Business Case: Delhivery - Feature Engineering

About Delhivery

In the realm of modern commerce, efficient logistics operations play a pivotal role in ensuring the smooth flow of goods from source to destination. Delhivery, India's largest and fastest-growing integrated logistics player, stands at the forefront of this sector, leveraging cutting-edge technology and infrastructure to build the operating system for commerce. As part of their mission to continuously enhance operational quality, efficiency, and profitability, Delhivery relies on data-driven insights generated by its dedicated Data team.

The Data team at Delhivery is tasked with harnessing the vast volume of data generated by the company's logistics operations to derive actionable intelligence. This intelligence not only enables Delhivery to optimize its operations but also empowers it to stay ahead of competitors by offering superior service quality.

How can we help here?

The company wants to understand and process the data coming out of data engineering pipelines:

- Clean, sanitize and manipulate data to get useful features out of raw fields
- Make sense out of the raw data and help the data science team to build forecasting models on it

Let us start by importing required libraries

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import math as m
from statsmodels.distributions.empirical_distribution import ECDF
from scipy.stats import ttest_ind
from scipy.stats import shapiro, kruskal, levene, expon, kstest
from scipy import stats
from sklearn.preprocessing import MinMaxScaler, StandardScaler, LabelEncoder
import scipy.stats as spy
```

Loading the Dataset

```
In [2]: df = pd.read_csv(r"C:\Users\hp\OneDrive\Desktop\delhivery_data.txt")
In [3]: df.head()
               data trip_creation_time
                                          route_schedule_uuid route_type
                                                                                    trip_uuid source_center
                                                                                                                                                        destination_name
                           2018-09-20 thanos::sroute:eb7bfc78-
                                                                                              IND388121AAA Anand_VUNagar_DC
                                                                                                                                    IND388620AAB Khambhat_MotvdDPP_D
                                                                                                                                                                             2018-09
         0 training
                                             b351-4c0e-a951-
                                                                 Carting 153741093647649320
                       02:35:36.476840
                                                                                                                       (Gujarat)
                                                                                                                                                                (Gujarat) 03:21:32.418
                                                    fa3d5c3...
                           2018-09-20 thanos::sroute:eb7bfc78-
                                                                 Carting 153741093647649320 IND388121AAA Anand_VUNagar_DC (Guiarat)
                                                                                                                                    IND388620AAB Khambhat_MotvdDPP_D
                                                                                                                                                                             2018-09
                                            b351-4c0e-a951-
          1 training
                                                                                                                                                                (Gujarat) 03:21:32.418
                       02:35:36.476840
                                                   fa3d5c3...
                           2018-09-20 thanos::sroute:eb7bfc78-
                                                                                             IND388121AAA Anand_VUNagar_DC
                                                                                                                                    IND388620AAB Khambhat_MotvdDPP_D
                                                                                        trip-
         2 training
                                            b351-4c0e-a951-
                                                                 Carting 153741093647649320
                       02:35:36.476840
                                                                                                                                                                (Gujarat) 03:21:32.418
                           2018-09-20 thanos::sroute:eb7bfc78-
                                                                                                                                    IND388620AAB Khambhat_MotvdDPP_D
                                                                                             IND388121AAA Anand_VUNagar_DC
                                                                                                                                                                             2018-09
         3 training
                                             b351-4c0e-a951-
                                                                 Carting 153741093647649320
                       02:35:36.476840
                                                                                                                                                                (Gujarat) 03:21:32.418
                                                                                                                       (Gujarat)
                                                  fa3d5c3...
                           2018-09-20 thanos::sroute:eb7bfc78-
                                                                                             IND388121AAA Anand_VUNagar_DC
                                                                                                                                    IND388620AAB Khambhat_MotvdDPP_D
                                                                                                                                                                             2018-09
                                                                                        trip-
         4 training
                                             b351-4c0e-a951-
                                                                 Carting 153741093647649320
                       02:35:36.476840
                                                                                                                                                                (Gujarat) 03:21:32.418
                                                    fa3d5c3...
         5 rows × 24 columns
```

Columns in the Dataset

Describing the Dataset

```
In [5]: df.describe()
```

5]:		start_scan_to_end_scan	cutoff_factor	$actual_distance_to_destination$	actual_time	osrm_time	osrm_distance	factor	segment_actual_time	segment_osrm_time
	count	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000
	mean	961.262986	232.926567	234.073372	416.927527	213.868272	284.771297	2.120107	36.196111	18.507548
	std	1037.012769	344.755577	344.990009	598.103621	308.011085	421.119294	1.715421	53.571158	14.775960
	min	20.000000	9.000000	9.000045	9.000000	6.000000	9.008200	0.144000	-244.000000	0.000000
	25%	161.000000	22.000000	23.355874	51.000000	27.000000	29.914700	1.604264	20.000000	11.000000
	50%	449.000000	66.000000	66.126571	132.000000	64.000000	78.525800	1.857143	29.000000	17.000000
	75%	1634.000000	286.000000	286.708875	513.000000	257.000000	343.193250	2.213483	40.000000	22.000000
	max	7898.000000	1927.000000	1927.447705	4532.000000	1686.000000	2326.199100	77.387097	3051.000000	1611.000000
_										

Information about the Dataset

```
In [6]: df.info()
        <class 'pandas.core.frame.DataFrame';</pre>
        RangeIndex: 144867 entries, 0 to 144866
Data columns (total 24 columns):
         # Column
                                               Non-Null Count Dtype
                                               144867 non-null object
         0
             data
             trip_creation_time
                                               144867 non-null object
             route_schedule_uuid
                                               144867 non-null object
                                               144867 non-null object
             route type
                                               144867 non-null object
144867 non-null object
             trip_uuid
             source center
             source_name
                                               144574 non-null object
             destination_center
                                               144867 non-null object
             destination name
                                               144606 non-null object
             od_start_time
                                               144867 non-null object
                                               144867 non-null object
         10 od end time
                                               144867 non-null float64
         11 start_scan_to_end_scan
         12
            is_cutoff
                                               144867 non-null bool
                                               144867 non-null int64
            cutoff_factor
         13
                                               144867 non-null object
         14 cutoff_timestamp
            actual_distance_to_destination 144867 non-null float64
         15
             actual_time
                                              144867 non-null
                                                                 float64
         17
             osrm_time
                                               144867 non-null
                                                                 float64
                                               144867 non-null
         18 osrm distance
                                                                float64
                                               144867 non-null
            segment_actual_time
segment_osrm_time
         20
                                               144867 non-null
                                                                 float64
                                               144867 non-null
         22
             segment_osrm_distance
                                               144867 non-null
                                                                 float64
                                               144867 non-null float64
         23 segment factor
        dtypes: bool(1), float64(10), int64(1), object(12)
        memory usage: 25.6+ MB
```

With the above information, we can see that our dataset has 144867 rows and 24 columns.

Conversion of categorical attributes to 'category'

```
In [7]: df['data'] = df['data'].astype('category')
df['route_type'] = df['route_type'].astype('category')
```

Dropping the columns for which no information is given

```
In [8]: df =df.drop(columns=['cutoff_factor','cutoff_timestamp','is_cutoff','factor','segment_factor'])
In [9]: df.info()
        <class 'pandas.core.frame.DataFrame'>
RangeIndex: 144867 entries, 0 to 144866
        Data columns (total 19 columns):
         # Column
                                               Non-Null Count Dtype
                                               144867 non-null category
         0
             data
             trip_creation_time
                                               144867 non-null object
                                               144867 non-null object
             route_schedule_uuid
                                               144867 non-null category
             route type
             trip_uuid
                                               144867 non-null object
                                               144867 non-null object
             source center
                                               144574 non-null object
             source name
             destination_center
                                               144867 non-null object
                                               144606 non-null object
             destination name
```

od_start_time 144867 non-null object od_end_time start_scan_to_end_scan 144867 non-null object 144867 non-null float64 10 actual_distance_to_destination 144867 non-null actual time 144867 non-null float64 13 actual time float64 144867 non-null 14 osrm_time float64 15 osrm_distance 144867 non-null float64 144867 non-null segment actual time float64 16 segment_osrm_time 144867 non-null float64 18 segment_osrm_distance 144867 non-null float64 dtypes: category(2), float64(8), object(9) memory usage: 19.1+ MB

Here we can notice that with dropping the unknown columns, the memory 25.6+ MB has been reduced to 21.0 + MB.

Updating the datatype of the datetime columns

