Nirma University

Institute of Technology

Semester End Examination (IR), December - 2019

B. Tech. in Computer Science and Engineering, Semester - III 2CS301 – DATA STRUCTURES AND ALGORITHMS

	Roll / Exam No.	Supervisor's initial with date	3	
Time: 3 Hours		S Max. Mai	Max. Marks: 100	
]	Instructions:	 Attempt all questions. Figures to right indicate full marks. Use section-wise separate answer book. Make suitable assumption wherever necessary, and specify it correctly. 		
		SECTION-I		
	Q-1.	Answer the following.	[18]	
	(a) CO1, L3	Write a recursive function to count the digits of a given number.	[04]	
	(b) CO2, L3	Show the arrangements of the following elements after first pass of quick sort. Pivot element is the last element. 34, 67, 12, 78, 67, 89, 60, 23, 90, 39, 57	[04]	
	(c) CO1, L4	If each element of a matrix A is store in a row major order which requires two bytes of computer memory. If A is declared as A[-6:13, -2:15, 3:15, 7:20], with initial address 2000 then what is the location of A[12][7][9][16].	[04]	
	(d) CO3, L4	Convert the following infix expression into postfix expression. Show the stack representation after each step. $ ((A+B)/(C^*D^*(E^*F^*G))-(H-I))^*J $	[06]	
	Q-2.	Answer the following.	[16]	
	(a) CO3, L3	Insert following data into binary search tree. 25, 22, 18, 15, 35, 31, 50, 44, 10, 12, 4, 70, 90, 65 Give pre-order, in-order and post-order traversal of the resultant tree. Show the representation of the tree after deleting 44.	[06]	
	(a)	OR Write an algorithm to insert an element in deque which allows	[06]	
	CO3, L6	insertion from both the sides of queue.		
	(b) CO1, L6	Write an algorithm to search no of occurrences of an element in the singly linked list.		
	(c) CO3, L1	What is the maximum number of nodes in a binary tree of height h? What is the minimum height of a binary tree having 35 nodes?	[04]	

Q.3 Answer the following.

[16]

(a) Design an iterative algorithm to find preorder traversal of a [06] CO1, L6 binary search tree.

OR

- (a) Write a recursive algorithm to solve tower of Hanoi problem. [06] CO1, L6 Show the stack trace and solve the problem for three disks.
- (b) Write an algorithm to merge two sorted linked list into third [06] CO3, L6 linked list using merge sort.
- (c) A circular queue is implement on the array of 4 elements. Show [04]
- CO3, L5 the positions of front and rear pointers after each of the following operations.

 Insert(5), Delete(), Insert(2), Insert(3), Insert(7), Insert(8), Delete(), Insert(12),

SECTION-II

Q.4. Answer the following.

[18]

(a) Show the priority queue elements created by max-heap on the [04] CO3, L3 following data.

A = [66,45,23,12,8,7,67,17,83,32]

- (b) Write an algorithm to find the height of the given node in a [04] CO3, L6 binary tree.
- (c) Convert the following general tree into binary tree. [04]

CO1, L2

(d) Write an algorithm to delete an element from a given location of [06] CO1, L6 the doubly linked list.

Q-5. Answer the following.

[16]

(a) Use Depth First traversal and Breath First traversal and show [04] CO1, L3 the sequence of traversal for the below given graph starting from node 's'.

(b) Illustrate an algorithm for ternary search to search an element [06]

CO2, L1 from the list of n elements. Explain the worst case time complexity of ternary search.

OR

(b) Solve the shortest path problem using Dijkstra's algorithm for [06] CO3, L3 the below graph from node 'a' to node 'z'.

(c) Insert following elements into B-tree of order 3. Show the tree [06] CO2, L4 after every insertion. Show the tree after deletion of the element 40.

30 50 25 70 40 12 34 19 56 78 89 92 53 19 66

Q-6. Answer the following.

[16]

[04]

(a) Design the AVL tree from the following data. Insert the data in [06] CO3, L6 sequence in the tree. Clearly show all the rotation used at the time of insertion.

56 9 2 16 78 32 25 72 85 42 93

(b) Define collision problem in hashing? Find number of collisions [06] CO1, L1,3 if 89, 18, 49, 58, and 69 items are to be inserted into the memory table consisting of 10 buckets. The hash function used is

 $H_{ti}(x) = \{ H(x) + F(i) \} \text{ mod } 10, \text{ where}$

 $H(x) = x \mod 10$ and $F(i) = i * (7 - (x \mod 7))$

OR

- (b) Identify all the sorting techniques which require other sorting [06] CO2, L1 technique to compete the process. Explain any one of those with suitable example.
- (c) Define following terms with proper example.

CO1, L1 1) Directed Graph

2) Height balanced tree
