Reposiciones de ejercicios semanales

Rubí Rojas Tania Michelle Universidad Nacional Autónoma de México taniarubi@ciencias.unam.mx # de cuenta: 315121719

29 de mayo de 2019

1. Semanal 1

a) Defina recursivamente la función **nn** especificada como sigue: Dada una fórmula φ , $\mathbf{nn}(\varphi)$ devuelve el número de símbolos de negación en la fórmula. Solución: Definimos la función $nn :: PROP \to \mathbb{N}$ de la siguiente forma:

$$nn(\top) = 0$$

$$nn(\bot) = 0$$

$$nn(VarP) = 0$$

$$nn(\neg \varphi) = nn(\varphi) + 1$$

$$nn(\varphi \star \psi) = nn(\varphi) + nn(\psi) + 0$$

b) Demuestre utilizando inducción estructural que para cualquier fórmula φ se cumple

$$nn(\varphi) \leq nn(qi(\varphi)).$$

Donde la función qi devuelve una fórmula lógicamente equivalente en la que no figura el símbolo de implicación.

Demostración. Inducción sobre la fórmula φ .

- Base de inducción.
 - $\varphi = \top$. Entonces $nn(\top) = 0 = nn(\top) = nn(qi(\top))$
 - $\varphi = \bot$. Entonces $nn(\bot) = 0 = nn(\bot) = nn(qi(\bot))$
 - $\varphi = VarP$. Entonces nn(VarP) = 0 = nn(VarP) = nn(qi(VarP))
- Hipótesis de inducción. Supongamos que se cumple para $nn(\varphi') \leq nn(qi(\varphi'))$ y $nn(\varphi'') \leq nn(qi(\varphi''))$.

■ Paso inductivo.

Tenemos dos casos:

1) $\varphi = \neg \varphi'$. Entonces

$$nn(\varphi) = nn(\neg \varphi') \qquad \text{def. de } \varphi$$

$$= nn(\varphi') + 1 \qquad \text{def. recursiva de nn}$$

$$\leq nn(qi(\varphi')) + 1 \qquad \text{H.I.}$$

$$\leq nn(\neg (qi(\varphi'))) \qquad \text{def. recursiva de nn}$$

$$\leq nn(qi(\neg \varphi')) \qquad \text{def. recursiva de qi}$$

$$\leq nn(qi(\varphi)) \qquad \text{def. de } \varphi$$

- 2) $\varphi = \phi \star \psi$. Tenemos tres subcasos:
 - i) $\varphi = \phi \star \psi \text{ con } \star \in \{\land, \lor\}$. Entonces

$$nn(\varphi) = nn(\phi \star \psi) \qquad \text{def. de } \varphi$$

$$= nn(\phi) + nn(\psi) + 0 \qquad \text{def. recursiva de nn}$$

$$\leq nn(qi(\phi)) + nn(qi(\psi)) + 0 \qquad \text{H.I.}$$

$$\leq nn(qi(\phi) \star qi(\psi)) \qquad \text{def. recursiva de nn}$$

$$\leq nn(qi(\phi \star \psi)) \qquad \text{def. recursiva de qi}$$

$$\leq nn(qi(\varphi)) \qquad \text{def. de } \varphi$$

ii) $\varphi = \phi \star \psi$ con $\star \in \{\rightarrow\}$. Entonces

$$nn(\varphi) = nn(\phi \to \psi) \qquad \text{def. de } \varphi$$

$$= nn(\phi) + nn(\psi) + 0 \qquad \text{def. recursiva de nn}$$

$$\leq nn(qi(\phi)) + nn(qi(\psi)) + 0 \qquad \text{H.I.}$$

$$\leq nn(qi(\phi) \to qi(\psi)) \qquad \text{def. recursiva de nn}$$

$$\leq nn(\neg qi(\phi) \lor qi(\psi)) \qquad \text{equivalencia lógica}$$

$$\leq nn(qi(\phi \to \psi)) \qquad \text{def. recursiva de qi}$$

$$\leq nn(qi(\varphi)) \qquad \text{def. de } \varphi$$

iii) $\varphi = \phi \star \psi \text{ con } \star \in \{\leftrightarrow\}$. Entonces

