Thursday, November 1, 2018 10:33 AM

BIAS - VARIANCE TRADE-OFF I

I) Hypothesis space: fe

- It is a compact subset of C(X), equipped

with the Standard morm

 $\|f\|_{C(X)} := \|f\|_{\infty} := \sup_{\widetilde{X} \in X} |f(\widetilde{x})|$

2) Empirical target Junetion:

- ht is not conjustable

_ ht may not reside in It

=) thus the best we hope for is to find

a target function h in It that is closest

to h

 $\hat{h} := \underset{\times}{\text{argmin}} \int \left(f(x) - h^{\dagger}(x) \right)^{2} d\pi(\tilde{x})$

E+17.2. h is also dozest to y, that is

his also a minimiter of

12.

Again We know $T(\vec{x}, y)$ only through the training set -> h is NOT computable. Thus we resort to empirical target function:

$$\hat{h}_{N} := \underset{f \in \mathcal{H}}{\operatorname{arg min}} \ \mathcal{R}_{N}(f) = \frac{1}{N} \sum_{i=1}^{N} (f(\vec{z}_{i}) - y_{i})^{2}$$

EXISTENCE OF h, h

Assumption: (M- boundedness of the mixit on \mathcal{X})

for any $h \in \mathcal{H}$ and a.s. (a.e.) in \mathcal{X} there holds: $|h(\tilde{x}) - y| \leq M$

Prop 17.1: Suppose It is M-bounded. Then By, Rn: H-> IR are Lipschitz continuous, i.e.

 $|R(h_{\perp}) - R(h_{2})| \le C ||h_{\perp} - h_{2}||_{\infty}$ $|R_{N}(h_{\perp}) - R_{N}(h_{2})| \le C ||h_{\perp} - h_{2}||_{\infty}$

Proof: $|R(h_1) - R(h_2)| = \int [(h_1 - y)^2 - (h_2 - y)^2] d\pi$

 $\left| \int (h_1 + h_2 - 2y) (h_2 - h_2) di \right|$

// M- boundednoss

2 M 11 h2 - h2 11 00
Cor. 17.1: Suppose It is M-bounded, the
h and h, exist,
Proof: direct consequence of Weirstrass theorem
and Prop 17.1
BIAS - VARIANCE TRAPE-OFF
. We are interested in the the actual risk
R(ĥN). Let us Start with
$R(\hat{h}_N) = R(\hat{h}_N) - R(\hat{h}) + R(\hat{h})$
$S(\hat{h}_N)$ $B(\hat{h})$
Goal: is to bound S(hN) and B(h)
- Let us first consider
$S(\hat{h}_{N}) = R_{N}(\hat{h}_{N}) - R_{N}(\hat{h}) + R(\hat{h}_{N}) - R_{N}(\hat{h}_{N}) + R(\hat{h}) - R(\hat{h})$
$\leq \left \mathcal{R}(\hat{h}_N) - \mathcal{R}_N(\hat{h}_N) \right + \left \mathcal{R}(\hat{h}) - \mathcal{R}(\hat{h}) \right $

Phocause hu a minimizer of Ru
=) S(hn) is bounded by sampling errors =
hence the name. S(hN) is also known as
the variances.
- Next let us book at
$\mathcal{B}(\hat{h}) := \mathcal{R}(\hat{h}) \stackrel{??}{:=} \int (\hat{h}(\hat{x}) - \hat{h}^{\dagger}(\hat{x}))^2 d\pi(\hat{x})$
\times
$\frac{\chi}{\chi}$
The has depends only the approximation
capability of the hypothesis space It (closer
nt to It the better the error].
the task of approximation theory.
(NOT a pours of this class)
Consider the day of the life the
* Summary: we focus on ostimating the
sampling variance error in this class
Dias-Variana de de-all

+ Dias-Variana trade-off

- For fixed H, the Sampling error docreases

as we increase the sample size N.

- For a fixed Sample size N, enriching the

hypothesis space H: reduces the bias

-) the popular trade-off is to enlarge the

hypothesis space as the Sample size increases.