

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/721,242	11/26/2003	Walter C. Dietrich JR.	YOR920030297US1	6112
48150	7590	01/10/2008	EXAMINER	
MCGINN INTELLECTUAL PROPERTY LAW GROUP, PLLC 8321 OLD COURTHOUSE ROAD SUITE 200 VIENNA, VA 22182-3817			WANG, BEN C	
		ART UNIT	PAPER NUMBER	
		2192		
		MAIL DATE	DELIVERY MODE	
		01/10/2008	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	10/721,242	DIETRICH ET AL.
	Examiner	Art Unit
	Ben C. Wang	2192

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 17 October 2007.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-38 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-38 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All
 - b) Some *
 - c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date: _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date: _____ | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

1. Applicant's amendment dated October 17, 2007, responding to the Office action mailed July 17, 2007 provided in the rejection of claims 1-38.

Claims 1-38 remain pending in the application and which have been fully considered by the examiner.

Applicant has essentially argued that the invention is patentable over the prior art. This argument is not persuasive for the reasons set forth below.

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a).

Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Claim Rejections – 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

2. Claims 25-26 are rejected under 35 U.S.C 101 because the claims are directed to non-statutory subject matter.
3. **As to claim 25** (Original), the “signal-bearing medium” is being cited, line 1, to include transmission media, light waves, a carrier wave etc., as defined in P. 34, lines 17-18 in the specifications. Signals and carrier waves do not fall within any class of statutory subject matter, and thus the claim is not limited to statutory subject matter. Please see Interim Guidelines for Examination of Patent Applications for Patent Subject Matter Eligibility (1300 OG 142), Annex IV, Section (C) for details.
4. **As to claims 26** (Original), they do not cure the deficiency of base claim 25, and also are rejected under 35 U.S.C. 101 as set forth above.

Claim Interpretation of Record for Claims 25-26

5. In the interest of compact prosecution, Examiner anticipates amendment to the claim and subsequently interprets the above phrase the “signal-bearing medium” as the “computer readable storage medium (emphasis added) and NOT

the "transmission medium" (non-statutory- emphasis added) for the purpose of further examination.

Claim Rejections – 35 USC § 102(e)

The following is quotation of 35 U.S.C. 102(e) which form the basis for all obviousness rejections set forth in this office action:

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

6. Claims 23, 25, 27, 29-32, and 35-36 are rejected under 35 U.S.C. 102(e) as being anticipated by Paul A. Below et al. (Pat. No. US 7,213,234 B1) (hereinafter 'Below')

7. **As to claim 23 (Original)**, Below discloses an apparatus to estimate at least one of a cost and an amount of necessary resources for an effort related to computer software development, computer software maintenance, and information technology services, said apparatus comprising: a memory to store a computer code involved in an effort related to software development; a graphic user interface to allow said computer code to be selected (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio); and a sampling module to allow said computer code to be sampled in accordance with a sampling technique (e.g., Col. 3, Line 14 through Col. 4, Line

13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

8. **As to claim 25 (Original),** Below discloses a signal-bearing medium tangibly embodying a program of machine-readable instructions executable by a digital processing apparatus to perform a method of estimating at least one of a cost and a necessary amount of resources for an effort related to computer software development, computer software maintenance, and information technology services, said method comprising: reading a section of computer code; sampling said computer code in accordance with a sampling technique (e.g., Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample); and using said sampling to calculating said at least one of cost and amount of resources for a larger subset of the computer code from said computer code from said sampling (e.g., Col. 4, Lines 26-29 – in general, larger samples

result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean), wherein said sampling, and said calculating is executed on a computer (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio).

9. **As to claim 27 (Original)**, Below discloses an apparatus to estimate a cost for an effort related to computer software development, computer software maintenance, and information technology services, said apparatus comprising: means for storing a computer code involved in an effort related to software development; means for allowing said computer code to be selected; and means for allowing said computer code to be sampled in accordance with a sampling technique (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio; Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random

sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

10. **As to claim 29 (Original)** (incorporating the rejection in claim 27), Below discloses the apparatus according further comprising: means for calculating cost for a larger subset of the computer code (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean) from computer code from said sampling (e.g., Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

11. **As to claim 30 (Original)** (incorporating the rejection in claim 29), Below discloses the apparatus further comprising: means for calculating at least one of a risk probability and an estimation precision for said cost (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for a given

probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean).

