Chapter 11 – Sec. 11.8

Constrained Optimization - Lagrange Multipliers

M. Loan
© 2023, Department of Physics, SCUPI

Learning Objectives

- What is constrained optimization and why do we need it?
- What are Lagrange's multipliers and how do we use them to optimize a given objective function
- Lagrange's multipliers for a two-variable function
- Applications

Why Constrained Optimization??

Imagine you are asked to design a rectangular box without a lid that is to be made from $12 m^2$ of cardboard. How would you choose your dimensions to find the maximum volume of such a box???

- Lagrange's method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k.
- It's easier to explain the geometric basis of Lagrange's method for functions of two variables.
- So we start by trying to find the extreme values of f(x,y) subject to a constraint of the form g(x,y) = k.
- In other words, we seek the extreme values of f(x,y) when the point (x,y) is restricted to lie on the level curve g(x,y) = k.

Fig. shows this curve together with several level curves of f These have the equations f(x, y) = c, where c = 7, 8, 9..

To maximize f (x, y) subject to g(x,y) = k is to find the largest value of c such that the level curve f(x, y) = cintersects g(x, y) = k.

It appears from Fig. that this happens when these curves just touch each other, that is, when they have a common tangent line. (Otherwise, the value of c could be increased further.)

This means that the normal lines at the point (x_0, y_0) where they touch are identical. So the gradient vectors $\nabla f(x_0, y_0)$ and $\nabla g(x_0, y_0)$ are parallel; that is,

$$\nabla f(x_0, y_0) = \lambda \, \nabla g(x_0, y_0)$$

for some scalar λ .

- This kind of argument also applies to the problem of finding the extreme values of f(x, y, z) subject to the constraint g(x, y, z) = k.
- Thus the point (x, y, z) is restricted to lie on the level surface S with equation g(x, y, z) = k.

Therefore, if $g(x, y, z) \neq 0$, there is a number λ such that

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

The number λ is called a Lagrange multiplier.

The procedure is as follows.

Method of Lagrange Multipliers To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq \mathbf{0}$ on the surface g(x, y, z) = k]:

(a) Find all values of x, y, z, and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

and

$$g(x, y, z) = k$$

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Lagrange Multipliers

If we write the vector equation $\nabla f = \lambda \nabla g$ in terms of components, then the equations in step (a) become

$$f_x = \lambda g_x$$
, $f_y = \lambda g_y$, $f_z = \lambda g_z$, $g(x, y, z) = k$

 This is a system of four equations in the four unknowns x, y, z, and λ, but it is not necessary to find explicit values for λ.

Lagrange Multipliers

For functions of two variables the method of Lagrange multipliers is similar to the method just described.

To find the extreme values of f(x,y) subject to the constraint g(x,y) = k, we look for values of x, y, and λ , such that

$$\nabla f(x_0, y_0) = \lambda \, \nabla g(x_0, y_0), \qquad g(x, y) = k$$

This amounts to solving three equations in three unknowns:

$$f_x = \lambda g_x, \qquad f_y = \lambda g_y, \qquad g(x, y) = k$$

Example – Lagrange's Method

Find the extreme values of the function

$$f(x,y) = x^2 + 2y^2$$

on the circle $x^2 + y^2 = 1$.

Solution:

The optimization problem is:

Optimize the objective function:

$$f(x,y) = x^2 + 2y^2$$

Subjected to the constraint

$$g(x,y) = x^2 + y^2 = 1$$

Solution

Using Lagrange multipliers, we solve the equations $\nabla f(x,y) = \lambda \nabla g(x,y)$, and g(x,y) = 1

These can be written as:

$$f_x = \lambda g_x$$
, $f_y = \lambda g_y$, $g(x, y) = 1$
 $2x = 2x\lambda$, $4y = 2y\lambda$, $x^2 + y^2 = 1$
 $2x(1 - \lambda) = 0$, $\Rightarrow x = 0$, or $\lambda = 1$

- If x = 0, then $y = \pm 1$.
- If $\lambda = 1$, then y = 0 so, then $x = \pm 1$.

Therefore, f has possible extreme values at the points

$$(0,1), (0,-1), (1,0), (-1,0)$$

Evaluating f at these four points, we find that:

$$f(0,1) = 2,$$
 $f(0,-1) = 2,$
 $f(1,0) = 1,$ $f(-1,0) = 1$

Therefore, the maximum value of f on the circle $x^2 + y^2 = 1$ is: $f(0, \pm 1) = 2$

The minimum value is: $f(\pm 1,0) = 1$.

