Boolean Cebri ve Lojik Kapılar

Cebirsel Sistem

- Cebrin Anlamı Nedir?
- Matematik Sistem
 - Bir dizi eleman
 - Bir dizi işlem
 - Aksiyomlar ve Kanunlar
- Niçin önemlidir?
 - Hesaplama kurallarını tanımlar
- Örnek: Doğal Sayılar üzerinde Aritmetik İşlemler
 - Eleman dizisi : N = {1,2,3,4,...}
 - □ İşlem Operatörü +, –, *
 - Aksiyomlar : Birleşme, Dağılma, Kapalılık, Birim Eleman özellikleri
- Binary : İki girişli işlem operatörü
- Unary Bir girişli işlem operatörü

TEMEL TANIMLAMALAR

- Küme : Aynı özelliğe sahip elemanlar topluluğu
 - □ S: küme , x ve y: eleman
 - □ Örnek: *S* = {1, 2, 3, 4}
 - x = 2 ise o halde $x \in S$.
 - y = 5 ise o halde $y \notin S$.
- S kümesi elemanları üzerinde tanımlanan İkili operatör S kümesinden alınan herbir eleman çiftini S kümesindeki bir tek elemana dönüştüren kuraldır.
 - Örneğin: Verilen bir S kümesinde
 - a*b = c işlemi düşünelim * bir ikili işlem operatörü gösterir.
 - Eğer (a, b) eleman çiftine * işlemi uygulandığında c elemanı elde ediliyor ise, $(a, b, c \in S,)$
 - o halde * S kümesinin bir ikili operatörüdür.
 - Diğer yandan. * S in bir ikili operatörü değil ise (a, b∈S,)
 o halde c ∉ S.

TEMEL TANIMLAMALAR

- Çeşitli cebirsel yapıları formüle etmek için kullanılan en çok bilinen kanunlar şunlardır:
- 1. Kapalılık (Closure):

S kümesinden alınan her eleman çifti için bir ikili operatör S nin tek bir elemanını elde etme kuralını belirliyorsa bu S kümesi ikili operatöre göre kapalıdır.

- Örneğin: Doğal sayılar N={1,2,3,...} + operatörüne göre kapalıdır.
 a+b = c Her a,b∈N için bir c∈N dönüşümü tanımlıdır.
 operatörü ise doğal sayılar kümesi için kapalılık özelliğini sağlamaz.
 2-3 = -1 2, 3 ∈N, ancak (-1)∉N.
- 2. Birleşme Kanunu (Associative law):

S kümesi üzerinde tanımlı * ikili operatörü birleşme kanunu sağlaması için:

$$(x * y) * z = x * (y * z)$$
 her $x, y, z \in S$
 $(x+y)+z = x+(y+z) + i$ şlemi de bu özelliği sağlar...

3. Değişme Kanunu (Commutative law) : S kümesi üzerinde tanımlı * ikili operatörü değişme kanununu sağlaması için:

$$x * y = y * x$$
 for all $x, y \in S$ $x+y = y+x$

TEMEL TANIMLAMALAR

4. Birim eleman (Identity element): Bir S kümesi elemanı e∈S aşağıdaki özelliği sağlarsa, * operatörüne göre bu küme bir birim elemana sahiptir.

```
□ e * x = x * e = x her x \in S
□ 0+x = x+0 = x her x \in I. I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.
□ 1*x = x*1 = x her x \in I. I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.
```

5. Ters Eleman (Inverse element): Aşağıda tanımlı özelliği sağlayan her x∈S için bir y∈S mevcutsa, bu S kümesi * operatörüne göre bir ters elemana sahiptir.

- x * y = e
- + operatörü *l üzerinde*, (e = 0), ters eleman özelliği gösterir
- a elemanın tersi (-a), (a+(-a) = 0).

