极限定理

王友乐

电话: 18980082143

邮箱: Eleconnection@126.com

2015年5月13日

极限定理

- 1 大数律
 - 切比雪夫不等式
 - 大数律

2 中心极限定理

定理

设随机变量 X 的数学期望与方差都存在,则对任意 $\varepsilon > 0$,有

$$P(|X - E(X)| < \varepsilon) \ge 1 - \frac{D(X)}{\varepsilon^2}$$
 (1)

或

$$P(|X - E(X)| > \varepsilon) \le \frac{D(X)}{\varepsilon^2}.$$
 (2)

定义

设 $\{X_n\}$ 是一随机变量序列,a 为常数, 若对任意 $\varepsilon > 0$, 有

$$\lim_{n \to \infty} P(|X_n - a| < \varepsilon) = 1,\tag{3}$$

则称 $X_1, X_2, \dots, X_n, \dots$ 依概率收敛于 a, 记为 $X_n \stackrel{P}{\longrightarrow} a$.

定理

随机变量序列 $\{X_n\}$ 中, 若 $E(X_n) = \mu_n$, $D(X_n) = \sigma_n^2$ 存在, 且 $n \to \infty$ 时, 有 $\sigma_n^2 \to 0$, 则

$$X_n - \mu_n \xrightarrow{P} 0. \tag{4}$$

一个随机变量序列 $\{X_k\}$ 中, 若任意有限个随机变量都相互独立, 则称 $\{X_k\}$ 为独立的随机变量序列.

对一个随机变量序列 $\{X_k\}$, 记 $\overline{X}=\frac{1}{n}\sum_{k=1}^n X_k$, 若 $\overline{X}-\frac{1}{n}\sum_{k=1}^n X_k \xrightarrow{P} 0$, 则称随机变量序列 $\{X_k\}$ 服从**大数律**.

定理 (切比雪夫大数律)

对独立随机变量序列 $\{X_k\}$, 若 $E(X_k)$, $D(X_k)$ 都存 在, $k=1,2,3,\cdots$, 且有常数 C, 使得 $D(X_k)\leq C$, $k=1,2,\cdots$, 则有

$$\frac{1}{n}\sum_{k=1}^{n}X_{k} - \frac{1}{n}\sum_{k=1}^{n}E(X_{k}) \stackrel{P}{\longrightarrow} 0.$$
 (5)

推论 (独立同分布大数律)

设 $\{X_k\}$ 是独立同分布随机变量序列, 且

$$E(X_k) = \mu, D(X_k) = \sigma^2, k = 1, 2, \cdots$$
 . All

$$\overline{X} \xrightarrow{P} \mu.$$
 (6)

推论 (伯努利大数律)

在 n 次伯努利试验中, 事件 A 发生的频率为 $f_n(A) = \frac{n_A}{n}$, 且 A 发生的概率为 p = P(A), 则

$$f_n(A) \xrightarrow{P} p = P(A).$$
 (7)

中心极限定理

定理(林德伯格-列维中心极限定理)

设随机变量序列 $\{X_k\}$ 独立同分布, 且

$$E(X_k) = \mu, D(X_k) = \sigma^2, k = 1, 2, \dots$$
 it

$$Y_n = \frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n}\sigma} = \frac{\frac{1}{n} \sum_{k=1}^{n} X_k - \mu}{\sigma/\sqrt{n}},$$

则对任意 $x \in \mathbb{R}$, 有

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P(X_n \le x) = \Phi(x). \tag{8}$$

中心极限定理

定理 (棣莫弗 -拉普拉斯中心极限定理)

设随机变量序列 $\{X_n\}$ 中, $X_n \sim B(n,p)$, 则对任意 $x \in \mathbb{R}$, 有

$$\lim_{n \to \infty} P(\frac{X_n - np}{\sqrt{npq}} \le x) = \Phi(x). \tag{9}$$

推论

 $X \sim B(n, p), n$ 充分大时, 有

$$P(a < X \le b) \approx \Phi(\frac{b - np}{\sqrt{npq}}) - \Phi(\frac{a - np}{\sqrt{npq}}). \tag{10}$$