19. Kapcsolat az inverz mátrixszal

19.1. Az elméleti anyag

19.1.1. Négyzetes mátrixú lineáris egyenletrendszer

19.1. Tétel. (Négyzetes mátrixú lineáris egyenletrendszer) Tekintsük az $A \in \mathbb{K}^{n \times n}$ négyzetes mátrixszal és a $b \in \mathbb{K}^n$ vektorral felírt lineáris Ax = b egyenletrendszert. Ekkor

- a) rang (A) = n esetben az egyenletrendszernek egyértelműen létezik megoldása
- b) rang $(A) \le n-1$ esetben az egyenletrendszernek vagy nem létezik megoldása, vagy pedig végtelen sok megoldása létezik

Bizonyítás.

a) Tegyük fel, hogy r = rang(A) = n.

Ekkor A oszlopvektorai n-tagú lineárisan független rendszert alkotnak az n dimenziós \mathbb{K}^n térben, tehát bázist alkotnak \mathbb{K}^n -ben. Következésképpen $\mathcal{O}(A) = \mathbb{K}^n$. Ezért fennáll, hogy $b \in \mathcal{O}(A)$, vagyis létezik megoldás.

Másrészt a szabadsági fok n-r=n-n=0, ezért a megoldás egyértelmű.

b) Tegyük fel, hogy $r = \text{rang}(A) \le n - 1$.

Ebben az esetben

$$\dim \mathcal{O}(A) = r < n = \dim \mathbb{K}^n$$

miatt O(A) valódi altere \mathbb{K}^n -nek. Ha tehát $b \notin O(A)$, akkor nincs megoldás. Ha viszont $b \in O(A)$, akkor létezik megoldás, és a szabadsági fok

$$n - r \ge n - (n - 1) = 1$$

ezért a megoldások száma végtelen.

19.1.2. Inverz mátrix és lineáris egyenletrendszer

A négyzetes mátrixú lineáris egyenletrendszerről elmondottakat felhasználhatjuk mátrixok inverzének meghatározásához is.

19.2. Tétel. Legyen $A \in \mathbb{K}^{n \times n}$ egy négyzetes mátrix. Ekkor

- a) rang $A = n \implies A$ invertálható (reguláris);
- b) rang $A < n \implies A$ nem invertálható (szinguláris).

191

Bizonyítás. Jelölje I az $n \times n$ -es egységmátrixot. Ennek oszlopai a kanonikus egységvektorok:

$$I = \left[e_1 \ e_2 \ \dots \ e_n \right] \ .$$

Keressük A inverzét, azaz keressük az

$$X = \left[x_1 \ x_2 \ \dots \ x_n \right] \in \mathbb{K}^{n \times n}$$

mátrixot úgy, hogy AX = I teljesüljön.

Az AX = I mátrixegyenletet felírhatjuk így:

$$A \cdot [x_1 \ x_2 \ \dots \ x_n] = [e_1 \ e_2 \ \dots \ e_n],$$

ami ekvivalens az alábbi lineáris egyenletrendszerek együttesével:

$$Ax_1 = e_1, \quad Ax_2 = e_2, \quad \dots, \quad Ax_n = e_n.$$
 (19.1)

Ezek után rátérünk az a) és a b) állítások igazolására:

- a) Mivel ebben az esetben r=n, ezért felhasználva előző tételt is mindegyik egyenletrendszer egyértelműen megoldható. Ebből következik, hogy A^{-1} létezik, és hogy A^{-1} oszlopai az x_1, \ldots, x_n megoldásvektorok.
- b) Mivel dim O(A) = r < n, ezért mindegyik e_1, \ldots, e_n kanonikus egységvektor nem lehet O(A)-ban. Ezért felhasználva előző tételt is a fenti egyenletrendszer-együttesből legalább az egyik egyenletrendszer ellentmondásos, nincs megoldása. Következésképpen A^{-1} nem létezik.
- 19.3. Megjegyzés. Tételünkből következik, hogy annak a) pontja is és b) pontja is valójában ekvivalencia.

