Math 237 Reference

Definition 1 Scalar Function A scalar function $f(x_1,...,x_n)$ of n variables is a function whose domain is a subset of \mathbb{R}^n and whose range is a subset of \mathbb{R} .

Definition 2 Level Curves The level curves of a function f(x,y) are the curves

$$f(x,y) = k$$

where $k \in R(f)$.

Definition 3 Level Surfaces A level surface of a scalar function f(x, y, z) is defined by

$$f(x, y, z) = k$$

where $k \in R(f)$.

Definition 4 Level Sets A level set of a scalar function $f(\vec{x})$, $\vec{x} \in \mathbb{R}^n$ is defined by

$$\{\vec{x} \in \mathbb{R}^n : f(\vec{x}) = k, k \in R(f)\}$$

Definition 5 Neighbourhood An r-neighbourhood of a point $(a,b) \in \mathbb{R}^2$ is a set

$$N_r(a,b) = \{(x,y) \in \mathbb{R}^2 : ||(x,y) - (a,b)|| < r, r \in \mathbb{R}\}$$

Definition 6 Limit Assume f(x,y) is defined in a neighbourhood of (a,b), except possibly at (a,b). If, for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$0 < ||(x,y) - (a,b)|| < \delta \Rightarrow |f(x,y) - L| < \epsilon$$

then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

Theorem 1 Limits 1 If $\lim_{(x,y)\to(a,b)} f(x,y)$ and $\lim_{(x,y)\to(a,b)} g(x,y)$ both exist,

1.
$$\lim_{(x,y)\to(a,b)}[f(x,y)+g(x,y)] = \lim_{(x,y)\to(a,b)}f(x,y) + \lim_{(x,y)\to(a,b)}g(x,y)$$

2.
$$\lim_{(x,y)\to(a,b)} [f(x,y)g(x,y)] = \left[\lim_{(x,y)\to(a,b)} f(x,y)\right] \left[\lim_{(x,y)\to(a,b)} g(x,y)\right]$$

3.
$$\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{\lim_{(x,y)\to(a,b)} f(x,y)}{\lim_{(x,y)\to(a,b)} g(x,y)} \text{ provided } \lim_{(x,y)\to(a,b)} g(x,y) \neq 0$$

Theorem 2 Limits 2 If $\lim_{(x,y)\to(a,b)} f(x,y)$ exists, then the limit is unique.

Theorem 3 Squeeze Theorem If there exists a function B(x,y) such that

$$|f(x,y) - L| \le B(x,y)$$
 for all $(x,y) \ne (a,b)$

in some neighbourhood of (a,b) and $\lim_{(x,y)\to(a,b)} B(x,y) = 0$, then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

Theorem 4 Continuity 1 If f and g are both continuous at (a,b), then f+g and fg are continuous at (a,b).

Theorem 5 Continuity 2 If f and g are both continuous at (a,b) and $g(a,b) \neq 0$, then the quotient $\frac{f}{g}$ is continuous at (a,b).

Theorem 6 Continuity 3 If f(x,y) is continuous at (a,b) and g(t) is continuous at f(a,b), then the composition $g \circ f$ is continuous at (a,b).

Definition 7 Partial Derivatives The partial derivatives of f(x,y) are defined by

$$\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$\frac{\partial f}{\partial y}(x,y) = f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Theorem 7 Clairaut's Theorem If f_{xy} and f_{yx} are defined in some neighbourhood of (a,b) and are both continuous at (a,b), then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Definition 8 Tangent Plane The tangent plane to z = f(x, y) at the point (a, b, f(a, b)) is

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

Definition 9 Linearization and Linear Approximation For a function f(x,y) we define the linearization $L_{(a,b)}(x,y)$ of f at (a,b) by

$$L_{(a,b)}(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

We call the approximation $f(x,y) \approx L_{(a,b)}(x,y)$ the linear approximation of f(x,y) at (a,b).

