Seminario II:

Estudio estadístico de estrellas variables a largo plazo con baja amplitud a partir de base de datos ASAS

Alumna: Javiera Godoy S.

Profesor: Nikolaus Vogt

RESUMEN

Como una continuación del estudio del Seminario I, esta investigación tiene como meta la detección de la variabilidad del brillo de baja amplitud a largo plazo en estrellas catalogadas por el All Sky Automated Survey (ASAS) como constantes, la cual tiene una base de datos de cerca de 15 millones de estrellas consideradas como tal. Se toman 236 campos a analizar en latitudes lejos del plano galáctico (b = $+10^{\circ}$ a b = $+60^{\circ}$ y de b = -10° a b = -80°) y declinación $\delta \leq 0^{\circ}$, obteniendo, según un filtrado determinado (que cada estrella tenga más de 400 observaciones y tengan un brillo de hasta 12 magnitudes), aproximadamente 42 estrellas por campo (con un total de cerca de 10000 estrellas), con lo que se espera que, de acuerdo a las conclusiones de un estudio previo hecho por Vogt et.al. (2004), un 7% de ellas presente una variabilidad en su brillo. Para cada estrella se hace un análisis de los datos de las estrellas constantes de la base de datos AASC, en ASAS. Se toma una columna de magnitud, se eliminan los datos con errores en la toma de ellos, y se filtran los puntos que estén más allá de 3 veces la desviación estándar de la media de los datos. Una vez obtenidos los datos finales, se aplican criterios de selección para determinar si existe variabilidad real según la pendiente del fit aplicado al gráfico de

curva de luz y, según la dispersión de cada fit, si ésta es lineal o parabólica (llamados Q_1 y C_1 ,

respectivamente, para el caso lineal; y Q_2 y C_2 , para el parabólico). Una vez identificadas las estrellas que presentan variabilidad, se hace un histograma de comparación con respecto a los criterios para cada campo, cada latitud, por longitudes hacia el anticentro y hacia el centro. De las 10000 estrellas, en esta investigación se estudian 1015 (los cuales están en 25 campos en b = $+10^{\circ}$ y b = $+20^{\circ}$), las que presentan una curva gaussiana en general en los histogramas del primer criterio. Así mismo, en los del segundo criterio se ve una disminución continua hace valores cercanos a 0.01. En ambos, en los histogramas existen valores extremos que coinciden en un 41.1% (correspondiente al histograma de los criterios de los 25 campos) a estrellas con variabilidad real (17.6% lineal y 23.5% parabólica). Se nota que los valores más extremos se encuentran en las longitudes hacia el centro. Se descubre la estrella 113053-5056.6

con valores Q_2 =45.38534, C_2 = 0.52040, presentando una variabilidad parabólica, la cual no se encuentra en la base de datos de estrellas variables de ASAS (ACVS) ni en el General Catalogue of Variable Stars (GCVS). Finalmente, se hace una comparación con el trabajo del Seminario I y se obtiene que la gran mayoría de estrellas con variabilidad tienen una magnitud de entre 0.01 a 0.04 magnitudes, que el porcentaje de estrellas que cumplen los criterios es de cerca un 30%, con sólo una estrella con un comportamiento parabólico destacable (correspondiendo al 0.098% de las estudiadas), lo que podría decirse que una vez terminado el trabajo final se espera encontrar cerca de 10 estrellas en las 10000 analizadas que sean variables.

1. INTRODUCCIÓN

1.1. Objetivo y motivación de la investigación

La motivación principal de toda esta investigación es la detección de estrellas ubicadas en una declinación $\delta \le 0^{\circ}$ y que presenten una variabilidad a largo plazo (de años) con baja amplitud ($\Delta m \le 0.3$ magn.) que, en un principio, se clasificaron como constantes en la base de datos ASAS.

También, se quiere poder automatizar, por medio de un programa computacional, una muestra considerablemente importante de estrellas ubicadas en el cielo y derivar a partir de esto, la existencia de estrellas variables e indagar en las propiedades de éstas. El muestreo sería a partir de los datos entregados por la base de datos de estrellas fotométricamente constantes de ASAS, en un período de 9 años, considerando la dispersión existente en la base de datos.

En esta parte de la investigación, 25 campos del cielo fueron tomados (lejos del plano galáctico, |b|≥ 10º) para tener cerca de 1000 estrellas con el objetivo de analizar la presencia o no de la variabilidad de brillo en cada una de ellas. Por medio de un programa creado en Python, se establecerán condiciones para tomar sólo estrellas con un máximo de 12 magnitudes, pues con el análisis que se obtuvo en el Seminario I se encontró que a mayores magnitudes, mayor error había (hay un error promedio aproximado de 0.03 mag.), y con un mínimo de 400 observaciones, que no se desvíen más de 3 veces la desviación estándar de la media. Se comparará el porcentaje final de estrellas que presenten variabilidad con el 7% obtenido por Vogt et. al. y luego se procederá a analizar sus distintas propiedades.

El trabajo final es continuar hasta alcanzar a analizar 10000 estrellas en 236 campos.

2. SELECCIÓN DE ESTRELLAS

2.1. ASAS = All Sky Automated Survey

Proyecto conformado por los observatorios de La Campana (Chile) y en Haleakala, Maui (EEUU) los que observan simultáneamente en bandas V e I.

