Optimal Graph Reconstruction by Counting Connected Components in Induced Subgraphs

Conference on Learning Theory (COLT) 2025

Hadley Black

Arya Mazumdar

Barna Saha

Yinzhan Xu

Graph Reconstruction (GR)

• Given query access to simple n-vertex m-edge graph G(V, E), recover E exactly.

Early works studied

Independent-Set (IS) queries:

Does G[S] contain an edge?

[GK98 ABKRS04, AA05, AC08, AB19]

Question

How many views to reconstruct a graph?

Motivations:

- Genome mapping: can be used to model procedures for physical mapping of DNA molecules [GK98, AA05]
- Basic combinatorial search question related to coin-weighing, group testing, etc.

GR History

Provided Unknown

• Given query access to simple n-vertex m-edge graph G(V, E), recover E exactly.

Many ways to strengthen IS queries

Independent-Set (IS) queries

Does G[S] contain an edge?

[GK98 ABKRS04, AA05, AC08, AB19]

 $\Theta(m \log n)$

Additive (ADD) queries

How many edges in G[S]?

Grebinski98, GK00, RS07, CK10, Mazzawi10, CJK11, Choi13]

$$\Theta\left(\frac{m\log(n^2/m)}{\log m}\right)$$

Maximal IS queries

Oracle returns a maximal IS in G[S]

[KOT25]

More recent

Distance Queries

What is distance from x to y in G?

[KKU95, BEE+06, EHHM06, MZ13, KMZ18, MZ21, RLYW21, BG23]

Classic open question

Connected Component (CC) Queries

How many CCs in G[S]?

This work

Connected Component Queries

• Given query access to simple n-vertex m-edge graph G(V, E), recover E exactly.

We introduce

CC Queries: How many CCs in G[S]?

Motivations:

- CC count is a natural basic graph parameter
- Another natural way to strengthen IS queries
- CC counts are easy to compute in certain models (e.g., Congested-Clique [GP 16])
- Generalizes partition learning with subset queries

[CL 24, BLMS 24, BMS 25]

Basic Bounds

- Trivial $O(n^2)$ algorithm: query every pair $(u, v) \in \binom{V}{2}$
- $\Omega(n^2)$ lower bound: $K_n \setminus \{(u, v)\}$ \Longrightarrow Need to parametrize by m
 - Any query on more than 2 vertices always returns 1 (no information)
 - Querying pairs: finding missing edge is an unstructured search problem of size $\Omega(n^2)$

$$\binom{n(n-1)/2}{m} = 2^{\Omega(m\log n)} \text{ graphs (for } m \ll n)$$

CC's in G[S] between |S|-m and $|S| \implies O(\log m)$ bits per query

Results

CC Queries: How many CCs in G[S]?

Adaptive algorithm

$$\Theta\left(\frac{m\log n}{\log m}\right)$$

Non-adaptive lower bound

 $\Omega(n^2)$ even when m = O(n)

Comparison with additive queries

$$\Theta\left(\frac{m\log(n^2/m)}{\log m}\right)$$
 Slightly better for very dense graphs

There is a **non-adaptive** algorithm that attains this bound

[CK10, BM11, BM15]

Two-round algorithm

$$O(m\log n + n\log^2 n)$$

- 1) $O(n \log^2 n)$ queries to approximate degrees
- 2) $O(d(u) \cdot \log n)$ queries to recover the neighbor of u
 - Using CC queries to simulate a group testing primitive

Non-Adaptive Lower Bound

• For each $(u, v) \in \binom{V}{2}$, define:

 $\Omega(n^2)$ even when m = O(n)

$$K_{2,n-2}$$
 $K_{2,n-2} \cup \{(u,v)\}$ vs. u v

- To distinguish, must query some S containing both u, v
 - ... but any query larger than 2 containing u, v returns "1 CC" in both cases
 - \dots so only queries of size 2 are useful for a non-adaptive algorithm
 - \implies need $\Omega(n^2)$ queries to distinguish every such pair of graphs

Why Adaptivity Helps

First, learn structural information about the graph to inform later queries

Observation:

CC's in G[S] < # CC's in $G[S \cup \{u\}]$ iff $N(u) \cap S = \emptyset$

Using this we can easily distinguish high vs. low degree vertices

Then query the edge between the two high-degree vertices

Technique 1: vertices with similar degree

Observation:

If H is a **forest**, then $\# \ {\rm edges} \ {\rm in} \ H[S] = |S| - \# \ {\rm CC's} \ {\rm in} \ H[S]$

Additive queries and CC queries are **equivalent** on forests

• Assume all vertices have degree O(D) where D=m/n

Note: target query complexity is O(m)

 \implies random subgraph H with sample rate $p = O((mD)^{-1/3})$ is a forest with probability $\Omega(1)$

$$\implies$$
 simulate ADD-query algorithm in H : $\approx \frac{p^2 m \log(pn)}{\log(p^2 m)} \approx p^2 m$

We recover $\approx p^2 m$ edges using $\approx p^2 m$ queries in expectation

Technique 2: vertices with dissimilar degree

- Let v be a vertex with degree $D \gg d \cdot n^{0.01}$
- Suppose we have recovered subgraph G[U] with max degree d

 $\Longrightarrow \text{ Can partition } U = W_1 \sqcup \cdots \sqcup W_{d+1} \text{ into } \\ d+1 \text{ independent sets}$

 $\implies G[W_i \cup \{v\}]$ is a **forest**: can simulate ADD-query algorithm on each

Total query complexity

$$O\left(\log n \cdot \sum_{i=1}^{d+1} \frac{\deg(v, W_i)}{\log \deg(v, W_i)}\right) \le O\left((d+1)\log n \cdot \frac{D/(d+1)}{\log(D/(d+1))}\right) \le O\left(\log n \cdot \frac{D}{\log(n^{0.01})}\right) \le O(D)$$

Jensen's

Adaptive Algorithm

- Carefully choose thresholds which partition vertices by degree $V=V_1,\ldots,V_{\ell}$
- Use technique 1 to learn $G[V_i]$ and $G[V_i, V_{i+1}]$ (similar degree)
- Use technique 2 to learn $G[V_i, V_j]$ for j > i+1 (dissimilar degree)

Note

This is not the whole story, as we are not provided the degree of vertices

Poses significant other challenges

Conclusion

- We propose a new query model for the classic graph reconstruction problem
 - Obtain tight bounds for adaptive algorithms
 - Show separation from well-studied additive model in terms of adaptivity

Questions

What is the round complexity of GR with CC queries?

Are CC queries interesting for other graph problems?

How many CC queries to count edges? Is this easier than reconstruction?

