جهد العبون السافيد الحمراء

فرض محروس رفع ﴿ الدورة الأولى

الثانوبة النأهبلية الأمير مولاي رشيد

2017/2018

المادة: الرياضيات | القسم: الثانية باكالوريا علوم تجريبية | د. العلالي عبد الفتاح

التمرين الأول (3 نقط)

: f خدد في كل حالة الدوال الاصلية للدالة

$$f(x) = (3x^2 - 1)(2x^3 - 2x + 5)^{50}$$
 ; $f(x) = \frac{x+4}{\sqrt{x^2 + 8x + 1}}$; $f(x) = \cos(2x) + \tan^2(x)$

التمرين الثاني (10 نقط)

$$\begin{cases} u_0=2 \\ u_{n+1}=rac{3u_n-1}{2u_n};\ n\geq 0 \end{cases}$$
 : نتكن $(u_n)_{n\in\mathbb{N}}$

$$\forall n \in \mathbb{N} \; ; 1 < u_n$$
 بن أن $\mathbf{0}$

(
$$u_n$$
) أدرس رتابة (u_n) ثم استنتج أن أ u_n متقاربة.

$$orall n\in\mathbb{N}\;; V_n=rac{u_n-1}{2u_n-1}$$
 : نتكن $(V_n)_{n\in\mathbb{N}}$ متتالية معرفة بما يلي $oldsymbol{artheta}$

$$($$
ن2 $)$ n أ- بين أن (V_n) متتالية هندسية أساسها $q=rac{1}{2}$ و أحسب q بدلالة (V_n)

$$\lim_{n\to+\infty}u_n$$
 بـ بين أن $u_n=rac{V_n-1}{2V_n-1}$ ثم حدد $u_n=\frac{V_n-1}{2V_n-1}$

$$\lim_{n o +\infty}u_n$$
 ب u_n نتج أن $v_n\in\mathbb{N}$; $|u_n-1|\leq \left(rac{1}{2}
ight)^n$: ثم حدد (ب

(ن)
$$\sum_{i=1}^{n} S_k = \frac{2}{3} \left(\left(1 - \frac{1}{2} \right)^n \right) - 7n$$
 : نضع: $S_n = V_n - 7$

التمرين الثالث (7 نقط)

$$f(x) = x\sqrt{x-1}$$
 : نعتبر الدالة العددية f المعرفة بما يلي

$$D_f = [1; +\infty[\ :]]$$
 بین أن $D_f = [1; +\infty[\ :]]$

(1ن) على يمين
$$1$$
 ثم أول النتيجة هندسيا f على يمين f على يمين f ثم أول النتيجة f

(ن)
$$\lim_{n \to +\infty} \frac{f(x)}{x} = +\infty$$
 : أحسب $\lim_{n \to +\infty} f(x)$ ثم بين أن $\lim_{n \to +\infty} \frac{f(x)}{x} = +\infty$

$$f'(x)=rac{3x-2}{2\sqrt{x-1}}$$
 : $]1;+\infty[$ من $]1;+\infty[$ ان $]$

$$(1)$$
 . f اعط جدو ل تغیرات الدالة f .

$$(C_f)$$
 أنشئ المنحنى (C_f)

(ن
$$0.5$$
) بين أن الدالة f تقبل دالة عكسية معرفة على مجال J ينبغى تحديده.

$$(C_f^{-1})$$
 . (C_f^{-1}) . (C_f^{-1}) . (C_f^{-1}) . (C_f^{-1}) . (C_f^{-1})

