

Week 8 – Query Processing and Optimisation

Housekeeping

Assignment Peroject Exame Help

- The submission deadline is 23:59, Oct 11, 2022.
- This assignment must be done individually (no group work).

https://tutorcs.com

Housekeeping

Assignment Perpiect Exame Help

- The submission deadline is 23:59, Oct 11, 2022.
- This assignment must be done individually (no group work).
- 2 All he tabs an Oct 3 (Monday, public holiday) in Week 9 will be moved to the same verues on Oct 10 (Monday) in Week 19.

Housekeeping

Assignment Peroject Exame Help

- The submission deadline is 23:59, Oct 11, 2022.
- This assignment must be done individually (no group work).
- 2 All hetabs an Oct 3 (Monday, public holiday) in Week 9 will be moved to the same vehicles on Oct 10 (Monday) in Week 19.
- 3 Lab 8 is optional (no associated with any assessment items)
 - We will open a separate sign-up page on Wattle at 12pm Oct 6.
 - ptional labs will be scheduled from Oct 11 to Oct 14.
 - Four options are available
 - (1) Database Programming with Java
 - (2) Database Programming with Python
 - (3) Database Exercises on IMDB
 - (4) Database Security (SQL Injection)

Query Processing – Example

Assignment Project Estam Help

From SQL to RA Expressions

Assidents (mather first) plast Name and Exam Help Courses (crsNr, title, unit)

SELECT lastName, result, title

http:// Students.mathr=Exams.mathr And

Exams.crsNr=Courses.crsNr AND result < 1.3;

From SQL to RA Expressions

Assimulation first plast Name and Exam Help Courses (crsNr, title, unit)

SELECT lastName, result, title

http://www.coursesom

THERE STUDENTS, mathr=Exams, mathr AND

Exams.crsNr=Courses.crsNr AND result < 1.3;

- RA Expressions:

 Trast terre, recell title Ground 1. ((Souther to Julen C. rhan) = Exams. matn. Exams)
 - $\bowtie_{\sigma_{\mathtt{Exams.}\mathit{crsNr}=\mathtt{Courses.}\mathit{crsNr}}} \mathtt{Courses}))$
 - $\sigma_{\text{lastName, result, title}}(\sigma_{\text{result}} \le 1.3(\sigma_{\text{EXAMS. crsNr}=\text{Courses. crsNr}}(\sigma_{\text{Students. matNr}}(\text{Students} \times \text{Exams} \times \text{Courses}))))$
 - 3 $\pi_{lastName, result, title}$ ((Students ⋈_{Students.matNr=Exams.matNr} ($\sigma_{result \le 1.3}$ (Exams))) ⋈_{Exams.crsNr=Courses.crsNr} Courses)
 - **4**) . . .

From RA Expressions to Query Trees

Assignation can be presented as a query tree: Help

- internal nodes represent the intermediate result;
- the root node represents the resulting relation.
- Example:

 π las N ne, les it litte σ σ σ μ t ≤ 1 (Strein t s S den C neutr E ar s. matter Exams)

 Ν εχαμες Cron t sees (Cron t sees)

Query Tree Example

ASSI Schild nodes must be executed by the transfer of the policy of the

Example:

students

Equivalent Query Trees (Query Optimisation)

Assignment Project Exam Help

ASSIGNMENT Project Exame Help additional annotation at each node indicating:

(1) the access method to use for each table, and

Note: Pipelined evaluation may have significant saving on I/O cost, while materialized evaluation can avoid repeated computations.

Assignment titi Project in Encompsi Help

https://tutorcs.com

AssimplyientuichnipentinemonnesirHelp

- This is determined by the query optimiser using a variety of algorithms (Fat: there is no true optimal solution in general)
- Realistically, we cannot expect to always find the best plan, but we expect to consistently find a plan that is good.

Assignment to the period of the property of the period of

- This is determined by the query optimiser using a variety of algorithms (Fat: there is no true optimal solution in general)
- Realistically, we cannot expect to always find the best plan, but we expect to consistently find a plan that is good.
- The variance of different execution pans for the same query may different considerably (e.g., seconds vs. hours vs. days):
 - different but equivalent RA expressions;
 - different algorithms for each RA operator.

Assignment Project Exam Help

https://tutorcs.com

Assessing ideas of algorithms as defor Reperators Exam Help selection: If there is no index we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining

https://tutorcs.com

selection conditions to further restrict the tuples.

Assessing ideas of algorithms is of or RA energions Exam Help selection: If there is no index we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.

Projection retrieves a subserver ettributes from each tuple of the table (similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)

Assessing ideas of algorithms and for RA energiers Exam Help selection: If there is no index, we have to scan the table. Otherwise, we scan the indexes to retrieve matching tuples and apply remaining

Projection retrieves a subserver ettributes from each tuple of the table (similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)

• Join: We may use nested loops join, or sort-merge join, hash joins,

WeChat: cstutorcs

selection conditions to further restrict the tuples.

no index we have to scan the ta we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.

> ction retrieves a tubser of attributes from each tuple of the table Sinhilar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)

- Join: We may use nested loops join, or sort-merge join, hash joins,
- ty.eChat.cstutorcs Group by and order by are typically implemented using sorting.

no index we have to scan the ta we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.

> tion retrieves a tubset of attributes from each tuple of the table similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)

- Join: We may use nested loops join, or sort-merge join, hash joins,
- With echat cstutores Group by and order by are typically implemented using sorting.
- Aggregation operators use temporary counters in main memory when retrieving tuples.

no index we have to scan the ta we scan the indexes to retrieve matching tuples and apply remaining selection conditions to further restrict the tuples.

> tion retrietes a tubset of attributes from each tuple of the table similar to selection). If requiring duplicate elimination, then we have to do sorting additionally (expensive part!)

• Join: We may use nested loops join, or sort-merge join, hash joins,

Group by and order by are typically implemented using sorting.

- Aggregation operators use temporary counters in main memory when retrieving tuples.
- Set operators can use the same approach as projection to eliminate duplicates.

Estimating Query Costs - Example

Assylhigh moringed and - Payerd for each its lectors playing an later 1p

https://tutorcs.com

Estimating Query Costs - Example

A SSWhich moving got a non-Universe for an experience of its actors playing an agent? p $\pi_{title, production.year}(\sigma_{role.description='agent'}(BOLE \bowtie ACTOR_AWARD \bowtie (AWARD - \sigma_{award.country='USA'}(AWARD))))$

https://tutorcs.com

Estimating Query Costs - Example

AWARD

Size of Relations

Assignmentz Project Exam Help

• Let *n* denote the average number of tuples in *r*, and ℓ_i the the average space (e.g., in bits) for attribute A_i .

https://tutor WeChat: cstutores

13/59

Size of Relations

Assignment-Project-Exam Help

• Let n denote the average number of tuples in r, and ℓ_j the the average space (e.g., in bits) for attribute A_j .

- Then, $n \cdot \sum_{i=1}^{k} \ell_i$ is the size of the relation r.
- We use this formula to assign sizes to leaf nodes in the query tree.

Assignmenta Paroject Exama Help

varchar(20))

https://tutorcs.com

Assignment Project Exam Help

varchar(20))

https://tutorcs.com

Assignment Project Exam Help

varchar(20))

Estimate the average number of tuples as 15.

Estimate the average space to Cattributes.

Assignment Project Fx3, md Help

varchar(20))

- Estimate the average number of tuples as 15.

 Estimate the average space to Cattributes.
 - Award_name: 8 · 20 = 160 bits (the mean length is 20);
- Institution: 8,30 = 240 bits (the mean length is 30);

 Award_country: 8 · 10 = 80 bits (the mean length is 10)

Assignment Project Exam Help

varchar(20))

- Estimate the average number of tuples as 15.

 Lettrace the average space to Cattribucs. Om
 - Award_name: $8 \cdot 20 = 160$ bits (the mean length is 20);
- Institution: 8:30 = 240 bits (the mean length is 30);

 Award-country: 8:10 = 80 bits (the mean length is 10).
- The average size of a tuple is 160 + 80 + 240 = 480 bits.

Assignment Project Fx3, md Help

varchar(20))

- Estimate the average number of tuples as 15.

