1

1 | PURPOSE

This paper contains the proofs to accompany the theorems presented in the paper "Improving computational performance in likelihood-based network clustering" by Alan Ballard and Marcus Perry.

2 | THEOREMS

Theorem 1. Assign each vertex $v \in V$ from G = (V, E) into one of k clusters. Assume the edges within cluster $k \in \{1, 2, ..., k\}$ are distributed according to density $f_h(y_h|\theta_h, \mathbf{z}_{(k)})$ and the edges between clusters are distributed according to density $f_h(y_h|\theta_h, \mathbf{z}_{(k)})$. The likelihood of the clustering $\mathbf{z}_{(k)}$ is then written as

$$L(\theta_1, \theta_2, ..., \theta_k, \theta_b | \mathbf{y}, \mathbf{z}_{(k)}) = \{ \prod_{h=1}^k f_h(y_h | \theta_h, \mathbf{z}_{(k)}) \} f_b(y_b | \theta_b, \mathbf{z}_{(k)}),$$
(1)

where each θ_h and θ_h are estimated by maximum likelihood estimators $\hat{\theta}_h$ and $\hat{\theta}_h$, respectively.

Then, consider a reclustering by reassigning vertex l^* from cluster ℓ to cluster j. If the parameter estimates for the within-cluster edge densities other than f_{ℓ} and f_j are unaffected by the reclustering, i.e. $\hat{\theta}_h^1 = \hat{\theta}_h^0$, $h \notin \{\ell, j\}$, then the change-in-likelihood due to the reclustering can be written:

$$\Delta L = \frac{f_{\ell}(y_{\ell}|\hat{\theta}_{\ell}^{1}, \mathbf{z}_{(k)}^{1})f_{j}(y_{j}|\hat{\theta}_{j}^{1}, \mathbf{z}_{(k)}^{1})f_{b}(y_{b}|\hat{\theta}_{b}^{1}, \mathbf{z}_{(k)}^{1})}{f_{\ell}(y_{\ell}|\hat{\theta}_{\ell}^{0}, \mathbf{z}_{(k)}^{0})f_{j}(y_{j}|\hat{\theta}_{j}^{0}, \mathbf{z}_{(k)}^{0})f_{b}(y_{b}|\hat{\theta}_{b}^{0}, \mathbf{z}_{(k)}^{0})},$$
(2)

where superscripts 0 and 1 indicate pre- and post-reclustering states, respectively.

Theorem 2. Assign each vertex $v \in V$ from G = (V, E) into one of k clusters. Then, consider a reclustering by reassigning vertex l^* from cluster ℓ to cluster j. The elements of \mathbf{O} post-reclustering can be written completely in terms of pre-reclustering information. Specifically, the elements are:

1.
$$o_{s,t}^1 = o_{s,t}^0$$

4.
$$o_{j,s}^1 = o_{j,s}^0 + Z_s^0$$

6.
$$o_{\ell,\ell}^1 = o_{\ell,\ell}^0 - Z_{\ell}^0$$

2.
$$o_{s,s}^1 = o_{s,s}^0$$

3.
$$o_{\ell,s}^1 = o_{\ell,s}^0 - Z_s^0$$

5.
$$o_{\ell,j}^1 = o_{\ell,j}^0 - Z_j^0 + Z_\ell^0$$

7.
$$o_{j,j}^1 = o_{j,j}^0 + Z_j^0$$

where $s, t \notin \{\ell, j\}$, superscripts 0 and 1 indicate pre- and post-reclustering states, respectively, and Z_h^0 is the sum of edge weights between vertex l^* and cluster h pre-reclustering, $h \in \{1, 2, ..., k\}$.

Theorem 3. Assign each vertex $v \in V$ from G = (V, E) into one of k clusters. Then, consider a reclustering by reassigning vertex l^* from cluster ℓ to cluster j. The sum of the distinct off-diagonal elements of \mathbf{O} post-reclustering can be written completely in terms of pre-reclustering information. Specifically:

$$o_b^1 = \sum_i o_{s,t}^1 = o_b^0 + Z_\ell^0 - Z_i^0, \tag{3}$$

where $s, t \in \{1, 2, ...k\}$ and $s \neq t$, superscripts 0 and 1 indicate pre- and post-reclustering states, respectively, and Z_h^0 is the sum of edge weights between vertex l^* and cluster h pre-reclustering, $h \in \{1, 2, ..., k\}$.

