Algebraic Geometry

Gao, Xu

January 9, 2016

Preface

This is a note aim to understand algebraic geometry through a category-flavor approach. My main reference is the Stacks Project [Stacks]. The framework is basically taken from it. However, some details, especially the proofs, are modified by my taste. I also take examples from [RV15].

 Gao, Xu^1

¹Email: GauSyu@gmail.com

Contents

Preface	i
Notation	ns 1
Chapter	I. Sheaves
$\S I.1$	Presheaves
	Presheaves and Yoneda lemma
	Category of presheaves
	Changing the base space
	Kan extensions
$\S I.2$	Sites and sheaves
ŭ	Sites
	Sheaves
§I.3	Sheaves on topological spaces
ŭ	Sheaves and stalks
	Sheafification
	Sheaves on bases
$\S I.4$	Sheaves on topological spaces: morphisms
J	Morphisms of sheaves
	Abelian sheaves form an abelian category
	Limits and colimits
	Gluing sheaves
§I.5	Sheaves on topological spaces: continuous maps 43
0 -	Direct images
	Inverse images
	Immersions of subspaces
§I.6	Sheafification
32.0	Zeroth Čech cohomology 51

		Sheafification
	§I.7	The category of sheaves
	5	Morphisms of sheaves
		Compactness
		Representable sheaves
	§I.8	Topoi and geometric morphisms
	31.0	Topoi and geometric morphisms
		Morphisms of sites
		Cocontinuous functors
		Extension by empty
	§I.9	Localization
	31.3	Localization of sites
		Localization of morphisms of sites
		Application: gluing sheaves
	§I.10	Special cocontinuous functors
	31.10	Geometric morphisms are induced by morphisms of sites 9
		Localizations of topoi
	§I.11	-
	31.11	
		Points of a site and a topos
		Points and morphisms
	OT 10	Sites with enough points
	§I.12	Flatness
\mathbf{C}	hapter	II. Ringed spaces and $\mathscr{O} ext{-modules}$
	§II.1	¶Algebraic structures
	Ü	Algebraic theories
		Monads
	§II.2	Linear cosmoses
	0	Monoids
		Modules
		Algebras and modules in a linear cosmos
		Ideals
	§II.3	Ringed spaces
	322.0	Ringed spaces and \mathcal{O}_X -modules
		Supports
		Pushforwards and pullbacks
		Abelian sheaves under Immersions
	§II.4	Basic notions on modules
	311.4	Modules generated by sections
		Modules represented by sections
		- v
		Tensor products and Tensor algebras
	8II 5	Tensor products and Tensor algebras
	§II.5	Immersions of ringed spaces and locally ringed spaces 16
	§II.5	•

§II.6	Manifolds, bundles and étalé spaces
	Manifolds
	Vector bundles and locally free sheaves 177
	Bundles
	Espace étalé
§II.7	Tensor products and flatness
§II.8	Duality and invertible sheaves
§II.9	Localizations
Chapter	· III. Schemes
_	Ideals and affine schemes
3111.1	
	Ideals and spectra
	Zariski topology
	Topological properties of spectra
	Structure sheaves on spectra
0111	Affine schemes
§111.2	Affine spaces
	Affine lines
	Affine spaces
§III.3	Schemes
	Schemes
	Topology of schemes
§III.4	Projective schemes
§III.5	Morphisms of schemes
Chapter	· IV. Riemann-Roch
_	Riemann-Roch Formalism
0	Riemann-Roch Functors
Chapter	· A. Some generalities
§A.1	Monoidal categories and coherence theorems
311.1	Monoidal categories, functors and natural transformations . 207
	Coherence theorems
	Element notations
§A.2	
9A.2	Enriched categories
	Enriched categories
	Tensor products of \mathcal{K} -categories
	Representability
	Actions
Index .	
Bibliogr	aphy

Conventions

Algebra

Throughout this note, **rings** are assumed to be commutative and unitary except special assumptions. For the usual notion of (unitary) rings, we call them **non-commutative rings** to emphasize. For the more general notion of non-unitary rings, we call them **associative algebras** to distinguish.

Notations

- Calligraphic letters like $\mathcal{C}, \mathcal{D}, \mathcal{E}$ will denote categories or more general structured categories. But \mathcal{A} will be restricted to denote algebraic categories and \mathcal{K} will denote a "cosmos" where other structures grow.
- Capital letters like F, G, H and small letters like u, v, w will denote functors, the later ones often used for functors between sites.
- Capital letters like A, B, C; U, V, W; X, Y, Z will denote objects. But
 A, B, C often refer to structured objects such as algebraic objects,
 U, V, W often refer to objects will used as indexes such as objects in a
 site. The letter T often denotes a "test object" and S a generator.
- Small letters like f, g, h and the letters ϕ, ψ will denote morphisms in suitable context, the later ones often used for morphisms serving as a part of some structure.
- The script letters like $\mathscr{F}, \mathscr{G}, \mathscr{H}$ will denote presheaves and sheaves, and the letters φ, ψ will denote morphisms between them,
- The fraktur letters like $\mathfrak{U}, \mathfrak{V}, \mathfrak{W}$ will denote coverings.

- * denotes the terminal object in a category, usually the singleton. We use \varnothing to denote the empty. 0 denotes the zero object in a category. But we also use it to denote the trivial ring in which 0=1.
- We will use \coprod and \bigoplus to denote coproducts. The later is particularly used in an abelian tensor category.

Sheaves

Sheaves are the abstract of how to glue local information into global.

§I.1	Presheaves	5
	Presheaves and Yoneda lemma	5
	Category of presheaves	7
	Changing the base space	9
	Kan extensions	11
§I.2	Sites and sheaves	14
	Sites	14
	Sheaves	17
§I.3	Sheaves on topological spaces	21
	Sheaves and stalks	21
	Sheafification	24
	Sheaves on bases	28
§I.4	Sheaves on topological spaces: morphisms	30
	Morphisms of sheaves	30
	Abelian sheaves form an abelian category	33
	Limits and colimits	35
	Gluing sheaves	38
§I.5	Sheaves on topological spaces: continuous maps	43
	Direct images	43
	Inverse images	44
		48
§I.6	Sheafification	51
	•	51
		54
§I.7		59

	Morphisms of sheaves	9
	Compactness	3
	Representable sheaves	6
§I.8	Topoi and geometric morphisms	0
	Topoi and geometric morphisms	0
	Morphisms of sites	2
	Cocontinuous functors	4
	Extension by empty	7
§I.9	Localization	1
	Localization of sites	1
	Localization of morphisms of sites	7
	Application: gluing sheaves	1
§I.10	Special cocontinuous functors	5
	Geometric morphisms are induced by morphisms of sites 9	5
	Localizations of topoi	0
§I.11	Points	5
	Points of a site and a topos	5
	Points and morphisms	0
	Sites with enough points	4
§I.12	Flatness	6

§ I.1 Presheaves

In this section, we give the notion of presheaves: they are contravariant functors. Then, we show presheaves are colimits of the representable ones (Theorem 2.f). In this sense, presheaves are generalized objects. Next, we describe the monomorphisms, epimorphisms and isomorphisms of presheaves, defines the notions of subpresheaves and image and points out that limits and colimits of presheaves are computed object by object. This makes presheaves more like kind of generalized objects. Finally, we show that a functor u between categories induces a chain of adjunctions: $u_p \dashv u^p \dashv_p u$.

Presheaves and Yoneda lemma

1 (Presheaves are contravariant functors) A presheaf on a category \mathcal{C} with values in another category \mathcal{A} is a contravariant functor from \mathcal{C} to \mathcal{A} . In the case $\mathcal{A} = \mathbf{Set}$, we simply call it a presheaf. *Morphisms* between presheaves are natural transformations.

Notations:

- $\mathbf{PSh}_{\mathcal{A}}(\mathcal{C}) = [\mathcal{C}^{\mathrm{opp}}, \mathcal{A}]$: the category of presheaves on \mathcal{C} with values in \mathcal{A} .
- $\mathbf{PSh}(\mathcal{C}) = \mathbf{PSh}_{\mathbf{Set}}(\mathcal{C})$: the category of presheaves on \mathcal{C} .
- An element $s \in \mathcal{F}(U)$ is called a **section** of \mathcal{F} on U. For a morphism $f \colon V \to U$, we denote $\mathcal{F}(f)(s)$ by $s|_V$ or $s|_f$.
- **2 Example (Representable presheaves)** For any object $U \in \mathcal{C}$, the functor of points $h_U \colon X \mapsto \operatorname{Hom}(X, U)$ is a presheaf. For any presheaf \mathscr{F} , a **representation** of it is a natural isomorphism from h_U to \mathscr{F} for some object U. If this is the case, we say \mathscr{F} is **representable** and is represented by U.
- 2.a Theorem (Yoneda lemma) There is a canonical bijection

$$\operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(h_U, \mathscr{F}) \longrightarrow \mathscr{F}(U)$$

 $s \longmapsto s_U(\operatorname{id}_U)$

natural in both the object U and the presheaf \mathscr{F} .

- **2.b** Corollary The functor $\Upsilon: U \mapsto h_U$ is a full embedding, which means Υ is fully faithful and injective on object. This functor is called the **Yoneda** embedding.
- **2.c** Corollary A representation of a presheaf \mathscr{F} on \mathscr{C} is precisely the terminal object in the comma category $(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}})$, which means a pair (U, u) of an object $U \in \operatorname{ob} \mathscr{C}$ and an element $u \in \mathscr{F}(U)$ satisfies the following universal property:

For every pair (X,x) of $X \in \text{ob } \mathcal{C}$ and $x \in \mathscr{F}(X)$, there is a unique morphism $f: X \to U$ such that $\mathscr{F}(f)(u) = x$.

- **2.d Remark (Category of sections)** The comma category $(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}})$ is isomorphic to the comma category $(* \downarrow \mathscr{F})$, where * denote the constant functor mapping any object to the the singleton. This is indeed another expression of the Yoneda lemma. This comma category is called **the category of sections** of \mathscr{F} and is denoted by \mathscr{C}/\mathscr{F} .
- **2.e Lemma (The set of global sections)** Let \mathscr{F} be a presheaf on a small category C, then

$$\varprojlim_{\mathcal{C}} \mathscr{F} = \mathrm{Hom}_{\mathbf{PSh}(\mathcal{C})}(*, \mathscr{F}).$$

where * denote the presheaf mapping any object in C to the singleton. This set is called the **set of global sections** of \mathscr{F} .

Proof: Just note that a natural transformation from * to \mathscr{F} is the same thing as a compatible data of the system $\{\mathscr{F}(U)\}_{U\in\operatorname{ob}\mathcal{C}}$, which is an element in the limit of \mathscr{F} .

2.f Theorem (Every presheaf is a colimit of representable ones) Let \mathscr{F} be a presheaf on a small category \mathcal{C} , then

$$\mathscr{F} \cong \varinjlim_{h_U \to \mathscr{F}} h_U := \varinjlim_{\mathcal{C}/\mathscr{F}} \Upsilon(U).$$

Proof (by Urs Schreiber): Notice that for every $\mathscr{G} \in \mathbf{PSh}(\mathcal{C})$, we have

$$\begin{split} \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(\varinjlim_{\mathcal{C}/\mathscr{F}}\Upsilon(U),\mathscr{G}) &= \varprojlim_{\mathcal{C}/\mathscr{F}} \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(\Upsilon(U),\mathscr{G}) \\ &= \varprojlim_{\mathcal{C}/\mathscr{F}} \mathscr{G}(U) \\ &= \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C}/\mathscr{F})}(*,\mathscr{G}), \end{split}$$

where the last equality follows from Lemma 2.e.

Now, notice that an $\alpha \in \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C}/\mathscr{F})}(*,\mathscr{G})$ gives each objects $h_U \to \mathscr{F}$ in \mathcal{C}/\mathscr{F} , which is equivalent to an element of $\mathscr{F}(U)$ by the Yoneda lemma, a map $*(U) \to \mathscr{G}(U)$, i.e. an element of $\mathscr{G}(U)$. Therefore, we have

$$\operatorname{Hom}_{\mathbf{PSh}(\mathcal{C}/\mathscr{F})}(*,\mathscr{G}) = \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(\mathscr{F},\mathscr{G}).$$

Then the conclusion follows.

3 ¶Remark All the above notions and results can be generalized to enriched categories, cf. [Kel05]. Note that, in this case, a *presheaf* should mean a contravariant \mathcal{A} -functor to \mathcal{A} ; the functor of points h_U should mean the contravariant \mathcal{A} -functor $X \mapsto \underline{\mathrm{Hom}}(X,U)$, where the notation $\underline{\mathrm{Hom}}$ emphasize that this is the internal hom-object in \mathcal{A} rather than a hom-set.

3.a Theorem (Weak Yoneda lemma) There is a canonical bijection

$$\operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(h_U, \mathscr{F}) \longrightarrow \operatorname{Hom}_{\mathcal{A}}(I, \mathscr{F}(U))$$
$$s \longmapsto \left(I \xrightarrow{1_U} \underline{\operatorname{Hom}}(U, U) \xrightarrow{s_U} \mathscr{F}(U)\right)$$

natural in both the object U and the presheaf \mathscr{F} .

The strong form of Yoneda lemma requires the completeness of \mathcal{A} . Then, given a small \mathcal{A} -enriched category \mathcal{C} and \mathcal{A} -enriched functors $\mathscr{F}, \mathscr{G} : \mathcal{C} \to \mathcal{A}$, one may construct the object of \mathcal{A} -natural transformations as an enriched end:

$$\mathcal{A}^{\mathcal{C}}(\mathscr{F},\mathscr{G}) := \int_{X \in \text{ob}\,\mathcal{C}} \underline{\text{Hom}}_{\mathcal{A}}(\mathscr{F}(X),\mathscr{G}(X)).$$

This is the hom-object in the enriched functor category $\mathcal{A}^{\mathcal{C}}$.

3.b Theorem (Strong Yoneda lemma) There is a A-natural isomorphism

$$\mathcal{A}^{\mathcal{C}^{\mathrm{opp}}}(h_U,\mathscr{F}) \xrightarrow{\sim} \mathscr{F}(U).$$

A-natural in both the object U and the presheaf \mathscr{F} .

3.c Corollary (Ninja Yoneda lemma) (following T. Leinster's comment in MathOverflow) Let \mathscr{F} be a presheaf, then

$$\mathscr{F}\cong \int_{X\in \mathrm{ob}\,\mathcal{C}} \underline{\mathrm{Hom}}_{\mathcal{A}}(\underline{\mathrm{Hom}}_{\mathcal{C}}(X,-),\mathscr{F}(X))\cong \int^{X\in \mathrm{ob}\,\mathcal{C}} \Upsilon(X)\otimes \mathscr{F}(X).$$

Category of presheaves

Recall that the morphisms between presheaves are nothing but natural transformations.

- 4 (Injective and surjective sheaf morphisms) A morphism $\varphi \colon \mathscr{F} \to \mathscr{G}$ of presheaves is said to be **injective** (resp. **surjective**) if $\varphi_U \colon \mathscr{F}(U) \to \mathscr{G}(U)$ is injective (resp. surjective) for every $U \in \text{ob } \mathcal{C}$.
- **4.a Lemma** Let $f: X \to Y$ be a morphism in a category C, then

f is	if and only if the induced map
monic	$\operatorname{Hom}(U,X) \xrightarrow{f_*} \operatorname{Hom}(U,Y)$ is injective for all $U \in \operatorname{ob} \mathcal{C}$;
epic	$\operatorname{Hom}(X,U) \xrightarrow{f^*} \operatorname{Hom}(Y,U)$ is injective for all $U \in \operatorname{ob} \mathcal{C}$;
split epic	$ \operatorname{Hom}(U,X) \xrightarrow{f_*} \operatorname{Hom}(U,Y) \text{ is surjective for all } U \in \operatorname{ob} \mathcal{C};$
split monic	$\operatorname{Hom}(X,U) \xrightarrow{f^*} \operatorname{Hom}(Y,U)$ is surjective for all $U \in \operatorname{ob} \mathcal{C}$.

4.b Proposition (Monic/epic is pointwise) The injective (resp. surjective) morphisms of presheaves are precisely the monomorphism (resp. epimorphism) in $\mathbf{PSh}(\mathcal{C})$. In particular, the isomorphisms in $\mathbf{PSh}(\mathcal{C})$ are those both injective and surjective.

Remark The injective part of this statement is straightly from Theorem 2.f and Lemma 4.a, while the surjective part requires the slogan "limits in functor categories are computed pointwise" and the fact that a morphism is epic if and only if its cokernel pair is trivial.

- **5** (Subpresheaves) We say \mathscr{F} is a subpresheaf of \mathscr{G} if for every $U \in \text{ob } \mathcal{C}$, $\mathscr{F}(U) \subset \mathscr{G}(U)$ and the inclusion maps glue together to give an injective morphism of presheaves $\mathscr{F} \to \mathscr{G}$.
- **5.a Proposition (Image of a morphism)** For any morphism of presheaves $\varphi \colon \mathscr{F} \to \mathscr{G}$, there exists a unique subpresheaf $\mathscr{G}' \subset \mathscr{G}$ such that φ can be factorized into $\mathscr{F} \to \mathscr{G}' \to \mathscr{G}$ and that the first morphism is surjective. Such a subpresheaf \mathscr{G}' is called the **(presheaf)** image of φ .
 - **6 Proposition (Limits and colimits of presheaves)** Limits and colimits exist in the category PSh(C). Indeed, they are computed pointwise. Moreover, for every $U \in ob C$, the section functors

$$\Gamma(U,-)\colon \operatorname{\mathbf{PSh}}(\mathcal{C}) \longrightarrow \operatorname{\mathbf{Set}}$$

$$\mathscr{F} \longmapsto \mathscr{F}(U)$$

commutes with limits and colimits.

As a result of this, statements about limits and colimits of presheaves can be deduced to the similar statements for sets. See my note BMO or refer [Bor94] for more details.

6.a Corollary If C is a small category. Then the Yoneda embedding $\Upsilon \colon C \to \mathbf{PSh}(C)$ commutes with limits.

Proof: Let $\lim U_i = U$ in \mathcal{C} and $V \in \mathcal{C}$. Then

$$(\varprojlim \Upsilon(U_i))(V) = \varprojlim \Upsilon(U_i)(V)$$

$$= \varprojlim \operatorname{Hom}(V, U_i)$$

$$= \operatorname{Hom}(V, \varprojlim U_i)$$

$$= \operatorname{Hom}(V, U) = \Upsilon(U)(V).$$

Thus $\underline{\lim} \Upsilon(U_i) = \Upsilon(\underline{\lim} U_i)$.

Remark However, the Yoneda embedding does not commute with colimits in general.

Changing the base space

Let $u \colon \mathcal{C} \to \mathcal{D}$ be a functor. Let u^p denote the functor

$$u^p \colon \mathbf{PSh}(\mathcal{D}) \longrightarrow \mathbf{PSh}(\mathcal{C})$$

$$\mathscr{G} \longmapsto \mathscr{G} \circ u.$$

Note that this functor commutes with limits and colimits.

Now, we are going to introduce a *left adjoint* to this functor. Before we do so, we introduce a category \mathcal{I}_V for every $V \in \text{ob } \mathcal{D}$ as follows. The objects in \mathcal{I}_V are pairs (U, ϕ) where $U \in \text{ob } \mathcal{C}$ and $\phi \colon V \to u(U)$. A morphism between (U, ϕ) and (U', ϕ') is a morphism $f \colon U \to U'$ such that $u(f) \circ \phi = \phi'$. in other words, \mathcal{I}_V is the *comma category* (const $_V \downarrow u$).

Before going forward, we recall the notion of *filtered colimit*.

7 (Filtered colimits) A category \mathcal{I} is said to be filtered if it is nonempty and if every *finite diagram* in which has a *cocone*, in other words, if every functor from a finite category to \mathcal{I} admits a natural transformation to a constant functor.

Like the equivalence condition of cocompleteness, we have

- **7.a Proposition** A category \mathcal{I} is filtered, if and only if
 - 1. \mathcal{I} is nonempty;
 - 2. For any two objects $A, B \in \text{ob } \mathcal{I}$, there exists an object $C \in \text{ob } \mathcal{I}$ and morphisms $A \to C$ and $B \to C$;
 - 3. For any two parallel morphisms $f, g: A \Rightarrow B$ in \mathcal{I} , there exists a morphism $h: B \to C$ such that $h \circ f = h \circ g$.

We have a slogan "in **Set**, filtered colimits commute with finite limits". The proof of this statement is technical, one can either refer Theorem 2.12.11 in my note BMO, or directly refer [Bor94].

Now, we go back to the category \mathcal{I}_V .

8 Lemma Let C be a finite-complete category, which means it has all finite limits, and $u: C \to D$ be a functor commutes with all those finite limits, then $\mathcal{I}_{V}^{\text{opp}}$ are filtered.

Proof: First, we show that $\mathcal{I}_V^{\text{opp}}$ is nonempty. Indeed, let X be a terminal object in \mathcal{C} . Then u(X) is a terminal object in \mathcal{D} . Thus there exists a morphism $V \to u(X)$, and therefore \mathcal{I}_V has at least one object.

Then we verify condition 2 in Proposition 7.a. Let $(A, \phi), (B, \psi) \in \text{ob } \mathcal{I}_V$. Let C be the product of A and B in C. Then u(C) is the product of u(A) and u(B). Hence there exists a unique morphism $\theta \colon V \to u(C)$ compatible with ϕ and ψ . Then (C, θ) is the required object. Finally, we verify condition 3. Let $f,g:(A,\phi) \rightrightarrows (B,\psi)$ be two parallel morphisms in $\mathcal{I}_V^{\text{opp}}$. Then $f,g:B \rightrightarrows A$ are two parallel morphisms in \mathcal{C} . Let $h:C \to B$ be the equalizer of them, then u(h) is the equalizer of u(f) and u(g). Hence there exists a unique morphism $\theta:V \to u(C)$ such that $u(h) \circ \theta = \psi$. Then u(h) is the required morphism.

Given a presheaf \mathscr{F} on \mathcal{C} , we have a functor

$$\mathscr{F}_V \colon \mathcal{I}_V^{\mathrm{opp}} \longrightarrow \mathbf{Set}$$

 $(U, \phi) \longmapsto \mathscr{F}(U).$

So, we define

$$u_p\mathscr{F}(V) := \varinjlim \mathscr{F}_V.$$

Given a morphism $g \colon V' \to V$, by the functorality of comma category, we have a functor

$$\bar{g}: \mathcal{I}_V \longrightarrow \mathcal{I}_{V'}$$

 $(U, \phi) \longmapsto (U, \phi \circ g),$

such that $\mathscr{F}_{V'} \circ \bar{g} = \mathscr{F}_V$. Therefore, there exists a unique map $g^* : u_p \mathscr{F}(V) \to u_p \mathscr{F}(V')$ compatible with this relation, i.e. the following diagram commutes.

The uniqueness of those g^* implies that we obtain a presheaf on \mathcal{D} , denoted by $u_p\mathscr{F}$. Note that any morphism of presheaves $\mathscr{F} \to \mathscr{F}'$ gives rise to compatible systems of morphisms between functors $\mathscr{F}_V \to \mathscr{F}_V'$, and hence to a morphism of presheaves $u_p\mathscr{F} \to u_p\mathscr{F}'$. In this way, we have defined a functor

$$u_p \colon \operatorname{\mathbf{PSh}}(\mathcal{C}) \longrightarrow \operatorname{\mathbf{PSh}}(\mathcal{D}).$$

9 Theorem The functor u_p is a left adjoint to the functor u^p .

Proof: Let \mathscr{G} be a presheaf on \mathcal{D} and let \mathscr{F} be a presheaf on \mathcal{C} . We need to show the following one-one corresponding:

$$\operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(\mathscr{F}, u^p\mathscr{G}) \cong \operatorname{Hom}_{\mathbf{PSh}(\mathcal{D})}(u_p\mathscr{F}, \mathscr{G}).$$

First, given a morphism $\alpha \colon u_p \mathscr{F} \to \mathscr{G}$, we get $u^p \alpha \colon u^p u_p \mathscr{F} \to u^p \mathscr{G}$. Since there already exists a morphism $\mathscr{F} \to u^p u_p \mathscr{F}$ given by the canonical maps $c(\mathrm{id}_{u(U)}) \colon \mathscr{F}(U) \to u_p \mathscr{F}(u(U))$, we find the corresponding morphism $\mathscr{F} \to u^p u_p \mathscr{F} \to u^p \mathscr{G}$. Then, given a morphism $\beta \colon \mathscr{F} \to u^p \mathscr{G}$, we get $u_p \beta \colon u_p \mathscr{F} \to u_p u^p \mathscr{G}$. For every $V \in \mathcal{D}$, consider the set $u_p u^p \mathscr{G}(V) := \varprojlim u^p \mathscr{G}_V$. Now, for each $(U,\phi) \in \mathcal{I}_V$, its value under $u^p \mathscr{G}_V$ is $\mathscr{G}(u(U))$ which admits a map $\mathscr{G}(\phi) \colon \mathscr{G}(u(U)) \to \mathscr{G}(V)$. These maps form a natrual transformation from $u^p \mathscr{G}_V$ to the constant functor $\operatorname{const}_{\mathscr{G}(V)}$ on \mathcal{I}_V . Then there exists a map $u_p u^p \mathscr{G}(V) \to \mathscr{G}(V)$. These maps form a morphism of presheaves $u_p u^p \mathscr{G} \to \mathscr{G}$. Then we obtain the required morphism $u_p \mathscr{F} \to_p u^p \mathscr{G} \to \mathscr{G}$.

Finally, one can verify the above are mutually inverse. \Box

Remark Note that if \mathcal{A} is a category such that any diagram $\mathcal{I}_{V}^{\text{opp}} \to \mathcal{A}$ has a limit, then the functors u^{p} and u_{p} can be defined on the categories of presheaves with values in \mathcal{A} . Moreover, the adjointness of the pair u^{p} and u_{p} continues to hold in this setting.

9.a Corollary Let $u: \mathcal{C} \to \mathcal{D}$ be a functor between categories. Then, for any $U \in \text{ob } \mathcal{C}$ we have $u_p h_U = h_{u(U)}$.

Proof: By the adjointness and Yoneda lamma, we have

$$\operatorname{Hom}_{\mathbf{PSh}(\mathcal{D})}(u_p h_U, \mathscr{G}) \cong \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(h_U, u^p \mathscr{G}) \cong u^p \mathscr{G}(U) = \mathscr{G}(u(U)),$$

 $\operatorname{Hom}_{\mathbf{PSh}(\mathcal{D})}(h_{u(U)}, \mathscr{G}) \cong \mathscr{G}(u(U)).$

Therefore,
$$u_p h_U = h_{u(U)}$$
.

Kan extensions

One can similar define a right adjoint pu of u^p as follows. First, construct the category $V^{\mathcal{I}}$ as the comma category $(u \downarrow \operatorname{const}_V)$. Then construct the functor $V^{\mathcal{F}}$ as

$$_{V}\mathscr{F}: {_{V}}\mathscr{I}^{\mathrm{opp}} \longrightarrow \mathbf{Set}$$

 $(U, \phi) \longmapsto \mathscr{F}(U).$

Finally, the functor is given by

$$_{p}u\mathscr{F}(V):=\underline{\lim}\ _{V}\mathscr{F}.$$

The functor u_p (resp. pu) is called the **left** (resp. right) Kan extension operation along u and $u_p\mathscr{F}$ (resp. $pu\mathscr{F}$) is called the **left** (resp. right) Kan extension of \mathscr{F} along u. More details can be found in §4.4 of my note BMO or refer [Bor94].

10 Theorem The functor pu is right adjoint to u^p .

Proof: The proof is similar to that of Theorem 9.

The following lemma shows what happens when the change of base space already has an adjoint.

- **11 Lemma** Let $u \dashv v \colon \mathcal{C} \to \mathcal{D}$ be an adjoint pair, which means a pair of functors $u \colon \mathcal{C} \to \mathcal{D}$ and $v \colon \mathcal{D} \to \mathcal{C}$ such that u is left adjoint to v. Then
 - 1. $u^p h_V = h_{v(V)}$ for any $V \in \text{ob } \mathcal{D}$;
 - 2. the category \mathcal{I}_{U}^{v} has an initial object;
 - 3. the category ${}^{u}_{V}\mathcal{I}$ has a terminal object;
 - 4. $_{p}u=v^{p};$
 - 5. $u^p = v_p$.

Proof: 1. Let $V \in \text{ob } \mathcal{D}$, then

$$u^p h_V(U) = h_V(u(U)) = \text{Hom}(u(U), V) = \text{Hom}(U, v(V)) = h_{v(V)}(U).$$

- 2. Let $\eta_U : U \to v(u(U))$ be the map adjoint to the map $\mathrm{id}_{u(U)}$. Then $(u(U), \eta_U)$ is an initial object of \mathcal{I}_U^v .
- 3. Let $\epsilon_V : u(v(V)) \to V$ be the map adjoint to the map $\mathrm{id}_{v(V)}$. Then $(v(V), \epsilon_V)$ is a terminal object of ${}^u_V \mathcal{I}$.
 - 4. Indeed, for any presheaf \mathscr{F} on \mathscr{C} , we have

$$v^{p}\mathscr{F}(V) = \mathscr{F}(v(V))$$

$$= \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(h_{v(V)}, \mathscr{F})$$

$$= \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(u^{p}h_{V}, \mathscr{F})$$

$$= \operatorname{Hom}_{\mathbf{PSh}(\mathcal{D})}(h_{V}, pu\mathscr{F})$$

$$= pu\mathscr{F}(V).$$

5. u^p is right adjoint to pu, v_p is right adjoint to v^p . By the uniqueness of adjoint functor, $pu = v^p$ implies $u^p = v_p$.

The Kan extension operations u_p and $_pu$ above are special case of the following general notions.

- **12** (Kan extensions) Let $\mathscr{F}: \mathcal{C} \to \mathcal{D}$ and $p: \mathcal{C} \to \mathcal{C}'$ be two functors. The left Kan extension of \mathscr{F} along p, if it exists, is a pair (\mathscr{G}, α) where
 - $\mathscr{G}: \mathcal{C}' \to \mathcal{D}$ is a functor,
 - $\alpha : \mathscr{F} \Rightarrow \mathscr{G} \circ p$ is a natural transformation,

satisfying the following universal property: if (\mathcal{H}, β) is another pair with

• $\mathcal{H}: \mathcal{C}' \to \mathcal{D}$ is a functor,

• $\beta \colon \mathscr{F} \Rightarrow \mathscr{H} \circ p$ is a natural transformation,

then there exists a unique natural transformation $\gamma\colon \mathscr{G}\Rightarrow \mathscr{H}$ such that $(\gamma*p)\circ \alpha=\beta.$

We shall use the notation $\operatorname{Lan}_p \mathscr{F}$ to denote the **left Kan extension** of \mathscr{F} along p. The notation $\operatorname{Ran}_p \mathscr{F}$ is used for the dual notion of **right Kan extension**.

13 Example (Yoneda extension) Let $\mathscr{F}: \mathcal{C} \to \mathcal{D}$ be a functor, then its Yoneda extension $\widetilde{\mathscr{F}}: \mathbf{PSh}(\mathcal{C}) \to \mathcal{D}$ is the left Kan extension of \mathscr{F} along the Yoneda embedding, i.e. $\widetilde{\mathscr{F}} = \operatorname{Lan}_{\Upsilon} \mathscr{F}$. Note that one has $\widetilde{\mathscr{F}} \circ \Upsilon = \mathscr{F}$ and the formula

$$\widetilde{\mathscr{F}}(\mathscr{G}) = \varinjlim_{(h_U \to \mathscr{G}) \in \operatorname{ob}(\Upsilon \downarrow \operatorname{const}_{\mathscr{G}})} \mathscr{F}(U).$$

§ I.2 Sites and sheaves

In this section, we define *sheaves on a site*. One slogan about the topologies used in algebraic geometry is that "it is the covering does matter, not the open set". Therefore, a convention approach to the notion of sites is using coverings. So we list the definition of *coverings* and their *equivalence relations*. On this foundation, we define sheaves as presheaves satisfying *descent condition* respect to coverings. Then, we briefly introduce the notion sheaves with values in an algebraic category. Finally, we show equivalent sites define the same sheaves.

Sites

1 (Sites as categories equipped with a Grothendieck pretopology) A site is a category C equipped with a Grothendieck pretopology, that is a collection Cov(C) of families of morphisms with fixed target $\{U_i \to U\}$, called **coverings** on C, satisfying the following axioms

Cov1. If $V \to U$ is an isomorphism then $\{V \to U\} \in \text{Cov}(\mathcal{C})$;

Cov2. the collection of coverings is stable under pullback: if $\{U_i \to U\}_{i \in I}$ is a covering and $f \colon V \to U$ is any morphism in \mathcal{C} , then $U_i \times_U V$ exists for all i and $\{U_i \times_U V \to V\}_{i \in I}$ is a covering;

Cov3. if $\{U_i \to U\}_{i \in I}$ is a covering and for each i, $\{U_{i,j} \to U_i\}_{j \in J_i}$ is also a covering, then the family of compositions $\{U_{i,j} \to U_i \to U\}_{i \in I, j \in J_i}$ is a covering.

Remark One may hope $Cov(\mathcal{C})$ to be a set. But this may not be true even if \mathcal{C} is a small category. Usually, we need to shrink the Grothendieck pretopology to make it become a set.

1.a Example (Topological space) Let X be a topological space and \mathcal{T}_X the category whose objects are all the open subsets of X and morphisms are the inclusion maps. Then there is a standard Grothendieck pretopology on \mathcal{T}_X given by

$$\{U_i \to U\}_{i \in I} \in \text{Cov}(\mathcal{T}_X) \iff \bigcup U_i = U.$$

We should point out that in this site, $U \times V = U \cap V$ and that empty covering of the empty set is a covering.

However, this Grothendieck pretopology is too big: the collection $Cov(\mathcal{T}_X)$ is not a set as we allow arbitrary set as the index set I. This can be avoid if we exclude those coverings having duplicative members. But then, this set is NOT a Grothendieck pretopology unless we modify the axioms as follows.

Let \mathcal{C} be a small category. Let \mathcal{P} denote the power set and $\operatorname{Hom}(\mathcal{C})$ denote the union of all hom-sets in \mathcal{C} . Then a **quasi-Grothendieck pretopology** $\operatorname{Cov}(\mathcal{C})$ on \mathcal{C} is given by

Cov0' Cov(\mathcal{C}) $\subset \mathcal{P}(\text{Hom}(\mathcal{C}))$;

Cov1' If $V \to U$ is an isomorphism then $\{V \to U\} \in \text{Cov}(\mathcal{C})$;

- Cov2' the collection of coverings is stable under pullback: if $\{U_i \to U\}_{i \in I}$ is a covering and $f: V \to U$ is any morphism in \mathcal{C} , then $U_i \times_U V$ exists for all i and $\{U_i \times_U V \to V\}_{i \in I}$ is tautologically equivalent to an element of $\text{Cov}(\mathcal{C})$;
- Cov3' if $\{U_i \to U\}_{i \in I}$ is a covering and for each i, $\{U_{i,j} \to U_i\}_{j \in J_i}$ is also a covering, then the family of compositions $\{U_{i,j} \to U_i \to U\}_{i \in I, j \in J_i}$ is tautologically equivalent to an element of $Cov(\mathcal{C})$.
- **1.b** Example (G-sets) Let G be a group and G Set the category whose objects are sets X with a left G-action and whose morphisms are G-equivariant maps. Now, define

$$\{\varphi_i \colon U_i \to U\}_{i \in I} \in \operatorname{Cov}(G\operatorname{\mathbf{Set}}) \iff \bigcup \varphi_i(U_i) = U.$$

One can verify this $Cov(G \mathbf{Set})$ satisfies the axioms. However, since both $G \mathbf{Set}$ and $Cov(G \mathbf{Set})$ are too big (they are proper classes), one may prefer to work with some smaller substitutes.

First, for any G-set X_0 , there exists a suitable universe \mathcal{U} such that the full subcategory $G \operatorname{\mathbf{Set}}_{\mathcal{U}}$ of \mathcal{U} -small G-sets contains X_0 and, up to isomorphism, every G-sets smaller than those in this subcategory. Then replace $\operatorname{Cov}(G \operatorname{\mathbf{Set}}_{\mathcal{U}})$ by a smaller one $\operatorname{Cov}(G \operatorname{\mathbf{Set}}_{\mathcal{U}})_s$, which contains the coverings we care about and every covering in $\operatorname{Cov}(G \operatorname{\mathbf{Set}}_{\mathcal{U}})_s$ is $\operatorname{combinatorially}_s$ is denoted by \mathcal{T}_G .

- 1.c Example Any category C admits a canonical Grothendieck pretopology by setting $\{id_U \colon U \to U\}$ as the coverings. Sheaves on this site are the presheaves on C. The corresponding topology is called the chaotic or indiscrete topology.
- 1.d Remark (Coverages) In [Joh02], Johnstone introduced a more general concept called **coverage**, which is basically the same as a Grothendieck pretopology except the second axiom may not be satisfied. In his text, a *site* is a category equipped with a coverage, not necessary a Grothendieck pretopology. Many constructions and results still hold in this setting.
 - **2** (Morphisms and refinements) Let $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ and $\mathfrak{V} = \{V_j \to V\}_{j \in J}$ be two coverings on a category \mathcal{C} , a morphism from \mathfrak{U} to \mathfrak{V} consists of a morphism $f \colon U \to V$, a map $\alpha \colon I \to J$ and for each $i \in I$, a morphism

 $U_i \to V_{\alpha(i)}$ making the following diagram commute.

$$\begin{array}{ccc} U_i \longrightarrow V_{\alpha(i)} \\ \downarrow & & \downarrow \\ U \longrightarrow V \end{array}$$

When U = V and $U \to V$ is the identity, we call \mathfrak{U} a **refinement** of \mathfrak{V} .

Remark If $\mathfrak V$ is the empty covering, i.e. $J=\varnothing$, then no nonempty covering $\mathfrak U$ can refine $\mathfrak V$.

Now, we define the equivalence relation of coverings, so that we can shrink the Grothendieck pretopology in the case that we still have all the coverings up to equivalence.

- **3** (Equivalence relations of coverings) Let $\mathfrak{U} = \{\phi_i : U_i \to U\}_{i \in I}$ and $\mathfrak{V} = \{\psi_i : V_i \to U\}_{i \in J}$ be two coverings on a category \mathcal{C} .
 - 1. We say \mathfrak{U} and \mathfrak{V} are **combinatorially equivalent** if there exist maps $\alpha \colon I \to J$ and $\beta \colon J \to I$ such that $\phi_i = \psi_{\alpha(i)}$ and $\psi_j = \phi_{\beta(j)}$.
 - 2. We say $\mathfrak U$ and $\mathfrak V$ are **tautologically equivalent** if there exist maps $\alpha\colon I\to J$ and $\beta\colon J\to I$ such that for all $i\in I$ and $j\in J$ the following diagrams commute.

- **3.a Lemma** Let $\mathfrak{U} = \{\phi_i \colon U_i \to U\}_{i \in I} \text{ and } \mathfrak{V} = \{\psi_j \colon V_j \to U\}_{j \in J} \text{ be two coverings on a category } \mathcal{C}.$
 - 1. If $\mathfrak U$ and $\mathfrak V$ are combinatorially equivalent then they are tautologically equivalent.
 - 2. If $\mathfrak U$ and $\mathfrak V$ are tautologically equivalent then $\mathfrak U$ is a refinement of $\mathfrak V$ and $\mathfrak V$ is a refinement of $\mathfrak U$.
 - 3. The relation "being combinatorially equivalent" is an equivalence relation.
 - 4. The relation "being tautologically equivalent" is an equivalence relation.
 - 5. The relation " $\mathfrak U$ refines $\mathfrak V$ and $\mathfrak V$ refines $\mathfrak U$ " is an equivalence relation.

Sheaves

4 (Sheaves are gluing presheaves) Let (C, Cov(C)) be a site. A sheaf on it, or a *sheaf* on C respect to Cov(C) is a presheaf \mathscr{F} satisfying the following gluing axiom:

For any covering $\{U_i \to U\}_{i \in I}$ and sections $s_i \in \mathscr{F}(U_i)$ such that

$$s_i|_{U_i \times_U U_i} = s_j|_{U_i \times_U U_i}$$

in $\mathscr{F}(U_i \times_U U_j)$ for all $i, j \in I$, there exists a unique $s \in \mathscr{F}(U)$ such that $s_i = s|_{U_i}$.

Remark If in the above definition there is at most one such s, we say that \mathscr{F} is a **separated presheaf**.

The above component-wise definition can be written into a more abstract way: A presheaf \mathscr{F} is called a **sheaf** if for every covering $\{U_i \to U\}_{i \in I}$, the diagram

$$\mathscr{F}(U) \longrightarrow \prod_{i \in I} \mathscr{F}(U_i) \xrightarrow{\operatorname{pr}_0^*} \prod_{i_0, i_1 \in I} \mathscr{F}(U_{i_0} \times_U U_{i_1})$$
 (I.2.1)

is *exact*, which means the first arrow is an equalizer of pr_0^* and pr_1^* . This condition is also called the **descent condition**.

Remark By this definition, if there exists an empty covering $\{U_i \to U\}_{i \in I}$, which means $I = \emptyset$, then $\mathscr{F}(U)$ is a singleton, the terminal object in **Set**.

The morphisms between sheaves are the morphisms between their underlying presheaves. In this way, the category of sheaves $\mathbf{Sh}(\mathcal{C})$ is a full subcategory of the category of presheaves $\mathbf{PSh}(\mathcal{C})$.

- **4.a Example (Sheaves on topological spaces)** Let X be a topological space and let \mathcal{T}_X be the site in Example 1.a. Then the sheaves on \mathcal{T}_X is called sheaves on the topological space X. Actually, this is the original notion of sheaves.
- **4.b Example** Let X be a topological space and let \mathcal{T}'_X be the site basically the same as \mathcal{T}_X except it excludes empty coverings. The sheaves on \mathcal{T}'_X are the same as sheaves on the space $X \sqcup \{\eta\}$ whose open sets are the empty set and union of open sets in X with $\{\eta\}$.
 - 5 (Sheaves with values in a category) Since the descent condition (I.2.1) makes sense for arbitrary category, thus we can easily generalize the notion of sheaves to allow values in an arbitrary category A.

Let \mathscr{F} be a presheaf with values in \mathcal{A} . For any $X \in \operatorname{ob} \mathcal{A}$, We define presheaves \mathscr{F}_X as

$$\mathscr{F}_X(U) := \operatorname{Hom}_{\mathcal{A}}(X, \mathscr{F}(U)).$$

Then, the Yoneda lemma tells us that \mathscr{F} is a *sheaf with values in* \mathscr{A} if and only if for all $X \in \text{ob } \mathscr{A}$, \mathscr{F}_X is a sheaf.

- **5.a Theorem** Presheaves (resp. sheaves) with values in the category \mathbf{Ab} of abelian groups are precisely the abelian group objects in the category of presheaves (resp. sheaves). They are also called $\mathbf{abelian}$ $\mathbf{presheaves}$ (resp. $\mathbf{abelian}$ $\mathbf{sheaves}$). The category of abelian $\mathbf{presheaves}$ (resp. $\mathbf{abelian}$ $\mathbf{sheaves}$) is also denoted by $\mathbf{PAb}(\mathcal{C})$ (resp. $\mathbf{Ab}(\mathcal{C})$).
- **5.b** Let \mathcal{A} be a **concrete category**, which is a category equipped with a faithful functor $F: \mathcal{A} \to \mathbf{Set}$ called the **forgetful functor**. Then a presheaf with values in \mathcal{A} gives rise to a presheaf of sets $F \circ \mathscr{F}$ called the **underlying presheaf of sets** of \mathscr{F} .

In practice, a concrete category often appears as a category of *structured sets*. Sheaves of structured sets can be checked by their underlying presheaves of sets.

