Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	Пог	решн	решности		
	1.1	Погре	ешности приближенных вычислений		
		1.1.1	Погрешности арифметических действий		
		1.1.2	Обратная задача погрешности		
		1.1.3	Статистический подход		
		1.1.4	Примеры неустойчивых задач и методов		
	1.2	Решен	ние систем линейных уравнений		
		1.2.1	Число обусловленности		
		1.2.2	Метод Гаусса		
		1.2.3	LU-разложение		
		1.2.4	QR-разложение		

Погрешности 1

1.1Погрешности приближенных вычислений

- 1) Погрешность начальных данных (задачи, измерений).
- 2) Методическая погрешность.
- 3) Вычислительная погрешность.

Определение 1.1. Если a — приближенное значение, A — точное, тогда $\Delta a = |A - a|$ абсолютная погрешность.

Определение 1.2. $\delta a = \frac{\Delta a}{|a|}$ — относительная погрешность. Она показывает, сколько верных знаков в записи числа

Рассмотрим, как погрешности ведут себя при вычислениях.

1.1.1 Погрешности арифметических действий

 $x_1 \pm \Delta x_1$ и $x_2 \pm \Delta x_2$ — неточные числа.

Тогда:

1)
$$(x_1 + x_2) + \Delta(x_1 + x_2) = x_1 + \Delta x_1 + x_2 + \Delta x_2 \Rightarrow \Delta_+ = x_1 + x_2$$
.

Отсюда абсолютная:
$$\frac{\Delta(x_1+x_2)}{x_1+x_2} = \frac{\Delta x_1}{x_1+x_2} + \frac{\Delta x_2}{x_1+x_2} \le \delta x_1 + \delta x_2$$

Таким образом, $|\Delta_{\pm}| \leq |\Delta x_1| \pm |\Delta x_2|$. Отсюда абсолютная: $\frac{\Delta(x_1+x_2)}{x_1+x_2} = \frac{\Delta x_1}{x_1+x_2} + \frac{\Delta x_2}{x_1+x_2} \leq \delta x_1 + \delta x_2$. Если $x_1, x_2 > 0$, то $\delta_+ \leq \max \delta x_i$. А вот для вычитания $\frac{\Delta(x_1-x_2)}{(x_1-x_2)}$ и возникает большая проблема для относительной погрешности.

2)
$$(x_1x_2) + \Delta(x_1x_2) = x_1x_2 + x_1\Delta x_2 + x_2\Delta x_1 + \Delta x_1\Delta x_2 \Rightarrow \Delta_+ \approx x_1\Delta x_2 + x_2\Delta x_1$$
.

Отсюда абсолютная:
$$\frac{\Delta(x_1, x_2)}{x_1 x_2} \approx \frac{\Delta x_2}{x_2} + \frac{\Delta x_1}{x_1} \Rightarrow |\delta| \leq |\delta x_1| + |\delta x_2|$$
. Пусть $f(\overline{x_1}, ..., \overline{x_n})$, где $\overline{x_1} = x_1 + \Delta x_1, ..., \overline{x_n} = x_n + \Delta x_n$.

Пусть
$$f(\overline{x_1},...,\overline{x_n})$$
, где $\overline{x_1}^2 = x_1 + \Delta x_1,...,\overline{x_n} = x_n + \Delta x_n$

Посчитаем

$$\Delta f = f(x_1, ..., x_n) - f(\overline{x_1}, ..., \overline{x_n}) = \left[\frac{\partial f}{\partial x_1}(x_1, ..., x_n) \Delta x_1 + ... + \frac{\partial f}{\partial x_n}(x_1, ..., x_n) \Delta x_n \right] + o\left((\Delta x)^2\right)$$

откуда абсолютная погрешность:

$$|\Delta f| \le \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right| |\Delta x_i|$$

Рассмотрим относительную:

$$\frac{\Delta f}{f} = \delta f = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \cdot \frac{1}{f} \right| |\Delta x_i| = \sum_{i=1}^{n} \left| \frac{\partial \ln f}{\partial x_i} \Delta x_i \right|$$

где
$$\frac{\partial \ln f}{\partial x_i} = \frac{\partial f}{f \partial x_i}$$
.