$$nn(\varphi) = nn(\phi \leftrightarrow \psi) \qquad \text{def. de } \varphi$$

$$= nn(\phi) + nn(\psi) + 0 \qquad \text{def. recursiva de nn}$$

$$\leq nn(qi(\phi)) + nn(qi(\psi)) + 0 \qquad \text{H.I.}$$

$$\leq nn(qi(\phi) \leftrightarrow qi(\psi)) \qquad \text{def. recursiva de nn}$$

$$\leq nn((\neg qi(\phi) \lor qi(\psi)) \land (qi(\phi) \lor \neg qi(\psi))) \qquad \text{equivalencia lógica}$$

$$\leq nn(qi(\phi \leftrightarrow \psi)) \qquad \text{def. recursiva de qi}$$

$$\leq nn(qi(\varphi)) \qquad \text{def. de } \varphi$$

2. Semanal 2

a) Sea $\varphi = \neg (q \land ((r \rightarrow \neg s \lor r) \rightarrow p))$. Convierta a φ en una fórmula lógicamente equivalente φ' que se encuentre en Forma Normal Negativa. Solución:

$$fnn(\varphi) = \neg (q \land ((\neg r \lor \neg s \lor r) \to p))$$

= $\neg (q \land ((r \land s \land \neg r) \lor p))$
= $\neg q \lor ((\neg r \lor \neg s \lor r) \land \neg p)$

b) Sea $\Gamma = \{(a \lor b) \land c, \neg b \lor \neg c\}$ y $\varphi = a$. Determine mediante el método de tableaux si $\Gamma \models \varphi$.

Demostración. Para mostrar que $\Gamma \models \varphi$ entonces hay que trabajar nuestro Tableaux con $\Gamma \cup \{\neg \varphi\}$. Así,

Como todas las ramas se cerraron entonces podemos concluir que $\Gamma \models \varphi$.

3. Semanal 3

a) Da la especificación formal del siguiente argumento, definiendo previamente un glosario adecuado.

Todos los estudiantes cursan al menos una materia

Solución:

- Universo del discurso: Todas las personas.
- Predicados: E(x): x es estudiante y C(x,y): x cursa la materia y.
- Especificación Formal: $\forall x (E(x) \rightarrow \exists y C(x,y))$

b) Considere la siguiente expresión.

$$\forall x \exists y (A(y,x) \to M(x,y) \land (\exists z A(x,z) \land M(z,x)))$$

Aplique la siguiente sustitución: $\sigma = [u := a][z := x][x := n].$

Solución: Primero aplicamos α -equivalencia, donde obtenemos

$$\forall w \exists s (A(s, w) \to M(w, s) \land (\exists r A(w, r) \land M(z, w)))$$

Así, al aplicar la sustitución σ tenemos que

$$(\forall w \exists s (A(s,w) \to M(w,s) \land (\exists r A(w,r) \land M(z,w))))[u := a][z := x][x := n]$$

$$= (\forall w \exists s (A(s, w) \to M(w, s) \land (\exists r A(w, r) \land M(z, w))))[z := x][x := n]$$

$$= (\forall w \exists s (A(s, w) \rightarrow M(w, s) \land (\exists r A(w, r) \land M(x, w))))[x := n]$$

$$= (\forall w \exists s (A(s, w) \rightarrow M(w, s) \land (\exists r A(w, r) \land M(n, w))))$$

4. Semanal 4

a) $\Gamma = \{ \forall x (Qy \rightarrow Px) \}$. utilizando Tableaux demuestre lo siguiente:

$$\Gamma \models Qy \rightarrow \forall xPx$$

Demostración. Para mostrar que $\Gamma \models Qy \rightarrow \forall xPx$ entonces hay que trabajar nuestro Tableaux con $\Gamma \cup \{Qy \land \exists x \neg Px\}$. Así,