 Lettrace the average space to Cattribucs. Om
 - Award_name: $8 \cdot 20 = 160$ bits (the mean length is 20);
- Institution: 8:30 = 240 bits (the mean length is 30);

 Award-country: 8:10 = 80 bits (the mean length is 10).
- The average size of a tuple is 160 + 80 + 240 = 480 bits.
- The average size of a relation is estimated to be $15 \cdot 480 = 7,200$ bits.

Assignment variation reaction reaction. Help Role_description:varchar(100), Credits:varchar(40))

https://tutorcs.com

Assignment variation reaction reaction. Help Role_description:varchar(100), Credits:varchar(40))

Estimate the average number of tuples as 500.

https://tutorcs.com

Assignment value of the property of the proper

• Estimate the average number of tuples as 500.

hestmanshe average specification of the strategic points of the strategic poin

Assignment value of the confidence of the confid

Estimate the average number of tuples as 500.

nestmaesthe average space to attributes 1111

- Id: $8 \cdot 8 = 64$ bits (as the domain is char(8));
- Title: $8 \cdot 25 = 200$ bits (the mean length is 25);
- Production year: 13 bits (as the domain is number(4));
 Role description: 8 59 400 bits (the mean length is 50);
 - Credits: $8 \cdot 20 = 160$ bits (the mean length is 20).

Assignment value of the confidence of the confid

Estimate the average number of tuples as 500.

PEstimate the average space to attributes ()

- 1d: $8 \cdot 8 = 64$ bits (as the domain is char(8));
- Title: $8 \cdot 25 = 200$ bits (the mean length is 25);
- Production year: 13 bits (as the domain is number(4));
 Role-description: 8 59 400 bits (the mean length is 50);
 - Credits: $8 \cdot 20 = 160$ bits (the mean length is 20).
- The average size of a tuple is 64 + 200 + 13 + 400 + 160 = 837 bits

Assignment variation reaction reaction. Help Role_description:varchar(100), Credits:varchar(40))

Estimate the average number of tuples as 500.

nEstimates the average space to cats lbutes of m

- $d: 8 \cdot 8 = 64$ bits (as the domain is char(8));
- Title: $8 \cdot 25 = 200$ bits (the mean length is 25);
- Production year: 13 bits (as the domain is number(4));
 Role-description: 8 50 400 bits (the mean length is 50);
 - Credits: $8 \cdot 20 = 160$ bits (the mean length is 20).
- The average size of a tuple is 64 + 200 + 13 + 400 + 160 = 837 bits
- The average size of a relation is to be $500 \cdot 837 = 418,500$ bits

Assignment in the control of the con

Year_of_award:number(4),Category:varchar(100),Result:varchar(20))

- Estimate the average number of tuples as 40

 Estimates he average specificate bues 0 111
 - Title: 200 bits (as before);
 - Production_year: 13 bits (as before);
 - Role_description: 400 bits (as before);
- Afard hame: 160 bits (at before); (Communication of the sound of the s
 - Category: $8 \cdot 40 = 320$ bits (the mean length is 40);
 - Result: $8 \cdot 7 = 56$ bits (the mean length is 7).
- The average size of a tuple is 200 + 13 + 400 + 160 + 13 + 320 + 56 = 1,162 bits.
- The average size of a relation is $40 \cdot 1162 = 46,480$ bits.

Estimating Query Costs - Example (Query Tree)

Assignment Project Exam Help

Size of Selection Node

Assignment nProjects Examilelp

Scan the relation one tuple after another (if there is no index);

Check for each tuple, whether the condition a is catisfied or not;

• Keep exactly those tuples satisfying φ .

Size of Selection Node

Assignment nProjects Examilelp

- Scan the relation one tuple after another (if there is no index);
- Check for each tuple, whether the condition a is satisfied or not;
- Keep exactly those tuples satisfying φ .
- Let s be the size of its single relevant node.
- The Size Calculation Castutores

 $a_{\varphi}\cdot s$,

where a_{φ} is the average percentage of tuples satisfying φ .

Estimating Query Costs - Example (Selection)

Asspire legition of a december of the control of the model of the control of the control

Size of Difference Node

Assignment Project Exam Help

- Let s_1 and s_2 be the sizes of the two relevant nodes.
- Again, we need to condider the probability that tuples occur in both relations.

Size of Difference Node

Assignment Project Exam Help

- Let s_1 and s_2 be the sizes of the two relevant nodes.
- Again, we need to confider the probability that tuples occur in both relations.
- The size of a difference node is WeChat: estutiones

where (1 - p) is the probability that tuples from s_1 does not occur in s_2 .

Estimating Query Costs - Example (Difference)

Since 40% of the movie awards from the USA, it is probability of arrayard to SS be SUS awards 1.4. We have C(I,p) = 7,200 C(I,0.1) = 4,120.

Size of Natural Join Node

Assignment Project Exam Help Leter and s₂ be the sizes of the two relevant nodes, and r₁ and r₂ be the

size of a tuple in these two nodes. $\frac{s_1}{r_1}$ and $\frac{s_2}{r_2}$ are the estimated number of tuples in these two hodes. COM

Size of Natural Join Node

Assignment Project Exam Help Leter and s₂ be the sizes of the two relevant nodes, and r₁ and r₂ be the

size of a tuple in these two nodes. $\frac{s_1}{r_1}$ and $\frac{s_2}{r_2}$ are the estimated number of tuples in these two hodes.

tuples in these two hodes utores.com

The size of a natural join node is

WeChat & cstutores

where r is the size of a tuple over the **common attributes**, and p is the **matching probability** (for any tuple of the first relevant node to match with any tuples in the second relevant relation). Note that $r_1 + r_2 - r$ is the size of a tuple after the natural join operation.

Estimating Query Costs - Example (Natural Join)

Estimating Query Costs - Example (Natural Join)

Assignment si Project, Exam Help

 $\frac{418,500}{837} \cdot 0.002 \cdot \frac{42,682}{1,482} \cdot (837 + 1,482 - 200 - 400 - 13) = 49,133.$

https://tutorcs.com

Estimating Query Costs - Example (Selection)

For selection $\sigma_{\text{role description}}$ assume $a_{\text{c}} = 0.05$ (i.e., non-US awards for possible are 56). Her ce, we have C is = 0.05X40181 2,457 C p

Size of Projection Node

Assignment: Project Exam Help Project each tuple to the attributes in {A1,..., An}

Eliminate duplicates (Note: SQL does not eliminate tuples unless

https://tutorcs.com

Size of Projection Node

Assignment: Project Exam Help Project each tuple to the attributes in {A₁,..., A_n}

Eliminate duplicates (Note: SQL does not eliminate tuples unless DISTINCT is used).

number n of tuples and its average size r of a tuple.

• The size of a projection node
$$\pi_{A_1,...,A_n}$$
 is WeChat: $\underset{(1-p_i)\cdot s\cdot \frac{1}{r}}{\text{extractor}}$.

where r_i is the average size of a tuple over $\{A_1, \ldots, A_n\}$, and p_i is the probability that two tuples coincide on A_1, \ldots, A_n (i.e., the same values on all attributes A_1, \ldots, A_n).

Estimating Query Costs - Example (Projection)

Assignment Project Exam Help

https://tutorcs.com
$$a^{2}-b^{2} = ab-b^{2}$$
Wechat: $a^{2}b$ $a^{2}b$ $a^{2}b$

Which FA query should be chosen for a given SQL query?

• Which FA query should be chosen for a given SQL query?

• Which FA query should be chosen for a given SQL query?
• Who choose? Query optimise!

- Which FA query should be chosen for a given SQL query?
 Who choose? Query optimise!
 - How to choose?

- Which FA query should be chosen for a given SQL query?
 Who choose? Query optimise!
 - How to choose?
 - Semantic query optimisation
 - Rule-based optimisation
 - Cost-based optimisation

Assignmentises in the perfect of the second sector of the sector of the

https://tutorcs.com

Assignment is estimated by a second of the control of the control

Semantic query optimisation

Use 10 Sation specific enactic Snovie 10 10 tansform a query into the one with a lower cost (they return the same answer).

Assignment is estimated by a series optimisation approaches:

- Semantic query optimisation
- The che with a lower cost (they return the same answer).
- Rule-based query optimisation

Use he iristic rules to transferm a relational algebra expression into an equivalent one with a possibly lower cost.

