Ergodization time for linear flows on tori via geometry of numbers

Abed Bounemoura *

June 23, 2015

Abstract

In this paper, we give a new, short, simple and geometric proof of the optimal ergodization time for linear flows on tori. This result was first obtained by Bourgain, Golse and Wennberg in [BGW98] using Fourier analysis. Our proof uses geometry of numbers: it follows trivially from a Diophantine duality that was established by the author and Fischler in [BF13].

Let $n \geq 2$ be an integer, $\mathbb{T}^n := \mathbb{R}^n/\mathbb{Z}^n$, $\alpha \in \mathbb{R}^n \setminus \{0\}$ and consider the linear flow on \mathbb{T}^n defined by

$$X_{\alpha}^{t}(\theta) = \theta + t\alpha, \quad t \in \mathbb{R}, \quad \theta \in \mathbb{T}^{n}.$$

It is just the flow of the constant vector field $X_{\alpha} = \alpha$ on \mathbb{T}^n . Such flows play an important role in Hamiltonian systems, and their dynamical properties depend on the Diophantine properties of the vector α , as we will recall now.

Let us say that a vector subspace of \mathbb{R}^n is rational if it admits a basis of vectors with rational components. We define F_{α} to be the smallest rational subspace of \mathbb{R}^n containing α , so that $\Lambda_{\alpha} := F_{\alpha} \cap \mathbb{Z}^n$ is a lattice in F_{α} . In the special case where $F_{\alpha} = \mathbb{R}^n$, we have $\Lambda_{\alpha} = \mathbb{Z}^n$ and the vector α is said to be non-resonant: it is an elementary fact that the flow X_{α}^t is minimal (all orbits are dense) and in fact uniquely ergodic (all orbits are uniformly distributed with respect to Haar measure). In the general case where F_{α} has dimension d with $1 \leq d \leq n$, choosing a complementary subspace E_{α} of F_{α} , the affine foliation

$$\mathbb{R}^n = \bigsqcup_{v \in E_\alpha} v + F_\alpha$$

induces a foliation on \mathbb{T}^n such that each leaf, which is just a translate of the *d*-dimensional torus $\mathcal{T}_{\alpha}^d := F_{\alpha}/\Lambda_{\alpha}$, is invariant by the flow and the restriction of the latter is minimal and uniquely ergodic.

A natural question is the following. Given some T > 0, let

$$\mathcal{O}_{\alpha}^{T} := \bigcup_{0 \le t \le T} X_{\alpha}^{t}(0) \subset \mathcal{T}_{\alpha}^{d} \tag{1}$$

^{*}CNRS-IMPA UMI 2924 (abedbou@gmail.com)

be a finite piece of orbit starting at the origin. As T goes to infinity, \mathcal{O}_{α}^{T} fills the torus \mathcal{T}_{α}^{d} , hence given any $\delta > 0$, there exists a smallest positive time $T_{\alpha}(\delta)$ such that $\mathcal{O}_{\alpha}^{T_{\alpha}(\delta)}$ is a δ -dense subset of \mathcal{T}_{α}^{d} (for a fixed metric on \mathcal{T}_{α}^{d} induced by a choice of a norm on F_{α}). This time $T_{\alpha}(\delta)$ is usually called the δ -ergodization time. Note that in (1) we chose the initial condition $\theta_{0} = 0$; yet it is obvious that choosing a different θ_{0} (and consequently a different leaf of the foliation) lead to the same ergodization time. Then the question is to estimate this time $T(\delta)$ as a function of δ .