1.
$$\forall x(Qy \to Px)$$
 Hip

2.
$$Qy \wedge \exists x \neg Px \checkmark$$
 Hip

3.
$$Qy \checkmark$$
 ext. de α en 2

1.
$$\forall x (Qy \rightarrow Px)$$
 Hip
2. $Qy \land \exists x \neg Px \checkmark$ Hip
3. $Qy \checkmark$ ext. de α en 2
4. $\exists x \neg Px \checkmark$ ext. de α en 2
5. $\neg Pa \checkmark$ ext. de δ en 4
6. $Qy \rightarrow Pa \checkmark$ ext. de γ en 1

6.
$$Qy \rightarrow Pa \checkmark$$
 ext. de γ en 1

Como todas las ramas se cerraron entonces podemos concluir que $\Gamma \models Qy \rightarrow \forall x Px$.

5. Semanal 5

a) Sea $\varphi = \forall x \exists y (Pxyz \to (Qz \lor Ryx)) \to Qy \land (\exists x \forall z Rxz \lor \exists w Sx)$. Obten la Forma Normal Clausular de φ .

Solución: Primero, rectificamos a φ .

$$rect(\varphi) = \forall m \exists n (Pmnz \to (Qz \lor Rnm)) \to Qy \land (\exists s \forall u Rsu \lor Sx)$$

Así,

$$fnp(\varphi) = \exists s \forall u (\forall m \exists n (Pmnz \to (Qz \lor Rnm)) \to Qy \land (Rsu \lor Sx))$$
 eq. lógica
= $\exists s \forall u \exists m \forall n ((Pmnz \to (Qz \lor Rnm)) \to Qy \land (Rsu \lor Sx))$ eq. lógica

Entonces,

$$fns(\varphi) = \forall u \forall n ((Pfunz \rightarrow (Qz \lor Rnfu)) \rightarrow Qy \land (Rau \lor Sx))$$

Luego,

$$fnn(\varphi) = \forall u \forall n ((Pfunz \land (\neg Qz \land \neg Rnfu)) \lor Qy \land (Rau \lor Sx))$$

Por lo tanto,

$$Cl(\varphi) = Pfunz \land \neg Qz \land (\neg Rnfu \lor Qy) \land (Rau \lor Sx)$$

6. Semanal 6

a) Transforme a Forma Normal Clausular y decida mediante resolución binaria si se cumple la siguiente consecuencia lógica.

$$\{\forall x (Pxy \to \exists y Qy), \exists x \forall y (Qy \to Pyz \lor Rx), \forall y (Ry \to \exists x \neg Qa)\} \models \forall x (Qfa \to Qa)$$

SOLUCIÓN: Ya que trabajaremos con resolución binaria entonces debemos trabajar con el conjunto

$$\varphi = \{ \forall x (Pxy \to \exists y Qy), \exists x \forall y (Qy \to Pyz \lor Rx), \forall y (Ry \to \exists x \neg Qa), \exists x (Qfa \land \neg Qa) \}$$

Para obtener la Forma Normal Clausular, primero rectificamos φ .

$$rect(\varphi) = \forall m(Pmy \to \exists nQn) \land \exists s \forall r(Qr \to Prz \lor Rs) \land \forall u(Ru \to \neg Qa) \land Qfa \land \neg Qa$$
 Así,

$$fnn(\varphi) = \forall m(\neg Pmy \vee \exists nQn) \wedge \exists s \forall r(\neg Qr \vee Prz \vee Rs) \wedge \forall u(\neg Ru \vee \neg Qa) \wedge Qfa \wedge \neg Qa$$
 Después,

$$fnp(\varphi) = \forall m \exists n \exists s \forall r \forall u ((\neg Pmy \lor Qn) \land (\neg Qr \lor Prz \lor Rs) \land (\neg Ru \lor \neg Qa) \land Qfa \land \neg Qa)$$

