Project Design Phase-II Technology Stack (Architecture & Stack)

Date	26-05-2025
Team ID	LTVIP2025TMID46028
Project Name	Smart-Sorting-Transfer-Learning-for-Identifying-Rotten- Fruits-and-Vegetables
Maximum Marks	4 Marks

Technical Architecture:

Smart Sorting is designed using a modular and scalable 3-tier architecture optimized for real-time image classification and user interactionPresentation Layer (Frontend): User-friendly interface for patients and healthcare providers to book and manage appointments.

1. Presentation Layer (Frontend)

A clean, responsive user interface that allows users to upload an image and view results in real-time. It handles:

- File input (image upload)
- Result display (Fresh / Rotten)
- Error messages or prediction feedback

2. Business Logic Layer (Backend)

Handles all application logic including:

- File handling
- Image preprocessing
- Model prediction using a trained .h5 file (VGG16)
- Routing between frontend and backend (Flask)

3. Data & Model Storage Layer

- Temporarily stores uploaded image files
- Loads trained deep learning model from storage
- Optionally stores image predictions (in advanced versions)

Table-1 : Components & Technologies:

S.N	Component	Description	Technology
0			
1.	User Interface	Web and mobile-friendly interface for	HTML, CSS, JavaScript /
		patients and providers	React Js etc.
2.	Application Logic-1	Upload processing, file handling,	Python, Flask
		image prediction	
3.	Application Logic-2		TensorFlow, Keras, VGG16
		Model loading and classification logic	
4.	Deployment and hotsing	Web application hosting and live server	GitHub,

Table-2: Application Characteristics:

S.N o	Characteristics	Description	Technology
5.	Open-Source Frameworks	Lightweight, customizable backend + frontend tools	Flask, HTML, CSS
6.	Transfer Learning	Uses pre-trained model for high accuracy predictions	TensorFlow + VGG16 (Keras)
7.	Scalable Deployment	Easily deployable on cloud platforms	Render.com, Gunicorn