LINKÖPINGS UNIVERSITET

IDA, STIMA

Examination - Probability Theory 2021-10-25

Course: 732A63 Probability Theory

Date and time: 2021/10/25, 08-12

Examinator: Maryna Prus

Allowed aids: Pocket calculator.

Table with common formulas and moment generating functions (distributed with the exam).

Table of integrals (distributed with the exam).

Table with distributions from Appendix B in the course book (distributed with the exam).

An A4 paper with your own hand-written notes (front- and backside).

Grades: Final grade is based on sum of points from written exam (max 20) and bonus points from

seminars (max 1.5 to reach A, max 2 to reach B).

A = from 19 points, D = [12 - 14) points, B = [17 - 19) points, E = [10 - 12) points, C = [14 - 17) points, F = [0 - 10) points.

Instructions: Write clear and concise answers to the questions.

Problem 1 (6 p)

Suppose that X_1, X_2, \ldots, X_n are independent, non-negative, integer-valued random variables.

- (a) (2 p) Suppose that $X_1, X_2, ..., X_n$ are also identically distributed with probability generating function $g_{X_1}(t)$. Derive the formula for the probability generating function $g_Y(t)$ for $Y = X_1 + X_2 + \cdots + X_n$.
- (b) (2 p) Suppose that $X_i \sim Po(\lambda_i)$, for $i=1,\ldots,n$. Determine the distribution of $Y=X_1+X_2+X_3$ using probability generating functions.
- (c) (2 p) Suppose that $X_i \sim Bin(k,p)$, for $i=1,\ldots,n$. Determine the probability generating function of $Y=2X_1+X_2$.

Problem 2 (6 p)

Suppose that $X_1, X_2, ..., X_n$ are independent, identically distributed, continuous random variables with (cumulative) distribution function F_X and the density function f_X for each $X_i, i = 1, ..., n$.

- (a) (2 p) Derive the formulas for the (cumulative) distribution function and the density function of $X_{(n)} = max\{X_1, \ldots, X_n\}$.
- (b) (2 p) Suppose that $X_i \sim Exp(a)$, for $i=1,\ldots,n$. Determine the distribution of $X_{(1)} = min\{X_1,\ldots,X_n\}$.
- (c) (2 p) Suppose that $X_i \sim Exp(a)$, for $i=1,\ldots,n$ and n=3. Determine the joint density function of the order variables $X_{(1)}, X_{(2)}$ and $X_{(3)} (X_{(1)} \leq X_{(2)} \leq X_{(3)})$.

Problem 3 (5 p)

Suppose that $X = (X_1, X_2, X_3)^{\top}$ and $X \sim N(\mu, \Sigma)$ with $\mu = (1, 1, 0)^{\top}$ and

$$\Sigma = \left(\begin{array}{ccc} 4 & -2 & 1 \\ -2 & 3 & 0 \\ 1 & 0 & 1 \end{array} \right).$$

- (a) (2 p) Determine the moment generating function $\psi_Y(t)$, where $t = (t_1, t_2)^{\top}$, of $Y = (Y_1, Y_2)^{\top}$ with $Y_1 = X_1$ and $Y_2 = X_2$. Note that the moment generating function should be written explicitly as a function of t_1 and t_2 .
- (b) (3 p) Determine the conditional distribution of $X_1 + 2X_2$ given $X_2 X_3 = 1$.

Problem 4 (3 p)

Suppose that $X_1, X_2, ...$ are independent random variables with $X_n \sim \Gamma(n, \frac{1}{n})$. Show that $X_n \stackrel{p}{\to} 1$ as $n \to \infty$.

283

Discrete Distributions

Followingis a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions. An asterisk (*) indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.

Distribution, notation	Probability function	EX	Var X	$\varphi_X(t)$	
One point $\delta(a)$	p(a) = 1	a	0	e^{ita}	
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$\cos t$	
Bernoulli Be (p) , $0 \le p \le 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	p	pq	$q + pe^{it}$	
Binomial $Bin(n,p), \ n=1,2,\ldots, \ 0 \leq p \leq 1$	$p(k) = \binom{n}{k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	np	npq	$(q+pe^{it})^n$	
Geometric	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{q}{p}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$	
$\mathrm{Ge}(p), 0\leq p\leq 1$		p	p-	$1-qe^{-t}$	
First success	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1-qe^{it}}$	
$\mathrm{Fs}(p), 0 \leq p \leq 1$	3	p	p-	$1-qe^{iv}$	
Negative binomial	$p(k) = \binom{n+k-1}{k} p^n q^k, \ k = 0, 1, 2, \dots;$	$n\frac{q}{p}$	$n\frac{q}{n^2}$	$(\frac{p}{1-qe^{it}})^n$	
NBin $(n, p), n = 1, 2, 3,, 0 \le p \le 1$	q = 1 - p	Р	p		
Poisson	$p(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots$	m	m	$e^{m(e^{it}-1)}$	
Po(m), m > 0	<i>N</i> -:				
Hypergeometric	$p(k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	np	$npq\frac{N-n}{N-1}$	*	
H(N, n, p), n = 0, 1,, N, N = 1, 2,,					

Continuous Distributions

Following is a list of some continuous distributions, abbreviations, their densities, means, variances, and characteristic functions. An asterisk (*) indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.

