Scilab Textbook Companion for Atomic And Nuclear Physics by N. Subrahmanyam, B. Lal And J. Seshan¹

Created by
Palvi Gupta
Atomic and Nuclear Physics
Physics
shri mata vaishno devi university
College Teacher
Dr. Kamni
Cross-Checked by
Lavitha Pereira

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Atomic And Nuclear Physics

Author: N. Subrahmanyam, B. Lal And J. Seshan

Publisher: S. Chand And Company Ltd., New Delhi

Edition: 10

Year: 2008

ISBN: 81-219-0414-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Relativity	9
2	Quantum Mechanicsq	25
3	Matter Waves Wave Particle Duality and Uncertainty Principle	48
4	Mechanics	63
5	Atomic Physics	67
6	X Rays	70
7	Molecular Physics	7 5
8	Raman Effect and Spectroscopic techniques	7 8
9	Interaction of Charged Particles and Neutrons With Matter	80
10	Structure of Nuclei	85
11	Nuclear Reactions	93
12	Nuclear Models	96

List of Scilab Codes

Exa 1.1	Relative Speed of Approach
Exa 1.2	Relative Speed of Spaceships
Exa 1.3	Relativistic Length Contraction
Exa 1.5	Mass Energy Equivalence
Exa 1.6	Energy Equivalent of Mass
Exa 1.7	Relativistic Variation of Mass with Speed 1
Exa 1.8	Increase in Mass of Water
Exa 1.9	Ratio of Rest Mass and Mass in Motion
Exa 1.10	Heat Equivalent of Mass
Exa 1.11	Variation of Space and Time
Exa 1.12	Mean Lifetime of a Moving Meason
Exa 1.13	Velocity of One Atomic Mass Unit
Exa 1.14	Speed of an Electron for an Equivalent Proton Mass . 13
Exa 1.15	Speed at Total Energy Twice the Rest Mass Energy . 10
Exa 1.16	Relative Velocity and Mass
Exa 1.17	Relativistic Variation of density with Velocity 1
Exa 1.18	Electrons Accelerated to Relativistic Speeds
Exa 1.19	Electron Speed Equivalent of Twice its Rest Mass 19
Exa 1.20	Electron Speed Equivalent of Twice its Rest Mass 19
Exa 1.21	Fractional Speed of Electron
Exa 1.22	Effective Mass and Speed of Electron
Exa 1.23	Energy Released in Fission
Exa 1.24	Relativistic Speed Form Relativistic Mass
Exa 1.25	Decay of muon
Exa 1.26	Decay of Unstable Particle
Exa 2.1	Threshold Wavelength of Tungsten
Exa 2.2	Maximum Velocity of Photoelectrons
Exa. 2.3	Energy of Photoelectrons 20

Exa 2.4	Longest Wavelength of Incident Radiation	27
Exa 2.5	Threshold Frequency and Wavelength	27
Exa 2.6	Maximum Velocity of Emitted Electrons	28
Exa 2.7	Maximum Energy of Ejected Electrons	29
Exa 2.8	Maximum Kinetic Energy and Stopping Potential of	
		30
Exa 2.9		30
Exa 2.10	Energy of Electrons Emitted From the Surface of Tung-	
	9.	31
Exa 2.11	Energy of Photon	32
Exa 2.12	Velocity of the Emitted Electron	32
Exa 2.13		33
Exa 2.14	9, , , , , , , , , , , , , , , , , , ,	33
Exa 2.15		34
Exa 2.16	Wavelength of Balmer H beta Line	35
Exa 2.17	First Excitation Energy of Hydrogen Atom	35
Exa 2.18	Energy Difference in the Emission or Absorption of Sodium	
	D1 Line	36
Exa 2.19	Wavelength of First Line of Balmer Series	36
Exa 2.20	Minimum Energy of the Electrons in Balmer Series	37
Exa 2.21	Ionization Potential of Hydrogen Atom	38
Exa 2.22	Wavelength of Second Number of Balmer Series of Hy-	
	drogen	38
Exa 2.23	Wavelength of Emitted Light	39
Exa 2.24		40
Exa 2.25	Radius and Velocity of Electron for H and He	41
Exa 2.26	Difference in Wavelength in the Spectra of Hydrogen	
	and Deuterium	42
Exa 2.27	Ionization Energy of Hydrogen Atom With Orbiting	
	Muon	43
Exa 2.28	Photon Emitted by Hydrogen Atom	43
Exa 2.29	Energy Required to Create a Vacancy in Cu	44
Exa 2.30	Excitation Potential for Mercury	45
Exa 2.31	Atomic Number of Impurity in Zinc Target	45
Exa 2.32	Mu mesonic Atom Subjected to Bohr Orbit	46
Exa 3.1	Kinetic Energy of an Electron	48
Exa 3.2	Wavelength of Electrons	49
Exa 3.3	Momentum of Photon	49

Exa 3.4	Momentum of an electron
Exa 3.5	Wavelength of a Particle
Exa 3.6	Comparison of Energy of Photon and Neutron 51
Exa 3.7	de Broglie Wavelength of Electrons
Exa 3.8	de Broglie Wavelength of Accelerated Electrons 52
Exa 3.9	Wavelength of Matter Waves
Exa 3.10	Momentum of Proton
Exa 3.11	Wavelength of an Electron
Exa 3.12	de Broglie Wavelength of Thermal Neutrons 54
Exa 3.13	Kinetic Energy of a Proton
Exa 3.14	Energy of Electrons in a One Dimensional Box 58
Exa 3.15	Lowest Energy of Three Electrons in Box 56
Exa 3.16	Zero Point Energy of System
Exa 3.17	Mean Energy Per Electron at 0K
Exa 3.18	Lowest Energy of Two Electron System 57
Exa 3.19	Total Energy of the Three Electron System
Exa 3.20	Minimum Uncertainity in the Velocity of an Electron . 58
Exa 3.21	Uncertainity in Momentum and Kinetic Energy of the
	Proton
Exa 3.22	Uncertainty in the Position of an Electron 60
Exa 3.23	Uncertainty in the Position of a Bullet 60
Exa 3.24	Unertainity in the Position of an Electron 65
Exa 3.25	Unertainity in the Velocity of an Electron 65
Exa 3.26	Minimum Uncertainity in the Energy of the Excited
	State of an Atom
Exa 4.1	Percentage Transmission of Beam Through Potential
	Barrier
Exa 4.2	Width of the Potential Barrier 64
Exa 4.3	Energy of Electrons Through the Potential Barrier 65
Exa 4.4	Zero Point Energy of a System 65
Exa 5.1	L S coupling for two electrons 67
Exa 5.2	Term Values for L S Coupling 67
Exa 5.4	Angle Between l and s State 68
Exa 6.1	Wavelength of X rays
Exa 6.2	Plancks constant
Exa 6.3	Short Wavelength Limit
Exa 6.4	Wavelength Limit of X rays
Exa 6.5	Minimum Voltage of an X ray Tube
	6

Exa	6.6	Minimum Wavelength Emitted by an X ray Tube 7	73
Exa	6.7	· · · · · · · · · · · · · · · · · · ·	73
Exa	7.1	Frequency of Oscillation of a Hydrogen Molecule 7	5
Exa	7.2	Bond Length of Carbon Monoxide	5
Exa	7.3	Intensity Ratio of J states for HCL Molecule	6
Exa	7.4	CO Molecule in Lower State	7
Exa	8.1	Stokes and Anti Stokes Wavelength	8
Exa	8.2		9
Exa	9.1	Maximum Energy Transferred by Alpha Particles 8	80
Exa	9.2	Rate of Energy Loss and Range of Deuteron and Alpha	
		-	31
Exa	9.3		32
Exa	9.4	Average Number of Collsions for Thermalization of Neu-	
			32
Exa	9.5	Change in Voltage Across a G M Tube	3
Exa	10.1.1	Energy and Mass Equivalence of Wavelength 8	35
Exa	10.1.2	Binding Energy per Nucleon for Oxygen Isotopes 8	86
			86
Exa	10.3.1	Binding Energy per Nucleon of Helium 8	37
		9 9 -	8
			8
Exa	10.3.4	Binding Energy per Nucleon of Ni	39
			39
Exa	10.3.6	Binding Energy and Packing Fraction of Helium 9	0
Exa	10.3.7	Mass of Yukawa Particle	1
Exa	10.3.8	Maximum Height of the Potential Barrier for Alpha	
		Penetration	1
Exa	11.1	Energy Balance of a Nuclear Reaction	93
Exa	11.2	Threshold Energy for the Reaction	93
Exa	11.3	Gamma Ray Emission)4
Exa	12.1	Rate of Consumption of U235 Per Year	96
Exa	12.2	Rate of Fission of U 235	7
Exa	12.3	Binding Energy of Helium Nucleus	7
Exa	12.4	Energy Released During Fusion of Deuterium Nuclei . 9	8
Exa	12.5	9.	8
Exa	12.6	Energy Liberated During Production of Alpha Particles 9	9
Exa	12.7	-	9
Exa	12.8	Consumption Rate of U 235	0(

Exa 12.9	Minimum Disintegraton Energy of Nucleus	100
Exa 12.10	Rate of Fission of U 235	101
Exa 12.11	Energy Released During Fission of U 235	102
Exa 12.12	Minimum Energy of Gamma Photon for Pair Production	102
Exa 12.13	Uranium Atom Undergoing Fission in a Reactor	103
Exa 12.14	Amount of Uranium Fuel Required For One Day Oper-	
	ation	103
Exa 12.15	Binding Energy of Fe Using Weizsaecker Formula	104

Chapter 1

Relativity

Scilab code Exa 1.1 Relative Speed of Approach

```
1 // Scilab Code Ex1.1 Relative Speed of approach: Pg
     :20 (2008)
            // For the sake of simplicity, assume c =
2 c = 1;
     1, m/s
3 u = 0.87*c; // Velocity of approach of spaceship
    A towards spaceship B, m/s
4 v = -0.63*c; // Velocity of approach of spaceship
     B towards spaceship A, m/s
5 \ V = (u - v)/(1 - (u*v)/c^2);
                                // Velocity Addition
      Rule giving relative speed of approach of
     particles, m/s
6 printf("\nThe relative speed of approach of
     particles = \%6.4 \, \text{fc}", V);
7 // Result
8 // The relative speed of approach of particles =
     0.9689c
```

Scilab code Exa 1.2 Relative Speed of Spaceships

```
1 // Scilab Code Ex1.2 Relative Speed of spaceships:
    Pg: 20 (2008)
2 c = 1; // For the sake of simplicity, assume c =
    1, m/s
3 u = 0.9*c; // Velocity of approach of spaceship A
    towards spaceship B, m/s
4 v = -0.9*c; // Velocity of approach of spaceship
    B towards spaceship A, m/s
5 V = (u - v)/(1 - (u*v)/c^2); // Velocity Addition
    Rule giving relative speed of approach of
    spaceships, m/s
6 printf("\nThe relative speed of B w.r.t. A = %5.3 fc"
    , V);
7 // Result
8 // The relative speed of B w.r.t. A = 0.994c
```

Scilab code Exa 1.3 Relativistic Length Contraction

```
// Scilab Code Ex1.3 Relativistic length contraction
: Pg: 20 (2008)

L0 = 1;    // Actual length of the metre stick, m

rel_mass = 3/2;    // Relative mass of stick w.r.t.
    rest its mass

// As m = m0/sqrt(1 - (v/c)^2) and L = L0*sqrt(1 - (v/c)^2)

// Thus L/m = (L0/m0)*(1 - (v/c)^2), solving for L

// L = (m0/m)*L0 i.e.

L = 1/rel_mass*L0;    // Apparent length of the metre rod, m

rintf("\nThe apparent length of the metre rod = %5
    .3 f m", L);

// Result
// The apparent length of the metre rod = 0.667 m
```

Scilab code Exa 1.5 Mass Energy Equivalence

Scilab code Exa 1.6 Energy Equivalent of Mass

Scilab code Exa 1.7 Relativistic Variation of Mass with Speed

Scilab code Exa 1.8 Increase in Mass of Water

```
// Scilab Code Ex1.8 Increase in mass of water: Pg:
    23 (2008)

c = 3e+08;    // Speed of light, m/s

T1 = 273;    // Initial temperature of water, K

T2 = 373;    // Final temperature of water, K

M = 1e+06;    // Mass of water, kg

C = 1e+03;    // Specific heat of water, cal/kg-K

J = 4.18;    // Joule's mechanical equivalent of heat, cal/joule

U = M*C*(T2 - T1)*J;    // Increase in energy of water, J

m = U/c^2;    // Increase in mass of water, kg

printf("\nThe increase in mass of water = %4.2e kg", m);

Result
// Result
// The increase in mass of water = 4.64e-006 kg
```

Scilab code Exa 1.9 Ratio of Rest Mass and Mass in Motion

```
// Scilab Code Ex1.9 Ratio of rest mass and mass in
    motion: Pg:23 (2008)

c = 1;    // For convenience, speed of light is
    assumed to be unity, m/s

v = 0.5*c;    // Velocity of moving particle, m/s

// As m0 = m*sqrt(1 - (v/c)^2), and m0/m = rel_mass,
    we have

rel_mass = sqrt(1 - (v/c)^2);    // Ratio of rest
    mass and the moving mass

rintf("\nThe ratio of rest mass and the mass in
    motion = %6.4 f kg", rel_mass);

// Result

// The ratio of rest mass and the mass in motion =
    0.8660 kg
```

