02ـ السقوط الشاقولي لجسم صلب في مائع (سائل أو غاز)

 (ρ_f) نترك جسما ڪتلته ((S)يسقط شاقوليا بدون سرعة ابتدائية في مائع ڪتلته الحجمية نترك جسما

القوى الخرجية المؤثرة على الجسم ((S_{ullet}) :

 $P=m~g:\overrightarrow{P}$ عوة الثقل

 $\Pi = (\rho_f V_s)g$ دافعة أرخميدس Π :تمثل ثقل حجم المائع المزاح:

 $\left(kg\right)$ الكتلة الحجمية للمائع $\left(kg\cdot m^{-3}
ight)$ عجم الجسم : $ho_{\!\scriptscriptstyle f}$

 $f = k v^2$ من أجل السرعات الصغيرة f = k v من أجل السرعات الكبيرة: k معامل الاحتكاك.

kg . m^{-1} : وحدة k في السرعات الصغيرةkg . s^{-1} في السرعات الكبيرةkg . kg .

$$P-f-\Pi=m\;a$$
 ومنه: $\sum \overrightarrow{F}_{ext}=m\;\overrightarrow{a}$ بالاسقاط وفق المحور $\sum \overrightarrow{F}_{ext}=m\;\overrightarrow{a}$

$$rac{dv}{dt} + rac{k}{m}v = g - rac{
ho_f \, V_S \, \, g}{m}$$
 ومنه: $m \, \, g - k \, v -
ho_f \, V_S \, \, g = m \, rac{dv}{dt}$ ومنه:

و عليه:
$$\frac{dv}{dt} + \frac{k}{m}v = g\left(1 - \frac{\rho_f}{\rho_S}\right)$$
 عيث: $\frac{dv}{dt} + \frac{k}{m}v = g\left(1 - \frac{\rho_f V_S}{\rho_S V_S}\right)$ و عليه: $(m = \rho_S V_S)$

السرعة الحدية ، ٧: هي السرعة التي يبلغها الجسم عندما تصبح حركته مستقيمة منتظمة.

$$\frac{k}{m}v_l=g\left(1-\frac{\rho_f}{\rho_S}\right)$$
: يكون $a=\frac{dv}{dt}=0$ و من المعادلة التفاضلية نجد $v=v_l=cte$: ل

$$v_l = \frac{m \ g}{k} \left(1 - \frac{\rho_f}{\rho_S} \right)$$
 ومنه:

$$a_0 = \frac{dv}{dt}\Big|_{t=0} = g\left(1 - \frac{
ho_{air}}{
ho_S}
ight)$$
 :هو تسارع الجسم عند انطلاقه: عند: $t=0$ يكون $v=0$ و منه: $t=0$

t=0بيانيا يمثل معامل توجيه المماس للبيان عند اللحظة

في حالة: $ho_{_{
m S}} >>>
ho_{_{
m f}}$ نهمل دافعة أرخميدس أمام الثقل و تصبح المعادلة التفاضلية من الشكل:

$$\left|a_0 = \frac{dv}{dt}\right|_{t=0} = g$$
 و عليه: $\left|v_l = \frac{m \ g}{k}\right|$ و عليه: $\left|\frac{dv}{dt} + \frac{k}{m}v\right| = g$

التمثيل البياني v = f(t)حالة السرعات الصغيرة

		* () * · · · · · ·		
t(s)	0	τ	5τ	
v(m/s)	0	0,63 <i>v</i> ₁	v_l	

$$au = \frac{m}{k}$$
: ثابت الزمن au الميز للحركة

au التحليل البعدي لثابت الزمن:

الثانية.
$$\tau$$
 يقدر بوحدة الزمن و هي الثانية. $[\kappa] = \frac{[m]}{[K]} = \frac{Kg}{\frac{Kg \cdot m \cdot s^{-2}}{m \cdot s^{-1}}} = s$

تمثيل القوى حسب التزايد الزمني:

المعادلة التفاضلية لشدة قوة الاحتكاك:

حالة السرعات الصغيرة: لدينا مما سبق
$$\frac{dv}{\rho_S} + \frac{k}{m}v = g\left(1 - \frac{\rho_f}{\rho_S}\right)$$
 بالضرب طرفي المعادلة في معامل الاحتكاك k نجد

$$\frac{\frac{df}{dt} + \frac{k}{m}f = k \ g\left(1 - \frac{\rho_f}{\rho_S}\right)}{\frac{df}{dt}} = k \ g\left(1 - \frac{\rho_f}{\rho_S}\right)$$
 ومنه:
$$\underbrace{\frac{dv}{dt} + \frac{k}{m} \underbrace{k \ v}_{f} = k \ g\left(1 - \frac{\rho_f}{\rho_S}\right)}_{dt}$$

$$\frac{df}{dt} + \frac{k}{m}f = k g$$
 : في حالة دافعة أرخميدس مهملة أمام الثقل

$$f_{\text{lim}} = k v_l$$
:في النظام الدائم

التمثيل البياني $v=f\left(t ight)$ التمثيل البياني: $v=f\left(t ight)$

() =				
t(s)	0	τ	5τ	
f(N)	0	$0,63f_{\rm lim}$	$f_{\rm lim}$	

f_{\prime}	(N))		
$f_{\rm lim}$	<u>-</u> ,	<u> </u>		_
$0,63f_{\rm lim}$	<u>;</u> '		 	
	<i>i</i> /	 	 	• ()
	1	T	5τ	$\rightarrow t(s)$

 $:(f=kv^2):$ حالة السرعات الكبيرة:

$$\frac{dv}{dt} + \frac{k}{m}v^2 = g - \frac{\rho_f V_S g}{m} : m$$
 بالقسمة على $mg - k v^2 - \rho_f V_S g = m \frac{dv}{dt} : P - f - \Pi = m a$

$$\frac{dv}{dt} + \frac{k}{m}v^2 = g\left(1 - \frac{\rho_f}{\rho_S}\right)$$

السرعة الحدية ، ٧: هي السرعة التي يبلغها الجسم عندما تصبح حركته مستقيمة منتظمة.

$$\frac{k}{m}v_l^2=g\left(1-\frac{\rho_f}{\rho_S}\right)$$
: يكون $a=\frac{dv}{dt}=0$ و من المعادلة التفاضلية نجد $v=v_l=cte$: ل

$$v_l = \sqrt{\frac{m \ g}{k} \left(1 - \frac{\rho_f}{\rho_S}\right)}$$
 ومنه:

$$v_l = \sqrt{\frac{m \ g}{k}}$$
 :وعليه: $\frac{dv}{dt} + \frac{k}{m}v^2 = g$:في حالة اهمال دافعة أرخميدس

العبارات الشعاعية للقوى:
$$\overrightarrow{\Pi} = \overline{\rho}V \ \overrightarrow{g} \qquad \overrightarrow{P} = m \ \overrightarrow{g}$$

$$\overrightarrow{P} = m \ \overrightarrow{g}$$

$$\overrightarrow{R}$$

$$\overrightarrow{R}$$

السقوط الحر:

نقول عن جسم (S)كتلته m و مركز عطالته G أنه يسقط سقوطا حرا إذا كان خاضعا لقوة ثقله $ec{P}$ فقط و يتحقق هذا في الفراغ التام أو في الهواء إذا كان للجسم كثافة عالية يمكن إهمال تأثير الهواء عليه.

المعادلات التفاضلية للحركة
$$(S)$$
 (S) المعادلات التفاضلية للحرك (S) (S) المعادلات التفاضلية للحرك (S) (S) المعام السطحي الأرضي الذي نعتبره (S) (S) المعام السطحي الأرضي الذي نعتبره (S) (S) المعام السطحي الأرضي الذي نعتبره (S) (S) المعام ال

$$(t=0)$$
السرعة (t) بدينا (t) بمكاملة الطرفين بالنسبة للزمن نجد: $(t)=g$ t براث بالنسبة للزمن نجد: $(t)=g$ ومنه: $(t)=g$ بمكاملة الطرفين بالنسبة للزمن نجد: $(t)=g$ وعليه: $(t)=g$ و عليه: $(t)=g$ وعليه: $(t)=g$ و عليه: $(t)=g$ وعليه: $(t)=g$ و عليه: $(t)=g$ وعليه: $(t)=g$

