DM 15 Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

	Contrôle non destructif (CND) par courants de Foucault	
	Expression approchée du champ magnétique \vec{B} créé par	
	la bobine excitatrice dans la plaque	
1	Si on reprend le calcul fait en cours dans l'approximation d'un solénoïde infini on a $B(z=0)=\frac{\mu_0 N i_0}{l_b}$. Et on lit sa valeur sur la	
	troisième simulation $ B (z=0cm) = 0,006 \text{ T}.$	
	Lorsque l'on est au niveau de la plaque on est à $z=6$ cm, on a	
	donc graphiquement $\alpha = \frac{B_0 l_b}{\mu_0 N i_0} = \frac{ B (z=6cm)}{ B (z=0cm)} = 0,5$	
	Courants de Foucault	
2	L'équation de Maxwell-Faraday est $\overrightarrow{\mathrm{rot}}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$ d'après le	
	théorème de Stokes on obtient la forme intégrale $\oint_C \vec{E}.\vec{dl}$	
	$-\frac{d}{dt}(\iint_S \vec{B}.\vec{dS})$ avec S la surface contenue dans le contour fermé C et orientée par C . Comme contour C on choisit un cercle dans	
	le plan d'équation $z = l_b/2$, de rayon r et de centre sur l'axe	
	(Oz). L'énoncé indique que le champ électrique est orthoradial	
	$\vec{E} = E(r, \theta, t)\vec{e}_{\theta}$. Par invariance par rotation d'angle θ on a $\vec{E} = \vec{E}(r, \theta, t)\vec{e}_{\theta}$.	
	$E(r,t)\vec{e}_{\theta}$ donc la forme intégré de l'équation de Maxwell-Faraday	
	donne après intégration $E(r,t) \times (2\pi r) = \frac{d}{dt} \left(-B_0 \cos(\omega t) \pi r^2 \right)$,	
	donc $E(r,t) = \frac{r\omega B_0}{2}\sin(\omega t)$. D'où $\vec{E} = \frac{r\omega B_0}{2}\sin(\omega t)\vec{e}_{\theta}$.	

3	D'après la loi d'Ohm locale $\vec{j} = \gamma_0 \vec{E}$ donc $\vec{j} = \frac{\gamma_0 r \omega B_0}{2} \sin(\omega t) \vec{e}_{\theta}$	
	Modification de l'impédance de la bobine excitatrice	
4	L'amplificateur fonctionne en régime linéaire donc d'après l'annexe $2 V_+ = V = Y_1$. L'amplificateur est idéal donc $i_+ = 0$ donc $R_g i_+ = 0$ donc $e(t) = V_+$ donc $Y_1 = e(t)$. L'annexe 1 décrit que l'on enregistre la réponse du filtre $(R, L) - R'$ à un échelon de tension $e(t)$. La tension de l'échelon 0 et $E = 5,00$ V est inférieur aux bornes de saturation de l'amplificateur $ V_s = 12$ V, la durée d'acquisition est de 20 ms et la période de répétition 1 ms plus grande que la durée du régime transitoire lue sur le chronogramme $5 \times 78, 4$ μ s. La fréquence d'échantillonnage de la carte d'acquisition est de $f_e = 50$ kHz ce qui est supérieur à $\frac{2}{\tau}$ avec $\tau = 78, 4$ μ s la durée du régime transitoire, donc le théorème de Shannon est respecté. En régime permanent la bobine ce comporte comme une résistance, on a donc un pont diviseur de tension $\frac{Y_2}{Y_1} = \frac{R'}{R+R'}$ donc $R = R'(\frac{E}{Y_{2,\infty}} - 1) \approx 50 \Omega$. La durée du régime transitoire d'un filtre $L - R$ est donnée d'après l'équation différentielle au premier ordre par $\sigma = \frac{L}{L}$ donc $L = R\sigma = 3,0$ mH	
5	ordre par $\tau = \frac{L}{R}$ donc $L = R\tau = 3,9$ mH Dans le cadre de l'effet joule, la puissance cédée par le champ électromagnétique aux porteurs de charge est donné par $P_J = \iiint \vec{j}.\vec{E}dV$ or dans un conducteur ohmique $\vec{j} = \gamma_0\vec{E}$ donc $P_J = \iiint \gamma_0 E^2 dV > 0$, donc la bobine cède de l'énergie aux porteurs de charge dans la plaque donc la puissance électrique moyenne reçue par le système bobine + plaque augmente par rapport à la bobine seule donc $p = \langle UI \rangle = R \langle I^2 \rangle$ augmente donc R augmente.	
