This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ TIMES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Water-soluble copper complex disazo compounds containg a chloro triazinylamino group and a group of the vinylsulfone series as fiber-reactive groups and their dyestuffs

Patent number:

DE3202120

Publication date:

1983-07-28

Inventor:

FASS RUDOLF (DE); HOYER ERNST DR (DE);

MEININGER FRITZ DR (DE)

Applicant:

HOECHST AG (DE)

Classification:

- international:

C09B62/012; C09B62/095; C09B62/503; C09B45/28;

D06P1/382; D06P1/39; D06P1/10

- european:

C09B62/44C4K9

Application number: DE19823202120 19820123 Priority number(s): DE19823202120 19820123 Also published as:

EP0084849 (A2) US4939243 (A1) JP58129063 (A)

EP0084849 (A3) AR242237 (A1)

more >>

Abstract not available for DE3202120

Abstract of corresponding document: US4939243

Water-soluble copper complex disazo compounds with fiber-reactive dyestuff properties of the general formula +TR in which m and n are the number zero or 1; the group -SO2Y is bonded in the 5-position to the benzene nucleus if n is zero, or in the 4-position if n is zero or 1; the free azo can be bonded to the 6'or 7'-position of the central naphthalene nucleus; if m is 1, this sulfo is bonded in the 5'-position if the azo is in the 6'-position, and is bonded in the 6'-position if the azo is in the 7'-position; X is chlorine, bromine, in which R1 represents optionally substituted alkyl with 1 to 4 carbon atoms, optionally substituted aryl or hydrogen, R2 is optionally substituted alkyl with 1 to 4 carbon atoms or optionally substituted aryl, R3 is hydrogen or optionally substituted alkyl with 1 to 4 carbon atoms and R4 is hydrogen, cycloalkyl which is optionally substituted by 1 to 3 methyl, optionally substituted alkyl with 1 to 4 carbon atoms or optionally substituted aryl, or R3 and R4, as alkylene radicals with 1 to 4 carbon atoms together with the nitrogen atom and optionally an oxygen, sulfur or nitrogen atom as a further hetero-atom, form a heterocyclic sixmembered radical; Y is vinyl or of the formula -CH2-CH2-R in which R is a radical which can be eliminated under alkaline conditions; and M is hydrogen or the equivalent of a metal.

Data supplied from the esp@cenet database - Worldwide

Best Available Copy

® BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES PATENTAMT

 (2) Aktenzeichen:
 P 32 02 120.8

 (2) Anmeldetag:
 23. 1.82

(4) Offenlegungstag: 28. 7.83

(51) Int. Cl. 3:

C 09 B 62/012

C 09 B 62/095 C 09 B 62/503 C 09 B 45/28 D 06 P 1/382 D 06 P 1/10

Anmelder:

Hoechst AG, 6230 Frankfurt, DE

② Erfinder:

Meininger, Fritz, Dr.; Hoyer, Ernst, Dr., 6230 Frankfurt, DE; Fass, Rudolf, 6233 Kelkheim, DE

Behördeneigentum

»Wasserlösliche Kupferkomplex-Disazoverbindungen, Verfahren zu deren Herstellung und ihre Verwendng als Farbstoffe«

Wasserlösliche Kupferkomplex-Disazoverbindungen mit faserreaktiven Farbstoffeigenschaften der allgemeinen Formel

In welcher bedeuten: m und n ist jedes die Zahl Null oder 1; die Gruppe –SO₂–Y steht in 5-Stellung an den Benzolkern gebunden, wenn n gleich Null oder 1 ist, die freistehende Azogruppe kann an den mittelständigen Naphthalinkern in 6'- oder 7'-Stellung gebunden sein; sofern m gleich 1 ist, ist diese Sulfogruppe in 5'-Stellung gebunden, wenn die Azogruppe in 6'-Stellung steht, und ist in 6'-Stellung gebunden, wenn die Azogruppe in 7'-Stellung steht; X ist Chlor oder Brom oder elne Gruppe der Formel

-0-R¹, -5-R² oder -N

in welchen R¹ für gegebenenfalls substituiertes Alkyl von 1 bis 4 C-Atomen oder gegebenenfalls substituiertes Aryl oder Wasserstoff steht, R² gegebenenfalls substituiertes Alkyl von 1 bis 4 C-Atomen oder gegebenenfalls substituiertes Alkyl von 1 bis 4 C-Atomen ist, R³ Wasserstoff oder gegebenenfalls substituiertes Alkyl von 1 bis 3 Methylgruppen substituiertes Cycloalkyl oder gegebenenfalls substituiertes Alkyl von 1 bis 4 C-Atomen oder gegebenenfalls substituiertes Alkyl von 1 bis 4 C-Atomen oder gegebenenfalls substituiertes Aryl ist, oder R³ und R⁴ bilden als Alkylenreste von 1 bis 4 C-Atomen zusammen mit dem Stickstoffatom und gegebenenfalls einem Sauerstoff-, Schwefel- oder Stickstoffatom als weiterem Heteroatom einen heterocyclischen sechsgliedrigen Rest; Y ist Vinyl oder eine Gruppe der Formel

-CH₂-CH₂-R in welcher R ein alkalisch eliminierbarer Rest ist; Z ist Chlor oder Brom; M ist Wasserstoff oder das Äquivalent eines Metalls. (32 02 120)

Patentansprüche:

14.135

5

10

15

20

 Wasserlösliche Kupferkomplex-Disazoverbindungen der allgemeinen Formel (1)

$$(SO_3M) = N$$

$$MO_3S$$

$$MO_3S$$

$$MO_3S$$

$$MO_3S$$

$$SO_2 - Y$$

$$MO_3S$$

$$MO_3S$$

$$SO_3M$$

$$MO_3S$$

$$SO_3M$$

in welcher bedeuten:

- m ist die Zahl Null oder 1 (wobei im Falle m = 0 diese
 Gruppe Wasserstoff ist);
 - n ist die Zahl Null oder 1 (wobei im Falle n = 0 diese
 Gruppe Wasserstoff ist);
- die Gruppe -SO₂-Y steht in 5-Stellung an den Benzolkern gebunden, wenn n gleich Null ist, oder steht in 4-Stellung an den Benzolkern gebunden, wenn n gleich Null oder 1 ist;
- die freistehende Azogruppe kann an den mittelständigen Naphthalinkern in 6'- oder 7'-Stellung gebunden sein;
- sofern m gleich 1 ist, ist diese Sulfogruppe in 5'-Stellung gebunden, wenn die Azogruppe in 6'-Stellung steht, und ist in 6'-Stellung gebunden, wenn die Azogruppe in 7'-Stellung steht;
 - X ist ein Chloratom oder ein Bromatom oder eine Gruppe der Formel (2a), (2b) oder (2c)

$$-0-R^1$$
 $-s-R^2$ $-N$ R^3 (2b) (2c)

in welchen R^{1} eine geradkettige oder verzweigte Alkylgruppe von

- 1 4 C-Atomen bedeutet, die substituiert sein kann, oder einen gegebenenfalls substituierten Arylrest bedeutet oder für ein Wasserstoffatom steht,
- R² eine geradkettige oder verzweigte Alkylgruppe von 1 - 4 C-Atomen bedeutet, die substituiert sein kann, oder für einen gegebenenfalls substituierten Arylrest steht,
- ${\tt R}^3$ ein Wasserstoffatom ist oder eine geradkettige oder verzweigte Alkylgruppe von 1 bis 4 C-Atomen bedeutet, die substituiert sein kann,
- ein Wasserstoffatom ist oder für eine Cycloalkylgruppe, die durch 1 bis 3 Methylgruppen substituiert sein kann, steht oder eine geradkettige oder verzweigte Alkylgruppe von 1 bis 4 C-Atomen bedeutet, die substituiert sein kann, oder ein gegebenenfalls substituierter Arylrest ist,
 - wobei R³ und R⁴ zueinander gleich oder voneinander verschieden sein können, oder
- ${\tt R}^3$ und ${\tt R}^4$ bilden als Alkylenreste von 1 bis 4 C-Atomen zusammen mit dem Stickstoffatom und gegebenenfalls 20 einem Sauerstoff-, Schwefel- oder Stickstoffatom als weiterem Heteroatom einen heterocyclischen 6-gliedrigen Rest;
- Y ist die Vinylgruppe oder eine Gruppe der allgemeinen 25 Formel (2d) (2d)

$$- CH - CH_2 - R$$
 (2d)

in welcher

5

. 10

15

30

35

- R einen alkalisch eliminierbaren, anorganischen oder organischen Rest bedeutet;
- Z .ist ein Chlor- oder Bromatom (wobei Z und X gleiche oder voneinander verschiedene Bedeutungen besitzen können);
- M ist ein Wasserstoffatom oder das Aquivalent eines Metalls.

2. Kupferkomplex-Disazoverbindungen nach Anspruch 1 der allgemeinen Formel

$$(MO_3S)$$
 $N = N$
 SO_2-Y
 MO_3S
 $N = N$
 MO_3S
 SO_3M

in welcher n, M, X, Y und Z die in Anspruch 1 genannten Bedeutungen haben.

3. Kupferkomplex-Disazoverbindungen nach Anspruch 1 der allgemeinen Formel

$$Y-SO_2$$
 $N = N$
 $N =$

in welcher M, X, Y und Z die in Anspruch 1 genannten Bedeutungen haben.

4. Kupferkomplex-Disazoverbindungen nach Anspruch 1 der allgemeinen Formel

in welcher n, M, X, Y und Z die in Anspruch 1 genannten Bedeutungen haben.

5. Kupferkomplex-Disazoverbindungen nach Anspruch 1 der allgemeinen Formel

5

15

20

25

$$V - SO_2$$
 $V - SO_2$
 $V - SO_3$
 $V -$

in welcher M, X, Y und Z die in Anspruch 1 genannten Bedeutungen haben.

