Genomic tools

Libor Mořkovský, Václav Janoušek https://ngs-course.readthedocs.io/en/praha-february-2019/

Genome arithmetics: bedtools/bedops

- Operations with genomic data based on their physical position in genome
- Variables:
 - chromosome
 - feature start, feature end
 - -id
 - strand
- Basic data format: BED

Two sets of features (BED files):

New set of features based on combination of the previous sets using a specific rule

The rule: Get parts of features that overlap

http://bedops.readthedocs.org

The rule: Merge entire features

The rule: Get complement features

The rule: Report A which overlaps B

The rule: Report B which overlaps A

Genome feature summary

- Statistics, summary
- bedmap, bedtools (coverageBed, groupBy)
- e.g. depth coverage, base pair coverage, etc.

Other tools in bedtools

- makewindows
- cluster
- shuffle
- random
- ... explore the bedtools website for further tools and the documentation

Exercise

1. Count the number of open chromatin regions overlapping with genes or are within 1000 bp window on each side of a gene

(Use Ensembl.NCBIM37.67.bed and encode.bed files)

Exercise

2. Make three sets of sliding windows across mouse genome (1 Mb, 5 Mb) with the step size 0.2 by the size of the window and obtain gene density within these sliding windows.

Variation data: vcftools

- Efficient working with VCF data
- Quality control
- Basic evolutionary genetics measures/statistics
 - transition/transversion
 - heterozygosity, relatedness
 - Hardy-Weinberg
 - Weir & Cockerham's Fst
 - Nucleotide diversity
 - Linkage Disequilibrium

vcftools: starting

Opening and viewing a vcf file:

```
vcftools \
--gzvcf /data-shared/mus_mda/00-popdata/popdata_mda.vcf.gz \
--recode --stdout | less -S
```

Creating a new vcf file:

```
vcftools \
--gzvcf /data-shared/mus_mda/00-popdata/popdata_mda.vcf.gz \
--recode --out new_vcf
```

vcftools: data filtering

- Sample/Variant retrieval by name:
 - Individual/Variant names to keep/remove have to be specified in a separate file

```
--keep ind.txt # Keep these individuals
--remove ind.txt # Remove these individuals
--snps snps.txt # Keep these SNPs
--snps snps.txt --exclude # Remove these SNPs
```

```
vcftools \
--gzvcf /data-shared/mus_mda/00-popdata/popdata_mda.vcf.gz \
--keep /data-shared/mus_mda/00-popdata/euro_samples.txt \
--recode --stdout |
less -S
```

vcftools: data filtering

Variant filtering based on physical location

```
--chr 11 # Keep just this chromosome
--not-chr 11 # Remove this chromosome
--not-chr 11 -not-chr 2 # Remove these two chromosomes
--from-bp 20000000 # Keep SNPs from this position
--to-bp 22000000 # Keep SNPs to this position
--bed keep.bed # Keep only SNPs overlapping with locations
listed in a file
--exclude-bed remove.bed # The opposite of the previous
```

```
vcftools \
--gzvcf /data-shared/mus_mda/00-popdata/popdata_mda.vcf.gz \
--keep /data-shared/mus_mda/00-popdata/euro_samples.txt \
--chr 11 \
--from-bp 22000000 \
--to-bp 23000000 \
--recode \
--stdout |
less -S
```

vcftools: data filtering

Variant filtering based on other features

```
--maf 0.2 # Keep just variants with Minor Allele Freq higher than 0.2
--hwe 0.05 # Keep just variants which do not deviate from HW equilibrium (p-value = 0.05)
--max-missing (0-1) # Remove SNPs with given proportion of missing data (0 = allowed completely missing, 1 = no missing data allowed)
--minQ 20 # Minimal quality allowed (Phred score)
```

vcftools: summary/statistics

molecular evolution/population genetic

```
--site-pi # Calculates per-site nucleotide diversity (m)
--window-pi 1000000 --window-pi-step 250000 # Calculates per-
site nucleotide diversity for windows of 1Mb with 250Kb step
--weir-fst-pop pop1.txt --weir-fst-pop pop2.txt # Calculates
Weir & Cockerham's Fst
--fst-window-size 1000000 --fst-window-step 250000 #
Calculates Fst for windows of 1Mb with 250Kb step
```

```
vcftools \
--vcf /data-shared/mus_mda/00-popdata/popdata_mda_euro.vcf \
--weir-fst-pop /data-shared/mus_mda/00-popdata/musculus_samps.txt \
--weir-fst-pop /data-shared/mus_mda/00-popdata/domesticus_samps.txt \
--stdout |
less -S
```