NYC Shooting Project

SSH

2023-02-19

Peer graded assignment NYPD shooting incident

The objective of this assignment is to test the capability of the student in applying the data science concepts taught and provide effective outcomes.

Step 1: Import data from the server

```
library(tidyverse)
```

```
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.4.1
                 v purrr
                             1.0.1
## v tibble 3.1.8
                             1.1.0
                    v dplyr
## v tidyr
          1.3.0
                   v stringr 1.5.0
## v readr
          2.1.4
                  v forcats 1.0.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
url_in <- "https://data.cityofnewyork.us/api/views/833y-fsy8/"</pre>
file_names <- c("rows.csv")</pre>
urls <- str_c(url_in,file_names)</pre>
```

```
NYPD_Shooting <- read_csv(urls)</pre>
```

Step2: Tidying the data:

Identified the suitable fields for the analysis and removed the unwanted fields.

Changed the date fields in accordance with the R suited format.

```
##Removing the least relevant fields
library(tidyr)
library(tidyverse)
library(lubridate)
```

```
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

```
library(dplyr)
library(ggplot2)
NYPD_Shooting <- read_csv("https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv?accessType=DOWNLO."
## Rows: 25596 Columns: 19

## -- Column specification -------
## Delimiter: ","
## chr (10): OCCUR_DATE, BORO, LOCATION_DESC, PERP_AGE_GROUP, PERP_SEX, PERP_R...
## dbl (7): INCIDENT_KEY, PRECINCT, JURISDICTION_CODE, X_COORD_CD, Y_COORD_CD...
## lgl (1): STATISTICAL_MURDER_FLAG
## time (1): OCCUR_TIME
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.</pre>
knitr::kable(head(NYPD_Shooting))
```

3616866811 <i>5</i> 2 02B1 RO 7 9KLY N	NA	FALSE NA	NA	NA	18-	\mathbf{M}	BLACK9963138749490.68132 POINT
, ,					24		73.95(651
							73.956508990999
							40.681318200000
3100 870/8562/2202BDRO72 KLY N	NA	FALSE 45-	\mathbf{M}	ASIA	N 25-	\mathbf{M}	ASIAN 981845711120.63636 POINT
, ,		64		/	44		/ 74.00867
				PA-			PA- 74.008666689999
				CIFIC	7		CIFIC 40.636363841000
				IS-			IS-
				LANI	DER		LANDER
3071 779 0BD/12 02B 0RO 79 KLY 0 V	NA	FALSE < 18	\mathbf{M}	BLAC	CK25-	\mathbf{M}	BLACK9965468743460.68115 POINT
, ,					44		73.95/567
							73.955669037999
							40.681144959000
3771 23/0911/3242BUROSO KLY N	NA	FALSE NA	NA	NA	25-	\mathbf{M}	
, ,					44		73.93/910
							73.939095905
							40.695791716000
2446 55/2112/02000UEEES S 0	NA	FALSE NA	NA	NA	25-	\mathbf{M}	BLACK1050 718 948 26 0.67374 POINT
, ,					44		73.76041
							73.760410669999
							40.673740176000
282 5251,6450,4203000 UEIENS 0	NA	TRUE NA	NA	NA	25-	\mathbf{M}	BLACK1051 329 66 46 0.70618 POINT
· · ·					44		73.75[806
							73.758061473999
							40.706178569000

```
nypd_cleansed <- drop_na(NYPD_Shooting) %>% select(-c(INCIDENT_KEY, LOCATION_DESC, X_COORD_CD, Y_COORD
##Changing the date to the convenience
nypd_cleansed <- nypd_cleansed %>% mutate(OCCUR_DATE = mdy(OCCUR_DATE))
##Converting the boolean values to integers
```

```
nypd_cleansed$STATISTICAL_MURDER_FLAG[nypd_cleansed$STATISTICAL_MURDER_FLAG == "TRUE"] <- 1</pre>
 nypd_cleansed$STATISTICAL_MURDER_FLAG[nypd_cleansed$STATISTICAL_MURDER_FLAG == "FALSE"] <- 0
nypd_boro <- nypd_cleansed %>% group_by(BORO, OCCUR_DATE) %>% summarize(STATISTICAL_MURDER_FLAG = STA
## Warning: Returning more (or less) than 1 row per 'summarise()' group was deprecated in
## dplyr 1.1.0.
## i Please use 'reframe()' instead.
## i When switching from 'summarise()' to 'reframe()', remember that 'reframe()'
     always returns an ungrouped data frame and adjust accordingly.
## 'summarise()' has grouped output by 'BORO', 'OCCUR_DATE'. You can override
## using the '.groups' argument.
nypd_boro$cummurder <- ave(nypd_boro$STATISTICAL_MURDER_FLAG,nypd_boro$BORO,FUN=cumsum)
nypd_boro['shooting']=1
nypd_boro$cumshooting <- ave(nypd_boro$shooting,nypd_boro$BORO, FUN = cumsum)</pre>
nypd_boro$murderpercent <- with(nypd_boro, cummurder/cumshooting *100)</pre>
 #show the final data for the anlaysis
knitr::kable(head(nypd_boro))
```

BORO OCCUR_DATSTATISTICAL	_MURDER_ctn	hA Grder	shooting	cumshooting	murderpercent
BRONX 2006-01-01	0	0	1	1	0
BRONX 2006-01-01	0	0	1	2	0
BRONX 2006-01-04	0	0	1	3	0
BRONX 2006-01-05	0	0	1	4	0
BRONX 2006-01-06	0	0	1	5	0
BRONX 2006-01-06	0	0	1	6	0

Step 3: Data Analysis

Aggregated the required measures based on the suitable dimensions such as date, BORO

