## $oxed{/\mathbf{24}}$ E1 Circuit de résistances

On considère le circuit ci-dessous :



/5 1 Comment définit-on des résistances en série? en parallèle? Déterminer alors, parmi les 5 résistances du circuit ci-dessus, lesquelles sont en série et en parallèle.

Des résistances sont en série si elles **partagent une borne** ① qui **n'est pas un nœud** ①. Elles sont en parallèle si elles **partagent leurs deux bornes** ①.

Dans ce circuit, on a  $R_1$  et  $R_2$  en série ①, et  $R_3$  et  $R_5$  en parallèle ①.

/4  $\boxed{2}$  En considérant que toutes les résistances ont la même valeur R, exprimer en fonction de R la résistance équivalente  $R_{AB}$ .

— Réponse —

On commence par l'association série entre  $R_1$  et  $R_2$ , qu'on appelle  $R_{eq,1} = 2R$  ①. Celle-ci est en parallèle avec  $R_4$ . Ainsi,

$$\frac{1}{R_{AB}} \stackrel{\textcircled{1}}{=} \frac{1}{R_4} + \frac{1}{R_{\text{eq},1}}$$

$$\Leftrightarrow \frac{1}{R_{AB}} = \frac{2}{2R} + \frac{1}{2R} = \frac{3}{2R}$$

$$\Leftrightarrow R_{AB} \stackrel{\textcircled{1}}{=} \frac{2R}{3}$$

- 1 pour un schéma.
- /4  $\boxed{3}$  Exprimer de même les résistances équivalentes  $R_{BC}$  et  $R_{AC}$  en fonction de R.

Réponse —

 $R_BC$  est l'assocation en parallèle de  $R_5$  et  $R_3$ . D'après ce qui précède, on obtient alors

$$R_{BC} = \frac{R^2}{2R} \Leftrightarrow R_{BC} = \frac{1}{2}R$$

Enfin,  $R_{AC} = R_{AB} + R_{BC}$ , soit





**FIGURE 1** -(1)+(1)

6 4 Exprimer les tensions  $u_{AB}$  et  $u_{CB}$  en fonction de E.

Réponse

Avec un schéma équivalent, on observe que  $u_{AB}$  s'obtient par pont diviseur de tension, tel que :





FIGURE 2 - 1

Pour  $u_{CB}$ , en faisant attention au sens de la flèche, on obtient

$$u_{CB} \stackrel{\textcircled{1}}{=} - \frac{R_{BC}}{R_{AB} + R_{BC}} E \stackrel{\textcircled{1}}{=} - \frac{3}{7} E$$



Figure 3 - 1

/5  $\boxed{5}$  Exprimer les intensités  $I_1$  et  $I_4$  en fonction de I.

## – Réponse

Avec un pont diviseur de courant, on obtient aisément :

$$I_1 = \frac{1}{2R} I = \frac{1}{3} I$$

De même, en faisant attention au signe :

$$I_4 = -\frac{R_{AB}}{R}I = -\frac{2}{3}I$$



Figure 4 -  $\bigcirc$