- 179 -

CLAIMS

- A polyhydroxy alkanoate copolymer characterized in including at least a 3-hydroxy-ω-alkenoic acid unit represented by a chemical formula
 (1) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule:
- 10 [Chemical Formula (1)]

$$\begin{array}{c|cccc}
 & O & & O & & & \\
\hline
 & O & & CH & & CH_{2} & C & & \\
 & & CH_{2} & n & = 1-8 & \\
 & & CH_{2} & n & = 1-8 & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & & CH_{2} & & CH_{2} & & \\
 & & CH_{2} & & CH_{2} & & \\
 & & CH_{2} & & CH_{2} & & \\
 & & CH_{2} & & CH_{2} & & \\
 & & CH_{2} & & CH_{2} & & \\
 & CH_{2}$$

in which n represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, n is the same or different for each unit;

[Chemical Formula (2)]

15

- 180 -

in which m represents an integer selected within a
range indicated in the chemical formula; R represents
a residue having any of a phenyl structure or a
thienyl structure; and in case plural units are
present, m and R are the same or different for each
unit;

[Chemical Formula (3)]

$$CH - CH_2 - C - CH_2 - C - CH_2 - C$$

in which R₁ being a substituent on a cyclohexyl group represents a hydrogen atom, a CN group, a NO₂ group, a halogen atom, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R₁ and k may be the same or

- 181 - .

different for each unit.

2. The polyhydroxy alkanoate copolymer according to claim 1, wherein R in the chemical formula (2) represents a residue having a phenyl structure or a thienyl structure selected from the group consisting of chemical formulas (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18): the chemical formula (8):

10

15

5

represents a group of non-substituted or substituted phenyl groups in which R_2 , a substituent on an aromatic ring and represents an H atom, represents a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CH_2 group, a $COOR_3$ group (R_3 represents an H atom, a Na atom or a K atom), a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_2 is the same or different for each unit;

20

the chemical formula (9):

represents a group of non-substituted or substituted phenoxy groups in which R_4 represents a substituent on

an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a SCH_3 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_4 may be the same or different for each unit;

the chemical formula (10):

5

represents a group of non-substituted or substituted

10 benzoyl groups in which R₅ represents a substituent on
an aromatic ring and represents an H atom, a halogen
atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅
group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a
C₃F₇ group; and in case plural units are present, R₅

15 may be the same or different for each unit;
the chemical formula (11)

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a

20 substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇

10

15

group, a SO_2R_8 group (R_7 represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_8 represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R_6 may be the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 CS (12)

represents a group of substituted or non-substituted (phenylmethyl) sulfanyl groups in which R₉ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₉ may be the same or different for each unit;

20 the chemical formula (13):

represents a 2-thienyl group;
the chemical formula (14)

15

represents a 2-thienylsulfanyl group; the chemical formula (15):

5 represents a 2-thienylcarbonyl group; the chemical formula (16):

$$R_{12}$$
 S S (16)

represents a group of substituted or non-substituted phenylsulfinyl groups in which R₁₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₃ group, a SO₂R₁₄ group (R₁₃ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₄ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ may be the same or different for each unit;

the chemical formula (17):

- 185 -

5

10

20

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₅ may be the same or different for each unit; and

the chemical formula (18):

- 15 represents a (phenylmethyl) oxy group.
 - 3. The polyhydroxy alkanoate copolymer according to claim 1, wherein a number-averaged molecular weight is within a range from 1000 to 1000000.
 - 4. A polyhydroxy alkanoate copolymer characterized in including at least a 3-hydroxy- ω -

carboxyalkanoic acid unit represented by a chemical formula (19) or 3-hydroxy-\omega-alkoxycarbonylalkanoic acid unit represented by a chemical formula (32) in a molecule, and simultaneously at least a 3-hydroxy-\omega-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-\omega-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule, [Chemical Formula (19)]

$$n = 1-8$$
 (19)

