	0
	Schrift
-	-
	يخ
,	٠,
(ر
	Ξ.
	ш
	$\overline{}$
Ę	_
-	2
ď	
	C
	=
	Ξ
-	\sim
F	_
	ď
	Ť
	ď
	ũ
۲	ð
-	2
	نـ
1	۹,
	_
	C
•	77
`	\simeq
	۲
	Ξ
	ď
¥	-
-	_
	_
	Q
`	0
}	080
	Ogo!
~ ⊢	Ogo.
←	- Joao
× +	2 - Joan
	. Joao
	S 2 - 1020
⊢	as 2 - Joao Manricio A. Mota e Brim
	2
	2
~ F	2
~ F	2
~ F	2
~ F	2
· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·	es Continuas 2 - Joao
· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
· · · · · · · · · · · · · · · · · · ·	onicoes Continua
× + + 0 × · · · · · · · · · · · · · · · · · ·	onicoes Continua
× + +	onicoes Continua
× + +	onicoes Continua
× + +	onicoes Continua
× +	onicoes Continua
× + +	2

Função Geradora de Momentos $\mathbb{E}\left[e^{tX}\right]$	$\sum_{r=0}^{\infty} \frac{t^r}{r!} a^{\frac{-r}{b}} \Gamma\left(1 + \frac{r}{b}\right)$	$e^{\alpha t}\pi eta t \operatorname{cosec}(\pi eta t)$	Não existe	$e^{\alpha t}\Gamma(1-\beta t),\;t<1/eta$	Não existe	Não existe	$\left(\frac{1}{1-2t}\right)^{k/2},\ t<1/2$
$\begin{aligned} & \text{Momentos} \\ & \mu_r' = I\!\!E\left[X^r\right] \text{ ou} \\ & \mu_r = I\!\!E\left[\left(X - \mu\right)^r\right] \text{ ou} \\ & \text{Cumulantes } K_t = ln\left[M_X\left(t\right)\right] \end{aligned}$	$\mu_r' = a^{-r/b} \Gamma \left(1 + \frac{r}{b} \right)$,	$\mu_r' = rac{ heta x_o^r}{ heta - r}, \; heta > r$	$k_t = (-\beta)^r \psi^{r-1}(1)$ em que $\psi(.)$ é a função digama	$\mu_r = 0, \ k > r \text{ e } r \text{ é impar}$ $\mu_r = \frac{k^{r/2} B[(r+1)/2, (k-r)/2]}{B(1/2, k/2)},$ se r é par	$\mu_r' = \left(\frac{n}{m}\right)^r \frac{\Gamma(m/2+r)\Gamma(n/2-r)}{\Gamma(m/2)\Gamma(n/2)}$ se $r < \frac{n}{2}$	$\mu_r' = \frac{2^{\Gamma}\Gamma(k/2 + r)}{\Gamma(k/2)}$
Variância $\sigma^2 = E\left[\left(X - \mu\right)^2 ight]$	$a^{-2/b}[\Gamma(1+2b^{-1})$ $-\Gamma^2(1+b^{-1})]$	$\frac{(eta\pi)^2}{3}$	$\frac{\theta x_o^2}{(\theta-1)^2(\theta-2)}, \ \theta > 2$	$\frac{(\pi\beta)^2}{6}$	$\frac{k}{k-2},\ k>2$	$\frac{2n^2(n+m-2)}{m(n-2)^2(n-4)}, \ n>4$	2k
Média $\mu = I\!\!E[X]$	$a^{-1/b}\Gamma(1+b^{-1})$	8	$\frac{\theta x_o}{\theta - 1}, \; \theta > 1$	$\alpha + \beta \gamma$ em que $\gamma \approx 0,577216$	$\mu=0,\;k>1$	$\frac{n}{n-2}, \ n>2$	k
Espaço Paramétrico	a > 0 $b > 0$	$\alpha \in I\!\!R$ $\beta > 0$	$x_o > 0$ $\theta > 0$	$\alpha \in I\!\!R$ $\beta > 0$	k > 0	m > 0	k > 0
The control of the first of the control of the con	$f(x) = abx^{b-1} \exp[-ax^b] I(x)$ $(0,\infty)$	$f(x) = \frac{e^{-(x-\alpha)/\beta}}{\beta[1 + e^{-(x-\alpha)/\beta}]^2} \prod_{(-\infty,\infty)}^{I} I(x)$	$f(x) = \frac{\theta x_o^{\theta}}{x^{\theta+1}} \frac{I(x)}{(x_o, \infty)}$	$f(x) = \frac{e^{-(x-\alpha)/\beta}}{\beta} \exp\left[-e^{-(x-\alpha)/\beta}\right] I(x)$	$f(x) = \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})\sqrt{k\pi}} \frac{1}{(1+x^2/k)^{(k+1)/2}} \frac{I(x)}{(-\infty,\infty)}$	$f(x) = \frac{\binom{m}{n}^{m/2}}{B(\frac{n}{2}, \frac{n}{2})} \frac{x^{m/2-1}}{(1 + \frac{mx}{n})^{(m+n)/2}} \frac{I(x)}{(0, \infty)}$	$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2 - 1} e^{-x/2} I(x)$ (0,\infty)
Nome das Familias de Distribuições Parametricas	Weibull	Logística	Pareto	Gumbel ou Valor extremo	t de Student	Distribuição F	Qui-Quadrado