Index

Note: Page numbers followed by f indicate figures.

A	Classical graph, 176–177, 179
Abstract interpretation techniques, 334	Classical programming theory
Adiabatic quantum computation, 328	algebraic approach, 241
Algebraic laws	case statement in, 212
quantum case statements, 241–244	Floyd-Hoare logic, 111
quantum choice, 242-243	recursive equations, 90-91
Annihilation operator, 294–295	syntactic approximation, 282, 303-304
Associative law	weakest precondition, 105-106
quantum case statements, 242	Classical recursion in quantum programming,
quantum choice, 243	85–94, 273, 295
Average running time, 171, 173	Classical states, QuGCL semantics, 227-228
Axiomatic system, 123–130	Coin-tossing operator, 172
	Commutative law
В	quantum case statements, 242
Birkhoff-von Neumann quantum logic, 4–5, 104,	quantum choice, 243
253–254	Completeness
Bit flip channel, 144	Floyd-Hoare logic, 114–118
Bloch sphere, 32–33	proof system for qPD, 128
Bosons, 285	proof system qTD, 136–137
coherent state, 318	Complete partial order (CPO), 77, 297, 311
Fock space, 290	Concurrent quantum programming, 333
Bottom strongly connected component (BSCC),	Control flows, 214, 270
179–183	classical, 64
application, 182–183	in lambda calculus, 7
characterizations of, 181–182	quantum, 4, 211
decomposition, 185–188	superposition of, 214
quantum Markov chain, 192	Controlled gates
Bound function	properties of, 33
Floyd-hoare logic, 137	quantum circuits, 33–34
of quantum loop, 130–132	quantum multiplexor, 34
•	Copy rule, 306–307
C	CPO. See Complete partial order (CPO)
_	Creation operator, 294, 322–324
Categorical semantics, 331–332	
Circuits, quantum	D
controlled gates, 33–34	Deferred measurement principle, 38
definitions, 29–31, 57 measurement in, 37–38	Denotational semantics
	divergence probabilities, 81–83
one-qubit gates, 32–33	of loop, 78–80
principle of deferred measurement, 38 quantum multiplexor, 34–36	properties of, 75–76
universality of gates, 36–37	quantum domains, 76–78
	as quantum operations, 83–85
Classical case statement in quantum programming, 6, 212	of quantum program, 73–74
quantum generalization, 64	recursive quantum program,
recursive equation with, 320–321	87–90
Classical choice, 236	termination, 81–83

Density operators, 107, 152 in Hilbert space, 25	Grover algorithm, 95–97, 96 <i>f</i> , 123, 137–143, 138 <i>f</i>
partial, 65, 77, 108, 118, 121	correctness formula for, 139
quantum mechanics, 25–27	correctness using axiom, 142
reduced, 26	performance analysis, 45
Deutsch-Jozsa algorithm, 41–43, 42f, 331	search problems, 43–47, 46 <i>f</i>
Directed graph, 175–179	termination of loop, 141
Distributive law	verification of loop body, 140
	Grover rotation, 44, 44 <i>f</i>
quantum case statements, 242	Guarded Command Language (GCL)
quantum choice, 244	extensions, 270 qGCL, 270
E	•
Eigenvalues, 157, 159	QuGCL, 215–218
Entanglement in quantum programming,	
333–334	Н
Expectation of observable at outputs, 169–170	Hadamard transformation, 72, 95
Expectation of observable at outputs, 109–170	Harrow-Hassidim-Lloyd algorithm, 57
	Hermitian operator, 4, 20
F	Hilbert space, 104
Fermions, 285	operator mapping, 108
Fock space, 290	quantum predicate, 104–105
Fixed point semantics, 302–303	spectral decomposition theorem, 97–98
Floyd-Hoare logic, 103, 336	Hilbert spaces, 163
correctness formulas, 111–114	asymptotic average, 184
Grover algorithm, 123, 137–143, 138 <i>f</i>	decomposition, 183–189
partial correctness, 112–114, 123–130	density operators in, 25
soundness, 124	fixed point state, 184
total correctness, 112–114, 130–137, 133 <i>f</i>	Hermitian operator, 104
·	operator-valued functions in, 221–222
weakest preconditions, 114–123	quantum mechanics, 12–15
while-language, 111–112, 114–115, 118, 121–122	quantum predicate in, 104
	quantum systems, 26, 291
Fock spaces, 287–290	state decomposition, 183–189
creation functional, 301–302	tensor products of, 22–25
definition, 287	transient subspaces, 183
domain of operators in, 295–299	Hoare triple, 111–112
evolution in, 293–294	Home triple, 111 112
extensive observable in, 292	
many-body observables, 291	I
observables in, 292–293	Idempotent law
operators in, 289	quantum case statements, 242
principle of symmetrization, 288	quantum choice, 243
symmetrization functional, 311–312	Imperative quantum programming, 330
Functional quantum programming, 330–331	
	J
G	Jordan decomposition, 156, 167, 202–203
	Jordan normal form theorem, 155–156
Generalized quantum program scheme,	vordan norman rorm theorem, 155 150
303–306	K
Graph	
classical, 176–177, 179	Knaster-Tarski theorem, 77, 92–94
directed, 175–179	Kraus operator-sum representation, 106–107, 163,
quantum walks on, 49	176, 180, 220–221, 261–269

