CPSC 202 PSET 3

CPSC 202 student

9/27/17 5 pm

A.3.1 A powerful problem

If A and B are sets, then A^B is the set of all functions $f: B \to A$. $1 = \{\emptyset\}$ $|1^A| = |A^1|$ then |A| = 1

- a. for 1, |1| is 1 because it contains exactly one set, the null set.
- b. $|1^A|$ is $|1|^{|A|}$ and because |1| is 1, $|1|^{|A|}$ is also 1.
- c. This means that $1 = |A^1|$, and we simplify $|A|^{|1|}$ to just |A|
- d. 1 = |A|

A.3.2 A correspondence

Prove or disprove: For any sets A, B, and C, there exists a bijective function $f: C^{A \times B} \to (C^B)^A$.

- a. $F(f) = g \leftrightarrow \forall a \in A, \forall b \in B, \forall c \in C : f(a,b) = c \rightarrow (g(a) = h \land h(b) = c)$
- b. Prove injective
 - F(f) = g and F(f') = g
 - $\bullet \ \forall a \forall b \forall c: f(a,b) = c = f'(a,b) \to f = f'$
 - Therefore, f = f'
- c. Prove surjective by contradiction
 - $\bullet \ \exists g: \forall f: F(f) \neq g$
 - $\forall f: \exists a \exists b \exists c: f(a,b) \neq c \land (g(a) = h \land h(b) = c)$
 - But fs are all functions $A \times B \to C$: contradiction

A.3.3 Inverses

Show that f is injective and g is surjective.

a. Suppose we have elements x and y in f(x). If f(x) = f(y) then x = y, for f to be injective. Therefore, if g(f(x)) = g(f(y)), x = y

- b. For g to be surjective, this means $\forall x \in A : \exists y \in B \text{ s.t. } g(y) = x$
 - $x = g \circ f(x) = g(f(x))$
 - choose y = f(x)
 - $\bullet \ g(y) = x$