CSC165H1: Problem Set 2

Due Wednesday October 23 before 4 pm

1(a).

Let $n \in \mathbb{Z}$,

WTS: $9|n^2 \vee 3|n^2 - 1$

Let q, $r \in \mathbb{Z}$

 $n = 3 \cdot q + r$, $0 \le r < 3$ #Quotient Remainder Theorem

r = 0 or 1 or 2 #n is an integer

Case1: r = 0, $n = 3 \cdot q$

WTS:
$$9|n^2$$
 i.e., $\exists k_1 \in \mathbb{Z}$, $9 \cdot k_1 = n^2$

Let:
$$k_1 = q^2$$

$$9{\cdot}k_1=9{\cdot}q^2$$

$$9 \cdot \mathbf{k}_1 = (3 \cdot \mathbf{q})^2$$

$$9 \cdot k_1 = n^2$$

Case2: r = 1, $n = 3 \cdot q + 1$

WTS:
$$3|n^2-1$$
 i.e., $\exists k_2 \in \mathbb{Z}$, $3 \cdot k_2 = n^2-1$

Let:
$$k_2 = 3 \cdot q^2 + 2 \cdot q$$

$$3 \cdot k_2 = 9 \cdot q^2 + 6 \cdot q$$

$$3 \cdot k_2 = 9 \cdot q^2 + 6 \cdot q + 1 - 1$$

$$3 \cdot k_2 = (3 \cdot q + 1)^2 - 1$$

$$3 \cdot k_2 = n^2 - 1$$

Case3: r = 2, $n = 3 \cdot q - 2$

WTS:
$$3|n^2-1$$
 i.e., $\exists k_3 \in \mathbb{Z}$, $3 \cdot k_3 = n^2-1$

Let:
$$k_3 = 3 \cdot q^2 - 4 \cdot q + 1$$

$$3 \cdot k_3 = 3 \cdot (3 \cdot q^2 - 4 \cdot q + 1)$$

$$3 \cdot k_3 = 9 \cdot q^2 - 12 \cdot q + 4 - 1$$

$$3 \cdot k_3 = (3 \cdot q - 2)^2 - 1$$

$$3 \cdot k_3 = n^2 - 1$$

1(b).

Prove by contradiction

Assume: the statement is false:

$$\exists n \in \mathbb{Z}, \exists k \in \mathbb{Z}, 3k = n^2 - 2 \cdot \cdot \cdot \cdot \cdot (1)$$

Since $\forall n \in \mathbb{N}$, $9|n^2 \vee 3|n^2 - 1$ #Previous Problem, 1(a)

Case1:
$$3|n^2 - 1$$

i.e.,
$$\exists k_1 \in \mathbb{Z}, 3 \cdot k_1 = n^2 - 1$$

$$3 \cdot k = 3 \cdot k_1 - 1$$
 #1

$$k = k_1 - \frac{1}{3}$$

k is not an integer, contradiction!

Case2: 9|n2

i.e.,
$$\exists k_2 \in \mathbb{Z}$$
, $9 \cdot k_2 = n^2$

$$3 \cdot k = 9 \cdot k_2 - 2$$

$$k = 3 \cdot k_2 - \frac{2}{3}$$

k is not an integer, contradiction!

So, assumption is false, the original statement is true!

1(c).

$$\forall n \in \mathbb{N}, n^2 \equiv 0 \pmod{4} \vee n^2 \equiv 1 \pmod{4}$$

Proof:

Case1: Let $n \in \mathbb{Z}$, n is even

i.e.,
$$\exists k \in \mathbb{Z}$$
, $n = 2 \cdot k$

WTS:
$$n^2 \equiv 0 \pmod{4}$$

i.e.,
$$\exists k_1 \in \mathbb{Z}$$
, $4 \cdot k_1 = n^2$

Let
$$k_1 = k^2$$

$$4\!\cdot\! k_1=4\!\cdot\! k^2$$

$$4 \cdot \mathbf{k}_1 = (2 \cdot \mathbf{k})^2$$

$$4 \cdot k_1 = n^2$$

$$n^2 \equiv 0 \pmod{4}$$

Case2: Let $n \in \mathbb{Z}$, n is odd

i.e.,
$$\exists k' \mathbb{Z}$$
, $n = 2 \cdot k' + 1$

WTS:
$$n^2 \equiv 1 \pmod{4}$$

i.e.,
$$\exists k_2 \in \mathbb{Z}$$
, $4 \cdot k_2 = n^2 - 1$

Let
$$k_2 = k'^2 + k'$$

$$4 \cdot k_2 = 4 \cdot k'^2 + 4 \cdot k'$$

$$4 \cdot k_2 = (2 \cdot k' + 1)^2 - 1$$

$$4 \cdot k_2 = n^2 - 1$$

$$n^2 \equiv 1 \pmod{4}$$

```
2(a).
```

Proof:

WTS:
$$\forall p_1, p_2, a, b \in \mathbb{Z}$$
, $Prime(p1) \land Prime(p2) \land p1 \neq p2 \Longrightarrow$

$$[a \equiv b \pmod{p_1 \cdot p_2} \Longrightarrow a \equiv b \pmod{p_1} \land a \equiv b \pmod{p_2}] \land$$

$$[a \equiv b \pmod{p_1} \land a \equiv b \pmod{p_2} \Longrightarrow a \equiv b \pmod{p_1 \cdot p_2}]$$

Let p_1 , p_2 , a, $b \in \mathbb{Z}$

Proof of the first part:

Assume:
$$a \equiv b \pmod{p_1 \cdot p_2}$$
, $Prime(p1) \land Prime(p2) \land p1 \neq p2$
i.e., $\exists k_1 \in \mathbb{Z}$, $p_1 \cdot p_2 \cdot k_1 = a - b$

WTS:
$$a \equiv b \cdot (\text{mod } p_1) \land a \equiv b \cdot (\text{mod } p_2)$$

i.e.,
$$\exists k_2$$
, $k_3 \in \mathbb{Z}$, $p_1 \cdot k_2 = a - b \land p_2 \cdot k_3 = a - b$

Let
$$k_2=p_2\cdot k_1$$
 , $k_3=p_1\cdot k_1$

$$p_1 \cdot k_2 = p_1 \cdot p_2 \cdot k_1 = a - b \quad \# \ a \equiv b \ (mod \ p_1 \cdot p_2)$$

$$p_2 \cdot k_3 = p_1 \cdot p_2 \cdot k_1 = a - b \quad \# \ a \equiv b \ (mod \ p_1 \cdot p_2)$$

Proof of the second part:

Assume:
$$a \equiv b \pmod{p_1}$$
 $\land a \equiv b \pmod{p_2}$, $Prime(p1) \land Prime(p2) \land p1 \neq p2$

i.e.,
$$\exists k_4, k_5 \in \mathbb{Z}, p_1 \cdot k_4 = a - b, p_2 \cdot k_5 = a - b$$

WTS: $a \equiv b \pmod{p_1 \cdot p_2}$

i.e.,
$$\exists k_6 \in \mathbb{Z}$$
, $p_1 \cdot p_2 \cdot k_6 = a - b$

Let
$$k_6 = \frac{k_4}{p_2}$$

k_4/p_2 is an integer:

$$p_1 \cdot k_4 = a - b$$

$$p_2\mid p_1\cdot k_4$$

$$p_2 \nmid p_1$$
 # $p_1 \neq p_2$

$$p_1 \cdot p_2 \cdot k_6 = \frac{p_1 \cdot p_2 \cdot k_4}{p_2}$$

$$p_1 \cdot p_2 \cdot k_6 = p_1 \cdot k_4$$

$$p_1\cdotp p_2\cdotp k_6=a-b$$

#Assumption

```
2(b).
```

Proof:

First prove there exists x that satisfies the first two conditions:

$$\forall$$
 a, b, p_1 , $p_2 \in \mathbb{Z}$, $\exists x \in \mathbb{Z}$, $Prime(p_1) \land Prime(p_2) \land p_1 \neq p_2 \Longrightarrow$