- in which n represents an integer selected within a range indicated in the chemical formula; R_{18} represents an H atom, a Na atom or a K atom: and in case plural units are present, n and R_{18} may be the same or different for each unit; and
- 15 [Chemical Formula (32)]

$$\begin{array}{c} & \bigcirc \\ & \bigcirc \\$$

$$n = 1-8$$
 (32)

- 187 -

$$R_{27}: H_3C$$
 , C_2H_5 , H_3C , CH_3 , CH_2 , CH_2

in which n represents an integer selected within a range indicated in the chemical formula; R_{27} represents any of residues indicated in the chemical formula; and in case plural units are present, n and R_{27} may be the same or different for each unit [Chemical Formula (2)]

5

in which m represents an integer selected within a

range indicated in the chemical formula; R includes a
residue having any of a phenyl structure or a thienyl
structure; and in case plural units are present, m
and R may be the same or different for each unit; and
[Chemical Formula (3)]

$$CH - CH_{2} - C$$

$$CH_{2})k$$

$$k = 0-8$$

$$R_{1}$$

$$(3)$$

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit.

10

15

5

5. The polyhydroxy alkanoate copolymer according to claim 4, wherein R in the chemical formula (2), represents a residue having a phenyl structure or a thienyl structure selected from chemical formulas (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), and (18):

the chemical formula (8):

represents a group of non-substituted or substituted phenyl groups in which R_2 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $CH=CH_2$ group, a $COOR_3$ group (R_3 representing an H atom, a Na atom or a K atom), a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_2 is the same or different for each unit;

10 the chemical formula (9):

represents a group of non-substituted or substituted phenoxy groups in which R_4 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a SCH_3 group, a SCH_3

the chemical formula (10):

20

15

5

represents a group of non-substituted or substituted

20

benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

represents a group of substituted or non-substituted phenylsulfanyl groups in which R_6 represents a 10 substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO2 group, a COOR7 group, a SO₂R₈ group (R₇ represents either one of H, Na, K, CH_3 and C_2H_5 ; and R_8 represents either one of OH, ONa, OK, a halogen atom, OCH $_3$ and OC $_2$ H $_5$), a CH $_3$ group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_6 is the same or different for each unit;

the chemical formula (12):

$$R_9$$
 CH_2 $-S$ (12)

represents a group of substituted or non-substituted

- 191 -

(phenylmethyl) sulfanyl groups in which R_9 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{10}$ group, a SO_2R_{11} group (R_{10} represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_{11} represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a (CH_3)₂-CH group or a (CH_3)₃-C group; and in case plural units are present, R_9 is the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group; the chemical formula (14):

15

20

10

represents a 2-thienylsulfanyl group; the chemical formula (15):

represents a 2-thienylcarbonyl group; the chemical formula (16):

- 192 -

5

10

represents a group of substituted or non-substituted phenylsulfinyl groups in which R₁₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₃ group, a SO₂R₁₄ group (R₁₃ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₄ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R₁₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units

- 193 -

are present, R_{15} is the same or different for each unit; and

the chemical formula (18):

5 represents a (phenylmethyl)oxy group.

10

ĺ

- 6. The polyhydroxy alkanoate copolymer according to claim 4, wherein a number-averaged molecular weight is within a range from 1000 to 1000000.
- 7. A method for producing a polyhydroxy alkanoate copolymer characterized in including a biosynthesis by a microorganism having an ability of producing a polyhydroxy alkanoate copolymer including 15 at least a 3-hydroxy- ω -alkenoic acid unit represented by a chemical formula (1) in a molecule, and simultaneously at least a 3-hydroxy- ω -alkanoic acid unit represented by a chemical formula (2) or a 3hydroxy-\omega-cyclohexylalkanoic acid unit represented by 20 a chemical formula (3) in the molecule, from at least an ω -alkenoic acid represented by a chemical formula (24) and at least a compound represented by a chemical formula (25) or at least an ω cyclohexylalkanoic acid represented by a chemical 25

formula (26) as starting materials: [Chemical Formula (24)]

$$H_2C$$
— HC — $(CH_2)_p$ — CH_2 — CH_2 — CH_2 — OH

$$p = 1-8 \qquad (24)$$

in which p represents an integer selected within a
5 range indicated in the chemical formula;
[Chemical Formula (25)]

$$R_{23}$$
—(CH₂)q—CH₂—CH₂—C-OH
q = 1-8 (25)

in which q represents an integer selected within a range indicated in the chemical formula; and R_{23} includes a residue having a phenyl structure or a thienyl structure;

