Quantum Mechanics 412-1 Discussion

Tuesday, 15 October 2019

1. Coupled time evolution.

Consider a system with a pair of observable quantities A and B, whose commutation relations with the Hamiltonian take the form $[H,A] = i\hbar\omega B$ and $[H,B] = -i\hbar\omega A$, where ω is some real constant. Suppose that the expectation values of A and B are known at time t=0 as $\langle A \rangle(t=0)=A_0$ and $\langle B \rangle(t=0)=B_0$. Find formulas for the expectation values of A and B as a function of time, $\langle A \rangle(t)$ and $\langle B \rangle(t)$, assuming the operators themselves do not explicitly depend on time.

2. Operator methods and time dependence.

The Hamiltonian H has two normalized eigenstates $|\psi_1\rangle$ and $|\psi_2\rangle$ which correspond to distinct eigenvalues E_1 and E_2 .

- (a) Show that $|\psi_1\rangle$ and $|\psi_2\rangle$ are orthogonal.
- (b) Suppose there is some observable A for which $A |\psi_1\rangle = |\psi_2\rangle$ and $A |\psi_2\rangle = |\psi_1\rangle$. Calculate the eigenvalues and eigenvectors of A.
- (c) Assuming that at t=0 a system is in the state $|\psi(t=0)\rangle = \frac{1}{\sqrt{2}}(|\psi_1\rangle |\psi_2\rangle)$, show that the probability of the system returning to its initial state is given as a function of time as $P(t) = \cos^2[(E_1 E_2)t/2\hbar]$

3. Expected momentum.

- (a) Show that, for a real, normalized wavefunction $\psi(x)$, the expectation value of momentum vanishes, $\langle P \rangle = 0$.
- (b) Show that if $\psi(x)$ has a mean momentum $\langle P \rangle$, the wavefunction $e^{ip_0x/\hbar}\psi(x)$ has a mean momentum $\langle P \rangle + p_0$.

4. Operators and eigenbases

Consider an operator Q characterized in the basis of energy eigenkets $|1\rangle$ and $|2\rangle$ as:

$$Q = a(|1\rangle\langle 1| + |1\rangle\langle 2| - |2\rangle\langle 2|) \tag{1}$$

Find the eigenvalues and eigenvectors of Q in terms of a and $|1\rangle \& |2\rangle$. Are the eigenkets orthogonal? Did you expect them to be? If there's disagreement between these two answers, try to reconcile it.