5.c Lemma Let \mathcal{A} be a complete concrete category with forgetful functor F which commutes with all limits and reflects isomorphisms. Then for any presheaf \mathscr{F} with values in \mathcal{A} , \mathscr{F} is a sheaf with values in \mathcal{A} if and only if its underlying presheaf of sets is a sheaf.

Proof: Apply F to the diagram (I.2.1) and one can check the requirements by the properties of F.

- 6 (Algebraic categories) A category of algebraic structures, or algebraic category is a concrete category \mathcal{A} equipped with a forgetful functor F satisfying the following conditions:
 - 1. \mathcal{A} is *complete*, meaning it has limits, and F commutes with limits;
 - 2. \mathcal{A} has shifted colimits and F commutes with them;
 - 3. F reflects isomorphisms.

Remark In fact, the correct definition requires further F admits a left adjoint, called the **free functor**. But this is equivalent to 1. under suitable assumption of sizes. See Adjoint functor theorem.

6.a (Sifted colimits) Recall that a small category \mathcal{I} is said to be sifted if it is nonempty and the diagonal functor $\Delta \colon \mathcal{I} \to \mathcal{I} \times \mathcal{I}$ is cofinal, which means for any objects $i, j \in \text{ob}\,\mathcal{I}$, the comma category $(\text{const}_{(i,j)} \downarrow \Delta)$ is connected. Note that the objects in $(\text{const}_{(i,j)} \downarrow \Delta)$ are cospans $i \to k \leftarrow j$ in \mathcal{I} . Sifted colimits in **Set** commutes with finite products. (ref. §2.12 in BMO or [Bor94])

- **6.b Example** The following categories, equipped with the obvious forgetful functor, are algebraic categories:
 - The category ***Set** of pointed sets.
 - The category **Ab** of abelian groups.
 - The category **Grp** of groups.
 - The category **Mon** of monoids.
 - The category **Ring** of (non-commutative) rings.
 - The category $\mathbf{Mod}(R)$ of R-modules over a fixed ring R.
 - The category of Lie algebras over a fixed field.
- **6.c** Proposition Let $f: X \to Y$ be a morphism in A. Then f is monic (resp. epic) if so is F(f). Moreover, F reflects monomorphisms.

Proof: Note that f is monic if and only if its kernel pair $X \times_Y X$ is trivial, i.e. $X \to X \times_Y X$ is an isomorphism.

6.d Lemma Let $f: X \to Y$ and $g: X' \to Y$ be two morphisms in A. If F(g) is injective and $\operatorname{im}(F(f)) \subset \operatorname{im}(F(g))$, then there exists a morphism $h: X \to X'$ such that $f = g \circ h$.

Proof: Note that the assumptions imply that $F(X) \times_{F(Y)} F(X') = F(X)$. Then the conclusion follows.

- 7 Theorem (Equivalent sites provide same sheaves) Let C be a category and Cov_1 , Cov_2 two Grothendieck pretopologies.
 - 1. If each $\mathfrak{U} \in \operatorname{Cov}_1$ is tautologically equivalent to some $\mathfrak{V} \in \operatorname{Cov}_2$, then $\operatorname{\mathbf{Sh}}(\mathcal{C}, \operatorname{Cov}_2) \subset \operatorname{\mathbf{Sh}}(\mathcal{C}, \operatorname{Cov}_1)$.
 - 2. If for each $\mathfrak{U} \in \operatorname{Cov}_1$, there exists a $\mathfrak{V} \in \operatorname{Cov}_2$ refining \mathfrak{U} , then $\operatorname{\mathbf{Sh}}(\mathcal{C}, \operatorname{Cov}_2) \subset \operatorname{\mathbf{Sh}}(\mathcal{C}, \operatorname{Cov}_1)$.

Proof: Let $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ be a covering in Cov_1 and $\mathfrak{V} = \{V_j \to U\}_{j \in J}$ a refinement of \mathfrak{U} in Cov_2 given by the map $\alpha \colon J \to I$ and the morphisms $f_j \colon V_j \to U_{\alpha(j)}$. Let \mathscr{F} be a presheaf on \mathscr{C} . We need to show that the *descent condition* (I.2.1) for \mathscr{F} with respect to all coverings in Cov_2 implies the one with respect to \mathfrak{U} .

The uniqueness is easy to prove. Indeed, let $s, s' \in \mathcal{F}(U)$ such that $s|_{U_i} = s'|_{U_i}$ for all $i \in I$. Then we also have $s|_{V_j} = s'|_{V_j}$ for all V_j . Thus s = s' by the descent condition respect to \mathfrak{V} .

Now we turn to the gluing condition. Let $s_i \in \mathscr{F}(U_i)$ be a family of sections satisfying $s_i|_{U_i \times_U U_{i'}} = s_{i'}|_{U_i \times_U U_{i'}}$ for all $i, i' \in I$. Let $s_j := \mathscr{F}(f_j)(s_{\alpha(i)}) \in \mathscr{F}(V_j)$. Then from the following Cartesian diagrams,

we obtain $s_j|_{V_j \times_U V_{j'}} = s_{j'}|_{V_j \times_U V_{j'}}$. By the descent condition respect to \mathfrak{V} , there exists a section $s \in \mathscr{F}(U)$ such that $s_j = s|_{V_j}$ for all $j \in J$. We remain to show that $s_i = s|_{U_i}$ for all $i \in I$.

Now we have to consider some other coverings. Let $i_0 \in I$, then $\mathfrak{U}' = \{U_i \times_U U_{i_0} \to U_{i_0}\}_{i \in I}$ is a covering in Cov_1 and $\mathfrak{V}' = \{V_j \times_U U_{i_0} \to U_{i_0}\}_{j \in J}$ is a covering in Cov_2 which refines \mathfrak{U}' via α and $f'_j := f_j \times \text{id}_{U_0}$. Then consider $s_{i_0}|_{V_j \times_U U_{i_0}}$ given by the composition

$$\mathscr{F}(U_{i_0}) \longrightarrow \mathscr{F}(U_{\alpha(j)} \times_U U_{i_0}) \longrightarrow \mathscr{F}(V_j \times_U U_{i_0}).$$

Since $s_i|_{U_i\times_U U_{i_0}}=s_{i_0}|_{U_i\times_U U_{i_0}}$ for all $i\in I$ and $s_j=\mathscr{F}(f_j)(s_{\alpha(i)})$, we have $s_{i_0}|_{V_j\times_U U_{i_0}}=s_j|_{V_j\times_U U_{i_0}}$ for all $j\in J$. Now, from the following Cartesian diagrams,

we have $s_{i_0}|_{V_j \times_U U_{i_0}} = s|_{U_{i_0}}|_{V_j \times_U U_{i_0}}$ for all $j \in J$. Hence $s_{i_0} = s|_{U_{i_0}}$.

§ I.3 Sheaves on topological spaces

We have seen sheaves on topological spaces in Example 2.4.a. Now we discuss something more about them.

Sheaves and stalks

- 1 (Sheaves) Recall that a presheaf on a topological space X is called a **sheaf** if it satisfies the *descent condition*. By the description of limits in **Set**, this means for any covering $\{U_i \subset U\}_{i \in I}$,
 - 1. the canonical map $\mathscr{F}(U) \to \prod_{i \in I} \mathscr{F}(U_i)$ is injective,
 - 2. the image of $\mathcal{F}(U)$ under the canonical map equals

$$\left\{ (s_i) \in \mathscr{F}(U_i) \middle| \forall i_0, i_1 \in I \ s_{i_0}|_{U_{i_0} \cap U_{i_1}} = \left. s_{i_1} \right|_{U_{i_0} \cap U_{i_1}} \right\}.$$

More elementarily, the descent condition equals the following two axioms:

Identity axiom For any sections $s, s' \in \mathscr{F}(U)$, if there exists a covering $\{U_i \subset U\}_{i \in I}$ such that $s|_{U_i} = s'|_{U_i}$, then s = s'.

Gluing axiom For any system of compatible sections $(s_i)_{i\in I}$ respect to a covering $\{U_i \subset U\}_{i\in I}$, namely an element $(s_i) \in \prod_{i\in I} \mathscr{F}(U_i)$ satisfying $s_{i_0}|_{U_{i_0}\cap U_{i_1}} = s_{i_1}|_{U_{i_0}\cap U_{i_1}}$ for all $i_0, i_1 \in I$.

In this case, we call the image of inclusion maps under a presheaf \mathscr{F} the **restriction maps**.

1.a (global sections) Let \mathscr{F} be a presheaf on a topological space X. Since X itself is the terminal object in \mathcal{T}_X , we have $\mathscr{F}(X) \cong \operatorname{Hom}_{\mathbf{PSh}(X)}(*,\mathscr{F})$. Therefore, we call an element $s \in \Gamma(X,\mathscr{F}) := \mathscr{F}(X)$ a global section.

A significant fact about a topological space is that it has points.

2 (Stalks and germs) Let X be a topological space and $x \in X$ be a point. Let \mathscr{F} be a presheaf on X. The stalk of \mathscr{F} at x is the colimit

$$\mathscr{F}_x := \varinjlim_{x \in U} \mathscr{F}(U).$$

2.a Remark (Taking stalk is exact) One can see this gives rise to a functor

$$\Gamma_x \colon \mathbf{PSh}(X) \longrightarrow \mathbf{Set}$$

$$\mathscr{F} \longmapsto \mathscr{F}_x$$

called the stalk functor.

Moreover, note that the system of neighborhoods of x is filtered, thus the stalks are filtered colimits, thus commute with colimits and finite limits. In particular, the stalk functor is exact.

It is easy to describe the set \mathscr{F}_x . It is the quotient

$$\mathscr{F}_x = \{(U, s) | x \in U, s \in \mathscr{F}(U)\} / \sim$$

where the equivalence relation \sim is given by $(U,s) \sim (U',s')$ if and only if there exists an open $U'' \subset U \cap U'$ such that $x \in U''$ and that $s|_{U''} = s'|_{U''}$. The equivalence class of (U,s) will be denoted by s_x and called the **germ** of s at x.

From this description, we get a canonical map for every open set $U \subset X$:

$$\mathscr{F}(U) \longrightarrow \prod_{x \in U} \mathscr{F}_x$$

 $s \longmapsto \prod_{x \in U} s_x.$

2.b Lemma (Sections are determined by germs) Let X be a topological space. A presheaf \mathscr{F} on X is separated if and only if for every open $U \subset X$ the above canonical map is injective.

Proof: Let \mathscr{F} be a separated presheaf. Let s,s' be two sections of \mathscr{F} on some open set U such that they have the same germ at each $x \in U$. Then, for each $x \in U$, there exists an open neighborhood U_x of x such that $s|_{U_x} = s'|_{U_x}$. Note that $\{U_x \subset U\}_{x \in U}$ is a covering, thus s = s'.

Conversely, let \mathscr{F} be a presheaf satisfying the condition in statement. Let $\{U_i \subset U\}_{i \in I}$ be a covering. Let s, s' be two sections of \mathscr{F} on U such that $s|_{U_i} = s'|_{U_i}$ for all $i \in I$. Note that this implies that s and s' have the same germ at every point in each U_i , thus in whole U. Then, by the injectivity of the canonical map, s = s'.

- **2.c** (Compatible germs) Now we turn to the image of the canonical map. The elements in the image are called **systems of compatible germs** of \mathscr{F} over U. To be explicit, a system of compatible germs is an element $\prod_{x \in U} s_x \in \prod_{x \in U} \mathscr{F}_x$ such that for any $x \in U$, there exists some representative (U_x, s^x) of s_x with $U_x \subset U$ such that the germ of s^x at any point $y \in U_x$ is s_y .
 - **3 Example (Sheaf of germs)** Let X be a topological space. For each $x \in X$, give a set S_x . Then we have a presheaf given by $\mathscr{F}(U) = \prod_{x \in U} S_x$ with obvious restriction maps. This is a sheaf. But, usually $\mathscr{F}_x \neq S_x$. We only have a map $\mathscr{F}_x \to S_x$.
 - **4** (Support of a section) Let \mathscr{F} be an abelian sheaf on X and s be a global section. The support of s, denoted by $\operatorname{Supp}(s)$, is the subset of X consisting of points of X where s has nonzero germ:

$$\operatorname{Supp}(s) := \{ x \in X | s_x \neq 0 \in \mathscr{F}_x \}.$$

4.a Proposition Supp(s) is a closed subset of X.

Proof: Consider any point y in the closure $\overline{\operatorname{Supp}(s)}$. Then for any neighborhood U of y, there exists a point x contained in $U \cap \operatorname{Supp}(s)$. Then $s_x \neq 0$, thus $s|_U \neq 0$. Vary U through all neighborhood of y, we get $s_y \neq 0$.

The followings are some important examples.

- **5 Example (Restriction of a sheaf)** Let \mathscr{F} be a sheaf on X and U be an open subset of X. Then there is a natural sheaf $\mathscr{F}|_U$ on U given by $\mathscr{F}|_U(V) := \mathscr{F}(V)$ for all open subsets $V \subset U$, called the **restriction** of \mathscr{F} to U.
- **6 Example (Skyscraper sheaves)** Let X be a topological space with $x \in X$ and S a set. Let $i_x \colon x \to X$ be the inclusion. The **skyscraper sheaf** $i_{x,*}S$ is given by

$$i_{x,*}S(U) = \begin{cases} S & \text{if } x \in U; \\ * & \text{if } x \notin U. \end{cases}$$

with obvious restriction maps. Here * denote a *singleton*, or more generally a *terminal object*.

Note that it may be true that there are nontrivial stalks of a skyscraper sheaf other than the one at x. Indeed, we have

$$(i_{x,*}S)_y = \begin{cases} S & \text{if } y \in \overline{\{x\}}; \\ * & \text{if } y \notin \overline{\{x\}}. \end{cases}$$

One can see that taking skyscraper sheaf at a point is a functor, moreover, we have

6.a Theorem (Stalk is left adjoint to skyscraper sheaf) Let X be a topological space and $x \in X$. Then there exists a bijection

$$\operatorname{Hom}_{\mathcal{A}}(\mathscr{F}_x, S) \cong \operatorname{Hom}_{\mathbf{Sh}(X)}(\mathscr{F}, i_{x,*}S)$$

natural in both the sheaf \mathscr{F} of algebraic structures and the algebraic structure $S \in \operatorname{ob} \mathcal{A}$.

Proof: Note that stalk functor can be viewed as the *inverse image functor* for the inclusion map $i_x \colon x \to X$, thus this property is a corollary of Theorem 5.3, which will appear later.

7 Example (Sheaf of continuous maps) Let X, Y be two topological spaces. Define \mathscr{F} as follows. $\mathscr{F}(U)$ consists of all continuous maps from U to Y, and the restriction maps are the obvious ones.

Note that for S a set, regarded as a topological space with discrete topology, the continuous maps to S are precisely the locally constant maps to S. Here we define

7.a Example (Constant sheaves) Let X be a topological space and S be a set. The **constant sheaf** with value S, denoted by \underline{S} or \underline{S}_X , is the sheaf of locally constant maps to S.

One may feel confusion about the name. Maybe a constant sheaf should be a presheaf with constant values, i.e. $\mathscr{F}(U) = S$ for all open subsets U. This presheaf is called the **constant presheaf** with value S, denoted by const_S . But this is rarely a sheaf. Even when one remember that the value of a sheaf on the empty set should be a terminal object and modify the definition of const_S , it is still far from being a sheaf.

The relationship between the constant sheaves and constant presheaves will be discussed later.

- **7.b Example (Representable sheaves)** For any open set U of X, the representable presheaf $h_U = \text{Hom}_{\mathcal{T}_X}(-, U)$ is a sheaf.
- 7.c Example (Sheaf of sections of a map) Let $f: Y \to X$ be a continuous map. Define $\mathscr{F}(U)$ to be the set of sections of f over U, which are continuous maps $s: U \to Y$ such that $f \circ s = \mathrm{id}|_{U}$.

When Y is further a topological group, one can see that \mathscr{F} is a sheaf of groups.

8 Example (Sheaf of differential functions) Let X be a differential manifold. One can consider the sheaf $\mathscr O$ of differential functions on X similar as the sheaf of continuous maps. Since functions having same germ at a point are locally the same, it makes sense to define the value of a germ s_x at a point x as the value of a representative $s \in \mathscr{F}(U_x)$ at x.

Obviously, \mathscr{O}_x is a ring for all $x \in X$. Moreover, it is a local ring. Let \mathfrak{m}_x denote the ideal of \mathscr{O}_x consisting of germs vanishing at x. Then one can check the following is an exact sequence.

$$0 \longrightarrow \mathfrak{m}_x \longrightarrow \mathscr{O}_x \stackrel{f \mapsto f(x)}{\longrightarrow} \mathbb{R} \longrightarrow 0.$$

As any germ in $\mathscr{O}_x \setminus \mathfrak{m}_x$ is invertible, this shows that \mathscr{O}_x is a local ring with the maximal ideal \mathfrak{m}_x .

Note that $\mathfrak{m}_x/\mathfrak{m}_x^2$ is a vector space over the residue field $\mathscr{O}_x/\mathfrak{m}_x \cong \mathbb{R}$. This vector space is called the **cotangent space** of X at x.

Sheafification

Given a presheaf \mathscr{F} , there is a universal way to get a sheaf. That is the notion of *sheafification*.

Let \mathscr{F} be a preshaef on a topological space X. Then a morphism $\mathscr{F} \to \mathscr{F}^{\#}$ is called a **sheafification** of \mathscr{F} if for any sheaf \mathscr{G} and presheaf morphism $\varphi \colon \mathscr{F} \to \mathscr{G}$, there exists a unique sheaf morphism $\varphi^{\#} \colon \mathscr{F}^{\#} \to \mathscr{G}$ making the following digram commute.

One can see that the sheafification is unique up to unique isomorphism and that sheafifications, if they exist, give rise to a functor:

$$\# \colon \operatorname{\mathbf{PSh}}(X) \longrightarrow \operatorname{\mathbf{Sh}}(X)$$

$$\mathscr{F} \longmapsto \mathscr{F}^{\#}.$$

Now, we give the construction. First, recall we have canonical maps $\mathscr{F}(U) \to \prod_{x \in U} \mathscr{F}_x$, which induce a canonical presheaf morphism

$$\mathscr{F} \longrightarrow \Pi(\mathscr{F}),$$

here $\Pi(\mathscr{F})$ is defined as $\Pi(\mathscr{F})(U) := \prod_{x \in U} \mathscr{F}_x$. Like in Example 3, this presheaf is a sheaf but usually $\mathscr{F}_x \neq (\Pi \mathscr{F})_x$.

9 Lemma (Sheafification through stalks) The sheafification $\mathscr{F}^{\#}$ of \mathscr{F} is given by the fibre product in the following Cartesian diagram:

where the right vertical map is the canonical map for the sheaf $\Pi(\mathscr{F})$, while the bottom horizontal map come from the maps

$$\prod_{x \in U} \mathscr{F}_x \longrightarrow \prod_{x \in U} (\Pi(\mathscr{F}))_x,$$

which is the product of the canonical maps for the presheaf \mathscr{F} .

Proof: The universal property of fibre product gives us a canonical morphism $\theta: \mathscr{F} \to \mathscr{F}^{\#}$. Then the only things one needs to verify are 1, $\mathscr{F}^{\#}$ is a sheaf;. 2, \mathscr{F} is a sheaf if and only if θ is an isomorphism. If so, then the functorality of Π implies the functorality of # and the universal property of sheafification follows from this and 2.

- 1. By limits commutes with limits, we can deduce the descent condition of the fibre product $\mathscr{F}^{\#}$ from those of $\Pi(\mathscr{F})$ and $\Pi(\Pi(\mathscr{F}))$. Therefore $\mathscr{F}^{\#}$ is a sheaf.
- 2. We show that $\mathscr{F}^{\#}(U)$ is precisely the set of all systems of compatible germs of \mathscr{F} over U.

For any pair (t,t') with $t,t' \in \Pi(\mathscr{F})(U)$ which have same image in $\Pi(\Pi(\mathscr{F}))$ through the bottom horizontal map and the right vertical map respectively, let $t=(s_x)_{x\in U}$, $t'=(s'_x)_{x\in U}$ and their images in $\mathscr{F}(U)$ be $(t_x)_{x\in U}$ and $(t'_x)_{x\in U}$. For each s_x , let (U_x,s^x) be a representative of it, then the germ s^x_y of s^x at each $y\in U_x$ form a representative $(s^x_y)_y$ of t_x . On the other hand, (U,t') is definitely a representative of t'_x . Then since $t_x=t'_x$, there exists a neighborhood U'_x of x such that $s^x_y=s'_y$ and thus that $s_x=s'_x$.

We have seen in 2.c that $\mathscr{F}^{\#}$ is precisely the image of \mathscr{F} in $\Pi(\mathscr{F})$, thus θ is an isomorphism when \mathscr{F} is a sheaf.

9.a Lemma (Sheafification preserves stalks) Let \mathscr{F} be a presheaf on a topological space X, then for any $x \in X$, $\mathscr{F}_x \cong \mathscr{F}_x^{\#}$.

Proof: First, let s_x, s_x' be two germs of \mathscr{F} at x sharing the same image under the canonical map $\mathscr{F}_x \to \mathscr{F}_x^\#$. Then, for some representatives (U,s) (resp.(U',s')) of s_x (resp. s_x'), we have $(U,(s_y)) \sim (U',(s_y'))$ in $\mathscr{F}_x^\#$. Then there exists a neighborhood U'' of x contained in $U \cap U'$ such that $(s_y)|_{U''} = s_y'|_{U''}$, i.e. $s_y = s_y'$ for all $y \in U''$. Particularly, $s_x = s_x'$.

To show the surjectivity, consider a germ $\bar{t} \in \mathscr{F}_x^\#$. Taking any representative (U,t) of this germ, then $t=(s_y)$ is a system of compatible germs of \mathscr{F} over U. Therefore, there exists a representative (V,s^x) of s_x such that $V \subset U$ and the germ of s^x at any point $y \in V$ is s_y . Thus $t|_V$ is the image of s^x under the canonical map $\mathscr{F}(V) \to \mathscr{F}^\#(V)$. Then passing to the stalks, the germ of s^x at x will be a preimage of \bar{t} .

Proof: A more simple proof is this: apply Π to the Cartesian diagram in Lemma 9, we see that the canonical morphism $\Pi(\mathscr{F}) \to \Pi(\mathscr{F}^{\#})$ is an isomorphism. Since it is given by the product of the canonical maps between stalks, all those canonical maps must be bijection.

9.b (Sections of sheafification) Let \mathscr{F} be a presheaf on X and U an open set. By Yoneda lemma, we have canonical isomorphism

$$\operatorname{Hom}_{\mathbf{PSh}(X)}(h_U, \mathscr{F}) \longrightarrow \mathscr{F}(U)$$

 $s \longmapsto s_U(\operatorname{id}_U).$

Apply sheafification to it, we get the following commutative diagram

$$\operatorname{Hom}_{\mathbf{PSh}(X)}(h_{U},\mathscr{F}) \xrightarrow{\cong} \mathscr{F}(U)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_{\mathbf{Sh}(X)}(h_{U}^{\#},\mathscr{F}^{\#}) \xrightarrow{\cong} \mathscr{F}^{\#}(U)$$

where the left vertical map is given by the sheafification functor and the right is the canonical map. Therefore, we may for any section $s \in \mathscr{F}(U)$, we may denote its image in $\mathscr{F}^{\#}(U)$ by $s^{\#}$.

10 Proposition (Sheafification is free) The sheafification functor # is left adjoint to the forgetful functor from sheaves on X to presheaves on X.

This is nothing but the universal property of sheafification. But its corollary is very useful.

10.a Corollary The sheafification preserves colimits and hence is right exact; the forgetful functor preserves limits and hence is left exact. In particular, the presheaf kernel is already the sheaf kernel.

Proof: This follows from the property of adjoint functors. One can refer my note BMO or [Bor94] directly.

11 Example (Constant sheaves) Let S be a set. Then the constant sheaf \underline{S} is precisely the sheafification of the constant presheaf const_S. Indeed, define maps $S \to \underline{S}(U)$ by mapping $s \in S$ to the constant map $x \mapsto s$ for all $x \in U$. Then we get a morphism const_S $\to \underline{S}$, which induces a morphism const_S $\to \underline{S}$. One can see this is an isomorphism.

The notion of sheafification works for presheaves of algebraic structures. One can just follow the above with a slight modification. Or, one can use the following lemma.

12 Lemma (Sheafification of presheaves of algebraic structures) Let F be a presheaf on a topological space X with values in an algebraic category A. Then there exists a unique morphism F → F[#] of presheaves with values in A such that the corresponding morphism of underlying presheaves of sets is a sheafification and that it satisfying the universal property of a sheafification.

Proof: The main idea is to define $\mathscr{F}^{\#}(U)$ as the fibre product:

$$\mathcal{F}^{\#}(U) \longrightarrow \prod (\mathcal{F})(U)
\downarrow \qquad \qquad \downarrow
\prod_{x \in U} \mathcal{F}_x \longrightarrow \prod_{x \in U} \prod (\mathcal{F})_x$$

Now, we check the conditions. First, apply the forgetful functor F to the above Cartesian diagram. Then the first statement follows. Next, let \mathscr{G} be a sheaf on X with values in \mathcal{A} and $\varphi \colon \mathscr{F} \to \mathscr{G}$ a presheaf morphism. Then the following diagram satisfies the assumptions in Lemma 2.6.d:

$$\mathscr{F}^{\#}(U) \qquad \mathscr{G}(U) \\ \downarrow \qquad \qquad \downarrow \\ \prod(\mathscr{F})(U) \longrightarrow \prod(\mathscr{G})(U)$$

the underlying map of the right vertical morphism is injective since \mathscr{G} is a sheaf; the image of the composition of left and bottom morphism lies in

the image of the right vertical morphism since the sections in $\mathscr{F}^{\#}(U)$ are systems of compatible germs and there already exists a morphism $\mathscr{F} \to \mathscr{G}$. Thus, by Lemma 2.6.d, there exists a morphism $\mathscr{F}^{\#}(U) \to \mathscr{G}(U)$ making the diagram commute. The uniqueness of such a morphism comes from the injectivity of the right vertical morphism.

Sheaves on bases

Let X be a topological space and \mathcal{B} a base of it. Recall that a base for the topology on X is a full subcategory \mathcal{B} of \mathcal{T}_X such that every object of \mathcal{T}_X , i.e. open subset of X, is a colimit of diagrams in \mathcal{B} , i.e. a union of sets in \mathcal{B} . Moreover, \mathcal{B} inherits a coverage (not a Grothendieck pretopology since pullbacks do not exist in \mathcal{B}) from \mathcal{T}_X , thus becomes a site. Now, we can define the notion of (**pre**)sheaves on \mathcal{B} as (pre)sheaves on the site \mathcal{B} .

Let x be a point in X, then the **stalk** of a (pre)sheaf \mathscr{F} on \mathcal{B} at x is the colimit

$$\mathscr{F}_x := \varinjlim_{x \in U, U \in \mathcal{B}} \mathscr{F}(U).$$

We still call the elements in \mathscr{F}_x **germs** at x. Note that the notion of compatible germs still works for (pre)sheaves on \mathcal{B} and since neighborhoods of x in \mathcal{B} are cofinal in the system of neighborhoods of x, one can actually define compatible germs for arbitrary subsets of X. Next, one can define and state the notions and facts about (pre)sheaves and stalks like on a topological space.

From the inclusion functor $\mathcal{B} \to \mathcal{T}_X$, we get two canonical functors $\mathbf{PSh}(X) \to \mathbf{PSh}(\mathcal{B})$ and $\mathbf{Sh}(X) \to \mathbf{Sh}(\mathcal{B})$. However, since we can not glue things from smaller subsets, the notion of presheaves on base and on topological space are very different. Luckily, things are good for sheaves.

On one hand, any sheaf \mathscr{F} on X can be viewed as a sheaf on \mathscr{B} through the canonical functor $\mathbf{Sh}(X) \to \mathbf{Sh}(\mathscr{B})$. In this case, since neighborhoods in \mathscr{B} are *cofinal* in those in \mathscr{T}_X , the stalks of \mathscr{F} , viewed as a sheaf on \mathscr{B} and on X respectively, are the same.

On the other hand, for any sheaf $\mathscr F$ on $\mathcal B$, its stalks induces a sheaf $\Pi(\mathscr F)$ on X:

$$\Pi(\mathscr{F})(U) := \prod_{x \in U} \mathscr{F}_x.$$

Recall the Cartesian diagram in Lemma 9, we define $\mathscr{F}^{\#}$ to be the fibre product

$$\mathscr{F}^{\#} := \Pi(\mathscr{F}) \times_{\Pi(\Pi(\mathscr{F}))} \Pi(\mathscr{F}).$$

This defines a functor

$$\# \colon \mathbf{Sh}(\mathcal{B}) \longrightarrow \mathbf{Sh}(X).$$

One can see this sheaf $\mathscr{F}^{\#}$ is just the sheaf of compatible germs of \mathscr{F} .

13 Theorem The functor # is a weak inverse of the canonical functor from $\mathbf{Sh}(X)$ to $\mathbf{Sh}(\mathcal{B})$. In other words, it provides an equivalence between the two categories. Moreover, # commutes with taking stalks, i.e. there are canonical bijection

$$\mathscr{F}_x = \mathscr{F}_x^\#$$

for all $x \in X$.

Remark The notions and statements also work for sheaves of algebraic structures.

§ I.4 Sheaves on topological spaces: morphisms

Now we turn to consider the category $\mathbf{Sh}(X)$ of sheaves on a topological space X.

Morphisms of sheaves

We start with the following important fact.

1 Lemma (Morphisms are determined by stalks) Let φ_1, φ_2 be two morphisms from a presheaf \mathscr{F} to a sheaf \mathscr{G} , which induce the same maps on every stalk. Then $\varphi_1 = \varphi_2$.

Proof: Consider following commutative diagrams:

$$\mathcal{F}(U) \xrightarrow{\varphi_i(U)} \mathcal{F}(U)
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
\prod_{x \in U} \mathcal{F}_x \longrightarrow \prod_{x \in U} \mathcal{G}_x$$

where the vertical morphisms are the canonical maps. Then, since the right canonical map is injective, $\varphi_1 = \varphi_2$.

2 Proposition Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then φ is a monomorphism (resp. epimorphism, isomorphism) if and only if for all $x \in X$, $\varphi_x \colon \mathscr{F}_x \to \mathscr{G}_x$ is injective (resp. surjective, bijective).

Proof: The "if" part for monomorphisms and epimorphisms follow from Lemma 1, while the "only if" part follow from the exactness of the stalk functor. As for the isomorphisms, let $\psi_x \colon \mathscr{G}_x \to \mathscr{F}_x$ be the inverse of each $\varphi_x \colon \mathscr{F}_x \to \mathscr{G}_x$ induced by φ . We need to glue them into a morphism $\psi \colon \mathscr{G} \to \mathscr{F}$. To do this, consider the following diagram.

$$\begin{array}{ccc} \mathscr{G}(U) & \mathscr{F}(U) \\ & & & \downarrow \\ & & & \downarrow \\ & \prod_{x \in U} \mathscr{G}_x \xrightarrow{\prod \psi_x} \prod_{x \in U} \mathscr{F}_x \end{array}$$

Since the vertical canonical maps are injective and the bottom map is bijective, the assumptions of Lemma 2.6.d are satisfied. Then there exists a map $\mathscr{F}(U) \to \mathscr{G}(U)$ making the diagram commute. The commutativity also implies that those maps form a morphism $\psi \colon \mathscr{G} \to \mathscr{F}$ of sheaves. Since for all $x \in X$, $\varphi_x \circ \psi_x = \mathrm{id}$, $\psi_x \circ \varphi_x = \mathrm{id}$, by Lemma 1, $\varphi \circ \psi = \mathrm{id}$, $\psi \circ \varphi = \mathrm{id}$. This shows that φ is an isomorphism.

Proof: Note that saying for all $x \in X$, $\varphi_x \colon \mathscr{F}_x \to \mathscr{G}_x$ is bijective is equal to say $\Pi(\varphi) \colon \Pi(\mathscr{F}) \to \Pi(\mathscr{G})$ is an isomorphism. In this case, let $\overline{\psi}$ be the inverse of $\Pi(\varphi)$. Then we have the following commutative diagram

where the front two layers are obtained by apply the canonical Cartesian diagram for sheafification to the morphism φ . Then the universal property of fibre product implies the unique existence of the inverse ψ of φ .

2.a Example (Distinct sheaves may have isomorphic stalks) Note that Proposition 2 doesn't imply that sheaves having isomorphic stalks are isomorphic. This is because the isomorphisms for stalks may not be induced from a morphism of sheaves.

For instance, let X be the set $\{a,b\}$ with the topology $\{X,U=\{a\},\varnothing\}$. Define \mathscr{F} and \mathscr{G} as $\mathscr{F}(X)=\mathscr{F}(U)=\mathscr{G}(X)=\mathscr{G}(U)=X$ with the restriction maps $\mathscr{F}(X)\to\mathscr{F}(U)$ the identity and $\mathscr{G}(X)\to\mathscr{G}(U)$ mapping both a and b to a. Then \mathscr{F} and \mathscr{G} are non-isomorphic sheaves with the same stalks.

- **3 Proposition (Subsheaves)** Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then the followings are equivalent.
 - 1. φ is monic;
 - 2. for all $x \in X$, $\varphi_x \colon \mathscr{F}_x \to \mathscr{G}_x$ is injective;
 - 3. for all open subsets $U \subset X$, $\varphi(U) \colon \mathscr{F}(U) \to \mathscr{G}(U)$ is injective.

If this is the case, \mathscr{F} is called a subsheaf of \mathscr{G} .

Proof: We have seen $1 \Leftrightarrow 2$ before. $3 \Rightarrow 1$ is obvious. It remains to show $2 \Rightarrow 3$. Suppose 2 and consider the following diagram.

$$\mathcal{F}(U) \xrightarrow{\varphi(U)} \mathcal{G}(U) \\
\downarrow \qquad \qquad \downarrow \\
\prod_{x \in U} \mathcal{F}_x \longrightarrow \prod_{x \in U} \mathcal{G}_x$$

Since the vertical canonical maps and the bottom map are injective, $\varphi(U)$ must be also injective.

- **4 Proposition (quotient sheaves)** Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on X. Then the followings are equivalent.
 - 1. φ is epic;
 - 2. for all $x \in X$, $\varphi_x \colon \mathscr{F}_x \to \mathscr{G}_x$ is surjective;
 - 3. for any open subset $U \subset X$ and any section $s \in \mathcal{G}(U)$, there exists a covering $\{U_i \to U\}$ such that $s|_{U_i}$ lies in the image of $\mathcal{F}(U_i) \to \mathcal{G}(U_i)$.

If this is the case, \mathscr{G} is called a quotient sheaf of \mathscr{F} .

Proof: We have seen $1 \Leftrightarrow 2$ before. Suppose 3 and let $\psi_1, \psi_2 : \mathscr{G} \rightrightarrows \mathscr{T}$ be two parallel morphisms of sheaves such that $\psi_1 \circ \varphi = \psi_2 \circ \varphi$. We need to show $\psi_1 = \psi_2$. For any open subset $U \subset X$ and any section $s \in \mathscr{G}(U)$, there exists a covering $\{U_i \to U\}$ and for each i, there exists a section $t_i \in \mathscr{F}(U_i)$ such that $\varphi(U_i)(t_i) = s|_{U_i}$. Then

$$\psi_1(U)(s)|_{U_i} = \psi_1(U_i)(s|_{U_i}) = \psi_1\varphi(U_i)(t_i)$$

$$= \psi_2\varphi(U_i)(t_i) = \psi_2(U_i)(s|_{U_i}) = \psi_2(U)(s)|_{U_i}$$

Since $\{U_i \to U\}$ is a covering, this shows $\psi_1(U)(s) = \psi_2(U)(s)$. Thus $\psi_1 = \psi_2$.

Now suppose 2. For any open subset $U \subset X$ and any section $s \in \mathcal{G}(U)$, consider its germs s_x at each point $x \in U$. Since φ_x are surjective, there exists some $t_x \in \mathscr{F}_x$ such that $\varphi_x(t_x) = s_x$. Let (U_x, t^x) be a representative of t_x such that $U_x \subset U$. Then $\varphi(U_x)(t^x)$ and s have the same germ s_x at x. Thus we can shrink U_x so that $\varphi(U_x)(t^x) = s|_{U_x}$. Note that $\{U_x \subset U\}_{x \in U}$ is a covering, this shows 3.

Remark Recall the notions of injective and surjective presheaf morphisms, we find that a sheaf morphism is monic if and only if its underlying presheaf morphism is injective, in other word, the forgetful functor is left exact. However, the similar statement fails to be true for epimorphisms.

All the above statements can be easily generalized to *sheaves of algebraic structures*. One can also use the following lemma.

5 Lemma (Morphisms of sheaves of algebraic structures) Let \mathscr{F},\mathscr{G} be two sheaves on a topological space X with values in an algebraic category \mathcal{A} . Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of underlying sheaves of sets. If for every $x \in X$, $\varphi_x \colon \mathscr{F}_x \to \mathscr{G}_x$ defines a morphism in \mathcal{A} , then φ defines a morphism of sheaves with values in \mathcal{A} .

Proof: Consider the following commutative digram

$$\mathcal{F}(U) \xrightarrow{\varphi(U)} \mathcal{F}(U)
\downarrow \qquad \qquad \downarrow
\prod_{x \in U} \mathcal{F}_x \longrightarrow \prod_{x \in U} \mathcal{G}_x$$

in which all maps but $\varphi(U)$ define morphisms in \mathcal{A} . By Lemma 2.6.d and the uniqueness of $\varphi(U)$, it must also defines a morphism in \mathcal{A} .

Proof: As all φ_x defines morphisms in \mathcal{A} , we get two morphisms of sheaves with values in \mathcal{A} whose underlying morphisms of sheaves of sets are $\Pi(\varphi)$ and $\Pi(\Pi(\varphi))$. Then, consider the following commutative diagram of sheaves of sets and the corresponding one of sheaves with values in \mathcal{A} .

Then, by the universal property of fibre products, there exists a unique morphism of sheaves with values in \mathcal{A} whose underlying morphism of sheaves of sets is φ .

Abelian sheaves form an abelian category

Now we turn to look at abelian sheaves.

Since presheaves are nothing but contravariant functor, the category of abelian presheaves, or more generally presheaves with values in an abelian category, form an abelian category, and subpresheaves, quotient presheaves, presheaf kernels, presheaf cokernels and presheaf images are computed open sets by open sets. In other words,

6 Theorem (Abelian presheaves form an abelian category) Let X be a topological spaces. Then $\mathbf{PAb}(X)$ is an abelian category with a family of exact functors $\{\Gamma(U,-)|U\in \mathrm{ob}\,\mathcal{T}_X\}$ reflecting the exactness in the sense that a sequence of abelian presheaves is exact if and only if it is also exact after applying every functor $\Gamma(U,-)$.

But things are not so easy for abelian sheaves. Since sheafification is left adjoint to the forgetful functor from sheaves to presheaves, it is true that for a sheaf morphism its *presheaf kernel* is already the **sheaf kernel**. The problem is the cokernel.

7 Example (Holomorphic logarithms) Let X be the complex plane, $\underline{\mathbb{Z}}$ the constant sheaf with values \mathbb{Z} , \mathcal{O}_X the sheaf of holomorphic functions, and \mathscr{F} the presheaf of functions admitting a holomorphic logarithm. Then there is an exact sequence of abelian presheaves on X:

$$0 \longrightarrow \mathbb{Z} \stackrel{\times 2\pi i}{\longrightarrow} \mathscr{O}_X \stackrel{\exp}{\longrightarrow} \mathscr{F} \longrightarrow 0.$$

However, \mathscr{F} is not a sheaf since there are functions that don't have a logarithm but locally have a logarithm. For instance, the function f(z) = z has no logarithm in an annular region round 0, while it has logarithm in any simply connected part of this region.

So the presheaf cokernel coker^p φ is not automatically the sheaf cokernel in general. But, from the universal properties of cokernel and sheafification, the **sheaf cokernel** coker φ should be the sheafification of the *presheaf cokernel*.

7.a Example (Holomorphic logarithms) We turn back to Example 7. Now we have known that the correct cokernel of the map $\underline{\mathbb{Z}} \to \mathcal{O}_X$ should be the sheafification of \mathscr{F} . Now we describe it.

Let \mathscr{O}_X^* denote the presheaf of *invertible* (nowhere zero) holomorphic functions. One can see it is a sheaf of abelian groups under multiplications.

Here we have a theorem

a holomorphic function f on a simply connected domain D is invertible if and only if f has logarithm on D.

Indeed, the logarithm is given by the integral

$$\log f(z) := \int_{\gamma} \frac{df}{f},$$

where γ is a path from a fixed point z_0 to z in D. Refer [Pri03] for more details.

Now, for each germ of \mathscr{F} at a point x, which is also germ of $\mathscr{F}^{\#}$ at x, one can always find a representative of it in a simply connected neighborhood of x. In this way, we have $\mathscr{F}_x = \mathscr{O}_x^*$. As we have seen that \mathscr{O}_X^* is a sheaf, it is the sheafification of \mathscr{F} .

Consequently, there is an exact sequence:

$$0 \longrightarrow \underline{\mathbb{Z}} \stackrel{\times 2\pi i}{\longrightarrow} \mathscr{O}_X \stackrel{\exp}{\longrightarrow} \mathscr{O}_X^* \longrightarrow 1.$$

Now we summarize the results about abelian sheaves into the following theorem.

8 Theorem (Abelian sheaves form an abelian category) Let X be a topological spaces. Then Ab(X) is an abelian category with a family of exact functors $\{\Gamma_x|x\in X\}$ reflecting the exactness in the sense that a sequence of abelian sheaves is exact if and only if it is also exact after applying every functor Γ_x .

Proof: We have seen the statement is trivially true for presheaves. As for the statement about sheaves, we only need to show that the stalks reflect sheaf kernels and cokernels. Since the presheaf kernels are already sheaf kernels, our claim about kernels follows from the exactness of colimits (note that stalks are colimits). As for the cokernel, just note that the stalks of the sheafification of a presheaf are equal to the stalks of itself, then the argument for kernel works.

These theorems, as with as similar statements we have seen before, can be summarized into the following slogan:

Presheaves can be checked at the level of open sets, while sheaves at the level of stalks.

8.a Corollary (Section functor is left exact) The section functor $\Gamma(U, -)$ on $\mathbf{Ab}(X)$ is left exact, but is not exact.

Limits and colimits

As in the general case, the category $\mathbf{PSh}(X)$ of presheaves is complete and cocomplete, and that the limits and colimits are computed open sets by opensets (refer Proposition 1.6). As for the stalks, one can easily check that taking stalks commutes with all colimits and all finite limits. But note that taking stalks in general can NOT commute with an arbitrary limit.

The following proposition is obvious.

- 9 Proposition (Limits and colimits in Sh(X)) Let X be a topological space.
 - 1. $\mathbf{Sh}(X)$ is complete and cocomplete.
 - 2. The forgetful functor $F \colon \mathbf{Sh}(X) \to \mathbf{PSh}(X)$ commutes with all limits. In particular, the section functors $\Gamma(U, -)$ are left exact.
 - 3. The forgetful functor $F \colon \mathbf{Sh}(X) \to \mathbf{PSh}(X)$ does NOT commute with colimits. However, we have

$$\underline{\lim} \, \mathscr{F}_i = \left(\underline{\lim} \, F(\mathscr{F}_i) \right)^{\#}.$$

4. The sheafification $\# \colon \mathbf{PSh}(X) \to \mathbf{Sh}(X)$ commutes with all colimits and all finite limits. In particular, the stalk functors Γ_x are exact.