Definition 10 Gradient Suppose that f(x, y, z) has partial derivatives at $\vec{a} \in \mathbb{R}^3$. The gradient of f at \vec{a} is defined by

$$\nabla f(\vec{a}) = (f_x(\vec{a}), f_y(\vec{a}), f_z(\vec{a}))$$

Definition 11 Linearization and Linear Approximation Suppose that $f(\vec{x})$, $\vec{x} \in \mathbb{R}^3$, has partial derivatives at $\vec{a} \in \mathbb{R}^3$. The linearization of f at \vec{a} is defined by

$$L_{\vec{a}}(\vec{x}) = f(\vec{a}) + \nabla f(\vec{a})(\vec{x} - \vec{a})$$

The linear approximation of f at \vec{a} is

$$f(\vec{x}) \approx f(\vec{a}) + \nabla f(\vec{a})(\vec{x} - \vec{a})$$

Theorem 8 Differentiability 1 If g'(a) exists, then $\lim_{x\to a} \frac{|R_{1,a}(x)|}{|x-a|} = 0$ where

$$R_{1,a}(x) = g(x) - L_a(x) = g(x) - g(a) - g'(a)(x - a)$$

Definition 12 Differentiable A function f(x,y) is differentiable at (a,b) if

$$\lim_{(x,y)\to(a,b)}\frac{|R_{1,(a,b)}(x,y)|}{||(x,y)-(a,b)||}=0$$

where

$$R_{1,(a,b)}(x,y) = f(x,y) - L_{(a,b)}(x,y)$$

Theorem 9 Differentiability 2 If a function f(x,y) satisfies

$$\lim_{(x,y)\to(a,b)}\frac{|f(x,y)-f(a,b)-c(x-a)-d(y-b)|}{||(x,y)-(a,b)||}=0$$

for some constants c and d, then $c = f_x(a, b)$ and $d = f_y(a, b)$.

Theorem 10 Continuity If f(x,y) is differentiable at (a,b), then f is continuous at (a,b).

Theorem 11 If the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are both continuous at (a,b), then f(x,y) is differentiable at (a,b).

Definition 13 Differentiability for $f : \mathbb{R}^n \to \mathbb{R}$ A function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point $\vec{a} = (a_1, ..., a_n)$ if

$$\lim_{\vec{x} \to \vec{a}} \frac{|f(\vec{x}) - f(\vec{a}) - L_{\vec{a}}(\vec{x} - \vec{a})|}{||\vec{x} - \vec{a}||} = 0$$

where $L: \mathbb{R}^n \to \mathbb{R}$ is a linear transformation.

Theorem 12 If $f(x_1,...,x_n)$ is differentiable at $\vec{a} = (a_1,...,a_n)$, then f is continuous at \vec{a}

Theorem 13 If $\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}$ are continuous at $\vec{a} = (a_1, ..., a_n)$, then $f(x_1, ..., x_n)$ is differentiable at \vec{a} .

Theorem 14 Chain Rule Let G(t) = f(x(t), y(t)) and let $a = x(t_0)$ and $b = y(t_0)$. If f is differentiable at (a, b) and $x'(t_0)$ and $y'(t_0)$ exist, then $G'(t_0)$ exists and is given by

$$G'(t_0) = f_x(a,b)x'(t_0) + f_y(a,b)y'(t_0)$$

Definition 14 Directional Derivative The directional derivative of f(x,y) at point (a,b) in the direction of a unit vector $\vec{u} = (u_1, u_2)$ where $||\vec{u}|| = 1$ is defined by

$$D_{\vec{u}}f(a,b) = \frac{d}{ds}f(a+su_1,b+su_2)\bigg|_{s=0} = \lim_{t\to 0} \frac{f((a,b)+t\vec{u})-f(a,b)}{t}$$

Theorem 15 Directional Derivative Theorem If f(x,y) is differentiable at (a,b) and $\vec{u} = (u_1, u_2)$ where $||\vec{u}|| = 1$, then

$$D_{\vec{u}}f(a,b) = \nabla f(a,b) \cdot \vec{u}$$

Theorem 16 Greatest Rate of Change If f(x,y) is differentiable at (a,b) and $\nabla f(a,b) \neq (0,0)$, then the largest value of $D_{\vec{u}}f(a,b)$ is $||\nabla f(a,b)||$, and occurs when \vec{u} is in the direction of $\nabla f(a,b)$.

Theorem 17 Orthogonality Theorem If $f(x,y) \in C^1$ in a neighbourhood of (a,b) and $\nabla f(a,b) \neq (0,0)$, then $\nabla f(a,b)$ is orthogonal to the level curve f(x,y) = k through (a,b).

This theorem extends to three dimensions for f(x, y, z) and (a, b, c).