[Chemical Formula (26)]

$$H_{24}$$
 O II O II CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 C

in which R_{24} represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and r represents an integer selected within a range

indicated in the chemical formula; [Chemical Formula (1)]

in which n represents an integer selected within a

5 range indicated in the chemical formula; and in case
plural units are present, n is the same or different
for each unit;

[Chemical Formula (2)]

$$CH_{2} CH_{2} CH_{2}$$

in which m represents an integer selected within a range indicated in the chemical formula; R represents a residue having any of a phenyl structure or a thienyl structure; and in case plural units are present, m and R are the same or different for each unit; and

10

[Chemical Formula (3)]

$$CH - CH_{2} - C - CH_{2} - C$$

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit.

8. The method for producing a polyhydroxy alkanoate copolymer according to claim 7, wherein R₂₃ in the chemical formula (25) and R in the chemical formula (2), each represents a residue having a phenyl structure or a thienyl structure, are selected from chemical formulas (31), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18): the chemical formula (31):

- 197 -

represents a group of substituted or non-substituted phenyl groups in which R_{26} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CH_2 group, a CF_3 group, a C_2F_5 group or a C_3F_7 group; and in case plural units are present, R_{26} is the same or different for each unit;

10 the chemical formula (9):

5

15

20

represents a group of non-substituted or substituted phenoxy groups in which R_4 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a SCH_3 group, a SCH_3

the chemical formula (10):

represents a group of non-substituted or substituted

- 198 -

benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

5

10

15

20

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ representing either one of H, Na, K, CH₃ and C₂H₅; and R₈ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit;

the chemical formula (12):

$$H_9$$
 CH_2 $-S$ (12)

represents a group of substituted or non-substituted (phenylmethyl)sulfanyl groups in which R9 represents a substituent on an aromatic ring and represents an H

atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₉ is the same or different for each unit;

the chemical formula (13):

10

15

represents a 2-thienyl group; the chemical formula (14):

represents a 2-thienylsulfanyl group; the chemical formula (15):

represents a 2-thienylcarbonyl group; the chemical formula (16):

represents a group of substituted or non-substituted phenylsulfinyl groups in which R_{12} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO2 group, a COOR_{13} group, a SO_2R_{14} group (R₁₃ representing either 5 one of H, Na, K, CH_3 and C_2H_5 ; and R_{14} representing either one of OH, ONa, OK, a halogen atom, OCH3 and OC_2H_5), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_{12} is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R_{15} represents a 15 substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO2 group, a COOR_{16} group, a SO_2R_{17} group (R₁₆ representing either one of H, Na, K, CH_3 and C_2H_5 ; and R_{17} representing either one of OH, ONa, OK, a halogen atom, OCH $_3$ and 20 OC_2H_5), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_{15} is the same or different for each unit; and

25 the chemical formula (18):

- 201 -

represents a (phenylmethyl)oxy group.

- 9. The method for producing a polyhydroxy
 5 alkanoate copolymer according to claim 7, wherein said microorganism is cultured in a culture medium including at least an ω-alkenoic acid represented by the chemical formula (24) and at least a compound represented by the chemical formula (25) or at least an ω-cyclohexylalkanoic acid represented by the chemical formula (26).
- 10. The method for producing a polyhydroxy alkanoate copolymer according to claim 9, wherein said microorganism is cultured in a culture medium including, in addition to at least an ω-alkenoic acid represented by the chemical formula (24) and at least a compound represented by the chemical formula (25) or at least an ω-cyclohexylalkanoic acid represented by the chemical formula (26), at least one of a peptide, an yeast extract, an organic acid or a salt thereof, an amino acid or a salt thereof, a sugar, a linear alkanoic acid with 4 to 12 carbon atoms or a salt thereof.

