Lecture 2 Intro into Quantitative Research

Statistical Methods

UNIVERSITY OF AUCKLAND

COMPSCI 705 / SOFTENG 702 Advanced Human-Computer Interaction (HCI)

Dr. Gerald Weber

Lecture Overview

- Median as robust statistic for nonparametric methods
- Confidence and Significance
- Statistical tests
- Parametric methods

System Usability Scale (SUS)

SUS Measures subjective usability with a standard 5-point Likert scale:

- 1.I think that I would like to use this system frequently.
- 2.I found the system unnecessarily complex.
- 3.I thought the system was easy to use.
- 4.I think that I would need the support of a technical person to be able to use this system.
- 5.I found the various functions in this system were well integrated.
- 6.I thought there was too much inconsistency in this system.
- 7.I would imagine that most people would learn to use this system very quickly.
- 8.I found the system very cumbersome to use.
- 9.I felt very confident using the system.
- 10.I needed to learn a lot of things before I could get going with this system.

 Brooke 1 (1996) "SUS: a "quick and dirty" usability scale.

Brooke, J. (1996). "SUS: a "quick and dirty" usability scale". in P. W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L. McClelland. *Usability Evaluation in Industry*. London: Taylor and Francis.

Measures of Central Tendency

Median: middle value

Mode: most frequent value

Arithmetic Mean:

- Sum over whole population, divided by population size: (a1+a2+....+an)/n.
- See also the expected value in probability theory E(X):
- E(X) is the arithmetic mean, if X is a uniformly random member of the population.
- Arithmetic mean is easy to compute incrementally.
- Requires interval variables.
- Not a robust statistic: can be heavily influenced by extreme points in skewed distributions:
- Especially by tail-heavy distributions.

Nonparametric vs parametric

- Nonparametric statistics:
 do not assume a specific distribution in the phenomenon.
- Are also working for ordinal data.
- Parametric statistics:
 do assume a distribution,
 often relying on assumption of normal distribution.
- Median fits naturally to nonparametric methods
- For arithmetic mean, often parametric methods are used.

Median: a robust statistic

- Works for ordinal variables; values have an ordering.
- Based on the concept of rank: Sort and number all values of the variable in the collection. rank = position in that order.
- Median: the value with middle rank (position in that order).
- Often seen as a good choice of a "typical value" particularly for skewed distributions.
- Workaround for even number of values:
 - arithmetic mean of two middle values.
- But for uneven number of values:
 - Median is always an original data point.
- Also as percentile: boundary of 50th percentile.
- Also as probability: 0.5 probability to be above (below) median.
- Robust statistic: Breakdown point of 50%: if less than 50 percent of data are outliers of a systematic kind (all too big), the median still gives a valid data point.

Random sampling and interval results

- To obtain a representative score for a system (e.g. the SUS score) we recruit a random sample of potential users.
- Different users will give different scores:
- The score we obtain, and any measure (especially median and arithmetic mean) will randomly fluctuate, depending on which participants we choose randomly.
- Therefore we know that a single mean or median is not giving enough information, we have to present an interval and a qualification how informative this interval is.

Estimating the median

- We want to measure = estimate the median weight of adult silvereyes.
- Assume we have weighed two randomly chosen adult silvereyes: 9 gram and 10 gram.
- Claim: with probability 0.5 (colloquially 50% chance) the population median weight of adult silvereyes lies between 9 and 10 gram.
- Is this true?

First estimate for the median.

The following 4 possibilities are equally probable:

- Question whether a randomly chosen sample point is above or below median is like a random coin flip.
- With 50 percent probability the two first data points straddle the median.

Confidence

- If we take random samples, we know that the median/mean of the sample fluctuates.
- Therefore it is not enough to report only one value:
- Assuming a probability C, eg. 95% (meaning 0.95) is requested:
 A C-confidence Interval is an interval for which we know that the
 population average lies with probability C within the reported
 interval, assuming we have done good random sampling.
- E.g. Measuring the median weight of adult silvereye: we measure a random sample and report a weight of 9 to 11 gram with 95 percent confidence.
- Note: The confidence interval that we report will fluctuate as well! Would we have a different random sample, we would have reported a different interval;
- Confidence: With which probability is the median within the reported interval?