Theorem 4. Assign each vertex $v \in V$ from G = (V, E) into one of k clusters. Then, consider a reclustering by reassigning vertex l^* from cluster ℓ to cluster j. The elements of **P** post-reclustering can be written completely in terms of pre-reclustering information. Specifically, the elements are:

1.
$$p_{s,t}^1 = p_{s,t}^0$$

3.
$$p_{\ell,s}^1 = n_s^0 (n_{\ell}^0 - 1)$$

5.
$$p_{\ell,j}^1 = (n_{\ell}^0 - 1)(n_j^0 + 1)$$

2.
$$p_{s,s}^1 = p_{s,s}^0$$

4.
$$p_{i,s}^1 = n_s^0(n_i^0 + 1)$$

6.
$$p_{\ell,\ell}^1 = \frac{(n_{\ell}^0 - 1)(n_{\ell}^0 - 2)}{2}$$

7.
$$p_{i,j}^1 = \frac{(n_j^0 + 1)n_j^0}{2}$$
,

where $s, t \notin \{\ell, j\}$, superscripts 0 and 1 indicate pre- and post-reclustering states, respectively, and n_h^0 is the number of vertices in cluster h pre-reclustering.

Theorem 5. Assign each vertex $v \in V$ from G = (V, E) into one of k clusters. Then, consider a reclustering by reassigning vertex l^* from cluster ℓ to cluster j. The sum of the distinct off-diagonal elements of **P** post-reclustering can be written completely in terms of pre-reclustering information. Specifically:

$$p_b^1 = \sum_{s,t} p_{s,t}^1 = p_b^0 + n_\ell^0 - n_i^0 - 1, \tag{4}$$

where $s, t \in \{1, 2, ...k\}$ and $s \neq t$, superscripts 0 and 1 indicate pre- and post-reclustering states, respectively, and n_h^0 is the number of vertices in cluster h pre-reclustering, $h \in \{1, 2, ..., k\}$.

3 | PROOFS

Proof. Theorem 1: The change-in-likelihood can be written in an abbreviated form given some restrictions on the parameters. Let $\hat{\theta}_s^1 = \hat{\theta}_s^0$, $s \neq \{\ell, j\}$. Then, $f_s(y_s|\hat{\theta}_s^1, \mathbf{z}_{(k)}^0) = f_s(y_s|\hat{\theta}_s^0, \mathbf{z}_{(k)}^0)$ Finally, for space-conservation purposes, let $\Lambda_t^0 = y_t|\hat{\theta}_t^0, \mathbf{z}_{(k)}^0$ and $\Lambda_t^1 = y_t|\hat{\theta}_t^1, \mathbf{z}_{(k)}^1, t \in \{1, 2, ...k, b\}$. Then, $f_s(\Lambda_s^1) = f_s(\Lambda_s^0)$, $s \neq \{\ell, j\}$ and,

$$\Delta L = \frac{\{\prod_{s \neq \{\ell,j\}} f_s(\Lambda_s^1)\} f_\ell(\Lambda_\ell^1) f_j(\Lambda_j^1) f_b(\Lambda_b^1)}{\{\prod_{s \neq \{\ell,j\}} f_s(\Lambda_s^0)\} f_\ell(\Lambda_\ell^0) f_j(\Lambda_j^0) f_b(\Lambda_b^0)} = \frac{\{\prod_{s \neq \{\ell,j\}} f_s(\Lambda_s^0)\} f_\ell(\Lambda_\ell^0) f_j(\Lambda_j^1) f_b(\Lambda_b^1)}{\{\prod_{s \neq \{\ell,j\}} f_s(\Lambda_s^0)\} f_\ell(\Lambda_\ell^0) f_j(\Lambda_j^0) f_b(\Lambda_b^0)} = \frac{f_\ell(\Lambda_\ell^1) f_j(\Lambda_j^1) f_b(\Lambda_b^1)}{f_\ell(\Lambda_\ell^0) f_j(\Lambda_j^0) f_b(\Lambda_b^0)} \quad \Box$$

Proof. Theorem 2: Post-reclustering edge weight sums can be written in terms of pre-reclustering edge weight sums. Let $\mathbf{1}_i$ be a $N \times 1$ vector of 0's and a single 1 in the i^{th} position. Then, if vertex l^* is removed from cluster ℓ and placed in cluster j, $\mathbf{\omega}_{\ell}^1 = \mathbf{\omega}_{\ell}^0 - \mathbf{1}_{l^*}$ and $\mathbf{\omega}_i^1 = \mathbf{\omega}_i^0 + \mathbf{1}_{l^*}$, where superscripts 0 and 1 indicate pre- and post-reclustering states, respectively. Then,

