Aufgabe 3

Gegeben sei folgendes relationales Schema R in erster Normalform:

$$R : \{ [A, B, C, D, E, F] \}$$

Für *R* gelte folgende Menge *FD* funktionaler Abhängigkeiten:

$$FA = \left\{ \begin{cases} \{A, D, F\} \rightarrow \{E\}, \\ \{B, C\} \rightarrow \{A, E\}, \\ \{D\} \rightarrow \{B\}, \\ \{D, E\} \rightarrow \{C, B\}, \\ \{A\} \rightarrow \{F\}, \end{cases} \right\}$$

(a) Bestimmen Sie alle Kandidatenschlüssel/Schlüsselkandidaten von R mit FD. Hinweis: Die Angabe von Attributmengen, die keine Kandidatenschlüssel sind, führt zu Abzügen.

```
- { D, A }
- { D, C }
- { D, E }
```

(b) Prüfen Sie, ob R mit FD in 2NF bzw. 3NF ist.

```
R ist in 1NF, da \{d\} \rightarrow \{b\}
```

- (c) Bestimmen Sie mit folgenden Schritten eine kanonische Überdeckung FD_C von FD:
 - (i) Führen Sie eine Linksreduktion von FD durch. Geben Sie die Menge funktionaler Abhängigkeiten nach der Linksreduktion an (FD_L) .

Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq AttrHülle(F, \alpha - A)$.

$$\{\,\textbf{A},\,\textbf{D},\,\textbf{F}\,\} \to \,\, \{\,\textbf{E}\,\}$$

$$E \notin AttrH\ddot{u}lle(F, \{A, D, F \setminus A\}) = \{D, F, B\}$$

 $E \notin AttrH\ddot{u}lle(F, \{A, D, F \setminus D\}) = \{A, F\}$
 $E \in AttrH\ddot{u}lle(F, \{A, D, F \setminus F\}) = \{A, B, D, F\}$

$$\{B,\,C\}\rightarrow \{\,A,\,E\,\}$$

$${A, E} \notin AttrHülle(F, {B, C \setminus B}) = {C}$$

 ${A, E} \notin AttrHülle(F, {B, C \setminus C}) = {B}$

$$\{\,\text{D, E}\,\} \to \{\,\text{C, B}\,\}$$

```
\{C, B\} \notin AttrHülle(F, \{D, E \setminus D\}) = \{E\}
\{C, B\} \notin AttrHülle(F, \{D, E \setminus E\}) = \{B, D\}
FA = \left\{ \begin{cases} A, D \} \rightarrow \{E\}, \\ \{B, C\} \rightarrow \{A, E\}, \\ \{D\} \rightarrow \{B\}, \\ \{D, E\} \rightarrow \{C, B\}, \\ \{A\} \rightarrow \{F\}, \end{cases} \right\}
```

(ii) Führen Sie eine Rechtsreduktion des Ergebnisses der Linksreduktion (FD_L) durch. Geben Sie die Menge funktionaler Abhängigkeiten nach der Rechtsreduktion an (FD_R).

Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH\"ulle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

Ε

$$E \notin AttrH\ddot{u}lle(F \setminus \{A, D\} \to \{E\}, \{A, D\}) = \{A, B, D, F\}$$

$$E \notin AttrH\ddot{u}lle(F \setminus \{B, C\} \to \{A, E\} \cup \{B, C\} \to \{A\}, \{B, C\}) = \{A, B, C, F\}$$

В

$$B \notin AttrHülle(F \setminus \{D\} \to \{B\}, \{D\}) = \{D\}$$

$$B \in AttrHülle(F \setminus \{D, E\} \to \{C, B\} \cup \{D, E\} \to \{C\}, \{D, E\}) = \{B, D, E\}$$

$$FA = \left\{ \begin{cases} \{A, D\} \rightarrow \{E\}, \\ \{B, C\} \rightarrow \{A, E\}, \\ \{D\} \rightarrow \{B\}, \\ \{D, E\} \rightarrow \{C\}, \\ \{A\} \rightarrow \{F\}, \end{cases} \right\}$$

(iii) Bestimmen Sie eine kanonische Überdeckung FD. von FD auf Basis des Ergebnisses der Rechtsreduktion (FD_R).

- Löschen leerer Klauseln

- Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.
- Ø Nichts zu tun
- Vereinigung

- Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \ldots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \cdots \cup \beta_n$ verbleibt. —
- Ø Nichts zu tun
- (d) Zerlegen Sie R mit FD_C mithilfe des Synthesealgorithmus in 3NF. Geben Sie zudem alle funktionalen Abhängigkeiten der erzeugten Relationenschemata an.
 - Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_{\alpha} := \alpha \cup \beta$.

```
R_{1}(\underline{A},\underline{D},E)
R_{2}(\overline{B},C,A,E)
R_{3}(\overline{D},B)
R_{4}(\underline{D},E,C)
R_{5}(\underline{A},F)
```

- Schlüssel hinzufügen
 - Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$ —
 - Ø Nichts zu tun
- Entfernung überflüssiger Teilschemata
- Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.
- Ø Nichts zu tun
- (e) Prüfen Sie für alle Relationen der Zerlegung aus d), ob sie jeweils in BCNF sind.

R1 und R4 sind in BCNF, weil ihre Determinanten Schlüsselkandidaten sind.