$$x \equiv a \pmod{p_1} \land x \equiv b \pmod{p_2}$$

Let: a, b,
$$p_1$$
, $p_2 \in \mathbb{Z}$, $x \in \mathbb{Z}$

Assume: Prime(p_1) \land Prime(p_2) \land $p_1 \neq p_2$

WTS:
$$x \equiv a \pmod{p_1} \land x \equiv b \pmod{p_2}$$

i.e.,
$$\exists k_1 \in \mathbb{Z}$$
, $x - a = k_1 \cdot p_1$

$$\exists k_2 \in \mathbb{Z}, x - b = k_2 \cdot p_2$$

$$\exists m_1, m_2 \in \mathbb{Z}, p_1 \cdot m_1 + p_2 \cdot m_2 = \gcd(p_1, p_2) = 1$$
 #Claim 6

$$p_1 \cdot m_1 - 1 = -p_2 \cdot m_2$$

$$p_2 \cdot m_2 - 1 = -p_1 \cdot m_1$$

Let:
$$x = b \cdot m_1 \cdot p_1 + a \cdot m_2 \cdot p_2$$

Let:
$$k_2 = b \cdot (-m_2) + a \cdot m_2$$

$$p_2 \cdot k_2 = p_2 b \cdot (-m_2) + p_2 \cdot a \cdot m_2$$

$$p_2 \cdot k_2 = b \cdot (m_1 \cdot p_1 - 1) + p_2 \cdot a \cdot m_2$$

$$\# p_1 \cdot m_1 - 1 = -p_2 \cdot m_2$$

$$p_2 \cdot k_2 = b \cdot m_1 \cdot p_1 + a \cdot m_2 \cdot p_2 - b$$

$$p_2 \cdot k_2 = x - b$$

So,
$$x \equiv b \cdot \pmod{p_2}$$

Let:
$$k_1 = a \cdot (-m_1) + b \cdot m_1$$

$$p_1 \cdot k_1 = p_1 \cdot a \cdot (-m_1) + p_1 \cdot b \cdot m_1$$

$$p_1 \cdot k_1 = a \cdot (m_2 \cdot p_2 - 1) + p_1 \cdot b \cdot m_1$$

$$\# p_2 \cdot m_2 - 1 = - p_1 \cdot m_1$$

$$p_1 \cdot k_1 = b \cdot m_1 \cdot p_1 + a \cdot m_2 \cdot p_2 - a$$

$$p_1 \cdot k_1 = x - a$$

So,
$$x \equiv a \pmod{p_1}$$

So, exists x that satisfies the first two conditions

Second proof there is only one x that $0 \le x < p_1 \cdot p_2$:

For x' also satisfies the first two conditions, but $x' \neq x$

$$x \equiv a \pmod{p_1}$$
1

$$x \equiv b \pmod{p_2}$$
2

$$x' \equiv a \pmod{p_1}$$
3

$$x, \equiv b \pmod{p_2}$$
4

$$x' - x \equiv 0 \pmod{p_1} \qquad \qquad #1, 3$$

$$x'-x\equiv 0\ (mod\ p_2) \qquad \qquad \#\textcircled{2}, \textcircled{4}$$

$$x' - x \equiv 0 \pmod{p_1 \cdot p_2} \qquad \text{#PS2 2(a)}$$

$$x'-x-0=k'\!\cdot p_1\cdot p_2\quad k'\!\in\mathbb{Z}$$

$$x' - x = k' \cdot p_1 \cdot p_2$$

$$x' \equiv x \pmod{p_1 \cdot p_2}$$

$$p_1 \cdot p_2 \mid x' - x$$

for all X that satisfy the first two conditions:

$$X = b \cdot m_1 \cdot p_1 + a \cdot m_2 \cdot p_2 + K \cdot p_1 \cdot p_2$$
 $K \in \mathbb{Z}$

if K > 0:

$$X = b \cdot m_1 \cdot p_1 + a \cdot m_2 \cdot p_2 + K \cdot p_1 \cdot p_2$$

$$X > p_1 \cdot p_2$$

Doesn't satisfy the last two conditions.

Only when K = 0:

$$X = x = b \cdot m_1 \cdot p_1 + a \cdot m_2 \cdot p_2$$

x satisfies all four conditions.

So, there is only one x that satisfies all four conditions. \blacksquare

3(a).

True.

