Tutorial

April 27, 2020

```
[1]: import matplotlib.pyplot as plt
import sys

sys.stderr = sys.__stderr__
plt.rc('font', size=16)
```


PyTorch-Geometric Tutorial

Francesco Landolfi Università di Pisa

1 Outline

- 1. Introduction
- 2. Sparse Data & Indexing in PyTorch
- 3. Framework Overview
- 4. Machine Learning with PyG
- 5. Conclusions

2 The "What"

- Python library for Geometric Deep Learning
- Written on top of PyTorch
- Provides utilities for sparse data
- CUDA/C++ routines for max performance

3 The "Why"

- A must-have if you are a (G)DL guy
- Only few more alternatives:
 - Deep Graph Library (DGL, PyTorch)
 - Stellar Graph, Euler (TF)

- Other wannabes (<1K stars on GitHub)
- Many ready-to-use models and datasets
- Good for any Data-Parallel algorithm on graph

4 The "When"

You have an algorithm on graphs/meshes/point clouds and - you want to execute it on multiple samples in parallel - you want to exploit SIMD/GPU resources - you are able to **remodel** your algorithm as - a composition of simple algebraic operations, or - a *message-passing* model

Spoiler: Some algorithms are not easily remodelable!

5 The "How"

You need (of course) Python, PyTorch 1.4 and a few more libraries:

```
export CUDA=cu101 # or 'cpu', 'cu100', 'cu92'
pip install torch-scatter==latest+${CUDA} \\
    torch-sparse==latest+${CUDA} \\
    torch-cluster==latest+${CUDA} \\
    -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-geometric
```

Full docs here: https://pytorch-geometric.readthedocs.io/en/latest/

Note: To execute this notebook you will also need networkx, matplotlib, trimesh, pandas, rdkit, and skorch

6 Dense v. Sparse

Example: Storing graph edges

- As matrix (dense) \implies $O(|V|^2)$
- As indices (sparse) \implies $O(|E|) \le O(|V|^2)$

```
import networkx as nx
import matplotlib.pyplot as plt

G = nx.barabasi_albert_graph(100, 3)
_, axes = plt.subplots(1, 2, figsize=(10, 4), gridspec_kw={'wspace': 0.5})
nx.draw_kamada_kawai(G, ax=axes[0], node_size=120)
axes[1].imshow(nx.to_numpy_matrix(G), aspect='auto', cmap='Blues')
axes[0].set_title("$G$")
axes[1].set_title("$\mathbf{A}\$")
plt.show()
```


7 Sparse Representations

We store a feature matrix $\mathbf{X} \in \mathbb{R}^{n \times h}$, then

- **Edges:** a matrix of indices $\mathbf{E} \in \mathbb{N}^{2 \times m}$
- **Triangles:** a matrix of indices $\mathbf{T} \in \mathbb{N}^{3 \times t}$
- Attributes: feature matrices $\mathbf{W}_E \in \mathbb{R}^{m \times h_e}$ and/or $\mathbf{W}_T \in \mathbb{R}^{t \times h_T}$,

8 Indexing/Slicing in PyTorch

Basically tensor[idx, ...] and tensor[start:end:stride, ...]

```
[3]: import torch

mat = torch.arange(12).view(3, 4)

mat
```

```
[4]: mat[0]
```

