RAL

Algebraic and robust control

Introduction to Symbolic math toolbox

Algebraic theory

- ▶ Teacher: Ing. Lukáš Zezula
- Lukas.Zezula@ceitec.vutbr.cz
- Office no. T12/SE 2.136
- Consultation: by mail

Rules for evaluation:

- 70 points exam
 - Assessment awarded after receiving 10+ points from exercise classes
- 30 points computer exercises
 - 1 microproject: algebraic control 15
 - 1 microproject: robust control 15
 - +1 point activity during exrcises
 - -2 points second and following absence without the apology

Symbolic Math Toolbox

Symbolic Math Toolbox allows you to perform symbolic calculations in the MATLAB that is otherwise oriented more for numerical calculations.

https://www.mathworks.com/products/symbolic.html..html

sym ('')

Create symbolic variables, expressions, functions, matrices

- x = sym('x')
- creates symbolic variable x.
- r = sym('r', 'real')
- creates symbolic variable r that is the type of real.
- k = sym('k', 'positive')
- reates real positive symbolic variable k.

syms

- syms x y z
- definition of several symbolic variables, same as commands x = sym('x'), y = sym('y'), z = sym('z')
- syms x y z real
- definition of several real symbolic variables
- syms x y z positive
- Definition of several positive symbolic variables

symvar

- \rightarrow symvar(S)
- searches for symbolic variable in the symbolic expression and return them in a cell array.

```
>> syms y x z
>> c=10;
>> symvar(y*(4+3*i) + 6*j+2*x+c)
ans =[ x, y]
```

diff

- \rightarrow diff(S)
- calculates derivative according to a symbolic variable
- (if there are more than one symbolic variable in the expression **S**, the derivative is calculated with respect to the first variable that the command *symvar()* would find)
- \rightarrow diff(S,y)
- derivative is calculated with respect to y.
- \rightarrow diff(S,n)
- calculates the n-th derivative.

diff - examples

Commands

$$S = 7*y + exp(x*y) + 3*x^2$$

 $ans = -sin(x)$
 $ans = 6*x + y*exp(x*y)$
 $ans = 6*x + y*exp(x*y)$
 $ans = x*exp(x*y) + 7$

Results

ans $=x^2*exp(x*y)$

int

- **▶** *int*(S)
- indefinite integral of **S** with respect to its symbolic variable as defined by *symvar()*.
- $\rightarrow int(S,y)$
- indefinite integral of **S** with respect to symbolic variable y.
- $\rightarrow int(S,x,a,b)$
- definite integral of symbolic expression **S** with respect to x from a to b.

int – examples

$$>> int(1/(1+x^2))$$

$$>> int(x*log(1+x),0,1)$$

$$ans = atan(x)$$

ans
$$=-\cos(x^*y)/x$$

ans
$$=1/4$$

Commands

Results

pretty

- pretty(S)
- ▶ *Pretty()* print a symbolic expression in a clear form.
- >> syms x c m
- $>> B=x^2+c/m^3+m$
- >> pretty(B)

Commands

$$B = m + (3*c)/m + x^2$$

Results

solve

- ▶ solve(eqn1, eqn2, ..., eqnN)
- symbolic solution of algebraic equations.

- ▶ solve(eqn1, eqn2, ..., eqnN, var1, var2, ..., varN)
- > symbolic solution of set of algebraic equations with respect to symbolic variables.

- ▶ solve(eqn1, ..., eqnN, var1, ..., varN, 'ReturnConditions', true)
- symbolic solution of set of algebraic equations. The command returns the conditions under which the solutions are valid.

solve - examples

$$>> solve(x^2+5*x+6 == 0)$$

$$>> solve(p*sin(x) == r, x)$$

>>
$$[a,b] =$$

solve($x^2 + x^*y + y == 3$,
 $x^2 - 4^*x + 3 == 0$)

Commands

ans
$$= -3$$

$$a = 1$$
 3
 $b = 1$
 $-3/2$

Results

subs

- \triangleright subs(S, old, new)
- > symbolic substitution, replaces **old** with **new** in the symbolic expression **S**.
- ▶ subs(S, new)
- replaces the default symbolic variable in expression **S** with **new**. Default variables are defined by the *symvar()* command.

subs - examples

```
>> syms a, b
```

$$>> subs(a + b, a, 10)$$

$$>>$$
 symvar(x + y, 1)

$$>>$$
 subs(x + y, a)