Posee un catálogo de cerca 15 millones de estrellas ubicadas en el hemisferio sur (δ < +28º) las que tienen un brillo mayor de 14 magnitudes dentro de un periodo de 9 años desde 1997. Tiene una base de datos de estrellas variables así como también de estrellas consideradas constantes.

A partir de la base de datos correspondiente a estrellas constantes (AASC / photometry), obtenemos datos de estrellas que estén dentro de los 236 campos que deseamos investigar (mostrados en la Tabla 1). Los campos están en latitudes galácticas mayores que 10° ($|b \ge 10^{\circ}$) para evitar el plano galáctico y se seleccionan longitudes galácticas separadas cada 10° , para que, una vez que se haga el filtro con Python, se obtengan 42 estrellas dentro de un radio de cerca de 1500 arcsec. Este radio puede variar hasta 30000 arcsec si es que es necesario para obtener las 42 estrellas. En las latitudes b = -60°, b = -70° y b = +60°, las longitudes estarán separadas cada 20°; y en b = -80°, cada 40° de tal forma de no

tener una distancia menor de 6° entre centros de campos sucesivos, por lo mismo, el radio máximo de 3° = 10800 arcsec evitará que los campos se sobrepongan. Se omitirán las declinaciones en el hemisferio norte pues no se encuentran estrellas con suficientes datos para trabajar.

Tabla 1. Campos latitud norte.

Long	Ascencion		Long	Ascencion		Long	Ascencion	
Galactica	Recta	Declinacion	Galactica	Recta	Declinacion	Galactica	Recta	Declinacion
(1)	(ra)	(dec)	(I)	(ra)	(dec)	(1)	(ra)	(dec)
con b=+10			con b=+20			con b=+30		
220	7.66501	-1.64274	230	8.56314	-5.13538	230	9.13183	0.10143
230	7.98514	-10.25731	240	8.91252	-12.97987	240	9.45793	-7.05015
240	8.34108	-18.64205	250	9.31633	-20.37389	250	9.83506	-13.68535
250	8.75191	-26.68736	260	9.7907	-27.15275	260	10.27181	-19.65314
260	9.24225	-34.23143	270	10.35249	-33.09156	270	10.7752	-24.76605
270	9.8432	-41.02997	280	11.01428	-37.89853	280	11.34735	-28.80612
280	10.58822	-46.72053	290	11.7747	-41.23497	290	11.98094	-31.54797
290	11.49644	-50.8102	300	12.60696	-42.78628	300	12.65591	-32.80299
300	12.53896	-52.76305	310	13.45764	-42.37692	310	13.34107	-32.47312
310	13.61828	-52.2441	320	14.26534	-40.05526	320	14.00219	-30.58489
320	14.61329	-49.34837	330	14.98655	-36.06875	330	14.61203	-27.27989
330	15.45389	-44.53014	340	15.60607	-30.75428	340	15.15599	-22.76839
340	16.13558	-38.32856	350	16.12976	-24.43641	350	15.63118	-17.2769
350	16.68666	-31.18524	0	16.57288	-17.37958	0	16.04227	-11.01241
350	16.68666	-31.18524	10	16.95234	-9.78222	10	16.39725	-4.14735
0	17.1407	-23.40974	20	17.28342	-1.78825	20	16.7047	3.18173
10	17.5262	-15.20797						
20	17.86527	-6.71706						
30	18.17523	1.96851						

Long Galáctica	Ascención Recta	Declinacion	Long Galactica	Ascención Recta	Declinacion	Long Galáctica	Ascención Recta	Declinación
(I)	(ra)	(dec)	(I)	(ra)	(dec)	(1)	(ra)	(dec)
con b = +40			con b = +50			con b = +60		
240	9.98938	-0.98199	250	10.80016	0.25663	270	11.80554	1.22637
250	10.32459	-6.76779	260	11.12178	-3.98799	290	12.42866	-2.22443
260	10.70908	-11.89196	270	11.48137	-7.51855	310	13.09271	-2.67776
270	11.14383	-16.20776	280	11.87438	-10.22754	330	13.73406	-0.07784
280	11.62616	-19.55969	290	12.29346	-12.0204			
290	12.14795	-21.80064	300	12.72847	-12.82776			
300	12.69488	-22.81629	310	13.16723	-12.61638			
310	13.24784	-22.54998	320	13.59705	-11.39511			
320	13.78647	-21.01686	330	14.00643	-9.21318			
330	14.29332	-18.30005	340	14.38633	-6.1519			
340	14.75662	-14.53064	350	14.73062	-2.31261			
350	15.17065	-9.86183	0	15.03575	2.19502			
0	15.53449	-4.44708						
10	15.85008	1.57342						

Tabla 2. Campos latitud sur.

