

P.O. Box 489
 1350 Tolland Road
 Rollinsville, CO 80474
 Phone: (303) 258-0100
 FAX: (303) 258-0775
 www.criteriontech.com

EMC QUALIFICATION TEST REPORT

TWIN PEAKS ROBOTICS WIRELESS ROBOTICS CONTROLLER, RRC1.3

FCC ID ZC6RRC1-3

TESTED TO CONFORM WITH:

for

INDUSTRIAL, SCIENTIFIC AND MEDICAL (ISM)

TEST REPORT NUMBER: 101004-1625

DATE OF TEST COMPLETION: FEBRUARY 17, 2011

MANUFACTURER'S ADDRESS: 2217 LAKE PARK DRIVE

LONGMONT, CO 80503

PHONE: <u>303-775-2409</u>

Approved by:

Laboratory Director

DOCUMENT REVISION HISTORY

REVISION #	REPORT NUMBER	DESCRIPTION OF REVISION	DATE OF REVISION
0	101004-1625	ORIGINAL REPORT	2010-10-27
REV 1	101004-1625	ADDITIONAL TEST DATA ADDED	2011-01-05
REV 2	101004-1625	ADDED FCC ID NUMBER TO COVER PAGE	2011-01-06
REV 3	101004-1625	ADDITIONAL TEST DATA ADDED	2011-02-03
REV 4	101004-1625	ADDITIONAL TEST DATA ADDED	2011-02-22
REV 5	101004-1625	ADDITIONAL TEST DATA ADDED	2011-02-28
REV 6	101004-1625	ADDITIONAL TEST DATA ADDED	2011-03-10
REV 7	101004-1625	CHANGED THE FCC ID NUMBER ON COVER PAGE	2011-03-15

CONFIDENTIAL AND PROPRIETARY

DISCLAIMERS

This report is the confidential property of the client. For the protection of our clients and ourselves, extracts from this test report cannot be produced without prior written approval from Criterion Technology. Reproduction of the complete report can be performed at the client's discretion.

The client is aware that Criterion Technology has performed testing in accordance with the applicable standard(s). Test data is accurate within ANSI parameters for Emissions testing, unless a specific level of accuracy has been defined in writing prior to testing, by Criterion Technology and the client.

Criterion Technology reports apply only to the specific Equipment Under Test (EUT) sample(s) tested under the test conditions described in this report. If the manufacturer intends to use this report as a document demonstrating compliance of this model, additional models of this product must have electrical and mechanical characteristics identical to the device tested for this report. Criterion Technology shall have no liability for any deductions, inferences, or generalizations drawn by the client or others from Criterion Technology issued reports.

Total liability is limited to the amount invoiced for the testing of this EUT and the contents of this report are not warranted.

Compliance with the appropriate governmental standards is the responsibility of the manufacturer.

Any questions regarding this report should be directed to:

Laboratory Director Criterion Technology Corp. P.O. Box 489 1350 Tolland Road Rollinsville, Colorado 80474 Phone: (303) 258-0100

Fax: (303) 258-0775

mailto:laboratory_director@criteriontech.com

NVLAP Note: Criterion Technology is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for the specific

scope of accreditation under Lab Code 100396-0.

This report may contain data which is not covered by the NVLAP accreditation.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. Criterion Technology has been accredited by the following groups:

NVLAP(#100396-0) FCC(#90688) BSMI(#SL2-IN-007R)

Industry Canada(#IĆ 3301A-1).

VCCI(#1255) 3&10 meter site (#R-2826), Immunity Shield room(#C-3118), Open Area Site(#C-3119)

Nemko(#ELA-214)

NMi (EU Competent Body Accreditation)

The National Institute for Standards and Technology (NIST) has designated Criterion Technology a Conformity Assessment Body (CAB) for Taiwan (BSMI # SL2-IN-E-007R) Korea (US0026).

All Criterion Technology instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regular in accordance with ISO 9002, ISO 17025, ANSI/NCSL Z540-I-1994 and are traceable to national standards.

EMC QUALIFICATION TEST REPORT

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	4
1.1	PURPOSE	4
1.2	CONFORMITY	4
1.3	EQUIPMENT UNDER TEST (EUT)	4
2.0	EMISSIONS TEST STANDARDS	5
2.1	UNINTENTIONAL RADIATED EMISSIONS – 30 MHZ TO 1000 MHZ	5
2.2		
2.3	INTENTIONAL RADIATED EMISSIONS	7
2.4	CHANNEL BANDWIDTH	8
2.5	CHANNEL BANDWIDTH	9
2.6		
2.7	FREQUENCY SATBILITY	11
3.0	APPENDIX A: EUT PHOTOGRAPHS	12
3.1	RADIATED EMISSIONS	12
3.2		
4.0	APPENDIX B: DATA SHEETS	14
4.1	UNINTENTIONAL RADIATED EMISSIONS PLOT – 30 MHZ TO 1 GHZ	14
4.2		
4.3		
4.4		
4.5	11 (121 (1101)) 12 12 12 11 12 21 11 22 21 11 22 11 12 21 11 22 21 11 22 11 11	
4.6		
4.7		
5.0	APPENDIX C: PRODUCT INFORMATION FORM	26
6.0	APPENDIX D: TEST EQUIPMENT AND CALIBRATION STATUS	27
7 0	APPENDIX F. TEST DIRECTIVES STANDARDS AND METHODS	28

EMC QUALIFICATION TEST REPORT WIRELESS ROBOTICS CONTROLLER, RRC1.3

1.0 EXECUTIVE SUMMARY

1.1 **PURPOSE**

The purpose of this report is to present EMC test data and demonstrate conformity to the requirements of the prescribed standards for Emissions and/or Immunity.

