| COL |      | AI |  |
|-----|------|----|--|
| GOL | _F B | AL |  |

Patent Number:

JP2002102390

Publication date:

2002-04-09

Inventor(s):

TAKEMURA KOHEI; YOKOTA MASATOSHI

Applicant(s):

SUMITOMO RUBBER IND LTD

**Requested Patent:** 

☐ JP2002102390

Application Number: JP20000304495 20001004

Priority Number(s):

IPC Classification:

A63B37/00; A63B37/12

**EC** Classification:

Equivalents:

# **Abstract**

PROBLEM TO BE SOLVED: To provide a golf ball which has excellent repulsion performance, cutting resistance and spin characteristics.

SOLUTION: The covers of the golf ball consisting of a core and the covers to cover this core consist of a composition having a thermoplastic resin and/or thermoplastic elastomer. The value (A) of the modulus of flexural rigidity (MPa) of the composition and the value (B) of the Shore D hardness on the surface in the state of coating the golf ball with the component satisfies the following relations: 950<=(25B-A) <=1,190 750<=A<=270.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-102390 (P2002-102390A)

(43)公開日 平成14年4月9日(2002.4.9)

(51) Int.Cl.<sup>7</sup>

(22)出願日

識別記号

FΙ

テーマコート\*(参考)

A 6 3 B 37/00 37/12

A 6 3 B 37/00 37/12 L

## 審査請求 未請求 請求項の数4 OL (全 8 頁)

(21)出願番号 特願2000-304495(P2000-304495)

平成12年10月4日(2000.10.4)

(71)出願人 000183233

住友ゴム工業株式会社

兵庫県神戸市中央区脇浜町3丁目6番9号

(72)発明者 竹村 光平

兵庫県神戸市中央区脇浜町3丁目6番9号

住友ゴム工業株式会社内

(72)発明者 横田 政利

兵庫県神戸市中央区脇浜町3丁目6番9号

住友ゴム工業株式会社内

(74)代理人 100064746

弁理士 深見 久郎 (外2名)

## (54)【発明の名称】 ゴルフボール

# (57)【要約】

【課題】 反発性能に優れ、耐カット性およびスピン特性に優れたゴルフボールを提供する。

【解決手段】 コアと、該コアを被覆するカバーからなるゴルフボールにおいて、前記カバーは熱可塑性樹脂および/または熱可塑性エラストマーを有する組成物であって、該組成物の曲げ剛性率(MPa)の値(A)と、該組成物をゴルフボールに被覆した状態での表面のショアD硬度の値(B)が次の関係を満たすことを特徴とする、ゴルフボール。

 $950 \le (25B-A) \le 1190$ 

 $7.0 \le A \le 2.7.0$ 

#### 【特許請求の範囲】

【請求項1】 コアと、該コアを被覆するカバーからなるゴルフボールにおいて、前記カバーは、熱可塑性樹脂および/または熱可塑性エラストマーを有する組成物であって、該組成物の曲げ剛性率(MPa)の値(A)と、該組成物をゴルフボールに被覆した状態での表面のショアD硬度の値(B)が次の関係を満たすことを特徴とする、ゴルフボール。

 $950 \le (25B-A) \le 1190$  $70 \le A \le 270$ 

【請求項2】 カバー用の組成物にはポリマー成分10 0重量部に対して、1~10重量部の有機短繊維が配合 されている請求項1記載のゴルフボール。

【請求項3】 熱可塑性エラストマーはスチレン系熱可塑性エラストマーである請求項1記載のゴルフボール。 【請求項4】 熱可塑性樹脂はアイオノマー樹脂である 請求項1記載のゴルフボール。

## 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は反発性能および耐力ット性を維持しながら、良好なスピン特性、すなわちアイアンクラブで打撃した際、スピン量がコントロールしやすいゴルフボールに関する。

#### [0002]

【従来の技術】一般に、液体センターに糸巻き層を形成し、これにバラタカバーを被覆したゴルフボールは打球感、コントロール性に優れていることから上級ゴルファーおよびプロゴルファーに広く使用されていた。しかし係るゴルフボールの構造は製造工程が複雑であることや、耐カット性に劣ることから、最近ではバラタカバーに代わる種々の軟質カバー材が提案されている。

【0003】たとえば、特開平10-179802号公報にはカバーの基材樹脂に、アイオノマー樹脂と、エボキシ基を含有するポリブタジエンブロックを有するスチレンーブタジエンースチレンブロック共重合体またはエポキシ基を含有するポリイソプレンブロック共重合体との2成分の加熱混合物を使用しており、そのカバー組成物の曲げ剛性率が50~300MPaで、かつショアD硬度は40~60であることを特徴とするゴルフボールが提案されている。かかる技術は打球感、スピン性能、飛行性能の改善を意図したものであるが耐カット性は改善の余地がある。