- 11. The method for producing a polyhydroxy alkanoate copolymer according to claim 7, characterized in including a step of culturing said microorganism in a culture medium including at least an ω -alkenoic acid represented by the chemical 5 formula (24) and at least a compound represented by the chemical formula (25) or at least an ω cyclohexylalkanoic acid represented by the chemical formula (26), and recovering a polyhydroxy alkanoate copolymer including simultaneously at least a 3-10 $hydroxy-\omega-alkenoic$ acid unit represented by the chemical formula (1) and a 3-hydroxy-\u03c3-alkanoic acid unit represented by the chemical formula (2) or a 3hydroxy- ω -cyclohexylalkanoic acid unit represented by the chemical formula (3) in the molecule, produced by 15 said microorganism, from cells of the microorganism.
- 12. The method for producing a polyhydroxy alkanoate copolymer according to claim 7, wherein said microorganism is a microorganism belonging to Pseudomonas genus.
- 13. The method for producing a polyhydroxy alkanoate copolymer according to claim 12, wherein said microorganism is at least one of *Pseudomonas cichorii* YN2 strain (FERM BP-7375), *Pseudomonas cichorii* H45 strain (FERM BP-7374), *Pseudomonas*

- 203 -

jessenii P161 (FERM BP-7376) and `Pseudomonas putida
P91 (FERM BP-7373).

- 14. A method for producing a polyhydroxy
 5 alkanoate copolymer including at least a 3-hydroxy-ω-carboxyalkanoic acid unit represented by a chemical formula (19) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-ω-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule comprising the steps of:
 - preparing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-\omega-alkenoic acid unit represented by a chemical formula (1) in a molecule, and simultaneously at least a 3-hydroxy-\omega-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-\omega-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule as a starting material, and

15

20

oxidizing a double bond portion in the polyhydroxy alkanoate represented in the chemical formula (1) thereby generating a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-25 carboxyalkanoic acid unit represented by a chemical formula (19) in a molecule, and simultaneously at least a 3-hydroxy-ω-alkanoic acid unit represented by

- 204 -

a chemical formula (2) or a 3-hydroxy- ω -cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule: [Chemical Formula (1)]

5

15

in which n represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, n is the same or different for each unit;

10 [Chemical Formula (2)]

in which m represents an integer selected within a range indicated in the chemical formula; R includes a residue having any of a phenyl structure and a thienyl structure; and in case plural units are present, m and R are the same or different for each

unit;

[Chemical Formula (3)]

$$- \left\{0 - CH - CH_2 - C - \right\}$$

$$(CH_2)k$$

$$k = 0-8$$

$$R_1$$

$$(3)$$

in which R₁ represents a substituent on a cyclohexyl group selected from an H atom, a CN group, a NO₂ group, a halogen atom, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, and a C₃F₇ group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R₁ and k are the same or different for each unit; and [Chemical Formula (19)]

n = 1-8 (19)

in which n represents an integer selected within a

- 206 -

range indicated in the chemical formula; R_{18} represents an H atom, a Na atom, or a K atom; and in case plural units are present, n and R_{18} are the same or different for each unit.

5

10

15

20

15. The method for producing a polyhydroxy alkanoate copolymer according to claim 14, wherein R in the chemical formula (2) represents a residue having a phenyl structure or a thienyl structure selected from chemical formulas (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18): the chemical formula (8):

represents a group of non-substituted or substituted phenyl groups in which R₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CH=CH₂ group, a COOR₃ group (R₃ representing an H atom, a Na atom or a K atom), a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₂ is the same or different for each unit;

the chemical formula (9):

- 207 -

represents a group of non-substituted or substituted phenoxy groups in which R_4 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a SCH_3 group, a SCH_3

the chemical formula (10):

10

15

5

represents a group of non-substituted or substituted benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