Assignment is a sit code Gener Examing Help optimisation approaches:

Semantic query, optimisation

Use the phastip of specific enactic should go to transform a query into the one with a lower cost (they return the same answer).

Rule-based query optimisation

Use he iristic rules to transferm a relational algebra expression into an equivalent one with a possibly lower cost.

Cost-based query optimisation

Use a cost model to estimate the costs of plans, and then select the most cost-effective plan. This will not be assessed in our course.

Semantic Query Optimisation

SEIGN: Ment Project Exam Help Person(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

WRITER(id, title, production_year, credits) where

DIS PERSTUTIONES.COM title, production_year] ⊆ MOVIE [title, production_year]

List the ids of the writers who have written movies produced in 2000. **VeChat: CSTUTOTCS**

31/59

Semantic Query Optimisation

gament Project Exam Help

PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

WRITER(id, title, production_year, credits) where

lois PERSULTORCS.COM title, production_year] ⊆ MOVIE [title, production_year]

List the ids of the writers who have written movies produced in 2000.

Wechat: estutor

 $\pi_{id}\sigma_{production_year=2000}(WRITER \bowtie PERSON)$

 $\pi_{id}\sigma_{production_year=2000}(WRITER \bowtie MOVIE)$

Semantic Query Optimisation

gament Project Exam Help PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

WRITER(id, title, production_year, credits) where

lois PERSULTORCS.COM title, production_year] ⊆ MOVIE [title, production_year]

List the ids of the writers who have written movies produced in 2000.

Weinat estutore
π_{id}σ_{production.year=2000} (WRITER ΣPERSON Σ MOVIE

 $\pi_{id}\sigma_{production_year=2000}(WRITER \bowtie PERSON)$

 $\pi_{id}\sigma_{production_year=2000}(WRITER \bowtie MOVIE)$

 $\pi_{id}\sigma_{production_vear=2000}WRITER \leftarrow the optimised RA$

Assignment Particular Execution performance.

https://tutorcs.com

Assargement Project Example 19 heuristic rules that typically improve the execution performance.

• Key ideas: apply the most restrictive operation before other operations, which tall the transfer of the state of the sta

Assirgment Project Favoring Help heuristic rules that typically improve the execution performance.

- Key ideas: apply the most restrictive operation before other operations, which tall the transfer of the state of the sta
 - Push-down selection:

Apply as early as possible to reduce the number of tuples; WeChat: cstutorcs

Assaire The Divinish ton Pranticing the Categories Transporting Help heuristic rules that typically improve the execution performance.

- Key ideas: apply the most restrictive operation before other operations, which can reduce the size printer mediate results
 - Push-down selection:

Apply as early as possible to reduce the number of tuples;

Apply as early as possible to reduce the number of attribu

Apply as early as possible to reduce the number of attributes.

Rule-based Query Optimisation

Assaire The Divinish ton Pranticing the Categories Transporting Help heuristic rules that typically improve the execution performance.

- Key ideas: apply the most restrictive operation before other operations, which can reduce the size printer mediate results
 - Push-down selection:

Apply as early as possible to reduce the number of tuples;

Apply as early as possible to reduce the number of attributes.

Rule-based Query Optimisation

Assaire The Divinish ton Pantiorn to Control to Control

- Key ideas: apply the most restrictive operation before other operations, which can reduce the size printer mediate results
 - Push-down selection:

Apply as early as possible to reduce the number of tuples;

Apply as early as possible to reduce the number of attributes.

 But we must ensure that the resulting query tree gives the same result as the original query tree, i.e., the equivalence of RA expressions.

Assignment Project Exam Help Merging RA operators.

https://tutorcs.com

Assignment Project Exam Help

```
• \sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R);

https://tutorcs.com
• \sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2;
```


Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help

https://tutorcs.com

Assign they be executed in Open Project Exam Help

 $\sigma_{\textit{CourseNo}='\textit{COMP2400'}}(\sigma_{\textit{UID}=111}(\textit{STUDY})) \quad \text{v.s. } \sigma_{(\textit{Course}='\textit{COMP2400'}) \land (\textit{UID}=111)}(\textit{STUDY})$

https://tutorcs.com

$Asstanthey be executed in open ? Jet Exam Help \\ \sigma_{\varphi}(\sigma_{\psi}(R)) \equiv \sigma_{\varphi \wedge \psi}(R); \\$

 $\sigma_{CourseNo="COMP2400"}(\sigma_{UID=111}(STUDY))$ v.s. $\sigma_{(Course="COMP2400")\land (UID=111)}(STUDY)$

STURY 10 CO				٠.	114	010	0		m
UID	Cdursel lo	Hours /	/ (J	$\mathbf{u}\mathbf{t}$	STUDY	5	. 	Ш
111	COMP2400	120			UID	CourseNo	2	Hours	
222	COMP2400	115			111	COMP240	0	120	
333	STAT2001	120			111	BUSN201	1	110	
111	BUSN2011	110			111	ECON210	2	120	
111	1 CC N2 102	120	_			~ ~ 4-			_ ~
333	B VS V2014-	130	12	1	[11	m	CC
			ıu	. 1			ЛI		

14		0400	00	·w	
/ L	ut	STUDY	·CC)11.	l
	UID	<u>CourseNo</u>	Hours		
	111	COMP2400	120		L
	111	BUSN2011	110		Γ
	111	ECON2102	120		-

STUDY									
<u>UID</u>	<u>CourseNo</u>	Hours							
111	COMP2400	120							

$Assign they be executed in Option Merging Rapperators Help <math display="block">\sigma_{\sigma_{\varphi}(\sigma_{\psi}(R))} \equiv \sigma_{\varphi \wedge \psi}(R); \text{ of Exam Help}$

 $\sigma_{CourseNo="COMP2400"}(\sigma_{UID=111}(STUDY))$ v.s. $\sigma_{(Course="COMP2400")\land (UID=111)}(STUDY)$

	1	
	ST⊌#¥-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
UID	Coursel lo	Hours /
111	COMP2400	120
222	COMP2400	115
333	STAT2001	120
111	BUSN2011	110
111	CUN2/02	120
333	B VS V2014	130

UID CourseNo Hours

111 COMP2400 120

111 BUSN2011 110

111 ECON2102 120

STUDY									
UID	CourseNo	Hours							
111	COMP2400	120							

at: cstutorcs

STUDY										
<u>UID</u>	<u>CourseNo</u>	Hours								
111	COMP2400	120								
222	COMP2400	115								
333	STAT2001	120								
111	BUSN2011	110								
111	ECON2102	120								
333	BUSN2011	130								

 \Rightarrow

(without any intermediate relation)

STUDY								
UID	<u>CourseNo</u>	Hours						
111	COMP2400	120						

Assignment Project Exam Help

https://tutorcs.com

$Assignment & \text{Toperators} \\ R_{\pi_X(\pi_Y(R))} & \text{toperators} \\ \pi_{\pi_X(\pi_Y(R))} & \text{toperators} \\ \pi_{\pi_X(\pi_Y(R))} & \text{toperators} \\ \text{Toperators} \\ \text{Help} \\ \text{Toperators} \\ \text{Help} \\ \text{Toperators} \\ \text{Top$

https://tutorcs.com

Assign they be executed in object. The property of the executed in the property of the prope

 $\pi_{\textit{UID}}(\pi_{\textit{UID},\textit{CourseNo}}(\textit{Study}))$ v.s. $\pi_{\textit{UID}}(\textit{Study})$

https://tutorcs.com

Asscan they be executed in Participation of Participati

$Assignment & \text{Toperators} \\ R_{\pi_X(\pi_Y(R))} & \text{toperators} \\ \pi_{\pi_X(\pi_Y(R))} & \text{toperators} \\ \pi_{\pi_X(\pi_Y(R))} & \text{toperators} \\ \text{Toperators} \\ \text{Help} \\ \text{Toperators} \\ \text{Help} \\ \text{Toperators} \\ \text{Top$

UID	
111	ĺ
222	
333	

	STUDY				
<u>UID</u>	<u>CourseNo</u>	Hours			
111	COMP2400	120			
222	COMP2400	115			
333	STAT2001	120			
111	BUSN2011	110			
111	ECON2102	120			
333	BUSN2011	130			

 \Rightarrow

(without any intermediate relation)

UID
111
222
333

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$

https://tutorcs.com

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$ $\sigma_{Course.No=Enrol.CoureNo}(Course \times Enrol)$

https://tutorcs.com

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$ • $\sigma_{Course.No=Enrol.CoureNo}(Course \times Enrol)$

Г	- 1 1	Tin IRSE	11 6) [(E NROI	-		
ŀ	No	Cname	Unit		Studentio	Courselvo	Semester	Status	
ŀ	COMP2400	Relational Databases	6		111	BUSN2011	2016 S1 active		
ŀ	BUSN2011	Management Accounting	6		222	COMP2400	2016 S1	active	
L	D00142011	Wanagement Accounting			111	COMP2400	2016 S2	active	

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$ $\sigma_{Course.No=Enrol.CoureNo}(Course \times Enrol)$

	М	т		П		١.		•	/	/ 1	ы					N٦	r	1
	Ū			U	ÇO	JR	SE	• /	7			u		U	U	J		١
No	Т	Cname								Т	Unit							
COMP240	T	Relational Databases										6						
BUSN201	Management Accounting						Т	6										

ш	7.1				,				-		
ì	Stu	deni	עו	7	Cd	ur.	sel	10	Seme	ester	Status
ı		111			ЗU	SN	120	11	2016	S S1	active
ı		222			CO	MF	24	-00	2016	S S1	active
ı		111			CO	MF	24	-00	2016	S2	active

XX /	oChate	CC	41140	Ou seNo		
No	C at le	Upit	Still de juit D	CourseNo	Semester	Status
COMP2400	Relational Databases	6	111	BUSN2011	2016 S1	active
COMP2400	Relational Databases	6	222	COMP2400	2016 S1	active
COMP2400	Relational Databases	6	111	COMP2400	2016 S2	active
BUSN2011	Management Accounting	6	111	BUSN2011	2016 S1	active
BUSN2011	Management Accounting	6	222	COMP2400	2016 S1	active
BUSN2011	Management Accounting	6	111	COMP2400	2016 S2	active

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$ • $\sigma_{Course.No=Enrol.CoureNo}(Course \times Enrol)$

	О	Н				М	<u></u>	•	_	᠘			ы	ы	
	U	U	U	U	ÇO	JF	RSE	• /	7		U	U	Ц	U	U
No	No					(Cnai	ne				Т	ι	Jnit	
COMP240	00	T	Relational Databases								T		6		
BUSN201	1	T	N	lan	age	em	ent	Ac	cou	nti	ng	T		6	٦

	LINITO	_	
Studentio	Courseivo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

	-XX /	oChate	CC	41140	rec		
ſ	No	C ar le	Upit	Still de nt D	CourseNo	Semester	Status
Ī	COMP2400	Relational Databases	6	111	BUSN2011	2016 S1	active
	COMP2400	Relational Databases	6	222	COMP2400	2016 S1	active
	COMP2400	Relational Databases	6	111	COMP2400	2016 S2	active
	BUSN2011	Management Accounting	6	111	BUSN2011	2016 S1	active
Ī	BUSN2011	Management Accounting	6	222	COMP2400	2016 S1	active
Ī	BUSN2011	Management Accounting	6	111	COMP2400	2016 S2	active

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$ Course $\bowtie_{Course.N_0 = Enrol.CourseN_0}$ Enrol

	n	HhS^{*}/H	116	m		E NROI	L	
ľ	11	LL SOURSE . / LL		T	Studentie	Coursello	Semester	Status
	No	Cname	Unit		111	BUSN2011	2016 S1	active
ľ	COMP2400	Relational Databases	6		222	COMP2400	2016 S1	active
ı	BUSN2011	Management Accounting	6		111	COMP2400	2016 S2	active

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \times R_2) \equiv R_1 \bowtie_{\varphi} R_2$ $Course \bowtie_{Course,No=Enrol,Course,No} Enrol$

	LLDS://LL) [(E NROL	-	
11	Seulage //		/ 	Studentio	Coursello	Semester	Г
No	Cname	Unit		111	BUSN2011	2016 S1	Г
COMP2400	Relational Databases	6		222	COMP2400	2016 S1	Г
BUSN2011	Management Accounting	6		111	COMP2400	2016 S2	Г

Inner Join on Course No Entraturse C (no International Cartesian product)

No	Cname	Unit	StudentID	CourseNo	Semester	Status
COMP2400	Relational Databases	6	222	COMP2400	2016 S1	active
COMP2400	Relational Databases	6	111	COMP2400	2016 S2	active
BUSN2011	Management Accounting	6	111	BUSN2011	2016 S1	active

Status active active

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help

- $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; • $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; • $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_2 ;
- $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition contains attributes not in X, where X_i contains attributes both in R_i and X, and one both in R_i and R_i :
- $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, where X_i contains attributes both in R_i and X, and ones both in R_1 and R_2 ;

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

		44		\sim	//	4-	- 4	۷.	~	• ~ .	~	~ .		
		П	Co	JESE	//	П		П	1) T	C		C.0) [n
CourseNo	, -	U	P	Criame	7		7	nit	71		•	V		11
COMP240	00	F	Relatio	nal Data	abase	es		6	1					
BUSN201	1	Ma	anage	ment Ac	coun	ting		6						

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

h	ttma: //t 1	1ta	1		11E ROI	L	
CourseNo		r Unit	I	Student	O rs N	Semester	Status
COMP2400	Relational Databases	6		111	BUSN2011	2016 S1	active
BUSN2011	Management Accounting	6		222	COMP2400	2016 S1	active
DOGINZOTT	Management Accounting			111	COMP2400	2016 S2	active

Assignment Project Exam Help

• $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

h	ttma:•//t 1	1tar	CCC	11E RO	L	
CourseNo			Student	O rs N	Semester	Status
COMP2400	Relational Databases	6	111	BUSN2011	2016 S1	active
BUSN2011	Management Accounting	6	222	COMP2400	2016 S1	active
DOGINZOTT	Wanagement Accounting		111	COMP2400	2016 S2	active

Z	T	7_		1_			4	_	_	4		. 4			_ ~	
ľ	767	urselvo		n	7	na	me			Jr			St ide it	5	Semester	Status
Г	CO	MP2400	$\overline{}$	hel	atio	ıal	Palabas	es	Y	6	U	-	222	-	2016 S1	active
Γ	CO	MP2400		Rel	atior	nal	Databas	es	T	6			111		2016 S2	active
Г	BU	SN2011	N	ana	gen	nen	t Accour	nting	T	6			111		2016 S1	active

Assignment of Projector Exam Help

• $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ; $\sigma_{Cname='ManagementAccounting'}(Course \bowtie Enrol)$

_ h	ttma•//t 1	1† ^1	•	20 0	11E ROI	L	
CourseNo			. 🔻	Student	ors N	Semester	Status
COMP2400	Relational Databases	6		111	BUSN2011	2016 S1	active
BUSN2011	Management Accounting	6		222	COMP2400	2016 S1	active
DOCIVEOTI	I Management Accounting			111	COMP2400	2016 S2	active

	γ_1	L	~	4	4	~ ~	
Courselvo	Æ na	me	V	Jn :	St ide it D	Semester	Status
COMP2400	nelational	Palabases	7	6	222	2016 S1	active
COMP2400	Relational	Databases		6	111	2016 S2	active
BUSN2011	Managemen	t Accounting		6	111	2016 S1	active

CourseNoNo	Cname	Unit	StudentID	Semester	Status
BUSN2011	Management Accounting	6	111	2016 S1	active

Assignments Project je Exam Help

```
• \sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2, if \varphi contains only attributes in R_1;
```

 $\begin{array}{c} https://tutorcs.com \end{array}$

Assignments: Project je Exam Help

- $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ;
- $\sigma_{Cname=ManagementAccounting'}(Course) \bowtie Enrol$

Assignments: Project je Exam Help

- $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ;
 - $\sigma_{Cname="ManagementAccounting"}(Course) \bowtie Enrol$

Course Co

Assignments: Project je Exam Help

- $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ;
- $\sigma_{Cname='ManagementAccounting'}(Course) \bowtie Enrol$

