THE FUNCTOR OF POINTS

MINH-TAM TRINH

Spoiler Alert: We solve some exercises in [EH].

1. The Yoneda Lemma

Let C be a locally small category. If $X \in C$, then the *(covariant) hom functor* of X is the functor $h^X : C \to \mathsf{Set}$ that sends $Y \mapsto \mathrm{Hom}(X,Y)$, and sends $g : Y_1 \to Y_2$ to the operation of postcomposition with g.

Lemma 1.1 (Yoneda). Let $\mathcal{F}: \mathsf{C} \to \mathsf{Set}$ be arbitrary, and let $X \in \mathsf{C}$. Then the map

$$\Phi \mapsto \Phi_X(\mathrm{id}_X)$$

is a natural bijection $\operatorname{Hom}(h^X, \mathfrak{F}) \to \mathfrak{F}(X)$.

Proof. For all $Y \in C$ and $f \in Hom(X,Y)$, there is a commutative diagram:

(2)
$$\begin{array}{c} \operatorname{Hom}(X, X) - h^{X} f \to \operatorname{Hom}(X, Y) \\ \downarrow & \downarrow \\ \mathfrak{F}(X) - --- \mathfrak{F} f - --- \mathfrak{F}(Y) \end{array}$$

In particular, $(\mathfrak{F}f)(\Phi_X(\mathrm{id}_X)) = \Phi_Y(f)$, which shows that Φ is uniquely determined by $a = \Phi_X(\mathrm{id}_X)$ and any choice of $a \in \mathcal{F}(X)$ is possible.

In the notation of 1.1, let $a \in \mathcal{F}(X)$. We say that the pair (X, a) represents \mathcal{F} iff the natural transformation $h^X \to \mathcal{F}$ corresponding to a is an isomorphism. If \mathcal{F} is representable, then 1.1 implies the representing object is unique up to unique isomorphism.

Corollary 1.2. The functor $X \mapsto h^X$ is a full and faithful embedding $C \to \text{Fun}(C, \text{Set})$.

Recall that a presheaf on C is another name for a contravariant functor $C \to Set$. We write $\mathsf{PSh}(\mathsf{C}) = \mathsf{Fun}(\mathsf{C}, \mathsf{Set}^{\mathrm{op}})$ for the category of presheaves on C. The contravariant hom functor of X is the presheaf $h_X : C \to \mathsf{Set}$ that sends $Y \mapsto \mathrm{Hom}(Y,X)$, and sends $g : Y_1 \to Y_2$ to precomposition with g. Thus, the dual of 1.2 says that the map $X \mapsto h_X$ is a full and faithful embedding $C \to \mathsf{PSh}(C)$. The maps $X \mapsto h^X$ and $X \mapsto h_X$ are called the Yoneda embeddings.

The utility of the Yoneda embedding is this: First, it lets us generalize properties of objects of C in a natural way to properties of functors or presheaves on C. Second, the category of functors from C to Set or Set^{op} is often more well-behaved than C itself: We may be able to perform constructions in the larger category that we could not do in C. For example, C may not contain fiber products, whereas the new category does.

Date: 29 January 2014. Last rev. 9 June 2014.

2. R-Functors

Fix a ring R. Take $C = \operatorname{Sch}/R$, the category of schemes over $\operatorname{Spec} R$, so that if $R = \mathbb{Z}$, then $\operatorname{Sch}/R = \operatorname{Sch}$. In this setting, we say that h_X is the functor of points of X, and that the elements of $h_X(Y)$ are the Y-valued points of X. If A is a ring, then we abbreviate $h_X(A) = h_X(\operatorname{Spec} A)$.

We can sharpen 1.2 slightly: It turns out that the functor of points of an R-scheme is completely determined by how it behaves on the spectra of R-algebras. Let Ring(R) be the category of R-algebras, and for all $X \in Sch/R$, let

(3)
$$h_X^* = h_X \circ \operatorname{Spec} : \operatorname{Ring}(R) \to \operatorname{Set}$$

be the (covariant!) functor that sends $A \mapsto h_X(A) = \operatorname{Hom}_{\mathsf{Sch}/R}(\operatorname{Spec} A, X)$.

Corollary 2.1. If R is a ring, then the functor $X \mapsto h_X^*$ is a full and faithful embedding $Sch/R \to Fun(Ring(R), Set)$.

Proof. Let $X, Y \in \mathsf{Sch}/R$. We must show that every natural transformation $\Phi : h_Y^* \to h_X^*$ comes from a unique Sch/R morphism $Y \to X$. Take an affine open cover $\{V_j\}$ of Y, and let $\iota_j : V_j \to Y$ be the inclusion map. Then $\Phi(\iota_j)$ is a Sch/R morphism $V_j \to X$, and by compatibility, the family $\{\Phi(\iota_j)\}$ determines a unique Sch/R morphism on Y.

