Лекция 5

Марковские цепи в дискретном времени

Андрей Андреевич Марков

Случайные процессы

Случайный процесс – это семейство случайных величин $\{X(t),\ t\in T\}$, заданных на некотором пространстве параметров T. Иногда вместо X(t) пишут X_t .

Случайные процессы — способ описание динамики случайного признака. X(t) - значение признака в момент t.

Возможные значения X(t) называются состояниями процесса. Их множество — пространство состояний.

Пример. N(t) – число заявок в системе во время t.

Пространство состояний: {0, 1, 2, ..., макс. допустимое число заявок} или {0, 1, 2, ...} для систем с неограниченной ёмкостью.

Пространство параметров зависит от конкретной модели.

Часто $T=\{t\colon 0\leq t<+\infty\}$ (процесс в непрерывном времени) Или так: $T=\{0,1,2,...\}$

stochastic process — случайный процесс state space — пространство состояний, parameter space — пространство параметров.

Цепь Маркова: определение

Последовательность дискретных случайных величин $\{X_t\}, t=0,1,2,...$ называется цепью Маркова с дискретным пространством параметров, если

$$P(X_t = j | \{X_0 = i_0\} \cap \{X_1 = i_1\} \cap \dots \cap \{X_{t-1} = i_{t-1}\}) = P(X_t = j | X_{t-1} = i_{t-1}) \quad \forall t, i_0, \dots, i_t.$$

Если величина X_t принимает значение j, то говорят, что цепь находится в состоянии j после t шагов (или в момент t).

$$P(X_t = j | X_{t-1} = i)$$
 - вероятности перехода (за один шаг).

Если вероятности перехода не зависят от t, цепь называют *однородной*.

У нас будут только однородные цепи Маркова, так что

$$P(X_t = j | X_{t-1} = i) = p_{ij}.$$

homogeneous Markov chain – однородная цепь Маркова, transition probabilities – вероятности перехода.

Уравнения Колмогорова-Чепмена

Вероятности перехода за m шагов:

$$p_{ij}^{(m)} = P(X_{t+m} = j | X_t = i)$$

Уравнения Колмгорова-Чепмена:

$$p_{ij}^{(m)} = \sum_{s \in S} p_{is}^{(m-k)} p_{sj}^{(k)}, \qquad 0 < k < m.$$

начало после m-k шагов конец (т шагов)

.

Пусть $p_{j}^{(t)}$ – вероятность, что в момент t цепь находится в состоянии j:

$$p_j^{(t)} = P(X_t = j)$$

Не путайте с вероятностями перехода $p_{ij}^{(m)}$ – у них два нижних индекса!

Можно найти $p_j^{(t)}$ для каждого состояния j и момента t с помощью уравнений Колмогорова-Чепмена, если знать:

- ightharpoonup начальное распределение $\begin{pmatrix} p_1^{(0)} \\ p_2^{(0)} \end{pmatrix}$;
- ightharpoonup вероятности переходов $\begin{pmatrix} p_{11} & p_{12} & \dots \\ p_{21} & p_{22} & \dots \\ \dots & \dots & \dots \end{pmatrix}$.

Заметьте: $\sum_{s \in S} p_{is} = 1, i \in S$

Итак, распределение всей цепи Маркова определяется вектором начальных вероятностей и матрицей переходных вероятностей.

Они могут иметь бесконечную размерность!

Идея марковских цепей:

Завтра зависит от сегодня.

А зависит ли завтра от вчера?

Да. Но только посредством сегодня.

Пример: холодильники на складе

На складе магазина бытовой техники есть три холодильника. Вероятность продажи холодильника в течение дня равна 0.05 и не зависит от истории продаж. Вероятностью продажи более 1 холодильника в день пренебрежём.

Как только последний холодильник продан, магазин закупает ещё три штуки, так что на складе всегда есть 1, 2 или 3 холодильника.

Пусть X_t — число холодильников на складе в день t (сейчас t=0). Найдём распределение вероятностей этой величины.

Пример: холодильники на складе

На складе магазина бытовой техники есть три холодильника. Вероятность продажи холодильника в течение дня равна 0.05 и не зависит от истории продаж. Вероятностью продажи более 1 холодильника в день пренебрежём.

Как только последний холодильник продан, магазин закупает ещё три штуки, так что на складе всегда есть 1, 2 или 3 холодильника.

Пусть X_t — число холодильников на складе в день t (сейчас t=0). Найдём распределение вероятностей этой величины.

Решение. Для начала опишем процесс.

