Theorem 35.6

Given an instance of MAX-3-CNF satisfiability with n variables x_1, x_2, \ldots, x_n and m clauses, the randomized algorithm that independently sets each variable to 1 with probability 1/2 and to 0 with probability 1/2 is a randomized 8/7-approximation algorithm.

Proof Suppose that we have independently set each variable to 1 with probability 1/2 and to 0 with probability 1/2. For i = 1, 2, ..., m, we define the indicator random variable

$$Y_i = I\{\text{clause } i \text{ is satisfied}\}\$$
,

so that $Y_i = 1$ as long as we have set at least one of the literals in the ith clause to 1. Since no literal appears more than once in the same clause, and since we have assumed that no variable and its negation appear in the same clause, the settings of the three literals in each clause are independent. A clause is not satisfied only if all three of its literals are set to 0, and so $\Pr\{\text{clause } i \text{ is not satisfied}\} = (1/2)^3 = 1/8$. Thus, we have $\Pr\{\text{clause } i \text{ is satisfied}\} = 1 - 1/8 = 7/8$, and by Lemma 5.1, we have $\operatorname{E}[Y_i] = 7/8$. Let Y be the number of satisfied clauses overall, so that $Y = Y_1 + Y_2 + \cdots + Y_m$. Then, we have

$$E[Y] = E\left[\sum_{i=1}^{m} Y_i\right]$$

$$= \sum_{i=1}^{m} E[Y_i] \quad \text{(by linearity of expectation)}$$

$$= \sum_{i=1}^{m} 7/8$$

$$= 7m/8.$$

Clearly, m is an upper bound on the number of satisfied clauses, and hence the approximation ratio is at most m/(7m/8) = 8/7.

Approximating weighted vertex cover using linear programming

In the *minimum-weight vertex-cover problem*, we are given an undirected graph G = (V, E) in which each vertex $v \in V$ has an associated positive weight w(v). For any vertex cover $V' \subseteq V$, we define the weight of the vertex cover $w(V') = \sum_{v \in V'} w(v)$. The goal is to find a vertex cover of minimum weight.

We cannot apply the algorithm used for unweighted vertex cover, nor can we use a random solution; both methods may return solutions that are far from optimal. We shall, however, compute a lower bound on the weight of the minimum-weight vertex cover, by using a linear program. We shall then "round" this solution and use it to obtain a vertex cover.

Suppose that we associate a variable $x(\nu)$ with each vertex $\nu \in V$, and let us require that $x(\nu)$ equals either 0 or 1 for each $\nu \in V$. We put ν into the vertex cover if and only if $x(\nu) = 1$. Then, we can write the constraint that for any edge (u, ν) , at least one of u and ν must be in the vertex cover as $x(u) + x(\nu) \ge 1$. This view gives rise to the following **0-1** integer program for finding a minimum-weight vertex cover:

minimize
$$\sum_{\nu \in V} w(\nu) x(\nu)$$
 (35.14)

subject to

$$x(u) + x(v) \ge 1$$
 for each $(u, v) \in E$ (35.15)

$$x(v) \in \{0, 1\} \text{ for each } v \in V.$$
 (35.16)

In the special case in which all the weights $w(\nu)$ are equal to 1, this formulation is the optimization version of the NP-hard vertex-cover problem. Suppose, however, that we remove the constraint that $x(\nu) \in \{0,1\}$ and replace it by $0 \le x(\nu) \le 1$. We then obtain the following linear program, which is known as the *linear-programming relaxation*:

minimize
$$\sum_{\nu \in V} w(\nu) x(\nu)$$
 (35.17)

subject to

$$x(u) + x(v) \ge 1$$
 for each $(u, v) \in E$ (35.18)

$$x(v) \le 1 \quad \text{for each } v \in V$$
 (35.19)

$$x(\nu) \ge 0 \quad \text{for each } \nu \in V \ .$$
 (35.20)

Any feasible solution to the 0-1 integer program in lines (35.14)–(35.16) is also a feasible solution to the linear program in lines (35.17)–(35.20). Therefore, the value of an optimal solution to the linear program gives a lower bound on the value of an optimal solution to the 0-1 integer program, and hence a lower bound on the optimal weight in the minimum-weight vertex-cover problem.

