3-TERMINAL 1A POSITIVE ADJUSTABLE REGULATOR

This monolithic integrated circuit is an adjustable 3—terminal positive voltage regulator designed to supply more than 1.5A of load current with an output voltage adjustable over a 1.2 to 37V. It employs internal current limiting, thermal shut—down and safe area compensation.

FEATURES

- ♦ Output current in Excess of 1.5A
- ♦ Output Adjustable Between 1.2V and 37V
- ♦ Internal Thermal—Overload Protection
- ♦ Internal Short-Circuit Current-Limiting
- ◇ Output Transistor Safe—Area Compensation

ORDERING INFORMATION

Device	Package	Operating Temperature
LM317_	TO-220	0℃ ~ 125℃

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T_A=25℃, unless otherwise specified)

Characteristic	Symbol	Value	Unit	
Input-output Voltage Differential	Vı—Vo	40	V	
Lead Temperature	TLEAD	230	C	
Power Dissipation	Po	Internally limited	_	
Operating Temperature Range	Topr	0 ~ +125	${\mathbb C}$	
Storage Temperature Range	Тята	−65 ~ +125	C	

ELECTRICAL CHARACTERISTICS

(V_I-V_O=5V, I_O=0.5A, $0\% \le T_J \le 125\%$, I_{MAX}=1.5A, P_{MAX}=20W, unless otherwise specified)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit
Line Regulation	△Vo	$T_A = 0 \sim 125 ^{\circ}\text{C} _{3V \leq V_1 - V_0 \leq 40V}$		0.01	0.04	%/V
		$3V \le V_1 - V_0 \le 40V$		0.02	0.07	%/V
Load Regulation		$T_A=25^{\circ}\text{C}$, $10^{\circ}\text{MA} \leq \text{Io} \leq \text{I}_{\text{MAX}}$				
		Vo≤6V		18	25	mV
	△Vo	Vo≥5V		0.4	0.5	%/Vo
		$10\mathrm{mA} \leq 10 \leq 10\mathrm{MAX}$				
		Vo≤5V		40	70	mV
		Vo≥5V		0.8	1.5	%/Vo
Adjustable Pin Current	ladj			46	100	μA
Adjustable Pin Current		$3V \le V_1 - V_0 \le 40V$				
Change	△ladj	$10\text{mA} \leq 10 \leq 1_{\text{MAX}}$		2.0	5	μA
		$P \leq P_{MAX}$				
Reference Voltage		3V≤VIN-VOUT≤40V				
	VREF	$10\text{mA} \leq 10 \leq 1_{\text{MAX}}$	1.20	1.25	1.30	V
		$P_D \leq P_{MAX}$				
Temperature Stability	STT			0.7		%/Vo
Minimum Load Current to Maintain Regulation	L(MIN)	V _I -V _O =40V		3.5	10	mA
Maximum Output Current	IO(MAX)	V _I -V _O ≤15V, P _D ≤P _{MAX}	1.5	2.2	100	Α
Waxiiiaiii Gatpat Gaireitt	(,	$V_1 - V_0 \le 40V$, $P_0 \le P_{MAX}$, $T_{A=25}$ °C	0.156	0.4		
RMS Noise, % of Vout	еи	T _A =25°C, 10Hz≤f≤10KHz		0.003	0.01	%/Vo
Ripple Rejection		Vo=10V, f=120Hz				
	RR	without CADJ		60		dB
		$C_{ADJ}=10 \mu F$	66	75		
Long-Term Stability,	ST	T _A =25℃, for end point		0.3	1	%
TJ=THIGH		measurements, 1000HR				
Thermal Resistance	Rejc			5		°CW
Junction to Case						

^{*} Load and line regulation are specified at constant junction temperature. Change in ∀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.(PMAX=20W)

For more information, or to purchase call 1-800-214-8769

TYPICAL APPLICATIONS

Fig.5 Programmable Regulator

 C_1 is required when regulator is located in appreciable distance from power supply filter. Co is not needed for stability, however, it does improve transient response. Since I_{ADJ} is controlled to less than 100μ A, the error associated with this term is negligible in most applications.