IoT Interns: MQTT Communication

28 May 2025

While waiting...

- Go to the directory that you want
- Right click -> Open in terminal
- Run the command:

git clone https://github.com/PatchapongKul/CEPT_IoT_Intern.git

MQTT Communication

What have you found out about MQTT?

MQTT

Publish / Subscribe model
 What else can it be?

MQTT

Only subscribed clients receive the published messages

MQTT Topic

Topics are structured using a hierarchical format separated by **slashes** /. For example,

- Room/Sensor/Temperature
- Room/Sensor/Humidity
- Room/Actuator/Light

Or using wildcards:

- Room/# to subscribe all subtopics under room
- Room/+ to subscribe one level under room

(e.g., *Room/Sensor* but not *Room/Sensor/Temperature*)

Why MQTT?

https://www.emqx.com/en/blog/the-easiest-guide-to-getting-started-with-mqtt

MQTT Example: Home Automation

MQTT Example: Facebook Messenger

Note: Information from 2011

https://engineering.fb.com/2011/08/12/android/building-facebook-messenger/ https://stackoverflow.com/questions/61507894/how-does-facebook-utilize-mgtt-when-it-is-topic-based

IoT Interns: 1st Tutorial Session

28 May 2025

System Overview

Today's objective

To gain a basic understanding of how data flows — not aiming to become an expert

Expected Outcome

We should see the sensor data from ESP32 visualized on the dashboard

ESP32 Programming

Arduino IDE

ESP32 Programming Overview

Install Arduino Core for ESP32

- Open Arduino IDE > File > Preferences
- Add this URL to Additional Board Manager URLs: https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
- Tools > Board > Board Manager> Install ESP32

Install Required Libraries

- Adafruit HTS221
- Adafruit SHT₄x Library
- PubSubClient

https://www.gravitechthai.com/produc t/cucumber-rs-gravitech-esp32-s2wifi-dev-board-withsensors/11001005073001437

Cucumber Hardware Overview

GRAVITECH

Sensors are on the Cucumber S only.

https://www.gravitechthai.com/produc t/cucumber-rs-gravitech-esp32-s2wifi-dev-board-withsensors/11001005073001437

CUCUMBER PIN

I2C (Inter-Integrated Circuit)

- two-wire communication protocol (half-duplex)
 - **SCL** carries the clock signal
 - **SDA** carries the data
- Support multiple devices on those two wires (only 1 master)
- Each device has a unique address

SPI (Serial Peripheral Interface)

• four-wire communication protocol (full-duplex)

• MOSI Master Out Slave In

• MISO Master In Slave Out

• **SCK** Serial Clock

• SS Slave select

SPI Slave 1

SPI Master MISO
SCK
SS1
SS2
SS2
SPI Slave

Sensors are on the Cucumber S only.

https://www.gravitechthai.com/produc t/cucumber-rs-gravitech-esp32-s2wifi-dev-board-withsensors/11001005073001437

CUCUMBER PIND

Let's check the sensors' address

- Arduino IDE > Open this file: CEPT_IoT_Intern\Training\Tutorial-Session-1\esp32\I2C_scanner\I2C_scanner.ino
- To scan all the I2C devices connected to ESP32

Connect board to your Laptop

- Use USB-C Data cable to connect ESP32 (debug port) with your laptop.
- It will show the detected com port
- Choose ESP32S2 Dev Module and detected COM port

I2C Scanner

Upload code to your board


```
I2C scanner.ino
              ci.json
        #include "Wire.h"
        void setup() {
          Serial.begin(115200);
         Wire.begin(41, 40);
        void loop() {
          byte error, address;
          int nDevices = 0;
  11
  12
          delay(5000);
          Serial.println("Scanning for I2C devices ...");
          for (address = 0x01; address < 0x7f; address++) {</pre>
  15
            Wire.beginTransmission(address);
  17
            error = Wire.endTransmission();
            if (error == 0) {
              Serial.printf("I2C device found at address 0x%02X\n", address);
              nDevices++;
            } else if (error != 2) {
  21
              Serial.printf("Error %d at address 0x%02X\n", error, address);
  23
  25
          if (nDevices == 0) {
            Serial.println("No I2C devices found");
  27
```

Temperature & Humidity Sensor

- If you found **0x5F**, you go with the **HTS221** sensor
- If you found 0x44, you go with the SHT4x sensor

 To read sensor value, open this file: CEPT_IoT_Intern\Training\Tutorial-Session-1\esp32\read_sonsors\read_xxxx\read_xxxx.ino

Read sensor data

Connect to Wi-Fi, MQTT, NTP

- We need Wi-Fi because we need internet
- We need MQTT because we need to transmit data
- We need NTP because we need the correct time

• To connect those services, open this file: CEPT_IoT_Intern\Training\Tutorial-Session-1\esp32\wifi-mqtt-ntp\wifi-mqtt-ntp.ino

Change credentials

```
// WiFi Credentials
const char* ssid = "WIFI SSID";
const char* password = "Password";
 // MOTT Broker
const char* mqtt server = "broker.netpie.io";
const int mqtt port = 1883;
const char* mqtt client = "REPLACE WITH YOUR CLIENT ID"; // Replace with your NETPIE clientID
const char* mqtt user = "REPLACE WITH YOUR TOKEN"; // Replace with your NETPIE Token
const char* mqtt_pass = "REPLACE_WITH_YOUR_SECRET"; // Replace with your NETPIE Secret
// MQTT Topic
const char* mqtt topic = "@msg/sensor";
```

How to verify if MQTT is connected?

ESP32 continuously sends the generated data to NETPIE

Try receiving data from NETPIE!

ESP32 Programming Overview

Your turn!

- Now you can read the sensor data
- Also, you can connect to NETPIE and send the generated data

Then, try sending the sensor data to NETPIE and check if it was sent successfully using another MQTT client

You have time until 10:25

ESP32 Programming Overview

How about using python as MQTT client?

- pip install paho-mqtt
- Go to file: CEPT_IoT_Intern\Training\Tutorial-Session-1\ esp32\subscribe_mqtt.py

```
# Replace these with your credentials

CLIENT_ID = "REPLACE_WITH_YOUR_CLIENT_ID"; # Replace with your NETPIE client ID

TOKEN = "REPLACE_WITH_YOUR_USERNAME" # Replace with your NETPIE token

SECRET = "REPLACE_WITH_YOUR_PASSWORD"; # Replace with your NETPIE secret
```

Run the MQTT Client Python Script

To run a Python script from the terminal:

- > python [file path]
- > Example: pythonTraining\Tutorial-Session-1\esp32\subscribe_mqtt.py

Keep sending data from ESP32 and verify the incoming message from the subscribed topic!

ESP32 Programming Overview

After Break!

DURING BREAK

Install images and library for next section

Open command prompt and run following command one by one

docker pull timescale/timescaledb:2.20.0-pg17
docker pull grafana/grafana-oss
pip install psycopg2

10-IVITUTE BREAK

SEE YOU AT