

CERN Workshop on Monte Carlo tools for the LHC 25 July 2003

Production and Hadronization of Heavy Quarks

Torbjörn Sjöstrand

Department of Theoretical Physics

Lund University

Production mechanisms

Beam remnant physics

Asymmetries and correlations

based on E. Norrbin & TS, Eur. Phys. J. **C17** (2000) 137

Production graphs

Examples of Q = c/b production diagrams, *not* exhaustive:

PS approach to heavy quarks

3 main sources (arbitrary names):

1) pair creation:

based on $gg \to Q\overline{Q}$ and $q\overline{q} \to Q\overline{Q}$ with masses + additional showering

2) flavour excitation:

based on c and b content of standard PDF's $+ Qg \rightarrow Qg$ and $Qq \rightarrow Qq$ ME's; massive kinematics but massless ME's; with $Q^2 > m_Q^2$ (so PDF> 0) and $Q_i^2 < Q^2$; $g \rightarrow b\overline{b}$ by backwards evolution (improved) $\approx t$ -channel graph of $gg \rightarrow Q\overline{Q}$

3) gluon splitting:

ordinary $2 \to 2$ processes, e.g. $gg \to gg + g \to Q\overline{Q}$ branching with threshold $\sqrt{1-4m_Q^2/m_g^2} \, (1+2m_Q^2/m_g^2)$ $\approx s$ -channel graphs of $gg, q\overline{q} \to Q\overline{Q}$

Avoid doublecounting:

for
$$2 \to 2$$
: $Q^2 = \hat{p}_{\perp}^2 + (m_3^2 + m_4^2)/2 \quad (\Rightarrow \hat{s} \gtrsim 4Q^2)$ for FSR: $Q_{\rm max}^2 = m_{\rm max}^2 = 4Q^2$ for ISR: $Q_{\rm max}^2 = Q^2$

Cross sections

 p_{\perp} of b quarks after shower etc.

y of b quarks after shower etc.

Correlations between b and \overline{b} pp at 2 TeV, CTEQ 5L, $m_{\rm b} = 4.8~{\rm GeV}$

pair production: s- and t-channel

flavour excitation: t-channel

gluon splitting: s-channel \Rightarrow smaller masses

pair production: back-to-back in ϕ and p_{\perp} except for showers and primordial k_{\perp}

Beam Remnant Physics

Strings normally 'large' mass, but at times small because of beam remnant structure or by $g \rightarrow q\overline{q}$ in shower. Thus three hadronization mechanisms (regions):

- Normal string fragmentation: continuum of phase-space states.
- Cluster decay:
 low mass ⇒ exclusive two-body state.
- Cluster collapse:
 very low mass ⇒ only one hadron.

Can give D "drag" to larger x_F than c quark.

PYTHIA *pre*dicted qualitative behaviour. Quantitative one sensitive to details ⇒ develop model & tune

Improved description of when collapse occurs (mass spectrum \Leftarrow constituent quark masses)

and

1-body collapse: energy-momentum shuffling 2-body decay: smoother joining to string picture (matched anisotropic decay)

But also normal string fragmentation:

$$\overline{c} \longleftarrow d \longrightarrow z$$

$$p_{\pm} = E \pm p_z$$

$$p_{-D} = zp_{-C}$$
 $0 < z < 1$

$$\Rightarrow p_{+\mathrm{D}} = \frac{m_{\perp\mathrm{D}}^2}{p_{-\mathrm{D}}} = \frac{m_{\perp\mathrm{D}}^2}{zp_{-\mathrm{C}}} \stackrel{\mathrm{normally}}{>} \frac{m_{\perp\mathrm{C}}^2}{zp_{-\mathrm{C}}} = \frac{p_{+\mathrm{C}}}{z}$$

i.e. again drag.

Technical components of modelling:

- Charm and bottom masses: c and b cross sections ($m_{\rm C}=1.5,\,m_{\rm b}=4.8$)
- Light-quark masses: threshold for cluster mass spectrum, together with $m_{\rm C}$ ($m_{\rm U}=m_{\rm d}=0.33,\,m_{\rm S}=0.50$)
- Beam remnant distribution function:
 (p g = ud₀ + u in colour octet state) hadron asymmetries also without collapse (uneven sharing, but not extremely so)
- Primordial k_{\perp} : collapse rate at large p_{\perp} (Gaussian width 1 GeV)
- Threshold behaviour for non-collapse: all at $D\pi$ or gradually at $D\pi$, $D^*\pi$, $D\rho$, ...
- Collapse energy—momentum conservation: practical solution to mass δ function (several models tried; not very sensitive)

Asymmetries and correlations

 ϕ correlations improved . . .

 \dots but y correlations worsened

LHC predictions
$$A = \frac{B^0 - \overline{B}^0}{B^0 + \overline{B}^0}$$

Notes

- Cluster collapse favours $B^0 = \overline{b}d \Rightarrow A > 0$; dominates at small |y|
- ullet Beam drag favours $\overline{\mathbb{B}}^0$ from $b-\mathrm{ud}_0 \ \Rightarrow \ A<0$; dominates at large |y| and small p_\perp
- LHC asymmetries sensitive to technical details like beam remnant energy sharing and quark masses:

$$A = \frac{B^0 - \overline{B}^0}{B^0 + \overline{B}^0}$$
 (pair creation only)

	y < 2.5,	3 < y < 5,	y > 3,
	$p_{\perp} > 5$	$p_{\perp} > 5$	$p_{\perp} <$ 5
New	0.003(1)	0.015(2)	-0.008(1)
Even	-0.000(2)	0.009(3)	-0.005(2)
Old	0.013(2)	0.020(3)	-0.018(2)

- High- p_{\perp} asymmetry as well, $\lesssim 10^{-3}$, from collapse with scattered valence quark and beam drag effects
- \bullet Have studied $\mathsf{B}^0-\overline{\mathsf{B}}^0$ for CP reasons, but $\mathsf{B}^+-\mathsf{B}^-,\,\mathsf{B}^0_s-\overline{\mathsf{B}}^0_s$ also

Summary

- Shower approach implies 3 sources
 - 1) pair creation
 - 2) flavour excitation
 - 3) gluon splitting
 - of \sim equal size
- To be combined with string hadronization;
 small string = cluster, with special treatment
- Have not used but also not excluded intrinsic heavy flavours, nonperturbative production, . . .
- Sensible agreement with data both cross sections and event characteristics – but not perfect
- Several phenomenological parameters
 ⇒ large slop within framework
- ... and also poorly understood aspects (multiple interactions, ...)
- List of uncertainties in other approach (e.g. ME-based) about as long