【0004】また特開平9-173504号公報には油 状物質を含有する固形ゴムセンターと軟質カバー材を用 いることにより、打球感を改善するとともにショートア イアンでのスピン量を増大させることが開示されてい る。しかしながら固形ゴムセンターの外側に耐油性ゴム や硬度の高いアイオノマー樹脂を用いているため、反発 性能および打球感になお改善の余地がある。 【0005】また、特開平10-137365号公報にはカバー材に熱可塑性樹脂または熱可塑性エラストマーを主材とし繊維状ホウ酸アルミニウムウイスカーを配合し、反発性、耐久性および耐カット性の改善を意図した技術が提案されている。しかしかかる技術は、上記繊維状ホウ酸アルミニウムウイスカーの配合によりカバー材の反発性能を低下することとなる。

## [0006]

【発明が解決しようとする課題】本発明は、耐カット性および反発性能とともにスピン性能を同時に改善するには、カバー材に曲げ剛性率が大きく、かつショアD硬度が低い樹脂またはエラストマーの組成物を用いることが必要であるとの知見に基づく。

【0007】従来のバラタ以外のカバー材として用いられていた樹脂組成物は、曲げ剛性率とショアD硬度はほぼ相関関係にあり、曲げ剛性率の増加とともにショアD硬度も増加する傾向にある。したがって曲げ剛性率を大きく、かつショアD硬度の低い材料を開発することが要請されていた。

【0008】本発明はたとえば有機短繊維で補強された樹脂および/またはエラストマーを用いることにより、曲げ剛性率 (曲げ方向の強度)は増加するが、ショアD硬度 (圧縮方向の強度)はあまり変化しない材料が得られることを発見した。有機短繊維で補強した樹脂材料は曲げ方向の補強効果を高め、かつ有機短繊維が微細であるため圧縮方向の補強効果は少ない。このように曲げ剛性率が大きく、ショアD硬度の低い樹脂および/またはエラストマー材料をカバーに用いることにより、ゴルフボール打撃時にカバーの変形は局所的となり、かつゴルフボールとクラブフェースの接触面積が大きくなることにより、摩擦係数が増加し、スピン性能は向上する。

【0009】一方、曲げ剛性率が大きく、ショアD硬度が高い場合は、局所的変形は起こらずゴルフボールとクラブフェースの接触面積が小さくなり、スピン性能が劣る。また曲げ剛性率が小さくショアD硬度が低い場合、変形が局所的でなくゴルフボール全体に及ぶため前記接触面積は大きくなりスピン性能は向上するが、変形量の増大に伴い反発性能の低下を招く。そこで、本発明は曲げ剛性率の値とショアD硬度の値の関係を一定範囲に規定することにより、スピン性能とともに耐カット性および反発性能を同時に改善したゴルフボールを提供することを目的とする。

## [0010]

【課題を解決するための手段】本発明はコアと、該コアを被覆するカバーからなるゴルフボールにおいて、前記カバーは、熱可塑性樹脂および/または熱可塑性エラストマーを有する組成物であって、該組成物の曲げ剛性率(MPa)の値(A)と、該組成物をゴルフボールに被覆した状態での表面のショアD硬度の値(B)が次の関係を満たすことを特徴とするゴルフボールである。

 $[0011] 950 \le (25B-A) \le 1190$  $70 \le A \le 270$ 

上記カバー組成物にはポリマー成分100重量部に対して、 $1\sim10$ 重量部の有機短繊維が配合されていることが好ましい。

【0012】さらに熱可塑性樹脂としてアイオノマー樹脂を用いることが好ましく、また熱可塑性エラストマーとしてスチレン系熱可塑性エラストマーを用いることが好ましい。

## [0013]

【発明の実施の形態】本発明は、コアと、該コアを被覆するカバーよりなるゴルフボールである。そして、カバーはポリマー成分として熱可塑性樹脂および/または熱可塑性エラストマーを主成分とする組成物である。

【OO14】そしてカバー用の組成物は、曲げ剛性率 (MPa)の値(A)と、該組成物をゴルフボールに被 覆した状態での表面のショアD硬度の値(B)がまず次の関係を満たすことが必要である。

【0015】950≦(25B-A)≦1190 ここで(25B-A)の値が1190を超えるとゴルフ ボールのスピン性能が劣り、一方950未満の場合、耐 カット性および反発性が劣ることになる。(25B-A)の値は好ましくは1050以上で1190以下、よ り好ましくは1145以上で1175以下である。

【0016】なお本発明のカバー材に用いられる組成物の曲げ剛性率の値(A)は70MPa以上で270MPa以下、好ましくは100MPa以上で250MPa以下、特に140MPa以上で190MPa以下である。【0017】曲げ剛性率の値(A)が70MPa未満の場合、耐カット性に劣り、一方270MPaを超えるとショアD硬度も相対的に高くなり、スピン量が減少し、打球感が硬くなる傾向がある。

【0018】ここで曲げ剛性率はカバー組成物を2mm 厚さの平板にプレス成形(ペレットを150℃で2分間 プレスしさらに冷却後20分間プレス)し、JIS K 7106に準拠して測定した。

