RC Inkremental Inkrementalgeber für RC-Sender

Wilhelm Meier

Version 0.1, 02/09/21: HW_0.1

Inhalt

1. Vorwort	1
2. Symbolerklärung	2
3. Rechtliches	2
4. Sicherheitshinweise	2
5. Spezieller Sicherheitshinweis: Kleinteile	3
6. Einführung	4
6.1. Ansicht	4
7. Einbau	5
8. Konfiguration	6
8.1. LED zur Kontrolle der eingestellten Konfiguration	6
8.2. Konfigurationsmodus	6
8.3. Konfigurationen	7
8.3.1. Poti-Modus	7
8.3.2. Cppm-Master-Modus	7
8.3.3. Cppm-Slave-Modus	8
9. Bedienung	8
10. Anwendungen	9
10.1. Bewegungen mit natürlicher Begrenzung	9
10.2. Kontinuierliche Drehbewegungen am Modell	9
10.3. Ebenenumschaltungen	9
10.3.1. Der Geschwingkeit/Weg-Umformer (Integrator).	10
10.3.2. Konfiguration in OpenTx	10
Einrichten der Inputs (Geber)	11
Einrichten des Mischerscriptes	12
Einrichten der Mischer für die Ebenen 13	15
11. Betrieb	16
12. Kontakt	18

1. Vorwort

Lizenz

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-nc-nd/4.0/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.

Das Modul wie auch diese Doku ist noch unvollständig und work-in-progess. Bei jeglichen Unklarheiten in dieser Funktionsbeschreibung und generellem Aufbau und Anschluß, unterlassen Sie den Betrieb und kontaktieren Sie den Bausatzersteller.

2. Symbolerklärung

Ein wichtiger allgemeiner Hinweis für den sicheren Aufbau und die sichere Bedienung. Dieser sollte durch den Anwender bachtet werden, um einen sicheren Betrieb zu gewährleisten.

Ein genereller Hinweis, der durch den Anwender beachtet werden sollte.

Ein technischer oder sicherheitstechnischer Hinweis, der unbedingt durch den Anwender beachtet werden muss.

Ein technischer oder sicherheitstechnischer Gefahrenhinweis, der unbedingt durch den Anwender beachtet werden muss. Zur Gefahrenabwendung muss der Anwender unbedingt die gegebenen Anweisungen befolgen und die beschriebenen Maßnahmen ergreifen.

3. Rechtliches

Der vorliegende Bausatz wird dem Anwender für eigene Experimente überlassen. Er stellt kein Produkt im Sinne des ProdHaftG oder elektronisches Gerät im Sinne des ElektroG dar und wird als Gerät nicht kommerziell vertrieben.

Die Überlassung gegen Unkostenerstattung erfolgt unter Ausschluss jeglicher Sachmangelhaftung.

Für den vorliegenden Bausatz werden keine Funktionsgarantien gegeben. Für Schäden am Bausatz oder an damit verbundenen Geräten oder Modulen wird keine Haftung übernommen. Gewährleistungen, Garantien und Widerrufsrechte gibt es nicht.

4. Sicherheitshinweise

Beim Umgang mit Produkten, die mit elektrischer Spannung in Berührung kommen, müssen die gültigen VDE-Vorschriften beachtet werden, insbesondere VDE 0100, VDE 0550/0551, VDE 0700, VDE 0711 und VDE 0860.

Werkzeuge dürfen an Geräten, Bauteilen oder Baugruppen nur benutzt werden, wenn sichergestellt ist, dass die Geräte von der Versorgungsspannung getrennt sind und elektrische Ladungen, die in den im Gerät befindlichen Bauteilen gespeichert sind, vorher entladen wurden.