Long Galactica (I) con b = -1	Ascención Recta (ra)	Declinación (dec)	Long Galactica (I) con b = -20	Ascención Recta (ra)	Declinación (dec)	Long Galáctica (I) con b = -3(Ascención Recta (ra)	Declinación (dec)
210	6.17522	-1.96849	200	5.28341	1.78827	200	4.70468	-3.1817
220	6.47056	-10.77943	210	5.5791	-6.49858	210	4.97235	-10.86924
230	6.76503	-19.65956	220	5.85044	-15.0026	220	5.20658	-18.83425
240	7.07397	-28.55591	230	6.10751	-23.66701	230	5.41208	-27.01433
250	7.41774	-37.40775	240	6.36066	-32.44704	240	5.59167	-35.36067
260	7.82802	-46.12869	250	6.62264	-41.30414	250	5.74573	-43.83413
270	8.3609	-54.56907	260	6.91295	-50.19925	260	5.87053	-52.40176
280	9.12533	-62.4218	270	7.26873	-59.08042	270	5.95328	-61.03283
290	10.33072	-68.97408	280	7.78018	-67.84632	280	5.95409	-69.69032
300	12.20898	-72.65003	290	8.7438	-76.18201	290	5.70841	-78.29221
310	14.36405	-71.6203	300	11.43991	-82.38304	300	3.60324	-86.14313
320	15.95428	-66.49794	310	15.77323	-80.3724	310	20.62318	-83.16205
330	16.94412	-59.27682	320	17.46521	-72.83075	320	19.84868	-74.75223
340	17.59426	-51.12631	330	18,17542	-64.2458	330	19.74579	-66.10945
350	18.06715	-42.54491	340	18.60477	-55.4133	340	19.78892	-57.45724
0	18.44494	-33.75654	350	18.92692	-46.51828	350	19.89163	-48.84859
10	18.7713	-24.87783	0	19.20241	-37.63374	0	20.02938	-40.31617
20	19.07217	-15.98156	10	19.4589	-28.804	10	20.19416	-31.89101
30	19.36529	-7.12366	20	19.71232	-20.06689	20	20.38426	-23.60823
40	19.66502	1.64275	30	19.97409	-11.46284	30	20.60118	-15.5105
0.20			40	20.25425	-3.04085	40	20.84858	-7.65175
			7.50			50	21.13184	-0.10141

Long Galáctica	Ascención Recta	Declinación	Long Galactica	Ascención Recta	Declinación	Long Galactica	Ascención Recta	Declinacion
(I) con b=-40	(ra)	(dec)	(I) con b=-50	(ra)	(dec)	(I) con b=-60	(ra)	(dec)
190	3.85007	-1.5734	180	3.03575	-2.195	160	2.02763	-2.28234
200	4.1204	-8.07822	190	3.29991	-7.26176	180	2.53256	-8.79941
210	4.34819	-14.96496	200	3.52207	-12.78407	200	2.90184	-17.17591
220	4.53484	-22.14744	210	3.70098	-18.66548	220	3.1071	-26.72115
230	4.67944	-29.55147	220	3.83408	-24.8154	240	3.10553	-36.68297
240	4.77727	-37.10942	230	3.91642	-31.14537	260	2.81886	-46.1124
250	4.81711	-44.75257	240	3.93903	-37.56236	280	2.13447	-53.58305
260	4.77554	-52.39794	250	3.88653	-43.95778	300	1.03705	-57.06673
270	4.60329	-59.91948	260	3.73345	-50.18845	320	23.86613	-55.11361
280	4.19121	-67.07116	270	3.43906	-56.04271	340	23.05032	-48.58711
290	3.29103	-73.25148	280	2.94433	-61.18312	0	22.65889	-39.55438
300	1.521	-76.90061	290	2.18791	-65.0759	20	22.58388	-29.63543
310	23.3445	-75.8572	300	1.17933	-67.01802	40	22.73413	-19.88522
320	21.96712	-70.88152	310	0.09472	-66.49556	60	23.0585	-11.09282
330	21.31242	-64.18358	320	23.17968	-63.66047	80	23.52657	-3.96143
340	21.01923	-56.83498	330	22.53697	-59.17264			
350	20.90967	-49.24199	340	22.13324	-53.68486			
0	20.90581	-41.58568	350	21.90343	-47.6428			
10	20.9716	-33.96893	0	21.7959	-41.32324			
20	21.08967	-26.46658	10	21.77688	-34.90407			
30	21.25198	-19.14575	20	21.82562	-28.51112	\		
40	21.4556	-12.07603	30	21.92977	-22.24479			
50	21.70071	-5.33596	40	22.08225	-16.19519			
60	21.98939	0.982	50	22.27926	-10.45105			
	22.0000	U.JUE	60	22.51891	-5.10506			
			70	22.80016	-0.25661			

Long Galáctica (I) con b=-70	Ascención Recta (ra)	Declinación (dec)	Long Galáctica (I) con b=-80	Ascención Recta (ra)	Declinación (dec)
0	23.463606	-36.43889	0	0.19600739	-32.213294
20	23.351654	-29.775647	40	0.12368941	-25.470041
40	23.41459	-23.018522	80	0.37637606	-19.627498
60	23.62024	-16.856157	120	0.82179461	-17.140344
80	23.939216	-11.865682	160	1.2810356	-19.010497
100	0.34101934	-8.5195623	200	1.5718079	-24.485918
120	0.78994884	-7.1512388	240	1.5522968	-31.290739
140	1.2450853	-7.903029	280	1.1781677	-36.255453
160	1.664683	-10.696249	320	0.61451174	-36.640602
180	2.0112835	-15.24831			
200	2.2531541	-21.122474			
220	2.3611116	-27.771017			
240	2.3039132	-34.541144			
260	2.0492789	-40.643451			
280	1.5832915	-45.139059			
300	0.95546368	-47.094632			
320	0.30326009	-46.010826			
340	1.664683	-10.696249			

Tabla 3. Número de campos en cada latitud galáctica (condición $\delta \leq 0^{\circ}$).

