tuned服务的作用:通过udev来监视硬件设备,然后根据监视所获取的数据来对系统进行动态调优或直接静态调优。

tuned服务使用两类程序:监视程序和调优程序。

1) 监视程序:主要负责对系统的硬件设备进行监视。详细信息如下:

1/	шции	<u> </u>	CANALINATION AND THE CONTRACT OF THE CONTRACT
	序号	监视范围	描述
	1	disk	每间隔一定时间获取系统每个磁盘的负载(I0操作的数量)
	2	net	每间隔一定时间获取系统每个网卡的网络负载(传输数据包的数量)
	3	load	每间隔一定时间获取系统每个CPU的负载(运行时间)

注:默认的间隔时间为10秒,可以通过文件/etc/tuned/tuned-main.conf里的参数update_interval来调整。

2) 调优程序:根据监视程序所获得的数据进行动态调优或根据系统指定的profile来对系统进行静态调优。关于profile的详细信息如下:

2) 调加	桯序:根据 监视 桯序 所获 得的数据进行 动态调	们以根据系统指定的pro	OTII 0米 对系统进 行静 态调忧。天	fprofile的详细信息如下:					
番号		default	network-latency	network-throughput	latency-performance	powersave	throughput-performance	virtual-guest	virtual-host
1	governor%1	ondemand	performance	performance	performance	ondemand	performance	performance	performance
	energy_perf_bias	normal	performance	performance	performance	powersave	performance	performance	performance
	force_latency%1	109	1	_	1	_	_	-	_
	min_perf_pct%1	48	100	100	100	_	100	100	100
	kernel.sched_autogroup_enabled	0	_	_	_	_	_	-	_
	kernel.sched_min_granularity_ns%2	3000000	1000000	1000000	1000000	_	1000000	10000000	10000000
	vm. dirty_ratio	20	10	40	10	_	40	30	40
8	vm.dirty_background_ratio	10	3	10	3	=	10	10	5
	vm. swappiness	60	10	10	10	=	10	30	10
10	kernel.sched_migration_cost_ns	500000	5000000	_	5000000	=	-	-	5000000
- 11	vm. laptop_mode	5	ı	_	_	5	-	-	_
	vm. dirty_writeback_centisecs	1500	ı	_	_	1500	-	-	_
13	kernel.nmi_watchdog	0	ı	_	_	0	-	-	_
	vm. max_map_count	250 32000 32 128	_	_	_	_	_	-	_
	kernel.sched_wakeup_granularity_ns%2	65530	_	_	_	_	_	-	_
	transparent_hugepages	4000000	_	15000000	_	_	15000000	15000000	15000000
17	alpm	always	never	always	never	_	_	-	_
18	readahead	min_power	ı	_	_	min_power	-	_	_
	net. core. busy_read	128	ı	4096	_	=	4096	4096	4096
	net. core. busy_poll	0	50	_	_	_	_	-	_
	net. ipv4. tcp_fastopen	0	50	_	_	=	-	-	_
	kernel.numa_balancing※1	0	3	_	_	=	-	-	_
	net.ipv4.tcp_rmem※3	1	0	-	_	_	-	-	_
	net.ipv4.tcp_wmem※3	4096 87380 6291450	П	4096 87380 16777216	_	_	-	-	_
	net.ipv4.udp_mem※3	4096 16384 4194304	П	4096 16384 16777216	_	_	-	-	_
26	net.ipv4.udp_mem※3	767112 1022816 15342	П	3145728 4194304 16777216	_	_	-	-	_

※1具体的值与CPU类型有关, ※2具体的值与CPU个数有关, ※3具体的值Memory大小有关。

注 ·

1) Native与Host系统下默认的profile为powersave。

- 2) Guest系统下默认的profile为virtual-guest。
- 3) 系统默认关闭动态调优,开启动态调优**可以通过文件**/etc/tuned/tuned-main.conf**里的参数**dynamic_tuning来设置。
- 4) profile所设置的参数值若不存在,系统会使用默认值。例如系统的CPU参数governor没有ondemand值,如果设置了ondemand,会采用系统默认值powersave。

tuned服务使用方法如下:

序号	命令	描述
1		启动tuned服务
2		查看可以使用的profiles
3	tuned-adm active	查看当前正在使用的profile
4		激活某个指定的profile
5	tuned-adm recommand	让系统推荐一个最适合的profile

	调节 参数的含 义:	1		
序号	参数	取值范围	设置方法	描述
1	governor	performance , powersave	echo [performance powersave] > /sys/devices/system/cpu/cpuN/cpufreq/scaling_governor	CPU频率调速器
2	energy_perf_bias	performance , normal, powersave	x86_energy_perf_policy [performance normal powersave]	CPU在权衡performance和 energy efficiencyman的模式,详细信息可参考"man x86_energy_perf_policy"。
3	force_latency	>0	echo N >/dev/cpu_dma_latency	CPU从idle状态切换CO状态的最大唤醒时间(ms)
4	min_perf_pct	0 - 100	echo N > /sys/devices/system/cpu/intel_pstate/min_perf_pct	设置P-state的最小百分比(相对于cpufreq)
5	kernel.sched_autogroup_enabled	0、1		是否 启动进程自动分组调度
6	kernel.sched_min_granularity_ns	>0		进程被调度前最少运行时间(ns)
7	vm.dirty_ratio	>0		设置脏页数据占系统内存的比例,阻塞式启动pdflush内核线程
8	vm.dirty_background_ratio	>0		设置脏页数据占系统内存的比例,非阻塞式启动pdflush内核线程
9	vm. swappiness	0 - 100		积极使用swap空间的比例,例如0表示尽量不使用swap设备,100表示尽可能使用swap设备。
10	kernel.sched_migration_cost_ns	>0	使用命令sysctl -p 参数 = ***	利用该值 (ns) 来判断一个进程是否是"cache hot"。如果是的话,就尽可能不对这个进程进行迁移。
11	vm. laptop_mode	>=0		将所有磁盘I/ 0操作、 脏缓存写到磁盘 的 时间间隔(s)
12	vm.dirty_writeback_centisecs	>0		设置脏页数据在内存中的最大驻留时间,超过此值,pdf lush内核 线程将会将这些脏数据写入磁盘
13	kernel.nmi_watchdog	0、1		是否启动watchdog,watchdog用于检测系统是否hang。
14	kernel.sem	-		设置 信号量的相 关参数值
15	vm. max_map_count	>0		限制一个进程可以拥有的VMA(虚拟内存区域)的数量。
16	kernel.sched_wakeup_granularity_ns	>0		表示进程被唤醒后至少应该运行的时间(ns)
17	transparent_hugepages	always, madvise, never	echo [always madvise never] > /sys/kernel/mm/transparent_hugepage/enabled	是否 启用透明大页面
18	аІрт	min_power、medium_power、max_performance	echo [min_power medium_power max_performance] >/sys/class/scsi_host/hostl/link_power_management_policy	针对磁盘(SATA控制器)在10空闲状态的模式
19	readahead	>0	echo-个值到文件文件/sys/block/sd*/queue/read_ahead_kb	预取数据加载到内存(Kb),该参数可通过文件 /sys/block/sd*/queue/read_ahead_kb来设置
20	net. core. busy_read	>=0		设置自旋(spin)等待从设备队列读取socket数据的时间(us)
21	net.core.busy_poll	>=0		设置目旋(spin)等待从设备队列的socket poll与select的时间 (us)
22	net. ipv4. tcp_fastopen	0, 1, 2, 3		是否 开启快速打开TCP。详细参考: https://lwn.net/Articles/508865/
23	kernel.numa_balancing	0、1		是否启动自动numa balancing。启动之后系统会自动移动任务或数据更加接近内存,缩短访问时间。
24	net.ipv4.tcp_rmem	-		为TCP socket预留用于接收缓冲的内存大小(字节)
25	net.ipv4.tcp_wmem	-		为TCP socket预留用于发送缓冲的内存大小(字节)
26	net.ipv4.udp_mem	-		为UDP socket预 留用于 发 送缓冲的内存大小(字 节)

各参数的详细解析:

1、	参数	默认值	取值范围	描述
	governor	ondemand	performance , ondemand , powersave	CPU频率调速器

说明:

- 1) 该参数用于设置CPU的频率模式,有3个值可供设置。
- 2) 当参数值为performance时, CPU的频率将会一直维持在最高主频 (/proc/cpuinfo中显示的主频), 电力消耗增加,对某些应用程序来说性能会有提升。
- 3) 当参数值为ondemand时,CPU的频率将会根据CPU的利用率来变化,电力消耗较少,对应用程序性能影响也较小。 注:机器RX30057没有ondemand模式可供选择。
- 4) 当参数值为powersave时, CPU的频率在CPU空闲时将处于最低值(由参数min_perf_pct控制), 电力消耗最少,对某些应用程序性能有影响。

2	糸 粉	野江店	₩值范围	描述
۷,	少奴	がりに	KEICH	描 迎
	energy_perf_bias	normal	performance , normal, powersave	CPU权衡performance和energy efficiency的模式

说明:

- 1) 该参数表示CPU在性能和电力节约之间做出选择,有3个值可供设置。
- 2) 当参数值为performance时,CPU不会了节省电力牺牲一点性能,这种情况下,电力消耗增加,程序性能会有提升。
- 3) 当参数值为normal时, CPU会在电力消耗和性能之间做一个折中, 这也是默认的模式。
- 4) 当参数值为powersave时, CPU将会最大化的节省电力,这种情况下,程序性能会受到影响。
- 5) 可动态调节每个CPU的模式,使用命令 "x86_energy_perf_policy"即可调整。

3、	参数	默认值	取值范围	单位	描述
	force_latency	109	[0, 109]	ms	CPU从idle状态切换CO状态的最大唤醒时间

设田.

- 1) 该参数表示CPU从idle状态切换到CO状态(运行状态)的最大唤醒时间。
- 2)调大该参数的值,使得CPU能够进入深度睡眠,减少CPU对电力的消耗。但是,由于CPU的唤醒时间增加,可能对某些应用程序的性能有影响。
- 3)调小该参数的值,能够减少CPU从idle状态切换到CO状态的延迟,对某些应用程序来说(如网络程序)能够能够减少延时。但是由于CPU不能进入深度睡眠,电力消耗增加。

4、	参数	默认值	取值范围	描述
	min_perf_pct	48	[1, 100]	设置CPU最低的频率

- 1) 该参数可用于设置CPU的最低频率,参数值为CPU频率的百分比。
- 2) 调大该参数值,将提高CPU在空闲时的最低频率,不利于节电。
- 3) 调小改参数值,将降低CPU在空闲时的最低频率,利于节电。
- 4) 该参数可以通过文件 /sys/devices/system/cpu/intel_pstate/min_perf_pct 来设置。

5.	参数	默认值	取值范围	描述
	kernel.sched_autogroup_enabled	0	0, 1	是否启动进程自动分组调度特性

- 1) 该特性依据进程的类型,将不同的进程放到不同的组内,进程调度单位是组。这样启动该特性后低响应的进程(比如编译内核)就不会影响高响应的进程(交互性强的进程)。
- 2) 该特性主要用于Desktop环境。
- 3) 该特性不适用于Server环境下,因为该特性可能会导致一些daemon的子进程不停的进行移植,影响性能。

6、	参数	默认值	取值范围	单 位	描述
	kernel.sched_min_granularity_ns	3, 000, 000	[1, 2^32-1]	ns	进程被调度前最少运行的时间

说明:

- 1) 该参数表示多久内核会检查调度另外一个进程,也就是表示被调度前进程最少运行时间。
- 2) 调大该参数值,会使得进程被频繁的切换,对于交互系统,可以保证交互得到更快的响应。
- 3) 调小该参数值,会减少进程被频繁的切换,即减少了上下文切换, CPU利用率将提高,对某些应用程序来说这将提高性能。

- 1	7.	参数	默认值	取值范围	描述
		vm.dirty_ratio	20	[0, 100]	当脏页数据占系统内存达到一定比例时,阻塞式将脏页回写到磁盘

说明:

- 1)应用程序在向page cache写数据的过程中,系统会首先检查脏页占内存的百分比是否达到了dirty ratio阈值,如果达到,应用程序则阻塞等待直到将脏页写回磁盘。
- 2) 调大该参数值,应用程序到达dirty_ratio的次数会减少,使得应用程序在调用write函数时等待page cache的回写时间减少,因此会缩短程序的运行时间。 由于内核保证了dirty page的量不会超过内存总量的50%,所以dirty_ratio大于50时程序运行时间基本和dirty_ratio=50时程序运行时间相同。
- 3)调小该参数值,应用程序到达dirty_ratio的次数会增多,导致回写次数增多,使得应用程序调用write函数时等待page cache的回写时间变长,因此会增长程序的运行时间。

0	↔ ¥L	関上いし仕	15 法共国	4+++
8、	参数	款 认但	拟诅氾围	抽 处
	Part I I I I I I I I I I I I I I I I I I I	10	[0.100]	当脏页数据上系统内方法到一字比例时,自动内核线程pdf luch,非阳宝式短脏页向写到磁盘
	vm. dirty_background_ratio	10	[0, 100]	当脏页数据占系统内存达到一定比例时,启动内核线程pdf lush,非阻塞式将脏页回写到磁盘

- 1)应用程序在向page cache写数据的过程中,系统会检查脏页占内存的百分比是否达到dirty_background_ratio阈值,如果达到,系统会启动pdflush内核线程回写脏页直到脏页占内存的比例小于dirty_background_ratio或回写了指定脏页数,而应用程序继续写数据。
- 2) 调大该参数值,在这种情况下(应用程序每次写之间存在一定间隔)会使得被回写的脏页量减少,从而导致脏页维持在dirty_ratio的时间段变长,因此应用程序将会因为等待时间变长而使整个运行时间变长。
- 3) 调小参数dirty_background_ratio值,在这种情况下(应用程序每次写之间存在一定间隔)会使得被回写的脏页量增多,从而导致脏页维持在dirty_ratio的时间段变短,因此应用程序将会因为等待时间变短而使整个运行时间变短。

9、	参数	默认值	取值范围	描述
	vm. swappiness	60	[0, 100]	调整用户态地址空间的页的回收策略

- 1) 当系统内存紧张时,系统有可能会回收两种类型的页框来获得内存:一种是用于存放进程用户空间页;另一种是供I/0使用的page cache。
- 2) 用户调整swappiness参数值,可以影响用户态地址空间的页的回收。如下所示:

swappiness	userspace	pagecache	
值小(0)	不回収	回収	
值大(100)	回収	回収	

- 3) 调大该参数的值,两种页都会被回收,回收的page cache就会减少, I0用程序性能可能会得到提升。
- 4) 调小该参数的值,不回收用户态地址空间的页,用户空间应用程序性能可能会得到提升。

1	0、	参数	默认值	取值范围	单位	描述
		kernel.sched_migration_cost_ns	500, 000	[1, 2^32-1]	ns	用于判断一个进程是否处于 "cache hot"状态

说明:

- 1) 该参数用于判断一个进程是否处于"hot"状态。在系统需要对进程进行移植的时候,如果该进程距离上一次运行的时间间隔小于该参数值,则判定该进程处于"hot"状态,那么系统将尽量不移植该进程,否则系统将会对该进程进行移植。
- 2) 调大该参数的值,能够减少进程进行移植的操作,特别是对于某些进程在CPUs或nodes来回切换的这种情况下,调大参数能够提高应用程序的性能。
- 3) 调小改参数的值,能够增加进行进行移植的操作,在CPU空闲时间比较多的情况下,调小该参数可以CPU资源更加合理的被运用。

11,	参数	默认值	取值范围	单位	描述
	vm. laptop_mode	5	[O, INT_MAX]	S	用于设置系统是否启用laptop_mode模式

说明:

- 1) laptop_mode模式是一种特殊的页回写策略,该策略主要意图是将硬盘转动的机器化行为最小化,尽量使硬盘处于低能耗的状态下,节省电力。
- 2) laptop_mode模式周期性的启动pdflush线程将许多的1/0操作组织在一起,一次完成,这样可以减少磁盘启动的次数。
- 3) laptop_mode模式需要与参数vm. dirty_writeback_centisecs和dirty_expire_centisecs配合使用来达到节省电力的目的。

12	2、	参数	默认值	取值范围	单 位	描述
		vm.dirty_writeback_centisecs	1500	[O, INT_MAX]	1/100 s	系统触发pdflush内核线程的周期