6. Dağılma Kanunu (Distributive law)

* ve . operatörleri S kümesi üzerinde tanımlı olsunlar. * operatörü . operatörü üzerinde dağılma özelliği göstermesi için:

$$x * (y. z) = (x * y). (x * z)$$
 Her x, y, z $\in S$

Boolean Cebirsel Sistemi

- İkili değerler için cebri tanımlamak gerekmektedir.
- George Boole 1854 yılında ilk defa ortaya atmıştır.
- Boolean Cebri için Huntington Postulaları (1904):
- $B = \{0, 1\}$ ve iki ikili işlem, + ve
 - operator + ve operator · için Kapalılık Özelliği
 - operator + için birim eleman 0 and operator · için 1
 - + ve · operatörleri için Değişim özelliği

$$x+y=y+x$$
, $x\cdot y=y\cdot x$

+ operatörünün . üzerine ve . operatörünün + üzerine dağılma özelliği

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
 and $x + (y \cdot z) = (x+y) \cdot (x+z)$

Her x elemanının tümleyeni x' olsun x+x'=1, $x\cdot x'=0$

En az 2 ayrık eleman x ve y vardır ki x≠y

Boolean Cebri

Terminoloji:

Literal: Bir değişken veya tümleyeni

- Çarpım Terimi (Product term): ile bağlanmış değişken grubu
- x.y x.y' x'.y x'.y'
- Toplam Terimi (Sum term): + ile bağlanmış değişken grubu
 - x+y x+y' x'+y x'+y'

İki-değerli Boolean Cebri Postulaları

- \blacksquare B = {0, 1} ve iki ikili işlemler + ve •
- İşlem kuralları : AND 、 OR ve NOT.

	AND	
Χ	У	x. y
0	0	0
0	1	0
1	0	0
1	1	1

X	У	x+y
0	0	0
0	1	1
1	0	1
1	1	1

OR

X	x "
0	1
1	0

NOT

- 1. Kapalılık (+ ve·)
- 2. Birim elemanlar
 - (1) +: 0
 - (2) : 1

İki-değerli Boolean Cebri Postulaları

- 3. Değişim kanunları
- 4. Dağılma kanunları

X	у	Z	y+z	x . (y+z)	х. у	X. Z	(x . y)+ (x . z)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1		1	0	1
1	1	1	1	1	1	1	1

İki-değerli Boolean Cebri Postulaları

5. Tümleme

- $x+x'=1 \rightarrow 0+0'=0+1=1; 1+1'=1+0=1$
- $x \cdot x' = 0 \rightarrow 0 \cdot 0' = 0 \cdot 1 = 0; 1 \cdot 1' = 1 \cdot 0 = 0$
- 6. İki ayrık eleman varlığı 1 ve 0, 0 ≠ 1
- Not
 - İki elemanlı bir küme
 - + : OR işlemi; . : AND işlemi
 - Tümleme operatörü NOT işlemi
 - İkili Mantık iki değerli Boolean cebridir.

İkililik Prensibi 'Duality'

- İkilik prensibi önemli bir kavramdır. Bir ifade Boolaen Cebrinde tanımlı ise, bu ifadenin ikili karşılığıda tanımlı bir ifadedir.
- Bir ifadenin ikili karşılığını bulmak için, orijinal ifadede + yerine . , . yerine +, 0 yerine 1, 1 yerine 0 konulur.
- ifadenin duali

```
a + (bc) = (a + b)(a + c)
 a(b + c) = ab + ac
```

May 25, 2019 1

Temel Teoremler

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	(b) $x \cdot x' = 0$
Theorem 1	(a) x + x = x	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	(b) $x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) xy = yx
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) x(yz) = (xy)z
Postulate 4, distributive	(a) x(y+z) = xy + xz	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) x(x+y) = x

Boolean Teoremleri

Huntington'un postulaları bazı kuralları tanımlar.

```
Post. 1: closure

Post. 2: (a) x+0=x, (b) x\cdot 1=x

Post. 3: (a) x+y=y+x, (b) x\cdot y=y\cdot x

Post. 4: (a) x(y+z)=xy+xz,

(b) x+yz=(x+y)(x+z)

Post. 5: (a) x+x'=1, (b) x\cdot x'=0
```

