

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	(11) International Publication Number: WO 98/23					
A1	(43) International Publication Date: 4 June 1998 (04.06.98					
	CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL					
96) I	Published With international search report.					
W. Tula A, Rolar). MA						
	·					
	JS97/21076 (18.11.97 .96) US NDATION 960 Kenny don Drive W. Tuland A, Roland S). MAT Columbus wold LLP OH 44114					

(57) Abstract

The present invention provides new, improved and easily manipulable methods for making nucleotide integrases. The present method also relates to a nucleotide integrase and an improved method for making RNA-protein complexes for use in preparing nucleotide integrases in vitro. The nucleotide integrase is prepared by introducing a DNA molecule which comprises a group II intron DNA sequence into a host cell. The group II intron DNA sequence is then expressed in the host cell such that RNP particles having nucleotide integrase activity are formed in the cell. Such RNP particles comprise an excised group II intron RNA encoded by the introduced DNA molecule and a group II intron-encoded protein encoded by the introduced DNA molecule. Thereafter the nucleotide integrase is isolated from the cell. In another embodiment, the nucleotide integrase is prepared by combining in vitro an excised group II intron RNA, hereafter "exogenous RNA", with group II intron-encoded protein. In another embodiment, the nucleotide integrase is prepared by combining "exogenous RNA" with an RNA-protein complex which comprises a group II intron-encoded protein.

E- ---

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHODS FOR PREPARING NUCLEOTIDE INTEGRASES

BACKGROUND

Nucleotide integrases are molecular complexes that are capable of cleaving double stranded DNA substrates at specific recognition sites and of concomitantly inserting nucleic acid molecules into the DNA substrate at the cleavage site. Thus, nucleotide integrases are useful tools, particularly for genome mapping and for genetic engineering.

Structurally, nucleotide integrases are ribonucleoprotein (RNP) particles that comprise an excised, group II intron RNA and a group II intron-encoded protein, which is bound to the group II intron RNA. At present nucleotide integrases are made by two approaches. The first approach involves isolating the nucleotide integrase from source organisms; both the RNA and protein subunits of the nucleotide integrase are encoded by the DNA in such organisms. In order to obtain nucleotide integrases other than wild type, the source organisms are mutagenized. The mutagenesis is a laborious, multistep process which yields limited quantities of nucleotide integrase.

10

20

30

35

The second approach used to prepare nucleotide integrases involves combining, in vitro, an exogenous, excised, group II intron RNA, with an RNA-protein complex in which the group II intron-encoded protein is associated with a splicing defective group II intron RNA rather than the excised, group II intron RNA. Therefore, the RNA-protein complex lacks nucleotide integrase activity. The exogenous RNA displaces the splicing defective group II intron RNA to form a nucleotide integrase. The RNA-protein complex is obtained by isolating RNA-protein complex from source organisms. In order to obtain the RNA-protein complex or to obtain a group II intron-encoded protein other than wild type, the source organism must be mutagenized. The mutagenisis is a laborious, multistep process which yields limited quantities of the RNA-protein complex. Thus, this method also provides limited quantities of the nucleotide integrase.

Accordingly, it is desirable to have methods for preparing nucleotide integrase which are not laborious and which permit the nucleotide integrase to be readily modified from the wild type and which do not yield limited quantities of the nucleotide integrase.

SUMMARY OF THE INVENTION

The present invention provides new, improved, and easily manipulable methods for making nucleotide integrases.

WO 98/23756

10

15

20

25

30

35

In one embodiment, the nucleotide integrase is prepared by introducing a DNA molecule which comprises a group II intron DNA sequence into a host cell. The group II intron DNA sequence is then expressed in the host cell such that RNP particles having nucleotide integrase activity are formed in the cell. Such RNP particles comprise an excise introduced DNA molecule and a group II intron-encoded protein encoded by the introduced DNA molecule. Thereafter, the nucleotide integrase is isolated from the cell.

In another embodiment, the nucleotide integrase is prepared by combining in vitro an excised, group II intron RNA, referred to hereinafter as "exogenous RNA", with a group II intron-encoded protein. Preferably, the exogenous RNA is prepared by in vitro transcription of a DNA molecule which comprises the group II intron sequence. Preferably, the group II intron-encoded protein is made by introducing into a host cell a DNA molecule which comprises the open reading frame sequence of a group II intron, and then expressing the open reading frame sequence in the host cell such that the group II intron-encoded protein encoded by the open reading frame sequence is formed in the cell. Thereafter, the cell is fractionated and the protein is recovered.

In another embodiment, the nucleotide integrase is prepared by combining in vitro an excised, group II intron RNA, referred to hereinafter as "exogenous RNA", with an RNA-protein complex which comprises a group II intron-encoded protein. Preferably, the exogenous RNA is prepared by in vitro transcription of a DNA molecule which comprises the group II intron sequence. Preferably, the RNA-protein complex is made by introducing into a host cell a DNA molecule comprising a group II intron DNA sequence which encodes a splicing-defective group II intron RNA. Thereafter, the cell is fractionated and the RNA-protein complex is isolated.

The present invention also relates to a nucleotide integrase and an improved method for making RNA-protein complexes for use in preparing nucleotide integrases in vitro.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is the plasmid map of plasmid pETLtrAl9.

Figure 2 shows the nucleotide sequence of the 2.8 kb HindIII fragment that is present in pETLtrAl9 and that includes the Ll.HrB intron DNA sequence and portions of the nucleotide sequence of the flanking exons ltrlBEl and ltrBE2, SEQ. ID. NO. 1, the nucleotide sequence of the ltrA

open reading frame, SEQ. ID. NO. 2, and the amino acid sequence of the ltrA protein, SEQ. ID. NO. 3.

Figure 3 is the plasmid map of plasmid pETLtrAl-1.

Figure 4 is a schematic representation of the inserts in pLE12, pETLtrAl9 and pETLtrAl-1.

Figure 5 is the sequence of the sense strand of the doublestranded DNA substrate, SEQ. ID. NO. 4, which was used to assess the nucleotide integrase activity of the nucleotide integrase which comprise an excised, L1.ltrB intron RNA and an Itra protein.

Figure 6a is a schematic depiction of the substrate which is cleaved by the nucleotide integrase comprising Ll.ltrB intron RNA and the 1tra protein, and Figure 6b shows the IBS1 and IBS2 sequences of the substrate and the cleavage sites of the doublestranded DNA substrate which is cleaved by this integrase.

DETAILED DESCRIPTION OF THE INVENTION

Nucleotide Integrases

10

15

30

35

Nucleotide integrases are enzymes that are capable of cleaving double stranded DNA substrates at specific recognition sites and of concomitantly inserting nucleic acid molecules into the DNA substrate at the cleavage The nucleotide integrases insert an RNA molecule into the sense strand of the cleaved DNA substrate and a cDNA molecule into the antisense strand of the cleaved DNA substrate.

Nucleotide integrases are ribonucleoprotein (RNP) particles that comprise an excised, group II intron RNA and a group II intron-encoded protein, which is bound to the group II intron RNA. "Excised group II intron RNA," as used herein, refers to the RNA that is, or that is derived from, an in vitro or in vivo transcript of the group II intron DNA and that lacks flanking exon sequences. The excised, group II intron RNA typically has six domains and a characteristic secondary and tertiary structure, which is shown in Saldahana et al. , 1993, Federation of the American Society of Experimental Biology Journal, pl5-24, which is specifically incorporated herein by reference. The excised, group II intron RNA also includes at least one hybridizing region which is complementary to a recognition site on the substrate DNA. The hybridizing region has a nucleotide sequence, referred to hereinafter as the "EBS sequence", which is complementary to the sequence of the recognition site of the intended substrate DNA, referred to hereinafter as the "IBS sequence". The group II intron-encoded protein has an X domain, a reverse transcriptase domain,

and, preferably, a Zn domain. The X domain of the protein has a maturase activity. The Zn domain of the protein has Zn^{2*} finger-like motifs.

Group II intron RNA may be produced containing desired EBS sequences which hybridize to corresponding nucleotides on substrate DNA. In addition, group II intron RNA may be produced containing additional nucleotides in domain IV. In the methods of the present invention both of these group II RNA molecules are produced from an isolated DNA which is then introduced into a cell. Such isolated DNA typically is synthesized using a DNA synthesizer or is genetically-engineered, such as by in vitro site directed mutagenesis.

A. Preparation of the Nucleotide Integrase by Isolation from a Genetically-Engineered Cell.

10

15

20

25

30

35

In one embodiment, the nucleotide integrase is made by introducing an isolated DNA molecule which comprises a group II intron DNA sequence into a host cell. Suitable DNA molecules include, for example, viral vectors, plasmids, and linear DNA molecules. Following introduction of the DNA molecule into the host cell, the group II intron DNA sequence is expressed in the host cell such that excised RNA molecules encoded by the introduced group II intron DNA sequence and protein molecules encoded by is introduced group II intron DNA sequence are formed in the cell. The excised group II intron RNA and group II intron-encoded protein are combined within the host cell to produce the nucleotide integrase.

Preferably the introduced DNA molecule also comprises a promoter, more preferably an inducible promoter, operably linked to the group II intron DNA sequence. Preferably, the DNA molecule further comprises a sequence which encodes a tag to facilitate isolation of the nucleotide integrase such as, for example, an affinity tag and/or an epitope tag. Preferably, the tag sequences are at the 5' or 3' end of the open reading frame sequence. Suitable tag sequences include, for example, sequences which encode a series of histidine residues, the Herpes simplex glycoprotein D, i.e., the HSV antigen, or glutathione S-transferase. Typically, the DNA molecule also comprises nucleotide sequences that encode a replication origin and a selectable marker. Optionally, the DNA molecule comprises sequences that encode molecules that modulate expression, such as for example T7 lysozyme.

The DNA molecule comprising the group II intron sequence is introduced into the host cell by conventional methods, such as, by cloning the DNA molecule into a vector and by introducing the vector into the host

cell by conventional methods, such as electroporation or by CaCl2-mediated transformation procedures. The method used to introduce the DNA molecule is related to the particular host cell used. Suitable host cells are those which are capable of expressing the group II intron DNA sequence. Suitable host cells include, for example, heterologous or homologous bacterial cells, yeast cells, mammalian cells, and plant cells. In those instances where the host cell genome and the group II intron DNA sequence use different genetic codes, it is preferred that the group II intron DNA sequence be modified to comprise codons that correspond to the genetic code of the host cell. The group II intron DNA sequence, typically, is modified by using a DNA synthesizer or by in vitro site directed mutagenesis to prepare a group II intron DNA sequence with different codons. Alternatively, to resolve the differences in the genetic code of the intron and the host cell, DNA sequences that encode the TRNA molecules which correspond to the genetic code of the group II intron are introduced into the host cell. Optionally, DNA molecules which comprise sequences that

10

15

20

25

35

The DNA sequences of the introduced DNA molecules are then expressed in the host cell to provide a transformed host cell. As used herein the term "transformed cell" means a host cell that has been genetically engineered to contain additional DNA, and is not limited to cells which are cancerous. Then the RNP particles having nucleotide integrase activity are isolated from the transformed host cells.

encode factors that assist in RNA or protein folding, or that inhibit RNA

or protein degradation are also introduced into the cell.

Preferably, the nucleotide integrase is isolated by lysing the transformed cells, such as by mechanically and/or enzymatically disrupting the cell membranes of the transformed cell. Then the cell lysate is fractionated into an insoluble fraction and soluble fraction. Preferably, an RNP particle preparation is isolated from the soluble fraction. particle preparations include the RNP particles having nucleotide integrase activity as well as ribosomes, mRNA and tRNA molecules. Suitable methods particle preparations include, isolating RNP for example, centrifugation of the soluble fraction through a sucrose cushion. The RNP particles, preferably, are further purified from the RNP particle preparation or from the soluble fraction by, for example, separation on a sucrose gradient, or a gel filtration column, or by other types of For example, in those instances where the protein chromatography. component of the desired RNP particle has been engineered to include a tag such as a series of histidine residues, the RNP particle may be further

purified from the RNP particle preparation by affinity chromatography on a matrix which recognizes and binds to the tag. For example, NiNTA Superflow from Qiagen, Chatsworth CA, is suitable for isolating RNP particles in which the group II intron-encoded protein has a His, tag.

