Chapter 10:

Directed Graphical Models (Bayes nets)

张小彬 @CIS Lab

Probabilistic Graph Model

Melchizedek

Philip (the evangelist)

Model

 \mathcal{M}

Probabilistic Theory + Graph Theory!

Data

$$\mathcal{D} \equiv \{X_1^{(i)}, X_2^{(i)}, ..., X_m^{(i)}\}_{i=1}^N$$

Probabilistic Graph Model

The Student Network

Fundamental Questions of PGM

- Representation
 - How to representation a joint distribution?
 - $p(x_1, x_2, ..., x_V) \rightarrow p(x_{1:V})$
 - Directed Graph Model
 - Bayesian Networks, BNs
 - Undirected Graph Model
 - Markov Random Field, MRF
- Inference
 - Infer Marginal Distribution from Joint Distribution
- Learning
 - Learn parameters and Structures of the PGM

Chain Rule

$$p(x_{1:V}) = p(x_1)p(x_2|x_1)p(x_3|x_2,x_1)p(x_4|x_1,x_2,x_3)\dots p(x_V|x_{1:V-1})$$

- A direct way to calculate joint distribution
- Language model: Sentence probability
- $p(x_1) O(K)$ parameters
- $p(x_2|x_1) O(K^2)$ parameters
 - stochastic matrix
- $p(x_3|x_1,x_2) O(K^3)$ parameters
 - Conditional probability tables or CPTs
- $p(x_V|x_{1:V-1}) O(K^V)$ parameters

Chain Rule (cont.)

- Can we replace CPTs?
- Conditional probability distribution, or CPDs
- $O(K^2V^2)$ parameters, why?
- Each variable depends on all the previous variables

$$p(x_t = k | \mathbf{x}_{1:t-1}) = \mathcal{S}(\mathbf{W}_t \mathbf{x}_{1:t-1})_k$$

Conditional Independence

- Represent large joint distributions
- Conditional independence (CI)

$$X \perp Y|Z \iff p(X,Y|Z) = p(X|Z)p(Y|Z)$$

Make (first order) Markov assumption

$$x_{t+1} \perp \mathbf{x}_{1:t-1} | x_t$$

(first order) Markov Chain

$$p(\mathbf{x}_{1:V}) = p(x_1) \prod_{t=1}^{V} p(x_t | x_{t-1})$$

• State transition matrix $p(x_t = j | x_{t-1} = i)$

Graphical models

A graphical model

A way to represent a joint distribution
by making Cl assumptions.

- Study directed graphs in this chapter
- Study undirected graphs in chapter 17

Graph terminology

- Graph G
- Parent, Child, Family
- Ancestors, descendants, neighbors
- Degree, in-degree, out-degree, cycle or loop
- DAG, directed acyclic graph
- Topological ordering
- Path or trail
- Subgraph, clique, maximal clique, maximum clique

Tree and DAG

- A DAG is not necessarily a tree
- A DAG can have multiply parents
 - Also called poly tree
 - Otherwise called moral directed tree
 - More than one path between two nodes
 - May have loops(cycles) if turned undirected

Topological ordering

- Only DAG has topological ordering
- Parents have lower numbers than their children
- Figure 10.1?

Subgraph & Clique

Directed Graphical Models

Ordered Markov property

$$x_s \perp \mathbf{x}_{\text{pred}(s)\backslash \text{pa}(s)} | \mathbf{x}_{\text{pa}(s)} |$$

- Bayesian Networks
- Belief Networks
- Causal Networks

For example, the DAG in Figure 10.1(a) encodes the following joint distribution:

$$p(\mathbf{x}_{1:5}) = p(x_1)p(x_2|x_1)p(x_3|x_1, \mathbf{x}_2)p(x_4|\mathbf{x}_1, x_2, x_3)p(x_5|\mathbf{x}_1, \mathbf{x}_2, x_3, \mathbf{x}_4)$$
$$= p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2, x_3)p(x_5|x_3)$$

Directed Graphical Models (cont.)

