ResNet:2015

Deep Residual Learning for Image Recognition

论文出发点或背景

理论上网络越深对特征的提取会更好,但是有时候会产生一些其他问题比如计算量爆炸、梯度弥散或者梯度爆炸,其中一部分因为BN的引入而得到了解决。

实验发现网络层数增加时,精度达到饱和,之后增加层数会导致网络精度降低,网络发生退化,而且这种问题不是过拟合引起的

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

论文创新思路

Figure 2. Residual learning: a building block.

引入一个残差结构来解决网络的退化问题,identify是恒等映射,假设无残差结构最后要输出的是H(x),引入残差结构的恒等映射之后就会使得最后一层学习的目标变为了F(x)=H(x)-x。网络的输出变为了F(x)+x。

如果浅层的解已经是最优的话,那么非线性层的权值就会接近于0,这样整个模块的输出就接近于上一层的输出,这就保证了增加了层数,最起码保证不会让网络的性能变更差

之前的工作:

残差表示:在低级视觉和计算机图形学中,为了解决偏微分方程的问题,广泛使用多重网格,将问题分解为多个子问题,每个子问题得到的是粗粒度和细粒度的差值。多重网格的另一种替代方案是分层预处理,依赖于表示两个尺度之间的残差的向量。

跳跃连接的方式:

在Highway networks中通过具有门控函数的支路进行跳连,但是我们的残差网络是通过恒等映射实现的 跳连,所以没有计算量,是Highway Network的一种特殊情况。

论文方法的大概介绍

(1) 受到VGGNet的启发,卷积层大多都是3×3卷积核并且遵循两个设计规则:对于相同尺寸的输出特征图大小,各层有着相同数量的卷积核;如果特征图尺寸缩小一半,卷积核的数量就要加倍,以保证每层的时间复杂度,我们通过步幅为2的卷积层进行降采样,该网络以一个全剧平均池化层核一个softmax的全连接层结束,中间的加权层层数为34层

(2) 左边的设计的基础模块是为了让特征图减半的同时,图像的通道数逐渐增加,右边是为了降低网络的时间复杂度设计出来的模块,先1×1卷积降维,然后3×3卷积提取特征,最后1×1卷积升维。

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

实际效果

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	_	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

Table 3. Error rates (%, **10-crop** testing) on ImageNet validation. VGG-16 is based on our test. ResNet-50/101/152 are of option B that only uses projections for increasing dimensions.

top-5 err. method top-1 err. VGG [41] (ILSVRC'14) 8.43 GoogLeNet [44] (ILSVRC'14) 7.89 VGG [41] (v5) 24.4 7.1 PReLU-net [13] 21.59 5.71 BN-inception [16] 21.99 5.81 ResNet-34 B 21.84 5.71 ResNet-34 C 21.53 5.60 ResNet-50 20.74 5.25 ResNet-101 19.87 4.60 19.38 4.49 ResNet-152

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.

training data	07+12	07++12
test data	VOC 07 test	VOC 12 test
VGG-16	73.2	70.4
ResNet-101	76.4	78.8

Table 7. Object detection mAP (%) on the PASCAL VOC 2007/2012 test sets using **baseline** Faster R-CNN. See also Table 10 and 11 for better results.

metric	mAP@.5	mAP@[.5, .95]
VGG-16	41.5	21.2
ResNet-101	48.4	27.2

Table 8. Object detection mAP (%) on the COCO validation set using **baseline** Faster R-CNN. See also Table 9 for better results.

个人对这篇论文的理解

1.残差模型之前在Highway Network中也有提到,ResNet可以看作是Highway Network的一个特殊情况,去掉了门控模块,通过恒等映射的方式在优化时会变得更加容易,同时Highway Network的假设空间相比ResNet更复杂一点,因为Highway Network需要寻找最适合数据的超参数、

- 2.出发点还是在加深网络的深度的时候,我的网络表现如果不能表现更好,最起码不能比浅层差,所以通过恒等映射保证了浅层的效果得以保留,之后通过对主干支路学习到的加权得到F(x),如果浅层效果已经最优了,那么F(x)应该是趋向于0的
- 3.作者尝试了优化一千层以上的残差网络,最后发现还不如100多层网络的表现,认为这时候是出现了一定的过拟合,需要大量的数据加更强的正则化方式