【0019】またショアD硬度の値(B)は45以上で60以下の範囲で選定されることが望ましい。ショアD硬度が低すぎると耐カット性、反発性能が低下し、一方高すぎると打撃時に衝撃が大きくなって、打球感、スピン性能が低下する。ショアD硬度はより好ましくは45以上で55以下、特に50以上で55以下の範囲で選定される。

【0020】ここでショアD硬度はゴルフボール表面のディンプル以外の部分を、ASTMD-2240に準拠して測定した。測定は5回行ないその平均値をとった。【0021】本発明のカバー組成物のポリマー成分には熱可塑性エラストマー、好ましくはスチレン系熱可塑性エラストマーが使用されるが、そのほかウレタン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、

オレフィン系熱可塑性エラストマーおよびアミド系熱可 塑性エラストマー等が用いられる。

【0022】前記スチレン系熱可塑性エラストマーと は、分子内にソフトセグメントとハードセグメントを有 するブロック共重合体である。ソフトセグメントとして 共役ジエン化合物から得られる、たとえば、ブタジエン ブロックあるいはイソプレンブロック等の単位である。 ここで共役ジエン化合物としては、たとえばブタジエ ン、4ソプレン、1, 3-ペンタジエン、2, 3-ジメ チルー1,3ーブタジエン等の中から1種または2種以 上が選択でき、中でもブタジエン、イソプレンおよびこ れらの組合せが好ましい。ハードセグメントを構成する 成分としては、スチレンおよびその誘導体、たとえばα ーメチルスチレン、ビニルトルエン、p-第3ブチルス チレン、1,1-ジフェニルエチレン等の中から1種ま たは2種以上が選択された化合物から得られるスチレン ブロック等の単位である。特にスチレンブロック単位が 好適である。

【0023】具体的なスチレン系熱可塑性エラストマーとしては、たとえばスチレンーイソプレンーブタジエンースチレンブロック共重合体(SIBS構造)、スチレンーブタジエンースチレンブロック共重合体(SBS構造)、そのブタジエンの二重結合部分を水素添加したスチレンーエチレンーブチレンースチレンプロック共重合体(SEBS構造)、スチレンーイソプレンースチレンブロック共重合体(SIS構造)、そのイソプレン二重結合部分を水素添加したスチレンーエチレンープロピレンースチレンブロック共重合体(SEPS構造)、スチレンーエチレンーエチレンープロピレンースチレン共重合体(SEEPS構造)およびそれらを変性したもの等が挙げられる。

【0024】なお上記SIBS構造、SBS構造、SEBS構造、SEBS構造、SIS構造、SEPS構造、SEEPS構造におけるスチレン(またはその誘導体)の含量は共重合体中10~50重量%、特に15~45重量%の範囲が好ましい。10重量%より少ない場合、カバーは軟らかくなり耐カット性は低下する傾向にあり、一方50重量%より多い場合は、打球感およびコントロール性が充分維持できない。

【0025】本発明では、上記SIBS構造、SBS構造、SEBS構造、SIS構造、SEPS構造、SEE BS構造の共重合体の一部にエポキシ基、水酸基、酸無 水物、カルボキシル基から選択される官能基で変性され た変性体を使用できる。

【0026】たとえばエポキシ基を含有するポリブタジエンブロックを有するスチレンーブタジエンースチレンブロック共重合体(SBS構造)とは、両末端にポリスチレンを持つブロック共重合体で、その中間層がエポキシ基を含有するポリブタジエンであり、そのポリブタジエン部分の二重結合の一部または全部に水素添加したも

のであってもよく、また、エポキシ基を含有するポリイソプレンブロックを有するスチレンーイソプレンースチレンブロック共重合体(SIS構造)とは、両末端にポリスチレンを持つブロック共重合体で、その中間層がエポキシ基を含有するポリイソプレンであり、そのポリイソプレン部分の二重結合の一部または全部に水素添加したものであってもよい。

【0027】エポキシ化されたスチレン系熱可塑性エラストマーは、エポキシ基当量が200~3000の範囲のものが使用できる。かかるエポキシ化された熱可塑性エラストマーをアイオノマー樹脂等と混合する際、アイオノマー樹脂の遊離のカルボキシル基と反応が生じ、カバー組成物の強度は高くなり、耐カット性が一層改善される。エポキシ等量が200未満の場合、上記耐カット性の効果は少なく、一方、エポキシ基当量が3000より多い場合は、エポキシ基とアイオノマー樹脂中の遊離のカルボキシル基との反応量が多くなりすぎ、流動性が悪くなって、ボールの成形が困難になるおそれがある。水酸基、酸無水物およびカルボキシル基についても前記ブロック共重合体の分子鎖の中間部分または末端に導入される。

