Problem Set - 1

Short Course on Quantum Computing

Problem 1: Polarizers, Photons and single qubits

The following questions are based on a single qubit representing the polarization state of a photon. The basis states are represented by $|0\rangle$ for vertically polarized light and $|1\rangle$ for horizontally polarized light respectively.

- a) What is the angle made by the following polarization states with respect to the vertical axis?
 - i. $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$
 - ii. $\frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle$
- b) The polarization state of a photon is given by $\frac{4}{5}|0\rangle + x|1\rangle$, what is the allowed value(s) of x?
- c) Consider photons of an unknown polarization passing through a polarizer \mathbf{A} , oriented along the vertical direction. The photons that are transmitted through \mathbf{A} subsequently pass through a polarizer \mathbf{B} oriented along the horizontal direction.
 - i. How many photons will be transmitted through polarizer **B**?
 - ii. If a third polarizer C is inserted between A and B. What is the angle the orientation of C should make with the vertical axis such that the probability of photons being transmitted through polarizer B.
 - iii. In the previous problem, maximum possible transmission probability for the three polarizer system?

Problem 2: Unitary transformations and orthonormal bases

The following questions are based on the properties of single qubit unitary transformations.

a) Given a single qubit unitary transformation U, such that

$$U|0\rangle = |a\rangle$$

$$U|1\rangle = |b\rangle$$

Show that $\{|a\rangle, |b\rangle\}$ is an orthonormal basis.

b) If a qubit in the state $|\psi\rangle$ is measured in the $\{|a\rangle, |b\rangle\}$ basis, what are the possible measurement outcomes and what are the corresponding probabilities?

- c) If a qubit in the state $U^{\dagger} | \psi \rangle$ is measured in the standard basis, what are the outcomes and the corresponding probabilities?
- d) Are the answers for parts b and c related? If so, how are they related?
- e) If a qubit in the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, is measured in the Hadamard basis. What are the possible measurement outcomes and their corresponding probabilities?

Problem 3: The Bell basis

Consider the following quantum circuit:

Figure 1: Circuit diagram for Problem 3

Both $|q_0\rangle$ and $|q_1\rangle$ can either be $|0\rangle$ or $|1\rangle$. The measurement is done in the computational basis and the measurement outcome is stored in the classical bits c_0 and c_1

- a) Find the output state (before measurement) of the above quantum circuit for the input combinations:
 - i. $|q_0\rangle = |0\rangle$ and $|q_1\rangle = |0\rangle$
 - ii. $|q_0\rangle = |1\rangle$ and $|q_1\rangle = |0\rangle$
 - iii. $|q_0\rangle = |0\rangle$ and $|q_1\rangle = |1\rangle$
 - iv. $|q_0\rangle = |1\rangle$ and $|q_1\rangle = |1\rangle$
- b) What are the possible measurement outcomes $(c_0c_1 \text{ values})$ when the initial states are $|q_0\rangle = |0\rangle$ and $|q_1\rangle = |1\rangle$?
- c) Show that the four vectors obtained from part a) form a two-qubit basis.
- d) If two-qubits in the state $|\Psi\rangle = |+\rangle |-\rangle$ is measured with the two qubit basis defined here, What are the possible measurement outcomes and their corresponding probabilities?
- e) If two-qubits in the state $|\Phi\rangle = |0\rangle |0\rangle$ is measured with respect to the new basis. Answer the following questions with explanations.
 - i. Is the initial state entangled?
 - ii. Is the state of the system after measurement entangled?

Problem 4: Multi-qubit entanglement

In the following multi-qubit states, identify which qubits are entangled to one another:

a)
$$\frac{1}{\sqrt{2}} |010\rangle + \frac{1}{\sqrt{2}} |111\rangle$$

b)
$$\frac{1}{\sqrt{2}} |000\rangle + \frac{1}{\sqrt{2}} |111\rangle$$

c)
$$\frac{1}{\sqrt{3}} |001\rangle + \frac{1}{\sqrt{3}} |010\rangle + \frac{1}{\sqrt{3}} |100\rangle$$

d)
$$\frac{1}{2} |0000\rangle + \frac{1}{2} |0011\rangle + \frac{1}{2} |1100\rangle + \frac{1}{2} |1111\rangle$$

e)
$$\frac{1}{2} |0000\rangle + \frac{1}{2} |0101\rangle + \frac{1}{2} |1010\rangle + \frac{1}{2} |1111\rangle$$