Arithmétique - Partie 4 : Congruences

Savoir.

☐ Comprendre la définition de la congruence.
☐ Connaître le petit théorème de Fermat.

Savoir-faire.
☐ Savoir faire des calculs modulo n.

Congruences

Définition. Soient a et b deux entiers et un entier naturel $n \ge 2$. On dit que a est congru à b modulo n si n divise la différence (b-a). On note alors :

$$a \equiv b [n]$$

Remarques.

- a ≡ b [n] revient à dire que les restes de a et de b dans la division euclidienne par n sont les mêmes.
 Cela veut aussi dire que a et b ne diffèrent que d'un multiple de n, ce qui s'écrit b = a + kn, k ∈ Z.
 C'est ainsi que 13 ≡ 8 ≡ 3 ≡ -2 [5] puisque tous ces nombres ne diffèrent entre eux que de multiples de 5.
- On voit parfois dans les livres la notation $a \equiv b \pmod{n}$.
- $a \equiv 0$ [n] signifie que n|a.

Exemples.

- $65 \equiv 2 [7]$. En effet 7 divise 65 2 = 63 (ou encore $65 = 7 \times 9 + 2$).
- $13\,145 \equiv 165 \equiv 5$ [10]. En fait un nombre entier est congru à un autre modulo 10 s'ils se terminent par le même chiffre.
- n ≡ 0 [2] signifie que n est pair, et n ≡ 1 [2] que n est impair.
 Il n'y a donc que 2 possibilités modulo 2 : être congru à 0 ou à 1. De même il n'y a que trois possibilités modulo 3 : être congru à 0,1 ou 2 (ou encore 0,1 et −1 car −1 ≡ 2 [3]!).
 De manière générale, il y a n possibilités modulo n.

Calculs

Les congruences sont bien adaptées aux additions, soustractions et aux multiplications : autrement dit, on peut y faire de l'arithmétique.

Les règles de calcul. Si $a \equiv b [n]$ et $c \equiv d [n]$, alors :

$$a + c \equiv b + d [n]$$
 (addition)

et aussi

$$a-c \equiv b-d [n]$$
 (soustraction)

enfin

$$ac \equiv bd [n]$$
 (multiplication)

Attention. Il n'est pas question de parler d'une éventuelle opération de division dans le monde du *modulo*! En effet, ce monde se préoccupe exclusivement des nombres **entiers**! On s'échapperait de ce monde merveilleux si on se hasardait à y tenter de la division... Par exemple il serait **extrêmement FAUX** de dire que :

$$2 \equiv 12 [10] \implies \frac{2}{12} \equiv 1 [10]$$

Aussi on ne peut pas simplifier, par exemple ci-dessous diviser par 2 n'a pas de sens :

$$6 \equiv 2[4] \implies 3 \equiv 1[4]$$

Démonstration des règles de calcul.

- n|(b-a) et n|(d-c), donc n divise l'addition (b-a)+(d-c)=(b+d)-(a+c) (d'où la règle d'addition) et la soustraction (b-a)-(d-c)=(b-d)-(a-c) (d'où la règle de soustraction).
- Pour la multiplication, n|(b-a) donc n|d(b-a)=db-da d'une part; et n|(d-c) donc n|a(d-c)=ad-ac d'autre part. Par addition, n|db-da+ad-ac=db-ac d'où la règle de multiplication.

Corollaire. Si $a \equiv b$ [n], alors pour tout entier $l: la \equiv lb$ [n] et pour tout entier k positif, on a :

$$a^k \equiv b^k [n]$$

Exemples.

Commençons par déterminer si le nombre 4⁴⁸ − 1 est ou non un multiple de 5.
 Il s'agit de voir si 4⁴⁸ − 1 ≡ 0 [5] est vraie.
 Puisque 4² = 16 = 3 × 5 + 1, on obtient 4² ≡ 1 [5]. On passe cette égalité à la puissance 24 (d'après le corollaire) puis on retranchera 1 (d'après les règles de soustraction) :

$$4^2 \equiv 1 [5] \implies (4^2)^{24} \equiv 1^{24} [5] \iff 4^{48} \equiv 1 [5] \iff 4^{48} - 1 \equiv 0 [5]$$

Ainsi le nombre $4^{48} - 1$ est bien un multiple de 5. Parviens-tu, en utilisant les congruences modulo 2, à déterminer s'il se termine par 0 ou par 5?

— Cherchons à présent quel est le chiffre des unités du nombre $3^{240} + 7^{240}$. Il s'agit de déterminer la congruence de ce nombre modulo 10.

Tout d'abord, $3^2 = 9$ est congru à -1 modulo 10.

Ce sera notre point de départ :

$$3^2 \equiv -1 [10] \implies (3^2)^{120} \equiv (-1)^{120} [10] \iff 3^{240} \equiv 1 [10]$$

On rappelle que calculer $(-1)^k$ est facile : c'est +1 si k est pair et -1 si k est impair. Passons à la puissance de 7 : puisque $7^2 = 49$ est congru à -1 modulo 10, on obtient de même :

$$7^2 \equiv -1 [10] \implies (7^2)^{120} \equiv (-1)^{120} [10] \iff 7^{240} \equiv 1 [10]$$

Ainsi par addition, $3^{240} + 7^{240} \equiv 2 [10]$ ce qui signifie que son chiffre des unités est 2.

Exercice.

- 1. Montrer que pour tout entier naturel n, le nombre $4^{3n} 4^n$ est un multiple de 5.
- 2. Montrer que " $13|(5^{2n}+3^{3n}) \iff n$ est impair".

Petit théorème de Fermat

Le calcul des congruences est particulièrement intéressant lorsque le modulo choisi est lui-même un nombre premier. C'est notamment ce qu'illustre le petit théorème de Fermat :

Petit théorème de Fermat (1640). Si p est un nombre premier, alors pour tout entier x on a :

$$x^p \equiv x [p]$$

En particulier, si x n'est pas un multiple de p, alors :

$$x^{p-1} \equiv 1 [p]$$

Exemple. Calculons 5²⁰²² modulo 13.

- D'après le petit théorème de Fermat, 13 étant premier et 5 n'étant pas un multiple de 13, on sait que $5^{12} \equiv 1 \lceil 13 \rceil$.
- Par ailleurs la division euclidienne de 2022 par 12 est = $2022 = 12 \times 168 + 6$. Donc en passant à la puissance 168 on obtient $5^{12 \times 168} = (5^{12})^{168} \equiv 1$ [13].
- Or $5^2 \equiv 25 \equiv -1$ [13], ainsi $5^6 = (5^2)^3 \equiv (-1)^3 \equiv -1$ [13]. Par multiplication, on obtient : $5^{2022} \equiv 5^{12 \times 168} \times 5^6 \equiv 1 \times (-1) \equiv -1 \equiv 12$ [13].

Exercice. Calculer 4²⁵³ modulo 11 et 25⁷¹ modulo 7.