- 1) 系统会周期性地触发pdflush线程, 将系统中标记为脏时间过长(由参数dirty_expire_centisecs来判定)的脏页回写到磁盘。
- 2) 调大该参数的值,内核线程pdf1ush被触发周期变长,系统因回写脏页而占用的io资源变少,在这种情况下(系统中存在多个文件被不断更新产生脏页), 其它不通过内存cache使用10资源的程序可用10资源量变多,性能提高。
- 3)调小该参数的值,pdf lush被触发周期变短,系统因回写脏页而占用的io资源变多,在这种情况下(系统中存在多个文件被不断更新产生脏页), 其它不通过内存cache使用10资源的程序可用10资源量变少,性能降低。
- 4) 参数为0时,pdflush不会被周期性触发,不会因回写而占用io资源,在这种情况下(系统中存在多个文件被不断更新产生脏页), 其它不通过内存cache使用10资源的程序可用10资源最多,性能最优。

13、	参数	默认值	取值范围	描述

kernel.nmi watchdog	0	0. 1	用于设置系统是否启动nmi_watchdog特性

- 1) nmi_watchdog(Non Maskable Interrupt Watchdog) 通过周期性的向系统发送不可屏蔽的中断来检测系统是否hang。
- 2) 启动该特性可以使内核有效的检测到CPU是否被锁住,并及时作出一些措施使得CPU恢复正常运行状态。
- 3) 关闭该特性可以减少CPU对watchdog发送的不可屏蔽的中断进行处理,从而可以提供应用程序的性能。

14、	参数	默认值	取值范围 描述
	kernel.sem	250 32000 32 128	- 系统关于信号量的一些限制

说明:

1) 该参数由4个部分组成:

SEMMSL:控制每个信号集可以包括最多的信号数量

SEMMNS:控制系统最多可以拥有的信号数量

SEMOPM:控制系统调用semop一次最多可以操作的信号数量

SEMMNI:控制系统最多可以同游的信号集数量

2) **在**应用程序工作过程中需要大量信号量的时候(如**oracle数据**库),需要调大该**参数,否**则应用程序可能因内核限制的信号量数导致应用程序无法正常工作。

15、	参数	默认值	取值范围	描述
	vm. max_map_count	65530	[1, INT_MAX]	一个进程最多可以拥有的VMA(虚拟内存区域)的数量

说明:

- 1) 该参数用来限制一个进程最多可以拥有vma的数量。
- 2) 像malloc、mmap、mprotect以及加载共享库这样的操作都会影响vma的数量。
- 3)增加该参数可以避免某些程序因大量增加vma数量到达限制而产生错误。

16、	参数	默认值	取值范围	单位	描述
	kernel.sched_wakeup_granularity_ns	4, 000, 000	-	ns	被wake-up的进程进行抢占的粗粒度

说明.

- 1) 它用来判断被wake-up的进程是否抢占当前正在运行的进程,该参数越小,抢占发生的概率越高,该参数越大,抢占发生的概率越小。
- 2)调大该参数值,可以减少进程抢占的发生概率,也就减少了进程上下文的切换所带来的资源消耗,因此可以提高某些应用程序的throughput值。
- 3) 调小改参数值,可以增大进程抢占的发生概率,对于某些交互性强的应用程序来说,可以减少Latency。

17、	参数	默认值	取值范围	描述
	transparent_hugepages	always	always, madvise, never	系 统是否启动透明大页面

- 1) 使用大页面可以减少应用程序TLB miss的发生,因此可以提高应用程序的性能。
- 2) 透明大页面不需要应用程序做任何修改或设置,系统会自动为应用程序使用透明大页面。
- 注:透明大页面只能适用于匿名映射的内存区域。
- 3) 当参数设为[always]时,系统会尽可能的为应用程序使用大页面。
- 4) 当参数设为[madvise]时,系统只会为应用程序的内存区域标有MAD_HUGEPAGE的内存使用大页面。
- 5) 当参数设为[never]时,系统不会为任何应用程序使用大页面。

18、	参数	默认值	取值范围	描述
	alpm	min_power	min_power, medium_power, max_performance	I/0为idle状态下磁盘的省电模式

说明:

- 1) alpm (aggressive link power management) 是一个power-saving技术,在没有I/O操作时,系统通过一些设置来降低disk的电力消耗从而达到省电。
- 2) alpm技术只适用于采用高级主机控制接口(Advanced Host Controller Interface)的SATA控制器。
- 3) alpm的三种模式:
 - a) min_power:这种模式最省电,适用于I/O操作长时间处于idle状态。
 - b) medium power:这种模式较省电,适用于一会有连续繁重的I/0操作,一会长时间的处于idle I/0状态。
 - c) max_performance:禁用alpm技术,那么即使磁盘没有I/0操作,也不会进入省电模式。
- 4) 设置alpm为min_power或max_performance模式, 将会自动使 "Hot Plug" 特性失效。

19、	参数	默认值	取值范围	单位	描述
	readahea	128	[1, LONG_MAX]	KB	设置预读 取数据到内存的大小 (KB)

说明:

- 1) **当系**统需要读取某个文件时,无论实际需要多少,默认一次会读取128KB的数据。
- 2) 当顺序读大文件时,提高该参数值,一次可以多读取点数据,这样可以有效的减少读seek的次数,从而提高性能。
- 3) 该参数可以通过命令"blockdev --setra /dev/sd*"或通过文件/sys/block/sd*/queue/read_ahead_kb来设置。

20、	参数	默认值	取值范围	单位	描述
	net. core. busy_read	0	[0, 2^32-1]	ms	设置自旋(spin)等待从设备队列读取socket数据的时间

说明.

- 1) Busy polling特性会使socket底层代码poll网络设备的接收队列,这样可以减少了网络中断和进程上下文切换,增加CPU利用率,但是由于CPU不会进行sleep从而增加电力消耗。
- 2) 该参数用于设置接收网络数据时poll的最长近似时间。
- 3) 调大该参数的值,能够降低应用程序的Latency,增加电力消耗。

21、	参数	默认值	取值范围	単位	描述
	net.core.busv poll	0	[0, 2^32-1]	ms	设置自旋(spin)等待从设备队列的socket poll与select的时间

- 1) Busy polling特性会使socket底层代码poll网络设备的接收队列,这样可以减少了网络中断和进程上下文切换,增加CPU利用率,但是由于CPU不会进行sleep从而增加电力消耗。
- 2) 该参数表示系统调用select()与poll()所监视的socket文件(需要打开SO_BUSY_POLL选项)没有发生任何事件时,监视这个socket文件的最长近似时间。
- 3)调大该参数的值,能够降低应用程序的Latency,调大该参数值,将要增加电力消耗。

22、	参数	默认值	取值范围	描述
	net. ipv4. tcp_fastopen	0	0, 1, 2, 3	是否开启快速打开TCP连接

说明:

- 1) TCP Fast Open (TFO) 会利用TCP三次握手的SYN报文来传输应用数据,这样客户端与服务器端的交互过程中就减少一个RTT ((Round-Trip Time)的开销。
- 2) TCP三次握手是页面延迟时间的重要组成部分,因此启用TFO可以减少客户端加载页面的时间。
- 3) 各个参数值的含义:
 - 0:禁止TF0特性
- 1:客户端启用TF0特性
- 2:服务器端启用TF0特性
- 3:客户端和服务器端都启用TF0特性

23、	参数	默认值	取值范围	描述
	kernel.numa_balancing	1	0, 1	是否开启Automatic NUMA Balancing特性

- 1) CPU访问同一Node上的Memory要比访问其它Node上的Memory速度快,因此运行应用程序的CPU和要访问的Memory一直处于同一Node上的话,应用程序性能将变好。
- 2) 开启 Automatic NUMA Balancing这个特性,系统会在应用程序运行时自动做些操作使其运行的CPU和访问的Memory处于同一Node,从而提高应用程序性能。
- 3) Automatic NUMA Balancing可以使用如下方法来达到其特性:
 - a) Migrate-on-Fault (MoF) moves memory to where the program using it runs
 - b) task numa placement moves running programs closer to their memory
- 4) 在NUMA架构的系统上支持Automatic NUMA Balancing特性需要满如下两个条件:
- a) 使用命令# numact | --hardware 能够看到多个nodes。
- b)使用命令#cat /sys/kernel/debug/sched_features 能够看到NUMA标记。