Digital Stynal Processing Module -I Contents: It as a linear transformation, its relationship with other transforms, proporties of DET antopoluction: Det: we know that the forguency domain analyses can give better and ensight analysts compared to time domain analysis. Digital signal processing is the area which is descurring | analysing about the manipulations performed on a objected signal. Digital signal processing can be performed well by a handware Called a digital signal processor, which will accept only signals in digital nature. The mentioned flow explains ITET apeniodic

JIFT the necessity of IXT. The discrete sognal arm which ex aperiodic X (e) periodic continuous Can be transformed in to an equivalent frequency domain Sampling lusing DTFT. XCK) - DFT DEFT x(2w) is Continuous and DS pracesson periodic, which cannot be processed accepted by the objital monipulated autput sle signal processes. Therefore, sampling is performed on x(e'w) in such a way that in samples are taken within one flendamental period 27. The no. of samples in should be sufficient to avoid alianing of frequency spectrum

The samples are DTFT Ne DFT are represented as a function of integer k, and 800 the DFT is a sequence consisting of N complex numbers represented as X(k), k=0,1,...,N-1

En Jeneral, the equally spaced forguency samples X(2TK), K=0,1,...,N-1 do not uniquely represent the original sequence 2TM, when 2TM has infinite duration. Enstead, the bequency samples X(2TK) to correspond to a periodic sequence 2TM of period N where 2TM is an alwayed version of 2TM in 2T

when the sequence sten) has a finite dievation of length $L \leq N$, then $\frac{2p(n)}{2}$ is simply a periodic sepetition of $\frac{2p(n)}{2}$, where $\frac{2p(n)}{2}$ over a single period is $\frac{2p(n)}{2} = \frac{2p(n)}{2}$; $0 \leq n \leq L-1$

Consequently, the Requency samples \times (2 TK), K-0,1,...,N/ which we will represent the finite duration sequence and some sequence consisting of complex numbers, the magnitude and phase of each sample can be computed and listed as magnitude sequence and phase sequence respectively. The plot of [XCK] werses K is called magnitude speethum and the plot of [XCK] werses K is called Phase speethum.

From the knowledge of frequency derous sampling and reconstruction, it's clean that the periodic Signal apen) from the samples of the spectrum XIV), Itauever it does not emply that we can Recover X(W) Or FCn) from the samples, 70 accomplish others, we read to consider the relationship between apin) and atin). Since apin) is the periodic extension of sen, it's clear that sen can be recovered from Tourn, if there is no aliaring in the time alonain, that is if sten is time limited to less than the period N of Exp(n). The DFT sequence X(K) = X(W) | Stant at keo

Corresponding to was, but does not include kan Corresponding to W= 27

In summonary, a finite duration sequence ren) of length L Le OKO)= 0; LENEO has a fourter transform XIW)= Excore ; OZW \$27 If we sample XIW) in such a way that N equidssamples within 2π le $\chi(k)$ - $\chi(\omega)$, the resultant is called as DFT and denoted by $\chi(k)$ given by

 $X(r) = \underbrace{\sum_{k=0,1,\dots,N-1}^{N-1}}_{p_{co}} \times (r) = \underbrace{\sum_{k=0,1,\dots,N-1}^{N-1}}_{k \approx 0} \times (r) = \underbrace{\sum_{k=0,1,\dots,N-1}^{N-1}}_{k \approx 0}$

```
example 1:
 1. Find the 4 point DET of signal arm: $1,1,1,13
  we know that DFT XCR) is given by
   X (E)= N-1 2000, 2 2000; k=0,1,..., N-1
Given N=4 But sen values for n=0,1,2,3
 >> X(k)= 710). e +71(1) e 2 + 712). e +718 e 1826
Sub various values of k larging from 0, 1,2,3
                             for k= 0 all the en values=1
X10)= 1. 1+ 1. 1+1.1+1.1
  X10)= 4
XCO=1,1+1,(-1)+1,(-1)+1,(+i)
   X(1)=1-8-x+
  XCI)=0
  X(2) = 1.1+1.(4)+1.1+1.(4)
   X(2)=0
  又(3)=1.1+1.()+1(一)+1.()
   又のこの
since x(10) is a complex number can be written as
  XCES = [XCES]. LXCES, where | XCES | = J(Bulgary) + (Emil Dary)
and trus = tan ( Empart
```

At this Point, An the Calculation of DFT a now factor called turdalle factor un is introduced, which is obtained as W = = 25 an N root of unity. Also form the previous example for the computation of IFT, we note that the computation of each point of the DFT envolves N complete multiplication and (N-V Complex additions, Hence the N-point ITT values can be consputed in a total of N2 complex multiplications and N(N-1) Complex additions.

Properties of Reiddle-Factor:

up has got periodicty and symmetry property which enhances the computation of DFT early.

periodicity property

WX = WX

Proof: KIN - 125 (KIN) - 125 K - 125, M WHAT UN = E White - 6 = 1 -1,26 k

Symmetry property:

W K+ N = - W - 1 25 K+ 1 25 K - 1 25 K

DFF as a linear transformation matrix
we know that N-1 Kn TED 11 1 K-0 1 N-1
X(C)= 2 301. W, 5 12-0,1, 11,
(DE) chart to the det and IDET as hear
Ests enstructive to view the DFT and IDFT ashream
transformations on sequences facinity and of xcust
respectively.
Let us define an N-Port vector of the signal
sequence sting where no 0,1, N-1, an N-point vector
X(ic) of frequency samples and an NXN matrix when
X[k] = (x(0))
an N Pt THE may be expressed to [I WN WN WN
matrix tom as
~ [7]
· · · · · · · · · · · · · · · · · · ·
Trigotia / Touch
THE BUT OF THE SECOND
The above relation proves that while an ormogonal (unitary) matrix.

4

Calcelation et twiddle factor matrix:

	10=0		33.7		
	1000	K=1	Ker	k=3	
nco	WN 0,0	m, 1	WN 0.2	WN 3	
nel	w1.0	W21.1	NN 2	w, 1.3	
n=2	20	12:1	WN 2.2	w 2.3	
N=3	W,0	m2.1	8.2 W)	w _N 3.3	
L				_	

$$|W_{i}|^{2} = \begin{cases} 1 & 1 & 1 \\ 1 & -j & -1 & +j \\ 1 & -1 & 1 & -1 \\ 1 & +j & -1 & -j \end{cases}$$

* muidable factor matrix
exhibits symmetry about
the point N he for uy about
cother k=2 or n=2

Smilarly we matrix can be calculated as

Example 1. Find 4 point DFT of the sequence Fin = cas(m) FORTH TO solve the TO determine of point DFT, the very first step is to wate sten sequence by subethuting valoues of n in sen equation => sten= {1, \fo, 0, -\fo's We know that DFT XUD) X(K)=WN. 777) $\begin{array}{c} (x) \\ (x) \\$ X[K]= (1, 1-jk4142, 1, 1+)1-41429 Example 2: Determine the lime domain sequence sen from the xco)
given. X(k) = 2,0,2,0, using matrix method

7 (n) = 1 (w), *(K))
= 4 (1 1 1 1 7 (27 =) (7(0)) (4)

1 -1 1 -1 2 2 (7(0)) (7(0)) (4)

1 -1 1 -1 2 2 (7(0)) (7(0)