CONFORMITY 1.2

The test article was tested to the standards listed in Table I with the indicated conformity status. All test methods were performed in accordance to with the standards listed.

TABLE I. EMISSIONS CONFORMITY SUMMARY

TEST TYPE	COMPLIANCE STANDARD	TESTING TECHNIQUE	PRODUCT CLASSIFICATION	CONFORMITY STATUS	
EMISSIONS	FCC Part 15	FCC PART 15	Unintentional Radiated Emissions	Class B	PASSED
			Intentional Radiated Emissions		PASSED

1.3 **EQUIPMENT UNDER TEST (EUT)**

EUT NAME: WIRELESS ROBOTICS CONTROLLER

RRC1.3 EUT MODEL/PART NUMBER(S):

2.0 EMISSIONS TEST STANDARDS

FCC Part 15, Subpart B

Class B

2.1 NINTENTIONAL RADIATED EMISSIONS - 30 MHZ TO 1000 MHZ

Measurements for *Radiated Emissions* were performed over the frequency range of 30 MHz to 1000 MHz in the horizontal and vertical antenna polarities to the requirements of:

FCC Part 15 Class B

Testing Conditions

Date of Test: October 13, 2010

Temperature: 19° C Relative Humidity: 40 %

Test Voltage: Battery powered

Test Operator: SP

Test Location

Criterion Technology Open Area Test Site

Test Distance

Antenna Distance: <u>3 meter(s)</u> Final Measurement(s)

Test Equipment

- ☑ Rohde and Schwarz Receiver, ESVS-30
- ☑ Mini Circuits Pre-Amp #2
- ☑ Chase BiLog Antenna, Model CB6111

Test Results of Radiated Emissions

Test Status: PASSED Frequency Range: 30 MHz to 1000 MHz

Minimum Margin to Limit: <u>-13.83</u> dB at <u>49.8434</u> MHz

Uncerainty Horizontal under 200 MHz: 4.64 dB
Uncerainty Horizontal over 200 MHz: 4.04 dB
Uncerainty Verticle under 200 MHz: 4.85 dB
Uncerainty Verticle over 200 MHz: 4.64 dB

Remarks

See: APPENDIX A for EUT Photographs
APPENDIX B for Data Sheets

101004-1625 FOR Twin Peaks Robotics

☑ UNINTENTIONAL RADIATED EMISSIONS ABOVE 1GHZ 2.2

Measurements for Radiated Emissions were performed over the frequency range of 1 GHz to 5 GHz in the horizontal and vertical antenna polarities to the requirements of:

FCC Part 15 Class B

Testing Conditions

October 13, 2010 Date of Test:

Temperature: 19° C Relative Humidity: 40 %

Test Voltage: Battery powered

Test Operator:

Test Location

Criterion Technology Open Area Test Site

Test Distance

Antenna Distance: 3 meter(s) Final Measurement(s)

Test Equipment

|--|--|

☐ Hewlett-Packard Tracking Generator, HP 85645A

☐ Rohde and Schwarz Receiver, ESHS-30 ☐ Rohde and Schwarz Receiver, ESVS-30

☐ Mini Circuits Pre-Amp #2 ☐ Veratech Pre-Amp #3

□ Chase BiLog Antenna, Model CB6111 ? Antenna Research, Horn Antenna, Model DRG118/A

☐ EMCO BiConnical Antenna, Model 3108 ☐ EMCO Log Periodic Antenna, Model 3146

Test Results of Radiated Emissions

Frequency Range: 1 GHz to 5 GHz Test Status: PASSED

Minimum Margin to Limit: -22.07 dB at 2197.0818 MHz

Remarks

See: APPENDIX A for EUT Photographs APPENDIX B for Data Sheets

2.3 X INTENTIONAL RADIATED EMISSIONS

Measurements for *Intentional Radiated Emissions* were performed over the frequency range of 1 GHz to 9.5 GHz the horizontal and vertical antenna polarities to the requirements of:

FCC Part 15.249

Testing Conditions

Date of Test: February 17, 2011

Temperature: 14° C Relative Humidity: 27 %

Test Voltage: Battery powered

Test Operator: SP

Test Location

Criterion Technology Open Area Test Site

Test Distance

Antenna Distance: 3 meter(s) Final Measurement(s)

Test Equipment

☐ Hewlett-Packard Tracking Generator, HP 85645A
☐ Rohde and Schwarz Receiver, ESHS-30 ☐ Rohde and Schwarz Receiver, ESVS-30
☐ Mini Circuits Pre-Amp #2 ☐ Veratech Pre-Amp #3
☐ Chase BiLog Antenna, Model 1121 ☐ Antenna Research, Horn Antenna, Model DRG118/A
☐ EMCO BiConnical Antenna, Model 3108☐ EMCO Log Periodic Antenna, Model 3146
☑ EMCO Active Loop, 6502
Test Accessories: Laptop

Test Results of Radiated Emissions

Test Status: PASSED Frequency Range: 1 GHz to 9.5 GHz

Fundamental: <u>-0.1</u> dB at <u>902.48</u> MHz

Harmonics: <u>-2.70</u> dB at <u>1804.96</u> MHz

Remarks

See: APPENDIX A for EUT Photographs
APPENDIX B for Data Sheets

2.4 CHANNEL BANDWIDTH

Measurements for bandwidth, band edges, number of channels were performed in accordance with the Operations to the Requirements of:

FCC Part 15.249

Testing Conditions

Date of Test: January 5, 2011

Temperature: 13° C Relative Humidity: 28 %

Test Voltage: Battery powered

SP Test Operator:

Test Location

Criterion Technology Open Area Test Site

Test Equipment

Hewlett-Packard Spectrum Analyzer, HP 8566B

<u>Test Results of Occupied Bandwidth and 20 db Bandedges</u>

Test Status: PASSED Frequency: 902.5 MHz

> 20 dB lower Bandedge: 902.2185 MHz 20 dB upper Bandedge: 902.7635 MHz 20 dB Occupied Channel Bandwidth: 0.544909 MHz

Remarks

See: APPENDIX A for EUT Photographs APPENDIX B for Data Sheets

EMC QUALIFICATION TEST REPORT

101004-1625 FOR Twin Peaks Robotics

2.5 CHANNEL BANDWIDTH

Measurements for bandwidth, band edges, number of channels were performed in accordance with the Operations to the Requirements of:

FCC Part 15.249

Testing Conditions

Date of Test: January 5, 2011

Temperature: 13° C Relative Humidity: 28 %

Test Voltage: Battery powered

Test Operator: SP

Test Location

Criterion Technology Open Area Test Site

Test Equipment

Hewlett-Packard Spectrum Analyzer, HP 8566B

Test Results of Occupied Bandwidth and 20 db Bandedges

Test Status: PASSED Frequency: 915 MHz

20 dB lower Bandedge:914.7366 MHz20 dB upper Bandedge:915.2824 MHz20 dB Occupied Channel Bandwidth:0.545872 MHz

Remarks

See: APPENDIX A for EUT Photographs

APPENDIX B for Data Sheets

2.6 CHANNEL BANDWIDTH

Measurements for bandwidth, band edges, number of channels were performed in accordance with the Operations to the Requirements of:

FCC Part 15.249

Testing Conditions

Date of Test: January 5, 2011

Temperature: 13° C Relative Humidity: 28 %

Test Voltage: Battery powered

SP Test Operator:

Test Location

Criterion Technology Open Area Test Site

Test Equipment

Hewlett-Packard Spectrum Analyzer, HP 8566B

Test Results of Occupied Bandwidth and 20 db Bandedges

Test Status: PASSED Frequency: 927.5 MHz

> 20 dB lower Bandedge: 927.2306 MHz 20 dB upper Bandedge: 927.7734 MHz 20 dB Occupied Channel Bandwidth: 0.542878 MHz

Remarks

See: APPENDIX A for EUT Photographs

APPENDIX B for Data Sheets

EMC QUALIFICATION TEST REPORT

101004-1625 FOR Twin Peaks Robotics

2.7 FREQUENCY SATBILITY

Measurements for bandwidth, band edges, number of channels were performed in accordance with the Operations to the Requirements of:

FCC Part 15.249

Testing Conditions

Date of Test: December 8, 2010

Relative Humidity: 26 %

Test Voltage: Battery powered

Test Operator: SP

Test Location

Criterion Technology Immunity Area

Test Equipment

Hewlett-Packard Spectrum Analyzer, HP 8566B

Test Results of Frestability in Extreme Conditions

Test Status: PASSED Frequency: 915 MHz

Margin to Limit: 6.96 kHz @ -5° C, 6.8 VDC

Remarks

See: APPENDIX A for EUT Photographs

APPENDIX B for Data Sheets

3.0 APPENDIX A: EUT PHOTOGRAPHS

3.1 RADIATED EMISSIONS

3.2 RADIATED EMISSIONS

101004-1625 FOR Twin Peaks Robotics

4.0 APPENDIX B: DATA SHEETS

4.1 UNINTENTIONAL RADIATED EMISSIONS PLOT - 30 MHZ TO 1 GHZ

Criterion Technology Date: October 13, 2010

EUT: Wireless Robotics Controller, RRC1.3 Manufacturer: Twin Peaks Robotics

Tester: SP SpiD: 101004-1625

EUT Level: production unit

EUT Information: 8 VDC battery ops w/usb joy stick Test Information: FCC Part 15, Class B, 3 meters

Temp: 19° C Test Cond: Humidity: 40 %

101004-1625 FOR Twin Peaks Robotics

4.2 UNINTENTIONAL RADIATED EMISSIONS TABLE - 30 MHZ TO 1 GHZ

Notes:

Fval = Ival + AF + Cable + Pads - Amp

Where:

Fval is the final electric field in dbuv/m

Ival is the initial reading from the EMC receiver or spec an in dbuv.

AF is the antenna factor, a + value is loss

Cable is the cable attenuation in db, a + value is loss Pads is the total attenuator loss in db, a + value is loss Amp is the preamplifier gain in db, a + value is amplifier gain

A Sample calculation with Ival, AF, Cable, Pads, & Amp values of

50 dbuv, 18, 4, 3, 32 respectively is:

Fval = 50 + 18 + 4 + 3 - 32 = 43 dbuv/m

Minimum Margin to Limit: **-13.83** dB at 49.8434 MHz

Criterion Technology Wed Oct 13 12:49:43 2010

EUT: Wireless Robotics Controller, RRC1.3

Manufacturer: Twin Peaks Robotics

Tester: sp

Special ID: 101004-1625 **EUT Level: Production Unit**

EUT Information: 8 VDC Battery ops w/usb joy stick

Test information: FCC P15-B, 3m

Table 1: Scan List, sorted by margin to limit FCC-B, -30.0dB filter

Freq, MHz	Value dBuV/m	<u>Sts</u>	Margin to FCC-B limits (dB)	<u>TT</u>	<u>Hght</u>	<u>Az</u>	Comment
49.8434	26.17	m	-13.83	302	100	V	
160.0880	24.86	m	-18.66	270	150	V	
119.9801	24.58	m	-18.94	127	258	Н	
152.3415	22.86	m	-20.66	0	100	V	
954.5180	24.85	m	-21.17	0	100	V	
168.1710	21.29	q	-22.23	270	200	Н	
120.4260	21.06	m	-22.46	90	200	V	
902.2340	23.06	m	-22.96	358	100	V	
902.7348	22.79	q	-23.23	90	200	V	
865.8170	22.78	q	-23.24	270	150	V	
902.4835	22.75	q	-23.27	270	150	Н	
572.0140	22.75	q	-23.27	0	100	V	
156.1000	20.11	q	-23.41	270	150	V	
288.2360	22.06	q	-23.96	270	200	Н	
46.5580	15.99	m	-24.01	163	100	Н	
798.4560	21.41	q	-24.61	270	150	Н	
768.3860	20.87	q	-25.15	270	150	Н	
72.2489	13.65	q	-26.35	270	150	V	
46.6780	13.26	q	-26.74	90	250	Н	
468.0090	18.52	q	-27.50	0	113	V	
360.0160	18.17	q	-27.85	270	200	Н	
137.1799	15.64	q	-27.88	270	150	V	
72.6000	11.77	q	-28.23	270	150	V	

Sheet 16 of 30	CRITERION TECHNOLOGY						
384.1580	17.55	q	-28.47	270	200	Н	
256.0100	16.97	q	-29.05	270	200	Н	
456.8000	16.92	q	-29.10	270	200	Н	
144.0290	14.30	q	-29.22	90	250	Н	
480.0800	16.50	q	-29.52	270	150	V	
416.4910	16.48	q	-29.54	270	200	Н	
352.6870	16.45	q	-29.57	270	200	Н	

Table 2: Scan List for FCC-B, sorted by Frequency, -30.0dB filter

Freq, MHz	Final Value	Sts	Margin to FCC-	<u>TT</u>	<u>Hght</u>	<u>Az</u>	Comment
	<u>dBuV/m</u>		B limits (dB)				
46.5580	15.99	m	-24.01	163	100	Н	
46.6780	13.26	q	-26.74	90	250	Н	
49.8434	26.17	m	-13.83	302	100	V	
72.2489	13.65	q	-26.35	270	150	V	
72.6000	11.77	q	-28.23	270	150	V	
119.9801	24.58	m	-18.94	127	258	Н	
120.4260	21.06	m	-22.46	90	200	V	
137.1799	15.64	q	-27.88	270	150	V	
144.0290	14.30	q	-29.22	90	250	Н	
152.3415	22.86	m	-20.66	0	100	V	
156.1000	20.11	q	-23.41	270	150	V	
160.0880	24.86	m	-18.66	270	150	V	
168.1710	21.29	q	-22.23	270	200	Н	
256.0100	16.97	q	-29.05	270	200	Н	
288.2360	22.06	q	-23.96	270	200	Н	
352.6870	16.45	q	-29.57	270	200	Н	
360.0160	18.17	q	-27.85	270	200	Н	
384.1580	17.55	q	-28.47	270	200	Н	
416.4910	16.48	q	-29.54	270	200	Н	
456.8000	16.92	q	-29.10	270	200	Н	
468.0090	18.52	q	-27.50	0	113	V	
480.0800	16.50	q	-29.52	270	150	V	
572.0140	22.75	q	-23.27	0	100	V	
768.3860	20.87	q	-25.15	270	150	Н	
798.4560	21.41	q	-24.61	270	150	Н	
865.8170	22.78	q	-23.24	270	150	V	
902.2340	23.06	m	-22.96	358	100	V	
902.4835	22.75	q	-23.27	270	150	Н	
902.7348	22.79	q	-23.23	90	200	V	
954.5180	24.85	m	-21.17	0	100	V	

