Taylor Polvnomials

Calculus Labs

Taylor Series

Taylor

Polynomials

Example

Taylor Polynomials

Worcester Polytechnic Institute

Department of Mathematical Sciences

Calculus Labs

Taylor Series

Taylor Polynomials

Calculus Labs

Taylor Series

Polynomials

Example

Definition

Let f be a function with derivatives of all orders throughout some interval containing a.

The **Taylor series** generated by f at x = a is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

Taylor Polynomial

Taylor Polynomials

Calculus Labs

Taylor Series

Taylor Polynomials

Example

Definition

Let f be a function with derivatives of order n for $n=1,2,\ldots,N$ throughout some interval containing a. Then for any integer $K \in \{0,1,2,\ldots,N\}$ the **Taylor polynomial of order** K generated by f at x=a is the polynomial

$$P_K(x) = \sum_{n=0}^K \frac{f^{(n)}(a)}{n!} (x - a)^n, \tag{1}$$

or

$$P_{K}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^{2} + \dots + \frac{f^{(K)}(a)}{K!}(x-a)^{K}.$$
(2)

Example: Maclaurin Series for sin(bx)

 $f(x) = \sin(bx)$ has Maclaurin series:

Calculus Labs

Taylor Polynomials

$$\sin(u) = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}$$

$$= u - \frac{u^3}{3!} + \frac{u^5}{5!} - \frac{u^7}{7!} + \frac{u^9}{9!} - \dots \text{ for all } u \text{ in } (-\infty, \infty)$$

Substitute
$$u = bx$$

$$\sin(bx) = \sum_{n=0}^{\infty} (-1)^n \frac{(bx)^{2n+1}}{(2n+1)!}$$

$$=bx - \frac{b^{3}x^{3}}{3!} + \frac{b^{5}x^{5}}{5!} - \frac{b^{7}x^{7}}{7!} + \frac{b^{9}x^{9}}{9!} - \dots$$

$$= bx - \frac{b^{3}x^{3}}{3!} + \frac{b^{5}x^{5}}{5!} - \frac{b^{7}x^{7}}{7!} + \frac{b^{9}x^{9}}{9!} - \dots$$

Maclaurin Polynomials for sin(bx)

Calculus Labs

$$\sin(bx) = \sum_{n=0}^{\infty} (-1)^n \frac{b^{2n+1}}{(2n+1)!} \cdot x^{2n+1}$$

$$= bx - \frac{b^3}{3!}x^3 + \frac{b^5}{5!}x^5 - \frac{b^7}{7!}x^7 + \frac{b^9}{9!}x^9 - \dots$$

$$T_1(x) = bx$$

$$T_3(x) = b_X - \frac{b^3}{3!} X^3$$

$$T_3(x) = b_X - \frac{b^3}{3!} X$$

$$T_5(x) = b_X - \frac{b^3}{3!} X^3 + \frac{b^5}{5!} X^5$$

$$T_7(x) = b_X - \frac{b^3}{3!} x^3 + \frac{b^5}{5!} x^5 - \frac{b^7}{7!} x^7$$

Maclaurin Polynomials for sin(bx)

 $T_1(x) = bx$

Calculus Labs

$$T_3(x) = bx - \frac{b^3}{3!}x^3$$

$$T_5(x) = bx - \frac{b^3}{3!}x^3 + \frac{b^5}{5!}x^5$$

$$T_7(x) = bx - \frac{b^3}{3!}x^3 + \frac{b^5}{5!}x^5 - \frac{b^7}{7!}x^7$$

Graph in Desmos: https://www.desmos.coms

Approximations to sin(2x) at x = 1.5

$$T_1(1.5) = 3$$

Calculus Labs

$$T_3(1.5) = -1.5$$

$$T_5(x) = 0.525$$

$$T_7(x) = 0.0911$$

$$\sin(2 \cdot 1.5) \approx 0.14112001$$

Errors of Approximations to sin(2x) at x = 1.5

laylor Polynomials

Calculus Labs

$$|Error| = |True Value - Approximation|$$
 (3)

Taylor Polynomials

Polynomial Approximation

$$T_1(1.5)$$

$$T_3(1.5)$$

$$T_5(1.5)$$

$$T_7(1.5)$$

$$|\sin(2\cdot 1.5) - T_1(1.5)| = 2.8589$$

$$\sin(2 \cdot 1.5) - T_3(1.5) = 1.6411$$

$$|\sin(2\cdot 1.5) - T_5(1.5)| = 0.3839$$

$$\sin(2 \cdot 1.5) - T_7(1.5)| = 0.0500$$