Scilab code Exa 1.10 Heat Equivalent of Mass

Scilab code Exa 1.11 Variation of Space and Time

```
1 // Scilab Code Ex1.11 Variation of space and time:
     Pg: 23 (2008)
            // Shortened length of the rod, m
2 L = 0.5;
3 LO = 1; // Actual length of the rod, m 4 tO = 1; // Actual time on the spaceship, s
5 c = 3e+08; // Speed of light, m/s
6 \ v = sqrt(1 - (L/L0)^2)*c; // Speed of the
      spaceship, m/s
7 t = t0/sqrt(1 - (v/c)^2); // Dilated time for
      stationary observer, s
8 printf("\nThe speed of light = \%5.3 \,\mathrm{e} \,\mathrm{m/s}", v);
9 printf("\nThe time dilation corresponding to 1 s on
      the spaceship = \%d s", round(t));
10 // Result
11 // The speed of light = 2.598e+008 \text{ m/s}
12 // The time dilation corresponding to 1 s on the
      spaceship = 2 s
```

Scilab code Exa 1.12 Mean Lifetime of a Moving Meason

```
1 // Scilab Code Ex1.12 Mean lifetime of a moving
    meason: Pg: 24 (2008)
2 c = 1;    // For convenience, speed of light is
    assumed to be unity
3 t0 = 2e-08;    // Mean life time of pi-meson at rest
    , s
4 v = 0.8*c;    // Velocity of moving pi-meason, m/s
5 t = t0/sqrt(1-(v/c)^2);    // Mean lifetime of
    moving pi-meason, s
6 printf("\nThe mean lifetime of moving meason = %4.2e
    s", t);
7 // Result
8 // The mean lifetime of moving meason = 3.33e-008 s
```

Scilab code Exa 1.13 Velocity of One Atomic Mass Unit

```
1 // Scilab Code Ex1.13 Velocity of one atomic mass
     unit: Pg: 24 (2008)
2 c = 1; // For convenience, speed of light is
     assumed to be unity, m/s
             // For convenience, rest mass is assumed
3 \text{ m0} = 1;
     to be unity
4 // Here 2*m0*c^2 = m*c^2 - m0*c^2 = KE which gives
5 m = 3*m0; // Atomic mass in motion, kg
6 \ // \ As \ m = m0/sqrt(1 - (v/c)^2), \ solving \ for \ v
7 v = sqrt(1 - (m0/m)^2)*c; // Velocity of one
     atomic mass, m/s
8 printf("\nThe velocity of one atomic mass = \%5.3 \, \mathrm{fc}",
      v);
9 // Result
10 // The velocity of one atomic mass = 0.943 c
```

Scilab code Exa 1.14 Speed of an Electron for an Equivalent Proton Mass

```
9 // The speed of the moving electron = 3.00\,\mathrm{e} + 008\,\mathrm{m/s} (approx.)
```

Scilab code Exa 1.15 Speed at Total Energy Twice the Rest Mass Energy

```
1 // Scilab Code Ex1.15 Speed at total energy twice
     the rest mass energy: Pg: 25 (2008)
2 c = 1; // Speed of light is assumed to be unity,
     m/s
3 m0 = 1; // For convenience, rest mass of the
     particle is assumed to be unity, kg
4 \quad m = 2*m0;
             // Mass of the moving particle when m*c
     ^2 = 2*m0*c^2, kg
5 // \text{ As m} = \frac{m0}{\text{sqrt}} (1 - (v/c)^2), \text{ solving for } v
6 v = sqrt(1 - (m0/m)^2)*c; // Speed of the moving
     particle, m/s
7 printf("\nThe speed of the moving particle = \%5.3 fc
     ", v);
8 // Result
9 // The speed of the moving particle = 0.866c
```

Scilab code Exa 1.16 Relative Velocity and Mass

Scilab code Exa 1.17 Relativistic Variation of density with Velocity

```
1 // Scilab Code Ex1.17 Relativistic variation of
     density with velocity: Pg: 26 (2008)
2 c = 1; // Speed of light is assumed to be unity
     for convenience, m/s
3 v = 0.9*c; // Speed of moving frame, m/s
4 \text{ rho}_0 = 19.3\text{e}+03; // Density of gold in rest
     frame, kg metre per cube
5 LO = 1; // Actual length is assumed to be unity,
6 m0 = 1; // Rest mass of gold is assumed to be
     unity, kg
7 VO = m0/rho_0; // Volume of gold in rest frame,
     metre cube
8 L = L0*sqrt(1 - (v/c)^2); // Relativistic Length
     Contraction Formula, m
            // Width of gold block is assumed to be
     unity, m
          // Height of gold block is assumed to be
10 z = 1;
     unity, m
11 V = L*y*z*V0; // Volume of gold as observed from
     moving frame, metre cube
12 m = m0/sqrt(1 - (v/c)^2); // Mass of gold as
     observed from moving frame, kg
```

```
13 rho = m/V;    // Density of gold as observed from
        moving frame, kg per metre cube
14 printf("\nThe density of gold as observed from
        moving frame = %5.1 fe+003 kg per metre cube", rho
        /1e+03);
15 // Result
16 // The density of gold as observed from moving frame
        = 101.6 e+003 kg per metre cube
```

Scilab code Exa 1.18 Electrons Accelerated to Relativistic Speeds

```
1 // Scilab Code Ex1.18 Electrons accelerated to
     relativistic speeds: Pg: 27 (2008)
2 U = 1e + 09 * 1.6e - 019; // Kinetic energy of the
     electrons, J
3 // As U = m*c^2, solving for m
4 m = U/c^2; // Mass of moving electrons, kg
5 \text{ mO} = 9.1\text{e}-031; // Rest mass of an electron, kg
6 mass_ratio = m/m0; // Ratio of a moving electron
     mass to its rest mass
7 c = 3e+08; // Speed of light, m/s
8 // As m = m0/sqrt(1 - (v/c)^2), Relativistic mass of
      electron, kg, solving for v, we have
9 v = sqrt(1 - (m0/m)^2)*c; // Velocity of moving
     electron, m/s
10 vel_ratio = v/c; // Ratio of electron velocity to
     the velocity of light
11 U0 = m0*c^2; // Rest mass energy of electron, J
12 ene_ratio = U/U0; // Ratio of electron energy to
     its rest mass energy
13 printf("\nThe ratio of a moving electron mass to its
      rest mass \%4.2e", mass_ratio);
14 printf("\nThe ratio of electron velocity to the
     velocity of light = 1 - \%5.3e, (1-vel_ratio^2)
     /2);
```

Scilab code Exa 1.19 Electron Speed Equivalent of Twice its Rest Mass

```
1 // Scilab Code Ex1.19 Electron speed equivalent of
     twice its rest mass: Pg: 28 (2008)
2 \text{ mO} = 9.1\text{e}-031; // Rest mass of an electron, kg
3 m = 2*m0;
               // Mass of moving electron, kg
4 c = 3e + 08;
               // Speed of light, m/s
5 // As m = m0/sqrt(1 - (v/c)^2), Relativistic mass of
      electron, kg, solving for v, we have
6 v = sqrt(1 - (m0/m)^2)*c; 	 // Velocity of moving
     electron, m/s
7 printf("\nThe speed of electron so that its mass
     becomes twice its rest mass = \%5.3 \,\mathrm{e} \,\mathrm{m/s}", v);
8 // Result
9 // The speed of electron so that its mass becomes
     twice its rest mass = 2.598e+008 \text{ m/s}
```

Scilab code Exa 1.20 Electron Speed Equivalent of Twice its Rest Mass

```
1 // Scilab Code Ex1.20 Electron speed equivalent of
     twice its rest mass: Pg: 28 (2008)
2 m0 = 9.1e-031; // Rest mass of an electron, kg
3 m = 2*m0; // Mass of moving electron, kg
```

```
4 c = 3e+08;  // Speed of light, m/s
5 // As m = m0/sqrt(1 - (v/c)^2), Relativistic mass of
    electron, kg, solving for v, we have
6 v = sqrt(1 - (m0/m)^2)*c;  // Velocity of moving
    electron, m/s
7 printf("\nThe speed of electron so that its mass
    becomes twice its rest mass = %5.3e m/s", v);
8 // Result
9 // The speed of electron so that its mass becomes
    twice its rest mass = 2.598e+008 m/s
```

Scilab code Exa 1.21 Fractional Speed of Electron

```
1 // Scilab Code Ex1.21 Fractional speed of electron:
     Pg:29 (2008)
2 \text{ mO} = 9.1\text{e}-031; // Rest mass of an electron, kg
3 c = 3e+08; // Speed of light, m/s
4 E = 0.5*1e+06*1.6e-019; // Kinetic energy of
     electron, J
5 // As E = (m - m0)*c^2, solving for m
6 m = E/c^2+m0; // Mass of moving electron, kg
7 // As m = m0/sqrt(1 - (v/c)^2), Relativistic mass of
      electron, kg, solving for v, we have
8 v = sqrt(1 - (m0/m)^2)*c; 	 // Velocity of moving
     electron, m/s
9 printf("\nThe speed of electron relative to speed of
      light = \%5.3 f", v/c);
10 // Result
11 // The speed of electron relative to speed of light
     = 0.863
```

Scilab code Exa 1.22 Effective Mass and Speed of Electron

```
1 // Scilab Code Ex1.22 Effective mass and speed of
     electron: Pg: 29 (2008)
2 c = 3e+08; // Speed of light, m/s
3 = 1.6e-019; // Electron-volt equivalent of 1
     joule, eV/joule
4 U = 2*1e+06*e; // Total energy of electron, J
5 // \text{ As E} = (m - m0) * c^2, \text{ solving for m}
6 m = U/c^2; // Effective mass of electron, kg
7 \text{ m0} = 0.511*1e+06*e/c^2; // Rest mass of the
     electron, kg
8 // As m = m0/sqrt(1 - (v/c)^2), Relativistic mass of
     electron, kg, solving for v, we have
9 v = sqrt(1 - (m0/m)^2)*c; // Velocity of moving
     electron, m/s
10 printf("\nThe effective mass of electron = \%4.1e kg"
11 printf("\nThe relativistic speed of electron = \%4.2
     fc m", v/c);
12 // Result
13 // The effective mass of electron = 3.6e-030 kg
14 // The relativistic speed of electron = 0.97c m
```

Scilab code Exa 1.23 Energy Released in Fission

```
// Scilab Code Ex1.23 Energy released in fission: Pg
: 30 (2008)

c = 3e+08; // Speed of light, m/s

e = 1.6e-019; // Charge on an electron, coulomb

r0 = 1.2e-015; // Equilibrium nuclear radius, m

A = 238; // Twice the mass of each fragment

r1 = 46*e; // Charge on first fragment, coulomb

r2 = 46*e; // Charge on second fragment, coulomb

R = r0*(A/2)^(1/3);

d = 2*R; // Distance between two fragments, m

U = q1*q2*9e+09/d; // Energy released in fission,
```

Scilab code Exa 1.24 Relativistic Speed Form Relativistic Mass

```
1 // Scilab Code Ex1.24 Relativistic speed form
     relativistic mass: Pg: 30 (2008)
2 c = 3e + 08;
              // Speed of light, m/s
3 \text{ m0} = 1/2;
               // Rest mass of the particle, MeV/c^2
4 m = 1/sqrt(2);
                    // Relativistic mass of the
     particle, MeV/c<sup>2</sup>
5 // As m = m0/sqrt(1 - (v/c)^2), Relativistic mass of
      electron, kg, solving for v, we have
6 v = sqrt(1 - (m0/m)^2)*c;
                               // Relativistic
     velocity of particle, m/s
7 printf("\nThe relativistic velocity of particle = \%4
     .2 \, e \, m/s, v);
8 // Result
9 // The relativistic velocity of particle = 2.12e+008
     m/s
```

Scilab code Exa 1.25 Decay of muon

```
1 // Scilab Code Ex1.25 Decay of muon: Pg: 31 (2008)
2 c = 3e+08; // Speed of light, m/s
3 v = 0.992*c; // Relativistic speed of muon, m/s
4 S = 60*1e+03; // Distance travelled by muon before it decays, m
```

```
5 t_prime = S/v; // Time measured by observer on
      earth (Dilated Time), s
6 t = t_prime*sqrt(1 - (v/c)^2);
                                    // Time measured
     by muon in its own frame, s
7 s = v*t;
              // Distance covered by the muon in its
      own frame of reference, m
8 printf("\nThe time measured by observer on earth (
      Dilated Time) = \%5.3e s", t_prime);
9 printf("\nThe time measured by muon in its own frame
      = \%4.2 \,\mathrm{e} \,\mathrm{s}, t);
10 printf("\nThe distance covered by the muon in its
     own frame of reference = \%4.2 \,\mathrm{f} km", s/1e+03);
11 // Result
12 // The time measured by observer on earth (Dilated
      Time) = 2.016e - 004 s
13 // The time measured by muon in its own frame = 2.55
      e - 005 s
14 // The distance covered by the muon in its own frame
       of reference = 7.57 \text{ km}
```

Scilab code Exa 1.26 Decay of Unstable Particle

```
8 // Result
9 // The distance travelled before the unstable particle decays = 6.19e+002 m
```

Chapter 2

Quantum Mechanicsq

Scilab code Exa 2.1 Threshold Wavelength of Tungsten

```
1 // Scilab Code Ex2.1 Threshold wavelength of
     tungsten: Pg:4 (2008)
                       // Work function for
2 \text{ phi} = 4.5*1.6e-019;
     tungesten, joule
3 h = 6.6e-034; // Planck's constant, Js
              // Speed of light, m/s
4 c = 3e + 08;
5 // \text{ As phi} = h*c/L0, \text{ solving for L0}
6 L0 = h*c/phi;
                   // Threshold wavelength of
     tungesten, m
7 printf("\nThe threshold wavelength of tungesten =
     \%4d angstrom", L0/1e-010);
8 // Result
9 // The threshold wavelength of tungesten = 2750
     angstrom
```