EMC QUALIFICATION TEST REPORT

101004-1625 **FOR** Twin Peaks Robotics

Table 3: Complete Scan List Sorted by Frequency

Freq, MHz	I-val before xduc factors dBuV	er Final Value dBuV/m	Sts	TT	Hght	Az	Time	Comment
46.5580	28.45	15.99	m	163	100	Н	Wed Oct 13 12:24:51 2010	
46.6780	25.77	13.26	q	90	250	Н	Wed Oct 13 10:04:56 2010	
48.1067	21.86	8.70	q	270	150	V	Wed Oct 13 11:25:04 2010	
49.8434	40.15	26.17	m	302	100	V	Wed Oct 13 12:27:11 2010	
72.2489	29.25	13.65	q	270	150	V	Wed Oct 13 11:25:11 2010	
72.6000	27.33	11.77	q	270	150	V	Wed Oct 13 11:25:13 2010	
119.9801	34.35	24.58	m	127	258	Н	Wed Oct 13 12:02:22 2010	
120.4260	30.82	21.06	m	90	200	V	Wed Oct 13 10:48:46 2010	
137.1799	25.35	15.64	q	270	150	V	Wed Oct 13 11:25:24 2010	
144.0290	24.37	14.30	q	90	250	Н	Wed Oct 13 10:05:23 2010	
152.3415	33.29	22.86	m	0	100	V	Wed Oct 13 09:38:23 2010	
156.1000	30.99	20.11	q	270	150	V	Wed Oct 13 11:25:33 2010	
160.0880	36.09	24.86	m	270	150	V	Wed Oct 13 11:25:36 2010	
168.1710	33.00	21.29	q	270	200	Н	Wed Oct 13 11:20:31 2010	
192.4210	19.40	7.46	q	270	100	V	Wed Oct 13 11:34:02 2010	
216.4560	26.52	15.13	q	270	200	Н	Wed Oct 13 11:20:36 2010	
240.5980	21.42	11.98	q	270	200	Н	Wed Oct 13 11:20:39 2010	
247.9270	19.29	10.54	q	270	150	Н	Wed Oct 13 11:23:23 2010	
256.0100	25.01	16.97	q	270	200	Н	Wed Oct 13 11:20:43 2010	
260.1060	21.92	13.65	q	270	200	Н	Wed Oct 13 11:20:46 2010	
264.0930	18.73	10.33	q	270	200	Н	Wed Oct 13 11:20:48 2010	
288.2360	29.98	22.06	q	270	200	Н	Wed Oct 13 11:20:51 2010	
312.3780	18.67	11.32	q	270	200	Н	Wed Oct 13 11:20:54 2010	
336.6280	22.59	16.00	q	270	200	Н	Wed Oct 13 11:20:56 2010	
352.6870	22.45	16.45	q	270	200	Н	Wed Oct 13 11:20:58 2010	
360.0160	23.43	18.17	q	270	200	Н	Wed Oct 13 11:21:01 2010	
384.1580	22.83	17.55	q	270	200	Н	Wed Oct 13 11:21:03 2010	
416.4910	20.64	16.48	q	270	200	H	Wed Oct 13 11:21:05 2010	
432.5500	18.93	15.02	q	270	200	Н	Wed Oct 13 11:21:08 2010	
456.8000	20.10	16.92	q	270	200	Н	Wed Oct 13 11:21:10 2010	
468.0090	21.49	18.52	q	0	113	V	Wed Oct 13 09:31:54 2010	
480.0800	19.22	16.50	q	270	150	V	Wed Oct 13 11:26:17 2010	
572.0140	23.40	22.75	q	0	100	V	Wed Oct 13 09:39:11 2010	
768.3860	19.09	20.87	q	270	150	Н	Wed Oct 13 11:23:59 2010	
798.4560	19.35	21.41	q	270	150	Н	Wed Oct 13 11:24:01 2010	
865.8170	20.15	22.78	q	270	150	V	Wed Oct 13 11:26:25 2010	
902.2340	20.41	23.06	m	358	100	V	Wed Oct 13 12:22:59 2010	
902.4835	20.10	22.75	q	270	150	Н	Wed Oct 13 11:24:07 2010	
902.7348	20.14	22.79	q	90	200	V	Wed Oct 13 10:49:56 2010	
954.5180	20.73	24.85	m	0	100	V	Wed Oct 13 12:10:39 2010	

101004-1625 FOR Twin Peaks Robotics

UNINTENTIONAL RADIATED EMISSIONS PLOT - ABOVE 1 GHZ 4.3

Criterion Technology Date: October 13, 2010

EUT: Wireless Robotics Controller, RRC1.3 Manufacturer: Twin Peaks Robotics

Tester: SP SpiD: 101004-1625

EUT Level: production unit

EUT Information: 8 VDC battery ops w/usb joy stick Test Information: FCC Part 15, Class B, 3 meters

Temp: 19° C Humidity: 40 % Test Cond:

UNINTENTIONAL RADIATED EMISSIONS TABLE - ABOVE 1 GHZ 4.4

Notes:

Fval = Ival + AF + Cable + Pads - Amp

Where:

Fval is the final electric field in dbuv/m

Ival is the initial reading from the EMC receiver or spec an in dbuv.

AF is the antenna factor, a + value is loss

Cable is the cable attenuation in db, a + value is loss

Pads is the total attenuator loss in db, a + value is loss

Amp is the preamplifier gain in db, a + value is amplifier gain

A Sample calculation with Ival, AF, Cable, Pads, & Amp values of 50 dbuv, 18, 4, 3, 32 respectively is:

Fval = 50 + 18 + 4 + 3 - 32 = 43 dbuv/m

Minimum Margin to Limit: **-22.07** dB at **2197.0818** MHz

Criterion Technology Wed Oct 13 15:23:25 2010

EUT: Wireless Robotics Controller, RRC1.3

Manufacturer: Twin Peaks Robotics

Tester: SP

Special ID: 101004-1625 **EUT Level: Production Unit**

EUT Information: 8 VDC Battery ops w/usb joy stick

Test information: FCC P15-B, 3m

Table 1: Scan List, sorted by margin to limit FCC-B, -30.0dB filter

Comment	<u>Az</u>	<u>Hght</u>	<u>TT</u>	Margin to FCC-B	<u>Sts</u>	<u>Value</u>	Freq, MHz
				<u>limits (dB)</u>		dBuV/m	
	Н	100	134	-22.07	m	31.91	2197.0818
	Н	100	1	-23.16	m	30.82	2198.7377
	Н	100	302	-24.60	m	29.38	1624.6967
	V	100	360	-26.07	m	27.91	2193.5567
	V	100	1	-26.41	m	27.57	1951.1783
	V	100	1	-28.77	m	25.21	1971.3000

Table 2: Scan List for FCC-B, sorted by Frequency, -30.0dB filter

Freq, MHz	Final Value	<u>Sts</u>	Margin to FCC-B	<u>TT</u>	<u>Hght</u>	\underline{Az}	Comment
	<u>dBuV/m</u>		<u>limits (dB)</u>				
1624.6967	29.38	m	-24.60	302	100	Н	
1951.1783	27.57	m	-26.41	1	100	V	
1971.3000	25.21	m	-28.77	1	100	V	
2193.5567	27.91	m	-26.07	360	100	V	
2197.0818	31.91	m	-22.07	134	100	Н	
2198.7377	30.82	m	-23.16	1	100	Н	

