

LC²MOS 8-/16-Channel High Performance Analog Multiplexers

ADG406/ADG407/ADG426

FEATURES

44 V Supply Maximum Ratings V_{ss} to V_{DD} Analog Signal Range Low On Resistance (80 Ω max) Low Power Fast Switching $t_{oN} < 160$ ns $t_{off} < 150$ ns Break Before Make Switching Action Plug-In Upgrade for DG506A/ADG506A, DG507A/ADG507A, DG526/ADG526A ADG406/ADG407 are Plug-In Replacements for DG406/DG407

APPLICATIONS

Audio and Video Routing Automatic Test Equipment Data Acquisition Systems Battery Powered Systems Sample Hold Systems Communication Systems Avionics

GENERAL DESCRIPTION

The ADG406, ADG407 and ADG426 are monolithic CMOS analog multiplexers. The ADG406 and ADG426 switch one of sixteen inputs to a common output as determined by the 4-bit binary address lines A0, A1, A2 and A3. The ADG426 has on-chip address and control latches that facilitate microprocessor interfacing. The ADG407 switches one of eight differential inputs to a common differential output as determined by the 3-bit binary address lines A0, A1 and A2. An EN input on all devices is used to enable or disable the device. When disabled, all channels are switched OFF.

The ADG406/ADG407/ADG426 are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance. These features make the parts suitable for high speed data acquisition systems and audio signal switching. Low power dissipation makes the parts suitable for battery powered systems. Each channel conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

- Extended Signal Range
 The ADG406/ADG407/ADG426 are fabricated on an enhanced LC²MOS process giving an increased signal range which extends to the supply rails
- 2. Low Power Dissipation
- 3. Low Roy
- 4. Single/Dual Supply Operation
- 5. Single Supply Operation
 For applications where the analog signal is unipolar, the
 ADG406/ADG407/ADG426 can be operated from a single
 rail power supply. The parts are fully specified with a single
 +12 V power supply and will remain functional with single
 supplies as low as +5 V.

ADG406/ADG407/ADG426—SPECIFICATIONS1

DUAL SUPPLY ($V_{DD} = +15 \text{ V} \pm 10\%$, $V_{SS} = -15 \text{ V} \pm 10\%$, GND = 0 V, unless otherwise noted)

	1		T Ver	T Version		
Parameter	+25°C	−40°C to +85°C	+25°C	–55°C to +125°C	Units	Test Conditions/Comments
	123 G	103 C	123 G	1123 G	Cints	Test Conditions/Confinences
ANALOG SWITCH Analog Signal Range		V_{SS} to V_{DD}		V_{SS} to V_{DD}	V	
$R_{ m on}$	50		50		Ω typ	$V_{\rm D} = \pm 10 \text{ V}, I_{\rm S} = -1 \text{ mA}$
D. Matak	80	125	80	125	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
R _{ON} Match	4		4		Ω typ	$V_D = 0 \text{ V}, I_S = -1 \text{ mA}$
LEAKAGE CURRENTS Source OFF Leakage I_S (OFF) Drain OFF Leakage I_D (OFF)	±0.5	±20	±0.5	±50	nA max	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ $V_{D} = \pm 10 \text{ V}, V_{S} = \mp 10 \text{ V}, \text{ Test Circuit 2}$ $V_{D} = \pm 10 \text{ V}, V_{S} = \mp 10 \text{ V};$
ADG406, ADG426 ADG407	±1 ±1	±20 ±20	±1 ±1	±200 ±100	nA max nA max	Test Circuit 3
Channel ON Leakage I_D , I_S (ON)	<u>- 1</u>	120	<u> </u>	±100	III's max	$V_{S} = V_{D} = \pm 10 \text{ V};$
ADG406, ADG426	±1	±20	±1	±200	nA max	Test Circuit 4
ADG407	±1	±20	±1	±100	nA max	
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL} Input Current		0.8		0.8	V max	
I _{INL} or I _{INH}		±1		±1	μA max	$V_{IN} = 0$ or V_{DD}
C _{IN} , Digital Input Capacitance	8		8		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ²						
$t_{TRANSITION}$	120	250	120	250	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	150	250	150	250	ns max	$V_1 = \pm 10 \text{ V}, V_2 = \mp 10 \text{ V};$ Test Circuit 5
Break Before Make Delay, topen	10	10	10	10	ns min	$R_L = 300 \Omega, C_L = 35 pF;$
t_{ON} (EN, \overline{WR})	120	175	120	175	ns typ	$V_s = +5 \text{ V}$, Test Circuit 6 $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$;
	160	225	160	225	ns max	$V_s = +5 \text{ V}$, Test Circuit 7
t_{OFF} (EN, \overline{RS})	110 150	130 180	110 150	130 180	ns typ ns max	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = +5 V$, Test Circuit 7
ADG426 Only	150	100	130	100	IIS IIIAA	V _S 13 V ₃ Test Ghedit 1
t _w , Write Pulse Width		100		100	ns min	
t _s , Address, Enable Setup Time t _H , Address, Enable Hold Time		100 10		100 10	ns min ns min	
t_{RS} , Reset Pulse Width		100		100	ns min	$V_S = +5 \text{ V}$
Charge Injection	8		8		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
OFF Isolation	−75		-75		dB typ	Test Circuit 10 $R_L = 1 \text{ k}\Omega, f = 100 \text{ kHz};$ $V_{EN} = 0 \text{ V}, \text{Test Circuit } 11$
Channel-to-Channel Crosstalk	85		85		dB typ	$R_{L} = 1 \text{ k}\Omega$, f = 100 kHz, Test Circuit 12
C _s (OFF)	5		5		pF typ	f = 1 MHz
C_D (OFF) ADG406, ADG426	50		50		pF typ	f = 1 MHz
ADG407	25		25		pF typ	
C_D , C_S (ON) ADG406, ADG426	60		60			f = 1 MHz
ADG406, ADG420 ADG407	40		60 40		pF typ pF typ	
POWER REQUIREMENTS						V - +165 V V - 165 V
I _{DD}		1		1	μA typ	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ $V_{IN} = 0 \text{ V}, V_{FN} = 0 \text{ V}$
		5		5	μA max	
$\mathbf{I_{ss}}$		1		1	μA typ	
${ m I}_{ m DD}$	100	5	100	5	μA max μA typ	$V_{IN} = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$
	200	500	200	500	μA max	
\mathbf{I}_{SS}		1 5		1 5	μΑ typ μΑ max	

