Lecture 11 Feasible Interpolation	Oct 8
Goal: Prove size lower bounds for Cutting Planes	proofs
Considering "split" unsatisfiable CNF formulas	
$F = A(x_{1}y) \wedge B(x_{1}z)$	spartial"
Associated "interpolation function" fr: {0,13" >>	عربار × ح
$ \begin{cases} 1 & \exists y : A(x,y) = 1 \\ 5 & \exists z : B(x,z) = 1 \\ * & o/w \end{cases} $	
Note: Because of variable partitioning, for is a Hamolian) function.	ell-defined
Complexity of refuting F ~ complexity of computi	ng FF.
Do this by considering associated search problem	2
Search(F) := Given assignment, output false clause	
For f: \(\frac{20}{13}^{\circ} -> \frac{20}{10}, \cdot \frac{4}{5} \)	
Karchmer-Wigderson (KW) Game	
$KW(f) := Two inputs: xef^{-1}(i), yef^{-1}(o).$ Goa an ie [n] s.t. $x_i^* \neq y_i^*$.	1: find
Proof for F Small circuit for f (**) Prover strategy Search(F) ** ** ** ** ** ** ** ** **	F
Prover strategy Search (F) (*) > Protocol for KW(ff)	

Today: Prove two theorems	Oct 8
Thm 1 (*) For any unsat CNF formula F = A(x	,y) NB(X,Z)
$D_{Res}(F) \ge Communication Complexity of CC(KW(f_F))$	KW(ff)
If all occurrences of the x variables in A(x, are positive then	γ)
D _{Res} (F) > CC(mkw(f _E))	
Key to provi	ing good
Aside: $mKW(f_F)$? Key to provi this technic	s via
Aside: mkw(ff) (this technic	que.
If $f: \{0,15^n \rightarrow \{0,1\}, *\}$ is a monotone funct	tion,
if there exists a 0-1 assignment to all *s	s s.t_
if $x_i^* \leq y_i^*$ for all $i^* f(x) \leq f(y)$	
then define	
	e [n]
$\frac{mKW(f): \text{ Given } x \in f^{-1}(1), y \in f^{-1}(0), \text{ find } i \in S, f, x_0^* = 1 \text{ and } y_0^* = 0.$	e [n]
$\frac{mkw(f)}{s.t.} : Given xef^{-1}(1), yef^{-1}(0), find is$ $\underbrace{s.t.} x_{i}^{n} = 1 \text{ and } y_{i}^{n} = 0.$ $ext f: \{0,1\}^{n} \rightarrow \{0,1\}^{n} \text{ and monotone},$	happen
$\frac{mKW(f): \text{ Given } x \in f^{-1}(1), y \in f^{-1}(0), \text{ find } i \in S, f, x_0^* = 1 \text{ and } y_0^* = 0.$	then yi=1
$\frac{mkw(f)}{s.t.} : Given xef^{-1}(1), yef^{-1}(0), find is$ $\underbrace{s.t.} x_i^0 = 1 \text{ and } y_i^0 = 0.$ $ext f: \{0,1\}^{\circ} \rightarrow \{0,1\}^{\circ} \text{ and monotone},$ $xef^{-1}(1), yef^{-1}(0) s.t. \forall i: x_i^0 = 1 \text{ the entropy of } x_i^0 \leq y_i^0$	ren y:=1
$\frac{mkw(f)}{s.t.} : Given xef^{-1}(1), yef^{-1}(0), find is$ $\underbrace{s.t.} x_{i}^{0} = 1 \text{ and } y_{i}^{0} = 0.$ $ext f: \{0,1\}^{0} \rightarrow \{0,1\}^{0} \text{ and monotone},$ $xef^{-1}(1), yef^{-1}(0), s.t. \forall i: x_{i}^{0} = 1 the entropy of the $	then $y:=1$ $f(x)$ cont:

Thm 2(+) For any partial function Oct 8 f: 20,13" -> 20,1, * 5, CC(KW(f)) = min depth of any boolean circuit computing fIf f is monotone (C(mkw(f)) = min depth of any monotone boolean ckt computing f GATES, only 1, V Thm 1 (4) For any unsat CNF formula $F = A(x,y) \wedge B(x,z)$ $D_{Res}(F) \ge Communication Complexity of RW(f_F)$ $CC(KW(f_F))$ Proof of Thm 1 Let To be any resolution proof of F. We give a comm. profocol for KW(fx) with complexity at most the depth of TT. Alice gets $u \in f_F(1)$, $f(u) = 1 \Leftrightarrow A(u,y)$ is satisfiable. Alice picks any gu s.t. A(u,qu) = 1. Bob gets $v \in f_F(0)$, $f(v) = 0 \Leftrightarrow B(v, z)$ is sat. .. Bob picks (s.+. B(v, () = 1.