Mindezek után – figyelembe véve az inverz és a determináns kapcsolatát is – így jellemezhetjük a reguláris és a szinguláris mátrixokat:

 $Az A \in \mathbb{K}^{n \times n}$ reguláris mátrix öt ekvivalens jellemzése:

- 1. $\exists A^{-1}$
- **2.** $\det(A) \neq 0$
- **3.** rang (A) = n
- 4. A oszlopai lineárisan függetlenek
- 5. A sorai lineárisan függetlenek

 $Az A \in \mathbb{K}^{n \times n}$ szinguláris mátrix öt ekvivalens jellemzése:

1. $\nexists A^{-1}$

- **2.** det(A) = 0
- **3.** rang (A) < n
- 4. A oszlopai lineárisan összefüggők
- **5.** A sorai lineárisan összefüggők

19.1.3. Az inverz mátrix meghatározása Gauss-Jordan módszerrel

Az előző szakasz alapján megállapíthatjuk, hogy egy $n \times n$ -es mátrix inverzének meghatározásához n db lineáris egyenletrendszert kell megoldani. Műveletigény szempontjából ez hatékonyabb, mint a determinánsoknál tanult inverzmátrix meghatározás. Eljárhatnánk tehát úgy, hogy ezt az n db lineáris egyenletrendszert egymás után megoldjuk.

Azonban ennek az n db lineáris egyenletrendszernek az együtthatómátrixa közös, ezért hatékonyabb eljáráshoz juthatunk, ha ezt az n db egyenletrendszert nem egymás után, hanem "párhuzamosan" oldjuk meg. A Gauss-Jordan módszer ezt lehetővé teszi, csak annyit kell módosítanunk rajta, hogy az induló táblázatban a függőleges vonaltól jobbra nem 1 db oszlopot veszünk fel, hanem n db oszlopot, mégpedig – (19.1) miatt – az e_1, \ldots, e_n kanonikus egységvektorokat. Az így meghosszabbított sorokkal végezzük a tanult műveleteket.

- Ha leálláskor nincs meg az n db megjelölt elem, akkor a mátrix szinguláris, inverze nincs.
- Ha leálláskor megvan az n db megjelölt elem, akkor a mátrix reguláris. Inverzének leolvasásához rendezzük át a redukált táblázat sorait úgy, hogy a függőleges vonaltól balra eső rész egységmátrix legyen. Ekkor a mátrix inverze a táblázat függőleges vonaltól jobbra eső része.

A mátrix rangja pedig a megjelölt elemek számával egyenlő.

Nézzük meg mindezt az alábbi két kidolgozott példán:

193

4. Példa. Gauss-Jordan módszer alkalmazásával számítsuk ki az

$$A = \begin{bmatrix} 5 & 2 & -3 \\ 3 & 1 & -2 \\ 2 & -3 & -4 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

mátrix inverzét.

Megoldás.

Innen kiolvashatjuk, hogy

$$A^{-1} = \begin{bmatrix} 10 & -17 & 1 \\ -8 & 14 & -1 \\ 11 & -19 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$

Mivel három megjelölt elem van, ezért a mátrix rangja: 3.

5. Példa. Gauss-Jordan módszer alkalmazásával számítsuk ki az

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ -3 & 1 & -7 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

mátrix inverzét.

Megoldás.

Az eljárás leállt, mivel már nem lehet generáló elemet választani. Mivel nincs meg a 3 db megjelölt elem, ezért a mátrixnak nincs inverze, a mátrix szinguláris.

Mivel két megjelölt elem van, a mátrix rangja 2.

 4×4 -es mátrix inverzére a függelékben találunk példát.

