Final Team Report: A Novel GWAP Disaster Monitoring System

Team: Hotpot

Changkun Ou : <11406972>

Yifei Zhan: <11462563>

Zhe Li: <11194275>

July 23, 2017

CONTENTS

1	1 Introduction	2
	1.1 Related Works	
	1.1.1 UNICEF	 3
	1.1.1 UNICEF	 3
	1.2 Purpose of the System	 3
	1.3 Human contribution to the System	 4
2	2 Functionalities	4
	2.1 Functionalities as seen by a player	 4
	2.1.1 Disaster Monitoring Game Introduction	 4
	2.1.2 Examples	 5
	2.2 Functionalities as seen by a stakeholder	 6
	2.2 Functionalities as seen by a stakeholder	 7
3	3 Design	7
	3.1. System Architectures	8

	3.2	System Components	9
		3.2.1 Database Fields	9
		3.2.2 Player Task Generator	10
		3.2.3 Player Rating Model	10
		3.2.4 Disaster Evaluation Model	14
	3.3	Model Initialization and System Cold Start	14
4	Eva	luation	15
	4.1	Success Criterias	15
		4.1.1 Model Evaluation	15
		4.1.2 Issues on Social and Ethical Aspects	16
	4.2	Limitations of the System	16
		4.2.1 Evaluation Outdated	16
		4.2.2 Information Loss	17
		4.2.3 Gameplay and Playability	17
5	Cor	nclusions & Future Works	18
	5.1	Conclusions	18
	5.2	Possible Extensions	19
	5.3	Thoughts on Interaction with Other HC System	19
	Ack	nowledgements	20
	Ref	erences	20

ABSTRACT Disaster Monitoring is a challanging problem due to the lack of infrastructures in the control area. This report contributes to a Game With A Purpose (GWAP) based human computation system, which analyzes tagging results from players for satellite pictures and exports aggregated results to stakeholders. We illustrated our system prototype and implementation technology stack, as well as the mathematical model of the scheme. As justification and evaluation, we proved the correctness of the model, discussed issues caused by this system and possible solutions, extensions for future works.

1 Introduction

In this chapter, we will give an introduction about the backgrounds of UNICEF and the related technics used in the project. The simple definition of HC system and GWAPs will be given. The purpose of our HC system and the contribution of human beings will also be talked.

1.1 RELATED WORKS

1.1.1 UNICEF

The United Nations Children's Fund[1] is a United Nations programme headquartered in New York City that provides humanitarian and developmental assistance to children and mothers in developing countries[2]. It works in 190 countries and territories to protect the rights of every child. UNICEF has spent 70 years working to improve the lives of children and their families. Defending children's rights throughout their lives requires a global presence, aiming to produce results and understand their effects. In Syrian, the UNICEF works on providing and transporting critical medicine, aid and supplies to the refugees living in the war areas. The challenges UNICEF meet is that there are many hard-to-reach (HTR) and besieged (BSG) areas and the supplies are very hard to be delivered to these zones if the UNICEF have no idea about the real time war situation and the disaster level. It will cost too much for the UNICEF which is just a Non-profit organization if they entirely hire employees to collect the data of war situation. Our work is to design and develop a Human Computation system by GWAPS[3].

1.1.2 HC System and GWAPs

Human Computation system is a paradigm for utilizing the human processing power to solve problems that computers cannot yet solve[4]. It is the system of computers and large numbers of humans that work together in order to solve problems that could not be solved by either computers or humans alone[5]. Our HC system is a kind of GWAPs, which uses enjoyment as the primary means of motivating participants. One of the challenges in any human computation system is finding a way to motivate people to participate[4]. Besides the enjoyment, we will design some interactions between users and our system to make the volunteer users feel honored for their contribution.

1.2 PURPOSE OF THE SYSTEM

The users are required to select a **Region Of Interests(ROI)** upon the presented satellite images and tag the ROI from a provided tag list or input their own tag. Anyone can directly participant without registration, but the system will record an ID of each user. Computer Graphics can also be a way to detect and recognize the map images, but it will cost too much time and money in developing recognition algorithms and the best computer graphics algorithm currently can not beat the image recognition ability of human beings. That's the reason we design the HC system to solve the problem.