Spannungsführende Kabel oder Leitungen, mit denen das Gerät, das Bauteil oder die Baugruppe verbunden ist, müssen stets auf Isolationsfehler oder Bruchstellen untersucht werden. Bei Feststellen eines Fehlers in der Zuleitung muss das Gerät unverzüglich aus dem Betrieb genommen werden, bis die defekte Leitung ausgewechselt worden ist. Bei Einsatz von Bauelementen oder Baugruppen muss stets auf die strikte Einhaltung der in der zugehörigen Beschreibung genannten

Kenndaten für elektrische Größen hingewiesen werden. Wenn aus einer vorliegenden Beschreibung für den nicht gewerblichen Endverbraucher nicht eindeutig hervorgeht, welche elektrischen Kennwerte für ein Bauteil oder eine Baugruppe gelten, wie eine externe Beschaltung durchzuführen ist oder welche externen Bauteile oder Zusatzgeräte angeschlossen werden dürfen und welche Anschlusswerte diese externen Komponenten haben dürfen, so muss stets ein Fachmann um Auskunft ersucht werden. Es ist vor der Inbetriebnahme eines Gerätes generell zu prüfen, ob dieses Gerät oder Baugruppe grundsätzlich für den Anwendungsfall, für den es verwendet werden soll, geeignet ist!

Im Zweifelsfalle sind unbedingt Rückfragen bei Fachleuten, Sachverständigen oder den Herstellern der verwendeten Baugruppen notwendig!

Bitte beachten Sie, dass Bedien- und Anschlussfehler außerhalb unseres Einflussbereiches liegen. Verständlicherweise können wir für Schäden, die daraus entstehen, keinerlei Haftung übernehmen. Bei Installationen und beim Umgang mit Netzspannung sind unbedingt die VDE-Vorschriften zu beachten. Geräte, die an einer Spannung über 35 V betrieben werden, dürfen nur vom Fachmann angeschlossen werden. In jedem Fall ist zu prüfen, ob der Bausatz oder die Platine für den jeweiligen Anwendungsfall und Einsatzort geeignet ist bzw. eingesetzt werden kann.

Derjenige, der eine Schaltung oder einen Bausatz aufbaut und fertigstellt oder eine Baugruppe durch Erweiterung bzw. Gehäuseeinbau betriebsbereit macht, gilt nach DIN VDE 0869 als Hersteller und ist verpflichtet, bei der Weitergabe des Gerätes alle Begleitpapiere mitzuliefern und auch seinen Namen und Anschrift anzugeben. Geräte, die aus Bausätzen selbst zusammengestellt werden, sind sicherheitstechnisch wie ein industrielles Produkt zu betrachten.

Für alle Personen- und Sachschäden, die aus nicht bestimmungsgemäßer Verwendung entstehen, ist nicht der Hersteller sondern der Betreiber verantwortlich. Bitte beachten Sie, das Bedienund/und Anschlussfehler außerhalb unseres Einfußbereiches liegen. Verständlicherweise können wir für Schäden, die daraus entstehen, keinerlei Haftung übernehmen.

Jegliche Vorschriften und Vorsichtsmaßnahmen im Umgang mit elektrischen Komponenten sind vom Anwender einzuhalten.

Beachten Sie ebenfalls die Richtlinien unter Abschnitt 11.

5. Spezieller Sicherheitshinweis: Kleinteile

ACHTUNG: Der Bausatz enthält verschluckbare Kleinteile. Von Kindern fernhalten.

6. Einführung

Der RC-Inkremental ist ein sog. *Inkrementalgeber*. Dies ist ein *Drehgeber* ähnlich wie ein Potentiometer, jedoch kann dieser Geber beliebig oft gedreht werden. Er besitzt *keinen* Anschlag wie ein Potentiometer. Man kennt diese Art von Gebern etwa aus der Unterhaltungselektronik oder anderen Bedienfunktionen.

Zusätzlich besitzt der Geber noch einen Taster.

Der RC-Inkremental hat die Baugröße eines Potentiometers und kann auch als solches eingebaut und an die Senderelektronik angeschlossen werden. Allerdings sind auch noch andere Anschlussmöglichkeiten vorgesehen.

6.1. Ansicht

In den Bildern Abbildung 1 und Abbildung 2 ist jeweils die Ansicht von oben und unten abgebildet.

Die Maße betragen ca. 15mm x 15mm. Die Welle des Drehgebers hat einen Durchmesser von 6mm. Die Befestigung erfolgt mit einer zentralen Mutter. Der Durchmesser des Bohrlochs muss 7,5mm betragen.

