MC458 — Projeto e Análise de Algoritmos I

Cid Carvalho de Souza Cândida Nunes da Silva Orlando Lee

3 de marco de 2016

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 1/68

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 2/68

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Eis a lista de "colaboradores" (em ordem alfabética):
 - Célia Picinin de Mello
 - José Coelho de Pina
 - Orlando Lee
 - Paulo Feofiloff
 - Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- Esses slides são o fruto de um trabalho colaborativo de vários professores.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial, "Cormen" e "Manber").

Orlando Lee

Complexidade assintótica de algoritmos

- Como dito anteriormente, na maior parte desta disciplina, estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- Considere o algorimo Ordena-Por-Inserção (Insertionsort). Veremos que ele tem complexidade (de pior caso) igual a uma função quadrática $an^2 + bn + c$, onde a, b, c são constantes absolutas.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso?

Análise assintótica de funções quadráticas

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	3 <i>n</i> ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

De um modo geral, podemos nos concentrar nos termos dominantes e esquecer os demais.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos I 29/68

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

Algoritmos recursivos

"To understand recursion, we must first understand recursion."

(anônimo)

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a corretude de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

Notação assintótica

- Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an2, e
 - para todo *n* suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn^2 , para alguma contante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

MC458 — Projeto e Análise de Algoritmos I 30/68

Recursão e o paradigma de divisão-e-conquista

- Um algoritmo recursivo encontra a saída para uma instância de entrada de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - **Divisão:** o problema é dividido em subproblemas semelhantes ao problema original, porém tendo com entrada instâncias de tamanho menor;
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", situação na qual ele é resolvido diretamente:
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

Exemplo de divisão-e-conquista: Mergesort

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível;
 - **Divisão**: divida o vetor com *n* elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamente.
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - **Ombinação**: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos I 33/68

Mergesort

Relembrando: o objetivo é rearranjar $A[p \dots r]$, com p < r, em ordem crescente.

```
MERGESORT(A, p, r)
     se p < r
         então q \leftarrow \lfloor (p + r)/2 \rfloor
2
                 MERGESORT(A, p, q)
\overline{4}
                 MERGESORT(A, q + 1, r)
                 INTERCALA(A, p, q, r)
```

```
44 | 55 | 66 | 99 | 11 | 77 | 22 | 88
```

Mergesort

Relembrando: o objetivo é rearranjar $A[p \dots r]$, com $p \le r$, em ordem crescente.

```
MERGESORT(A, p, r)
    se p < r
2
       então q \leftarrow |(p + r)/2|
3
              MERGESORT(A, p, q)
              MERGESORT(A, q + 1, r)
              INTERCALA(A, p, q, r)
```

```
66 | 33 | 55 | 44 | 99 | 11 | 77 | 22 | 88
```

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos I 34/68

Mergesort

Relembrando: o objetivo é rearranjar $A[p \dots r]$, com p < r, em ordem crescente.

```
MERGESORT(A, p, r)
    se p < r
        então q \leftarrow \lfloor (p+r)/2 \rfloor
3
               MERGESORT(A, p, q)
               MERGESORT(A, q + 1, r)
               INTERCALA(A, p, q, r)
```

```
55 | 66 | 99 | 11 | 22 | 77 |
```

Mergesort

Relembrando: o objetivo é rearranjar $A[p \dots r]$, com p < r, em ordem crescente.

```
MERGESORT(A, p, r)
    se p < r
2
       então q \leftarrow |(p + r)/2|
              MERGESORT(A, p, q)
              MERGESORT(A, q + 1, r)
5
              INTERCALA(A, p, q, r)
```

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos I 34/68

Complexidade do Mergesort

```
MERGESORT(A, p, r)
    se p < r
2
       então q \leftarrow |(p + r)/2|
3
              MERGESORT(A, p, q)
              MERGESORT(A, q + 1, r)
              INTERCALA(A, p, q, r)
```

linha	consumo de tempo			
1	?			
2	?			
3	?			
4	?			
5	?			
T(n) = ?				

