Repaso VIP: Álgebra Lineal y Cálculo

Afshine Amidi y Shervine Amidi

6 de octubre de 2018

 $\label{thm:continuous} Traducido\ por\ Fernando\ Diaz,\ Gustavo\ Velasco-Hernández\ y\ Juan\ P.\ Chavat.$

Notaciones Generales

 \square Vector – Sea $x \in \mathbb{R}^n$ un vector con n entradas, donde $x_i \in \mathbb{R}$ es la i-ésima entrada:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Observación: el vector x definido arriba puede ser visto como una matriz $n \times 1$ y es particularmente llamado vector-columna.

 \square Matriz identidad – La matriz identidad $I\in\mathbb{R}^{n\times n}$ es una matriz cuadrada con valores 1 en su diagonal y ceros en el resto:

$$I = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right)$$

Observación: para todas las matrices $A \in \mathbb{R}^{n \times n}$, se cumple que $A \times I = I \times A = A$.

 \square Matriz diagonal – Una matriz diagonal $D \in \mathbb{R}^{n \times n}$ es una matriz cuadrada con valores diferentes de zero en su diagonal y cero en el resto:

$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{pmatrix}$$

Observación: también se denota D como diag $(d_1,...,d_n)$.

Operaciones de matrices

□ Vector-vector – Hay dos tipos de multiplicaciones vector-vector:

■ Producto interno: para $x,y \in \mathbb{R}^n$, se tiene que:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

• Producto diádico : para $x \in \mathbb{R}^m, y \in \mathbb{R}^n$, se tiene que:

$$xy^{T} = \begin{pmatrix} x_{1}y_{1} & \cdots & x_{1}y_{n} \\ \vdots & & \vdots \\ x_{m}y_{1} & \cdots & x_{m}y_{n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

□ Matriz-vector – El producto de la matriz $A \in \mathbb{R}^{m \times n}$ y el vector $x \in \mathbb{R}^n$, es un vector de tamaño \mathbb{R}^m ; tal que:

$$Ax = \begin{pmatrix} a_{r,1}^T x \\ \vdots \\ a_{r,m}^T x \end{pmatrix} = \sum_{i=1}^n a_{c,i} x_i \in \mathbb{R}^m$$

donde $a_{r,i}^T$ son los vectores fila y $a_{c,j}$ son los vectores columna de A, y x_i son las entradas de x.

□ Matriz-matriz – El producto de las matrices $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times p}$ es una matriz de tamaño $\mathbb{R}^{n \times p}$, tal que:

$$AB = \begin{pmatrix} a_{r,1}^T b_{c,1} & \cdots & a_{r,1}^T b_{c,p} \\ \vdots & & \vdots \\ a_{r,m}^T b_{c,1} & \cdots & a_{r,m}^T b_{c,p} \end{pmatrix} = \sum_{i=1}^n a_{c,i} b_{r,i}^T \in \mathbb{R}^{n \times p}$$

donde $a_{r,i}^T, b_{r,i}^T$ son los vectores fila y $a_{c,j}, b_{c,j}$ son los vectores columna de A y B respectivamente.

 \square Transpuesta – La transpuesta de una matriz $A \in \mathbb{R}^{m \times n}$, denotada A^T , es tal que sus entradas se intercambian de la siguiente forma:

$$\forall i, j, \qquad A_{i,j}^T = A_{j,i}$$

Observación: dadas las matrices A,B, se cumple que $(AB)^T = B^T A^T$.

1

 \square Inversa – La inversa de una matriz cuadrada invertible Aes denotada como A^{-1} y es la única matriz tal que:

$$AA^{-1} = A^{-1}A = I$$

Observación: no todas las matrices cuadradas son invertibles. Además, para las matrices A,B, se cumple que $(AB)^{-1} = B^{-1}A^{-1}$.

 \square Traza – La traza de una matriz cuadrada A, denotada $\mathrm{tr}(A),$ es la suma de los elementos en su diagonal:

$$r(A) = \sum_{i=1}^{n} A_{i,i}$$

Observación: dadas las matrices A,B, se cumple que $tr(A^T) = tr(A)$ y tr(AB) = tr(BA).

 \Box Determinante – El determinante de una matriz cuadrada $A \in \mathbb{R}^{n \times n}$, denotado |A| o det(A), es expresado recursivamente en términos de $A_{\backslash i, \backslash j}$, que es la matriz A sin su i-ésima fila ni su j-ésima columna, de la siguiente forma:

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{i+j} A_{i,j} |A_{\setminus i,\setminus j}|$$

Observación: A es invertible si y solo si $|A| \neq 0$. Además, $|AB| = |A||B| \ y \ |A^T| = |A|$.

