CRITERIO DE LEBESGUE

Curso 2019-2020

G.F. Bernhard Riemann 1826-1866

Henri L. Lebesgue 1875-1941

Sean $n \in \mathbb{N}^*$, $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$, $I_j = [a_j, b_j]$, $j = 1, \ldots, n$ y $f \colon R \longrightarrow \mathbb{R}$ una función <u>acotada</u>.

 $ightharpoonup \mathsf{v}(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$

Sean $n \in \mathbb{N}^*$, $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$, $I_j = [a_j, b_j]$, $j = 1, \ldots, n$ y $f \colon R \longrightarrow \mathbb{R}$ una función <u>acotada</u>.

 $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- \blacktriangleright Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R

$$\blacktriangleright f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$$

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R

$$ightharpoonup f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$$

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R)
 eq \emptyset \ \mathsf{iQu\'e} \ tama\~no \ \mathsf{tiene} \ \mathscr{R}(R) \setminus \mathscr{C}(R)?$
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R

$$\blacktriangleright f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$$

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R

$$ightharpoonup f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$$

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $\blacktriangleright f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$, es discontinua en x = 0 y $f \in \mathcal{R}([0,1])$
- ▶ Función de Thomae: $T: [0,1] \longrightarrow \mathbb{R}$, dada por

$$T(x) = \left\{ \begin{array}{l} 1, \quad \text{si } x = 0 \text{ ó } x = 1, \\ \frac{1}{q}, \quad \text{si } x \in \mathbb{Q}, \ x = \frac{p}{q}, \ q > 0 \text{ y } \operatorname{mcd}(p,q) = 1, \\ 0, \quad \text{si } x \notin \mathbb{Q}. \end{array} \right.$$

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $ightharpoonup f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$ es discontinua en x = 0 y $f \in \mathcal{R}([0,1])$
- ▶ Función de Thomae: Función de las palomitas de maíz

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $\blacktriangleright f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$ es discontinua en x = 0 y $f \in \mathcal{R}([0,1])$
- ▶ Función de Thomae: $T \in \mathcal{R}([0,1])$ y discontinua en $[0,1] \cap \mathbb{Q}$

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $ightharpoonup f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$ es discontinua en x = 0 y $f \in \mathcal{R}([0,1])$
- ▶ Función de Thomae: $T \in \mathcal{R}([0,1])$ y discontinua en $[0,1] \cap \mathbb{Q}$
- ▶ Función de Dirichlet en [0,1]:

$$d(x) = \begin{cases} 1, & \text{si si } x \in \mathbb{Q} \cap [0, 1], \\ 0, & \text{si } x \in [0, 1] \setminus \mathbb{Q}. \end{cases}$$

Sean $n \in \mathbb{N}^*$, $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$, $I_j = [a_j, b_j]$, $j = 1, \ldots, n$ y $f \colon R \longrightarrow \mathbb{R}$ una función <u>acotada</u>.

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $ightharpoonup f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$ es discontinua en x = 0 y $f \in \mathscr{R}([0,1])$
- ▶ Función de Thomae: $T \in \mathcal{R}([0,1])$ y discontinua en $[0,1] \cap \mathbb{Q}$
- ▶ Función de Dirichlet en [0,1]:

$$d(x) = \begin{cases} 1, & \text{si si } x \in \mathbb{Q} \cap [0, 1], \\ 0, & \text{si } x \in [0, 1] \setminus \mathbb{Q}. \end{cases}$$

 $lackbox{} d \notin \mathscr{R}([0,1])$ y es discontinua en todo punto de [0,1]

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $ightharpoonup f(x) = \left| \operatorname{sen} \left(\frac{1}{x} \right) \right|$ es discontinua en x = 0 y $f \in \mathcal{R}([0,1])$
- ▶ Función de Thomae: $T \in \mathcal{R}([0,1])$ y discontinua en $[0,1] \cap \mathbb{Q}$
- ▶ Función de Dirichlet en [0,1]: $d \notin \mathcal{R}([0,1])$ y discontinua [0,1]

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $ightharpoonup f(x) = \left| \operatorname{sen} \left(\frac{1}{x} \right) \right|$ es discontinua en x = 0 y $f \in \mathcal{R}([0,1])$
- ▶ Función de Thomae: $T \in \mathcal{R}([0,1])$ y discontinua en $[0,1] \cap \mathbb{Q}$
- ▶ Función de Dirichlet en [0,1]: $d \notin \mathcal{R}([0,1])$ y discontinua [0,1]
- ▶ ¿Existe relación entre la continuidad de f y su integrabilidad?
- ▶ ¿Basta con *contar* la cantidad de puntos de discontinuidad?

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $ightharpoonup f(x) = \left| \operatorname{sen} \left(\frac{1}{x} \right) \right|$ es discontinua en x = 0 y $f \in \mathcal{R}([0,1])$
- ▶ Función de Thomae: $T \in \mathcal{R}([0,1])$ y discontinua en $[0,1] \cap \mathbb{Q}$
- ▶ Función de Dirichlet en [0,1]: $d \notin \mathcal{R}([0,1])$ y discontinua [0,1]
- ▶ ¿Existe relación entre la continuidad de f y su integrabilidad?
- ▶ ¿Basta con *contar* la cantidad de puntos de discontinuidad?
- \blacktriangleright ¿O debemos *medir* el conjunto de puntos de discontinuidad de f?

- $ightharpoonup v(R) > 0 \Longrightarrow \mathscr{R}(R) \setminus \mathscr{C}(R) \neq \emptyset$ ¿Qué $tama\~no$ tiene $\mathscr{R}(R) \setminus \mathscr{C}(R)$?
- lacktriangle Existen funciones en $\mathscr{R}(R)$ discontinuas en ∂R o parte de ∂R
- $ightharpoonup f(x) = \left| \operatorname{sen}\left(\frac{1}{x}\right) \right|$ es discontinua en x = 0 y $f \in \mathscr{R}([0,1])$
- ▶ Función de Thomae: $T \in \mathscr{R}([0,1])$ y discontinua en $[0,1] \cap \mathbb{Q}$
- ▶ Función de Dirichlet en [0,1]: $d \notin \mathcal{R}([0,1])$ y discontinua [0,1]
- ▶ ¿Existe relación entre la continuidad de f y su integrabilidad?
- ▶ ¿Basta con *contar* la cantidad de puntos de discontinuidad?
- \blacktriangleright ¿O debemos medir el conjunto de puntos de discontinuidad de f?
- ► ¿Cómo?

Si $A \subset \mathbb{R}^n$ y $f \colon A \longrightarrow \mathbb{R}$, la oscilación de f en A es $\delta \big(f(A) \big) \colon$

$$\omega(f, A) = \sup_{x,y \in A} \{|f(x) - f(y)|\}.$$

Si
$$A\subset\mathbb{R}^n$$
 y $f\colon A\longrightarrow\mathbb{R}$, la oscilación de f en A es $\delta\big(f(A)\big)$:
$$\omega(f,A)=\sup_{x,y\in A}\big\{|f(x)-f(y)|\big\}.$$

Si
$$A\subset\mathbb{R}^n$$
 y $f\colon A\longrightarrow\mathbb{R}$, la oscilación de f en A es $\delta\big(f(A)\big)$:
$$\omega(f,A)=\sup_{x,y\in A}\big\{|f(x)-f(y)|\big\}.$$

- $lackbox{}\omega(f,A)\in\mathbb{R}$ sii f está acotada y $\omega(f,A)=0$ sii f es constante

Si
$$A\subset\mathbb{R}^n$$
 y $f\colon A\longrightarrow\mathbb{R}$, la oscilación de f en A es $\delta\big(f(A)\big)$:
$$\omega(f,A)=\sup_{x,y\in A}\big\{|f(x)-f(y)|\big\}.$$

- $\blacktriangleright \ \omega(f,A) = \sup_{x \in A} \left\{ f(x) \right\} \inf_{x \in A} \left\{ f(x) \right\} \in [0,+\infty]$
- $lackbox{}\omega(f,A)\in\mathbb{R}$ sii f está acotada y $\omega(f,A)=0$ sii f es constante

Si A es un rectángulo y $f\colon A\longrightarrow \mathbb{R}$ es <u>acotada</u>, para cada partición $\mathcal{P}\in\mathscr{P}(R)$ se tiene que

$$S(f,\mathcal{P}) - s(f,\mathcal{P}) = \sum_{R \in \mathcal{P}} \omega(f,R) \, \mathsf{v}(R)$$

Si
$$A\subset\mathbb{R}^n$$
 y $f\colon A\longrightarrow\mathbb{R}$, la oscilación de f en A es $\delta\big(f(A)\big)$:
$$\omega(f,A)=\sup_{x,y\in A}\big\{|f(x)-f(y)|\big\}.$$

- $lackbox{}\omega(f,A)\in\mathbb{R}$ sii f está acotada y $\omega(f,A)=0$ sii f es constante
- ▶ Si $B \subset A$, entonces $\omega(f, B) \leq \omega(f, A)$

Si
$$A\subset\mathbb{R}^n$$
 y $f\colon A\longrightarrow\mathbb{R}$, la oscilación de f en A es $\delta\big(f(A)\big)$:
$$\omega(f,A)=\sup_{x,y\in A}\big\{|f(x)-f(y)|\big\}.$$

- $lackbox{}\omega(f,A)\in\mathbb{R}$ sii f está acotada y $\omega(f,A)=0$ sii f es constante
- ▶ Si $B \subset A$, entonces $\omega(f, B) \leq \omega(f, A)$
- ▶ Si $a \in A$, $\omega(f, A \cap B(a, r))$ decrece si r disminuye

Si
$$A\subset\mathbb{R}^n$$
 y $f\colon A\longrightarrow\mathbb{R}$, la oscilación de f en A es $\delta\big(f(A)\big)$:
$$\omega(f,A)=\sup_{x,y\in A}\big\{|f(x)-f(y)|\big\}.$$

- lacksquare $\omega(f,A)\in\mathbb{R}$ sii f está acotada y $\omega(f,A)=0$ sii f es constante
- ▶ Si $B \subset A$, entonces $\omega(f, B) < \omega(f, A)$
- ▶ Si $a \in A$, $\omega(f, A \cap B(a, r))$ decrece si r disminuye

Si
$$A \subset \mathbb{R}^n$$
 y $f \colon A \longrightarrow \mathbb{R}$, la oscilación de f en $a \in A$ es

Si
$$A\subset\mathbb{R}^n$$
 y $f\colon A\longrightarrow\mathbb{R}$, la oscilación de f en A es $\delta\big(f(A)\big)$:
$$\omega(f,A)=\sup_{x,y\in A}\big\{|f(x)-f(y)|\big\}.$$

- lacksquare $\omega(f,A)\in\mathbb{R}$ sii f está acotada y $\omega(f,A)=0$ sii f es constante
- ▶ Si $B \subset A$, entonces $\omega(f, B) < \omega(f, A)$

Si
$$A \subset \mathbb{R}^n$$
 y $f \colon A \longrightarrow \mathbb{R}$, la oscilación de f en $a \in A$ es

► Si
$$M(f,a,r) = \sup_{x \in A \cap B(a,r)} \left\{ f(x) \right\}$$
 y $m(f,a,r) = \inf_{x \in A \cap B(a,r)} \left\{ f(x) \right\}$
$$\omega(f,a) = \lim_{r \to 0} \left(M(f,a,r) - m(f,a,r) \right)$$

Si $A\subset \mathbb{R}^n$ y $f\colon A\longrightarrow \mathbb{R}$ acotada, la oscilación de f en $a\in A$ es:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,A \cap B(a,r)\big) = \inf_{r > 0} \big\{ \omega \big(f,A \cap B(a,r)\big) \big\}.$$

Si $A \subset \mathbb{R}^n$ y $f \colon A \longrightarrow \mathbb{R}$ acotada, la oscilación de f en $a \in A$ es:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,A \cap B(a,r)\big) = \inf_{r > 0} \big\{ \omega \big(f,A \cap B(a,r)\big) \big\}.$$

 \blacktriangleright $\omega(f,a)$ es una medida de la discontinuidad de f en a:

Si $A \subset \mathbb{R}^n$ y $f \colon A \longrightarrow \mathbb{R}$ acotada, la oscilación de f en $a \in A$ es:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,A \cap B(a,r)\big) = \inf_{r > 0} \big\{ \omega \big(f,A \cap B(a,r)\big) \big\}.$$

- \blacktriangleright $\omega(f,a)$ es una medida de la discontinuidad de f en a:
- ▶ f es continua en a sii $\omega(f,a) = 0$.