【0028】次に、本発明のカバー組成物はポリマー成分として、熱可塑性樹脂単独、または前記熱可塑性エラストマーと熱可塑性樹脂の混合物を使用できる。ここで熱可塑性樹脂はアイオノマー樹脂、ポレエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、メタクリル樹脂、ポリエチレンテレフタレート、ACS樹脂およびポリアミド等の汎用樹脂が含まれるが、特にアイオノマー樹脂が好ましい。

【0029】前記アイオノマー樹脂としては、たとえば  $\alpha$  ーオレフィンと炭素数 3 ~8 の $\alpha$  , $\beta$  -不飽和カルボン酸との共重合体であってそのカルボキシル基の少なくとも一部を金属イオンで中和して得られる二元共重合体、また $\alpha$  ーオレフィンと炭素数 3 ~8 の $\alpha$  , $\beta$  -不飽和カルボン酸と炭素数 2 ~2 2 の $\alpha$  , $\beta$  -不飽和カルボン酸エステルとの三元共重合体で、そのカルボキシル基の少なくとも一部を金属イオンで中和して得られるものが挙げられる。

【0030】そしてそれらの組成比としては、アイオノマー樹脂のベースポリマーが $\alpha$ ーオレフィンと炭素数3~8の $\alpha$ , $\beta$ -不飽和カルボン酸との二元共重合体の場合、 $\alpha$ -オレフィンが80~90重量%で、 $\alpha$ , $\beta$ -不飽和カルボン酸が10~20重量%であることが好ましい。ベースポリマーが $\alpha$ -オレフィンと炭素数3~8の $\alpha$ , $\beta$ -不飽和カルボン酸と炭素数2~22の $\alpha$ , $\beta$ -不飽和カルボン酸エステルとの三元共重合体の場合、 $\alpha$ -オレフィンが70~85重量%で、 $\alpha$ ,  $\beta$ -不飽和カルボン酸が5~30重量%で、 $\alpha$ ,  $\beta$ -不飽和カルボン酸エステルが10~25重量%であることが好ましい。またこれらのアイオノマー樹脂はメルトインデックス

(MI)が0.1~20、特に0.5~15であることが好ましい。カルボン酸含量またはカルボン酸エステル含量を上記範囲とすることにより反発性を高めることができる。

【0031】上記 $\alpha$ -オレフィンとしては、たとえばエチレン、プロピレン、1-ブテン、1-ペンテンなどが用いられ、特にエチレンが好ましい。炭素数 3~8の $\alpha$ ,  $\beta$ -不飽和カルボン酸としては、たとえばアクリル酸、メタクリル酸、フマル酸、マレイン酸、クロトン酸などが用いられ、特にアクリル酸、メタクリル酸が好ましい。また、不飽和カルボン酸エステルとしては、たとえば、アクリル酸、メタクリル酸、フマル酸、マレイン酸などのメチル、エチル、プロピル、n-ブチル、イソブチルエステルなどが用いられ、特にアクリル酸エステル、メタクリル酸エステルが好ましい。

【0032】上記αーオレフィンとα、βー不飽和カルボン酸との二元共重合体またはαーオレフィンとα、βー不飽和カルボン酸とα、βー不飽和カルボン酸エステルとの三元共重合体中のカルボキシル基の少なくとも一部を中和する金属イオンとしては、たとえば、ナトリウムイオン、リチウムイオン、亜鉛イオン、マグネシウムイオン、カリウムイオンなどがある。そして、アイオノマー樹脂が、エチレンとアクリル酸またはメタクリル酸との二元共重合体中のカルボキシル基の少なくとも一部を金属イオンで中和したものである場合は、そのメルトインデックスが3~7のハイフロータイプのものであることが好ましい。

【0033】上記アイオノマー樹脂の具体例を商品名で 例示すると、三井デュポンケミカル (株) から市販され ている二元共重合体のアイオノマー樹脂としてハイミラ ン1555 (Na)、ハイミラン1557 (Zn)、ハ イミラン1605 (Na)、ハイミラン1706 (Z n)、ハイミラン1707(Na)、ハイミランAM7 318 (Na)、ハイミランAM7315 (Zn)、ハ 1 (Mg)、ハイミランMK7320 (K) があり、ま た三元共重合体のアイオノマー樹脂として、ハイミラン 1856 (Na)、ハイミラン1855 (Zn)、ハイ ミランAM7316 (Zn) などがある。さらにデュポ ン社から市販されているアイオノマー樹脂としては、サ ーリン8945 (Na)、サーリン8940 (Na)、 サーリン8945 (Na)、サーリン9910 (Z n)、サーリン9945(Zn)、サーリン7930 (Li)、サーリン7940(Li)、三元共重合体系 アイオノマー樹脂として、サーリンAD8265 (N a)、サーリンAD8269(Na)などがある。 【0034】エクソン社から市販されているアイオノマ 一樹脂としては、アイオテック7010(Zn)、アイ オテック8000 (Na) などがある。 なお、上記アイ