Definition 15 2nd Degree Taylor Polynomial Let f be a function of two variables. The second degree Taylor Polynomial $P_{2,(a,b)}$ of f(x,y) at (a,b) is given by

$$P_{2,(a,b)}(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

$$= \frac{1}{2} \left[f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2 \right]$$

Definition 16 Hessian Matrix The Hessian matrix of f(x,y), denoted by Hf(x,y), is defined as

$$\begin{bmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{bmatrix}$$

Theorem 18 Taylor's Theorem for Functions of 2 Variables If $f(x,y) \in C^2$ in some neighbourhood N(a,b) of (a,b), then for all $(x,y) \in N(a,b)$ there exists a point (c,d) on the line segment joining (a,b) and (x,y) such that

$$f(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + R_{1,(a,b)}(x,y)$$

where

$$R_{1(a,b)}(x,y) = \frac{1}{2} \left[f_{xx}(c,d)(x-a)^2 + 2f_{xy}(c,d)(x-a)(y-b) + f_{yy}(c,d)(y-b)^2 \right]$$

Corollary 18.1 If $f(x,y) \in C^2$ in some closed neighbourhood N(a,b) of (a,b), then there exists a positive constant M such that

$$|R_{1,(a,b)}(x,y)| \le M||(x,y) - (a,b)||^2$$

for all $(x, y) \in N(a, b)$.

Definition 17 k-th Degree Taylor Polynomial The k-th degree Taylor polynomial of a function f(x,y) is

$$P_{k,(a,b)}(x,y) = \sum_{|\alpha| \le k} \partial^{\alpha} f(a,b) \frac{[(x,y) - (a,b)]^{\alpha}}{\alpha!}$$

Definition 18 Taylor's Theorem of Order k If $f(x,y) \in C^{k+1}$ in some neighbourhood N(a,b) of (a,b), then for all $(x,y) \in N(a,b)$ there exists a point (c,d) on the line segment between (a,b) and (x,y) such that

$$f(x,y) = P_{k,(a,b)}(x,y) + R_{k,(a,b)}(x,y)$$

where

$$R_{k,(a,b)}(x,y) = \sum_{|\alpha| \le k+1} \partial^{\alpha} f(c,d) \frac{[(x,y) - (a,b)]^{\alpha}}{\alpha!}$$

Corollary 18.2 If $f(x,y) \in C^k$ in some neighbourhood of (a,b), then

$$\lim_{(x,y)\to(a,b)} \frac{|f(x,y) - P_{k,(a,b)}(x,y)|}{||(x,y) - (a,b)||^k} = 0$$

Corollary 18.3 If $f(x,y) \in C^{k+1}$ in some closed neighbourhood N(a,b) of (a,b), then there exists a constant M > 0 such that

$$|f(x,y) - P_{k,(a,b)}(x,y)| \le M||(x,y) - (a,b)||^{k+1}$$

for all $(x,y) \in N(a,b)$.

Definition 19 Generalized Taylor Polynomial The Taylor polynomial of degree k for functions of n variables is

$$P_{k,\vec{a}}(\vec{x}) = \sum_{|\alpha| < k} \partial^{\alpha} f(\vec{a}) \frac{(\vec{x} - \vec{a})^{\alpha}}{\alpha!}$$

Definition 20 Local Maximum and Minimum A point (a,b) is a local maximum point of f if $f(x,y) \le f(a,b)$ for all (x,y) in some neighbourhood of (a,b). A point (a,b) is a local minimum point of f if $f(x,y) \ge f(a,b)$ for all (x,y) in some neighbourhood of (a,b).

Theorem 19 If (a,b) is a local maximum or minimum point of f, then each partial derivative is either equal to zero or does not exist.

Definition 21 Critical Point A point (a,b) in the domain of f(x,y) is called a critical point of f if

$$\frac{\partial f}{\partial x}(a,b) = 0$$
 or $\frac{\partial f}{\partial x}(a,b)$ does not exist

and

$$\frac{\partial f}{\partial y}(a,b) = 0$$
 or $\frac{\partial f}{\partial y}(a,b)$ does not exist

Definition 22 Saddle Point A critical point (a,b) of f(x,y) is called a saddle point of f if in every neighbourhood of (a,b) there exists points (x_1,y_1) and (x_2,y_2) such that

$$f(x_1, y_1) > f(a, b)$$
 and $f(x_2, y_2) < f(a, b)$

Definition 23 Quadratic Form A function Q of the form

$$Q(u,v) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = a_{11}u^2 + 2a_{12}uv + a_{22}v^2$$

where a_{11}, a_{12} , and a_{22} are constants, is called a quadratic form on \mathbb{R}^2 .