Latitud	Longitud	Distancia entre	
	_		Camanantatalan
Galáctica	Galáctica	campos	Campos totales
(b)	(1)		
+10	220 → 30	10	19
+20	230 → 20	10	16
+30	230 → 20	10	16
+40	240 → 10	10	14
+50	250 → 0	10	12
+60	270 → 330	20	4
-10	210 → 40	10	20
-20	200 → 40	10	21
-30	200 → 50	10	22
-40	190 → 60	10	24
-50	180 → 70	10	26
-60	160 → 80	20	15
-70	0 →340	20	18
-80	0 → 320	40	9
		TOTAL	236

2.2 SELECCIÓN DE DATOS DE ESTRELLAS.

Debido a los resultados obtenidos en el Seminario I, en esta parte de la investigación se elegirán estrellas con brillo de hasta 12 magnitudes para no obtener errores mayores en áreas del hemisferio sur.

Por medio de Python, se crean programas para filtrar los datos de cada estrella (el detalle de éstos, se encuentran en el Apéndice).

El primer programa entrega como archivo de dato final sólo las estrellas que cumplen con el requisito de tener un brillo de hasta 12 magnitudes y con un mínimo de 400 observaciones, variando estas restricciones según sea necesario.

Luego, el segundo programa filtra los datos de cada estrella por medio del error que entrega ASAS. En un comienzo, ASAS entrega columnas que corresponden a los días julianos, 5 columnas de magnitud y 5 columnas de error correspondientes a cada columna de magnitud, entre otra información irrelevante para la investigación. El programa filtrará y trabajará sólo con la columna de magnitud del medio (pues, en general, es la que tiene menor error) y su columna de error correspondiente, para luego calcular la desviación estándar de la media de las magnitudes obtenidas una vez eliminados los puntos con fallas en la toma de datos (magnitudes iguales a 29.999 y 99.999) y así eliminar los puntos que se desvíen más de 3 veces de esta media.

3 ANÁLISIS

Hasta el momento, sólo se han analizado 25 campos, obteniendo 1017 estrellas junto con su información. Se omitirán datos de dos estrellas (las que tienen coordenadas 102149-3323.7 y 114912-4145.4) pues son estrellas que ya están clasificadas como variables en ASAS y en el GCVS respectivamente, y presentan una variabilidad sinusoidal con amplitud mayor o igual a 1 magnitud. OriginPro 8.5.1 es utilizado para calcular la magnitud media y su desviación estándar (desde ahora, lo llamaremos DEP) y para hacer el fit lineal y parabólico y obtener las desviaciones estándar correspondientes (DEFL y DEFP, respectivamente). Luego, esta información es tabulada y algunos criterios son calculados para ver si existe o no una variación en el brillo.

Las formulas del fit usadas en esta investigación son:

- Fit Lineal:
$$m = (a_0 \pm e_0) + (a_1 \pm e_1) * t$$

- Fit Parabólico:
$$m = (b_0 \pm e_0) + (b_1 \pm e_1) * t + (b_2 \pm e_2) * t^2$$

Donde,

m es la magnitud. En ambos casos, ajusta al mínimo cuadrado.

 $a_0 \ y \ a_1$; b_0 , $b_1 \ y \ b_2$, son los parámetros del fit lineal y parabólico, respectivamente.

t es el tiempo correspondiente a JD – 2450000, con JD los "Julian Days" (días julianos).

 e_0 , e_1 , e_2 , son los errores correspondientes a los coeficientes del fit lineal y parabólico, respectivamente. Estos errores son calculados por el método del mínimo cuadrado.

* Primer criterio:

Para comprobar si hay una variabilidad real, los coeficientes de la pendiente deben superar varias veces su propio error.

Fit Lineal:
$$Q_1{}' = {a_1 \over s_1}$$

Se calcula el valor del cociente (llamado Q_1') entre la pendiente del fit lineal y su error de cada estrella de cada campo. Luego, el promedio de cada Q_1' de cada campo es calculado y se le resta a cada Q_1' (es decir, $Q_1 = Q_1' - \bar{Q}_1'$), para omitir los problemas sistemáticos y de calibración en el sistema ASAS.

Fit Parabólico:
$$Q_2' = \frac{b_2}{e_2}$$

Lo mismo se hace para el cociente (Q_2') entre el segundo parámetro del fit parabólico y su error, obteniendo, después, $Q_2 = Q_2' - \bar{Q}_2'$ como se hizo anteriormente.

El primer criterio consiste en ver si estos valores finales son mayores que 3 o menores que -3, si esto es así, el segundo criterio se toma en consideración.

* Segundo criterio:

En este caso, para que exista una variabilidad lineal o parabólica real, la dispersión debe disminuir su valor.

Criterio Lineal: DEFL < DEP
$$\rightarrow \frac{DEFL}{DEP} \le 1 - C_1$$

Refiriéndose a una variabilidad lineal.

Criterio Parabólico: DEFP < DEFL
$$\Rightarrow \frac{DEFP}{DEFL} \le 1 - C_2$$

Refiriéndose a una variabilidad parabólica.

