

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Zagadnienie Lagrange'a Zadanie 2a

> Maciej Kmąk Informatyka WI AGH, II rok

1 Treść Zadania

Dla funkcji f(x) widocznej na rysunku 1.

$$f(x) = e^{-3 \cdot \sin(x)} + 3 \cdot \cos(x)$$
 na przedziale $[-2\pi, 4\pi]$

wyznacz dla zagadnienia Lagrange'a wielomian interpolujący w postaci Lagrange'a i Newtona. Interpolację przeprowadź dla różnej liczby węzłów. Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów:

- równoodległe
- zera wielomianu Czebyszewa

Dla wyznaczonych wielomianów:

- Oceń dokładność, z jaką wielomian przybliża zadaną funkcję.
- Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję.
- Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

Rysunek 1: Funkcja f(x) na przedziale $[-2\pi, 4\pi]$

2 Dane techniczne

Doświadczenie zostało przeprowadzone na komputerze osobistym o specyfikacji:

- System Operacyjny: Windows 11 Pro
- Procesor: 12th Gen Intel(R) Core(TM) i5-1235U 1.3 GHz
- Język: Python 3.12

3 Przebieg Doświadczenia

Wyznaczono wartości wielomianu interpolującego w N= 500 równomiernie rozłożonych punktach z przedziału $[-2\pi, 4\pi]$.

Obliczenia przeprowadzono dla różnych wartości liczby węzłów n:

$$n \in \{3, 4, 5, 6, \dots 98, 99\}$$

Dla każdej liczby węzłów wykonano interpolację według wzorów Lagrange'a i Newtona oraz zastosowano dwa sposoby rozmieszczenia węzłów: równomierny oraz zgodny z zerami wielomianu Czebyszewa.

Dla każdego przypadku obliczono błąd maksymalny i błąd średni w N=500 równomiernie rozłożonych punktach z przedziału $[-2\pi, 4\pi]$.

3.1 Wzory na błąd maksymalny i błąd średni

Maksymalny błąd:

$$e_{\max} = \max_{i \in \{1,\dots,N\}} (|f(x_i) - p(x_i)|)$$

Średni błąd:

$$e_{\text{avg}} = \frac{\sqrt{\sum_{i=1}^{N} (f(x_i) - p(x_i))^2}}{N}$$

Gdzie:

 $f(x_i)$ – wartość funkcji w punkcie x_i ; $p(x_i)$ – wartość wielomianu interpolującego w punkcie x_i

4 Wyniki doświadczenia

Poniżej w tabelach 1-4 zestawiono wyniki obliczeń błędów dla różnych metod interpolacji i sposobów rozmieszczenia węzłów.

W tabelach 5 i 6 przedstawiono różnice w błędach w obrębie ustalonego wzoru interpolacji. Na następnych stronach na wykresach 2a i 2b przedstawiono wykresy porównania błędów średnich dla wybranego rodzaju rozmieszczenia węzłów w zależności od wzoru interpolacji.

Na rysunkach 3a – 9d przedstawiono wybrane wykresy wielomianów interpolowanych wraz z zaznaczonymi węzłami.

Tabela 1: Tabela wartości błędów dla interpolacji wzorem Lagrange'a z węzłami równomiernymi

n	$e_{\mathbf{max}}$	$e_{\mathbf{avg}}$
3	21.97921262416206	0.3854027498325387
4	16.160090732049625	0.3117392825967836
5	27.01929114689049	0.5501386625945343
6	37.14813258542621	0.6047597899304648
7	30.708450998006757	0.4627854191404241
8	45.08294433021599	0.6352293362373853
9	23.18816496258144	0.3733205589672855
10	22.27608940363901	0.3509330080128941
11	79.82895794064405	0.9930027665631594
12	46.55679605141461	0.5289009225139983
13	415.79528699089815	4.956997565255526
14	117.9201396895547	1.264755916454532
15	865.8741607045491	8.9573434761864
16	761.4361913228649	5.710267930722043
17	1237.4286923556888	9.965124516146624
18	3542.9893806501727	30.172195259041786
19	621.9513028212282	5.846101241315953
20	11195.290279219516	96.69350526222676
21	4803.793143823571	31.339835526144405
22	23811.33298747847	188.1855505090037
23	28369.554945517368	180.7039636373999
24	33515.58150942168	247.38685490421796
25	106268.80897129286	731.5962444915605
26	31496.117079094045	181.02507644402192
27	288993.425947567	2018.328075977561
28	159846.52469269698	852.8466131606848
29	587749.4183999618	3961.460911170405
30	802944.4740999027	4474.99929746212
31	799123.2799219125	5550.198382411089
32	2632738.7234897707	15507.239270008597
33	892999.5257681416	4349.409878682425
34	6617134.623743165	39709.970179173135
35	4075471.0736091086	19120.79941903625
36	12930798.82812516	77541.83238405854
37	18528205.905090462	91742.38536177842
38	18632983.81891921	111464.20412534472
39	56557539.60632392	292248.5031001528
40	21319331.638245583	91719.81266027605
41	134680770.09423503	716157.3640487199
42	83676304.62847713	353989.7944700083
43	251286469.2759747	1387194.5302962046
44	355706860.095641	1619567.9639171546
45	376688375.9238404	2026466.1020820064
46	1050166932.8836632	4931424.979215548
47	447752197.49122655	1766639.8827007138
48	2450725922.8986754	11768472.159421308
49	1459218643.5039847	5565549.680023099
50	4556081285.960235	22665462.21854841
51	6214986510.901751	25131367.26925577

