Amendment to the Claims

This listing of claims will replace all prior versions and listings of claims in the Application:

1. (currently amended): A compound of formula II

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form triazine or pyrimidine ring;

X is independently selected from hydrogen and or a blocking group selected from -COR^a, -SO₂R^b, -SiR^cR^dR^e, -PR^fR^g, -POR^fR^g, and -CONHR^h, wherein

 R^a is a C_1 - C_8 alkyl, halogen-substituted C_1 - C_8 alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_8 alkenyl, - CH_2 -CO- CH_3 , C_1 - C_{12} alkoxy, and phenyl or phenoxy which is unsubstituted or substituted by C_1 - C_{12} alkyl, C_1 - C_4 alkoxy, halogen or benzyl;

 R^b is a C_1 - C_{12} alkyl, C_6 - C_{10} aryl and C_7 - C_{18} alkylaryl;

 R^c , R^d , and R^e is independently selected from C_1 - C_8 alkyl, cyclohexyl, phenyl or C_1 - C_8 alkoxy,

 R^f , and R^g is independently selected from C_1 - C_{12} alkoxy, C_1 - C_{12} alkyl, C_1 - C_{12} cycloalkyl, and phenyl or phenoxy which is unsubstituted or substituted by C_1 - C_{12} alkyl, C_1 - C_4 alkoxy, halogen or benzyl; and

 R^h is a C_1 - C_8 alkyl, C_5 - C_{12} cycloalkyl, C_2 - C_8 alkenyl, - CH_2 -CO- CH_3 , or phenyl which is unsubstituted or substituted by C_1 - C_{12} alkyl, C_2 - C_8 alkenyl, C_1 - C_4 alkoxy, halogen or benzyl;

C is either

each of L is independently a

straight alkyl, branched alkyl or cycloalky of between 1 and 20 carbons optionally interrupted by one or more oxygen atoms, having one or more of the hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminating with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y wherein R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally have one or more of the hydrogens substituted for by a hydroxyl grouphydrogen, hydrocarbyl, SO₂(hydrocarbyl), SO₃(hydrocarbyl), SO₃(functional hydrocarbyl), COO(hydrocarbyl),

- -COO(functional hydrocarbyl), -CO(hydrocarbyl), -CO(functional hydrocarbyl),
- -OCO(hydrocarbyl), -OCO(functional hydrocarbyl), -CONH₂,
- -CONH(hydrocarbyl), -CONH(functional hydrocarbyl), -CON (hydrocarbyl), -CON(functional hydrocarbyl)(hydrocarbyl),
- -CON(functional hydrocarbyl)(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups;

each of R³ and R⁴ are independently a

hydrogen, hydrocarbyl, halogen, hydroxyl, cyano, -O(hydrocarbyl),

- -O(functional hydrocarbyl), -N(hydrocarbyl)(hydrocarbyl),
- -N(hydrocarbyl)(functional hydrocarbyl), -N(functional hydrocarbyl)(functional hydrocarbyl), -S(hydrocarbyl), -S(functional hydrocarbyl), -SO₂(hydrocarbyl),
- -SO₃(hydrocarbyl), -SO₂(functional hydrocarbyl), -SO₃(functional hydrocarbyl),
- -COO(hydrocarbyl), -COO(functional hydrocarbyl), -CO(hydrocarbyl),
- -CO(functional hydrocarbyl), -OCO(hydrocarbyl), -OCO(functional hydrocarbyl), -CONH₂, -CONH(hydrocarbyl), -CONH(functional hydrocarbyl),
- -CON (hydrocarbyl), -CON(functional hydrocarbyl), hydrocarbyl),
- -CON(functional hydrocarbyl)(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups; and
- each R¹ and R² is identical or different and is independently a hydrocarbyl group of between 1 and 20 carbons, wherein R¹ and R² are attached to an aromatic benzene ring so that they are ortho to each other.

Claims 2-3 (canceled)

4. (currently amended): The compound of claim 1, wherein R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with the nitrogen of an amine.

5. (original): The compound of claim 1, wherein each R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl.

6. (original): The compound of claim 5, wherein R^1 and R^2 are attached to the aromatic benzene ring at the 3 and 4 position relative to the point of attachment of the triazine ring.

7. (original): The compound of claim 5, wherein R^1 and R^2 are attached to the aromatic benzene ring at the 2 and 3 position relative to the point of attachment of the triazine ring.

Claim 8 (canceled)

9. (currently amended): The compound of claim <u>86</u>, wherein C is

$$\mathbb{R}^1$$

10. (original): The compound of claim 9, wherein each R¹ and R² are methyl groups.