Una vez que esto se realiza, los valores de las estrellas que clasifican de acuerdo a los criterios aplicados son tabulados y los gráficos de curva de luz son considerados (todos estos datos están en el apéndice, tabla I).

Los gráficos 1, 2, y 3, muestran gráficos de curva de luz tipos para una estrella constante, una estrella con variabilidad en el fit lineal y otra en el parabólico.

Gráfico 1. Curva de luz estrella **constante** 091830-2041.9 (Q_1 = 4.15934, Q_2 = -0.45191, C_1 = -0.00009, C_2 = -0.0006)

Gráfico 2. Fit **lineal** en estrella 133455-5238.1 (\emph{Q}_1 = 12.25119, \emph{C}_1 = 0.90869)

Gráfico 3. Fit **parabólico** en estrella 160831-3828.4 (Q_2 = -12.98925, C_2 = 0.87805)

Además, se hacen histogramas de los criterios de:

- 1. La totalidad de los campos (gráfico 4),
- 2. Las estrellas de cada campo,
- 3. Los campos en la latitud galáctica b = +10º (gráfico 6),
- 4. Los campos en la latitud galáctica b = +20º (gráfico 7),
- 5. Los campos hacia el anticentro (en b = +10º, de l = 220º... 270º; b = +20º, de l = 230º...270º, gráfico 8), y
- 6. Los campos hacia el centro (en $b = +10^{\circ}$, de $l = 270^{\circ}..350^{\circ}$, $0^{\circ}..30^{\circ}$; b = +20, de $l = 270^{\circ}..290^{\circ}$, gráfico 9).

(Los histogramas de cada campo se encuentran en el apéndice)

Se grafican las relaciones C y Q correspondientes al fit lineal y parabólico respectivamente (gráficos 10 y 11) para ver la tendencia existente. En el gráfico de comparación para la variación lineal, se hace un fit omitiendo los datos $|Q_1| \le 3$ y los de $C_1 \le 0.01$, así no se considera el comportamiento de la gran mayoría de las estrellas (que clasifican como constantes).

Gráfico 4. Histograma de la totalidad de los campos estudiados.

Gráfico 5. Zoom del comportamiento del criterio ${\it C}_2$.

Zoom Criterio ${\rm C_2}$ de los 25 campos

Gráfico 6. Histograma campos en b = +10.

Gráfico 7. Histograma campos en b = +20.

Gráfico 8. Histograma campos hacia el anticentro

Gráfico 9. Histograma campos hacia el centro

Gráfico 10. Gráfico comparación de ambos criterios para la variación lineal

Del gráfico 11, los 4 puntos que sobresalen de la mayoría corresponden, de mayor criterio C_2 a menor, a las estrellas 113053-5056.6, 10.5911-3815.8, 160531-3828.4, y 102204-3233.5 respectivamente.

Los valores extremos, encontrados en el histograma de los 25 campos (gráfico 4), se tabulan (Tabla 4), en donde los valores en rojo son los valores extremos que cumplen con las dos condiciones establecidas para la variabilidad lineal; y en verde, con las de variabilidad parabólica. En azul, se muestran las que cumplen una de las dos condiciones. Las estrellas en rojo y en verde se grafican para ver sus curvas de luz (gráficos 12 al 18). La estrella 102204-3233.5 cumple con ambas opciones (variabilidad lineal y parabólica), pero al hacer un alcance a su curva de luz, se establece que presenta una real variabilidad parabólica.

Tabla 4. Estrellas con valores extremos

E. L. II.	Criterios var.	lineal	Criterios var.	parabólica
Estrella	Q1 > 9	C1 > 0.06	Q2 > 8	C2 > 0.035
103323-4705.9	0.68763	-0.00076	6.62717	0.04394
113053-5056.6	6.29534	0.01334	45.38534	0.47960
133455-5238.1	12.25119	0.09131	2.30396	0.00246
143726-4936.4	10.30725	0.04085	2.3836	0.00450
160831-3828.4	8.04397	0.05160	12.98925	0.12195
160609-3802.3	5.2624	0.02233	7.53095	0.05544
164230-3127.1	2.35793	0.01303	7.16307	0.03576
170737-2331.4	8.09821	0.07522	0.1273	0.00097
173233-1527.0	10.29381	0.06580	5.73997	0.03487
175013-0642.5	5.18339	0.05437	8.39461	0.05396
175142-0615.6	6.61102	0.06118	0.1257	0.00060
180942+0159.2	8.50329	0.07796	2.36976	0.00224
083311-0513.4	3.3338	0.00806	7.37309	0.04838
085524-1242.1	14.43449	0.07581	4.17583	0.00952
091825-2022.3	6.88599	0.06145	3.76511	0.00776
102204-3233.5	10.67047	0.08217	12.9855	0.10064
105911-3815.8	2.21401	0.00043	0.13307	0.32918
17 estrellas				
100%	17.6%		23.5%	

Gráfico 12. Estrella 113053-5056.6

Gráfico 13. Estrella 133455-5238.1

Gráfico 14. Estrella 160831-3828.4

Gráfico 15. Estrella 173233-1527.0

Gráfico 16. Estrella 175013-0642.5

Gráfico 17. Estrella 085524-1242.1

Gráfico 18. Estrella 102204-3233.5

Debido al comportamiento que tienden en general los histogramas, en la tabla 5 y 6 se presenta el número de estrellas que cumplen con el primer y segundo criterio, tomando valores mayores de 3, 4 y 5 para el primer caso; y mayores de 0.01, 0.02 y 0.03, para el segundo. Esto con el fin de hacer notar en dónde se encuentra la mayoría de estrellas y poder redefinir el valor de los criterios para la continuación de la investigación.