Si $R \subset \mathbb{R}^n$ es un rectángulo <u>cerrado</u> y $f \colon R \longrightarrow \mathbb{R}$ <u>acotada</u>:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,R \cap B(a,r)\big) = \inf_{r > 0} \big\{\omega \big(f,R \cap B(a,r)\big)\big\}.$$

Si $R \subset \mathbb{R}^n$ es un rectángulo <u>cerrado</u> y $f \colon R \longrightarrow \mathbb{R}$ <u>acotada</u>:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,R \cap B(a,r)\big) = \inf_{r > 0} \big\{\omega \big(f,R \cap B(a,r)\big)\big\}.$$

▶ $D = \{x \in R : f \text{ no es continua en } x\}$

Si $R \subset \mathbb{R}^n$ es un rectángulo <u>cerrado</u> y $f \colon R \longrightarrow \mathbb{R}$ <u>acotada</u>:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,R \cap B(a,r)\big) = \inf_{r > 0} \big\{\omega \big(f,R \cap B(a,r)\big)\big\}.$$

- ▶ $D = \{x \in R : f \text{ no es continua en } x\}$
- $\blacktriangleright \ D = \big\{ x \in R : \omega(f, x) > 0 \big\}$

Si $R \subset \mathbb{R}^n$ es un rectángulo <u>cerrado</u> y $f \colon R \longrightarrow \mathbb{R}$ <u>acotada</u>:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,R \cap B(a,r)\big) = \inf_{r > 0} \big\{\omega \big(f,R \cap B(a,r)\big)\big\}.$$

- ▶ $D = \{x \in R : f \text{ no es continua en } x\}$
- $\blacktriangleright \ D = \big\{ x \in R : \omega(f, x) > 0 \big\}$

Si $R \subset \mathbb{R}^n$ es un rectángulo <u>cerrado</u> y $f : R \longrightarrow \mathbb{R}$ <u>acotada</u>:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,R \cap B(a,r)\big) = \inf_{r > 0} \big\{\omega \big(f,R \cap B(a,r)\big)\big\}.$$

- ▶ $D = \{x \in R : f \text{ no es continua en } x\}$
- $D = \big\{ x \in R : \omega(f, x) > 0 \big\}$

▶ Para cada $m \in \mathbb{N}^*$, $D_m = \left\{ x \in R : \omega(f, x) > \frac{1}{m} \right\}$

Si $R \subset \mathbb{R}^n$ es un rectángulo <u>cerrado</u> y $f \colon R \longrightarrow \mathbb{R}$ <u>acotada</u>:

$$\omega(f,a) = \lim_{r \to 0} \omega \big(f,R \cap B(a,r)\big) = \inf_{r > 0} \big\{\omega \big(f,R \cap B(a,r)\big)\big\}.$$

- $\blacktriangleright \ D = \big\{ x \in R : f \text{ no es continua en } x \big\}$
- $D = \{ x \in R : \omega(f, x) > 0 \}$

 $lackbox{ Para cada } m \in \mathbb{N}^*$, $D_m = \left\{ x \in R : \omega(f,x) > \frac{1}{m} \right\}$

$$D = \bigcup_{m=1}^{\infty} D_m$$

La oscilación de funciones integrables

Sean $R \subset \mathbb{R}^n$ un rectángulo <u>cerrado</u> y $f \colon R \longrightarrow \mathbb{R}$ con $f \in \mathscr{R}(R)$.

Para cada $m \in \mathbb{N}^*$, sea $D_m = \left\{ x \in R : \omega(f, x) \geq \frac{1}{m} \right\}$

Sean $R\subset\mathbb{R}^n$ un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow\mathbb{R}$ con $f\in\mathscr{R}(R)$. Para cada $m\in\mathbb{N}^*$, sea $D_m=\left\{x\in R:\omega(f,x)\geq \frac{1}{m}\right\}$

- $ightharpoonup \mathscr{S}_m \equiv ext{conjunto de subrectángulos de } \mathcal{P}_m$ que cortan a D_m

- ▶ Dado $\varepsilon > 0$, sea $\mathcal{P}_m \in \mathscr{P}(R)$ con $S(f, \mathcal{P}_m) s(f, \mathcal{P}_m) \leq \frac{\varepsilon}{m2^m}$
- $ightharpoonup \mathscr{S}_m \equiv {\sf conjunto}$ de subrectángulos de \mathcal{P}_m que cortan a D_m
- ▶ \mathscr{S}_m tiene una cantidad <u>finita</u> de subrectángulos y $D_m \subset \bigcup_{R' \in \mathscr{S}_m} R'$

- ▶ Dado $\varepsilon > 0$, sea $\mathcal{P}_m \in \mathscr{P}(R)$ con $S(f, \mathcal{P}_m) s(f, \mathcal{P}_m) \leq \frac{\varepsilon}{m2^m}$
- $ightharpoonup \mathscr{S}_m \equiv {\sf conjunto}$ de subrectángulos de \mathcal{P}_m que cortan a D_m
- \mathscr{S}_m tiene una cantidad <u>finita</u> de subrectángulos y $D_m \subset \bigcup_{R' \in \mathscr{S}_m} R'$
- ► Si $R' \in \mathscr{S}_m \Longrightarrow \sup_{x \in R'} \{f(x)\} \inf_{x \in R'} \{f(x)\} = \omega(f, R') \ge \frac{1}{m}$

- $ightharpoonup \mathscr{S}_m \equiv \text{conjunto de subrectángulos de } \mathcal{P}_m$ que cortan a D_m
- \mathscr{S}_m tiene una cantidad <u>finita</u> de subrectángulos y $D_m \subset \bigcup_{R' \in \mathscr{S}_m} R'$
- ► Si $R' \in \mathscr{S}_m \Longrightarrow \sup_{x \in R'} \{f(x)\} \inf_{x \in R'} \{f(x)\} = \omega(f, R') \ge \frac{1}{m}$

- $ightharpoonup \mathscr{S}_m \equiv \text{conjunto de subrectángulos de } \mathcal{P}_m \text{ que cortan a } D_m$
- \mathscr{S}_m tiene una cantidad <u>finita</u> de subrectángulos y $D_m \subset \bigcup_{R' \in \mathscr{S}_m} R'$
- ► Si $R' \in \mathscr{S}_m \Longrightarrow \sup_{x \in R'} \{f(x)\} \inf_{x \in R'} \{f(x)\} = \omega(f, R') \ge \frac{1}{m}$

Sean $R\subset\mathbb{R}^n$ un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow\mathbb{R}$ con $f\in\mathscr{R}(R)$. Para cada $m\in\mathbb{N}^*$, sea $D_m=\left\{x\in R:\omega(f,x)\geq \frac{1}{m}\right\}$

lacktriangle Dado arepsilon>0, para cada $m\in\mathbb{N}^*$

$$D_m \subset \bigcup_{R' \in \mathscr{S}_m} R' \ \ \mathsf{y} \ \ \sum_{R' \in \mathscr{S}_m} \mathsf{v}(R') \leq \frac{\varepsilon}{2^m}$$

Sean $R\subset\mathbb{R}^n$ un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow\mathbb{R}$ con $f\in\mathscr{R}(R)$. Para cada $m\in\mathbb{N}^*$, sea $D_m=\left\{x\in R:\omega(f,x)\geq \frac{1}{m}\right\}$

ightharpoonup Dado arepsilon>0, para cada $m\in\mathbb{N}^*$

$$D_m \subset \bigcup_{R' \in \mathscr{S}_m} R' \ \ \mathsf{y} \ \ \sum_{R' \in \mathscr{S}_m} \mathsf{v}(R') \leq \frac{\varepsilon}{2^m} \leq \varepsilon$$

Si $f\in \mathscr{R}(R)$, para cada $\varepsilon>0$, el conjunto de puntos con oscilación de

• f mayor que $\frac{1}{m}$ puede recubrirse con una cantidad $\underline{\text{finita}}$ de rectángulos cuyos volúmenes suman menos que ε

Sean $R\subset\mathbb{R}^n$ un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow\mathbb{R}$ con $f\in\mathscr{R}(R)$. Para cada $m\in\mathbb{N}^*$, sea $D_m=\left\{x\in R:\omega(f,x)\geq \frac{1}{m}\right\}$

lacktriangle Dado arepsilon>0, para cada $m\in\mathbb{N}^*$

$$D_m \subset \bigcup_{R' \in \mathscr{S}_m} R' \ \ \mathbf{y} \ \ \sum_{R' \in \mathscr{S}_m} \mathbf{v}(R') \leq \frac{\varepsilon}{2^m}$$

Sean $R\subset\mathbb{R}^n$ un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow\mathbb{R}$ con $f\in\mathscr{R}(R)$. Para cada $m\in\mathbb{N}^*$, sea $D_m=\left\{x\in R:\omega(f,x)\geq \frac{1}{m}\right\}$

lacktriangle Dado arepsilon>0, para cada $m\in\mathbb{N}^*$

$$D_m \subset \bigcup_{R' \in \mathscr{S}_m} R' \ \ \mathbf{y} \ \ \sum_{R' \in \mathscr{S}_m} \mathbf{v}(R') \leq \frac{\varepsilon}{2^m}$$

$$D = \bigcup_{m=1}^{\infty} D_m \subset \bigcup_{m=1}^{\infty} \bigcup_{R' \in \mathscr{S}_m} R' \quad \text{y} \quad \sum_{m=1}^{\infty} \sum_{R' \in \mathscr{S}_m} \mathsf{v}(R') \leq \sum_{m=1}^{\infty} \frac{\varepsilon}{2^m} = \varepsilon$$

Si $f\in \mathscr{R}(R)$, para cada $\varepsilon>0$, el conjunto de puntos de discontinuidad

lackbox de f puede recubrirse con una cantidad numerable de rectángulos cuyos volúmenes suman menos que arepsilon

Integración de funciones acotadas

Sean
$$n\in\mathbb{N}^*$$
 y $R=[a_1,b_1] imes\cdots imes[a_n,b_n]$, $I_j=[a_j,b_j]$, $j=1,\ldots,n$.

