Scalable Automatic Machine Learning in H2O

2018 European R Users Meeting Budapest, Hungary

H₂O.ai

Erin LeDell Ph.D.

@ledell

Agenda

- Intro to Automatic Machine Learning (AutoML)
- H2O AutoML Overview
- Pro Tips
- Tutorials

Slides https://tinyurl.com/aml-erum

Intro to Automatic Machine Learning

Aspects of Automatic Machine Learning

Data Prep

Model
Generation

Ensembles

Aspects of Automatic Machine Learning

Data Preprocessing

Model Generation

Ensembles

- Imputation, one-hot encoding, standardization
- Feature selection and/or feature extraction (e.g. PCA)
- Count/Label/Target encoding of categorical features
- Cartesian grid search or random grid search
- Bayesian Hyperparameter Optimization
- Individual models can be tuned using a validation set
- Ensembles often out-perform individual models
- Stacking / Super Learning (Wolpert, Breiman)
- Ensemble Selection (Caruana)

H2O's AutoML

H2O Machine Learning Platform

- Open source, distributed (multi-core + multi-node) implementations of cutting edge ML algorithms.
- Core algorithms written in high performance Java.
- APIs available in R, Python, Scala; web GUI.
- Easily deploy models to production as pure Java code.
- · Works on Hadoop, Spark, AWS, your laptop, etc.

H2O AutoML (current release v3.18)

Data Preprocessing

Model Generation

Ensembles

- Imputation, one-hot encoding, standardization
- Feature selection and/or feature extraction (e.g. PCA)
- Count/Label/Target encoding of categorical features
- Cartesian grid search or random grid search
- Bayesian Hyperparameter Optimization
- Individual models can be tuned using a validation set
- Ensembles often out-perform individual models:
- Stacking / Super Learning (Wolpert, Breiman)
- Ensemble Selection (Caruana)

Random Grid Search & Stacking

- Random Grid Search combined with Stacked Ensembles is a powerful combination.
- Ensembles perform particularly well if the models they are based on (1) are individually strong, and (2) make uncorrelated errors.
- Stacking uses a second-level metalearning algorithm to find the optimal combination of base learners.

H2O AutoML

- Basic data pre-processing (as in all H2O algos).
- Trains a random grid of GBMs, DNNs, GLMs, etc. using a carefully chosen hyper-parameter space
- Individual models are tuned using a validation set.
- Two Stacked Ensembles are trained ("All Models" ensemble & a lightweight "Best of Family" ensemble).
- Returns a sorted "Leaderboard" of all models.

Available in H20 >= 3.14

H2O AutoML in R

Example

```
library(h2o)
h2o.init()
train <- h2o.importFile("train.csv")
aml <- h2o.automl(y = "response_colname",</pre>
                   training_frame = train,
                   max_runtime_secs = 600)
lb <- aml@leaderboard
```

H2O AutoML in Flow GUI

H2O AutoML Leaderboard

model_id	auc	logloss
StackedEnsemble_AllModels_0_AutoML_20171121_012135	0.788321	0.554019
StackedEnsemble_BestOfFamily_0_AutoML_20171121_012135	0.783099	0.559286
GBM_grid_0_AutoML_20171121_012135_model_1	0.780554	0.560248
GBM_grid_0_AutoML_20171121_012135_model_0	0.779713	0.562142
GBM_grid_0_AutoML_20171121_012135_model_2	0.776206	0.564970
GBM_grid_0_AutoML_20171121_012135_model_3	0.771026	0.570270
DRF_0_AutoML_20171121_012135	0.734653	0.601520
XRT_0_AutoML_20171121_012135	0.730457	0.611706
GBM_grid_0_AutoML_20171121_012135_model_4	0.727098	0.666513
GLM_grid_0_AutoML_20171121_012135_model_0	0.685211	0.635138

Example Leaderboard for binary classification

H2O AutoML Pro Tips!

Before you press the "red button"

AutoML Pro Tips: Input Data

- Don't use leaderboard_frame unless you really need to; use cross-validation metrics to generate the leaderboard instead (default).
- If you only provide training_frame, it will chop off 20% of your data for a validation set to be used in early stopping. To control this proportion, you can split the data yourself and pass a validation_frame manually.

AutoML Pro Tips: Exclude Algos

- If you have sparse, wide data (e.g. text), use the exclude_algos argument to turn off the tree-based models (GBM, RF).
- If you want tree-based algos only, turn off GLM and DNNs via exclude_algos.

AutoML Pro Tips: Time & Model Limits

- AutoML will stop after 1 hour unless you change max_runtime_secs.
- Running with max_runtime_secs is not reproducible since available resources on a machine may change from run to run. Set max_runtime_secs to a big number (e.g. 99999999) and use max_models instead.

AutoML Pro Tips: H2O cluster memory

- Reminder: All H2O models are stored in H2O Cluster memory.
- Make sure to give the H2O Cluster a lot of memory if you're going to create hundreds or thousands of models.
- e.g. h2o.init(max_mem_size = "80G")

AutoML Pro Tips: Saving Models

 You can save any of the individual models created by the AutoML run. The model ids are listed in the leaderboard.

• If you're taking your leader model (probably a Stacked Ensemble) to production, we'd recommend using "Best of Family" since it only contains 5 models and gets most of the performance of the "All Models" ensemble.

H2O AutoML Tutorials

H2O AutoML Tutorials

https://tinyurl.com/h2o-automl-tutorials

Code available here

H2O Resources

- Documentation: http://docs.h2o.ai
- Tutorials: https://github.com/h2oai/h2o-tutorials
- Slidedecks: https://github.com/h2oai/h2o-meetups
- Videos: https://www.youtube.com/user/0xdata
- Stack Overflow: https://stackoverflow.com/tags/h2o
- Google Group: https://tinyurl.com/h2ostream
- Gitter: http://gitter.im/h2oai/h2o-3
- Events & Meetups: http://h2o.ai/events

Contribute to H2O!

Get in touch over email, Gitter or JIRA.

https://tinyurl.com/h2o-contribute

Thank you!

@ledell on Github, Twitter erin@h2o.ai

http://www.stat.berkeley.edu/~ledell