[4]: tensor([0, 1, 2, 3])

```
[5]: mat[:, -1]
```

[5]: tensor([3, 7, 11])

```
[6]: mat[:, 2:]
 [6]: tensor([[ 2, 3],
              [6, 7],
              [10, 11]])
 [7]: mat[:, ::2]
 [7]: tensor([[ 0, 2],
              [4, 6],
              [8, 10]])
     not only R-values...
 [8]: mat[:, ::2] = 42
      mat
 [8]: tensor([[42, 1, 42, 3],
              [42, 5, 42, 7],
              [42, 9, 42, 11]])
 [9]: mat[:, 1::2] = -mat[:, ::2]
      mat
 [9]: tensor([[ 42, -42, 42, -42],
              [42, -42, 42, -42],
              [ 42, -42, 42, -42]])
[10]: mat[1::2] = -mat[::2]
      mat
             RuntimeError
                                                         Traceback (most recent call last)
             <ipython-input-10-afa2c45091a0> in <module>
         ----> 1 mat[1::2] = -mat[::2]
                2 mat
             RuntimeError: The expanded size of the tensor (1) must match the existing \Box
      ⇒size (2) at non-singleton dimension 0. Target sizes: [1, 4]. Tensor sizes: ___
      \rightarrow [2, 4]
```

```
[11]: mat[1, :, :] = 0
      mat
                                                      Traceback (most recent call last)
             IndexError
             <ipython-input-11-dd6fd5492b0d> in <module>
         ---> 1 mat[1, :, :] = 0
               2 mat
             IndexError: too many indices for tensor of dimension 2
[13]: mat[1, ..., 2] = 5
      mat
[13]: tensor([[ 42, -42, 42, -42],
                        5, 0],
             [ 0, 0,
             [ 42, -42, 42, -42]])
        Masked Selection
     Using a BoolTensor to select values inside another Tensor
[14]: rnd = torch.rand(3, 9)
      rnd
[14]: tensor([[0.0671, 0.4826, 0.5229, 0.9172, 0.0080, 0.6228, 0.3292, 0.5323,
      0.4379],
              [0.3695, 0.1830, 0.5255, 0.0216, 0.6390, 0.5217, 0.1131, 0.4823,
      0.8124],
              [0.9888, 0.4735, 0.1370, 0.2681, 0.6472, 0.4005, 0.3606, 0.9460,
      0.6793]])
[15]: mask = rnd >= 0.5
      mask
[15]: tensor([[False, False, True, False, True, False, True, False],
              [False, False, True, False, True, False, False, True],
              [ True, False, False, False, True, False, False, True, True]])
[16]: mask.type()
```

[16]: 'torch.BoolTensor'

```
[17]: rnd[mask]
[17]: tensor([0.5229, 0.9172, 0.6228, 0.5323, 0.5255, 0.6390, 0.5217, 0.8124, 0.9888,
              0.6472, 0.9460, 0.6793])
     Note: Masking returns always a 1-D tensor!
[20]: rnd[:, (~mask).all(0)]
[20]: tensor([[0.4826, 0.3292],
              [0.1830, 0.1131],
              [0.4735, 0.3606]])
[21]: rnd[mask] = 0
      rnd
[21]: tensor([[0.0671, 0.4826, 0.0000, 0.0000, 0.0080, 0.0000, 0.3292, 0.0000,
      0.4379],
              [0.3695, 0.1830, 0.0000, 0.0216, 0.0000, 0.0000, 0.1131, 0.4823,
      0.0000],
              [0.0000, 0.4735, 0.1370, 0.2681, 0.0000, 0.4005, 0.3606, 0.0000,
      0.0000]])
     10
          Index selection
     Using a LongTensor to select values at specific indices
[22]: A = torch.randint(2, (5, 5))
      Α
[22]: tensor([[0, 1, 1, 1, 1],
              [0, 0, 0, 0, 1],
              [1, 0, 0, 1, 0],
              [0, 1, 1, 1, 1],
              [0, 1, 1, 1, 1]])
[23]: idx = A.nonzero().T
      idx
[23]: tensor([[0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4],
              [1, 2, 3, 4, 4, 0, 3, 1, 2, 3, 4, 1, 2, 3, 4]])
[24]: A[idx]
[24]: tensor([[[0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
```

```
[0, 0, 0, 0, 1],
               [1, 0, 0, 1, 0],
               [1, 0, 0, 1, 0],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1]],
              [[0, 0, 0, 0, 1],
               [1, 0, 0, 1, 0],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 0, 0, 0, 1],
               [1, 0, 0, 1, 0],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1],
               [0, 0, 0, 0, 1],
               [1, 0, 0, 1, 0],
               [0, 1, 1, 1, 1],
               [0, 1, 1, 1, 1]])
[25]: row, col = idx # row, col = idx[0], idx[1]
      A[row, col]
[25]: tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
[26]: weight = torch.randint(10, (idx.size(1),))
      weight
[26]: tensor([2, 2, 8, 3, 0, 9, 2, 2, 4, 1, 6, 3, 5, 5, 5])
[27]: A[row, col] = weight
[27]: tensor([[0, 2, 2, 8, 3],
              [0, 0, 0, 0, 0],
              [9, 0, 0, 2, 0],
              [0, 2, 4, 1, 6],
              [0, 3, 5, 5, 5]])
```