 $\blacktriangleright \ \Gamma(f) = \big\{ \big(x, f(x) \big) : x \in R \big\} \colon \text{ G\'rafica de } f$

$$S(f,\mathcal{P}) - s(f,\mathcal{P}) = \sum_{i_1=0}^{k_1-1} \cdots \sum_{i_n=0}^{k_n-1} (\underbrace{M_{i_1,\dots,i_n} - m_{i_1,\dots,i_n}}_{\omega(f,R_{i_1,\dots,i_n})} \mathbf{v}(R_{i_1,\dots,i_n})$$

$$\widehat{R}_{i_1,\dots,i_n} = \underbrace{R_{i_1,\dots,i_n}}_{Base} \times \underbrace{\left[m_{i_1,\dots,i_n}, M_{i_1,\dots,i_n}\right]}_{Altura}$$

$$ightharpoonup v(\widehat{R}_{i_1,...,i_n}) = (M_{i_1,...,i_n} - m_{i_1,...,i_n})v(R_{i_1,...,i_n})$$

$$\blacktriangleright \Gamma(f) \subset \bigcup_{i_1=0}^{k_1-1} \cdots \bigcup_{i_n=0}^{k_n-1} \widehat{R}_{i_1,\dots,i_n}$$

Si $A \subset \mathbb{R}^n$, diremos que A es

▶ Muy irrelevante si para cada $\varepsilon > 0$ existe un recubrimiento finito de A por rectángulos, $\{R_j\}_{j=1}^m$; es decir $A \subset \bigcup_{j=1}^m R_j$ y tal

$$\operatorname{que}\,\sum_{j=1}^m\operatorname{v}(R_j)\leq\varepsilon.$$

▶ Irrelevante si para cada $\varepsilon>0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^\infty$; es decir, $A\subset\bigcup_{j=1}^\infty R_j$ y

tal que
$$\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$$
.

Si $A \subset \mathbb{R}^n$, diremos que A es

▶ Muy irrelevante si para cada $\varepsilon > 0$ existe un recubrimiento finito de A por rectángulos, $\{R_j\}_{j=1}^m$; es decir $A \subset \bigcup_{j=1}^m R_j$ y tal

$$\operatorname{que}\,\sum_{j=1}^m\operatorname{v}(R_j)\leq\varepsilon.$$

▶ Irrelevante si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^\infty$; es decir, $A \subset \bigcup_{j=1}^\infty R_j$ y

tal que
$$\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$$
.

► Todo conjunto muy irrelevante es irrelevante

Si $A \subset \mathbb{R}^n$, diremos que A es

▶ Muy irrelevante si para cada $\varepsilon > 0$ existe un recubrimiento finito de A por rectángulos, $\{R_j\}_{j=1}^m$; es decir $A \subset \bigcup_{j=1}^m R_j$ y tal

que
$$\sum_{j=1}^m \mathsf{v}(R_j) \leq \varepsilon$$
.

▶ Irrelevante si para cada $\varepsilon>0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^\infty$; es decir, $A\subset\bigcup_{j=1}^\infty R_j$ y

tal que
$$\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$$
.

- ► Todo conjunto muy irrelevante es irrelevante
- ▶ Podemos sustituir rectángulos por cubos (abiertos o cerrados)

Si $A \subset \mathbb{R}^n$, diremos que A tiene

▶ Contenido nulo si para cada $\varepsilon > 0$ existe un recubrimiento finito de A por rectángulos, $\left\{R_j\right\}_{j=1}^m$; es decir $A \subset \bigcup_{j=1}^m R_j$ y tal

$$\operatorname{que}\,\sum_{j=1}^m\operatorname{v}(R_j)\leq\varepsilon.$$

▶ Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^\infty$; es decir, $A \subset \bigcup_{j=1}^\infty R_j$ y

tal que
$$\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$$
.

► Todo conjunto de contenido nulo es de medida nula

Si $A \subset \mathbb{R}^n$, diremos que A tiene

▶ Contenido nulo si para cada $\varepsilon > 0$ existe un recubrimiento finito de A por rectángulos, $\left\{R_j\right\}_{j=1}^m$; es decir $A \subset \bigcup_{j=1}^m R_j$ y tal

$$\operatorname{que}\,\sum_{j=1}^m\operatorname{v}(R_j)\leq\varepsilon.$$

▶ Medida nula si para cada $\varepsilon>0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^\infty$; es decir, $A\subset\bigcup_{j=1}^\infty R_j$ y

tal que
$$\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$$
.

▶ Si $f \in \mathcal{R}(R)$, entonces $\Gamma(f)$ tiene contenido nulo

Si $A \subset \mathbb{R}^n$, diremos que A tiene

▶ Contenido nulo si para cada $\varepsilon > 0$ existe un recubrimiento finito de A por rectángulos, $\left\{R_j\right\}_{j=1}^m$; es decir $A \subset \bigcup_{j=1}^m R_j$ y tal

que
$$\sum_{j=1}^m \mathsf{v}(R_j) \leq \varepsilon$$
.

▶ Medida nula si para cada $\varepsilon>0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^\infty$; es decir, $A\subset\bigcup_{j=1}^\infty R_j$ y

tal que
$$\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$$
.

- ▶ Si $f \in \mathcal{R}(R)$, entonces $\Gamma(f)$ tiene contenido nulo
- ▶ Si $f \in \mathcal{R}(R)$, entonces D tiene medida nula

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos abiertos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

decir,
$$A \subset \bigcup_{j=1}^{\infty} R_j$$
 y tal que $\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$.

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos abiertos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

decir,
$$A\subset \bigcup\limits_{j=1}^{\infty}R_{j}$$
 y tal que $\sum\limits_{j=1}^{\infty}\mathsf{v}(R_{j})\leq \varepsilon.$

Si $A\subset\mathbb{R}^n$ y P es una propiedad relativa a los puntos de A, diremos que P se satisface casi siempre en A y lo abreviaremos c.s. si el subconjunto de puntos de A en los que P no se satisface tiene medida nula.

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos abiertos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

decir,
$$A\subset \bigcup\limits_{j=1}^{\infty}R_{j}$$
 y tal que $\sum\limits_{j=1}^{\infty}\mathsf{v}(R_{j})\leq \varepsilon.$

Si $A \subset \mathbb{R}^n$ y P es una propiedad relativa a los puntos de A, diremos que P se satisface casi siempre en A y lo abreviaremos c.s. si el subconjunto de puntos de A en los que P no se satisface tiene medida nula. \rightsquigarrow presque partout (p.p.), almost everywhere (a.e.)

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos abiertos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

decir,
$$A\subset \bigcup\limits_{j=1}^{\infty}R_{j}$$
 y tal que $\sum\limits_{j=1}^{\infty}\mathsf{v}(R_{j})\leq \varepsilon.$

Si $A\subset\mathbb{R}^n$ y P es una propiedad relativa a los puntos de A, diremos que P se satisface casi siempre en A y lo abreviaremos c.s. si el subconjunto de puntos de A en los que P no se satisface tiene medida nula.

- ► Ejemplos:
 - Si $f,g:A\longrightarrow \mathbb{R}$, f=g c.s. sii el conjunto $\{x\in A: f(x)\neq g(x)\}$ tiene medida nula.
 - ② $f \colon A \longrightarrow \mathbb{R}$ es continua c.s. sii el conjunto $D = \{x \in A : f \text{ no es continua en } x\}$ tiene medida nula

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos abiertos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

$$\text{decir, } A \subset \bigcup_{j=1}^{\infty} R_j \text{ y tal que } \sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon.$$

El Criterio de Lebesgue de integrabilidad

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos abiertos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

decir,
$$A \subset \bigcup_{j=1}^{\infty} R_j$$
 y tal que $\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$.

El Criterio de Lebesgue de integrabilidad

Si R es un rectángulo <u>cerrado</u> y $f:R\longrightarrow \mathbb{R}$ es una función <u>acotada</u> entonces $f\in \mathscr{R}(R)$ sii f es continua c.s. en R.

▶ Si $f \in \mathcal{R}(R) \Longrightarrow f$ es continua c.s.

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos abiertos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

decir,
$$A \subset \bigcup_{j=1}^{\infty} R_j$$
 y tal que $\sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon$.

El Criterio de Lebesgue de integrabilidad

- ▶ Si $f \in \mathcal{R}(R) \Longrightarrow f$ es continua c.s.
- ▶ Supongamos que f es continua c.s. y sea $D = \{x \in R : \omega(f, x) > 0\}$
- ightharpoonup D es el conjunto de puntos de discontinuidad de f

Si R es un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow \mathbb{R}$ es una función <u>acotada</u> entonces $f\in \mathscr{R}(R)$ sii f es continua c.s. en R.

▶ Supongamos que f es continua c.s. y sea $D = \{x \in R : \omega(f,x) > 0\}$ el conjunto de puntos de discontinuidad de f

- ▶ Supongamos que f es continua c.s. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$ el conjunto de puntos de discontinuidad de f
- ▶ La demostración de que $f \in \mathcal{R}(R)$ se basa en:

 - $\text{ Si } R' \text{ es un rectángulo } \underbrace{\mathsf{cerrado}}_{} \text{ y } f \colon R' \longrightarrow \mathbb{R} \text{ es } \underline{\mathsf{acotada}}_{} \text{ y dado} \\ \varepsilon > 0, \ \omega(f,x) < \varepsilon \text{ para cada } x \in R', \text{ existe } P \in \mathscr{P}(R') \text{ tal que} \\ S(f,\mathcal{P}) s(f,\mathcal{P}) < \varepsilon \, \mathsf{v}(R').$

Si R es un rectángulo $\operatorname{\underline{cerrado}}$ y $f\colon R\longrightarrow \mathbb{R}$ es una función acotada entonces $f \in \mathcal{R}(R)$ sii f es continua c.s. en R.

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- $\operatorname{Si} \ \, \overline{\varepsilon} > 0 \ \, \operatorname{existen rectángulos} \ \, \underline{\operatorname{abiertos}} \ \, \operatorname{con} \ \, D \subset \bigcup_{j=1}^{\infty} R_j \ \, \mathbf{y} \ \, \sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon.$
- $D_{\varepsilon} = \{ x \in R : \omega(f, x) \ge \varepsilon \} \subset D$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- $\operatorname{Si} \ \ \overline{\varepsilon} > 0 \ \ \operatorname{existen} \ \operatorname{rectángulos} \ \underline{\operatorname{abiertos}} \ \operatorname{con} \ D \subset \bigcup_{j=1}^{\infty} R_j \ \operatorname{y} \ \sum_{j=1}^{\infty} \operatorname{v}(R_j) \leq \varepsilon.$
- $D_{\varepsilon} = \{ x \in R : \omega(f, x) \ge \varepsilon \} \subset D$
- lacktriangle Como R es cerrado, D_{ε} es cerrado $\Longrightarrow D_{\varepsilon}$ es compacto

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- $\operatorname{Si} \ \boxed{\varepsilon > 0} \ \text{ existen rectángulos } \underline{\text{abiertos}} \ \text{con } D \subset \bigcup_{j=1}^{\infty} R_j \ \text{y} \ \sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon.$
- $D_{\varepsilon} = \{ x \in R : \omega(f, x) \ge \varepsilon \} \subset D$
- lacktriangle Como R es cerrado, D_{ε} es cerrado $\Longrightarrow D_{\varepsilon}$ es compacto

Si R es un rectángulo $\operatorname{\underline{cerrado}}$ y $f\colon R\longrightarrow \mathbb{R}$ es una función $\operatorname{\underline{aco}}$ tada entonces $f \in \mathcal{R}(R)$ sii f es continua c.s. en R.