The following procedure uses the solution to the linear-programming relaxation to construct an approximate solution to the minimum-weight vertex-cover problem:

```
APPROX-MIN-WEIGHT-VC(G, w)

1 C = \emptyset

2 compute \bar{x}, an optimal solution to the linear program in lines (35.17)–(35.20)

3 for each \nu \in V

4 if \bar{x}(\nu) \ge 1/2

5 C = C \cup \{\nu\}

6 return C
```

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initializes the vertex cover to be empty. Line 2 formulates the linear program in lines (35.17)–(35.20) and then solves this linear program. An optimal solution gives each vertex ν an associated value $\bar{x}(\nu)$, where $0 \le \bar{x}(\nu) \le 1$. We use this value to guide the choice of which vertices to add to the vertex cover C in lines 3–5. If $\bar{x}(\nu) \ge 1/2$, we add ν to C; otherwise we do not. In effect, we are "rounding" each fractional variable in the solution to the linear program to 0 or 1 in order to obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6 returns the vertex cover C.

Theorem 35.7

Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program in line 2, and because the **for** loop of lines 3–5 runs in polynomial time, APPROX-MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algorithm. Let C^* be an optimal solution to the minimum-weight vertex-cover problem, and let z^* be the value of an optimal solution to the linear program in lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the linear program, z^* must be a lower bound on $w(C^*)$, that is,

$$z^* \le w(C^*) \,. \tag{35.21}$$

Next, we claim that by rounding the fractional values of the variables $\bar{x}(\nu)$, we produce a set C that is a vertex cover and satisfies $w(C) \leq 2z^*$. To see that C is a vertex cover, consider any edge $(u, v) \in E$. By constraint (35.18), we know that $x(u) + x(v) \geq 1$, which implies that at least one of $\bar{x}(u)$ and $\bar{x}(v)$ is at least 1/2. Therefore, at least one of u and v is included in the vertex cover, and so every edge is covered.

Now, we consider the weight of the cover. We have

$$z^* = \sum_{v \in V} w(v) \bar{x}(v)$$

$$\geq \sum_{v \in V: \bar{x}(v) \geq 1/2} w(v) \bar{x}(v)$$

$$\geq \sum_{v \in V: \bar{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2}$$

$$= \sum_{v \in C} w(v) \cdot \frac{1}{2}$$

$$= \frac{1}{2} \sum_{v \in C} w(v)$$

$$= \frac{1}{2} w(C) . \tag{35.22}$$

Combining inequalities (35.21) and (35.22) gives

$$w(C) \le 2z^* \le 2w(C^*) ,$$

and hence APPROX-MIN-WEIGHT-VC is a 2-approximation algorithm.

Exercises

35.4-1

Show that even if we allow a clause to contain both a variable and its negation, randomly setting each variable to 1 with probability 1/2 and to 0 with probability 1/2 still yields a randomized 8/7-approximation algorithm.

35.4-2

The *MAX-CNF* satisfiability problem is like the MAX-3-CNF satisfiability problem, except that it does not restrict each clause to have exactly 3 literals. Give a randomized 2-approximation algorithm for the MAX-CNF satisfiability problem.

35.4-3

In the MAX-CUT problem, we are given an unweighted undirected graph G = (V, E). We define a cut (S, V - S) as in Chapter 23 and the **weight** of a cut as the number of edges crossing the cut. The goal is to find a cut of maximum weight. Suppose that for each vertex v, we randomly and independently place v in S with probability 1/2 and in V - S with probability 1/2. Show that this algorithm is a randomized 2-approximation algorithm.

35.4-4

Show that the constraints in line (35.19) are redundant in the sense that if we remove them from the linear program in lines (35.17)–(35.20), any optimal solution to the resulting linear program must satisfy $x(v) \le 1$ for each $v \in V$.

35.5 The subset-sum problem

Recall from Section 34.5.5 that an instance of the subset-sum problem is a pair (S,t), where S is a set $\{x_1, x_2, \ldots, x_n\}$ of positive integers and t is a positive integer. This decision problem asks whether there exists a subset of S that adds up exactly to the target value t. As we saw in Section 34.5.5, this problem is NP-complete.

The optimization problem associated with this decision problem arises in practical applications. In the optimization problem, we wish to find a subset of $\{x_1, x_2, \ldots, x_n\}$ whose sum is as large as possible but not larger than t. For example, we may have a truck that can carry no more than t pounds, and n different boxes to ship, the ith of which weighs x_i pounds. We wish to fill the truck with as heavy a load as possible without exceeding the given weight limit.