Пространство состояний: $S = \{1, 2, 3\}$.

Пространство параметров: $T = \{0, 1, 2, ...\}$

(неотрицательные целые числа).

Вектор начальных вероятностей: $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Переходная матрица: $\begin{pmatrix} 0.95 & 0 & 0.05 \\ 0.05 & 0.95 & 0 \\ 0 & 0.05 & 0.95 \end{pmatrix}$

Сейчас t=0, есть три холодильника: $X_0=3$. Что будет на следующий день?

$$t = 1$$
:

С вероятностью 0.95 ничего не меняется: $X_1=3$. С вероятностью 0.05 один холодильник купят: $X_1=2$.

Сейчас t=0, есть три холодильника: $X_0=3$. Что будет на следующий день?

$$t = 1$$
:

С вероятностью 0.95 ничего не меняется: $X_1 = 3$. С вероятностью 0.05 один холодильник купят: $X_1 = 2$.

$$t = 2$$
:

Теперь вероятное любое число холодильников.

$$P(X_2 = 1) = 0.05 \times 0.05 = 0.0025.$$

$$P(X_2 = 2) = 0.95 \times 0.05 + 0.05 \times 0.95 = 0.095.$$

$$P(X_2 = 3) = 0.95 \times 0.95 = 0.9025.$$

Сейчас t=0, есть три холодильника: $X_0=3$. Что будет на следующий день?

$$t = 1$$
:

С вероятностью 0.95 ничего не меняется: $X_1 = 3$. С вероятностью 0.05 один холодильник купят: $X_1 = 2$.

$$t = 2$$
:

Теперь вероятное любое число холодильников.

$$P(X_2 = 1) = 0.05 \times 0.05 = 0.0025.$$

$$P(X_2 = 2) = 0.95 \times 0.05 + 0.05 \times 0.95 = 0.095.$$

$$P(X_2 = 3) = 0.95 \times 0.95 = 0.9025.$$

$$t = 3$$
:

$$P(X_3 = 1) = 0.95P(X_2 = 1) + 0.05P(X_2 = 2).$$

$$P(X_3 = 2) = 0.95P(X_2 = 2) + 0.05P(X_2 = 3).$$

$$P(X_3 = 3) = 0.95P(X_2 = 3) + 0.05P(X_2 = 1).$$

В произвольный момент t:

$$P(X_t = 1) = 0.95P(X_{t-1} = 1) + 0.05P(X_{t-1} = 2).$$

 $P(X_t = 2) = 0.95P(X_{t-1} = 2) + 0.05P(X_{t-1} = 3).$
 $P(X_t = 3) = 0.95P(X_{t-1} = 3) + 0.05P(X_{t-1} = 1).$

В общем виде:

$$P(X_t = j) = \sum_{s \in S} P(X_{t-1} = s) P(X_t = j | X_{t-1} = s), \qquad j = 1, 2, 3.$$

или

$$p_j^{(t)} = \sum_{s \in S} p_s^{(t-1)} p_{sj}, \quad j = 1, 2, 3.$$

Это уравнения Колмогорова-Чепмена!

Мы не будем их решать. Просто рассчитаем вероятности.

Вот вероятности для t = 0, 1, 2, ..., 100:

Со временем все состояния становятся равновероятными. А можно было к этому прийти, не рассчитывая вероятности для всех t?

Можно. Есть как минимум два пути.

Два способа получить распределение в стационарном режиме:

1. Найти $p_j^{(t)} = P(X_t = j)$ аналитически. Затем найти $\lim_{t \to \infty} p_j^{(t)}$.

Это может быть трудно.

2. Найти стационарной решение системы уравнений К-Ч:

$$p_j^{(t)} = \sum_{s \in S} p_s^{(t-1)} p_{sj}, \quad j = 1, 2, 3.$$

Решение стационарное, если $p_{j}^{(t)} = p_{j}^{(t-1)} = p_{j}$ для всех j.

Значит, нужно решить систему:

$$p_j = \sum_{s \in S} p_s p_{sj}, \qquad j = 1, 2, 3.$$

Попробуем.

