

BEE Experiments Record.

12. STUDY OF MODULATION & DEMODULATION TECHNIQUES

- * PRE LAB QUESTIONS -----
- 1) What is meant by modulation and demodulation in communication?
- → 1> Modulation is the process of influencing data information on the carrier, while demodulation is the recovery of original information at the distant end from the carrier.
 - A modern is an equipment that performs both modulation and demodulation.
- ② What is modulation and what is the purpose of it?

 → 1) The primary purpose of modulation in a communication system is to generate a modulated signal suited to the characteristics of a transmission
 - 2) In radio communications, modulation is needed in the transmission systems to transfer the message into the available high frequency radio channel.
- 3 what is the difference between a modern and a router?
- → The key differences between a modern and a router are as follows:
 - 1) A modern is a device that modulates an analog signal to translate digital information, whereas routers are computer networking devices that manage the data entering and leaving the network as well as data moving inside of

1 1	-	1000	1.1	. 7 - 10	1.
t	ne	h	et	Wor	K

- 2) A modern operates on the datalink layer, while router can be operated at the data-link layer, network layer and physical layer.
- 3\ Modern does not help to examine the data packet whereas router examines all data packets before forwarding it.
- it connects your computer to the ISP and router is used to access the internet without using a modern.

19 Compare AM and FM.

Modulating

\longrightarrow	o o si soldolubos	de secorde urba	and the only
ile.	PARAMETERS	MA dener	FM
nen	ord o to epitel	redaprode and cot	botios
1.	Full form	Amplitude modula-	Frequency modulat-
oloas	modulation is no	tion.	
.ant	t reference t	nansmission system	t edt
2.	Origin	AM method of	FM radio was dev-
		audio transmission	
		was successfully	
bap	week a modern	carried out in the	
		mid - 1870s.	Edwin Armstrong.
ba	need a modern o	differences bette	vost satte in
3.	Constant	The Frequency and	The amplitude and
00	Parameters	phase remain the	phase remain the
19/10	a acidomeroda) le	same.	

In AM, radio wave In FM, a radio

differences is known as the wave is known as

一				
			"carrier" or "carrier	the "carrier" or
4	sh-	ban well to show	wave" is modulated	"carrier wave" is mod-
-		Participant of a	in amplitude by	ulated in Frequency
4			the signal that is	by the signal that
-	-		to be transmitted	is to be transmitted.
-				W Child I was
-	5.	Frequency range	AM radio ranges	FM radio ranges from
4		308405	from 535 to 1700	in higher spectrum
-		386	KHz or upto 1000	From 88.1 to 108.1
4		TRANSMITTER	bits per second.	MHz or upto 1200 to
		2005	14813	2400 bits per second.
1		MCTTASTMUMMOD		Baton
	G.	Bandwidth (BW)	BW is much less	BW is large. Hence
		tonella lonella	than FM.	a wide channel is
		MONBUTANSA	BW = 2.fm	required.
		166 - 100 - 100	paedwire in the same	$BW = 2 \times (6 + fm)$
		DESTINATION		
	7.	zero crossings in	Equidistant	Not equidistant.
		modulating signal	4	TARREST A
	tot	board has as	tolubera translib	and the second
1	8.	Efficiency	Power is wasted	All transmitted po-
			in transmitting the	wer is useful so
			carrier.	that's why FM is
		withhistory to a	sayt tages lib git	very efficient.
		an am sitoly	none to amount the	- Caile
	9.	Number of	The number of	The number of side-
		sidebands	sidebands are con-	bands having signi-
			stant and equal	ficant amplitude
			to 2.	depends upon the modulation indexe
				modulation index

11				
	*	AIM ==>		
	* 9	To study the different modulation and demodu-		
	real	lation techniques.		
	to	uppe salt us statout invoic out		
	☆	DIAGRAM ==>		
	OND	INFORMATION		
	0.99	SOURCE SOURCE		
		Message		
		TRANSMITTER		
	701	Signal		
		NOISE COMMUNICATION		
9	H	SOURCE SOURCE CHANNEL		
	drift	Received Signal		
		RECEIVER RECEIVER		
-	m7	Message		
		DESTINATION		
-	NDJ	F zero crossings in Equidictant Not equidic		
	A	RESULT => India partolibera		
		Thus, different modulation and demodulation		
	034	techniques are studied.		
	4,35	as as you sait painting on a see is use		
	*	POST - LAB QUESTIONS ===>		
	0	The street of the modulation:		
	\rightarrow	modulation are as follows:		
1		· ANALOG MODULATION :		
-	Dri	1) Amplitude modulation.		
-	dela	27 Frequency modulation.		
-	300	3) Phase modulation		
-	013	stord outbook		

- · DIGITAL MODULATION:
- 1) Amplitude Shift-keying.
- 2> Frequency Shift keying.
- 3) Phase Shift-keying.
- 2 Which type of modulation is used in television?
- -> 1> All analog television systems use vestigial modulation, a form of amplitude modulation in which one sideband is partially removed.
 - 27 This reduces the bandwidth of the transmitted signal, enabling narrower channels to be used.
- What is PPM modulation?
- 1> Pulse-position modulation (PPM) is a form of signal modulation in which 'M' message bits are encoded by transmitting a single pulse in one of 2^m possible required time shifts.
 - 2) This is repeated every 'T' seconds, such that the transmitted bit-rate is M/T bits per second.
 - 31 It is primarily useful for optical communications systems, which tend to have little or no multipath interference.
- What are NTSC and PAL?
- 17 NTSC and PAL are video standards that are recorded on the cassette. These videos send an electronic signal to the television, then only it can be viewed.

 - 2) In India, PAL video format is supported.

 3) NTSC is the video standard commonly used in North America and most of South America.

- of the European and Asian countries.
- transmission of number of frames per second.

 In NTSC, 30 frames are transmitted per second.

 Each frame is constituted up of 525 lines.
- Each frame consists of 625 scan lines.
- (5) What is PWM modulation?
- → 1> Pulse width modulation (PWM) is a method of reducing the average power delivered by an electrical signal, by effectively chopping it upto into discrete parts.
 - 27 The average value of voltage and current fed to the load is controlled by turning the switch between supply and load, on and off at a fast rate.
 - 31 The longer the switch is on compared to the off periods, the higher the total power supplied to the load.
 - 10ads such as motors, which are not as easily affected by this discrete switching, because their inertia causes them to react slowly.