In this section, we present an exponential-time algorithm that computes the optimal value for this optimization problem, and then we show how to modify the algorithm so that it becomes a fully polynomial-time approximation scheme. (Recall that a fully polynomial-time approximation scheme has a running time that is polynomial in $1/\epsilon$ as well as in the size of the input.)

An exponential-time exact algorithm

Suppose that we computed, for each subset S' of S, the sum of the elements in S', and then we selected, among the subsets whose sum does not exceed t, the one whose sum was closest to t. Clearly this algorithm would return the optimal solution, but it could take exponential time. To implement this algorithm, we could use an iterative procedure that, in iteration i, computes the sums of all subsets of $\{x_1, x_2, \ldots, x_i\}$, using as a starting point the sums of all subsets of $\{x_1, x_2, \ldots, x_{i-1}\}$. In doing so, we would realize that once a particular subset S' had a sum exceeding t, there would be no reason to maintain it, since no superset of S' could be the optimal solution. We now give an implementation of this strategy.

The procedure EXACT-SUBSET-SUM takes an input set $S = \{x_1, x_2, \dots, x_n\}$ and a target value t; we'll see its pseudocode in a moment. This procedure it-

eratively computes L_i , the list of sums of all subsets of $\{x_1, \ldots, x_i\}$ that do not exceed t, and then it returns the maximum value in L_n .

If L is a list of positive integers and x is another positive integer, then we let L+x denote the list of integers derived from L by increasing each element of L by x. For example, if $L=\langle 1,2,3,5,9\rangle$, then $L+2=\langle 3,4,5,7,11\rangle$. We also use this notation for sets, so that

$$S + x = \{s + x : s \in S\}$$
.

We also use an auxiliary procedure MERGE-LISTS (L,L'), which returns the sorted list that is the merge of its two sorted input lists L and L' with duplicate values removed. Like the MERGE procedure we used in merge sort (Section 2.3.1), MERGE-LISTS runs in time O(|L| + |L'|). We omit the pseudocode for MERGE-LISTS.

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

To see how EXACT-SUBSET-SUM works, let P_i denote the set of all values obtained by selecting a (possibly empty) subset of $\{x_1, x_2, \dots, x_i\}$ and summing its members. For example, if $S = \{1, 4, 5\}$, then

$$P_1 = \{0, 1\},$$

 $P_2 = \{0, 1, 4, 5\},$
 $P_3 = \{0, 1, 4, 5, 6, 9, 10\}.$

Given the identity

$$P_i = P_{i-1} \cup (P_{i-1} + x_i) , \qquad (35.23)$$

we can prove by induction on i (see Exercise 35.5-1) that the list L_i is a sorted list containing every element of P_i whose value is not more than t. Since the length of L_i can be as much as 2^i , EXACT-SUBSET-SUM is an exponential-time algorithm in general, although it is a polynomial-time algorithm in the special cases in which t is polynomial in |S| or all the numbers in S are bounded by a polynomial in |S|.

A fully polynomial-time approximation scheme

We can derive a fully polynomial-time approximation scheme for the subset-sum problem by "trimming" each list L_i after it is created. The idea behind trimming is

that if two values in L are close to each other, then since we want just an approximate solution, we do not need to maintain both of them explicitly. More precisely, we use a trimming parameter δ such that $0 < \delta < 1$. When we *trim* a list L by δ , we remove as many elements from L as possible, in such a way that if L' is the result of trimming L, then for every element y that was removed from L, there is an element z still in L' that approximates y, that is,

$$\frac{y}{1+\delta} \le z \le y \ . \tag{35.24}$$

We can think of such a z as "representing" y in the new list L'. Each removed element y is represented by a remaining element z satisfying inequality (35.24). For example, if $\delta = 0.1$ and

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

then we can trim L to obtain

$$L' = \langle 10, 12, 15, 20, 23, 29 \rangle$$
,

where the deleted value 11 is represented by 10, the deleted values 21 and 22 are represented by 20, and the deleted value 24 is represented by 23. Because every element of the trimmed version of the list is also an element of the original version of the list, trimming can dramatically decrease the number of elements kept while keeping a close (and slightly smaller) representative value in the list for each deleted element.

The following procedure trims list $L = \langle y_1, y_2, \dots, y_m \rangle$ in time $\Theta(m)$, given L and δ , and assuming that L is sorted into monotonically increasing order. The output of the procedure is a trimmed, sorted list.

```
TRIM(L, \delta)
```

```
1 let m be the length of L

2 L' = \langle y_1 \rangle

3 last = y_1

4 for i = 2 to m

5 if y_i > last \cdot (1 + \delta) // y_i \ge last because L is sorted append y_i onto the end of L'

7 last = y_i

8 return L'
```

The procedure scans the elements of L in monotonically increasing order. A number is appended onto the returned list L' only if it is the first element of L or if it cannot be represented by the most recent number placed into L'.

Given the procedure TRIM, we can construct our approximation scheme as follows. This procedure takes as input a set $S = \{x_1, x_2, \dots, x_n\}$ of n integers (in arbitrary order), a target integer t, and an "approximation parameter" ϵ , where

$$0 < \epsilon < 1. \tag{35.25}$$

It returns a value z whose value is within a $1 + \epsilon$ factor of the optimal solution.

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 **for** i = 1 **to** n4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 **return** z^*

Line 2 initializes the list L_0 to be the list containing just the element 0. The **for** loop in lines 3–6 computes L_i as a sorted list containing a suitably trimmed version of the set P_i , with all elements larger than t removed. Since we create L_i from L_{i-1} , we must ensure that the repeated trimming doesn't introduce too much compounded inaccuracy. In a moment, we shall see that APPROX-SUBSET-SUM returns a correct approximation if one exists.

As an example, suppose we have the instance

```
S = \langle 104, 102, 201, 101 \rangle
```

with t=308 and $\epsilon=0.40$. The trimming parameter δ is $\epsilon/8=0.05$. APPROX-SUBSET-SUM computes the following values on the indicated lines:

```
line 2: L_0 = \langle 0 \rangle,

line 4: L_1 = \langle 0, 104 \rangle,

line 5: L_1 = \langle 0, 104 \rangle,

line 6: L_1 = \langle 0, 104 \rangle,

line 4: L_2 = \langle 0, 102, 104, 206 \rangle,

line 5: L_2 = \langle 0, 102, 206 \rangle,

line 6: L_2 = \langle 0, 102, 206 \rangle,

line 6: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle,

line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle,

line 6: L_3 = \langle 0, 102, 201, 303, 407 \rangle,

line 6: L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle,

line 5: L_4 = \langle 0, 101, 201, 302, 404 \rangle,

line 6: L_4 = \langle 0, 101, 201, 302 \rangle.
```

The algorithm returns $z^* = 302$ as its answer, which is well within $\epsilon = 40\%$ of the optimal answer 307 = 104 + 102 + 101; in fact, it is within 2%.

Theorem 35.8

APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme for the subset-sum problem.

Proof The operations of trimming L_i in line 5 and removing from L_i every element that is greater than t maintain the property that every element of L_i is also a member of P_i . Therefore, the value z^* returned in line 8 is indeed the sum of some subset of S. Let $y^* \in P_n$ denote an optimal solution to the subset-sum problem. Then, from line 6, we know that $z^* \leq y^*$. By inequality (35.1), we need to show that $y^*/z^* \leq 1 + \epsilon$. We must also show that the running time of this algorithm is polynomial in both $1/\epsilon$ and the size of the input.

As Exercise 35.5-2 asks you to show, for every element y in P_i that is at most t, there exists an element $z \in L_i$ such that

$$\frac{y}{(1+\epsilon/2n)^i} \le z \le y \ . \tag{35.26}$$

Inequality (35.26) must hold for $y^* \in P_n$, and therefore there exists an element $z \in L_n$ such that

$$\frac{y^*}{(1+\epsilon/2n)^n} \le z \le y^* ,$$

and thus

$$\frac{y^*}{z} \le \left(1 + \frac{\epsilon}{2n}\right)^n \ . \tag{35.27}$$

Since there exists an element $z \in L_n$ fulfilling inequality (35.27), the inequality must hold for z^* , which is the largest value in L_n ; that is,