CourseNo Cname Unit
COMP2400 Relational Databases 6
BUSN2011 Management Accounting 6

TT COURSE													
CourseNo	∇		Δ	Cname		7	Г	Un	it	þ			
BUSN2011	V	V\	Ла lage	nent A	:C(u ti g	U	• 6	L	ν			

	П									ŀ	ENRC)L			
	Г	St	ud	en	tID			Со	urs	se	No	T	Semester		Status
	Γ		1	11			BUSN2011						2016 S1	active	
	Γ		2	22				COI	MF	2	400	Т	2016 S1	active	
04	Ц	- 141						COMP2400				T	2016 S2		active
SI	ī	٨	П	╡				C	\overline{A}	5)				

BUSN

Rule-based Optimisation

Assignments: Project je Exam Help

- $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1 ;
 - $\sigma_{Cname=\text{'Management}Accounting'}(Course) \bowtie Enrol$

	ENROL													
StudentID	CourseNo	Semester	Status											
111	BUSN2011	2016 S1	active											
222	COMP2400	2016 S1	active											
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMP2400	2016 S2	active											

eivo	v	N	/ /		Chame	m		ш		Unii	ľ	•
2011	•	Ν	Ма	age	rent A	C	ų fi	g	U	• 6	Q	4

CourseNo	Cname	Unit	StudentID	Semester	Status
BUSN2011	Management Accounting	6	111	2016 S1	active

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help $\pi_{X}(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

https://tutorcs.com

 $\pi_{CourseNo,Cname,StudentID}(Course \bowtie Enrol)$

		4	4	_ ~		/	/4		- 4	L_	_		. ~	. ~		\sim	$\overline{}$			
	n	t	H	DO JAS	F	//	4	1	Ħ	П	a)	T	C			\boldsymbol{C}	()	r	H	١
CourseN	0	1		Cn	ame	-/	•		U	nit	۳	-			•		\smile	-		
COMP24	00		Re	elational Databases					6											
BUSN201	11	I N	Лana	agemei	nt Ac	cou	ntir	ng		6										

 $\pi_{\textit{CourseNo},\textit{Cname},\textit{StudentID}}(\textit{Course} \bowtie \textit{Enrol})$

		_	44	1	/ / 4	_ 4								_		
Г		1	FŦ		/T1	Н	-	7	, (\boldsymbol{C}	\cap	n	E NRC	L	
ŀ	CourseNo	7	LL	Chame	/ LL	1	nit	71	√ \$	tuden			ur	el o	Semester	Status
ŀ	COMP240		R	elational Datah	2928	-	6	+		111		В	USN	2011	2016 S1	active
ŀ	BUSN201			nagement Acc			<u> </u>	-		222		C	OMF	2400	2016 S1	active
L	D0011201	• 1	IVIG	nagement Acc	Junting	<u> </u>		_		111		C	OMF	2400	2016 S2	active

A S Can join be executed last P Push select/project EX an Help $\pi_{X}(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{\textit{CourseNo},\textit{Cname},\textit{StudentID}}(\textit{Course} \bowtie \textit{Enrol})$

		1	Ħ	13 C:	/ / f 1	11	6	11	$ \overline{} $	C	E NROI	L	
	CourseNo	7	L	Chame	——	1 1	nit	/	Y	Studen D	Courtello	Semester	Status
	OMP240		В	elational Data	ahases	-	6			111	BUSN2011	2016 S1	active
_	3USN201	-		nagement Ac			6			222	COMP2400	2016 S1	active
	00011201	• +	IVIC	nagoment 7to	oouning	-			Γ	111	COMP2400	2016 S2	active

			_ 4 _				
C ours AND	O ni	me	Jñ	St	ide nt D	Serhester	Status
VCCMP_400	elational	Databas	7 6	よし	222	2016 S1	active
COMP2400	Relational	Databases	6		111	2016 S2	active
BUSN2011	Managemen	t Accounting	6		111	2016 S1	active

Assignment Project Exam Help $\pi_{x_1(R_1)\bowtie R_2)}$ = $\pi_{x_1(R_1)\bowtie \pi_{x_2}(R_2)}$, if the join condition involves only

attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{CourseNo,Cname,StudentID}(Course \bowtie Enrol)$

	А	н	Ŧ	7	Э.	C	•	-	Н		н	н	-	7	r	П	•	Q		$oldsymbol{\cap}$		71	П		NRO	Ε
	ш	ш		J	الم	15	E				u	ш		J	•	U	70	2+1	den.		•	7	ur	el	_	г
CourseN	o i			Т	_	Cna	ame	•			٦,	Ui	nit	1	_	٦	•	· ·	1011	_	\sim				_	Ļ
COMP240	าก	+		201	atio	nal	Data	ha	200	_	+	-		+				1	11			BU	SN	201	11	L
		\perp		_							4		<u>, </u>	4		ı		2	22			CO	ME	240	nn	Г
BUSN201	1		Ma	ına	ger	nen	ıt Ac	cou	ınti	ng		6	6			ŀ					_					₽
	_				_						_			_				- 1	11			CO	MH	24(UU	П

Student D	Courtel o	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

			4	4		
Cours △N o	O na	ne 🚺	Jn	Stade nt D	Serhester	Status
VCCMP2400	elational l	Databas 🗸 🔎	The Company	C 2221	20 16 S1	active
COMP2400	Relational [Databases	6	111	2016 S2	active
BUSN2011	Management	Accounting	6	111	2016 S1	active

CourseNo	Cname	StudentID
COMP2400	Relational Databases	222
COMP2400	Relational Databases	111
BUSN2011	Management Accounting	111

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help $\pi_{\chi}(R_1 \bowtie R_2) \equiv \pi_{\chi_1}(R_1) \bowtie \pi_{\chi_2}(R_2)$, if the join condition involves only attributes in X, how could we derive X_1 and X_2 ?

https://tutorcs.com

Assignment Project Exam Help attributes in <math>X, how could we derive X_1 and X_2 ?

 $\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol})$

https://tutorcs.com

 $\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol})$

– h	ttps://tu	ite	orcs.	com
CourseNo	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	6		

 $\pi_{CourseNo,Cname}(Course) \bowtie \pi_{CourseNo,StudentID}(Enrol)$

h	ttps://1	utc	orcs	.com
CourseNo	Cname	Unit		
COMP2400	Relational Databases	6		
BUSN2011	Management Accounting	a 6	1	

π out	eND, Cname COURSE
CourseNd	Cnam 🗲 🖊
COMP2400	Fisiational Databases
BUSN2011	Management Accounting

cstutorcs

 $\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol})$

h	ttne•//ti	1 † C	111	C	NROI	L	
	CU TOURSE //	116	/ 1 \	Studen ID	Courtel o	Semester	Status
CourseNo	■ Cname	Unit		111	BUSN2011	2016 S1	active
COMP2400	Relational Databases	6		222	COMP2400	2016 S1	active
BUSN2011	Management Accounting	6		111	COMP2400	2016 S2	active

π_{000}	eNo, Cname COURSE
CourseNd	Cnam
COMP2400	Helational Databases
BUSN2011	Management Accounting

cstutorcs

 $\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol})$

h1	tnc.//ti	1 † ^	111		111 NROI	L	
	COURSE.//	\mathbf{H}	/ 1 /	√Studen ID√	Courtel o	Semester	Status
CourseNo	Cname	Unit		111	BUSN2011	2016 S1	active
COMP2400	Relational Databases	6		222	COMP2400	2016 S1	active
BUSN2011	Management Accounting	6		111	COMP2400	2016 S2	active

π out	eND, Cname COURT E							
CourseNo	Cnam							
COMP2400	Relational Databases							
BUSN2011 Management Accounting								

attributes in X, how could we derive X_1 and X_2 ?

