Ol	S	a	5'	٦	P(s', x s, a)	
"						
	hìgh	seolch	hiph	Я	(x) Prou (r)	
	high	Feelch	Pow	٩	(1-x) Preser (9)	
	low	seoul	high	-3	(1-3) Pseul (2)	
	low	Scolch		n	(3) Psesech (1)	
-	high	wait	high	ሃ	(1) Pwat(1)	
	low		low	٦	(1) Pwoit (3)	
-	low	Sechospe			(1) (1)	
		0				
	que	Pscoul (2)	i a	plobability	distribution with	mean 'nsow'
	and			•	distribution with m	
			450	4(8)]=		
				eit (A)] =		

Ex 3.16
For an episodic take, let we telminal timestrep be t=T
There
$\hat{G}_{t} = \sum_{k=0}^{\infty} \gamma^{k} \hat{R}_{k+k+1}$
K=0
 $\hat{h_r} = \sum_{k=0}^{T} \gamma^k (R_{t+k+1} + C)$
K=0
at = Tyko + Zcyk
Cit = ZykRt+K+1 + Z cyk K=0 K=0
$G_{r}^{\lambda} = G_{r} + G_{r}(A_{r}^{\perp})$
$G_{t}^{2} = G_{t+1} c \left(\frac{Y^{t+1}}{Y-1} \right)$
of $G_t = G_t + c \left(\frac{1-\gamma^{T+1}}{1-\gamma}\right) \left[\text{ fine } \gamma < 1\right]$
Following a similal approach for $\sqrt{x}(s)$
we get
$\sqrt{\hat{x}(s)} \ge \mathbb{E}\left[\frac{C_t + C\left(\frac{1-\gamma^{T+1}}{1-\gamma}\right)}{1-\gamma}\right] \le t = s$
(1-4)1
Now, Tis a rondom voliable that depends on St
Thus, $c\left(\frac{1-\gamma^{T+1}}{1-\gamma}\right)$ control come out of the expectation
 : a simple lived mapping doesn't exist
between the hup-

05	By 29h 3.17
	9x(s,a) = E[R+++ + Y V* (S++1) S+= s, A+=a]
	Also, by egn 3.18
	Va(s) = mex E[R+++ + YV+(S+++) S+=s, A+=a]
	i. V*(s) = max 2*(s,a)
	optimal optimal value value at state s'
	State 'S' after taking action 'a'