4.1. Schrodinger Equation in Spherical Coordinates

- What is the standard Hamiltonian operator in three dimensions?
- We can write a general wavefunction as $\Psi(\vec{r}) = R(r)\Theta(\theta)\Phi(\phi)$. What differential equations do those three functions satisfy?
- Where do l(l+1) and m come from in the derivation?
- What is the solution of the Φ equation?
- What is the solution of the Θ equation?
- What are the restrictions on m and l? Where do those restrictions come from?
- How are the spherical harmonics Y_l^m involved in all of this?
- What is the difference between Y_l^m and Y_l^{-m} ?
- In the solution to the radial equation, how does the effective potential differ from the potential V(r)?
- What are the radial solutions R(r) for the infinite spherical well potential $(V(r) = 0 \text{ when } r < a, \infty \text{ otherwise})$.
- For the infinite square well, what is the full wavefunction Ψ when n=1, l=2, and m=1?