Luego,

$$fns(\varphi) = \forall m \exists s \forall r \forall u ((\neg Pmy \lor Qfm) \land (\neg Qr \lor Prz \lor Rs) \land (\neg Ru \lor \neg Qa) \land Qfa \land \neg Qa)$$
$$= \forall m \forall r \forall u ((\neg Pmy \lor Qfm) \land (\neg Qr \lor Prz \lor Rgm) \land (\neg Ru \lor \neg Qa) \land Qfa \land \neg Qa)$$

Finalmente,

$$Cl(\varphi) = (\neg Pmy \lor Qfm) \land (\neg Qr \lor Prz \lor Rgm) \land (\neg Ru \lor \neg Qa) \land Qfa \land \neg Qa$$

Haciendo resolución binaria tenemos que

$$\begin{array}{lll} 1.(\neg Pmy \lor Qfm) & \text{Hip} \\ 2.(\neg Qr \lor Prz \lor Rgm) & \text{Hip} \\ 3.(\neg Ru \lor \neg Qa) & \text{Hip} \\ 4.\ Qfa & \text{Hip} \\ 5.\ \neg Qa & \text{Hip} \\ 6.\ \square & Res(4,5)[a:=b][b:=fa] \end{array}$$

Por lo tanto, podemos concluir que

$$\varphi = \{ \forall x (Pxy \to \exists y Qy), \exists x \forall y (Qy \to Pyz \lor Rx), \forall y (Ry \to \exists x \neg Qa), \exists x (Qfa \land \neg Qa) \}$$

7. Semanal 7

a) Demuestre lo siguiente mediante deducción natural.

$$\exists xFx \to \forall y(Gy \to Hy), \exists zJz \to \exists wGw \vdash \exists z(Fz \land Jz) \to \exists vHv$$

Demostración. Por el Teo. de DN basta mostrar

$$\Gamma = \{\exists x Fx \rightarrow \forall y (Gy \rightarrow Hy), \exists z Jz \rightarrow \exists w Gw, \exists z (Fz \land Jz)\} \vdash \exists v Hv$$

Entonces

1.	$\Gamma \vdash \exists x Fx \to \forall y (Gy \to Hy)$	Hip
2.	$\Gamma \vdash \exists z J z \to \exists w G w$	Hip
3.	$\Gamma \vdash \exists z (Fz \land Jz)$	Hip
4.	$\Gamma, Fz \wedge Jz \vdash Fz \wedge Jz$	Hip
5.	$\Gamma, Fz \wedge Jz \vdash Fz$	$(\wedge E)4$
6.	$\Gamma, Fz \wedge Jz \vdash Jz$	$(\wedge E)4$
7.	$\Gamma, Fz \wedge Jz \vdash \exists x Fx$	$(\exists I)4$
8.	$\Gamma, Fz \wedge Jz \vdash \forall y (Gy \to Hy)$	$(\rightarrow E)6, 1$
9.	$\Gamma, Fz \wedge Jz \vdash \exists zJz$	$(\exists I)5$
10.	$\Gamma, Fz \wedge Jz \vdash \exists Gw$	$(\rightarrow E)8,2$
11.	$\Gamma, Fz \wedge Jz, Gw \vdash Gw$	Hip
12.	$\Gamma, Fz \wedge Jz, Gw \vdash Gw \to Hw$	$(\forall E)$ 7
13.	$\Gamma Fz \wedge Jz, Gw \vdash Hw$	$(\rightarrow E)11, 10$
14.	$\Gamma, Fz \wedge Jz, Gw \vdash \exists uHu$	$(\exists I)$ 12
15.	$\Gamma, Fz \wedge Jz \vdash \exists u Hu$	$(\exists E)9, 12$
16.	$\Gamma \vdash \exists u H u$	$(\exists E)3, 15$

Por lo tanto, podemos concluir que

$$\exists x Fx \to \forall y (Gy \to Hy), \exists z Jz \to \exists w Gw \vdash \exists z (Fz \land Jz) \to \exists v Hv$$