$$\frac{y^*}{z^*} \le \left(1 + \frac{\epsilon}{2n}\right)^n \ . \tag{35.28}$$

Now, we show that $y^*/z^* \le 1 + \epsilon$. We do so by showing that $(1 + \epsilon/2n)^n \le 1 + \epsilon$. By equation (3.14), we have $\lim_{n\to\infty} (1 + \epsilon/2n)^n = e^{\epsilon/2}$. Exercise 35.5-3 asks you to show that

$$\frac{d}{dn}\left(1 + \frac{\epsilon}{2n}\right)^n > 0. \tag{35.29}$$

Therefore, the function $(1 + \epsilon/2n)^n$ increases with n as it approaches its limit of $e^{\epsilon/2}$, and we have

$$\left(1 + \frac{\epsilon}{2n}\right)^n \leq e^{\epsilon/2}$$

$$\leq 1 + \epsilon/2 + (\epsilon/2)^2 \quad \text{(by inequality (3.13))}$$

$$\leq 1 + \epsilon \quad \text{(by inequality (35.25))} . \tag{35.30}$$

Combining inequalities (35.28) and (35.30) completes the analysis of the approximation ratio.

To show that APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme, we derive a bound on the length of L_i . After trimming, successive elements z and z' of L_i must have the relationship $z'/z > 1 + \epsilon/2n$. That is, they must differ by a factor of at least $1 + \epsilon/2n$. Each list, therefore, contains the value 0, possibly the value 1, and up to $\lfloor \log_{1+\epsilon/2n} t \rfloor$ additional values. The number of elements in each list L_i is at most

$$\log_{1+\epsilon/2n} t + 2 = \frac{\ln t}{\ln(1+\epsilon/2n)} + 2$$

$$\leq \frac{2n(1+\epsilon/2n)\ln t}{\epsilon} + 2 \quad \text{(by inequality (3.17))}$$

$$< \frac{3n\ln t}{\epsilon} + 2 \quad \text{(by inequality (35.25))} .$$

This bound is polynomial in the size of the input—which is the number of bits $\lg t$ needed to represent t plus the number of bits needed to represent the set S, which is in turn polynomial in n—and in $1/\epsilon$. Since the running time of APPROX-SUBSET-SUM is polynomial in the lengths of the L_i , we conclude that APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme.

Exercises

35.5-1

Prove equation (35.23). Then show that after executing line 5 of EXACT-SUBSET-SUM, L_i is a sorted list containing every element of P_i whose value is not more than t.

35.5-2

Using induction on i, prove inequality (35.26).

35.5-3

Prove inequality (35.29).

35.5-4

How would you modify the approximation scheme presented in this section to find a good approximation to the smallest value not less than *t* that is a sum of some subset of the given input list?

35.5-5

Modify the APPROX-SUBSET-SUM procedure to also return the subset of S that sums to the value z^* .

Problems

35-1 Bin packing

Suppose that we are given a set of n objects, where the size s_i of the ith object satisfies $0 < s_i < 1$. We wish to pack all the objects into the minimum number of unit-size bins. Each bin can hold any subset of the objects whose total size does not exceed 1.

a. Prove that the problem of determining the minimum number of bins required is NP-hard. (*Hint*: Reduce from the subset-sum problem.)

The *first-fit* heuristic takes each object in turn and places it into the first bin that can accommodate it. Let $S = \sum_{i=1}^{n} s_i$.

- **b.** Argue that the optimal number of bins required is at least $\lceil S \rceil$.
- c. Argue that the first-fit heuristic leaves at most one bin less than half full.
- **d.** Prove that the number of bins used by the first-fit heuristic is never more than $\lceil 2S \rceil$.
- e. Prove an approximation ratio of 2 for the first-fit heuristic.
- f. Give an efficient implementation of the first-fit heuristic, and analyze its running time.

35-2 Approximating the size of a maximum clique

Let G = (V, E) be an undirected graph. For any $k \ge 1$, define $G^{(k)}$ to be the undirected graph $(V^{(k)}, E^{(k)})$, where $V^{(k)}$ is the set of all ordered k-tuples of vertices from V and $E^{(k)}$ is defined so that (v_1, v_2, \ldots, v_k) is adjacent to (w_1, w_2, \ldots, w_k) if and only if for $i = 1, 2, \ldots, k$, either vertex v_i is adjacent to w_i in G, or else $v_i = w_i$.