Propiedades de matrices

 \square Descomposición simétrica – Una matriz dada A puede ser expresada en términos de sus partes simétricas y antisimétricas de la siguiente forma:

$$A = \underbrace{\frac{A + A^T}{2}}_{\text{Simétrica}} + \underbrace{\frac{A - A^T}{2}}_{\text{Antisimétricas}}$$

□ Norma – Una norma (o módulo) es una función $N:V\longrightarrow [0,+\infty[$ donde V es un vector espacial tal que para todo $x,y\in V$, se cumple que:

- $N(x+y) \leqslant N(x) + N(y)$
- N(ax) = |a|N(x) siendo a un escalar
- si N(x) = 0, entonces x = 0

Para $x \in V$, las normas comúnmente utilizadas se resumen en la siguiente tabla:

Norma	Notación	Definición	Caso de uso
Manhattan, L^1	$ x _{1}$	$\sum_{i=1}^{n} x_i $	LASSO
Euclidean, L^2	$ x _{2}$	$\sqrt{\sum_{i=1}^n x_i^2}$	Ridge
p -norma, L^p	$ x _p$	$\left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}}$	Desigualdad de Hölder
Infinito, L^{∞}	$ x _{\infty}$	$\max_i x_i $	Convergencia

□ Dependencia lineal – Un conjunto de vectores se dice que es linealmente dependiente si uno de los vectores del conjunto puede ser definido como una combinación lineal de los restantes.

Observación: si ningún vector puede ser escrito de esta forma, entonces se dice que los vectores son linealmente independientes.

 \square Rango matricial – El rango de una matriz dada A es denotado rank(A) y es la dimensión del espacio vectorial generado por sus columnas. Esto es equivalente al máximo número de columnas linealmente independientes de A.

□ Matriz semi-definida positiva – Una matriz $A \in \mathbb{R}^{n \times n}$ es semi-defininda positiva (PSD), lo cual se denota como $A \succeq 0$, si se cumple que:

$$A = A^T$$
 y $\forall x \in \mathbb{R}^n, x^T A x \geqslant 0$

Observación: de igual forma, una matriz A se dice definida positiva, lo cual se denota con $A \succ 0$, si es una matriz PSD que satisface para todos los vectores x diferentes de cero, $x^TAx > 0$.

□ Valor propio, vector propio – Dada una matriz $A \in \mathbb{R}^{n \times n}$, λ se dice que es un valor propio (eigenvalue, en inglés) de A si existe un vector $z \in \mathbb{R}^n \setminus \{0\}$, llamado vector propio (eigenvector, en inglés), tal que:

$$Az=\lambda z$$

□ Teorema espectral – Sea $A \in \mathbb{R}^{n \times n}$. Si A es simétrica, entonces A es diagonalizable a través de una matriz real ortogonal $U \in \mathbb{R}^{n \times n}$. Denotando $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$, se tiene que:

$$\exists \Lambda \text{ diagonal}, \quad A = U \Lambda U^T$$

 \square Descomposición en valores singulares – Para una matriz dada A de dimensiones $m \times n,$ la descomposición en valores singulares (SVD, por sus siglas en inglés de Singular-Value Decomposition) es una técnica de factorización que garantiza la existencia de las matrices U $m \times m$ unitaria, Σ $m \times n$ diagonal y V $n \times n$ unitaria, tal que:

$$A = U\Sigma V^T$$

Cálculo de matrices

□ Gradiente – Sea $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ una función y $A \in \mathbb{R}^{m \times n}$ una matriz. El gradiente de f con respecto a A es una matriz de $m \times n$, denotada por $\nabla_A f(A)$, tal que:

$$\left(\nabla_A f(A)\right)_{i,j} = \frac{\partial f(A)}{\partial A_{i,j}}$$

Observación: el gradiente de f se define únicamente cuando f es una función que retorna un escalar.

□ Hessiana – Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función y $x \in \mathbb{R}^n$ un vector. La hessiana de f con recpecto a x es una matriz simétrica $n \times n$, denotada $\nabla_x^2 f(x)$, tal que:

$$\left(\nabla_x^2 f(x)\right)_{i,j} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

 $Observaci\'on: la \ matriz \ hessiana \ de \ f \ se \ define \ \'unicamente \ cuando \ f \ es \ una \ funci\'on \ que \ devuelve \ un \ escalar.$

 \Box Operaciones de gradiente – Dadas las matrices A,B,C, las siguientes propiedades de gradiente merecen ser tenidas en cuenta:

$$\nabla_A \operatorname{tr}(AB) = B^T$$
 $\nabla_{AT} f(A) = (\nabla_A f(A))^T$

$$\boxed{\nabla_A \operatorname{tr}(ABA^T C) = CAB + C^T AB^T} \qquad \boxed{\nabla_A |A| = |A|(A^{-1})^T}$$