10 6. Kupferkomplex-Disazoverbindungen nach Anspruch 1, 2, 3, 4 oder 5, dadurch gekennzeichnet, daß X eine Gruppe der allgemeinen Formel

$$-N$$

ist, in welcher R³ und R⁴ zueinander gleiche oder voneinander verschiedene Bedeutungen besitzen und R³ ein Wasserstoffatom oder eine Alkylgruppe von 1 bis 4 C-Atomen bedeutet, die durch einen oder zwei Substituenten aus der Gruppe Acetylamino, Hydroxy, Sulfato, B-Sulfatoäthylsulfonyl, Vinylsulfonyl, B-Thiosulfatoäthylsulfonyl, Alkoxy von 1 bis 4 C-Atomen, Sulfo, Carboxy, Phenyl, Naphthyl, durch Sulfo, Carboxy, B-Sulfatoäthylsulfonyl, Vinylsulfonyl, ß-Thiosulfatoäthylsulfonyl, Alkyl von 1 bis 4 C-Atomen, Alkoxy von 1 bis 4 C-Atomen, Chlor, Sulfamoyl und/oder Carbamoyl substituiertes Phenyl und durch Sulfo, Carboxy, B-Sulfatoäthylsulfonyl, Vinylsulfonyl, 8-Thiosulfatoäthylsulfonyl, Alkoxy von 1 bis 4 C-Atomen, Alkyl von 1 bis 4 C-Atomen, Chlor, Sulfamoyl und/oder Carbamoyl substituiertes Naphthyl substituiert sein kann, und R⁴ für ein Wasser-

HOE 82/F 007

stoffatom oder eine Cyclopentyl- oder Cyclohexylgruppe steht, die durch 1 bis 3 Methylgruppen substituiert sein können, oder eine Alkylgruppe von 1 bis 4 C-Atomen bedeutet, die durch einen oder zwei Substituenten aus der Gruppe Acetylamino, Hydroxy, Sulfato, 8-Sulfatoäthylsulfonyl, Vinylsulfonyl, ß-Thiosulfatoäthylsulfonyl, Alkoxy von 1 bis 4 C-Atomen, Sulfo, Carboxy, Phenyl, Naphthyl, durch Sulfo, Carboxy, B-Sulfatoäthylsulfonyl, Vinylsulfonyl, ß-Thiosulfatoäthylsulfonyl, Alkyl von 1 bis 4 C-Atomen, Alkoxy von 1 bis 4 C-Atomen, Chlor, Sulfamoyl und/oder Carbamoyl substituiertes Phenyl und durch Sulfo, Carboxy, 8-Sulfatoäthylsulfonyl, Vinylsulfonyl, B-Thiosulfatoäthylsulfonyl, Alkoxy von 1 bis 4 C-Atomen, Alkyl von 1 bis 4 C-Atomen, Chlor, Sulfamoyl und/oder Carbamoyl substituiertes Naphthyl substituiert sein kann, oder ein Phenylrest oder Naphthylrest ist, die durch Substituenten aus der Gruppe Carboxy, Sulfo, Alkyl von 1 bis 4 C-Atomen, Alkoxy von 1 bis 4 C-Atomen, Hydroxy, Chlor, 8-Sulfatoäthylsulfonyl, Vinylsulfonyl, B-Thiosulfatoäthylsulfonyl, Alkanoylamino von 1 bis 4 C-Atomen im Alkylrest und Carbalkoxy mit 1 bis 4 C-Atomen im Alkylrest substituiert sein können, oder in welcher R³ und R⁴ zusammen mit dem Stickstoffatom den Morpholin-, Thiomorpholin-, Piperazin- oder Piperidinrest bilden.

5

10

15

20

25

- 7. Verbindungen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß X gleich Chlor ist.
- 30 8. Verbindungen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß Y für die ß-Sulfatoäthyl- oder die Vinylgruppe steht.
- 9. Verbindungen nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß n die Zahl 1 bedeutet.

10. Verbindungen nach Anspruch 1 der allgemeinen Formel

MO₃S
$$N = N$$
 $N = N$
 $N = N$

in welcher Y für die B-Sulfatoäthyl- oder die Vinylgruppe steht und M die in Anspruch 1 genannte Bedeutung besitzt.

11. Verbindungen nach Anspruch 1 der allgemeinen Formel

$$MO_3S$$
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S

in welcher Y für die ß-Sulfatoäthyl- oder die Vinylgruppe steht und M die in Anspruch 1 genannte Bedeutung besitzt.

- 12. Verbindungen nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß M für Natrium oder Kalium steht.
- 13. Verfahren zur Herstellung der in Anspruch 1 genannten und definierten Kupferkomplex-Disazoverbindungen der allgemeinen Formel (1), dadurch gekennzeichnet, daß man

HOE 82/F ∞7

 a) eine Kupferkomplex-Monoazoverbindung der allgemeinen Formel (3)

$$(SO_{3}M) = N - NH_{2}$$

$$SO_{2}-Y - NH_{2}$$

$$(SO_{3}M)_{m}$$

$$(SO_{3}M)_{m}$$

5

10

15

(in welcher m, n, Y und M die in Anspruch 1 genannten Bedeutungen haben und die freistehende Aminogruppe in 6'- oder 7'-Stellung an den Naphthalinkern gebunden ist, wobei im Falle, daß m gleich 1 ist, diese Sulfogruppe in 5'-Stellung an den Naphthalinkern gebunden ist, wenn die Aminogruppe in 6'-Stellung steht, und die Sulfogruppe in 6'-Stellung an den Naphthalinkern gebunden gruppe in 6'-Stellung an den Naphthalinkern gebunden ist, wenn die Aminogruppe in 7'-Stellung steht) diazotiert und mit einer Verbindung der allgemeinen Formel (4)

(in welcher M, X und Z die in Anspruch 1 genannten Bedeutungen besitzen) kuppelt oder daß man

b) eine o,o'-Dihydroxy-Azoverbindung der allgemeinen Formel (5)

$$(SO_3^M)_n = N - N - NH_2$$

$$SO_2 - Y \qquad (SO_3^M)_m$$
(5)

(in welcher M, Y, m und n die für Formel (1) bzw.

Formel (3) angegebenen Bedeutungen haben) diazotiert
und mit einer Verbindung der obengenannten und definierten allgemeinen Formel (4) kuppelt und diese
metallfreie Disazoverbindung sodann mit einem kupferabgebenden Mittel behandelt oder daß man

c) eine Disazoverbindung der allgemeinen Formel (6)

5

10

15

$$(SO_3^M)_n$$
 $= N$ $= N$

(in welcher M, Y, m und n die in Anspruch 1 genannten Bedeutungen haben) mit einer Dihalogeno-s-triazin-Verbindung der allgemeinen Formel (7)

$$Z \xrightarrow{X} X \qquad (7)$$

(in welcher X eine Gruppe der in Anspruch 1 genannten und definierten Formel (2a), (2b) oder (2c) ist und beide Z die gleiche, in Anspruch 1 genannte Bedeutung besitzen) oder mit Cyanurchlorid oder Cyanurbromid umsetzt oder daß man

20 d) eine metallfreie Disazoverbindung der allgemeinen Formel (8)

(in welcher M, Y, m und n die in Anspruch 1 genannten Bedeutungen haben) mit einer Dihalogeno-s-triazinverbindung der oben genannten und definierten allgemeinen Formel (7) oder mit Cyanurchlorid oder Cyanurbromid umsetzt und sodann mit einem kupferabgebenden Mittel behandelt oder daß man

e) eine Azoverbindung der allgemeinen Formel (9)

5

10

15

20

MO₃S
$$MO_3S$$

$$MO_3S$$

$$MO_3S$$

$$MO_3S$$

$$SO_3M$$

$$SO_3M$$

(in welcher M, m, X und Z die in Anspruch 1 genannten Bedeutungen haben) mit der Diazoniumverbindung eines Aminophenols der allgemeinen Formel (10)

(in welcher Y und n die in Anspruch 1 genannten Bedeutungen haben und die Gruppe -SO₂-Y sich in 4- oder 5-Stellung befindet, falls n gleich Null ist, und sich in 4-Stellung befindet, falls n gleich 1 ist) kuppelt und die Disazoverbindung mit einem kupferabgebenden Mittel behandelt, oder daß man

f) eine Kupferkomplex-Disazoverbindung der allgemeinen Formel (11) 5

10

OE 82/F 007

(in welcher M, m, n, Y und Z die in Anspruch 1 genannten Bedeutungen haben und X für ein Chloratom oder ein Bromatom steht, mit einer Verbindung der allgemeinen Formel (12)

(12) $H - \cdot X$

(in welcher X eine Gruppe der in Anspruch 1 genannten und definierten Formel (2a), (2b) oder (2c) ist) oder daß man umsetzt

g) eine metallfreie o,o'-Dihydroxy-Disazoverbindung der allgemeinen Formel (13)

- (in welcher M, m, n, Y, X und Z die in Anspruch 1 genannten Bedeutungen haben) mit einem kupferabgeben-15 den Mittel behandelt.
- 14. Verwendung der in Anspruch 1 genannten und definierten oder der nach einem der Verfahren von Anspruch 13 hergestellten Verbindungen der allgemeinen Formel (1) zum 20 Färben oder Bedrucken von hydroxy- und/oder carbonamidgruppenhaltigen Materialien.

HOE 82/F 007

- 59 - 1

15. Verfahren zum Färben von hydroxy- und/oder carbonamidgruppenhaltigem Material, bei welchem man einen Farbstoff auf das Material aufbringt oder in das Material
einbringt und ihn, gegebenenfalls in der Wärme und/oder
in Gegenwart eines säurebindenden Mittels, fixiert,
dadurch gekennzeichnet, daß man als Farbstoff eine Verbindung der in Anspruch 1 genannten und definierten
allgemeinen Formel (1) einsetzt.

5

HOECHST AKTIENGESELLSCHAFT HOE 82/F 007

Dr.ST/sch

Wasserlösliche Kupferkomplex-Disazoverbindungen, Verfahren zu deren Herstellung und ihre Verwendung als Farbstoffe

Die Erfindung liegt auf dem technischen Gebiet der faserreaktiven Kupferkomplex-Disazofarbstoffe.

Aus der europäischen Offenlegungsschrift 0 040 806 sind faserreaktive Kupferkomplex-Disazoverbindungen mit einer B-Sulfatoäthylsulfonyl-Gruppe und einer Sulfophenylaminofluortriazinylamino-Gruppe bekannt.