$U(a,b) \qquad f(x) = \frac{1}{b-a}, \ a < x < b \qquad \frac{1}{2}(a+b) \qquad \frac{1}{12}(b-a)^2 \qquad \frac{e^{itb}-e^{ita}}{it(b-a)}$ $U(0,1) \qquad f(x) = 1, \ 0 < x < 1 \qquad \qquad \frac{1}{2} \qquad \frac{1}{12} \qquad \frac{e^{it}-1}{it}$ $U(-1,1) \qquad f(x) = \frac{1}{2}, \ x < 1 \qquad \qquad 0 \qquad \qquad \frac{1}{3} \qquad \frac{\sin t}{t}$ Triangular $Tri(a,b) \qquad f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2}\right \right) \qquad \frac{1}{2}(a+b) \qquad \frac{1}{24}(b-a)^2 \qquad \left(\frac{e^{itb/2}-e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$ $a < x < b$ $Tri(-1,1) \qquad f(x) = 1 - x , \ x < 1 \qquad 0 \qquad \frac{1}{6} \qquad \left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$ Exponential $Exp(a), a > 0$ $Samma \qquad f(x) = \frac{1}{a}e^{-x/a}, \ x > 0 \qquad pa \qquad pa^2 \qquad \frac{1}{(1-ait)^p}$ $T(p,a), a > 0, p > 0$ $Chi-square \qquad f(x) = \frac{1}{\Gamma(\frac{n}{2})}x^{\frac{1}{2}n-1}\left(\frac{1}{2}\right)^{n/2}e^{-x/2}, \ x > 0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ $x^2(n), n = 1, 2, 3, \dots$ $x^2(n), a > 0$ $Seta \qquad f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^2(r+s+1)} \qquad *$	Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
$U(0,1) \qquad f(x) = 1, \ 0 < x < 1 \qquad \frac{1}{2} \qquad \frac{1}{12} \qquad \frac{e^{it}-1}{it}$ $U(-1,1) \qquad f(x) = \frac{1}{2}, \ x < 1 \qquad 0 \qquad \frac{1}{3} \qquad \frac{\sin t}{t}$ Triangular $Tri(a,b) \qquad f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2}\right \right) \qquad \frac{1}{2}(a+b) \qquad \frac{1}{24}(b-a)^2 \qquad \left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$ $a < x < b$ $Tri(-1,1) \qquad f(x) = 1 - x , \ x < 1 \qquad 0 \qquad \frac{1}{6} \qquad \left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$ Exponential $Exp(a), a > 0$ $Exp(a), a > 0$ $Gamma \qquad f(x) = \frac{1}{a}e^{-x/a}, \ x > 0 \qquad a \qquad a^2 \qquad \frac{1}{1-ait}$ $\Gamma(p,a), a > 0, p > 0$ $Chi-square \qquad f(x) = \frac{1}{\Gamma(\frac{n}{2})}x^{\frac{1}{2}n-1}\left(\frac{1}{2}\right)^{n/2}e^{-x/2}, \ x > 0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ $x^2(n), n = 1, 2, 3, \dots$ $xaplace \qquad f(x) = \frac{1}{2a}e^{- x /a}, -\infty < x < \infty \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ $U(0, a) = 0$ $Seta \qquad f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^2(r+s+1)} \qquad *$	Uniform/Rectangular				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	U(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb}-e^{ita}}{it(b-a)}$
Triangular $f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right) \qquad \frac{1}{2}(a+b) \qquad \frac{1}{24}(b-a)^2 \qquad \left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$ $a < x < b$ $Tri(-1,1) \qquad f(x) = 1 - x , \ x < 1 \qquad 0 \qquad \frac{1}{6} \qquad \left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$ Exponential $f(x) = \frac{1}{a} e^{-x/a}, \ x > 0 \qquad a \qquad a^2 \qquad \frac{1}{1-ait}$ Exp(a), $a > 0$ $Gamma \qquad f(x) = \frac{1}{\Gamma(p)} x^{p-1} \frac{1}{a^p} e^{-x/a}, \ x > 0 \qquad pa \qquad pa^2 \qquad \frac{1}{(1-ait)^p}$ Chi-square $f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ Explace $f(x) = \frac{1}{2a} e^{- x /a}, \ -\infty < x < \infty \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ Seta $f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^2(r+s+1)} \qquad *$	U(0,1)	$f(x) = 1, \ 0 < x < 1$	$\frac{1}{2}$	$\frac{1}{12}$	$\frac{e^{it}-1}{it}$
$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right) \qquad \frac{1}{2}(a+b) \qquad \frac{1}{24}(b-a)^2 \qquad \left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$ $a < x < b$ $Tri(-1,1) \qquad f(x) = 1 - x , \ x < 1 \qquad 0 \qquad \frac{1}{6} \qquad \left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$ Exponential $f(x) = \frac{1}{a} e^{-x/a}, \ x > 0 \qquad a \qquad a^2 \qquad \frac{1}{1-ait}$ $Exp(a), \ a > 0$ $Gamma \qquad f(x) = \frac{1}{\Gamma(p)} x^{p-1} \frac{1}{a^p} e^{-x/a}, \ x > 0 \qquad pa \qquad pa^2 \qquad \frac{1}{(1-ait)^p}$ $Chi-square \qquad f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ $x^2(n), \ n = 1, 2, 3, \dots$ $x^2(n), \ a > 0$ $f(x) = \frac{1}{2a} e^{- x /a}, \ -\infty < x < \infty \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ $x = a$	U(-1,1)	$f(x) = \frac{1}{2}, x < 1$	0	$\frac{1}{3}$	$\frac{\sin t}{t}$