Холодильники на складе: стационарные вероятности

В произвольный момент t:

$$P(X_t = 1) = 0.95P(X_{t-1} = 1) + 0.05P(X_{t-1} = 2);$$

 $P(X_t = 2) = 0.95P(X_{t-1} = 2) + 0.05P(X_{t-1} = 3);$
 $P(X_t = 3) = 0.95P(X_{t-1} = 3) + 0.05P(X_{t-1} = 1).$

В стационарном режиме $P(X_t = j)$ не зависит от t:

$$\begin{cases} p_1 = 0.95p_1 + 0.05p_2 \\ p_2 = 0.95p_2 + 0.05p_3 \\ p_3 = 0.95p_3 + 0.05p_1 \\ p_1 + p_2 + p_3 = 1 \end{cases}$$

Refrigerators in stock: steady-state probabilities

В произвольный момент t:

$$P(X_t = 1) = 0.95P(X_{t-1} = 1) + 0.05P(X_{t-1} = 2);$$

 $P(X_t = 2) = 0.95P(X_{t-1} = 2) + 0.05P(X_{t-1} = 3);$
 $P(X_t = 3) = 0.95P(X_{t-1} = 3) + 0.05P(X_{t-1} = 1).$

В стационарном режиме $P(X_t = j)$ не зависит от t:

$$\begin{cases} p_1 = 0.95p_1 + 0.05p_2 \\ p_2 = 0.95p_2 + 0.05p_3 \\ p_3 = 0.95p_3 + 0.05p_1 \\ p_1 + p_2 + p_3 = 1 \end{cases}$$

Преобразуем:

$$\left\{ \begin{array}{l} 0.05p_1 = 0.05p_2 \\ 0.05p_2 = 0.05p_3 \\ 0.05p_3 = 0.05p_1 \\ p_1 + p_2 + p_3 = 1 \end{array} \right.$$

Refrigerators in stock: steady-state probabilities

В произвольный момент t:

$$P(X_t = 1) = 0.95P(X_{t-1} = 1) + 0.05P(X_{t-1} = 2);$$

 $P(X_t = 2) = 0.95P(X_{t-1} = 2) + 0.05P(X_{t-1} = 3);$
 $P(X_t = 3) = 0.95P(X_{t-1} = 3) + 0.05P(X_{t-1} = 1).$

В стационарном режиме $P(X_t = j)$ не зависит от t:

$$\begin{cases} p_1 = 0.95p_1 + 0.05p_2 \\ p_2 = 0.95p_2 + 0.05p_3 \\ p_3 = 0.95p_3 + 0.05p_1 \\ p_1 + p_2 + p_3 = 1 \end{cases}$$

Преобразуем:

$$\begin{cases} 0.05p_1 = 0.05p_2 \\ 0.05p_2 = 0.05p_3 \\ 0.05p_3 = 0.05p_1 \\ p_1 + p_2 + p_3 = 1 \end{cases}$$

Значит,
$$p_1 = p_2 = p_3 = \frac{1}{3}$$
.

We did it!

Немного сомнений

Хорошо, мы нашли стационарное распределение. Может, мы даже сможем рассчитать его дли какой-нибудь другой цепи.

HO

Точно ли процесс сходится к стационарному режиму?

Может ли у цепи Маркова быть несколько стационарных распределений?

А ни одного?

А если хоть какое-то из этих сомнений оправдано, как отличать «хорошую» цепь от «плохой»?

Тут понадобится экскурс в теорию.

Разложимость

Состояние j достижимо из состояния i, если $\exists m \colon p_{ij}^{(m)} > 0$.

Состояния i и j сообщаются, если i достижимо из j, а j достижимо из i.

Состояние 1 достижимо из 2, но не достижимо из 4.

Состояния 3 и 4 достижимы из любого состояния.

Цепь называется неразложимой, если все её состояния сообщаются.

accessible – достижимый to communicate – сообщаться irreducible chain – неразложимая цепь

Периодичность

Период состояния j — наибольший общий делитель всех целых $\{n\}$, для которых $p_{i\,i}^{(n)}>0$.

Т.е. у состояния j период k, если цепь может вернуться в j только за k, 2k, 3k ... шагов.

Состояние с периодом 1 называют апериодическим.

У всех состояний период 2. Это периодические состояния.

У всех состояний период 1. Они апериодические.

Если все состояния апериодические, то цепь тоже называют апериодической.

Возвратность

Пусть $f_{j\,i}^{\,(k)}$ – вероятность того, что цепь из состояния j впервые вернётся в j за k шагов.

Вероятность когда-либо вернуться в j:

$$f_{jj} = \sum_{k=1}^{\infty} f_{jj}^{(k)}.$$

Если $f_{ij} = 1$, то состояние j называют возвратным.

Если $f_{ij} < 1$, то состояние j невозвратное.

Среднее время возвращения:

$$m_{jj} = \sum_{k=1}^{\infty} k f_{jj}^{(k)}.$$

Состояния 1 и 2 невозвратные, состояния 3 и 4 возвратные, среднее время возвращения = 2.