To do so, let us define the function

$$\Psi_{\alpha}(Q) := \max\{|k \cdot \alpha|^{-1} \mid k \in \Lambda_{\alpha}, \ 0 < |k| \le Q\},\tag{2}$$

where, if $k = (k_1, \ldots, k_n)$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$,

$$k \cdot \alpha = k_1 \alpha_1 + \dots + k_n \alpha_n, \quad |k| = \max\{|k_1|, \dots, |k_n|\}.$$

The function Ψ in (2) is defined for $Q \geq Q_{\alpha}$, where $Q_{\alpha} \geq 1$ is the length of the shortest non-zero vector in Λ_{α} , that is

$$Q_{\alpha} := \inf\{|k| \mid k \in \Lambda_{\alpha} \setminus \{0\}\}$$

which depends only on the lattice. Another lattice constant is the co-volume $|\Lambda_{\alpha}|$ of Λ_{α} , which is the d-dimensional volume of a fundamental domain of $\mathcal{T}_{\alpha}^{d} = F_{\alpha}/\Lambda_{\alpha}$, and let us write

$$C_{\alpha} := |\Lambda_{\alpha}|^2$$
.

Without loss of generality, we may assume that the vector α has a component equals to one; if not, just divide α by $|\alpha|$, and changing its sign if necessary, one just needs to consider $T_{\alpha}(\delta)/|\alpha|$ instead of $T_{\alpha}(\delta)$.

We can now state our main result.

Theorem 1. Let $\delta > 0$ such that $\delta \leq d^2((n+2)Q_{\alpha})^{-1}$. Then we have the inequality

$$T_{\alpha}(\delta) \le C_{d,\alpha} \Psi\left(2C_{d,\alpha}\delta^{-1}\right), \quad C_{d,\alpha} := d^2 d! C_{\alpha}.$$

Even though, up to our knowledge, this result haven't been stated and proved in this generality, it is not essentially new; the novelty lies in its proof.

But first let us recall the previous results, which were dealing only with the case d = n (in this case, one has $Q_{\alpha} = C_{\alpha} = 1$ and there is no restriction on $0 < \delta \le 1$). Assuming moreover that α satisfies the following Diophantine condition:

$$|k \cdot \alpha| \ge \gamma |k|^{-\tau}, \quad k \in \mathbb{Z}^n \setminus \{0\}, \quad \gamma > 0, \quad \tau \ge n - 1,$$

the above result reads

$$T_{\alpha}(\delta) \leq \delta^{-\tau}$$
.

This result, but with the exponent τ replaced by the worse exponent $\tau+n$, was first established in [CG94], where it was used in the problem of instability of Hamiltonian systems close to integrable (Arnold diffusion). This was then slightly improved in [Dum91] to the value $\tau+n/2$; see also [DDG96] where this ergodization time is shown to be closely related to problems in statistical physics. The estimate with the exponent τ was eventually obtained in [BGW98], and then later the more general statement (without assuming α to be Diophantine) was

obtained in [BBB03]. For a survey on the results and applications of this ergodization time, we refer to [Dum99].

All these proofs are based on Fourier analysis, and it is our purpose to offer a new proof, which is geometric and rather simple. First let us observe that there is a trivial case, namely when d=1. In this case, writing $\alpha=\omega$, the vector is in fact rational, that is $q\omega\in\mathbb{Z}^n$ for some minimal integer $q\geq 1$, and obviously $T_\omega(\delta)=q$ for any $0\leq \delta\leq 1$: in fact, the orbits of the linear flow X^t_ω are all periodic of period q so for T=q, one has the equality $\mathcal{O}^T_\omega=\mathcal{T}^1_\omega$. Our proof will essentially reduce the general case to the trivial case: the proposition below shows that in general the linear flow X^t_α can be approximated by d periodic flows $X^t_{\omega_j}$ with periods q_j , $1\leq j\leq d$, and such that the vectors $q_j\omega_j\in\mathbb{Z}^n$ span the lattice Λ_α . Here's a precise statement.

Proposition 1. Let $Q \ge (n+2)Q_{\alpha}$. Then there exist d rational vectors $\omega_1, \ldots, \omega_d$ in \mathbb{Q}^n , of denominators q_1, \ldots, q_d , such that:

- (i) for all $1 \le j \le d$, $|\alpha \omega_j| \le d(q_j Q)^{-1}$ and $1 \le q_j \le dd! C_\alpha \Psi(2d! C_\alpha Q)$;
- (ii) the integer vectors $q_1\omega_1,\ldots,q_d\omega_d$ form a basis for the lattice Λ_{α} .