1.3 Human contribution to the System

The Computer Graphic techniques and Artificial Intelligence grow very fast in recent years, however, it is still a great problem for computers to detect and recognize images accurately and fast. Nevertheless, it is a simple thing for human beings to do it. The HC system for disaster monitoring encourages more Internet users to contribute information to solve the image tagging problem by GWAPs. We developed the Player Rating Model to guarantee the quality of collected information and some interesting feedback and interaction are designed to maintain the enjoyment of players in the game. Users do some image tagging tasks in the game by their computing power and intelligent which are contributed to collect data in the map images.

2 FUNCTIONALITIES

In this chapter, we introduce two interactive prototypes of our disaster monitoring model. The first prototype is built for game players, which is used for collecting human inputs. The second prototype is built for our collaborative organisations, such as Unicef and some NGOs, who wants to dispatch their rescue teams in disaster area more properly.

2.1 Functionalities as seen by a player

2.1.1 DISASTER MONITORING GAME INTRODUCTION

The idea behind our human computation system is GWAP, i.e. Game with a purpose. We have built a prototype of image tagging game, which is similar to the game on Artigo.com [6]. In our game, A player can finish infinity Round tasks, a Round task contains N tagging tasks and a tagging task is to: interpret one picture. Within one round task, the player will see N pictures. Each time he/she will be asked to tag one of these pictures. At first, the player needs to draw a rectangle area which indicates that he/she has seen some objects in this area. Thoses objects are often considered as a sign of danger or damage. They are mostly like:

- "Rocket Launcher"
- "Armoured vehicles"
- "Tanks"
- "Burning building"
- · "Heavy vehicle tracks"
- · "sign of explosion"

Each of them has a value of disaster level, which will be used later in our (see chapter 3.2.4) for analysing the disaster level of this region. A submenu list ("Pre-Provided item list") which

contains all of these items will pop up after the area has been selected. In this step, the player can decide which one of these items matches and choose it to fill the tag. Sometimes, there may be a situation that the player does find "a sign of danger or damage", however, he/she has no idea what it is. In this case, the player can obtain helps from the reference panel which provides the player with helpful examples. Besides, if the player does not find the expected item in the "Pre-Provided item list", he/she can also create a new tag.

In a tagging task, the player also has a choice to add multiple tags to one picture, or he/she dosen't need to add any tags when he/she thinks that this region is safe.

After finishing one tagging task, the player will be directed to the next task till the end of the game.

2.1.2 EXAMPLES

In this section, An example of a user journey is provided in order to illustrate the game process.

Figure 2.1: Game panel

Figure 2.2: Game panel: Tag list

Imaging that User A is now at the very first begining of the game. What he will see, are a side bar on the left side, which contains some information like: user ID, game guide and a reference library, and a main panel on the right side (Figure 2.1). If User A finds a sign of damage or danger in the picture on the right side. He can click the button "add marks" and then his is able to draw a rectangle area which indicates the location of the sign. A selection box will then pop out automatically and User A can select the suited item or add a new tag (Figure 2.2).

Like what we have already mentioned above, User A can also add multiple tags to one picture (Figure 2.3).

Figure 2.3: Game panel: Multiple tags

Figure 2.4: Game panel: Reference library

After User A finishes this tagging task, i.e. tagging the first picture, he can click the button "save and to the next picture" so that he can save the tags and go to the next task. Figure 2.4 illustrates how a reference library can be, whose aim is to help User A to identify different signs of danger or damage.

2.2 FUNCTIONALITIES AS SEEN BY A STAKEHOLDER

In our disaster monitoring system, we take image taggings from players as our input. In the next step, we will filter and analyse the data. The final output of our work is a disaster level report in some certain region, which can be used by some organisations, like: Unicef, some NGOs and even governments.

Under this consideration, we also build a prototype for this user group, which allows them to have an overview of the disaster level and to download the report at the same time (see figure 2.5).

Figure 2.5: disaster level report platform

Figure 2.6: disaster level report platform

The platform is composed of a curve chart, a map and some statistics. In the curve chart, each curve shows the tendency of the yearly disaster level of a smaller region. Like here in figure 2.5, the whole region is Syria and each curve stands for a province in Syria. The user can click the "dot" on curves, which stands for the disaster level of that month. Meanwhile, the corresponding area will be highlighted on the map (figure 2.6).

In the statistic part, the user gets an overview of the yearly disaster level of a region. He/she also have the opportunity to download it. If the user wants to dig deeper, he/she can click on the highlighted area on this map, which will direct him/her to that region (figure 2.7).