[0, 1, 1, 1, 1],

```
[28]: w, perm = torch.sort(weight)
      w, idx[:, perm]
[28]: (tensor([0, 1, 2, 2, 2, 2, 3, 3, 4, 5, 5, 5, 6, 8, 9]),
       tensor([[1, 3, 2, 3, 0, 0, 0, 4, 3, 4, 4, 4, 3, 0, 2],
               [4, 3, 3, 1, 2, 1, 4, 1, 2, 2, 3, 4, 4, 3, 0]]))
          Gathering
     11
[29]: rnd = torch.randint(10, (3, 9))
      rnd
[29]: tensor([[3, 5, 1, 4, 6, 0, 5, 6, 8],
              [0, 3, 1, 9, 5, 9, 8, 6, 8],
              [7, 8, 6, 0, 7, 2, 0, 7, 5]])
[30]: sort, perm = torch.sort(rnd, dim=-1)
      sort, perm
[30]: (tensor([[0, 1, 3, 4, 5, 5, 6, 6, 8],
               [0, 1, 3, 5, 6, 8, 8, 9, 9],
               [0, 0, 2, 5, 6, 7, 7, 7, 8]]),
       tensor([[5, 2, 0, 3, 1, 6, 4, 7, 8],
               [0, 2, 1, 4, 7, 6, 8, 3, 5],
               [3, 6, 5, 8, 2, 0, 4, 7, 1]]))
[31]: torch.gather(input=rnd, dim=-1, index=perm)
[31]: tensor([[0, 1, 3, 4, 5, 5, 6, 6, 8],
              [0, 1, 3, 5, 6, 8, 8, 9, 9],
              [0, 0, 2, 5, 6, 7, 7, 7, 8]])
     input and index must have the same shape, except along dim!
     Example: Top-k elements of each row
[32]: k = 3
      torch.gather(input=rnd, dim=-1, index=perm[:, :k])
[32]: tensor([[0, 1, 3],
              [0, 1, 3],
```

[0, 0, 2]])

12 Scattering

```
[33]: rnd, perm
[33]: (tensor([[3, 5, 1, 4, 6, 0, 5, 6, 8],
               [0, 3, 1, 9, 5, 9, 8, 6, 8],
               [7, 8, 6, 0, 7, 2, 0, 7, 5]]),
       tensor([[5, 2, 0, 3, 1, 6, 4, 7, 8],
               [0, 2, 1, 4, 7, 6, 8, 3, 5],
               [3, 6, 5, 8, 2, 0, 4, 7, 1]]))
[34]: torch.scatter(input=rnd, dim=-1, index=perm[:, :k], src=-torch.ones_like(rnd))
[34]: tensor([[-1, 5, -1, 4, 6, -1, 5, 6,
                                                8],
              [-1, -1, -1, 9, 5, 9, 8,
              [7, 8, 6, -1, 7, -1, -1, 7,
                                                5]])
     What if we assign multiple values to the same index?
[35]: row, col
[35]: (tensor([0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]),
       tensor([1, 2, 3, 4, 4, 0, 3, 1, 2, 3, 4, 1, 2, 3, 4]))
[36]: x = torch.arange(A.size(0))
      torch.scatter(input=x, dim=-1, index=col, src=row)
[36]: tensor([2, 4, 4, 4, 4])
     Use torch_scatter to perform aggregations
[37]: import torch_scatter
      torch_scatter_min(src=row, index=col, dim=-1)
      # torch_scatter.scatter_max(src=row, index=col, dim=-1)
      # torch_scatter.scatter_add(src=row, index=col, dim=-1)
      # torch_scatter.scatter_mean(src=row, index=col, dim=-1)
      # torch_scatter.scatter_mul(src=row, index=col, dim=-1)
```

13 Framework Overview

PyTorch-Geometric sub-modules:

- nn: contains (lots of) GNN models, pooling, normalizations
- data: classes for managing sparse and dense data

[37]: (tensor([2, 0, 0, 0, 0]), tensor([5, 0, 1, 2, 3]))

- datasets: basically every standard benchmark dataset for graphs, meshes, and point clouds, with different kinds of tasks
- transform: data manipulation functions
- utils and io: utility functions

14 Data Class

An (extensible) container for a single graph/mesh/whatever. Typical attributes:

- x: node features of size $n \times h_V$
- edge_index: edge indices, of size $2 \times m$
- edge_attr: edge attributes, of size $m \times h_E$
- face: triangle node indices, of size $3 \times t$
- pos: positions in the Euclidean space, of size $n \times d$
- norm: normal vectors, of size $n \times d$
- y: target of the sample (the size depends on the task)

15 Some Examples

You can define it yourself...

```
[38]: Data(edge_index=[2, 4], x=[3, 1])
```

16 Some Examples

... or load it from trimesh, networkx, scipy, etc.

```
[]: | !wget -nc https://raw.githubusercontent.com/mikedh/trimesh/master/models/bunny.
→ply
```

```
[39]: import trimesh

m = trimesh.load('bunny.ply')
m.show()
```

```
[39]: <IPython.core.display.HTML object>
```

```
[40]: from torch_geometric import utils
    data = utils.from_trimesh(m)
    data

[40]: Data(face=[3, 16301], pos=[8146, 3])

[41]: from torch_geometric import transforms
    f2e = transforms.FaceToEdge(remove_faces=False)
    f2e(data)

[41]: Data(edge_index=[2, 48726], face=[3, 16301], pos=[8146, 3])

[42]: import networkx as nx
    G = nx.barabasi_albert_graph(n=100, m=3)
    nx.draw_kamada_kawai(G)
```



```
[43]: data = utils.from_networkx(G) data
```

[43]: Data(edge_index=[2, 582])

```
[44]: s2d = transforms.ToDense(num_nodes=120)
s2d(data)

[44]: Data(adj=[120, 120], mask=[120])

[45]: adj = data.adj.numpy()
    _, ax = plt.subplots(figsize=(10, 10))
ax.imshow(adj, cmap='Blues')
plt.show()
```


17 Ready-to-use Datasets

Lots of them:

- Graph tasks: TUDataset collection, Amazon, QM9, ...
- Mesh tasks: FAUST and DynamicFaust human poses, ModelNet, SHRECs, ...
- Point Clouds tasks: ShapeNet, S3DIS in-door scenes, PCPNetDataset, ...

18 Some Examples

```
[46]: from torch_geometric.datasets import TUDataset, ModelNet, ShapeNet

ds = TUDataset(root='./data/', name='PROTEINS')
ds
```

[46]: PROTEINS(1113)

```
[47]: G = utils.to_networkx(ds[0])
nx.draw_kamada_kawai(G)
```



```
[48]: ds = ModelNet(root="./data/ModelNet/") ds
```

```
[48]: ModelNet10(3991)

[49]: m = utils.to_trimesh(ds[0])
    m.show()

[49]: <IPython.core.display.HTML object>
```

19 DIY Dataset

You can create your own dataset by extending InMemoryDataset:

- Specify the data you need in raw_file_names()
- Specify the data you *generate* in processed_file_names()
- Implement download() and process()
- Load your (processed) data in __init__()