12. **As to claim 31** (Original) (incorporating the rejection in claim 27), Below discloses the method and the apparatus further comprising: categorizing each computer sampling into one of N categories of difficulty, N being an integer greater than 1 (e.g., Col. 3, Line 62 through Col. 4, Line 2 – In stratified sampling, the units in the sampling frame are classified into separate subgroups, or strata, on the basis of one or more important characteristics; determining which characteristics, if any, are important is somewhat of an art; the goal is to identify characteristics that have a major impact on the measurement being made; knowledge gained from previous or similar analysis can be used, as well as surveys of experts, and evidence gathered by measurement).

13. **As to claim 32** (Original), Below discloses an apparatus to estimate an amount of necessary resources for an effort related to computer software development, computer software maintenance, and information technology services, said apparatus comprising: means for storing a computer code involved in an effort related to software development; means for allowing said computer code to be selected; and means for allowing said computer code to be sampled

in accordance with a sampling technique (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio; Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

14. **As to claim 35 (Original)** (incorporating the rejection in claim 32), Below discloses the apparatus further comprising: means for calculating at least one of a risk probability and an estimation precision for amount of necessary resources (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean).

15. **As to claim 36 (Original)** (incorporating the rejection in claim 32), please refer to claim 31 as set forth accordingly.

Claim Rejections – 35 USC § 103(a)

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

16. Claims 1-8, 9-22, and 37-38 are rejected under 35 U.S.C. 103(a) as being unpatentable over Ramil et al. (*Cost Estimation and Evolvability Monitoring for Software Evolution Processes, Oct., 2000, WESS 2000 Workshop on Empirical Studies of Software Maintenance*) (hereinafter ‘Ramil’) in view of Below.

17. **As to claim 1 (Original),** Ramil discloses a method of estimating a cost related to at least one of computer software development, computer software maintenance, and information technology services (e.g., Sec. 1 – Introduction, Lines 1-5 – Software evolution is a continuing process that encompasses no only *ab initio* development but all activities, enhancement, adaptation or fixing, that occurs after the first operational release; however, in the present paper we consider only the post first release portion of the evolutionary process; this includes projects for enhancement and adaptation of a current software system and subsumes its maintenance, however the latter is defined; parenthetically we note that, in general and for several reasons, the term evolution is to be preferred

to maintenance in the context of software for post first release activity), said method comprising: calculating a cost for a larger subset of the computer code from said sampling, wherein at least one of said reading, said sampling, and said calculating is executed on a computer (e.g., Fig. 2 – A Model-based Scheme for Change Detection; Sec. 3 – Evolvability Monitoring, 4th Par. – the general idea of such approaches is illustrated in Fig. 2; the change detection scheme, which may involve a model calibrated and believed to represent the evolution process, is run ‘in parallel’ with the real process it models; the inputs and outputs of the process are statically compared to model’s prediction; a significant change in evolvability (or other key parameter) detected by such a scheme any prompt, for example, the need for process revision, major restructuring of the evolving software or even software replacement).

Ramil discloses statistical comparison to model’s prediction (e.g., Sec. 3 – Evolvability Monitoring, 4th Par.), but does not explicitly disclose reading a sample of computer code in accordance with a sampling technique.

However, in an analogous art of *system and method for function point sampling for software size estimates*, Below discloses reading a sample of computer code in accordance with a sampling technique (e.g., Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a

random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

Therefore, it would have been obvious to one of ordinary skill in the art, at the time the invention was made to combine the teachings of Below into the Ramil's system to further provide reading a sample of computer code in accordance with a sampling technique in Ramil system.

