Yiwen Zhang

(319) 855-0995 | yiwenzhg@umich.edu | 2260 Hayward St, Ann Arbor, MI 48109

RESEARCH INTERESTS

I am interested in kernel-bypass networks and systems with a focus on making data transfer fast and in a fair fashion in datacenters. My current research focuses on how to solve performance anomalies in RDMA NICs with software-only solutions in an efficient, fair, and easy-to-deploy manner.

EDUCATION

University of Michigan

Ph.D. Candidate, Computer Science and Engineering

Masters, Electrical Engineering Bachelors, Electrical Engineering

Bachelois, Electrical Engineer

INDUSTRIAL EXPERIENCE

Research Intern, Google

Sunnyvale, CA, Summer 2020

Congestion Control Team, NetInfra. Worked on multi-tenancy support for applications in datacenters.

Software Engineering Intern, Google

Sunnyvale, CA, Summer 2019

Congestion Control Team, NetInfra. Worked on datacenter bandwidth allocation for ultra-low RPC latencies.

Performance Modeling Intern, ARM

Chandler, AZ, Summer 2017

Performance Modeling Group. Worked on modeling ARM's next-generation CPU.

RESEARCH EXPERIENCE

Research Assistant, Computer Science and Engineering, University of Michigan

2018 - Present

Ann Arbor, MI

2018 - Present April 2018

December 2016

Advisor: Prof. Mosharaf Chowdhury

RDMA Performance Isolation

- Discovered and analyzed performance anomalies in various RDMA implementations across a wide range of RNICs.
- Designed a solution to provide predictable latencies and fair RNIC resource sharing via message-level shaping, initiator-based resource mediation, and passive system-wide latency monitoring.
- Achieved great performance improvement for both InfiniBand and RoCE with 40/100 Gbps RNICs.

Multi-Tenancy Support via Distributed QoS Management

- Analyzed how QoS usage impacts application performance isolation
- Designed a distributed QoS enforcement algorithm to achieve desired application performance
- Ongoing work in preparation for a conference paper in 2022

Efficient Model Inference Pipelines with Model Multiplexing

- Studied existing solutions in model inference and identified new research opportunities
- Build an event-based simulator to analyze performance of different inference system design
- Ongoing work in preparation for a conference paper in 2020

Efficient Message Queuing System in RDMA

- Identify performance bottleneck in state-of-the-art MQ systems to motivate an RDMA-based design
- Designed and implemented a message queuing system in RDMA
- Code open-sourced at https://github.com/SymbioticLab/rdmaMQ

Memory Disaggregation

- Deployed various applications (VoltDB, Memcached, Powergraph and Spark) to evaluate Infiniswap
- Contributed to most of the Evaluation section in our NSDI'17 paper

TEACHING EXPERIENCE (AT UNVERSITY OF MICHIGAN)

Graduate Student Instructor, EECS489: Computer Networks	Fall 2018
Wrote assignment auto-grader and led discussion.	

Graduate Student Instructor, EECS582: Big Data Systems and Applications Designed programming assignments on big-data systems and wrote solutions

Fall 2017

PUBLICATIONS

- 1. Justitia: Software Multi-Tenancy in Hardware Kernel-Bypass Networks. **NSDI'22 Yiwen Zhang**, Yue Tan, Brent Stephens, Mosharaf Chowdhury
- 2. NetLock: Fast, Centralized Lock Management Using Programmable Switches. *SIGCOMM'20* Zhuolong Yu, **Yiwen Zhang**, Vladimir Braverman, Mosharaf Chowdhury, Xin Jin
- 3. Performance Isolation Anomalies in RDMA. *KBNets'17* **Yiwen Zhang**, Jucheng Gu, Youngmoon Lee, Mosharaf Chowdhury, Shin Kang
- 4. Efficient Memory Disaggregation with INFINISWAP. **NSDI**'17 Jucheng Gu, Youngmoon Lee, **Yiwen Zhang**, Mosharaf Chowdhury, Shin Kang.

AWARDS

• **Ph.D. Student Fellowship**, Computer Science and Engineering, University of Michigan

2018 - 2019