19.1.4. Ellenőrző kérdések az elmélethez

- 1. Mondja ki a négyzetes mátrixú lineáris egyenletrendszerekről szóló tételt (1. eset, 2. eset)
- 2. Mondja ki a rang és az invertálhatóság kapcsolatáról szóló tételt
- 3. Írja fel a reguláris mátrixok 5 ekvivalens jellemzését
- 4. Írja fel a szinguláris mátrixok 5 ekvivalens jellemzését

19.2. Feladatok 195

19.1.5. Bizonyítandó tételek

- 1. A négyzetes mátrixú lineáris egyenletrendszerekről szóló tétel
- 2. A mátrix rangja és invertálhatóságának kapcsolatáról szóló tétel

19.2. Feladatok

19.2.1. Órai feladatok

1. Oldjuk meg az alábbi négyzetes mátrixú lineáris egyenletrendszert (a feladatot az előző alkalommal már megcsináltuk). Reguláris vagy szinguláris az együtthatómátrix? Mennyi az együtthatómátrix rangja?

$$x_2 - 3x_3 = -5$$

$$4x_1 + 5x_2 - 2x_3 = 10$$

$$2x_1 + 3x_2 - x_3 = 7$$

2. Gauss-Jordan módszer alkalmazásával számítsuk ki az

a)
$$A = \begin{bmatrix} 5 & 2 & -3 \\ 3 & 1 & -2 \\ 2 & -3 & -4 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$
 b) $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \\ -3 & 1 & -7 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$

mátrix inverzét.

3. Határozzuk meg az alábbi mátrix rangját. Reguláris vagy szinguláris ez a mátrix?

$$A = \begin{bmatrix} 5 & 1 & -7 & -2 \\ 0 & 2 & 1 & 1 \\ 1 & 5 & 1 & 2 \\ -3 & -1 & 4 & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

4. Tekintsük az előző példa

$$A = \begin{bmatrix} 5 & 1 & -7 & -2 \\ 0 & 2 & 1 & 1 \\ 1 & 5 & 1 & 2 \\ -3 & -1 & 4 & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

mátrixát, és legyen

$$b_1 = (-1, 3, 7, 0), b_2 = (0, 5, 7, -1) \in \mathbb{R}^4.$$

Igazoljuk, hogy

- a) Az $Ax = b_1$ lineáris egyenletrendszernek végtelen sok megoldása van,
- b) Az $Ay = b_2$ lineáris egyenletrendszernek nincs megoldása.

196

19.2.2. További feladatok

1. Oldjuk meg az alábbi lineáris egyenletrendszereket. Reguláris vagy szinguláris az együtthatómátrix? Mennyi az együtthatómátrix rangja?

$$\begin{array}{r}
 x_1 + 2x_2 - 3x_3 = 6 \\
 a) \quad 2x_1 - x_2 + 4x_3 = 1 \\
 x_1 - x_2 + x_3 = 3
 \end{array}$$

$$\begin{array}{cccc}
 & x_1 + x_2 + 2x_3 = 5 \\
 & x_1 + x_3 = -2 \\
 & 2x_1 + x_2 + 3x_3 = 3
 \end{array}$$

2. Gauss-Jordan módszer alkalmazásával számítsuk ki az

a)
$$A = \begin{bmatrix} 4 & 3 & 1 \\ -3 & -5 & -2 \\ 9 & 4 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$
 b) $A = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 2 & 5 \\ 0 & -1 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$

$$b) \quad A = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 2 & 5 \\ 0 & -1 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

mátrix inverzét.

3. Adott az

$$A = \begin{bmatrix} 1 & 3 & 4 \\ -2 & -5 & -3 \\ 1 & 4 & 9 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

mátrix.

- (a) Mennyi a rangja? Reguláris vagy szinguláris az A mátrix?
- (b) Adjunk meg olyan $b_1, b_2 \in \mathbb{R}^3 \setminus \{0\}$ vektorokat, hogy az $Ax = b_1$ lineáris egyenletrendszer konzisztens, az $Ax = b_2$ pedig inkonzisztens legyen.