Figure 2.7: Disaster Level Report Platform

In figure 2.7, the user is directed to the province ldlib and now each curve stands for a smaller region in this province, in other words, different cities in ldlib.

2.3 TECHNOLOGY STACK FOR IMPLEMENTATION

We decide to build our system as a web-based application so that we do not need to care about the platform. Both a Android user and a IOS user can easily access to our system. We choose **Polymer**, a Google front-end framework, as our front-end tool and as back-end tool, we use **Nodejs** and **Python**. For our databse, we choose **Mango DB**, since it is more suitable and agile for a web application.

3 DESIGN

In this chapter, we describe the overall design of our disaster monitoring backend system in details. Firstly, we proposed our system architecture of this disaster monitoring; Then we

specified and justified our most critical system components such as databases design, Player Task Generator, Player Rating Model as well as Disaster Evaluation Model.

With these components, model and databases, the disaster monitoring system can handle common problems in HC system, such as cold start, malicious detection, etc. It is also expandable, portable and can be easily applied to any other same image selection and tagging based human computation system in different areas.

Task Generator Task Generator Task Generator Task Generator Task Generator Task Generator Disaster Area Input: AnonymouslD, ROI, TagList assign Pata Clean Input: AnonymouslD, ROI, TagList AnonymouslD, ROI, TagList Training Model Unreliable Task Unreliable Task PlayerDB PlayerDB PlayerDB

3.1 System Architectures

Figure 3.1: System Design Overview

The system contains two different type of databases. The first databases **PlayerDB** combines with **TrustedDB** and **UntrustedDB** where presistent the player inputs whether the overall result is reliable or not. We designed a task generator that combines trusted results, and separate new satellite area images assign to future players. A reliable player shall pass the system **Player Rating Model**. Once the task result from a new player is reliable, then the system will reuse the player input into our **Disaster Evaluation Model** and persistent it in the second database **ResultDB**. Stakeholder makes queries to this monitoring database. Figure 3.1 illustrate the overall disaster system design.

3.2 System Components

3.2.1 Database Fields

For the convenience of model establishment, we describe the system database PlayerDB fields as well as the fields of database ResultDB in listing 1 and 2.

In this disaster monitoring system, our participant does not need to register an account, and the system shall assign an anonymous_id for each player, this function significantly accelerate player to participate in this game. Thus, the PlayerDB stores the anonymous_id to detect the same players if they are involved next time. The player will accomplish different game tasks; each task result shall store in the tasks filed.

In the ResultDB, an area ID is unique, and assigned by our system; the disaster_level field represents the level of this area. Our player shall evaluate each area, and the evaluation history stories in the history field.

```
2
     "anonymous_id": number,
3
     "reliable": boolean,
     "trust_value": number
5
     "tasks": [
6
       "image": image_path,
       "at": time,
       "ROI": [
10
11
          "latitude": number,
12
          "longitude": number,
13
          "tags": [tag1, tag2,
14
       . . . ]
         },
15
16
17
     ]
19
    },
20
  ]
```

```
1
2
     "area_id": number,
3
     "disaster_level": number,
4
     "history": [
5
6
        "at": time,
7
        "image": image_path,
8
9
10
          "latitude": number,
11
          "longitude": number,
          "tags": [tag1, tag2,
13
14
      ]
15
16
17
18
19
20
   ]
```

Listing 1: Player Database Fields

Listing 2: Results Database Fields

To explain other fields, we describe few basic definition for the system model.

Definition 3.1. The **Region of Interests (ROI)** ROI_i is a player selected area of player i.

Definition 3.2. The **tags vector** T_i of player i is indicated by a vector where the components represent by the count of all tags:

$$T_i = (|\tan_1|, |\tan_2|, ..., |\tan_n|)$$

where

- *n* is the number of current exist tags;
- $|tag_n|$ is the occurrance of tag_n .

For instance, there are 5 different tags \tan_1 , \tan_2 , \tan_3 , \tan_4 , \tan_5 exist in the current system, player i generates tags list \tan_1 , \tan_2 , \tan_3 , player i generates tag list \tan_4 , \tan_4 , \tan_5 . Then T_i of player i is (1,1,1,0,0) and T_i of player j is (0,0,0,2,5).

Definition 3.3. The **weight vector** $v = (p(\tan g_1), p(\tan g_2), ..., p(\tan g_n))$ **of all tags** can be calculated by the following equation 3.1:

$$p(\mathsf{tag}_i) = \frac{|\mathsf{tag}_i|}{\sum_{j=1}^n |\mathsf{tag}_j|} \tag{3.1}$$

where

- *n* is the number of current exist tags;
- |tag_i| is the occurrance of tag_i.

3.2.2 PLAYER TASK GENERATOR

The **Player Task Generator (PTG)** combines images from satellite and ResultDB. In the first step, as we discussed before, to solve the imformation leakage problem, PTG shall split a monitoring region into $m \times n$ small pieces of images, and also assign a unique **areaID** for each pieces, i.e. (areaID, time) specifice a unique image for user tasks.

The second generating step is to retrieve tagged images from **ResultDB**. Then combine all images as a user task assign to a new upcoming player. Each user task contains half of untagged pictures and half of tagged images.

In short, The Data Model (only out there) for PTG is: {(areaID₁, time₁), ..., (areaID_n, time_n)} with areaID₁ to areaID_{|n|} are from satellite and areaID_{|n|+1} to areaID_n are from **ResultDB**.

3.2.3 PLAYER RATING MODEL

This subsection describes the Player Rating Model inside our Disaster Monitoring system. PageRank was first proposed by Lary Page [7] and applied to social analysis in [8]. It is commonly used for expressing the stability of physical systems and the relative importance, socialled centralities, of the nodes of a network. We transfer the basic idea of centralities and use eigenvalue as a **Trust Value** (**TV**) for each player to distinguish malicious players.

Considering a partial fully connected directed graph between players. Each player is a node of the Player Rating Graph (PRG) as illustrated in figure 3.2.

Figure 3.2: Player Rating Model

To define the edge weight, according to the database field design of a player, each player output ROIs for each task region of a player task, and each ROI contains a tags list, thus, one can use three features: ROI, tags, TV.

Definition 3.4. The weight from player i to player j can be formalized as follows formula 3.2:

$$w_{ij} = \sum_{\text{ROI} \in \text{ROIs}} \left(\text{TV}_i \times \frac{\text{ROI}_i \cap \text{ROI}_j}{\text{ROI}_i} \times \left(2 - \frac{Cov(T_i, T_j; v)}{Cov(T_i, T_i; v) \times Cov(T_j, T_j; v)} \right) \right) \tag{3.2}$$

where

- TV_i is the trust value of player i;
- ROI_i is the selected ROI from player *i*;
- T_i is the tags vector of player i;
- Cov(x, y; v) is the weighted covariance of x and y via v;
- *v* is the weight vector of all tags.

The first part of the definition $\sum_{\text{ROI} \in \text{ROIs}}$ summarized all possible ROI between player i and player j. The theoretical item of this formula is the number of ROI from player i multiply the number of ROI from player j. Nevertheless, it can be significantly decreased in this particular scenario. Considering player i and player j with two ROIs as illustrated in figure 3.3.

One can expand equation 3.2 as follows formula 3.3:

$$w_{ij} = \text{TV}_{i} \times \left(2 - \frac{Cov(T_{i}, T_{j}; v)}{Cov(T_{i}, T_{i}; v) \times Cov(T_{j}, T_{j}; v)}\right) \times \left(\frac{\text{ROI}_{i}^{1} \cap \text{ROI}_{j}^{1}}{\text{ROI}_{i}^{1}} + \frac{\text{ROI}_{i}^{1} \cap \text{ROI}_{j}^{2}}{\text{ROI}_{i}^{2}} + \frac{\text{ROI}_{i}^{2} \cap \text{ROI}_{j}^{1}}{\text{ROI}_{i}^{2}} + \frac{\text{ROI}_{i}^{2} \cap \text{ROI}_{j}^{1}}{\text{ROI}_{i}^{2}}\right) \quad (3.3)$$

Figure 3.3: Two players with two ROIs

Fortunately, the second and the third part of the expansion are equal to zero.

We call the second part $TV_i \times \frac{ROI_i \cap ROI_j}{ROI_i}$ of formula 3.2 as **Matching Area Ratio** (**MAR**). It was inspired by a standard computer vision criteria, the so called Intersection over Union (IoU), also known as Jaccard Index in mathematics[9], which is the standard performance measure that is commonly used for the object category segmentation problem. Nevertheless, MAR is not equal to the IoU of ROIs of player i and player j since it only uses the ROI of player i as denominator instead of the union of ROIs of player i and player j, which leads the difference between MAR and IoU. There are two reasons to use MAR instead of IoU: Firstly, IoU as weight of graph causes the directed graph to an undirected graph due to the IoU of player i to j is as same as the IoU of player j to i; Furthermore, player i as the evaluator from i to j should be the performance base.

The third part $\frac{Cov(T_i,T_j;v)}{Cov(T_i,T_i;v)\times Cov(T_j,T_j;v)}$ of formula 3.2 is applied by Weighted Pearson Correlation Coefficient.

To calculate the eigenvalue of the adjacency matrix of PRG, one can use the normalized adjacency matrix through the following formula 3.4:

$$A = (a_{ij}) = (\frac{w_{ij}}{\sum_{i} w_{ij}}) \tag{3.4}$$

Theorem 1. *Matrix A is irreducible, real, non-negative, column-stochastic, and diagonal element being positive.*

Proof. **Irreducibility**: *A* is normalized through an ajacency matrix of a strong connected player rating graph, which proves *A* is irreducible.

Real elements: Trivial.

Non-negative elements: We only need to prove TV_i , $\frac{ROI_i \cap ROI_j}{ROI_i}$ and $2 - \frac{Cov(T_i, T_j; v)}{Cov(T_i, T_i; v) \times Cov(T_j, T_j; v)}$ are non-negative respectively. TV_i is the eigenvalues of normalized graph ajacency matrix,

thus the codomain of TV_i lies (0,1]; For MAR, its range is obviously from 0 to 1, which lies [0,1]; For $2 - \frac{Cov(T_i,T_j;v)}{Cov(T_i,T_i;v) \times Cov(T_j,T_j;v)}$, the Pearson Correlation lies on [-1,1], then this part lies on [1,3]. Three parts are non-negative.

Positive diagonal elements: The diagonal elements can be formalized by follows:

$$w_{ii} = \sum_{\text{ROI} \in \text{ROI}_i} \left(\text{TV}_i \times \frac{\text{ROI}_i \cap \text{ROI}_i}{\text{ROI}_i} \left(2 - \frac{Cov(T_i, T_i; v)}{Cov(T_i, T_i; v) \times Cov(T_i, T_i; v)} \right) \right) = \sum_{\text{ROI} \in \text{ROI}_i} \text{TV}_i > 0$$

Column stochastic: according to the definition of matrix *A*, the sum of the column elements are:

 $\sum_{i} \frac{w_{ij}}{\sum_{j} w_{ij}} = \frac{\sum_{i} w_{ij}}{\sum_{j} w_{ij}} = 1$

We have proved the existence and uniqueness of eigenvalues of normalized PRG adjacency matrix; one can use the corresponding eigenvalues to represent the trust value of players. Thus, we have:

Definition 3.5. A **Trust Value** TV_i of player i represents by the i-th eigenvalue of normalized PRG ajacency matrix A.

This definition can represent the rating score from i to j. With the trust value of players, we propose our classification algorithm:

```
Algorithm 1: Player Classification Algorithm
```

```
input: anonymous IDs, TVs output: (anonymous_id, isReliable) Calculate TV_{new} as the trust value of player new; if TV_{new} \ge \frac{1}{|players|} \sum_{i \in players} TV_i then | return (anonymous_id, true) else | return (anonymous_id, false) end
```

In this algorithm, the criterion of classifying new players performs the action that the trust value of a new player should not be less than the mean value of overall trust value of players, which means the tagging performance of new player should not worth than result performance of former players.

Terefore in short, the input and output Data Model of PRM are as follows. For input: (anonymous_id, area_id, time, ROIs, tags); For model output: (anonymous_id, TV).

3.2.4 DISASTER EVALUATION MODEL

For an area at time t, we address the **Disaster Evaluation Model (DEM)** via disaster level definition as follows:

Definition 3.6. The **Disaster Level (DL)** of a monitor region is calculated by each area components:

$$DL = \sum_{\text{area} \in \text{region}} DL_{\text{area}}$$

where DL_{area} is calculated by its corresponding tag vector:

$$DL_{\text{area}} = \sum_{i=1}^{n} v_i \times |\text{tag}_i|$$

with n is the number of current exist tags, and $|tag_i|$ is the occurrance of tag_i in the corresponding area.

System like ESP[10], ARTigo[6] has proved that human inputs are valuable and useful.