The motivation is that it would further enhance the Ramil's system by taking, advancing and/or incorporating Below's system which offers significant advantages for providing a system, method, and computer program product for estimating the function point count of a software application or portfolio as once suggested by Below (e.g., Col. 2, Lines 1-13).

18. **As to claim 2 (Original)** (incorporating the rejection in claim 1), Ramil discloses the method wherein said cost is for at least one of: porting said software to another platform; maintenance of said software; application portfolio management of said software; and legacy transformation of said software (e.g., Sec. 1 – Introduction, Lines 1-5 – Software evolution is a continuing process that encompasses no only *ab initio* development but *all* activities, enhancement, adaptation or fixing, that occurs after the first operational release; however, in the present paper we consider only the post first release portion of the evolutionary process; this includes projects for enhancement and adaptation of a current software system and subsumes its maintenance, however the latter is defined; parenthetically we note that, in general and for several reasons, the term

evolution is to be preferred to maintenance in the context of software for post first release activity).

19. **As to claim 3 (Original)** (incorporating the rejection in claim 1), Below discloses the method further comprising at least one of: calculating a variability of said cost due to sampling error (e.g., Col. 4, Lines 26-41); and calculating a probability that said cost will be lower than the cost that would have been estimated by using a sample including 100% of the code (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean).

20. **As to claim 4 (Original)** (incorporating the rejection in claim 1), Below discloses the method and the apparatus further comprising: categorizing each computer sampling into one of N categories of difficulty, N being an integer greater than 1 (e.g., Col. 3, Line 62 through Col. 4, Line 2 – In stratified sampling, the units in the sampling frame are classified into separate subgroups, or strata, on the basis of one or more important characteristics; determining which characteristics, if any, are important is somewhat of an art; the goal is to identify characteristics that have a major impact on the measurement being made;

knowledge gained from previous or similar analysis can be used, as well as surveys of experts, and evidence gathered by measurement).

21. **As to claim 5 (Original)** (incorporating the rejection in claim 1), Ramil discloses the method further comprising: reading into a computer at least one of a rule by which said sampling is to be executed, and cost parameters to be used for said calculating (e.g., Sec. 2 – Cost Estimation in the Evolution Context – their parameters are to be estimated, i.e., the model calibrated, by using empirical data at various levels of aggregation).

22. **As to claim 6 (Original)** (incorporating the rejection in claim 4), Below discloses the method wherein said categorizing comprises at least one of: a user-assisted technique in which a user enters a category for each said sampled computer code lines; and an automated technique in which a software tool parses each said sampled computer code line and generates a category for each parsed computer code line (e.g., Col. 3, Line 62 through Col. 4, Line 2 – In stratified sampling, the units in the sampling frame are classified into separate subgroups, or strata, on the basis of one or more important characteristics; determining which characteristics, if any, are important is somewhat of an art; the goal is to identify characteristics that have a major impact on the measurement being made; knowledge gained from previous or similar analysis can be used, as well as surveys of experts, and evidence gathered by measurement).

23. **As to claims 7 (Original)** (incorporating the rejection in claim 1), Below discloses the method wherein sample is taken using at least one of: simple random sampling (e.g., Col. 2, Lines 9-11 – Strata are defined, and random samples are chosen for a function point count); cluster sampling (e.g., Col. 5, Lines 8-11 – another possibility is to use cluster sampling; cluster sampling is a type of random sampling in which the population items occur naturally in subgroups; entire subgroups are randomly sampled); and stratified sampling (e.g., Col. 3, Lines 62-65 – In stratified sampling, the units in the sampling frame are classified into separate subgroups, or strata, on the basis of one or more important characteristics; determining which characteristic, if any, are important is somewhat of an art).

24. **As to claim 8 (Original)** (incorporating the rejection in claim 1), Below discloses the method wherein the sample includes at least one of: a line of code; a file or module from an application or set of applications; an initial part of a file or a module from an application or set of applications; and an application from a set of applications (e.g., Col. 3, Line 8 through Col. 4, Lines 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size for a large portfolio as well as on large applications).