Claim 11 (canceled)

12. (currently amended): A compound of formula (III):

$$\begin{bmatrix} R^1 & XO & O & \\ R^2 & Z & R^4 & \\ Z & Z & R^4 & \\ & & & \end{bmatrix}_{r}$$
(III)

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is either

r is an integer between 2 and 4; each of L is independently a

hydrogen, hydrocarbyl, -SO₂(hydrocarbyl), -SO₃(hydrocarbyl), -SO₂(functional hydrocarbyl), -COO(hydrocarbyl),

-COO(functional hydrocarbyl), -CO(hydrocarbyl), -CO(functional hydrocarbyl),

-OCO(hydrocarbyl), -OCO(functional hydrocarbyl), -CONH₂,

-CONH(hydrocarbyl), -CONH(functional hydrocarbyl), -CON (hydrocarbyl)(hydrocarbyl), -CON(functional hydrocarbyl)(hydrocarbyl), -CON(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups;

each of R³ and R⁴ are independently a

hydrogen, hydrocarbyl, halogen, hydroxyl, cyano, O(hydrocarbyl),

-O(functional hydrocarbyl), -N(hydrocarbyl)(hydrocarbyl),

-N(hydrocarbyl)(functional hydrocarbyl), N(functional hydrocarbyl)(functional hydrocarbyl), -S(hydrocarbyl), -S(functional hydrocarbyl), -SO₂(hydrocarbyl),

-SO₃(hydrocarbyl), -SO₂(functional hydrocarbyl), -SO₃(functional hydrocarbyl),

-COO(hydrocarbyl), -COO(functional hydrocarbyl), -CO(hydrocarbyl),

-CO(functional hydrocarbyl), -OCO(hydrocarbyl), -OCO(functional hydrocarbyl), -CONH₂, -CONH(hydrocarbyl), -CONH(functional hydrocarbyl),

-CON (hydrocarbyl), -CON(functional hydrocarbyl)(hydrocarbyl),

-CON(functional hydrocarbyl)(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups;

each R¹ and R² is identical or different and is independently a hydrocarbyl group of between 1 and 20 carbons, wherein R¹ and R² are attached to an aromatic benzene ring so that they are ortho to each other;

D, when r is 2, is selected from the group consisting of C₁-C₁₆ alkylene, C₄-C₁₂ alkenylene, xylylene, C₄-C₂₀ alkylene which is interrupted by one or more oxygen atoms, hydroxy-substituted C₃ C₂₀ alkyl which is interrupted by one or more oxygen atoms, —CH₂CH(OH)CH₂O—R¹⁵—OCH₂CH(OH)CH₂-, -CO-R¹⁶-CO-, -CO-NH-R¹⁷-NH-CO-, --(CH₂)_s--COO--R¹⁸--OCO--(CH₂)_s--a polyoxyalkylene bridge member of the formula XX -CH₂-CH(OH)-CH₂-O-(CH₂-(CH₂)_u-O-)_{mm}-CH₂-CH(OH)-CH₂- (XX), a polyoxyalkylene bridge member of the formula XXI $-CO-(CH_2)_u-O-(CH_2-(CH_2)_u-O-)_{mm}-(CH_2)_u-CO-$ (XXI), a polyoxyalkylene bridge member of the formula XXII $-YY-O-CO(CH_2)_u-O-(CH_2-(CH_2)_u-O-)_{mm}-(CH_2)_u-COO-YY-$ (XXII), a polyoxyalkylene bridge member of the formula XXIII $-(CH_2)_{kk}-CH(R^{21})-CO-B_1-(C_{nn}H_{2nn}-O-)_{mm}C_{nn}H_{2nn}-B_1-CO$ $-CH(R^{21})-(CH_2)_{kk}-$ (XXIII), a polyoxyalkylene bridge member of the formula XXIV $-COCH(R^{21})CH_2NH(C_{nn}H_{2nn}O)_{mm}C_{nn}H_{2nn}-NHCH_2-CH(R^{21})CO-(XXIV),$ a polyoxyalkylene bridge member of the formula XXV $-YY-O-CO-(CH_2)_2-NH-(C_{nn}H_{2nn}-O-)_{mm}-C_{nn}H_{2nn}-NH-$ (CH₂)₂COO-YY-(XXV), a polyoxyalkylene bridge member of the formula XXVI $-(C_{nn}H_{2nn}-O_{-})_{mm}-C_{nn}H_{2nn}-$ (XXVI), and a polyoxyalkylene bridge member of the formula XXVII -CH(CH₃)-CH₂-(O-CH(CH₃)-CH₂)_a-(O-CH₂-CH₂)_b-(O-CH₂-CH(CH₃)_c-(XXVII), wherein a + c = 2.5 and b = 8.5 to 40.5 or a + c = 2 to 33 and b = 0. R¹⁵ is C₂-C₁₀ alkylene, C₂-C₁₀ oxaalkylene or C₂-C₁₀ dithiaalkylene, phenylene, naphthylene, diphenylene, or C2-C6 alkenylene, or phenylene-XX-phenylene wherein XX is —O—, —S—, —SO₂—, $-CH_2$, or $-C(CH_3)_2$; R¹⁶ is C₂-C₁₀ alkylene, C₂-C₁₀ oxaalkylene or C₂-C₁₀ dithiaalkylene, phenylene, naphthylene, diphenylene, or C2-C6 alkenylene provided that when r is 3 the alkenylene has at least 3 carbons;