1.
$$o_{s,t}^1, s, t \notin \{\ell, j\} = \mathbf{\omega}_s^{1T} \mathbf{A} \mathbf{\omega}_t^1$$

$$= \mathbf{\omega}_s^{0T} \mathbf{A} \mathbf{\omega}_t^0$$

$$= obs_{s,t}^0 \quad \Box$$

2.
$$o_{s,s}^1, s \notin \{\ell, j\} = \frac{1}{2} \mathbf{\omega}_s^1 \mathbf{A} \mathbf{\omega}_s^1$$

$$= \frac{1}{2} \mathbf{\omega}_s^0 \mathbf{A} \mathbf{\omega}_s^0$$

$$= obs_{s,s}^0 \quad \Box$$

3.
$$o_{\ell,s}^{1} - obs_{\ell,s}^{0}, s \notin \{\ell, j\} = \boldsymbol{\omega}_{\ell}^{1}{}^{T} \mathbf{A} \boldsymbol{\omega}_{s}^{1} - \boldsymbol{\omega}_{\ell}^{0}{}^{T} \mathbf{A} \boldsymbol{\omega}_{s}^{0}$$

$$= \boldsymbol{\omega}_{\ell}^{1}{}^{T} \mathbf{A} \boldsymbol{\omega}_{s}^{0} - \boldsymbol{\omega}_{\ell}^{0}{}^{T} \mathbf{A} \boldsymbol{\omega}_{s}^{0}$$

$$= -[\boldsymbol{\omega}_{\ell}^{0} - \boldsymbol{\omega}_{\ell}^{1}]^{T} \mathbf{A} \boldsymbol{\omega}_{s}^{0}$$

$$= -[\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \boldsymbol{\omega}_{s}^{0}$$

$$= -Z_{s}^{0} \quad \Box$$

4.
$$o_{j,s}^{1} - o_{j,s}^{0}$$
, $s \notin \{\ell, j\} = \mathbf{\omega}_{j}^{1T} \mathbf{A} \mathbf{\omega}_{s}^{1} - \mathbf{\omega}_{j}^{0T} \mathbf{A} \mathbf{\omega}_{s}^{0}$

$$= \mathbf{\omega}_{j}^{1T} \mathbf{A} \mathbf{\omega}_{s}^{0} - \mathbf{\omega}_{j}^{0T} \mathbf{A} \mathbf{\omega}_{s}^{0}$$

$$= [\mathbf{\omega}_{j}^{1} - \mathbf{\omega}_{j}^{0}]^{T} \mathbf{A} \mathbf{\omega}_{s}^{0}$$

$$= [\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \mathbf{\omega}_{s}^{0}$$

$$= Z_{s}^{0} \square$$

5.
$$o_{\ell,j}^{1} = \mathbf{\omega}_{\ell}^{1T} \mathbf{A} \mathbf{\omega}_{j}^{1}$$

$$= [\mathbf{\omega}_{\ell}^{0} - \mathbf{1}_{l^{*}}]^{T} \mathbf{A} [\mathbf{\omega}_{j}^{0} + \mathbf{1}_{l^{*}}]$$

$$= \mathbf{\omega}_{\ell}^{0T} \mathbf{A} \mathbf{\omega}_{j}^{0} - [\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \mathbf{\omega}_{j}^{0} + \mathbf{\omega}_{\ell}^{0T} \mathbf{A} \mathbf{1}_{l^{*}}$$

$$= o_{\ell,j}^{0} - Z_{j}^{0} + Z_{\ell}^{0} \quad \Box$$

6.
$$o_{\ell,\ell}^{1} = \frac{1}{2} \boldsymbol{\omega}_{\ell}^{1T} \mathbf{A} \boldsymbol{\omega}_{\ell}^{1}$$

$$= \frac{1}{2} [\boldsymbol{\omega}_{\ell}^{0} - \mathbf{1}_{l^{*}}]^{T} \mathbf{A} [\boldsymbol{\omega}_{\ell}^{0} - \mathbf{1}_{l^{*}}]$$

$$= \frac{1}{2} [\boldsymbol{\omega}_{\ell}^{0T} \mathbf{A} \boldsymbol{\omega}_{\ell}^{0} - [\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \boldsymbol{\omega}_{\ell}^{0} - [\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \boldsymbol{\omega}_{\ell}^{0}]$$

$$= \frac{1}{2} [2o_{\ell,\ell}^{0} - 2[\mathbf{1}_{l^{*}}]^{T} A \boldsymbol{\omega}_{\ell}^{0}]$$

$$= o_{\ell,\ell}^{0} - Z_{\ell}^{0} \quad \Box$$

7.
$$o_{j,j}^{1} = \frac{1}{2} \mathbf{\omega}_{j}^{1}^{T} \mathbf{A} \mathbf{\omega}_{j}^{1}$$

$$= \frac{1}{2} [\mathbf{\omega}_{j}^{0} + \mathbf{1}_{l^{*}}]^{T} \mathbf{A} [\mathbf{\omega}_{j}^{0} + \mathbf{1}_{l^{*}}]$$

$$= \frac{1}{2} [\mathbf{\omega}_{j}^{0}^{T} \mathbf{A} \mathbf{\omega}_{j}^{0} + [\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \mathbf{\omega}_{j}^{0} + [\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \mathbf{\omega}_{j}^{0}]$$

$$= \frac{1}{2} [2 o_{j,j}^{0} + 2 [\mathbf{1}_{l^{*}}]^{T} \mathbf{A} \mathbf{\omega}_{j}^{0}]$$

$$= o_{j,j}^{0} + Z_{j}^{0} \quad \Box$$

Proof. Theorem 3: Post-reclustering between-cluster edge weight sums can be written in terms of pre-reclustering edge weight sums.