Goal: Find i E [n] s.t. u; +v; . Affice and bob walk down TT from the root clause, I, maintain the following invariant:

(*) Both assignments (2,9,7), (1,9,7)

Falsify the current clause. Initially, they're at 1, so (*) holds! Next, suppose Cuw woo they are at clause CUO CVO < derived from CVW, WVD. (1) If w is a y-variable (in A(x,y)), let w=y;.

Alice sends q; to Bob, they go to whatever input clause is false. (2) If w is a z-variable (in B(x,z)), let w=zi, now Bob speaks! (symmetric) (3) If w is an x-var, let w=x:. Bob sends v; to Alice — if u; fv; then done! If u; = v; then they both go to the input clause to this step that is falsified. Eventually they end at a leaf, clause from A(x,y) or B(x, z). We know that (u, q, r) satisfies A, Thus A, B find an i ul ui + vi, (V, 9, r) satisfies B. communicate & depen (T) bits [

If all occurrences of x-vars in A(x,y) Oct 8 are positive, then we modify the invariant and (3). (*) Both assignments (2,9,7), (1,9,7) Falsify the current clause.	-
New (*): Fu'>2 s.t. (u', q', r'), (v, q', r') pointwise > both falsify the current clause.	
New Goal: Find iE[n] s.t. u;=1, v;=0.	
Modify (3) as follows:	
New (3) w = xi for some i. Bob sends vi to Alice.	
- If u;=1, v;=0 then half output i.	
- If u; < v;, then they go to child falsified by v;.	
If u;=vi, then no change!	
If $u_i^0 = 0$, $v_i^0 = 1$, then $u_i^0 = 1$, and New (*) is satisfied.	

```
Thm 2(+) For any partial function
                                                             Oct 8
   f: 20,13" -> 20,1, * },
        CC(KW(f)) = min depth of any boolean circuit computing f
  If f is monotone
        CC(mkw(f)) = min depth of any monotone boolean ckt computing f
               GATES, only 1, V
Pf of Thm 2
   ( <) CC(KW(f)) < circuit depth of f
   Alice gets uef-1(1), Bob gets vef-1(0)
  They both (privately) evaluate the circuit C on u and v.
    Start at output gate of the circuit C, walk to input variable x; while maintaining that the current gate g satisfies
                   g(u) + g(v).
       output gate, C(u)=f(u)=1, C(v)=f(v)=0.
- If g = h; 1 h;
  g(u) = 1 \implies h_i(u)^{=1} \text{ and } h_i(u)^{=1}

g(v) = 0 \implies \text{ one of } h_i(v) \cap h_i(v) = 0
```

So Bob sends the ist. $h_i(v) = 0$ - If g = hi v hi g(u)=1 => h;(u)=1 or h;(u)=1 $g(1) = 0 = h_i(1) = h_i(1) = 0.$ So Alice sends i s.t. $h_i^s(u) = 1$. Eventually: they reach an input variable x_i^0 , and by assumption $u_i \neq v_i^0$. (>) CC(Kw(f)) > circuit depth of f. Short version: Given protocol TT, create boolean ckt Relabel Alice nodes in TT with V, Bob nodes with A, and leaves where they output xi, XP with the corresponding variable. Prove slightly stronger statement: (\square) For any $U \subseteq f^{-1}(1)$, $V \subseteq f^{-1}(0)$ let fu,v(x) = \ \ 1 \ xeu \ \ \ o/w C computes fur Then CC of the game for fur > circuit depth of fur Pf Induction on d:= communication complexity.

If d=0, then Alice and Bob Know an index i oct & that is different. The circuit is Xi or Xi. 0/W at depth d: Suppose Alice speaks first Affice looks at A Protocol cornect UXV

WEU and decides

That hit to seed what bit to send. Uo×VTL TRUIXV U=Uo⊎U, Wo = Eu: Alice sends b & Inductively convert TI, TR to circuits CL, CR. C= C, VCR. $C_L(u) = 1$ if uello $C_R(u) = 2$ if uell, So on loul, $C(u) = C_L(u) \vee C_R(u) = 1$ If C(1)=0 if NEV CR(1)=0 if NEV So $C(v) = C_{L}(v) \cdot C_{R}(v) = 0$. AND C is correct! Bob's speaks is a symmetric argument (switch n and v).