R¹⁷ is C₂-C₁₀ alkylene, phenylene, naphthylene, diphenylene, or

 C_2 - C_6 alkenylene, methylenediphenylene, or C_4 - C_{15} alkylphenylene; and

 R^{18} is C_2 - C_{10} alkylene, or C_4 - C_{20} alkylene interrupted by one or more oxygen atoms;

R²¹ is hydrogen or C₁-C₁₆ alkyl;

YY is unsubstituted or substituted C₂-C₂₀ alkyl;

B₁ is NH or O;

kk is zero or an integer from 1-16;

mm is an integer from 2 to 60;

nn is an integer from 2 to 6;

s is 1-6;

u is an integer from 1 to 4;

when r is 3, D is

and when r is 4, D is

wherein R^{19} is C_3 - C_{10} alkanetriyl and R^{20} is C_4 - C_{10} alkaneteryl.

- 13. (original): The compound of claim 12, wherein r is 2 and D is an alkyl chain of between 1 and 10 carbons or –CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are metal or para to each other.
- 14. (currently amended): The compound of claim 13, wherein R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with the nitrogen of an amine.
- 15. (original): The compound of claim 13, wherein R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl.

16. (original): The compound of claim 15, wherein R¹ and R² are attached to the aromatic benzene ring at the 3 and 4 position relative to the point of attachment of the triazine ring.

17. (original): The compound of claim 15, wherein R¹ and R² are attached to the aromatic benzene ring at the 2 and 3 position relative to the point of attachment of the triazine ring.

Claim 18 (canceled)

19. (original): The compound of claim 13, wherein C is

$$\mathbb{R}^1$$

20. (original): The compound of claim 19, wherein each R¹ and R² are methyl groups.

21. (currently amended): The compound of claim 13, wherein each Z is nitrogen; X is hydrogen; C is

$$\mathbb{R}^1$$

each R_1 and R_2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl; and R^3 and R^4 are each hydrogen.

242. (currently amended): A compound of formula (IV):

(IV)

C is either

wherein X is selected from hydrogen and a blocking group as defined in claim 1; r is an integer between 2 and 4;

each of L is independently a

hydrogen, hydrocarbyl, -SO₂(hydrocarbyl), -SO₃(hydrocarbyl), -SO₂(functional hydrocarbyl), -COO(hydrocarbyl),

- -COO(functional hydrocarbyl), -CO(hydrocarbyl), -CO(functional hydrocarbyl),
- -OCO(hydrocarbyl), -OCO(functional hydrocarbyl), -CONH₂,
- -CONH(hydrocarbyl), -CONH(functional hydrocarbyl), -CON (hydrocarbyl)(hydrocarbyl), -CON(functional hydrocarbyl)(hydrocarbyl),
- -CON(functional hydrocarbyl)(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups;

each of R³ and R⁴ are independently a

hydrogen, hydrocarbyl, halogen, hydroxyl, cyano, -O(hydrocarbyl),

- -O(functional hydrocarbyl), -N(hydrocarbyl)(hydrocarbyl),
- -N(hydrocarbyl)(functional hydrocarbyl), -N(functional hydrocarbyl)(functional hydrocarbyl), -S(hydrocarbyl), -S(functional hydrocarbyl), -SO₂(hydrocarbyl),
- -SO₃(hydrocarbyl), -SO₂(functional hydrocarbyl), -SO₃(functional hydrocarbyl),
- -COO(hydrocarbyl), -COO(functional hydrocarbyl), -CO(hydrocarbyl),
- -CO(functional hydrocarbyl), -OCO(hydrocarbyl), -OCO(functional hydrocarbyl), -CONH(hydrocarbyl), -CONH(functional hydrocarbyl),
- -CON (hydrocarbyl)(hydrocarbyl), -CON(functional hydrocarbyl)(hydrocarbyl),
- -CON(functional hydrocarbyl)(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups;

each R1 and R2 is identical or different and is independently a hydrocarbyl group of

between 1 and 20 carbons, wherein R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

