

Evasive and efficient distributed adversarial attacks using PSO

Intermediate presentation

Sander Prenen

Thesis supervisors: Prof. dr. ir. W. Joosen, Dr. ir. D. Preuveneers

Mentors: I. Tsingenopoulos, V. Rimmer

0 Outline

Background & related work

2 Research topic

3 Progress

4 Evaluation plan

1 Adversarial Attacks

Imperceptibly small perturbations to a correctly classified input image, so that it is no longer classified correctly. [1]

- White box attacks
- Black box attacks
 - Subset of white box attacks
 - More relevant in security use-cases
 - Bypassing malware detection [2]
 - Bypassing face recognition [3]
 - Altering traffic signs [4]

1 Related work

► Boundary attack (BA)

Figure: Boundary attack [5]

1 Related work

► HopSkipJump attack (HSJA)

Figure: HopSkipJump attack [6]

1 Adversarial Defenses

- Adversarial training
- Gradient hiding
- Denoising

1 Related work

Stateful detection

Figure: Stateful detection [7]

1 Related work

- ► Stateful detection
 - Assumption: attack done by one user/account/IP
 - User can be uniquely identified
 - No cooperation between users

1 Particle Swarm Optimization (PSO)

- Evolutionary algorithm
- Optimization framework
- Inspired by flocking of birds
 - Each particle has a position and corresponding fitness
 - Move based on personal best position, group best position and inertia

Figure: PSO logic, inspired by [8]

2 Research topic

- Evasive and Efficient Attacks
 - Evade stateful defense
 - By being efficient (less queries)
 - By distribution
- Distribution
 - Centralize the algorithm
 - Distribute the submission of queries
 - Distribute points of attack

2 Research gap

- Distribution
 - Dual goal
 - Evade detection
 - Improve existing attacks using PSO
- Existing work
 - Uses PSO as algorithm in itself
 - Does not evaluate against stateful detection
 - Uses confidence scores [9, 10]

2 Possible research questions

What are the advantages of distributing an adversarial attack?

How can attackers cooperate in order to evade a stateful detection mechanism?

What are the (dis)advantages of using PSO in relation to vanilla adversarial attacks?

3 Threat model

- Decision based attack
- ► Targeted attack
 - Both are more relevant in real scenarios
- Stateful detection mechanism
- ► Goals: evade detection & craft best adversarial example

3 Why PSO?

Figure: Advantage of PSO, inspired by [5]

3 Progress

Working PSO algorithm based on boundary attack (PSO-BA)

Figure: Comparison BA and PSO-BA

3 Why PSO?

Figure: Advantage of PSO, inspired by [5]

3 Progress

- Working PSO algorithm based on boundary attack (PSO-BA)
- Performed experiments to show that PSO is a viable candidate

Figure: Comparison random versus closest initialization

3 Progress

- Working PSO algorithm based on boundary attack (PSO-BA)
- Performed experiments to show that PSO is a viable candidate
- Compare detections PSO-BA and BA

	Avg. L_2 -distance	Avg. # Detections	Avg. # Queries
BBA	2.9868	148	25010
PSO-BBA	2.8841	79	24721
D-PSO-BBA	2.8841	51	24721

4 Next steps

- ► Improve the existing PSO-BA algorithm
- Use different methods of distribution
 - Round robin
 - Distance based
 - Other
- Implement a new algorithm based on HSJA and PSO

4 Evaluation plan

- \blacktriangleright Metric: number of detections and L_2 -distance
- ▶ Different distribution schemes
- Tuning the hyperparameters
- Applying the algorithm on different datasets
 - CIFAR
 - ImageNet
- Performing more experiments to confirm the results

5 References I

- Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2014.
- Octavian Suciu, Scott E. Coull, and Jeffrey Johns. Exploring adversarial examples in malware detection, 2019.
- Fatemeh Vakhshiteh, Ahmad Nickabadi, and Raghavendra Ramachandra. Adversarial attacks against face recognition: A comprehensive study, 2021.
- Abhiram Gnanasambandam, Alex M. Sherman, and Stanley H. Chan. Optical adversarial attack, 2021.

5 References II

- Wieland Brendel, Jonas Rauber, and Matthias Bethge.

 Decision-based adversarial attacks: Reliable attacks against black-box machine learning models, 2018.
- Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. Hopskipjumpattack: A query-efficient decision-based attack, 2020.
- Steven Chen, Nicholas Carlini, and David Wagner. Stateful detection of black-box adversarial attacks, 2019.
- Nathan Rooy.

 Particle swarm optimization from scratch with python.

 https://nathanrooy.github.io/posts/2016-08-17/
 simple-particle-swarm-optimization-with-python/, 08 2016.

5 References III

Rayan Mosli, Matthew Wright, Bo Yuan, and Yin Pan.
They might not be giants crafting black-box adversarial examples using particle swarm optimization.

In Ligun Chen, Ninghui Li, Kaitai Liang, and Steve Schneider, editors

In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve Schneider, editors, *Computer Security – ESORICS 2020*, pages 439–459, Cham, 2020. Springer International Publishing.

Naufal Suryanto, Hyoeun Kang, Yongsu Kim, Youngyeo Yun, Harashta Tatimma Larasati, and Howon Kim. A distributed black-box adversarial attack based on multi-group particle swarm optimization.

Sensors, 20(24), 2020.