06.1;06.2;06.3 © 1994

КОРОТКОВОЛНОВАЯ ФОТОЧУВСТВИТЕЛЬНОСТЬ ПОВЕРХНОСТНО-БАРЬЕРНЫХ СТРУКТУР НА ОСНОВЕ ПЕРЕХОДОВ ВЫРОЖДЕННЫЙ ПОЛУПРОВОДНИК-ПОЛУПРОВОДНИК

Ю.Н.Бобренко, А.М.Павелец, С.Ю.Павелец, В.М.Ткаченко

Интерес к фотопреобразователям ($\Phi\Pi$) ультрафиолетового ($\Psi\Phi$) диапазона спектра определяет актуальность исследований коротковолновой чувствительности поверхностно-барьерных структур. В исследованных в настоящей работе поверхностно-барьерных структурах вместо металла использовался вырожденный полупроводник стабильная модификация сульфида меди $Cu_{1.8}S$ [$^{1-6}$]. Концентрация дырок в сульфиде меди $p=5.10^{21}$ см $^{-3}$. $Cu_{1.8}S$ наносился в вакууме на поликристаллический слой CdS с концентрацией электронов 10^{15} см $^{-3}$. Для исследования пропускания слой $Cu_{1.8}S$ параллельно наносился на кварцевые стекла.

На рис. 1 приведена зонная диаграмма гетероперехода $\mathrm{Cu_{1.8}S-CdS}$ [7]. Особенностью диаграммы является наличие дополнительных потенциальных барьеров ΔE_c и ΔE_v , ограничивающих нежелательный для $\Phi\Pi$ переход носите-

лей тока через границу раздела гетероперехода.

На рис. 2 приведены спектры внешней квантовой эффективности $Q_{\rm e}$ ФП с различной толщиной ${\rm Cu_{1.8}S}$. Освещение структуры производилось со стороны ${\rm Cu_{1.8}S}$. Толщина слоя ${\rm Cu_{1.8}S}$ в известных ФП на основе соединений ${\rm A_2B_6}$, как правило, порядка 400 Å ${\rm [^{1-6}]}$. Этому случаю соответствует кривая 1 на рис. 2. Ширина запрещенной зоны ${\rm Cu_{1.8}S}$ для прямых оптических переходов $E_g=1.6$ эВ ${\rm [^8]}$ и отсутствие чувствительности за краем собственного поглощения ${\rm CdS}$ ($\lambda\,0.51\,{\rm mkm}$) — см. рис. 2 — свидетельствуют о нефоточувствительности ${\rm Cu_{1.8}S}$ в длинноволновой области спектра, что согласуется с литературными данными ${\rm [^{1-3}]}$. Отсутствие тянущего электрического поля в ${\rm Cu_{1.8}S}$ определяет основной механизм потерь фотоносителей — рекомбинацию на границе раздела.

Выражение для внешней квантовой эффективности в общем виде можно записать как $Q_{\rm e}=TQ_{\rm i}$, где T — пропускание слоя ${\rm Cu_{1.8}S},\,Q_{\rm i}$ — внутренняя квантовая эффективность.

Рис. 1. Энергетическая зонная диаграмма гетероперехода Cu_{1.8}S-CdS.

При этом предполагается отсутствие фоточувствительности, связанной с генерацией носителей в $Cu_{1.8}S$. Повышение чувствительности в коротковолновой области спектра возможно путем уменьшения доли нефотоактивного поглощения света в структуре. Этого можно достигнуть путем уменьшения толщины нефотоактивного $Cu_{1.8}S$, т.е. увеличения T. С другой стороны, предельное уменьшение толщины слоя $Cu_{1.8}S$ должно его "очувствить" в коротковолновой области спектра. Имеется в виду возможность в отличие от контакта металл-полупроводник максимально использовать фотоэмиссию электронов — неосновных носителей тока из прозрачной составляющей в CdS.

Действительно, в случае полупроводника n-типа проводимости для диодов Шоттки из-за сильного взаимодействия с электронами проводимости в металле энергию, достаточную для преодоления потенциального барьера, сохраняют только те фотоэлектроны, которые образовались вблизи границы раздела на глубине, не превышающей $10 \, \text{Å}$. Поскольку толщина слоя металла у диодов Шоттки должна быть порядка $100 \, \text{Å}$, бо́льшая часть излучения поглощается в металле "нефотоактивно", не внося вклад в фототок.

В вырожденных полупроводниках, когда фотоэлектроны теряют избыточную энергию в основном при взаимо-

Рис. 2. Спектры внешней квантовой эффективности $Q_{\rm e}$ (1-2) поверхностно-барьерной структуры ${\rm Cu_{1.8}S-CdS}$ и спектральное распределение функции $Q_{\rm e}/T$ (3-4).