X' when r is 2, is selected from the group consisting of C₁-C₁₆ alkylene, C₄-C₁₂ alkenylene, xylylene, C₄-C₂₀ alkylene which is interrupted by one or more oxygen atoms, hydroxy-substituted C₃ C₂₀ alkyl which is interrupted by one or more oxygen atoms, —CH₂CH(OH)CH₂O—R¹⁵—OCH₂CH(OH)CH₂-,

$$-CO-R^{16}-CO-$$
, $-CO-NH-R^{17}-NH-CO-$, $-(CH_2)_s-COO-R^{18}-OCO-(CH_2)_s-$

a polyoxyalkylene bridge member of the formula XX

-CH₂-CH(OH)-CH₂-O-(CH₂-(CH₂)_u-O-)_{mm}-CH₂-CH(OH)-CH₂- (XX), a polyoxyalkylene bridge member of the formula XXI

$$-CO-(CH_2)_u-O-(CH_2-(CH_2)_u-O-)_{mm}-(CH_2)_u-CO-$$
 (XXI),

a polyoxyalkylene bridge member of the formula XXII

$$-YY-O-CO(CH_2)_u-O-(CH_2-(CH_2)_u-O-)_{mm}-(CH_2)_u-COO-YY-$$
 (XXII),

a polyoxyalkylene bridge member of the formula XXIII

a polyoxyalkylene bridge member of the formula XXIV

-COCH(R²¹)CH₂NH(C_{nn}H_{2nn}O)_{mm}C_{nn}H_{2nn}-NHCH₂-CH(R²¹)CO-(XXIV),

a polyoxyalkylene bridge member of the formula XXV

a polyoxyalkylene bridge member of the formula XXVI

$$-(C_{nn}H_{2nn}-O_{-mm}-C_{nn}H_{2nn}-$$
 (XXVI),

and a polyoxyalkylene bridge member of the formula XXVII

wherein a + c = 2.5 and b = 8.5 to 40.5 or a + c = 2 to 33 and b = 0,

R¹⁵ is C₂-C₁₀ alkylene, C₂-C₁₀ oxaalkylene or C₂-C₁₀ dithiaalkylene, phenylene, naphthylene, diphenylene, or C₂-C₆ alkenylene, or phenylene-XX-phenylene wherein XX is —O—, —S—, —SO₂—, —CH₂—, or —C(CH₃)₂—;

R¹⁶ is C₂-C₁₀ alkylene, C₂-C₁₀ oxaalkylene or C₂-C₁₀ dithiaalkylene, phenylene, naphthylene, diphenylene, or C₂-C₆ alkenylene provided that when r is 3 the alkenylene has at least 3 carbons;

R¹⁷ is C₂-C₁₀ alkylene, phenylene, naphthylene, diphenylene, or C₂-C₆ alkenylene, methylenediphenylene, or C₄-C₁₅ alkylphenylene; and R¹⁸ is C₂-C₁₀ alkylene, or C₄-C₂₀ alkylene interrupted by one or more oxygen atoms;

R²¹ is hydrogen or C₁-C₁₆ alkyl; YY is unsubstituted or substituted C₂-C₂₀ alkyl; B₁ is NH or O; kk is zero or an integer from 1-16; mm is an integer from 2 to 60; nn is an integer from 2 to 6;

s is 1-6; u is an integer from 1 to 4;

when r is 3, X' is

and when r is 4, X' is

$$\frac{1}{16} (C H_2)_s - C O O - \frac{1}{16} R^{20}$$

wherein R^{19} is C_3 C_{10} alkanetriyl and R^{20} is C_4 C_{10} alkanetetryl.

- 23. (original): The compound of claim 22, wherein r is 2 and X' is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other.
- 24. (currently amended): The compound of claim 23, wherein R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with the nitrogen of an amine.

25. (original): The compound of claim 23, wherein L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of the hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x or NR^xR^y, wherein R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group.

26. (original): The compound of claim 23, wherein R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl.

27. (original): The compound of claim 26, wherein R¹ and R² are attached to the aromatic benzene ring at the 3 and 4 position relative to the point of attachment of the triazine ring.

28. (original): The compound of claim 26, wherein R¹ and R² are attached to the aromatic benzene ring at the 2 and 3 position relative to the point of attachment of the triazine ring.

Claim 29 (canceled)

30. (currently amended): The compound of claim $\underline{2927}$, wherein C is

$$\mathbb{R}^1$$

31. (original): The compound of claim 30, wherein each \mathbb{R}^1 and \mathbb{R}^2 are methyl groups.

32. (currently amended): The compound of claim 23, wherein each Z is nitrogen; X is hydrogen; C is

$$R^1$$
 R^2

each R_1 and R_2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl; and R^3 and R^4 are each hydrogen.

