

Technologiemodul

Winder Tension-controlled _____

Referenzhandbuch

__

Lenze

Inhalt

1 1.1	Über diese Dokumentation Dokumenthistorie								
1.2	Verwendete Konventionen								
1.3	Definition der verwendeten Hinweise								
2	Sicherheitshinweise								
3	Funktionsbeschreibung "Winder Tension-controlled"								
3.1	Übersicht der Funktionen Wichtige Hinweise zum Betrieb des Technologiemoduls Funktionshaustein L. TTIR WinderTension Ctrl Page (State (High)								
3.2	Wichtige Hinweise zum Betrieb des Technologiemoduls								
3.3	runktionsbaustein Litte windertensionetri[base/state/nigh]								
	3.3.1 Eingänge und Ausgänge								
	3.3.2 Lingange								
	3.3.3 Ausgange								
	3.3.4 Parameter								
3.4	State machine								
3.5	Signalflusspläne 3.5.1 Struktur des Signalflusses								
	3.5.1 Struktur des Signalflusses								
2.0	3.5.2 Struktur der Angriffspunkte								
3.6	restiegung der Wickeirichtung (Autwickein/Abwickein)								
3.7	Automatische Erkennung der Wickelrichtung								
3.8	restiegung der Materialzufunfung an den Wickier								
3.9 3.10	Leitwert-Quelle für die Durchmesserberechnung								
	Drehzahlvorsteuerung								
3.11 3.12	Durchmesserberechnung								
	Durchmesser halten Durchmesser vorgeben / Signal vom Durchmessersensor								
3.13 3.14	Materiallängenzähler								
3.14	Materiallängenzähler Quellen für die Materiallängenzählung								
5.15	2.15.1 Qualle, Fingang, IrCettingVol"								
	3.15.1 Quelle: Elligang "Il Settline Vel ——————————————————————————————————								
	3.15.1 Quelle: Eingang "IrSetLineVel" 3.15.2 Quelle: Eingang "IrSetLineVelDiamCalc" 3.15.3 Quelle: Eingang "MaterialCounterAxis" (Referenzachse)								
3.16	Jandfahran (lagging)								
	Handfahren (Jogging) Synchronisierung auf die Liniengeschwindigkeit								
3.17 3.18	Trimmung								
3.19	Trimmung Zugkraftsteuerung über Kennlinienfunktion (Base-Variante)								
3.20									
3.21	BeschleunigungskompensationBahnrissüberwachung								
3.22									
3.23	Persistente Variablen Zugkraftsteuerung über Kennlinienfunktion/Wickelcharakteristik								
3.24	Identifikation und Kompensation der Reibung								
3.25	PI-Regler für die Zugkraftregelung								
3.26	PI-Regler für die Zugkraftregelung								
3.27	Adaption der Drehzahlreglerverstärkung								
J ,	Adaption der Drehzahlreglerverstärkung								
	3.27.2 Adaptionsmodus eAdaptSpdCtrlGainMode:= 1 (Diam)								
	3.27.3 Adaptionsmodus eAdaptSpdCtrlGainMode:= 2 (Inertia)								
3.28	Regelabweichung im Bereich reduzierter Empfindlichkeit								
3.29	Begrenzung der Master-Liniengeschwindigkeit								
3.30	CPU-Auslastung (Beispiel Controller 3231 C)								
•	·· Ov ·· · · · · · · · · · · · · · · · · ·								
	Index								
	Ihre Meinung ist uns wichtig								

1 Über diese Dokumentation

Diese Dokumentation ...

- enthält ausführliche Informationen zu den Funktionalitäten des Technologiemoduls "Winder Tension-controlled";
- ordnet sich in die Handbuchsammlung "Controller-based Automation" ein. Diese besteht aus folgenden Dokumentationen:

Dokumentationstyp	Thema
Produktkatalog	Controller-based Automation (Systemübersicht, Beispieltopologien) Lenze-Controller (Produktinformationen, Technische Daten)
Systemhandbücher	Visualisierung (Systemübersicht/Beispieltopologien)
Kommunikationshandbücher Online-Hilfen	Bussysteme • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®
Referenzhandbücher Online-Hilfen	Lenze-Controller: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500
Software-Handbücher Online-Hilfen	Lenze Engineering Tools: • »PLC Designer« (Programmierung) • »Engineer« (Parametrierung, Konfigurierung, Diagnose) • »VisiWinNET® Smart« (Visualisierung) • »Backup & Restore« (Datensicherung, Wiederherstellung, Aktualisierung)

Weitere Technische Dokumentationen zu Lenze-Produkten

Weitere Informationen zu Lenze-Produkten, die in Verbindung mit der Controller-based Automation verwendbar sind, finden Sie in folgenden Dokumentationen:

Pla	nung / Projektierung / Technische Daten
	Produktkataloge
Mo	ntage und Verdrahtung
	Montageanleitungen
	Gerätehandbücher • Inverter Drives/Servo Drives
Par	rametrierung / Konfigurierung / Inbetriebnahme
	Online-Hilfe / Referenzhandbücher
	Online-Hilfe / Kommunikationshandbücher • Bussysteme • Kommunikationsmodule
Bei	spielapplikationen und Vorlagen
	Online-Hilfe / Software- und Referenzhandbücher • Application Sample i700 • Application Samples 8400/9400 • FAST Application Template Lenze/PackML • FAST Technologiemodule

- ☐ Gedruckte Dokumentation
- ☐ PDF-Datei / Online-Hilfe im Lenze **Engineering Tool**

Aktuelle Dokumentationen und Software-Updates zu Lenze-Produkten finden Sie im Download-Bereich unter:

www.lenze.com

Zielgruppe

Diese Dokumentation richtet sich an alle Personen, die ein Lenze-Automationssystem auf Basis der Application Software Lenze FAST programmieren und in Betrieb nehmen.

1.1 Dokumenthistorie

1.1 Dokumenthistorie

Version	ı		Beschreibung
6.1	03/2019	TD06	Fehler korrigiert
6.0	02/2019	TD29	Signalfluss geändert
5.0	05/2018	TD29	Erweitert: • Adaption der Drehzahlreglerverstärkung (63) Neu: • Begrenzung der Master-Liniengeschwindigkeit (67)
4.3	05/2017	TD17	 Inhaltliche Struktur geändert. Allgemeine Korrekturen Abbildung <u>Signalfluss des Technologiemoduls</u> (☐ 32) korrigiert. Neu: Eingang "MaterialCounterAxis" (AXIS_REF) Quellen für die Materiallängenzählung (☐ 44)
4.2	11/2016	TD17	Allgemeine Korrekturen Parameter <u>L TT1P scPar WinderTensionCtrl [Base/State/High]</u> (☐ 23) ergänzt.
4.1	04/2016	TD17	 Allgemeine Korrekturen Abbildung <u>Signalfluss des Technologiemoduls</u> (32) korrigiert. Angriffspunkte <u>L_TT1P_scAP_WinderTensionCtrl [Base/State/High]</u> (35) ergänzt.
4.0	11/2015	TD17	 Allgemeine Korrekturen Neu: Regelabweichung im Bereich reduzierter Empfindlichkeit (□ 66) Inhaltliche Struktur geändert.
3.0	05/2015	TD17	Allgemeine Korrekturen Neu: Materiallängenzähler (□ 43)
2.0	01/2015	TD17	 Allgemeine redaktionelle Überarbeitung Modularisierung der Inhalte für die »PLC Designer« Online-Hilfe
1.0	04/2014	TD00	Erstausgabe

1.2 Verwendete Konventionen

1.2 Verwendete Konventionen

Diese Dokumentation verwendet folgende Konventionen zur Unterscheidung verschiedener Arten von Information:

Informationsart	Auszeichnung	Beispiele/Hinweise						
Zahlenschreibweise	Zahlenschreibweise							
Dezimaltrennzeichen	Punkt	Es wird generell der Dezimalpunkt verwendet. Zum Beispiel: 1234.56						
Textauszeichnung								
Programmname	» «	»PLC Designer«						
Variablenbezeichner	kursiv	Durch Setzen von <i>bEnable</i> auf TRUE						
Funktionsbausteine	fett	Der Funktionsbaustein L_MC1P_AxisBasicControl						
Funktionsbibliotheken		Die Funktionsbibliothek L_TT1P_TechnolgyModules						
Quellcode	Schriftart "Corier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>						
Symbole	Symbole							
Seitenverweis	(□ 6)	Verweis auf weiterführenden Informationen: Seitenzahl in PDF-Datei.						

Variablenbezeichner

Die von Lenze verwendeten Konventionen, die für die Variablenbezeichner von Lenze Systembausteinen, Funktionsbausteinen sowie Funktionen verwendet werden, basieren auf der sogenannten "Ungarischen Notation", wodurch anhand des Bezeichners sofort auf die wichtigsten Eigenschaften (z. B. den Datentyp) der entsprechenden Variable geschlossen werden kann, z. B. xAxisEnabled.

1.3 Definition der verwendeten Hinweise

1.3 Definition der verwendeten Hinweise

Um auf Gefahren und wichtige Informationen hinzuweisen, werden in dieser Dokumentation folgende Signalwörter und Symbole verwendet:

Sicherheitshinweise

Aufbau der Sicherheitshinweise:

Piktogramm und Signalwort!

(kennzeichnen die Art und die Schwere der Gefahr)

Hinweistext

(beschreibt die Gefahr und gibt Hinweise, wie sie vermieden werden kann)

Piktogramm	Signalwort	Bedeutung
A	Gefahr!	Gefahr von Personenschäden durch gefährliche elektrische Spannung Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
<u> </u>	Gefahr!	Gefahr von Personenschäden durch eine allgemeine Gefahrenquelle Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
STOP	Stop!	Gefahr von Sachschäden Hinweis auf eine mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Anwendungshinweise

Piktogramm	Signalwort	Bedeutung
i	Hinweis!	Wichtiger Hinweis für die störungsfreie Funktion
- 🚡 -	Tipp!	Nützlicher Tipp für zum einfachen Bedienen
(Verweis auf andere Dokumentation

2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise in dieser Dokumentation, wenn Sie ein Automationssystem oder eine Anlage mit einem Lenze-Controller in Betrieb nehmen möchten.

Die Gerätedokumentation enthält Sicherheitshinweise, die Sie beachten müssen!

Lesen Sie die mitgelieferten und zugehörigen Dokumentationen der jeweiligen Komponenten des Automationssystems sorgfältig durch, bevor Sie mit der Inbetriebnahme des Controllers und der angeschlossenen Geräte beginnen.

Gefahr!

Hohe elektrische Spannung

Personenschäden durch gefährliche elektrische Spannung

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

Die Spannungsversorgung ausschalten, bevor Arbeiten an den Komponenten des Automationssystems durchgeführt werden.

Nach dem Ausschalten der Spannungsversorgung spannungsführende Geräteteile und Leistungsanschlüsse nicht sofort berühren, weil Kondensatoren aufgeladen sein können.

Die entsprechenden Hinweisschilder auf dem Gerät beachten.

Gefahr!

Personenschäden

Verletzungsgefahr besteht durch ...

- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

- Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).
- Während der Inbetriebnahme einen ausreichenden Sicherheitsabstand zum Motor oder den vom Motor angetriebenen Maschinenteilen einhalten.

Stop!

Beschädigung oder Zerstörung von Maschinenteilen

Beschädigung oder Zerstörung von Maschinenteilen besteht durch ...

- Kurzschluss oder statische Entladungen (ESD);
- nicht vorhersehbare Motorbewegungen (z.B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Schutzmaßnahmen

- Vor allen Arbeiten an den Komponenten des Automationssystems immer die Spannungsversorgung ausschalten.
- Elektronische Bauelemente und Kontakte nur berühren, wenn zuvor ESD-Maßnahmen getroffen wurden.
- · Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).

3 Funktionsbeschreibung "Winder Tension-controlled"

Wickelantriebe sind in vielen technologischen Prozessen ein wesentlicher Bestandteil einer Gesamtanlage. In Abhängigkeit von Material und Wickelprozess kommen unterschiedliche Steuerund Regelverfahren zum Einsatz:

- Tänzerlageregelung
- Zugkraftsteuerung
- · Zugkraftregelung

Mit diesem Technologiemodul kann ein zugkraftgesteuerter/-geregelter Wickelantrieb projektiert werden.

[3-1] Aufbau eines zugkraftgesteuerten/-geregelten Wicklers

Das Material wird von einer im Zentrum angetriebenen Wickelwelle auf oder abgewickelt. Dabei bestimmt das Drehmoment des Wickelmotors direkt die Zugkraft am Material. Die Drehzahl des Wicklers ändert sich reziprok zum Durchmesser (n^{-1}/d); das Drehmoment nimmt mit dem Durchmesser proportional zu (M^{-1} d).

Die Geschwindigkeit im Maschinenmodul wird nicht vom Wickler bestimmt. Das Material muss einen Festpunkt haben, damit über den Wickler ein Bahnzug aufgebaut werden kann.

- Die Variante "Base" bietet die Zugkraftsteuerung mit der Beschleunigungskompensation und der linearen Reibungskompensation. Die Zugkraftsteuerung kann über eine lineare Kennlinienfunktion eingestellt werden. Für die Durchmesserberechnung werden die Liniengeschwindigkeit und Wicklerdrehzahl herangezogen.
- In der Variante "State" ist der Funktionsumfang der Base-Variante erweitert. Hierbei stehen insgesamt drei Kennlinien für die Zugkraftsteuerung zur Verfügung:
 - · Kennlinie für einen linearen Zugkraftverlauf
 - · Kennlinie für einen linearen Drehmomentverlauf
 - Frei definierbare Kennlinie mit 64 Stützpunkten

Für die Zugkraftreglung ist es möglich einen PI-Regler zu verwenden. Zudem kann der Reibungsverlauf (in Abhängigkeit der Wicklerdrehzahl) identifiziert werden und für die Kompensation der Reibung verwendet werden.

• Die Variante "High" bietet ergänzend die Möglichkeit, das Massenträgheitsmoment der Wicklerachse zu identifizieren und für die Parametrierung des Technologiemoduls zu verwenden. Zudem ist eine Adaption der Drehzahlreglerverstärkung, in Abhängigkeit des aktuellen Massenträgheitsmoments, im laufenden Betrieb ausführbar.

Drehzahlregelung

Eine überlagerte Drehzahlregelung greift nur im Falle eines Bahnrisses, um die Drehzahl des Antriebs zu begrenzen. Damit im Normalbetrieb das Solldrehmoment nicht durch die Drehzahlbegrenzung beeinflusst wird, muss zum Drehzahlsollwert, der aus der aktuellen Liniengeschwindigkeit und dem aktuellen Durchmesser berechnet wird, ein Geschwindigkeits-Offset addiert werden.

