1 The population total, population mean, and population variance of a population characteristic

Let $n, N \in \mathbb{N}$, with $n \leq N$. Let $\mathcal{U} = \{1, 2, \dots, N\}$, which represents the finite population, or universe, of N elements.

Definition 1.1 A population characteristic is an \mathbb{R} -valued function $y: \mathcal{U} \longrightarrow \mathbb{R}$ defined on the population \mathcal{U} . We denote the value of y evaluated at $i \in \mathcal{U}$ by y_i . The population total, denoted by t, of y is defined:

$$t := \sum_{i=1}^{N} y_i \in \mathbb{R}.$$

The population mean, denoted by \overline{y} , of y is defined by:

$$\overline{y} := \frac{1}{N} \sum_{i=1}^{N} y_i \in \mathbb{R}.$$

The population variance, denoted by S^2 , of y is defined by:

$$S^2 := \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})^2 = \frac{1}{N-1} \left\{ \left(\sum_{i=1}^{N} y_i^2 \right) - N \cdot \overline{y}^2 \right\} \in \mathbb{R}.$$

In survey sampling, we seek to estimate population total t and population mean \overline{y} of a population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$ by making observations of values of y on only a (usually proper) subset of \mathcal{U} , and extrapolate from these observations. The subset on which observations of values of y are made is called a *sample*.

2 Simple Random Sampling (SRS)

Definition 2.1 Let \mathcal{U} be a nonempty finite set, $N := \#(\mathcal{U}) \in \mathbb{N}$, and let $n \in \{1, 2, ..., N\}$ be given. We define the probability space $\Omega_{SRS}(\mathcal{U}, n)$ as follows: Let $\Omega(\mathcal{U}, n)$ be the set of all subsets of \mathcal{U} with n elements, i.e.

$$\Omega(\mathcal{U}, n) := \{ \omega \subset \mathcal{U} \mid \#(\omega) = n \}.$$

Note that $\#(\Omega(\mathcal{U},n)) = \binom{N}{n}$. Let $\mathcal{P}(\Omega(\mathcal{U},n))$ be the power set of $\Omega(\mathcal{U},n)$. Define $\mu: \Omega \longrightarrow \mathbb{R}$ to be the "uniform" probability measure on the (finite) σ -algebra $\mathcal{P}(\Omega(\mathcal{U},n))$ determined by:

$$\mu(\omega) = \frac{1}{\binom{N}{n}} = \frac{n!(N-n)!}{N!}, \text{ for each } \omega \in \Omega(\mathcal{U}, n).$$

Then, $\Omega_{SRS}(\mathcal{U}, n)$ is defined to be the probability space ($\Omega(\mathcal{U}, n)$, $\mathcal{P}(\Omega(\mathcal{U}, n))$, μ).

Definition 2.2 The simple-random-sampling sample total \hat{t}_{SRS} of the population characteristic y is, by definition, the random variable $\hat{t}_{SRS}: \Omega_{SRS}(\mathcal{U}, n) \longrightarrow \mathbb{R}$ defined by

$$\widehat{t}_{SRS}(\omega) := \frac{N}{n} \sum_{i \in \omega} y_i, \text{ for each } \omega \in \Omega.$$

The simple-random-sampling sample mean $\widehat{\overline{y}}_{SRS}$ of the population characteristic y is, by definition, the random variable $\widehat{\overline{y}}_{SRS}: \Omega_{SRS}(\mathcal{U}, n) \longrightarrow \mathbb{R}$ defined by

$$\widehat{\overline{y}}_{SRS}(\omega) := \frac{1}{n} \sum_{i \in \omega} y_i$$
, for each $\omega \in \Omega$.

The simple-random-sampling sample variance $\hat{s^2}_{SRS}$ of the population characteristic y is, by definition, the random variable $\hat{s^2}_{SRS}: \Omega_{SRS}(\mathcal{U}, n) \longrightarrow \mathbb{R}$ defined by

$$\widehat{s^2}_{\mathrm{SRS}}(\omega) \; := \; \frac{1}{n-1} \sum_{i \in \omega} \left(y_i - \widehat{\overline{y}}_{\mathrm{SRS}}(\omega) \right)^2 \;, \quad \text{for each } \; \omega \in \Omega.$$