Remark Recall that in a functor between finite-complete (resp. finite-cocomplete) categories is said to be **left exact** (resp. **right exact**) if it commutes with all finite limits (resp. finite colimits). A functor is said to be **exact** if it is both left exact and right exact. Note that in an abelian category those notions coincide with the usual notion of exact functors since additive functors preserve biproducts.

Recall that a set in a topological space is said to be *quasi-compact* if its every finite covering has a finite subcovering. In category theory, an object $U \in \text{ob } \mathcal{C}$ is said to be *compact* if the functor $\text{Hom}_{\mathcal{C}}(U, -)$ preserves filtered colimits.

10 Lemma (Compactness) Let X be a topological space. Let $\{\mathscr{F}_j\}_{j\in \text{ob }\mathcal{J}}$ be a filtered system of sheaves of sets. Consider the canonical map

$$\Phi \colon \varinjlim_{\mathcal{I}} \mathscr{F}_j(U) \longrightarrow (\varinjlim_{\mathcal{I}} \mathscr{F}_j)(U).$$

- 1. If all the transition morphisms are injective then Φ is injective.
- 2. If U is quasi-compact, then Φ is injective.
- 3. If U is quasi-compact and all the transition morphisms are injective then Φ is an isomorphism.
- 4. If any covering of U can be refined by some coverings $\{U_i \to U\}_{i \in I}$ with I finite and $U_i \cap U_{i'}$ quasi-compact, then Φ is bijective.

Proof: 1. Assume all the transition morphisms are injective. First, the canonical maps

$$\mathscr{F}_j(U) \longrightarrow \prod_{x \in U} \mathscr{F}_{j,x}$$

are injective, thus so is the colimit

$$\varinjlim_{\mathcal{I}} \mathscr{F}_j(U) \longrightarrow \varinjlim_{\mathcal{I}} \prod_{x \in U} \mathscr{F}_{j,x}.$$

It remains to show the canonical map

$$\varinjlim_{\mathcal{J}} \prod_{x \in U} \mathscr{F}_{j,x} \longrightarrow \prod_{x \in U} \varinjlim_{\mathcal{J}} \mathscr{F}_{j,x}$$

is injective.

Let \bar{s} and \bar{t} be two elements of $\varinjlim_{\mathcal{J}} \prod_{x \in U} \mathscr{F}_{j,x}$ having the same image in $\prod_{x \in U} \varinjlim_{\mathcal{J}} \mathscr{F}_{j,x}$ and $s = (s_x), t = (t_x)$ be their representatives in some $\prod_{x \in U} \mathscr{F}_{j,x}$. Now, the image of \bar{s} and \bar{t} in $\prod_{x \in U} \varinjlim_{\mathcal{J}} \mathscr{F}_{j,x}$ can be written as $(\bar{s_x})$ and $(\bar{t_x})$, where each $\bar{s_x}$ or $\bar{t_x}$ is the image of s_x or t_x in $\varinjlim_{\mathcal{J}} \mathscr{F}_{j,x}$.

Since $\bar{s_x} = \bar{t_x}$, there exists some $j_x \in \text{ob } \mathcal{J}$ such that the image of s_x and t_x in $\mathscr{F}_{j_x,x}$ are the same. Then, since the transition morphism $\mathscr{F}_j \to \mathscr{F}_{j_x}$ is injective, so is the transition map $\mathscr{F}_{j,x} \to \mathscr{F}_{j_x,x}$. Therefore $s_x = t_x$. Then, we get s = t and a fortior $\bar{s} = \bar{t}$.

- 2. Assume U is quasi-compact. Let \bar{s} and \bar{t} be two elements of $\varinjlim_{\mathcal{J}} \mathscr{F}_{j}(U)$ having the same image under Φ and s,t be their representatives in some $\mathscr{F}_{j}(U)$. Now, the image of \bar{s} and \bar{t} under Φ can be written as systems of compatible germs (\bar{s}_{x}) and (\bar{t}_{x}) . For each $x \in U$, $\bar{s}_{x} = \bar{t}_{x}$ implies that there exists some open neighborhood U_{x} of x such that $\bar{s}|_{U_{x}} = \bar{t}|_{U_{x}}$. Then, there exists $j_{x} \in \text{ob } \mathcal{J}$ such that the image of $s|_{U_{x}}$ and $t|_{U_{x}}$ in $\mathscr{F}_{j_{x}}(U_{x})$ are the same. Since U is quasi-compact, the covering $\{U_{x} \to U\}_{x \in U}$ has a finite subcovering $\{U_{i} \to U\}_{i \in I}$. For this covering, we can take j_{0} to be the index such that there are arrows $j_{i} \to j_{0}$. Now, the image of $s|_{U_{i}}$ and $t|_{U_{i}}$ in $\mathscr{F}_{j_{0}}(U_{i})$ are the same. Then s and t maps to the same element in $\mathscr{F}_{j_{0}}(U)$, a fortior in $\varinjlim_{\mathcal{F}_{j_{0}}(U)}$.
- 3. Assume U is quasi-compact and all the transition morphisms are injective. Then Φ is injective. It suffices to show it is surjective. Let $(\bar{s_x})$ be an element in $(\varinjlim_{\mathcal{J}} \mathscr{F}_j)(U)$, where each $\bar{s_x}$ belongs to the stalk $\varinjlim_{\mathcal{J}} \mathscr{F}_{j,x}$. Then for each $\bar{s_x}$, let s_x be its representative in some $\mathscr{F}_{j_x,x}$ and (U_x, s^x) be the representative of s_x . Note that the image of $s^x|_{U_x\cap U_y}$ and $s^y|_{U_x\cap U_y}$ in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U_x\cap U_y)$ have the same image under Φ . Thus, by 1., they are the same.

Since U is quasi-compact, the covering $\{U_x \to U\}_{x \in U}$ has a finite subcovering $\{U_i \to U\}_{i \in I}$. For this covering, we can take j_0 to be the index such that there are arrows $j_i \to j_0$. Then the sections $s^i \in \mathscr{F}_{j_i}(U_i)$ give rise to sections $s_i \in \mathscr{F}_{j_0}(U_i)$. Since $s_i|_{U_i \cap U_{i'}}$ and $s_{i'}|_{U_i \cap U_{i'}}$ have the same image in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i \cap U_{i'})$, by the similar argument in 1., they are the same. Therefore (s_i) is a system of compatible sections, and thus gives a section $s \in \mathscr{F}_{j_0}(U)$ such that $s|_{U_i} = s_i$. Then, this s gives an element \bar{s} of $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U)$ and one can see it maps to $(\bar{s_x})$ under Φ .

4. Assume the hypothesis of 4. It is obvious that U is quasi-compact. It suffices to show Φ is surjective. Let $(\bar{s_x})$ be an element in $(\varinjlim_{\mathcal{J}} \mathscr{F}_j)(U)$, where each $\bar{s_x}$ belongs to the stalk $\varinjlim_{\mathcal{J}} \mathscr{F}_{j,x}$. Then for each $\bar{s_x}$, let s_x be its representative in some $\mathscr{F}_{j_x,x}$ and (U_x, s^x) be the representative of s_x .

Now, the covering $\{U_x \to U\}_{x \in U}$ can be refined by a finite covering $\{U_i \to U\}_{i \in I}$ such that $U_i \cap U_{i'}$ are quasi-compact. Since the image of $s^i\big|_{U_i \cap U_{i'}}$ and $s^{i'}\big|_{U_i \cap U_{i'}}$ in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i \cap U_{i'})$ have the same image under Φ , by 2., they are the same and thus there exists $j_{ii'} \in \text{ob } \mathcal{J}$ such that $s^i\big|_{U_i \cap U_{i'}}$ and $s^{i'}\big|_{U_i \cap U_{i'}}$ have the same image in $\mathscr{F}_{j_{ii'}}(U_i \cap U_{i'})$.

Now, we can take j_0 to be the index such that there are arrows $j_{ii'} \to j_0$. Then the sections $s^i \in \mathscr{F}_{j_i}(U_i)$ give rise to sections $s_i \in \mathscr{F}_{j_0}(U_i)$ and

furthermore, they form a system of compatible sections. Thus we get a section $s \in \mathscr{F}_{j_0}(U)$ such that $s|_{U_i} = s_i$. Then, this s gives an element \bar{s} of $\varinjlim_{\tau} \mathscr{F}_{j}(U)$ and one can see it maps to $(\bar{s_{x}})$ under Φ .

The conditions are necessary. The following is a counterexample.

10.a Example Let $X = I \cup \mathbb{N}$, where $I = \{x_1, \dots, x_k\}$ is a finite set. Given a topology on X as following: U is an open subset if and only if it is a subset of N or a union of N with some subset of I. Write $n \in \mathbb{N}$ as ξ_n . Let $U_n =$ $\{\xi_n, \xi_{n+1}, \cdots\}$ and $j_n \colon U_n \to X$ be the inclusions. Set $\mathscr{F}_n = j_{n,*}\underline{S}$ (refer 5.1) and 3.7.a) and transition morphisms induced by inclusions $U_n \to U_m$. This gives a filtered system of sheaves indexed by \mathbb{N} . Let $\mathscr{F} = \varinjlim_{\mathbb{N}} \mathscr{F}_n$.

For m < n, we have $\mathscr{F}_{n,\xi_m} = *$ since $\{\xi_m\}$ is an open neighborhood of ξ_m missing U_n . Therefore, passing to the colimit, we have $\mathscr{F}_{\xi_m} = *$ for all $m \in \mathbb{N}$. On the other hand, since for any open neighborhood U of x_i , we have

$$\mathscr{F}_n(U) = \mathscr{F}_n(\mathbb{N}) = \underline{S}(U_n) = \prod_{m \geqslant n} S,$$

so $\mathscr{F}_{n,x_i} = \prod_{m \geqslant n} S$ and thus \mathscr{F}_{x_i} is the colimit

$$M := \varinjlim_{n \in \mathbb{N}} \prod_{m \geqslant n} S.$$

Therefore $\Pi(\mathcal{F})$ is the product of the skyscraper sheaves with value M at the closed points x_1, \cdots, x_k . Then, so is $\Pi(\Pi(\mathscr{F}))$ and thus \mathscr{F} Now, $\mathscr{F}(X) = \prod_{i=1}^k M$, while $\varinjlim_{\mathbb{N}} \mathscr{F}_n(X) = \varinjlim_{\mathbb{N}} \underline{S}(U_n) = M$.

Now,
$$\mathscr{F}(X) = \prod_{i=1}^k M$$
, while $\varinjlim_{\mathbb{N}} \mathscr{F}_n(X) = \varinjlim_{\mathbb{N}} \underline{S}(U_n) = M$

Gluing sheaves

(Sheaf Hom) Let \mathscr{F} be a presheaf and \mathscr{G} a sheaf on a topological space X. Define the presheaf $\mathcal{H}om(\mathscr{F},\mathscr{G})$ by

$$\mathcal{H}om(\mathscr{F},\mathscr{G})(U) := \operatorname{Hom}_{\mathbf{PSh}(U)}(\mathscr{F}|_{U},\mathscr{G}|_{U}).$$

By the following Lemma 11.a, this is indeed a sheaf, called the **sheaf Hom**.

11.a Lemma (Gluing morphisms) Let X be a topological space with a covering $\{U_i \subset X\}_{i \in I}$. Let \mathscr{F} be a presheaf and \mathscr{G} a sheaf on X. Suppose that there are morphisms

$$\varphi_i \colon \mathscr{F}|_{U_i} \longrightarrow \mathscr{G}|_{U_i}$$

such that for all $i, j \in I$, the restrictions of φ_i and φ_j to $U_i \cap U_j$ are the same morphism $\varphi_{ij} \colon \mathscr{F}|_{U_i \cap U_i} \to \mathscr{G}|_{U_i \cap U_i}$. Then there exists a unique morphism

$$\varphi \colon \mathscr{F} \longrightarrow \mathscr{G}$$

whose restriction to each U_i is φ_i .

12 Lemma There exist a canonical map $\mathcal{H}om(\mathscr{F},\mathscr{G})_x \to \operatorname{Hom}(\mathscr{F}_x,\mathscr{G}_x)$.

Proof: By the functorality of stalks, there are canonical maps

$$\operatorname{Hom}_{\mathbf{PSh}(U)}(\mathscr{F}|_U,\mathscr{G}|_U) \to \operatorname{Hom}(\mathscr{F}_x,\mathscr{G}_x)$$

for all neighborhood U of x. Thus the existence of required canonical map follows from the universal property of colimits.

The canonical map is in general NOT bijective.

12.a Example (Sheaf Hom doesn't commute with taking stalks) Let X be a topological space and x a non-isolated closed point in X. Let S be a nontrivial, meaning neither empty or singleton, set.

First, $\mathcal{H}om(i_{x,*}S,\underline{S})_x \to \operatorname{Hom}((i_{x,*}S)_x,\underline{S}_x)$ is not surjective. Indeed, since any section s of $i_{x,*}S$ is trivial away from x, thus so is its image under any morphism $i_{x,*}S \to \underline{S}$. But this implies that the image of s is the trivial section. Thus $\mathcal{H}om(i_{x,*}S,\underline{S})$ is the trivial sheaf and thus $\mathcal{H}om(i_{x,*}S,\underline{S})_x$ is a singleton. On the other hand, $\operatorname{Hom}((i_{x,*}S)_x,\underline{S}_x) = \operatorname{Hom}(S,S)$, which is definitely nontrivial.

Secondly, let $V = X \setminus \{x\}$ and \mathscr{F} be the sheaf satisfying $\mathscr{F}|_V = \underline{S}_V$ and $\mathscr{F}(U) = \varnothing$ if $U \not\subset V$. Then $\mathcal{H}om(\mathscr{F},\mathscr{F})_x \to \operatorname{Hom}(\mathscr{F}_x,\mathscr{F}_x)$ is not injective. Indeed, as $\mathscr{F}_x = \varnothing$, so $\operatorname{Hom}(\mathscr{F}_x,\mathscr{F}_x)$ is a singleton. On the other hand, $\operatorname{Hom}(\mathscr{F}|_U,\mathscr{F}|_U)$ is nontrivial, thus so is the colimit $\mathcal{H}om(\mathscr{F},\mathscr{F})_x$.

The sheaf Hom shares many properties of the Hom-set.

13 Lemma Let \mathscr{F} be a sheaf on a topological space X, then $\mathcal{H}om(*,\mathscr{F}) \cong \mathscr{F}$.

Proof: For any $\varphi \in \operatorname{Hom}_{\mathbf{PSh}(U)}(\underline{*}_U, \mathscr{F}|_U)$, its corresponding element in $\mathscr{F}(U)$ is the image of the singleton under $\varphi(U)$. This gives rise to a morphism $\Phi \colon \mathcal{H}om(\underline{*}, \mathscr{F}) \to \mathscr{F}$. To show it is an isomorphism, we check it at the level of stalks.

Let φ_x, ψ_x be two germs of $\mathcal{H}om(\underline{*}, \mathscr{F})$ at x having the same image under Φ_x . Then taking representatives (U_{φ}, φ) and (U_{ψ}, ψ) of φ_x and ψ_x respectively, there exists a neighborhood U_x of x such that $U_x \subset U_{\varphi} \cap U_{\psi}$ and that $\varphi(U_{\varphi})(*)|_{U_x} = \Phi(U_{\varphi})(\varphi)|_{U_x} = \Phi(U_{\psi})(\psi)|_{U_x} = \psi(U_{\psi})(*)|_{U_x}$. Then for any open subset V of U_x , we have $\varphi(V)(*) = \varphi(U_{\varphi})(*)|_V = \psi(U_{\psi})(*)|_V = \psi(U_{\psi})(*)$. Therefore $\varphi|_{U_x} = \psi|_{U_x}$ and thus $\varphi_x = \psi_x$.

Let s_x be any germ of \mathscr{F} at x and take a representative (U,s) of it. Define $\varphi \colon \underline{*}_U \to \mathscr{F}|_U$ as $\varphi(V)(*) = s|_V$ for all open subsets $V \subset U$. Then the germ of φ at x will be mapped to s_x under Φ_x .

Proof: One can also get the lemma following general nonsense after prove Theorem 15. \Box

14 Lemma (Sheaf Hom is left exact) Let \mathscr{F} be a sheaf on a topological space X, then $\mathcal{H}om(\mathscr{F}, -)$ is maps limits to limits and $\mathcal{H}om(-, \mathscr{F})$ is maps colimits to limits.

Proof: Note that the section functors commute with limits. Then, we can check open set by open set, which is obvious. \Box

The following theorem exposes why sheaf Hom shares similar properties with the Hom-set.

15 Theorem (Sheaf Hom is the internal Hom) For any sheaves \mathscr{F} , \mathscr{G} and \mathscr{H} on a topological space X, there is a canonical bijection

$$\operatorname{Hom}_{\mathbf{Sh}(X)}(\mathscr{F}\times\mathscr{G},\mathscr{H})\cong\operatorname{Hom}_{\mathbf{Sh}(X)}(\mathscr{F},\mathcal{H}om(\mathscr{G},\mathscr{H})).$$

Proof: Given a morphism $\varphi \colon \mathscr{F} \times \mathscr{G} \to \mathscr{H}$, one gets a family of compatible maps $\varphi(U) \colon \mathscr{F}(U) \times \mathscr{G}(U) \to \mathscr{H}(U)$, thus a compatible family of maps $\psi_U \colon \mathscr{F}(U) \to \operatorname{Hom}(\mathscr{G}(U),\mathscr{H}(U))$. For any $s \in \mathscr{F}(U)$, we have a family of maps $\psi_V(s|_V) \colon \mathscr{G}(V) \to \mathscr{H}(V)$ for all open subsets V of U. The compatibility of ψ_V guarantees the compatibility of $\psi_V(s|_V)$, thus they give rise to a morphism $\mathscr{G}|_U \to \mathscr{H}|_U$. In this way, we get a map $\psi(U) \colon \mathscr{F}(U) \to \operatorname{Hom}_{\operatorname{Sh}(U)}(\mathscr{G}|_U,\mathscr{H}|_U)$. Such kind of maps are compatible and thus forms a morphism $\mathscr{F} \to \mathcal{H}om(\mathscr{G},\mathscr{H})$. Now, we have a map $\operatorname{Hom}_{\operatorname{Sh}(X)}(\mathscr{F} \times \mathscr{G},\mathscr{H}) \to \operatorname{Hom}_{\operatorname{Sh}(X)}(\mathscr{F},\mathcal{H}om(\mathscr{G},\mathscr{H}))$, whose inverse is easy to construct.

Proof: We give another proof by written down the unit η and the counit ϵ of the adjunction

$$-\times\mathscr{G}\dashv\mathcal{H}om(\mathscr{G},-).$$

Indeed, the unit η is given by

$$\eta_{\mathscr{F}}(U) : \mathscr{F}(U) \longrightarrow \operatorname{Hom}_{\mathbf{Sh}(U)}(\mathscr{G}|_{U}, \mathscr{F}|_{U} \times \mathscr{G}|_{U})$$

$$s \longmapsto (t \in \mathscr{G}(V) \mapsto (s|_{V}, t) \in \mathscr{F}(V) \times \mathscr{G}(V)),$$

and the counit ϵ is given by

$$\epsilon_{\mathscr{F}}(U) \colon \operatorname{Hom}_{\mathbf{Sh}(U)}(\mathscr{G}|_{U}, \mathscr{F}|_{U}) \times \mathscr{G}(U) \longrightarrow \mathscr{F}(U)$$

$$(\varphi, s) \longmapsto \varphi(s).$$

Then, one can verify they satisfy the triangle identities and thus defines an adjunction. \Box

Remark Note that, using this unit and counit above, we can write down the corresponding of

$$\operatorname{Hom}_{\mathbf{Sh}(X)}(\mathscr{F}\times\mathscr{G},\mathscr{H})\cong\operatorname{Hom}_{\mathbf{Sh}(X)}(\mathscr{F},\mathcal{H}om(\mathscr{G},\mathscr{H}))$$

as follows.

For any $\varphi \colon \mathscr{F} \times \mathscr{G} \to \mathscr{H}$, its corresponding is given by

$$\widetilde{\varphi}(U) \colon \mathscr{F}(U) \longrightarrow \operatorname{Hom}_{\mathbf{Sh}(U)}(\mathscr{G}|_U, \mathscr{H}|_U)$$

$$s \longmapsto (t \in \mathscr{G}(V) \mapsto \varphi(s|_V, t) \in \mathscr{H}(V)).$$

For any $\psi \colon \mathscr{F} \to \mathcal{H}om(\mathscr{G}, \mathscr{H})$, its corresponding is given by

$$\widehat{\psi}(U) \colon \mathscr{F}(U) \times \mathscr{G}(U) \longrightarrow \mathscr{H}(U)$$

$$(s,t) \longmapsto \psi(s)(t).$$

Remark The notion of sheaf Hom also works for sheaves of algebraic structures and the above results still hold.

- 16 (Gluing data) Let X be a topological space and $\mathfrak{U} = \{U_i \subset X\}_{i \in I}$ a covering on X. A gluing data for sheaves of sets with respect to the covering \mathfrak{U} consists of the following stuff:
 - For each $i \in I$, a sheaf \mathscr{F}_i of sets on U_i ;
 - For each pair $i, j \in I$, an isomorphism $\varphi_{ij} \colon \mathscr{F}_i|_{U_i \cap U_j} \to \mathscr{F}_j|_{U_i \cap U_j}$,

satisfying the cocycle condition:

For any $i, j, k \in I$, the following diagram commutes.

A morphisms between gluing data $(\mathscr{F}_i, \varphi_{ij})$ and $(\mathscr{G}_i, \psi_{ij})$ is a family of morphisms

$$f_i \colon \mathscr{F}_i \longrightarrow \mathscr{G}_i$$

such that the following diagram commutes.

$$\begin{split} \mathscr{F}_{i}|_{U_{i}\cap U_{j}} & \xrightarrow{f_{i}} \mathscr{G}_{i}|_{U_{i}\cap U_{j}} \\ \varphi_{ij} & & & & & \downarrow \psi_{ij} \\ \mathscr{F}_{j}|_{U_{i}\cap U_{j}} & \xrightarrow{f_{j}} \mathscr{G}_{j}|_{U_{i}\cap U_{j}} \end{split}$$

One can see the definitions can be easily generalized to **gluing data for** sheaves of algebraic structures.

Obviously, any sheaf \mathscr{F} admits a gluing data $(\mathscr{F}_i, \varphi_{ij})$, where \mathscr{F}_i is the restriction $\mathscr{F}|_{U_i}$ and φ_{ij} is the induced morphism

$$\mathscr{F}|_{U_i}|_{U_i\cap U_j} \longrightarrow \mathscr{F}|_{U_j}|_{U_i\cap U_i}.$$

Moreover, this construction is functoral, meaning it gives rise to a functor from $\mathbf{Sh}(X)$ to the category of gluing data.

17 Theorem (Sheaf = gluing data) The above functor induces an equivalence of category between Sh(X) and the category of gluing data. The similar statement holds for sheaves of algebraic structures.

Proof: The functor is fully faithful by Lemma 11.a and essentially surjective by Lemma 17.a. \Box

17.a Lemma Let X be a topological space and $\mathfrak{U} = \{U_i \subset X\}_{i \in I}$ a covering on X. Let $(\mathscr{F}_i, \varphi_{ij})$ be a gluing data for sheaves of sets with respect to the covering \mathfrak{U} . Then there exists a sheaf \mathscr{F} on X together with isomorphisms

$$\varphi_i \colon \mathscr{F}|_{U_i} \longrightarrow \mathscr{F}_i$$

such that the following diagram commutes.

$$\begin{split} \mathscr{F}|_{U_i \cap U_j} & \xrightarrow{\varphi_i} \mathscr{F}_i|_{U_i \cap U_j} \\ & \qquad \qquad \qquad \downarrow^{\varphi_{ij}} \\ \mathscr{F}|_{U_i \cap U_j} & \xrightarrow{\varphi_j} \mathscr{F}_j|_{U_i \cap U_j} \end{split}$$

The similar statement holds for sheaves of algebraic structures.

Proof: For any open subset W of X, the object $\mathscr{F}(W)$ is given as the equalizer of the morphisms:

$$\prod_{i \in I} \mathscr{F}_i(W \cap U_i) \Longrightarrow \prod_{i,j \in I} \mathscr{F}_i(W \cap U_i \cap U_j).$$

For sheaves of sets, this set can be written as

$$\mathscr{F}(W) = \left\{ (s_i) \in \prod_{i \in I} \mathscr{F}_i(W \cap U_i) \middle| \varphi_{ij}(s_i|_{W \cap U_i \cap U_j}) = s_j|_{W \cap U_i \cap U_j} \right\}.$$

By the universal property of equalizers, this this forms a presheaf. By the interchange property of limits, the descent condition for \mathscr{F}_i implies that \mathscr{F} is a sheaf.

As for the isomorphism, just note that a section in $\mathscr{F}|_{U_i}(W)$ is nothing but a system of compatible sections $s_j \in \mathscr{F}_i(W \cap U_i \cap U_j)$, which gives rise to a section $s \in \mathscr{F}_i(W)$. Thus the lemma follows.

§ I.5 Sheaves on topological spaces: continuous maps

In this section, we give the *direct image* and *inverse image* induced by a continuous map. later, we consider the inverse image of an open immersion. In that case, the inverse image has a left adjoint. Finally, we talk about the direct image of a closed immersion.

Direct images

1 (Direct images of sheaves) Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{F} a presheaf on X. Define $f_*\mathscr{F}$ by

$$f_*\mathscr{F}(V) := \mathscr{F}(f^{-1}(V))$$

with obvious restriction maps. These data form a presheaf on Y, called the **direct image** or **pushforward** of \mathscr{F} by f. This construction is functoral, thus we get a functor:

$$f_* \colon \mathbf{PSh}(X) \longrightarrow \mathbf{PSh}(Y).$$

1.a Lemma Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{F} a sheaf on X. Then $f_*\mathscr{F}$ is a sheaf on Y.

Proof: Note that if $\{V_i \subset V\}$ is a covering in Y, then $\{f^{-1}(V_i) \subset f^{-1}(V)\}$ is a covering in X. Thus the descent condition for $f_*\mathscr{F}$ follows from the descent condition for \mathscr{F} .

As a consequence, we get the functor

$$f_* \colon \mathbf{Sh}(X) \longrightarrow \mathbf{Sh}(Y).$$

1.b Lemma (Composition) Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps of topological spaces. Then the functors $(g \circ f)_*$ and $g_* \circ f_*$ are equal.

Proof: This is because
$$(g \circ f)^{-1}(W) = f^{-1}g^{-1}(W)$$
.

1.c Example (Skyscraper sheaves) The skyscraper sheaf $i_{x,*}S$ is the direct image of the constant sheaf \underline{S} on an one-point space x, under the inclusion morphism $i_x \colon x \to X$.

The following lemma shows how the stalks related by direct image. This canonical map will be used later in notion of f-maps, see 6.

1.d Lemma Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{F} a sheaf on X. If f(x) = y, then there is a canonical map $(f_*\mathscr{F})_y \to \mathscr{F}_x$.

Proof: Note that

$$(f_*\mathscr{F})_y = \varinjlim_{y \in V} f_*\mathscr{F}(V) = \varinjlim_{y \in V} \mathscr{F}(f^{-1}(V)).$$

and that $\{f^{-1}(V)|y\in V\}\subset \{U|x\in U\}$. Then there exists a unique map $(f_*\mathscr{F})_y\to\mathscr{F}_x$ compatible with the restriction maps.

Let s_y be a germ of $f_*\mathscr{F}$ at $y \in Y$. Then its image under this canonical map can be describe as follows. Let (V, s) be a representative of s_y . Since $s \in \mathscr{F}(f^{-1}(V))$, it represents a germ s_x of \mathscr{F} at x. One can see this s_x is independent of the choice of representative and is the image of s_y .

Inverse images

2 (Inverse images of presheaves) Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{G} a presheaf on Y. Define

$$f_p\mathscr{G}(U) := \varinjlim_{f(U) \subset V} \mathscr{G}(V)$$

with the restriction maps induces from the canonical maps between colimits. These data form a presheaf on X, called the **inverse image** or **pullback** of \mathscr{G} by f.

3 Theorem (Inverse and direct images are adjoint) Let $f: X \to Y$ be a continuous map of topological spaces, then $f_p \dashv f_*$ form an adjoint pair.

Proof: Recall that a pair of functors L and R is called a **adjoint pair** or **adjunction** if they admit two natural transformations η : id $\Rightarrow RL$ and ϵ : $LR \Rightarrow$ id satisfy the **triangle identities**.

For details, refer §4.1 in my note BMO, or [Bor94] directly.

Let \mathscr{F} be a presheaf on X and \mathscr{G} a preshaef on Y.

First, note that the index system of the colimit

$$f_p \mathscr{G}(f^{-1}(V)) = \varinjlim_{V \subset V'} \mathscr{G}(V')$$

contains V itself. Thus we get a map $\mathscr{G}(V) \to f_p\mathscr{G}(f^{-1}(V))$, which induces a canonical morphism $\eta_{\mathscr{G}} \colon \mathscr{G} \to f_* f_p\mathscr{G}$.

Next, consider the colimit

$$f_p f_* \mathscr{F}(U) = \varinjlim_{f(U) \subset V} f_* \mathscr{F}(V) = \varinjlim_{f(U) \subset V} \mathscr{F}(f^{-1}(V)).$$

Since for each $V \supset f(U)$, there is a restriction map $\mathscr{F}(f^{-1}(V)) \to \mathscr{F}(U)$, we obtain a canonical map $f_p f_* \mathscr{F}(U) \to \mathscr{F}(U)$, which induces a canonical morphism $\epsilon_{\mathscr{F}} \colon f_p f_* \mathscr{F} \to \mathscr{F}$.

One can check that η and ϵ are natural transformations and that the following compositions are identities.

$$f_p \mathcal{G} \xrightarrow{f_p(\eta_{\mathcal{G}})} f_p f_* f_p \mathcal{G} \xrightarrow{\epsilon_{f_p \mathcal{G}}} f_p \mathcal{G}, \qquad f_* \mathcal{F} \xrightarrow{\eta f_* \mathcal{F}} f_* f_p f_* \mathcal{F} \xrightarrow{f_*(\epsilon_{\mathcal{F}})} f_* \mathcal{F}.$$

This shows the triangle identities and thus $f_p \dashv f_*$ are an adjoint pair. \square

Remark One may expect to show that f_p is *left adjoint* to f_* , i.e. to prove the following natural bijection

$$\operatorname{Hom}_{\mathbf{PSh}(X)}(f_p\mathscr{G},\mathscr{F}) \cong \operatorname{Hom}_{\mathbf{PSh}(Y)}(\mathscr{G},f_*\mathscr{F}).$$

This follows directly from the adjoint pair: for $\phi: f_p \mathcal{G} \to \mathcal{F}$ a morphism of presheaves on X, the corresponding morphism is the composition

$$\mathscr{G} \xrightarrow{\eta \mathscr{G}} f_* f_p \mathscr{G} \xrightarrow{f_* \phi} f_* \mathscr{F};$$

for $\psi \colon \mathscr{G} \to f_*\mathscr{F}$ a morphism of presheaves on Y, the corresponding morphism is the composition

$$f_p \mathscr{G} \xrightarrow{f_p(\psi)} f_p f_* \mathscr{F} \xrightarrow{\epsilon_{\mathscr{F}}} \mathscr{F}.$$

3.a Corollary (Composition) Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps of topological spaces. Then the functors $(g \circ f)_p$ and $g_p \circ f_p$ are equal.

Proof: This follows from the uniqueness of adjoint functor and Lemma 1.b.□

The relationship of stalks under inverse image is more imitate.

3.b Lemma Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{G} a sheaf on Y. Then there is a canonical bijection $(f_p\mathscr{G})_x \cong \mathscr{G}_{f(x)}$.

Proof: This can be shown as follows.

$$(f_p \mathcal{G})_x = \varinjlim_{x \in U} f_p \mathcal{G}(U)$$

$$= \varinjlim_{x \in U} \varinjlim_{f(U) \subset V} \mathcal{G}(V)$$

$$= \varinjlim_{f(x) \in V} \mathcal{G}(V)$$

$$= \mathcal{G}_{f(x)}$$

4 (Inverse images of sheaves) Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{G} a sheaf on Y. Then we already has a presheaf $f_p\mathscr{G}$, which is called the *inverse image* of \mathscr{G} by f. However, this $f_p\mathscr{G}$ is rarely a sheaf. So we define the **inverse image** or **pullback** of \mathscr{G} by f as the sheafification of $f_p\mathscr{G}$, i.e.

$$f^{-1}\mathscr{G} := (f_p\mathscr{G})^\#.$$

5 Theorem (Inverse and direct images are adjoint) Let $f: X \to Y$ be a continuous map of topological spaces, then $f^{-1} \dashv f_*$ form an adjoint pair.

Proof: Consider the following commutative digram of pairs.

$$\mathbf{PSh}(X) \xrightarrow{f_p} \mathbf{PSh}(Y)$$

$$\# \downarrow \uparrow F \qquad \# \downarrow \uparrow F$$

$$\mathbf{Sh}(X) \xrightarrow{f_*} \mathbf{Sh}(Y)$$

Except the bottom one, all pairs are adjoint pairs, thus so is the bottom one.

More precisely, this can be shown by

$$\operatorname{Hom}_{\mathbf{Sh}(X)}(f^{-1}\mathscr{G},\mathscr{F}) = \operatorname{Hom}_{\mathbf{PSh}(X)}(f_{p}\mathscr{G},\mathscr{F})$$

$$= \operatorname{Hom}_{\mathbf{PSh}(Y)}(\mathscr{G}, f_{*}\mathscr{F})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(Y)}(\mathscr{G}, f_{*}\mathscr{F}).$$

5.a Corollary (Composition) Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps of topological spaces. Then the functors $(g \circ f)^{-1}$ and $g^{-1} \circ f^{-1}$ are equal.

Proof: This follows from the uniqueness of adjoint functor and Lemma 1.b. \square

Similarly to Lemma 3.b, we have

5.b Lemma Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{G} a sheaf on Y. Then there is a canonical bijection $(f^{-1}\mathscr{G})_x \cong \mathscr{G}_{f(x)}$.

Proof: This follows from Lemma 3.9.a and Lemma 3.b.

The following notion is crucial in the definition of morphisms between ringed spaces.

6 (f-maps) Let $f: X \to Y$ be a continuous map of topological spaces and \mathscr{F} a sheaf on X, \mathscr{G} a sheaf on Y. Combine the inverse and direct image functors, we define the f-map $\xi: \mathscr{G} \to \mathscr{F}$ as a morphism from \mathscr{G} to $f_*\mathscr{F}$.

Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps of topological spaces and \mathscr{F} a sheaf on X, \mathscr{G} a sheaf on Y, \mathscr{H} a sheaf on Z. Let $\phi: \mathscr{G} \to \mathscr{F}$ be an f-map and $\psi: \mathscr{H} \to \mathscr{G}$ a g-map, then the *composition* $\psi \circ \phi$ of them is the $(g \circ f)$ -map defined as the composition

$$\mathscr{H} \xrightarrow{\psi} g_*\mathscr{G} \xrightarrow{g_*\phi} g_*f_*\mathscr{F} = (g \circ f)_*\mathscr{F}.$$

Any f-map $\phi \colon \mathscr{G} \to \mathscr{F}$ gives rise to canonical maps at stalks:

$$\phi_x \colon \mathscr{G}_{f(x)} \longrightarrow \mathscr{F}_x,$$

which are given by the compositions:

$$\mathscr{G}_{f(x)} \longrightarrow (f_*\mathscr{F})_{f(x)} \longrightarrow \mathscr{F}_x.$$

7 Remark Now all the above constructions also appear in general case. Let $f \colon X \to Y$ be a continuous map of topological spaces and \mathscr{F} a sheaf on X, \mathscr{G} a sheaf on Y, both with values in an algebraic category \mathcal{A} . Let $\mathbf{PSh}(X, \mathcal{A})$ (resp. $\mathbf{Sh}(X, \mathcal{A})$) denote the category of presheaves (resp. sheaves) on X with values in \mathcal{A} . Then we have the following functors

$$f_* : \mathbf{PSh}(X, \mathcal{A}) \longrightarrow \mathbf{PSh}(Y, \mathcal{A})$$

 $f_* : \mathbf{Sh}(X, \mathcal{A}) \longrightarrow \mathbf{Sh}(Y, \mathcal{A})$
 $f_p : \mathbf{PSh}(Y, \mathcal{A}) \longrightarrow \mathbf{PSh}(X, \mathcal{A})$
 $f^{-1} : \mathbf{Sh}(Y, \mathcal{A}) \longrightarrow \mathbf{Sh}(X, \mathcal{A})$

which are compatible with the forgetful functor $F: \mathcal{A} \to \mathbf{Set}$.

We also have some formulas:

$$f_*\mathscr{F}(V) = \mathscr{F}(f^{-1}(V)),$$

$$f_p\mathscr{G}(U) = \varinjlim_{f(U)\subset V} \mathscr{G}(V),$$

$$f^{-1}\mathscr{G} = (f_p\mathscr{G})^\#,$$

$$(f_p\mathscr{G})_x = \mathscr{G}_{f(x)},$$

$$(f^{-1}\mathscr{G})_x = \mathscr{G}_{f(x)}.$$

What's most important is the adjoint pairs:

$$f_p \dashv f_* \colon \mathbf{PSh}(X, \mathcal{A}) \leftrightarrows \mathbf{PSh}(Y, \mathcal{A}),$$

 $f^{-1} \dashv f_* \colon \mathbf{Sh}(X, \mathcal{A}) \leftrightarrows \mathbf{Sh}(Y, \mathcal{A}).$

Finally, the notion of f-maps also works.

Immersions of subspaces

Now we turn to consider a special kind of continuous maps. They are the *immersions of subspaces*.

- 8 Proposition (Inverse images by an open immersion) Let X be a topological space and $j: U \to X$ an inclusion map of an open subset U into X.
 - 1. Let \mathscr{G} be a presheaf on X. Then the presheaf $j_p\mathscr{G}$ is given by $V \mapsto \mathscr{G}(V)$ for all open subsets V of U.
 - 2. Let \mathscr{G} be a sheaf on X. Then the sheaf $j^{-1}\mathscr{G}$ is given by $V \mapsto \mathscr{G}(V)$ for all open subsets V of U.
 - 3. For any point $u \in U$ and any sheaf \mathscr{G} on X we have a canonical identification of stalks

$$j^{-1}\mathscr{G}_u = (\mathscr{G}|_U)_u = \mathscr{G}_u.$$

4. We have $j_p j_* = \operatorname{id}$ on $\operatorname{\mathbf{PSh}}(U)$ and $j^{-1} j_* = \operatorname{id}$ on $\operatorname{\mathbf{Sh}}(U)$.

The same description holds for (pre)sheaves of algebraic structures.

Proof: Note that V is *cofinal* in the system $\{W|V \subset W\}$, thus the first two results follow. Then, 3 follows from the fact that neighborhoods of u which are contained in U is *cofinal* in the system of all open neighborhoods of u in X. Finally, 4 follows from direct computing.

Remark One can see the (pre)sheaves in 1 and 2 are precisely the restrictions $\mathscr{G}|_U$ of \mathscr{G} on an open subset U.

In the case of open immersions, there is a left adjoint functor to f^{-1} .

- **9** (Extension by zero) Let X be a topological space and $j: U \to X$ an inclusion map of an open subset U into X.
 - Let \mathscr{F} be a presheaf on U. Define the **extension of** \mathscr{F} by **empty** $j_{p!}\mathscr{F}$ as the presheaf given by

$$j_{p!}\mathscr{F}(V) := \begin{cases} \mathscr{F}(V) & \text{if } V \subset U \\ \varnothing & \text{if } V \not\subset U \end{cases}$$

with obvious restriction maps.

• Let \mathscr{F} be a sheaf on U. Define the **extension of** \mathscr{F} by **empty** $j_!\mathscr{F}$ as the sheafification of the presheaf $j_{p!}\mathscr{F}$.

For sheaves of algebraic structures, there are similar notions. Let 0 denote the initial object in an algebraic category A.

• Let \mathscr{F} be a presheaf on U with values in \mathscr{A} . Define the **extension of** \mathscr{F} by zero $j_p!\mathscr{F}$ as the presheaf given by

$$j_{p!}\mathscr{F}(V) := \begin{cases} \mathscr{F}(V) & \text{if } V \subset U \\ 0 & \text{if } V \not\subset U \end{cases}$$

with obvious restriction maps.

• Let \mathscr{F} be a sheaf on U with values in \mathscr{A} . Define the **extension of** \mathscr{F} by **zero** $j_!\mathscr{F}$ as the sheafification of the presheaf $j_{p!}\mathscr{F}$.

Remark Although we can define the extension by zero for general sheaves of algebraic structures, but this construction depends on what the initial object is. For instance, the extension by zero of a sheaf of rings in the category of sheaves of rings is different from the one in the category of abelian sheaves. In particular, the functor $j_!$ doesn't commute with taking underlying sheaves of sets as other functors!

- **9.a Example** $(j_{p!}\mathscr{F}$ is not a sheaf) Let U be the an open interval in $X = \mathbb{R}$ and \mathscr{F} the sheaf of continuous functions on U. Then $j_{p!}\mathscr{F}$ is not a sheaf since one can definitely glue a nonzero function with zeros near the boundary of U with zero functions outside U to get a nonzero function on X, which does not lie in $j_{p!}\mathscr{F}(X)$.
- 10 Theorem (Extension by zero is left adjoint to restriction) Let X be a topological space and $j: U \to X$ an inclusion map of an open subset $U \subset X$.
 - 1. $j_{p!}$ is left adjoint to the restriction j_p .
 - 2. $j_!$ is left adjoint to the restriction j^{-1} .
 - 3. The stalks of the sheaf $j_!\mathscr{F}$ are described as follows

$$j_{!}\mathscr{F}_{x} = \begin{cases} \mathscr{F}_{x} & \text{if } x \in U \\ \varnothing & \text{if } x \notin U. \end{cases}$$

4. We have $j_p j_{p!} = \text{id}$ on $\mathbf{PSh}(U)$ and $j^{-1} j_! = \text{id}$ on $\mathbf{Sh}(U)$.

The same results hold for (pre)sheaves of algebraic structures except that \varnothing should be replaced by an initial object 0.

Proof: Let \mathscr{F} be a presheaf on U and \mathscr{G} a presheaf on X. First, as $j_{p!}\mathscr{F}$ vanishes outside U, a morphism from $j_{p!}\mathscr{F}$ to \mathscr{G} is determined by its components on open subsets of U, which form a morphism from \mathscr{F} to $\mathscr{G}|_{U}$. This shows the adjointness of $j_{p!} \dashv j_p$. Then the adjointness of $j_! \dashv j^{-1}$ follows from this and the adjointness of # # F. The rests are from direct computing.

We say that a sheaf \mathscr{F} vanishes at a point x if \mathscr{F}_x is an initial object.

11 Theorem Let X be a topological space and $j: U \to X$ an inclusion map of an open subset $U \subset X$. Then the functor

$$j_! \colon \mathbf{Sh}(U) \longrightarrow \mathbf{Sh}(X)$$

is fully faithful. Moreover, this functor induces an equivalence between $\mathbf{Sh}(U)$ and the full subcategory of $\mathbf{Sh}(X)$ consisting of sheaves vanishing outside of U. The same result holds for sheaves of algebraic structures.

Proof: $j_!$ is fully faithful since $j^{-1}j_! = \text{id.As}$ for the second statement, just note that the canonical morphism $\epsilon_{\mathscr{G}} \colon f_! f^{-1}\mathscr{G} \to \mathscr{G}$ is an isomorphism if \mathscr{G} vanishes outside of U.

- 12 Proposition (Direct image by a closed immersion) Let X be a topological space and $i: Z \to X$ an inclusion map of a closed subset $Z \subset X$.
 - 1. Let \mathscr{F} be a sheaf on Z. Then the stalks of the sheaf $i_*\mathscr{F}$ on X can be described as

$$i_*\mathscr{F}_x = \begin{cases} \mathscr{F}_x & \text{if } x \in Z \\ * & \text{if } x \notin Z. \end{cases}$$

2. We have $i^{-1}i_* = id$ on $\mathbf{Sh}(Z)$.

The same results hold for sheaves of algebraic structures.