 $\pi_{CourseNo,Cname}(Course) \bowtie \pi_{CourseNo,StudentiD}(Enrol)$

	LL COURSE . / LL		5
CourseNo	Cname	Unit	-
COMP2400	Relational Databases	6	2
BUSN2011	Management Accounting	6	

✓ Studen ID✓	Courtel o	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

	π out eNb, Cnam COUR IE										
Cou	rseNd	V	$\boldsymbol{\alpha}$	Cnam		Я	Т				
COM	IP2400	▼ F	telati	onal Da	tal	ases					
BUS	BUSN2011 Management Accounting										

	π _{CourseNo} , StudentID ENROL	
CQ1	Sucer (ID) CourseNo	
	141 DUSIN2011	
	222 COMP2400	
	111 COMP2400	

CourseNo	Cname	StudentID
COMP2400	Relational Databases	222
COMP2400	Relational Databases	111
BUSN2011	Management Accounting	111

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help $\pi_{X}(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie r_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

https://tutorcs.com

Assignment Project Exam Help $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 π_{Cname} , $\mathit{StudentID}$ (Course $\bowtie \mathit{Enrol}$)

https://tutorcs.com

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

				L	_	_	_	_/	1	4-		4		_				_	_		_			
	h	ì		Ť	co.	JH2	E	1	/1	Н	Ħ	П	1	٦	r	7	•	1	(`.(r	n	۱
CourseN	ō	Т		7	۲	Cn	ame				7	Ur	iit	4	_	•	_	•		_		٠.		
COMP2400 R				Relational Databases					6	3	٦													
BUSN201	11	т	Management Acc			COI	ınti	na	\top	6	;	7												

 $\pi_{\mathit{Cname},\mathit{StudentID}}(\mathit{Course}\bowtie \mathit{Enrol})$

		_	_	4	_	~	_ /			_	_	_				_	_	_	_				
ſ		n	Ŧ	F	170	IB E	• /	-	H	Н	F	A	m	7	, (\mathbf{C}	Ω 1	1		NRO	L		
ł	CourseN		1	L	P	Cnar	ne /	/	u	1	mit	Y	1	•	Studen	D	Cal	ur	el	0	Semest	er	Status
ł	COMP240	-	+	R	alatio	onal D	hatak	1260		+	6	\vdash			111		BUS	SN	20	11	2016 S	1	active
ł	BUSN201		Н			ment			_	\vdash	6	\dashv			222		CON	ИF	24	00	2016 S	1	active
l	D0314201			viai	aye	ment	AUU	ounti	ng .	_	0				111		CON	ИF	24	00	2016 S	2	active

Assignment Project Exam Help $\pi_{X}(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie_{T_{X_2}}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{\mathit{Cname},\mathit{StudentID}}(\mathit{Course}\bowtie \mathit{Enrol})$

$-\mathbf{n}$	ffag://fl	110	\mathbf{r}_{0}	C	E NROI	L	
CourseNo		1 Unit	TA	Student D	Courtello	Semester	Status
COMP2400	Relational Databases	6		111	BUSN2011	2016 S1	active
BUSN2011	Management Accounting	6		222	COMP2400	2016 S1	active
D03N2011	Wanagement Accounting	0		111	COMP2400	2016 S2	active

				4		
U ours ≜N o	I In	me (Jn 🗎	Stride at D	Serhester	Status
VCCMP2400	elational	Databas 🗸 🛴	العا (222	200 6 S1	active
COMP2400	Relational	Databases	6	111	2016 S2	active
BUSN2011	Managemen	t Accounting	6	111	2016 S1	active

Assignment Push select/project Exam Help $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

		11/	100	
	COURTE) (
				Studen
CourseNo	Chame	Unit		444
COMP2400	Relational Databases	6		1111
		0		222
BUSN2011	Management Accounting	6		
200.12011	management recounting			111

Student D	Courtello	Semester	Status	
111	BUSN2011	2016 S1	active	
222	COMP2400	2016 S1	active	
111	COMP2400	2016 S2	active	

O o ursen o	na me	CQI	In I	Stride at D	Semester	Status
CCMP2490	elliteral Date	abas 🖍 💛	5	222	20 16 S1	active
COMP2400	Relational Data	abases	6	111	2016 S2	active
BUSN2011	Management Ac	counting	6	111	2016 S1	active

Cname	StudentID
Relational Databases	222
Relational Databases	111
Management Accounting	111

Assignments: Project je Exam Help

 $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

Assignments: Project; Exam Help

• $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

hπρημοθητίο (densi to Grobe Scheme (Grap) ™ π StudentiD (Enrol)?

Course							
CourseNo	Cname	Unit					
COMP2400	Relational Databases	6					
BUSN2011	- Management Accounting	6					

Assignments: Project; Exam Help

• $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

• π_{Chain} : Moderate π_{Chain} : π_{Chain} :

		Course		
	CourseNo	Cname	Unit	
	COMP2400	Relational Databases	6	
	BUSN2011	Management Accounting	6	
		A hat	•	ctutorec
I	π _{Cname} Co RS	CHai	. L	stutorcs
	Cname			
	Relational			
	Management			

Assignments: Project je Exam Help

• $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

Course									
CourseNo Cname					ne			Unit	+
COMP240	0		Relational Databases					6	╗
BUSN201	1	,	Management Accounting					6	
	V	V		'	r	10	١t	•	7
π	າ <mark>V</mark> B	4				•			

Enrol							
StudentID	CourseNo	Semester	Status				
111	BUSN2011	2016 S1	active				
222	COMP2400	2016 S1	active				
111	COMP2400	2016 S2	active				

Relational

Management

Assignments: Project je Exam Help

• $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 π craine, succentio (Gcurse \star Esnot) = π crafie (Gsurse) $\bowtie \pi$ Studentio (Enrol)?

Couper	
Course	StudentID
CourseNo Cname Unit	111
COMP2400 Relational Databases 6	
BUSN2011 Management Accounting 6	222
000000	41
TCnameCO RSE	$\mathbf{H}\mathbf{H}\mathbf{O}$
Chame	π StudentID E
Cname	Student
Relational	111
Management	
	222

Enrol							
CourseNo	Semester	Status					
BUSN2011	2016 S1	active					
COMP2400	2016 S1	active					
COMP2400	2016 S2	active					
	CourseNo BUSN2011 COMP2400	CourseNo Semester BUSN2011 2016 S1 COMP2400 2016 S1					

Assignments: Project je Exam Help

• $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Crains, state-nild}(Gourse igotimes Enrol) = \pi_{Cname}(Course) owto \pi_{Studentild}(Enrol)?$

			_	~ ~ •			
Course			ENROL				
CourseNo		Unit		StudentID	CourseNo	Semester	Status
	Cname			111	BUSN2011	2016 S1	active
COMP2400	Relational Databases	6		222	COMP2400	2016 S1	active
BUSN2011	Management Accounting	6	_ 4	1/11	CQMP2400	2016 S2	active
π _{Cname} CO R Cname Relational Managemen		: C	St	# StudentIDE StudentI 111 222	NROL S		

Is $\pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$ our desired result?

Assignments: Project je Exam Help

• $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 π_{Crarie} , state in the first in Equal π_{Crarie} (Course) $\bowtie \pi_{StudentiD}(Enrol)$?

					~ ~ •			
	Course				ENROL			
	aNa I		Llesia		StudentID	CourseNo	Semester	Status
	urseNo	Cname	Unit		111	BUSN2011	2016 S1	active
	MP2400	Relational Databases	6		222	COMP2400	2016 S1	active
BU	SN2011	Management Accounting	6		1/11	COMP2400	2016 S2	active
		VAL hat	•	C1	11tA	rock	2010 02	donvo
π_{C}	name COVR	* Cliat	. U		# StudentIDE			
	Cname		•	~ •	"StudentID	THOE		
	Relational				Studentl	<u> </u>		
M	lanagemen				111			
					222			

Is $\pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$ our desired result?

No. $\pi_{Cname,StudentID}(Course \bowtie Enrol) \neq \pi_{Cname}(Course) \bowtie \pi_{StudentID}(Enrol)$

Signment Project before join.

Assignment Project Fixam in Help

attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

 $h^{\pi_{\textit{Cname}},\textit{StudentID}}(\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol}))$

BUSN2011

Rule-based Optimisation

• Can join be executed last? → Push select/project before join.