6	En comparant la première et troisième simulation, qui sont à la même fréquence, on remarque que lorsque on ajoute la plaque, l'amplitude du champ magnétique $ B $ diminue. Donc le flux du champ magnétique à travers la section de la bobine diminue. Donc l'inductance de la bobine diminue, donc la partie imaginaire de l'impédance de la bobine diminue.	
7	$P_{J} = \iiint \gamma_{0}E^{2}dV = \iiint \gamma_{0}\frac{r^{2}\omega^{2}B_{0}^{2}}{4}\sin^{2}(\omega t)dV = $ $\gamma_{0}\frac{\omega^{2}B_{0}^{2}}{4}\sin^{2}(\omega t)\iiint r^{2} \times rdrd\theta dz = \gamma_{0}\frac{\omega^{2}B_{0}^{2}}{4}\frac{R_{b}^{4}}{4}2\pi d = \frac{\pi dR_{b}^{4}\gamma_{0}\omega^{2}B_{0}^{2}}{4}.$ Donc $\delta R = \frac{\langle P_{J} \rangle}{\langle i^{2} \rangle} = \frac{\pi dR_{b}^{4}\gamma_{0}\omega^{2}B_{0}^{2}}{8\langle i^{2} \rangle} = \frac{\pi dR_{b}^{4}\gamma_{0}\omega^{2}\alpha^{2}\mu_{0}^{2}N^{2}i_{0}^{2}}{4l_{b}^{2}i_{0}^{2}} = \frac{\pi dR_{b}^{4}\gamma_{0}\omega^{2}\alpha^{2}\mu_{0}^{2}N^{2}}{4l_{b}^{2}i_{0}^{2}}$	
8	L'équation de Maxwell-Ampère est $\overrightarrow{rot}(\vec{B}') = \mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$ dans le cadre de l'ARQS on néglige le courant de déplacement devant la densité de courant volumique donc $\overrightarrow{rot}(\vec{B}') = \mu_0 \vec{j}$ la forme intégrée de cette équation est d'après le théorème de Stokes, $\oint_C \vec{B}' . d\vec{l} = \mu_0 \iint_S \vec{j} . d\vec{S}$ avec C un contour fermé et S la surface s'appuyant sur C et orienté par C . On retrouve le théorème d'Ampère. Pour appliquer ce théorème on doit choisir un contour, on choisit un rectangle dans le plan radial $(O\vec{e}_z\vec{e}_r)$ qui va de r à R_b et de $z = l_b/2$ à $z = l_b/2 + d$. Le champ est supposé uniforme selon z car la plaque est fine devant les autres dimensions donc $\vec{B}' = B'(r,t)\vec{e}_z$. Après intégration on obtient $dB'(r,t) + 0 + 0 + 0 = \mu_0 \iint_S jdS$ donc $B'(r,t) = \frac{\mu_0}{d} \iint_S \frac{\gamma_0 r \omega B_0}{2} \sin(\omega t) dr dz = \frac{\mu_0 \gamma_0 \omega B_0 \sin(\omega t)}{2d} \frac{d(R_b - r)^2}{2} = \frac{\mu_0 \gamma_0 \omega (R_b - r)^2}{4} B_0 \sin(\omega t)$	

9	$E_{m} = \iiint \langle e_{m} \rangle dV = \iiint \frac{\langle B'^{2}(r,t) \rangle}{2\mu_{0}} r dr d\theta dz = \frac{\mu_{0} \gamma_{0}^{2} \omega^{2}}{8} B_{0}^{2} \langle \sin^{2}(\omega t) \rangle 2\pi d \int (R_{b} - r)^{4} r dr = \frac{\mu_{0} \gamma_{0}^{2} \omega^{2}}{8} B_{0}^{2} \pi \frac{R_{b}^{5}}{5} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} B_{0}^{2} R_{b}^{5}}{40}$ $\delta L = \frac{2E_{m}}{\langle i^{2} \rangle} = \frac{4E_{m}}{i_{0}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} B_{0}^{5} R_{b}^{5}}{10i_{0}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{10i_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{b}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{10i_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{b}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{10i_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{b}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{10i_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{b}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{10i_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{b}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{10i_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{b}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{10i_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{b}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} = \frac{\pi \mu_{0} \gamma_{0}^{2} \omega^{2} R_{b}^{5}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{2} N^{2} i_{0}^{2}}{l_{0}^{2}} \frac{\alpha^{2} \mu_{0}^{$	
	$\sin^2(\omega t) > 2\pi d \int (R_b - r)^4 r dr = \frac{\mu_0 \gamma_0^2 \omega^2}{8} B_0^2 \pi \frac{R_b^5}{5} = \frac{\pi \mu_0 \gamma_0^2 \omega^2 B_0^2 R_b^5}{40}$	
10	$\delta L = \frac{2E_m}{\langle i^2 \rangle} = \frac{4E_m}{i^2} = \frac{\pi \mu_0 \gamma_0^2 \omega^2 B_0^2 R_b^5}{10i^2} = \frac{\pi \mu_0 \gamma_0^2 \omega^2 R_b^5}{10i^2} \frac{\alpha^2 \mu_0^2 N^2 i_0^2}{i^2} =$	
	$\frac{\pi\alpha^{2}\mu_{0}^{3}\gamma_{0}^{2}\omega^{2}R_{b}^{5}N^{2}}{10l_{1}^{2}}$	
11	0	
11	Faire les application numériques pour δR et δL . Conclure en comparant avec les valeurs de R et L déterminées précédemment	
12	parant avec les valeurs de R et L déterminées précédemment.	
