DIFFERENTIAL EQUATIONS AND NUMERICAL ANALYSIS

Semester: I

Credits: 4

Subject Code: DS19102 No. of Lecture Hours:60 **Objective:** To impart basics and solving differential equations applications of differential equations. **Outcomes:** The students would be able to CO1: Classify the differential equations with respect to their order and linearity. Solve differential equations of first order using numerical and analytical methods such as Integrating Factors. CO2: Analyze and Solve basic application problems described by first order differential equations. such as orthogonal trajectories. CO3: Solve second order Homogeneous Equations with Constant Coefficients. Obtain exact and Numerical solutions using differential equations technology. **CO4:** Analyse and evaluate the accuracy of common numerical methods. CO5: Select appropriate numerical methods to apply to various types of problems in engineering and science in consideration of the mathematical operations. **UNIT-I Exact differential equations** 12hrs Solving Exact differential Equations 3 Equations reducible to Exact differential Equations 3. Integrating factors 3 **Applications of first order Differential Equations** 1. Orthogonal trajectories - Cartesian coordinates- Polar coordinates. 6 UNIT II **Linear Differential Equations with constant coefficients** 12hrs 1. Auxiliary equation, Rules for finding the Complementary function 3 2. Rules for finding the Particular integral 3 3. Working rule for finding P.I. when X=eax, Sinax, Cosbx, xm, eaxv, xm.v 6 UNIT - III 12hrs The calculus of finite differences 1. Definition, Forward Difference, Backward Difference, and shift operator 2 2. Difference formulae – The difference table. 3 3. To express any value of the function in terms of leading terms and the leading difference of a difference table 3 2 4. Simple Problems on ∇ , Δ and E 5. Newton- Gregory Forward and backward

	Interpolation formulae	2
	NIT - IV erpolation with equal intervals	12hrs
1.	Interpolation with unequal intervals -divided differences	
	1	
,	nly Definition.) Newton's divided difference	
	erpolation formula	2
`	ewton's formulae for unequal intervals)	2
2.	Lagrange's Interpolation formula for unequal intervals	2 2 2 2
3.	Central difference Interpolation formulae	2
4.	Gauss Interpolation formula	2
5.		
6.	Bessel's Interpolation formula	2
UN	NIT- V	
Numerical differentiation and Integration		12hrs
1.	Determination of First second and third order	
der	ivatives of the tabulated function	3
2.	Using Newton forward and backward	
Interpolation formulae		3
3.	±	
Interpolation formulae		3
4.		
	npson's 1/3 – rule, 3/8 Simpson's 3/8 rule –	
Simple problems there on.		3
shiple problems there on.		3