B. Preparation of the Nucleotide Integrase by Combining Exogenous RNA with a Group II Intron-Encoded Protein to Form a Reconstituted RNP Particle

In another embodiment, the nucleotide integrase is formed by combining an isolated exogenous RNA with an isolated group II intronenced protein in vitro to provide a reconstituted RNP particle. Preferably the exogenous RNA is made by in vitro transcription of the group II intron DNA. Alternatively, the exogenous RNA is made by in vitro transcription of the group II intron DNA and the DNA of all, or portions, of the flanking exons to produce an unprocessed transcript which contains the group II intron RNA and the RNA encoded by the flanking exons or portions thereof. Then the exogenous RNA is spliced from the unprocessed transcript.

10

15

20

25

30

The purified group II intron-encoded protein is prepared by introducing into a host cell an isolated DNA molecule. The introduced DNA molecule comprises the DNA sequence of the open reading frame (ORF) sequence of the group II intron operably linked to a promoter, preferably Alternatively, 3S the introduced DNA molecule an inducible promoter. comprises (1) the ORF sequence and (2) at least some portion of the DNA sequence of the group II intron which lies outside of the ORF sequence and (3) a promoter which is oriented in the DNA molecule to control expression Preferably, the introduced DNA molecule also of the ORF sequence. comprises a sequence at the 5' or 3' end of the group II intron ORF which, when expressed in the host cell, provides an affinity tag or epitope on the N-terminus or C-terminus of the group II intronencoded protein. the protein in this manner facilitates isolation of the expressed protein. Thus, the DNA molecule may comprise at the 5' or 3' end of the ORF, for example, a sequence which encode a series of histidine residues, or the HSV antigen, or glutathione-S-transferase. These DNA molecules may also comprise at the 5' or 3' end of the ORF a sequence that encodes thioredoxin or any other molecule which enhances distribution of the protein encoded by the ORF into the soluble fraction of the host cell. Typically, the DNA molecule also comprises nucleotide sequences that encode a replication origin and a selectable marker.

Conventional methods are used to introduce these DNA molecules into any host cell which is capable of expressing the group II intron ORF sequence. For example, the CaCl2-mediated transformation procedure as described by Sambrook et al. in "Molecular Coning A Laboratory Manual", pages 1-82, 1989, can be used to introduce the DNA molecules into E. colicells. Suitable host cells include, for example, heterologous or homologous bacterial cells, yeast cells, mammalian cells, and plant cells. In those instances where the host cells either lack or have limiting amounts of the tRNA molecules for one or more of the codons which are present in the ORF, it is preferred that a DNA molecule encoding the rare tRNA molecules also be introduced into the host cell to increase the yield of the protein. Alternatively, the DNA sequence of the ORF is modified to match the preferred codon usage of the host cell.

10

15

20

25

35

The ORF sequence is then expressed in the host, preferably by adding a molecule which induces expression, to provide a transformed host cell. Then the transformed cell is lysed, and preferably fractionated into a soluble fraction and an insoluble fraction. Then the group II intronenceded protein is isolated, preferably, from the soluble fraction. Methods of isolating the protein from the soluble fraction include, for example, chromatographic methods such as gel filtration chromatography, ion exchange chromatography, and affinity chromatography, which is particularly useful for isolating tagged protein molecules.

Following purification of the group II intron-encoded protein, the protein is incubated with the exogenous RNA, preferably in a buffer, to allow formation of the nucleotide integrase. Optionally, the protein and RNA are denatured prior to the incubation using guanidinium hydrochloride or urea. Then, during incubation, the denaturant is removed in the presence of cosolvents like salts and metal ions to allow proper folding of the protein and RNA in the nucleotide integrase.

30 <u>C. Preparation of the Nucleotide Integrase by Combining Exogenous RNA</u> with an RNA-Protein Complex.

Alternatively, the nucleotide integrase is prepared by combining the exogenous RNA with an RNA-protein complex that has been isolated from an organism that has been genetically engineered to produce an RNA-protein complex in which the desired group II intron-encoded protein molecules are associated with RNA molecules that include a splicing defective, group II intron RNA but which lack the excised group II RNA. Preferably, the

exogenous RNA is prepared by in vitro transcription of a DNA molecule which comprises the group II intron sequence.

Preferably, the RNA-protein complex is made by introducing into a host cell an isolated DNA molecule which comprises a group II intron sequence operably linked to a promoter, preferably an inducible promoter. The group II intron sequence encodes a splicing defective group II intron RNA. Typically, the DNA molecule also comprises nucleotide sequences that encode a replication origin and a selectable marker. Then the group II intron DNA sequence is expressed in the host cell. The group II intron encodes functional group II intron-encoded protein and a splicing-defective group II intron RNA. Thus, the RNA-protein complex made in this manner lack excised, group II RNA molecules that encode the group II intronencoded protein. The RNA-protein complexes do, however, contain the functional group II intronencoded protein associated with RNA molecules that comprise the mutant, unspliced form of the group II intron RNA as well as other RNA molecules.

The resulting RNA-protein complex is isolated from the host cell and then incubated with the exogenous RNA, preferably in a buffer, to form the nucleotide integrase. During the incubation the group II intron-encoded protein becomes disassociated from the RNA molecules which are present in the RNA-protein complex and combines with the exogenous RNA to form the nucleotide integrase.

These methods enable production of increased quantities of nucleotide integrases. Conventional methods produce approximately 0.1 to 1 μg of nucleotide integrase per liter of cultured cells. In the present invention, at least 3 to 10 mg of nucleotide integrase is produced per liter of cultured cells. These methods also offer the further advantage of permitting the sequences of the RNA component and the protein component of the nucleotide integrase to be readily modified.

The following examples of methods for preparing a group II intronencoded protein and for preparing nucleotide integrases are included for purposes of illustration and are not intended to limit the scope of the invention.

Preparing Nucleotide Integrases In Vivo

35 Example 1

15

20

25

30

A nucleotide integrase comprising an excised RNA which is encoded by the Ll.ltrB intron of a lactococcal cojugative element prSO1 of Lactococcus lactis and the protein encoded by the ORF of the Ll.ltrB intron were

9

prepared by transforming cells of the BLR(DE3) strain of the bacterium Escherichia coli, which has the rec a genotype, with the plasmid pETRLtrA19. Plasmid pETLtrA19, which is schematically depicted in Figure 1, comprises the DNA sequence for the group II intron Ll.ltrB from Lactococcus lactis, shown as a thick line, positioned between portions of the flanking exons ltrBEl and ltrBE2, shown as open boxes. pETLtrAl9 also comprises the DNA sequence for the T7 RNA polymerase promoter and the T7 transcription The sequences are oriented in the plasmid in such a manner terminator. that the ORF sequence, SEQ. ID. NO. 2, within the Ll.ltrB intron is under the control of the T7 RNA polymerase promoter. The ORF of the Ll.ltrB intron, shown as an arrow box, encodes the protein ltra. The sequence of the Ll.ltrB intron and the flanking exon sequences present in pETLtrAl9 are shown in Figure 2 and SEQ. ID. NO. 1. Vertical lines in Figure 2 denote the junctions between the intron and the flanking sequences. acid sequence of the 1tra protein, SEQ. ID. NO. 4 is shown under the ORF sequence, SEQ. ID. NO. 2, in Figure 2. The exon binding sites are encoded by sequences from and including nucleotides 457 go and including 463 (EBS1) from and including nucleotides 401 to and including nucleotides 406 (EBS2a), and from and including nucleotides 367 to and including 367-372 (EBS2b). Domain IV is encoded by nucleotide 705 to 2572.

10

15

20

25

3.0

pETLtrAl9 was prepared first by digesting pLE12, which was obtained from Dr. Gary Dunny from the University of Minnesota, with HindIII and isolating the restriction fragments on a 1% agarose gel. A 2.8 kb HindIII fragment which contains the Ll.ltrB intron together with portions of the flanking exons ltrBEl and ltrBE2 was recovered from the agarose gel and the single-stranded overhangs were filled in with the Klenow fragment of DNA polymerase I obtained from Gibco BRL, Gaithersburg, MD. The resulting fragment was ligated into plasmid pET-11a that had been digested with XbaI and treated with Klenow fragment. pET-11a was obtained from Novagen, Madison, WI.

pETLtrAl9 was introduced into the *E. coli* cells using the conventional CaCl₂-mediated transformation procedure of Sambrook et al. as described in "Molecular Coning A Laboratory Manual", pages 1-82, 1989. Single transformed colonies were selected on plates containing Luria-Bertani (LB) medium supplemented with ampicillin to select the plasmid and with tetracycline to select the BLR strain. One or more colonies were inoculated into 2 ml of LB medium supplemented with ampicillin and grown overnight at 37°C with shaking. 1 ml of this culture was inoculated into 100 ml LB medium supplemented with ampicillin and grown at 37°C with

WO 98/23756

PCT/US97/21076

10

shaking at 200 rpm until OD_{595} of the culture reached 0.4. Then isopropylbeta-D-thiogalactoside was added to the culture to a final concentration of 1 mM and incubation was continued for 3 hours. Then the entire culture was harvested by centrifugation at 2,200 x g, 4°C, for 5 minutes. The bacterial pellet was washed with 150 mM NaCl and finally resuspended in 1/20 volume of the original culture in 50 mM Tris, pH 7.5, 1 mM EDTA, 1 mM DTT, and 10% (v/v) glycerol (Buffer A). Bacteria were frozen at -70°C.

To produce a lysate the bacteria were thawed and frozen at -70°C. three times. Then 4 volumes of 500 mM KC1, 50 mMCaCl2, 25 mM Tris, pH 7.5, and 5 mM DTT (HKCTD) were added to the lysate and the mixture was sonicated until no longer viscous, i.e. for 5 seconds or longer. The lysate was fractionated into a soluble fraction and insoluble fraction by centrifugation at 14,000 x g, 4°C, for 15 minutes. Then 5 ml of the resulting supernatant, i.e., the soluble fraction, were loaded onto a sucrose cushion of 1.85 M sucrose in HKCTD and centrifuged for 17 hours at 4°C, 50,0000 rpm in a Ti 50 rotor from Beckman. The pellet which contains the RNP particles was washed with 1 ml water and then dissolved in 25 μ l 10 mM Tris, pH 8.0, 1 mM DTT on ice. Insoluble material was removed by centrifugation at 1,500 x g, 4°C, for 5 minutes. The yield of RNP particles prepared according to this method comprise the excised Ll.ltrB intron RNA and the ltra protein.

Example 2

10

15

20

25

30

35

A nucleotide integrase comprising the ltra protein and the excised Ll.ltrB intron RNA was prepared as described in example 1 except the plasmid pETLtrAl9 was used to transform cells of the BL21(D3) strain of \underline{E} . \underline{coli} .

Example 3

A nucleotide integrase was prepared by transforming cells of the <u>E. coli</u> strains BLR(DE3) with pETLtrAl9 as described in Example 1 except that the transformed <u>E. Coli</u> were grown in Super-Broth (SOB) medium and shaken at 300 rpm during the 3 hour incubation.

Example 4

A nucleotide integrase was prepared by transforming cells of the <u>E. coli</u> strain BL21(DE3) with pETLtrAl9 as described above in Example 2 except the cells were also transformed with plasmid pOM62 which is based on the

plasmid pACYC184 and has an approximately 150 bp insert of the argu(dnay) The argU gene encodes the tRNA for the rare gene at the EcoRI site. arginine codons AGA and AGG. The 1trA gene contains 17 of the rare arginine codons. The transformed cells were grown in SOB medium as described in Example 3 and fractionated into a soluble fraction and an insoluble fraction as described in Example 1.