```
aggregate(nypd_boro$STATISTICAL_MURDER_FLAG, by=list(BORO = nypd_boro$BORO), FUN=sum)
```

```
## BORO x
## 1 BRONX 502
## 2 BROOKLYN 607
## 3 MANHATTAN 234
## 4 QUEENS 235
## 5 STATEN ISLAND 70
```

aggregate(nypd_boro\$shooting, by=list(BORO = nypd_boro\$BORO), FUN=sum)

```
## 1 BORO x
## 1 BRONX 2019
## 2 BROOKLYN 2840
## 3 MANHATTAN 1062
## 4 QUEENS 1055
## 5 STATEN ISLAND 267
```

```
city <- "BRONX"
nypd_murder_boro_BRONX <- nypd_boro %>%
  filter(BORO == city) %>%
  group_by(BORO, OCCUR_DATE) %>%
  #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
  select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent) %>
  ungroup()
knitr::kable(tail(nypd_murder_boro_BRONX))
```

BORO	OCCUR_	DATEhooting	cumshooting	STATISTICAL_MURDE	R_c filhA Grder	murderpercent
BRONX	2021-12-02	2 1	2014	1	499	24.77656
BRONX	2021-12-03	3 1	2015	0	499	24.76427
BRONX	2021-12-03	3 1	2016	0	499	24.75198
BRONX	2021-12-11	l 1	2017	1	500	24.78929
BRONX	2021-12-11	l 1	2018	1	501	24.82656
BRONX	2021-12-11	l 1	2019	1	502	24.86379

```
city <- "BROOKLYN"

nypd_murder_boro_BROOKLYN <- nypd_boro %>%
  filter(BORO == city) %>%
  group_by(BORO, OCCUR_DATE) %>%

#summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
  select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent) %>
  ungroup()
knitr::kable(tail(nypd_murder_boro_BROOKLYN))
```

BORO	OCCUR_I	OATshooting	cumshooting	STATISTICAL_MURDER	R <u>cu</u> FriinAuGrder	murderpercent
BROOKLY	™ 021-12-14	1	2835	1	604	21.30511
BROOKLY	™ 021-12-17	1	2836	0	604	21.29760
BROOKLY	™ 021-12-17	1	2837	0	604	21.29010
BROOKLY	™ 021-12-17	1	2838	1	605	21.31783
BROOKLY	™ 021-12-17	1	2839	1	606	21.34554
BROOKLY	™ 021-12-18	1	2840	1	607	21.37324

```
city <- "STATEN ISLAND"
nypd_murder_boro_STATENISLAND <- nypd_boro %>%
  filter(BORO == city) %>%
  group_by(BORO, OCCUR_DATE) %>%
  #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
  select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent) %>%
  ungroup()
knitr::kable(tail(nypd_murder_boro_STATENISLAND))
```

BORO	OCCUR_DA	Salfooting c	umshooting	${\bf STATISTICAL}_{_}$	_MURDER <u>u</u>	n FihArG er	murderpercent
STATEN	2021-04-	1	262		0	66	25.19084
ISLAND	18						
STATEN	2021-04-	1	263		1	67	25.47529
ISLAND	28						

BORO	OCCUR_	_DA 3 llfooting	cumshooting	STATISTICAL_MURD	ERumFihuMaGer	murderpercent
STATEN	2021-06-	1	264	1	68	25.75758
ISLAND	22					
STATEN	2021-07-	1	265	0	68	25.66038
ISLAND	30					
STATEN	2021-11-	1	266	1	69	25.93985
ISLAND	21					
STATEN	2021-12-	1	267	1	70	26.21723
ISLAND	31					

