1 Dimensions of Vector Spaces

We already have a pretty good concept of dimensions already, but we'll go through some formal definitions here.

The dimension of a vector space is based on the linearly independent set that makes up it's basis. For example, in \mathbb{R}^3 , there are 3 basis vectors, so there are 3 dimensions.

Assume $\{\vec{x}, \vec{y}, \vec{z}\}$ is a basis for V. What can we say about $\{\vec{x}, \vec{y}, \vec{z}, \vec{w}\}$? We know that if we add a vector to our basis, it must be linearly dependent; \vec{w} is a linear combination of the others.

Theorem 1 If a vector space V has a basis $B = \{\vec{b_1}, \dots, \vec{b_n}\}$, then any set in V containing more than n vectors must be linearly dependent.

Theorem 2 If a vector space V has a basis of n vectors, then V is **finite-dimensional**, and the dimension, $\dim V$, is the number of vectors in a basis V.

The dimension of a zero vector space $\{\vec{0}\}$ is defined to be 0.

If V is not spanned by a finite set, V is infinite-dimensional.

Some Common Vector Space Dimensions

 $\dim \mathbb{R}^n = n$

 $\dim \mathbb{P}_n = n+1$

Example

Let the x-y plane in \mathbb{R}^3 be defined as $P = \operatorname{Span}\{\vec{x}, \vec{y}\}$. The basis of P is the set \vec{x}, \vec{y} .

$$\dim P = 2$$

Example

Let W be the set of all vectors of the form

$$\begin{bmatrix} a - b \\ b - c \\ c - a \\ b \end{bmatrix}$$

The set of vectors that span W can be written using parametric form.

What is the dimension of W?

We should put this in parametric vector form, then set up a matrix and do Gaussian elimination.

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

We can tell from here that the maximum dimension possible is 3 because there are 3 columns. But it could be lower. Let's reduce

$$RREF(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\dim W = 3$$

Subspace of a Finite-Dimensional Space

Theorem 3 Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded into a basis for H.

H is also finite-dimensional and dim $H \leq \dim V$.

Theorem 4 (The Basis Theorem) Let V be a p-dimensional vector space, $p \ge 1$.

Any linearly independent set of exactly p elements in V is automatically a basis for V.

2 Column and Null Space

The **rank** of an $m \times n$ matrix A is the dimension of the column space.

The **nullity** of A is the dimension of the null space.

Theorem 5 (The Rank Theorem)

$$rank A + nullity A = \# of columns in A$$

Example

$$A = \begin{bmatrix} 1 & 3 & -4 & 2 & -1 & 6 \\ 0 & 0 & 1 & -3 & 7 & 0 \\ 0 & 0 & 0 & 1 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Determine the dimensions of Nul A, Col A.

To find rank A, we count the vectors in the column space, which are all the columns with pivot positions. rank A = 3.

For the nullity, there are a few ways we can find it. We know that rank A+nullity A = # of columns in A, so 6-3=3. We can also count the free variables to find the null space (I think), which is also 3.

Example

If a 6×3 matrix A has rank 3, find nullityA and rank A^T .

We know that there are 3 columns, so by the rank theorem, nullity A=0.

For rank A^T , imagine transposing A. We would have 3 rows and 6 columns. However, we know that there are only 3 basic variables, so rank $A^T = 3$.