Tabla 5. Número de estrellas por campo que cumplen primer criterio.

Latitud	Longitud	Estrellas	Q ₁ > 3	<i>Q</i> ₁ > 4	<i>Q</i> ₁ > 5	Q ₂ > 3	Q ₂ > 4	$ Q_2 > 5$
Galáctica	Galáctica	Totales						
(b)	(I)							
10	220	39	6	3	2	2	0	0
	230	43	4	3	0	0	0	0
	240	42	12	8	4	6	3	2
	250	39	11	8	3	4	3	1
	260	35	7	3	2	2	0	1
	270	41	7	3	2	5	2	1
	280	41	11	5	3	10	6	4
	290	41	6	2	1	7	2	1
	300	39	3	3	1	5	1	0
	310	42	12	6	2	7	2	1
	320	46	17	7	2	6	4	3
	330	42	9	6	5	5	2	1
	340	31	9	6	4	6	5	2
	350	40	9	6	3	7	4	1
	0	40	15	10	4	5	4	2
	10	42	10	5	2	6	1	1
	20	37	8	7	6	1	1	1
	30	42	14	7	4	8	3	2
20	230	45	8	2	2	8	4	4
	240	37	7	6	2	3	3	0
	250	43	10	6	2	7	1	0
	260	41	3	1	0	5	2	0
	270	44	2	2	2	8	6	1
	280	43	12	5	3	6	1	0
	290	42	9	5	1	8	1	0
	Total	1015	221	125	62	137	61	29
	Porcentaje	100%	21.75%	12.30%	6.10%	13.48%	6.00%	2.85%

Tabla 6. Número de estrellas por campo que cumplen criterio 2 (de las dispersiones).

Lat.	Long.	C ₁ > 0.01	<i>C</i> ₁ > 0.02	<i>C</i> ₁ > 0.03	C ₂ > 0.01	C ₂ > 0.02	C ₂ > 0.03
Galáct.	Galáct.						
(b)	(1)						
10	220	4	2	1	1	0	0
	230	4	0	0	1	0	0
	240	10	5	1	3	2	1
	250	5	0	0	1	0	0
	260	3	1	1	1	0	0
	270	5	2	1	2	1	0
	280	8	1	0	9	4	2
	290	3	0	0	1	1	1
	300	1	1	0	1	0	0
	310	6	0	0	2	1	0
	320	7	2	2	1	0	0
	330	5	3	1	3	1	0
	340	6	4	2	6	4	1
	350	5	4	2	6	3	2
	0	11	6	5	5	4	2
	10	5	5	4	3	0	0
	20	5	5	4	0	0	0
	30	14	5	3	7	4	0
20	230	3	2	0	6	4	3
	240	3	3	2	2	0	0
	250	5	5	5	0	0	0
	260	3	3	0	3	1	0
	270	1	0	0	5	1	1
	280	6	2	1	0	0	0
	290	7	2	0	2	0	0
	Total	135	63	35	71	31	13
	Porcentaje		6.21%	3.45%	6.99%	3.05%	1.28%

Luego de analizar los histogramas se perciben las siguientes tendencias:

- * Se nota un posible error en los datos (ajeno a esta investigación) dado que hay histogramas que presentan un comportamiento extraño (no continuo como una Gaussiana) cuando el promedio de los Q' de cada campo es un número mayor a 2, lo que se podría explicar por errores de calibración en la reducción por parte de ASAS.
- * A pesar de que la totalidad de los campos no se ha analizado aún, cuando se comparan los histogramas para los campos en b = \pm 10 y b = \pm 20 (y omitiendo el hecho de que el primero tiene mucho más estrellas analizadas que el segundo), se ve un comportamiento similar, teniendo que la gran parte de las estrellas tienen valores de Q_1 y de Q_2 entre -4 y 4; en el criterio de las dispersiones, también presentan una baja gradual al llegar a C~ 0.02 aproximadamente para luego tener una baja más notoria entre mayor sea el valor, teniendo muy pocos con valores mayores de 0.03.
- * Lo mismo ocurre cuando se ven los campos que están hacia el anticentro y los que están hacia el centro. En ambos, los criterios de Q presentan una notoria curva Gaussiana. Por lo demás, en los del centro, se ve que hay un valor mucho más extremo en los criterios parabólicos, el cual corresponde a la estrella que se descubrió en esta investigación que presenta una variabilidad parabólica (estrella 113053-5056.6).
- * De las 17 estrellas que presentan valores extremos, un 41.1% corresponden a estrellas con variabilidad real (17.6% son lineales y un 23.5% son parabólicas).
- * Con las tablas 5 Y 6, se podría considerar un mejor "límite" en lo que a Q y los cocientes de dispersión se refieren. Se ve claramente que la gran parte de las estrellas que clasifican como variables según los criterios aplicados, están agrupados, para los casos de Q_1 y Q_2 , entre los valores de -4 y 4 (221 son mayores que 3, 125 mayores que 4); y para los casos de los criterios de dispersión, la gran mayoría tiene un valor entre 1 y 0.99. Por ende, considerando todo esto, sería mejor establecer, para la continuación de la investigación, que:

$$|Q_1| > 4$$

$$|0_2| > 4$$

 $C_1 > 0.02$

 $C_2 > 0.02$

También, para comparar los resultados preliminares con lo que se hizo en el Seminario I, se tabulan las amplitudes máximas y promedio de 2 estrellas por campo que presenten una variabilidad más notoria (tabla 7) para luego hacer un histograma como se hizo en el estudio de las estrellas de Vogt et. al. (gráfico 19. Los datos en azul corresponden a las amplitudes de estrellas con variabilidad lineal).