Abbildung 1. Ansicht des Inkrementalgebers von oben

Abbildung 2. Ansicht des Inkrementalgebers von unten

Die Spannungsversorgung erfolgt vom Sender über den Pfostensteckverbinder.

• Pin 1: Masse

• Pin 2:

• Konfigurations-Modus: Kontrollleuchte

• Poti-Modus: analoges Gebersignal

• Cppm-Master: Verbindung zum *Slave*

• Cppm-Slave: Verbingung zum *Master*

• Pin 3:

• Poti-Modus: Taster

• Cppm-Master: Cppm-Signal zur Verbing zur DSC-Buchse des Senders

• Cppm-Slave: unbenutzt

• Pin 4: V+ (≤ 5,5V) Versorgungsspannung

Achtung

Die **maximale Spannung** (Senderspannung) darf 5,5V **nicht** überschreiten. Eine höhere Spannung kann das Modul zerstören, ebenso eine Verpolung. Um einen zuverlässigen Betrieb zu gewährleisten, sollte die Betriebsspannung **nicht** unter 2,8V sinken.

Abbildung 3. Anschlüsse

7. Einbau

Der Einbau erfolgt unproblematisch über ein zentrales Loch mit 7,5mm Durchmesser an einer geeigneten Stelle im Sendergehäuse. Stellen Sie sicher, dass *hinter* dem Loch auch genügend Platz ist, um die mit dem Drehgeber verbundene, kleine Platine zu platzieren.

Vergessen Sie auch nicht, ggf. noch die Höhe eines Steckverbinders einzuplanen.

Wenn Sie ein neues Loch in das Sendergehäuse bohren, vergewissern Sie sich, dass hinter dem

geplanten Bohrloch keine weiteren Kabel verlaufen, die ggf. beschädigt werden könnten.

8. Konfiguration

Die Konfiguration des Gebers wird beim *Einschalten* eingestellt. Ist der Geber schon im Sender eingebaut, so muss dazu der Sender eingeschaltet werden. In diesem Fall sollte man besondere Vorsicht walten lassen, um den Sender nicht zu beschädigen.

Empfehlung für die Konfiguration

Es wird empfohlen, für die Konfiguration das Modul *nur* mit der Spannungsversorgung und der Kontrollleuchte zu verbinden. Idealerweise erfolgt die Konfiguration *vor* dem Einbau.

8.1. LED zur Kontrolle der eingestellten Konfiguration

Da der Inkrementalgeber nicht in der Lage ist, seine Konfiguration direkt dem Benutzer zurück zu melden, sollte man sich eine LED **mit** Vorwiderstand (390 Ohm) als Kontrollleuchte wie in Abbildung 4 anfertigen.

Die *Anode* wird über den Vorwiderstand mit dem Pin 2 des 4-poligen Pfostensteckverbinders verbunden.

Abbildung 4. Kontrollleuchte

Die Kontrollleuchte zeigt mit einem Blinkmuster an, welche Konfiguration gerade gewählt ist.

8.2. Konfigurationsmodus

Um in den *Konfigurationsmodus* zu gelangen, muss *beim Einschalten* der Taster mindestens 3s lang gedrückt (gehalten) werden. Anschließend beginnt die Kontrollleuchte mit einem Blinkmuster.

Folgende Konfigurationen Abschnitt 8.3 sind möglich:

1. 1x Blinken: Poti-Modus Abschnitt 8.3.1

2. 2x Blinken: Cppm-Master-Modus Abschnitt 8.3.2

3. 3x Blinken: Cppm-Slave-Modus Abschnitt 8.3.3

8.3. Konfigurationen

8.3.1. Poti-Modus

Der Inkrementalgeber verhält sich wie ein Potentiometer (Spannungsteiler).

Der Poti-Ausgang kann mit einem Geber-Eingang des Senders verbunden werden. Die Ausgangsspannung der Gebers kann maximal 2,5V erreichen. Diese bedeutet, dass der Sender ggf. auf das Spannungsintervall [0;2,5]V für diesen Geber kalibriert werden muss.