20 Example: COVID dataset

Fragments screened for 3CL protease binding, see https://www.aicures.mit.edu/

```
[50]: from torch_geometric.data import InMemoryDataset, download_url
      from rdkit import Chem
      import pandas as pd
      class COVID(InMemoryDataset):
          url = 'https://github.com/yangkevin2/coronavirus_data/raw/master/data/
       \rightarrowmpro_xchem.csv'
          def __init__(self, root, transform=None, pre_transform=None,_
       →pre_filter=None):
              super(COVID, self).__init__(root, transform, pre_transform, pre_filter)
              # Load processed data
              self.data, self.slices = torch.load(self.processed_paths[0])
          @property
          def raw_file_names(self):
              return ['mpro_xchem.csv']
          @property
          def processed_file_names(self):
              return ['data.pt']
          def download(self):
              download_url(self.url, self.raw_dir)
```

```
def process(self):
              df = pd.read_csv(self.raw_paths[0])
              data_list = []
              for smiles, label in df.itertuples(False, None):
                  mol = Chem.MolFromSmiles(smiles) # Read the molecule info
                  adj = Chem.GetAdjacencyMatrix(mol) # Get molecule structure
                  # You should extract other features here!
                  data = Data(num_nodes=adj.shape[0],
                              edge_index=torch.Tensor(adj).nonzero().T,
                              y=label)
                  data_list.append(data)
              self.data, self.slices = self.collate(data_list)
              torch.save((self.data, self.slices), self.processed_paths[0])
[51]: covid = COVID(root='./data/COVID/')
      covid
[51]: COVID(880)
[52]: G = utils.to_networkx(covid[0])
      nx.draw_kamada_kawai(G)
```


21 Mini-Batches

Processing multiple graphs as a single, disconnected graph

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & & \\ & \ddots & \\ & & \mathbf{A}_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_n \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$
$$\mathbf{A} = \begin{bmatrix} \widehat{\mathbf{A}}_1 \\ \vdots \\ \widehat{\mathbf{A}}_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_n \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

