Семинар №3

Пространство \mathbb{R}^n

Def. Метрическое пространство \mathbb{R}^n — множество элементов (точек) $x = \underbrace{(x_1, \, x_2, \dots, x_n)}_{x_i$ с заданным расстоянием между ними:

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (евклидова метрика)

Свойства $\rho(x, y)$:

 $1)\rho(x,y) \ge 0$; $\rho(x,y)=0 \Leftrightarrow x=y$;

 $2)\rho(x,y) = \rho(y,x);$

3) $\forall z \in \mathbb{R}^n \hookrightarrow \rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$; (неравенство \triangle)

Замечание. \mathbb{R} можно рассматривать как метрическое пространство \mathbb{R}^n при n=1; в нем $\rho(x,y)=|y-x|$.

Def. В \mathbb{R}^n вводятся операции $x+y\stackrel{\text{def}}{=}(x_1+y_1,...,x_n+y_n)$ и $\lambda x\stackrel{\text{def}}{=}(\lambda x_1,...,\lambda x_n)$.

Def. (Шаровая) ε — окрестность точки $x^{(0)}$: $U_{\varepsilon}(x^{(0)}) = \{x \mid \rho(x, x^{(0)}) < \varepsilon\}$.

Рис. 1. ε — окрестность точки $x^{(0)}$

Замечание. Аналогично можно ввести прямоугольную, квадратную и другие окрестности.

Def.
$$\mathring{\mathbf{U}}_{\varepsilon}(x^{(0)}) = \mathbf{U}_{\varepsilon}(x^{(0)}) \setminus \left\{ x^{(0)} \right\}$$

Def. Последовательность $\{x^{(m)}\}$ — отбражение $\mathbb{N} \to \mathbb{R}^n \ (\forall m \in \mathbb{N} \$ поставлена в соответсвие точка $x^{(m)} \in \mathbb{R}^n \)$

Def.
$$\lim_{m \to \infty} x^{(m)} = x^{(0)}$$
, если

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \, : \, \forall m \geqslant N \hookrightarrow \underbrace{\rho(x^{(m)}, x^{(0)}) < \varepsilon}_{\left(x^{(m)} \in \mathring{\mathbb{U}}_{\varepsilon}(x^{(0)})\right)}$$

Замечание.
$$\lim_{m \to \infty} x^{(m)} = x^{(0)} \Leftrightarrow \lim_{m \to \infty} \underbrace{\rho(x^{(m)}, x^{(0)})}_{\text{числовая}} = 0 \Leftrightarrow \underbrace{\lim_{m \to \infty} x_i^{(m)} = x_i^{(0)}}_{\text{пределы п числовых}}, i = 1, \dots, n.$$

Def. $\lim_{m \to \infty} x^{(m)} = \infty$, если $\rho(x^{(m)}, 0) = \infty$.

Задача. Д-ть: $\lim_{m \to \infty} \rho(x^{(m)},0) = \infty \Leftrightarrow \forall a \in \mathbb{R}^n \hookrightarrow \lim_{m \to \infty} \rho(x^{(m)},a) = \infty$

Доказательство:

"⇒" Пусть
$$\lim_{m \to \infty} \rho(x^{(m)}, 0) = \infty \Rightarrow \forall a \in \mathbb{R}^n \hookrightarrow \rho(x^{(m)}, a) + \rho(a, 0) \stackrel{\text{H-BO}}{\geqslant} \rho(x^{(m)}, 0) \Rightarrow \rho(x^{(m)}, a) \geqslant \underbrace{\rho(x^{(m)}, 0)}_{\infty} \underbrace{-\rho(a, 0)}_{const} \Rightarrow \rho(x^{(m)}, a) \xrightarrow[m \to \infty]{} \infty;$$

Весна 2018 г. 1

"

«=" пусть
$$\forall a \in \mathbb{R}^n \hookrightarrow \lim_{m \to \infty} \rho(x^{(m)}, a) = \infty$$
. Возьмем $a = 0 \in \mathbb{R}^n \Rightarrow \lim_{m \to \infty} \rho(x^{(m)}, 0) = \infty$. ■

Def. $\{x^{(m)}\}$ называется ограниченной, если <u>числовая</u> последовательность $\{\rho(x^{(m)},0)\}$ ограничена.

Th (Больцано-Вейерштрасса).

Из ∀ ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Тһ (Критерий Коши сходимости последовательности).

$$\left\{x^{(m)}\right\} \operatorname{сходится} \Leftrightarrow \forall \varepsilon \! > \! 0 \; \exists N \! \in \! \mathbb{N} : \forall m \geqslant N, \forall p \in \mathbb{N} \hookrightarrow \rho(x^{(m)}, x^{(m+p)}) < \varepsilon.$$

Классификация множеств в \mathbb{R}^n

І Открытые множества.

