ME 696 Instructor: A Zachary Trimble, Ph.D.

Marine Robotics and ROS E-Mail: atrimble@hawaii.edu

Spring 2022 Phone: +1 (808) 956-7597

TR 1530-1630 Office: Holmes Hall 304

Location: HH 242 Office Hours: Appt.

Overview

Marine Robotics and ROS is a graduate level course in applied mobile robotics with a strong emphasis on control of marine robots using the Robot Operating System (ROS).

Marine Robotics: The course will focus on applying specific Guidance, Navigation, and Control (GNC) solutions for a known platform. I.e. the robot model is assumed known and the student is expected to develop autonomous and/or semi-autonomous behaviors.

ROS: At its core, ROS is a publish-and-subscribe network that provides a "flexible framework for writing robot software. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms." Most ROS tools libraries and add-ons are written in python, or C++, but ROS does provide APIs for other programming languages (e.g. Matlab).

This is an applied, project-based course. You are expected to learn heuristically and to take control, as grad students should, of your learning objectives.

Objectives

What do I want the students to be able to accomplish at the end of this course?

- GNC
 - o Identify/Develop/Apply a global control architecture/block diagram.
 - o Develop, simulate, and apply a solution for all three aspects of GNC.
 - Utilize an appropriate model to develop.
 - Tune and modify for real world application.
- ROS
 - o Can develop a publisher, subscriber, service, action and knows when to utilize each.
- Publication
 - o Can communicate effectively in an academic context.

16 January 2023

¹ http://www.ros.org/#

Required Resources:

- ROS Capable computer
 - o Distribution:
 - ROS 2 Humble Hawksbill

Assignments and Grading

Late work will not be accepted.

Participation - Class discussions	15%
- Quizzes	
- Assignments	
- Tutorials	
Project 1	20%
Project 2	25%
Project 3	40%

References:

- Robotics
 - o Fossen, T. I. (2011). *Handbook of marine craft hydrodynamics and motion control*. John Wiley & Sons.
 - o Lynch, K. M., & Park, F. C. (2017). *Modern robotics*. Cambridge University Press.
 - http://hades.mech.northwestern.edu/images/7/7f/MR.pdf
 - https://www.youtube.com/playlist?list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx
 - o Brunton, S. (2021). Control Bootcamp. YouTube.
 - https://www.youtube.com/playlist?list=PLMrJAkhIeNNR20Mz-VpzgfQs5zrYi085m
 - o Penn Engineering. (2020-2017). R Shoots YouTube Channel. YouTube.
 - https://www.youtube.com/channel/UC-45kyxsA0XwgDTuIgpa9kw/videos
- ROS
 - General
 - o https://www.openrobotics.org/
 - o www.ros.org
 - o http://docs.ros.org/en/humble/
 - o https://navigation.ros.org/
 - o https://moveit.ros.org/

16 January 2023 2

• Conventions

- o http://www.ros.org/reps/rep-0000.html
- o http://wiki.ros.org/ROS/Patterns/Conventions

• Style guides

- o http://wiki.ros.org/StyleGuide
- o http://wiki.ros.org/DevelopersGuide
- o http://wiki.ros.org/CppStyleGuide
- o http://wiki.ros.org/PyStyleGuide
- o http://www.ros.org/reps/rep-0008.html

• Best Practices

- O Never edit files in /opt/ros/...
- o http://wiki.ros.org/ROS/Patterns
- o https://github.com/leggedrobotics/ros best practices/wiki

16 January 2023 3