Ciencia de datos aplicada al agro

Sistemas de soporte a decisiones – UADE Licenciatura e Ingeniería en Sistemas 4 de Noviembre de 2019

Yanina Bellini Saibene

bellini.yanina@inta.gob.ar @yabellini

Mucho gusto...

Licenciada en Sistemas de Información

Magister en Explotación de Datos y

Gestión del conocimiento

Investigadora en el Instituto Nacional de Tecnología Agropecuaria (21 años) Socia Activa de SADIO (11 años) Organizadora Capítulo R-Ladies Santa

Rosa (3 años) y miembro de R-Ladies

Global (1 año)

AgTech AgroTICs

Enmarca aplicaciones de Ciencia de Datos en el sector Agropecuario (y una serie de otras disciplinas relacionadas a lo digital-electrónico).

Data Mining Machine Learning

Aprendizaje Supervisado Aprendizaje NO Supervisado

Variables de entrada

Modelo

Algoritmo

PresentationGo.com

Estimación de ocurrencia de granizo en superficie,

mediante datos de radar meteorológico utilizando técnicas de **Data Mining**.

Modelo de granizo: resultados

Aprendizaje supervisado Ocurrencia de granizo: variables

Variables del RADAR

5 variables144 tomas al día480x480 pixeles

165.888.000 datos diarios

Ocurrencia de granizo: variables

Lotes con y sin daño por granizo

Aprendizaje supervisado Ocurrencia de granizo

Aprendizaje

Modelo de granizo

v = 0.0

```
LT2G d7

LT2G NOT LT2G

NOT LT2G

3C0+G3C0)/2.0))/2.0) gepGOE2G (gepAND1 (d[MxZDR], d[MnZDR])
```

Figure 34. Árbol de Expresión del modelo Pire (*Variables:* MxdBZ = d0, MndBZ = d1, TotdBZ = d2, AvdBZ = d3) MxRho = d4, TotRho = d6, AvRho = d7, MxZDR = d8, MnZDR = d9, TotZDR = d10, AvZDR = d11. *Constantes:* Sub-ET 1: C6 = 9.64666513565478, Sub-ET 2: C4 = -4.10822324594867, Sub-ET 4: C6 = 5.10116885891293).

Aprendizaje supervisado Modelo de granizo y daño en cultivos

Herramientas

Equipo de trabajo

Romina MEZHER

Santiago BANCHERO

Laura BELMONTE

Juan CALDERA

https://github.com/INTA-Radar

Clasificación de Sistemas Productivos **Preponderantes** utilizando técnicas de agrupamiento para la estimación de emisiones de Gases de Efecto Invernadero.

Sistemas productivos preponderantes

Insumos

Registro Provincial Agropecuario (REPAGRO)

+1000 variables totales
7.766 casos totales para 2014

1) AGRICUITURA P/COSECHA
Hectóreas
Trigo
Avena
Olros
Avena
Centeno
Olros

Provincia de Río Negro

Sistemas productivos preponderantes

Metodología: Clustering

¿por qué atributo de similitud se podrían agrupar estos "casos"?

K-means K-medoids

Sistemas productivos preponderantes Resultados

13 grupos

Indice Jaccard: > 0.80

Silueta: entre 0.1 矣 y 0.57 🙂

Cantidad de casos: entre 64 y 1207 (9)

La pregunta del millón: ¿cómo sabemos si esos grupos representan grupos reales?

