Jakub Łabendowicz 22.10.2020r.

Sprawozdanie

Zadanie 2.1. badanie rzeczywistego źródła napięcia stałego

Tabela 2.1. Tabela pomiarowo-obliczeniowa do badania rzeczywistego źródła napięcia stałego

siła elektromotoryczna źródła E = 19V							
lp.	U I		$R_{ m odb}$ $R_{ m w}$		<i>P</i> źr	$P_{ m odb}$	η
	V	A	Ω	Ω	W	W	-
1	8.26	8.26	1	1.3	156.94	68.2276	0.4347
2	13.4	4.31	3.11	1.3	81.89	57.7717	0.7054
3	15.2	2.91	5.22	1.3	55.29	44.2035	0.7995
4	16.1	2.2	7.33	1.3	41.8	35.4772	0.8487
5	16.7	1.77	9.44	1.3	33.63	29.5746	0.8794
6	17.1	1.48	11.6	1.3	28.12	25.4086	0.9036
7	17.3	1.27	13.7	1.3	24.13	22.0967	0.9157
8	17.6	1.11	15.8	1.3	21.09	19.4671	0.9230
9	17.7	0.99	17.9	1.3	18.81	17.5438	0.9327
10	17.8	0.892	20	1.3	16.948	15.9132	0.9389
			$R_{\mathrm{w\acute{s}r}} =$	1.3			

Przykłady obliczeń:

$$P_{\pm r} = 19V \cdot 8,26A = 156,94W$$

$$P_{odb} = 8.26A^2 \cdot 1\Omega = 68,2276W$$

$$\mu = \frac{68,2276W}{156,94W} = 0,4347$$

Zadanie 2.2. Sprawdzenie II prawa Kirchhoffa

Tabela 2.2. Tabela pomiarowo-obliczeniowa do sprawdzenia II prawa Kirchhoffa

	pomiary	napięcia	równanie i bilans napięć w oczku			
oczko	oznaczenie	wartość	ΣU			
		V	V			
	U_{CA}	7.44	U CA+U C'C-U C'D+U AD=0			
ACC'DA	$U_{ m C'C}$	5.39				
ACC DA	$U_{ m C'D}$	10				
	$U_{ m AD}$	-2.84	7.44+5.39-10-2.84=0			
	U_{CB}	-0.126	U CB+U C'C-U C'D+U BD=0			
BCC'DB	$U_{ m C'C}$	5.39				
всс рв	$U_{ m C'D}$	10				
	$U_{ m BD}$	4.73	-0.126+5.39-10+4.73=0			
	$U_{ m AD}$	-2.84	-U AD+U BD+U HB-U HG=0			
ADBHGA	$U_{ m BD}$	4.73				
Арриса	$U_{ m HB}$	2.43				
	$U_{ m HG}$	10	2.84+4.73+2.43-10=0			

II prawo Kirchhoffa:

Suma spadków napięć w oczku jest równa sile elektromotorycznej na źródle.

Zadanie 2.3. Sprawdzenie I prawa Kirchhoffa

Tabela 2.3. Tabela pomiarowo-obliczeniowa do sprawdzenia I prawa Kirchhoffa

	pomiary napięcia		pomiary	rezystancji	natężenia prądów		
węzeł	oznaczenie	wartość	oznaczenie	wartość	oznaczenie	wartość	
		V		Ω	Oznaczenie	mA	
	U_{CA}	7.44	R_{CA}	8	I_{CA}	0.93	
A	$U_{ m AD}$	-2.84	$R_{ m AD}$	10	$I_{ m AD}$	-0.284	
	U_{HB}	2.43	$R_{ m HB}$	2	$I_{ m HB}$	1.215	
	U_{CB}	-0.126	R_{CB}	4	I_{CB}	0.0315	
В	$U_{ m BD}$	4.73	$R_{ m BD}$	4	$I_{ m BD}$	1.1825	
	$U_{ m HB}$	2.43	$R_{ m HB}$	2	$I_{ m HB}$	1.215	
	U_{CA}	7.44	R_{CA}	8	I_{CA}	0.93	
C	U_{CB}	-0.126	R_{CB}	4	I_{CB}	0.0315	
	$U_{ m C'C}$	5.39	$R_{\mathrm{C'C}}$	6	$I_{\mathrm{C^{\prime}C}}$	0.898(3)	
	$U_{ m AD}$	-2.84	$R_{ m AD}$	10	$I_{ m AD}$	-0.284	
D	U_{BD}	4.73	$R_{ m BD}$	4	$I_{ m BD}$	1.1825	
	$U_{ m C'C}$	5.39	$R_{\mathrm{C'C}}$	6	$I_{\mathrm{C^{\prime}C}}$	0.898(3)	
	równanie i bilans natężeń prądów w węźle						
	A						
A	I_HB + I_AD = I_CA						
В	I CB + I BD = I HB 0.0315+1.1825=1.215						
С	I C'C + I CB = I CA 0.898(3)+0.0315=0.93						
D	I BD + I AD = I C'C 1.1825-0.284=0.898(3)						

I prawo Kirchhoffa:

Suma natężeń wejściowych jest równa natężeniom wyjściowym w węźle.

Zadanie 2.4. Sprawdzenie twierdzenia o superpozycji

Tabela 2.4. Tabela pomiarowo-obliczeniowa do sprawdzenia twierdzenia o superpozycji

I	I I'		<i>I'+I"</i>	
mA	mA	mA	mA	
1.18	0.615	0.568	1.18	

Twierdzenie o superpozycji:

Natężenie w obwodzie wywołane kilkoma źródłami prądu jest równe sumie natężeń wywołanych przez te źródła prądu z osobna.

Zadanie 2.5. Sprawdzenie twierdzenia Thevenina

Tabela 2.5. Tabela pomiarowo-obliczeniowa do sprawdzenia twierdzenia Thevenina

$U_{ m BD}$	I	R s	$U_{0 m BD}$	<i>I</i> z	R	R'	I_{OBL}	I'obl
V	mA	Ω	V	mA	Ω	Ω	mA	mA
4.73	1.18	4	11	2.07	5.314	4	1.181	1.375

Obliczenia:

$$R_s = \frac{4,73V}{1,18mA} = 4\Omega$$

$$R = \frac{11V}{2.07mA}$$

$$I_{OBL} = \frac{11V}{5,314\Omega + 4\Omega}$$

$${I'}_{OBL} = \frac{11V}{4\Omega + 4\Omega}$$

Twierdzenie Thevenina:

Układ, składający się z kombinacji źródeł napięcia i rezystorów można zastąpić szeregowo połączonymi ze sobą pojedynczego rezystora i pojedynczego źródła napięciowego.