${f Last\ name\ _}$	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 37 The Structure of Linear Operators.

Concepts & Notation

- (Sec. 5.3) permutation, $\det A$.
- (Sec. 6.2) characteristic value, characteristic vector, characteristic polynomial, diagonalizable linear operator.
- 1. (Claim:) Let T be a linear operator on a finite-dimensional space V. Let c_1, \ldots, c_k be the distinct characteristic values of T and let W_i be the null space of (T cI). The following are equivalent.
 - (a) T is diagonalizable,
 - (b) The characteristic polynomial for T is:

$$p = (x - c_i)^{d_i} \dots (x - c_k)^{d_k}$$

where dim $W_i = d_i$ (for i = 1, ..., k),

(c) $\dim W_1 + \ldots + \dim W_k = \dim V$.

2. (Claim:) If T is a linear operator from a vector space V over a field \mathbb{F} to itself then $T^2 = T \circ T$ is also in $\mathcal{L}(V)$. And $T^k \in \mathcal{L}(V)$.

3. (Claim:) If $T \in \mathcal{L}(V)$ then $cT \in \mathcal{L}(V)$ (for $c \in \mathbb{F}$).

4. (Claim:) If $T, T' \in \mathcal{L}(V)$ then $T + T' \in \mathcal{L}(V)$	7).
--	-----

5. (Claim:) If
$$T \in \mathcal{L}(V)$$
 and $p \in \mathbb{F}[x]$ then $p(T) \in \mathcal{L}(V)$.

6. (Claim:) If
$$T \in \mathcal{L}(V)$$
, $T(\alpha) = c\alpha$ (for $c \in \mathbb{F}$, $\alpha \in V$), and $p \in \mathbb{F}[x]$ then $p(T)(\alpha) = p(c)\alpha$.

7. What does it mean for a polynomial to annihilate a linear operator T?

8. What is the *minimal polymonial* of a linear operator T over a finite-dimensional vector space T? (Does it exist? What does it tell us?)

9. (Cayley-Hamilton Theorem) Let $A \in \mathbb{F}^{n \times n}$. Let $p \in \mathbb{F}[x]$ be the characteristic polynomial of A. Then p(A) = 0.