Der Taster-Ausgang kann ebenfalls mit einem Eingang des Senders verbunden werden. Die Spannung am Ausgang dieses Ausgangs umfasst das Intervall [0;U_b] mit U_b die interne Betriebsspannung des Senders.

Abbildung 5. Verkabelung im Poti-Modus

8.3.2. Cppm-Master-Modus

Es gibt Situationen, in denen im Sender auf der Hauptplatine des Senders keine Möglichkeit mehr besteht, einen oder zwei weitere Geber direkt anzuschließen. Jedoch bietet (fast) jeder Sender die Möglichkeit zu einem Betrieb im sog. *Lehrer-/Schüler*-Betrieb (LS) an.

In diesem Fall generiert dann der Inkrementalgeber ein übliches *Schüler*-Signal, was über den LS-Eingang eingespeist werden kann. Dies kann über die vorhandene externe LS-Buchse im Sender erfolgen. Besonders wenn der Geber ggf. extern am Sender montiert wird, ist dies sinnvoll und einfach. Jedoch benötigt der Geber auch eine Spannungsversorgung aus dem Sender. Dazu ist u.U. ein weiteres Kabel notwendig. Denn die meisten Sender stellem an der LS-Buchse *keine* Spannungsversorgung zur Verfügung.

Die LS-Buchse wird auch oft als DSC-Buchse bezeichnet.

Meistens sinnvoller ist die Verkabelung zur DSC-Buchse im Sender intern. Dazu muss vom Cppm-Pin des Gebers ein Kabel zur DSC-Buchse gezogen werden. Welcher Pin der Buchse das ist, kann nicht mit Sicherheit allgemein gesagt werden. Es ist *üblicherweise* der der Spitze des 3,5mm-Klinkensteckers zugeordnete Pin. leider gibt es auch viele andere Ausführungen der DSC-Buchse.

Der Werte des Inkrementalgebers steht als Schülersignal Kanal 1, und der des Tasters als Schülersignal Kanal 2 zur Verfügung.

Ist der Inkrementalgeber intern an die DSC-Buchse wie oben beschrieben angeschlossen, so kann die DSC-Buchse **nicht** mehr als *normale* Schülerbuchse verwendet werden.

Abbildung 6. Verkabelung im Cppm-Master-Modus

8.3.3. Cppm-Slave-Modus

Damit man einen *weitere* Inkrementalgeber anschließen kann, wenn der Sender keine direkte Anschlussmöglichkeit mehr hat *und* schon ein Inkrementalgeber im Cppm-Master-Modus eingebaut ist, kann man *einen* weiteren Inkrementalgeber im Cppm-Slave-Modus an den Cpmm-Master anschließen.

Der Werte des Inkrementalgebers steht als Schülersignal Kanal 3, und der des Tasters als Schülersignal Kanal 4 zur Verfügung.

Abbildung 7. Verkabelung im Cppm-Slave-Modus

9. Bedienung

Die Rotation des Inkrementalgebers kann unterschiedliche Ausgangswerte produzieren:

- 1. Modus: Absolutwerte mit *direktem Übergang* vom maximalen zum minimalen Wert und umgekehrt (*wrap-around*).
- 2. Modus: Absolutwerte mit *Begrenzung* auf den maximalen bzw. minimalen Wert (*no wraparound*).
- 3. Modus: Wert protortional zur Änderungsrate des Gebers (echter Inkrementalbetrieb).

Die *Umschaltung* zwischen diesen Betriebsarten wird durch eine *langen* Tastendruch (> 3s) erreicht. Es erfolgt keine *direkte* Rückmeldung an den Benutzer. Nach einem derartigen Umschalten muss das Verhalten durch Drehen am Geber verifiziert werden.

10. Anwendungen

Es folgen einige Einsatzbeispiele des Inkrementalgebers.

