Notes Machine Learning by Andrew Ng on Coursera

Sparsh Jain

September 24, 2020

Contents

1	Inti	roduction	3											
	1.1 Supervised Learning													
		1.1.1 Regression Problem	3											
		1.1.2 Classification Problems	3											
	1.2	Unsupervised Learning	3											
2	Linear Regression with One Variable 4													
	2.1	Notations	4											
	2.2	Supervised Learning	4											
	2.3	Gradient Descent	5											
	2.4	Gradient Descent for Linear Regression	5											
3	Lin	ear Algebra	6											
	3.1	Matrix	6											
	3.2	Vector	6											
	3.3	Addition and Scalar Multiplication	7											
	3.4	Matrix Multiplication	7											
	3.5	Inverse and Transpose	7											
4	Linear Regression with Multiple Variables 9													
	4.1	Notations	9											
	4.2	Hypothesis	9											
	4.3		10											
		4.3.1 Feature Scaling	10											
			11											
		4.3.3 Learning Rate	11											
	4.4													
		4.4.1 Features	11											
			11											
	4.5		12											
		4.5.1 Non Invertibility of X^TX												

5	Oct	ave Tutorial													13
6	Cla	ssification													14
	6.1	Logistic Regression													14
	6.2	Decision Boundary						•							15
$\mathbf{A}_{\mathbf{j}}$	ppen	dices													16

Introduction

Machine learning (task, experience, performance) can be classified into Supervised and Unsupervised learning.

1.1 Supervised Learning

Supervised learning can be basically classified into *Regression* and *Classification* problems.

1.1.1 Regression Problem

Regression problems work loosely on continuous range of outputs.

1.1.2 Classification Problems

Classification problems work loosely on discrete range of outputs.

1.2 Unsupervised Learning

An example is *Clustering Problem*.

Check Lecture1.pdf for more details.

Linear Regression with One Variable

2.1 Notations

m = number of training examples x's = 'input' variables / features y's = 'output' variables / 'target' variables (x, y) = single training example $(x^{(i)}, y^{(i)}) = i^{th} \text{ example}$

2.2 Supervised Learning

We have a data set (*Training Set*). Training Set \rightarrow Learning Algorithm \rightarrow h (hypothesis, a function $X \rightarrow Y$)

To Represent h

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost

$$\underset{\theta_0, \ \theta_1}{\text{minimize}} \frac{1}{2m} \sum_{1}^{m} (h_{\theta}(x) - y)^2$$

Cost Function

Squared Error Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{1}^{m} (h_{\theta}(x) - y)^2$$

$$\underset{\theta_0, \ \theta_1}{\operatorname{minimize}} J(\theta_0, \theta_1)$$

2.3 Gradient Descent

Finds local optimum:

- 1. Start with some value
- 2. Get closer to optimum

Algorithm

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta) \ \forall j$$

where $\alpha = \text{learning rate}$

Important!

Simultaneous Update!

$$temp_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \ \forall j$$
$$\theta_j := temp_j \ \forall j$$

2.4 Gradient Descent for Linear Regression

Cost function for linear regression is convex!

Batch Gradient Descent: Each step of gradient descent uses all training examples.

Check Lecture2.pdf for more details.

Linear Algebra

3.1 Matrix

Rectangular array of numbers:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Dimension of the matrix: #rows x #cols (2 x 3)

Elements of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$A_{ij} = "i, j \text{ entry" in the } i^{th} \text{ row, } j^{th} \text{ col}$$

3.2 Vector

An $n \times 1$ matrix.

$$y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

 $y_i = i^{th}$ element

Note: Uppercase for matrices, lowercase for vectors.

3.3 Addition and Scalar Multiplication

Add/Subtract (element by element) matrices of same dimention only! Multiply/Divide (all elements) a matrix by scalar!

3.4 Matrix Multiplication

 $m \times n$ matrix multiplied by $n \times o$ matrix gives a $m \times o$ matrix.

Properties

- 1. Matrix Multiplication is *not* Commutative.
- 2. Matrix Multiplication is Associative.
- 3. Identity Matrix (I): 1's along diagonal, 0's everywhere else in an $n \times n$ matrix. AI = IA = A.

3.5 Inverse and Transpose

Inverse

Only square $(n \times n)$ matrices may have an inverse.

$$AA^{-1} = A^{-1}A = I$$

Matrices that don't have an inverse are *singular* or *degenerate* matrices.

Transpose

Let A be an $m \times n$ matrix and let $B = A^T$, then

$$B_{ij} = A_{ji}$$

Example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
$$B = A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Check Lecture3.pdf for more details.

Linear Regression with Multiple Variables

4.1 Notations

n = number of features $x^{(i)} = \text{input (features) of } i^{th} \text{ training example}$ $x_j^{(i)} = \text{value of feature } j \text{ of } i^{th} \text{ training example}$

4.2 Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convinience, define $x_0 = 1$. So

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \theta^T x$$

4.3 Gradient Descent

Hypothesis: $h_{\theta}(x) = \theta^{T}x$ $= \theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n}$ Parameters: θ $= \theta_{0}, \theta_{1}, \dots, \theta_{n}$ Cost Function: $J(\theta) = J(\theta_{0}, \theta_{1}, \dots, \theta_{n})$ $= \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$

Gradient Descent:

Repeat {
$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

$$= \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}, \dots, \theta_{n})$$

$$= \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)} - y^{(i)}) x_{j}^{(i)})$$
}(simultaneously update $\forall j = 0, 1, \dots, n$)

4.3.1 Feature Scaling

Idea: Make sure features are on a similar scale.

Get every feature into approximately a $-1 \le x_i \le 1$ range.

4.3.2 Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

General Rule

$$x_i \leftarrow \frac{x_i - \mu_i}{S_i}$$

where

$$\mu_i = \text{average value of } x_i$$

$$S_i = \text{range (max - min)} \qquad or$$

$$= \sigma(\text{standard deviation})$$

4.3.3 Learning Rate

 $J(\theta)$ should decrease after every iteration. #iterations vary a lot.

Example Automatic Convergence Test: Declare convergence if $J(\theta)$ decreases by less than ϵ (say 10^{-3}) in one iteration.

If $J(\theta)$ increases, use smaller α . Too small α means slow convergence.

To choose α , try ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

4.4 Features and Polynomial Regression

4.4.1 Features

Get an insight in your problem and choose better features (may even combine/separate features).

Ex: size = length \rightarrow breadth.

4.4.2 Polynomial Regression

Ex:

$$x_1 = size$$

$$x_2 = size^2$$

$$x_3 = size^3$$

4.5 Normal Equation

Solve for θ analytically!

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$$

$$X = \begin{bmatrix} (x^{(1)})^T \\ (x^{(2)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix}$$

$$= \begin{bmatrix} x_0 & x_1 & \dots & x_n \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1^{(1)} \\ y_2^{(2)} \\ \vdots \\ y_m^{(m)} \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\in \mathbb{R}^{m+1}$$

$$\theta \in \mathbb{R}^m$$

Inverse of a matrix grows as $O(n^3)$, use wisely.

4.5.1 Non Invertibility of X^TX

Use 'pinv' function in Octave (pseudo-inverse) instead of 'inv' function (inverse).

If X^TX is non-invertible, common causes are

- 1. Redundant features (linearly dependent)
- 2. Too many features $(m \le n)$. In this case, delete some features or use regularization

Check Lecture4.pdf for more details.

Chapter 5 Octave Tutorial

Check Lecture 5.pdf for more details.

Classification

Classify into categories (binary or multiple).

6.1 Logistic Regression

$$0 \le h_{\theta}(x) \le 1$$
 $h_{\theta}(x) = g(\theta^T x)$
 $g(z) = \frac{1}{1 + e^{-z}}$ g is called a sigmoid function or a logistic function.
$$h_{\theta}(x) = \frac{1}{1 + e^{\theta^T x}}$$

Interpretation of Hypothesis Output

$$h_{\theta}(x) = \text{estimated probability that } y = 1 \text{ on input } x$$

 $h_{\theta}(x) = P(y = 1|x; \theta) = \text{probability that } y = 1, \text{ given } x, \text{ parameterized by } \theta$

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

6.2 Decision Boundary

Predict: y = 1 if $h_{\theta}(x) \ge 0.5$ $(\theta^{T} x \ge 0)$ Predict: y = 0 if $h_{\theta}(x) < 0.5$ $(\theta^{T} x < 0)$ $\theta^{T} x = 0$ is the decision boundary.

Non-linear Decision Boundaries

Use same technique as polynomial regression for features.

Check Lecture6.pdf for more details.

Appendices