Backpropagation Networks

Introduction to Backpropagation

- In 1969 a method for learning in multi-layer network, Backpropagation, was invented by Bryson and Ho.
- The Backpropagation algorithm is a sensible approach for dividing the contribution of each weight.
- Works basically the same as perceptrons

Backpropagation Learning Principles: Hidden Layers and Gradients

There are two differences for the updating rule:

- 1) The activation of the <u>hidden unit</u> is used <u>instead of</u> activation of the input value.
- 2) The rule contains a term for the gradient of the activation function.

Backpropagation Network training

- 1. Initialize network with random weights
- 2. For all training cases (called examples):
 - a. Present training inputs to network and calculate output
 - b. For <u>all layers</u> (starting with output layer, back to input layer):
 - i. Compare network output with correct output (error function)
 - ii. Adapt weights in current layer

This is what you want

Backpropagation Learning Details

- Method for learning weights in feed-forward (FF) nets
- Can't use Perceptron Learning Rule
 no teacher values are possible for hidden units
- Use gradient descent to minimize the error
 - propagate deltas to adjust for errors backward from outputs to hidden layers to inputs

Backpropagation Algorithm – Main Idea – error in hidden layers

The ideas of the algorithm can be summarized as follows:

- 1. Computes the **error term for the output units** using the observed error.
- 2. From output layer, repeat
 - propagating the error term <u>back to the previous layer</u> and
 - updating the weights between the two layers until the earliest hidden layer is reached.

Backpropagation Algorithm

Forward pass explained earlier

Backward pass explained in next slide

Backward Pass

- Compute deltas to weights
 - from hidden layer
 - to output layer
- Without changing any weights (yet), compute the actual contributions
 - within the hidden layer(s)
 - and compute deltas

Gradient Descent

- Think of the N weights as a point in an Ndimensional space
- Add a dimension for the observed error
- Try to minimize your position on the "error surface"

Error Surface

differentiable, non-decreasing, and easy to

compute

Can't use LTU

- To effectively assign credit / blame to units in hidden layers, we want to look at the first derivative of the activation function
- Sigmoid function is easy to differentiate and easy to compute forward

Updating hidden-to-output

We have teacher supplied desired values

Updating interior weights

- Layer k units provide values to all layer k+1 units
 - "miss" is sum of misses from all units on k+1
 - $miss_i = \Sigma [a_i(1-a_i) (T_i a_i) w_{ii}]$
 - weights coming into this unit are adjusted based on their contribution

$$delta_{kj} = \alpha * I_k * a_j * (1 - a_j) * miss_j$$
For layer k+1

Compute deltas

How do we pick α ?

- 1. Tuning set, or
- 2. Cross validation, or
- 3. Small for slow, conservative learning

How many hidden layers?

- Usually just one (i.e., a 2-layer net)
- How many hidden units in the layer?
 - Too few ==> can't learn
 - Too many ==> poor generalization

How big a training set?

- Determine your target error rate, e
- Success rate is 1- e
- Typical training set approx. n/e, where n is the number of weights in the net
- Example:
 - -e = 0.1, n = 80 weights
 - training set size 800
 trained until 95% correct training set classification
 should produce 90% correct classification
 on testing set (typical)

Examples of Backpropagation Learning

Figure 19.15 (a) Training curve showing the gradual reduction in error as weights are modified over several epochs, for a given set of examples in the restaurant domain. (b) Comparative learning curves for a back-propagation and decision-tree learning.

Examples of Backpropagation Learning

Figure 19.12 Comparing the performance of perceptrons and decision trees. (a) Perceptrons are better at learning the majority function of 11 inputs. (b) Decision trees are better at learning the *WillWait* predicate for the restaurant example.

Backpropagation Learning Math

$$\begin{split} E_{out \, i} &= d_{out \, i} - out_i \\ E_{total} &= \sum_{i \, = \, 0}^{num(n_{out})} E_{out \, i}^2 \\ E_{hid \, i} &= \sum_{k \, = \, 1}^{num(n_{out})} E_{out \, k} \cdot w_{out \, i, k} \\ diff_{hid \, i} &= E_{hid \, i} \cdot (1 - o(n_{hid \, i})) \cdot o(n_{hid \, i}) \end{split}$$
 See next slide for explanation

Visualization of Backpropagation learning

Backprop output layer

Backpropagation Learning $E_{out i} = d_{out i} - out_{i}$

$$E_{total} = \sum_{i=0}^{num(n_{out})} E_{out\,i}^2$$

$$E_{hid\ i} = \sum_{k=1}^{num(n_{out})} E_{out\ k} \cdot w_{out\ i,k}$$

 $diff_{hid\;i} \; \equiv E_{hid\;i} \cdot (1 - o(n_{hid\;i})) \cdot o(n_{hid\;i})$

Bias Neurons in Backpropagation Learning

Software for Backpropagation Learning

Software for Backpropagation Learning continuation

```
Update output weights
Here we do not use
alpha, the learning rate
 // update w_out and calculate hidden difference values
 for (i=0; i<NHID; i++)
                                               Calculate hidden difference values
  { err_hid[i] = 0.0;
   for (j=0; j<NOUT; j++)
   diff_hid[i] = err_hid[i] * (1.0-N_hid[i]) * N_hid[i];
  // update w_in
                                                  Update input weights
 for (i=0; i<NIN; i++)
   for (j=0; j<NHID; j++)
     w in[i][j] += diff hid[j] * train in[i];
                                                  Return total error
 return err_total; -
```

The general Backpropagation Algorithm for updating weights in a multilayer network

```
Here we use alpha, the
Repeat until
                                           learning rate
convergent
 function BACK-PROP-UPDATE (network, examples, \alpha) returns a network with modified weights
    inputs: network, a multilayer network
                                                                                                   Run network to
                                                                 Go through all
              examples, a set of input/output pairs
                                                                                                   calculate its
              \alpha, the learning rate
                                                                 examples
                                                                                                   output for this
    repeat
       for each e in examples do
          /* Compute the output for this example */
             O \leftarrow Run-Network(network, I^e)
                                                                                                      Compute the
           /* Compute the error and \Delta for units in the output layer */
                                                                                                      error in output
             Err^e \leftarrow T^e - O
           /* Update the weights leading to the output layer */
          W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times Err_i^e \times g'(in_i) for each subsequent layer in network do
                                                                                                      Update weights
                                                                                                     to output layer
              /* Compute the error at each node * / \Delta_j \leftarrow g'(in_j) \sum_i W_{j,i} \Delta_i /* Update the weights leading into the layer * /
                                                                                                 Compute error in
                                                                                                 each hidden layer
                 W_{k,j} \leftarrow W_{k,j} + \alpha \times I_k \times \Delta_j
          end
       end
                                                                                              Update weights in
    until network has converged
                                                                                              each hidden layer
    return network
                                               Return learned network
```

Examples and Applications of ANN

Neural Network in Practice

NNs are used for classification and function approximation or mapping problems which are:

- Tolerant of some imprecision.
- Have lots of training data available.
- Hard and fast rules cannot easily be applied.

NETalk (1987)

- Mapping character strings into phonemes so they can be pronounced by a computer
- Neural network trained how to pronounce each letter in a word in a sentence, given the three letters before and three letters after it in a window
- Output was the correct phoneme
- Results
 - 95% accuracy on the training data
 - 78% accuracy on the test set

Other Examples

- Neurogammon (Tesauro & Sejnowski, 1989)
 - Backgammon learning program
- Speech Recognition (Waibel, 1989)
- Character Recognition (LeCun et al., 1989)
- Face Recognition (Mitchell)

ALVINN

- Steer a van down the road
 - 2-layer feedforward
 - using backpropagation for learning
 - Raw input is 480 x 512 pixel image 15x per sec
 - Color image preprocessed into 960 input units
 - 4 hidden units
 - 30 output units, each is a steering direction

Neural Network Approaches

- ALVINN learned as the vehicle traveled
 - initially by observing a human driving
 - learns from its own driving by watching for future corrections

- never saw bad driving

- didn't know what was dangerous, NOT correct
- computes alternate views of the road (rotations, shifts, and fill-ins) to use as "bad" examples
- keeps a buffer pool of 200 pretty old examples to avoid overfitting to only the most recent images

Learning on-thefly

Feed-forward vs. Interactive Nets

- Feed-forward
 - activation propagates in one direction
 - We usually focus on this
- Interactive
 - activation propagates forward & backwards
 - propagation continues until equilibrium is reached in the network
 - We do not discuss these networks here, complex training. May be unstable.

Ways of learning with an ANN

- Add nodes & connections
- Subtract nodes & connections
- Modify connection weights
 - current focus
 - can simulate first two
- I/O pairs:
 - given the inputs, what should the output be? ["typical" learning problem]

More Neural Network Applications

- May provide a model for massive parallel computation.
- More successful approach of "parallelizing" traditional serial algorithms.
- Can compute any computable function.
- Can do everything a normal digital computer can do.
- Can do even more under some impractical assumptions.