Aprendizaje NO supervisado Sistemas productivos preponderantes

1. Miramos los grupos con expertos del negocio

2. Buscamos una coherencia de:

- Tamaños
- Actividades
- Distribución espacial

Sistemas productivos preponderantes

Algunos resultados:

	7/07				
Características					
Superficie (ha)	2803				
% Area Cultivada	1%				
% Monte natural	87%				
Ganadería					
% Bovinos	26%				
% Ovinos	6%				
% Porcinos	1%				
% Caprinos	56%				
% Equinos	11%				

N 213 Silueta 0.31 Jaccard 0.91

Sistema cría caprina y bovina

Sistemas productivos preponderantes

Algunos resultados:

Características	
Superficie (ha)	403
Agricultura	
% Cosecha Fina	5%
% Cosecha Gruesa	87%
% Forrajeras Anuales	4%
% Forrajeras Perenne	1%
Ganadería	
% Bovinos	2%
% Otras producciones	4%

N 175 Silueta 0.52 Jaccard 0.92

Sistema agricultura de verano

Sistemas productivos preponderantes

Algunos resultados:

	7/11/2/3
Características	
Superficie (ha)	2000
% Area Cultivada	4%
% Monte natural	86%
Ganadería	
% Bovinos	93%
% Ovinos	3%
% Porcinos	0%
% Caprinos	1%
% Equinos	3%

Grupo 3 N 1065 Silueta 0.36 Jaccard 0.95

Sistema Cría Bovina

Aprendizaje NO supervisado Sistemas productivos preponderantes

Herramientas

Equipo de trabajo

Anabella LOZZA

Héctor LORDA

Geotecnologías en la nube y su aplicación en emergencias agropecuarias

Teledetección

Un poco de historia: 1998

Aprendizaje supervisado Teledetección

Obteniendo información desde datos remotos: Anguil

1984 1997 2000 2002

Teledetección

Obtener una imágen

Filtro una imágen

Aplico un algoritmo de clasificacion

Teledetección

	Mes	Exac-	Índice	Sup.	Sup.	%	Obs.
2017		titud	Kappa	afectad	analizada		
				а			
	Enero	0,98	0,95	46.011	1.498.237	3	Nubes y humo
	Agosto	0,99	0,97	300.337	2.219.654	14	
			\$67.68\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Enero	Febrero		Marzo		Abril		
Junio	Agosto		Septie	mbre :	Octubre		

Teledetección

Herramientas

Equipo de trabajo

Julio FERNANDEZ

Laura BELMONTE

Mariela FUENTES

Llamado a presentación de trabajos #CAI2019
Cierre de recepción de trabajos: 26 de abril de 2019

Más detalles:

http://48jaiio.sadio.org.ar/simposios/cai

Temas:

- Software y sistemas de información agropecuarios.
- Modelización de sistemas de producción.
- Integración y trazabilidad de cadenas agro-industriales.
- Geomática, Sistemas de Información Geográficos, IDEs, Teledetección y Observación Terrestre.
- Robótica agro-industrial.
- Agricultura y ganadería de precisión.
- Redes de sensores en cultivos, tambos, feed-lots y plantas de procesamiento.
- Sistemas embebidos y desarrollos electrónicos en la agroindustria.
- Monitoreo y control medio ambiental.
- Ontologías, Big Data, Open Data y DataMining e inteligencia artificial aplicadas al agro.
- Bioinformática y registros biológicos.
- Servicios Web Agroindustriales y Web 2.0.
- Nuevos desarrollos y experimentos en AgroTICs.
- Aplicaciones móviles.
- Internet de las cosas aplicadas al agro.
- Experiencias educativas en TICs aplicadas al agro.

Vinculaciones y espacios

R-Ladies es una organización internacional

R-Ladies Argentina

R-Ladies Bariloche

R-Ladies Buenos Aires

R-Ladies Córdoba

R-Ladies La Plata

R-Ladies Mendoza

R-Ladies Resistencia - Corrientes

R-Ladies Santa Fe

R-Ladies Santa Rosa

R-Ladies Ushuaia

Traducción colaborativa

Hadley Wicknam & Garrett Grolemund

Muchas gracias @yabellini

http://48jaiio.sadio.org.ar/simposios/CAI https://rladies.org/

https://github.com/cienciadedatos

https://github.com/INTARadar

https://github.com/yabellini

