Course code: EEE-453
Course title: Numerical Method
Lecture on
Numerical Methods of
Ordinary Differential Equation

Numerical Differentiation

Differential Equation

i. Ordinary Differential Equation

Ex----
$$f(x)=3x\frac{d^2y}{dx^2} + 4\sin(x)\frac{dy}{dx} + x - 3$$

Order---2(max. derivatives)
Degree----1(max. power)

Numerical Differentiation

3

Numerical Methods Of Solving Ordinary Differential Equation(ODE)

To solve a differential equation some conditions(no. of condition must be equal to the order of the equation) are required. Based on these conditions ODE can be classified as

- i. Initial value problem(IVP)
- ii. Boundary value problem(BVP)

Numerical Differentiation

IVP Vs BVP

IVP	BVP
1.All condition will be given for the stating point of solution	1.Condition will be given for the terminal point of solution concerned
2. Ex3 $\frac{d^2y}{dx^2}$ + 4 $\frac{dy}{dx}$ = 3 Limit x= 0 to 10 Condition	2. Ex3 $\frac{d^2y}{dx^2}$ + 4 $\frac{dy}{dx}$ = 3 Limit x= 0 to 10 Condition Y(x=0)=5 $\frac{dy}{dx}$ (x=10)=Y'(x=10)

Initial value problem(IVP):1st order problem

- $\sqrt{\frac{\mathrm{dy}}{\mathrm{dx}}} = f(x,y)$
- ✓ Initial condition (xi, yi),(xi+1, yi+1)......
- ✓ Limit of X----xi:h:xup=0:h:10
- ✓ Xi=initial value or lower limit=0
- ✓ Xup=upper limit=10
- √ h=interval of x
- $\sqrt{y_{(i+1)}}=yi+\phi h$
- $\sqrt{\phi} = m = slope$

Initial value problem(IVP) solving method

- i. 1st order Range Kutta (R.K.) Method or Euler method
- ii. 2nd order Range Kutta (R.K.) Method or Heun's method
- iii. 3rd order Range Kutta (R.K.) Method

Initial value problem(IVP) Determination of o in Initial value problem(IV)

Determination of ϕ in Initial value problem(IVP) solving method

Method	Determination of ϕ
1. Euler method	φ= f(xi,yi) [If result linear , error=0]
2. Heun's method	$\varphi = \frac{1}{2}K_1 + \frac{1}{2}K_2$
	K ₁ =f(xi,yi) K ₂ =f(xi+h,yi+K ₁ *h) [If result quadratric, error=0]

Initial value problem(IVP) Determination of ϕ in Initial value problem(IVP) solving method

Method Determination of ϕ $\varphi = \frac{1}{6} K1 + \frac{4}{6} K2 + \frac{1}{6} K3$ 3.3rd order Range Kutta $=\frac{1}{6}(K_1+4K_2+K_3)$ (R.K.) Method K₁=f(xi,yi) $K_2=f(xi+\frac{1}{2}*h, yi+\frac{1}{2}*K_1*h)$ $K_3=f(x_1+h, y_1-K_1+h+2+K_2+h)$ [If result cubic , error=0]

9

```
Problem-01
Solve \frac{\sin(x)\cos(y)dx=(1+\cos(x)\sin(y))dy}{\sin(x)\cos(y)dx=(1+\cos(x)\sin(y))dy}, y(x=0.1)=-2
from x=0.1 to 0.4 with regular interval of 0.1.
Use
```

- i. 1st order Range Kutta (R.K.) Method or Euler method
- ii. 3rd order Range Kutta (R.K.) Method

Solution

```
sin(x)cos(y)dx=(1+cos(y)sin(x))dy
        sin(x)cos(y)
 dx = (1+\cos(y)\sin(x))
 f(x,y) = \frac{\sin(x)\cos(y)}{(1+\cos(y)\sin(x))}
I. Euler method
    φ= f(xi,yi)
    x=0.1 to 0.4
     h=0.1
```

Euler method φ= f(xi, yi)

xi	yi	φ= f(xi,yi)	y(i+1)=yi+φh		
0.1	-2	-0.4362	-2.0436		
0.2	-2.0436	-0.7098	-2.1146		
0.3	-2.1146	-0.8379	<mark>-2.1984</mark>		
0.4	-2.1934				

