

UNISONIC TECHNOLOGIES CO., LTD

50N06 **Power MOSFET**

50 Amps, 60 Volts N-CHANNEL POWER MOSFET

DESCRIPTION

The UTC 50N06 is three-terminal silicon device with current conduction capability of about 50A, fast switching speed. Low on-state resistance, breakdown voltage rating of 60V, and max threshold voltages of 4 volt.

It is mainly suitable electronic ballast, and low power switching mode power appliances.

FEATURES

- * $R_{DS(ON)}$ = 23m Ω @ V_{GS} = 10 V
- * Ultra low gate charge (typical 30 nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 80 pF)
- * Fast switching capability
- * 100% avalanche energy specified
- * Improved dv/dt capability

SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
50N06L-TA3-T	50N06G-TA3-T	TO-220	G	D	S	Tube	
50N06L-TF3-T	50N06G-TF3-T	TO-220F	G	D	S	Tube	
50N60L-TM3-T	50N60G-TM3-T	TO-251	G	D	S	Tube	
50N06L-TN3-R	50N06G-TN3-R	TO-252	G	D	S	Tape Reel	

Pin Assignment: G: Gate Note: D: Drain S: Source

www.unisonic.com.tw 1 of 8

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	60	V
Gate-Source Voltage		V_{GSS}	±20	V
T _C = 25°C			50	Α
Continuous Drain Current	$T_{\rm C} = 100^{\circ}{\rm C}$	l _D	35	Α
Pulsed Drain Current (Note 2)		I _{DM}	200	Α
Avalensha Energy	Single Pulsed (Note 3)	E _{AS}	480	mJ
Avalanche Energy	Repetitive (Note 2)	E _{AR}	13	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	7	V/ns
TO-220 TO-220F		_	120	W
			70	W
Power Dissipation (T _C =25°C)	TO-251	P_D	136	W
	TO-252		136	W
Junction Temperature		TJ	+150	°C
Operation and Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by T_{J}
- 3. L=0.38mH, I_{AS} =50A, V_{DD} =25V, R_G =20 Ω , Starting T_J =25°C
- 4. $I_{SD} \le 50A$, di/dt $\le 300A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$ °C

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient	TO-220		62	°C/W
	TO-220F	θја	62	°C/W
	TO-251		100	°C/W
	TO-252		100	°C/W
Junction to Case	TO-220	0	1.24	°C/W
	TO-220F		1.78	°C/W
	TO-251	θ _{JC}	1.1	°C/W
	TO-252		1.1	°C/W

■ ELECTRICAL CHARACTERISTICS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V			10	μΑ
Gate-Source Leakage Current	Forward	less l	$V_{GS} = 20V, V_{DS} = 0 V$			100	nA
	Reverse		$V_{GS} = -20V, V_{DS} = 0 V$			-100	nA
Breakdown Voltage Temperature	Breakdown Voltage Temperature		$I_D = 250 \mu A$,		0.07		V/°C
Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	Referenced to 25°C		0.07		V/ C
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	$V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$		18	23	mΩ
DYNAMIC CHARACTERISTICS							
Input Capacitance		C _{ISS}	V -0V V -25V		900	1220	pF
Output Capacitance		Coss	V _{GS} = 0 V, V _{DS} = 25 V If = 1MHz		430	550	pF
Reverse Transfer Capacitance		C _{RSS}	I - IIVIMZ		80	100	pF

■ ELECTRICAL CHARACTERISTICS(Cont.)

SWITCHING CHARACTERISTICS								
Turn-On Delay Time	$t_{D(ON)}$			40	60	ns		
Turn-On Rise Time	t_R	$V_{DD} = 30V, I_D = 25 A,$		100	200	ns		
Turn-Off Delay Time	$t_{D(OFF)}$	$R_G = 50\Omega$ (Note 1, 2)		90	180	ns		
Turn-Off Fall Time	t_{F}			80	160	ns		
Total Gate Charge	Q_G	10)/)/ 40)/		30	40	nC		
Gate-Source Charge	Q _{GS}	$V_{DS} = 48V, V_{GS} = 10 V$		9.6		nC		
Gate-Drain Charge	Q_GD	I _D = 50A (Note 1, 2)		10		nC		
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Drain-Source Diode Forward Voltage	V_{SD}	I _S = 50A, V _{GS} = 0 V			1.5	V		
Maximum Continuous Drain-Source Diode						۸		
Forward Current	I _S				50	Α		
Maximum Pulsed Drain-Source Diode					200	^		
Forward Current	I _{SM}				200	Α		
Reverse Recovery Time	t _{RR}	I _S = 50A, V _{GS} = 0 V		54		ns		
Reverse Recovery Charge	Q_{RR}	dI _F / dt = 100 A/μs		81		μC		

Notes: 1. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

^{2.} Essentially independent of operating temperature

■ TEST CIRCUITS AND WAVEFORMS

Fig. 1A Peak Diode Recovery dv/dt Test Circuit

Fig. 1B Peak Diode Recovery dv/dt Waveforms

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

Fig. 2A Switching Test Circuit

Fig. 2B Switching Waveforms

Fig. 3A Gate Charge Test Circuit

Fig. 3B Gate Charge Waveform

Fig. 4A Unclamped Inductive Switching Test Circuit

Fig. 4B Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.