Kuliah | Pengantar Model Linier

Model Linear Tidak Berpangkat Penuh

Cakupan Materi

5.5 Fungsi parameter yang dapat diduga (*Estimable*)

5.6 Pendugaan Ragam Galat

5.7 Selang kepercayaan fungsi parameter

Rangkuman Materi Sebelumnya

- Misalkan $y = X\beta + \varepsilon$ dimana X adalah matriks berukuran $n \times p$ dengan rank $r \leq p, E[\varepsilon] = 0$, dan var $\varepsilon = \sigma^2 I$.
 - Persamaan normal (X'X)b = X'y.
 - Penduga bagi β adalah $b = (X'X)^c X'y$
- Fungsi dari $t'\beta$ dikatakan dapat diduga (estimable) jika
 - ada sebuah vektor c sehingga $E[c'y] = t'\beta$. (definisi)
 - ada solusi dari persamaan (X'X)z = t. (theorem 5.4.1)
 - $-t'(X'X)^c(X'X)=t'$ di mana $(X'X)^c$ adalah sembarang matriks kebalikan umum dari (X'X). (theorem 5.4.2)
 - Penduga $\mathbf{t'}$ $\mathbf{\beta}$ adalah $\mathbf{z'}$ $\mathbf{X'}$ \mathbf{y} dimana \mathbf{z} adalah sebuah solusi dari sistem (X' X) $\mathbf{z} = \mathbf{t}$. (lemma 5.41)
 - Selanjutnya, estimasi linear dan tak bias terbaik bagi $t'\beta$ adalah t'b, dimana b adalah solusi terhadap persamaan normal.

Fungsi Linier parameter yang dapat diduga (lanjutan)

Teorema 5.5.1.

Misalkan $y = X\beta + \varepsilon$ dimana X merupakan matriks berukuran $n \times p$ dengan rank $r \le p$, $E[\varepsilon] = 0$, dan $\text{Var } \varepsilon = \sigma^2 I$. setiap komponen dari $X\beta$ estimable.

Teorema 5.5.2.

Misalkan $t'_1\beta$, $t'_2\beta$, ..., $t'_k\beta$ merupakan kumpulan fungsi yang estimable.

- Jika $z=a_1t_1'\beta+a_2t_2'\beta+\cdots+a_kt_k'\beta$ merupakan kombinasi linier dari fungsi ini. Maka z juga estimable.
- Penduga linier tak bias terbaik untuk z adalah:

$$z = a_1 t_1' b + a_2 t_2' b + \dots + a_k t_k' b$$

dimana b merupakan solusi banyak dari sistem persamaan normal.

Penduga Ragam Galat

Teorema 5.6.1.

Jumlah kuadrat galat (SS_{Res}) dapat ditulis sebagai: $SS_{Res} = \boldsymbol{y}'[I - X(X'X)^c X']\boldsymbol{y}$ dimana $(X'X)^c$ adalah matriks kebalikan umum untuk X'X

Pembuktian

Pembuktian Teorema 5.6.1.

$$SS_{Res} = (\mathbf{y} - X\mathbf{b})'(\mathbf{y} - X\mathbf{b})$$

dengan menguraikan sisi sebelah kanan, diperoleh:

$$SS_{Res} = (\mathbf{y}' - \mathbf{b}'X')'(\mathbf{y} - X\mathbf{b})$$

$$= \mathbf{y}'\mathbf{y} - \mathbf{b}'X'\mathbf{y} - \mathbf{y}'X\mathbf{b} + \mathbf{b}'X'X\mathbf{b}$$

$$= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'X\mathbf{b} + \mathbf{b}'X'X\mathbf{b}$$

 $\mathbf{b} = (X'X)^c X' \mathbf{y}$ dan $\mathbf{b}' = \mathbf{y}' X (X'X)^c$ dimana $(X'X)^c$ adalah matriks kebalikan umum untuk X'X.

$$SS_{Res} = \mathbf{y}'\mathbf{y} - 2\mathbf{y}'X(X'X)^{c}X'\mathbf{y} + \mathbf{y}'X(X'X)^{c}X'X(X'X)^{c}X'\mathbf{y}$$

