Scheduling

CPU ocheduling decisions:

- 1. running maisting state
 2. running ready state
- 3. mailing ready state
- 4. terminates

Daca sunt door 1. gi 4. monpreemptive In rest 7 preemplie Broumptiue ocheduling = ronditu de cursa

CPU utilization: time CPU occupat Throughput: # de procese complétate per time unit Turnaround time: timpul în rare se execută un anumit proces Whiting time: timpul pe voil 1-a agreptant un proces in ready queue Response time: timpul dintre momentul de request ji primul

emposed countered

FCFS (Primul venit primul serviit)

house	Burst Time
PI	24
Pz	3
P3	3

· Presuperand la procesele ruin intr-o animità ordine: P1, P2, P3

	PA	Pi		P3	
0			27		

Waiting time:

Aurage maiting time: (0+24+27)/3=17

· Presupunând ra processele ruin ûn ordinea: P2, P3, P1

P	2 P	3	Pa	
0	3	6		30

Waiting time:

Average mailing time: (6+0+3)/3 = 3 => un resultat mult mai lun decât rel centerior

Procesell run în funcție de Arrival Time. Dorca Arrival Time nu e în tabel -) rein toate în acelagi timp

Round Rollin

Daca g este : matre =) FIFO (adica FCFS)

mic =) Round Polin

Nición proces nu apteaptà mai mult de (n-1)g (unde n'este numarul total de procese). Decidaçà XVT > (n-1)g =) Appoistm grapit

ex:	Process	Burst Time
2=4	PA	24
	P2	3
	P3	3

7	1	Pz	P	3	Pi	P	PA	7,	1	24
								22		

Dacà în talul go fi aunt zi Arrival Time atunci el dicta în re ordine intra procesele

ex:	Process	Arvival time	Burst Time
2=2	Po	0	5
(au dulibrea guantei)	PA	0	3
guanter)	P2	2	8
	P3	4	
	Py	6	7

P	10	71	P2	P3	P4	Po	Pa	7	P2	Py	P2	P4

SJF (Shortest Job First)

Process	Burst Time	Pa Pa Pa	7
R	6	0 3 9	_ 24
P2	8		
R3	7	Average mailting time: (3+16+9+0)/4 = 7	
Py	3	(3+16+9+0)/4=+	

SJF preemptive (numit ai Shortest remaining time first)

Process	Arrival Time	Burst Time
PA	0	8
P2	1	4
R3	2	9
Py	3	5

RA		P2	P4	PA	, 1, 3	P3
0	1	5		10	. 17	26

Authorge maiting time: [(10-1)+(1-1)+(1-2)+(5-3)]/4=26/4=6.5

Scanned with

CS CamScanner

Priority scheduling

Daca CPU - este mare (prioritate mica)
este mic (prioritate mare)

Deci se incepe de la cel mai mic CPU

Problema este staruation (procesele au lou priority pot sà me fie niciodatà executate), iar solutia este aging (au timpul care trece re increas-vieste prioritates procesului)

Process	Burst Time	Priority
Pa	10	3
P2	1	1
P3	2	4
Py	1	5
P ₅	5	2

P	2	P5		Pa	P ₃	P	4
0	1		6		16	18	19

Average maiting time: (0+1+6+16+18)/5 = 8,2

Priority scheduling w/ Round Rolling

Run la procesul au prioritatea non mai morse La processele au acceasi prioritate se face RR (door ele)

Bocess	Burst Time	Priority		
P	4	3		
P2	5	2		
P3	8	2		
Pu	7	1		
Ps	3	3		

2=2:

P4	P2	P3	P2	P3	P2	P3	1	P. Ps	P	F	3
0	7	9		13		16		22			The second second
		Round	d Rol u cà	in ama	u Pi	2 P3		Rown Pi,		eluir	,