12	Lorsqu'on travaille à fréquence plus élevée les variation de δR et	
	δL sont plus grande, et on peut aussi travailler avec une bobine	
	plus petite tout en respectant l'uniformité du champ $\lambda \ll R_b$ et	
	donc avoir une meilleure résolution des défauts. Par contre on	
	risque de ne plus respecter l'ARQS et de voir un effet de peau	
	dans la plaque, on sonde alors que la plaque en superficie et pas	
	sur toute son épaisseur.	
	Évolution de Z en présence d'un défaut	
13	La variation de la partie imaginaire de l'impédance est positive,	
	car la fissure enlève une partie de la plaque donc il y a moins	
	d'effet négatif sur l'inductance. La variation de la partie réelle	
	de l'impédance est négative car de même il y a moins de plaque	
	donc la puissance dissipée par effet Joule est plus faible donc la	
	résistance diminue. Les courbes présentent une structure avec une	
	forme constituée d'un pic central et de deux pics latéraux. Le	
	pic central correspond au passage de la fissure sous la bobine, les	
	pics latéraux correspondent au passage de la fissure au niveau des	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les minimums entre les pics correspondent aux passage de la fissure	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les minimums entre les pics correspondent aux passage de la fissure au niveau des lignes de champ orienté dans le plan de la plaque.	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les minimums entre les pics correspondent aux passage de la fissure au niveau des lignes de champ orienté dans le plan de la plaque. Lorsque les lignes de champ sont orientés dans le plan de la plaque,	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les minimums entre les pics correspondent aux passage de la fissure au niveau des lignes de champ orienté dans le plan de la plaque. Lorsque les lignes de champ sont orientés dans le plan de la plaque, les boucles de courant sont limitées en rayon par l'épaisseur de la	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les minimums entre les pics correspondent aux passage de la fissure au niveau des lignes de champ orienté dans le plan de la plaque. Lorsque les lignes de champ sont orientés dans le plan de la plaque, les boucles de courant sont limitées en rayon par l'épaisseur de la plaque, l'effet est donc négligeable. La largeur du pic central est	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les minimums entre les pics correspondent aux passage de la fissure au niveau des lignes de champ orienté dans le plan de la plaque. Lorsque les lignes de champ sont orientés dans le plan de la plaque, les boucles de courant sont limitées en rayon par l'épaisseur de la plaque, l'effet est donc négligeable. La largeur du pic central est de l'ordre de 0,8 mm comme la largeur de la fissure. Comparer	
	pics latéraux correspondent au passage de la fissure au niveau des lignes de champ extérieur à la bobine et orientée selon $-\vec{e}_z$, les minimums entre les pics correspondent aux passage de la fissure au niveau des lignes de champ orienté dans le plan de la plaque. Lorsque les lignes de champ sont orientés dans le plan de la plaque, les boucles de courant sont limitées en rayon par l'épaisseur de la plaque, l'effet est donc négligeable. La largeur du pic central est	

14	Si la fissure était suivant l'axe (Ox) le pic central serait beaucoup	1	
	plus large mais de même amplitude car le volume de plaque en		
	moins est le même. Les pics latéraux et le minimum entre les		
	pics latéraux et le pic central serait moins visible car la fissure		
	moyennerait sur toutes les orientations du champ. Les variations		
	d'impédance seraient toujours du même signe.		