The Dislatice corregonal related structure)

+ Brendon Fong Jules Hedges Michael Johnson Dovid Spirat

(Hi) stong

· Diobertica category (Valeria de Paivo, PhD 1988)

Motivation. Godel Dishertice interpretation 1958

Girord's Linear Logic ~1986 (mearingliacin)

decompose logical connectives: => to -0 ! (of cause)

-> categorical models for Linear Logic > classical
intuitionistic

· Lenses (asymmetric/monomorphic ~ 2003 Pierre/Schmitt

2007 + Foscer Groenwold

Moore)

Motivation: modeling bx evansformations view-update publish (database theory smce lace '70s)

· Wiring diagrams (Spirak ~2013 + Rupel, Vagrer, Lermon, Schultz, CV,...)

Mountian: systems as operad algebras

compositional analysis (zoomin2out, re-design)
Moore machines, continuous dynamical systems

abstract machines

D flored: · open game theory (Hedge, Ghani, ~2015) · Leorners (Fong, Spirak, Tryeres ~ 2017)

- 2017

Hyland: WD + Disbertica ACT Leiden: Lenses + WD (CV+ joint project) 2018

Wiring diagrams: categorical formalism for pictures like
Composite
· Grey possible interconnector
of "boxes" is a marghism in (devermined by
of "boxes" is a marchism in the (determined by subsystems some
(orthogonal torusal string open subsystem description & properties
theory pics! + (of some type)
· For any & the corregon We of labelled boxes wiring diagrams has
diagrams was
- objects pours (M) by of 6-typea finite sets,
- 1 of type 1 e. equippe a mith Ci = x1 = 2000
al Consepus
Louis XI Then X Doiss
- objects poirs (X, X) of 6-typed finite sets, of typed finite sets, of type 1.e. equipped with z: X; - dobb ingut X, (it is an insulation) x, point e.g. Set - labelled box r(a)=Z
$z(an)=\{1,T\}$
- morphisms (X, X2) -> (Y, Y2) pairs (X, -> X2+Y,
that respert the types
1 x1 x2 12 "where the info comes from"
to (e.g. no passing wires)
IND COMPANY (FIFTY)
- monoidal seruceme X+Y1 X2+Y2
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
. — ,
$\phi \perp \downarrow \rho$

^
When & has produces, this "maps" to a corregory We
[idea: associate objects of 6 nother than set)
to input & output side of boxes!]
- objects one pairs (S=TtoG), T=ITtoG) = Tox & *exz *exz
5 product of all output types,
e-g Z× [L, T] × · · · N e Set
- morphisms (S,T) -> (A,B) ore [sum turved into product ['taking products" is [p: SxB->T
contravariant & strong monoidal] \(\begin{array}{c} \qq \qu
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
turns into 2(6,) 2(0,)x2(02) PA 91 PA 2" + 2"xD 8 FLS A A B
Compartion Set is S S A = P
Composition $S \stackrel{T}{\rightleftharpoons} I$ is $S \stackrel{Q}{\rightleftharpoons} A \stackrel{f}{\rightleftharpoons} P$ $S \stackrel{Q}{\rightleftharpoons} S \stackrel{Z}{\rightleftharpoons} S \stackrel{Z}{\rightleftharpoons} S \stackrel{Z}{\rightleftharpoons} S \stackrel{Z}{\rightleftharpoons} S \stackrel{Z}{\rightleftharpoons} T$
2 0
- monoidal structure * TT ~ (No, 8, 'TT') is
BEFA a symmetric monoidel
Coxogon
Various systems one elgebres on WE (or the in duced opened), i.e. lox nonoidal (pseudo) furctors K: (Ne, 8, 12) -> (Cot, x, 1)
1. e. lox nonoidal (pseudo) functors K: (n/e & 'D') - (Cot x 1)
6 600
= g. K(S,T) = category of all Moore machine (S,T) -> K(S,T) m with imput T & output S ming I I functionality & ming I Amgram (A,B) -> K(A,B) m'
with imput Thousand I morning I
functionality & (A,B) -> K(A,B) m
The mana address of the
Produces or NEW mochre
Mas their composite!
completely expressed in terms of subsystems