Tabla 7. Amplitudes máximas y promedio de 2 estrellas por campo.

Latitud y		Amplitud	Amplitud
Long Gal.	Estrella	Promedio	Máxima
b=+10, l220	074028-0136.6	0.042	0.042
	073902-0114.1	0.0191	0.0191
1230	075733-0957.3	0.0187	0.0187
	075927-1022.2	0.029	0.029
1240	081846-1842.3	0.0339	0.0339
	082152-1835.3	0.0266	0.0026
l250	084402-2617.6	0.0155	0.0155
	084521-2630.8	0.0197	0.0157
1260	091320-3420.5	0.0321	0.0321
	091628-3405.0	0.0159	0.0002
1270	095031-4101.2	0.0368	0.0368
	095149-4045.1	0.0122	0.0187
1280	103323-4705.9	0.0165	0.0025
	103529-4646.7	0.0126	0.0281
1290	113052-5103.3	0.0157	0.0157
	113053-5056.6	0.2141	0.0427
1300	123208-5257.4	0.0139	0.0032
	123302-5241.3	0.0188	0.0188
l310	133455-5238.1	0.0519	0.0519
	133900-5151.4	0.0536	0.0096
1320	143726-4936.4	0.0575	0.0575
	143856-4911.8	0.0251	0.0251
1330	152816-4443.7	0.0414	0.0414
	152832-4432.2	0.0425	0.0135
1340	160831-3828.4	0.0185	0.0796
	160609-3802.3	0.0568	0.02
l350	164230-3127.1	0.0052	0.0736
	164136-3046.6	0.0363	0.0363
10	170737-2331.4	0.0071	0.0071
	170737-2346.9	0.0214	0.0214
l10	173233-1527.0	0.062	0.062
	173301-1450.3	0.0279	0.0279
120	175013-0642.5	0.4175	0.4175
	175142-0615.6	0.0302	0.0302
l30	180942+0159.2	0.0574	0.0574
	181028+0145.6	0.0306	0.0306
b=+20, l230	083254-0525.3	0.1087	0.0218
	083311-0513.4	0.09	0.0348

1240	085524-1242.1	0.0557	0.0557
	085636-1241.2	0.0223	0.0223
1250	091712-2020.4	0.0289	0.0289
	092034-2016.9	0.0288	0.0288
1260	094748-2719.2	0.0211	0.0211
	094622-2657.3	0.0182	0.0182
1270	101853-3314.7	0.0179	0.0024
	102204-3233.5	0.0632	0.1281
1280	110201-3750.0	0.0191	0.0191
	110005-3728.8	0.0246	0.0246
1290	114813-4137.0	0.0213	0.0213
	114650-4118.0	0.0683	0.0683

Gráfico 19. Amplitudes máximas y promedio de 2 estrellas por campo (50 estrellas total).

Tabla 8. Porcentaje de estrellas con ciertas amplitudes.

Amplitud MAXIMA	N	%	Amplitud PROMEDIO	N	%
0.01	7	14	0.01	2	4
0.02	11	22	0.02	15	30
0.03	12	24	0.03	11	22
0.04	7	14	0.04	6	12
0.05	3	6	0.05	3	6
0.06	4	8	0.06	6	12
0.07	2	4	0.07	3	6
0.08	2	4	0.08	0	0
0.09	0	0	0.09	1	2
0.11	0	0	0.11	1	2
0.13	1	2	0.13	0	0
0.22	0	0	0.22	1	2
0.42	1	2	0.42	1	2

Del histograma (gráfico 19) podemos hacer una estadística (tabla 8) donde se ve que hay una gran mayoría de estrellas con amplitudes que van entre 0.01 a 0.04 magnitudes (74% y un 68% para amplitudes máximas y promedio). Muy pocas tienen magnitudes mayores a 0.1 (solo hay 2 y 3 para amplitudes máximas y promedio, respectivamente, lo que equivalen a un 4% y 6%)

Además se puede apreciar que la mayoría de las estrellas corresponde a estrellas con variabilidad lineal (33 estrellas de las 50 –es decir, un 66%).

Del histograma hecho en el Seminario I de las amplitudes de las estrellas obtenidas por Vogt et. al., se tiene la tabla 9, la cual corresponde a las amplitudes con sus respectivos porcentajes. De la tabla, se ve que la distribución de las amplitudes es distinta a la obtenida en nuestra investigación, pues hay que recalcar que el histograma del Seminario I es de acuerdo a estrellas con variabilidad durante 34 años, lo cual obligó a hacer una acomodación para los intervalos de 9 años para coincidir con el tiempo que toma ASAS tomar los datos. Aún así, se ve en primera instancia, que en las amplitudes promedio hay una amplia concentración en las amplitudes de 0.01 a 0.05 lo que coincide con nuestro histograma, y que para amplitudes más grandes, la cantidad es menor.