Commands

ans
$$= b + 10$$

$$ans = 2*b$$

$$ans = x$$

$$ans = a + y$$

Results

dsolve

- ▶ dsolve(eqn1, ..., eqnN, var1, ..., varN')
- > Symbolic solution of ordinary differential equations.
- By default, the independent variable is 't'. The independent variable may be changed from 't' to some other symbolic variable by including that variable as the last input argument.
- the symbol **D** denotes the derivative of the variable according to 't'.
- the initial conditions can be defined as y(0)=a, Dy(0)=b,

dsolve - examples

$$x'(t) + x = 0; x(0) = 1$$

```
>> syms x(t)
    dsolve(Dx+x == 0, x(0) == 1)
   ans = exp(-t)
                      y'''(t) + 3y''(t) + 7y'(t) + 5y(t) = 10e^{-t}
                            y''(0) = -1, y'(0) = 1, y(0) = 2
>> syms y(t)
>> Dy = diff(y); D2y = diff(y,2); D3y = diff(y,3);
>> y = dsolve(D3y + 3*D2y + 7*Dy + 5*y == 10*exp(-t), D2y(0) == -1,
   Dy(0) = = 1, y(0) = = 2
y = (11 \text{ *exp(-t)})/4 + (5 \text{ *t*exp(-t)})/2 - (3 \text{ *cos}(2 \text{ *t}) \text{ *exp(-t)})/4 + (\sin(2 \text{ *t}) \text{ *exp(-t)})/4
```

simplify

- \rightarrow simplify(S)
- ▶ simplifies each element of the symbolic expression **S**.

```
>>syms x y t
>> simplify(sin(x)^2 + cos(x)^2)
ans = 1
>> simplify(exp(t*log(sqrt(x+y))))
ans =(x + y)^(t/2)
>> S=simplify(2*cos(x)^2-sin(x)^2)
S = 2 - 3*sin(x)^2
```

collect

- $\rightarrow collect(S, v)$
- rewrites symbolic expression **S** in terms of the powers of **v**.

```
>> collect(x^2*y + y*x - x^2 - 2*x, x)
ans =(y - 1)*x^2 + (y - 2)*x

>> f = -1/4*x*exp(-2*x)+3/16*exp(-2*x);
>> collect(f, exp(-2*x))
ans =(3/16 - x/4)/exp(-2*x)
```

expand

- \rightarrow expand(S)
- **expand**() is most often used on polynomials, writes each element of a symbolic expression **S** as a product of its factors.

```
>> expand((x+1)^3)
ans =x^3 + 3*x^2 + 3*x + 1
>> expand(sin(x+y))
ans =cos(x)*sin(y) + cos(y)*sin(x)
```

factor

- \rightarrow factor(S,x)
- returns an array of factors **S**, where **x** specifies the variables of interest.
- the number is decomposed into multiples of prime numbers.

```
>> factor(x^9-1)
ans = [x-1, x^2+x+1, x^6+x^3+1]
```

>> factor(sym('67890')) ans =[2, 3, 5, 31, 73]

laplace

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

- L=laplace(F)
- the command performs a Laplace transform of the symbolic expression F with default variable t. function.
- the default return is a function of operator s.

laplace - examples

- >> syms s t a f(t)
- >> laplace(exp(-3*t))
- >> laplace(sym(1))
- >> laplace(t)
- >> laplace(cos(a*t))
- >> laplace(t^5)
- >> laplace(diff(f))

Commands

Results

ilaplace

- ▶ F=ilaplace(L)
- the command performs the inverse Laplace transform of the symbolic **L** with default variable **s**. The default return is a function of **t**.

```
>> syms t s a
>> ilaplace(1/(s-1))
ans =exp(t)

>> ilaplace(1/(s-a))
ans =exp(a*t)
```

fourier

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

- ► F=fourier(f)
- The command performs the Fourier transform of the symbolic expression or function **f** with default variable **x**. By default, the result **F** is a function of **w**.

fourier - examples

- >> syms x w a
- >> fourier(exp(-x^2))
- >> fourier(exp(-3*abs(x)))
- >> fourier(cos(x))
- >> fourier(sym('1'))

ans = $pi^{(1/2)}/exp(w^2/4)$

ans =
$$6/(w^2 + 9)$$

ans
$$=2*pi*dirac(-w)$$

Results

Commands

ifourier

- ► *f=ifourier*(*F*)
- The command performs the inverse Fourier transform of the symbolic expression **F** with default variable **w**. If **F** does not contain **w**, then the default variable is determined by symvar(). By default, the result **f** is a function of **x**.

```
>> ifourier(2*pi*dirac(-w))
ans =1

>> ifourier(pi^(1/2)/exp(w^2/4))

ans =(3991211251234741*exp(-x^2))
/(2251799813685248*pi^(1/2))=exp(-x^2)
```