Corretude do Mergesort

```
MERGESORT(A, p, r)
    se p < r
2
        então q \leftarrow \lfloor (p + r)/2 \rfloor
3
               MERGESORT(A, p, q)
               MERGESORT(A, q + 1, r)
5
               INTERCALA(A, p, q, r)
```

O algoritmo está correto?

A corretude do algoritmo Mergesort apoia-se na corretude do algoritmo Intercala e pode ser demonstrada por indução em n := r - p + 1.

Aprenderemos como fazer provas por indução mais adiante.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos I 35/68

Complexidade do Mergesort

```
MERGESORT(A, p, r)
    se p < r
2
        então q \leftarrow \lfloor (p + r)/2 \rfloor
3
               MERGESORT(A, p, q)
               MERGESORT(A, q + 1, r)
5
               INTERCALA(A, p, q, r)
```

```
linha consumo de tempo
            1
                      \Theta(1)
            2
                      \Theta(1)
            3
                      T(\lceil n/2 \rceil)
                      T(|n/2|)
                      \Theta(n)
T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n) + \Theta(2)
```

Complexidade do Mergesort

 Obtemos o que chamamos de fórmula de recorrência (i.e., uma fórmula que define uma função em termos dela mesma).

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é dada por uma fórmula de recorrência.
- É preciso então resolver a recorrência! Mas, o que significa resolver uma recorrência?
- Significa encontrar uma "fórmula fechada" para T(n).
- No caso, $T(n) = \Theta(n \lg n)$. Ou seja, o consumo de tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos depois como resolver recorrências.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 37/68

Notação Assintótica

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - Problemas de aritmética: número de bits (ou bytes) dos inteiros.
 - Problemas em grafos: número de vértices e/ou arestas
 - Problemas de ordenação de vetores: tamanho do vetor.
 - Busca em textos: número de caracteres do texto ou padrão de busca.
- Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos contando o número de operações.

Crescimento de funções

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 38/68

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

Por que queremos fazer isto? Considere as funções

$$n^2$$
, $2n^2$, $30n^2$, $100n^2$, cn^2 .

Obviamente, quanto maior a constante *c* associada, maior é o valor da função. Entretanto, todas elas têm a mesma velocidade de crescimento. Podemos ignorar o valor de *c*.

Por exemplo, considere as funções n^3 e cn^2 . Para $n \le c$, temos que $n^3 \le cn^2$, mas a partir de n > c a função n^3 cresce mais rapidamente que a função cn^2 .

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
n log n	200	3000	4 · 10 ⁴	6 · 10 ⁶	9 · 10 ⁹
n ²	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	1,0015 · 10 ⁶	1,00015 · 10 ⁸	$\approx 10^{10}$	$\approx 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 41/68

Classe O

 $O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n)cresce no máximo tão rapidamente quanto g(n).

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 42/68

Classe O

 $O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n)cresce no máximo tão rapidamente quanto g(n).

Exemplo:

 $\frac{1}{2}n^2 - 3n \in O(n^2)$.

Valores de c e no que satisfazem a definição são

$$c = \frac{1}{2} e n_0 = 7.$$

Classe O

 $O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n)cresce no máximo tão rapidamente quanto g(n).

Exemplo:

O que é a classe O(1)?

É classe de funções que são limitadas por alguma constante.

Classe Ω

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le cg(n) \le f(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n)cresce no mínimo tão lentamente quanto g(n).

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 44/68

Classe Ω

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \}$ que $0 \le cg(n) \le f(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n)cresce no mínimo tão lentamente quanto g(n).

Exemplo:

 $\frac{1}{2}n^2 - 3n \in \Omega(n^2)$.

