Searching (IFP30143) Sistem Cerdas Informatika Universitas Majalengka

Pustaka Suyanto, S.T. and Sc, M., 2014. Artificial Intelligence Searching Reasoning Planning and Learning Revisi Kedua. Penerbit Informatika, Bandung, Indonesia.

Konten

- Ruang Masalah
- Sistem Produksi
- Metode Pencarian
 - Blind/ Un-informed Search
 - Metode Pencarian Heuristik

Ruang Masalah

Teknik Pencarian

- Definisikan Ruang Masalah, Initial State, Goal State
- Defisinikan Aturan Produksi
- Plih Metode Pencarian yang Tepat

1	(x,y) - If x<4	→ (4,y)	Isi penuh jerigen 4 galon
2	(x,y) - If y<3	→ (x,3)	Isi penuh jerigen 3 galon
3	(x,y) - If x>0	→ (x-d,y)	Buang sebagian air dari jerigen 4 galon
4	(x,y) - If y>0	→ (x,y-d)	Buang sebagian air dari jerigen 3 galon
5	(x,y) - If x>0	→ (0,y)	Kosongkan jerigen 4 galon
6	(x,y) - If y>0	→ (x,0)	Kosongkan jerigen 3 galon
7	(x,y) — If x+y ≥ 4 and y	→ (4,y-(4-x)) >0	Tuangkan air dari jerigen 3 galon ke jerigen 4 galon sampai jerigen 4 galon penuh
8	(x,y) — If x+y ≥ 3 and x	→ (x,(3-x),3) >0	Tuangkan air dari jerigen 4 galon ke jerigen 3 galon sampai jerigen 3 galon penuh
9	(x,y) - If x+y ≤ 4 and y	→ (x+y,0) >0	Tuangkan seluruh air dari jerigen 3 galon ke jerigen 4 galon
10	(x,y) — If x+y ≤ 3 and x:	→ (0,x+y) >0	Tuangkan seluruh dari jerigen 4 galon ke jerigen 3 galon
11	(0,2) -	→ (2,0)	Tuangkan seluruh air dari jerigen 3 galon ke jerigen 4 galon
12	(2,y)	(0,y)	Buang 2 galon air dalam jerigen 3 galon ke jerigen 4 galon sampai habis

Jumlah air dalam jerigen 4 galon	Jumlah air dalam jerigen 3 galon	Aturan produksi yang diaplikasikan
0	0	Ξ
0	3	2
3	0	9
3	3	2
4	2	7

Sistem Produksi

- Himpunan Aturan
- Pengetahuan
- Strategi Kontrol
 - Cause Motion
 - Systematic
- Pengaplikasian Aturan

Metode Pencarian

- Blind/ Un-informed Search
- Metode Pencarian Heuristik

Ukuran Performa:

- Completeness
- Time complexity
- Space complexity
- Optimilaty

Blind/ Un-informed Search

- Breadth First Search (BFS)
- Uniform Cost Search (UCS)
- Depth First Search (DFS)
- Depth-Limited Search (DLS)
- Iterative-Deepening Search (IDS)
- Bi-directional search (DBS)

Metode Pencarian Heuristik

- Generate and Test
- Hill Climbing
 - Simple HC
 - Steepst Ascent HC
- Simulated Annealing
- Best First Search
 - Greedy Best First Search
 - A*

Blind/ Un-informed Search

(IFP30143) Sistem Cerdas

Informatika

Universitas Majalengka

Breadth First Search (BFS)

- Pencarian dari Kiri ke Kanan
- Complete dan Optimal
- Membangkitkan Semua Simpul
 - b = Faktor Percabangan
 - d = Kedalaman Solusi
 - 0 (bd)

Breadth First Search (BFS)

```
b = 10 & d = 8

10^{0} + 10^{1} + 10^{2} + 10^{3} + 10^{4} + 10^{5} + 10^{6} + 10^{7} + 10^{8}

= 111.111.111.111 \approx 10^{8}
```

$$d = 14 \Rightarrow 10^{15}$$

Depth First Search (DFS)

```
b = 10 & d = 3

DFS => 1+10+10+10 = 31

BFS => 1+10+100+1000 = 1.111
```

Depth-Limited Search (DLS)

Uniform Cost Search (UCS)

- BFS => Level
- UCS => Biaya /Jarak
- Biaya Terendah
- Biaya => g(n)

Iterative-Deepening Search (IDS)

IDS = Kelebihan BFS(Complete+Optimal)+Kelebihan DFS (Space Complexity Rendah)

but

Time Complexity menjadi Tinggi

Bi-directional search (DBS)

- Pencarian Maju dan Pencarian Mundur
- Solusi ditemukan jika Simpul yang Sama Dibangkitkan dari Ke Dua Arah
- BFS => 0 (b^d)
- DBS => $0 (b^{d/2}) \approx 0 (b^{d/2})$
- b=10 & d=6
- BFS => 1.111.111
- DBS => 2.222

Bi-directional search (DBS)

- Pencarian Mundur?
- Aturan Produksi dibalik?
- Harus selalu diuji!

Metode Pencarian Heuristik

(IFP30143) Sistem Cerdas

Informatika

Universitas Majalengka

Generate and Test

Hill Climbing

Simulated Annealing

BEST FIRST SEARCH

- Merupakan kombinasi kelebihan teknik depth first search dan breadth first search
- Pencarian diperkenankan mengunjungi node yang ada di level yg lebih rendah jika ternyata node pada level yg lebih tinggi ternyata memiliki nilai heuristik yg buruk

Best First Search

- Best First Search akan membangkitkan node berikutnya dari semua node yg pernah dibangkitkan
- Pertanyaannya :

Bagaimana menentukan sebuah node terbaik saat ini?

Dilakukan dengan menggunakan biaya perkiraan

Bagaimana caranya menentukan biaya perkiraan?

Biaya perkiraan dapat ditentukan dengan fungsi heuristic

FUNGSI HEURISTIC

- Suatu fungsi heuristic dikatakan baik jika bisa memberikan biaya perkiraan yang mendekati biaya sebenarnya.
- Semakin mendekati biaya sebenarnya, fungsi heuristic tersebut semakin baik.

Contoh

Dalam kasus pencarian rute terpendek, biaya sebenarnya adalah panjang jalan Raya yang sebenarnya. Sedangkan fungsi heuristiknya adalah garis lurus dari 1 kota ke kota lainnya. Untuk itu,bisa digunakan rumus berikut :

$$d_{ab} = \sqrt{(y_b - y_a)^2 + (x_b - x_a)^2}$$

$$d_{AB} = 15$$

$$d_{BC} = 20$$

$$d_{CD} = 10$$

Algoritma Best First Search

- Greedy Best First Search
- Algoritma A*

Greedy Best First Search

- Algoritma ini merupakan jenis algoritma Best First Search yg paling sederhana
- · Algoritma ini hanya memperhitungkan biaya perkiraan saja

$$f(n) = h'(n)$$

 Karena hanya memperhitungkan biaya perkiraan yang belum tentu kebenarannya, maka algoritma ini menjadi tidak optimal

Contoh

n	S	Α	В	С	D	Ε	F	G	Н	J	K	L	M
h'(n)	80	80	60	70	85	74	70	0	40	100	30	20	70

n	S	Α	В	C	D	Е
h'(n)	80	80	60	70	85	74

SOLUSI

Dengan Total Jarak = 105

PENJELASAN

- Dari contoh di atas, Greedy akan menemukan solusi S-B-K-G dengan total jarak 105
- Padahal ada solusi lain yg lebih optimal, yakni
 - S-A-B-F-K-G dengan total jarak hanya 95
- Dari situ bisa disimpulkan bahwa Greedy Best First Search tidak bisa menemukan solusi yang optimal

Algoritma A*

• Berbeda dg Greedy, algoritma ini akan menghitung fungsi heuristic dengan cara menambahkan biaya sebenarnya dengan biaya perkiraan. Sehingga didapatkan rumus :

$$f(n) = g(n) + h'(n)$$

g(n) = Biaya sebenarnya dari Node Awal ke Node n

h'(n) = Biaya perkiraan dari Node n ke Node Tujuan

Contoh

n	S	Α	В	С	D	Ε	F	G	Н	J	K	L	M
h'(n)	80	80	60	70	85	74	70	0	40	100	30	20	70

n	S	A	В	С	D	E
h'(n)	80	80	60	70	85	74
g(n)	0	10	25	30	35	10
f(n)	80	90	85	100	120	84

n	A	В	С	D	J
h'(n)	80	60	70	85	100
g(n)	10	25	30	25	30
f(n)	90	85	100	110	130

Solusi

Kesimpulan

 Algoritma A* lebih baik dalam melakukan pencarian heuristic daripada Greedy Best First Search karena dapat mengasilkan solusi yang optimal

Latihan

Diketahui sebuah puzzle berukuran 3X3 yang berisi angka. Permasalahan adalah angka-angka dalam puzzle tersebut belum teratur.

Nilai awal puzzle:

1	2	
4	5	3
7	8	6

Goal:

1	2	3
4	5	6
7	8	

Nilai awal = $\{1,2,blank,4,5,3,7,8,6\}$ Goal = $\{1,2,3,4,5,6,7,8,blank\}$ Bila diketahui bahwa Nilai heuristic = f(n) = g(n) + h(n) dengan

g(n) = kedalaman dari pohon

h(n) = jumlah angka yang masih salah posisi

