Apellido y Nombre: email:

nota 1 2 3 4 5

Lenguajes y Compiladores

Tercer examen parcial

22/6/2012

- 1. Considere el lenguaje imperativo con fallas.
 - a) Defina la semántica de continuaciones de **break**, que cuando se ejecuta fuerza la salida del cuerpo del **while**.
 - b) Muestre con un ejemplo (calculando la semántica) qué sucede cuando existen **while**'s anidados.
- 2. Considere la siguiente expresión del lenguaje aplicativo normal:

letrec
$$f \equiv \lambda x$$
.if false then f x else $(\lambda x.1)$ f in f $(\lambda x.1)$

- a) Reescríbala en términos de ${f rec}$ y aplicaciones, como para ser evaluada con la semántica normal
- b) Evalúe la expresión (semántica operacional normal big-step)
- 3. Considere el lenguaje iswim. Dé expresiones e y e' tales que para todo η se tenga que $[e:=e'][\eta[\]$ es:
 - a) $\iota_{norm}\langle [r:0], \iota_{int} 0 \rangle$ para cierto $r \in Rf$
 - b) $\iota_{norm}\langle [r:\iota_{int}0,r':\iota_{int}1],\iota_{int}1\rangle$ para ciertos $r,r'\in Rf$
 - c) $\iota_{norm}\langle[r:\iota_{ref}r',r':\iota_{int}0],\iota_{ref}r'\rangle$ para ciertos $r,r'\in Rf$
- 4. Considere la siguiente expresión:

letrec
$$f \equiv \lambda x$$
.if false then $f x$ else $g f$ in $f g$

Puede esta expresión ser tipada usando el sistema de tipos simples dado en clase? Si la respuesta es afirmativa, dar el tipo, sino justificar por qué.

- 5. Considere el lenguaje imperativo con fallas.
 - a) Dé la semantica de continuaciones de la frase for $v = e_0$ to e_1 do c.
 - b) Defina la misma frase como azúcar sintáctico, utilizando las frases while y newvar. Puede suponer que $v \notin FV(e_1)$.
 - c) Analice si las dos definiciones son equivalentes. Utilice la semántica de continuaciones para probar que son equivalentes, o muestre un caso concreto si no lo son.