Preparing a Group II Intron-Encoded Protein Having a Purification Tag on the C Terminus.

Example 5

10

30

To facilitate purification of the protein, the ltra ORF was tagged at the C-terminus with a His, affinity tag and an epitope derived from the Herpes simplex virus glycoprotein D. The plasmid adding the tags was made in two steps by using PCR. In the first step, a fragment containing exon 1 and the ltra ORF was amplified using primers LtrAex1.Xba having the sequence 5' TCACCTCATCTAGACATTTTCTCC 3', SEQ. ID. NO. 5 which introduces an Xba I site in exon 1 of ltrB, and ltrA expr3 5'CGTTCGTAAAGCTAGCCTTGTGTTTATG 3', SEQ. ID. NO. 6, which substitutes a CGA (arginine) codon for the stop codon and introducés an Nhe I site at the 3' end of the LtrA ORF. The PCR product was cut with XbaI and Nhe I, and the restriction fragments gel purified and cloned into pET-27b(+), cut with Xba I and Nhe I obtained from Novagen, Madison, WI. The resulting plasmid pIntermediate-C fuses the 3' end of the 1tra ORF to an HSV tag and His, purification tag, both of which are present on the vector pET-27b(+). In a second step, intron sequences 3' to the ORF and exon 2 were amplified using pLE12 as a substrate and the 5' primer LtrAConZnl, having the sequence 5'CACAAGTGATCATTTACGAACG 3', SEQ. ID. No. 7 and the 3' primer LtrAex2, which has the sequence 5'TTGGGATCCTCATAAGCTTT GCCGC 3', SEQ. ID. NO. 8. The PCR product was cut with Bcll and BamH1, the resulting fragment filled in, gel-purified and cloned into pIntermediate-C, which had been cleaved with BpullO21 and filled in. The resulting plasmid is designated pC-hisLtrAl9.

Cells of the BLR(DE3) strain of E. coli were transformed as described in example 1 with pIntermediate-C and cultured at 37° C for 3 hours in SOB medium as described in example 3. The cells were also fractionated into a soluble fraction, which contains RNP particles, and an insoluble fraction as described in example 1.

EXAMPLE 6

15

20

25

30

To facilitate purification of the protein, the ltra ORF was tagged at the N-terminus with a His₅ affinity tag and the epitope tag XPRESS™ which was obtained from Invitrogen, San Diego, CA. The plasmid adding the tags was made in two steps by using PCR. In the first step, a fragment was made in two steps by using PCR mutagenesis. In the first step, the ltrA ORF and 3' exon were amplified and BamHl sites were appended to both the 5' an 3' end of the ltrA ORF using pLE12 as a substrate and the following pair: 5' primer N-Ltra 5', having the sequence 5'CAAAGGATCCGATGAAACCAACGAATGGCAA 3', SEQ. ID. NO. 9; and the 3' primer LtrAex2, SEQ. ID. NO. 8. The PCR product was cut with BamH1 and the resulting restriction fragment was gel purified and cloned into the BamHl site of plasmid pRSETB obtained from Invitrogen, San Diego, CA. The resulting plasmid pIntermediate-N fuses the N-terminus of the ltrA ORF to a His, purification tag, and adds an XPRESS™ epitope tag from the vector. In a second step, the 5' exon and Ll.ltrB intron sequences 5' to the ORF were amplified using pLE12 as a substrate and the 5' primer NdeLTR5, having the sequence 5'AGTGGCTTCCATATGCTTGGTCATCACCTCATC 3', SEQ. ID. No. 10 and 3' primer NdeLTR3', which has the sequence 5' GGTAGAACCATATGAAATTCCTCCTCCCTAATCAATTTT 3', SEQ. ID. NO. 11. product was cut with Nde I, filled in, the fragment gel purified and cloned into pIntermediate-N, which had also been cut with Nde I. Plasmids were screened for the orientation of the insert, and those oriented such that the 5' exon was proximal to the T7 promoter were used to transform the host cells. The resulting plasmid pFinal-N expresses a message under the control of the T7 polymerase promoter which comprises the E1 and E2 portions of the exons 1trBE1 and 1trBE2, and the 1trA ORF fused at the 5' end with an His, purification tag and the XPRESS™ epitope tag.

Cells of the BLR(DE3) strain of E. coli were transformed as described in example 1 with pIntermediate-N and cultured at 37°C for 3 hours in SOB medium as described in example 3. The cells were also fractionated into a soluble fraction, which contains RNP particles, and an insoluble fraction as described in example 1.

EXAMPLE 7

Plasmid pETLtrAl-1 was used to prepare a partially-purified preparation of the Itra protein, which is encoded by the ORF of the Ll.trB intron. Plasmid pETLtrAl-1 is a derivative of pETLtrAl9 and lacks exon 1 and the intron sequences upstream of the ltrA ORF. Accordingly, the ltrA ORF is directly downstream of the phage T7 promoter following the Shine-

<u>.</u>

- 8

Dalgarno sequence in the plasmid. The plasmid map of pETLtrAl-1 is shown in Figure 3.

PETLtrAl-1 was made by using the polymerase chain reaction to amplify the 1trA ORF using the 5' primer LtrAexpr 5' AAAACCTCCATATG AAACCAACAATG 3', SEQ. ID. NO. 12, which introduces an NdeI site and 3' primer LtrAex2, SEQ. ID. NO. 8. The PCR product was cut with NdeI and BamHI, gel purified on a 1% agarose gel, and cloned into pET20-lla. The inserts of pLE12, pETLtrAl9 and pETLtrAl-1, each of which contain the 1trA ORF is depicted in Figure 4.

PETLtrA-1 was introduced into cells of the *E. coli* strain BLR(DE3) as described in Example 1 and the transformed cells grown for 3 hours in SOB medium at 37°C as described in Example 3. Thereafter, the cells were lysed and the resulting lysate fractionated into a soluble fraction and insoluble fraction by low speed centrifugation as described in Example 1.

15 Preparing a Nucleotide

Example 8

10

20

25

35

A nucleotide integrase is prepared in vitro by combining an exogenous RNA comprising an excised Ll.ltrB intron RNA with a purified LtrA protein. The purified LtrA is obtained by subjecting the partially-purified ltra protein of example 7 to standard chromatographic methods. The exogenous RNA is prepared by cloning the Ll.ltrB intron together with its flanking exons into a plasmid downstream of a T7 promoter, linearizing the plasmid downstream of the exon 2 using a restriction enzyme, and transcribing the intron with T7 RNA polymerase. The in vitro transcript is incubated for one hour at 37° C in 500 mM NH₄Cl and 50 mM MgCl₂, 10 mM DTT, 2 units RNase inhibitor, to increase or produce excised intron RNA. The exogenous RNA and purified ltra protein are then incubated in a buffer to form the nucleotide integrase. The nucleotide integrase is then isolated from the reaction mixture.

30 Comparative Example A

RNP particles were prepared as described in Example 1 from cells of the BLR(DE3) strain of E. coli that had been transformed with plasmid pET11a, which lacks a group II intron. Accordingly, these RNP particles do not comprise excised, group II RNA or group II intron-encoded proteins and therefore, do not have nucleotide integrase activity.

Comparative Example B

10

15

20

25

30

RNP particles were prepared as described in Example 1 from cells of the BLR(DE3) strain of coli that had been transformed with plasmid pETLtrAl9FS, which comprises the sequence of an ltra ORF having a frame shift 372 base pairs downstream from the initiation codon of the ltra ORF. frame. Accordingly, these RNP particles contain a truncated ltra protein, i.e. an ltra protein lacking the Zn domain and, therefore, do not have nucleotide integrase activity.

Characterization of the RNP particles of Examples 1 and 2.

A portion of the RNP particle preparation of examples 1 and 2 and comparative examples A and B were subjected to SDS gel electrophoresis. Staining of the resulting gel with Coomasie Blue permitted visualization of the proteins in each of the fractions. A band of approximately 70 kDa, which corresponds to the predicted molecular weight of the ltra protein was seen in the lanes containing aliquots of the RNP particles of Examples 1 and 2. This band was absent from the lanes containing the RNP particles prepared from comparative examples A and B. On the basis of the staining intensity of the 70 kDa band, the quantity of ltra protein in 10 OD_{260} , units of RNP particles was estimated to be approximately 3 μ g. These results indicate that RNP particles containing the group II intron-encoded protein ltra can be prepared by expression of the group II intron Ll.ltrB in a heterologous host cell.

The reverse transcriptase activities of the RNP particles of examples 1 and 2 and the RNP particles of comparative examples A and B were assayed by incubating each of the RNP particle preparations with a poly(ra) template and oligo (dTl8) as a primer. The RNP particles of examples 1 and 2 exhibited reverse transcriptase activity, while the RNP particles of comparative examples A and B exhibited no reverse transcriptase activity. These results indicate that the methods described in examples 1 and 2 are useful for preparing RNP particles that have reverse transcriptase activity. The reverse transcriptase activity that is present in nucleotide integrases allows incorporation of a CDNA molecule into the cleavage site of the double stranded DNA which is cut by the nucleotide integrase.

Characterizing the Distribution and Yield of the ltra Protein

A portion of the insoluble fraction and soluble fraction of the lysates from the cells transformed and cultured according to the methods described in examples 1, 2, 3, and 4 were subjected to SDS polyacrylamide

gel electrophoresis. Following electrophoresis, the SDS gels were stained with Coomassie blue to compare the yield of the 1tra protein and the distribution of the 70 kDa 1tra protein prepared by the methods of examples 1, 2, 3, and 4. The results of this assay demonstrated that more of the ltra protein was found in the soluble fraction when the transformed BLR (DE3) cells were grown in SOB medium and shaken at 300 rpm than when the transformed BLR cells were grown in LB medium and shaken at 200 rpm, These results also indicated that the total amount of 1tra protein produced by the transformed BLR cells, that is the amount of LtrA in both the soluble and insoluble fractions, increased when a plasmid comprising the L1.1trB intron and a plasmid comprising argU(dnaY) gene were both introduced into the host cells.

10

15

20

30

35

Characterization of the Group II Intron-Encoded Protein Prepared According to the Methods of Examples 5 and 6.

A portion of the insoluble fraction and soluble fractions of the lysates from the cells transformed and cultured according to the methods described in examples 5 and 6 and in comparative examples A and B were subjected to electrophoresis on duplicate SDS-polyacrylamide gels. one of the gels was stained with Coomasie blueand the proteins on the duplicate were transferred to nitrocellulose paper by Western blotting. antibody to the HSV antigen or the and an alkaline phosphatase-labeled anti-mouse IgG secondary antibody were used in an enzyme-linked immunoassay to identify proteins carrying the HSV epitope or the XPRESS™. The results of these assays showed that the anti-HSV antibody and the anti-XPRESS™ antibody bound to a protein having a molecular weight of approximately 70 kDa, which is the molecular weight of the ltra protein. The HSV tagged ltra protein and the xpress™ tagged ltra protein were found in the soluble and insoluble fractions from cells transformed with pIntermediateC and bIntermediateN but not in the soluble fractions and insoluble fractions of cells transformed with pet 27b(+) and PRSETB. Thus, the methods of examples 5 and 6 are useful for preparing a tagged group II intron encoded These assays also demonstrated that the amount of the tagged group II intron-encoded protein present in the soluble fraction, from which the RNP particles are derived, increases when the transformed and induced cells are incubated at 28°C as compared to 37°C. Alternative studies showed that incubation times of 30 minutes to 3 hours resulted in production of the tagged protein, but these incubation times resulted in production of less of the protein and are therefore less preferred.

