Coronavirus Epidemic Forecasting 7 March 2020 CA-ANG/SG

Summary (1)

- Predictions:
 - Epidemic will end some time after 60% of population is infected
 - That could be before summer or after summer
 - But infection rate could shoot to 90%
 - Epidemic will last about three to five months
- Above predictions apply if public health measures are <u>in</u>effective
 - Substantial improvement possible if public health measures are effective
 - Most difficult and impactful decision: when to relax public health measures

Summary (2)

- Covid-19 is a socially non-neutral disease
- Especially bad for:
 - Elderly
 - Sick
 - Health workers
- If similar to 1918 influenza spread
 - Will be worse in areas of high population density and high illiteracy
 - "Illiteracy" in 1918 was a marker for general poverty

Question to Answer: Where is Epidemic Going?

- All epidemics are a math problem
- All epidemics are a medical problem
- All epidemics are a social problem
- All epidemics are a political problem

← Won't discuss this one!

- This briefing is not for busy leadership
- This briefing is for planners with time to dig in deeper

Math

Math Overview

• Math tells us exactly how far the epidemic will go and when it will end

- Proves false this corrosive misbelief:
 - "It doesn't matter what we do, we're all going to get infected"

- Proves that our public health actions are supremely important
 - Not just what actions to apply and when
 - Also how long to maintain them

← The more difficult aspect

Math Basics

- Key parameter of any virus:
 - R0 = "R-naught" = "basic reproduction number"
 - Average number of cases that result from a single case
- Key equation:
 - F = Fraction of population ultimately infected = 1 (1/R0)
- F determines two critical behaviors of an epidemic...

First Key Meaning of "F"

- Is the fraction of the population that ends up being infected
 - [Not completely true, because virus usually overshoots, but assume true for now]
- Estimates of R0 for Covid-19 virus

So, is false to say "We're all going to get infected."

How Big is the Overshoot?

- At R0=2.5: $F=60\% \rightarrow$ overshoots to 90%
- At R0=1.5: F=33% \rightarrow overshoots to 60%

- These results are based on a mathematical model
 - "Deterministic susceptible-infectedrecovered" (SIR) model
- So, <u>estimate</u> that 60-90% of population will get infected with coronavirus R0=2.5
 - If we do nothing

Second Key Meaning of "F"

- Is when the epidemic stops
- Mathematically, an epidemic stops when either:
 - (a) R0 becomes less than 1
 - (b) Fraction of resistant population reaches F
 - "Herd immunity" kicks in when F fraction of population is resistant
 - At this fraction, sustained transmission of the virus becomes impossible
 - Assumes: People become resistant after recovering from infection
 - Assumes: People become resistant after being vaccinated (not currently an option)
- For this meaning we use the calculated F, not the overshoot F
 - At R0=2.5: F=60% → epidemic peters out soon after 60% of population infected
 - At R0=1.5: F=33% → epidemic peters out soon after 33% of population infected

Medical / Public Health

How to Relate RO and F to Real World?

- R0 is not a fixed property of the virus
- R0 depends on the interaction between virus + people + environment
- R0 can be lowered by public health interventions
 - Less mathematically: Lowering the number of people whom each case infects will shrink the total size of the epidemic
 - This is not obvious to lots of physicians (proof available on request)
 - Impact is substantial. Recall previous data:
 - R0 = 2.5 requires infection of 60% of population before epidemic ends
 - R0 = 1.5 requires infection of 33% of population before epidemic ends
 - So our actions could spare on-the-order-of 27% of the population from infection

Good Strategies and Bad Strategies

Over-effective. R0 initially \downarrow by 40%. Controls relaxed too early (day 75). Second wave occurs because RO has bounced back up, and F % of population is not yet resistant, and so sustained transmission re-ignites.

Real-World Confirmation

Key Question for Planners

- Long-term, what R0 will the population be able to sustain?
 - Example: Suppose closing schools reduces R0 from 2.0 (F=50%) to 1.5 (F=33%). Huge benefit, but closing schools until a vaccine appears is not a viable long term option.
 - If 33% of the population is infected and schools are closed and the epidemic has ceased, when the schools re-open, R0 will increase back to 2.0 and another wave of infections will occur, to bring F up to 50% (or higher, with overshoot).
- With a Covid-19 vaccine predicted to be 18 months away, optimal strategy *for general population* is to apply only enough controls to reduce R0 to a level sustainable for 18 months.

Caveats

- These are principles only.
- Not possible to know change in R0 for each control.
- Individual behaviors are large components of any change in R0.
- Summertime may have a different R0 than spring and fall.
- "Over-effective" (two-wave) strategy may prolong pain, but would also reduce peak demand on health care system.

Social Non-Neutrality

RO is Not the Same Everywhere

- Based on 1918 influenza data...
 - R0 is higher where population density is higher
 - R0 is higher where poverty is higher
- Scenarios of very high virus transmission in Covid-19 epidemic
 - Korean psychiatric ward: 99 of 101 contract the disease
 - Diamond Princess cruise ship: 700 cases
 - Homes: data from China suggests most secondary transmission is at home

RO is Not the Whole Story

- R0 refers only to spread of disease
- Does not refer to consequences of disease
 - Older high mortality
 - Sick comorbities, including hypertension + other common diseases, raise mortality
 - Health care workers
 - Dire consequences for health care system.
 - Also seem to have higher mortality. Reasons are wholly unclear.

Conclusion

Course of the epidemic is not pre-ordained by biology

Our actions will be a large determinant of the ultimate outcome

- Mathematics is helpful for proving a framework to think about actions
 - But is not a rigid guide