Теория Меры 4: Теорема Радона-Никодима и теорема Фубини

4.1. Разложение Хана

Определение 4.1. Напомним, что **зарядом** называется счетно-аддитивная функция на σ -алгебре, принимающая значения в \mathbb{R} .

Задача 4.1 (!). Пусть ρ - заряд на сигма-алгебре $\mathfrak{U} \subset 2^S$, а $\beta := \inf \rho(B_\alpha)$, где inf берется по всем B_α таким, что $\rho(B_\alpha) < 0$.

- а. Докажите, что $\beta > -\infty$.
- б. Пусть E измеримое множество, такое, что $\rho(E) \leqslant \beta + \varepsilon$. Докажите, что для любого $E' \subset S \setminus E$, $\rho(E') \geqslant -\varepsilon$.
- в. Пусть E_1, E_2 измеримые множества, причем $\rho(E_i) \leqslant \beta + \varepsilon_i$. Докажите, что $\rho(E_1 \triangle E_2) \geqslant -\varepsilon_1 \varepsilon_2$. Выведите из этого, что $\rho(E_1 \cup E_2) \leqslant \beta + \varepsilon_1 + \varepsilon_2$ и $\rho(E_1 \cap E_2) \leqslant \beta + \varepsilon_1 + \varepsilon_2$.
- г. Пусть E_i последовательность измеримых множеств, такая, что $\rho(E_i) \leqslant \beta + \frac{1}{2^i}$. Докажите, что последовательность $B_i := \bigcup_{i>j} E_i$ обладает тем же свойством.
- д. В этих условиях, покажите, что $\rho(B) = \beta$, где $B = \bigcap B_i$.

Задача 4.2. В условиях предыдущей задачи, обозначим $S \setminus B$ за A. Докажите, что $\rho(V) \geqslant 0$ для любого измеримого $V \subset A$.

Определение 4.2. В этой ситуации говорится, что заряд ρ положителен на A, обозначается $\rho \geqslant 0$. Ясно, что в таком случае $\rho|_A$ является мерой. Если $-\rho$ положителен, говорится, что ρ отрицателен на A. Если же $\rho(V)=0$ для любого измеримого $V\subset A$, говорится, что множество A ρ -пренебрежимо.

Задача 4.3 (!). В условиях Задачи 4.1, докажите, что ρ отрицателен на B, положителен на $A:=S\backslash B$, и разложение $S=A\coprod B$ определено однозначно с точностью до ρ -пренебрежимого множества.

Определение 4.3. Это разложение называется разложением Хана.

4.2. Абсолютная непрерывность

Определение 4.4. Пусть S - пространство с сигма-алгеброй, а μ и ν две меры. Мы говорим, что ν абсолютно непрерывна относительно μ (обозначается $\nu \ll \mu$) если для любого измеримого множества A, из $\mu(A)=0$ следует $\nu(A)=0$.

Замечание. Алгебру измеримых (по Лебегу) подмножеств \mathbb{R}^n мы предполагаем фиксированной. Когда говорится о мере на \mathbb{R}^n , всегда речь идет о мере на этой алгебре.

Задача 4.4. Приведите пример меры на \mathbb{R}^n , не равномерно непрерывной относительно меры Лебега

Задача 4.5. Найдите бесконечный набор M мер на \mathbb{R}^n , таких, что никакая мера $\mu \in M$ не равномерно непрерывна относительно другой $\mu' \in M$.

Задача 4.6. Пусть μ мера на пространстве с сигма-алгеброй, а f - интегрируемая функция со значениями в $\mathbb{R}^{\geqslant 0}$. Определим меру $f\mu$ как $A \longrightarrow \int_A f\mu$. Докажите, что $f\mu \ll \mu$.

Задача 4.7 (!). Пусть на пространстве S с сигма-алгеброй заданы меры $\nu \ll \mu$, причем $\nu(S) < \infty$. Докажите, что для любого $\delta > 0$ найдется $\varepsilon > 0$ такой, что из $\mu(V) < \varepsilon$ вытекает $\nu(V) < \delta$.

Замечание. Довольно часто это свойство предлагается в качестве определения абсолютной непрерывности.

Задача 4.8 (*). Найдите контрпример к утверждению предыдущей задачи, в ситуации, когда $\nu(S)=\infty$.