Der Drehmomentsollwert setzt sich zusammen aus dem Zugkraftsollwert multipliziert mit dem aktuellen Radius, dem Korrektursignal zur Kompensation der mechanischen Reibung und dem Korrektursignal zur Kompensation des Beschleunigungsmomentes.

Zugkraftregelung

Für ein gutes Wickelergebnis darf die Reibungs- und Beschleunigungskompensation das kleinste Lastmoment nicht wesentlich überschreiten. Sind trotz Reibungs- und Beschleunigungskompensation zu große Zugkraftabweichungen zu erwarten oder feststellbar, kann über eine Zugkrafterfassung und -regelung der Zugkraftsollwert entsprechend korrigiert werden.

3.1 Übersicht der Funktionen

3.1 Übersicht der Funktionen

Neben den Grundfunktionen zur Bedienung des Funktionsbausteins **L_MC1P_AxisBasicControl**, der **Stopp-Funktion** und der **Halt-Funktion** bietet das Technologiemodul folgende Funktionalitäten, die den Varianten "Base", "State" und "High" zugeordnet sind:

Funktionalität		Variante			
	Base	State	High		
Festlegung der Wickelrichtung (Aufwickeln/Abwickeln) (37)	•	•	•		
Automatische Erkennung der Wickelrichtung (37)	•	•	•		
Festlegung der Materialzuführung an den Wickler (□ 38)	•	•	•		
Leitwert-Quelle für die Durchmesserberechnung (□ 39)	•	•	•		
Drehzahlvorsteuerung (🕮 39)	•	•	•		
Durchmesserberechnung (40)	•	•	•		
Durchmesser halten (41)	•	•	•		
Durchmesser vorgeben / Signal vom Durchmessersensor (42)	•	•	•		
Materiallängenzähler (12 43)	•	•	•		
Quellen für die Materiallängenzählung (🕮 44)	•	•	•		
Handfahren (Jogging) (46)	•	•	•		
Synchronisierung auf die Liniengeschwindigkeit (47)	•	•	•		
Trimmung (48)	•	•	•		
Zugkraftsteuerung über Kennlinienfunktion (Base-Variante) (💷 49)	•	•	•		
Beschleunigungskompensation (52)	•	•	•		
Bahnrissüberwachung (11) 54)	•	•	•		
Persistente Variablen (🕮 55)	•	•	•		
Begrenzung der Master-Liniengeschwindigkeit (67)	•	•	•		
Zugkraftsteuerung über Kennlinienfunktion/Wickelcharakteristik (💷 52)		•	•		
Identifikation und Kompensation der Reibung (🕮 57)		•	•		
PI-Regler für die Zugkraftregelung (□ 60)		•	•		
Identifikation der Massenträgheitsmomente (🕮 61)			•		
Adaption der Drehzahlreglerverstärkung (🕮 63)			•		
Regelabweichung im Bereich reduzierter Empfindlichkeit			•		

»PLC Designer« Online-Hilfe

Hier finden Sie ausführliche Informationen zum Funktionsbaustein L_MC1P_AxisBasicControl, zur Stopp-Funktion und zur Halt-Funktion.

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

Das Technologiemodul ...

- unterstützt nicht den Simulationsmodus im »PLC Designer«;
- unterstützt keine virtuellen Achsen;
- unterstüzt nur <u>rotatorische</u> Wicklerachsen.

Stellen Sie im »PLC Designer« für j<u>ede</u> Achse unter der Registerkarte **Einstellungen** folgende Parameter ein:

- Der Vorschub der Wicklerachse wird in der Einheit [revs/s] parametriert.
- Die Geschwindigkeit der Linie wird in der Einheit [mm/s] parametriert.

Einstellung des Betriebsmodus

Der Betriebsmodus (Mode of Operation) für die Wickler-Achse muss auf "Zyklisch synchrone Position" (csp) eingestellt werden, da die Achse über den Positions-, Geschwindigkeits- und Drehmomentleitwert geführt wird.

Wichtige Hinweise zum Betrieb des Technologiemoduls 3.2

Kontrollierter Anlauf der Achsen

Bewegungsbefehle, die im gesperrten Achszustand (xAxisEnabled = FALSE) gesetzt werden, müssen nach der Freigabe (xRequlatorOn = TRUE) erneut durch eine FALSE TRUE-Flanke aktiviert werden.

So wird verhindert, dass der Antrieb nach der Reglerfreigabe unkontrolliert anläuft.

Beispiel Handfahren (Jogging) (446):

- 1. Im gesperrten Achzustand (xAxisEnabled = FALSE) wird xJoqPos = TRUE gesetzt.
 - xRegulatorOn = FALSE (Achse ist gersperrt.) ==> Zustand "READY" (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (Handfahren soll ausgeführt werden.)
- 2. Achse freigeben.
 - xRegulatorOn = TRUE ==> Zustand "READY" (xAxisEnabled = TRUE)
- 3. Handfahren ausführen.
 - xJoqPos = FALSE对TRUE ==> Zustand "JOGPOS"

3.3 Funktionsbaustein L_TT1P_WinderTensionCtrl[Base/State/High]

3.3 Funktionsbaustein L_TT1P_WinderTensionCtrl[Base/State/High]

Die Abbildung zeigt die Zugehörigkeit der Ein- und Ausgänge für die Varianten "Base", "State" und "High". Die zusätzlichen Ein- und Ausgänge der Varianten "State" und "High" sind schattiert dargestellt.

3.3 Funktionsbaustein L_TT1P_WinderTensionCtrl[Base/State/High]

3.3.1 Eingänge und Ausgänge

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante			
		Base	State	High		
Axis AXIS_REF	Referenz auf die Achse	•	•	•		
PersistentVar L_TT1P_PersistentVar Winder	Referenz auf Persistente Variablen In der Referenz werden folgende Daten verwaltet: • Berechneter Durchmesser	•	•	•		
alrFrictionCurve1 ARRAY [166] OF LREAL	Reibungskennlinien 1 4 bestehend aus jeweils 65 Stützpunkten		•	•		
alrFrictionCurve1 ARRAY [166] OF LREAL	Die Stützpunkte werden bei der Identifikation der Reibung automatisch eingetragen.					
alrFrictionCurve1 ARRAY [166] OF LREAL						
alrFrictionCurve1 ARRAY [166] OF LREAL						

3.3

Eingänge 3.3.2

Bezeichner Datentyp	Beschrei	bung		Verfügbar in Variante	
			Base	State	High
xEnableInternalControl BOOL	TRUE	In der Visualisierung ist die interne Steuerung der Achse über die Schaltfläche "Internal Control" auswählbar.	•	•	•
xEnable	Ausführung des Funktionsbausteins		•	•	•
BOOL	TRUE	Der Funktionsbaustein wird ausgeführt.			
	FALSE	Der Funktionsbaustein wird nicht ausgeführt.			
scCtrlABC scCtrl_ABC	• scCtr • Liegt gewe • Vom	estruktur für den Funktionsbaustein _AxisBasicControl IABC kann im Zustand "Ready" genutzt werden. eine Anforderung an, wird in den Zustand "Service" echselt. Zustand "Service" wird zurück in den Zustand "Ready" echselt, wenn keine Anforderung mehr anliegt.	•	•	•
xResetError BOOL	TRUE	Fehler der Achse oder der Software zurücksetzen.	•	•	•
xRegulatorOn BOOL	TRUE	Reglerfreigabe der Achse aktivieren (über den Funktionsbaustein MC_Power).	•	•	•
xStop BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrStopDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Zustand "STOP" wird verlassen, wenn (Not xStop AND Not xHalt) AND eAxisState = StandStill. • Der Eingang ist auch bei "Internal Control" aktiv.	•	•	•
xHalt BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrHaltDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xHalt = TRUE (oder xStop = TRUE) gesetzt ist.	•	•	•
scPar L TT1P scPar WinderTensionCtrl [Base/State/High]	Technolo Der Date	meterstruktur enthält die Parameter des ogiemoduls. entyp ist abhängig von der verwendeten Variante ate/High).	•	•	•
scAccessPoints L TT1P scAP WinderTensionCtrl [Base/State/High]	Der Date	der Angriffspunkte entyp ist abhängig von der verwendeten Variante ate/High).	•	•	•
MaterialCounterAxis AXIS_REF	Material Wenn ei Erhöhun Referenz Signale g Falls hie der Material IrSetLine	n eine Modulo-Achse eines Messrades auf dem angeschlossen werden. ne Achse am Eingang angeschlossen ist, so erfolgt die g der Materiallänge anhand der Daten aus der tachse. Dieses Verfahren ist auch für verrauschte geeingnet. r keine Achse angeschlossen ist, erfolgt die Ermittlung eriallänge aus der Intergration der geschwindikeit (Eingang IrSetLineVel oder VelDiamCalc). iallängenzähler (43)	•	•	•

Bezeichner Da	atentyp	Beschrei	bung		rfügbaı /ariante	
				Base	State	High
xMaterialFeeding	BOOL		führung von oben oder unten an den Wickelballen lwert: FALSE	•	•	•
		TRUE	Materialführung von oben			
		FALSE	Materialführung von unten			
xWindingDirection	BOOL	(Eingang	n des Wicklers bei positiver Liniengeschwindigkeit g IrSetLineVel > 0) lwert: FALSE	•	•	•
		TRUE	Abwickler			
		FALSE	Aufwickler			
xWindingDirectionSta	ndstill BOOL	(Eingang	n des Wicklers bei stehender Liniengeschwindigkeit 3 IrSetLineVel = 0) Iwert: FALSE	•	•	•
		TRUE	Abwickler			
		FALSE	Aufwickler			
xLoadDiam	BOOL	TRUE	Den (Start-)Durchmesser [mm] aus dem Eingang IrSetDiam laden. • Initialwert: FALSE	•	•	•
IrSetDiam	LREAL	Der Durd xLoadDi • Einhe	eines (Start-)Durchmessers chmesser wird zyklisch geladen wenn der Eingang am = TRUE gesetzt ist. eit: mm lwert: 0	•	•	•
xHoldDiam	BOOL	l	n Durchmesser halten/nicht halten lwert: FALSE	•	•	•
		TRUE	Der aktuelle Durchmesser wird gehalten.			
		FALSE	Der aktuelle Durchmesser wird nicht gehalten.			
xDiamCalcReduced	BOOL	langer/k	Jmschaltung der Durchmesserberechnung zwischen eurzer Distanz lwert: FALSE	•	•	•
		TRUE	Durchmesser wird nach kurzer Distanz aktualisiert.			
		FALSE	Durchmesser wird nach langer Distanz aktualisiert.			
xSetMaterialCounter	BOOL	Flanke a	ang ist flankengesteuert und wertet die FALSE⊅TRUE- us. lwert: FALSE	•	•	•
		TRUE	Setzt den Materiallängenzähler (Ausgang IrMaterialCounter) auf den Wert, der unter dem Parameter IrSetMaterialPos eingestellt ist.			
xWebBreakMonit			überwachung aktivieren/deaktivieren lwert: FALSE	•	•	•
		TRUE	Bahnrissüberwachung aktivieren.			
		FALSE	Bahnrissüberwachung deaktivieren.			
xJogLinePos	BOOL	TRUE	Achse in positive Materialflussrichtung fahren (Handfahren). Ist xJogLineNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•
xJogLineNeg	BOOL	TRUE	Achse in negative Materialflussrichtung fahren (Handfahren). Ist xJogLinePos auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•

3

3

Bezeichner	Datentyp	Beschreibung		Verfügbar i Variante		
				Base	State	High
xTrimLinePos	BOOL	TRUE	Den Geschwindigkeits-Offset in positive Materialflussrichtung freigeben, wenn die Wicklerachse auf die Linie synchronisiert ist (xSyncLineVel = TRUE).	•	•	•
xTrimLineNeg	BOOL	TRUE	Den Geschwindigkeits-Offset in negative Materialflussrichtung freigeben, wenn die Wicklerachse auf die Linie synchronisiert ist (xSyncLineVel = TRUE).	•	•	•
xSyncLineVel	BOOL	TRUE	Wicklerachse auf die Linie synchronisieren.	•	•	•
xTensCurve	BOOL	TRUE	Zugkraftkennlinie freigeben. • Initialwert: FALSE	•	•	•
IrSetTens	LREAL	Zugkraft • Einhe	sollwert eit: N	•	•	•
IrSetLineVel	LREAL	l	Liniengeschwindigkeit eit: mm/s	•	•	•
xTensCtrl	BOOL	TRUE	Zugkraftsteuerung/-reglung aktivieren.	•	•	•
xFricCmps	BOOL	TRUE	Reibungskompensation während der Zugkraftsteuerung/-reglung aktivieren.	•	•	•
xAccCmps	BOOL	TRUE	Beschleunigungskompensation während der Zugkraftsteuerung/-reglung aktivieren.	•	•	•
IrMInertiaAdapt	LREAL		kator zum aktuellen Massenträgheitsmoment lwert: 0	•	•	•
IrActTensIn	LREAL	• Einhe	r Zugkraftistwert eit: N lwert: 0		•	•
IrSetFricAdapt	LREAL	Multiplil	Multiplikator zur Reibungskennlinie			•
IrTensCtrlInfluence	LREAL	• Einhe	des Zugkraft-Prozessreglers eit: x 100 % (1 = 100 %) lwert: 0		•	•
xResetICtrl	BOOL	TRUE	Der I-Anteil des PI-Reglers wird ausgeschaltet und die Stellgröße (Ausgang des Reglers) aus dem I-Anteil wird über die Rampenfunktion auf '0' geführt. Die Stellgröße aus dem P-Anteil wird nicht beeinflusst.		•	•
xExecuteIdentFric	BOOL	Der Eing Flanke a	ang ist flankengesteuert und wertet die steigende us.		•	•
		FALSE 7 TRUE	Identifikation der Reibungskennlinie aktivieren.			
xResetPICtrl		Funktion	nalität ein-/ausschalten		•	•
	BOOL	TRUE	Der PI-Regler wird ausgeschaltet und die Stellgröße (Ausgang des Reglers) aus dem PID-Anteil wird über eine Rampenfunktion auf 0 geführt. Nach Wiedereinschalten des Reglers wird der Soll-/ Istwert abgeglichen. Die Stellgröße wird über einen Rampengenerator geführt, um einen sprungfreien, stetigen Verlauf der Sollwerte für den Antrieb vorzugeben. Die Rampe wird über den Parameter scPar.IrTensRamp in der Einheit [N/s] festgelegt. Funktionalität ausgeschaltet			