```
In [10]: df['trip_creation_time']=pd.to_datetime(df['trip_creation_time'])
    df['od_start_time']=pd.to_datetime(df['od_start_time'])
    df['od_end_time']=pd.to_datetime(df['od_end_time'])
```

Basic Data Cleaning and Exploration

Handle missing values in the data.

Checking the presence of NULL values in the Dataset

```
In [11]: df.isnull().sum()
Out[11]: data
          trip creation time
                                                0
          route_schedule_uuid
          route type
                                                0
          trip uuid
          source_center
                                              293
          source name
          destination_center
          destination_name
                                              261
          od start time
          od_end_time
          start_scan_to_end_scan
actual_distance_to_destination
          actual time
          osrm time
          osrm_distance
          segment_actual_time
          segment_osrm_time
          segment_osrm_distance
          dtype: int64
```

Here we can see that there are different sum of NULL values present in source_name and destination_name.

Let us see the unique missing values in both source_name and destination_name by using their relative columns i.e. source_center and destination_center

```
In [12]: # Filter rows where source_name & destination_name is missing and select unique combinations of source_center and destination_center. missing_source_names = df.loc[df['source_name'].isnull(), 'source_center'].unique()
           missing\_destination\_names = df.loc[df['destination\_name'].isnull(), \ 'destination\_center'].unique()
           # Create DataFrames for missing source names and destination names
missing_source_df = pd.DataFrame({'source_center': missing_source_names, 'missing_source_name': 'Yes'})
           missing_destination_df = pd.DataFrame({'destination_center': missing_destination_names, 'missing_dest_name': 'Yes'})
           # Merge the DataFrames based on common source_center and destination_center values
merged_df = pd.merge(missing_source_df, missing_destination_df, how='outer', left_on='source_center', right_on='destination_center')
            # Display the result
           print(merged_df)
               source_center missing_source_name destination_center missing_dest_name
                IND342902A1B
                IND577116AAA
                                                    Yes
                                                                IND577116AAA
                                                                                                  Yes
                IND282002AAD
                                                                IND282002AAD
                                                    Yes
                                                                                                  Yes
                IND465333A1B
                                                                IND465333A1B
                IND841301AAC
                                                    Yes
                                                                IND841301AAC
                                                                                                  Yes
                IND509103AAC
                                                                IND509103AAC
                                                    Yes
                IND126116AAA
                                                    Yes
                                                                IND126116AAA
                                                                                                  Yes
                IND331022A1B
                                                                           NaN
                                                                                                  NaN
                                                    Yes
                TND5053264AB
                                                    Yes
                                                                TND505326AAB
                IND852118A1B
                                                                IND852118A1B
                                                    Yes
                                                                                                  Yes
           10
                                                    NaN
                                                                IND221005A1A
                                                                                                  Yes
                           NaN
           11
12
                           NaN
                                                    NaN
                                                                ΤΝΟ250002ΔΔC
                                                                                                  Yes
                                                                IND331001A1C
                           NaN
                                                    NaN
                                                                                                  Yes
           13
                           NaN
                                                    NaN
                                                                IND122015AAC
```

Treating missing destination names and source names

```
In [13]: num_missing_source_centers = len(missing_source_names)
          num_missing_destination_centers = len(missing_destination_names)
          source_labels = ['place_{}'.format(i) for i in range(1, num_missing_source_centers + 1)]
         destination_labels = ['place_{}'.format(i) for i in range(1, num_missing_destination_centers + 1)]
         for i, source_center in enumerate(missing_source_names)
             df.loc[(df['source_center'] == source_center'] == source_labels[i]
         for i, destination_center in enumerate(missing_destination_names):
    df.loc[(df['destination_center'] == destination_center) & (df['destination_name'].isnull()), 'destination_name'] = destination_labels[i]
In [14]: np.any(df.isnull())
Out[14]: False
```

Analyze the structure of the data

Shape of the Dataset

```
In [15]: df.shape
Out[15]: (144867, 19)
```

Description of the Dataset

```
In [16]: df.describe()
```

:	start_scan_to_end_scan	$actual_distance_to_destination$	actual_time	osrm_time	osrm_distance	segment_actual_time	segment_osrm_time	segment_osrm_distance
count	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.000000	144867.00000
mean	961.262986	234.073372	416.927527	213.868272	284.771297	36.196111	18.507548	22.82902
std	1037.012769	344.990009	598.103621	308.011085	421.119294	53.571158	14.775960	17.86066
min	20.000000	9.000045	9.000000	6.000000	9.008200	-244.000000	0.000000	0.00000
25%	161.000000	23.355874	51.000000	27.000000	29.914700	20.000000	11.000000	12.07010
50%	449.000000	66.126571	132.000000	64.000000	78.525800	29.000000	17.000000	23.51300
75%	1634.000000	286.708875	513.000000	257.000000	343.193250	40.000000	22.000000	27.81325
max	7898.000000	1927.447705	4532.000000	1686.000000	2326.199100	3051.000000	1611.000000	2191.40370

Type of data in the Dataset

```
In [17]: df.dtypes
Out[17]: data trip_creation_time
                                              category
datetime64[ns]
          route_schedule_uuid
                                                       object
                                                     category
object
          route type
          trip_uuid
          source_center
                                                       object
          source name
                                                       object
          destination_center
                                                       object
          destination name
                                                       object
          od_start_time
                                             datetime64[ns]
          od_end_time
start scan to end scan
                                             datetime64[ns]
                                                      float64
          actual_distance_to_destination
                                                      float64
          actual time
                                                      float64
          osrm_time
                                                      float64
          osrm_distance
                                                      float64
          segment_actual_time
                                                      float64
          segment_osrm_time
          segment_osrm_distance
dtype: object
                                                      float64
```

Merging the rows

When analyzing delivery details, merging multiple rows representing a single package's journey is key. Aggregation methods condense this data while preserving accuracy. Numeric fields transform, providing insights into overall performance. Choosing the right aggregation methods is crucial for effective analysis.

```
In [18]:

dict={
    'data': 'first',
    'route_type': 'first',
    'trip_creation_time': 'first',
    'source_name': 'first',
    'destination_name': 'last',
    'od_end_time': 'first',
    'start_scan_to_end_scan': 'first',
    'actual_distance_to_destination': 'last',
    'actual_time': 'last',
    'osrm_time': 'last',
    'osrm_distance': 'last',
    'segment_osrm_time': 'sum',
    'segment_osrm_time': 'sum',
    'segment_osrm_distance': 'sum'
}

gdf = df.groupby(by=['trip_uuid', 'source_center', 'destination_center'], as_index=False).agg(dict)
gdf
```

t[18]:	trip_uuid		source_center	destination_center	data	route_type	trip_creation_time	source_name	destination_name	od_start_time	od_enc
	0	trip- 153671041653548748	IND209304AAA	IND00000ACB	training	FTL	2018-09-12 00:00:16.535741	Kanpur_Central_H_6 (Uttar Pradesh)	Gurgaon_Bilaspur_HB (Haryana)	2018-09-12 16:39:46.858469	2018 13:40:23.1
	1	trip- 153671041653548748	IND462022AAA	IND209304AAA	training	FTL	2018-09-12 00:00:16.535741	Bhopal_Trnsport_H (Madhya Pradesh)	Kanpur_Central_H_6 (Uttar Pradesh)	2018-09-12 00:00:16.535741	2018 16:39:46.8
	2	trip- 153671042288605164	IND561203AAB	IND562101AAA	training	Carting	2018-09-12 00:00:22.886430	Doddablpur_ChikaDPP_D (Karnataka)	Chikblapur_ShntiSgr_D (Karnataka)	2018-09-12 02:03:09.655591	2018 03:01:59.5
	3	trip- 153671042288605164	IND572101AAA	IND561203AAB	training	Carting	2018-09-12 00:00:22.886430	Tumkur_Veersagr_l (Karnataka)	Doddablpur_ChikaDPP_D (Karnataka)	2018-09-12 00:00:22.886430	2018 02:03:09.€
	4	trip- 153671043369099517	IND000000ACB	IND160002AAC	training	FTL	2018-09-12 00:00:33.691250	Gurgaon_Bilaspur_HB (Haryana)	Chandigarh_Mehmdpur_H (Punjab)	2018-09-14 03:40:17.106733	2018 17:34:55.4
	26363	trip- 153861115439069069	IND628204AAA	IND627657AAA	test	Carting	2018-10-03 23:59:14.390954	Tirchchndr_Shnmgprm_D (Tamil Nadu)	Thisayanvilai_UdnkdiRD_D (Tamil Nadu)	2018-10-04 02:29:04.272194	2018 03:31:11.1
	26364	trip- 153861115439069069	IND628613AAA	IND627005AAA	test	Carting	2018-10-03 23:59:14.390954	Peikulam_SriVnktpm_D (Tamil Nadu)	Tirunelveli_VdkkuSrt_I (Tamil Nadu)	2018-10-04 04:16:39.894872	2018 05:47:45.1
	26365	trip- 153861115439069069	IND628801AAA	IND628204AAA	test	Carting	2018-10-03 23:59:14.390954	Eral_Busstand_D (Tamil Nadu)	Tirchchndr_Shnmgprm_D (Tamil Nadu)	2018-10-04 01:44:53.808000	2018 02:29:04.2
	26366	trip- 153861118270144424	IND583119AAA	IND583101AAA	test	FTL	2018-10-03 23:59:42.701692	Sandur_WrdN1DPP_D (Karnataka)	Bellary_Dc (Karnataka)	2018-10-04 03:58:40.726547	2018 08:46:09.1
	26367	trip- 153861118270144424	IND583201AAA	IND583119AAA	test	FTL	2018-10-03 23:59:42.701692	Hospet (Karnataka)	Sandur_WrdN1DPP_D (Karnataka)	2018-10-04 02:51:44.712656	2018 03:58:40.7
2	26368 r	ows × 18 columns									

Build some features to prepare the data for actual analysis. Extract features from the below fields.

Destination Name: Split & extract features out of destination. City-place-code (State)

```
In [19]: def location_to_state(a):
                  1 = a.split('('))
                  if len(1) == 1:
                       return 1[0]
                  else:
                      return l[1].replace(')', "")
In [20]: def location_to_city(a):
                 if 'location'
                      return 'unknown_city'
                  else:
                       1 = a.split()[0].split('_')
                      if 'CCU' in a:
    return 'Kolkata'
elif ('HBR' in a.upper()) or ('BLR' in a.upper()):
                       return 'Bengaluru'
elif 'MAA' in a.upper():
    return 'Chennai'
                       elif 'FBD' in a.upper():
    return 'Faridabad'
elif 'DEL' in a.upper():
                       return 'Delhi'
elif 'BOM' in a.upper():
return 'Mumbai'
                       elif 'OK' in a.upper():
    return 'Delhi'
                       elif 'GZB' in a.upper():
                      return 'Ghaziabad'
elif 'HYD' in a.upper():
return 'Hyderabad'
elif 'GGN' in a.upper():
                            return 'Gurgaon
                       elif 'AMD' in a.upper():
return 'Ahmedabad'
                       elif 'CJB' in a.upper():
    return 'Coimbatore'
                       return 1[0]
In [21]: def location to place(a):
                 if 'location
                       return a
                  elif 'HBR' in a:
                      return 'HBR Layout PC'
                 else:
    l = a.split()[0].split('_', 1)
                            return 'unknown_place'
                       else:
                            return 1[1]
In [22]: # for destination state
            gdf['destination_state'] = gdf['destination_name'].apply(location_to_state)
            print('No of destination state :', gdf['destination_state'].nunique())
            # for destination city
gdf['destination_city'] = gdf['destination_name'].apply(location_to_city)
print('No of destination city :', gdf['destination_city'].nunique())
            # for destination place
gdf['destination_place'] = gdf['destination_name'].apply(location_to_place)
print('No of destination place :', gdf['destination_place'].nunique())
            gdf[['destination_state','destination_city','destination_place']].head()
            No of destination state : 45
            No of destination city : 1197
            No of destination place : 1191
Out[22]:
               destination_state destination_city destination_place
            0
                        Haryana
                                                             Bilaspur HB
                                          Gurgaon
            1 Uttar Pradesh Kanpur Central_H_6
            2
                       Karnataka
                                       Chikblapur
                                                             ShntiSgr_D
                  Karnataka Doddablpur ChikaDPP_D
            3
                         Punjab
                                        Chandigarh
                                                       Mehmdpur H
```

Source Name: Split and extract features out of destination. City-place-code (State)

```
In [23]: # for source state
gdf['source_state'] = gdf['destination_name'].apply(location_to_state)
print('No of source state :', gdf['source_state'].nunique())

# for source city
gdf['source_city'] = gdf['source_name'].apply(location_to_city)
print('No of source_city :', gdf['source_city'].nunique())

# for source place
gdf['source_place'] = gdf['source_name'].apply(location_to_place)
print('No of source_place :', gdf['source_place'].nunique())

gdf[['source_state','source_city','source_place']].head()
```

```
No of source state : 45
         No of source_city : 1203
         No of source_place : 1217
Out[23]:
            source_state source_city source_place
         0
                Haryana
                            Kanpur Central_H_6
         1 Uttar Pradesh Bhopal
                                    Trnsport_H
         2
               Karnataka Doddablpur
                                    ChikaDPP D
         3
               Karnataka
                           Tumkur
                                    Veersagr I
          4
                          Gurgaon Bilaspur_HB
```

Trip creation time: Extract features like month, year and day etc

```
In [24]: gdf['trip_creation_date'] = pd.to_datetime(gdf['trip_creation_time'].dt.date)
gdf['trip_creation_date'].head()
                  2018-09-12
Out[24]:
                   2018-09-12
                   2018-09-12
                  2018-09-12
                  2018-09-12
             Name: trip_creation_date, dtype: datetime64[ns]
In [25]: # For day of the month
gdf['trip_creation_day'] = gdf['trip_creation_time'].dt.day
gdf['trip_creation_day'] = gdf['trip_creation_day'].astype('int8')
             gdf['trip_creation_month'] = gdf['trip_creation_time'].dt.month
gdf['trip_creation_month'] = gdf['trip_creation_month'].astype('int8')
             # For year
gdf['trip_creation_year'] = gdf['trip_creation_time'].dt.year
gdf['trip_creation_year'] = gdf['trip_creation_year'].astype('int16')
             gdf['trip_creation_week'] = gdf['trip_creation_time'].dt.isocalendar().week
gdf['trip_creation_week'] = gdf['trip_creation_week'].astype('int8')
             # For hour
gdf['trip_creation_hour'] = gdf['trip_creation_time'].dt.hour
gdf['trip_creation_hour'] = gdf['trip_creation_hour'].astype('int8')
             gdf['trip_creation_day_name'] = gdf['trip_creation_time'].dt.day_name()
             gdf[['trip_creation_day' , 'trip_creation_month', 'trip_creation_year' ,'trip_creation_week', 'trip_creation_hour','trip_creation_day_name']].head()
                 trip_creation_day trip_creation_month trip_creation_year trip_creation_week trip_creation_hour trip_creation_day_name
                                                            9
                                                                                                                                 0
             0
                                  12
                                                                               2018
                                                                                                         37
             1
                                  12
                                                            9
                                                                              2018
                                                                                                         37
                                                                                                                                0
                                                                                                                                                   Wednesday
             2
                                                            9
                                                                               2018
                                                                                                                                 0
                                  12
                                                            9
                                                                                                                                0
             3
                                                                               2018
                                                                                                         37
                                                                                                                                                   Wednesday
                                                                               2018
                                                                                                                                                   Wednesday
In [26]: gdf.shape
Out[26]: (26368, 31)
```

3. In-depth analysis and feature engineering:

Calculate the time taken between od_start_time and od_end_time and keep it as a feature. Drop the original columns, if required