-2-

NOTES

REV. 0

¹Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SINGLE SUPPLY ($V_{DD} = +12~V \pm 10\%$, $V_{ss} = 0~V$, GND = 0 V, unless otherwise noted)

	B Version		T Version			
Parameter	+25°C	−40°C to +85°C	+25°C	–55°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		0 to V _{DD}		0 to V_{DD}	V	
$R_{ m on}$	90	· · · DD	90	- DD	Ω typ	$V_D = +3 \text{ V}, +8.5 \text{ V}, I_S = -1 \text{ mA};$
ON	125	200	125	200	Ω max	$V_{\rm DD} = +10.8 \text{ V}$
LEAKAGE CURRENTS						$V_{DD} = +13.2 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.5	±20	±0.5	±50	nA max	$V_D = 8 \text{ V}/0.1 \text{ V}, V_S = 0.1 \text{ V}/8 \text{ V};$ Test Circuit 2
Drain OFF Leakage I _D (OFF)						$V_D = 8 \text{ V}/0.1 \text{ V}, V_S = 0.1 \text{ V}/8 \text{ V};$
ADG406, ADG426	±1	±20	±1	±200	nA max	Test Circuit 3
ADG407	±1	±20	±1	±100	nA max	
Channel ON Leakage I_D , I_S (ON)						$V_S = V_D = 8 \text{ V}/0.1 \text{ V}$, Test Circuit 4
ADG406, ADG426	±1	±20	±1	±200	nA max	
ADG407	±1	±20	±1	±100	nA max	
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4	1	2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}		±1		±1	μA max	$V_{IN} = 0 \text{ or } V_{DD}$
C _{IN} , Digital Input Capacitance	8		8		pF typ	f = 1 MHz
DYNAMIC CHARACTERISTICS ²						
	180		180		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
t _{TRANSITION}	220	350	220	350	ns max	$V_1 = 8 \text{ V/O V}, V_2 = 0 \text{ V/8 V};$
	220	550	220	550	IIS IIIAX	Test Circuit 5
Break Before Make Delay, topen	10		10		ne tun	$R_L = 300 \Omega$, $C_L = 35 pF$;
Bleak Belofe Wake Belay, topen	10		10		ns typ	$V_S = +5 \text{ V}$, Test Circuit 6
$t_{ON}(EN, \overline{WR})$	190		180		no trun	
ton (EN, WK)	180	250		250	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
(EN DO)	240	350	240	350	ns max	$V_s = +5 \text{ V}$, Test Circuit 7
t_{OFF} (EN, \overline{RS})	135	220	135	222	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
ADG406 0 1	180	220	180	220	ns max	$V_s = +5 V$, Test Circuit 7
ADG426 Only						
t _w , Write Pulse Width		100		100	ns min	
t _s , Address, Enable Setup Time		100		100	ns min	
t _H , Address, Enable Hold Time		10		10	ns min	
t _{RS} , Reset Pulse Width		100		100	ns min	$V_s = +5 \text{ V}$
Charge Injection	5		5		pC typ	$V_{S} = 6 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF};$
OFF Isolation	–75		_ 7 5		dB typ	Test Circuit 10 $R_L = 1 \text{ k}\Omega$, $f = 100 \text{ kHz}$;
OTT Isolation	-,5		-,,		ub typ	Test Circuit 11
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 1 \text{ k}\Omega, \text{ f} = 100 \text{ kHz};$
C (OFF)					E	Test Circuit 12
$C_s(OFF)$	8		8		pF typ	f = 1 MHz
C_{D} (OFF)	_		_			f = 1 MHz
ADG406, ADG426	80		80		pF typ	
ADG407	40		40		pF typ	
C_D , C_S (ON)			1			f = 1 MHz
ADG406, ADG426	100		100		pF typ	
ADG407	50		50		pF typ	
POWER REQUIREMENTS						$V_{\rm DD} = +13.2 \text{ V}$
${ m I}_{ m DD}$		1	1	1	μA typ	$V_{IN} = 0 \text{ V}, V_{EN} = 0 \text{ V}$
***		5	1	5	μA max	- Ava.1
${ m I}_{ m DD}$	100	-	100	-	μA typ	$V_{IN} = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$
			1 -00		F=JE	I IN S I BN