September 14, 2014

Proposition 2.3

- 1. $\widehat{\overline{y}}_{SRS}$ is an unbiased estimator of the population mean \overline{y} , and $Var\left[\widehat{\overline{y}}_{SRS}\right] = \left(1 \frac{n}{N}\right) \frac{S^2}{n}$.
- 2. \hat{t}_{SRS} is an unbiased estimator of the population total t, and $Var\left[\hat{t}_{SRS}\right] = N^2\left(1 \frac{n}{N}\right)\frac{S^2}{n}$.
- 3. \hat{s}^2_{SRS} is an unbiased estimator of the population variance S^2 .
- 4. $\widehat{\operatorname{Var}}\left[\widehat{\overline{y}}_{\operatorname{SRS}}\right] := \left(1 \frac{n}{N}\right) \frac{\widehat{s^2}_{\operatorname{SRS}}}{n}$ is an unbiased estimator of $\operatorname{Var}\left[\widehat{\overline{y}}_{\operatorname{SRS}}\right]$.
- 5. $\widehat{\operatorname{Var}}\left[\widehat{t}_{SRS}\right] := N^2 \left(1 \frac{n}{N}\right) \frac{\widehat{s}^2_{SRS}}{n}$ is an unbiased estimator of $\operatorname{Var}\left[\widehat{t}_{SRS}\right]$.

A quote from Lohr [3], p.37: $H\'{a}jek$ [2] proves a central limit theorem for simple random sampling without replacement. In practical terms, $H\'{a}jek$'s theorem says that if certain technical conditions hold, and if n, N, and N-n are all "sufficiently large," then the sampling distribution of

$$\frac{\widehat{\overline{y}}_{SRS} - \overline{y}}{\sqrt{\left(1 - \frac{n}{N}\right) \frac{S^2}{n}}}$$

is "approximately" normal (Gaussian) with mean 0 and variance 1.

Corollary 2.4 (to Hájek's theorem) For a simple random sampling procedure, an approximate $(1-\alpha)$ -confidence interval, $0 < \alpha < 1$, for the population mean \overline{y} is given by:

$$\widehat{\overline{y}}_{SRS} \pm z_{\alpha/2} \cdot \sqrt{\left(1 - \frac{n}{N}\right) \frac{S^2}{n}}$$

For sufficiently large samples, the above approximate confidence interval can itself be estimated from observations by:

$$\widehat{\overline{y}}_{SRS} \pm SE \left[\widehat{\overline{y}}_{SRS} \right] = \widehat{\overline{y}}_{SRS} \pm \sqrt{\left(1 - \frac{n}{N}\right) \frac{\widehat{s}^2_{SRS}}{n}}$$

where

$$\mathrm{SE}\left[\,\widehat{\overline{y}}_{\mathrm{SRS}}\,\right] \;\;:=\;\; \sqrt{\widehat{\mathrm{Var}}\left[\,\widehat{\overline{y}}_{\mathrm{SRS}}\,\right]} \;\;=\;\; \sqrt{\left(1-\frac{n}{N}\right)\frac{\widehat{s^2}_{\mathrm{SRS}}}{n}}$$

In order to prove Proposition 2.3, we introduce some auxiliary random variables:

Definition 2.5 Let $n, N \in \mathbb{N}$, with n < N, $\mathcal{U} := \{1, 2, ..., N\}$, and $\Omega := \{\omega \subset \mathcal{U} \mid \#(\omega) = n\}$. For each $i \in \mathcal{U} = \{1, 2, ..., N\}$, we define the random variable $Z_i : \Omega \longrightarrow \{0, 1\}$ as follows:

$$Z_i(\omega) = \begin{cases} 1, & \text{if } i \in \omega, \\ 0, & \text{if } i \notin \omega \end{cases}$$
.

Immediate observations:

• $\hat{t}_{SRS} = \frac{N}{n} \sum_{i=1}^{N} Z_i y_i$, as random variables on (Ω, P) , i.e.

$$\hat{t}_{SRS}(\omega) = \frac{N}{n} \sum_{i=1}^{N} Z_i(\omega) y_i, \text{ for each } \omega \in \Omega.$$

• $\widehat{\overline{y}}_{SRS} = \frac{1}{n} \sum_{i=1}^{N} Z_i y_i$, as random variables on (Ω, P) , i.e.

$$\widehat{\overline{y}}_{SRS}(\omega) = \frac{1}{n} \sum_{i=1}^{N} Z_i(\omega) y_i$$
, for each $\omega \in \Omega$.

• $E[Z_i] = \frac{n}{N}$. Indeed,

$$E[\ Z_i\] = 1 \cdot P(Z_i = 1) + 0 \cdot P(Z_i = 0) = P(Z_i = 1) = \frac{\text{number of samples containing } i}{\text{number of all possible samples}} = \frac{\left(\begin{array}{c} N-1 \\ n-1 \end{array} \right)}{\left(\begin{array}{c} N \\ n \end{array} \right)} = \frac{n}{N}$$

• $Z_i^2 = Z_i$, since range $(Z_i) = \{0, 1\}$. Consequently,

$$E[Z_i^2] = E[Z_i] = \frac{n}{N}.$$

• Var[Z_i] = $\frac{n}{N} \left(1 - \frac{n}{N}\right)$. Indeed,

$$\operatorname{Var}[Z_{i}] := E\left[\left(Z_{i} - E[Z_{i}]\right)^{2}\right] = E\left[Z_{i}^{2}\right] - \left(E[Z_{i}]\right)^{2}$$

$$= E[Z_{i}] - \left(\frac{n}{N}\right)^{2} = \frac{n}{N} - \left(\frac{n}{N}\right)^{2}$$

$$= \frac{n}{N}\left(1 - \frac{n}{N}\right).$$

• For $i \neq j$, we have $E[Z_i \cdot Z_j] = \left(\frac{n-1}{N-1}\right) \cdot \left(\frac{n}{N}\right)$. Indeed,

$$E[Z_i \cdot Z_j] = 1 \cdot P(Z_i = 1 \text{ and } Z_j = 1) + 0 \cdot P(Z_i = 0 \text{ or } Z_j = 0)$$

$$= P(Z_i = 1 \text{ and } Z_j = 1) = P(Z_j = 1 | Z_i = 1) \cdot P(Z_i = 1)$$

$$= \left(\frac{n-1}{N-1}\right) \cdot \left(\frac{n}{N}\right)$$

• For $i \neq j$, we have $\operatorname{Cov}(Z_i, Z_j) = -\frac{1}{N-1} \left(1 - \frac{n}{N}\right) \left(\frac{n}{N}\right) \leq 0$. Indeed,

$$\operatorname{Cov}(Z_{i}, Z_{j}) := E[(Z_{i} - E[Z_{i}]) \cdot (Z_{j} - E[Z_{j}])] = E[Z_{i} Z_{j}] - E[Z_{i}] \cdot E[Z_{j}]$$

$$= \left(\frac{n-1}{N-1}\right) \cdot \left(\frac{n}{N}\right) - \left(\frac{n}{N}\right)^{2} = \frac{n}{N} \left(\frac{nN-N-nN+n}{N(N-1)}\right)$$

$$= -\frac{1}{N-1} \left(1 - \frac{n}{N}\right) \left(\frac{n}{N}\right)$$

Proof of Proposition 2.3

1.

$$E\left[\,\widehat{\overline{y}}_{\text{SRS}}\,\right] \ = \ E\left[\,\frac{1}{n}\sum_{i=1}^{N}Z_{i}\,y_{i}\,\right] \ = \ \frac{1}{n}\sum_{i=1}^{N}E[\,Z_{i}\,]\cdot y_{i} \ = \ \frac{1}{n}\sum_{i=1}^{N}\left(\frac{n}{N}\right)\cdot y_{i} \ = \ \frac{1}{N}\sum_{i=1}^{N}y_{i} \ =: \ \overline{y}.$$

September 14, 2014

$$\begin{aligned} & \operatorname{Var} \left[\frac{\hat{y}}{\hat{y}_{SRS}} \right] &= \operatorname{Var} \left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} y_{i} \right] = \frac{1}{n^{2}} \operatorname{Var} \left[\sum_{i=1}^{N} Z_{i} y_{i} \right] = \frac{1}{n^{2}} \operatorname{Cov} \left[\sum_{i=1}^{N} Z_{i} y_{i}, \sum_{j=1}^{N} Z_{j} y_{j} \right] \\ &= \frac{1}{n^{2}} \left\{ \sum_{i=1}^{N} y_{i}^{2} \operatorname{Var}(Z_{i}) + \sum_{i=1}^{N} \sum_{i \neq j=1}^{N} y_{i} y_{j} \operatorname{Cov}(Z_{i}, Z_{j}) \right\} \\ &= \frac{1}{n^{2}} \left\{ \sum_{i=1}^{N} y_{i}^{2} \frac{n}{N} \left(1 - \frac{n}{N} \right) - \sum_{i=1}^{N} \sum_{i \neq j=1}^{N} y_{i} y_{j} \frac{1}{N-1} \left(1 - \frac{n}{N} \right) \left(\frac{n}{N} \right) \right\} \\ &= \frac{1}{n^{2}} \frac{n}{N} \left(1 - \frac{n}{N} \right) \left\{ \sum_{i=1}^{N} y_{i}^{2} - \frac{1}{N-1} \sum_{i=1}^{N} \sum_{i \neq j=1}^{N} y_{i} y_{j} \right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N} \right) \frac{1}{N(N-1)} \left\{ (N-1) \sum_{i=1}^{N} y_{i}^{2} - \sum_{i=1}^{N} \sum_{j \neq j=1}^{N} y_{i} y_{j} + \sum_{i=1}^{N} y_{i}^{2} \right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N} \right) \frac{1}{N(N-1)} \left\{ N \sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i} \right) \left(\sum_{j=1}^{N} y_{j} \right) \right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N} \right) \frac{1}{N-1} \left\{ \sum_{i=1}^{N} y_{i}^{2} - N \left(\frac{1}{N} \sum_{i=1}^{N} y_{i} \right) \right\} \\ &= \frac{1}{n} \left(1 - \frac{n}{N} \right) \frac{1}{N-1} \left\{ \sum_{i=1}^{N} y_{i}^{2} - N \cdot \overline{y}^{2} \right\} \\ &= \left(1 - \frac{n}{N} \right) \frac{S^{2}}{n} \end{aligned}$$

