Homework 1

1 Let X be a nonempty set and let μ be a measure on X. We have a theorem on sequences of decreasing measurable sets that states the following: Assume $X \supseteq A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$ are μ -measurable, such that $\mu(A_1) < \infty$. Then one has

$$\lim_{n\to\infty}\mu(A_n)=\mu(\bigcap_{n=1}^\infty A_n).$$

Prove that in this theorem the condition $\mu(A_1) < \infty$ is necessary.

- 2 Does there exist an infinite σ -algebra that has countably many elements?
- **3** Is it true that if μ is a Borel measure on a nonempty set X, then for any sets $A, B \subset X$ with $\operatorname{dist}(A, B) > 0$, one has

$$\mu(A \cup B) = \mu(A) + \mu(B)?$$

4 Let X be an uncountable set and let \mathcal{C} be the collection of all subsets A of X such that either A or A^c is at most countable. Prove that \mathcal{C} is a σ -algebra.

Homework 2

- **1** Give an example of a topological space X and a measure μ on X so that μ is Borel but not Borel-regular.
- **2** Let X be a nonempty set and let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of measures on X. Assume for any subset $A \subseteq X$ the limit $\lim_{n\to\infty} \mu_n(A)$ exists and denote $\mu(A) = \lim_{n\to\infty} \mu_n(A)$.
- (i) Is it true that μ is a measure on X if for any $A \subseteq X$ the sequence $\{\mu_n(A)\}$ is increasing?
- (ii) Assume in addition that $\mu_1(X) < \infty$, and that each of the measures μ_n is Borel-regular. Is it true that μ is a measure on X if for any $A \subseteq X$ the sequence $\{\mu_n(A)\}$ is decreasing?
- **3** Let X be a nonempty set and F be a collection of functions $f: X \to \mathbb{R}$ with the following properties:
 - (i) The constant function $f(x) \equiv 1 \in F$, and if $f, g \in F$ and $c \in \mathbb{R}$, then $f+g, fg, cf \in F$.
 - (ii) If a sequence $\{f_n\} \subseteq F$ has as pointwise limit in X: $f(x) = \lim_{n\to\infty} f_n(x)$ for all $x \in X$, then $f \in F$.

Prove that the collection $\mathcal{A} = \{A \subseteq X : \chi_A \in F\}$ is a σ -algebra, where χ_A is the characteristic function of the set A.

4 Prove that any open subset of \mathbb{R}^n can be expressed as a countable union of closed balls in \mathbb{R}^n

Remark. The statement is true for any separable metric space X.

Homework 3

- 1 Let λ be the Lebesgue measure and let $\{A_n\}_{n=1}^{\infty}$ be a sequence of Lebesgue-measurable subsets of [0,1]. Assume the set B consists of those points $x \in [0,1]$ that belong to infinitely many of the A_n .
- (a) Prove that B is Lebesgue-measurable.
- **(b)** Prove that if $\lambda(A_n) > \delta > 0$ for every $n \in \mathbb{N}$, then $\lambda(B) \geq \delta$.
- (c) Prove that if $\sum_{n=1}^{\infty} \lambda(A_n) < \infty$, then $\lambda(B) = 0$.
- (d) Give an example where $\sum_{n=1}^{\infty} \lambda(A_n) = \infty$, but $\lambda(B) = 0$.
- **2** Prove that if the set $A \subseteq \mathbb{R}$ is Lebesgue-measurable, with $\lambda(A) > 0$, then there is a subset of A that is not Lebesgue-measurable.
- **3** Let λ be the Lebesgue measure on \mathbb{R} .
- (a) Let $A \subseteq \mathbb{R}$ be a set such that $\lambda(A) > 0$. Prove that for any $\varepsilon > 0$, there exists an interval $(a,b) \subseteq \mathbb{R}$ such that $\lambda(A \cap (a,b)) > (1-\varepsilon)(b-a)$.
- (b) Construct a Borel set $B \subseteq \mathbb{R}$ such that $\lambda(B) > 0$ and $\lambda(B \cap I) < \lambda(I)$ for every non-degenerate interval $I \subseteq \mathbb{R}$.
- 4 Prove that if a Lebesgue-measurable set $A\subseteq\mathbb{R}$ has positive Lebesgue measure, then the set

$$A - A = \{a - b : a, b \in A\}$$

contains a neighborhood of the origin.

