Apple's On-Device Machine Learning Capabilities

Evaluation on iPhone 13 (iOS 18)

Objective:

To assess the effectiveness of Apple's native, on-device machine learning (ML) capabilities in reducing latency, minimizing server dependency, and supporting real-time intelligent tasks directly on iOS hardware.

Device Tested: iPhone 13

OS Version: IOS18

Focus Areas: Optical Character Recognition (OCR), Text-to-Speech (TTS), Speech-to-Text

(ASR), Object Detection

1. Optical Character Recognition (OCR)

Apple's OCR pipeline, built into the Vision framework, provides high-performance, low-latency text recognition through the VNRecognizeTextRequest class. This implementation supports both printed and handwritten content natively.

- Performance: OCR completes in under 0.5 seconds per image with consistently high accuracy.
- Capabilities: Supports multiple languages and handwritten content without external APIs.
- Use Cases: Document scanning, data extraction, real-time camera overlays.

Framework: Vision

API/Class: VNRecognizeTextRequest

On-Device: Yes

Text extraction

Extracted Text output

2. Text-to-Speech (TTS)

Text-to-Speech is executed through the AVSpeechSynthesizer class within the AVFoundation framework. It supports a broad set of languages with automatic language detection and fast synthesis.

- Performance: Real-time response, low-latency playback.
- Accuracy: Effective in single-language contexts; auto-detection generally reliable.
- Limitations: Voices retain a synthetic (robotic) tone; multilingual text synthesis reduces contextual clarity.

Framework: AVFoundation

API/Class: AVSpeechSynthesizer, AVSpeechUtterance

On-Device: Yes

Use Cases: Accessibility tools, voice feedback, language learning apps.

Supported TTS Languages

Indian Languages

Language	Code
Hindi	hi-IN
Tamil	ta-IN
Telugu	te-IN
Bengali	bn-IN
Marathi	mr-IN
Gujarati	gu-IN
Kannada	kn-IN
Malayalam	ml-IN
Urdu	ur-IN

Global Languages

Language	Code
English (US)	en-US
English (UK)	en-GB
French	fr-FR
German	de-DE
Spanish	es-ES
Japanese	ja-JP
Korean	ko-KR
Chinese	zh-CN

Speech to Text on Multilingual Inputs

3. Speech-to-Text (ASR)

Speech recognition is handled by the SFSpeechRecognizer class in the Speech framework. It performs reasonably well in global language contexts but lacks robustness for Indian languages and mixed-language inputs.

- Performance: Real-time transcription in English and supported languages is accurate.
- Limitations: Multilingual audio and slang-heavy input frequently reduce reliability. Indian language support remains minimal.
- Use Cases: Voice command recognition, live transcription, note dictation.

Framework: Speech

API/Class: SFSpeechRecognizer, SFSpeechAudioBufferRecognitionRequest On-Device: Partially (some scenarios may fall back to server processing).

Speech to Text

4. Object Detection

Object detection is powered by CoreML and the Vision framework using VNCoreMLRequest. A YOLOv3 model is currently in use, offering practical object detection capabilities across common items.

- Performance: Detects most everyday objects with around **80% confidence**.
- Accuracy: Reliable for single-object detection; performance degrades with multiple targets in frame.
- Limitations: Causes noticeable device heating; multitarget detection remains limited.

Frameworks: Vision, CoreML

API/Class: VNCoreMLRequest + YOLOv3 CoreML model

On-Device: Yes

Use Cases: Smart camera, AR features, product identification

Object detection of basic products

Native ML Capabilities in IOS (on-device)

Capability	Framework	API/Class	Use Case Example
OCR	Vision	VNRecognizeTextRequest	Document scanning, text extraction
Text-to-Speech (TTS)	AVFoundation	AVSpeechSynthesizer	Accessibility, virtual assistants
Speech-to-Text (ASR)	Speech	SFSpeechRecognizer	Dictation, voice commands
Object Detection	Vision/CoreML	VNCoreMLRequest + YOLOv3	Real-time detection, camera apps
Face Detection	Vision	VNDetectFaceRectanglesReq uest	Filters, facial tracking
Language Detection	NaturalLanguage	NLLanguageRecognizer	Auto-detect for dynamic content
Text Classification	NaturalLanguage	NLModel, NLTagger	Sentiment analysis, auto-tagging
Barcode Scanning	AVFoundation	AVCaptureMetadataOutput	QR code scanning, logistics
Pose Detection	Vision	VNDetectHumanBodyPoseRe quest	Fitness apps, gesture recognition
Handwriting OCR	Vision	VNRecognizeTextRequest	Whiteboard capture, note digitization
Image Similarity	Vision/CoreML	VNGenerateImageFeaturePrin tRequest	Visual deduplication, content match

Way Further

- 1. Utilize Apple Intelligence from Iphone 15 pro (A17 Bionic chip)'s native textual model (3B parameter) to content summarization, email completion, grammar check (helps in preprocessing) and other textual tasks.
- 2. To create custom models and onboard its performance in domain-specific tasks.