Data Science Project

Guided By:

Prof. Anirban Dasgupta

Group Members:

Apoorv Agnihotri S Deepak Narayanan Shivji Bhagat Smeet Vora

Problem Statement

 To study efficient ways of sampling points from the dataset so as to speed up the clustering algorithms.

Dataset

• KDD Cup 2004:

Protein homology dataset

Specifications:

It measures the match between a protein and a native sequence.

Total No. of Samples : ~1,45,000

Number of features/dimensions: 74

Procedure

Sample 'p' data points from the entire dataset using a sampling algorithm.

Apply clustering to get 'k' new centres on the sampled 'p' data points.

Now, use the found 'k' centres, on the original dataset for clustering.

Measure the performance.

Approaches

Approaches: Uniform Random Sampling

- Baseline Sampling method
- Involves sampling 'p' data points from the entire data set uniformly at random with equal probabilities by varying the random seeds.

Approaches: Lightweight Coresets

Implemented the method suggested by Bachem et al. in "Scalable k-Means Clustering via Lightweight Coresets", KDD 2018.

- Coresets
 - Weighted subsets of the dataset
 - Trained model competitive to the model trained on entire data
- Lightweight Coresets
 - Variation of Coresets
 - Admits both additive & multiplicative error
- Complexity O (nd)

Algorithm 1 Lightweight coreset construction

Require: Set of data points X, coreset size m

- 1: $\mu \leftarrow \text{mean of } X$
- 2: for $x \in X$ do
- 3: $q(x) \leftarrow \frac{1}{2} \frac{1}{|X|} + \frac{1}{2} \frac{d(x,\mu)^2}{\sum_{x' \in X} d(x',\mu)^2}$
- 4: end for
- 5: C ← sample m weighted points from X where each point x has weight 1/m·q(x) and is sampled with probability q(x)
- 6: Return lightweight coreset C

Approaches: Leverage Score Based Sampling

Leverage Score Based Sampling

- 1. In Leverage Score based sampling, we define probability distributions on the data points in our data matrix by using the QR Decomposition of the matrix.
- 2. We consider the QR Decomposition of the data matrix and define a distribution over the rows of the matrix. And, depending on the distribution on the Q matrix, we sample from the corresponding row of the original data matrix.

Approaches: Volume Sampling

Reverse Iterative Volume Sampling

- 1. Implemented Derezinski et al., work "Unbiased estimates for linear regression via volume sampling", NeurIPS 2017.
- 2. Probability of sampling a subset of rows is proportional to the value of the determinant of (XX'), where X is the data matrix consisting of the subset of the rows of X.

Reverse iterative volume sampling

```
Input: \mathbf{X} \in \mathbb{R}^{d \times n}, s \in \{d..n\}
\mathbf{Z} \leftarrow (\mathbf{X}\mathbf{X}^{\top})^{-1}
\forall_{i \in \{1..n\}} \quad p_i \leftarrow 1 - \mathbf{x}_i^{\top} \mathbf{Z} \mathbf{x}_i
S \leftarrow \{1,..,n\}
while |S| > s
      Sample i \propto p_i out of S
     S \leftarrow S - \{i\}
      \mathbf{v} \leftarrow \mathbf{Z}\mathbf{x}_i/\sqrt{p_i}
     \forall_{j \in S} \quad p_j \leftarrow p_j - (\mathbf{x}_i^\top \mathbf{v})^2
     \mathbf{Z} \leftarrow \mathbf{Z} + \mathbf{v}\mathbf{v}^{\top}
end
return S
```