10.1. Bewegungen mit natürlicher Begrenzung

Beispiele für Bewegungen mit *natürlicher* Begrenzung im Modell sind etwa:

- Segelwinde
- Kranausleger auf/ab
- Lukendeckel

Sofern diese Abläufe protortional bedient werden sollen, haben die in jeder Richtung einen *maximalen* Ausschlag. In diesem Fall ist eine Bedienung im 2. Modus (*ohne* direktem Übergang der Extremwerte) sinnvoll.

10.2. Kontinuierliche Drehbewegungen am Modell

Es gibt Bewegungen im Modell die grundsätzlich kontinuierlich im Kreis erfolgen sollen / können. Dazu zählt etwa:

- Schottelbewegung
- Krandrehung
- Löschmonitor- / Geschützturm-Drehung

Werden hierzu im Modell sog. 360°-Servos (mit Rückmeldung) so kann mit dem Inkrementalgeber dies auch so am Sender bedient werden. Ein permanentes Drehen des Gebers in eine Richtung wird dann auch als eine solche Rotation im Modell in eine Richtung umgesetzt - eben auch beliebig oft hinterweinander im Kreis.

Diese Betriebsart benötigt im Modell spezielle Servos und (meistens) eine spezielle Ansteuerelektronik (s.a. Schottelsteuerung).

10.3. Ebenenumschaltungen

Als sog. *Ebenenumschaltung* bezeichnet man oft das Verteilen (Umschalten) *eines* Gebers auf *unterschiedliche* Kanäle. Die Umschaltung wird durch ein weiteres Bedienelement im Sender gemacht. Bei mehr als 2 Ebenen werden dadurch also Bedienelemente im Sender eingespart. Natürlich kann dann immer nur die Funktion der entsprechenden Ebene an den Empfänger übermittelt werden.

Die *Ebenenumschaltung* hat jedoch ein Problem (sofern sie ausschließlich im Sender realisiert wird):

- Der Geber wird auf eine bestimmte Position P1 eingestellt.
- Das in dieser Ebene / Kanal E1 angeschlossene Servo folgt der Bewegung.
- Die Ebene wird umgeschaltet auf Ebene E2.
- Das in dieser Ebene / Kanal E2 angeschlossene Servo bewegt sich schlagartig auf die Position P1
- u.s.w.

Dies ist natürlich nicht erwünscht.

Das o.g. Problem lässt sich mit einem selbstneutralisierenden Geber lösen. Die selbstneutralisierenden Knüppelaggregate eines jeden Senders sind dazu geeignet. Wird hier dann in Neutralstellung der Knüppel umgeschaltet, so passiert dies ja immer von der Neutralposition des Servos der einen Ebene auf die Neutralposition des Servos der anderen Ebene. Die Servos bewegen sich also nicht beim Umschalten. Nachteilig ist hier, dass die Umschaltung nur in der Neutralstellung des Knüppels erfolgt (sofern man ihn beim Umschalten auch loslässt). Oder anders ausgedrückt: vor dem Umschalten der Ebenen fährt das beteiligte Servo zunächst in die Neutralposition.

Ggf. hat man aber auch keine *selbstneutralisierenden* Geber mehr frei am Sender. In diesem Fall kann man den RC-Inkrementalgeber im Modus 3 benutzen. Dreht man *nicht* am Inkrementalgeber, so ist sein Ausgangswert auch 0 so wie einem selbstneutralisierenden Knüppel.

10.3.1. Der Geschwingkeit/Weg-Umformer (Integrator)

Wesentlich eleganter lässt sich die Ebenenumschaltung realisieren, wenn man den Wert, der von dem selbstneutralisierenden Geber (Inkrementalgeber, Knüppel) nicht als Absolutwert auffasst, sondern als eine *Geschwindigkeit*, mit der sich das Servo am Ausgang bewegen soll: ist der Wert des Gebers groß, so dreht sich das Servo schnell, ist der Wert klein, so dreht es sich langsam, und ist der Wert 0, so bleibt das Servo an der erreichten Position stehen.

Diese Funktion ist ein *Geschwindigkeit / Weg*-Umformer (mathematisch: Integrator). Einige wenige Sender haben diese Funktion eingebaut, bei *OpenTx* wird dies durch ein *Mischerscript* bereitgestellt.

