KRR with Uncertainty Review of Probability

Objectives

Objective
Review the basics of probability theory

Probability Theory

We identify a proposition with an actual event represented by the proposition

Basic axioms of probability

- $-0 \le P(A) \le 1$ for all propositions A
- -P(tautology) = 1
- $-P(A \lor B) = P(A) + P(B)$ if A and B are "mutually exclusive"

Random Variables and Possible Worlds (1 of 3)

A (discrete) random variable is similar to (multi-valued) atoms in propositional logic, but the agent is uncertain about its value

A random variable X is associated with the domain, denoted dom(X), the set of values X can take.

- Loc is a random variable whose domain is the set of locations
- Smoking is a random variable whose domain is Boolean.

Random Variables and Possible Worlds (2 of 3)

A possible world w specifies an assignment to each random variable.

Example: We model only 2 Boolean variables *Smoking* and *Cancer*. Then there are 2^2 =4 distinct possible worlds:

```
w_1: Smoking = T \land Cancer = T
```

$$w_2$$
: $Smoking = T \land Cancer = F$

$$w_3$$
: $Smoking = F \land Cancer = T$

$$w_4$$
: $Smoking = \mathbb{F} \land Cancer = \mathbb{F}$

Random Variables and Possible Worlds (3 of 3)

A possible world can be identified with an interpretation in a logical language

 $w \models X = x$ means variable X is assigned value x in world w

Define a nonnegative measure $\mu(w)$ to possible worlds w such that the measures of the possible worlds sum to 1

The probability of proposition f is defined by:

$$p(f) = \sum_{\mathbf{W} \in f} \mu(\mathbf{w})$$

Joint Distribution

The joint distribution over random variables $X_1, ..., X_n$:

- a probability distribution over the joint random variable $\langle X_1, ..., X_n \rangle$ with domain $dom(X_1) \times ... \times dom(X_n)$

analogous to truth tables in logical language

Weather	Temperature	μ (w)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

In general, each row corresponds to an assignment $X_1 = x_1, ..., X_n = xn$ and its probability $P(X_1 = x_1, ..., X_n = xn)$

Marginalization (1 of 2)

Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$P(X = x) = \sum_{z \in \text{dom}(z)} P(X = x, Z = z)$$

- We also write this as $P(X) = \sum_{z \in dom(Z)} P(X, Z = z)$.

This corresponds to summing out a dimension in the table.

Marginalization (2 of 2)

The new table still sums to 1. It must, since it's a probability distribution!

Weather	Temperature	μ (w)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Temperature	71 (w)
hot	0.15
mild	0.55
cold	0.3

2/-

In general
$$P(A) = \Sigma_{w \models A} \mu(w)$$

Conditioning (1 of 3)

Conditioning specifies how to revise beliefs based on new information.

You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	μ(w)	
W_1	sunny	hot	0.10	
W_2	sunny	mild	0.20	
W_3	sunny	cold	0.10	
W ₄	cloudy	hot	0.05	0
W ₅	cloudy	mild	0.35	- 0
Wô	cloudy	cold	0.20	0

Т	P (TIW=sunny)
hot	
mild	
cold	

Conditioning (2 of 3)

Conditioning specifies how to revise beliefs based on new information.

You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	μ(w)	
W_1	sunny	hot	0.10	
W_2	sunny	mild	0.20	
W_3	sunny	cold	0.10	
W ₄	cloudy	hot	0.05	
W ₅	cloudy	mild	0.35	
W _ô	cloudy	cold	0.20	

Т	P (TIW=sunny)
hot	0.10/0.40=0.25
mild	0.20/0.40=0.50
cold	0.10/0.40=0.25

Conditioning (3 of 3)

Conditioning specifies how to revise beliefs based on new information.

Evidence e rules out possible worlds incompatible with e

$$\mu_{e}(\mathbf{w}) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & \text{if } w \neq e \\ 0 & \text{if } w \neq e \end{cases}$$

Bayes rule

- By definition, we know that $P(h|e) = \frac{P(h \land e)}{P(e)}$
- We can rearrange terms to show: $P(h \land e) = P(h \mid e) \cdot P(e)$
- Similarly, we can show: $P(e \wedge h) = P(e | h) \cdot P(h)$

Since $e \wedge h$ and $h \wedge e$ are identical, we have:

$$P(h|e) = \frac{P(e|h) \cdot P(h)}{P(e)}$$

Example of Bayes rule

On average, the alarm rings once a year

- P(alarm) = 1/365

If there is a fire, the alarm will almost always ring

- P(alarm|fire) = 0.999

On average, we have a fire every 10 years

- P(fire) = 1/3650

Q. The fire alarm rings. What is the probability there is a

fire?
$$P(\text{fire} | \text{darm}) = \frac{P(\text{elarm} | \text{fire}) \times P(\text{fire})}{P(\text{elarm})} = \frac{0.999 \times \frac{1}{3650}}{\frac{1}{365}} = 0.0999$$