Es wurden nunmehr neue, wertvolle und vorteilhafte wasser10 lösliche Kupferkomplex-Disazoverbindungen gefunden, die
die allgemeine Formel (1)

$$(SO_3M)$$
 n SO_2 Y MO_3S MO_3S MO_3S MO_3S MO_3S MO_3S MO_3S MO_3S MO_3S MO_3S

besitzen. In dieser bedeuten:

15

20

m ist die Zahl Null oder 1 (wobei im Falle m = 0 diese
Gruppe Wasserstoff ist);

n ist die Zahl Null oder 1 (wobei im Falle n = 0 diese
Gruppe Wasserstoff ist);

die Gruppe -SO₂-Y steht in 5-Stellung an den Benzolkern gebunden, wenn n gleich 0 ist, oder steht in 4-Stellung an den Benzolkern gebunden, wenn n gleich Null oder 1 ist;

die freistehende Azogruppe kann an den mittelständigen
Naphthalinkern in 6'- oder 7'-Stellung gebunden sein;
sofern m gleich 1 ist, ist diese Sulfogruppe in 5'-Stellung
gebunden, wenn die Azogruppe in 6'-Stellung steht, und
ist in 6'-Stellung gebunden, wenn die Azogruppe in
7'-Stellung steht;

X ist ein Chloratom oder ein Bromatom oder eine Gruppe der Formel (2a), (2b) oder (2c)

10
$$-0-R^1$$
 $-S-R^2$ $-N$

(2a) (2b) (2c)

in welchen

5

20

25

30

15 R¹ eine geradkettige oder verzweigte Alkylgruppe von 1 - 4 C-Atomen bedeutet, die substituiert sein kann, oder einen gegebenenfalls substituierten Arylrest bedeutet, oder für ein Wasserstoffatom steht,

R² eine geradkettige oder verzweigte Alkylgruppe von 1 - 4 C-Atomen bedeutet, die substituiert sein kann, oder für einen gegebenenfalls substituierten Arylrest steht,

- R³ ein Wasserstoffatom ist oder eine geradkettige oder verzweigte Alkylgruppe von 1 bis 4 C-Atomen bedeutet, die substituiert sein kann, bevorzugt durch eine Hydroxy-, Sulfato-, Sulfo- oder Carboxygruppe oder eine Alkoxy-gruppe von 1 bis 4 C-Atomen, und
- R⁴ ein Wasserstoffatom ist oder für eine Cycloalkylgruppe, wie Cyclopentyl- oder Cyclohexylgruppe, die durch 1 bis 3 Methylgruppen substituiert sein kann, steht oder eine geradkettige oder verzweigte Alkylgruppe von 1 bis 4 C-Atomen bedeutet, die substituiert sein kann, bevorzugt durch eine Hydroxy-, Sulfato-, Sulfo- oder Carboxygruppe oder eine Alkoxygruppe von 1 bis 4 C-Atomen, oder ein Arylrest ist, der substituiert sein kann, wobei

die Substituenten bevorzugt 1, 2 oder 3 Substituenten sind, die aus der Menge: 3 Alkylgruppen von 1 bis 4 C-Atomen, 2 Alkoxygruppen von 1 bis 4 C-Atomen, 2 Chloratomen, 3 Sulfogruppen, 1 Carboxygruppe und 1 Gruppe der nachstehend definierten Formel -SO2-Y ausgewählt sind.

wobei R³ und R⁴ zueinander gleich oder voneinander verschieden sein können, oder

R³ und R⁴ bilden zusammen mit dem Stickstoffatom und gegebenenfalls einem Sauerstoff-, Schwefel- oder Stick-. 10 stoffatom als weiterem Heteroatom einen heterocyclischen 6-gliedrigen Rest, wie beispielsweise den Morpholin-, den Thiomorpholin-, den Piperazin- oder den Piperidin-*) als Alkylenreste von 1 bis 4 C-Atomen ist die Vinylgruppe oder eine Gruppe der allgemeinen

> -CH-CH₂-R (2d),

in welcher

Formel (2d)

5

- 20 R einen alkalisch eliminierbaren, anorganischen oder organischen Rest bedeutet;
 - ist ein Chlor- oder Bromatom (wobei Z und X gleiche oder voneinander verschiedene Bedeutungen besitzen können):
- ist ein Wasserstoffatom oder das Äquivalent eines 25 Metalls, vorzugsweise, ein- oder zweiwertigen Metalls, wie Alkali- oder Erdalkalimetalls, insbesondere des Natriums, Kaliums oder Calciums.
- 30 Alkylgruppen von 1 bis 4 C-Atomen sind bevorzugt die Methyl- und Äthylgruppe; Alkoxygruppen von 1 bis 4 C-Atomen sind bevorzugt die Methoxy- und Äthoxygruppen. Substituierte Alkylgruppen sind beispielsweise Alkylgruppen von 1 bis 4 C-Atomen, die durch einen oder zwei Substituenten aus der Gruppe Acetylamino, Hydroxy, Sulfato,
- 35

· - 4/-

B-Sulfatoäthylsulfonyl, Vinylsulfonyl, B-Thiosulfatoäthylsulfonyl, Alkoxy von 1 bis 4 C-Atomen, Sulfo, Carboxy, Phenyl, Naphthyl, durch Sulfo, Carboxy, 8-Sulfatoäthylsulfonyl, Vinylsulfonyl, ß-Thiosulfatoäthylsulfonyl, Alkyl 5 von 1 bis 4 C-Atomen, Alkoxy von 1 bis 4 C-Atomen, Chlor, Sulfamoyl und/oder Carbamoyl substituiertes Phenyl und durch Sulfo, Carboxy, B-Sulfatoäthylsulfonyl, Vinylsulfonyl, B-Thiosulfatoäthylsulfonyl, Alkoxy von 1 bis 4 C-Atomen, Alkyl von 1 bis 4 C-Atomen, Chlor, Sulfamoyl und/oder . 10 Carbamoyl substituiertes Naphthyl substituiert sind. Arylreste sind vorzugsweise die Phenyl- und Naphthylreste; diese können beispielsweise durch Substituenten aus der Gruppe Carboxy, Sulfo, Alkyl von 1 bis 4 C-Atomen, Alkoxy von 1 bis 4 C-Atomen, Hydroxy, Chlor, B-Sulfatoäthylsulfo-15 nyl, Vinylsulfonyl, B-Thiosulfatoäthylsulfonyl, Alkanoylamino von 1 bis 4 C-Atomen im Alkylrest und Carbalkoxy mit 1 bis 4 C-Atomen im Alkylrest substituiert sein.

Die alkalisch eliminierbare Gruppe R ist vorzugsweise ein Chloratom, die Acetoxygruppe, die Phosphatogruppe (entsprechend der allgemeinen Formel -OPO3M2 mit M der obengenannten Bedeutung), die Thiosulfatogruppe (entsprechend der allgemeinen Formel -S-SO3M mit M der obengenannten Bedeutung) und vorzugsweise die Sulfatogruppe (entsprechend der allgemeinen Formel -OSO3M mit M der obengenannten Bedeutung).

Die erfindungsgemäßen Kupferkomplex-Disazoverbindungen können in Form ihrer freien Säure und bevorzugt in Form ihrer Salze, insbesondere neutralen Salze, vorliegen; als Salze sind insbesondere die Alkalimetall- und Erdalkalimetallsalze zu nennen, so beispielsweise die Natrium-, metallsalze zu nennen, so beispielsweise die Natrium-, Kalium- und Calciumsalze. Die neuen Verbindungen finden bevorzugt in Form dieser Salze ihre Verwendung zum Färben (im allgemeinen Sinne und einschließlich des Bedruckens verstanden) von hydroxy- und/oder carbonamidgruppenhaltigem Material.

Bevorzugte Reste R¹ und R² sind beispielsweise die Methyl-, Athyl-, Propyl-, Isopropyl-, B-Hydroxyäthyl-, B-Methoxy-äthyl- und B-Athoxyäthyl-Gruppe, der Phenyl-, 4-Chlorphenyl-, 4-Methoxyphenyl- und 4-Sulfophenyl-Rest.

5 Die Aminogruppe der allgemeinen Formel (2c) ist beispielsweise die Amino-, Methylamino-, Athylamino-, Propylamino-, Isopropylamino-, Butylamino-, B-Methoxyäthylamino-, Dimethylamino-, Diäthylamino-, N-B-Sulfoäthyl-N-methyl-amino-, B-Hydroxyäthylamino-, B-Sulfatoäthylamino-, Cyclohexylamino-, Morpholino-, Piperidino- und die Piperazino-Gruppe, vor allem jedoch Aminogruppen mit einem gegebenenfalls substituierten Arylrest, wie beispielsweise die Phenylamino-, N-Methyl-N-phenyl-amino-, Toluidino-, Xylidino-, 15 Chloranilino-, Anisidino-, Phenetidino-, Sulfoanilino-, 3-(B-Sulfatoäthylsulfonyl)-anilino-, 4-(B-Sulfatoäthylsulfonyl)-anilino-, Disulfo-anilino-, Sulfomethyl-anilino-, N-Sulfomethyl-anilino-, N-Methyl-sulfoanilino-, Carboxyphenylamino-, 2-Carboxy-5-sulfo-phenylamino-, 2-Carboxy-4-20 sulfo-phenylamino- und die Sulfonaphthylaminogruppen, wie die 4-Sulfonaphthyl-(1)-amino-, 3,6-Disulfonaphthyl-(1)amino- und 3,6,8-Trisulfonaphthyl-(1)-amino-Gruppe.

Die vorliegende Erfindung betrifft weiterhin Verfahren zur 25 Herstellung dieser erfindungsgemäßen Kupferkomplex-Disazoverbindungen. Diese sind dadurch gekennzeichnet, daß man

a) eine Kupferkomplex-Monoazoverbindung der allgemeinen Formel (3)

(in welcher m, n, Y und M die obengenannten Bedeutungen haben und die freistehende Aminogruppe in 6'- oder 7'-Stellung an den Naphthalinkern gebunden ist, wobei im Falle, daß m gleich 1 ist, diese Sulfogruppe in 5'-Stellung an den Naphthalinkern gebunden ist, wenn die Aminogruppe in 6'-Stellung steht, und die Sulfogruppe in 6'-Stellung an den Naphthalinkern gebunden ist, wenn die Aminogruppe in 7'-Stellung steht) diazotiert und mit einer Verbindung der allgemeinen Formel (4)

(in welcher M, X und Z die obengenannten Bedeutungen besitzen) kuppelt oder daß man

b) eine o,o'-Dihydroxy-Azoverbindung der allgemeinen Formel (5)

$$(SO_3^M)$$
 n (SO_3^M) n (SO_3^M) m (SO_3^M) m

(in welcher M, Y, m und n die für Formel (1) bzw. Formel (3) angegebenen Bedeutungen haben) diazotiert und mit einer Verbindung der obengenannten und definierten allgemeinen Formel (4) kuppelt und diese metallfreie Disazoverbindung sodann mit einem kupferabgebenden Mittel behandelt oder daß man

10

15

20

5

c) eine Disazoverbindung der allgemeinen Formel (6)

5

10

$$(SO_3M)_{\overline{n}}$$
 $(SO_3M)_{\overline{n}}$ $(SO_3M)_{\overline{m}}$ $(SO_3M)_{\overline{m}}$ $(SO_3M)_{\overline{m}}$ $(GO_3M)_{\overline{m}}$ $(GO_$

(in welcher M, Y, m und n die obengenannten Bedeutungen haben) mit einer Dihalogeno-s-triazin-Verbindung der allgemeinen Formel (7)

$$z \xrightarrow{X} X \qquad (7)$$

(in welcher X eine Gruppe der obengenannten und definierten Formel (2a), (2b) oder (2c) ist und beide Z die
gleiche, obengenannte Bedeutung besitzen) oder mit
Cyanurchlorid oder Cyanurbromid umsetzt oder daß man

d) eine metallfreie Disazoverbindung der allgemeinen Formel (8)

(in welcher M, Y, m und n die obengenannten Bedeutungen haben) mit einer Dihalogeno-s-triazinverbindung der oben genannten und definierten allgemeinen Formel (7) oder mit Cyanurchlorid oder Cyanurbromid umsetzt und sodann mit einem kupferabgebenden Mittel behandelt oder daß man

20 e) eine Azoverbindung der allgemeinen Formel (9)

(in welcher M, m, X und Z die obengenannten Bedeutungen haben) mit der Diazoniumverbindung eines Aminophenols der allgemeinen Formel (10)

$$(SO_3M) = 0H$$

$$SO_2-Y$$

$$(10)$$

5

10

(in welcher Y und n die oben genannten Bedeutungen haben und die Gruppe -SO₂-Y sich in 4- oder 5-Stellung befindet, falls n gleich Null ist, und sich in 4-Stellung befindet, falls n gleich 1 ist) kuppelt und die Disazoverbindung mit einem kupferabgebenden Mittel behandelt, oder daß man

f) eine Kupferkomplex-Disazoverbindung der allgemeinen Formel (11)

$$(SO_3M)_n$$
 SO_2-Y
 MO_3S
 MO_3S

15 (in welcher M, m, n, Y und Z die obengenannten Bedeutungen haben und X für ein Chloratom oder ein Bromatom

steht und diese Verbindung beispielsweise nach den oben beschriebenen erfindungsgemäßen Varianten a) bis e) oder der nachstehend beschriebenen Variante g) hergestellt werden kann) mit einer Verbindung der allgemeinen Formel (12)

$$H - X \tag{12}$$

5

15

(in welcher X eine Gruppe der obigen Formel (2a), (2b) oder (2c) ist) umsetzt oder daß man

g) eine metallfreie o,o'-Dihydroxy-Disazoverbindung der allgemeinen Formel (13)

OH

HO

HO

NH

N

X

(SO₃M)

N

MO₂S

(13)

(in welcher M, m, n, Y, X und Z die obengenannten Bedeutungen haben) mit einem kupferabgebenden Mittel behandelt.

