Optimal Design: Model Boundedness

ME 7129 Kuei-Yuan Chan National Taiwan University In modeling an optimization problem, the easiest and most common mistake is to leave something out.

Things you will learn in this chapter

- Bounds
- Optima
- Monotonicity Analysis
- Constraint Activity
- Criticality
- Dominance
- Relaxation

Bounds - Notations

- Lower bound $f(x) \ge l$
- Greatest lower bound (infimum) $g \ge l, \ \forall l \le f(x)$
- Non-negative domain $\mathcal{N} = \{x: 0 \leq x \leq \infty\}$
- Positive finite domain $\mathcal{P} = \{x : 0 < x < \infty\}$

Greatest Lower Bounds of Different Domains

- ullet Let g be the greatest lower bound for f(x) over ${\mathcal R}$
- Let g_0 be the greatest lower bound for f(x) over ${\mathcal N}$
- Let g^+ be the greatest lower bound for f(x) over ${\mathcal P}$

$$\mathcal{R} \supset \mathcal{N} \supset P \longrightarrow g \leq g_0 \leq g^+$$

To represent g^+ is the infimum of f(x) (over $\mathcal P$) we write

$$g^{+} = \inf_{x \in \mathcal{P}} f(x)$$

Arguments

- Suppose that there is a nonnegative number \underline{x} such that $f(\underline{x}) = g^+$.
- \underline{x} is called an argument of the infimum over \mathcal{P}
- In case more than one argument, the set of all arguments is represented by $\underline{\mathcal{X}} = \{\underline{x}: f(\underline{x}) = g^+\}$

Well Boundedness

If all \underline{x} are positive and finite, then f(x) is said to be **well bounded** (below) over \mathcal{P}

If all arguments of g^+ are positive and finite, that is, $\mathcal{P} \supset \underline{\mathcal{X}}$, the infimum will be called the minimum for f(x) over \mathcal{P}

Examples

Example 3.1 Consider the following functions:

- 1. f(x) = x: no (finite) g exists, but $g_0 = g^+ = 0$, so $\underline{x} = 0 \notin \mathcal{P}$ and hence f(x) is not well bounded below over \mathcal{P} .
- 2. $f(x) = x^2 + 1$: $g = g_0 = g^+ = 1$. Since the argument $\underline{x} = 0$, f(x) is not well bounded below over \mathcal{P} .
- 3. $f(x) = (x-1)^2$: $g = g_0 = g^+ = 0$, and since $\underline{x} = 1 \in \mathcal{P}$, f(x) is well bounded below over \mathcal{P} .
- 4. f(x) = -x:(finite)g, g_0 , and g^+ do not exist, so no arguments exist, and f(x) is not well bounded below over \mathcal{P} .
- 5. $f(x) = 1/x^2$: $g = g_0 = g^+ = 0$. Although f(x) = 0 for x equal to positive or negative infinity, only the positive one qualifies as an argument of the infimum. Since $\underline{x} \notin \mathcal{P}$, f(x) is not well bounded below over \mathcal{P} .
- 6. f(x) = 1/x: no (finite) g exists, but $g_0 = g^+ = 0$ for $\underline{x} = \infty$, so f(x) is not well bounded below over \mathcal{P} .
- 7. The infimum itself can be negative, for example, $f(x) = (x-1)^2 1$: $g = g_0 = g^+ = -1$ where the argument $\underline{x} = 1$; well bounded over \mathcal{P} .
- 8. $f(x) = \exp(-x)$: $g = g_0 = g^+ = 0$; not well bounded over \mathcal{P} because their arguments are infinite.
- 9. $f(x)=(x-1)^2(x-2)^2$: $g=g_0=g^+=0$. There are two arguments: $\underline{\mathcal{X}}=\{1,2\}$; well bounded over \mathcal{P} .
- 10. $f(x_1, x_2) = 3 + (x_2 1)^2$: Here the bivariate function does not depend on x_1 ; consequently $g = g_0 = g^+ = 3 = f(x_1, 1)$, which gives the same value not only in \mathcal{P} but also when $x_1 = 0$ (and ∞). Hence f is well bounded with respect to x_2 , although not with respect to x_1 .

The argument of a minimum is written as x_* when it is unique. (\mathcal{X}_* represents the set of all x_*)

Existence of Minimum \neq Well Bounded Function

well bounded — minimum exist

well bounded \to \times minimum exist

for example:

$$f(x) = 5$$

Upper vs. Lower Bounds

• The analogous concepts involving upper instead of lower bounds are given as below.

Bound	Extremum	Arg	Optimum	Arg
Lower	Greatest lb infimum	\underline{x}	Minimum	x_*
Upper	Least ub supremum	\bar{x}	Maximum	x^*

ME7129 K.-Y. Chan

Air Tank Example: Objective Function

$$f(\mathbf{x}) = \pi \{ [(x_3 + x_4)^2 - x_3^2] x_2 + 2(x_3 + x_4)^2 x_1 \}$$

= $\pi [(2x_3x_4 + x_4^2)x_2 + 2(x_3 + x_4)^2 x_1].$

Constraint Set

- The domain of x may be restricted further by constraints, for example, equalities, inequalities, discreteness restrictions, and/or logical conditions, defining a $constraint\ set \mathcal{K}$.
- The set $\mathcal K$ is said to be consistent if and only if

$$\mathcal{K} \neq \{\}$$

Feasible Set and Minimum

- $oldsymbol{\cdot}$ The feasible set $\mathcal{F}=\mathcal{K}\cap\mathcal{P}$
- Let $f(\mathbf{x})$ be the objective function defined on $\mathcal F$
- Let g^+ be the greatest lower bound (infimum) on $f(\mathbf{x})$, $f(\mathbf{x}) \geq g^+ \ \forall \mathbf{x} \in \mathcal{F}$
- If there exists $\mathbf{x}_* \in \mathcal{F}$ such that $f(\mathbf{x}_*) = g^+$, then $f(\mathbf{x}_*)$ is the constrained minimum of $f(\mathbf{x})$
- \mathbf{x}_* is the minimizer $\mathbf{x}_* = \arg\min f(\mathbf{x})$, for $\mathbf{x} \in \mathcal{F}$

Air Tank Example: Constraints

$$\mathcal{F} = \left[\bigcap_{j=1}^{m} \mathcal{K}_i\right] \cap \mathcal{P}^n$$

volume constraint

 $\mathcal{K}_1 = \{ \mathbf{x} : g_1 = -\pi x_2 x_3^2 + 2.12(10^7) \le 0 \}.$

ASME: ratio of head thickness to radius

$$\mathcal{K}_2 = \{ \mathbf{x} : g_2 = -x_1 x_3^{-1} + 130(10^{-3}) \le 0 \}.$$

ASME: shell thickness

$$\mathcal{K}_3 = \{ \mathbf{x} : g_3 = -x_3^{-1} x_4 + 9.59(10^{-3}) \le 0 \}.$$

shell length for nozzle

$$\mathcal{K}_4 = \{ \mathbf{x} : g_4 = -x_2 + 10 \le 0 \}$$

ME7129 K.-Y. Chan

Partial Minimization

- If all variables but one are held constant, it may be easy to see which constraints, if any, bound the remaining variable away from zero.
- In the air tank problem, let $\mathbf{x} = [x_1, x_2, x_3, x_4] = [x_1, \mathbf{X}_1]$
- Formally, define the feasible set for x_1 , given X_1 , as

$$\mathcal{F}_1 = \{ \mathbf{x} : \mathbf{x} \in \mathcal{F} \text{ and } x_i = X_i \text{ for } i \neq 1 \}$$

- Let \mathbf{x}' be any element of $\mathcal{F}_1(\mathbf{X}_1)$
- The function min $f(x_1, \mathbf{X}_1) \ \forall \mathbf{x}' \in \mathcal{F}_1$ is called the partial minimum of f w.r.t. x_1

Constraint Activity

- When removing a constraint changes the location of the optimum, the constraint is said to be active.
- Otherwise it is termed inactive.
- Let $\mathcal{D}_i = \bigcap_{j \neq i} \mathcal{K}_j$ be the set of all solutions to all constraints except g_i
- The set of all feasible point $\mathcal{F}=\mathcal{D}_i\cap\mathcal{K}_i\cap\mathcal{P}^n$
- Let $\mathcal{X}_* = \arg\min f(\mathbf{x}) \ \forall \mathbf{x} \in \mathcal{F}$ $\mathcal{X}_i = \arg\min f(\mathbf{x}) \ \forall \mathbf{x} \in \mathcal{D}_i \cap \mathcal{P}^n$

 g_i is active if $\mathcal{X}_* \neq \mathcal{X}_i$

Example 3.4

Activity Theorem

Constraint g_i is active if and only if $f(\mathcal{X}_i) < f(\mathcal{X}_*)$

Binding Constraint: If an inequality constraint holds with *equality* at the optimal point, the constraint is said to be **binding**, as the point *cannot* be varied in the direction of the constraint even though doing so would improve the value of the objective function.

Monotonicity

• A function is said to increase with respect to the single positive finite variable $x \in \mathcal{P}$ if

$$\forall x_2 > x_1, f(x_2) > f(x_1)$$

- Such a function will be written as $f(x^+)$
- A function is said to decrease with respect to \boldsymbol{x} and is written as $f(\boldsymbol{x}^-)$
- Functions that are either increasing or decreasing are called monotonic.

Monotonicity Theorem

If f(x) and the consistent constraint functions all increase (weakly) or all decrease weakly with $g_i(x)$ respect to x, the minimization problem domain is not well constrained.

First Monotonicity Principle (MP1)

In a well-constrained minimization problem, every increasing variable is bounded below by at least one nonincreasing active constraint.

Second Monotonicity Principle (MP2)

In a well-constrained minimization problem every nonobjective variable is bounded both below by at least one nonincreasing semiactive constraint

and

above by at least one non-decreasing semiactive constraint.

Criticality

A constraint is critical if its removal results in an unbounded minimization problem

Monotonicity of Composite Functions

- Let f_1 and f_2 be two positive differentiable functions monotonic wrt x_1 over the positive range of \mathbf{x}_1
- Then the following functions are all monotonic in the same sense.

$$f_1 + f_2$$

$$f_1 f_2$$

$$f^a, \forall a > 0$$

$$f_1(f_2(\mathbf{x}))$$

• If a function is monotonic, so is its integral

Monotonicity Analysis for Inequality Constraints

- Conditional criticality
- Multiple criticality
- Dominance
- Relaxation
- Uncriticality

Equality Constraints

- An equality constraint can be written as an active inequality constraint in such a way that the optimum is not affected.
- The approach is called 'directing an active equality'
- Note: NOT all equality constraints are active.

Monotonic Direction Theorem

If h_1 is active, then the inequality-constrained problem is well constrained, and its solution set \mathcal{X}'_* is identical to \mathcal{X}_* , the solution set of the equality-constrained problem.

Regional Monotonicity of Nonmonotonic Functions

 A nonmonotonic function can be considered as the combinations of several monotonic functions.

• For example : $g(l) = l + 675.5l^{-1/2}$

Second Monotonicity Principle (MP2)

In a well-constrained minimization problem every nonobjective variable is bounded both below by at least one nonincreasing semiactive constraint

and

above by at least one non-decreasing semiactive constraint.

Example: Hydraulic Cylinder

minimize g_0 : i + 2tsubject to g_1 : $t \ge 0.3$, g_2 : $f \ge 98$, g_3 : $p \le 2.45(10^4)$, g_4 : $s \le 6(10^5)$, h_1 : $f = (\pi/4)i^2p$, h_2 : s = ip/2t.

1	Variab 	les			
Table 3.6. H	Iydraulic Cylinder:	Monotonicity Tal	ole 3 (Fina	l Reduct	ion)
Function				Variables	
Number	Functions			\overline{i}	1
(0, 1)	i + 2t			+	+
(4), (3, 2) (6, 5), (3, 2)	$(4/\pi)F/i^2 - P \le 0$ $(2/\pi)F/it - S \le 0$	0		_	
(7)	$-t + T \le 0$				-
	Eliminated Variables and Constraints				
	Constraint Number	Variable Eliminated			
	(3, 2) (5), (3, 2) (2), (3, 2)[=3]	$p \ge ((4/\pi)F/i^2)$ $s \ge ((2/\pi)F/it)$ $f \ge F$			
	(1)	$d \stackrel{\frown}{\geq} (i+2t)$			
		Number	Eliminated		