Tabela 1 – kontynuacja z poprzedniej strony

n	$e_{\mathbf{max}}$	$e_{\mathbf{avg}}$
52	6966211152.989348	33671309.31076584
52	17745444887.88906	74962578.03658323
54	8598346942.618605	31436483.410869777
$\frac{54}{55}$	40263538593.77712	176404767.56948724
56	21557640127.27846	75862026.03767817
57	73666904934.91716	339366707.0844523
58	93022476978.15524	346928409.67194825
59	112516579594.26234	514323106.825778
60	261695924180.09076	1032261324.5677958
61	145528915729.867	517818389.34751695
62	584845654691.7393	2419713475.854795
63	265865893056.0472	913799023.8622696
64	1063954702970.6356	4673969560.526585
65	1211915621247.7275	4291721502.688364
66	1612584129235.413	7248409635.085217
67	3414030121164.0244	12937655280.311552
68	2188928721205.8208	7880152770.808768
69	7682162434293.521	30478229815.344875
70	2771754813578.405	10065334158.196678
71	14398809121878.588	59411062800.085976
72	14596012345942.074	47765615602.38565
73	22149167293286.945	94493461185.85846
74	43033626833697.01	148118519609.53143
75	32353905571995.54	110564943142.11948
76	98949126961092.62	353620807323.3322
77	27499719137139.383	109235130620.05502
78 7 8	187291597767842.2	698942819772.9434
79	162538606432174.34	478956060234.5861
80	283689326499350.56	1141949713227.2903
81	497188818900621.75	1552619606660.1277
82	433217336206334.8	1429705939711.578
83	1160247966258595.2	3788735738904.4326
84	441732800525509.5	1275560514961.0298
85	2229986425852772.8	7628357024467.964
86	1600859270280351.5	4327710654954.259
87	3478014067641988.5	12818372522885.451
88	5204813427201163.0	14914530687472.203
89	5278136110036525.0	17059157036485.717
90	1.2444800083431102e + 16	37551656198738.13
91	6123348567604794.0	15822441284635.516
92	2.4409710934002936e+16	77386410116750.58
93	1.379622146610601e+16	35409649260621.15
94	3.939562901127458e + 16	133893681190537.77
95	4.945499037651593e + 16	131192034532705.05
96	5.883344163991324e+16	188248700442987.03
97	1.2251747882682083e+17	344624132138458.5
98	7.521757722633669e+16	191805844998277.7
99	2.464971886551469e + 17	730758434559238.0

Tabela 2: Tabela wartości błędów dla interpolacji wzorem Newtona z węzłami równomiernymi

n	$e{\mathbf{max}}$	$e_{\mathbf{avg}}$
3	21.97921262416206	0.3854027498325387
4	16.160090732049625	0.3117392825967836
5	27.01929114689049	0.5501386625945343
6	37.14813258542624	0.6047597899304649
7	30.70845099800673	0.4627854191404238
8	45.08294433021599	0.6352293362373823
9	23.18816496258178	0.373320558967286
10	22.276089403638125	0.3509330080128867
11	79.828957940643	0.9930027665631552
12	46.556796051413485	0.528900922514018
13	415.7952869908701	4.95699756525557
14	117.92013968952192	1.2647559164543971
15	865.8741607046961	8.957343476187635
16	761.4361913221757	5.710267930718745
17	1237.4286923584452	9.96512451616424
18	3542.9893806526256	30.172195259031422
19	621.9513028212262	5.846101241299633
20	11195.290279230048	96.69350526236585
21	4803.793143723011	31.339835525577957
22	23811.332987490183	188.18555050882523
23	28369.55494546352	180.70396363804184
24	33515.581509438605	247.38685490609225
25	106268.80897243884	731.5962444962493
26	31496.117079094	181.0250764377212
27	288993.42594416486	2018.328075965077
28	159846.5246218838	852.8466127122009
29	587749.4183279739	3961.460911193408
30	802944.4743584495	4474.999298543467
31	799123.279310242	5550.198378994433
32	2632738.7235861435	15507.239277851886
33	892999.5257681138	4349.409877685163
34	6617134.625700348	39709.97017643512
35	4075471.076510248	19120.79939941072
36	12930798.869661843	77541.83244975406
37	18528205.87835417	91742.38534108338
38	18632983.818919573	111464.20383669317
39	56557537.66006372	292248.49641584104
40	21319331.638245635	91719.81376461672
41	134680772.03468353	716157.3686359449
42	83676306.63013172	353989.8094010908
43	251286450.3395354	1387194.4043216915
44	355706844.3238579	1619567.9582283353
45	376688375.9238688	2026465.6392069373
46	1050166752.4265112	4931424.084197401
47	447752197.4915587	1766640.4444267035
48	2450726958.2671275	11768478.4684279
49	1459216210.797119	5565538.572642731
50	4556100727.613865	22665504.63529933
51	6214996199.582177	25131389.108530905

Tabela 2 – kontynuacja z poprzedniej strony

n	$e_{\mathbf{max}}$	$e_{\mathbf{avg}}$
52	6966211152.992231	33671254.59389775
53	17745443030.24823	74962588.87196282
54	8598346942.609016	31436322.56155329
55	40263851653.25039	176407093.668033
56	21557715142.95313	75864074.2116812
57	73667103916.72255	339365079.1568998
58	93021987964.45866	346908511.7419439
59	112516579594.69827	514325224.654654
60	261669275627.33417	1032092943.1376954
61	145528915730.669	517933601.1525629
62	584833145380.138	2420025959.947455
63	266260717706.9768	914968146.3194
64	1063710919831.4264	4671570880.821048
65	1212011349477.9988	4293171747.356929
66	1612584129254.74	7233598074.604304
67	3399679914067.9355	12890424537.565346
68	2188928721373.274	7847438031.966433
69	7707642086284.736	30576862310.52163
70	2715105858570.112	9852457398.23918
71	14565689161265.73	59407950276.0042
72	14953855531701.258	48705288787.46837
73	22642163065485.203	97549244696.67303
74	37787511310545.86	135040813160.26495
75	32353905571050.53	120211348312.67442
76	124241086641641.08	424123312286.4226
77	27499719107266.91	132013625993.1027
78	149573481694322.2	647210343594.5317
79	140765286863241.72	433540324014.28845
80	616166947438445.4	1971569333196.1848
81	970093890038799.4	3329341058422.607
82	3252631223838302.5	12513096902807.057
83	3108133868775581.0	9490731904650.598
84	2.720963729455366e+16	95095494512589.72
85	1.478174051256519e + 16	40979777698381.445
86	3.249532672437852e + 16	80986239994051.53
87	2.2179879415999344e + 17	703568767531338.1
88	1.6633572716686016e + 17	501400945413399.1
89	8.011476901812577e + 17	1795258112213606.2
90	2.6478890979299046e + 17	1136321226217122.2
91	2.7137591625776973e + 18	7741231321584221.0
92	5.584787320718052e + 18	1.1955757271930376e + 16
93	1.0559932064834593e + 19	3.930493027638748e + 16
94	4.110643174429448e + 19	1.2879994317762653e+17
95	6.276198186935281e + 19	2.5419264057348262e + 17
96	1.489954687642819e + 20	3.598215616979013e + 17
97	2.192899586717332e + 20	6.822207319731748e + 17
98	4.621196517103011e+20	1.62556115150774e + 18
99	1.5735897682047323e + 21	5.544265213265702e + 18
	·	·

Tabela 3: Tabela wartości błędów dla interpolacji wzorem Lagrange'a z węzłami zgodnymi z zerami wielomianu Czebyszewa

	$e_{\mathbf{max}}$	$e_{\mathbf{avg}}$
3	23.31898823353195	0.422285702207377
$\frac{3}{4}$	16.667748907616847	0.2974486579159278
5	23.687149372970445	0.3782396217440654
6	22.267043766927426	0.3668713498063164
7	25.25375289120653	0.3794764368675912
8	14.93152065059058	0.3240994967794811
9	18.36213790787878	0.2651004827779086
10	11.939346049636727	0.229457347135626
11	14.63819510549748	0.2028268785614279
$\frac{11}{12}$	12.718516283647016	0.2010364596089221
13	10.5724615563317	0.2010504590089221 0.1741665284644236
$\frac{13}{14}$	10.416769696021028	0.1741003234044230 0.1728773438260517
15	12.482295728732414	0.1740199146131826
16	11.45481833792614	0.1661153854206483
17	8.092775916821418	0.1270894482617773
18	9.632212139180192	0.1214363292253462
19	5.708032037733556	0.0942489244068148
20	7.27044390607873	0.0342465244000140 0.0872675799187907
21	4.955321208763184	0.076201896418433
$\frac{21}{22}$	4.641703960992302	0.070201590415435 0.072413582215407
$\frac{22}{23}$	5.5381953717076495	0.0703133673264135
$\frac{23}{24}$	4.308698921652061	0.0668130494400243
$\frac{24}{25}$	4.434331153260657	0.063968610359971
$\frac{25}{26}$	3.237863240615628	0.050360611573581
$\frac{20}{27}$	3.695122713502453	0.047560895876902
28	2.1470139824539083	0.0342611680967917
29	2.721694276976841	0.0313958698973979
30	1.484175981042453	0.0243972885854518
31	1.7800993123134958	0.0236143586685573
32	1.8097729307178876	0.0234926045727212
33	1.4527151648457668	0.0214339681649293
34	1.5800249817616248	0.020639406681847
35	1.0362084896132036	0.0166271526380913
36	1.1593154921480782	0.0156163872329236
37	0.7055296272623615	0.0108401365865776
38	0.8488014547436009	0.009890731305583
39	0.4315168171466474	0.0070084423284243
40	0.5599844375256247	0.0067468322582213
41	0.4679525086191	0.0061180198649626
42	0.4261745648024106	0.005865963459295
43	0.4298702395838827	0.005624423477193
44	0.2987019627576703	0.0046144838967787
45	0.3213436594630199	0.0043166306157604
46	0.1929207566385962	0.0030010081544879
47	0.2276039337070088	0.0027383395179617
48	0.1007991672916119	0.0018392162260633
49	0.1497329212217799	0.0017487710389076
50	0.1103636858716337	0.0014659766482572
51	0.1085059469136595	0.0014092590213775

Tabela 3 – kontynuacja z poprzedniej strony

	Tabeia 5 – kontynuacja z	z poprzedmej strony
n	$e_{\mathbf{max}}$	$e_{\mathbf{avg}}$
52	0.0980799963424381	0.0013207727161346
53	0.0747994023097202	0.0011056768563453
54	0.0763391307812	0.0010276183476425
55	0.0468136968830554	0.000730916909127
56	0.0528559277636482	0.0006667950854827
57	0.0253774233760606	0.0004402423773889
58	0.035632488038491	0.0004134215905263
59	0.0220805569266305	0.0003177888746464
60	0.0243949625767605	0.000305194570572
61	0.0201577147722957	0.0002734167160416
62	0.0164795940855739	0.0002342142433236
63	0.0154935867670804	0.0002145353763486
64	0.0103029673822243	0.0001576405618157
65	0.010941771987408	0.0001432222976218
66	0.0056560575237201	9.537680832851831e-05
67	0.0074092622394736	8.856020874406749e-05
68	0.0038846170688735	6.344781901244705e-05
69	0.0049483413141722	6.065650872572011e-05
70	0.0036156107641035	5.09676800115623e-05
71	0.0032380397406566	4.4722446876879234e-05
72	0.0028695809521801	3.988139449355534e-05
73	0.0020080202302885	3.0375847069794183e-05
74	0.0020454160301746	2.7324972282624964e-05
75	0.0011162785597038	1.860794571457597e-05
76	0.0013641403489828	1.7101538747572813e-05
77	0.0006195189027957	1.1725801336800608e-05
78	0.0008993669875394	1.1138623774488607e-05
79	0.0005767618514043	8.705511560886927e-06
80	0.0005833240397734	7.813961705952263e-06
81	0.000469863506372	6.691802967464744e-06
82	0.0003573651927055	5.28156612283799e-06
83	0.0003392879169492	4.673244049839527e-06
84	0.0002025278899102	3.2709936808204887e-06
85	0.0002284140825583	2.9781167657091564e-06
86	0.0001007982061431	2.0003302732676007e-06
87	0.0001499036097882	1.889596310450471e-06
88	8.381483741493057e-05	1.379566206550385e-06
89	9.58255358423088e-05	1.2643308279686703e-06
90	6.949663388633454e-05	1.0266448984763636e-06
91	5.8328983584488014e-05	8.408215290059848e-07
92	5.134244671012311e-05	7.240055791316407e-07
93	3.3324999850314896e-05	5.2427839704563e-07
94	3.50216138897963e-05	4.7001565585478027e-07
95	1.7103698936260514e-05	3.163502698580883e-07
96	2.299540650696485e-05	2.9568551867721493e-07
97	1.112433895267273e-05	2.0534100406374918e-07
98	$1.4516250892882\mathrm{e}\text{-}05$	1.908583290086853e- 07
99	$9.31949876292748 \mathrm{e}\text{-}06$	1.4605691953826137e-07

Tabela 4: Tabela wartości błędów dla interpolacji wzorem Newtona z węzłami zgodnymi z zerami wielomianu Czebyszewa

	0	0
<u>n</u>	e _{max}	$e_{\mathbf{avg}}$
3	23.31898823353195	0.422285702207377
4	16.667748907616847	0.2974486579159278
5	23.687149372970445	0.3782396217440654
6	22.26704376692743	0.3668713498063163
7	25.25375289120654	0.3794764368675912
8	14.93152065059099	0.3240994967794804
9	18.362137907878783	0.2651004827779086
10	11.939346049636724	0.2294573471356253
11	14.638195105497456	0.2028268785614258
12	12.71851628364766	0.2010364596089171
13	10.57246155633142	0.1741665284644225
14	10.416769696021898	0.1728773438260397
15	12.482295728726864	0.174019914613213
16	11.45481833792445	0.1661153854206778
17	8.09277591692061	0.1270894482620994
18	9.632212139181885	0.1214363292259246
19	5.708032037734686	0.0942489244036312
20	7.27044390607637	0.087267579922827
21	4.955321208790121	0.0762018964146787
22	4.641703960996505	0.0724135822186455
23	5.538195371726742	0.0703133673300925
24	4.308698903728114	0.0668130493063788
25	4.4343311532305565	0.0639686105095409
26	3.237863240632006	0.0503606105864542
27	3.6951227135376215	0.0475608955352217
28	2.1470139824588106	0.0342611634023979
29	2.7216942766786474	0.0313958609876929
30	1.4841759824263576	0.0243972751057001
31	1.7800993124065163	0.0236144034011464
32	1.8097729338629804	0.0224925594699501
33	1.452715164255039	0.0214342420449414
34	1.5800249758624965	0.0206396034847813
35	1.0362084893951184	0.0166226537891633
36	1.1593154925479574	0.0156392755821635
37	0.7055296267439397	0.0108549551374219
38	0.8488014585216739	0.0099045704056965
39	0.76940289709415	0.0074920873633245
40	4.079375695276056	0.0212634632908917
41	11.065350840165866	0.03969632851685
42	7.356900189160405	0.0311801013849735
43	15.416768976660688	0.0567520161540963
44	116.29851129746956	0.5075028352222944
45	348.83016309848176	1.4984063138352008
46	612.3966537492113	2.5599408235667096
47	679.8104398423588	2.6394057528824413
48	685.942383515835	3.166052738551917
49	4004.612823579821	11.993180277580448
50	20676.462188540638	82.04837273705641
51	48979.656334996456	189.606669948494