Definition 24 Determinant and Quadratic Forms A quadratic form $Q(u, v) = a_{11}u^2 + 2a_{12}uv + a_{22}v^2$ on \mathbb{R}^2 is

- 1. Positive definite if det(A) > 0 and $a_{11} > 0$
- 2. Negative definite if det(A) > 0 and $a_{11} < 0$
- 3. Indefinite if det(A) < 0
- 4. Semidefinite if det(A) = 0

Theorem 20 Second Partial Derivatives Test Suppose that $f(x,y) \in C^2$ in some neighbourhood of (a,b) and that

$$f_x(a,b) = 0 = f_y(a,b)$$

- 1. If Hf(a,b) is positive definite, then (a,b) is a local minimum point of f
- 2. If Hf(a,b) is negative definite, then (a,b) is a local maximum point of f
- 3. If Hf(a,b) is indefinite, then (a,b) is a saddle point of f
- 4. If Hf(a,b) is semidefinite, then the test is inconclusive

Definition 25 Convex and Strictly Convex Let $f(x,y) \in C^2$. We say that f is convex if Hf(x,y) is positive semi-definite for all (x,y) and that f is strictly convex if Hf(x,y) is positive definite for all (x,y).

Theorem 21 If $f(x,y) \in C^2$ and is strictly convex, then

- 1. $f(x,y) > L_{(a,b)}(x,y)$ for all $(x,y) \neq (a,b)$
- 2. $f(a_1 + t(b_1 a_1), a_2 + t(b_2 a_2)) < f(a_1, a_2) + t[f(b_1, b_2) f(a_1, a_2)]$ for 0 < t < 1 and $(a_1, a_2) \neq (b_1, b_2)$

Theorem 22 If $f(x,y) \in C^2$ is convex, then every critical point (c,d) satisfies $f(x,y) \geq f(c,d)$ for all $(x,y) \neq (c,d)$. If $f(x,y) \in C^2$ is strictly convex and has a critical point (c,d), then f(x,y) > f(c,d) for all $(x,y) \neq (c,d)$ and f has no other critical point.

Theorem 23 Let $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ be a positive definite matrix. If $|\tilde{a} - a|$, $|\tilde{b} - b|$, and $|\tilde{c} - c|$ are sufficiently small, then $\begin{bmatrix} \tilde{a} & \tilde{b} \\ \tilde{b} & \tilde{c} \end{bmatrix}$ is positive definite.

Definition 26 Absolute Maximum and Minimum Given a function f(x,y) and a set $S \subseteq \mathbb{R}^2$.

1. A point $(a,b) \in S$ is an absolute maximum point of f on S if

$$f(x,y) \le f(a,b)$$
 for all $(x,y) \in S$

The value f(a,b) is called the absolute maximum value of f on S.

2. A point $(a,b) \in S$ is an absolute minimum point of f on S if

$$f(x,y) \ge f(a,b)$$
 for all $(x,y) \in S$

The value f(a,b) is called the absolute minimum value of f on S.

Definition 27 Bounded Set A set $S \subset \mathbb{R}^2$ is said to be bounded if it is contained in some neighbourhood of the origin.

Definition 28 Boundary Point Given a set $S \subset \mathbb{R}^2$, a point $(a,b) \in \mathbb{R}^2$ is said to be a boundary point of S if every neighbourhood of (a,b) contains at least one point in S and one point not in S.

Definition 29 Boundary of S The set B(S) of all boundary points of S is called the boundary of S.

Definition 30 Closed Set A set $S \subseteq \mathbb{R}^2$ is said to be closed if S contains all of its boundary points.

Theorem 24 Extreme Value Theorem If f(x,y) is continuous on a closed and bounded set $S \subseteq \mathbb{R}^2$, then there exists points $(a,b),(c,d) \in S$ such that

$$f(a,b) \le f(x,y) \le f(c,d)$$

for all $(x, y) \in S$.

Theorem 25 For continuous function f(x,y) on closed and bounded set $S \subset \mathbb{R}^2$, to find the maximum and minimum values of f:

- 1. Find all critical points of f contained in S
- 2. Evaluate f at each critical point
- 3. Find the maximum and minimum points of f on boundary B(S)

Theorem 26 Lagrange Multiplier Algorithm Assume that f(x,y) is a differentiable function and $g \in C^1$. To find the maximum value and minimum value of f subject to the constraint g(x,y) = k, evaluate f(x,y) at all points (a,b) which satisfy one of the following conditions.

