STA257: PROBABILITY AND STATISTICS I

University of Toronto — Fall 2019

Jeff Shen

Contents

1	Probability and Counting		
	1.1	Introduction	2
	1.2	Set Theory	2
		1.2.1 Definitions	2
		1.2.2 Laws of Set Theory	2
	1.3	Probability Measures	2
		1.3.1 Axioms of Probability Measures	2
		ı v	2
	1.4	Permutations and Combinations	3
	1.5	Conditional Probability	3
	1.6	Independence, Law of Total Probability	3
2	Rar	ndom Variables	4
	2.1		4
			4
			4
			4
			4
			4
			4
	2.2		4
			4
			4
		•	4
			4
			4
			4
			4
	2.3		4
3	_		5
	3.1		5
			5
		1	5
	3.2	Moment Generating Functions	5
4	Joir		6
	4.1	8	6
		4.1.1 Discrete	6
		4.1.2 Continuous	6
	4.2	Independence in Joint Distributions	6
	4.3	Conditional Distributions	6
		4.3.1 Discrete	6
		4.3.2 Continuous	6
	4.4	Functions of Joint Distributions	6
	4.5	Order Statistics	6

1 Probability and Counting

1.1 Introduction

Experiments: situations where outcome is random. eg. flipping a coin is an experiment.

Sample space: set of all possible outcomes, denoted S or Ω . The number of elements in the sample space (cardinality) is denoted $|\Omega|$.

Event: a subset of a sample space.

Outcome: a particular element of a sample space $s_1 \in \Omega$.

1.2 Set Theory

1.2.1 Definitions

- union: $A \cup B$. Elements in either A or B.
- intersection: $A \cap B$. Elements in both A and B.
- complement of A: A^c . Elements not in A.
- empty set: \varnothing . Set with no elements in it.
- A and B are disjoint: $A \cap B = \emptyset$. There are no elements in the intersection of A and B.

1.2.2 Laws of Set Theory

- 1. **commutativity**: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- 2. associativity: $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap B)$
- 3. **distributivity**: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

1.3 Probability Measures

Probability measure: a function which maps subsets of Ω , which can be defined on any space, to real numbers \mathbb{R} .

1.3.1 Axioms of Probability Measures

- $P(\Omega) = 1$
- $\forall A \in \Omega, P(A) \ge 0$
- if $A_1, A_2, \ldots A_n, \ldots$ are mutually disjoint, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

1.3.2 Properties of Probability Measures

• $\forall A \in \Omega, P(A^c) = 1 - P(A)$ Proof:

$$\begin{array}{ll} 1=P(\Omega) & \text{by Axiom 1} \\ =P(A\cup A^c) & \text{by definition of complement} \\ =P(A)+P(A^c) & \text{by Axiom 3 (since } A,A^c \text{ are disjoint)} \end{array}$$

Rearrange this to see that $P(A^c) = 1 - P(A)$.

• $P(\emptyset) = 0$ Proof:

$$\begin{split} P(\Omega) &= P(\Omega \cup \varnothing) & \text{since } \Omega \cup \varnothing = \Omega \\ &= P(\Omega) + P(\varnothing) & \text{by Axiom 3 (since } \Omega, \varnothing \text{ are disjoint)} \end{split}$$

So
$$P(\emptyset) = 0$$
.

• For $A, B \subseteq \Omega, A \subseteq B \implies P(A) \le P(B)$ Proof:

$$P(B) = P(A \cup (B \cap A^c))$$
 by Axiom 3 (since A, A^c are disjoint)

But note that $P(B \cap A^c) \ge 0$ by Axiom 2.

Then $P(B) = P(A) + P(B \cap A^c) \ge P(A)$.

• For $A, B \subseteq \Omega, P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Proof:

Case 1: A, B are disjoint. Then $A \cap B = \emptyset \implies P(A \cap B) = 0$.

$$P(A \cup B) = P(A) + P(B)$$
 by Axiom 3 (since A, B are disjoint)
= $P(A) + P(B) + P(A \cap B)$ since we can add 0 wherever we want

Case 2: A, B not disjoint. Then $A \cap B \neq \emptyset$.

Let
$$C = A \cap B^c$$
, $D = A \cap B$, $E = A^c \cap B$.

Then C, D, E are disjoint, and $A = C \cup D, B = D \cup E$, and $A \cup B = C \cup D \cup E$.

$$\begin{split} P(A) + P(B) - P(A \cap B) &= P(C \cup D) + P(D \cup E) - P(D) & \text{by how we defined } C, D, E \\ &= P(C) + P(D) + P(D) + P(E) - P(D) & \text{by Axiom 3 and disjointness of } C, D, E \\ &= P(C) + P(D) + P(E) \\ &= P(C \cup D \cup E) & \text{by Axiom 3 and disjointness of } C, D, E \\ &= P(A \cup B) \end{split}$$

- 1.4 Permutations and Combinations
- 1.5 Conditional Probability
- 1.6 Independence, Law of Total Probability

2 Random Variables

- 2.1 Discrete Random Variables
- 2.1.1 Bernoulli
- 2.1.2 Binomial
- 2.1.3 Geometric
- 2.1.4 Negative Binomial
- 2.1.5 Hypergeometric
- 2.1.6 Poisson
- 2.2 Continuous Random Variables
- 2.2.1 Uniform
- 2.2.2 Exponential
- 2.2.3 Gamma
- 2.2.4 Beta
- 2.2.5 Uniform
- 2.2.6 Standard Normal
- 2.2.7 General Normal
- 2.3 Transformations of Random Variables

- 3 Expected Values
- 3.1 Mean and Variance
- 3.1.1 **LOTUS**
- 3.1.2 Inequalities
- 3.2 Moment Generating Functions

4 Joint Distributions

- 4.1 Joint and Marginal Distributions
- 4.1.1 Discrete
- 4.1.2 Continuous
- 4.2 Independence in Joint Distributions
- 4.3 Conditional Distributions
- 4.3.1 Discrete
- 4.3.2 Continuous
- 4.4 Functions of Joint Distributions
- 4.5 Order Statistics