10

15

2 C

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ represents either one of H, Na, K, CH₃ and C₂H₅; and R₈ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit; the chemical formula (12):

$$R_9$$
 CH_2 CS (12)

represents a group of substituted or non-substituted (phenylmethyl) sulfanyl groups in which R_9 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{10}$ group, a SO_2R_{11} group (R_{10} represents either one of H, Na, K, CH_3 and C_2H_5 ; and R_{11} represents either one of OH, ONa, OK, a halogen atom, OCH_3 and OC_2H_5), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_9 is the same or different for each unit;

the chemical formula (13):

- 209 -

represents a 2-thienyl group; the chemical formula (14)

5 represents a 2-thienylsulfanyl group; the chemical formula (15):

represents a 2-thienylcarbonyl group; the chemical formula (16):

10

15

represents a group of substituted or non-substituted phenylsulfinyl groups in which R_{12} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{13}$ group, a SO_2R_{14} group (R_{13} represents either one of H, Na, K, CH_3 and C_2H_5 ; and R_{14} represents either one of OH, ONa, OK, a halogen atom, OCH_3 and OC_2H_5), a

15

CH₃ group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_{12} is the same or different for each unit;

5 the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R_{15} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{16}$ group, a SO_2R_{17} group (R_{16} represents either one of H, Na, K, CH₃ and C_2H_5 ; and R_{17} represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC_2H_5), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_{15} is the same or different for each unit;

the chemical formula (18):

- 20 represents a (phenylmethyl)oxy group.
 - 16. The method according to claim 14, wherein said starting material polyhydroxy alkanoate

copolymer including at least a 3-hydroxy- ω -alkenoic acid unit represented by a chemical formula (1) in a molecule, and simultaneously at least a 3-hydroxy- ω -alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy- ω -cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule, is produced by a method according to claim 7.

17. The method for producing a polyhydroxy

10 alkanoate copolymer according to claim 16, wherein R

in the chemical formula (2), representing a residue

having a phenyl structure or a thienyl structure, is

at least one of chemical formulas (31), (9), (10),

(11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (31):

represents a group of substituted or non-substituted phenyl groups in which R₂₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CH=CH₂ group, a CF₃ group, a C₂F₅ group or a C₃F₇ group; and in case plural units are present, R₂₆ is the same or different for each unit;

25 the chemical formula (9):

- 212 -

represents a group of non-substituted or substituted phenoxy groups in which R₄ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a SCH₃ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₄ is the same or different for each unit;

the chemical formula (10):

10

15

5

represents a group of non-substituted or substituted benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

20 represents a group of substituted or non-substituted phenylsulfanyl groups in which R6 represents a

substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ representing either one of H, Na, K, CH₃ and C₂H₅; and R₈ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit;

the chemical formula (12):

10

5

represents a group of substituted or non-substituted (phenylmethyl) sulfanyl groups in which R₉ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a

15 COOR₁₀ group, a SO₂R₁₁ group (R₁₀ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case

20 plural units are present, R₉ is the same or different for each unit;

the chemical formula (13):

represents a 2-thienyl group; the chemical formula (14):

represents a 2-thienylsulfanyl group; the chemical formula (15):

represents a 2-thienylcarbonyl group; the chemical formula (16):

represents a group of substituted or non-substituted phenylsulfinyl groups in which R₁₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₃ group, a SO₂R₁₄ group (R₁₃ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₄ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and CC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ is the same or different for each unit;

the chemical formula (17):

- 215 -

5

10

20

represents a group of substituted or non-substituted phenylsulfonyl groups in which R_{15} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{16}$ group, a SO_2R_{17} group (R_{16} representing either one of H, Na, K, CH₃ and C_2H_5 ; and R_{17} representing either one of OH, ONa, OK, a halogen atom, OCH₃ and CC_2H_5), a CC_3 group, a CC_3 group; and in case plural units are present, CC_3 is the same or different for each unit; and

the chemical formula (18):

15 represents a (phenylmethyl) oxy group.