Using the RNP Particles to Cleave Double-Stranded DNA and to Insert Nucleotide Sequences into the Cleavage Site.

Nucleotide integrases are useful for cleaving one or both strands of a double-stranded DNA substrate, catalyzing the attachment of the excised, group II intron RNA molecule to one of the strands of the substrate DNA and catalyzing the formation of a CDNA molecule on the other strand of the cleaved double-stranded DNA substrate. Thus, the nucleotide integrases are useful analytical tools for determining the location of a defined sequence in a double-stranded DNA substrate. Moreover, the simultaneous insertion of the nucleic acid molecule into the first strand of DNA permits tagging of the cleavage site of the first strand with a radiolabeled molecule. In addition, the automatic attachment of an RNA molecule onto one strand of the DNA substrate permits identification of the cleavage site through hybridization studies that use a probe that is complementary to the attached RNA molecule. An attached RNA molecule that is tagged with a molecule such as biotin also enables the cleaved DNA to be affinity Moreover, the cleavage of one or both strands of the double stranded DNA and the concomitant insertion of a nucleotide sequence into the cleavage site permits incorporation of new genetic information or a genetic marker into the cleavage site, as well as disruption of the cleaved gene. Thus, the nucleotide integrases are also useful for rendering the substrate DNA nonfunctional or for changing the characteristics of the RNA and protein encoded by the substrate DNA. while nucleotide integrases can be used to cleave doublestranded DNA substrates at a wide range of temperatures, good results are obtained at a reaction temperature of from about 30° C to about 42° C, preferably from about 30° to about 37° C. A suitable reaction medium contains a monovalent cation such as Na^* or K^* , and a divalent cation, preferably a magnesium or manganese ion, more preferably a magnesium ion, at a concentration that is less than 100 mM and greater than 1 mM. Preferably the divalent cation is at a concentration of about 5 to about 20 mM. The preferred pH for the medium is from about 6.0-8.5, more preferably about 7.5-8.0.

Cleavage of 3' and 5' end labeled double stranded DNA

10

15

20

25

30

0.025 O.D.₂₆₀ of the RNP particles of Example 1 and comparative examples A and B were incubated for 20 minutes with 150,000 cpm of each of a 5' and 3' end-labeled DNA substrate that comprises the exon 1 and exon 2 junction of the 1trB gene. The sequence of the 129 base pair substrate, which comprises the 70 base pair exon 1 and exon 2 junction of the 1trB

WO 98/23756

10

15

25

30

35

PCT/US97/21076

17

gene, plus sequences of the plasmid is depicted in Figure 5 and SEQ. ID. NO. 4. To verify cleavage, the products were isolated on a 6% polyacrylamide gel.

The substrate which is cleaved by the nucleotide integrase comprising the excised Ll.trB intron RNA and the ltra protein is schematically depicted in Figure 6(a). In addition, the IBS1 and IBS2 sequence of the substrate is shown in figure 6(b). As shown in Figure 6, the IBS1 and IBS2 sequences which are complementary to the EBS sequences of the Lltr.B intron RNA are present in exon 1 of the ltrb gene. As depicted in Figure 6, the RNP particles prepared according to the method of example 1 cleaved the sense strand of the substrate at position 0, which is the exon 1 and exon 2 junction, and the antisense strand at +9. When the RNP particles of prepared according to the method of example 1 were treated with either RNase A/Tl to degrade the RNA in the particles, or with proteinase K to degrade the protein component of the particles prior to incubation of the particles with the substrate, no cleavage of the substrate was observed. These results indicate that both the RNA component and the protein component of the nucleotide integrase are needed to cleave both strands of the substrate DNA.

20 <u>Cleaving Both Strands of Double-Stranded DNA and Inserting the Intron RNA</u> of the Nucleotide Integrase into the Cleavage Site.

0.025 O.D.₂₆₀ units of the RNP particle preparation of example 1 were reacted with 125 fmoles (150,000 cpm) of the 129 base pair internally-labeled DNA substrate for 20 minutes. To verify cleavage, the products were glyoxalated and analyzed in a 1% agarose gel.

A dark band of radiolabel of approximately 1.0 kb RNA and a lighter bands of approximately 0.8, 1.1, 1.4, 1.5, 1.6, 1.9, 2.5, 3.2 were observed on the gel. Pretreatment of the reaction products with RNase prior to isolation on the agarose gel resulted in the complete disappearance of these bands. These results indicate that Ll.trB intron RNA was attached to the DNA substrate during reaction of the substrate with the RNP particles of example 1. On the basis of the size of Ll.trB intron, it is believed that the band at 2.5 kb represents the integration of the full length group II intron RNA into the cleavage site of the sense strand. The presence of smaller radiolabeled products on the gel is believed to be due to degradation of the integrated intron RNA by RNases which may be present in the RNP particle preparation. The finding that the RNADNA products

18

withstand denaturation with glyoxal indicates a covalent linkage between the intron RNA and the $\dot{D}NA$ substrate.

```
SEQUENCE LISTING
```

5

10

25

50

55

(1) GENERAL INFORMATION:

(i) APPLICANT: Lambowitz Dr., Alan M Mohr Dr., Georg Saldanha Dr., Roland

Matsuura Dr., Manabu

- (ii) TITLE OF INVENTION: Method for Preparing Nucleotide Integrase
- (iii) NUMBER OF SEQUENCES: 12
- (iv) CORRESPONDENCE ADDRESS:
- 15 (A) ADDRESSEE: CALFEE, HALTER & GRISWOLD
 - (B) STREET: 800 Superior Avenue
 - (C) CITY: Cleveland
 - (D) STATE: Ohio
 - (E) COUNTRY: US
- 20 (F) ZIP: 44114
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
- (B) FILING DATE: 30
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Golrick, Mary E.
- 35 (B) REGISTRATION NUMBER: 34,829
 - (C) REFERENCE/DOCKET NUMBER: 24671/00103
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (216) 622-8458
- (B) TELEFAX: (216) 241-0816 40
 - (2) INFORMATION FOR SEQ ID NO:1:
- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2761 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AAGCTTAGAG AAAAATAATG CGGTGCTTGG TCATCACCTC ATCCAATCAT TTTCTCCTGA

	TGACAATCTA	ACTCCTGAAC	AAATTCATGA	AATAGGTCGT	CAAACCATAT	TAGAATTTAC	120
5	AGGTGGCGAA	TATGAATTTG	TGATTGCAAC	CCACGTCGAT	CGTGAACACA	TCCATAACGT	180
3	GCGCCCAGAT	AGGGTGTTAA	GTCAAGTAGT	TTAAGGTACT	ACTCTGTAAG	ATAACACAGA	240
	AAACAGCCAA	CCTAACCGAA	AAGCGAAAGC	TGATACGGGA	ACAGAGCACG	GTTGGAAAGC	300
10	GATGAGTTAC	CTAAAGACAA	TCGGGTACGA	CTGAGTCGCA	ATGTTAATCA	GATATAAGGT	360
	ATAAGTTGTG	TTTACTGAAC	GCAAGTTTCT	AATTTCGGTT	ATGTGTCGAT	AGAGGAAAGT	420
15	GTCTGAAACC	TCTAGTACAA	AGAAAGGTAA	GTTATGGTTG	TGGACTTATC	TGTTATCACC	480
13	ACATTTGTAC	AATCTGTAGG	AGAACCTATG	GGAACGAAAC	GAAAGCGATG	CCGAGAATCT	540
	GAATTTACCA	AGACTTAACA	CTAACTGGGG	ATACCCTAAA	CAAGAATGCC	TAATAGAAAG	600
20	GAGGAAAAAG	GCTATAGCAC	TAGAGCTTGA	AAATCTTGCA	AGGGTACGGA	GTACTCGTAG	660
	TATTCTGAGA	AGGGTAACGC	CCTTTACATG	GCAAAGGGGT	ACAGTTATTG	TGTACTAAAA	720
25	TTAAAAATTG	ATTAGGGAGG	AAAACCTCAA	AATGAAACCA	ACAATGGCAA	TTTTAGAAAG	780
	AATCAGTAAA	AATTCACAAG	AAAATATAGA	CGAAGTTTTT	ACAAGACTTT	ATCGTTATCT	840
	TTTACGTCCA	GATATTTATT	ACGTGGCGTA	TCAAAATTTA	TATTCCAATA	AAGGAGCTTC	900
30	CACAAAAGGA	ATATTAGATG	ATACAGCGGA	TGGCTTTAGT	GAAGAAAAA	TAAAAAAGAT	960
	TATTCAATCT	TTAAAAGACG	GAACTTACTA	TCCTCAACCT	GTACGAAGAA	TGTATATTGC	1020
35	AAAAAAGAAT	TCTAAAAAGA	TGAGACCTTT	AGGAATTCCA	ACTTTCACAG	ATAAATTGAT	1080
	CCAAGAAGCT	GTGAGAATAA	TTCTTGAATC	TATCTATGAA	CCGGTATTCG	AAGATGTGTC	1140
	TCACGGTTTT	AGACCTCAAC	GAAGCTGTCA	CACAGCTTTG	AAAACAATCA	AAAGAGAGTT	1200
40	TGGCGGCGCA	AGATGGTTTG	TGGAGGGAGA	TATAAAAGGC	TGCTTCGATA	ATATAGACCA	1260
	CGTTACACTC	ATTGGACTCA	TCAATCTTAA	AATCAAAGAT	ATGAAAATGA	GCCAATTGAT	1320
45	TTATAAATTT	CTAAAAGCAG	GTTATCTGGA	AAACTGGCAG	TATCACAAAA	CTTACAGCGG	1380
	AACACCTCAA	GGTGGAATTC	TATCTCCTCT	TTTGGCCAAC	ATCTATCTTC	ATGAATTGGA	1440
	TAAGTTTGTT	TTACAACTCA	AAATGAAGTT	TGACCGAGAA	AGTCCAGAAA	GAATAACACC	1500
50	TGAATATCGG	GAACTTCACA	ATGAGATAAA	AAGAATTTCT	CACCGTCTCA	AGAAGTTGGA	1560
	GGGTGAAGAA	AAAGCTAAAG	TTCTTTTAGA	ATATCAAGAA	AAACGTAAAA	GATTACCCAC	1620
55	ACTCCCCTGT	ACCTCACAGA	CAAATAAAGT	ATTGAAATAC	GTCCGGTATG	CGGACGACTT	1680
	CATTATCTCT	GTTAAAGGAA	GCAAAGAGGA	CTGTCAATGG	ATAAAAGAAC	AATTAAAACT	1740
	TTTTATTCAT	AACAAGCTAA	AAATGGAATT	GAGTGAAGAA	AAAACACTCA	TCACACATAG	1800