- 1. $\nabla f(a,b) = \lambda \nabla g(a,b)$ and g(a,b) = k
- 2. $\nabla g(a,b) = (0,0) \text{ and } g(a,b) = k$
- 3. (a,b) is an endpoint of the curve g(x,y) = k

Theorem 27 Lagrange Multipliers Generalization Let $f(\vec{x})$ be a function of n variables with r constraints of the form

$$g_1(\vec{x}) = 0, g_2(\vec{x}) = 0, ..., g_r(\vec{x}) = 0$$

To find all possible maximum and minimum points of f subject to the constraints, find all points \vec{a} such that

$$\nabla f(\vec{a}) = \lambda_1 \nabla q_1(\vec{a}) + \dots + \lambda_r \nabla q_r(\vec{a})$$

and $g_i(\vec{a}) = 0$ for all $1 \le i \le r$.

Definition 31 Vector-Valued Function A function whose domain is a subset of \mathbb{R}^n and whose codomain is \mathbb{R}^m is called a vector-valued function.

Definition 32 Mapping A vector-valued function whose domain is a subset of \mathbb{R}^n and whose codomain is a subset of \mathbb{R}^n is called a mapping.

Definition 33 *Derivative Matrix* The derivative matrix of a mapping defined by

$$F(x,y) = (f(x,y), g(x,y))$$

is denoted DF and is defined by

$$DF = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$$

Definition 34 General Mapping and Linear Approximation A mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is defined by $\vec{u} = F(\vec{x}) = (f_1(\vec{x}), ..., f_m(\vec{x}))$ for $\vec{x} \in \mathbb{R}^n$. If $F \in C^1$, the $m \times n$ derivative matrix of F is

$$DF(\vec{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

and the linear approximation of F at \vec{a} is

$$F(\vec{x}) \approx F(\vec{a}) + DF(\vec{a})\Delta\vec{x}$$

where

$$\Delta \vec{u} = \begin{bmatrix} \Delta u_1 \\ \vdots \\ \Delta u_m \end{bmatrix} \in \mathbb{R}^m, \Delta \vec{x} = \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix} \in \mathbb{R}^n$$

Theorem 28 Chain Rule in Matrix Form Let F and G be mappings from \mathbb{R}^2 to \mathbb{R}^2 . If $G \in C^1$ at (x,y) and $F \in C^1$ at (u,v) = G(x,y), then the composite mapping $F \circ G$ is C^1 (x,y) and

$$D(F \circ G)(x, y) = DF(u, v)DG(x, y)$$

Definition 35 Invertible Mapping and Inverse Mapping Let F be a mapping from a set D_{xy} to a set D_{uv} . If there exists a mapping F^{-1} , called the inverse of F which maps D_{uv} onto D_{xy} such that

$$(x,y) = F^{-1}(u,v) \text{ iff } (u,v) = F(x,y)$$

then F is invertible on D_{xy} .

Theorem 29 One-to-One Implies Invertible Let F be a mapping from a set D_{xy} onto a set D_{uv} . If F is one-to-one on D_{xy} , then F is invertible on D_{xy} .

Theorem 30 Inverse of the Derivative Matrix Let F be a mapping from a set D_{xy} onto a set D_{uv} . If $F \in C^1$ at $\vec{x} \in D_{xy}$, and there exists an inverse mapping F^{-1} of F which has continuous partial derivatives at $\vec{u} = F(\vec{x}) \in D_{uv}$, then

$$DF^{-1}(\vec{u})DF(\vec{x}) = I$$

Definition 36 The Jacobian The Jacobian of a mapping

$$(u, v) = F(x, y) = (u(x, y), v(x, y))$$

is denoted $\frac{\partial(u,v)}{\partial(x,y)}$ and is defined by

$$\frac{\partial(u,v)}{\partial(x,y)} = \det[DF(x,y)] = \det\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$$