(SO₃M)_m

Die erfindungsgemäßen Umsetzungen können bezüglich ihrer Verfahrensbedingungen analog bekannten Verfahrensweisen durchgeführt werden. Solche Verfahrensweisen der Diazotieung und Kupplung und der Umsetzung von Aminoverbindungen mit Halogentriazinverbindungen sind allgemein bekannt; für die letztbenannte Kondensationsreaktion sei beispielsweise insbesondere auf die EuropäischenOffenlegungsschriften Nrs. 00 32 187. und 00 36 133 auf-

25 merksam gemacht. Ebenso erfolgt die Kupferkomplexbildung der metallfreien o,o'-Dihydroxy-Azoverbindungen durch Umsetzung mit einem kupferabgebenden Mittel nach an und für sich bekannten Verfahrensweisen; diese sind beispielsweise in den deutschen Auslegeschriften Nrs. 15 44 541 und 16 44 155 beschrieben.

Kupferabgebende Mittel sind beispielsweise die Salze des zweiwertigen Kupfers, wie Kupfersulfat, Kupferchlorid, Kupferacetat und Kupfercarbonat.

5 Die Ausgangsverbindungen der allgemeinen Formel (4) können beispielsweise analog den Verfahrensweisen der deutschen Patentschrift 485 185 oder der oben beschriebenen Europäischen Offenlegungsschriften hergestellt werden. Die Ausgangsverbindungen der allgemeinen Formel (6) lassen sich beispielsweise gemäß den Verfahrensweisen der deutschen Offenlegungsschrift 1 544 541 synthetisieren. Die metallfreien Disazoverbindungen der allgemeinen Formel (13) können aus den metallfreien Disazoverbindungen der allgemeinen Formel (8) durch Umsetzung mit einer Dihalogeno-triazin-Verbindung der oben genannten allgemeinen Formel (7) oder durch Umsetzung einer metallfreien Disazoverbindung der obigen allgemeinen Formel (8) mit Cyanurchlorid oder Cyanurbromid und anschließender zweiter Kondensationsreaktion mit einer Verbindung der obengenannten allgemeinen Formel (12) hergestellt werden, oder sie sind über die erfindungsgemäße Verfahrensvariante b) erhältlich. Die als Ausgangsverbin-20 dung dienende Monoazoverbindung der allgemeinen Formel (9) kann beispielsweise durch Kupplung der Diazoniumverbindung der Aminonaphtholsulfonsäure der allgemeinen Formel (14)

$$MO_3S \qquad (SO_3M)_m \qquad (14)$$

(in welcher M und m die obengenannten Bedeutungen haben und die Stellung der Sulfogruppe und Aminogruppe wie in Formel (5) definiert ist) mit einer Verbindung der oben genannten und definierten allgemeinen Formel (4) herge-30 stellt werden.

Aminophenole der allgemeinen Formel (10), die als Ausgangsverbindungen zur Herstellung der erfindungsgemäßen Kupferkomplex-Disazoverbindungen dienen können, sind beispielsweise 4-(8-Sulfatoäthylsulfonyl)-2-amino-phenol, 4-(8-Thio-5 sulfatoäthylsulfonyl)-2-amino-phenol, 4-Vinylsulfonyl-2amino-phenol, 4-(B-Chloräthylsulfonyl)-2-amino-phenol, 4-(B-Phosphatoäthylsulfonyl)-2-amino-phenol, 5-(B-Sulfatoäthylsulfonyl)-2-amino-phenol, 5-Vinylsulfonyl-2-aminophenol, 5-(B-Thiosulfatoäthylsulfonyl)-2-amino-phenol, 10 5-(B-Chloräthylsulfonyl)-2-amino-phenol, 5-(B-Phosphatoäthylsulfonyl)-2-amino-phenol, 4-(B-Sulfatoäthylsulfonyl)-2-amino-phenol-6-sulfonsäure, 4-(B-Thiosulfatoäthylsulfonyl)-2-amino-phenol-6-sulfonsäure und 4-Vinylsulfonyl-2amino-phenol-6-sulfonsäure.

Aminonaphtholsulfonsäure-Verbindungen der allgemeinen Formel (14), die als Ausgangsverbindungen zur Herstellung der erfindungsgemäßen Verbindungen dienen können, sind 6-Amino-1-naphthol-3-sulfonsäure, 7-Amino-1-naphthol-3-sulfonsäure, 20 6-Amino-1-naphthol-2,5-disulfonsäure und 7-Amino-1-naphthol-3,6-disulfonsäure.

15

Kupplungskomponenten der allgemeinen Formel (4), die als Ausgangsverbindungen zur Synthese der erfindungsgemäßen 25 Kupferkomplex-Disazoverbindungen dienen können, sind die N-Acylamino-Verbindungen aus 1-Amino-8-naphthol-3,6- oder -4,6-disulfonsäure mit Cyanurchlorid oder Cyanurbromid oder mit den Dihalogeno-s-triazin-Verbindungen entsprechend der allgemeinen Formel (7), wie beispielsweise 2,4-Dichlor-6-(4'-sulfoanilino)-1,3,5-triazin, 2,4-Dichlor-6-(3'-sulfoanilino)-1,3,5-triazin, 2,4-Dichlor-6-amino-1,3,5-triazin, 2,4-Dichlor-6-methylamino-1,3,5-triazin, 2,4-Dichlor-6äthyl_amino-1,3,5-triazin, 2,4-Dichlor-6-propylamino-1,3,5triazin, 2,4-Dichlor-6-isopropylamino-1,3,5-triazin, 2,4-Dichlor-6-n-butylamino-1,3,5-triazin, 2,4-Dichlor-6-ßmethoxyäthylamino-1,3,5-triazin, 2,4-Dichlor-6-dimethyl-

amino-1,3,5-triazin, 2,4-Dichlor-6-diathylamino-1,3,5triazin, 2,4-Dichlor-6-(N-B-sulfoäthyl-N-methyl-amino)-1,3,5-triazin, 2,4-Dichlor-6-8-hydroxyäthylamino-1,3,5triazin, 2,4-Dichlor-6-8-sulfatoäthylamino-1,3,5-triazin, 5 2,4-Dichlor-6-cyclohexylamino-1,3,5-triazin, 2,4-Dichlor-6-morpholino-1,3,5-triazin, 2,4-Dichlor-6-piperidino-1,3,5triazin, 2,6-Dichlor-6-piperazino-1,3,5-triazin, 2,6-Dichlor-6-(N,N-di-B-hydroxyäthyl)-amino-1,3,5-triazin, 2,6-Dichlor-6-phenylamino-1,3,5-triazin, 2,4-Dichlor-6-(N-methyl-N-phenyl-amino)-1,3,5-triazin, 2,4-Dichlor-6p-toluidino-1,3,5-triazin, 2,4-Dichlor-6-o-toluidino- oder 10 -m-toluidino-1,3,5-triazin, 2,4-Dichlor-6-xylidino-1,3,5triazin, 2,4-Dichlor-6-p-chloranilino-1,3,5-triazin, 2,4-Dichlor-6-o-chloranilino- oder -m-chloranilino-1,3,5triazin, 2,4-Dichlor-6-o-anisidino- oder -m-anisidino-. 15 1,3,5-triazin, 2,4-Dichlor-6-o-phenitidino- oder-m-phenetidino-1,3,5-triazin, 2,4-Dichlor-6-o-carboxy- oder -m-carboxyanilino-1,3,5-triazin, 2,4-Dichlor-6-o-methoxyoder -m-methoxyphenoxy-1,3,5-triazin, 2,4-Dichlor-6-panisidino-1,3,5-triazin, 2,4-Dichlor-6-p-phenetidino-1,3,5-20 triazin, 2,4-Dichlor-6-m- oder -p-(B-sulfatoäthylsulfonyl)anilino-1,3,5-triazin, 2,4-Dichlor-6-(2',4'- oder -2',5'-disulfoanilino)-1,3,5-triazin, 2,4-Dichlor-6-N-sulfomethylanilino-1,3,5-triazin, 2,4-Dichlor-6-(4'-methyl-2'-sulfoanilino)-1,3,5-triazin, 2,4-Dichlor-6-p-carboxy-anilino-1,3,5-triazin, 2,4-Dichlor-6-(2'-carboxy-4'- oder -5'-sulfo)anilino-1,3,5-triazin, 2,4-Dichlor-6-(4'-sulfonaphthyl-1'amino)-1,3,5-triazin, 2,4-Dichlor-6-(3',6'-disulfonaphthyl-1'-amino)-1,3,5-triazin, 2,4-Dichlor-6-(3',6',8'-trisulfo-30 naphthyl-1'-amino)-1,3,5-triazin, 2,4-Dichlor-6-methoxy-1,3,5-triazin, 2,4-Dichlor-6-äthoxy-1,3,5-triazin, 2,4-Dichlor-6-propoxy-1,3,5-triazin, 2,4-Dichlor-6-isopropoxy-1,3,5-triazin, 2,4-Dichlor-6-(B-methoxy-äthoxy)-1,3,5triazin, 2,4-Dichlor-6-(B-äthoxy-äthoxy)-1,3,5-triazin, 35 2,4-Dichlor-6-phenoxy-1,3,5-triazin, 2,4-Dichlor-6-m- oder -p-chlorphenoxy-1,3,5-triazin, 2,4-Dichlor-6-p-methoxyphenoxy-1,3,5-triazin, 2,4-Dichlor-6-m- oder p-sulfophenoxy-1,3,5-triazin, 2,4-Dichlor-6-methylmercapto-1,3,5triazin, 2,4-Dichlor-6-ß-hydroxyäthylmercapto-1,3,5-triazin, 2,4-Dichlor-6-phenylmercapto-1,3,5-triazin und die entsprechenden 2,4-Dibrom-triazin-Derivate.