Table 3: Complete Scan List Sorted by Frequency

Freq, MHz	I-val before xducr factors dBuV	Final Value dBuV/m	Sts	TT	Hght	Az	Time	Comment
1006.4000	36.47	20.38	a	1	100	Н	Wed Oct 13 14:57:04 2010	
1058.2000	36.14	20.21	a	1	100	Н	Wed Oct 13 14:57:10 2010	
1110.5000	35.39	19.73	a	1	100	V	Wed Oct 13 14:55:28 2010	
1162.5000	34.16	18.81	a	1	100	Н	Wed Oct 13 14:58:05 2010	
1547.5493	33.44	20.72	a	1	100	V	Wed Oct 13 14:54:41 2010	
1624.6967	41.40	29.38	m	302	100	Н	Wed Oct 13 13:27:17 2010	
1642.2000	31.83	20.01	a	1	100	V	Wed Oct 13 14:55:42 2010	
1805.0000	32.40	22.29	a	1	100	Н	Wed Oct 13 14:58:17 2010	
1921.4000	31.27	23.13	a	1	100	V	Wed Oct 13 14:55:56 2010	
1922.0000	31.32	23.19	a	1	100	V	Wed Oct 13 14:56:04 2010	
1923.0000	31.33	23.23	a	1	100	V	Wed Oct 13 14:56:14 2010	
1934.4000	31.32	23.51	a	1	100	V	Wed Oct 13 14:56:22 2010	
1951.1783	34.71	27.57	m	1	100	V	Wed Oct 13 14:54:47 2010	
1971.3000	31.53	25.21	m	1	100	V	Wed Oct 13 14:56:30 2010	
2193.5567	34.43	27.91	m	360	100	V	Wed Oct 13 15:09:08 2010	
2197.0818	38.48	31.91	m	134	100	Н	Wed Oct 13 15:04:59 2010	
2198.7377	37.41	30.82	m	1	100	Н	Wed Oct 13 14:57:41 2010	
5000.0000	2.72	1.94	m	123	100	н	Wed Oct 13 15:03:36 2010	

101004-1625 **FOR** Twin Peaks Robotics

4.5 INTENTIONAL RADIATED EMISSIONS

	RADIO ROBOTICS, Battery-CW radiator									
CHANNEL	Fundamental Freq (GHz) (bold is max emission)	Fval before rcvr pads (dBuV/m)	Recv. Pads (dB) *	Field Strength (dBuV/m)	Elev	AZ	Pol	Orientation	FCC Limit part 15.249, 50 mV/m or 94 dBuV/m	Margin to Limit (dB)
Low	902.4800	59.05	31.7	90.75	114.1	289	V	Х	94.0	-3.3
Mid	915.0009	59.71	31.7	91.41	111.1	332	V	Х	94.0	-2.6
High	927.4947	59.07	31.7	90.77	115.1	332	V	Х	94.0	-3.2
Low	902.4800	62.22	31.7	93.92	100	267	Н	Υ	94.0	-0.1
Mid	915.0009	60.19	31.7	91.89	100	267	Н	Υ	94.0	-2.1
High	927.4947	61.11	31.7	92.81	100	111	Н	Υ	94.0	-1.2
Low	902.4800	61.92	31.7	93.62	100	239	Н	Z	94.0	-0.4
Mid	915.0009	58.68	31.7	90.38	148.4	237	Н	Z	94.0	-3.6
High	927.4947	58.32	31.7	90.02	100	241	Н	Z	94.0	-4.0

^{*-}Pad insertion from Maintanance data C:\Data\Maintenance\8-30-10\OperatingCables.xls\'DeviceCompare' tab

Harmonic	Frequency (Bold => restricted band)	F val	FCC part 15.249 limit, 500 uV/m or 54 dBuV/m	Margin to Limit (db)	Elev	AZ	Pol	Orientation	Antennas
2nd	1804.96	51.3	54	-2.70	134.3	238	Н	Υ	DRG 118A
3rd	2782.473	30.87	54	-23.13	100	161	V	Υ	DRG 118A
4th	3709.964	32.91	54	-21.09	134.3	240	V	Y	DRG 118A
5th	4637.455	28.6	54	-25.40	100	132	V	Y	DRG 118A
6th	5564.946	39.9	54	-14.10	114.1	306	V	Y	DRG 118A
7th	6492.437	38.9	54	-15.10	100	149	Н	Y	DRG 118A
8th	7419.928	41.82	54	-12.18	100	0	V	Y	DRG 118A
9th	8347.419	42.9	54	-11.10	100	0	Н	Y	DRG 118A
10th	9024.8		54	-54.00				Y	DRG 118A

* => noise floor measurement. The spec an will retrun the same amplitude regardless of these settings.

4.6 CHANNEL BANDWIDTH

4.7 FREQUENCY STABILITY

Low Channel

Low Orlantic						
+20 °C						
@8VDC	902.489299		6.8vdc Limit ± 9.02 kHz	9.2vdc Limit ± 9.02 kHz		
	6.8 VDC	9.2 VDC	Frequency change (kHz)	Frequency change (kHz)		
+20 ° C	902.489232	902.489215	-0.066500	-0.083500		
-5 ° C	902.487584	902.487592	-1.714500	-1.706500		
+10 ° C	902.489803	902.489806	0.504500	0.507500		
+20 ° C	902.489295	902.489289	-0.003500	-0.009500		
+40 ° C	902.488636	902.488638	-0.662500	-0.660500		
+50 ° C	902.488099	902.488095	-1.199500	-1.203500		
Return to 20	902.489377	902.489379				
° C			0.078500	0.080500		

Mid Channel

+20 °C				
@8VDC	915.00746		6.8vdc Limit ± 9.15 kHz	9.2vdc Limit ± 9.15 kHz
	6.8 VDC	9.2 VDC	Frequency change (kHz)	Frequency change (kHz)
+20 ° C	915.007465	915.007383	0.005000	-0.077000
-5 ° C	915.005267	915.005284	-2.193000	-2.176000
+10 ° C	915.007946	915.007944	0.486000	0.484000
+20 ° C	915.007523	915.007521	0.063000	0.061000
+40 ° C	915.007803	915.007812	0.343000	0.352000
+50 ° C	915.007151	915.007159	-0.309000	-0.301000
Return to 20	915.007653	915.007657		
° C			0.193000	0.197000