- ▶ Supongamos que f es continua c.c. y sea $D = \{x \in R : \omega(f, x) > 0\}$
- Si $\varepsilon > 0$ existen rectángulos <u>abiertos</u> con $D \subset \bigcup_{j=1}^{\infty} R_j$ y $\sum_{j=1}^{\infty} v(R_j) \leq \varepsilon$.
- $D_{\varepsilon} = \{ x \in R : \omega(f, x) \ge \varepsilon \} \subset D$
- ightharpoonup Como R es cerrado, D_{ε} es cerrado $\Longrightarrow D_{\varepsilon}$ es compacto

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- $\operatorname{Si} \ \ \, \frac{\varepsilon > 0}{\varepsilon > 0} \text{ existen rectángulos } \underline{\text{abiertos}} \text{ con } D \subset \bigcup_{j=1}^{\infty} R_j \text{ y } \sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon.$
- $D_{\varepsilon} = \{ x \in R : \omega(f, x) \ge \varepsilon \} \subset D$
- $lackbox{\ }$ Como R es cerrado, $D_{arepsilon}$ es cerrado $\Longrightarrow D_{arepsilon}$ es compacto
- ▶ Existe $m \in \mathbb{N}^*$ con $D_{\varepsilon} \subset \bigcup_{j=1}^m R_j \Longrightarrow \sum_{j=1}^m \mathsf{v}(R_j) \leq \varepsilon$. Si $\widehat{R}_j = R \cap \overline{R}_j$
- lacktriangle Existe $\mathcal{P}\in\mathscr{P}(R)$ tal que cada \widehat{R}_j es unión de subrectángulos de \mathcal{P}

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- $\operatorname{Si} \ \, \overline{\varepsilon} > 0 \ \, \operatorname{existen rectángulos} \ \, \underline{\operatorname{abiertos}} \ \, \operatorname{con} \ \, D \subset \bigcup_{j=1}^{\infty} R_j \ \, \mathbf{y} \ \, \sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon.$
- $D_{\varepsilon} = \{ x \in R : \omega(f, x) \ge \varepsilon \} \subset D$
- lacktriangle Como R es cerrado, D_{ε} es cerrado $\Longrightarrow D_{\varepsilon}$ es compacto
- ► Existe $m \in \mathbb{N}^*$ con $D_{\varepsilon} \subset \bigcup_{j=1}^m R_j \Longrightarrow \sum_{j=1}^m \mathsf{v}(R_j) \leq \varepsilon$. Si $\widehat{R}_j = R \cap \overline{R}_j$
- lacktriangle Existe $\mathcal{P}\in\mathscr{P}(R)$ tal que cada \widehat{R}_{i} es unión de subrectángulos de \mathcal{P}
- lackbox Sea $\mathscr{S}\equiv$ subrectángulos de $\mathcal P$ contenidos en algún $\widehat R_j$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \{x \in R : \omega(f,x) \geq \varepsilon\} \subset D$ existen rectángulos

$$\underline{\text{cerrados}} \text{ con } D_{\varepsilon} \subset \bigcup_{j=1}^m \widehat{R}_j \subset R \text{ y } \sum_{j=1}^m \mathsf{v}(\widehat{R}_j) \leq \varepsilon$$

- lacktriangle Existe $\mathcal{P}\in\mathscr{P}(R)$ tal que cada \widehat{R}_j es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\hat{R}_j$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \{x \in R : \omega(f,x) \geq \varepsilon\} \subset D$ existen rectángulos

$$\underline{\text{cerrados}} \text{ con } D_{\varepsilon} \subset \bigcup_{j=1}^m \widehat{R}_j \subset R \text{ y } \sum_{j=1}^m \mathsf{v}(\widehat{R}_j) \leq \varepsilon$$

- lackbox Existe $\mathcal{P}\in\mathscr{P}(R)$ tal que cada \widetilde{R}_j es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\widehat{R}_{j}$
- $\sum_{R' \in \mathscr{S}} \left(M_{R'} m_{R'} \right) \mathsf{v}(R') \le 2M \sum_{R' \in \mathscr{S}} \mathsf{v}(R') \le 2M \sum_{j=1}^m \mathsf{v}(\widehat{R}_j) \le 2M \varepsilon$

$$\text{donde } M = \sup_{x \in R} \{|f(x)|\}.$$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \big\{ x \in R : \omega(f,x) \geq \varepsilon \big\} \subset D$ existen rectángulos

$$\underline{\text{cerrados}} \text{ con } D_{\varepsilon} \subset \bigcup_{j=1}^{m} \widehat{R}_{j} \subset R \text{ y } \sum_{j=1}^{m} \mathsf{v}(\widehat{R}_{j}) \leq \varepsilon$$

- $lackbox{ Existe } \mathcal{P} \in \mathscr{P}(R)$ tal que cada $\widehat{R_j}$ es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\hat{R}_j$
- $\blacktriangleright \ \, \mathrm{Si} \,\, R' \in \mathcal{P} \,\, \mathrm{y} \,\, R' \notin \mathscr{S} \Longrightarrow D_{\varepsilon} \cap R' = \emptyset \Longrightarrow \omega(f,x) < \varepsilon \,\, \mathrm{si} \,\, x \in R'$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \{x \in R : \omega(f,x) \geq \varepsilon\} \subset D$ existen rectángulos

$$\underline{\mathsf{cerrados}} \ \mathsf{con} \ D_{\varepsilon} \subset \bigcup_{j=1}^m \widehat{R}_j \subset R \ \mathsf{y} \ \sum_{j=1}^m \mathsf{v}(\widehat{R}_j) \leq \varepsilon$$

- $lackbox{ Existe } \mathcal{P} \in \mathscr{P}(R)$ tal que cada $\widehat{R_j}$ es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\widehat{R}_{j}$
- $\blacktriangleright \ \, \mathsf{Si} \,\, R' \in \mathcal{P} \,\, \mathsf{y} \,\, R' \notin \mathscr{S} \Longrightarrow D_{\varepsilon} \cap R' = \emptyset \Longrightarrow \omega(f,x) < \varepsilon \,\, \mathsf{si} \,\, x \in R'$
- $\blacktriangleright \ \, \mathsf{Si} \,\, R' \in \mathcal{P} \,\, \mathsf{y} \,\, R' \notin \mathscr{S} \Rightarrow \mathcal{P}' \in \mathscr{P}(R') \,\, \mathsf{con} \,\, S(f,\mathcal{P}') s(f,\mathcal{P}') \leq \varepsilon \mathsf{v}(R')$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \big\{ x \in R : \omega(f,x) \geq \varepsilon \big\} \subset D$ existen rectángulos

$$\underline{\mathrm{cerrados}} \ \mathrm{con} \ D_{\varepsilon} \subset \bigcup_{j=1}^m \widehat{R}_j \subset R \ \mathrm{y} \ \sum_{j=1}^m \mathrm{v}(\widehat{R}_j) \leq \varepsilon$$

- lackbox Existe $\mathcal{P}\in\mathscr{P}(R)$ tal que cada \widetilde{R}_j es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\widehat{R}_{j}$
- $\sum_{R' \in \mathscr{S}} \left(M_{R'} m_{R'} \right) \mathsf{v}(R') \le 2M\varepsilon, \text{ donde } M = \sup_{x \in R} \{ |f(x)| \}$
- $\blacktriangleright \ \, \mathsf{Si} \,\, R' \in \mathcal{P} \,\, \mathsf{y} \,\, R' \notin \mathscr{S} \Rightarrow \mathcal{P}' \in \mathscr{P}(R') \,\, \mathsf{con} \,\, S(f,\mathcal{P}') s(f,\mathcal{P}') \leq \varepsilon \mathsf{v}(R')$
- $\blacktriangleright \ \widetilde{P} = \mathscr{S} \cup \bigcup_{R' \notin \mathscr{S}} \mathcal{P}' \text{ es una partición de } R$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \{x \in R : \omega(f,x) \geq \varepsilon\} \subset D$ existen rectángulos

$$\underline{\mathrm{cerrados}} \ \mathrm{con} \ D_{\varepsilon} \subset \bigcup_{j=1}^m \widehat{R}_j \subset R \ \mathrm{y} \ \sum_{j=1}^m \mathrm{v}(\widehat{R}_j) \leq \varepsilon$$

- $lackbox{ Existe } \mathcal{P} \in \mathscr{P}(R)$ tal que cada $\widehat{R_j}$ es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\widehat{R}_{j}$
- $\sum_{R' \in \mathscr{S}} \left(M_{R'} m_{R'} \right) \mathsf{v}(R') \le 2M\varepsilon, \text{ donde } M = \sup_{x \in R} \{ |f(x)| \}$
- $\blacktriangleright \ \, \mathsf{Si} \,\, R' \in \mathcal{P} \,\, \mathsf{y} \,\, R' \notin \mathscr{S} \Rightarrow \mathcal{P}' \in \mathscr{P}(R') \,\, \mathsf{con} \,\, S(f,\mathcal{P}') s(f,\mathcal{P}') \leq \varepsilon \mathsf{v}(R')$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \{x \in R : \omega(f, x) \geq \varepsilon\} \subset D$ existen rectángulos

$$\underline{\mathrm{cerrados}} \ \mathrm{con} \ D_{\varepsilon} \subset \bigcup_{j=1}^m \widehat{R}_j \subset R \ \mathrm{y} \ \sum_{j=1}^m \mathrm{v}(\widehat{R}_j) \leq \varepsilon$$

- lackbox Existe $\mathcal{P} \in \mathscr{P}(R)$ tal que cada R_j es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\widehat{R}_{j}$
- $\sum_{R' \in \mathscr{S}} \left(M_{R'} m_{R'} \right) \mathsf{v}(R') \le 2M\varepsilon, \text{ donde } M = \sup_{x \in R} \{ |f(x)| \}$
- $\blacktriangleright \ \, \mathsf{Si} \,\, R' \in \mathcal{P} \,\, \mathsf{y} \,\, R' \notin \mathscr{S} \Rightarrow \mathcal{P}' \in \mathscr{P}(R') \,\, \mathsf{con} \,\, S(f,\mathcal{P}') s(f,\mathcal{P}') \leq \varepsilon \mathsf{v}(R')$

- lacksquare Supongamos que f es continua c.c. y sea $D=\left\{x\in R:\omega(f,x)>0\right\}$
- Si $\varepsilon > 0$ y $D_{\varepsilon} = \{x \in R : \omega(f,x) \geq \varepsilon\} \subset D$ existen rectángulos

$$\underline{\mathsf{cerrados}} \ \mathsf{con} \ D_{\varepsilon} \subset \bigcup_{j=1}^m \widehat{R}_j \subset R \ \mathsf{y} \ \sum_{j=1}^m \mathsf{v}(\widehat{R}_j) \leq \varepsilon$$

- lackbox Existe $\mathcal{P} \in \mathscr{P}(R)$ tal que cada R_j es unión de subrectángulos de \mathcal{P}
- $lackbox{Sea}~\mathscr{S}\equiv ext{subrectángulos}~ ext{de}~\mathcal{P}~ ext{contenidos}~ ext{en}~ ext{algún}~\widehat{R}_{j}$
- $\sum_{R' \in \mathscr{S}} \left(M_{R'} m_{R'} \right) \mathsf{v}(R') \le 2M\varepsilon, \text{ donde } M = \sup_{x \in R} \{ |f(x)| \}$
- $\blacktriangleright \ \, \mathsf{Si} \,\, R' \in \mathcal{P} \,\, \mathsf{y} \,\, R' \notin \mathscr{S} \Rightarrow \mathcal{P}' \in \mathscr{P}(R') \,\, \mathsf{con} \,\, S(f,\mathcal{P}') s(f,\mathcal{P}') \leq \varepsilon \mathsf{v}(R')$

Si $A \subset \mathbb{R}^n$, diremos que A tiene \mathbf{Medida} nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^\infty$; es

decir,
$$A\subset \bigcup\limits_{j=1}^{\infty}R_{j}$$
 y tal que $\sum\limits_{j=1}^{\infty}\mathsf{v}(R_{j})\leq \varepsilon.$

- ► Los rectángulos pueden tomarse abiertos o cerrados
- ► Los rectángulos pueden tomarse cubos abiertos o cubos cerrados

Si $A \subset \mathbb{R}^n$ y P es una propiedad relativa a los puntos de A, diremos que P se satisface casi siempre en A y lo abreviaremos c.s. si el subconjunto de puntos de A en los que P no se satisface tiene medida nula.

Si $A \subset \mathbb{R}^n$, diremos que A tiene Medida nula si para cada $\varepsilon > 0$ existe un recubrimiento numerable de A por rectángulos, $\left\{R_j\right\}_{j=1}^{\infty}$; es

$$\text{decir, } A \subset \bigcup_{j=1}^{\infty} R_j \text{ y tal que } \sum_{j=1}^{\infty} \mathsf{v}(R_j) \leq \varepsilon.$$

Si $A \subset \mathbb{R}^n$ y P es una propiedad relativa a los puntos de A, diremos que P se satisface casi siempre en A y lo abreviaremos c.s. si el subconjunto de puntos de A en los que P no se satisface tiene medida nula.

El Criterio de Lebesgue de integrabilidad

• Completitud: Si $A \subset \mathbb{R}^n$ tiene contenido nulo, entonces es acotado y tiene medida nula. El recíproco no es cierto en general, pero si A es compacto y tiene medida nula, entonces tiene contenido nulo. Si $\overline{A \subset B \subset \mathbb{R}^n}$ y B tiene contenido nulo, respectivamente medida nula, entonces A tiene contenido nulo, respectivamente medida nula.

- Completitud: Si $A \subset \mathbb{R}^n$ tiene contenido nulo, entonces es acotado y tiene medida nula. Si $A \subset B \subset \mathbb{R}^n$ y B tiene contenido (medida) nulo, entonces A tiene contenido (medida) nulo.
- ② Compatibilidad: Si $R \subset \mathbb{R}^n$ es un rectángulo, R tiene contenido nulo sii $\mathsf{v}(R) = 0$. En particular, todo punto de \mathbb{R}^n tiene de contenido nulo. Asimimismo R tiene medida nula sii $\mathsf{v}(R) = 0$.

- Completitud: Si $A \subset \mathbb{R}^n$ tiene contenido nulo, entonces es acotado y tiene medida nula. Si $A \subset B \subset \mathbb{R}^n$ y B tiene contenido (medida) nulo, entonces A tiene contenido (medida) nulo.
- **②** Compatibilidad: Un rectángulo R tiene medida nula sii v(R) = 0.
- **3** Compatibilidad topológica: Sea $A \subset \mathbb{R}^n$. Si A tiene contenido nulo, \bar{A} tiene contenido nulo y si A tiene medida nula, entonces $\overset{\circ}{A} = \emptyset$. En particular, \mathbb{R}^n no tiene medida nula.

- Completitud: Si $A \subset \mathbb{R}^n$ tiene contenido nulo, entonces es acotado y tiene medida nula. Si $A \subset B \subset \mathbb{R}^n$ y B tiene contenido (medida) nulo, entonces A tiene contenido (medida) nulo.
- **②** Compatibilidad: Un rectángulo R tiene medida nula sii v(R) = 0.
- Estabilidad: La unión <u>finita</u> de conjuntos de contenido nulo tiene contenido nulo. La unión <u>numerable</u> de conjuntos de medida nula tiene medida nula. En particular, cualquier conjunto finito y la frontera de cada rectángulo tienen contenido nulo, mientras que cualquier conjunto numerable tiene medida nula.

- Completitud: Si $A \subset \mathbb{R}^n$ tiene contenido nulo, entonces es acotado y tiene medida nula. Si $A \subset B \subset \mathbb{R}^n$ y B tiene contenido (medida) nulo, entonces A tiene contenido (medida) nulo.
- **②** Compatibilidad: Un rectángulo R tiene medida nula sii v(R) = 0.
- Estabilidad: La unión <u>finita</u> de conjuntos de contenido nulo tiene contenido nulo. La unión <u>numerable</u> de conjuntos de medida nula tiene medida nula.
- **⊙** Compatibilidad geométrica: Sean $n, k \in \mathbb{N}^*$, $A \subset \mathbb{R}^n$ y $B \subset \mathbb{R}^k$. Si A tiene contenido nulo y $B \subset \mathbb{R}^k$ es acotado, entonces $A \times B$ y $B \times A$ tienen contenido nulo en \mathbb{R}^{k+m} . Si $A \subset \mathbb{R}^n$ tiene medida nula, entonces $A \times \mathbb{R}^k$ y $\mathbb{R}^k \times A$ tienen medida nula y por tanto, $A \times B$ y $B \times A$, $\mathbb{R}^k \times 0_n$ y $0_n \times \mathbb{R}^k$ tienen medida nula en \mathbb{R}^{k+m} .

▶ Si $A \subset \mathbb{R}^n$ es de medida nula, entonces $\stackrel{\circ}{A} = \emptyset$.

- ightharpoonup Si $A\subset\mathbb{R}^n$ es de medida nula, entonces $\stackrel{\circ}{A}=\emptyset$.
 - Cuestión 6: Si $A\subset \mathbb{R}^n$ es tal que $\stackrel{\circ}{A}=\emptyset$, ¿podemos concluir que A es de medida nula?

- ▶ Si $A \subset \mathbb{R}^n$ es de medida nula, entonces $\stackrel{\circ}{A} = \emptyset$.
 - Cuestión 6: Si $A \subset \mathbb{R}^n$ es tal que $\stackrel{\circ}{A} = \emptyset$, ¿podemos concluir que A es de medida nula? NO. Ejemplo: $\mathbb{R}^n \setminus \mathbb{Q}^n$
- ightharpoonup Si $A\subset\mathbb{R}^n$ es de contenido nulo, entonces \bar{A} es de contenido nulo.
 - Cuestión 7: Si $A\subset \mathbb{R}^n$ es de medida nula, ¿son \bar{A} ó ∂A de medida nula?

- ▶ Si $A \subset \mathbb{R}^n$ es de medida nula, entonces $\stackrel{\circ}{A} = \emptyset$.
 - Cuestión 6: Si $A \subset \mathbb{R}^n$ es tal que $\stackrel{\circ}{A} = \emptyset$, ¿podemos concluir que A es de medida nula? NO. Ejemplo: $\mathbb{R}^n \setminus \mathbb{Q}^n$
- ightharpoonup Si $A\subset\mathbb{R}^n$ es de contenido nulo, entonces $ar{A}$ es de contenido nulo.
 - Cuestión 7: Si $A\subset\mathbb{R}^n$ es de medida nula, ¿son \bar{A} ó ∂A de medida nula? NO. Ejemplo: \mathbb{Q}^n
- ▶ Si $A \subset \mathbb{R}^n$ es de contenido nulo es acotado.
 - Cuestión 7b: ¿Existen conjuntos <u>acotados</u> de medida nula pero no de contenido nulo?

- ightharpoonup Si $A\subset\mathbb{R}^n$ es de medida nula, entonces $\stackrel{\circ}{A}=\emptyset$.
 - Cuestión 6: Si $A \subset \mathbb{R}^n$ es tal que $\stackrel{\circ}{A} = \emptyset$, ¿podemos concluir que A es de medida nula? NO. Ejemplo: $\mathbb{R}^n \setminus \mathbb{Q}^n$
- Si $A \subset \mathbb{R}^n$ es de contenido nulo, entonces \bar{A} es de contenido nulo.
 - Cuestión 7: Si $A\subset\mathbb{R}^n$ es de medida nula, ¿son \bar{A} ó ∂A de medida nula? NO. Ejemplo: \mathbb{Q}^n
- ▶ Si $A \subset \mathbb{R}^n$ es de contenido nulo es acotado.
 - Cuestión 7b: ¿Existen conjuntos acotados de medida nula pero no de contenido nulo? SI. Ejemplo: $\mathbb{Q}^n \cap R$, con R rectángulo no degenerado

- ightharpoonup Si $A\subset\mathbb{R}^n$ es de medida nula, entonces $\stackrel{\circ}{A}=\emptyset$.
 - Cuestión 6: Si $A \subset \mathbb{R}^n$ es tal que $\stackrel{\circ}{A} = \emptyset$, ¿podemos concluir que A es de medida nula? NO. Ejemplo: $\mathbb{R}^n \setminus \mathbb{Q}^n$
- ightharpoonup Si $A\subset\mathbb{R}^n$ es de contenido nulo, entonces \bar{A} es de contenido nulo.
 - Cuestión 7: Si $A\subset\mathbb{R}^n$ es de medida nula, ¿son \bar{A} ó ∂A de medida nula? NO. Ejemplo: \mathbb{Q}^n
- ▶ Si $A \subset \mathbb{R}^n$ es de contenido nulo es acotado.
 - Cuestión 7b: ¿Existen conjuntos acotados de medida nula pero no de contenido nulo? SI. Ejemplo: $\mathbb{Q}^n \cap R$, con R rectángulo no degenerado
 - Cuestión 8: Sean $A \subset \mathbb{R}^n$ y $f,g\colon A \longrightarrow \mathbb{R}$ continuas. Si f=g c.s. en A, demostrar que f=g en $\overset{\circ}{A}$.

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

- Si n < m entonces T(A) tiene medida nula. Si además A es acotado, T(A) tiene contenido nulo.
- ② Si n=m y $B \subset A$ tiene contenido nulo (o medida nula), entonces T(B) tiene contenido nulo (o medida nula).

