

Jan 08, 2020

Nuclei Isolation for SNARE-seq2

Carter Palmer¹, Christine Liu¹, Jerold Chun²

¹University of California, San Diego, and Sanford Burnham Prebys Medical Discovery Institute, ²Sanford Burnham Prebys Medical Discovery Institute

BICCN

ABSTRACT

This protocol is intended to be used for the isolation of nuclei from fresh-frozen brain tissue in preparation for analysis by Single-Nucleus Chromatin Accessibility and mRNA Expression sequencing (SNARE-seq). It has been applied to tissues from mouse, marmoset, and human.

GUIDELINES

This protocol is designed specifically for isolating tissue for SNARE-seq. RNA stability is considered at every step. Samples are kept on ice throughout the process, all centrifuges are pre-chilled to 4 °C before use, and RNase Away is used to spray down all surfaces and pipets before use.

MATERIALS

NAME Y	CATALOG #	VENDOR ~
Sucrose	S3-212	Fisher Scientific
Protease Inhibitor Tablets cOmplete Mini EDTA free	11836170001	Roche
RNase Inhibitor	2313A	Takara
Bovine Serum Albumin	700-107P	Gemini Bio-Products
Magnesium acetate tetrahydrate	M5661	Sigma-aldrich
Calcium chloride dihydrate	C5080	Sigma Aldrich
Ethylenediaminetetraacetic acid (EDTA)	EDS	Sigma Aldrich
Triton X-100	T8787	Sigma Aldrich
16% Formaldehyde (w/v) Methanol-free	28906	Thermo Fisher Scientific
DAPI	10236276001	Sigma Aldrich
50um filters	04-0042-2317	Sysmex
Tissue Homogenizer	358005	

1

Nuclei Extraction Buffer (NEB):

	Final Concentration	Chemical to Add	Stock Concentration
Sucrose	320 mM	5.48g	Solid
Magnesium Acetate	3 mM	32.16mg	Solid
CaCl2	5 mM	50µl	5M Stock
EDTA	100 μΜ	10μΙ	0.5M Stock
Tris-HCl pH 8	10 mM	500µl	1M Stock
Triton X-100	0.1 %	500µl	10% Stock
MilliQ Water		Bring to 50ml	
RNase Inhibitor	80 U/ml	100µl	40,000U/ml
Protease Inhibitor Tablet		1 Tablet	

Prepare NEB as outlined above. 50ml is enough for 3 samples. Combine reagents 2-8 the night before nuclei isolation and chill at 4 °C. Add RNase inhibitor and Protease Inhibitor tablet the morning of isolation.

2 PBSE + Sucrose:

	Final Concentration	Chemical to Add	Stock Concentration
Sucrose	320 mM	5.48g	Solid
EGTA	250 μΜ	25µl	0.5M
1x PBS pH 7.4		Bring to 50ml	
RNase Inhibitor	40 U/ml	50μl	40,000U/ml
Protease Inhibitor Tablet		1 Tablet	

Prepare PBSE + Sucrose as outlined above. 50ml is enough for 3 samples. Combine reagents 2-4 the night before nuclei isolation and chill at 4 $^{\circ}$ C. Add RNase inhibitor and Protease inhibitor tablet the morning of isolation.

3 PBSE + BSA:

	Final Concentration	Chemical to Add	Stock Concentration
BSA	1%	500mg	Solid
EGTA	250 μΜ	25µl	0.5M
1x PBS pH 7.4		Bring to 50ml	
RNase Inhibitor	40 U/ml	50µl	40,000U/ml
Protease Inhibitor Tablet		1 Tablet	

Prepare PBSE + BSA as outlined above. 50ml is enough for 3 samples. Combine reagents 2-4 the night before nuclei isolation and chill at 4° C. Add RNase inhibitor and Protease inhibitor tablet the morning of isolation.

Tissue Dissociation

- 4 Remove tissue from -80°C storage and place on ice.
- 5 Image the tissue rapidly in front of a ruler
- 6 Add 1ml of ice cold NEB to the tissue and incubate on ice for **© 00:15:00**

- 7 During the incubation, wash the homogenizer with MilliQ water, 10% bleach, 70% EtOH, and MilliQ water again
- 8 Rinse homogenizer with 1ml of ice cold NEB
- Once the incubation is complete, add 1 ml of fresh NEB to the homogenizer and transfer the tissue and the 1ml of NEB it is in to the homogenizer
- 10 Homogenize the tissue using ~20 compressions with the pestle, or until the tissue is entirely dissociated, this step can be variable
- 11 Pass nuclei suspension through 50 micron filter into a 15 ml conical tube, wash filter with another 4ml of NEB
- 12 Wait for **© 00:05:00**
- 13 Centrifuge the samples **320** x g , 5 min
- 14 Carefully aspirate the supernatant and slowly resuspend the pellet in 1ml of NEB
- 15 Gently add another 9 ml of NEB to the sample
- 16 Centrifuge the samples **320** x g , 5 min

Nuclei Fixation

- 17 Aspirate the supernatant and slowly resuspend the samples in 1ml of PBSE + Sucrose
- 18 Gently add another 5 ml of PBSE + Sucrose
- 19 Centrifuge the samples **3820 x g , 5 min**
- 20 Aspirate all but approximately 100 µl of the PBSE+Sucrose, and gently resuspend the nuclei pellet in the remaining volume
- 21 While gently vortexing, add 5ml of 0.5% Formaldehyde diluted in 1X PBS
- 22 Fix for 10 min on ice
- 23 Centrifuge the samples **820 x g , 5 min**
- ${\tt 24} \quad {\tt Aspirate the supernatant and slowly resuspend the samples in 1ml of PBSE + Sucrose}$
- 25 Centrifuge the samples **820 x q , 5 min**

DAPI Staining and Sorting

- 26 Aspirate the supernatant and slowly resuspend the samples in 1ml of PBSE + BSA
- 27 Gently add another 10ml of PBSE + BSA

- 28 Centrifuge the samples **820 x g, 5 min**
- Make 1ml/sample of PBSE + BSA + DAPI by adding DAPI at a final concentration of 1.25 μ g/ml to PBSE + BSA. This is a 1:4000 dilution from a DAPI stock at 5mg/ml
- 30 Aspirate the supernatant and slowly resuspend the samples in 1ml of PBSE + BSA + DAPI
- 31 Pass nuclei suspension through 50 micron filter into a FACS tube, gently tap on table to get all nuclei through the filter
- 32 Use the DAPI singlet peak to sort singlet nuclei events into a 2ml low binding eppendorf tube.
- 33 Store all samples on ice until SNARE-seq processing begins. Do not store for longer 4 hours before processing.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited