

### 机器学习之监督学习

决策树、集成学习、随机森林

倪冰冰 上海交通大学



### 监督学习

- 给定一组数据,我们知道正确的输出结果应该是什么样子,并且知道在输入和输出之间有着一个特定的关系f(x)。
- 分类 vs 回归



分类(Classification)



回归(Regression)



## 决策树Decision Tree

#### ● 决策树 Decision Tree

- 树状数据结构: 节点(根,叶,中间),分叉(判别条件)
- 每个中间节点包含branching条件判断., "Is  $x_4 \ge 0.4$ ?". "是" 走左子树, "不是" 走右子树  $x_1 \ge 0.4$ ?". "是" 走左子树, "不是"
- 每个数据样本从根节点,根据分叉条件,往下沉
- 每个叶节点收集走到它的所有数据样本





 $\chi_2$ 



● 所谓决策树的学习,即学习每个中间节点(包括根节点)的判别条件

Would we prefer to split on  $X_1$  or  $X_2$ ?





| X <sub>1</sub> | $X_2$ | Υ |
|----------------|-------|---|
| Т              | Т     | Т |
| Т              | F     | Т |
| Т              | Т     | Т |
| Т              | F     | Т |
| F              | Т     | Т |
| F              | F     | F |
| F              | Т     | F |
| F              | F     | F |

Y:标签 X<sub>1</sub>,X<sub>2</sub>:特征



● Entropy熵

More uncertainty, more entropy!



$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$$P(Y=t) = 5/6$$

$$P(Y=f) = 1/6$$

$$H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$$
  
= 0.65

| X <sub>1</sub> | $X_2$ | Υ |
|----------------|-------|---|
| Т              | Т     | Т |
| Т              | F     | Т |
| Т              | Т     | Т |
| Т              | F     | Т |
| F              | Т     | Т |
| F              | F     | F |



● 条件熵-测量给定x条件下y的不确定性

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

或者: 
$$H(Y|X) = \sum_{v} \frac{|D_v|}{|D|} H(Y|D_v)$$

### Example:

$$P(X_1=t) = 4/6$$

$$P(X_1=f) = 2/6$$

$$H(Y|X_1) = -4/6 (1 log_2 1 + 0 log_2 0)$$
  
- 2/6 (1/2 log<sub>2</sub> 1/2 + 1/2 log<sub>2</sub> 1/2)  
= 2/6

| X <sub>1</sub> | $X_2$ | Υ |
|----------------|-------|---|
| Т              | Т     | Т |
| Т              | F     | Т |
| Т              | Т     | Т |
| Т              | F     | Т |
| F              | Т     | Т |
| F              | F     | H |



● Information gain信息增益

$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$
  
= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow \text{ we prefer the split!}$ 

● 策略:每次分叉,选择信息增益最大的分叉条件

| X <sub>1</sub> | $X_2$ | Υ |
|----------------|-------|---|
| Т              | Т     | Т |
| Т              | F     | Т |
| Т              | Т     | Т |
| Т              | F     | Т |
| F              | Т     | Т |
| F              | F     | F |



- 决策树训练算法 (输入:一批训练数据包括特征和标签)
- 1. 建立一棵空的决策树 (从根节点开始)
- 2. 迭代: 在当前节点,根据最佳的特征进行Split操作
  - 例如: 可以考虑以下最大熵增的原则

$$\arg\max_{i} IG(X_i) = \arg\max_{i} H(Y) - H(Y \mid X_i)$$

- 3. 直至收敛 (例如:最大深度达到, purity值达到)
- 测试新样本 *x* 
  - 根据所学习的split rule,将样本从根节点置入,往下遍历至叶节点
  - 一旦到达叶节点,将叶节点所属类别标签赋给样本 x



- 连续变量: 对于特征 x 根据阈值 t 进行split操作
  - 左子树 x < t</li>
  - 右子树  $x \ge t$
  - 由于连续变量 t 可取值无限多
  - Only need check a finite number of t



- 可以将X排序  $\{x_1, x_2, ..., x_m\}$
- 选择阈值  $x_i + (x_{i+1} x_i)/2$
- 可以在一个特征上连续split





# 学习模型中的误差分析

● 那个模型比较好?



# 学习模型中的误差分析

- Variance-Bias-Noise 分析
  - 物理模型  $y = f(x) + \varepsilon$
  - $-\varepsilon$  是0均值, $\sigma$ 方差的正态分布.
  - 给定训练数据D =  $\{(x_i, y_i)\}$ , 我们拟合hypothesis  $\hat{f}$
  - 误差可以分解为:

$$egin{aligned} \mathbf{E}ig[ig(y-\hat{f}\left(x
ight)ig)^2ig] &= \mathrm{Bias}ig[\hat{f}\left(x
ight)ig]^2 + \mathrm{Var}ig[\hat{f}\left(x
ight)ig] + \sigma^2 \ & \mathrm{Bias}ig[\hat{f}\left(x
ight)ig] &= \mathbf{E}ig[\hat{f}\left(x
ight) - f(x)ig] & ext{Structural Error} \ & \mathrm{Var}ig[\hat{f}\left(x
ight)ig] &= \mathbf{E}ig[\hat{f}\left(x
ight)^2ig] - \mathbf{E}ig[\hat{f}\left(x
ight)ig]^2 & ext{Data Sample Error} \end{aligned}$$

