

Cristo Daniel Alvarado

8 de julio de 2024

Índice general

1.	Introducción	2
	1.1. Conceptos fundamentales	2
	1.2. Definiciones	2
	1.3. 3-variedades Hiperbólicas	3
	1.4. Isometrías y Horoesferas	4
2.	Ejercicios	5
	2.1. Ejercicios 8 de julio	5

Capítulo 1

Introducción

1.1. Conceptos fundamentales

Taller por Andrés Rodrígues Migueles.

Se probó en cursos anteriores que toda superficie cerrada, conectada y orientable es difeomorfa a Σ_q para algunos $g \geq 0$ (siendo g el género de la 2-variedad).

Teorema de Uniformización. Toda superficie de tipo finito puede ser geometrizada, es decir, puede estar equipada con una métrica hiperbólica plana o elíptica.

Estos hechos ya se conocen para 2-variedades pero, ¿qué se puede decir de variedades de dimensión más grande?

Nuestro objetivo será clasificarlas (de alguna forma más o menos general, ya que no se pueden generalizar totalmente). A lo que se tiene el siguiente teorema:

Teorema de Perelman-Thurston. Toda 3-variedad compacta con frontera (posiblemente vaía) una colección finita de toros, tiene uan descomposición canónica en piezas geométricas. Esta descomposición está dada en una de las siguientes 8 piezas:

$$\mathbb{H}^3, \mathbb{S}^3, \dots$$

1.2. Definiciones

Definición 1.2.1

Sea X una variedad y G un grupo que actúa sobre X. Decimos que una variedad M tiene una **estructura** (G;X) si para cada punto $x \in M$ existe una carta (U,φ) , es decir, una vecindad $U \subseteq M$ de X y un homeomorfismo $\varphi: U \to \varphi(U) \subseteq X$.

Si dos gráficos (U, φ) y (V, ψ) se superponga, entonces el mapeo de transición o el mapa de cambio de coordenadas

$$\gamma = \varphi \circ \psi^{-1} : \psi(U \cap V) \to \varphi(U \cap V)$$

es un elemento de G.

Observación 1.2.1

En el caso, X será simplemente conexo y G será un grupo de difeomorfismos analíticos reales que actúan transitivamente sobre X.

Ejemplo 1.2.1

El toro admite una estructura $(Isom(\mathbb{R}^2), \mathbb{R}^2)$, también llamada **estructura eucliedeana**. Pero también admite una **estructura afín**, cuando G sea el grupo afín $(x \mapsto Ax + b)$ que actúa sobre \mathbb{R}^2 .

En el caso anterior, el gupo afin es el grupo de las transformaciones afines de \mathbb{R}^2 en \mathbb{R}^2 , que son de la forma $x \mapsto Ax + b$, siendo $A \in GL_2(\mathbb{R})$

Si M tiene un toro como una componente de frontera, no hay una forma canónica de rellenarlo: el objeto más simple que podememos adjuntarle es un toro sólido $D \times \mathbb{S}^2$, pero la varidedad resultante depende del mapa de pegado. Esta operación se llama **rellenado de Dehn**.

La curva cerrada ∂D está pegada a alguna curva cerrada simple $\gamma \subseteq \mathbb{T}$. El resultado de esta operaciónes una nueva variedad $M(\gamma)$ que tiene una componente frontera menos que M.

Lema 1.2.1

La variedad $M(\gamma)$ depende sólo de la clase de isotopía de la curva no orientada γ .

Demostración:

Observación 1.2.2

Ver nudo de Boromer.

¿Qué variedades están clasificadas? Variedades de Seifert.

Corolario 1.2.1

Dos fibraciones de Seifert

$$(S, (p_1, q_1), ..., (p_h, q_h))$$
 y $(S', (p'_1, q'_1), ..., (p'_h, q'_h))$

con $p_i, p_i' \ge 2$ son isomorfas (preservando orientación) si y sólo si S = S', h = h' y e = e' (siendo ése el número de Euler) salvo reordenamiento $p_i = p_i'$ y $q_i = q_i$ mód.

1.3. 3-variedades Hiperbólicas

Primero, recordemos

$$\mathbb{H}^2 = \left\{ x + iy \in \mathbb{C} \middle| y > 0 \right\} \quad \text{y} \quad \partial \mathbb{H}^2 = \mathbb{C} \cup \{\infty\} \cong \mathbb{S}$$

Observación 1.3.1

Recordemos que

$$\mathbb{H}^3 = \{(x+iy, z) \in \mathbb{C} \times \mathbb{R}_{>0}\} \quad \text{y} \quad \partial \mathbb{H}^3 = \mathbb{C} \cup \{\infty\} \cong \mathbb{S}^2$$

con la métrica

$$ds^2 = \frac{dx^2 + dy^2 + dz^2}{z^2}$$

Se tiene que las geódesicas en esta variedad son l
sa líneas verticales, semicíf
culos que intersectan a $\partial \mathbb{H}^3$ con un ángulo recro. $Isom_+(\mathbb{H}^3) \cong ...$

Observación 1.3.2

Recordemos que las transformaciones de Möbius son las funciones de la forma

$$Mob(\mathbb{C}) = \left\{ z \mapsto \frac{az+b}{cz+d} \middle| a, b, c, d \in \mathbb{C}, bd-ac \neq 0 \right\}$$

(ahondar más en esto pq parece importante).

1.4. Isometrías y Horoesferas

Sea p un punto en $\partial \mathbb{H}^3$. Una **horóesfera** centrada en p es una hipersuperficie completa conexa ortogonal a todas las lineas que salen de p. Note que, una horóesfera alrededor de ∞ en $\partial \mathbb{H}^3$ es un plano paralelo a \mathbb{C} , que consta de puntos $\{(x+iy,c)\in\mathbb{C}\times\mathbb{R}\}$ donde c>0 es constante.

Capítulo 2

Ejercicios

2.1. Ejercicios 8 de julio

Definición 2.1.1

Dos difeomorfismos $f,g:\Sigma_1\to\Sigma_2$ son isotópicas si existe una función $H:\Sigma_1\times[0,1]\to\Sigma_2$ continua tal que

 $H\Big|_{H\times\{0\}} = f \quad \mathbf{y} \quad H\Big|_{H\times\{1\}} = g$

y tal que $H\Big|_{H \times \{t\}}: \Sigma_1 \to \sigma_2$ es difeomorfismo para todo $t \in [0,1].$

Ejercicio 2.1.1

Sea N una 3-variedad con Σ_1 y Σ_2 dos componentes de ∂N (compactas y difeomorfas), $f_0: \Sigma_1 \to \Sigma_2$ al difeomorfismo. Tomemos

$$M_0 = N / \left(\Sigma_1 = \Sigma_2 \right)$$

1. Si Σ_1' y Σ_2' CN dos componentes de ∂N tal que existe $f_1:\Sigma_1'\to\Sigma_2'$ difeomorfismo. Tomemos

$$M_1 = N / \left(\Sigma_1' = \Sigma_2' \right)$$

tal que existe g difeomorfismo de N tal que $g(\Sigma_1) = \Sigma_1'$ para la que se cumple

$$g \circ f_0 \circ g^{-1}(z) = f_1(z), \quad \forall z \in \Sigma_1'$$

entonces, $M_0 \cong M_1$.

2. Si $\Sigma_1 = \Sigma_1'$ y $\Sigma_2 = \Sigma_2'$ pero $f_1 \neq f_0$ y son isotópicas, entonces $M_0 \cong M_1$.