- 18. The producing method according to claim 14, wherein said oxidation reaction is carried out with an oxidant selected from a group consisting of a permanganate, a bichromate and a periodate.
- 19. The producing method according to claim 18, wherein said oxidation reaction is carried out with a

permanganate as an oxidant and under an acidic condition.

- 20. The producing method according to claim 14,
 5 wherein said oxidation reaction is carried out with ozone.
- 21. The method for producing a polyhydroxy alkanoate copolymer including a biosynthesis by a microorganism having an ability of producing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-\omega-alkoxycarbonylalkanoic acid unit represented by a chemical formula (32) in a molecule, and simultaneously at least a 3-hydroxy-\omega-alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy-\omega-cyclohexylalkanoic acid unit represented by a chemical formula (3) in the molecule, from a dicarboxylic acid monoester compound represented by a chemical formula (42):

$$R_{41} = O = O = CH_2 = CH_2 = CH_2 = O = OH$$

$$p = 1-8 \quad (42)$$

in which p may assume one or more arbitrary integral values within a range indicated in the chemical formula; and R_{41} may arbitrarily represent one or more residues indicated in the chemical formula; and at least a compound represented by a chemical formula (25) or at least a ω -cyclohexylalkanoic acid represented by a chemical formula (26) as starting materials:

[Chemical Formula (25)]

$$R_{23}$$
—(CH₂)q—CH₂—CH₂—COH
q = 1-8 (25)

10

20

5

in which q represents an integer selected within a range indicated in the chemical formula; and R_{23} includes a residue having a phenyl structure or a thienyl structure;

15 [Chemical Formula (26)]

$$R_{24}$$
 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5

in which R_{24} represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and r represents an integer selected within a range

indicated in the chemical formula; [Chemical Formula (32)]

5

10

in which n represents an integer selected within a range indicated in the chemical formula; R_{27} represents any of residues indicated in the chemical formula; and in case plural units are present, n and R_{27} are the same or different for each unit; [Chemical Formula (2)]

$$CH_{2}$$
 m = 1-8(2)

in which m represents an integer selected within a range indicated in the chemical formula; R represents

- 219 -

a residue having any of a phenyl structure and a thienyl structure; and in case plural units are present, m and R are the same or different for each unit; and

5 [Chemical Formula (3)]

$$CH - CH_{2} - C$$

$$CH_{2} \times k$$

$$k = 0-8$$

$$R_{1}$$

$$(3)$$

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit.

15

20

10

22. The method for producing a polyhydroxy alkanoate copolymer according to claim 21, wherein R_{23} in the chemical formula (25) and R in the chemical formula (2), each representing a residue having a phenyl structure or a thienyl structure, represents at least one of chemical formulas (31), (9), (10),

10

(11), (12), (13), (14), (15), (16), (17) and (18): the chemical formula (31):

represents a group of substituted or non-substituted phenyl groups in which R_{26} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CH_2 group, a CF_3 group, a C_2F_5 group or a C_3F_7 group; and in case plural units are present, R_{26} is the same or different for each unit;

the chemical formula (9):

represents a group of non-substituted or substituted

phenoxy groups in which R₄ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a SCH₃ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₄ is the same or different for each unit; the chemical formula (10):

- 221 -

represents a group of non-substituted or substituted benzoyl groups in which R_5 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are present, R_5 is the same or different for each unit;

the chemical formula (11):

10

5

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ representing either one of H, Na, K, CH₃ and C₂H₅; and R₈ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₆ is the same or different for each unit; the chemical formula (12):

- 222 -

represents a group of substituted or non-substituted (phenylmethyl) sulfanyl groups in which R_9 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{10}$ group, a SO_2R_{11} group (R_{10} representing either one of H, Na, K, CH_3 and C_2H_5 ; and R_{11} representing either one of OH, ONa, OK, a halogen atom, OCH₃ and CC_2H_5), a CC_3H_3 group, a CC_3H_5 gr

the chemical formula (13):