2.

$$\begin{split} E \left[\, \widehat{t}_{\mathrm{SRS}} \, \right] &= E \left[\, N \cdot \widehat{\overline{y}}_{\mathrm{SRS}} \, \right] &= N \cdot E \left[\, \widehat{\overline{y}}_{\mathrm{SRS}} \, \right] \\ &= N \cdot E \left[\, \widehat{\overline{y}}_{\mathrm{SRS}} \, \right] \\ &= N \cdot \left[\, \widehat{\overline{y}}_{\mathrm{SRS}} \, \right] \\ &= N^2 \cdot \mathrm{Var} \left[\, \widehat{\overline{y}}_{\mathrm{SRS}} \, \right] \\ &= N^2 \cdot \left[\left(1 - \frac{n}{N} \right) \frac{S^2}{n} \right] \end{split}$$

Study Notes September 14, 2014 Kenneth Chu

3.

$$\begin{split} E\left[\,\widehat{s^2}_{\rm SRS}\,\right] &= E\left[\,\frac{1}{n-1} \sum_{i \in \omega} \left(y_i - \widehat{\overline{y}}_{\rm SRS}\right)^2\,\right] \,=\, \frac{1}{n-1} \,E\left[\,\sum_{i \in \omega} \left((y_i - \overline{y}) - (\widehat{\overline{y}}_{\rm SRS} - \overline{y})\right)^2\,\right] \\ &= \frac{1}{n-1} \,E\left[\,\left(\sum_{i \in \omega} (y_i - \overline{y})^2\right) - n\left(\widehat{\overline{y}}_{\rm SRS} - \overline{y}\right)^2\,\right] \\ &= \frac{1}{n-1} \,\left\{\,E\left[\,\sum_{i = 1}^N Z_i (y_i - \overline{y})^2\,\right] - n \,\mathrm{Var}\left[\,\widehat{\overline{y}}_{\rm SRS}\,\right]\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\sum_{i = 1}^N E[\,Z_i\,]\,(y_i - \overline{y})^2 - n\left(1 - \frac{n}{N}\right)\,\frac{S^2}{n}\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\sum_{i = 1}^N \frac{n}{N} (y_i - \overline{y})^2 - \left(1 - \frac{n}{N}\right)\,S^2\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\frac{n(N-1)}{N} \frac{1}{N-1} \sum_{i = 1}^N (y_i - \overline{y})^2 - \left(1 - \frac{n}{N}\right)\,S^2\,\right\} \\ &= \frac{1}{n-1} \,\left\{\,\frac{n(N-1)}{N} - \left(1 - \frac{n}{N}\right)\,\right\} S^2 \\ &= \frac{1}{n-1} \,\left\{\,\frac{nN-n-N+n}{N}\,\right\} S^2 \,=\, S^2 \end{split}$$

- 4. Immediate from preceding statements.
- 5. Immediate from preceding statements.

3 Stratified Simple Random Sampling

Let $\mathcal{U} = \{1, 2, \dots, N\}$ be the population, as before. Let

$$\mathcal{U} = \bigsqcup_{h=1}^{H} \mathcal{U}_h$$

be a partition of \mathcal{U} . Such a partition is called a *stratification* of the population \mathcal{U} . Each of $\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_H$ is called a *stratum*. Let $N_h := \#(\mathcal{U}_h)$, for $h = 1, 2, \dots, H$. Note that $N_1 + N_2 + \dots + N_H = N$.

In stratified simple random sampling, an SRS is taken within each stratum \mathcal{U}_h , h = 1, 2, ..., H. Let n_h , h = 1, 2, ..., H, be the number elements in the simple random sample taken in the stratum \mathcal{U}_h . In other words, a stratified simple random sample ω of the stratified population $\mathcal{U} = \bigsqcup_{h=1}^{H} \mathcal{U}_h$ has the form:

$$\omega = \bigsqcup_{h=1}^{H} \omega_h$$
, where $\omega_h \in \Omega_{SRS}(\mathcal{U}_h, n_h)$, for each $h = 1, 2, \dots, h$.

Note that $n_1 + n_2 + \cdots + n_H =: n = \#(\omega)$.