```
In [27]: gdf['od_total_time'] = gdf['od_end_time'] - gdf['od_start_time']
gdf.drop(columns = ['od_end_time', 'od_start_time'], inplace = True)
gdf['od_total_time'] = gdf['od_total_time'].apply(lambda x : round(x.total_seconds() / 60.0, 2))
In [28]: gdf.head(3)
Out[28]:
                              trip uuid
                                        source center destination center
                                                                                     data route type trip creation time
                                                                                                                                                                 destination_name start_scan_to_end_scan actual_dis
                                                                                                                                            source name
                                                                                                                  2018-09-12
                                                                                                                                      Kanpur_Central_H_6
             o trip-
153671041653548748
                                                                                                                                                              Gurgaon_Bilaspur_HB
                                                                IND00000ACB training
                                                                                                                                                                                                         1260.0
                                                                                                              00:00:16.535741
                                                                                                                                           (Uttar Pradesh)
                                                                                                                                                                          (Haryana)
                                                                                                                  2018-09-12
                                                                                                                                       Bhopal\_Trnsport\_H
                                         IND462022AAA
                                                                IND209304AAA training
                                                                                                     FTL
                                                                                                                                                                                                          999.0
             1 153671041653548748
                                                                                                                                                                     (Uttar Pradesh)
                                                                                                              00:00:16.535741
                                                                                                                                       (Madhya Pradesh)
                                                                                                                  2018-09-12 Doddablpur_ChikaDPP_D Chikblapur_ShntiSgr_D
                                         IND561203AAB
                                                                IND562101AAA training
                                                                                                 Carting
                                                                                                                                                                                                           58.0
             153671042288605164
                                                                                                              00:00:22.886430
                                                                                                                                               (Karnataka)
                                                                                                                                                                         (Karnataka)
            3 rows × 30 columns
                    -- (
'source_center' : 'first',
'destination_center' : 'last',
                    'data' : 'first',
'route_type' : 'first',
'trip_creation_time' : 'first',
                                        'first
                    'destination_name' : 'last',
```

```
'od_total_time': 'first',
    'start_scan_to_end_scan': 'sum',
    'actual_distance_to_destination': 'sum',
    'artual_time': 'sum',
    'osrm_time': 'sum',
    'osrm_distance': 'sum',
    'segment_actual_time': 'sum',
    'segment_osrm_time': 'sum',
    'segment_osrm_distance': 'sum',
    'source_ciste': 'first',
    'source_city': 'first',
    'source_city': 'first',
    'destination_city': 'last',
    'destination_place': 'last',
    'destination_place': 'last',
    'destination_place': 'first',
    'trip_creation_day': 'first',
    'trip_creation_week': 'first',
    'trip_creation_week': 'first',
    'trip_creation_week': 'first',
    'trip_creation_week': 'first',
    'trip_creation_day_name': 'first'
}

gdf_2 = gdf.groupby(by='trip_uuid', as_index=False).agg(dict_2)
gdf_2.head()
```

9]:	trip_uuid	source_center	destination_center	data	route_type	trip_creation_time	source_name	destination_name	od_total_time	start_scan_to_en
	trip- 153671041653548748	IND209304AAA	IND209304AAA	training	FTL	2018-09-12 00:00:16.535741	Kanpur_Central_H_6 (Uttar Pradesh)	Kanpur_Central_H_6 (Uttar Pradesh)	1260.60	
	trip- 1 153671042288605164	IND561203AAB	IND561203AAB	training	Carting	2018-09-12 00:00:22.886430	Doddablpur_ChikaDPP_D (Karnataka)	Doddablpur_ChikaDPP_D (Karnataka)	58.83	
	trip- 153671043369099517	IND000000ACB	IND000000ACB	training	FTL	2018-09-12 00:00:33.691250	Gurgaon_Bilaspur_HB (Haryana)	Gurgaon_Bilaspur_HB (Haryana)	834.64	
	trip- 153671046011330457	IND400072AAB	IND401104AAA	training	Carting	2018-09-12 00:01:00.113710	Mumbai Hub (Maharashtra)	Mumbai_MiraRd_IP (Maharashtra)	100.49	
	trip- 153671052974046625	IND583101AAA	IND583119AAA	training	FTL	2018-09-12 00:02:09.740725	Bellary_Dc (Karnataka)	Sandur_WrdN1DPP_D (Karnataka)	152.01	

5 rows × 29 columns

Hypothesis testing using T-test

STEP-1: Establish the Null Hypothesis

Null Hypothesis ($\rm H0$) - There is no significant difference between X variable & Y variable.

Alternate Hypothesis (HA) - There is a significant difference between X variable & Y variable.

STEP-2: Validate Assumptions for the Hypothesis

Check the distribution using a QQ Plot. Assess the homogeneity of variances using Levene's test.

STEP-3 Determine Test Statistics and Distribution under H0.

If assumptions for t-test are satisfied, we will move forward with the t-test for independent samples. Otherwise, perform a non-parametric test equivalent to the t-test for independent samples, such as the Mann-Whitney U rank test.

STEP-4 Calculate p-value & Set Alpha

Set significance level (alpha) to 0.05

STEP-5 Compare p-value & alpha.

p-val > alpha** : Accept H0

Out[30]

p-val < alpha** : Fail to reject H0

Compare the difference between od_total_time and start_scan_to_end_scan. Do hypothesis testing/ Visual analysis to check.

In [30]: gdf_2[['od_total_time', 'start_scan_to_end_scan']].describe()

:		od_total_time	start_scan_to_end_scan
	count	14817.000000	14817.000000
	mean	340.508373	530.810016
	std	505.656648	658.705957
	min	23.000000	23.000000
	25%	104.160000	149.000000
	50%	175.030000	280.000000
	75%	334.750000	637.000000
	max	7898.550000	7898.000000

Visual Checks to Assess Normality of Samples

0.0025 - 0.0020 - 0.0015 - 0.0015 - 0.0005 - 0.0

QQ Plot for Normality

```
In [32]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 7))
    qqplot(gdf["od_total_time"], line='s', ax=ax1)
    ax1.set_title('QQ plot for od_total_time')
    qqplot(gdf["start_scan_to_end_scan"], line='s', ax=ax2)
    ax2.set_title('QQ plot for start_scan_to_end_scan')
    plt.suptitle('QQ plots for od_total_time and start_scan_to_end_scan')
    plt.show()
```


• The plots above indicate that the samples are not drawn from a normal distribution.

Shapiro-Wilk test for normality

H_0: The sample exhibits normal distribution

H_1 : The sample does not exhibit normal distribution

alpha = 0.05

Test Statistics: Shapiro-Wilk test for normality

```
In [33]:
    test_stat, p_value = shapiro(gdf_2['od_total_time'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

    p-value : 0.0
    The sample does not exhibit normal distribution</pre>
```

```
In [34]:
    test_stat, p_value = shapiro(gdf_2['start_scan_to_end_scan'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

p-value : 0.0
The sample does not exhibit normal distribution</pre>
```

Lavene's test for Homogeneity of Variances

```
In [35]: # Null Hypothesis(H0) - Variance is Homogenous

# Alternate Hypothesis(HA) - Variance is Non Homogenous

test_stat, p_value = levene(gdf_2['od_total_time'], gdf_2['start_scan_to_end_scan'])
print('p-value : ', p_value)

if p_value < 0.05:
    print('Samples do not have Homogeneity in Variance')
else:
    print('Samples have Homogeneity in Variance ')

p-value : 1.0981701697644366e-112
Samples do not have Homogeneity in Variance</pre>
```

As the assumptions of T-test are not satisfied, we are performing the non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
In [36]: Test_stat, p_value = spy.mannwhitneyu(gdf_2['od_total_time'], gdf_2['start_scan_to_end_scan'])
print('p-value : ', p_value)
if p_value < 0.05:
    print('The samples are not similar')
else:
    print('The samples are similar ')

p-value : 0.0
The samples are not similar</pre>
```

Conclusion - The "od_total_time" and "start_scan_to_end_scan" are not similar, as p-value < alpha.