REV. 0 -3-

NOTES
¹Temperature ranges are as follows: B Versions: -40°C to +85°C; T Versions: -55°C to +125°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS1

$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to V_{SS} +44 V
V_{DD} to GND0.3 V to +25 V
V_{SS} to GND +0.3 V to -25 V
Analog, Digital Inputs ² $V_{SS} - 2 V$ to $V_{DD} + 2 V$
or 20 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle Max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Extended (T Version)
Storage Temperature Range65°C to +150°C
Junction Temperature +150°C
Plastic Package
θ _{JA} , Thermal Impedance
Lead Temperature, Soldering (10 sec) +260°C
PLCC Package
θ _{JA} , Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)+215°C
Infrared (15 sec) +220°C
SSOP Package
θ _{JA} , Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec) +220°C

NOTES

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at A, S, D, \overline{WR} or \overline{RS} will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Package Option*
ADG406BN	-40°C to +85°C	N-28
ADG406BP	-40°C to +85°C	P-28A
ADG407BN	-40°C to +85°C	N-28
ADG407BP	-40°C to +85°C	P-28A
ADG426BN	-40°C to +85°C	N-28
ADG426BRS	-40°C to +85°C	RS-28

*N = Plastic DIP, P = Plastic Leaded Chip Carrier (PLCC), RS = Shrink Small Outline Package (SSOP).

CAUTION –

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. Truth Table (ADG406)

A3	A2	A1	A0	EN	ON SWITCH
X	X	X	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

Table II. Truth Table (ADG407)

A2	A1	A0	EN	ON SWITCH PAIR
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Table III. Truth Table (ADG426)

A3	A2	A1	A0	EN	WR	RS	ON SWITCH
X	X	X	X	X	¥	1	Retains Previous
X	X	X	X	X	X	0	Switch Condition NONE (Address and Enable
X	X	X	X	0	0	1	Latches Cleared) NONE
0	0	0	0	1	0	1	1
0	0	0	1	1	0	1	2
0	0	1	0	1	0	1	3
0	0	1	1	1	0	1	4
0	1	0	0	1	0	1	5
0	1	0	1	1	0	1	6
0	1	1	0	1	0	1	7
0	1	1	1	1	0	1	8
1	0	0	0	1	0	1	9
1	0	0	1	1	0	1	10
1	0	1	0	1	0	1	11
1	0	1	1	1	0	1	12
1	1	0	0	1	0	1	13
1	1	0	1	1	0	1	14
1	1	1	0	1	0	1	15
1	1	1	1	1	0	1	16

PIN CONFIGURATIONS

PIN CONFIGURATION DIP/SSOP

REV. 0 _5_

TIMING DIAGRAMS (ADG426)

Figure 1.

Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while \overline{WR} is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of \overline{WR} .

Figure 2.

Figure 2 shows the Reset Pulse Width, t_{RS} , and the Reset Turn Off Time, t_{OFF} (RS).

Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V. t_R = t_F = 20 ns.

TERMINOLO	GY
$V_{ m DD}$	Most positive power supply potential.
V_{ss}	Most negative power supply potential in dual
	supplies. In single supply applications, it may
01 m	be connected to ground.
GND	Ground (0 V) reference.
R_{ON}	Ohmic resistance between D and S.
R _{on} Match	Difference between the R_{ON} of any two channels.
I_s (OFF)	Source leakage current when the switch is off.
I_D (OFF)	Drain leakage current when the switch is off.
I_D , I_S (ON)	Channel leakage current when the switch is on.
$V_D(V_S)$	Analog voltage on terminals D, S.
C _s (OFF)	Channel input capacitance for "OFF"
	condition.
C_D (OFF)	Channel output capacitance for "OFF"
	condition.
C_D , $C_S(ON)$	"ON" switch capacitance.
C_{IN}	Digital input capacitance.
$t_{ON}(EN)$	Delay time between the 50% and 90%
	points of the digital input and switch "ON" condition.
$t_{OFF}(EN)$	Delay time between the 50% and 90%
	points of the digital input and switch "OFF" condition.
$t_{TRANSITION}$	Delay time between the 50% and 90%
	points of the digital inputs and the switch "ON" condition when switching from one
	address state to another.
t_{OPEN}	"OFF" time measured between 80% points of
	both switches when switching from one address state to another.
V_{INL}	Maximum input voltage for logic "0."
V_{INH}	Minimum input voltage for logic "1."
${ m I}_{ m INL}~({ m I}_{ m INH})$	Input current of the digital input.
Crosstalk	A measure of unwanted signal which is
	coupled through from one channel to another
OWI 13	as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling
Chargo	through an "OFF" channel.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog
преспоп	transferred from the digital input to the alialog

REV. 0

output during switching. Positive supply current.

Negative supply current.

 I_{DD}

 $I_{ss} \\$

-6-

Typical Performance Graphs

Figure 3. R_{ON} as a Function of V_D (V_S): Dual Supplies

Figure 4. $R_{\rm ON}$ as a Function of $V_{\rm D}$ ($V_{\rm S}$) for Different Temperatures

Figure 5. Leakage Currents as a Function of V_D (V_S)

Figure 6. R_{ON} as a Function of V_D (V_S): Single Supplies

Figure 7. $R_{\rm ON}$ as a Function of $V_{\rm D}$ ($V_{\rm S}$) for Different Temperatures

Figure 8. Leakage Currents as a Function of V_p (V_s)

REV. 0 -7-

Figure 9. Positive Supply Current vs. Switching Frequency

Figure 10. Switching Time vs. V_{IN} (Bipolar Supply)

Figure 11. Switching Time vs. Bipolar Supply

Figure 12. Negative Supply Current vs. Switching Frequency

Figure 13. Switching Time vs. V_{IN} (Single Supply)

Figure 14. Switching Time vs. Single Supply

Figure 15. OFF Isolation vs. Frequency

Figure 16. Crosstalk vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 3. I_D (OFF)

Test Circuit 2. I_s (OFF)

Test Circuit 4. I_D (ON)

REV. 0 _9_

Test Circuit 5. Switching Time of Multiplexer, $t_{TRANSITION}$

Test Circuit 6. Break-Before-Make Delay, t_{OPEN}

Test Circuit 7. Enable Delay, t_{ON} (EN), t_{OFF} (EN)

-10- REV. 0

Test Circuit 8. Write Turn-On Time, t_{ON} (\overline{WR})

Test Circuit 9. Reset Turn-Off Time, $t_{OFF}(\overline{RS})$

Test Circuit 10. Charge Injection

REV. 0 -11-

V_{DD}
S16 V_{DD}
S2 D
V_{OUT}
S1 ADG426*
A0 A1 A2 A3 EN RS GND WR V_{SS}
V_{SS}

*SIMILAR CONNECTION FOR ADG406/407

Test Circuit 11. OFF Isolation

Test Circuit 12. Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches an (mm).

28-Pin Plastic (N-28)

28-Pin PLCC (P-28A)

28-Pin SSOP (RS-28)

LEAD NO. 1 IDENTIFIED BY A DOT.
 LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS