Today

- Collective results from Monday
 - Im goals
 - Im workflow
- Recap & questions from homework
- Coding the grid search algorithm

Goals of your Im analyses

- Estimation (various quantities)
 - what is the state of the world?
- Is there an effect? (H test)
 - but there is always an effect, just small
 - causation (mechanism) vs association
- Prediction
 - what will be the state of the world given some other information we know?

Model algorithm

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

deterministic stochastic component component

y ~ x ← R shorthand "formula notation"

Equivalent to:

$$\begin{pmatrix}
6 \\
8 \\
5 \\
7 \\
9 \\
11
\end{pmatrix} = \begin{pmatrix}
1 & 40 \\
1 & 45 \\
1 & 39 \\
1 & 50 \\
1 & 52 \\
1 & 57
\end{pmatrix} * \begin{pmatrix}
\alpha \\
\beta
\end{pmatrix} + \begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_4 \\
\varepsilon_5 \\
\varepsilon_6
\end{pmatrix}$$
design parameter vector

Take aways from Kery

"Sometimes one may get away ... with not exactly knowing what parameterization of a model is fit by the software and what the parameters effectively mean"

Polite way of saying you should understand how the model is parameterized and what the parameters mean

Take aways from Kery

- Linear models can be parameterized in different ways
 - e.g. effects versus means parameterization
- 2 sample t-test & ANOVA are special cases of simple linear model
 - Categorical variables coded 0,1 for each category
 - aka dummy variable coding

Training algorithm

Big idea in data science

Legendre 1805: comet orbits, SSQ.

Least squares algorithms

Vary model parameters

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

Minimize distance from data

$$ssq = \sum_{i} e_{i}^{2}$$

Grid search algorithm Pseudocode

Read in data Set up values of β_0 and β_1 to try Set up storage for ssq, β_0 , β_1 For each value of β_0 For each value of β_1 Translate this to R code and use it to train the model with your data

Calculate model predictions
Calculate deviations
Sum squared deviations

Store ssq, β_0 , β_1

Plot sum of squares profiles (ssq vs β_0 , ssq vs β_1)

Report best ssq, β_0 , β_1

Plot fitted model with the data