Compare difference between actual_time aggregated value and OSRM time aggregated value (aggregated values are the values you'll get after merging the rows on the basis of trip_uuid). Do hypothesis testing / visual analysis to check.

```
In [37]: gdf_2[['actual_time', 'osrm_time']].describe()
                actual time
                            osrm time
         count 14817.000000 14817.000000
         mean 357.143754 161.384018
           std 561.396157 271.360995
               9.000000
          min
                             6.000000
          25%
                67.000000
                           29.000000
          50% 149.000000 60.000000
          75%
                370.000000 168.000000
          max 6265.000000 2032.000000
```

Visual Checks to Assess Normality of Samples

```
In [38]:
plt.figure(figsize=(15, 8)) # Adjust width and height as needed
sns.kdeplot(gdf["actual_time"], label="actual_time")
sns.kdeplot(gdf["osrm_time"], label="osrm_time")
plt.legend()
plt.show()
```


QQ plots for actual time and osrm time

• The plots above indicate that the samples are not drawn from a normal distribution.

Shapiro-Wilk test for normality

 H_0 : The sample exhibits normal distribution

 $\ensuremath{\text{H_1}}$: The sample does not exhibit normal distribution

alpha = 0.05

Test Statistics : Shapiro-Wilk test for normality

```
In [41]: test_stat, p_value = shapiro(gdf_2['actual_time'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

p-value : 0.0
The sample does not exhibit normal distribution

In [42]: test_stat, p_value = shapiro(gdf_2['osrm_time'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

p-value : 0.0
The sample does not exhibit normal distribution</pre>
```

Lavene's test for Homogeneity of Variances

```
In [43]: # Null Hypothesis(H0) - Variance is Homogenous

# Alternate Hypothesis(HA) - Variance is Non Homogenous

test_stat, p_value = levene(gdf_2['actual_time'], gdf_2['osrm_time'])
print('p-value : ', p_value)

if p_value < 0.05:
    print('Samples do not have Homogeneity in Variance')
else:
    print('Samples have Homogeneity in Variance ')

p-value : 1.871297993683208e-220
Samples do not have Homogeneity in Variance</pre>
```

As the assumptions of T-test are not satisfied, we are performing the non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
In [44]:
    Test_stat, p_value = spy.mannwhitneyu(gdf_2['actual_time'], gdf_2['osrm_time'])
    print('p-value :', p_value)
    if p_value < 0.05:
        print('The samples are not similar')
    else:
        print('The samples are similar ')

    p-value : 0.0
    The samples are not similar</pre>
```

Conclusion - The "actual_time" and "osrm_time" are not similar, as p-value < alpha.

Compare difference between actual_time aggregated value and segment actual time aggregated value. Do hypothesis testing / visual analysis to check.

```
In [45]: gdf_2[['actual_time', 'segment_actual_time']].describe()
Out[45]:
                  actual_time segment_actual_time
          count 14817.000000
                                    14817.000000
                  357.143754
                                    353.892286
                  561.396157
                                      556.247965
            std
                    9.000000
                                        9.000000
                   67.000000
           25%
                                       66.000000
           50%
                  149.000000
                                      147.000000
                  370.000000
                                       367.000000
           75%
                  6265.000000
                                      6230.000000
```

Visual Checks to Assess Normality of Samples

QQ Plot for Normality

```
In [47]:
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 7))
    qqplot(gdf["actual_time"], line='s', ax=ax1)
    ax1.set_title('QQ plot for actual_time')
    qqplot(gdf["segment_actual_time"], line='s', ax=ax2)
    ax2.set_title('QQ plot for segment_actual_time')
```

plt.suptitle('QQ plots for actual_time and segment_actual_time')
plt.show()

QQ plots for actual_time and segment_actual_time

• The plots above indicate that the samples are not drawn from a normal distribution.

Shapiro-Wilk test for normality

H_0: The sample exhibits normal distribution

H 1: The sample does not exhibit normal distribution

alpha = 0.05

Test Statistics: Shapiro-Wilk test for normality

```
In [48]: test_stat, p_value = spy.shapiro(gdf_2['actual_time'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

    p-value : 0.0
    The sample does not exhibit normal distribution

In [49]: test_stat, p_value = spy.shapiro(gdf_2['segment_actual_time'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

    p-value : 0.0
    The sample does not exhibit normal distribution</pre>
```

Lavene's test for Homogeneity of Variances

```
In [50]: # Null Hypothesis(H0) - Homogenous Variance

# Alternate Hypothesis(HA) - Non Homogenous Variance

test_stat, p_value = spy.levene(gdf_2['actual_time'], gdf_2['segment_actual_time'])
print('p-value : ', p_value)

if p_value < 0.05:
    print('The samples do not have Homogenous Variance')
else:
    print('The samples have Homogenous Variance ')</pre>
p-value : 0.6955022668700895
```

p-value: 0.6955022668700895 The samples have Homogenous Variance

As the normality assumption of T-test is not satisfied, we are performing the non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
In [51]: Test_stat, p_value = spy.mannwhitneyu(gdf_2['actual_time'], gdf_2['segment_actual_time'])
    print('p-value :', p_value)
    if p_value < 0.05:
        print('The samples are not similar')
    else:
        print('The samples are similar ')

p-value : 0.4164235159622476
The samples are similar</pre>
```

Conclusion - The "actual_time" and "segment_actual_time" are similar, as p-value > alpha.

Compare difference between osrm distance aggregated value and segment osrm distance aggregated value. Do hypothesis testing / visual analysis to check.

Out[52]:

```
In [52]: gdf_2[['osrm_distance', 'segment_osrm_distance']].describe()
```

	osrm_distance	segment_osrm_distance
count	14817.000000	14817.000000
mean	204.344689	223.201161
std	370.395573	416.628374
min	9.072900	9.072900
25%	30.819200	32.654500
50%	65.618800	70.154400
75%	208.475000	218.802400
max	2840.081000	3523.632400

Visual Checks to Assess Normality of Samples

```
In [53]: plt.figure(figsize=(15, 8)) # Adjust width and height as needed sns.kdeplot(gdf["osrm_distance"], label='osrm_distance') sns.kdeplot(gdf["segment_osrm_distance"], label='segment_osrm_distance') plt.legend() plt.show()
```


QQ Plot for Normality

• The plots above indicate that the samples are not drawn from a normal distribution.

Shapiro-Wilk test for normality

```
H 0: The sample exhibits normal distribution
```

H_1: The sample does not exhibit normal distribution

alpha = 0.05

Test Statistics: Shapiro-Wilk test for normality

```
In [55]: test_stat, p_value = shapiro(gdf_2['osrm_distance'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

p-value : 0.0
The sample does not exhibit normal distribution

In [56]: test_stat, p_value = shapiro(gdf_2['segment_osrm_distance'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

p-value : 0.0
The sample does not exhibit normal distribution')</pre>
```

Lavene's test for Homogeneity of Variances

```
In [57]: # Null Hypothesis(H0) - Variance is Homogenous

# Alternate Hypothesis(HA) - Variance is Non Homogenous

test_stat, p_value = levene(gdf_2['osrm_distance'], gdf_2['segment_osrm_distance'])
print('p-value : ', p_value)

if p_value < 0.05:
    print('Samples do not have Homogeneity in Variance')
else:
    print('Samples have Homogeneity in Variance ')
p-value : 0.00020976354422600578
Samples do not have Homogeneity in Variance</pre>
```

As the assumptions of T-test are not satisfied, we are performing the non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
In [58]: Test_stat, p_value = spy.mannwhitneyu(gdf_2['osrm_distance'], gdf_2['segment_osrm_distance'])
print('p-value :', p_value)
if p_value < 0.05:
    print('The samples are not similar')
else:
    print('The samples are similar ')

p-value : 9.511383588276373e-07
The samples are not similar</pre>
```

Conclusion - The "osrm_distance" and "segment_osrm_distance" are not similar, as p-value < alpha.

Conduct hypothesis testing and visual analysis comparing the aggregated values of "osrm_time" and "segment_osrm_time" obtained after merging rows based on the trip_uuid column.

```
In [59]: gdf_2[['osrm_time', 'segment_osrm_time']].describe()
                 osrm time segment osrm time
         count 14817.000000
                                 14817.000000
         mean 161.384018
                                  180.949787
           std 271.360995
                                   314.542047
                                  6.000000
           min
               6.000000
          25%
                  29.000000
                                    31.000000
          50%
                 60.000000
                                   65.000000
          75%
                 168.000000
                                   185.000000
          max 2032.000000
                                  2564.000000
```

Visual Checks to Assess Normality of Samples

```
In [60]: plt.figure(figsize=(15, 8)) # Adjust width and height as needed
    sns.kdeplot(gdf["segment_osrm_time"], label="segment_osrm_time")
    sns.kdeplot(gdf["osrm_time"], label="osrm_time")
    plt.legend()
    plt.show()
```


QQ Plot for Normality

QQ plots for segment_osrm_time and osrm_time

• The plots above illustrate that the samples deviate from a normal distribution.

Shapiro-Wilk test for normality

 H_0 : The sample exhibits normal distribution

H_1 : The sample does not exhibit normal distribution

alpha = 0.05

Test Statistics: Shapiro-Wilk test for normality

```
In [62]: test_stat, p_value = spy.shapiro(gdf_2['osrm_time'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

p-value : 0.0
    The sample does not exhibit normal distribution

In [63]: test_stat, p_value = spy.shapiro(gdf_2['segment_osrm_time'].sample(5000))
    print('p-value : ', p_value)
    if p_value < 0.05:
        print('The sample does not exhibit normal distribution')
    else:
        print('The sample exhibits normal distribution')

p-value : 0.0
The sample does not exhibit normal distribution</pre>
```

Lavene's test for Homogeneity of Variances

```
In [64]: # Null Hypothesis(H0) - Homogenous Variance

# Alternate Hypothesis(HA) - Non Homogenous Variance

test_stat, p_value = spy.levene(gdf_2['osrm_time'], gdf_2['segment_osrm_time'])
print('p-value : ', p_value)

if p_value < 0.05:
    print('The samples do not have Homogenous Variance')
else:
    print('The samples have Homogenous Variance ')

p-value : 8.349482669010088e-08
The samples do not have Homogenous Variance</pre>
```

As the assumptions of T-test are not satisfied, we are performing the non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
In [65]: test_stat, p_value = spy.mannwhitneyu(gdf_2['osrm_time'], gdf_2['segment_osrm_time'])
print('p-value : ', p_value)
if p_value < 0.05:
    print('The samples are not similar')
else:
    print('The samples are similar ')

p-value : 2.2995370859748865e-08
The samples are not similar</pre>
```

Conclusion- osrm_time and segment_osrm_time are not similar since p-value < alpha.

Extra Analysis

Day of the Week with most deliveries

```
In [66]: delivery_counts = gdf_2['trip_creation_day_name'].value_counts()

plt.figure(figsize=(10, 6))
    sns.barplot(x=delivery_counts.index, y=delivery_counts.values, palette='viridis')
    plt.title('Number of Deliveries by Day of the Week')
    plt.xlabel('Day of the Week')
    plt.ylabel('Number of Deliveries')
    plt.xticks(rotation=45)
    plt.show()
```


Peak delivery hours

```
In [67]: df['od_start_time'] = pd.to_datetime(df['od_start_time'])
df['delivery_hour'] = df['od_start_time'].dt.hour
delivery_counts_by_hour = df['delivery_hour'].value_counts().sort_index()

plt.figure(figsize=(10, 6))
delivery_counts_by_hour.plot(kind='bar', color='skyblue')
plt.title('Number of Deliveries by Hour of the Day')
plt.xlabel('Hour of the Day')
plt.ylabel('Number of Deliveries')
plt.xicks(rotation=0)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()

peak_hours = delivery_counts_by_hour[delivery_counts_by_hour == delivery_counts_by_hour.max()].index
print("Peak delivery hour(s):", peak_hours.tolist())
```


Peak delivery hour(s): [4]

```
In [69]: top_n = 10 # Adjust the number of top cities to display
top_cities = gdf['destination_city'].value_counts().head(top_n)

plt.figure(figsize=(12, 8))
top_cities.plot(kind='bar', color='skyblue')
plt.title(f'Top {top_n} Destination Cities by Number of Deliveries')
plt.xlabel('Destination City')
plt.ylabel('Number of Deliveries')
plt.xticks(rotation=90)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```


Time period for which the dataset is given

Top 10 Destination Cities with Most Time-Consuming Deliveries

```
In [71]:
    time_by_city = gdf_2.groupby('destination_city')['actual_time'].sum().reset_index()
    top_10_cities = time_by_city.nlargest(10, 'actual_time')

plt.figure(figsize=(10, 6))
    plt.bar(top_10_cities['destination_city'], top_10_cities['actual_time'])
    plt.xlabel('bestination City')
    plt.ylabel('Total Time (seconds)')
    plt.title('Top 10 Destination Cities with Most Time-Consuming Deliveries')
    plt.titicks(rotation=45, ha='right')
    plt.tight_layout()
    plt.show()
```


Top 10 Destination Cities with Highest Average Time per Delivery

```
In [72]: avg_time_per_delivery = gdf_2.groupby('destination_city')['actual_time'].mean().reset_index()

top_10_cities_avg_time = avg_time_per_delivery.nlargest(10, 'actual_time')

plt.figure(figsize=(10, 6))
 plt.bar(top_10_cities_avg_time['destination_city'], top_10_cities_avg_time['actual_time'])
 plt.xlabel('Destination City')
 plt.ylabel('Average Time per Delivery (seconds)')
 plt.title('Top 10 Destination Cities with Highest Average Time per Delivery')
 plt.xticks(rotation=45, ha='right')
 plt.tight_layout()
 plt.show()
```


Most preferable route type

```
In [73]: sum_time_per_route_type = gdf.groupby('route_type')['actual_time'].sum()
sum_time_per_route_type

Out[73]: route_type
Carting 1120662.0
FTL 4171137.0
Name: actual_time, dtype: float64
```

Number of unique values in each column

In [74]: gdf_2.nunique()