Proof: Note that as a sheaf \mathscr{F} should map empty set to a terminal object. Then the results follow.

13 Theorem Let X be a topological space and $i: Z \to X$ an inclusion map of a closed subset $Z \subset X$. Then the functor

$$i_* \colon \mathbf{Sh}(Z) \longrightarrow \mathbf{Sh}(X)$$

is fully faithful. Moreover, this functor induces an equivalence between $\mathbf{Sh}(Z)$ and the full subcategory of $\mathbf{Sh}(X)$ consisting of sheaves $\mathscr G$ satisfying $\mathscr G_x=*$ for all $x\in X\setminus Z$. The same result holds for sheaves of algebraic structures.

Proof: i_* is fully faithful since $i^{-1}i_* = \text{id.As}$ for the second statement, just note that the canonical morphism $\eta_{\mathscr{G}} \colon \mathscr{G} \to i_* i^{-1}\mathscr{G}$ is an isomorphism if $\mathscr{G}_x = *$ for all $x \in X \setminus Z$.

14 Remark (Direct image has no right adjoint) Let X be a topological space and $i: Z \to X$ an inclusion map of a closed subset $Z \subset X$. Let $x \in X \setminus Z$ and \mathscr{F} be a sheaf on Z. Then $i_*\mathscr{F}_x = *$. Let $\mathscr{F} = \underline{*} \sqcup \underline{*}$, then $i_*\mathscr{F}_x = * \neq i_*(\underline{*})_x \sqcup i_*(\underline{*})_x$. This shows that the functor i_* is NOT right exact, hence can not has a right adjoint functor.

However, this is not the case for abelian sheaves. In fact, i_* on abelian sheaves is exact and does have right adjoint.

§ I.6 Sheafification

In this section, we construct the *sheafification* for presheaves on a site through the *zeroth Čech cohomology*.

Zeroth Čech cohomology

Recall that a presheaf \mathscr{F} is a sheaf respect to the coverage Cov if for every covering $\mathfrak{U} = \{U_i \to U\}_{i \in I} \in \text{Cov}$, the $\mathscr{F}(U)$ is the equalizer of the maps:

$$\prod_{i \in I} \mathscr{F}(U_i) \xrightarrow{\operatorname{pr}_1^*} \prod_{i_0, i_1 \in I} \mathscr{F}(U_{i_0} \times_U U_{i_1}).$$

In general, the equalizer is not $\mathscr{F}(U)$ and its value depends on the covering \mathfrak{U} . This set is called the **zeroth Čech cohomology** of the presheaf \mathscr{F} respect to the covering \mathfrak{U} and is denoted by $\check{H}^0(\mathfrak{U},\mathscr{F})$.

By the universal property of equalizers, there is a canonical map

$$\mathscr{F}(U) \to \check{H}^0(\mathfrak{U}, \mathscr{F}).$$

Then the descent condition turns out to say a presheaf \mathscr{F} is a sheaf if and only if this canonical map is bijective for every covering.

Now we focus on the zeroth Čech cohomology $\check{H}^0(\mathfrak{U}, \mathscr{F})$. Let \mathcal{J}_U denote the category of coverings of U.

First of all, any morphism $f: \mathfrak{U} \to \mathfrak{V}$ of coverings induces a map

$$f^* \colon \check{H}^0(\mathfrak{V}, \mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{U}, \mathscr{F}),$$

compatible with the map $\mathscr{F}(V) \to \mathscr{F}(U)$. In this way, the zeroth Čech cohomology $\check{H}^0(\mathfrak{U},\mathscr{F})$ is a functor from \mathcal{J}_U to **Set**. One may wish $\mathcal{J}_U^{\text{opp}}$ to be filtered. However, this is not true in general. But luckily, we still have

1 Lemma The diagram $\check{H}^0(-,\mathscr{F}): \mathcal{J}_U^{\text{opp}} \to \mathbf{Set}$ is filtered.

Proof: First, since $\{id: U \to U\}$ is a covering, the category is nonempty. Next, for any two coverings $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ and $\mathfrak{V} = \{V_j \to U\}_{j \in I}$, there is a covering

$$\mathcal{W} := \{ U_i \times_U V_j \to U \}_{(i,j) \in I \times J}$$

refines both \mathfrak{U} and \mathfrak{V} .

But now the troubles appear when we try to check the last axiom for filtered category. However, we still have the following Lemma 1.a. \Box

1.a Lemma Any two morphisms $f, g: \mathfrak{U} \rightrightarrows \mathfrak{V}$ of coverings inducing the same morphism $U \to V$ induce the same map $\check{H}^0(\mathfrak{V}, \mathscr{F}) \to \check{H}^0(\mathfrak{U}, \mathscr{F})$.

Proof: Let f (resp. g) is given by the map α (resp. β) and the morphisms $U_i \to V_{\alpha(i)}$ (resp. $U_i \to V_{\beta(i)}$). Then we have the following commutative diagram.

Then, for any $s = (s_j) \in \check{H}^0(\mathfrak{V}, \mathscr{F})$, we have $\operatorname{pr}_1^*(s_{\alpha(i)}) = \operatorname{pr}_2^*(s_{\beta(i)})$ by the definition of $\check{H}^0(\mathfrak{V}, \mathscr{F})$. Therefore, we have

$$(f^*s)_i = f_i^*(s_{\alpha(i)}) = \varphi^* \operatorname{pr}_1^*(s_{\alpha(i)}) = \varphi^* \operatorname{pr}_2^*(s_{\beta(i)}) = g_i^*(s_{\beta(i)}) = (g^*s)_i.$$

Thus $f^* = g^*$ as desired.

Now, since the diagram $\check{H}^0(-,\mathscr{F})\colon \mathcal{J}_U^{\mathrm{opp}}\to \mathbf{Set}$ is filtered, we can apply the following lemma.

2 Lemma (Description of filtered colimits) If $D: \mathcal{I} \rightarrow \mathbf{Set}$ is filtered, then

$$\varinjlim_{\mathcal{I}} D = (\bigsqcup_{i \in \text{ob } \mathcal{I}} D(i)) / \sim,$$

where the equivalence relation is given as following: two elements $s_i \in D(i)$ and $s_j \in D(j)$ are equivalent if there exists morphisms $f: i \to k$ and $g: j \to k$ such that $D(f)(s_i) = D(g)(s_j)$.

Now, we define

$$\check{H}^0(U,\mathscr{F}) := \varinjlim_{\mathcal{I}_U^{\mathrm{opp}}} \check{H}^0(\mathfrak{U},\mathscr{F}),$$

which is called the **zeroth Čech cohomology** of \mathscr{F} on U.

Now, let $U \to V$ be a morphism, then it induces a functor

$$\mathcal{J}_V \longrightarrow \mathcal{J}_U$$
$$\{V_i \to V\} \longmapsto \{V_i \times_V U \to U\}.$$

Then, this functor induces a canonical map $\check{H}^0(V,\mathscr{F}) \to \check{H}^0(U,\mathscr{F})$. In this way, $\check{H}^0(-,\mathscr{F})$ becomes a presheaf, denoted by \mathscr{F}^+ .

Now, notice that since $\mathfrak{U}_0 = \{ \mathrm{id} \colon U \to U \}$ is a covering of U, there is a canonical map $\check{H}^0(\mathfrak{U}_0,\mathscr{F}) \to \check{H}^0(U,\mathscr{F})$. But $\check{H}^0(\mathfrak{U}_0,\mathscr{F})$ is nothing but $\mathscr{F}(U)$, thus we get a canonical map $\mathscr{F}(U) \to \mathscr{F}^+(U)$, which induces a canonical morphism

$$\mathscr{F}\longrightarrow\mathscr{F}^+.$$

Now, we claim that the corresponding $\mathscr{F} \mapsto (\mathscr{F} \to \mathscr{F}^+)$ forms a functor. Given a presheaf morphism $\varphi \colon \mathscr{F} \to \mathscr{G}$, it induces a map

$$\check{H}^0(\mathfrak{U},\mathscr{F})\longrightarrow \check{H}^0(\mathfrak{U},\mathscr{G})$$

for every covering \mathfrak{U} , and thus also induces a map

$$\check{H}^0(U,\mathscr{F}) \longrightarrow \check{H}^0(U,\mathscr{G})$$

for every object $U \in \text{ob } \mathcal{C}$. In this way, we obtain a morphism $\varphi^+ : \mathscr{F}^+ \to \mathscr{G}^+$ and a commutative diagram

$$\begin{array}{cccc}
\mathscr{F} & \xrightarrow{\varphi} \mathscr{G} \\
\downarrow & & \downarrow \\
\mathscr{F} + \xrightarrow{\varphi^+} \mathscr{G} +
\end{array}$$

and thus show that $\mathscr{F}\mapsto (\mathscr{F}\to\mathscr{F}^+)$ forms a functor.

3 Lemma The functor + is left exact, i.e. commutes with finite limits.

Proof: First, the functor $\check{H}^0(\mathfrak{U}, -)$ commutes with limits. Indeed, by the definition, for any diagram $\mathcal{J} \to \mathbf{PSh}(\mathcal{C}) \colon j \mapsto \mathscr{F}_j$ and any covering $\mathfrak{U} = \{U_i \to U\}_{i \in I}$, we have

$$\lim_{i \to \mathcal{I}} \check{H}^{0}(\mathfrak{U}, \mathscr{F}_{j}) = \lim_{i \to \mathcal{I}} \ker \left(\prod_{i \in I} \mathscr{F}_{j}(U_{i}) \rightrightarrows \prod_{i_{0}, i_{1} \in I} \mathscr{F}_{j}(U_{i_{0}} \times_{U} U_{i_{1}}) \right)$$

$$= \ker \left(\prod_{i \in I} \varprojlim_{\mathcal{I}} (\mathscr{F}_{j}(U_{i})) \rightrightarrows \prod_{i_{0}, i_{1} \in I} \varprojlim_{\mathcal{I}} (\mathscr{F}_{j}(U_{i_{0}} \times_{U} U_{i_{1}})) \right)$$

$$= \ker \left(\prod_{i \in I} \varprojlim_{\mathcal{I}} \mathscr{F}_{j}(U_{i}) \rightrightarrows \prod_{i_{0}, i_{1} \in I} \varprojlim_{\mathcal{I}} \mathscr{F}_{j}(U_{i_{0}} \times_{U} U_{i_{1}}) \right),$$

where the second equality comes from the commutativity of limits and the third form the fact that limits in $\mathbf{PSh}(\mathcal{C})$ are computed pointwise.

Therefore, for any finite diagram $\mathcal{I} \to \mathbf{PSh}(\mathcal{C})$: $i \mapsto \mathscr{F}_i$ and any object $U \in \text{ob } \mathcal{C}$, since filtered colimits commute with finite limits, we have

$$\lim_{\mathcal{I}} \mathscr{F}_{i}^{+}(U) = \lim_{\mathcal{I}} (\mathscr{F}_{i}^{+}(U)) = \lim_{\mathcal{I}} \lim_{\mathcal{I}^{\text{opp}}} \check{H}^{0}(\mathfrak{U}, \mathscr{F}_{i})$$

$$= \lim_{\mathcal{I}^{\text{opp}}} \lim_{\mathcal{I}} \check{H}^{0}(\mathfrak{U}, \mathscr{F}_{i}) = \lim_{\mathcal{I}^{\text{opp}}} \check{H}^{0}(\mathfrak{U}, \varprojlim_{\mathcal{I}} \mathscr{F}_{i}) = (\varprojlim_{\mathcal{I}} \mathscr{F}_{i})^{+}(U). \quad \Box$$

Sheafification

- 4 Theorem (Sheafification) Let F be a presheaf.
 - 1. \mathscr{F}^+ is separated.
 - 2. If \mathscr{F} is separated, then \mathscr{F}^+ is a sheaf and the morphism of presheaves $\mathscr{F} \to \mathscr{F}^+$ is injective.
 - 3. If \mathscr{F} is a sheaf, then $\mathscr{F} \to \mathscr{F}^+$ is an isomorphism.
 - 4. The presheaf \mathcal{F}^{++} is always a sheaf.

Proof: 1. Let $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ be a covering. Let \bar{s} and \bar{s}' be two elements of $\mathscr{F}^+(U)$ having the same image under the canonical map

$$\mathscr{F}^+(U) \to \prod_{i \in I} \mathscr{F}^+(U_i).$$

Let s (resp. s') be a representative of \bar{s} (resp. \bar{s}') in some $\check{H}^0(\mathfrak{V}, \mathscr{F})$, where \mathfrak{V} is a covering of U. Since s and s' have the same image under the compose

$$\check{H}^{0}(\mathfrak{V},\mathscr{F}) \longrightarrow \check{H}^{0}(\mathfrak{V} \times_{U} U_{i},\mathscr{F}) \\
\downarrow \qquad \qquad \downarrow \\
\mathscr{F}^{+}(U) \longrightarrow \mathscr{F}^{+}(U_{i})$$

there exists a covering \mathfrak{W}_i of U_i such that s and s' have the same image under the compose

$$\check{H}^0(\mathfrak{V},\mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{V} \times_U U_i,\mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{W}_i,\mathscr{F}).$$

But now those \mathfrak{W}_i give a covering \mathfrak{W} of U by compose each \mathfrak{W}_i with $U_i \to U$. Then s and s' have the same image under the compose

$$\check{H}^0(\mathfrak{V},\mathscr{F})\longrightarrow \check{H}^0(\mathfrak{V}\times_U U_i,\mathscr{F})\longrightarrow \check{H}^0(\mathfrak{W}_i,\mathscr{F})\longrightarrow \check{H}^0(\mathfrak{W},\mathscr{F}).$$

Then as s and s' have the same image in the component $\check{H}^0(\mathfrak{W}, \mathscr{F})$, a fortiori the colimit $\check{H}^0(U, \mathscr{F})$. Thus $\bar{s} = \bar{s}'$.

2. Now for every covering $\mathfrak{U} = \{U_i \to U\}_{i \in I}$, the canonical map

$$\mathscr{F}(U) \longrightarrow \prod_{i \in I} \mathscr{F}(U_i)$$

is injective, thus so is

$$\mathscr{F}(U) \longrightarrow \check{H}^0(\mathfrak{U},\mathscr{F}),$$

As the diagram $\check{H}^0(-,\mathscr{F})\colon \mathcal{J}_U^{\mathrm{opp}}\to \mathbf{Set}$ is filtered, we further obtain the injectivity of the canonical map

$$\mathscr{F}(U) \longrightarrow \mathscr{F}^+(U).$$

Therefore, $\mathscr{F} \to \mathscr{F}^+$ is injective.

Now, let's prove \mathscr{F}^+ is a sheaf by checking the canonical map

$$\mathscr{F}^+(U) \longrightarrow \check{H}^0(\mathfrak{U}, \mathscr{F}^+)$$

is bijective for all coverings \mathfrak{U} . By I, it's already injective. Therefore we only need to show it's *surjective*. Let $\bar{s} = (\bar{s}_i)$ be an element of $\check{H}^0(\mathfrak{U}, \mathscr{F}^+)$. For each $\bar{s}_i \in \mathscr{F}^+(U_i)$, chose a representative $s_i = (s_{i\alpha}) \in \check{H}^0(\mathfrak{U}_i, \mathscr{F})$, where \mathfrak{U}_i is a covering of U_i . Now, compose those coverings with \mathfrak{U} , we get another covering $\mathfrak{W} = \{U_{i\alpha} \to U\}$. Then $(s_{i\alpha})$ forms an element of $\prod \mathscr{F}(U_{i\alpha})$. Now, we wish it lies in $\check{H}^0(\mathfrak{W}, \mathscr{F})$. In other words, for any $i, j \in I$ and $\alpha \in I_i, \beta \in I_j$, we need to show $s_{i\alpha} \in \mathscr{F}(U_{i\alpha})$ and $s_{j\beta} \in \mathscr{F}(U_{j\beta})$ have the same image under the maps

$$\mathscr{F}(U_{i\alpha}) \longrightarrow \mathscr{F}(U_{i\alpha} \times_U U_{j\beta}) \longleftarrow \mathscr{F}(U_{j\beta}).$$

To do this, consider the following commutative diagram:

Let s_{ij}^1 and s_{ij}^2 denote the images of s_i and s_j on $\mathfrak{U}_i \times_U U_j$ and $U_i \times_U \mathfrak{U}_j$ respectively. Since $(\bar{s}_i) \in \check{H}^0(\mathfrak{U}, \mathscr{F}^+)$, s_{ij}^1 and s_{ij}^2 have the same image in $\mathscr{F}^+(U_i \times_U U_j)$. Then there exists a covering \mathfrak{V} refining both $\mathfrak{U}_i \times_U U_j$ and $U_i \times_U \mathfrak{U}_j$ such that s_{ij}^1 and s_{ij}^2 have the same image in $\check{H}^0(\mathfrak{V}, \mathscr{F})$. Now, let

$$\mathfrak{U}_{ij} = \mathfrak{U}_i \times_U \mathfrak{U}_i$$

which is a common refinement of $\mathfrak{U}_i \times_U U_j$ and $U_i \times_U \mathfrak{U}_j$. Then, by Lemma 4.a below, s_{ij}^1 and s_{ij}^2 have the same image in $\check{H}^0(\mathfrak{U}_{ij}, \mathscr{F})$. Thus s_i and s_j have the same image in $\check{H}^0(\mathfrak{U}_{ij}, \mathscr{F})$. In particular, $s_{i\alpha}$ and $s_{j\beta}$ have the same image in $\mathscr{F}(U_{i\alpha} \times_U U_{j\beta})$.

Now $(s_{i\alpha}) \in \check{H}^0(\mathfrak{W}, \mathfrak{F})$, so it represents an element \bar{s}' of $\mathscr{F}^+(U)$. Since $\bar{s}'|_{U_i}$ and \bar{s}_i have the same representative $s_i \in \check{H}^0(\mathfrak{U}_i, \mathfrak{F})$, they have to be the same. In this way, we see that the canonical map $\mathscr{F}^+(U) \to \check{H}^0(\mathfrak{U}, \mathscr{F}^+)$ maps \bar{s}' to \bar{s} as desired.

3. Now, assume \mathscr{F} is a sheaf. Since for every covering \mathfrak{U} , the canonical map $\mathscr{F}(U) \to \check{H}^0(\mathfrak{U},\mathscr{F})$ is bijective, the diagram $\check{H}^0(-,\mathscr{F})\colon \mathcal{J}_U^{\mathrm{opp}} \to \mathbf{Set}$ is constant. Thus passing to the colimit, $\mathscr{F}(U) \to \mathscr{F}^+(U)$ is also bijective. Therefore, $\mathscr{F} \to \mathscr{F}^+$ is an isomorphism.

4.a Lemma Let \mathscr{F} be a separated presheaf.

1. If there is a refinement $f: \mathfrak{V} \to \mathfrak{U}$, then the map

$$f^* : \check{H}^0(\mathfrak{U}, \mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{V}, \mathscr{F})$$

is injective.

2. Let \mathfrak{U} and \mathfrak{V} be two coverings of U and $s_{\mathfrak{U}} \in \check{H}^0(\mathfrak{U}, \mathscr{F}), s_{\mathfrak{V}} \in \check{H}^0(\mathfrak{V}, \mathscr{F}).$ If there exists a common refinement \mathfrak{W}_0 of them such that $s_{\mathfrak{U}}$ and $s_{\mathfrak{V}}$ have the same image in $\check{H}^0(\mathfrak{W}_0, \mathscr{F})$, then for any common refinement \mathfrak{W} of them, $s_{\mathfrak{U}}$ and $s_{\mathfrak{V}}$ have the same image in $\check{H}^0(\mathfrak{W}, \mathscr{F})$.

Proof: 1. Let \mathfrak{W} denote the covering $\mathfrak{U} \times_U \mathfrak{V}$ obtained by fibre products. \mathfrak{W} admits two morphisms $\operatorname{pr}_1 \colon \mathfrak{W} \to \mathfrak{U}$ and $\operatorname{pr}_2 \colon \mathfrak{W} \to \mathfrak{V}$ via projections. Now, for each $U_i \to U$,

$$\mathscr{F}(U_i) \longrightarrow \prod_{i \in J} \mathscr{F}(U_i \times_U V_j)$$

is injective. Thus so is the product

$$\prod_{i \in I} \mathscr{F}(U_i) \longrightarrow \prod_{(i,j) \in I \times J} \mathscr{F}(U_i \times_U V_j).$$

Then, by the definition of zeroth Čech cohomology,

$$\operatorname{pr}_1^* \colon \check{H}^0(\mathfrak{U}, \mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{W}, \mathscr{F})$$

is injective. Now, note that since there is a refinement $f \colon \mathfrak{V} \to \mathfrak{U}$, thus $\operatorname{pr}_1 = f \circ \operatorname{pr}_2$. Then since $\operatorname{pr}_2^* \circ f^* = \operatorname{pr}_1^*$ is injective, so is

$$f^* \colon \check{H}^0(\mathfrak{U},\mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{V},\mathscr{F}).$$

2. Assumptions as in 2, let \mathfrak{W} be another common refinement of \mathfrak{U} and \mathfrak{V} . Then there is a common refinement \mathfrak{W}' of \mathfrak{W}_0 and \mathfrak{W} . Now, $s_{\mathfrak{U}}$ and $s_{\mathfrak{V}}$ have the same image in $\check{H}^0(\mathfrak{W}_0,\mathscr{F})$, a fortiori in $\check{H}^0(\mathfrak{W}',\mathscr{F})$. But since \mathfrak{W} is a refinement of \mathfrak{U} , the map $\check{H}^0(\mathfrak{U},\mathscr{F}) \to \check{H}^0(\mathfrak{W}_0,\mathscr{F})$ factors through $\check{H}^0(\mathfrak{W},\mathscr{F})$. For \mathfrak{V} , the story is similar. Now, $s_{\mathfrak{U}}$ and $s_{\mathfrak{V}}$ have the same image under the following composes

$$\check{H}^0(\mathfrak{U},\mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{W},\mathscr{F}) \longrightarrow \check{H}^0(\mathfrak{W}',\mathscr{F})$$

$$\check{H}^0(\mathfrak{V},\mathscr{F})$$

where the last map is injective, thus have the same image in $\check{H}^0(\mathfrak{W},\mathscr{F})$. \square

5 (Sheafification) Let \mathscr{F} be a presheaf on a site \mathscr{C} . Then the sheaf $\mathscr{F}^{\#}$:= \mathscr{F}^{++} together with the canonical morphism $\mathscr{F} \to \mathscr{F}^{\#}$ is called the **sheafification** of \mathscr{F} .

The sheafification has the following universal property:

For any sheaf \mathscr{G} and presheaf morphism $\varphi \colon \mathscr{F} \to \mathscr{G}$, there exists a unique sheaf morphism $\varphi^{\#} \colon \mathscr{F}^{\#} \to \mathscr{G}$ making the following digram commute.

In other words,

5.a Proposition (Sheafification is free) The sheafification functor # is left adjoint to the forgetful functor from sheaves on C to presheaves on C.

Proof: Indeed, for any presheaf morphism $\varphi \colon \mathscr{F} \to \mathscr{G}$ with \mathscr{G} a sheaf, the unique sheaf morphism factors it is its sheafification $\varphi^{\#}$.

5.b Corollary The sheafification preserves colimits and hence is right exact; the forgetful functor preserves limits and hence is left exact. In particular, the presheaf kernel is already the sheaf kernel.

Proof: This follows from the property of adjoint functors. One can refer my note BMO or [Bor94] directly.

6 Proposition The sheafification is exact.

Proof: The right exactness comes from the freeness. As for the left exactness, just note that the colimit used to construct the functor + is filtered, thus commutes with finite limits.

More precisely, since Corollary 5.b, the limits in $\mathbf{Sh}(\mathcal{C})$ are computed in the category $\mathbf{PSh}(\mathcal{C})$. Then, for any finite diagram $\mathcal{I} \to \mathbf{PSh}(\mathcal{C})$: $i \mapsto \mathscr{F}_i$, by Lemma 3, we have

$$\varprojlim_{\mathcal{I}} \mathscr{F}_{i}^{\#} = \varprojlim_{\mathcal{I}} \mathscr{F}_{i}^{++} = (\varprojlim_{\mathcal{I}} \mathscr{F}_{i}^{+})^{+} = (\varprojlim_{\mathcal{I}} \mathscr{F}_{i})^{++} = (\varprojlim_{\mathcal{I}} \mathscr{F}_{i})^{\#}.$$

Now, we give a concrete description of the sheafification.

7 (Compatible sections) The sheafification can also be described by *compatible sections*. Let \mathscr{F} be a presheaf on a site \mathscr{C} and $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ a covering. A **system of compatible sections** respect to \mathfrak{U} is an element $(s_i) \in \prod \mathscr{F}(U_i)$ satisfying the following property:

For every $i, j \in I$, there exists a covering $\{U_{ijk} \to U_i \times_U U_j\}$ such that the pullbacks of s_i and s_j to each U_{ijk} agrees.

One can verify that given an element $s \in \mathscr{F}^\#(U)$ is equivalent to giving a system of compatible sections (s_i) for every coverings $\mathfrak U$ of U such that $s|_{U_i}$ is the image of s_i under the canonical map $\mathscr{F}(U_i) \to \mathscr{F}^\#(U_i)$.

§ I.7 The category of sheaves

In this section, we study the category $\mathbf{Sh}(\mathcal{C})$ of sheaves on a site \mathcal{C} . Such kind of category are called *topoi*. First, we consider monomorphisms, epimorphisms and isomorphisms in $\mathbf{Sh}(\mathcal{C})$. Then, we give some words on *images* and *local images*. The we discuss the relation between *quasi-compact object* in a site and *compact object* in its topos. Finally, we talk about canonical topology and presentable sheaves.

Morphisms of sheaves

Before going forward, we briefly recall the morphisms in $\mathbf{PSh}(\mathcal{C})$.

- 1. The monomorphisms (resp. epimorphisms, isomorphisms) in $\mathbf{PSh}(\mathcal{C})$ are precisely the *injective* (resp. *surjective*, *bijective*) morphisms, meaning injective (resp. surjective, bijective) on each object $U \in \text{ob } \mathcal{C}$.
- 2. As a corollary, the category $\mathbf{PSh}(\mathcal{C})$ is balanced, meaning isomorphism = monomorphism + epimorphism.
- 3. Moreover, since the limits and colimits in $\mathbf{PSh}(\mathcal{C})$ are computed pointwise, $\mathbf{PSh}(\mathcal{C})$ inherits many wonderful properties of \mathbf{Set} , such as
- 3.1. The monomorphisms are regular, meaning they are equalizers of some parallel morphisms. Indeed, in **Set**, a map $f: X \to Y$ is monic if and only if it is the equalizer of the characteristic function

$$\chi_f(y) = \begin{cases} 1 & \text{if } y \in \text{im}(f) \\ 0 & \text{others} \end{cases}$$

and the constant function 1(y) = 1. In $\mathbf{PSh}(\mathcal{C})$, the story is the same: just replace sets by presheaves and $\{0,1\}$ by the constant presheaf $\Delta_{\{0,1\}}$ and notice that the equalizer is computed pointwise.

Note that a regular monomorphism is an isomorphism if and only if it is also epic. Therefore this leads to another proof of iso = monic + epic.

3.2. The epimorphisms are effective, meaning they are coequalizers of their kernel pair. Indeed, in **Set**, a map $f: X \to Y$ is epic if and only if it is the coequalizer of its kernel pair, i.e. the two projections $\operatorname{pr}_1 \operatorname{pr}_2$ in the following Cartesian diagram.

$$\ker(f) \xrightarrow{\operatorname{pr}_1} X \\
\downarrow f \\
X \xrightarrow{f} Y$$

In $\mathbf{PSh}(\mathcal{C})$, the story is the same: just replace sets by presheaves and notice that the coequalizer and kernel pair are computed pointwise.

Note that an effective epimorphism is an isomorphism if and only if it is also monic. Therefore this leads to another proof of iso = monic + epic.

- **1 Proposition (Monomorphisms)** Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on a site \mathcal{C} . Then, the following are equivalent.
 - 1. φ is a monomorphism.
 - 2. φ is an injective presheaf morphism, i.e. for any object $U \in \text{ob } \mathcal{C}$ the map $\varphi(U) \colon \mathscr{F}(U) \to \mathscr{G}(U)$ is injective.
 - 3. φ is a regular monomorphism.

Proof: $2\Rightarrow 1$ and $3\Rightarrow 1$ are obvious. $1\Rightarrow 2$ comes form the left exactness of the forgetful functor $\mathbf{Sh}(\mathcal{C}) \to \mathbf{PSh}(\mathcal{C})$ and the exactness of the section functors $\Gamma(U, -)$.

As for $2\Rightarrow 3$, consider the presheaf morphisms χ_{φ} , 1: $\mathscr{G} \rightrightarrows \Delta_{\{0,1\}}$. Then φ , viewed as a presheaf morphism, is the equalizer of them. Apply sheafification to them, by Proposition 6.6, we see that the sheafification of φ , i.e. itself, is the equalizer of the sheafification of χ_{φ} and 1.

- **2 Proposition (Isomorphisms)** Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on a site \mathcal{C} . Then, the following are equivalent.
 - 1. φ is an isomorphism.
 - 2. φ is an bijective presheaf morphism, i.e. for any object $U \in \text{ob } \mathcal{C}$ the map $\varphi(U) : \mathscr{F}(U) \to \mathscr{G}(U)$ is bijective.
 - 3. φ is both monic and epic.

Proof: $1\Rightarrow 3$ is trivial. Recall that $\mathbf{Sh}(\mathcal{C})$ is a full subcategory of $\mathbf{PSh}(\mathcal{C})$. Thus a sheaf morphism is an isomorphism if and only if it is an isomorphism in $\mathbf{PSh}(\mathcal{C})$. Therefore $1\Leftrightarrow 2$.

As for $3\Rightarrow 1$, just notice that $iso = regular \ monic + epic$ is always true and then use Proposition 1.

- **3 Proposition (Epimorphisms)** Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on a site \mathcal{C} . Then, the following are equivalent.
 - 1. φ is an epimorphism.
 - 2. φ is a locally surjective presheaf morphism, which means that for any object $U \in \text{ob } \mathcal{C}$ and any section $s \in \mathcal{G}(U)$, there exists a covering $\{U_i \to U\}$ such that $s|_{U_i}$ lies in the image of $\varphi(U_i) : \mathscr{F}(U_i) \to \mathscr{G}(U_i)$.
 - 3. φ is an effective epimorphism.

Proof: $3 \Rightarrow 1$ is trivial.

 $2\Rightarrow 1$: Let $\psi_1, \psi_2 \colon \mathscr{G} \rightrightarrows \mathscr{T}$ be two parallel morphisms of sheaves such that $\psi_1 \circ \varphi = \psi_2 \circ \varphi$. We need to show $\psi_1 = \psi_2$. For any object $U \in \text{ob } \mathcal{C}$

and any section $s \in \mathcal{G}(U)$, there exists a covering $\{U_i \to U\}$ such that for each i, there exists a section $t_i \in \mathcal{F}(U_i)$ such that $\varphi(U_i)(t_i) = s|_{U_i}$. Then

$$\begin{aligned} \psi_1(U)(s)|_{U_i} &= \psi_1(U_i)(s|_{U_i}) = \psi_1\varphi(U_i)(t_i) \\ &= \psi_2\varphi(U_i)(t_i) = \psi_2(U_i)(s|_{U_i}) = \psi_2(U)(s)|_{U_i} \end{aligned}$$

Since $\{U_i \to U\}$ is a covering, this shows $\psi_1(U)(s) = \psi_2(U)(s)$. Thus $\psi_1 = \psi_2$.

1⇒2: Define a subpresheaf \mathcal{G}' of \mathcal{G} as follows:

 $s \in \mathscr{G}'(U)$ if and only if there exists a covering $\{U_i \to U\}$ such that $s|_{U_i}$ lies in the image of $\varphi(U_i) \colon \mathscr{F}(U_i) \to \mathscr{G}(U_i)$.

It remains to show $\mathcal{G}' = \mathcal{G}$.

First of all, this \mathscr{G}' is actually a sheaf. Indeed, we only need to verify the gluing condition. Let $(s_i) \in \prod \mathscr{G}'(U_i)$ be a system of compatible sections respect to a covering $\{U_i \to U\}$. Then, it corresponds to a section $s \in \mathscr{G}(U)$. It remains to show $s \in \mathscr{G}'(U)$. Indeed, for each s_i , there exists a covering $\{U_{ij} \to U_i\}$ such that $s_i|_{U_{ij}}$ lies in the image of $\varphi(U_{ij}) \colon \mathscr{F}(U_{ij}) \to \mathscr{G}(U_{ij})$. Now, combine all those coverings, we obtain a covering $\{U_{ij} \to U\}$ such that $s|_{U_{ij}} = s_i|_{U_{ij}}$ lies in the image of $\varphi(U_{ij}) \colon \mathscr{F}(U_{ij}) \to \mathscr{G}(U_{ij})$. Therefore $s \in \mathscr{G}'(U)$.

Remark This sheaf \mathscr{G}' is called the **sheaf image** of φ .

Now, we have sheaf morphisms

$$\mathscr{F}\longrightarrow\mathscr{G}'\stackrel{i}{\longrightarrow}\mathscr{G}.$$

Since the compose φ is epic, so is $i: \mathscr{G}' \to \mathscr{G}$. But this i is the inclusion morphism from the subsheaf \mathscr{G}' to \mathscr{G} , thus is monic. Now, i is both monic and epic in $\mathbf{Sh}(\mathcal{C})$, thus is an isomorphism by Proposition 2. This shows $\mathscr{G}' = \mathscr{G}$.

 $1\Rightarrow 3$: Let $\mathscr T$ be a sheaf and $\psi\colon \mathscr F\to \mathscr T$ a morphism coequalize the kernel pair of φ :

$$\mathscr{F} \times_{\mathscr{G}} \mathscr{F} \rightrightarrows \mathscr{F}.$$

Let $\mathscr{G}' \subset \mathscr{G}$ be the presheaf image of φ . Since the sheafification is exact, it maps \mathscr{G}' to the sheaf image of φ , here which is \mathscr{G} itself. Therefore, the above kernel pair can be obtained by applying sheafification to the kernel pair of $\varphi' \colon \mathscr{F} \to \mathscr{G}'$ in $\mathbf{PSh}(\mathcal{C})$. But since sheafification is exact, the two kernel pairs are the same.

Now, ψ coequalize the kernel pair of $\varphi' \colon \mathscr{F} \to \mathscr{G}'$ in $\mathbf{PSh}(\mathcal{C})$. Since φ' is epic, hence effective epic in $\mathbf{PSh}(\mathcal{C})$, there exists a unique presheaf morphism $\tau' \colon \mathscr{G} \to \mathscr{T}$ such that $\tau' \circ \varphi' = \psi$. Apply sheafification to them, we obtain a unique sheaf morphism $\tau \colon \mathscr{G} \to \mathscr{T}$ such that $\tau \circ \varphi = \psi$.

Recall that the presheaf image $\operatorname{im}^p \varphi$ of a presheaf morphism $\varphi \colon \mathscr{F} \to \mathscr{G}$ is the unique subpresheaf of the codomain \mathscr{G} such that the morphism factors through it and that $\mathscr{F} \to \operatorname{im}^p \varphi$ is an epimorphism. Then one can verify that this epimorphism is nothing but the *coequalizer of the kernel pair* of φ , i.e. the **category-theoretic image** in $\operatorname{\mathbf{PSh}}(\mathscr{C})$.

Then, from the above proof, we see

4 Lemma The sheaf image is the sheafification of the presheaf image and is the category-theoretic image in Sh(C).

The locally surjectivity can also be defined for presheaf morphisms. Obviously, surjective morphisms are locally surjective and the converse is false. Likely, the sheaf image can be defined for presheaves. But now, it may not be a sheaf and thus should have another name, the **local image**.

5 Proposition A presheaf morphism is locally surjective if and only if its sheafification is an epimorphism.

Proof: First, assume $\varphi \colon \mathscr{F} \to \mathscr{G}$ is locally surjective. For any $\bar{s} \in \mathscr{G}^{\#}(U)$, let $(s_i) \in \prod \mathscr{G}(U_i)$ be a family of compatible sections respect to the a covering $\{U_i \to U\}$. For each s_i , there exists a covering $\{U_{ij} \to U_i\}$ such that $s_i|_{U_{ij}}$ has a preimage $t_{ij} \in \mathscr{F}(U_{ij})$. Let t_{ij}^- be the image of t_{ij} in $\mathscr{F}^{\#}(U_{ij})$, then $\varphi^{\#}(U_{ij})(t_{ij}^-) = \bar{s}|_{U_{ij}}$. This shows $\varphi^{\#}$ is locally surjective, hence epic. Next, assume the sheafification of $\varphi \colon \mathscr{F} \to \mathscr{G}$ is an epimorphism. For

Next, assume the sheafification of $\varphi \colon \mathscr{F} \to \mathscr{G}$ is an epimorphism. For any section $s \in \mathscr{G}(U)$ of \mathscr{G} , consider its image under the canonical map $\mathscr{G}(U) \to \mathscr{G}^{\#}(U)$, saying \bar{s} . Since $\varphi^{\#}$ is epic, by Proposition 3, there exists a covering $\mathfrak{U} = \{U_i \to U\}$ such that each $\bar{s}|_{U_i}$ lies in the image under $\varphi^{\#}(U_i)$. Let $\bar{t}_i \in \mathscr{F}^{\#}(U_i)$ be the preimage of $\bar{s}|_{U_i}$. Now, by 6.7, each \bar{t}_i is equivalent to a system of compatible sections $(t_{ij}) \in \mathscr{F}(U_{ij})$ for each covering $\{U_{ij} \to U_i\}$. Now, consider the covering $\{U_{ij} \to U\}$, one can verify that $\varphi(U_{ij})(t_{ij}) = s|_{U_{ij}}$. This shows φ is locally surjective.

6 Proposition The sheafification preserves local images.

Proof: Indeed, let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of presheaves and $\operatorname{im}^p \varphi$ the local image of it. Apply sheafification to them, we have the following commutative diagram.

$$\mathcal{F} \longrightarrow \operatorname{im}^{p} \varphi \longrightarrow \mathcal{G} \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\mathcal{F}^{\#} \longrightarrow (\operatorname{im}^{p} \varphi)^{\#} \longrightarrow \mathcal{G}^{\#}$$

By the exactness of #, $(\operatorname{im}^p \varphi)^{\#}$ is a subsheaf of $\mathscr{G}^{\#}$. By Proposition 5, $\mathscr{F}^{\#} \to (\operatorname{im}^p \varphi)^{\#}$ is epic. Since the sheaf image $\operatorname{im} \varphi^{\#}$ of $\varphi^{\#}$ is the unique subsheaf of the codomain $\mathscr{G}^{\#}$ such that $\varphi^{\#}$ factors through it and $\mathscr{F}^{\#} \to \operatorname{im} \varphi^{\#}$ is epic, we have $(\operatorname{im}^p \varphi)^{\#} = \operatorname{im} \varphi^{\#}$.

Compactness

7 (Quasi-compactness) Let \mathcal{C} be a site. An object U of \mathcal{C} is said to be quasi-compact if every covering of U can be refined by a finite covering.

Recall that, in a category C, an object U is said to be **compact** if the functor $\operatorname{Hom}_{\mathcal{C}}(U,-)$ preserves filtered limits. What does the following lemma say?

8 Lemma (Compactness) Let C be a site. Let $\mathcal{J} \to \mathbf{Sh}(C)$ be a filtered diagram of sheaves of sets. Let $U \in \text{ob } C$. Consider the canonical map

$$\Phi \colon \varinjlim_{\mathcal{T}} \mathscr{F}_j(U) \longrightarrow (\varinjlim_{\mathcal{T}} \mathscr{F}_j)(U).$$

- 1. If all the transition morphisms are injective then Φ is injective.
- 2. If U is quasi-compact, then Φ is injective.
- 3. If U is quasi-compact and all the transition morphisms are injective then Φ is an isomorphism.
- 4. If any covering of U can be refined by some coverings $\{U_i \to U\}_{i \in I}$ with I finite and $U_i \times_U U_{i'}$ quasi-compact, then Φ is bijective.

Proof: 1. Assume all the transition morphisms are injective. First of all, we show the presheaf $\mathscr{F}_{\mathcal{J}} \colon U \mapsto \varinjlim_{\mathcal{J}} \mathscr{F}_j(U)$ is *separated*. Indeed the canonical maps

$$\mathscr{F}_j(U) \longrightarrow \prod \mathscr{F}_j(U_i)$$

are injective, thus so is the colimit

$$\varinjlim_{\mathcal{T}} \mathscr{F}_j(U) \longrightarrow \varinjlim_{\mathcal{T}} \prod \mathscr{F}_j(U_i).$$

It remains to show the canonical map

$$\varinjlim_{\mathcal{I}} \prod \mathscr{F}_j(U_i) \longrightarrow \prod \varinjlim_{\mathcal{I}} \mathscr{F}_j(U_i)$$

is injective.

Let \bar{s} and \bar{t} be two elements of $\varinjlim_{\mathcal{J}} \prod \mathscr{F}_j(U_i)$ having the same image in $\prod \varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i)$ and $s = (s_i), t = (t_i)$ be their representatives in some $\prod \mathscr{F}_j(U_i)$. Now, the image of \bar{s} and \bar{t} in $\prod \varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i)$ can be written as (\bar{s}_i) and (\bar{t}_i) , where each \bar{s}_i or \bar{t}_i is the image of s_i or t_i in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i)$. Since $\bar{s}_i = \bar{t}_i$, there exists some $j_i \in \text{ob } \mathcal{J}$ such that the image of s_i and t_i in $\mathscr{F}_{j_i}(U_i)$ are the same. Then, since the transition morphism $\mathscr{F}_j \to \mathscr{F}_{j_i}$ is injective, we have $s_i = t_i$. Then, we get s = t and a fortior $\bar{s} = \bar{t}$.

By Proposition 6.6, $\varinjlim_{\mathcal{J}} \mathscr{F}_j$ is the sheafification of the presheaf $\mathscr{F}_{\mathcal{J}}$. Then, by Theorem 6.4, Φ is injective.

- 2. Assume U is quasi-compact. Let \bar{s} and \bar{t} be two elements of $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U)$ having the same image under Φ and s,t be their representatives in some $\mathscr{F}_j(U)$. Now, for any covering $\mathfrak{U} = \{U_i \to U\}_{i \in I}$, the image of \bar{s} and \bar{t} under Φ can be written as systems of compatible sections (\bar{s}_i) and (\bar{t}_i) of the presheaf $\mathscr{F}_{\mathcal{J}}$. Then, there exists $j_i \in \text{ob } \mathcal{J}$ such that the image of $s|_{U_i}$ and $t|_{U_i}$ in $\mathscr{F}_{j_i}(U_i)$ are the same. Since U is quasi-compact, the covering \mathfrak{U} can be refined by a finite covering $\mathfrak{V} = \{V_i \to U\}_{i \in I'}$ with the index transformation $\alpha \colon I' \to I$. For this covering, we can take j_0 to be the index such that there are arrows $j_{\alpha(i)} \to j_0$. Now, the image of $s|_{V_i}$ and $t|_{V_i}$ in $\mathscr{F}_{j_0}(V_i)$ are the same. Then s and t maps to the same element in $\mathscr{F}_{j_0}(U)$, a fortior in $\varinjlim_{\mathcal{T}} \mathscr{F}_{j_0}(U)$.
- 3. Assume U is quasi-compact and all the transition morphisms are injective. Then Φ is injective. It suffices to show it is surjective. Let \bar{s} be a section in $(\varinjlim_{\mathcal{J}} \mathscr{F}_j)(U)$. For any covering $\mathfrak{U} = \{U_i \to U\}_{i \in I}$, \bar{s} can be written as a system of compatible sections (\bar{s}_i) of the presheaf $\mathscr{F}_{\mathcal{J}}$. Let s^i be the representative of \bar{s}_i in some \mathscr{F}_{j_i} . Then the images of $s^i|_{U_i \times_U U_{i'}}$ and $s^{i'}|_{U_i \times_U U_{i'}}$ in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i \times_U U_{i'})$ have the same image under the composition

$$\varinjlim_{\mathcal{J}} \mathscr{F}_{j}(U_{i} \times_{U} U_{i'}) \stackrel{\Phi}{\longrightarrow} (\varinjlim_{\mathcal{J}} \mathscr{F}_{j})(U_{i} \times_{U} U_{i'}) \longrightarrow (\varinjlim_{\mathcal{J}} \mathscr{F}_{j})(V_{ii'})$$

for each $V_{ii'k} \to U_i \times_U U_{i'}$ in some covering $\mathfrak{V}_{ii'}$. Thus, by 1., the images of $s^i|_{V_{ii'}}$ and $s^{i'}|_{V_{ii'}}$ in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(V_{ii'})$ are the same.

