



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification <sup>6</sup> :<br><br>C12N 15/02, 15/11, 15/40, 15/54, 15/82,<br>C07K 14/005, 14/01, 14/08, 16/08, C12Q<br>1/68, G01N 33/53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (11) International Publication Number: <b>WO 98/53055</b><br><br>(43) International Publication Date: 26 November 1998 (26.11.98) |
| (21) International Application Number: PCT/US98/10313<br><br>(22) International Filing Date: 20 May 1998 (20.05.98)<br><br>(30) Priority Data:<br>60/047,194 20 May 1997 (20.05.97) US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,<br>BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,<br>GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,<br>LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,<br>MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,<br>TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent<br>(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent<br>(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent<br>(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,<br>LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,<br>CM, GA, GN, ML, MR, NE, SN, TD, TG). |                                                                                                                                   |
| (71) Applicant: CORNELL RESEARCH FOUNDATION, INC.<br>[US/US]; Suite 105, 20 Thornwood Drive, Ithaca, NY 14850<br>(US).<br><br>(72) Inventors: ZHU, Hai-Ying; 681 Castle Street, Geneva, NY<br>14456 (US). LING, Kai-Shu; 170 William Street, Geneva,<br>NY 14456 (US). GONSALVES, Dennis; 595 Castle Street,<br>Geneva, NY 14456 (US).<br><br>(74) Agents: GOLDMAN, Michael, L. et al.; Nixon, Hargrave,<br>Devans & Doyle LLP, Clinton Square, P.O. Box 1051,<br>Rochester, NY 14603 (US).                                                                                                                                                                                                                                                   |  | <b>Published</b><br><i>With international search report.</i><br><i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |
| (54) Title: GRAPEVINE LEAFROLL VIRUS (TYPE 2) PROTEINS AND THEIR USES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |
| <b>(57) Abstract</b><br><p>The present invention relates to isolated proteins or polypeptides of grapevine leafroll virus (type 2). The encoding DNA molecules either alone in isolated form or in an expression system, a host cell, or a transgenic grape plant are also disclosed. Other aspects of the present invention relates to a method of imparting grapevine leafroll resistance to grape and tobacco plants by transforming them with the DNA molecules of the present invention, a method of imparting beet yellows virus resistance to a beet plant, a method of imparting tristeza virus resistance to a citrus plant, and a method of detecting the presence of a grapevine leafroll virus, such as GRLaV-2, in a sample.</p> |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |

## GRAPEVINE LEAFROLL VIRUS (TYPE 2) PROTEINS AND THEIR USES

This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/047,194, filed May 20, 1997. This work was supported by the U.S. Department of Agriculture Cooperative Grant No. 58-2349-9-01. The U.S. Government may have certain rights in the invention.

### FIELD OF THE INVENTION

The present invention relates to grapevine leafroll virus (type 2) proteins, DNA molecules encoding these proteins, and their uses.

### BACKGROUND OF THE INVENTION

The world's most widely grown fruit crop, the grape (*Vitis sp.*), is cultivated on all continents except Antarctica. However, major grape production centers are in European countries (including Italy, Spain, and France), which constitute about 70% of the world grape production (Mullins et al., Biology of the Grapevine, Cambridge, U.K.:University Press (1992)). The United States, with 300,000 hectares of grapevines, is the eighth largest grape grower in the world. Although grapes have many uses, a major portion of grape production (~80%) is used for wine production. Unlike cereal crops, most of the world's vineyards are planted with traditional grapevine cultivars, which have been perpetuated for centuries by vegetative propagation. Several important grapevine virus and virus-like diseases, such as grapevine leafroll, corky bark, and *Rupestris* stem pitting, are transmitted and spread through the use of infected vegetatively propagated materials. Thus, propagation of certified, virus-free materials is one of the most important disease control measures. Traditional breeding for disease resistance is difficult due to the highly heterozygous nature and outcrossing behavior of grapevines, and due to polygenic patterns of inheritance. Moreover, introduction of a new cultivar may be prohibited by custom or law. Recent biotechnology developments have made possible the introduction of special traits, such as disease resistance, into an established cultivar without altering its horticultural characteristics.

Many plant pathogens, such as fungi, bacteria, phytoplasmas, viruses, and nematodes can infect grapes, and the resultant diseases can cause substantial losses in production (Pearson et al., Compendium of Grape Diseases, American Phytopathological

Society Press (1988)). Among these, viral diseases constitute a major hindrance to profitable growing of grapevines. About 34 viruses have been isolated and characterized from grapevines. The major virus diseases are grouped into: (1) the grapevine degeneration caused by the fanleaf nepovirus, other European nepoviruses, and American nepoviruses, (2) the leafroll complex, and (3) the rugose wood complex (Martelli, ed., Graft Transmissible Diseases of Grapevines. Handbook for Detection and Diagnosis, FAO, UN, Rome, Italy (1993)).

Of the major virus diseases, the grapevine leafroll complex is the most widely distributed throughout the world. According to Goheen ("Grape Leafroll," in Frazier et al., eds., Virus Diseases of Small Fruits and Grapevines (A Handbook), University of California, Division of Agricultural Sciences, Berkeley, Calif, USA, pp. 209-212 (1970) ("Goheen (1970)"), grapevine leafroll-like disease was described as early as the 1850s in German and French literature. However, the viral nature of the disease was first demonstrated by Scheu (Scheu, "Die Rollkrankheit des Rebstockes (Leafroll of grapevine)," D. D. Weinbau 14:222-15 358 (1935) ("Scheu (1935)"). In 1946, Harmon and Snyder (Harmon et al., "Investigations on the Occurrence, Transmission, Spread and Effect of 'White' Fruit Colour in the Emperor Grape," Proc. Am. Soc. Hort. Sci. 74:190-194 (1946)) determined the viral nature of White Emperor disease in California. It was later proven by Goheen et al. (Goheen et al., "Leafroll (White Emperor Disease) of Grapes in California, Phytopathology, 48:51-54 (1958) ("Goheen (1958)")) that both leafroll and "White Emperor" diseases were the same, and only the name "leafroll" was retained.

Leafroll is a serious viral disease of grapes and occurs wherever grapes are grown. This wide distribution of the disease has come about through the propagation of diseased vines. It affects almost all cultivated and rootstock varieties of *Vitis*. Although the disease is not lethal, it causes yield losses and reduction of sugar content. Scheu estimated in 25 1936 that 80 per cent of all grapevines planted in Germany were infected (Scheu, Mein Winzerbuch, Berlin:Reichsnahrstand-Verlags (1936)). In many California wine grape vineyards, the incidence of leafroll (based on a survey of field symptoms conducted in 1959) agrees with Scheu's initial observation in German vineyards (Goheen et al., "Studies of 30 Grape Leafroll in California," Amer. J. Enol. Vitic., 10:78-84 (1959)). The current situation on leafroll disease does not seem to be any better (Goheen, "Diseases Caused by Viruses and Viruslike Agents," The American Phytopathological Society, St. Paul, Minnesota:APS Press, 1:47-54 (1988) ("Goheen (1988)"). Goheen also estimated that the disease causes an annual loss of about 5-20 per cent of the total grape production (Goheen (1970) and Goheen (1988)).

The amount of sugar in individual berries of infected vines is only about 1/2 to 2/3 that of berries from noninfected vines (Goheen (1958)).

Symptoms of leafroll disease vary considerably depending upon the cultivar, environment, and time of the year. On red or dark-colored fruit varieties, the typical downward rolling and interveinal reddening of basal, mature leaves is the most prevalent in autumn; but not in spring or early summer. On light-colored fruit varieties however, symptoms are less conspicuous, usually with downward rolling accompanied by interveinal chlorosis. Moreover, many infected rootstock cultivars do not develop symptoms. In these cases, the disease is usually diagnosed with a woody indicator indexing assay using *Vitis vivifera* cv. Carbernet Franc (Goheen (1988)).

Ever since Scheu demonstrated that leafroll was graft transmissible, a virus etiology has been suspected (Scheu (1935)). Several virus particle types have been isolated from leafroll diseased vines. These include potyvirus-like (Tanne et al., "Purification and Characterization of a Virus Associated with the Grapevine Leafroll Disease,"

15 Phytopathology, 67:442-447 (1977)), isometric virus-like (Castellano et al., "Virus-like Particles and Ultrastructural Modifications in the Phloem of Leafroll-affected Grapevines," *Vitis*, 22:23-39 (1983) ("Castellano (1983)") and Namba et al., "A Small Spherical Virus Associated with the Ajinashika Disease of Koshu Grapevine, Ann. Phytopathol. Soc. Japan, 45:70-73 (1979)), and closterovirus-like (Namba, "Grapevine Leafroll Virus, a Possible Member of Closteroviruses, Ann. Phytopathol. Soc. Japan, 45:497-502 (1979)) particles. In recent years, however, long flexuous closteroviruses ranging from 1,400 to 2,200 nm have been most consistently associated with leafroll disease (Figure 1) (Castellano (1983), Faoro et al., "Association of a Possible Closterovirus with Grapevine Leafroll in Northern Italy," Riv. Patol. Veg., Ser IV, 17:183-189 (1981), Gugerli et al., "L'enroulement de la vigne: mise en évidence de particules virales et développement d'une méthode immuno-enzymatique pour le diagnostic rapide (Grapevine Leafroll: Presence of Virus Particles and Development of an Immuno-enzyme method for Diagnosis and Detection)," Rev. Suisse Viticult. Arboricolt. Hort., 16:299-304 (1984) ("Gugerli (1984)"), Hu et al., "Characterization of Closterovirus-like Particles Associated with Grapevine Leafroll Disease," J. Phytopathol., 30 128:1-14 (1990) ("Hu (1990)"), Milne et al., "Closterovirus-like Particles of Two Types Associated with Diseased Grapevines," Phytopathol. Z., 110:360-368 (1984), Zee et al., "Cytopathology of Leafroll-diseased Grapevines and the Purification and Serology of Associated Closteroviruslike Particles," Phytopathology, 77:1427-1434 (1987) ("Zee (1987)"), and Zimmermann et al., "Characterization and Serological Detection of Four

Closterovirus-like Particles Associated with Leafroll Disease on Grapevine," J. Phytopathol., 130:205-218 (1990) ("Zimmermann (1990)"). These closteroviruses are referred to as grapevine leafroll associated viruses ("GLRaV"). At least six serologically distinct types of GLRaV's (GLRaV-1 to -6) have been detected from leafroll diseased vines (Table 1) (Boscia et al., "Nomenclature of Grapevine Leafroll-associated Putative Closteroviruses, Vitis, 34:171-175 (1995) ("Boscia (1995)") and (Martelli, "Leafroll," pp. 37-44 in Martelli, ed., Graft Transmissible Diseases of Grapevines, Handbook for Detection and Diagnosis, FAO, Rome Italy, (1993) ("Martelli I")). The first five of these were confirmed in the 10th Meeting of the International Council for the Study of Virus and Virus Diseases of the 10 Grapevine ("ICVG") (Volos, Greece, 1990).

TABLE 1

| Type    | Particle length<br>(nm) | Coat<br>protein Mr<br>(X10 <sup>3</sup> ) | Reference                           |
|---------|-------------------------|-------------------------------------------|-------------------------------------|
| GLRaV-1 | 1,400-2,200             | 39                                        | Gugerli (1984)                      |
| GLRaV-2 | 1,400-1,800             | 26                                        | Gugerli (1984)<br>Zimmermann (1990) |
| GLRaV-3 | 1,400-2,200             | 43                                        | Zee (1987)                          |
| GLRaV-4 | 1,400-2,200             | 36                                        | Hu (1990)                           |
| GLRaV-5 | 1,400-2,200             | 36                                        | Zimmermann (1990)                   |
| GLRaV-6 | 1,400-2,200             | 36                                        | Gugerli (1993)                      |

15 Through the use of monoclonal antibodies, however, the original GLRaV II described in Gugerli (1984) has been shown to be an apparent mixture of at least two components, IIa and IIb (Gugerli et al., "Grapevine Leafroll Associated Virus II Analyzed by Monoclonal Antibodies," 11th Meeting of the International Council for the Study of Viruses and Virus Diseases of the Grapevine, Montreux, Switzerland, pp. 23-24 (1993) ("Gugerli (1993)").

20 Recent investigation with comparative serological assays (Boscia (1995)) demonstrated that the IIb component of cv. Chasselas 8/22 is the same as the GLRaV-2 isolate from France (Zimmermann (1990)) which also include the isolates of grapevine coky bark associated closteroviruses from Italy (GCBaV-BA) (Boscia (1995)) and from the United States

(GCBaV-NY) (Namba et al., "Purification and Properties of Closterovirus-like Particles Associated with Grapevine Corky Bark Disease," Phytopathology, 81:964-970 (1991) ("Namba (1991)"). The IIa component of cv. Chasselas 8/22 was given the provisional name of grapevine leafroll associated virus 6 (GLRaV-6). Furthermore, the antiserum to the CA-5 isolate of GLRaV-2 produced by Boscia et al. (Boscia et al., "Characterization of Grape Leafroll Associated Closterovirus (GLRaV) Serotype II and Comparison with GLRaV Serotype III," Phytopathology, 80:117 (1990)) was shown to contain antibodies to both GLRaV-2 and GLRaV-1, with a prevalence of the latter (Boscia (1995)).

Virions of GLRaV-2 are flexuous, filamentous particles about 1,400-1,800 nm in length (Gugerli et al., "L'enroulement de la Vigne: Mise en Evidence de Particles Virales et Development d'une Methode Immuno-enzymatique Pour le Diagnostic Rapide (Grapevine Leafroll: Presence of Virus Particles and Development of an Immuno-enzyme Method for Diagnosis and Detection)," Rev. Suisse Viticolt. Arboricolt. Horticult. 16:299-304 (1984)). A double-stranded RNA (dsRNA) of about 15 kb was consistently isolated from GLRaV-2 infected tissues (Goszcynski et al., "Detection of Two Strains of Grapevine Leafroll-Associated Virus 2," Vitis 35:133-35 (1996)). The coat protein of GLRaV-2 is ca 22~26 kDa (Zimmermann et al., "Characterization and Serological Detection of Four Closterovirus-like Particles Associated with Leafroll Disease on Grapevine," J. Phytopathology 130:205-18 (1990); Gugerli and Ramel, Extended abstracts: "Grapevine Leafroll Associated Virus II Analyzed by Monoclonal Antibodies," 11th ICVG at Montreux, Switzerland, Gugerli, ed., Federal Agricultural Research Station of Changins, CH-1260 Nyon, Switzerland, p. 23-24 (1993); Boscia et al., "Nomenclature of Grapevine Leafroll-Associated Putative Closteroviruses," Vitis 34:171-75 (1995)), which is considerably smaller than other GLRaVs (35~43 kDa) (Zee et al., "Cytopathology of Leafroll-Diseased Grapevines and the Purification and Serology of Associated Closterovirus Like Particles," Phytopathology 77:1427-34 (1987); Hu et al., "Characterization of Closterovirus-Like Particles Associated with Grapevine Leafroll Disease," J. of Phytopathology 128:1-14 (1990); Ling et al., "The Coat Protein Gene of Grapevine Leafroll Associated Closterovirus-3: Cloning, Nucleotide Sequencing and Expression in Transgenic Plants," Arch. of Virology 142:1101-16 (1997)). Although GLRaV-2 has been classified as a member of the genus *Closterovirus* based on particle morphology and cytopathology (Martelli, Circular of ICTV-Plant Virus Subcommittee Study Group on Closterolike Viruses" (1996)), its molecular and biochemical properties are not well characterized.

In the closterovirus group, several viruses have recently been sequenced. The partial or complete genome sequences of beet yellows virus (BYV) ( Agranovsky et al. "Nucleotide Sequence of the 3'-Terminal Half of Beet Yellows Closterovirus RNA Genome Unique Arrangement of Eight Virus Genes," J. General Virology 72:15-24 (1991); 5 Agranovsky et al., "Beet Yellows Closterovirus: Complete Genome Structure and Identification of a Papain-like Thiol Protease," Virology 198:311-24 (1994)), beet yellow stunt virus (BYSV) (Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome and Implications for the Evolution of Closteroviruses," Virology 221:199-207 (1996)), citrus tristeza virus (CTV) (Pappu et al., "Nucleotide Sequence and 10 Organization of Eight 3' Open Reading Frames of the Citrus Tristeza Closterovirus Genome," Virology 199:35-46 (1994); Karasev et al., "Complete Sequence of the Citrus Tristeza Virus RNA Genome," Virology 208:511-20 (1995)), lettuce infectious yellows virus (LIYV) (Klaassen et al., "Partial Characterization of the Lettuce Infectious Yellows Virus Genomic RNAs, Identification of the Coat Protein Gene and Comparison of its Amino Acid Sequence 15 With Those of Other Filamentous RNA Plant Viruses," J. General Virology 75:1525-33 (1994); Klaassen et al., "Genome Structure and Phylogenetic Analysis of Lettuce Infectious Yellows Virus, a Whitefly-Transmitted, Bipartite Closterovirus," Virology 208:99-110 (1995)), little cherry virus (LChV) (Keim and Jelkmann, "Genome Analysis of the 3'- Terminal Part of the Little Cherry Disease Associated dsRNA Reveals a Monopartite 20 Clostero-Like Virus," Arch. Virology 141:1437-51 (1996); Jelkmann et al., "Complete Genome Structure and Phylogenetic Analysis of Little Cherry Virus, a Mealybug- Transmissible Closterovirus," J. General Virology 78:2067-71 (1997)), and GLRaV-3 (Ling et al., "Nucleotide Sequence of the 3' Terminal Two-Thirds of the Grapevine Leafroll 25 Associated Virus-3 Genome Reveals a Typical Monopartite Closterovirus," J. Gen. Virology 79(5):1289-1301 (1998)) revealed several common features of the closteroviruses, including the presence of HSP70 chaperone heat shock protein and a duplicate of the coat protein gene (Agranovsky "Principles of Molecular Organization, Expression, and Evolution of Closteroviruses: Over the Barriers," Adv. in Virus Res. 47:119-218 (1996); Dolja et al. "Molecular Biology and Evolution of Closteroviruses: Sophisticated Build-up of Large RNA 30 Genomes," Annual Rev. Photopathology 32:261-85 (1994); Boyko et al., "Coat Protein Gene Duplication in a Filamentous RNA Virus of Plants," Proc. Nat. Acad. Sci. USA 89:9156-60 (1992)). Characterization of the genome organization of GLRaVs would provide molecular information on the serologically distinct closteroviruses that cause similar leafroll symptoms in grapevine.

Several shorter closteroviruses (particle length 800 nm long) have also been isolated from grapevines. One of these, called grapevine virus A ("GVA") has also been found associated, though inconsistently, with the leafroll disease (Agran et al., "Occurrence of Grapevine Virus A (GVA) and Other Closteroviruses in Tunisian Grapevines Affected by Leafroll Disease," Vitis, 29:43-48 (1990), Conti, et al., "Closterovirus Associated with Leafroll and Stem Pitting in Grapevine," Phytopathol. Mediterr., 24:110-113 (1985), and Conti et al., "A Closterovirus from a Stem-pitting-diseased Grapevine," Phytopathology, 70:394-399 (1980)). The etiology of GVA is not really known; however, it appears to be more consistently associated with rugose wood *sensu lato* (Rosciglione et al., "Maladies de l'enroulement et du bois strié de la vigne: analyse microscopique et sérologique (Leafroll and Stem Pitting of Grapevine: Microscopical and Serological Analysis)," Rev. Suisse Arboric. Hortic., 18:207-211 (1986) ("Rosciglione (1986)'), and Zimmermann (1990)). Moreover, another short closterovirus (800 nm long) named grapevine virus B ("GVB") has been isolated and characterized from corky bark-affected vines (Boscia et al., "Properties of a Filamentous Virus Isolated from Grapevines Affected by Corky Bark," Arch. Virol., 130:109-120 (1993) and Namba (1991)).

As suggested by Martelli I, leafroll symptoms may be induced by more than one virus or they may be simply a general plant physiological response to invasion by an array of phloem-inhabiting viruses. Evidence accumulated in the last 15 years strongly favors the idea that grapevine leafroll is induced by one (or a complex) of long closteroviruses (particle length 1,400 to 2,200 nm).

Grapevine leafroll is transmitted primarily by contaminated scions and rootstocks. However, under field conditions, several species of mealybugs have been shown to be the vector of leafroll (Engelbrecht et al., "Transmission of Grapevine Leafroll Disease and Associated Closteroviruses by the Vine Mealybug *Planococcus-ficus*," Phytophylactica, 22:341-346 (1990), Rosciglione, et al., "Transmission of Grapevine Leafroll Disease and an Associated Closterovirus to Healthy Grapevine by the Mealybug *Planococcus fucus*," (Abstract), Phytoparasitica, 17:63-63 (1989), and Tanne, "Evidence for the Transmission by Mealybugs to Healthy Grapevines of a Closter-like Particle Associated with Grapevine Leafroll Disease," Phytoparasitica, 16:288 (1988)). Natural spread of leafroll by insect vectors is rapid in various parts of the world. In New Zealand, observations of three vineyards showed that the number of infected vines nearly doubled in a single year (Jordan et al., "Spread of Grapevine Leafroll and its Associated Virus in New Zealand Vineyards," 11th Meeting of the International Council for the Study of Viruses and Virus Diseases of the

Grapevine, Montreux, Switzerland, pp. 113-114 (1993)). One vineyard became 90% infected 5 years after GLRaV-3 was first observed. Prevalence of leafroll worldwide may increase as chemical control of mealybugs becomes more difficult due to the unavailability of effective insecticides.

5 In view of the serious risk grapevine leafroll virus poses to vineyards and the absence of an effective treatment of it, the need to prevent this affliction continues to exist. The present invention is directed to overcoming this deficiency in the art.

## SUMMARY OF INVENTION

10 The present invention relates to an isolated protein or polypeptide corresponding to a protein or polypeptide of a grapevine leafroll virus (type 2). The encoding RNA and DNA molecules, in either isolated form or incorporated in an expression system, a host cell, a transgenic *Vitis* or *citrus* scion or rootstock cultivar, or a transgenic *Nicotiana* plant or beet plant are also disclosed.

15 Another aspect of the present invention relates to a method of imparting grapevine leafroll virus (type 2) resistance to *Vitis* scion or rootstock cultivars or *Nicotiana* plants by transforming them with a DNA molecule encoding the protein or polypeptide corresponding to a protein or polypeptide of a grapevine leafroll virus (type 2). Other aspects 20 of the present invention relate to a method of imparting beet yellows virus resistance to beet plants and a method of imparting tristeza virus resistance to citrus scion or rootstock cultivars, both by transforming the plants or cultivars with a DNA molecule encoding the protein or polypeptide corresponding to a protein or polypeptide of a grapevine leafroll virus (type 2).

25 The present invention also relates to an antibody or binding portion thereof or probe which recognizes the protein or polypeptide.

Grapevine leafroll virus resistant transgenic variants of the current commercial grape cultivars and rootstocks allows for more complete control of the virus, while retaining the varietal characteristics of specific cultivars. Furthermore, these variants permit control of 30 GLRaV-2 transmitted either by contaminated scions or rootstocks or by a presently uncharacterized insect vector. With respect to the latter mode of transmission, the present invention circumvents increased restriction of pesticide use which has made chemical control of insect infestation increasingly difficult. In this manner, the interests of the environment

and the economics of grape cultivation and wine making are all furthered by the present invention.

#### BRIEF DESCRIPTION OF THE DRAWINGS

5

Figures 1A and 1B are a comparison of a double-stranded RNA (dsRNA) profile (Figure 1A) of GLRaV-2 and its Northern hybridization analysis (Figure 1B). In Figure 1A: lane M, lambda Hind III DNA marker; and lane 1, dsRNA pattern in 1% agarose gel stained with ethidium bromide. Figure 1B is a northern hybridization of isolated high molecular weight dsRNA of GLRaV-2 with a probe prepared with  $^{32}\text{P}$  [ $\alpha$ -dATP] labeled cDNA insert from GLRaV-2 specific cDNA clone TC-1. Lane 1, high molecular weight dsRNA of GLRaV-2. Lane 2, total RNA extracted from healthy grapevine.

10 Figures 2 displays the genome organization of GLRaV-2 and its sequencing strategy. Boxes represent ORFs encoded by deduced amino acid sequences of GLRaV-2, numbered lines represent nucleotide coordinates, beginning from 5'-terminal of RNA in kilobases (kb). The lines below GLRaV-2 RNA genome represent the cDNA clones used to determine the nucleotide sequences.

15 Figures 3A-3D are comparisons between ORF1a/ORF1b of GLRaV-2 and BYV. Figure 3A-3D show the conserved domains of two papain-like proteases (P-PRO), numbered lines represent nucleotide coordinates, beginning from 5'-terminal of RNA in kilobases (kb). The lines below GLRaV-2 RNA genome represent the cDNA clones used to determine the nucleotide sequences.

20 Figures 3A-3D are comparisons between ORF1a/ORF1b of GLRaV-2 and BYV. Figure 3A-3D show the conserved domains of two papain-like proteases (P-PRO), methyltransferase (MT/MTR), helicase (HEL), and RNA-dependent RNA polymerase (RdRP), respectively. Exclamation marks indicate the predicted catalytic residues of the leader papain-like protease; slashes indicate the predicted cleavage sites. The conserved motifs of the MT, HEL, and RdRP domains are highlighted with overlines marked with respective letters. The alignment is constructed using the MegAlign program in DNASTAR.

25 Figures 4A and 4B are alignments of the nucleotide (Figure 4A) and deduced amino acid (Figure 4B) sequences of ORF1a/ORF1b overlapping region of GLRaV-2, BYV, BYSV, and CTV. Identical nucleotides and amino acids are shown in consensus. GLRaV-2 putative + 1 frameshift site (TAGC) and its corresponding sites of BYV (TAGC) and BYSV (TAGC) and CTV (CGGC) at nucleotide and amino acid sequences are highlighted with underlines.

30 Figures 5 is an alignment of the amino acid sequence of HSP70 protein of GLRaV-2 and BYV. The conserved motifs (A to H) are indicated with overlines and marked

with respective letters. The alignment was conducted with the MegAlign program of DNASTAR.

Figure 6A is a comparison of the coat protein (CP) and coat protein duplicate (CPd) of GLRaV-2 with other closteroviruses. The amino acid sequence of the GLRaV-2 CP and CPd are aligned with the CP and CPd of BYV, BYSV, and CTV. The conserved amino acid residues are in bold and the consensus sequences are indicated. Sequence alignment and phylogenetic tree were constructed by Clustal Method in the MegAlign Program of DNASTAR. Figure 6B is a tentative phylogenetic tree of the CP and CPd of GLRaV-2 with BYV, BYSV, CTV, LIYV, LChV, and GLRaV-3. To facilitate the alignment, only the C-terminal 250 amino acids of CP and CPd of LIYV, LChV, and GLRaV-3 were used. The scale beneath the phylogenetic tree represents the distance between sequences. Units indicate the number of substitution events.

Figure 7 is a comparison of the genome organization of GLRaV-2, BYV, BYSV, CTV, LIYV, LChV, and GLRaV-3. P-PRO, papain-like protease; MT/MTR, methyltransferase; HEL, helicase; RdRP, RNA-dependent RNA polymerase; HSP70, heat shock protein 70; CP, coat protein; CPd, coat protein duplicate.

Figure 8 is a tentative phylogenetic tree showing the relationship of RdRP of GLRaV-2 with respect to BYV, BYSV, CTV, and LIYV. The phylogenetic tree was constructed using the Clustal method with the MegAlign program in DNASTAR.

Figure 9 is an alignment of the amino acid sequence of HSP90 protein of GLRaV-2 with respect to other closteroviruses, BYS, BYSV, and CTV. The most conserved motifs (I to II) are indicated with the highlighted lines and marked with respective letters.

Figure 10 is an alignment of the nucleotide sequence of 3'-terminal untranslated region of GLRaV-2 with respect to the closteroviruses BYV (Agranovsky et al., "Beet Yellows Closterovirus: Complete Genome Structure and Identification of a Papain-like Thiol Protease," *Virology* 198:311-24 (1994), which is hereby incorporated by reference), BYSV (Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome and Implications for the Evolution of Closteroviruses," *Virology* 221:199-207 (1996), which is hereby incorporated by reference), and CTV (Karasev et al., "Complete Sequence of the Citrus Tristeza Virus RNA Genome," *Virology* 208:511-20 (1995), which is hereby incorporated by reference). The consensus sequences are shown, and the distance to the 3'-end is indicated. A complementary region capable of forming a "hair-pin" structure is underlined.

Figures 11A and 11B are genetic maps of the transformation vectors

pGA482GG/EPT8CP-GLRaV-2 and pGA482G/EPT8CP-GLRaV-2, respectively. As shown in Figures 11A and 11B, the plant expression cassette (EPT8CP-GLRaV-2), which consists of a double cauliflower mosaic virus (CaMV) 35S-enhancer, a CaMV 35S-promoter, an alfalfa mosaic virus (ALMV) RNA4 5' leader sequence, a coat protein gene of GLRaV-2 (CP-GLRaV-2), and a CaMV 35S 3' untranslated region as a terminator, was cloned into the transformation vector by EcoR I restriction site. The CP of GLRaV-2 was cloned into the plant expression vector by Nco I restriction site.

Figure 12 is a PCR analysis of DNA molecules extracted from the leaves of putative transgenic plants using both the CP gene of GLRaV-2 and NPT II gene specific primers. An ethidium bromide-stained gel shows a 720 bp amplified DNA fragment for NPT II gene, and a 653 bp DNA fragment for the entire coding sequence of the CP gene. Lane 1, Φ174 / Hae III DNA Marker; lanes 2-6, transgenic plants from different lines; lane 7, the cp gene of GLRaV-2 of positive control; and lane 8, NPT II gene of positive control.

Figure 13 is a comparison of resistant (right side 3 plants) and susceptible (left side 3 plants) transgenic *Nicotiana benthamiana* plants. Plants are shown 48 days after inoculation with GLRaV-2.

Figure 14 is a northern blot analysis of transgenic *Nicotiana benthamiana* plants. An aliquot of 10 g of total RNA extracted from putative transgenic plants was denatured and loaded onto 1% agarose gel containing formaldehyde. The separated RNAs were transferred to Gene Screen Plus membrane and hybridized with a <sup>32</sup>P-labeled DNA probe containing the 3' one third CP gene sequence. Lanes 1, 3, and 4 represent nontransformed control plants without RNA expression. The remaining lanes represent transgenic plants from different lines: lanes 2, 14-17, and 22-27 represent plants with high RNA expression level which are susceptible to GLRaV-2; all other lanes represent plants with undetectable or low RNA expression level which are resistant to GLRaV-2.

## DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to isolated DNA molecules encoding for the proteins or polypeptides of a grapevine leafroll virus (type 2). A substantial portion of the grapevine leafroll virus (type-2) ("GLRaV-2") genome has been sequenced. Within the genome are a plurality of open reading frames ("ORFs") and a 3' untranscribed region ("UTR"), each containing DNA molecules in accordance with the present invention. The

DNA molecule which constitutes a substantial portion of the GLRaV-2 genome comprises the nucleotide sequence corresponding to SEQ. ID. No. 1 as follows:

|                                                                    |      |
|--------------------------------------------------------------------|------|
| TAAACATTGC GAGAGAACCC CATTAGCGTC TCCGGGGTGA ACTTGGGAAG GTCTGCCGCC  | 60   |
| GCTCAGGTTA TTTATTCGG CAGTTCACG CAGCCCTCG CGTTGTATCC GCGCCAAGAG     | 120  |
| AGCGCGATCG TAAAAACGCA ACTTCCACCG GTCAGTGTAG TGAAGGTGGA GTGCCGTAGCT | 180  |
| GC GGAGGTAG CTCCCGACAG GGGCGTGGTC GACAAGAAC CTACGTCTGT TGGCGTTCCC  | 240  |
| CCGCAGCGCG GTGTGCTTTC TTTTCCGACG GTGGTTCGGA ACCGCGGCCGA CGTGATAATC | 300  |
| ACAGGGGTGG TGCATGAAGC CCTGAAGAAA ATTAAAGACG GGCTCTTACG CTTCCGCGTA  | 360  |
| GGCGGTGACA TGCCTTTTC GAGATTTTC TCATCGAACT ACGGCTGCAG ATTCTCGCG     | 420  |
| AGCGTGCCTA CGAACACTAC AGTTGGCTA AATTGCACGA AAGCGAGTGG TGAGAAATTC   | 480  |
| TCACTCGCCG CCGCGTGCAC GGCGGATTAC GTGGCGATGC TCGCTTATGT GTGTGGCGGG  | 540  |
| AAATTTCCAC TCGTCCTCAT GAGTAGAGTT ATTTACCCGG ATGGGCGCTG TTACTTGGCC  | 600  |
| CATATGAGGT ATTTGTGCGC CTTTACTGT CGCCCGTTA GAGAGTCGGA TTATGCCCTC    | 660  |
| GGAATGTGGC CTACGGTGGC GCGTCTCAGG GCATGCGTTG AGAAGAACTT CGGTGTCGAA  | 720  |
| GCTTGTGGCA TAGCTCTCG TGGCTATTAC ACCTCTCGCA ATGTTATCA CTGTGATTAT    | 780  |
| GACTCTGCTT ATGTAAAATA TTTAGAAC CTTTCCGGCC GCATTGGCGG TGTTCTGTT     | 840  |
| GATCCGACAT CTTAACCTC CGTAATAACG GTGAAGATTA GCGGTCTTCC AGGTGGTCTT   | 900  |
| CCTAAAAATA TAGCGTTGG TGCCTTCCTG TGCATATAC GTTACGTCGA ACCGGTAGAC    | 960  |
| TCGGGCGGC A TTCAATCGAG CGTTAAGACG AAACGTGAAG ATGCGCACCG AACCGTAGAG | 1020 |
| GAACGGGCGG CCGCGGATC CGTCGAGCAA CCGCGACAAA AGAGGATAGA TGAGAAAGGT   | 1080 |
| TGCGGCAGAG TTCCTAGTGG AGGTTTTCG CATCTCCTGG TCGGCAACCT TAACGAAGTT   | 1140 |
| AGGAGGAAGG TAGCTGCCGG ACTTCTACGC TTTCGCGTTG GCGGTGATAT GGATTTCAT   | 1200 |
| CGCTCGTTCT CCACCCAAGC GGGCCACCAGC TTGCTGGTGT GGCGCCGCTC GAGCCGGAGC | 1260 |
| GTGTGCCTTG AACCTTACTC ACCATCTAAA AACTTTTGC GTTACGATGT CTTGCCCTGT   | 1320 |
| TCTGGAGACT ATGCAGCGAT GTTTCTTTC GCGGCGGGCG GCCGTTTCCC TTTAGTTTG    | 1380 |
| ATGACTAGAA TTAGATACCC GAACGGGTT TGTTACTTGG CTCACTGCCG GTACGCGTGC   | 1440 |
| CGCTTCTCT TAAGGGGTT TGATCCGAAG CGTTCGACA TCGGTGCTTT CCCCACCGCG     | 1500 |
| GCCAAGCTCA GAAACCGTAT GGTTTGGAG CTTGGTGAAA GAAGTTAGG TTTGAACCTG    | 1560 |
| TACGGCGCAT ATACGTACG CGCGTCTTT CACTGCGATT ATGACGCTAA GTTTATAAAG    | 1620 |
| GATTTGCGTC TTATGTCAGC AGTTATAGCT GGAAAGGACG GGGTGGAAAGA GGTGGTACCT | 1680 |

|                                  |                       |                                 |      |
|----------------------------------|-----------------------|---------------------------------|------|
| TCTGACATAA CTCCTGCCAT            | GAAGCAGAAA ACGATCGAAG | CCGTGTATGA TAGATTATAT           | 1740 |
| GGCGGCAC TG ACTCGTTGCT           | GAAACTGAGC ATCGAGAAAG | ACTTAATCGA TTTCAAAAAT           | 1800 |
| GACGTGCAGA GTTGAAGAA AGATCGGCCG  | ATTGTCAAAG TGCCCTTTA  | CATGTCGGAA                      | 1860 |
| GCAACACAGA ATT CGCTGAC           | GC GTTCTAC CCTCAGTCG  | AACTTAAGTT TT CGCACTCC          | 1920 |
| TCGCATTCA G ATCATCCGC            | CGCCGCCGCT TCTAGACTGC | TGGAAAATGA AACGTTAGTG           | 1980 |
| CGCTTATGTG GTAATAGCGT            | TTCAGATATT GGAGGTTGTC | CTCTTTCCA TTTGCATTCC            | 2040 |
| AAGACGCAA GACGGGTTCA             | CGTATGTAGG CCTGTGTTGG | ATGGCAAGGA TGCGCAGCGT           | 2100 |
| CGCGTGGTGC GTGATTGCA             | GTATTCCAAC GTGC GTTGG | GAGACGATGA TAAAATTTG            | 2160 |
| GAAGGGCCAC GCAATATCGA            | CATTGCCAC TATCCTCTGG  | GCGCGTGTGA CCACGAAAGT           | 2220 |
| AGTGCTATGA TGATGGTGCA            | GGTGTATGAC GCGTCCCTT  | ATGAGATATG TGGGCCATG            | 2280 |
| ATCAAGAAGA AAAGCCGCAT            | AACGTACTTA ACCATGGTCA | CGCCCGGCGA GTTCTTGAC            | 2340 |
| GGACGCGAAT GCGTCTACAT            | GGAGTCGTTA GACTGTGAGA | TTGAAGTTGA TGTGCACCGC           | 2400 |
| GACGTCGTA A TGACAAATT CGGTAGTTCT | TGCTATTGCG ACAAGCTTTC | AATCATCAAG                      | 2460 |
| GACATCATGA CCACTCCGTA            | CTTGACACTA GGTGGTTTC  | TATTCAGCGT GGAGATGTAT           | 2520 |
| GAGGTGCGTA TGGCGTGAA             | TTACTTCAG ATTACGAAGT  | CCGAAGTATC GCCTAGCATT           | 2580 |
| AGCTGCACCA AGCTCCTGAG            | ATACCGAAGA GCTAATAGTG | ACGTGGTTAA AGTTAAACTT           | 2640 |
| CCACGTTTCG ATAAGAACG             | TCGCATGTGT CTGCCTGGGT | ATGACACCAT ATACCTAGAT           | 2700 |
| TCGAAGTTG TGAGTCGCGT             | TTTCGATTAT GTCGTGTGTA | ATTGCTCTGC CGTGAACCTCA          | 2760 |
| AAAACTTTCG AGTGGGTGTG            | GAGTTTCATT AAGTCTAGTA | AGTCGAGGGT GATTATTAGC           | 2820 |
| GGTAAAATAA TTCACAAGGA            | TGTGAATTG GACCTCAAGT  | ACGTCGAGAG TTTGCCCGCG           | 2880 |
| GTTATGTTGG CCTCTGGCGT            | GCGCAGTAGA CTAGCGTCCG | AGTACCTTGC TAAGAACCTT           | 2940 |
| AGTCATTTT CGGGAGATTG             | CTCCTTATT GAAGCCACGT  | CTTCGTGTT GCGTGAGAAA            | 3000 |
| ATCAGAAACA TGACTCTGAA            | TTTTAACGAA AGACTTTAC  | AGTTAGTGAA GCGCGTTGCC           | 3060 |
| TTTGCACCT TGGACGTGAG             | TTTCTAGAT TTAGATTCAA  | CTCTTGAATC AATAACTGAT           | 3120 |
| TTTGCCGAGT GTAAGGTAGC            | GATTGAACTC GACGAGTTGG | GTTGCTTGAG AGCGGAGGCC           | 3180 |
| GAGAATGAAA AAATCAGGAA            | TCTGGCGGGA GATTGATTG  | CGGCTAAACT CGCGAGCGAG           | 3240 |
| ATAGTGGTCG ATATTGACTC            | TAAGCCTTCA CCGAAGCAGG | TGGGTAATTC GTCATCCGAA           | 3300 |
| AACGCCGATA AGCGGGAAGT            | TCAGAGGCCG            | GGTTGCGTG GTGGTTCTAG AAACGGGGTT | 3360 |
| GTTGGGGAGT TCCCTCACTT            | CGTCGTGGAT TCTGCCTTGC | GTCTTTCAA ATACGCGACG            | 3420 |
| GATCAACAAAC GGATCAAGTC           | TTACGTGCGT TTCTTGGACT | CGGC GGCTCTC ATTCTGGAT          | 3480 |
| TACAAC TACG ATAATCTATC           | GT TTACTTG CGAGTGCTT  | CGGAAGGTTA TTCGTGTATG           | 3540 |

|            |            |             |            |            |            |      |
|------------|------------|-------------|------------|------------|------------|------|
| TTCGCGTTT  | TGGCGAATCG | CGGCGACTTA  | TCTAGTCGTG | TCCGTAGCGC | GGTGTGTGCT | 3600 |
| GTGAAAGAAG | TTGCTACCTC | ATGCGCGAAC  | GCGAGCGTTT | CTAAAGCAA  | GGTTATGATT | 3660 |
| ACCTTCGCAG | CGGCCGTGTG | TGCTATGATG  | TTTAATAGCT | GCGGTTTTTC | AGGCGACGGT | 3720 |
| CGGGAGTATA | AATCGTATAT | ACATCGTTAC  | ACGCAAGTAT | TGTTTGACAC | TATCTTTTT  | 3780 |
| GAGGACAGCA | GTTACCTACC | CATAGAAGTT  | CTGAGTTCGG | CGATATGCGG | TGCTATCGTC | 3840 |
| ACACTTTCT  | CCTCGGGCTC | GTCCATAAGT  | TTAAACGCCT | TCTTACTTCA | AATTACCAAA | 3900 |
| GGATTCTCCC | TAGAGGTTGT | CGTCCGGAAT  | GTTGTGCGAG | TCACGCATGG | TTTGAGCACC | 3960 |
| ACAGCGACCG | ACGGCGTCAT | ACGTGGGGTT  | TTCTCCAAA  | TTGTGTCTCA | CTTACTTGT  | 4020 |
| GGAAATACGG | GTAATGTGGC | TTACCAAGTCA | GCTTCATTG  | CCGGGGTGGT | GCCTCTTTA  | 4080 |
| GTAAAAAGT  | GTGTGAGCTT | AATCTTCATC  | TTGCGTGAAG | ATACTTATTC | CGGTTTTATT | 4140 |
| AAGCACGGAA | TCAGTGAATT | CTCTTCCTT   | AGTAGTATTC | TGAAGTTCTT | GAAGGGTAAG | 4200 |
| CTTGTGGACG | AGTTGAAATC | GATTATTCAA  | GGGGTTTTG  | ATTCCAACAA | GCACGTGTT  | 4260 |
| AAAGAAGCTA | CTCAGGAAGC | GÄTTCGTACG  | ACGGTCATGC | AAGTGCCTGT | CGCTGTAGTG | 4320 |
| GATGCCCTTA | AGAGCGCCGC | GGGAAAATT   | TATAACAATT | TTACTAGTCG | ACGTACCTT  | 4380 |
| GGTAAGGATG | AAGGCTCCTC | TAGCGACGGC  | GCATGTGAAG | AGTATTCTC  | ATGCGACGAA | 4440 |
| GGTGAAGGTC | CGGGTCTGAA | AGGGGGTTCC  | AGCTATGGCT | TCTCAATT   | AGCGTTCTT  | 4500 |
| TCACGCATTA | TGTGGGAGC  | TCGTCGGCTT  | ATTGTTAAGG | TGAAGCATGA | GTGTTTGGG  | 4560 |
| AAACTTTTG  | AATTCTATC  | GCTCAAGCTT  | CACGAATTCA | GGACTCGCGT | TTTTGGGAAG | 4620 |
| AATAGAACGG | ACGTGGGAGT | TTACGATT    | TTGCCACGG  | GCATCGTGA  | AACGCTCTCA | 4680 |
| TCGATAGAAG | AGTGCACCA  | AATTGAAGAA  | CTTCTCGCG  | ACGACCTGAA | AGGTGACAAG | 4740 |
| GATGCTTCGT | TGACCGATAT | GAATTACTT   | GAGTTCTCAG | AAGACTTCTT | AGCCTCTATC | 4800 |
| GAGGAGCCGC | CTTCGCTGG  | ATTGCGAGGA  | GGTAGCAAGA | ACATCGCGAT | TTGGCGATT  | 4860 |
| TTGGAATACG | CGCATAATT  | GTTCGCAAGCA | AGTGTTCGA  | ACGACCTT   | 4920       |      |
| TTTCTTGCTT | TCGCCGA    | ACTCAAGCGCC | CTTATCGAGA | AATTAAAGGA | GGTTTCCCT  | 4980 |
| CGTAAGAGCC | AGCTCGTCGC | TATCGTGC    | GAGTATACTC | AGAGATT    | CCGAAGTCGC | 5040 |
| ATGCGTGC   | TGGGTTGAA  | TAACGAGTTC  | GTGGTAA    | CTTCCGCGA  | TTGCTACCC  | 5100 |
| GCATTAATGA | AGCGGAAGGT | TTCAGGTCG   | TTCTTAGCTA | GTGTTATCG  | CCCACCTAGA | 5160 |
| GGTTTCTCAT | ATATGTGTGT | TTCAGCGGAG  | CGACGTGAAA | AGTTTTG    | TCTCGTGT   | 5220 |
| TTAATCGGGT | TAAGTCTCCC | TTTCTCGTG   | CGCAGTCAG  | GAGCGAAAGC | GTGCGAAGAA | 5280 |
| CTCGTGT    | CAGCGCGTCG | CTTTTATGAG  | CGTATTAAA  | TTTTCTAAG  | GCAGAAGTAT | 5340 |

|                                                                      |      |
|----------------------------------------------------------------------|------|
| GTCTCTCTTT CTAATTCTT TTGTCACCTG TTTAGCTCTG ACGTTGATGA CAGTTCCGCA     | 5400 |
| TCTGCAGGGT TGAAAGGTGG TGCCTCGCGA ATGACGCTCT TCCACCTTCT GGTTCGCCTT    | 5460 |
| GCTAGTGCCC TCCTATCGTT AGGGTGGGAA GGGTTAAAGC TACTCTTATC GCACCACAAC    | 5520 |
| TTGTTATTT TGTGTTTGC ATTGGTTGAC GATGTGAACG TCCTTATCAA AGTTCTTGGG      | 5580 |
| GGTCTTCTT TCTTGTGCA ACCAATCTT TCCTTGTGG CGGCGATGCT TCTACAACCG        | 5640 |
| GACAGGTTTG TGGAGTATTC CGAGAAACTT GTTACAGCGT TTGAATTCTT CTAAAATGT     | 5700 |
| TCGCCTCGCG CGCCTGCACT ACTCAAAGGG TTTTTGAGT GCGTGGCGAA CAGCACTGTG     | 5760 |
| TCAAAAACCG TTCGAAGACT TCTTCGCTGT TTCGTGAAGA TGCTCAAAC TCGAAAAGGG     | 5820 |
| CGAGGGTTGC GTGCGGATGG TAGGGGTCTC CATCGGCAGA AAGCCGTACC CGTCATAACCT   | 5880 |
| TCTAATCGGG TCGTGACCGA CGGGGTTGAA AGACTTCGG TAAAGATGCA AGGAGTTGAA     | 5940 |
| GCGTTGCGTA CCGAATTGAG AATCTTAGAA GATTTAGATT CTGCCGTGAT CGAAAAACTC    | 6000 |
| AATAGACGCA GAAATCGTGA CACTAATGAC GACGAATTG CGGCCCTGC TCATGAGCAG      | 6060 |
| ATGCAAGAAG TCACCACTTT CTGTTGAAA GCCAACTCTG CTGGTTGGC CCTGGAAAGG      | 6120 |
| GCAGTGCTTG TGGAAGACGC TATAAAGTCG GAGAAACTTT CTAAGACGGT TAATGAGATG    | 6180 |
| GTGAGGAAAG GGAGTACAC CAGCGAAGAA GTGGCCGTCG CTTTGTGGA CGATGAAGCC      | 6240 |
| GTGGAAGAAA TCTCTGTTGC TGACGAGCGA GACGATTGCG CTAAGACAGT CAGGATAAGC    | 6300 |
| GAATACTCAA ATAGGTTAAA CTCAAGCTTC GAATTCCGAA AGCCTATTGT TGTGGACGAC    | 6360 |
| AACAAGGATA CCGGGGTCT AACGAACGCC GTGAGGGAGT TTTATTATAT GCAAGAACTT     | 6420 |
| GCTTTTCG AAATCCACAG CAAACTGTGC ACCTACTACG ATCAACTGCG CATACTAAC       | 6480 |
| TTCGATCGTT CCGTAGCACC ATGCAGCGAA GATGCTCAGC TGTACGTACG GAAGAACGGC    | 6540 |
| TCAACGATAG TGCAGGGTAA AGAGGTACGT TTGCACATTA AGGATTCCA CGATCACGAT     | 6600 |
| TTCCTGTTG ACGGAAAAAT TTCTATTAAC AAGCGGCGGC GAGGCGGAAA TGTTTATAT      | 6660 |
| CACGACAACC TCGCGTTCTT GGCGAGTAAT TTGTTCTTAG CCGGCTACCC CTTTCAAGG     | 6720 |
| AGCTTCGTCT TCACGAATTC GTCGGTCGAT ATTCTCCTCT ACGAAGCTCC ACCCGGAGGT    | 6780 |
| GGTAAGACGA CGACGCTGAT TGACTCGTTC TTGAAGGTCT TCAAGAAAGG TGAGGTTCC     | 6840 |
| ACCATGATCT TAACCGCCAA CAAAAGTTCG CAGGTTGAGA TCCTAAAGAA AGTGGAGAAG    | 6900 |
| GAAGTGTCTA ACATTGAATG CCAGAAACGT AAAGACAAAA GATCTCCGAA AAAGAGCATT    | 6960 |
| TACACCATCG ACGCTTATTT AATGCATCAC CGTGGTTGTG ATGCAGACGT TCTTTCATC     | 7020 |
| GATGAGTGTGTT TCATGGTTCA TGCAGGGTAGC GTACTAGCTT GCATTGAGTT CACGAGGTGT | 7080 |
| CATAAAAGTAA TGATCTTCGG GGATAGCCGG CAGATTCACT ACATTGAAAG GAACGAATTG   | 7140 |
| GACAAGTGTGTT TGTATGGGGA TCTCGACAGG TTCGTGGACC TGCAGTGTGCG GGTTTATGGT | 7200 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| AATATTCGT ACCGTTGTCC ATGGGATGTG TGCCTTGGT TAAGCACAGT GTATGGCAAC    | 7260 |
| CTAATCGCCA CCGTGAAAGGG TGAAAGCGAA GGTAAGAGCA GCATGCGCAT TAACGAAATT | 7320 |
| AATTCAGTCG ACGATTAGT CCCCACGTG GGTTCCACGT TTCTGTGTAT GCTTCAGTCG    | 7380 |
| GAGAAGTTGG AAATCAGCAA GCACCTTATT CGCAAGGGTT TGACTAAACT TAACGTTCTA  | 7440 |
| ACGGTGCATG AGGCGCAAGG TGAGACGTAT GCGCGTGTGA ACCTTGTGCG ACTTAAGTTT  | 7500 |
| CAGGAGGATG AACCCTTAA ATCTATCAGG CACATAACCG TCGCTTTTC TCGTCACACC    | 7560 |
| GACAGCTTAA CTTATAACGT CTTAGCTGCT CGTCGAGGTG ACGCCACTTG CGATGCCATC  | 7620 |
| CAGAAGGCTG CGGAATTGGT GAACAAGTTT CGCGTTTTTC CTACATCTT TGGTGGTAGT   | 7680 |
| GTTATCAATC TCAACGTGAA GAAGGACGTG GAAGATAACA GTAGGTGCAA GGCTTCGTG   | 7740 |
| GCACCATTGA GCGTAATCAA CGACTTTTG AACGAAGTTA ATCCCGGTAC TGC GG TGATT | 7800 |
| GATTTGGTG ATTTGTCCGC GGACTTCAGT ACTGGGCCTT TTGAGTGC GG TGCCAGCGGT  | 7860 |
| ATTGTGGTGC GGGACAACAT CTCCTCCAGC AACATCACTG ATCACGATAA GCAGCGTGT   | 7920 |
| TAGCGTAGTT CGGT CGCAGG CGATTCCCG TAGAAAACCT TCTCTACAAG AAAATTTGTA  | 7980 |
| TTCGTTGAA GCGCGGAATT ATAACTTCTC GACTTGCAC CGTAACACAT CTGCTTCAAT    | 8040 |
| GTTGGGAGAG GCTATGGCGA TGA ACTGTCT TCGTCGTTGC TTGACCTAG ATGCCTTT    | 8100 |
| GTCCCTGCGT GATGATGTGA TTAGTATCAC ACGTTCAGGC ATCGAACAA GGCTGGAGAA   | 8160 |
| ACGTACTCCT AGTCAGATTA AAGCATTAAAT GAAGGATGTT GAATGCCCTT TGAAATTGAA | 8220 |
| CGATGAAATT TGCGTTTA AGTTGATGGT GAAGCGTGAC GCTAAGGTGA AGTTAGACTC    | 8280 |
| TTCTTGTGTTA ACTAAACACA GCGCCGCTCA AAATATCATG TTTCATCGCA AGAGCATTAA | 8340 |
| TGCTATCTTC TCTCCTATCT TTAATGAGGT GAAAAACCGA ATAATGTGCT GTCTTAAGCC  | 8400 |
| TAACATAAAG TTTTTACGG AGATGACTAA CAGGGATTT GCTTCTGTTG TCAGCAACAT    | 8460 |
| GCTTGGTGAC GACGATGTGT ACCATATAGG TGAAGTTGAT TTCTCAAAGT ACGACAAGTC  | 8520 |
| TCAAGATGCT TTCGTGAAGG CTTTGAAAGA AGTAATGTAT AAGGAACCTG GTGTTGATGA  | 8580 |
| AGAGTTGCTG GCTATCTGGA TGTGCGCGA GCGGTTATCG ATAGCTAACAA CTCTCGATGG  | 8640 |
| TCAGTTGTCC TTCACGATCG AGAATCAAAG GAAGTCGGGA GCTTCGAACA CTTGGATTGG  | 8700 |
| TAACTCTCTC GTCACTTTGG GTATTTAAG TCTTTACTAC GACGTTAGAA ATTCGAGGC    | 8760 |
| GTTGTACATC TCGGGCGATG ATTCTTAAT TTTTCTCGC AGCGAGATTT CGAATTATGC    | 8820 |
| CGACGACATA TGCAC TGACA TGGGTTTGAA GACAAAATTG ATGTCCCCAA GTGTCCCGTA | 8880 |
| CTTTGTTCT AAATTTGTTG TTATGTGTGG TCATAAGACG TTTTTGTTTC CCGACCCGTA   | 8940 |
| CAAGCTTTTG GTCAAGTTGG GAGCAGTCAA AGAGGATGTT TCAATGGATT TCCTTTCGA   | 9000 |