22 Batch Class

A Data sub-class, representing a sparse batch of graphs

```
[53]: from torch_geometric.data import Batch

b = Batch.from_data_list(covid[:10])
b
```

```
[53]: Batch(batch=[166], edge_index=[2, 352], y=[10])
    b.batch
[54]:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           [55]:
    b.edge_index[0]
                              2,
                                  2,
                                      3,
                                                   4,
                                                       5,
                                                           5,
                                                                    6,
[55]: tensor([ 0,
                 1,
                     1,
                          1,
                                           3,
                                               4,
                                                                6,
                 7,
                     7,
                                  9,
             6,
                          8,
                              8,
                                      9,
                                           9,
                                              10,
                                                  10,
                                                      11,
                                                           11,
                                                                   12,
            12,
                13,
                     13,
                         14,
                             14,
                                 15,
                                      15,
                                          16,
                                              16,
                                                  16,
                                                      17,
                                                           17,
                                                               18,
                                                                   19,
                     20,
                                 22,
                                              23,
                                                      24,
                                                               25,
            19,
                19,
                         21,
                             21,
                                      22,
                                          23,
                                                  24,
                                                           24,
                                                                   25,
                                                      30,
            26,
                26,
                     27,
                         27,
                             27,
                                 28,
                                      28,
                                          29,
                                              29,
                                                  30,
                                                           30,
                                                               31,
                                                                   32,
            32,
                33,
                     33,
                         33,
                             34,
                                 35,
                                     35,
                                          35,
                                              36,
                                                  36,
                                                      36,
                                                           37,
                                                               37,
                                                                   37,
            38,
                38,
                     38,
                         39,
                             39,
                                 40,
                                      40,
                                          41,
                                              41,
                                                  42,
                                                      42,
                                                           43,
                                                               43,
                                                                   44,
            44,
                45,
                     45,
                         46,
                             47,
                                 48,
                                      48,
                                          48,
                                              49,
                                                  49,
                                                      50,
                                                           50,
                                                               51,
                                                                   51,
            52,
                52,
                     52,
                         53,
                             53,
                                 54,
                                      54,
                                          55,
                                              55,
                                                  55,
                                                      56,
                                                           56,
                                                               57,
            57,
                58,
                     58,
                         58,
                             58,
                                 59,
                                      60,
                                          61,
                                              62,
                                                  63,
                                                      63,
                                                           63,
                                                                   65,
                                                           70,
            65,
                66,
                     66,
                         66,
                             67,
                                 67,
                                      68,
                                          68,
                                              69,
                                                  69,
                                                      69.
                                                               70.
                                                                   71,
            71,
                71,
                     72,
                         72,
                             73,
                                 73,
                                     74,
                                          74,
                                              75,
                                                  75,
                                                      76,
                                                           76,
                                                               77,
                                                                   77,
            78,
                78,
                     79,
                         80,
                             80,
                                 80,
                                     81,
                                          82,
                                                  82,
                                                               84,
                                              82,
                                                      83,
                                                           83,
                                                                   84,
            85,
                85,
                     85,
                         86,
                             86,
                                 87,
                                     87,
                                          88,
                                              88,
                                                  88,
                                                      89,
                                                           90,
                                                               90,
                                                                   91,
                91,
                     92,
                             93,
                                 93,
                                     94,
                                          94,
                                              95,
                                                  95,
                                                      96,
                                                               97,
            91,
                         92,
                                                          96,
                                                                   98,
            98,
                99,
                     99,
                         99, 100, 101, 101, 101, 102, 102, 103, 103, 104, 104,
           104, 105, 105, 106, 106, 107, 107, 107, 107, 108, 109, 110, 110, 110,
           111, 111, 112, 112, 113, 113, 113, 114, 115, 115, 116, 116, 117, 118,
           124, 124, 124, 125, 126, 127, 127, 128, 128, 129, 129, 129, 130, 130,
           131, 131, 132, 132, 133, 133, 134, 134, 135, 136, 136, 137, 137, 137,
           138, 139, 139, 139, 140, 140, 141, 141, 142, 142, 142, 143, 143, 144,
           144, 145, 145, 145, 145, 146, 147, 148, 149, 150, 150, 151, 151, 151,
           152, 153, 153, 153, 154, 154, 155, 155, 156, 156, 156, 157, 157, 158,
           158, 158, 159, 159, 160, 160, 161, 161, 161, 162, 163, 163, 164, 164,
           165, 165])
[56]:
     covid[9].edge_index[0]
                                   4,
                                       4,
[56]: tensor([0, 1,
                  1, 2, 2, 2, 3,
                                          4, 5, 5, 6, 6, 7, 7, 7, 8,
                      9, 10, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 16])
[57]: Data.__inc__?
```

23 MessagePassing Class

Model a Neural Network (or any algorithm) by defining

- message(): the information "delivered" (by propagate()) from *source* to *target* (or viceversa) endnodes of an edge
 - can use data from both nodes (x, pos, or user-defined)
 - can use data from the edge itself (edge_attr)
- aggregate(): how the messages from the neighbors are aggregated
 - must be permutation invariant
 - no need to override if it's just "add", "mean", or "max"
- update(): a function applied to the aggregated messages

24 Example: Connected Components

Typically done sequentially using Disjoint-Sets, we remodel as MP to exploit parallelism

```
[58]: from torch_geometric.nn import MessagePassing
      class ConnectedComponents(MessagePassing):
          def __init__(self):
              super(ConnectedComponents, self).__init__(aggr="max")
          def forward(self, data):
              x = torch.arange(data.num_nodes).view(-1, 1)
              last_x = torch.zeros_like(x)
              while not x.equal(last_x):
                  last_x = x.clone()
                  x = self.propagate(data.edge_index, x=x)
                  x = torch.max(x, last_x)
              unique, perm = torch.unique(x, return_inverse=True)
              perm = perm.view(-1)
              if "batch" not in data:
                  return unique.size(0), perm
              cc_batch = unique.scatter(dim=-1, index=perm, src=data.batch)
              return cc_batch.bincount(minlength=data.num_graphs), perm
          def message(self, x_j):
              return x_j
          def update(self, aggr_out):
              return aggr_out
```

```
[59]: ds = TUDataset(root='./data/', name='PROTEINS')
    data = Batch.from_data_list(ds[:10])

    cc = ConnectedComponents()
    count, perm = cc(data)
    count

[59]: tensor([1, 1, 1, 1, 1, 8, 4, 1, 1, 1])

[60]: G = utils.to_networkx(ds[6])
    nx.draw(G, node_size=50)
```


