Memory Circuits and System Report HW3

Architecture:

(1) Current-mode SA:

(2) Voltage-mode SA:

(3) Voltage-mode SA with pre-charging circuits:

設計三種 sensing amplified,其中總架構由 512 個 SRAM 及一個 SA 組成,將 SRAM 串成一個 column,連接 SA 並共用 BL、BLB,在 BL、BLB 上加上 C_BL、C_BLB 來做充放電使用,而 BL、BLB 供電來源為 pre,當 pre 為 0 時,BL、BLB 會充電,當 pre 為 1 時,停止供電,放電供 SRAM、SA 使用。

Input 為 Pre、SEN、WL、C_SEL, Output 為 dout、doutb, 為了方便探討,設定 C SEL 為 0,表示選擇 cell 0 SRAM。

在一個 cycle 裡分成三個狀態:

第一個: Pre = 0, WL = 0, SEN = 0

第二個: Pre = 1, WL = 1, SEN = 0

第三個: Pre = 1, WL = 0, SEN = 1

前兩個狀態會執行 0.25cycle, 第三個會執行 0.5cycle 來讓 SA 做 sensing。

電容設定如下:

	Samsung		TSMC			
Process name	7LPP ^{[78][79]}	6LPP ^[80]	N7 ^[81]	N7P ^[33]	N7+ ^[82]	N6
Transistor density (MTr/mm²)	95.08– 100.59 ^{[84][85]}	112.79	91.2–96.5 ^{[86][87]}		113.9 ^[86]	114.2 ^[31]
SRAM bit-cell size	0.0262 μm ^{2[93]}	Unknown	0.027 μm ^{2[93]}		Unknown	Unknown

Technology		I4nm	10nm	7nm
CGP	nm	90	64	42
MP	nm	64	48	32
Fin Pitch	nm	48	36	24
Gate length	nm	30	24	18
Fin width	nm	10	7	5
Fin height	nm	30	30	35
Tspacer	nm	14	8	6
Rbeol	Ω/um	25	60	135
Cbeol	F/um	0.195	0.175	0.16
Vdd	٧	0.75	0.7	0.65

一顆 SRAM 的電容為 0.16 fF/um,一個 cell 面積為 $0.027 um^2$,等效走線的電容為 0.16 * sqrt(0.027) * 512 = 13.46 fF。

因此 C_BL、C_BLB 設定為 13.46fF。

Result:

(1) Current-mode SA:

(2) Voltage-mode SA:

(3) Voltage-mode w/ Pre-charging SA:

Performance:

(1) Current-mode SA:

```
lab3 > \( \sum_\text{current_mode_SA.mt0} \)
1  \( \sum_\text{DATA1 SOURCE='HSPICE' VERSION='Q-2020.03-SP2-2 linux64' PARAM_COUNT=0} \)
2  \( .\text{TITLE 'current_mode_sa'} \)
3  \( \sum_\text{sensingtime} \) pwr \( \text{temper} \) alter#
4  \( \sum_\text{3.573e-11} \) 2.389e-06 \( \sum_\text{25.0000} \) 1
```

(2) Voltage-mode SA:

(3) Voltage-mode w/ Pre-charging SA:

```
lab3 > ≡ voltage_mode_with_pre_charging_SA.mt01$DATA1 SOURCE='HSPICE' VERSION='Q-2020.03-SP2-2 linux64' PARAM_COUNT=02.TITLE 'voltage-mode w/ pre-charging sa'3sensingtime pwr temper alter#42.573e-112.404e-0625.0000
```

Analysis:

在 power 上, Voltage-mode 表現最好, Voltage-mode w/ Pre-charging 消耗最多,因為後者所需的 MOS 數量較多。

而 sensing timing 則是取 SEN 打開達到 0.35V 開始,直到 doutb 被拉到 0.01V 經過的時間來計算,表示能成功讀取正確值得時間。

從結果來看 Current-mode 的 sensing timing 表現最差,而 Voltage-mode 所需時間較少。

在 Voltage-mode 上,有沒有 Pre-charging 電路所影響的是 dout/doutb 進入 stand by 所需的時間,如下圖可以看到有 Pre-charging 可以較快回到 0.7V,而沒有的則要花較長時間拉回去。

Sensing frequency = 1GHz,可以看到當 sensing 時能成功讀取 BL/BLB 的值並成功放大。

