SVM Objective

He He

CDS, NYU

Feb 23, 2021

Maximum Margin Classifier

Linearly Separable Data

Consider a linearly separable dataset \mathfrak{D} :

Find a separating hyperplane such that

- $w^T x_i > 0$ for all x_i where $y_i = +1$
- $w^T x_i < 0$ for all x_i where $y_i = -1$

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 3/18

The Perceptron Algorithm

- Initialize $w \leftarrow 0$
- While not converged (exists misclassified examples)
 - For $(x_i, y_i) \in \mathcal{D}$
 - If $y_i w^T x_i < 0$ (wrong prediction)
 - Update $w \leftarrow w + y_i x_i$
- Intuition: move towards misclassified positive examples and away from negative examples
- Guarantees to find a zero-error classifier (if one exists) in finite steps
- What is the loss function if we consider this as a SGD algorithm?

Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

(Perceptron does not return a unique solution.)

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 5/18

Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

- Geometric margin: smallest distance between the hyperplane and the points
- Maximum margin: largest distance to the closest points

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 6/18

Geometric Margin

We want to maximize the distance between the separating hyperplane and the cloest points.

Let's formalize the problem.

Definition (separating hyperplane)

We say (x_i, y_i) for i = 1, ..., n are **linearly separable** if there is a $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y_i(w^Tx_i + b) > 0$ for all i. The set $\{v \in \mathbb{R}^d \mid w^Tv + b = 0\}$ is called a **separating hyperplane**.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x_i, y_i) for i = 1, ..., n. The **geometric margin** of this hyperplane is

$$\min_{i} d(x_i, H),$$

the distance from the hyperplane to the closest data point.

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 7/18

Distance between a Point and a Hyperplane

- ullet Projection of $v \in \mathbb{R}^d$ onto $w \in \mathbb{R}^d$: $\frac{v \cdot w}{\|w\|_2}$
- Distance between x_i and H:

$$d(x_i, H) = \left| \frac{w^T x_i + b}{\|w\|_2} \right| = \frac{y_i(w^T x_i + b)}{\|w\|_2}$$

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 8/18

Maximize the Margin

We want to maximize the geometric margin:

maximize
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane $H = \{v \mid w^T v + b = 0\}$, we have

maximize
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

Let's remove the inner minimization problem by

maximize
$$M$$

subject to $\frac{y_i(w^Tx_i+b)}{\|w\|_2} \geqslant M$ for all i

Note that the solution is not unique (why?).

Maximize the Margin

Let's fix the norm $||w||_2$ to 1/M to obtain:

maximize
$$\frac{1}{\|w\|_2}$$

subject to $y_i(w^Tx_i+b)\geqslant 1$ for all i

It's equivalent to solving the minimization problem

minimize
$$\frac{1}{2} ||w||_2^2$$

subject to $y_i(w^T x_i + b) \ge 1$ for all i

Note that $y_i(w^Tx_i + b)$ is the (functional) margin.

In words, it finds the minimum norm solution which has a margin of at least 1 on all examples.

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 10 / 18

Soft Margin SVM

What if the data is *not* linearly separable?

For any w, there will be points with a negative margin.

Introduce slack variables to penalize small margin:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|w\|_2^2 + \frac{C}{n}\sum_{i=1}^n \xi_i \\ \text{subject to} & y_i(w^Tx_i + b) \geqslant 1 - \xi_i \quad \text{for all } i \\ & \xi_i \geqslant 0 \quad \text{for all } i \\ \end{array}$$

- If $\xi_i = 0 \ \forall i$, it's reduced to hard SVM.
- What does $\xi_i > 0$ mean?
- What does C control?

Slack Variables

 $d(x_i, H) = \frac{y_i(w^T x_i + b)}{\|w\|_2} \geqslant \frac{1 - \xi_i}{\|w\|_2}$, thus ξ_i measures the violation by multiples of the geometric margin:

- $\xi_i = 1$: x_i lies on the hyperplane
- $\xi_i = 3$: x_i is past 2 margin width beyond the decision hyperplane

He He (CDS, NYU)

Minimize the Hinge Loss

Perceptron Loss

$$\ell(x, y, w) = \max(0, -yw^T x)$$

If we do ERM with this loss function, what happens?

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 14/18

Hinge Loss

- SVM/Hinge loss: $\ell_{\text{Hinge}} = \max\{1-m, 0\} = (1-m)_{+}$
- Margin m = yf(x); "Positive part" $(x)_+ = x1(x \ge 0)$.

Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at m=1. We have a "margin error" when m<1.

Support Vector Machine

Using ERM:

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
- ℓ_2 regularization (Tikhonov style)
- Hinge loss $\ell(m) = \max\{1-m, 0\} = (1-m)_+$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

Not differentiable because of the max

SVM as a Constrained Optimization Problem

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$

subject to
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right).$$

Which is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

Summary

Two ways to derive the SVM optimization problem:

- Maximize the (geometric) margin
- Minimize the hinge loss with ℓ_2 regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

- Hard-margin SVM: all points must be correctly classified with the margin constraints
- Soft-margin SVM: allow for margin constraint violation with some penalty

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 18/18