Задача 4.9. В условиях задачи 4.7, предположим, что $\mu(S) < \infty$ и $\nu(S) > 0$. Рассмотрим заряд $\nu - \varepsilon \mu$, где $\varepsilon > 0$, и пусть $S = A_\varepsilon \coprod B_\varepsilon$ соответствующее ему разложение Хана.

- а. Докажите, что $\nu(B_{\varepsilon}) \leqslant \varepsilon \mu(S)$, и $\lim_{\varepsilon \longrightarrow 0} \nu(B_{\varepsilon}) = 0$.
- б. Выведите из этого, что $\nu(A_{\varepsilon}) > \frac{1}{2}\nu(S)$ для достаточно маленьких ε .
- в. Докажите, что $\mu(A_{\varepsilon}) > 0$ для какого-то ε

Задача 4.10 (!). Пусть на пространстве S с сигма-алгеброй заданы меры $\nu \ll \mu$, причем $0 < \nu(S) < \infty$ и $\mu(S) < \infty$. Докажите, что для какого-то измеримого множества A с $\mu(A) > 0$, и какого-то $\varepsilon > 0$ заряд $\nu - \varepsilon \mu$ положителен на A.

Указание. Воспользуйтесь предыдущей задачей

Задача 4.11 (!). Приведите контрпример к утверждению задачи 4.10, где μ мера Лебега на единчном кубе $S \subset \mathbb{R}^n$, а ν не обязательно удовлетворяет $\nu \ll \mu$.

Задача 4.12. Пусть на пространстве S с с сигма-алгеброй заданы меры $\nu \ll \mu$, причем $\mu(S) < \infty$ и $\nu(S) < \infty$. Рассмотрим множество $\mathcal F$ интегрируемых функций $f: S \longrightarrow \mathbb R^{\geqslant 0}$ таких, что $\int_E f \mu \leqslant \nu(E)$ для любого измеримого множества $E \subset S$. Пусть α есть супремум $\sup_{f \in \mathcal F} \int_S f \mu$. Докажите, что $\alpha = \int_S \nu$, и этот супремум реализуется для измеримой функции $f \in \mathcal F$.

Указание. Рассмотрим последовательность $\{f_i\} \in \mathcal{F}$ таких, что

$$\lim_{i} \int_{S} f_{i}\mu = \alpha.$$

Докажите, что $f:=\sup f_i$ это измеримая функция, лежащая в $\mathcal F$ и удовлетворяющая $\alpha=\int_S f\mu$. Воспользовавшись задачей 4.10, найдите $A,\,\mu(A)>0$ и ε такие, что $\nu'>\varepsilon\mu$ на $A,\,$ где $\nu':=\nu-f\mu$. Функция $f':=f+\varepsilon\chi_A$ принадлежит $\mathcal F$ и удовлетворяет $\int_S f'>\int_S f$.

Замечание. На протяжении этого листка полезно пользоваться следующей леммой. Пусть $\{f_i\}$ - монотонно убывающая или возрастающая последовательность интегрируемых функций, ограниченная по норме $|\cdot|_1$. Тогда $\{f_i\}$ это последовательность Коши в смысле L_1 -топологии, (топологии, заданной нормой $|\cdot|_1$), и сходится (в смысле L_1 -топологии) к поточечному пределу f_i . Докажите ее.

Задача 4.13 (!). (теорема Радона-Никодима) Пусть на пространстве S с сигма-алгеброй заданы меры $\nu \ll \mu$, причем $\mu(S) < \infty$ и $\nu(S) < \infty$. Докажите, что существует интегрируемая функция $f: S \longrightarrow \mathbb{R}^{\geqslant 0}$ такая, что $\nu = f\mu$.

Указание. Воспользуйтесь предыдущей задачей.

Задача 4.14 (*). Определите абсолютную непрерывность для зарядов. Сформулируйте и докажите теорему Радона-Никодима в такой ситуации.

4.3. Прямой образ меры

Определение 4.5. Пусть M, N пространства с заданными на них сигма-алгебрами \mathfrak{U}_M и \mathfrak{U}_N , а $f: M \longrightarrow N$ - измеримое отображение. Определим **прямой образ меры** $f_*\mu: \mathfrak{U}_N \longrightarrow \mathbb{R}$ посредством

$$f_*\mu(Z) := \mu(f^{-1}(Z)).$$

Задача 4.15. Докажите, что это определение задает меру на N.