Ans—
$$(x,y)=(...,..),(...,..),(...,..),(...,..)$$

RK-3 method
x=0.1 to 0.4
h=0.1

$$\phi = \frac{1}{6}K1 + \frac{4}{6}K2 + \frac{1}{6}K3$$

$$=\frac{1}{6}(K_1+4K_2+K_3)$$

$$K_1=f(xi,yi)$$

 $K_2=f(xi + \frac{1}{2}*h, yi + \frac{1}{2}*K_1*h)$

 $K_3 = f(x_1 + h, y_1 - K_1 + 2 + K_2 + h)$

Χi	yi	K ₁ = f(xi, yi)	K ₂	K 3	φ	y (i+1) = yi +φ h
0.1	-2.0000	-0.0433	- 0.0667	-0.0921	-0.0670	-2.0067
0.2	-2.0067	-0.0916	1179	-0.1476	-0.1185	-2.0186
0.3	-2.0186	-0.1467	-0.1775	-0.2134	-0.1784	-2.0364
0.4	-2.0364					

Initial value problem(IVP): Higher order equation

For IVP, the higher order ODEs are first converted to 1st order then the equation are consecutively solved.

For n-th order IVP n= no of 1st order of ODEs

15

Initial value problem(IVP) Initial value problem(IVP): Higher order

equation

Example

$$f(x)=3\frac{d^4y}{dx^4}+2\frac{d^2y}{dx^2}+y=\sin x$$

It's a 4th order ODE

50

Step1---Assumption

Step2----convert main function according to assumption

Given

X=1 to 2

Y(1)=4

 $y_2 = Y'(1) = 0$

 $y_3 = y''(1) = 2$

Y4=Y"(1)=-2

Assumptions:

No. of assumption = max.order -1

```
\frac{dy}{dx} = y1 - - - - solving this get answer of y
\frac{d^2y}{dx^2} = y2 = \frac{d(y1)}{dx} - - - solving this get answer of y1
\frac{d^3y}{dx^3} = y3 = \frac{d(y2)}{dx} - - - solving this get answer of y2
```

Initial value problem(IVP) Now Converting equation

$$3\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = \sin x$$

Or, $3\frac{dy_3}{dx} + 2y_2 + y = \sin x$

Determination of ϕ in Initial value problem(IVP) solving method

Method	Determination of ϕ
1. Euler method	$\phi_1 = f(x_i, y_i, y_1_{(i)}) y_1_{(i+1)} = y_1_{(i)} + \phi_1^* h$ $\phi = f(x_i, y_i, y_1_{(i+1)}) y_{(i+1)} = y_1 + \phi^* h$
2. Heun's method	$\phi_1 = \frac{1}{2} K_1 + \frac{1}{2} K_2 - \dots - y_{1(i+1)} = y_{1(i)} + \phi_1 * h$ $\phi = f(x_i, y_i, y_{1(i+1)}) - \dots - y_{(i+1)} = y_1 + \phi^* h$ $K_1 = f(x_i, y_i, y_{1i})$

Problem-02

Solve
$$3x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} + y = \sin x$$
 with $y(x=1)=3.4$; $y'(x=1)0$ using i. Euler method ii. RK-2 method For $x=1$ to 3 with h=0.5 interval

Solution

It's a 2nd order 2nd degree ODE

1 Assumption

$$\frac{\mathrm{dy}}{\mathrm{dx}}$$
= y1

2. Converting equation

$$3x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} + y = \sin x$$

Or,
$$3x^2 \frac{dyl}{dx} + 2xy1 + y = sinx$$

Or,
$$\frac{dyl}{dx} = \frac{\sin x - 2xy1 - y}{3x^2}$$

$$f1 = \frac{\sin x - 2xy1 - y}{3x^2}$$

$$f = y1$$

Given Xi=1 then yi=3.4 Xi=1 then y'i=y1i=0 h= 0.5 X=1 to 3

1. Euler method

xi	yi	Y1i	φ1=f1(xi,y i,y1i)	y1(i+1)=y1i+φ 1*h	φ=f(xi, yi , y1(i+1))	y (i+1) = yi+ φ h
1	3.4	0	-0.8528	-0.4264	-0.4264	3.1868
1.5	3.1868	-0.4264				
2						
2.5						
3						

Initial value problem(IVP): Higher order 23 1.Rk-2 method

xi	yi	Y1i	K1= <mark>xi,yi,y1i</mark>	K2=xi+h,yi,y1i +K1*h	Φ1=1/2(k1+k 2)	y1(i+1)=y1i+ Φ1*h	Φ=f(xi,yi, y1(i+1))	y(i+1)
1	3.4	0	-0.8528	-0.1664	-0.5096	-0.2548	- 0.254 8	3.272
1.5	3.2726	- 0.2 548						
2								
2.5								
3								

25