Def. х называется внутренней точкой м-ва $E \subset \mathbb{R}^n$, если $\exists U_{\varepsilon}(x) \subset E$.

Def. Внутренность мн-ва $E \subset \mathbb{R}^n$: $intE = \{x \mid x$ — внутренняя т. $E \}$.

Пример: int[1;2] = (1;2) (внутренность отрезка — интервал)

Def. Мн-во $E \subset \mathbb{R}^n$ называется открытым, если $\forall x \in E$ является внутренней т. Е, т.е. intE = E

Замечание. \varnothing , \mathbb{R}^n — открытые множества. $\begin{tabular}{l} ! \\ \exists \ \varepsilon \ \text{окр-ть} \\ \hline \mathbf{Примеры.} \ n=1:(a,b)$ — открытое мн-во $\begin{tabular}{l} \bullet \\ \hline a \\ \hline \end{tabular}$

[a,b] — не открытое мн-во $\underbrace{ }^{\bigstar \varepsilon \text{ окр-ть}}_{a}$ (a,b не являются внутренними точками)

Рис. 2

Th. A, B — открытые мн-ва $\Rightarrow \underbrace{A \cup B}_{a)}$ открытое и $\underbrace{A \cap B}_{6)}$ открытое.

Доказательство: (см. Рис. 3)

- а) пусть $x \in A \cup B \Rightarrow x \in a$ или $x \in B$. Если $x \in A$, то $\exists U_{\varepsilon}(x) \subset A \subset A \cup B \Rightarrow$ \Rightarrow x— внутренняя точка $A \cup B$. Аналогично при $x \in B$.
- **б)** если $A \cap B = \emptyset$ очев. Пусть $A \cap B \neq \emptyset$. Пусть $x \in A \cap B \to x \in A$ и $x \in B$.

х — внутр. для $A \Rightarrow \exists U_{\varepsilon_A}(x) \subset A$;

x — внутр. для $B \Rightarrow \exists U_{\varepsilon_B}(x) \subset B$.

Возьмем $\varepsilon = min\{\varepsilon_A, \varepsilon_B\}$. Тогда $U_\varepsilon(x) \subset A \cap B \Rightarrow x$ — внутренняя для $A \cap B$.

Рис. 3. Иллюстрация к доказательству Тh.

Следствие. ∪ любого числа открытых множеств — открытое множество.

 \cap конечного числа открытых множеств — открытое множество *

Замечание. Для бесконечного числа открытых множеств * выполняется не всегда.

Def. \forall открытое мн-во, содержащее т.х, называется окрестностью т.х и обозн. U(x). Аналогично $\mathring{U}(x)$.

II Замкнутые множества.

Def. $x \in \mathbb{R}^n$ — т. прикосновения мн-ва $E \subset \mathbb{R}^n$, если $\forall U(x) \cap E \neq \emptyset$.

Def. Замыкание множества $E \subset \mathbb{R}^n : \overline{E} = \{x \mid x - \mathbf{T}.$ прикосновения $E\}$

• — — не замкнутое, не открытое a b

о——— не замкнутое, открытое а h

n=2 (см. Рис. 4): E= открытый круг \cup отдельная точка; $\overline{E}=$ круг, включая границу \cup отдельная точка.

Рис. 4

Замечание. \emptyset , \mathbb{R}^n — замкнутые множества (и одновременно открытые) !

Def. $\mathbb{R}^n \setminus E$ называется дополнением множества E.

Th. Е открыто $\Leftrightarrow \mathbb{R}^n \setminus E$ замкнуто. (Е замкнуто $\Leftrightarrow \mathbb{R}^n \setminus E$ открыто)

Th (законы де Моргана).

$$\mathbb{R}^{n} \setminus \left(\bigcup_{i} E_{i} \right) = \bigcap_{i} \left(R^{n} \setminus E_{i} \right)$$
$$\mathbb{R}^{n} \setminus \left(\bigcap_{i} E_{i} \right) = \bigcup_{i} \left(R^{n} \setminus E_{i} \right)$$

Следствие. А,В — замкнутые множества $\Rightarrow A \cap B$ замкнуто и $A \cup B$ замкнуто.

Следствие. \cap <u>любого</u> числа замкнутых множеств — замкнутое множество. \cup конечного числа замкнутых множеств — замкнутое множество*

Замечание. Для бесконечного числа замкнутых множеств * выполняется не всегда.

Пример:
$$\bigcup_{n=1}^{\infty} \underbrace{\left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right]}_{\text{зам.}} = \underbrace{(-1, 1)}_{\text{не зам.}}$$

III Изолированные и предельные точки.

