Principles of Evolution

'Creation v. Biology'

Creationists

- each species was divinely created by a superior being
- theory is outside the scope of science since it is impossible to test

Biologists

- process by which biomolecules, subcellular structures and living cells have come into existence
- primitive cell then evolved

Abiogenesis (spontaneous generation)

living organisms from non-living material example: spoiled meat produces maggots

Biogenesis

- 'life from life'
- species give rise only to similar forms
- derived from parents that are similar

Chemical evolution (synthesis of reactions)

- starts with gaseous raw materials from Earth's early atmosphere
- synthesized in the oceans

STEP 1: Abiotic synthesis of monomers (simple molecules)

 NH_3

STEP 2: Abiotic synthesis of polymers (more complex molecules)

- occurring in sand pockets along the shore
- evaporation of water (ingredients become concentrated)

```
sugars+sugars--->polysaccharidesfatty acids+glycerin--->fatsamino acids+amino acids--->proteinsnitrogen bases+sugars+proteinsnucleotides+nucleotides--->nucleic acids
```

--> after this origin of the first living units, they were washed out to sea where further evolution occurred

STEP 3: Self-replicating molecules

- life is partially defined by inheritance (obtaining characteristics by transfer of genetic material)
- now occurs with DNA (primitive method previously existed)
- the first genes were short strands of RNA that replicated without the existence of enzymes (RNA genes)

STEP 4: Formation of Pre-cells

- packaging of these materials and molecules into membrane-bound pre-cells (<u>not cells</u>)
- Coacervates v. Proteinoids

Coacervate Theory - "Hot Thin Soup"

- formation of mixed colloidal units called coacervates
- colloids can be a protein, lipid, or nucleic acid

- although not living, molecules behave like biological systems
 - coacervates reproduce by fragmentation
 - take a long time to evolve

"Dry Heat Theory"

 polymerization of amino acids under hypohydrous conditions and very high temperatures (180°C) to form proteinoids (straight chain proteins)

CH₄, NH₃, water vapor ----> 14 amino acids

- proteinoids aggregate to form microspheres displaying some characteristics of life
 - cell membrane is selective permeable
 - easily formed, trapping chemicals
 - stable
 - enzymatic properties
- short time to evolve

Principles of Evolution - Origin of Eukaryotic Cells

Prokaryotes	Eukaryotes	
No true nucleus	Nucleus with nuclear membrane	
Single chromosome made up of nucleic acid	Several chromosomes with nucleic acid complexed with protein	
Cell organelles absent	Golgi apparatus, endoplasmic reticulum, lysosomes, mitochondria present	
If present, chlorophyll not in chloroplasts	If present, chlorophyll in chloroplasts	
Flagella lack 9 + 2 structure	Flagella with 9 + 2 structure	
Cell division by binary fission	Cell division by mitosis and meiosis	

Question: How did the membrane-bound organelles in eukaryotes form?

Principles of Evolution - Origin of Eukaryotic Cells

Eukaryotic cells evolved through a combination of <u>two</u> processes:

FIRST: prokaryotic plasma membrane formed inward folds

--> creating a endomembrane system

Principles of Evolution - Origin of Eukaryotic Cells

<u>SECOND</u>: endosymbiosis generated mitochondria and chloroplasts (one species living inside of another)

- mitochondria and chloroplasts evolved from small symbiotic prokaryotes
- aerobic heterotrophic prokaryote --> mitochondria photosynthetic prokaryote --> chloroplast

Biological

Eukaryotic Cells

Evolution

Evolution / Time

- --> sexual reproduction
- --> mutations

Nutrition: parasitism
saprophytism
holophytism
chemosynthesis
photosynthesis

Protists

(protozoans/slime molds/ unicellular algae)

natural selection

Summary: Evolution of Eukaryotes

- 1. cell membrane encapsulates genetic DNA
 - ... development of nucleus internalized genome
- 2. loss of a rigid cell wall
 - ... cells developed ability of phagocytosis engulfing foods
 - ... allows clumping of cells --> multicellularity --> tissues
- 3. evolve a selectively permeable membrane
 - ... protection, gas & nutrients exchange with environment

- 4. evolve a cytoskeleton
 - ... provides framework cell growth, movement, & metabolism
- 5. evolve aerobic respiration
 - ... more efficient energy transformation
- 6. develop various organelles (endosymbiosis)
 - ... a sub-cell part specific for a metabolic function

The evolution of eukaryotes was the single most important step in evolution of multicellular life forms & was a key step that lead to plant & animal life.

Exobiology

the study of life beyond Earth

Finding life elsewhere.

Life as we know it ...

- certain type of chemistry (carbon atoms, liquid water)
- requires a certain range of temperatures
- it alters its own environment in certain characteristic ways

Life as we don't know it ...

- based on unknown chemistry (silicon atoms?)
- lives under unknown conditions
- leaves an unknown mark on the world around it

How can we search for something like that? Learning ab ch ultra-hot "black smoke survival in (no light s > 100°C w surrounded by living creatures (tube worms, sightless fish, blind crabs)

Finding life elsewhere.

- animals survive on bacteria that thrive off the super-heated materials
- chemosynthetic (converting chemicals into useful energy)

"extremophiles" - bacteria that thrive on extremely hot, high-pressure conditions

conventionally defined habitable zone (surface-dwelling, photosynthetic organisms)

a lot more places where life might be happening

Finding life elsewhere.

