Optimización con Python Una introducción a CasADi

Guido Sanchez

Centro de Investigación en Señales, Sistemas e Inteligencia Computacional Universidad Nacional del Litoral

Seminarios del sinc(i), 2015

Outline

- Introducción
 - ¿Qué es CasADi?
 - ¿Qué no es CasADi?
 - Componentes principales
- Manos a la obra
 - El framework simbólico
 - Integración de ODE/DAE
 - Optimización
 - Ejemplo de NLP

¿Qué es CasADi?

- Es un framework open-source (LGPL) utilizado para diferenciación algorítmica, optimización numérica y control óptimo.
- Utiliza la sintaxis de los sistemas de álgebra (CAS) y permite construir expresiones simbólicas que pueden ser diferenciadas automáticamente de forma eficiente.
- Actualmente, es una herramienta general para optimización numérica basada en métodos de gradiente, con un fuerte enfoque hacia el control óptimo.
- Desarrollado por Joel Andersson y Joris Gillis en el Optimization in Engineering Center (OPTEC) de KU Leuven bajo supervisión de Moritz Diehl.

¿Qué no es CasADi?

- No es un sistema de diferenciación algorítmica convencional que permita calcular derivadas a partir de código existente sin demasiadas modificaciones. Se debe reimplementar utilizando la sintaxis de CasADi.
- No es un sistema de álgebra. A pesar de que CasADi manipula expresiones simbólicas, sus capacidades son limitadas a comparación de una herramienta CAS.
- No es un solver de problemas de control óptimo, sino que trata de proveer con los bloques que permitan al usuario construir su solver.

Componentes principales

- Un CAS minimalista (como el Symbolic Toolbox de Matlab).
- Los algoritmos de diferenciación soportan:
 - Modo hacia adelante (forward) y hacia atras (adjoint).
 - Simbólico y numérico.
 - Dos maneras de representar expresiones.
- Interfaces a Ipopt, Sundials, (KNITRO, OOQP, qpOASES, CPLEX, LAPACK, CSparse, ACADO Toolkit ...
- Front-ends para C++, Python, Octave y Matlab.
- Importa modelos de JModelica.org

Tipos de datos fundamentales

- SX tipo simbólico escalar.
- SXMatrix y DMatrix matrices sparse.
- FX y clases derivadas funciones de CasADi.
- MX tipo simbólico matricial.

Integración de ODE/DAE

- Suite de integradores open-source Sundials (ODE: CVodes / DAE: IDAS).
- Utilización: integrator = casadi.Integrator(ode function).
- Casadi se encarga de armar las ecuaciones necesarias.

Optimización o

minimizar
$$f(x)$$

 $x \in \mathbb{R}^N$
sujeto a $x_{min} \le x \le x_{max}$ (1)
 $g_{min} \le g(x) \le g_{max}$

- Restricciones de igualdad $(x_{min} = x_{max})$ para algunos x.
- Se formula utilizando solvers NLP (por ejemplo, IPOPT).

Repaso I

Sólo restricciones de igualdad

minimizar
$$f(x)$$

 $x \in \mathbb{R}^N$ (2)
sujeto a $g(x) = 0$

Para una solución óptima x^* existen multiplicadores λ^* tal que:

$$\nabla_{x} \mathcal{L}(x^*, \lambda^*) = 0$$

$$g(x^*) = 0$$
(3)

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda^T g(\mathbf{x})$$
 es el Lagrangiano

Repaso II

Con restricciones de igualdad y desigualdad

minimizar
$$f(x)$$

 $x \in \mathbb{R}^N$
sujeto a $g(x) = 0, h(x) \ge 0$ (4)

Condiciones de Karush-Kuhn-Tucker (KKT): Para una solución óptima x^* existen multiplicadores λ^* , μ^* tal que:

$$\nabla_{x}\mathcal{L}(x^{*},\lambda^{*},\mu^{*}) = 0$$

$$g(x^{*}) = 0$$

$$h(x^{*}) \geq 0$$

$$\mu^{*} \geq 0$$

$$h(x^{*})^{T}\mu^{*} = 0$$

$$(5)$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \lambda^{\mathsf{T}} g(\mathbf{x}) - \mu^{\mathsf{T}} h(\mathbf{x})$$
 es el Lagrangiano

IPOPT

- Optimizador open-source de punto interior: IPOPT¹.
- Resuelve NLP grandes (millones de variables/restricciones).
- Para resolver el sistema lineal se usa MA27, MA57, Mumps, Paradiso, ...
- Calcula $\frac{\partial g}{\partial x}$, $\nabla_x \mathcal{L}$ y $\nabla_x^2 \mathcal{L}$ utilizando algoritmos eficientes.
- Penaliza las desigualdades utilizando una funcion de barrera $\tau log(h(x))$,

minimizar
$$f(x) - \tau log(h(x))$$

 $x \in \mathbb{R}^N$
sujeto a $g(x) = 0$ (6)

¹www.coin-or.org/lpopt

El framework simbólico Integración de ODE/DAE Optimización Ejemplo de NLP

Notebook de iPython

• ¡Manos a la obra!

Conclusiones

- Permite formular problemas de optimización de forma simple.
- El framework simbólico permite plantear el algoritmo con formulaciones "de libro".
- Los solver utilizados necesitan muy poco tiempo para resolver problemas de optimización no lineales.

Introducción Manos a la obra Conclusiones Preguntas

¿Preguntas?

Más información

- http://www.casadi.org/
- https://github.com/casadi/casadi
- http://casadi.sourceforge.net/users_guide/html/casadiusers_guide.html
- Alternativa: CVXOPT http://cvxopt.org/