Symmetric Confidence Interval for Median

- The first 95% confidence interval (CI) can be obtained with 6 measurements: 1-2/64 = 1 -1/32 ~= 97%
- BUT: It is the interval between the smallest and largest value.
- No leeway for outliers.
- Notation: Interval (n, m) states the rank of the datapoints that we choose from our measurements sample.
- The first 95% confidence interval that excludes the two extreme measurements can be obtained with 9 measurements:
 Interval (2,8) has confidence 1- (2*10)/512 ~= 1- 1/25 ~= 96%
- These CIs are always between original data points.
- 12 measurements: (3,10) 96% confidence
 15 (4,12) 96% confidence
 17 (5, 13) 95,1%
 20 (6, 15) 95,8 %

Significance

- Often we are not primarily interested in a median, but:
- For two measures m1, m2 on the same population, is one alternative better for most members of the population? E.g. mouse vs trackpad.
- Relation to confidence interval:
- We make a within-subjects experiment:
- Measure for m1, m2 for each participant.
- Take difference m1-m2 for each participant.
- If the confidence interval for the mean/median of the difference m2-m1 excludes the zero, then the result is significant.
- Note, this does not require that the confidence intervals for m1 and m2 are disjoint.
- Significance expressed as P value: 0.05 or 0.01 in contrast to confidence.

One-sided vs two-sided

- We can either be naïve concerning the direction of the outcome,
- Or we can expect a certain outcome (This expectation is a socalled prior)
- Naïve: two sided test:
- E.g mini keyboard vs handwriting.
- H1: For two measures m1, m2 on the same population, one of them is better for most members of the population.
- H0: both are equally good. (Null Hypothesis)
- With prior: one-sided test:
- E.g. mouse vs trackpad.
- H1: For two measures m1, m2 on the same population, m1 is better for most members of the population.
- H0: m1 is not better. (Null Hypothesis)

Two-sided sign test

- A test for paired samples: For two measures m1, m2 on the same population, is one measure better for most members of the population? E.g. mini keyboard vs handwriting.
- Random sample consists of n measurement pairs.
- Sign test essentially computes the confidence interval for the median of the difference.
- Result is significant if the confidence interval excludes the zero.
- For significant result we need 6 measurement pairs, and they have to have all the same sign.
- For 9 measurements we can have one pair with opposite sign.
- 12 measurements: 2 pairs with opposite sign allowed
- 15 measurements: 3
- 17
- 20 5

One-sided sign test

- If we have fixed the hypothesis we need only a one-sided confidence interval:
- Only have to deal with outliers on one side.
- The interval is open on the other side, e.g. (1, ...)
- P-value for given number of opposing signs is doubled.
- Hence p-value 0.05 is reached easier:
- Interval (1, ...) has confidence 1-1/2n.
- For significant (p=0.05) result we need 5 measurement pairs, and they have to have all the same sign.
- For 8 measurements we can have one pair with opposite sign.
- 11 measurements: 2 pairs with opposite sign allowed
- 13 measurements: 3
- 16
- 18

Wilcoxon Signed-Rank test

- Sign test makes minimal assumptions about distribution of data.
- But needs relatively clear results: Statistical power is low.
- Wilcoxon signed-rank test: takes differences into account, has higher statistical power:
- E.g. if we have 9 pairs with two pairs with opposite sign: if the difference for these two pairs is small, then the Wilcoxon Signed-rank test might still give a significant result.
- Order differences according to their absolute size:
- -0.3, 0.6, -2.1, 2.2, 3.4, 5.1, 5.7, 6.1, 6.8
- So we get an ordered list of signs:

```
- + - + + + + +
```

- 1 3 W-value is 3+1=4
- Look up in table for critical W values for Wilcoxon test
- For n=9, maximally allowed W-value is 5, for p=0.05,
- so result is significant!