Since U is quasi-compact, the covering $\mathfrak U$ can be refined by a finite covering. Thus we may assume $\mathfrak U$ is finite. Now, we can take j_0 to be the index such that there are arrows $j_i \to j_0$. Then the sections $s^i \in \mathscr F_{j_i}(U_i)$ give rise to sections $s_i \in \mathscr F_{j_0}(U_i)$. For any $V_{ii'}$, $s_i|_{V_{ii'}}$ and $s_{i'}|_{V_{ii'}}$ have the same image in $\varinjlim_{\mathcal F} \mathscr F_{j_0}(V_{ii'})$, by the similar argument in 1., they are the same. Therefore (s_i) is a system of compatible sections of $\mathscr F_{j_0}$, and thus gives a section $s \in \mathscr F_{j_0}(U)$ such that $s|_{U_i} = s_i$. Then, this s gives an element of $\varinjlim_{\mathcal F} \mathscr F_{j_0}(U)$ which maps to $\bar s$ under Φ .

4. Assume the hypothesis of \mathcal{L} . It is obvious that U is quasi-compact and thus Φ is injective. It suffices to show Φ is surjective. Let \bar{s} be an element in $(\varinjlim_{\mathcal{J}} \mathscr{F}_j)(U)$. For any covering $\mathfrak{U} = \{U_i \to U\}_{i \in I}$, \bar{s} can be written as a system of compatible sections (\bar{s}_i) of the presheaf $\mathscr{F}_{\mathcal{J}}$. We may assume that the covering \mathfrak{U} is finite and that $U_i \times_U U_{i'}$ are quasi-compact. Let s^i be the representative of \bar{s}_i in some \mathscr{F}_{j_i} . Then the images of $s^i|_{U_i \times_U U_{i'}}$ and

 $s^{i'}\Big|_{U_i\times_U U_{i'}}$ in $\varinjlim_{\mathcal{J}}\mathscr{F}_j(U_i\times_U U_{i'})$ have the same image under the composition

$$\varinjlim_{\mathcal{J}} \mathscr{F}_{j}(U_{i} \times_{U} U_{i'}) \stackrel{\Phi}{\longrightarrow} (\varinjlim_{\mathcal{J}} \mathscr{F}_{j})(U_{i} \times_{U} U_{i'}) \longrightarrow (\varinjlim_{\mathcal{J}} \mathscr{F}_{j})(V_{ii'})$$

for each $V_{ii'k} \to U_i \times_U U_{i'}$ in some covering $\mathfrak{V}_{ii'}$. Since $\varinjlim_{\mathcal{J}} \mathscr{F}_j$ is a sheaf, this shows the images of $s^i|_{U_i \times_U U_{i'}}$ and $s^{i'}|_{U_i \times_U U_{i'}}$ in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i \times_U U_{i'})$ have the same image under Φ . Since $U_i \times_U U_{i'}$ is quasi-compact, by 2., this shows $s^i|_{U_i \times_U U_{i'}}$ and $s^{i'}|_{U_i \times_U U_{i'}}$ have the same image in $\varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i \times_U U_{i'})$, and thus in $\mathscr{F}_{j_{ii'}}(U_i \times_U U_{i'})$ for some $j_{ii'}$.

Now, we can take j_0 to be the index such that there are arrows $j_{ii'} \to j_0$. Then the sections $s^i \in \mathscr{F}_{j_i}(U_i)$ give rise to sections $s_i \in \mathscr{F}_{j_0}(U_i)$ and furthermore, they form a system of compatible sections. Thus we get a section $s \in \mathscr{F}_{j_0}(U)$ such that $s|_{U_i} = s_i$. Then, this s gives an element of $\varinjlim_{\mathcal{T}} \mathscr{F}_{j}(U)$ which maps to \bar{s} under Φ .

We also give another proof.

Proof: 2. Assume U is quasi-compact. First of all, for a finite covering \mathfrak{U} of U, since filtered colimits commute with finite limits, the canonical map $\mathscr{F}_J(U) \to \check{H}^0(\mathfrak{U}, \mathscr{F}_J)$ is injective. As for an arbitrary covering \mathfrak{V} of U, let \mathfrak{U} be a finite covering refining \mathfrak{V} , then we have the following commutative diagram

$$\mathscr{F}_{J}(U) \longrightarrow \check{H}^{0}(\mathfrak{V}, \mathscr{F}_{J})$$

$$\parallel \qquad \qquad \downarrow$$

$$\mathscr{F}_{J}(U) \longrightarrow \check{H}^{0}(\mathfrak{U}, \mathscr{F}_{J})$$

where the bottom $\mathscr{F}_J(U) \to \check{H}^0(\mathfrak{U},\mathscr{F}_J)$ is injective, thus so is the upper $\mathscr{F}_J(U) \to \check{H}^0(\mathfrak{V},\mathscr{F}_J)$. Therefore the canonical map $\mathscr{F}_J(U) \to \mathscr{F}_J^+(U)$ is injective. By Theorem 6.4, \mathscr{F}_J^+ is separated, thus $\mathscr{F}_J^+(U) \to \mathscr{F}_J^{++}(U)$ is injective. Since Φ is the canonical map $\mathscr{F}_J(U) \to \mathscr{F}_J^{\#}(U)$, which equals the composition $\mathscr{F}_J(U) \to \mathscr{F}_J^+(U) \to \mathscr{F}_J^{++}(U)$, it is also injective.

3. Assume U is quasi-compact and all the transition morphisms are injective. First of all, by the proof of 1., \mathscr{F}_J is separated. Thus $\varinjlim_{\mathcal{J}} \mathscr{F}_j = \mathscr{F}_J^+$ and the canonical map Φ is just the map $\mathscr{F}_J(U) \to \mathscr{F}_J^+(U)$. Since U is quasi-compact, the finite coverings are cofinal in all coverings of U. Thus

$$(\varinjlim_{\mathcal{J}}\mathscr{F}_j)(U)=\mathscr{F}_J^+(U)=\varinjlim_{\mathfrak{U}\text{ is a finite covering of }U}\check{H}^0(\mathfrak{U},\mathscr{F}_J).$$

For any finite covering $\mathfrak{U} = \{U_i \to U\}$ of U, since filtered colimits commute

with finite limits, we have

$$\begin{split} \check{H}^0(\mathfrak{U},\mathscr{F}_J) &= \ker \left(\prod \varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i) \rightrightarrows \prod \varinjlim_{\mathcal{J}} \mathscr{F}_j(U_i \times_U U_{i'}) \right) \\ &= \varinjlim_{\mathcal{J}} \ker \left(\prod \mathscr{F}_j(U_i) \rightrightarrows \prod \mathscr{F}_j(U_i \times_U U_{i'}) \right) \\ &= \varinjlim_{\mathcal{J}} \mathscr{F}_j(U). \end{split}$$

Therefore

$$\mathscr{F}_J^+(U) = \varinjlim_{\mathfrak{U} \text{ is a finite covering of } U} \mathscr{F}_J(U)$$

and thus the map $\mathscr{F}_J(U) \to \mathscr{F}_J^+(U)$ is an isomorphism as desired.

4. Assume the hypothesis of 4. It is obvious that U is quasi-compact. By the proof of 3., we have $\mathscr{F}_J(U) \cong \mathscr{F}_J^+(U)$. Let $\mathfrak{U} = \{U_i \to U\}$ be a covering satisfying the assumption in 4., we claim that each U_i is quasi-compact. Indeed, consider any covering $\mathfrak{U}_i = \{U_{ij} \to U_i\}$ of U_i . Then $\mathfrak{U}_i \times_U U_{i'}$ is a covering of $U_i \times_U U_{i'}$ for all i'. Since $U_i \times_U U_{i'}$ is quasi-compact, $\mathfrak{U}_i \times_U U_{i'}$ has a finite refinement $\mathfrak{V}_{i'}$. Combining all those $\mathfrak{V}_{i'}$, we get a finite covering $\{V_{i'k} \to U_i \times_U U_{i'} \to U_i\}$ which refines \mathfrak{U}_i .

The coverings satisfying the assumption in 4. are cofinal in all coverings of U. Thus

$$(\varinjlim_{\mathcal{J}}\mathscr{F}_{j})(U)=\mathscr{F}_{J}^{++}(U)=\varinjlim_{\mathfrak{U} \text{ satisfies the assumption in 4.}}\check{H}^{0}(\mathfrak{U},\mathscr{F}_{J}^{+}).$$

But for such a covering $\mathfrak{U} = \{U_i \to U\}$, since all U_i and $U_i \times_U U_{i'}$ are quasi-compact, we have

$$\check{H}^{0}(\mathfrak{U}, \mathscr{F}_{J}^{+}) = \ker \left(\prod \mathscr{F}_{J}^{+}(U_{i}) \rightrightarrows \prod \mathscr{F}_{J}^{+}(U_{i} \times_{U} U_{i'}) \right)
\cong \ker \left(\prod \mathscr{F}_{J}(U_{i}) \rightrightarrows \prod \mathscr{F}_{J}(U_{i} \times_{U} U_{i'}) \right)
= \mathscr{F}_{J}(U).$$

Therefore

$$\mathscr{F}_J^{++}(U)\cong \varinjlim_{\mathfrak{U} \text{ satisfies the assumption in } 4.} \mathscr{F}_J(U)$$

and thus the map $\mathscr{F}_J(U) \to \mathscr{F}_J^{++}(U)$ is an isomorphism as desired. \square

Representable sheaves

9 (Canonical topology) A site is said to have subcanonical topology if all representable presheaves on this site are sheaves. A pretopology defines such a site is called a subcanonical pretopology. The largest subcanonical pretopology is called the canonical pretopology.

But what does a subcanonical topology look like?

10 (Effective epimorphisms) In a category C, a family of morphisms with fixed target $\mathfrak{U} = \{U_i \to U\}$ is effective-epic if all the morphisms $U_i \to U$ have pullbacks and for any $X \in \text{ob } C$, the presheaf h_X satisfies the descent condition respect to \mathfrak{U} (refer (I.2.1)). We say \mathfrak{U} is universal effective-epic if its pullback along any morphism $V \to U$ is effective-epic.

Remark In the case C has coproducts, saying \mathfrak{U} is effective-epic is equivalent to say the morphism $\coprod_i U_i \to U$ is an effective epimorphism.

Obviously, we have

- 11 Proposition (Subcanonical and universal effective-epic) A site C has subcanonical if and only if its coverings are all universal effective-epic. Moreover, if C has fibre products, then the canonical pretopology contains precisely all the universal effective-epic families.
- 12 Example (Canonical topology on Set) The canonical topology on Set is given by the coverage Cov as follows.

$$\{\varphi_i \colon U_i \to U\}_{i \in I} \in \text{Cov} \iff \bigcup_{i \in I} \varphi_i(U_i) = U.$$

To show this, it suffices to show that for any set S, $h_S(\bigcup_{i\in I}\varphi_i(U_i))$ is the equalizer of

$$\prod h_S(U_i) \xrightarrow{\operatorname{pr}_1} \prod h_S(U_i \times_U U_{i'}).$$

Indeed, for any $f \in \text{Hom}(\bigcup_{i \in I} \varphi_i(U_i), S)$, the compositions $f \circ \varphi_i$ give rise to an element in $\prod h_S(U_i)$, which has same image under pr_1 and pr_2 . Conversely, for any element $(g_i) \in \prod h_S(U_i)$ having same image under pr_1 and pr_2 , we have the following commutative diagram.

$$U_{i} \times_{U} U_{i'} \longrightarrow U_{i'}$$

$$\downarrow \qquad \qquad \downarrow g_{i'}$$

$$U_{i} \xrightarrow{g_{i}} S$$

For any element of $s \in \bigcup_{i \in I} \varphi_i(U_i)$, taking any preimage of it, say $u_i \in U_i$, we define $f(s) = g_i(u_i)$. The above commutative diagram guarantees the map $f: \bigcup_{i \in I} \varphi_i(U_i) \to S$ is well-defined.

13 Example (Canonical topology on a topological space) For X a topological space, the canonical topology on \mathcal{T}_X is the original one.

It suffices to show for any family of open sets $U_{ii\in I}$ and an open set V of X, $\operatorname{Hom}_{\mathcal{T}_X}(\bigcup_{i\in I} U_i, V)$ is the equalizer of

$$\prod_{i \in I} \operatorname{Hom}_{\mathcal{T}_X}(U_i, V) \xrightarrow{\operatorname{pr}_1} \prod_{i, i' \in I} \operatorname{Hom}_{\mathcal{T}_X}(U_i \cap U_{i'}, V).$$

But this is obvious since $\operatorname{Hom}_{\mathcal{T}_X}(U,V)$ is either a singleton, when $U\subset V$, or the empty.

14 (Representable sheaves) Let \mathcal{C} be a site having subcanonical topology. Then a representable sheaf is a sheaf of the form h_U for some $U \in \text{ob } \mathcal{C}$. In this case, h_U is also denoted by \widetilde{U} .

Note that for any sheaf \mathcal{F} , we have

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^{\#}, \mathscr{F}) \cong \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(h_U, \mathscr{F}) \cong \mathscr{F}(U).$$

In the case that \mathcal{C} has subcanonical topology, $h_U^\# = h_U$ and then the Yoneda embedding identifies \mathcal{C} with the full subcategory of $\mathbf{Sh}(\mathcal{C})$ consisting of representable sheaves.

15 Lemma Let C be a site. If $\{U_i \to U\}_{i \in I}$ is a covering, then the morphism of presheaves of setas

$$\coprod_{i\in I} h_{U_i} \longrightarrow h_U$$

becomes surjective after sheafification.

Proof: We need to show $\coprod_{i\in I} h_{U_i}^{\#} \to h_U^{\#}$ is epic, which is equivalent to that for any sheaf \mathscr{F} ,

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^\#,\mathscr{F}) \to \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\coprod_{i \in I} h_{U_i}^\#,\mathscr{F})$$

is injective. But $\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^\#,\mathscr{F}) = \mathscr{F}(U)$ and $\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\coprod_{i\in I} h_{U_i}^\#,\mathscr{F}) = \prod_{i\in I} \mathscr{F}(U_i)$. Thus this is just the descent condition of \mathscr{F} .

The following construct will be used later.

16 Lemma Let C be a site and E be a set of objects in C such that any object U in C has a covering by members of E. Then for any sheaf of sets \mathscr{F} , there exists a diagram of sheaves of sets

$$\mathscr{F}_1 \Longrightarrow \mathscr{F}_0 \longrightarrow \mathscr{F}$$

Where \mathscr{F}_0 and \mathscr{F}_1 are coproducts of sheaves of the form $h_U^\#$ with $U \in \mathcal{E}$ and \mathscr{F} is the coequalizer.

Proof: First, for any $U \in \mathcal{E}$, a section $s \in \mathcal{F}(U)$ corresponds to a morphism $h_U^{\#} \to \mathscr{F}$. Taking the coproduct of them, we get a morphism

$$\mathscr{F}_0 = \coprod_{U \in \mathcal{E}, s \in \mathscr{F}(U)} h_U^\# \longrightarrow \mathscr{F}.$$

This is an epimorphism since for any section $s \in \mathcal{F}(V)$, choosing a covering $\{U_i \to V\}$ with $U_i \in \mathcal{E}$, we see each $s|_{U_i}$ has preimage $\mathrm{id}_{U_i} \in h_{U_i}^{\#}(U_i)$. Let $\mathscr{G} = \mathscr{F}_0 \times_{\mathscr{F}} \mathscr{F}_0$, then \mathscr{F} is the coequalizer of the kernel pair $\mathscr{G} \rightrightarrows \mathscr{F}_0$

of the above epimorphism.

Now, construct an epimorphism $\mathscr{F}_1 = \mathscr{G}_0 \to \mathscr{G}$ as above. Then, since compositing with an epimorphism does not change the coequalizer, this \mathscr{F}_1 is the required one.

§ I.8 Topoi and geometric morphisms

In this section, we discuss geometric morphisms. They are morphisms between topoi. Later, we focus on special types of functors between sites, which induce geometric morphisms. Such kinds of functor should be viewed as morphisms of sites. However, there are many distinct kinds of functors all induce the geometric morphisms. That's fine, since what crucial is the topoi not the sites.

Topoi and geometric morphisms

1 (Topoi) A (Grothendieck) topos is a category $\mathbf{Sh}(\mathcal{C})$ of sheaves on a site \mathcal{C} . A **geometric moprhism** $f \colon \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ between topoi is an adjunction:

$$f^{-1} \dashv f_* \colon \mathbf{Sh}(\mathcal{D}) \leftrightarrows \mathbf{Sh}(\mathcal{C}),$$

in which the left adjoint f^{-1} is left exact. The left adjoint f^{-1} is called the **inverse image** and the right adjoint is called the **direct image**.

The composition of geometric morphisms are just the composition of adjunctions. More precisely, if $f: \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ and $g: \mathbf{Sh}(\mathcal{D}) \to \mathbf{Sh}(\mathcal{E})$ are two geometric morphisms, then their composition $g \circ f: \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{E})$ is given by $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ and $(g \circ f)_* = g_* \circ f_*$.

1.a (2-morphisms of topoi) Let $f, g: \mathbf{Sh}(\mathcal{C}) \rightrightarrows \mathbf{Sh}(\mathcal{D})$ be two geometric morphisms, a 2-morphism from f to g is given by a natural transformation $\alpha: f_* \Rightarrow g_*$. Usually we denote it as

$$\mathbf{Sh}(\mathcal{C}) \xrightarrow{f \atop g} \mathbf{Sh}(\mathcal{D}).$$

Note that since f^{-1} is left adjoint to f_* and g^{-1} is left adjoint to g_* , α also induces a natural transformation from g^{-1} to f^{-1} uniquely characterized by the commutative diagram.

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(f^{-1}\mathscr{F},\mathscr{G}) = = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(\mathscr{F}, f_{*}\mathscr{G})$$

$$\downarrow^{-\circ \alpha} \qquad \qquad \downarrow^{-\circ \alpha}$$

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(g^{-1}\mathscr{F},\mathscr{G}) = = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(\mathscr{F}, g_{*}\mathscr{G})$$

The vertical and horizontal compositions of of 2-morphisms are just the vertical and horizontal compositions of natural transformations. In this way, the topoi together with geometric morphisms between them and 2-morphisms between geometric morphisms from a strict 2-category. Note that this is a big category since the geometric morphisms between two topoi may not form a set.

- **1.b Remark** Obviously the notion of geometric morphisms does not only work for topoi. For instance, let $F: \mathcal{C} \to \mathcal{D}$ be an equivalence of categories with weak inverse G, then $G \dashv F$ is a geometric morphism. Moreover, if both \mathcal{C} and \mathcal{D} are topoi, then this geometric morphism is an equivalence in the 2-category of topoi. Therefore, it makes sense to extend our definition by saying a category is a topos when it is equivalent to a category of sheaves on a site.
 - **2 Example (Empty topos)** Let * denote the category consisting of only one object * with only one morphism id_* . It has two possible site structure on it. One is to treat it as the category of open sets of \varnothing , so this site is denoted as \varnothing . Then, since any sheaf on it must sent the initial object * to a singleton, $\mathbf{Sh}(\varnothing)$ consists only one sheaf with only one morphism. In this way, $\mathbf{Sh}(\varnothing)$ is equivalent to * itself.

The following example is very important in topos theory.

3 Example (Punctual topos) Another coverage on * consists only one covering, namely the identity covering $\{id_*\}$. Denote this site by pt. Then, it is clearly that $\mathbf{Sh}(\mathrm{pt}) = \mathbf{PSh}(\mathrm{pt}) = \mathbf{Set}$.

But * is not the only site giving the punctual topos. For instance, let \mathcal{S} be a small full subcategory of **Set** which contains at least one nonempty set and has fibre products. Define coverings on \mathcal{S} as surjective families of maps and shrink this coverage so that it defines a site. Now, we claim that $\mathbf{Sh}(\mathcal{S})$ is equivalent to \mathbf{Set} .

First, if S contains a singleton, then the equivalence $i : \mathbf{Sh}(pt) \to \mathbf{Sh}(S)$ is given by

$$i_*S = \operatorname{Hom}_{\mathbf{Set}}(-, S)$$
 and $i^{-1}\mathscr{F} = \mathscr{F}(*)$.

Indeed, if \mathscr{F} is a sheaf on \mathscr{S} , then for any $U \in \text{ob } \mathscr{S}$, there is a covering $\{\varphi_u \colon * \to U\}_{u \in U}$. The descent condition for this covering implies that

$$\mathscr{F}(U)\cong\prod_{u\in U}\mathscr{F}(*)\cong\mathrm{Hom}_{\mathbf{Set}}(U,\mathscr{F}(*)).$$

Moreover, this equality is compatible with restriction maps. Therefore the geometric morphism i is an equivalence of topoi.

Next, for general S, we still have i_* . Let $\widetilde{*}$ be a nonempty set in S and $\varphi \colon \widetilde{*} \to \widetilde{*}$ is a map whose image is a singleton. Let

$$i^{-1}\mathscr{F} = \operatorname{im}\mathscr{F}(\varphi).$$

Then this i^{-1} is also a weak inverse of i_* .

4 Example (Geometric morphisms between presheaf topoi) Any functor $u: \mathcal{C} \to \mathcal{D}$ induces a geometric morphism

$$u^p \dashv_p u \colon \mathbf{PSh}(\mathcal{D}) \leftrightarrows \mathbf{PSh}(\mathcal{C}),$$

where $u^p \mathscr{F} = \mathscr{F} \circ u$ for any $\mathscr{F} \in \text{ob} \mathbf{PSh}(\mathcal{D})$ and pu is the right Kan extension operator along u. Moreover, if u itself is left exact, then there is a second geometric morphism

$$u_p \dashv u^p \colon \mathbf{PSh}(\mathcal{C}) \leftrightarrows \mathbf{PSh}(\mathcal{D}),$$

where u_p is the left Kan extension operator along u.

Proof: This first statement follows from Theorem 1.9 and Theorem 1.10. To show the second one, it suffices to show u_p is left exact when u is left exact. This follows from Lemma 1.8 and the fact that filtered colimit commutes with finite limits.

- **5 (Geometric embeddings)** A geometric morphism $f = (f^{-1} \dashv f_*)$ is called a **geometric embedding** if f_* is fully faithful.
- **5.a Example** Let \mathcal{C} be a site. The sheafification # and the forgetful functor F from $\mathbf{Sh}(\mathcal{C})$ to $\mathbf{PSh}(\mathcal{C})$ forms a geometric embedding $\# \dashv F$.

Morphisms of sites

One approach to geometric morphisms is induced by the morphisms of sites. But there are many candidates. For the classical one, we introduce the notions of *continuous functors*.

- **6** (Continuous functors) Let \mathcal{C}, \mathcal{D} be two sites. A functor $u: \mathcal{C} \to \mathcal{D}$ is called **continuous** if for every $\mathfrak{U} = \{U_i \to U\}_{i \in I} \in \text{Cov}(\mathcal{C})$ we have
 - 1. $u(\mathfrak{U}) := \{u(U_i) \to u(U)\}_{i \in I} \in Cov(\mathcal{D}),$
 - 2. For any morphism $T \to U$ in C, $u(T \times_U U_i) \to u(T) \times_{u(U)} u(U_i)$ is an isomorphism.

Remark Do NOT confuse this "continuous functor" with the one used in category theory, which means a functor commuting with all limits.

6.a Lemma Let C, D be two sites and $u: C \to D$ be a continuous functor. If \mathscr{F} is a sheaf on D, then $u^p\mathscr{F}$ is a sheaf on C.

Proof: The descent condition for $u^p \mathscr{F}$ respect to a covering \mathfrak{U} is the same as the descent condition for \mathscr{F} respect to the covering $u(\mathfrak{U})$.

Therefore, if $u \colon \mathcal{C} \to \mathcal{D}$ is continuous, then the restriction of u^p on $\mathbf{Sh}(\mathcal{D})$ gives a functor

$$u^s \colon \mathbf{Sh}(\mathcal{D}) \longrightarrow \mathbf{Sh}(\mathcal{C}).$$

- **6.b Lemma (The left adjoint of** u^s **)** Let C, D be two sites and $u: C \to D$ be a continuous functor. Then
 - 1. $u_s := \# \circ u_p \circ F$ is a left adjoint to u^s ;
 - 2. For any presheaf \mathscr{G} on \mathscr{C} , we have $(u_p\mathscr{G})^\# = (u_p(\mathscr{G}^\#))^\#$;
 - 3. For any object U of C, we have $u_s h_U^\# = h_{u(U)}^\#$.

Proof: 1. By Theorem 1.9 and Proposition 6.5.a.

2. For any sheaf \mathscr{F} on \mathcal{D} we have

$$\operatorname{Hom}_{Sh(\mathcal{D})}((u_p\mathcal{G})^{\#}, \mathcal{F}) \cong \operatorname{Hom}_{\mathbf{PSh}(\mathcal{D})}(u_p\mathcal{G}, \mathcal{F})$$

$$\cong \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(\mathcal{G}, u^p\mathcal{F})$$

$$\cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathcal{G}^{\#}, u^s\mathcal{F})$$

$$\cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(u_s(\mathcal{G}^{\#}), \mathcal{F}).$$

- 3. By Corollary 1.9.a and 2.
- 7 (Morphisms of sites) Let \mathcal{C}, \mathcal{D} be two sites. A morphism of sites $f: \mathcal{D} \to \mathcal{C}$ is given by a continuous functor $u: \mathcal{C} \to \mathcal{D}$ (NOT $\mathcal{D} \to \mathcal{C}$!) such that the functor u_s is exact. A morphism of sites $f: \mathcal{D} \to \mathcal{C}$ gives a geometric morphism $f = (f^{-1}, f_*)$ as

$$f^{-1} := u_s \colon \mathbf{Sh}(\mathcal{C}) \longrightarrow \mathbf{Sh}(\mathcal{D}), \qquad f_* := u^s \colon \mathbf{Sh}(\mathcal{D}) \longrightarrow \mathbf{Sh}(\mathcal{C}).$$

7.a Example (Continuous maps) Let $f: X \to Y$ be a continuous map between topological spaces. Recall that in Example 2.1.a, we defines the sites \mathcal{T}_X and \mathcal{T}_Y . Then one can see the functor

$$u: \mathcal{T}_Y \longrightarrow \mathcal{T}_X$$

 $V \longmapsto f^{-1}(V)$

is a continuous functor. Moreover, u^s equals the direct image functor f_* defined in 5.1 and thus its left adjoint u_s is isomorphic to the inverse image functor f^{-1} defined in 5.4. Since the inverse image functor is exact, so is u_s . Thus u induces a morphism of sites $f: \mathcal{T}_X \to \mathcal{T}_Y$.

7.b Lemma (Composition of continuous functors) Let C, D, \mathcal{E} be sites and $u: D \to C$ and $v: \mathcal{E} \to D$ be continuous functors which induce morphisms of sites. Then the functor $u \circ v: \mathcal{E} \to C$ is continuous and defines a morphism of sites $C \to \mathcal{E}$.

- **7.c** (Composition of morphisms of sites) Let $\mathcal{C}, \mathcal{D}, \mathcal{E}$ be three sites and $f: \mathcal{C} \to \mathcal{D}$ and $g: \mathcal{D} \to \mathcal{E}$ be morphisms of sites given by continuous functors $u: \mathcal{D} \to \mathcal{C}$ and $v: \mathcal{E} \to \mathcal{D}$. The *composition* $g \circ f$ is the morphism of sites induced by the continuous functor $u \circ v$.
 - **8** (Conditions defining morphisms of sites) The following lemmas give some conditions for a continuous functor to define a morphism of sites.
- **8.a Lemma** Let C and D be sites and $u: C \to D$ be continuous functor. Assume all the categories $\mathcal{I}_V^{\text{opp}}$ are filtered. Then u defines a morphism of sites $D \to C$, in other words u_s is exact.

Proof: It suffices to show u_s is left exact, which follows from the fact that filtered colimit commutes with finite limits plus Proposition 6.5.a.

8.b Lemma Let C and D be sites and $u: C \to D$ be continuous functor. Assume C is finite-complete and u is left exact. Then u defines a morphism of sites $D \to C$, in other words u_s is exact.

Proof: It suffices to show u_s is left exact, which follows from Lemma 1.8 and Lemma 8.a.

8.c Lemma A continuous functor between sites which has a continuous left adjoint defines a morphism of sites.

Proof: Let $u: \mathcal{D} \to \mathcal{C}$ be a continuous functor and $v: \mathcal{C} \to \mathcal{D}$ its continuous left adjoint. By Lemma 1.11, $u_p = v^p$, and hence $u_s = v^s$ has both left and right adjoint, whence is exact.

Cocontinuous functors

Another way to get geometric morphisms is via cocontinuous functors.

9 (Cocontinuous functors) Let \mathcal{C}, \mathcal{D} be two sites. A functor $u: \mathcal{C} \to \mathcal{D}$ is called **cocontinuous** if for every $U \in \text{ob } \mathcal{C}$ and every covering $\mathfrak{V} = \{V_j \to u(U)\}_{j \in J} \in \text{Cov}(\mathcal{D})$, there exists a covering $\mathfrak{U} = \{U_i \to U\}_{i \in I} \in \text{Cov}(\mathcal{C})$ such that $u(\mathfrak{U})$ refines the covering \mathfrak{V} .

Remark Note that this $u(\mathfrak{U})$ is in general NOT a covering.

Remark Do *NOT* confuse this "cocontinuous functor" with the one used in category theory, which means a functor commuting with all colimits.

9.a Lemma Let C, \mathcal{D} be two sites and $u: C \to \mathcal{D}$ be a cocontinuous functor. If \mathscr{F} is a sheaf on C, then ${}_{\mathcal{D}}u\mathscr{F}$ is a sheaf on \mathcal{D} .

Proof: Let $\mathfrak{V} = \{V_j \to V\}$ be a covering in \mathcal{D} . We need to show the sequence

$$_{p}u\mathscr{F}(V) \longrightarrow \prod_{p}u\mathscr{F}(V_{j}) \Longrightarrow \prod_{p}u\mathscr{F}(V_{j_{0}} \times_{V} V_{j_{1}})$$

is exact. But $pu\mathscr{F}$ is right adjoint to u^p , thus

$$pu\mathscr{F}(V) = \operatorname{Hom}_{\mathbf{PSh}(\mathcal{D})}(h_V, pu\mathscr{F})$$
$$= \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(u^p h_V, \mathscr{F}) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}((u^p h_V)^\#, \mathscr{F}).$$

Therefore, it suffices to show that the sheafification of

$$\coprod u^p h_{V_{j_0} \times_V V_{j_1}} \Longrightarrow \coprod u^p h_{V_j} \longrightarrow u^p h_V$$

is exact.

First, we show the sheafification of $\coprod u^p h_{V_j} \to u^p h_V$ is an epimorphism. To do this, we use Proposition 7.5. Thus it suffices to show it is locally surjective. Let $s \in u^p h_V(U)$ be a section, which is a morphism $u(U) \to V$. Then $\mathfrak{V} \times_V u(U) = \{V_j \times_V u(U) \to u(U)\}$ is a covering in \mathcal{D} . As u is cocontinuous, there is a covering $\{U_i \to U\}$ in \mathcal{C} such that $\{u(U_i) \to u(U)\}$ refines $\mathfrak{V} \times_V u(U)$. This means that each restriction $s|_{U_i} : u(U_i) \to V$ factors through a morphism $s_i : u(U_i) \to V_j$ for some j. Thus $s|_{U_i}$ lies in the image of $u^p h_{V_i} \to u^p h_V$ as desired.

Now we show the exactness. To do this, we use Proposition 7.3. Thus, note that sheafification is exact, it suffices to show $\coprod u^p h_{V_{j_0} \times_V V_{j_1}} \rightrightarrows \coprod u^p h_{V_j}$ is the kernel pair of $\coprod u^p h_{V_j} \to u^p h_V$. Let $s \colon u(U) \to V_j$ and $s' \colon u(U) \to V_{j'}$ be two sections of $\coprod u^p h_{V_j}$ having the same image in $u^p h_V$. Then we have the following commutative diagram

$$\begin{array}{c|c}
u(U) \xrightarrow{s'} V_{j'} \\
\downarrow \\
V_{j} \longrightarrow V
\end{array}$$

and thus get a morphism $t = (s, s') : u(U) \to V_j \times_V V_{j'}$. This is a section of $\coprod u^p h_{V_{j_0} \times_V V_{j_1}}$ mapping to s and s' as desired.

Therefore, if $u: \mathcal{C} \to \mathcal{D}$ is cocontinuous, then the restriction of pu on $\mathbf{Sh}(\mathcal{C})$ gives a functor

$$su: \mathbf{Sh}(\mathcal{C}) \longrightarrow \mathbf{Sh}(\mathcal{D}).$$

- **9.b** Theorem (The left adjoint of su) Let C, D be two sites and $u: C \to D$ be a cocontinuous functor. Then
 - 1. $\# \circ u^p \circ F$ is a left adjoint to su and is exact;
 - 2. For any presheaf \mathscr{G} on \mathscr{C} , we have $(u^p\mathscr{G})^\# = (u^p(\mathscr{G}^\#))^\#$.

Proof: 1. The adjunction follows from Theorem 1.10 and Proposition 6.5.a. The left exactness follows from the exactness of #, u^p and the left exactness of F.

2.: For any sheaves \mathscr{F} on \mathcal{C} , we have

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}((u^{p}\mathcal{G})^{\#}, \mathcal{F}) = \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(u^{p}\mathcal{G}, \mathcal{F})$$

$$= \operatorname{Hom}_{\mathbf{PSh}(\mathcal{D})}(\mathcal{G}, {}_{p}u\mathcal{F})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathcal{G}^{\#}, {}_{s}u\mathcal{F})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}((u^{p}(\mathcal{G}^{\#}))^{\#}, \mathcal{F}).$$

- **9.c** Corollary Let C, D be two sites and $u: C \to D$ be a cocontinuous functor. Then $g_* = {}_{s}u$ and $g^{-1} = (u^p)^{\#}$ define a geometric morphism $g: \mathbf{Sh}(C) \to \mathbf{Sh}(D)$.
- **9.d Lemma (Composition of cocontinuous functors)** Let $u: \mathcal{C} \to \mathcal{D}$ and $v: \mathcal{D} \to \mathcal{E}$ be two cocontinuous functors inducing geometric morphisms $f: \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ and $g: \mathbf{Sh}(\mathcal{D}) \to \mathbf{Sh}(\mathcal{E})$. Then $v \circ u$ is a cocontinuous functor and induces the geometric morphism $g \circ f$.

Proof: Let $U \in \text{ob } \mathcal{C}$. Let $\mathfrak{W} = \{W_i \to v(u(U))\}$ be a covering in \mathcal{E} . As v is cocontinuous, there exists a covering $\mathfrak{V} = \{V_j \to u(U)\}$ in \mathcal{D} such that $v(\mathfrak{V})$ refines \mathfrak{W} . As u is cocontinuous, there exists a covering $\mathfrak{U} = \{U_k \to U\}$ in \mathcal{C} such that $u(\mathfrak{U})$ refines \mathfrak{V} . Then $v(u(\mathfrak{U}))$ refines \mathfrak{W} . This shows $v \circ u$ is cocontinuous. As for the last assertion, it suffices to show ${}_{s}v \circ {}_{s}u = {}_{s}v \circ u$, which suffices to show ${}_{p}v \circ {}_{p}u = {}_{p}v \circ u$. By Theorem 1.10, it suffices to show $u^{p} \circ v^{p} = (v \circ u)^{p}$, which is obvious.

10 Example (Open immersion) Let X be a topological space and $j: U \to X$ an inclusion map of an open subset U into X. Recall that we have sites \mathcal{T}_X and \mathcal{T}_U and continuous functor $u: \mathcal{T}_X \to \mathcal{T}_U$ as in Example 7.a. Next, consider the functor

$$v \colon \mathcal{T}_U \longrightarrow \mathcal{T}_X$$
$$V \longmapsto V.$$

It is a cocontinuous functor, thus it induces a geometric morphism $(v^p)^{\#} \dashv sv$. One can see $(v^p)^{\#} = j^{-1}$ and $sv = j_*$ by Proposition 5.8. In other words, the cocontinuous functor v induces the same geometric morphism as the continuous functor u.

11 Example (Open map) Let $f: X \to Y$ be an open map between topological spaces. Then we have sites \mathcal{T}_X and \mathcal{T}_Y and continuous functor $u: \mathcal{T}_Y \to \mathcal{T}_X$ as in Example 7.a. Next, consider the functor

$$v: \mathcal{T}_X \longrightarrow \mathcal{T}_Y$$

 $U \longmapsto f(U).$

It is a cocontinuous functor, thus it induces a geometric morphism $(v^p)^{\#} \dashv sv$. One can see $(v^p)^{\#} = f^{-1}$ and $sv = f_*$. Indeed, for any sheaf \mathscr{G} on Y, we have

$$v^p\mathscr{G}(U)=\mathscr{G}(f(U))\qquad\text{and}\qquad u_p\mathscr{G}(U)=\varinjlim_{f(U)\subset V}\mathscr{G}(V)=\mathscr{G}(f(U)).$$

Therefore, the cocontinuous functor v induces the same geometric morphism as the continuous functor u.

Remark Note that the functor v in Example 10 is both cocontinuous and continuous, while the functor v in Example 11 is not continuous in general.

Extension by empty

- **12 Lemma (Extension by empty)** Let C, D be two sites and $u: C \to D$ be a functor which is both continuous and cocontinuous. Let $f: \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be the geometric morphism induced by u, then
 - 1. $f^{-1} = u^p$;
 - 2. f^{-1} has a left adjoint $f_! := (u_p)^{\#}$.

In this case, we have a sequence of adjunctions:

$$f_1 \dashv f^{-1} \dashv f_*$$
.

For any sheaf \mathscr{F} on \mathscr{C} , the sheaf $f_!\mathscr{F}$ is called the **extension of** \mathscr{F} **by empty**. In algebraic value case, it is called **extension of** \mathscr{F} **by zero**. Note that the functor $f_!$ is NOT exact in general.

The following lemmas describe properties of $f_!$ under certain assumptions.

13 Lemma (Commutativity with finite connected limits) Let C, D be two sites and $u: C \to D$ be a functor which is both continuous and cocontinuous. Let $f: \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be the geometric morphism induced by u. Assume C has fibre products and equalizers and u commutes with them. Then $f_!$ commutes with finite connected limits.

Proof: By Lemma 1.8 and the fact that coproducts commute with connected limits (refer §2.12 in BMO) It suffices to show the opposite of \mathcal{I}_V^u is a disjoint union of filtered categories. To do this, it suffices to show

- 1. For any $f: (A, \phi) \to (C, \chi)$ and $g: (B, \psi) \to (C, \chi)$, there exists some $f': (D, \theta) \to (A, \phi)$ and $g': (D, \theta) \to (B, \psi)$.
- 2. For any $f, g: (A, \phi) \rightrightarrows (B, \psi)$, there exists a $h: (C, \theta) \to (A, \phi)$ such that $f \circ h = g \circ h$.

For 1., let D be the fibre product of A and B over C in C, then $u(D) = u(A) \times_{u(C)} u(B)$. Thus there exists a unique morphism $\theta \colon V \to u(D)$ compatible with ϕ and ψ . Then the two projections $(D, \theta) \to (A, \phi)$ and $(D, \theta) \to (B, \psi)$ are the required ones.

The prove for 2. is the same in Lemma 1.8.

14 Lemma (Fully faithful) Let C, D be two sites and $u: C \to D$ be a functor which is both continuous and cocontinuous. Let $f: \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be the geometric morphism induced by u. If u is fully faithful, then $\eta: \mathrm{id}_{\mathbf{Sh}(C)} \Rightarrow f^{-1}f_!$ and $\epsilon: f^{-1}f_* \Rightarrow \mathrm{id}_{\mathbf{Sh}(C)}$ are natural isomorphisms.

Proof: Let $U \in \text{ob } \mathcal{C}$. We have

$$f^{-1}f_*\mathscr{F}(U) = f_*\mathscr{F}(u(U)) = \varprojlim_{u(U)\mathcal{I}^{\mathrm{opp}}} \mathscr{F}(V).$$

For any $(V, \phi) \in \text{ob}_{u(U)}\mathcal{I}$, since u is fully faithful, there exists a morphism $\psi \colon V \to U$ such that $u(\psi) = \phi$. Therefore, $u(U)\mathcal{I}$ has a terminal object $(U, \text{id}_{u(U)})$. Thus $f^{-1}f_*\mathscr{F}(U) = \mathscr{F}(U)$.

On the other hand, we have

$$f^{-1}f_!\mathscr{F}(U) = f_!\mathscr{F}(u(U)) = (u_p\mathscr{F})^{\#}(u(U)),$$

and

$$u_p \mathscr{F}(u(U)) = \varinjlim_{\mathcal{I}_{u(U)}^{\text{opp}}} \mathscr{F}(V).$$

For any $(V, \phi) \in \text{ob}\,\mathcal{I}_{u(U)}$, since u is fully faithful, there exists a morphism $\psi \colon U \to V$ such that $u(\psi) = \phi$. Therefore, $\mathcal{I}_{u(U)}$ has an initial object $(U, \text{id}_{u(U)})$. Thus $u_p \mathscr{F}(u(U)) = \mathscr{F}(U)$. Since u is both continuous and cocontinuous, any covering of u(U) in \mathcal{D} can be refined by a covering $\{u(U_i) \to u(U)\}$ in \mathcal{D} , where $\{U_i \to U\}$ is a covering in \mathcal{C} . Therefore $(u_p \mathscr{F})^+(u(U)) = \mathscr{F}(U)$. Thus $(u_p \mathscr{F})^\#(u(U)) = \mathscr{F}(U)$ as desired. \square

- **15 Lemma (Inducing morphisms of sites)** Let C, D be two sites and $u: C \to D$ be a functor which is both continuous and cocontinuous. Let $f: \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be the geometric morphism induced by u. Assume
 - *u* is fully faithful;
 - C is finite-complete and u is left exact.

Then u induces a morphism of sites $g: \mathcal{D} \to \mathcal{C}$ such that

- 1. $g^{-1} = f_!$ and $g_* = f^{-1}$;
- 2. the composition $g \circ f$ of f and g is isomorphic to the identity geometric morphism $\mathrm{id}_{\mathbf{Sh}(\mathcal{C})}$;
- 3. g^{-1} is fully faithful.