33. (currently amended): A compound of formula (V):

$$\begin{bmatrix} R^1 & XO & OL \\ R^2 & Z & R^3 \\ Z & Z & R^3 \end{bmatrix}$$

$$(V)$$

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

r is 2;

each of L is independently a

hydrogen, hydrocarbyl, -SO₂(hydrocarbyl), -SO₃(hydrocarbyl), -SO₂(functional hydrocarbyl), -COO(hydrocarbyl),

- -COO(functional hydrocarbyl), -CO(hydrocarbyl), -CO(functional hydrocarbyl),
- -OCO(hydrocarbyl), OCO(functional hydrocarbyl), -CONH₂,
- -CONH(hydrocarbyl), -CONH(functional hydrocarbyl), -CON (hydrocarbyl)(hydrocarbyl), -CON(functional hydrocarbyl)(hydrocarbyl),
- -CON(functional hydrocarbyl)(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups;

each of R³ is independently a

hydrogen, hydrocarbyl, halogen, hydroxyl, cyano, -O(hydrocarbyl),

- -O(functional hydrocarbyl), -N(hydrocarbyl)(hydrocarbyl),
- -N(hydrocarbyl)(functional hydrocarbyl), -N(functional hydrocarbyl)(functional hydrocarbyl), -S(hydrocarbyl), -S(functional hydrocarbyl), -SO₂(hydrocarbyl),

- -SO₃(hydrocarbyl), -SO₂(functional hydrocarbyl), -SO₃(functional hydrocarbyl),
- -COO(hydrocarbyl), -COO(functional hydrocarbyl), -CO(hydrocarbyl),
- -CO(functional hydrocarbyl), -OCO(hydrocarbyl), -OCO(functional hydrocarbyl), -CONH₂, -CONH(hydrocarbyl), -CONH(functional hydrocarbyl),
- -CON (hydrocarbyl)(hydrocarbyl), -CON(functional hydrocarbyl)(hydrocarbyl),
- -CON(functional hydrocarbyl)(functional hydrocarbyl), or a hydrocarbyl group substituted by any of the above groups;
- each R¹ and R² is identical or different and is independently a hydrocarbyl group of between 1 and 20 carbons, wherein R¹ and R² are attached to an aromatic benzene ring so that they are ortho to each other; and
- R⁴ is selected from the group consisting of straight chain alkyl of 1 to 12 carbon atoms, branched chain alkyl of 1 to 12 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, alkyl substituted by cyclohexyl, alkyl interrupted by cyclohexyl, alkyl substituted by phenylene, alkyl interrupted by phenylene, benzylidene, —S—, —S—S—, —S—E—S—, —SO—, —SO₂—, —SO—E—SO—, —SO₂—E—SO₂—, —CH₂—NH—E—NH—CH₂—, and

wherein E is selected from the group consisting of alkyl of 2 to 12 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, alkyl interrupted by cyclohexyl of 8 to 12 carbon atoms, and alkyl terminated by cyclohexyl of 8 to 12 carbon atoms.

- 34. (original): The compound of claim 33, wherein R⁴ is -CH₂-.
- 35. (currently amended): The compound of claim 33, wherein R³ is selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine.
- 36. (original): The compound of claim 33, wherein L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of the hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x or

NR^xR^y, wherein R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group.

- 37. (original): The compound of claim 33, wherein R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl.
- 38. (original): The compound of claim 37, wherein R¹ and R² are attached to the aromatic benzene ring at the 3 and 4 position relative to the point of attachment of the triazine ring.
- 39. (original): The compound of claim 37, wherein R¹ and R² are attached to the aromatic benzene ring at the 2 and 3 position relative to the point of attachment of the triazine ring.

Claim 40 (canceled)

41. (currently amended): The compound of claim 34, wherein each Z is nitrogen; X is hydrogen; C is

$$\mathbb{R}^1$$

each R_1 and R_2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl; and R^3 is a hydrogen.

42. (currently amended): A polymeric article comprising at least one polymeric material and a sufficient amount of a stabilizing composition to inhibit at least one of photo or thermal degradation, wherein the stabilizer composition comprises one or more compounds of structure (II) - (V), wherein compound (II) has the structure:

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

$$- \bigcirc R^1 \qquad \text{OX} \qquad - \bigcirc R^2 \qquad \text{or} \qquad - \bigcirc R^3 \qquad - \bigcirc R^4 \qquad - \bigcirc R^4$$

L is an alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and

each R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (III) has the structure:

$$\begin{bmatrix}
R^1 & XO & O & D \\
R^2 & Z & Z & R^4
\end{bmatrix}$$
(III)

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

$$- \bigcirc R^1 \qquad \text{OX} \qquad - \bigcirc R^2 \qquad \text{or} \qquad - \bigcirc R^3 \qquad - \bigcirc R^4 \qquad - \bigcirc R^4$$

- r is 2 and D is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;
- R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and
- R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

Compound (IV) has the structure:

$$\begin{bmatrix}
R^1 & R^3 & R^4 \\
R^2 & Z & Q
\end{bmatrix}$$

$$\begin{bmatrix}
R^1 & R^3 & R^4 \\
Z & Z & Q
\end{bmatrix}$$

$$(IV)$$

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

C is

- wherein r is 2 and X' is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;
- R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;
- L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

and compound (V) has the structure:

wherein each Z is independently-nitrogen or methine, and at least two Z are nitrogen, to form a triazine

X is independently selected from hydrogen and a blocking group as defined in claim 1;

C is

r is 2;

 R^4 is -CH₂-;

R³ is selected from hydrogen, and an alkyl of 1 to 8 <u>earbons atomscarbons</u> wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group; and

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other.

