0 101 1101

Reversible System Solitary Waye

Background Normal Forms

Bilinear

Literature Revie

Travelling Wave

Travelling VVa

Travelling Wave

Travelling vva

GPC MS

Solitary Wave Families in Two Non-Integrable Models Using Reversible Systems Theory

Jonathan Leto

Reversible System Solitary Wa

Background Normal Forms

Normal Forms
Bilinear
Functions

Literature Revie

GPC

Travelling Wave

Travelling Wave

Haveling vva

GPC MS

Overview

- Definitions
- Background
- Literature Review
- Method of Solution
- The Generalized Pochammer-Chree Equations
- A Generalized Microstructure Equation

Overview

Reversible

System Solitary Wa

Normal Forms

Normal Form

Functions

Literature Revi

CDC

Travelling Wave

T 111 141

Travelling Wave

GPC

Reversible Dynamical System (looss & Adelmeyer)

Consider

$$\frac{dz}{dt} = F(z; \mu), z \in \mathbb{R}^n, \mu \in \mathbb{R}$$
 (1)

where

$$F\left(0;0\right) =0$$

. If there exits a unitary map

$$S: \mathbb{R}^n \mapsto \mathbb{R}^n, S \neq I$$

such that

$$F(Sz; \mu) = -SF(z; \mu)$$

for all z and μ then (1) is a reversible system.

Solitary Wave

Normal Forms
Bilinear

Literature Revie

Literature record

Travelling Wave

. . . .

Travelling Wave

Results

GPC MS

Families of Solitary Waves

Here we will use the term solitary wave or "soliton" to mean a pulse-like solution to an evolution equation. For example, a two parameter family of solitary waves is

$$A(z) = \ell \operatorname{sech}^2 kz \tag{2}$$

where k and ℓ are the parameters which determine the speed and the height of the wave.

GPC

Travelling Wave

MS

Travelling Wave

Results

GPC MS

Normal Form Theory

After a nonlinear change of variables [?] one may put the Center Manifold into Normal Form.

- Two-Dimenional Center Manifold
 - $\lambda_{1-4} = 0, 0, \pm \lambda, \lambda \in \mathbb{R}$
 - $Y = A\zeta_0 + B\zeta_1 + \Psi(\epsilon, A, B)$
- Four-Dimensional Center Manifold
 - $\lambda_{1-4} = 0, 0, \pm i\omega, \omega \in \mathbb{R}$
 - $Y = A\zeta_0 + B\zeta_1 + C\zeta_+ + \bar{C}\zeta_- + \Psi(\epsilon, A, B, C, \bar{C})$

where $\zeta_0, \zeta_1, \zeta_+, \zeta_-$ are eigenvectors of the linearized operator.

Overview

D C 11

System System

Solitary Wa

Normal Forms

Bilinear Functions

Literature Revi

Travelling Wave

.....

Travelling Wave

Doculto

GP0 MS

Properties of Bilinear Functions

A function

 $B: \mathbb{C}x\mathbb{C} \mapsto \mathbb{C}$

satisfying the following axioms

$$B(x+y,z) = B(x,z) + B(y,z)$$
 (3a)

$$B(\lambda x, y) = \lambda B(x, y) \tag{3b}$$

$$B(x, y + z) = B(x, y) + B(x, z)$$
 (3c)

$$B(x, \lambda y) = \lambda B(x, y) \tag{3d}$$

where $\lambda \in \mathbb{C}$, is called **bilinear**.

Overview

Reversible System

Solitary Wa

Backgroun

Normal Forms

Bilinear

Literature Review

cnc

Travelling Wave

MS

Travelling Wave

Results

GPC MS

Selected Literature Review

Overview

Definition

System Solitany Wa

Solitary Wa

Backgro

Normal Forms

Bilinear

Literature Revi

Literature Nevi

GPC

Travelling Wave

MS

Travelling Wave

Results GPC MS

The Generalized Pochammer-Chree Equations

GPC1

$$(u - u_{xx})_{tt} - (a_1u + a_2u^2 + a_3u^3)_{xx} = 0$$
 (4)

• GPC2

$$(u - u_{xx})_{tt} - (a_1u + a_3u^3 + a_5u^5)_{xx} = 0$$
 (5)

GPC MS

Travelling Wave ODE

Let z=x-ct and $u(x,t)=\phi(z)$ to reduce (4) and (5) to the Travelling Wave ODE

$$\phi_{zzzz} - q\phi_{zz} + p\phi = \mathcal{N}_{1,2}[\phi] \tag{6}$$

where

$$\mathcal{N}_{1}[\phi] = -\frac{1}{c^{2}} \left[3a_{3} \left(2\phi\phi_{z}^{2} + \phi^{2}\phi_{zz} \right) + 2a_{2} \left(\phi_{zz}\phi_{z} + \phi_{z}^{2} \right) \right]
\mathcal{N}_{2}[\phi] = -\frac{1}{c^{2}} \left[3a_{3} \left(2\phi\phi_{z}^{2} + \phi^{2}\phi_{zz} \right) + 5a_{5} \left(4\phi^{3}\phi_{z}^{2} + \phi^{4}\phi_{zz} \right) \right]$$

Normal Forms

Travelling Wave

MS

Travelling Wave

MS

A Generalized Microstructure PDE

$$v_{tt} - bv_{xx} - \frac{\mu}{2} \left(v^2 \right)_{xx} - \delta \left(\beta v_{tt} - \gamma v_{xx} \right)_{xx} = 0$$
 (8)

Normal Forms

Travelling Wave

Travelling Wave

MS

Travelling Wave ODE

Let z = x - ct and $u(x, t) = \phi(z)$ to reduce to the Travelling Wave ODF

$$\phi_{zzzz} - q\phi_{zz} + p\phi = \mathcal{N}[\phi] \tag{9}$$

where

$$\mathcal{N}\left[\phi\right] = -\Delta_1 \phi_z^2 - b\Delta_1 \phi \phi_{zz} \tag{10}$$

Solitary Wave Families in Two Non-Integrable Models Using Reversible Systems Theory

J.A. Leto

Overview

D C ...

Reversible

olitary Wa

Backgroun

Normal Forms

ilinear

Literature Revie

Literature ivevi

GPC

Travelling Wave

MS

Travelling Wave

Results

GPC MS

Results: The Generalized Pochammer-Chree Equations

(11)

O ver view

D C ...

Reversible System

Solitary Wa

Backgroun

Normal Forms

Bilinear

Literature Revie

GPC

Travelling Wave

MS

Travelling Wave

Results

MS

Results: A Generalized Microstructure PDE

STUFF

J.A. Leto

D-6-thi-

Reversible System

Solitary Wa

Backgrou

Normal Forms

Bilinear

Literature Revie

Literature Revie

GPC

Travelling Wave

MS

Travelling Wave

Results

MS