Von den erfindungsgemäßen Kupferkomplex-Disazoverbindungen entsprechend der allgemeinen Formel (1) sind diejenigen bevorzugt, in denen Y die B-Thiosulfatoäthyl- und insbesondere die Vinylsulfonyl- oder ß-Sulfatoäthylsulfonyl-Gruppe bedeutet, weiterhin diejenigen, in denen n für die Zahl 1 steht, ebenso diejenigen, in denen Z für ein Chloratom steht und weiterhin diejenigen, in denen in der endständigen Triazinylamino-naphtholsulfonsäure-Komponente die eine Sulfogruppe meta-ständig zur acylierten Aminogruppe gebunden ist. Weiterhin sind diejenigen bevorzugt, in denen X eine Gruppe der allgemeinen Formel (2c) ist, in welcher R³ für ein Wasserstoffatom oder eine Alkylgruppe von 1 bis 4 C-Atomen steht, die durch eine Hydroxy- oder Sulfogruppe substituiert sein kann, und in welcher R4, zu 20 R³ gleich oder von R³ verschieden, ein Wasserstoffatom oder eine Alkylgruppe von 1 bis 4 C-Atomen bedeutet, die durch eine Hydroxy-, Sulfo-, Sulfato-, Methoxy- oder Äthoxygruppe substituiert sein kann, oder den Phenylrest bedeutet, der 25 durch einen oder zwei Substituenten aus der Gruppe Sulfo, Methyl, Athyl, Methoxy, Athoxy, Chlor und Carboxy substituiert sein kann oder durch eine B-Sulfatoäthylsulfonyl-Gruppe substituiert sein kann, oder den Naphthylrest bedeutet, der durch eine, zwei oder drei Sulfogruppen substitu-30 iert sein kann, wie beispielsweise die Toluidino-, Xylidino-, Chlorphenylamino-, Methoxy- und Dimethoxy-phenylamino-, die Äthoxyphenylamino-, Sulfophenylamino-, 3-(8-Sulfatoäthylsulfonyl)-phenylamino-, 4-(B-Sulfatoäthylsulfonyl)-phenylamino, die Disulfophenylamino, die Carboxyphenylamino-, die 2-Carboxy-5-phenylamino-, 2-Carboxy-4sulfophenylamino-, 4-Sulfonaphthyl-(1)-amino-, 3,6-Disulfonaphthyl-(1)-amino- und 3,6,8-Trisulfonaphthyl-(1)-amino-Gruppen, sowie der Morpholinorest.

Hervorzuheben von den erfindungsgemäßen Kupferkomplexdisazoverbindungen sind weiterhin die Verbindungen entsprechend den allgemeinen Formeln (15), (16), (17) und (18)

$$(MO_3S)_n$$
 $N = N$
 MO_3S
 $N = N$
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S
 MO_3S

$$Y-SO_2$$
 MO_3S
 MO_3S

In diesen Formeln haben die Formelglieder M, Y, n, Z und X die obengenannten, insbesondere bevorzugten, Bedeutungen.

Als Einzelverbindungen können insbesondere die in den 5 Beispielen 14 und 23 beschriebenen erfindungsgemäßen Kupferkomplex-Disazoverbindungen hervorgehoben werden.

- 10 Die Abscheidung und Isolierung der erfindungsgemäß hergestellten Verbindungen der allgemeinen Formel (1) aus den Syntheselösungen kann nach allgemein bekannten Methoden erfolgen, so beispielsweise durch Ausfällen aus dem Reaktionsmedium mittels Elektrolyten, wie beispielsweise
- 15 Natriumchlorid oder Kaliumchlorid, oder durch Eindampfen der Reaktionslösung, beispielsweise durch Sprühtrocknung, wobei dieser Reaktionslösung eine Puffersubstanz, wie beispielsweise ein Gemisch aus Mono- und Dinatriumphosphat, zugefügt werden kann. Gegebenenfalls können diese Synthese-
- 20 lösungen auch, gegebenenfalls nach Zusatz einer Puffersubstanz und nach eventuellem Konzentrieren, direkt als Flüssigpräparation der färberischen Verwendung zugeführt werden.
- Die erfindungsgemäßen Kupferkomplex-Disazoverbindungen besitzen wertvolle Farbstoffeigenschaften, die in Folge ihrer Reste des Vinylsulfontyps und des Halogenotriazinyl-Restes faserreaktive Eigenschaften aufweisen. Die neuen Verbindungen werden bevorzugt zum Färben (im allgemeinen Sinne, einschließlich des Bedruckens) von hydroxy- und/oder carbonamidgruppenhaltigen Materialien, beispielsweise in
 - Sinne, einschließlich des Bedruckens, von nydroxy- und/oder carbonamidgruppenhaltigen Materialien, beispielsweise in Form von Flächengebilden, wie Papier und Leder oder von Folien aus Polyamid, oder in der Masse, wie beispielsweise von Polyamid und Polyurethan, insbesondere aber von diesen
- 35 Materialien in Faserform verwendet. Die vorliegende Erfindung betrifft somit auch die Verwendung der Verbindungen

der allgemeinen Formel (1) zum Färben (im obigen Sinne) dieser Materialien bzw. Verfahren zum Färben solcher Materialien in an und für sich üblichen Verfahrensweisen, bei welchen eine Verbindung der allgemeinen Formel (1) als Farbmittel eingesetzt wird. Bevorzugt kommen die Materialien in Form von Fasermaterialien zur Anwendung, insbesondere in Form von Textilfasern, wie Garnen, Wickelkörpern, Geweben und Gewirken.

Hydroxygruppenhaltige Materialien sind natürliche, regenerierte oder synthetische hydroxygruppenhaltige Materialien, wie beispielsweise Cellulosefasermaterialien oder Celluloseregeneratmaterialien und Polyvinylalkohole. Cellulosefasermaterialien sind vorzugsweise Baumwolle, aber auch andere Pflanzenfasern, wie Leinen, Hanf, Jute und Ramiefasern; regenerierte Cellulosefasern sind beispielsweise Zellwolle und Viskosekunstseide.

Carbonamidgruppenhaltige Materialien sind beispielsweise synthetische Polyamide, wie Polyamid-6,6 Polyamid-6, Polyamid-11 und Polyamid-4, und Polyurethane, insbesondere in Form der Fasern, oder natürliche Polyamide, beispielsweise Wolle und andere Tierhaare, Seide und Leder.

Die erfindungsgemäßen Kupferkomplex-Disazofarbstoffe lassen sich auf den genannten Substraten, insbesondere auf den genannten Fasermaterialien, nach den für wasserlösliche Farbstoffe, insbesondere für faserreaktive Farbstoffe, bekannten Anwendungstechniken applizieren und fixieren.

30

35

So erhält man mit ihnen auf Cellulosefasern nach dem Ausziehverfahren unter Verwendung von verschiedensten säurebindenden Mitteln und gegebenenfalls unter Zugabe von neutralen Salzen, wie Natriumchlorid oder Natriumsulfat, sehr gute Farbausbeuten sowie einen ausgezeichneten Farbaufbau. Man färbt bei Temperaturen zwischen 40 und 105°C, gegebenenfalls bei Temperaturen bis zu 120°C unter Druck, gege-

benenfalls in Gegenwart von üblichen Färbereihilfsmitteln, im wäßrigen Bad. Man kann dabei so vorgehen, daß man das Material in das warme Bad einbringt und dieses allmählich auf die gewünschte Färbe__temperatur erwärmt und den 5 Färbeprozeß bei dieser Temperatur zu Ende führt. Die das Ausziehen des Farbstoffes beschleunigenden Neutralsalze können dem Bade gewünschtenfalls auch erst nach Erreichen der eigentlichen Färbetemperatur zugesetzt werden.

10 Nach dem Klotzverfahren werden auf Cellulosefasern ebenfalls ausgezeichnete Farbausbeuten erhalten, wobei durch Verweilen bei Raumtemperatur oder erhöhter Temperatur, beispielsweise bis zu 60°C, durch Dämpfen oder durch Trockenhitze in üblicher Weise fixiert werden kann.

15

Ebenfalls nach den üblichen Druckverfahren für Cellulosefasern, die einphasig - beispielsweise durch Bedrucken mit einer Natriumbicarbonat oder ein anderes säurebindendes Mittel enthaltenden Druckpaste und anschließendes Dämpfen 20 bei 100 - 103°C, - oder zweiphasig - beispielsweise durch Bedrucken mit neutraler oder schwach saurer Druckfarbe, anschließender Fixierung entweder durch Hindurchführen durch ein heißes elektrolythaltiges alkalisches Bad oder durch Überklotzen mit einer alkalischen elektrolythaltigen 25 Klotzflotte und anschließendem Verweilen oder Dämpfen oder Behandlung mit Trockenhitze des behandelten Materials, durchgeführt werden können, erhält man farbstarke Drucke mit gutem Stand der Konturen und einem klaren Weißfond. Der Ausfall der Drucke ist von wechselnden Fixierbedingungen 30 nur wenig abhängig. Sowohl in der Färberei als auch in der Druckerei sind die mit den erfindungsgemäßen Verbindungen erhaltenen Fixiergrade sehr hoch.

Neben dem üblichen Wasserdampf von 100 - 103°C kann auch 35 überhitzter Dampf und Druckdampf von Temperaturen bis zu 160°C eingesetzt werden. Bei der Fixierung mittels Trocken. . . - 18/- 29

hitze nach den üblichen Thermofixierverfahren verwendet man Heißluft von 120 - 200°C. Die säurebindenden und die Fixierung der erfindungsgemäßen Verbindungen auf den Cellulosefasern bewirkenden Mittel sind beispielsweise wasserlösliche basische Salze der Alkalimetalle und ebenfalls Erdalkalimetalle von anorganischen und organischen Säuren oder Verbindungen, die in der Hitze Alkali freisetzen. Insbesondere sind die Alkalimetallhydroxide und Alkalimetallsalze von schwachen bis mittelstarken anorganischen oder 10 organischen Säuren zu nennen, wobei von den Alkaliverbindungen vorzugsweise die Natrium- und Kaliumverbindungen gemeint sind. Solche säurebindenden Mittel sind beispielsweise Natriumhydroxyd, Kaliumhydroxyd, Natriumcarbonat, Natriumbicarbonat, Kaliumcarbonat, Natriumformiat, Natrium-15 dihydrogenphosphat, Dinatriumhydrogenphosphat, Natriumtrichloracetat, Wasserglas und Trinatriumphosphat.

Durch die Behandlung der erfindungsgemäßen Verbindungen mit den säurebindenden Mitteln, gegebenenfalls unter Wärmeeinwirkung, werden diese chemisch an die Cellulosefaser gebunden. Insbesondere die Cellulosefärbungen zeigen nach der üblichen Nachbehandlung durch Spülen zur Entfernung von nicht fixierten Anteilen ausgezeichnete Naßechtheiten.

