I. Consider the bisection method starting with the initial interval [1.5, 3.5]

I-a What is the width of the interval at the nth step?

Suppose the interval at the *n*th step is $[a_n, b_n], n \in \mathbb{N}$. Since $b_n - a_n = \frac{1}{2}(b_{n+1} - a_{n+1}), b_0 - a_0 = 3.5 - 1.5 = 2$, by recursion we can have that $\forall n \in \mathbb{N}$, the width of the *n*th interval $l = \frac{1}{2^{n-1}}$.

I-b What is the maximum possible distance between the root r and the midpoint of the interval?

We assume that d_n as the distance between r and the midpoint of $[a_n, b_n]$.

If $a_n \neq a_0, b_n \neq b_0$, which means $\exists s < n, \ a_n$ is the mid point of $[a_s, b_s]$, and $\exists t < n, \ b_t$ is the mid point of $[a_t, b_t]$. Thus, $\mathbf{r} \in (a_n, b_n)$, which means $\exists \epsilon > 0, r + \epsilon < b_n, r - \epsilon > a_n$. So $d_n = |r - \frac{b_n + a_n}{2}| \leq |\frac{b_n - a_n}{2} - \epsilon| = |\frac{1}{2^n} - \epsilon|$.

If $b_n = b_0$, which means $\forall m < n, r > \frac{b_m + a_m}{2}$, if $r = b_0$, $d_n = \frac{1}{2^n}$, or the same as the situation above, $\exists \epsilon > 0, d_n = |a_n|$

If $a_n = a_0$, the consequence is similar as that when $b_n = b_0$.

So we have $d_n \leq \frac{1}{2^n} - \epsilon$ or $d_n = \frac{1}{2^n}$, which means the maximum possible distance between r and the midpoint of the interval $[a_n, b_n]$ is $\frac{1}{2^n}$

II. Prove that the number of the step n must satisfy $n \ge \frac{\log(b_0 - a_0) - \log \epsilon - \log a_0}{\log 2} - 1$

We have proved in the first section that $d_n \leq \frac{b_0 - a_0}{2^{n+1}}$. In order to determine the root with its relative error no greater

that ϵ , we have $\frac{d_n}{r} \leq \frac{b_0 - a_0}{r 2^{n+1}} \leq \frac{b_0 - a_0}{a_0 2^{n+1}} \leq \epsilon$. Thus, $b_0 - a_0 \leq 2^n a_0 \epsilon$, take \log_2 on both side we have $\log_{b_0 - a_0} \leq \log 2(n+1) + \log \epsilon + \log a_0$, sort it we have $n \geq \frac{\log(b_0 - a_0) - \log \epsilon - \log a_0}{\log 2} - 1$, so we have proved the it.

III. Perform four iterations of Newton's method

 $p(x) = 4x^3 - 2x^2 + 3$, we have $p'(x) = 12x^2 - 4x$, by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, $n \in \mathbb{N}$. So we can calculate each x_n with a handy calculator.

n	0	1	2	3	4
x_n	-1	-0.8125	-0.7708041958	-0.7688323843	-0.7688280859

IV. Consider a variation of Netwon's method $x_{n+1} = x_n - \frac{f(x_N)}{f'(x_0)}$, find C and s such that $e_{n+1} = Ce_n^s$.

Do not lose the generality, we can assume that the root $\alpha < x_0, f(\alpha) = 0, f'(x) > 0 \forall x \in (\alpha, x_0)$. Thus, we have $\alpha < x_{n+1} < x_n \le x_0, \forall n \in \mathbb{N}.$

By Taylor's theorem we have

$$f(x_n) = f(\alpha) + f'(\xi)(x_n - \alpha), (\xi \in (\alpha, x_n)).$$

Thus, we have

$$e_{n+1} = e_n - \frac{f(x_n)}{f'_{x_0}} = e_n \left(\frac{f'_{x_0} - f'(\xi)}{f'_{x_0}} \right) \le e_n \left(\frac{2f'(x_0)}{f'(x_0)} \right) = 2e_n.$$

Thus we take the C and s.

V. Within $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, will the iteration $x_{n+1} = tan^{-1}x_n converge$?

By the symmetry of tanx and x, we can suppose that $\{x_n\}$ converges to a positive number α . Since $1 - \frac{1}{tan1} > 0$, $0.5 - \frac{1}{tan_0.5} < 0$, and the continuity of $x - \frac{1}{tanx}$, we have that there exists one α , $\alpha = \frac{1}{tan\alpha}$. If $x_0 = \alpha$, it is obvious that $\{x_n\}$ is convergent.

If $x_0 \neq \alpha$. We suppose that $\{x_n\}$ is convergent, so $\{x_n\}$ will converge to α . Then we take a sufficiently small ϵ , that $\exists n \text{ s.t. } | x_{n+1} - x_n = \epsilon |$, then we have

$$|x_{n+2} - x_{n+1}| = \left|\frac{1}{tan\frac{1}{tanx_n}} - \frac{1}{tanx_n}\right| > \left|\frac{tan\frac{1}{tanx_n} - tanx_n}{1 + tanx_ntan\frac{1}{tanx_n}}\right| > \left|tan\left(x_n - \frac{1}{tanx_n}\right)\right| > \left|x_n - x_{n+1}\right| > \epsilon.$$

Thus we have $\forall m > n, |x_{m+1} - x_m| > |x_{n+1} - x_n|$, which contradicts to the convergence of $\{x_n\}$. So $\{x_n\}$ is convergent iff $x_0 = \pm \alpha$.

VI. Let p > 1. What is the value of $x = \frac{1}{p + + \frac{1}{p + + \frac{1}{p +$

Suppose $x_0 = 0, x_{n+1} = \frac{1}{p+x_n}, \forall n \in \mathbb{N}$. Now we prove that $\{x_n\}$ is convergent. When n=1, it is obvious that $\frac{1}{p+\frac{1}{p}} = x_2 < x_1 = \frac{1}{p}$.

Suppose when $n = k \ (k \ge 1), \ x_{n+1} < x_n$. Then, $x_{n+2} = \frac{1}{p + x_{n+1}} < \frac{1}{p + x_n} = x_{n+1}$. So we have $\forall n \in \mathbb{N}^+, x_{n+1} < x_n$. Because $\forall n \in \mathbb{N}^+, x_n > 0$, we have $\{x_n\}$ is convergent.

To get the value of x, we take a function $f(x) = \frac{1}{p+x}$, $x_n = f(x_{n+1})$, when $n \to \infty, x_n \to x$. So $\forall \epsilon > 0, \exists N, \forall n > 0$ $N, x_n - x < \epsilon$, which also means $f(x_n) - x_n < \epsilon$. Since we have proved that $\{x_n\}$ is convergent, by the randomization of ϵ , we get that x is the root of f(x) - x = 0, which is $x^2 + px - 1 = 0$. Because $\Delta = p^2 + 4 > 0$, the root is always exist. By formula method and x > 0, we have $x = \frac{-p + \sqrt{p^2 + 4}}{2}$

VII. What happens in problem II if $a_0 < 0 < b_0$

We assume that $c = min\{-a_0, b_0\}.$

If $r \neq 0$, indorer to determine that relative error no greater than ϵ , we have $\frac{d_n}{r} \leq \frac{b_0 - a_0}{r2^{n+1}} \leq \frac{b_0 - a_0}{c2^{n+1}} < \epsilon$. Thus, the same as the inequality we have in II, we have $n \ge \frac{\log(b_0 - a_0) - \log \epsilon - \log c}{\log 2} - 1$.

If r = 0, the relative error is not defined, so it is not so appropriate when $a_0 < 0 < b_0$. But if we want to determine the error no greater than ϵ , we have $d_n = \frac{b_0 - a_0}{2^{n+1}} \le \epsilon$, thus we get $n \ge \frac{\log(b_0 - a_0) - \log \epsilon}{\log 2} - 1$.

VIII. Consider solving f(x) = 0 by Newton's method

VIII-a How can a multiple zero be detected by examining the behavior of the points $x_n, f(x_n)$?

Since $f^{(k)\neq 0}$, by taking x_0 sufficiently close to α , we have $|x_{n+1} - \alpha| < |x_n - \alpha|$. By Taylor's theorem we have,

$$f(x_n) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\alpha) (x_n - \alpha)^n}{n!}.$$

Because $f^{i}(\alpha) = 0$ (i < k), we have

$$f(x_n) = \sum_{n=k}^{\infty} \frac{f^{(n)}(\alpha) (x_n - \alpha)^n}{n!} = O\left((x_n - \alpha)^k\right).$$

So if

$$\forall a > 0, \exists N \in \mathbb{N}, \forall n > N, |f(x_n)| < |a(x - \alpha)^k|.$$

Which means the $f(x_n)$ converge to $f(\alpha)$ in order k, so we can detect a multiple zero.

VIII-b. Prove that if r is a zero of multiplicity k , quadratic convergence in Newton's iteration will be restored by $x_{n+1} = x_n - k \frac{f(x_n)}{f'x_n}$

Do not lose the generality, we can suppose that $f'(\alpha) > 0$, $x_n > \alpha$

By Taylor's theorem, we have

$$f(x_n) = \frac{1}{k!} (x_n - \alpha)^{(k)} f^k(\alpha) + \frac{1}{k+1!} (x_n - \alpha)^{k+1} f^{(k+1)}(\xi) (\xi \in (\alpha, x_n)).$$

and

$$f'(x_n) = \frac{1}{k-1!} (x_n - \alpha)^{k-1} f^{(k-1)}(\alpha) + \frac{1}{k!} (x_n - \alpha)^k f^{(k)}(\eta) (\eta \in (\alpha, x_n)).$$

So by the iteration $x_{n+1} = x_n - k \frac{f(x_n)}{f'(x_n)}$, we have

$$e_{n+1} = \frac{\frac{1}{k!}e_n^k f^{(k)}\left(\alpha\right) + \frac{1}{k!k}e_n^{k+1}f^{(k+1)}\left(\eta\right) - \frac{1}{k!}e_n^k f^{(k)}\left(\alpha\right) - \frac{1}{k+1!}e_n^{k+1}f^{(k+1)}\left(\xi\right)}{\frac{1}{k!}e_n^{k-1}f^{(k)}\left(\alpha\right) + \frac{1}{k!k}e_n^k f^{(k+1)}\left(\eta\right)}.$$

$$\frac{e_{n+1}}{e_n^2} = \frac{\frac{1}{k!k} f^{(k+1)} \left(\eta \right) - \frac{1}{k+1!} f^{(k+1)} \left(\xi \right)}{\frac{1}{k!} f^{(k)} \left(\alpha \right) + \frac{1}{k!k} e_n f^{(k+1)} \left(\eta \right)}.$$

Because $\lim_{n\rightarrow\infty}e_{n}=0$, $\mid f^{\left(k+1\right)}\left(\xi\right)\mid<\mid f^{\left(k+1\right)}\left(\alpha\right)\mid$, $\mid f^{\left(k+1\right)}\left(\xi\right)\mid<\mid f^{\left(k+1\right)}\left(\alpha\right)\mid$, we have

$$\mid \frac{e_{n+1}}{e_n^2}\mid \leq \mid \frac{2f^{(k+1)}\left(\alpha\right)}{kf^{(k)}\left(\alpha\right)}\mid = C.$$

So we have proved that the modified iteration is quadratic convergence.