

1311/2502 Theory of Computation

Spring 2016

BLM2502 Theory of Computation

>>	Course Outline		
>>	Week	Content	
>>	1	Introduction to Course	
»	2	Computability Theory, Complexity Theory, Automata Theory, Set Theory, Relations, Proofs, Pigeonhole Principle	
>>	3	Regular Expressions	
»	4	Finite Automata	
»	5	Deterministic and Nondeterministic Finite Automata	
»	6	Epsilon Transition, Equivalence of Automata	
>>	7	Pumping Theorem	
>>	8	April 10 - 14 week is the first midterm week	
»	9	Context Free Grammars, Parse Tree, Ambiguity	
»	10	Pumping Theorem, Normal Forms	
»	11	Pushdown Automata	
»	12 Hypot	12 Turing Machines, Recognition and Computation, Church-Turing Hypothesis	
»	13	Turing Machines, Recognition and Computation, Church-Turing Hypothesis	
>>	14	May 22 – 27 week is the second midterm week	
»	15	Review	
>>	16	Final Exam date will be announced	

Turing Machines

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 ww^R

Regular Languages

a *

*a***b**

A Turing Machine

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Example:

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
\hline
 & q_2
\end{array}$$

$$q_1 \xrightarrow{a \rightarrow b, R} q_2$$

Example:

Example:

Time 1

$$\begin{array}{c|c}
\hline
q_1 & & & & \\
\hline
\end{array} \rightarrow g, R \\
\hline
\end{array} \rightarrow q_2$$

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No epsilon transitions allowed

Partial Transition Function

Example:

Allowed:

No transition for input symbol c

Halting

The machine *halts* in a state if there is no transition to follow

Halting Example 1:

No transition from q_1 HALT!!!

Halting Example 2:

No possible transition from q_1 and symbol c

HALT!!!

Accepting States

- ·Accepting states have no outgoing transitions
- ·The machine halts and accepts

Acceptance

Accept Input string

If machine halts in an accept state

Reject Input string

If machine halts in a non-accept state or

If machine enters an *infinite loop*

Observation:

In order to accept an input string, it is not necessary to scan all the symbols in the string

Turing Machine Example

Input alphabet
$$\Sigma = \{a, b\}$$

Accepts the language: a^*

$$a \rightarrow a, R$$

$$Q_0 \qquad \Diamond \rightarrow \Diamond, L$$

$$Q_1 \qquad Q_1$$

Rejection Example

No possible Transition Halt & Reject

A simpler machine for same language but for input alphabet $\Sigma = \{a\}$

Accepts the language: a^*

Halt & Accept

Not necessary to scan input

Infinite Loop Example

A Turing machine for language $a^* + b(a + b)^*$

$$b \rightarrow b, L$$

$$a \rightarrow a, R$$

$$Q_0 \qquad \Diamond \rightarrow \Diamond, L$$

$$q_1$$

Time 1

Time 2

Because of the infinite loop:

·The accepting state cannot be reached

The machine never halts

·The input string is rejected

Another Turing Machine Example

Turing machine for the language $\{a^nb^n\}$ $n \ge 1$

Basic Idea:

Match a's with b's:

Repeat:

replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's

If there is a remaining a or b reject

Time 7

Time 10

Time 11

Time 12

Time 13

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_1
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

$$q_2 xayb > x q_0 ayb$$

(yields in one mode)

A computation $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb > x q_0 ayb > xx q_1 yb > xxy q_1 b$$

$$q_2 xayb \succ xxy q_1 b$$

Input string

The Accepted Language

For any Turing Machine M

If a language L is accepted by a Turing machine M then we say that L is:

Turing Recognizable

Other names used:

- ·Turing Acceptable
- ·Recursively Enumerable

Computing Functions with Turing Machines

A function f(w) has:

Result Region: SDomain: Df(w)

A function may have many parameters:

Example: Addition function

$$f(x,y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 w \succ q_f f(w)$$
Initial Final
Configuration

For all $w \in D$ Domain

Example

The function
$$f(x,y) = x + y$$
 is computable

$$x, y$$
 are integers

Turing Machine:

Input string:
$$x0y$$
 unary

The 0 is the delimiter that separates the two numbers

The 0 here helps when we use the result for other operations

Turing machine for function f(x,y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

Final Result

$$1 \rightarrow 1, R$$

$$1 \rightarrow 1, L$$

$$0 \rightarrow 1, R$$

$$q_1$$

$$0 \rightarrow 1, R$$

$$q_2$$

$$1 \rightarrow 0, L$$

$$q_3$$

$$0 \rightarrow 0, R$$

$$0 \rightarrow 0, R$$
BLM2502 Theory of Computation - Turing

$$1 \rightarrow 1, R$$

$$1 \rightarrow 1, L$$

$$0 \rightarrow 1, R$$

$$q_1$$

$$0 \rightarrow 1, R$$

$$q_2$$

$$1 \rightarrow 0, L$$

$$q_3$$

$$0 \rightarrow 0, R$$

$$0$$

Time 5

Another Example

$$f(x) = 2x$$

The function f(x) = 2x is computable

is integer

Turing Machine:

Input string:

 \mathcal{X}

unary

Output string:

 $\chi\chi$

unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- · Repeat:
 - Find rightmost \$, replace it with 1
 - Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

 q_0

Another Example

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \leq y \end{cases}$$
 is computable

Input:
$$x0y$$

Turing Machine Pseudocode:

· Repeat

Match a 1 from x with a 1 from y

Until all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y) else

Combining Turing Machines

Block Diagram

$$f(x,y) = \begin{cases} x + y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