действии с тепловыми колебаниями кристаллической решетки, при избыточной энергии 0.5–1 эВ электрон в процессе остывания может пройти расстояние до нескольких сот ангстрем. При использовании таких толщин следует ожидать заметный вклад в фототок горячих неосновных носителей, генерированных УФ излучением в прозрачной составляющей поверхностно-барьерной структуры. Как видно из рис. 1, термализованные электроны, подходя к границе раздела, рекомбинируют с дырками, для которых существует барьер ΔE_v , препятствующий их переходу в псоставляющую, в то время как горячие электроны, сохранившие достаточную энергию при подходе к границе раздела, благополучно переходят в CdS.

На рис. 2 (кривая 2) представлено спектральное распре-

деление $Q_{\rm e}$ фотопреобразователя с толщиной $\sim 150\,{\rm \AA}$. Как видно, фоточувствительность структуры существенно увеличилась. С использованием полученных в настоящей работе кривых $T(\lambda)$ для рассматриваемых толщин ${\rm Cu}_{1.8}{\rm S}$ 400 и 150 ${\rm \AA}$ были рассчитаны функции $Q_{\rm i}=Q_{\rm e}/T$ (кривые 3 и 4). Очевидно, что при отсутствии фоточувствительности

 $\mathrm{Cu_{1.8}S}$ внутренняя квантовая эффективность Q_{i} , связанная с генерацией носителей тока в CdS , при уменьшении толщины $\mathrm{Cu_{1.8}S}$ не должна изменяться, т.е. кривые 3 и 4 должны были бы совпадать.

Резкое отличие хода кривых в коротковолновой области спектра свидетельствует о том, что рост внешней квантовой эффективности с уменьшением толщины превосходит по величине степень возрастания пропускания пленки T, причем величина $Q_{\rm e}/T$ в случае то. Дины 150 Å в максимуме превышает единицу. Указанные факты однозначно свидетельствуют об "очувствлении" пленки ${\rm Cu_{1.8}S}$, т.е. о возросшем с уменьшением ее толщины вкладе в фототок горячих электронов, генерированных в ней коротковолновым излучением.

Предельное уменьшение толщины $Cu_{1.8}S$ ограничивается несколькими факторами. Рассмотрим основные из них. При уменьшении толщины пленки $Cu_{1.8}S$, выращенная на рельефной поверхности поликристаллического CdS, может оказаться разрывной, что приведет к увеличению слоевого сопротивления прозрачной составляющей $\Phi\Pi$.

 $\hat{\text{И}}$ сследования на растровом электронном микроскопе MPЭM-200 в совмещенном режиме вторичной электронной эмиссии и тока, индуцированного электронным зондом, обнаружили достаточно высокую степень неразрывности тонкой ($\sim 150~\text{Å}$) пленки $\text{Cu}_{1.8}\text{S}$ на рельефной поверхности поликристаллического слоя CdS.

Ёще один нежелательный эффект, связанный с предельным уменьшением толщины $Cu_{1.8}S$, определяется возможностью образования при взаимодействии с кислородом слоев окиси меди с толщиной, сравнимой с толщиной слоя $Cu_{1.8}S$. Анализ элементарного состава, проведенный на Оже-спектрометре 09-ИОС-10-005 при послойном стравливании пленки $Cu_{1.8}S$, не обнаружил указанных окисных слоев меди.

Итак, уменьшение толщины слоя $Cu_{1.8}S$ до значений ~ 150 Å сохраняет последовательное сопротивление $\Phi\Pi$ в допустимых пределах, что согласуется с полученными в настоящей работе экспериментальными данными. Возможность использования предельно тонких слоев вырожденного $Cu_{1.8}S$ позволяет увеличить фоточувствительность поверхностно-барьерной структуры за счет уменьшения доминимума потерь на нефотоактивное поглощение света в УФ области спектра. Последнее определяется тем, что при указанных толщинах, кроме увеличения пропускания T, становится существенным вклад в фототок фотоэмиссии носителей (транспорт горячих электронов) из $Cu_{1.8}S$ в CdS.

Список литературы

- [1] Павелец С.Ю., Федорус Г.А., Кононец Я.Ф. // Φ ТП. 1970. Т. 4. В. 2. С. 347–349.
- [2] Комащенко В.Н., Павелец С.Ю., Федорус Г.А. // Полупроводниковая техника и микроэлектроника. 1980. В. 32. С. 40-42.
- [3] Горбик П.П., Комащенко В.Н., Федорус Г.А. // ФТП. 1980. Т. 14. В. 7. С. 1276–1280.
- [4] Павелец С.Ю., Папидзе И.В. // ЖТФ. 1981. Т. 51. В. 11. С. 2388—2390.
- [5] Павелец С.Ю., Сванидзе Т.М., Тарасенко В.П. // ФТП. 1983. Т. 17. В. 7. С. 1330-1332.
- [6] Павелец С.Ю., Сванидзе Т.М., Тарасенко В.П. // ФТП. 1990. Т. 24. В. 11. С. 2058-2060.
- [7] Кантария Р.В., Павелец С.Ю. // ФТП. 1978. Т. 12. В. 6. С. 1214–1217.

[8] Власенко Н.А., Кононец Я.Ф. // УФЖ. 1971. Т. 16. № 3. С. 273-241.

Институт физики полупроводников Киев, Украина Поступило в Редакцию 20 февраля 1994 г.