Design Document

Assignment 2: A Small Numerical Library

Purpose

This program will print out a small numerical library. The numerical library will contain approximations for $\sin^{-1}(x)$, $\cos^{-1}(x)$, $\tan^{-1}(x)$, and $\log(x)$. These approximations will be displayed alongside the values given by the functions from the standard library <math.h>. The user will use command-line options to specify which of the four functions to approximate.

Layout/Structure

mathlib-test.c

main()

Description/Explanation

For this assignment, the main() function will interpret the command-line options, and pass them to printLib(opt) accordingly.

Pseudocode

get the first 2 command-line options
if the first option is -1 ...
 print error: no options
otherwise, if the second option is -1 ...
 error: multiple options
otherwise, if the option is s, c, t, or I ...
 call printLib(opt)
otherwise ...
 error: invalid option

printLib(opt)

Description/Explanation

printLib(opt) will use the functions in mathlib.c to compute the approximation and print them as a table of values with rows and columns.

Pseudocode

print the table header (column titles)
for every x value ...
 call function from mathlib.c to get approximation at x
 use <math.h> function to compute value at x
 compute the difference
 print row

mathlib.c

arcSin(x)

Description/Explanation

arcSin(x) will compute an approximation for $sin^{-1}(x)$ at x using a Taylor series.

Pseudocode

plug x into formula

arcTan(x)

Description/Explanation

arcTan(x) will compute an approximation for tan⁻¹(x) at x using a Taylor series.

Pseudocode

plug x into formula

arcCos(x)

Description/Explanation

arcCos(x) will compute an approximation for $cos^{-1}(x)$ at x using a Taylor series.

Pseudocode

plug x into formula

Log(x)

Description/Explanation

Log(x) will compute an approximation for log(x) at x using Newton's method

Pseudocode

use newton's method