Tabela 4 – kontynuacja z poprzedniej strony

	$e_{\mathbf{max}}$	$e_{\mathbf{avg}}$
52	57302.56850923537	250.15648176263588
53	37490.62227143087	129.6527800268929
54	139727.88671469243	546.7660825902127
55	849594.0767584572	3509.159208689105
56	3372702.54649442	10947.679941413904
57	2941160.958815773	12502.592359320686
58	7127818.804193549	26204.18669130406
59	6434250.624904568	26647.448888767576
60	33842009.06384827	169549.58768189722
61	91883942.63936396	234555.2179061048
62	230769256.19620815	713683.1144979768
63	305109904.3282409	1600726.654386034
64	680124763.123365	2617823.3327667946
65	2666824346.0640626	8678565.841510944
66	5230747170.086364	18056137.040699378
67	10827047987.96897	34808760.50407284
68	14380721883.36893	48954870.84066592
69	38479043103.92002	110998161.42989306
70	123613264819.03488	559203292.4725143
71	295002329254.35126	824800282.1428096
72	1275211152332.0608	3498442036.654184
73	1325942336539.4116	5260758901.845009
74	2987386787129.6943	8576228473.40855
75	5846932057061.346	26899323520.871296
76	27279127431983.777	85519749967.23257
77	34804011604900.72	92607297290.61713
78	46974215221712.94	153853888464.6267
79	166528129253005.38	511874097042.7232
80	321825011170729.0	1074422050937.558
81	1379237751936794.8	4552332301247.819
82	1852991175795514.0	8460106977075.285
83	2629377236285815.0	10049128913476.172
84	7724113773814798.0	18561300108408.53
85 1.	3773388159736348e+16	39371489979658.52
86 3.	0251963425160816e + 16	103191866633197.31
87 1.	6086733582419533e + 17	512623027403729.94
88 6	.900857724435875e + 16	308265474229245.5
89 3.	2003997315982675e+17	1354944147268664.0
90 1.	0644280171998244e + 18	3567203071566369.0
91 7	.593512500038755e + 17	2691304798024073.0
92 5	5.20380113283671e + 18	1.939965933924252e + 16
93 6	.826851497713684e + 18	$2.277231660879929\mathrm{e}{+16}$
94 7	.365287776423436e + 18	$2.737242933557865\mathrm{e}{+16}$
95 8	.733044437566855e + 18	$3.704697375904549\mathrm{e}{+16}$
96 4	.947767798542345e + 19	1.6338867432217904e + 17
97 1.	6646514865564598e+20	5.423142011132087e + 17
98 2	.088671696067806e + 20	$6.930977892903886\mathrm{e}{+17}$
99 8	.090161749787285e + 20	$3.3618328379836534\mathrm{e}{+18}$

Tabela 5: Porównanie błędów (Lagrange vs Newton) z węzłami równomiernymi

n	$e_{ m max}^{ m (lagr)}$	$e_{ m max}^{ m (newt)}$	$\Delta e_{ m max}$	$e_{\mathrm{avg}}^{(\mathrm{lagr})}$	$e_{ m avg}^{ m (newt)}$	$\Delta e_{ m avg}$
3	21.979	21.979	0	0.3854	0.3854	0
4	16.16	16.16	0	0.31174	0.31174	0
5	27.019	27.019	0	0.55014	0.55014	0
6	37.148	37.148	2.8422e-14	0.60476	0.60476	1.1102e-16
7	30.708	30.708	-2.8422e-14	0.46279	0.46279	-2.7756e-16
8	45.083	45.083	0	0.63523	0.63523	-2.9976e-15
9	23.188	23.188	3.4106e-13	0.37332	0.37332	4.996e-16
10	22.276	22.276	-8.8463e-13	0.35093	0.35093	-7.4385e-15
11	79.829	79.829	-1.0516e-12	0.993	0.993	-4.2188e-15
12	46.557	46.557	-1.1227e-12	0.5289	0.5289	1.9651e-14
13	415.8	415.8	-2.8024e-11	4.957	4.957	4.3521e-14
14	117.92	117.92	-3.2784e-11	1.2648	1.2648	-1.3478e-13
15	865.87	865.87	1.47e-10	8.9573	8.9573	1.2346e-12
16	761.44	761.44	-6.8928e-10	5.7103	5.7103	-3.2987e-12
17	1237.4	1237.4	2.7565e-09	9.9651	9.9651	1.7616e-11
18	3543	3543	2.4529e-09	30.172	30.172	-1.0363e-11
19	621.95	621.95	-1.9327e-12	5.8461	5.8461	-1.632e-11
20	11195	11195	1.0532e-08	96.694	96.694	1.3908e-10
21	4803.8	4803.8	-1.0056e-07	31.34	31.34	-5.6645e-10
22	23811	23811	1.1714e-08	188.19	188.19	-1.7846e-10
23	28370	28370	-5.3849e-08	180.7	180.7	6.4193e-10
24	33516	33516	1.6924 e - 08	247.39	247.39	1.8743e-09
25	1.0627e + 05	1.0627e + 05	1.146e-06	731.6	731.6	4.6888e-09
26	31496	31496	-4.3656e-11	181.03	181.03	-6.3007e-09
27	2.8899e + 05	2.8899e + 05	-3.4021e-06	2018.3	2018.3	-1.2484e-08
28	1.5985e + 05	1.5985e + 05	-7.0813e-05	852.85	852.85	-4.4848e-07
29	5.8775e + 05	5.8775e + 05	-7.1988e-05	3961.5	3961.5	2.3003e- 08
30	8.0294e + 05	8.0294e + 05	0.00025855	4475	4475	1.0813e-06
31	7.9912e + 05	7.9912e + 05	-0.00061167	5550.2	5550.2	-3.4167e-06
32	2.6327e + 06	2.6327e + 06	9.6373 e-05	15507	15507	7.8433e-06
33	8.93e + 05	8.93e + 05	-2.7823e-08	4349.4	4349.4	-9.9726e-07
34	6.6171e + 06	6.6171e + 06	0.0019572	39710	39710	-2.738e-06
35	4.0755e + 06	4.0755e + 06	0.0029011	19121	19121	-1.9626e-05
36	1.2931e+07	1.2931e+07	0.041537	77542	77542	6.5696 e - 05
37	1.8528e + 07	1.8528e + 07	-0.026736	91742	91742	-2.0695e-05
38	1.8633e + 07	1.8633e + 07	3.6135e-07	1.1146e + 05	1.1146e + 05	-0.00028865
39	5.6558e + 07	5.6558e + 07	-1.9463	2.9225e + 05	2.9225e + 05	-0.0066843
40	2.1319e+07	2.1319e+07	5.2154e-08	91720	91720	0.0011043
41	1.3468e + 08	1.3468e + 08	1.9404	7.1616e + 05	7.1616e + 05	0.0045872
42	8.3676e + 07	8.3676e + 07	2.0017	3.5399e + 05	3.5399e + 05	0.014931
43	2.5129e + 08	2.5129e + 08	-18.936	1.3872e + 06	1.3872e + 06	-0.12597
44	3.5571e + 08	3.5571e + 08	-15.772	1.6196e + 06	1.6196e + 06	-0.0056888
45	3.7669e + 08	3.7669e + 08	2.8372e-05	2.0265e + 06	2.0265e + 06	-0.46288
46	1.0502e + 09	1.0502e + 09	-180.46	4.9314e + 06	4.9314e + 06	-0.89502
47	4.4775e + 08	4.4775e + 08	0.00033212	1.7666e + 06	1.7666e + 06	0.56173
48	2.4507e + 09	2.4507e + 09	1035.4	1.1768e + 07	1.1768e + 07	6.309
49	1.4592e + 09	1.4592e + 09	-2432.7	5.5655e + 06	5.5655e + 06	-11.107
50	4.5561e + 09	4.5561e + 09	19442	2.2665e + 07	2.2666e + 07	42.417
51	6.215e + 09	6.215e + 09	9688.7	2.5131e+07	2.5131e+07	21.839

Tabela 5 – kontynuacja z poprzedniej strony

n	$e_{\max}^{(lagr)}$	$e_{\max}^{(\text{newt})}$	$\Delta e_{ m max}$	$e_{ m avg}^{ m (lagr)}$	$e_{\mathrm{avg}}^{\mathrm{(newt)}}$	$\Delta e_{ m avg}$
52	6.9662e + 09	6.9662e + 09	0.002883	3.3671e + 07	3.3671e+07	-54.717
53	1.7745e + 10	1.7745e + 10	-1857.6	7.4963e + 07	7.4963e + 07	10.835
54	8.5983e + 09	8.5983e + 09	-0.0095882	3.1436e + 07	3.1436e + 07	-160.85
55	4.0264e+10	4.0264e + 10	3.1306e+05	1.764e + 08	1.7641e + 08	2326.1
56	2.1558e + 10	2.1558e + 10	75016	7.5862e + 07	7.5864e + 07	2048.2
57	7.3667e + 10	7.3667e + 10	1.9898e + 05	3.3937e + 08	3.3937e + 08	-1627.9
58	9.3022e+10	9.3022e+10	-4.8901e+05	3.4693e + 08	3.4691e + 08	-19898
59	1.1252e + 11	1.1252e + 11	0.43593	5.1432e + 08	5.1433e + 08	2117.8
60	2.617e + 11	2.6167e + 11	-2.6649e + 07	1.0323e + 09	1.0321e+09	-1.6838e + 05
61	1.4553e + 11	1.4553e + 11	0.802	5.1782e + 08	5.1793e + 08	1.1521e + 05
62	5.8485e + 11	5.8483e + 11	-1.2509e+07	2.4197e + 09	2.42e + 09	3.1248e + 05
63	2.6587e + 11	2.6626e + 11	3.9482e + 08	9.138e + 08	9.1497e + 08	1.1691e + 06
64	1.064e + 12	1.0637e + 12	-2.4378e + 08	4.674e + 09	4.6716e + 09	-2.3987e + 06
65	1.2119e + 12	1.212e + 12	9.5728e + 07	4.2917e + 09	4.2932e+09	1.4502e + 06
66	1.6126e + 12	1.6126e + 12	19.327	7.2484e + 09	7.2336e+09	-1.4812e + 07
67	3.414e + 12	3.3997e + 12	-1.435e+10	1.2938e + 10	1.289e + 10	-4.7231e+07
68	2.1889e + 12	2.1889e + 12	167.45	7.8802e + 09	7.8474e + 09	-3.2715e+07
69	7.6822e + 12	7.7076e + 12	$2.548e{+10}$	3.0478e + 10	3.0577e + 10	9.8632e + 07
70	2.7718e + 12	2.7151e + 12	-5.6649e + 10	1.0065e + 10	9.8525e + 09	-2.1288e+08
71	1.4399e + 13	$1.4566e{+}13$	$1.6688e{+11}$	$5.9411e{+10}$	5.9408e + 10	-3.1125e + 06
72	1.4596e + 13	$1.4954e{+13}$	$3.5784e{+11}$	4.7766e + 10	4.8705e + 10	9.3967e + 08
73	2.2149e + 13	2.2642e + 13	4.93e + 11	9.4493e + 10	9.7549e + 10	3.0558e + 09
74	4.3034e+13	3.7788e + 13	-5.2461e+12	1.4812e + 11	$1.3504e{+11}$	-1.3078e + 10
75	3.2354e + 13	3.2354e + 13	-945.01	1.1056e + 11	$1.2021e{+11}$	9.6464e + 09
76	9.8949e + 13	1.2424e + 14	2.5292e + 13	3.5362e + 11	4.2412e+11	7.0503e + 10
77	2.75e + 13	2.75e + 13	-29872	1.0924e + 11	1.3201e+11	2.2778e + 10
78	1.8729e + 14	1.4957e + 14	-3.7718e+13	6.9894e + 11	6.4721e+11	-5.1732e+10
79	1.6254e + 14	1.4077e + 14	-2.1773e+13	4.7896e + 11	4.3354e + 11	-4.5416e+10
80	2.8369e + 14	6.1617e + 14	3.3248e + 14	1.1419e + 12	1.9716e + 12	8.2962e+11
81	4.9719e + 14	9.7009e+14	4.7291e + 14	1.5526e + 12	3.3293e+12	1.7767e + 12
82	4.3322e+14	3.2526e + 15	2.8194e + 15	1.4297e + 12	1.2513e + 13	1.1083e + 13
83	1.1602e + 15	3.1081e + 15	1.9479e + 15	3.7887e + 12	9.4907e + 12	5.702e + 12
84	4.4173e + 14	2.721e+16	2.6768e + 16	1.2756e + 12	9.5095e+13	9.382e + 13
85	2.23e+15	1.4782e + 16	1.2552e + 16	7.6284e + 12	4.098e + 13	3.3351e+13
86	1.6009e + 15	3.2495e+16	3.0894e+16	4.3277e + 12	8.0986e+13	7.6659e + 13
87	3.478e + 15	2.218e + 17	2.1832e+17	1.2818e + 13	7.0357e + 14	6.9075e + 14
88	5.2048e + 15	1.6634e + 17	1.6113e + 17	1.4915e + 13	5.014e+14	4.8649e + 14
89	5.2781e+15	8.0115e+17	7.9587e + 17	1.7059e + 13	1.7953e + 15	1.7782e + 15
90	1.2445e+16	2.6479e + 17	2.5234e+17	3.7552e+13	1.1363e+15	1.0988e + 15
91	6.1233e+15	2.7138e + 18	2.7076e + 18	1.5822e + 13	7.7412e + 15	7.7254e + 15
92	2.441e+16	5.5848e + 18	5.5604e + 18	7.7386e+13	1.1956e+16	1.1878e + 16
93	1.3796e + 16	1.056e + 19	1.0546e + 19	3.541e+13	3.9305e+16	3.927e+16
94	3.9396e+16	4.1106e+19	4.1067e+19	1.3389e + 14	1.288e + 17	1.2867e + 17
95 06	4.9455e+16	6.2762e+19	6.2713e + 19	1.3119e + 14	2.5419e+17	2.5406e+17
96	5.8833e+16	1.49e + 20	1.4894e + 20	1.8825e+14	3.5982e+17	3.5963e+17
97	1.2252e+17	2.1929e+20	2.1917e + 20	3.4462e+14	6.8222e+17	6.8188e+17
98	7.5218e + 16	4.6212e+20	4.6204e+20	1.9181e+14	1.6256e + 18	1.6254e + 18
99	2.465e+17	1.5736e + 21	1.5733e + 21	7.3076e + 14	5.5443e + 18	5.5435e + 18

