ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2021-2022

DURATION: 1 HOUR 30 MINUTES

FULL MARKS: 75

CSE 4703: Theory of Computing

Programmable calculators are not allowed. Do not write anything on the question paper. Answer all 3 (three) questions. Marks of each question and corresponding CO and PO are written in the right margin with brackets.

a) Explain if each of the following assertion is correct or incorrect. 1.

 $2 \times 4 = 8$

(CO1)

- Deterministic Finite Automata (DFA) are strictly weaker classes of machines (PO2) i. than Non-deterministic Finite Automata (NFA), i.e., there exists a language that is accepted by an NFA and not by any DFA.
- $a^n b^m$ is a regular language, where the alphabet is a, b and $n \ge 0$, $m \ge 0$. ii.
- The regular expressions $(a^*b^*)^*$ and $(a+b)^*$, represent the same language, iii. where $\Sigma = \{a, b\}^*$
- Considering the languages $L_1 = \emptyset$ and $L_2 = \{1\}$, the strings are accepted iv. by the language $L_1^{\circ} L_2^{*} + L_1^{*}$ is $\{\varepsilon, 1\}$.
- Prove that if L, M and N are any languages, then L(M + N) = LM + LN. (CO1) (PO1)
- c) Consider the following NFA shown in Figure 1. Convert this NFA into an equivalent 10 (CO1) DFA. Your answer should be the state diagram of a DFA. Your diagram should include (PO2) only the states that are reachable from the start state.

Figure 1: NFA for the question no. 1. (c)

- 2. a) Assume that the NFA, N_I recognizes language, L_I ; and N_2 recognizes language, L_2 . Construct the NFA N to recognize the language, $L_1^{\circ}L_2$. Use the *proof by construction* and also draw the *schematic diagram* for the new machine N. (CO1)
 - b) Convert the given DFA in Figure 2 over $\Sigma = \{a, b\}$ into regular expression. (CO1)

(PO2)

Figure 2: DFA for question 2. (b)

- c) Design the DFA/NFA for the following regular expression R over $\Sigma = \{a, b\}$. 8 $R = (ab)^* + (a + ab)^*b^*(a + b)^* \tag{CO1}$ (PO2)
- 3. a) Design the regular expression for the following languages over the alphabet $\Sigma = \{0, 1\}$.

 i. $L_1 = \{w \mid w \text{ consists of at least one '00' and '11' and not divisible by 2}\}$.

 (CO1)
 - ii. $L_2 = \{w \mid w \text{ starts and ends with } 1\}.$ (PO2)
 - iii. $L_3 = \{w \mid in \ w, the \ number \ of \ '1' \ is \ exactly \ 3 \ and \ it \ must \ end \ with one \ or \ more \ '0's\}.$
 - b) Design a *Finite Stat Machine* that accepts strings in which the number '1' is congruent to $1 \mod 3$ over the alphabet $\Sigma = \{0, 1\}$. (CO1) (PO2)
 - c) Apply the pumping lemma to prove that the language L over the alphabet $\{a, b\}$ is not regular $L = \{ww : w \in \{a, b\}^*.$ (CO1) (PO1)