オノマー樹脂の商品名の後に括弧内で記載したNa、Ζ

n、K、Li、Mgなどは、これらの中和金属イオンの金属種を示している。また、本発明において、カバーの組成物に用いられるアイオノマー樹脂は、上記例示のものを2種以上混合してもよいし、上記例示の1価の金属イオンで中和したアイオノマー樹脂と2価の金属イオンで中和したアイオノマー樹脂を2種以上混合して用いてもよい。

【0035】本発明では熱可塑性エラストマーにアイオノマー樹脂等の熱可塑性樹脂と混合することにより、カバー組成物に適度の剛性を付与し、良好な打撃感が得られる。特にアイオノマー樹脂を官能基変性のスチレン系熱可塑性エラストマー、またはウレタン系熱可塑性エラストマーと混合した場合、アイオノマー樹脂のカルボキシル基と上記変性官能基等との反応または相互作用によってカバー組成物の反発性能を維持しながら耐カット性を向上できる。ここで熱可塑性樹脂にアイオノマー樹脂を用いる場合、アイオノマー樹脂(R成分)と熱可塑性エラストマー(S成分)の混合比(S成分/R成分)は重量比で0.1~2.0、好ましくは0.2~1.5、特に0.3~1.2の範囲が好ましい。

【0036】さらにカバー材のポリマー成分(Q)に対して、上記S成分およびR成分は重量比で次の関係にあることが望ましい。

【0037】(S成分+R成分)/Q成分≥0.5 R成分は耐カット性、反発性能に寄与し、S成分はスピン性能に寄与する。したがってR成分およびS成分の合計がポリマー成分の50重量%未満の場合、これらの特性が維持できない。

【0038】さらに(R成分/Q成分)の値は0.3以上であることが望ましい。アイオノマー樹脂(R成分)を混合することにより、反発性能は向上する。但し、アイオノマー樹脂が多すぎると反面スピン性能に寄与する熱可塑性エラストマー等の成分が少なくなり、スピン性能が低下する。好ましくは(R成分/Q成分)は0.3~0.8、より好ましくは0.3~0.6、特に0.35~0.5の範囲とする。

【0039】本発明に使用される有機短繊維は、ナイロン繊維、アクリル繊維、ポリエステル繊維、アラミド繊維等が挙げられるが、反発性能を低下させることなく、耐カット性を向上するには、特にナイロン繊維またはケブラー繊維が好ましい。有機短繊維に変えて繊維状ホウ酸アルミニウムウイスカーのような無機短繊維を使用した場合、かかる無機短繊維とカバー基材との弾性率の差が大きく、ゴルフボール打撃時の無機短繊維が周囲のカバー基材の変形に追随できないため、両者の界面におけるエンルギーロスが生じ反発性能が低下する。一方有機短繊維の場合、カバー基材の弾性率と近いため、このようなエネルギーロスは生じない。

【0040】本発明において、有機短繊維を熱可塑性エラストマーに混合するには、両者の接着性を高めるた

め、たとえばアラミド(ケブラー)繊維を使用する場合、エポキシ樹脂、ホルマリンーレゾルシン樹脂などで表面処理して、上記熱可塑性エラストマーと混合した後、ペレット化する、いわゆるマスターバッチ法でおこなうことにより、有機短繊維と熱可塑性エラストマー等との親和性を高めることができる。

【0041】有機短繊維の長さは、5~1000μm、好ましくは10~500μmの範囲であり、直径は0.05~5μm、好ましくは0.1~1μmの範囲である。有機短繊維の長さが、上記範囲に満たない場合、曲げ方向の力に弱く、強度が上がらず、耐カット性が改善できない。また有機短繊維の直径が上記範囲に満たない場合、単に充填材として作用するにすぎない。一方、有機短繊維の長さおよび直径が上記範囲を超えると、カバー材料の粘度が上昇し、成形性を損なう。尚、本発明において有機短繊維とはパルプ状に細かく裁断した繊維を含む概念である。

【0042】カバー組成物に配合される、有機短繊維はポリマー成分100重量部に対して、1~10重量部の範囲である。1重量部未満の場合、有機短繊維の配合による効果は少なく、10重量部を超えるとカバー組成物の粘度が高くなり、成形性に悪くなり、割れやすくなる。好ましくは2~8重量部、特に3~6重量部の範囲である。有機短繊維の配合量を調整することにより(25B-A)の値を950~1190の範囲に調整し得る。