Product Rule

We know

 $-P(f_1 \wedge f_2) = P(f_1) \times P(f_2|f_1)$ $-P(f_1 \wedge f_2 \wedge f_3) = P(f_1) \times P(f_2|f_1) \times P(f_3|f_1, f_2)$

In general,

 $-P(f_1 \land f_2 \land \cdots f_n) = P(f_1) \times P(f_2|f_1) \times P(f_3|f_1, f_2) \times \cdots \times P(f_n|f_1, \dots f_{n-1})$

Marginal Independence

Definition (Marginal Independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_i, y_k \in dom(Y)$, the following equation holds:

$$P(X = x_i | Y = y_j)$$

$$= P(X = x_i | Y = y_k)$$

$$= P(X = x_i)$$

Marginal Independence, cont'd

Intuitively: If *X* and *Y* are marginally independent, then

- learning Y = y does not change your belief in X
- and this is true for all values y that Y could take.

For example, weather is marginally independent from the result of a die throw.

Example: Marginal Independence (1 of 2)

Definition (Marginal Independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_i, y_k \in dom(Y)$, the following equation holds:

$$P(X = x_i | Y = y_j)$$

$$= P(X = x_i | Y = y_k)$$

$$= P(X = x_i)$$

Q: Are A and B marginally independent?

•	-		
P(B=h) = 0 $P(B=h) A=0$	$\begin{array}{l} 0.15 \\ = s) = P(B=h) \\ P(A=s) \end{array}$	$\frac{A=s)}{s} = \frac{0.1}{0.4}$	
P(B=h A=	$c) = \frac{P(B=h \wedge P(A=0))}{P(A=0)}$	$ \begin{array}{c} $	5
Α	В	P(A,B)	

Α	В	P(A,B)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Example: Marginal Independence (2 of 2)

Definition (Marginal Independence)

Random variable X is (marginally) independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$, the following equation holds:

$$P(X = x_i | Y = y_j)$$

$$= P(X = x_i | Y = y_k)$$

$$= P(X = x_i)$$

$$x_i$$

Q: Are C₁ and C₂ marginally independent?

$$P(C_1 = h) = 0.5$$

 $P(C_1 = h | G = h) = \frac{P(G = h \land G = h)}{P(G = h)} = \frac{0.25}{0.5}$

C_1	C_2	P(C ₁ ,C ₂)
head	head	0.25
head	tail	0.25
tail	head	0.25
tail	tail	0.25

Conditional Independence (1 of 2)

Definition (Conditional Independence)

Random variable X is (conditionally) independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, y_j , $y_k \in dom(Y)$ and $z_m \in dom(Z)$, the following equation holds:

$$P(X = x_i | Y = y_j, Z = z_m)$$

= $P(X = x_i | Y = y_k, Z = z_m)$
= $P(X = x_i | Z = z_m)$

Conditional Independence (2 of 2)

Intuitively: If X and Y are conditionally independent given Z, then

- Learning that Y = y does not change your belief in X when we already know Z = z
- and this is true for all values y that Y could take
 and all values z that Z could take.

Questions

Q: If X and Y are conditionally independent given Z, are they marginally independent?

Q: If X and Y are marginally independent, are they conditionally independent given Z?

Conditional vs. Marginal Independence

Two variables can be

- Both marginally nor conditionally independent
 - PhoenixSunsWins and LightOn
 - PhoenixSunsWins and LightOn given PowerOn
- Neither marginally nor conditionally independent
 - Temperature and Cloudiness
 - Temperature and Cloudiness given Wind
- Conditionally but not marginally independent
 - ExamGrade and AssignmentGrade
 - ExamGrade and AssignmentGrade given UnderstoodMaterial
- Marginally but not conditionally independent
 - SmokingAtSensor and Fire
 - SmokingAtSensor and Fire given Alarm

Exploiting Conditional Independence

Recall the chain rule

Theorem (Chain Rule)
$$P(f_n \wedge \cdots \wedge f_1) = \prod_{i=1}^{n} P(f_i \mid f_{i-1} \wedge \cdots \wedge f_1)$$

- e.g.,
$$P(A, B, C, D) = P(A) \times P(B|A) \times P(C|A, B) \times P(D|A, B, C)$$

If D is conditionally independent of A and B given C,

$$P(A,B,C,D) = P(A) \times P(B|A) \times P(C|A,B) \times P(\underline{D}|C)$$

 $9 = 1 + 2 + 4 + 2$
Under independence, we gain compactness.

Wrap-Up

