Ayudantía Matemáticas Avanzadas I N.2

Daniel Sánchez

17 de Marzo 2022

- 1. Simplifique las siguientes expresiones:
 - (a) $[p \lor (p \land q)] \Leftrightarrow p$
 - (b) $[p \land (p \Rightarrow q)] \Rightarrow p$
 - (c) $[p \Rightarrow (q \land r)] \Rightarrow (p \Rightarrow q)$
 - (d) $(p \Rightarrow q) \Rightarrow [(p \land r) \Rightarrow (q \land r)]$
- 2. Determine si las siguientes proposiciones corresponden a una tautología, contradicción o contingencia:
 - (a) $[(p \Rightarrow q) \land (p \land \neg q \land r)] \Rightarrow (\neg p \lor q)$
 - (b) $[\{(p \lor q) \land \neg p\} \Rightarrow q] \Leftrightarrow q$
- 3. Simplificar, aplicando propiedades:

$$[A \cap B^c \cap (A - B^c)]^c \cup A^c$$

4. Dados los conjuntos A, B y C, simplificar al máximo la siguiente expresión:

$$[A\cap (A^c\cup B)]\cup [B\cap (B\cup C)]\cup B$$

${\bf Tips:} \ \ {\rm Sean} \ A, B \ge C \ {\rm conjuntos:}$

Leyes de Morgan	$\frac{\neg (p \lor q) \equiv \overline{p} \land \overline{q}}{(p \land q) \equiv \overline{p} \lor \overline{q}}$
Transitividad	$[(p \Rightarrow q) \land (q \Rightarrow r)] \equiv (p \Rightarrow r)$
Absorción	$[p \land (p \lor q)] \equiv p$ $[p \lor (p \land q)] \equiv p$
Identidad	$A \cap \mathcal{U} = A$
	$A \cap \varnothing = \varnothing$
	$A \cup \mathcal{U} = \mathcal{U}$
	$A \cup \varnothing = A$
Idempotencia	$A \cap A = A$
	$A \cup A = A$
Involución	$(A^c)^c = A$
Complemento	$A \cap A^c = \varnothing$
	$A \cup A^c = \mathcal{U}$
Conmutatividad	$A \cap B = B \cap A$
	$A \cup B = B \cup A$
Asociatividad	$A \cap (B \cap C) = (A \cap B) \cap C$
	$A \cup (B \cup C) = (A \cup B) \cup C$
Distributividad	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Leyes de Morgan	$(A \cap B)^c = A^c \cup B^c$
	$(A \cup B)^c = A^c \cap B^c$
Absorción	$A \cap (A \cup B) = A$
	$A \cup (A \cap B) = A$
Resta	$A - B = A \cap B^c$