Problem Set 4

Parvesh Adi Lachman

October 2023

1 Problem 1

Claim: Let $p,q \geq 1$ be integers. If $d \nmid n^p$ then $d \nmid n$.

a)

n	p	n^p	d	$d \mid n$	$d \mid n^p$	$d \nmid n$	$d \nmid n^p$
4	2	16	3	F	F	Т	Т
3	3	9	4	F	F	Τ	T
9	2	81	7	F	F	${ m T}$	T

- b) Contrapositive of the claim: Let $p,q\geq 1$ be integers. if $d\mid n$ then $d\mid n^p$.
- c) Proof:

	Mathematical Rea-	Reason this Statement is True
	soning	(From the Approved List)
WTS	If $d \mid n$ then $d \mid n^p$	Since it is the contrapositive of the
		claim
Suppose	$d \mid n$	By assumption
\Rightarrow	$n = df, f \in \mathbb{Z}$	By def of divisible by d
\Rightarrow	$n^p = (df)^p, p \in \mathbb{Z}$	Putting both sides to the power of p
\Rightarrow	$n^p = d^p f^p$	By algebra
\Rightarrow	$n^p = d^p k, k \in \mathbb{Z}$	Since prod of ints is int
\Rightarrow	$n^p = d(d^{p-1})k$	By factoring d
\Rightarrow	$n^p = dck, c, k \in \mathbb{Z}$	Since prod of ints is int
\Rightarrow	$n^p = dv, v \in \mathbb{Z}$	Since prod of ints is int
\Rightarrow	n^p is divisible by d	by def of divisible by d
\Rightarrow	$\mid d \mid n^p$	By def of divisible by d

d) The converse of the claim is: Let $p,q\geq 1$ be integers. If $d\nmid n$ then $d\nmid n^p$

e) The converse is false.

Suppose d=4, p=2, n=6, Then $d\nmid n=4\nmid 6$, we know that $n^p=6^2=36$. However $d\mid n^p=4\mid 36$, this is true since $36\div 4=9$. This shows that the converse is false since an implication is only false when $T\Rightarrow F$, which is what happens in the converse. Thus we can conclude that the converse is false.

2 Problem 2

Claim: Let $f: 2^{\mathbb{Z}} \to 2^{\mathbb{Z}}$ be defined by $f(X) = \{x : x \in X \text{ and } x \text{ is even}\}$. Then f is a function. $(2^{\mathbb{Z}}$ is just alternate notation for $P(\mathbb{Z})$, the powerset of \mathbb{Z}).

a)
$$f(X) = X \cap 2\mathbb{Z}$$

Reasoning: Since $x \in X$ and x is even, along with that we know that $2^{\mathbb{Z}}$ is the set of even integers. Thus the function, f(X) should be the intersection between X and $2^{\mathbb{Z}}$.

b) Proof:

	Mathematical Rea-	Reason this Statement is True
	soning	(From the Approved List)
WTS	For each $X \in 2^{\mathbb{Z}} f(X)$	By def of property 1
	is defined/computable	
\Rightarrow	$X \in 2^{\mathbb{Z}}$	By assumption
\Rightarrow	$X \cap 2\mathbb{Z} \in 2^{\mathbb{Z}}$	Since $(Y \cap Z) \subseteq Y = (Y \cap Z) \in 2^Y$
\Rightarrow	$f(X) \in 2^{\mathbb{Z}}$	By def of f

c) Proof:

	Mathematical Reasoning	Reason this Statement is True (From the Approved List)
Suppose	We have two sets A, B	By def of Property 2
	s.t. $A = B$, WTS	
	f(A) = f(B)	
\Rightarrow	A = B	By assumption
\Rightarrow	$f(A) = A \cap 2\mathbb{Z}$ and	By def of f
	$f(B) = B \cap 2\mathbb{Z}$	
\Rightarrow	f(A) = f(B)	By substitution since $A = B$

d) Proof:

	Mathematical Rea-	Reason this Statement is True
	soning	(From the Approved List)
Suppose	$X \in 2^{\mathbb{Z}}$	By assumption
\Rightarrow	$X \subseteq \mathbb{Z}$	Since $\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$
\Rightarrow	$X \cap 2\mathbb{Z} \subseteq \mathbb{Z}$	Since $2\mathbb{Z} \subseteq \mathbb{Z}$ and since $(Y \cap Z) \subseteq Y$
		for any sets Y, Z
\Rightarrow	$f(X) \subseteq \mathbb{Z}$	By substitution
\Rightarrow	$f(X) \in 2^{\mathbb{Z}}$	Since $\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$

e) Proof:

	Mathematical Rea-	Reason this Statement is True
	soning	(From the Approved List)
Suppose	$X \in 2^{\mathbb{Z}}$	By assumption
\Rightarrow	$X \subseteq \mathbb{Z}$	Since $\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$
\Rightarrow	$X \subseteq 2\mathbb{Z}$	By def of f
\Rightarrow	$X \cap 2\mathbb{Z} \subseteq 2\mathbb{Z}$	Since $(Y \cap Z) \subseteq Y$ for any sets Y, Z
\Rightarrow	$f(X) \subseteq 2\mathbb{Z}$	By substitution
\Rightarrow	$f(X) \in 2^{2\mathbb{Z}}$	Since $\mathbb{Z} \in \mathcal{P}(\mathbb{Z})$

3 Problem 3

Claim: Let A,B,C be sets. If $f:A\to C$ is not a function then $B\not\subseteq C$ or $f:A\to B$ is not a function.

a) Contrapositive of the claim: Let A,B,C be sets. If $B\subseteq C$ and $f:A\to B$ is a function then $f:A\to C$ is a function.

b) Properties of the antecedent:

- For each $a \in A, f(a)$ is computable/defined because $\forall a \in A, \exists b \in B: f(a) = b$
- For each $a \in A$, f(a) does not produce two different outputs because $\forall a \in A, \forall b_1, b_2 \in B$ if $f(a) = b_1$ and $f(a) = b_2$ then $b_1 = b_2$
- For each $a \in A, f(a) \in B$

c) Properties of the consequent:

- For each $a \in A, f(a)$ is computable/defined because $\forall a \in A, \exists c \in C: f(a) = c$
- For each $a \in A$, f(a) does not produce two different outputs because $\forall a \in A, \forall c_1, c_2 \in C$ if $f(a) = c_1$ and $f(a) = c_2$ then $c_1 = c_2$
- For each $a \in A, f(a) \in C$

d)

	Mathematical Reasoning	Reason this Statement is True
WTS	If $B \subseteq C$ and $f: A \to B$ is a func-	Since this is the contrapositive of our
that	tion, then $f: A \to C$ is a function.	claim.
Suppose	If $B \subseteq C$ and $f: A \to B$ is a func-	By assumption.
	tion.	
i.e.,		By the 3 properties of functions.
Suppose	• For each $a \in A$, $f(a)$ is computable/defined because $\forall a \in A, \exists b \in B : f(a) = b$	
	• For each $a \in A$, $f(a)$ does not produce two different outputs because $\forall a \in A, \forall b_1, b_2 \in B$ if $f(a) = b_1$ and $f(a) = b_2$ then $b_1 = b_2$	
	• For each $a \in A, f(a) \in B$	
WTS	$f: A \to C$ is a function	because this is the consequent
i.e.,		By the 3 properties of functions
WTS	• For each $a \in A$, $f(A)$ is computable/defined because $\forall a \in A$, $\exists c \in C : f(a) = c$	
	• For each $a \in A$, $f(A)$ does not produce two different outputs because $\forall a \in A, \forall c_1, c_2 \in C$ if $f(a) = c_1$ and $f(a) = c_2$ then $c_1 = c_2$	
	• For each $a \in A, f(a) \in C$	

Property 1:

	Mathematical Reasoning	Reason this Statement is True
\Rightarrow	$\forall a \in A, \exists b \in B : f(a) = b$	By assumption
\Rightarrow	$\forall a \in A, \exists c \in C : f(a) = c$	Since $B \subseteq C$ and $\exists b \in B = \exists b \in C =$
		$\exists c \in C$

Property 2:

	Mathematical Reasoning	Reason this Statement is True
\Rightarrow	$\forall a \in A, \forall b_1, b_2 \in B \text{ if } f(a) = b_1 \text{ and}$	By assumption
	$f(a) = b_2 \text{ then } b_1 = b_2$	
\Rightarrow	$\forall a \in A, \forall c_1, c_2 \in C \text{ if } f(a) = c_1 \text{ and}$	Since $B \subseteq C$ and $b_1, b_2 \in C$ thus can
	$f(a) = c_2 \text{ then } c_1 = c_2$	be written as c_1, c_2

Property 3:

	Mathematical Reasoning	Reason this Statement is True
\Rightarrow	$a \in A, f(a) \in B$	By assumption
\Rightarrow	$a \in A, f(a) \in C$	Since $B \subseteq C$