25 Learning with PyG

Many, many standard GNNs & PointNets in the nn submodule

```
[61]: from torch_geometric.nn import GCNConv, JumpingKnowledge, global_add_pool from torch.nn import functional as F

class SimpleGNN(torch.nn.Module):
    def __init__(self, dataset, hidden=64, layers=6):
```

```
super(SimpleGNN, self).__init__()
              self.dataset = dataset
              self.convs = torch.nn.ModuleList()
              self.convs.append(GCNConv(in_channels=dataset.num_node_features,
                                        out_channels=hidden))
              for _ in range(1, layers):
                  self.convs.append(GCNConv(in_channels=hidden,
                                             out channels=hidden))
              self.jk = JumpingKnowledge(mode="cat")
              self.jk_lin = torch.nn.Linear(in_features=hidden*layers,
                                             out_features=hidden)
              self.lin_1 = torch.nn.Linear(in_features=hidden,
                                            out_features=hidden)
              self.lin_2 = torch.nn.Linear(in_features=hidden,
                                            out_features=dataset.num_classes)
          def forward(self, index):
              data = Batch.from_data_list(self.dataset[index])
              x = data.x
              xs = \Pi
              for conv in self.convs:
                  x = F.relu(conv(x=x, edge_index=data.edge_index))
                  xs.append(x)
              x = self.jk(xs)
              x = F.relu(self.jk_lin(x))
              x = global_add_pool(x, batch=data.batch)
              x = F.relu(self.lin_1(x))
              x = F.softmax(self.lin_2(x), dim=-1)
              return x
[62]: ohd = transforms.OneHotDegree(max_degree=4)
      covid = COVID(root='./data/COVID/', transform=ohd)
      covid[0]
[62]: Data(edge_index=[2, 40], x=[18, 5], y=[1])
[63]: from skorch import NeuralNetClassifier
```

```
X, y = torch.arange(len(covid)).long(), covid.data.y

net = NeuralNetClassifier(
    module=SimpleGNN,
    module__dataset=covid,
    max_epochs=20,
    batch_size=-1,
    lr=0.001
)
```

```
[64]: fit = net.fit(X, y)
```

epoch	train_loss	valid_acc	valid_loss	dur
1	0.6521	0.9091	0.6547	
0.9067				
2	0.6463	0.9091	0.6504	0.9636
3	0.6408	0.9091	0.6463	0.9287
4	0.6355	0.9091	0.6422	0.7626
5	0.6304	0.9091	0.6383	0.8893
6	0.6254	0.9091	0.6345	0.9494
7	0.6206	0.9091		0.7778
8	0.6158	0.9091	0.6270	0.8367
9	0.6111	0.9091		0.8407
10	0.6064	0.9091	0.6199	0.7808
11	0.6019			
12	0.5975			0.7988
13	0.5931	0.9091	0.6098	0.7455
14	0.5889			0.8112
15	0.5847	0.9091	0.6034	0.7360
16	0.5807	0.9091	0.6003	0.8642
17	0.5767	0.9091	0.5973	0.8519
18	0.5728	0.9091	0.5944	0.8211
19	0.5689	0.9091	0.5916	
20	0.5652	0.9091	0.5889	0.8513

```
[65]: 1 - y.float().mean().item()
```

[65]: 0.9113636389374733

26 Conclusion

Pros: - Versatile framework - 0h spent recreating s.o.t.a. models - No need to look for data

Cons: - Steep learning curve - You need to get used to sparse data - Sometimes you need to create two models for one task (sparse/dense)

Questions?

 $Francesco. Landol fi \it francesco. landol fi \it @phd. unipi. it$