ECE601 | Advanced Analog Integrated Circuits

Assignment No. 2

Abdelrahman Hassan Muhammed – Student ID : 202211466

Design amplifier using inductors/capacitors from design kit that achieve GT>9dB at 12GHz including matching network. Use kit inductors/capacitors to match transistor input and output impedance to 50 Ω , make sure your design is unconditionally stable. Plot GT, Gp, Ga, S21, S12, S11, S22, NF, k factor versus frequency. You can choose number of fingers=10

Design procedures

Step 1 (Choosing topology) : a basic common source stage with two modifications

- A Inductive degeneration : used to tune input matching to get the real part of the input impedance equal to 50 Ω directly and for the remaining imaginary part a single inductor is added in series to cancel it which simplifies the input matching network a lot. Also, this inductive degeneration helps in improving stability of the amplifier.
- B Cascode Transistor is added to isolate the output from the input and also to increase the gain that can be obtained from the amplifier.

Step 2 (Matching the Input) : A series inductor at the gate used to cancel the imaginary part of the Zin and another one at the tune the real part to get the 50Ω

A – The circuit input impedance with no matching at the input

 ${\bf B}$ – The maximum value of one inductor of the kit is not enough to cancel the imaginary part of Zin so I use two inductors in series and tune the L needed by changing the inner radius of the inductor

C – The real part of Zin achieved by the inductor at the source

Step 3 (Matching the output) : An output matching network is added to match the output impedance to 50Ω . This network is an L matching network for simplicity.

B – The inductor is tuned to achieve 50Ω at the output

C – Then the Cap value is tuned to cancel the imaginary part of the output impedance

Step 4 (Final Design Results) :

$A-Final\ Schematic$

$\mathrm{C}-\mathrm{S}11$ and Input Impedance

$\mathrm{D}-\mathrm{S}22$ and Output Impedance

F – Noise Factor

The K factor > 1 and the delta is $< 1 \rightarrow$ So the design is unconditionally stable