Differential Equations in Geophysical Fluid Dynamics

VII. Characteristics of geostrophic current component

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Apr, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Original linear NSE

$$if \vec{u} = -g \frac{\partial \eta}{\partial \vec{n}} + A_z \frac{\partial^2 \vec{u}}{\partial z^2}$$
 (1a)

$$A_z \frac{\partial \vec{u}}{\partial z} \bigg|_{z=0} = \frac{\vec{\tau}^s}{\rho_0}$$
 (1b)

$$A_z \frac{\partial \vec{u}}{\partial z} \Big|_{z=-h} = \frac{\vec{\tau}^b}{\rho_0} \equiv \gamma \vec{u}$$
 (1c)

where $\vec{u} = \mathbf{u} + i\mathbf{v}$

Vertical averaged SWE

$$if\vec{u} = -g\frac{\partial \eta}{\partial \vec{n}} + \frac{\vec{\tau}^s}{\rho_0 h} - \frac{\gamma}{h}\vec{u} \quad (2)$$
where $\vec{u} = \frac{\bar{u}}{h} + i\bar{v}$

$$\bar{u} = \frac{1}{h} \int_{-h}^{0} u \, dz$$

$$\bar{v} = \frac{1}{h} \int_{-h}^{0} v \, dz$$

Surface Ekman current

Bottom Ekman current

NES

$$if \vec{u} = -g \frac{\partial \eta}{\partial \vec{n}} + A_z \frac{\partial^2 \vec{u}}{\partial z^2}$$
(5a)
$$A_z \frac{\partial \vec{u}}{\partial z} \bigg|_{z=-h} = \frac{\vec{\tau}^b}{\rho_0} \equiv \gamma \vec{u}$$
(5b)

SWE

$$h\vec{u} = -\frac{1}{i}\frac{\vec{\tau}^b}{\rho_0 f} \equiv -\frac{1}{i}\frac{\gamma}{f}\vec{u}_g \tag{6}$$

Several physical assumptions are mathematically problematic...

General values for the parameters:

$$A_h \approx 10^2 \, m^2 \, s^{-1}$$
, $A_z \approx 1 \, m^2 \, s^{-1}$, and $f \approx 10^{-4} \, s^{-1}$.

A bit advanced topics for the Ekman current

How to estimate the Ekman depth (or A_z) for surface layer? Simple parameterization given by

$$D_e = \kappa \frac{u^*}{f} \tag{7}$$

where $u^* = \sqrt{|\vec{\tau}^s|/\rho_0}$ and $\kappa = 0.1-0.4$ (Csanady, 1981; Cushman-Roisin and Beckers, 2011).

Inverse modeling approach using simple curve-fitting (Cole et al., 2017).

Considering time-dependency (inertia) and varying vertical eddy viscosity A_z ?

Wenegrat and McPhaden, 2016; Elipot and Gille, 2009; Constantin, Paldor, and Dritschel, 2020; Lilly and Elipot, 2021 **Relation with mixed layer depth** Brink, 2023 (see Section 3.5)

Governing equation

$$\frac{\partial u}{\partial t} + \vec{u} \cdot \nabla u - f_0 v = -\frac{1}{\rho_0} \frac{\partial P}{\partial x} + \nabla \cdot (A_h \nabla u) + \frac{\partial}{\partial z} \left(A_z \frac{\partial u}{\partial z} \right)$$
(8a)
$$\frac{\partial v}{\partial t} + \vec{u} \cdot \nabla v + f_0 u = -\frac{1}{\rho_0} \frac{\partial P}{\partial y} + \nabla \cdot (A_h \nabla v) + \frac{\partial}{\partial z} \left(A_z \frac{\partial v}{\partial z} \right)$$
(8b)
$$\frac{\partial w}{\partial t} + \vec{u} \cdot \nabla w = -\frac{1}{\rho_0} \frac{\partial P}{\partial z} + \nabla \cdot (A_h \nabla w) + \frac{\partial}{\partial z} \left(A_z \frac{\partial w}{\partial z} \right) - g$$
(8c)
$$\frac{\partial w}{\partial t} + \frac{\partial w}{\partial t} + \frac{\partial w}{\partial t} + \frac{\partial w}{\partial t} = 0$$
(8d)

Taylor-Proudman theorem (Proudman, 1916; Taylor, 1917)

For flows governed by (7), velocities are depth-independent:

$$\frac{\partial u}{\partial z} = \frac{\partial v}{\partial z} = \frac{\partial w}{\partial z} = 0. \tag{9}$$

Taylor-Proudman theorem

$$v = \frac{g}{f_0} \frac{\partial \eta}{\partial x} \tag{10a}$$

$$u = -\frac{g}{f_0} \frac{\partial \eta}{\partial y} \tag{10b}$$

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x} \left(\int_{-h}^{\eta} u \, dz \right) + \frac{\partial}{\partial y} \left(\int_{-h}^{\eta} v \, dz \right) = 0 \tag{10c}$$

Substituting (9a) and (9b) into (9c) yields

$$\frac{\partial H}{\partial t} + u \frac{\partial H}{\partial x} + v \frac{\partial H}{\partial y} = 0 \tag{11}$$

$$\stackrel{\leftarrow}{\equiv} \frac{dH}{dt}$$

where $H=\eta+h$ representing height of water column and note that $\partial h/\partial t=0$. What does (10) mean?