- Cebirsel ifadeleri değiştirmek için daha fazla kural gerekir.
 - Teoremler postulalardan türetilir.
- Teorem Nedir?
 - Postulalardan türetilen bir formül yada ifade (veya diğer ispatlanmış teoremler)
- Boolean cebri temel teoremleri
 - □ Teorem 1 (a): x + x = x (b): $x \cdot x = x$

İspat: x+x=x

SadeceHuntington postulalarıkullanarak

<u>Huntington postulaları</u>

Post. 2: (a) x+0=x, (b) $x\cdot 1=x$

Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$

Post. 4: (a) x(y+z) = xy+xz,

(b) x+yz = (x+y)(x+z)

Post. 5: (a) x+x'=1, (b) $x \cdot x'=0$

x+x=x olduğunun gösterimi.

$$x+x = (x+x)\cdot 1$$
 2(b)
= $(x+x)(x+x')$ 5(a)
= $x+xx'$ 4(b)
= $x+0$ 5(b)
= x 2(a)

Teorem 1(a) yı ileriki ispatlarda kullanacağız.

 $ispat : x \cdot x = x$

Huntington postulates:

Post. 2: (a) x+0=x, (b) $x\cdot 1=x$

Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$

Post. 4: (a) x(y+z) = xy+xz,

(b) x+yz = (x+y)(x+z)

Post. 5: (a) x+x'=1, (b) $x \cdot x'=0$

Th. 1: (a) x+x=x

x·x = x olduğunun gösterimi.

$$x \cdot x = xx + 0$$
 2(a)

$$= xx + xx'$$
 5(b)

$$= x(x+x') 4(a)$$

$$= x \cdot 1$$
 5(a)

$$= x$$
 2(b)

İspat: x+1=1

Teorem 2(a): x + 1 = 1 x + 1 = 1 (x + 1) = (x + x')(x + 1) = x + x' 1 = x + x' = 1Huntington postulaları: $2(b) \text{Post. 2: (a) } x + 0 = x, \text{ (b) } x \cdot 1 = x$ $\text{Post. 3: (a) } x + y = y + x, \text{ (b) } x \cdot y = y \cdot x$ Post. 4: (a) x(y + z) = xy + xz, (b) x + yz = (x + y)(x + z) (b) x + yz = (x + y)(x + z) (b) x + yz = (x + y)(x + z) $\text{Post. 5: (a) } x + x' = 1, \text{ (b) } x \cdot x' = 0$ Th. 1: (a) x + x = x

- Teorem 2(b): $x \cdot 0 = 0$ ikililik prensibi
- Teorem 3: (x')' = x
 - Postula 5, x tümleyeni tanımlar, x + x' = 1 ve x x' = 0
 - \square x' tümleyeni x = (x')'

Kapsama Özelliği (Covering)

Teorem 6(a):
$$x + xy = x$$

$$x + xy = x$$
. $1 + xy$ 2(b)
= $x (1 + y)$ 4(a)
= $x (y + 1)$ 3(a)
= x . 1 2(a)
= x 2(b)

Huntington postulaları:

Post. 2: (a)
$$x+0=x$$
, (b) $x\cdot 1=x$

Post. 3: (a)
$$x+y=y+x$$
, (b) $x\cdot y=y\cdot x$

Post. 4: (a)
$$x(y+z) = xy+xz$$
,

(b)
$$x+yz = (x+y)(x+z)$$

Post. 5: (a)
$$x+x'=1$$
, (b) $x \cdot x'=0$

Th. 1: (a)
$$x+x=x$$

- Teorem 6(b): x (x + y) = x İkililik Özelliği
 - Doğruluk Tablosu kullanark (diğer bir ispat yolu)

X	У	хy	x+xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

DeMorgan Teorem

- Teorem 5(a): (x + y)' = x'y'
- Teorem 5(b): (xy)' = x' + y'
- Doğruluk Tablosu yardımıyla ispat

x	y	<i>x</i> '	<i>y</i> '	<i>x</i> + <i>y</i>	(x+y)	<i>x'y'</i>	xy	x'+y'	(xy) '
					1				
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

May 25, 2019 18

Yutma Teoremi

- 1. xy + x'z + yz = xy + x'z
- 2. $(x+y)\cdot(x'+z)\cdot(y+z) = (x+y)\cdot(x'+z)$ -- (dual)
- ispatı:

$$xy + x'z + yz = xy + x'z + (x+x')yz$$

= $xy + x'z + xyz + x'yz$
= $(xy + xyz) + (x'z + x'zy)$
= $xy + x'z$

(İkililik prensibi ile diğer teoremi (2) ispatlayınız).

- Boolean İfadelerini değerlendirmek için kullanılır:
- Parantez
 - NOT
 - AND
 - OR
- Örnekler:

$$x y' + z$$
$$(x y + z)'$$

Boolean Fonksiyonları:

- Bir Boolean Fonksiyonu
 - İkili Değişkenler
 - İkili Operatörler OR ve AND
 - Tekil Operatör NOT
 - Parentezler

Örnekler:

- $\Box F_1 = x y z'$
- $F_2 = x + y'z$
- $\Box F_4 = x y' + x' z$

Boolean Fonksiyonları

2ⁿ girişli Doğruluk Tablosu (truth table)

X	У	Z	F ₁	F_2	F ₃	F ₄
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

İki Boolean fonksiyonu aynı doğruluk tablosuna sahipse bu fonksiyonların cebirsel ifadeleri de aynıdır.

 $[\]Box F_3 = F_4$

Boolean Fonksiyonları

- Lojik kapılarla gerçekleme
 - □ F₄ çok daha ekonomiktir.

$$F_4 = x y' + x' z$$

Cebirsel Manüplasyon

- Boolean ifadelerini minimize etmek için,
 - Literal: Tek değişken (bir kapının bir girişi)
 - Term: Bir kapılı gerçekleme
 - Literal veya term sayısını minimize etmek→ daha az kapılı bir devre
 - Belirli bir kuralı yok
- Example 2.1
 - 1. x(x'+y) = xx' + xy = 0+xy = xy
 - 2. x+x'y = (x+x')(x+y) = 1 (x+y) = x+y
 - 3. (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x
 - 4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) + x'z(1+y) = xy + x'z
 - 5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), ikililik prensibi (duality). Yutma teoremi

Bir Fonksiyonun Tümleyeni

By DeMorgan's theorem

Genelleştirme: Bir fonksiyon ifadesinde AND ve OR operatörleri yerdeğiştirilerek ve her değişkenin tümleyeni alınarak fonksiyonun tümleyeni bulunur.

- \Box (A+B+C+D+...+F)' = A'B'C'D'...F'
- \Box (ABCD ... F)' = A'+ B'+C'+D' ... +F'

Örnekler

■ Örnek 2.2

```
\neg F_1' = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z')
```

$$F_{2}' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)'$$

$$= x' + (y+z) (y'+z')$$

$$= x' + yz'+y'z$$

- Örnek 2.3: daha basit bir prosedür
 - Fonksiyonun dualini al ve her değişkeni tümleyenini koy.

1.
$$F_1 = x'yz' + x'y'z$$
.

Dual
$$F_1$$
 (x'+y+z') (x'+y'+z).

Değişken tümleme : $(x+y'+z)(x+y+z') = F_1'$

2.
$$F_2 = x(y'z' + yz)$$
.

Dual
$$F_2$$
 $x+(y'+z') (y+z)$.

Değişken tümleme :
$$x'+(y+z)(y'+z') = F_2'$$

2.6 Kanonik ve Standard Formlar

Standart Çarpımlar (*Minterms*) ve Standart Toplamlar (*Maxterms*)

- Minterm: Normal veya tümleme formunda bulunan tüm değişkenleri içeren bir AND terimidir.
 - Örnek, 2 ikili değişken x ve y ile oluşturulan mintermler
 xy, xy', x'y, x'y'
 - n değişken ile 2ⁿ minterm oluşturulabilir.
- Maksterm : Bir OR terimi
 - Örnek, 2 ikili değişken x ve y ile oluşturulan makstermler
 x+y, x+y', x'+y, x'+y'
 - n değişken ile 2ⁿ maksterm oluşturulabilir.

Minterm ve Makstermler

• Her *maksterm* ona karşı gelen mintermin tümleyenidir ve tersi de doğrudur.

Table 2.3
Minterms and Maxterms for Three Binary Variables

Minte		interms	Max	cterms		
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

May 25, 2019 28

Minterm ve Makstermler

- Bir Boolean fonksiyonu doğruluk tablosu veya minterm (veya maksterm) cinsinden ifade edilebilir:
 - Minterm toplamları
 - $f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$
 - $f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$

Table 2.4	
Functions of Three	Variables

x	y	z	Function f_1	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Minterm ve Makstermler

- Bir Boolean fonksiyonun tümleyeni
 - fonksiyonu 0 yapan mintermler
 - $f_1' = m_0 + m_2 + m_3 + m_5 + m_6 = x'y'z' + x'yz' + x'yz + xy'z + xyz'$
 - $f_1 = (f_1')'$
 - $= (x+y+z)(x+y'+z) (x+y'+z') (x'+y+z')(x'+y'+z) = M_0 M_2 M_3 M_5 M_6$
 - $f_2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z) = M_0 M_1 M_2 M_4$
- Bir Boolean fonksiyonu aşağıdaki şekilde ifade edilebilir:
 - Mintermlerin toplamı. (toplama OR işlemi anlamında)
 - Makstermlerin çarpımı (çarpım AND işlemi anlamında).
 - Bu durumdaki Boolean Fonksiyonları Kanonik Formdadırlar.

Mintermlerin Toplamı

- n Boolean değişkenli fonksiyon 2ⁿ minterm ile ifade edilebilir.
- Örnek 2.4: F = A + BC' fonksiyonunu.
 - F = A+B'C = A (B+B') + B'C = AB + AB' + B'C = AB(C+C') + AB'(C+C') + (A+A')B'C = ABC+ABC'+AB'C+AB'C'+A'B'C
 - $F = A'B'C + AB'C' + AB'C + ABC' + ABC = m_1 + m_4 + m_5 + m_6 + m_7$
 - Γ $\Gamma(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - Yada doğruluk tablosu yapılarak aynı ifade doğrudan elde edilir.

Table	2 .5	
Truth	Table for $F = A +$	- <i>B'C</i>

A	В	Ç	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	()	1
1	0	1	l
1	1	0	1
1	1	1	1

Makstermlerin çarpımı

- Dağılma özelliğini kullanarak:
- Örnek 2.5: F = xy + x'z
 - F = xy + x'z = (xy + x')(xy + z) = (x+x')(y+x')(x+z)(y+z) = (x'+y)(x+z)(y+z)
 - x'+y = x' + y + zz' = (x'+y+z)(x'+y+z')
 - $F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z') = M_0M_2M_4M_5$
 - \Box $F(x, y, z) = \Pi(0, 2, 4, 5)$

Kanonik Formlar arasındaki dönüşüm

Minterm toplamı olarak ifade edilen bir fonksiyonun tümleyeni orijinal fonksiyonda görünmeyen mintermlerin toplamına eşittir:

```
F(A, B, C) = \Sigma(1, 4, 5, 6, 7)
```

- Buradan , $F'(A, B, C) = \Sigma(0, 2, 3)$
- DeMorgan teoremi ile

$$F(A, B, C) = \Pi(0, 2, 3)$$

$$F'(A, B, C) = \Pi (1, 4, 5, 6, 7)$$

- \square $m_i' = M_i$
- Mintermlerin toplamı = Makstermlerin çarpımı
- \square Σ ve Π sembolleri değiştirilerek fonksiyon tümleyeni bulunabilir
- Σ fonksiyonu 1 yapan mintermlerden
- □ Π fonksiyonu o yapan makstermlerden

May 25, 2019 33

Örnek

$$\Box$$
 $F = xy + x'z$

$$\Box$$
 $F(x, y, z) = \Sigma(1, 3, 6, 7)$

$$F(x, y, z) = \Pi(0, 2, 4, 6)$$

Table 2.6 *Truth Table for F* = xy + x'z

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Standart Formlar

- Kanonik formlar minterm veya maksterm formunda ifadedir.
- Standard formlar: 1, 2 veya herhangi sayıda değişkenden oluşan fonksiyon terimlerini içerir.
 - Qarpımların Toplamı: $F_1 = y' + xy + x'yz'$
 - Toplamların Çarpımı : $F_2 = x(y'+z)(x'+y+z')$
 - $F_3 = A'B'CD + ABC'D'$

May 25, 2019 35

Gerçekleme

May 25, 2019 36

2.7 Diğer Lojik İşlemler

- n değişkenli doğruluk tablosunda 2ⁿ satır
- 22n fonksiyon tanımlanabilir
- n=2 için 16 fonksiyon

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

x	y	F ₀	<i>F</i> ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F 8	F 9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

37

Boolean İfadeleri

Table 2.8Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$	9	Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12}=x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

2.8 Dijital Lojik Kapılar

- Boolean ifadeleri: AND, OR ve NOT işlemleri
- Diğer lojik işlemlerin kapılarını oluşturulması
 - Ekonomik ve gerçeklenebilirlik
 - Kapı girişlerini genişletmek imkanı;
 - İkili işlemlerin temel özellikleri (değişme ve birleşme);
 - Boolean fonksiyonunu gerçeklemek için kapı yeteneği.

Standart Kapılar

- 16 adet fonksiyonu hatırlayın (38 nolu slayt)
- □ Sabit fonksiyonlar(F_0 ve F_{15}).
- 2 kez tekrarlı fonksiyonlar (F_4 , F_5 , F_{10} and F_{11}).
- P_4 ile F_2 , F_5 F_3 , F_{10} F_{12} , F_{11} ile F_{13}
- (F_2) ve (F_{13}) değişme ve birleşme özelliğine uymuyor.
- Standart Kapılar: Tümleme (F_{12}), transfer (F_3), AND (F_1), OR (F_7), NAND (F_{14}), NOR (F_8), XOR (F_6), ve eşdeğerlik (XNOR) (F_9)
- Transfer: buffer (kapının diğer kapıları sürme yeteneğini artırır.).

•

Lojik Kapı Özet

Name	Graphic symbol	Algebraic function	Truth table			
AND	<i>x</i> — <i>F</i>	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$			
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$			
Inverter	x	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $			
Buffer	$x \longrightarrow F$	F = x	$\begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$			

Lojik Kapı Özet

NAND	<i>x</i>	F = (xy)'	0 0 1	y 0 1 0	1 1 1
	$x \rightarrow \sum_{i=1}^{n}$		1 x	1 y	0 <i>F</i>
NOR	$y \longrightarrow F$	F = (x + y)'	0 0 1 1	0 1 0 1	1 0 0 0
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	0 0 1 1	y 0 1 0 1	0 1 1 0
Exclusive-NOR or equivalence	$x \longrightarrow F$	$F = xy + x'y'$ $= (x \oplus y)'$	0 0 1	y 0 1 0	F 1 0 0
			1	1	1