3.3

Bezeichner Datentyp						rfügbaı /ariante	
			Base	State	High		
xExecuteIdentMInertia BOOL		er Eingang ist flankengesteuert und wertet die steigende lanke aus.					
	FALSE 7 TRUE	Das Massenträgheitsmoment an der Wicklerwelle wird ermittelt. Am Ausgang IrldentMInertia wird das ermittelte Massenträgheitsmoment in kgcm² angezeigt.					
xAdaptSpdCtrlGain BOOL		Adaption der Drehzahlreglerverstärkung ein-/ausschalten. • Initialwert: FALSE			•		
	TRUE	Adaption der Drehzahlreglerverstärkung einschalten.					
	FALSE	Adaption der Drehzahlreglerverstärkung ausschalten.					
IrAdaptSpdCtrlGainFactor LREAL	kann üb • Wert	Der resultirende Wert der Adaption Drehzahlreglerverstärkung kann über diesen Eingang multiplikativ beeinflusst werden. • Wertebereicht: 0 1 • Initalwert: 1			•		

Ausgänge 3.3.3

3.3

Bezeichner Date	entyp	Beschrei	bung		rfügbai /ariant	
				Base	State	High
xInternalControlActive	BOOL		ne Steuerung der Achse ist über die Visualisierung . (Eingang xEnableInternalControl = TRUE)	•	•	•
eTMState <u>L_TT1P_S</u>	States		r Zustand des Technologiemoduls <u>machine</u> (🗀 29)	•	•	•
scStatusABC scStatus	_ABC	l	der Zustandsdaten des Funktionsbausteins _AxisBasicControl	•	•	•
xError	BOOL	TRUE	Im Technologiemodul liegt ein Fehler vor.	•	•	•
xWarning	BOOL	TRUE	Im Technologiemodul liegt eine Warnung vor.	•	•	•
eErrorID L_IE1P_	Error	ID der Fe oder xW	hler- oder Warnungsmeldung, wenn xError = TRUE arning = TRUE ist.	•	•	•
		Hier find	rhandbuch "FAST Technologiemodule": len Sie Informationen zu Fehler- oder gsmeldungen.			
scErrorInfo L_TT1P_scErro	orInfo	l –	formationsstruktur für eine genauere Analyse der sache	•	•	•
xAxisEnabled	BOOL	TRUE	Die Achse ist freigegeben.	•	•	•
scSignalFlow L_TT1P_scSF_WinderTens [Base/State		Der Date (Base/St	des Signalflusses entyp ist abhängig von der verwendeten Variante ate/High). flusspläne (🕮 31)	•	•	•
xDone	BOOL	TRUE	Die Anforderung/Aktion wurde erfolgreich abgeschlossen.	•	•	•
xBusy	BOOL	TRUE	Die Anforderung/Aktion wird zur Zeit ausgeführt.	•	•	•
xSynchronised	BOOL	TRUE	Der Wickler ist auf die Liniengeschwindigkeit synchronisiert.	•	•	•
xAccDecSync	BOOL	TRUE	Die Synchronisierungsfunktion ist aktiv. Der Wickler wird auf- oder absynchronisiert.	•	•	•
xUnwind		Statusbi	t für Auf- und Abwickler	•	•	•
	BOOL	TRUE	Abwickler			
		FALSE	Aufwickler			
xWebBreak	BOOL	TRUE	Ein Bahnriss liegt vor.	•	•	•
xHoldDiamActive	BOOL	TRUE	Der aktuelle Durchmesser wird gehalten.	•	•	•
xDiamMax	BOOL	TRUE	Der maximale Durchmesser wurde erreicht.	•	•	•
xDiamMin	BOOL	TRUE	Der minimale Durchmesser wurde erreicht.	•	•	•
lrSetDiamOut	LREAL	l	r berechneter Durchmesser it: mm	•	•	•
IrSetDiamScaledOut	LREAL	• Einhe	r berechneter skalierter Durchmesser vit: x 100 % 00 % = Parameter IrMaxDiam	•	•	•

Bezeichner Datentyp	Beschreibung	Verfügbar in Variante				
		Base	State	High		
IrMaterialCounter LREAL	Anzeige des Materiallängenzählerstandes auf dem Wickler Je nach Festlegung der Wickelrichtung (Aufwickeln/Abwickeln) (37) wird der Materiallängenzähler hoch- oder runtergezählt. • Einheit: mm	•	•	•		
IrSetLineVelScaledOut LREAL	Aktuelle skalierte Liniengeschwindigkeit • Einheit: x 100 % • 1 = 100 % = Parameter IrLineVelRef	•	•	•		
IrActTotalTrqScaled LREAL	Aktuelles skaliertes Drehmoment der Wicklerwelle • Bezugsgröße: Nenn-/Bezugsdrehmoment des Motors. • Einheit: x 100 % (1 = 100 %)	•	•	•		
lrWndSpdRef LREAL	Referenz der Wicklerdrehzahl bei minimalem Durchmesser und maximaler Liniengeschwindigkeit. • Einheit: rps	•	•	•		
xWndSpdLimit BOOL	TRUE Die Wicklerdrehzahl hat die Drehzahlbegrenzung erreicht.	•	•	•		
IrSetMInertiaOut LREAL	Aktuelles Massenträgheitsmoment an der Wicklerwelle • Einheit: kgcm²	•	•	•		
IrSetTensScaledOut LREAL	Aktuelle skalierte Zugkraft • Einheit: x 100 % • 1 = 100 % = Parameter IrTensRef	•	•	•		
IrSetTensTrqScaledOut LREAL	Resultierender Drehmomentanteil aus der Zugkraft skaliert auf das Nenndrehmoment des Motors • Einheit: Nm	•	•	•		
IrSetFricTrqScaledOut LREAL	Resultierender Drehmomentanteil aus der Reibungskompensation skaliert auf das Nenndrehmoment des Motors • Einheit: Nm	•	•	•		
IrSetAccTrqScaledOut LREAL	Resultierender Drehmomentanteil aus der Beschleunigungskompensation skaliert auf das Nenndrehmoment des Motors • Einheit: Nm	•	•	•		
lrActTensScaled LREAL	Aktuelle skalierte Zugkraft • Einheit: x 100 % • 1 = 100 % = Parameter IrTensRef		•	•		
IrSetTensCtrlScaledOut LREAL	Aktuelle skalierte Stellgröße der Zugkraftregelung • Einheit: x 100 % • 1 = 100 % = Parameter IrTensRef		•	•		
IrldentMInertia LREAL	Identifiziertes Massenträgheitsmoment an der Wicklerwelle • Einheit: kgcm²			•		
IrSetSpdCtrlGainAdaptOut LREAL	Adaption der Drehzahlreglerverstärkung • Einheit: x 100 % (1 = 100 %)			•		
IrLimitLineVel LREAL	Die maximal erlaubte Liniengeschwindigkeit wird aus dem berechnetem Durchmesser und dem Parameter scPar. Ir MaxWndSpd bestimmt. • Einheit [mm/s]			•		

3

Funktionsbaustein L_TT1P_WinderTensionCtrl[Base/State/High]

3.3.4 Parameter

3.3

L_TT1P_scPar_WinderTensionCtrl [Base/State/High]

Die Struktur **L_TT1P_scPar_WinderTensionCtrl[Base/State/High]** enthält die Parameter des Technologiemoduls.

Bezeichner	Datentyp	Beschreibung	Verfügbar in Variante			
			Base	State	High	
IrStopDec	LREAL	Verzögerung für die Stopp-Funktion und bei Auslösung der Hardware-Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: revs/s • Initialwert: 10000	•	•	•	
IrStopJerk	LREAL	Ruck für die Stopp-Funktion und bei Auslösung der Hardware- Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: revs/s ³ • Initialwert: 100000	•	•	•	
IrHaltDec	LREAL	Verzögerung für die Halt-Funktion Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: revs/s² • Initialwert: 3600 • Nur positive Werte sind zulässig.	•	•	•	
lrJerk	LREAL	Ruck zum Ausgleich bei einer Haltfunktion • Einheit: revs/s³ • Initialwert: 100000	•	•	•	
IrLineJerk	LREAL	Ruck für das Handfahren und zum Ausgleich bei einer Trimm- oder Kupplungsfunktion • Einheit: mm/s ³ • Initialwert: 10000	•	•	•	
IrJogLineAcc	LREAL	Beschleunigung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: mm/s ² • Initialwert: 100	•	•	•	
IrJogLineDec	LREAL	Verzögerung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: mm/s ² • Initialwert: 100	•	•	•	
IrJogLineVel	LREAL	Maximale Geschwindigkeit, mit der das Handfahren durchgeführt werden soll. • Einheit: mm/s • Initialwert: 10	•	•	•	
IrTrimLineAcc	LREAL	Beschleunigung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zur Liniengeschwindigkeit beschleunigt werden soll. Die auf den Antrieb wirkende Beschleunigung ist die Summe aus der Linien- und Trimmbeschleunigung. • Einheit: mm/s ² • Initialwert: 100	•	•	•	

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante				
		Base	State	High			
IrTrimLineDec LREAL	Verzögerung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zur Liniengeschwindigkeit verzögert werden soll. Die auf den Antrieb wirkende Verzögerung ist die Summe aus der Linien- und Trimmbeschleunigung. • Einheit: mm/s ² • Initialwert: 100	•	•	•			
IrTrimLineVel LREAL	Geschwindigkeit für die Trimmung Vorgabe, mit welcher Geschwindigkeit getrimmt werden soll. • Einheit: mm/s • Initialwert: 10	•	•	•			
lrSyncLineAcc LREAL	Beschleunigung zur Synchronisierung auf die Liniengeschwindigkeit • Einheit: mm/s ² • Initialwert: 100	•	•	•			
lrSyncLineDec LREAL	Verzögerung zur Synchronisierung auf die Liniengeschwindigkeit • Einheit: mm/s ² • Initialwert: 100	•	•	•			
lrWebBreakWindow LREAL	Bahnrissfenster Der aktuelle Durchmesser wird mit dem vergangenen Durchmesser über das Bahnrissfester vergleichen. • Einheit: x 100 % (1.0 = 100 %) • Initialwert: 0.1 (10 %)	•	•	•			
lrMaxDiam LREAL	Maximaler Durchmesser • Einheit: mm • Initialwert: 180	•	•	•			
lrMinDiam LREAL	Minimale Durchmesser • Einheit: mm • Initialwert: 50	•	•	•			
rFiltTimeDiam REAL	PT1-Filterzeit für den aktuellen Durchmesser (IrSetDiamOut) • Einheit: s • Initialwert: 0.05	•	•	•			
lrDiamCalcRegularDist LREAL	Reguläre Berechnungsdistanz für Durchmesser • Einheit: rev • Initialwert: 1	•	•	•			
IrDiamCalcReducedDist LREAL	Verkürzte Berechnungsdistanz für Durchmesser • Einheit: rev • Initialwert: 0.1	•	•	•			
alrAdaptDiamX ARRAY [19] OF LREAL	Stützpunkte der Kurvenfunktion für das Laden des Durchmessers • Werte, die am analogen Eingang IrSetDiam anliegen können. • Einheit: mm • Initialwerte: 0, 100, 200, 300, 400, 500, 600, 700, 800	•	•	•			
alrAdaptDiamY ARRAY [19] OF LREAL	Stützpunkte der Kurvenfunktion für das Laden des Durchmessers • Funktionswerte für den Durchmesser • Einheit: mm • Initialwerte: 0, 100, 200, 300, 400, 500, 600, 700, 800	•	•	•			

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante				
		Base	State	High			
IrTensCurveCtrlScaled LREAL	Steigung der Kennlinie für die Zugkraftsteuerung • Einheit: x 100 % (1 = 100 %) • Initialwert: 0 • Mit dem Wert '1' ergibt sich ein konstanter Zugkraftverlauf und damit ein für den Durchmesser proportional ansteigender Sollwert.	•	•	•			
IrTensCurveStartDiamScaled LREAL	Anfangspunkt der Kennlinie für die Zugkraftsteuerung • Einheit: x 100 % • 1 = 100 % = Parameter IrMaxDiam • Initialwert: 0 (0 %)	•	•	•			
IrLineVelRef LREAL	Maximale Liniengeschwindigkeit • Einheit: mm/s • Initialwert: 1000	•	•	•			
IrMinLineVel LREAL	Minimale Liniengeschwindigkeit Bis zu dieser Geschwindigkeit wird der Durchmesser gehalten. • Einheit: mm/s • Initialwert: 1	•	•	•			
rFiltTimeMaterialCounter REAL	Filterzeitkonstate für den Materiallängenzähler (Ausgang IrMaterialCounter) • Einheit: s • Initialwert: 0 (Filter ist deaktiviert.)	•	•	•			
IrSetMaterialPos LREAL	Position des Materiallängenzählers Mit einerFALSE/TRUE-Flanke am Eingang xSetMaterialCounter wird der Materiallängenzähler (Ausgang IrMaterialCounter) auf den Wert in IrSetMaterialPos gesetzt. • Einheit: mm • Initialwert: 0	•	•	•			
IrLineVelOffsetScaled LREAL	Liniengeschwindigkeits-Offset für die Drehzahlbegrenzung • Einheit: x 100 % (1 = 100 % = Parameter IrLineVelRef) • Initialwert: 0.1	•	•	•			
IrTensRef LREAL	Maximal erlaubte Zugkraft • Einheit: N • Initialwert: 2	•	•	•			
IrTensRamp LREAL	Beschleunigungsrampe für den Zugkraftsollwert • Einheit: N/s • Initialwert: 1	•	•	•			
rFiltTimeWndSpd REAL	PT1-Filterzeit für die Drehzahl der Wicklerwelle • Einheit: s • Initialwert: 0.01	•	•	•			
rFiltTimeAccSpd REAL	PT1-Filterzeit für die Liniengeschwindigkeit, die zur Drehzahl über den Durchmesser berechnet wird, zur Beschleunigungskompensation • Einheit: s • Initialwert: 0.005	•	•	•			
lrAccCmpsDeadBandTrq Scaled LREAL	Nacheilbereich (Dead-band) für das aktuelle Beschleunigungsmoment • Einheit: Nm • Initialwert: 0.1	•	•	•			
lrAccCmpsGainAcc LREAL	Verstärkungsfaktor für das Beschleunigungsmoment in positive Richtung • Einheit: x 100 % (1.00 = 100 %) • Initialwert: 1.05 (105 %)	•	•	•			

Bezeichner Datenty	Beschreibung		Verfügbar in Variante			
		Base	State	High		
IrAccCmpsGainDec LREA	Verstärkungsfaktor für das Beschleunigungsmoment in negative Richtung • Einheit: x 100 % (1.00 = 100 %) • Initialwert: 0.95 (95 %)	•	•	•		
IrConstMInertia LREA	Konstantes Massenträgheitsmoment an der Wicklerwelle • Einheit: kgcm² • Initialwert: 9	•	•	•		
IrMaxMInertia LREA	Maximal zulässiges Massenträgheitsmoment an der Wicklerwelle • Einheit: kgcm² • Initialwert: 50	•	•	•		
IrFricCurveStartTrq LREA	Anfangsreibung für die lineare Reibungskompensation, wenn die Wicklerwelle steht. • Einheit: Nm • Initialwert: 0	•	•	•		
IrFricCurveEndTrq LREA	Endreibung für die lineare Reibungskompensation, wenn die Wicklerwelle steht. • Einheit: Nm • Initialwert: 0	•	•	•		
rFiltTimeFricSetSpd REA	PT1-Filterzeit für die Drehzahl der Wicklerwelle zur Reibungskompensation • Einheit: s • Initialwert: 0.01	•	•	•		
dwSelectTensCurve DWOR	Auswahl der Kennlinie für die Zugkraftsteuerung Initialwert: 0		•	•		
	0 Linearer Zugkraftverlauf					
	1 Linearer Drehmomentverlauf					
	2 Zugkraftverlauf nach vorgegebener Kennlinie					
alrTensCurve ARRAY [165] OF LREA	Kennlinie für die Zugkraftsteuerung bestehend aus 65 Werten.		•	•		
IrTensCtrlGain LREA	Reglerverstärkung • Initialwert: 0		•	•		
IrTensCtrlResetTime LREA	Reglernachstellzeit • Einheit: s • Initialwert: 0 (Nachstellzeit deaktiviert)		•	•		
IrldentFricMaxSpdScaled LREA	Drehzahl für die Reibungsidentifikation • Einheit: x 100 % (1 = 100 % = Max. Drehzahl am Ausgang IrWndSpdRef) • Initialwert: 0.9		•	•		
IrIdentFricAccDec LREA	Beschleunigung für die Reibungsidentifikation • Einheit: revs/s² • Initialwert: 1		•	•		
rFiltTimeIdentFricSpd REA	PT1-Filterzeit für die Drehzahl der Wicklerwelle zur Reibungsidentifikation • Einheit: s • Initialwert: 0.0		•	•		
rFiltTimeIdentFricTrq REA	PT1-Filterzeit für das Reibungsmoment der Wicklerwelle zur Reibungsidentifikation • Einheit: s • Initialwert: 0.05		•	•		

3

3

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante		
			State	High	
dwSelectFricCurve DWORD	Bei Reibungsidentifikation (Eingang xFricCmps = TRUE): Auswahl des Speicherbereichs, in dem die identifizierten Reibungswerte gespeichert werden. Maximal 4 Kennlinien können gespeichert werden.		•	•	
	1 4 Speicherbereich 1 4				
	Bei Reibungskompensation (Eingang xExecuteIdentFric = FALSE%TRUE): Auswahl der Kennlinie für die Reibungskompensation				
	0 Lineare Reibungskennlinie (einstellbar über Parameter IrFricCurveStartTrq)				
	1 4 Identifizierte Reibungskennlinie (Speicherbereich 1 4)				
rFiltTimeActTensIn REAL	PT1-Filterzeit für die aktuelle Zugkraft (Eingang IrActTensIn) • Einheit: s • Initialwert: 0.005		•	•	
IrActTensInGain LREAL	Verstärkungsfaktor für die aktuelle Zugkraft (Eingang IrActTensIn) • Initialwert: 1		•	•	
IrActTensInOffset LREAL	Offset für die aktuelle Zugkraft (Eingang IrActTensIn) • Initialwert: 0		•	•	
rFiltTimeIdentMInertiaSpd REAL	PT1-Filterzeit für die Drehzahl der Wicklerwelle während der Identifikation des Massenträgheitsmoments • Einheit: s • Initialwert: 0.01			•	
rFiltTimeIdentMInertiaTrq REAL	PT1-Filterzeit für das Drehmoment der Wicklerwelle während der Identifikation des Massenträgheitsmoments • Einheit: s • Initialwert: 0.005			•	
IrldentMInertiaMaxSpd Scaled LREAL	Maximale Drehzahl der Wicklerwelle während der Massenträgheitsidentifikation • Einheit: x 100 % (1.0 = 100 % = IrWndSpdRef) • Initialwert: 0.2 (20 %)			•	
IrldentMInertiaMaxTrq Scaled LREAL	Maximales Drehmoment der Wicklerwelle während der Massenträgheitsidentifikation • Einheit: x 100 % (1.0 = 100 %) • Initialwert: 0.2 (20 %)			•	
alrSpdCtrlGainAdaptX ARRAY [19] OF LREAL	Kennlinienfunktion für die Drehzahlregelungsverstärkung Die X-Achse entspricht dem normierten Massenträgheitsmoment. • Einheit: x 100% (1 = 100% = Parameter IrMaxMInertia) • Initialwerte: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]			•	
alrSpdCtrlGainAdaptY ARRAY [19] OF LREAL	Kennlinienfunktion für die Drehzahlregelungsverstärkung Die Y-Achse entspricht dem Verstärkungsfaktor des Drehzahlreglers. • Einheit: x 100% (1 = 100%) • Initialwerte: • [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 0.98, 0.95, 0.95] • Untere Begrenzung: 0.5 = 50 % • Obere Begrenzung: 1.0 = 100 % Lineare Erhöhung der Verstärkung bis 100 % des Massenträgheitsmoments			•	
lrReducedGainWindow LREAL	Bereich der Regelabweichung mit reduzierter Verstärkung/ Empfindlichkeit • Initialwert: 0.0			•	

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante		
		Base	State	High	
lrReducedGain LREAL	Verstärkung der Regelabweichung im Bereich der reduzierten Empfindlichkeit • Initialwert: 0.0			•	
IrTensPosCtrlLimPos LREAL	Begrenzung der Zugkraftregler-Stellgröße (Ausgang des Reglers) in positive Richtung • Einheit: [N] • Initialwert: 2147483648 (0.5 x 2 ³²)		•	•	
IrTensPosCtrlLimNeg LREAL	Begrenzung der Zugkraftregler-Stellgröße (Ausgang des Reglers) in negative Richtung • Einheit: [N] • Initialwert: -2147483648 (-0.5 x 2 ³²)		•	•	
eAdaptSpdCtrlGainMode ENUM	Modusauswahl zur Adaption der Drehzahlreglerverstärkung. • Initialwert: 2			•	
	0 DiamToSquare; VP = f(d ²)				
	1 Diam; VP = f(d)				
	2 Inertia; VP = f(J)				
IrAdaptSpdCtrlLowLimit LREAL	Untere Begrenzung der Drehzahlreglerverstärkung im Antrieb. Der Adaptionswert IrSetSpdCtrlGainAdaptOut darf nicht kleiner sein als der Wert scPar. IrAdaptSpdCtrlLowLimit. • Wertebereich: 0 bis 1 • Initialwert: 0			•	

3.4 State machine

3.4 State machine

- [3-2] State machine des Technologiemoduls
 - (*1 Im Zustand "Ready" muss xRegulatorOn auf TRUE gesetzt werden.
 - (*2 Im Zustand "ERROR" muss xResetError zum Quittieren und Zurücksetzen der Fehler auf TRUE gesetzt werden.

3.4 State machine

Zustände des Ausgangs eTMState (L_TT1P_States)

Nr.	L_TT1P_States	Beschreibung
1	INIT	Initialisierung des Technologiemoduls aktiv.
2	READY	Technologiemodul betriebsbereit.
3	HOMING	Referenzierung aktiv.
10	JOGGING	Handfahren aktiv.
11	JOGPOS	Handfahren in positive Richtung aktiv.
12	JOGNEG	Handfahren in negative Richtung aktiv.
70	SYNCLINEVEL	Synchronisation der Wicklerachse auf Linie aktiv.
80	IDENTMINERTIA	Massenträgheitsidentifikation aktiv.
81	IDENTDIAMETER	Durchmesseridentifikation aktiv.
90	IDENTFRICTION	Reibungsidentifikation aktiv.
100	DANCERCTRL	Tänzerlageregelung aktiv.
110	TENSIONCTRL	Zugkraftsteuerung/Zugkraftregelung aktiv.
121	SELECTMODECSV	Die Betriebsart wird auf CSV eingestellt.
122	SELECTMODECST	Die Betriebsart wird auf CST eingestellt.
123	SELECTMODECSP	Die Betriebsart wird auf CSP eingestellt.
996	STOP	Stop/Halt aktiv.
998	SERVICE	Das Technologiemodul befindet sich im Servicemodus. Der interne Funktionsbaustein L_MC1P_AxisBasicControl wird über die Eingangsstruktur scCtrlABC gesteuert. Der Status des Funktionsbausteins ist über die Ausgangsstruktur scStatusABC einsehbar.
999	ERROR	Fehlerzustand
1000	SYSTEMFAULT	Systemfehler

3.5 Signalflusspläne

3.5 Signalflusspläne

In den Abbildungen [3-3] und [3-5] ist der Haupt-Signalfluss der umgesetzten Funktionen dargestellt.

Der Signalfluss der Zusatzfunktionen, wie z. B. "Handfahren", sind hier nicht dargestellt.

[3-3] Signalfluss zur Berechnung des Durchmessers

[3-4] Signalfluss zu Drehzahlbegrenzungen im Wickelprozess

3.5 Signalflusspläne

[3-5] Signalfluss des Technologiemoduls

3.5 Signalflusspläne

3.5.1 Struktur des Signalflusses

L_TT1P_scSF_WinderTensionCtrl [Base/State/High]

Die Inhalte der Struktur **L_TT1P_scSF_WinderTensionCtrl[Base/State/High]** sind nur lesbar und bieten eine praktische Diagnosemöglichkeit innerhalb des Signalflusses (<u>Signalflusspläne</u> (<u>LLL 31</u>)).

Bezeichner Datentyp		Beschreibung		Verfügbar in Variante		
				Base	State	High
IP01_lrSetLineVel	LREAL		ktuelle Liniengeschwindigkeit • Einheit: mm/s		•	•
IP02_IrSetDiam	LREAL	Der Durc xLoadDi	eines (Start-)Durchmessers :hmesser wird zyklisch geladen wenn der Eingang am = TRUE gesetzt ist. eit: mm	•	•	•
IP03_xLoadDiam	BOOL	TRUE	Den (Start-)Durchmesser aus dem Eingang IrSetDiam laden. • Einheit: mm	•	•	•
IP04_IrLineVelOffset	Scaled LREAL	• Einhe • 1 = 10	schwindigkeits-Offset für die Drehzahlbegrenzung it: x 100 % 00 % = Parameter IrLineVelRef lwert: 0.1	•	•	•
IP05_IrLineVelRef	LREAL	• Einhe	le Liniengeschwindigkeit it: mm/s lwert: 1000	•	•	•
IP06_xMaterialFeedi		Material	führung von oben oder unten an den Wickelballen	•	•	•
	BOOL	TRUE	Materialführung von oben			
		FALSE	Materialführung von unten			
IP07_IrSetTens	LREAL		Zugkraftsollwert • Einheit: N		•	•
IP08_xWindingDirec	tion BOOL	Funktion des Wicklers bei positiver Liniengeschwindigkeit (Eingang IrSetLineVel > 0)		•	•	•
		TRUE	Abwickler			
		FALSE	Aufwickler			
IP09_lrActTensIn	LREAL	Aktuelle • Einhe	r Zugkraftistwert it: N		•	•
MP01_IrTensCurveO	out LREAL	Die mit o	der Zugkraftcharakteristik bewertete Zugkraft. it: N	•	•	•
MP02_IrSetTens	LREAL	Zugkraft • Einhe	sollwert it: N	•	•	•
MP03_IrSetTensTrq	LREAL	Resultie	render Drehmomentsollwert aus der Zugkraft it: Nm	•	•	•
MP04_IrSetAccComp	etAccCompTrq Resultierender Drehmomentsollwert aus der LREAL Beschleunigungskompensation des Wickelantriebs • Einheit: Nm		•	•	•	
MP05_IrSetFricComp	pTrq LREAL	Reibung	Resultierender Drehmomentsollwert aus der Reibungsskompensation des Wickelantriebs • Einheit: Nm		•	•
MP06_IrSetTrqPoint	LREAL	Drehmo	Resultierender Drehmomentsollwert aus der Drehmomentvorsteuerung • Einheit: Nm		•	•
MP07_IrSetUpperSp	eedLimit LREAL	Wickela	Grenzwert für die Drehzahlbegrenzung des ntriebs eit: revs/s	•	•	•

3.5 Signalflusspläne

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante				
		Base	State	High			
MP08_IrSetLowerSpeedLimit LREAL	Unterer Grenzwert für die Drehzahlbegrenzung des Wickelantriebs • Einheit: revs/s	•	•	•			
MP09_IrAxisUpperSpeed Limit LREAL	Oberer Drehzahlgrenzwert des Wickelantriebs • Einheit: revs/s	•	•	•			
MP10_IrAxisLowerSpeed Limit LREAL	Unterer Drehzahlgrenzwert des Wickelantriebs • Einheit: revs/s	•	•	•			
MP11_lrAxisVel	Geschwindigkeit des Wickelantriebs • Einheit: revs/s	•	•	•			
MP12_IrAxisTroque LREAL	Drehmoment des Wickelantriebs • Einheit: Nm	•	•	•			
MP13_rFiltActTensIn REAL	Gefilterte aktuelle Zugkraft aus dem Eingang IrActTensIn • Einheit: N		•	•			
MP14_IrTensCtrlOut LREAL	Sollzugkraft für den Wickelantrieb • Einheit: N		•	•			
MP15_IrTensCtrlOutGain LREAL	Stellgröße des proportionalen Anteils (P-Anteil) des Zugkraftreglers • Einheit: N		•	•			
MP16_IrTensCtrlOutReset Time LREAL	Stellgröße des integrierenden Anteils (I-Anteil) des Zugkraftreglers • Einheit: N		•	•			
MP17_IrTensCtrlOutRate Time LREAL	Stellgröße des differenzierenden Anteils (D-Anteil) des Zugkraftreglers • Einheit: N		•	•			
OP01_IrSetDiamOut LREAL	Aktueller berechneter Durchmesser • Einheit: mm	•	•	•			

3.5 Signalflusspläne

3.5.2 Struktur der Angriffspunkte

L_TT1P_scAP_WinderTensionCtrl [Base/State/High]

Über die Angriffspunkte (AP) können Signale beeinflusst werden. Im Initialzustand haben die Angriffspunkte keine Wirkung.

Jeder Angriffspunkt wirkt als ein alternativer Zweig und wird über eine ODER-Verknüpfung oder einen Schalter aktiviert.