$a < x < b$ $Tri(-1,1) \qquad f(x) = 1 - x , \ x < 1 \qquad 0 \qquad \frac{1}{6} \qquad \left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$ Exponential $f(x) = \frac{1}{a}e^{-x/a}, \ x > 0 \qquad a \qquad a^2 \qquad \frac{1}{1-ait}$ $Exp(a), \ a > 0$ $Gamma \qquad f(x) = \frac{1}{\Gamma(p)}x^{p-1}\frac{1}{a^p}e^{-x/a}, \ x > 0 \qquad pa \qquad pa^2 \qquad \frac{1}{(1-ait)^p}$ $Chi-square \qquad f(x) = \frac{1}{\Gamma(\frac{n}{2})}x^{\frac{t}{2}n-1}\left(\frac{1}{2}\right)^{n/2}e^{-x/2}, \ x > 0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ $explace \qquad f(x) = \frac{1}{2a}e^{- x /a}, \ -\infty < x < \infty \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ $Exp(a), \ a > 0$ $exp(a), \ a > 0$ $f(x) = \frac{1}{\Gamma(\frac{n}{2})}x^{\frac{t}{2}n-1}\left(\frac{1}{2}\right)^{n/2}e^{-x/2}, \ x > 0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ $exp(a), \ a > 0 \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ $exp(a), \ a > 0 \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ $exp(a), \ a > 0 \qquad 0$	Triangular				
Tri(-1,1) $f(x) = 1 - x , x < 1$ 0 $\frac{1}{6}$ $\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$ Exponential $f(x) = \frac{1}{a}e^{-x/a}, x > 0$ a a^2 $\frac{1}{1-ait}$ Samma $f(x) = \frac{1}{\Gamma(p)}x^{p-1}\frac{1}{a^p}e^{-x/a}, x > 0$ pa pa^2 $\frac{1}{(1-ait)^p}$ Chi-square $f(x) = \frac{1}{\Gamma(\frac{n}{2})}x^{\frac{1}{2}n-1}\left(\frac{1}{2}\right)^{n/2}e^{-x/2}, x > 0$ n $2n$ $\frac{1}{(1-2it)^{n/2}}$ caplace $f(x) = \frac{1}{2a}e^{- x /a}, -\infty < x < \infty$ 0 $2a^2$ $\frac{1}{1+a^2t^2}$ Seta $f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1}, \frac{r}{r+s}$ $\frac{rs}{(r+s)^2(r+s+1)}$	$\mathrm{Tri}(a,b)$	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2}-e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
Exponential $f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$ a a^2 $\frac{1}{1-ait}$ Exp $(a), a > 0$ a a^2 $\frac{1}{1-ait}$ Exp $(a), a > 0$ a a a^2 $\frac{1}{1-ait}$ Exp $(a), a > 0$ a		a < x < b			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Tri(-1,1)	$f(x) = 1 - x , \ x < 1$	0	$\frac{1}{6}$	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Exponential	$f(x) = \frac{1}{2} e^{-x/a}, \ x > 0$	a	a^2	1
$\Gamma(p,a), \ a>0, \ p>0$ Chi-square $f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x>0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ Explace $f(x) = \frac{1}{2a} e^{- x /a}, \ -\infty < x < \infty \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ Seta $f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^2(r+s+1)} \qquad *$	$\operatorname{Exp}(a), \ a > 0$	a			1-ait
$\Gamma(p,a), \ a>0, \ p>0$ Chi-square $f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x>0 \qquad n \qquad 2n \qquad \frac{1}{(1-2it)^{n/2}}$ Explace $f(x) = \frac{1}{2a} e^{- x /a}, \ -\infty < x < \infty \qquad 0 \qquad 2a^2 \qquad \frac{1}{1+a^2t^2}$ Seta $f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^2(r+s+1)} \qquad *$	Gamma	$f(x) = \frac{1}{\Gamma(x)} x^{p-1} \frac{1}{x^p} e^{-x/a}, \ x > 0$	pa	pa^2	1
$\chi^{2}(n), n = 1, 2, 3, \dots$ $\text{caplace} \qquad f(x) = \frac{1}{2a} e^{- x /a}, \ -\infty < x < \infty \qquad 0 \qquad 2a^{2} \qquad \frac{1}{1 + a^{2}t^{2}}$ $\text{Seta} \qquad f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^{2}(r+s+1)} \qquad *$	$\Gamma(p,a),\ a>0,\ p>0$	$\Gamma(p) = a^p$			$(1-ait)^p$
$\chi^{2}(n), n = 1, 2, 3, \dots$ $\text{caplace} \qquad f(x) = \frac{1}{2a} e^{- x /a}, \ -\infty < x < \infty \qquad 0 \qquad 2a^{2} \qquad \frac{1}{1 + a^{2}t^{2}}$ $\text{Seta} \qquad f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^{2}(r+s+1)} \qquad *$	Chi-square	$f(x) = \frac{1}{\Gamma(n)} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	n	2n	$\frac{1}{(1-0)(1)\pi/2}$
$L(a), a>0$ $f(x)=\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^2(r+s+1)}$ *	$\chi^2(n), n = 1, 2, 3, \dots$	$1\left(\frac{1}{2}\right)$			$(1-2it)^{n/2}$
$L(a), a>0$ $f(x)=\frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)}x^{r-1}(1-x)^{s-1}, \qquad \frac{r}{r+s} \qquad \frac{rs}{(r+s)^2(r+s+1)}$ *	Laplace	$f(x) = \frac{1}{2}e^{- x /a}, -\infty < x < \infty$	0	$2a^2$	1
	L(a), a > 0	za			$1 + a^2 t^2$
	Beta	$f(x) = \frac{\Gamma(r+s)}{\Gamma(s)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	r	<i>rs</i>	*
p(1,0), 1,0 > 0	$\beta(r,s), r,s>0$	$\Gamma(\tau)\Gamma(s)$	r + s	$(r+s)^{2}(r+s+1)$	