	CAGTCAACCC GCTCGTTTTC TGGGATATGA TATACGAGTA AGGAGAAGTG GAACGATAAA	1860
5	ACGATCTGGT AAAGTCAAAA AGAGAACACT CAATGGGAGT GTAGAACTCC TTATTCCTCT	1920
5	TCAAGACAAA ATTCGTCAAT TTATTTTTGA CAAGAAAATA GCTATCCAAA AGAAAGATAG	1980
	CTCATGGTTT CCAGTTCACA GGAAATATCT TATTCGTTCA ACAGACTTAG AAATCATCAC	2040
10	AATTTATAAT TCTGAATTAA GAGGGATTTG TAATTACTAC GGTCTAGCAA GTAATTTTAA	2100
	CCAGCTCAAT TATTTTGCTT ATCTTATGGA ATACAGCTGT CTAAAAACGA TAGCCTCCAA	2160
15	ACATAAGGGA ACACTTTCAA AAACCATTTC CATGTTTAAA GATGGAAGTG GTTCGTGGGG	2220
	CATCCCGTAT GAGATAAAGC AAGGTAAGCA GCGCCGTTAT TTTGCAAATT TTAGTGAATG	2280
	TAAATCCCCT TATCAATTTA CGGATGAGAT AAGTCAAGCT CCTGTATTGT ATGGCTATGC	2340
20	CCGGAATACT CTTGAAAACA GGTTAAAAGC TAAATGTTGT GAATTATGTG GAACATCTGA	2400
	TGAAAATACT TCCTATGAAA TTCACCATGT CAATAAGGTC AAAAATCTTA AAGGCAAAGA	2460
25	AAAATGGGAA ATGGCAATGA TAGCGAAACA ACGTAAAACT CTTGTTGTAT GCTTTCATTG	2520
	TCATCGTCAC GTGATTCATA AACACAAGTG AATTTTTACG AACGAACAAT AACAGAGCCG	2580
	TATACTCCGA GAGGGGTACG TACGGTTCCC GAAGAGGGTG GTGCAAACCA GTCACAGTAA	2640
30	TGTGAACAAG GCGGTACCTC CCTACTTCAC CATATCATTT TTAATTCTAC GAATCTTTAT	2700
	ACTGGCAAAC AATTTGACTG GAAAGTCATT CCTAAAGAGA AAACAAAAAG CGGCAAAGCT	2760
35	T	2761
	(2) INFORMATION FOR SEQ ID NO:2:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1800 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
50	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11800	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
55	ATG AAA CCA ACA ATG GCA ATT TTA GAA AGA ATC AGT AAA AAT TCA CAA Met Lys Pro Thr Met Ala Ile Leu Glu Arg Ile Ser Lys Asn Ser Gln 1 5 10 15	48
	GAA AAT ATA GAC GAA GTT TTT ACA AGA CTT TAT CGT TAT CTT TTA CGT	96

	Glu	Asn	Ile	Asp 20	Glu	Val	Phe	Thr	Arg 25	Leu	Tyr	Arg	Tyr	Leu 30	Leu	Arg	
5			ATT Ile 35														14
10			ACA Thr														19
15			ATA Ile														24
			CCT Pro														28
20			CCT Pro														33
25			AGA Arg 115														38
30			CAC His														43:
35			AAA Lys														48
,,			GGC Gly														52
40 ⁻			CTT Leu														576
45			AAA Lys 195													TAC Tyr	624
50			ACA Thr														67
			CAT His														720
55			GAA Glu														761

			ATA														816
5	ASII	GIU	Ile	260	Arg	iie	ser	HIS	265	Leu	ьўs	ьуs	Leu	G1u 270	GIY	GIu	
			GCT Ala 275														864
10			CTC Leu														912
15			GCG Ala														960
20			TGG Trp														1008
25			GAA Glu														1056
25			CGT Arg 355														1104
30			CGA Arg														1152
35	_		CTT Leu														1200
40			ATA Ile														1248
45			TAT Tyr				Ser		Asp	Leu							1296
			GAA Glu 435														1344
50			CAG Gln														1392
55			ATA Ile														1440
	ATG	TTT	AAA	GAT	GGA	AGT	GGT	TCG	TGG	GGC	ATC	CCG	TAT	GAG	ATA	AAG	1488

	Met	Phe	Lys	Asp	Gly 485	Ser	Gly	Ser	Trp	Gly 490	Ile	Pro	Tyr	Glu	Ile 495	Lys	
5							TAT Tyr										1536
10							GAG Glu										1584
15							GAA Glu 535										1632
							GAA Glu										1680
20							AAA Lys										1728
25	_						ACT Thr										1776
30		_		CAT His			AAG Lys	TGA * 600									1800
35	(2)			SEQUE	NCE	CHAF	ID N	ERIST	CICS:		3						
40				(Q)	TOP	POLOG	mino Y:]	inea	ır								
40							: pr :RIPT) ID	NO:3	3:					
45	1				5		Ile			. 10					15		
	_			20			Phe		25		-		Ū	30		_	
50			35	-	-		Ala	40				•	45		•	-	
55		50					55					60					
	65	ьys	TTE	ьys	гÀ2	70	Ile	GIU	ser	ьeu	75	Asp	стÀ	Inr	ıyr	80	

	Pro	Gln	Pro	Val	Arg 85	Arg	Met	Tyr	Ile	Ala 90	Lys	Lys	Asn	Ser	Lys 95	Lys
5	Met	Arg	Pro	Leu 100	Gly	Ile	Pro	Thr	Phe 105	Thr	Asp	Lys	Leu	Ile 110	Gln	Glu
	Ala	Val	Arg 115	Ile	Ile	Leu	Glu	Ser 120	Ile	Tyr	Glu	Pro	Val 125	Phe	Glu	Asp
LO	Val	Ser 130	His	Gly	Phe	Arg	Pro 135	Gln	Arg	Ser	Cys	His 140	Thr	Ala	Leu	Lys
L5	Thr 145	Ile	Lys	Arg	Glu	Phe 150	Gly	Gly	Ala	Arg	Trp 155	Phe	Val	Glu	Gly	Asp 160
	Ile	Lys	Gly	Суз	Phe 165	Asp	Asn	Ile	Asp	His 170	Val	Thr	Leu	Ile	Gly 175	Leu
20	Ile	Asn	Leu	Lys 180	Ile	Lys	Asp	Met	Lys 185	Met	Ser	Gln	Leu	Ile 190	Tyr	Lys
	Phe	Leu	Lys 195	Ala	Gly	Tyr	Leu	Glu 200	Asn	Trp	Gln	Tyr	His 205	Lys	Thr	Tyr
25	Ser	Gly 210	Thr	Pro	Gln	Gly	Gly 215	Ile	Leu	Ser	Pro	Leu 220	Leu	Ala	Asn	Ile
30	Tyr 225	Leu	His	Glu	Leu	Asp 230	Lys	Phe	Val	Leu	Gln 235	Leu	Lys	Met	Lys	Phe 240
	Asp	Arg	Glu	Ser	Pro 245	Glu	Arg	Ile	Thr	Pro 250	Glu	Tyr	Arg	Glu	Leu 255	His
35	Asn	Glu	Ile	Lys 260	Arg	Ile	Ser	His	Arg 265	Leu	Lys	Lys	Leu	Glu 270	Gly	Glu
	Glu	ГÀЗ	Ala 275	Lys	Val	Leu	Leu	Glu 280	Tyr	Gln	Glu	Lys	Arg 285	Lys	Arg	Leı
40	Pro	Thr 290	Leu	Pro	Суз	Thr	Ser 295	Gln	Thr	Asn	Lys	Val 300	Leu	Lys	Tyr	Val
45	Arg 305	Tyr	Ala	Asp	-	Phe 310		Ile	Ser		Lys 315		Ser	Lys		Asr 320
	Cys	Gln	Trp	Ile	Lys 325	Glu	Gln	Leu	Lys	Leu 330	Phe	Ile	His	Asn	Lys 335	Let
50	Lys	Met	Glu	Leu 340	Ser	Glu	Glu	Lys	Thr 345	Leu	Ile	Thr	His	Ser 350	Ser	Glr
	Pro	Ala	Arg 355	Phe	Leu	Gly	Tyr	Asp 360	Ile	Arg	Val	Arg	Arg 365	Ser	Gly	Thi
55	Ile	Lys 370	Arg	Ser	Gly	Lys	Val 375	Lys	Lys	Arg	Thr	Leu 380	Asn	Gly	Ser	Va:
	Glu	Leu	Leu	Ile	Pro	Leu	Gln	Asp	Lys	Ile	Arg	Gln	Phe	Ile	Phe	Ası

26

	385					390					395					400
5	Lys	Lys	Ile	Ala	Ile 405	Gln	Lys	Lys	Asp	Ser 410	Ser	Trp	Phe	Pro	Val 415	His
3	Arg	Lys	Tyr	Leu 420	Ile	Arg	Ser	Thr	Asp 425	Leu	Glu	Ile	Ile	Thr 430	Ile	Tyr
10	Asn	Ser	Glu 435	Leu	Arg	Gly	Ile	Cys 440	Asn	Tyr	Tyr	Gly	Leu 445	Ala	Ser	Asn
	Phe	Asn 450	Gln	Leu	Asn	Tyr	Phe 455	Ala	Tyr	Leu	Met	Glu 460	Tyr	Ser	Cys	Leu
15	Lys 465	Thr	Ile	Ala	Ser	Lys 470	His	Lys	Gly	Thr	Leu 475	Ser	Lys	Thr	Ile	Ser 480
20	Met	Phe	Lys	Asp	Gly 485	Ser	Gly	Ser	Trp	Gly 490	Ile	Pro	Tyr	Glu	Ile 495	Lys
	Gln	Gly	Lys	Gln 500	Arg	Arg	Tyr	Phe	Ala 505	Asn	Phe	Ser	Glu	Cys 510	Lys	Ser
25	Pro	Tyr	Gln 515	Phe	Thr	Asp	Glu	Ile 520	Ser	Gln	Ala	Pro	Val 525	Leu	Tyr	Gly
	Tyr	Ala 530	Arg	Asn	Thr	Leu	Glu 535	Asn	Arg	Leu	Lys	Ala 540	Lys	Cys	Cys	Glu
30	Leu 545	Cys	Gly	Thr	Ser	Asp 550	Glu	Asn	Thr	Ser	Tyr 555	Glu	Ile	His	His	Val 560
35	Asn	Lys	Val	Lys	Asn 565	Leu	Lys	Gly	Lys	Glu 570	Lys	Trp	Glu	Met	Ala 575	Met
33	Ile	Ala	Lys	Gln 580	Arg	Lys	Thr	Leu	Val 585	Val	Cys	Phe	His	Cys 590	His	Arg
40	His	Val	Ile 595	His	Lys	His	Lys	* 600								
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	NO : 4	:							
45		(i)	() ()	A) Li B) T	engti YPE : I'RANI	H: 1: nuc: DEDN	CTER: 29 baleic ESS: line	ase p acio sino	pair:	s						
50		(ii)) MO:	LECU	LE T	YPE:	DNA	(gei	nomi	c)						

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

WO 98/23756

	TCATTTTTAA TTCTACGAAT CTTTATACTG GGAATTCGAT ATCAAGCTTA TCGATACCGT	120
	CGACCTCGA	129
5	(2) INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
20	TCTACCTCAT CTAGACATTT TCTCC	25
	(2) INFORMATION FOR SEQ ID NO:6:	•
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30 35	(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	CGTTCGTAAA GCTAGCCTTG TGTTTATG	28
40	(2) INFORMATION FOR SEQ ID NO:7:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
55	CACAAAGTGA TCATTTAACG AACG	24
	(2) INFORMATION FOR SEQ ID NO:8:	
	(i) SEQUENCE CHARACTERISTICS:	

28

	(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	TTGGGATCCT CATAAGCTTT GCCGC	25
15	(2) INFORMATION FOR SEQ ID NO:9:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
30	CAAAGGATCC GATGAAACCA ACAATGGCAA	30
	(2) INFORMATION FOR SEQ ID NO:10:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40	(ii) MOLECULE TYPE: DNA (genomic)	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	AGTGGCTTCC ATATGCTTGG TCATCACCTC ATC	33
50	(2) INFORMATION FOR SEQ ID NO:11:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

29

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
5	GGTAGAACCA TATGAAATTC CTCCTCCCTA ATCAATTTT	39
	(2) INFORMATION FOR SEQ ID NO:12:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	AAAACCTCCA TATGAAACCA ACAATG	26

What is Claimed is:

25

30

1. A method for preparing a nucleotide integrase which cleaves a double-stranded DNA substrate, said method comprising the following steps:

- (a) providing a DNA molecule comprising a group II intron DNA sequence, wherein the group II intron DNA sequence encodes a group II intron RNA and comprises an open reading frame sequence which encodes a group II intron-encoded protein;
 - (b) introducing the DNA molecule into a host cell;
- 10 (c) expressing the group II intron DNA sequence in the host cell, to provide an excised group II intron RNA and a group II intronenceded protein molecule, wherein the protein and the RNA combine in the host cell to form the nucleotide integrase;
- (d) obtaining the nucleotide integrase of step (c) from the 15 host cell.
 - 2. The method of claim 1 wherein the DNA molecule further comprises a promoter operably linked to the group II intron DNA sequence.
 - 3. The method of claim 2 wherein the promoter is an inducible promoter.
- 4. The method of claim 2 wherein the DNA molecule further comprises a nucleotide sequence which encodes a tag for facilitating isolation of the nucleotide integrase from the host cell; and

wherein the method further comprises expressing the nucleotide sequence which encodes the tag in the host cell to provide a tagged group II intron-encoded protein; and

wherein step (d) involves employing the tag to recover the nucleotide integrase.

