3011979 Intro to Deep Learning for Medical Imaging

L11: Neural network architectures (for imaging data)

Apr 16th, 2021

Sira Sriswasdi, Ph.D.

Research Affairs, Faculty of Medicine Chulalongkorn University

Limitations of multilayer perceptron (fully connected / dense network)

Fully connected network – powers

- Generate powerful predictor as a complex function of input features
- Can approximate any real-value function with simple, non-polynomial activation function

Fully connected network – limitations

- What if features have contextual relationships?
 - Adjacent pixels in an image
 - Adjacent words in a sentence
- What if input size is variable?
 - Number of words in a medical report

Fully connected network's image perception

 Fully connected network cannot learn anything from pixel values of chest x-ray images

Image object

- An image object is a collection of related pixels
- Remain the same when rotated or translated
 - Fully connect network will perceive these variations as totally different inputs

Computer vision

(Credit: Minh Hoai Nguyen, MLRS2019)

Sciences of image

- Image processing
 - Image to image
- Imaging
 - Physics to image
- Graphics
 - Symbols to image
- Computer vision
 - Image to symbols

Challenges of CV

Image through human eyes

Image in computer

- We see more than just colors and numbers
- Try describing the concept "ugly" to a blind man
 - Or to a computer

Context matters a lot

Main tasks in CV – image classification

Kermany et al. Cell (2018)

- Input: An image
- Output: Single-label or multi-label classification

Main tasks in CV – object detection

Pang et al. PLoS ONE (2019)

- Input: An image
- Output: Bounding box + Object label

Main tasks in CV – semantic segmentation

Makropoulos et al. IEEE Trans Med Imaging (2014)

- Input: An image
- Output: Pixel-level classification (and more)

Image processing

Contrast adjustment

b. Histogram Equilization a. Original Image c. Linear Streatching d. Adaptive Histogram Equilization

b. Histogram Equilization d. Adaptive Histogram Equilization

Ahmed et al. TechnoMoot conference (2011)

c d c. Linear Streatching

Noise filtering

Ahmed et al. TechnoMoot conference (2011)

0				

Setting center pixel = average of 3x3 area

Setting center pixel = average of 3x3 area

Setting center pixel = average of 3x3 area

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Output is a smoothed-out version of the input image

Filtering as mathematical operation

- 3x3 mean filtering
- 5x5 Gaussian filtering
- Integrate contextual info!

<u>1</u> 9	<u>1</u> 9	<u>1</u>		
<u>1</u>	<u>1</u>	<u>1</u>		
9	9	9		
<u>l</u>	<u>1</u>	<u>1</u>		
9	9	9		

 $G(x,y) = rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$

$$\sigma = 1$$

_	1		
1	1	5	

2	4	5	4	2
4	9	12	9	4
5	12	15	12	5
4	9	12	9	4
2	4	5	4	2

Filtering effects

input image

https://setosa.io/ev/image-kernels/

output image

output image

Convolutional neural network

Convolutional neural network

Source: towardsdatascience.com by Saha, S.

- Data-driven, automatic search for optimal filters
 - Similar objective as radiomics, but no hand-crafting
- CNN layers extract features + fully-connect layers performing prediction

Capability of deep CNN

Source: Zeiler and Fergus (2013)

- Early layers produce simple geometric features
- Deeper layers produce complex shapes and patterns

Backpropagation through CNN

- Input: 1D signal $[x_1, x_2, ..., x_d]$
- Convolution: 1x2 filter [w₁, w₂]
- Output of CNN:
 - $y_1 = x_1 w_1 + x_2 w_2$
 - $y_2 = x_2 w_1 + x_3 w_2$
 - •
 - $y_{d-1} = x_{d-1}w_1 + x_dw_2$
- Output of network:
 - $\hat{y} = \text{sigmoid}(y_1u_1 + y_2u_2 + \dots + y_{d-1}u_{d-1})$
- Loss: $L(\hat{y}, y)$
- We can use chain rule to compute $\frac{\delta L}{\delta w_1}$ and $\frac{\delta L}{\delta w_2}$

Convolutional layer in Tensorflow

tf.keras.layers.Conv2D

Inherits From: Layer, Module

View aliases

```
tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid',
    data_format=None, dilation_rate=(1, 1), groups=1, activation=None,
    use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros', kernel_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    bias_constraint=None, **kwargs
```

Number of filters

More filters generates more geometric features

Kernel size and stride

Source: makeyourownneuralnetwork.blogspot.com

- The size of each filter or kernel is k x k
 - Larger filter incorporates broader contextual data
- Stride = frequency at which to apply a filter

Stride

Source: makeyourownneuralnetwork.blogspot.com

 Larger stride further reduces the output size in exchange for some loss in resolution

Padding

Source: makeyourownneuralnetwork.blogspot.com

- Padding = filling in zeros to the exterior of image
 - padding = "valid" → no padding
 - padding = "same" → output size = input size

Number of parameters in CNN

Setting A

- tf.keras.layers.Conv2D(filters = 4, kernel_size = (9, 9), strides = (1, 2), padding = 'valid')
- Input image size = 128 x 128

Setting B

- tf.keras.layers.Conv2D(filters = 32, kernel_size = (3, 3), strides = (1, 2), padding = 'valid')
- tf.keras.layers.Conv2D(filters = 8, kernel_size = (3, 3), strides = (1, 2), padding = 'valid')
- Input image size = 64 x 64

CNN block architecture

- Convolutional layer = compute feature
- Activation layer = apply non-linear transformation
- Pooling layer = reduce dimension

Pooling

Source: cs231n.github.io

- Like stride, pooling layer also reduce output size
 - Max pooling
 - Average pooling

Channel

- Source: towardsdatascience.com
- Image can have multiple channels (like RGB)
- Each filter is applied to each channel separately
- Output of each filter is also its own channel

Merging channels

- Combine values across channels for each pixel
 - Like a D-to-1 fully connected layer on channels
 - Or a 1x1 convolution on image

Key CNN architectures

Timeline of CNN (for classification)

Source: towardsdatascience.com

- AlexNet was the winner of 2012 ImageNet challenge
 - 5 convolution + 3 fully connected layers
 - Better than 2nd place by more than 10 percentage points

AlexNet

VGG-16

Decrease image size, increase number of channels

Residual Network (ResNet)

- Add bypasses over multiple convolutional layers
 - Reduce the number of multiplication terms in chain rule during backpropagation for early layers

Residual connection improves training

DenseNet

Feedforward bypasses

Inception = multi-resolution CNN

From left: A dog occupying most of the image, a dog occupying a part of it, and a dog occupying very little space (Images obtained from <u>Unsplash</u>).

CNN design in a nutshell

Module: tf.keras.applications

Modules

```
densenet module: DenseNet models for Keras.
efficientnet module: EfficientNet models for Keras.
imagenet_utils module: Utilities for ImageNet data preprocessing & prediction decoding.
inception_resnet_v2 module: Inception-ResNet V2 model for Keras.
inception_v3 module: Inception V3 model for Keras.
mobilenet module: MobileNet v1 models for Keras.
mobilenet v2 module: MobileNet v2 models for Keras.
mobilenet_v3 module: MobileNet v3 models for Keras.
nasnet module: NASNet-A models for Keras.
resnet module: ResNet models for Keras.
```

Any question?

Pyception video, AnacondaCon 2018