Valores de c e n_0 que satisfazem a definição são

$$c = \frac{1}{14}$$
 e $n_0 = 7$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 44/68

Classe ⊖

 $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0\}$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n)cresce tão rapidamente quanto g(n).

Classe ⊖

 $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0\}$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n)cresce tão rapidamente quanto g(n).

Exemplo:

 $\frac{1}{2}n^2 - 3n \in \Theta(n^2)$.

Valores de c_1 , c_2 e n_0 que satisfazem a definição são

$$c_1 = \frac{1}{14}, c_2 = \frac{1}{2} e n_0 = 7.$$

Classe o

 $o(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma } \}$ constante $n_0 > 0$ tal que 0 < f(n) < cg(n), para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n)cresce mais lentamente que g(n).

Exemplo:

 $1000n^2 \in o(n^3)$

Para cada valor de c, um n_0 que satisfaz a definição é

$$n_0 = \left\lceil \frac{1000}{c} \right\rceil + 1.$$

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 46/68

Definições equivalentes

$$f(n) \in o(g(n)) ext{ se } \lim_{n o \infty} rac{f(n)}{g(n)} = 0.$$
 $f(n) \in O(g(n)) ext{ se } \lim_{n o \infty} rac{f(n)}{g(n)} < \infty.$
 $f(n) \in \Theta(g(n)) ext{ se } 0 < \lim_{n o \infty} rac{f(n)}{g(n)} < \infty.$
 $f(n) \in \Omega(g(n)) ext{ se } \lim_{n o \infty} rac{f(n)}{g(n)} > 0.$
 $f(n) \in \omega(g(n)) ext{ se } \lim_{n o \infty} rac{f(n)}{g(n)} = \infty.$

Classe ω

 $\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma } c$ constante $n_0 > 0$ tal que 0 < cq(n) < f(n), para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n)cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2 \in \omega(n)$$

Para cada valor de c, um n_0 que satisfaz a definição é

$$n_0 = [1000c] + 1.$$

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee

MC458 — Projeto e Análise de Algoritmos I 47/68

Propriedades das Classes

Transitividade:

Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$.

Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$.

Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.

Se $f(n) \in o(g(n))$ e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.

Se $f(n) \in \omega(g(n))$ e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$.

Propriedades das Classes

```
Reflexividade:
f(n) \in O(f(n)).
f(n) \in \Omega(f(n)).
f(n) \in \Theta(f(n)).
Simetria:
f(n) \in \Theta(g(n)) se, e somente se, g(n) \in \Theta(f(n)).
Simetria Transposta:
f(n) \in O(g(n)) se, e somente se, g(n) \in \Omega(f(n)).
f(n) \in o(g(n)) se, e somente se, g(n) \in \omega(f(n)).
```

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos I 50/68

Exemplos

Faça a comparação assintótica das seguintes funções:

- n log n
- 2^π
- 2ⁿ
- n
- \circ n^2
- log n
- \bullet 100 $n^2 + 15n$

Convenção

Exemplo 1: usaremos expressões como f(n) = O(g(n)). Ela significa a mesma coisa que $f(n) \in O(g(n))$, ou seja, a função f(n) pertence à classe de funções O(g(n)). O mesmo se aplica para Ω e Θ .

Exemplo 2: Mergesort tem complexidade de tempo $O(n \lg n)$. Isto significa que a função T(n) que mede a complexidade de tempo (de pior caso) do Mergesort pertence à classe de funções $O(n \lg n)$.

Exemplo 3: Mergesort tem complexidade de tempo $\Theta(n \lg n)$. Isto significa que a complexidade de tempo de Mergesort é $O(n \lg n)$ e existe alguma instância que requer tempo $\Omega(n \lg n)$.

Por outro lado, Mergesort tem complexidade de tempo $O(n^2)$ mas não $\Omega(n^2)$.

Cid Carvalho de Souza, Cândida Nunes da Silva, Orlando Lee MC458 — Projeto e Análise de Algoritmos I 51/68