This Proposition was proved in [BF13], see Theorem 2.1 and Proposition 2.3. The only ingredient used there is the following well-known transference result in geometry of numbers (see [Cas59] for instance): if \mathcal{C} and Λ are respectively a convex body and a lattice in a Euclidean space of dimension d, and if \mathcal{C}^* and Λ^* denote their dual, then

$$1 \le \lambda_k(\mathcal{C}, \Lambda) \lambda_{d+1-k}(\mathcal{C}^*, \Lambda^*) \le d!, \quad 1 \le k \le d$$

where $\lambda_k(\mathcal{C}, \Lambda)$ is the k-th successive minima of \mathcal{C} with respect to Λ .

The proof of Theorem 1 is now a trivial matter if one uses Proposition 1.

Proof of Theorem 1. Choose $Q = d^2\delta^{-1}$. Since we required $\delta \leq d^2((n+2)Q_\alpha)^{-1}$, $Q \geq (n+2)Q_\alpha$ and so Proposition 1 can be applied. It follows from (ii) that the set

$$\{t_1q_1\omega_1 + \dots + t_dq_d\omega_d \mid (t_1,\dots,t_d) \in [0,1[^d]\}$$

is a fundamental domain for $\mathcal{T}_{\alpha}^d = F_{\alpha}/\Lambda_{\alpha}$. Hence given an arbitrary point $\theta^* \in \mathcal{T}_{\alpha}^d$, there is a unique $(t_1^*, \dots, t_d^*) \in [0, 1]^d$ such that

$$\theta^* = t_1^* q_1 \omega_1 + \dots + t_d^* q_d \omega_d.$$

Now by (i), for any $1 \le j \le d$, we have

$$|t_i^* q_i \alpha - t_i^* q_i \omega_i| \le dt_i^* Q^{-1} \le dQ^{-1}, \quad 1 \le q_i \le dd! C_\alpha \Psi(2d! C_\alpha Q),$$
 (3)

so that if we set $T^* = t_1^*q_1 + \cdots + t_d^*q_d$, the first inequality of (3) gives

$$|T^*\alpha - \theta^*| = \left| \left(\sum_{j=1}^d t_j^* q_j \right) \alpha - \sum_{j=1}^d t_j^* q_j \omega_j \right| \le \sum_{j=1}^d |t_j^* q_j \alpha - t_j^* q_j \omega_j| \le d^2 Q^{-1} = \delta$$

while the second inequality of (3) gives

$$T^* = \sum_{j=1}^d t_j^* q_j \le \sum_{j=1}^d q_j \le d^2 d! C_\alpha \Psi(2d! C_\alpha Q) = d^2 d! C_\alpha \Psi(2d^2 d! C_\alpha \delta^{-1}) = C_{d,\alpha} \Psi(2C_{d,\alpha} \delta^{-1}).$$

The result follows.

To conclude, let us examine the special case n=2, that is we consider the linear flow associated to $(1,\alpha)\in\mathbb{R}^2$, with $|\alpha|\leq 1$. By the classical processes of suspension and taking section, it is equivalent to consider the circle rotation $R_\alpha:\mathbb{T}\to\mathbb{T}$ given by $R_\alpha(x)=x+\alpha$ mod 1. For any $0<\delta<1$, the δ -ergodization time of R_α is the smallest natural number $N=N_\alpha(\delta)$ such that for any $x\in\mathbb{T}$, the finite orbit $\{x,R_\alpha(x),\ldots,R_\alpha^N(x)\}$ is a δ -dense subset of \mathbb{T} . Observe that for $\alpha\notin\mathbb{Q}$, $N_\alpha(\delta)$ is always well defined, while for $\alpha=p/q\in\mathbb{Q}^*$, $N_{p/q}(\delta)$ is well-defined if and only if $\delta\geq q^{-1}$ in which case $N_{p/q}(\delta)\leq q-1$.