Neural Network Approaches to driving

Output units

Hidden layer

Input units

- Developed in 1993.
- Performs driving with Neural Networks.
- An intelligent VLSI image sensor for road following.
- Learns to filter out image details not relevant to driving.

Neural Network Approaches

Actual Products Available

ex1. Enterprise Miner:

- Single multi-layered feed-forward neural networks.
- Provides business solutions for data mining.

ex2. Nestor:

- Uses Nestor Learning System (NLS).
- Several multi-layered feed-forward neural networks.
- Intel has made such a chip NE1000 in VLSI technology.

Ex1. Software tool - Enterprise Miner

- Based on SEMMA (Sample, Explore, Modify, Model, Access) methodology.
- Statistical tools include :

Clustering, decision trees, linear and logistic regression and neural networks.

- Data preparation tools include:

Outliner detection, variable transformation, random sampling, and partition of data sets (into training, testing and validation data sets).

Ex 2. Hardware Tool - Nestor

- With low connectivity within each layer.
- Minimized connectivity within each layer results in rapid training and efficient memory utilization, ideal for VLSI.
- Composed of multiple neural networks, each specializing in a subset of information about the input patterns.
- Real time operation without the need of special computers or custom hardware DSP platforms
 - Software exists.

Problems with using ANNs

- 1. Insufficiently characterized development process compared with conventional software
 - What are the steps to create a neural network?
- 2. How do we create neural networks in a repeatable and predictable manner?
- 3. Absence of quality assurance methods for neural network models and implementations
 - How do I verify my implementation?

Solving Problem 1 – The Steps to create a ANN

Define the process of developing neural networks:

- Formally capture the specifics of the problem in a document based on a template
- 2. Define the factors/parameters for creation
 - Neural network creation parameters
 - Performance requirements
- 3. Create the neural network
- 4. Get feedback on performance

Neural Network **Development Process**

Problem Specification Phase

- Some factors to define in problem specification:
 - Type of neural networks (based on experience or published results)
 - How to collect and transform problem data
 - Potential input/output representations
 - Training & testing method and data selection
 - Performance targets (accuracy and precision)
- Most important output is the ranked collection of factors/parameters

Problem 2 – How to create a Neural Network

- Predictability (with regard to resources)
 - Depending on creation approach used, record time for one iteration
 - Use timing to predict maximum and minimum times for all of the combinations specified
- Repeatability
 - Relevant information must be captured in problem specification and combinations of parameters

Problem 3 - Quality Assurance

- Specification of generic neural network software (models and learning)
- Prototype of specification
- Comparison of a given implementation with specification prototype
- Allows practitioners to create arbitrary neural networks verified against models

Two Methods for Comparison

• Direct comparison of outputs:

	20-10-5 (with particular connections and input)		
Prototype	<0.123892, 0.567442, 0.981194, 0.321438, 0.699115>		
Implementation	<0.123892, 0.567442, 0.981194, 0.321438, 0.699115>		

Verification of weights generated by learning algorithm:

20-10-5	Iteration 100	Iteration 200	 Iteration n
Prototype	Weight state 1	Weight state 2	 Weight state n
Implementation	Weight state 1	Weight state 2	 Weight state n

Further Work on improvements

- Practitioners to use the development process or at least document in problem specification
- Feedback from neural network development community on the content of the problem specification template
- Collect problem specifications and analyse to look for commonalities in problem domains and improve predictability (eg. control)
- More verification of specification prototype

Further Work (2)

- Translation methods for formal specification
- Extend formal specification to new types
- Fully prove aspects of the specification
- Cross discipline data analysis methods (eg. ICA, statistical analysis)
- Implementation of learning on distributed systems
 - Peer-to-peer network systems (farm each combination of parameters to a peer)
- Remain unfashionable

Summary

- Neural network is a computational model that simulate some properties of the human brain.
- The connections and nature of units determine the behavior of a neural network.
- Perceptrons are feed-forward networks that can only represent linearly separable functions.

Summary

- Given enough units, any function can be represented by Multi-layer feed-forward networks.
- Backpropagation learning works on multi-layer feed-forward networks.
- Neural Networks are widely used in developing artificial learning systems.

References

- Russel, S. and P. Norvig (1995). Artificial Intelligence A Modern Approach. Upper Saddle River, NJ, Prentice Hall.
- Sarle, W.S., ed. (1997), *Neural Network FAQ, part 1 of 7: Introduction,* periodic posting to the Usenet newsgroup comp.ai.neural-nets,

URL: ftp://ftp.sas.com/pub/neural/FAQ.html

Sources

Eric Wong

Eddy Li

Martin Ho

Kitty Wong