- Çoklu giriş genişletme
 - ☐ Bir kapı çoklu girişlere genişletilebilir:
 - İkili işlemleri değişme ve birleşme özelliklerini sağlıyorsa;
 - AND ve OR değişme ve birleşme özelliklerini sağlar
 - OR
 - x+y = y+x(x+y)+z = x+(y+z) = x+y+z
 - AND
 - xy = yx
 - (x y)z = x(y z) = x y z

□ NAND ve NOR değişme özelliğini sağlar fakat birleşme özelliğine uymaz → Genişletilemez

NOR işlemi birleşme özelliğini sağlamaz $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

- Çok girişli NOR = OR kapısının tümleyeni
- Çok girişli NAND = AND kapısının tümleyeni
- Kaskad NAND = çarpımların toplamı
- Kaskad NOR = toplamların çarpımı

- XOR ve XNOR kapıları değişme ve birleşme özelliklerini sağlarlar.
- Çok girişli XOR gerçeklenebilir
- XOR bir teklik belirleme fonksiyonudur.:
- Girişleri tek sayıda 1 içeriyorsa çıkış 1

F

Pozitif ve Negatif Lojik

- Pozitif ve Negatif Lojik
 - □ İki işaret değeri <=> iki lojik seviye
 - Pozitif lojik H=1; L=0
 - Negatif lojik H=0; L=1

Lojik Seviyeler

Pozitif ve Negatif Lojik

TTL kapı düşünelim Bir pozitif lojik AND kapısı Bir negatif lojik OR kapısı Bu derste pozitif lojik kullanılacaktır.

(a) Truth table with H and L

х	у	z
0	0	0
0	1	0
1	0	0
1	1	1

(c) Truth table for positive logic

x ———	
у ———	
(d) Dogitiv	a lagia AND gata

(d) Positive logic AND gate

х	у	z
1	1	1
1	0	1
0	1	1
0	0	0

(e) Truth table for negative logic

2.9 Entegre Devreler

Tümleştirme Seviyesi

- IC (a chip)
- Örnekler
 - Küçük çapta tümleştirme Small-scale Integration (SSI): < 10 kapı</p>
 - Orta çapta tümleştirme
 Medium-scale Integration (MSI): 10 ~ 100 kapı
 - Büyük çapta tümleştirme

 Large-scale Integration (LSI): 100 ~ xk kapı
 - Çok büyük çapta tümleştirme
 Very Large-scale Integration (VLSI): > xk kapı
- VLSI
 - Küçük boyut
 Düşük güç tüketimi
 - Düşük fiyatYüksek güvenirlik
 - Low power consumption Yüksek hız

Dijital Lojik Aileler

- Kullandıkları Devre teknolojisi
 - TTL: transistor-transistor logic
 - ECL: emitter-coupled logic (high speed, high power consumption)
 - MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - BiCMOS: high speed, high density

Dijital Lojik Aileler

- KARAKTERİSTİKLERİ
- Çıkış Yelpazesi: (Fan-out) Tipik bir kapı çıkışının sürebileceği kapı girişi sayısı
- Güç tüketimi (Power dissipation)
- Iletim Gecikmesi (propagation delay): işaretin girişten çıkışa ortalama iletim süresi
- Gürültü Bağışıklığı (Noise margin):
- Devre çıkışında istenmeyen değişime neden olan dış kaynaklı minumum gürültü gerilimi

CAD

- CAD Computer-Aided Design
 - Millions of transistors
 - Computer-based representation and aid
 - Automatic the design process
 - Design entry
 - Schematic capture
 - HDL Hardware Description Language
 - Verilog, VHDL
 - Simulation
 - Physical realization
 - ASIC, FPGA, PLD

Chip Design

- Why is it better to have more gates on a single chip?
 - Easier to build systems
 - Lower power consumption
 - Higher clock frequencies
- What are the drawbacks of large circuits?
 - Complex to design
 - Chips have design constraints
 - Hard to test
- Need tools to help develop integrated circuits
 - Computer Aided Design (CAD) tools
 - Automate tedious steps of design process
 - Hardware description language (HDL) describe circuits
 - VHDL (see the lab) is one such system