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante			
			Base	State	High	
AP01_xSetAccCompTrq	Freigabe des Angriffspunktes AP01_IrSetAccCompTrq		•	•	•	
BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP01_IrSetAccCompTrq LREAL		render Drehmomentsollwert aus der unigungskompensation des Wickelantriebs eit: Nm				
AP02_xSetTrqPoint BOOL	Freigabe	des Angriffspunktes AP02_lrSetTrqPoint	•		•	
	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP02_IrSetTrqPoint LREAL		iver Drehmomentsollwert für die mentvorsteuerung. eit: Nm				
AP03_xSetUpperSpeedLimit BOOL	Freigabe des Angriffspunktes AP03_IrSetUpperSpeedLimit		•	•	•	
	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP03_IrSetUpperSpeedLimit LREAL	Wickela	Grenzwert für die Drehzahlbegrenzung des ntriebs eit: revs/s				
AP04_xSetLowerSpeedLimit BOOL	Freigabe	des Angriffspunktes AP04_IrSetLowerSpeedLimit	•	•	•	
	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP04_IrSetLowerSpeedLimit LREAL	Unterer Grenzwert für die Drehzahlbegrenzung des Wickelantriebs • Einheit: revs/s					
AP05_xSetTensionCtrlOut	Freigabe des Angriffspunktes AP05_IrSetTensionCtrlOutGain			•	•	
Gain BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP05_IrSetTensionCtrlOut Gain LREAL	Zyklisches Laden der Stellgröße des proportionalen Anteils (P-Anteil) des Zugkraftreglers • Einheit: N					
AP06_xSetTensionCtrlOut ResetTime	Freigabe des Angriffspunktes AP06_IrSetTensionCtrlOutResetTime			•	•	
BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP06_IrSetTensionCtrlOut ResetTime LREAL	Zyklisches Laden der Stellgröße des integrierenden Anteils (I- Anteil) des Zugkraftreglers • Einheit: N					

3.5 Signalflusspläne

Bezeichner Datenty		Beschreibung		Verfügbar in Variante		
				State	High	
AP07: xSetTensionCtrlOutRate	Freigabe des Angriffspunktes AP07: lrSetTensionCtrlOutRateTime			•	•	
Time BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP07: IrSetTensionCtrlOutRate Time LREA	(Ď-Ante • Einh	Zyklisches Laden der Stellgröße des differenzierenden Anteils (D-Anteil) des Zugkraftreglers • Einheit: N				
AP08: xSetFricCompReelSpeed BOOL	Freigab	e des Angriffspunktes AP08: lrSetFricCompReelSpeed		•	•	
	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP08: IrSetFricCompReelSpeed LREA	• Einho Anhand entspre	Vorgabe der Drehzahl für die Reibungskompensation • Einheit: revs/s Anhand der Drehzahl AP08: IrSetFricCompReelSpeed wird das entsprechende Drehmoment für die Reibungskompensation in der Einheit [Nm] eingestellt.				
AP09: xSetVelOffset BOOL	Freigabe des Angriffspunktes AP09: IrSetVelOffset		•	•	•	
	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss.				
AP09: IrSetVelOffset LREA	Wicklers (Getrieb • Einho Der Offs	e Vorgabe des Offset für die Geschwindigkeit der achse bezogen auf die Wickelwelle eausgangsseite) eit: units/s set-Wert wird ohne Rampengenerator sofort und artig eingestellt!				
AP10: xSetTrqOffset BOOL	Freigabe des Angriffspunktes AP10: lrSetTrqOffset		•	•	•	
	TRUE	Der Offset <i>IrSetTrqOffset</i> wird an der Zugriffstelle im Signalfluss addiert.				
AP10: IrSetTrqOffset LREA	Wicklers (Getrieb • Einho Der Offs	Zyklische Vorgabe des Offset für das Drehmoment der Wicklerachse bezogen auf die Wickelwelle (Getriebeausgangsseite) • Einheit: Nm Der Offset-Wert wird ohne Rampengenerator sofort und sprungartig eingestellt!				

3.6 Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)

3.6 Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)

Damit die Vorsteuergrößen, die Störgrößenkompensation und auch das Korrektursignal des Lagereglers immer in die erforderliche Richtung wirken, ist eine einmalige Festlegung der "normalen Wickelrichtung" erforderlich.

Über den Eingang xWindingDirection können Sie einstellen, ob der Wickelantrieb bezogen auf die normale Materialflussrichtung mit positiver Liniengeschwindigkeit als Abwickler oder als Aufwickler arbeiten soll.

- xWindingDirection = TRUE: Abwickler (Das Material wird abgewickelt.)
- xWindingDirection = FALSE: Aufwickler (Das Material wird aufgewickelt.)

[3-6] Wirkrichtung von Drehzahl und Drehmoment in Abhängigkeit des Materialflusses

3.7 Automatische Erkennung der Wickelrichtung

Nach <u>Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)</u> (237) ist es möglich, die Wickelantriebe mit einer negativen Liniengeschwindigkeit auch in entgegengesetzter Richtung zu betreiben. Ein Eingriff in den Signalfluss ist bei Umkehrung der Materialflussrichtung nicht erforderlich. Die aktuelle Wickelrichtung wird am Ausgang *xUnwind* ausgeben.

Sonderfall:

Wenn die Liniengeschwindigkeit steht, kann die Wickelrichtung nicht erkannt werden. Für diesen Fall setzen Sie den Eingang xWindingDirectionStandstill = TRUE für einen Abwickelprozess. Soll das Material bei stehender Liniengeschwindigkeit aufgewickelt werden, setzen Sie den Eingang xWindingDirectionStandstill = FALSE.

Festlegung der Materialzuführung an den Wickler

3.8 Festlegung der Materialzuführung an den Wickler

Über den Eingang xMaterialFeeding legen Sie fest, ob das Material von oben oder von unten an den Wickler geführt wird.

Die grundsätzliche Anpassung der Wicklerwellendrehrichtung an den Materialfluss erfolgt über die Motoranbaurichtung.

Die Drehrichtung der Achse stellen Sie im »PLC Designer« unter der Registerkarte **Einstellungen** ein:

.9 Leitwert-Quelle für die Durchmesserberechnung

3.9 Leitwert-Quelle für die Durchmesserberechnung

Das Technologiemodul arbeitet immer mit der Liniengeschwindigkeit am Eingange IrSetLineVel.

3.10 Drehzahlvorsteuerung

Die Drehzahlvorsteuerung bildet die Drehzahlgrenzen für den zugkraftgesteuerten/-geregelten Betrieb sowie den Sollwert für den Einrichtbetrieb "Liniengeschwindigkeit folgen".

Die Solldrehzahl für die Drehzahlvorsteuerung wird durch Division der Liniengeschwindigkeit am Eingang IrSetLineVel mit dem aktuellen Durchmesser und der Zahl π berechnet:

Berechnung der Solldrehzahl für die Drehzahlvorsteuerung		
$nSet = \frac{VLine}{dact \cdot \pi}$		
Formelzeichen	Beschreibung	Maßeinheit
nSet	Solldrehzahl für die Drehzahlvorsteuerung	revs/s
VLine	Liniengeschwindigkeit am Eingang IrSetLineVel	mm/s
dact	Aktueller Durchmesser	mm

Damit die Wicklersolldrehzahl mit der Motorsolldrehzahl und dem Liniengeschwindigkeitssignal übereinstimmen, ist die passende Einstellung für die Motorbezugsdrehzahl zwingend erforderlich. Deshalb erfolgt die Berechnung und Parametrierung automatisch und wird nicht dem Anwender überlassen.

Die normierte Wicklersolldrehzahl am Ausgang *IrWndSpdRef* bezieht sich auf die Motordrehzahl, die bei minimalem Durchmesser (dmin) erforderlich ist, um die Bezugsliniengeschwindigkeit am Umfang des Wickelballens zu erreichen.

Drehzahlvorsteuerung prüfen

- Laden Sie den Durchmesser-Rechner mit dem minimalen Durchmesser (d_{min}): Eingang IrSetDiam = 0 (oder ≤ d_{min})
 Eingang xLoadDiam = TRUE
- Die Umfangsgeschwindigkeit des Wicklers muss nun der Hälfte der Referenz IrLineVelRef entsprechen. Das aktuelle Liniengeschwindigkeitssignal wird im Ausgang des Technologiemoduls IrSetLineVelScaledOut = 0.5 [x 100 %] = 50 % angezeigt.

Bei falscher Geschwindigkeit oder Drehrichtung prüfen Sie die oben aufgeführte Festlegung der Systemdaten.

3.11 Durchmesserberechnung

3.11 Durchmesserberechnung

Der aktuelle Durchmesser wird durch Division der Liniengeschwindigkeit mit der Wicklerdrehzahl und der Zahl π berechnet:

Berechnung des aktuellen Durchmessers			
$d_{act} = \frac{V_{Line}}{n_{Winder} \cdot \pi}$			
Formelzeichen	Beschreibung	Maßeinheit	
dact	Aktueller Durchmesser	mm	
VLinie	Liniengeschwindigkeit	mm/s	
nWickler	Wicklerdrehzahl	revs/s	

Tatsächlich werden bei der Berechnung keine Momentanwerte für die Geschwindigkeit und Drehzahl verwendet sondern aufintegrierte Werte. Hierdurch erfolgt eine Mittelwertbildung. Die Anzahl der Umdrehungen, nach der eine Neuberechnung des Durchmessers erfolgt, wird über den Parameter IrDiamCalcRegularDist bestimmt. Der Initialwert dieses Parameters ist auf 1 Wicklerwellenumdrehung eingestellt.

Für schnelle Durchmesseränderungen von *IrDiamCalcRegularDist* kann durch das Setzen des Eingangs *xDiamCalcReduced* = TRUE auf den schnellen Berechnungmodus umgeschaltet werden. Die kleinere Berechnungsdistanz wird mit dem Parameter *IrDiamCalcReducedDist* eingestellt. Als Initialwert ist hier 1/10 Wicklerwellenumdrehung vorgegeben.

Diese kleinere Berechnungsdistanz wird auch automatisch durch Laden eines Startdurchmessers aktiviert. Dieser Zustand bleibt solange erhalten, bis ein neuer Durchmesserwert berechnet wurde. Diese Funktion wird benötigt, wenn der reale Durchmesser des Wickelballens von dem geladenen Durchmesser stark abweichen kann. Damit dreht die Wicklerwelle nur um eine kurze Distanz mit "falschem" Durchmesser. Nach der Durchmesserberechnung ist wieder ein passender Wert vorhanden.

Einzustellende Parameter

Die Parameter für die Durchmesserberechnung befinden sich in der Parameterstruktur <u>L TT1P scPar WinderTensionCtrl [Base/State/High]</u> (<u>Q</u> 23).

```
lrDiamCalcRegularDist : LREAL := 1;
lrDiamCalcReducedDist : LREAL := 0.1;
```

3.12 Durchmesser halten

3.12 Durchmesser halten

In einigen Betriebszuständen des Wicklers, in denen die Liniengeschwindigkeit nicht der Umfangsgeschwindigkeit des Wickelballens entspricht, kann der aktuelle Durchmesser nicht aus der Liniengeschwindigkeit und der Motordrehzahl berechnet werden. In diesem Fall muss die Berechnung neuer Werte unterbunden werden; der Durchmesserwert wird auf dem alten Wert gehalten.

Dies erfolgt automatisch bei folgenden Bedingungen:

- Liniengeschwindigkeit < Mininmale Liniengeschwindigkeit
 <p>(IrMinLineVel [mm/s] aus der Parameterstruktur <u>L_TT1P_scPar_WinderTensionCtrl [Base/State/High]</u> (<u>Q</u> 23));
- Wicklerdrehzahl < *IrMinLineVel* [mm/s] / (π x d [mm]);
- In den Zuständen STOP, ERROR, READY, JOGGING und SYNCLINEVEL.

Für das anwenderseitige Halten des Durchmessers setzen Sie den Eingang xHoldDiam = TRUE.

3.13 Durchmesser vorgeben / Signal vom Durchmessersensor

3.13 Durchmesser vorgeben / Signal vom Durchmessersensor

Zu Beginn eines Wickelvorgangs kann es erforderlich sein, einen Startdurchmesser vorzugeben oder das Signal eines Durchmessersensors zu verwenden.

Mit dem Eingang *IrSetDiam* können Sie einen Startdurchmesser festlegen, der mit *xLoadDiam* = TRUE mit höchster Priorität übernommen und zyklisch geladen wird.

Ebenso kann ein externer Durchmesserwert, z. B. von einem Ultraschallsensor, auf den Eingang IrSetDiam geschaltet werden. Dieser Analogwert kann über eine Kurvenfunktion Y = f(x) adaptiert werden. Die Kurvenfunktion wird mit neun Stützpunkten über die Parameter alrAdaptDiamX[1...9] und alrAdaptDiamY[1...9] eingestellt. Damit der Analogwert als Startdurchmesser verwendet wird, ist der adaptierte Kurvenverlauf mit alrAdaptDiamY = alrAdaptDiamX initialisiert. Das Sensorsignal kann auch permanent geladen werden.

Einzustellende Parameter

Die Parameter für die Kurvenfunktion befinden sich in der Parameterstruktur L TT1P scPar WinderTensionCtrl [Base/State/High] (23).

```
alrAdaptDiamX : ARRAY[1...9] OF LREAL := [0,100,200,300,400,500,600,700,800];
alrAdaptDiamY : ARRAY[1...9] OF LREAL := [0,100,200,300,400,500,600,700,800]
```


[3-7] Laden eines Durchmessers über eine Kurvenfunktion

3.14 Materiallängenzähler

3.14 Materiallängenzähler

Der Materiallängenzähler wird mit dem Eingang xEnable = TRUE aktiviert.

Die Materiallänge wird durch Integration die Liniengeschwindigkeit am Eingang *IrSetLineVel* berechnet und am Ausgang *IrMaterialCounter* (in Milimeter) angezeigt. Je nach <u>Festlegung der Wickelrichtung (Aufwickeln/Abwickeln)</u> (© 37) wird die Materiallänge hoch- oder runtergezählt.

Für das Analogsignal der Liniengeschwindigkeit kann der aktuelle Wert der Materiallänge mit einer PT1-Charakteristik gefiltert werden. Die Filterzeit wird mit dem Parameter rFiltTimeMaterialCounter eingestellt (die Voreinstellung ist '0 ms').

Der aktuelle Wert der Materiallänge wird in den persistenten Daten in der Struktur *PersistentVar* gespeichert.

Für die Initialisierung der Materiallänge kann über den Parameter *IrSetMaterialPos* eine Anfangsmateriallänge eingestellt werden. Mit einer FALSEATRUE-Flanke am Eingang xSetMaterialCounter wird die Anfangsmateriallänge mit höchster Priorität übernommen.

Einzustellende Parameter

Die Parameter für den Materiallängenzähler befinden sich in der Parameterstruktur L TT1P scPar WinderTensionCtrl [Base/State/High] (23).

```
rFiltTimeMaterialCounter : LREAL := 0;
lrSetMaterialPos : REAL := 0;
```

3.15 Quellen für die Materiallängenzählung

3.15 Quellen für die Materiallängenzählung

Die Materiallängenzählung kann aus einer von drei unterschiedlichen Quellen und nach zwei unterschiedlichen Verfahren erfolgen.