Checking with the figure, we see that these values look reasonable.

Example

Find the maximum and minimum values of the objective function

$$f(x,y) = 2x^2 + y^2 + 2,$$

where x and y lie on the ellipse C given by

$$g(x,y) = x^2 + 4y^2 - 4 = 0 \Rightarrow x^2 + 4y^2 = 4.$$

Solution

Using Lagrange multipliers, we solve the equations

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$
, and $g(x,y) = 4$

These can be written as:

$$f_x = \lambda g_x$$
, $f_y = \lambda g_y$, $g(x,y) = 4$
 $4x = 2x\lambda$, $2y = 8y\lambda$, $x^2 + 4y^2 = 4$
 $2x(2 - \lambda) = 0$, $\Rightarrow x = 0$, or $\lambda = 2$

- If x = 0, then $y = \pm 1$.
- If $\lambda = 2$, then y = 0 so, then $x = \pm 2$.

Therefore, f has possible extreme values at the points

$$(0,1), (0,-1), (2,0), (-2,0)$$

Evaluating f at these four points, we find that:

$$f(0,1) = 3,$$
 $f(0,-1) = 3,$
 $f(2,0) = 10,$ $f(-2,0) = 10$

Therefore, the maximum value of f on the ellipse $x^2 + 4y^2 = 4$ is: $f(\pm 2,0) = 10$

The minimum value is: $f(0,\pm 1) = 3$.

Application – Designing a Box

A rectangular box without a lid is to be made from $12 m^2$ of cardboard. Find the maximum volume of such a box.

Solution:

Let x, y and z be the length, width, and height, respectively, of the box in meters.

Then we wish to maximize the objective function

$$V(x, y, z) = xyz$$

subject to the constraint

$$g(x, y, z) = 2xz + 2yz + xy = 12$$

Using the method of Lagrange multipliers, we look for values of x, y, z, and λ such that $\nabla V = \lambda \nabla g$ and g(x, y, z) = 12.

This gives the equations

$$v_x = \lambda g_x$$
, $V_y = \lambda g_y$, $V_z = \lambda g_z$, and $2xz + 2yz + xy = 12$ which become

$$yz = \lambda(2z + y), \quad xz = \lambda(2z + x), \quad xy = \lambda(2x + 2y).$$

Solve the simultaneous system of three equations:

$$xyz = \lambda(2xz + xy)$$
, $xyz = \lambda(2yz + xy)$ and $xyz = \lambda(2xz + xy)$.

We observe that $\lambda \neq 0$ because $\lambda = 0$ would imply

$$yz = xz = xy = 0$$
 and this would contradict $2xz + 2yz + xy = 12$

Therefore, from first two equation, above, we have

$$2xz + xy = 2yz + xy \Rightarrow xz = yz \Rightarrow z(x - y) = 0$$

But $z \neq 0$ (since z = 0 would give V = 0), so x = y.

From last two equations, we have

$$2yz + xy = 2xz + 2yz \Rightarrow 2xz = xy$$
$$x(2z - y) = 0$$

which gives 2z = y (since $x \neq 0$).

If we now put x = y = 2z in constraint function, we get $4z^2 + 4z^2 + 4z^2 = 12 \Rightarrow z = \pm 1$

Since x, y and z are all positive, we therefore have

$$x = 2$$
, $y = 2$, $z = 1$

Then $V = 2 \times 2 \times 1 = 4$, so the maximum volume of the box is 4 m^3 .

Example – Q. 10. Ex 11.8

Use Lagrange multipliers to find the maximum and minimum values of the function

$$f(x, y, z) = e^{xyz}$$

subject to the given constraint

$$2x^2 + y^2 + z^2 = 24$$

Solution: $\nabla f = \lambda \nabla g$ *implies*

$$\langle yz e^{xyz}, xz e^{xyz}, xy e^{xyz} \rangle = \langle 4\lambda x, 2\lambda y, 2\lambda z \rangle$$

Then

$$yze^{xyz}=4\lambda x$$
, $xze^{xyz}=2\lambda y$, $xye^{xyz}=2\lambda z$
And $2x^2+y^2+z^2=24$.

If any of x, y, z or λ is zero, then the first three equations imply that two of the variables x, y, z must be zero

Solution

If x = y = z = 0, it contradicts the fourth equation, so exactly two are zero, and from the fourth equation the possibilities are

$$(\pm 2\sqrt{3}, 0, 0), (0, \pm 2\sqrt{6}, 0), (0, 0, \pm 2\sqrt{6})$$

all with the f-value of $e^0 = 1$.

