Machine Learning Exercise Movements

Andrew Washbrun February 27, 2017

Executive Summary

The Internet of Things allows the classification of previously undocumented activities, such as exercise routines, in gross detail allowing machine learning prediction models to detect which type of exercise a user is attempting. Utilizing data from the Weight Lifting Exercise Dataset, classification and random forest prediction models can predict what type of dumbell exercise a user is attempting based on accelerometer data gather on the user's arm, forearm, waist and dumbell.

Data Wrangling

Accelerometer data is download from dataset's website: http://groupware.les.inf.puc-rio.br/har . Training and validation sets are imported and cleaned up to remove uninterprettable values like NA, #DIV/0!, and empty values. Then the first several columns are removed because they contain non-movement related data like user and timestamp. Then the training set is split 70/30 into a training and testing set to prevent model overfitting for the validation set.

```
library(caret); library(rpart); library(rattle)
## Loading required package: lattice
## Loading required package: ggplot2
## Rattle: A free graphical interface for data mining with R.
## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
training <- read.csv('pml-training.csv', na.strings=c("NA","#DIV/0!",""))</pre>
validation <- read.csv('pml-testing.csv', na.strings=c("NA","#DIV/0!",""))
#wrangling data into variables
validation <- validation[, colSums(is.na(training)) == 0]</pre>
training <- training[, colSums(is.na(training)) == 0]</pre>
training <- training[,-c(1:7)]</pre>
validation <- validation[,-c(1:7)]</pre>
inTrain <- createDataPartition(y=training$classe,</pre>
                                 p=0.7, list=FALSE)
trainingData <- training[inTrain,]</pre>
testingData <- training[-inTrain,]</pre>
names(trainingData)
##
```

```
"roll arm"
## [13] "magnet_belt_z"
                                                        "pitch_arm"
  [16] "yaw_arm"
                                "total_accel_arm"
                                                        "gyros_arm_x"
## [19] "gyros_arm_y"
                                "gyros_arm_z"
                                                        "accel arm x"
  [22] "accel_arm_y"
                                "accel_arm_z"
                                                        "magnet_arm_x"
##
  [25] "magnet_arm_y"
                                "magnet_arm_z"
                                                        "roll dumbbell"
## [28] "pitch dumbbell"
                                "yaw dumbbell"
                                                        "total accel dumbbell"
  [31] "gyros_dumbbell_x"
                                "gyros dumbbell y"
                                                        "gyros dumbbell z"
  [34] "accel_dumbbell_x"
                                "accel_dumbbell_y"
                                                        "accel_dumbbell_z"
   [37]
       "magnet_dumbbell_x"
                                "magnet_dumbbell_y"
                                                        "magnet_dumbbell_z"
  [40] "roll_forearm"
                                "pitch_forearm"
                                                        "yaw_forearm"
## [43] "total_accel_forearm"
                                "gyros_forearm_x"
                                                        "gyros_forearm_y"
  [46] "gyros_forearm_z"
                                "accel_forearm_x"
                                                        "accel_forearm_y"
## [49] "accel_forearm_z"
                                "magnet_forearm_x"
                                                        "magnet_forearm_y"
## [52] "magnet_forearm_z"
                                "classe"
```

The remaining predictors are accelerometer data from the user and the "classe" variable which is the exercise type.

Recursive Partitioning

Classification trees partition data into logical trees where successive predictors lead to a classification. The classifiers are built such that the root of each branch contains a sufficiently "pure" class, meanining data with identical predictor values will be evaluated to that root class.

```
#tree prediction
modFit <- rpart(classe ~ ., method='class', data=trainingData)
fancyRpartPlot(modFit)</pre>
```