Proof: 1. follows from Lemma 8.b, 2. from Lemma 14. As for 3., consider any sheaves \mathscr{F} and \mathscr{G} on \mathscr{C} , we have

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathscr{F},\mathscr{G}) \cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(g_*g^{-1}\mathscr{F},\mathscr{G})$$
$$\cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(g^{-1}\mathscr{F},g^{-1}\mathscr{G}). \qquad \Box$$

16 Lemma (Cocontinuous functors with a right adjoint) Let \mathcal{C}, \mathcal{D} be two sites and $u: \mathcal{C} \to \mathcal{D}$ be a cocontinuous functor. Let $f: \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ be the geometric morphism induced by u. Assume u has a right adjoint v. Then $f_* = v^s$, $f^{-1} = v_s := (v_p)^{\#}$. Therefore, when v is continuous, it defines a morphism of sites which induces the same geometric morphism with u.

Proof: Let \mathscr{F} be a sheaf on \mathscr{C} , it suffices to show $f_*\mathscr{F}(V) = \mathscr{F}(v(V))$ for any object $V \in \text{ob } \mathscr{D}$. First, we have $u^p h_V = h_{v(V)}$ by Lemma 1.11. Then, by Theorem 9.b, we have

$$f^{-1}(h_V^{\#}) = (u^p h_V)^{\#} = h_{v(V)}^{\#}.$$

Therefore

$$f_* \mathscr{F}(V) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(h_V^{\#}, f_* \mathscr{F})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(f^{-1}h_V^{\#}, \mathscr{F})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_{v(V)}^{\#}, \mathscr{F})$$

$$= \mathscr{F}(v(V)).$$

- **16.a** Corollary (Cocontinuous functors with a left adjoint) Let C, D be two sites and $u: C \to D$ be a functor which is both continuous and cocontinuous. Let $f: \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be the geometric morphism induced by u. Assume u has a left adjoint w.
 - 1. $f_! = (w^p)^\#$ and it is exact.
 - 2. If w is continuous, then $f_!$ has a left adjoint.
 - 3. If w is cocontinuous and induces a geometric morphism $g \colon \mathbf{Sh}(\mathcal{D}) \to \mathbf{Sh}(\mathcal{C})$, then $g^{-1} = f_!$ and $g_* = f^{-1}$.

Proof: 1. follows from Lemma 1.11. If w is continuous, then $f_! = w^p = w^s$, which has a left adjoint w_s as in Lemma 6.b. If w is cocontinuous, then the statement is nothing but Lemma 16.

- 17 Lemma (Existence of lower shriek) Let C, D be two sites and $f : \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be a geometric morphism. Assume C has a subcategory E such that
 - for every $U \in \text{ob } \mathcal{E}$, there exists a sheaf \mathscr{G}_U on \mathcal{D} such that $g^{-1}\mathscr{F}(U) = \text{Hom}_{\mathbf{Sh}(\mathcal{D})}(\mathscr{G}_U,\mathscr{F})$ functorally for $\mathscr{F} \in \text{ob } \mathbf{Sh}(\mathcal{D})$;
 - every object in C has a covering by objects in E.

Then f^{-1} has a left adjoint $f_!$.

Proof: Since $f^{-1}\mathscr{F}(U) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^{\#}, f^{-1}\mathscr{F})$, we have the bijection

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(\mathscr{G}_U,\mathscr{F}) \cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^{\#}, f^{-1}\mathscr{F})$$

natural on $U \in \text{ob } \mathcal{E}$ and $\mathscr{F} \in \text{ob } \mathbf{Sh}(\mathcal{D})$.

Therefore, we already have a functor $f_!: h_U^\# \mapsto \mathscr{G}_U$ from the full subcategory of $\mathbf{Sh}(\mathcal{C})$ consisting of sheaves of the form $h_U^\#$ with $U \in \mathrm{ob}\,\mathcal{E}$ to $\mathbf{Sh}(\mathcal{D})$. It remains to extend it to a functor from $\mathbf{Sh}(\mathcal{C})$ to $\mathbf{Sh}(\mathcal{D})$.

First, since $\prod \operatorname{Hom}(-,-) = \operatorname{Hom}(\prod,-)$, we have natural bijection

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(\coprod \mathscr{G}_{U_j},\mathscr{F}) \cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\coprod h_{U_j}^{\#}, f^{-1}\mathscr{F}).$$

This extends $f_!$ to coproducts of some $h_U^\#$ with each $U \in \text{ob } \mathcal{E}$.

Now, for any sheaf ${\mathscr H}$ on ${\mathcal C},$ by Lemma 7.16, we have a coequalizer diagram

$$\mathcal{H}_1 \Longrightarrow \mathcal{H}_0 \longrightarrow \mathcal{H}$$
.

where \mathscr{H}_1 and \mathscr{H}_0 are coproducts of some $h_U^\#$ with each $U \in \text{ob } \mathcal{E}$. Apply $f_!$ to $\mathscr{H}_1 \rightrightarrows \mathscr{H}_0$, then the coequalizer of it gives $f_!\mathscr{H}$. One can see this functor $f_!$: $\mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ is left adjoint to f^{-1} .

§ I.9 Localization

In this section, we discuss *localizations* at the level of sites. First, we discuss localization of sites, then morphisms of sites, then combination of them. Finally, as applications, we defines the notions of *sheaf Hom* and *qluing data*.

Localization of sites

1 (Localization) Let \mathcal{C} be a site and $X \in \text{ob } \mathcal{C}$. Then the *slice category* \mathcal{C}/X (whose objects are morphisms $U \to X$ in \mathcal{C} with fixed target X, usually denoted as U/X and viewed as *object related to* X, and morphisms are morphisms in \mathcal{C} compatible with them) inherits a coverage from \mathcal{C} : a family $\mathfrak{U}/X = \{U_i/X \to U/X\}$ in \mathcal{C}/X is a covering when $\mathfrak{U} = \{U_i \to U\}$ is a covering in \mathcal{C} . This site \mathcal{C}/X is called the **localization of** \mathcal{C} at the base object X.

Consider the forgetful functor $j_X : \mathcal{C}/X \to \mathcal{C}$. It is both continuous and cocontinuous. Therefore, by Lemma 8.12, it induces a geometric morphism

$$j_X \colon \mathbf{Sh}(\mathcal{C}/X) \longrightarrow \mathbf{Sh}(\mathcal{C}),$$

called the **localization morphism**. This geometric morphism is given by the direct image functor j_{X*} and the inverse image functor j_{X}^{-1} . For any sheaf \mathscr{F} on \mathscr{C} , we call the sheaf $j_{X}^{-1}\mathscr{F}$ the **restriction of** \mathscr{F} **on** X and denoted by $\mathscr{F}|_{X}$. Obviously, we have $\mathscr{F}|_{X}(U/X) = \mathscr{F}(U)$. Moreover, j_{X}^{-1} has a left adjoint $j_{X!}$. For any sheaf \mathscr{G} on \mathscr{C}/X , we call the sheaf $j_{X!}\mathscr{G}$ the **extension of** \mathscr{G} by empty.

2 Lemma (Description of $j_{X!}$) Let C be a site and $X \in \text{ob } C$. Let \mathscr{G} be a presheaf on C/X. Then $j_{X!}(\mathscr{G}^{\#})$ is the sheafification of the presheaf

$$U \mapsto \coprod_{\phi \in \operatorname{Hom}_{\mathcal{C}}(U,X)} \mathscr{G}(U \stackrel{\phi}{\longrightarrow} X).$$

Proof: First of all, by definition,

$$j_{Xp}\mathscr{G}(U) = \varinjlim_{(V/X,U\to V)\in \mathrm{ob}\,\mathcal{I}_U^{\mathrm{opp}}} \mathscr{G}(V).$$

By the family $\{(U/X, \mathrm{id}_U)|U/X \in \mathrm{Hom}_{\mathcal{C}}(U, X)\}$ is final in $\mathcal{I}_U^{\mathrm{opp}}$, thus

$$j_{Xp}\mathscr{G}(U) = \coprod_{\phi \in \operatorname{Hom}_{\mathcal{C}}(U,X)} \mathscr{G}(U \xrightarrow{\phi} X).$$

By Lemma 8.12, $j_{X!}(\mathcal{G}^{\#}) = (j_{Xp}(\mathcal{G}^{\#}))^{\#}$, which equals to $(j_{Xp}\mathcal{G})^{\#}$ by Lemma 8.6.b.

2.a Corollary Let C be a site and $X \in \text{ob } C$. Let $U/X \in \text{ob } C/X$. Then we have $j_{X!}(h_{U/X}^{\#}) = h_{U}^{\#}$.

Proof: Since $h_{U/X}(V/X) = \operatorname{Hom}_{\mathcal{C}/X}(V/X, U/X)$ and

$$\operatorname{Hom}_{\mathcal{C}}(V, U) = \coprod_{V/X \in \operatorname{Hom}_{\mathcal{C}}(V, X)} \operatorname{Hom}_{\mathcal{C}/X}(V/X, U/X),$$

the statement follows from Lemma 2.

2.b Corollary Let \mathcal{C} be a site and $X \in \text{ob } \mathcal{C}$. For any sheaf \mathscr{F} on \mathcal{C} , we have $j_{X!}j_X^{-1}\mathscr{F} = \mathscr{F} \times h_X^{\#}$.

Proof: By Lemma 2, $j_{X!}j_X^{-1}\mathscr{F}$ is the sheafification of $U\mapsto \mathscr{F}(U)\times h_X(U)$. Thus $j_{X!}j_X^{-1}\mathscr{F}=\mathscr{F}\times h_X^\#$.

3 Theorem Let C be a site and $X \in \text{ob } C$. The functor $j_{X!}$ gives an equivalence of categories

$$\mathbf{Sh}(\mathcal{C}/X) \longrightarrow \mathbf{Sh}(\mathcal{C})/h_X^{\#}.$$

Proof: First, any topos has a terminal object, namely the constant sheaf $\underline{*}$ of singleton. But in $\mathbf{Sh}(\mathcal{C}/X)$, we have $\underline{*} = h_{X/X}^{\#}$. Thus for any sheaf \mathscr{G} on \mathcal{C}/X , we have a canonical morphism

$$j_{X!}(\mathscr{G}) \longrightarrow j_{X!}(\underline{*}) = j_{X!}(h_{X/X}^{\#}) = h_X^{\#}.$$

This gives a functor from $\mathbf{Sh}(\mathcal{C}/X)$ to $\mathbf{Sh}(\mathcal{C})/h_X^\#$.

Conversely, for any sheaf \mathscr{F} on \mathscr{C} and morphism $\varphi \colon \mathscr{F} \to h_X^\#$, we define $\mathscr{F}_{\varphi}(U/X)$ to be the fiber of $U/X \in h_X(U) \to h_X^\#(U)$ along $\mathscr{F}(U) \to h_X^\#(U)$.

$$\mathcal{F}_{\varphi}(U/X) \stackrel{\longrightarrow}{\longrightarrow} \mathcal{F}(U)$$

$$\downarrow^{\varphi}$$

$$U/X \in h_X(U) \stackrel{\#}{\longrightarrow} h_X^{\#}(U)$$

Then one can see this \mathscr{F}_{φ} is a sheaf on \mathscr{C}/X and further the functor $\varphi \mapsto \mathscr{F}_{\varphi}$ gives a weak inverse of the functor above.

Note that this lemma factors $j_{X!}$ as

$$\mathbf{Sh}(\mathcal{C}/X) \longrightarrow \mathbf{Sh}(\mathcal{C})/h_X^{\#} \longrightarrow \mathbf{Sh}(\mathcal{C}),$$

where the first functor is an equivalence of categories and the second is a localization again! We sometimes also denote the equivalence as $j_{X!}$.

3.a Corollary Let C be a site and $X \in \text{ob } C$. The functor $j_{X!}$ commutes with finite connected limits. In particular, if $\mathscr{F} \subset \mathscr{F}'$ in $\mathbf{Sh}(\mathcal{C}/X)$, then we have $j_{X!}\mathscr{F} \subset j_{X!}\mathscr{F}'$.

Proof: One can see the forgetful functor $\mathbf{Sh}(\mathcal{C})/h_X^\# \to \mathbf{Sh}(\mathcal{C})$ commutes with fibre products and equalizers. Therefore it commutes with finite connected limits and so does j_{X^1} .

Proof: Note that coproducts commute with finite connected limites, then by Lemma 2, so is $j_{X!}$.

Now, we discuss properties of localization under certain assumptions.

First, if the site C has subcanonical topology, then the description of $j_{X!}$ would be more simply.

4 Lemma Let C be a site and $X \in \text{ob } C$. Assume C has subcanonical topology. Then for any sheaf G on C/X, we have

$$j_{X!}\mathscr{G}(U) = \coprod_{\phi \in \operatorname{Hom}_{\mathcal{C}}(U,X)} \mathscr{G}(U \stackrel{\phi}{\longrightarrow} X).$$

Proof: One needs to show that $U \mapsto \coprod_{\phi \in \operatorname{Hom}_{\mathcal{C}}(U,X)} \mathscr{G}(U \xrightarrow{\phi} X)$ defines a sheaf \mathscr{H} on \mathcal{C} . Let $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ be a covering in \mathcal{C} . We need to show $\mathscr{H}(U) \cong \check{H}^0(\mathfrak{U},\mathscr{H})$. Note that there is a canonical morphism $\mathscr{H} \to h_X$ given by $(s,\phi) \mapsto \phi$, where $\phi \colon U \to X$ is an object in \mathcal{C}/X and $s \in \mathscr{G}(\phi)$.

Let $(s_i, \phi_i)_{i \in I} \in \check{H}^0(\mathfrak{U}, \mathscr{H})$. Then $(\phi_i)_{i \in I} \in \check{H}^0(\mathfrak{U}, h_X)$. Since \mathcal{C} has subcanonical topology, h_X is a sheaf and thus $\check{H}^0(\mathfrak{U}, h_X) = h_X(U)$. Therefore there exists a unique $\phi \colon U \to X$ such that ϕ_i are compositions of ϕ with $U_i \to U$. Then, \mathfrak{U}/X is a covering of ϕ in \mathcal{C}/X . In this case, $(s_i)_{i \in I}$ lies in $\check{H}^0(\mathfrak{U}/X, \mathscr{G})$ and thus defines a section $s \in \mathscr{G}(\phi)$. One can see the pair $(s, \phi) \in \mathscr{H}(U)$ is unique the preimage of $(s_i, \phi_i)_{i \in I}$ under the canonical map $\mathscr{H}(U) \to \check{H}^0(\mathfrak{U}, \mathscr{H})$. This shows the desired isomorphism.

Next, under suitable assumption, the forgetful functor j_X can also be viewed as a morphism of sites. The following lemma describes this assumption and gives a description under it.

- **5 Lemma** Let C be a site and $X \in ob C$. Assume C has finite products. Then
 - 1. j_X has a continuous right adjoint v given by $v(U) = U \times X/X$;
 - 2. the functor v defines a morphism of sites $C/X \to C$ which induces the same geometric morphisms as j_X ;
 - 3. $j_{X*}\mathscr{F}(U) = \mathscr{F}(U \times X/X)$.

Proof: 1. To show the adjunction, we only need to verify that for any $U/X \in \mathcal{C}/X$ and $V \in \mathcal{C}$, we have

$$\operatorname{Hom}_{\mathcal{C}}(U,V) \cong \operatorname{Hom}_{\mathcal{C}/X}(U/X,V \times X/X),$$

which is clear. To see v is continuous, let $\mathfrak{U} = \{U_i \to U\}$ be a covering of \mathcal{C} , then $\mathfrak{U} \times_U (U \times X)$ is a covering of $U \times X$ in \mathcal{C} and therefore $\mathfrak{U} \times_U (U \times X)/X$ is a covering in \mathcal{C}/X .

The following lemma generalizes Proposition 5.8 and Theorem 5.10.

6 Lemma Let C be a site and $X \in \text{ob } C$. Assume every $U \in \text{ob } C$ has at most one morphism to X. Then $\eta \colon \text{id}_{\mathbf{Sh}(C/X)} \Rightarrow j_X^{-1} j_{X!}$ and $\epsilon \colon j_X^{-1} j_{X*} \Rightarrow \text{id}_{\mathbf{Sh}(C/X)}$ are natural isomorphisms.

Proof: Note that the assumption implies j_X is fully faithful. Then the statement follows from Lemma 8.14.

Now, ewe turn to consider what happens when change the base object of localization.

7 Lemma (Changing base object) Let C be a site and $f: Y \to X$ be a morphism of C. Then there exists a commutative diagram

of cocontinuous functors. Here $j: \mathcal{C}/Y \to \mathcal{C}/X$ is identified with the functor $j_{Y/X}: (\mathcal{C}/X)/(Y/X) \to \mathcal{C}/X$ via the identification $(\mathcal{C}/X)/(Y/X) = \mathcal{C}/Y$. Moreover, we have $j_{Y!} = j_{X!} \circ j_!$, $j_Y^{-1} = j^{-1} \circ j_X^{-1}$, and $j_{Y*} = j_{X*} \circ j_*$.

Proof: The identification is obvious and the statements then follow from Lemma 8.9.d.

7.a Lemma Notations as in Lemma 7. Through the identifications $\mathbf{Sh}(\mathcal{C}/Y) = \mathbf{Sh}(\mathcal{C})/h_X^\#$ and $\mathbf{Sh}(\mathcal{C}/X) = \mathbf{Sh}(\mathcal{C})/h_X^\#$ of Theorem 3, the functor j^{-1} has the following description

$$j^{-1}(\mathscr{H} \stackrel{\varphi}{\longrightarrow} h_X^\#) = (\mathscr{H} \times_{h_X^\#} h_Y^\# \longrightarrow h_Y^\#).$$

Proof: Let $\varphi \colon \mathscr{H} \to h_X^{\#}$ be an object in $\mathbf{Sh}(\mathcal{C})/h_X^{\#}$. By Theorem 3, it corresponds to the sheaf \mathscr{H}_{φ} on \mathcal{C}/X . Let $\mathscr{H}'_{\varphi'}$ denote the sheaf on \mathcal{C}/Y corresponding to

$$\mathscr{H}' = \mathscr{H} \times_{h_Y^\#} h_Y^\# \xrightarrow{\varphi'} h_Y^\#.$$

For any $U/Y \in ob \mathcal{C}/Y$, on one hand, we have

$$j^{-1}\mathcal{H}_{\varphi}(U/Y) = \mathcal{H}_{\varphi}(f \circ U/Y).$$

which is the fiber of $f \circ U/Y \in h_X(U) \to h_X^\#(U)$ along $\mathscr{H}(U) \xrightarrow{\varphi} h_X^\#(U)$. On the other hand, $\mathscr{H}'_{\varphi'}(U/Y)$ is the fiber of $U/Y \in h_Y(U) \to h_Y^\#(U)$ along $\mathscr{H}'(U) \xrightarrow{\varphi'} h_Y^\#(U)$. But we have the following Cartesian diagram

$$\begin{array}{ccc} \mathscr{H}'(U) & \longrightarrow \mathscr{H}(U) \\ \varphi' & & & \varphi \\ h_Y^\#(U) & \longrightarrow h_X^\#(U) \end{array}$$

thus $\mathscr{H}'_{\varphi'}(U/Y)$ is also the fiber of $U/Y \in h_Y(U) \to h_Y^\#(U) \to h_X^\#(U)$ along $\mathscr{H}(U) \stackrel{\varphi}{\longrightarrow} h_X^\#(U)$. But the image of $U/Y \in h_Y(U) \to h_Y^\#(U) \to h_X^\#(U)$ coincide with that of $f \circ U/Y \in h_X(U) \to h_X^\#(U)$, thus so do their fibers. Therefore $\mathscr{H}'_{\varphi'} = j^{-1}\mathscr{H}_{\varphi}$ as desired.

The following is the same proof in more concrete statements.

Proof: Let $\varphi \colon \mathscr{H} \to h_X^{\#}$ be an object in $\mathbf{Sh}(\mathcal{C})/h_X^{\#}$. Let θ denote the canonical morphism induced by sheafification. By Theorem 3, it corresponds to the sheaf \mathscr{H}_{φ} on \mathcal{C}/X and we have

$$\mathcal{H}_{\varphi}(U/X) = \{ s \in \mathcal{H}(U) | \varphi(s) = \theta(U/X) \}.$$

Write f as Y/X, we have

$$j^{-1}\mathcal{H}_{\varphi}(U/Y) = j_{Y/X}^{-1}\mathcal{H}_{\varphi}((Y/X \circ U/Y)/(Y/X))$$
$$= \mathcal{H}_{\varphi}(Y/X \circ U/Y)$$
$$= \{s \in \mathcal{H}(U) | \varphi(s) = \theta(Y/X \circ U/Y)\}.$$

On the other hand, the sheaf on \mathcal{C}/Y corresponding to

$$\mathscr{H}' = \mathscr{H} \times_{h_Y^\#} h_Y^\# \xrightarrow{\varphi'} h_Y^\#,$$

is given by

$$\begin{split} \mathscr{H}'_{\varphi'}(U/Y) &= \left\{ s' \in \mathscr{H}'(U) \middle| \varphi'(s') = \theta(U/Y) \right\} \\ &= \left\{ (s,a) \in \mathscr{H}(U) \times h_Y^\#(U) \middle| a = \theta(U/Y), \varphi(s) = \theta(Y/X \circ U/Y) \right\} \\ &= \left\{ s \in \mathscr{H}(U) \middle| \varphi(s) = \theta(Y/X \circ U/Y) \right\}. \end{split}$$

Therefore
$$j^{-1}\mathcal{H}_{\varphi} = \mathcal{H}'_{\varphi'}$$
.

Under suitable assumption, the forgetful functor j can also be viewed as a morphism of sites.

- **8 Lemma** Let C be a site and $f: Y \to X$ be a morphism of C. Assume C has fibre products. Then
 - 1. j has a continuous right adjoint v given by $v(U/X) = U \times_X Y/Y$;
 - 2. the functor v defines a morphism of sites $C/Y \to C/X$ which induces the same geometric morphisms as j;
 - 3. $j_*\mathscr{F}(U) = \mathscr{F}(U \times_X Y/Y)$.

Proof: Follows from the identification $j = j_{Y/X}$ and Lemma 5.

A typical way to obtain cocontinuous functors is checking the following $Property\ P.$

9 (Property P) Let $u: \mathcal{C} \to \mathcal{D}$ be a functor between categories. Given morphisms $g: u(U) \to V$ and $f: W \to V$ in \mathcal{D} we can define a presheaf on \mathcal{C} by

$$T \longmapsto \operatorname{Hom}_{\mathcal{C}}(T, U) \times_{\operatorname{Hom}_{\mathcal{D}}(u(T), V)} \operatorname{Hom}_{\mathcal{D}}(u(T), W).$$

If this presheaf is representable, then we denote the representative object by $U \times_{g,V,f} W$ or simply $U \times_V W$ or $g \times_V f$. Obviously this is a generalization of fibre product and we have

$$u(U \times_V W) = u(U) \times_V W.$$

Assume \mathcal{C} and \mathcal{D} are sites. A functor $u \colon \mathcal{C} \to \mathcal{D}$ is said to have **property** \mathbf{P} if for every covering \mathfrak{V} and any morphism $g \colon u(U) \to V$ in \mathcal{D} , $U \times_V \mathfrak{V}$ exists and is a covering in \mathcal{C} . One can see this property is similar to the definition of continuous functor.

Note that if this is the case, then

$$u(U \times_V \mathfrak{V}) = u(U) \times_V \mathfrak{V}$$

is a covering and refines \mathfrak{V} . Therefore u have property P implies that u is cocontinuous but the converse fails to be true.

10 Lemma The localization j satisfies property P.

Proof: Let \mathfrak{U}/X be a covering and $g: j(V/Y) \to (U/X)$ be a morphism in \mathcal{C}/X . Then $(V/Y) \times_{(U/X)} (\mathfrak{U}/X) = (V \times_U \mathfrak{U}/X)$ and is a covering in \mathcal{C}/Y . \square

Localization of morphisms of sites

Now, we talk about localization of a morphism of sites. That is a functorial morphism of sites connecting the localizations of sites. Here are the details:

11 Theorem (Localization of morphisms of sites) Let $f: \mathcal{C} \to \mathcal{D}$ be a morphism of sites defined by a continuous functor $u: \mathcal{D} \to \mathcal{C}$. Let $Y \in \text{ob } \mathcal{D}$ and X = u(Y). Then the functor

$$u' \colon \mathcal{D}/Y \longrightarrow \mathcal{C}/X$$

 $V/Y \longmapsto u(V)/X$

defines a morphism of sites $f' \colon \mathcal{C}/X \to \mathcal{D}/Y$, which satisfies a commutative diagram of topoi

$$\mathbf{Sh}(\mathcal{C}/X) \xrightarrow{j_X} \mathbf{Sh}(\mathcal{C})$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$\mathbf{Sh}(\mathcal{D}/Y) \xrightarrow{j_Y} \mathbf{Sh}(\mathcal{D})$$

Through the identifications $\mathbf{Sh}(\mathcal{C}/X) = \mathbf{Sh}(\mathcal{C})/h_X^\#$ and $\mathbf{Sh}(\mathcal{D}/Y) = \mathbf{Sh}(\mathcal{D})/h_Y^\#$ of Theorem 3, the functor f'^{-1} has the following description

$$f'^{-1}(\mathscr{H} \xrightarrow{\varphi} h_Y^{\#}) = (f^{-1}\mathscr{H} \xrightarrow{f^{-1}\varphi} h_X^{\#}).$$

Finally, we have $f'_* \circ j_X^{-1} = j_Y^{-1} \circ f_*$.

Proof: It is clear that u' is also continuous. Then u' induces an adjunction

$$f'^* \dashv f'_* : \mathbf{Sh}(\mathcal{C}/X) \leftrightarrows \mathbf{Sh}(\mathcal{C}/Y)$$

by $f'_* = u'^s$ and $f'^{-1} = u'_s$. Then for any sheaf \mathscr{F} on \mathscr{C} , we have

$$f_*'j_X^{-1}\mathscr{F}(V/Y)=j_X^{-1}\mathscr{F}(u(V)/X)=\mathscr{F}(u(V))=f_*\mathscr{F}(V)=j_Y^{-1}f_*\mathscr{F}(V/Y).$$

Thus $f'_* \circ j_X^{-1} = j_Y^{-1} \circ f_*$. It remains to show u' is exact, the diagram of topoi is commutative and the description of f'^{-1} is as given.

First, to show the escription of f'^{-1} is as given, it suffices to show the following diagram is commutative:

$$\begin{split} \mathbf{Sh}(\mathcal{C}/X) &\xrightarrow{j_{X!}} \mathbf{Sh}(\mathcal{C})/h_X^{\#} \longrightarrow \mathbf{Sh}(\mathcal{C}) \\ f'^{-1} & f^{-1} & f^{-1} \\ \mathbf{Sh}(\mathcal{D}/Y) &\xrightarrow{j_{Y!}} \mathbf{Sh}(\mathcal{D})/h_Y^{\#} \longrightarrow \mathbf{Sh}(\mathcal{D}) \end{split}$$

By Lemma 8.6.b, we have $f^{-1}h_Y^\# = h_{u(Y)}^\# = h_X^\#$. Thus the right square is commutative. For any sheaf \mathscr{H} on \mathcal{D}/Y , we have

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{D}/Y)}(j_{X!}f'^{-1}\mathcal{H},\mathcal{F}) = \operatorname{Hom}_{\mathbf{Sh}\mathcal{C}}(\mathcal{H}, f'_*j_X^{-1}\mathcal{F})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathcal{H}, j_Y^{-1}f_*\mathcal{F})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{D}/Y)}(f^{-1}j_{Y!}\mathcal{H}, \mathcal{F}).$$

Thus $j_{X!} \circ f'^{-1} = f^{-1} \circ j_{Y!}$. Therefore the diagram above is commutative.

Since f^{-1} is exact, the equivalences shows so is f'^{-1} . Finally, we show $f'^{-1} \circ j_Y^{-1} = j_X^{-1} \circ f^{-1}$. Indeed, for any sheaf $\mathscr G$ on $\mathcal D$, by Corollary 2.b, we have

$$j_{X!}f'^{-1}j_Y^{-1}\mathscr{G} = f^{-1}j_{Y!}j_Y^{-1}\mathscr{G} = f^{-1}(\mathscr{G} \times h_Y^\#) = f^{-1}\mathscr{G} \times h_X^\# = j_{X!}j_X^{-1}f^{-1}\mathscr{G}.$$

Since $j_{X!}$ is an equivalence, we have $f'^{-1} \circ j_Y^{-1} = j_X^{-1} \circ f^{-1}$. The commutativity of the diagram of topoi then follows.

11.a Lemma (Localization of morphisms of sites) Let $u: \mathcal{D} \to \mathcal{C}$ be a continuous functor. Let $Y \in \text{ob } \mathcal{D}$, X = u(Y) and u' be

$$u' \colon \mathcal{D}/Y \longrightarrow \mathcal{C}/X$$

 $V/Y \longmapsto u(V)/X.$

Assume C and D are finite-complete and u is left exact. Then there exists a commutative diagram of morphisms of sites

$$\begin{array}{c|c}
C/X & \xrightarrow{j_X} C \\
f' \downarrow & \downarrow f \\
D/Y & \xrightarrow{j_Y} D
\end{array}$$

where the horizontal morphisms are defined as in Lemma 8 and the vertical morphisms are defined by u and u'. Moreover, this commutative diagram induces the same commutative diagram of topoi as in Theorem 11. In particular, $f'_* \circ j_X^{-1} = j_Y^{-1} \circ f_*$.

Proof: By Lemma 8.8.b, u defines a morphism of sites $f: \mathcal{C} \to \mathcal{D}$. Then by Theorem 11, u' defines a morphism of sites $f': \mathcal{C}/X \to \mathcal{D}/Y$. It remains to show $f \circ j_X = j_Y \circ f'$ as morphisms of sites, which follows from Lemma 8 and that

$$u(V) \times X = u(V) \times u(Y) = u(V \times Y).$$

Combining Lemma 7 and Theorem 11, we have

12 Theorem (General localization of morphisms of sites) Let $f: \mathcal{C} \to \mathcal{D}$ be a morphism of sites defined by a continuous functor $u: \mathcal{D} \to \mathcal{C}$. Let $Y \in \text{ob} \mathcal{D}$, $X \in \text{ob} \mathcal{C}$ and $c: X \to u(Y)$ a morphism in \mathcal{C} . Then there exists a commutative diagram of topoi

$$\mathbf{Sh}(\mathcal{C}/X) \xrightarrow{j_X} \mathbf{Sh}(\mathcal{C})$$

$$f_c \downarrow \qquad \qquad \downarrow f$$

$$\mathbf{Sh}(\mathcal{D}/Y) \xrightarrow{j_Y} \mathbf{Sh}(\mathcal{D})$$

where $f_c = f' \circ j_c$, $f' : \mathbf{Sh}(\mathcal{C}/u(Y)) \to \mathbf{Sh}(\mathcal{D}/Y)$ is defined in Theorem 11, $j_c : \mathbf{Sh}(\mathcal{C}/X) \to \mathbf{Sh}(\mathcal{C}/u(Y))$ is defined in Lemma 7. Through the identifications $\mathbf{Sh}(\mathcal{C}/X) = \mathbf{Sh}(\mathcal{C})/h_X^\#$ and $\mathbf{Sh}(\mathcal{D}/Y) = \mathbf{Sh}(\mathcal{D})/h_Y^\#$ of Theorem 3, the functor f_c^{-1} has the following description

$$f_c^{-1}(\mathscr{H} \xrightarrow{\varphi} h_Y^\#) = (f^{-1}\mathscr{H} \times_{h_{u(Y)}^\#} h_X^\# \to h_X^\#).$$

Finally, for any morphisms $a\colon X\to X',\ b\colon Y\to Y'$ and $c'\colon X'\to u(Y')$ making the diagram

$$X \xrightarrow{c} u(Y)$$

$$\downarrow u(b)$$

$$X' \xrightarrow{c'} u(Y')$$

 $commutes,\ the\ following\ diagram\ commutes.$

$$\mathbf{Sh}(\mathcal{C}/X) \xrightarrow{j_a} \mathbf{Sh}(\mathcal{C}/X')$$

$$\downarrow^{f_c} \qquad \qquad \downarrow^{f_{c'}}$$

$$\mathbf{Sh}(\mathcal{D}/Y) \xrightarrow{j_b} \mathbf{Sh}(\mathcal{D}/Y')$$

Proof: The first commutative diagram follows from those in Lemma 7 and Theorem 11. The description follows from those in Lemma 7.a and Theorem 11. The last statement follows from that all but the front square in the following diagram commutes thus so does the front:

Or, one can use the identifications and the descriptions. Let \mathscr{H} be a sheaf on \mathcal{D} , then

$$\begin{split} j_a^{-1} f_{c'}^{-1}(\mathcal{H} \to h_{Y'}^\#) &= j_a^{-1} (f^{-1} \mathcal{H} \times_{h_{u(Y')}^\#} h_{X'}^\# \to h_{X'}^\#) \\ &= (f^{-1} \mathcal{H} \times_{h_{u(Y')}^\#} h_{X'}^\# \times_{h_{X'}^\#} h_X^\# \to h_X^\#) \\ &= (f^{-1} \mathcal{H} \times_{h_{u(Y')}^\#} h_X^\# \to h_X^\#) \\ &= (f^{-1} \mathcal{H} \times_{h_{u(Y')}^\#} h_{u(Y)}^\# \times_{h_{u(Y)}^\#} h_X^\# \to h_X^\#) \\ &= (f^{-1} (\mathcal{H} \times_{h_{Y'}^\#} h_Y^\#) \times_{h_{u(Y)}^\#} h_X^\# \to h_X^\#) \\ &= f_c^{-1} (\mathcal{H} \times_{h_{Y'}^\#} h_Y^\# \to h_Y^\#) \\ &= f_c^{-1} j_b^{-1} (\mathcal{H} \to h_{Y'}^\#). \end{split}$$

This shows the required commutativity.

Unsurprised, there is a *cocontinuous* version of Theorem 11:

13 Theorem (Localization of a cocontinuous functor) Let $u: \mathcal{C} \to \mathcal{D}$ be a cocontinuous functor. Let $X \in \text{ob } \mathcal{C}$ and Y = u(X). Then the functor

$$u' \colon \mathcal{C}/X \longrightarrow \mathcal{D}/Y$$

 $U/X \longmapsto u(U)/Y$

satisfies the commutative digram

$$\begin{array}{c|c}
\mathcal{C}/X & \xrightarrow{j_X} \mathcal{C} \\
u' \downarrow & \downarrow u \\
\mathcal{D}/Y & \xrightarrow{j_Y} \mathcal{D}
\end{array}$$

Moreover, u' is cocontinuous and we have a commutative diagram

$$\mathbf{Sh}(\mathcal{C}/X) \xrightarrow{j_X} \mathbf{Sh}(\mathcal{C})$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$\mathbf{Sh}(\mathcal{D}/Y) \xrightarrow{j_Y} \mathbf{Sh}(\mathcal{D})$$

where f (resp. f') is induced by u (resp. u').

Proof: The commutativity of the first diagram is clear. Once we proved u' is cocontinuous, the second commutative diagram follows.

To show u' is cocontinuous, let $\mathfrak{V}/Y = \{V_j/Y \to u(U)/Y\}$ be a covering in \mathcal{D}/Y . Since u is cocontinuous, there is a covering $\mathfrak{U} = \{U_i \to U\}$ in \mathcal{C} such that $u(\mathfrak{U})$ refines $\mathfrak{V} = \{V_j \to u(U)\}$. Then $\mathfrak{U}/X = \{U_i/X \to U/X\}$ is a covering in \mathcal{C}/X refining \mathfrak{V}/Y . Hence u' is cocontinuous.

Remark In general, the equality $f'_* \circ j_X^{-1} = j_Y^{-1} \circ f_*$ does not hold in the case of Theorem 13.

Application: gluing sheaves

14 (Sheaf Hom) Let \mathscr{F} be a presheaf and \mathscr{G} a sheaf on a site \mathscr{C} . Define the presheaf $\mathcal{H}om(\mathscr{F},\mathscr{G})$ by

$$\mathcal{H}om(\mathscr{F},\mathscr{G})(U) := \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C}/U)}(\mathscr{F}|_U,\mathscr{G}|_U).$$

By the following Lemma 14.a, this is indeed a sheaf, called the **sheaf Hom**.

14.a Lemma (Gluing morphisms) Let C be a site and $\{U_i \to X\}_{i \in I}$ a covering. Let \mathscr{F} be a presheaf and \mathscr{G} a sheaf on C. Suppose that there are morphisms

$$\varphi_i \colon \mathscr{F}|_{U_i} \longrightarrow \mathscr{G}|_{U_i}$$

such that for all $i, j \in I$, the restrictions of φ_i and φ_j to $U_i \times_X U_j$ are the same morphism $\varphi_{ij} \colon \mathscr{F}|_{U_i \times_X U_j} \to \mathscr{G}|_{U_i \times_X U_j}$. Then there exists a unique morphism

$$\varphi\colon\mathscr{F}\longrightarrow\mathscr{G}$$

whose restriction to each U_i is φ_i .

The sheaf Hom shares many properties of the Hom-set.

15 Lemma Let \mathscr{F} be a sheaf on a site \mathscr{C} , then $\mathcal{H}om(\underline{*}, \mathscr{F}) \cong \mathscr{F}$.

Proof: Let $U \in \text{ob } \mathcal{C}$. For any $\varphi \in \text{Hom}_{\mathbf{PSh}(\mathcal{C}/U)}(\underline{*}|_U, \mathscr{F}|_U)$, its corresponding section in $\mathscr{F}(U)$ is the image of the singleton under $\varphi(U)$. This gives rise to a morphism $\Phi \colon \mathcal{H}om(\underline{*}, \mathscr{F}) \to \mathscr{F}$. Conversely, any section $s \in \mathscr{F}(U)$ gives a map $* \to \mathscr{F}(U)$, and furthermore a map $* \to \mathscr{F}(U) \to \mathscr{F}(V)$ for any $V/U \in \mathcal{C}/U$. We can see this gives a morphism $\underline{*} \to \mathscr{F}|_U$. In this way we find the inverse of Φ , thus it's an isomorphism.

The following two lemmas are easy to verify.

16 Lemma (Sheaf Hom is left exact) Let \mathscr{F} be a sheaf on a site \mathscr{C} , then $\mathcal{H}om(\mathscr{F},-)$ is a left exact covariant functor and $\mathcal{H}om(-,\mathscr{F})$ is a left exact contravariant functor.

The following theorem exposes why sheaf Hom shares similar properties with the Hom-set.

17 Theorem (Sheaf Hom is the internal Hom) For any sheaves \mathscr{F} , \mathscr{G} and \mathscr{H} on a site \mathcal{C} , there is a canonical bijection

$$\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(\mathcal{C})}(\mathscr{F}\times\mathscr{G},\mathscr{H})\cong\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(\mathcal{C})}(\mathscr{F},\mathcal{H}\mathit{om}(\mathscr{G},\mathscr{H})).$$

Proof: Given a morphism $\varphi \colon \mathscr{F} \times \mathscr{G} \to \mathscr{H}$, one gets a family of compatible maps $\varphi(U) \colon \mathscr{F}(U) \times \mathscr{G}(U) \to \mathscr{H}(U)$, thus a compatible family of maps $\psi_U \colon \mathscr{F}(U) \to \operatorname{Hom}(\mathscr{G}(U),\mathscr{H}(U))$. For any $s \in \mathscr{F}(U)$, we have a family of maps $\psi_V(s|_V) \colon \mathscr{G}(V) \to \mathscr{H}(V)$ for all objects V/U of \mathscr{C}/U . The compatibility of ψ_V guarantees the compatibility of $\psi_V(s|_V)$, thus they give rise to a morphism $\mathscr{G}|_U \to \mathscr{H}|_U$. In this way, we get a map $\psi(U) \colon \mathscr{F}(U) \to \operatorname{Hom}_{\operatorname{Sh}(\mathscr{C}/U)}(\mathscr{G}|_U, \mathscr{H}|_U)$. Such kind of maps are compatible and thus forms a morphism $\mathscr{F} \to \mathcal{H}om(\mathscr{G},\mathscr{H})$. Now, we have a map $\operatorname{Hom}_{\operatorname{Sh}(\mathscr{C})}(\mathscr{F} \times \mathscr{G},\mathscr{H}) \to \operatorname{Hom}_{\operatorname{Sh}(\mathscr{C})}(\mathscr{F}, \mathcal{H}om(\mathscr{G},\mathscr{H}))$, whose inverse is easy to construct.

Proof: We give another proof by written down the unit η and the counit ϵ of the adjunction

$$-\times\mathscr{G}\dashv\mathcal{H}om(\mathscr{G},-).$$

Indeed, the unit η is given by

$$\eta_{\mathscr{F}}(U) : \mathscr{F}(U) \longrightarrow \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C}/U)}(\mathscr{G}|_{U}, \mathscr{F}|_{U} \times \mathscr{G}|_{U})$$

$$s \longmapsto (t \in \mathscr{G}(V) \mapsto (s|_{V}, t) \in \mathscr{F}(V) \times \mathscr{G}(V)),$$

and the counit ϵ is given by

$$\epsilon_{\mathscr{F}}(U) \colon \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C}/U)}(\mathscr{G}|_{U}, \mathscr{F}|_{U}) \times \mathscr{G}(U) \longrightarrow \mathscr{F}(U)$$

$$(\varphi, s) \longmapsto \varphi(s).$$

Then, one can verify they satisfy the triangle identities and thus defines an adjunction. $\hfill\Box$

Remark Note that, using this unit and counit above, we can write down the corresponding of

$$\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(\mathcal{C})}(\mathscr{F} \times \mathscr{G}, \mathscr{H}) \cong \operatorname{Hom}_{\operatorname{\mathbf{Sh}}(\mathcal{C})}(\mathscr{F}, \mathcal{H}om(\mathscr{G}, \mathscr{H}))$$

as follows.

For any $\varphi \colon \mathscr{F} \times \mathscr{G} \to \mathscr{H}$, its corresponding is given by

$$\begin{split} \widetilde{\varphi}(U) \colon \mathscr{F}(U) &\longrightarrow \mathrm{Hom}_{\mathbf{Sh}(\mathcal{C}/U)}(\mathscr{G}|_{U}\,,\,\mathscr{H}|_{U}) \\ s &\longmapsto \left(t \in \mathscr{G}(V) \mapsto \varphi(\left.s\right|_{V}\,,t\right) \in \mathscr{H}(V)\right). \end{split}$$

For any $\psi \colon \mathscr{F} \to \mathcal{H}om(\mathscr{G}, \mathscr{H})$, its corresponding is given by

$$\widehat{\psi}(U) \colon \mathscr{F}(U) \times \mathscr{G}(U) \longrightarrow \mathscr{H}(U)$$

$$(s,t) \longmapsto \psi(s)(t).$$

Remark The notion of sheaf Hom also works for sheaves of algebraic structures and the above results still hold.

- 18 (Gluing data) Let C be a site and $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ a covering. A gluing data for sheaves of sets with respect to the covering \mathfrak{U} consists of the following stuff:
 - For each $i \in I$, a sheaf \mathscr{F}_i of sets on \mathcal{C}/U_i ;
 - For each pair $i, j \in I$, an isomorphism $\varphi_{ij} \colon \mathscr{F}_i|_{U_i \times_U U_j} \to \mathscr{F}_j|_{U_i \times_U U_j}$, satisfying the **cocycle condition**:

For any $i, j, k \in I$, the following diagram commutes.

A morphisms between gluing data $(\mathscr{F}_i, \varphi_{ij})$ and $(\mathscr{G}_i, \psi_{ij})$ is a family of morphisms

$$f_i \colon \mathscr{F}_i \longrightarrow \mathscr{G}_i$$

such that the following diagram commutes.

$$\begin{aligned} \mathscr{F}_{i}|_{U_{i}\times_{U}U_{j}} &\xrightarrow{f_{i}} \mathscr{G}_{i}|_{U_{i}\times_{U}U_{j}} \\ \varphi_{ij} & & \psi_{ij} \\ \mathscr{F}_{j}|_{U_{i}\times_{U}U_{j}} &\xrightarrow{f_{j}} \mathscr{G}_{j}|_{U_{i}\times_{U}U_{j}} \end{aligned}$$

One can see this definition can be easily generalized to **gluing data for** sheaves of algebraic structures.