We now give unbiased estimators, and their variances, of the population total and population mean of a population characteristic under stratified simple random sampling. Let $y: \mathcal{U} \longrightarrow \mathbb{R}$ be a population characteristic. Define:

$$\widehat{t}_{Str} := \sum_{h=1}^{H} N_h \cdot \widehat{\overline{y}}_{h,SRS}$$

$$\widehat{\overline{y}}_{\mathrm{Str}} := \frac{1}{N} \cdot \widehat{t}_{\mathrm{Str}} = \sum_{h=1}^{H} \frac{N_h}{N} \cdot \widehat{\overline{y}}_{h,\mathrm{SRS}}$$

Study Notes September 14, 2014 Kenneth Chu

Here,

$$\widehat{\overline{y}}_{h,\mathrm{SRS}} : \Omega_{\mathrm{SRS}}(\mathcal{U}_h, n_h) \longrightarrow \mathbb{R} : \omega_h \longmapsto \frac{1}{n_h} \sum_{i \in \omega_h} y_i$$

is the SRS estimator of

$$\overline{y}_h := \overline{y|u_h} = \frac{1}{N_h} \sum_{i \in \mathcal{U}_h} y_i \in \mathbb{R},$$

the "stratum mean" of the "stratum characteristic" $y|_{\mathcal{U}_h}:\mathcal{U}_h\longrightarrow\mathbb{R}$, the restriction of the population characteristic $y:\mathcal{U}\longrightarrow\mathbb{R}$ to the stratum \mathcal{U}_h . Then,

$$E[\widehat{t}_{Str}] = t := \sum_{i=1}^{N} y_i, \text{ and } E[\widehat{\overline{y}}_{Str}] = \overline{y} := \frac{1}{N} \sum_{i=1}^{N} y_i.$$

In other words, \hat{t}_{Str} and $\hat{\overline{y}}_{Str}$ are unbiased estimators of the population total t and population mean \overline{y} of the population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$, respectively. Indeed,

$$E[\widehat{t}_{Str}] = E\left[\sum_{h=1}^{H} N_h \cdot \widehat{\overline{y}}_{h,SRS}\right] = \sum_{h=1}^{H} N_h E[\widehat{\overline{y}}_{h,SRS}] = \sum_{h=1}^{H} N_h \overline{y}_h$$
$$= \sum_{h=1}^{H} N_h \left(\frac{1}{N_h} \sum_{i \in \mathcal{U}_h} y_i\right) = \sum_{h=1}^{H} \left(\sum_{i \in \mathcal{U}_h} y_i\right) = \sum_{i=1}^{N} y_i =: t.$$

And,

$$E\left[\,\widehat{\overline{y}}_{\mathrm{Str}}\,\right] \;=\; E\left[\,\frac{1}{N}\cdot\widehat{t}_{\mathrm{Str}}\,\right] \;=\; \frac{1}{N}\,E\left[\,\widehat{t}_{\mathrm{Str}}\,\right] \;=\; \frac{1}{N}\,\sum_{i=1}^{N}\,y_{i} \;=:\; \overline{y}\,.$$

Furthermore,

$$\operatorname{Var}\left[\widehat{t}_{\operatorname{Str}}\right] = \operatorname{Var}\left[\sum_{h=1}^{H} N_h \cdot \widehat{\overline{y}}_{h,\operatorname{SRS}}\right] = \sum_{h=1}^{H} N_h^2 \cdot \operatorname{Var}\left[\widehat{\overline{y}}_{h,\operatorname{SRS}}\right] = \sum_{h=1}^{H} N_h^2 \left(1 - \frac{n_h}{N_h}\right) \frac{S_h^2}{n_h}.$$

$$\operatorname{Var}\left[\widehat{\overline{y}}_{\operatorname{Str}}\right] = \operatorname{Var}\left[\frac{1}{N} \cdot \widehat{t}_{\operatorname{Str}}\right] = \frac{1}{N^2} \cdot \operatorname{Var}\left[\widehat{t}_{\operatorname{Str}}\right] = \sum_{h=1}^{H} \left(\frac{N_h}{N}\right)^2 \left(1 - \frac{n_h}{N_h}\right) \frac{S_h^2}{n_h}.$$

Comparing variances of SRS and stratified simple random sampling with proportional allocation via ANOVA (analysis of variance):

By definition, in stratified simple random sampling with proportional allocation, the stratum sample size n_h , for each h = 1, 2, ..., H, is chosen such that $n_h/N_h = n/N$. Consequently,

$$\operatorname{Var}\left[\hat{t}_{\text{PropStr}}\right] = \sum_{h=1}^{H} N_{h}^{2} \left(1 - \frac{n_{h}}{N_{h}}\right) \frac{S_{h}^{2}}{n_{h}} = \frac{N}{n} \left(1 - \frac{n}{N}\right) \sum_{h=1}^{H} N_{h} S_{h}^{2}$$

$$= \frac{N}{n} \left(1 - \frac{n}{N}\right) \left\{\sum_{h=1}^{H} (N_{h} - 1) S_{h}^{2} + \sum_{h=1}^{H} S_{h}^{2}\right\}$$

$$= \frac{N}{n} \left(1 - \frac{n}{N}\right) \left\{\operatorname{SSW} + \sum_{h=1}^{H} S_{h}^{2}\right\},$$

where

SSW :=
$$\sum_{h=1}^{H} \sum_{i \in \mathcal{U}_h} (y_i - \overline{y}_{\mathcal{U}_h})^2 = \sum_{h=1}^{H} (N_h - 1) S_h^2$$
.