There are two ways to observe a object: Lagrangian and Eulerian. To be specific, mathematical descriptions for passive tracer transport are given by

Eulerian description

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = 0 \tag{12}$$

Lagrangian description

$$\frac{dC}{dt} = 0$$
 (13a) $\frac{dX}{dt} = u$ (13b) $\frac{dY}{dt} = v$. (13c)

The object is not different—just a different point of view!

A simple numerical experiment

A simple numerical experiment

$$\frac{\partial H}{\partial t} + u \frac{\partial H}{\partial x} + v \frac{\partial H}{\partial y} = 0$$

$$(H = \eta + h)$$
(14)

that is

$$\frac{dH}{dt} = 0 \qquad \therefore H = H|_{t=0} \tag{15}$$

and represents H is not changed in the Lagrangian aspect (trajectory).

For constant depth, (13) simplifies to

$$\frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} + v \frac{\partial \eta}{\partial y} = 0, \qquad \therefore \frac{\partial \eta}{\partial t} = 0$$

$$\left(-\frac{g}{f_0} \frac{\partial \eta}{\partial y} \right) \frac{\partial \eta}{\partial x} + \left(\frac{g}{f_0} \frac{\partial \eta}{\partial x} \right) \frac{\partial \eta}{\partial y} = 0$$

Hamilton system

$$\frac{dX}{dt} = -\frac{\partial \mathcal{H}}{\partial Y} \tag{16a}$$

$$\frac{dY}{dt} = \frac{\partial \mathcal{H}}{\partial X} \tag{16b}$$

In case of our transport problem, $H=(g/f_0)\eta$. This is the so-called "Hamiltonian system". Once (15) and $\mathcal H$ and $\partial \mathcal H/\partial t=0$ (time-independent $\mathcal H$),

$$\frac{d\mathcal{H}}{dt} = \frac{\partial \mathcal{H}}{\partial t} + u \frac{\partial \mathcal{H}}{\partial x} + v \frac{\partial \mathcal{H}}{\partial y} = 0$$
 (17)

so ${\mathcal H}$ is not changed in the Lagrangian aspect.

Taylor column

If $\eta \ll h$, (13) simplifies to

$$\frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} + v \frac{\partial h}{\partial y} = 0.$$
 (18)

This means that h is not changed in the Lagrangian aspect (flows follow isobath) and can be considered as the governing equation of the "Taylor column" phenomenon.

https://www.youtube.com/watch?v=7GGfsW7gOLI

Summary

$$\frac{\partial H}{\partial t} + u \frac{\partial H}{\partial x} + v \frac{\partial H}{\partial y} = 0$$

is dH/dt=0 in the Lagrangian aspect and means that H experienced by a water mass (following trajectory) is not changed.

For flows governed by geostrophic balance over f-plane with homogeneous density,

- Flows is depth-independent "barotropic" current (Taylor-Proudman theorem).
- 2. In the Lagrangian aspect, height of water column $(\eta + h)$ is not changed.
- 3. If $\eta \ll h$, flows follow isobath (Taylor column).

References I

- Brink, Kenneth H (2023). Physical oceanography of continental shelves. Princeton University Press.
- Cole, Sylvia T et al. (2017). "Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer". In: *Elem Sci Anth* 5, p. 55.
- Constantin, Adrian, Nathan Paldor, and David Dritschel (2020). "The Ekman spiral for piecewise-uniform viscosity". In: Ocean Science 16.5, pp. 1089–1093.
- Csanady, Gabriel Tibor (1981). "Circulation in the coastal ocean". In: *Advances in geophysics*. Vol. 23. Elsevier, pp. 101–183.
- Cushman-Roisin, Benoit and Jean-Marie Beckers (2011). Introduction to geophysical fluid dynamics: physical and numerical aspects. Vol. 101. Academic press.

References II

- Elipot, Shane and Sarah T Gille (2009). "Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data". In: *Journal of Geophysical Research:*Oceans 114.C6.
- Lilly, Jonathan M and Shane Elipot (2021). "A unifying perspective on transfer function solutions to the unsteady Ekman problem". In: *Fluids* 6.2, p. 85.
- Proudman, Joseph (1916). "On the motion of solids in a liquid possessing vorticity". In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 92.642, pp. 408–424.
- Taylor, Geoffrey Ingram (1917). "Motion of solids in fluids when the flow is not irrotational". In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 93.648, pp. 99–113.

References III

Wenegrat, Jacob O and Michael J McPhaden (2016). "A simple analytical model of the diurnal Ekman layer". In: Journal of Physical Oceanography 46.9, pp. 2877–2894.