Tabla 9. Porcentaje de estrellas variables nuevas de Vogt et. al. (2004) con ciertas amplitudes de acuerdo al estudio hecho en el Seminario I.

AMPLITUD			AMPLITUD		
MAXIMA	N	%	PROMEDIO	N	%
0.02	0	0	0.02	2	20
0.03	4	40	0.03	5	50
0.04	0	0	0.04	2	20
0.05	8	80	0.05	11	110
0.06	4	40	0.06	9	90
0.07	2	20	0.07	0	0
0.08	0	0	0.08	1	10
0.09	1	10	0.09	1	10
0.1	0	0	0.1	2	20
0.11	3	30	0.11	2	20
0.12	4	40	0.12	2	20
0.13	0	0	0.13	4	40
0.14	1	10	0.14	0	0
0.15	1	10	0.15	2	20
0.16	3	30	0.16	2	20
0.17	1	10	0.17	2	20
0.18	1	10	0.18	0	0
0.19	2	20	0.19	2	20
0.2	5	50	0.2	1	10
0.21	0	0	0.21	2	20
0.23	1	10	0.23	0	0
0.25	8	80	0.25	1	10
0.26	0	0	0.26	1	10
0.29	1	10	0.29	0	0
0.3	2	20	0.3	0	0
0.33	2	20	0.33	1	10
0.37	1	10	0.37	0	0
0.38	1	10	0.38	0	0
0.39	0	0	0.39	1	10

Gráfico 20. Histograma de amplitudes del Seminario I.

3. RESULTADOS, CONCLUSIONES Y TRABAJO FUTURO.

Como resultado de esta investigación, se tiene que:

- * De las 1015 estrellas analizadas, se encontraron 311 que cumplen con los requisitos establecidos para establecer si las estrellas presentan variabilidad lineal o parabólica (Q > 3, C > 0.01). Lo que equivaldría a un 30.6% del total de la muestra.
- * En los histogramas de los criterios Q_1 , Q_2 , C_1 , C_2 de cada campo se ve que hay una consecuencia en lo que a variabilidad se refiere. Los valores extremos de los primeros criterios corresponden en un 41.1% a los valores extremos de los segundos criterios. Siendo estos valores los obtenidos para estrellas con una variabilidad más notoria como se ven en las curvas de luz de éstas.
- * Por los histogramas obtenidos se infiere un cambio en los criterios de clasificación para la continuación de la investigación. Preferir que los criterios Q sean mayores a 4 y los criterios de dispersión sean menores a 0.02, ya que la gran mayoría de las estrellas se agrupa en valores menores de 4 y mayores de 0.02, respectivamente.
- * Como comparación con el trabajo hecho en el Seminario I, en el caso de las amplitudes, se siguen obteniendo estrellas de baja amplitud que presentan variabilidad (Δ mag \leq 0.04 magnitudes) lo que concuerda con lo obtenido anteriormente.
- * Se descubre una nueva estrella variable que no se encuentra en la base de datos AAVS de ASAS ni en el GCVS. Con coordenadas 113053-5056.6, esta estrella presenta los siguientes valores: $Q_1 = 6.30$, $Q_2 = 45.39$, $C_1 = 0.013$, $C_2 = 0.480$ y una curva de luz correspondiente a una parábola.
- * Además, se encuentran dos estrellas variables que si están en ASAS (base de datos ACVS) y en el CGVS respectivamente, con coordenadas 102149-3323.7 y 114912-4145.4 (la primera, sin una clasificación determinada en el Machine-learned ASAS Classification Catalog (MACC), aparece como "MISC", sin entregar mayor información sobre la estrella y la segunda, estrella tipo Mira muy conocida como X Cen), las que no fueron consideradas en el análisis de datos de esta investigación.

El trabajo futuro corresponde a seguir el mismo estudio con las siguientes ~ 9000 estrellas que quedan de los 236 campos del hemisferio sur ($\delta \leq 0$) que en un principio se propuso en esta investigación. Comparar los resultados de la misma forma que se hizo acá (por campos, por latitudes, por zonas que van hacia el anticentro y centro, y por su comportamiento total). Ver si es factible hacer el mismo análisis para el hemisferio norte y comparar resultados

Gráfico 21. Estrella variable nueva, no presente en base de datos ACVS de ASAS

Gráfico 22. Estrella Mira X Cen, presente en el GCVS.

Gráfico 23. Estrella variable CD-32 7281, presente en base de datos ACVS de ASAS.

4. REFERENCIAS.

- (1) Vogt, N., Kroll, P., Splittgerber, E. . 2004, "A photometric pilot study on Sonneberg archival patrol plates" Astronomy & Astrophysics **428**, 925.
- (2) Pojmanski, G., 1997, Acta Astronomica, 47, 467, "The All Sky Automated Survey."
- (3) Javiera Godoy, 2012, Seminario I: "Estudio estadístico de estrellas variables a largo plazo, comparando resultados de placas fotográficas con la base de datos ASAS".
- (4) Richards, J.W. et. al., 2012, "Construction of a Calibrated Probabilistic Classification Catalog: Application to 50k Variable Sources in the All-Sky Automated Survey"; arXiv:1204.4180v2