Berdasarkan properti matriks kebalikan umum, $X(X'X)^c X'X = X$

Pembuktian Teorema 5.6.1. (Lanjutan)

Sehingga,

$$SS_{Res} = \mathbf{y}'\mathbf{y} - 2\mathbf{y}'X(X'X)^{c}X'\mathbf{y} + \mathbf{y}'X(X'X)^{c}X'$$

$$= \mathbf{y}'\mathbf{y} - \mathbf{y}'X(X'X)^{c}X'\mathbf{y}$$

$$= \mathbf{y}'[I - X(X'X)^{c}X']\mathbf{y}$$

Dalam pendugaan model tidak penuh, s² yaitu:

$$s^2 = \frac{SS_{Res}}{n-r}$$

Penduga Ragam Galat (lanjutan)

Teorema 5.6.2.

 $\mathbf{y} = X\mathbf{\beta} + \mathbf{\varepsilon}$ dengan matriks X berukuran $n \times p$ dan rank $r \leq p$, $E(\mathbf{\varepsilon})=0$, dan var $\mathbf{\varepsilon} = \sigma^2 I$. Maka s^2 adalah penduga tak bias bagi σ^2 .

Pembuktian

Pembuktian Teorema 5.6.2.

$$E[s^{2}] = E\left[\frac{SS_{Res}}{n-r}\right] = \frac{1}{n-r}E[SS_{Res}]$$
$$= \frac{1}{n-r}E[\mathbf{y}'[I - X(X'X)^{c}X']\mathbf{y}]$$

Dari Teorema 2.2.1,

$$E[s^2] = \frac{1}{n-r} \left\{ \operatorname{tr}[I - X(X'X)^c X'] \sigma^2 + (X\boldsymbol{\beta})'[I - X(X'X)^c X'] X\boldsymbol{\beta} \right\}$$

karena $I - X(X'X)^c X'$ simetrik dan idempoten, maka

$$tr[I - X(X'X)^{c}X'] = r[I - X(X'X)^{c}X']$$

Berdasarkan properti matriks kebalikan umum nomor 6,

$$r[I - X(X'X)^{c}X'] = n - r$$

Pembuktian Teorema 5.6.2. (Lanjutan)

sehingga

$$E[s^{2}] = \frac{1}{n-r} [(\mathbf{n} - \mathbf{r})\sigma^{2} + \boldsymbol{\beta}'X'X\boldsymbol{\beta} - \boldsymbol{\beta}'X'X(X'X)^{c}X'X\boldsymbol{\beta}]$$

$$E[s^{2}] = \frac{1}{n-r} [(\mathbf{n} - \mathbf{r})\sigma^{2} + \boldsymbol{\beta}'X'X\boldsymbol{\beta} - \boldsymbol{\beta}'X'X\boldsymbol{\beta}]$$

$$E[s^{2}] = \frac{1}{n-r} [(\mathbf{n} - \mathbf{r})\sigma^{2}] = \sigma^{2}$$

Teorema 5.7.1.

Misalkan $y = X\beta + \varepsilon$ dimana X adalah matriks berukuran $n \times p$ dengan pangkat $r \leq p$, β adalah vektor ukuran $p \times 1$ dari parameter, dan ε adalah vektor acak berukuran $n \times 1$ yang menyebar normaldengan rata-rata 0 dan ragam σ^{2I} .

Kemudian

$$\frac{(n-r)s^2}{\sigma^2} = \frac{SS_{Res}}{\sigma^2}$$

Mengikuti sebaran *chi-squared* dengan derajat bebas *n-r*.

Selang Keprcayaan dari $\mathbf{t'}\boldsymbol{\beta}$ (*n-r* df): $\mathbf{t'}\mathbf{b} \pm \mathbf{t}_{\alpha/2} \sqrt{\boldsymbol{t'}(X'X)^c \boldsymbol{t}}$

Pustaka

- Myers, R.H. dan Milton, J.S. 1991. A First Course in the Theory of Linear Statistical Models. Boston: PWS-KENT Publishing Company.
- 2. Sumertajaya, I.M. 2019. Pengantar Model Linier. Bahan Ajar. Bogor: Program Magister Statistika Terapan IPB.

Tugas Penyusunan Bahan Ajar Pengantar Model Linier

Disusun oleh:

Terima Kasih