【0043】次に本発明では有機短繊維を予めポリマー に一定量混合して短繊維補強ポリマーとした後、カバー 組成物に混練することができる。この場合、有機短繊維 がカバー組成物に均一に分散混合され、耐カット性は一 層向上する。ここで、有機短繊維が混合されるポリマー としては、天然ゴム、ブタジエンゴム、スチレンブタジ エンゴム、NBR、EPDM、シリコンゴム、エピクロ ルヒドリンゴム等のゴムや低密度ポリエチレン等の樹脂 またはこれらの混合物が使用できる。短繊維補強ポリマ ー中の短繊維の配合量はポリマー成分100重量部に対 して、10~100重量部、好ましくは20~70重量 部の範囲に設定される。ここで混合されるポリマー成分 はカバー組成物のポリマー成分に含めて、カバー組成物 中の有機短繊維の配合量を設定するものとする。なおカ バー組成物中のポリマー成分とは、基材ポリマーとして のアイオノマー樹脂、熱可塑性エラストマーおよびゴム 等を意味し、有機短繊維は当該ポリマー成分に含まれな いものとする。

【0044】本発明のカバー組成物は、熱可塑性エラストマー、たとえばSBS構造、SIS構造等のスチレン系熱可塑性エラストマーまたはウレタン系熱可塑性エラストマーとアイオノマー樹脂等の熱可塑性樹脂に有機短繊維を所定量加えて、加熱混合することによって、所望のカバー組成物が得られる。加熱混合は、通常混練型二

軸押出機、バンバリー、ニーダーなどのインターナルミキサーを用い、たとえば、150~260℃で加熱混合することによって行なわれる。

【0045】また、本発明において、上記カバー組成物には、主成分としての上記樹脂の他に必要に応じて、硫酸バリウム等の充填剤や二酸化チタン等の着色剤や、その他の添加剤、たとえば分散剤、老化防止剤、紫外線吸収剤、光安定剤ならびに蛍光材料または蛍光増白剤等を、ゴルフボールカバーによる所望の特性が損なわれない範囲で配合してもよい。

【0046】本発明ではコアは糸巻き芯、あるいはツー ピースやスリーピースなどのソリッドボール用コアが使 用され、糸巻きボールあるいはソリッドボールのいずれ にも採用し得る。ソリッドボールのコアはゴム組成物の 架橋物で構成されるが、そのゴム組成物のゴム成分とし ては、シスー1,4-構造を有するブタジエンゴムを基 材とするのが適している。ただし、上記ブタジエンゴム の他にたとえば天然ゴム、スチレンブタジエンゴム、イ ソプレンゴム、クロロプレンゴム、ブチルゴム、エチレ ンプロピレンゴム、エチレンプロピレンジエンゴム、ア クリルニトリルゴムなどをゴム成分100重量部に対し て40重量部以下でブレンドしたものであってもよい。 【0047】前記ゴム組成物に用いられる架橋剤として はたとえばアクリル酸、メタクリル酸などの $\alpha$ ,  $\beta$ -エ チレン性不飽和カルボン酸と酸化亜鉛などの金属酸化物 とをゴム組成物の調製中に反応させてα,β-エチレン 性不飽和カルボン酸の金属塩にしたものや、たとえばア クリル酸亜鉛、メタアクリル酸亜鉛などのような $\alpha$ ,  $\beta$ ーエチレン性不飽和カルボン酸の金属塩、多官能モノマ N, N′ -フェニルビスマレイミド、イオウなど、 通常架橋剤として用いられるものが挙げられるが、特に  $\alpha$ ,  $\beta$  -エチレン性不飽和カルボン酸の金属塩、特に亜 鉛塩が好ましい。

【0048】たとえば $\alpha$ ,  $\beta$ -エチレン性不飽和カルボン酸の金属塩の場合、ゴム成分100重量部に対して20ないし40重量部が好ましく、一方 $\alpha$ ,  $\beta$ -エチレン性不飽和カルボン酸と金属酸化物とをゴム組成物の調製中に反応させる場合、 $\alpha$ ,  $\beta$ -エチレン性不飽和カルボン酸を $15\sim30$ 重量部と、該 $\alpha$ ,  $\beta$ -エチレン性不飽和カルボン酸を $15\sim30$ 重量部に対して酸化亜鉛などの金属酸化物を $15\sim35$ 重量部配合することが好ましい。

【0049】前記ゴム組成物で用いる充填剤としては、たとえば硫酸バリウム、炭酸カルシウム、クレー、酸化 亜鉛などの無機粉末の1種または2種以上を使用することができる。これらの充填剤の配合量はゴム成分100 重量部に対して5~50重量部の範囲が好ましい。

【0050】また、作業性の改善や硬度調整などの目的で軟化剤や液状ゴムなどを適宜配合してもよいし、また老化防止剤を適宜配合してもよい。

【0051】また架橋開始剤としては、たとえばジクミ

ルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサンなどの有機 過酸化物が用いられる。これらの架橋開始剤の配合量は ゴム成分100重量部に対して0.1~5重量部、特に 0.3~3重量部が好ましい。

【0052】本発明では前記コアは単一層もしくは比重、硬度等の特性の異なった複合層とすることもできる。この場合、コアの配合は上記配合の記述に限定されるものではない。

【0053】そして、コアの作製にあたっては、上述の配合材料をロール、ニーダー、バンバリなどを用いてミキシングし、金型を用いて加圧下で145℃~200℃、好ましくは150℃~175℃で10分~40分間加硫してコアを作製する。得られたコアはカバーとの密着をよくするため、表面に接着剤を塗布したりあるいは表面を粗面化してもよい。