$$\begin{split} o_b^1 &= \sum o_{s,t}^1 + \sum o_{\ell,t}^1 + \sum o_{j,t}^1 + o_{\ell,j}^1 \\ &= \sum o_{s,t}^0 + \sum (o_{\ell,t}^0 - Z_t^0) + \sum (o_{j,t}^0 + Z_t^0) + (o_{\ell,j}^0 + Z_\ell^0 - Z_j^0), \text{ by Theorem 2} \\ &= \sum o_{s,t}^0 + \sum o_{\ell,t}^0 + \sum o_{j,t}^0 + (o_{\ell,j}^0 + Z_\ell^0 - Z_j^0) \\ &= (\sum o_{s,t}^0 + \sum o_{\ell,t}^0 + \sum o_{j,t}^0 + o_{\ell,j}^0) + Z_\ell^0 - Z_j^0 \\ &= o_b^0 + Z_\ell^0 - Z_j^0, s, t \notin \{\ell, j\}, s \neq t \quad \Box \end{split}$$

Proof. Theorem 4: Post-reclustering maximum edge counts can be written in terms of pre-reclustering maximum edge counts. For a given clustering $\mathbf{z}_{(k)}$ on an undirected network, \mathbf{P} is a symmetric $k \times k$ matrix with element $p_{s,t}$ containing the maximum number of distinct edges possible between the vertices of clusters s and t. This value is $p_{s,t} = \binom{n_s + n_t}{2} - \binom{n_s}{2} - \binom{n_t}{2} = n_s n_t$ when $s \neq t$ and $p_{s,t} = \frac{n_s (n_s - 1)}{2}$ when s = t, where n_h is the number of distinct vertices in cluster $h \in \{1, 2, ..., k\}$. Then,

1.
$$p_{s,t}^1, s, t \notin \{\ell, j\} = n_s^0 n_t^0 = p_{s,t}^0 \square$$

5.
$$p_{\ell,i}^1 = (n_\ell^0 - 1)(n_i^0 + 1)$$

2.
$$p_{s,s}^1, s \notin \{\ell, j\} = \frac{n_s^0(n_s^0 - 1)}{2} = p_{s,s}^0$$

6.
$$p_{\ell,\ell}^1 = \frac{(n_{\ell}^0 - 1)((n_{\ell}^0 - 1) - 1)}{2} = \frac{(n_{\ell}^0 - 1)(n_{\ell}^0 - 2)}{2}$$

3.
$$p_{\ell,s}^1, s \notin \{\ell, j\} = n_s^0(n_\ell^0 - 1)$$

7.
$$p_{i,j}^1 = \frac{(n_j^0 + 1)((n_j^0 + 1) - 1)}{2} = \frac{(n_j^0 + 1)n_j^0}{2}$$

4. $p_{i,s}^1, s \notin \{\ell, j\} = n_s^0(n_i^0 + 1)$

Proof. Theorem 5: Post-reclustering between-cluster maximum edge counts can be written in terms of pre-reclustering maximum edge counts.

$$\begin{split} p_b^1 &= \sum p_{s,t}^1 + \sum p_{\ell,t}^1 + \sum p_{j,t}^1 + \sum p_{\ell,j}^1 \\ &= \sum p_{s,t}^0 + \sum n_t^0 (n_\ell^0 - 1) + \sum n_t^0 (n_j^0 + 1) + (n_\ell^0 - 1)(n_j^0 + 1), \text{ by Theorem 4} \\ &= \sum p_{s,t}^0 + \sum n_t^0 (n_\ell^0) + \sum n_t^0 (n_j^0) + ((n_\ell^0)(n_j^0) + n_\ell^0 - n_j^0 - 1) \\ &= (\sum p_{s,t}^0 + \sum p_{\ell,t}^0 + \sum p_{\ell,t}^0 + p_{\ell,j}^0) + n_\ell^0 - n_j^0 - 1 \\ &= p_b^0 + n_\ell^0 - n_j^0 - 1, s, t \notin \{\ell, j\}, s \neq t \quad \Box \end{split}$$