Proof:

Let $e \in \mathbb{R}^+$,

Let $x \in \mathbb{R}$

Let
$$d = \frac{1}{8} \cdot e$$

Assume: |x| < d

i.e.,
$$|x| < \frac{1}{8} \cdot e$$

WTS: $|7 \cdot x| < e$

$$|7 \cdot \mathbf{x}| = 7 \cdot |\mathbf{x}|$$

$$|7 \cdot \mathbf{x}| < 7 \cdot (\frac{1}{8} \cdot \mathbf{e})$$

$$|7 \cdot x| < \frac{7}{8} \cdot e$$

$$|7 \cdot x| < e$$

```
3(b).
```

False

Negation: $\forall d \in \mathbb{R}^+$, $\exists e \in \mathbb{R}^+$, $\exists x \in \mathbb{R}$, $|x| < d \land |7x| \ge e$

Proof:

Let: $d \in \mathbb{R}^+$

Let: x = d/2

Let e = d

WTS: $|x| < d \land |7x| \ge e$

$$|x| = x$$
 # $x = d/2$, $d > 0$

$$|x| = d/2$$

$$|7 \cdot \mathbf{x}| = 7 \cdot |\mathbf{x}|$$

$$|7 \cdot x| = 7 \cdot x$$
 # $x = d/2$, $d > 0$

$$|7 \cdot \mathbf{x}| = (\frac{7}{2}) \cdot \mathbf{d}$$

$$|7 \cdot x| \ge d$$

$$|7 \cdot x| \ge e$$
 #e = d

3(c).

True.

Proof:

Let: $d \in \mathbb{R}^+$

Let: $x \in \mathbb{R}$

Let: $e = 7 \cdot d$

Assume: |x| < d

WTS: $|7 \cdot x| < e$

$$|7 \cdot \mathbf{x}| = 7 \cdot |\mathbf{x}|$$

 $|7 \cdot x| < 7 \cdot d$ #Assumption

 $|7 \cdot x| < e$ # e = 7·d

4(a).

Proof by contradiction:

Assumption1: If the statement is false.

Let $k \in \mathbb{Z}$, there are k primes congruent to 5 (mod 6)

S:
$$\{P_1, P_2, \dots, P_k\}$$

Let:
$$M = 6 \times P_1 \times P_2 \times \cdots \times P_k - 1$$

$$M = 6 \times P_1 \times P_2 \times \cdots P_k + 6 - 5$$

$$M = 6 \times (P_1 \times P_2 \times \cdots P_k + 1) - 5$$

So: $M \equiv 5 \pmod{6}$

Case 1: M is a prime

 $M \equiv 5 \pmod{6}$

M is not in S

Contradiction!

Case 2: M is not a prime

Let n be a prime, such that $n|M \land n \equiv 5 \pmod{6}$ #Additional Proof Additional Proof:

WTS:
$$\forall$$
M \in N, \exists n \in N, \neg Prime(M) \land M \equiv 5 (mod 6) \Rightarrow Prime(n) \land n/M \land n \equiv 5 (mod 6)

First prove: \forall n \in N, Prime(n) \Rightarrow n=2 \lor n=3 \lor n \equiv 5 (mod 6) \lor n \equiv 1 (mod 6)

 $n=6d+r$ ($0 \le r < 6$) #Quotient Remainder Theorem

Case 1 d = 0:

Case 1.1: $r=0$, $n=0$ \neg Prime(n)

Case 1.2: $r=1$, $n=1$ \neg Prime(n)

Case 1.3: $r=2$, $n=2$ Prime(n)

Case 1.4: $r=3$, $n=3$ Prime(n)

Case 1.5: $r=4$, $n=4$ \neg Prime(n)

Case 1.6: $r=5$, $n=5$ Prime(n) $n\equiv$ 5 (mod 6)

Case 2 d \gt 0:

Case 2.1: $r=0$ 6 | n \neg Prime(n)

Case 2.2: $r=1$ $n\equiv$ 1 (mod 6), may be prime, like 7

 $\neg Prime(n)$

 $\neg Prime(n)$

Case 2.3: r = 2 2/n

Case 2.4: r = 3 3/n

Case 2.5:
$$r = 4$$
 2/ n $\neg Prime(n)$

Case 2.6: r = 5 $n \equiv 5 \pmod{6}$ may be prime like 11

We proved $\forall n \in \mathbb{N}$, $Prime(n) \Rightarrow n=2 \lor n=3 \lor n \equiv 5 \pmod{6} \lor n \equiv 1 \pmod{6}$