【0054】ここで糸巻き芯およびソリッドコアの直径は36.8~41.4mm、好ましくは37.8~40.8mmの範囲で設計される。36.8mm未満ではカバー層が厚くなり反発性が低下し、一方41.4mmを越えると、カバー層が薄くなり成形が困難となる。

【0055】本発明ではカバーをコアに成形するには公知の方法を用いて行なうことができる。カバー組成物を予め半球殻状のハーフシェルに形成し、それを2枚用いてコアを包み、130~170℃で1~5分間加圧成形するか、または上記カバー組成物を直接コア上に射出成形してコアを包み込む方法を用いてもよい。カバーの厚さは0.7~3.0mm、好ましくは1.0~2.5mmである。0.7mmより小さいと繰返し打撃した場合にカバー割れが起こりやすくなる欠点を有し、3.0mmより大きいと打球感が悪くなる。さらに、カバー成形時、必要に応じてディンプルを多数表面上に形成する。本発明のゴルフボールは美観を高め、商品価値を上げるために、通常ペイント仕上げ、マーキングスタンプ等を施して市場に投入される。

【0056】なお、本発明ではカバーは1層とすることもできるが複数層のカバーとして構成することもできる。そして本発明のゴルフボールは、通常ボール直径42.67~43.00mmの範囲でボール重量45.00~45.93gの範囲に設計される。

[0057]

【実施例】実施例1~実施例3、比較例1~比較例7 (1) 糸巻きコアの作製

ブタジエンゴムを主成分とするコア用ゴム組成物を混練し、金型内で所定温度で所定時間、加熱プレスすることにより直径28mmのソリッドコアを作製した。さらに糸ゴムを前記コアに伸張状態で巻きつけ、直径40mmの糸巻きコアを作成した。

【0058】(2) カバー用組成物の調製表1に示すカバー用組成物を二軸混練押出機によりミキ

シングし、二軸押し出し機でシリンダー温度180℃で押し出した。押し出し温度は有機短繊維の融点以下であることが重要である。押出条件は、

スクリュー径: 45mm

スクリュー回転数:200rpm

スクリューL/D:35

であり、配合物は押出機のダイの位置で195~205 ℃に加熱された。

【0059】上記カバー用組成物を用いて半球殻状のハーフシェルを射出成形し、これを2枚用いて上記のコアを包み、金型内で150℃で2分間プレス熱圧縮成形し、冷却後、ゴルフボールを取り出した。その後、表面にペイントを塗装して、直径42.8mm重量45.4gを有するゴルフボールを作製した。

【0060】なおゴルフボールの特性評価は次の方法によって行なった。

#### (i) スピン性能(スピン保持率)

ツルーテンパー社製スイングロボットにサンドウェッジクラブを取付け、ゴルフボールをヘッドスピード20m/秒で打撃し、打撃されたゴルフボールに施したマーク

を連続写真撮影することによってスピン量を求めた。そして測定は通常のドライ条件とボールおよびクラブフェースを水で濡らしたウエット条件とで測定した。スピン保持率は(ウエット時のスピン量)/(ドライ時のスピン量)×100の値として定義される。数字が大きい程、優れていることを示す。

#### 【0061】(ii) 反発性能

45m/秒の速度で打ち出したステンレスの筒で前方に置いたゴルフボールを打ち、衝突前後の各物体の速度をレーザーで読み取り計算したものである。比較例1を100とした相対値を反発指数で表示している。数字が大きい程、優れていることを示す。

【0062】(iii) 耐力ット性

ピッチングウエッジで意図的にゴルフボールにカットが 生じるように打撃し、カットの大きさを5点法で評価し た。5点はほとんど無傷で、1点は傷が大きかったこと を示す。

[0063]

【表1】

| 重量部             |                         | 実施例     |         | 比較例     |       |       |      |       |              |       |          |
|-----------------|-------------------------|---------|---------|---------|-------|-------|------|-------|--------------|-------|----------|
|                 |                         | 1       | 2       | 3       | 1     | 2     | 3    | 4     | 5            | 6     | 7        |
| カバー組成物          | サーリン 9945 注 17          | 22.5    | 20      | 25      | 22. 5 | 20    | 25   | 50    | -            | _     | _        |
|                 | サーリン 8945 注2)           | 22. 5   | 20      | 25      | 22.5  | 20    | 25   | 50    | -            | -     | <u>-</u> |
|                 | HG252 注3)               | 27.5    | 18      | 50      | 27.5  | 18    | 50   |       | 70           | . –   | -        |
|                 | TP301 選4)               | 27.5    | 42      | -       | 27.5  | 42    | _    | _     | 30           | 85    | 85       |
|                 | 天然」。4                   | -       | -       |         |       | _     | -    |       | _            | 15    | 15       |
|                 | 短機維補強制 17- 注5)          | 10(3.3) | 10(3.3) | 20(6.6) | -     | -     | -    | -     | -            | _     | 10 (3.3) |
|                 | 酸化粉ン 注 6)               | 4       | 4       | 4       | 4     | 4     | 4    | 4     | 4            | 4     | 4        |
|                 | 硫酸パリウム 注7)              | 4       | 4       | 4       | 4     | 4     | 4    | 4     | 4            | 4     | 4        |
|                 | 色粉                      | 0.2     | 0. 2    | 0. 2    | 0.2   | 0.2   | 0. 2 | 0. 2  | 0.2          | 0. 2  | 0.2      |
|                 | 全ポリマー量(Q)               | 106.7   | 106. 7  | 113.4   | 100   | 100   | 100  | 100   | 100          | 100   | 106.7    |
|                 | 短繊維の量(Y)                | 3. 3    | 3. 3    | 6.6     | _     |       | ŀ    |       | -            | -     | 3.3      |
|                 | 7/オ/マ-樹脂/全ボリマ-(R/Q) ※   | 0.42    | 0.37    | 0.44    | 0.45  | 0.40  | 0. 5 | 1.0   | -            |       | -        |
|                 | 熱可塑性エラストマー/全ポリマー(S/Q) ※ | 0. 258  | 0.169   | 0.44    | 0.275 | 0. 18 | 0. 5 | -     | 0.7          | _     | _        |
|                 | 短城维/全术 リマー(Y/Q) ※       | 0. 031  | 0. 031  | 0. 058  | -     | _     |      |       | <del>-</del> | -     | 0.031    |
| た 整             | ショ7 D 硬度 (B)            | 54      | 53      | 52      | 55    | 56    | 54   | 65    | 41           | 53    | 52       |
|                 | 曲げ剛性率(A)MPa             | 175     | 180     | 143     | 163   | 176   | 143  | 187   | 121          | 204   | 134      |
|                 | (25B-A)                 | 1175    | 1145    | 1157    | 1212  | 1224  | 1207 | 1438  | 904          | 1121  | 1166     |
| ボ<br>ー 特<br>ル 性 | スピン性能                   | 63. 3   | 65. 1   | 65. 2   | 56.5  | 56.46 | 61.4 | 40. 2 | 66. 2        | 73. 5 | 68.0     |
|                 | 耐かた性                    | 4       | 4       | 5       | 5     | 4     | 5    | 5     | 1            | 1     | 2        |
|                 | 反発指数                    | 101     | 102     | 104     | 100   | 100   | 103  | 105   | 96           | 102   | 97       |

※重量比で示す

【0064】注1)サーリン9945: 亜鉛イオン中和 エチレンーメタクリル酸共重合体系アイオノマー樹脂、 MI=5.2

注2) サーリン8945: ナトリウムイオン中和エチレンーメタクリル酸共重合体系アイオノマー樹脂、MI=4.8

注3) HG252: クラレ社製の熱可塑性エラストマー (SEPS)

注4) TP301: クラレ社製のトランスポリイソプレンゴム

注5) LA1060: 宇部興産社製のナイロン短繊維補強天然ゴム天然ゴム/低密度ポリエチレン/ナイロン6短繊維=100/75/87(重量比率): 有機短繊維の直径; 0.2μm 括弧内は有機短繊維の配合量を示す。

注6)石原産業社製の酸化チタンA220

注7) 堺化学社製の硫酸バリウム BMH

注8)比較例6、7には硫黄が2重量部、加硫促進剤 (大内新興化学社製、ノクセラーM(メルカプトベンゾ チアゾール)が1重量部配合されている。 【0065】表1に実施例1~実施例3、および比較例1~比較例7のゴルフボールの測定結果を示す。

【0066】比較例1~比較例6は、熱可塑性エラストマー等のポリマー成分に有機短繊維を配合しないカバー組成物で(25B-A)の値が950~1190から外れており、スピン性能または耐カット性のいずれかが劣っている。

【0067】比較例7はポリマー成分としてアイオノマー樹脂等の熱可塑性樹脂以外のものに有機短繊維を配合したカバー組成物を用いており、耐カット性が劣っている。

【0068】実施例1~実施例3は有機短繊維補強ゴムを配合したカバー組成物で(25B-A)の値、Aの値がいずれも所定の範囲に設定されているため、反発性能、耐カット性およびスピン性能が総合的に優れている。

【0069】今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

### [0070]

【発明の効果】本発明のゴルフボールは、カバー組成物のポリマー成分に熱可塑性エラストマーおよび/または熱可塑性樹脂をポリマー成分として用い、これに有機短繊維を所定量配合することにより曲げ剛性率とショアD 硬度を所定の関係を満たすように設定したため、反発性能を維持しながら、ラフからのアイアンによる打球時にスピン量がかかりやすく、さらに耐カット性に優れたゴルフボールが得られる。