| -    |   |        |  |    |    |  |   |   |   |   |  |  |
|------|---|--------|--|----|----|--|---|---|---|---|--|--|
| Data | • |        |  |    |    |  |   |   |   |   |  |  |
| Date |   | <br>٠. |  | ٠. | ٠. |  | • | • | • | • |  |  |

#### A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET



### **MAINS TEST SERIES-2021**

(JUNE to DEC.-2021)

IAS/IFoS

## MATHEMATICS

Under the guidance of K. Venkanna

**FULL SYLLABUS (PAPER-II)** 

TEST CODE: TEST-10: IAS(M)/05-SEP.-2021

Time: 3 Hours Maximum Marks: 250

#### **INSTRUCTIONS**

- This question paper-cum-answer booklet has <u>52</u> pages and has
   29 PART/SUBPART questions. Please ensure that the copy of the question
  - paper-cum-answer booklet you have received contains all the questions.
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- 3. A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- 4. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 7. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

| READ  | INSTR | UCT | IONS | ON | THE |
|-------|-------|-----|------|----|-----|
| LEFT  | SIDE  | ΟF  | THIS | P  | AGE |
| CAREI | FULLY |     |      |    |     |

| Name         |  |
|--------------|--|
|              |  |
| Roll No.     |  |
|              |  |
| Test Centre  |  |
| Tool Gontilo |  |
|              |  |
| Medium       |  |

| Do not write your Roll Number or Name |
|---------------------------------------|
| anywhere else in this Question Paper- |
| cum-Answer Booklet.                   |

| l |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ı | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
| ı |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| ı |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| L |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

I have read all the instructions and shall abide by them

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

#### **IMPORTANT NOTE:**

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

# DO NOT WRITE ON THIS SPACE

### **INDEX TABLE**

| QUESTION | No. | PAGE NO. | MAX. MARKS  | MARKS OBTAINED |
|----------|-----|----------|-------------|----------------|
| 1        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
|          | (e) |          |             |                |
| 2        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
| 3        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
| 4        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
| 5        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
|          | (e) |          |             |                |
| 6        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
| 7        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
| 8        | (a) |          |             |                |
|          | (b) |          |             |                |
|          | (c) |          |             |                |
|          | (d) |          |             |                |
|          |     |          | Total Marks |                |

# DO NOT WRITE ON THIS SPACE

|    | SECTION - A |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|----|-------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1. | (a)         | If H is a subgroup of a group G such that $x^2 \in H$ for every $x \in G$ , then prove that |  |  |  |  |  |  |  |  |  |  |
|    |             | H is a normal subgroup of G.                                                                |  |  |  |  |  |  |  |  |  |  |
|    |             | [10]                                                                                        |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    |             |                                                                                             |  |  |  |  |  |  |  |  |  |  |



**1.** (b) Show that the set of matrices  $S = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$  is a field under the usual binary operations of matrix addition and matrix multiplication. What are the additive and multiplicative identities and what is the inverse of  $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ ? Consider the map

 $f: \mathbb{C} \to S$  defined by  $f(a + ib) = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ . Show that f is an isomorphism. (Here  $\mathbb{R}$  is the set of real numbers and  $\mathbb{C}$  is the set of complex numbers.)

1. (c) Let 
$$f(x) = \begin{cases} \frac{|x|}{2} + 1 & \text{if } x < 1 \\ \frac{x}{2} + 1 & \text{if } 1 \le x < 2 \\ -\frac{|x|}{2} + 1 & \text{if } 2 \le x \end{cases}$$

What are the points of discontinuity of f, if any?

What are the points where f is not differentiable, if any? Justify yours answers.

[10]







| 1. | (d) | If | f(z) = u + iv | is an analytic function | of $z = x + iy$ | and $u-v = \frac{e^y - \cos x + \sin x}{\cos hy - \cos x}$ | ,find |
|----|-----|----|---------------|-------------------------|-----------------|------------------------------------------------------------|-------|
|    |     |    |               |                         |                 | $\cos ny - \cos x$                                         |       |

f(z) subject to the condition, 
$$f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$$
. [10]



| 1. | (e) | Consider | the fol | lowing | linear | programming | problem: |
|----|-----|----------|---------|--------|--------|-------------|----------|
|    |     |          |         |        |        |             |          |

Maximize 
$$Z = x_1 + 2x_2 - 3x_3 + 4x_4$$
  
subject to

subject to

$$x_1 + x_2 + 2x_3 + 3x_4 = 12$$

$$x_2 + 2x_3 + x_4 = 8$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- (i) Using the definition, find its all basic solutions. Which of them degenerate basic feasible solutions and which are non-degenerate feasible solutions?
- (ii) Without solving the problem, show that it has an optimal solutions of the basic feasible solution(s) is/are optimal? [10]







| 2. | (a) | (i) How many generators are there of the cyclic group G of order 8 ? Explain.  |
|----|-----|--------------------------------------------------------------------------------|
|    | (~) | (ii) Give an example of a group G in which every proper subgroup is cyclic but |
|    |     | the group itself is not cyclic. [5+13=18]                                      |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |
|    |     |                                                                                |









Show that  $f_n(x)$  converges to a continuous function but not uniformly. [14]











| 3. | (a) | Let 'S' be the set of all real numbers except -1. Define $a*b=a+b+ab$ . Is (S, *) a |
|----|-----|-------------------------------------------------------------------------------------|
|    |     | group?                                                                              |
|    |     | Find the solution of the equation $2*x*3 = 7$ in S. [17]                            |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |
|    |     |                                                                                     |





$$\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \left[ \frac{nx}{1 + n^2 x^2} - \frac{(n-1)x}{1 + (n-1)^2 x^2} \right]$$

for uniform convergence. Also, with the help of this example, show that the condition of uniform convergence of  $\sum_{n=1}^{\infty} u_n(x)$  is sufficient but not necessary for the sum S(x) of the series to be continuous.

[15]





| 3. | (c) | Maximize                                   | $z = 2x_1 + 3x_2 + 6x_3$           |  |
|----|-----|--------------------------------------------|------------------------------------|--|
|    |     | subject to                                 | $2x_1 + x_2 + x_3 \le 5$           |  |
|    |     |                                            | $3x_2 + 2x_3 \le 6$                |  |
|    |     |                                            | $x_0 \ge 0, x_2 \ge 0, x_3 \ge 0.$ |  |
|    |     | nal solution unique ? Justify your answer. | [18]                               |  |







| 4. | (a) | If Z is the set of integers then show that $Z[\sqrt{-3}] = \{a + \sqrt{-3}b/a, b \in Z\}$ is not a unique |
|----|-----|-----------------------------------------------------------------------------------------------------------|
|    |     | factorization domain. [15]                                                                                |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |
|    |     |                                                                                                           |











| 4. | (c) | Expand $f(z) = \frac{1}{(z+1)(z+3)}$ | in Laurent's | series which is valid for | (i) 1<  z  <3 | (ii)        |
|----|-----|--------------------------------------|--------------|---------------------------|---------------|-------------|
|    |     | z  > 3 (iii) $ z  < 1$ .             |              |                           | [1            | <b>[0</b> ] |



**4.** (d) A construction company has to move four large cranes from old construction site to new construction site. The distance in kilometres between the old and new locations are as given in the adjoining table. The crane at  $O_3$  cannot be used at  $N_2$  but all the cranes can work equally well at any of the other new sites. Determine a plan for moving the cranes that will minimise the total distance involved in the move.

New Cons. Sites





|    |     | SECTION - B                                                       |      |
|----|-----|-------------------------------------------------------------------|------|
| 5. | (a) | Find complete integral of $(x^2 - y^2)$ pq $-xy(p^2 - q^2) = 1$ . |      |
|    |     |                                                                   | [10] |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |
|    |     |                                                                   |      |



| • (b | 0) | Solve $(D^2 - DD' - 2D'^2)$ $z = (2x^2 + xy - y^2) \sin xy - \cos xy$ . | [10] |
|------|----|-------------------------------------------------------------------------|------|
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |
|      |    |                                                                         |      |



| 5. | (c) | Use Newton-Raphson method to find the real root of the equation $3x = \cos x + 1$ |
|----|-----|-----------------------------------------------------------------------------------|
|    |     | correct to four decimal places. [10]                                              |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |
|    |     |                                                                                   |



| 5. | (d) | Convert the following decimal numbers to equivalent binary and hexadecimal |
|----|-----|----------------------------------------------------------------------------|
|    | , , | numbers:                                                                   |
|    |     | (i) 4096                                                                   |
|    |     | (ii) 0.4375                                                                |
|    |     | (iii) 2048.0625 <b>[10]</b>                                                |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |
|    |     |                                                                            |



| 5. | (e) | If velocity distributon of an incompressible fluid at point (x, y, z) is gives by {3xz/r <sup>5</sup> , |
|----|-----|---------------------------------------------------------------------------------------------------------|
|    | ( ) | $3yz/r^5$ ( $kz^2 - r^2$ )/ $r^5$ }, determine the parameter k such that it is a possible motion.       |
|    |     | Hence find its velocity potential. [10]                                                                 |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |
|    |     |                                                                                                         |



| 6. | (a) | Find the equation of the surface satisfyings. $4yz p + q + 2y = 0$ and passing th $y^2 + z^2 = 1$ and $x + z = 2$ . | rough |
|----|-----|---------------------------------------------------------------------------------------------------------------------|-------|
|    |     | y + z - 1 and $x + z - 2$ .                                                                                         | [10]  |
|    |     |                                                                                                                     | [10]  |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |
|    |     |                                                                                                                     |       |