|            |            |            |            |            |             |       |
|------------|------------|------------|------------|------------|-------------|-------|
| GACTTTAACC | TCCTTAAAG  | ACTAACCTC  | CGATTTAAC  | GACGAGCGCT | TAATTCAAAA  | 9060  |
| GCTCGCTGAA | CTTGTGGCTT | TAAAATATGA | GGTCAAACC  | GGCAACACCA | CCTTGGCGTT  | 9120  |
| AAGTGTGATA | CATTGTTGC  | GTTCGAATT  | CCTCTCGTT  | AGCAAGTTAT | ATCCTCGCGT  | 9180  |
| GAAGGGATGG | CAGGTTTTT  | ACACGTCGGT | TAAGAAAGCG | CTTCTCAAGA | GTGGGTGTT   | 9240  |
| TCTCTTCGAC | AGTTTCATGA | CCCCTTTGG  | TCAGGCTGTC | ATGGTTGGG  | ATGATGAGTA  | 9300  |
| GCGCTAACTT | GTGCGCAGTT | TCTTGTTCG  | TGACATACAC | CTTGTGTGTC | ACCGTGCCTT  | 9360  |
| TATAATGAAT | CAGGTTTTGC | AGTTGAATG  | TTTGTTCCTG | CTGAATCTCG | CGGTTTTGC   | 9420  |
| TGTGACTTTC | ATTTCATTC  | TTCTGGTCTT | CCGCGTGATT | AAGTCTTTTC | GCCAGAAGGG  | 9480  |
| TCACGAAGCA | CCTGTTCCCG | TTGTTCGTGG | CGGGGGTTTT | TCAACCGTAG | TGTAGTCAA   | 9540  |
| AGACGCGCAT | ATGGTAGTTT | TCGGTTGGA  | CTTGGCACC  | ACATTCTCTA | CGGTGTGT    | 9600  |
| GTACAAGGAT | GGACGAGTTT | TTTCATTCAA | GCAGAATAAT | TCGGCGTACA | TCCCCACTTA  | 9660  |
| CCTCTATCTC | TTCTCCGATT | CTAACACAT  | GACTTTGGT  | TACGAGGCCG | AATCACTGAT  | 9720  |
| GAGTAATCTG | AAAGTTAAAG | GTTCGTTTA  | TAGAGATT   | AAACGTTGGG | TGGGTTGCGA  | 9780  |
| TTCGAGTAAC | CTCGACGCGT | ACCTTGACCG | TTTAAAACCT | CATTACTCGG | TCCGCTTGGT  | 9840  |
| TAAGATCGGC | TCTGGCTTGA | ACGAAACTGT | TTCAATTGGA | AACTTCGGGG | GCACTGTTAA  | 9900  |
| GTCTGAGGCT | CATCTGCCAG | GGTTGATAGC | TCTCTTATT  | AAGGCTGTCA | TTAGTTGCGC  | 9960  |
| GGAGGGCGCG | TTTGCCTGCA | CTTGCACCGG | GGTTATTGT  | TCAGTACCTG | CCAATTATGA  | 10020 |
| TAGCGTTCAA | AGGAATTCA  | CTGATCAGTG | TGTTTCACTC | AGCGGTTATC | AGTGCCTATA  | 10080 |
| TATGATCAAT | GAACCTTCAG | CGGCTGCGCT | ATCTGCGTGT | AATTGATTG  | GAAAGAAGTC  | 10140 |
| CGCAAATTG  | GCTGTTACG  | ATTCGGTGG  | TGGGACCTTC | GACGTGTCTA | TCATTTCTATA | 10200 |
| CCGCAACAAT | ACTTTGTTG  | TGCGAGCTTC | TGGAGGCGAT | CTAAATCTCG | GTGGAAGGGA  | 10260 |
| TGTTGATCGT | CGCTTCTCA  | CGCACCTCTT | CTCTTAACA  | TCGCTGGAAC | CTGACCTCAC  | 10320 |
| TTTGGATATC | TCGAATCTGA | AAGAATCTT  | ATCAAAAACG | GACGCAGAGA | TAGTTACAC   | 10380 |
| TTTGAGAGGT | GTCGATGGAA | AAAAAGAAGA | CGTTAGAGTA | AACAAAAACA | TTCTTACGTC  | 10440 |
| GGTGATGCTC | CCCTACGTGA | ACAGAACGCT | TAAGATATTA | GAGTCAACCT | TAAAATCGTA  | 10500 |
| TGCTAAGAGT | ATGAATGAGA | GTGCGCGAGT | TAAGTGCAGT | TTAGTGCTGA | TAGGAGGATC  | 10560 |
| TTCATATCTT | CCTGGCCTGG | CAGACGTACT | AACGAAGCAT | CAGAGCGTTG | ATCGTATCTT  | 10620 |
| AAGAGTTTCG | GATCCTCGGG | CTGCCGTGGC | CGTCGGTTGC | GCATTATATT | CTTCATGCCT  | 10680 |
| CTCAGGATCT | GGGGGGTTGC | TACTGATCGA | CTGTGCAGCT | CACACTGTG  | CTATAGCGGA  | 10740 |
| CAGAAGTTGT | CATCAAATCA | TTTGCCTC   | AGCGGGGGCA | CCGATCCCCT | TTTCAGGAAG  | 10800 |
| CATGCCTTG  | TACCTAGCCA | GGGTCAACAA | GAACTCGCAG | CGTGAAGTCG | CCGTGTTGA   | 10860 |

|             |             |            |             |            |             |       |
|-------------|-------------|------------|-------------|------------|-------------|-------|
| AGGGGAGTAC  | GTTAAGTGCC  | CTAAGAACAG | AAAGATCTGT  | GGAGCAAATA | TAAGATTTTT  | 10920 |
| TGATATAGGA  | GTGACGGGTG  | ATTCTACGC  | ACCCGTTACC  | TTCTATATGG | ATTCTCCAT   | 10980 |
| TTCAAGCGTA  | GGAGCCGTTT  | CATTCGTGGT | GAGAGGTCT   | GAGGGTAAGC | AAGTGTCACT  | 11040 |
| CACTGGAACT  | CCAGCGTATA  | ACTTTCGTC  | TGTGGCTCTC  | GGATCACGCA | GTGTCCGAGA  | 11100 |
| ATTGCATATT  | AGTTTAAATA  | ATAAAGTTTT | TCTCGGTTTG  | CTTCTACATA | GAAAGGCGGA  | 11160 |
| TCGACGAATA  | CTTTTCACTA  | AGGATGAAGC | GATTGATAC   | GCCGATTCAA | TTGATATCGC  | 11220 |
| GGATGTGCTA  | AAGGAATATA  | AAAGTTACGC | GGCCAGTGCC  | TTACCACCAG | ACGAGGATGT  | 11280 |
| CGAATTACTC  | CTGGGAAAGT  | CTGTTCAAAA | AGTTTACGG   | GGAAGCAGAC | TGGAAGAAAT  | 11340 |
| ACCTCTCTAG  | GAGCATAGCA  | GCACACTCAA | GTGAAATTAA  | AACTCTACCA | GACATTGAT   | 11400 |
| TGTACGGCGG  | TAGGGTTGTA  | AAGAAGTCCG | AATTGAAATC  | AGCACTTCCT | AATTCTTTG   | 11460 |
| AACAGGAATT  | AGGACTGTT   | ATACTGAGCG | AACGGGAAGT  | GGGATGGAGC | AAATTATGCG  | 11520 |
| GAATAACGGT  | GGAAGAAGCA  | GCATACGATC | TTACGAATCC  | CAAGGCTTAT | AAATTCACTG  | 11580 |
| CCGAGACATG  | TAGCCCGGAT  | GTAAAAGGTG | AAGGACAAAAA | ATACTCTATG | GAAGACGTGA  | 11640 |
| TGAATTCAT   | GCGTTTATCA  | AATCTGGATG | TTAACGACAA  | GATGCTGACG | GAACAGTGT   | 11700 |
| GGTCGCTGTC  | CAATTCTATGC | GGTGAATTGA | TCAACCCAGA  | CGACAAAGGG | CGATTGTTG   | 11760 |
| CTCTCACCTT  | TAAGGACAGA  | GACACAGCTG | ATGACACGGG  | TGCCGCCAAC | GTGGAATGTC  | 11820 |
| GCGTGGCGA   | CTATCTAGTT  | TACGCTATGT | CCCTGTTGA   | GCAGAGGACC | CAAAATCGC   | 11880 |
| AGTCTGGCAA  | CATCTCTCTG  | TACGAAAGT  | ACTGTGAATA  | CATCAGGACC | TACTTAGGGA  | 11940 |
| GTACAGACCT  | GTTCTTCACA  | GCGCCGGACA | GGATTCCGTT  | ACTTACGGGC | ATCCTATACG  | 12000 |
| ATTTTGTA    | GGAATACAAC  | GTGTTCTACT | CGTCATATAA  | GAGAAACGTC | GATAATTCA   | 12060 |
| GATTCTTCTT  | GGCGAATTAT  | ATGCCTTGAT | TATCTGACGT  | CTTTGTCTTC | CAGTGGTAA   | 12120 |
| AACCCGCGCC  | GGATGTTCGG  | CTGCTTTTG  | AGTTAAGTGC  | AGCGGAACTA | ACGCTGGAGG  | 12180 |
| TTCCCCACACT | GAGTTGATA   | GATTCTCAAG | TTGTGGTAGG  | TCATATCTTA | AGATACGTAG  | 12240 |
| AATCCTACAC  | ATCAGATCCA  | GCCATCGACG | CGTTAGAAGA  | CAAACGGAA  | GCGATACTGA  | 12300 |
| AAAGTAGCAA  | TCCCCGTCTA  | TCGACAGCGC | AACTATGGGT  | TGGTTCTTT  | TGTTACTATG  | 12360 |
| GTGAGTTTCG  | TACGGCTCAA  | AGTAGAGTAG | TGCAAAGACC  | AGGCGTATAC | AAAACACCTG  | 12420 |
| ACTCAGTGGG  | TGGATTGAA   | ATAAACATGA | AAGATGTTGA  | GAAATTCTTC | GATAAAACTTC | 12480 |
| AGAGAGAATT  | GCCTAATGTA  | TCTTGCGGC  | GTCAGTTAA   | CGGAGCTAGA | GCGCATGAGG  | 12540 |
| CTTTCAAAAT  | ATTTAAAAAC  | GGAAATATAA | GTTTCAGACC  | TATATCGCGT | TTAACACGTG  | 12600 |
| CTAGAGAGTT  | CTGGTATCTG  | AACATAGACT | ACTTCAGGCA  | CGCGAATAGG | TCCGGGTTAA  | 12660 |

|                                                                     |       |
|---------------------------------------------------------------------|-------|
| CCGAAGAAGA AATACTCATC CTAAACAACA TAAGCGTTGA TGTTAGGAAG TTATGCGCTG   | 12720 |
| AGAGAGCGTG CAATACCCA CCTAGCGCGA AGCGCTTAG TAAAAATCAT AAGAGTAATA     | 12780 |
| TACAATCATC ACGCCAAGAG CGGAGGATTA AAGACCCATT GGTAGTCCTG AAAGACACTT   | 12840 |
| TATATGAGTT CCAACACAAG CGTGCCGGTT GGGGGTCTCG AAGCACTCGA GACCTCGGGA   | 12900 |
| GTCGTGCTGA CCACCGAAA GGAAGCGGTT GATAAGTTT TTAATGAAC TAAAAACGAA      | 12960 |
| AATTACTCAT CAGTGACAG CAGCCGATTA AGCGATTCGG AAGTAAAAGA AGTGTAGAG     | 13020 |
| AAAAGTAAAG AAAGTTCAA AAGCGAACTG GCCTCCACTG ACGAGCACTT CGTCTACCAC    | 13080 |
| ATTATATTT TCTTAATCCG ATGTGCTAAG ATATCGACAA GTGAAAAGGT GAAGTACGTT    | 13140 |
| GGTAGTCATA CGTACGTGGT CGACGGAAA ACGTACACCG TTCTGACGC TTGGGTATTC     | 13200 |
| AACATGATGA AAAGTCTCAC GAAGAAGTAC AAACGAGTGA ATGGTCTGCG TGCCTCTGT    | 13260 |
| TGCGCGTGC GAGATCTATA TCTAACCGTC GCACCAATAA TGTCAGAACG CTTAAGACT     | 13320 |
| AAAGCCGTAG GGATGAAAGG TTTGCCTGTT GGAAAGGAAT ACTTAGGCGC CGACTTCTT    | 13380 |
| TCGGGAACTA GCAAACGTGAT GAGCGATCAC GACAGGGCGG TCTCCATCGT TGCAGCGAAA  | 13440 |
| AACGCTGTCG ATCGTAGCGC TTTCACGGGT GGGGAGAGAA AGATAGTTAG TTTGTATGAT   | 13500 |
| CTAGGGAGGT ACTAACGACG GTGTGCTATA GTGCGTGCTA TAATAATAAA CACTAGTGCT   | 13560 |
| TAAGTCGCGC AGAAGAAAAC GCTATGGAGT TGATGTCCGA CAGCAACCTT AGCAACCTGG   | 13620 |
| TGATAACCGA CGCCTCTAGT CTAAATGGTG TCGACAAGAA GCTTTATCT GCTGAAGTTG    | 13680 |
| AAAAAATGTT GGTGCAGAAA GGGGCTCTA ACGAGGGTAT AGAAGTGGTG TTCGGTCTAC    | 13740 |
| TCCTTTACGC ACTCGCGGCA AGAACACGT CTCCTAACGGT TCAGCGCGCA GATTCAACAG   | 13800 |
| TTATATTTTC AAATAGTTTC GGAGAGAGGA ATGTGGTAGT AACAGAGGGT GACCTTAAGA   | 13860 |
| AGGTACTCGA CGGGTGTGCG CCTCTCACTA GGTTCACTAA TAAACTAGA ACGTTCGGTC    | 13920 |
| GTACTTTCAC TGAGGCTTAC GTTGACTTT GTATCGCGTA TAAGCACAAA TTACCCCAAC    | 13980 |
| TCAACGCCGC GGCAGGAAATTG GGGATTCCAG CTGAAGATTG GTACTTAGCT GCAGATTTTC | 14040 |
| TGGGTACTTG CCCGAAGCTC TCTGAATTAC AGCAAAGTAG GAAGATGTTG GCGAGTATGT   | 14100 |
| ACGCTCTAAA AACTGAAGGT GGAGTGGTAA ATACACCAAGT GAGCAATCTG CGTCAGCTAG  | 14160 |
| GTAGAAGGGA AGTTATGTAA TGGAAGATTA CGAAGAAAAA TCCGAATCGC TCATACTGCT   | 14220 |
| ACGCACGAAT CTGAACACTA TGCTTTAGT GGTCAAGTCC GATGCTAGTG TAGAGCTGCC    | 14280 |
| TAAACTACTA ATTTGCGGTT ACTTACGAGT GTCAGGACGT GGGGAGGTGA CGTGTGCAA    | 14340 |
| CCGTGAGGAA TTAACAAGAG ATTTGAGGG CAATCATCAT ACGGTGATCC GTTCTAGAAT    | 14400 |
| CATACAATAT GACAGCGAGT CTGCTTTGA GGAATTCAAC AACTCTGATT GCGTAGTGAA    | 14460 |
| GTTTTCCTA GAGACTGGTA GTGTCTTTG GTTTTCCTT CGAAGTGAAA CCAAAGGTAG      | 14520 |

|                                                                    |       |
|--------------------------------------------------------------------|-------|
| AGCGGTGCGA CATTGCGCA CCTTCTTCGA AGCTAACAAAT TTCTTCTTTG GATGCATTG   | 14580 |
| CGGTACCATG GAGTATTGTT TGAAGCAGGT ACTAACTGAA ACTGAATCTA TAATCGATTC  | 14640 |
| TTTTGCGAA GAAAGAAATC GTTAAGATGA GGGTTATAGT GTCTCCTTAT GAAGCTGAAG   | 14700 |
| ACATTCTGAA AAGATCGACT GACATGTTAC GAAACATAGA CAGTGGGTC TTGAGCACTA   | 14760 |
| AAGAATGTAT CAAGGCATTC TCGACGATAA CGCGAGACCT ACATTGTGCG AAGGCTTCCT  | 14820 |
| ACCAAGTGGGG TGTTGACACT GGGTTATATC AGCGTAATTG CGCTGAAAAA CGTTTAATTG | 14880 |
| ACACGGTGGA GTCAAACATA CGGTTGGCTC AACCTCTCGT GCGTGAAAAA GTGGCGGTTC  | 14940 |
| ATTTTGTA GGATGAAACCA AAAGAGCTAG TAGCATTTCAT CACGCGAAAG TACGTGGAAC  | 15000 |
| TCACGGGCGT GGGAGTGAGA GAAGCGGTGA AGAGGGAAAT GCGCTCTCTT ACCAAAACAG  | 15060 |
| TTTTAAATAA AATGTCTTTG GAAATGGCGT TTTACATGTC ACCACGAGCG TGGA AAAACG | 15120 |
| CTGAATGGTT AGAACTAAAA TTTTCACCTG TGAAAATCTT TAGAGATCTG CTATTAGACG  | 15180 |
| TGGAAACGCT CAACGAATTG TGCGCCGAAG ATGATGTTCA CGTCGACAAA GTAAATGAGA  | 15240 |
| ATGGGGACGA AAATCACGAC CTCGAACCTCC AAGACGAATG TTAAACATTG GTTAAGTTA  | 15300 |
| ACGAAAATGA TTAGTAAATA ATAAATCGAA CGTGGGTGTA TCTACCTGAC GTATCAACTT  | 15360 |
| AAGCTGTTAC TGAGTAATTA AACCAACAAG TGTTGGGTGTA ATGTGTATGT TGATGTAGAG | 15420 |
| AAAAATCCGT TTGTAGAACG GTGTTTTCT CTTCTTTATT TTTAAAAAAA AAATAAAAAA   | 15480 |
| AAAAAAAAAA AAGCGGCCGC                                              | 15500 |

Another DNA molecule of the present invention (GLRaV-2 ORF1a) includes nucleotides 4-7923 of SEQ. ID. No. 1 and is believed to code for a large, grapevine leafroll virus polyprotein containing the conserved domains characteristic of two papain-like proteases, a methyltransferase, and a helicase. This DNA molecule comprises the nucleotide sequence corresponding to SEQ. ID. No. 2 as follows:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| ACATTGCGAG AGAACCCAT TAGCGTCTCC GGGGTGAAC TGGGAAGGTC TGCCGCCGCT    | 60  |
| CAGGTTATTT ATTCGGCAG TTTCACGCAG CCCTTCGCGT TGTATCCGCG CCAAGAGAGC   | 120 |
| GCGATCGTAA AAACGCAACT TCCACC GGTC AGTGTAGTGA AGGTGGAGTG CGTAGCTGCG | 180 |
| GAGGTAGCTC CCGACAGGGG CGTGGTCGAC AAGAAACCTA CGTCTGTTGG CGTTCCCCG   | 240 |
| CAGCGCGGTG TGCTTTCTTT TCCGACGGTG GTTCGGAACC CGGGCGACGT GATAATCACA  | 300 |
| GGGGTGGTGC ATGAAGCCCT GAAGAAAATT AAAGACGGGC TCTTACGCTT CCGCGTAGGC  | 360 |
| GGTGACATGC GTTTTTCGAG ATTTTCTCA TCGAACTACG GCTGCAGATT CGTCGCGAGC   | 420 |
| GTGCGTACGA ACAC TACAGT TTGGCTAAAT TGCACGAAAG CGAGTGGTGA GAAATTCTCA | 480 |

|            |            |             |             |            |            |      |
|------------|------------|-------------|-------------|------------|------------|------|
| CTCGCCGCCG | CGTGCACGGC | GGATTACGTG  | GCGATGCTGC  | GTTATGTGTG | TGGCGGGAAA | 540  |
| TTTCCACTCG | TCCTCATGAG | TAGAGTTATT  | TACCCGGATG  | GGCGCTGTTA | CTTGGCCCCT | 600  |
| ATGAGGTATT | TGTGCGCCTT | TTACTGTCGC  | CCGTTAGAG   | AGTCGGATTA | TGCCCTCGGA | 660  |
| ATGTGGCCTA | CGGTGGCGCG | TCTCAGGGCA  | TGCGTTGAGA  | AGAACCTCGG | TGTCGAAGCT | 720  |
| TGTGGCATAG | CTCTTCGTGG | CTATTACACC  | TCTCGCAATG  | TTTATCACTG | TGATTATGAC | 780  |
| TCTGCTTATG | TAAAATATTT | TAGAAACCTT  | TCCGGCCGCA  | TTGGCGGTGG | TTCGTTCGAT | 840  |
| CCGACATCTT | TAACCTCCGT | AATAACGGTG  | AAGATTAGCG  | GTCTTCCAGG | TGGTCTTCCT | 900  |
| AAAAATATAG | CGTTGGTGC  | CTTCCTGTGC  | GATATACGTT  | ACGTCGAACC | GGTAGACTCG | 960  |
| GGCGGCATTC | AATCGAGCGT | TAAGACGAAA  | CGTGAAGATG  | CGCACCGAAC | CGTAGAGGAA | 1020 |
| CGGGCGGCCG | CGGGATCCGT | CGAGCAACCG  | CGACAAAAGA  | GGATAGATGA | GAAAGGTTGC | 1080 |
| GGCAGAGTTC | CTAGTGGAGG | TTTTTCGCAT  | CTCCTGGTCG  | GCAACCTTAA | CGAAGTTAGG | 1140 |
| AGGAAGGTAG | CTGCCGGACT | TCTACGCTTT  | CGCGTTGGCG  | GTGATATGGA | TTTCATCGC  | 1200 |
| TCGTTCTCCA | CCCAAGCGGG | CCACCGCTTG  | CTGGTGTGGC  | GCCGCTCGAG | CCGGAGCGTG | 1260 |
| TGCCTTGAAC | TTTACTCACC | ATCTAAAAAC  | TTTTTGCCTT  | ACGATGTCTT | GCCCTGTTCT | 1320 |
| GGAGACTATG | CAGCGATGTT | TTCTTCGCG   | GCAGGGCGGCC | GTTTCCCTTT | AGTTTTGATG | 1380 |
| ACTAGAATT  | GATAACCGAA | CGGGTTTTGT  | TACTTGGCTC  | ACTGCCGGTA | CGCGTGCACG | 1440 |
| TTTCTCTTAA | GGGGTTTTGA | TCCGAAGCGT  | TTCGACATCG  | GTGCTTCCC  | CACCGCGGCC | 1500 |
| AAGCTCAGAA | ACCGTATGGT | TTCGGAGCTT  | GGTGAAAGAA  | GTTTAGGTTT | GAACTTGTAC | 1560 |
| GGCGCATATA | CGTCACGCGG | CGTCTTCAC   | TGCGATTATG  | ACGCTAAGTT | TATAAAGGAT | 1620 |
| TTGCGTCTTA | TGTCAGCAGT | TATAGCTGGA  | AAGGACGGGG  | TGGAAGAGGT | GGTACCTTCT | 1680 |
| GACATAACTC | CTGCCATGAA | GCAGAAAACG  | ATCGAAGCCG  | TGTATGATAG | ATTATATGGC | 1740 |
| GGCACTGACT | CGTTGCTGAA | ACTGAGCATC  | GAGAAAGACT  | TAATCGATTT | CAAAATGAC  | 1800 |
| GTGCAGAGTT | TGAAGAAAGA | TCGGCCGATT  | GTCAAAGTGC  | CCTTTACAT  | GTCGGAAGCA | 1860 |
| ACACAGAATT | CGCTGACGCG | TTTCTACCCCT | CAGTCGAAC   | TTAAGTTTC  | GCACTCCTCG | 1920 |
| CATTCAGATC | ATCCCGCCGC | CGCCGCTTCT  | AGACTGCTGG  | AAAATGAAAC | GTTAGTGCAC | 1980 |
| TTATGTGGTA | ATAGCGTTTC | AGATATTGGA  | GGTTGTCTTC  | TTTCCATTT  | GCATTCCAAG | 2040 |
| ACGCAAAGAC | GGGTTCACGT | ATGTAGGCCT  | GTGTTGGATG  | GCAAGGATGC | GCAGCGTCGC | 2100 |
| GTGGTGCCTG | ATTTGCAGTA | TTCCAACGTG  | CGTTGGGAG   | ACGATGATAA | AATTTGGAA  | 2160 |
| GGGCCACGCA | ATATCGACAT | TTGCCACTAT  | CCTCTGGCG   | CGTGTGACCA | CGAAAGTAGT | 2220 |
| GCTATGATGA | TGGTGCAGGT | GTATGACGCG  | TCCCTTATG   | AGATATGTGG | CGCCATGATC | 2280 |

|             |             |            |             |            |             |      |
|-------------|-------------|------------|-------------|------------|-------------|------|
| AAGAAGAAAA  | GCCGCATAAC  | GTACTTAACC | ATGGTCACGC  | CCGGCGAGTT | TCTTGACGGA  | 2340 |
| CGCGAATGCG  | TCTACATGGA  | GTCGTTAGAC | TGTGAGATTG  | AAGTTGATGT | GCACCGGGAC  | 2400 |
| GTCGTAATGT  | ACAAATT CGG | TAGTTCTTGC | TATTGCACA   | AGCTTTCAAT | CATCAAGGAC  | 2460 |
| ATCATGACCA  | CTCCGTACTT  | GACACTAGGT | GGTTTCTAT   | TCAGCGTGG  | GATGTATGAG  | 2520 |
| GTGCGTATGG  | GCGTGAATT   | CTTCAAGATT | ACGAAGTCCG  | AAGTATCGCC | TAGCATTAGC  | 2580 |
| TGCACCAAGC  | TCCTGAGATA  | CCGAAGAGCT | AATAGTGACG  | TGGTTAAAGT | TAAACTTCCA  | 2640 |
| CGTTTCGATA  | AGAACCGTCG  | CATGTGTCTG | CCTGGGTATG  | ACACCATATA | CCTAGATTAGC | 2700 |
| AAGTTTGTGA  | GTCGCGTTT   | CGATTATGTC | GTGTGTAATT  | GCTCTGCCGT | GAACCTAAAA  | 2760 |
| ACTTCGAGT   | GGGTGTGGAG  | TTTCATTAAG | TCTAGTAAGT  | CGAGGGTGAT | TATTAGCGGT  | 2820 |
| AAAATAATTC  | ACAAGGATGT  | GAATTGGAC  | CTCAAGTACG  | TCGAGAGTTT | CGCCGCGGTT  | 2880 |
| ATGTTGGCCT  | CTGGCGTGC   | CAGTAGACTA | GCGTCCGAGT  | ACCTTGCTAA | GAACCTTAGT  | 2940 |
| CATTTTCGG   | GAGATTGCTC  | CTTTATTGAA | GCCACGTCTT  | TCGTGTTGCG | TGAGAAAATC  | 3000 |
| AGAAAACATGA | CTCTGAATT   | TAACGAAAGA | CTTTTACAGT  | TAGTGAAGCG | CGTTGCCTTT  | 3060 |
| GCGACCTTGG  | ACGTGAGTTT  | TCTAGATT   | GATTCAACTC  | TTGAATCAAT | AACTGATTT   | 3120 |
| GCCGAGTGT   | AGGTAGCGAT  | TGAAC      | TCGAC       | GAGTTGGGTT | GCTTGAGAGC  | 3180 |
| AATGAAAAAA  | TCAGGAATCT  | GGCGGGAGAT | TCGATTGCGG  | CTAAACTCGC | GAGCGAGATA  | 3240 |
| GTGGTCGATA  | TTGACTCTAA  | GCCTTCACCG | AAGCAGGTGG  | GTAATTGTC  | ATCCGAAAAC  | 3300 |
| GCCGATAAGC  | GGGAAGTTCA  | GAGGCCCGGT | TTGCGTGGT   | GTTCTAGAAA | CGGGGTTGTT  | 3360 |
| GGGGAGTTCC  | TTCACTTCGT  | CGTGGATTCT | GCCTTGC     | TTTCAAATA  | CGCGACGGAT  | 3420 |
| CAACAACGGA  | TCAAGTCTTA  | CGTGC      | TTGACTCGG   | CGGTCTCATT | CTTGGATTAC  | 3480 |
| AACTACGATA  | ATCTATCGTT  | TATACTGCGA | GTGCTTCGG   | AAGGTTATTC | GTGTATGTT   | 3540 |
| GCGTTTTGG   | CGAATCGCGG  | CGACTTATCT | AGTCGTGTCC  | GTAGCGCGGT | GTGTGCTGTG  | 3600 |
| AAAGAAGTTG  | CTACCTCATG  | CGCGAACCGC | AGCGTTCTA   | AAGCCAAGGT | TATGATTACC  | 3660 |
| TTCGCAGCGG  | CCGTGTGTG   | TATGATGTT  | AATAGCTGCG  | GTTTTCA    | GGACGGTCGG  | 3720 |
| GAGTATAAAAT | CGTATATACA  | TCGTTACACG | CAAGTATTGT  | TTGACACTAT | CTTTTTGAG   | 3780 |
| GACAGCAGTT  | ACCTACCCAT  | AGAAGTTCTG | AGTCGGCGA   | TATGCGGTGC | TATCGTCACA  | 3840 |
| CTTTCTCCT   | CGGGCTCGTC  | CATAAGTTA  | AACGCCTTCT  | TACTCAAAT  | TACCAAAGGA  | 3900 |
| TTCTCCCTAG  | AGGTTGTCGT  | CCGGAATGTT | GTGCGAGTCA  | CGCATGGTTT | GAGCACCACA  | 3960 |
| GCGACCGACG  | GCGTCATA    | CG         | TGGGTTTTC   | TCCCAAATTG | TGTCTCACTT  | 4020 |
| AATACGGGTA  | ATGTGGCTTA  | CCAGTCAGCT | TTCAATTGCCG | GGGTGGTGCC | TCTTTAGTT   | 4080 |
| AAAAAGTGTG  | TGAGCTTAAT  | CTTCATCTG  | CGTGAAGATA  | CTTATTCCGG | TTTTATTAAG  | 4140 |

|             |            |            |             |            |            |      |
|-------------|------------|------------|-------------|------------|------------|------|
| CACGGAATCA  | GTGAATTCTC | TTTCCTTAGT | AGTATTCTGA  | AGTTCTTGAA | GGGTAAGCTT | 4200 |
| GTGGACGAGT  | TGAAATCGAT | TATTCAAGGG | GTTTTGATT   | CCAACAAGCA | CGTGTAA    | 4260 |
| GAAGCTACTC  | AGGAAGCGAT | TCGTACGACG | GTCATGCAAG  | TGCCTGTCGC | TGTAGTGGAT | 4320 |
| GCCCTTAAGA  | GCGCCGCGGG | AAAAATTAT  | AACAATTAA   | CTAGTCGACG | TACCTTGTT  | 4380 |
| AAGGATGAAG  | GCTCCTCTAG | CGACGGCGCA | TGTGAAGAGT  | ATTTCTCATG | CGACGAAGGT | 4440 |
| GAAGGTCCGG  | GTCTGAAAGG | GGGTTCCAGC | TATGGCTTCT  | CAATTAGC   | GTTCTTTCA  | 4500 |
| CGCATTATGT  | GGGGAGCTCG | TCGGCTTATT | GTTAAGGTGA  | AGCATGAGTG | TTTGGGAAA  | 4560 |
| CTTTTGAAAT  | TTCTATCGCT | CAAGCTTCAC | GAATTCAAGGA | CTCGCGTTT  | TGGGAAGAAT | 4620 |
| AGAACGGACG  | TGGGAGTTA  | CGATTTTG   | CCCACGGGCA  | TCGTGGAAAC | GCTCTCATCG | 4680 |
| ATAGAAGAGT  | GCGACCAAAT | TGAAGAACTT | CTCGCGACG   | ACCTGAAAGG | TGACAAGGAT | 4740 |
| GCTTCGTTGA  | CCGATATGAA | TTACTTTGAG | TTCTCAGAAG  | ACTTCTTAGC | CTCTATCGAG | 4800 |
| GAGCCGCCTT  | TCGCTGGATT | GCGAGGAGGT | AGCAAGAAC   | TCGCGATT   | GGCGATT    | 4860 |
| GAATACGCGC  | ATAATTGTT  | TCGCATTGTC | GCAAGCAAGT  | GTTGAAACG  | ACCTTATT   | 4920 |
| CTTGCTTCG   | CCGAACCTC  | AAGGCCCTT  | ATCGAGAAAT  | TTAAGGAGGT | TTCCCTCGT  | 4980 |
| AAGAGCCAGC  | TCGTCGCTAT | CGTGCAGAG  | TATACTCAGA  | GATTCCCTCG | AAGTCGCATG | 5040 |
| CGTGCCTTGG  | GTTGAATAA  | CGAGTTCGTG | GTAAAATCTT  | TCGCCGATT  | GCTACCCGCA | 5100 |
| TTAATGAAGC  | GGAAGGTTTC | AGGTTCGTTC | TTAGCTAGTG  | TTTATCGCCC | ACTTAGAGGT | 5160 |
| TTCTCATATA  | TGTGTGTTTC | AGCGGAGCGA | CGTGAAAGT   | TTTTGCTCT  | CGTGTGTTA  | 5220 |
| ATCGGGTTAA  | GTCTCCCTT  | CTTCGTGCGC | ATCGTAGGAG  | CGAAAGCGTG | CGAAGAACTC | 5280 |
| GTGTCCCTCAG | CGCGTCGCTT | TTATGAGCGT | ATTAAAATT   | TTCTAAGGCA | GAAGTATGTC | 5340 |
| TCTCTTCTA   | ATTTCTTTG  | TCACTTGT   | AGCTCTGACG  | TTGATGACAG | TTCCGCATCT | 5400 |
| GCAGGGTTGA  | AAGGTGGTGC | GTCGCGAATG | ACGCTCTTCC  | ACCTTCTGGT | TCGCCTGCT  | 5460 |
| AGTGCCCTCC  | TATCGTTAGG | GTGGGAAGGG | TTAAAGCTAC  | TCTTATCGCA | CCACAACTTG | 5520 |
| TTATTTTGT   | GTTTGACGAT | GTGAACGTCC | TTATCAAAGT  | TCTTGGGGGT |            | 5580 |
| CTTCTTTCT   | TTGTGCAACC | AATCTTTCC  | TTGTTGCGG   | CGATGCTCT  | ACAACCGGAC | 5640 |
| AGGTTTGTGG  | AGTATTCCGA | GAAACTTGT  | ACAGCGTTG   | AATTTTCTT  | AAAATGTTG  | 5700 |
| CCTCGCGCGC  | CTGCACTACT | CAAAGGGTT  | TTGAGTGGG   | TGGCGAACAG | CACTGTGTCA | 5760 |
| AAAACCGTTC  | GAAGACTTCT | TCGCTGTTTC | GTGAAGATGC  | TCAAACCTCG | AAAAGGGCGA | 5820 |
| GGGTTGCGTG  | CGGATGGTAG | GGGTCTCCAT | CGGCAGAAAG  | CCGTACCCGT | CATACTTCT  | 5880 |
| AATCGGGTCG  | TGACCGACGG | GGTTGAAAGA | CTTCGGTAA   | AGATGCAAGG | AGTTGAAGCG | 5940 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| TTGCGTACCG AATTGAGAAT CTTAGAAGAT TTAGATTCTG CCGTGATCGA AAAACTCAAT | 6000 |
| AGACGCAGAA ATCGTACAC TAATGACGAC GAATTACGC GCCCTGCTCA TGAGCAGATG   | 6060 |
| CAAGAAGTCA CCACTTCTG TTCGAAAGCC AACTCTGCTG GTTGGCCCT GGAAAGGGCA   | 6120 |
| GTGCTTGTGG AAGACGCTAT AAAGTCGGAG AAACCTTCTA AGACGGTTAA TGAGATGGTG | 6180 |
| AGGAAAGGGA GTACCACCA CGAAGAAGTG GCCGTCGCTT TGTCGGACGA TGAAGCCGTG  | 6240 |
| GAAGAAATCT CTGTTGCTGA CGAGCGAGAC GATTGCCATA AGACAGTCAG GATAAGCGAA | 6300 |
| TACCTAAATA GGTTAAACTC AAGCTTCGAA TTCCCGAACG CTATTGTTGT GGACGACAAC | 6360 |
| AAGGATACCG GGGGCTAAC GAACGCCGTG AGGGAGTTT ATTATATGCA AGAACTTGCT   | 6420 |
| CTTTTCGAAA TCCACAGCAA ACTGTGCACC TACTACGATC AACTGCGCAT AGTCAACTTC | 6480 |
| GATCGTTCCG TAGCACCATG CAGCGAAGAT GCTCAGCTGT ACGTACGGAA GAACGGCTCA | 6540 |
| ACGATAGTGC AGGGTAAAGA GGTACGTTG CACATTAAGG ATTTCCACGA TCACGATTTC  | 6600 |
| CTGTTGACG GAAAAATTTC TATTAACAAG CGGCGGCGAG GCGGAAATGT TTTATATCAC  | 6660 |
| GACAAACCTCG CGTTCTTGGC GAGTAATTG TTCTTAGCCG GCTACCCCTT TTCAAGGAGC | 6720 |
| TTCGTCTTCA CGAATTGTC GGTGATATT CTCCTCTACG AAGCTCCACC CGGAGGTGGT   | 6780 |
| AAGACGACGA CGCTGATTGA CTCGTTCTG AAGGTCTTCA AGAAAGGTGA GGTTCCACC   | 6840 |
| ATGATCTTAA CCGCCAACAA AAGTCGCAG GTTGAGATCC TAAAGAAAGT GGAGAAGGAA  | 6900 |
| GTGTCTAACCA TTGAATGCCA GAAACGTAAA GACAAAAGAT CTCCGAAAAA GAGCATTAC | 6960 |
| ACCATCGACG CTTATTTAAT GCATCACCGT GGTTGTGATG CAGACGTTCT TTTCATCGAT | 7020 |
| GAGTGTTCAG GCATCACCGT GGTTGTGATG CAGACGTTCT TTTCATCGAT            | 7080 |
| AAAGTAATGA TCTTCGGGAG TAGCCGGCAG ATTCACTACA TTGAAAGGAA CGAATTGGAC | 7140 |
| AAGTGTTCAG GCATCACCGT GGTTGTGATG CAGACGTTCT TTTCATCGAT            | 7200 |
| ATTCGTACG GTTGTCCATG GGATGTGTGC GCTTGGTTAA GCACAGTGTA TGGCAACCTA  | 7260 |
| ATCGCCACCG TGAAGGGTGA AAGCGAAGGT AAGAGCAGCA TGCGCATTAA CGAAATTAAT | 7320 |
| TCAGTCGACG ATTTAGTCCC CGACGTGGGT TCCACGTTTC TGTGTATGCT TCAGTCGGAG | 7380 |
| AAGTTGGAAA TCAGCAAGCA CTTTATTGCG AAGGGTTGA CTAAACTTAA CGTTCTAACG  | 7440 |
| GTGCATGAGG CGCAAGGTGA GACGTATGCG CGTGTGAACC TTGTGCGACT TAAGTTTCAG | 7500 |
| GAGGATGAAC CCTTTAAATC TATCAGGCAC ATAACCGTCG CTCTTCTCG TCACACCGAC  | 7560 |
| AGCTTAACCT ATAACGTCTT AGCTGCTCGT CGAGGTGACG CCACTTGCGA TGCCATCCAG | 7620 |
| AAGGCTGCGG AATTGGTGAA CAAGTTTCGC GTTTTCCTA CATCTTTGG TGGTAGTGT    | 7680 |
| ATCAATCTCA ACgtGAAGAA GGACGTGGAA GATAACAGTA GGTGCAAGGC TTCGTCGGCA | 7740 |
| CCATTGAGCG TAATCAACGA CTTTTGAAC GAAGTTAAC CCGGTACTGC GGTGATTGAT   | 7800 |

|                                                                 |      |
|-----------------------------------------------------------------|------|
| TTGGTGATT TGTCCGCGGA CTTCAGTACT GGGCCTTTG AGTGCGGTGC CAGCGGTATT | 7860 |
| GTGGTGCGGG ACAACATCTC CTCCAGCAAC ATCACTGATC ACGATAAGCA GCGTGTAG | 7920 |

The large polyprotein (papain-like proteases, methyltransferase, and helicase) has an amino acid sequence corresponding to SEQ. ID. No. 3 as follows:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Thr | Leu | Arg | Glu | Asn | Pro | Ile | Ser | Val | Ser | Gly | Val | Asn | Leu | Gly | Arg |
| 1   |     |     |     |     |     |     |     |     | 10  |     |     |     |     |     | 15  |
| Ser | Ala | Ala | Ala | Gln | Val | Ile | Tyr | Phe | Gly | Ser | Phe | Thr | Gln | Pro | Phe |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 20  |
|     |     |     |     |     |     |     |     |     | 25  |     |     |     |     |     | 30  |
| Ala | Leu | Tyr | Pro | Arg | Gln | Glu | Ser | Ala | Ile | Val | Lys | Thr | Gln | Leu | Pro |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 35  |
| Pro | Val | Ser | Val | Val | Lys | Val | Glu | Cys | Val | Ala | Ala | Glu | Val | Ala | Pro |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 50  |
| Asp | Arg | Gly | Val | Val | Asp | Lys | Lys | Pro | Thr | Ser | Val | Gly | Val | Pro | Pro |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 65  |
|     |     |     |     |     |     | 70  |     |     | 75  |     |     |     |     |     | 80  |
| Gln | Arg | Gly | Val | Leu | Ser | Phe | Pro | Thr | Val | Val | Arg | Asn | Arg | Gly | Asp |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 85  |
| Val | Ile | Ile | Thr | Gly | Val | Val | His | Glu | Ala | Leu | Lys | Lys | Ile | Lys | Asp |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 100 |
| Gly | Leu | Leu | Arg | Phe | Arg | Val | Gly | Gly | Asp | Met | Arg | Phe | Ser | Arg | Phe |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 115 |
|     |     |     |     |     |     |     | 120 |     |     |     |     |     |     |     | 125 |
| Phe | Ser | Ser | Asn | Tyr | Gly | Cys | Arg | Phe | Val | Ala | Ser | Val | Arg | Thr | Asn |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 130 |
|     |     |     |     |     |     | 135 |     |     |     |     |     |     |     |     | 140 |
| Thr | Thr | Val | Trp | Leu | Asn | Cys | Thr | Lys | Ala | Ser | Gly | Glu | Lys | Phe | Ser |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 145 |
|     |     |     |     |     |     |     | 150 |     |     |     |     |     |     |     | 160 |
| Leu | Ala | Ala | Ala | Cys | Thr | Ala | Asp | Tyr | Val | Ala | Met | Leu | Arg | Tyr | Val |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 165 |
| Cys | Gly | Gly | Lys | Phe | Pro | Leu | Val | Leu | Met | Ser | Arg | Val | Ile | Tyr | Pro |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 180 |
|     |     |     |     |     |     |     |     | 185 |     |     |     |     |     |     | 190 |
| Asp | Gly | Arg | Cys | Tyr | Leu | Ala | His | Met | Arg | Tyr | Leu | Cys | Ala | Phe | Tyr |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 195 |
|     |     |     |     |     |     |     | 200 |     |     |     |     |     |     |     | 205 |
| Cys | Arg | Pro | Phe | Arg | Glu | Ser | Asp | Tyr | Ala | Leu | Gly | Met | Trp | Pro | Thr |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 210 |
|     |     |     |     |     |     |     |     | 215 |     |     |     |     |     |     | 220 |
| Val | Ala | Arg | Leu | Arg | Ala | Cys | Val | Glu | Lys | Asn | Phe | Gly | Val | Glu | Ala |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 225 |
| Cys | Gly | Ile | Ala | Leu | Arg | Gly | Tyr | Tyr | Thr | Ser | Arg | Asn | Val | Tyr | His |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 245 |
|     |     |     |     |     |     |     |     |     | 250 |     |     |     |     |     | 255 |
| Cys | Asp | Tyr | Asp | Ser | Ala | Tyr | Val | Lys | Tyr | Phe | Arg | Asn | Leu | Ser | Gly |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 260 |
|     |     |     |     |     |     |     |     | 265 |     |     |     |     |     |     | 270 |

- 26 -

Arg Ile Gly Gly Ser Phe Asp Pro Thr Ser Leu Thr Ser Val Ile  
275 280 285

Thr Val Lys Ile Ser Gly Leu Pro Gly Gly Leu Pro Lys Asn Ile Ala  
290 295 300

Phe Gly Ala Phe Leu Cys Asp Ile Arg Tyr Val Glu Pro Val Asp Ser  
305 310 315 320

Gly Gly Ile Gln Ser Ser Val Lys Thr Lys Arg Glu Asp Ala His Arg  
325 330 335

Thr Val Glu Glu Arg Ala Ala Gly Gly Ser Val Glu Gln Pro Arg Gln  
340 345 350

Lys Arg Ile Asp Glu Lys Gly Cys Gly Arg Val Pro Ser Gly Gly Phe  
355 360 365

Ser His Leu Leu Val Gly Asn Leu Asn Glu Val Arg Arg Lys Val Ala  
370 375 380

Ala Gly Leu Leu Arg Phe Arg Val Gly Gly Asp Met Asp Phe His Arg  
385 390 395 400

Ser Phe Ser Thr Gln Ala Gly His Arg Leu Leu Val Trp Arg Arg Ser  
405 410 415

Ser Arg Ser Val Cys Leu Glu Leu Tyr Ser Pro Ser Lys Asn Phe Leu  
420 425 430

Arg Tyr Asp Val Leu Pro Cys Ser Gly Asp Tyr Ala Ala Met Phe Ser  
435 440 445

Phe Ala Ala Gly Gly Arg Phe Pro Leu Val Leu Met Thr Arg Ile Arg  
450 455 460

Tyr Pro Asn Gly Phe Cys Tyr Leu Ala His Cys Arg Tyr Ala Cys Ala  
465 470 475 480

Phe Leu Leu Arg Gly Phe Asp Pro Lys Arg Phe Asp Ile Gly Ala Phe  
485 490 495

Pro Thr Ala Ala Lys Leu Arg Asn Arg Met Val Ser Glu Leu Gly Glu  
500 505 510

Arg Ser Leu Gly Leu Asn Leu Tyr Gly Ala Tyr Thr Ser Arg Gly Val  
515 520 525

Phe His Cys Asp Tyr Asp Ala Lys Phe Ile Lys Asp Leu Arg Leu Met  
530 535 540

Ser Ala Val Ile Ala Gly Lys Asp Gly Val Glu Glu Val Val Pro Ser  
545 550 555 560

Asp Ile Thr Pro Ala Met Lys Gln Lys Thr Ile Glu Ala Val Tyr Asp  
565 570 575

Arg Leu Tyr Gly Gly Thr Asp Ser Leu Leu Lys Leu Ser Ile Glu Lys  
580 585 590

- 27 -

Asp Leu Ile Asp Phe Lys Asn Asp Val Gln Ser Leu Lys Lys Asp Arg  
595 600 605

Pro Ile Val Lys Val Pro Phe Tyr Met Ser Glu Ala Thr Gln Asn Ser  
610 615 620

Leu Thr Arg Phe Tyr Pro Gln Phe Glu Leu Lys Phe Ser His Ser Ser  
625 630 635 640

His Ser Asp His Pro Ala Ala Ala Ser Arg Leu Leu Glu Asn Glu  
645 650 655

Thr Leu Val Arg Leu Cys Gly Asn Ser Val Ser Asp Ile Gly Gly Cys  
660 665 670

Pro Leu Phe His Leu His Ser Lys Thr Gln Arg Arg Val His Val Cys  
675 680 685

Arg Pro Val Leu Asp Gly Lys Asp Ala Gln Arg Arg Val Val Arg Asp  
690 695 700

Leu Gln Tyr Ser Asn Val Arg Leu Gly Asp Asp Asp Lys Ile Leu Glu  
705 710 715 720

Gly Pro Arg Asn Ile Asp Ile Cys His Tyr Pro Leu Gly Ala Cys Asp  
725 730 735

His Glu Ser Ser Ala Met Met Val Gln Val Tyr Asp Ala Ser Leu  
740 745 750

Tyr Glu Ile Cys Gly Ala Met Ile Lys Lys Lys Ser Arg Ile Thr Tyr  
755 760 765

Leu Thr Met Val Thr Pro Gly Glu Phe Leu Asp Gly Arg Glu Cys Val  
770 775 780

Tyr Met Glu Ser Leu Asp Cys Glu Ile Glu Val Asp Val His Ala Asp  
785 790 795 800

Val Val Met Tyr Lys Phe Gly Ser Ser Cys Tyr Ser His Lys Leu Ser  
805 810 815

Ile Ile Lys Asp Ile Met Thr Thr Pro Tyr Leu Thr Leu Gly Gly Phe  
820 825 830

Leu Phe Ser Val Glu Met Tyr Glu Val Arg Met Gly Val Asn Tyr Phe  
835 840 845

Lys Ile Thr Lys Ser Glu Val Ser Pro Ser Ile Ser Cys Thr Lys Leu  
850 855 860

Leu Arg Tyr Arg Arg Ala Asn Ser Asp Val Val Lys Val Lys Leu Pro  
865 870 875 880

Arg Phe Asp Lys Lys Arg Arg Met Cys Leu Pro Gly Tyr Asp Thr Ile  
885 890 895

Tyr Leu Asp Ser Lys Phe Val Ser Arg Val Phe Asp Tyr Val Val Cys  
900 905 910

Asn Cys Ser Ala Val Asn Ser Lys Thr Phe Glu Trp Val Trp Ser Phe  
915 920 925

Ile Lys Ser Ser Lys Ser Arg Val Ile Ile Ser Gly Lys Ile Ile His  
930 935 940

Lys Asp Val Asn Leu Asp Leu Lys Tyr Val Glu Ser Phe Ala Ala Val  
945 950 955 960

Met Leu Ala Ser Gly Val Arg Ser Arg Leu Ala Ser Glu Tyr Leu Ala  
965 970 975

Lys Asn Leu Ser His Phe Ser Gly Asp Cys Ser Phe Ile Glu Ala Thr  
980 985 990

Ser Phe Val Leu Arg Glu Lys Ile Arg Asn Met Thr Leu Asn Phe Asn  
995 1000 1005

Glu Arg Leu Leu Gln Leu Val Lys Arg Val Ala Phe Ala Thr Leu Asp  
1010 1015 1020

Val Ser Phe Leu Asp Leu Asp Ser Thr Leu Glu Ser Ile Thr Asp Phe  
1025 1030 1035 1040

Ala Glu Cys Lys Val Ala Ile Glu Leu Asp Glu Leu Gly Cys Leu Arg  
1045 1050 1055

Ala Glu Ala Glu Asn Glu Lys Ile Arg Asn Leu Ala Gly Asp Ser Ile  
1060 1065 1070

Ala Ala Lys Leu Ala Ser Glu Ile Val Val Asp Ile Asp Ser Lys Pro  
1075 1080 1085

Ser Pro Lys Gln Val Gly Asn Ser Ser Ser Glu Asn Ala Asp Lys Arg  
1090 1095 1100

Glu Val Gln Arg Pro Gly Leu Arg Gly Ser Arg Asn Gly Val Val  
1105 1110 1115 1120

Gly Glu Phe Leu His Phe Val Val Asp Ser Ala Leu Arg Leu Phe Lys  
1125 1130 1135

Tyr Ala Thr Asp Gln Gln Arg Ile Lys Ser Tyr Val Arg Phe Leu Asp  
1140 1145 1150

Ser Ala Val Ser Phe Leu Asp Tyr Asn Tyr Asp Asn Leu Ser Phe Ile  
1155 1160 1165

Leu Arg Val Leu Ser Glu Gly Tyr Ser Cys Met Phe Ala Phe Leu Ala  
1170 1175 1180

Asn Arg Gly Asp Leu Ser Ser Arg Val Arg Ser Ala Val Cys Ala Val  
1185 1190 1195 1200

Lys Glu Val Ala Thr Ser Cys Ala Asn Ala Ser Val Ser Lys Ala Lys  
1205 1210 1215

Val Met Ile Thr Phe Ala Ala Val Cys Ala Met Met Phe Asn Ser  
1220 1225 1230

- 29 -

Cys Gly Phe Ser Gly Asp Gly Arg Glu Tyr Lys Ser Tyr Ile His Arg  
1235 1240 1245

Tyr Thr Gln Val Leu Phe Asp Thr Ile Phe Phe Glu Asp Ser Ser Tyr  
1250 1255 1260

Leu Pro Ile Glu Val Leu Ser Ser Ala Ile Cys Gly Ala Ile Val Thr  
1265 1270 1275 1280

Leu Phe Ser Ser Gly Ser Ser Ile Ser Leu Asn Ala Phe Leu Leu Gln  
1285 1290 1295

Ile Thr Lys Gly Phe Ser Leu Glu Val Val Val Arg Asn Val Val Arg  
1300 1305 1310

Val Thr His Gly Leu Ser Thr Thr Ala Thr Asp Gly Val Ile Arg Gly  
1315 1320 1325

Val Phe Ser Gln Ile Val Ser His Leu Leu Val Gly Asn Thr Gly Asn  
1330 1335 1340

Val Ala Tyr Gln Ser Ala Phe Ile Ala Gly Val Val Pro Leu Leu Val  
1345 1350 1355 1360

Lys Lys Cys Val Ser Leu Ile Phe Ile Leu Arg Glu Asp Thr Tyr Ser  
1365 1370 1375

Gly Phe Ile Lys His Gly Ile Ser Glu Phe Ser Phe Leu Ser Ser Ile  
1380 1385 1390

Leu Lys Phe Leu Lys Gly Lys Leu Val Asp Glu Leu Lys Ser Ile Ile  
1395 1400 1405

Gln Gly Val Phe Asp Ser Asn Lys His Val Phe Lys Glu Ala Thr Gln  
1410 1415 1420

Glu Ala Ile Arg Thr Thr Val Met Gln Val Pro Val Ala Val Val Asp  
1425 1430 1435 1440

Ala Leu Lys Ser Ala Ala Gly Lys Ile Tyr Asn Asn Phe Thr Ser Arg  
1445 1450 1455

Arg Thr Phe Gly Lys Asp Glu Gly Ser Ser Ser Asp Gly Ala Cys Glu  
1460 1465 1470

Glu Tyr Phe Ser Cys Asp Glu Gly Glu Gly Pro Gly Leu Lys Gly Gly  
1475 1480 1485

Ser Ser Tyr Gly Phe Ser Ile Leu Ala Phe Phe Ser Arg Ile Met Trp  
1490 1495 1500

Gly Ala Arg Arg Leu Ile Val Lys Val Lys His Glu Cys Phe Gly Lys  
1505 1510 1515 1520

Leu Phe Glu Phe Leu Ser Leu Lys Leu His Glu Phe Arg Thr Arg Val  
1525 1530 1535

Phe Gly Lys Asn Arg Thr Asp Val Gly Val Tyr Asp Phe Leu Pro Thr  
1540 1545 1550

- 30 -

Gly Ile Val Glu Thr Leu Ser Ser Ile Glu Glu Cys Asp Gln Ile Glu  
1555 1560 1565

Glu Leu Leu Gly Asp Asp Leu Lys Gly Asp Lys Asp Ala Ser Leu Thr  
1570 1575 1580

Asp Met Asn Tyr Phe Glu Phe Ser Glu Asp Phe Leu Ala Ser Ile Glu  
1585 1590 1595 1600

Glu Pro Pro Phe Ala Gly Leu Arg Gly Gly Ser Lys Asn Ile Ala Ile  
1605 1610 1615

Leu Ala Ile Leu Glu Tyr Ala His Asn Leu Phe Arg Ile Val Ala Ser  
1620 1625 1630

Lys Cys Ser Lys Arg Pro Leu Phe Leu Ala Phe Ala Glu Leu Ser Ser  
1635 1640 1645

Ala Leu Ile Glu Lys Phe Lys Glu Val Phe Pro Arg Lys Ser Gln Leu  
1650 1655 1660

Val Ala Ile Val Arg Glu Tyr Thr Gln Arg Phe Leu Arg Ser Arg Met  
1665 1670 1675 1680

Arg Ala Leu Gly Leu Asn Asn Glu Phe Val Val Lys Ser Phe Ala Asp  
1685 1690 1695

Leu Leu Pro Ala Leu Met Lys Arg Lys Val Ser Gly Ser Phe Leu Ala  
1700 1705 1710

Ser Val Tyr Arg Pro Leu Arg Gly Phe Ser Tyr Met Cys Val Ser Ala  
1715 1720 1725

Glu Arg Arg Glu Lys Phe Phe Ala Leu Val Cys Leu Ile Gly Leu Ser  
1730 1735 1740

Leu Pro Phe Phe Val Arg Ile Val Gly Ala Lys Ala Cys Glu Glu Leu  
1745 1750 1755 1760

Val Ser Ser Ala Arg Arg Phe Tyr Glu Arg Ile Lys Ile Phe Leu Arg  
1765 1770 1775

Gln Lys Tyr Val Ser Leu Ser Asn Phe Phe Cys His Leu Phe Ser Ser  
1780 1785 1790

Asp Val Asp Asp Ser Ser Ala Ser Ala Gly Leu Lys Gly Gly Ala Ser  
1795 1800 1805

Arg Met Thr Leu Phe His Leu Leu Val Arg Leu Ala Ser Ala Leu Leu  
1810 1815 1820

Ser Leu Gly Trp Glu Gly Leu Lys Leu Leu Leu Ser His His Asn Leu  
1825 1830 1835 1840

Leu Phe Leu Cys Phe Ala Leu Val Asp Asp Val Asn Val Leu Ile Lys  
1845 1850 1855

Val Leu Gly Gly Leu Ser Phe Phe Val Gln Pro Ile Phe Ser Leu Phe  
1860 1865 1870

- 31 -

Ala Ala Met Leu Leu Gln Pro Asp Arg Phe Val Glu Tyr Ser Glu Lys  
1875 1880 1885

Leu Val Thr Ala Phe Glu Phe Phe Leu Lys Cys Ser Pro Arg Ala Pro  
1890 1895 1900

Ala Leu Leu Lys Gly Phe Phe Glu Cys Val Ala Asn Ser Thr Val Ser  
1905 1910 1915 1920

Lys Thr Val Arg Arg Leu Leu Arg Cys Phe Val Lys Met Leu Lys Leu  
1925 1930 1935

Arg Lys Gly Arg Gly Leu Arg Ala Asp Gly Arg Gly Leu His Arg Gln  
1940 1945 1950

Lys Ala Val Pro Val Ile Pro Ser Asn Arg Val Val Thr Asp Gly Val  
1955 1960 1965

Glu Arg Leu Ser Val Lys Met Gln Gly Val Glu Ala Leu Arg Thr Glu  
1970 1975 1980

Leu Arg Ile Leu Glu Asp Leu Asp Ser Ala Val Ile Glu Lys Leu Asn  
1985 1990 1995 2000

Arg Arg Arg Asn Arg Asp Thr Asn Asp Asp Glu Phe Thr Arg Pro Ala  
2005 2010 2015

His Glu Gln Met Gln Glu Val Thr Thr Phe Cys Ser Lys Ala Asn Ser  
2020 2025 2030

Ala Gly Leu Ala Leu Glu Arg Ala Val Leu Val Glu Asp Ala Ile Lys  
2035 2040 2045

Ser Glu Lys Leu Ser Lys Thr Val Asn Glu Met Val Arg Lys Gly Ser  
2050 2055 2060

Thr Thr Ser Glu Glu Val Ala Val Ala Leu Ser Asp Asp Glu Ala Val  
2065 2070 2075 2080

Glu Glu Ile Ser Val Ala Asp Glu Arg Asp Asp Ser Pro Lys Thr Val  
2085 2090 2095

Arg Ile Ser Glu Tyr Leu Asn Arg Leu Asn Ser Ser Phe Glu Phe Pro  
2100 2105 2110

Lys Pro Ile Val Val Asp Asp Asn Lys Asp Thr Gly Gly Leu Thr Asn  
2115 2120 2125

Ala Val Arg Glu Phe Tyr Tyr Met Gln Glu Leu Ala Leu Phe Glu Ile  
2130 2135 2140

His Ser Lys Leu Cys Thr Tyr Tyr Asp Gln Leu Arg Ile Val Asn Phe  
2145 2150 2155 2160

Asp Arg Ser Val Ala Pro Cys Ser Glu Asp Ala Gln Leu Tyr Val Arg  
2165 2170 2175

Lys Asn Gly Ser Thr Ile Val Gln Gly Lys Glu Val Arg Leu His Ile  
2180 2185 2190

- 32 -

Lys Asp Phe His Asp His Asp Phe Leu Phe Asp Gly Lys Ile Ser Ile  
2195 2200 2205

Asn Lys Arg Arg Arg Gly Gly Asn Val Leu Tyr His Asp Asn Leu Ala  
2210 2215 2220

Phe Leu Ala Ser Asn Leu Phe Leu Ala Gly Tyr Pro Phe Ser Arg Ser  
2225 2230 2235 2240

Phe Val Phe Thr Asn Ser Ser Val Asp Ile Leu Leu Tyr Glu Ala Pro  
2245 2250 2255

Pro Gly Gly Lys Thr Thr Leu Ile Asp Ser Phe Leu Lys Val  
2260 2265 2270

Phe Lys Lys Gly Glu Val Ser Thr Met Ile Leu Thr Ala Asn Lys Ser  
2275 2280 2285

Ser Gln Val Glu Ile Leu Lys Lys Val Glu Lys Glu Val Ser Asn Ile  
2290 2295 2300

Glu Cys Gln Lys Arg Lys Asp Lys Arg Ser Pro Lys Lys Ser Ile Tyr  
2305 2310 2315 2320

Thr Ile Asp Ala Tyr Leu Met His His Arg Gly Cys Asp Ala Asp Val  
2325 2330 2335

Leu Phe Ile Asp Glu Cys Phe Met Val His Ala Gly Ser Val Leu Ala  
2340 2345 2350

Cys Ile Glu Phe Thr Arg Cys His Lys Val Met Ile Phe Gly Asp Ser  
2355 2360 2365

Arg Gln Ile His Tyr Ile Glu Arg Asn Glu Leu Asp Lys Cys Leu Tyr  
2370 2375 2380

Gly Asp Leu Asp Arg Phe Val Asp Leu Gln Cys Arg Val Tyr Gly Asn  
2385 2390 2395 2400

Ile Ser Tyr Arg Cys Pro Trp Asp Val Cys Ala Trp Leu Ser Thr Val  
2405 2410 2415

Tyr Gly Asn Leu Ile Ala Thr Val Lys Gly Glu Ser Glu Gly Lys Ser  
2420 2425 2430

Ser Met Arg Ile Asn Glu Ile Asn Ser Val Asp Asp Leu Val Pro Asp  
2435 2440 2445

Val Gly Ser Thr Phe Leu Cys Met Leu Gln Ser Glu Lys Leu Glu Ile  
2450 2455 2460

Ser Lys His Phe Ile Arg Lys Gly Leu Thr Lys Leu Asn Val Leu Thr  
2465 2470 2475 2480

Val His Glu Ala Gln Gly Glu Thr Tyr Ala Arg Val Asn Leu Val Arg  
2485 2490 2495

Leu Lys Phe Gln Glu Asp Glu Pro Phe Lys Ser Ile Arg His Ile Thr  
2500 2505 2510

|      |     |     |     |     |      |     |      |      |      |      |      |      |     |      |     |
|------|-----|-----|-----|-----|------|-----|------|------|------|------|------|------|-----|------|-----|
| Val  | Ala | Leu | Ser | Arg | His  | Thr | Asp  | Ser  | Leu  | Thr  | Tyr  | Asn  | Val | Leu  | Ala |
| 2515 |     |     |     |     |      |     | 2520 |      |      |      |      | 2525 |     |      |     |
| Ala  | Arg | Arg | Gly | Asp | Ala  | Thr | Cys  | Asp  | Ala  | Ile  | Gln  | Lys  | Ala | Ala  | Glu |
| 2530 |     |     |     |     |      |     | 2535 |      |      |      | 2540 |      |     |      |     |
| Leu  | Val | Asn | Lys | Phe | Arg  | Val | Phe  | Pro  | Thr  | Ser  | Phe  | Gly  | Gly | Ser  | Val |
| 2545 |     |     |     |     |      |     | 2550 |      |      |      | 2555 |      |     | 2560 |     |
| Ile  | Asn | Leu | Asn | Val | Lys  | Lys | Asp  | Val  | Glu  | Asp  | Asn  | Ser  | Arg | Cys  | Lys |
|      |     |     |     |     | 2565 |     |      |      | 2570 |      |      | 2575 |     |      |     |
| Ala  | Ser | Ser | Ala | Pro | Leu  | Ser | Val  | Ile  | Asn  | Asp  | Phe  | Leu  | Asn | Glu  | Val |
|      |     |     |     |     | 2580 |     |      |      | 2585 |      |      | 2590 |     |      |     |
| Asn  | Pro | Gly | Thr | Ala | Val  | Ile | Asp  | Phe  | Gly  | Asp  | Leu  | Ser  | Ala | Asp  | Phe |
|      |     |     |     |     | 2595 |     |      | 2600 |      |      | 2605 |      |     |      |     |
| Ser  | Thr | Gly | Pro | Phe | Glu  | Cys | Gly  | Ala  | Ser  | Gly  | Ile  | Val  | Val | Arg  | Asp |
|      |     |     |     |     | 2610 |     | 2615 |      |      | 2620 |      |      |     |      |     |
| Asn  | Ile | Ser | Ser | Ser | Asn  | Ile | Thr  | Asp  | His  | Asp  | Lys  | Gln  | Arg | Val  |     |
|      |     |     |     |     | 2625 |     | 2630 |      |      | 2635 |      |      |     |      |     |

and has a molecular weight of about 290 to 300 kDa, preferably 294 kDa.

Another such DNA molecule (GLRaV-2 ORF1b) includes nucleotides 7922-9301 of SEQ. ID. No. 1 and codes for a grapevine leafroll virus RNA-dependent RNA polymerase (RdRP). This DNA molecule comprises the nucleotide sequence 5 corresponding to SEQ. ID. No. 4 as follows:

|            |            |            |             |             |             |     |
|------------|------------|------------|-------------|-------------|-------------|-----|
| AGCGTAGTTC | GGTCGCAGGC | GATTCCGCGT | AGAAAAACCTT | CTCTACAAGA  | AAATTTGTAT  | 60  |
| TCGTTTGAAG | CGCGGAATTA | TAACTTCTCG | ACTTGCGACC  | GTAACACATC  | TGCTTCAATG  | 120 |
| TTCGGAGAGG | CTATGGCGAT | GAACGTGCTT | CGTCGTTGCT  | TCGACCTAGA  | TGCCTTTTCG  | 180 |
| TCCCTGCGTG | ATGATGTGAT | TAGTATCACA | CGTTCAAGCA  | TCGAACAAATG | GCTGGAGAAA  | 240 |
| CGTACTCCTA | GTCAGATTAA | AGCATTAATG | AAGGATGTTG  | AATCGCCTTT  | GGAAATTGAC  | 300 |
| GATGAAATT  | GTCGTTTAA  | GTTGATGGTG | AAGCGTGACG  | CTAAGGTGAA  | GTTAGACTCT  | 360 |
| TCTTGTAA   | CTAACACAG  | CGCCGCTCAA | AATATCATGT  | TTCATCGCAA  | GAGCATTAAAT | 420 |
| GCTATCTCT  | CTCCTATCTT | TAATGAGGTG | AAAAACCGAA  | TAATGTGCTG  | TCTTAAGCCT  | 480 |
| AACATAAAGT | TTTTACGGA  | GATGACTAAC | AGGGATTTG   | CTTCTGTTGT  | CAGCAACATG  | 540 |
| CTTGGTGACG | ACGATGTGTA | CCATATAGGT | GAAGTTGATT  | TCTCAAAGTA  | CGACAAGTCT  | 600 |
| CAAGATGCTT | TCGTGAAGGC | TTTGAAAGAA | GTAATGTATA  | AGGAACTCGG  | TGTTGATGAA  | 660 |
| GAGTTGCTGG | CTATCTGGAT | GTGCGGCGAG | CGGTTATCGA  | TAGCTAACAC  | TCTCGATGGT  | 720 |
| CAGTTGTCCT | TCACGATCGA | GAATCAAAGG | AAGTCGGGAG  | CTTCGAACAC  | TTGGATTGGT  | 780 |

|            |            |            |            |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| AACTCTCTCG | TCACCTTGGG | TATTTAAGT  | CTTTACTACG | ACGTTAGAAA | TTTCGAGGCG | 840  |
| TTGTACATCT | CGGGCGATGA | TTCTTTAATT | TTTCTCGCA  | GCGAGATTTC | GAATTATGCC | 900  |
| GACGACATAT | GCACTGACAT | GGGTTTGAG  | ACAAAATTAA | TGTCCCCAAG | TGTCCCGTAC | 960  |
| TTTTGTTCTA | AATTTGTTGT | TATGTGTGGT | CATAAGACGT | TTTTGTTCC  | CGACCCGTAC | 1020 |
| AAGCTTTTG  | TCAAGTTGGG | AGCAGTCAAA | GAGGATGTTT | CAATGGATT  | CCTTTTCGAG | 1080 |
| ACTTTACCT  | CCTTTAAAGA | CTTAACCTCC | GATTTAACG  | ACGAGCGCTT | AATTCAAAAG | 1140 |
| CTCGCTGAAC | TTGTGGCTTT | AAAATATGAG | GTTCAAACCG | GCAACACCAC | CTTGGCGTTA | 1200 |
| AGTGTGATAC | ATTGTTTGC  | TTCGAATTTC | CTCTCGTTA  | GCAAGTTATA | TCCTCGCGTG | 1260 |
| AAGGGATGGC | AGGTTTTTA  | CACGTCGGTT | AAGAAAGCGC | TTCTCAAGAG | TGGGTGTTCT | 1320 |
| CTCTTCGACA | GTTCATGAC  | CCCTTTGGT  | CAGGCTGTCA | TGGTTGGGA  | TGATGAGTAG | 1380 |

The RNA-dependent RNA polymerase has an amino acid sequence corresponding to SEQ. ID. No. 5 as follows:

Ser Val Val Arg Ser Gln Ala Ile Pro Arg Arg Lys Pro Ser Leu Gln  
 1 5 10 15

Glu Asn Leu Tyr Ser Phe Glu Ala Arg Asn Tyr Asn Phe Ser Thr Cys  
 20 25 30

Asp Arg Asn Thr Ser Ala Ser Met Phe Gly Glu Ala Met Ala Met Asn  
 35 40 45

Cys Leu Arg Arg Cys Phe Asp Leu Asp Ala Phe Ser Ser Leu Arg Asp  
 50 55 60

Asp Val Ile Ser Ile Thr Arg Ser Gly Ile Glu Gln Trp Leu Glu Lys  
 65 70 75 80

Arg Thr Pro Ser Gln Ile Lys Ala Leu Met Lys Asp Val Glu Ser Pro  
 85 90 95

Leu Glu Ile Asp Asp Glu Ile Cys Arg Phe Lys Leu Met Val Lys Arg  
 100 105 110

Asp Ala Lys Val Lys Leu Asp Ser Ser Cys Leu Thr Lys His Ser Ala  
 115 120 125

Ala Gln Asn Ile Met Phe His Arg Lys Ser Ile Asn Ala Ile Phe Ser  
 130 135 140

Pro Ile Phe Asn Glu Val Lys Asn Arg Ile Met Cys Cys Leu Lys Pro  
 145 150 155 160

Asn Ile Lys Phe Phe Thr Glu Met Thr Asn Arg Asp Phe Ala Ser Val  
 165 170 175

Val Ser Asn Met Leu Gly Asp Asp Asp Val Tyr His Ile Gly Glu Val  
 180 185 190

Asp Phe Ser Lys Tyr Asp Lys Ser Gln Asp Ala Phe Val Lys Ala Phe  
195 200 205

Glu Glu Val Met Tyr Lys Glu Leu Gly Val Asp Glu Glu Leu Leu Ala  
210 215 220

Ile Trp Met Cys Gly Glu Arg Leu Ser Ile Ala Asn Thr Leu Asp Gly  
225 230 235 240

Gln Leu Ser Phe Thr Ile Glu Asn Gln Arg Lys Ser Gly Ala Ser Asn  
245 250 255

Thr Trp Ile Gly Asn Ser Leu Val Thr Leu Gly Ile Leu Ser Leu Tyr  
260 265 270

Tyr Asp Val Arg Asn Phe Glu Ala Leu Tyr Ile Ser Gly Asp Asp Ser  
275 280 285

Leu Ile Phe Ser Arg Ser Glu Ile Ser Asn Tyr Ala Asp Asp Ile Cys  
290 295 300

Thr Asp Met Gly Phe Glu Thr Lys Phe Met Ser Pro Ser Val Pro Tyr  
305 310 315 320

Phe Cys Ser Lys Phe Val Val Met Cys Gly His Lys Thr Phe Phe Val  
325 330 335

Pro Asp Pro Tyr Lys Leu Phe Val Lys Leu Gly Ala Val Lys Glu Asp  
340 345 350

Val Ser Met Asp Phe Leu Phe Glu Thr Phe Thr Ser Phe Lys Asp Leu  
355 360 365

Thr Ser Asp Phe Asn Asp Glu Arg Leu Ile Gln Lys Leu Ala Glu Leu  
370 375 380

Val Ala Leu Lys Tyr Glu Val Gln Thr Gly Asn Thr Thr Leu Ala Leu  
385 390 395 400

Ser Val Ile His Cys Leu Arg Ser Asn Phe Leu Ser Phe Ser Lys Leu  
405 410 415

Tyr Pro Arg Val Lys Gly Trp Gln Val Phe Tyr Thr Ser Val Lys Lys  
420 425 430

Ala Leu Leu Lys Ser Gly Cys Ser Leu Phe Asp Ser Phe Met Thr Pro  
435 440 445

Phe Gly Gln Ala Val Met Val Trp Asp Asp Glu  
450 455

and a molecular weight from about 50 to about 54 kDa, preferably about 52 kDa.

Another such DNA molecule (GLRAV-2 ORF2) includes nucleotides 9365-9535 of SEQ. ID. No. 1 and codes for a small, grapevine leafroll virus hydrophobic protein or polypeptide. This DNA molecule comprises the nucleotide sequence 5 corresponding to SEQ. ID. No. 6 as follows:

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| ATGAATCAGG TTTGCAGTT TGAATGTTG TTTCTGCTGA ATCTCGCGGT TTTGCTGTG  | 60  |
| ACTTTCATTT TCATTCTTCT GGTCTCCGC GTGATTAAGT CTTTCGCCA GAAGGGTCAC | 120 |
| GAAGCACCTG TTCCCGTTGT TCGTGGCGGG GGTTTTCAA CCGTAGTGTA G         | 171 |

The small hydrophobic protein or polypeptide has an amino acid sequence corresponding to SEQ. ID. No. 7 as follows:

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Met Asn Gln Val Leu Gln Phe Glu Cys Leu Phe Leu Leu Asn Leu Ala |  |
| 1 5 10 15                                                       |  |
| Val Phe Ala Val Thr Phe Ile Phe Ile Leu Leu Val Phe Arg Val Ile |  |
| 20 25 30                                                        |  |
| Lys Ser Phe Arg Gln Lys Gly His Glu Ala Pro Val Pro Val Val Arg |  |
| 35 40 45                                                        |  |
| Gly Gly Gly Phe Ser Thr Val Val                                 |  |
| 50 55                                                           |  |

and a molecular weight from about 5 to about 7 kDa, preferably about 6 kDa.

Another such DNA molecule (GLRaV-2 ORF3) includes nucleotides 5 9551-11350 of SEQ. ID. No. 1 and encodes for a grapevine leafroll virus heat shock 70 protein. This DNA molecule comprises the nucleotide sequence corresponding to SEQ. ID. No. 8 as follows:

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| ATGGTAGTTT TCGGTTTGGG CTTTGGCACC ACATTCTCTA CGGTGTGTGT GTACAAGGAT | 60  |
| GGACGAGTTT TTTCATTCAA GCAGAATAAT TCGGCGTACA TCCCCACTTA CCTCTATCTC | 120 |
| TTCTCCGATT CTAACCACAT GACTTTGGT TACGAGGCCG AATCACTGAT GAGTAATCTG  | 180 |
| AAAGTTAAAG GTTCGTTTA TAGAGATTAA AAACGTTGGG TGGGTTGCGA TTGAGTAAC   | 240 |
| CTCGACGCGT ACCTTGACCG TTTAAAACCT CATTACTCGG TCCGCTTGGT TAAGATCGGC | 300 |
| TCTGGCTTGA ACGAAACTGT TTCAATTGGG AACCTCGGGG GCACTGTTAA GTCTGAGGCT | 360 |
| CATCTGCCAG GGTTGATAGC TCTCTTATT AAGGCTGTCA TTAGTTGCGC GGAGGGCGCG  | 420 |
| TTTGCCTGCA CTTGCACCGG GGTTATTGT TCAGTACCTG CCAATTATGA TAGCGTTCAA  | 480 |
| AGGAATTTCAG CGGCTGCGCT ATCTGCGTGT AATTGATTG GAAAGAAGTC CGCAAATTG  | 540 |
| GCTGTTACG ATTCGGTGG TGGGACCTTC GACGTGTCTA TCATTTCATCA CCGCAACAAT  | 600 |
| ACTTTGTTG TGCGAGCTTC TGGAGGCGAT CTAAATCTCG GTGGAAGGGA TGTTGATCGT  | 660 |
| CGCTTCTCA CGCACCTCTT CTCTTAAACA TCGCTGGAAC CTGACCTCAC TTTGGATATC  | 720 |
|                                                                   | 780 |

|            |              |            |            |            |            |      |
|------------|--------------|------------|------------|------------|------------|------|
| TCGAATCTGA | AAGAATCTTT   | ATCAAAAACG | GACGCAGAGA | TAGTTTACAC | TTTGAGAGGT | 840  |
| GTCGATGGAA | GAAAAGAAGA   | CGTTAGAGTA | AACAAAAACA | TTCTTACGTC | GGTGATGCTC | 900  |
| CCCTACGTGA | ACAGAACGCT   | TAAGATATTA | GAGTCAACCT | TAAAATCGTA | TGCTAAGAGT | 960  |
| ATGAATGAGA | GTGCGCGAGT   | TAAGTGCAT  | TTAGTGCTGA | TAGGAGGATC | TTCATATCTT | 1020 |
| CCTGGCCTGG | CAGACGTACT   | AACGAAGCAT | CAGAGCGTTG | ATCGTATCTT | AAGAGTTTCG | 1080 |
| GATCCTCGGG | CTGCCGTGGC   | CGTCGGTTGC | GCATTATATT | CTTCATGCCT | CTCAGGATCT | 1140 |
| GGGGGGTTGC | TACTGATCGA   | CTGTGCAGCT | CACACTGTCG | CTATAGCGGA | CAGAAGTTGT | 1200 |
| CATCAAATCA | TTTGCCTCCTCC | AGCGGGGGCA | CCGATCCCCT | TTTCAGGAAG | CATGCCTTG  | 1260 |
| TACTTAGCCA | GGGTCAACAA   | GAACTCGCAG | CGTGAAGTCG | CCGTGTTTGA | AGGGGAGTAC | 1320 |
| GTAAAGTGCC | CTAAGAACAG   | AAAGATCTGT | GGAGCAAATA | TAAGATTTTT | TGATATAGGA | 1380 |
| GTGACGGGTG | ATTCGTACGC   | ACCCGTTACC | TTCTATATGG | ATTCTCCAT  | TTCAAGCGTA | 1440 |
| GGAGCCGTTT | CATTCGTGGT   | GAGAGGTCTT | GAGGGTAAGC | AAGTGTCACT | CACTGGAACT | 1500 |
| CCAGCGTATA | ACTTTCGTC    | TGTGGCTCTC | GGATCACGCA | GTGTCCGAGA | ATTGCATATT | 1560 |
| AGTTTAAATA | ATAAAAGTTT   | TCTCGGTTTG | CTTCTACATA | GAAAGGCGGA | TCGACGAATA | 1620 |
| CTTTTCACTA | AGGATGAAGC   | GATTGATAAC | GCCGATTCAA | TTGATATCGC | GGATGTGCTA | 1680 |
| AAGGAATATA | AAAGTTACGC   | GGCCAGTGCC | TTACCACCAG | ACGAGGATGT | CGAATTACTC | 1740 |
| CTGGGAAAGT | CTGTTCAAAA   | AGTTTACGG  | GGAAGCAGAC | TGGAAGAAAT | ACCTCTCTAG | 1800 |

The heat shock 70 protein is believed to function as a chaperone protein and has an amino acid sequence corresponding to SEQ. ID. No. 9 as follows:

```

Met Val Val Phe Gly Leu Asp Phe Gly Thr Thr Phe Ser Thr Val Cys
1           5                   10          15

Val Tyr Lys Asp Gly Arg Val Phe Ser Phe Lys Gln Asn Asn Ser Ala
20          25                   30

Tyr Ile Pro Thr Tyr Leu Tyr Leu Phe Ser Asp Ser Asn His Met Thr
35          40                   45

Phe Gly Tyr Glu Ala Glu Ser Leu Met Ser Asn Leu Lys Val Lys Gly
50          55                   60

Ser Phe Tyr Arg Asp Leu Lys Arg Trp Val Gly Cys Asp Ser Ser Asn
65          70                   75          80

Leu Asp Ala Tyr Leu Asp Arg Leu Lys Pro His Tyr Ser Val Arg Leu
85          90                   95

Val Lys Ile Gly Ser Gly Leu Asn Glu Thr Val Ser Ile Gly Asn Phe
100         105                  110

```

- 38 -

Gly Gly Thr Val Lys Ser Glu Ala His Leu Pro Gly Leu Ile Ala Leu  
115 120 125

Phe Ile Lys Ala Val Ile Ser Cys Ala Glu Gly Ala Phe Ala Cys Thr  
130 135 140

Cys Thr Gly Val Ile Cys Ser Val Pro Ala Asn Tyr Asp Ser Val Gln  
145 150 155 160

Arg Asn Phe Thr Asp Gln Cys Val Ser Leu Ser Gly Tyr Gln Cys Val  
165 170 175

Tyr Met Ile Asn Glu Pro Ser Ala Ala Leu Ser Ala Cys Asn Ser  
180 185 190

Ile Gly Lys Lys Ser Ala Asn Leu Ala Val Tyr Asp Phe Gly Gly Gly  
195 200 205

Thr Phe Asp Val Ser Ile Ile Ser Tyr Arg Asn Asn Thr Phe Val Val  
210 215 220

Arg Ala Ser Gly Gly Asp Leu Asn Leu Gly Gly Arg Asp Val Asp Arg  
225 230 235 240

Ala Phe Leu Thr His Leu Phe Ser Leu Thr Ser Leu Glu Pro Asp Leu  
245 250 255

Thr Leu Asp Ile Ser Asn Leu Lys Glu Ser Leu Ser Lys Thr Asp Ala  
260 265 270

Glu Ile Val Tyr Thr Leu Arg Gly Val Asp Gly Arg Lys Glu Asp Val  
275 280 285

Arg Val Asn Lys Asn Ile Leu Thr Ser Val Met Leu Pro Tyr Val Asn  
290 295 300

Arg Thr Leu Lys Ile Leu Glu Ser Thr Leu Lys Ser Tyr Ala Lys Ser  
305 310 315 320

Met Asn Glu Ser Ala Arg Val Lys Cys Asp Leu Val Leu Ile Gly Gly  
325 330 335

Ser Ser Tyr Leu Pro Gly Leu Ala Asp Val Leu Thr Lys His Gln Ser  
340 345 350

Val Asp Arg Ile Leu Arg Val Ser Asp Pro Arg Ala Ala Val Ala Val  
355 360 365

Gly Cys Ala Leu Tyr Ser Ser Cys Leu Ser Gly Ser Gly Gly Leu Leu  
370 375 380

Leu Ile Asp Cys Ala Ala His Thr Val Ala Ile Ala Asp Arg Ser Cys  
385 390 395 400

His Gln Ile Ile Cys Ala Pro Ala Gly Ala Pro Ile Pro Phe Ser Gly  
405 410 415

Ser Met Pro Leu Tyr Leu Ala Arg Val Asn Lys Asn Ser Gln Arg Glu  
420 425 430

Val Ala Val Phe Glu Gly Glu Tyr Val Lys Cys Pro Lys Asn Arg Lys  
 435 440 445  
 Ile Cys Gly Ala Asn Ile Arg Phe Phe Asp Ile Gly Val Thr Gly Asp  
 450 455 460  
 Ser Tyr Ala Pro Val Thr Phe Tyr Met Asp Phe Ser Ile Ser Ser Val  
 465 470 475 480  
 Gly Ala Val Ser Phe Val Val Arg Gly Pro Glu Gly Lys Gln Val Ser  
 485 490 495  
 Leu Thr Gly Thr Pro Ala Tyr Asn Phe Ser Ser Val Ala Leu Gly Ser  
 500 505 510  
 Arg Ser Val Arg Glu Leu His Ile Ser Leu Asn Asn Lys Val Phe Leu  
 515 520 525  
 Gly Leu Leu Leu His Arg Lys Ala Asp Arg Arg Ile Leu Phe Thr Lys  
 530 535 540  
 Asp Glu Ala Ile Arg Tyr Ala Asp Ser Ile Asp Ile Ala Asp Val Leu  
 545 550 555 560  
 Lys Glu Tyr Lys Ser Tyr Ala Ala Ser Ala Leu Pro Pro Asp Glu Asp  
 565 570 575  
 Val Glu Leu Leu Leu Gly Lys Ser Val Gln Lys Val Leu Arg Gly Ser  
 580 585 590  
 Arg Leu Glu Glu Ile Pro Leu  
 595

and a molecular weight from about 63 to about 67 kDa, preferably about 65 kDa.

Another such DNA molecule (GLRaV-2 ORF4) includes nucleotides 11277-12932 of SEQ. ID. No. 1 and codes for a putative grapevine leafroll virus heat shock 90 protein. This DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 10 as follows:

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| ATGTCGAATT ACTCCTGGGA AAGTCTGTTA AAAAAGTTTT ACGGGGAAGC AGACTGGAAG   | 60  |
| AAATAACCTCT CTAGGGAGCAT AGCAGCACAC TCAAGTGAAA TTAAAACTCT ACCAGACATT | 120 |
| CGATTGTACG GCGGTAGGGT TGTAAGAAG TCCGAATTCTG AATCAGCACT TCCTAATTCT   | 180 |
| TTTGAACAGG ATTAGGACT GTTCATACTG AGCGAACGGG AAGTGGGATG GAGCAAATTA    | 240 |
| TGCGGAATAA CGGTGGAAGA AGCAGCATAAC GATCTTACGA ATCCCAAGGC TTATAAATTC  | 300 |
| ACTGCCGAGA CATGTAGCCC GGATGTAAAA GGTGAAGGAC AAAAATACTC TATGGAAGAC   | 360 |
| GTGATGAATT TCATGCGTTT ATCAAATCTG GATGTTAACG ACAAGATGCT GACGGAACAG   | 420 |
| TGTTGGTCGC TGTCCAATTC ATGCGGTGAA TTGATCAACC CAGACGACAA AGGGCGATTC   | 480 |
| GTGGCTCTCA CCTTTAAGGA CAGAGACACA GCTGATGACA CGGGTGCCGC CAACGTGGAA   | 540 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| TGTCGCGTGG GCGACTATCT AGTTTACGCT ATGTCCCTGT TTGAGCAGAG GACCCAAAAA  | 600  |
| TCGCAGTCTG GCAACATCTC TCTGTACGAA AAGTACTGTG AATAACATCAG GACCTACTTA | 660  |
| GGGAGTACAG ACCTGTTCTT CACAGCGCCG GACAGGATTG CGTTACTTAC GGGCATCCTA  | 720  |
| TACGATTTT GTAAGGAATA CAACGTTTC TACTCGTCAT ATAAGAGAAA CGTCGATAAT    | 780  |
| TTCAGATTCT TCTTGGCGAA TTATATGCCT TTGATATCTG ACGTCTTGT CTTCCAGTGG   | 840  |
| GTAAAACCCG CGCCGGATGT TCGGCTGCTT TTTGAGTTAA GTGCAGCGGA ACTAACGCTG  | 900  |
| GAGGTTCCA CACTGAGTTT GATAGATTCT CAAGTTGTGG TAGGTCAATAT CTTAAGATAAC | 960  |
| GTAGAATCCT ACACATCAGA TCCAGCCATC GACCGCTTAG AAGACAAACT GGAAGCGATA  | 1020 |
| CTGAAAAGTA GCAATCCCCG TCTATCGACA GCGCAACTAT GGGTTGGTTT CTTTGTTAC   | 1080 |
| TATGGTGAGT TTCGTACGGC TCAAAGTAGA GTAGTGAAA GACCAGCGT ATACAAAACA    | 1140 |
| CCTGACTCAG TGGGTGGATT TGAAATAAAC ATGAAAGATG TTGAGAAATT CTTCGATAAA  | 1200 |
| CTTCAGAGAG AATTGCCTAA TGTATCTTG CGCGTCAGT TTAACGGAGC TAGAGCGCAT    | 1260 |
| GAGGCTTCA AAATATTTAA AACCGGAAAT ATAAGTTCA GACCTATATC GCCTTTAAC     | 1320 |
| GTGCCTAGAG AGTTCTGGTA TCTGAACATA GACTACTTCA GGCACCGCGAA TAGGTCCGGG | 1380 |
| TTAACCGAAG AAGAAATACT CATCCTAAC AACATAAGCG TTGATTTAG GAAGTTATGC    | 1440 |
| GCTGAGAGAG CGTGCAATAC CCTACCTAGC GCGAAGCGCT TTAGTAAAAA TCATAAGAGT  | 1500 |
| AATATACAAT CATCACGCCA AGAGCGGAGG ATTAAAGACC CATTGGTAGT CCTGAAAGAC  | 1560 |
| ACTTTATATG AGTTCCAACA CAAGCGTGCC GGTTGGGGGT CTCGAAGCAC TCGAGACCTC  | 1620 |
| GGGAGTCGTG CTGACCACGC GAAAGGAAGC GGTTGA                            | 1656 |

The heat shock 90 protein has an amino acid sequence corresponding to SEQ. ID. No. 11 as follows:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ser | Asn | Tyr | Ser | Trp | Glu | Ser | Leu | Phe | Lys | Lys | Phe | Tyr | Gly | Glu |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |     |
| Ala | Asp | Trp | Lys | Lys | Tyr | Leu | Ser | Arg | Ser | Ile | Ala | Ala | His | Ser | Ser |
|     |     | 20  |     |     |     |     |     | 25  |     |     |     |     | 30  |     |     |
| Glu | Ile | Lys | Thr | Leu | Pro | Asp | Ile | Arg | Leu | Tyr | Gly | Gly | Arg | Val | Val |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |     |
| Lys | Lys | Ser | Glu | Phe | Glu | Ser | Ala | Leu | Pro | Asn | Ser | Phe | Glu | Gln | Glu |
|     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |     |     |
| Leu | Gly | Leu | Phe | Ile | Leu | Ser | Glu | Arg | Glú | Val | Gly | Trp | Ser | Lys | Leu |
|     |     |     |     |     | 65  |     | 70  |     |     | 75  |     |     |     | 80  |     |

- 41 -

Cys Gly Ile Thr Val Glu Glu Ala Ala Tyr Asp Leu Thr Asn Pro Lys  
85 90 95

Ala Tyr Lys Phe Thr Ala Glu Thr Cys Ser Pro Asp Val Lys Gly Glu  
100 105 110

Gly Gln Lys Tyr Ser Met Glu Asp Val Met Asn Phe Met Arg Leu Ser  
115 120 125

Asn Leu Asp Val Asn Asp Lys Met Leu Thr Glu Gln Cys Trp Ser Leu  
130 135 140

Ser Asn Ser Cys Gly Glu Leu Ile Asn Pro Asp Asp Lys Gly Arg Phe  
145 150 155 160

Val Ala Leu Thr Phe Lys Asp Arg Asp Thr Ala Asp Asp Thr Gly Ala  
165 170 175

Ala Asn Val Glu Cys Arg Val Gly Asp Tyr Leu Val Tyr Ala Met Ser  
180 185 190

Leu Phe Glu Gln Arg Thr Gln Lys Ser Gln Ser Gly Asn Ile Ser Leu  
195 200 205

Tyr Glu Lys Tyr Cys Glu Tyr Ile Arg Thr Tyr Leu Gly Ser Thr Asp  
210 215 220

Leu Phe Phe Thr Ala Pro Asp Arg Ile Pro Leu Leu Thr Gly Ile Leu  
225 230 235 240

Tyr Asp Phe Cys Lys Glu Tyr Asn Val Phe Tyr Ser Ser Tyr Lys Arg  
245 250 255

Asn Val Asp Asn Phe Arg Phe Leu Ala Asn Tyr Met Pro Leu Ile  
260 265 270

Ser Asp Val Phe Val Phe Gln Trp Val Lys Pro Ala Pro Asp Val Arg  
275 280 285

Leu Leu Phe Glu Leu Ser Ala Ala Glu Leu Thr Leu Glu Val Pro Thr  
290 295 300

Leu Ser Leu Ile Asp Ser Gln Val Val Val Gly His Ile Leu Arg Tyr  
305 310 315 320

Val Glu Ser Tyr Thr Ser Asp Pro Ala Ile Asp Ala Leu Glu Asp Lys  
325 330 335

Leu Glu Ala Ile Leu Lys Ser Ser Asn Pro Arg Leu Ser Thr Ala Gln  
340 345 350

Leu Trp Val Gly Phe Phe Cys Tyr Tyr Gly Glu Phe Arg Thr Ala Gln  
355 360 365

Ser Arg Val Val Gln Arg Pro Gly Val Tyr Lys Thr Pro Asp Ser Val  
370 375 380

Gly Gly Phe Glu Ile Asn Met Lys Asp Val Glu Lys Phe Phe Asp Lys  
385 390 395 400

- 42 -

Leu Gln Arg Glu Leu Pro Asn Val Ser Leu Arg Arg Gln Phe Asn Gly  
 405 410 415  
 Ala Arg Ala His Glu Ala Phe Lys Ile Phe Lys Asn Gly Asn Ile Ser  
 420 425 430  
 Phe Arg Pro Ile Ser Arg Leu Asn Val Pro Arg Glu Phe Trp Tyr Leu  
 435 440 445  
 Asn Ile Asp Tyr Phe Arg His Ala Asn Arg Ser Gly Leu Thr Glu Glu  
 450 455 460  
 Glu Ile Leu Ile Leu Asn Asn Ile Ser Val Asp Val Arg Lys Leu Cys  
 465 470 475 480  
 Ala Glu Arg Ala Cys Asn Thr Leu Pro Ser Ala Lys Arg Phe Ser Lys  
 485 490 495  
 Asn His Lys Ser Asn Ile Gln Ser Ser Arg Gln Glu Arg Arg Ile Lys  
 500 505 510  
 Asp Pro Leu Val Val Leu Lys Asp Thr Leu Tyr Glu Phe Gln His Lys  
 515 520 525  
 Arg Ala Gly Trp Gly Ser Arg Ser Thr Arg Asp Leu Gly Ser Arg Ala  
 530 535 540  
 Asp His Ala Lys Gly Ser Gly  
 545 550

and a molecular weight from about 61 to about 65 kDa, preferably about 63 kDa.

Yet another DNA molecule of the present invention (GLRaV-2 ORF5) includes nucleotides 12844-13515 of SEQ. ID. No. 1 and codes for a diverged coat protein. This DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID.

5 No. 12 as follows:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| ATGAGTTCCA ACACAAGCGT GCCGGTTGGG GGTCTCGAAG CACTCGAGAC CTCGGGAGTC  | 60  |
| GTGCTGACCA CGCGAAAGGA AGCGGTTGAT AAGTTTTTA ATGAACTAAA AAACGAAAAT   | 120 |
| TACTCATCAG TTGACAGCAG CCGATTAAGC GATTGGAAG TAAAAGAAGT GTTAGAGAAA   | 180 |
| AGTAAAGAAA GTTTCAAAAG CGAACTGGCC TCCACTGACG AGCACTTCGT CTACCACATT  | 240 |
| ATATTTTCT TAATCCGATG TGCTAAGATA TCGACAAGTG AAAAGGTGAA GTACGTTGGT   | 300 |
| AGTCATACGT ACGTGGTCGA CGGAAAAACG TACACCGTTC TTGACGCTTG GGTATTCAAC  | 360 |
| ATGATGAAAA GTCTCACGAA GAAGTACAAA CGAGTGAATG GTCTGCGTGC GTTCTGTTGC  | 420 |
| GCGTGCAGAAG ATCTATATCT AACCGTCGCA CCAATAATGT CAGAACGCTT TAAGACTAAA | 480 |
| GCCGTAGGGA TGAAAGGTTT GCCTGTTGGA AAGGAATACT TAGGCGCCGA CTTTCTTCG   | 540 |
| GGAACTAGCA AACTGATGAG CGATCACGAC AGGGCGGTCT CCATCGTTGC AGCGAAAAAC  | 600 |

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| GCTGTCGATC GTAGCGCTTT CACGGGTGGG GAGAGAAAGA TAGTTAGTTT GTATGATCTA | 660 |
| GGGAGGTACT AA                                                     | 672 |

The diverged coat protein has an amino acid sequence corresponding to SEQ. ID. No. 13 as follows:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------------------------------|
| Met | Ser | Ser | Asn | Thr | Ser | Val | Pro | Val | Gly | Gly | Leu | Glu | Ala | Leu | Glu                            |
| 1   |     |     |     |     |     |     |     |     | 10  |     |     |     |     |     | 15                             |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Thr | Ser | Gly | Val | Val | Leu | Thr | Thr | Arg | Lys | Glu | Ala | Val | Asp | Lys | Phe                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 20      25      30             |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Phe | Asn | Glu | Leu | Lys | Asn | Glu | Asn | Tyr | Ser | Ser | Val | Asp | Ser | Ser | Arg                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 35      40      45             |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Leu | Ser | Asp | Ser | Glu | Val | Lys | Glu | Val | Leu | Glu | Lys | Ser | Lys | Glu | Ser                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 50      55      60             |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Phe | Lys | Ser | Glu | Leu | Ala | Ser | Thr | Asp | Glu | His | Phe | Val | Tyr | His | Ile                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 65      70      75      80     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Ile | Phe | Phe | Leu | Ile | Arg | Cys | Ala | Lys | Ile | Ser | Thr | Ser | Glu | Lys | Val                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 85      90      95             |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Lys | Tyr | Val | Gly | Ser | His | Thr | Tyr | Val | Val | Asp | Gly | Lys | Thr | Tyr | Thr                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 100      105      110          |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Val | Leu | Asp | Ala | Trp | Val | Phe | Asn | Met | Met | Lys | Ser | Leu | Thr | Lys | Lys                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 115      120      125          |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Tyr | Lys | Arg | Val | Asn | Gly | Leu | Arg | Ala | Phe | Cys | Cys | Ala | Cys | Glu | Asp                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 130      135      140          |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Leu | Tyr | Leu | Thr | Val | Ala | Pro | Ile | Met | Ser | Glu | Arg | Phe | Lys | Thr | Lys                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 145      150      155      160 |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Ala | Val | Gly | Met | Lys | Gly | Leu | Pro | Val | Gly | Lys | Glu | Tyr | Leu | Gly | Ala                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 165      170      175          |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Asp | Phe | Leu | Ser | Gly | Thr | Ser | Lys | Leu | Met | Ser | Asp | His | Asp | Arg | Ala                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 180      185      190          |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Val | Ser | Ile | Val | Ala | Ala | Lys | Asn | Ala | Val | Asp | Arg | Ser | Ala | Phe | Thr                            |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 195      200      205          |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |                                |
| Gly | Gly | Glu | Arg | Lys | Ile | Val | Ser | Leu | Tyr | Asp | Leu | Gly | Arg | Tyr |                                |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 210      215      220          |

and a molecular weight from about 23 to about 27 kDa, preferably about 25 kDa.

Another such DNA molecule (GLRaV-2 ORF6) includes nucleotides

5 13584-14180 of SEQ. ID. No. 1 and codes for a grapevine leafroll virus coat protein. This DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 14 as follows:

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| ATGGAGTTGA | TGTCCGACAG | CAACCTTAGC | AACCTGGTGA | TAACCGACGC | CTCTAGTCTA | 60  |
| AATGGTGTG  | CGACAAGACT | TTTATCTGCT | GAAGTTGAAA | AAATGTTGGT | GCAGAAAGGG | 120 |
| GCTCCTAACG | AGGGTATAGA | AGTGGTGTTC | GGTCTACTCC | TTTACGCACT | CGCGGCAAGA | 180 |
| ACCACGTCTC | CTAAGGTTCA | GCGCGCAGAT | TCAGACGTTA | TATTTCAAA  | TAGTTTCGGA | 240 |
| GAGAGGAATG | TGGTAGTAAC | AGAGGGTGAC | CTTAAGAAGG | TACTCGACGG | GTGTGCGCCT | 300 |
| CTCACTAGGT | TCACTAATAA | ACTTAGAACG | TTCGGTCGTA | CTTTCACTGA | GGCTTACGTT | 360 |
| GACTTTGTA  | TCGCGTATAA | GCACAAATT  | CCCCAACTCA | ACGCCGCGGC | GGAATTGGGG | 420 |
| ATTCCAGCTG | AAGATTCGTA | CTTAGCTGCA | GATTTCTGG  | GTACTTGCCC | GAAGCTCTCT | 480 |
| GAATTACAGC | AAAGTAGGAA | GATGTTCGCG | AGTATGTACG | CTCTAAAAAC | TGAAGGTGGA | 540 |
| GTGGTAAATA | CACCAGTGAG | CAATCTGCGT | CAGCTAGGTA | GAAGGGAAGT | TATGTAA    | 597 |

The coat protein has an amino acid sequence corresponding to SEQ. ID. No. 15 as follows:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Glu | Leu | Met | Ser | Asp | Ser | Asn | Leu | Ser | Asn | Leu | Val | Ile | Thr | Asp |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |     |
| Ala | Ser | Ser | Leu | Asn | Gly | Val | Asp | Lys | Lys | Leu | Leu | Ser | Ala | Glu | Val |
|     |     |     | 20  |     |     |     | 25  |     |     |     |     | 30  |     |     |     |
| Glu | Lys | Met | Leu | Val | Gln | Lys | Gly | Ala | Pro | Asn | Glu | Gly | Ile | Glu | Val |
|     |     | 35  |     |     | 40  |     |     | 45  |     |     |     |     |     |     |     |
| Val | Phe | Gly | Leu | Leu | Leu | Tyr | Ala | Leu | Ala | Ala | Arg | Thr | Thr | Ser | Pro |
|     | 50  |     |     |     | 55  |     |     |     | 60  |     |     |     |     |     |     |
| Lys | Val | Gln | Arg | Ala | Asp | Ser | Asp | Val | Ile | Phe | Ser | Asn | Ser | Phe | Gly |
|     | 65  |     |     |     | 70  |     |     |     | 75  |     |     | 80  |     |     |     |
| Glu | Arg | Asn | Val | Val | Val | Thr | Glu | Gly | Asp | Leu | Lys | Lys | Val | Leu | Asp |
|     |     | 85  |     |     |     | 90  |     |     |     |     |     | 95  |     |     |     |
| Gly | Cys | Ala | Pro | Leu | Thr | Arg | Phe | Thr | Asn | Lys | Leu | Arg | Thr | Phe | Gly |
|     |     | 100 |     |     |     | 105 |     |     |     |     |     | 110 |     |     |     |
| Arg | Thr | Phe | Thr | Glu | Ala | Tyr | Val | Asp | Phe | Cys | Ile | Ala | Tyr | Lys | His |
|     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |     |
| Lys | Leu | Pro | Gln | Leu | Asn | Ala | Ala | Ala | Glu | Leu | Gly | Ile | Pro | Ala | Glu |
|     | 130 |     |     |     | 135 |     |     |     | 140 |     |     |     |     |     |     |
| Asp | Ser | Tyr | Leu | Ala | Ala | Asp | Phe | Leu | Gly | Thr | Cys | Pro | Lys | Leu | Ser |
|     | 145 |     |     |     |     | 150 |     |     | 155 |     |     | 160 |     |     |     |
| Glu | Leu | Gln | Gln | Ser | Arg | Lys | Met | Phe | Ala | Ser | Met | Tyr | Ala | Leu | Lys |
|     |     | 165 |     |     |     | 170 |     |     | 175 |     |     |     |     |     |     |

Thr Glu Gly Val Val Asn Thr Pro Val Ser Asn Leu Arg Gln Leu  
                   180                  185                  190  
  
 Gly Arg Arg Glu Val Met  
                   195

and a molecular weight from about 20 to about 24 kDa, preferably about 22 kDa.

