# Phylogenies: how and why to track them in artificial life

ALife 2023 Sapporo, Japan Alexander Lalejini Emily Dolson Matthew Andres Moreno

#### Agenda

- 1. What is a phylogeny and what can it tell you?
- 2. Phylogenetic metrics & visualizations
- 3. Interactive demo
  - a. Centralized phylogenetic tracking
  - b. Decentralized phylogenetic inference
  - c. Visualizations





vertex:
 "taxonomic unit"





vertex:
 "taxonomic unit"





vertex:
 "taxonomic unit"





vertex:
"taxonomic unit"





vertex:
 "taxonomic unit"



vertex:
"taxonomic unit"













*vertex*:
"taxonomic unit"





vertex:
"taxonomic unit"





































Intro: what does a phylogeny tell?

#### Intro: what does a phylogeny tell? Selection strength



#### Intro: what does a phylogeny tell? Selection strength



Moreno et al., 2023

# Intro: what does a phylogeny tell? Spatial structure

#### Intro: what does a phylogeny tell? Spatial structure



#### Intro: what does a phylogeny tell? Spatial structure



Moreno et al., 2023

# Example Applications of Phylogenetics in Digital Evolution



Clune et al., 2012



Dolson and Ofria, 2017



# Quantifying phylogenies (& lineages)

## Often we want to quantify different characteristics of evolutionary histories

Summarize evolutionary histories across many replicates

Compare the characteristics of evolutionary histories across experimental treatments



Treatment 2

#### Quantifying the history of a single taxon

I.e., quantifying lineages



What can we measure along a single lineage?

#### Ancestry can be abstracted into sequences of states

Example: individuals have 2-character genomes that are translated into shapes (phenotype)



#### Ancestry can be abstracted into sequences of states

Example: individuals have 2-character genomes that are translated into state This is also true for phylogenies! Taxa ("states") may represent individuals, phenotypes, genotypes, etc!

#### Summarizing state sequences (lineages)



## Summarizing state sequences (lineages): **Length**



Meaning of a measurement depends on what states represent.

- States = individuals: length represents generations
- States = phenotypes: length represents number of times the phenotype changed along the lineage

## Summarizing state sequences (lineages): **Unique states**



Meaning of a measurement depends on what states represent.

 States = phenotypes: how many different phenotypes are represented in an individual's ancestry?

## Summarizing state sequences (lineages): **Volatility**



 E.g., if states = phenotypes, a changing environment might result in lineages with greater volatility

### Summarizing state sequences (lineages): **Mutation accumulation**



#### Caveats for sexually reproducing populations

Sexual reproduction (or any form of horizontal gene transfer) makes ancestry messy!

• an individual's ancestral history is no longer a linear chain

Strategies for dealing with sexual lineages:

- Build lineages based on sites in a genome
- Apply a lossy compression to reduce sexual lineages into linear sequences
- Average metrics over all possible ancestry paths



What ways can we quantify the differences between these two phylogenies?

#### depth of most-recent common ancestor (MRCA)



- Can measure relative to the extant population (leaves of the phylogeny) or the original ancestor (root of the phylogeny)
- A distant (from extant population) MRCA can indicate stable, long-term coexistence
- A recent MRCA indicates a recent selective sweep
- Frequency of MRCA changes can indicate strength of selection on population

#### The size and topology of a phylogeny are informative.



**Richness metrics** quantify the total amount of evolutionary history contained in a set of taxa.

**Divergence metrics** quantify how distinct the taxa in the extant population are from each other.

**Regularity metrics** quantify how balanced the branches are in the phylogeny.

#### Phylogenetic richness

**Richness metrics** quantify the total amount of evolutionary history contained in a set of taxa.

- Phylogenetic diversity number of nodes in the minimum spanning tree from the MRCA to all extant taxa
- Sum of pairwise distances calculate pairwise distance between all taxa and sum them



Phylogenetic diversity = 4



Phylogenetic diversity = 6

#### Phylogenetic divergence

**Divergence metrics** quantify how distinct the taxa in the extant population are from each other.

One option: average the pairwise distances across all taxa in the extant population





Mean pairwise dist. among extant = 2

Mean pairwise dist. among extant = 3.33

#### Phylogenetic regularity

Regularity metrics quantify how balanced the branches are in the phylogeny.