```
14817
          trip_uuid
Out[74]:
           source_center
                                                    938
           destination_center
                                                   1042
           route_type
           trip_creation_time
                                                  14817
           source_name
                                                    938
           destination name
                                                   1042
           od_total_time
                                                   12655
           start_scan_to_end_scan
actual_distance_to_destination
                                                   2208
                                                  14801
           actual_time
                                                   1853
          osrm_time
osrm_distance
                                                    817
                                                   14734
           segment_actual_time
segment_osrm_time
                                                   1890
                                                   1242
           segment_osrm_distance
                                                   14754
           source state
                                                     43
           source_city
           source_place
                                                     761
           destination city
                                                     806
           destination_place
          destination_state
trip_creation_day
                                                      39
           trip_creation_month
           trip_creation_year
           trip_creation_week
                                                      24
           trip creation hour
           trip_creation_day_name
           dtype: int64
```

14817 rows × 9 columns

Identify outliers within the numerical variables and verify their presence through visual analysis.

75]:		od_total_time	start_scan_to_end_scan	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	segment_actual_time	segment_osrm_time	segment_osrm_dista
	0	1260.60	2259.0	824.732854	1562.0	717.0	991.3523	1548.0	1008.0	1320.4
	1	58.83	180.0	73.186911	143.0	68.0	85.1110	141.0	65.0	84.1
	2	834.64	3933.0	1927.404273	3347.0	1740.0	2354.0665	3308.0	1941.0	2545.20
	3	100.49	100.0	17.175274	59.0	15.0	19.6800	59.0	16.0	19.8
	4	152.01	717.0	127.448500	341.0	117.0	146.7918	340.0	115.0	146.79
	14812	152.79	257.0	57.762332	83.0	62.0	73.4630	82.0	62.0	64.8
	14813	60.59	60.0	15.513784	21.0	12.0	16.0882	21.0	11.0	16.0
	14814	248.41	421.0	38.684839	282.0	48.0	58.9037	281.0	88.0	104.8
	14815	105.66	347.0	134.723836	264.0	179.0	171.1103	258.0	221.0	223.5
	14816	287.47	353.0	66.081533	275.0	68.0	80.5787	274.0	67.0	80.5°

In [76]: plt.figure(figsize=(12, 8))
 sns.boxplot(data=gdf_2[num_columns], orient='h')
 plt.title('Box Plot of Numerical Variables Distribution')
 plt.show()

• The visualizations above clearly indicate the presence of outliers across all numerical columns, highlighting the necessity for outlier treatment.

```
In [77]: # Identifying outliers in the numerical variables using the IQR method

def handle_outliers_iqr_stats(data):
```

```
Q1 = np.percentile(data, 25)
     Q1 = np.percentile(data, 25)
Q3 = np.percentile(data, 75)
IQR = Q3 - Q1
# Bounds for outliers
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
      outliers = data[(data < lower_bound) | (data > upper_bound)]
      return {'Q1': Q1, 'Q3': Q3, 'IQR': IQR, 'LB': lower_bound, 'UB': upper_bound, 'Number of outliers': len(outliers)}
 for column in num_columns:
      stats = handle_outliers_iqr_stats(gdf_2[column])
print(f"Column: {column}")
for key, value in stats.items():
           print(f"{key}: {value}")
      print()
Column: od total time
Q1: 104.16
Q3: 334.75
IQR: 230.59
LB: -241.725
UB: 680.635
Number of outliers: 1584
Column: start_scan_to_end_scan
Q3: 637.0
IQR: 488.0
LB: -583.0
UB: 1369.0
Number of outliers: 1267
Column: actual distance to destination
Q1: 22.83723905859321
03: 164.58320763841138
IQR: 141.74596857981817
LB: -189.78171381113404
UB: 377.2021605081386
Number of outliers: 1449
Column: actual_time
Q1: 67.0
03: 370.0
IQR: 303.0
LB: -387.5
UB: 824.5
Number of outliers: 1643
Column: osrm_time
Q1: 29.0
Q3: 168.0
IQR: 139.0
LB: -179.5
UB: 376.5
Number of outliers: 1517
Column: osrm_distance
Q1: 30.8192
Q3: 208.475
IQR: 177.6558
LB: -235.6645
UB: 474.9587
Number of outliers: 1524
Column: segment_actual_time
Q1: 66.0
Q3: 367.0
IQR: 301.0
LB: -385.5
UB: 818.5
Number of outliers: 1643
Column: segment_osrm_time
Q1: 31.0
Q3: 185.0
IQR: 154.0
LB: -200.0
UB: 416.0
Number of outliers: 1492
Column: segment_osrm_distance
Q1: 32.6545
Q3: 218.8024
IQR: 186.1479
LB: -246.56735000000003
UB: 498.02425000000005
```

Do one-hot encoding of categorical variables (like route_type)

The two most convenient pick for one-hot encoding are categorical variables are route_type' and 'data'.

We start by doing -

- value counts, then
- performing one-hot encoding, finally
- value counts after one-hot encoding

```
In [78]: gdf_2['route_type'].value_counts()
```

```
Carting
Out[78]:
         FTL
                     5909
         Name: route_type, dtype: int64
In [79]: label_encoder = LabelEncoder()
         gdf_2['route_type'] = label_encoder.fit_transform(gdf_2['route_type'])
In [80]: gdf_2['route_type'].value_counts()
Out[80]:
               5909
          Name: route_type, dtype: int64
In [81]: gdf_2['route_type']
Out[81]:
                   0
                   0
          4
                   1
          14812
          14813
          14814
          14815
          14816
          Name: route type, Length: 14817, dtype: int32
In [82]: gdf_2['data'].value_counts()
Out[82]: training 10654
          test
                       4163
          Name: data, dtype: int64
In [83]: label_encoder = LabelEncoder()
          gdf_2['data'] = label_encoder.fit_transform(gdf_2['data'])
In [84]: gdf_2['data'].value_counts()
Out[84]: 1 0
             10654
                4163
          Name: data, dtype: int64
In [85]: gdf_2.head()
Out[85]:
                      trip_uuid source_center destination_center data route_type trip_creation_time
                                                                                                                            destination_name od_total_time start_scan_to_end_s
                                                                                      2018-09-12
                                                                                                     Kanpur Central H 6
                                                                                                                           Kanpur Central H 6
                           trip-
          0 153671041653548748 IND209304AAA
                                                 IND209304AAA
                                                                                                                                                  1260 60
                                                                                                                                                                        221
                                                                                   00:00:16.535741
                                                                                                         (Uttar Pradesh)
                                                                                                                               (Uttar Pradesh)
                                                                                      2018-09-12 Doddablpur_ChikaDPP_D Doddablpur_ChikaDPP_D
          1 153671042288605164 IND561203AAB
                                                 IND561203AAR
                                                                                                                                                    58.83
                                                                                                                                                                         15
                                                                                  00:00:22.886430
                                                                                                           (Karnataka)
                                                                                                                                 (Karnataka)
                          trip-
                                                                                      2018-09-12
                                                                                                    Gurgaon_Bilaspur_HB
                                                                                                                          Gurgaon_Bilaspur HB
          2 153671043369099517
                                IND00000ACB
                                                  IND000000ACB
                                                                             1
                                                                                                                                                   834.64
                                                                                                                                                                        39:
                                                                                  00:00:33.691250
                                                                                                            (Haryana)
                                                                                                                                   (Haryana)
                                                                                     2018-09-12
                                                                                                           Mumbai Hub
                                                                                                                           Mumbai MiraRd IP
                                IND400072AAB
                                                 IND401104AAA
                                                                                                                                                   100.49
                                                                                                                                                                         1(
          3 <sub>153671046011330457</sub>
                                                                                  00:01:00.113710
                                                                                                          (Maharashtra)
                                                                                                                               (Maharashtra)
                                                                                                                         Sandur_WrdN1DPP_D
                                                                                      2018-09-12
          4 153671052974046625 IND583101AAA
                                                 IND583119AAA
                                                                                                    Bellary_Dc (Karnataka)
                                                                                                                                                   152.01
                                                                                  00:02:09.740725
                                                                                                                                  (Karnataka)
         5 rows × 29 columns
```

Normalize/ Standardize the numerical features using MinMaxScaler or StandardScaler.

Normalisation using MinMaxScaler

Out[86]:		od_total_time	start_scan_to_end_scan	actual_distance_to_destination	actual_time	osrm_time	osrm_distance	segment_actual_time	segment_osrm_time	segment_osrm_dista
	0	-0.157145	-0.283937	-0.374613	-0.248242	-0.350938	-0.346972	-0.247388	-0.391712	-0.373
	1	-0.004550	-0.019937	-0.029476	-0.021419	-0.030602	-0.026859	-0.021218	-0.023065	-0.021
	2	-0.103058	-0.496508	-0.880999	-0.533568	-0.855874	-0.828325	-0.530301	-0.756450	-0.721
	3	-0.009839	-0.009778	-0.003753	-0.007992	-0.004442	-0.003747	-0.008037	-0.003909	-0.0030
	4	-0.016381	-0.088127	-0.054395	-0.053069	-0.054788	-0.048647	-0.053207	-0.042611	-0.039
					•••					
	14812	-0.016480	-0.029714	-0.022392	-0.011829	-0.027641	-0.022745	-0.011734	-0.021892	-0.015
	14813	-0.004773	-0.004698	-0.002990	-0.001918	-0.002962	-0.002478	-0.001929	-0.001955	-0.001
	14814	-0.028621	-0.050540	-0.013631	-0.043638	-0.020731	-0.017602	-0.043723	-0.032056	-0.027
	14815	-0.010496	-0.041143	-0.057736	-0.040761	-0.085390	-0.057237	-0.040026	-0.084050	-0.0610
	14816	-0.033581	-0.041905	-0.026213	-0.042519	-0.030602	-0.025258	-0.042598	-0.023847	-0.020
	14817	rows × 9 colum	nns							
1										-

Standardisation using StandardScaler