Is the statement true if one only assumes $\lambda(A) > 0$ (i.e., A is not Lebesgue-measurable)?

5 Let $A \subseteq \mathbb{R}$ be any set. Prove that the set

$$B = \bigcup_{x \in A} [x - 1, x + 1]$$

is Lebesgue-measurable.

Homework 4

1 Let X be a nonempty topological space and let μ be a measure on X. Prove that if the functions $f_n: X \to [-\infty, +\infty]$ are μ -measurable for $n = 1, 2, \ldots$, then the set

$$A = \{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists}\}\$$

is μ -measurable.

2 Prove that any Lebesgue-measurable function $f: \mathbb{R} \to \mathbb{R}$ that satisfies the relation

$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in \mathbb{R}$,

must be linear.

3 Let $f:(0,1)\to\mathbb{R}$ be such that for every $x\in(0,1)$ there exists $\delta>0$ and a Borel-measurable function $g:\mathbb{R}\to\mathbb{R}$ (both dependent on x), such that f(y)=g(y) for all $y\in(x-\delta,x+\delta)\cap(0,1)$. Prove that f is Borel-measurable. (You can assume that f(x)=0 outside the interval (0,1)).

4 Give an example of a collection of Lebesgue-measurable nonnegative functions $\{f_{\alpha}\}_{{\alpha}\in A}$ $(f_{\alpha}:\mathbb{R}\to\mathbb{R})$ such that the function

$$g(x) = \sup_{\alpha \in A} f_{\alpha}(x), \quad x \in \mathbb{R}$$

is finite for all $x \in \mathbb{R}$ but g is not Lebesgue-measurable. Here A is a nonempty indexing set.

5 A function $f: \mathbb{R}^n \to \mathbb{R}$ is called lower semi-continuous at the point $x \in \mathbb{R}^n$ if, for any sequence $x_k \in \mathbb{R}^n$ with $x_k \to x$, one has

$$\liminf_{k \to \infty} f(x_k) \ge f(x).$$

Prove that any lower semi-continuous function on \mathbb{R}^n is Borel-measurable.

Homework 5

1 (Integrability of the Product) Let X be a nonempty set and let μ be a measure on X. Prove that if μ -measurable functions $f,g:X\to [-\infty,\infty]$ are such that f is μ -summable on X and g is bounded on X ($|g(x)|\leq M$ for μ -a.e. $x\in X$), then the product fg is μ -summable and

$$\int_X |fg| \, \mathrm{d}\mu \le M \int_X |f| \, \mathrm{d}\mu.$$

2 Let X be a nonempty set and let μ be a measure on X. Assume μ -summable functions $f, f_n : X \to [-\infty, \infty]$ are such that

$$f_n \longrightarrow f \qquad \mu$$
-a.e. in X

and

$$\int_X |f_n| \, \mathrm{d}\mu \longrightarrow \int_X |f| \, \mathrm{d}\mu.$$

Prove that

$$\int_X |f_n - f| \, \mathrm{d}\mu \longrightarrow 0.$$

3 Let X be a topological space and let μ be a finite measure on X, i.e., $\mu(X) < \infty$. A family of μ -measurable functions $f_n : X \to \mathbb{R}$ is called **uniformly integrable** in X if for any $\varepsilon > 0$ there exists M > 0 such that

$$\int_{\{x:|f_n(x)|>M\}} |f_n(x)| \, \mathrm{d}\mu < \varepsilon \quad \text{for all } n = 1, 2, \dots$$

Similarly $\{f_n\}$ is called **uniformly absolutely continuous** if for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any μ -measurable set $A \subseteq X$ with $\mu(A) < \delta$ one has

$$\left| \int_A f_n(x) d\mu \right| < \varepsilon$$
 for all $n = 1, 2, \dots$

Prove that $\{f_n\}$ is uniformly integrable if and only if

$$\sup_{n} \int_{X} |f_n(x)| \, \mathrm{d}\mu < \infty$$

and $\{f_n\}$ is uniformly absolutely continuous.

4 Compute the limit

$$\lim_{n \to \infty} \int_0^n (1 - \frac{x}{n})^n \ln(2 + \cos(\frac{x}{n})) \, \mathrm{d}x$$