Math 591 Lecture 8

Thomas Cohn

9/18/20

Defn: Let M, N be C^{∞} manifolds, and $F: M \to N$ a continuous map. Let $p \in M$. Then we say F is <u>smooth</u> at p iff there exist charts (U, ϕ) of M and (V, ψ) of N s.t. $p \in U, F(p) \in V$, and

$$\psi \circ F \circ \phi^{-1} : \phi(F^{-1}(V) \cap U) \to \mathbb{R}^n$$

is C^{∞} .

Observe: Since F is continuous, $F^{-1}(V)$ is open, so $F^{-1}(V) \cap U$ is an open neighborhood of p. Thus, $\phi(F^{-1}(V) \cap U)$ is open in \mathbb{R}^m .

Defn: Let M, N be C^{∞} manifolds, $F: M \to N$ continuous. Then F is smooth iff $\forall p \in M, F$ is smooth at p.

Lemma: Let M, N be C^{∞} manifolds, $F: M \to N$ continuous. Then F is smooth iff there are atlases $\{(U_{\alpha}, \phi_{\alpha})\}$ of M and $\{(V_{\beta}, \psi_{\beta})\}$ of N s.t. $\forall \alpha, \beta, \psi_{\beta} \circ F \circ \phi_{\alpha}^{-1}: \phi_{\alpha}(F^{-1}(V_{\beta}) \cap U_{\alpha}) \to \mathbb{R}^{n}$ is smooth. This, in turn, is true iff for any pair of atlases $\{(U_{\alpha}, \phi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$, the previous condition holds. Proof: (exercise)

The key outcome is that if a function is smooth according to one atlas, it's smooth according to all atlases.

Ex:

$$\operatorname{GL}(n,\mathbb{R}) \times \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$$
 and $\operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$ are smooth.
 $(g_1,g_2) \mapsto g_1g_2$ $g \mapsto g^{-1}$
 $O(n) \times O(n) \to O(n)$ and $O(n) \to O(n)$ are smooth.
 $(g_1,g_2) \mapsto g_1g_2$ $g \mapsto g^{-1}$

Defn: A Lie group G is a group which also has a C^{∞} structure s.t.

$$G \times G \to G$$
 and $G \to G$
 $(g_1, g_2) \mapsto g_1 g_2$ $g \mapsto g^{-1}$

are smooth.

Tangent and Cotangent Spaces

We want to construct tangent vectors without requiring an ambient space! Idea: Vectors in \mathbb{R}^n define "directional" derivatives.

Pick $p \in U \stackrel{\text{open}}{\subseteq} \mathbb{R}^n$, and $v \in \mathbb{R}^n$. Then if $f: U \to \mathbb{R}$ is C^{∞} , we can define $D_v f(p) = \nabla f(p) \cdot v$.

Remark: We can regard D_v as an operator $C^{\infty} \ni f \mapsto D_v f(p) \in \mathbb{R}$. It has the following properties:

- 1) Linear over \mathbb{R} : $D_v(f+cg)(p) = D_v f(p) + cD_v g(p)$.
- 2) Leibniz' rule: $D_v(fg)(p) = f(p)D_vg(p) + D_vf(p)g(p)$.

This was all motivation. Now, for the formalization.

Defn: Let M be a smooth manifold, $p \in M$. Then the space of germs of functions of M at p is

$$C_p^\infty(M) = \left\{ (f: U \to \mathbb{R}, U) \mid U \subseteq M \text{ open }, p \in U, f \in C^\infty \right\} / \sim$$

where $(f,U) \sim (g,V) \Leftrightarrow \exists W \subseteq U \cap V \text{ s.t. } p \in W \text{ and } f|_W = g|_W.$ A germ at p is an equivalence class [f] = [(f, U)].

Notation: Given (f, U) as above and $p \in U$, [f] is the calls of $(f, U) \in C_p^{\infty}(M)$.

Lemma: $C_p^{\infty}(M)$ is an \mathbb{R} -vector space and a ring.

a) $[f] + c[g] \stackrel{\text{def}}{=} [f + cg]$ b) $[f] \cdot [g] \stackrel{\text{def}}{=} [fg]$ (defined by $fg|_{U \cap V} : U \cap V \to \mathbb{R}$) EXER: Show the remaining properties.

Defn: A <u>derivation</u> on M at p is an \mathbb{R} -linear map $D: C_p^{\infty} \to \mathbb{R}$ s.t. $\forall [f], [g] \in C_p^{\infty}(M), D([f]g]) = f(p)D[g] + g(p)D[f]$.

Observe: $f(p) = [f](p) \in \mathbb{R}$ is well defined by [f].

Defn: The tangent space to M at p is $T_pM = \{\text{all derivations of } M \text{ at } p\}.$