Question 1: What is a random variable in probability theory?

Answer: In probability theory, a random variable is a variable that assigns a numerical value to each possible outcome of a random experiment.

Question 2: What are the types of random variables?

Answer: Types of Random Variables are:

1. Discrete Random Variable

- Takes on a finite or countable set of possible values.
- Example:
 - Number of heads when tossing 3 coins $\rightarrow \{0,1,2,3\}\setminus\{0,1,2,3\}\setminus\{0,1,2,3\}$
 - $\circ \qquad \text{Roll of a die} \rightarrow \{1,2,3,4,5,6\} \setminus \{1,2,3,4,5,6\} \setminus \{1,2,3,4,5,6\}$

2. Continuous Random Variable

- Can take any value within an interval or collection of intervals on the real number line.
- Example:
 - Height of a person (e.g., 165.2165.2165.2 cm, 170.45170.45170.45 cm)
 - Time taken for a bus to arrive (e.g., 4.324.324.32 minutes)

3. Mixed Random Variable

- Has both discrete and continuous components.
- Example:
 - Time until the next train: could be exactly at a scheduled time (discrete) or somewhere in between due to delays (continuous).

Question 3: Explain the difference between discrete and continuous distributions.

Answer:

Feature	Discrete Distribution	Continuous Distribution
Values	Countable (finite or countably infinite)	Uncountably infinite (any real number in a range)
Function used	PMF (Probability Mass Function)	PDF (Probability Density Function)
Probability of a point	Can be non-zero	Always zero
Example	Rolling a die, number of emails received	Height, weight, time, temperature

Question 4: What is a binomial distribution, and how is it used in probability?

Answer: A binomial distribution is a probability distribution that models the number of successes in a fixed number of independent trials, where each trial has only two possible outcomes — success or failure — and the probability of success is the same for each trial.

Binomial Distribution used in probability in certain steps:

Step 1: Calculating Exact Probabilities

If you know n (number of trials), p (probability of success), and k (desired number of successes), you can find:

 $P(X=k)=(n/k)p^k(1-p)^n-kExample$:

Probability of getting exactly 7 heads in 10 fair coin tosses.

Step 2: Finding Cumulative Probabilities

Sometimes you need:

a)Probability of at most k successes: P(X≤k)

b)Probability of at least k successes: P(X≥k)

You add the probabilities for the relevant k values.

Example: Probability of getting at least 3 customers who buy a product out of 5 who walk in.

Step 3: Predicting Likely Outcomes

The binomial distribution tells us which outcomes are most probable.

Example: In a survey where 60% say "Yes," the distribution shows that the most likely number of "Yes" answers in 20 people is around 20×0.6=12

Step 4: Approximations & Decision-Making

a)For large n, the binomial can be approximated by the normal distribution (Central Limit Theorem) or Poisson distribution (if p is small).

b)Helps in hypothesis testing, risk assessment, and quality control.

Question 5: What is the standard normal distribution, and why is it important?

Answer: The standard normal distribution is a special case of the normal (Gaussian) distribution where:

- Mean (µ) = 0
- Standard deviation (σ) = 1
- It's symmetric, bell-shaped, and centered at 0.

The variable that follows it is usually called Z and is said to have a Z-distribution.

It's important for various things like:

1)Basis for Z-Scores

Any normal distribution can be converted to the standard normal distribution using:

$$x=(x-\mu)/\sigma$$

This tells you how many standard deviations a value is from the mean.

2)Universal Reference Table

Once values are converted to Z-scores, you can use the standard normal table to find probabilities without creating a new table for every possible mean and standard deviation.

3) Simplifies Probability Calculations

Instead of integrating different normal curves, we convert them to the standard one and look up values in Z-tables or use software.

4)Foundation for Statistical Tests

Many inferential statistics methods (like hypothesis tests and confidence intervals) rely on the standard normal distribution.

5)Real-Life Applications

- Quality control
- Standardized testing (SAT, IQ scores)
- Finance (risk modeling, stock returns)
- Natural and social sciences (measurement errors, biological data)

Question 6: What is the Central Limit Theorem (CLT), and why is it critical in statistics? Answer:The Central Limit Theorem (CLT) is one of the most important results in statistics because it explains *why* the normal distribution appears so often in real-world data analysis.

It's critical in statistics because:

1)Foundation for Inferential Statistics

CLT allows us to make probability-based conclusions about population parameters (mean, proportion) even if the population isn't normally distributed.

2) Enables Hypothesis Testing & Confidence Intervals

Because sample means are (approximately) normal, we can use Z-tests, t-tests, and build confidence intervals.

Question 7: What is the significance of confidence intervals in statistical analysis? Answer:A confidence interval (CI) is a range of values, derived from sample data, that is likely to contain the true population parameter (such as the mean or proportion) with a certain level of confidence.

Significance of Confidence Intervals in statistical analysis are:

1. Gives a Range, Not Just a Point

- A single estimate (like a sample mean) doesn't tell you how precise it is.
- A CI provides a range of plausible values for the parameter, showing both the estimate and its uncertainty.

2. Quantifies Uncertainty

• The width of a CI reflects the uncertainty in your estimate.

- Narrow interval → more precise estimate.
- Wide interval → less precise, more uncertainty.
- Influenced by:
 - o Sample size (larger samples → narrower CI)
 - Variability in data
 - o Confidence level chosen (e.g., 95%, 99%)

3. Interpretable Probabilistically

• A 95% CI means: If we took many random samples and built a CI for each, about 95% of those intervals would contain the true parameter.

4. Supports Decision-Making

- In research, business, and science, CIs show the reliability of estimates.
- Example: If a drug increases recovery rate by [4%, 10%], the CI shows the possible real effect range helping decide if the drug is effective.

5. Used in Hypothesis Testing

• If a 95% CI for a mean difference does not contain 0, it suggests the difference is statistically significant at the 5% level.

Question 8: What is the concept of expected value in a probability distribution?

Answer: The expected value (also called the mean or expectation) of a probability distribution is the long-run average of a random variable's outcomes, weighted by their probabilities.

It's essentially what you'd expect to get on average if you repeated a random experiment many, many times.

Example : You roll a fair six-sided die:

Possible values: 1,2,3,4,5,6Probability of each: 1/6

 $E[X]=(1)(1/6)+(2)(1/6)+\cdots+(6)(1/6)=(1+2+3+4+5+6)/6=3.5$

This means if you roll the die many times, the average roll will approach 3.5.

Question 9: Write a Python program to generate 1000 random numbers from a normal distribution with mean = 50 and standard deviation = 5. Compute its mean and standard deviation using NumPy, and draw a histogram to visualize the distribution.

Answer: <u>Python Code</u> import numpy as np import matplotlib.pyplot as plt

Set seed for reproducibility (optional) np.random.seed(42)

Generate 1000 random numbers from a normal distribution mean = 50 std_dev = 5

```
size = 1000
data = np.random.normal(mean, std dev, size)
# Compute mean and standard deviation
computed mean = np.mean(data)
computed std = np.std(data)
# Display results
print(f"Computed Mean: {computed mean:.2f}")
print(f"Computed Standard Deviation: {computed_std:.2f}")
# Plot histogram
plt.hist(data, bins=30, edgecolor='black', alpha=0.7)
plt.title("Normal Distribution Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.axvline(computed mean, color='red', linestyle='dashed', linewidth=2, label=f"Mean =
{computed_mean:.2f}")
plt.legend()
plt.show()
```

Question 10: You are working as a data analyst for a retail company. The company has collected daily sales data for 2 years and wants you to identify the overall sales trend. daily_sales = [220, 245, 210, 265, 230, 250, 260, 275, 240, 255, 235, 260, 245, 250, 225, 270, 265, 255, 250, 260]

- Explain how you would apply the Central Limit Theorem to estimate the average sales with a 95% confidence interval.
- Write the Python code to compute the mean sales and its confidence interval.

Answer: Steps to apply CLT Theorem are;

1. Restating the Problem

We have 20 daily sales figures (sample) and want to estimate the true average daily sales for the full 2 years of data. Since we don't have all 730 days, we use this sample to make an inference.

2. Applying the Central Limit Theorem

- The sample size n=20 is less than 30, so instead of the Z-distribution, we'll use the t-distribution (which accounts for extra uncertainty in small samples).
- The sample mean will be our best estimate of the population mean.
- The spread of sample means is measured by the Standard Error (SE): $SE=s/\sqrt{n}$
- where s is the sample standard deviation.

3. Constructing a 95% Confidence Interval

For a 95% confidence level:

We find the t-critical value from the t-distribution with n−1n-1n−1 degrees of freedom.

- The formula for the CI is: $CI=x^-\pm t\alpha/2$, $df=n-1\times SE$, Where:
- x⁻ = sample mean
- tα/2,df = t-value for given confidence level
- SE = standard error

4. Interpretation

The resulting CI will give us a range of values that we are 95% confident contains the true average daily sales for the entire 2-year period.

For example:

If we get a CI of (240,255), it means that based on this sample, there is a 95% probability that the real average sales per day lies between 240 and 255 units.

```
Python Code for computing the mean sales and confidence interval:
import numpy as np
from scipy import stats
# Daily sales data
daily sales = [220, 245, 210, 265, 230, 250, 260, 275, 240, 255,
         235, 260, 245, 250, 225, 270, 265, 255, 250, 260]
# Convert to NumPy array
sales_array = np.array(daily_sales)
# Sample size, mean, and standard deviation
n = len(sales_array)
mean sales = np.mean(sales array)
std_sales = np.std(sales_array, ddof=1) # ddof=1 for sample std deviation
# Standard Error
SE = std_sales / np.sqrt(n)
# t-critical value for 95% confidence interval (since n < 30)
t crit = stats.t.ppf(1 - 0.025, df=n-1)
# Confidence Interval
lower bound = mean sales - t crit * SE
upper bound = mean sales + t crit * SE
# Output results
print(f"Mean Sales: {mean sales:.2f}")
print(f"95% Confidence Interval: ({lower_bound:.2f}, {upper_bound:.2f})")
```