

Kourosh Davoudi kourosh@uoit.ca

Classification: Naïve Bayes

CSCI 4150U: Data Mining

Learning Outcome

- What is the Nearest Neighbor Classifier?
 - Learn the ideas
 - Know the issues
- What is the Naïve Bayes classifier
 - Learn the main ideas
 - Explain are the issues and considerations
- What is Bayesian Belief Network?
- What are the Support Vector Machines?
 - Understand the main ideas
- What are ensemble approaches?
 - Learn the ideas and different approaches

Bayes Classifier

- A probabilistic framework for solving classification problems is based on the Bayesian Theorem
- Conditional Probability:

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes theorem:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Using Bayes Theorem for Classification

- Consider each attribute and class label as random variables
- Given a record with attributes $(X_1, X_2, ..., X_d)$
 - Goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes

$$P(Y|X_1, X_2, ..., X_d)$$

• Can we estimate $P(Y | X_1, X_2, ..., X_d)$ directly from data?

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	Married 120K N		
5	No	Divorced 95K		Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married 75K		No	
10	No	Single	90K	Yes	

Example Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Can we estimate these probability?

$$P(Evade = Yes \mid X)$$

$$P(Evade = Yes \mid X)$$

 $P(Evade = No \mid X)$

Using Bayes Theorem for Classification

- Approach:
 - Compute posterior probability $P(Y \mid X1, X2, ..., X_d)$ using the Bayes theorem

$$P(Y | X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d | Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

 \bullet Maximum a-posteriori: Choose Y that maximizes

$$P(Y | X_1, X_2, ..., X_d)$$

Equivalent to choosing value of Y that maximizes

$$P(X_1, X_2, ..., X_d | Y) P(Y)$$

Example Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Using Bayes Theorem:

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

So, the problem is reduced to estimation of:

How to estimate $P(X_1, X_2, ..., X_d | Y_j)$?

Naïve Bayes Classifier

• Assume independence among attributes X_i when class is given:

$$P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$$

• Now we can estimate $P(X_i|\ Y_j)$ for all X_i and Y_j combinations from the training data

• New point is classified to Y_j if $P(Y_j)$ $\prod P(X_i|Y_j)$ is maximal.

Naïve Bayes on Example Data

Given a Test Record: X = (Refund = No, Divorced, Income = 120K)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

```
P(X | Yes) =
       P(Refund = No | Yes) x
        P(Divorced | Yes) x
        P(Income = 120K | Yes)
P(X | No) =
        P(Refund = No | No) x
        P(Divorced | No) x
       P(Income = 120K | No)
```


Estimate Probabilities from Data

- P(y) = fraction of instances of class y
 - Examples:

$$P(No) = 7/10,$$

 $P(Yes) = 3/10$

• For categorical attributes:

$$P(X_i = c \mid y) = n_c / n$$

where n_c is number of instances having attribute value $X_i = c$ and belonging to class y and n is the number of instances of class y

• Examples:

$$P(Status=Married|No) = 4/7$$

 $P(Refund=Yes|Yes)=0$

Tid	Refund	Marital Taxab Status Incom		Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	ied 75K No		
10	No	Single	90K	Yes	

What is the P(Refund = Yes | No)?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married 120K		No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single 85K		Yes
9	No	Married 75K		No
10	No	Single	90K	Yes

- A. 2/7
- B. 3/7
- C. 3/5
- D. 2/5

Estimate Probabilities from Data

- For continuous attributes:
 - Discretization: Partition the range into bins:
 - Replace continuous value with bin value
 - Attribute changed from continuous to ordinal
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability $P(X_i|Y)$

Estimate Probabilities from Data

Normal distribution:

$$P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

One for each (X_i, Y_i) pair

- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(5)}$	$\frac{1}{54.54}e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$
--	---

Tid	Refund	Marital Taxable Status Income		Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married 120K		No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example of Naïve Bayes Classifier

Given a Test Record: X = (Refund = No, Divorced, Income = 120K)

```
Naïve Bayes Classifier:
                                P(No) = 7/10,
                                P(Yes) = 3/10
P(Refund = Yes \mid No) = 3/7
P(Refund = No \mid No) = 4/7
P(Refund = Yes \mid Yes) = 0
P(Refund = No \mid Yes) = 1
P(Marital\ Status = Single \mid No) = 2/7
P(Marital\ Status = Divorced \mid No) = 1/7
P(Marital\ Status = Married\ |\ No) = 4/7
P(Marital\ Status = Single \mid Yes) = 2/3
P(Marital\ Status = Divorced \mid Yes) = 1/3
P(Marital\ Status = Married \mid Yes) = 0
For Taxable Income:
If class = No: sample mean = 110
             sample variance = 2975
If class = Yes: sample mean = 90
             sample variance = 25
```

```
• P(X \mid No) = P(Refund=No \mid No)

\times P(Divorced \mid No)

\times P(Income=120K \mid No)

= 4/7 \times 1/7 \times 0.0072 = 0.0006
```

```
• P(X \mid Yes) = P(Refund=No \mid Yes)
	\times P(Divorced \mid Yes)
	\times P(Income=120K \mid Yes)
	= 1 \times 1/3 \times 1.2 \times 10^{-9} = 4 \times 10^{-10}
	Since P(X|No)P(No) > P(X|Yes)P(Yes)
	Therefore P(No|X) > P(Yes|X) => Class = No
```

Activity: Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Find the class using Naïve Bayes?