43. (original): The polymeric article of claim 42, wherein the amount of stabilizer composition is from about 0.01 to about 20 percent by weight of the polymeric material.

44. (currently amended): The polymeric article of claim 42, wherein the polymeric material is selected from the group consisting of polyolefins; polyesters; polyethers; polyketones; polyamides; natural and synthetic rubbers; polyurethanes; polystyrenes; high-impact polystyrenes; polyacrylates; polymethacrylates; polyacetals; polyacrylonitriles; polybutadienes; polystyrenes; ABS; SAN (styrene acrylonitrile); ASA (acrylate styrene acrylonitrile); cellulosic acetate butyrate; cellulosic polymers; polyimides; polyamideimides; polyetherimides; polyphenylsulfides; PPO; polysulfones; polyethersulfones; polyvinylchlorides; polycarbonates; polyketones; aliphatic polyketones; thermoplastic TPO's; aminoresin crosslinked polyacrylates and polyesters; polyisocyanate crosslinked polyesters and polyacrylates; phenol/formaldehyde, urea/formaldehyde, and melamine/formaldehyde resins; drying and non-drying alkyd resins; alkyd resins; polyester resins; acrylate resins cross-linked with melamine resins, urea resins, isocyanates, isocyanurates, earbamates, and epoxy resins; cross-linked epoxy resins derived

from aliphatic, cycloaliphatic, heterocyclic and aromatic glycidyl compounds which are cross-linked with anhydrides or amines; polysiloxanes; Michael addition polymers of amines or blocked amines with activated unsaturated and methylene compounds, ketimines with activated unsaturated and methylene compounds, polyketimines in combination with unsaturated acrylic polyacetoacetate resins, and polyketimines in combination with unsaturated acrylic resins; radiation curable compositions; epoxymelamine resins; organic dyes; cosmetic products; cellulose-based paper formulations; photographic film paper; ink; and blends thereof.

- 45. (original): The polymeric article of claim 42, wherein the one or more compounds is chemical bonded to the polymer.
- 46. (original): The polymeric article of claim 42, wherein the stabilizer composition further comprises one or more hindered amine light stabilizers.
- 47. (original): The polymeric article of claim 42, wherein the stabilizer composition further comprises one or more additional UV light absorbers selected from the group consisting of a benzotriazole, a triazine, a benzophenone, and mixtures thereof.
- 48. (original): The polymeric article of claim 42, wherein the stabilizer composition further comprises at least one additional additive.
- 49. (original): The polymeric article of claim 48, wherein the additive is selected from the group consisting of: antioxidants, ultraviolet light absorbers, ultraviolet light stabilizers, metal deactivators, phosphites, phosphonites, hydroxylamines, nitrones, thiosynergists, peroxide scavengers, polyamide stabilizers, nucleating agents, fillers, reinforcing agents, plasticizers, lubricants, emulsifiers, pigments, rheological additives, flameproofing agents, antistatic agents, blowing agents, benzofuranones and indolinones.
- 50. (currently amended): A multilayer polymeric article comprising a polymeric article having at least one surface and a thin film of polymer composition applied to the at least one surface that comprises a sufficient amount of at least one compound of formula (II) (V) to inhibit at least one of photo or thermal degradation, wherein compound (II) has the structure:

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

$$R^1$$
 or R^3 R^4

- L is an alkyl chain between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;
- R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and
- each R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (III) has the structure:

$$\begin{bmatrix} R^1 & XO & O & D \\ R^2 & Z & R^4 & \\ Z & Z & R^4 & \\ & & & \\ & & & \\ & & & & \\ & &$$

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

r is 2 and D is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 carbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (IV) has the structure:

C is

wherein r is 2 and X' is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

and compound (V) has the structure:

$$\begin{bmatrix} R^1 & XO & OL \\ R^2 & Z & R^3 \\ Z & Z & R^3 \end{bmatrix}_{\Gamma}$$

$$(V)$$

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

r is 2;

 R^4 is -CH₂-;

R³ is selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group; and

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other.

51. (original): The multilayer polymeric article of claim 50, wherein the thin film is applied to each surface of the polymeric article.

52. (original): The multilayer polymeric article of claim 50, wherein the amount of the compound is from about 0.1 to 20 percent by weight of the thin film.

53. (original): The multilayer polymeric article of claim 50, wherein the thin film is from about 5 to 500 μ m in thickness.

54. (currently amended) A coating comprising a sufficient amount of at least one compound of formula (II) - (V) to inhibit at least one of photo or thermal degradation, wherein compound (II) has the structure:

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

L is an alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and

each R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (III) has the structure:

$$\begin{bmatrix}
R^1 & XO & O & \\
R^2 & Z & R^4 & \\
Z & Z & R^4
\end{bmatrix}$$
(III)

X is independently selected from hydrogen and a blocking group as defined in claim 1;

C is

r is 2 and D is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 carbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (IV) has the structure:

C is

$$- \bigcirc R^1 \qquad \text{or} \qquad \bigcirc X \qquad \bigcirc DL$$

wherein r is 2 and X' is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

and compound (V) has the structure:

$$\begin{bmatrix}
R^1 & XO & OL \\
R^2 & Z & R^3 \\
Z & Z & R^3
\end{bmatrix}$$
(V)

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

$$\mathbb{R}^1$$
 or \mathbb{R}^3 \mathbb{R}^4

r is 2;

 R^4 is -CH₂-;

R³ is selected from hydrogen, and an alkyl of 1 to 8 <u>earbons atomscarbons</u> wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group; and

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other.

55. (original): The coating of claim 54, wherein the amount of the at least one compound is from about 0.01 to 20 percent by weight of the coating.

56. (currently amended): A concentrate comprising a polymeric resin and from about 2.5 to about 25 percent of at least one compound of formula (II) - (V), wherein compound (II) has the structure:

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

L is an alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 carbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and

each R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (III) has the structure:

$$\begin{bmatrix} R^1 & XO & O & \\ R^2 & Z & R^4 & \\ Z & Z & R^4 & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

- r is 2 and D is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;
- R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and
- R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (IV) has the structure:

$$\begin{bmatrix} R^1 & R^3 & R^4 \\ R^2 & Z & Q \\ & & & & \\ & & & \\ &$$

C is

wherein r is 2 and X' is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

and compound (V) has the structure:

X is independently selected from hydrogen and a blocking group as defined in claim 1;
C is

$$- \bigcirc R^1 \qquad \text{or} \qquad \bigcirc X \qquad \bigcirc DL$$

r is 2;

 R^4 is -CH₂-;

R³ is selected from hydrogen, and an alkyl of 1 to 8 earbons atoms carbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group; and

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other.

57. (currently amended): A cosmetic composition comprising a sufficient amount of at least one compound of formula (II) - (V), wherein compound (II) has the structure:

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

L is an alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and

each R¹ and R² is individually a C₁ to C₁₀ straight chain alkyl, branched alkyl, or cycloalkyl and R¹ and R² are attached to an aromatic benzene ring so that they are ortho to each other;

compound (III) has the structure:

$$\begin{bmatrix} R^1 & XO & O & D \\ R^2 & Z & Z & R^4 \end{bmatrix}$$

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

(III)

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

- r is 2 and D is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;
- R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and
- R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (IV) has the structure:

$$\begin{bmatrix} R^1 & R^3 & R^4 \\ R^2 & Z & Q \\ & & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

C is

- wherein r is 2 and X' is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;
- R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;
- L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;
- R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

and compound (V) has the structure:

$$\begin{bmatrix} R^1 & XO & OL \\ R^2 & Z & R^3 \\ Z & Z & R^3 \end{bmatrix}$$

$$(V)$$

wherein each Z is independently-nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

r is 2;

 R^4 is -CH₂-;

R³ is selected from hydrogen, and an alkyl of 1 to 8 <u>earbons atomscarbons</u> wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group; and

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other.

58. (currently amended): A method of stabilizing a material that is subject to at least one of photo or thermal degradation by incorporating into or onto the material an amount of one or more stabilizer compositions in an amount effective to stabilize the material against at least one of photo or thermal degradation, wherein the stabilizer composition comprises one or more compounds of structure (II) - (V), wherein compound (II) has the structure:

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

$$- \bigcirc R^1 \qquad \text{OX} \qquad - \bigcirc L$$

$$- \bigcirc R^2 \qquad \text{or} \qquad - \bigcirc L$$

$$- \bigcirc R^3 \qquad - \bigcirc L$$

L is an alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 carbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and

each R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (III) has the structure:

$$\begin{bmatrix}
R^1 & XO & O \\
R^2 & Z & R^4
\end{bmatrix}$$
(III)

wherein each Z is independently-nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

X is independently selected from hydrogen and a blocking group as defined in claim 1;