Возвратность

Если $m_{i\,i}<\infty$, то состояние j называют положительным.

Если $m_{jj}=\infty$, то состояние j называют *нулевым*.

Пример нулевого состояния когда-нибудь, возможно, будет здесь.

Пара теорем:

Если марковская цепь неразложима, то она либо возвратная, либо невозвратная, то есть либо все её состояния возвратные, либо все невозвратные.

Если марковская цепь неразложимая и невозвратная, то либо все её состояния положительные, либо все нулевые.

Эргодичность

Неразложимая, апериодическая и положительная возвратная цепь называется эргодической.

Очень важная теорема

У неразложимой апериодичной цепи Маркова предельные вероятности

$$\pi_j = \lim_{t \to \infty} p_j^{(t)} = \lim_{t \to \infty} P(X_t = j), \quad j \in S,$$

Всегда существуют и не зависят от начального распределения.

Если все состояния невозвратные или нулевые, то $\pi_j = 0 \; \forall j \in S$ и стационарное распределение не существует.

Если все состояния положительные (цепь эргодическая), то $\pi_j > 0 \ \forall j \in S$ и предельное распределение совпадает со стационарным распределением, которое есть единственное решение следующей системы:

$$\pi_j = \sum_{i \in S} \pi_i p_{ij}$$
 ,
$$\sum_{i \in S} \pi_i = 1.$$

A very important theorem

У неразложимой апериодичной цепи Маркова предельные вероятности

$$\pi_j = \lim_{t \to \infty} p_j^{(t)} = \lim_{t \to \infty} P(X_t = j), \quad j \in S,$$

Всегда существуют и не зависят от начального распределения.

Если все состояния невозвратные или нулевые, то $\pi_j = 0 \ \forall j \in S$ и стационарное распределение не существует.

Если все состояния положительные (цепь эргодическая), то $\pi_j > 0 \ \forall j \in S$ и предельное распределение совпадает со стационарным распределением, которое есть единственное решение следующей системы:

$$\pi_j = \sum_{i \in S} \pi_i p_{ij}$$
 ,
$$\sum_{i \in S} \pi_i = 1.$$

Эргодическая цепь Маркова

- имеет единственное стационарное распределение,
- > сходится к нему независимо от начального распределения.

Ещё одна важная теорема

Апериодичная неразложимая цепь Маркова эргодична тогда и только тогда, когда существует ненулевое решение системы уравнений

$$\sum_{i \in S} x_j p_{ji} = x_i, \quad i \in S,$$

Такое что

$$\sum_{i\in S} |x_j| < \infty.$$

Что это значит? Почему это важно? Достойно внимания.

Вернёмся к холодильникам и проверим цепь на эргодичность.

Она неразложимая?

Вернёмся к холодильникам и проверим цепь на эргодичность.

Она неразложимая?

Все состояния сообщаются => цепь неразложимая.

Она апериодичная?

Вернёмся к холодильникам и проверим цепь на эргодичность.

Она неразложимая?

Все состояния сообщаются => цепь неразложимая.

Она апериодичная?

У каждого состояния период 1 => цепь апериодичная.

Она эргодическая?

Вернёмся к холодильникам и проверим цепь на эргодичность.

Она неразложимая?

Все состояния сообщаются => цепь неразложимая.

Она апериодичная?

У каждого состояния период 1 => цепь апериодичная.

Она эргодическая?

Мы уже решили систему
$$\sum_{j \in S} x_j p_{ji} = x_i$$
, $i \in S$:

$$x_1 = x_2 = x_3 =$$

 $x_1 = x_2 = x_3 = \frac{1}{3}$ — вот стационарные вероятности.

Цепь эргодическая!

Вероятности и время

Стационарные вероятности в эргодической цепи Маркова отражают долю времени, которое цепь проводит в соответствующем состоянии в долгосрочном периоде.

Стационарные вероятности для холодильников:

$$\pi_1 = \pi_2 = \pi_3 = \frac{1}{3}$$

В долгосрочном периоде треть времени на складе находится один холодильник, другую треть – два холодильника, ещё треть времени – три холодильника.

Я снова поменял букву! На странице 15 было p_i , на предыдущей странице — x_i , а теперь — π_i . Всё, чтобы запутать?

Замечание

Часть лекции про классификацию цепей и состояний взята из книги "Fundamentals of Queueing Theory", D. Gross, C.M. Harris.

Следующая лекция:

Цепи Маркова в непрерывном времени

система M/M/1/1.