```
In [87]: # Create StandardScaler object
standard_scaler = StandardScaler()

# Standardize numerical features using StandardScaler
gdf_standardized = gdf_2.copy() # Make a copy of the original DataFrame
gdf_standardized[num_columns] = standard_scaler.fit_transform(gdf_2[num_columns])
gdf_standardized[num_columns]
```

Out[87]: _		od_total_time	start_scan_to_end_scan	$actual_distance_to_destination$	actual_time	osrm_time	osrm_distance	segment_actual_time	segment_osrm_time	segment_osrm_dista
	0	1.819659	2.623702	2.162092	2.146251	2.047585	2.124848	2.146791	2.629468	2.633
	1	-0.557073	-0.532593	-0.298944	-0.381461	-0.344144	-0.321920	-0.382742	-0.368643	-0.333
	2	0.977241	5.165134	5.772935	5.325931	5.817598	5.804050	5.310954	5.595785	5.573
	3	-0.474683	-0.654047	-0.482362	-0.531093	-0.539462	-0.498578	-0.530163	-0.524430	-0.488
	4	-0.372792	0.282670	-0.121257	-0.028757	-0.163566	-0.155387	-0.024976	-0.209676	-0.183
		•••			•••					
	14812	-0.371249	-0.415693	-0.349454	-0.488341	-0.366255	-0.353368	-0.488813	-0.378181	-0.380
	14813	-0.553593	-0.714774	-0.487802	-0.598784	-0.550518	-0.508275	-0.598480	-0.540327	-0.497
	14814	-0.182142	-0.166711	-0.411926	-0.133856	-0.417849	-0.392677	-0.131047	-0.295518	-0.283!
	14815	-0.464458	-0.279057	-0.097433	-0.165920	0.064919	-0.089730	-0.172397	0.127333	0.000
	14816	-0.104894	-0.269947	-0.322212	-0.146325	-0.344144	-0.334157	-0.143632	-0.362284	-0.342

14817 rows × 9 columns

plt.show()

```
In [88]: plt.figure(figsize=(14, 28))
   plt.suptitle('Histograms of Scaled Numerical Columns after MinMaxScaler', fontsize=16) # Super title

num_plots = len(num_columns)
   num_rows = num_plots // 2 + num_plots % 2 # Calculate number of rows needed

for i, column in enumerate(num_columns):
    plt.subplot(num_rows, 2, i + 1)
    sns.histplot(gdf_normalized_minmax[column], bins=30, color='skyblue', kde=True)
    plt.title(f'Histogram of {column}')
    plt.xlabel('Scaled Value')
    plt.ylabel('Frequency')
    plt.grid(True)

plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust Layout to make room for super title
```

Histograms of Scaled Numerical Columns after MinMaxScaler


```
£ 4000
2000
0.0 0.2 0.4 0.6 0.8 1.0
Scaled Value
```

```
In [89]: plt.figure(figsize=(14, 28))
    plt.suptitle('Histograms of Scaled Numerical Columns after StandardScaler', fontsize=16) # Super title

num_plots = len(num_columns)
    num_rows = num_plots // 2 + num_plots % 2 # Calculate number of rows needed

for i, column in enumerate(num_columns):
    plt.subplot(num_rows, 2, i + 1)
    sns.histplot(gdf_standardized[column], bins=30, color='skyblue', kde=True)
    plt.title(f'Histogram of {column}')
    plt.xlabel('Standardized Value')
    plt.ylabel('Standardized Value')
    plt.grid(True)

plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust Layout to make room for super title
plt.show()
```

Histograms of Scaled Numerical Columns after StandardScaler

Business Insights and Recommendations

Comparison between od_total_time & Start_scan_to_end_scan:

- Hypothesis testing & visual analysis indicate that there is a significant difference between od_total_time & start_scan_to_end_scan. This suggests that the time taken for deliveries varies significantly between these two variables.
- Recommendation: We need to further collect data to know factors which are contributing to this difference & to make the delivery process better accordingly.

Comparison between Actual_time & OSRM_time:

- Hypothesis testing & visual analysis indicate that there is a significant difference between Actual_time & OSRM_time. This suggests that the estimated time provided by the OSRM routing engine differs from the actual time taken for deliveries.
- Recommendation: Evaluate the accuracy of the OSRM routing engine & consider incorporating additional factors to improve the estimation accuracy.

Comparison between Actual_time & Segment_actual_time:

- While most tests rejected the null hypothesis, the Shapiro-Wilk test for normality showed that samples are similar. This indicates that there might not be a significant difference between Actual_time & Segment_actual_time.
- Recommendation: Further investigation is needed to underst& the relationship between these two variables & determine if any optimization opportunities exist.

Comparison between OSRM_distance & Segment_osrm_distance:

- Hypothesis testing & visual analysis indicate that there is a significant difference between OSRM_distance & Segment_osrm_distance. This suggests that the estimated distance provided by the OSRM routing engine differs from the actual distance covered for deliveries.
- Recommendation: Look into why there's a difference and think about making the methods used for estimating distances better.

Comparison between OSRM_time & Segment_osrm_time:

- Hypothesis testing & visual analysis indicate that there is a significant difference between OSRM_time & Segment_osrm_time. This suggests that the estimated time
 provided by the OSRM routing engine differs from the actual time taken for segment deliveries.
- Recommendation: Check what things affect how long OSRM thinks a delivery will take. Make improvements to the formulas used by the system based on what you find

Peak delivery hours occur at 4 AM, while the lowest delivery hours occur at 12 PM.

• Recommendation: Make best use of resources & logistics at the time of peak delivery hours as these are the most important hours for the business. If there is less number of employees, then more employees should be put to work.

Day-wise Distribution of Deliveries:

- Most deliveries occur on Wednesdays, while Sundays have the lowest delivery volume. Saturdays have the second-highest delivery volume.
- Recommendation: Change the number of workers and materials depending on the delivery trends each day to make operations smoother.

Top Destination Cities with Most Time-Consuming Deliveries:

- Gurugram, Bangalore, Kolkata, & Delhi are the top destination cities with the most time-consuming deliveries.
- Recommendation: Examine why deliveries take longer in these cities and put plans in place to make the delivery process smoother.

Most Preferable Route Type:

- Carting route type has significantly more deliveries compared to FTL route type.
- Recommendation: Assign resources and plan logistics more effectively according to the preferred route types to improve efficiency and reduce costs.

Outlier Data Analysis:

- Several numerical columns contain outliers, which may affect the overall analysis & interpretation of results.
- Recommendation: Take a closer look at the unusual data points to see if they make sense or might be mistakes. Then, decide what to do with them, like changing the data or leaving them out of the analysis

These insights & recommendations highlight areas for improvement & betterment. By making use of the data-driven insights, businesses can increase their delivery processes, reduce costs, & improve customer satisfaction.