FAMILIES OF VARIETIES OF GENERAL TYPE OVER COMPACT BASES

STEFAN KEBEKUS AND SÁNDOR J. KOVÁCS

1. Introduction

Let $f:X\to Y$ be a smooth family of canonically polarized complex varieties over a smooth base. Generalizing the classical Shafarevich hyperbolicity conjecture, Viehweg conjectured that Y is necessarily of log general type if the family has maximal variation. We refer to [KK05] for a precise formulation, for background and for details about these notions. A somewhat stronger and more precise version of Viehweg's conjecture was shown in [KK05] in the case where Y is a quasi-projective surface. Assuming that the minimal model program holds, this very short paper proves the same result for projective base manifolds Y of arbitrary dimension.

We recall the two relevant standard conjectures of higher dimensional algebraic geometry first.

Conjecture 1.1 (Minimal Model Program and Abundance for $\kappa = 0$). Let Y be a smooth projective variety such that $\kappa(Y) = 0$. Then there exists a birational map $\lambda : Y \dashrightarrow Y_{\lambda}$ such that the following holds.

- (1.1.1) Y_{λ} is \mathbb{Q} -factorial and has at worst terminal singularities.
- (1.1.2) There exists a number n such that $nK_{Y_{\lambda}}$ is trivial, i.e., $\mathcal{O}_{Y_{\lambda}}(nK_{Y_{\lambda}}) = \mathcal{O}_{Y_{\lambda}}$

Conjecture 1.2 (Abundance for $\kappa = -\infty$). Let Y be a smooth projective variety. If $\kappa(Y) = -\infty$, then Y is uniruled.

Remark 1.3. Conjectures 1.1 and 1.2 are known to hold for all varieties of dimension $\dim Y \leq 3$.

The main result of this paper is now the following, cf. [KK05, Conjecture 1.6].

Theorem 1.4. Let Y be a smooth projective variety and $f: X \to Y$ a smooth family of canonically polarized varieties. Assume that Conjectures 1.1 and 1.2 hold for all varieties F of dimension $\dim F \leq \dim Y$. Then the following holds.

- (1.4.1) If $\kappa(Y) = -\infty$, then $\operatorname{Var}(f) < \dim Y$.
- (1.4.2) If $\kappa(Y) \geq 0$, then $\operatorname{Var}(f) \leq \kappa(Y)$.

Remark 1.5. The argumentation of Section 2 actually shows a slightly stronger result. If $\kappa(Y) = -\infty$, it suffices to assume that Conjecture 1.2 holds for Y. If $\kappa(Y) \geq 0$, we need to assume that Conjecture 1.1 holds for all varieties F of dimension $\dim F = \dim Y - \kappa(Y)$.

See Theorem 3.1 below for further generalizations.

Theorem 1.4 and Remark 1.3 immediately imply the following.

Corollary 1.6. Viehweg's conjecture holds for smooth families of canonically polarized varieties over projective base manifolds of dimension ≤ 3 .

1

Date: February 1, 2008.

Stefan Kebekus was supported in part by the DFG-Forschergruppe "Classification of Algebraic Surfaces and Compact Complex Manifolds". Sándor Kovács was supported in part by NSF Grant DMS-0554697 and the Craig McKibben and Sarah Merner Endowed Professorship in Mathematics.

2. Proof of Theorem 1.4

- 2.A. The case where $\kappa(Y) = -\infty$. The assertion follows immediately from Conjecture 1.2 and from the fact that families of canonically polarized varieties over rational curves are necessarily isotrivial [Kov96, Thm. 1].
- 2.B. The case where $\kappa(Y) = 0$. In this case, we need to show that the family f is isotrivial. We argue by contradiction and assume that $\operatorname{Var}(f) \geq 1$. By [VZ02, Thm. 1.4.i], this implies that there exists a number n and an invertible subsheaf $\mathscr{A} \subset \operatorname{Sym}^n \Omega^1_Y$ of Kodaira-Iitaka dimension $\kappa(\mathscr{A}) \geq \operatorname{Var}(f) \geq 1$.

By assumption, there exists a birational map $\lambda: Y \dashrightarrow Y_{\lambda}$ as discussed in Conjecture 1.1. Resolving the indeterminacies of λ and pulling back the family f, we may assume without loss of generality that λ is a morphism, i.e., defined everywhere.