Let $\mathcal C$ be a site and $\mathfrak U=\{U_i\to U\}_{i\in I}$ a covering. Any sheaf $\mathscr F$ on $\mathcal C/U$ admits a canonical gluing data $(\mathscr F_i,\varphi_{ij})$, where $\mathscr F_i$ is the restriction $\mathscr F|_{U_i}$ and φ_{ij} is the induced morphism

$$\mathscr{F}|_{U_i}|_{U_i \times_U U_j} \longrightarrow \mathscr{F}|_{U_j}|_{U_i \times_U U_j}.$$

Moreover, this construction is functoral, meaning it gives rise to a functor from $\mathbf{Sh}(\mathcal{C}/U)$ to the category of gluing data.

19 Theorem (Sheaf = gluing data) The above functor induces an equivalence of category between Sh(C/U) and the category of gluing data. The similar statement holds for sheaves of algebraic structures.

Proof: The functor is fully faithful by Lemma 14.a and essentially surjective by Lemma 19.a. \Box

19.a Lemma Let C be a site and $\mathfrak{U} = \{U_i \to U\}_{i \in I}$ a covering. Let $(\mathscr{F}_i, \varphi_{ij})$ be a gluing data for sheaves of sets with respect to the covering \mathfrak{U} . Then there exists a sheaf \mathscr{F} on C/U together with isomorphisms

$$\varphi_i \colon \mathscr{F}|_{U_i} \longrightarrow \mathscr{F}_i$$

such that the following diagram commutes.

$$\begin{split} \mathscr{F}|_{U_i \times_U U_j} & \stackrel{\varphi_i}{\longrightarrow} \mathscr{F}_i|_{U_i \times_U U_j} \\ & \qquad \qquad \qquad \downarrow^{\varphi_{ij}} \\ \mathscr{F}|_{U_i \times_U U_j} & \stackrel{\varphi_j}{\longrightarrow} \mathscr{F}_j|_{U_i \times_U U_j} \end{split}$$

The similar statement holds for sheaves of algebraic structures.

Proof: For any object $V/U \in \text{ob } \mathcal{C}/U$, the object $\mathscr{F}(V/U)$ is given as the equalizer of the morphisms:

$$\prod_{i \in I} \mathscr{F}_i(V \times_U U_i/U_i) \Longrightarrow \prod_{i,j \in I} \mathscr{F}_i(V \times_U U_i \times_U U_j/U_i).$$

For sheaves of sets, this set can be written as

$$\mathscr{F}(V/U) = \left\{ (s_i) \in \prod_{i \in I} \mathscr{F}_i(V \times_U U_i/U_i) \middle| \varphi_{ij}(s_i|_{V \times_U U_i \times_U U_j}) = s_j|_{V \times_U U_i \times_U U_j} \right\}.$$

As for the isomorphism, just note that a section in $\mathscr{F}|_{U_i}(V/U_i)$ is nothing but a system of compatible sections $(s_j) \in \prod_{j \in I} \mathscr{F}_i(V \times_U U_i \times_U U_j/U_i)$, which gives rise to a section $s \in \mathscr{F}_i(V/U_i)$. Thus the lemma follows. \square

§ I.10 Special cocontinuous functors

In this section we show that any geometric morphism is equivalent to one comes from a morphism of sites.

Geometric morphisms are induced by morphisms of sites

The key tool is the notion of special cocontinuous functors.

- 1 (Special cocontinuous functors) Let \mathcal{C}, \mathcal{D} be two sites. A special cocontinuous functor $u: \mathcal{C} \to \mathcal{D}$ is a functor which is both continuous and cocontinuous and satisfies the followings.
 - SC1. (locally faithful) For any $a, b : U \rightrightarrows U'$ in \mathcal{C} such that u(a) = u(b), there exists a covering $\{\phi_i : U_i \to U\}$ in \mathcal{C} such that $a \circ \phi_i = b \circ \phi_i$.
 - SC2. (locally full) For any $U, U' \in \text{ob } \mathcal{C}$ and a morphism $c: u(U) \to u(U')$ in \mathcal{D} , there exists a covering $\{\phi_i : U_i \to U\}$ and morphisms $c_i : U_i \to U'$ in \mathcal{C} such that $u(c_i) = c \circ u(\phi_i)$.
 - SC3. (locally essentially surjective) Any $V \in \text{ob } \mathcal{D}$ admits a covering of the form $\{u(U_i) \to V\}$.
- **2** Lemma (Special cocontinuous functors induce equivalences of topoi) Let C, D be two sites and $u: C \to D$ be a special cocontinuous functors. Let $f: \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be the geometric morphism induced by u. Then f is an equivalence of topoi.

Proof: By Lemma 8.12, the cocontinuous functor u induces a geometric morphism $f \colon \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ as

$$f_*\mathscr{F}(V) := \varprojlim_{V \mathcal{I}^{\mathrm{opp}}} \mathscr{F}(U)$$
 and $f^{-1}\mathscr{G}(U) := \mathscr{G}(u(U)).$

We need to show η : id $\Rightarrow f_* \circ f^{-1}$ and ϵ : $f^{-1} \circ f_* \Rightarrow$ id are isomorphisms. To begin with, for any sheaf \mathscr{F} on \mathscr{C} , we have

$$f^{-1}f_*\mathscr{F}(U) = \varprojlim_{u(U)} \mathscr{F}^{\mathrm{opp}} \mathscr{F}(U').$$

As (U, id) is an object in $u(U)\mathcal{I}$, there is a canonical map from this limit to $\mathscr{F}(U)$. We need to show it is bijective.

One one hand, any element $(s_{(U',\psi)})$ in the limit is uniquely determined by $s_{(U,id)}$. Indeed, for any $\psi \colon u(U') \to u(U)$, by SC2, there is a covering $\mathfrak{U}' = \{\phi_i \colon U_i' \to U'\}$ and morphisms $\psi_i \colon U_i' \to U$ in \mathcal{C} such that $u(\psi_i) = \psi \circ u(\phi_i)$. Therefore $s_{(U',\psi)}|_{U_i'} = s_{(U,id)}|_{U_i'}$. As \mathfrak{U}' is a covering, this shows that $(s_{(U',\psi)})$ is uniquely determined by $s_{(U,id)}$.

On the other hand, given any $s \in \mathscr{F}(U)$, there exists an element $(s_{(U',\psi)})$ in the limit such that $s_{(U,\mathrm{id})} = s$. For any $\psi \colon u(U') \to u(U)$, let U'_i, ϕ_i, ψ_i be as before. Then we only need to show any $s|_{U'_i}$ and $s|_{U'_j}$ agree on $U'_i \times_{U'} U'_j$. Consider the diagram

$$U'_{i} \times_{U'} U'_{j} \xrightarrow{p_{2}} U'_{j}$$

$$\downarrow^{p_{1}} \qquad \qquad \downarrow^{\phi_{j}}$$

$$U'_{i} \xrightarrow{\phi_{i}} U$$

which needs not to be commutative but becomes commutative after apply u to it. By SC1, there exists coverings $\{\phi_{ijk}: U'_{ijk} \to U'_i \times_{U'} U'_j\}$ such that $\phi_i \circ p_1 \circ \phi_{ijk} = \phi_j \circ p_2 \circ \phi_{ijk}$. Therefore

$$s|_{U_i'}\Big|_{U_i'\times_{U'}U_j'}\Big|_{U_{ijk}'} = s|_{U_j'}\Big|_{U_i'\times_{U'}U_j'}\Big|_{U_{ijk}'}.$$

Hence $s|_{U'_i}$ and $s|_{U'_j}$ agree on $U'_i \times_{U'} U'_j$ as desired and thus we get a section $s_{(U',\psi)} \in \mathscr{F}(U')$. Those sections form an element $(s_{(U',\phi)})$ in the limit and satisfies $s_{(U,\mathrm{id})} = s$.

Next, for any sheaf \mathscr{G} on \mathcal{D} , by the triangle identity $f^{-1} \circ f_* \circ f^{-1} = f^{-1}$, we see the canonical morphism

$$\mathscr{G} \to f_* f^{-1} \mathscr{G}$$

is bijective on objects of the form u(U). By SC3, any object V has a covering of the form $\{u(U_i) \to V\}$, thus $\mathscr{G}(V) \to f_* f^{-1} \mathscr{G}(V)$ is also bijective. Therefore, $\mathscr{G} \to f_* f^{-1} \mathscr{G}$ is an isomorphism.

The localization of a special cocontinuous functor is again a special cocontinuous functor.

3 Lemma (Localization of a special cocontinuous functor) Let C, D be two sites and $u: C \to D$ be a special cocontinuous functor. Then we have a commutative diagram

$$\begin{array}{c|c}
\mathcal{C}/X & \xrightarrow{j_X} & \mathcal{C} \\
u' \downarrow & & \downarrow u \\
\mathcal{D}/u(X) & \xrightarrow{j_{u(X)}} & \mathcal{D}
\end{array}$$

as in Theorem 9.13 and the vertical arrows are special cocontinuous functors. Hence in the commutative diagram of topoi,

$$\begin{array}{c|c} \mathbf{Sh}(\mathcal{C}/X) & \xrightarrow{j_X} \mathbf{Sh}(\mathcal{C}) \\ f' & & \downarrow f \\ \mathbf{Sh}(\mathcal{D}/u(X)) & \xrightarrow{j_{u(X)}} \mathbf{Sh}(\mathcal{D}) \end{array}$$

vertical arrows are equivalences of topoi.

Proof: What we have to show is that the induced functor u' is a special cocontinuous functor.

u' is cocontinuous. This is Theorem 9.13.

u' is continuous. Let $\mathfrak{U}/X = \{U_i/X \to U/X\}$ be a covering in \mathcal{C}/X , then $\mathfrak{U} = \{U_i \to U\}$ is a covering in \mathcal{C} . Since u is continuous, $u(\mathfrak{U})$ is a covering in \mathcal{D} . Thus $u'(\mathfrak{U}/X) = u(\mathfrak{U})/u(X)$ is a covering in \mathcal{D}/X .

u' satisfies SC1. Let $a, b : U/X \Rightarrow U'/X$ be two morphisms such that u'(a) = u'(b). Let a, b also denote the corresponding morphisms $U \Rightarrow U'$. Then, since u satisfies SC1, there is a covering $\mathfrak{U} = \{\phi_i : U_i \to U\}$ in \mathcal{C} such that $a \circ \phi_i = b \circ \phi_i$. This gives a covering \mathfrak{U}/X in \mathcal{C}/X such that $a \circ \phi_i = b \circ \phi_i$.

u' satisfies SC2. Let $U/X, U/X \in \text{ob } \mathcal{C}/X$ and $c: u'(U/X) \to u'(U'/X)$ a morphism in \mathcal{D}/X . Then, since u satisfies SC2, there is a covering $\mathfrak{U} = \{\phi_i \colon U_i \to U\}$ and morphisms $c_i \colon U_i \to U'$ in \mathcal{C} such that $u(c_i) = c \circ u(\phi_i)$. This gives a covering \mathfrak{U}/X and morphisms $c_i \colon U_i/X \to U'/X$ such that $u(c_i) = c \circ u(\phi_i)$.

u' satisfies SC3. Let V/u(X) be an object in $\mathcal{D}/u(X)$. Then, since u satisfies SC3, there is a covering of V of the form $\{u(U_i) \to V\}$. This gives V/u(X) a covering of the form $\{u'(U_i/X) \to V/u(X)\}$.

Up to equivalence of topoi, any small site can be enlarged to a subcanonical one.

- **4 Lemma (Enlarging a site)** Let C be a small site. Let $C' \subset \mathbf{Sh}(C)$ be a small full subcategory such that
 - $h_U^\# \in \operatorname{ob} \mathcal{C}'$ for all $U \in \operatorname{ob} \mathcal{C}$,
 - C' is preserved under pullbacks.

Define a covering of C' as a family $\{\mathscr{F}_i \to \mathscr{F}\}$ such that $\coprod \mathscr{F}_i \to \mathscr{F}$ is an epimorphism. Then

- 1. C' is a site;
- 2. C' has subcanonical topology;
- 3. $u: U \mapsto h_U^{\#}$ is a special cocontinuous functor, hence induces an equivalence of topoi $f: \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{C}')$;
- 4. for any $\mathscr{F} \in \text{ob } \mathcal{C}'$, we have $f^{-1}h_{\mathscr{F}} = \mathscr{F}$;
- 5. for any $U \in \text{ob } \mathcal{C}$, we have $f_*h_U^\# = h_{u(U)} = h_{h_U^\#}$.

Proof: 1. is obvious.

2. Let $\{\mathscr{F}_i \to \mathscr{F}\}$ be a covering in \mathcal{C}' , i.e. a surjective family of morphisms of sheaves, and let \mathscr{G} an object in \mathcal{C}' , i.e. a sheaf on \mathcal{C} . We need to

show $\{\mathscr{F}_i \to \mathscr{F}\}$ is effective-epic, which follows from Proposition 7.3, saying $\coprod_i \mathscr{F}_i \to \mathscr{F}$ is an epimorphism if and only if it is an effective epimorphism.

3. u is cocontinuous: Let $\mathfrak{F} = \{\mathscr{F}_j \to h_U^\#\}$ by a covering in \mathscr{C}' , then $\coprod_j \mathscr{F}_j \to h_U^\#$ is an epimorphism. By Proposition 7.3, it is locally surjective, which means there is a covering $\mathfrak{U} = \{U_i \to U\}$ in \mathscr{C} such that each $\mathrm{id}_U|_{U_i} \in h_U^\#(U_i)$ has a preimage $s_i \in \coprod_j \mathscr{F}_j(U_i)$. Assume $s_i \in \mathscr{F}_{j_i}(U_i)$, then they give rise to a refinement $u(\mathfrak{U}) \to \mathfrak{F}$ given by $h_{U_i}^\# \to \mathscr{F}_{j_i}$.

u is continuous: Follows from that Yoneda embedding and sheafification commutes with limits and Lemma 7.15.

u satisfies SC1: Let $a, b : U \Rightarrow U'$ be two morphisms in \mathcal{C} such that u(a) = u(b), which means, as sections of $h_{U'}(U)$, a and b have the same image in the sheafification. By the construction of #, this means there is a covering $\mathfrak{U} = \{\phi_i : U_i \to U\}$ in \mathcal{C} such that a and b agree on each U_i . Then $a \circ \phi_i = b \circ \phi_i$.

u' satisfies SC2. Let $U, U \in \text{ob } \mathcal{C}$ and $c: h_U^\# \to h_{U'}^\#$ a morphism in \mathcal{C}' . Then c is also a section in the seafification of $h_{U'}$ on U, thus there is a covering $\{\phi_i \colon U_i \to U\}$ in \mathcal{C} such that each $c|_{U_i}$ lies in the image of the canonical map, thus has a preimage $c_i \in h_{U'}(U_i)$. That means, $u(c_i) = c \circ u(\phi_i)$.

u' satisfies SC3. Let \mathscr{F} be an object in \mathscr{C}' . We need to find an epimorphism $\mathscr{F}_0 \to \mathscr{F}$, where \mathscr{F}_0 is a coproduct of sheaves of the form $h_U^\#$ with $U \in \text{ob } \mathscr{C}$. This follows from Lemma 7.16.

4. For any $\mathscr{F} \in \operatorname{ob} \mathcal{C}'$ and $U \in \operatorname{ob} \mathcal{C}$, we have

$$f^{-1}h_{\mathscr{F}}(U) = h_{\mathscr{F}}(u(U)) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^{\#}, \mathscr{F}) = \mathscr{F}(U).$$

5. For any $\mathscr{F} \in \operatorname{ob} \mathcal{C}'$ and $U \in \operatorname{ob} \mathcal{C}$, we have

$$f_* h_U^{\#}(\mathscr{F}) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C}')}(h_{\mathscr{F}}, f_* h_U^{\#})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(f^{-1}h_{\mathscr{F}}, h_U^{\#})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathscr{F}, h_U^{\#}) = h_{u(U)}(\mathscr{F}).$$

Moreover, we can enlarge a site to a finite-complete one.

- **5 Lemma (Enlarging a site)** Let C be a small site. Let $\{\mathscr{F}_i\}$ be a set of sheaves on C. Then there exists an equivalence of topoi $f \colon \mathbf{Sh}(C) \to \mathbf{Sh}(C')$ induced by a special cocontinuous functor $u \colon C \to C'$ of sites such that
 - 1. C' has subcanonical topology;
 - 2. a family $\{V_i \to V\}$ of morphisms of C' is (combinatorially equivalent to) a covering of C' if and only if $\prod h_{V_i} \to h_V$ is epic;
 - 3. C' is finite-complete;

- 4. every subsheaf of a representable sheaf on C' is representable;
- 5. each $f_*\mathcal{F}_i$ is a representable sheaf.

Proof: Let C_1 be a full subcategory of $\mathbf{Sh}(C)$ consisting of all $h_U^\#$ with $U \in C$, the given sheaves \mathscr{F}_i , the terminal sheaf $\underline{*}$ and all their subsheaves. If C is already finite-complete, then setting $C' = C_1$ with the topology inheriting from $\mathbf{Sh}(C)$, $u: C \to C'$ given by $U \mapsto h_U^\#$ and everything is done.

If \mathcal{C} is not finite-complete, then let \mathcal{C}_{n+1} be the full subcategory of $\mathbf{Sh}(\mathcal{C})$ consisting of fibre products and subsheaves of objects in \mathcal{C}_n . In this way, we get:

$$C_1 \subset C_2 \subset C_3 \subset \cdots \subset \mathbf{Sh}(C)$$
.

Let \mathcal{C}' be the union of those \mathcal{C}_i , then everything follows.

Now, we face the title of this subsection.

6 Theorem (Geometric morphisms are induced by morphisms of sites) Let C, D be two sites and $f : \mathbf{Sh}(C) \to \mathbf{Sh}(D)$ be a geometric morphism. Then there exists a site C' and a diagram of functors

$$C \xrightarrow{v} C' \xleftarrow{u} D$$

such that

- 1. v is a special cocontinuous functor;
- 2. u commutes with fibre products, is continuous and defines a morphism of sites $C' \to D$;
- 3. the geometric morphism f agree with the composition

$$\mathbf{Sh}(\mathcal{C}) \longrightarrow \mathbf{Sh}(\mathcal{C}') \longrightarrow \mathbf{Sh}(\mathcal{D}).$$

which is induced by v and u.

Proof: By Lemma 5, we have a special cocontinuous functor

$$v \colon \mathcal{C} \longrightarrow \mathcal{C}'$$

$$U \longmapsto h_U^{\#},$$

where \mathcal{C}' is finite-complete, has subcanonical topology compatible with the one of $\mathbf{Sh}(\mathcal{C})$, guarantees that every subsheaf of a representable sheaf is representable and contains all $f^{-1}h_V^\#$. Let g denotes the geometric morphism induced by v.

Now, define the functor u by $V \mapsto f^{-1}h_V^{\#}$. Since f^{-1} is exact and commutes with all colimits, the functor u transforms a covering into a effective-epic family of morphisms of sheaves. Hence u is continuous. Since both $h^{\#}$

and f^{-1} are left exact, so is u and thus u defines a morphism of sites by Lemma 1.8.

To show the last statement, it suffices to show $u^s \circ g_* = f_*$. Indeed, for any $U \in \text{ob } \mathcal{C}$ and $V \in \text{ob } \mathcal{D}$, we have

$$(u^{s} \circ g_{*}h_{U}^{\#})(V) = g_{*}h_{U}^{\#}(f^{-1}h_{V}^{\#})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(f^{-1}h_{V}^{\#}, h_{U}^{\#})$$

$$= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{D})}(h_{V}^{\#}, f_{*}h_{U}^{\#})$$

$$= f_{*}h_{U}^{\#}(V).$$

By Lemma 7.16, this shows $u^s \circ g_* = f_*$.

- **6.a Remark** Notation as in Theorem 6. Assume \mathcal{D} is finite-complete. Then, by the construction of v, it is left exact. Then, by Lemma 8.8.b, v defines a morphism of sites. Apply Lemma 5 to \mathcal{D} to get \mathcal{D}' , then v' induces a morphism of site $v' \colon \mathcal{C}' \to \mathcal{D}'$. let f' be the geometric morphisms induced by v'. Next, apply Theorem 6 to the geometric morphism $\mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D}')$. We finally have the following statement:
- **6.b** Corollary Notation and assumptions as above. Then the geometric morphism satisfies a commutative diagram of topoi.

$$\mathbf{Sh}(\mathcal{C}) \xrightarrow{f} \mathbf{Sh}(\mathcal{D})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Sh}(\mathcal{C}') \xrightarrow{f'} \mathbf{Sh}(\mathcal{D}')$$

Moreover, we have

- 1. the vertical arrows are equivalence of topoi induced by the special cocontinuous functors $\mathcal{C} \to \mathcal{C}'$ and $\mathcal{D} \to \mathcal{D}'$;
- 2. the sites C' and D' are finite-complete and have subcanonical topologies;
- 3. given any set of sheaves $\{\mathscr{F}_i\}$ (resp. $\{\mathscr{G}_i\}$) on \mathcal{C} (resp. \mathcal{D}), we may assume each of them is a representable sheaf on \mathcal{C}' (resp. \mathcal{D}').

Localizations of topoi

Since any geometric morphism can be identified with one induced by morphism of sites, results in §9 holds for general case.

7 Lemma (Localizations of a topos) Let C be a site and \mathscr{F} a sheaf on it. Then $\mathbf{Sh}(\mathcal{C})/\mathscr{F}$ is a topos and there is a geometric morphism

$$j_{\mathscr{F}} \colon \mathbf{Sh}(\mathcal{C})/\mathscr{F} \longrightarrow \mathbf{Sh}(\mathcal{C})$$

such that

- 1. $j_{\mathscr{X}}^{-1}$ is the functor $\mathscr{H} \mapsto \mathscr{H} \times \mathscr{F}/\mathscr{F}$,
- 2. $j_{\mathscr{F}!}$ is the forgetful functor $\mathscr{G}/\mathscr{F} \mapsto \mathscr{G}$.

Remark The topos $\mathbf{Sh}(\mathcal{C})/\mathscr{F}$ is called the **localization of the topos** $\mathbf{Sh}(\mathcal{C})$ at \mathscr{F} and the geometric morphism $j_{\mathscr{F}!} \colon \mathbf{Sh}(\mathcal{C})/\mathscr{F} \to \mathbf{Sh}(\mathcal{C})$ is called the **localization morphism**.

Proof: By Theorem 6, we may assume \mathcal{C} has subcanonical topology and $\mathscr{F} = h_X$ for some $X \in \text{ob } \mathcal{C}$. Then, by Theorem 9.3, there is an equivalence $\text{Sh}(\mathcal{C}/X) \cong \text{Sh}(\mathcal{C})/h_X$ such that the composition

$$\mathbf{Sh}(\mathcal{C}/X) \longrightarrow \mathbf{Sh}(\mathcal{C})/h_X \longrightarrow \mathbf{Sh}(\mathcal{C})$$

equals to $j_{X!}$. Then the descriptions of $j_{\mathscr{F}}^{-1}$ follows from Corollary 9.2.b and $j_{\mathscr{F}!}$ from above.

7.a Lemma Notations as in Lemma 7. The functor $j_{\mathscr{F}*}$ maps $\varphi \colon \mathscr{G} \to \mathscr{F}$ to the subsheaf of $\mathcal{H}om(\mathscr{F},\mathscr{G})$:

$$U\longmapsto\left\{\mathscr{F}|_{U}\stackrel{\alpha}{\longrightarrow}\mathscr{G}|_{U}\right|\varphi|_{U}\circ\alpha=\mathrm{id}\right\}.$$

Proof: For any $\varphi \colon \mathscr{G} \to \mathscr{F}$ and $U \in \text{ob } \mathcal{C}$, we have

$$(j_{\mathscr{F}*}\varphi)(U) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_{U}^{\#}, j_{\mathscr{F}*}\varphi) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})/\mathscr{F}}(j_{\mathscr{F}}^{-1}h_{U}^{\#}, \varphi),$$

which is the fiber of $(h_U^{\#} \times \mathscr{F})/\mathscr{F}$ under the morphism

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^{\#} \times \mathscr{F}, \mathscr{G}) \xrightarrow{\varphi \circ} \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^{\#} \times \mathscr{F}, \mathscr{F}).$$

By the adjunction in Theorem 9.17, we have

$$\begin{aligned} \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_{U}^{\#} \times \mathscr{F}, \mathscr{G}) &\cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_{U}^{\#}, \mathcal{H}om(\mathscr{F}, \mathscr{G})) \\ &= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C}/U)}(\mathscr{F}|_{U}, \mathscr{G}|_{U}), \\ \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_{U}^{\#} \times \mathscr{F}, \mathscr{F}) &\cong \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_{U}^{\#}, \mathcal{H}om(\mathscr{F}, \mathscr{F})) \\ &= \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C}/U)}(\mathscr{F}|_{U}, \mathscr{F}|_{U}), \end{aligned}$$

the map $\varphi \circ$ becomes

$$\widetilde{\varphi} \colon \operatorname{Hom}_{\operatorname{\mathbf{Sh}}(\mathcal{C}/U)}(\mathscr{F}|_U, \mathscr{G}|_U) \longrightarrow \operatorname{Hom}_{\operatorname{\mathbf{Sh}}(\mathcal{C}/U)}(\mathscr{F}|_U, \mathscr{F}|_U)$$

$$\psi \longmapsto \varphi|_U \circ \psi,$$

and $(h_U^\# \times \mathscr{F})/\mathscr{F}$ becomes $\mathrm{id}_{\mathscr{F}|_U}$. Therefore $j_{\mathscr{F}*}\varphi(U)$ is isomorphic to the fiber of $\mathrm{id}_{\mathscr{F}|_U}$ under the morphism

$$\operatorname{Hom}_{\mathbf{Sh}(\mathcal{C}/U)}(\mathscr{F}|_{U},\mathscr{G}|_{U}) \xrightarrow{\varphi|_{U}} \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C}/U)}(\mathscr{F}|_{U},\mathscr{F}|_{U}). \qquad \Box$$

Moreover, we can generalize Theorem 9.3.

- **8 Theorem** Let C be a site and \mathscr{F} a sheaf on it. Let C/\mathscr{F} be the site
 - whose underlying category is the category of sections (Remark 1.2.d),
 - whose objects are pairs (U, s) of an object $U \in ob \mathcal{C}$ and a section $s \in \mathcal{F}(U)$,
 - whose morphism $\phi: (U,s) \to (V,t)$ is a morphism $\phi: U \to V$ in \mathcal{C} such that the restriction of t along ϕ is s,
 - whose coverings are families $\{(U_i, s_i) \to (U, s)\}$ such that $\{U_i \to U\}$ is a covering in C.

Then, the forgetful functor $j: \mathcal{C}/\mathscr{F} \to \mathscr{F}$ is a continuous and cocontinuous functor and induces a geometric morphism

$$j \colon \mathbf{Sh}(\mathcal{C}/\mathscr{F}) \to \mathbf{Sh}(\mathcal{C}).$$

Moreover, there is an equivalence $\mathbf{Sh}(\mathcal{C}/\mathscr{F}) \cong \mathbf{Sh}(\mathcal{C})/\mathscr{F}$ turning j into $j_{\mathscr{F}}$. In the case $\mathscr{F} = h_X^\#$ for some $X \in \text{ob } \mathcal{C}$, this j agrees with j_X in 9.1.

Proof: It is easy to verify that j is continuous and cocontinuous. By Lemma 8.12, j induces a geometric morphism $j: \mathbf{Sh}(\mathcal{C}/\mathscr{F}) \to \mathbf{Sh}(\mathcal{C})$ such that $j^{-1}\mathscr{G}(U,s) = \mathscr{G}(U)$ and j^{-1} has a left adjoint $j_!$.

Now, a morphism $\phi : \underline{*} \to j^{-1}\mathscr{G}$ on \mathscr{C}/\mathscr{F} is equivalent to a morphism $\phi : \mathscr{F} \to \mathscr{G}$. Indeed, for any (U,s) in \mathscr{C}/\mathscr{F} , $\phi(U,s)$ is a map from * to $\mathscr{G}(U)$ thus a section t of $\mathscr{G}(U)$. Then we can identify ϕ with the morphism $\mathscr{F} \to \mathscr{G}$ mapping s to t. Therefore $j_!\underline{*} = \mathscr{F}$.

Then, for any sheaf \mathcal{H} on \mathcal{C}/\mathcal{F} , there is a canonical morphism

$$j_! \mathscr{H} \longrightarrow j_! * = \mathscr{F}.$$

Thus we get a functor $\mathbf{Sh}(\mathcal{C}/\mathscr{F}) \to \mathbf{Sh}(\mathcal{C})/\mathscr{F}$ whose inverse is given by mapping each $\varphi \colon \mathscr{G} \to \mathscr{F}$ to the sheaf

$$(U, s) \longmapsto \{t \in \mathscr{G}(U) | \varphi(t) = s\}.$$

on \mathcal{C}/\mathscr{F} .

Next, we can generalize Lemma 9.7.

9 Lemma Let C be a site and $s: \mathcal{G} \to \mathcal{F}$ a morphism of sheaves on it. Then there is a canonical commutative diagram of geometric morphisms

where j_s is the localization of the topos $\mathbf{Sh}(\mathcal{C})/\mathscr{F}$ at \mathscr{G}/\mathscr{F} . In particular, we have

$$j_s^{-1}(\mathscr{H} \longrightarrow \mathscr{F}) = (\mathscr{H} \times_{\mathscr{F}} \mathscr{G} \longrightarrow \mathscr{G}),$$

and

$$j_{s!}(\mathscr{H} \longrightarrow \mathscr{G}) = (\mathscr{H} \longrightarrow \mathscr{G} \stackrel{s}{\longrightarrow} \mathscr{F}).$$

In the case $\mathscr{G}=h_Y^\#$, $\mathscr{F}=h_X^\#$ and $s\colon \mathscr{G}\to \mathscr{F}$ comes from a morphism $f\colon Y\to X$, the diagram above agrees with the one in the proof of Lemma 9.7.

Then, we generalize Theorem 9.11.

10 Theorem (Localization of morphisms of topoi) Let $f \colon \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ be a geometric morphism. Let \mathscr{G} be a sheaf on \mathcal{D} and $\mathscr{F} = f^{-1}\mathscr{G}$. Then there exists a commutative diagram of topoi

$$\mathbf{Sh}(\mathcal{C})/\mathscr{F} \xrightarrow{j_{\mathscr{F}}} \mathbf{Sh}(\mathcal{C}) \\
f' \downarrow \qquad \qquad \downarrow f \\
\mathbf{Sh}(\mathcal{D})/\mathscr{G} \xrightarrow{j_{\mathscr{G}}} \mathbf{Sh}(\mathcal{D})$$

Here the geometric morphism f' is characterized by the property that

$$f'^{-1}(\mathscr{H} \xrightarrow{\varphi} \mathscr{G}) = (f^{-1}\mathscr{H} \xrightarrow{f^{-1}\varphi} \mathscr{F}).$$

Finally, we have $f'_* \circ j_{\mathscr{F}}^{-1} = j_{\mathscr{G}}^{-1} \circ f_*$.

Proof: By Corollary 6.b, we may assume

- 1. \mathcal{C} and \mathcal{D} are finite-complete and have subcanonical topologies;
- 2. f is induced by a left exact continuous functor $u: \mathcal{D} \to \mathcal{C}$;
- 3. $\mathscr{G} = h_Y$ for some $Y \in \text{ob } \mathcal{D}$.

Then, by Lemma 8.6.b, $\mathscr{F} = f^{-1}h_Y = h_{u(Y)}$. Let X = u(Y). Thus, by Theorem 9.11, we have a commutative diagram of topoi

$$\mathbf{Sh}(\mathcal{C}/X) \xrightarrow{j_X} \mathbf{Sh}(\mathcal{C})$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$\mathbf{Sh}(\mathcal{D}/Y) \xrightarrow{j_Y} \mathbf{Sh}(\mathcal{D})$$

and $f'_*j_X^{-1} = j_Y^{-1}f_*$. By Theorem 8, we can identify $j_{\mathscr{F}}$ with j_X and $j_{\mathscr{G}}$ with j_Y . Then the statements follow.

10.a Lemma Let $f: \mathcal{C} \to \mathcal{D}$ be a morphism of sites defined by a continuous functor $u: \mathcal{D} \to \mathcal{C}$. Let $Y \in \text{ob } \mathcal{D}$ and X = u(Y). Let $\mathscr{G} = h_Y^\#$ and $\mathscr{F} = h_X^\# = f^{-1}\mathscr{G}$. Then the diagram of topoi in Theorem 10 agrees with the one in Theorem 9.11 via the identification $j_{\mathscr{F}} = j_X$ and $j_{\mathscr{G}} = j_Y$ in Theorem 8.

Remark Note that the morphism of sites in the proof of Theorem 10 may be different from the f given in the lemma. However, they induces the same geometric morphism.

Like in Theorem 9.12, we can combine Lemma 9 and Theorem 10.

11 Theorem (General localization of morphisms of topoi) Let $f: \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ be a geometric morphism. Let \mathscr{F} be a shaef on \mathcal{C} , \mathscr{G} a sheaf on \mathcal{D} and $s: \mathscr{F} \to f^{-1}\mathscr{G}$ a morphism of sheaves. Then there exists a commutative diagram of topoi

$$\mathbf{Sh}(\mathcal{C})/\mathscr{F} \xrightarrow{j_{\mathscr{F}}} \mathbf{Sh}(\mathcal{C}) \\
\downarrow^{f_s} \qquad \qquad \downarrow^{f} \\
\mathbf{Sh}(\mathcal{D}/\mathscr{G} \xrightarrow{j_{\mathscr{G}}} \mathbf{Sh}(\mathcal{D})$$

where $f_s = f' \circ j_s$, $f' : \mathbf{Sh}(\mathcal{C})/f^{-1}\mathscr{G} \to \mathbf{Sh}(\mathcal{D})/\mathscr{G}$ is defined in Theorem 10, $j_s : \mathbf{Sh}(\mathcal{C})/\mathscr{F} \to \mathbf{Sh}(\mathcal{C})/f^{-1}\mathscr{F}$ is defined in Lemma 9. The functor f_s^{-1} has the following description

$$f_s^{-1}(\mathscr{H} \xrightarrow{\varphi} \mathscr{G}) = (f^{-1}\mathscr{H} \times_{f^{-1}\mathscr{G}} \mathscr{F} \to \mathscr{F}).$$

Moreover, for any morphisms $a: \mathcal{F} \to \mathcal{F}', b: \mathcal{G} \to \mathcal{G}'$ and $s': \mathcal{F}' \to f^{-1}\mathcal{G}'$ making the diagram

$$\mathcal{F} \xrightarrow{s} f^{-1} \mathcal{F}$$

$$\downarrow \\ f^{-1}(b)$$

$$\mathcal{F}' \xrightarrow{s'} f^{-1} \mathcal{F}'$$

commutes, the following diagram commutes.

$$\begin{array}{c|c} \mathbf{Sh}(\mathcal{C})/\mathscr{F} \stackrel{j_a}{\longrightarrow} \mathbf{Sh}(\mathcal{C})/\mathscr{F}' \\ f_s & & \downarrow^{f_{s'}} \\ \mathbf{Sh}(\mathcal{D})/\mathscr{G} \stackrel{j_b}{\longrightarrow} \mathbf{Sh}(\mathcal{D})/\mathscr{G}' \end{array}$$

In the case f is induced by a morphism of sites $f: \mathcal{C} \to \mathcal{D}$ defined by a continuous functor $u: \mathcal{D} \to \mathcal{C}$, $\mathscr{F} = h_X^\#$ and $\mathscr{G} = h_Y^\#$ for some $X \in \text{ob}\,\mathcal{C}$ and $Y \in \text{ob}\,\mathcal{D}$ and $s: \mathscr{F} \to f^{-1}\mathscr{G}$ is induced by a morphism $c: X \to u(Y)$ in \mathcal{C} . The above above diagrams of topoi agrees with those in Theorem 9.12 via the identifications $j_{\mathscr{F}} = j_X$ and $j_{\mathscr{G}} = j_Y$ in Theorem 8.

§ I.11 Points

In this section, we introduce points and stalks to general sites and topos. They behave like points of a topological space, but still have some differences. However, not every site/topos has enough points.

Points of a site and a topos

1 (Points of a site) Let \mathcal{C} be a site. A point p of \mathcal{C} is a continuous functor $u: \mathcal{C} \to \mathbf{Set}$ which defines a morphism of sites $\mathbf{Set} \to \mathcal{C}$. To avoid the size issue, we should restrict on a small subcategory \mathbf{Set} containing essential images of p. For convention, we write out the conditions straightforward.

By Example 8.3, the sheaves on (small) **Set** is equivalent to the sets obtained by apply them to the singleton. For any sheaf \mathscr{F} on \mathscr{C} , we have

$$u_s \mathscr{F}(*) = \varinjlim_{\mathcal{I}_*^{\mathrm{opp}}} \mathscr{F}(U).$$

Recall that an object in \mathcal{I}_* is is a pair (U, x) with $U \in \text{ob } \mathcal{C}$ and $x \colon * \to u(U)$, which is equivalent to an element of u(U). So we define a **neighborhood** of p to be a pair (U, x) with $U \in \text{ob } \mathcal{C}$ and $x \in u(U)$ and a morphism of neighborhoods $(U, x) \to (V, y)$ to be a morphism $\phi \colon U \to V$ such that $u(\phi)(x) = y$. In this setting, $u_s \mathscr{F}(*)$ is called the **stalk** of \mathscr{F} at p and is denoted by \mathscr{F}_p . Note that the definition

$$\mathscr{F}_p := \varinjlim_{(U,x)} \mathscr{F}(U)$$

also apply to presheaves. In this way, we get a stalk functor:

$$\mathbf{PSh}(\mathcal{C}) \longrightarrow \mathbf{Set}$$

$$\mathscr{F} \longmapsto \mathscr{F}_n.$$

So, here are the conditions:

Pt1. For every overing $\{U_i \to U\}$, the map $\coprod u(U_i) \to u(U)$ is surjective;

Pt2. For every overing $\{U_i \to U\}$ and every morphism $V \to U$, the maps $u(U_i \times_U V) \to u(U_i) \times_{u(U)} u(V)$ are bijective;

Pt3. The stalk functor $\mathscr{F} \mapsto \mathscr{F}_p$ is left exact.

Recall that under the equivalence of (small) **Set** and sheaves on it, a set S can be viewed as a sheaf $\text{Hom}_{\mathbf{Set}}(-,S)$. The functor u^p then apply to this sheaf and then defines a functor

$$u^p \colon \mathbf{Set} \longrightarrow \mathbf{PSh}(\mathcal{C})$$

 $S \longmapsto \mathrm{Hom}_{\mathbf{Set}}(u(-), S).$

- **1.a Lemma** Let C be a site and $p = u : C \to \mathbf{Set}$ a functor. Then
 - 1. u^p is right adjoint to the stalk functor on presheaves;
 - 2. there are isomorphisms $(h_U)_p = u(U)$ natural in $U \in ob \mathcal{C}$.

Proof: 1 follows from Theorem 1.9. By Corollary 1.9.a, $u_p h_U = h_{u(U)}$, thus $(h_U)_p = u(U)$.

- **1.b Lemma** Let C be a site and $p = u : C \to \mathbf{Set}$ a functor such that for every overing $\mathfrak{U} = \{U_i \to U\}$
 - 1. the map $\prod u(U_i) \to u(U)$ is surjective;
 - 2. the maps $u(U_i \times_U U_j) \to u(U_i) \times_{u(U)} u(U_j)$ are surjective.

Then

- 1. the presheaf u^pS is a sheaf for all set S, denoted by u^sS ;
- 2. u^s is right adjoint to the stalk functor on sheaves;
- 3. for every presheaf \mathscr{F} on \mathscr{C} , $\mathscr{F}_p = \mathscr{F}_p^{\#}$.

Proof: The first two are obvious. For any set S, we have

$$\operatorname{Hom}(\mathscr{F}_p, S) = \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(\mathscr{F}, u^p S) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathscr{F}^{\#}, u^s S) = \operatorname{Hom}(\mathscr{F}_p^{\#}, S).$$

Then the third assertion follows.

1.c (Skyscraper sheaves) Let p be a point of a site C defined by a functor $u: C \to \mathbf{Set}$. For any set S, the sheaf u^sS is denoted by p_*S and is called a skyscraper sheaf.

Denote the stalk functor by p^{-1} , then we get a geometric morphism

$$p^{-1} \dashv p_* \colon \mathbf{Set} \leftrightarrows \mathbf{Sh}(\mathcal{C}).$$

2 (Points of a topos) Let $\mathbf{Sh}(\mathcal{C})$ be a topos, then a point p of it is a geometric morphism $p \colon \mathbf{Sh}(\mathsf{pt}) \to \mathbf{Sh}(\mathcal{C})$.

We have seen that a point of a site C induces a point of the topos $\mathbf{Sh}(C)$. Conversely,

2.a Lemma Let C be a site and $p = (p^{-1} \dashv p_*)$ a point of $\mathbf{Sh}(C)$. Then the functor $u(U) = p^{-1}(h_U^{\#})$ gives rise to a point of C which induces a point equal to p.

Proof: First, we show u gives rise to a point of \mathcal{C} .

Pt1. Let $\{U_i \to U\}$ be a covering, then by Lemma 7.15, the morphism $\coprod h_{U_i}^\# \to h_U^\#$ is an epimorphism. Since p^{-1} commutes with colimits, the map $\coprod u(U_i) \to u(U)$ is surjective.

Since Yoneda embedding, sheafification and p^{-1} are left exact, so is u. Then Pt2. and Pt3. follows.

Let p' denote the point of topos induced by u. It remains to show that $p'^{-1} = p^{-1}$. By Lemma 1.a and Lemma 1.b, this is true for $h_U^\#$ with $U \in \text{ob } \mathcal{C}$. By Lemma 7.16, any sheaf \mathscr{F} on \mathcal{C} is a colimits over a family of sheaves of the form $h_U^\#$. Since both p'^{-1} and p^{-1} commute with colimits, we see $p'^{-1}\mathscr{F} = p^{-1}\mathscr{F}$.

Apply Theorem 10.6, we have

- **3 Theorem** Let p be a point of a site C defined by a functor $u: C \to \mathbf{Set}$. Let S_0 be an infinite set such that all u(U) lies in S_0 and S be the full subcategory of \mathbf{Set} whose objects are subsets of S_0 . Then
 - 1. there is an equivalence $i : \mathbf{Sh}(pt) \to \mathbf{Sh}(\mathcal{S});$
 - 2. the functor $u: \mathcal{C} \to \mathcal{S}$ defines a morphism of sites $f: \mathcal{S} \to \mathcal{C}$;
 - 3. the composition

$$\mathbf{Sh}(\mathrm{pt}) \longrightarrow \mathbf{Sh}(\mathcal{S}) \longrightarrow \mathbf{Sh}(\mathcal{C})$$

is the point $(p^{-1} \dashv p_*)$ induced by p..

Proof: It remains to show $f_*i_* = p_*$. Indeed, for any set S in S, we have

$$f_*i_*S(U) = i_*(u(U)) = \text{Hom}(u(U), S),$$

which shows $f_*i_*S = p_*S$.

In general $(p_*S)_p$ may not be S, but we have

4 Lemma Let C be a site and p a point of $\mathbf{Sh}(C)$. For any set S, there are canonical maps

$$S \longrightarrow p^{-1}p_*S \longrightarrow S$$

whose composition is id_S .

Proof: There is already a canonical map $p^{-1}p_*S \to S$. Since both p_* and p^{-1} are left exact, $p^{-1}p_*(*) \cong *$. But then this defines a map $S \to p^{-1}p_*S$ by mapping a $s \in S$, viewed as a map $s: * \to S$, to the element corresponding to the map $p^{-1}p_*(s): p^{-1}p_*(*) \cong * \to p^{-1}p_*S$.

