东北大学考试试卷 (A 开卷)

2019-2020 学年 春季学期 课程名称:信号与线性系统

共三道大题,满分70分

一. 选择题 (每题 3 分, 共 30 分)

- 1. () $\int_{-\infty}^{+\infty} \delta(6t) f(t) dt = ?$ A: f(0) B: 6f(0) C: $\frac{1}{6} f(0)$ D: $\frac{1}{36} f(0)$
- 2. () 已知序列 $x_1(n) = \{3(n=0),0,1,2\}, x_2(n) = \{2(n=0),4,3\},$ 设卷积和 $y(n) = x_1(n) * x_2(n), 则 y(3)为: A: 9 B: 8 C: 5 D: 12$
- 3. () 信号Sa(200t) 的奈奎斯特间隔为:
 - A: $\frac{200}{\pi}$ B: $\frac{\pi}{50}$ C: $\frac{\pi}{200}$ D: $\frac{100}{\pi}$
- 4. ()已知信号 f(t) 的傅立叶变换为 $F(\omega) = \delta(\omega + \omega_0) \delta(\omega \omega_0)$,则 f(t) 为:
 - A: $-j\frac{1}{\pi}\sin(\boldsymbol{\omega}_0t)$ B: $j\frac{1}{\pi}\cos(\boldsymbol{\omega}_0t)$ C: $j\frac{1}{\pi}\sin(\boldsymbol{\omega}_0t)$ D: $-j\frac{1}{\pi}\cos(\boldsymbol{\omega}_0t)$
- 6. ()将函数f(-2t)的图形向左平移 $\frac{3}{4}$,可得下面哪个函数的图形:
 - A: $f\left(-2t + \frac{3}{2}\right)$ B: $f\left(-2t \frac{3}{2}\right)$ C: $f\left(-2t + \frac{3}{4}\right)$ D: $f\left(-2t \frac{3}{4}\right)$
- 7. () 序列 $F(z) = \frac{3z^2 3z + 1}{z^2 5z + 4}$ 的初值 f(0) 等于:
 - A: 3 B: $\frac{3}{5}$ C: $\frac{1}{4}$ D: $\frac{1}{3}$
- 8. ()下列等式不成立的是:
 - A: $f_1(t-t_0)*f_2(t+t_0) = f_1(t)*f_2(t)$ B: $f(t)*\delta'(t) = f'(t)$
 - C: $\frac{d}{dt}[f_1(t)*f_2(t)] = \left[\frac{d}{dt}f_1(t)\right]*\left[\frac{d}{dt}f_2(t)\right]$ D: $f(t)*\delta(t) = f(t)$
- 9. ()已知一连续时间系统 r(t) = e(1-t) ,其中 e(t) 为其输入, r(t) 为其输出,则该系统不满足以下哪个性质:
 - A: 时变性 B: 非线性 C: 非因果性 D: 稳定性

- 10. () 单边拉普拉斯变换 $F(s) = \frac{e^s}{s^2 + 1}$ 的原函数 f(t) 为:
 - A: $\cos(t+1)u(t+1)$ B: $\cos(t+1)u(t)$
 - C: $\sin(t+1)u(t)$ D: $\sin(t+1)u(t+1)$

二. 问答题(每题3分,共12分)

- 1. 为什么信号的通信速度和占有的频带宽度是互相矛盾的?
- 2. 无失真传输系统的单位冲激响应是什么? 理想低通滤波器在什么条件下可以转化为无失真传输系统?
- 3. 什么叫拉普拉斯变换的收敛域? 单边信号和双边信号的收敛域各有什么特点?
- 4. 怎样理解系统的零输入线性和零状态线性?

三. 计算题(共28分)

- **1.** (10 分) 某一阶线性时不变系统,在相同的初始状态下,当输入为f(t)时,其全响应为 $r_1(t) = (2e^{-t} + \cos 2t)u(t)$; 当输入为2f(t)时,其全响应为 $r_2(t) = (e^{-t} + 2\cos 2t)u(t)$,试求在同样的初始状态下,若输入为4f(t)时,系统的全响应r(t)。
- 2. (8分) 已知离散系统差分方程表达式为 $y(n) \frac{1}{5}y(n-1) = x(n)$,
 - (1) 求系统函数和单位样值响应;
 - (2) 若系统的零状态响应为 $y(n) = 5 \left| \left(\frac{1}{2} \right)^n \left(\frac{1}{5} \right)^n \right| u(n)$, 求激励信号 x(n)。
- 3. (10分)有两个线性时不变系统的数学模型如下:

$$\begin{cases} y_1'(t) = -x_1'(t) + x_1(t) \\ y_2'(t) + 2y_2(t) = x_2(t) \end{cases}$$

- (1) 若将这两个系统按下图所示连接,写出描述整个系统的微分方程,并求出系统的h(t);
- (2) 当输入信号 $x(t) = e^{-t}u(t)$ 时,求系统的零状态响应。

