In [1]:

import pandas as pd
import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

In [2]:

data=pd.read_csv('health care diabetes.csv')

In [3]:

data

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
763	10	101	76	48	180	32.9	0.171
764	2	122	70	27	0	36.8	0.340
765	5	121	72	23	112	26.2	0.245
766	1	126	60	0	0	30.1	0.349
767	1	93	70	31	0	30.4	0.315

768 rows × 9 columns

In [4]:

data.shape

(768, 9)

```
In [5]:
data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 768 entries, 0 to 767
 Data columns (total 9 columns):
 # Column
                            Non-Null Count Dtype
 --- -----
                            -----
                           768 non-null
 0 Pregnancies
                                          int64
    Glucose
                           768 non-null
                                          int64
 2 BloodPressure
                           768 non-null int64
 3 SkinThickness
                          768 non-null int64
 4 Insulin
                           768 non-null int64
                            768 non-null
                                        float64
 6 DiabetesPedigreeFunction 768 non-null float64
 7 Age
                           768 non-null int64
    Outcome
                            768 non-null
                                          int64
 dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

No Null Values in Data

```
In [6]:

data['Pregnancies'].isnull().sum()

data['Glucose'].isnull().sum()

data['BloodPressure'].isnull().sum()

data['SkinThickness'].isnull().sum()

data['Insulin'].isnull().sum()

data['BMI'].isnull().sum()

data['DiabetesPedigreeFunction'].isnull().sum()

data['Age'].isnull().sum()
```

```
In [7]:
data.isnull().any()
```

Pregnancies False Glucose False BloodPressure False SkinThickness False Insulin False BMI False DiabetesPedigreeFunction False False Age Outcome False dtype: bool

In [8]:

```
data['Pregnancies'].value_counts()
plt.hist(data['Pregnancies'])
```

```
(array([246., 178., 125., 50., 83., 52., 11., 19., 3., 1.]),
array([ 0. , 1.7, 3.4, 5.1, 6.8, 8.5, 10.2, 11.9, 13.6, 15.3, 17. ]),
<BarContainer object of 10 artists>)
```



```
In [9]:
data['Pregnancies'].value_counts()
 1
       135
 0
       111
 2
       103
 3
       75
 4
        68
 5
        57
 6
        50
 7
        45
 8
        38
        28
        24
 10
 11
        11
 13
        10
        9
 12
         2
 15
        1
 17
 Name: Pregnancies, dtype: int64
In [10]:
```

```
plt.hist(data['Glucose'])
```



```
In [11]: |
data['BloodPressure'].value_counts()
```

```
plt.hist(data['BloodPressure'])
```


In [12]:

```
data['SkinThickness'].value_counts()
plt.hist(data['SkinThickness'])
```

```
(array([231., 107., 165., 175., 78., 9., 2., 0., 0., 1.]),
array([ 0. , 9.9, 19.8, 29.7, 39.6, 49.5, 59.4, 69.3, 79.2, 89.1, 99. ]),
<BarContainer object of 10 artists>)
```



```
7/25/23, 2:26 PM
   In [13]:
   data['Insulin'].value_counts()
   plt.hist(data['Insulin'])
    (array([487., 155., 70., 30., 8., 9., 5., 1., 2., 1.]),
     array([ 0., 84.6, 169.2, 253.8, 338.4, 423., 507.6, 592.2, 676.8,
            761.4, 846. ]),
     <BarContainer object of 10 artists>)
     500
     400
     300
```

200 100 200 400 600 800

```
In [14]:
data['BMI'].value_counts()
plt.hist(data['BMI'])
```

```
(array([ 11., 0., 15., 156., 268., 224., 78., 12., 3., 1.]),
array([ 0. , 6.71, 13.42, 20.13, 26.84, 33.55, 40.26, 46.97, 53.68,
       60.39, 67.1]),
<BarContainer object of 10 artists>)
```

250 200 150 100 50 10 20 50 60 70