```
city <- "MANHATTAN"
nypd_murder_boro_MANHATTAN <- nypd_boro %>%
  filter(BORO == city) %>%
  group_by(BORO, OCCUR_DATE) %>%
  #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
  select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent) %>%
  ungroup()
knitr::kable(tail(nypd_murder_boro_MANHATTAN))
```

BORO	OCCUR_	DATs Eooting	cumshooting	${\tt STATISTICAL}_$	_MURDERc	u FrIm AG der	murderpercent
MANHAT	Γ Α2 0021-11-15	5 1	1057		0	231	21.85430
MANHAT	ΓΑ20021-11-17	7 1	1058		1	232	21.92817
MANHAT	Γ Α20 21-11-20) 1	1059		1	233	22.00189
MANHAT	Γ Α2N 21-12-03	3 1	1060		0	233	21.98113
MANHAT	ΓΑ20021-12-16	$3 \qquad 1$	1061		1	234	22.05467
MANHAT	Γ Α210 21-12-20) 1	1062		0	234	22.03390

```
city <- "QUEENS"
nypd_murder_boro_QUEENS <- nypd_boro %>%
  filter(BORO == city) %>%
  group_by(BORO, OCCUR_DATE) %>%
  #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
  select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent) %>
  ungroup()
knitr::kable(tail(nypd_murder_boro_QUEENS))
```

MAG rder	murderpercent
232	22.09524
233	22.16936
234	22.24335
234	22.22222
235	22.29602
235	22.27488
L	232 233 234 234 235

Step 4: Applying Linear model on the data and Visualization

```
mod <- lm(cumshooting ~ cummurder, data = nypd_boro)
summary(mod)</pre>
```

```
##
## Call:
## lm(formula = cumshooting ~ cummurder, data = nypd boro)
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -415.67 -51.23 -11.36
                             57.02 230.87
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 16.468517
                           2.053160
                                     8.021 1.21e-15 ***
                           0.008074 596.608 < 2e-16 ***
                4.817127
## cummurder
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 104.5 on 7241 degrees of freedom
## Multiple R-squared: 0.9801, Adjusted R-squared: 0.9801
## F-statistic: 3.559e+05 on 1 and 7241 DF, p-value: < 2.2e-16
nypd_boro %>% slice_min(cumshooting)
## # A tibble: 5 x 7
    BORO
                   OCCUR DATE STATISTICAL MURDER ~1 cummu~2 shoot~3 cumsh~4 murde~5
##
##
     <chr>>
                   <date>
                                               <dbl>
                                                       <dbl>
                                                               <dbl>
                                                                       <dbl>
## 1 BRONX
                   2006-01-01
                                                   0
                                                           0
                                                                   1
                                                                           1
                                                                                   0
## 2 BROOKLYN
                   2006-01-02
                                                   1
                                                           1
                                                                   1
                                                                           1
                                                                                 100
## 3 MANHATTAN
                   2006-01-01
                                                   1
                                                           1
                                                                   1
                                                                           1
                                                                                 100
## 4 QUEENS
                   2006-01-01
                                                   0
                                                                                   0
                                                           0
                                                                   1
                                                                           1
## 5 STATEN ISLAND 2006-01-02
                                                   0
                                                           0
                                                                                   0
## # ... with abbreviated variable names 1: STATISTICAL_MURDER_FLAG, 2: cummurder,
## # 3: shooting, 4: cumshooting, 5: murderpercent
nypd boro %>% slice max(cumshooting)
## # A tibble: 1 x 7
              OCCUR DATE STATISTICAL MURDER FLAG cummurder shooting cumsh~1 murde~2
   BORO
##
     <chr>>
              <date>
                                            <dbl>
                                                      <dbl>
                                                               <dbl>
                                                                       <dbl>
                                                                               <dbl>
## 1 BROOKLYN 2021-12-18
                                                                        2840
                                                                                21.4
## # ... with abbreviated variable names 1: cumshooting, 2: murderpercent
x_{grid} < - seq(0, 3000)
new_df <- tibble(cumshooting = x_grid)</pre>
nypd_pred <- nypd_boro %>% mutate(pred = predict(mod))
# nypd pred
nypd_pred %>% ggplot() +
 geom point(aes(x = OCCUR DATE, y=cumshooting), color= "green")+
 geom_point(aes(x = OCCUR_DATE, y = pred), color = "red")
```



```
#Visualization of data

nypd_boro %>%
    ggplot(aes(x = OCCUR_DATE, y=cummurder, group=BORO, color=BORO))+
    geom_line()
```



```
nypd_boro %>%
  ggplot(aes(x = OCCUR_DATE, y=cumshooting, group=BORO, color=BORO))+
  geom_line()
```



```
nypd_boro %>%
  ggplot(aes(x = OCCUR_DATE, y=murderpercent, group=BORO, color=BORO))+
  geom_line()
```


Step 5: Adding Bias Identification - Being foreigner I couldn't imagine the incident in the way it happened and that's a potential Bias. I have great fear of shooting and disbelief of the society in which it is carried out. Had to do lot of studies to understand the incident and this could lead me to the way it was portrayed.