Latest Research in Computer Graphics and Graphics in Games

ISTD 50.017 Sai-Kit Yeung

Final Project

- Presentation
 - Next Wednesday 8:40-10:30am
 - 15 mins: 11-13 mins + 2-4 mins Q&A
 - Criteria: Organization, Style & Pace,
 Content: depth and accuracy, Use of Visual aids
 - Tips for giving clear talk:
 - http://www.cs.cmu.edu/~kayvonf/misc/ cleartalktips.pdf

Final Project

- Report
 - Due on 4th May 11:55pm
 - Hand in your code, data, etc
 - Refine your proposal with
 - Methodology
 - Actual implementation
 - Results
 - Explain any change you have made

Game Development Outline

- Game Development
 - -Typical Process
- What's in a game?
 - -Game Simulation
 - Numeric Computation
 - -Shading

Tim Sweeney

http://www.cs.princeton.edu/~dpw/popl/06/ Tim-POPL.ppt

Game Development: Gears of War

- Resources
 - -~10 programmers
 - -~20 artists
 - -~24 month development cycle
 - -~\$10M budget
- Software Dependencies
 - -1 middleware game engine
 - -~20 middleware libraries
 - -OS graphics APIs, sound, input, etc

Software Dependencies

Gears of War Gameplay Code ~250,000 lines C++, script code

Unreal Engine 3 Middleware Game Engine ~250,000 lines C++ code

DirectX Graphics OpenAL Audio Ogg Vorbis Music Codec

Speex Speech Codec wx Widgets Window Library ZLib Data Compression

- - -

Game Development - Platforms

- The typical Unreal Engine 3/4 game will ship on:
 - -Xbox 360/One
 - -PlayStation 3/4
 - -Windows
- Some will also ship on:
 - Linux
 - -MacOS

What is in a game?

The obvious:

- Rendering
- Pixel shading
- Physics simulation, collision detection
- Game world simulation
- Artificial intelligence, path finding

But it's not just fun and games:

- Data persistence with versioning, streaming
- Distributed Computing (multiplayer game simulation)
- Visual content authoring tools
- Scripting and compiler technology
- User interfaces

Three Kinds of Code

- Gameplay Simulation
- Numeric Computation
- Shading

Gameplay Simulation

- Models the state of the game world as interacting objects evolve over time
- High-level, object-oriented code
- Written in C++ or scripting language
- Usually garbage-collected

Gameplay Simulation – The Numbers

- 30-60 updates (frames) per second
 - –VR needs higher!
- ~1000 distinct gameplay classes
 - -Contain member functions
 - Highly dynamic
- ~10,000 active gameplay objects
- Each time a gameplay object is updated, it typically touches 5-10 other objects

Numeric Computation

- Algorithms:
 - Scene graph traversal
 - Physics simulation
 - Collision Detection
 - Path Finding
 - Sound Propagation
- Low-level, high-performance code
- Written in C++ with Single instruction, multiple data (SIMD)
- Essentially functional
 - Transforms a small input data set to a small output data set, making use of large constant data structures.

Shading

- Generates pixel and vertex attributes
- Written in High Level Shader Language (HLSL)/CG shading language
- Runs on the GPU
- Inherently data-parallel
 - Control flow is statically known
 - "Embarrassingly Parallel"

Shading – The Numbers

- Game runs at 30 FPS @ 1280x720p
- ~5,000 visible objects
- ~10M pixels rendered per frame
 - Per-pixel lighting and shadowing requires multiple rendering passes per object and per-light
- Typical pixel shader is ~100 instructions long
- ~500 giga FLoating-point Operations Per Second (GFLOPS) compute power

Three Kinds of Code

	Game Simulation	Numeric Computation	Shading
Languages	C++, Scripting	C++	CG, HLSL
CPU Budget	10%	90%	n/a
Lines of Code	250,000	250,000	10,000
GPU Usage	0.5 GFLOPS	5 GFLOPS	500 GFLOPS

Latest Research in Computer Graphics

- Modeling
- Physics based Animation
- Images/Computational Photography
- Fabrication
- Fast Rendering
- Hair, Face, Fluid...
- Non-Photorealistic Rendering
- Interactive tools
- Architecture

Latest Research in Computer Graphics

- How Do Humans Sketch Objects?
- SIGGRAPH 2012
- Related to Quick, Draw! released by Google recently

How Do Humans Sketch Objects?

Mathias Eitz, James Hays and Marc Alexa

SIGGRAPH 2012

Latest Research in Computer Graphics

- Shape2Vec: semantic-based descriptors for 3D shapes, sketches and images
- SIGGRAPHAsia 2016

Latest Research in Computer Graphics

https://www.youtube.com/watch?v=oVR4af9UWio

- Interchangeable Components for Hands-On Assembly Based Modeling
- SIGGRAPHAsia 2016

Compatibly Segmented Shapes

Interchangeable Components

Assembled Objects

 Interchangeable Components for Hands-On Assembly Based Modeling

Interchangeable Components for Hands-On Assembly Based Modeling

Noah Duncan^{1,3}, Lap-Fai (Craig) Yu², Sai-Kit Yeung³

http://people.sutd.edu.sg/~saikit/projects/handson/index.html

¹University of California, Los Angeles

²University of Massachusetts, Boston

³ Singapore University of Technology and Design

- Surface-Only Liquids
- SIGGRAPH 2016

Surface-Only Liquids

Fang Da

David Hahn

Christopher Batty

Chris Wojtan

Eitan Grinspun

- Projective dynamics: fusing constraint projections for fast simulation
- SIGGRAPH 2014

Projective Dynamics Fusing Constraint Projections for Fast Simulation

Sofien Bouaziz Sebastian Martin Tiantian Liu Ladislav Kavan Mark Pauly

EPFL VM Research University of Pennsylvania EPFL

https://www.cs.utah.edu/~ladislav/bouaziz14projective/bouaziz14projective.html

- Emptying, Refurnishing, and Relighting Indoor Spaces
- SIGGRAPHAsia 2016

Emptying, Refurnishing, and Relighting Indoor Spaces

Edward Zhang¹ Michael Cohen² Brian Curless¹
University of Washington ²Facebook, Inc.

- Scalable Inside-Out Image-Based Rendering
- SIGGRAPHAsia 2016

Scalable Inside-Out Image-Based Rendering

Peter Hedman (UCL)
Tobias Ritschel (UCL)
George Drettakis (INRIA)
Gabriel Brostow (UCL)

(with audio)

Latest Research in Computer Graphics: Motion Capture

- MoSh: Motion and Shape Capture from Sparse Markers
- SIGGRAPHAsia 2014

Latest Research in Computer Graphics: Motion Capture

- Activity-centric Scene Synthesis for Functional 3D Scene Modeling
- SIGGRAPHAsia 2015

Activity-centric Scene Synthesis for Functional 3D Scene Modeling

Matthew Fisher Manolis Savva Yangyan Li Pat Hanrahan Matthias Nießner

Stanford University

What have you learned?

- You did not only learn how to "use"
 Photoshop, Illustrator, Maya or Unity
- You learnt how to "make" Photoshop, Illustrator, Maya or Unity

What have you learned?

That's all for the course!

- But definitely much more in the CG world!
- Subject Evaluation
 - Please, provide feedback about 50.017