Results

Results: Random Sampling

Results: Random Sampling with std dev

Results: Lightweight Coresets

Results: Lightweight Coresets with std dev

Results: Leverage Sampling

Results: Leverage Sampling with std dev

Results: Volumetric Sampling

Results: Volumetric Sampling with std dev

Results on Entire Dataset!

```
apoory-agnihotri@tensorflow-1-vm: ~/cpp/Data Science Project
File Edit View Search Terminal Tabs Help
                                                    apoorv-agnihotri@tensorflow-1-vm: ~/cpp/Data Science Pro...
 apoory@apoo-ubu18: ~/Desktop/qithub/Data Science Project ×
                                             0.0%
                                                                                                 0.0%
                                             0.0%
                                                     18
                                                                       0.0%
                                                                               26 T
                                                                                                 0.0%
                           11
                                             0.0%
                                                     19
                                                                       0.0%
                                                                               27
                                                                                                 0.0%
                           12
                                                     20 □
                                                                       0.0%
                                                                               28
                                                                                                 0.0%
                                                     21
                                                                               29 T
                   0.0%
                           13
                                             0.0%
                                                                       0.0%
                                                                                                 0.0%1
                   0.0%
                           14 T
                                             0.0%
                                                     22
                                                                       0.0%
                                                                                               100.0%]
                           15
                                             0.0%
                                                     23
                                                                       0.0%
                                                                               31 T
                                                                                                 1.3%
  8 | | | | | | | | | | | | | | 100.0%
                                             0.0%
                                                     24
                                                                       0.0%
                                                                               32 T
                                                                                                 0.0%]
                           16
                                       3.09G/118G]
                                                     Tasks: 106, 213 thr; 5 running
 Mem[||||
  SWD
                                            OK/OK
                                                     Load average: 4.38 4.20 4.11
                                                     Uptime: 13:43:54
 PID USER
                                                 0.3 12h33:51 python3 Final Sampling.py
12433 apoorv-ag 23
17026 apoorv-ag 22
                                                      9h21:58 python3 Final Sampling-Individual.py
12432 apoorv-ag
                                                 0.5 12h33:39 python3 Final Sampling.py
18683 apoorv-ag 20
                                                 0.0 0:00.20 htop
1002 root
                                                     0:28.97 /usr/bin/containerd
1005 root
                     0 2977M 64272 37876 S 0.0 0.1 0:40.02 /usr/bin/dockerd -H fd:// --containerd=/run/c
2492 root
                                                      0:01.12 /usr/bin/dockerd -H fd:// --containerd=/run/c
                                                     0:00.50 /usr/bin/containerd
15409 root
                     0 2569M 36144 24316 S 0.0
                                                 0.0
                                    5252 S 0.0
                                                0.0 0:02.90 /sbin/init
   1 root
                                                0.0 0:00.54 /lib/systemd/systemd-journald
 679 root
                     0 46092
                                    8456 S 0.0
                                            0.0 0.0 0:00.23 /lib/systemd/systemd-udevd
  714 root
                     0 45652
                              3760
                                    2856 S
  803 root
                     0 4204
                               708
                                                     0:00.00 /usr/sbin/acpid
  808 messagebu
                     0 45120
                              3724
                                    3284 S 0.0
                                                     0:00.13 /usr/bin/dbus-daemon --system --address=syste
                20
                                                0.0
                                                     0:00.07 /usr/sbin/cron -f
  817 root
                     0 29636
                              2752
                                                 0.0
  830 root
                                                     0:00.23 /lib/systemd/systemd-logind
                                    1876 S 0.0 0.0 0:00.00 /sbin/dhclient -4 -v -pf /run/dhclient.eth0.p
 947 root
                     0 20472 2968
 1022 root
                     0 2569M 36144 24316 S 0.0 0.0 0:05.13 /usr/bin/containerd
                     0 2569M 36144 24316 S 0.0 0.0 0:00.04 /usr/bin/containerd
 1023 root
               F3SearchF4FilterF5Tree F6SortByF7Nice -F8Nice +F9Kil
```

Comparison between different sampling methods

Comparison between diff. sampling methods with std dev

References

- 1. Olivier Bachem, Mario Lucic, Andreas Krause. Scalable k-Means Clustering via Lightweight Coresets, In KDD 2018
- 2. KDD Cup 2004, Protein Homology Dataset.
- 3. M. Derezinski et al, Unbiased estimates for linear regression via volume sampling, In NeurIPS 2017
- 4. Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation and projective clustering via volume sampling. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA '06.