Exercici 12. Determineu la signatura de totes les permutacions de S_3 . Determineu tots els subgrups de S_3 .

Solució.

- Tota permutació es pot expressar com el producte de transposicions.
- Es diu que una permutació és parella si es pot escriure com el producte d'una quantitat parella de transposicions; Contràriament, direm que és senar. Si és parella, es denomina amb +1 i si és senar amb -1.

 S_3 és el conjunt de permutacions:

 $\cdot Id \rightarrow Parella$, perquè $(-1)^0 = 1$.

$$s_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \to \text{Senar, perquè } (-1)^1 = -1.$$

$$s_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} \to \text{Senar, perquè } (-1)^1 = -1.$$

$$s_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \to \text{Senar} , \text{ perquè } (-1)^1 = -1.$$

$$P_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \rightarrow \text{Parella, perquè } (-1)^2 = 1.$$

$$P_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 \end{pmatrix} \rightarrow \text{Parella, perquè } (-1)^2 = 1.$$

Subgrups de S_3

- \bullet Sigui (G,\cdot) un grup i $H\subseteq G.$ Aleshores H és un subgrup si:
- 1. $e \in H$,
- 2. \forall a, b \in $H \rightarrow$ a·b \in H,
- 3. \forall a $\in H \rightarrow a^{-1} \in H$.

$$S_3 = \{Id, s_1, s_2, s_3, P_1, P_2\}$$

S_3	Id	P_1	P_2	s_1	s_2	s_3
Id	Id	P_1	P_2	s_1	s_2	s_3
P_1	P_1	P_2	Id	s_3	s_1	s_2
P_2	P_2	Id	P_1	s_2	s_3	s_1
s_1	s_1	s_2	s_3	Id	P_1	P_2
s_2	s_2	s_3	s_1	P_2	Id	P_1
s_3	s_3	s_1	s_2	P_1	P_2	Id

Subgrups d'ordre 1: {Id}. Subgrups d'ordre 2: {Id, s_1 }, {Id, s_2 }, {Id, s_3 }. Subgrups d'ordre 3: {Id, P_1, P_2 }. Subgrups d'ordre 6: S_3 .