High Channel

		Orianino		
+20 °C				
@8VDC	927.498452		6.8vdc Limit ± 9.27 kHz	9.2vdc Limit ± 9.27 kHz
	6.8 VDC	9.2 VDC	Frequency change (kHz)	Frequency change (kHz)
+20 ° C	927.498612	927.498594	0.160000	0.142000
-5 ° C	927.496479	927.49652	-1.973000	-1.932000
+10 ° C	927.498946	927.49895	0.494000	0.498000
+20 ° C	927.498877	927.49887	0.425000	0.418000
+40 ° C	927.498278	927.498277	-0.174000	-0.175000
+50 ° C	927.498204	927.49821	-0.248000	-0.242000
Return to 20	927.49894	927.498948		
° C			0.488000	0.496000

Margin to limit 9.15 - 2.19 kHz = 6.96 kHz at -5 C 6.8 vdc

5.0 APPENDIX C: PRODUCT INFORMATION FORM

General Information	Date <u>10/4/10</u>
Company Name: TwinPeaksRobotics	
Company Address: 2217 Lake Park Drive, Longn	nont, CO 80503
Contacts: Paul Shepherd Femail: paul@twinpeaksrobotics.com	
Market Information (Check all that Apply) USA_X_CanadaEuro.UnionTaiwan Other	JapanNew ZealandAustralia
Product Information Name_Wireless Robotics ControllerN	Model Number RRC1.3 Serial Number: none
Product Dimensions: 3.75 X 2 X 1 inches	Weight: 2oz
Product Power Source: Battery: □ No ☑ Yes Voltage 7 - 9 volts AC Supply: No # of cords: Voltage for each: I/O Cables: # of cords under 3 meters: 1 # of cords over 3 meters: 0	
List Support equipment if any: none	
Emissions Testing:	
Is this equipment to be used in a residence: □ N	lo (Class A) 🛛 Yes (Class B)
Does this have a transmitter or Transceiver: □ N	lo ⊠ Yes
Highest oscillator/Clock frequency (including in	nternal clocks only to the microprocessor): 32MHz
functionality within the capability of the Equipn	gy, for the emissions testing, the equipment must be exercising all of the nent under test. In addition, the equipment must be equipped in the be offered to customers. The test software installed in the Equipment Under is maximum capability configuration.
Description of the maximum capability configuration	ration: Cont transmission, power at –2 dBm, Joystick
Name and revision # of the test software used for	or the emissions test: TPR TestCode 1.0
Please attach or include the product spec or pre	production spec
32 MIPS Microchip PIC24FJ256GB106 processor Power input between 7.2 and 10 volts integral 915MHz Transceiver with built in anten	

USB Controller

28 IO connections for robotics control

IO programmable to support various perperials

1Mbit EEProm

Real Time Clock

Accessory Power of 1 Amp at 3 Volts and 1 Amp at 5 Volts

Low Power Capable

6.0 APPENDIX D: TEST EQUIPMENT AND CALIBRATION STATUS

Manufacturer	Name/Description	Model Number	Serial Number	Cal. Due Date
Solar Electronics	LISN	8012-50-R-24-BNC	892310	10/15/2010
Haefely Trench	Test Mag	Mag 100	80162	10/15/2010
Gigatronics	Power Sensor	80301A-410	1831996	10/15/2010
Gigatronics	Power Meter	8541C	1830945	10/15/2010
Hewlett Packard	Tracking Generator	HP85645A	3210A00124	10/22/2010
FCC	LISN	FCC-TLISN-T4-02	20252	11/24/2010
FCC	EM Clamp	F2031	309	12/2/2010
FCC	CDN	FCC-801-M3-25	9714	12/2/2010
Rohde/ Schwarz	LISN	ESH2-Z5	828739-001	12/8/2010
Rohde/ Schwarz	VHF/UHF Receiver	ESVS-30	863342014	12/8/2010
Rohde/ Schwarz	HF Receiver	ESHS-30	826003/011	12/8/2010
Califorina Instruments	AC Power Source Pacs-1	5001iX-CTS-411	55637/ 72242	3/24/2011
Haefely Trench	Surge Generator	PSURGE 6.1	083-906-07	5/26/2011
Haefely Trench	EFT Tester	PEFT Junior	583-333-51	5/26/2011
Haefely Trench	Surge Coupler	FP-Surge 32.1	083-925-05	5/26/2011
EMCO	Active Loop	6502	2626	5/28/2011
Veratech	Preamp (AMP2)	unknown	N/A	9/6/2011
Amplifier Research	E-Field Probe	FP2080	20236	10/16/2011
Amplifier Research	E-Field Probe	FP2000	19682	10/19/2011
EMCO	Horn	3160-08	1147	1/19/2012
Hewlett Packard	Signal Generator	HP 8648D	3642000145	3/9/2012
Hewlett Packard	Quasi Peak Adapter	85650A	3014A18942	5/3/2012
Hewlett Packard	Spectrum Analyzer	HP 8566B	2240A0195	5/21/2012
Hewlett Packard	Spectrum Analyzer Display	HP 85662A	3014A18942	5/21/2012
Haefely Trench	ESD Gun	PESD 1600	H605100	6/2/2012

7.1.1 EUROPEAN DIRECTIVES, STANDARDS AND METHODS

7.0 APPENDIX E: TEST DIRECTIVES, STANDARDS AND METHODS

89/336/EEC: Council Directive of 03 May 1989 on the Approximation of the Laws of the Member States Relating to Electromagnetic Compatibility, OJEC No. L 139/19-26, Aug 1993.