 $\pi_X(P_1 \bowtie P_2) = \pi_X(\pi_{X_1}(P_1) \bowtie \pi_{X_2}(P_2))$, if the join condition involves attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

 $h^{\pi_{\textit{Cname}},\textit{StudentID}}/\pi_{\textit{CourseNo},\textit{Cname}}(\textit{Course}) \bowtie \pi_{\textit{CourseNo},\textit{StudentID}}(\textit{Enrol}))$

CourseNo Cname Unit
COMP2400 Relational Databases 6

Management Accounting

• Can join be executed last? \rightarrow Push select/project before join.

attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

https://tutorcs.com

 COURSE
 Unit

 CourseNo
 Cname
 Unit

 COMP2400
 Relational Databases
 6

 BUSN2011
 Management Accounting
 6

π_{CU}rs Vo., nam COUR E
CourseNo
COMP2400 Relational Databases
BUSN2011 Management Accounting

cstutorcs

Can join be executed last? → Push select/project before join.

attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

 $h^{\pi_{Cname.StudentID}(\pi_{CourseNo,Cname}(Course)} \bowtie \pi_{CourseNo,StudentID}(Enrol))$

COURSE StudentID

COURSE						
CourseNo	Unit					
COMP2400	Relational Databases	6				
BUSN2011	Management Accounting	6				

202					
StudentID	CourseNo	Semester	Status		
111	BUSN2011	2016 S1	active		
222	COMP2400	2016 S1	active		
111	COMP2400	2016 S2	active		

			_	$\boldsymbol{\frown}$	•				$\boldsymbol{\frown}$	~	-
π_{C}	U 11.	s	vo,	na	m	Cour	ìΕ		7	П	
CourseNo	٠,	Ι'				Cnam	е	7			_
COMP2400	0	Relational Databases									
BUSN2011	1	Management Accounting									

cstutorcs

Can join be executed last? → Push select/project before join.

attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

 $h^{\pi_{Cname},StudentID}$ courseNo, Cname (Course) $\bowtie \pi_{CourseNo},StudentID$ (Enrol))

COURSE StudentID

COURSE						
CourseNo			Cna	me	9	Unit
COMP2400		Relational Databases				6
BUSN2011	I	Management Accounting				6
				т	- 4	

$\pi_{C_{k}}$ rs	No, Enam	COURSE	7 T	
CourseNo	Cname			
COMP2400	Relational Databases			
BUSN2011	Management Accounting			

202						
StudentID	CourseNo	Semester	Status			
111	BUSN2011	2016 S1	active			
222	COMP2400	2016 S1	active			
111	COMP2400	2016 S2	active			

111 BUSN2011 222 COMP2400	π Co irs :No S					
222 COMP2400	StudentiD	CourseNo				
	111					
	222	COMP2400				
111 COMP2400	111	COMP2400				

attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname.StudentID}(Course \bowtie Enrol)$

 $\pi_{Cname.StudentID}(\pi_{CaurseNo,Cname}(Course) \bowtie \pi_{CourseNo,StudentID}(Enrol))$

Cname Unit

CourseNo COMP2400 Relational Databases BUSN2011 Management Accounting

	١.	м.		-	$\overline{}$					$\boldsymbol{\cap}$	~	ь.
$\pi_{\mathcal{C}}$	V	rsı	No	,	na	ım	Cour	₹BE		7	П	
CourseNo	۲	Т			_		Cnar	ne	7			_
COMP2400			Relational Databases									
BUSN2011		Management Accounting										

CourseNo	Cname	StudentID

	- ENRUI	_	
StudentID	CourseNo	Semester	Status
111	BUSN2011	2016 S1	active
222	COMP2400	2016 S1	active
111	COMP2400	2016 S2	active

π Co irs •No S					
StudentiD	CourseNo				
111	BUSN2011				
222	COMP2400				
111	COMP2400				

CourseNo	Cname	StudentID
COMP2400	Relational Databases	222
COMP2400	Relational Databases	111
BUSN2011	Management Accounting	111

 $\bullet \ \ \, \text{Can join be executed last?} \hookrightarrow \text{Push select/project before join.}$

attributes outside X, how could we derive X_1 and X_2 ?

 $\pi_{Cname,StudentID}(Course \bowtie Enrol)$

 $17^{\pi_{Cname},StudentID}$ $\pi_{CourseNo,Cname}$ $(Course) \bowtie \pi_{CourseNo,StudentID}$ (Enrol))

 COURSE

 CourseNo
 Cname
 Unit

 COMP2400
 Relational Databases
 6

 BUSN2011
 Management Accounting
 6

2 CENROL						
StudentID	CourseNo	Semester	Status			
111	BUSN2011	2016 S1	active			
222	COMP2400	2016 S1	active			
111	COMP2400	2016 S2	active			

π_{G}	V _{rs}	Vo.	nam	Cour	R E	H	a	1	ī
CourseNo	Ť	Chame							
COMP2400		Relational Databases							
BUSN2011		Management Accounting							

				No	s		ntIΩ	, E	ROL
StudentiD			CourseNo						
111			BUSN2011						
Г	222			COMP2400					
111				COMP2400					

CourseNo	Cname	StudentID	
COMP2400	Relational Databases	222	
COMP2400	Relational Databases	111	
BUSN2011	Management Accounting	111	

Cname	StudentID
Relational Databases	222
Relational Databases	111
Management Accounting	111

Heuristic Rules and Query Trees

Assignment Project Exam Help

https://tutorcs.com

Heuristic Rules and Query Trees

Assignment Project Exam Help

https://tutorcs.com

 $\overset{\text{(2)}}{W}\overset{\pi_{X}(\pi_{Y}(R))}{\text{echat:}}\overset{\pi_{X}(R)}{\text{cstutores}}$

Heuristic Rules

Assignment Project Exam Help

Heuristic Rules

Assignment Project Exam Help https://tutorcs.com

Weenat: cstutores

Assigned the relation scholars Project Exam Help

MOVIE(title, production_year, country, run_time, major_genre)
ROLE(id, mtitle, mprod_year, description, credits)

Quent (if) Swar in tries that it posto mediting in Cruise'.

 $\pi_{\textit{title},\textit{production_},\textit{year}}(\sigma_{\textit{title}=\textit{mtitle}} \land \textit{production_},\textit{year}=\textit{mprod_},\textit{year}(\sigma_{\textit{major_},\textit{genre}='\textit{war'}} \land \textit{first_},\textit{name}='\textit{Tom'} \land \textit{last_},\textit{name}='\textit{Cruise'}(\mathsf{MOVIE} \times (\mathsf{PERSON} \bowtie \mathsf{ROLE}))))$

WeChat: cstutorcs

Assigned the relation scholars Project Exam Help

MOVIE(title, production_year, country, run_time, major_genre)
ROLE(id, mtitle, mprod_year, description, credits)

Quent (ist) Swar in tyles that it postormed by The Cruise'.

```
\pi_{title,production\_year}(\sigma_{title=mtitle} \land production\_year=mprod\_year(\sigma_{major\_genre='war'} \land first\_name='Tom' \land last\_name='Cruise'(MOVIE <math>\times (PERSON \bowtie ROLE))))
```

Quision: Can we apply the following rule to optimise the query? $\sigma_{\varphi_1} \wedge \varphi_2 / R + Q_2 = P \cdot Q(R_1) \times Q_2 \cdot Q(R_2) + Q(R_2) \times Q_3 \cdot Q(R_3) \times Q_4 \cdot Q(R_4) \times Q_5 \cdot Q(R_5) \times Q_5 \cdot Q(R_$

Assiver the relation schema Project Exam Help

MOVIE(title, production_year, country, run_time, major_genre)
ROLE(id, mtitle, mprod_year, description, credits)

Quent (ist) Swar in tries that is postored by The Cruise'.

```
\pi title_production_year (\sigma title=mtitle \times production_year = mprod_year (\sigma major_genre='war' \\
first_name='Tom' \last_name='Cruise' (MOVIE \times (PERSON \omega ROLE))))
```

- Quision: Can We apply the following rule to optimise the query? $\sigma_{\varphi_1} \wedge \varphi_2 / R + Q_2 = 1$ (B₁) × $G_2 + G_3 + G_4 + G_5 + G_6 + G$
- We would have

```
\pi_{\textit{title},\textit{production\_year}}(\sigma_{\textit{title}=\textit{mtitle}} \land \textit{production\_year} = \textit{mprod\_year}(\sigma_{\textit{major\_genre='war'}}(\mathsf{MOVIE}) \\ \times \sigma_{\textit{first\_name='Tom'}} \land \textit{last\_name='Cruise'}(\mathsf{PERSON} \bowtie \mathsf{ROLE})))
```


Assignment Project Exam Help

Assign major ma Project Exam Help

MOVIE(title, production_year, country, run_time, major_genre)
RQLE(id, mtitle, mprod_year, description, credits)

• Quentist abwar mivestila ir performed by Tom Cruise'.