 $\bf Tabela \ 6:$ Porównanie błędów (Lagrange vs Newton) z węzłami zgodnymi z zerami wielomianu Czebyszewa

n	$e_{\max}^{(lagr)}$	$e_{\max}^{(\text{newt})}$	$\Delta e_{ m max}$	$e_{\mathrm{avg}}^{(\mathrm{lagr})}$	$e_{\mathrm{avg}}^{(\mathrm{newt})}$	Δe_{avg}
3	23.319	23.319	0	0.42229	0.42229	0
4	16.668	16.668	0	0.29745	0.29745	0
5	23.687	23.687	0	0.37824	0.37824	0
6	22.267	22.267	3.5527e-15	0.36687	0.36687	-1.1102e-16
7	25.254	25.254	7.1054e-15	0.37948	0.37948	0
8	14.932	14.932	4.1034e-13	0.3241	0.3241	-6.6613e-16
9	18.362	18.362	3.5527e-15	0.2651	0.2651	0
10	11.939	11.939	-3.5527e-15	0.22946	0.22946	-6.9389e-16
11	14.638	14.638	-2.4869e-14	0.20283	0.20283	-2.0817e-15
12	12.719	12.719	6.4304 e-13	0.20104	0.20104	-4.996e-15
13	10.572	10.572	-2.7889e-13	0.17417	0.17417	-1.1102e-15
14	10.417	10.417	8.7041e-13	0.17288	0.17288	-1.199e-14
15	12.482	12.482	-5.5493e-12	0.17402	0.17402	3.0392e-14
16	11.455	11.455	-1.6893e-12	0.16612	0.16612	2.9504e-14
17	8.0928	8.0928	9.9192e-11	0.12709	0.12709	3.221e-13
18	9.6322	9.6322	1.6929 e-12	0.12144	0.12144	5.784e-13
19	5.708	5.708	1.1298e-12	0.094249	0.094249	-3.1836e-12
20	7.2704	7.2704	-2.3599e-12	0.087268	0.087268	4.0363e-12
21	4.9553	4.9553	2.6937e-11	0.076202	0.076202	-3.7543e-12
22	4.6417	4.6417	4.2029e-12	0.072414	0.072414	3.2385e-12
23	5.5382	5.5382	1.9092e-11	0.070313	0.070313	3.679e-12
24	4.3087	4.3087	-1.7924e-08	0.066813	0.066813	-1.3365e-10
25	4.4343	4.4343	-3.01e-11	0.063969	0.063969	1.4957e-10
26	3.2379	3.2379	1.6378e-11	0.050361	0.050361	-9.8713e-10
27	3.6951	3.6951	3.5168e-11	0.047561	0.047561	-3.4168e-10
28	2.147	2.147	4.9023e-12	0.034261	0.034261	-4.6944e-09
29	2.7217	2.7217	-2.9819e-10	0.031396	0.031396	-8.9097e-09
30	1.4842	1.4842	1.3839e-09	0.024397	0.024397	-1.348e-08
31	1.7801	1.7801	9.302e-11	0.023614	0.023614	4.4733e-08
32	1.8098	1.8098	3.1451e-09	0.022493	0.022493	-4.5103e-08
33	1.4527	1.4527	-5.9073e-10	0.021434	0.021434	2.7388e-07
34	1.58	1.58	-5.8991e-09	0.020639	0.02064	1.968e-07
35	1.0362	1.0362	-2.1809e-10	0.016627	0.016623	-4.4988e-06
36	1.1593	1.1593	3.9988e-10	0.015616	0.015639	2.2888e-05
37	0.70553	0.70553	-5.1842e-10	0.01084	0.010855	1.4819e-05
38	0.8488	0.8488	3.7781e-09	0.0098907	0.0099046	1.3839e-05
39	0.43152	0.7694	0.33789	0.0070084	0.0074921	0.00048365
40	0.55998	4.0794	3.5194	0.0067468	0.021263	0.014517
41	0.46795	11.065	10.597	0.006118	0.039696	0.033578
42	0.42617	7.3569	6.9307	0.005866	0.03118	0.025314
43	0.42987	15.417	14.987	0.0056244	0.056752	0.051128
44	0.2987	116.3	116	0.0046145	0.5075	0.50289
45	0.32134	348.83	348.51	0.0043166	1.4984	1.4941
46	0.19292	612.4	612.2	0.003001	2.5599	2.5569
47	0.2276	679.81	679.58	0.0027383	2.6394	2.6367
48	0.1008	685.94	685.84	0.0018392	3.1661	3.1642
49	0.14973	4004.6	4004.5	0.0017488	11.993	11.991
50	0.11036	20676	20676	0.001466	82.048	82.047