Scilab code Exa 2.2 Maximum Velocity of Photoelectrons

```
1 // Scilab Code Ex2.2 Maximum velocity of photoelectrons: Pg:44 (2008)
```

```
2 phi = 4*1.6e-019; // Work function for
      photoelectric surface, joule
                   // Planck's constant, Js
3 h = 6.6e - 034;
4 e = 1.6e-019; // Electronic charge, coulomb 5 m = 9.1e-031; // Mass of the electron, kg
6 f = 1e+15; // Frequency of incident photons, Hz
                  // Speed of light, m/s
7 c = 3e + 08;
8 // KE = 1/2*m*v^2 = h*f - phi, solving for v, we
      have
9 v = sqrt(2*(h*f - phi)/m); // Maximum velocity of
       photoelectrons, m/s
10 printf("\nThe maximum velocity of photoelectrons =
      \%5.3 \,\mathrm{e} \,\mathrm{m/s}", v);
11 // Result
12 // The maximum velocity of photoelectrons = 2.097e
      +005 \text{ m/s}
```

Scilab code Exa 2.3 Energy of Photoelectrons

```
1 // Scilab Code Ex2.3 Energy of photoelectrons: Pg:45
     (2008)
2 h = 6.6e - 034;
                   // Planck's constant, Js
              // Speed of light, m/s
3 c = 3e+08;
4 e = 1.6e - 019;
                   // Energy equivalent of 1 joule,
     joule/eV
5 L = 1800e-010; // Wavelength of incident light, m
6 \text{ LO} = 2300\text{e-}010; // Threshold wavelength of
     tungsten, m
                            // Energy of photoelectrons
7 E = h*c*(1/L - 1/L0);
      emitted from tungsten, joule
8 printf("\nThe energy of photoelectrons emitted from
     tungsten = \%3.1 f eV", E/e);
9 // Result
10 // The energy of photoelectrons emitted from
     tungsten = 1.5 \text{ eV}
```

Scilab code Exa 2.4 Longest Wavelength of Incident Radiation

```
1 // Scilab Code Ex2.4 Longest wavelength of incident
     radiation: Pg:45 (2008)
                    // Planck's constant, Js
2 h = 6.624e - 034;
3 c = 3e+08; // Speed of light, m/s
4 e = 1.6e - 019;
                // Energy equivalent of 1 eV, joule
     /eV
5 phi = 6*e; // Work function of metal, joule
6 	 f0 = phi/h;
                 // Threshold frequency for metal
     surface, Hz
  L0 = c/f0;
                 // Threshold (Longest) wavelength for
      metal, m
8 printf("\nThe longest wavelength of incident
     radiation = \%4d angstrom", L0/1e-010);
9 // Result
10 // The longest wavelength of incident radiation =
     2070 angstrom
```

Scilab code Exa 2.5 Threshold Frequency and Wavelength

Scilab code Exa 2.6 Maximum Velocity of Emitted Electrons

```
1 // Scilab Code Ex2.6 Maximum velocity of emitted
     electrons: Pg:46 (2008)
2 h = 6.624e - 034;
                    // Planck's constant, Js
                // Speed of light, m/s
3 c = 3e+08;
                  // Mass of an electron, kg
4 m = 9.1e-031;
5 e = 1.6e - 019;
                  // Energy equivalent of 1 eV, joule
     /eV
6 L = 4300e-010; // Wavelength of incident light, m
7 \text{ phi} = 5*e;
                  // Work function of nickel surface,
      joule
8 fO = phi/h; // Threshold frequency for nickel, Hz
                 // Threshold wavelength for nickel, m
9 L0 = c/f0;
10 printf("\nThe threshold wavelength for nickel = \%4d
     angstrom", L0/1e-10);
11 printf("\nSince \%4d A < \%4d A, the electrons will
     not be emitted.", L0/1e-010, L/1e-010);
12 phi = 2.83*e;
                // Work function of potassium
     surface, joule
13 f0 = phi/h; // Threshold frequency for potassium,
      Hz
14 LO = c/fO; // Threshold wavelength for potassium
15 printf("\nThe threshold wavelength for potassium =
     \%4d angstrom", L0/1e-10);
16 printf("\nSince %4d A > %4d A, the electrons will be
      emitted.", L0/1e-010, L/1e-010);
```

```
17 // Now KE = 1/2*m*v0^2 = h*f - h*f0, where v0 is the
      maximum velocity
18 //  solving for v0, we have
19 v0 = sqrt(2*h*c/m*(1/L - 1/L0));
                                          // Maximum
      velocity of photoelectrons, m/s
20 printf("\nThe maximum velocity of photoelectrons =
      \%5.3 \, \text{e m/s}, v0);
21 // Result
22 // The threshold wavelength for nickel = 2484
      angstrom
23 // Since 2484 A < 4300 A, the electrons will not be
      emitted.
  // The threshold wavelength for potassium = 4388
      angstrom
  // Since 4388 \text{ A} > 4300 \text{ A}, the electrons will be
      emitted.
26 // The maximum velocity of photoelectrons = 1.433e
      +005 \text{ m/s}
```

Scilab code Exa 2.7 Maximum Energy of Ejected Electrons

```
1 // Scilab Code Ex2.7 Maximum energy of ejected
     electrons: Pg:47 (2008)
2 h = 6.6e - 034;
                    // Planck's constant, Js
                // Speed of light, m/s
3 c = 3e+08;
4 L = 2537e-010;
                   // Wavelength of incident light, m
                    // Threshold wavelength of silver
5 L0 = 3250e-010;
6 // As U = h*(f - f0), the kinetic energy of ejected
     electrons
7 U = h*c*(1/L - 1/L0);
                            // Maximum energy of
     ejected electrons, J
8 printf("\nThe maximum energy of ejected electrons =
     \%5.3 \,\mathrm{e}\ \mathrm{J}", U);
9 // Result
```

```
10 // The maximum energy of ejected electrons = 1.712e -019 J
```

Scilab code Exa 2.8 Maximum Kinetic Energy and Stopping Potential of Ejected Electrons

```
1 // Scilab Code Ex2.8 Maximum kinetic energy and
     stopping potential of ejected electrons: Pg:47
     (2008)
2 h = 6.624e-034; // Planck's constant, Js
3 c = 3e+08; // Speed of light, m/s
4 e = 1.6e-019; // Energy equivalent of 1 eV, joule
     /\mathrm{eV}
5 phi_0 = 1.51*e; // Work function of the metal
     surface, J
6 L = 4000e-010; // Wavelength of incident light, m
7 f = c/L; // Frequency of incident light, Hz
8 U = h*f - phi_0; // Maximum kinetic energy of
     ejected electrons, J
9 V = U/e; // Stopping potential for ejected
     electrons, volt
10 printf("\nThe maximum energy of ejected electrons =
     \%5.3 \, f \, eV", U/e);
11 printf("\nThe stopping potential of ejected
      electrons = \%5.3 \, \text{f V}", V);
12 // Result
13 // The maximum energy of ejected electrons = 1.595
14 // The stopping potential of ejected electrons =
     1.595 \text{ V}
```

Scilab code Exa 2.9 Work Function of Metal

```
1 // Scilab Code Ex2.9 Work function of metal: Pg:48
     (2008)
2 h = 6.624e-034; // Planck's constant, Js
3 c = 3e+08; // Speed of light, m/s
4 e = 1.6e-019; // Energy equivalent of 1 eV, joule
     /\mathrm{eV}
5 V = 1; // Stopping potential for the electrons
     emitted from the metal, V
6 L = 2500e-010; // Wavelength of incident light, m
7 f = c/L; // Frequency of incident light, Hz
8 // Now KE = h*f - phi = e*V, Einstein's
     Photoelectric equation, solving for phi
9 phi = h*f - e*V; // Work function of metal
10 printf("\nThe work function of metal = \%5.3 \, \mathrm{f} eV",
     phi/e);
11 // Result
12 // The work function of metal = 3.968 eV
```

Scilab code Exa 2.10 Energy of Electrons Emitted From the Surface of Tungsten

```
9 // Result 10 // The energy of electrons emitted from the surface of tungsten = 1.5~{\rm eV}
```

Scilab code Exa 2.11 Energy of Photon

```
1 // Scilab Code Ex2.11 Energy of photon : Pg:49
     (2008)
2 h = 6.624e-034; // Planck's constant, Js
3 c = 3e+08; // Speed of light, m/s
4 e = 1.6e-019; // Energy equivalent of 1 eV, joule
     /\mathrm{eV}
5 L = 1800e-010; // Wavelength of incident light, m
6 L0 = 2300e-010; // Threshold wavelength of
     tungsten, m
7 E = h*c*(1/L - 1/L0); // Einstein 's photoelectric
      equation for kinetic energy of emitted electrons
8 printf("\nThe energy of electrons emitted from the
     surface of tungsten = \%3.1 \, \text{f eV}", E/e);
9 // Result
10 // The energy of electrons emitted from the surface
     of tungsten = 1.5 \text{ eV}
```

Scilab code Exa 2.12 Velocity of the Emitted Electron

```
1 // Scilab Code Ex2.12 Velocity of the emitted
      electron: Pg:49 (2008)
2 m = 9.1e-031; // Mass of electron, kg
3 c = 3e+08; // Speed of light, m/s
4 e = 1.6e-019; // Energy equivalent of 1 eV, joule
      /eV
5 phi = 2.3*e; // Work function of metal, J
```

Scilab code Exa 2.13 Energy of a Quantum of Light

```
// Scilab Code Ex2.13 Energy of a quantum of light:
    Pg:50 (2008)

c = 3e+08;    // Speed of light, m/s

e = 1.6e-019;    // Energy equivalent of 1 eV, joule
    /eV

L = 5.3e-07;    // Wavelength of incident light, m

E = h*c/L;    // Energy of the incident light, J

printf("\nThe energy of incident light = %4.2 f eV",
    E/e);

// Result
// The energy of incident light = 2.34 eV
```

Scilab code Exa 2.14 Ratio of Masses of a Proton and an Electron

```
1 // Scilab Code Ex2.14 Ratio of masses of a proton
      and an electron: Pg:54 (2008)
2 RH = 1.09678e+07; // Rydberg constant for
      hydrogen, per metre
3 RHe = 1.09722e+07; // Rydberg constant for helium
    , per metre
```

```
4 MH_m_ratio = (RH - 1/4*RHe)/(RHe - RH); // Ratio
    of mass of a proton to that of an electron
5 printf("\nThe ratio of mass of a proton to that of
    an electron = %4d", MH_m_ratio);
6 // Result
7 // The ratio of mass of a proton to that of an
    electron = 1869
```

Scilab code Exa 2.15 First Bohr Orbit in Hydrogen Atom

```
1 // Scilab Code Ex2.15 First Bohr Orbit in hydrogen
     atom: Pg:56 (2008)s
2 n = 1; // Principle quantum number of first orbit
     in H-atom
3 h = 6.624e-034; // Planck's Constant, Js
4 c = 3e+08; // Speed of light, m/s
5 epsilon_0 = 8.85e-012; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
6 Z = 1; // Atomic number of hydrogen
7 m = 9.1e-031; // Mass of an electron, kg
8 e = 1.6e-019; // Charge on an electron, coulomb
9 r = epsilon_0*n^2*h^2/(\pi \times Z \times e^2); // Radius of
     first Bohr's orbit, m
10 v = Z*e^2/(2*8.85e-012*h*n); // Velocity of
     electron in the first Bohr orbit, m/s
11 printf("\nThe radius of first Bohr orbit = \%5.3 f
     angstrom", r/1e-010);
12 printf("\nThe velocity of electron in first Bohr
     orbit = (1/\%3d)c, 1/v*c;
13 // Result
14 // The radius of first Bohr orbit = 0.531 angstrom
15 // The velocity of electron in first Bohr orbit =
     (1/137) c
```

Scilab code Exa 2.16 Wavelength of Balmer H beta Line

```
1 // Scilab Code Ex2.16 Wavelength of Balmer H_beta
     line: Pg:57 (2008)s
2 L_{Hb} = 6563e-010;
                        // Wavelength of H<sub>-</sub>beta line, m
3 R = 1.097e+07; // Rydberg constant, per metre
4 L1 = 36/(5*R); // Wavenumber of H_{alpha} line, per
      metre
5 L2 = 16/(3*R); // Wavenumber of H_beta line, per
     metre
6 L_ratio = L2/L1; // Ratio of wavelengths of
     H_beta and H_alpha lines
7 L2 = L_ratio*L1; // Wavelength of Balmer H_beta
     line, m
8 printf("\nThe wavelength of Balmer H_beta line = %4d
      angstrom", L2/1e-010);
9 // Result
10 // The wavelength of Balmer H<sub>-</sub>beta line = 4861
     angstrom
```