- 5. The method of claim 4 wherein the sequence which encodes the tag is located at the 51 end or the 3' end of the open reading frame sequence of the group II intron DNA sequence.
- 6. The method of claim 2 further comprising the steps of: introducing a DNA sequence encoding at TRNA which corresponds to the genetic code of the group II intron DNA sequence into the host cell before step (b) and

WO 98/23756

15

25

30

PCT/US97/21076

expressing the tRNA-encoding DNA sequence in the host cell.

7. The method of claim 1 wherein the DNA molecule is prepared by the following steps of:

31

preparing a synthetic group II intron DNA sequence; wherein the group II intron DNA sequence comprises a sequence of nucleotides that bind to the recognition site of the substrate DNA and

incorporating the synthetic group II intron DNA sequence into the DNA molecule.

- 8. The method of claim 1 wherein the group II intron DNA
 10 sequence comprises the DNA sequence of the Ll.ltrB intron and the RNP
 particles comprise an excised Ll.ltrB intron RNA and an ltra protein.
 - 9. The method of claim 1 wherein the group II intron DNA sequence comprises a modified DNA sequence of the Ll.ltrB intron and the RNP particles comprise a modified excised Ll.ltrB intron RNA and an ltra protein molecule.
 - 10. The method of claim 1 wherein the group II intron DNA sequence comprises a modified DNA sequence of the Ll.ltrB intron and the RNP particles comprise a modified excised Ll.ltrB intron RNA and a modified ltra protein molecule.
- 20 11. The method of claim 1 wherein the host cell is E. coli.
 - 12. The method of claim 8 wherein the host cell is E. coli.
 - 13. A method of preparing a nucleotide integrase in vitro comprising the steps of:
 - (a) providing an isolated, excised, group II intron RNA;
 - (b) providing an isolated group II intron-encoded protein; and
 - (c) incubating the excised, group II intron RNA with the group II intron-encoded protein for a sufficient time to form a nucleotide integrase comprising the excised, group II intron RNA bound to the group II, intron-encoded protein.
 - 14. The method of claim 13 wherein the group II intronencoded protein is produced by a process comprising the steps of:

- (a) providing a DNA molecule comprising an open reading frame sequence of a group II intron, said open reading frame sequence being operably linked to a promoter;
- (b) introducing the DNA molecule of step (a) into a host 5 cell;
 - (c) expressing the open reading frame sequence in the host cell to provide the group II intron-encoded protein; and (d) isolating the group II intron-encoded protein from the host cell.
- 15. The method of claim 13 wherein the DNA molecule further

 10 comprises a sequence which encodes a tag that facilitates isolation of the
 group II intron-encoded protein from the host cell; and

wherein the method further comprises expressing the nucleotide sequence which encodes the tag in the host cell to provide a tagged group II intron-encoded protein; and

- wherein step (d) involves obtaining a tagged nucleotide integrase from the host cell.
 - 16. The method of claim 15 wherein the sequence which encodes the tag is located at a position selected from the 51 end and the 31 end of the open reading frame sequence.
- 20 17. The method of claim 13 wherein the open reading frame sequence encodes the ltra protein and wherein the excised, group II RNA is elected from the group consisting of an unmodified, excised Ll.ltrB intron RNA and a modified, excised Ll.ltrB intron RNA.
- 18. A method of preparing a nucleotide integrase in vitro comprising the steps of:
 - (a) providing an exogenous RNA which comprises an excised group II intron RNA;
 - (b) providing an RNA-protein complex, wherein the RNA-protein complex comprises a protein having an amino acid sequence encoded by a group II intron and RNA that is free of excised, group II intron RNA molecules having a sequence that encodes said protein; said RNA-protein complex being prepared by the following steps:

30

(i) providing an isolated DNA molecule comprising a group II intron DNA sequence, wherein said group II intron DNA sequence

encodes a group II intron-encoded protein and a splicing defective group II RNA;

- (ii) introducing the DNA molecule into a host cell;
- (iii) expressing the mutated group II intron DNA sequence in the host cell, wherein an RNA-protein complex comprising the group II intron-encoded protein and the splicing-defective group II RNA are formed in the cell
 - (iv) obtaining the RNA-protein complex of step (iii) from the host cell; and
- 10 (c) incubating the exogenous RNA of step (a) with the RNP particle preparation for a sufficient time to form a nucleotide integrase comprising the excised group II RNA and the protein having an amino acid sequence encoded by a group II intron.
- A nucleotide integrase prepared according to a method 15 selected from the group consisting of the method of claim 1, the method of claim 13 and the method of claim 18.
 - An isolated nucleotide integrase comprising an excised Ll.ltrB intron RNA and an ltra protein molecule.

Fig. 1.