Für das coloristische Verhalten der erfindungsgemäßen Verbindungen ist besonders hervorzuheben, daß sie sich durch gute Stabilität in Druckpasten und Klotzflotten, auch in Anwesenheit von Alkali, durch ein sehr gutes Ziehvermögen aus langer Flotte, durch guten Farbaufbau nach üblichen Färbe- und Druckverfahren, durch eine gleiche Farbtiefe beim Färben von Baumwolle und Regeneratcellulosefasern, durch egales Warenbild der mit ihnen hergestellten Färbungen und Drucke und ebenfalls durch einen gleichmäßigen Ausfall der Färbungen aus langer Flotte bei Zugabe verschiedener Mengen an Elektrolyten auszeichnen. Nicht fixierte Farbstoffanteile lassen sich leicht auswaschen.

- 18 - 3

Die Färbungen auf Polyurethanfasern und Polyamidfasern werden üblicherweise aus saurem Milieu ausgeführt. So kann man beispielsweise dem Färbebad Essigsäure und/oder Ammoniumsulfat oder Essigsäure und Ammoniumacetat oder 5 Natriumacetat zufügen, um den gewünschten pH-Wert zu erzielen. Zwecks Erreichung einer guten Egalität der Färbung empfiehlt sich ein Zusatz an üblichen Egalisierhilfsmitteln, wie beispielsweise auf Basis eines Umsetzungsproduktes von Cyanurchlorid mit der dreifach molaren Menge einer Amino-10 benzolsulfonsäure und/oder einer Aminonaphthalinsulfonsäure und/oder auf Basis eines Umsetzungsproduktes von beispielsweise Stearylamin mit Athylenoxyd. In der Regel wird das zu färbende Material bei einer Temperatur von etwa 40°C in das zuerst schwach alkalisch eingestellte Bad 15 eingebracht, einige Zeit darin bewegt, das Färbebad auf einen schwach sauren, vorzugsweise schwach essigsauren pH-Wert eingestellt und die eigentliche Färbung bei einer Temperatur zwischen 60 und 100°C durchgeführt. Die Färbungen können aber auch bei Temperaturen bis 120°C unter Druck ausgeführt werden. 20

Die erfindungsgemäßen Kupferkomplex-Disazoverbindungen zeichnen sich durch einen hohen Fixiergrad bei dem Färben und Bedrucken von Fasermaterialien aus. Dies ist in der Praxis aus wirtschaftlichen, energetischen und ökologischen Gründen von großem Nutzen, da die bessere Ausnutzung des angebotenen Farbstoffes gleichbedeutend ist mit einer energiesparenden, leichteren Auswaschbarkeit des verringerten, nicht fixierten Farbstoffanteiles und geringerer Abwasserbelastung.

Die mit den Kupferkomplex-Disazoverbindungen der Formel (1) hergestellten Färbungen und Drucke zeichnen sich durch klare Nuancen aus. Insbesondere die Färbungen und Drucke auf Cellulosefasermaterialien besitzen, wie bereits erwähnt, eine hohe Farbstärke, darüber hinaus eine gute bis sehr

gute Lichtechtheit und sehr gute Naßechtheitseigenschaften, wie Wasch-, Walk-, Wasser-, Seewasser- und Schweißechtheiten, desweiteren eine gute Plissierechtheit, Bügelechtheit und Reibechtheit.

5

Die nachstehenden Beispiele dienen zur Erläuterung der Erfindung. Die formelmäßig beschriebenen Verbindungen sind in Form der freien Säuren angegeben; im allgemeinen werden sie in Form ihrer Natrium- oder Kaliumsalze hergestellt und isoliert und in Form ihrer Salze zum Färben verwendet. Die in den Beispielen genannten Teile sind Gewichtsteile, die Prozentangaben stellen Gewichtsprozente dar, sofern nicht anders vermerkt. Gewichtsteile stehen zu Volumenteilen im Verhältnis von Kilogramm zu Liter.

Beispiel 1

- a) 14,9 Teile 4-B-Sulfatoäthylsulfonyl-2-amino-phenol werden Gemisch aus 50 Teilen Wasser und 25 Teilen Eis suspendiert und durch Zugabe von 3,3 Teilen Natriumcarbonat gelöst; 10,3 Volumenteile einer wäßrigen 5n-Natriumnitritlösung werden zugegeben, und das Ganze wird auf 5 ein Gemisch von 13 Volumenteilen einer 31%igen wäßrigen Salzsäure und 100 Teilen Eis unter Rühren laufen lassen, wobei die Temperatur bei 0 bis 5°C gehalten wird. Es wird 30 Minuten bei dieser Temperatur weitergerührt; danach wird der pH mit Natriumbicarbonat auf einen Wert 10 von 5,8 bis 6,2 gestellt. 16 Teile 6-Amino-1-naphthol-3,5-disulfonsäure werden unter Rühren eingetragen, der pH wird auf einen Wert von 6,8 eingestellt und die Kupplungsreaktion bei einer Temperatur zwischen 45 und 50°C und unter Konstanthaltung des angegebenen pH-Wertes unter 15 Rühren während einiger Stunden weiter und zu Ende geführt. Sodann werden 11,5 Volumenteile einer wäßrigen 5n-Natriumnitritlösung hinzugegeben und das Gemisch wird in ein Gemisch aus 15 Volumenteilen einer 31 %igen wäßrigen Salzsäure und 300 Teilen Eis eingerührt. Man rührt noch 20 60 Minuten bei 0 bis 5°C weiter, zerstört, wie üblich, einen Überschuß an salpetriger Säure mit Amidosulfonsäure und stellt mit Natriumbicarbonat einen pH-Wert von 6 ein. 25
 - b) Getrennt hiervon wird folgende Reaktionslösung hergestellt: 16 Teile 1-Amino-8-naphthol-3,6-disulfonsäure werden unter Rühren in 150 Teilen Wasser von etwa 10°C suspendiert. 9,7 Teile 2,4,6-Trichlor-s-triazin werden bei einer Temperatur zwischen 10 und 14°C eingerührt, und 30 der Ansatz zwei Stunden bei einem pH-Wert zwischen 2 bis 2,5 (der durch Natriumbicarbonat gehalten wird) weitergerührt, anschließend geklärt und in eine Lösung von 8,65 Teilen Anilin-3-sulfonsäure in 75 Teilen Wasser und 35

5

15

20

25

25 Volumenteilen einer wäßrigen 2n-Natronlauge eingegossen. Man rührt diesen Ansatz bei einer Temperatur zwischen 55 und 60°C sechs Stunden bei einem pH-Wert zwischen 4 und 4,5 weiter.

c) Die unter a) hergestellte Diazoniumsalzlösung der Aminoazoverbindung und die unter b) hergestellte Lösung des zweifachen Kondensationsproduktes werden bei einer Temperatur von etwa 10°C vereinigt und bei 8 bis 10°C und einem pH-Wert von 5,5 noch mehrere Stunden bis zur Beendigung der Kupplungsreaktion weitergerührt. Sodann gibt man 12,5 Teile kristallisiertes Kupfersulfat und 8,5 Teile kristallisiertes Natriumacetat hinzu, rührt bei 55 bis 60°C 90 Minuten bei einem pH-Wert zwischen 4,7 und 5,0. Man klärt diese Lösung der Disazoverbindung mittels 5 Teilen Kieselgur und Filtration und fällt die erfindungsgemäße Disazoverbindung durch Zugabe von etwa 380 Teilen Kaliumchlorid aus. Nach Abfiltration, Trocknen und Vermahlen erhält man ein blauschwarzes Pulver, das das Alkalimetallsalz, vorwiegend Kaliumsalz, der Kupferkomplex-Disazoverbindung der Formel

Cu
$$N = N$$

$$HO$$

$$N = N$$

$$HO$$

$$NH$$

$$NH$$

$$NH$$

$$SO_{3}H$$

$$SO_{3}H$$

$$SO_{3}H$$

$$SO_{3}H$$

$$SO_{3}H$$

enthält. Diese zeigt sehr gute faserreaktive Farbstoffeigenschaften und färbt die in der Beschreibung genannten Materialien, wie beispielsweise Baumwolle, nach den in der Technik üblichen Anwendungsmethoden, insbesondere 3202120

nach den für faserreaktive*) Applikations- und Fixierverfahren in der Färberei und im Druck, in farbstarken, dunkelblauen Nuancen mit sehr guten Echtheiten, von denen insbesondere die Licht-, Wasch-, Wasser- und Schweißechtheiten sowie die Chlorbadewasserechtheit hervorgehoben werden können.

*) Farbstoffe üblichen

10 Beispiel 2

5

Man verfährt zur Herstellung einer erfindungsgemäßen Kupferkomplex-Disazoverbindung gemäß der Verfahrensweise des Beispieles 1, ersetzt jedoch die im Beispiel 1b beschriebene Lösung durch die Lösung des primären Kondensationsproduktes 15 von 2,4,6-Trichlor-s-triazin und 1-Amino-8-naphthol-3,6disulfonsäure in äquivalenter Menge.

Man erhält das entsprechende Alkalimetallsalz der Verbindung der Formel

Wasser-, Wasch- und Schweißechtheiten hervorgehoben werden können, liefert.

Beispiele 3 bis 66

- Die in den nachfolgenden Tabellenbeispielen durch ihre Ausgangskomponenten (einem Aminophenol entsprechend der allgemeinen Formel (10) als Diazokomponente, einer Aminonaphtholsulfonsäure entsprechend der allgemeinen Formel (14) als kupplungsfähige und diazotierbare Mittelkomponente und
- einer 1-(Halogentriazinylamino)-8-naphthol-3,6- oder -4,6-disulfonsäure entsprechend der allgemeinen Formel (4) als endständige Kupplungskomponente) charakterisierten erfindungsgemäßen Kupferkomplex-Disazoverbindungen lassen sich ebenfalls in erfindungsgemäßer Weise, beispielsweise
- 15 gemäß der im Beispiel 1 angegebenen Verfahrensweise durch Umsetzung dieser Ausgangsverbindungen und anschließende Kupferung mit einer kupferabgebenden Verbindung, herstellen. Diese erfindungsgemäßen Kupferkomplex-Disazoverbindungen besitzen ebenfalls sehr gute faserreaktive Farbstoffeigen-
- schaften und liefern Färbungen und Drucke auf den in der Beschreibung genannten Fasermaterialien, insbesondere auf Cellulosefasermaterialien nach den für faserreaktive Farbstoffe üblichen Applikations- und Fixiermethoden, mit sehr guten anwendungstechnischen Eigenschaften und Echtheiten in
- 25 der in dem jeweiligen Tabellenbeispiel angegebenen Nuance auf beispielsweise Baumwolle.
 - Diese Ausgangsverbindungen sind in Form der freien Säure genannt; sie können als solche, ebenso auch in Form ihrer Salze, vorzugsweise Alkalimetallsalze, wie Natrium- oder
- 30 Kaliumsalze, in die Synthese eingesetzt werden.