25. **As to claim 9** (Original), Ramil discloses a method of estimating necessary amounts of resources for an effort related to at least one of computer software development, computer software maintenance, and information technology services, said method comprising: calculating resources for a larger subset of the computer code from said sampling, wherein at least one of said reading, said sampling, and said calculating is executed on a computer (e.g., Fig. 2 – A Model-based Scheme for Change Detection; Sec. 3 – Evolvability Monitoring, 4th Par. – the general idea of such approaches is illustrated in Fig. 2; the change detection scheme, which may involve a model calibrated and believed to represent the evolution process, is run ‘in parallel’ with the real process it models; the inputs and outputs of the process are statically compared to model’s prediction; a significant change in evolvability (or other key parameter) detected by such a scheme any prompt, for example, the need for process revision, major restructuring of the evolving software or even software replacement).

Ramil discloses statistical comparison to model’s prediction (e.g., Sec. 3 – Evolvability Monitoring, 4th Par.), but does not explicitly disclose reading a sample of computer code in accordance with a sampling technique.

However, in an analogous art of *system and method for function point sampling for software size estimates*, Below discloses reading a sample of computer code in accordance with a sampling technique (e.g., Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the

expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

Therefore, it would have been obvious to one of ordinary skill in the art, at the time the invention was made to combine the teachings of Below into the Ramil's system to further provide reading a sample of computer code in accordance with a sampling technique in Ramil system.

The motivation is that it would further enhance the Ramil's system by taking, advancing and/or incorporating Below's system which offers significant advantages for providing a system, method, and computer program product for estimating the function point count of a software application or portfolio as once suggested by Below (e.g., Col. 2, Lines 1-13).

26. **As to claim 10 (Original)** (incorporating the rejection in claim 9), Ramil discloses the method wherein said resources are for at least one of: porting said software to another platform; maintenance of said software; application portfolio management of said software; and legacy transformation of said software (e.g., Sec. 1 – Introduction, Lines 1-5 – Software evolution is a continuing process that encompasses no only *ab initio* development but *all* activities, enhancement, adaptation or fixing, that occurs after the first operational release; however, in the present paper we consider only the post first release portion of the evolutionary process; this includes projects for enhancement and adaptation of a current

software system and subsumes its maintenance, however the latter is defined; parenthetically we note that, in general and for several reasons, the term evolution is to be preferred to maintenance in the context of software for post first release activity).

27. **As to claim 11 (Original)** (incorporating the rejection in claim 9), Below discloses the method further comprising at least one of calculating one or more variabilities of amounts of resources due to sampling error (e.g., Col. 4, Lines 26-41); and calculating a probability that amount of resources will be less than the amounts of resources that would have been estimated by using a sample including 100% of the code (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean).

28. **As to claim 12 (Original)** (incorporating the rejection in claim 9), please refer to claim 4 as set forth accordingly.

29. **As to claim 13 (Original)** (incorporating the rejection in claim 9), Below discloses the method further comprising: reading into a computer at least one of a rule by which said sampling is to be executed, and resource parameters to be

used for said calculating (e.g., Col. 3, Line 8 through Col. 4, Line 13; Col. 5, Lines 1-7; Col. 7, Lines 16-20 – since the stratum size is allowed to vary, this is called disproportionate stratified random sampling; the size of the sample relative to the size of total population of applications will be used as a weighting factor in the final calculations).

30. **As to claim 14 (Original)** (incorporating the rejection in claim 9), Below discloses the method further comprising: creating at least one of a resource plan and a work breakdown structure based on the calculated resources (e.g., Abstract, Lines 4-6 – results are analyzed and quantified, and a confidence interval is determined to qualify the accuracy of the estimate).

31. **As to claim 15 (Original)** (incorporating the rejection in claim 11), Below discloses the method further comprising: creating a risk management plan based on calculated risk parameters (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean).

32. **As to claim 16 (Original)** (incorporating the rejection in claim 12), please refer to claim 6 as set forth accordingly.

