

PROBLEM DESCRIPTION

Team Pandora successfully developed an innovative cloud observability platform as part of the STGI Hackathon. The project focused on building a robust solution to monitor applications deployed in a Kubernetes cluster, specifically targeting two databases—PostgreSQL and MySQL.

LOGS FROM FLUENTBIT

```
ail.0 > output=es.0 (out_id=0)
 PS E:\STGI\pandora\deployment-env> kubectl logs -l "app.kubernetes.io/name=fluent-bit" -n kube-system
 [2024/09/28 16:16:33] [ warn] [net] getaddrinfo(host='elasticsearch-master', err=4): Domain name not found
 [2024/09/28 16:16:33] [ warn] [engine] failed to flush chunk '1-1727540103.679228328.flb', retry in 116 seconds: task_id=178, input=t
 ail.0 > output=es.0 (out_id=0)
 [2024/09/28 16:16:34] [ warn] [net] getaddrinfo(host='elasticsearch-master', err=4): Domain name not found
 [2024/09/28 16:16:34] [ warn] [engine] failed to flush chunk '1-1727540039.494379526.flb', retry in 256 seconds: task_id=48, input=ta
 il.0 > output=es.0 (out_id=0)
 [2024/09/28 16:16:34] [ warn] [net] getaddrinfo(host='elasticsearch-master', err=4): Domain name not found
 [2024/09/28 16:16:34] [ warn] [net] getaddrinfo(host='elasticsearch-master', err=4): Domain name not found
 [2024/09/28 16:16:34] [ warn] [net] getaddrinfo(host='elasticsearch-master', err=4): Domain name not found
 [2024/09/28 16:16:34] [ warn] [engine] failed to flush chunk '1-1727540026.560811858.flb', retry in 132 seconds: task_id=21, input=ta
 il.0 > output=es.0 (out_id=0)
 [2024/09/28 16:16:34] [ warn] [engine] failed to flush chunk '1-1727540077.640485819.flb', retry in 113 seconds: task_id=126, input=t
ail.0 > output=es.0 (out_id=0)
 [2024/09/28 16:16:34] [ warn] [engine] failed to flush chunk '1-1727540099.595493610.flb', retry in 110 seconds: task_id=169, input=t
( ail.0 > output=es.0 (out_id=0)
 PS E:\STGI\pandora\deployment-env>
```

WORKING PROMETHEUS

FEATURES

Real-Time Alerting System

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Step 1: Generate sample log data simulating errors and traffic
np.random.seed(42) # For reproducibility
dates = pd.date_range(start='2023-09-01', periods=100, freq='D')
# Simulate normal traffic data and error counts
traffic_data = np.random.poisson(lam=200, size=len(dates)) # Normal traffic
error_data = np.random.poisson(lam=5, size=len(dates)) # Base errors
# Introduce some anomalies in traffic and errors
error data[10] += 25 # Spike in errors
error data[50] += 15 # Another spike
traffic data[20] += 1000 # Spike in traffic
traffic data[80] += 800 # Another spike
# Create DataFrame
df = pd.DataFrame({
     'date': dates,
     'errors': error data,
     'traffic': traffic_data,
})
df.set_index('date', inplace=True)
# Step 2: Calculate rolling mean and standard deviation for errors and traffic
window size = 7 # 7-day rolling window
df['error rolling mean'] = df['errors'].rolling(window=window_size).mean();
df['error_rolling_std'] = df['errors'].rolling(window=window_size).std()
df['traffic_rolling_mean'] = df['traffic'].rolling(window=window_size).mean()
df['traffic_rolling_std'] = df['traffic'].rolling(window=window_size).std()
# Step 3: Define anomalies for errors and traffic
threshold = 2 # Number of standard deviations
df['error anomaly'] = (df['errors'] > df['error rolling mean'] + threshold * df['error rolling std'])
df['traffic anomaly'] = (df['traffic'] > df['traffic rolling mean'] + threshold * df['traffic rolling std'])
```


Log Anomaly Detection

```
1 ∨ import smtplib
     from email.mime.text import MIMEText
     from email.mime.multipart import MIMEMultipart
    # Replace with your email server details and login credentials
     smtp server = "smtp.gmail.com"
     smtp port = 587
     sender email = "your email@gmail.com"
     sender password = "your password"
     # Function to send email alert
12 v def send_email_alert(subject, body, recipient_email):
         # Create the email headers and content
        msg = MIMEMultipart()
        msg['From'] = sender email
15
        msg['To'] = recipient_email
        msg['Subject'] = subject
        msg.attach(MIMEText(body, 'plain'))
        # Setup the SMTP server
         server = smtplib.SMTP(smtp server, smtp port)
21
        server.starttls() # Secure the connection
         server.login(sender_email, sender_password) # Login to your email
         # Send the email
        server.sendmail(sender email, recipient email, msg.as string())
         server.quit()
        print(f"Email alert sent to {recipient_email}")
     # Example usage: Send an email when threshold is exceeded
32 v def check thresholds and alert email(metrics, recipient email):
         alerts = []
        if metrics['cpu usage'] > 85:
35 🗸
            alerts.append("High CPU Usage Alert!")
        if metrics['memory usage'] > 80:
            alerts.append("High Memory Usage Alert!")
         if metrics['error rate'] > 5:
             alanta annand/"High Ennan Data Alanti"
```


OUR SIGNUP PAGE

	Sign up to start your journey
Username	
Username	
Email	
Email	
Password	
Password	

OUR LANDING PAGE

INFRA MONITORING TOOL

TEAM PANDORA SUCCESSFULLY DEVELOPED AN INNOVATIVE CLOUD OBSERVABILITY PLATFORM AS PART OF THE STGI HACKATHON.THE PROJECT FOCUSED ON BUILDING A ROBUST SOLUTION TO MONITOR APPLICATIONS DEPLOYED IN A KUBERNETES CLUSTER, SPECIFICALLY TARGETING TWO DATABASES—POSTGRESQL AND MYSQL.

MEET OUR TEAM:

- 1) PURANJOT SINGH
- 2) TANISH KACKRIA
- 3) PRANAV MALHOTRA
- 4) DEVANSH AGGARWAL
- 5) SIDDHARTH CHAUHAN

About our Project v

