

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencias de la Computación Matías Fernández - matias.fernandez@uc.cl

IIC2213 - Lógica para ciencia de la computación

Ayudantía 4 - Viernes 14 de Abril del 2023

Problema 1. Sean L_1 , L_2 lenguajes tales que L_1 es reducible a L_2 . Pruebe que

- a) Si L_2 es decidible entonces L_1 es decidible
- b) Si L_1 es indecidible entonces L_2 es indecidible

Problema 2. Si L_1 , L_2 son decidibles demuestre que:

- a) $L_1 \cap L_2$ es decidible
- b) $L_1 \cup L_2$ es decidible
- c) $\overline{L_1}$ es decidible

Problema 3. Demuestre que los siguientes lenguajes son indecidibles

- a) $DD = \{(\mathcal{M}_1, \mathcal{M}_2) \mid \mathcal{M}_1 \text{ se detiene con entrada } \operatorname{cod}(\mathcal{M}_1) \text{ y } \mathcal{M}_2 \text{ se detiene con entrada } \operatorname{cod}(\mathcal{M}_2)\}$
- b) $A = \{(\operatorname{cod}(\mathcal{M}), w) \mid \mathcal{M} \text{ es una MT determinista tal que } \mathcal{M} \text{ acepta } w\}$
- c) $L_1 = \{ \operatorname{cod}(\mathcal{M}) \mid \mathcal{M} \text{ es una MT determinista tal que } L(\mathcal{M}) = \emptyset \}$
- d) $L_2 = \{ \operatorname{cod}(\mathcal{M}) \mid \mathcal{M} \text{ es una MT determinista tal que acepta a todas las palabras} \}$
- e) $L_3 = \{ \operatorname{cod}(\mathcal{M}) \mid \mathcal{M} \text{ es una MT determinista tal que acepta a } \varepsilon \} \operatorname{con} \varepsilon \operatorname{palabra arbitraria}$
- f) $EQ = \{(\mathcal{M}_1, \mathcal{M}_2) \mid \mathcal{M}_1, \mathcal{M}_2 \text{ son MT deterministas y } L(\mathcal{M}_1) = L(\mathcal{M}_2)\}$

Problema 4. Demuestre que 3SAT \leq_p 3COL