### Bias-Variance 分解

#### ● 证明:

$$egin{aligned} \mathbf{E}ig[(y-\hat{f})^2ig] &= \mathbf{E}[y^2+\hat{f}^2-2y\hat{f}] \ &= \mathbf{E}[y^2] + \mathbf{E}[\hat{f}^2] - \mathbf{E}[2y\hat{f}] \ &= \mathbf{Var}[y] + \mathbf{E}[y]^2 + \mathbf{Var}[\hat{f}] + \mathbf{E}[\hat{f}]^2 - 2f\mathbf{E}[\hat{f}] \ &= \mathbf{Var}[y] + \mathbf{Var}[\hat{f}] + (f - \mathbf{E}[\hat{f}])^2 \ &= \mathbf{Var}[y] + \mathbf{Var}[\hat{f}] + \mathbf{E}[f - \hat{f}]^2 \ &= \sigma^2 + \mathbf{Var}[\hat{f}] + \mathbf{Bias}[\hat{f}]^2 \end{aligned}$$

$$\mathrm{Var}[X] = \mathrm{E}[X^2] - \mathrm{E}[X]^2$$

$$\mathrm{E}[y] = \mathrm{E}[f + \epsilon] = \mathrm{E}[f] = f$$

$$ext{Var}[y] = ext{E}[(y - ext{E}[y])^2] = ext{E}[(y - f)^2] = ext{E}[(f + \epsilon - f)^2] = ext{E}[\epsilon^2] = ext{Var}[\epsilon] + ext{E}[\epsilon]^2 = \sigma^2$$



### Bias-Variance 分解

- 对于 classification, 我们可以将误差分解为: bias 和 variance
  - Bias: 若模型过于简单,所提模型**不能**拟合数据,容易产生 "under-fitting"
  - Fix: 使用更加复杂的模型
  - 但是variance会升高!
  - Variance: 若模型过于复杂,正确拟合数据变得困难,容易产生"over-fitting"
  - Fix: 使用更加简单的模型
  - 但是bias会升高!





# Ensemble Learning集成学习

- 为什么需要集成学习
  - 单个的分类算法能力不足
  - 训练数据量不够
- 集成学习原则
  - 一堆弱分类器
  - 数据复用





# Ensemble Learning集成学习

- Bootstrapping
  - 从大小为n的数据库D中根据它的数据分布, 随机采样n'数据样本,并且对每个采样得到的, 样本做一定的数据偏移
  - 可重复采样
- Bagging (known as Bootstrap Aggregation)
  - 重复多次:
    - 通过bootstrap方式 D 中采样得到集合 $D_k$
    - 使用  $D_K$  训练得到一个分类器

| A sample of a single cla | aminer on an imaginary set of data. |
|--------------------------|-------------------------------------|
|                          | (Original) Training Set             |
| Training-set-1:          | 1, 2, 3, 4, 5, 6, 7, 8              |

| A sample of Bagging on the same data. |                          |
|---------------------------------------|--------------------------|
|                                       | (Resampled) Training Set |
| Training-set-1:                       | 2, 7, 8, 3, 7, 6, 3, 1   |
| Training-set-2:                       | 7, 8, 5, 6, 4, 2, 7, 1   |
| Training-set-3:                       | 3, 6, 2, 7, 5, 6, 2, 2   |
| Training-set-4:                       | 4, 5, 1, 4, 6, 4, 3, 8   |

| A sample of Boosting on the same data. |                          |
|----------------------------------------|--------------------------|
|                                        | (Resampled) Training Set |
| Training-set-1:                        | 2, 7, 8, 3, 7, 6, 3, 1   |
| Training-set-2:                        | 1, 4, 5, 4, 1, 5, 6, 4   |
| Training-set-3:                        | 7, 1, 5, 8, 1, 8, 1, 4   |
| Training-set-4:                        | 1, 1, 6, 1, 1, 3, 1, 5   |



# Bagging

- Bagging
  - 投票决定最后的识别结果





### Bagging

- Bagging
  - Bias [跟之前一样]
  - Variance [最小化]
  - bagging 能减少 variance, 且能使 bias 不被改变

$$\mathbf{E}\left[\left(y-\hat{f}\left(x
ight)
ight)^{2}
ight]=\mathbf{Bias}\left[\hat{f}\left(x
ight)
ight]^{2}+\mathbf{Var}\left[\hat{f}\left(x
ight)
ight]+\sigma^{2}$$

$$Var\left[\frac{1}{n}\sum_{i}(h^{i})\right]=1/n\left(Var[h]
ight)$$

每个boostrap 样本集  $D_k$  是独立的



# Random Forest(随机森林)

#### ● 从决策树到随机森林







# Random Forest(随机森林)

● 随机森林训练

Random Forest (RF)

random forest (RF) = bagging + fully-grown C&RT decision tree

```
function RandomForest(\mathcal{D})
For t = 1, 2, ..., T
  1 request size-N' data \tilde{\mathcal{D}}_t by
      bootstrapping with \mathcal{D}
  ② obtain tree g_t by DTree(\tilde{\mathcal{D}}_t)
return G = Uniform(\{g_t\})
```

```
function DTree(\mathcal{D})
if termination return base gt
else
        1 learn b(x) and split \mathcal{D} to
             \mathcal{D}_c by b(\mathbf{x})
        2 build G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)
        \mathbf{0} return G(\mathbf{x}) =
             \sum [b(\mathbf{x}) = c] G_c(\mathbf{x})
```

- highly parallel/efficient to learn
- inherit pros of C&RT
- eliminate cons of fully-grown tree



### Random Forest(随机森林)

● 最著名的应用: Kinect body pose estimation





### Thank You

AI300学院