Continuous Distributions (continued)

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Weibull $W(\alpha, \beta), \ \alpha, \beta > 0$	$f(x) = \frac{1}{\alpha \beta} x^{(1/\beta)-1} e^{-x^{1/\beta}/\alpha}, \ x > 0$	$\alpha^{\beta} \Gamma(\beta+1)$	$a^{2\beta} \left(\Gamma(2\beta + 1) - \Gamma(\beta + 1)^2 \right)$	*
Rayleigh Ra (α) , $\alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $N(\mu, \sigma^2),$ $-\infty < \mu < \infty, \sigma > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2},$ $-\infty < x < \infty$	μ	σ^2	$e^{i\mu t - \frac{1}{2}t^2\sigma^2}$
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	1	$e^{-t^2/2}$
Log-normal $LN(\mu, \sigma^2), \ -\infty < \mu < \infty, \ \sigma > 0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2/\sigma^2}, \ x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu} \big(e^{2\sigma^2} - e^{\sigma^2} \big)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \cdot d \frac{1}{(1 + \frac{x^2}{n})^{(n+1)/2}},$ $-\infty < x < \infty$	0	$\frac{n}{n-2}, n>2$	*
(Fisher's) F $F(m,n), m,n=1,2,\dots$	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$\frac{n}{n-2}$,	$\frac{n^2(m+2)}{m(n-2)(n-4)} - \left(\frac{n}{n-2}\right)^2$	*
delicale e vie	x > 0	n>2	n > 4	

Continuous Distributions (continued)