Note that sometimes player carries new tags for our system, we also address a solution for this issue via the following steps:

- When a player carries predefined tags: Trivial;
- When a player carries new tags: Directly drop, it is an unreliable result;
- When a player carries predefined tags and also new tags: calculate the trust value without new tags; merge and update all weight vector v via formula 3.2 if the player is reliable, otherwise drop and mark the result is unreliable.

With this definition 3.6, we can calculate the disaster level for a monitoring region. To sum up, the input and the output Data Model of DEM addresse as follows. For input: (time), (area_id) or (area_id, time); For output: (area_id, time, disaster_level).

3.3 MODEL INITIALIZATION AND SYSTEM COLD START

A cold start of such a system is a common problem in human computation system that is avoided by hiring people to play or learn as long as the number of users or the quantity of data is insufficient. In our system, we have two different cold start problem.

The first cold start problem appears in the PTG. To initialize the whole system, we need to address an initial trusted group for PTG; they shall tagging enough initial trusted result for PTG and then assign to new upcoming players. When a new player is reliable, then the result of this player will become reliable. Meanwhile, the trusted group and available dataset grow larger with this step repeatedly, as shown in figure 3.4.

The second cold start problem appears in PRM. According to the definition **??** of PRG, the weight of PRG was defined by the trust value of all players. Nevertheless, the initial trusted

Figure 3.4: Cold Start of PTG

group has no trust value. Thus we need an initial value for *TV*. Note that TV_i is in between of 0 and 1, thus:

$$TV_i^{\text{init}} = \frac{1}{|\text{players}^{\text{init}}|}$$

with $|players^{init}|$ is the number of initial trusted group.

4 EVALUATION

This chapter discusse the evaluation criteria as well as the issues and solutions on social and ethical aspects. Surely, our system still has limitations, we then discusse the most important three limitations within our system: evaluation outdated, information loss and playability.

4.1 SUCCESS CRITERIAS

4.1.1 MODEL EVALUATION

Malicious player detection is a classification problem. One can generate random data and test the performance of PRM through accuracy and recall, even ROC curve [11].

The click behavior has been researched for years and address by FFitts Law [12]. It modeled and proved the distribution of click behavior for a certain click goal point is a normal distribution. Thus, with probablistic view, the top left corner of ROI exists, then the user click selection for this point should follows normal distribution, as shown in figure 4.1.

Therefore, to generate ROIs, let (x, y) is the player ROI start point, (H_{ROI}, W_{ROI}) is the height and width pair of this ROI, then we generate the random dataset for these variables by a given

Figure 4.1: Data Simulation

parameter δ : $(x, y) \sim (x + N(0, \delta), y + N(0, \delta)), (H_{ROI}, W_{ROI}) \sim (H_{ROI} + N(0, \delta), W_{ROI} + N(0, \delta)).$ To generate tags, we propose randomly pick random number of tags.

Then one can perform this random dataset on our system to evaluate the classification accuracy and recall rate to evaluate the overall performance of this system, which gives the theoretical evaluation results.

4.1.2 ISSUES ON SOCIAL AND ETHICAL ASPECTS

Intellectual Property Rights: Our disaster monitoring HC system is an uncommercial project which invites volunteers to contribute to it. It is used to help the UNICEF and other non-profit organizations deliver supplies in disaster areas safer. So the IPR should not belong to the volunteer users. In a significant position, user will be informed that his or her contribution to the system is volunteering and the produced data will be used correctly for monitoring disasters in Syria.

Leakage of data: We cut big satellite image into small segmentations in our HC system to prevent data leakage to ordinary users, but the data security is still very important and needs to be considered with high priority. For example, the backend database should not be entirely accessible to every employee of UNICEF. Each of them can only visit the part of data that they need at present. This principle is made to guarantee that data will not be wrongly used and will be included in our future work.

4.2 LIMITATIONS OF THE SYSTEM

4.2.1 EVALUATION OUTDATED

A limitation occurs in our social network based model is each disaster level evaluation get invalid if the region image outdated. We assume the satellite monitors an area and take pic-

tures between intervals. However, our evaluation the model only calculate the disaster level at a unique moment, which means the disaster level need transvaluation when a new image comes out. If our player is not enough so that the region images always have to wait for new evaluation, then the disaster level will never be calculated.

A possible solution is to consider the region disaster level history as a time series. Then we can apply some prediction method for it. For instance, we have time series: $(t_1, t_2, t_3, ..., t_n)$ and its corresponding disaster level: $(DL_1, DL_2, DL_3, ..., DL_n)$. Then we can use these time series to predict the disaster level at time t_{n+1} .

At the same time, we also have the historical data of trust value of a player. We can also use time series prediction to predict the player's trust value. But in all of these, the time series of disaster level is not stationary but the time series of trust value is stationary.

4.2.2 Information Loss

We cut big region images into small fragements areas to prevent leakage of data. But this method will cause some information loss problem if some important ROIs are located at the intersection of two dividing lines. A possible solution for this limitation is to consider new regions that contains the loss informations, as shown in figure 4.2. Note that this solution that only increases the number of region pictures, it does not influence any model and system design.

Figure 4.2: **Information Loss**: Information loss may occurs on the intersection lines, as shown on the left; a possible solution is to provide additional regions (blue rectangles) for these special area as shown on the right.

4.2.3 GAMEPLAY AND PLAYABILITY

The HC system collects satellite photos of disaster areas. But even if in the disaster areas, not every part of the areas has a disaster. Most parts of the earth are lake, forest, desert and so on, which means the users may meet the situation that there is no available ROI in several continuous rounds. Obviously, it will decrease the playability and enjoyment of the game. Our system is just a very simple tagging game at present, users can not get enough enjoyment they

want in it. And it is too reliant on the unpaid volunteers to donate their time to contribute information. We should make the system more interesting and appealing in the future work.

5 CONCLUSIONS & FUTURE WORKS

In this chapter, we give conclusions of the functionalities, design, success criterion and limitations of our human computation system. Besides, we will discuss the possible extensions of our system and will also give some thoughts on the interaction with other human computation systems.

5.1 Conclusions

In this report, we proposed a comprehensive design of human computation system for disaster monitoring, and we discussed its mathematical foundations as well as the possible issues caused by this system, then gives few options to solve these matters.

In the chapter of functionalities, we illustrated a prototype GWAPs-based disaster monitoring human computation system for game players as well as stakeholders, and then described its necessary functions and interaction logic. On thoughts of system implementation, we decided to implement this system on the web, probed the possible technology frameworks and pointed out the reason of our choices.

Afterward, in the chapter of design, we modeled the entire system theoretically in details that make sure it can run consistently. First of all, we defined a **Player Rating Model** for calculate a trust value of a player via artificial features, and then we put forward an algorithm that can be used in malicious user detection. As justification, we proved the correctness of this model. Meanwhile, as the data aggregation, we transferred the problem of calculating disaster level of regions into processing the expectation value of user tagging task inputs and proposed the **Disaster Evaluation Model**. In this model, we prevented the overabundance problem of potential useless tags from users by standing on the prespective of Bayesian. Surely, we addressed the solution of cold start of the human computation system. It is worth mentioning that the minimum initial trusted group under this scheme design only requires two persons theoretically.

Furthermore, as evaluation, we discussed theoretical evaluation criteria for this system, and then declared the challenges and corresponding solutions for facing issues like data security, information leakage, malicious detection as well as the lack of players. Undoubtedly, the current system design still contains defects. Thus, we presented three analysis and possible improvements for evaluation outdated, information loss and also gameplay playability.

For the future works, we will simply discuss the possible extension of our human computation system, along with the thoughts on the interaction between our system and the others in the following sections.

5.2 Possible Extensions

Our system was described in general. We collect human inputs by ROI tagging tasks, which means any other HC system that related to ROI tagging tasks can easily use this system backend design. In addition, due to the fact that we do not have enough user inputs at present, we use a certainty algorithm instead of uncertainty probablistic-based algorithm to detect malicious groups. Considering malicious detection is classification problem, which seperate users into trusted groups and untrusted groups. One can apply any classification machine learning algorithms that are more suitable for the detection of malicious groups if our user input dataset is large enough.

Besides, as we mentioned before, sometimes, the game player may encouter a situation that there is no ROI in some pictures which contain only landscapes like: mountains, rivers and forests. In this case, with collaborative computing of image recognition technique, we can filter out those images from our image database previously so that we can collect more data from the game and make our image tagging game more efficiently.