Задача 4.16 (!). Рассмотрим измеримую функцию $f: I \longrightarrow I$, и пусть $\pi: I \times I \longrightarrow I$ проекция на первый множитель. Рассмотрим $K \subset I \times I$ состоящий из всех

$$\{x, y \in I \times I \mid f(x) \geqslant y\}.$$

K следует рассматривать как область под графиком f в $I \times I$. В предположении, что мера произведения на $I \times I$ σ -аддитивна, докажите, что K измеримо, а $\pi_*\mu = f\mu$, где μ это мера Лебега.

Определение 4.6. Пусть M, N топологические пространства, \mathfrak{U}_M и \mathfrak{U}_N алгебры борелевских множеств, а $f: M \longrightarrow N$ - непрерывное отображение. Пусть на M задана мера μ . Определим прямой образ меры $f_*\mu: \mathfrak{U}_N \longrightarrow \mathbb{R}$ так:

$$f_*\mu(Z) := \mu(f^{-1}(Z)).$$

Прямой образ меры Лебега при непрерывном отображении компактных подмножеств из \mathbb{R}^n продолжается до меры на алгебре измеримых множеств. Полученная мера называется **прямым образом меры** Лебега.

Задача 4.17. Приведите пример непрерывного отображения $f: M \longrightarrow N$ открытых подмножеств \mathbb{R}^n такого, что прямой образ меры Лебега не абсолютно непрерывен по отношению к мере Лебега на N.

Задача 4.18 (!). Пусть $L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ невырожденный линейный оператор. Докажите, что $L_*\mu = |\det L|\mu.$

Задача 4.19 (*). Пусть $\phi: [0,1] \longrightarrow [0,1] \times [0,1]$ - отображение Пеано (непрерывное сюрьективное отображение из отрезка в квадрат, построенное в листке Геометрия 8). Докажите, что $\phi_*\mu = \mu$, где μ это мера Лебега.

Задача 4.20 (*). Пусть (A, μ_A) , (B, μ_B) пространства с мерой, а $\phi: A \longrightarrow B$, $\psi: B \longrightarrow A$ инъективные измеримые отображения, которые удовлетворяют $\psi_*\mu_B = \mu_A$, $\phi_*\mu_A = \mu_B$. Предположим, что образ ψ и ϕ также измерим, и обратные отображения (определенные на образе) измеримы. Докажите, что есть биекция $\xi: A \longrightarrow B$, которая удовлетворяет $\xi_*\mu_A = \mu_B$.

Задача 4.21 (*). Пусть (A, μ_A) , (B, μ_B) - единичные кубы в \mathbb{R}^n и в \mathbb{R}^m , с мерой Лебега. Постройте измеримую биекцию $\xi: A \longrightarrow B$, которая удовлетворяет $\xi_*\mu_A = \mu_B$, $\xi_*^{-1}\mu_B = \mu_A$.

4.4. Теорема Фубини

Определение 4.7. Пусть (X, μ_X) и (Y, μ_Y) пространства с σ -алгеброй и счетно-аддитивной мерой. Напомним, что цилиндрическим множеством называется подмножество вида $A \times B \subset X \times Y$, где A и B измеримы в X, Y. Рассмотрим алгебру, порожденную цилиндрическими подмножествами в $X \times Y$, и положим $\mu(A \times B) := \mu_X(A)\mu_Y(B)$. Пусть $L(X \times Y)$ - пополнение этой алгебры, по внешней мере μ^* , связанной с μ , определенное в листке 2.

Задача 4.22. В этих условиях, обозначим за $\pi: X \times Y \longrightarrow Y$ естественную проекцию. Рассмотрим измеримое подмножество $A \subset X \times Y$, и пусть $\pi_*\mu_A := \pi_*(\chi_A\mu^*)$ прямой образ меры с A. Предположим, что X является счетным объединением подмножеств конечной меры (такие пространства называются σ -конечными). Докажите, что $\pi_*\mu_A$ абсолютно непрерывно относительно μ_Y .

Замечание. Согласно теореме Радона-Никодима, $\pi_*\mu_A=f_A\mu_Y$, для какой-то измеримой функции f_A на Y.

