit and counit.

Well-Defined Let $g: F(A) \to B$, $h: F(A) \to B$ with g = h. Since G is well-defined, $t_{A,B}(g) = Gg \circ \eta_A = Gh \circ \eta_A = t_{A,B}(h)$, so t is well-defined. Similarly for t^{-1} .

 \square

References

- [Lei14] Tom Leinster. Basic Category Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, United Kingdom, 2014.
- [Liu18] Stephen Liu. Abelianization of groups, 2018. ssyl55.github.io/files/abelianization.pdf.