10.3.2. Konfiguration in OpenTx

Im folgenden wird eine Ebenenumschaltung für 3 Ebenen exemplarisch eingerichtet. Dabei wird das folgende Schema zu Grunde gelegt:

- Ausgang der Ebene 1: Kanal 1
- Ausgang der Ebene 2: Kanal 2
- Ausgang der Ebene 3: Kanal 3
- Schalter zum Umschalten der 3 Ebenen: SA
- Inkrementalgeber: Schülersignal Kanal 1 TR1

Einrichten der Inputs (Geber)

Zunächst werden die virtuellen Geber (*Inputs*) eingerichtet. Ziel ist es ja, den *einen* physischen Geber (Inkrementalgeber) durch den Schalter SA zu *verdreifachen*: je nach Schalterstellung von SA soll der Wert des physischen Inkrementalgebers als Wert des ausgewählten *Inputs* zur Verfügung stehen. Die anderen beiden *Inputs* sollen in diesem Fall den Wert 0 liefern.

Abbildung 8. Übersicht der Inputs (Geber) mit der jeweiligen Aktivierung durch den Schalter SA

Um die obige Menge an *Inputs* einzustellen, verfahren wir für jeden der *Inputs* nach dem folgenden Muster (Abbildung 9):

Abbildung 9. Einrichtung des Inputs 1

Man beachte die Wahl der Quelle (hier: TR1) und die Aktivierung des *Input* durch die gewünschte Schalterstellung von SA.

Ähnlich verfahren wir mit dem *Input 2* (Abbildung 10). Hier wählen wir natürlich die zweite Schalterstellung von SA als Aktivierung:

Abbildung 10. Einrichtung des Inputs 2

Auch *Input 3* (Abbildung 11) ist wie oben aufgebaut, jedoch auch wieder mit einer *anderen* Schalterstellung von SA:

Abbildung 11. Einrichtung des Inputs 3

Damit sollte sich die Situation Abbildung 8 ergeben.

Einrichten des Mischerscriptes

Zunächst muss das Mischerscript zur *Geschwindigkeit / Weg*-Umformung eingerichtet werden. Das Script wird auf die SD-Karte des Sender unter SCRIPTS/MIXES/ kopiert.

Dann wird es im Sender geladen. Dies geschieht im Menue LUA-Scripte:

```
LUA-SCRIPTE

LUA1 ---
LUA2 ---
LUA4 ---
LUA5 ---
LUA6 ---
LUA7 ---
LUA8 ---
LUA9 ---
```

Abbildung 12. Das leere Menue LUA-Skripte

Hier selektieren wir die erste Zeile. Im Dialog für das Script, wählen wir zunächst das Lua Skript aus: increm.

Im Dialog für dieses *erste* Mischerscript (Abbildung 13) ist zunächt die Einstellung für den *Input* wichtig: dieser *Geschwindigkeit / Weg*-Umformer soll ja den Wert des *Input 1*, also den Wert des ersten *virtualisierten* Inkrementalgebers in einen Weg (Ausschlag) umformen (ausummieren). Deswegen stellen wir hier als *Input* den *Input 1* ein:

Abbildung 13. Das erste Mischerscript

Es kann sein, dass für eine konkrete Anwendung der Inkrementalgeber zu oft gedreht werden muss, um den gewünschten Ausschlag des Servos zu erzielen. In diesem Fall kann die *Skalierung* geändert (erhöht) werden. U.U. kann es sinnvoll sein, den Ausgangswert dieses Umformers auf 0 zu setzen: dies kann durch die Eintragung eines Schalters / Tasters bei Reset erreicht werden.

So wie in Abbildung 13 verfahren wir analog für den *zweiten* (Abbildung 14) und den dritten (Abbildung 15) Umformer.

Abbildung 14. Das zweite Mischerscript

Abbildung 15. Das dritte Mischerscript

Am Ende dieses Schrittes ergibt sich dann die folgende (Abbildung 16) Übersicht an Mischerscripten:

Abbildung 16. Das endgültige Menue LUA-Skripte

Einrichten der Mischer für die Ebenen 1...3

Nach den Schritten Abschnitt 10.3.2.1 und Abschnitt 10.3.2.2 stehen nun an den Ausgängen der *Mischerscripte* die gewünschten Werte zur Verfügung: jeder der *virtualisierten* Inkrementalgeber wird von einer *Geschwindigkeit* in einen *Servoweg* umgeformt. Nun sollen diese Werte noch an den Kanälen 1...3 zum Empfänger übertragen werden.

Für jeden der Kanäle 1 ... 3 richten wir wie üblich einen Mischer ein. Jeder diese Mischer ist allerdings in einem Punkten besonders:

• Der Eingang ist nicht wie üblich ein sog. Input, sondern jeweils eines der drei Mischerscripte.

Achtung: Auswahl des Mischerscriptes

Wir haben zwar für jede Ebene ein eigenes Mischerscript eingerichtet, jedoch tragen sie alle *denselben* Namen, und sie werden leider bei der Auflistung im Michermenue von OpenTx *nicht* unterschieden. Man muss also bei der Auswahl *mitzählen*, welches der Scripte (1...3) man selektiert.

Abbildung 17. Einrichtung der Mischer für die drei Ebenen auf den Kanälen 1...3

11. Betrieb

Beachten Sie unbedingt die Anweisungen unter [first].

Die üblichen Sicherheitsvorkehrungen im Betrieb mit ferngesteuerten Modellen, insbesonder Schiffsmodellen sind einzuhalten.

Beachten Sie alle folgenden Hinweise zum Betrieb.

Eine Verwendung des Moduls in Rennbooten oder Flugmodellen ist nicht zulässig.

Das Modul darf nicht in Kontakt mit Wasser, Wasserdampf oder anderen Flässigkeiten kommen. Wasser oder Wasserdampf bzw. andere Flüssigkeiten können zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden führen.

Das Modul verbraucht im Ruhezustand nur sehr wenig Strom. Trotzdem darf ein dauerhafter Anschluß an einen **unüberwachten** Akku nicht erfolgen. Hier besteht Brandgefahr! Gefahr von Personenschäden!

Beim Betrieb ist die Erwärmung des Moduls zwingend zu überwachen! Eine Überhitzung kann zu einem Totalausfall und damit zu einem Modellverlust führen. Gefahr von Personenschäden!

Die Spannunsgversorgung ist Moduls ist im Betrieb zu überwachen. Bei Unterspannung kann das Modul abschalten oder bei gleichzeitiger hoher Stromaufnahme überhitzen und so zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden führen

Die erforderlichen Kabelquerschnitte für die Verbindung mit dem Akku und auch mit dem elektrischen Verbraucher sind unbedingt einzuhalten. Hier besteht Brandgefahr. Gefahr von Personenschäden!

Beim Betrieb ist der maximale Stromdurchfluß zu begrenzen und zu überwachen. Ein zu langer und zu hoher Stromfluß kann zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden führen.

Das Modul ist nicht kurzschlußfest. Ein Kurzschluß führt zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden.

Der maximale Schaltstrom ist ist unbedingt einzuhalten und darf nicht überschritten werden. Ein zu hoher Schaltstrom kann zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden führen.

Die Kapazitäten (Elkos, Siebelkos) am Ausgang des Moduls, etwa in Fahrtreglern (Stellern) für Motoren, dürfen $10.000\mu F$ nicht überschreiten. Zu hohe Kapazitäten können zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden führen.

Das Modul darf keinen Vibrationen ausgesetzt werden. Treffen Sie entsprechende Vorkehrungen zu einem vibrationsgeschützten Einbau. Zu starke Vibrationen können zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden führen.

Das Modul darf nur innerhalb eines Temperaturbereiches von -10°C bis +55°C betrieben werden. Ein Betrieb außerhalb dieses Bereiches kann zu einem Totalausfall und damit zu einem Modellverlust sowie Personenschäden führen.

12. Kontakt

Anfragen: wilhelm.wm.meier@googlemail.com