(On Piazza)

Issues with Naïve Bayes Classifier

Consider the table with Tid = 7 deleted

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	\longrightarrow
2	No	Married	100K	No	
3	No	Single	70K	No	\longrightarrow
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Given
$$X = (Refund = Yes, Divorced, 120K)$$

$$P(X \mid No) = 2/6 \times 0 \times 0.0083 = 0$$

$$P(X \mid Yes) = 0 \times 1/3 \times 1.2 \times 10^{-9} = 0$$

Naïve Bayes Classifier:

$$P(Refund = Yes \mid No) = 2/6$$
 $P(Refund = No \mid No) = 4/6$
 $P(Refund = Yes \mid Yes) = 0$
 $P(Refund = No \mid Yes) = 1$
 $P(Marital Status = Single \mid No) = 2/6$
 $P(Marital Status = Divorced \mid No) = 0$
 $P(Marital Status = Married \mid No) = 4/6$
 $P(Marital Status = Single \mid Yes) = 2/3$
 $P(Marital Status = Divorced \mid Yes) = 1/3$
 $P(Marital Status = Divorced \mid Yes) = 1/3$
 $P(Marital Status = Married \mid Yes) = 0/3$
 $For Taxable Income$:
 $If class = No: sample mean = 91$
 $sample variance = 685$
 $If class = No: sample mean = 90$
 $sample variance = 25$

Naïve Bayes will not be able to classify X as Yes or No!

Issues with Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
 - Need to use other estimates of conditional probabilities than simple fractions
 - Probability estimation:

Original:
$$P(X_i = c|y) = \frac{n_c}{n}$$

Laplace Estimate: $P(X_i = c|y) = \frac{n_c + 1}{n + v}$
 $m - estimate: P(X_i = c|y) = \frac{n_c + mp}{n + m}$

n: number of training instances belonging to class y n_c : number of instances with $X_i = c$ and Y = y v: total number of attribute values that X_i can take p: initial estimate of $P(X_i = c|y)$ m: hyper-parameter for our confidence in p

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Redundant and correlated attributes will violate class conditional assumption
 - —Use other techniques such as Bayesian Belief Networks (BBN)

Naïve Bayes

How does Naïve Bayes perform on the following dataset?

Conditional independence of attributes is violated

Learning Outcome

- What is the Nearest Neighbor Classifier?
 - Learn the ideas
 - Know the issues
- What is the Naïve Bayes classifier
 - Learn the main ideas
 - Explain how it works
 - What are the issues and considerations
- What is Bayesian Belief Network?
 - Understand the main ideas

Bayesian Belief Networks

- Provides graphical representation of probabilistic relationships among a set of random variables
- Consists of:
 - A directed acyclic graph (dag)
 - Node corresponds to a variable
 - Edges corresponds to dependence relationship between a pair of variables

A probability table associating each node to its immediate parent

• Assuming no conditional independence, what is the joint probability distribution P(A, B, C, D)?

• Assuming no conditional independence, what is the joint probability distribution P(A, B, C, D)?

$$P(A, B, C, D) = P(A) * P(B|A) * P(C|A, B) * P(D|A, B, C)$$

• Given the following Bayesian network, what is the joint probability distribution P(A, B, C, D)?

• Given the following Bayesian network, what is the joint probability distribution P(A, B, C, D)?

P(A, B, C, D) = P(A|C) * P(B|C) * P(C|D) * P(D)

Naïve Bayes assumption:

Naïve Bayes assumption:

$$P(y|X) = \frac{P(y,X)}{P(X)} = \frac{P(y)*P(X_1|y)...P(X_n|y)}{P(X)}$$

$$X = (X_1, X_2, \dots, X_n)$$

Probability Tables

• If X does not have any parents, table contains prior probability P(X)

• If X has only one parent (Y), table contains conditional probability P(X|Y)

• If X has multiple parents $(Y_1, Y_2, ..., Y_k)$, table contains conditional probability $P(X|Y_1, Y_2, ..., Y_k)$

Example of Bayesian Belief Network

Example of Inferencing using BBN

- Given: X = (E=No, D=Yes, CP=Yes, BP=High)
 - Compute P(HD|E,D,CP,BP)?

Example of Inferencing using BBN

- Given: X = (E=No, D=Yes, CP=Yes, BP=High)
 - Compute P(HD|E,D,CP,BP)?

$$P(HD|E,D,CP,BP) = \frac{P(HD,E,D,CP,BP)}{P(E,D,CP,BP)} = \frac{P(HD|E,D) * P(CP|HD) * P(BP|HD) * P(E) * P(D)}{P(E,D,CP,BP)}$$

$$\propto P(HD|E,D) * P(CP|HD), P(BP|HD) * P(E) * P(D)$$

Example of Inferencing using BBN

- Given: X = (E=No, D=Yes, CP=Yes, BP=High)
 - Compute P(HD|E,D,CP,BP)?
- P(HD=Yes | E=No, D=Yes) = 0.55 P(CP=Yes | HD=Yes) = 0.8 P(BP=High | HD=Yes) = 0.85
 - $P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) \propto 0.55 \times 0.8 \times 0.85 = 0.374$
- $P(HD=No \mid E=No, D=Yes) = 0.45$ $P(CP=Yes \mid HD=No) = 0.01$ $P(BP=High \mid HD=No) = 0.2$ $-P(HD=No \mid E=No, D=Yes, CP=Yes, BP=High) \propto 0.45 \times 0.01 \times 0.2 = 0.0009$

Classify X as Yes