33. **As to claim 17 (Original)** (incorporating the rejection in claim 9), please refer to claim 7 as set forth accordingly.

34. **As to claim 18 (Original)** (incorporating the rejection in claim 8), Below discloses the method wherein the sample includes at least one of a line of code; a file or a module from an application or set of applications; an initial part of a file or a module from an application or set of applications; and an application from a set of applications (e.g., Col. 3, Line 8 through Col. 4, Lines 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a compete count (census); this technique can be used to estimate size for a large portfolio as well as on large applications).

35. **As to claim 19 (Original)**, Ramil discloses a business method comprising at least one of: estimating a cost for an effort related to at least one of computer software development and information technology (IT) services, said estimating method comprising: calculating said cost for a larger subset of the computer code from said computer code from said sampling (e.g., Fig. 2 – A Model-based Scheme for Change Detection; Sec. 3 – Evolvability Monitoring, 4th Par. – the general idea of such approaches is illustrated in Fig. 2; the change detection scheme, which may involve a model calibrated and believed to represent the evolution process, is run ‘in parallel’ with the real process it models; the inputs

and outputs of the process are statically compared to model's prediction; a significant change in evolvability (or other key parameter) detected by such a scheme any prompt, for example, the need for process revision, major restructuring of the evolving software or even software replacement).

36. Ramil discloses statistical comparison to model's prediction (e.g., Sec. 3 – Evolvability Monitoring, 4th Par.), but does not explicitly disclose sampling computer code in accordance with a sampling technique; calculating at least one of a risk probability and an estimation precision for said cost, wherein at least one of said reading, said sampling, and said calculating is executed on a computer; providing a result of said calculating to a party; and receiving said result of said calculating.

However, in an analogous art of *system and method for function point sampling for software size estimates*, Below discloses sampling computer code in accordance with a sampling technique (e.g., Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample); calculating at least one of a risk probability and an estimation precision for said cost (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for

a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean), wherein at least one of said reading, said sampling, and said calculating is executed on a computer (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio); providing a result of said calculating to a party; and receiving said result of said calculating (e.g., Col. 1, Lines 37-39 – end of story for process improvement and accurate, reliable operations analysis reporting).

Therefore, it would have been obvious to one of ordinary skill in the art, at the time the invention was made to combine the teachings of Below into the Ramil's system to further provide sampling computer code in accordance with a sampling technique; calculating at least one of a risk probability and an estimation precision for said cost, wherein at least one of said reading, said sampling, and said calculating is executed on a computer; providing a result of said calculating to a party; and receiving said result of said calculating in Ramil system.

The motivation is that it would further enhance the Ramil's system by taking, advancing and/or incorporating Below's system which offers significant advantages for providing a system, method, and computer program product for

estimating the function point count of a software application or portfolio as once suggested by Below (e.g., Col. 2, Lines 1-13).

37. **As to claim 20 (Original)** (incorporating the rejection in claim 19), Ramil discloses the business method wherein said effort comprises at least one porting said software to another platform; maintenance of said software; application portfolio management of said software; and legacy transformation of said software (e.g., Sec. 1 – Introduction, Lines 1-5 – Software evolution is a continuing process that encompasses no only *ab initio* development but *all* activities, enhancement, adaptation or fixing, that occurs after the first operational release; however, in the present paper we consider only the post first release portion of the evolutionary process; this includes projects for enhancement and adaptation of a current software system and subsumes its maintenance, however the latter is defined; parenthetically we note that, in general and for several reasons, the term evolution is to be preferred to maintenance in the context of software for post first release activity).

38. **As to claim 21 (Original)**, Ramil discloses a business method comprising at least one of: estimating a necessary amount of resources for an effort related to at least one of computer software development and information technology (IT) services, said estimating method comprising: calculating said necessary amount of resources for a larger subset of the computer code from said computer code from said sampling (e.g., Fig. 2 – A Model-based Scheme for Change

Detection; Sec. 3 – Evolvability Monitoring, 4th Par. – the general idea of such approaches is illustrated in Fig. 2; the change detection scheme, which may involve a model calibrated and believed to represent the evolution process, is run ‘in parallel’ with the real process it models; the inputs and outputs of the process are statically compared to model’s prediction; a significant change in evolvability (or other key parameter) detected by such a scheme any prompt, for example, the need for process revision, major restructuring of the evolving software or even software replacement).

