bytewise.

**Bytewise Fellowship Program** 

# DATA SCIENCE Task 13 BWT- Data Science (Group1)

Submitted to: Mahrukh Khan Submitted by: Usama Malik

# Task: Handling Missing Data, Filling and Replacing Values, Removing Duplicates, Detecting and Removing Outliers. Decision Trees

# 1. Handling Missing Data

**Definition**: Missing data can occur when no value is stored for a variable in an observation.

```
Example:
import pandas as pd
import numpy as np

# Sample DataFrame with missing values
data = {
    'Name': ['John', 'Anna', 'Peter', 'Linda', 'James'],
    'Age': [28, 24, np.nan, 32, 29],
    'Salary': [50000, 54000, 58000, np.nan, 62000]
}
df = pd.DataFrame(data)
print(df)

# Filling missing values
df_filled = df.fillna(df.mean())
print(df_filled)
```

#### 2. Removing Duplicates

**Definition**: Duplicates are repeated rows in the dataset that need to be removed to ensure data quality.

```
Example:
```

```
# Sample DataFrame with duplicates
data = {
  'Name': ['John', 'Anna', 'Peter', 'Anna', 'James'],
  'Age': [28, 24, 30, 24, 29],
```

```
'Salary': [50000, 54000, 58000, 54000, 62000]
df = pd.DataFrame(data)
print(df)
# Removing duplicates
df_no_duplicates = df.drop_duplicates()
print(df_no_duplicates)
3. Detecting and Removing Outliers
Definition: Outliers are data points that are significantly different from other observations.
Example:
# Sample DataFrame with outliers
data = {
  'Name': ['John', 'Anna', 'Peter', 'Linda', 'James'],
  'Age': [28, 24, 30, 32, 150],
  'Salary': [50000, 54000, 58000, 60000, 62000]
df = pd.DataFrame(data)
print(df)
# Removing outliers using Z-score
from scipy import stats
z_scores = np.abs(stats.zscore(df[['Age', 'Salary']]))
df_{no}outliers = df[(z_{scores} < 3).all(axis=1)]
print(df_no_outliers)
```

# **Decision Trees (Chapter 6)**

# 1. Training and Visualizing a Decision Tree

**Definition**: Training a decision tree involves splitting the data into subsets based on feature values, and visualizing helps understand the tree structure.

#### **Example**:

from sklearn.datasets import load\_iris

from sklearn.tree import DecisionTreeClassifier

from sklearn import tree

import matplotlib.pyplot as plt

```
iris = load_iris()
X, y = iris.data, iris.target
# Train a decision tree
clf = DecisionTreeClassifier()
clf.fit(X, y)
# Visualize the decision tree
```

```
plt.figure(figsize=(20,10))
```

tree.plot\_tree(clf, filled=True, feature\_names=iris.feature\_names, class\_names=iris.target\_names)

plt.show()

# 2. Making Predictions

**Definition**: Using the trained decision tree to predict the class labels of new data points.

**Example:** 

# Predicting new data points

```
new_data = [[5.0, 3.6, 1.4, 0.2]]
```

prediction = clf.predict(new\_data)

print(f'Prediction: {prediction}')

#### 3. Estimating Class Probabilities

**Definition**: Decision trees can provide the probability of each class for a given input.

**Example**:

# Estimating class probabilities

probabilities = clf.predict\_proba(new\_data)

print(f'Class Probabilities: {probabilities}')

#### 4. The CART Training Algorithm

**Definition**: Classification and Regression Trees (CART) is an algorithm that splits the data into subsets to build a decision tree.

**Example**: The DecisionTreeClassifier in scikit-learn uses the CART algorithm.

#### 5. Computational Complexity

**Definition**: The computational complexity of a decision tree is related to the depth of the tree and the number of features.

# 6. Gini Impurity or Entropy

**Definition**: Metrics used to measure the quality of splits in the decision tree. Gini impurity is often used by default in CART.

#### **Example**:

# Using entropy instead of Gini impurity

clf\_entropy = DecisionTreeClassifier(criterion='entropy')

clf\_entropy.fit(X, y)

#### 7. Regularization Hyperparameters

**Definition**: Parameters like max\_depth, min\_samples\_split, and min\_samples\_leaf used to control the complexity of the tree and avoid overfitting.

#### **Example:**

**# Setting regularization hyperparameters** 

clf\_reg = DecisionTreeClassifier(max\_depth=3, min\_samples\_split=5)

clf\_reg.fit(X, y)

#### 8. Regression

**Definition**: Decision trees can also be used for regression tasks to predict continuous values.

**Example**:

from sklearn.tree import DecisionTreeRegressor

# Sample regression data

X = np.array([[1], [2], [3], [4], [5]])

y = np.array([1.2, 1.8, 3.6, 3.8, 5.1])

# Train a decision tree regressor

reg = DecisionTreeRegressor()

reg.fit(X, y)

# Predicting new data points

reg\_prediction = reg.predict([[6]])

print(f'Regression Prediction: {reg\_prediction}')

#### 9. Instability

**Definition**: Decision trees can be unstable because small variations in the data can result in different splits and, consequently, different trees.