L	Principle of symmetrization
Lattice theory, 76	Fock space, 288
Linear operators	multiple-particle states, 285
matrix representation of, 17	Probabilistic choice, 237–238
quantum mechanics, 15–18	definition, 237
Löwner order	quantum implementation, 238-241
definition, 17, 77	Probabilistic computation tree logic (PCTL), 335
quantum operations, 77–78, 233	Process algebras, 332
	Programming paradigm, 6–7, 238
M	Projective measurements
	definition, 21
Matrix representation, 163	quantum mechanics, 20, 24
Measurement-based quantum computation, 328–329	Purely quantum semantics, 252–253, 258, 262
	of block command, 239
Model-checking quantum systems, 334–336	probabilistic choice, 239
Multiple-particle states	QuGCL, 230–232
Pauli's exclusion principle, 286	Pure states, 68, 69 <i>f</i>
permutation operators, 284	, , ,
principle of symmetrization, 285	Q
second quantization, 283–286	
N	QCTL. See Quantum computation tree logic (QCTL)
Nontermination probability, 152, 162	QMUX. See Quantum multiplexor (QMUX)
tomenmaton productity, 102, 102	QPL, 329–330
0	Quantm while-loops (with quantum control), 319–324
One-dimensional quantum walks, 47, 277	Quantum algorithms, 57
One-qubit gates, 32–33	Deutsch-Jozsa algorithm, 41–43, 42f
Operational semantics	Grover search algorithm, 43–47, 44f, 46f
recursive quantum program, 86-87	phase estimation, 54–57
while-language, 65–73	quantum Fourier transform, 52–54
Operator-valued functions	quantum interference, 40
coefficients in, 250–253	quantum parallelism, 39
definition, 220–221	quantum walks
guarded composition of, 221-224,	on graph, 49
255–256	one-dimensional, 47
in Hilbert space, 221–222	search algorithm, 50–52
semi-classical semantic function, 234-236	Quantum case statements, 211–212
	algebraic laws, 241–244
P	associative law, 242
Partial density operator, 118	from classical to quantum, 212–215
domain of, 77	commutative law, 242
operator mapping, 108	control flows, 214, 270
Pauli matrix, 72	denotational semantics, 215
Pauli's exclusion principle, 286	distributive law, 242
PCTL. See Probabilistic computation tree logic	guarded by subspaces, 253–255
(PCTL)	guarded compositions
Permutation operators, 284	operator-valued functions, 221–224
Phase estimation, 55f, 247–249	quantum operation, 224–226
performance analysis, 56	unitary operators, 218–219
quantum algorithms, 54–57	idempotent law, 242
Phase flip channel, 144	proofs of lemmas, propositions and theorems,
Principal system semantics, 313–314	proofs of femmas, propositions and theorems, 255–270
i incipai system semanties, 313–314	233-270