Warning: labs do not fit even at cex 0.15, there may be some overplotting

Rattle 2017-Feb-27 15:39:16 washbuan

```
predictions <- predict(modFit,testingData,type='class')
confusionStats <- confusionMatrix(predictions,testingData$classe)
confusionStats</pre>
```

```
## Confusion Matrix and Statistics
##
             Reference
##
                 Α
                            С
                                  D
                                       Е
## Prediction
                       В
                     225
                            20
             A 1512
                                 98
                                      42
##
                                      57
##
             В
                 35
                     582
                           52
                                 22
             С
##
                 49
                     126
                          858
                                155
                                     139
            D
##
                 47
                      83
                            68
                                621
                                      64
##
             Ε
                 31
                     123
                            28
                                 68
                                     780
##
  Overall Statistics
##
##
                   Accuracy : 0.7397
                     95% CI: (0.7283, 0.7509)
##
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa : 0.6695
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
```

```
## Sensitivity
                           0.9032
                                     0.5110
                                               0.8363
                                                        0.6442
                                                                  0.7209
                                     0.9650
## Specificity
                           0.9086
                                               0.9035
                                                        0.9468
                                                                  0.9479
                                                        0.7033
## Pos Pred Value
                           0.7970
                                     0.7781
                                               0.6466
                                                                  0.7573
                                                                  0.9378
## Neg Pred Value
                           0.9594
                                     0.8916
                                               0.9631
                                                        0.9314
## Prevalence
                           0.2845
                                     0.1935
                                               0.1743
                                                        0.1638
                                                                  0.1839
## Detection Rate
                                                        0.1055
                                                                  0.1325
                           0.2569
                                     0.0989
                                               0.1458
## Detection Prevalence
                           0.3223
                                               0.2255
                                                                  0.1750
                                     0.1271
                                                        0.1500
                                                        0.7955
## Balanced Accuracy
                           0.9059
                                     0.7380
                                               0.8699
                                                                  0.8344
tableStats <- as.data.frame(confusionStats$table)</pre>
ggplot(aes(Prediction, Reference), data=tableStats) +
  geom_tile(aes(fill=Freq)) + scale_fill_gradient(low="green", high="red")
```


The first plot illustrates the classification tree from the top (input) to the bottom (output), from the predictor values to the exercise outcome. The second output is a set of statistics for the model. The main takeaway is the accuracy: 71.5%. Not especially accurate so we'll employ another model. The last plot is an illustration of the Confusion Matrix statistics.

Random Forest

Random forests extend the idea of classification trees with random bootstrapping. By resampling and averaging models, a more robust decision tree is created.

```
#Random Forest
library(randomForest)
```

randomForest 4.6-12

```
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
forestModel <- randomForest(classe~.,data=trainingData)</pre>
forestPredictions <- predict(forestModel,testingData,type='class')</pre>
forestConfStats <- confusionMatrix(forestPredictions,testingData$classe)</pre>
forestConfStats
## Confusion Matrix and Statistics
##
##
             Reference
                           С
                                D
## Prediction
                 Α
##
            A 1670
                      8
                           0
                                0
                 3 1129
##
            В
                           3
                                0
                                      0
            С
##
                 0
                      2 1022
                                5
                                      0
##
            D
                 0
                      0
                           1
                              959
                                      2
            Е
##
                      0
                           0
                                 0 1080
##
## Overall Statistics
##
##
                  Accuracy : 0.9958
##
                    95% CI: (0.9937, 0.9972)
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.9946
##
  Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                        Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                                            0.9961
                                                      0.9948
                                                                0.9982
                          0.9976 0.9912
## Specificity
                          0.9981
                                    0.9987
                                             0.9986
                                                      0.9994
                                                                0.9998
## Pos Pred Value
                          0.9952
                                   0.9947
                                             0.9932
                                                      0.9969
                                                                0.9991
## Neg Pred Value
                          0.9990
                                  0.9979
                                             0.9992
                                                      0.9990
                                                                0.9996
## Prevalence
                          0.2845 0.1935
                                             0.1743
                                                      0.1638
                                                                0.1839
## Detection Rate
                          0.2838 0.1918
                                             0.1737
                                                      0.1630
                                                                0.1835
## Detection Prevalence
                          0.2851
                                    0.1929
                                             0.1749
                                                      0.1635
                                                                0.1837
## Balanced Accuracy
                          0.9979
                                   0.9950
                                             0.9973
                                                      0.9971
                                                                0.9990
forestTableStats <- as.data.frame(forestConfStats$table)</pre>
ggplot(aes(Prediction, Reference), data=forestTableStats) +
 geom_tile(aes(fill=Freq)) + scale_fill_gradient(low="green", high="red")
```


Comparing the accuracy between random forest and the standard classication tree model: 99.3% vs. 71.5% the random forest model is a more accurate model for prediction.