Next prove the original statement:

Let $M \in \mathbb{N}$

Assume: $\neg Prime(M) \land M \equiv 5 \pmod{6}$

WTS: $\exists n \in \mathbb{N}$, $Prime(n) \land n | M \land n \equiv 5 \pmod{6}$

Since $\neg Prime(M)$

then M can be written as multiplication of many primes

Since $M \equiv 5 \pmod{6}$ so $M \neq 0$, $M \neq 1$

 $M = P_1 \times P_2 \times \cdots P_m$

Prove by contradiction: Assumption 2: if no P_i satisfies P_i \equiv 5 (mod 6),

Let $m_1, m_2, m \in \mathbb{N}$

Case 1: $M = 2^m$:

 $\forall k_1 \in \mathbb{Z}$, $2^m - 5 \neq 6k$ # $2^m - 5$ is odd, 6k is even

 $M \not\equiv 5 \pmod{6}$, Contradiction!

Case 2: $M = 3^{m_r}$

 $\forall k_2 \in \mathbb{Z}, 3^m-5 \neq 6k$ # otherwise $k = \frac{3^{m-1}}{2} - \frac{5}{6}$, not integer

 $M \not\equiv 5 \pmod{6}$, Contradiction!

Case 3: $M = 2^{m_1} \cdot 3^{m_2}$:

 $\forall k_3 \in \mathbb{Z}, 2^{m_1} \cdot 3^{m_2} \cdot 5 \neq 6k \text{ # otherwise } k = 2^{m_{-1}} \cdot 3^{m_{-1}} - \frac{5}{6} \text{ not}$

Integer

 $M \not\equiv 5 \pmod{6}$, Contradiction!

Case 4:
$$M = (6d_1 + 1) \cdot (6d_2 + 1) \cdots (6d_m + 1) \cdot 2^{m1} \cdot 3^{m2}$$

Case 4.1: $m_1 = m_2 = 0$

$$M = (6d_1 + 1) \cdot (6d_2 + 1) \cdots (6d_m + 1) = 6D + 1$$

$$\forall k_4 \in \mathbb{Z}, 6D + 1 - 5 \neq 6K \# Otherwise k = D - 4/6$$

is not integer

 $M \not\equiv 5 \pmod{6}$, Contradiction!

Case 4.2:
$$m_1 \neq 0$$
,

$$M = (6d_1 + 1) \cdot (6d_2 + 1) \cdots (6d_m + 1) \cdot 2^{m1} \cdot 3^{m2}$$

$$\forall k_5 \in \mathbb{Z}, M-5 \neq 6k$$
 # m-5 is odd, 6k is even

 $M \not\equiv 5 \pmod{6}$, Contradiction!

Case 4.3: $m_1 = 0$, $m_2 \neq 0$

$$M = (6d_1 + 1) (6d_2 + 1) \cdots (6d_m + 1) \cdot 3^{m2} 3^{m2}$$

$$= (6D + 1) 3^{m2}$$

 $\forall k_6 \in \mathbb{Z}, M-5 \neq 6k$ #Otherwise $k=D \cdot 3^{m2}+3^{m2-1}/2$ not integer

 $M \not\equiv 5 \pmod{6}$, Contradiction!

So, Assumption 2 is False, we have proved the additional proof

If $n \in S$:

 $n|M \land n|M-1$ then n|1, contradiction

#n is a prime, no prime divides 1

If $n \notin S$: contradiction!

So, Assumption1 is False, there are infinite primes congruent to 5(mod6) ■

4(b).

$$\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, \neg Prime(m) \land m > n \land m \equiv 5 \pmod{6}$$

Proof:

Let
$$n \in \mathbb{N}$$
, $k' = n+1$, $k = 5k'$

Let m = 6k + 5

$$m = 6 \times 5 \times k' + 5$$

$$m = 6 \times 5 \times (n+1) + 5$$

$$m = 30n + 35$$

m > n

$$m-5 = 6k$$

$$m \equiv 5 \pmod{6}$$

$$m = 5(6k' + 1) \# k = 5k'$$

m is not a prime

5.

