

Parametric and Non-Parametric Tests of Independence

Intro and Exam Focus

- Parametric test of correlation
- Nonparametric tests of relationships
 - Rank correlation
 - Contingency tables for categorical data

© Kaplan, Inc

Parametric Test of Correlation

• Test of whether population correlation coefficient equals zero

t-stat =
$$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$
 with $n-2$ degrees of freedom

where: r = sample correlation coefficient

n = sample size

Parametric Test of Correlation: CFA Institute Example

The exhibit below shows the sample correlations between the monthly returns for four different mutual funds and the S&P 500. The correlations are based on 36 monthly observations.

	Fund 1	Fund 2	Fund 3	Fund 4	S&P500
Fund 1	1				
Fund 2	0.9231	1			
Fund 3	0.4771	0.4156	1		
Fund 4	0.7111	0.7238	0.3102	1	
S&P 500	0.8277	0.8223	0.5791	0.7515	1

Test the null hypothesis that the correlation of Fund 3 and Fund 4 is equal to zero against the alternative hypothesis that it is not equal to zero. Use a 5 percent significance level and critical *t*-values of ±2.032.

© Copyright CFA Institute

© Kaplan, Inc.

Parametric Test of Correlation: Solution

State the hypotheses:

 H_0 : vs. H_a :

Calculate test statistic:

t-stat = =

null

Make decision: test stat critical t-value (2.032) →

© Copyright CFA Institute

Nonparametric Test: Rank Correlation

- Spearman rank correlation test: whether two sets of ranks are correlated
- Rank correlation: $r = 1 \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 1)}$
- where: n = sample size $d_i = \text{difference between two ranks}$
- If n > 30, may use *t*-table with n 2 degrees of freedom

© Kaplan, Inc

Rank Correlation: Example

Time Period	Return of A	Return of B	Rank of A	Rank of B	Difference in Ranks (d _i)	d _i ²
1	12%	5%	3	10	-7	49
2	-2%	8%	36	12	24	576
	•••	•••				•••
52	0%	3%	28	18	10 _	100
					Sum	6533

Perform a test of independence on the data with 5% significance:

$$r = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} = = =$$

-1

Rank Correlation: Solution

Perform a test of independence on the data with 5% significance:

df	One-Tailed Probabilities (<i>p</i>)				
	p = 0.10	p = 0.05	p = 0.025		
50	1.30	1.68	2.01		

$$t\text{-stat} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = = = =$$

critical value T-stat

hence,

null hypothesis that $\rho = 0$

Contingency Tables

Farnings Croudh	Dividend Yield					
Earnings Growth	Low	Medium	High	Total		
Low	28	53	42	123		
Medium	42	32	39	113		
High	49	25	14	88		
Total	119	110	95	324		

Degrees of freedom = (r-1)(c-1)

Expected if independent = $\frac{\text{total for row } i \times \text{total for column } j}{\text{total for all columns and rows}}$

Observed frequency in cell i,j

Test statistic:
$$\chi^2 = \text{sum of } \frac{\left(O_{i,j} - E_{i,j}\right)^2}{E_{i,j}}$$
 Expected frequency in cell i,j

Contingency Tables: CFAI Example

Consider the contingency table below, which classifies 500 randomly selected companies on the basis of two environmental, social, and governance (ESG) rating dimensions: environmental rating and governance rating.

	Governance Rating				
Environmental Rating	Progressive	Average	Poor	Total	
Progressive	35	40	5	80	
Average	80	130	50	260	
Poor	40	60	60	160	
Total	155	230	115	500	

Using a 5 percent level of significance, determine whether these two ESG rating dimensions are independent of one another.

© Copyright CFA Institute

© Kaplan, Inc.

Contingency Tables: Solution

Expected frequency for cell (1,1) = =

Expected frequency for cell (1,2) = =

Expected frequency for cell (2,1) = =

Completing the table . . .

	Governance Rating			
Environmental Rating	Progressive	Average	Poor	
Progressive			18.4	
Average		119.6	59.8	
Poor	49.6	73.6	36.8	

-3

© Copyright CFA Institute

Contingency Tables: Solution

Scaled squared deviation for cell (1,1) = =

Expected frequency for cell (1,2) = =

Expected frequency for cell (2,1) = =

Completing the table . . .

	Governance Rating			
Environmental Rating	Progressive	Average	Poor	
Progressive			9.759	
Average		0.904	1.606	
Poor	1.858	2.513	14.626	

Total scaled squared deviation =

© Copyright CFA Institute

© Kaplan, Inc.

Contingency Tables: Solution

With 5% significance and $(3 - 1) \times (3 - 1) = 4$ degrees of freedom and 5% significance (one-tailed), critical χ^2 statistic from a χ^2 table =

Degrees of		Probability in Right Tail				
Freedom	0.975	0.95	0.9	0.1	0.05	0.025
3	0.22	0.35	0.58	6.25	7.81	9.35
4	0.48	0.71	1.06	7.78	9.49	11.14
5	0.83	1.15	1.61	9.24	11.07	12.83

Make decision: test stat (35.74)

than critical value (9.

→ I onclude th

ationship between environmental rating and governance rating

© Copyright CFA Institute

Solutions

Parametric Test of Correlation: Solution

State the hypotheses:

$$H_0$$
: $\rho = 0$ vs. H_a : $\rho \neq 0$

Calculate test statistic:

t-stat =
$$\frac{0.3102\sqrt{36-2}}{\sqrt{1-0.3102^2}}$$
 = 1.903

Make decision: test stat (1.903) < critical t-value (2.032) → fail to reject null

-3

© Copyright CFA Institute

Rank Correlation: Example

Time Period	Return of A	Return of B	Rank of A	Rank of B	Difference in Ranks (d _i)	d _i ²
1	12%	5%	3	10	-7	49
2	-2%	8%	36	12	24	576
	•••	•••	•••			
52	0%	3%	28	18	10 _	100
					Sum	6,533

Perform a test of independence on the data with 5% significance:

$$r = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} = 1 - \frac{6(6533)}{52(52^2 - 1)} = 1 - \frac{39,198}{140,556} = 0.72$$

© Kaplan, Inc

Rank Correlation: Solution

Perform a test of independence on above data with 5% significance:

df	One-Tailed Probabilities (<i>p</i>)				
	p = 0.10	p = 0.05	p = 0.025		
50	1.30	1.68	2.01		

t-stat =
$$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.72\sqrt{52-2}}{\sqrt{1-0.72^2}} = \frac{5.091}{0.694} = 7.34$$

T-stat (7.34) > critical value (2.01); hence, **reject** null hypothesis that $\rho = 0$

Contingency Tables: Solution

Expected frequency for cell (1,1) = $[80 \times 155] / 500 = 24.8$ Expected frequency for cell (1,2) = $[80 \times 230] / 500 = 36.8$ Expected frequency for cell (2,1) = $[260 \times 155] / 500 = 80.6$ Completing the table . . .

	Governance Rating			
Environmental Rating	Progressive	Average	Poor	
Progressive	24.8	36.8	18.4	
Average	80.6	119.6	59.8	
Poor	49.6	73.6	36.8	

© Copyright CFA Institute

© Kaplan, Inc.

Contingency Tables: Solution

Scaled squared deviation for cell $(1,1) = (35 - 24.8)^2 / 24.8 = 4.195$ Expected frequency for cell $(1,2) = (40 - 36.8)^2 / 36.8 = 0.278$ Expected frequency for cell $(2,1) = (80 - 80.6)^2 / 80.6 = 0.004$ Completing the table . . .

	Governance Rating				
Environmental Rating	Progressive	Average	Poor		
Progressive	4.195	0.278	9.759		
Average	0.004	0.904	1.606		
Poor	1.858	2.513	14.626		

Total scaled squared deviation = 35.74

© Copyright CFA Institute

Contingency Tables: Solution

With 5% significance and $(3-1)\times(3-1)=4$ degrees of freedom and 5% significance (one-tailed), critical χ^2 statistic from a χ^2 table =

De	grees of	Probability in Right Tail					
F	reedom	0.975	0.95	0.9	0.1	0.05	0.025
	3	0.22	0.35	0.58	6.25	7.81	9.35
	4	0.48	0.71	1.06	7.78	9.49	11.14
	5	0.83	1.15	1.61	9.24	11.07	12.83

Make decision: test stat (35.74) greater than critical value (9.

→ Reject null, conclude there is a relationship between environmental rating and governance rating

© Copyright CFA Institute © Kaplan, Inc.