Let $C_\lambda\subset Y_\lambda$ be a general complete intersection curve. Then C_λ will avoid the singularities of Y_λ . In particular, the restriction $\Omega^1_{Y_\lambda}|_{C_\lambda}$ is a vector bundle of degree

(2.B.1)
$$\deg \Omega^1_{Y_{\lambda}}|_{C_{\lambda}} = K_{Y_{\lambda}} \cdot C_{\lambda} = 0.$$

Claim 2.1. The vector bundle $\Omega^1_{Y_\lambda}|_{C_\lambda}$ is not semi-stable.

Proof of Claim 2.1. Observe that the curve C_{λ} avoids the fundamental points of λ , and hence that λ is an isomorphism in a neighborhood of C_{λ} . Setting $C:=\lambda^{-1}(C_{\lambda})$, the morphism λ induces an isomorphism $\Omega^1_{Y_{\lambda}}|_{C_{\lambda}}\cong\Omega^1_{Y}|_{C}$. This shows that $\Omega^1_{Y_{\lambda}}|_{C_{\lambda}}$ cannot be semi-stable, for if it was, its symmetric product $\operatorname{Sym}^n\Omega^1_{Y_{\lambda}}|_{C_{\lambda}}$ would also be semistable of degree 0. However, this contradicts the existence of the subsheaf $\mathscr A$ whose restriction to C has positive degree.

To end the proof, observe that (2.B.1) and Claim 2.1 together imply that $\Omega^1_{Y_\lambda}|_{C_\lambda}$ has an invertible quotient of negative degree. In this setup, Miyaoka's uniruledness criterion, cf. [Miy87, Cor. 8.6], [KST07] or [KSC06, Chapt. 2.1], applies to show that Y is uniruled, contradicting the assumption that $\kappa(Y)=0$.

2.C. The case where $\kappa(Y) > 0$. In this case, consider the Iitaka fibration of Y, $i: Y' \to Z$. Since the Iitaka model is only determined birationally, we may assume that there exists a birational morphism $Y' \to Y$. Pulling the family $f: X \to Y$ back to Y', we may assume that Y' = Y, and hence we may assume that there exists a fibration $i: Y \to Z$ such that $\dim Z = \kappa(Y)$ and $\kappa(F) = 0$ for the general fiber F of i [Iit82, Thm. 11.8]. We have seen in Section 2.B that $f|_F$ is isotrivial and hence $\mathrm{Var}(f) \leq \dim Y - \dim F = \dim Z = \kappa(Y)$. This finishes the proof of Theorem 1.4.

3. Families of varieties of general type

Using [VZ02, Thm. 1.4.iii], the argumentation of Section 2 immediately gives the following, somewhat weaker, result for families of varieties of general type.

Theorem 3.1. Let Y be a smooth projective variety and $f: X \to Y$ a smooth family of varieties of general type of maximal variation, i.e., $Var(f) = \dim Y$. If Conjectures 1.1 and 1.2 hold for all varieties F of dimension $\dim F \leq \dim Y$, then Y is of general type.

REFERENCES

- [Iit82] S. IITAKA: Algebraic geometry, Graduate Texts in Mathematics, vol. 76, Springer-Verlag, New York, 1982, An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24, MR637060 (84i:14001)
- [KK05] S. KEBEKUS AND S. J. KOVÁCS: Families of canonically polarized varieties over surfaces, preprint math.AG/0511378, to appear in Invent. Math., November 2005.

- [KSC06] S. KEBEKUS AND L. SOLÁ CONDE: Existence of rational curves on algebraic varieties, minimal rational tangents, and applications, Global aspects of complex geometry, Springer, Berlin, 2006, pp. 359–416. MR2264116
- [KST07] S. KEBEKUS, L. SOLÁ CONDE, AND M. TOMA: Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), no. 1, 65–81.
- [Kov96] S. J. Kovács: Smooth families over rational and elliptic curves, J. Algebraic Geom. 5 (1996), no. 2, 369–385. MR1374712 (97c:14035)
- [Miy87] Y. MIYAOKA: Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 245–268. MR927960 (89e:14011)
- [VZ02] E. VIEHWEG AND K. ZUO: Base spaces of non-isotrivial families of smooth minimal models, Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 279–328. MR1922109 (2003h:14019)

Stefan Kebekus, Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany

E-mail address: stefan.kebekus@math.uni-koeln.de URL: http://www.mi.uni-koeln.de/~kebekus

SÁNDOR KOVÁCS, UNIVERSITY OF WASHINGTON, DEPARTMENT OF MATHEMATICS, BOX 354350, SEATTLE, WA 98195, U.S.A.

E-mail address: kovacs@math.washington.edu URL: http://www.math.washington.edu/~kovacs