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x - m)^2}, -\infty < x < \infty$	A	A	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, \ -\infty < x < \infty$	A	A	$e^{- t }$
Pareto	$f(x) = \frac{\alpha k^{\alpha}}{x^{\alpha+1}}, \ x > k$	$\frac{\alpha k}{\alpha - 1}$, $\alpha > 1$	$\frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \alpha > 2,$	*
$\operatorname{Pa}(k,\alpha), k > 0, \alpha > 0$	w .	u 1	(3. –)(–)	

Table with common formulas and moment generating functions

Some common mathematical results

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}$$

$$\sum_{k=0}^{n-1} ar^{k} = a \frac{1-r^{n}}{1-r} \quad \text{if } r \neq 1$$

$$\sum_{k=0}^{\infty} ar^{k} = \frac{a}{1-r} \quad \text{if } |r| < 1$$

$$(x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k}$$

Moment generating functions for some common distributions

Distribution	Abbreviation	Moment generating function
Bernoulli	Be(p)	$q + pe^t$
Binomial	Bin(n,p)	$[q+pe^t]^n$
Poisson	Po(m)	$e^{m(e^t-1)}$
Uniform	U(a,b)	$\frac{e^{tb}-e^{ta}}{t(b-a)}$
Exponential	Exp(a)	$\frac{1}{1-at}$ for $t < 1/a$
Gamma	$\Gamma(p,a)$	$\frac{1}{(1-at)^p}$ for $t<1/a$
Laplace	L(a)	$\frac{\frac{e^{-e}}{t(b-a)}}{\frac{1}{1-at}} \text{ for } t < 1/a$ $\frac{1}{(1-at)^p} \text{ for } t < 1/a$ $\frac{1}{1-a^2t^2} \text{ for } t < 1/a$ $e^{t\mu+\sigma^2t^2/2}$
Normal	$N(\mu, \sigma^2)$	$e^{t\mu+\sigma^2t^2/2}$

Some statistical results

$$Y|X = x \sim N\left[\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x - \mu_x), \sigma_y^2(1 - \rho^2)\right]$$
 if Y and X are jointly normal.

$$\vec{Y}|\vec{X} = \vec{x} \sim N\left[\vec{\mu}_y + \mathbf{\Sigma}_{yx}\mathbf{\Sigma}_{xx}^{-1}(\vec{x} - \vec{\mu}_x), \mathbf{\Sigma}_{yy} - \mathbf{\Sigma}_{yx}\mathbf{\Sigma}_{xx}^{-1}\mathbf{\Sigma}_{xy}\right]$$
 if Y and X are jointly normal.

Basic Forms

$$\int x^n dx = \frac{1}{n+1} x^{n+1} \tag{1}$$

$$\int \frac{1}{x} dx = \ln|x| \tag{2}$$

$$\int udv = uv - \int vdu \tag{3}$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| \tag{4}$$

Integrals of Rational Functions

$$\int \frac{1}{(x+a)^2} dx = -\frac{1}{x+a}$$
 (5)

$$\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n \neq -1$$
 (6)

$$\int x(x+a)^n dx = \frac{(x+a)^{n+1}((n+1)x-a)}{(n+1)(n+2)}$$
 (7)

$$\int \frac{1}{1+x^2} dx = \tan^{-1} x \tag{8}$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \tag{9}$$

$$\int \frac{x}{a^2 + x^2} dx = \frac{1}{2} \ln|a^2 + x^2| \tag{10}$$

$$\int \frac{x^2}{a^2 + x^2} dx = x - a \tan^{-1} \frac{x}{a} \tag{11}$$

$$\int \frac{x^3}{a^2 + x^2} dx = \frac{1}{2}x^2 - \frac{1}{2}a^2 \ln|a^2 + x^2| \tag{12}$$

$$\int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
 (13)

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, \ a \neq b$$
 (14)

$$\int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln|a+x| \tag{15}$$

$$\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln|ax^2 + bx + c| - \frac{b}{\sqrt{4a - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4a - b^2}}$$
(16)

Integrals with Roots

$$\int \sqrt{x-a} dx = \frac{2}{3} (x-a)^{3/2} \tag{17}$$

$$\int \frac{1}{\sqrt{x \pm a}} dx = 2\sqrt{x \pm a} \tag{18}$$

$$\int \frac{1}{\sqrt{a-x}} dx = -2\sqrt{a-x} \tag{19}$$

$$\int x\sqrt{x-a}dx = \frac{2}{3}a(x-a)^{3/2} + \frac{2}{5}(x-a)^{5/2}$$
 (20)

$$\int \sqrt{ax+b}dx = \left(\frac{2b}{3a} + \frac{2x}{3}\right)\sqrt{ax+b}$$

$$\int (ax+b)^{3/2} dx = \frac{2}{5a} (ax+b)^{5/2}$$
 (22)