Scilab code Exa 2.17 First Excitation Energy of Hydrogen Atom

```
1 // Scilab Code Ex2.17 First excitation energy of
    hydrogen atom: Pg: 58 (2008)s
2 n1 = 1;    // Principle quantum number of first
    orbit in H-atom
3 n2 = 2;    // Principle quantum number of second
    orbit in H-atom
4 m = 9.1e-031;    // Mass of the electron, C
5 e = 1.6e-019;    // Charge on an electron, coulomb
6 h = 6.624e-034;    // Planck's Constant, Js
```

```
7 epsilon_0 = 8.85e-012;  // Absolute electrical
    permittivity of free space, coulomb square per
    newton per metre square
8 U = m*e^4/(8*epsilon_0^2*h^2)*(1/n1^2 - 1/n2^2);
    // First excitation energy of hydrogen atom, J
9 printf("\nThe first excitation energy of hydrogen
    atom = %5.2 f eV", U/e);
10 // Result
11 // The first excitation energy of hydrogen atom =
    10.17 eV
```

Scilab code Exa 2.18 Energy Difference in the Emission or Absorption of Sodium D1 Line

```
// Scilab Code Ex2.18 Energy difference in the
    emission or absorption of sodium D1 line: Pg:58
    (2008)s

h = 6.624e-034; // Planck's Constant, Js

c = 3e+08; // Speed of light, m/s

L = 590e-09; // Wavelenght of sodium D1 line, m

E = h*c/L; // Energy difference in the emission
    or absorption of sodium D1 line, J

printf("\nThe energy difference in the emission or
    absorption of sodium D1 line = %4.2e J", E);

// Result

// The energy difference in the emission or
    absorption of sodium D1 line = 3.37e-019 J
```

Scilab code Exa 2.19 Wavelength of First Line of Balmer Series

```
3 n2 = 4; // Third level of Balmer line in H-atom
4 R = 1.097e+07; // Rydberg constant, per metre
5 L2 = 1/((1/n1^2 - 1/n2^2)*R); // Wavelength of
     second line of Balmer series, m
6 n2 = 3; // Second level of Balmer line in H-atom
7 L1 = 1/((1/n1^2 - 1/n2^2)*R); // Wavelength of
     first line of Balmer series, m
8 L_ratio = L1/L2; // Wavelength ratio of first and
      second line of Balmer series, m
9 L2 = 4861; // Given wavelength of second line of
     Balmer series, angstrom
10 L1 = L2*L_ratio; // Wavelength of first line of
     Balmer series, angstrom
11 printf("\nThe wavelength of first line of Balmer
     series = \%4d angstrom, L1);
12 // Result
13 // The wavelength of first line of Balmer series =
     6562 angstrom
```

Scilab code Exa 2.20 Minimum Energy of the Electrons in Balmer Series

Scilab code Exa 2.21 Ionization Potential of Hydrogen Atom

```
1 // Scilab Code Ex2.21 Ionization potential of
     hydrogen atom: Pg:59 (2008)
2 m = 9.1e-031; // Mass of the electron, C
                 // Charge on an electron, coulomb
3 e = 1.6e - 019;
4 h = 6.626e-034;
                     // Planck's Constant, Js
5 epsilon_0 = 8.85e-012; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
6 phi = m*e^4/(8*epsilon_0^2*h^2); // Work function
      or ionization energy of hydrogen atom, J
7 printf("\nThe ionization energy of hydrogen atom =
    \%5.2 \, f \, eV", phi/e);
8 // Result
9 // The ionization energy of hydrogen atom = 13.55 eV
```

Scilab code Exa 2.22 Wavelength of Second Number of Balmer Series of Hydrogen

```
3 n2 = 3; // Principle quantum number of third
     orbit in H-atom
4 R = 1.097e+07; // Rydberg constant, per metre
5 L1 = 1/((1/n1^2 - 1/n2^2)*R); // Wavelength of
     first Balmer line, m
6 n2 = 4; // Principle quantum number of third
     orbit in H-atom
7 L2 = 1/((1/n1^2 - 1/n2^2)*R); // Wavelength of
     second Balmer line, m
8 L_ratio = L2/L1; // Wavelength ratio of second
     and first line of Balmer series
9 L1 = 6563e-010; // Given wavelength of first line
      of Balmer series, m
10 L2 = L_ratio*L1;
                   // Wavelength of second Balmer
     line, m
11 printf("\nThe wavelength of second Balmer line = \%4e
      m", L2);
12 // Result
13 // The wavelength of second Balmer line = 4.861481e
     -007 \text{ m}
```

Scilab code Exa 2.23 Wavelength of Emitted Light

```
9 L = h*c/(U2 - U1);  // Wavelength of light emitted
     in the transition from second orbit to the first
     orbit, m
10 printf("\nThe wavelength of light emitted in the
         transition from second orbit to the first orbit =
         %4d angstrom", L/1e-010);
11 // Result
12 // The wavelength of light emitted in the transition
         from second orbit to the first orbit = 1217
         angstrom
```

Scilab code Exa 2.24 Radius and Speed of Electron in the First Bohr Orbit

```
1 // Scilab Code Ex2.24 Radius and speed of electron
     in the first Bohr orbit: Pg:61 (2008)s
                   // Mass of the electron, C
2 m = 9.1e-031;
                   // Charge on an electron, coulomb
3 e = 1.6e - 019;
4 h = 6.626e-034; // Planck's Constant, Js
5 epsilon_0 = 8.85e-012; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
6 \ Z = 1, n = 1;
7 \text{ r_H = epsilon_0*n^2*h^2/(\%pi*m*Z*e^2);} // Radius
     of first Bohr orbit, m
8 v_H = Z*e^2/(2*epsilon_0*n*h); // Velocity of the
       electron in the first Bohr orbit, m/s
9 printf("\nThe radius of first Bohr orbit = \%4.2 e m",
      r_H);
10 printf("\nThe velocity of the electron in the first
     Bohr orbit = \%3.1 \,\mathrm{e} \,\mathrm{m/s}, v_H);
11 // Result
12 // The radius of first Bohr orbit = 5.31e-011 \text{ m}
13 // The velocity of the electron in the first Bohr
     orbit = 2.2e + 006 \text{ m/s}
```

Scilab code Exa 2.25 Radius and Velocity of Electron for H and He

```
1 // Scilab Code Ex2.25 Radius and velocity of
      electron for H and He: Pg:61 (2008)s
                   // Mass of the electron, kg
2 m = 9.1e-031;
                    // Charge on an electron, coulomb
3 e = 1.6e - 019;
4 h = 6.624e-034; // Planck's Constant, Js
5 epsilon_0 = 8.85e-012; // Absolute electrical
      permittivity of free space, coulomb square per
     newton per metre square
6 c = 3e+08; // Speed of light, m/s
7 Z = 1, n = 1; // Atomic number and principal
     quantum number of H-atom
8 r_H = epsilon_0*n^2*h^2/(\pi \times Z \times e^2); // Radius
      of first Bohr orbit for H-atom, m
                                    // Velocity of the
9 \text{ v_H} = Z*e^2/(2*epsilon_0*n*h);
       electron in the first Bohr orbit of H-atom, m/s
10 printf("\nThe radius of first Bohr orbit = \%4.2e m",
       r_H);
11 printf("\nThe velocity of the electron in the first
     Bohr orbit = \%3.1 \,\mathrm{e} m/s", v_H);
12 printf("\nThe velocity of the electron in H-atom
     compared to the velocity of light = \%4.2\,\mathrm{e}, v_H/c
     );
            // Atomic number of He-atom
13 \ Z = 2;
                   // Radius of first Bohr orbit for
14 \text{ r}_He = r_H/Z;
     He-atom, m
15 \text{ v}_{He} = 2*v_{H};
                    // Velocity of the electron in the
      first Bohr orbit of He-atom, m/s
16 printf("\nThe radius of first Bohr orbit = \%4.2e m",
       r_He);
17 printf("\nThe velocity of the electron in the first
     Bohr orbit = \%3.1 \,\mathrm{e} m/s", v_He);
18 printf("\nThe velocity of the electron in He-atom
```

```
compared to the velocity of light = %5.3e", v_He/c);

19 // Result

20 // The radius of first Bohr orbit = 5.31e-011 m

21 // The velocity of the electron in the first Bohr orbit = 2.2e+006 m/s

22 // The velocity of the electron in H-atom compared to the velocity of light = 7.28e-003

23 // The radius of first Bohr orbit = 2.65e-011 m

24 // The velocity of the electron in the first Bohr orbit = 4.4e+006 m/s

25 // The velocity of the electron in He-atom compared to the velocity of light = 1.456e-002
```

Scilab code Exa 2.26 Difference in Wavelength in the Spectra of Hydrogen and Deuterium

```
1 // Scilab Code Ex2.26 Difference in wavelength in
     the spectra of hydrogen and deuterium: Pg:62
     (2008)
2 R_H = 1.097e + 07;
                   // Rydberg constant for H-atom,
     per metre
            // Mass of H-atom, amu
3 M_H = 1;
4 \text{ M}_D = 2*M_H; // Mass of D-atom, amu
5 m = 0.000549*M_H; // Mass of an electron, amu
6 R_D = R_H*(1+m/M_H)/(1+m/M_D); // Rydberg
     constant for D-atom, per metre
7 n1 = 2, n2 = 3; // Principal qunatum numbers for
     first line of Balmer series
8 L_H = 1/(R_H*(1/n1^2 - 1/n2^2)); // Wavelength of
      H-atom, m
9 L_D = 1/(R_D*(1/n1^2 - 1/n2^2)); // Wavelength of
      D-atom, m
10 delta_H = (L_H - L_D)/1e-010; // Difference in
     wavelength in the spectra of hydrogen and
```

Scilab code Exa 2.27 Ionization Energy of Hydrogen Atom With Orbiting Muon

```
1 // Scilab Code Ex2.27 Ionization energy of hydrogen
     atom with orbiting muon: Pg:63 (2008)
2 m = 9.1e-031; // Mass of the electron, kg
3 e = 1.6e-019; // Charge on an electron, coulomb
4 h = 6.624e-034; // Planck's Constant, Js
5 epsilon_0 = 8.85e-012; // Absolute electrical
      permittivity of free space, coulomb square per
     newton per metre square
6 \text{ m1} = 200 * \text{m}; // Mass of muon, kg
7 phi1 = m1*e^4/(8*epsilon_0^2*h^2); // Ionization
     energy of H-atom with muon, J
8 printf("\nThe ionization energy of hydrogen atom
     with orbiting muon = \%4.2 \,\mathrm{e} eV", phi1/1.6e-019);
9 // Result
10 // The ionization energy of hydrogen atom with
     orbiting muon = 2.71e+003 eV
```

Scilab code Exa 2.28 Photon Emitted by Hydrogen Atom

```
1 // Scilab Code Ex2.28 Photon emitted by hydrogen atom: Pg:64 (2008)
```

```
2 = 1.6e-019; // Energy equivalent of 1 eV, joule
     /\mathrm{eV}
3 h = 6.624e-034; // Planck's constant, Js
4 c = 3e + 08;
               // Speed of light, m/s
                 // Energy of electron in the first
5 E1 = -13.6;
      orbit of hydrogen atom, eV
            // Principal quantum number for second
6 n = 2;
      orbit
                 // Energy of electron in the second
7 E2 = E1/n^2;
      orbit of hydrogen atom, eV
8 E = (E2 - E1)*e; // Energy of photon emitted,
     joule
9 P = E/c;
              // Momentum of photon, kg-m/s
                        // de_Broglie wavelength of
10 L = (h/P)/1e-010;
     photon, angstrom
11 printf("\nThe energy of photon emitted by hydrogen
     atom \%5.2\,\mathrm{e} J", E);
12 printf("\nThe momentum of photon = \%4.2 \,\mathrm{e} \,\mathrm{kg-m/s}", P)
13 printf("\nThe de_Broglie wavelength of photon = %4d
      angstrom", L);
14 // Result
15 // The energy of photon emitted by hydrogen atom
      1.63e - 018 J
16 // The momentum of photon = 5.44e-0.27 kg-m/s
17 // The de_Broglie wavelength of photon = 1217
      angstrom
```

Scilab code Exa 2.29 Energy Required to Create a Vacancy in Cu

```
1 // Scilab Code Ex2.29 Energy required to create a
    vacancy in Cu: Pg:64 (2008)
2 n = 1; // Principal quantum number of K shell
3 Z = 29; // Atomic number of copper
4 U = 13.6; // Ionization potential of hydrogen
```

```
atom, eV

5 E1 = Z^2*U/n^2;  // Energy required to create a vacancy in K-shell of copper atom, eV

6 n = 2;  // Principal quantum number of L shell

7 E2 = Z^2*U/n^2;  // Energy required to create a vacancy in K-shell of copper atom, eV

8 printf("\nThe energy required to create a vacancy in K-shell of copper atom = %5.2e eV", E1);

9 printf("\nThe energy required to create a vacancy in L-shell of copper atom = %5.2e eV", E2);

10 // Result

11 // The energy required to create a vacancy in K-shell of copper atom = 1.14e+004 eV

12 // The energy required to create a vacancy in L-shell of copper atom = 2.86e+003 eV
```

Scilab code Exa 2.30 Excitation Potential for Mercury

Scilab code Exa 2.31 Atomic Number of Impurity in Zinc Target

```
1 // Scilab Code Ex2.31 Atomic number of impurity in
     Zinc target: Pg:65 (2008)
2 L1 = 1.43603e-010;
                       // Wavelength of
     characteristic K_alpha line from Zn, m
3 Z1 = 30; // Atomic number of zinc
4 L2 = 0.53832e-010; // Wavelength of unknown line
     from Zn, m
5 // \text{ As } (1/\text{L1})/(1/\text{L2}) = (\text{Z1/Z2})^2, \text{ solving for Z2}
6 	 Z2 = Z1*(L1/L2)^(1/2);
                            // Atomic number of
     impurity in Zn target
7 printf("\nThe atomic number of impurity in Zn target
      = \%2d", round(Z2));
8 // Result
9 // The atomic number of impurity in Zn target = 49
```

Scilab code Exa 2.32 Mu mesonic Atom Subjected to Bohr Orbit

```
1 // Scilab Code Ex2.32 Mu-mesonic atom subjected to
     Bohr orbit: Pg:65 (2008)
2 Z = 3; // Atomic number of Mu-mesonic atom
3 \text{ m_e} = 9.1\text{e}-031; // Mass of the electron, kg
4 e = 1.6e-019; // Charge on an electron, coulomb
5 h = 6.624e-034; // Planck's Constant, Js
6 epsilon_0 = 8.85e-012; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
7 m = 200*m_e; // Mass of a muon, kg
8 // As r_H = epsilon_0 *^h^2/(\%pi*m*(e^2)) and r =
     epsilon_0*n^2*h^2/(\%pi*m*Z*(e^2))
9 // r = r_H gives
10 n = sqrt(m/m_e*Z); // Value of n for which r =
11 n1 = 1, n2 = 2; // Principal quantum numbers
     corresponding to first excitation
12 U = m*e^4*Z^2/(8*epsilon_0^2*h^2*1.6e-019)*(1/n1)
```

```
^2-1/n2^2); // First excitation potential of the atom, eV

13 printf("\nThe value of n for which radius of orbit is equal to Bohr radius = %2d", round(n));

14 printf("\nThe first excitation potential of the atom = %4.2 e eV", U);

15 // Result

16 // The value of n for which radius of orbit is equal to Bohr radius = 24

17 // The first excitation potential of the atom = 1.83 e+004 eV
```

Chapter 3

Matter Waves Wave Particle Duality and Uncertainty Principle

Scilab code Exa 3.1 Kinetic Energy of an Electron

```
// Scilab code: Ex3.1 : Kinetic energy of an
electron: Pg: 77 (2008)
h = 6.6e-034; // Planck's constant, J-s
m = 9.1e-031; // mass of an electron, kg
L = 9e-010; // wavelength of an electron, m
// since E = (m*v^2)/2, Energy of an electron, joule
// thus v = sqrt(2*E/m), solving for L in terms of E, we have
// L = h/sqrt(2*m*E), wavelength of an electron, m
// On solving for E
E = h^2/(2*m*L^2)
printf("\nThe kinetic energy of an electron = %6.4f
eV", E/1.6e-019);
// Result
// The kinetic energy of an electron = 1.8468 eV
```

Scilab code Exa 3.2 Wavelength of Electrons

Scilab code Exa 3.3 Momentum of Photon

Scilab code Exa 3.4 Momentum of an electron

Scilab code Exa 3.5 Wavelength of a Particle

Scilab code Exa 3.6 Comparison of Energy of Photon and Neutron

```
1 // Scilab code: Ex3.6 : Comparison of energy of
     photon and neutron: Pg: 79 (2008)
2 m = 1.67e-027; // Mass of neutron, kg
3 L = 1e-010; // Wavelength of neutron and photon,
     \mathbf{m}
4 c = 3e+08; // Velocity of light, m/s
5 h = 6.624e-034; // Plancks constant, joule second
6 U_1 = h*c/L; // Energy of photon, joule
7 \ // \ \text{Since} \ U_2 = (m*v^2)/2, Energy of neutron, joule
8 // Thus v = h/m*L_2, Velocity of the particle, m/s
9 // on solving for U<sub>-2</sub>
10 U_2 = h^2/(2*m*L^2);
                          // Energy of photon, joule
11 printf("\nThe ratio of energy of photon and neutron
     = \%4.2 e ", U_1/U_2);
12 // Result
13 // The ratio of energy of photon and neutron = 1.51e
     +005
```

Scilab code Exa 3.7 de Broglie Wavelength of Electrons

Scilab code Exa 3.8 de Broglie Wavelength of Accelerated Electrons

```
1 // Scilab code: Ex3.8 : de-Broglie wavelength of
     accelerated electrons: Pg: 80 (2008)
2 m = 9.1e-031; // Mass of an electron, kg
                  // Charge on an electron, Coulamb
3 e = 1.6e - 019;
4 h = 6.624e-034; // Plancks constant, joule second
         // For simplicity, we assume retarding
     potential to be unity, volt
6 // Since e*V = (m*v^2)/2; // Energy of electron,
      joule
7 v = sqrt(2*e*V/m); // Velocity of electrons, m/s
8 L = h/(m*v); // Wavelength of electrons, m
9 printf("\nThe de-Broglie wavelength of accelerated
     electrons = \%5.2 f/sqrt(V) ", L/1e-010);
10 // Result
11 // The de-Broglie wavelength of accelerated
     electrons = 12.28/sqrt(V)
```

Scilab code Exa 3.9 Wavelength of Matter Waves

Scilab code Exa 3.10 Momentum of Proton

Scilab code Exa 3.11 Wavelength of an Electron

Scilab code Exa 3.12 de Broglie Wavelength of Thermal Neutrons

```
1 6// Scilab code: Ex3.12: De-Broglie wavelength of
     thermal neutrons: Pg: 82 (2008)
2 m = 1.6749e-027; // Mass of neutron, kg
3 h = 6.624e-034; // Plancks constant, joule second
4 k = 1.38e-021; // Boltzmann constant, joule per
     kelvin
5 T = 300;
                // Temperature of thermal neutrons,
     kelvin
6 // Since m*v^2/2 = (3/2)*k*T; // Energy of
      neutron, joule
7 v = sqrt(3*k*T/m); // Velocity of neutrons, m/s
8 L = h/(m*v); // Wavelength of neutrons, m
9 printf("\nThe de-Broglie wavelength of thermal
      neutrons = \%5.3 f angstorm ", L/1e-010);
10 // Result
11 // The de-Broglie wavelength of thermal neutrons =
      0.145 angstorm
```

Scilab code Exa 3.13 Kinetic Energy of a Proton

Scilab code Exa 3.14 Energy of Electrons in a One Dimensional Box

```
9 E = 2*n^2*h^2/(8*m*a^2); // Lowest energy of
        electron, joule
10 printf("\nThe lowest energy of electron = %6.4e/a^2"
        , E);
11 // Result
12 // The lowest energy of electron = 1.2062e-037/a^2
```

Scilab code Exa 3.15 Lowest Energy of Three Electrons in Box

```
1 // Scilab Code Ex3.15: Lowest energy of three
      electrons in box: Pg:85 (2008)
2 n1 = 1, 1 = 0, ml = 0, ms = 1/2; // Quantum
     numbers of first electron
3 \text{ n2} = 1, 1 = 0, \text{ m1} = 0, \text{ ms} = -1/2; // Quantum
     numbers of second electron
4 \text{ n3} = 2, 1 = 0, \text{ ml} = 0, \text{ ms} = +1/2; // Quantum
     numbers of third electron
5 // The lowest energy corresponds to the ground state
      of electrons
6 m = 9.1e-031; // Mass of electron, kg
7 h = 6.626e-034; // Planck's constant, Js
8 a = 1; // For convenience, length of the box is
      assumed to be unity
9 E = (n1^2*h^2/(8*m*a^2)+n2^2*h^2/(8*m*a^2))+n3^2*h
      ^2/(8*m*a^2); // Lowest energy of electron,
      joule
10 printf("\nThe lowest energy of electron = \%6.4 \,\mathrm{e/a^2}"
      , E);
11 // Result
12 // The lowest energy of electron = 3.6185e-037/a^2
```

Scilab code Exa 3.16 Zero Point Energy of System

```
1 // Scilab code: Ex3.16 : Zero point energy of system
     :Pg: 86 (2008)
2 m = 9.1e-031; // Mass of an electron , kg 3 a = 1e-010; // Length of box , m
4 h = 6.624e-034; // Plancks constant, joule second
5 n = 1;
            // Principal quantum number for the lowest
      energy level
6 E1 = 2*h^2/(8*m*a^2); // Energy for the two
      electron system in the n = 1 energy level, joule
  E2 = 8*(2^2*h^2)/(8*m*a^2); // Energy for the
      eight electron system in the n = 2 energy level,
     joule
8 E = E1 +E2; // Total lowest energy of system,
     joule
9 printf("\nThe zero point energy of system = \%4.2 e J
     ", E);
10 // Result
11 // The zero point energy of system = 2.05e-016 J
```

Scilab code Exa 3.17 Mean Energy Per Electron at 0K

Scilab code Exa 3.18 Lowest Energy of Two Electron System

```
// Scilab code: Ex3.18 : Lowest energy of two
electron system:Pg: 87 (2008)
m = 9.1e-031;  // Mass of an electron, kg
a = 1e-010;  // Length of box, m
h = 6.624e-034;  // Plancks constant, joule second
E = 2*h^2/(8*m*a^2);  // Energy of two electron
system, joule
printf("\nThe lowest energy of two electron system =
    %4.1f, eV", E/1.6e-019);
// Result
// The lowest energy of two electron system = 75.3,
eV
```

Scilab code Exa 3.19 Total Energy of the Three Electron System

Scilab code Exa 3.20 Minimum Uncertainity in the Velocity of an Electron

```
1 // Scilab code: Ex3.20: Minimum uncertainity in the velocity of an electron: Pg: 92 (2008)
```

```
2 m = 9.1e-031;  // Mass of an electron, kg
3 del_x = 1e-010;  // Length of the box, m
4 h_bar = 1.054e-034;  // Reduced Plancks constant,
    joule second
5 del_v = h_bar/(m*del_x);  // Minimum uncertainity
    in velocity, m/s
6 printf("\nThe minimum uncertainity in the velocity
    of electron = %4.2e m/s ", del_v);
7 // Result
8 // The minimum uncertainity in the velocity of
    electron = 1.16e+006 m/s
```

Scilab code Exa 3.21 Uncertainity in Momentum and Kinetic Energy of the Proton

```
1 // Scilab code: Ex3.21 : Uncertainity in momentum
      and kinetic energy of the proton:Pg: 92 (2008)
2 m = 1.67e-027; // Mass of a proton, kg
3 \text{ del_x} = 1\text{e-014}; // Uncertainity in position, m
4 h_bar = 1.054e-034; // Reduced Plancks constant,
      joule second
5 del_p = h_bar/del_x; // Minimum uncertainity in
      momentum, kgm/s
                               // Minimum uncertainity in
6 \text{ del_E} = \text{del_p^2/(2*m)};
       kinetic energy, joule
7 printf("\nThe minimum uncertainity in momentum of
      the proton = \%5.3 \,\mathrm{e} \,\mathrm{kgm/s}", del_p);
8 printf("\nThe minimum uncertainity in kinetic energy
       of the proton = \%5.3 \,\mathrm{e} eV", del_E/1.6e-019);
9 // Result
10 // The minimum uncertainity in momentum of the
      proton = 1.054e - 020 \text{ kgm/s}
11 // The minimum uncertainity in kinetic energy of the
       proton = 2.079e + 005 eV
```

Scilab code Exa 3.22 Uncertainty in the Position of an Electron

```
1 // Scilab code: Ex3.22: Uncertainity in the
     position of an electron: Pg: 93 (2008)
2 m = 9.1e-031; // Mass of an electron, kg
3 v = 600; // Speed of electron, m/s
4 h_bar = 6.6e-034; // Reduced Plancks constant,
     joule second
5 p = m*v; // Momentum of electron, kgm/s
6 \text{ del_p} = 5e-05*m*v;
                      // Minimum uncertainity in
     momentum, kgm/s
7 del_x = h_bar/(4*\%pi*del_p); // Uncertainity in
     position, m
  printf("\nThe uncertainity in the position of the
     electron = \%5.3 \text{ f mm}, del_x/1e-03);
9 // Result
10 // The uncertainity in the position of the electron
     = 1.924 \text{ mm}
```

Scilab code Exa 3.23 Uncertainty in the Position of a Bullet

Scilab code Exa 3.24 Unertainity in the Position of an Electron

```
1 // Scilab code: Ex3.24: Unertainity in the position
      of an electron: Pg: 94 (2008)
2 m = 9.1e-31; // Mass of an electron, kg
3 v = 300; // Speed of electron, m/s
4 h_bar = 6.6e-034; // Reduced Plancks constant,
     joule second
5 p = m*v; // Momentum of electron, kgm/s
6 del_p = 1e-04*p; // Minimum uncertainity in
     momentum, kgm/s
7 del_x = h_bar/(4*\%pi*del_p); // Uncertainity in
     position, m
  printf("\nThe uncertainity in the position of the
     electron = \%5.3 \text{ f mm}, del_x/1e-03);
9 // Result
10 // The uncertainity in the position of the electron
      = 1.924 \text{ mm}
```

Scilab code Exa 3.25 Unertainity in the Velocity of an Electron

```
1 // Scilab code: Ex3.25 : Unertainity in the velocity
    of an electron:Pg: 94 (2008)
2 m = 9.1e-31; // Mass of an electron, kg
3 del_x = 1e-10; // Length of box, m
4 h_bar = 6.6e-034; // Reduced Plancks constant,
    joule second
```

```
5 del_p = m*del_v;  // Uncertainity in Momentum of
    electron, kgm/s
6 del_v = h_bar/(2*%pi*del_x*m);  // Minimum
    uncertainity in velocity of an electron, m/s
7 printf("\nThe uncertainity in the velocity of the
    electron = %3.2 e m/s", del_v);
8 // Result
9 // The uncertainity in the velocity of the electron
    = 1.15 e+006 m/s
```

Scilab code Exa 3.26 Minimum Uncertainity in the Energy of the Excited State of an Atom

```
1 // Scilab code: Ex3.26: Minimum uncertainity in the
     energy of the excited state of an atom: Pg: 94
     (2008)
2 \text{ del_t} = 1e-08;
                 // Life time of an excited state
     of an atom, seconds
3 h_bar = 1.054e-034;
                        // Reduced Plancks constant,
     joule second
4 del_E = h_bar/del_t; // Minimum uncertainity in
     the energy of excited state, joule
5 printf("\nThe minimum uncertainity in the energy of
     the excited state = \%5.3e joule", del_E);
6 // Result
7 // The minimum uncertainity in the energy of the
     excited state = 1.054e-026 joule
```

Chapter 4

Mechanics

Scilab code Exa 4.1 Percentage Transmission of Beam Through Potential Barrier

```
1 // Scilab code: Ex4.1 : Percentage transmission of
     beam through potential barrier: Pg: 124 (2008)
2 eV = 1.6e-019; // Energy required by an electron
     to move through a potential barrier of one volt,
     joules
3 m = 9.1e-031; // Mass of electron, kg
4 E = 4 * eV;
            // Energy of each electron, joule
5 Vo = 6*eV // Height of potential barrier, joule
6 a = 10e-010; // Width of potential barrier, m
7 h_bar = 1.054e-34; // Reduced Planck's constant,
     J-s
8 k = 2*m*(Vo-E)/h_bar^2
9 // Since 2*k*a = 2*a*[2*m*(Vo-E)^1/2]/h_bar so
10 pow = 2*a/h_bar*[2*m*(Vo-E)]^(1/2); // Power of
     exponential in the expression for T
11 T = [16*E/Vo]*[1-E/Vo]*exp(-1*pow);
     Transmission coefficient of the beam through the
     potential barrier
12 percent_T = T*100;
13 printf("\nThe percentage transmission of beam
```

```
throught potential barrier = %5.3e percent",
    percent_T);

14 // Result
15 // The percentage transmission of beam throught
    potential barrier = 1.828e-004 percent
```

Scilab code Exa 4.2 Width of the Potential Barrier

```
1 // Scilab code: Ex4.2 : Width of the potential
     barrier: Pg: 125 (2008)
2 A = 222; // Atomic weight of radioactive atom
3 Z = 86; // Atomic number of radioactive atom
4 eV = 1.6e-19; // Energy required by an electron
     to move through a potential barrier of one volt,
     ioules
5 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
6 e = 1.6e-19; // Charge on an electron, coulomb
7 r0 = 1.5e-015; // Nuclear radius constant, m
8 r = r0*A^(1/3);
                    // Radius of the radioactive atom
9 E = 4*eV*1e+06; // Kinetic energy of an alpha
     particle, joule
10 // At the distance of closest approach, r1, E = 2*(Z)
     -2)*e^2/(4*%pi*epsilon_0*r1)
11 // Solving for r1, we have
12 r1 = 2*(Z-2)*e^2/(4*\%pi*epsilon_0*E); // The
     distance form the centre of the nucleus at which
     PE = KE
13 a = r1 - r; // Width of the potential barrier, m
14 printf("\nThe width of the potential barrier of the
     alpha particle = \%5.2e m", a);
15 // Result
16 // The width of the potential barrier of the alpha
```

Scilab code Exa 4.3 Energy of Electrons Through the Potential Barrier

```
1 // Scilab code: Ex4.3: Energy of electrons through
     the potential barrier: Pg: 125 (2008)
2 h_bar = 1.054e-34; // Reduced Planck's constant,
     J-s
3 Vo = 8e-019; // Height of potential barrier,
     joules
4 \text{ m} = 9.1e-031;
                   // Mass of an electron, kg
5 a = 5e-010;
                 // Width of potential barrier, m
            // Transmission coefficient of electrons
6 T = 1/2;
7 // As T = 1/((1 + m*Vo^2*a^2)/2*E*h^2), solving for
     E we have
8 E = m*Vo^2*a^2/(2*(1/T-1)*h_bar^2*1.6e-019);
     Energy of half of the electrons through the
     potential barrier, eV
9 printf("\nThe energy of electrons through the
     potential barrier = \%5.2 f eV", E);
10 // Result
11 // The energy of electrons through the potential
     barrier = 40.96 \text{ eV}
```

Scilab code Exa 4.4 Zero Point Energy of a System

Chapter 5

Atomic Physics

Scilab code Exa 5.1 L S coupling for two electrons

Scilab code Exa 5.2 Term Values for L S Coupling

```
1 // Scilab Code Ex5.2 Term values for L-S coupling: Pg:145 (2008)
```

```
2 // \text{ For } 2D(3/2) \text{ state}
3 // Set-I values of L and S
          // Orbital quantum number
5 S = 1/2; // Spin quantum number
6 printf("\nThe term values for L = \%d and S = \%2.1 f (
     P-state) are:\n",L, S);
  J1 = 3/2; // Total quantum number
8 printf("%dP(%2.1 f)\t", 2*S+1,J1);
9 J2 = 1/2; // Total quantum number
10 printf("\%dP(\%2.1 f)", 2*S+1,J2);
11
12 // Set-II values of L and S
             // Orbital quantum number
13 L = 2;
14 S = 1/2;
             // Spin quantum number
15 printf("\nThe term values for L = \%d and S = \%2.1 f (
     P-state) are:\n",L, S);
16 J1 = 5/2; // Total quantum number
17 printf("%dD(%2.1 f)\t", 2*S+1,J1);
18 J2 = 3/2; // Total quantum number
19 printf("\%dD(\%2.1 f)", 2*S+1,J2);
20
21 // Result
22 // The term values for L = 1 and S = 0.5 (P-state)
     are:
  // 2P(1.5)
               2P(0.5)
23
  // The term values for L = 2 and S = 0.5 (P-state)
     are:
  // 2D(2.5)
25
              2D (1.5)
```

Scilab code Exa 5.4 Angle Between l and s State

Chapter 6

X Rays

Scilab code Exa 6.1 Wavelength of X rays

```
1 // Scilab code: Ex6.1 : Wavelength of X-rays: Pg:
      156 (2008)
2 h = 6.6e - 034;
                    // Planck's constant, J-s
3 V = 50000;
                   // Potential difference, volts
                  // Velocity of light, m/s
4 c = 3e+08;
                  // Charge of an electron, coulombs
5 e = 1.6e - 019;
6 L_1 = h*c/(e*V); // wavelength of X-rays, m 7 L = L_1/1e-010; // wavelength of X-rays, angstorm
8 printf("\nThe shortest wavelength of X-rays = \%6.4 \,\mathrm{f}
      angstorm", L);
9 // Result
10 // The shortest wavelength of X-rays = 0.2475
      angstorm
```

Scilab code Exa 6.2 Plancks constant

```
1 // Scilab code: Ex6.2 : Planck's constant: Pg: 156 (2008)
```

```
2 L = 24.7e-012;  // Wavelength of X-rays, m
3 V = 50000;  // Potential difference, volts
4 c = 3e+08;  // Velocity of light, m/s
5 e = 1.6e-019;  // Charge of an electron, coulombs
6 // Since e*V = h*c/L;  // Energy required by an electron to move through a potential barrier of one volt, joules
7 // solving for h
8 h = e*V*L/c;  // Planck's constant, Joule second
9 printf("\nh = %3.1e Js ", h);
10 // Result
11 // h = 6.6e-034 Js
```

Scilab code Exa 6.3 Short Wavelength Limit

Scilab code Exa 6.4 Wavelength Limit of X rays

Scilab code Exa 6.5 Minimum Voltage of an X ray Tube

Scilab code Exa 6.6 Minimum Wavelength Emitted by an X ray Tube

```
1 // Scilab code: Ex6.6 : Minimum wavelength emitted
     by an X-ray tube : Pg: 157 (2008)
2 h = 6.625e-034; // Planck's constant, Js
3 c = 3e+08; // Velocity of light, m/s
4 e = 1.6e-019;
                  // Charge of an electron, coulombs
5 V = 4.5e+04; // Accelerating potential of X-ray
     tube, volt
6 // Since e*V = h*c/L_min; // Energy required by
     an electron to move through a potential barrier
     of one volt, joules
7 // solving for L_min
8 L_min = h*c/(V*e);
                       // Minimum wavelength emitted
     by an X-ray tube, m
9 printf("\nThe minimum wavelength emitted by the X-
     ray tube = \%5.3 f angstrom", L_min/1e-010);
10 // Result
11 // The minimum wavelength emitted by the X-ray tube
     = 0.276 angstrom
```

Scilab code Exa 6.7 Critical Voltage for Stimulated Emission

Molecular Physics

Scilab code Exa 7.1 Frequency of Oscillation of a Hydrogen Molecule

Scilab code Exa 7.2 Bond Length of Carbon Monoxide

Scilab code Exa 7.3 Intensity Ratio of J states for HCL Molecule

```
1 // Scilab code: Ex7.3: Intensity ratio of J states
     for HCL molecule: Pg: 171 (2008)
2 = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 K = 1.38e-23; // Boltzmann constant, J/K
4 T = 300; // Absolute room temperature, K
5 J1 = 0;
            // Rotational quantum number for ground
     level
  J2 = 10;
           // Rotational quantum number for 10th
     level
                               // Energy of ground
7 	 EJ1 = J1*(J1+1)*1.3e-03;
     level of HCL molecule, eV
8 \text{ EJ2} = \text{J2}*(\text{J2}+1)*1.3e-03;
                            // Energy of 10th level
     of HCL molecule, eV
9 // As n10/n0 is proportional to (2J+1)*exp(-(EJ2-EJ1)
     )/KT, so
10 I_ratio = (2*J2+1)/(2*J1+1)*exp(-(EJ2 - EJ1)/(K*T/e)
     ); // Intensity ratio of J10 and J1 states
11 printf("\nThe intensity ratio of J-states for HCL
     molecule = \%4.2 f", I_ratio);
```

```
12 // Result  
13 // The intensity ratio of J-states for HCL molecule  
= 0.08
```

Scilab code Exa 7.4 CO Molecule in Lower State

```
1 // Scilab code: Ex7.4: CO molecule in lower state:
     Pg: 171 (2008)
2 R = 1.13e-010;
                   // Bond length of CO molecule, m
3 h_red = 1.054e-034; // Reduced Planck's constant,
      Js
4 mu = 1.14e-026; // Reduced mass of the system, kg
5 J = 1; // Rotational quantum number for lowest
     state
6 I = mu*R^2;
                  // Moment of inertia of CO molecule
     about the axis of rotation, kg-metre square
7 	 EJ = J*(J + 1)*h_red^2/(2*I); 	 // Energy of the CO
      molecule in the lowest state, J
8 omega = sqrt(2*EJ/I); // Angular velocity of the
     CO molecule in the lowest state, rad per sec
9 printf("\nThe energy of the CO molecule in the
     lowest state = \%4.2e J", EJ);
10 printf("\nThe angular velocity of the CO molecule in
      the lowest state = \%4.2e \text{ rad/sec}", omega);
11 // Result
12 // The energy of the CO molecule in the lowest state
      = 7.63 e - 023 J
13 // The angular velocity of the CO molecule in the
     lowest state = 1.02e+0.12 rad/sec
```

Raman Effect and Spectroscopic techniques

Scilab code Exa 8.1 Stokes and Anti Stokes Wavelength

```
1 // Scilab code: Ex8.1 : Stokes and anti stokes
     wavelength: Pg: 184 (2008)
2 c = 3e+08; // Speed of light, m/s
3 Lo = 2537e-010; // Wavelength of the exciting
     line, metre
                    // Wavelength of stokes line,
4 \text{ Ls} = 2683e-010;
      metre
5 \text{ Lm} = (\text{Ls} * \text{Lo})/(\text{Ls} - \text{Lo}); // Raman shift, per m
6 printf("\nThe Raman shift = \%5.3e per cm", 1/Lm*1e
      -02);
7 Lo1 = 5461e-010; // Wavelength of exciting line
      for stokes wavelength, metre
8 \text{ Ls} = (\text{Lm} * \text{Lo1})/(\text{Lm} - \text{Lo1});
                                     // Stokes wavelength
      for the new exciting line, metre
9 Las = (Lm * Lo1)/(Lm + Lo1); // Anti-Stokes
      wavelength for the new exciting line, metre
10 printf("\nThe stokes wavelength for the new exciting
       line = \%4d angstrom", Ls/1e-010);
11 printf("\nThe anti-stokes wavelength for the new
```

```
exciting line = %4d angstrom", Las/1e-010);

12 // Result

13 // The Raman shift = 2.145e+003 per cm

14 // The stokes wavelength for the new exciting line = 6185 angstrom

15 // The anti-stokes wavelength for the new exciting line = 4888 angstrom
```

Scilab code Exa 8.2 Wvelength of Infrared Absorption Line

```
1 // Scilab code: Ex8.2 : Wvelength of infrared
     absorption line: Pg: 185 (2008)
2 L1 = 4554;
                // wavelength of the stokes line,
     angstorm
                 // wavelength of antistokes line,
3 L2 = 4178;
     angstorm
4 \text{ Lm} = 2*L1*L2/[L1-L2];
                            // Wavelength of infrared
     absorption line, angstorm
5 printf("\nThe Wavelength of infrared absorption line
     = \%5.3e angstorm", Lm);
6 // Result
7 // The Wavelength of infrared absorption line =
     1.012e+005 angstorm
```

Interaction of Charged Particles and Neutrons With Matter

Scilab code Exa 9.1 Maximum Energy Transferred by Alpha Particles

```
1 // Scilab Code Ex9.1 Maximum energy transferred by
      alpha particles: Pg:201 (2008)
                     // Incident energy of alpha
2 E_alpha = 3e+06;
      particles, eV
                 // Mass of an electron, kg
3 m = 9.1e-031;
4 M = 4*1.67e-027; // Mass of an alpha particle, kg
5 // \text{ As } E_{alpha} = 1/2*M*v^2 \text{ so } E_{electron} = 1/2*m*(2*v)
     )^{2}
6 // From the two equations
7 E_electron = 4*E_alpha*m/M; // Maximum energy of
      electron, eV
8 printf("\nThe maximum energy transferred by alpha
      particles to the electron = \%5.3 \,\mathrm{f\ keV}",
     E_electron/1e+03);
9 // Result
10 // The maximum energy transferred by alpha particles
      to the electron = 1.635 \text{ keV}
```

Scilab code Exa 9.2 Rate of Energy Loss and Range of Deuteron and Alpha Particle

```
1 // Scilab Code Ex9.2 Rate of energy loss and range
     of deuteron and alpha particle: Pg:201 (2008)
2 E_loss_P = 59; // Specific rate of energy loss
     per unit mass per unit area of proton, keV per mg
      cm square
3 R_prime_P = 50; // Range of proton, mg per cm
4 Z_D = 1; // Atomic number of deuteron
5 \text{ m_D} = 2; // Mass of deuteron, units
                               // Specific rate of
6 E_{loss_D} = Z_D^2*E_{loss_P};
     energy loss per unit mass per unit area of
     deuteron, keV per mg cm square
7 R_prime_D = R_prime_P*m_D/Z_D^2;
                                       // Range of
     deuteron, mg per cm square
                 // Atomic number of alpha particle
8 Z_alpha = 2;
9 m_alpha = 4; // Mass of alpha particle, units
10 E_loss_alpha = Z_alpha^2*E_loss_P;
                                       // Specific
     rate of energy loss per unit mass per unit area
     of alpha particle, keV per mg cm square
11 R_prime_alpha = R_prime_P*m_alpha/Z_alpha^2;
     Range of alpha particle, mg per cm square
12 printf("\nThe specific rate of energy loss per unit
     mass per unit area of deuteron = %2d keV per mg
     cm square", E_loss_D);
13 printf("\nThe range of deuteron = \%3d mg per cm
     square", R_prime_D);
14 printf("\nThe specific rate of energy loss per unit
     mass per unit area of alpha particle = %2d keV
     per mg cm square", E_loss_alpha);
15 printf("\nThe range of alpha particle = \%2d mg per
     cm square", R_prime_alpha);
16 // Result
```

Scilab code Exa 9.3 Thickness of Concrete Collimator

```
1 // Scilab Code Ex9.3 Thickness of concrete
     collimator: Pg:202 (2008)
2 rho = 2200e-03; // Density of concrete, g per cm
                   // Mass attenuation coefficient of
3 \text{ mu_m} = 0.064;
     concrete, cm square per g
4 \text{ mu} = \text{rho*mu_m};
                   // Linear attenuation coefficient
     o concrete, per cm
5 // As attenuation exponential is \exp(-\text{mu} \cdot x) = 1\text{e} + 06,
      solving for x
6 x = -\log(1e-06)/mu;
7 printf("\nThe required thickness of concrete to
     attenuate a collimated beam = \%2d cm", x);
8 // Result
9 // The required thickness of concrete to attenuate a
      collimated beam = 98 cm
```

Scilab code Exa 9.4 Average Number of Collsions for Thermalization of Neutrons

```
3 xi = 2/A - 4/(3*A^2); // Logarithmic energy
     decrement of energy distribution of neutron
4 EO = 2; // Initial energy of neutrons, MeV
5 En_prime = 0.025e-06; // Thermal energy of the
     neutrons, MeV
6 n = 1/xi*log(E0/En_prime); // Average number of
     collisions needed for neutrons to thermalize
                        // Half of the initial energy
7 \quad \text{En_half} = 1/2 * \text{EO};
     of neutrons, MeV
8 n_half = 1/xi*log(E0/En_half); // Number of
      collsions for half the initial energy of neutrons
9 printf("\nThe average number of collsions for
     thermalization of neutrons = \%2d", n);
10 printf("\nThe number of collsions for half the
     initial energy of neutrons = \%3.1 \,\mathrm{f}", n_half);
11 // Result
12 // The average number of collsions for
     thermalization of neutrons = 88
13 // The number of collsions for half the initial
     energy of neutrons = 3.4
```

Scilab code Exa 9.5 Change in Voltage Across a G M Tube

```
// Scilab Code Ex9.5 Change in voltage across a G.M.
    tube: Pg:202 (2008)

e= 1.6e-019;  // Charge on an electron, coulomb

W = 25;  // Ionization potential of gas (Ar/N2),
    eV

E = 5e+06;  // Energy of incident alpha particles,
    eV

C = 1e-010;  // Capacity of the system, farad

N = E/W;  // Number of ions produced

delta_V = N*e/C;  // Change in voltage across the
    G.M. tube, volt

printf("\nThe change in voltage across the G.M. tube
```

```
=\%3.1\,e volt", delta_V); 9 // Result 10 // The change in voltage across the G.M. tube = 3.2e -004 volt
```

Structure of Nuclei

Scilab code Exa 10.1.1 Energy and Mass Equivalence of Wavelength

```
1 // Scilab Code Ex10.1.1 Energy and mass equivalence
      of wavelength: Pg:209 (2008)
2 = 1.6e-019; // Energy equivalent of 1 \text{ eV}, J/\text{eV}
3 \text{ me} = 9.1e-031;
                     // Mass of en electron, kg
                     // Wavelength of gamma ray, m
4 L = 4.5e-013;
5 h = 6.626e - 034;
                        // Planck's constant, Js
6 c = 3e + 08;
                  // Speed of light, m/s
                  // Energy equivalence of wavelength, J
7 U = h*c/L;
8 m = U/c^2;
                  // Mass equivalent of wavelength, kg
9 printf("\nThe energy equivalence of wavelength \%3.1e
      m\,=\,\%4.2\,f\,{\rm \;MeV"} , L, U/(e*1e+06));
10 printf("\nThe mass equivalence of wavelength \%3.1e m
       = %4.2 f me", L, m/me);
11 // Result
12 // The energy equivalence of wavelength 4.5e-0.13 m =
       2.76 MeV
13 // The mass equivalence of wavelength 4.5e-0.13 \text{ m} = 0.000 \text{ m}
      5.39 me
```

Scilab code Exa 10.1.2 Binding Energy per Nucleon for Oxygen Isotopes

```
1 // Scilab Code Ex10.1.2 Binding energy per nucleon
     for oxygen isotopes: Pg:210 (2008)
2 mp = 1.007276; // Mass of proton, amu
3 mn = 1.008665; // Mass of neutron, amu
             // Energy equivalent of 1 amu, MeV
4 \text{ amu} = 931;
5 // For Isotope O-16
6 M_016 = 15.990523; // Mass of O-16 isotope, amu
7 Z = 8; // Number of protons
8 N = 8; // Number of neutrons
9 BE = (8*(mp+mn)-M_016)*amu; // Binding energy of
     O-16 isotope, MeV
10 BE_bar16 = BE/(Z+N); // Binding energy per
     nucleon of O-16 isotope, MeV
11 // For Isotope O-18
12 M_018 = 17.994768; // Mass of O-18 isotope, amu
13 Z = 8; // Number of protons
14 N = 10; // Number of neutrons
15 BE = (8*mp+10*mn-M_018)*amu; // Binding energy of
      O-18 isotope, MeV
                          // Binding energy per
16 BE_bar18 = BE/(Z+N);
     nucleon of O-18 isotope, MeV
17 printf("\nThe binding energy per nucleon of O-16
     isotope = \%5.3 f MeV", BE_bar16);
18 printf("\nThe binding energy per nucleon of O-18
     isotope = \%5.3 f MeV", BE_bar18);
19 // Result
20 // The binding energy per nucleon of O-16 isotope =
     7.972 MeV
21 // The binding energy per nucleon of O-18 isotope =
     7.763 MeV
```

Scilab code Exa 10.2.1 Range of Alpha Emitters of Uranium

```
1 // Scilab Code Ex10.2.1 Range of alpha-emitters of
     uranium: Pg:214 (2008)
                   // Decay constant of first alpha-
2 L1 = 4.8e-018;
     emitter, per sec
3 L2 = 4.225e+03;
                     // Decay constant of second alpha
     -emitter, per sec
                     // Decay constant of third alpha-
4 L3 = 3.786e-03;
     emitter, per sec
5 R1 = 4.19; // Range of first alpha-emitter, cm
             // Range of second alpha-emitter, cm
6 R2 = 7.86;
7 // From Geiger Nuttal law, \log R = A \log L + B
8 // Putting R1, L1 and R2, L2, subtracting and
     solving for A
9 A = log(R2/R1)/log(L2/L1); // Slope of straight
     line between R and L
10 B = poly(0,"B"); // Intercept of straight line
     between R and L
11 B = roots(log(R2)-A*log(L2)-B); // Other constant
      of Geiger-Nuttal law
12 R3 = \exp(A*\log(L3)+B);
                            // Range of third alpha-
     emitter of uranium, cm
13 printf("\nThe range of third alpha-emitter of
     uranium = \%5.3 f cm, R3);
14 // Result
15 // The range of third alpha-emitter of uranium =
     6.554 cm
```

Scilab code Exa 10.3.1 Binding Energy per Nucleon of Helium

```
1 // Scilab Code Ex10.3.1 Binding energy per nucleon
    of helium: Pg:219 (2008)
2 amu = 931; // Energy equivalent of amu, MeV
3 mp = 1.007895; // Mass of proton, amu
4 mn = 1.008665; // Mass of neutron, amu
5 M_He = 4.00260; // Atomic weight of helium, amu
```

Scilab code Exa 10.3.2 Energy Released in the Fusion of Deuterium

```
1 // Scilab Code Ex10.3.2 Energy released in the
     fusion of deuterium: Pg:220 (2008)
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 Q = 43; // Energy released in fusion of six
     deuterium atoms, MeV
4 N = 6.023e + 026;
                  // Avogadro's number, No. of
     atoms per kg
5 n = N/2; // Number of atoms contained in 1 kg of
     deuterium
6 U = Q/6*n*e*1e+06; // Energy released due to
     fusion of 1 kg of deuterium, J
7 printf("\nThe energy released due to fusion of 1 kg
     of deuterium = \%5.3 \,\mathrm{e} J", U);
8 // Result
9 // The energy released due to fusion of 1 kg of
     deuterium = 3.453e + 014 J
```

Scilab code Exa 10.3.3 Mass of Deuterium Nucleus

Scilab code Exa 10.3.4 Binding Energy per Nucleon of Ni

```
1 // Scilab Code Ex10.3.4 Binding energy per nucleon
     of Ni - 64: Pg: 220 (2008)
2 amu = 931; // Mass of a nucleon, MeV
3 MH = 1.007825; // Mass of hydrogen, amu
4 Me = 0.000550; // Mass of electron, amu
5 Mp = MH-Me; // Mass of proton, amu
8 MNi = m_Ni-28*Me; // Mass of ni-64 nucleus, amu
9 m = (28*Mp+36*Mn)-MNi; // Mass difference, amu
10 BE = m*amu; // Binding energy of Ni-64, MeV
11 BE_bar = BE/64; // Binding energy per nucleon of
     Ni-64, MeV
12 printf ("\nThe binding energy per nucleon of Ni-64 =
     \%4.2 \, \mathrm{f \ MeV}", BE_bar);
13 // Result
14 // The binding energy per nucleon of Ni-64 = 8.77
     MeV
```

Scilab code Exa 10.3.5 Energy Released during Fusion of two Deuterons

```
1 // Scilab Code Ex10.3.5 Energy released during
     fusion of two deuterons: Pg: 221 (2008)
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
           // Binding energy per nucleon of
3 \times = 1.1;
    deuterium, MeV
4 y = 7.0;
             // Binding energy per nucleon of helium
     -4, MeV
5 E = (y - 2*x)*1e+06*e; // Energy released when
     two deutron nuclei fuse together, MeV
6 printf("\nThe binding energy per nucleon of
     deuterium = \%4.2 \,\mathrm{e} J", E);
7 // Result
8 // The binding energy per nucleon of deuterium =
     7.68e - 013 J
```

Scilab code Exa 10.3.6 Binding Energy and Packing Fraction of Helium

```
1 // Scilab Code Ex10.6 Binding energy and packing
      fraction of helium: Pg: 221 (2008)
2 amu = 931; // Energy equivalent of amu, MeV
3 mp = 1.00814; // Mass of proton, amu
4 mn = 1.00898; // Mass of neutron, amu
5 \text{ m}_{He} = 4.00387;
                    // Mass of helium, amu
6 A = 4; // Mass number of helium
7 m = 2*(mp+mn)-m_He; // Mass difference, amu
8 \text{ dm} = \text{m_He} - \text{A}; // Mass defect of He
9 BE = dm*amu; // Binding energy of He, MeV
10 p = dm/A; // Packing fraction of He
11 printf("\nThe binding energy of helium = \%6.3 \, \text{f MeV}",
       BE);
12 printf("\nThe packing fraction of helium = \%5.3e", p
      );
13 // Result
14 // The binding energy of helium = 28.414 MeV
15 // The packing fraction of helium = 9.675e-004
```

Scilab code Exa 10.3.7 Mass of Yukawa Particle

```
1 // Scilab Code Ex10.7 Mass of Yukawa particle: Pg:
     222 (2008)
2 h = 6.626e - 034;
                    // Reduced Planck's constant, Js
3 e = 1.6e-019; // Charge on an electron, coulomb
                  // Nuclear radius constant, m
4 R0 = 1.2e-015;
5 R = 2*RO; // Range of nuclear force, m
6 v = 1e+08;
               // Speed of the particle, m/s
7 S = R;
          // Distance travelled by particle within
     the nucleus, m
  dt = S/v;
             // time taken by the particle to travel
      across the nucleus, s
  // From Heisenberg's uncertainty principle, dE.dt =
     h_bar, solving for dE
10 dE = h/(1e+06*e*dt); // Energy of Yukawa paeticle
    , MeV
11 m = dE/0.51; // Approximate mass of Yukawa
     particle, electronic mass unit
12 printf("\nThe mass of Yukawa particle = \%3d me", m);
13 // Result
14 // The mass of Yukawa particle = 338 me
```

Scilab code Exa 10.3.8 Maximum Height of the Potential Barrier for Alpha Penetration

```
1 // Scilab Code Ex10.8 Maximum height of the
    potential barrier for alpha penetration: Pg:222
    (2008)
2 epsilon_0 = 8.854e-12; // Absolute electrical
```

² epsilon_0 = 8.854e-12; // Absolute electrical
 permittivity of free space, coulomb square per
 newton per metre square

Nuclear Reactions

Scilab code Exa 11.1 Energy Balance of a Nuclear Reaction

Scilab code Exa 11.2 Threshold Energy for the Reaction

```
1 // Scilab code: Ex11.2: Threshold energy for the
     reaction: Pg:229 (2008)
2 mu = 931.5; // Energy equivalent of 1 amu, MeV
3 mx = 1.008665; // Mass of neutron, amu
4 Mx = 13.003355; // Mass of carbon atom, amu
5 \text{ M\_alpha} = 4.002603; // Mass of alpha particle,
     amu
6 M_Be = 10.013534; // Mass of beryllium, amu
7 MD = (Mx + mx - M_Be - M_alpha); // Mass defect
      of the reaction, amu
8 Q = MD*mu; // Q-value of the nuclear reaction,
     MeV
9 E_th = -Q*(1 + mx/Mx); // Threshold energy for
      the reaction in the laboratory, MeV
10 printf("\nThe threshold energy of the reaction is =
     \%4.2 \text{ f MeV}", E_th);
11 // Result
12 // The threshold energy of the reaction is = 4.13
     MeV
```

Scilab code Exa 11.3 Gamma Ray Emission

Nuclear Models

Scilab code Exa 12.1 Rate of Consumption of U235 Per Year

```
1 // Scilab Code Ex12.1 Rate of consumption of U-235
     per year: Pg:246 (2008)
2 = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 amu = 1.6e-027; // Mass of a nucleon, kg
4 P_out = 250e+06; // Output power of nuclear
      reactor, J/s
5 E = 200e+06*e; // Energy released per fission of
     U-235, J
6 n = P_out/E; // Number of fissions per second
7 m = 235*amu; // Mass of a nucleon, kg
8 m_sec = m*n; // Consumption per second of U-235,
     kg
9 m_year = m_sec*365*24*60*60; // Consumption per
      year of U-235, kg
10 printf ("\nThe rate of consumption of U-235 per year
     = \%5.2 \, f \, kg, m_year);
11 // Result
12 // The rate of consumption of U-235 per year = 92.64
      kg
```

Scilab code Exa 12.2 Rate of Fission of U 235

```
1 // Scilab Code Ex12.2 Rate of fission of U-235: Pg
     :246 (2008)
2 e = 1.6e-019;
                  // Energy equivalent of 1 eV, J/eV
3 E1 = 32e+06;
                  // Energy released per second, J
4 E2 = 200e+06;
                  // Energy released per fission, J
                // Number of atoms undergoing fission
5 N = E1/E2;
     per second
6 printf("\nThe number of atoms undergoing fission per
      second = \%1.0e", N/e);
7 // Result
8 // The number of atoms undergoing fission per second
     = 1e + 018
```

Scilab code Exa 12.3 Binding Energy of Helium Nucleus

```
// Scilab Code Ex12.3 Binding energy of helium
    nucleus: Pg: 247 (2008)

e = 1.6e-019;    // Energy equivalent of 1 eV, J/eV

amu = 931;    // Energy equivalent of 1 amu, MeV

m = 2*1.007825+2*1.008665-4.002603;    // Mass
    difference in formation of He, amu

E = m*amu;    // Energy equivalent of mass
    difference for He nucleus, MeV

printf("\nThe minimum energy required to break He
    nucleus = %5.2 f MeV", E);

// Result
// The minimum energy required to break He nucleus =
    28.28 MeV
```

Scilab code Exa 12.4 Energy Released During Fusion of Deuterium Nuclei

Scilab code Exa 12.5 Energy Required to Break One Gram Mole of Helium

```
// Scilab Code Ex12.5 Energy required to break one
gram mole of helium: Pg: 247 (2008)

amu = 931.5;  // Energy equivalent of 1 amu, MeV

mp = 1.007825;  // Mass of proton, amu

mn = 1.008665;  // Mass of neutron, amu

M_He = 4.002603;  // Mass of helium nucleus, amu

N = 6.023e+023;  // Avogadro's number, g/mol

m = 2*mp+2*mn-M_He;  // Mass difference, amu

E1 = m*amu;  // Energy required to break one atom
of He, MeV
```

```
9 E = N*E1;  // Energy required to break one gram
    mole of He, MeV
10 printf("\nThe energy required to break one gram mole
    of He = %5.3 e MeV", E);
11 // Result
12 // The energy required to break one gram mole of He
    = 1.704e+025 MeV
```

Scilab code Exa 12.6 Energy Liberated During Production of Alpha Particles

```
1 // Scilab Code Ex12.6 Energy liberated during
      production of alpha particles: Pg: 248 (2008)
                // Energy equivalent of 1 amu, MeV
2 \text{ amu} = 931;
                     // Mass of proton, amu
3 \text{ mp} = 1.007825;
                    // Mass of lithium nucleus, amu
4 \text{ M_Li} = 7.016005;
5 M_He = 4.002604; // Mass of helium nucleus, amu
6 dm = M_Li+mp-2*M_He; // Mass difference, amu
7 disp(dm)
8 U = dm*amu;
               // Energy liberated during production
       of two alpha particles, MeV
9 printf("\nThe energy liberated during production of
      two alpha particles = \%5.2 \, \text{f MeV}", U);
10 // Result
11 // The energy liberated during production of two
      alpha particles = 17.34 MeV
```

Scilab code Exa 12.7 Kinetic Energy of Neutrons

Scilab code Exa 12.8 Consumption Rate of U 235

```
1 // Scilab Code Ex12.8 Consumption rate of U-235: Pg:
      248 (2008)
2 N = 6.023e + 026; // Avogadro's number, No. of
     atoms per kg
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
4 P = 100e+06; // Average power generation, J/s
5 \ U = P*365*24*60*60; // Energy required in one
     year, J
6 U1 = 180e+06*e; // Energy produced by one atom
     fission of U-235
7 n = U/U1; // Number of atoms required to produce
     energy in one year
                // Mass of U-235 required per year,
8 M = n*235/N;
     kg
9 printf("\nThe rate of consumption of U-235 per year
     = \%7.4 \, \text{f kg}", M);
10 // Result
11 // The rate of consumption of U-235 per year =
     42.7237 \text{ kg}
```

Scilab code Exa 12.9 Minimum Disintegration Energy of Nucleus

Scilab code Exa 12.10 Rate of Fission of U 235

```
1 // Scilab Code Ex12.10 Rate of fission of U-235: Pg
     : 249 (2008)
                  // Avogadro's number, No. of
2 N = 6.023e + 026;
     atoms per kg
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
4 P = 1; // Average power generation, J/s
5 \ U = P*365*24*60*60; // Energy required in one
     year, J
6 U1 = 200e+06*e; // Energy produced by one atom
     fission of U-235
7 \quad n = U/U1;
              // Number of atoms undergoing fission
     per year
8 M = n/N; // Mass of U-235 required per year, kg
9 printf("\nThe rate of fission of U-235 per year = \%5
     .3e \text{ kg}", M);
10 // Result
11 // The rate of fission of U-235 per year = 1.636e
     -009 \text{ kg}
```

Scilab code Exa 12.11 Energy Released During Fission of U 235

```
1 // Scilab Code Ex12.11 Energy released during
     fission of U-235: Pg: 250 (2008)
2 N = 6.023e+023; // Avogadro's number
           // Mass number of U-235
3 A = 235;
4 n = N/235;
              // Number of atoms in 1g of U-235
           // Energy produced by fission of 1 U-235
5 E = 200;
      atom, MeV
6 U = n*E;
             // Energy produced by fission of 1g of U
     -235 atoms, MeV
7 printf("\nThe energy produced by fission of 1g of U
     -235 \text{ atoms} = \%5.3 \text{ e MeV}", U);
8 // Result
9 // The energy produced by fission of 1g of U-235
     atoms = 5.126 e + 023 MeV
```

Scilab code Exa 12.12 Minimum Energy of Gamma Photon for Pair Production

Scilab code Exa 12.13 Uranium Atom Undergoing Fission in a Reactor

```
1 // Scilab Code Ex12.13 Uranium atom undergoing
     fission in a reactor: Pg: 250 (2008)
2 P_out = 800e+06; // Output power of the reactor,
     J/s
3 E1 = P_{\text{out}}*24*60*60; // Energy required one day,
4 eta = 0.25; // Efficiency of reactor
5 N=poly(0,"N"); // Declare N as the variable
6 E2 = N*200e+06*1.6e-019*eta; // Useful energy
     produced by N atoms in a day, J
7 \text{ N=} \frac{\text{roots}}{\text{E2-E1}};
                          // Number of U-235 atoms
     consumed in one day
8 m = N*235/6.023e+026;
                           // Mass of uranium
     consumption in one day, kg
9 printf("\nThe number of U-235 atoms consumed in one
     day = \%4.2e atoms, N);
10 printf("\nThe mass of uranium consumption in one day
      = \%4.2 f kg, m);
11
12 // Result
13 // The number of U-235 atoms consumed in one day =
      8.64 \, e + 024 \, atoms
14 // The mass of uranium consumption in one day = 3.37
      kg
```

Scilab code Exa 12.14 Amount of Uranium Fuel Required For One Day Operation

```
1 // Scilab Code Ex12.14 Amount of uranium fuel required for one day operation: Pg: (2008)
```

```
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 eta = 0.20; // Efficiency of the nuclear reactor
4 E1 = 100e+06*24*60*60; // Average energy required
      per day, J
5 m = poly(0, "m");
                    // Suppose amount of fuel
     required be m kg
6 n = m*6.023e+026/235; // Number of uranium atoms
7 E = 200e+06*e; // Energy released per fission of
     U-235, J
8 \quad U = E*n;
              // Total energy released by fission of U
     -235, J
9 E2 = U*eta; // Useful energy produced by n atoms
     in a day, J
10 \text{ m} = \text{roots}(E2-E1);
11 printf("\nThe mass of uranium fuel required for one
     day operation = \%6.4 \, \text{f} \, \text{kg/day}, m);
12 // Result
13 // The mass of uranium fuel required for one day
      operation = 0.5267 \text{ kg/day}
```

Scilab code Exa 12.15 Binding Energy of Fe Using Weizsaecker Formula

```
1 // Scilab Code Ex12.15 Binding energy of Fe using
      Weizsaecker formula: Pg: 251 (2008)
                  // Energy equivalent of 1 amu, MeV
2 \text{ amu} = 931.5;
           // Mass number of Fe
3 A = 56;
             // Atomic number of Fe
4 Z = 26;
5 \text{ av} = 15.7;
                 // Binding energy per nucleon due to
      volume effect, MeV
6 as = 17.8; // Surface energy constant, MeV
7 ac = 0.711; // Coulomb energy constant, MeV
8 aa = 23.7; // asymmetric energy constant, MeV
9 ap = 11.18; // Pairing energy constant, MeV
10 BE = av*A - as*A^(2/3) - ac*Z^2*A^(-1/3) - aa*(A-2*Z)
      ^2*A^(-1)+ap*A^(-1/2); // Weizsaecker
```

```
Semiempirical mass formula
11 M_Fe = 55.939395; // Atomic mass of Fe-56
12 mp = 1.007825; // Mass of proton, amu
13 mn = 1.008665; // Mass of neutron, amu
14 E_B = (Z*mp+(A-Z)*mn-M_Fe)*amu; // Binding energy
       of Fe-56, MeV
15 printf("\nThe binding energy of Fe-56 using
      Weizsaecker formula = \%6.2 \text{ f MeV}", BE);
16 printf("\nThe binding energy of Fe-56 using mass
      defect = \%6.2 f MeV", E_B);
17 printf("\nThe result of the semi empirical formula
      agrees with the experimental value within \%3.1 f
      percent", abs((BE-E_B)/BE*100));
18 // Result
19 // The binding energy of Fe-56 using Weizsaecker
      formula = 487.75 \text{ MeV}
20 // The binding energy of Fe-56 using mass defect =
      488.11 MeV
21 // The result of the semi empirical formula agrees
      with the experimental value within 0.1 percent
```