Review(1.3 Methods of Enumeration)

- Multiplication principle.
- Permutation and combination.
- Sampling with/without replacement.
- Ordered/unordered sample.

Summary

The number of possibilities to sample with or without replacement in order or unordered r elements from a set of n distinct elements are summarized in the following table:

Sampling	in order	without order
without replacement	$\frac{n!}{(n-r)!}$	$\binom{n}{r}$
with replacement	n^r	$\binom{n+r-1}{r}$

Distinguishable Permutation

Suppose that a set contains n objects or two types, r of one type and n-r of the other type. What is the number of distinguishable permutations of these n objects?

objects?____ ($\binom{n}{r}$) ov $\binom{n}{r}$ Special case : 2 red balls, 2 blue balls, n=4, r=2.

$$(4) = 4C_2 = \frac{4x3}{1x2} = 6$$

Definition: Each of the ${}_{n}C_{r}$ permutations of n objects, r of one type and n-r of another type, is called a $distinguishable\ permutation$

Binomial Coefficients

Binomial Coefficients: ${}_{n}C_{r}=\binom{n}{r}$

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} b^r a^{n-r}$$

- $\bullet \binom{n}{r} = \binom{n}{n-r}$
- $\bullet \ 0 = \sum_{r=0}^{n} (-1)^r \binom{n}{r}.$
- \bullet $2^n = \sum_{r=0}^n \binom{n}{r}$.

Example: What is the coefficient of x^3y^4 in the expansion of $(x+y)^7$.

Multinomial Coefficients

In general, if we have $n = \sum_{i=1}^{r} n_i$ objects with r types, with n_1 objects of type 1, n_2 objects of type 2, and n_r objects of type r. The number of distinguishable permutations of the n objects is

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Example: How many ordered arrangements are there of the letters in the word STATISTICS?_____

Example: We have 5 black balls, 6 blue balls, and 7 yellow balls, we put them into 18 boxes (one balls in each box). How many possible arrangements?_____

$$\begin{pmatrix}
18 \\
5, 6, 7
\end{pmatrix}$$

Example: In how many ways can the set of nucleotides (A,A,G,G,G,C,C,C,T,T,T,T,T,T) be arranged in a sequence of 15 letters?

Multinomial Coefficients

In general, if we have $n = \sum_{i=1}^{r} n_i$ objects with r types, with n_1 objects of type 1, n_2 objects of type 2, and n_r objects of type r. The number of distinguishable permutations of the n objects is

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Example: How many ordered arrangements are there of the letters in the word STATISTICS?_____

Example: We have 5 black balls, 6 blue balls, and 7 yellow balls, we put them into 18 boxes (one balls in each box). How many possible arrangements?

$$\begin{pmatrix}
18 \\
5, 6, 7
\end{pmatrix}$$

Example: In how many ways can the set of nucleotides (A,A,G,G,G,G,C,C,C,T,T,T,T,T,T) be arranged in a sequence of 15 letters? 4, 3, 6

Today's lecture: 2.1 Discrete Random Variables

- Random variable, space.
- Discrete random variable, probability mass function and its properties.
- Bar graph, probability histogram.

Random variable

Definition: Given a random experiment with an outcome space S, a function X that assigns to each element s in S one and only one real number X(s) = x is called a $random\ variable$. The random variable X is discrete if the set of real values it can take is finite or countable, e.g. $\{0,1,2,3,\cdots,\}$.

Example: Paul went to the car dealer and buy a car from Ferrari, Porsche, or BMW.

Random experiment: which car?

Random variable: X gives numbers to the possible outcomes.

Ferrari
$$\Rightarrow X = 1$$

Porsche $\Rightarrow X = 2$
BMW $\Rightarrow X = 3$

Definition: The space (support) of X is the set of real numbers $\{x: X(s) = x, s \in S\}$. In the book, the space of X is denoted by S, same as sample space.

• Space of
$$X = S = \{ x : x = 1, 23 \}$$
 (pick a car)

In many instances, one can think of the space of X as being the outcome space, but \cdots

Example: Wheel of fortune.