Classical proofs in the special case n=2 are usually based on continued fractions (see [DDG96] for instance), and there was a belief that the absence of a good analog of continued fractions in many dimension was an obstacle to extend the known estimate for n=2. We take the opportunity here to give an elementary proof in the case n=2 which does not use continued fractions but simply relies on the Dirichlet's box principle. For simplicity, we shall write $\Psi_{\alpha} = \Psi_{(1,\alpha)}$ the function defined in (2).

Theorem 2. If $\alpha \notin \mathbb{Q}$ and $|\alpha| \leq 1$, we have

$$N_{\alpha}(\delta) \le [\Psi_{\alpha}(2\delta^{-1})] - 1$$

where [.] denotes the integer part.

Proof. Recall that by Dirichlet's box principle, given any $Q \geq 1$, there exists $(q, p) \in \mathbb{N}^* \times \mathbb{Z}$ relatively prime such that

$$|q\alpha - p| \le Q^{-1}, \quad 1 \le q \le Q.$$

Apply this with $Q = \Psi_{\alpha}(2\delta^{-1})$: there exists $(q, p) \in \mathbb{N}^* \times \mathbb{Z}$ relatively prime such that

$$|q\alpha - p| \le \Psi_{\alpha}(2\delta^{-1})^{-1}, \quad 1 \le q \le \Psi_{\alpha}(2\delta^{-1}).$$

From the second estimate, $q \leq [\Psi_{\alpha}(2\delta^{-1})]$, so it is enough to show that $N_{\alpha}(\delta) \leq q-1$. From the first estimate above, the definition of Ψ_{α} and the fact that $\max\{|q|,|p|\}=q$ (as $|\alpha|\leq 1$), we have $\Psi_{\alpha}(q) \geq \Psi_{\alpha}(2\delta^{-1})$, hence $q \geq 2\delta^{-1}$, $\delta/2 \geq q^{-1}$ and so $N_{p/q}(\delta/2) \leq q-1$. Using the first estimate again and the fact that $\Psi_{\alpha}(2\delta^{-1})^{-1} \leq \delta/2$, it is easy to see that the distance between $\{x, R_{\alpha}(x), \dots, R_{\alpha}^{q-1}(x)\}$ and $\{x, R_{p/q}(x), \dots, R_{p/q}^{q-1}(x)\}$ is at most $\delta/2$. The latter set being $\delta/2$ -dense, the former is δ -dense, hence $N_{\alpha}(\delta) \leq q-1$ and this ends the proof. \square

References

- [BBB03] M. Berti, L. Biasco, and P. Bolle, *Drift in phase space: a new variational mechanism with optimal diffusion time*, J. Math. Pures Appl. (9) **82** (2003), no. 6, 613–664.
- [BF13] A. Bounemoura and S. Fischler, A diophantine duality applied to the KAM and Nekhoroshev theorems, Math. Z. 275 (2013), no. 3, 1135–1167.
- [BGW98] J. Bourgain, F. Golse, and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas, Comm. Math. Phys. 190 (1998), no. 3, 491–508.
- [Cas59] J.W.S. Cassels, An introduction to the geometry of numbers, Grundlehren der Math. Wiss., no. 99, Springer, 1959.

- [CG94] L. Chierchia and G. Gallavotti, Drift and diffusion in phase space, Ann. Inst. Henri Poincaré, Phys. Théor. 60 (1994), no. 1, 1–144.
- [DDG96] H. S. Dumas, L. Dumas, and F. Golse, On the mean free path for a periodic array of spherical obstacles, J. Statist. Phys. 82 (1996), no. 5-6, 1385–1407.
- [Dum91] H. S. Dumas, Ergodization rates for linear flow on the torus, J. Dynam. Differential Equations 3 (1991), no. 4, 593–610.
- [Dum99] ______, Filling rates for linear flow on the torus: recent progress and applications, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Kluwer Acad. Publ., Dordrecht, 1999, pp. 335–339.