```
In [15]:
```

```
data['DiabetesPedigreeFunction'].value_counts()
plt.hist(data['DiabetesPedigreeFunction'])
```


In [16]:

data.describe().transpose()

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

```
In [17]:
```

sns.scatterplot(x='Pregnancies',y='Glucose',hue='Outcome',data=data)

<AxesSubplot:xlabel='Pregnancies', ylabel='Glucose'>

In [18]:

sns.scatterplot(x='BloodPressure',y='Glucose',hue='Outcome',data=data)

<AxesSubplot:xlabel='BloodPressure', ylabel='Glucose'>


```
In [19]:
```

sns.scatterplot(x='SkinThickness',y='Glucose',hue='Outcome',data=data)

<AxesSubplot:xlabel='SkinThickness', ylabel='Glucose'>

In [20]:

sns.scatterplot(x='BMI',y='Insulin',hue='Outcome',data=data)

<AxesSubplot:xlabel='BMI', ylabel='Insulin'>

In [21]:

sns.scatterplot(x='Age',y='Insulin',hue='Outcome',data=data)

<AxesSubplot:xlabel='Age', ylabel='Insulin'>

In [22]:

data.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Г
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-(
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0

```
In [23]:
plt.figure(figsize=(10,7))
sns.heatmap(data.corr(),annot=True,cmap="YlGnBu")
  <AxesSubplot:>
                                                                                                                                     - 1.0
                Pregnancies
                                            0.13
                                                      0.14
                                                               -0.082
                                                                         -0.074
                                                                                    0.018
                                                                                             -0.034
                                                                                                                   0.22
                                 0.13
                                             1
                                                      0.15
                                                               0.057
                                                                          0.33
                                                                                    0.22
                                                                                              0.14
                                                                                                         0.26
                     Glucose
                                                                                                                                    - 0.8
              BloodPressure
                                 0.14
                                            0.15
                                                       1
                                                                0.21
                                                                         0.089
                                                                                    0.28
                                                                                              0.041
                                                                                                         0.24
                                                                                                                  0.065
                                                                                                                                    - 0.6
               SkinThickness - -0.082
                                           0.057
                                                      0.21
                                                                  1
                                                                                    0.39
                                                                                              0.18
                                                                                                        -0.11
                                                                                                                  0.075
                      Insulin - -0.074
                                            0.33
                                                     0.089
                                                                                     0.2
                                                                                              0.19
                                                                                                        -0.042
                                                                                                                   0.13
                                                                                                                                    - 0.4
                         BMI - 0.018
                                            0.22
                                                      0.28
                                                                0.39
                                                                           0.2
                                                                                      1
                                                                                              0.14
                                                                                                        0.036
                                                                                                                   0.29
                                                                                                                                    - 0.2
  DiabetesPedigreeFunction - - - 0.034
                                            0.14
                                                     0.041
                                                                0.18
                                                                          0.19
                                                                                    0.14
                                                                                                        0.034
                                                                                                                   0.17
                                            0.26
                                                      0.24
                                                                         -0.042
                                                                                    0.036
                                                                                              0.034
                                                                                                                   0.24
                         Age
                                                                -0.11
                                                                                                                                    - 0.0
                    Outcome
                                 0.22
                                                     0.065
                                                               0.075
                                                                          0.13
                                                                                    0.29
                                                                                              0.17
                                                                                                         0.24
                                            Glucose
                                                                           Insulin
                                                                                     ₽W
                                                                                                DiabetesPedigreeFunction
                                                                                                          Age
                                                                                                                    Outcome
                                                       BloodPressure
                                                                 SkinThickness
                                   Pregnancies
```

Model Building

```
In [24]:
X=data.iloc[:,[0,1,2,3,4,5,6,7]]
```

```
y=data.iloc[:,[8]]
```

In [25]:

```
In [26]:
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_stat
In [27]:
from sklearn.linear_model import LogisticRegression
In [28]:
model= LogisticRegression()
model.fit(X_train,y_train)
    \verb|d:Users\\coold\\anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py:993: DataConversion\\Warning: A column-variable of the column-va
    array was expected. Please change the shape of y to (n samples, ), for example using ravel().
        y = column_or_1d(y, warn=True)
    d:\Users\coold\anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:814: ConvergenceWarning: lbfgs f
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
            https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)
    Please also refer to the documentation for alternative solver options:
            https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit-learn.org/stable/modules/linear_model.ht
        n_iter_i = _check_optimize_result(
    LogisticRegression()
In [29]:
print(model.score(X_train,y_train))
 print(model.score(X_test,y_test))
    0.7801556420233463
    0.7480314960629921
In [30]:
from sklearn.metrics import confusion matrix, accuracy score
from sklearn.metrics import classification_report
In [31]:
yhat=model.predict(X test)
```

```
In [32]:
 print(accuracy_score(y_test,yhat))
     0.7480314960629921
In [33]:
 print(confusion_matrix(y_test,yhat))
     [[136 32]
        [ 32 54]]
In [34]:
 print(classification_report(y_test,yhat))
                                                   precision
                                                                                           recall f1-score support
                                                                  0.81
                                                                                              0.81
                                                                                                                               0.81
                                         0
                                                                                                                                                                       168
                                                                  0.63
                                         1
                                                                                               0.63
                                                                                                                                   0.63
                                                                                                                                                                         86
                 accuracy
                                                                                                                                   0.75
                                                                                                                                                                       254
                                                                  0.72
                                                                                                   0.72
                                                                                                                                   0.72
                                                                                                                                                                       254
              macro avg
     weighted avg
                                                                  0.75
                                                                                                   0.75
                                                                                                                                    0.75
                                                                                                                                                                        254
In [35]:
 from sklearn.neighbors import KNeighborsClassifier
model2 = KNeighborsClassifier(p=2,n_neighbors=5,metric='minkowski')
In [36]:
model2.fit(X_train,y_train)
     \verb|d:Users\\coold\\anaconda3\\lib\\site-packages\\sklearn\\neighbors\\\_classification.py:198: DataConversion\\Warning: \textit{I} and \textit{I} between the packages are the packages and \textit{I} between the packages are the package
     hen a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
           return self._fit(X, y)
     KNeighborsClassifier()
```

```
In [37]:
print(model2.score(X_train,y_train))
print(model2.score(X_test,y_test))
yhat2=model2.predict(X_test)
print(confusion_matrix(y_test,yhat2))
print(accuracy_score(y_test,yhat2))
 0.7937743190661478
 0.7007874015748031
 [[130 38]
 [ 38 48]]
 0.7007874015748031
In [38]:
from sklearn.ensemble import RandomForestClassifier
model3=RandomForestClassifier(n_estimators=15, criterion='gini', max_features='auto')
In [39]:
model3.fit(X_train,y_train)
print(model3.score(X_train,y_train))
print(model3.score(X_test,y_test))
 0.9922178988326849
 0.7401574803149606
 C:\Users\coold\AppData\Local\Temp\ipykernel_18212\2588249225.py:1: DataConversionWarning: A column-vector y v
 expected. Please change the shape of y to (n_samples,), for example using ravel().
   model3.fit(X_train,y_train)
In [40]:
from sklearn.metrics import roc curve, roc auc score
In [44]:
p1=model.predict_proba(X_train)
p2=model2.predict proba(X train)
p3=model3.predict proba(X train)
```

/25/23, 2:26 PM	Final Project - Jupyter Notebook
In [53]:	
## kepp	ing probs for positive outcomes only
p1=p1[:	,1]
p2=p2[:	,1]
p3=p3[:	,1]
In []:	
In []:	
In []:	
In []:	
TII [].	
In []:	
In []:	
T. [].	
In []:	
In []:	