is called the inter-strata squared deviation (or within-strata squared deviation), and

$$S_h^2 := \frac{1}{N_h - 1} \sum_{i \in \mathcal{U}_h} (y_i - \overline{y}_{\mathcal{U}_h})^2$$

is the stratum variance of the population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$ over the stratum \mathcal{U}_h . The following relation between $\operatorname{Var}\left[\hat{t}_{SRS}\right]$ and $\operatorname{Var}\left[\hat{t}_{PropStr}\right]$ always holds (see [3], p.106):

$$\operatorname{Var}\left[\,\widehat{t}_{\mathrm{SRS}}\,\right] \;=\; \operatorname{Var}\left[\,\widehat{t}_{\mathrm{PropStr}}\,\right] \,+\, \left(1 - \frac{n}{N}\right) \frac{N}{n} \frac{N}{N-1} \left\{\,\operatorname{SSB} - \sum_{h=1}^{H} \left(1 - \frac{N_h}{N}\right) S_h^2\,\right\},$$

where

$$SSB := \sum_{h=1}^{H} N_h (\overline{y}_{\mathcal{U}_h} - \overline{y}_{\mathcal{U}})^2 = \sum_{h=1}^{H} \sum_{i \in \mathcal{U}_h} (\overline{y}_{\mathcal{U}_h} - \overline{y}_{\mathcal{U}})^2$$

is the *inter-strata squared deviation* (or *between-strata squared deviation*). It is also an easily established fact that the sum of the inter-strata squared deviation SSB and the intra-strata squared deviation SSW is always the total population squared deviation SSTO:

SSTO :=
$$\sum_{i=1}^{N} (y_i - \overline{y}_{\mathcal{U}})^2 = \sum_{h=1}^{H} \sum_{i \in \mathcal{U}_h} (y_i - \overline{y}_{\mathcal{U}})^2$$
.

Most importantly, we see from above that, for stratified simple random sampling with proportional allocation, the following implication holds:

$$\sum_{h=1}^{H} \left(1 - \frac{N_h}{N} \right) S_h^2 \le \text{SSB} \implies \text{Var} \left[\hat{t}_{\text{PropStr}} \right] \le \text{Var} \left[\hat{t}_{\text{SRS}} \right].$$

In heuristic terms, in proportional-allocation stratification for which each stratum is relatively homogeneous and the strata are relatively dissimilar to each other (intra-strata variation being smaller than inter-strata variation), then the unbiased estimator for the population total from the proportional-allocation stratified simple random sampling is more precise than that from SRS.

4 Two-stage Cluster Sampling

The universe $\mathcal{U} = \bigsqcup_{i=1}^{N} \mathcal{C}_i$ of observation units is partitioned into N clusters (or primary sampling units, psu's) \mathcal{C}_i . In two-stage cluster sampling, the secondary sampling units (or ssu's) are the observation units. Let M_i be the number of ssu's in the ith psu; in other words, $M_i := \#(\mathcal{C}_i)$.

First Stage: Select a simple random sample (SRS) $\omega_1 = \{C_{i_1}, C_{i_2}, \dots, C_{i_n}\}$ of n psu's from the collection of N psu's.

Second Stage: From each psu $C \in \omega_1$ selected in the First Stage, select a simple random sample (SRS) ω_C of m_i secondary sampling units (ssu's) from the collection of M_i ssu's in C.

The sample is then $\omega := \bigsqcup_{\mathcal{C} \in \omega_1} \omega_{\mathcal{C}}$. In other words, the sample ω consists of all the secondary sampling units (or observation units) selected (during the Second Stage) from all the primary sampling units selected in the First Stage.

