Memory Efficient EBM Training

Anonymous Author(s)

Affiliation Address email

Abstract

To be completed...

2 1 Introduction

- **Definition 1** (Top-k). For $x \in \mathbb{R}^d$, denote S as the size-k set of $i \in [d]$ with largest k magnitude
- $|x_i|$. The **Top-**k compressor is defined as $C(x)_i = x_i$, if $i \in S$; $C(x)_i = 0$ otherwise.
- Definition 2 (Block-Sign). For $x \in \mathbb{R}^d$, define M blocks indexed by \mathcal{B}_i , i=1,...,M, with $d_i:=$ $|\mathcal{B}_i|$. The Block-Sign compressor is defined as $\mathcal{C}(x)=[sign(x_{\mathcal{B}_1})\frac{\|x_{\mathcal{B}_1}\|_1}{d_1},...,sign(x_{\mathcal{B}_M})\frac{\|x_{\mathcal{B}_M}\|_1}{d_M}]$.

2 Distributed and Private EBM Training

Algorithm 1: Example code

3

4

7

10

11

Input: Total number of iterations T, number of MCMC transitions K and of samples M, sequence of global learning rate $\{\eta_t\}_{t>0}$, sequence of MCMC stepsizes $\gamma_{k_k>0}$, initial value θ_0 , MCMC initialization $\{z_0^m\}_{m=1}^M$. Set of selected devices \mathcal{D}^t at iteration k.

Output: Vector of fitted parameters θ_{T+1} .

Data: $\{x_i^p\}_{i=1}^{n_p}, n_p \text{ number of observations on device } p. n = \sum_{p=1}^P n_p \text{ total number of }$ observations.

2 for
$$t = 1$$
 to T do

| /* Happening on distributed devices

for For device $p \in \mathcal{D}^t$ do

Draw M negative samples $\{z_K^{p,m}\}_{m=1}^M$ // local langevin diffusion for k = 1 to K do

$$z_k^{p,m} = z_{k-1}^{p,m} + \gamma_k/2\nabla_z f_{\theta_t}(z_{k-1}^{p,m})^{p,m} + \sqrt{\gamma_k}\mathsf{B}_k^p \;,$$

where B_k^p denotes the Brownian motion (Gaussian noise).

$$\text{Assign } \{z_t^{p,m}\}_{m=1}^M \leftarrow \{z_K^{p,m}\}_{m=1}^M.$$

Sample M positive observations $\{x_i^p\}_{i=1}^M$ from the empirical data distribution. Compute the gradient of the empirical log-EBM // local - and + gradients

$$\delta^p = \frac{1}{M} \sum_{i=1}^{M} \nabla_{\theta} f_{\theta_t} \left(x_i^p \right) - \frac{1}{M} \sum_{m=1}^{M} \nabla_{\theta} f_{\theta_t} \left(z_K^{p,m} \right)$$

Use black box compression operators

$$\Delta^p = \mathcal{C}(\delta^p)$$

Devices broadcast Δ^p to Server

/* Happening on the central server

Aggregation of devices gradients

$$\nabla \log p(\theta_t) \approx \frac{1}{|\mathcal{D}^t|} \sum_{p=1}^{|\mathcal{D}^t|} \Delta^p$$
.

Update the vector of global parameters of the EBM:

$$\theta_{t+1} = \theta_t + \eta_t \nabla \log p(\theta_t)$$
.

3 Conclusion

10 A Appendix