Corollary 30.1 Consider a mapping defined by

$$(u, v) = F(x, y) = (u(x, y), v(x, y))$$

which maps a subset D_{xy} onto a subset D_{uv} . Suppose $f, g \in C^1$ on D_{xy} . If F has an inverse mapping F^{-1} , with continuous partial derivatives on D_{uv} , then the Jacobian of F is non-zero:

$$\frac{\partial(u,v)}{\partial(x,y)} \neq 0 \ on \ D_{xy}$$

Corollary 30.2 Inverse Property of the Jacobian Consider a mapping F which maps D_{xy} onto D_{uv} . If $F \in C^1$ at $\vec{x} \in D_{xy}$, and there exists an inverse mapping F^{-1} of F which is C^1 at $\vec{u} = F(\vec{x}) \in D_{uv}$, then

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}}$$

Theorem 31 Inverse Mapping Theorem If a mapping (u, v) = F(x, y) has continuous partial derivatives in some neighbourhood of (a, b) and $\frac{\partial(u, v)}{\partial(x, y)} \neq 0$ at (a, b), then there is a neighbourhood of (a, b) in which F has an inverse mapping $(x, y) = F^{-1}(u, v)$ which is C^1 .

Definition 37 General Jacobian Form For a mapping defined by

$$\vec{u} = F(\vec{x}) = (f_1(\vec{x}), ..., f_n(\vec{x}))$$

where $\vec{u} = (u_1, ..., u_n)$ and $\vec{x} = (x_1, ..., x_n)$, the Jacobian of F is

$$\frac{\partial(u_1, \dots, u_n)}{\partial(x_1, \dots, x_n)} = \det[DF(\vec{x})] = \det\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

Definition 38 Integrable Function Let $D \subset \mathbb{R}^2$ be closed and bounded. Let P be a partition of D, and let $|\Delta P|$ denote the length of the longest side of all rectangles in the partition P. A function f(x,y) which is bounded on D is integrable on D if all Riemann sums approach the same value as $|\Delta P| \to 0$.

Definition 39 *Double Integral* If f(x,y) is integrable on a closed bounded set D, then we define the double integral of f on D as

$$\iint_D f(x,y)dA = \lim_{\Delta P \to 0} \sum_{i=1}^n f(x_i, y_i) \Delta A_i$$

Theorem 32 Double Integral Linearity If $D \subset \mathbb{R}^2$ is a closed and bounded set and f and g are two integrable functions on D, then for any constant c:

$$\iint_{D} (f + cg)dA = \iint_{D} f dA + c \iint_{D} g dA$$

Theorem 33 Double Integral Inequality If f(x,y) is integrable on a closed bounded set D such that $f(x,y) \leq g(x,y)$ for all $(x,y) \in D$,

$$\iint_D f(x,y) \le \iint_D g(x,y)$$

Theorem 34 Double Integral Absolute Value Inequality If $D \subset \mathbb{R}^2$ is a closed and bounded set and f is an integrable function on D, then

$$\left| \iint_D f dA \right| \le \iint_D |f| dA$$

Theorem 35 Double Integral Decomposition Let $D \subset \mathbb{R}^2$ be a closed and bounded set and f be an integrable on D. If D is decomposed into two closed and bounded subsets D_1 and D_2 by a piecewise smooth curve C, then

$$\iint_D f dA = \iint_{D_1} f dA + \iint_{D_2} f dA$$

Theorem 36 Iterated Double Integrals Let $D \subset \mathbb{R}^2$ be defined by

$$y_l(x) \le y \le y_u(x)$$
 and $x_l \le x \le x_u$

where $y_l(x)$ and $y_u(x)$ are continuous for $x_l \le x \le x_u$. If f(x,y) is continuous on D, then

$$\iint_D f(x,y)dA = \int_{x_l}^{x_u} \int_{y_l(x)}^{y_u(x)} f(x,y)dydx$$

Theorem 37 Let each of D_{uv} and D_{xy} be a closed bounded set whose boundary is a piecewise-smooth closed curve. Let

$$(x,y) = F(u,v) = (f(u,v), g(u,v))$$

be a one-to-one mapping of D_{uv} onto D_{xy} with $f,g \in C^1$ and $\frac{\partial(x,y)}{\partial(u,v)} \neq 0$ except for possibly on a finite collection of piece-wise smooth curves in D_{uv} . If G(x,y) is continuous on D_{xy} , then

$$\iint_{D_{xy}} G(x,y) dx dy = \iint_{D_{uv}} G(f(u,v),g(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

The double integral theorems can be extended to triple integrals. Due to repetition, they are omitted.