3.15.1 Quelle: Eingang "IrSetLineVel"

Voraussetzungen

- Es ist keine Referenzachse am Eingang MaterialCounterAxis angeschlossen.
- Paramter xLineVelDiamCalc = FALSE

Funktionsweise

In die Materiallängenzählung wird zusätzlich zur Position (Parameter *IrSetMaterialPos*) die Liniengeschwindigkeit am Eingang *IrSetLineVel* intergriert. Der resultirende Wert wird als Materiallänge am Ausgang *IrMaterialCounter* angezeigt und persistent gespeichert.

Mit einer FALSE TRUE-Flanke am Eingang xSetMaterialCounter wird die Materiallänge aus dem Parameter IrSetMaterialPos geladen. Dabei wird die Materiallänge am Ausgang IrMaterialCounter direkt auf den Wert von IrSetMaterialPos gesetz. Die weitere Zählung wird auf den am Ausgang gesetzten Wert der Materialllänge addiert.

Hinweis!

Bei einem verrauschten Signal wird die Materialzählung durch die Integration der Liniengeschwindigkeit verfälscht. Hierbei kann eine Drift des Materiallängenzählers beobachtet werden, auch wenn die Linie steht.

3.15.2 Quelle: Eingang "IrSetLineVelDiamCalc"

Voraussetzungen

- Es ist keine Referenzachse am Eingang MaterialCounterAxis angeschlossen.
- Paramter xLineVelDiamCalc = TRUE

Funktionsweise

In die Materiallängenzählung wird zusätzlich zur Position (Parameter IrSetMaterialPos) die Liniengeschwindigkeit für die <u>Durchmesserberechnung</u> (<u>—</u> 40) am Eingang IrSetLineVelDiamCalc intergriert. Der resultirende Wert wird als Materiallänge am Ausgang IrMaterialCounter angezeigt und persistent gespeichert.

Mit einer FALSE TRUE-Flanke am Eingang xSetMaterialCounter wird die Materiallänge aus dem Parameter IrSetMaterialPos geladen. Dabei wird die Materiallänge am Ausgang IrMaterialCounter direkt auf den Wert von IrSetMaterialPos gesetz. Die weitere Zählung wird auf den am Ausgang gesetzten Wert der Materialllänge addiert.

Hinweis!

Bei einem verrauschten Signal wird die Materialzählung durch die Integration der Liniengeschwindigkeit verfälscht. Hierbei kann eine Drift des Materiallängenzählers beobachtet werden, auch wenn die Linie steht.

3.15 Quellen für die Materiallängenzählung

3.15.3 Quelle: Eingang "MaterialCounterAxis" (Referenzachse)

Voraussetzungen

- Eine Referenzachse (Modulo-Achse) ist am Eingang MaterialCounterAxis angeschlossen.
- Als Basis wird die Ermittlung der verlustfreien Anzahl der Umdrehungen für die Materiallängenzählung verwendet. – Dieses Verfahren eingnet sich für verauschte Signale!

Funktionsweise

Über die Vorschubkonstante der Referenzachse (Modulo-Achse) wird die Materiallänge am Ausgang *IrMaterialCounter* angezeigt.

Die Anzahl der gezählten Umdrehungen kann über den Messpunkt MP20_liRevCounter ausgelesen werden. Der Bruchteil einer Umdrehung wird über den Messpunkt MP21_lrRevCounterResidual angezeigt. Die Werte dieser Messpunkte werden persistent gespeichert.

Mit einer FALSE TRUE-Flanke am Eingang xSetMaterialCounter wird die Materiallänge aus dem Parameter IrSetMaterialPos geladen. Dabei wird die Materiallänge über die Vorschubkonstante der Achse in die Anzahl der Umdrehungen umgerechnet und gespeichert.

Die Materiallänge aus dem Parameter IrSetMaterialPos wird am Ausgang IrMaterialCounter ausgegeben.

Hinweis!

Eine genaue Materiallängenzählung kann nur bei einem schlupffreien Messrad erfolgen. Ein schlupfbehaftetes Messrad auf dem Material führt zur Fehlern in der Materiallängenzählung.

3.16 Handfahren (Jogging)

3.16 Handfahren (Jogging)

Zum Handfahren des Wicklers wird die Handfahr-Geschwindigkeit IrJogLineVel verwendet.

Mit dem Eingang xJogLinePos = TRUE wird die Linie in positive Richtung und mit dem Eingang xJogLineNeg = TRUE in negative Richtung gefahren. Die Linie wird solange gefahren, wie der Eingang TRUE gesetzt bleibt. Der laufende Fahrbefehl kann nicht durch den anderen Jog-Befehl abgelöst werden.

Die parametrierbaren Sollwerte *IrJogLineVel, IrJogLineAcc* und *IrJogLineDec* für das Handfahren beziehen sich auf die Umfangsgeschwindigkeit bzw. Liniengeschwindigkeit und nicht auf die Motordrehzahl.

Einzustellende Parameter

Die Parameter für das Handfahren befinden sich in der Parameterstruktur LTT1P scPar WinderTensionCtrl [Base/State/High] (23).

```
lrLineJerk : LREAL := 10000; // Jerk [mm/s^3]
lrJogLineVel : LREAL := 100; // Velocity [mm/s]
lrJogLineAcc : LREAL := 100; // Acceleration [mm/s^2]
lrJogLineDec : LREAL := 10; // Deceleration [mm/s^2]
```

Die Parameterwerte können während des Betriebes verändert werden. Sie werden bei erneutem Setzen der Eingänge xJogLinePos = TRUE oder xJogLineNeg = TRUE übernommen.

3.17 Synchronisierung auf die Liniengeschwindigkeit

3.17 Synchronisierung auf die Liniengeschwindigkeit

Die Synchronisierung der Wicklerachse auf die Liniengeschwindigkeit wird mit dem Eingang xSyncLineVel = TRUE ausgeführt.

Die Parameter *IrSyncLineAcc* und *IrSyncLineDec* beziehen sich auf die Umfangsgeschwindigkeit bzw. Liniengeschwindigkeit und nicht auf die Motordrehzahl.

Einzustellende Parameter

Die Parameter für die Synchronisierung auf die Liniengeschwindigkeit befinden sich in der Parameterstruktur <u>L TT1P scPar WinderTensionCtrl [Base/State/High]</u> (<u>LL 23</u>).

```
lrLineJerk : LREAL := 10000; // Jerk [mm/s^3]
lrSyncLineAcc : LREAL := 100; // Acceleration [mm/s^2]
lrSyncLineDec : LREAL := 100; // Deceleration [mm/s^2]
```

3.18 Trimmung

3.18 Trimmung

Hinweis!

Die Trimmung kann nur verwendet werden, wenn die Wicklerachse auf die Liniengeschwindigkeit synchronisiert ist.

▶ Synchronisierung auf die Liniengeschwindigkeit (🕮 47)

Mit dem Eingang xTrimLinePos = TRUE wird die Linie in positive Richtung und mit dem Eingang xTrimLineNeg =TRUE in negative Richtung vertrimmt.

Für die Trimmung wird die Trimm-Geschwindigkeit *IrTrimLineVel* zur Liniengeschwindigkeit *IrSetLineVel* addiert. Bei der Trimmung kann der Gesamtsollwert maximal um den Wert der minimalen Liniengeschwindigkeit größer sein als der Trimm-Sollwert.

Die parametrierbaren Sollwerte *IrTrimLineVel, IrTrimLineAcc* und *IrTrimLineDec* für den positiven und negativen Trimm-Betrieb beziehen sich auf die Umfangsgeschwindigkeit bzw. Liniengeschwindigkeit und nicht auf die Motordrehzahl.

Einzustellende Parameter

Die Parameter für die Trimmung befinden sich in der Parameterstruktur <u>L TT1P scPar WinderTensionCtrl [Base/State/High]</u> (<u>Q</u> 23).

```
lrLineJerk : LREAL := 10000; // Jerk [mm/s^3]
lrTrimLineVel : LREAL := 100; // Velocity [mm/s]
lrTrimLineAcc : LREAL := 100; // Acceleration [mm/s^2]
lrTrimLineDec : LREAL := 10; // Deceleration [mm/s^2]
```

19 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante)

3.19 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante)

In Abhängigkeit von der Oberfläche und der Art des Wickelmaterials ist es bei vielen Aufwicklern erforderlich, dass die Zugkraft mit zunehmendem Durchmesser reduziert wird, damit der Wickelballen nicht verschoben wird. Man spricht hierbei von der Wickelcharakteristik oder Zugkraftcharakteristik.

Es ist üblich die Zugkraftbeeinflussung in der Wicklersteuerung vorzunehmen, um den adaptierten Sollwert dann, z.B. auf ein pneumatisches Stellglied, wieder zu geben.

Damit die materialabhängige Charakteristik erreicht wird, wird der eigentliche Zugkraftsollwert aus dem Eingang *IrSetTens* über eine lineare Kennlinienfunktion durchmesserabhängig bewertet.

Die Kennlinie ist gekennzeichnet durch einen Anfangsbereich mit konstanter Bewertung (100 %) und einem zweiten Bereich, in dem die Zugkraft dem Durchmesser angepasst wird.

Mit dem Parameter IrTensCurveStartDiamScaled wird festgelegt, bei welchem Durchmesser die Zugkraftabsenkung beginnen soll. Mit dem Parameter IrTensCurveCtrlScaled wird die Zugkraft beim maximalen Durchmesser bewertet.

[3-8] Kennlinie für einen linearen Zugkraftverlauf

Einzustellende Parameter

Die Parameter für die "Zugkraftsteuerung über Kennlinienfunktion" befinden sich in der Parameterstruktur <u>L_TT1P_scPar_WinderTensionCtrl [Base/State/High]</u> (<u>LL_23</u>).

3.19 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante)

Durchmesserbewertung / Umrechnung in Drehmomentsollwert

Der resultierende Zugkraftsollwert aus Kennlinienbewertung und Zugkraftsteuerung muss abschließend in ein Motor-Solldrehmoment zur Vorgabe über die Grundfunktion "Drehmomentfolger" umgerechnet werden.

Das Motor-Solldrehmoment resultiert aus der Addition des Gesamt-Zugkraftsollwertes mit den Korrekturgrößen aus der Reibungskompensation und der Beschleunigungskompensation.

- ▶ <u>Beschleunigungskompensation</u> (☐ 52)
- ▶ Identifikation und Kompensation der Reibung (☐ 59)

Berechnung des Motor-Solldrehmoments			
	$M_M = M + M_{friction} + M_{friction(n)} + M_a$		
mit			
$M = F \cdot \frac{d}{2}$			
Formelzeichen	Beschreibung	Maßeinheit	
Мм	Motor-Solldrehmoment	Nm	
M	Drehmoment am Wickelballen		
Mfriction	Statisches Reibungsmoment		
Mfriction(n)	Geschwindigkeitsabhängiges Reibungsmoment		
Ma	Beschleunigungsmoment		
F	Wirkende Kraft	N	
d	Durchmesser	mm	

3.19 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante)

Rampengenerator für den Zugkraftsollwert

Nach Aktivierung der Zugkraftsteuerung mit dem Eingang *xTensCtrl* = TRUE muss die Zugkraft zuerst den Sollwert aus dem Eingang *IrSetTens* erreichen. Damit die Anhebung der Zugkraft kontrolliert erfolgt, wird zuvor der Rampengenerator für den Zugkraftsollwert mit dem Wert 'Null' geladen. Die Rampe wird mit dem Parameter *IrTensRamp* in der Einheit [N/s] eingestellt. Die Standard-Einstellung der Rampe ist mit *IrTensRamp* = 1 vorgegeben. Erreicht der Rampengenerator den Sollwert, wird der Ausgang *xDone* = TRUE gesetzt.

Die Parameter für den Rampengenarator befinden sich in der Parameterstruktur L TT1P scPar WinderTensionCtrl [Base/State/High] (23).

```
lrTensRef : LREAL := 2;  // 100% of line tension [N]
lrTensRamp : LREAL := 1;  // Ramp of tension values [N/s]
```

3.20 Beschleunigungskompensation

3.20 Beschleunigungskompensation

Die Beschleunigung im Liniengeschwindigkeitssollwert stellt im Wickelprozess eine Störgröße dar. Das Drehmoment welches zur Beschleunigung aufgebracht werden muss, fehlt in der Zugkraft.

Das Beschleunigungsmoment muss also berechnet und als Zusatzdrehmoment vorgesteuert werden.

Berechnung des Beschleunigungsmoments		
$M_a = 2 \cdot \pi \cdot \left(\frac{\partial n}{\partial t}\right) \cdot (J_{const} + J_{var})$		
	mit	
$J_{var} = (J_{max} - J_{const}) \cdot \left(\frac{d_{act}^4 - d_{min}^4}{d_{max}^4 - d_{min}^4}\right) \cdot B$		
Formelzeichen	Beschreibung	Maßeinheit
Ma	Beschleunigungsmoment	Nm
∂n	(Delta-)Drehzahl des Motors	revs/s
∂t	(Delta-)Zeit	S
Jconst	Konstantes Massenträgheitsmoment	kgm ²
Jvar	Variables (durchmesserabhängiges) Massenträgheitsmoment	
Jmax	Maximales Massenträgheitsmoment	
dact	Aktueller Durchmesser	mm
dmin	Minimaler Durchmesser (Hülsendurchmesser)	
dmax	Maximaler Durchmesser	
В	Materialbreite	mm

Die Änderung des Drehzahlwertes (neuer Wert - alter Wert) entspricht dabei der Beschleunigung des Wicklers. Die Wicklerdrehzahl wird aus der Liniengeschwindigkeit berechnet.

In der Praxis ist mit einem nicht ideal, stetig verlaufenden Liniengeschwindigkeitssignal zu rechnen. Über die Parameter IrAccCmpsGainAcc und IrAccCmpsGainDec kann die Auflösung des Signals, welches differenziert wird, eingestellt werden. Zudem kann das Signal voher über eine PT1-Funktionalität geglättet werden. Die PT1-Zeitkonstante wird über den Parameter rFiltTimeAccSpd eingestellt. Zur Rauschunterdrückung kann ein Nacheilbereich über das berechnete Beschleunigungsmoment verschaltet werden. Der Nacheilbereich wird über den Parameter IrAccCmpsDeadBandTrqScaled in der Einheit [x 100%] eingestellt.

Die Beschleunigungskompensation wird mit dem Eingang xAccCmp = TRUE freigegeben.

Zur Bildung einer Beschleunigung ist eine Differenzierung der Liniengeschwindigkeit erforderlich. Je nach Auflösung und Stabilität dieses Signals kann es erforderlich sein, die Empfindlichkeit der Differenzierung herabzusetzen. So führen Leitwertschwankungen nicht zu Sprüngen in der Beschleunigung. Unterschiedliche Materialbreiten oder Materialdichten können prozentual über den Eingang IrMInertiaAdapt berücksichtigt werden.

3.20 Beschleunigungskompensation

Massenträgheitsmomente vorgeben

Hinweis!

