Rachunek prawdopodobieństwa i statystyka

Lista zadań № 5. Tydzień rozpoczynający się 4. kwietnia

Zadania

- 1. X jest zmienną losową typu dyskretnego, tzn. dane są ciągi $\{x_i\}$, $\{p_i\}$ wartości i ppb tej zmiennej. Udowodnić, że dla Y = aX + b jest $V(Y) = a^2V(X)$, $(a, b \in \mathbb{R})$.
- 2. Zmienna losowa podlega standardowemu rozkładowi normalnemu, tzn. $f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$, gdzie $x \in \mathbb{R}$. (Skrótowo: $X \sim N(0,1)$). Znaleźć rozkład (gęstość $f_Y(y) \equiv g(y)$) zmiennej $Y = X^2$.
- 3. Wykazać, że $\Gamma(1/2) = \sqrt{\pi}$. (Wsk.: W zadaniu 1.3 dokonać podstawienia $t = x^2/2$ i porównać z zadaniem 1.6)
- 4. Mówimy, że zmienna losowa X podlega rozkładowi Gamma z parametrami b, p > 0 jedynie wtedy gdy $f(x) = \frac{b^p}{\Gamma(p)} x^{p-1} \exp(-bx)$, dla $x \in (0, \infty)$. (Krótko: $X \sim \text{Gamma}(b, p)$). Czy Y z zadania 2. ma rozkład Gamma? Jeżeli tak, podać wartości parametrów b, p.
- 5. **2p.** Zmienna (X,Y) ma rozkład o gęstości f(x,y)=xy, na obszarze $[0,2]\times[0,1]$. Wyznaczyć dystrybuantę tej zmiennej, czyli obliczyć $F_{XY}(s,t)=\int_{-\infty}^s \int_{-\infty}^t xy\,dy\,dx$.
- 6. **2p.** (X,Y) z poprzedniego zadania. Wyznaczyć rozkład zmiennej Z=X/Y. Obliczyć wartość oczekiwaną $\mathrm{E}(X)$.
- 7. **2p.** $X \sim \text{Gamma}(b, p)$. Wykazać, że $M_X(t) = \left(1 \frac{t}{b}\right)^{-p}$
- 8. $X_i \sim \text{Gamma}(b, p_i)$, zmienne losowe X_1, X_2, \dots, X_n są niezależne. Wykazać, że zachodzi $S \sim \text{Gamma}(b, \sum p_i)$. Jaki rozkład otrzymujemy dla $X_i \sim \text{Gamma}(1/2, 1/2)$?

Witold Karczewski