Another such DNA molecule (GLRaV-2 ORF7) includes nucleotides 14180-14665 of SEQ. ID. No. 1 and codes for a second undefined grapevine leafroll virus protein or polypeptide. This DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 16 as follows:

|            |            |            |            |             |            |     |
|------------|------------|------------|------------|-------------|------------|-----|
| ATGGAAGATT | ACGAAGAAAA | ATCCGAATCG | CTCATACTGC | TACGCACGAA  | TCTGAACACT | 60  |
| ATGCTTTAG  | TGGTCAAGTC | CGATGCTAGT | GTAGAGCTGC | CTAAACTACT  | AATTTGCGGT | 120 |
| TACTTACGAG | TGTCAGGACG | TGGGGAGGTG | ACGTGTTGCA | ACCGTGAGGA  | ATTAACAAGA | 180 |
| GATTTGAGG  | GCAATCATCA | TACGGTGATC | CGTTCTAGAA | TCATACAATA  | TGACAGCGAG | 240 |
| TCTGCTTTG  | AGGAATTCAA | CAACTCTGAT | TGCGTAGTGA | AGTTTTCCCT  | AGAGACTGGT | 300 |
| AGTGTCTTT  | GGTTTTCCCT | TCGAAGTGAA | ACCAAAGGTA | GAGCGGTGCG  | ACATTGCGC  | 360 |
| ACCTTCTTCG | AAGCTAACAA | TTTCTTCTTT | GGATCGCATT | GCGGTACCATT | GGAGTATTGT | 420 |
| TTGAAGCAGG | TACTAACTGA | AACTGAATCT | ATAATCGATT | CTTTTGCGA   | AGAAAGAAAT | 480 |
| CGTTAA     |            |            |            |             |            | 486 |

The second undefined grapevine leafroll virus protein or polypeptide has a deduced amino acid sequence corresponding to SEQ. ID. No. 17 as follows:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Glu | Asp | Tyr | Glu | Glu | Lys | Ser | Glu | Ser | Leu | Ile | Leu | Leu | Arg | Thr |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |
| Asn | Leu | Asn | Thr | Met | Leu | Leu | Val | Val | Lys | Ser | Asp | Ala | Ser | Val | Glu |
|     |     |     |     | 20  |     |     |     | 25  |     |     |     | 30  |     |     |     |
| Leu | Pro | Lys | Leu | Leu | Ile | Cys | Gly | Tyr | Leu | Arg | Val | Ser | Gly | Arg | Gly |
|     |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |     |
| Glu | Val | Thr | Cys | Cys | Asn | Arg | Glu | Glu | Leu | Thr | Arg | Asp | Phe | Glu | Gly |
|     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |     |     |
| Asn | His | His | Thr | Val | Ile | Arg | Ser | Arg | Ile | Ile | Gln | Tyr | Asp | Ser | Glu |
|     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     | 80  |     |
| Ser | Ala | Phe | Glu | Glu | Phe | Asn | Asn | Ser | Asp | Cys | Val | Val | Lys | Phe | Phe |
|     |     |     |     |     |     | 85  |     |     | 90  |     |     |     | 95  |     |     |
| Leu | Glu | Thr | Gly | Ser | Val | Phe | Trp | Phe | Phe | Leu | Arg | Ser | Glu | Thr | Lys |
|     |     |     |     |     |     | 100 |     | 105 |     |     |     |     | 110 |     |     |

Gly Arg Ala Val Arg His Leu Arg Thr Phe Phe Glu Ala Asn Asn Phe  
 115 120 125

Phe Phe Gly Ser His Cys Gly Thr Met Glu Tyr Cys Leu Lys Gln Val  
 130 135 140

Leu Thr Glu Thr Glu Ser Ile Ile Asp Ser Phe Cys Glu Glu Arg Asn  
 145 150 155 160

Arg

and a molecular weight from about 17 to about 21 kDa, preferably about 19 kDa.

Yet another such DNA molecule (GLRaV-2 ORF8) includes nucleotides 14667-15284 of SEQ. ID. No. 1 and codes for a third undefined grapevine leafroll virus protein or polypeptide. This DNA molecule comprises a nucleotide sequence

5 corresponding to SEQ. ID. No. 18 as follows:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| ATGAGGGTTA TAGTGTCTCC TTATGAAGCT GAAGACATTC TGAAAAGATC GACTGACATG  | 60  |
| TTACGAAACA TAGACAGTGG GGTCTTGAGC ACTAAAGAAC GTATCAAGGC ATTCTCGACG  | 120 |
| ATAACGCGAG ACCTACATTG TGCAGAAGGCT TCCTACCAGT GGGGTGTTGA CACTGGGTTA | 180 |
| TATCAGCGTA ATTGCGCTGA AAAACGTTTA ATTGACACGG TGGAGTCAAA CATACGGTTG  | 240 |
| GCTCAACCTC TCGTGCCTGA AAAAGTGGCG GTTCATTTTT GTAAGGATGA ACCAAAAGAG  | 300 |
| CTAGTAGCAT TCATCACGCG AAAGTACGTG GAACTCACGG GCGTGGGAGT GAGAGAAGCG  | 360 |
| GTGAAGAGGG AAATGCGCTC TCTTACCAAA ACAGTTTAA ATAAAATGTC TTTGGAAATG   | 420 |
| GCGTTTTACA TGTCAACCACG AGCGTGGAAA AACGCTGAAT GGTTAGAACT AAAATTTCA  | 480 |
| CCTGTGAAAA TCTTTAGAGA TCTGCTATTA GACGTGGAAA CGCTAACGA ATTGTGCGCC   | 540 |
| GAAGATGATG TTCACGTCGA CAAAGTAAAT GAGAATGGGG ACGAAAATCA CGACCTCGAA  | 600 |
| CTCCAAGACG AATGTTAA                                                | 618 |

The third undefined protein or polypeptide has a deduced amino acid sequence corresponding to SEQ. ID. No. 19 as follows:

Met Arg Val Ile Val Ser Pro Tyr Glu Ala Glu Asp Ile Leu Lys Arg  
 1 5 10 15

Ser Thr Asp Met Leu Arg Asn Ile Asp Ser Gly Val Leu Ser Thr Lys  
 20 25 30

Glu Cys Ile Lys Ala Phe Ser Thr Ile Thr Arg Asp Leu His Cys Ala  
 35 40 45

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Ala | Ser | Tyr | Gln | Trp | Gly | Val | Asp | Thr | Gly | Leu | Tyr | Gln | Arg | Asn |
| 50  |     |     |     |     |     | 55  |     |     |     |     | 60  |     |     |     |     |
| Cys | Ala | Glu | Lys | Arg | Leu | Ile | Asp | Thr | Val | Glu | Ser | Asn | Ile | Arg | Leu |
| 65  |     |     |     |     |     | 70  |     |     |     | 75  |     |     |     | 80  |     |
| Ala | Gln | Pro | Leu | Val | Arg | Glu | Lys | Val | Ala | Val | His | Phe | Cys | Lys | Asp |
|     |     |     |     |     |     | 85  |     |     |     | 90  |     |     | 95  |     |     |
| Glu | Pro | Lys | Glu | Leu | Val | Ala | Phe | Ile | Thr | Arg | Lys | Tyr | Val | Glu | Leu |
|     |     |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |     |     |
| Thr | Gly | Val | Gly | Val | Arg | Glu | Ala | Val | Lys | Arg | Glu | Met | Arg | Ser | Leu |
|     |     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |
| Thr | Lys | Thr | Val | Leu | Asn | Lys | Met | Ser | Leu | Glu | Met | Ala | Phe | Tyr | Met |
|     |     |     |     |     |     | 130 |     |     | 135 |     |     | 140 |     |     |     |
| Ser | Pro | Arg | Ala | Trp | Lys | Asn | Ala | Glu | Trp | Leu | Glu | Leu | Lys | Phe | Ser |
|     |     |     |     |     |     | 145 |     |     | 150 |     |     | 155 |     |     | 160 |
| Pro | Val | Lys | Ile | Phe | Arg | Asp | Leu | Leu | Leu | Asp | Val | Glu | Thr | Leu | Asn |
|     |     |     |     |     |     | 165 |     |     | 170 |     |     | 175 |     |     |     |
| Glu | Leu | Cys | Ala | Glu | Asp | Asp | Val | His | Val | Asp | Lys | Val | Asn | Glu | Asn |
|     |     |     |     |     |     | 180 |     |     | 185 |     |     | 190 |     |     |     |
| Gly | Asp | Glu | Asn | His | Asp | Leu | Glu | Leu | Gln | Asp | Glu | Cys |     |     |     |
|     |     |     |     |     |     | 195 |     |     | 200 |     |     | 205 |     |     |     |

and a molecular weight from about 22 to about 26 kDa, preferably about 24 kDa.

Another DNA molecule of the present invention (GLRaV-2 3' UTR) includes nucleotides 15285-15500 of SEQ. ID. No. 1 and comprises a nucleotide sequence corresponding to SEQ. ID. No. 23 as follows:

|             |             |            |            |            |             |     |
|-------------|-------------|------------|------------|------------|-------------|-----|
| ACATTGGTTA  | AGTTAACGAA  | AAATGATTAG | TAAATAATAA | ATCGAACGTG | GGTGTATCTA  | 60  |
| CCTGACGTAT  | CAACTTAAGC  | TGTTACTGAG | TAATTAAACC | AACAAGTGT  | GGTGTAAATGT | 120 |
| GTATGTTGAT  | GTAGAGAAAAA | ATCCGTTGT  | AGAACGGTGT | TTTCTCTTC  | TTTATTTTA   | 180 |
| AAAAAAAAAAT | AAAAAAAAAAA | AAAAAAAAGC | GGCCGC     |            |             | 216 |

5               Also encompassed by the present invention are fragments of the DNA molecules of the present invention. Suitable fragments capable of imparting grapevine leafroll resistance to grape plants are constructed by using appropriate restriction sites, revealed by inspection of the DNA molecule's sequence, to: (i) insert an interposon (Felley et al., "Interposon Mutagenesis of Soil and Water Bacteria: a Family of DNA  
10 Fragments Designed for in vitro Insertion Mutagenesis of Gram-negative Bacteria," Gene, 52:147-15 (1987), which is hereby incorporated by reference) such that truncated

forms of the grapevine leafroll virus coat polypeptide or protein, that lack various amounts of the C-terminus, can be produced or (ii) delete various internal portions of the protein. Alternatively, the sequence can be used to amplify any portion of the coding region, such that it can be cloned into a vector supplying both transcription and  
5 translation start signals.

Suitable DNA molecules are those that hybridize to a DNA molecule comprising a nucleotide sequence of at least 15 continuous bases of SEQ. ID. No. 1 under stringent conditions characterized by a hybridization buffer comprising 0.9M sodium citrate ("SSC") buffer at a temperature of 37°C and remaining bound when subject to  
10 washing with SSC buffer at 37°C; and preferably in a hybridization buffer comprising 20% formamide in 0.9M saline/0.9M SSC buffer at a temperature of 42°C and remaining bound when subject to washing at 42°C with 0.2x SSC buffer at 42°C.

Variants may also (or alternatively) be modified by, for example, the deletion or addition of nucleotides that have minimal influence on the properties,  
15 secondary structure and hydropathic nature of the encoded polypeptide. For example, the nucleotides encoding a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The nucleotide sequence may also be altered so that the encoded polypeptide is conjugated to a linker or other sequence for ease of synthesis, purification,  
20 or identification of the polypeptide.

The protein or polypeptide of the present invention is preferably produced in purified form (preferably, at least about 80%, more preferably 90%, pure) by conventional techniques. Typically, the protein or polypeptide of the present invention is isolated by lysing and sonication. After washing, the lysate pellet is resuspended in  
25 buffer containing Tris-HCl. During dialysis, a precipitate forms from this protein solution. The solution is centrifuged, and the pellet is washed and resuspended in the buffer containing Tris-HCl. Proteins are resolved by electrophoresis through an SDS 12% polyacrylamide gel.

The DNA molecule encoding the grapevine leafroll virus (type 2) protein or polypeptide of the present invention can be incorporated in cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e. not normally present). The heterologous DNA molecule is inserted into the expression system or vector in proper sense orientation and correct reading frame. The vector contains the

necessary elements for the transcription and translation of the inserted protein-coding sequences.

U.S. Patent No. 4,237,224 to Cohen and Boyer, which is hereby incorporated by reference, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture.

Recombinant genes may also be introduced into viruses, such as vaccinia virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC184, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK +/- or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif, which is hereby incorporated by reference), pQE, pIH821, pGEX, pET series (see Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology, vol. 185 (1990), which is hereby incorporated by reference), and any derivatives thereof. Recombinant molecules can be introduced into cells via transformation, transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, New York (1982), which is hereby incorporated by reference.

A variety of host-vector systems may be utilized to express the protein-encoding sequence(s). Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria or transformed via particle bombardment (i.e. biolistics). The expression elements of these vectors vary in their

strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA ("mRNA") translation).

5 Transcription of DNA is dependent upon the presence of a promoter which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eucaryotic promoters differ from those of procaryotic promoters. Furthermore, eucaryotic promoters and accompanying genetic signals may not be recognized in or may not function in a procaryotic system, and,  
10 further, procaryotic promoters are not recognized and do not function in eucaryotic cells.

Similarly, translation of mRNA in procaryotes depends upon the presence of the proper procaryotic signals which differ from those of eucaryotes. Efficient translation of mRNA in procaryotes requires a ribosome binding site called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence  
15 of mRNA that is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, Methods in Enzymology, 68:473  
20 (1979), which is hereby incorporated by reference.

Promoters vary in their "strength" (i.e. their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promoters in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable  
25 promoters may be used. For instance, when cloning in *E. coli*, its bacteriophages, or plasmids, promoters such as the T7 phage promoter, *lac* promoter, *trp* promoter, *recA* promoter, ribosomal RNA promoter, the P<sub>R</sub> and P<sub>L</sub> promoters of coliphage lambda and others, including but not limited, to *lacUV5*, *ompF*, *bla*, *lpp*, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid *trp-lacUV5 (lac)* promoter or other *E. coli* promoters produced by recombinant DNA or other  
30 synthetic DNA techniques may be used to provide for transcription of the inserted gene.

Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promoter unless specifically induced. In certain operons, the addition of specific inducers is necessary for efficient transcription of the inserted DNA.

For example, the *lac* operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as *trp*, *pro*, etc., are under different controls.

Specific initiation signals are also required for efficient gene transcription and translation in procaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector, which contains a promoter, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in *E. coli* requires a Shine-Dalgarno ("SD") sequence about 7-9 bases 5' to the initiation codon ("ATG") to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the *cro* gene or the *N* gene of coliphage lambda, or from the *E. coli* tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.

Once the isolated DNA molecules encoding the various grapevine leafroll virus (type 2) proteins or polypeptides, as described above, have been cloned into an expression system, they are ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like.

The present invention also relates to RNA molecules which encode the various grapevine leafroll virus (type 2) proteins or polypeptides described above. The transcripts can be synthesized using the host cells of the present invention by any of the conventional techniques. The mRNA can be translated either *in vitro* or *in vivo*. Cell-free systems typically include wheat-germ or reticulocyte extracts. *In vivo* translation can be effected, for example, by microinjection into frog oocytes.

One aspect of the present invention involves using one or more of the above DNA molecules encoding the various proteins or polypeptides of a grapevine leafroll virus (type 2) to transform grape plants in order to impart grapevine leafroll resistance to the plants. The mechanism by which resistance is imparted is not known. In one hypothetical mechanism, the transformed plant can express a protein or polypeptide of grapevine leafroll virus (type 2), and, when the transformed plant is inoculated by a

grapevine leafroll virus, such as GLRaV-1, GLRaV-2, GLRaV-3, GLRaV-4, GLRaV-5, or GLRaV-6, or combinations of these, the expressed protein or polypeptide prevents translation of the viral DNA.

In this aspect of the present invention the subject DNA molecule 5 incorporated in the plant can be constitutively expressed. Alternatively, expression can be regulated by a promoter which is activated by the presence of grapevine leafroll virus. Suitable promoters for these purposes include those from genes expressed in response to grapevine leafroll virus infiltration.

The isolated DNA molecules of the present invention can be utilized to 10 impart grapevine leafroll virus resistance for a wide variety of grapevine plants. The DNA molecules are particularly well suited to imparting resistance to *Vitis* scion or rootstock cultivars. Scion cultivars which can be protected include those commonly referred to as Table or Raisin Grapes, such as Alden, Almeria, Anab-E-Shahi, Autumn Black, Beauty Seedless, Black Corinth, Black Damascus, Black Malvoisie, Black Prince, 15 Blackrose, Bronx Seedless, Burgrave, Calmeria, Campbell Early, Canner, Cardinal, Catawba, Christmas, Concord, Dattier, Delight, Diamond, Dizmar, Duchess, Early Muscat, Emerald Seedless, Emperor, Exotic, Ferdinand de Lesseps, Fiesta, Flame seedless, Flame Tokay, Gasconade, Gold, Himrod, Hunisa, Hussiene, Isabella, Italia, July Muscat, Khandahar, Katta, Kourgane, Kishmishi, Loose Perlette, Malaga, Monukka, 20 Muscat of Alexandria, Muscat Flame, Muscat Hamburg, New York Muscat, Niabell, Niagara, Olivette blanche, Ontario, Pierce, Queen, Red Malaga, Ribier, Rish Baba, Romulus, Ruby Seedless, Schuyler, Seneca, Suavis (IP 365), Thompson seedless, and Thomuscat. They also include those used in wine production, such as Aleatico, Alicante Bouschet, Aligote, Alvarelhao, Aramon, Baco blanc (22A), Burger, Cabernet franc, 25 Cabernet, Sauvignon, Calzin, Carignane, Charbono, Chardonnay, Chasselas dore, Chenin blanc, Clairette blanche, Early Burgundy, Emerald Riesling, Feher Szagos, Fernao Pires, Flora, French Colombard, Fresia, Furmint, Gamay, Gewurztraminer, Grand noir, Gray Riesling, Green Hungarian, Green Veltliner, Grenache, Grillo, Helena, Inzolia, Lagrein, Lambrusco de Salamino, Malbec, Malvasia bianca, Mataro, Melon, Merlot, Meunier, 30 Mission, Montua de Pilas, Muscadelle du Bordelais, Muscat blanc, Muscat Ottonel, Muscat Saint-Vallier, Nebbiolo, Nebbiolo fino, Nebbiolo Lampia, Orange Muscat, Palomino, Pedro Ximenes, Petit Bouschet, Petite Sirah, Peverella, Pinot noir, Pinot Saint-George, Primitivo di Gioa, Red Veltliner, Refosco, Rkatsiteli, Royalty, Rubired, Ruby Cabernet, Saint-Emilion, Saint Macaire, Salvador, Sangiovese, Sauvignon blanc,

Sauvignon gris, Sauvignon vert, Scarlet, Seibel 5279, Seibel 9110, Seibel 13053, Semillon, Servant, Shiraz, Souzao, Sultana Crimson, Sylvaner, Tannat, Teroldico, Tinta Madeira, Tinto cao, Touriga, Traminer, Trebbiano Toscano, Trouseau, Valdepenas, Viognier, Walschriesling, White Riesling, and Zinfandel. Rootstock cultivars which can  
5 be protected include Couderc 1202, Couderc 1613, Couderc 1616, Couderc 3309, Dog Ridge, Foex 33 EM, Freedom, Ganzin 1 (A x R #1), Harmony, Kober 5BB, LN33, Millardet & de Grasset 41B, Millardet & de Grasset 420A, Millardet & de Grasset 101-  
14, Oppenheim 4 (SO4), Paulsen 775, Paulsen 1045, Paulsen 1103, Richter 99, Richter  
10 110, Riparia Gloire, Ruggeri 225, Saint-George, Salt Creek, Teleki 5A, Vitis rupestris Constantia, *Vitis californica*, and *Vitis girdiana*.

There exists an extensive similarity in the hsp70-related sequence regions of GLRaV-2 and other closteroviruses, such as tristeza virus and beet yellows virus.

Consequently, the GLRaV-2 hsp70-related gene can also be used to produce transgenic plants or cultivars other than grape, such as citrus or sugar beet, which are resistant to  
15 closteroviruses other than grapevine leafroll, such as tristeza virus and beet yellows virus.

Suitable citrus cultivars include lemon, lime, orange, grapefruit, pineapple, tangerine, and the like, such as Joppa, Maltaise Ovale, Parson (Parson Brown), Pera, Pineapple, Queen, Shamouti, Valencia, Tenerife, Imperial Doblefina, Washington Sanguine, Moro, Sanguinello Moscato, Spanish Sanguinelli, Tarocco, Atwood,

20 Australian, Bahia, Baiana, Cram, Dalmau, Eddy, Fisher, Frost Washington, Gillette, LengNavelina, Washington, Satsuma Mandarin, Dancy, Robinson, Ponkan, Duncan, Marsh, Pink Marsh, Ruby Red, Red Seedless, Smooth Seville, Orlando Tangelo, Eureka, Lisbon, Meyer Lemon, Rough Lemon, Sour Orange, Persian Lime, West Indian Lime, Bearss, Sweet Lime, Troyer Citrange, and Citrus Trifoliata. Each of these citrus cultivars  
25 is suitable for producing transgenic citrus plants resistant to tristeza virus.

The economically important species of sugar beet is *Beta vulgaris L.*, which has four important cultivar types: sugar beet, table beet, fodder beet, and Swiss chard. Each of these beet cultivars is suitable for producing transgenic beet plants  
resistant to beet yellows virus, as described above.

30 Because GLRaV-2 has been known to infect tobacco plants (e.g., *Nicotiana benthamiana*), it is also desirable to produce transgenic tobacco plants which are resistant to grapevine leafroll viruses, such as GLRaV-2.

Plant tissue suitable for transformation include leaf tissue, root tissue, meristems, zygotic and somatic embryos, and anthers. It is particularly preferred to utilize embryos obtained from anther cultures.

The expression system of the present invention can be used to transform 5 virtually any plant tissue under suitable conditions. Tissue cells transformed in accordance with the present invention can be grown *in vitro* in a suitable medium to impart grapevine leafroll virus resistance. Transformed cells can be regenerated into whole plants such that the protein or polypeptide imparts resistance to grapevine leafroll virus in the intact transgenic plants. In either case, the plant cells transformed with the recombinant DNA expression 10 system of the present invention are grown and caused to express that DNA molecule to produce one of the above-described grapevine leafroll virus proteins or polypeptides and, thus, to impart grapevine leafroll virus resistance.

In producing transgenic plants, the DNA construct in a vector described above can be microinjected directly into plant cells by use of micropipettes to transfer mechanically 15 the recombinant DNA. Crossway, Mol. Gen. Genetics, 202:179-85 (1985), which is hereby incorporated by reference. The genetic material may also be transferred into the plant cell using polyethylene glycol. Krens, et al., Nature, 296:72-74 (1982), which is hereby incorporated by reference.

One technique of transforming plants with the DNA molecules in 20 accordance with the present invention is by contacting the tissue of such plants with an inoculum of a bacteria transformed with a vector comprising a gene in accordance with the present invention which imparts grapevine leafroll resistance. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25- 25 28°C.

Bacteria from the genus *Agrobacterium* can be utilized to transform plant cells. Suitable species of such bacterium include *Agrobacterium tumefaciens* and *Agrobacterium rhizogenes*. *Agrobacterium tumefaciens* (e.g., strains C58, LBA4404, or EHA105) is particularly useful due to its well-known ability to transform plants.

Heterologous genetic sequences can be introduced into appropriate plant cells, 30 by means of the Ti plasmid of *A. tumefaciens* or the Ri plasmid of *A. rhizogenes*. The Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and is stably integrated into the plant genome. J. Schell, Science, 237:1176-83 (1987), which is hereby incorporated by reference.

After transformation, the transformed plant cells must be regenerated.

Plant regeneration from cultured protoplasts is described in Evans et al.,

Handbook of Plant Cell Cultures, Vol. 1: (MacMillan Publishing Co., New York, 1983); and

Vasil I.R. (ed.), Cell Culture and Somatic Cell Genetics of Plants, Acad. Press, Orlando,

5 Vol. I, 1984, and Vol. III (1986), which are hereby incorporated by reference.

It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, all major species of sugarcane, sugar beets, cotton, fruit trees, and legumes.

Means for regeneration vary from species to species of plants, but generally a

10 suspension of transformed protoplasts or a petri plate containing explants is first provided.

Callus tissue is formed and shoots may be induced from callus and subsequently rooted.

Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.

After the expression cassette is stably incorporated in transgenic plants, it can

be transferred to other plants by sexual crossing. Any of a number of standard breeding

20 techniques can be used, depending upon the species to be crossed.

Once transgenic plants of this type are produced, the plants themselves can be cultivated in accordance with conventional procedure so that the DNA construct is present in the resulting plants. Alternatively, transgenic seeds are recovered from the transgenic plants. These seeds can then be planted in the soil and cultivated using conventional procedures to produce transgenic plants.

Another approach to transforming plant cells with a gene which imparts resistance to pathogens is particle bombardment (also known as biolistic transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in

30 U.S. Patent Nos. 4,945,050, 5,036,006, and 5,100,792, all to Sanford et al., and in Emerschad et al., "Somatic Embryogenesis and Plant Development from Immature Zygotic Embryos of Seedless Grapes (*Vitis vinifera*)," Plant Cell Reports, 14:6-12 (1995) ("Emerschad (1995)"), which are hereby incorporated by reference. Generally, this procedure involves propelling inert or biologically active particles at the cells under

conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA.

5 Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells.

Once a grape plant tissue, citrus plant tissue, beet plant tissue, or tobacco plant tissue is transformed in accordance with the present invention, the transformed tissue is regenerated to form a transgenic plant. Generally, regeneration is accomplished 10 by culturing transformed tissue on medium containing the appropriate growth regulators and nutrients to allow for the initiation of shoot meristems. Appropriate antibiotics are added to the regeneration medium to inhibit the growth of *Agrobacterium* and to select for the development of transformed cells. Following shoot initiation, shoots are allowed to develop tissue culture and are screened for marker gene activity.

15 The DNA molecules of the present invention can be made capable of transcription to a messenger RNA, which, although encoding for a grapevine leafroll virus (type 2) protein or polypeptide, does not translate to the protein. This is known as RNA-mediated resistance. When a *Vitis* scion or rootstock cultivar, or a citrus, beet, or tobacco cultivar, is transformed with such a DNA molecule, the DNA molecule can be 20 transcribed under conditions effective to maintain the messenger RNA in the plant cell at low level density readings. Density readings of between 15 and 50 using a Hewlet ScanJet and Image Analysis Program are preferred.

25 A portion of one or more DNA molecules of the present invention as well as other DNA molecules can be used in a transgenic grape plant, citrus plant, beet plant, or tobacco plant in accordance with U.S. Patent Application Serial No. 09/025,635, which is hereby incorporated herein by reference.

The grapevine leafroll virus (type 2) protein or polypeptide of the present invention can also be used to raise antibodies or binding portions thereof or probes. The antibodies can be monoclonal or polyclonal.

30 Monoclonal antibody production may be effected by techniques which are well-known in the art. Basically, the process involves first obtaining immune cells (lymphocytes) from the spleen of a mammal (e.g., mouse) which has been previously immunized with the antigen of interest either *in vivo* or *in vitro*. The antibody-secreting lymphocytes are then fused with (mouse) myeloma cells or transformed cells, which are

capable of replicating indefinitely in cell culture, thereby producing an immortal, immunoglobulin-secreting cell line. The resulting fused cells, or hybridomas, are cultured, and the resulting colonies screened for the production of the desired monoclonal antibodies. Colonies producing such antibodies are cloned, and grown either *in vivo* or *in vitro* to produce large quantities of antibody. A description of the theoretical basis and practical methodology of fusing such cells is set forth in Kohler and Milstein, Nature, 256:495 (1975), which is hereby incorporated by reference.

Mammalian lymphocytes are immunized by *in vivo* immunization of the animal (e.g., a mouse) with the protein or polypeptide of the present invention. Such immunizations are repeated as necessary at intervals of up to several weeks to obtain a sufficient titer of antibodies. Following the last antigen boost, the animals are sacrificed and spleen cells removed.

Fusion with mammalian myeloma cells or other fusion partners capable of replicating indefinitely in cell culture is effected by standard and well-known techniques, for example, by using polyethylene glycol ("PEG") or other fusing agents. (See Milstein and Kohler, Eur. J. Immunol., 6:511 (1976), which is hereby incorporated by reference.) This immortal cell line, which is preferably murine, but may also be derived from cells of other mammalian species, including but not limited to rats and humans, is selected to be deficient in enzymes necessary for the utilization of certain nutrients, to be capable of rapid growth, and to have good fusion capability. Many such cell lines are known to those skilled in the art, and others are regularly described.

Procedures for raising polyclonal antibodies are also well known. Typically, such antibodies can be raised by administering the protein or polypeptide of the present invention subcutaneously to New Zealand white rabbits which have first been bled to obtain pre-immune serum. The antigens can be injected at a total volume of 100 µl per site at six different sites. Each injected material will contain synthetic surfactant adjuvant pluronic polyols, or pulverized acrylamide gel containing the protein or polypeptide after SDS-polyacrylamide gel electrophoresis. The rabbits are then bled two weeks after the first injection and periodically boosted with the same antigen three times every six weeks. A sample of serum is then collected 10 days after each boost.

Polyclonal antibodies are then recovered from the serum by affinity chromatography using the corresponding antigen to capture the antibody. Ultimately, the rabbits are euthanized with pentobarbital 150 mg/Kg IV. This and other procedures for raising

polyclonal antibodies are disclosed in Harlow et. al., editors, Antibodies: A Laboratory Manual (1988), which is hereby incorporated by reference.

In addition to utilizing whole antibodies, binding portions of such antibodies can be used. Such binding portions include Fab fragments, F(ab')<sub>2</sub> fragments, and Fv fragments. These antibody fragments can be made by conventional procedures, such as proteolytic fragmentation procedures, as described in Goding, Monoclonal Antibodies: Principles and Practice, New York: Academic Press, pp. 98-118 (1983), which is hereby incorporated by reference.

The present invention also relates to probes found either in nature or prepared synthetically by recombinant DNA procedures or other biological procedures. Suitable probes are molecules which bind to grapevine leafroll (type 2) viral antigens identified by the monoclonal antibodies of the present invention. Such probes can be, for example, proteins, peptides, lectins, or nucleic acid probes.

The antibodies or binding portions thereof or probes can be administered to grapevine leafroll virus infected scion cultivars or rootstock cultivars. Alternatively, at least the binding portions of these antibodies can be sequenced, and the encoding DNA synthesized. The encoding DNA molecule can be used to transform plants together with a promoter which causes expression of the encoded antibody when the plant is infected by grapevine leafroll virus. In either case, the antibody or binding portion thereof or probe will bind to the virus and help prevent the usual leafroll response.

Antibodies raised against the GLRaV-2 proteins or polypeptides of the present invention or binding portions of these antibodies can be utilized in a method for detection of grapevine leafroll virus in a sample of tissue, such as tissue (e.g., scion or rootstock) from a grape plant or tobacco plant. Antibodies or binding portions thereof suitable for use in the detection method include those raised against a helicase, a methyltransferase, a papain-like protease, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a coat protein, a diverged coat protein, or other proteins or polypeptides in accordance with the present invention. Any reaction of the sample with the antibody is detected using an assay system which indicates the presence of grapevine leafroll virus in the sample. A variety of assay systems can be employed, such as enzyme-linked immunosorbent assays, radioimmunoassays, gel diffusion precipitin reaction assays, immunodiffusion assays, agglutination assays, fluorescent immunoassays, protein A immunoassays, or immunoelectrophoresis assays.

Alternatively, grapevine leafroll virus can be detected in such a sample using a nucleotide sequence of the DNA molecule, or a fragment thereof, encoding for a protein or polypeptide of the present invention. The nucleotide sequence is provided as a probe in a nucleic acid hybridization assay or a gene amplification detection procedure (e.g., using a polymerase chain reaction procedure). The nucleic acid probes of the present invention may be used in any nucleic acid hybridization assay system known in the art, including, but not limited to, Southern blots (Southern, E.M., "Detection of Specific Sequences Among DNA Fragments Separated by Gel Electrophoresis," J. Mol. Biol., 98:503-17 (1975), which is hereby incorporated by reference), Northern blots (Thomas, P.S., "Hybridization of 5 Denatured RNA and Small DNA Fragments Transferred to Nitrocellulose," Proc. Nat'l Acad. Sci. USA, 77:5201-05 (1980), which is hereby incorporated by reference), and Colony blots (Grunstein, M., et al., "Colony Hybridization: A Method for the Isolation of Cloned cDNAs that Contain a Specific Gene," Proc. Nat'l Acad. Sci. USA, 72:3961-65 (1975), which is hereby incorporated by reference). Alternatively, the probes can be used in a gene 10 amplification detection procedure (e.g., a polymerase chain reaction). Erlich, H.A., et. al., "Recent Advances in the Polymerase Chain Reaction," Science 252:1643-51 (1991), which is hereby incorporated by reference. Any reaction with the probe is detected so that the presence of a grapevine leafroll virus in the sample is indicated. Such detection is facilitated by providing the probe of the present invention with a label. Suitable labels include a 15 radioactive compound, a fluorescent compound, a chemiluminescent compound, an enzymatic compound, or other equivalent nucleic acid labels.

20

Depending upon the desired scope of detection, it is possible to utilize probes having nucleotide sequences that correspond with conserved or variable regions of the ORF or UTR. For example, to distinguish a grapevine leafroll virus from other related viruses 25 (e.g., other closteroviruses), it is desirable to use probes which contain nucleotide sequences that correspond to sequences more highly conserved among all grapevine leafroll viruses. Also, to distinguish between different grapevine leafroll viruses (i.e., GLRaV-2 from GLRaV-1, GLRaV-3, GLRaV-4, GLRaV-5, and GLRaV-6), it is desirable to utilize probes containing nucleotide sequences that correspond to sequences less highly conserved among 30 the different grapevine leafroll viruses.

Nucleic acid (DNA or RNA) probes of the present invention will hybridize to complementary GLRaV-2 nucleic acid under stringent conditions. Generally, stringent conditions are selected to be about 50°C lower than the thermal melting point ( $T_m$ ) for the specific sequence at a defined ionic strength and pH. The  $T_m$  is the temperature (under

defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. The  $T_m$  is dependent upon the solution conditions and the base composition of the probe, and may be calculated using the following equation:

$$\begin{aligned} T_m = 79.8^{\circ}\text{C} &+ (18.5 \times \text{Log}[\text{Na}^+]) \\ 5 &+ (58.4^{\circ}\text{C} \times \%[\text{G+C}]) \\ &- (820 / \# \text{bp in duplex}) \\ &- (0.5 \times \% \text{ formamide}) \end{aligned}$$

Nonspecific binding may also be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein-containing solutions, addition of

10 heterologous RNA, DNA, and SDS to the hybridization buffer, and treatment with RNase. Wash conditions are typically performed at or below stringency. Generally, suitable stringent conditions for nucleic acid hybridization assays or gene amplification detection procedures are asas set forth above. More or less stringent conditions may also be selected.

15

## EXAMPLES

The following examples are provided to illustrate embodiments of the present invention but are by no means intended to limit its scope.

20 **Example 1 - Northern Hybridization**

Specificity of the selected clones was confirmed by Northern hybridization. Northern hybridization was performed after electrophoresis of the dsRNA of GLRaV-2 in 1% agarose non-denaturing condition gel. The agarose gel was denatured by soaking in 50 mM NaOH containing 0.4 M NaCl for 30 min, and then neutralized with 0.1 M Tris-HCl (PH7.5 )  
25 containing 0.5 M NaCl for another 30 min. RNA was sandwich blotted overnight onto Genescreen™ plus membrane (Dupont NEN Research Product) in 10 X SSC buffer and hybridized as described by the manufacturer's instructions (DuPont, NEN).

30 **Example 2 - Sequencing and Computer Assisted Nucleotide and Amino Acid Sequence Analysis**

DNA inserts were sequenced in pBluescript SK+ by using T3 and T7 universal primers for the terminal region sequence and additional oligonucleotide primers

designed according to the known sequence for the internal region sequence. Purification of plasmid DNA was performed by a modified mini alkaline-lysis/PEG precipitation procedure described by the manufacturer (Applied Biosystems, Inc.). Nucleotide sequencing was performed on both strands of cDNA by using ABI TaqDyeDeoxy Terminator Cycle

5 Sequencing Kit (Applied Biosystems, Inc.). Automatic sequencing was performed on an ABI373 Automated Sequencer (Applied Biosystems, Inc.) at Cornell University, Geneva, NY.

The nucleotide sequences of GLRaV-2 were assembled and analyzed with the programs of EditSeq and SeqMan, respectively, of DNASTAR package (Madison, WI).

10 Amino acid sequences deduced from nucleotide sequences and its encoding open reading frames were conducted using the MapDraw program. Multiple alignments of amino acid sequences, identification of consensus amino acid sequences, and generation of phylogenetic trees were performed using the Clustal method in the MegAlign program. The nucleotide and amino acid sequences of other closteroviruses were obtained with the Entrez Program; 15 and sequence comparisons with nonredundant databases were searched with the Blast Program from the National Center for Biotechnology Information.

### Example 3 - Isolation of dsRNA

20 Several vines of GLRaV-2 infected *Vitis vinifera* cv Pinot Noir that originated from a central New York vineyard served as the source for dsRNA isolation and cDNA cloning. dsRNA was extracted from phloem tissue of infected grapevines according to the method described by Hu et al., "Characterization of Closterovirus-Like Particles Associated with Grapevine Leafroll Disease," *J. Phytopathology* 128:1-14 (1990), which is hereby incorporated by reference. Purification of the high molecular weight dsRNA (ca 15 kb) was carried out by electrophoretic separation of the total dsRNA on a 0.7% low melting point agarose gel and extraction by phenol/chloroform following the method described by 25 Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989), which is hereby incorporated by reference. Concentration of dsRNA was estimated with UV fluorescent density of an ethidium bromide stained dsRNA band in comparison with a known concentration of DNA marker.

**Example 4 - cDNA Synthesis and Cloning**

cDNA synthesis was performed following the method initially described by Jelkmann et al., "Cloning of Four Plant Viruses From Small Quantities of Double-Stranded RNA," *Phytopathology* 79:1250-53 (1989) and modified by Ling et al., "The Coat Protein Gene of Grapevine Leafroll Associated Closterovirus-3: Cloning, Nucleotide Sequencing and Expression in Transgenic Plants," *Arch. Virology* 142:1101-16 (1997), both of which are hereby incorporated by reference. About 100 ng of high molecular weight dsRNA purified from low melting agarose gel was denatured in 20 mM methylmercuric hydroxide and 10 incubated at room temperature for 10 min with 350 ng of random primers. First strand cDNA was synthesized by using avian myeloblastosis virus (AMV) reverse transcriptase. Second strand cDNA was obtained by using RNase H and *E.coli* DNA polymerase I. Double-stranded cDNA was blunt ended with T4 DNA polymerase and ligated with EcoR I adapters. The cDNA, which had EcoR I adapters at the ends, was activated by kinase reaction and 15 ligated into Lambda ZAP II/EcoR I prepared arms following the manufacturer's instruction (Stratagene). The recombinant DNA was then packaged *in vitro* to Gigapack<sup>®</sup> II packaging extract (Stratagene). The packaged phage particles were amplified and titered according to the manufacturer's instruction.

Two kinds of probes were used to identify GLRaV-2 specific clones from the 20 library. One type was prepared from the synthesized cDNA that was amplified by PCR after ligation to the specific EcoR I Uni-Amp<sup>TM</sup> adapters (Clontech); and the other type was DNA inserts or PCR products from already sequenced clones. Clones from the cDNA library were selected by colony-lifting hybridization onto the colony/plaque Screen membrane (NEN Research Product) with the probe described above. The probe was prepared by labeling with 25 <sup>32</sup>P [ $\alpha$ -dATP] using Klenow fragment of *E.coli* DNA polymerase I. Prehybridization, hybridization, and washing steps were carried out at 65°C according to the manufacturer's instruction (Dupont, NEN Research Product). Selected plaques were converted to recombinant pBluescript by *in vivo* excision method according to the manufacturer's instruction (Stratagene).

30 To obtain clones representing the extreme 3'-terminus of GLRaV-2, dsRNA was polyadenylated by yeast poly(A) polymerase. Using poly(A)-tailed dsRNA as template, cDNA was amplified by RT-PCR with oligo(dT)18 and a specific primer, CP-1/T7R, which

is derived from the clone CP-1 and has a nucleotide sequence according to SEQ. ID. No. 20 as follows:

TGCTGGAGCT TGAGGTTCTG C

21

5

The resulting PCR product (3'-PCR) was cloned into a TA vector (Invitrogen) and sequenced.

As shown in Figure 1A, a high molecular weight dsRNA of ca. 15 kb was consistently identified from GLRaV-2 infected grapevines, but not from healthy vines. In 10 addition, several low molecular weight dsRNAs were also detected from infected tissue. The yield of dsRNA of GLRaV-2 was estimated between 5-10 ng/15 g phloem tissue, which was much lower than that of GLRaV-3 (Hu et al., "Characterization of Closterovirus-Like Particles Associated with Grapevine Leafroll Disease," *J. Phytopathology* 128:1-14 (1990), which is hereby incorporated by reference). Only the high molecular weight dsRNA that was 15 purified from low melting point agarose gel was used for cDNA synthesis, cloning and establishment of the Lambda/ZAP II cDNA library.

Two kinds of probes were used for screening the cDNA library. The initial clones were identified by hybridization with Uni-Amp™ PCR-amplified cDNA as probes. The specificity of these clones (e.g., TC-1) ranging from 200 to 1,800 bp in size was 20 confirmed by Northern hybridization to dsRNA of GLRaV-2 as shown in Figure 1B. Additionally, over 40 different clones ranging form 800 to 7,500 bp in size were identified following hybridization with the probes generated from GLRaV-2 specific cDNA clones or from PCR products. Over 40 clones were then sequenced on the both strands (Figure 2).

25 **Example 5 - Expression of the Coat Protein in *E. coli* and Immunoblotting**

To determine that ORF6 was the coat protein gene of GLRaV-2, the complete ORF6 DNA molecule was subcloned from a PCR product and inserted into the fusion protein expression vector pMAL-C2 (New England Biolabs, Inc.). The specific primers used for the PCR reaction were CP-96F and CP-96R, in which an EcoR I or BamH I site was included to 30 facilitate cloning. CP-96F was designed to include the start codon of the CP and comprises a nucleotide sequence according to SEQ. ID. NO. 21 as follows:

CGGAATTCAC CATGGAGTTG ATGTCCGACA G

31

CP-96R was 66 nucleotides downstream of the stop codon of the CP and comprises the nucleotide sequence corresponding to SEQ. ID. No. 22 as follows:

AGCGGATCCA TGGCAGATT GTGCGTAGCA GTA

33

5 The coat protein was expressed as a fusion protein with maltose binding protein (MBP) of *E. coli* under the control of a "tac" promoter and suppressed by the "lac" repressor. The MBP-CP fusion protein was induced by adding 0.3 mM isopropyl- $\beta$ -D-thio-gloactopyranoside (IPTG) and purified by a one step affinity column according to the manufacturer's instruction  
10 (New England, Biolabs, Inc.). The MBP-CP fusion protein or the coat protein cleaved from the fusion protein was tested to react with specific antiserum of GLRaV-2 (kindly provided by Dr. Charles Greif of INRA, Colmar, France) on Western blot according to the method described by Hu et al., "Characterization of Closterovirus-Like Particles Associated with Grapevine Leafroll Disease," *J. Phytopathology* 128:1-14 (1990), which is hereby  
15 incorporated by reference. In contrast, the non-recombinant plasmids or uninduced cells did not react to the antiserum of GLRaV-2.

**Example 6 - Sequence Analysis and Genome Organization of GLRaV-2**

20 A total of 15,500 bp of the RNA genome of GLRaV-2 was sequenced and deposited in GenBank (accession number AF039204). About 85% of the total RNA genome was revealed from at least two different clones. The sequence in the coat protein gene region was determined and confirmed from several different overlapping clones. The genome organization of GLRaV-2, shown in Figure 2, includes nine open reading frames (e.g.,  
25 ORF1a, 1b-8).

ORF1a and ORF1b: Analysis of the amino acid sequence of the N-terminal portion of GLRaV-2 ORF1a encoded product revealed two putative papain-like protease domains, which showed significant similarity to the papain-like leader protease of BYV (Agranovsky et al., "Beet Yellows Closterovirus: Complete Genome Structure and  
30 Identification of a Papain-like Thiol Protease," *Virology* 198:311-24 (1994), which is hereby incorporated by reference). Thus, it allowed prediction of the catalytic cysteine and histidine residues for the putative GLRaV-2 protease. Upon alignment of the sequence of the papain-like protease of BYV with that of GLRaV-2, the cleavage site at residues Gly-Gly (amino acid 588-589) of BYV aligned with the corresponding alanine-glycine (Ala-Gly) and Gly-Gly  
35 dipeptide of GLRaV-2 (Figure 3A). Cleavage at this site would result in a leader protein and

a 234 kDa (2090 amino acid) C-terminal fragment consisting of MT and HEL domains. However, the region upstream of the papain-like protease domain in GLRaV-2 did not show similarity to the corresponding region of BYV. In addition, variability in the residues located at the scissile bond (Gly in the BYV and Ala in the GLRaV-2) was present. Similar 5 variability of the cleavage site residue in the P-PRO domain has been described in LChV (Jelkmann et al., "Complete Genome Structure and Phylogenetic Analysis of Little Cherry Virus, a Mealybug-Transmissible Closterovirus. J. General Virology 78:2067-71 (1997), which is hereby incorporated by reference).

Database searching with the deduced amino acid sequence of the ORF1a/1b 10 encoded protein revealed a significant similarity to the MT, HEL and RdRP domains of the other closteroviruses. The region downstream of the P-PRO cleavage site showed a significant similarity (57.4% identity in a 266-residues alignment) to the putative methyltransferase domain of BYV and contained all the conserved motifs typical of positive-strand RNA viral type I MTs (Figure 3B). The C-terminal portion of the ORF1a was 15 identified as a helicase domain, the sequence of which showed a high similarity (57.1% identity in a 315-residues alignment) to the helicase domain of BYV and contained the seven conserved motifs characteristic of the Superfamily I helicase of positive-strand RNA viruses (Figure 3C) (Hodgman, "A New Superfamily of Replicative Proteins," Nature 333:22-23 20 (1988); Koonin and Dolja, "Evolution and Taxonomy of Positive-strand RNA Viruses: Implications of Comparative Analysis of Amino Acid Sequences," Crit. Rev. in Biochem. and Mol. Biol. 28:375-430 (1993), both of which are hereby incorporated by reference).

ORF1b encoded a 460 amino acid polypeptide with a molecular mass of 25 52,486 Da, counting from the frameshifting site. Database searching with the RdRP showed a significant similarity to the RdRP domains of positive strand RNA viruses. Comparison of the RdRP domains of GLRaV-2 and BYV showed the presence of the eight conserved motifs of RdRP (Figure 3D).

As shown in Figure 8, a tentative phylogenetic tree of the RdRP of GLRaV-2 with respect to other closteroviruses shows that it is closely related to the monopartite closteroviruses BYV, BYSV, and CTV.

In closteroviruses, a +1 ribosomal frameshift mechanism has been suggested 30 to be involved in the expression of ORF1b as a large fusion protein with ORF1a (Agranovsky et al., "Beet Yellows Closterovirus: Complete Genome Structure and Identification of a Papain-like Thiol Protease," Virology 198:311-24 (1994); Karasev et al., "Complete Sequence of the Citrus Tristeza Virus RNA Genome," Virology 208:511-20 (1995); Klaassen

et al., "Genome Structure and Phylogenetic Analysis of Lettuce Infectious Yellows Virus, a Whitefly-Transmitted, Bipartite Closterovirus," Virology 208:99-110 (1995); Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome and Implications for the Evolution of Closteroviruses," Virology 221:199-207 (1996); Jelkmann et al.,

5 "Complete Genome Structure and Phylogenetic Analysis of Little Cherry Virus, a Mealybug-Transmissible Closterovirus," J. General Virology 78:2067-71 (1997), all of which are hereby incorporated by reference). In the overlapping ORF1a/1b region of BYV, the slippery sequence of GGGUUUA and two hairpins structure (stem-loop and pseudoknot) are believed to result in a +1 frameshift (Agranovsky et al., "Beet Yellows Closterovirus: Complete

10 Genome Structure and Identification of a Papain-like Thiol Protease," Virology 198:311-24 (1994), which is hereby incorporated by reference). None of these features are conserved in CTV and BYSV (Karasev et al., "Complete Sequence of the Citrus Tristeza Virus RNA Genome," Virology 208:511-20 (1995); Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome and Implications for the Evolution of Closteroviruses,"

15 Virology 221:199-207 (1996), both of which are hereby incorporated by reference), in which a ribosomal pausing at a terminator or at a rare codon was suggested to perform the same function. Comparisons of the nucleotide sequence of the C-terminal region of the helicase and the N-terminal region of RdRP of GLRaV-2 with the same region of other closteroviruses revealed a significant similarity to BYV, BYSV, and CTV. As shown in

20 Figure 4, the terminator UAG at the end of C'-terminal helicase of GLRaV-2 aligned with the terminator UAG of BYV and BYSV, and arginine CGG codon of CTV.

ORF2 encodes a small protein consisting of 171 bp (57 amino acid) with a molecular mass of 6,297 Da. As predicted, the deduced amino acid sequence includes a stretch of nonpolar amino acids, which is presumed to form a transmembrane helix. A small hydrophobic analogous protein is also present in BYV, BYSV, CTV, LIYV, and LChV (Agranovsky et al. "Nucleotide Sequence of the 3'-Terminal Half of Beet Yellows Closterovirus RNA Genome Unique Arrangement of Eight Virus Genes," J. General Virology 72:15-24 (1991); Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome and Implications for the Evolution of Closteroviruses," Virology 221:199-207 (1996); Pappu et al., "Nucleotide Sequence and Organization of Eight 3' Open Reading Frames of the Citrus Tristeza Closterovirus Genome," Virology 199:35-46 (1994); Klaassen et al., "Partial Characterization of the Lettuce Infectious Yellows Virus Genomic RNAs, Identification of the Coat Protein Gene and Comparison of its Amino Acid Sequence With Those of Other Filamentous RNA Plant Viruses," J. General Virology 75:1525-33

(1994); Jelkmann et al., "Complete Genome Structure and Phylogenetic Analysis of Little Cherry Virus, a Mealybug-Transmissible Closterovirus," J. General Virology 78:2067-71 (1997), all of which are hereby incorporated by reference).

ORF3 encodes a 600 amino acid polypeptide with a molecular mass of 65,111

5 Da, which is homologous to the HSP70 cellular heat shock protein. HSP70 is highly conserved among closteroviruses and is probably involved in ATPase activity and the protein to protein interaction for chaperone activity (Agranovsky et al. "The Beet Yellows Closterovirus p65 Homologue of HSP70 Chaperones has ATPase Activity Associated with its Conserved N-terminal Domain but Interact with Unfolded Protein Chains," J. General Virology 78:535-42 (1997); Agranovsky et al., "Bacterial Expression and Some Properties of the p65, a Homologue of Cell Heat Shock Protein HSP70 Encoded in RNA Genome of Beet Yellows Closterovirus," Doklady Akademii Nauk. 340:416-18 (1995); Karasev et al., "HSP70-Related 65-kDa Protein of Beet Yellows Closterovirus is a Microtubule-Binding Protein," FEBS Letters 304:12-14 (1992), all of which are hereby incorporated by reference).