Задача 4.23. Пусть $A \subset X \times Y$ - цилиндрическое измеримое множество, представленное в виде счетного объединения цилиндрических: $A = \coprod A_i$. Докажите, что $\pi_*(\chi_A \mu) = \sum \pi_*(\chi_{A_i} \mu)$. Выведите из этого, что мера μ на $X \times Y$ σ -аддитивна.

Задача 4.24. Пусть $A\subset X\times Y$ – множество меры нуль. Докажите, что $f_A=0$, где f_A - функция, определенная выше

Указание. Воспользуйтесь тем, что $\int_Y f_A \mu_Y = \int_A \mu^* = 0$.

Задача 4.25. Пусть задана последовательность Коши измеримых множеств $A_i \subset X \times Y$, сходящаяся к $A \subset X \times Y$, а f_{A_i} , f_A - функции на Y, построенные выше. Докажите, что f_{A_i} сходится к f_A в метрике, заданной $|\cdot|_1$.

Указание. Если $\mu(B) = \varepsilon$, то $\int_V f_B \mu_Y = \varepsilon$.

Определение 4.8. Пусть $A \subset X \times Y$ измеримо. Рассмотрим функцию f_A на Y (Замечание 4.4). Подмножество $A \subset X \times Y$ называется π -измеримым, если $A_y := A \cap \pi^{-1}(y) \subset X \times \{y\}$ измеримо для почти всех $y \in Y$ (т.е. вне множества меры нуль на Y), и $\mu_X(A_y) = f_A(y)$ почти везде.

Задача 4.26 (!). Докажите, что цилиндрические множества π -измеримы. Докажите, что конечные объединения и пересечения π -измеримых множеств π -измеримы. Докажите, что множества меры нуль π -измеримы.

Определение 4.9. Последовательность подмножеств $\{A_i\} \subset S$ называется **монотонной**, если $A_i \subset A_j$ для всех j > i, либо $A_i \supset A_j$ для всех j > i. В первом случае говорится, что $\{A_i\}$ возрастающая последовательность, во втором случае - убывающая.

- Задача 4.27. а. Пусть задана монотонная последовательность $A_i \subset X \times Y$ π -измеримых множеств. Докажите, что функция $y \longrightarrow \mu_X(A_{iy})$ сходится к $y \longrightarrow \mu_X(A_y)$, где $A = \bigcup A_i$ для возрастающей последовательности и $A = \bigcap A_i$ для убывающей последовательности.
 - б. Выведите из этого, что монотонная последовательность Коши π -измеримых множеств сходится к π -измеримому множеству

Задача 4.28 (!). Докажите, что все измеримые подмножества в $X \times Y$ π -измеримы.

Указание. Докажите, что любое измеримое множество приближается последовательностью Коши вида $\bigcup_j \bigcap_{i>j} A_i$, где все A_i - конечные объединения цилиндрических. Выведите из этого, что любое измеримое подмножество (с точностью до множества меры нуль) получается монотонными пределами из π -измеримых множеств.

Задача 4.29 (*). Пусть I есть единичный интервал, а $\phi: I \longrightarrow I^n$ отображает число x с десятичной записью $0, a_1 a_2, \dots$ в $(x_1, \dots x_n)$, где x_i записывается в десятичном виде как $0, a_i a_{i+n} a_{i+2n} \dots$ Обозначим за μ_I меру Лебега на I^n . Докажите, что $\phi_*\mu_I$ есть мера Лебега на кубе I^n

Задача 4.30 (!). (теорема Фубини) Пусть ϕ – интегрируемая функция на $X \times Y$, с мерой, заданной выше. Для $y \in Y$, рассмотрим ограничение ϕ на $X \times \{y\}$ как функцию $\phi_y : X \longrightarrow \mathbb{R}$. Докажите, что ϕ_y измеримо для почти всех $y \in Y$, и

$$\int_{X \times Y} f \mu = \int_{Y} \left(\int_{X} \phi_{y} \mu_{X} \right) \mu_{Y}.$$

Задача 4.31 (*). Приведите пример неизмеримой функции $f: \mathbb{R} \longrightarrow \mathbb{R}$, график которой измерим.

Задача 4.32 ().** Существует ли функция $f: \mathbb{R} \longrightarrow \mathbb{R}$, график которой неизмерим?