Ramil discloses statistical comparison to model’s prediction (e.g., Sec. 3 – Evolvability Monitoring, 4th Par.), but does not explicitly disclose sampling computer code in accordance with a sampling technique and calculating at least one of a risk probability and an estimation precision for said estimate of amount of resources, wherein at least one of said reading, said sampling, and said calculating is executed on a computer; providing a result of said calculating to a party; and receiving said result of said calculating.

However, in an analogous art of *system and method for function point sampling for software size estimates*, Below discloses sampling computer code in accordance with a sampling technique (e.g., Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random

sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample) and calculating at least one of a risk probability and an estimation precision for said estimate of amount of resources (e.g., Col. 4, Lines 26-29 – in general, larger samples result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval; Col. 4, Lines 19-22 – a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean), wherein at least one of said reading, said sampling, and said calculating is executed on a computer (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio); providing a result of said calculating to a party; and receiving said result of said calculating (Col. 1, Lines 37-39 – end of story for process improvement and accurate, reliable operations analysis reporting).

Therefore, it would have been obvious to one of ordinary skill in the art, at the time the invention was made to combine the teachings of Below into the Ramil's system to further provide sampling computer code in accordance with a sampling technique and calculating at least one of a risk probability and an estimation precision for said estimate of amount of resources, wherein at least one of said reading, said sampling, and said calculating is executed on a

computer; providing a result of said calculating to a party; and receiving said result of said calculating in Ramil system.

The motivation is that it would further enhance the Ramil's system by taking, advancing and/or incorporating Below's system which offers significant advantages for providing a system, method, and computer program product for estimating the function point count of a software application or portfolio as once suggested by Below (e.g., Col. 2, Lines 1-13).

39. **As to claim 22** (Original) (incorporating the rejection in claim 21), please refer to claim 20 as set forth accordingly.

40. **As to claim 37** (Original) (incorporating the rejection in claim 1), Below discloses a method for deploying computing infrastructure, comprising integrating computer-readable code into a computing system, wherein the code in combination with the computing system is capable of performing the method of claim 1 (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio; Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from

each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

41. **As to claim 38 (Original)** (incorporating the rejection in claim 9), Below discloses a method for deploying computing infrastructure, comprising integrating computer-readable code into a computing system, wherein the code in combination with the computing system is capable of performing the method of claim 9 (e.g., Col. 3, Lines 8-10 – the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio; Col. 3, Line 14 through Col. 4, Line 13 – the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample).

42. Claims 24, 26, 28, and 33-34 are rejected under 35 U.S.C. 103(a) as being unpatentable over Below in view of Ramil.

43. **As to claim 24 (Original)** (incorporating the rejection in claim 23), Below does not explicitly disclose the apparatus wherein said effort comprises one of: porting said computer code to another platform; maintaining said computer code;

performing application portfolio management on said computer code; and performing legacy transformation on said code.

However, in an analogous art of *cost estimation and evolvability monitoring for software evolution processes*, Ramil discloses the apparatus wherein said effort comprises one of: porting said computer code to another platform; maintaining said computer code; performing application portfolio management on said computer code; and performing legacy transformation on said code (e.g., Sec. 1 – Introduction, Lines 1-5 – Software evolution is a continuing process that encompasses no only *ab initio* development but *all* activities, enhancement, adaptation or fixing, that occurs after the first operational release; however, in the present paper we consider only the post first release portion of the evolutionary process; this includes projects for enhancement and adaptation of a current software system and subsumes its maintenance, however the latter is defined; parenthetically we note that, in general and for several reasons, the term evolution is to be preferred to maintenance in the context of software for post first release activity).

Therefore, it would have been obvious to one of ordinary skill in the art, at the time the invention was made to combine the teachings of Ramil into the Below's system to further provide the apparatus wherein said effort comprises one of: porting said computer code to another platform; maintaining said computer code; performing application portfolio management on said computer code; and performing legacy transformation on said code in Below system.

The motivation is that it would further enhance the Below's system by taking, advancing and/or incorporating Ramil's system which offers significant advantages which the major cost that system evolution represents in the lifetime of the system and the demands it makes on professional resources, makes it essential to be able to accurately predict, assess and control the cost of adaptation and evolution as once suggested by Ramil (e.g., Sec. of Final Remarks).

44. **As to claim 26** (Original) (incorporating the rejection in claim 25), Below does not explicitly disclose the signal bearing medium wherein said effort comprises one of: porting said computer code to another platform; maintaining said computer code; performing application portfolio management on said computer code; and performing legacy transformation on said code.

However, in an analogous art of *cost estimation and evolvability monitoring for software evolution processes*, Ramil discloses the signal bearing medium wherein said effort comprises one of: porting said computer code to another platform; maintaining said computer code; performing application portfolio management on said computer code; and performing legacy transformation on said code (e.g., Sec. 1 – Introduction, Lines 1-5 – Software evolution is a continuing process that encompasses no only *ab initio* development but *all* activities, enhancement, adaptation or fixing, that occurs after the first operational release; however, in the present paper we consider only the post first release portion of the evolutionary process; this includes projects for

enhancement and adaptation of a current software system and subsumes its maintenance, however the latter is defined; parenthetically we note that, in general and for several reasons, the term evolution is to be preferred to maintenance in the context of software for post first release activity).

Therefore, it would have been obvious to one of ordinary skill in the art, at the time the invention was made to combine the teachings of Ramil into the Below's system to further provide the signal bearing medium wherein said effort comprises one of: porting said computer code to another platform; maintaining said computer code; performing application portfolio management on said computer code; and performing legacy transformation on said code in Below system.

The motivation is that it would further enhance the Below's system by taking, advancing and/or incorporating Ramil's system which offers significant advantages which the major cost that system evolution represents in the lifetime of the system and the demands it makes on professional resources, makes it essential to be able to accurately predict, assess and control the cost of adaptation and evolution as once suggested by Ramil (e.g., Sec. of Final Remarks).

45. **As to claim 28** (Original) (incorporating the rejection in claim 27), please refer to claim 24 as set forth accordingly.

46. **As to claim 33** (Original) (incorporating the rejection in claim 32), please refer to claim 24 as set forth accordingly.

47. **As to claim 34** (Original) (incorporating the rejection in claim 32), Below discloses the apparatus according further comprising: means for calculating amount of necessary resources for a larger subset of the computer code from computer code from sampling.

However, in an analogous art of *cost estimation and evolvability monitoring for software evolution processes*, Ramil discloses the apparatus according further comprising: means for calculating amount of necessary resources for a larger subset of the computer code from computer code from sampling (e.g., Fig. 2 – A Model-based Scheme for Change Detection; Sec. 3 – Evolvability Monitoring, 4th Par. – the general idea of such approaches is illustrated in Fig. 2; the change detection scheme, which may involve a model calibrated and believed to represent the evolution process, is run ‘in parallel’ with the real process it models; the inputs and outputs of the process are statically compared to model’s prediction; a significant change in evolvability (or other key parameter) detected by such a scheme any prompt, for example, the need for process revision, major restructuring of the evolving software or even software replacement).

Therefore, it would have been obvious to one of ordinary skill in the art, at the time the invention was made to combine the teachings of Ramil into the Below’s system to further provide the apparatus according further comprising:

means for calculating amount of necessary resources for a larger subset of the computer code from computer code from sampling in *Below* system.

The motivation is that it would further enhance the *Below*'s system by taking, advancing and/or incorporating Ramil's system which offers significant advantages which the major cost that system evolution represents in the lifetime of the system and the demands it makes on professional resources, makes it essential to be able to accurately predict, assess and control the cost of adaptation and evolution as once suggested by Ramil (e.g., Sec. of Final Remarks).