				36	نو		`. .		3202	120
Nuance auf Baumwolle	dunkelblau	dunkelblay	dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelbl	dunkelblau	
	1-(4',6'-Dichlor-s-triazin- 2'-y1)-amino-3,6-disulfo-8- naphthol	dito	dito	dito	. dito	dito		dito	1-/-4'-Chlor-6'-(3"-sulfo-	phenylamino)-s-triazin-2'-yl_/- amino-3,6-disulfo-8-naphthol
Aminonaphtholsulfonsäure entspr. Formel (14)	6-Amino-1-naphthol-3- sulfonsäure	dito	•	arco	dito	dito	dito	dito	dito	dito
Aminophenol entspr. Formel (10)		pnenor 5-ß-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-B-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	4-Vinylsulfonyl-2- amino-phenol	5-Vinylsulfonyl-2- amino-phenol	4-vinylsulfonyl-2- amino-phenol-6- sulfonsäure	4-8-Thiosulfato- äthylsulfonyl-2- amino-phenol	5-8-Thiosulfato- äthylsulfonyl-2- amino-phenol	4-6-Thiosulfato- äthylsulfonyl-2- amino-phenol-6- sulfonsäure	4-8-Sulfatoathyl- sulfonyl-2-amino- phenol
Bsp.	m	4	ហ	9	7	ω	Ø	10	1	. 7

						37	•	. ()	
Nuance	dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau	marineblau	marineblau	marineblau	marineblau	marineblau
Triazinylaminonaphthol (4)	1-/74'-Chlor-6'-(3"-sulfo- phenylamino)-s-triazin-2'-y1_7- amino-3,6-disulfo-8-naphthol	dito	1-(4'-Chlor-6'-amino-s-triazin- 2'-yl)-amino-3,6-disulfo-8-naphthol	dito	dito	1-/-4'-Chlor-6'-(3"-B-sulfato- athylsulfonyl-phenylamino)-s- triazin-2'-yl]-amino-3,6-disulfo- 8-naphthol	dito	dito	1-/-4'-Chlor-6'-(4"-8-sulfato- athylsulfonyl-phenylamino)-s-tri- azin-2'-yl_/-amino-3,6-disulfo- 8-naphthol	dito
Aminonaphthol (14)	6-Amino-1-naphthol- 3-sulfonsäure	dito	dito	dito	dito	dito	dito	dito	dito	dito
Aminophenol (10)	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	4-8-Sulfatoäthylsul- fonyl-2-amino-phenol	5-8-Sulfatoäthylsul- fonyl-2-amino-phenol	4-8-Sulfatoathylsul- fonyl-2-amino-phenol- 6-sulfonsäure	4-8-Sulfatoäthylsul- fonyl-2-amino- phenol	5-8-Sulfatoäthylsul- fonyl-2-amino- phenol	4-6-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	5-8-Sulfatoäthylsul- fonyl-2-amino-phenol
Bsp.	13	14	12	16	. 17	8	19	20	21	22

) . (- 27	- 3 . P			· : 3	2021	20
Nuance	marineblau	dunkelblau dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau	n- dunkelblau	dunkelblau	il- dunkelblau	
Triazinylaminonaphthol (4)	1-/-4'-Chlor-6'-(4"-8-sulfato- athylsulfonyl-phenylamino)-s-tri- azin-2'-yl /-amino-3,6-disulfo- -8-naphthol	1-/-4'-Chlor-6'-(N-methyl-N-phenyl-amino)-s-traizin-2'-yl_7-amino-3,6-disulfo-8-naphthol	dito	alto dr. or. or (4"-sulfophenyl-	1-/ 4Chior-5 - 1 7 1 3,6 amino-3,6 disulfo-8-naphthol	dito	arco , ,,,-chlor-6'-8thvlamino-triazin-	2'-yl)-amino-3,6-disulfo-8- naphthol	4-/-/	fatoathyl-amino)-triazin-2'-yl_/- amino-3,6-disulfo-8-naphthol
Aminonaphthol (14)	6-Amino-1-naphthol- 3-sulfonsäure	dito	dito	dito	dito	dito	dito e	dito	dito	dito
minoppenol (10)	äure	4-6-Sulfatoäthyl- sulfonyl-2-amino- phenol	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	.4-ß-Sulfatoäthyl- sulfonyl-2-amino- phenol	5-6-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	4-6-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol
	23	24	25	26	27	28	29	30	31	32

				•			-	28		9.	• • • • • • • • • • • • • • • • • • •			3 2	021	120
Nuance	dunkelblau	dunkelblau		dunkelblau	dinkelblau		dunkelblau	-	blau	4		- dunkelblau	dunkelblau		dunkelblau	
Triazinylaminonaphthol (4)	-11-02-02-02-02-03-03-03-03-03-03-03-03-03-03-03-03-03-	fatoathyl-amino)-triazin-2'-yl_/- amino-3,6-disulfo-8-naphthol	dito	1-/-4'-Chlor-6'-(B-sulfatoathyl)-	-γ ho1	dito	() ++ 		1-(4',6'-Dibrom-triazin-2'-y1)-	•	1-/-4'-Brom-6'-(N-methyl-N-6-sur- fatoathyl-amino)-triazin-2'-yl_7-	1-(4'-Chlor-6'-8-sulfatoathylamino- triazin-2'-y1)-amino-3,6-disulfo-	8-naphthol	dito	dito	
(14)	Aminonaphrance	6-Amino-1-naphthoi- 3-sulfonsäure	dito		dito	dito		dito	dito		dito	dito		dito	(+ **)	
	Aminophenol (10)	5-8-Sulfatoäthyl- sulfonyl-2-amino-	4-B-Sulfatoäthyl-	sulfonyl-z-amino- phenol-6-sulfonsäure	4-8-Sulfatoäthyl- sulfonyl-2-amino-	phenol 5-8-Sulfatoäthyl-	sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl-	phenol-6-sulfonsäure	4-b-sulfonyl-2-amino-	phenol	dito	٠	5-8-Sulfatoäthyl-	sulfonyr-z-amano phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure
	Bsp.	33	3.4		35	4))	37	•	æ	39	. 04	1.	41		42

•

					_	7	40.				
Nuance	dunkelblau	dunkelblau	dunkelblau	rotstichig blau	rotstichig blau	rotstichig blau	rotstichig blau	blau	blau	blau	dunkelblau
Triazinylaminonaphthol (4)	1-/-4'-Chlor-6'-(3"-methyl-phenyl-amino)-triazin-2'-yl_/-amino-3,6-disulfo-8-naphthol	dito	dito	dito	1-/-4'-Chlor-6'-(3"-sulfo-phenyl- amino)-triazin-2'-yl_7-amino-3,6- disulfo-8-naphthol	dito	dito	dito	dito	dito	ditò
Aminonaphthol (14)	6-Amino-1-naphthol- 3-sulfonsäure	dito	dito	7-Amino-1-naphthol-3-sulfonsäure	dito	dito	dito	7-Amino-1-naphthol-3,6-disulfonsäure	dito	dito	6-Amino-1-naphthol- 3,5-disulfonsäure
Aminophenol (10	4-B-Sulfatoäthyl- sulfonyl-2-amino- phenol	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-B-Sulfatoäthyl-sulfonyl-2-amino-phenol-6-sulfonsäure	dito	dito	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	dito	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol
Bsp.	43	4 4	45	46	47	48	49	20	51	52	53

	•						y,,			
Nuance	dunkelblau	- dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau	dunkelblau
Triazinylaminonaphthol (4)	1-/-4'-Chlor-6'-(3"-sulfo-phenyl-amino)-triazin-2'-yl_7-amino-3,6-disulfo-8-naphthol	1-/-4'-Chlor-6'-(N-methyl-N-phenyl-amino)-triazin-2'-yl_7-amino-3,6-disulfo-8-naphthol	dito	dito	1-(4'-Chlor-6'-amino-triazin-2'- y1)-amino-3,6-disulfo-8-naphthol	dito	dito	1-/-4'-Chlor-6'-(3"-sulfo-phenyl- amino)-triazin-2'-yl_7-amino-4,6- disulfo-8-naphthol	dito	dito.
Aminonaphthol (14)	6-Amino-1-naphthol- 3,5-disulfonsäure	dito	dito	dito	dito	dito	dito	6-Amino-1-naphthol- 3-sulfonsäure	dito	dito
Aminophenol (10)	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	dito	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	dito	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol-6-sulfonsäure	dito .	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol
Bsp.	54	55	56	57	. 58	59	09	61	62	63

	lau	lau	lau
Nuance	dunkelblau	dunkelblau	dunkelblau
Aminonaphthol (14) Triazinylaminonaphthol (4)	1-(4'-Chlor-6'-amino-triazin- 2'-yl)-amino-4,6-disulfo-8- naphthol	dito	dito
Aminonaphthol (14)	6-Amino-1-naphthol- 3-sulfonsäure	dito	dito
Bsp. Aminophenol (10)	4-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	5-8-Sulfatoäthyl- sulfonyl-2-amino- phenol	4-8-Sulfatoathyl- sulfonyl-2-amino- phenol-6-sulfonsäure
Bsp.		. 65	99

Beispiel 67

- a) Ein Gemisch aus einer Lösung von 68,9 Teilen der Kupferkomplexverbindung der 1-Hydroxy-6-amino-2-/ (2'-hydroxy5'-8-sulfatoäthylsulfonyl-phenyl)-azo_7-naphthalin-3,3'disulfonsäure und 22 Volumenteilen einer wäßrigen
 5n-Natriumnitritlösung mit einer Temperatur von 5 bis
 10°C wird unter Rühren in ein Gemisch aus 30 Volumenteilen einer 31 %igen Salzsäure und 500 Teilen Eis einlaufen lassen; hierbei wird die Temperatur bei 5 bis 10°C
 gehalten. Es wird noch 60 Minuten bei dieser Temperatur
 weitergerührt und anschließend überschüssige salpetrige
 Säure, wie üblich, mit wenig Amidosulfonsäure zerstört.
 Mittels Natriumbicarbonat wird ein pH-Wert von 5,9 bis
 6,1 eingestellt.
- 15 *)in 350 Teilen Wasser

20

á

- b) Getrennt hiervon wird die im Beispiel 1 b) beschriebene Lösung des sekundären Kondensationsproduktes aus 1-Amino-8-naphthol-3,6-disulfonsäure, Cyanurchlorid und Anilin-3-sulfonsäure in einem doppelten Ansatz hergestellt.
- c) Die hier unter a) hergestellte Lösung des Diazoniumsalzes der Kupferkomplex-Azoverbindung und die unter b) hergestellte Lösung des sekundären Kondensationsproduk-. 25 tes werden bei einer Temperatur von etwa 10°C vereinigt. Man rührt das Reaktionsgemisch bei einem pH von 5,8 bis 6,3 und einer Temperatur zwischen 8 und 10°C noch mehrere Stunden bis zur Beendigung der Kupplungsreaktion weiter. Sodann setzt man 10 Teile Kieselgur hinzu, filtriert 30 die Lösung bei 55 bis 60°C und fällt aus dem Filtrat die erfindungsgemäße Verbindung mittels Kaliumchlorid aus, filtriert sie ab, trocknet sie und mahlt sie. Es wird ein schwarzes Pulver erhalten, das neben Elektrolytsalzen das Alkalimetallsalz, vorwiegend Kaliumsalz, der Ver-35 bindung der Formel

enthält. Sie zeigt sehr gute Farbstoffeigenschaften und liefert nach den in der Technik für - insbesondere faser- reaktive - Farbstoffe üblichen Anwendungs- und Fixier- methoden auf den in der Beschreibung genannten Materia- lien, insbesondere auf Cellulosefasermaterialien, wie Baumwolle, farbstarke dunkelblaue Färbungen und Drucke mit sehr guten Echtheiten, von denen insbesondere die Licht-, Wasch-, Wasser-, Schweiß-, Reib-, Bügel- und Lösungsmittelechtheiten hervorgehoben werden können.

Diese erfindungsgemäße Kupferkomplex-Disazoverbindung ist mit der im Beispiel 14 beschriebenen erfindungsgemäßen Verbindung identisch.—Die als Ausgangsverbindung dienende, anfangs unter a) erwähnte Kupferkomplex-Mono-azoverbindung kann nach der in der deutschen Patentschrift 2 049 664 beschriebenen Verfahrensweise hergestellt werden.

20

15

5

10

Beispiel 68

a) 93,8 Teile der Kupferkomplex-Disazoverbindung der Formel

5

10 .

(die analog dem Beispiel 1 der deutschen Auslegeschrift 1 644 155 hergestellt werden kann, wobei man anstelle der 39,7 Teile 1-Acetylamino-8-naphthol-3,6-disulfonsäure 31,9 Teile 1-Amino-8-naphthol-3,6-disulfonsäure einsetzt), in Form des Natrium- oder Kaliumsalzes, werden in 1000 Teilen Wasser bei 50°C gelöst. Die Lösung wird auf einen pH-Wert von 3,0 bis 3,5 eingestellt und sodann auf 5 bis 10°C abgekühlt. Man gibt eine Lösung von 19,5 Teilen Cyanurchlorid in 100 Volumenteilen Aceton unter Konstanthaltung des pH-Wertes mittels Natriumbicarbonat langsam hinzu.

b) Nach beendeter Kondensationsreaktion wird die Lösung mit
 15 Dinatriumhydrogenphosphat auf einen pH-Wert von 5,5 eingestellt und sprühgetrocknet.

Man erhält ein schwarzes Pulver, das neben Elektrolytsalzen das Alkalimetallsalz, wie Natriumsalz, der Verbindung der Formel

Cu
$$N = N$$

$$HO NH$$

$$HO_{NH}$$

$$HO_{3S}$$

$$HO_{3$$

enthält. Diese besitzt sehr gute faserreaktive Farbstoffeigenschaften und liefert auf den in der Beschreibung genannten Fasermaterialien, wie insbesondere Cellulosefasermaterialien, nach den in der Technik für Reaktivfarbstoffe gebräuchlichen Färbe- und Druckverfahren farbstarke
dunkelblaue Färbungen und Drucke, die sehr gute Echtheiten, wie insbesondere Licht-, Wasch-, Wasser-,
Lösungsmittel-, Reib- und Bügelechtheiten, besitzen.

10

5

Diese erfindungsgemäße Kupferkomplex-Disazoverbindung ist mit der erfindungsgemäßen Verbindung des Beispieles 3 identisch.

15

Beispiel 69

Zur Herstellung einer erfindungsgemäßen KupferkomplexDisazoverbindung verfährt man gemäß der Verfahrensweise des
Beispieles 68 a) und gibt nach beendeter Kondensationsreaktion 17,3 Teile Anilin-3-sulfonsäure hinzu und führt die
zweite Kondensationsreaktion bei einer Temperatur von 50°C .
und einem pH-Wert von 5,5 bis 6,0 einige Stunden fort.
Anschließend wird die erfindungsgemäße Verbindung durch
Sprühtrocknung isoliert.

25 Man erhält ein schwarzes Pulver, das neben Elektrolytsalzen das Alkalimetallsalz, wie Natriumsalz, der Verbindung der Formel

Cu
$$N = N$$

$$N$$

enthält. Diese erfindungsgemäße Verbindung zeigt ebenfalls sehr gute faserreaktive Farbstoffeigenschaften und liefert auf den in der Beschreibung genannten Materialien, wie insbesondere Cellulosefasermaterialien, nach den in der Technik für faserreaktive Farbstoffe üblichen Druck- und Färbeverfahren farbstarke dunkelblaue Färbungen und Drucke mit sehr guten Echtheiten, wie insbesondere einer sehr guten Licht-, Wasch-, Wasser-, Lösungsmittel- und Reibechtheit.

10 Diese erfindungsgemäße Kupferkomplex-Disazoverbindung ist mit der erfindungsgemäßen Verbindung des Beispieles 12 identisch.

Beispiel 70

15 Zur Herstellung einer erfindungsgemäßen KupferkomplexDisazoverbindung verfährt man gemäß der Verfahrensweise des
Beispieles 68, setzt jedoch anstelle der dort verwendeten
Kupferkomplex-Disazoverbindung mit der ß-Sulfatoäthylsulfonyl-Gruppe als Ausgangsverbindung 95,4 Teile der entspre20 chenden ß-Thiosulfatoäthyl-Verbindung ein, die gemäß der im
Beispiel 8 der deutschen Offenlegungsschrift 1 544 541 beschriebenen Verfahrensweise hergestellt werden kann.
Man erhält das Alkalimetallsalz, wie Natriumsalz, der Verbindung der Formel

25
$$N = N$$
 $N = N$
 N

die ebenfalls sehr gute faserreaktive Fa stoffeigenschaften besitzt und nach den in der Sechnik üb ichen Färbe-

weisen farbstarke, dunkelblaue Färbungen und Drucke mit den für den Farbstoff des Beispieles 68 angegebenen guten Echtheiten liefert.

Diese erfindungsgemäße Thiosulfatoäthylsulfonyl-Verbindung ist mit der erfindungsgemäßen Verbindung des Beispieles 9 identisch.

Beispiel 71

20

Eine Lösung von 87,7 Teilen der metallfreien Disazoverbin-0 dung der Formel

OH OH OH HO NH2
$$HO_{3}S$$

$$HO_{3}S$$

$$HO_{3}S$$

$$HO_{3}S$$

$$HO_{3}S$$

$$HO_{3}S$$

$$HO_{3}S$$

(die analog der Verfahrenweise des Beispieles 1a)-c) der deutschen Offenlegungsschrift 1 544 541 hergestellt werden kann, wobei man anstelle der 50 Teile 1-Amino-8-naphthol-2,4-disulfonsäure 50 Teile 1-Amino-8-naphthol-4,6-disulfonsäure einsetzt) in 900 Teilen Wasser wird bei einem pH-Wert von 6 bis 6,5 und bei einer Temperatur zwischen 50 und 55°C mit dem primären Kondensationsprodukt aus 18,4 Teilen Cyanurchlorid und 17,3 Teilen Anilin-3-sulfonsäure versetzt.

Die Reaktion wird bei dem angegebenen pH-Wert und der angegebenen Temperatur bis zum Abschluß der Kondensation weitergeführt. Danach werden 25 Teile kristallisiertes Kupfersulfat und 20 Teile kristallisiertes Natriumacetat zugegeben und der pH-Wert noch eine Stunde bei 5,5 bis 6,5 gehalten. Die erfindungsgemäße Kupferkomplex-Disazoverbindung wird sodann mittels Natriumchlorid ausgesalzen. Sie besitzt, in Form der freien Säure geschrieben, die Formel

und liefert wegen ihrer sehr guten faserreaktiven Farbstoffeigenschaften auf den in der Beschreibung genannten Fasermaterialien, wie insbesondere Cellulosefasermaterialien,

nach den in der Technik üblichen Anwendungsmethoden farbstarke, dunkelblaue Färbungen und Drucke mit sehr guten
Echtheitseigenschaften.

Sie ist mit der erfindungsgemäßen Verbindung des Beispie-10 les 63 identisch.

Beispiel 72

80,2 Teile einer Monoazoverbindung, die durch alkalische Kupplung von diazotierter 6-Amino-1-naphthol-3-sulfonsäure mit 1-Amino-8-naphthol-3,6-disulfonsäure erhalten wird, wird als Trinatriumsalz in 900 Teilen Wasser bei 50 bis 60°C gelöst. Die Lösung wird auf einen pH-Wert von 5,5 bis 6,0 eingestellt. Man gibt das primäre Kondensationsprodukt aus 18,4 Teilen Cyanurchlorid und 17,3 Teilen Anilin-3-sulfonsäure hinzu und setzt die Reaktion zum sekundären Kondensationsprodukt bei diesem pH-Wert (unter Zugabe von Natriumbicarbonat) und bei dieser Temperatur fort. Nach Beendigung der Reaktion gibt man zu diesem Ansatz Eis, bis eine Temperatur von 15 bis 20°C erhalten wird. Sodann setzt man eine auf übliche Weise aus 29,7 Teilen 5-B-Sulfatoäthylsulfonyl-2-amino-phenol durch Diazotierung in saurer Lösung und anschließende Neutralisation erhaltene Diazoniumsalzlösung hinzu und führt die Kupplungsreaktion bei einem pH-Wert von 6,0 bis 6,5 und bei etwa 20°C durch. Nach beendeter Kupplung wird mit wenig Essigsäure ein pH-Wert von 5,1 eingestellt; 25 Teile kristallisiertes Kupfersulfat und 25 Teile kristallisiertes Natriumacetat werden zugegeben. Es wird noch 3 Stunden bei 60 bis 70°C weitergerührt, die erfindungsgemäße Kupferkomplex-Disazoverbindung mit Natriumchlorid ausgefällt, abgesaugt, getrocknet und gemahlen. Man erhält ein schwarzes elektrolythaltiges Pulver mit dem Natriumsalz der Verbindung der Formel

$$Cu$$

$$N = N$$

$$HO$$

$$N = N$$

$$HO$$

$$NH$$

$$NH$$

$$SO_{3}H$$

$$SO_{3}H$$

$$SO_{3}H$$

die ebenfalls sehr gute faserreaktive Farbstoffeigenschaften besitzt und gemäß den in der Beschreibung angegebenen Anwendungs- und Fixiermethoden farbstarke, dunkelblaue

15 Färbungen und Drucke mit guten Echtheiten liefert.

Diese erfindungsgemäße Kupferkomplex-Disazoverbindung ist mit der erfindungsgemäßen Verbindung des Beispieles 13 identisch.