- a. Prove that the size of the maximum clique in $G^{(k)}$ is equal to the kth power of the size of the maximum clique in G.
- **b.** Argue that if there is an approximation algorithm that has a constant approximation ratio for finding a maximum-size clique, then there is a polynomial-time approximation scheme for the problem.

35-3 Weighted set-covering problem

Suppose that we generalize the set-covering problem so that each set S_i in the family \mathcal{F} has an associated weight w_i and the weight of a cover \mathcal{C} is $\sum_{S_i \in \mathcal{C}} w_i$. We wish to determine a minimum-weight cover. (Section 35.3 handles the case in which $w_i = 1$ for all i.)

Show how to generalize the greedy set-covering heuristic in a natural manner to provide an approximate solution for any instance of the weighted set-covering problem. Show that your heuristic has an approximation ratio of H(d), where d is the maximum size of any set S_i .

35-4 Maximum matching

Recall that for an undirected graph G, a matching is a set of edges such that no two edges in the set are incident on the same vertex. In Section 26.3, we saw how to find a maximum matching in a bipartite graph. In this problem, we will look at matchings in undirected graphs in general (i.e., the graphs are not required to be bipartite).

- a. A maximal matching is a matching that is not a proper subset of any other matching. Show that a maximal matching need not be a maximum matching by exhibiting an undirected graph G and a maximal matching M in G that is not a maximum matching. (Hint: You can find such a graph with only four vertices.)
- **b.** Consider an undirected graph G = (V, E). Give an O(E)-time greedy algorithm to find a maximal matching in G.

In this problem, we shall concentrate on a polynomial-time approximation algorithm for maximum matching. Whereas the fastest known algorithm for maximum matching takes superlinear (but polynomial) time, the approximation algorithm here will run in linear time. You will show that the linear-time greedy algorithm for maximal matching in part (b) is a 2-approximation algorithm for maximum matching.

c. Show that the size of a maximum matching in G is a lower bound on the size of any vertex cover for G.

d. Consider a maximal matching M in G = (V, E). Let

 $T = \{ v \in V : \text{some edge in } M \text{ is incident on } v \}$.

What can you say about the subgraph of G induced by the vertices of G that are not in T?

- e. Conclude from part (d) that 2|M| is the size of a vertex cover for G.
- f. Using parts (c) and (e), prove that the greedy algorithm in part (b) is a 2-approximation algorithm for maximum matching.

35-5 Parallel machine scheduling

In the *parallel-machine-scheduling problem*, we are given n jobs, J_1, J_2, \ldots, J_n , where each job J_k has an associated nonnegative processing time of p_k . We are also given m identical machines, M_1, M_2, \ldots, M_m . Any job can run on any machine. A *schedule* specifies, for each job J_k , the machine on which it runs and the time period during which it runs. Each job J_k must run on some machine M_i for p_k consecutive time units, and during that time period no other job may run on M_i . Let C_k denote the *completion time* of job J_k , that is, the time at which job J_k completes processing. Given a schedule, we define $C_{\max} = \max_{1 \le j \le n} C_j$ to be the *makespan* of the schedule. The goal is to find a schedule whose makespan is minimum.

For example, suppose that we have two machines M_1 and M_2 and that we have four jobs J_1, J_2, J_3, J_4 , with $p_1 = 2$, $p_2 = 12$, $p_3 = 4$, and $p_4 = 5$. Then one possible schedule runs, on machine M_1 , job J_1 followed by job J_2 , and on machine M_2 , it runs job J_4 followed by job J_3 . For this schedule, $C_1 = 2$, $C_2 = 14$, $C_3 = 9$, $C_4 = 5$, and $C_{\max} = 14$. An optimal schedule runs J_2 on machine M_1 , and it runs jobs J_1 , J_3 , and J_4 on machine M_2 . For this schedule, $C_1 = 2$, $C_2 = 12$, $C_3 = 6$, $C_4 = 11$, and $C_{\max} = 12$.

Given a parallel-machine-scheduling problem, we let C^*_{\max} denote the makespan of an optimal schedule.

a. Show that the optimal makespan is at least as large as the greatest processing time, that is,

$$C_{\max}^* \ge \max_{1 \le k \le n} p_k .$$

b. Show that the optimal makespan is at least as large as the average machine load, that is,

$$C_{\max}^* \ge \frac{1}{m} \sum_{1 \le k \le n} p_k .$$