Matrices

- det(A)
- The command returns the determinant of a square matrix A.
- ▶ The symbolic function is used only if the input of the function is a symbolic matrix!

```
>> syms a b c d;
>> det([a, b; c, d])
ans = a*d - b*c
>> A = [2/3 1/3; 1 1];
>> r = det(A)
r = 1/3
```

- The following commands are used similarly: **inv**, **rank**, ...
- The symbolic functions are used only if the input of the functions is a symbolic expression.

numden

- \rightarrow numden(F)
- ▶ The command returns numerator and denominator of a symbolic expression.
- >> syms a b >> F=(a-2*3-b^2)/(a*b/2+1) >> [n,d]=numden(F) n =- 2*b^2 + 2*a - 12 d =a*b + 2
 - The following commands are used similarly: real, imag, angle, abs, ...
 - The symbolic functions are used only if the input of the functions is a symbolic expression.

gcd

- G=gcd(A,B)
- The command returns the greatest common divisor (GCD) of corresponding elements of A and B.

>> syms x
>> A =
$$x^3 + 13*x^2 + 32*x + 20$$

>> B = $x^4 + 3*x^3 + 2*x^2$
>> G = gcd(A,B)

$$G = (x + 1)*(x + 2)$$

sym2poly

- \rightarrow sym2poly(P)
- The command converts symbolic polynomial **P** to MATLAB coefficient vector

```
>> syms x
```

$$>> sym2poly(x^5+3*x^3-2*x-5)$$

ans
$$=1$$
 0 3 0 -2 -5

poly2sym

- $\rightarrow poly2sym(P)$
- the command converts coefficient of the vector to symbolic polynomial. By default, the symbolic variable **x** is used.
- $\rightarrow poly2sym(P,v)$
- the command converts vector coefficients to symbolic polynomial in the symbolic variable **v**.

ans =
$$x^5 + 3*x^3 - 2*x - 5$$

>> syms v
>> poly2sym([1 0 3 0 -2 -5],v)
ans = $v^5 + 3*v^3 - 2*v - 5$

>> poly2sym([1 0 3 0 -2 -5])

latex

- \rightarrow latex(S)
- returns the LaTeX representation of the symbolic expression **S**.

```
>> syms a b c
>> c=a+b*a/5-2^a/b
>> latex(c)
ans =a + \frac{a\, b}{5} - \frac{2^a}{b}
```

Example 1

Find the analytical solution of the quadratic equation.

$$ax^2 + bx + c = 0$$

- Use commands solve() and pretty()
- Result:

Substitute a = 1; b = -3; c = 4; and find concrete solution.

Example 2

Express the symbolic variable R_s from the given transfer function $F(j\omega)$.

$$F(j\omega) = \frac{\frac{1}{R_s} - \frac{j * \omega * L_d}{R_s^2}}{1 + \omega^2 * \frac{L_q}{R_s}}$$

- Define symbolic variables: Ld, Lq, Rs, ω , A, T, y_s
- Get the real and imaginary part of the transfer function $F(j\omega)$
- Knowing that: $y_s = \frac{A*T}{2} * \Re(F(j\omega))$
- \triangleright Derive a formula for the calculation R_s
- Result: $R_s = \frac{A*T}{2*y_s} L_q * \omega^2$

Example 3

- Simplify the transfer function $F(s) = \frac{\frac{R_S^2 * L_q}{L_d^2 * s}}{\frac{R_S^2 * L_q}{L_d} + \frac{R_S^3 * L_q}{L_d^2 * s}}$
- \blacktriangleright Define symbolic variables: Ld, Lq, R_s , s
- Reshape transfer function F(s) to the form first-order plant with the transfer function $F(s) = \frac{K}{T*s+1}$ (where T is time constant and K is gain).
- From the expression for the time constant (T = ?) express the formula for calculating L_d
- Result: $L_d = R_s * T$

End

References

- http://www.cak.fs.cvut.cz/SPM/Prednaska34.ppt
- Help MATLAB 2014b, MATLAB 2015b, MATLAB 2016b, MATLAB 2017a, MATLAB 2018b, MATLAB 2020b,