If none of x, y, z, and λ is zero, then from the first three equations we have,

$$\frac{4\lambda x}{yz} = e^{xyz} = \frac{2\lambda y}{xz} = \frac{2\lambda z}{xy} \Rightarrow \frac{2x}{yz} = \frac{y}{zx} = \frac{z}{xy}$$

This gives $2x^2z = y^2z \Rightarrow 2x^2 = y^2$ and $xy^2 = xz^2 \Rightarrow y^2 = z^2$.

Substituting into fourth equation, we have

Solution

Substituting into fourth equation, we have

$$y^2+y^2+y^2=24\Rightarrow y^2=48\Rightarrow y=\pm 2\sqrt{2}$$

So $x^2=4\Rightarrow x=\pm 2$ and $z^2=y^2\Rightarrow z=\pm 2\sqrt{2}$
This gives possible points $(\pm 2,\pm 2\sqrt{2},\pm 2\sqrt{2})$ (all combinations)

The value of f is e^{16} when all coordinates are positive or exactly two are negative, and the value is e^{-16} when all are negative or exactly one of the coordinates is negative.

Thus, the maximum of f subject to the constraint is e^{16} and the minimum is e^{-16}

Homework 1 – Ex. 11.8

Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

$$f(x,y) = xye^{-x^2-y^2},$$
 $2x - y = 0$
 $f(x,y,z) = 2x = 2y + z,$ $x^2 + y^2 + z^2 = 9$

Example – Q. 55. Ex. 11.8

A grain silo is to be built by attaching a hemispherical roof and a flat floor onto a circular cylinder. Use Lagrange multipliers to show that for a total surface area S, the volume of the silo is maximized when the radius and height of the cylinder are equal.

Solution: Let r and h are the radius and height of the silo. The problem reduces to maximizing the function

$$V(r,h) = \pi r^2 h + \frac{2}{3} \pi r^3$$

subject to the constraint

$$g(r,h) = 2\pi rh + \pi r^2 + (4\pi r^2)2 = 2\pi rh + 3\pi r^2 = S.$$

Then
$$\nabla V = \lambda \nabla g$$

$$\Rightarrow \langle 2\pi r h + 2\pi r^2, \pi r^2 \rangle = \langle 2\lambda \pi h + 6\lambda \pi r, 2\lambda \pi r \rangle$$

So the three equations are

$$2\pi rh + 2\pi r^2 = 2\lambda \pi h + 6\lambda \pi r$$
$$\pi r^2 = 2\lambda \pi r$$
$$2\pi r h + 3\pi r^2 = S$$

The second equation implies $r = 2\lambda[r \neq 0]$.

Substituting
$$r=2\lambda$$
 into the first equation gives
$$2\pi(2\lambda)h + 2\pi(2\lambda)^2 = 2\lambda\pi h + 6\lambda\pi(2\pi)$$
$$\Rightarrow 4\pi\lambda h + 8\pi\lambda^2 = 2\lambda\pi h + 12\pi\lambda^2$$
$$\Rightarrow 2\pi\lambda h = 4\pi\lambda^2 \Rightarrow h = 2\lambda$$

Thus, $r = 2\lambda = h$, and the volume of the silo is maximized, subject to a given surface area, when the radius and height are equal.

Find the maximum and minimum volumes of a rectangular box whose surface area is $1500\ cm^2$ and whose total edge length is 200 cm

• Suppose now that we want to find the maximum and minimum values of a function f(x, y, z) subject to two constraints (side conditions) of the form g(x, y, z) = k and h(x, y, z) = c.

• Geometrically, this means that we are looking for the extreme values of f when (x, y, z) is restricted to lie on the curve of intersection C of the level surfaces g(x, y, z) = k and h(x, y, z) = c.

Suppose f has such an extreme value at a point $P(x_0, y_0, z_0)$.

 ∇f is orthogonal to C at P.

But we also know that ∇g is orthogonal to g(x, y, z) = k and ∇h is orthogonal to h(x, y, z) = c, so ∇g and ∇h are both orthogonal to C.

This means that the gradient vector $\nabla f(x_0, y_0, z_0)$ is in the plane determined by $\nabla g(x_0, y_0, z_0)$ and $\nabla h(x_0, y_0, z_0)$.