 One option: calculate the variance of pairwise distances between all taxa in extant population





Variance pairwise dist. among extant = 0

Variance pairwise dist. among extant = 1.33

#### Bibliography

Dolson, E., Lalejini, A., Jorgensen, S. & Ofria, C. Interpreting the Tape of Life: Ancestry-Based Analyses Provide Insights and Intuition about Evolutionary Dynamics. Artificial Life 26, 58–79 (2020).

Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology: A guide to phylogenetic metrics for ecology. Biol Rev 92, 698–715 (2017).

### Phylogeny Visualizations













#### Muller Plots



#### Flame graphs



Lenski et. al, 2003

#### Overlaying phylogenies



Ogbunugafor and Epstein, 2017

## Centralized phylogeny tracking demo



Carlos Jones/ORNL, CC BY 2.0 <a href="https://creativecommons.org/licenses/by/2.0">https://creativecommons.org/licenses/by/2.0</a>, via Wikimedia Commons









Decentralized Phylogenetic Tracking in digital evolution, we control how these work extant organisms parastrapotherium Trigonostylops wortmani Tetragonostylops apthomasi Tribosphenomys minutus . stimated ! Albertogaudrya unica not ground truth



Q: how to design a genome so phylogenetic reconstruction is easy & informative?

## Decentralized Phylogenetic Tracking

Q: how to design a genome so phylogenetic reconstruction is easy & informative?

attach as neutral "annotation" to any digital genome

"hereditary stratigraphic column"

genetic material designed to facilitate phylogenetic reconstruction (Moreno et al., 2022)

## hstrat demo

(with "pinging" genomes)

interactive Colab notebook @



hop th.ru



























































abc.com

interactive Colab notebook @



https://
hop
th.ru
/cg

abc.com









hstrat enables phylogenetic inference on distributed digital evolution populations

পাঁত View license

Code of conduct

☆ 4 stars 
♀ 1 fork 
⊙ 3 watching 
- Activity

Public repository

interactive Colab notebook @



hopth.ru/cg

also,

shstrat Python library... \*\*?

github.com /mmore500

/hstrat



## Questions?

github.com/emilydolson/phylotrackpy

github.com/mmore500/hstrat

## Bibliography

Adami, Christoph. (2006). Adami, C. Digital genetics: unravelling the genetic basis of evolution. Nature Rev. Genet. 7, 109-118. Nature reviews. Genetics. 7. 109-18. 10.1038/nrg1771.

Baum, David A., and Susan Offner. "Phylogenics & tree-thinking." The American Biology Teacher 70.4 (2008): 222-229.

Clune, J., Pennock, R. T., Ofria, C., & Lenski, R. E. (2012). Ontogeny tends to recapitulate phylogeny in digital organisms. The American Naturalist, 180(3), E54-E63.

Dolson, Emily, and Charles Ofria. "Spatial resource heterogeneity creates local hotspots of evolutionary potential." Artificial Life Conference Proceedings. Press, 2017.

Matthew Andres Moreno, Emily Dolson, and Santiago Rodriguez-Papa.. "Toward Phylogenetic Inference of Evolutionary Dynamics at Scale." Artificial Life Conference Proceedings (2023).

Moreno, M. A., Dolson, E., & Ofria, C. (2022). hstrat: a Python Package for phylogenetic inference on distributed digital evolution populations. *Journal of Open Source Software*, 7(80), 4866.

Murphy, T., VII. (2022, April 8). Harder Drive: Hard drives we didn't want or need. A Record of the Proceedings of SIGBOVIK 2022, 259–277. Pittsburgh, USA: ACH.

McPhee, N. F., Finzel, M. D., Casale, M. M., Helmuth, T., & Spector, L. (2018). A Detailed Analysis of a PushGP Run. Genetic Programming Theory and Practice XIV, 65.