Die Vorgabe der Massenträgheit muss auf die Wicklerwelle und <u>nicht</u> auf die Motorwelle bezogen werden.

Die Trägheit (J) von Motorwelle auf die Wicklerwelle kann mit folgender Gleichung umgerechnet werden:

Berechnung der Trägheit (J) von Motorwelle auf die Wicklerwelle		
$Jwinder = i^2 \cdot JMotor$		
mit		
i = \frac{n Motor}{n Winder}		
Formelzeichen	Beschreibung	Maßeinheit
JWinder	Massenträgheitsmoment der Wicklerwelle	kgcm ²
JMotor	Massenträgheitsmoment der Motorwelle	kgcm ²
i	Getriebefaktor	
nMotor	Motordrehzahl	revs/s
nWinder	Wicklerdrehzahl	revs/s

Das Massenträgheitsmoment setzt sich aus einem konstanten und einem durchmesserabhängigen Anteil zusammen. Der konstante Anteil wird durch das Massenträgheitsmoment des Motors bestimmt (Codestelle C00273/1 bei Lenze-Motoren). Der variable Anteil wird aus dem Durchmesser sowie der maximalen und konstanten Massenträgheit im Technologiemodul ermittelt.

Die Einstellung des konstanten Massenträgheitsmoments erfolgt mit dem Parameter *IrConstMInertia*.

Die Einstellung des maximalen Massenträgheitsmoments (voller Wickelballen) erfolgt über den Parameter IrMaxMInertia.

Einzustellende Parameter

Die Parameter für die Beschleunigungskompensation befinden sich in der Parameterstruktur L TT1P scPar WinderTensionCtrl [Base/State/High] (23).

```
rFiltTimeAccSpd : REAL := 0.005; // Filtertime ActReelSpeed during AccComp [s] lrAccCmpsDeadBandTrqScaled : LREAL := 0.10; // Dead-band of winder torque [Nm] lrAccCmpsGainAcc : LREAL := 1.05; // [x100%] lrAccCmpsGainDec : LREAL := 0.95; // [x100%] lrConstMInertia : LREAL := 9; // Constant MInertia J_min [kgcm^2] lrMaxMInertia : LREAL := 50; // Maximal MInertia J_max [kgcm^2]
```

3.21 Bahnrissüberwachung

3.21 Bahnrissüberwachung

Für die Durchmesserberechnung bietet das Technologiemodul eine Bahnrissüberwachung.

Bei einem Bahnriss entwickelt sich der berechnete Durchmesser entgegen der Wickelrichtung (Abwickeln oder Aufwickeln).

Die Überwachung wird mit dem Eingang xWebBreakMonit = TRUE aktiviert. Damit ist eine Durchmesseränderung entgegen der Wickelrichtung nur noch innerhalb des im Parameter lrWebBreakWindow eingestellten Fensters zulässig.

Der Auf- oder Abwickelbetrieb wird automatisch anhand des Vorzeichens der Liniengeschwindigkeit und der über den Eingang xWindingDirection eingestellten Wickelrichtung erkannt.

Hinweis!

Die Bahnrissüberwachung darf erst aktiviert werden, wenn der berechnete Durchmesser dem realen Durchmesser entspricht.

Bei aktiver Bahnrissüberwachung (xWebBreakMonit = TRUE) wird eine Durchmesseränderung entgegen der über den Ausgang xUnwind vorgegebenen Wickelrichtung unterbunden.

Nach dem Laden eines Startdurchmessers, der entgegen der Wickelrichtung deutlich vom realen Durchmesser abweicht, kann dies zum ungewollten Ansprechen der Überwachung führen. So wird beispielsweise beim Aufwickler ein Startdurchmesser von 50 % geladen; der reale Durchmesser beträgt aber nur 45 %. Die Änderung des Durchmesserwertes auf die realen 45 % wird bei aktiver Bahnrissüberwachung verhindert.

Einzustellende Parameter

Die Parameter für die Bahnrissüberwachung befinden sich in der Parameterstruktur LTT1P scPar WinderTensionCtrl [Base/State/High] (23).

lrWebBreakWindow : LREAL := 0.1; // Window for web break 0..1 [x100%]

3.22 Persistente Variablen

Persistente Variablen 3.22

Das Technologiemodul bietet die Möglichkeit, die ermittelten Parameter, wie z.B. den Wickeldurchmesser, persistent zu speichern. Dazu müssen im »PLC Designer« folgende Einstellung für das Technologiemodul ausgeführt werden.

So legen Sie im »PLC Designer« persistente Variablen an:

Hinweis!

Diese Vorgehensweise gilt nicht für das ApplicationTemplate, weil dort bereits Strukturen für persistente Daten der Maschinenmodule bereitgestellt werden.

1. Im Kontextmenü zu Application mit dem Befehl Objekt hinzufügen → Persistente Variablen... die globale Liste für die Verwaltung von persistenten Variablen hinzufügen.

3.22 Persistente Variablen

2. Die Referenz der persistenten Variablen "L_TT1P_PersistentVarWinder" in der globalen Struktur der persistenten Variablen instanziieren.

3. Die Instanz der persistenten Variablen mit dem Eingang *PersistentVar* verschalten.

Zugkraftsteuerung über Kennlinienfunktion/Wickelcharakteristik

3.23

3.23 Zugkraftsteuerung über Kennlinienfunktion/Wickelcharakteristik

Die Kennlinienfunktion zur Zugkraftsteuerung ist in der State-Variante erweitert. Damit die materialabhängige Charakteristik erreicht wird, wird der Zugkraftsollwert aus dem Eingang *IrSetTens* über eine Kennlinienfunktion durchmesserabhängig bewertet.

Die Adaption kann entsprechend verschiedener Prinzipien erfolgen:

- Kennlinie für einen linearen Zugkraftverlauf (dwSelectTensCurve = 0)
- Kennlinie für einen linearen Drehmomentverlauf (dwSelectTensCurve = 1)
- Frei definierbare Kennlinie mit 64 Stützpunkten (dwSelectTensCurve = 2)

Die Kennlinie ist gekennzeichnet durch einen Anfangsbereich mit konstanter Bewertung (100 %) und einem zweiten Bereich, in dem die Zugkraft dem Durchmesser angepasst wird. Über den Parameter *IrTensCurveStartDiamScaled* wird festgelegt, bei welchem Durchmesser die Zugkraftabsenkung beginnt. Mit dem Parameter *IrTensCurveCtrlScaled* wird der prozentulle Anteil der Zugkraft beim maximalen Durchmesser festgelegt.

[3-9] Kennlinie für einen linearen Drehmomentverlauf

3.23

[3-10] Kennlinie mit freidefinierbaren Stützstellen

Einzustellende Parameter

Die Parameter für die Kennlinienfunktion befinden sich in der Parameterstruktur L TT1P scPar WinderTensionCtrl [Base/State/High] (23).

.24 Identifikation und Kompensation der Reibung

3.24 Identifikation und Kompensation der Reibung

Hinweis!

Wird der Wickler über ein ölbefülltes Getriebe gesteuert, ist die Reibung stark abhängig von der Temperatur des Öles. Die Reibungsidentifikation sollte möglichst bei warmen Getriebeöl durchgeführt werden. Dazu ist es ausreichend den Motor zuvor einige Minuten drehzahlgeregelt zu betreiben.

Zur Identifikation der Reibung muss die Wicklerwelle leer (ohne Material) sein.

Legen Sie mit Parameter *IrIdentFricMaxSpdScaled* = 1 die maximale Motordrehzahl (100 %) bezogen auf die maximale Wicklerdrehzahl am Ausgang *IrWndSpdRef* fest, die beim Identifizierungslauf erreicht werden darf. (In der Regel wird der Motor bei minimalem Durchmesser und maximaler Liniengeschwindigkeit auch die Drehzahl *IrWndSpdRef* erreichen.)

Passen Sie die Hoch- und Ablaufzeit für den Identifizierungslauf an die gegebenen Rahmenbedingungen an: Das maximal erreichbare Drehmoment muss ausreichen, um die Massenträgheiten an der Rampe bis auf den Parameter IrldentFricMaxSpdScaled zu beschleunigen.

Optional können bis zu 4 Reibungskennlinien aufgenommen und gespeichert werden. Eine Umschaltung zwischen verschiedenen Reibungskennlinien wird z.B. beim Einsatz von Umschaltgetrieben benötigt.

Mit einer steigenden Flanke (FALSE TRUE) am Eingang xExecuteldentFric erfolgt die Ermittlung der Reibungskennline.

Beendigung der Identifikation

Die Identifikation ist beendet, wenn der Motor wieder den Stillstand erreicht hat, keine Fehler gemeldet wurden und *xDone* auf TRUE gesetzt wurde.

Die ermittelten Drehmomentsollwerte können auf Plausibilität geprüft und bei Bedarf korrigiert werden.

Die Reibungskompensation wird mit xFricCmps = TRUE aktiviert.

Einzustellende Parameter

Die Parameter für die Identifikation und Kompensation der Reibung befinden sich in der Parameterstruktur <u>L TT1P scPar WinderTensionCtrl [Base/State/High]</u> (<u>Ll 23</u>).

3.25 PI-Regler für die Zugkraftregelung

3.25 PI-Regler für die Zugkraftregelung

Durch Aktivierung der Zugkraftregelung mit dem Eingang xTensCtrl = TRUE wird auf einen Zugkraft-Istwert geregelt.

Mit dem Eingang *IrTensCtrlInfluence* legen Sie fest, welchen Einfluss der PI-Regler auf die Steuerung des Motors haben soll (Standard-Einstellung: 0 %).

Nach Aktivierung der Zugkraftsteuerung muss die Zugkraft zuerst den Sollwert aus dem Eingang *IrSetTens* erreichen. Damit die Anhebung der Zugkraft kontrolliert erfolgt, wird zuvor der Rampengenerator für den Zugkraftsollwert mit dem aktuellen Zugkraft-Istwert geladen. Die Rampe wird mit dem Parameter *IrTensRamp* in der Einheit [N/s] eingestellt. Die Standard-Einstellung der Rampe ist mit *IrTensRamp* = 1 vorgegeben. Erreicht der Rampengenerator den Sollwert, wird der Ausgang *xDone* = TRUE gesetzt.

Eine Filterung und/oder Anpassung des Zugkraft-Istwertes ist nicht möglich. Erwartet wird ein Signal (Zugkraft-Istwert) am Eingang *IrActTensIn*.

Der I-Anteil des PI-Reglers kann mit dem Parameter *IrTensCtrlResetTime* gesetzt werden. In der Standard-Einstellung ist *IrTensCtrlResetTime* = 0 (deaktiviert) gesetzt.

Die Stellgröße aus dem I-Anteil kann über den Eingang xResetCtrl = TRUE über die Rampe auf Null geführt und dort gehalten werden. Mit dem Eingang xResetCtrl = TRUE ist der I-Anteil immer deaktiviert.

Die Reglerverstärkung wird mit dem Parameter IrTensCtrlGain eingestellt.

Die Stellgröße des Zugkraftreglers kann über den Parameter *IrTensPosCtrlLimPos* [N] in positiver und über den Parameter *IrTensPosCtrlLimNeg* [N] in negativer Richtung begrenzt werden.

Einzustellende Parameter

Die Parameter für den PI-Regler und die Zugkraftregelung befinden sich in der Parameterstruktur L_TT1P_scPar_WinderTensionCtrl [Base/State/High] (\square 23).

3.26 Identifikation der Massenträgheitsmomente

3.26 Identifikation der Massenträgheitsmomente

Zur Kompensation des Beschleunigungsmoments ist die Parametrierung oder Identifizierung des konstanten Massenträgheitsmoments (Motor + Getriebe + Wicklerwelle) und des maximalen Massenträgheitsmoments (mit vollem Wickelballen) erforderlich.

Identifikation des konstanten Massenträgheitsmoments

Die Wicklerwelle ist leer (ohne Material).

Mit dem Parameter IrldentMInertiaMaxSpdScaled wird die maximale Motordrehzahl in [x 100%] bezogen auf die maximal erreichbare Wicklerdrehzahl IrWndSpdRef festgelegt. Typischerweise sind hier Drehzahlen zwischen 50 ... 60 % ausreichend.

Mit dem Parameter *IrIdentMInertiaMaxTrqScaled* wird das Beschleunigungsmoment festgelegt. Dieser Wert muss immer größer sein, als die maximal auftretende Reibung – Empfehlung: 25 %.

Mit einer steigenden Flanke (FALSE TRUE) am Eingang xExecuteldentMInertia erfolgt die Ermittlung des Massenträgheitsmoments. Am Ausgang IrldentMInertia wird das ermittlete Massenträgheitsmoment angezeigt.

Identifikation des maximalen Massenträgheitsmoments

Der Wickler ist mit dem maximal möglichen Wickelballen beladen (maximaler Durchmesser und maximale Breite).

Die maximale Motordrehzahl IrldentMInertiaMaxSpdScaled muss so parametriert werden, dass die maximal zulässige Umfangsgeschwindigkeit des Wicklers nicht überschritten wird (z. B. IrldentMInertiaMaxSpdScaled = 10% bei $d_{max}/d_{min} = 10$) – Empfehlung: 25%.

Mit einer steigenden Flanke (FALSE TRUE) am Eingang xExecuteIdentMInertia erfolgt die Ermittlung des Massenträgheitsmoments.

Beendigung der Identifikation

Die Identifikation ist beendet, wenn der Motor wieder den Stillstand erreicht hat und keine Fehler gemeldet wurden. Die identifizierte Trägheit der Wicklerwelle (Jwinder) wird am Ausgang IrldentMInertia angezeigt und muss auf Plausibilität überprüft werden.

Die Identifikation sollte für beide Fälle mehrmals durchgeführt werden. Dabei kann die Filterzeit für die Drehzahl *rFiltTimeldentMInertiaSpd* variiert werden.

Hinweis!

Eine ausgeprägte <u>nicht lineare</u> Reibung im System beeinflusst die Berechnung des Massenträgheitsmoments im Technologiemodul negativ.

Übernehmen Sie die Werte der identifizierten Massenträgheitsmomente in die Parameterstruktur LTT1P scPar WinderTensionCtrl [Base/State/High] (23).

3.26 Identifikation der Massenträgheitsmomente

Einzustellende Parameter

Die Parameter für die dentifizierung der Massenträgheitsmomente befinden sich in der Parameterstruktur L TT1P scPar WinderTensionCtrl [Base/State/High] (🗆 23).