Type I errors and Type II errors

Type I error:

- Null hypothesis is rejected in experiment,
- but should not be rejected, is true.
- a.k.a. false positive.

Type II error:

- Null hypothesis is not rejected in experiment,
- but should be rejected, is false.
- a.k.a. false negative.

Normal Distribution

Normal Distribution:

- aka "Gaussian Bell curve"
- Symmetric, infinite distribution, never going to zero.
- Standard deviation: the x-value of the inflection points (where the curvature changes).
- Dying out rather quickly:
- Empirical rule 68-95-99.7: within 3 percent of values.
- Is result of a random zigzac walk: equalsized legs of the walk added up.
- Appears as sampling distribution, e.g. distribution of mean with random sampling

Dan Kernler, commons.wikimedia.org/wiki/File:Empirical_Rule.PNG

Confidence Interval of the mean

- Is typically given as a parametric confidence interval:
- Makes assumptions about the distribution (arguably always necessary for mean, because it is not robust)
- Sample mean m
- Standard deviation: σ
- Square root of sample size: √n
- Correction factor for desired level a of confidence: t_{a,n}
 Can be looked up in table.
- Confidence interval:
- $(m + \sigma t_{a,n} 1/\sqrt{n}, m \sigma t_{a,n} 1/\sqrt{n})$

t-test

- A frequently used parametric test
- Used for hypothesis testing
- Exists as unpaired and paired test.
- Paired test: used for within-subject design
- Tool support for tests:
- E.g. Jasp, an open source tool designed for users familiar with SPSS.

https://jasp-stats.org/

Log-normal Distributions

Log-normal Distribution:

- Result of a random repeated multiplication with small factors around 1.
- Appears in many natural processes,
 e.g. growth processes
- Also many HCI phenomena:
 - Dwelltime on online content
 - Length of online content
- Positive/negative influences work as factor, not additive.
- By using logarithmic scale, factors turn into additive steps.
- Typical for parameters that are only positive.

Different log-normal distributions with same arithmetic mean

Normal and Log Normal Distributions:

Median vs. Mean

- Median gives for log-normal distribution the mean after taking logarithm.
- Example of the robustness of the median.
- Shows that median can be used without making assumptions on the underlying distribution.
- But: If it can be shown from the data that the distribution is e.g. lognormal, then transforming it and making use of the properties of the normal distribution can give stronger results.

Issues with low confidence levels

- The accepted confidence levels 95% and 99% are just a convention (stemming from parametric methods).
- For descriptive studies reporting e.g. a median: 1 in 20 of the 95% confidence intervals that we find are spurious.
- Type 1 error (false positive): The null hypothesis is true but is rejected.
- Since inconclusive studies are rarely reported: The reported results are selected for being affirmative of H1.
- It may be that false positive are overrepresented
- More than 1/20 of the reported positive 95% confidence intervals or p=0.05 significance tests will be false positives.

Summary 1

- Different measures of central tendency have different uses: mode, median, arithmetic mean.
- The confidence interval for the median is given by actual datapoints and is independent of the distribution.
- Confidence and significance are measures of whether our findings are just coincidence or true relationships: conclusion validity.
- Significance can be explained with confidence.
- Established mininmum requirement: 95% confidence resp significance of 0.05.
- We need enough data to exclude outliers.
- The Wilcoxon signed-rank test is considered stronger than the sign test.

Summary 2

- Different measures of central tendency have different uses: mode, median, arithmetic mean.
- Parametric methods are particularly suitable for data with roughly normal distribution.
- The parametric confidence interval for the mean is symmetric around the sample mean.
- The t-test is a popular parametric test.
- Parametric methods are not robust against outliers
- The Wilcoxon Signed-Rank test is a nonparametric alternative to the t-test and more robust