• In general, we have

$$p(\mathbf{x}_{1:V}|G) = \prod_{t=1}^{V} p(x_t|\mathbf{x}_{pa(t)})$$

- This equation holds only if
 - the CI assumptions encoded in DAG in G are correct
- If each node has O(F) parents and K states
 - Model has $O(VK^F)$ parameters

Example: Naïve Bayes classifiers

- NBC assumes the features
 - are conditionally independent given class labels
- Tree-augmented naïve Bayes classifier
 - Find the optimal tree structure using the Chow-Liu algorithm

Example: Markov Chain

Figure 10.3 A first and second order Markov chain.

Second order Markov chain:

$$p(\mathbf{x}_{1:T}) = p(x_1, x_2)p(x_3|x_1, x_2)p(x_4|x_2, x_3) \dots = p(x_1, x_2) \prod_{t=3}^{T} p(x_t|x_{t-1}, x_{t-2})$$

Example: Hidden Markov Model

- Hidden variable z_t
- Observed variable x_t
- $p(z_t|x_t)$?

Figure 10.4 A first-order HMM.

• 齐次马尔可夫假设

- 。 当前的隐变量只和前一个隐变量有关,得到转移模型 (transition model)
- 。 即 $p(z_t|z_{t-1}) = p(z_t|z_{1:T},\mathbf{x}_{1:T})$,可以对 CPD $p(z_t|z_{t-1})$ 进行建模

• 观测独立性假设

- 。 当前的观察变量只和当前的隐变量有关,得到观察模型 (observation model)
- 。 即 $p(\mathbf{x}_t|z_t) = p(\mathbf{x}_t|z_{1:T},\mathbf{x}_{1:T})$,可以对 CPD $p(\mathbf{x}_t|z_t)$ 进行建模

Example: HMM (cont.)

- Dynamic Bayesian Network
- MRF, CRF, RNN ?

Figure 10.4 A first-order HMM.

- Part of speech tagging
 - x_t represent a word
 - z_t is part of speech
- Automatic speech recognition
 - x_t speech signal features, z_t is the word
 - $p(z_t|z_{t-1})$ is language model
 - $p(x_t|z_t)$ is acoustic model

Inference

- Joint distribution $p(x_{1:V}|\theta)$
 - visible variables x_v
 - hidden variables x_h
- Infer the unknowns

$$p(\mathbf{x}_h|\mathbf{x}_v, \boldsymbol{\theta}) = \frac{p(\mathbf{x}_h, \mathbf{x}_v|\boldsymbol{\theta})}{p(\mathbf{x}_v|\boldsymbol{\theta})} = \frac{p(\mathbf{x}_h, \mathbf{x}_v|\boldsymbol{\theta})}{\sum_{\mathbf{x}_h'} p(\mathbf{x}_h', \mathbf{x}_v|\boldsymbol{\theta})}$$

- If x_h is x_q and x_n , how to get x_q ?
 - marginalizing out!!

$$p(\mathbf{x}_q|\mathbf{x}_v,\boldsymbol{\theta}) = \sum_{\mathbf{x}_n} p(\mathbf{x}_q, \mathbf{x}_n|\mathbf{x}_v, \boldsymbol{\theta})$$

Plate notation

- A form of syntactic sugar called plates
 - draw a box around the repeated variables
- How to represent iid?

Plate notation of NBC

Figure 10.8 Naive Bayes classifier as a DGM. (a) With single plates. (b) WIth nested plates.

Plate notation of NBC (cont.)

Learning

Just Regular MAP

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(\mathbf{x}_{i,v}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})$$

If we use uniform prior, MAP -> MLE

- From Bayesian view
 - Parameters are also unknown variables
 - No difference between Inference and Learning

Learning from complete data

Likelihood

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}_i|\boldsymbol{\theta}) = \prod_{i=1}^{N} \prod_{t=1}^{V} p(x_{it}|\mathbf{x}_{i,pa(t)},\boldsymbol{\theta}_t) = \prod_{t=1}^{V} p(\mathcal{D}_t|\boldsymbol{\theta}_t)$$

• If prior factorizes,

$$p(\boldsymbol{\theta}) = \prod_{t=1}^{V} p(\boldsymbol{\theta}_t)$$

Posterior also factorizes.

$$p(\boldsymbol{\theta}|\mathcal{D}) \propto p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}) = \prod_{t=1}^{V} p(\mathcal{D}_t|\boldsymbol{\theta}_t)p(\boldsymbol{\theta}_t)$$

Learning with missing and/or latent variables

- What is missing data?
 - Consider an image with occluder
 - A broken sensor
 - Sparse matrix, like user dictionary
- Likelihood is no longer convex
- ML or MAP estimate is locally optimal
- How to deal with missing and/or latent variables?
 - EM, Expectation-Maximum Algorithm
 - Structure-EM Algorithm

CI Properties of DGMs & I-map

- Consider the independence of any pair in DGMs.
- Cl assumptions in graphical model is like this,

$$\mathbf{x}_A \perp_G \mathbf{x}_B | \mathbf{x}_C$$

- *I*(*G*) is a set
 - All CI statements encoded by the graph G
- I(p) is a set
 - All CI statements encoded by distribution p
- $I(G) \subseteq I(p)$ iff
 - G is an I-map (independent map) for p
 - P is Markov wrt G
- Full connected graph; minimal I-map?

Active Trail

A trial (path) $X_1 - \cdots - X_n$ is active if It has no v-structures $X_{i-1} \to X_i \leftarrow X_{i+1}$

- A trial X Y Z is active?
- A trial X Y Z is active given Y?

D-separation

Undirected path P is d-separated by a set of nodes E(containing the evidence) iff at least

1. P contains a chain

$$s \to m \to t \text{ or } s \leftarrow m \leftarrow t, \text{ where } m \in E$$

2. P contains a tent of fork

$$s \swarrow^m \searrow t$$
, where $m \in E$

3. P contains a v-structures

 $s \searrow_{m} \swarrow t$, where m is not in E and nor is any descendant of m.

Global Markov properties (G)

- A set of nodes A, B and third observed set E
- We say A is d-separate from B given E, iff
 - Every node $a \in A, b \in B$ is separated given E

Define CI properties for BNs

 $\mathbf{x}_A \perp_G \mathbf{x}_B | \mathbf{x}_E \iff A$ is d-separated from B given E

This is called directed Global Markov property (G)

Global Markov properties (cont.)

$$egin{aligned} ullet X &
ightarrow Y
ightarrow Z \ &\circ p(x,y,z) = p(x)p(y|x)p(z|y) \ &\circ x \perp z|y \ &\circ p(x,y,z) = p(y)p(x|y)p(z|y) \ &\circ x \perp z|y \ &\bullet X
ightarrow Y \leftarrow Z \ &\circ p(x,y,z) = p(x)p(z)p(y|x,z) \ &\circ x \! \downarrow \! z|y \quad ext{but} \quad x \perp z \end{aligned}$$

Example

- $x_2 \perp x_6 \mid x_5$, since $2 \rightarrow 5 \rightarrow 6$ is blocked by x_5 (observed)
- 2 \rightarrow 4 \rightarrow 7 \rightarrow 6 is blocked by x_7
- 2 \rightarrow 1 \rightarrow 3 \rightarrow 6 is blocked by x_1
- Is $x_2 \perp x_6 \mid x_5, x_7$? No, if x_7 is observed

More Markov Property

Directed Local Markov Property (L)

```
t \perp nd(t) \backslash pa(t) \mid pa(t)
```

- nd(t) means non-descendants of t
- pa(t) means parents of t
- Ordered Markov Property (O)

```
t \perp pred(t) \setminus pa(t) \mid pa(t)
```

- pred(t) means predcessors of t
- Three Markov properties for DAGs
 - $G \Leftrightarrow L \Leftrightarrow O$

Markov blanket and full conditionals

- A Markov blanket of node t is
 - $mb(t) \triangleq ch(t) \cup pa(t) \cup copa(t)$
 - copa(t) means co-parents, have the same child
 - Given Markov blanket, t will be CI with all other nodes in the Graph.

Influence (decision) diagrams*