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

- ① Si n < m entonces T(A) tiene medida nula. Si además A es acotado, T(A) tiene contenido nulo.
- ② Si n=m y $B \subset A$ tiene contenido nulo (o medida nula), entonces T(B) tiene contenido nulo (o medida nula).
- ▶ El resultado es <u>falso</u> si n > m: Ejemplo: $T(x_1, ..., x_n) = x_j$

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

- ① Si n < m entonces T(A) tiene medida nula. Si además A es acotado, T(A) tiene contenido nulo.
- ② Si n=m y $B \subset A$ tiene contenido nulo (o medida nula), entonces T(B) tiene contenido nulo (o medida nula).
- ▶ El resultado es falso si n > m: Ejemplo: $T(x_1, ..., x_n) = x_j$
- ▶ Si $|T(x) T(y)| \le L|x y|$, T se denomina Lipschitziana

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

- Si n < m entonces T(A) tiene medida nula. Si además A es acotado, T(A) tiene contenido nulo.
- ② Si n=m y $B \subset A$ tiene contenido nulo (o medida nula), entonces T(B) tiene contenido nulo (o medida nula).
- ▶ El resultado es falso si n > m: Ejemplo: $T(x_1, ..., x_n) = x_j$
- ▶ Si $|T(x) T(y)| \le L|x y|$, T se denomina Lipschitziana
- ▶ Si T es Lipschitziana es uniformemente continua ($\delta = \frac{\varepsilon}{L}$)

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

- ① Si n < m entonces T(A) tiene medida nula. Si además A es acotado, T(A) tiene contenido nulo.
- ② Si n=m y $B \subset A$ tiene contenido nulo (o medida nula), entonces T(B) tiene contenido nulo (o medida nula).
- ▶ El resultado es falso si n > m: Ejemplo: $T(x_1, ..., x_n) = x_j$
- lacktriangleq Si $|T(x)-T(y)| \leq L|x-y|$, T se denomina Lipschitziana
- ▶ Si T es Lipschitziana es uniformemente continua ($\delta = \frac{\varepsilon}{L}$)
- $\blacktriangleright \quad \text{Si } r > 0 \Longrightarrow T \big(A \cap B(a,r) \big) \subset B \big(T(a), rL \big)$

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

- Si n < m entonces T(A) tiene medida nula. Si además A es acotado, T(A) tiene contenido nulo.
- ② Si n=m y $B \subset A$ tiene contenido nulo (o medida nula), entonces T(B) tiene contenido nulo (o medida nula).
- ▶ El resultado es <u>falso</u> si n > m: Ejemplo: $T(x_1, ..., x_n) = x_j$
- ▶ Si $|T(x) T(y)| \le L|x y|$, T se denomina Lipschitziana
- ▶ Si T es Lipschitziana es uniformemente continua ($\delta = \frac{\varepsilon}{L}$)
- lacksquare Si Q es un cubo de lado $\ell\Longrightarrow T(A\cap Q)\subset \widehat{Q}$, cubo de lado $L\ell\sqrt{n}$

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

▶ Ejemplo: Si $|a_1| + \cdots + |a_n| > 0$, para cada $\alpha \in \mathbb{R}$, el hiperplano

$$H_{\alpha} = \left\{ z \in \mathbb{R}^n : a_1 z_1 + \dots + a_n z_n = \alpha \right\}$$

tiene medida nula.

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

▶ Ejemplo: Si $|a_1|+\cdots+|a_n|>0$, para cada $\alpha\in\mathbb{R}$, el hiperplano $H_\alpha=\left\{z\in\mathbb{R}^n:a_1z_1+\cdots+a_nz_n=\alpha\right\}$

tiene medida nula.

Si $a_i \neq 0$ y consideramos $T : \mathbb{R}^{n-1} \longrightarrow \mathbb{R}^n$

$$T(x_1, \dots, x_{n-1}) = \left(x_1, \dots, x_{j-1}, a_j^{-1} \left(\alpha - \sum_{i=1}^{j-1} a_i x_i - \sum_{i=j+1}^n a_i x_i\right), x_{j+1}, \dots, x_n\right)$$

T es Lipschitziana y $T(\mathbb{R}^{n-1})=H_{\alpha}$

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

▶ El resultado es falso si $n \le m$ y T es sólo uniformemente continua:

Curva de Peano: $\gamma \colon [0,1] \longrightarrow [0,1]^2$ continua y sobreyectiva

Imagen: F. Jácome, Lineabilidad y Curvas de Peano, TFM, US, 2018

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

▶ Si $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es lineal, entonces es Lipschitziana:

Si
$$M = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{R})$$
 es tal que $T(x) = Mx$, $L = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

▶ Si $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es lineal, entonces es Lipschitziana:

Si
$$M = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{R})$$
 es tal que $T(x) = Mx$, $L = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$

Si $\Omega\subset\mathbb{R}^n$ es abierto y $T\in\mathcal{C}^1(\Omega,\mathbb{R}^m)$, entonces T es Lipschitziana en cada compacto $K\subset\Omega$

Si $T \colon A \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ ¿cuándo es cierto que si $B \subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

▶ Si $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es lineal, entonces es Lipschitziana:

Si
$$M=\left(a_{ij}\right)\in\mathcal{M}_{m\times n}(\mathbb{R})$$
 es tal que $T(x)=Mx$, $L=\sqrt{\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}a_{ij}^{2}}$

Si $\Omega\subset\mathbb{R}^n$ es abierto y $T\in\mathcal{C}^1(\Omega,\mathbb{R}^m)$, entonces T es Lipschitziana en cada compacto $K\subset\Omega$

Sean $\Omega \subset \mathbb{R}^n$, abierto y $T \in \mathcal{C}^1(\Omega, \mathbb{R}^m)$. Entonces,

- Si n < m, $T(\Omega)$ tiene medida nula. Si además A es acotado y $\bar{A} \subset \Omega$, T(A) tiene contenido nulo.
- ② Si n=m y $B\subset \Omega$ tiene medida nula, T(B) tiene medida nula. Si $\bar{B}\subset \Omega$ tiene contenido nulo, T(B) tiene contenido nulo.

Si $T\colon A\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ ¿cuándo es cierto que si $B\subset A$ tiene contenido nulo (o medida nula), T(B) tiene contenido nulo (o medida nula)?

Sean $\Omega\subset\mathbb{R}^n$, abierto y $T\in\mathcal{C}^1(\Omega,\mathbb{R}^m)$. Entonces,

- Si n < m, $T(\Omega)$ tiene medida nula. Si además A es acotado y $\bar{A} \subset \Omega$, T(A) tiene contenido nulo.
- ② Si n=m y $B\subset \Omega$ tiene medida nula, T(B) tiene medida nula. Si $\bar{B}\subset \Omega$ tiene contenido nulo, T(B) tiene contenido nulo.

Teorema de Sard

Sean $\Omega\subset\mathbb{R}^n$ un abierto, $T\in\mathcal{C}^k(\Omega;\mathbb{R}^n)$ con $k\geq 1+\max\{n-m,0\}$ y $B=\left\{x\in\Omega:\mathrm{rang}\,DT(x)< m\right\}$. Entonces T(B) tiene medida nula.

Si R es un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow \mathbb{R}$ es una función <u>acotada</u> entonces $f\in \mathscr{R}(R)$ sii f es continua c.s. en R.

▶ $\mathcal{R}(R) \setminus \mathcal{C}(R)$ contiene much as funciones:

- $ightharpoonup \mathscr{R}(R) \setminus \mathscr{C}(R)$ contiene much as funciones:
 - $\overset{\textstyle \longleftarrow}{} \mathsf{Sean} \ f \colon R \longrightarrow \mathbb{R} \ \underline{\mathsf{acotada}} \ \mathsf{y} \ D = \{x \in R : f \ \mathsf{es} \ \mathsf{discontinua} \ \mathsf{en} \ x\}$
 - $\textbf{ Si } D \subset \bigcup_{j=1}^{\infty} \partial R_j, \ R_j \subset R \ \text{rectángulo, entonces } f \in \mathscr{R}(R).$
 - $\textbf{ Si } D \subset \bigcup_{j=1}^{\infty} \Gamma(f_j), \ f_j \in \mathscr{R}(\widehat{R}), \ \widehat{R} \subset \mathbb{R}^{n-1}, \ \text{entonces} \ \boldsymbol{f} \in \mathscr{R}(\boldsymbol{R}).$

- $ightharpoonup \mathscr{R}(R) \setminus \mathscr{C}(R)$ contiene muchas funciones:
 - $\stackrel{\textstyle \longleftarrow}{} \mathsf{Sean} \ f \colon R \longrightarrow \mathbb{R} \ \underline{\mathsf{acotada}} \ \mathsf{y} \ D = \{x \in R : f \ \mathsf{es} \ \mathsf{discontinua} \ \mathsf{en} \ x\}$
 - $\bullet \ \ {\rm Si} \ \ D \subset \bigcup_{j=1}^\infty \partial R_j, \ R_j \subset R \ \ {\rm rect\'angulo, \ entonces} \ \ f \in \mathscr{R}(R).$
 - $\textbf{ Si } D \subset \bigcup_{j=1}^{\infty} \Gamma(f_j), \ f_j \in \mathscr{R}(\widehat{R}), \ \widehat{R} \subset \mathbb{R}^{n-1}, \ \text{entonces} \ \boldsymbol{f} \in \mathscr{R}(\boldsymbol{R}).$
- \longrightarrow Estabilidad: Cualquier <u>operación continua</u> con funciones integrables Riemann en R es una función integrable Riemann en R:

El Criterio de Lebesgue de integrabilidad

Si R es un rectángulo <u>cerrado</u> y $f\colon R\longrightarrow \mathbb{R}$ es una función <u>acotada</u> entonces $f\in \mathscr{R}(R)$ sii f es continua c.s. en R.

- $ightharpoonup \mathscr{R}(R) \setminus \mathscr{C}(R)$ contiene muchas funciones:
 - \longrightarrow Sean $f: R \longrightarrow \mathbb{R}$ <u>acotada</u> y $D = \{x \in R : f \text{ es discontinua en } x\}$

 - $\textbf{ Si } D \subset \bigcup_{j=1}^{\infty} \Gamma(f_j), \ f_j \in \mathscr{R}(\widehat{R}), \ \widehat{R} \subset \mathbb{R}^{n-1}, \ \text{entonces} \ \boldsymbol{f} \in \mathscr{R}(\boldsymbol{R}).$
- \sim Estabilidad: Cualquier <u>operación continua</u> con funciones integrables Riemann en R es una función integrable Riemann en R:
 - ▶ Si \mathscr{O} : $\mathbb{R}^m \longrightarrow \mathbb{R}$ es <u>continua</u>, entonces para cada $f_1, \dots, f_m \in \mathscr{R}(R)$ se satisface que $\mathscr{O}(f_1, \dots, f_m) \in \mathscr{R}(R)$.

Sea R es un rectángulo cerrado no degenerado (v(R) > 0)

Si
$$h \in \mathcal{R}(R)$$
 es tal que $h \ge 0$ c.s., entonces

Si
$$h\in \mathcal{R}(R)$$
 es tal que $h\geq 0$ c.s., entonces
$$\int_R h\geq 0 \quad \text{e} \quad \int_R h=0 \quad \text{sii} \quad h=0 \quad \text{c.s.}$$

Sea R es un rectángulo cerrado no degenerado (v(R) > 0)

Si
$$h\in \mathcal{R}(R)$$
 es tal que $h\geq 0$ c.s., entonces
$$\int_R h\geq 0 \quad \text{e} \quad \int_R h=0 \quad \text{sii} \quad h=0 \quad \text{c.s.}$$

▶ Si
$$f,g \in \mathcal{R}(R)$$
 con $f \geq g$ c.s., entonces $\int_R f \geq \int_R g$ y además, $\int_R f = \int_R g$ sii $f = g$ c.s.