Fig. 2

100	10	20	30	40	50	60	70	80	90
ANTAGGTCGT CAAACCATAT TAGAATTTAC AGGTGGGGAA TATGAATTTG TOATTGCAC CCAGCTCGAT CGTGAACACA TCCATAAQTT 190	aagcttAGAG	AAAAATAATG	CGGTGCTTGG	TCATCACCTC	ATCCAATCAT	TTTCTCCTGA	TGACAATCTA	ACTCCTGAAC	AAATTCATGA
GOCCACATA AGGGGATTAA GTCAAGTAGT TTAAGGTACT ACTCTGTAAG ATAACACCGA AAACACCCAA CCTAACCCGAA AAACAGCCAA CAGAGCCCA CTGAAGAGC GTGGAAGC GTGAGTACT CTAAAGACA TCGGGTACGA CTGAGTGCCA ATGTTAATCA GTCAATCACCGCA ACAGACCACC GTTGGAAGC GTGGAGACC GTGAGTACCAC GTGAGACCAC GTGAGACCC GTGAGACC GTGAGACCC GTGAGACC GTGAGACCC AATTCTAATCA GTGAGACCAC GTGAGTGCCA ACAGACCCACC GTGAGACC GTGAGACCC AATTCTAATCAC CACATTCTGCAT ACAGACCCACA ACAGACCCACA ACAGACCCACA ACACCCCCACA ACACCCCCC								-	
GOCCACATA AGGGGATTAA GTCAAGTAGT TTAAGGTACT ACTCTGTAAG ATAACACCGA AAACACCCAA CCTAACCCGAA AAACAGCCAA CAGAGCCCA CTGAAGAGC GTGGAAGC GTGAGTACT CTAAAGACA TCGGGTACGA CTGAGTGCCA ATGTTAATCA GTCAATCACCGCA ACAGACCACC GTTGGAAGC GTGGAGACC GTGAGTACCAC GTGAGACCAC GTGAGACCC GTGAGACC GTGAGACCC GTGAGACC GTGAGACCC AATTCTAATCA GTGAGACCAC GTGAGTGCCA ACAGACCCACC GTGAGACC GTGAGACCC AATTCTAATCAC CACATTCTGCAT ACAGACCCACA ACAGACCCACA ACAGACCCACA ACACCCCCACA ACACCCCCC	190	200	210	220	230	240	250	260	270
TRATACOGGA ACAGAGCICG GTTGGAAAC GATGACTPIC CTAAAGACAA TCGGGTACGA CTGAGTCGCA ATGTTAATCA GATATAAGGT 370 380 390 400 410 420 430 430 440 450 ATATAAGTT TTTACTGAACA GCAAAGTT GTCTGAAAC TCTAGTACAA AAAAAGGTAA TGGGTAGGAA TGTGTGAAAC TCTAGTACAA AAAAAGGTAA 460 470 480 490 500 510 520 530 540 540 540 540 540 540 540 540 540 54							AAACAGCCAA	CCTAACCGAA	
370 380 390 400 410 420 430 440 450 ATTACTORIA TITACTORIA CONCORTA ATTACOGNIA AGAGGAAGT GETGAAACC TETAGACAA AGAAAGGAAACT AGAGGAAGT GETGAAACC TETAGACAA AGAAAGGAAACTAA AGAAAGGAAACTATA AGAGGAAACTATA AGAGGAAACTATA AGAGGAAACTATA AGAGGAAACTATA GAAAGCAAAC GAAACCTATA CATACAACA AGAAACCTATA CATACAACAACAACAACAACAACAACAACAACAACAACAA									
### ACCORDANCE TRACEGORA GRANGETT ANTECOGET ANTECOGET AGGIGGAAGE GETENGAACE TETAGRACA AGAAAGGAAA GETAAAGGAAAGGAAAGGAAAGGAAAG	TGATACGGGA	ACAGAGCACG	GTTGGAAAGC	GATGAGTIAC	CTAAAGACAA	TCGGCTACGA	CTGAGTCGCA	ATGTTAATCA	GATATAAGGT
460 470 480 490 500 510 520 530 530 540 GTTATGGTTG TGACTTATC TOTTATCACC ACATTGTAC ANTICTACTORY ANTICTATORY ANTICTATORY ANTICTATORY ANTICTATORY ANTICTATORY ANTICTATORY ANTICTATORY ANTICTATORY AND ANTICTATORY ANTICTATORY AND ANTICTATORY AND ANTICTATORY AND ANTICTATORY AND									
STRATGGTTG TOGACTTATC TOTTATCACC ACATTGTAC ANTCTGTAGE AGAACCTATG GAACGAAAC GAAAGGATG CCGAGAARTE S50	, ,								
GARATTIACCA AGACTTAACA CTAACTGGG ATACCCTAAA CAAGAATGCC TAATAGAAAG GAGGAAAAAG GCTATAGCAC TAGACCTGAA 640 650 660 670 680 690 700 710 720 AAATCTTGCA AGGGTACGGA GTACTCGTAG TAGTCTGAGA AGGGTAACGC CCTTTACATG GCAAAGGGGT ACAGTTATT GTACTAAAAA 730 740 750 760 770 780 790 900 810 TTAAAAATTG ATTAGGGAGG AAAACCTCAA AATGAAAACCA ACAATGCCAA TTITAGAAAC AATCAGTAAA CAATCAGTAAA CAATCAGTAAA CAATCAGAAACAAAAGAAAAAGAAAAAAAAAA									
640 650 660 670 680 690 700 710 720 AAATCTTCCA AGGGTACGGG GTACTCGTAG TAGTCTGAGA AGGGTAACGC CCTTTACATG GCAAAGGGGT ACAGTTATTG TGTACTAAAA 730 740 750 760 770 780 790 800 810 TTAAAAAATTG ATTAGGGAGG AAAACCTCAA AATGAAACCA ACAATGGCAA TTTTAGAAAG AATCAGTAAA AATTCACAAG AAAATATAGA M K P T M A I L E R I S K N S Q E N I D 820 830 840 850 860 870 880 890 900 GGAAGTTTT ACAGGGACTT ATGGTCAG GATATTTAT ACGTGGCGTA TCAAAATTTA TATTCCAATA AAGGACCTTC E V F T R L Y R Y L L R P D I Y Y V V A Y Q N L Y S N K G A S 910 920 930 940 950 960 970 980 990 CACAAAAGGA ATATTAGAT ATACGCGGA TGGCTTATGT GAAGAAAAAA TAAAAAAGAT TATTCAATCT TTAAAGGAC GAACTTACTA T K G I L D D T A D D G F S E E K I K K I I Q S L K D G T Y Y Y 1000 1010 1020 1030 1040 1050 1060 1070 1080 TCCTCAACCT GTACGAAGAA TGTATATTAC AAAAAAGAAT TATAAAAGAA TAAAAAAGAT TATTCAATCT TTAAAGGAC ATAATTGAAT TGTACACG AAAAAGGAAT TATTCAAAGA ACTTTCAACG ATAATTGAAT TATTCAATCT TAAAAGAAC GAAGCTTCAA P L L E S I Y E P V F E D V S H G F R P Q R S C H 1090 1100 1110 1120 1130 1140 1150 1160 1170 CCCAAGAAGCT GTACGAAGAAA TGTATATTACC AAAAAAGGAAT TATTCAAAGAC TTAACACCA ATAATTGAA CAC GAAGCTGTCA Q E A V R I I L E S I Y E P V F E D V S H G F R P Q R S C H 1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGGATTT AGAACAATAA TTCTTGAATC TATCTATGAA CACGGGACA TAAATTGAT TGCACGATTAA AAAGAAACAT AAAAGAACATT TAGCACCAA AAAGAACAATT TAGCACCAA AAAAGAACATT TAGCACCAA AAAAGAACATT TAGCACCAA AAAAGAACATT TAGCACCAA AAAAAAAAAA	550	560	570	580	590	600	610	620	630
TABLECTICE AGGSTACGG GTACTCSTAG TAGTCTSGA AGGSTACGC CCTTTACATG GCAAAGGGGT ACAGTTATTG TGTACTAAAA	GAATTTACCA	AGACTTAACA	CTAACTGGGG	ATACCCTAAA	CAAGAATGCC	TAATAGAAAG	GAGGAAAAAG	GCTATAGCAC	TAGAGCTTGA
730 740 750 760 770 780 790 800 810 TTAMAMATTC ATTAGGAGG AMACCTCAA MATGAAACCA ACANTGGCAA TITTAGAAAG AATCAGTAAA AATCACAG AMACATAGA M K P T M A I L E R I S K N S Q E N I D 820 830 840 850 860 870 880 890 900 CGAAGTITT ACCAGACTT ACCGTTACT TITACCTCCA GATATTITAT ACGGGGGGTA TCAAAATTA TATTCCAATA AAGGGGTTC E V F T R L Y R Y L L E P D I Y Y V A Y Q N L V S N K G AS 910 920 930 940 950 960 970 980 990 CACAAAAGGA ATATTGATG ATACGGGGA TGGCTTTAGT GAAGAAAAA TAAAAAGAGAT TATTCAATCT TTAAAAGAG GAACTACTA T K G I L D D T A D G F S E E K I K K I I Q S L K D G T Y Y Y 1000 1010 1020 1030 1040 1050 1060 1070 1080 TCCTCAACCT GTACGAAGA TCATATTGC AAAAAAGAAT TCTAAAAAGAG TGAGACCTTT AGGAATTCA ACTTTCAAG ATAAATTGAT P Q P V R R M Y I A K K N S K K M R P L G I P T F T D K L I 1090 1100 1110 1120 1130 1140 1150 1160 1170 CCAAGAAGCT GTAGGAATAA TTCTGAATC TATATGAAA CCGGTATTACA ACCGTTT AGGAATTCA ACTTTCAAC ACCTTCAAC ACCTTCAAC Q E A V R I I L E S I Y E P V F E D V S H G F R P Q R S C H 1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGCTTTG AAAAAAAAAA AACAACAA AAAGAAGAT TGGGGGGGGA AGATGATTGT TGGAGGGGAGA TATAAAAAGG TGCTCAACT AAAAAAAAAA			,						
## ATTOMANATION AND COMMITTED	AAATCTTGCA	AGGGTACGGA	GTACTCGTAG	TAGTCTGAGA	AGGGTAACGC	CCTTTACATG	GCAAAGGGGT	ACAGTTATTG	TGTACTAAAA
B									
CGAAGTTTTT ACAGACCTTT ATCGTTATCT TTTACGTCA GATATTTATT ACGTGCGTA TCAAAATTTA TATTCCAATA AAAGAGGCTTC E V F T R L Y R Y L L R P D I Y Y V A Y Q N L Y S N K G A S	11700000110	ATTAGGAGG	nonce rent						
910 920 930 940 950 960 970 980 990 CACADADAGGA ATATTAGATG ATACAGCGGA TGGCTTTAGT GAAGAAAAA TAAAAAAAGAT TATTCAATCT TTAAAAGACG GAACTTACTA T K G I L D D T A D G F S E E K I K K I I Q S L K D G T Y Y Y 1000 1010 1020 1030 1040 1050 1060 1070 1080 TCCTCAACCT GTACGAAGAA TGTATATTGC AAAAAAGAAT TCTAAAAAGA TGAGACCTTT AGGAACTCCA ACTTTCACAG ATAAATGAAT P Q P V R R M Y I A K K N S K K M R P L G I P T F T D K L I 1090 1100 1110 1120 1130 1140 1150 1160 1170 CCCAGGAGAC GTAGGAATAA TTCTTGAATC TATCTATGAA CCGGTATTCG AAGATGTCC TCCACGTTTT AGACCTCAAC GAAGCTGTCA Q E A V R I I L E S I Y E P V F E D V S H G F R P Q R S C H 1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGCTTTG AAAACAATCA AAAGAGATT TGGCGGGCGA AGATGGTTT TGGAGGGGAGA TATAAAAGCC TGCTTCCATA ATATGACCA T A L K T /I K R E F G G A R W F V E G D I K G C F D N I D H 1270 1280 1290 1300 1310 1320 1330 1340 1350 CGTTACACCT ATTGGACTCA TCAATCTAA AATCAAAGAT ATGAGAATGA TGGAAATGA TTATAAAATT CTAAAAGCG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCGG TATCACAAAA CTTACAGCGG AACACCTCAA GGTGGAATTC TATCTCCTCT TTTGGCCCAAC ATCATCTTC ATGAATGAGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAGGTTTGTT TTACAACTCA AAATGAAGTT TGGCCGGGAA AGCCCCCAAA GGTCCAGAAA GGATAACACC TGAATTACCG GAACTTTCAAAAACCAC ATCATCTTCA ATGAATAAAA	820	830	840	850	860	870	880	890	900
CACARARAGGA ATATTAGATG ATACAGGGGA TGGCTTTAGT GAAGAARAA TAAAAAAGAT TATTCAATCT TTAAAAGACG GAACTTACTA T K G I L D D T A D G F S E E K I K K I I Q S L K D G T Y Y Y									
CACARARAGGA ATATTAGATG ATACAGGGGA TGGCTTTAGT GAAGAARAA TAAAAAAGAT TATTCAATCT TTAAAAGACG GAACTTACTA T K G I L D D T A D G F S E E K I K K I I Q S L K D G T Y Y Y	010	020	. 030	040	050	060	070	990	000
1000 1010 1020 1030 1040 1050 1060 1070 1080 TCCTCAACCT GTACGAAGAA TGTATATTCC AAAAAAGAAT TCTAAAAAGA TGAGACCTTT AGGAATTCCA ACTTTCACAG ATAAATTGAT P Q P V R R M Y I A K K N S K K M R P L G I P T F T D K L I 1090 1100 1110 1120 1130 1140 1150 1160 1170 CCAAGAAGCT GTGAGAATAA TTCTTGAATC TATCTATGAA CCGGTATTCG AAGATGTCTC TCACGGTTTT AGACCTCAAC GAAGCTCTCA Q E A V R I I L E S I Y E P V F E D V S H G F R P Q R S C H 1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGCTTTG AAAACAATCA AAAGAAGAT TGGCGGGGCA AGATGGTTTG TGGAGGGAGA TATAAAAGGC TGCTTCGATA ATATAGACCA T A L K T /I K R E F G G A R W F V E G D I K G C F D N I D H 1270 1280 1290 1300 1310 1320 1330 1340 1350 CGTTACACTC ATTGGACTCA TCAATCTTAA AATCAAAGAT ATGAAAATGA GCCAATTGAT TTATAAATTT CTAAAAGCAG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTGGAATTC TATCTCCTCT TTTGGCCCAAC ATCTATCTTC ATGAATTGAG N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGGAAA AGCCCGGAAA GGACTACACC TGAATATCGG GAACTTCACA ATGAGATAAA									
TOCTCAACCT GTACGAAGAA TGTATTATIC AAAAAGAAT TCTAAAAAGA TGAGACCTTT AGGATTCCA ACTITCACAG ATAAATTGAT P Q P V R R M Y I A K K N S K K M R P L G I P T F T D K L I I 1090 1100 1110 1120 1130 1140 1150 1160 1170 1170 1180 1190 1200 1210 1220 1230 1240 1250 1250 1260 CACAGCATTG AAAACAATCA AAAGAGAGTT TGGCGGCGCA AGATCGTTTG TGGAGGAGAA TATAAAAGGC TGCTTCGATA ATATAGACCA T A L K T /I K R E F G G A R W F V E G D I K G C F D N I D H 1270 1270 1270 1270 1270 1270 1270 1270	T K G	ILDD	тар	G F S	EEKI	ккі	I Q S	LKDG	тчч
P Q P V R R M Y I A K K N S K K M R P L G I P T F T D K L I 1090 1100 1110 1120 1130 1140 1150 1160 1170 CCAAGAAGCT GTGAGAATAA TTCTTGAATC TATCTATGAA CCGGTATTCG AAGATGTGTC TCACGGTTTT AGACCTCAAC GAAGCTGTCA Q E A V R I I L E S I Y E P V F E D V S H G F R P Q R S C H 1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGCTTTG AAAACAATCA AAAGAGAGTT TGGCGGCGCA AGATGGTTTG TGGAGGGAGA TATAAAAGGC TGCTTCGATA ATATAGACCA T A L K T /I K R E F G G A R W F V E G D I K G C F D N I D H 1270 1280 1290 1300 1310 1320 1330 1340 1350 CGTTACACTC ATTGGACTCA TCAATCTTAA AATCAAAGAT ATGAAAATGA GCCAATTGAT TTATAAATTT CTAAAAGCAG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTGGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGAGAA AGTCCAGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAAA									-
CCAAGAAGCT GTGAGAATAA TTCTTGAATC TATCTATGAA CCGGTATTCG AAGATGTCT TCACCGTTTT AGACCTCAAC GAAGCTGTCA Q E A V R I I L E S I Y E P V F E D V S H G F R P Q R S C H 1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGCTTTG AAAACAATCA AAAGAGAGTT TGGCGGCGCA AGATGGTTTG TGGAGGGAGA TATAAAAGGC TGCTTCGATA ATATAGACCA T A L K T /I K R E F G G A R W F V E G D I K G C F D N I D H 1270 1280 1290 1300 1310 1320 1330 1340 1350 CGTTACACCC ATGAGCTCA TCAATCTTAA AATCAAAGAT ATGAAAATGA GCCAATTGAT TTATAAATTT CTAAAAGCAG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCG TATCACACAA CTTACAGCG AACACCTCAA GGTCGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGGTAAAA									
Q E A V R I I L E S I Y E P V F E D V S H G F R P Q R S C H 1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGCTTTG AAAACAATCA AAAGAGAGTT TGGCGGCGCA AGATGGTTTG TGGAGGGAGA TATAAAAGGC TGCTTCGATA ATATAGACCA T A L K T / I K R E F G G A R W F V E G D I K G C F D N I D H 1270 1280 1290 1300 1310 1320 1330 1340 1350 CGTTACACTC ATTGGACTCA TCAATCTTAA AATCAAAGAT ATGAAAATGA GCCAATTGAT TTATAAATTT CTAAAAGCAG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTCGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y N K T Y S G T P Q G G I L S P L L A N I Y L H E L D TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGAGAA AGTCCAGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAA	1090	1100	1110	1120	1130	1140	1150	1160	1170
1180 1190 1200 1210 1220 1230 1240 1250 1260 CACAGCTTTG AAAACAATCA AAAGAGAGTT TGGCGGCGCA AGATGGTTTG TGGAGGGAGA TATAAAAGGC TGCTTCGATA ATATAGACCA T A L K T /I K R E F G G A R W F V E G D I K G C F D N I D H 1270 1280 1290 1300 1310 1320 1330 1340 1350 CGTTACACTC ATTGGACTCA TCAATCTTAA AATCAAAGAT ATGAAAATGA GCCAATTGAT TTATAAATTT CTAAAAGCAG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTGGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGGAGA AGCCCGGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAA									
CACAGCTTTG AAAACAATCA AAAGAGAGTT TGGCGGCGCA AGATGGTTTG TGGAGGGAGA TATAAAAGGC TGCTTCGATA ATATAGACCA T A L K T / I K R E F G G A R W F V E G D I K G C F D N I D H 1270	• • • • •							_	
1270 1280 1290 1300 1310 1320 1330 1340 1350 CGTTACACTC ATTGGACTCA TCAATCTTAA AATCAAAGAT ATGAAAATGA GCCAATTGAT TTATAAATTT CTAAAAGCAG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTCGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGGAAA AGTCCAGAAA GGACTAACACC TGAATACCG GAACTTCACA ATGAGATAAA				•					
CGTTACACTC ATTGGACTCA TCAATCTTAA AATCAAAGAT ATGAAAATGA GCCAATTGAT TTATAAATTT CTAAAAGCAG GTTATCTGGA V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTCGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGAGAA AGTCCAGAAA GAATAACACC TGAATACGG GAACTTCACA ATGAGATAAA	TAL	K T /I K	REF	G G A	RWFV	E G D	I K G	C F D N	IDH
V T L I G L I N L K I K D M K M S Q L I Y K F L K A G Y L E 1360 1370 1380 1390 1400 1410 1420 1430 1440 AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTGGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGAGAA AGTCCAGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAA									
AAACTGGCAG TATCACAAAA CTTACAGCGG AACACCTCAA GGTGGAATTC TATCTCCTCT TTTGGCCAAC ATCTATCTTC ATGAATTGGA N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGGTTGTT TTACAACTCA AAATGAAGTT TGACCGGAAA AGTCCAGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAA									
N W Q Y H K T Y S G T P Q G G I L S P L L A N I Y L H E L D 1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGGGAA AGTCCAGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAA	1360	1370	1380	1390	1400	1410	1420	1430	1440
1450 1460 1470 1480 1490 1500 1510 1520 1530 TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGGAGAA AGTCCAGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAA									
TAAGTTTGTT TTACAACTCA AAATGAAGTT TGACCGAGAA AGTCCAGAAA GAATAACACC TGAATATCGG GAACTTCACA ATGAGATAAA		1 11 K I			3 3 1 1		r v a	n	
	1450	1460	1470	1480	1490	1500	1510	1520	1530

