

LaTeX4EI Template **Documentation**

1. Introduction

1.1. Terms of use

This template may be used only for cheat sheets that are published on the LaTeX4EI web page

A lot of effort has been put into this template and therefore all cheat sheets created with this template shall also be available on the LaTeX4EI project web page.

©LaTeX4EI, 2015

1.2. Purpuse

The purpuse of this document is to give an overview over all functions of the LaTeX4EI template with the goal to help the reader to create beautiful

2. Box Environments

For the structuring of the document, the LaTeX4EI template offers different boxes.

2.1. Sectionbox

The main structure is defined through the sectionbox environment.

\begin{sectionbox} content of the sectionbox \end{sectionbox}

2.2. TableboxTables can be set using the *tablebox* or a *tablebox** environment. The table entries are embedded within \begin{tablebox*}{1111} and \end{tablebox*}

Example for a table with tablebox:

vector
$$\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 matrix $\mathbf{M} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

In contrast to that a normal LATEXtable:

small table with lines two

2.3. Symbolbox

A symbolbox can be used to define symbols for different values.

The equation is embedded within \begin{symbolbox} and \end{symbolbox}

Example of a symbolbox (to define symbols)

Preasure Seebeck-Ko. Wärmeleitf. $[\lambda]$

2.4. Cookbox

a so-called cookbox can be used to set beautiful step-by-step instructions. The items are embedded within \begin{cookbox} and \end{cookbox}.

How to create a beautiful cheat sheet

- 1. Read this manual
- 2. Create a heautiful cheat sheet

2.5. Emphbox

really important formulars can be set in a box with a red border.

The equations are embedded within \begin{emphbox} and \end{emphbox}.

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3. Language and Text

3.1. Text The $\mbox{LMT}_{E}\mbox{X}$ source code of this template is interpreted as unicode. Therefore special characters like the german umlauts (ä.ö.ü) can be used easily.

Also greek characters can be written as math commands (α, β, γ) or as unicode (α, β, γ).

This is also vailed for the math characters: \int , ∂ , \mathbb{R} or \int , ∂ , \mathbb{R} .

3.2. LanguageThe language can be choosen with the options *english* or *german*.

It is also possible to define a different language for a part of a document: \EngGer{You have chosen the language option english}{Du hast ngerman als Sprachoption gewählt}

However, you can also switch to english in a german cheat sheet using \selectlanguage{english}. This guarantees that words are hyphenated

And back to german with \selectlanguage{ngerman} (use ngerman not german!)

4. Images

Images can be included using the \includegraphics command.

Do not use figure environment.

The width should be set as a fraction of \columnwidth.

\begin{center}

\includegraphics[width = 0.5\columnwidth]{Logo}

The includegraphics command searches for images in ./ and ./img. The file extension is added automatically

5. Conventions

Why?

Different formatting is helpful for the understanding of: variables, constants, functions, fixed units, vectors, matrices, sets, complex values, random variables

5.1. General conventions for cheat sheets

- · Always the name first and the the symbol afterwards! Example: "The angular velocity ω , "The angular velocity \omega"
- Densities are always set in small letters
- Brackets around fractions or bigger equations are set with \left(. \right)

5.2. Tables

Line	B/W	Colored
Line on top	\trule	\ctrule
Linie in the middle	\mrule	\cmrule
Line at bottom	\brule	\cbrule

5.3. Boxes

Different topics are categorized within boxes. The following types of boxes are availible:

sectionbox: for a topic (grey)

tablebox: for colored tables

symbolbox: for units and symbols (orange)

emphbox: for very important equations (red box)

topicbox: for important overviews about the topic

For further information on how to use the different boxes please refer to

section 2.

5.4. Vectors and matrices

5.4. Vectors and matrices		
vector symbol	\vec r	
vector	\vect{ x \\ y \\ z}	
transpose	\vec r^\top	
matrix symbol	\ma M	
matrix	\mat{ a & b \\ c & d }	
tensor	\tensor C	

5.5. Indicies and superscript

Depending on what the index refers to it should be set differently:

- $E_{\rm kin}$ (E_{\ir kin}) if an index refers to a word (e.g. "kinetic"). The command name \ir is an abbriviation for "index roman".
- \bullet E_x (E_x) if the index refers to a symbol (e.g. the x component of the electromagnetic field).

The same difference also applies for the superscript (^).

5.6. Functions

The trigonometric functions are usually set upright. Therefore the commands \exp, \sin, \cos, \sinh, \cosh and \sinc should be used.

Similar we can set:

Differential operators: \grad, \div, \rot and \lpo

Maximum, minium and limes operators: \min, \maxand \lim

Stochastic operators: \E, \Var and \Cov

Transformations are usually set in italic letters: \FT, \LT, \DFT, \ZT and \DTFT

5.7. Complex values

Complex variable: \cx z

Complex conjugate: \cxc z

Imaginary: \i or \j or \k (hypercomplex)

6. Macros

6.1. Own Macros for cheat sheets

Arrows: \rightarrow , \Rightarrow , \uparrow , \downarrow

6.2. Own Macros in the scientific package

Vectors and Matrices:

Proper delta for differential equaions:

 $G = 6.67 \times 10^{-11} \frac{\text{kg}}{2}$ Functions: SI Units:

Sets: \mathbb{NRC} Random variable: XYZ

Stochastic: P(X = 3), E(X), Var(X)

Further information about the use of the scientific package can be found in Scientific Package Documentation.pdf