So there are numbers and (both called Lagrange multipliers) such that

$$\nabla f(x_0, y_0, z_0) = \lambda \, \nabla g(x_0, y_0, z_0) + \mu \, \nabla h(x_0, y_0, z_0)$$

In this case Lagrange's method is to look for extreme values by solving five equations in the five unknowns x, y, x, λ and μ .

$$f_x = \lambda g_x + \mu h_x$$

$$g(x, y, z) = k$$

$$f_y = \lambda g_y + \mu h_y$$

$$h(x, y, z) = c$$

$$f_z = \lambda g_z + \mu h_z$$

Find the maximum value of the function

$$f(x, y, z) = x + y + 3z$$

on the curve of the intersection of the plane x - y + z = 1 and the cylinder $x^2 + y^2 = 1$.

Solution: The Lagrange condition is $\nabla f = \lambda \nabla g + \mu \nabla h$, so we solve the equations

$$f_x = \lambda g_x + \mu h_x \Rightarrow 1 = \lambda + 2x\mu$$

$$f_y = \lambda g_y + \mu h_y \Rightarrow 2 = -\lambda + 2y\mu$$

$$f_z = \lambda g_z + \mu h_z \Rightarrow 3 = \lambda$$

$$x - y + z = 1, \qquad x^2 + y^2 = 1$$

Substituting $\lambda = 3$, we get

$$2x\mu = -2 \Rightarrow x = -1/\mu$$

Similarly, $y = 5/(2\mu)$.

Substituting in $x^2 + y^2 = 1$, gives

$$\frac{1}{\mu^2} + \frac{25}{4\mu^2} = 1 \Rightarrow \mu = \pm \sqrt{29}/2$$

Then $x = \mp 2/\sqrt{29}$, $y = \pm 5/\sqrt{29}$. From z = 1 - x + y, we have

$$z = 1 \pm 7/\sqrt{29}$$

The corresponding values of the function are

$$\mp \frac{2}{\sqrt{29}} + 2\left(\pm \frac{5}{\sqrt{29}}\right) + 3\left(1 \pm \frac{7}{\sqrt{29}}\right)$$
$$= 3 \pm \sqrt{29}$$

Therefore the maximum value of f on the given curve is $3 \pm \sqrt{29}$.

Example – Q. 57. Ex. 11.8

The plane x + y + 2z = 2 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.

Solution: We need to find the extreme values of function defining an ellipse

$$f(x, y, z) = x^2 + y^2 + z^2$$

subjected to the conditions

$$g(x,y,z) = x + y + 2x - 2 = 0 \quad and$$

$$h(x,y,z) = x^2 + y^2 - z = 0$$

$$\nabla f = \langle 2x, 2y, 2z \rangle,$$

$$\lambda \nabla g = \langle \lambda, \lambda, 2\lambda \rangle, \quad \mu \nabla h = \langle 2\mu x, 2\mu y, -\mu \rangle$$

$$\Rightarrow 2x = \lambda + 2\mu x, \quad 2y = \lambda + 2\mu y, \quad 2z = 2\lambda - \mu \quad \&$$

$$x + y + 2z = 2, \quad x^2 + y^2 - z = 0$$

From the first two equations, $2(x - y) = 2\mu(x - y) \Rightarrow \mu = 1$ and $\lambda = 0$.

Substituting this in (3) gives z = -1/2. The constrained equations yield x + y - 3 = 0 and $x^2 + y^2 + 1/2 = 0$ The last Eq. cannot be true, so this case gives no solution.

Therefore, we must have x = y.

Thus last two equations yield, x = 1/2, or x = -1, which give

$$y = \frac{1}{2}, z = \frac{1}{2},$$
 and $y = -1, z = 2$

Thus two points are (1/2, 1/2, 1/2) and (-1, -1, 2).

Thus f(1/2, 1/2, 1/2) = 3/4 and f(-1, -1, 2) = 6. Therefore (1/2, 1/2, 1/2) is the point on the ellipse nearest the origin and (-1, -1, 2) the farthest from the origin.

Homework 2 – Q. Ex. 11.8

Use Lagrange multipliers to prove that the rectangle with the maximum area that has a given perimeter p is a square.

Homework 3 – Q. Ex. 11.8

Use Lagrange multipliers to prove that the triangle with a maximum area that has a given perimeter p is equilateral. (Hint: Use heron's formula for the area

$$A = \sqrt{s(s-x)(s-y)(s-z)}$$

Where s = p/2 and x, y, z are the lengths of the sides.)