RNA Seq Mini Proj Class14

Janie Chang-Weinberg (A69037446)

Import Data

We need two things: Counts MetaData (what DESeq calls colData- as it describes the columns in Counts)

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
metadata <- read.csv("GSE37704_metadata.csv")</pre>
```

Start with a sneak peak:

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

head(metadata)

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

We want the columns in counts to match the rows in the metadata

colnames(counts)

- [1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
- [7] "SRR493371"

metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

Since counts and metadata columns do not match, we must remove the length column from the counts dataset

```
countData <- counts[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all(colnames(countData) == metadata$id)
```

[1] TRUE

yay now they match.

Data CleanUp

Must filter out zero counts

It is standard practice to remove any genes/transcripts that we have no data for, ie. zero counts in all columns

```
to.keep.inds <- rowSums(countData) > 0
cleanCounts <- countData[to.keep.inds,]
head(cleanCounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Setup for DESeq

```
library(DESeq2)
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

DESeq

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions</pre>
```

```
gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing
```

```
res <- results(dds)</pre>
```

Inspect Results

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	0	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216		5.81042e-01
ENSG00000187634	183.2296		0.1402658		2.36304e-03
ENSG00000188976					1.43989e-36
ENSG00000187961	209.6379	0.7297556			3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	lj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			
ENSG00000279457	6.86555e-0	01			
ENSG00000187634	5.15718e-0)3			
ENSG00000188976	1.76549e-3	35			
ENSG00000187961	1.13413e-0)7			
ENSG00000187583	9.19031e-0	01			
ENSG00000187642	4.03379e-0)1			

Data Viz

Pathway Analysis

Annotation of genes

First I need to translate my Ensembl IDs in my res object to Entrez and gene symbol formats.

For this I will use the AnnotationDbi package and its mapIds() function

Need to know what format stuff is currently in, and what we would like to "translate" them into.

We currently have Ensembl IDs, but to use KEGG, we need to use Entrez IDs.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

```
[1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                   "IPI"
                                                                  "MAP"
[16] "OMIM"
                                   "ONTOLOGYALL"
                                                                  "PFAM"
                    "ONTOLOGY"
                                                   "PATH"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
[26] "UNIPROT"
```

Let's map to "SYMBOL," "ENTREZID," and "GENENAME," from our "ENSEMBL" ids.

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 7 columns

```
baseMean log2FoldChange
                                            lfcSE
                                                        stat
                                                                  pvalue
               <numeric>
                              <numeric> <numeric> <numeric>
                                                               <numeric>
ENSG00000279457
                 29.9136
                              0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658
                                                    3.040350 2.36304e-03
                             -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000188976 1651.1881
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                              0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                11.9798
                              0.5428105 0.5215599 1.040744 2.97994e-01
                      padj
                                         genename
                 <numeric>
                                      <character>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03 sterile alpha motif ...
ENSG00000188976 1.76549e-35 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07 kelch like family me..
ENSG00000187583 9.19031e-01 pleckstrin homology ..
ENSG00000187642 4.03379e-01 PPARGC1 and ESRR ind..
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	baseMean l	og2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	•	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457			0.3248216		5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	padj		genename	symbol	entrezid
	<numeric></numeric>	<	character>	<character></character>	<pre><character></character></pre>
ENSG00000279457	6.86555e-01		NA	NA	NA NA
ENSG00000187634	5.15718e-03	sterile alpha	a motif	SAMD11	148398
ENSG00000188976	1.76549e-35	NOC2 like nuc	cleolar	NOC2L	26155
ENSG00000187961	1.13413e-07	kelch like fa	amily me	KLHL17	339451
ENSG00000187583	9.19031e-01	pleckstrin ho	omology	PLEKHN1	84069
ENSG00000187642	4.03379e-01	PPARGC1 and I	ESRR ind	PERM1	. 84808

Before going any further lets focus in on a subset of "top" hits.

We can use a starting point log2FC of +/-2 and an adjusted P-value of 0.05 Let's do the foldchange one first

```
top.inds <- (abs(res$log2FoldChange) > 2) & (res$padj <= 0.05)
top.inds[is.na(top.inds)] <- FALSE</pre>
```

Let's save our "top genes" to a .csv file!

```
top.genes <- res[top.inds,]
write.csv(top.genes, file="top_geneset.csv")</pre>
```

Now we can do some pathway analysis (finally!)

```
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
```

```
# focus on signaling and metabolic pathways
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
```

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrezid
head(foldchanges)
```

```
keggres <- gage(foldchanges, gsets = kegg.sets.hs)</pre>
```

attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mean	p.val
hsa04110	Cell cycle	8.995727e-06		-
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.246882e-03	-3.059466	1.246882e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val s	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	.995727e-06
hsa03030	DNA replication	0.007586381	36 9	.424076e-05
hsa03013	RNA transport	0.066915974	144 1.	.246882e-03
hsa03440	Homologous recombination	0.121861535	28 3	.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102 3	.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53 8.	.961413e-03

pathview(foldchanges, pathway.id ="hsa04110")

Info: Working in directory /Users/janiec-w/Desktop/Classes/BGGN213 Bioinformatics/pRojects/Jenses/BGGN213 Bioinformatics/PRojects/BGGN213 Bioinformatics/PRojects/BGGN213 Bioinformatics/PRojects/BGGN213 Bioinformatics/BGGN213 Bioinformatics/BGN213 Bioinf

Info: Writing image file hsa04110.pathview.png

^{&#}x27;select()' returned 1:1 mapping between keys and columns

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gores = gage(foldchanges, gsets=gobpsets)
```

head(gores\$less)

```
p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
GO:0048285 organelle fission
                                        5.841698e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                                          352 4.286961e-15
                                        5.841698e-12
GO:0007067 mitosis
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                                          142 2.028624e-11
                                       1.658603e-08
GO:0000236 mitotic prometaphase
                                        1.178402e-07
                                                           84 1.729553e-10
```

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
head(sig_genes)
```

```
ENSG00000187634 ENSG00000188976 ENSG00000187961 ENSG00000188290 ENSG00000187608
"SAMD11" "NOC2L" "KLHL17" "HES4" "ISG15"
ENSG00000188157
"AGRN"
```


Figure 1: Overview