

Classification

Recap

Decision Function

- Picks a class that has the maximum posterior probability of class given the feature vector x (called Bayes classifier)
- Models conditional distribution, $p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$

and assign label C_1 if

$$p(\mathcal{C}_1|x) > p(\mathcal{C}_2|x),$$

or, equivalently, assign C_1 if the decision function $a \ge 0$, where

$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

• The decision boundary between class C_1 and C_2 is all x where $a \ge 0$

Generative vs Discriminative

- Generative: model the classconditional distribution and prior, derive decision boundary
- Pros: Can use it to generate new features
- Cons: more parameters O(n^2)

- Discriminative: model the decision boundary directly, e.g. Logistic Regression
- Pros: fewer parameters, O(n)
- Cons: Cannot generate new features

Do they produce the same classifier?

- Generative LDA approach will estimate $\mu 1, \mu 2$, and Σ to maximize joint likelihood p(x,y) and then compute the linear decision boundary, i.e., θ_j and θ_0 are functions of those parameters. In particular, θ_j and θ_0 are not completely independent.
- Discriminative approach (logistic regression) will directly estimate θ_j and θ_0 , without assuming any constraints between them, by maximizing conditional likelihood p(y|x)
- The two methods will give different decision boundaries, even both are linear.

Linear discriminant analysis

Assume

•
$$p(C_k) = \pi_k, \ \pi_k \ge 0, \ \sum_{k=1}^2 \pi_k = 1$$

• $p(x|C_k)$ is a Gaussian distribution

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)}$$

- p is the dimension of x and Σ_k is the covariance matrix. The vector x and the mean vector μ_k are both column vectors.
- $\Sigma_k = \Sigma$, $\forall k$. Making this assumption, decision boundary becomes linear

$$\log \frac{\pi_k}{\pi_l} - \frac{1}{2} (\mu_k + \mu_l)^T \Sigma^{-1} (\mu_k - \mu_l) + x^T \Sigma^{-1} (\mu_k - \mu_l) = 0$$

Classification

Multiclass

Multiclass Classification

Two choices

"one versus the rest"

"one versus one"

Pros and cons of each approach

one versus the rest: only needs to train K classifiers. Makes a huge difference if you have a lot of classes to go through.

one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved). Makes a huge difference if you have a lot of data to go through.

Bad about both of them

Combining classifiers' outputs can be a bit tricky.

Multiclass LDA

Generative model for multiclass classification

$$p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x}|y) = p(y)\frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_y)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_y)}$$

We use multiple multivariate Gaussian distributions, one for each class

- Namely, there are K Gaussians, with different means μk but the same covariance matrix Σ .
- Note that y denotes 1,2,...,K, corresponding to C1,C2,...,CK respectively.
- Thus, µy is the class Cy's mean parameter.
- As in linear discriminant analysis, we assume equal covariance matrix across all classes.

Unequal Covariances

- more general case of unequal covariances (here shown for four classes)
- the decision hypersurface is no longer a hyperplane, i.e. it is nonlinear

Regularization

Overfitting

What to do if data is nonlinear?

Example of nonlinear classification

Example of nonlinear regression

Nonlinear basis functions

Transform the input/feature

$$\varphi(x): x \in R^2 \to z = x_1 \cdot x_2$$

Transformed training data: linearly separable!

Another example

How to transform the input/feature?

$$\varphi(x): x \in \mathbb{R}^2 \to z = \begin{bmatrix} x_1^2 \\ x_1 \cdot x_2 \\ x_2^2 \end{bmatrix}$$

Transformed training data: linearly separable

Intuition: suppose
$$\theta = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Then
$$\theta^T z = x_1^2 + x_2^2$$

i.e., the sq. distance to the origin!

General nonlinear mapping

We can use a nonlinear mapping

$$\varphi(x): x \in \mathbb{R}^N \to z \in \mathbb{R}^M$$

- where M is the dimensionality of the new feature/input z (or $\varphi(x)$)
- Note that M could be either greater than D or less than, or the same

Example with regression

Polynomial basis functions

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix}$$

Fitting samples from a sine function: underrfitting as f(x) is too simple

Add more nonlinear basis functions

M=9: overfitting

 Being too adaptive leads to better results on the training data, but not so great on data that has not been seen!

Overfitting

Parameters for higher-order polynomials are very large

	M=0	M = 1	M = 3	M = 9
$\overline{\theta_0}$	0.19	0.82	0.31	0.35
$ heta_1$		-1.27	7.99	232.37
$ heta_2$			-25.43	-5321.83
$ heta_3$			17.37	48568.31
_				-231639.30
θ_4				-231039.30 640042.26
θ_5				
θ_6				-1061800.52
θ_7				1042400.18
$ heta_8$				-557682.99
$ heta_9$				125201.43

Prof. Fei Sha (feisha@usc.edu

Overfitting disaster

Fitting the housing price data with M = 3

Note that the price would goes to zero (or negative) if you buy bigger houses! This is called poor generalization/overfitting.

Detecting overfitting

Plot model complexity versus objective function on test/train data

As model becomes more complex, performance on training keeps improving while on test data it increases

Horizontal axis: measure of model complexity
In this example, we use the maximum order of the polynomial basis functions.

Vertical axis: For regression, it would be SSE or mean SE (MSE) For classification, the vertical axis would be classification error rate or cross-entropy error function

Overcoming overfitting

- Basic ideas
 - Use more training data
 - Regularization methods
 - Cross-validation

Solution: use more data

M=9, increase N

What if we do not have a lot of data?

Solution: Regularization

- Use regularization:
 - Add $\lambda \|\theta\|_2^2$ term to SSE cost function
 - Penalizes large heta
 - $-\lambda$ controls amount of regularization
- Next, we will derive regularized linear regression from Bayesian linear regression

Go to Adrew Ng's lecture on Regularization