P(n): Every sets of size n has $\frac{n(n-1)(n-2)(n-3)}{24}$ subsets of size 4

Proof:

Base case:

P(0): all sets of size 0 have 0 subsets of size 4

$$\frac{0(0-1)(0-2)(0-3)}{24} = 0$$
, verified

Induction step:

Induction hypothesis: P(n): $n \ge 0$, all sets with size n have $\frac{n(n-1)(n-2)(n-3)}{24}$ subsets of size 4

P(n+1):

WTS: All sets with size n+1:{e₁, e₂, ··· e_n} \cup {e_{n+1}} has $\frac{(n+1) \cdot n \cdot (n-1) \cdot (n-2)}{24}$ subsets of size 4

All subsets without $\{e_{n+1}\}$: $\frac{n(n-1)(n-2)(n-3)}{24}$

#Induction hypothesis

All subsets with $\{e_{n+1}\}$: $\frac{n(n-1)(n-2)}{6}$ #problem header

Total:
$$\frac{n(n-1)(n-2)(n-3)}{24} + \frac{n(n-1)(n-2)}{6}$$
$$= \frac{(n-1)(n-2)[4n+n(n-3)]}{24}$$
$$= \frac{(n+1) \cdot n \cdot (n-1) \cdot (n-2)}{24}$$

6.

P(0):
$$n = m = 0$$
, $P = 0$, $b_0 = 0$, $0 = \sum_{i=0}^{p} b_i \cdot 2^i = 0 \times 2^0 = 0$

$$P(1)$$
: $n = m = 1$, n is odd

$$\exists k \in \mathbb{N}, n = 2k + 1, k = 0$$

$$P = 0$$
, $k = \sum_{i=0}^{p} b_i \cdot 2^i = 0$

$$n = 2(\sum_{i=0}^{p} b_i \cdot 2^i) + 1 = (\sum_{i=0}^{p} b_i 2^{i+1}) + 1$$

$$P' = P + 1$$
, $b_0' = 1$ for all $i \in \{0, 1\}$, let $b_{i'} = b_{i-1}$

Then
$$1 = \sum_{i=0}^{p'} b_i' 2^i = 01$$

$$P(2)$$
: $n = m = 2$, n is even

$$\exists k \in \mathbb{N}, n = 2k, k = 1$$

$$P = 1$$
, $k = \sum_{i=0}^{p} b_i \cdot 2^i = 01$

$$P' = P + 1 = 2$$
, $b_0' = 0$, for all $i \in \{0, 1, 2\}$, $b_i' = n_{i-1}$

Then
$$n = \sum_{i=0}^{p'} b_i' \cdot 2^i = 010$$

$$P(3): n = m = 3, n \text{ is odd}$$

$$\exists k \in \mathbb{N}, n = 2k+1, k = 1$$

$$P = 1$$
, $k = \sum_{i=0}^{p} b_i 2^i = 01$

$$P' = P + 1 = 2, b_0' = 1, \text{ for all } i \in \{0, 1, 2\}, b_i' = b_{i\text{-}1}$$

Then
$$n = \sum_{i=0}^{p'} b_i' 2^i = 011$$

$$P(4)$$
: $n = m = 4$, n is even

$$\exists \ k \in \mathbb{N}, \, n=2k, \, k=2$$

$$P = 2$$
, $k = \sum_{i=0}^{p} b_i \cdot 2^i = 010$

$$P' = P + 1 = 3, \, b_0 = 0, \, \text{for all } i \in \{0, 1, 2, 3\}, \, b_i{}' = b_i - 1$$

Then
$$n = \sum_{i=0}^{p'} b_i \cdot 2^i = 0100$$

P(5):
$$n = m = 5$$
, n is odd

$$\exists \ k \in \mathbb{N}, n = 2k+1, k = 2$$

$$P = 2$$
, $k = \sum_{i=0}^{p} b_i \cdot 2^i = 010$

$$P' = P + 1 = 3, \, b_0 = 1, \, \text{for all } i \in \{0, \, 1, \, 2, \, 3\}, \, b_i = b_i - 1$$

Then
$$n = \sum_{i=0}^{p'} b_i' \cdot 2^i = 0101$$

5 is 0101, The reason there is a zero at the left most digit is that the algorithm makes 1 to 01, so there will always be a 0 at the left most digit. \blacksquare