5

10

15 represents a 2-thienyl group;

the chemical formula (14):

represents a 2-thienylsulfanyl group; the chemical formula (15):

represents a 2-thienylcarbonyl group; the chemical formula (16):

phenylsulfinyl groups in which R₁₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₃ group, a SO₂R₁₄ group (R₁₃ representing either one of H, Na, K, CH₃ and C₂H₅; and R₁₄ representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₂ is the same or different for each unit;

the chemical formula (17):

represents a group of substituted or non-substituted phenylsulfonyl groups in which R_{15} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a

- 224 -

COOR₁₆ group, a SO_2R_{17} group (R_{16} representing either one of H, Na, K, CH₃ and C_2H_5 ; and R_{17} representing either one of OH, ONa, OK, a halogen atom, OCH₃ and OC_2H_5), a CH₃ group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_{15} is the same or different for each unit; and

the chemical formula (18):

10 represents a (phenylmethyl) oxy group.

23. The method for producing a polyhydroxy alkanoate copolymer according to claim 21, wherein the microorganism is cultured in a culture medium including at least a dicarboxylic acid monoester compound represented by the chemical formula (42) and at least a compound represented by the chemical formula (25) or at least an ω -cyclohexylalkanoic acid represented by the chemical formula (26).

20

25

15

5

24. The method for producing a polyhydroxy alkanoate copolymer according to claim 23, wherein the microorganism is cultured in a culture medium including, in addition, at least one of a peptide, an yeast extract, an organic acid or a salt thereof, an

- 225 -

amino acid or a salt thereof, a sugar, a linear alkanoic acid with 4 to 12 carbon atoms or a salt thereof.

25. The method for producing a polyhydroxy alkanoate copolymer according to claim 21, characterized in including a step of recovering a polyhydroxy alkanoate copolymer, produced by said microorganism, from cells of the microorganism.

10

26. The method for producing a polyhydroxy alkanoate copolymer according to claim 21, wherein said microorganism is a microorganism belonging to Pseudomonas genus.

15

20

- 27. The method for producing a polyhydroxy alkanoate copolymer according to claim 26, wherein said microorganism is at least one of *Pseudomonas cichorii* YN2 strain (FERM BP-7375), *Pseudomonas cichorii* H45 strain (FERM BP-7374), *Pseudomonas jessenii* P161 (FERM BP-7376) and *Pseudomonas putida* P91 (FERM BP-7373).
- 28. A method for producing a polyhydroxy
 25 alkanoate copolymer, characterized in employing a polyhydroxy alkanoate copolymer including at least a 3-hydroxy-ω-alkoxycarbonylalkanoic acid unit

represented by a chemical formula (32) in a molecule, and simultaneously at least a 3-hydroxy- ω -alkanoic acid unit represented by a chemical formula (2) or a $3-hydroxy-\omega-cyclohexylalkanoic acid unit represented$ by a chemical formula (3) in the molecule as a 5 starting material, and executing a hydrolysis in the presence of an acid or an alkali or executing a hydrogenolysis including a catalytic reduction, thereby generating a polyhydroxy alkanoate copolymer including at least a 3-hydroxy- ω -carboxyalkanoic acid 10 unit represented by a chemical formula (19) in a molecule, and simultaneously at least a 3-hydroxy- ω alkanoic acid unit represented by a chemical formula (2) or a 3-hydroxy- ω -cyclohexylalkanoic acid unit 15 represented by a chemical formula (3) in the molecule:

[Chemical Formula (32)]

$$COOR_{27}$$
 $n = 1-8$ (32)
 CH_3
 CH_3

in which n represents an integer selected within a range indicated in the chemical formula; R_{27} represents any of residues indicated in the chemical formula; and in case plural units are present, n and R_{27} are the same or different for each unit; [Chemical Formula (2)]

$$--\left[O - CH - CH_{2} - C - \right] - \left(CH_{2}\right)m$$

$$R \qquad m = 1-8 (2)$$

in which m represents an integer selected within a range indicated in the chemical formula; R includes a residue having any of a phenyl structure and a thienyl structure; and in case plural units are present, m and R are the same or different for each unit;