$$\int \frac{x}{\sqrt{x \pm a}} dx = \frac{2}{3} (x \mp 2a) \sqrt{x \pm a}$$
 (23)

$$\int \sqrt{\frac{x}{a-x}} dx = -\sqrt{x(a-x)} - a \tan^{-1} \frac{\sqrt{x(a-x)}}{x-a}$$
 (24)

$$\int \sqrt{\frac{x}{a+x}} dx = \sqrt{x(a+x)} - a \ln \left[\sqrt{x} + \sqrt{x+a} \right]$$
 (25)

$$\int x\sqrt{ax+b}dx = \frac{2}{15a^2}(-2b^2 + abx + 3a^2x^2)\sqrt{ax+b}$$
 (26)

$$\int \sqrt{x(ax+b)}dx = \frac{1}{4a^{3/2}} \left[(2ax+b)\sqrt{ax(ax+b)} \right]$$

$$-b^2 \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right| \right] \qquad (27)$$

$$\int \sqrt{x^3(ax+b)} dx = \left[\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3} \right] \sqrt{x^3(ax+b)} + \frac{b^3}{8a^{5/2}} \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right|$$
(28)

$$\int \sqrt{x^2 \pm a^2} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \pm \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$
(29)

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$$
(30)

$$\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3} \left(x^2 \pm a^2\right)^{3/2} \tag{31}$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$
 (32)

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} \tag{33}$$

$$\int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2} \tag{34}$$

$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} \tag{35}$$

$$\int \frac{x^2}{\sqrt{x^2 \pm a^2}} dx = \frac{1}{2} x \sqrt{x^2 \pm a^2} \mp \frac{1}{2} a^2 \ln \left| x + \sqrt{x^2 \pm a^2} \right|$$
(36)

$$\int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx^+c)} \right|$$
(37)

$$\int x\sqrt{ax^2 + bx + c} = \frac{1}{48a^{5/2}} \left(2\sqrt{a}\sqrt{ax^2 + bx + c}\right)$$

$$\times \left(-3b^2 + 2abx + 8a(c + ax^2) \right)$$

$$+3(b^3 - 4abc) \ln \left| b + 2ax + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|$$
 (38)

$$\int \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$

$$\int \frac{1}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$
(39)

$$\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right|$$

$$\int \frac{dx}{(x^2 + x^2)^{3/2}} = \frac{x}{(2\sqrt{2} + x^2)} \tag{41}$$

(40)

Integrals with Logarithms

$$\int \ln ax dx = x \ln ax - x \tag{42}$$

$$\int \frac{\ln ax}{x} dx = \frac{1}{2} \left(\ln ax \right)^2 \tag{43}$$

$$\int \ln(ax+b)dx = \left(x+\frac{b}{a}\right)\ln(ax+b) - x, a \neq 0 \quad (44)$$

$$\int \ln(x^2 + a^2) \, dx = x \ln(x^2 + a^2) + 2a \tan^{-1} \frac{x}{a} - 2x \quad (45)$$

$$\int \ln(x^2 - a^2) \, dx = x \ln(x^2 - a^2) + a \ln \frac{x+a}{x-a} - 2x \quad (46)$$

$$\int \ln (ax^2 + bx + c) dx = \frac{1}{a} \sqrt{4ac - b^2} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}}$$
$$-2x + \left(\frac{b}{2a} + x\right) \ln (ax^2 + bx + c) \tag{47}$$

$$\int x \ln(ax+b) dx = \frac{bx}{2a} - \frac{1}{4}x^2 + \frac{1}{2}\left(x^2 - \frac{b^2}{a^2}\right) \ln(ax+b)$$
 (48)

$$\int x \ln \left(a^2 - b^2 x^2\right) dx = -\frac{1}{2}x^2 + \frac{1}{2} \left(x^2 - \frac{a^2}{b^2}\right) \ln \left(a^2 - b^2 x^2\right)$$
(49)