| uce $\mathbf{x} \left( \frac{\partial^2 \mathbf{z}}{\mathbf{x}^2} \right) + \frac{\partial^2 \mathbf{z}}{\partial \mathbf{y}^2} = \mathbf{x}^2 \left( \mathbf{x} > 0 \right)$ to canonical form. [10] | (b) Reduce X (0 Z/X) + 0 Z/0y - X (X > 0) to canonical form. | 0]                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|
|                                                                                                                                                                                                       |                                                              |                    |
|                                                                                                                                                                                                       |                                                              |                    |
| uce x (0 2/x) + 0 2/0y - x (x > 0) to c                                                                                                                                                               | (b) Reduce X (0 2/X) + 0 2/0y - X (X > 0) to C               | anomear form.      |
| uce x (0-z/x-) + 0-z/0y-                                                                                                                                                                              | (B) Reduce A (O Z/A) + O Z/Oy                                | $= x^2 (x > 0) to$ |
| uce x (0-z/x                                                                                                                                                                                          | (b) Reduce X (0 Z) X                                         | C) + 0-2/0y-       |
| u                                                                                                                                                                                                     | (b) Reduction                                                | ce x (oʻz/x        |



| 6. | (c) | A square plate is bounded by the lines $x = 0$ , $y = 0$ , $x = 10$ and $y = 10$ . Its faces are insulated. The temperature along the upper horizontal edge is given by $u(x, y)$ |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     | 10) = $x (10 - x)$ while the other three faces are kept at 0°C. Find the steady state temperature in the plate. [15]                                                              |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |
|    |     |                                                                                                                                                                                   |







| 6. | (d) | If the string of length $l$ is initially at rest in equilibrium positon and each of the          |
|----|-----|--------------------------------------------------------------------------------------------------|
|    |     | points is given the velocity $v_0 \sin (3\pi x/l)\cos (2\pi x/l)$ where $0 < x < l$ at $t = 0$ . |
|    |     | Find the displacement function. [15]                                                             |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |
|    |     |                                                                                                  |







| 7. | (a) | Using Gauss-Siedel iterative method, find the solution of the following system.               |
|----|-----|-----------------------------------------------------------------------------------------------|
|    |     | 4x - y + 8z = 26, $5x + 2y - z = 6$ , $x - 10y + 2z = -13$ upto three iterations. <b>[12]</b> |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |
|    |     |                                                                                               |



7. (b) Obtain the Simpson's rule for the integral  $I = \int_a^b f(x) dx$  and show that this rule is exact for polynomials of degree  $n \le 3$ . In general show that the error of approximation for Simpson's rule is given by  $R = -\frac{(b-a)^5}{2880} f^{iv}(\eta), \eta \in (0,2)$ . Apply this rule to the integral  $\int_0^1 \frac{dx}{1+x}$  and show that  $|R| \le 0.008333$ .











| 7. | (d) | Draw a flowchart for Simpson's one-third rule. | [10] |
|----|-----|------------------------------------------------|------|
|    |     | -                                              |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |
|    |     |                                                |      |



**8.** (a) A uniform rod, of mass 3m and length 2l, has its middle point fixed and a mass m attached at one extremity. The rod when in a horizontal position is set rotating about a vertical axis through its centre with an angular velocity equal to  $\sqrt{(2ng/l)}$ . show that the heavy end of the rod will fall till the inclination of the rod to the vertical is  $\cos^{-1}\left[\sqrt{(n^2+1)}-n\right]$ , and will then rise again. [17]



| 8. | (b) | Determine the motion of a spherical pendulum, by using Hamilton's equations.  [17] |
|----|-----|------------------------------------------------------------------------------------|







|    |     | 47 01 32                                                                                                                                                                  |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. | (c) | When a pair of equal and opposite rectilinear vortices are situated in a long circular cylinder at equal disance from its axis, show that path of each vortex is given by |
|    |     | the equation.                                                                                                                                                             |
|    |     | $(r^2 \sin^2 \theta - b^2) (r^2 - a^2)^2 = 4a^2b^2r^2 \sin^2 \theta,$ [16]                                                                                                |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |
|    |     |                                                                                                                                                                           |

| •        |     |
|----------|-----|
| ROUGH SP | ACE |
| ROUGHSP  | ACE |











## No.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS



## **OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2019)**

**OUR RANKERS AMONG TOP 10 IN IFoS** 



DISSII KIIMAD AIR-01 IFoS-2019



PRATAP SINGH AIR-01 IFoS-2015



PRATEEK JAIN AIR-03 IFoS-2016



STONARTHA GUPTA AIR-03 IFoS-2014



VARIIN CUNTURALLI AIR-04 IFoS-2014



AIR-04 IFoS-2010



O IMPRIM IGTARN AIR-05 IFoS-2019



DESHAL DAN AIR-05 IFoS-2017



PARTH JAISWAL AIR-05 IFoS-2014



HIMANSHU GUPTA AIR-05 IFoS-2011



ASHISH REDOY MY AIR-06 IFoS-2015



ANUPAH SHUKLA AIR-07 IFoS-2012



ARMCHAL SPINASTAW AIR-09 IFoS-2018



HARSHVARDHAM AIR-10 IFoS-2017









AIR-30

































AIR-93





AIR-22























AIR-21















AIR-67







































101 AIR-13





AIR-72 AIR-11 AIR-36 ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 © Ph.:011-45629987, 9999197625 💋 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

## No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS



## OUR ACHIEVEMENTS (FROM 2008 TO 2019)



HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152