C is

$$R^1$$
 or R^3 R^4

- r is 2 and D is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;
- R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine; and
- R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

compound (IV) has the structure:

$$\begin{bmatrix}
R^1 & R^3 & R^4 \\
R^2 & Z & Z & O
\end{bmatrix}$$

$$(IV)$$

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

C is

$$- \bigcirc R^1 \qquad \text{or} \qquad \bigcirc X \qquad \bigcirc DL$$

wherein r is 2 and X' is an alkyl chain of between 1 and 10 carbons or -CO-P-CO-, wherein P is an alkyl chain of between 1 and 10 carbons or a benzene ring wherein the carbonyl groups are meta or para to each other;

R³ and R⁴ is independently selected from hydrogen, and an alkyl of 1 to 8 earbons atomscarbons wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;

L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group;

 R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other;

and compound (V) has the structure:

wherein each Z is independently nitrogen or methine, and at least two Z are nitrogen, to form a triazine or pyrimidine ring;

X is independently selected from hydrogen and a blocking group as defined in claim 1; C is

r is 2; R⁴ is -CH₂-;

- R³ is selected from hydrogen, and an alkyl of 1 to 8 <u>earbons atomscarbons</u> wherein one or more of the hydrogens in the alkyl chain may optionally be substituted with an the nitrogen of an amine;
- L is alkyl chain of between 1 and 20 carbons, wherein the alkyl chain is optionally interrupted by one or more oxygen atoms, has one or more of hydrogens in the alkyl chain substituted for by a hydroxyl group, or terminates with a carbonyl functionality of general structure -CO-M, wherein M is a OR^x, NR^xR^y and R^x and R^y are independently hydrogen or an alkyl group of between 1 and 8 carbons that optionally may have one or more of the hydrogens substituted for by a hydroxyl group; and
- R^1 and R^2 is individually a C_1 to C_{10} straight chain alkyl, branched alkyl, or cycloalkyl and R^1 and R^2 are attached to an aromatic benzene ring so that they are ortho to each other.
- 59. (original): The method of claim 58, wherein the stabilizer composition is incorporated in an amount of from about 0.01 to about 20 percent by weight of the material to be stabilized.
- 60. (original): The method of claim 58, wherein the material to be stabilized is polymeric.
- 61. (original): The method of claim 60, wherein the polymeric material is selected from the group consisting of polyolefins; polyesters; polyethers; polyketones; polyamides; natural and synthetic rubbers; polyurethanes; polystyrenes; high-impact polystyrenes; polyacrylates; polymethacrylates; polyacetals; polyacrylonitriles; polybutadienes; polystyrenes; ABS; SAN (styrene acrylonitrile); ASA (acrylate styrene acrylonitrile); cellulosic acetate butyrate; cellulosic polymers; polyimides; polyamideimides; polyetherimides; polyphenylsulfides; PPO; polysulfones; polyethersulfones; polyvinylchlorides; polycarbonates; polyketones; aliphatic polyketones; thermoplastic TPO's; aminoresin crosslinked polyacrylates and polyesters; polyisocyanate crosslinked polyesters and polyacrylates; phenol/formaldehyde, urea/formaldehyde, and melamine/formaldehyde resins; drying and non-drying alkyd resins; alkyd resins; polyester resins; acrylate resins cross-linked with melamine resins, urea resins, isocyanates, isocyanurates, carbamates, and epoxy resins; cross-linked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic and aromatic glycidyl compounds which are cross-linked with anhydrides or amines; polysiloxanes; Michael addition polymers of amines or blocked amines with activated unsaturated and methylene compounds, ketimines with activated

unsaturated and methylene compounds, polyketimines in combination with unsaturated acrylic polyacetoacetate resins, and polyketimines in combination with unsaturated acrylic resins; radiation curable compositions; epoxymelamine resins; organic dyes; cosmetic products; cellulose-based paper formulations; photographic film paper; ink; and blends thereof.

- 62. (original): The method of claim 58, wherein the one or more compounds is incorporated into the polymer by chemical bonding during and/or subsequent to the preparation of the polymer.
- 63. (original): The method of claim 58, wherein the material has one or more surfaces and the stabilizer composition is applied to at least one surface of the material.
- 64. (original): The method of claim 63, wherein the stabilizer composition is part of a coating that is applied to the at least one surface of the material
- 65. (original): The method of claim 63, wherein the material is metallic, wood, ceramic, polymeric, or a fiber material.
- 66. (original): The method of claim 58, further comprising chemically bonding the one or more compounds to the material.
- 67. (original): The method of claim 66, further comprising forming the material into a fiber.
- 68. (original): The method of claim 66, wherein the material is selected from the group consisting of silk, leather, wool, polyamide, polyurethane, cellulose-containing fibers, and blends thereof.
- 69. (original): The method of claim 58, wherein the material is a photographic material.
- 70. (original): The method of claim 58, wherein the material is a cosmetic composition.
- 71. (cancelled)