Integrals with Exponentials

$$\int e^{ax} dx = \frac{1}{a} e^{ax} \tag{50}$$

$$\int \sqrt{x}e^{ax}dx = \frac{1}{a}\sqrt{x}e^{ax} + \frac{i\sqrt{\pi}}{2a^{3/2}}\operatorname{erf}\left(i\sqrt{ax}\right),$$
where $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt$ (51)

$$\int xe^x dx = (x-1)e^x \tag{52}$$

$$\int xe^{ax}dx = \left(\frac{x}{a} - \frac{1}{a^2}\right)e^{ax} \tag{53}$$

$$\int x^2 e^x dx = (x^2 - 2x + 2) e^x$$
 (54)

$$\int x^2 e^{ax} dx = \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right) e^{ax}$$
 (55)

$$\int x^3 e^x dx = (x^3 - 3x^2 + 6x - 6) e^x$$
 (56)

$$\int x^n e^{ax} \, dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} \, dx \tag{57}$$

$$\int x^n e^{ax} dx = \frac{(-1)^n}{a^{n+1}} \Gamma[1+n, -ax],$$
where $\Gamma(a, x) = \int_0^\infty t^{a-1} e^{-t} dt$ (58)

$$\int e^{ax^2} dx = -\frac{i\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}\left(ix\sqrt{a}\right) \tag{59}$$

$$\int e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}} \operatorname{erf}(x\sqrt{a})$$
 (60)

$$\int xe^{-ax^2} \, \mathrm{d}x = -\frac{1}{2a}e^{-ax^2} \tag{61}$$

$$\int x^2 e^{-ax^2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^3}} \operatorname{erf}(x\sqrt{a}) - \frac{x}{2a} e^{-ax^2}$$
 (62)

^{* 2014.} From http://integral-table.com, last revised June 14, 2014. This material is provided as is without warranty or representation about the accuracy, correctness or suitability of the material for any purpose, and is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Integrals with Trigonometric Functions

$$\int \sin ax dx = -\frac{1}{a}\cos ax \tag{63}$$

$$\int \sin^2 ax dx = \frac{x}{2} - \frac{\sin 2ax}{4a} \tag{64}$$

$$\int \sin^{n} ax dx = -\frac{1}{a} \cos ax \, _{2}F_{1} \left[\frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^{2} ax \right]$$
 (65)

$$\int \sin^3 ax dx = -\frac{3\cos ax}{4a} + \frac{\cos 3ax}{12a} \tag{66}$$

$$\int \cos ax dx = -\frac{1}{a} \sin ax \tag{67}$$

$$\int \cos^2 ax dx = \frac{x}{2} + \frac{\sin 2ax}{4a} \tag{68}$$

$$\int \cos^p ax dx = -\frac{1}{a(1+p)} \cos^{1+p} ax \times {}_{2}F_{1}\left[\frac{1+p}{2}, \frac{1}{2}, \frac{3+p}{2}, \cos^2 ax\right]$$
(69)

$$\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a} \tag{70}$$

$$\int \cos ax \sin bx dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, a \neq b$$
(71)

$$\int \sin^2 ax \cos bx dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}$$
(72)

$$\int \sin^2 x \cos x dx = \frac{1}{3} \sin^3 x \tag{73}$$

$$\int \cos^2 ax \sin bx dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a+b)x]}{4(2a+b)}$$
(74)

$$\int \cos^2 ax \sin ax dx = -\frac{1}{3a} \cos^3 ax \tag{75}$$

$$\int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin 2ax}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)}$$
(76)

$$\int \sin^2 ax \cos^2 ax dx = \frac{x}{8} - \frac{\sin 4ax}{32a} \tag{77}$$

$$\int \tan ax dx = -\frac{1}{a} \ln \cos ax \tag{78}$$

$$\int \tan^2 ax dx = -x + \frac{1}{a} \tan ax \tag{79}$$

$$\int \tan^{n} ax dx = \frac{\tan^{n+1} ax}{a(1+n)} \times {}_{2}F_{1}\left(\frac{n+1}{2}, 1, \frac{n+3}{2}, -\tan^{2} ax\right)$$
(80)

$$\int \tan^3 ax dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a} \sec^2 ax$$
 (81)

$$\int \sec x dx = \ln|\sec x + \tan x| = 2\tanh^{-1}\left(\tan\frac{x}{2}\right) \quad (82)$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax \tag{83}$$

$$\int \sec^3 x \, dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x| \quad (84)$$

$$\int \sec x \tan x dx = \sec x \tag{85}$$

$$\int \sec^2 x \tan x dx = \frac{1}{2} \sec^2 x \tag{86}$$

$$\int \sec^n x \tan x dx = \frac{1}{n} \sec^n x, n \neq 0$$
 (87)

$$\int \csc x dx = \ln\left|\tan\frac{x}{2}\right| = \ln\left|\csc x - \cot x\right| + C \qquad (88)$$

$$\int \csc^2 ax dx = -\frac{1}{a} \cot ax \tag{89}$$

$$\int \csc^3 x dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln|\csc x - \cot x| \quad (90$$

$$\int \csc^n x \cot x dx = -\frac{1}{n} \csc^n x, n \neq 0$$
 (91)