[Chemical Formula (3)]

$$CH - CH_2 - C - C$$

$$CH_2)k$$

$$k = 0-8$$

$$R_1$$

$$(3)$$

5

10

- 228 -

in which R_1 represents a substituent on a cyclohexyl group and represents an H atom, a CN group, a NO_2 group, a halogen atom, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; k represents an integer selected within a range indicated in the chemical formula; and in case plural units are present, R_1 and k are the same or different for each unit; and

[Chemical Formula (19)]

n = 1-8 (19)

10

15

20

5

in which n represents an integer selected within a range indicated in the chemical formula; R_{18} represents an H atom, a Na atom, or a K atom; and in case plural units are present, n and R_{18} are the same or different for each unit.

29. The method for producing a polyhydroxy alkanoate copolymer according to claim 28, wherein R in the chemical formula (2), representing a residue having a phenyl structure or a thienyl structure, represents at least one of chemical formulas (8), (9),

- 229 -

(10), (11), (12), (13), (14), (15), (16), (17) and (18):

the chemical formula (8):

represents a group of non-substituted or substituted phenyl groups in which R₂ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CH=CH₂ group, a COOR₃ group (R₃ representing an H atom, a Na atom or a K atom), a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₂ is the same or different for each unit;

the chemical formula (9):

15

20

represents a group of non-substituted or substituted phenoxy groups in which R_4 represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a CH_3 group, a C_2H_5 group, a C_3H_7 group, a CH_3 group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group; and in case plural units are

10

present, R_4 is the same or different for each unit; the chemical formula (10):

represents a group of non-substituted or substituted benzoyl groups in which R₅ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a CH₃ group, a C₂H₅ group, a C₃H₇ group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group; and in case plural units are present, R₅ is the same or different for each unit;

the chemical formula (11):

$$R_s$$
 $-s$

represents a group of substituted or non-substituted phenylsulfanyl groups in which R₆ represents a

15 substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₇ group, a SO₂R₈ group (R₇ represents either one of H, Na, K, CH₃ and C₂H₅; and R₈ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃

20 group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present,

 R_6 is the same or different for each unit; the chemical formula (12):

$$R_9$$
 CH_2 CH_2

represents a group of substituted or non-substituted

(phenylmethyl) sulfanyl groups in which R₉ represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₀ group, a SO₂R₁₁ group (R₁₀ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₁ represents either

one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₉ is the same or different for each unit;

15 the chemical formula (13):

represents a 2-thienyl group; the chemical formula (14):

10

15

represents a 2-thienylsulfanyl group; the chemical formula (15):

represents a 2-thienylcarbonyl group; the chemical formula (16):

represents a group of substituted or non-substituted phenylsulfinyl groups in which R_{12} represents a substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO_2 group, a $COOR_{13}$ group, a SO_2R_{14} group (R_{13} represents either one of H, Na, K, CH_3 and C_2H_5 ; and R_{14} represents either one of OH, ONa, OK, a halogen atom, OCH_3 and OC_2H_5), a CH_3 group, a C_2H_5 group, a C_3H_7 group, a $(CH_3)_2$ -CH group or a $(CH_3)_3$ -C group; and in case plural units are present, R_{12} is the same or different for each unit;

the chemical formula (17):

20 represents a group of substituted or non-substituted phenylsulfonyl groups in which R_{15} represents a

substituent on an aromatic ring and represents an H atom, a halogen atom, a CN group, a NO₂ group, a COOR₁₆ group, a SO₂R₁₇ group (R₁₆ represents either one of H, Na, K, CH₃ and C₂H₅; and R₁₇ represents either one of OH, ONa, OK, a halogen atom, OCH₃ and OC₂H₅), a CH₃ group, a C₂H₅ group, a C₃H₇ group, a (CH₃)₂-CH group or a (CH₃)₃-C group; and in case plural units are present, R₁₅ is the same or different for each unit; and

10 the chemical formula (18):

represents a (phenylmethyl)oxy group.