Def. $x \in E$ — изолированная точка множества $E \subset \mathbb{R}^n$, если $\exists \mathring{\mathsf{U}}_{\varepsilon}(x) : \mathring{\mathsf{U}}_{\varepsilon}(x) \cap E = \emptyset$.

Пример:

Рис. 5

Def. х — предельная точка множества $E \subset \mathbb{R}^n$, если $\forall \mathring{\mathbb{U}}(x) \cap E \neq \emptyset$

Замечание. х — предельная точка $E \Leftrightarrow \exists$ последовательность Гейне $x^{(m)} \subset E$, сходящаяся к х.

Замечание. \forall мн-ва $E \subset \mathbb{R}^n \hookrightarrow \{\text{т-ки прикосновения}\} = \{\text{предельные т-ки}\} \cup \{\text{изолированные т-ки}\}$, причем $\{\text{предельные т-ки}\} \cap \{\text{изолированные т-ки}\} = \emptyset$.

IV Границы множеств.

Def. х — граничная точка множества $E \subset \mathbb{R}^n$, если $\forall U(x)$ содержит как точки из E, так и из $\mathbb{R}^n \setminus E$.

Def. Граница множества $E \subset \mathbb{R}^n$: $\partial E = \{x \mid x$ — граничная точка $E\}$.

Пример: граница круга и изолированной точки

 ∂E

Рис. 6

Примеры. Е-? : 1) $\partial E \subset \mathbf{u} \ \partial E \neq E$ — замкнутый круг $2)\partial E = E \longrightarrow \mathbf{o}$ окружность, точка $3)\partial E \cap E = \emptyset \longrightarrow \mathbf{o}$ открытый круг $4)\partial E = \emptyset \longrightarrow \mathbb{R}^n$ $5)\partial E \supset E \ \mathbf{u} \ \partial E \neq E \longrightarrow \mathbb{Q}; \qquad .$

V Связность множества. Области и компакты.

Напоминание.

Непрерывная (параметрически заданная) кривая $\Gamma \subset \mathbb{R}^n$ – множество точек, заданное как непрерывное отображение отрезка $\alpha \leq t \leq \beta$:

$$\Gamma = \{x(t) = (x_1(t), \dots, x_n(t)) | t \in [\alpha, \beta] \}$$

Def. Множество $E \subset \mathbb{R}^n$ называется линейно связным, если \forall его 2 точки можно соединить непрерывной кривой $\Gamma \subset E$.

Замечание. Множество, состоящее из 1 точки, считается линейно связным.

Пример:

не линейно связно

Рис. 7

Def. Множество $E \subset \mathbb{R}^n$ называется областью, если оно открыто и линейно связно.

Def. Множество $E \subset \mathbb{R}^n$: $E \neq \emptyset$, называется компактом, если оно замкнуто и ограничено.

Примеры. Интервал – область, отрезок — компакт.

Дополнение к множествам в \mathbb{R}^n

I Def. Множество $E \subset \mathbb{R}^n$ называется <u>связным,</u> если \forall его разбиения $E = A \cup B, A \cap B = \emptyset \hookrightarrow A \cap \overline{B} \neq \emptyset$.

Пример: связное, но не линейно связное множество : $E = \{(x,y)|x \ge 0, y = \begin{cases} \sin\frac{1}{x}, x \ne 0 \\ 0, x = 0 \end{cases}$. Е — график функции, имеющей точки разыва II рода ⇒ не линейно связное; но $\{(0,0)\}$ ∩ $E\setminus\{(0,0)\}$ = $\{(0,0)\}$ ≠ \emptyset ⇒ E связно.

Замечание. Е линейно связно ⇒ Е связно.

$$K \subset \bigcup_{k=1}^{\infty} G_k$$

 $K\subset\bigcup_{k=1}^\infty G_k$ III Тh (лемма Гейне-Бореля). Пусть $K\subset\mathbb{R}^n$ — компакт и $\{G_k\}_{k=1}^\infty$ — его покрытие открытыми мн-ми. Тогла из $\{G_k\}_{k=1}^\infty$ открытыми мн-ми. Тогда из $\left\{G_k\right\}_{k=1}^\infty$ можно выделить конечное подпокрытие $\left\{G_k\right\}_{k=1}^m$ компакта К. **Доказательство:** для \mathbb{R} и случая K = [a, b]

Предположим обратное \Rightarrow одну из половин $\left[a,\frac{a+b}{2}\right],\left[\frac{a+b}{2},a\right]$ нельзя покрыть конечным подпокрытием. Делим этот отрезок пополам и т.д. Получаем CBO с длиной $\rightarrow 0$, стягивающуюся к $x_0 \in [a,b]$. $x_0 \in$ одному из $G_k \Rightarrow$ начиная с некоторого шага деления отрезок целиком $\subset G_k$?!

