Relation between Permutation and Combination

Mathematical Relation:

Total count of characters in power set: power St = (1+1) = 2

$$2^{n} = n_{c} + n_{c$$

Since there are 2ⁿ terms, and 2 terms togeter gives 'n' char.

So, total number of chars in power set = $((2^n)/2)^n = 2^n(n-1)^n$

Permuation and combination in terms of arranament:

Permuation: Arranging 'r' distinct items at 'n' positions. Eg. Arranging 2 distinct items(a,b) at 3 positions. $3_{\frac{1}{2}} = 6$ Combination: Arranging 'r' identical items at 'n' positions. Eg. Arranging 2(i,i) at 3 positions $3c_2 = 3$

Since r = 2, it means against each combination there will be r! copies(2!=2) of permuation.

Approach for permuation tree formation:

- 1. By fixing the position and taking input elements as options
- 2.By fixing the input elemnt and taking pisitions as options
- 1A. By fixing the position and taking input elements as options where input_count == position_count

2.By fixing the input elemnt and taking pisitions as options where input_count <= position_count

1B. By fixing the position and taking input elements as options where input_count < position_count

Note: since input_count is smaller than postion_count so, input options to try at level will get exhausted before reaching to leaf level. This is why 'empty' need to be treated as special input.

EMPTY_COUNT = POSITION_COUNT - INPUT_COUNT

Approaches for Combination tree formation:

- 1. Pascal_Identity based Include_Exclude_Tree tree by fixing position
- 2. Pascal_Identity_Expansion based Include_Tree by fixing position
- Pascal_Identity based Include_Exclude_Tree tree by fixing position where input_count <= postion_count

Note: Position is fixed at each level, and include(i) & exclude(i) are taken as options i.e. branches

performing opertation include and exclude on input element persent at postion 'p1' i.e. position to be fixed.

1. Pascal_Identity based Include_Exclude_Tree tree by fixing position where input_count <= postion_count

power set by placing 'i' on n given position

2. Pascal_Identity_Expansion based Include_Tree by fixing position where input_count <= position_count

Power set by placing 'i' at 'n' given positions

In pascal identity Expansion strategy position is used for both:

2. Pascal_Identity_Expansion based Include_Tree by fixing position where input_count

Power set by placing 'abc' at '3' given positions

Relation between Permutation and Combination

Question: Print combination using prermuation strategy of fixing input and taking position as options

Note: If we allow only to place the input in lexicographic order, then we will get combinations from permutation strategy.

Rule of thumb for picking what to be fixed and what to be taken as options in recursion tree

Observation:

- 1. For case where options to try at level get exhausted before leaf level:
- We have to cover lots of corner cases with lots of if and buts.
- 2. For case where options to try at level get exhausted at leaf level or remain unexhausted:
- Solution remain simple and straight-forward.

Rule of Thumb to pick the approach to tackle the recursive problem:

The parmeter whose count is smaller than the other need to be picked as fixing at levels.

Example: input : $\{a,b\}$; positions: $\{_,_,_,_\}$;

Here, inputs count are 2 and positions count are 4 and since input_count is smaller than the position_count so we will pick

'input' as to fix at levels.