Quantum case statements (Continued)	Quantum Markov chains, 335
quantum choice and, 236–241, 252	BSCC decomposition for, 179–189
QuGCL, 215–218	definition, 175
refinement techniques, 233	graph structures of, 189
semantics of QuGCL, 226–236	persistence probability, 195–197
shift operator, 213	reachability analysis of, 174
Quantum choice, 236–241	reachability probability, 189–191
algebraic laws, 242–243	reachable space, 177
associative law, 243	repeated reachability probability,
commutative law, 243	191–196
distributive law, 244	Quantum measurements, 19–22
idempotent law, 243	Quantum mechanics
parameterized, 252	definition, 11–12, 57
probabilistic choice vs., 237–241	density operators, 25–27
Quantum circuits	Hilbert spaces, 12–15
controlled gates, 33–34	linear operators, 15–18
definitions, 29–31, 57	postulate of, 14, 19, 23
measurement in, 37–38	projective measurements, 20, 24
one-qubit gates, 32–33	quantum measurements, 19–22
principle of deferred measurement, 38	quantum operations, 27–29
quantum multiplexor, 34–36	reduced density operators, 26
universality of gates, 36–37	tensor products of Hilbert spaces,
Quantum computation, 3	22–25
adiabatic, 328	unitary transformations, 18–19
cluster state, 328	Quantum Model-Checker (QMC), 334
measurement-based, 328	Quantum multiplexor (QMUX), 14, 219
nonstandard models of, 327	in circuits, 34–36
teleportation, 328	matrix representation of, 36
*	<u>*</u>
topological, 329	Quantum operations, 27–29, 226
Quantum computation tree logic (QCTL), 335	coefficients in, 250–253
Quantum concurrency, 333	example, 225
Quantum control flow, 211, 214, 270	guarded compositions of, 224–226
Quantum domains, 76–78	Löwner order, 233
complete partial order, 76	semantic functions as, 83–85
partial order, 76	Quantum parallelism, 3, 39
Quantum Fourier transform, 52–54	Quantum phase estimation, 55f, 247–249
Quantum gates	performance analysis, 56
controlled gates, 33–34	quantum algorithms, 54–57
one-qubit gates, 32–33	Quantum predicates, 124, 128, 133, 136
and quantum circuits, 30	Birkhoff-von Neumann quantum logic, 104
universality of gates, 36–37	commutativity problem, 143–148
Quantum graph theory	completeness, 128, 136
BSCC, 179–183	definition, 103–104
definitions, 175–179	Floyd-Hoare logic, 103, 111–143
partial density operator, 175	Hermitian operator, 104–105
quantum Markov chains, 174-177	Hilbert space, 104
state Hilbert space decomposition, 183–189	logic for, 103
Quantum interference, 40, 48, 280–281	soundness, 124, 133
Quantum logic, 331	weakest preconditions, 105-111
Birkhoff-von Neumann, 253-254	Quantum process algebras, 332
effect, 105	Quantum programming languages
unitary transformations, 19	applied to physics, 335–336

categorical semantics of, 331-332	multiple-particle states, 283-286
classical recursion in, 85–94	observables in Fock spaces, 291–293
compilation techniques, 330	symmetry and antisymmetry,
definition, 3	310–313
design of, 4	syntax, 85–86, 273–277
entanglement in, 333–334	transition rule for, 87f
functional, 330–331	Quantum register, 29–30
implementation, 329–330	Quantum systems
semantics of, 4–5	continuous-time dynamics, 18
superposition-of-data paradigm	dynamic logic formalism, 5
classical control, 6–7	of fixed number, 287
quantum control, 7	Hilbert spaces, 26, 291
superposition-of-programs paradigm, 238	in mixed states, 25–26
and Turing machines, 327	model-checking, 334–336
verification and analysis, 5	open, 27–28
Quantum Random Access Machine (QRAM)	Quantum Turing machines, 327
model, 3	Quantum variables
Quantum recursive programs, 85, 273	block command, 84, 239
denotational semantics, 87-90	change and access of, 80
fixed point characterization, 90-94	partial density operator, 81-82
Fock spaces, 287–290	in while-loops, 111–112
copy rule, 306–307	Quantum walks
creation functional, 301-302	example, 244–247
definition, 287	on graph, 49
domain of operators in, 295-299	one-dimensional, 47
evolution in, 293-294	recursive, 274
fixed point semantics, 302-303	bidirectionally, 278, 316
many-body observables, 291	examples, 315–319
observables in, 292–293	solve recursive quantum equations,
operators in, 289	282–283
principle of symmetrization, 288	specification of, 277–281
semantic functionals of program schemes,	unidirectionally, 315
299–302	variant of bidirectionally,
symmetrization functional,	278, 281
311–312	search algorithm, 50-52
syntactic approximation, 303–310	shift operator, 213, 215
lambda calculus, 324	Quantum while-language, 319–324
operational semantics, 86-87	almost sure termination, 165
principal system semantics, 313–314	classical control flow, 64
program schemes, 274–275	control flow, 211
quantum while-loops, 319–324	example, 172–173
recursive quantum walks, 274	Floyd-Hoare logic for, 123, 143
bidirectionally, 278	general, 159–172
examples, 315–319	nondeterminism, 73
solve recursive quantum equations,	operational semantics, 65–73
282–283	programs, 115
specification of, 277–281	quantum configuration, 66
variant of bidirectionally, 278, 281	for quantum loop, 122
second quantization, 273	quantum variables in, 111–112
creation and annihilation of particles,	syntax, 62–65
294–295	termination, 141
Fock spaces, 287–290, 293–294	transition rules for, 67f, 68
* '	, ,,

