WHAT IS CLAIMED IS:

1	1. A lamellar diffraction grating comprising:
2	a substrate; and
3	an arrangement of generally rectangular protrusions spaced along the substrate
4	at an average grating period a , wherein an average height h and an average width w of the
5	protrusions is such that $h/a > 0.5$ and $w/a < 0.5$.
1	2. The lamellar diffraction grating recited in claim 1 wherein the
1	generally rectangular protrusions have substantially equal heights and have substantially
2	
3	equal widths.
1	3. The lamellar diffraction grating recited in claim 1 wherein the grating
2	period corresponds to a line density 1/a between 700 and 1100 protrusions/mm.
	4. The lamellar diffraction grating recited in claim 1 wherein the grating
1	
2	period corresponds to a line density 1/a between 800 and 1000 protrusions/mm.
1	5. The lamellar diffraction grating recited in claim 1 wherein h/a is
2	between 0.7 and 1.1 and wherein w/a is between 0.15 and 0.3.
1	6. The lamellar diffraction grating recited in claim 1 wherein h/a is
2	between 0.75 and 1.0 and wherein w/a is between 0.2 and 0.3.
1	7. The lamellar diffraction grating recited in claim 1 wherein h/a is
2	between 0.84 and 0.96 and wherein w/a is between 0.22 and 0.3.
1	8. The lamellar diffraction grating recited in claim 1 wherein the width of
2	each protrusion is defined by a FWHM measurement of a profile of such protrusion.
1	9. A method for diffracting an optical signal, the method comprising:
2	propagating the optical signal towards an arrangement of generally rectangular
3	protrusions spaced along a substrate at an average grating period a , wherein an average
4	height h and an average width w of the protrusions is such that $h/a > 0.5$ and $w/a < 0.5$; and
5	reflecting the optical signal from the arrangement.
1	10. The method recited in claim 9 wherein each of the generally
2	rectangular protrusions has a substantially equal height and width.

1	11. The method recited in claim 9 wherein the grating period corresponds
2	to a line density $1/a$ between 700 and 1100 protrusions/mm.
1	12. The method recited in claim 9 wherein the grating period corresponds
2	to a line density $1/a$ between 800 and 1000 protrusions/mm.
_	13. The method recited in claim 9 wherein h/a is between 0.7 and 1.1 and
1	The method recited in claim 9 wherein h/a is between 0.7 and 1.1 and wherein w/a is between 0.15 and 0.3.
2	wherein w/a is between 0.13 and 0.3.
1	14. The method recited in claim 9 wherein h/a is between 0.75 and 1.0 and
2	wherein w/a is between 0.2 and 0.3.
1	15. The method recited in claim 9 wherein h/a is between 0.84 and 0.96
2	and wherein w/a is between 0.22 and 0.3.
2	
1	16. The method recited in claim 9 wherein the width of each protrusion is
2	defined by a FWHM measurement of a profile of such protrusion.
1	17. A lamellar diffraction grating comprising:
2	substrate means; and
3	means for reflecting an optical signal, such means for reflecting the optical
4	signal including an arrangement of generally rectangular protrusion means spaced along the
5	substrate means at an average grating period a , wherein an average height h and an average
6	width w of the protrusions is such that $h/a > 0.5$ and $w/a < 0.5$.
	18. The lamellar diffraction grating recited in claim 17 wherein the grating
1	18. The lamellar diffraction grating recited in claim 17 wherein the grating period corresponds to a line density 1/a between 800 and 1000 protrusions/mm.
2	period corresponds to a line density 1/a between 300 and 1000 protrasions, min.
1	19. The lamellar diffraction grating recited in claim 17 wherein h/a is
2	between 0.84 and 0.96 and wherein w/a is between 0.22 and 0.3.
1	20. A method for fabricating a lamellar diffraction grating, the method
2	comprising:
3	forming a pattern for an anisotropic hard etch mask over a surface of a
4	substrate, the pattern having an average grating period a and defining an average protrusion
5	width w for the lamellar diffraction grating such that $w/a < 0.5$; and

6	etching a plurality of gaps into the substrate through the patterned amount of
7	hard etch mask to an average depth h such that $h/a > 0.5$.
1	21. The method recited in claim 20 wherein the grating period corresponds
2	to a line density 1/a between 800 and 1000 protrusions/mm.
	22. The method recited in claim 20 wherein h/a is between 0.84 and 0.96
1	22. The method recited in claim 20 wherein h/a is between 0.84 and 0.96 and wherein w/a is between 0.22 and 0.3.
2	and wherein w/a is between 0.22 and 0.3.
1.	23. The method recited in claim 20 wherein forming the pattern for the
2	anisotropic hard etch mask comprises:
3	depositing the anisotropic hard etch mask over the substrate;
4	forming a layer of photoresist over the anisotropic hard etch mask;
5	exposing the pattern onto the layer of photoresist;
6	etching the anisotropic hard etch mask through the pattern in the layer of
7	photoresist; and
8	removing the layer of photoresist.
1	24. The method recited in claim 23 wherein etching the anisotropic hard
2	etch mask comprises using isotropic reactive ion etching.
1	25. The method recited in claim 23 wherein removing the layer of
2	photoresist comprises applying an organic solvent.
2	photoresist comprises apprying an organic servers
1	26. The method recited in claim 20 wherein etching the plurality of gaps
2	comprises performing an anisotropic chemical etch.
1	27. A wavelength router for receiving, at an input port, light having a
2	plurality of spectral bands and directing subsets of the spectral bands to respective ones of a
3	plurality of output ports, the wavelength router comprising a free-space optical train disposed
4	between the input port and the output ports providing optical paths for routing the spectral
5	bands, the optical train including a reflective lamellar diffraction grating disposed to intercept
6	light traveling from the input port, wherein the reflective lamellar diffraction grating has an
7	arrangement of generally rectangular protrusions spaced along a substrate at an average
8	grating period a , and an average height h and an average width w of the protrusions is such
Q	

- 1 28. The wavelength router recited in claim 27 wherein the grating period 2 corresponds to a line density 1/a between 800 and 1000 protrusions/mm.
- 1 29. The wavelength router recited in claim 27 wherein h/a is between 0.84
- 2 and 0.96 and wherein w/a is between 0.22 and 0.3.