Berechnung des maximalen Massenträgheitsmoments

Steht kein Wickelballen zur Verfügung, so kann das maximale Massenträgheitsmoment wie folgt berechnet werden:

Berechnung des maximalen Massenträgheitsmoments			
Die <u>Dichte</u> des Wickelmate	Die <u>Dichte</u> des Wickelmaterials ist bekannt:		
J	$JMaxWinder \ = \ i^2 \cdot JMotor + \left(\frac{\pi}{32 \cdot 10^8}\right) \cdot B \cdot \rho \cdot (dmax^4 - dmin^4)$		
Die <u>Masse</u> des Wickelmate	Die <u>Masse</u> des Wickelmaterials ist bekannt:		
$J_{MaxWinder} = i^2 \cdot J_{Motor} + \frac{m \cdot d_{max}^2}{800}$			
Formelzeichen	Beschreibung	Maßeinheit	
JMaxWinder	Maximales Massenträgheitsmoment der Wicklerwelle	kgcm ²	
JMotor	Massenträgheitsmoment der Motorwelle	kgcm ²	
i	Getriebefaktor		
В	Materialbreite	mm	
r	Materialdichte	kg/dm ³	
dmax	Maximaler Durchmesser	mm	
dmin	Minimaler Durchmesser (Hülsendurchmesser)	mm	
m	Masse	kg	

3.27 Adaption der Drehzahlreglerverstärkung

Voraussetzungen

• Die Wicklerachse muss freigeben sein (Eingang xRegulatorOn = TRUE).

Adaption der Drehzahlregler-Verstärkung aktivieren/deaktivieren

Die Adaption der Drehzahlregler-Verstärkung ist vom Zustand des TMs sowie von einer aktuell ausgeführten Funktion unabhängig und kann daher zu einem beliebigen Zeitpunkt aktviert oder deaktiviert werden.

Eingang scPar.xAdaptSpdCtrlGain = TRUE: Adaption Drehzahlregler-Verstärkung aktiviert.

Eingang scPar.xAdaptSpdCtrlGain = FALSE: Adaption Drehzahlregler-Verstärkung deaktiviert.

Funktionsweise

Der Wert für die Adaption wird im TM berechnet, wobei die Berechnungsvorschrift über den Adaptionsmodus scPar.eAdaptSpdCtrlGainMode (siehe unten) vorgegeben wird.

Bereich für Wert der Adaption: 0 ... 1 (1 = 100 % der Drehzahlverstärkung aus der Einstellung des Drehzahlreglers)

Der im Drehzahlregler eingestellte resultierende Adaptionswert kann mit einem Faktor aus dem Eingang scPar.lrAdaptSpdCtrlGainFactor multiplikativ beeinflusst werden.

Über den Parameter scPar.lrAdaptSpdCtrlLowLimit wird der kleinste zulässige Wert für die Adaption der Drehzahlregler-Verstärkung festgelegt.

3.27.1 Adaptionsmodus eAdaptSpdCtrlGainMode:= 0 (DiamToSquare)

Im Modus eAdaptSpdCtrlGainMode:= 0 wird die Adaption aus dem skalierten Durchmesser (Ausgang lrSetDiamScaledOut) zum Quadrat berechnet.

[3-11] Adaption des Drehzahlreglers in Abhängigkeit des Durchmessers zum Quadrat unter Einfluss von IrAdaptSpdCtrlGainFactor

Beim maximalen Durchmesser wird der Adaptionswert = 1 gesetzt. Über den Parameter scPar.lrAdaptSpdCtrlLowLimit wird die Adaption der Drehzahregler-Verstärkung nach unten begrenzt.

3.27

3.27.2 Adaptionsmodus eAdaptSpdCtrlGainMode:= 1 (Diam)

Im Modus eAdaptSpdCtrlGainMode:= 1 wird die Drehzahlregler-Adaption proportional zum skalierten Durchmesser (Ausgang lrSetDiamScaledOut) berechnet.

[3-12] Adaption des Drehzahlreglers in Abhängigkeit des Durchmessers unter Einfluss von IrAdaptSpdCtrlGainFactor

Beim maximalen Durchmesser wird der Adaptionswert = 1 gesetzt. Über den Parameter IrAdaptSpdCtrlLowLimit wird die Adaption der Drehzahregler-Verstärkung nach unten begrenzt.

3.27.3 Adaptionsmodus eAdaptSpdCtrlGainMode:= 2 (Inertia)

In einem idealen Modell des Wicklerantriebs betrachtet man Motor und Wickelballen als ein starres Ein-Masse-System. Damit verhält sich die optimale Verstärkung des Drehzahlreglers direkt proportional zum Massenträgheitsmoment J mit einer d⁴-Funktion.

Da sich während des Wickelprozesses das Massenträgheitsmoment meist deutlich verändert, kann es für ein gutes Regelverhalten erforderlich sein, die Verstärkung des Drehzahlreglers mit dem Massenträgheitsmoment mitzuführen.

Für den Modus *eAdaptSpdCtrlGainMode*:= 2 (Inertia) ist die Angabe der Masseträgheiten erfoderlich:

- Massenträgheit des leeren Wickelballens scPar.lrConstMInertia beim minimalen Durchmesser scPar.lrMinDiam
- Massenträgheit des Wickelballens mit Material scPar.lrMaxMInertia beim maximalen Durchmesser scPar.lrMaxDiam

Die Massenträgheit kann entweder berechnet oder über das TM identifiziert werden.

• Identifikation der Massenträgheitsmomente (61)

Wenn die beiden Massenträgheiten scPar.lrConstMInertia und scPar.lrMaxMInertia bekannt sind, wird die Adaption anhand der folgenden Kennlinie festgelegt:

3.27

Voreingestellte Kennlinienfunktion für die Adaption des Drehzahlreglers in Abhängigkeit der Massen

Diese Kennlinienfunktion beinhaltet in der Standard-Einstellung folgende Werte:

- Untere Begrenzung der Adaption: 50 %
- Obere Begrenzung der Adaption: 100 %
- <u>Lineare</u> Erhöhung der Verstärkung bis 100 % des Massenträgheitsmoments

Einzustellende Parameter

Die Kennlinie kann über die Parameterierung verändert oder komplett neu bestimmt werden. Die einzustellenden Parameter befinden sich in der Structur *scPar*:

3.28 Regelabweichung im Bereich reduzierter Empfindlichkeit

3.28 Regelabweichung im Bereich reduzierter Empfindlichkeit

Durch eine reduzierte Reglerdynamik bei geringen Regelabweichungen wird das Dämpfungsverhalten des Regelkreises meist günstig beeinflusst.

Die Regelabweichung ergibt sich aus der Differenz der Werte vom Eingang IrSetTens und IrActTensIn.

Mit dem Parameter IrReducedGainWindow lässt sich ein Toleranzbereich einstellen, in dem die Regelabweichung mit einer geringeren Verstärkung an den Regler weitergegeben wird. Der Toleranzbereich wird ober- und unterhalb um den Sollwert (Eingang IrSetDancerPosScaled) gelegt.

Mit dem Parameter *IrReducedGain* erfolgt die Einstellung, auf welchen Wert die Verstärkung im festgelegten Toleranzbereich reduziert werden soll. Das heißt im Toleranzbereich wirkt die reduzierte Verstärkung (*IrReducedGain*).

Einzustellende Parameter

Die Parameter für die Regelabweichung befinden sich in der Parameterstruktur L TT1P scPar WinderTensionCtrl [Base/State/High] (23).

```
lrReducedGain : LREAL := 0;
lrReducedGainWindow : LREAL := 0;
```

3.29 Begrenzung der Master-Liniengeschwindigkeit

Zur Reduzierung der Antriebsleistung bei kleinen Wicklerdurchmessern oder um zulässige Getriebe-Eintriebsdrehzahlen nicht zu überschreiten, kann es erforderlich sein, die Liniengeschwindigkeit der Anlage zu begrenzen. Die Berechung der Begrenzung erfolgt im TM Winder.

Die maximale Drehzahl der Wicklerwelle (abtriebsseitig) wird über den Parameter scPar.lrMaxWndSpd festgelegt. Mit Eingabe dieses Parameters ist die Begrenzungsfunktion direkt freigegeben.

Am Ausgang *IrLimitLineVel* wird die maximal zugelassen Liningeschwindigkeit in [mm/s] ausgegeben. Ein Überschreiten der Liniengeschwindigkeit *IrLimitLineVel* bedeutet zwangsläufig auch eine Überschreitung der maximalen Wicklerwellen-Drehzahl *scPar.IrMaxWndSpd*.

[3-13] Signalfluss für die Berechnung der Liniengeschwindigkeit-Sollwert-Begrenzung

Folgende Grafik verdeutlicht die notwendige Begrenzung der Liniengeschwindigkeit zwischen Referenz-Liniengeschwindigkeit (Vref) bis maximaler Liniengeschwindigkeit (Vmax) für einen Aufwickler, der bei minimalem Durchmesser (Dmin) startet, um die maximal zugelassen Drehzahl der Winkelwelle scPar. IrMaxWndSpd nicht zu überschreiten.

[3-14] Beispiel für die Begrenzung der Liniengeschwindigkeit

3.30 CPU-Auslastung (Beispiel Controller 3231 C)

3.30 CPU-Auslastung (Beispiel Controller 3231 C)

Die folgende Tabelle zeigt die CPU-Auslastung in Mikrosekunden am Beispiel des Controller 3231 C (ATOM™-Prozessor, 1.6 GHz).

Variante	Beschaltung des Technologiemoduls	CPU-Auslastung	
		Durchschnitt	Maximale Spitze
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncLineVel := TRUE;	75 µs	110 μs
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncLineVel := TRUE;	85 μs	119 μs
High	xEnable := TRUE; xRegulatorOn := TRUE; xSyncLineVel := TRUE;	95 μs	122 μs

A	J
Abweichung im Bereich reduzierter Empfindlichkeit <u>66</u>	Jogging (Handfahren) 46
Access points 35	W.
Adaption der Drehzahlreglerverstärkung 63	K
Anlauf der Achsen <u>14</u>	Kompensation der Reibung <u>59</u>
Anwendungshinweise 7	Kontrollierter Anlauf der Achsen <u>14</u>
Aufbau der Sicherheitshinweise 7	L
Ausgänge 21	_
D	L_TT1P_scAP_WinderTensionCtrlBase 35
B	L_TT1P_scAP_WinderTensionCtrlHigh 35
Bahnrissüberwachung <u>54</u>	L_TT1P_scAP_WinderTensionCtrlState <u>35</u>
Begrenzung der Master- Liniengeschwindigkeit 67	L_TT1P_scPar_WinderTensionCtrlBase 23
Beschleunigungskompensation <u>52</u>	L_TT1P_scPar_WinderTensionCtrlHigh 23
Betriebsmodus <u>13</u>	L_TT1P_scPar_WinderTensionCtrlPage 23
С	L_TT1P_scSF_WinderTensionCtrlBase 33
	L_TT1P_scSF_WinderTensionCtrlHigh 33
CPU-Auslastung (Beispiel Controller 3231 C) <u>68</u>	L_TT1P_scSF_WinderTensionCtrlState <u>33</u> L_TT1P_WinderTensionCtrlBase/State/High
D	(Funktionsbaustein) <u>15</u>
Dokumenthistorie 5	Leitwert-Quelle für die Durchmesserberechnung 39
Drehzahlreglerverstärkung (Adaption) 63	<u> </u>
Drehzahlvorsteuerung 39	M
Drehzahlvorsteuerung prüfen 39	Massenträgheitsmomente identifizieren 61
Durchmesser halten 41	Massenträgheitsmomente vorgeben 53
Durchmesser vorgeben 42	Master-Liniengeschwindigkeit begrenzen 67
Durchmesserberechnung 40	Materiallängenzähler 43
Durchmesserbewertung / Umrechnung in	Materiallängenzählung (Quellen) 44
Drehmomentsollwert <u>50</u>	Materialzuführung an den Wickler 38
Durchmessersensor-Signal 42	Max. Massenträgheitsmoment berechnen 62
_	_
E	P
Eingänge <u>17</u>	Parameterstruktur L_TT1P_scPar_WinderTensionCtrlBase/
Eingänge und Ausgänge <u>16</u>	State/High 23
E-Mail an Lenze 71	Persistente Variablen <u>55</u>
eTMState <u>30</u>	PI-Regler für die Zugkraftregelung <u>60</u>
F	Q
	Quellen für die Materiallängenzählung 44
Feedback an Lenze 71 Fundation on the Task polarism odule (Übersieht) 12	Queneri fur ale Materialiangenzamang 44
Funktionen des Technologiemoduls (Übersicht) 12 Funktionsbaustein L_TT1P_WinderTensionCtrlBase/State/	R
High 15	Rampengenerator für den Zugkraftsollwert 51
Funktionsbeschreibung "Winder Tension-controlled" 10	Regelabweichung im Bereich reduzierter Empfindlichkeit <u>66</u>
<u>=</u>	Reibung (Identifikation und Kompensation) 59
G	
Gestaltung der Sicherheitshinweise 7	S
_	Sicherheitshinweise 7, 8
Н	Signal vom Durchmessersensor 42
Handfahren (Jogging) 46	Signalfluss des Technologiemoduls "Winder Tension-
Hinweise zum Betrieb des Technologiemoduls 13	controlled" <u>32</u>
	Signalfluss zu Drehzahlbegrenzungen im Wickelprozess 31
1	Signalfluss zur Berechnung des Durchmessers 31
Identifikation der Massenträgheitsmomente 61	Signalflusspläne <u>31</u>
Identifikation der Reibung <u>59</u>	Startdurchmesser vorgeben 42
	State machine <u>29</u>

Index

Struktur der Angriffspunkte $L_TT1P_scAP_WinderTensionCtrlBase/State/High~\underline{35}$ Struktur des Signalflusses L_TT1P_scSF_WinderTensionCtrlBase/State/High 33 Synchronisierung auf die Liniengeschwindigkeit 47 T Trimmung 48 Variablenbezeichner 6 Verwendete Konventionen $\underline{\mathbf{6}}$ W Wickelrichtung (Automatische Erkennung) 37 Wickelrichtung festlegen (Aufwickeln/Abwickeln) 37 Winder Tension-controlled (Funktionsbeschreibung) 10 Ζ Zielgruppe 4 Zugkraftsteuerung über Kennlinienfunktion (Base-Variante) Zugkraftsteuerung über Kennlinienfunktion/ Wickelcharakteristik 57 Zustände 29 Zustände des Ausgangs eTMState 30

Ihre Meinung ist uns wichtig

Wir erstellten diese Anleitung nach bestem Wissen mit dem Ziel, Sie bestmöglich beim Umgang mit unserem Produkt zu unterstützen.

Vielleicht ist uns das nicht überall gelungen. Wenn Sie das feststellen sollten, senden Sie uns Ihre Anregungen und Ihre Kritik in einer kurzen E-Mail an:

feedback-docu@lenze.com

Vielen Dank für Ihre Unterstützung. Ihr Lenze-Dokumentationsteam Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen Germany HR Hannover B 205381

[+49 5154 82-0

<u>+49 5154 82-2800</u>

@ sales.de@lenze.com

<u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal Germany

© 008000 24 46877 (24 h helpline)

<u>+49 5154 82-1112</u>

ø service.de@lenze.com

