Dynamic trading strategies/systems

Strategy types, position sizing, and Add WeChat powcoder more

JEN-WEN LIN, PHD, CFA

TABLE 5.1 Rzepczynski (1999) convergent versus divergent financial worldviews.

Convergent	Divergent	
Stationary, stable world	Nonstationary	
World is knowable and static; structural knowledge	World is uncertain and dynamic; structural ignorance	
Market participants generally form rational expectations; errors are random	Market participants form rational beliefs but may make mistakes and have biases	
Markets adjust relatively tonew information that Project Exam Help		
Divergences from equilibrium are short lived/powce	Oder. com time to time	
Fundamentals do not change dramatically in the short run	Fundamental changes are often unanticipated POWCOGET	

Types of strategies

TABLE 5.2 Rzepczynski (1999) convergent versus divergent—trading/return behavior.

Convergent	Divergent
Strong sense of fair value	No prediction of fair value
Arbitrage trading, value trading, contrarian	Trend following, momentum
Negative Convexity	Positive Convexity
Profits made from reversion to the mean or long-term risk premiums Concave payoffs Assignment Profits	Profits made from the extremes, the mean fleeting events
1 /	Positive skewness Coder.com

Add WeChat powcoder Mark S. Rzepczynski (1999), "Market Vision and Investment Styles: Convergent versus Divergent Trading", *The Journal of Alternative Investments*, pp. 77-82.

TABLE 5.3 Rzepczynski (1999) convergent versus divergent trading by strategy type.

Asset Class	Convergent	Divergent
Equity	Value, contrarian, arbitrage (pairs trading)	Momentum, growth
Fixed Income	Arbitrage, credit valuation	Interest rate directional
Hedge Funds	Arbitrage (fixed income, convertible) long sh AtSSignment o P, rojecta Eixam H	Managed futures, trend [e]p following, technical analysis

https://powcoder.com

Add WeChat powcoder

Four core decisions for a trading system

- 1. When to enter a position. Assignment Project Exam Help
- 2. How large a position to take on. https://powcoder.com
- 3. How to get out of positions.
- 4. How much risk to allocate to different sectors and markets.

Greyserman and Kaminski (2014), "Trend Following with Managed Futures: The Search for Crisis Alpha", John Wiley & Sons, Inc.

FIGURE 3.1 A schematic of trend following from data acquisition to position allocation.

FIGURE 3.2 The five components of a trend following system.

Position Sizing

- 1. Trading systems allocate capital across asset classes/markets by systematically allocating risk on capital texindiniqual markets.
- 2. Position sizings must counsider the volatility of a particular market at powcoder

Remark: In your assignment, we don't consider position sizing but apply unity exposure, i.e. either long or short one unit of asset.

1. Position sizing based on dollar risk¹:

The nominal position (v) is equal to a **sizing function** times the **total adjusted dollar risk** times the nominal value of one contract.

$$v = s_{Assign} \underbrace{R_{K} \times c}_{\text{project/Exam}} \times P_{K} \times P_{K}$$

$$total padjusted dollar riskm$$
Add WeChat powcoder

Copyright © Jen-Wen Lin 2017

¹ Alternatively, we could consider average trading range (ATR) for each individual market. Average trading ranges are a simple way to incorporate actual trading volatility and volumes as opposed to using realized volatility. See Clenow (2013) for more details.

- 1. The sizing function (s) is a number between -1 and 1 $(s \in [-1,1])$. It determines the size and direction of a contract based on trading signals and trend strength.
- 2. The total adjusted dollar risk allocated is equal to the allocated dollar risk divided by the futures contract dollar risk. The allocated that Pskitsti Imply the lask loading (θ) times the allocated parity of the realized dollar risk ($\sigma_K(\Delta P)$) of add WeChat powcoder each contract price over a lookback window of time (K) times the point value (PV)).

2. Position sizing based on volatility target:

Guilleminot et al. (2014) suggests the trend-based allocation for asset i at time t as

$$w_t^i = K_t \frac{Max(0, \operatorname{Trend}_t^i)}{\sigma_t^i},$$

where $Trend_t$ is denotes the tierd signal Helpasset i at time t, σ_t^i is the estimate t and the parameter K_t is calculated by powcoder

$$K_t = \frac{\text{Target volatility}}{\sigma_t}$$

where σ_t is the estimate of portfolio volatility at time t with the weight for asset i equal to $\frac{Max(0, \mathrm{Trend}_t^i)}{\sigma_t^i}$.

FIGURE 3.6 An example schematic of an integrated trend following system.

Add WeChat powcoder

What's wrong with this design?

Copyright © Jen-Wen Lin 2017

John Moody et al. (1998), "Performance Functions and Reinforcement Learning For Trading Asystems jether brittolios", Journal of Forecasting, Vol. 17, pp. Add WeChat powcoder 441-470.

Figure 1: A trading system based on forecasts. The system includes a forecast module with adjustable parameters θ followed by a trading module with parameters θ' . Price forecasts for the target series are based on a set of input variables. The forecast module is trained by varying θ to minimize forecast error (typically mean squared error), which is an *intermediate quantity*. A more direct approach would be to simultaneously vary θ and θ' to maximize a measure of ultimate performance $U(\theta, \theta')$, such as trading profits, utility or risk-adjusted return. Note that the trading module typically does not make use of the inputs used by the forecast module, resulting in a loss of information or a *forecast bottleneck*. Performance of such a system is thus likely to be suboptimal.

Figure 3: A trading system based on recurrent reinforcement learning, the approach taken in this paper. The system makes trading decisions directly based upon a set of input variables and the system state. A trading performance function $U(\theta)$, such as profit, utility or risk-adjusted return, is used to directly optimize the trading system parameters θ using reinforcement learning. The system is recurrent; the feedback of system state (current positions or portfolio weights) enables the trading system to learn to correctly incorporate transactions costs into its trading decisions. In comparison to the systems in Figures 1 and 2, no intermediate steps such as making forecasts or labelling desired trades are required.

Research project of past graduate student

Assignment Project Exam Help Dynamic Asset Allocation for Pairs Trading

https://powcoder.com https://www.cs.toronto.edu/~francohtlin/dynamic-

Add WeChat powcoder asset-allocation.pdf

Unfinished discussion

- 1. Reinforcement learning/Dynamic programmagignment Project Exam Help
- 2. Signal generation (Date chiven/value-based)
- 3. Long-run returmpredicterity
- Else (frequency, cost, risk management)