Отсюда
$$\ln(x_1 \cdot \dots \cdot x_n) = \ln x_1 + \dots + \ln x_n \Rightarrow \frac{\partial \ln(x_1 \cdot \dots x_n)}{\partial x_i} = \frac{1}{x_i}$$
.

To есть для деления $|\delta_{\div}| \leq |\delta x_1| + |\delta x_2|$.

1.1.2 Обратная задача погрешности

Проблема. По требуемой на Δf (δf) найти допустимые Δx (δx).

Пример 1.1.

1) Принцип равных влияний: считаем, что вклад всех слагаемых в погрешность одинаков:

$$\left| \frac{\partial f}{\partial x_1} \right| \cdot \Delta x_1 = \left| \frac{\partial f}{\partial x_2} \right| \cdot \Delta x_2 = \dots = \text{const}$$

Откуда

$$\Delta x_i \le \frac{|\Delta f|}{n \left| \frac{\partial f}{\partial x_i} \right|}$$

2) Принцип равных погрешностей: требуем одинаковых Δx_i :

$$\Delta x_1 = \Delta x_2 = \dots = \text{const} = \Delta x$$

Откуда

$$|\Delta x| \le \frac{|\Delta f|}{\sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right|}$$

1.1.3 Статистический подход

 $\Delta S_n \div \sqrt{n}$, где S_n — сумма n слагаемых (n>10).

Тогда $\Delta S_n \approx \sqrt{3n} \cdot 0.5 \cdot 10^{-m}$ если $\Delta x_i \leq 0.5 \cdot 10^{-m}$.

Таким образом, при статистическом подходе погрешность $\frac{\Delta S_n}{n} \to 0$ $n \to \infty$.

1.1.4 Примеры неустойчивых задач и методов

1) Требуется решить $(x-a)^n=\varepsilon$, где a,n,ε — заданные числа, при этом $n>>1,\,n\in\mathbb{N},$ $0<\varepsilon<1$

x = a — приближенное.

 $\Delta x = \sqrt[n]{\varepsilon}$ если $\varepsilon \approx 10^{-16}$, $n \approx 10$, $\Delta x \approx 10^{-2}$.

2) (x-1)(x-2)...(x-20) — полином. Раскроем: $x^{20}-210x^{19}+...+20!$. А вот если мы получили погрешность округления вида $210+10^{-7}$. Тогда корни этого полинома не просто изменятся, но будут иметь вид:

$$x = 1.000$$

:

$$x_7 = 7.000$$

$$x_8 = 8.007$$

$$x_9 = 8.897$$

$$x_{\overline{10,19}} \in \mathbb{C}$$

 $x_{20} = 20.847$

3) Линейная система:

$$\int x + 10y = 11$$

$$\int 100x + 1001y = 1101$$

Решение очевидно: x = 1, y = 1.

Добавим погрешность:

$$\begin{cases} x+10y=11.01\\ 100x+1001y=1101\\ \text{Решение получилось: } x=11.01,y=0. \end{cases}$$

4) Вычислить набор интегралов

$$\frac{1}{e} \int_0^1 x^n e^x dx$$

где n = 0, 1, ...

Пусть I_n — этот интеграл. Тогда запишем рекуррентную формулу:

$$I_n = 1 - nI_{n-1}, \ I_0 = 1 - \frac{1}{e}$$

На старых машинах при n=14 уже получались неверные ответы. Альтернатива: перевернуть формулу и записать ее в виде

$$I_{n-1} = \frac{1}{n}(1 - I_n)$$

Решение систем линейных уравнений

Определение 1.3. Норма: ||.||;

- 1) $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$;
- $2) ||\lambda x|| = |\lambda| \cdot ||x||;$
- 3) $||x + y|| \le ||x|| + ||y||$;

Пример 1.2. Нормы векторов

 $\|x\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$ — долгая и неблагодарная норма; $\|x\|_1 = |x_1| + \ldots + |x_n|$ — более простая норма;

 $\|x\|_p = (|X_1|^p + ... + |x_n|^p)^{1/p}$ — строгая математическая норма; $\|x\|_{\infty} = \max_{i=\overline{1,n}} |x_i|$ — наиболее частоиспользуемая норма.