Response to Arguments

48. Applicant's arguments filed on October 17, 2007 have been fully considered but they are not persuasive. For examples:

In the remarks, Applicant argues that:

- a) Applicant states "The wording of these claims (e.g., claims 25 and 26) has at least ... clearly directed to statutory subject matter" (REMARKS - P. 13, Sec. of The Statutory Subject Matter Rejection)
- b) There is not teaching or suggest in *Below* for: "... to perform a method of estimating at least one of cost and a necessary amount of resources for an effort related to computer software development, computer software maintenance, and information technology services, ... using said sampling to calculating said at

least one of cost and amount of resources for a larger a subset of the computer code from said computer code from said sampling, ..." (REMARKS - P. 14, last 2nd line through P. 15, Line 5)

c) *Ramil* does not teach or suggest: "A method of estimating a cost related to at least one of computer software development, computer software maintenance, and information technology services, ... and calculating a cost for a larger subset of the computer code from said sampling..." (REMARKS - P. 17, Lines 22-26)

Examiner's response:

a) Applicant's specification explicitly describes "*other suitable signal-bearing media*" including transmission media such as digital and analog and communication link (Specification at P. 34, Line 17 through P. 35, Line 1). Such embodiment is readily interpreted as mere signals encoded with function descriptive material, which is non-statutory. Claims involving signals encoded with functional descriptive material do not fall within any of the categories of patentable subject matter set forth in 35 U.S.C. §101, and such claims are therefore ineligible for patent protect. *In re Nuijten*, 500 F.3d 1346, 1353, 84 USPQ2d 1495, 1500 (Fed. Cir. 2007); 1300 OG 142 (November 22, 2005) (in particular, see Annex IV(c))

b) Below discloses "*the preferred embodiment provides a sampling system and method for estimating a portfolio size, or an application size, without the expense or time required to conduct a complete count (census); this technique*

can be used to estimate size of a large portfolio as well as on large application; a random sample is taken from each of the strata; this ensures proportionate representation from each of the sub-groups in the sample" (e.g., Col. 3, Line 14 through Col. 4, Line 13); "in general, larger samples result in smaller confidence intervals for a given probability level; the challenge is to select the smallest sample (least cost) that will result in an acceptable confidence interval" (e.g., Col. 4, Lines 26-29); "a confidence interval for the means is an estimate interval constructed with respect to the sample means, with a specified likelihood that the interval includes the value of the population mean" (e.g., Col. 4, Lines 19-22); and "the preferred embodiment provides a system, method, and computer program product for estimating the function point count of a software application or portfolio" (e.g., Col. 3, Lines 8-10)

c) Ramil discloses "*Software evolution is a continuing process that encompasses no only ab initio development but all activities, enhancement, adaptation or fixing, that occurs after the first operational release; however, in the present paper we consider only the post first release portion of the evolutionary process; this includes projects for enhancement and adaptation of a current software system and subsumes its maintenance, however the latter is defined; parenthetically we note that, in general and for several reasons, the term evolution is to be preferred to maintenance in the context of software for post first release activity*" (e.g., Sec. 1 – Introduction, Lines 1-5); and "*the general idea of such approaches is illustrated in Fig. 2; the change detection scheme, which may*

involve a model calibrated and believed to represent the evolution process, is run 'in parallel' with the real process it models; the inputs and outputs of the process are statically compared to model's prediction; a significant change in evolvability (or other key parameter) detected by such a scheme any prompt, for example, the need for process revision, major restructuring of the evolving software or even software replacement" (e.g., Sec. 3 – Evolvability Monitoring, 4th Par.)

Conclusion

49. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Ben C. Wang whose telephone number is 571-270-1240. The examiner can normally be reached on Monday - Friday, 8:00 a.m. - 5:00 p.m., EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tuan Q. Dam can be reached on 571-272-3695. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

BCW *bw*

December 31, 2007

ERIC B. KISS
PRIMARY EXAMINER