Quantum while-loops, 163	QuGCL program
QuGCL programs	classical states, 227-228
alphabet, 215–216	example, 234–236
definition, 216	notations, 226–227
design, 217–218	purely quantum semantic, 230-232
probabilistic choice, 238–239	semi-classical semantic, 228-230
quantum phase estimation, 247–249	weakest precondition semantic, 232-233
quantum walks, 244-247	Semi-classical semantics
semantics	of program, 264
classical states, 227–228	QuGCL, 228–230
example, 234–236	Sequential Quantum Random Access Memory
notations, 226–227	machine (SQRAM), 329-330
purely quantum, 230–232	Shift operator, 173
semi-classical, 228–230	case statements, quantum, 213
weakest precondition, 232–233	quantum walks, 213, 215
syntax of, 217	quantum while-loops, 173
	Shor algorithm for factoring, 57
R	Soundness, 124, 133
Ranking function, 130	State Hilbert space
Recursive quantum program, 85, 89,	asymptotic average, 184
92–95, 207	decomposition, 183-189
Recursive quantum walks, 274	fixed point state, 184
bidirectionally, 278, 316	transient subspaces, 183
examples, 315–319	Strongly connected component (SCC),
solve recursive quantum equations, 282–283	180–181
specification of, 277–281	Subspaces
unidirectionally, 315	quantum case statements guarded by,
variant of bidirectionally, 278, 281	253–255
• • • • • • • • • • • • • • • • • • • •	transient subspaces, 183
S	Superposition of control flows, 214
	Superposition-of-programs, 7
SCC. See Strongly connected component (SCC)	definition, 238
Schrödinger equation, 18 Schrödinger Heisenberg duglity, 108, 100f	idea of, 238
Schrödinger-Heisenberg duality, 108, 109f	paradigm, 211
Search algorithm	Syntactic approximation, 303–310
Grover search algorithm, 43–47, 44f, 46f	Syntactic approximation, definition, 306
quantum walks, 50–52 Second quantization, 273	Syntax
creation and annihilation of particles,	QuGCL programs, 217
294–295	recursive quantum program, 85-86,
Fock spaces, 287–290	273–277
definition, 287	while-language, 62–65
evolution in, 293–294	System-environment model, 106–108, 147
many-body observables, 291	
observables in, 291–293	T
operators in, 289	Teleportation quantum computation, 328
principle of symmetrization, 288	Tensor products, of Hilbert spaces, 22–25
multiple-particle states, 283–286	Termination problem, 154
Semantic functionals of program schemes, 299–302	Toffoli gate, 34
Semantics	Topological quantum computation, 329
fixed point, 302–303	Total correctness, 137–138
principal system, 313–314	Transition rules
quantum case statements, 215	pure states, 68, 69f
quantum case succinents, 213	pare states, ou, or

Transition rules (Continued) recursive quantum program, 87f while-language, 67f Train Harra, 234	quantum mechanics, 18–19 quantum recursive programs, 274 Universality of gates, 36–37
Trojan Horse, 334	
U	W
Unitary operators, guarded compositions of,	Weakest preconditions
218–219, 271	Floyd-Hoare logic, 114–123
Unitary transformations	Quantum predicates, 105-111
in Hilbert space, 28	QuGCL semantics, 232-233