$$\int \sec x \csc x dx = \ln|\tan x| \tag{92}$$

$\begin{array}{c} \textbf{Products of Trigonometric Functions and} \\ \textbf{Monomials} \end{array}$

$$\int x \cos x dx = \cos x + x \sin x \tag{93}$$

$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax \tag{94}$$

$$\int x^2 \cos x dx = 2x \cos x + \left(x^2 - 2\right) \sin x \tag{95}$$

$$\int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax$$
 (96)

$$\int x^{n} cosx dx = -\frac{1}{2} (i)^{n+1} \left[\Gamma(n+1, -ix) + (-1)^{n} \Gamma(n+1, ix) \right]$$
(97)

$$\int x^n \cos ax dx = \frac{1}{2} (ia)^{1-n} \left[(-1)^n \Gamma(n+1, -iax) - \Gamma(n+1, ixa) \right]$$

$$(98)$$

$$\int x \sin x dx = -x \cos x + \sin x \tag{99}$$

$$\int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}$$
 (100)

$$\int x^2 \sin x dx = \left(2 - x^2\right) \cos x + 2x \sin x \tag{101}$$

$$\int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2}$$
 (102)

$$\int x^n \sin x dx = -\frac{1}{2} (i)^n \left[\Gamma(n+1, -ix) - (-1)^n \Gamma(n+1, -ix) \right]$$
(103)

Products of Trigonometric Functions and Exponentials

$$\int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) \tag{104}$$

$$\int e^{bx} \sin ax dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - a \cos ax) \quad (105)$$

$$\int e^x \cos x dx = \frac{1}{2} e^x (\sin x + \cos x) \tag{106}$$

$$\int e^{bx} \cos ax dx = \frac{1}{a^2 + b^2} e^{bx} (a \sin ax + b \cos ax) \quad (107)$$

$$\int xe^x \sin x dx = \frac{1}{2}e^x (\cos x - x\cos x + x\sin x) \qquad (108)$$

$$\int xe^x \cos x dx = \frac{1}{2}e^x (x\cos x - \sin x + x\sin x) \qquad (109)$$

Integrals of Hyperbolic Functions

$$\int \cosh ax dx = -\frac{1}{a} \sinh ax \tag{110}$$

$$\int e^{ax} \cosh bx dx =$$

$$\begin{cases} \frac{e^{ax}}{a^2 - b^2} [a \cosh bx - b \sinh bx] & a \neq b\\ \frac{e^{2ax}}{4a} + \frac{x}{2} & a = b \end{cases}$$
 (111)

$$\int \sinh ax dx = -\frac{1}{a} \cosh ax \tag{112}$$

$$\int e^{ax} \sinh bx dx =$$

$$\begin{cases} \frac{e^{ax}}{a^2 - b^2} [-b \cosh bx + a \sinh bx] & a \neq b \\ \frac{e^{2ax}}{4a} - \frac{x}{2} & a = b \end{cases}$$
 (113)

$$\int e^{ax} \tanh bx dx =$$

$$\begin{cases} \frac{e^{(a+2b)x}}{(a+2b)^2} {}_2F_1 \left[1 + \frac{a}{2b}, 1, 2 + \frac{a}{2b}, -e^{2bx} \right] \\ -\frac{1}{a} e^{ax} {}_2F_1 \left[\frac{a}{2b}, 1, 1E, -e^{2bx} \right] & a \neq b \end{cases}$$
(114)
$$\frac{e^{ax} - 2 \tan^{-1} [e^{ax}]}{a} \qquad a = b$$

$$\int \tanh ax \, dx = \frac{1}{a} \ln \cosh ax \tag{115}$$

$$\int \cos ax \cosh bx dx = \frac{1}{a^2 + b^2} \left[a \sin ax \cosh bx + b \cos ax \sinh bx \right]$$
(116)

$$\int \cos ax \sinh bx dx = \frac{1}{a^2 + b^2} \left[b \cos ax \cosh bx + a \sin ax \sinh bx \right]$$
(117)

$$\int \sin ax \cosh bx dx = \frac{1}{a^2 + b^2} \left[-a \cos ax \cosh bx + b \sin ax \sinh bx \right]$$
 (118)

$$\int \sin ax \sinh bx dx = \frac{1}{a^2 + b^2} \left[b \cosh bx \sin ax - a \cos ax \sinh bx \right]$$
 (119)

$$\int \sinh ax \cosh ax dx = \frac{1}{4a} \left[-2ax + \sinh 2ax \right] \tag{120}$$

$$\int \sinh ax \cosh bx dx = \frac{1}{b^2 - a^2} \left[b \cosh bx \sinh ax -a \cosh ax \sinh bx \right]$$
(121)