Programming Languages and Compilers (CS516) - Homework #3

Hari Amoor

April 1, 2020

Contents

- For each of the following loops, specify the nature of each loop dependency (if any).
 Assume the given sequential code and assess opportunities for concurrency.
- 3 Desceribe how the given lattice can be used for dependence analysis between procedures. 3

1 For each of the following loops, specify the nature of each loop dependency (if any).

- Here, the statement S defined as A(2i) = A(i) + 1 has a true dependence on itself. We supply direction vector [<], but we cannot supply a distance vector due to the inconsistency of the dependency.
- Here, the statement S defined as A(2i) = A(7i) + 1 has an antidependence on itself. We supply direction vector [<], but we cannot supply a distance vector due to the inconsistency of the dependency.
- Here, the given algorithm does not have any loop dependencies.
- Here, the statement S defined as A(i) = A(10 i) 5 has a true dependence on itself. We supply direction vector [<], but we cannot supply a distance vector.

- Here, the statement A(i, j) = 2A(i 1, j + 3) has an anti dependence on itself. We supply distance vector [< >] and direction vector [1 -3].
- Let S be the statement $A(i) = \ldots$ and T be the statement $\ldots = A(j + 1)$. T has a true dependence on S with direction vector $\begin{bmatrix} < & > \end{bmatrix}$ and distance vector $\begin{bmatrix} 1 & -1 \end{bmatrix}$.
- Let S be the statement A(i) = ... and T be the statement ...
 = A(j + i). S has a loop-independent dependence on T; thus, any direction or distance vector would be vacuous.
- By the Theorem of Simple Dependence Testing (Lecture 15, Slides 12-13), the instruction A(i, j, i) = 2A(i, j+1, i-1) has a dependency iff there exists (i, j) ∈ I s.t. the following are satisfied (they clearly are not):

$$i = i$$

$$j = j + 1$$

$$i = i - 1$$

2 Assume the given sequential code and assess opportunities for concurrency.

• The supplied table is labelled for each pair of statements S_i, S_j with δ_k^j if there is a dependence between S_i and S_j . We supply the directed graph G with vertices $V = \{v_i\}$, where each v_i corresponds to S_i ; the edge $e = (v_i, v_j)$ exists with designation supplied from the given table for (S_i, S_j) iff it is non-zero.

• We *condense* the previously-supplied graph, i.e. to maximal strongly-connected substructures, and produce the following vectorization:

 $S_3: A(2:100, 1:100, 1:100) = A(1:99, 1:100, 2:101) + B(2:100, 2:101) * 2$ $\{S_1, S_2, S_4\}$: Execute synchronously while preserving iteration space $S_5: E(2:100) = D(2:100) + 3$

• With the Advanced vectorization algorithm we obtain the following vectorization:

 $S_3: A(2:100,1:100,1:100) = A(1:99,1:100,2:101) + B(2:100,2:101) * 2$ $S_1: D(2:100) = 100$ $\{S_2, S_4\}:$ Execute synchronously $S_5: E(2:100) = D(2:100) + 3$

We additionally provide the following representation of a graph with two verices in Figure 3. Note that the vertices v_i correspond to the components $\{S_1, S_3, S_5\}, \{S_2, S_4\}$ respectively.

$$\begin{array}{ccc} & v_1 & v_2 \\ v_1 & \vec{0} & \vec{0} \\ v_2 & \delta 1 & \vec{0} \end{array}$$

3 Desceribe how the given lattice can be used for dependence analysis between procedures.

We supply an algorithm to use lattice-theoretic operators to decide whether concurrency can be achieved. Let M be an oracle machine for the \wedge opoerator in some lattice L that defines the given two-dimensional array. On input of procedures a,b, compute $c=a \wedge b$. Finally, a,b to run concurrently iff no pair of statements from each a and b have are dependent; this can be done using a vectorization algorithm.