The Horvitz-Thompson estimator \hat{t}_{HT} , as defined below, is an unbiased estimator for the total of an \mathbb{R} -valued population characteristic $y: \mathcal{U} \longrightarrow \mathbb{R}$.

$$\widehat{t}_{\mathrm{HT}} := \sum_{k \in \omega} \left(\frac{N}{n} \frac{M_{y_k}}{m_{y_k}} \right) y_k = \sum_{k \in \omega} \left(\frac{1}{\pi_k} \right) y_k = \sum_{C \in \omega_1} \sum_{k \in \omega_C} \left(\frac{N}{n} \frac{M_{y_k}}{m_{y_k}} \right) y_k,$$

September 14, 2014

where $M_{y_k} := M_i := \#(\mathcal{C}_i)$ and $m_{y_k} := m_i := \#(\omega_{\mathcal{C}_i})$ such that \mathcal{C}_i is the unique psu containing the ssu $k \in \mathcal{U} = \bigsqcup_{i=1}^{N} \mathcal{C}_i$. The variance of the Horvitz-Thompson estimator \hat{t}_{HT} is given by:

$$\operatorname{Var}(\widehat{t}_{\mathrm{HT}}) = N^{2} \left(1 - \frac{n}{N} \right) \frac{S_{t}^{2}}{n} + \sum_{i=1}^{N} \frac{N}{n} \cdot M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}},$$

where

$$S_t^2 := \frac{1}{N-1} \sum_{i=1}^N \left(t_i - \frac{t}{N} \right)^2, \quad S_i^2 := \frac{1}{M_i - 1} \sum_{j=1}^{M_i} \left(y_j - \frac{t_i}{M_i} \right)^2, \quad t := \sum_{k \in \mathcal{U}} y_k, \quad \text{and} \quad t_i := \sum_{k \in \mathcal{C}_i} y_k$$

IMPORTANT OBSERVATION: The first summand in the expression of $Var(\hat{t}_{HT})$ is due to variability in the First-Stage sampling, whereas the second summand is due to variability in the Second-Stage sampling.

5 One-stage Cluster Sampling

One-stage cluster sampling is a special form of two-stage cluster sampling in which all second-stage samples are censuses. In other words, following the notation introduced for two-stage cluster sampling, in one-stage cluster sampling, we have $\omega_{\mathcal{C}} = \mathcal{C}$, for each first-stage-selected $\mathcal{C} \in \omega_1$. This also implies $m_i = M_i$ for each i = 1, 2, ..., N.

Then, the Horvitz-Thompson estimator $\hat{t}_{\rm HT}$ and its variance reduces to:

$$\begin{split} \widehat{t}_{\mathrm{HT}} &:= \sum_{\mathcal{C} \in \omega_{1}} \sum_{k \in \mathcal{C}} \left(\frac{N}{n} \frac{M_{y_{k}}}{m_{y_{k}}} \right) y_{k} &= \frac{N}{n} \cdot \sum_{\mathcal{C} \in \omega_{1}} \sum_{k \in \mathcal{C}} y_{k} &= \frac{N}{n} \cdot \sum_{\mathcal{C} \in \omega_{1}} t_{\mathcal{C}} \,, \quad \text{where } t_{\mathcal{C}} := \sum_{k \in \mathcal{C}} y_{k} \\ \mathrm{Var} \big(\widehat{t}_{\mathrm{HT}} \big) &= N^{2} \left(1 - \frac{n}{N} \right) \frac{S_{t}^{2}}{n} \,+ \, \sum_{i=1}^{N} \frac{N}{n} \cdot M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}} \\ &= N^{2} \left(1 - \frac{n}{N} \right) \frac{S_{t}^{2}}{n} \,+ \, \sum_{i=1}^{N} \frac{N}{n} \cdot M_{i}^{2} \left(1 - 1 \right) \frac{S_{i}^{2}}{m_{i}} \,= \, N^{2} \left(1 - \frac{n}{N} \right) \frac{S_{t}^{2}}{n} \end{split}$$

6 Stratified Simple Random Sampling as a special case of Two-stage Cluster Sampling

Stratified simple random sampling is a special case of two-stage cluster sampling in which the first-stage sampling is a census. In other words, if $\mathcal{U} = \bigsqcup_{i=1}^{N} \mathcal{C}_i$, then $\omega_1 = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_N\}$. In particular, n = N.

Then, the Horvitz-Thompson estimator \hat{t}_{HT} and its variance reduces to:

$$\widehat{t}_{\text{HT}} := \sum_{C \in \omega_{1}} \sum_{k \in \omega_{C}} \left(\frac{N}{n} \frac{M_{y_{k}}}{m_{y_{k}}} \right) y_{k} = \sum_{i=1}^{N} M_{i} \left(\frac{1}{m_{i}} \sum_{k \in \omega_{C_{i}}} y_{k} \right) = \sum_{i=1}^{N} M_{i} \, \overline{y}_{\omega_{C_{i}}}$$

$$\text{Var}(\widehat{t}_{\text{HT}}) = N^{2} \left(1 - \frac{n}{N} \right) \frac{S_{t}^{2}}{n} + \sum_{i=1}^{N} \frac{N}{n} \cdot M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}}$$

$$= N^{2} \left(1 - 1 \right) \frac{S_{t}^{2}}{n} + \sum_{i=1}^{N} 1 \cdot M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}} = \sum_{i=1}^{N} M_{i}^{2} \left(1 - \frac{m_{i}}{M_{i}} \right) \frac{S_{i}^{2}}{m_{i}}$$

The above formula agree exactly with those derived earlier for stratified simple random sampling (apart from obvious notational changes).