Примеры использования: 1) доказательство Th Кантора о PH f(x) на [a,b]

: 1) доказательство Тh Кантора о PH
$$f(x)$$
.
2)задача: доказать, что $\bigcup_{k=1}^{\infty} U_{\frac{1}{2^k}}(q_k) \neq \mathbb{R}$

Задача (&2 9.2). Является ли область определения $f(x,y) = \sqrt{x \sin y}$ замкнутым? открытым? областью?

Утверждение. $\overline{E} = intE \cap \partial E$

Доказательство: Пусть $x \in \overline{E} \Rightarrow \forall U(x)$ содержит $x_1 \in E$. Либо $\exists U^{(1)}(x)$, целиком $\subset E$, либо

 $\forall U(x)$ содержит $x_2 \notin E$. В первом случае $x \in intE$, во втором $x \in \partial E$

Следствие.
$$\partial E \subset E \Rightarrow \overline{E} = E.\left(\overline{E} = \underbrace{intE}_{\stackrel{\frown}{E}} \cup \partial E\right)$$

Решение:

Обозначим область определения $D.\ \partial D = \{(0,y) \mid y \in \mathbb{R}\} \cup \{(x,2\pi n) \mid x \in \mathbb{R}, n \in \mathbb{Z}\} \subset D \Rightarrow \overline{D} = D$

 $\exists D \text{ замкнуто.}$ $\exists D \subset D \Rightarrow \mathbf{D} \text{ не является открытым } \Rightarrow \mathbf{D} \text{ не область.}$ $\exists D \neq \emptyset$

Замечание. D линейно связно

Рис. 8. Иллюстрация к задаче &2 9.2

Задача (&1 13). $f \in \mathbb{C}$ (\mathbb{R}), $y_0 \in \mathbb{R}$. Доказать: $S = \{x \mid f(x) > y_0\}$ открыто.

План: берем $x_0 \in S$, берем $\varepsilon = \frac{f(x_0) - y_0}{2}$, показываем, что $x_0 \in intS$.

Функции многих переменных

Def. $y=f(x)=f(x_1,\dots,x_n)$ — отображение $X\to\mathbb{R}$, где $X\subset\mathbb{R}^n$ — множество определения.

Рассмотрим f(x) на множестве $E\subset X$; пусть $x^{(0)}$ — предельная точка E.

Def. (предел f(x) в точке $x^{(0)}$ по множеству E)

Def. (предел
$$f(x)$$
 в точке $x o 110$ множеству E)
$$\lim_{\substack{x \to x^{(0)} \\ x \in E}} f(x) = a, \text{ если} \begin{bmatrix} \text{по Гейне: } \forall \{x^{(m)}\} \subset E \setminus \{x^{(0)}\} : \lim_{\substack{m \to \infty \\ m \to \infty}} x^{(m)} = x^{(0)} \hookrightarrow \lim_{\substack{m \to \infty \\ m \to \infty}} f(x^{(m)}) = a \\ \text{по Коши: } \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \mathring{\mathbb{U}}_{\delta}(x^{(0)}) \cap E \hookrightarrow |f(x) - a| < \varepsilon \end{bmatrix}$$

Обозначения:
$$\lim_{\substack{x \to x^{(0)} \\ x \in E}} f(x) = \lim_{\substack{\rho(x, x^{(0)}) \to 0 \\ x \in E}} f(x) = \lim_{\substack{x_1 \to x_1^{(0)} \\ \vdots \\ x_n \to x_n^{(0)} \\ (x_1, x_2) \in E}} f(x).$$

Пример: функция Дирихле
$$D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{I} \end{cases} \lim_{\substack{x \to 0 \\ x \in \mathbb{Q}}} D(x) = 1, \lim_{\substack{x \to 0 \\ x \in \mathbb{I}}} D(x) = 0.$$

Замечание. в \mathbb{R}^n сохраняются основные свойства пределов (**Th** об арифметический действиях, свойства, связанные с неравенствами, понятия бесконечно малых и бесконечно больших функций). **Def.** (предел f(x) в точке $x^{(0)}$)

Пусть f(x) определена в некоторой $\mathring{\mathrm{U}}(x^{(0)})$.

$$\lim_{x \to x^{(0)}} f(x) \stackrel{\text{def}}{=} \lim_{\substack{x \to x^{(0)} \\ x \in \mathring{\mathbb{U}}(x^{(0)})}} f(x)$$

.

Тh. Пусть f(x) определена в некоторой $\mathring{\rm U}(x^{(0)})$. $\lim_{\substack{x\to x^{(0)}}} f(x)=a \Leftrightarrow \forall E\subset X:$ $x^{(0)} - \text{предельная точка } E\hookrightarrow \lim_{\substack{x\to x^{(0)}\\x\in E}} f(x)=a$

Весна 2018 г. 7