We will now generalize our topological notions about R-schemes to notions about functors $\mathsf{Ring}(R) \to \mathsf{Set}$, which we call R-functors. First, check that if $\Phi_1 : \mathcal{F}_1 \to \mathcal{G}$ and $\Phi_2 : \mathcal{F}_2 \to \mathcal{G}$ are R-functor morphisms, then the fiber product $\mathcal{F}_1 \times_{\mathcal{G}} \mathcal{F}_2$ in the category $\mathsf{Fun}(\mathsf{Ring}(R), \mathsf{Set})$ is realized by the functor that sends

(4)
$$A \mapsto \{(a_1, a_2) \in \mathcal{F}_1(A) \times \mathcal{F}_2(A) : \Phi_{1,A}(a_1) = \Phi_{2,A}(a_2)\}.$$

It follows that $X \mapsto h_X^*$ preserves fiber products: For all $X, Y_1, Y_2 \in \mathsf{Sch}/R$,

$$(5) h_{Y_1 \times_X Y_2}^* = h_{Y_1}^* \times_{h_X^*} h_{Y_2}^*.$$

Let \mathcal{F} be an R-subfunctor of \mathcal{G} , meaning there is a morphism $\mathcal{F} \to \mathcal{G}$ such that $\mathcal{F}(A) \to \mathcal{G}(A)$ is injective for all A. We say that \mathcal{F} is open (resp., closed) in \mathcal{G} iff, for all R-schemes X and R-functor morphisms $h_X^* \to \mathcal{G}$, the base change $\mathcal{F} \times_{\mathcal{G}} h_X^*$ is isomorphic to h_Y^* for some open (resp., closed) subscheme Y of X.

Lemma 2.2. Let R be a ring. If $X \in Sch/R$, then the open (resp., closed) R-subfunctors of h_X^* are the functors of the form h_Y^* for some open (resp., closed) subscheme Y of X.

Proof. By (5) and the compatibility of open (resp., closed) immersions with respect to base change, every functor of the form h_Y^* with Y an open (resp., closed) subscheme of X is an open (resp., closed) subfunctor of h_X^* . The reverse inclusion follows from considering the trivial base change to h_X^* itself.

Proposition 2.3. Let R be a ring, and let $A \in Ring(R)$.

(1) The open R-subfunctors of $h_{\text{Spec }A}^*$ are the functors of the form

(6)
$$B \mapsto \{ f \in h^*_{\operatorname{Spec} A}(B) : f^{\#}_{\operatorname{Spec} A}(\mathfrak{a})B = B \}$$

for some $\mathfrak{a} \triangleleft A$.

(2) The closed R-subfunctors of $h_{\text{Spec }A}^*$ are the functors of the form

(7)
$$B \mapsto \{ f \in h_{\operatorname{Spec} A}^*(B) : f_{\operatorname{Spec} A}^{\#}(\mathfrak{a})B \subseteq \operatorname{nil} B \}$$

for some $\mathfrak{a} \triangleleft A$.

Proof.

- (1) The open subsets of Spec A take the form $D(\mathfrak{a}) = \operatorname{Spec} A \setminus V(\mathfrak{a})$ for some $\mathfrak{a} \lhd A$. By 2.2, it suffices to prove that if $\phi: A \to B$ is a $\operatorname{Ring}(R)$ morphism, then $\phi(\mathfrak{a})B = B$ if and only if $f = \operatorname{Spec}(\phi): \operatorname{Spec} B \to \operatorname{Spec} A$ has image in $D(\mathfrak{a})$. The latter occurs if and only if $\mathfrak{a} \not\subseteq \phi^{-1}(\mathfrak{q})$ for all $\mathfrak{q} \in \operatorname{Spec} B$, meaning there exists $b \in \phi(\mathfrak{a}) \setminus \mathfrak{q}$ for all such \mathfrak{q} . In particular, this happens if and only if $\phi(\mathfrak{a})$ contains a unit, as we see from considering maximal \mathfrak{q} ; this means $\phi(\mathfrak{a})B$ contains 1.
- (2) Let $\mathfrak{a} \triangleleft A$. By 2.2, it suffices to prove that if $\phi : A \to B$ is a Ring(R) morphism, then $\phi(\mathfrak{a})B \subseteq \operatorname{nil} B$ if and only if $f = \operatorname{Spec}(\phi) : \operatorname{Spec} B \to \operatorname{Spec} A$ has image in $V(\mathfrak{a})$. The latter occurs if and only if $\mathfrak{a} \subseteq \phi^{-1}(\mathfrak{q})$ for all $\mathfrak{q} \in \operatorname{Spec} B$, meaning $\phi(\mathfrak{a}) \subseteq \bigcap_{\mathfrak{q} \in \operatorname{Spec} B} = \operatorname{nil} B$.

We write $U_{\mathfrak{a}}$ and $Z_{\mathfrak{a}}$ for the functors defined in (6) and (7), respectively. Note that in general, $U_{\mathfrak{a}}(B) \cup Z_{\mathfrak{a}}(B) \neq h_{\operatorname{Spec} A}^*(B)$; however, equality holds if, for example, B is a DVR or a field.

Suppose $\{\mathcal{U}_i\}$ is a family of open R-subfunctors of \mathcal{F} . We say that $\{\mathcal{U}_i\}$ is an open cover of \mathcal{F} iff, for all R-schemes X and R-functor morphisms $h_X^* \to \mathcal{F}$ such that $\mathcal{U}_i \times_{\mathcal{F}} h_X^* = h_{U_i}^*$, the family $\{U_i\}$ is an open cover of X.

Example 2.4. It is false that if $\{\mathcal{U}_i\}$ is an open cover of \mathcal{F} , then $\mathcal{F}(A) = \bigcup_i \{\mathcal{U}_i(A)\}$ for all $A \in \mathsf{Ring}(R)$. For example, take $R = \mathbb{Z}$. If p, q are distinct primes, then

$$\{h_{\operatorname{Spec}\mathbb{Z}[1/p]}^*, h_{\operatorname{Spec}\mathbb{Z}[1/q]}^*\}$$

is a cover of $h^*_{\operatorname{Spec} \mathbb{Z}}$, but $h^*_{\operatorname{Spec} \mathbb{Z}}(\operatorname{Spec} \mathbb{Z}) = \{\operatorname{id}_{\operatorname{Spec} \mathbb{Z}}\}$, whereas

(9)
$$h_{\operatorname{Spec} \mathbb{Z}[1/p]}^*(\operatorname{Spec} \mathbb{Z}) = h_{\operatorname{Spec} \mathbb{Z}[1/q]}^*(\operatorname{Spec} \mathbb{Z}) = \emptyset$$

[EH, p. 255].

Proposition 2.5. Let $\{\mathcal{U}_i\}$ be a family of open R-subfunctors of \mathfrak{F} . Then $\{\mathcal{U}_i\}$ is an open cover of \mathfrak{F} if and only if $\mathfrak{F}(\mathbb{F}) = \bigcup_i \mathcal{U}_i(\mathbb{F})$ for all fields $\mathbb{F} \in \text{Ring}(R)$.

Proof. To prove the "only if" direction: Suppose $\{\mathcal{U}_i\}$ is an open cover of \mathcal{F} . Let $\mathbb{F} \in \mathsf{Ring}(R)$ be a field. We have $h^*_{\mathrm{Spec}\,\mathbb{F}} = h^{\mathbb{F}}$, so by the Yoneda Lemma, it suffices to show $\mathrm{Hom}(h^*_{\mathrm{Spec}\,\mathbb{F}}, \mathcal{F}) \subseteq \bigcup_i \mathrm{Hom}(h^*_{\mathrm{Spec}\,\mathbb{F}}, \mathcal{U}_i)$.

Fix $\Phi \in \operatorname{Hom}(h_{\operatorname{Spec}\mathbb{F}}^*, \mathcal{F})$. For all i, the base change $\mathcal{U}_i \times_{\mathcal{F}} h_{\operatorname{Spec}\mathbb{F}}^*$ with respect to Φ is either h_{\varnothing}^* or $h_{\operatorname{Spec}\mathbb{F}}^*$, which forces $\mathcal{U}_j \times_{\mathcal{F}} h_{\operatorname{Spec}\mathbb{F}}^* = h_{\operatorname{Spec}\mathbb{F}}^*$ for some j. Explicitly, this means Φ defines a morphism $h_{\operatorname{Spec}\mathbb{F}}^* \to \mathcal{U}_j$, as needed.

To prove the "if" direction: Suppose $\mathcal{F}(\mathbb{F}) = \bigcup_i \mathcal{U}_i(\mathcal{F})$ for all fields \mathbb{F} . Let $X \in \operatorname{Sch}/R$. By the transitivity of base change, we can assume $X = \operatorname{Spec} A$ for some $A \in \operatorname{Ring}(R)$. If $\mathfrak{p} \in X$, then we write $k(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$. For all \mathfrak{p} , there exists i such that $\mathcal{U}_i \times_{\mathcal{F}} h_{k(\mathfrak{p})}^* = h_{k(\mathfrak{p})}^*$ by the Yoneda Lemma. Therefore, writing $h_{U_i}^* = \mathcal{U}_i \times_{\mathcal{F}} h_X^*$,

(10)
$$h_{k(\mathfrak{p})}^* = \mathcal{U}_i \times_{\mathcal{F}} h_{k(\mathfrak{p})}^* \times_{h_X^*} h_X^*$$
$$= h_{U_i}^* \times_{h_X^*} h_{k(\mathfrak{p})}^*$$
$$= h_{U_i \times_X k(\mathfrak{p})}^*.$$

This can happen only if $\mathfrak{p} \in U_i$. Therefore, $\{U_i\}$ is an open cover of X.

References

[EH] D. Eisenbud & J. Harris. The Geometry of Schemes. Springer-Verlag (2000).

Department of Mathematics, Princeton University, Princeton, NJ 08544 $\emph{E-mail address}$: mqtrinh@gmail.com