Все эти нормы эквивалентны, то есть $\|.\|_{\alpha}$, $\|.\|_{\beta}$ эквивалентны, если $\exists c_1, c_2 : \forall x$ выполняется $c_1 \|x\|_{\beta} \leq \|x\|_{\alpha} \leq c_2 \|x\|_{\beta}$.

Определение 1.4. Рассмотрим линейный оператор A; здесь $||Ax|| \leq C$. Тогда $\min_x C =$ ||A|| — норма матрицы, согласованная с нормой вектора, если $||Ax|| \le ||A|| \, ||x||$.

Определение 1.5. Норма матрицы, подчиненная норме вектора:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$

Пример 1.3.

- 1) $||A||_1 = \max_{j=\overline{1,n}} \sum_{i=1}^n |a_{ij}|;$ 2) $||A||_2 = \sqrt{\max_{i=\overline{1,n}} \lambda(A^T A)};$
- 3) $||A||_{\infty} = \max_{i=\overline{1,n}} \sum_{j=1}^{n} |a_{ij}|.$

Норма Фробениуса: $\|A\|_F = \sqrt{\sum_{ij} a_{ij}^2}$.

Число обусловленности 1.2.1

Рассмотрим систему Ax = b и пусть $b + \Delta b$. Как Δb повлияет на Δx ?

$$A(x + \Delta x) = b + \Delta b; A\Delta x = \Delta b.$$

 $||A\Delta x|| = ||\Delta b||$, раскрыв скобки, $||A|| \, ||\Delta x|| \ge ||\Delta b||$;

Откуда $\|\Delta x\| \leq \|A^{-1}\| \cdot \|\Delta b\|$. Но это абсолютная погрешность. Что с относительной?

$$\frac{\|\Delta x\|}{\|x\|} \le \frac{\|A^{-1}\| \|A\| \|\Delta b\|}{\|b\|}$$

и тогда $\nu(A) = \|A^{-1}\| \, \|A\|$ — число обусловленности системы.

И если $\nu(A) >> 1$, то система плохо обусловлена.

Есть способы т.н. предобусловлевания систем, однако мы их смотреть пока не будем.

Пример плохо обусловленной системы:

$$\left(\begin{array}{cc} 1 & 10 \\ 100 & 1001 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 11 \\ 11.01 \end{array}\right)$$

1.2.2 Метод Гаусса

Обычный метод Гаусса.

LU-разложение 1.2.3

A = LU, где L — нижнетреугольная матрица, а U — верхнетреугольная. Потребуем, чтобы на главной диагонали L стояли единицы для однозначного разложения.

U — матрица, получающаяся в ходе прямого разложения Гаусса. L получается, как матрица, в которой запомнены коэффициенты, на которые мы домножали: $\frac{a_{21}}{a_{11}}$, к примеру. Но если наше разложение наткнется на нуль на диагонали, будет больно.

Поэтому используют $A = P^{-1}LU$, где P —матрица перестановка с аналогичными желаемым перестановками.

Для решения уравнения будем использовать PAx = Pb. Затем Ly = Pb.

Как ее построить? Если мы переставляли строки в исходной матрице, то аналогично должны переставить в матрице P. Затем воспользуемся тем, что P ортогональна: P^{-1} P^{T} .

QR-разложение 1.2.4

Метод вращений Гивенса:

Строим QR = A, где R — верхнетреугольная матрица, а Q — ортонормированная.

Строим QR = A, где n — вериме-г , $\begin{pmatrix} a_{11}^{(0)} \\ 0 \\ a_{31}^{(0)} \\ \vdots \\ 0 \end{pmatrix}$. Матрицы поворота выгля-

$$\left(\begin{array}{c} a_{n1}^{(0)} \right)$$
 дят так: $\left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right)$. Матрица обратного поворота, аналогично, $\left(\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right)$.