10 15 As shown in Figure 5, alignment of the complete ORF3 of GLRaV-2 with HSP70 homolog of BYV revealed the presence of the eight conserved motifs. The percentage similarity of the HSP70 between GLRaV-2 and that of BYV, BYSV, CTV, LIYV, and LChV is 47.8%, 47.2%, 38.6%, 20.9%, and 17.7%, respectively.

ORF4 encodes a 551 amino acid protein with a molecular mass of 63,349 Da.

20 Database searching with the ORF4 protein product did not identify similar proteins except those of its counterparts in closteroviruses, BYV (P64), BYSV (P61), CTV (P61), LIYV (P59), and LChV (P61) . This protein is believed to be a putative heat shock 90 protein. As shown in Figure 9, two conserved motifs which were present in BYV (Agranovsky et al. "Nucleotide Sequence of the 3'-Terminal Half of Beet Yellows Closterovirus RNA Genome 25 Unique Arrangement of Eight Virus Genes," J. General Virology 72:15-24 (1991), which is hereby incorporated by reference) and CTV (Pappu et al., "Nucleotide Sequence and Organization of Eight 3' Open Reading Frames of the Citrus Tristeza Closterovirus Genome," Virology 199:35-46 (1994), which is hereby incorporated by reference) were also identified in the ORF4 of GLRaV-2.

30 ORF5 and ORF6 encode polypeptides with molecular mass of 24,803 Da and 21,661 Da, respectively. The start codon for both ORFs is in a favorable context for translation. ORF6 was identified as the coat protein gene of GLRaV-2 based on the sequence comparison with other closteroviruses. The calculated molecular mass of the protein product of ORF6 (21,662 Da) is in good agreement with the previously estimated 22~26 kDa based

on SDS-PAGE (Zimmermann et al., "Characterization and Serological Detection of Four Closterovirus-like Particles Associated with Leafroll Disease on Grapevine," J. Phytopathology 130:205-18 (1990); Boscia et al., "Nomenclature of Grapevine Leafroll-Associated Putative Closteroviruses," Vitis 34:171-75 (1995), both of which are hereby 5 incorporated by reference).

Database searching with the deduced amino acid sequence of the ORF6 of GLRaV-2 showed a similarity with the coat proteins of closteroviruses, BYV, BYSV, CTV, LIYV, LChV, and GLRaV-3. At the nucleotide level, the highest percentage similarity was with the coat protein of BYSV (34.8%); at the amino acid level, the highest percentage 10 similarity was with the coat proteins of BYV (32.7%) and BYSV (32.7%). As shown in Figure 6A, alignment of the amino acid sequence of the coat protein and coat protein duplicate of GLRaV-2 with respect to other closteroviruses revealed that the invariant amino 15 acid residues ( N. R. G. D.) were present in both ORF5 and ORF6 of GLRaV-2. Two of these amino acid residues (R and D) are believed to be involved in stabilization of molecules by salt bridge formation and proper folding in the most conserved core region of coat proteins 20 of all filamentous plant viruses (Dolja et al., "Phylogeny of Capsid Proteins of Rod-Shaped and Filamentous RNA Plant Viruses Two Families With Distinct Patterns of Sequence and Probably Structure Conservation," Virology 184:79-86 (1991), which is hereby incorporated by reference).

Identification of ORF6 as the coat protein gene was further confirmed by Western blot following expression of a fusion protein, consisting of a 22 kDa of ORF6 CP and a 42 kDa of maltose binding protein, produced by transformed *E. coli* as described in Example 5 *supra*. As shown in Figure 6B, the putative phylogenetic tree of the coat protein and coat protein duplicate of GLRaV-2 with those of other closteroviruses showed that 25 GLRaV-2 is more closely related to aphid transmissible closteroviruses (BYV, BYSV, and CTV) (Candresse, "Closteroviruses and Clostero-like Elongated Plant Viruses," in Encyclopedia of Virology, pp. 242-48, Webster and Granoff, eds., Academic Press, New York (1994), which is hereby incorporated by reference) than to whitefly (LIYV) or mealybug transmissible closteroviruses (LChV and GLRaV-3) (Raine et al., "Transmission 30 of the Agent Causing Little Cherry Disease by the Apple Mealybug *Phenacoccus aceris* and the Dodder *Cuscuta Lupuliformis*," Canadian J. Plant Pathology 8:6-11 (1986); Jelkmann et al., "Complete Genome Structure and Phylogenetic Analysis of Little Cherry Virus, a Mealybug-Transmissible Closterovirus," J. General Virology 78:2067-71 (1997); Rosciglione and Gugerli, "Transmission of Grapevine Leafroll Disease and an Associated Closterovirus

to Healthy Grapevine by the Mealybug *Planococcus ficus*," Phytoparasitica 17:63 (1989); Engelbrecht and Kasdorf, "Transmission of Grapevine Leafroll Disease and Associated Closteroviruses by the Vine Mealybug *planococcus-ficus*," Phytophlactica, 22:341-46 (1990); Cabaleiro and Segura, 1997; Petersen and Charles, "Transmission of Grapevine

5 Leafroll-Associated Closteroviruses by *Pseudococcus longispinus* and *P. calceolariae*. Plant Pathology 46:509-15 (1997), all of which are hereby incorporated by reference).

ORF7 and ORF8 encode polypeptides of 162 amino acid with a molecular mass of 18,800 Da and of 206 amino acid with a molecular mass of 23,659 Da, respectively. Database searching with the ORF7 and ORF8 showed no significant similarity with any other 10 proteins. Nevertheless, these genes were of similar in size and location as those observed in the sequence of other closteroviruses, BYV (P20, P21), BYSV (P18, P22), and LChV (P21, P27) (Figure 7). However, conserved regions were not observed between the ORF7 or ORF8 and its counterparts in BYV, BYSV, and LChV.

The 3' terminal untranslated region (3'-UTR) consists of 216 nucleotides.

15 Nucleotide sequence analysis revealed a long oligo(A) tract close to the end of the GLRaV-2 genome which is similar to that observed in the genome of BYV and BYSV (Agranovsky et al. "Nucleotide Sequence of the 3'-Terminal Half of Beet Yellows Closterovirus RNA Genome Unique Arrangement of Eight Virus Genes," J. General Virology 72:15-24 (1991); Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome 20 and Implications for the Evolution of Closteroviruses," Virology 221:199-207 (1996), both of which are hereby incorporated by reference). The genome of BYV ends in CCC, BYSV, and CTV ends in CC with an additional G or A in the double-stranded replicative form of BYSV (Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome and Implications for the Evolution of Closteroviruses," Virology 221:199-207 (1996), which 25 is hereby incorporated by reference) and CTV (Karasev et al., "Complete Sequence of the Citrus Tristeza Virus RNA Genome," Virology 208:511-20 (1995), which is hereby incorporated by reference), respectively . GLRaV-2 had CGC at the 3' terminus of the genome. Recently, a conserved 60 nt cis-element was identified in the 3'-UTR of three monopartite closteroviruses, which included a prominent conserved stem and loop structure 30 (Karasev et al., 1996). As shown in Figure 10, alignment of the 3'-UTR sequence of GLRaV-2 with the same regions of BYV, BYSV, and CTV showed the presence of the same conserved 60 nt stretch. Besides this cis-element, conserved sequences were not found in the 3' UTRs of GLRaV-2, BYV, BYSV, and CTV.

The closteroviruses studied so far (e.g., BYV, BYSV, CTV, LIYV, LChV, and GLRaV-3) have apparent similarities in genome organization, which include replication associated genes that consist of MT, HEL, and RdRP conserved domains and a five-gene array unique for closteroviruses (Dolja et al. "Molecular Biology and Evolution of Closteroviruses: Sophisticated Build-up of Large RNA Genomes," Annual Rev. Photopathology 32:261-85 (1994); Agranovsky "Principles of Molecular Organization, Expression, and Evolution of Closteroviruses: Over the Barriers," Adv. in Virus Res. 47:119-218 (1996); Jelkmann et al., "Complete Genome Structure and Phylogenetic Analysis of Little Cherry Virus, a Mealybug-Transmissible Closterovirus," J. General Virology 78:2067-71 (1997); Ling et al., "Nucleotide Sequence of the 3' Terminal Two-Thirds of the Grapevine Leafroll Associated Virus-3 Genome Reveals a Typical Monopartite Closterovirus," J. General Virology 79(5):1289-1301 (1998), all of which are hereby incorporated by reference).

The above data clearly shows that GLRaV-2 is a closterovirus. In the genome of GLRaV-2, two putative papain-like proteases were identified and an autoproteolytic cleavage process was predicted. The replication associated proteins consisting of MT, HEL, and RdRP conserved motifs were also identified, which were phylogenetically closely related to the replication associated proteins of other closteroviruses. A unique gene array including a small hydrophobic transmembrane protein, HSP70 homolog, HSP90 homolog, diverged CP and CP was also preserved in GLRaV-2. In addition, the calculated molecular mass (21,661 Da) of the coat protein (ORF6) of GLRaV-2 is in good agreement with that of the other closteroviruses (22 to 28 kDa) (Martelli and Bar-Joseph, "Closteroviruses: Classification and Nomenclature of Viruses," Fifth Report of the International Committee on Taxonomy of Viruses, Francki et al., eds., Springer-Verlag Wein, New York, p. 345-47 (1991); Candresse and Martelli, "Genus *Closterovirus*," in Virus Taxonomy. Report of the International Committee on Taxonomy of Viruses, Murphy et al., eds., Springer-Verlag., NY, p. 461-63 (1995), both of which are hereby incorporated by reference). Two ORFs downstream of the CP are of similar, in size and location, to those observed in the genome of BYV.

Furthermore, lack of a poly(A) tail at the 3' end of GLRaV-2 is also in good agreement with other closteroviruses. Like all other closteroviruses, the expression of ORF1b is suspected to occur via a +1 ribosomal frameshift and the 3' proximal ORFs are probably expressed via formation of a nested set of subgenomic RNAs. Since the slippery sequence, stem-loop and pseudoknot structure involved in the frameshift of BYV were absent in GLRaV-2, the +1 frameshift of GLRaV-2 might be the same as proposed for CTV (Karasev et al., "Complete

Sequence of the Citrus Tristeza Virus RNA Genome," Virology 208:511-20 (1995), which is hereby incorporated by reference) and BYSV (Karasev et al., "Organization of the 3'-Terminal Half of Beet Yellow Stunt Virus Genome and Implications for the Evolution of Closteroviruses," Virology 221:199-207 (1996), which is hereby incorporated by reference).

5 Overall, GLRaV-2 is more closely related to monopartite closteroviruses BYV, BYSV, and CTV than to GLRaV-3 (Figure 7) (Ling et al., "Nucleotide Sequence of the 3' Terminal Two-Thirds of the Grapevine Leafroll Associated Virus-3 Genome Reveals a Typical Monopartite Closterovirus," J. General Virology 79(5):1289-1301 (1998), which is hereby incorporated by reference), even though the latter causes similar leafroll symptoms in 10 grapevine (Rosciglione and Gugerli, "Maladies de l'Enroulement et du Bois Strie de la Vigne: Analyse Microscopique et Serologique (Leafroll and Stem Pitting of Grapevine: Microscopical and Serological Analysis)," Rev Suisse Viticult Arboricolt Horticulture 18:207-11 (1986); Hu et al., "Characterization of Closterovirus-Like Particles Associated with Grapevine Leafroll Disease," J. Phytopathology 128:1-14 (1990), both of which are 15 hereby incorporated by reference).

Closteroviruses are a diverse group with complex and heterogeneous genome organizations. So far, GLRaV-2 is the only closterovirus that matches with the genome organization of BYV, the type member of the genus *Closterovirus*. In addition, the genomic RNA of GLRaV-2 is about the same size as that of BYV; however, the transmission vector of 20 GLRaV-2 is unknown. The genome organization of GLRaV-2 is more closely related to the aphid transmissible closteroviruses (BYV and CTV) than to whitefly (LIYV) or mealybug transmissible closteroviruses (LChV and GLRaV-3). Thus, it is possible that GLRaV-2 is transmitted by aphids. Aphid transmission experiments with GLRaV-2 should provide information that might help develop methods for further control of GLRaV-2.

25 A total of 15,500 nucleotides or over 95% of the estimated GLRaV-2 genome has been cloned and sequenced. GLRaV-2 and GLRaV-3 (Ling et al., "Nucleotide Sequence of the 3' Terminal Two-Thirds of the Grapevine Leafroll Associated Virus-3 Genome Reveals a Typical Monopartite Closterovirus," J. General Virology 79(5):1289-1301 (1998), which is hereby incorporated by reference) are the first grapevine leafroll associated 30 closteroviruses that have been almost completely sequenced. The above data clearly justify the inclusion of GLRaV-2 into the genus *Closterovirus*. In addition, the information regarding the genome of GLRaV-2 would provide a better understanding of this and related GLRaVs, and add fundamental knowledge to the group of closteroviruses.

**Example 7 - Construction of the CP Gene of GLRaV-2 in Plant Expression Vector**

GLRaV-2 infected Vitis vinifera, cv Pinot Noir grapevines originated from a vineyard in central New York was used as the virus isolate, from which the cp gene of GLRaV-2 was identified. Based on the sequence information, two oligonucleotide primers have been designed. The sense primer CP-96F (SEQ. ID. No. 21) starts from the ATG initiation codon of the coat protein gene and the complementary primer CP-96R (SEQ. ID. No. 22) starts from 56 nucleotides downstream of the stop codon of the CP gene. A Nco I restriction site (11 bp in SEQ. ID. No. 21 and 13 bp in SEQ. ID. No. 22) is introduced in the beginning of both primers to facilitate the cloning. The coat protein gene of GLRaV-2 was amplified from dsRNA extracted from GLRaV-2 infected grapevine using reverse transcriptase polymerase chain reaction (RT-PCR). The PCR-amplified CP product was purified from low melting temperature agarose gel, digested with Nco I and cloned into the same enzyme digested plant expression vector pEPT8 (shown at Figure 11). After screening, the orientation of recombinant construct was checked by using the internal restriction site of the CP gene and directly sequencing the CP gene. The recombinant construct with translatable (sense) full length coat protein gene, pEPT8CP-GLRaV2, was going through for the further cloning. The plant expression cassette, which consisted of a double cauliflower mosaic virus (CaMV) 35S-enhancer, a CaMV 35S-promoter, an alfalfa mosaic virus (ALMV) RNA4 5' leader sequence, a coat protein gene of GLRaV-2 (CP-GLRaV-2), and a CaMV 35S 3' untranslated region as a terminator, was cut using the EcoR I restriction enzyme, isolated from low melting point temperature agarose gel, and cloned into the same restriction enzyme treated binary vector pGA482GG or pGA482G (a derivative of pGA482 (An et al., "Binary Vectors," in Plant Molecular Biology Manual, pp. A3:1-19, Gelvin and Schilperoort, eds., Kluwer Academic Publishers, Dordrecht, Netherlands (1988), which is hereby incorporated by reference). The resulting recombinants constructs are pGA482GG/EPT8CP-GLRaV2 (shown at Figure 11A), which contain both neomycin phosphotransferase (npt II) and β-glucuronidase (GUS) at the internal region of the T-DNA, and pGA482G/EPT8CP-GLRaV2 (shown at Figure 11B) without GUS. These recombinants constructs were separately introduced by electroporation into disarmed avirulent *Agrobacterium tumefaciens* strain C58Z707. The *Agrobacterium tumefaciens* containing the vector was used to infect *Nicotiana benthamiana* wounded leaf disks according to the procedure essentially described by Horsch et al., "A Simple and General Method for

Transferring Genes into Plants," Science 277:1229-1231 (1985), which is incorporated herein by reference.

5      **Example 8 - Analysis of Transgenic *Nicotiana benthamiana* Plants with the CP Gene of GLRaV-2**

NPT II-ELISA: Double-antibody sandwich enzyme linked immunoassay (DAS-ELISA) was used to detect the npt II enzyme with an NPT II-ELISA kit (5' prime to 3' prime, Inc., Boulder, Co.).

10     Indirect ELISA: Polyclonal antibodies to GLRaV-2, which were prepared from the coat protein expressed in *E. coli*, were used. Plates were coated with homogenized samples in extraction buffer (1:10, w/v) (phosphate buffered saline containing 0.05% Tween 20 and 2% polyvinyl pyrrolidone) and incubated overnight at 4°C. After washing with phosphate buffered saline containing 0.05% Tween 20 (PBST), the plates were blocked with 15     blocking buffer (phosphate buffered saline containing 2% BSA) and incubated at room temperature for 1 hr. The anti-GLRaV-2 IgG was added at 2 µg/ml after washing with PBST. After incubation at 30 C for 4 hr, the plates were washed with PBST, and the goat anti-rabbit IgG conjugate of alkaline phosphatase (Sigma) was added at 1:10,000 dilution. The absorbance was measured at 405 nm with a MicroELISA AutoReader. In addition, 20     Western blot was also performed according to the method described by Hu et al., "Characterization of Closterovirus-like Particle Associated Grapevine Leafroll Disease," J. Phytopathology 128:1-14, (1990), which is incorporated herein by reference.

PCR analysis: Genomic DNA was extracted from leaves of putative transgenic and non-transgenic plants according to the method described by Cheung et al., "A 25     Simple and Rapid DNA Microextraction Method for Plants, Animal, and Insect Suitable for RAPD and other PCR analysis," PCR Methods and Applications 3:69 (1996), which is incorporated herein by reference. The extracted total DNA served as the template for PCR reaction. The primers CP-96F and CP-96R (SEQ. ID. Nos. 21 and 22, respectively) for the CP gene of GLRaV-2, as well as npt II 5'- and 3'- primers were used for PCR analysis. PCR 30     reaction was performed at the 94°C x 3 min for one cycle, followed by 30 cycles of 94° C x 1 min, 50° C x 1 min, and 72° C x 2:30 min with an additional extension at 72° C for 10 min. The PCR product was analyzed on agarose gel.

After transformation, a total of 42 kanamycin resistant *Nicotiana benthamiana* lines ( $R_0$ ) were obtained, of which the leaf samples were tested by NPT II enzyme activity.

Among them, 37 lines were NPT II positive by ELISA, which took about 88.0% of total transformants. However, some of NPT II negative plants were obtained among these selected kanamycin resistant plants. All of the transgenic plants were self-pollinated in a greenhouse, and the seeds from these transgenic lines were germinated for further analysis.

5           The production of GLRaV-2 CP in transgenic plants was detected by indirect ELISA prior to inoculation, and the results showed that GLRaV-2 CP gene expression was not detectable in all transgenic plants tested. This result was further confirmed with Western blot. Using the antibody to GLRaV-2, the production of the CP was not detected in the transgenic and nontransgenic control plants. However, a protein of expected size (~22 kDa) 10 was detected in GLRaV-2 infected positive control plants. This result was consistent with the ELISA result. The presence of the CP gene of GLRaV-2 in transgenic plants was detected from total genomic DNA extracted from plants tissue by PCR analysis (Figure 12). The DNA product of expected size (653 bp) was amplified from twenty tested transgenic lines, but not in non-transgenic plants. The result indicated that the CP gene of GLRaV-2 was present at 15 these transgenic lines, which was also confirmed by Northern blot analysis.

**Example 9 - R<sub>1</sub> and R<sub>2</sub> transgenic *Nicotiana benthamiana* Plants Are Resistant to GLRaV-2**

20           Inoculation of transgenic plants: GLRaV-2 isolate 94/970, which was originally identified and transmitted from grapevine to *Nicotiana benthamiana* in South Africa (Goszczynski et al., "Detection of Two Strains of Grapevine Leafroll-Associated Virus 2," *Vitis* 35:133-35 (1996), which is incorporated herein by reference), was used as inoculum. The CP gene of isolate 94/970 was sequenced; and it is identical to the CP gene 25 used in construction. *Nicotiana benthamiana* is an experimental host of GLRaV-2. The infection on it produces chlorotic and occasional necrotic lesions followed by systemic vein clearing. The vein clearing results in vein necrosis. Eventually the infected plants died, starting from the top to the bottom.

At five to seven leaf stage, two youngest apical leaves were challenged with 30 GLRaV-2 isolate 94/970. Inoculum was prepared by grinding 1.0 g GLRaV-2 infected *Nicotiana benthamiana* leaf tissue in 5 ml of phosphate buffer (0.01M K<sub>2</sub>HPO<sub>4</sub>, PH7.0). The tested plants were dusted with carborundum and rubbed with the prepared inoculum. Non-transformed plants were simultaneously inoculated as above. The plants were observed for symptom development every other day for 60 days after inoculation. Resistant R<sub>1</sub> transgenic

plants were carried on to R2 generation for further evaluation.

Transgenic progenies from 20 R<sub>0</sub> lines were initially screened for the resistance to GLRaV-2 followed by inoculation with GLRaV-2 isolate 94/970. The seedlings of the transgenic plants (NPT II positive), and nontransformed control plants were inoculated 5 with GLRaV-2. After inoculation, the reaction of tested plants were divided into three types: highly susceptible (i.e. typical symptoms were observed two to four weeks postinoculation); tolerant (i.e. no symptom was developed in the early stage and typical symptoms was shown four to eight weeks postinoculation); and resistant (i.e. the plants remained asymptomatic eight weeks postinoculation). Based on the plant reaction, the resistant plants were obtained 10 from fourteen different lines (listed in Table 1 below). In each of these fourteen lines, there was no virus detected within these plants by ELISA at 6 weeks postinoculation. In contrast, GLRaV-2 was detected in symptomatic plants by indirect ELISA. In the other six lines, although there were a few plants with some kind of delay in symptom development, all the 15 inoculated transgenic plants died at three to eight weeks postinoculation. Based on the initial screening results, five representative lines consisting of three resistant lines (1, 4, and 19) and two susceptible lines (12 and 13) were selected for the further analysis.

Table 1

| No. Line | No. | Reaction of Tested Plants |    |    |
|----------|-----|---------------------------|----|----|
|          |     | HS                        | T  | HR |
| line 1   | 39  | 14                        | 3  | 22 |
| line 2   | 36  | 7                         | 6  | 23 |
| line 3   | 38  | 11                        | 4  | 23 |
| line 4   | 31  | 4                         | 5  | 22 |
| line 5   | 33  | 6                         | 13 | 14 |
| line 6   | 36  | 4                         | 16 | 16 |
| line 7   | 32  | 5                         | 9  | 18 |
| line 8   | 37  | 22                        | 9  | 6  |
| line 9   | 36  | 9                         | 12 | 15 |
| line 10  | 14  | 13                        | 1  | 0  |
| line 11  | 13  | 11                        | 2  | 0  |
| line 12  | 17  | 16                        | 1  | 0  |
| line 13  | 16  | 14                        | 0  | 0  |
| line 14  | 17  | 17                        | 0  | 0  |
| line 15  | 32  | 30                        | 2  | 0  |
| line 16  | 33  | 6                         | 13 | 14 |
| line 17  | 12  | 0                         | 1  | 11 |
| line 19  | 15  | 0                         | 0  | 15 |
| line 20  | 19  | 3                         | 0  | 16 |
| line 21  | 14  | 1                         | 3  | 10 |
| control  | 15  | 15                        | 0  | 0  |

Table 1

| No. Line                                                                                    | No. | Reaction of Tested Plants |   |    |  |
|---------------------------------------------------------------------------------------------|-----|---------------------------|---|----|--|
|                                                                                             |     | HS                        | T | HR |  |
| No Line: include transgenic lines and nontransformed control;                               |     |                           |   |    |  |
| No: the number of transgenic and nontransformed plants;                                     |     |                           |   |    |  |
| HS: highly susceptible, typical symptoms were observed two to four weeks after inoculation; |     |                           |   |    |  |
| T: tolerant, the symptoms were observed five to eight weeks after inoculation; and          |     |                           |   |    |  |
| HR: plants remain without asymptoms after eight weeks inoculation.                          |     |                           |   |    |  |

Table 2 below shows the symptom development in transgenic plants relative to non-transgenic control plants in the five selected lines in separate experiments. Non-transgenic control plants were all infected two to four weeks after inoculation, which showed typical GLRaV-2 symptoms on *Nicotiana benthamiana*, including chlorotic and local lesions followed by systemic vein clearing and vein necrosis on the leaves. Three of the tested lines (1, 4, and 19) showed some resistance that was manifested by either an absence or a delay in symptom development. Two other lines, 12 and 13, developed symptoms at nearly the same time as the non-transformed control plants. From top to bottom, the leaves of infected plants gradually became yellow, wilted, and dried, and, eventually, the whole plants died. No matter when infection occurred, the eventual result was the same. Six weeks after inoculation, all non-transgenic plants and the susceptible plants were dead. Some tolerant plants started to die. In contrast, the asymptomatic plants were flowering normally and pollinating as the non-inoculated healthy control plants (Figure 13).

Table 2

| No. Line       | No. | Reaction of Tested Plants |   |    |
|----------------|-----|---------------------------|---|----|
|                |     | HS                        | T | HR |
| line 1         | 19  | 5                         | 6 | 8  |
| line 4         | 15  | 9                         | 1 | 5  |
| line 12        | 16  | 14                        | 2 | 0  |
| line 13        | 18  | 13                        | 5 | 0  |
| line 19        | 13  | 10                        | 0 | 3  |
| non-transgenic | 24  | 23                        | 1 | 0  |

No. Line: include transgenic lines and nontransformed control;

No.: Number of transgenic and nontransformed plants tested;

HS: highly susceptible; typical symptoms were observed two to four weeks after inoculation;

T: tolerant, the symptoms were observed five to eight weeks postinoculation; and

HR: plants remain without asymptoms after eight weeks inoculation.

ELISA was performed at 6 weeks postinoculation to test the GLRaV-2 replication in the plants. Presumably, the increased level of CP reflected virus replication.

The result showed that the absorbance value in symptomatic plants reached (OD) 0.7 to 3.2,

compared to (OD) 0.10-0.13 prior to inoculation. In contrast, GLRaV-2 was not detected in asymptomatic plants, of which the absorbance value was the same or nearly the same as that of healthy nontransformed control plants. The data confirmed that virus replicated in symptomatic plants, but not in asymptomatic plants. The replication of GLRaV-2 was 5 suppressed in asymptomatic plants. This result implicated that another mechanism other than the CP-mediated resistance was probably involved.

Three R2 progenies derived from transgenic resistant plants of lines 1, 4, and 19 were generated and utilized to examine the stable transmission and whether resistance was maintained in R2 generation. These results are shown in Table 3 below. NPT II analysis 10 revealed that R2 progeny were still segregating. The CP expression in R2 progeny was still undetectable. After inoculation, all the nontransgenic plants were infected and showed GLRaV-2 symptoms on the leaves after 24 days postinoculation. In contrast, the inoculated transgenic R<sub>2</sub> progeny showed different levels of resistance from those highly susceptible to highly resistant. The tolerant and resistant plants were manifested by a delay in symptom 15 development and absence of symptoms, respectively. At 6 weeks postinoculation, GLRaV-2 was detected in the tolerant symptomatic infected plants by indirect ELISA; but not in asymptomatic plants. This result indicated that virus replication was suppressed in these resistant plants, which was confirmed by Western blot. These resistant plants remained asymptomatic eight weeks postinoculation, and they were flowering normally and 20 pollinating.

Table 3

| No. Line        | No. Plants | NPT II<br>positive/negative | Reaction of Tested Plants |   |    |
|-----------------|------------|-----------------------------|---------------------------|---|----|
|                 |            |                             | HS                        | T | HR |
| line 1/22       | 12         | 12/20                       | 3                         | 3 | 6  |
| line 1/30       | 11         | 8/3                         | 7                         | 2 | 2  |
| line 1/31       | 11         | 10/1                        | 6                         | 3 | 2  |
| line 1/35       | 10         | 10/0                        | 4                         | 6 | 0  |
| line 1/41       | 8          | 7/1                         | 2                         | 2 | 4  |
| line 4/139      | 12         | 11/1                        | 4                         | 4 | 3  |
| line 4/149      | 10         | 7/3                         | 4                         | 5 | 1  |
| line 4/152      | 10         | 8/2                         | 9                         | 0 | 1  |
| line 4/174      | 9          | 8/1                         | 4                         | 0 | 4  |
| line 19/650     | 11         | 10/1                        | 7                         | 0 | 2  |
| line 19/657     | 12         | 12/0                        | 6                         | 2 | 4  |
| line 19/659     | 12         | 8/4                         | 5                         | 2 | 5  |
| line 19/660     | 10         | 8/2                         | 3                         | 6 | 1  |
| non-transformed | 12         | 0/12                        | 12                        | 0 | 0  |
| CK              |            |                             |                           |   |    |

HS: highly susceptible, typical symptoms were observed two to four weeks after inoculation;

T: tolerant, the symptoms were observed five to eight weeks postinoculation; and

HR: plants remain asymptomatic at eight weeks postinoculation.

**Example 10 - Evidence for RNA-Mediated Protection in Transgenic Plants**

Northern blot analysis: Total RNA was extracted from leaves prior to inoculation following the method described by Napoli et al., *Plant Cell* 2:279-89 (1990), which is hereby incorporated by reference. The concentration of the extracted RNA was measured by spectrophotometer at OD 260. About 10 g of total RNA was used for each sample. The probe used was the 3' one third of GLRaV-2 CP gene, which was randomly labeled with <sup>32</sup>P ( $\alpha$ -dATP) using Klenow fragment of DNA polymerase I.

Using a DNA corresponding to the 3' one third CP gene sequence as probe, a single band was detected in the RNA extracted from susceptible plants from R1 progeny of lines 5, 12, and 13 by Northern hybridization. There was little or no signal detected in the transgenic plants from R1 progeny of line 1, 4, and 19. This RNA is not present in nontransformed control plants. The size of the hybridization signal was estimated to an approximately 0.9 kb nucleic acid, which was about the same as estimated (Figure 14). In lines of 1, 4, and 19, the steady state level of RNA expression was also low in R2 progeny. This data showed that susceptible plants from lines 12 and 13 had high mRNA level and all transgenic plants from lines 1, 4, and 19 had low mRNA level.

**Example 11 - Transformation and Analysis of Transgenic Grapevines with the CP Gene of GLRaV-2**

Plant materials: The rootstock cultivars Couderc 3309 (3309C) (*V. riparia* x *V. rupestris*), *Vitis riparia* 'Gloire de Montpellier' (Gloire), Teleki 5C (5C) (*V. berlandieri* x *V. riparia*), Millardet et De Grasset 101-14 (101-14 MGT) (*V. riparia* x *V. rupestris*), and Richter 110 (110R) (*V. rupestris* x *V. berlandieri*) were utilized. Initial embryogenic calli of Gloire were provided by Mozsar and Süle (Plant Protection Institute, Hungarian Academy of Science, Budapest). All other plant materials came from a vineyard at the New York State Agricultural Experiment Station, Geneva, NY. Buds were removed from the clusters and surface sterilized in 70% ethanol for 1-2 min. The buds (from the greenhouse and the field) were transferred to 1% sodium hypochlorite for 15 min, then rinsed three times in sterile, double-distilled water. Anthers were excised aseptically from flower buds with the aid of a stereo microscope. The pollen was crushed on a microscope slide under a coverslip with a drop of acetocarmine to observe the cytological stage. This was done to determine which stage was most favorable for callus induction.

Somatic embryogenesis and regeneration: Anthers were plated under aseptic conditions at a density of 40 to 50 per 9 cm diameter Petri dish containing MSE. Plates were cultured at 28°C in the dark. Callus was initiated, and, after 60 days, embryos were induced and were transferred to hormone-free HMG medium for differentiation. Torpedo stage  
5 embryos were then transferred from HMG to MGC medium to promote embryo germination. Cultures were maintained in the dark at 26-28°C and transferred to fresh medium at 3-4 week intervals. Elongated embryos were transferred to rooting medium in baby food jars (5-8 embryos per jar). The embryos were grown in a tissue culture room at 25°C with a daily 16 h photoperiod (76 :mol. s) to induce shoot and root formation. After plants developed roots,  
10 they were transplanted to soil in the greenhouse.

Transformation: The protocols used for transformation were modified from those described by Scorza et.al., "Transformation of Grape (*Vitis vinifera L.*) Zygotic-derived Somatic Embryos and Regeneration of Transgenic Plants," Plant Cell Rpt. 14:589-92 (1995), which is hereby incorporated by reference. Overnight cultures of *Agrobacterium* strain  
15 C58Z707 or LBA4404 were grown in LB medium at 28°C in a shaking incubator. Bacteria were centrifuged for 5 min at 3000-5000 rpm and resuspended in MS liquid medium (OD 1.0 at A600 nm ). Calli with embryos were immersed in the bacterial suspension for 15-30 min, blotted dry, and transferred to HMG medium with or without acetosyringone (100 µM). Embryogenic calli were co-cultivated with the bacteria for 48 h in the dark at 28°C. Then,  
20 the plant material was washed in MS liquid plus cefotaxime (300 mg/ml) and carbenicillin (200 mg/ml) 2-3 times. To select transgenic embryos, the material was transferred to HMG medium containing either 20 or 40 mg/L kanamycin, 300 mg/L cefotaxime, and 200 mg/L carbenicillin. Alternatively, after co-cultivation, embryogenic calli were transferred to initiation MSE medium containing 25 mg/l kanamycin plus the same antibiotics listed above.  
25 All plant materials were incubated in continuous dark at 28°C. After growth on selection medium for 3 months, embryos were transferred to HMG or MGC without kanamycin to promote elongation of embryos. They were then transferred to rooting medium without antibiotics. Nontransformed calli were grown on the same media with and without kanamycin to verify the efficiency of the kanamycin selection process.

30 Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

## SEQUENCE LISTING

## (1) GENERAL INFORMATION:

(i) APPLICANT: Cornell Research Foundation, Inc.

(ii) TITLE OF INVENTION: GRAPEVINE LEAFROLL VIRUS TYPE 2 PROTEINS  
AND THEIR USES

(iii) NUMBER OF SEQUENCES: 23

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Nixon, Hargrave, Devans & Doyle LLP
- (B) STREET: Clinton Square, P.O. Box 1051
- (C) CITY: Rochester
- (D) STATE: New York
- (E) COUNTRY: U.S.A.
- (F) ZIP: 14603

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: US 60/047,194
- (B) FILING DATE: 20-MAY-1997

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Goldman, Michael L.
- (B) REGISTRATION NUMBER: 30,727
- (C) REFERENCE/DOCKET NUMBER: 19603/1632

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (716) 263-1304
- (B) TELEFAX: (716) 263-1600

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15500 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

|                                                                   |      |
|-------------------------------------------------------------------|------|
| TAAACATTGC GAGAGAACCC CATTAGCGTC TCCGGGTGA ACTTGGGAAG GTCTGCCGCC  | 60   |
| GCTCAGGTTA TTTATTCGG CAGTTCACG CAGCCCTCG CGTTGTATCC GCGCCAAGAG    | 120  |
| AGCGCGATCG TAAAAACGCA ACTTCCACCG GTCAGTGTAG TGAAGGTGGA GTGCGTAGCT | 180  |
| GGGGAGGTAG CTCCCGACAG GGGCGTGGTC GACAAGAAC CTACGTCTGT TGGCGTTCCC  | 240  |
| CCGCAGCGCG GTGTGCTTTC TTTTCCGACG GTGGTTCGGA ACCGCGGCGA CGTGATAATC | 300  |
| ACAGGGGTGG TGCATGAAGC CCTGAAGAAA ATTAAGACG GGCTCTTACG CTTCCGCGTA  | 360  |
| GGCGGTGACA TGCCTTTTC GAGATTTTC TCATCGAACT ACGGCTGCAG ATTGTCGCG    | 420  |
| AGCGTGCCTA CGAACACTAC AGTTGGCTA AATTGCACGA AAGCGAGTGG TGAGAAATT   | 480  |
| TCACTCGCCG CCGCGTGCAC GGCGGATTAC GTGGCGATGC TGCCTTATGT GTGTGGCGGG | 540  |
| AAATTCCAC TCGTCCTCAT GAGTAGAGTT ATTTACCCGG ATGGCGCTG TTACTTGGCC   | 600  |
| CATATGAGGT ATTTGTGCGC CTTTACTGT CGCCCGTTA GAGAGTCGGA TTATGCCCTC   | 660  |
| GGAATGTGGC CTACGGTGGC GCGTCTCAGG GCATGCGTTG AGAAGAACTT CGGTGTCGAA | 720  |
| GCTTGTGGCA TAGCTCTTCG TGGCTATTAC ACCTCTCGCA ATGTTATCA CTGTGATTAT  | 780  |
| GACTCTGCTT ATGTAAAATA TTTAGAAC CTTCCGGCC GCATTGGCGG TGGTTCGTTC    | 840  |
| GATCCGACAT CTTAACCTC CGTAATAACG GTGAAGATTA GCGGTCTTCC AGGTGGTCTT  | 900  |
| CCTAAAAATA TAGCGTTGG TGCCTCCTG TGCGATATAC GTTACGTCGA ACCGGTAGAC   | 960  |
| TCGGGCGGCA TTCAATCGAG CGTTAACG AAACGTGAAG ATGCGCACCG AACCGTAGAG   | 1020 |
| GAACGGGCGG CCGCGGATC CGTCGAGCAA CCGCGACAAA AGAGGATAGA TGAGAAAGGT  | 1080 |
| TGCGGCAGAG TTCCTAGTGG AGGTTTTCG CATCTCCTGG TCGGCAACCT TAACGAAGTT  | 1140 |
| AGGAGGAAGG TAGCTGCCGG ACTTCTACGC TTTCGCGTTG GCGGTGATAT GGATTTCAT  | 1200 |
| CGCTCGTTCT CCACCCAAGC GGGCCACCGC TTGCTGGTGT GGCGCCGCTC GAGCCGGAGC | 1260 |
| GTGTGCCTTG AACTTACTC ACCATCTAAA AACTTTTGC GTTACGATGT CTTGCCCTGT   | 1320 |
| TCTGGAGACT ATGCAGCGAT GTTTCTTTC GCGGCGGGCG GCCGTTCCC TTTAGTTTG    | 1380 |
| ATGACTAGAA TTAGATAACCC GAACGGTTT TGTTACTTGG CTCACTGCCG GTACGCGTGC | 1440 |
| GCGTTTCTCT TAAGGGTTT TGATCCGAAG CGTTTCGACA TCGGTGCTTT CCCCCACCGCG | 1500 |
| GCCAAGCTCA GAAACCGTAT GGTTTGGAG CTTGGTGAAA GAAGTTAGG TTTGAACCTG   | 1560 |
| TACGGCGCAT ATACGTCACG CGGCGTCTT CACTGCGATT ATGACGCTAA GTTTATAAAG  | 1620 |

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| GATTTGCGTC TTATGTCAGC AGTTATAGCT GGAAAGGACG GGGTGGAAGA GGTGGTACCT     | 1680 |
| TCTGACATAA CTCCTGCCAT GAAGCAGAAA ACGATCGAAG CCGTGTATGA TAGATTATAT     | 1740 |
| GGCGGCAC TG ACTCGTTGCT GAAACTGAGC ATCGAGAAAG ACTTAATCGA TTTCAAAAT     | 1800 |
| GACGTGCAGA GTTTGAAGAA AGATCGGCCG ATTGTCAAAG TGCCCTTTA CATGTCGGAA      | 1860 |
| GCAACACAGA ATTGCGTGAC GCGTTCTAC CCTCAGTTCG AACTTAAGTT TTCGCACTCC      | 1920 |
| TCGCATTCA G ATCATCCCGC CGCCGCCGCT TCTAGACTGC TGGAAAATGA AACGTTAGTG    | 1980 |
| CGCTTATGTG GTAATAGCGT TTCAGATATT GGAGGTTGTC CTCTTTCCA TTTGCATTCC      | 2040 |
| AAGACGCAA GACGGGTTCA CGTATGTAGG CCTGTGTTGG ATGGCAAGGA TGCGCAGCGT      | 2100 |
| CGCGTGGTGC GTGATTGCA GTATTCCAAC GTGCCTTGG GAGACGATGA TAAAATTTG        | 2160 |
| GAAGGGCAC GCAATATCGA CATTGCCAC TATCCTCTGG GCGCGTGTGA CCACGAAAGT       | 2220 |
| AGTGCTATGA TGATGGTGCA GGTGTATGAC GCGTCCCTT ATGAGATATG TGGCGCCATG      | 2280 |
| ATCAAGAAGA AAAGCCGCAT AACGTACTTA ACCATGGTCA CGCCCGCGA GTTCTTGAC       | 2340 |
| GGACGCGAAT GCGTCTACAT GGAGTCGTTA GACTGTGAGA TTGAAGTTGA TGTGCACGCG     | 2400 |
| GACGTCGTA TGTACAAATT CGGTAGTTCT TGCTATTGCG ACAAGCTTC AATCATCAAG       | 2460 |
| GACATCATGA CCACTCCGTA CTTGACACTA GGTGGTTTC TATTCA CGTGGTGT GGAGATGTAT | 2520 |
| GAGGTGCGTA TGGCGTGAA TTACTTCAAG ATTACGAAGT CCGAAGTATC GCCTAGCATT      | 2580 |
| AGCTGCACCA AGCTCCTGAG ATACCGAAGA GCTAATAGTG ACgtGGTTAA AGTTAAACTT     | 2640 |
| CCACGTTTCG ATAAGAAACG TCGCATGTGT CTGCCTGGT ATGACACCAC ATACCTAGAT      | 2700 |
| TCGAAGTTTG TGAGTCGCGT TTTGATTAT GTCGTGTGTA ATTGCTCTGC CGTGAACCTCA     | 2760 |
| AAAACTTCG AGTGGGTGTG GAGTTTCATT AAGTCTAGTA AGTCGAGGGT GATTATTAGC      | 2820 |
| GGTAAAATAA TTCACAAGGA TGTGAATTG GACCTCAAGT ACgtCGAGAG TTTCGCCGCG      | 2880 |
| GTTATGTTGG CCTCTGGCGT GCGCAGTAGA CTAGCGTCCG AGTACCTTGC TAAGAACCTT     | 2940 |
| AGTCATTTT CGGGAGATTG CTCCTTATT GAAGCCACGT CTTTCGTGTT GCGTGAGAAA       | 3000 |
| ATCAGAAACA TGACTCTGAA TTTTAACGAA AGACTTTAC AGTTAGTGAA GCGCGTTGCC      | 3060 |
| TTTGCACCT TGGACGTGAG TTTCTAGAT TTGATTCAA CTCTTGAATC AATAACTGAT        | 3120 |
| TTTGCACGT GTAAGGTAGC GATTGAACTC GACGAGTTGG GTTGCTTGAG AGCGGAGGCC      | 3180 |
| GAGAATGAAA AAATCAGGAA TCTGGCGGGA GATTCGATTG CGGCTAAACT CGCGAGCGAG     | 3240 |
| ATAGTGGTCG ATATTGACTC TAAGCCTCA CCGAAGCAGG TGGGTAATTC GTCATCCGAA      | 3300 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| AACGCCGATA AGCGGGAAAGT TCAGAGGCC C GGTTCGCGTG GTGGTTCTAG AAACGGGGTT | 3360 |
| GTTGGGGAGT TCCTTCACCT CGTCGTGGAT TCTGCCTTGC GTCTTTCAA ATACGCGACG    | 3420 |
| GATCAACAAAC GGATCAAGTC TTACGTGCGT TTCTTGGACT CGGCGGTCTC ATTCTTGGAT  | 3480 |
| TACAACACTACG ATAATCTATC GTTTATACTG CGAGTGCTTT CGGAAGGTTA TTCGTGTATG | 3540 |
| TTCGCGTTTT TGGCGAACATCG CGGCGACTTA TCTAGTCGTG TCCGTAGCGC GGTGTGTGCT | 3600 |
| GTGAAAGAAG TTGCTACCTC ATGCGCAAC GCGAGCGTTT CTAAAGCCAA GGTTATGATT    | 3660 |
| ACCTTCGCA G CGGCCGTGTG TGCTATGATG TTTAATAGCT GCGGTTTTTC AGGCGACGGT  | 3720 |
| CGGGAGTATA AATCGTATAT ACATCGTTAC ACGCAAGTAT TGTTTGACAC TATCTTTTT    | 3780 |
| GAGGACAGCA GTTACCTACC CATAGAAGTT CTGAGTTCGG CGATATGCGG TGCTATCGTC   | 3840 |
| ACACTTTCT CCTCGGGCTC GTCCATAAGT TTAAACGCCT TCTTACTTCA AATTACCAA     | 3900 |
| GGATTCTCCC TAGAGGTTGT CGTCCGGAAT GTTGTGCGAG TCACGCATGG TTTGAGCACC   | 3960 |
| ACAGCGACCG ACGGCGTCAT ACGTGGGGTT TTCTCCAAA TTGTGTCTCA CTTACTTGT     | 4020 |
| GGAAATACGG GTAATGTGGC TTACCAGTCA GCTTCATTG CCGGGGTGGT GCCTCTTTA     | 4080 |
| GTAAAAAAAGT GTGTGAGCTT AATCTTCATC TTGCGTGAAG ATACTTATTC CGGTTTTATT  | 4140 |
| AAGCACGGAA TCAGTGAATT CTCTTCCTT AGTAGTATTC TGAAGTTCTT GAAGGGTAAG    | 4200 |
| CTTGTGGACG AGTTGAAATC GATTATTCAA GGGGTTTTG ATTCCAACAA GCACGTGTTT    | 4260 |
| AAAGAAGCTA CTCAGGAAGC GATTGTACG ACGGTACATGC AAGTGCCTGT CGCTGTAGTG   | 4320 |
| GATGCCCTTA AGAGCGCCGC GGGAAAAATT TATAACAATT TTACTAGTCG ACGTACCTT    | 4380 |
| GGTAAGGATG AAGGCTCCTC TAGCGACGGC GCATGTGAAG AGTATTCTC ATGCGACGAA    | 4440 |
| GGTGAAGGTC CGGGTCTGAA AGGGGGTTCC AGCTATGGCT TCTCAATTTC AGCGTTCTTT   | 4500 |
| TCACGCATTA TGTGGGGAGC TCGTCGGCTT ATTGTTAAGG TGAAGCATGA GTGTTTGGG    | 4560 |
| AAACTTTTG AATTCTATC GCTCAAGCTT CACGAATTCA GGACTCGCGT TTTTGGGAAG     | 4620 |
| AATAGAACGG ACGTGGGAGT TTACGATTTT TTGCCCCACGG GCATCGTGGA AACGCTCTCA  | 4680 |
| TCGATAGAAG AGTGCACCA AATTGAAGAA CTTCTCGGCG ACGACCTGAA AGGTGACAAG    | 4740 |
| GATGCTTCGT TGACCGATAT GAATTACTTT GAGTTCTCAG AAGACTTCTT AGCCTCTATC   | 4800 |
| GAGGAGCCGC CTTTCGCTGG ATTGCGAGGA GGTAGCAAGA ACATCGCGAT TTTGGCGATT   | 4860 |
| TTGGAATACG CGCATAATTG GTTTCGCATT GTCGCAAGCA AGTGTTCGAA ACGACCTTTA   | 4920 |
| TTTCTTGCTT TCGCCGAACCT CTCAGCGCC CTTATCGAGA AATTAAAGGA GGTTTTCCCT   | 4980 |
| CGTAAGAGCC AGCTCGTCGC TATCGTGCAC GAGTATACTC AGAGATTCCCT CCGAAGTCGC  | 5040 |

|             |             |            |             |            |             |      |
|-------------|-------------|------------|-------------|------------|-------------|------|
| ATGCGTGCCT  | TGGGTTGAA   | TAACGAGTTC | GTGGTAAAAT  | CTTCGCCGA  | TTTGCTACCC  | 5100 |
| GCATTAATGA  | AGCGGAAGGT  | TTCAGGTTCG | TTCTTAGCTA  | GTGTTTATCG | CCCACTTAGA  | 5160 |
| GGTTTCTCAT  | ATATGTGTGT  | TTCAGCGGAG | CGACGTGAAA  | AGTTTTTGC  | TCTCGTGTGT  | 5220 |
| TTAACGGGT   | TAAGTCTCCC  | TTTCTTCGTG | CGCAGCTAG   | GAGCGAAAGC | GTGCGAAGAA  | 5280 |
| CTCGTGTCCCT | CAGCGCGTCG  | CTTTTATGAG | CGTATTAAAA  | TTTTTCTAAG | GCAGAAGTAT  | 5340 |
| GTCTCTCTTT  | CTAATTCTT   | TTGTCACTTG | TTTAGCTCTG  | ACGTTGATGA | CAGTTCCGCA  | 5400 |
| TCTGCAGGGT  | TGAAAGGTGG  | TGCGTCGCAG | ATGACGCTCT  | TCCACCTTCT | GGTCGCCTT   | 5460 |
| GCTAGTGCCTC | TCCTATCGTT  | AGGGTGGGAA | GGGTTAAAGC  | TACTCTTATC | GCACCACAAAC | 5520 |
| TTGTTATTTT  | TGTGTTTGC   | ATTGGTTGAC | GATGTGAACG  | TCCTTATCAA | AGTTCTTGGG  | 5580 |
| GGTCTTTCTT  | TCTTGTGCA   | ACCAATCTT  | TCCTTGTGG   | CGGCGATGCT | TCTACAACCG  | 5640 |
| GACAGGTTTG  | TGGAGTATTC  | CGAGAAACTT | GTTACAGCGT  | TTGAATTTTT | CTTAAAATGT  | 5700 |
| TCGCCTCGCG  | CGCCTGCACT  | ACTCAAAGGG | TTTTTGAGT   | GCCTGGCGAA | CAGCACTGTG  | 5760 |
| TCAAAAACCG  | TTCGAAGACT  | TCTTCGCTGT | TTCGTGAAGA  | TGCTCAAAC  | TCGAAAAGGG  | 5820 |
| CGAGGGTTGC  | GTGCGGATGG  | TAGGGGTCTC | CATCGGCAGA  | AAGCCGTACC | CGTCATAACCT | 5880 |
| TCTAACGGG   | TCGTGACCGA  | CGGGGTTGAA | AGACTTCGG   | TAAAGATGCA | AGGAGTTGAA  | 5940 |
| GCGTTGCGTA  | CCGAATTGAG  | AATCTTAGAA | GATTTAGATT  | CTGCCGTGAT | CGAAAAACTC  | 6000 |
| AATAGACGCA  | GAAATCGTGA  | CACTAATGAC | GACGAATTAA  | CGCGCCCTGC | TCATGAGCAG  | 6060 |
| ATGCAAGAAG  | TCACCACTTT  | CTGTTGAAA  | GCCAACCTCTG | CTGGTTGGC  | CCTGGAAAGG  | 6120 |
| GCAGTGCTTG  | TGGAAGACGC  | TATAAAGTCG | GAGAAACTTT  | CTAAGACGGT | TAATGAGATG  | 6180 |
| GTGAGGAAAG  | GGAGTACCAAC | CAGCGAAGAA | GTGGCCGTG   | CTTTGTCGGA | CGATGAAGCC  | 6240 |
| GTGGAAGAAA  | TCTCTGTTGC  | TGACGAGCGA | GACGATTGCG  | CTAAGACAGT | CAGGATAAGC  | 6300 |
| GAATACCTAA  | ATAGGTTAAA  | CTCAAGCTTC | GAATTCCCGA  | AGCCTATTGT | TGTGGACGAC  | 6360 |
| AACAAGGATA  | CCGGGGGTCT  | AACGAACGCC | GTGAGGGAGT  | TTTATTATAT | GCAAGAACTT  | 6420 |
| GCTCTTTCG   | AAATCCACAG  | CAAACGTGCG | ACCTACTACG  | ATCAACTGCG | CATAGTCAAC  | 6480 |
| TTCGATCGTT  | CCGTAGCACC  | ATGCAGCGAA | GATGCTCAGC  | TGTACGTACG | GAAGAACGGC  | 6540 |
| TCAACGATAG  | TGCAGGGTAA  | AGAGGTACGT | TTGCACATTA  | AGGATTCCA  | CGATCACGAT  | 6600 |
| TTCCCTGTTTG | ACGGAAAAAT  | TTCTATTAAC | AAGCGGCGGC  | GAGGCGGAAA | TGTTTTATAT  | 6660 |
| CACGACAACC  | TCGCGTTCTT  | GGCGAGTAAT | TTGTTCTTAG  | CCGGCTACCC | CTTTCAAGG   | 6720 |

|                                                                            |      |
|----------------------------------------------------------------------------|------|
| AGCTTCGTCT TCACGAATTC GTCGGTCGAT ATTCTCCTCT ACGAAGCTCC ACCCGGAGGT          | 6780 |
| GGTAAGACGA CGACGCTGAT TGACTCGTTC TTGAAGGTCT TCAAGAAAGG TGAGGTTCC           | 6840 |
| ACCATGATCT TAACCGCCAA CAAAAGTCG CAGGTTGAGA TCCTAAAGAA AGTGGAGAAG           | 6900 |
| GAAGTGTCTA ACATTGAATG CCAGAACGT AAAGACAAAA GATCTCGAA AAAGAGCATT            | 6960 |
| TACACCATCG ACGCTTATTT AATGCATCAC CGTGGTTGTG ATGCAGACGT TCTTTTCATC          | 7020 |
| GATGAGTGTGTT TCATGGTTCA TGCAGGGTAGC GTACTAGCTT GCATTGAGTT CACGAGGTGT       | 7080 |
| CATAAAAGTAA TGATCTTCGG GGATAGCCGG CAGATTCACT ACATTGAAAG GAACGAATTG         | 7140 |
| GACAAGTGTGTT TGTATGGGGA TCTCGACAGG TTCGTGGACC TGCAGTGTG 6780<br>GGTTTATGGT | 7200 |
| AATATTCGTT ACCGTTGTCC ATGGGATGTG TGCCTTGTT TAAGCACAGT GTATGGCAAC           | 7260 |
| CTAATCGCCA CCGTGAAGGG TGAAAGCGAA GGTAAGAGCA GCATGCGCAT TAACGAAATT          | 7320 |
| AATTCACTCG ACGATTTAGT CCCCGACGTG GGTTCCACGT TTCTGTGTAT GCTTCAGTCG          | 7380 |
| GAGAAGTTGG AAATCAGCAA GCACTTTATT CGCAAGGGTT TGACTAAACT TAACGTTCTA          | 7440 |
| ACGGTGCATG AGGCGCAAGG TGAGACGTAT GCGCGTGTGA ACCTTGTGCG ACTTAAGTTT          | 7500 |
| CAGGAGGATG AACCCTTAA ATCTATCAGG CACATAACCG TCGCTTTTC TCGTCACACC            | 7560 |
| GACAGCTTAA CTTATAACGT CTTAGCTGCT CGTCGAGGTG ACGCCACTTG CGATGCCATC          | 7620 |
| CAGAAGGCTG CGGAATTGGT GAACAAGTTT CGCGTTTTTC CTACATCTT TGGTGGTAGT           | 7680 |
| GTTATCAATC TCAACGTGAA GAAGGACGTG GAAGATAACA GTAGGTGCAA GGCTTCGTG           | 7740 |
| GCACCATTGA GCGTAATCAA CGACTTTTG AACGAAGTTA ATCCCGGTAC TGCGGTGATT           | 7800 |
| GATTTTGGTG ATTTGTCCGC GGACTTCAGT ACTGGGCCTT TTGAGTGCAG TGCCAGCGGT          | 7860 |
| ATTGTGGTGC GGGACAACAT CTCCTCCAGC AACATCACTG ATCACGATAA GCAGCGTGT           | 7920 |
| TAGCGTAGTT CGGTCGCAGG CGATTCCCGCG TAGAAAACCT TCTCTACAAG AAAATTTGTA         | 7980 |
| TTCGTTGAA GCGCGGAATT ATAACCTCTC GACTTGCAGAC CGTAACACAT CTGCTTCAT           | 8040 |
| GTTCGGAGAG GCTATGGCGA TGAACGTGCT TCGTCGTTGC TTGACCTAG ATGCCTTTTC           | 8100 |
| GTCCCTGCGT GATGATGTGA TTGATATCAC ACGTTCAGGC ATCGAACAAAT GGCTGGAGAA         | 8160 |
| ACGTACTCCT AGTCAGATTA AAGCATTAAAT GAAGGATGTT GAATCGCCTT TGGAAATTGA         | 8220 |
| CGATGAAATT TGTCGTTTA AGTTGATGGT GAAGCGTGAC GCTAAGGTGA AGTTAGACTC           | 8280 |
| TTCTTGTTA ACTAACACA GCGCCGCTCA AAATATCATG TTTCATCGCA AGAGCATTAA            | 8340 |
| TGCTATCTTC TCTCCTATCT TTAATGAGGT GAAAAACCGA ATAATGTGCT GTCTTAAGCC          | 8400 |
| TAACATAAAAG TTTTTTACGG AGATGACTAA CAGGGATTTC GCTTCTGTTG TCAGCAACAT         | 8460 |

|                                                                    |       |
|--------------------------------------------------------------------|-------|
| GCTTGGTGAC GACGATGTGT ACCATATAAGG TGAAGTTGAT TTCTCAAAGT ACGACAAGTC | 8520  |
| TCAAGATGCT TTCGTGAAGG CTTTTGAAGA AGTAATGTAT AAGGAACATCG GTGTTGATGA | 8580  |
| AGAGTTGCTG GCTATCTGGA TGTGCGGCGA GCGGTTATCG ATAGCTAACAA CTCTCGATGG | 8640  |
| TCAGTTGTCC TTCACGATCG AGAATCAAAG GAAGTCGGGA GCTTCGAACA CTTGGATTGG  | 8700  |
| TAACTCTCTC GTCACTTTGG GTATTTAAG TCTTTACTAC GACGTTAGAA ATTCGAGGC    | 8760  |
| GTTGTACATC TCAGGGCGATG ATTCTTAAT TTTTCTCGC AGCGAGATT CGAATTATGC    | 8820  |
| CGACGACATA TGCACTGACA TGGGTTTGA GACAAAATTT ATGTCCCCAA GTGTCCCGTA   | 8880  |
| CTTTTGTCT AAATTGTTG TTATGTGTGG TCATAAGACG TTTTTGTTC CCGACCCGTA     | 8940  |
| CAAGCTTTT GTCAAGTTGG GAGCAGTCAA AGAGGATGTT TCAATGGATT TCCTTTCGA    | 9000  |
| GACTTTTACC TCCTTTAAAG ACTTAACCTC CGATTTAAC GACGAGCGCT TAATTCAAAA   | 9060  |
| GCTCGCTGAA CTTGTGGCTT TAAAATATGA GGTCAAACC GGCAACACCA CCTTGGCGTT   | 9120  |
| AAGTGTGATA CATTGTTTGC GTTCGAATTT CCTCTCGTT AGCAAGTTAT ATCCTCGCGT   | 9180  |
| GAAGGGATGG CAGGTTTTT ACACGTCGGT TAAGAAAGCG CTTCTCAAGA GTGGGTGTT    | 9240  |
| TCTCTTCGAC AGTTTCATGA CCCCTTTGG TCAGGCTGTC ATGGTTGGG ATGATGAGTA    | 9300  |
| GCGCTAACTT GTGCGCAGTT TCTTGTTCG TGACATACAC CTTGTGTGTC ACCGTGCGTT   | 9360  |
| TATAATGAAT CAGGTTTGC AGTTGAATG TTTGTTCTG CTGAATCTCG CGGTTTTGC      | 9420  |
| TGTGACTTTC ATTTTCATTC TTCTGGTCTT CCGCGTGATT AAGTCTTTTC GCCAGAAGGG  | 9480  |
| TCACGAAGCA CCTGTTCCCG TTGTTCGTGG CGGGGGTTTT TCAACCGTAG TGTAGTCAA   | 9540  |
| AGACGCGCAT ATGGTAGTTT TCGGTTGGGA CTTTGGCACC ACATTCTCTA CGGTGTGTGT  | 9600  |
| GTACAAGGAT GGACGAGTTT TTTCATTCAA GCAGAATAAT TCGGCGTACA TCCCCACTTA  | 9660  |
| CCTCTATCTC TTCTCCGATT CTAACCACAT GACTTTGGT TACGAGGCCG AATCACTGAT   | 9720  |
| GAGTAATCTG AAAGTTAAAG GTTCGTTTA TAGAGATTAA AACAGTTGGG TGGGTTGCGA   | 9780  |
| TTCGAGTAAC CTCGACGCGT ACCTTGACCG TTTAAAACCT CATTACTCGG TCCGCTTGGT  | 9840  |
| TAAGATCGGC TCTGGCTTGA ACGAAACTGT TTCAATTGGA AACCTCGGGG GCACGTGTTAA | 9900  |
| GTCTGAGGCT CATCTGCCAG GGTTGATAGC TCTCTTATT AAGGCTGTCA TTAGTTGCGC   | 9960  |
| GGAGGGCGCG TTTGCCTGCA CTTGCACCGG GGTTATTGT TCAGTACCTG CCAATTATGA   | 10020 |
| TAGCGTTCAA AGGAATTCA CTGATCAGTG TGTTTCACTC AGCGGTTATC AGTGCCTATA   | 10080 |
| TATGATCAAT GAACCTTCAG CGGCTGCGCT ATCTGCGTGT AATTCGATTG GAAAGAAGTC  | 10140 |

|                                                                    |       |
|--------------------------------------------------------------------|-------|
| CGCAAATTTG GCTGTTACG ATTCGGTGG TGGGACCTTC GACGTGTCTA TCATTTCATA    | 10200 |
| CCGCAACAAT ACTTTGTTG TGCGAGCTTC TGGAGGCAT CTAAATCTCG GTGGAAGGGA    | 10260 |
| TGTTGATCGT GCGTTCTCA CGCACCTCTT CTCTTAACA TCGCTGGAAC CTGACCTCAC    | 10320 |
| TTTGGATATC TCGAATCTGA AAGAATCTT ATCAAAAACG GACGCAGAGA TAGTTACAC    | 10380 |
| TTTGAGAGGT GTCGATGGAA GAAAAGAAGA CGTTAGAGTA AACAAAAACA TTCTTACGTC  | 10440 |
| GGTGATGCTC CCCTACGTGA ACAGAACGCT TAAGATATTA GAGTCAACCT TAAAATCGTA  | 10500 |
| TGCTAAGAGT ATGAATGAGA GTGCGCGAGT TAAGTGCAGAT TTAGTGCAGA TAGGAGGATC | 10560 |
| TTCATATCTT CCTGGCCTGG CAGACGTACT AACGAAGCAT CAGAGCGTTG ATCGTATCTT  | 10620 |
| AAGAGTTCG GATCCTCGGG CTGCCGTGGC CGTCGGTTGC GCATTATATT CTTCATGCCT   | 10680 |
| CTCAGGATCT GGGGGGTTGC TACTGATCGA CTGTGCAGCT CACACTGTCG CTATAGCGGA  | 10740 |
| CAGAAGTTGT CATCAAATCA TTTGCCTCC AGCGGGGCA CCGATCCCCT TTTCAGGAAG    | 10800 |
| CATGCCTTG TACTTAGCCA GGGTCAACAA GAACTCGCAG CGTGAAGTCG CCGTGTGTTGA  | 10860 |
| AGGGGAGTAC GTTAAGTGCC CTAAGAACAG AAAGATCTGT GGAGCAAATA TAAGATTTT   | 10920 |
| TGATATAGGA GTGACGGGTG ATTGATCGC ACCCGTTACC TTCTATATGG ATTTCTCCAT   | 10980 |
| TTCAAGCGTA GGAGCCGTTT CATTGTTGGT GAGAGGTCCT GAGGGTAAGC AAGTGTCACT  | 11040 |
| CACTGGAACT CCAGCGTATA ACTTTTCGTC TGTGGCTCTC GGATCACGCA GTGTCCGAGA  | 11100 |
| ATTGCATATT AGTTAAATA ATAAAGTTTT TCTCGGTTTG CTTCTACATA GAAAGGCGGA   | 11160 |
| TCGACGAATA CTTTCACTA AGGATGAAGC GATTCGATAC GCCGATTCAA TTGATATCGC   | 11220 |
| GGATGTGCTA AAGGAATATA AAAGTTACGC GGCCAGTGCC TTACCAACCAG ACGAGGATGT | 11280 |
| CGAATTACTC CTGGGAAAGT CTGTTAAAA AGTTTACGG GGAAGCAGAC TGGAAGAAAT    | 11340 |
| ACCTCTCTAG GAGCATAGCA GCACACTCAA GTGAAATTAA AACTCTACCA GACATTGAT   | 11400 |
| TGTACGGCGG TAGGGTTGTA AAGAAGTCCG AATTGAAATC AGCACTTCCT AATTCTTTG   | 11460 |
| AACAGGAATT AGGACTGTTC ATACTGAGCG AACGGGAAGT GGGATGGAGC AAATTATGCG  | 11520 |
| GAATAACGGT GGAAGAAGCA GCATACGATC TTACGAATCC CAAGGCTTAT AAATTCACTG  | 11580 |
| CCGAGACATG TAGCCCGGAT GTAAAAGGTG AAGGACAAAA ATACTCTATG GAAGACGTGA  | 11640 |
| TGAATTCAT GCGTTATCA AATCTGGATG TTAACGACAA GATGCTGACG GAACAGTGT     | 11700 |
| GGTCGCTGTC CAATTGATGC GGTGAATTGA TCAACCCAGA CGACAAAGGG CGATTGTTGG  | 11760 |
| CTCTCACCTT TAAGGACAGA GACACAGCTG ATGACACGGG TGCCGCCAAC GTGGAATGTC  | 11820 |
| GGTGGGGCGA CTATCTAGTT TACGCTATGT CCCTGTTGA GCAGAGGACC CAAAAATCGC   | 11880 |

|                                                                    |       |
|--------------------------------------------------------------------|-------|
| AGTCTGGCAA CATCTCTCTG TACGAAAAGT ACTGTGAATA CATCAGGACC TACTTAGGGA  | 11940 |
| GTACAGACCT GTTCTTCACA GCGCCGGACA GGATTCCGTT ACTTACGGGC ATCCTATACG  | 12000 |
| ATTTTGTA GGAATACAAC GTTTCTACT CGTCATATAA GAGAACGTC GATAATTCA       | 12060 |
| GATTCTTCTT GGCAGATTAT ATGCCTTGA TATCTGACGT CTTTGTCTTC CAGTGGTAA    | 12120 |
| AACCCGCGCC GGATGTTCGG CTGCTTTTG AGTTAAGTGC AGCGGAACTA ACGCTGGAGG   | 12180 |
| TTCCCACACT GAGTTGATA GATTCTCAAG TTGTGGTAGG TCATATCTTA AGATACGTAG   | 12240 |
| AATCCTACAC ATCAGATCCA GCCATCGACG CGTTAGAAGA CAAACTGGAA GCGATACTGA  | 12300 |
| AAAGTAGCAA TCCCCGTCTA TCGACAGCGC AACTATGGGT TGTTTCTTT TGTTACTATG   | 12360 |
| GTGAGTTTCG TACGGCTCAA AGTAGAGTAG TGCAAAGACC AGGCGTATAC AAAACACCTG  | 12420 |
| ACTCAGTGGG TGGATTGAA ATAAACATGA AAGATGTTGA GAAATTCTTC GATAAACTTC   | 12480 |
| AGAGAGAATT GCCTAATGTA TCTTGCGGC GTCAGTTAA CGGAGCTAGA GCGCATGAGG    | 12540 |
| CTTTCAAAAT ATTTAAAAAC GGAAATATAA GTTTCAGACC TATATCGCGT TTAAACGTGC  | 12600 |
| CTAGAGAGTT CTGGTATCTG AACATAGACT ACTTCAGGCA CGCGAATAGG TCCGGTTAA   | 12660 |
| CCGAAGAAGA AATACTCATC CTAAACAACA TAAGCGTTGA TGTTAGGAAG TTATGCGCTG  | 12720 |
| AGAGAGCGTG CAATACCCCTA CCTAGCGCGA AGCGCTTTAG TAAAATCAT AAGAGTAATA  | 12780 |
| TACAATCATC ACGCCAAGAG CGGAGGATTA AAGACCCATT GGTAGTCCTG AAAGACACTT  | 12840 |
| TATATGAGTT CCAACACAAG CGTGCCGGTT GGGGGTCTCG AAGCACTCGA GACCTCGGGA  | 12900 |
| GTCGTGCTGA CCACCGAAA GGAAGCGGTT GATAAGTTTT TTAATGAACT AAAAAACGAA   | 12960 |
| AATTACTCAT CAGTTGACAG CAGCCGATTA AGCGATTCTGG AAGTAAAAGA AGTGTAGAG  | 13020 |
| AAAAGTAAAG AAAGTTCAA AAGCGAACTG GCCTCCACTG ACGAGCACCTT CGTCTACCAC  | 13080 |
| ATTATATTT TCTTAATCCG ATGTGCTAAG ATATCGACAA GTGAAAAGGT GAAGTACGTT   | 13140 |
| GGTAGTCATA CGTACGTGGT CGACGGAAAA ACGTACACCG TTCTTGACGC TTGGGTATTC  | 13200 |
| AACATGATGA AAAGTCTCAC GAAGAAGTAC AAACGAGTGA ATGGTCTGCG TGCCTCTGT   | 13260 |
| TGGCGGTGCG AAGATCTATA TCTAACCGTC GCACCAATAA TGTCAGAACG CTTTAAGACT  | 13320 |
| AAAGCCGTAG GGATGAAAGG TTTGCCTGTT GGAAAGGAAT ACTTAGGCCGC CGACTTTCTT | 13380 |
| TCGGGAACTA GCAAACGTGAT GAGCGATCAC GACAGGGCGG TCTCCATCGT TGCAGCGAAA | 13440 |
| AACGCTGTGCG ATCGTAGCGC TTTCACGGGT GGGGAGAGAA AGATAGTTAG TTTGTATGAT | 13500 |
| CTAGGGAGGT ACTAAGCACG GTGTGCTATA GTGCGTGCTA TAATAATAAA CACTAGTGCT  | 13560 |

|                                                                    |       |
|--------------------------------------------------------------------|-------|
| TAAGTCGCGC AGAAGAAAAC GCTATGGAGT TGATGTCCGA CAGCAACCTT AGAACCTGG   | 13620 |
| TGATAACCGA CGCCTCTAGT CTAATGGTG TCGACAAGAA GCTTTATCT GCTGAAGTTG    | 13680 |
| AAAAAAATGTT GGTGCAGAAA GGGGCTCCTA ACGAGGGTAT AGAAGTGGTG TTCGGTCTAC | 13740 |
| TCCTTTACGC ACTCGCGCA AGAACCAACGT CTCCTAAGGT TCAGCGCGCA GATTCAAGACG | 13800 |
| TTATATTTTC AAATAGTTTC GGAGAGAGGA ATGTGGTAGT AACAGAGGGT GACCTTAAGA  | 13860 |
| AGGTACTCGA CGGGTGTGCG CCTCTCACTA GGTCACTAA TAAACTTAGA ACGTTCGGTC   | 13920 |
| GTACTTTCAC TGAGGCTTAC GTTGACTTT GTATCGCGTA TAAGCACAAA TTACCCCAAC   | 13980 |
| TCAACGCCGC GGCGGAATTG GGGATTCCAG CTGAAGATTC GTACTTAGCT GCAGATTTTC  | 14040 |
| TGGGTACTTG CCCGAAGCTC TCTGAATTAC AGCAAAGTAG GAAGATGTTG GCGAGTATGT  | 14100 |
| ACGCTCTAAA AACTGAAGGT GGAGTGGTAA ATACACCAGT GAGCAATCTG CGTCAGCTAG  | 14160 |
| GTAGAAGGGA AGTTATGTAA TGGAAAGATTA CGAAGAAAAA TCCGAATCGC TCATACTGCT | 14220 |
| ACGCACGAAT CTGAACACTA TGCTTTAGT GGTCAAGTCC GATGCTAGTG TAGAGCTGCC   | 14280 |
| TAAACTACTA ATTTGCGGTT ACTTACGAGT GTCAGGACGT GGGGAGGTGA CGTGTGCAA   | 14340 |
| CCGTGAGGAA TTAACAAGAG ATTTTGAGGG CAATCATCAT ACGGTGATCC GTTCTAGAAT  | 14400 |
| CATACAATAT GACAGCGAGT CTGCTTTGA GGAATTCAAC AACTCTGATT GCGTAGTGAA   | 14460 |
| GTTTTTCCTA GAGACTGGTA GTGTCTTTG GTTTTCCCTT CGAAGTGAAA CCAAAGGTAG   | 14520 |
| AGCGGTGCGA CATTGCGCA CCTTCTTCGA AGCTAACAAAT TTCTTCTTG GATGCATTG    | 14580 |
| CGGTACCATG GAGTATTGTT TGAAGCAGGT ACTAACTGAA ACTGAATCTA TAATCGATTC  | 14640 |
| TTTTTGCAGA GAAAGAAATC GTTAAGATGA GGGTTATAGT GTCTCCTTAT GAAGCTGAAG  | 14700 |
| ACATTCTGAA AAGATCGACT GACATGTTAC GAAACATAGA CAGTGGGGTC TTGAGCACTA  | 14760 |
| AAGAATGTAT CAAGGCATTC TCGACGATAA CGCGAGACCT ACATTGTGCG AAGGCTTCCT  | 14820 |
| ACCAGTGGGG TGTTGACACT GGGTTATATC AGCGTAATTG CGCTGAAAAAA CGTTTAATTG | 14880 |
| ACACGGTGGAA GTCAAACATA CGGTTGGCTC AACCTCTCGT GCGTGAAAAA GTGGCGGTT  | 14940 |
| ATTTTTGTAA GGATGAACCA AAAGAGCTAG TAGCATTCTAC CACCGCAAAG TACGTGGAAC | 15000 |
| TCACGGCGT GGGAGTGAGA GAAGCGGTGA AGAGGGAAAT GCGCTCTCTT ACCAAAACAG   | 15060 |
| TTTTAAATAA AATGTCTTTG GAAATGGCGT TTTACATGTC ACCACGAGCG TGGAAAAACG  | 15120 |
| CTGAATGGTT AGAACTAAAA TTTCACCTG TGAAAATCTT TAGAGATCTG CTATTAGACG   | 15180 |
| TGGAAACGCT CAACGAATTG TGCGCCGAAG ATGATGTTCA CGTCGACAAA GTAAATGAGA  | 15240 |
| ATGGGGACGA AAATCACGAC CTCGAACCTCC AAGACGAATG TTAAACATTG GTTAAGTTA  | 15300 |

|                                                                    |       |
|--------------------------------------------------------------------|-------|
| ACGAAAATGA TTAGTAAATA ATAAATCGAA CGTGGGTGTA TCTACCTGAC GTATCAACTT  | 15360 |
| AAGCTGTTAC TGAGTAATTAA ACCAACAAAG TGTTGGTGTA ATGTGTATGT TGATGTAGAG | 15420 |
| AAAAATCCGT TTGTAGAACG GTGTTTTCT CTTCTTTATT TTTAAAAAAA AAATAAAAAA   | 15480 |
| AAAAAAAAAA AAGCGGCCGC                                              | 15500 |

## (2) INFORMATION FOR SEQ ID NO:2:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7920 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

|                                              |                       |      |
|----------------------------------------------|-----------------------|------|
| ACATTGCGAG AGAACCCAT TAGCGTCTCC GGGGTGAAC    | TGGGAAGGTC TGCCGCCGCT | 60   |
| CAGGTTATTT ATTCGGCAG TTTCACGCAG CCCTTCGCGT   | TGTATCCGCG CCAAGAGAGC | 120  |
| GCGATCGTAA AAACGCAACT TCCACCGGTC AGTGTAGTGA  | AGGTGGAGTG CGTAGCTGCG | 180  |
| GAGGTAGCTC CCGACAGGGG CGTGGTCGAC AAGAAACCTA  | CGTCTGTTGG CGTTCCCCCG | 240  |
| CAGCGCGGTG TGCTTCTTT TCCGACGGTG GTTCGGAACC   | GCGGCGACGT GATAATCACA | 300  |
| GGGGTGGTGC ATGAAGCCCT GAAGAAAATT AAAGACGGGC  | TCTTACGCTT CCGCGTAGGC | 360  |
| GGTGACATGC GTTTTCGAG ATTTTCTCA TCGAACTACG    | GCTGCAGATT CGTCGCGAGC | 420  |
| GTGCGTACGA ACAC TACAGT TTGGCTAAAT TGCACGAAAG | CGAGTGGTGA GAAATTCTCA | 480  |
| CTCGCCGCCG CGTGCACGGC GGATTACGTG GCGATGCTGC  | GTTATGTGTG TGGCGGGAAA | 540  |
| TTTCCACTCG TCCTCATGAG TAGAGTTATT TACCCGGATG  | GGCGCTGTTA CTTGGCCCAT | 600  |
| ATGAGGTATT TGTGCGCCTT TTACTGTCGC CCGTTAGAG   | AGTCGGATTA TGCCCTCGGA | 660  |
| ATGTGGCCTA CGGTGGCGCG TCTCAGGGCA TGCCTTGAGA  | AGAACTTCGG TGTCGAAGCT | 720  |
| TGTGGCATAG CTCTTCGTGG CTATTACACC TCTCGCAATG  | TTTATCACTG TGATTATGAC | 780  |
| TCTGCTTATG TAAAATATT TAGAAACCTT TCCGGCCGCA   | TTGGCGGTGG TTCGTTCGAT | 840  |
| CCGACATCTT TAACCTCCGT AATAACGGTG AAGATTAGCG  | GTCTTCCAGG TGGTCTTCCT | 900  |
| AAAAATATAG CGTTTGGTGC CTTCTGTGC GATATACGTT   | ACGTCGAACC GGTAGACTCG | 960  |
| GGCGGCATTC AATCGAGCGT TAAGACGAAA CGTGAAGATG  | CGCACCGAAC CGTAGAGGAA | 1020 |
| CGGGCGGCCG CGGGATCCGT CGAGCAACCG CGACAAAAGA  | GGATAGATGA GAAAGGTTGC | 1080 |

|            |            |            |            |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| GGCAGAGTTC | CTAGTGGAGG | TTTTCGCAT  | CTCCTGGTCG | GCAACCTAA  | CGAAGTTAGG | 1140 |
| AGGAAGGTAG | CTGCCGGACT | TCTACGCTT  | CGCGTTGGCG | GTGATATGGA | TTTCATCGC  | 1200 |
| TCGTTCTCCA | CCCAAGCGGG | CCACCGCTTG | CTGGTGTGGC | GCCGCTCGAG | CCGGAGCGTG | 1260 |
| TGCCTTGAAC | TTTACTCACC | ATCTAAAAAC | TTTTGCGTT  | ACGATGTCTT | GCCCTGTTCT | 1320 |
| GGAGACTATG | CAGCGATGTT | TTCTTTCGCG | GCGGGCGGCC | GTTCCTCTT  | AGTTTGATG  | 1380 |
| ACTAGAATT  | GATAACCGAA | CGGGTTTGT  | TACTTGGCTC | ACTGCCGTA  | CGCGTGC    | 1440 |
| TTTCTCTTAA | GGGGTTTGA  | TCCGAAGCGT | TTCGACATCG | GTGCTTCCC  | CACCGCGGCC | 1500 |
| AAGCTCAGAA | ACCGTATGGT | TTCGGAGCTT | GGTGAAAGAA | GTTCAGGTTT | GAACTTGTAC | 1560 |
| GGCGCATATA | CGTCACGCGG | CGTCTTCAC  | TGCGATTATG | ACGCTAAGTT | TATAAAGGAT | 1620 |
| TTGCGTCTTA | TGTCAGCAGT | TATAGCTGGA | AAGGACGGGG | TGGAAGAGGT | GGTACCTTCT | 1680 |
| GACATAACTC | CTGCCATGAA | GCAGAAAACG | ATCGAAGCCG | TGTATGATAG | ATTATATGGC | 1740 |
| GGCACTGACT | CGTTGCTGAA | ACTGAGCATC | GAGAAAGACT | TAATCGATTT | CAAAAATGAC | 1800 |
| GTGCAGAGTT | TGAAGAAAGA | TCGGCCGATT | GTCAAAGTGC | CCTTTACAT  | GTCGGAAGCA | 1860 |
| ACACAGAATT | CGCTGACGCG | TTTCTACCC  | CAGTCGAAC  | TTAAGTTTC  | GCACTCCTCG | 1920 |
| CATTCA     | ATCCCGCCGC | CGCCGCTTCT | AGACTGCTGG | AAAATGAAAC | GTTAGTGC   | 1980 |
| TTATGTGGTA | ATAGCGTTTC | AGATATTGGA | GGTTGTCCTC | TTTCCATT   | GCATTCCAAG | 2040 |
| ACGCAAAGAC | GGGTTCACGT | ATGTAGGCCT | GTGTTGGATG | GCAAGGATGC | GCAGCGTC   | 2100 |
| GTGGTGC    | ATTTGCAGTA | TTCCAACGTG | CGTTGGAG   | ACGATGATAA | AATTTGGAA  | 2160 |
| GGGCCACGCA | ATATCGACAT | TTGCCACTAT | CCTCTGGCG  | CGTGTGACCA | CGAAAGTAGT | 2220 |
| GCTATGATGA | TGGTGCAGGT | GTATGACGCG | TCCCTTATG  | AGATATGTGG | CGCCATGATC | 2280 |
| AAGAAGAAAA | GCCGCATAAC | GTACTAAC   | ATGGTCACGC | CCGGCGAGTT | TCTTGACGGA | 2340 |
| CGCGAATGCG | TCTACATGGA | GTGTTAGAC  | TGTGAGATTG | AAGTTGATGT | GCACGCGGAC | 2400 |
| GTCGTAATGT | ACAAATT    | TGTTCTTGC  | TATTCGACA  | AGCTTCAAT  | CATCAAGGAC | 2460 |
| ATCATGACCA | CTCCGTACTT | GACACTAGGT | GGTTTCTAT  | TCAGCGTGG  | GATGTATGAG | 2520 |
| GTGCGTATGG | GCGTGAATT  | CTTCAAGATT | ACGAAGTC   | AAGTATCGCC | TAGCATTAGC | 2580 |
| TGCACCAAGC | TCCTGAGATA | CCGAAGAGCT | AATAGTGACG | TGGTTAAAGT | TAAACTTCCA | 2640 |
| CGTTTCGATA | AGAAACGTCG | CATGTGTCTG | CCTGGGTATG | ACACCATA   | CCTAGATTG  | 2700 |
| AAGTTGTGA  | GTGCGTTT   | CGATTATGTC | GTGTTAATT  | GCTCTGCCGT | GAAC       | 2760 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| ACTTTCGAGT GGGTGTGGAG TTTCATTAAG TCTAGTAAGT CGAGGGTGAT TATTAGCGGT  | 2820 |
| AAAATAATTC ACAAGGATGT GAATTTGGAC CTCAAGTACG TCGAGAGTTT CGCCGCGGTT  | 2880 |
| ATGTTGGCCT CTGGCGTGCG CAGTAGACTA GCGTCCGAGT ACCTTGCTAA GAACCTTAGT  | 2940 |
| CATTTTCGG GAGATTGCTC CTTTATTGAA GCCACGTCTT TCGTGTGCG TGAGAAAATC    | 3000 |
| AGAAACATGA CTCTGAATTT TAACGAAAGA CTTTTACAGT TAGTGAAGCG CGTTGCCTTT  | 3060 |
| GCGACCTTGG ACGTGAGTTT TCTAGATTAA GATTCAAATC TTGAATCAAT AACTGATTTT  | 3120 |
| GCCGAGTGT AAGTAGCGAT TGAACCTCGAC GAGTTGGGTT GCTTGAGAGC GGAGGCCGAG  | 3180 |
| AATGAAAAAA TCAGGAATCT GGCGGGAGAT TCGATTGCGG CTAAACTCGC GAGCGAGATA  | 3240 |
| GTGGTCGATA TTGACTCTAA GCCTTCACCG AAGCAGGTGG GTAATTGTC ATCCGAAAAC   | 3300 |
| GCCGATAAGC GGGAAAGTTCA GAGGCCCGGT TTGCGTGGTG GTTCTAGAAA CGGGGTTGTT | 3360 |
| GGGGAGTTCC TTCACCTCGT CGTGGATTCT GCCTTGCCTC TTTTCAAATA CGCGACGGAT  | 3420 |
| CAACAACGGA TCAAGTCTTA CGTGCCTTTC TTGGACTCGG CGGTCTCATT CTTGGATTAC  | 3480 |
| AACTACGATA ATCTATCGTT TATACTGCGA GTGCTTCGG AAGGTTATTC GTGTATGTT    | 3540 |
| GCGTTTTGG CGAACCGCGG CGACTTATCT AGTCGTGTCC GTAGCGCGGT GTGTGCTGTG   | 3600 |
| AAAGAAGTTG CTACCTCATG CGCGAACGCG AGCGTTCTA AAGCCAAGGT TATGATTACC   | 3660 |
| TTCGCAGCGG CCGTGTGTGC TATGATGTTT AATAGCTGCG GTTTTCAGG CGACGGTCGG   | 3720 |
| GAGTATAAAAT CGTATATACA TCGTTACACG CAAGTATTGT TTGACACTAT CTTTTTGAG  | 3780 |
| GACAGCAGTT ACCTACCCAT AGAAGTTCTG AGTCGGCGA TATGCGGTGC TATCGTCACA   | 3840 |
| CTTTTCTCCT CGGGCTCGTC CATAAGTTA AACGCCTTCT TACTTCAAAT TACCAAAGGA   | 3900 |
| TTCTCCCTAG AGGTTGTCGT CCGGAATGTT GTGCGAGTCA CGCATGGTTT GAGCACCAACA | 3960 |
| GCGACCGACG GCGTCATACG TGGGGTTTTC TCCCAAATTG TGTCTCACTT ACTTGTGTTGA | 4020 |
| AATACGGGTA ATGTGGCTTA CCAGTCAGCT TTCATTGCCG GGGTGGTGCC TCTTTAGTT   | 4080 |
| AAAAAGTGTG TGAGCTTAAT CTTCATTTG CGTGAAGATA CTTATTCCGG TTTTATTAAG   | 4140 |
| CACGGAATCA GTGAATTCTC TTTCCTTAGT AGTATTCTGA AGTTCTGAA GGGTAAGCTT   | 4200 |
| GTGGACGAGT TGAAATCGAT TATTCAAGGG GTTTTGATT CCAACAAGCA CGTGTGTTAAA  | 4260 |
| GAAGCTACTC AGGAAGCGAT TCGTACGACG GTCATGCAAG TGCCTGTCGC TGTAGTGGAT  | 4320 |
| GCCCTTAAGA GCGCCGCGGG AAAAATTAT AACAAATTAA CTAGTCGACG TACCTTTGGT   | 4380 |
| AAGGATGAAG GCTCCTCTAG CGACGGCGCA TGTGAAGAGT ATTTCTCATG CGACGAAGGT  | 4440 |
| GAAGGTCCGG GTCTGAAAGG GGGTTCCAGC TATGGCTTCT CAATTTAGC GTTCTTTCA    | 4500 |

|             |             |            |             |            |             |      |
|-------------|-------------|------------|-------------|------------|-------------|------|
| CGCATTATGT  | GGGGAGCTCG  | TCGGCTTATT | GTTAAGGTGA  | AGCATGAGTG | TTTTGGGAAA  | 4560 |
| CTTTTGAAAT  | TTCTATCGCT  | CAAGCTTCAC | GAATTCAAGGA | CTCGCGTTTT | TGGGAAGAAC  | 4620 |
| AGAACGGACG  | TGGGAGTTTA  | CGATTTTTG  | CCCACGGGCA  | TCGTGGAAAC | GCTCTCATCG  | 4680 |
| ATAGAAGAGT  | GCGACCAAAT  | TGAAGAACCT | CTCGGCGACG  | ACCTGAAAGG | TGACAAGGAT  | 4740 |
| GCTTCGTTGA  | CCGATATGAA  | TTACTTGAG  | TTCTCAGAAG  | ACTTCTTAGC | CTCTATCGAG  | 4800 |
| GAGCCGCCCT  | TCGCTGGATT  | GCGAGGAGGT | AGCAAGAACCA | TCGCGATTAA | GGCGATTTG   | 4860 |
| GAATAACGCGC | ATAATTTGTT  | TCGCATTGTC | GCAAGCAAGT  | GTTCGAAACG | ACCTTTATT   | 4920 |
| CTTGCTTCG   | CCGAACCTCTC | AAGGCCCTT  | ATCGAGAAAT  | TTAAGGAGGT | TTTCCCTCGT  | 4980 |
| AAGAGCCAGC  | TCGTCGCTAT  | CGTGCAGAG  | TATACTCAGA  | GATTCCCTCG | AAGTCGCATG  | 5040 |
| CGTGCAGTGG  | GTGGATAAA   | CGAGTTCGTG | GTAAAATCTT  | TCGCCGATT  | GCTACCCGCA  | 5100 |
| TTAATGAAGC  | GGAAGGTTTC  | AGGTTCGTTC | TTAGCTAGTG  | TTTATGCC   | ACTTAGAGGT  | 5160 |
| TTCTCATATA  | TGTGTGTTTC  | AGCGGAGCGA | CGTGAAAAGT  | TTTTGCTCT  | CGTGTGTTA   | 5220 |
| ATCGGGTTAA  | GTCTCCCTT   | CTTCGTGCGC | ATCGTAGGAG  | CGAAAGCGTG | CGAAGAACTC  | 5280 |
| GTGTCCCTAG  | CGCGTCGCTT  | TTATGAGCGT | ATTAAAATT   | TTCTAAGGCA | GAAGTATGTC  | 5340 |
| TCTCTTCTA   | ATTTCTTTG   | TCACTTGT   | AGCTCTGACG  | TTGATGACAG | TTCCGCATCT  | 5400 |
| GCAGGGTTGA  | AAGGTGGTGC  | GTCGCGAATG | ACGCTCTTCC  | ACCTCTGGT  | TCGCCTGCT   | 5460 |
| AGTGCCTCC   | TATCGTTAGG  | GTGGGAAGGG | TTAAAGCTAC  | TCTTATCGCA | CCACAACTTG  | 5520 |
| TTATTTTGT   | GTGGTGCATT  | GGTTGACGAT | GTGAACGTCC  | TTATCAAAGT | TCTTGGGGGT  | 5580 |
| CTTTCTTCT   | TTGTGCAACC  | AATCTTTCC  | TTGTTGCGG   | CGATGCTCT  | ACAACCGGAC  | 5640 |
| AGGTTTGTGG  | AGTATTCCGA  | GAAACTGT   | ACAGCGTTG   | AATTTTCTT  | AAAATGTTG   | 5700 |
| CCTCGCGCGC  | CTGCACTACT  | CAAAGGGTTT | TTGAGTGC    | TGGCGAACAG | CACTGTGTCA  | 5760 |
| AAAACCGTTC  | GAAGACTTCT  | TCGCTGTTTC | GTGAAGATGC  | TCAAACCTCG | AAAAGGGCGA  | 5820 |
| GGGTTGCGTG  | CGGATGGTAG  | GGGTCTCCAT | CGGCAGAAAG  | CCGTACCCGT | CATACTTCT   | 5880 |
| AATCGGGTCG  | TGACCGACGG  | GGTGAAAGA  | CTTCGGTAA   | AGATGCAAGG | AGTTGAAGCG  | 5940 |
| TTGCGTACCG  | AATTGAGAAT  | CTTAGAAGAT | TTAGATTCTG  | CCGTGATCGA | AAAACCTCAAT | 6000 |
| AGACGCAGAA  | ATCGTGACAC  | TAATGACGAC | GAATTACGC   | GCCCTGCTCA | TGAGCAGATG  | 6060 |
| CAAGAAAGTC  | CCACTTTCTG  | TTCGAAAGCC | AACTCTGCTG  | GTGGCCCT   | GGAAAGGGCA  | 6120 |
| GTGCTTGTGG  | AAGACGCTAT  | AAAGTCGGAG | AAACTTTCTA  | AGACGGTTAA | TGAGATGGTG  | 6180 |

|             |               |             |            |            |             |      |
|-------------|---------------|-------------|------------|------------|-------------|------|
| AGGAAAGGGA  | GTACCACCA     | CGAAGAAGTG  | GCCGTCGCTT | TGTCGGACGA | TGAAGCCGTG  | 6240 |
| GAAGAAATCT  | CTGTTGCTGA    | CGAGCGAGAC  | GATTCGCCTA | AGACAGTCAG | GATAAGCGAA  | 6300 |
| TACCTAAATA  | GGTTAAACTC    | AAGCTTCGAA  | TTCCCGAAGC | CTATTGTTGT | GGACGACAAC  | 6360 |
| AAGGATAACCG | GGGGTCTAAC    | GAACGCCGTG  | AGGGAGTTT  | ATTATATGCA | AGAACTTGCT  | 6420 |
| CTTTTCGAAA  | TCCACAGCAA    | ACTGTGCACC  | TACTACGATC | AACTGCGCAT | AGTCAACTTC  | 6480 |
| GATCGTTCCG  | TAGCACCATG    | CAGCGAAGAT  | GCTCAGCTGT | ACGTACGGAA | GAACGGCTCA  | 6540 |
| ACGATAGTGC  | AGGGTAAAGA    | GGTACGTTG   | CACATTAAGG | ATTTCCACGA | TCACGATTTC  | 6600 |
| CTGTTTGACG  | GAAAAATTTC    | TATTAACAAG  | CGGCGGCGAG | GCGGAAATGT | TTTATATCAC  | 6660 |
| GACAACCTCG  | CGTTCTTGGC    | GAGTAATTG   | TTCTTAGCCG | GCTACCCCTT | TTCAAGGAGC  | 6720 |
| TTCGTCTTCA  | CGAATTGTC     | GGTCGATATT  | CTCCTCTACG | AAGCTCCACC | CGGAGGTGGT  | 6780 |
| AAGACGACGA  | CGCTGATTGA    | CTCGTTCTTG  | AAGGTCTCA  | AGAAAGGTGA | GGTTTCCACC  | 6840 |
| ATGATCTTAA  | CCGCCAACAA    | AAGTCGCAG   | GTTGAGATCC | TAAAGAAAGT | GGAGAAGGAA  | 6900 |
| GTGTCTAACCA | TTGAATGCCA    | GAAACGTAAA  | GACAAAAGAT | CTCCGAAAAA | GAGCATTAC   | 6960 |
| ACCATCGACG  | CTTATTTAAT    | GCATCACCGT  | GGTTGTGATG | CAGACGTTCT | TTTCATCGAT  | 7020 |
| GAGTGTTC    | TGGTTCATGC    | GGGTAGCGTA  | CTAGCTTGCA | TTGAGTTCAC | GAGGTGTCAT  | 7080 |
| AAAGTAATGA  | TCTTCGGGGA    | TAGCCGGCAG  | ATTCACTACA | TTGAAAGGAA | CGAATTGGAC  | 7140 |
| AAGTGTTC    | ATGGGGATCT    | CGACAGGTTTC | GTGGACCTGC | AGTGTGGGT  | TTATGGTAAT  | 7200 |
| ATTCGTACC   | GTTGTCCATG    | GGATGTGTGC  | GCTTGGTTAA | GCACAGTGT  | TGGCAACCTA  | 7260 |
| ATCGCCACCG  | TGAAGGGTGA    | AAGCGAAGGT  | AAGAGCAGCA | TGCGCATTAA | CGAAATTAAT  | 7320 |
| TCAGTCGACG  | ATTTAGTCCC    | CGACGTGGGT  | TCCACGTTTC | TGTGTATGCT | TCAGTCGGAG  | 7380 |
| AAGTTGGAAA  | TCAGCAAGCA    | CTTTATTGCG  | AAGGGTTGA  | CTAAACTTAA | CGTTCTAACG  | 7440 |
| GTGCATGAGG  | CGCAAGGTGA    | GACGTATGCG  | CGTGTGAACC | TTGTGCGACT | TAAGTTTCAG  | 7500 |
| GAGGATGAAC  | CCTTTAAATC    | TATCAGGCAC  | ATAACCGTCG | CTCTTCTCG  | TCACACCGAC  | 7560 |
| AGCTTAACCT  | ATAACGTCTT    | AGCTGCTCGT  | CGAGGTGACG | CCACTTGCAG | TGCCATCCAG  | 7620 |
| AAGGCTGCGG  | AATTGGTGAA    | CAAGTTGCG   | GTTCAGTCTA | CATCTTTGG  | TGGTAGTGT   | 7680 |
| ATCAATCTCA  | ACGTGAAGAA    | GGACGTGGAA  | GATAACAGTA | GGTGCAAGGC | TTCTGTCGGCA | 7740 |
| CCATTGAGCG  | TAATCAACGA    | CTTTTGAAAC  | GAAGTTAAC  | CCGGTACTGC | GGTGATTGAT  | 7800 |
| TTTGGTGATT  | TGTCCGCGGA    | CTTCAGTACT  | GGGCCTTTG  | AGTGCGGTGC | CAGCGGTATT  | 7860 |
| GTGGTGC     | GGGACAACATCTC | CTCCAGCAAC  | ATCACTGATC | ACGATAAGCA | GGGTGTTAG   | 7920 |

## (2) INFORMATION FOR SEQ ID NO:3:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2639 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Thr Leu Arg Glu Asn Pro Ile Ser Val Ser Gly Val Asn Leu Gly Arg  
1 5 10 15

Ser Ala Ala Ala Gln Val Ile Tyr Phe Gly Ser Phe Thr Gln Pro Phe  
20 25 30

Ala Leu Tyr Pro Arg Gln Glu Ser Ala Ile Val Lys Thr Gln Leu Pro  
35 40 45

Pro Val Ser Val Val Lys Val Glu Cys Val Ala Ala Glu Val Ala Pro  
50 55 60

Asp Arg Gly Val Val Asp Lys Lys Pro Thr Ser Val Gly Val Pro Pro  
65 70 75 80

Gln Arg Gly Val Leu Ser Phe Pro Thr Val Val Arg Asn Arg Gly Asp  
85 90 95

Val Ile Ile Thr Gly Val Val His Glu Ala Leu Lys Ile Lys Asp  
100 105 110

Gly Leu Leu Arg Phe Arg Val Gly Gly Asp Met Arg Phe Ser Arg Phe  
115 120 125

Phe Ser Ser Asn Tyr Gly Cys Arg Phe Val Ala Ser Val Arg Thr Asn  
130 135 140

Thr Thr Val Trp Leu Asn Cys Thr Lys Ala Ser Gly Glu Lys Phe Ser  
145 150 155 160

Leu Ala Ala Ala Cys Thr Ala Asp Tyr Val Ala Met Leu Arg Tyr Val  
165 170 175

Cys Gly Gly Lys Phe Pro Leu Val Leu Met Ser Arg Val Ile Tyr Pro  
180 185 190

Asp Gly Arg Cys Tyr Leu Ala His Met Arg Tyr Leu Cys Ala Phe Tyr  
195 200 205

Cys Arg Pro Phe Arg Glu Ser Asp Tyr Ala Leu Gly Met Trp Pro Thr  
210 215 220

- 96 -

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Ala | Arg | Leu | Arg | Ala | Cys | Val | Glu | Lys | Asn | Phe | Gly | Val | Glu | Ala |     |
| 225 |     |     |     |     |     |     | 230 |     |     |     |     |     |     | 235 |     | 240 |
| Cys | Gly | Ile | Ala | Leu | Arg | Gly | Tyr | Tyr | Thr | Ser | Arg | Asn | Val | Tyr | His |     |
|     |     | 245 |     |     |     |     |     | 250 |     |     |     |     |     | 255 |     |     |
| Cys | Asp | Tyr | Asp | Ser | Ala | Tyr | Val | Lys | Tyr | Phe | Arg | Asn | Leu | Ser | Gly |     |
|     |     | 260 |     |     |     |     |     | 265 |     |     |     |     | 270 |     |     |     |
| Arg | Ile | Gly | Gly | Gly | Ser | Phe | Asp | Pro | Thr | Ser | Leu | Thr | Ser | Val | Ile |     |
|     |     | 275 |     |     |     | 280 |     |     |     |     |     | 285 |     |     |     |     |
| Thr | Val | Lys | Ile | Ser | Gly | Leu | Pro | Gly | Gly | Leu | Pro | Lys | Asn | Ile | Ala |     |
|     |     | 290 |     |     |     | 295 |     |     |     |     |     | 300 |     |     |     |     |
| Phe | Gly | Ala | Phe | Leu | Cys | Asp | Ile | Arg | Tyr | Val | Glu | Pro | Val | Asp | Ser |     |
|     |     | 305 |     |     |     | 310 |     |     |     | 315 |     |     | 320 |     |     |     |
| Gly | Gly | Ile | Gln | Ser | Ser | Val | Lys | Thr | Lys | Arg | Glu | Asp | Ala | His | Arg |     |
|     |     | 325 |     |     |     |     | 330 |     |     |     |     | 335 |     |     |     |     |
| Thr | Val | Glu | Glu | Arg | Ala | Ala | Gly | Gly | Ser | Val | Glu | Gln | Pro | Arg | Gln |     |
|     |     | 340 |     |     |     |     | 345 |     |     |     |     | 350 |     |     |     |     |
| Lys | Arg | Ile | Asp | Glu | Lys | Gly | Cys | Gly | Arg | Val | Pro | Ser | Gly | Gly | Phe |     |
|     |     | 355 |     |     |     | 360 |     |     |     |     | 365 |     |     |     |     |     |
| Ser | His | Leu | Leu | Val | Gly | Asn | Leu | Asn | Glu | Val | Arg | Arg | Lys | Val | Ala |     |
|     |     | 370 |     |     |     | 375 |     |     |     |     | 380 |     |     |     |     |     |
| Ala | Gly | Leu | Leu | Arg | Phe | Arg | Val | Gly | Gly | Asp | Met | Asp | Phe | His | Arg |     |
|     |     | 385 |     |     |     | 390 |     |     |     | 395 |     |     | 400 |     |     |     |
| Ser | Phe | Ser | Thr | Gln | Ala | Gly | His | Arg | Leu | Leu | Val | Trp | Arg | Arg | Ser |     |
|     |     | 405 |     |     |     |     | 410 |     |     |     |     | 415 |     |     |     |     |
| Ser | Arg | Ser | Val | Cys | Leu | Glu | Leu | Tyr | Ser | Pro | Ser | Lys | Asn | Phe | Leu |     |
|     |     | 420 |     |     |     | 425 |     |     |     |     | 430 |     |     |     |     |     |
| Arg | Tyr | Asp | Val | Leu | Pro | Cys | Ser | Gly | Asp | Tyr | Ala | Ala | Met | Phe | Ser |     |
|     |     | 435 |     |     |     | 440 |     |     |     |     | 445 |     |     |     |     |     |
| Phe | Ala | Ala | Gly | Gly | Arg | Phe | Pro | Leu | Val | Leu | Met | Thr | Arg | Ile | Arg |     |
|     |     | 450 |     |     |     | 455 |     |     |     |     | 460 |     |     |     |     |     |
| Tyr | Pro | Asn | Gly | Phe | Cys | Tyr | Leu | Ala | His | Cys | Arg | Tyr | Ala | Cys | Ala |     |
|     |     | 465 |     |     |     | 470 |     |     |     | 475 |     |     | 480 |     |     |     |
| Phe | Leu | Leu | Arg | Gly | Phe | Asp | Pro | Lys | Arg | Phe | Asp | Ile | Gly | Ala | Phe |     |
|     |     | 485 |     |     |     | 490 |     |     |     |     | 495 |     |     |     |     |     |
| Pro | Thr | Ala | Ala | Lys | Leu | Arg | Asn | Arg | Met | Val | Ser | Glu | Leu | Gly | Glu |     |
|     |     | 500 |     |     |     | 505 |     |     |     |     | 510 |     |     |     |     |     |
| Arg | Ser | Leu | Gly | Leu | Asn | Leu | Tyr | Gly | Ala | Tyr | Thr | Ser | Arg | Gly | Val |     |
|     |     | 515 |     |     |     | 520 |     |     |     |     | 525 |     |     |     |     |     |

- 97 -

Phe His Cys Asp Tyr Asp Ala Lys Phe Ile Lys Asp Leu Arg Leu Met  
530 535 540

Ser Ala Val Ile Ala Gly Lys Asp Gly Val Glu Glu Val Val Pro Ser  
545 550 555 560

Asp Ile Thr Pro Ala Met Lys Gln Lys Thr Ile Glu Ala Val Tyr Asp  
565 570 575

Arg Leu Tyr Gly Gly Thr Asp Ser Leu Leu Lys Leu Ser Ile Glu Lys  
580 585 590

Asp Leu Ile Asp Phe Lys Asn Asp Val Gln Ser Leu Lys Lys Asp Arg  
595 600 605

Pro Ile Val Lys Val Pro Phe Tyr Met Ser Glu Ala Thr Gln Asn Ser  
610 615 620

Leu Thr Arg Phe Tyr Pro Gln Phe Glu Leu Lys Phe Ser His Ser Ser  
625 630 635 640

His Ser Asp His Pro Ala Ala Ala Ser Arg Leu Leu Glu Asn Glu  
645 650 655

Thr Leu Val Arg Leu Cys Gly Asn Ser Val Ser Asp Ile Gly Gly Cys  
660 665 670

Pro Leu Phe His Leu His Ser Lys Thr Gln Arg Arg Val His Val Cys  
675 680 685

Arg Pro Val Leu Asp Gly Lys Asp Ala Gln Arg Arg Val Val Arg Asp  
690 695 700

Leu Gln Tyr Ser Asn Val Arg Leu Gly Asp Asp Asp Lys Ile Leu Glu  
705 710 715 720

Gly Pro Arg Asn Ile Asp Ile Cys His Tyr Pro Leu Gly Ala Cys Asp  
725 730 735

His Glu Ser Ser Ala Met Met Val Gln Val Tyr Asp Ala Ser Leu  
740 745 750

Tyr Glu Ile Cys Gly Ala Met Ile Lys Lys Ser Arg Ile Thr Tyr  
755 760 765

Leu Thr Met Val Thr Pro Gly Glu Phe Leu Asp Gly Arg Glu Cys Val  
770 775 780

Tyr Met Glu Ser Leu Asp Cys Glu Ile Glu Val Asp Val His Ala Asp  
785 790 795 800

Val Val Met Tyr Lys Phe Gly Ser Ser Cys Tyr Ser His Lys Leu Ser  
805 810 815

Ile Ile Lys Asp Ile Met Thr Thr Pro Tyr Leu Thr Leu Gly Gly Phe  
820 825 830

Leu Phe Ser Val Glu Met Tyr Glu Val Arg Met Gly Val Asn Tyr Phe  
 835 840 845  
 Lys Ile Thr Lys Ser Glu Val Ser Pro Ser Ile Ser Cys Thr Lys Leu  
 850 855 860  
 Leu Arg Tyr Arg Arg Ala Asn Ser Asp Val Val Lys Val Lys Leu Pro  
 865 870 875 880  
 Arg Phe Asp Lys Lys Arg Arg Met Cys Leu Pro Gly Tyr Asp Thr Ile  
 885 890 895  
 Tyr Leu Asp Ser Lys Phe Val Ser Arg Val Phe Asp Tyr Val Val Cys  
 900 905 910  
 Asn Cys Ser Ala Val Asn Ser Lys Thr Phe Glu Trp Val Trp Ser Phe  
 915 920 925  
 Ile Lys Ser Ser Lys Ser Arg Val Ile Ile Ser Gly Lys Ile Ile His  
 930 935 940  
 Lys Asp Val Asn Leu Asp Leu Lys Tyr Val Glu Ser Phe Ala Ala Val  
 945 950 955 960  
 Met Leu Ala Ser Gly Val Arg Ser Arg Leu Ala Ser Glu Tyr Leu Ala  
 965 970 975  
 Lys Asn Leu Ser His Phe Ser Gly Asp Cys Ser Phe Ile Glu Ala Thr  
 980 985 990  
 Ser Phe Val Leu Arg Glu Lys Ile Arg Asn Met Thr Leu Asn Phe Asn  
 995 1000 1005  
 Glu Arg Leu Leu Gln Leu Val Lys Arg Val Ala Phe Ala Thr Leu Asp  
 1010 1015 1020  
 Val Ser Phe Leu Asp Leu Asp Ser Thr Leu Glu Ser Ile Thr Asp Phe  
 1025 1030 1035 1040  
 Ala Glu Cys Lys Val Ala Ile Glu Leu Asp Glu Leu Gly Cys Leu Arg  
 1045 1050 1055  
 Ala Glu Ala Glu Asn Glu Lys Ile Arg Asn Leu Ala Gly Asp Ser Ile  
 1060 1065 1070  
 Ala Ala Lys Leu Ala Ser Glu Ile Val Val Asp Ile Asp Ser Lys Pro  
 1075 1080 1085  
 Ser Pro Lys Gln Val Gly Asn Ser Ser Glu Asn Ala Asp Lys Arg  
 1090 1095 1100  
 Glu Val Gln Arg Pro Gly Leu Arg Gly Ser Arg Asn Gly Val Val  
 1105 1110 1115 1120  
 Gly Glu Phe Leu His Phe Val Val Asp Ser Ala Leu Arg Leu Phe Lys  
 1125 1130 1135

- 99 -

Tyr Ala Thr Asp Gln Gln Arg Ile Lys Ser Tyr Val Arg Phe Leu Asp  
1140 1145 1150

Ser Ala Val Ser Phe Leu Asp Tyr Asn Tyr Asp Asn Leu Ser Phe Ile  
1155 1160 1165

Leu Arg Val Leu Ser Glu Gly Tyr Ser Cys Met Phe Ala Phe Leu Ala  
1170 1175 1180

Asn Arg Gly Asp Leu Ser Ser Arg Val Arg Ser Ala Val Cys Ala Val  
1185 1190 1195 1200

Lys Glu Val Ala Thr Ser Cys Ala Asn Ala Ser Val Ser Lys Ala Lys  
1205 1210 1215

Val Met Ile Thr Phe Ala Ala Val Cys Ala Met Met Phe Asn Ser  
1220 1225 1230

Cys Gly Phe Ser Gly Asp Gly Arg Glu Tyr Lys Ser Tyr Ile His Arg  
1235 1240 1245

Tyr Thr Gln Val Leu Phe Asp Thr Ile Phe Phe Glu Asp Ser Ser Tyr  
1250 1255 1260

Leu Pro Ile Glu Val Leu Ser Ser Ala Ile Cys Gly Ala Ile Val Thr  
1265 1270 1275 1280

Leu Phe Ser Ser Gly Ser Ser Ile Ser Leu Asn Ala Phe Leu Leu Gln  
1285 1290 1295

Ile Thr Lys Gly Phe Ser Leu Glu Val Val Val Arg Asn Val Val Arg  
1300 1305 1310

Val Thr His Gly Leu Ser Thr Thr Ala Thr Asp Gly Val Ile Arg Gly  
1315 1320 1325

Val Phe Ser Gln Ile Val Ser His Leu Leu Val Gly Asn Thr Gly Asn  
1330 1335 1340

Val Ala Tyr Gln Ser Ala Phe Ile Ala Gly Val Val Pro Leu Leu Val  
1345 1350 1355 1360

Lys Lys Cys Val Ser Leu Ile Phe Ile Leu Arg Glu Asp Thr Tyr Ser  
1365 1370 1375

Gly Phe Ile Lys His Gly Ile Ser Glu Phe Ser Phe Leu Ser Ser Ile  
1380 1385 1390

Leu Lys Phe Leu Lys Gly Lys Leu Val Asp Glu Leu Lys Ser Ile Ile  
1395 1400 1405

Gln Gly Val Phe Asp Ser Asn Lys His Val Phe Lys Glu Ala Thr Gln  
1410 1415 1420

Glu Ala Ile Arg Thr Thr Val Met Gln Val Pro Val Ala Val Val Asp  
1425 1430 1435 1440

- 100 -

Ala Leu Lys Ser Ala Ala Gly Lys Ile Tyr Asn Asn Phe Thr Ser Arg  
1445 1450 1455

Arg Thr Phe Gly Lys Asp Glu Gly Ser Ser Ser Asp Gly Ala Cys Glu  
1460 1465 1470

Glu Tyr Phe Ser Cys Asp Glu Gly Glu Gly Pro Gly Leu Lys Gly Gly  
1475 1480 1485

Ser Ser Tyr Gly Phe Ser Ile Leu Ala Phe Phe Ser Arg Ile Met Trp  
1490 1495 1500

Gly Ala Arg Arg Leu Ile Val Lys Val Lys His Glu Cys Phe Gly Lys  
1505 1510 1515 1520

Leu Phe Glu Phe Leu Ser Leu Lys Leu His Glu Phe Arg Thr Arg Val  
1525 1530 1535

Phe Gly Lys Asn Arg Thr Asp Val Gly Val Tyr Asp Phe Leu Pro Thr  
1540 1545 1550

Gly Ile Val Glu Thr Leu Ser Ser Ile Glu Glu Cys Asp Gln Ile Glu  
1555 1560 1565

Glu Leu Leu Gly Asp Asp Leu Lys Gly Asp Lys Asp Ala Ser Leu Thr  
1570 1575 1580

Asp Met Asn Tyr Phe Glu Phe Ser Glu Asp Phe Leu Ala Ser Ile Glu  
1585 1590 1595 1600

Glu Pro Pro Phe Ala Gly Leu Arg Gly Ser Lys Asn Ile Ala Ile  
1605 1610 1615

Leu Ala Ile Leu Glu Tyr Ala His Asn Leu Phe Arg Ile Val Ala Ser  
1620 1625 1630

Lys Cys Ser Lys Arg Pro Leu Phe Leu Ala Phe Ala Glu Leu Ser Ser  
1635 1640 1645

Ala Leu Ile Glu Lys Phe Lys Glu Val Phe Pro Arg Lys Ser Gln Leu  
1650 1655 1660

Val Ala Ile Val Arg Glu Tyr Thr Gln Arg Phe Leu Arg Ser Arg Met  
1665 1670 1675 1680

Arg Ala Leu Gly Leu Asn Asn Glu Phe Val Val Lys Ser Phe Ala Asp  
1685 1690 1695

Leu Leu Pro Ala Leu Met Lys Arg Lys Val Ser Gly Ser Phe Leu Ala  
1700 1705 1710

Ser Val Tyr Arg Pro Leu Arg Gly Phe Ser Tyr Met Cys Val Ser Ala  
1715 1720 1725

Glu Arg Arg Glu Lys Phe Phe Ala Leu Val Cys Leu Ile Gly Leu Ser  
1730 1735 1740

- 101 -

Leu Pro Phe Phe Val Arg Ile Val Gly Ala Lys Ala Cys Glu Glu Leu  
1745 1750 1755 1760

Val Ser Ser Ala Arg Arg Phe Tyr Glu Arg Ile Lys Ile Phe Leu Arg  
1765 1770 1775

Gln Lys Tyr Val Ser Leu Ser Asn Phe Phe Cys His Leu Phe Ser Ser  
1780 1785 1790

Asp Val Asp Asp Ser Ser Ala Ser Ala Gly Leu Lys Gly Gly Ala Ser  
1795 1800 1805

Arg Met Thr Leu Phe His Leu Leu Val Arg Leu Ala Ser Ala Leu Leu  
1810 1815 1820

Ser Leu Gly Trp Glu Gly Leu Lys Leu Leu Ser His His Asn Leu  
1825 1830 1835 1840

Leu Phe Leu Cys Phe Ala Leu Val Asp Asp Val Asn Val Leu Ile Lys  
1845 1850 1855

Val Leu Gly Gly Leu Ser Phe Phe Val Gln Pro Ile Phe Ser Leu Phe  
1860 1865 1870

Ala Ala Met Leu Leu Gln Pro Asp Arg Phe Val Glu Tyr Ser Glu Lys  
1875 1880 1885

Leu Val Thr Ala Phe Glu Phe Leu Lys Cys Ser Pro Arg Ala Pro  
1890 1895 1900

Ala Leu Leu Lys Gly Phe Phe Glu Cys Val Ala Asn Ser Thr Val Ser  
1905 1910 1915 1920

Lys Thr Val Arg Arg Leu Leu Arg Cys Phe Val Lys Met Leu Lys Leu  
1925 1930 1935

Arg Lys Gly Arg Gly Leu Arg Ala Asp Gly Arg Gly Leu His Arg Gln  
1940 1945 1950

Lys Ala Val Pro Val Ile Pro Ser Asn Arg Val Val Thr Asp Gly Val  
1955 1960 1965

Glu Arg Leu Ser Val Lys Met Gln Gly Val Glu Ala Leu Arg Thr Glu  
1970 1975 1980

Leu Arg Ile Leu Glu Asp Leu Asp Ser Ala Val Ile Glu Lys Leu Asn  
1985 1990 1995 2000

Arg Arg Arg Asn Arg Asp Thr Asn Asp Asp Glu Phe Thr Arg Pro Ala  
2005 2010 2015

His Glu Gln Met Gln Glu Val Thr Thr Phe Cys Ser Lys Ala Asn Ser  
2020 2025 2030

Ala Gly Leu Ala Leu Glu Arg Ala Val Leu Val Glu Asp Ala Ile Lys  
2035 2040 2045

- 102 -

Ser Glu Lys Leu Ser Lys Thr Val Asn Glu Met Val Arg Lys Gly Ser  
2050 2055 2060

Thr Thr Ser Glu Glu Val Ala Val Ala Leu Ser Asp Asp Glu Ala Val  
2065 2070 2075 2080

Glu Glu Ile Ser Val Ala Asp Glu Arg Asp Asp Ser Pro Lys Thr Val  
2085 2090 2095

Arg Ile Ser Glu Tyr Leu Asn Arg Leu Asn Ser Ser Phe Glu Phe Pro  
2100 2105 2110

Lys Pro Ile Val Val Asp Asp Asn Lys Asp Thr Gly Gly Leu Thr Asn  
2115 2120 2125

Ala Val Arg Glu Phe Tyr Tyr Met Gln Glu Leu Ala Leu Phe Glu Ile  
2130 2135 2140

His Ser Lys Leu Cys Thr Tyr Tyr Asp Gln Leu Arg Ile Val Asn Phe  
2145 2150 2155 2160

Asp Arg Ser Val Ala Pro Cys Ser Glu Asp Ala Gln Leu Tyr Val Arg  
2165 2170 2175

Lys Asn Gly Ser Thr Ile Val Gln Gly Lys Glu Val Arg Leu His Ile  
2180 2185 2190

Lys Asp Phe His Asp His Asp Phe Leu Phe Asp Gly Lys Ile Ser Ile  
2195 2200 2205

Asn Lys Arg Arg Arg Gly Asn Val Leu Tyr His Asp Asn Leu Ala  
2210 2215 2220

Phe Leu Ala Ser Asn Leu Phe Leu Ala Gly Tyr Pro Phe Ser Arg Ser  
2225 2230 2235 2240

Phe Val Phe Thr Asn Ser Ser Val Asp Ile Leu Leu Tyr Glu Ala Pro  
2245 2250 2255

Pro Gly Gly Lys Thr Thr Thr Leu Ile Asp Ser Phe Leu Lys Val  
2260 2265 2270

Phe Lys Lys Gly Glu Val Ser Thr Met Ile Leu Thr Ala Asn Lys Ser  
2275 2280 2285

Ser Gln Val Glu Ile Leu Lys Lys Val Glu Lys Glu Val Ser Asn Ile  
2290 2295 2300

Glu Cys Gln Lys Arg Lys Asp Lys Arg Ser Pro Lys Lys Ser Ile Tyr  
2305 2310 2315 2320

Thr Ile Asp Ala Tyr Leu Met His His Arg Gly Cys Asp Ala Asp Val  
2325 2330 2335

Leu Phe Ile Asp Glu Cys Phe Met Val His Ala Gly Ser Val Leu Ala  
2340 2345 2350

- 103 -

Cys Ile Glu Phe Thr Arg Cys His Lys Val Met Ile Phe Gly Asp Ser  
2355 2360 2365

Arg Gln Ile His Tyr Ile Glu Arg Asn Glu Leu Asp Lys Cys Leu Tyr  
2370 2375 2380

Gly Asp Leu Asp Arg Phe Val Asp Leu Gln Cys Arg Val Tyr Gly Asn  
2385 2390 2395 2400

Ile Ser Tyr Arg Cys Pro Trp Asp Val Cys Ala Trp Leu Ser Thr Val  
2405 2410 2415

Tyr Gly Asn Leu Ile Ala Thr Val Lys Gly Glu Ser Glu Gly Lys Ser  
2420 2425 2430

Ser Met Arg Ile Asn Glu Ile Asn Ser Val Asp Asp Leu Val Pro Asp  
2435 2440 2445

Val Gly Ser Thr Phe Leu Cys Met Leu Gln Ser Glu Lys Leu Glu Ile  
2450 2455 2460

Ser Lys His Phe Ile Arg Lys Gly Leu Thr Lys Leu Asn Val Leu Thr  
2465 2470 2475 2480

Val His Glu Ala Gln Gly Glu Thr Tyr Ala Arg Val Asn Leu Val Arg  
2485 2490 2495

Leu Lys Phe Gln Glu Asp Pro Phe Lys Ser Ile Arg His Ile Thr  
2500 2505 2510

Val Ala Leu Ser Arg His Thr Asp Ser Leu Thr Tyr Asn Val Leu Ala  
2515 2520 2525

Ala Arg Arg Gly Asp Ala Thr Cys Asp Ala Ile Gln Lys Ala Ala Glu  
2530 2535 2540

Leu Val Asn Lys Phe Arg Val Phe Pro Thr Ser Phe Gly Gly Ser Val  
2545 2550 2555 2560

Ile Asn Leu Asn Val Lys Lys Asp Val Glu Asp Asn Ser Arg Cys Lys  
2565 2570 2575

Ala Ser Ser Ala Pro Leu Ser Val Ile Asn Asp Phe Leu Asn Glu Val  
2580 2585 2590

Asn Pro Gly Thr Ala Val Ile Asp Phe Gly Asp Leu Ser Ala Asp Phe  
2595 2600 2605

Ser Thr Gly Pro Phe Glu Cys Gly Ala Ser Gly Ile Val Val Arg Asp  
2610 2615 2620

Asn Ile Ser Ser Ser Asn Ile Thr Asp His Asp Lys Gln Arg Val  
2625 2630 2635

(2) INFORMATION FOR SEQ ID NO:4:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1380 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| AGCGTAGTTC  | GGTCGCAGGC  | GATTCCGCGT  | AGAAAACCTT  | CTCTACAAGA  | AAATTTGTAT  | 60   |
| TCGTTTGAAG  | C CGCGAATTA | TAAC TTCTCG | ACTTGCGACC  | GTAACACATC  | TGCTTCAATG  | 120  |
| TTCGGAGAGG  | CTATGGCGAT  | GAAC TGTCTT | CGTCGTTGCT  | TCGACCTAGA  | TGCCTTTCG   | 180  |
| TCCCTGCGTG  | ATGATGTGAT  | TAGTATCACA  | CGTT CAGGCA | TCGAACAATG  | GCTGGAGAAA  | 240  |
| CGTACTCCTA  | GTCAGATTAA  | AGCATTAATG  | AAGGATGTTG  | AATGCCCTT   | GGAAATTGAC  | 300  |
| GATGAAATT   | GT CGTTTAA  | GTTGATGGTG  | AAGCGTGACG  | CTAAGGTGAA  | GTTAGACTCT  | 360  |
| TCTTGTAA    | CTAAACACAG  | CGCCGCTCAA  | AATATCATGT  | TTCATCGCAA  | GAGCATTAA   | 420  |
| GCTATCTTCT  | CTCCTATCTT  | TAATGAGGTG  | AAAAACCGAA  | TAATGTGCTG  | TCTTAAGCCT  | 480  |
| AACATAAAAGT | TTTTTACGGA  | GATGACTAAC  | AGGGATTTG   | CTTCTGTTGT  | CAGCAACATG  | 540  |
| CTTGGTGACG  | ACGATGTGTA  | CCATATAGGT  | GAAGTTGATT  | TCTCAAAGTA  | CGACAAGTCT  | 600  |
| CAAGATGCTT  | TCGTGAAGGC  | TTTGAAAGAA  | GTAATGTATA  | AGGAACCTGG  | TGTTGATGAA  | 660  |
| GAGTTGCTGG  | CTATCTGGAT  | GTGCGGCGAG  | CGGTTATCGA  | TAGCTAACAC  | TCTCGATGGT  | 720  |
| CAGTTGTCCT  | TCACGATCGA  | GAATCAAAGG  | AAGTCGGGAG  | CTTCGAACAC  | TTGGATTGGT  | 780  |
| AACTCTCTCG  | TCACTTTGGG  | TATTTAAGT   | CTTACTACG   | ACGTTAGAAA  | TTTCGAGGCG  | 840  |
| TTGTACATCT  | CGGGCGATGA  | TTCTTAATT   | TTTCTCGCA   | GCGAGATTTC  | GAATTATGCC  | 900  |
| GACGACATAT  | GCACTGACAT  | GGGTTTGAG   | ACAAAATTAA  | TGTCCCCAAG  | TGTCCCCGTAC | 960  |
| TTTTGTTCTA  | AATTGTTGT   | TATGTGTGGT  | CATAAGACGT  | TTTTGTTCC   | CGACCCGTAC  | 1020 |
| AAGCTTTTG   | TCAAGTTGGG  | AGCAGTCAAA  | GAGGATGTTT  | CAATGGATT   | CCTTTTCGAG  | 1080 |
| ACTTTTACCT  | CCTTTAAAGA  | CTTAACCTCC  | GATTTAACG   | ACGAGCGCTT  | AATTCAAAG   | 1140 |
| CTCGCTGAAC  | TTGTGGCTTT  | AAAATATGAG  | GTTCAAACCG  | GCAACACCCAC | CTTGGCGTTA  | 1200 |
| AGTGTGATAC  | ATTGTTTGC   | TTCGAATT    | CTCTCGTTA   | GCAAGTTATA  | TCCTCGCGTG  | 1260 |
| AAGGGATGGC  | AGGTTTTA    | CACGTCGGTT  | AAGAAAGCGC  | TTCTCAAGAG  | TGGGTGTTCT  | 1320 |
| CTCTTCGACA  | GTTTCATGAC  | CCCTTTGGT   | CAGGCTGTCA  | TGGTTGGGA   | TGATGAGTAG  | 1380 |

## (2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 459 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS:  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ser Val Val Arg Ser Gln Ala Ile Pro Arg Arg Lys Pro Ser Leu Gln  
1 5 10 15

Glu Asn Leu Tyr Ser Phe Glu Ala Arg Asn Tyr Asn Phe Ser Thr Cys  
20 25 30

Asp Arg Asn Thr Ser Ala Ser Met Phe Gly Glu Ala Met Ala Met Asn  
35 40 45

Cys Leu Arg Arg Cys Phe Asp Leu Asp Ala Phe Ser Ser Leu Arg Asp  
50 55 60

Asp Val Ile Ser Ile Thr Arg Ser Gly Ile Glu Gln Trp Leu Glu Lys  
65 70 75 80

Arg Thr Pro Ser Gln Ile Lys Ala Leu Met Lys Asp Val Glu Ser Pro  
85 90 95

Leu Glu Ile Asp Asp Glu Ile Cys Arg Phe Lys Leu Met Val Lys Arg  
100 105 110

Asp Ala Lys Val Lys Leu Asp Ser Ser Cys Leu Thr Lys His Ser Ala  
115 120 125

Ala Gln Asn Ile Met Phe His Arg Lys Ser Ile Asn Ala Ile Phe Ser  
130 135 140

Pro Ile Phe Asn Glu Val Lys Asn Arg Ile Met Cys Cys Leu Lys Pro  
145 150 155 160

Asn Ile Lys Phe Phe Thr Glu Met Thr Asn Arg Asp Phe Ala Ser Val  
165 170 175

Val Ser Asn Met Leu Gly Asp Asp Val Tyr His Ile Gly Glu Val  
180 185 190

Asp Phe Ser Lys Tyr Asp Lys Ser Gln Asp Ala Phe Val Lys Ala Phe  
195 200 205

Glu Glu Val Met Tyr Lys Glu Leu Gly Val Asp Glu Glu Leu Leu Ala  
210 215 220

Ile Trp Met Cys Gly Glu Arg Leu Ser Ile Ala Asn Thr Leu Asp Gly

- 106 -

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 225                                                             | 230 | 235 | 240 |
| Gln Leu Ser Phe Thr Ile Glu Asn Gln Arg Lys Ser Gly Ala Ser Asn |     |     |     |
| 245                                                             | 250 | 255 |     |
| Thr Trp Ile Gly Asn Ser Leu Val Thr Leu Gly Ile Leu Ser Leu Tyr |     |     |     |
| 260                                                             | 265 | 270 |     |
| Tyr Asp Val Arg Asn Phe Glu Ala Leu Tyr Ile Ser Gly Asp Asp Ser |     |     |     |
| 275                                                             | 280 | 285 |     |
| Leu Ile Phe Ser Arg Ser Glu Ile Ser Asn Tyr Ala Asp Asp Ile Cys |     |     |     |
| 290                                                             | 295 | 300 |     |
| Thr Asp Met Gly Phe Glu Thr Lys Phe Met Ser Pro Ser Val Pro Tyr |     |     |     |
| 305                                                             | 310 | 315 | 320 |
| Phe Cys Ser Lys Phe Val Val Met Cys Gly His Lys Thr Phe Phe Val |     |     |     |
| 325                                                             | 330 | 335 |     |
| Pro Asp Pro Tyr Lys Leu Phe Val Lys Leu Gly Ala Val Lys Glu Asp |     |     |     |
| 340                                                             | 345 | 350 |     |
| Val Ser Met Asp Phe Leu Phe Glu Thr Phe Thr Ser Phe Lys Asp Leu |     |     |     |
| 355                                                             | 360 | 365 |     |
| Thr Ser Asp Phe Asn Asp Glu Arg Leu Ile Gln Lys Leu Ala Glu Leu |     |     |     |
| 370                                                             | 375 | 380 |     |
| Val Ala Leu Lys Tyr Glu Val Gln Thr Gly Asn Thr Thr Leu Ala Leu |     |     |     |
| 385                                                             | 390 | 395 | 400 |
| Ser Val Ile His Cys Leu Arg Ser Asn Phe Leu Ser Phe Ser Lys Leu |     |     |     |
| 405                                                             | 410 | 415 |     |
| Tyr Pro Arg Val Lys Gly Trp Gln Val Phe Tyr Thr Ser Val Lys Lys |     |     |     |
| 420                                                             | 425 | 430 |     |
| Ala Leu Leu Lys Ser Gly Cys Ser Leu Phe Asp Ser Phe Met Thr Pro |     |     |     |
| 435                                                             | 440 | 445 |     |
| Phe Gly Gln Ala Val Met Val Trp Asp Asp Glu                     |     |     |     |
| 450                                                             | 455 |     |     |

## (2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 171 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| ATGAATCAGG TTTGCAGTT TGAATGTTG TTTCTGCTGA ATCTCGCGGT TTTGCTGTG  | 60  |
| ACTTTCATTT TCATTCTTCT GGTCTTCGC GTGATTAAGT CTTTCGCCA GAAGGGTCAC | 120 |
| GAAGCACCTG TTCCCGTTGT TCGTGGCGGG GGTTTTCAA CCGTAGTGTA G         | 171 |

## (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 56 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Met Asn Gln Val Leu Gln Phe Glu Cys Leu Phe Leu Leu Asn Leu Ala |    |    |    |
| 1                                                               | 5  | 10 | 15 |
| Val Phe Ala Val Thr Phe Ile Phe Ile Leu Leu Val Phe Arg Val Ile |    |    |    |
| 20                                                              | 25 | 30 |    |
| Lys Ser Phe Arg Gln Lys Gly His Glu Ala Pro Val Pro Val Val Arg |    |    |    |
| 35                                                              | 40 | 45 |    |
| Gly Gly Gly Phe Ser Thr Val Val                                 |    |    |    |
| 50                                                              | 55 |    |    |

## (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1800 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| ATGGTAGTTT TCGGTTGGGA CTTTGGCACC ACATTCTCTA CGGTGTGTGT GTACAAGGAT  | 60  |
| GGACGAGTTT TTTCATTCAA GCAGAATAAT TCGGCGTACA TCCCCACTTA CCTCTATCTC  | 120 |
| TTCTCCGATT CTAACCACAT GACTTTGGT TACGAGGCCG AATCACTGAT GAGTAATCTG   | 180 |
| AAAGTTAAAG GTTCGTTTTA TAGAGATTAA AACAGTTGGG TGGGTTGCGA TTTCGAGTAAC | 240 |
| CTCGACGCGT ACCTTGACCG TTTAAAACCT CATTACTCGG TCCGCTTGGT TAAGATCGGC  | 300 |
| TCTGGCTTGA ACGAAACTGT TTCAATTGGA AACTTCGGGG GCACTGTTAA GTCTGAGGCT  | 360 |
| CATCTGCCAG GGTTGATAGC TCTCTTATT AAGGCTGTCA TTAGTTGCGC GGAGGGCGCG   | 420 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| TTTGCCTGCA CTTGCACCGG GGTTATTGT TCAGTACCTG CCAATTATGA TAGCGTTCAA   | 480  |
| AGGAATTCAGA CTGATCAGTG TGTTTCACTC AGCGGTTATC AGTGCCTATA TATGATCAAT | 540  |
| GAACCTTCAG CGGCTGCCT ATCTGCCTGT AATTGATTG GAAAGAACGTC CGCAAATTG    | 600  |
| GCTGTTACG ATTCGGTGG TGGGACCTTC GACGTGTCTA TCATTCATA CCGCAACAAT     | 660  |
| ACTTTGTTG TGCGAGCTTC TGGAGGCGAT CTAATCTCG GTGGAAGGGA TGTTGATCGT    | 720  |
| GCGTTTCTCA CGCACCTCTT CTCTTAACA TCGCTGGAAC CTGACCTCAC TTTGGATATC   | 780  |
| TCGAATCTGA AAGAATCTTT ATCAAAAACG GACGCAGAGA TAGTTACAC TTTGAGAGGT   | 840  |
| GTCGATGGAA GAAAAGAAGA CGTTAGAGTA AACAAAAACA TTCTTACGTC GGTGATGCTC  | 900  |
| CCCTACGTGA ACAGAACGCT TAAGATATTA GAGTCAACCT TAAAATCGTA TGCTAAGAGT  | 960  |
| ATGAATGAGA GTGCGCGAGT TAAGTGCAGAT TTAGTGCTGA TAGGAGGATC TTCATATCTT | 1020 |
| CCTGGCCTGG CAGACGTACT AACGAAGCAT CAGAGCGTTG ATCGTATCTT AAGAGTTCG   | 1080 |
| GATCCTCGGG CTGCCGTGGC CGTCGGTTGC GCATTATATT CTTCATGCCT CTCAGGATCT  | 1140 |
| GGGGGGTTGC TACTGATCGA CTGTGCAGCT CACACTGTCG CTATAGCGGA CAGAAGTTGT  | 1200 |
| CATCAAATCA TTTGCCTCC AGCGGGGCA CCGATCCCCT TTTCAGGAAG CATGCCTTG     | 1260 |
| TACTTAGCCA GGGTCAACAA GAACTCGCAG CGTGAAGTCG CCGTGTGTTGA AGGGGAGTAC | 1320 |
| GTAAAGTGCCT CTAAGAACAG AAAGATCTGT GGAGCAAATA TAAGATTTTG TGATATAGGA | 1380 |
| GTGACGGGTG ATTCTACGC ACCCGTTACC TTCTATATGG ATTTCTCCAT TTCAAGCGTA   | 1440 |
| GGAGCCGTTT CATTGGTGGT GAGAGGTCTT GAGGGTAAGC AAGTGTCACT CACTGGAACT  | 1500 |
| CCAGCGTATA ACTTTCTGTC TGTGGCTCTC GGATCACGCA GTGTCCGAGA ATTGCATATT  | 1560 |
| AGTTTAAATA ATAAAGTTTT TCTCGGTTTG CTTCTACATA GAAAGGCGGA TCGACGAATA  | 1620 |
| CTTTTCACTA AGGATGAAGC GATTGATAAC GCCGATTCAA TTGATATCGC GGATGTGCTA  | 1680 |
| AAGGAATATA AAAGTTACGC GGCCAGTGCC TTACCAACAG ACGAGGATGT CGAATTACTC  | 1740 |
| CTGGGAAAGT CTGTTCAAAA AGTTTACGG GGAAGCAGAC TGGAAGAAAT ACCTCTCTAG   | 1800 |

## (2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 599 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS:
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Val Val Phe Gly Leu Asp Phe Gly Thr Thr Phe Ser Thr Val Cys  
1 5 10 15 .

Val Tyr Lys Asp Gly Arg Val Phe Ser Phe Lys Gln Asn Asn Ser Ala  
20 25 30

Tyr Ile Pro Thr Tyr Leu Tyr Leu Phe Ser Asp Ser Asn His Met Thr  
35 40 45

Phe Gly Tyr Glu Ala Glu Ser Leu Met Ser Asn Leu Lys Val Lys Gly  
50 55 60

Ser Phe Tyr Arg Asp Leu Lys Arg Trp Val Gly Cys Asp Ser Ser Asn  
65 70 75 80

Leu Asp Ala Tyr Leu Asp Arg Leu Lys Pro His Tyr Ser Val Arg Leu  
85 90 95

Val Lys Ile Gly Ser Gly Leu Asn Glu Thr Val Ser Ile Gly Asn Phe  
100 105 110

Gly Gly Thr Val Lys Ser Glu Ala His Leu Pro Gly Leu Ile Ala Leu  
115 120 125

Phe Ile Lys Ala Val Ile Ser Cys Ala Glu Gly Ala Phe Ala Cys Thr  
130 135 140

Cys Thr Gly Val Ile Cys Ser Val Pro Ala Asn Tyr Asp Ser Val Gln  
145 150 155 160

Arg Asn Phe Thr Asp Gln Cys Val Ser Leu Ser Gly Tyr Gln Cys Val  
165 170 175

Tyr Met Ile Asn Glu Pro Ser Ala Ala Leu Ser Ala Cys Asn Ser  
180 185 190

Ile Gly Lys Lys Ser Ala Asn Leu Ala Val Tyr Asp Phe Gly Gly  
195 200 205

Thr Phe Asp Val Ser Ile Ile Ser Tyr Arg Asn Asn Thr Phe Val Val  
210 215 220

Arg Ala Ser Gly Gly Asp Leu Asn Leu Gly Gly Arg Asp Val Asp Arg  
225 230 235 240

Ala Phe Leu Thr His Leu Phe Ser Leu Thr Ser Leu Glu Pro Asp Leu  
245 250 255

Thr Leu Asp Ile Ser Asn Leu Lys Glu Ser Leu Ser Lys Thr Asp Ala  
260 265 270

Glu Ile Val Tyr Thr Leu Arg Gly Val Asp Gly Arg Lys Glu Asp Val  
275 280 285

- 110 -

Arg Val Asn Lys Asn Ile Leu Thr Ser Val Met Leu Pro Tyr Val Asn  
290 295 300

Arg Thr Leu Lys Ile Leu Glu Ser Thr Leu Lys Ser Tyr Ala Lys Ser  
305 310 315 320

Met Asn Glu Ser Ala Arg Val Lys Cys Asp Leu Val Leu Ile Gly Gly  
325 330 335

Ser Ser Tyr Leu Pro Gly Leu Ala Asp Val Leu Thr Lys His Gln Ser  
340 345 350

Val Asp Arg Ile Leu Arg Val Ser Asp Pro Arg Ala Ala Val Ala Val  
355 360 365

Gly Cys Ala Leu Tyr Ser Ser Cys Leu Ser Gly Ser Gly Gly Leu Leu  
370 375 380

Leu Ile Asp Cys Ala Ala His Thr Val Ala Ile Ala Asp Arg Ser Cys  
385 390 395 400

His Gln Ile Ile Cys Ala Pro Ala Gly Ala Pro Ile Pro Phe Ser Gly  
405 410 415

Ser Met Pro Leu Tyr Leu Ala Arg Val Asn Lys Asn Ser Gln Arg Glu  
420 425 430

Val Ala Val Phe Glu Gly Glu Tyr Val Lys Cys Pro Lys Asn Arg Lys  
435 440 445

Ile Cys Gly Ala Asn Ile Arg Phe Phe Asp Ile Gly Val Thr Gly Asp  
450 455 460

Ser Tyr Ala Pro Val Thr Phe Tyr Met Asp Phe Ser Ile Ser Ser Val  
465 470 475 480

Gly Ala Val Ser Phe Val Val Arg Gly Pro Glu Gly Lys Gln Val Ser  
485 490 495

Leu Thr Gly Thr Pro Ala Tyr Asn Phe Ser Ser Val Ala Leu Gly Ser  
500 505 510

Arg Ser Val Arg Glu Leu His Ile Ser Leu Asn Asn Lys Val Phe Leu  
515 520 525

Gly Leu Leu Leu His Arg Lys Ala Asp Arg Arg Ile Leu Phe Thr Lys  
530 535 540

Asp Glu Ala Ile Arg Tyr Ala Asp Ser Ile Asp Ile Ala Asp Val Leu  
545 550 555 560

Lys Glu Tyr Lys Ser Tyr Ala Ala Ser Ala Leu Pro Pro Asp Glu Asp  
565 570 575

Val Glu Leu Leu Leu Gly Lys Ser Val Gln Lys Val Leu Arg Gly Ser  
580 585 590

Arg Leu Glu Glu Ile Pro Leu  
595

## (2) INFORMATION FOR SEQ ID NO:10:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1656 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

|                                                                     |      |
|---------------------------------------------------------------------|------|
| ATGTCGAATT ACTCCTGGGA AAGTCTGTTC AAAAAGTTT ACAGGGAAAGC AGACTGGAAG   | 60   |
| AAATAACCTCT CTAGGAGCAT AGCAGCACAC TCAAGTGAAA TTAAAACCTCT ACCAGACATT | 120  |
| CGATTGTACG GCGGTAGGGT TGTAAGAAG TCCGAATTG AATCAGCACT TCCTAATTCT     | 180  |
| TTTGAACAGG ATTAGGACT GTTCATACTG AGCGAACGGG AAGTGGGATG GAGCAAATTA    | 240  |
| TGCGGAATAA CGGTGGAAGA AGCAGCATAAC GATCTTACGA ATCCCAAGGC TTATAAATTC  | 300  |
| ACTGCCGAGA CATGTAGCCC GGATGTAAAA GGTGAAGGAC AAAAATACTC TATGGAAGAC   | 360  |
| GTGATGAATT TCATGCGTTT ATCAAATCTG GATGTTAACG ACAAGATGCT GACGGAACAG   | 420  |
| TGTTGGTCGC TGTCGAATTTC ATGCGGTGAA TTGATCAACC CAGACGACAA AGGGCGATTC  | 480  |
| GTGGCTCTCA CCTTTAAGGA CAGAGACACA GCTGATGACA CGGGTGCCGC CAACGTGGAA   | 540  |
| TGTCGCGTGG GCGACTATCT AGTTTACGCT ATGTCCTGT TTGAGCAGAG GACCCAAAAAA   | 600  |
| TCGCAGTCTG GCAACATCTC TCTGTACGAA AAGTACTGTG AATACATCAG GACCTACTTA   | 660  |
| GGGAGTACAG ACCTGTTCTT CACAGCGCCG GACAGGATTG CGTTACTTAC GGGCATCCTA   | 720  |
| TACGATTTT GTAAGGAATA CAACGTTTC TACTCGTCAT ATAAGAGAAA CGTCGATAAT     | 780  |
| TTCAGATTCT TCTTGGCGAA TTATATGCCT TTGATATCTG ACGTCTTGT CTTCCAGTGG    | 840  |
| GTAAAACCCG CGCCGGATGT TCGGCTGCTT TTTGAGTTAA GTGCAGCGGA ACTAACGCTG   | 900  |
| GAGGTTCCA CACTGAGTTT GATAGATTCT CAAGTTGTGG TAGGTCATAT CTTAAGATAC    | 960  |
| GTAGAATCCT ACACATCAGA TCCAGCCATC GACGCGTTAG AAGACAAACT GGAAGCGATA   | 1020 |
| CTGAAAAGTA GCAATCCCCG TCTATCGACA GCGCAACTAT GGGTTGGTTT CTTTTGTTAC   | 1080 |
| TATGGTGAGT TTCGTACGGC TCAAAGTAGA GTAGTGCAA GACCAGGCGT ATACAAAACA    | 1140 |
| CCTGACTCAG TGGGTGGATT TGAAATAAAC ATGAAAGATG TTGAGAAATT CTTCGATAAA   | 1200 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| CTTCAGAGAG AATTGCCTAA TGTATCTTG CGCGTCAGT TTAACGGAGC TAGAGCGCAT   | 1260 |
| GAGGCTTTCA AAATATTTAA AACCGGAAAT ATAAGTTCA GACCTATATC GCGTTAAC    | 1320 |
| GTGCCTAGAG AGTTCTGGTA TCTGAACATA GACTACTTCA GGCACGCGAA TAGGTCCGGG | 1380 |
| TTAACCGAAG AAGAAAATCT CATCCTAAAC AACATAAGCG TTGATGTTAG GAAGTTATGC | 1440 |
| GCTGAGAGAG CGTGCAATAC CCTACCTAGC GCGAAGCGCT TTAGTAAAAA TCATAAGAGT | 1500 |
| AATATACAAT CATCACGCCA AGAGCGGAGG ATAAAGACC CATTGGTAGT CCTGAAAGAC  | 1560 |
| ACTTTATATG AGTTCCAACA CAAGCGTGCC GGTGGGGGT CTCGAAGCAC TCGAGACCTC  | 1620 |
| GGGAGTCGTG CTGACCACGC GAAAGGAAGC GGTGTA                           | 1656 |

## (2) INFORMATION FOR SEQ ID NO:11:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 551 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

|                                                                 |   |    |    |
|-----------------------------------------------------------------|---|----|----|
| Met Ser Asn Tyr Ser Trp Glu Ser Leu Phe Lys Lys Phe Tyr Gly Glu |   |    |    |
| 1                                                               | 5 | 10 | 15 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Ala Asp Trp Lys Lys Tyr Leu Ser Arg Ser Ile Ala Ala His Ser Ser |    |    |
| 20                                                              | 25 | 30 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Glu Ile Lys Thr Leu Pro Asp Ile Arg Leu Tyr Gly Gly Arg Val Val |    |    |
| 35                                                              | 40 | 45 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Lys Lys Ser Glu Phe Glu Ser Ala Leu Pro Asn Ser Phe Glu Gln Glu |    |    |
| 50                                                              | 55 | 60 |

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Leu Gly Leu Phe Ile Leu Ser Glu Arg Glu Val Gly Trp Ser Lys Leu |    |    |    |
| 65                                                              | 70 | 75 | 80 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Cys Gly Ile Thr Val Glu Glu Ala Ala Tyr Asp Leu Thr Asn Pro Lys |    |    |
| 85                                                              | 90 | 95 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Ala Tyr Lys Phe Thr Ala Glu Thr Cys Ser Pro Asp Val Lys Gly Glu |     |     |
| 100                                                             | 105 | 110 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Gly Gln Lys Tyr Ser Met Glu Asp Val Met Asn Phe Met Arg Leu Ser |     |     |
| 115                                                             | 120 | 125 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Asn Leu Asp Val Asn Asp Lys Met Leu Thr Glu Gln Cys Trp Ser Leu |     |     |
| 130                                                             | 135 | 140 |

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Ser Asn Ser Cys Gly Glu Leu Ile Asn Pro Asp Asp Lys Gly Arg Phe |  |
|-----------------------------------------------------------------|--|

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 145                                                             | 150 | 155 | 160 |
| Val Ala Leu Thr Phe Lys Asp Arg Asp Thr Ala Asp Asp Thr Gly Ala |     |     |     |
| 165                                                             |     | 170 | 175 |
| Ala Asn Val Glu Cys Arg Val Gly Asp Tyr Leu Val Tyr Ala Met Ser |     |     |     |
| 180                                                             |     | 185 | 190 |
| Leu Phe Glu Gln Arg Thr Gln Lys Ser Gln Ser Gly Asn Ile Ser Leu |     |     |     |
| 195                                                             |     | 200 | 205 |
| Tyr Glu Lys Tyr Cys Glu Tyr Ile Arg Thr Tyr Leu Gly Ser Thr Asp |     |     |     |
| 210                                                             |     | 215 | 220 |
| Leu Phe Phe Thr Ala Pro Asp Arg Ile Pro Leu Leu Thr Gly Ile Leu |     |     |     |
| 225                                                             |     | 230 | 240 |
| Tyr Asp Phe Cys Lys Glu Tyr Asn Val Phe Tyr Ser Ser Tyr Lys Arg |     |     |     |
| 245                                                             |     | 250 | 255 |
| Asn Val Asp Asn Phe Arg Phe Phe Leu Ala Asn Tyr Met Pro Leu Ile |     |     |     |
| 260                                                             |     | 265 | 270 |
| Ser Asp Val Phe Val Phe Gln Trp Val Lys Pro Ala Pro Asp Val Arg |     |     |     |
| 275                                                             |     | 280 | 285 |
| Leu Leu Phe Glu Leu Ser Ala Ala Glu Leu Thr Leu Glu Val Pro Thr |     |     |     |
| 290                                                             |     | 295 | 300 |
| Leu Ser Leu Ile Asp Ser Gln Val Val Val Gly His Ile Leu Arg Tyr |     |     |     |
| 305                                                             |     | 310 | 320 |
| Val Glu Ser Tyr Thr Ser Asp Pro Ala Ile Asp Ala Leu Glu Asp Lys |     |     |     |
| 325                                                             |     | 330 | 335 |
| Leu Glu Ala Ile Leu Lys Ser Ser Asn Pro Arg Leu Ser Thr Ala Gln |     |     |     |
| 340                                                             |     | 345 | 350 |
| Leu Trp Val Gly Phe Phe Cys Tyr Tyr Gly Glu Phe Arg Thr Ala Gln |     |     |     |
| 355                                                             |     | 360 | 365 |
| Ser Arg Val Val Gln Arg Pro Gly Val Tyr Lys Thr Pro Asp Ser Val |     |     |     |
| 370                                                             |     | 375 | 380 |
| Gly Gly Phe Glu Ile Asn Met Lys Asp Val Glu Lys Phe Phe Asp Lys |     |     |     |
| 385                                                             |     | 390 | 400 |
| Leu Gln Arg Glu Leu Pro Asn Val Ser Leu Arg Arg Gln Phe Asn Gly |     |     |     |
| 405                                                             |     | 410 | 415 |
| Ala Arg Ala His Glu Ala Phe Lys Ile Phe Lys Asn Gly Asn Ile Ser |     |     |     |
| 420                                                             |     | 425 | 430 |
| Phe Arg Pro Ile Ser Arg Leu Asn Val Pro Arg Glu Phe Trp Tyr Leu |     |     |     |
| 435                                                             |     | 440 | 445 |
| Asn Ile Asp Tyr Phe Arg His Ala Asn Arg Ser Gly Leu Thr Glu Glu |     |     |     |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 450                                                             | 455 | 460 |
| Glu Ile Leu Ile Leu Asn Asn Ile Ser Val Asp Val Arg Lys Leu Cys |     |     |
| 465                                                             | 470 | 475 |
| Ala Glu Arg Ala Cys Asn Thr Leu Pro Ser Ala Lys Arg Phe Ser Lys |     |     |
| 485                                                             | 490 | 495 |
| Asn His Lys Ser Asn Ile Gln Ser Ser Arg Gln Glu Arg Arg Ile Lys |     |     |
| 500                                                             | 505 | 510 |
| Asp Pro Leu Val Val Leu Lys Asp Thr Leu Tyr Glu Phe Gln His Lys |     |     |
| 515                                                             | 520 | 525 |
| Arg Ala Gly Trp Gly Ser Arg Ser Thr Arg Asp Leu Gly Ser Arg Ala |     |     |
| 530                                                             | 535 | 540 |
| Asp His Ala Lys Gly Ser Gly                                     |     |     |
| 545                                                             | 550 |     |

## (2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 672 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| ATGAGTTCCA ACACAAGCGT GCCGGTTGGG GGTCTCGAAC CACTCGAGAC CTCGGGAGTC  | 60  |
| GTGCTGACCA CGCGAAAGGA AGCGGTTGAT AAGTTTTTA ATGAACTAAA AAACGAAAAT   | 120 |
| TACTCATCAG TTGACAGCAG CCGATTAAGC GATTGGAAG TAAAAGAAGT GTTAGAGAAA   | 180 |
| AGTAAAGAAA GTTCAAAAG CGAACTGGCC TCCACTGACG AGCACTTCGT CTACCACATT   | 240 |
| ATATTTTCT TAATCCGATG TGCTAAGATA TCGACAAGTG AAAAGGTGAA GTACGTTGGT   | 300 |
| AGTCATACGT ACGTGGTCGA CGGAAAAACG TACACCGTTC TTGACGCTTG GGTATTCAAC  | 360 |
| ATGATGAAAA GTCTCACGAA GAAGTACAAA CGAGTGAATG GTCTGCGTGC GTTCTGTTGC  | 420 |
| GCGTGCAGAAG ATCTATATCT AACCGTCGCA CCAATAATGT CAGAACGCTT TAAGACTAAA | 480 |
| GCCGTAGGGA TGAAAGGTTT GCCTGTTGGA AAGGAATACT TAGGCGCCGA CTTTCTTTCG  | 540 |
| GGAACTAGCA AACTGATGAG CGATCACGAC AGGGCGGTCT CCATCGTTGC AGCGAAAAAC  | 600 |
| GCTGTCGATC GTAGCGCTTT CACGGGTGGG GAGAGAAAGA TAGTTAGTTT GTATGATCTA  | 660 |
| GGGAGGTACT AA                                                      | 672 |

## (2) INFORMATION FOR SEQ ID NO:13:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 223 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Ser Ser Asn Thr Ser Val Pro Val Gly Gly Leu Glu Ala Leu Glu  
1 5 10 15

Thr Ser Gly Val Val Leu Thr Thr Arg Lys Glu Ala Val Asp Lys Phe  
20 25 30

Phe Asn Glu Leu Lys Asn Glu Asn Tyr Ser Ser Val Asp Ser Ser Arg  
35 40 45

Leu Ser Asp Ser Glu Val Lys Glu Val Leu Glu Lys Ser Lys Glu Ser  
50 55 60

Phe Lys Ser Glu Leu Ala Ser Thr Asp Glu His Phe Val Tyr His Ile  
65 70 75 80

Ile Phe Phe Leu Ile Arg Cys Ala Lys Ile Ser Thr Ser Glu Lys Val  
85 90 95

Lys Tyr Val Gly Ser His Thr Tyr Val Val Asp Gly Lys Thr Tyr Thr  
100 105 110

Val Leu Asp Ala Trp Val Phe Asn Met Met Lys Ser Leu Thr Lys Lys  
115 120 125

Tyr Lys Arg Val Asn Gly Leu Arg Ala Phe Cys Cys Ala Cys Glu Asp  
130 135 140

Leu Tyr Leu Thr Val Ala Pro Ile Met Ser Glu Arg Phe Lys Thr Lys  
145 150 155 160

Ala Val Gly Met Lys Gly Leu Pro Val Gly Lys Glu Tyr Leu Gly Ala  
165 170 175

Asp Phe Leu Ser Gly Thr Ser Lys Leu Met Ser Asp His Asp Arg Ala  
180 185 190

Val Ser Ile Val Ala Ala Lys Asn Ala Val Asp Arg Ser Ala Phe Thr  
195 200 205

Gly Gly Glu Arg Lys Ile Val Ser Leu Tyr Asp Leu Gly Arg Tyr  
210 215 220

## (2) INFORMATION FOR SEQ ID NO:14:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 597 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

|            |             |            |            |             |            |     |
|------------|-------------|------------|------------|-------------|------------|-----|
| ATGGAGTTGA | TGTCCGACAG  | CAACCTTAGC | AACCTGGTGA | TAACCGACGC  | CTCTAGTCTA | 60  |
| AATGGTGTG  | ACAAGAAC    | TTTATCTGCT | GAAGTTGAAA | AAATGTTGGT  | GCAGAAAGGG | 120 |
| GCTCCTAACG | AGGGTATAGA  | AGTGGTGTTC | GGTCTACTCC | TTTACGCACT  | CGCGGCAAGA | 180 |
| ACCACGTCTC | CTAAGGTTCA  | GCGCGCAGAT | TCAGACGTTA | TATTTCAAA   | TAGTTTCGGA | 240 |
| GAGAGGAATG | TGGTAGTAAC  | AGAGGGTGAC | CTTAAGAAGG | TACTCGACGG  | GTGTGCGCCT | 300 |
| CTCACTAGGT | TCACTAATAA  | ACTTAGAACG | TTCGGTCGTA | CTTTCACTGA  | GGCTTACGTT | 360 |
| GACTTTGTA  | TCGCGTATAA  | GCACAAATT  | CCCCAACTCA | ACGCCGCGGC  | GGAATTGGGG | 420 |
| ATTCCAGCTG | AAGATTCGTA  | CTTAGCTGCA | GATTTCTGG  | GTACTTGCCC  | GAAGCTCTCT | 480 |
| GAATTACAGC | AAAGTAGGAA  | GATGTTCGCG | AGTATGTACG | CTCTAAAAAC  | TGAAGGTGGA | 540 |
| GTGGTAAATA | CACCA GTGAG | CAATCTGCGT | CAGCTAGGTA | GAAGGGAAAGT | TATGTAA    | 597 |

## (2) INFORMATION FOR SEQ ID NO:15:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 198 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Glu | Leu | Met | Ser | Asp | Ser | Asn | Leu | Ser | Asn | Leu | Val | Ile | Thr | Asp |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |     |
| Ala | Ser | Ser | Leu | Asn | Gly | Val | Asp | Lys | Lys | Leu | Leu | Ser | Ala | Glu | Val |
|     |     |     | 20  |     |     | 25  |     |     |     |     |     | 30  |     |     |     |
| Glu | Lys | Met | Leu | Val | Gln | Lys | Gly | Ala | Pro | Asn | Glu | Gly | Ile | Glu | Val |
|     | 35  |     |     |     | 40  |     |     |     |     |     | 45  |     |     |     |     |
| Val | Phe | Gly | Leu | Leu | Leu | Tyr | Ala | Leu | Ala | Ala | Arg | Thr | Thr | Ser | Pro |
|     | 50  |     |     |     |     | 55  |     |     |     |     | 60  |     |     |     |     |
| Lys | Val | Gln | Arg | Ala | Asp | Ser | Asp | Val | Ile | Phe | Ser | Asn | Ser | Phe | Gly |