Diplectica categories
Take & Vimonoi del dosed with products, (6, 0, I, -0, x)
* $6 \times 6^{\circ R}$ has monoidal senitive $(S,T) \otimes (A,B) := (S \otimes A, (A-oT) \times (S-oB))$ in fact, it's closed: $(S \otimes A, (A-oT) \times (S-oB)) \longrightarrow (P,R)$
(S,T) -> ((A-0P) × (R-0B), R&A) (S,T) -> ((A-0P) × (R-0B), R&A) (G(E) = 6×6° is a corresponded model of Classic Linear Logic In porticular, it has products (S×A, T+B) when 6 has Leaproduces (S+A, T×B) moreover copies
Suppose & is ccc There is a comound f: 6×6°° - 16×6°° (S,T) - 1(S,T')
Comultiplication: $f(S,T) \longrightarrow FF(S,T) \longrightarrow G\times G^{OP}$ $(S,T^{S}) \qquad (S''(T^{S})^{S}) \cong (S,T^{S\times S})$ $(S \xrightarrow{id}, S \qquad (S^{OP}, T^{S}) \longrightarrow T^{S}$
Counit: $F(S,T) \rightarrow (S,T)$ $S \xrightarrow{d} S$ (S,T^2) $Y = (S,T)$
A The Diolection caregory D(6) is the coklessic corregory (&&) of i.e. has the same objects (S,T), & morphisms (S,T) ms (A,B) are F(S,T)=(S,T') -> (A,B) in 6×6 nomely
$ \begin{array}{c c} S \to A \\ B \to T \\ \hline S \times B \to T \end{array} $ $ \boxed{D(6) \cong W_e} $
D(6) is () a categorical model for (the propositional part of) Intuitionistic Linear Logic weak coproducts!

Remarks
T. D(-) & W, ere principal
(ccCos) fc Cos -> Sum Mon Cost (mith (SXATXR)
(ST) which is not de
F & Job J Corregorial
Remorks (cc(a1) fc(at -> SymMon Cot with Ux47xB) (cc(a1) fc(at -> SymMon Cot with Ux47xB) Which is hort the The formation of corregorded product (f5,f7) product D(f) I D(f) I I I I I I I I I I I I I I I I I I I
In original nort, D(6) has objects "relations" $M \times X \to S \times X$ ond morphisms $S + T$ such that a non-trivial condition $S + T$ $S +$
and in malines S+T such that a non-trivial condition
9 LP is rotiched M
-lover 6 31k- Y -
"whenever s x ols b) "> >> >5xB -> sxt
"whenever $S \propto P(S,b)$, then $g(S) \otimes b \otimes b''$ $J \otimes S \times B \xrightarrow{(\pi_1, P)} S \times T$
The ensure C(E) who SAT V > AxB
In easier G(E), with SIT V > B A × B SLJ(b) ≤ 0 g(s) 8b A+B is a "semi-adjointress" condition
Coole
"F"
· Standard cokleisli theory ~ 6×6° = D(6) = (6×6°)
$(S,T) \longrightarrow (S,T)$
E.g. D(6) inherits products +170 +170 (S,T) via right adjoint, (SxA, T+B), (AB) (AB) (AB) (AB) (AB)
via right adjoint (SXA T+B) (AB) (AB) count
but no more limit) or colimit) one experted in general! [most coproduct
Lenses: interactions between a database & a view of it
Monomorphic / asymmetric lenses are two objects S, A in 6 (towning
with Sp: SxA-> S "Dut" - UPDATE Source VICH
with Sp: SxA-> S "put" - UPDATE source VIEW Eg: S]- A "get" - VIEW (eg. downbuse) (e.g. results)
initial updated of query)
initial updated of query) state of state of NEW state
whole zoomed-in of whole
Chearly, this is a miring diagram (diabertice morphism (S,S) -> (A,A)
SS
SS OV A STS A
And the second s

Well-behoved benses satisfy
Put Get: SXA PSS SA = TTA
"YOU GET BACK WHAT YOU PUT IN"
Cret Put: S A SxS TX8 SxA P S = ids
"PUTTING BACK WHAT YOU GOT DOESN'T CHANGE ANYTHING"
E.g. constant-complement view-updating hen)
0, (92) 0, (93)
(A1 × A2 A,) by Sp: (A1 × A2) × A1 1123 A1 × A2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
is a well-behaved lens [complement remains unchanged]
Bimorphic lenses (S,T) -> (A,B) one precisely dishertica marphisms
S×B->T- marphisms
-> view can change to different type B, resulting to a change of the whole from S to type T.
to a change of the whole from I to type!
D(6) = W6 = Bilens (6)
OPEN QUESTIONS/DIRECTIONS: channel of communication
between completely different oreas serving different purposes.
· Ironsfer of sevurtures properties & intuition.
 Tronsfer of sevurtures properties & intuition. (S,S) → (A,A) monomorphic lenses CLASSPY/ (S,S) → (A,B) Moore machines (UNDERSTAND)
(S,S) -> (A, B) Moore machines (UNDERTAND
(5,5) -> (A,B) Moore macrities (UNDERTAND) (5,T) -> (A,B) Dislectice translation of implication) SUBCATTHORN • (on dition) for relation in Dislectice & functionality
Collaron St. 1000
of abstract systems/contracts algebra suspiciously similar. Also, some algebras themselves expressed as Dislectiva maps
Also, some elgebres themselves expressed as Visilerana morps
· D(B) manaidal daged via [(1,T), (AB)] = (AS,TS,ASXB), what does it mean for WD2 Bilens? · Spons incorporated Symmetric lentes = 5 pens of asymmetric spons incorporated Symmetric lentes = 5 pens of asymmetric abstract machines are spon-like algebras
· Some incorporated > symmetric lenter = > pens of asymmetric
- 1 abstract machines are spon-like algebras