Tabela 6 – kontynuacja z poprzedniej strony

	$e_{ m max}^{ m (lagr)}$	$e_{\max}^{(\text{newt})}$	$\Delta e_{ m max}$	$e_{\mathrm{avg}}^{(\mathrm{lagr})}$	$e_{\text{avg}}^{(\text{newt})}$	$\Delta e_{ m avg}$
51	0.10851	48980	48980	0.0014093	189.61	189.61
52	0.09808	57303	57302	0.0013208	250.16	250.16
53	0.074799	37491	37491	0.0011057	129.65	129.65
54	0.076339	1.3973e + 05	1.3973e + 05	0.0010276	546.77	546.77
55	0.046814	8.4959e + 05	8.4959e + 05	0.00073092	3509.2	3509.2
56	0.052856	3.3727e + 06	3.3727e + 06	0.0006668	10948	10948
57	0.025377	2.9412e + 06	2.9412e + 06	0.00044024	12503	12503
58	0.035632	7.1278e + 06	7.1278e + 06	0.00041342	26204	26204
59	0.022081	6.4343e + 06	6.4343e + 06	0.00031779	26647	26647
60	0.024395	3.3842e + 07	3.3842e + 07	0.00030519	1.6955e + 05	1.6955e + 05
61	0.020158	9.1884e + 07	9.1884e + 07	0.00027342	2.3456e + 05	2.3456e + 05
62	0.01648	2.3077e + 08	2.3077e + 08	0.00023421	7.1368e + 05	7.1368e + 05
63	0.015494	3.0511e + 08	3.0511e + 08	0.00021454	1.6007e + 06	1.6007e + 06
64	0.010303	6.8012e + 08	6.8012e + 08	0.00015764	2.6178e + 06	2.6178e + 06
65	0.010942	2.6668e + 09	2.6668e + 09	0.00014322	8.6786e + 06	8.6786e + 06
66	0.0056561	5.2307e + 09	5.2307e + 09	9.5377e-05	1.8056e + 07	1.8056e + 07
67	0.0074093	1.0827e + 10	1.0827e + 10	8.856e-05	3.4809e + 07	3.4809e + 07
68	0.0038846	1.4381e + 10	1.4381e + 10	6.3448e-05	4.8955e + 07	4.8955e + 07
69	0.0049483	3.8479e + 10	3.8479e + 10	6.0657 e-05	1.11e + 08	1.11e + 08
70	0.0036156	$1.2361e{+11}$	$1.2361e{+11}$	5.0968e-05	5.592e + 08	5.592e + 08
71	0.003238	$2.95e{+11}$	2.95e + 11	4.4722 e-05	8.248e + 08	8.248e + 08
72	0.0028696	1.2752e + 12	1.2752e + 12	3.9881e-05	3.4984e + 09	3.4984e + 09
73	0.002008	1.3259e + 12	$1.3259e{+}12$	3.0376e-05	5.2608e + 09	5.2608e + 09
74	0.0020454	2.9874e + 12	2.9874e + 12	2.7325 e-05	8.5762e + 09	8.5762e + 09
75	0.0011163	5.8469e + 12	5.8469e + 12	1.8608e-05	2.6899e + 10	2.6899e + 10
76	0.0013641	2.7279e + 13	2.7279e + 13	1.7102e-05	$8.552e{+10}$	$8.552e{+10}$
77	0.00061952	3.4804e + 13	3.4804e + 13	1.1726e-05	9.2607e + 10	9.2607e + 10
78	0.00089937	4.6974e + 13	4.6974e + 13	1.1139e-05	1.5385e + 11	1.5385e + 11
79	0.00057676	1.6653e + 14	1.6653e + 14	8.7055e-06	5.1187e + 11	5.1187e + 11
80	0.00058332	3.2183e + 14	3.2183e + 14	7.814e-06	1.0744e + 12	1.0744e + 12
81	0.00046986	1.3792e + 15	1.3792e + 15	6.6918e-06	4.5523e + 12	4.5523e + 12
82	0.00035737	1.853e + 15	1.853e + 15	5.2816e-06	8.4601e + 12	8.4601e + 12
83	0.00033929	2.6294e + 15	2.6294e + 15	4.6732e-06	1.0049e + 13	1.0049e + 13
84	0.00020253	7.7241e + 15	7.7241e + 15	3.271e-06	1.8561e + 13	1.8561e + 13
85	0.00022841	1.3773e + 16	1.3773e + 16	2.9781e-06	3.9371e + 13	3.9371e+13
86	0.0001008	3.0252e + 16	3.0252e + 16	2.0003e-06	1.0319e + 14	1.0319e + 14
87	0.0001499	1.6087e + 17	1.6087e + 17	1.8896e-06	5.1262e+14	5.1262e + 14
88	8.3815e-05	6.9009e + 16	6.9009e + 16	1.3796e-06	3.0827e + 14	3.0827e + 14
89	9.5826e-05	3.2004e+17	3.2004e+17	1.2643e-06	1.3549e + 15	1.3549e + 15
90	6.9497e-05	1.0644e + 18	1.0644e + 18	1.0266e-06	3.5672e + 15	3.5672e + 15
91	5.8329e-05	7.5935e + 17	7.5935e + 17	8.4082e-07	2.6913e + 15	2.6913e + 15
92	5.1342e-05	5.2038e + 18	5.2038e + 18	7.2401e-07	1.94e + 16	1.94e + 16
93	3.3325e-05	6.8269e+18	6.8269e + 18	5.2428e-07	2.2772e+16	2.2772e + 16
94	3.5022e-05	7.3653e + 18	7.3653e + 18	4.7002e-07	2.7372e + 16	2.7372e + 16
95 oc	1.7104e-05	8.733e+18	8.733e+18	3.1635e-07	3.7047e + 16	3.7047e + 16
96	2.2995e-05	4.9478e + 19	4.9478e + 19	2.9569e-07	1.6339e+17	1.6339e + 17
97	1.1124e-05	1.6647e + 20	1.6647e + 20	2.0534e-07	5.4231e+17	5.4231e+17
98	1.4516e-05	2.0887e + 20	2.0887e + 20	1.9086e-07	6.931e+17	6.931e+17
99	9.3195e-06	8.0902e + 20	8.0902e + 20	1.4606e-07	3.3618e + 18	3.3618e + 18

(a) Błąd średni dla węzłów równomiernych

Węzły Czebyszewa: Lagrange vs Newton

(b) Błąd średni dla węzłów Czebyszewa

Rysunek 2: Porównanie błędu średniego e_{avg} w skali logarytmicznej dla różnych metod rozmieszczenia węzłów i wzorów interpolacji.