5.3 THOUGHTS ON INTERACTION WITH OTHER HC SYSTEM

GOOGLE MAPS Our HC system is a map-tagged application, so of course, it can interact with Google Maps. We can try to plug the HC task into Google Maps as a hidden toolbar. When some users search the locations in Syria or surrounding countries, the HC task toolbar will be shown and users will be invited to do some tagging tasks of the area where is being searched in Google Maps.

SPOTIFY When users are enjoying some music on a music website, some of them may browse social websites, do their homework or finish some other tasks at the same time. However, there are many other people who just enjoy the music and have no other work. We can try to plug our HC system into some music websites, like Spotify, to invite these people with idle minds and eyes to play our tagging game. It can help them overcome boredom and make the contribution to our HC system in the meantime.

Besides music websites, all other websites where users do not need use their minds and eyes can interact with our HC system in this way.

CAPTCHA SYSTEM Users are requested to enter CAPTCHA when they log in to some web service. There are some commonly used types of CAPTCHA: Standard Distorted Word CAPTCHA, Picture Identification Captcha, Math Solving Captcha and so forth. We think all these kinds of CAPTCHA are great wastes of the computing power of humankind. If we can find a way to plug our HC system into CAPTCHA system, then we can make an astronomical number of users to contribute to our HC system at that instant. This method will be a breakthrough solution to the lack-of-user problem.

A not very mature method to apply our HC system to CAPTCHA system is that we can develop

a CAPTCHA module which can be plugged into any login web pages easily. The CAPTCHA module is based on our disaster monitoring HC system. After the user entering the username and password, he or she will be asked to finish the CAPTCHA module which is an image tagging task. It consists of two images, one is from our Trusted DB where all the data has been already processed and accepted as true, another one is the latest data collected from a disaster area. The user does not know our system architecture and strategy, so he or she has to complete both two tagging tasks wholeheartedly. If the image from the Trusted DB is tagged absolutely correct, then we can regard the user tags for another new image are also reliable. The new tags will be new input to our HC system.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. François Bry first for his remarkable lectures as well as his great suggestions on information leak and loss problems of our disaster monitoring system; we also thank Yingding Wang for his helpful discussions on system functionalities design and the model rationalization evaluation; Finally, Changkun Ou thanks his schoolmate Huimin An for his insights of Bayesian perspective that helps us handling human new tag inputs successfully.

The resources of this project are open source on GitHub: https://github.com/changkun/hc-ss17-disaster-monitoring.

REFERENCES

- [1] Unicef, The state of the world's children. 1998. Unicef, 1994.
- [2] Wikipedia, "Unicef Wikipedia, the free encyclopedia," 2017. [Online; accessed 21-July-2017].
- [3] M. Lafourcade, A. Joubert, and N. Le Brun, *Games with a Purpose (GWAPS)*. John Wiley & Sons, 2015.
- [4] A. J. Quinn and B. B. Bederson, "Human computation: a survey and taxonomy of a growing field," in *Proceedings of the SIGCHI conference on human factors in computing systems*, pp. 1403–1412, ACM, 2011.
- [5] A. J. Quinn and B. B. Bederson, "A taxonomy of distributed human computation," *Human-Computer Interaction Lab Tech Report, University of Maryland*, 2009.
- [6] C. Wieser, F. Bry, A. Bérard, and R. Lagrange, "Artigo: building an artwork search engine with games and higher-order latent semantic analysis," in *First AAAI Conference on Human Computation and Crowdsourcing*, 2013.

- [7] L. Page, S. Brin, R. Motwani, and T. Winograd, "The pagerank citation ranking: Bringing order to the web.," tech. rep., Stanford InfoLab, 1999.
- [8] P. Bonacich and P. Lloyd, "Eigenvector-like measures of centrality for asymmetric relations," *Social networks*, vol. 23, no. 3, pp. 191–201, 2001.
- [9] R. Real and J. M. Vargas, "The probabilistic basis of jaccard's index of similarity," *Systematic biology*, vol. 45, no. 3, pp. 380–385, 1996.
- [10] L. Von Ahn and L. Dabbish, "Labeling images with a computer game," in *Proceedings of the SIGCHI conference on Human factors in computing systems*, pp. 319–326, ACM, 2004.
- [11] J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (roc) curve.," *Radiology*, vol. 143, no. 1, pp. 29–36, 1982.
- [12] X. Bi, Y. Li, and S. Zhai, "Ffitts law: modeling finger touch with fitts' law," in *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, pp. 1363–1372, ACM, 2013.