Fig. 2 (Cont.)

	(conc.)																												
		1540			155	_			560			1570			158				590			1600			161	0		1	620
AAG	AAT	TTCT	CA	CCG	TCTC	A A	GAA	GTT	GGA	GGG	TGA	AGAA	AA	AGC	TAAA	G	ттст	لملمك 	'AGA	ATA	тса	AGDA	ΔА	ACC.	מממיד	. Δ · C	ייייי מי	ACC	C A C
R	I	s	H	R	L	к	ĸ	L	E	G	E	E	ĸ	A	ĸ	1/			P	····		E		ncu	v				T
								_	_	Ŭ	_	_	••	•		•		_	-	•	¥	-		K		ĸ	L	P	T
		1630			164	۸		1	650			1660			167	_												_	
N Cm	~~			~~~		-													680			1690			170			1	710
		CTGT	AC	CIC	ACAG	А (SCAA	AGA	GGA
L	P	С	T	S	Q	T	N	ĸ	V	L	K	Y	V	R	Y	A	D	D	F	I	I	s	V	K	G	S	K	E	D
		1720			173	0		1	740			1750			176	0		1	770			1780			179	0		1	800
CTG	TC	LATGG	AT	AAA	AGAA	C A	LATT	AAA	ACT	TTT	TAT	TCAT	AA	CAA	GCTA	Α.	ааат	GGA	ATT	GAG	TGA	AGAA	AA.	AAC	ACTO	:A 1	רכאכ	- 404	TAG
		W																										н	
	_				_	•	_		_	-	_				_		••	_	_	·	-	_		٠	-	•	•	п	3
		1810			182	^		,	830			1840			105	_												_	
						-									185				860			1870			188				890
		VYCCC																			ATC	TGGT	AA.	AGT	CAAA	LA A	AGAG	AAC	ACT
S	Q	P	A	R	F	L	G	Y	D	I	R	v	R	R	S	G	T	I	K	R	s	G	ĸ	v	ĸ	ĸ	R	T	L
		1900			191	0		1	920			1930			194	0		1	950			1960			197	0		1	980
CAA	TGO	GAGT	GT	AGA	ACTO	СТ	TAT	TCC	ጥገጥ	TCA	AGA	CAAA	ΑТ	ጥርር			ጥ ልጥጥ							ጥልጥ					
N	G	s	v	E	r.	 t.	T	D	7	^		v		-	^	-	****		101	CAA.	٠,,	www							
••	•	-	•		_		•	-		Q	-	K	-	K	v	F	r	r	U	K	Α.	1	A	1	Q	ĸ	K	D	S
		1000				_		_								_													
		1990			200	•			010			2020			203				040			2050			206				070
CTC	ATC	GTTT	CC	AGT	TCAC	A G					TCG	TTCA	AC	AGA	CTTA	G.	AAAT	CAT	CAC	AAT	TTA	TAAT	TC'	TGA.	ATTA	A G	SAGG	GAT	TTG
S	W	F	P	v	Н	R	K	¥	L	I	R	s	т	D	L	E	I	I	T	I	Y	N	s	E	L	R	G	I	С
		2080			209	0		2	100			2110			212	0		2	130			2140			215	0		2	160
TAA	TTA	CTAC	GG	тст	AGCA	A G	TAA	ттт	TAA	CCA	ССТ	CAAT	TA	طملمك			ልጥርጥ			ата			CT:				· > C C		
		Y																				C							
••	٠	•	•	-	^		14	F	14	V	-	14	1	F	Α.	1	1	M	E.	Y	5	C	٠	K	T	Ţ	A	s	K
						_		_																					
		2170			218	-		-	190			2200			221				220			2230			224				250
ACA	TAA	IGGGA	AC	ACT	TTCA	A A	LAAC	CAT	TTC	CAT	GTT	TAAA	GΑ	TGG.	AAGT	G	GTTC	GTG	GGG	CAT	CCC	GTAT	GA	GAT.	AAAG	ic a	'AGG	TAA	GCA
H	K	G	T	L	s	K	T	ľ	S	M	F	K	D	G	S	G	s	W	G	Ι	P	Y	Ε	I	ĸ	Q	G	K	Q
		2260			227	0		2	280			2290			230	0		2	310			2320			233	n		2	340
GCG	CCG	TATT	TT	TGC	AAAT	тч	TAG	TGA	АТС	TAA	ATC	CCC	ΤА	4 O T			CCC»							T			*CC		
R	R	Y	F	A	N			E-					٧.	^			-coon	·	7	~~			-						
•••		•	•	••	.,	•	3		•		3	F	1	v	r	•	ע	E	1	5	Ų	A	٤	٧	L	Y	G	Y	À
		2350				_		_								_		_											
					236	-		_	370			2380			239				400			2410			242				430
		TACT																									TCA	CCA'	TO:
R	N	T	L	Ε	N	P.	L	ĸ	Α	K	С	С	E	L	C	G	T	s	D	Ε	N	T	S	Y	Ξ	I	н	н	٧
		2440			245	0		2	460			2470			248	o		2	490			2500			251	0		20	520
CAA	TAA	GGTC	AA	AAA	ጥርጥፕ		ACC	ממח	ACA	444	ATC	CCAA	aт	ccc			ም አ <i>ሮር</i>	_		300			~~	~~~					
N	K	v	ĸ	NT.	7	·· ··	o.co.	···	non E	~~~		5577		000	M10.	-	INGC,	.,	ACA	ACG	1 44	AACI	-	IGI.	LGIA				
•••	•••		• • • • • • • • • • • • • • • • • • • •	**	-		G		_	K	**	E	Pi	^	М	1	A	ν.	Ų	K	K	1	L	V	v	C	F.	Н	C
						_																							
		2530			254	-			550			2560			257				580			2590			260				610
TCA	TCG	TCAC	GT	GAT	TCAT	A A	ACA	CAA	GTG	AAT	TTT	TACG	AA	CGA.	ACAA'	T	AACA	GAG	CCG	TAT	ACT	CCGA	GAG	GGG	TAC	G T	'ACG	TT	CCC
Н	R	н	٧	I	н	K	H	ĸ	٠																				
		2620			263	0		2	640			2650			266	n		2	670			2680			260	^		٦.	700
GAA	GAG	GGTG	GТ	GCA		-	4 OT:			TOT	C A A		GC.	ccr	ልሮርጥ		CCT x	-ጥጥ	CNC	C. 7. 77									
									• ~~			~~~	G.	- CO 17	ncc I	٠,	CCIA	-11	CAC	CAT	MIC	AUTT	I.I.Y	√A'1"	CTA	G	MAT	. 1"1".	AT
		2710			222	_		_								_				İ									
					272	-		_	730			2740			275				760			2770							
ACT	GGC	AAAC	AA	TTT	GACT	GG	AAA	GTC	ATT	CCT	AAA	GAGA	AA	ACA	AAAA	G	CGGC	Aaa	gct	t									

Fig. 3

Fig. 4

Fig. 5

10 20 30 40 50 60 cgctctagaa ctagtggatc cTTGCAACCC ACGTCGATCG TGAACACATC CATAACCATA

70 80 90 100 110 120 TCATTTTTAA TTCTACGAAT CTTTATACTG Ggaattcgat atcaagctta tcgataccgt

Fig. 6

DNA Substrate

International application No. PCT/US97/21076

										
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12N 15/52, 15/31, 9/02 US CL :435/189; 536/23.2, 23.7 According to International Patent Classification (IPC) or to both national classification and IPC										
	LDS SEARCHED	national classification and II								
	locumentation searched (classification system followe	l by classification symbols)								
U.S. :	435/189; 536/23.2, 23.7									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE										
Electronic o	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)									
APS, DIALOG search terms: nucleotide integrase, double-stranded DNA, group II intron										
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where a	propriate, of the relevant pass	sages Relevant to claim No.							
A, E	US 5,698,421 (Lambowitz et al.) entire document.	16, December, 1997	7, see 1-20							
	<u> </u>									
Purth	her documents are listed in the continuation of Box C		annex.							
"A" do	ecial categories of cited documents:		after the international filing date or priority with the application but cited to understand inderlying the invention							
	be of particular relevance rlier document published on or after the international filing date		relevance; the claimed invention cannot be ot be considered to involve an inventive step							
cit	councent which may throw doubts on priority claim(s) or which is and to establish the publication date of another citation or other ecial reason (as specified)	when the document is tal								
"O" do	count reason (as specified) cument referring to an oral disclosure, use, exhibition or other seans	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art								
	cument published prior to the international filing date but later than a priority date claimed	*&* document member of the same patent family								
Date of the actual completion of the international search Date of mailing of the international search report										
08 MAY 1998 1 5 MAY 1998										
	nailing address of the ISA/US	Authorized officer Bedu	ll fr							
Box PCT Washington, D.C. 20231 KEITH D. HENDRICKS										
	io. (703) 305-3230	Telephone No. (703) 308	-0196							