One spins a wheel and look at the angle of the pointer. If the angle is within $[0^o, 180^o)$, then one gets 1000 dollars, otherwise he/she gets 0 dollars. Let X be the dollar amount the person gets.

- What is the outcome space?
- What is the space for X?
- Is X a discrete random variable?

Probability mass function

The probability mass function (p.m.f.) f(x), for a discrete random variable X, is given by

$$f(x) = P(X = x), \quad x \in S$$

Example: Which car?

$$\begin{array}{c|cccc} \text{Outcome} & \text{Ferrari Porsche BMW} \\ \hline x & 1 & 2 & 3 \\ \hline f(x) = P(X=x) & \frac{1}{6} & \frac{1}{6} & \frac{4}{6} \\ \\ \text{Or } f(x) = \begin{cases} 1/6 & \text{if } x=1 \\ 1/6 & \text{if } x=2 \\ 4/6 & \text{if } x=3 \\ 0 & \text{otherwise} \end{cases}$$

Properties of probability mass function

- $0 \le f(x) \le 1$ for all x.
- $\bullet \ \Sigma_{x \in S} f(x) = 1.$
- $P(X \in A) = \sum_{x \in A} f(x)$.

e.g. in the car example, $P(X \in \{1,2\}) = \frac{1}{6} + \frac{1}{6} = \frac{2}{6}$

For each of the following, determine the constant c so that f(x) is a p.m.f. for some random variable X.

•
$$f(x) = x/c$$
, $x = 1, 2, \dots, 10$.

• $f(x) = c(1/3)^x$, $x = 1, 2, 3, \cdots$

$$C \times (\frac{1}{3} + \frac{1}{3^2} + \cdots) = 1 = C = 2$$
 6 of 8

Bar graph and probability histogram

Draw a bar graph and a probability histogram for the probability mass function

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline x & 1 & 2 & 3 & 4 & 5 \\\hline f(x) & 0.1 & 0.3 & 0.2 & 0.3 & 0.1 \\\hline \end{array}$$

Bar graph:

Probability histogram

Bar graph and probability histogram

Draw a bar graph and a probability histogram for the probability mass function

Bar graph:

Σheight=1.

Probability histogram

Discrete R.V. Examples

• $Discrete\ Uniform\ example$: Let X be the result of tossing a fair die. The probability mass function of X is:

- Discrete nonuniform example: Roll two dice
 - $-X_1$ number on the first die
 - $-X_2$ number on the second die
 - $-X = X_1 + X_2$ total number of points (a function of random variables is again a random variable)

		ı				_	_	_	_
(X_1,X_2)	X	(X_1,X_2)	X	(X_1,X_2)	X				
(1,1)	2	(3,1)	4	(5,1)	6				
(1,2)	3	(3,2)	5	(5,2)	7				
(1,3)	4	(3,3)	6	(5,3)	8				
(1,4)	5	(3,4)	7	(5,4)	9				
(1,5)	6	(3,5)	8	(5,5)	10				
(1,6)	7	(3,6)	9	(5,6)	11				
(2,1)	3	(4,1)	5	(6,1)	7				
(2,2)	4	(4,2)	6	(6,2)	8				
(2,3)	5	(4,3)	7	(6,3)	9				
(2,4)	6	(4,4)	8	(6,4)	10				
(2,5)	7	(4,5)	9	(6,5)	11				
(2,6)	8	(4,6)	10	(6,6)	12				
x		2 3	4	5 6	7	8	8 9	8 9 10	8 9 10 11
$\frac{\omega}{D/X}$				•	6	5			
P(X =	= x	$) \mid \frac{1}{36} \mid \frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$ $\frac{5}{36}$	$\frac{6}{36}$	$\frac{3}{36}$		$\frac{3}{36}$ $\frac{4}{36}$ $\frac{3}{36}$	$\frac{5}{36}$ $\frac{4}{36}$ $\frac{3}{36}$ $\frac{2}{36}$