Теперь, если мы домножим на матрицу $Q_{21}=\begin{pmatrix}\cos\alpha&-\sin\alpha&0&0\\\sin\alpha&\cos\alpha&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}$. Тогда обнулится элемент a_{21} . Аналогично, далее используем матрицу $Q_{31}=\begin{pmatrix}\cos\alpha&0&-\sin\alpha&0\\0&1&0&0\\\sin\alpha&0&\cos\alpha&0\\0&0&0&1\end{pmatrix}$ и так

далее. Таким образом, $Q_{n,n-1}Q_{n,n-2},...,Q_{21}$.

Это разложение нам понадобится для решения уравнения вида Ax=b решая уравнение Rx = Qb.

Как найти α ? У нас есть a_{11} и a_{21} и мы именно этот вектор хотим домножить на матрицу вращения. Уравнение:

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = \begin{pmatrix} a_{11}^{(1)} \\ 0 \end{pmatrix}$$

Легко выводится, что $\begin{cases} \sin\alpha a_{11} + \cos\alpha a_{21} = 0\\ \sin^2\alpha + \cos^2\alpha = 1 \end{cases}, \sin\alpha = -\frac{\cos\alpha a_{21}}{a_{11}}, \cos^2\alpha + \cos^2\alpha (\frac{a_{21}}{a_{11}}) = 1,$ откуда $\cos^2\alpha = \frac{a_{11}}{a_{21}^2 + a_{21}^2}$, отсюда $\cos\alpha = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \sin\alpha = -\frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}}.$

Плюсы в сравнении с методом Гаусса: не нужно выбирать ве, вычислительная погрешность. Из минусов: работает в 4 раза медленнее.

Метод отражений Хаусхольдера:

Рассмотрим вспомогательный вектор
$$\omega$$
 — вектор единичной длины. $\omega^T \omega = 1$. Рассмотрим $U = E - 2\omega\omega^T$, $U^T U = E - 4\omega\omega^T + 4\omega\underbrace{\omega^T\omega}_{i}\omega^T = E \Rightarrow U^{-1} = U^T$.

 $U_{\omega} = (E \cdot 2\omega\omega^T)\omega = \omega - 2\omega = -\omega \Rightarrow \omega$ — собственный вектор с собственным числом

 $v\perp\omega$, то есть $v^T\omega=0$ или $\omega^Tv=0,~U_v=\left(E-2\omega\omega^T\right)v=v-2\omega\omega^Tv=v\Rightarrow v$ собственный вектор с собственным числом 1.

Таким образом, $y = v + \alpha \omega \Rightarrow Uy = v - \alpha \omega$, то есть матрица U отражает вектор.

Пусть y, z - ... векторы. Нам нужно найти U, такую, что $Uy = \alpha z$. Смотрим:

$$||Uy|| = ||y|| = ||\alpha z|| \Rightarrow \alpha = \frac{||y||}{||z||}$$

$$\omega = \frac{y - \alpha z}{\|y - \alpha z\|}$$

Теперь, используя A_1 как y, e_1 как z, строим $U_1 = E - 2\omega\omega^T$. Тогда U_1A будет иметь нулевой первый столбец (исключая элемент $a_{11}^{(1)}$).

Тогда $Q = U_{n-1} \cdot \ldots \cdot U_1$.

Тогда решением Ax = b будет являться $Rx = Q^T b$.

Симметричная матрица — метод квадратного корня.

 $A = S^T S$, где S — верхнетреугольная. Такое разложение возможно и единственно только для симметричной матрицы.

Рассмотрим A — положительно определенная матрица, следовательно, $s_{ij} \in \mathbb{R}$. Просто расписав матрицы, получим $s_{11}^2=a_{11},\ s_{11}s_{12}=a_{12},...,s_{11}s_{1n}=a_{1n}.$ Теперь посмотрим на вторую строку: $s_{22}^2 + s_{12}^2 = a_{22}$, $s_{23}s_{22} + s_{12}s_{13} = a_{23}$ и так далее.

Метод квадратного корня требует в 2 раза меньше операций, чем в методе Гаусса + $n\surd$.