BS DD ENV 50204 (CENELEC): Testing and Measurement Techniques; Radiated Electromagnetic Field from Digital Radio Telephones - Immunity Test, 1996.

EN 55011 (CENELEC): ISM Radio-Frequency Equipment Radio Disturbance Characteristics - Limits and Methods of Measurement, 2007.

EN 55014-1 (CENELEC): Part 1. Electromagnetic Compatibility Requirements for Household Appliances, Electric Tools and Similar Apparatus - Part 1. Emission - Product Family Standard, 2007.

EN 55022 (CENELEC): ITE - Radio-Frequency Equipment Radio Disturbance Characteristics - Limits and Methods of Measurement, 2008.

<u>CISPR 22</u>: Information Technology Equipment – Radio Disturbance Characteristics - Limits and Methods of Measurement, 2009.

EN 55024 (CENELEC): ITE - Immunity Characteristics - Limits and Methods of Measurement, 2008.

EN 55103-1: Product Family standard for audio, video, audio - visual and entertainment lighting control apparatus for professional use. Part 1: Emissions, April 1997.

EN 55103-2: Product Family standard for audio, video, audio - visual and entertainment lighting control apparatus for professional use. Part 2: Immunity, April 1997.

EN 60601-1-2 (CENELEC): Medical Electrical Equipment. Part 1. General Requirements for Safety - Section 1.2. Collateral Standard: Electromagnetic Compatibility - Requirements and Tests, Third Edition 2007.

EN 61000-6-1: EMC- Part 6-1. Generic Standard-Immunity for residential, commercial and light-industrial Environments 2007.

EN 61000-6-2: EMC- Part 6-2. Generic Standard-Immunity for Industrial Environments, 2005.

EN 61000-6-3: EMC- Part 6-3. Generic Standard-Emissions for residential, commercial and light-industrial Environments 2007.

EN61000-6-4 (CENELEC): EMC - Generic Emission Standard, Part 6-4: Industrial Environment, 2007.

EN 61000-3-2 (CENELEC): EMC - Part 2. Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A per phase), 2009.

EN 61000-3-3 (CENELEC): EMC - Part 3. Limitation of Voltage Fluctuation and Flicker in Low-Voltage Supply Systems for Equipment with Rated Current ≤16 A, 2008.

EN 61000-4-2 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 2. Electrostatic Discharge Immunity Test, 2009.

EN 61000-4-3 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 3. Radiated, Radio-Frequency, Electromagnetic Field Immunity, 2010.

EN 61000-4-4 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 4. Electrical Fast Transient/Burst Immunity Test, 2010.

EN 61000-4-5 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 5. Surge Immunity Test, 2006.

EN 61000-4-6 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 6. Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields, 2009.

EN 61000-4-8 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 8. Power Frequency Magnetic Field Immunity Test, 2010.

EN 61000-4-11 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 11. Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests, 2004

ETSI EN 300 220-1 V2.1.1 – Electromagnetic Compatibility and Radio spectrum Matters (ERM); Short range devices (SRD); radio equipment to be used in the 25MHz to 1000 MHz frequency range with power levels ranging up to 500 mW; Part 1: Technical characteristics and test methods; 2006.

ETSI EN 300 220-2 V2.1.1 – Electromagnetic Compatibility and Radio spectrum Matters (ERM); Short range devices (SRD); radio equipment to be used in the 25MHz to 1000 MHz frequency range with power levels ranging up to 500 mW; Part 2: Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive, 2006

ETSI EN 300 220-3 V1.1.1 – Electromagnetic Compatibility and Radio spectrum Matters (ERM); Short range devices (SRD); radio equipment to be used in the 25MHz to 1000 MHz frequency range with power levels ranging up to 500 mW; Part 3: Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive

ETSI EN 300 683 – Radio Equipment and Systems (RES); ElectroMagnetic Compatibility (EMC) Standard for Short Range Devices (SRD) Operating on Frequencies between 9 kHz and 25kHz, 1997

EN 300 328 v1.7.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive, 2006.

EN 301 489-1 v1.8.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements, 2008.

EN 301 489-3 v1.4.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Rangr Devices (SRD) operating on frequencies between 9kHz and 40 GHz, 2002.

EN 301 489-17 v2.1.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic compatibility (EMC) standard for radio equipment; Part 17: Specific conditions for Broadband Data Transmission Systems, 2008.

EN 61326 (CENELEC): Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements, 2005.

EN 61326-1 Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements, - Part 1: General Requirements, 2008

7.1.2 47 CFR FCC PART 15 RADIO FREQUENCY DEVICES: OCT 2009

Subpart A General.

Subpart B Unintentional Radiators.

Subpart C Intentional Radiators.

Subpart D Unlicensed Personal Communications Service Devices.

- 7.1.3 47 CFR FCC PART 22 PUBLIC MOBILE SERVICES: OCT 2009
- 7.1.4 47 CFR FCC PART 24 PERSONAL COMMUNICATIONS SERVICES: OCT 2009
- 7.1.5 JAPAN

VCCI V-3

7.1.6 CANADA

ICES-001: Interference-Causing Equipment Standard - ISM RF Generators, 2006.

ICES-003: Interference-Causing Equipment Standard - Digital Apparatus, 2004.

7.1.7 AUSTRALIA/NEW ZEALAND

SAA AS/NZ 3548: Limits and Methods of Measurement of Radio Disturbance Characteristics of ITE, 1997.

AS/NZS 4268:2008: Radio Equipment and systems -Short range devices -Limits and methods of measurement.

AS/NZS CISPR22

7.1.8 TAIWAN

CNS13438, 2006.

7.1.9 KOREA

KN22, September 29, 2005

KN 24, 1998