 $\pi_{title,production_year}(\sigma_{title=mtitle \land production_year=mprod_year}(\sigma_{major_genre='war'}(\mathsf{MOVIE})$

× oring name= Tim \| last_name= Cruise (PERSON ⋈ ROLE)))

WELDAL CSTUTORS

PESON(id, first_name, last_name, year_born) Exam Help

MOVIE(title, production_year, country, run_time, major_genre) ROLE(id, mtitle, mprpd_year, description, credits)

list hwar mivies tia ir performed of Tom Cruise'.

 $\pi_{title,production_year}(\sigma_{title=mtitle \land production_year=mprod_year}(\sigma_{major_genre='war'}(\mathsf{MOVIE})$

 $\begin{array}{c} \times \text{ Constant Mast. name="Cruise"}(\text{PERSON} \bowtie \text{ROLE})))\\ \bullet \text{ Can we apply of (ALZAL)} \equiv CSULLOTCS \end{array}$

Assignation of the Project Exam Help

MOVIE(title, production_year, country, run_time, major_genre)
ROLE(id, mtitle, mprod_year, description, credits)

• Quell tist howar intrestua ir performed by Tom Cruise'.

 $\pi_{\textit{title},\textit{production_year}}(\sigma_{\textit{title}=\textit{mtitle} \land \textit{production_year}=\textit{mprod_year}}(\sigma_{\textit{major_genre='war'}}(\mathsf{MOVIE})$

- \times Gir. Lname='Trm \last_name='Cruise'(PERSON \bowtie ROLE)))
- Can we a selve (A CA2) = 6 SUASIOTCS
- We would have

 $\pi_{\textit{title},\textit{production_year}}(\sigma_{\textit{major_genre}='\textit{war}'}(\mathsf{MOVIE})\bowtie_{\textit{title}=\textit{mtitle}\land\textit{production_year}=\textit{mprod_year}}($

 $\sigma_{\textit{first_name}='\textit{Tom}' \land \textit{last_name}='\textit{Cruise}'}(\mathsf{PERSON} \bowtie \mathsf{ROLE})))$

Assignment Project Exam Help

Assignment Project Exam Help

PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

ROLE(id mtitle, mp/od year, description, credits).

Query: List all war movies that are performed by 'Tom Cruise'.

Assignment Project Exam Help

PERSON(id, first_name, last_name, year_born)

MOVIE(title, production_year, country, run_time, major_genre)

ROLE(id mtitle, mp/od year, description, credits).

Query: List all war movies that are performed by 'Tom Cruise'.

 $\pi_{\textit{title},\textit{production},\textit{year}}(\sigma_{\textit{major},\textit{genre}} = war'(\mathsf{MOVIE}) \bowtie_{\textit{title}} = \textit{mtitle} \land \textit{production},\textit{year} = \textit{mprod}_{\textit{year}}(\sigma_{\textit{tits}}) \land \sigma_{\textit{tits}} \land \sigma_{\textit{title}} = \sigma_{\textit{title}} \land \sigma_{\textit{title}$

• Question: Can we apply the following rule to optimise the query?

$$\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)),$$

where X_i contains attributes both in R_i and X, and ones both in R_1 and R_2

Assigned the relation schema Project Exam Help

MOVIE(title, production_year, country, run_time, major_genre)
ROLE(id, mtitle, mprod_year, description, credits)

• auntlitis war intestia ir costo med and me Cruise'.

```
\pi_{title,production\_year}(\sigma_{major\_genre='war'}(\mathsf{MOVIE}) \bowtie_{title=mtitle \land production\_year=mprod\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,production\_year}(\sigma_{title,product
```


Assigned the relation schema Project Exam Help

MOVIE(title, production_year, country, run_time, major_genre)
ROLE(id, mtitle, mprod_year, description, credits)

• Quantition war intestig iresto med and me Cruise'.

```
\pi_{title,production\_year}(\sigma_{major\_genre="war'}(\mathsf{MOVIE}) \bowtie_{title=mtitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle\_ntitle\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle\_ntitle\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle \land production\_year=mprod\_year}(\sigma_{title\_ntitle \land production\_year=mprod\_year}(\sigma_{title \land production\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_year=mprod\_ye
```

• We Wilder e: hat: cstutorcs

```
\pi_{title,production\_year}(\pi_{title,production\_year}(\sigma_{major\_genre='war'}(MOVIE))
\bowtie_{title=mtitle \land production\_year=mprod\_year}
```

```
(\pi_{\textit{mtitle}, mprod\_year}(\sigma_{\textit{first\_name}='Tom' \land last\_name='Cruise'}(\mathsf{PERSON} \bowtie \mathsf{ROLE}))))
```

We further apply some rules to optimise the query ...

Assignment Project Exam Help

Assignment Paris With 10 Tuples and 3 attributes 1 p

	1	Chingy	Right Thurr		
_	2	Scribe	Stand up		
http	C3.	Aguilera and Kim	Can't hold us down		
	34. / <i>1</i>	Livalieseence D	• Geirlg under		
	5	Justin Timberlake	Senorita		
	6	Brooke Fraser	Better		
We	71_	Black Eyed Peas	Where is the love?		
		at. Estu	lores		

- Compare two strategies of evaluating "Who is top of the pops?":
 - σ Rank=1 $(\pi$ Rank, Artist(CHARTS))
 - π Rank, Artist $(\sigma_{Rank=1}(CHARTS))$

A SSIGNING HARTS = {Rank Pytist. Song } with 10 Truples and 3 attributes 1p

	1	Chingy	Right Thurr		
_	2	Scribe	Stand up		
http	C3.	Aguilera and Kim	Can't hold us down		
	34. / <i>1</i>	Livalieseence D	• Geirlg under		
	5	Justin Timberlake	Senorita		
	6	Brooke Fraser	Better		
We	71_	Black Eyed Peas	Where is the love?		
		at. Estu	lores		

- Compare two strategies of evaluating "Who is top of the pops?":
 - σ Rank=1 $(\pi$ Rank, Artist(CHARTS))
 - π Rank, Artist (σ Rank=1 (CHARTS))

Selection before Projection is preferred.

A SSGP	ider CH	ARTS = {Rank, Atjet	with 100 tubles and	50	ttribu	tes :	2
	Rank	Artist	Song				_
	1	Chingy	Right Thurr				
1	2	Scribe	Stand up				
r	ittn	Aguilera and Kim	Cart hold is down				
-	4	Evanescence	Going under				
	5	Justin Timberlake	Senorita				
	6	Brooke Fraser	Better				
1		Black Eyed Peas	Where is the leve?				
	V V	Chat. Ca	stutulos				

- Compare two strategies of evaluating?
 - σ Rank > $10^{(\pi)}$ Rank. Artist (CHARTS))
 - π Rank, Artist $(\sigma$ Rank > 10(CHARTS))

A SSGORE	ider CH		with 100 tubles and	150	ttribu	tes:	2
~~	Rank	Artist	Song				
	1	Chingy	Right Thurr				
1	2	Scribe	Stand up				
r	1TT1	Aguilera and Kim	Card hold is down				
•	4	Evanescence	Going under				
	5	Justin Timberlake	Senorita				
	6	Brooke Fraser	Better				
1		Black Eyed Peas	Where is the leve?				
	Y V C	Chat. Ca	olulo168				

- Compare two strategies of evaluating?
 - σ Rank > 10(π Rank, Artist(CHARTS))
 - π Rank, Artist (σ Rank > 10 (CHARTS))

Projection before Selection is preferred.

Query Optimisation

Assignment Project Exam Help

Trade-off:

Time for executing a RA query vs Time for finding a better RA query

(credit cookie) memorising vs understanding

Assignment Project Exame Help

2006 but not whatever maths

herps: were testiconsterday

WeChat:

©santabanta.com