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 65                                                              | 70  | 75  | 80  |
| Glu Arg Asn Val Val Val Thr Glu Gly Asp Leu Lys Lys Val Leu Asp |     |     |     |
| 85                                                              | 90  |     | 95  |
| Gly Cys Ala Pro Leu Thr Arg Phe Thr Asn Lys Leu Arg Thr Phe Gly |     |     |     |
| 100                                                             | 105 |     | 110 |
| Arg Thr Phe Thr Glu Ala Tyr Val Asp Phe Cys Ile Ala Tyr Lys His |     |     |     |
| 115                                                             | 120 |     | 125 |
| Lys Leu Pro Gln Leu Asn Ala Ala Ala Glu Leu Gly Ile Pro Ala Glu |     |     |     |
| 130                                                             | 135 |     | 140 |
| Asp Ser Tyr Leu Ala Ala Asp Phe Leu Gly Thr Cys Pro Lys Leu Ser |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Glu Leu Gln Gln Ser Arg Lys Met Phe Ala Ser Met Tyr Ala Leu Lys |     |     |     |
| 165                                                             | 170 |     | 175 |
| Thr Glu Gly Gly Val Val Asn Thr Pro Val Ser Asn Leu Arg Gln Leu |     |     |     |
| 180                                                             | 185 |     | 190 |
| Gly Arg Arg Glu Val Met                                         |     |     |     |
| 195                                                             |     |     |     |

## (2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 486 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| ATGGAAGATT ACGAAGAAAA ATCCGAATCG CTCATACTGC TACGCACGAA TCTGAACACT | 60  |
| ATGCTTTAG TGGTCAAGTC CGATGCTAGT GTAGAGCTGC CTAAACTACT AATTTGCGGT  | 120 |
| TACTTACGAG TGTCAGGACG TGGGGAGGTG ACGTGTTGCA ACCGTGAGGA ATTAACAAGA | 180 |
| GATTTTGAGG GCAATCATCA TACGGTGATC CGTTCTAGAA TCATACAATA TGACAGCGAG | 240 |
| TCTGCTTTG AGGAATTCAA CAACTCTGAT TGCCTAGTGA AGTTTTCCCT AGAGACTGGT  | 300 |
| AGTGTCTTT GGTTTTCCCT TCGAAGTGAA ACCAAAGGTA GAGCGGTGCG ACATTTGCGC  | 360 |
| ACCTTCTTCG AAGCTAACAA TTTCTCTTT GGATCGCATT GCGGTACCAT GGAGTATTGT  | 420 |
| TTGAAGCAGG TACTAACTGA AACTGAATCT ATAATCGATT CTTTTGCGA AGAAAGAAAT  | 480 |
| CGTTAA                                                            | 486 |

## (2) INFORMATION FOR SEQ ID NO:17:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 161 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Glu | Asp | Tyr | Glu | Glu | Lys | Ser | Glu | Ser | Leu | Ile | Leu | Leu | Arg | Thr |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     |     |     | 15  |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Leu | Asn | Thr | Met | Leu | Leu | Val | Val | Lys | Ser | Asp | Ala | Ser | Val | Glu |
|     |     |     |     | 20  |     |     |     | 25  |     |     |     |     | 30  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Pro | Lys | Leu | Leu | Ile | Cys | Gly | Tyr | Leu | Arg | Val | Ser | Gly | Arg | Gly |
|     |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Val | Thr | Cys | Cys | Asn | Arg | Glu | Glu | Leu | Thr | Arg | Asp | Phe | Glu | Gly |
|     | 50  |     |     |     | 55  |     |     |     | 60  |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | His | His | Thr | Val | Ile | Arg | Ser | Arg | Ile | Ile | Gln | Tyr | Asp | Ser | Glu |
| 65  |     |     |     |     | 70  |     |     |     | 75  |     |     |     | 80  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Ala | Phe | Glu | Glu | Phe | Asn | Asn | Ser | Asp | Cys | Val | Val | Lys | Phe | Phe |
|     |     |     |     | 85  |     |     |     | 90  |     |     |     |     | 95  |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Glu | Thr | Gly | Ser | Val | Phe | Trp | Phe | Phe | Leu | Arg | Ser | Glu | Thr | Lys |
|     |     |     |     | 100 |     |     |     | 105 |     |     |     | 110 |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Arg | Ala | Val | Arg | His | Leu | Arg | Thr | Phe | Phe | Glu | Ala | Asn | Asn | Phe |
|     | 115 |     |     |     |     | 120 |     |     |     |     | 125 |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Phe | Phe | Gly | Ser | His | Cys | Gly | Thr | Met | Glu | Tyr | Cys | Leu | Lys | Gln | Val |
|     | 130 |     |     |     | 135 |     |     |     | 140 |     |     |     |     |     |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Thr | Glu | Thr | Glu | Ser | Ile | Ile | Asp | Ser | Phe | Cys | Glu | Glu | Arg | Asn |
| 145 |     |     |     |     | 150 |     |     |     | 155 |     |     |     | 160 |     |     |

Arg

## (2) INFORMATION FOR SEQ ID NO:18:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 618 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| ATGAGGGTTA TAGTGTCTCC TTATGAAGCT GAAGACATTC TGAAAAGATC GACTGACATG | 60  |
| TTACGAAACA TAGACAGTGG GGTCTTGAGC ACTAAAGAAT GTATCAAGGC ATTCTCGACG | 120 |
| ATAACGCGAG ACCTACATTG TCGGAAGGCT TCCTACCAGT GGGGTGTTGA CACTGGGTTA | 180 |
| TATCAGCGTA ATTGCGCTGA AAAACGTTA ATTGACACGG TGGAGTCAAA CATA CGGTTG | 240 |
| GCTCAACCTC TCGTGCCTGA AAAAGTGGCG GTTCATTTT GTAAGGATGA ACCAAAAGAG  | 300 |
| CTAGTAGCAT TCATCACGCG AAAGTACGTG GAACTCACGG GCGTGGAGT GAGAGAAGCG  | 360 |
| GTGAAGAGGG AAATGCGCTC TCTTACCAAA ACAGTTTAA ATAAAATGTC TTTGGAAATG  | 420 |
| CGCTTTACA TGTCACCACG AGCGTGGAAA AACGCTGAAT GGTTAGAACT AAAATTTCA   | 480 |
| CCTGTGAAAA TCTTTAGAGA TCTGCTATTA GACGTGGAAA CGCTAACGA ATTGTGCGCC  | 540 |
| GAAGATGATG TTCACGTCGA CAAAGTAAAT GAGAATGGGG ACGAAAATCA CGACCTCGAA | 600 |
| CTCCAAGACG AATGTTAA                                               | 618 |

## (2) INFORMATION FOR SEQ ID NO:19:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 205 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

|                                                                 |     |     |    |
|-----------------------------------------------------------------|-----|-----|----|
| Met Arg Val Ile Val Ser Pro Tyr Glu Ala Glu Asp Ile Leu Lys Arg |     |     |    |
| 1                                                               | 5   | 10  | 15 |
| Ser Thr Asp Met Leu Arg Asn Ile Asp Ser Gly Val Leu Ser Thr Lys |     |     |    |
| 20                                                              | 25  | 30  |    |
| Glu Cys Ile Lys Ala Phe Ser Thr Ile Thr Arg Asp Leu His Cys Ala |     |     |    |
| 35                                                              | 40  | 45  |    |
| Lys Ala Ser Tyr Gln Trp Gly Val Asp Thr Gly Leu Tyr Gln Arg Asn |     |     |    |
| 50                                                              | 55  | 60  |    |
| Cys Ala Glu Lys Arg Leu Ile Asp Thr Val Glu Ser Asn Ile Arg Leu |     |     |    |
| 65                                                              | 70  | 75  | 80 |
| Ala Gln Pro Leu Val Arg Glu Lys Val Ala Val His Phe Cys Lys Asp |     |     |    |
| 85                                                              | 90  | 95  |    |
| Glu Pro Lys Glu Leu Val Ala Phe Ile Thr Arg Lys Tyr Val Glu Leu |     |     |    |
| 100                                                             | 105 | 110 |    |

- 120 -

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Thr | Gly | Val | Gly | Val | Arg | Glu | Ala | Val | Lys | Arg | Glu | Met | Arg | Ser | Leu |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 115 |     |     |     |     |     |     |     | 120 |     |     |     |     |     | 125 |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Thr | Lys | Thr | Val | Leu | Asn | Lys | Met | Ser | Leu | Glu | Met | Ala | Phe | Tyr | Met |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 130 |     |     |     |     |     |     |     | 135 |     |     |     |     |     | 140 |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Ser | Pro | Arg | Ala | Trp | Lys | Asn | Ala | Glu | Trp | Leu | Glu | Leu | Lys | Phe | Ser |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 145 |     |     |     |     |     |     |     | 150 |     |     |     | 155 |     | 160 |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Pro | Val | Lys | Ile | Phe | Arg | Asp | Leu | Leu | Asp | Val | Glu | Thr | Leu | Asn |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 165 |     |     |     |     |     |     |     |     |     | 170 |     |     | 175 |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Glu | Leu | Cys | Ala | Glu | Asp | Asp | Val | His | Val | Asp | Lys | Val | Asn | Glu | Asn |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 180 |     |     |     |     |     |     |     |     | 185 |     |     |     | 190 |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Gly | Asp | Glu | Asn | His | Asp | Leu | Glu | Leu | Gln | Asp | Glu | Cys |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 195 |     |     |     |     |     |     |     |     | 200 |     |     |     | 205 |     |     |

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 21 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TGCTGGAGCT TGAGGTTCTG C

21

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 31 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGGAATTCAC CATGGAGTTG ATGTCCGACA G

31

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 33 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- 121 -

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

AGCGGATCCA TGGCAGATTG GTGCGTAGCA GTA

33

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 216 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| ACATTGGTTA AGTTAACGA AAATGATTAG TAAATAATAA ATCGAACGTG GGTGTATCTA   | 60  |
| CCTGACGTAT CAACTTAAGC TGTTACTGAG TAATTAAACC AACAAAGTGTG GGTGTAATGT | 120 |
| GTATGTTGAT GTAGAGAAAA ATCCGTTGT AGAACGGTGT TTTCTCTTC TTTATTTTA     | 180 |
| AAAAAAAAAT AAAAAAAAAGC GGCGC                                       | 216 |

**WHAT IS CLAIMED:**

1. An isolated protein or polypeptide corresponding to a protein or polypeptide of a grapevine leafroll virus (type 2).
2. An isolated protein or polypeptide according to claim 1, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.
3. An isolated protein or polypeptide according to claim 2, wherein the protein or polypeptide is a polyprotein.
4. An isolated protein or polypeptide according to claim 3, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 3.
5. An isolated protein or polypeptide according to claim 2, wherein the protein or polypeptide is an RNA-dependent RNA polymerase having a molecular weight of from about 50 to about 54 kDa.
6. An isolated protein or polypeptide according to claim 5, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 5.
7. An isolated protein or polypeptide according to claim 2, wherein the protein or polypeptide is a heat shock 70 protein having a molecular weight of from about 63 to about 67 kDa.
8. An isolated protein or polypeptide according to claim 7, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 9.
9. An isolated protein or polypeptide according to claim 2, wherein the protein or polypeptide is a heat shock 90 protein having a molecular weight of from about 61 to about 65 kDa.

10. An isolated protein or polypeptide according to claim 9, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 11.

11. An isolated protein or polypeptide according to claim 2, wherein the protein or polypeptide is a coat protein having a molecular weight of from about 20 to about 24 kDa.

12. An isolated protein or polypeptide according to claim 11, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 15.

13. An isolated protein or polypeptide according to claim 2, wherein the protein or polypeptide is a diverged coat protein having a molecular weight of from about 23 to about 27 kDa.

14. An isolated protein or polypeptide according to claim 13, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 13.

15. An isolated protein or polypeptide according to claim 1, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 7.

16. An isolated protein or polypeptide according to claim 1, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 17.

17. An isolated protein or polypeptide according to claim 1, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 19.

18. An isolated protein or polypeptide according to claim 1, wherein the protein or polypeptide is purified.

19. An isolated protein or polypeptide according to claim 1, wherein the protein or polypeptide is recombinant.
20. An isolated RNA molecule encoding a protein or polypeptide according to claim 1.
21. An isolated RNA molecule according to claim 20, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.
22. An isolated DNA molecule encoding a protein or polypeptide according to claim 1.
23. An isolated DNA molecule according to claim 22, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.
24. An isolated DNA molecule according to claim 23, wherein the protein or polypeptide is a polyprotein comprising conserved regions of a helicase, a papain-like protease, and a methyltransferase.
25. An isolated DNA molecule according to claim 24, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 3.
26. An isolated DNA molecule according to claim 25, wherein the DNA molecule has a nucleotide sequence corresponding to SEQ. ID. No. 2.
27. An isolated DNA molecule according to claim 23, wherein the protein or polypeptide is an RNA-dependent RNA polymerase having a molecular weight of from about 50 to about 54 kDa.
28. An isolated DNA molecule according to claim 27, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 5.

29. An isolated DNA molecule according to claim 28, wherein the DNA molecule has a nucleotide sequence corresponding to SEQ. ID. No. 4.

30. An isolated DNA molecule according to claim 23, wherein the protein or polypeptide is a heat shock 70 protein having a molecular weight of from about 63 to about 67 kDa.

31. An isolated DNA molecule according to claim 30, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 9.

32. An isolated DNA molecule according to claim 31, wherein the DNA molecule has a nucleotide sequence corresponding to SEQ. ID. No. 8.

33. An isolated DNA molecule according to claim 23, wherein the protein or polypeptide is a heat shock 90 protein having a molecular weight of from about 61 to about 65 kDa.

34. An isolated DNA molecule according to claim 33, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 11.

35. An isolated DNA molecule according to claim 34, wherein the DNA molecule has a nucleotide sequence corresponding to SEQ. ID. No. 10.

36. An isolated DNA molecule according to claim 23, wherein the protein or polypeptide is a coat protein having a molecular weight of from about 20 to about 24 kDa.

37. An isolated DNA molecule according to claim 36, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 15.

38. An isolated DNA molecule according to claim 37, wherein the DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 14.

39. An isolated DNA molecule according to claim 23, wherein the protein or polypeptide is a diverged coat protein having a molecular weight of from about 23 to about 27 kDa.

40. An isolated DNA molecule according to claim 39, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 13.

41. An isolated DNA molecule according to claim 40, wherein the DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 12.

42. An isolated DNA molecule according to claim 22, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 7.

43. An isolated DNA molecule according to claim 42, wherein the DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 6.

44. An isolated DNA molecule according to claim 22, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 17.

45. An isolated DNA molecule according to claim 44, wherein the DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 16.

46. An isolated DNA molecule according to claim 22, wherein the protein or polypeptide comprises an amino acid sequence corresponding to SEQ. ID. No. 19.

47. An isolated DNA molecule according to claim 46, wherein the DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 18.

48. An isolated DNA molecule according to claim 22, wherein the DNA molecule comprises a nucleotide sequence corresponding to SEQ. ID. No. 23.

49. An expression system comprising an DNA molecule according to claim 22 in a vector heterologous to the DNA molecule.

50. An expression system according to claim 49, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent

RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.

51. A host cell transformed with a heterologous DNA molecule according to claim 22.

52. A host cell according to claim 51, wherein the host cell is selected from the group consisting of *Agrobacterium vitis* and *Agrobacterium tumefaciens*.

53. A host cell according to claim 51, wherein the host cell is selected from a group consisting of a grape cell, a citrus cell, a beet cell, and a tobacco cell.

54. A host cell according to claim 51, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.

55. A transgenic plant cultivar comprising the DNA molecule according to claim 22.

56. A transgenic plant cultivar according to claim 55, wherein the plant cultivar is selected from a group consisting of a grape plant cultivar, a citrus plant cultivar, a beet plant cultivar, and a tobacco plant cultivar.

57. A transgenic plant cultivar according to claim 55, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.

58. A method of imparting grapevine leafroll virus resistance to a *Vitis* scion or rootstock cultivar or a *Nicotiana* cultivar comprising:  
transforming a *Vitis* scion or rootstock cultivar or a *Nicotiana* cultivar with a DNA molecule according to claim 22.

59. A method according to claim 58, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA

polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.

60. A method according to claim 58, wherein the grapevine leafroll virus is GLRaV-2.

61. A method according to claim 58, wherein said transforming is *Agrobacterium* mediated.

62. A method according to claim 58, wherein said transforming comprises: propelling particles at grape or tobacco plant cells under conditions effective for the particles to penetrate into the cell interior and introducing an expression vector comprising the DNA molecule into the cell interior.

63. A method of imparting beet yellows virus resistance to a beet cultivar comprising:

transforming a beet cultivar with a DNA molecule according to claim 22.

64. A method according to claim 63, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.

65. A method according to claim 63, wherein said transforming is *Agrobacterium* mediated.

66. A method according to claim 63, wherein said transforming comprises: propelling particles at beet plant cells under conditions effective for the particles to penetrate into the cell interior and introducing an expression vector comprising the DNA molecule into the cell interior.

67. A method of imparting tristeza virus resistance to a citrus scion cultivar or rootstock cultivar comprising:

transforming a citrus scion cultivar or rootstock cultivar with a DNA molecule according to claim 22.

68. A method according to claim 67, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.

69. A method according to claim 67, wherein said transforming is *Agrobacterium* mediated.

70. A method according to claim 67, wherein said transforming comprises:  
propelling particles at citrus plant cells under conditions effective for the particles to penetrate into the cell interior and  
introducing an expression vector comprising the DNA molecule into the cell interior.

71. An antibody or binding portion thereof or probe recognizing the protein or polypeptide according to claim 1.

72. An antibody or binding portion thereof or probe according to claim 71, wherein the protein or polypeptide is selected from a group consisting of a polyprotein, an RNA-dependent RNA polymerase, a heat shock 70 protein, a heat shock 90 protein, a diverged coat protein, and a coat protein.

73. A method for detection of grapevine leafroll virus in a sample, said method comprising:  
providing an antibody or binding portion thereof recognizing the protein or polypeptide according to claim 1;  
contacting the sample with the antibody or binding portion thereof; and  
detecting any reaction which indicates that grapevine leafroll virus is present in the sample using an assay system.

74. A method according to claim 73, wherein the assay system is selected from a group consisting of enzyme-linked immunoabsorbent assay,

radioimmunoassay, gel diffusion precipitin reaction assay, immunodiffusion assay, agglutination assay, fluorescent immunoassay, protein A immunoassay, and immunoelectrophoresis assay.

75. A method for detection of grapevine leafroll virus in a sample, said method comprising:

providing a nucleotide sequence of the DNA molecule according to claim 22 as a probe in a nucleic acid hybridization assay;

contacting the sample with the probe; and

detecting any reaction which indicates that grapevine leafroll virus is present in the sample.

76. A method according to claim 75, wherein the nucleic acid hybridization assay is selected from a group consisting of dot blot hybridization, tissue printing, southern hybridization, and northern hybridization.

◦ 77. A method for detection of grapevine leafroll virus in a sample:

providing a nucleotide sequence of the DNA molecule according to claim 22 as a probe in a gene amplification detection procedure;

contacting the sample with the probe; and

detecting any reaction which indicates that grapevine leafroll virus is present in the sample.

78. A method according to claim 77, wherein the gene amplification detection procedure is selected from a group consisting of polymerase chain reaction and immunocapture polymerase chain reaction.

1/15



**FIG. 1A**



**FIG. 1B**



2/15



FIG. 2

SUBSTITUTE SHEET (RULE 26)



3/15

GLRaV2-PRO<sub>1</sub> SRVIYPDGRGYLAHMRYLCAFYCRPFRESDYALGMWPTVARLACVEKNFGVEACGIALRGYYTSRNVYHCDYDSAYVKYFRNLSGRIG/G  
 GLRaV2-PRO<sub>2</sub> TRIRYPNGFCYLAHCRYACAFLLRGFDPKRFDIGAPTAALKRNMVSELGERSLGLNLYGAYTSRGVFHCDYDAKFIKDLRLMSAVIA/G  
 BYV-P-PRO LQYRPGEGLCYLAHALCCALQKRTFREEDFFVGMYPTKFVAKRLTEKLGPALKPVGRQVSRLFHCDVASAFSSPFYSLPRFIG/G  
 Consensus .....G.CYLAH....CA...R.F.....G..PT.....G.....G...SR...HCD.....I./G

**FIG. 3A**

|            | <u>MT I</u>                                                                              | <u>MT IIa</u> | <u>MT II</u> |
|------------|------------------------------------------------------------------------------------------|---------------|--------------|
| GLRaV2-MTR | MSEATONSLTRFYPQFELKFHKSHSSDHPAASRLLENETLVRLCGNSVDIGCPLFHLHSKTQRRVHVCRPVLDGKDAQRRVVRLDQ   |               |              |
| BYV-MTR    | MGEAVQSLTRAYPQFNLSPFTHSVYSDHPAAAGSRLLENETLASMAKSSFDIGCPLFHIK-RGSTDYHVCRPIYDMKDAQRRVSRELQ |               |              |
|            | <u>MT IIa</u>                                                                            | <u>MT III</u> |              |
| GLRaV2-MTR | YSNVRLG-DDDKILEGPNNIDICHYPLGACDHESAMMVQVYDASLYEICGAMIKKSRTITYLTMVTGEFLDGRCVYMESDLCEIEV   |               |              |
| BYV-MTR    | ARGLVENLSREQLVEAQARVSVCPHTLGNCNVKSDVLIMVQVYDASLNEIASAMVLKESKVAYLTMVTGEELDEREAFADALGCDVV  |               |              |
|            | <u>MT IV</u>                                                                             |               |              |
| GLRaV2-MTR | DVHADVVVWYKFGSSCYSHKLSIIKDIIMTPYLTLLGGFLFSVEMYEVRMGVNYFKITKSEVSPSISCTLLRYRRANSVVVKLPREFD |               |              |
| BYV-MTR    | DTRRDVMQYKFGSSCYCHKLSNIKSIMLTPAFTFSGNLFSVEMYENRMGVNYKITSAYSPEIRGVKTLRYRACTEVVQVKLPREFD   |               |              |

**FIG. 3B**

|            | <u>HEL I</u>                                                                                | <u>HEL II</u>  | <u>HEL III</u> | <u>HEL IV</u> |
|------------|---------------------------------------------------------------------------------------------|----------------|----------------|---------------|
| GLRaV2-Hel | FVFTNSSVDILLYEAPPGGKTTTLIDSFLKVKFKGEVSTMILTANKSSQVEILKKVEEVSNIECQKRDKRSPKSIYTIDAYLMHHR      |                |                |               |
| BYV-Hel    | FTFTNLSANVLLYEAPPGGKTTTLIKVFCETFSK--VNSLILTANKSSREEILAKVNRLD-EGDTPLQTRDR--ILTIDSYLMNNR      |                |                |               |
|            | <u>HEL II</u>                                                                               | <u>HEL III</u> |                | <u>HEL IV</u> |
| GLRaV2-Hel | GCDADVLFIDEFCFMVHAGSVLACIEFTRCHKVMIFGDSRQIHYIERNELDKCLYGDLLRFVDLQCRVYGNISYRCPWDVCawlSTVYGNL |                |                |               |
| BYV-Hel    | GLTCVKVLYLDECFCMVHAGAAVACIEFTKCDSAIFGDSRQIHYGRCSLEDTAVLSDLNRFVDDESRVYGEVSYRCPWDVCawlSTFYPKT |                |                |               |
|            | <u>HEL V</u>                                                                                |                |                |               |
| GLRaV2-Hel | IATVKGESEGKSSMRINEINSVDDLVPDVGSTFLCMLQSEKLEISKHF--IRKGLTKLNVLTVHEAQGETYARVNVLVRKFQEDEPFKS   |                |                |               |
| BYV-Hel    | VATTNLVSAGQSSMQVREIESVDDVEYSEFVYLTMLQSEKKDLLKSFGRSRSSVEKPVLTVHEAQGETYRKVNLRKTQFQEDDPFRS     |                |                |               |
|            | <u>HEL VI</u>                                                                               |                |                |               |
| GLRaV2-Hel | IRHITVALSRHTDSLTYNVLAARRGDATCDAIQKAAELVNKFVRFPTSFGGS                                        |                |                |               |
| BYV-Hel    | ENHITVALSRHVESLTYSVLSSKRDDAIQAIVKAKOLVDAYRVYPTSFGGS                                         |                |                |               |

**FIG. 3C**

|             | <u>RdRP I</u>                                                                                 | <u>RdRP II</u>  | <u>RdRP III</u>  |
|-------------|-----------------------------------------------------------------------------------------------|-----------------|------------------|
| GLRaV2-RdRP | ICRFKLMVKRDAVKLDSSCLTKHSAQNMIFHRKSINAIFSPIFNEVKNRIMCLKPNIKFFTTEMTRDFASVVSNMLGDDDVYHIGEV       |                 |                  |
| BYV-RdRP    | ITTFKLMVKRDAVKLDSSCLVKHPPAQNMIFHRKAVNAIFSPCFDEFKNRVTCTNSIVFFTTEMNSTLASIAKEMLGSEHVNVEI         |                 |                  |
|             | <u>RdRP IV</u>                                                                                |                 | <u>RdRP V</u>    |
| GLRaV2-RdRP | DFSKYDKSQDAFVKAFEEMYKELGVDEELLAIWMGERLSIANTLDQQLSFTIENQRKSGASNTWIGNSLVTLGILSLYYDVRNFEALY      |                 |                  |
| BYV-RdRP    | DFSKPDKSQDAFIKSFERTLYSAFGFDEDLLDVMQGEYTSNATTLDQQLSFVNDQRKSGASNTWIGNSIETLGILSMFYTNRFKALF       |                 |                  |
|             | <u>RdRP VI</u>                                                                                | <u>RdRP VII</u> | <u>RdRP VIII</u> |
| GLRaV2-RdRP | ISGDDSLIFSRSSEISNYADDICTDMGFETKFMSPSPVYFCSKFVVMCGHKTFVPPDYPYKLFVKLGAVKEDVSMDFLFETFTSFKDLSDF   |                 |                  |
| BYV-RdRP    | VSGDDSLIFSSESPIRNSADAMCTELGPETKFLTPSPVYFCSKFFFVMTGHDVFFVPPDYPYKLLVKGASKDEVDDEFLFEVFTSFRDLTKDL |                 |                  |
|             | <u>RdRP IX</u>                                                                                |                 |                  |
| GLRaV2-RdRP | NDERLIQKLAELVALKYEVQTGNNTLAL                                                                  |                 |                  |
| BYV-RdRP    | VDERVIELLTHLVHSKYGYESGDTYAAL                                                                  |                 |                  |

**FIG. 3D**  
SUBSTITUTE SHEET (RULE 26)



4/15

|           |                                                              |
|-----------|--------------------------------------------------------------|
| GLRaV-2   | CAUGAUAAAGCAGGUGGU <u>UACCGUAGUUCGGUCCGCAGGGAUUCCGGUAGA</u>  |
| BV        | CAOGACCOGCGAGGGGU <u>UAGCTCGAUUCCGUCCGCAAGGGAUUCCUAAGAGG</u> |
| BYSV      | CAOGAUGAACAGGCGGU <u>UACCGUAGUUCGGUCCGCAAGGCAUCCUAAGG</u>    |
| CTV       | CAOGAACCGGCUUCGGGU <u>UACCGUAGUUCGGUCCGCAAGGAAUCCUCCAAGA</u> |
| Consensus | CA.GA.....CG.GUU..GC....U....UC.CA.GC.AU.CC....AG.           |

**FIG. 4A**

|           |                                          |
|-----------|------------------------------------------|
| GLRaV-2   | H D K Q R V <u>S</u> V V R S Q A I P R R |
| BV        | H D P Q R V <u>S</u> S I R S Q A I P K R |
| BYSV      | H D E Q R V <u>S</u> V V R S Q A I P K R |
| CTV       | H E P A R V <u>G</u> V V R S Q A I P P R |
| Consensus | H . . . R V . . . R S Q A I P . R        |

**FIG. 4B**



5/15

|                     |                  |          |                                                                                                     |
|---------------------|------------------|----------|-----------------------------------------------------------------------------------------------------|
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>A</b> | <b>MVTFELDEGTTFSVCKYDGRFESTKQNSAHTPTVLLFESQNTMGEAEESTMSNLKVKGCSFYRDIKRWMGCDSSNLVAVLDRUKP</b>        |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>B</b> | <b>MVTFELDEGTTFSVAYVGEEYLFKQDGSANPTVFLKSDTQEAFGYDAEVLSNULSVRCGYRDIKRWMGCDDEENTRDLEKXP</b>           |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>C</b> | <b>HYSVRUWKIGSENEVNSIGNEGGTVKSEAHLPCELLALFTKAVISCAEFFACTCTGTVCSVPAWNTSVRNEIDQCVSLLSGTQCVCVADIN</b>  |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>D</b> | <b>HYKTELLKVAQSSSTVKLUDCYSCTVQPQATLPGTIAITFVKALISTASEPKFCQCTGTVCSVPAWNTLQRSFTESCVNLSGIPRCVCVMVN</b> |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>E</b> | <b>EPSAAALSAQNTGKSANLAVTFECGCTEDVSIISIANTFVRASCGINLGCRDVDRATLTHFSUITSLEPOLUTLDISNLKESLSRT</b>       |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>F</b> | <b>EPSAAALSAQNTGKSANLAVTFECGCTEDVSIISIANTFVRASCGINLGCRDIDKAFAVEHLANKAQOLPWNWKDISFLKESLSRK</b>       |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>G</b> | <b>DREIVYTLLRGVDGERKEDVRWNKNTLTSMLPYWNRKXILESTLKSAKSNESARVKCDWLVIGGSSVLPGLADVLTKHQSMVRILRS</b>      |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> | <b>H</b> | <b>VSEFINPVSEQGVRVDTLWWSLAEADAPVERTKIVEMYEKYSRPLFENWAKLIMVGGSSVLPGLSLSSLTEPVDECMLP</b>              |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> |          | <b>DPERAIVAGCALYSSCLSGSCCHLIDCAAKTVALADSQICAPAGAPIPFSGSSEPLYLARVNKNQSREVAVEFEGZEVKRCRKCJIC</b>      |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> |          | <b>DARANVACCOMLYSACTFRDSPMLMDCAKNNLISSSKTCESTCVPAGSPPIPFGVTKVMTGMSASAVYSAALFECEEVKCRUNRUF</b>       |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> |          | <b>GANIRFTDGVTCESYAPVTFYMDFSSISSKAVSVWRGPESKQVSLTGPAYNFSSVALCSRVSREHISINNKVFLCLLIIHRKADEI</b>       |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> |          | <b>FGDWLQWVGCTTSRTRVPLTEINSSSGTFSIANGPTGKAVLICCATAYDFSSYQGERWADJHKANSTKVKLJHALTQPFORK</b>           |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> |          | <b>LFTRDEAIRYADSI--DIADMKEYKSYAASALPPDDEWELLGSKXMRGSRLEEIPL.</b>                                    |
| <b>G1RaV2-HSP70</b> | <b>BIV-HSP70</b> |          | <b>KLJDGDKALFLKRLTADYRREARRKESYYDDAVL--NESSELIIGRUTFILRGSRVKEKID-V</b>                              |

**FIG. 5**



6/15

|            |                                                                                    |      |                                                                                    |                                     |
|------------|------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------|-------------------------------------|
| M          | -ELMSDN--                                                                          | L    | --SLVITD--                                                                         | -ASSENGVIDKUUSAVERMUVK--GARNE       |
| G1RaV2-CP  | M-SSNTSVVOGELETSKEF                                                                |      | M-SSNTSVVOGELETSKEF                                                                | -SELASTDE                           |
| G1RaV2-CPd | M-SSNTSVVOGELETSKEF                                                                |      | M-SSNTSVVOGELETSKEF                                                                | -SELASTDE                           |
| BIV-CP     | M-GSAEP-                                                                           | -ISA | M-GSAEP-                                                                           | -ISA                                |
| BIV-CPd    | M-LAFAEADLH-                                                                       |      | M-LAFAEADLH-                                                                       | -LATENSLAD--                        |
| BIV-CP     | M-GGND-                                                                            |      | M-GGND-                                                                            | -ENSYDAEYSEVENRKURKNEEECILKU--GVEDD |
| BIV-CPd    | M-PFORGAELNERNAKKSLEVFSSETREKVG                                                    |      | M-PFORGAELNERNAKKSLEVFSSETREKVG                                                    | -ENSYDAEYSEVENRKURKNEEECILKU--GVEDD |
| BIV-CP     | M-DEDEIKUKKRNKANEKEEDOWVAESESSVN--                                                 |      | M-DEDEIKUKKRNKANEKEEDOWVAESESSVN--                                                 | -ENSYDAEYSEVENRKURKNEEECILKU--GVEDD |
| CTV-CP     | M-AGTYVLPKDOKEMDPYSAVRGPODTERYVARSVDALIEGVSKUDNSTEDSTEPTGEHLKXWMTDFLL--ENRKTIE     |      | M-AGTYVLPKDOKEMDPYSAVRGPODTERYVARSVDALIEGVSKUDNSTEDSTEPTGEHLKXWMTDFLL--ENRKTIE     |                                     |
| CTV-CPd    | M.....                                                                             |      | M.....                                                                             |                                     |
| Consensus  | M.....                                                                             |      | M.....                                                                             |                                     |
| G1RaV2-CP  | G LEVF GILLVALAARTSERVORADEDVIFNSGE-ERMWTEEDIKVUGCAPTRFTNKLRICHFRTEAYWFCIARKKL PQL |      | G LEVF GILLVALAARTSERVORADEDVIFNSGE-ERMWTEEDIKVUGCAPTRFTNKLRICHFRTEAYWFCIARKKL PQL |                                     |
| G1RaV2-CPd | HFWHT JFLFLRCAKTSCEKVKY--VGSH--TWWEDEKTYWLDAWENMKSLIKKVKRNGLRAFGCCEILYVIAPIMSBFTKL |      | HFWHT JFLFLRCAKTSCEKVKY--VGSH--TWWEDEKTYWLDAWENMKSLIKKVKRNGLRAFGCCEILYVIAPIMSBFTKL |                                     |
| BIV-CP     | N.GTALGCLYSCATIGTSKWKQPISTIKASFGCGKEMLTGEINSFGLSQRLLERPKRLRCERIFORDLISRKRKGUPJ     |      | N.GTALGCLYSCATIGTSKWKQPISTIKASFGCGKEMLTGEINSFGLSQRLLERPKRLRCERIFORDLISRKRKGUPJ     |                                     |
| BIV-CPd    | IFVKKHLAFALTRAANTTSKWKY--VGAY--ETIGEGKFLWDWVFPLIKEOMKERNKNEVRICAFEDAYIVDARSPLKFIN- |      | IFVKKHLAFALTRAANTTSKWKY--VGAY--ETIGEGKFLWDWVFPLIKEOMKERNKNEVRICAFEDAYIVDARSPLKFIN- |                                     |
| BIV-CP     | GPPTLGMLVALATLSTSKEKDEDECTPLMSAKDAN-VITYEDINFANSUTLKKWNLKFLVTAKEEEXYLFRYRQKHLIENI  |      | GPPTLGMLVALATLSTSKEKDEDECTPLMSAKDAN-VITYEDINFANSUTLKKWNLKFLVTAKEEEXYLFRYRQKHLIENI  |                                     |
| BIV-CPd    | DIYHVAFFELIASVSTSERVY--KGSI--SSTSDORKYNDWIPQKLASKHFKPLGARCASEGMLSWAFLCPDAGT-       |      | DIYHVAFFELIASVSTSERVY--KGSI--SSTSDORKYNDWIPQKLASKHFKPLGARCASEGMLSWAFLCPDAGT-       |                                     |
| BIV-CP     | EKFRIAMLYELAVKSSTQSDAIGITTR--BEVELSKLWDWVENSKEIGQRTNALRWGIRNDALYIACRQBN-LSIG       |      | EKFRIAMLYELAVKSSTQSDAIGITTR--BEVELSKLWDWVENSKEIGQRTNALRWGIRNDALYIACRQBN-LSIG       |                                     |
| CTV-CP     | LLMHLMHQRELYTISTSKTKRDGCI--SWOCGLRMKLIKVVFPLISKFDIDRETFLRKFACTFEELHLCARLRFPLDNEY-  |      | LLMHLMHQRELYTISTSKTKRDGCI--SWOCGLRMKLIKVVFPLISKFDIDRETFLRKFACTFEELHLCARLRFPLDNEY-  |                                     |
| CTV-CPd    | S.....                                                                             |      | S.....                                                                             |                                     |
| Consensus  | S.....                                                                             |      | S.....                                                                             |                                     |
| G1RaV2-CP  | NPAELGIPADESVIAADFL-GTICKLSELOQSRKIEFASWALKTESGMNTP-VSNLRQGRR-EYM                  |      | NPAELGIPADESVIAADFL-GTICKLSELOQSRKIEFASWALKTESGMNTP-VSNLRQGRR-EYM                  |                                     |
| G1RaV2-CPd | KAVGKGLPVEKEVIAADFISGKMSLTHOJUSTRVAKNAWBSAFTGERKIVSLSYDGR-Y                        |      | KAVGKGLPVEKEVIAADFISGKMSLTHOJUSTRVAKNAWBSAFTGERKIVSLSYDGR-Y                        |                                     |
| BIV-CP     | APANHGGLPAAEHMIAADF-STSTEETDLOSR-ILLARENATHEFSESSEPVTSLSQGRGTRGER                  |      | APANHGGLPAAEHMIAADF-STSTEETDLOSR-ILLARENATHEFSESSEPVTSLSQGRGTRGER                  |                                     |
| BIV-CPd    | RILGRGRGIPSGIEFICADELTATSVCLNDEAVIOQASPAILDRVSSVODGTVSLSFLGRU--S                   |      | RILGRGRGIPSGIEFICADELTATSVCLNDEAVIOQASPAILDRVSSVODGTVSLSFLGRU--S                   |                                     |
| BIV-CP     | APANKHGPADSVVIADDFV-QTSNLKEHQMV-LLERNAPATASSGTRES-AMNLRIG--GS SK                   |      | APANKHGPADSVVIADDFV-QTSNLKEHQMV-LLERNAPATASSGTRES-AMNLRIG--GS SK                   |                                     |
| BIV-CPd    | PSVGRGRGAPSGEVICADFLUSTCPLMSD-DRVALASASNAULSAASQDIDKRNLSYDGRKVYT                   |      | PSVGRGRGAPSGEVICADFLUSTCPLMSD-DRVALASASNAULSAASQDIDKRNLSYDGRKVYT                   |                                     |
| CTV-CP     | GRPDLAIGPAGHIVICADEL-TGCGTSDLE-CAVTQAREQOLIKRGADUV-VTNVRQGKF--NTR                  |      | GRPDLAIGPAGHIVICADEL-TGCGTSDLE-CAVTQAREQOLIKRGADUV-VTNVRQGKF--NTR                  |                                     |
| CTV-CPd    | KUTTRAGTPHLKGVSIAADFISGKMSLTHOJUSTRVAKNAWBSAFTGERKIVSLSYDGR-YL                     |      | KUTTRAGTPHLKGVSIAADFISGKMSLTHOJUSTRVAKNAWBSAFTGERKIVSLSYDGR-YL                     |                                     |
| Consensus  | G.P.....L. ADF.....                                                                |      | G.P.....L. ADF.....                                                                |                                     |

FIG. 6A



7/15



FIG. 6B



8/15



FIG. 7



9/15



**FIG. 8**



10/15

**FIG. 9**

|              |                                                                    |
|--------------|--------------------------------------------------------------------|
| GLRaV2-HSp90 | MS-----NYSWESLFKKFYGEADWKYLSRSIAAHSSIEKTLPDFIRLYGGRVVKSEFESALP     |
| BYV-HSP90    | MTTRFSTPANYWGELFRRFGQQEWKNMSEAASVSRPRYSS--DFRFSDGVILSRKTGSTG       |
| BYSV-HSP90   | MSRR-PTFAGYSWGSFLFKRHYGEPEWKSYLTETSMKYKPLKSE--SITFYDGSSLTSAELRPARS |
| CTV-HSP90    | MSSH-----HVWGSFLRKFYGEAIWKEYLSESTRNFDERVSL-DHTLSSGVVRRQSLLNAPO     |
| Consensus    | M.....W..LF....G...WK.....G.....                                   |

|              |                                                                   |
|--------------|-------------------------------------------------------------------|
| GLRaV2-HSp90 | NSFEQE--LGLFILSEREVGWS-KLCGITVEEAAYDLTNPKAYKFTAETCSPDVKGEGQKYSMED |
| BYV-HSP90    | ESFVREFSL-LTFPKTYE--VCKLCGVAMELAINGMNRLSDYN-VSEFNIVDVKTVGCKFNIQS  |
| BYSV-HSP90   | GT--AEYEIALLIFSDSITKWSEKL-ERSIYRGLNQINNHSIYA-ETELEVTDVKTIGCKFTISA |
| CTV-HSP90    | GTFENE--LALLYNSVVINDFVE-LTGMPKSLMTGIEDRKV---PDELISVDPHEVGCRFTLND  |
| Consensus    | .....E....L.....L.....E....D....G.....                            |

|              |                                                                   |
|--------------|-------------------------------------------------------------------|
| GLRaV2-HSp90 | VMNFMRSLSNLDVNDKMLTEQCWSLSNSCGELINPDDKGRFVALTFKDRDTADDGAANVECRVGD |
| BYV-HSP90    | VTEFVKINGNVAEPLSVEHCWSLSNSCGELINPKDTKRFVSLIFKGKDIAESTDEAIVSSSYLD  |
| BYSV-HSP90   | VESFM---GGRASAAQVEHCWSLSNSCGELINPNNTARFIQLVFQDKAVTEQAQ-VNTSGSVSD  |
| CTV-HSP90    | VESYLMRGEDFADLAAVEHWSWCLSNSCGRLLSSTEIDAYKTLVFT-KNF--DSNVSGVTTKLET |
| Consensus    | V.....E..W.LSNSCG.L.....L.F.....                                  |

|              |                                                                   |
|--------------|-------------------------------------------------------------------|
| GLRaV2-HSp90 | YLVYAMSLFEQRTOQSQSGNISLYEKYCEYIRTYLGSTDLFATPDRIPLLTGILYDFCKEYNVF  |
| BYV-HSP90    | YLSHCLNLYETCNLSSNSGKKSPLYDEFLKVIDYLENSDLEYRSPSDNPLVAGILYDMCFEYNTL |
| BYSV-HSP90   | YLVYCLQLYDNSKKKSAGRTQLMESYVSFIRDFFQHSDLYYRSPLDNPLLTGVLYDLCIEHNVL  |
| CTV-HSP90    | YLSYCISLYKKHCMKDD-DYFNLLPMFNCLMKVLASLGLFYEHADNPLTGMLIEFCLENKVY    |
| Consensus    | YL.....L.....L.....L.....PL..G.L...                               |

|              |                                                                  |
|--------------|------------------------------------------------------------------|
| GLRaV2-HSp90 | YSSYKRNVNDNFRFFLANYMPL1SDVFVFOWVKPAPDV---RLLFELSAELTLEVPTLSLIDSQ |
| BYV-HSP90    | KSTYLNIESFDCFLSLYLPPLLSEVFSMNWERPAPDV---RLLFELDAEELLKVPTINMHYST  |
| BYSV-HSP90   | RGSYLNLDNFRFLKQTYLPMIDDIFDYSWELYAPDE---RLLFPIDPYEIIKEVPTMSVIDAN  |
| CTV-HSP90    | YSTFKVNLDNVRFLFKSKVLPVVLTV---WDISEPDDPMDERVLIPFDPTDFVLDLPKLNIDTM |
| Consensus    | .....N.....F.....P.....W....PD.....R.L.....P....D..              |

|              | I                                                                   | II |
|--------------|---------------------------------------------------------------------|----|
| GLRaV2-HSp90 | VVVGHILRYVESYTSMDAILEDKLEAILKSSNPRLSTAQLWVGFFCYGEFRTAQSRVVQRPG      |    |
| BYV-HSP90    | FLYKNLRLYLESYFEDDSNELIKVKVVDSSLTRDNPELKLAQRWVGFHCYGVFRTAQTRVKRDA    |    |
| BYSV-HSP90   | VVLSNKLVYLDSYLENNSILALEKKIISILCRDNEGIDE GALWAAFFCYGTYRTARQRVVKRPD   |    |
| CTV-HSP90    | VVVGNIQIRQLEYVVESDALDDLSQLHVDLRLAADNPDLRVGLRWAGMFVYYGVYRCVVDRAYERPT |    |
| Consensus    | .....L...N.....W.....YYG..R....R.V.R..                              |    |

|              | II                                                               |  |
|--------------|------------------------------------------------------------------|--|
| GLRaV2-HSp90 | VYKTPDSV-----GGFEINMKDVEKFFDKLQRELNPVSLRQFNGARAHEAFKIFKNGNISFRP  |  |
| BYV-HSP90    | EYKLPAL-----GEFVINMSGVEEFFFEELQKKMPSISVRRFCGSLSHAFSVFKRFGVGFPP   |  |
| BYSV-HSP90   | TYELDGIF-----SKPIV-MSGVELFFDELQKRPDVSLRRRFNGAKAGEAITVFKKLGISFPP  |  |
| CTV-HSP90    | LFRLPQKLLSQDDGESCSLHMGSVEALFNLVQKVNKDINVRRQFMGRHSEVALRLYRNGLRFFF |  |
| Consensus    | .....M..V..F...Q.....RR.F.G....A.....F.P                         |  |

|              | II                                                               |  |
|--------------|------------------------------------------------------------------|--|
| GLRaV2-HSp90 | ISRLNVPREFWYLNIDYFRHANRSGLTEEEILNNISVDVRLCAERACN-----TLPSAKR     |  |
| BYV-HSP90    | ITRLNVPVKSYLNVDYYRHVKRVLQTQDELTILSNIEDVAAEMCCEREVALQAR--RAQRGEKP |  |
| BYSV-HSP90   | ITRLNAPSKSYLNIDYFKQANSGLTEPEKIILCNIAKDVMCAQRISSVKA-----KP        |  |
| CTV-HSP90    | ISSVRLPAHHGYLYVDFYKRPDVGAUTADELESRQLRSSVDMCKDRVSITPPFNRLRRGSSR   |  |
| Consensus    | I.....P....YL..D.....T..E...L.....V...C..R.....                  |  |

|              |                                                             |
|--------------|-------------------------------------------------------------|
| GLRaV2-HSp90 | FSKNHKSNIQSSRQERRIKDPLVVLKDTLYEFQHKRAGWGSRSTRDLGSRADHAKGSG. |
| BYV-HSP90    | FQGWKGTKNEISPHARSSIRVKNNNDSSLNILWKGARSQRRLNPLHRK-----H      |
| BYSV-HSP90   | IAQRNG--EAINSAKIRTLPTNTLVRALEKCLLNQAPSWWNTLTNLR             |
| CTV-HSP90    | TFRGRGARGASSRMSRDVATSGFNLPYHGRLY-----STS                    |
| Consensus    | .....                                                       |



11/15

|               |                                                                   |     |
|---------------|-------------------------------------------------------------------|-----|
| GLRaV2 3'-UTR | TTAAGCTGTTACCTGAGTAATTAAACCAACAACTGTTGGTGTATGTTATGTTATGTTAGTAGA   | 135 |
| BYS 3'-UTR    | TTAAGCTGTTACAGAGTGACAAACGCCACCAAGCTGTTAGTGGCTTAGTGGTATGTAATTACGAA | 95  |
| BYSV 3'-UTR   | TTAAGCCCTCACAGGCGAGAACGTTGCAAGGCCAATTAGTGTGTAGTATAATTAA           | 181 |
| CTV 3'-UTR    | CTAAGCTCCCACAGAGTGGTAGGTGTCAGTGTGAGCTAACGTATGCCGAACCAAAAGA        | 208 |
| Consensus     | .TAAG . . . AC . GAG . . . . CAAG . G . . . T . . . . A           |     |

## FIG. 10



12/15

**FIG. 11A****FIG. 11B**  
SUBSTITUTE SHEET (RULE 26)



13/15



***FIG. 12***

SUBSTITUTE SHEET (RULE 26)



14/15



***FIG. 13***

SUBSTITUTE SHEET (RULE 26)



15/15

|    |    |
|----|----|
| 1  | 20 |
| 2  | 21 |
| 3  | 22 |
| 4  | 23 |
| 5  | 24 |
| 6  | 25 |
| 7  | 26 |
| 8  | 27 |
| 9  | 28 |
| 10 | 29 |
| 11 | 30 |
| 12 | 31 |
| 13 | 32 |
| 14 | 33 |
| 15 | 34 |
| 16 | 35 |
| 17 | 36 |
| 18 | 37 |
| 19 | 38 |

***FIG. 14***



## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/10313

## A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/2, 44; 530/350, 826; 536/22.1, 23.72; 424/130.1, 159.1; 435/ 172.2, 172.3, 410; 436/512

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN, APS

search terms: protein, grapevine leafroll virus, tristeza virus, citrus plants

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                  | Relevant to claim No.                                        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| P, X      | WO 97/22700 A3 (CORNELL RESEARCH FOUNDATION, INC.)<br>26 June 1997, see entire document.                                                                                                                                                                            | 1-3, 5, 7, 9, 11,<br>13, 18-24, 27, 30,<br>33, 36, 39, 49-78 |
| X         | Database Caplus on STN, The American Chemical Society, No.<br>125:138016, LING, K. 'Coat protein gene identification, genome<br>organization, and pcr detection of grapevine leafroll associated<br>cloterovirus-3 and study towards transgenic grapevines (vitis). | 1-3                                                          |
| X         | HABILI ET AL. Natural Spread and Molecular Analysis of<br>Grapevine Leafroll-Associated Virus 3 in Australia. Phytopathology.<br>November 1995, Volume 85, Number 11, pages 1418-1422, see<br>entire document.                                                      | 1-3, 20-23, 71-73,<br>75                                     |

 Further documents are listed in the continuation of Box C.

See patent family annex.

|     |                                                                                                                                                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *T* | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| *X* | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| *Y* | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| *&* | document member of the same patent family                                                                                                                                                                                                    |

Date of the actual completion of the international search  
  
17 SEPTEMBER 1998

Date of mailing of the international search report

14 OCT 1998

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231  
Facsimile No. (703) 305-3230Authorized officer  
AXISH GUPTA  
Telephone No. (703) 308-0196

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/US98/10313

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                  | Relevant to claim No. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | SALDARELLI ET AL. 'Detection of Grapevine Leafroll-Associated Closterovirus III by Molecular Hybridization' Plant Pathology, Volume 43, Number 1, pages 91-96, see entire document. | 1-3                   |
| X         | LING ET AL. 'Partial Genome Organization of Grapevine leafroll-associated clostervirus', Phytopathology, Volume 85, Number 10, page 1152, abstract number 302.                      | 1-3                   |

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/10313

## Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.  Claims Nos.: 4, 6, 8, 10, 12, 14-17, 25-26, 28-29, 31-32, 34-35, 37-38, 40-48 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:  

The claimed subject matter is drawn to large amino acid or nucleotide sequences that require a sequence search. However the applicant has not complied with sequence listing requirement and therefore a sequence search could not be conducted.
3.  Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

## Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

  

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/10313

A. CLASSIFICATION OF SUBJECT MATTER:  
IPC (6):

C12N 15/02, 15/11, 15/40, 15/54, 15/82; C07K 14/005, 14/01, 14/08, 16/08; C12Q 1/68; G01N 33/53

A. CLASSIFICATION OF SUBJECT MATTER:  
US CL :

514/2, 44; 530/350, 826; 536/22.1, 23.72; 424/130.1, 159.1; 435/ 172.2, 172.3, 410; 436/512

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING  
This ISA found multiple inventions as follows:

Group I , claim(s)1-3,5,7,9,11,13,18,AND 19, drawn to the polypeptide.

Group II, claim(s) 20-21, drawn to drawn to the RNA.

Group III, claim(s) 22-24, 27,30,33,36, and 39, drawn to DNA.

Group IV , claim(s)49-50, drawn to an expression system.

Group V, claim(s) 51-54, drawn to a host cell.

Group VI, claim(s)55-57, drawn to transgenic plant.

Group VII , claim(s)58-62, drawn to a method of imparting grapevine leafroll virus.

Group VIII, claim(s) 63-66, drawn to drawn to method of imparting beet yellows virus.

Group IX, claim(s) 67-70, drawn to method of imparting tristeza virus.

Group X, claim(s)71-72, drawn to an antibody.

Group XI, claim(s) 73-74, drawn to a method of detecting the grapevine leafroll virus utilizing an antibody.

Group XII, claim(s)75-78, drawn to a method of detecting the grapevine leafroll virus utilizing a nucleotide sequence.

The inventions listed as Groups I-XII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I, II, III, X are distinct in that they do not share a common structural core. Groups VII, VIII, IX are distinct in that each method utilizes a different viruses and thus the methods are different. Groups XI and XII are distinct in that the method of detection utilize different and structurally distinct compounds. Group XI utilizes a antibody while Group XII utilize a nucleotide sequence. Finally, Groups IV, V, and VI are distinct in that and they are structurally distinct from one another and they utilize different methods and techniques for achieving the desired product.