$$d = \frac{k \phi(n) + 1}{13}$$

$$= \frac{2436 k + 1}{13}$$

$$k = 1$$
, $d = \frac{2437}{13} \times$

$$k=2$$
, $d=\frac{4873}{13}$ \times
 $k=3$, $d=\frac{7309}{13}$ \times
 $k=4$, $d=\frac{9745}{13}$ \times
 $k=5$, $d=\frac{937}{13}$

α	6	L	d	C	f	9	h] i		k	L	M	n	0	P	9	r	S	1
1	2	3	4	5	6	7	8	9	(2	/1	12	[3	/4	15	16	1 7	18	19	50
0	!	2					'		l	•		•		14	S			18	19

$$18 \frac{19}{19000} \frac{1415}{19000} M_1 = 1819$$

$$C_1 = M_1 \mod n$$
= $1819^{13} \mod 2537$
= 2081

$$C_2 = M_2 \mod n$$

$$= (415^{13} \mod 2537)$$

$$= 2(82)$$