7 Calibration Estimators in Survey Sampling

This is a summary of [1].

Let $U = \{1, 2, ..., N\}$ be a finite population. Let $y : U \longrightarrow \mathbb{R}$ be an \mathbb{R} -valued function defined on U (commonly called a "population parameter"). We will use the common notation y_i for y(i). We wish to estimate $T_y := \sum_{i \in U} y_i$ via survey sampling. Let $p : \mathcal{S} \longrightarrow (0,1]$ be our chosen sampling design, where $\mathcal{S} \subseteq \mathcal{P}(U)$ is the set of all possible samples in the design, and $\mathcal{P}(U)$ is the power set of U. For each $k \in U$, let $\pi_k := \sum_{s \ni k} p(s)$ be the inclusion probability of k under the sampling design p. We assume $\pi_k > 0$ for each $k \in U$. Then, the Horvitz-Thompson estimator

$$\widehat{T}_{y}^{\text{HT}}(s) := \sum_{k \in s} \frac{y_{k}}{\pi_{k}} = \sum_{k \in s} d_{k} y_{k} = \sum_{k \in U} I_{ks} \frac{y_{k}}{\pi_{k}}, \text{ where } d_{k} := \frac{1}{\pi_{k}} \text{ and } I_{ks} := \begin{cases} 1, & \text{if } k \in s \\ 0, & \text{otherwise} \end{cases}$$

is well-defined and is known to be a design-unbiased estimator of T_u ; in other words,

$$E_p\left[\widehat{T}_y^{\mathrm{HT}}\right] = \sum_{s \in \mathcal{S}} p(s) \cdot \widehat{T}_y^{\mathrm{HT}}(s) = \sum_{s \in \mathcal{S}} p(s) \cdot \left(\sum_{k \in U} I_{ks} \frac{y_k}{\pi_k}\right) = \sum_{k \in U} \frac{y_k}{\pi_k} \left(\sum_{s \in \mathcal{S}} p(s) I_{ks}\right) = \sum_{k \in U} \frac{y_k}{\pi_k} \pi_k = T_y.$$

We will call the d_k 's above the Horvitz-Thompson weights.

Roughly, a calibration estimator for T_y is an estimator of the form:

$$\widehat{T}_y^{\text{Cal}}(s) := \sum_{k \in s} w_k(s) y_k,$$

where the sample-dependent "calibrated" weights $w_k(s)$ are the solution of a constrained minimization problem where the objective function depends on the $w_k(s)$'s and the Horvitz-Thompson weights d_k 's, while the constraints involve the $w_k(s)$'s and auxiliary information. More precisely, the calibrated weights $w_k(s)$ solve the following constrained minimization problem:

Conceptual framework: Let $\mathbf{x}: U \longrightarrow \mathbb{R}^{1 \times J}$ be an $\mathbb{R}^{1 \times J}$ -valued function defined on U. We use the common notation \mathbf{x}_k for $\mathbf{x}(k)$, for each $k \in U$.

Assumptions:

 \bullet The population total of \mathbf{x}

$$T_{\mathbf{x}} := \sum_{k \in U} \mathbf{x}_k \in \mathbb{R}^{1 \times J}$$

is known.

• For each $s \in \mathcal{S}$, the value (y_k, \mathbf{x}_k) can be observed for each $k \in s$ via the sampling procedure.

Constrained Minimization Problem: For each $k \in U$, let $q_k > 0$ be chosen. For each $s \in S$, the calibrated weights $w_k(s)$, for $k \in s$, are obtained by minimizing the following objective function:

$$f_s(w_k(s); d_k, q_k) := \sum_{k \in s} \frac{(w_k(s) - d_k)^2}{d_k q_k}$$

subject to the (vectorial) constraint on $w_k(s)$:

$$\mathbf{h}(w_k(s); \mathbf{x}_k, T_{\mathbf{x}}) := -T_{\mathbf{x}} + \sum_{k \in s} w_k(s) \mathbf{x}_k = 0$$

References

[1] Deville, J.-C., and Särndal, C.-E. Calibration estimators in survey sampling. *Journal of the American Statistical Association* 87, 418 (1992), 376–382.

Survey Sampling Theory

Study Notes September 14, 2014 Kenneth Chu

- [2] HÁJEK, J. Limiting distributions in simple random sampling from a finite population. Publication of the Mathematical Institute of the Hungarian Academy of Sciences 5 (1960), 361–374.
- [3] LOHR, S. L. Sampling: Design and Analysis, first ed. Duxbury Press, 1999.