D.C. Motors. More specifically D.C. Shunt motors

If is the current into the field windings on Stator, Rf is the field winding resistance.

In is the current into the armature windings,
Ra is the armature. Winding resistance.
Vs is the Supply voltag; Is is supply current.

Eb is the back emf. Caused by armature rotation inside magnetic flux.

Basic equations Eb= ka PW. (i) developed torque. torque T= Ka P Ia. (2). $V_s = E_b + I_a R_a$. (3). (4). Is= If + Ia. ka is armature constant. (determined by the geometry and configuration of armature windings) of is the magnetic flux px. If Eq. (1) Comes from E=Bl. V. motional emf. Eq. (z) comes from. F=Bil. Ampère force. Additional. formulas P=Tw (5) mechanical delivered. in analogy to P=F-V for linear motion. P= Eb Ia. (6). electrical power into the mature Tw = EbIa. energy conserved.

```
Units for variables
T:
       N-M
         Standard unit: Yad/s
W:
         Conventional unit: YPM
             | \gamma pm = \frac{z\pi}{60} \gamma ad/s
           Weber (Wb).
 ka: dimensionless
            Standard unit: W.
            Conventional unit: hp.
                 1 hp = 746 W.
From Eq (3), Ia= Vs-Eb
Using Eq. (1), Ia = \frac{V_s - k_a \phi W}{R}
From Eq. (2), Ia= T
        \frac{T}{k\alpha\phi} = \frac{V_s - k\alpha\phi W}{R\alpha}
         T = \frac{V_s k_\alpha \phi}{R_\alpha} - \frac{k_\alpha^2 b^2}{R_\alpha} W
                                        torque - speed.
         T = \frac{k_a \phi}{R_0} (V_s - k_a \phi \omega).
                                            relation.
```


- dc shunt motor is good for applications that require a Constant speed.
Increase of load torque > decrease of w > decrease of Eb (= kapw). > increase of Ia, It is self - regulating
Small Ra. So. Eb=Vs-IaRa. is nearly. Constant unless Ia is very large. * Match la character of the series of t
*Match d.c. shunt motor to ce load. Tdevp Iloud.
Vs. dc shunt A mechanical load. motor. Shaft. (pump, fan, Compressor)
motor produces developed torque: Tdevp. load requires speed-dependent torque: Tload.
Iderp - W. Curve. are different. Though - W Curve.

Tderp. Tload. Ctorque demanded. by load). operating Point.

Example.

D.C. Shunt motor is driven by $V_s = 240V$. The source current is $I_s = 30A$, and the field current $I_f = 1.4A$. Armature resistance is $Ra = 0.6 \, R$. Flux is $\phi = 0.020 \, Wb$. Machine Constant is $k_a = 159.15$. Find. the speed (w) and torque (T) of motor. I_c

Is.

If \$\frac{1s}{Ra}\$

Representation of the second of t

Eb=ka & W.

 $U = \frac{E_{b.}}{k_u \phi} = \frac{222.8}{159.15 \times 0.02}$ = 70 rad/s.

 $=70 \times \frac{60}{211} \text{ rpm.} = 669 \text{ rpm.}$

T= ka | Ia=159.15 x 0.02 x 28.6 = 91 N·m.

 $I_a = I_s - I_f = 30 - 1.4$ = 28.6 A

 $E_b=V_s-I_aR_a$. = 240-28.6 x 0.6. = 222.8 (v). Example A 200-V dc shunt motor, draws

10 A at 1800 rpm. The armature resistance
is Ra= 0.15 Sc. Field winding resistance is Rf=350 Sc.

What is the torque and power developed by

Vs= 200 V T-10 A D

 $V_s = 200 \,\text{V}$ $I_s = 10 \,\text{A}$ $R_a = 0.15 \,\text{M}$. $R_f = 350 \,\text{M}$.

0.150 ZOOV.

200V.

Eb. 0.

 $I_f = \frac{200V}{350R} = 0.571 \text{ A}$

 $E_{b} = 200 - 9.43 \times 0.15 = 198.58$

 $P = I_{\alpha}E_{b} = T_{\omega}. \quad \omega = |800 \times \frac{2\pi}{60} = |88.5 \times \frac{7ad}{8}$ $T = \frac{I_{\alpha} \cdot E_{b}}{\omega} = \frac{9.43 \times |98.58}{|88.5} = 9.93 \text{ (N·m)}$

P=IaEb=Tw=1872(w)=2.51hp. You could also use $Eb=ka\phi w$ to calculate $ka\phi$ first. Then use $T=ka\phi Ia$ to calculate T. Example de shunt motor $V_s = 7.2V$ $R_f = 12.8$ $R_a = 0.2.0$ Motor draws a total Current of 8.6 A when speed is 1207pm.

Ci) Calculate torque, and power.

Ci) Calculate torque, at 120 ppm. (2) Calculate no-load speed. $I_f = \frac{1.2}{12} = 0.6 A$ Ia = 8.6 - 0.6 = 8.0 A $E_b = 7.2 - 8.0 \times 0.2 = 5.6 (V.)$ Eb= KaO W W= 120 \$\frac{2\text{T}}{60} = \2.57(\frac{\gamma}{6}) $ka\phi = \frac{E_b}{\omega} = \frac{5.6}{12.57} = 0.445 (W_b)$ $T = k_a \phi I_a = 0.445 \times 8.0 = 3.56 (N.m)$ Here you can at also calculate power at 120 rpm $P = I_{\alpha}E_{b} = T_{w} = 44.7(w) = 0.06 hp$ "No-load" means T'=0 So Ia'=0 , $E_{b}=V_{s}=7.2V$ Eb = kap w' $W' = \frac{E_b'}{kap} = \frac{7.2}{6.445} = 16.18 \frac{\text{Yad}}{\text{S}} = 154 \text{ YPM}$