Na wykresie 2a widzimy, że błąd średni w przypadku węzłów równomiernych pokrywa się w przypadku obu wzorów (Lagrange'a i Newtona) do około n=80. Następnie następuje gwałtowny wzrost błędu średniego wielomianów uzyskanych wzorem Newtona, wynikający już nie z efektu Rungego, a z błędów arytmetyki liczb zmiennoprzecinkowych.

Na wykresie 2b widzimy, że wzrost liczby węzłów zgodnych z zerami wielomianu Czebyszewa wpływa na wzrost dokładności wielomianów uzyskiwanych przez obydwa wzory do około n=40. Następnie wraz ze wzrostem n wzór Lagrange'a coraz lepiej przybliża wielomian do funkcji f(x). Natomiast dla wzoru Newtona błąd zaczyna drastycznie rosnąć, a wykresy wielomianów zaczynają zachowywać się chaotycznie na krańcach przedziału.

(a) Wykres funkcji stale równej $p(x)=\theta$ dla n=4 Lagrange, Równomierne

(b) Wykres funkcji stale równej p(x) = 0 dla n = 4 Newton, Równomierne

(c) Dla porównania funkcji dla n=4 Lagrange, Czebyszew

Rysunek 3: Zerowanie się wielomianu dla węzłów równomiernych, n=4

Rysunek 4: Uwidacznianie się efektu Rungego dla n=9,13,25

Rysunek 5: Porównanie wielomianów dla n=30 w zależności od rozmieszczenia węzłów

Rysunek 6: Znaczny efekt Rungego widoczny dla n=40

(a) Stabliny wielomian uzyskany wzorem Lagrange'a dla n=43

(b) Nietabliny wielomian uzyskany wzorem Newtona dla n=43

(c) Wielomian uzyskany wzorem Newtona dla n=72. Widoczne pogłębienie chaotycznego efektu na krańcu przedziału

Rysunek 7: Zgodnie z wykresem na rysunku 2b, od około n=40 wartości wielomianu uzyskiwanego wzorem Newtona dla węzłów Czebyszewa na końcu przedziału zaczynają rozbiegać się od funkcji bazowej w chaotyczny sposób, efekt ten pogłębia się wraz ze

(a) Widoczny efekt Rungego dla wzoru Lagrange, węzły równomierne, n=85

(b) Niewidoczny efekt Rungego dla wzoru Newtona, węzły równomierne, chaotyczne zachowaanie funkcji na krańcu przedziału, n=85

Rysunek 8: Zgodnie z wykresem na rysunku 2a, od około n=80 wartości wielomianu uzyskiwanego wzorem Newtona dla węzłów równomiernych na końcu przedziału zaczynają rozbiegać się od wielomianu uzyskanego wzorem Lagrange'a (tutaj widoczny efekt Rungego) w sposób chaotyczny, niezgodny z efektem Rungego, efekt pogłębia się wraz ze wzrostem n

(a) Lagrange, równomierne - Widoczny efekt Rungego

(b) Lagrange, Czebyszew - Dobrze dopasowany wielomian do funkcji $f(\boldsymbol{x})$

 (\mathbf{c}) Newton, równomierne - Chaotyczny przebieg wielomianu, niewidoczny efekt Rungego

(d) Newton, Czebyszew - Chaotyczny przebieg funkcji, znaczne odchylenia od oczekiwanej funkcji

Rysunek 9: Wielomiany uzyskane dla n = 99

5 Opracowanie Danych

5.1 Funkcja stale równa p(x) = 0

Na rysunku 3a oraz 3b można zauważyć, że z powodu okresowego zachowania funkcji, przy równomiernym rozłożeniu węzłów dla n=4 wielomian interpolujący przybliża się do funkcji stałej p(x)=0. Dla porównania na rysunku 3c dzięki rozmieszczeniu węzłów zgodnie z zerami wielomianu Czebyszewa, wielomian nie jest już funkcją stale równą zero, pomimo że liczba węzłów n=4.

5.2 Efekt Rungego

Efekt Rungego, na krańcach przedziału, zaczyna być widoczny już od n=9 i staje się bardzo widoczny już przy n=13, efekty pogłębiają się wraz ze wzrostem n. Widzimy to na Rysunkach 4a, 4b, 4c. Na rysunkach 8a i 8b widzimy, że dla większych n (n>80) widoczność efektu Rungego dla węzłów równomiernych zależy od używanego wzoru. Dla wzoru Newtona (Rysunek 8b) widzimy chaotyczne zachowanie funkcji na krańcu przedziału, niezgodne z oczekiwaniami efektu Rungego. Efekt ten widoczny jest także na wykresie 2a, gdzie błąd średni wzoru Newtona dla węzłów równomiernych zaczyna znacznie rosnąć w porównaniu do wzoru Lagrange'a

5.3 Rozmieszczenie węzłów

Na rysunku 5
a możemy zauważyć, że dla n=30, efekt Rungego jest już bardzo widoczny i wielomian przybliżony ma duży błąd średni - rzędu tysięcy. Widzimy także coraz większe pogłębienie się efektu Rungego już dla n=40 (Rysunek 6), tutaj błąd maksymalny wynosi już około 2.13e7.

Z kolei na rysunku 5b możemy zauważyć, że dla n=30 wielomian uzyskany przy pomocy węzłów zgodnych z zerami wielomianu Czebyszewa jest już dobrze przybliżony, a średni błąd jest rzędu 1/100.

5.4 Arytmetyka komputerowa

Postać wzoru Newtona jest bardziej narażona na błędy arytmetyki komputerowej wynikające z niedokładności obliczeń zmiennoprzecinkowych. Zgodnie z wykresem na rysunku 2b, od około n=40 wartości wielomianu uzyskiwanego wzorem Newtona dla węzłów Czebyszewa zaczynają znacznie odbiegać od wartości wielomianu uzyskanego wzorem Lagrange'a. Na rysunku 7a widzimy dobre dopasowanie wielomianu uzyskanego wzorem Lagrange'a. Na wykresach 7b i 7c widzimy pogłębianie się błędów wynikających z obliczeń zmiennoprzecinkowych.

6 Podsumowanie Zagadnienia

Na rysunkach 9a, 9b, 9c, 9d widzimy, że wielomian dla n=99 (maksymalna badana liczba węzłów) został poprawnie przybliżony jedynie wzorem Lagrange'a, węzłami zgodnymi z zerami wielomianu Czebyszewa (Rysunek 9b). Na rysunku 9a widzimy znaczny efekt Rungego - błąd maksymalny równy około 2.5e17. Na wykresach 9c i 9d widzimy, że wielomiany uzyskane wzorem Newtona, ze względu na na niedokładność obliczeń zmiennoprzecinkowych, zachowują się w sposób chaotyczny.