ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 3: Linear Algebra

Inverse of a Matrix

For a **square** matrix A, it's inverse A^{-1} is defined as:

$$AA^{-1} = A^{-1}A = I$$

Squareness is a necessary condition not a sufficient condition

If a matrix's inverse exists, it's called a **nonsingular** matrix

Inverse of a Matrix

If an inverse exists, it is unique.

Proof by contradiction. Let's say $B = A^{-1}$ and $C = A^{-1}$. Then,

$$AB = BA = I$$

$$AC = CA = I$$

Pre-multiply both sides by *B*,

$$BAC = BCA = BI \implies C = B$$

Solution of Linear-Equation System

$$Ax = b$$

Pre-multiply both sides by A^{-1} ,

$$A^{-1}Ax = A^{-1}b \implies x = A^{-1}b$$

If A is singular, a unique solution does not exist.

Squareness is necessary but not sufficient

Sufficient condition for nonsingularity:

Rows (or equivalently) columns are linearly independent

Example.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Squareness is necessary but not sufficient

Sufficient condition for nonsingularity:

Rows (or equivalently) columns are linearly independent

Example.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

A is singular, B is nonsingular.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad d = \begin{bmatrix} a \\ b \end{bmatrix}$$

We have a system of linear equations:

$$Ax = d$$

Then,

$$x_1 + 2x_2 = a$$
$$2x_1 + 4x_2 = b$$

$$x_1 + 2x_2 = a$$
$$2x_1 + 4x_2 = b$$

For these equations to be consistent, we need b = 2a:

$$x_1 + 2x_2 = a$$

$$2x_1 + 4x_2 = 2a$$

Both are the same equation, infinite number of solutions.

To summarize, for a matrix to be nonsingular (i.e. its inverse exists):

Necessary condition: Squareness

Sufficient condition: Rows or (equivalently) columns are linearly independent

Rank of a Matrix

Rank of a matrix = maximum number of linearly independent rows

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Rank of A? Rank of B?

Rank of a Matrix

Rank of a matrix = maximum number of linearly independent rows

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Rank of A? Rank of B?

Full rank ← Nonsingularity

Echelon form of a matrix.

- First row: all elements can be non-zero
- Second row: first element 0
- Third row: first two elements 0

• Last row: first m-1 elements zero

Echelon form of a 2×2 matrix.

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array} \right]$$

Echelon form of a 3×3 matrix.

$$A = \left[egin{array}{cccc} a_{11} & a_{12} & a_{13} \ 0 & a_{22} & a_{23} \ 0 & 0 & a_{33} \end{array}
ight]$$

Valid operations to convert to echelon form:

- Interchange any two rows
- Multiplication (or division) of a row by a scalar $k \neq 0$
- Addition of a (or k times of a) row to another

Converting to Echelon Form

Given matrix:

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right]$$

Target elements in order:

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ 0 & b_{32} & b_{33} \end{bmatrix} \rightarrow \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ 0 & c_{22} & c_{23} \\ 0 & c_{32} & c_{33} \end{bmatrix} \rightarrow \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ 0 & d_{22} & d_{23} \\ 0 & 0 & d_{33} \end{bmatrix}$$

Convert to echelon form to check for linear independence.

Example.

$$A = \left[\begin{array}{ccc} 0 & -1 & -4 \\ 3 & 1 & 2 \\ 6 & 1 & 0 \end{array} \right]$$

Echelon form, similar to solving by substitution.

In our original example,

$$A = \begin{bmatrix} 1 & 2 \\ 1 & -3 \end{bmatrix} \quad x = \begin{bmatrix} q \\ p \end{bmatrix} \quad b = \begin{bmatrix} 100 \\ 20 \end{bmatrix}$$

Consider augmented matrix:

$$A = \left[\begin{array}{cc|c} 1 & 2 & 100 \\ 1 & -3 & 20 \end{array} \right]$$

Reduce to echelon form:

$$A = \left[\begin{array}{cc|c} 1 & 2 & 100 \\ 0 & -5 & -80 \end{array} \right]$$

$$q + 2p = 100$$
 $-5p = -80$

Checking for Nonsingularity

Rank of a matrix = maximum number of linearly independent rows or (equivalently) columns

If a square matrix has full rank, it is nonsingular.

To check for nonsingularity or finding rank: echelon form.

Alternatively, calculate the **determinant** to check for nonsingularity. For singular matrices, the determinant is zero.

Determinant

Determinant |A| is a unique scalar associated with a *square* matrix A.

Determinant of a 2×2 Matrix:

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

Can be calculated as:

$$|A| = a_{11}a_{22} - a_{12}a_{21}$$

Determinant of a 3×3 Matrix

$$|A| = \left| egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array}
ight|$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \ a_{31} & a_{32} \end{vmatrix}$$

Determinant of a $n \times n$ Matrix

A minor of the element a_{ij} , denoted by $|M_{ij}|$ is obtained by deleting the *i*th row and *j*th column.

Cofactor C_{ii} is defined as:

$$|C_{ij}| = (-1)^{i+j} |M_{ij}|$$

Then,

$$|A| = \sum_{i=1}^{n} a_{ij} |C_{ij}| = \sum_{j=1}^{n} a_{ij} |C_{ij}|$$

References and Homework Problems

- New references for today: 5.1, 5.2
- Homework problems:
 - Exercise 5.1: 3, 4, 5, 6
 - Exercise 5.2: 1 (c) (e) (f), 2, 3, 6