Sea R es un rectángulo cerrado no degenerado (v(R) > 0)

Si
$$h \in \mathcal{R}(R)$$
 es tal que $h \geq 0$ c.s., entonces

Si
$$h\in \mathcal{R}(R)$$
 es tal que $h\geq 0$ c.s., entonces
$$\int_R h\geq 0 \quad \text{e} \quad \int_R h=0 \quad \text{sii} \quad h=0 \quad \text{c.s.}$$

- ▶ Si $f,g \in \mathcal{R}(R)$ con $f \geq g$ c.s., entonces $\int_{R} f \geq \int_{R} g$ y además, $\int_{\mathcal{D}} f = \int_{\mathcal{D}} g \, \operatorname{sii} \, f = g \, \operatorname{c.s.}$

Si $g \in \mathcal{R}(R)$ y f = g c.s. en general $f \notin \mathcal{R}(R)$ (función de Dirichlet)

Sea R es un rectángulo cerrado no degenerado (v(R) > 0)

Si
$$h \in \mathcal{R}(R)$$
 es tal que $h \ge 0$ c.s., entonces

Si
$$h\in \mathcal{R}(R)$$
 es tal que $h\geq 0$ c.s., entonces
$$\int_R h\geq 0 \quad \text{e} \quad \int_R h=0 \quad \text{sii} \quad h=0 \quad \text{c.s.}$$

- ▶ Si $f,g \in \mathcal{R}(R)$ con $f \geq g$ c.s., entonces $\int_{R} f \geq \int_{R} g$ y además, $\int_{\mathcal{D}} f = \int_{\mathcal{D}} g \sin f = g \text{ c.s.}$
- \bigwedge Es necesario que $f, g \in \mathcal{R}(R)$:

Si $g \in \mathcal{R}(R)$ y f = g c.s. en general $f \notin \mathcal{R}(R)$ (función de Dirichlet)

Si alteramos los valores de $f \in \mathcal{R}(R)$ es un conjunto de medida nula, la nueva función puede no ser integrable

Sea R es un rectángulo cerrado no degenerado ($\mathrm{v}(R)>0$)

Sean $f,g\colon R\longrightarrow \mathbb{R}$ acotadas y $D=\big\{x\in R: f(x)\neq g(x)\big\}.$ Si D tiene contenido nulo, entonces, $f\in \mathscr{R}(R)$ sii $g\in \mathscr{R}(R)$ y en ese caso $\int_R f=\int_R g.$

Sea R es un rectángulo cerrado no degenerado ($\mathrm{v}(R)>0$)

Sean $f,g\colon R\longrightarrow \mathbb{R}$ <u>acotadas</u> y $D=\big\{x\in R: f(x)\neq g(x)\big\}$. Si D tiene <u>contenido nulo</u>, entonces, $f\in \mathscr{R}(R)$ sii $g\in \mathscr{R}(R)$ y en ese caso $\int_R f=\int_R g$.

▶ Si f es acotada y $H=\left\{x\in R: f(x)\neq 0\right\}$ tiene contenido nulo, entonces $f\in \mathscr{R}(R)$ e $\int_R f=0$

Sea R es un rectángulo cerrado no degenerado ($\mathrm{v}(R)>0$)

Sean $f,g\colon R\longrightarrow \mathbb{R}$ acotadas y $D=\big\{x\in R: f(x)\neq g(x)\big\}$. Si D tiene contenido nulo, entonces, $f\in \mathscr{R}(R)$ sii $g\in \mathscr{R}(R)$ y en ese caso $\int_R f=\int_R g$.

- ▶ Si f es acotada y $H=\left\{x\in R: f(x)\neq 0\right\}$ tiene contenido nulo, entonces $f\in \mathscr{R}(R)$ e $\int_R f=0$
- ▶ Si alteramos los valores de $f \in \mathcal{R}(R)$ en un conjunto de <u>contenido nulo</u>, la nueva función es integrable y el valor de la integral no se altera

Teorema de Fubini

Supongamos que $f\in \mathscr{R}(R imes\widehat{R})$ y consideremos $\Phi\colon R\longrightarrow \mathbb{R}$ y $\Psi\colon \widehat{R}\longrightarrow \mathbb{R}$ tales que para cada $x\in R$ y cada $y\in \widehat{R}$

$$\underline{\int_{\widehat{R}}} f_x \leq \Phi(x) \leq \overline{\int_{\widehat{R}}} f_x \quad \text{ e } \quad \underline{\int_{R}} f^y \leq \Psi(y) \leq \overline{\int_{R}} f^y.$$

Entonces $\Phi \in \mathscr{R}(R)$, $\Psi \in \mathscr{R}(\widehat{R})$ y se satisface que

$$\int_R \Phi = \int_{R \times \widehat{R}} f = \int_{\widehat{R}} \Psi.$$

Además, si

$$A = \left\{ x \in R : f_x \notin \mathscr{R}(\widehat{R}) \right\} \ \ \mathbf{y} \ \ B = \left\{ y \in \widehat{R} : f^y \notin \mathscr{R}(R) \right\}$$

entonces A tiene medida nula en \mathbb{R}^k y B tiene medida nula en \mathbb{R}^m .

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

Ejemplo: $\chi_{\mathbb{Q}^n}$ es la función de Dirichlet

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

- ightharpoonup Ejemplo: $\chi_{\mathbb{O}^n}$ es la función de Dirichlet

 - $② \ {\rm Si} \ A \subset \mathbb{R}^n, \ {\rm entonces} \ \chi_{\mathbb{R}^n \backslash A} = 1 \chi_A = \chi_{\mathbb{R}^n} \chi_A.$
 - $lackbox{0}$ Si $A,B\subset\mathbb{R}^n$, entonces

 - $\begin{array}{l} \textbf{ § i } C \subset \mathbb{R}^{k+m} \text{ y para cada } x \in \mathbb{R}^k \text{ e } y \in \mathbb{R}^m \text{ consideramos} \\ C_x = \{y \in \mathbb{R}^m : (x,y) \in C\} \text{ y } C^y = \{x \in \mathbb{R}^k : (x,y) \in C\}, \text{ entonces} \\ \left(\chi_C\right)_x = \chi_{C_x} \text{ y } \left(\chi_C\right)^y = \chi_{C^y} \end{array}$

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

 \blacktriangleright Si $A\subset\mathbb{R}^n$, entonces $\left\{x\in\mathbb{R}^n:\chi_{\scriptscriptstyle A}\text{ no es continua en }x\right\}=\partial A$

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

- \blacktriangleright Si $A\subset\mathbb{R}^n$, entonces $\left\{x\in\mathbb{R}^n:\chi_{_A}\text{ no es continua en }x\right\}=\partial A$
- Si A es <u>acotado</u> y R es un rectángulo cerrado tal que $A\subset R$, entonces $\chi_A\in \mathscr{R}(R)$ sii ∂A tiene medida nula.

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

- \blacktriangleright Si $A\subset\mathbb{R}^n$, entonces $\left\{x\in\mathbb{R}^n:\chi_{_A}\text{ no es continua en }x\right\}=\partial A$
- Si A es <u>acotado</u> y R es un rectángulo cerrado tal que $A\subset R$, entonces $\chi_A\in \mathscr{R}(R)$ sii ∂A tiene <u>contenido</u> nulo.

Si $A\subset\mathbb{R}^n$, denominaremos función característica de A a $\chi_A\colon\mathbb{R}^n\longrightarrow\mathbb{R}$ dada por $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ si $x\notin A$.

- \blacktriangleright Si $A\subset\mathbb{R}^n$, entonces $\left\{x\in\mathbb{R}^n:\chi_{_A}\text{ no es continua en }x\right\}=\partial A$
 - Si A es <u>acotado</u> y R es un rectángulo cerrado tal que $A\subset R$, entonces $\chi_A\in \mathscr{R}(R)$ sii ∂A tiene <u>contenido</u> nulo.

Diremos que $A \subset \mathbb{R}^n$ es medible Jordan si es <u>acotado</u> y su frontera tiene contenido nulo (o medida nula).

- $\mathfrak{J}(\mathbb{R}^n)\equiv$ conjunto de los subconjuntos medibles Jordan de $\mathbb{R}^n.$
- Si $A\in \mathfrak{J}(\mathbb{R}^n)$, denominamos volumen de A a $\mathrm{v}(A)=\int_R\chi_A$, donde R es cualquier rectángulo cerrado que contiene a A.

- **①** Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- **Q** Completitud: Todo subconjunto de contenido nulo es medible Jordan. Si $A \subset \mathfrak{J}(\mathbb{R}^n)$, entonces A es de medida nula sii es de contenido nulo y esto ocurre sii $\stackrel{\circ}{A} = \emptyset$. En particular, si R es un rectángulo no degenerado $R \cap \mathbb{Q}^n \notin \mathfrak{J}(\mathbb{R}^n)$.

- Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **③** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y w ∈ \mathbb{R}^n , entonces A + w, w $A \in \mathfrak{J}(\mathbb{R}^n)$.

- **①** Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **1** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $w \in \mathbb{R}^n$, entonces A + w, $wA \in \mathfrak{J}(\mathbb{R}^n)$.
- **①** Estabilidad: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ entonces $A \cup B, A \cap B, A \setminus B \in \mathfrak{J}(\mathbb{R}^n)$.

- **①** Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **③** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y w ∈ \mathbb{R}^n , entonces A + w, w $A \in \mathfrak{J}(\mathbb{R}^n)$.
- **①** Estabilidad: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ entonces $A \cup B, A \cap B, A \setminus B \in \mathfrak{J}(\mathbb{R}^n)$.
- **⊙** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, entonces $A \times B \in \mathfrak{J}(\mathbb{R}^{k+m})$. Si $C \in \mathfrak{J}(\mathbb{R}^{k+m})$ entonces $C_x \in \mathfrak{J}(\mathbb{R}^m)$ c.s. en \mathbb{R}^k y $C_y \in \mathfrak{J}(\mathbb{R}^k)$ c.s. en \mathbb{R}^m .

- **①** Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **③** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y w ∈ \mathbb{R}^n , entonces $A + w, wA \in \mathfrak{J}(\mathbb{R}^n)$.
- **①** Estabilidad: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ entonces $A \cup B, A \cap B, A \setminus B \in \mathfrak{J}(\mathbb{R}^n)$.
- **⊙** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, entonces $A \times B \in \mathfrak{J}(\mathbb{R}^{k+m})$. Si $C \in \mathfrak{J}(\mathbb{R}^{k+m})$ entonces $C_x \in \mathfrak{J}(\mathbb{R}^m)$ c.s. en \mathbb{R}^k y $C_y \in \mathfrak{J}(\mathbb{R}^k)$ c.s. en \mathbb{R}^m .
- $\begin{array}{l} \bullet \quad \text{Compatibilidad topológica: Si } A \in \mathfrak{J}(\mathbb{R}^n) \text{ entonces} \\ \overset{\circ}{A}, \bar{A}, \partial A \in \mathfrak{J}(\mathbb{R}^n). \text{ Más aún, si } \overset{\circ}{A} \subset B \subset \bar{A}, \text{ entonces } B \in \mathfrak{J}(\mathbb{R}^n). \end{array}$

- Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **1** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $\mathbf{w} \in \mathbb{R}^n$, entonces $A + \mathbf{w}, \mathbf{w}A \in \mathfrak{J}(\mathbb{R}^n)$.
- **①** Estabilidad: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ entonces $A \cup B, A \cap B, A \setminus B \in \mathfrak{J}(\mathbb{R}^n)$.
- **⊙** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, entonces $A \times B \in \mathfrak{J}(\mathbb{R}^{k+m})$. Si $C \in \mathfrak{J}(\mathbb{R}^{k+m})$ entonces $C_x \in \mathfrak{J}(\mathbb{R}^m)$ c.s. en \mathbb{R}^k y $C_y \in \mathfrak{J}(\mathbb{R}^k)$ c.s. en \mathbb{R}^m .
- Compatibilidad topológica: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ entonces $\overset{\circ}{A}, \bar{A}, \partial A \in \mathfrak{J}(\mathbb{R}^n)$. Más aún, si $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $B \in \mathfrak{J}(\mathbb{R}^n)$.
- ▶ Si $\overset{\circ}{A}$, $\bar{A} \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\xi A \in \mathfrak{J}(\mathbb{R}^n)$?

- **①** Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **1** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $\mathbf{w} \in \mathbb{R}^n$, entonces $A + \mathbf{w}, \mathbf{w}A \in \mathfrak{J}(\mathbb{R}^n)$.
- **①** Estabilidad: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ entonces $A \cup B, A \cap B, A \setminus B \in \mathfrak{J}(\mathbb{R}^n)$.
- **⊙** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, entonces $A \times B \in \mathfrak{J}(\mathbb{R}^{k+m})$. Si $C \in \mathfrak{J}(\mathbb{R}^{k+m})$ entonces $C_x \in \mathfrak{J}(\mathbb{R}^m)$ c.s. en \mathbb{R}^k y $C_y \in \mathfrak{J}(\mathbb{R}^k)$ c.s. en \mathbb{R}^m .
- **©** Compatibilidad topológica: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ entonces $\overset{\circ}{A}, \bar{A}, \partial A \in \mathfrak{J}(\mathbb{R}^n)$. Más aún, si $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $B \in \mathfrak{J}(\mathbb{R}^n)$.
- $lacksymbol{\triangleright}$ Si $\overset{\circ}{A}, \bar{A} \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\xi A \in \mathfrak{J}(\mathbb{R}^n)$? **NO**, Ejemplo: $A = R \cap \mathbb{Q}^n$

- **①** Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **1** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $\mathbf{w} \in \mathbb{R}^n$, entonces $A + \mathbf{w}, \mathbf{w}A \in \mathfrak{J}(\mathbb{R}^n)$.
- **①** Estabilidad: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ entonces $A \cup B, A \cap B, A \setminus B \in \mathfrak{J}(\mathbb{R}^n)$.
- **⊙** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, entonces $A \times B \in \mathfrak{J}(\mathbb{R}^{k+m})$. Si $C \in \mathfrak{J}(\mathbb{R}^{k+m})$ entonces $C_x \in \mathfrak{J}(\mathbb{R}^m)$ c.s. en \mathbb{R}^k y $C_y \in \mathfrak{J}(\mathbb{R}^k)$ c.s. en \mathbb{R}^m .
- $\begin{array}{l} \bullet \quad \text{Compatibilidad topológica: Si } A \in \mathfrak{J}(\mathbb{R}^n) \text{ entonces} \\ \overset{\circ}{A}, \bar{A}, \partial A \in \mathfrak{J}(\mathbb{R}^n). \text{ Más aún, si } \overset{\circ}{A} \subset B \subset \bar{A}, \text{ entonces } B \in \mathfrak{J}(\mathbb{R}^n). \end{array}$
- ▶ Si $A, \bar{A} \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\lambda A \in \mathfrak{J}(\mathbb{R}^n)$? **NO**, Ejemplo: $A = R \cap \mathbb{Q}^n$
- ▶ Existen abiertos acotados y compactos no medibles Jordan

- Si R es un rectángulo, $R \in \mathfrak{J}(\mathbb{R}^n)$.
- Completitud: Todo subconjunto de contenido nulo es medible Jordan.
- **③** Invariancia por traslaciones y homogeneidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y w ∈ \mathbb{R}^n , entonces A + w, w $A \in \mathfrak{J}(\mathbb{R}^n)$.
- $\textbf{ § Estabilidad: Si } A,B \in \mathfrak{J}(\mathbb{R}^n) \text{ entonces } A \cup B,A \cap B,A \setminus B \in \mathfrak{J}(\mathbb{R}^n).$
- **⊙** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, entonces $A \times B \in \mathfrak{J}(\mathbb{R}^{k+m})$. Si $C \in \mathfrak{J}(\mathbb{R}^{k+m})$ entonces $C_x \in \mathfrak{J}(\mathbb{R}^m)$ c.s. en \mathbb{R}^k y $C_y \in \mathfrak{J}(\mathbb{R}^k)$ c.s. en \mathbb{R}^m .
- **③** Compatibilidad topológica: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ entonces $\overset{\circ}{A}, \bar{A}, \partial A \in \mathfrak{J}(\mathbb{R}^n)$. Más aún, si $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $B \in \mathfrak{J}(\mathbb{R}^n)$.
- **©** Continuidad en abiertos: Si $\Omega \subset \mathbb{R}^n$ es <u>abierto</u> y no vacío, existe una sucesión $\{\Omega_k\}_{k=1}^{\infty}$ de <u>abiertos medibles Jordan</u> tal que $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ y $\bar{\Omega}_k \subset \Omega_{k+1} \subset \Omega$, para cada $k \in \mathbb{N}^*$.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.
- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo. Por tanto, si $C \in \mathbb{R}^n$ es tal que $A \subset C \subset B$ y $\mathsf{v}(A) = \mathsf{v}(B)$, entonces $C \in \mathfrak{J}(\mathbb{R}^n)$ y además $\mathsf{v}(C) = \mathsf{v}(A) = \mathsf{v}(B)$.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.
- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo.
- Invariancia por traslaciones y homogeneidad: $A \in \mathfrak{J}(\mathbb{R}^n)$, para cada $w \in \mathbb{R}^n$ se tiene que v(A + v) = v(A) y $v(wA) = |w_1| \cdots |w_n| v(A)$.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.
- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo.
- Invariancia por traslaciones y homogeneidad: $A \in \mathfrak{J}(\mathbb{R}^n)$, para cada $w \in \mathbb{R}^n$ se tiene que v(A + v) = v(A) y $v(wA) = |w_1| \cdots |w_n| v(A)$.
- **①** Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, $\mathsf{v}_{k+m}(A \times B) = \mathsf{v}_k(A)\mathsf{v}_m(B)$.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.
- ❷ Monotonía: Si $A, B \in \mathfrak{J}(\mathbb{R}^n)$ y $A \subset B$, entonces $\mathsf{v}(A) \leq \mathsf{v}(B)$ con igualdad sii $B \setminus A$ tiene contenido nulo.
- Invariancia por traslaciones y homogeneidad: $A \in \mathfrak{J}(\mathbb{R}^n)$, para cada $w \in \mathbb{R}^n$ se tiene que v(A + v) = v(A) y $v(wA) = |w_1| \cdots |w_n| v(A)$.
- ① Compatibilidad geométrica: Si $A \in \mathfrak{J}(\mathbb{R}^k)$ y $B \in \mathfrak{J}(\mathbb{R}^m)$, $\mathsf{v}_{k+m}(A \times B) = \mathsf{v}_k(A)\mathsf{v}_m(B)$.
- **⊙** Compatibilidad topológica: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $\mathsf{v}(B) = \mathsf{v}(A)$. En particular, $\mathsf{v}(\overset{\circ}{A}) = \mathsf{v}(A) = \mathsf{v}(\bar{A})$.

- Positividad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, entonces $\mathsf{v}(A) \geq 0$ y $\mathsf{v}(A) = 0$ sii A tiene contenido nulo.
- $\textbf{@ Monotonía: Si } A,B \in \mathfrak{J}(\mathbb{R}^n) \text{ y } A \subset B \text{, entonces } \mathsf{v}(A) \leq \mathsf{v}(B) \text{ con igualdad sii } B \setminus A \text{ tiene contenido nulo.}$
- Invariancia por traslaciones y homogeneidad: $A \in \mathfrak{J}(\mathbb{R}^n)$, para cada $w \in \mathbb{R}^n$ se tiene que v(A + v) = v(A) y $v(wA) = |w_1| \cdots |w_n| v(A)$.
- **③** Compatibilidad topológica: Si $A \in \mathfrak{J}(\mathbb{R}^n)$ y $\overset{\circ}{A} \subset B \subset \bar{A}$, entonces $\mathsf{v}(B) = \mathsf{v}(A)$. En particular, $\mathsf{v}(\overset{\circ}{A}) = \mathsf{v}(A) = \mathsf{v}(\bar{A})$.
- $\begin{array}{l} \bullet \quad \text{Aditividad Finita: Si } A_1, \dots, A_m \in \mathfrak{J}(\mathbb{R}^n) \text{ son tales que } \overset{\circ}{A_i} \cap \overset{\circ}{A_j} = \emptyset \\ \text{si } i \neq j \text{ y } A = \bigcup\limits_{j=1}^m A_j, \text{ entonces } \mathsf{v}(A) = \sum\limits_{j=1}^m \mathsf{v}(A_j). \end{array}$

- Continuidad: Si $A \subset \mathfrak{J}(\mathbb{R}^n)$, para cada sucesión $\{A_k\}_{k=1}^\infty \subset \mathfrak{J}(\mathbb{R}^n)$ tal que $A_k \subset A_{k+1}$ y $A = \bigcup\limits_{k=1}^\infty A_k$ se satisface que $\mathsf{v}(A_k) \uparrow \mathsf{v}(A)$. Análogamente, si $B \subset \mathfrak{J}(\mathbb{R}^n)$, para cada sucesión $\{B_k\}_{k=1}^\infty \subset \mathfrak{J}(\mathbb{R}^n)$ tal que $B_{k+1} \subset B_k$ y $B = \bigcap\limits_{k=1}^\infty B_k$ se satisface que $\mathsf{v}(B_k) \downarrow \mathsf{v}(B)$.
- **2** Regularidad: Si $A \in \mathfrak{J}(\mathbb{R}^n)$, para cada $\varepsilon > 0$ existen $G \in \mathfrak{J}(\mathbb{R}^n)$ unión finita de rectángulos abiertos y $K \in \mathfrak{J}(\mathbb{R}^n)$ unión finita de rectángulos cerrados tales que $K \subset \stackrel{\circ}{A} \subset A \subset \bar{A} \subset G$ y $\mathsf{v}(G \setminus K) \leq \varepsilon$.