5 Lemma Let C be a site and p a point of $\mathbf{Sh}(C)$. Then p_* has the following properties:

- 1. It commutes with limits,
- 2. it is faithful,
- 3. it reflects monomorphisms, epimorphisms and isomorphisms,
- 4. it commutes with coequalizers.

Proof: Since p_* has a left adjoint, it commutes with limits.

Since monomorphisms and epimorphisms and coequalizers in **Set** are split (ref. §2.10 in BMO to see the notion of split coequalizers), they and isomorphisms commute with any functor, a fortiori p_* .

Since the canonical map $p^{-1}p_*S \to S$ is epic, p_* is faithful. Indeed if f and g are two parallel maps transformed into same morphism by p_* , then they fit into the following commutative diagram.

$$\begin{array}{c|c}
p^{-1}p_*S \longrightarrow S \\
\downarrow & g \mid f \\
p^{-1}p_*T \longrightarrow T
\end{array}$$

Since the horizontal maps are epic, we have f = g.

Finally, p_* reflects monomorphisms, epimorphisms and isomorphisms. Indeed in the following commutative diagram,

$$\begin{array}{ccc}
p^{-1}p_*S \longrightarrow S \\
f' \downarrow & \downarrow f \\
p^{-1}p_*T \longrightarrow T
\end{array}$$

since the horizontal maps are epic, the f' is a monomorphism, epimorphism or isomorphism implies so is f.

6 Theorem (Constructing points) Let C be a site. Assume C is finite-complete. Then a point p of C is given by a left exact functor $u: C \to \mathbf{Set}$ such that for every overing $\{U_i \to U\}$, the map $\coprod u(U_i) \to u(U)$ is surjective.

Proof: If p is a point given by a functor u, then u satisfies the later condition. By Lemma 2.a, we u equals the composition $p^{-1} \circ \# \circ h$, which are all left exact, thus so is u.

Conversely, if u is a functor satisfying the conditions, then it remains to show the stalk functor associated to u is left exact. Indeed, it suffices to show the opposite of category of neighborhoods is filtered, which follows from Lemma 1.8.

6.a Example Let C be a site and u a functor as in Lemma 1.b. Assume C is finite-complete and u maps terminal object to the singleton. Then, in general u is NOT a point!

Let \mathcal{C} be the poset $\{1 \to 2\}$, viewed as a site with chaotic topology (ref. Example 2.1.c). Note that 2 is the terminal object and $1 \times_2 1 = 1$, thus \mathcal{C} is finite-complete. Consider the functor u: $u(1) = \{a,b\}$ and $u(2) = \{c\}$. One can see this u satisfies all conditions, but the stalk functor is not exact. Indeed, let \mathscr{F} and \mathscr{G} be the sheaf $\mathscr{F}(1) = *$, $\mathscr{F}(2) = \varnothing$ and $\mathscr{G}(1) = \mathscr{G}(2) = *$ respectively. Then there is an obvious monomorphism $\mathscr{F} \to \mathscr{G}$. However, since their stalks are

$$\mathscr{F}_p = * \coprod *, \qquad \mathscr{G}_p = *,$$

the stalk of this monomorphism is not injective.

6.b Example (Points of a topological space) Let X be a topological space. Consider the functor $u: \mathcal{T}_X \to \mathbf{Set}$ given by

$$u(U) = \begin{cases} \varnothing & \text{if } x \notin U \\ * & \text{if } x \in U. \end{cases}$$

Then this u defines a point of \mathcal{T}_X which induces a stalk functor coinciding with stalk at x.

But not all points come from the really existed points in X.

Let p be a point of \mathcal{T}_X . By Theorem 6, the canonical map $u(U \cap V) \to u(U) \times u(V)$ is bijective. In particular, the diagonal map $u(U) \to u(U) \times u(U)$ is bijective and therefore u(U) is either empty or a singleton. Moreover, for any covering $\{U_i \subset U\}$, we have

$$u(U) = \emptyset \iff \forall i, u(U_i) = \emptyset.$$

Therefore, there is a largest open set W in X with $u(W) = \emptyset$, which is the union of all such open sets. Let $Z = X \setminus W$.

This Z is irreducible. Indeed, if $Z=Z_1\cup Z_2$ with Z_i closed, then $W=(X\setminus Z_1)\cap (X\setminus Z_2)$ and thus $u(X\setminus Z_1)\times u(X\setminus Z_2)=u(W)=\varnothing$, which implies either $X\setminus Z_1=W$ or $X\setminus Z_2=W$.

Now, we can see

$$u(U) = \begin{cases} \varnothing & \text{if } Z \cap U = \varnothing \\ * & \text{if } Z \cap U \neq \varnothing. \end{cases}$$

Conversely, for any irreducible closed set Z of X, the above formula defines a point of \mathcal{T}_X . Therefore:

Points of the site \mathcal{T}_X are one-to-one correspondence to irreducible closed sets of X.

Recall that a topological space is called a *sober space* if it is T_0 and every irreducible closed set is the closure of a point. Thus if X is a sober space, then points of \mathcal{T}_X are one-to-one correspondence to points of X.

6.c Example (Points of a chaotic site) Let \mathcal{C} be a category, viewed as a site with chaotic topology. Then for any object U of \mathcal{C} , the functor $\operatorname{Hom}_{\mathcal{C}}(U,-)$ defines a point of \mathcal{C} .

Points and morphisms

7 Lemma (Points under a morphism of sites) Let $f: \mathcal{C} \to \mathcal{D}$ be a morphism of sites defined by a continuous functor $u: \mathcal{D} \to \mathcal{C}$. Let p be a point of \mathcal{C} given by a functor $v: \mathcal{C} \to \mathbf{Set}$. Then the functor $v \circ u: \mathcal{D} \to \mathbf{Set}$ defines a point q of \mathcal{D} and moreover there is a canonical isomorphism

$$(f^{-1}\mathscr{G})_p = \mathscr{G}_q.$$

Proof: By, Lemma 8.7.b, the functor $v \circ u \colon \mathcal{D} \to \mathbf{Set}$ defines a point q of \mathcal{D} . It remains to show the equality, which follow from Theorem 3. More precisely, by Theorem 3, we may factor p as the composition

$$\mathbf{Sh}(\mathrm{pt}) \xrightarrow{i} \mathbf{Sh}(\mathcal{S}) \xrightarrow{g} \mathbf{Sh}(\mathcal{C})$$

and then q is given by the composition

$$\mathbf{Sh}(\mathrm{pt}) \xrightarrow{i} \mathbf{Sh}(\mathcal{S}) \xrightarrow{g} \mathbf{Sh}(\mathcal{C}) \xrightarrow{f} \mathbf{Sh}(\mathcal{D}).$$

Then the equality follows.

7.a Lemma (Points under a geometric morphism) Let $f : \mathbf{Sh}(\mathcal{C}) \to \mathbf{Sh}(\mathcal{D})$ be a geometric morphism. Let $p : \mathbf{Sh}(\mathrm{pt}) \to \mathbf{Sh}(\mathcal{C})$ be a point. Then $q = f \circ p$ is a point of the topos $\mathbf{Sh} \mathcal{D}$ and moreover there is a canonical isomorphism

$$(f^{-1}\mathscr{G})_p = \mathscr{G}_q.$$

8 Lemma (Points under a localization) Let C be a site. Let p be a point of C given by a functor $u: C \to \mathbf{Set}$. Let X be an object of C and $x \in u(X)$. Then the functor

$$v \colon \mathcal{C}/X \longrightarrow \mathbf{Set}$$

$$(U \xrightarrow{\phi} X) \longmapsto \{y \in u(U) | u(\phi)(y) = x\}$$

defines a point q of C/X such that the following diagram of topoi commutes.

$$\mathbf{Sh}(\mathcal{C}/X)$$

$$\downarrow^{q} \qquad \downarrow^{j_X}$$

$$\mathbf{Sh}(\mathrm{pt}) \xrightarrow{p} \mathbf{Sh}(\mathcal{C})$$

Proof: By Theorem 3, we may identify $\mathbf{Sh}(pt)$ with $\mathbf{Sh}(\mathcal{S})$ and write $p = f \colon \mathbf{Sh}(\mathcal{S}) \to \mathbf{Sh}(\mathcal{C})$, the geometric morphism induced by u. Then, by Theorem 9.11, we have a commutative diagram of topoi:

$$\mathbf{Sh}(\mathcal{S}/u(X)) \xrightarrow{j_{u(X)}} \mathbf{Sh}(\mathcal{S})$$

$$\downarrow^{p} \qquad \qquad \downarrow^{p}$$

$$\mathbf{Sh}(\mathcal{C}/X) \xrightarrow{j_{X}} \mathbf{Sh}(\mathcal{C})$$

where p' is induced by the functor

$$u' \colon \mathcal{C}/X \longrightarrow \mathcal{S}/u(X)$$

 $U/X \longmapsto u(U)/u(X).$

Note that the functor

$$j_x \colon \mathcal{S} \longrightarrow \mathcal{S}/u(X)$$

 $U \longmapsto (u \mapsto x)$

is a fully faithful cocontinuous functor and has a continuous right adjoint

$$v_x \colon \mathcal{S}/u(X) \longrightarrow \mathcal{S}$$

 $(U \xrightarrow{\psi} u(X)) \longmapsto \psi^{-1}(x).$

Since j_x is a section of $j_{u(X)}$ as cocontinuous functors, so as geometric morphisms and we thus have the following commutative diagram of topoi:

$$\mathbf{Sh}(\mathcal{S}/u(X)) \xrightarrow{j_{u(X)}} \mathbf{Sh}(\mathcal{S})$$

$$p' \downarrow \qquad \qquad \downarrow p$$

$$\mathbf{Sh}(\mathcal{C}/X) \xrightarrow{j_X} \mathbf{Sh}(\mathcal{C})$$

Then, the composition $p' \circ j_x$ gives a point q of \mathcal{C}/X . Since p' and j_x are induced by the continuous functors u' and v_x respectively, q is induced by the continuous functor $v_x \circ u'$, which equals v given in the lemma.

8.a Lemma (Lifting of points) Notations as in Lemma 8. The construction in Lemma 8 gives a one-one correspondence between points q of C/X lying over p and elements x of u(X).

Proof: We need to show that any point q of \mathcal{C}/X lying over p comes from a unique elements x of u(X).

First, we may assume the point q comes from a morphism of sites $v \colon \mathcal{C}/X \to \mathbf{Set}$. Then, we see that any $U/X \in \mathcal{C}/X$ gives a morphism $U \to X$. To show q comes from a unique elements x of u(X), it suffices to show v(U/X) is a fiber of the morphism $u(U) \to u(X)$.

By Lemma 2.a, $u(U) = p^{-1}h_U^{\#}, v(U/X) = q^{-1}h_{U/X}^{\#}$. Since $j_X \circ q = p$ as geometric morphism and q^{-1} is exact, it suffices to show the following Cartesian diagram.

$$h_{U/X}^{\#} \longrightarrow j_X^{-1} h_U^{\#}$$

$$\downarrow \qquad \qquad \downarrow$$

$$h_{X/X}^{\#} \longrightarrow j_X^{-1} h_X^{\#}$$

But $j_X^{-1}h_U^\# = (j_X^{-1}h_U)^\#$ and the sheafification is exact. Therefore, it suffices to show the following Cartesian diagram.

$$h_{U/X} \longrightarrow j_X^{-1} h_U$$

$$\downarrow \qquad \qquad \downarrow$$

$$h_{X/X} \longrightarrow j_X^{-1} h_X$$

One can then verify it on an arbitrary object V/X of \mathcal{C}/X from the following obvious Cartesian diagram.

$$\operatorname{Hom}(V/X,U/X) \longrightarrow \operatorname{Hom}(V,U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}(V/X,X/X) \longrightarrow \operatorname{Hom}(V,X)$$

8.b Lemma (Lifting of points) Let C be a site. Let p be a point of C given by a functor $u: C \to \mathbf{Set}$. Let X be an object of C and $\mathscr G$ a sheaf on C/X. Then

$$(j_X!\mathscr{G})_p = \coprod_q \mathscr{G}_q,$$

where the coproduct is over the points q of C/X lying over p.

Proof: Since sheafification preserves stalks, by Lemma 9.2, we see

$$(j_X!\mathscr{G})_p = \varinjlim_{(U,y)} \coprod_{\phi \in \operatorname{Hom}_{\mathcal{C}}(U,X)} \mathscr{G}(U \stackrel{\phi}{\longrightarrow} X).$$

Recombining the diagrams for the colimits, we have

$$(j_{X!}\mathcal{G})_p = \coprod_{\substack{x \in u(X) \\ u(\phi)(y) = x}} \underbrace{\varinjlim}_{\substack{U \xrightarrow{\phi} X, y) \\ u(\phi)(y) = x}} \mathcal{G}(U \xrightarrow{\phi} X).$$

By the description of q in Lemma 8, the right is nothing but

$$\coprod_{q}\mathscr{G}_{q},$$

where q varies over all points over p constructed by an element $x \in u(X)$, which, by Lemma 8.a, are all points over p.

Remark Although we have a description of j_{X*} in Lemma 9.5, there is no similar result for j_{U*} .

9 (Morphisms of points) Let \mathcal{C} be a site and p, p' two points of \mathcal{C} given by functors $u, u' \colon \mathcal{C} \to \mathbf{Set}$. Then a morphism $f \colon p \to p'$ is given by a transformation of functors

$$f_u \colon u' \longrightarrow u.$$

9.a Lemma Let C be a site. Let p, p' be two points of C given by functors $u, u' : C \to \mathbf{Set}$ and $f : p \to p'$ a morphism between them. Then there a canonical transformation of stalks $f_{stalk} : p'^{-1} \to p^{-1}$ which agrees with f_u via the identifications of Lemma 1.a.

Proof: One can extend the transformation from sheaves of the form $h_U^{\#}$ to general ones by Lemma 7.16.

Recall 8.1.a, this lemma shows that a morphism of points $f: p \to p'$ induces a 2-morphism of topoi:

$$\mathbf{Set} = \mathbf{Sh}(\mathrm{pt}) \underbrace{ \begin{array}{c} p \\ \\ \\ p' \end{array}} \mathbf{Sh}(\mathcal{C}).$$

In particular, we have

9.b Lemma There is a canonical transformation between the skyscraper sheaf functors $f_{sky}: p_*S \to p'_*S$ given by

$$f_{sky}(U) \colon \operatorname{Hom}(u(U), S) \longrightarrow \operatorname{Hom}(u'(U), S)$$

 $s \longmapsto f_u \circ s.$

Proof: By 8.1.a, the transformation $f_{sky}: p_*S \to p'_*S$ is charactered by the following commutative diagram

$$\begin{array}{ccc} \operatorname{Hom}(\mathscr{F}_{p},S) & \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathscr{F},p_{*}S) \\ f_{stalk} \circ - \Big| & \Big| - \circ f_{sky} \\ \operatorname{Hom}(\mathscr{F}_{p'},S) & \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(\mathscr{F},p'_{*}S) \end{array}$$

In particular, for $\mathscr{F}=h_U^\#$ with U an object in $\mathcal{C},$ we have

$$\operatorname{Hom}((h_U^{\#})_p, S) = \operatorname{Hom}(u(U), S) = p_*S(U) = \operatorname{Hom}_{\mathbf{Sh}(\mathcal{C})}(h_U^{\#}, p_*S),$$

and in this case the map f_{stalk} is the same as f_u and the map $\circ f_{sky}$ is the same as $f_{sky}(U)$. Then the statement follows.

9.c Example (Specializing morphism) Let X be a topological space and x, x' two points of X. If x' is a **specialization** of x, i.e. $x' \in \overline{\{x\}}$, then there is a morphism of points $p \to p'$, where p (resp. p') is the point of \mathcal{T}_X

associated to x (resp. x'), called the **specializing morphism**. Indeed, for any open set U of X, if $x \in U$, then u(U) is a singleton and thus there is always a unique map $u'(U) \to u(U)$; if $x \notin U$, then so is s' and thus $\mathrm{id}_{\varnothing}$ is the unique map from u'(U) to u(U). In this way, we get a transformation $u' \to u$ which gives rise to a morphism of points of \mathcal{T}_X .

Sites with enough points

10 (conservativeness) We say that \mathcal{C} has enough points if there exists a conservative family $\{p_i\}$ of points, which means for every morphism of sheaves $\varphi \colon \mathscr{F} \to \mathscr{G}$, φ is an isomorphism if and only if all $\varphi_{p_i} \colon \mathscr{F}_{p_i} \to \mathscr{G}_{p_i}$ are isomorphisms.

From this definition and the fact that stalk functors are exact, we have

- **10.a Lemma** Let C be a site and let $\{p_i\}$ be a conservative family of points. Then
 - 1. a morphism of sheaves $\varphi \colon \mathscr{F} \to \mathscr{G}$ is a monomorphism if and only if all $\varphi_{p_i} \colon \mathscr{F}_{p_i} \to \mathscr{G}_{p_i}$ are monomorphisms;
 - 2. a morphism of sheaves $\varphi \colon \mathscr{F} \to \mathscr{G}$ is an epimorphism if and only if all $\varphi_{p_i} \colon \mathscr{F}_{p_i} \to \mathscr{G}_{p_i}$ are epimorphisms;
 - 3. two morphisms of sheaves $\varphi, \psi \colon \mathscr{F} \rightrightarrows \mathscr{G}$ are equal if and only if for all $p_i, \varphi_{p_i} = \psi_{p_i}$;
 - 4. given a finite diagram \mathscr{F}_j of sheaves, a cone $\mathscr{F} \xrightarrow{\varphi_j} \mathscr{F}_j$ is a limit if and only if for all p_i , $(\mathscr{F}_{p_i}, \varphi_{j,p_i})$ is a limit;
 - 5. given a finite diagram \mathscr{F}_j of sheaves, a cocone $\mathscr{F}_j \xrightarrow{\varphi_j} \mathscr{F}$ is a colimit if and only if for all p_i , $(\mathscr{F}_{p_i}, \varphi_{j,p_i})$ is a colimit;
- **10.b Lemma** Let C be a site and let $\{p_i\}_{i\in I}$ be a family of points. For any object X of C. let $\{q_{i,x}\}_{i\in I,x\in u_i(X)}$ be the family of points of C/X lying above $\{p_i\}$. If $\{p_i\}$ is a conservative family of points, then $\{q_{i,x}\}_{i\in I,x\in u_i(X)}$ is a conservative family of points of C/X. In particular, if C has enough points, then so does every localization C/X.

Proof: Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves on \mathcal{C}/X . By Theorem 9.3, φ is an isomorphism if and only if so is

$$j_{X!}\mathscr{F} \xrightarrow{j_{X!}\varphi} j_{X!}\mathscr{G},$$

which is equivalent to say all $(j_{X!}\mathcal{F})_{p_i} \to (j_{X!}\mathcal{G})_{p_i}$ are isomorphisms. By Lemma 8.b, we have

$$(j_{X!}\mathscr{F})_{p_i} \overset{(j_{X!}\varphi)_{p_i}}{\longrightarrow} (j_{X!}\mathscr{G})_{p_i} = \coprod_{x \in u_i(X)} \left(\mathscr{F}_{q_{i,x}} \overset{\varphi_{q_{i,x}}}{\longrightarrow} \mathscr{G}_{q_{i,x}}\right).$$

Thus the statement follows.

11 (Sheafification through stalks) For any presheaf \mathscr{F} on \mathscr{C} , we define

$$\Pi(\mathscr{F}) := \prod_{i \in I} p_{i*} \mathscr{F}_{p_i}.$$

Obviously Π is a functor from $\mathbf{PSh}(\mathcal{C})$ to $\mathbf{Sh}(\mathcal{C})$ and there are canonical morphisms $\pi \colon \mathscr{F} \to \Pi(\mathscr{F})$. Now, consider the following commutative diagram,

$$\begin{array}{c|c} \mathscr{F} & \xrightarrow{\pi_{\mathscr{F}}} & \Pi(\mathscr{F}) \\ \pi_{\mathscr{F}} & & & \downarrow^{\pi_{\Pi(\mathscr{F})}} \\ \Pi(\mathscr{F}) & \xrightarrow{\Pi(\pi_{\mathscr{F}})} & \Pi(\Pi(\mathscr{F})) \end{array}$$

we get a canonical morphism θ from \mathscr{F} to the fibre product of $\Pi(\pi_{\mathscr{F}})$ and $\pi_{\Pi(\mathscr{F})}$. Apply the stalk functors $p_{i_0}^{-1}$ to the above commutative diagram, we get the following diagrams

$$\begin{array}{c|c} \mathscr{F}_{p_{i_0}} & \xrightarrow{\pi_{\mathscr{F}}} & \Pi(\mathscr{F}) \\ \\ \pi_{\mathscr{F}} \middle| & & \bigvee_{\pi_{\Pi(\mathscr{F})}} \\ \Pi(\mathscr{F}) & \xrightarrow{\Pi(\pi_{\mathscr{F}})} & \Pi(\Pi(\mathscr{F})) \end{array}$$

which is Cartesian. Therefore the fibre product of $\Pi(\pi_{\mathscr{F}})$ and $\pi_{\Pi(\mathscr{F})}$ is the sheafification of \mathscr{F} .

11.a Lemma Let C be a site and let $\{p_i\}$ be a family of points. The family is conservative if and only if for every sheaf \mathscr{F} and every $U \in \operatorname{ob} C$ and every pair of distinct sections $s, s' \in \mathscr{F}(U)$, there exists an i and $x \in u_i(U)$ such that the triples (U, x, s) and (U, x, s') define distinct elements of F_{p_i} .

Proof: If $\{p_i\}$ is a conservative family of points. Then distinct sections $s, s' \in \mathscr{F}(U)$ define distinct morphisms $a, a' \colon h_U^\# \to \mathscr{F}$. Thus there is an i such that $a_{p_i} \neq a'_{p_i}$. Since, by Lemma 2.a, $(h_U)_{p_i}^\# = u_i(U)$, there is an $x \in u_i(U)$ such that $a_{p_i} \neq a'_{p_i}$ in \mathscr{F}_{p_i} . Therefore (U, x, s) and (U, x, s') define distinct elements of F_{p_i} .

Conversely, let $\{p_i\}$ be a family of points satisfying assumptions in the lemma. Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves. If φ_{p_i} are isomorphisms for all i, then we need to show so is φ . First, φ is a monomorphism by the assumptions. To show it is an epimorphism, it suffices to show $\mathscr{G} \coprod_{\mathscr{F}} \mathscr{G} \to \mathscr{G}$ is an isomorphism, which follows from that it is already an epimorphism and that it is an monomorphism at the level of stalks.

§ I.12 Flatness

For the first, we follows [Kar04].

1 (Flatness respect to a site) Let \mathcal{C} be a site and \mathcal{D} a category. A functor $u: \mathcal{D} \to \mathcal{C}$ is said to be flat respect to \mathcal{C} if for any finite diagram $\mathscr{D}: \mathcal{I} \to \mathcal{D}$ and any cone $\alpha: \Delta_U \Rightarrow u \circ \mathscr{D}$ over $u \circ \mathscr{D}$ in \mathcal{C} , the family

$$S_{\alpha} := \{ \varphi \colon V \to U | \exists \beta \colon \Delta_W \Rightarrow \mathscr{D} \text{ s.t. } \alpha \circ \varphi \text{ factors through } u * \beta \}$$

is a covering in \mathcal{C} .

Remark This family is in fact a **sieve**, which means a family of morphisms with fixed target S which is closed under precomposition: if $\varphi \colon V \to U \in S$ and $\psi \colon W \to V$ is a morphism, then $\varphi \circ \psi \in S$. Thus any family of morphisms with fixed target \mathfrak{U} can be extended into a sieve $S_{\mathfrak{U}}$ by added up with precompositions. The notion of sieves will be used in the definition of Grothendieck topology.

To see why this property is called flatness, we introduce the notion of tensor products of **Set**-valued functors. Who doesn't care this can skip the following few pages.

1.a Lemma (Tensor products) Let C be a small category. Let $\mathscr{F}: C^{\mathrm{opp}} \to \mathbf{Set}$ and $\mathscr{G}: C \to \mathbf{Set}$ be a pair of a presheaf and a functor. Let Υ' denote the presheaf

$$\Upsilon' : \mathcal{C}^{\mathrm{opp}} \longrightarrow [\mathcal{C}, \mathbf{Set}]$$

$$U \longmapsto \mathrm{Hom}_{\mathcal{C}}(U, -).$$

Then, there is a natural bijection

$$(\operatorname{Lan}_{\Upsilon'}\mathscr{F})(\mathscr{G}) \cong (\operatorname{Lan}_{\Upsilon}\mathscr{G})(\mathscr{F}).$$

Proof: Since (refer Theorem 1.2.f and Example 1.13)

$$(\operatorname{Lan}_{\Upsilon'}\mathscr{F})(\mathscr{G}) \cong \varinjlim_{(\Upsilon'(U) \to \mathscr{G}) \in \operatorname{ob}(\Upsilon' \downarrow \operatorname{const}_{\mathscr{G}})} \mathscr{F}(U),$$

$$(\operatorname{Lan}_{\Upsilon}\mathscr{G})(\mathscr{F}) \cong \varinjlim_{(\Upsilon(U) \to \mathscr{F}) \in \operatorname{ob}(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}})} \mathscr{G}(U),$$

$$\mathscr{G} \cong \varinjlim_{(\Upsilon'(U) \to \mathscr{F}) \in \operatorname{ob}(\Upsilon' \downarrow \operatorname{const}_{\mathscr{G}})} \Upsilon'(U),$$

$$\mathscr{F} \cong \varinjlim_{(\Upsilon(U) \to \mathscr{F}) \in \operatorname{ob}(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}})} \Upsilon(U),$$

we have

$$\begin{split} (\operatorname{Lan}_{\Upsilon'}\mathscr{F})(\mathscr{G}) &\cong & \varinjlim_{(\Upsilon'(U) \to \mathscr{G}) \in \operatorname{ob}(\Upsilon' \downarrow \operatorname{const}_{\mathscr{G}})} \mathscr{F}(U) \\ &\cong & \varinjlim_{(\Upsilon'(U) \to \mathscr{G}) \in \operatorname{ob}(\Upsilon' \downarrow \operatorname{const}_{\mathscr{G}})} \operatorname{Hom}_{\mathcal{C}}(U, V) \\ & & (\Upsilon'(U) \to \mathscr{G}) \in \operatorname{ob}(\Upsilon' \downarrow \operatorname{const}_{\mathscr{G}}) (\Upsilon(V) \to \mathscr{F}) \in \operatorname{ob}(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}}) \\ &\cong & \varinjlim_{(\Upsilon(V) \to \mathscr{F}) \in \operatorname{ob}(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}})} \operatorname{Hom}_{\mathcal{C}}(U, V) \\ &\cong & \varinjlim_{(\Upsilon(U) \to \mathscr{F}) \in \operatorname{ob}(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}})} \mathscr{G}(U) \\ &\cong & \varinjlim_{(\Upsilon(U) \to \mathscr{F}) \in \operatorname{ob}(\Upsilon \downarrow \operatorname{const}_{\mathscr{F}})} \mathscr{G}(U) \\ &\cong & (\operatorname{Lan}_{\Upsilon}\mathscr{G})(\mathscr{F}). \end{split}$$

1.b (Tensor products) The construction in the lemma is called the **tensor** product of \mathscr{F} and \mathscr{G} , and is denoted by $\mathscr{F} \otimes_{\mathcal{C}} \mathscr{G}$ or $\mathscr{F} \otimes \mathscr{G}$.

Recall Example 1.13, we see that $-\otimes_{\mathcal{C}}\mathscr{F}$ is nothing but the *Yoneda* extension $\widetilde{\mathscr{F}}$. This functor has a right adjoint, which is $\Upsilon_{\mathbf{Set}}(-)\circ\mathscr{F}$. Indeed, we have a bijection

$$\operatorname{Hom}_{\mathbf{Set}}(\mathscr{G} \otimes_{\mathcal{C}} \mathscr{F}, S) \cong \operatorname{Hom}_{\mathbf{PSh}(\mathcal{C})}(\mathscr{G}, \operatorname{Hom}_{\mathbf{Set}}(\mathscr{F}(-), S))$$

natural in $\mathscr{G} \in \operatorname{ob} \mathbf{PSh}(\mathcal{C})$ and $S \in \operatorname{ob} \mathbf{Set}$.

- 1.c ¶Example Let C be a small category and $\mathscr{F}: C \to \mathbf{Set}$ a functor. View \mathbf{Set} as a site via its canonical topology, then the followings are equivalent.
 - 1. \mathscr{F} is flat respect to **Set**;
 - 2. the opposite of its **category of elements** $\mathbf{El}(\mathscr{F}) := (* \downarrow \mathscr{F})$, is filtered;
 - 3. its Yoneda extension $\widetilde{\mathscr{F}}$: $\mathbf{PSh}(\mathcal{C}) \to \mathbf{Set}$ is left exact.

Proof: 1. \Rightarrow 2.: For any finite diagram $\mathscr{D}: \mathcal{I} \to \mathcal{C}$, consider the limit cone $\lambda: \Delta_{\lim \mathscr{F} \circ \mathscr{D}} \Rightarrow \mathscr{F} \circ \mathscr{D}$ of $\mathscr{F} \circ \mathscr{D}$, then the sieve S_{λ} is generated by the family

$$\mathfrak{U}_{\lambda} := \left\{ \varphi \colon \mathscr{F}(V) \to \varprojlim \mathscr{F} \circ \mathscr{D} \middle| \exists \beta \colon \Delta_{V} \Rightarrow \mathscr{D} \text{ s.t. } \mathscr{F} \ast \beta = \lambda \circ \varphi \right\}.$$

Then 1. implies that such kind of families are surjective. Next, we show that the opposite of $\mathbf{El}(\mathscr{F})$ is filtered in this case. Recall that the opposite of a category is filtered if and only if any finite diagram in that category has a cone.

Let $\mathscr{D}' \colon \mathcal{I} \to \mathbf{El}(\mathscr{F})$ be a finite diagram. Then, itself gives a cone $\alpha \colon \Delta_* \Rightarrow \mathscr{F} \circ \mathscr{D}$ over the image of a diagram $\mathscr{D} \colon \mathcal{I} \to \mathcal{C}$ under \mathscr{F} . This cone uniquely factors through the limit cone $\lambda \colon \Delta_{\varprojlim \mathscr{F} \circ \mathscr{D}} \Rightarrow \mathscr{F} \circ \mathscr{D}$ and thus

gives an element $a \in \varprojlim \mathscr{F} \circ \mathscr{D}$. Therefore, by the surjectivity of the family above, there exists a map $\varphi \colon \mathscr{F}(V) \to \varprojlim \mathscr{F} \circ \mathscr{D}$ and a cone $\beta \colon \Delta_V \Rightarrow \mathscr{D}$ such that $\mathscr{F} * \beta = \lambda \circ \varphi$ and that $a \in \varprojlim \varphi$. Now taking any preimage s of a in $\mathscr{F}(V)$, viewing it as a map from * to $\mathscr{F}(V)$, we have $\varphi \circ s = a$. Therefore, we have a commutative diagram

$$\Delta_* \xrightarrow{s} \Delta_{\mathscr{F}(V)}$$

$$\alpha \qquad \downarrow^{\mathscr{F}*\beta}$$

$$\mathscr{F} \circ \mathscr{D}$$

which induces a cone $\Delta_{s: *\to \mathscr{F}(V)} \Rightarrow \mathscr{D}'$ over \mathscr{D}' . $\mathscr{2}.\Rightarrow \mathscr{3}.:$ Let \mathscr{G} be any presheaf on \mathscr{C} , then

$$\begin{split} \widetilde{\mathscr{F}}(\mathscr{G}) &\cong \varinjlim_{(\Upsilon'(U) \to \mathscr{F}) \in \mathrm{ob}(\Upsilon' \downarrow \mathrm{const}_{\mathscr{F}})} \mathscr{G}(U) \\ &\cong \left(\varinjlim_{(\Upsilon'(U) \to \mathscr{F}) \in \mathrm{ob}(\Upsilon' \downarrow \mathrm{const}_{\mathscr{F}})} \Gamma(U, -)\right) (\mathscr{G}). \end{split}$$

Since $(\Upsilon' \downarrow \operatorname{const}_{\mathscr{F}})$ is the opposite of $\operatorname{El}(\mathscr{F})$, it is filtered. Note that the functor $\Gamma(U, -)$ is exact. Now \mathscr{F} is a filtered colimit of exact functors, thus is left exact.

 $3.\Rightarrow 1.$: For any finite diagram $\mathscr{D}: \mathcal{I} \to \mathcal{C}$, let $\lambda: \Delta_{\lim \mathscr{F} \circ \mathscr{D}} \Rightarrow \mathscr{F} \circ \mathscr{D}$ be the limit cone of $\mathscr{F} \circ \mathscr{D}$. Then it suffices to show the family \mathfrak{U}_{λ} is surjective. Indeed, if so, then the sieve S_{λ} is surjective, thus a covering. Now, for an arbitrary cone $\alpha: \Delta_U \Rightarrow \mathscr{F} \circ \mathscr{D}$, pullback S_{λ} along the canonical map $U \to \varprojlim \mathscr{F} \circ \mathscr{D}$, we obtain a covering of U which is contained in the sieve S_{α} , thus S_{α} is also surjective.

Now, note that $\varprojlim \mathscr{F} \circ \mathscr{D} = \varprojlim \widetilde{\mathscr{F}} \circ \Upsilon \circ \mathscr{D} = \widetilde{\mathscr{F}}(\varprojlim \Upsilon \circ \mathscr{D})$ and that a section $s \in (\varprojlim \Upsilon \circ \mathscr{D})(U)$ is a cone $s \colon \Delta_U \Rightarrow \mathscr{D}$. Denote $\varprojlim \Upsilon \circ \mathscr{D}$ by \mathscr{L} . For any object $t \colon h_V \to \mathscr{L}$ in $(\Upsilon \downarrow \mathrm{const}_{\mathscr{L}})$, denote the image of id_V by β , which is a cone $\beta \colon \Delta_V \Rightarrow \mathscr{D}$. Now $\Upsilon * \beta \colon \Delta_{h_V} \Rightarrow \Upsilon \circ \mathscr{D}$ is nothing but the composition of t with λ . Therefore $\mathscr{F} * \beta = \lambda \circ \widetilde{\mathscr{F}}(t)$. Therefore

$$\left\{\widetilde{\mathscr{F}}(t)\colon \mathscr{F}(V)\to \varprojlim\mathscr{F}\circ\mathscr{D} \middle| t\colon h_V\to \varprojlim\Upsilon\circ\mathscr{D}\right\}\subset \mathfrak{U}_\lambda$$

but the left family is already surjective, a fortiori \mathfrak{U}_{λ} .

Remark Recall that $-\otimes_{\mathcal{C}} \mathscr{F}$ has a right adjoint and thus is already right exact. Therefore \mathscr{F} is flat respect to **Set** if and only if the tensor product functor $-\otimes_{\mathcal{C}} \mathscr{F}$ is exact.

1.d Corollary If C is finite complete, then \mathscr{F} is flat respect to \mathbf{Set} if and only if it is left exact.

Proof: only if: Note that $\mathscr{F} = \widetilde{\mathscr{F}} \circ \Upsilon$ and that Υ commutes with limits. if: similarly to Lemma 1.8, one can show that $\mathbf{El}(\mathscr{F})^{\mathrm{opp}}$ is filtered if \mathscr{F} is left exact.

Ringed spaces and $\mathscr{O}\text{-modules}$

Basically this chapter is talking about the commutative algebra theory in a topos.

§II.1	\P Algebraic structures
	Algebraic theories
	Monads
§II.2	Linear cosmoses
	Monoids
	Modules
	Algebras and modules in a linear cosmos
	Ideals
§II.3	Ringed spaces
	Ringed spaces and \mathcal{O}_X -modules
	Supports
	Pushforwards and pullbacks
	Abelian sheaves under Immersions
§II.4	Basic notions on modules $\dots \dots \dots$
	Modules generated by sections
	Modules represented by sections $\dots \dots \dots$
	Tensor products and Tensor algebras
$\S II.5$	Immersions of ringed spaces and locally ringed spaces $\ \ldots \ \ldots \ 168$
	Immersions
	Locally ringed spaces
§II.6	Manifolds, bundles and étalé spaces $\ \ldots \ $
	Manifolds
	Vector bundles and locally free sheaves
	Bundles

	Espace étalé										. 1	8
§II.7	Tensor products and flatness										. 1	86
§II.8	Duality and invertible sheaves										. 1	86
§II.9	Localizations										. 1	86

§ II.1 ¶Algebraic structures

In this section, we discuss the notion of algebraic structures in a categorical flavor. We also show that the notion of algebraic category is worthy of its name.

Algebraic theories

Recall that a *sheaf* with value in an algebraic category \mathcal{A} is a presheaf satisfying suitable descent condition (ref. I.2.5 and I.2.6). Of course one can give another description (Theorem 2) of this notion by introducing the notion of *algebraic structures*. Here we do a bit.

- 1 (Lawvere theory) We begin with declare some notions about algebraic objects in an elementary way. Let \mathcal{C} be a category. Let * denote the (possibly existed) terminal object. For $X \in \text{ob } \mathcal{C}$, let X^n denote the n-fold product of X. In particular, $X^0 = *$.
 - A n-ary operation on X is a morphism from X^n to X. Conversely, a n-ary cooperation on X is a morphism from X to X^n . More generally, a (m, n)-operation on X is a morphism from X^n to X^m .

In this way, the notion of operations on a set has been generalized into an arbitrary category. The relations of operations on sets are described by equations. Now, they become communities of diagrams.

1.a Example (group object) A **group object** in a category C is an object G with a 0-ary operation e called unit, a 1-ary operation e called inverse and a 2-ary operation m called multiplication satisfying the following commutative diagrams.

where $e: G \to G$ is the composition $G \to * \xrightarrow{e} G$. The followings are common examples:

- A group object in **Set** is a *group*.
- A group object in **Top** is a *topological group*.
- A group object in **Diff** is a *Lie group*.
- A group object in **Grp** is an abelian group.
- A group object in **Ab** is an abelian group again.

- A group object in **Cat** is a *strict* 2-*group*.
- A group object in **Grpd** is a *strict 2-group* again.
- A group object in **CRing**^{opp} is a *commutative Hopf algebra*.
- A group object in a functor category is a group functor.
- A group object in the category of schemes is a group scheme.

The data of operations and relations of them can be encoded into a category \mathbb{T} which has finite products and all its objects are finite products of a distinguished object x called the **generic object**. Such a category is called a **Lawvere theory**. A *morphism* of Lawvere theories is a functor preserving finite products.

Use this notion, we define

- An algebraic object of type \mathbb{T} in \mathcal{C} is an object X with a functor, also denoted by X, from \mathbb{T} to \mathcal{C} which maps x to X and preserves finite products. A **homomorphism** between algebraic objects X and Y is a morphism $f: X \to Y$ inducing a natural transformation $X \Rightarrow Y$.
- **1.b** (\mathbb{T} -algebras) Specially, we call an algebraic object of type \mathbb{T} in **Set** a \mathbb{T} -algebra. Let $\mathbf{Alg}(\mathbb{T})$ denote the category of \mathbb{T} -algebras.

The following theorem describes the algebraic objects in the category of presheaves.

2 Theorem (Presheaves of T-algebras) The algebraic objects of type \mathbb{T} in $\mathbf{PSh}(\mathcal{C})$ for some category \mathcal{C} having finite products are equivalent to the presheaves of \mathbb{T} -algebras. In particular, algebraic objects of type \mathbb{T} in \mathcal{C} are equivalent to the representable presheaves of \mathbb{T} -algebras.

Proof: Given an algebraic object (\mathscr{X}, X) of type \mathbb{T} in $\mathbf{PSh}(\mathcal{C})$, since the section functor $\Gamma(U, -)$ is exact, we obtain \mathbb{T} -algebras $(\mathscr{X}(U), \Gamma(U, -) \circ X)$. For any morphism $V \to U$ in \mathcal{C} , the transition map $\mathscr{X}(U) \to \mathscr{X}(V)$ is a homomorphism by the functorality of \mathscr{X}^n . This shows \mathscr{X} is a presheaf of \mathbb{T} -algebras. Conversely, let \mathscr{X} be a presheaf of \mathbb{T} -algebras, then $X: x^n \to \mathscr{X}^n$ defines an algebraic object (\mathscr{X}, X) of type \mathbb{T} in $\mathbf{PSh}(\mathcal{C})$.

3 Proposition (Limits and colimits in Alg(T)) Alg(T) has all limits and sifted colimits, and they are computed pointwise.

Proof: Since $\mathbf{Alg}(\mathbb{T})$ can be viewed as a full sub category of $[\mathbb{T}, \mathbf{Set}]$, it suffices to show the limits and sifted colimits of finite-products-preserving functors also preserve finite products. This comes from that limits and sifted colimits commute with finite products.

4 Proposition $Alg(\mathbb{T})$ is an algebraic category.

Proof: For any \mathbb{T} -algebra X, the set X is called the **underlying set** of X. Taking underlying set forms a functor $F \colon \mathbf{Alg}(\mathbb{T}) \to \mathbf{Set}$. This functor is obviously faithful and reflects isomorphisms. By Proposition 3, $\mathbf{Alg}(\mathbb{T})$ has limits and sifted colimits, and they are computed pointwise. Thus F commutes with them.

But the correct definition of algebraic category further requires F has a left adjoint.

4.a Proposition The forgetful functor $F : \mathbf{Alg}(\mathbb{T}) \to \mathbf{Set}$ has a left adjoint.

Proof: Let [n] denote a finite set with n elements. For any \mathbb{T} -algebra X, we have

$$\operatorname{Hom}_{\mathbf{Set}}([n], F(X)) = X^n = X(x^n).$$

Let \widetilde{n} denote the functor $\operatorname{Hom}_{\mathbb{T}}(x^n, -)$. One can see it defines a \mathbb{T} -algebra. By the Yoneda lemma, we have

$$\operatorname{Hom}_{\mathbf{Alg}(\mathbb{T})}(\widetilde{n},X) = X(x^n).$$

Therefore we have

$$\operatorname{Hom}_{\mathbf{Alg}(\mathbb{T})}(\widetilde{n}, X) = \operatorname{Hom}_{\mathbf{Set}}([n], F(X)).$$

For any set S, let $\mathbf{Sub}(S)$ be the category of finite subsets of S and their inclusions. Then we have

$$S = \varinjlim_{U \in \mathbf{Sub}(S)} U,$$

and thus

$$\begin{split} \operatorname{Hom}_{\mathbf{Set}}(S, F(X)) &= \operatorname{Hom}_{\mathbf{Set}}(\varinjlim_{U \in \mathbf{Sub}(S)} U, F(X)) \\ &= \varprojlim_{U \in \mathbf{Sub}(S)} \operatorname{Hom}_{\mathbf{Set}}(U, F(X)) \\ &= \varprojlim_{U \in \mathbf{Sub}(S)} \operatorname{Hom}_{\mathbf{Alg}(\mathbb{T})}(\widetilde{\operatorname{Card}(U)}, X) \\ &= \operatorname{Hom}_{\mathbf{Alg}(\mathbb{T})}(\varinjlim_{U \in \mathbf{Sub}(S)} \widetilde{\operatorname{Card}(U)}, X). \end{split}$$

In this way we get a functor $T: S \mapsto \varinjlim_{U \in \mathbf{Sub}(S)} \widetilde{\mathrm{Card}(U)}$ which is left adjoint to F. This T(S) is called the **free** \mathbb{T} -algebra generated by S. One can further write down the underlying set of T(S), which is

$$\{f(s_1,\cdots,s_n)|n\in\mathbb{N},f\in\mathrm{Hom}_{\mathbb{T}}(x^n,x),s_1,\cdots,s_n\in S\}.$$

We have seen \mathbb{T} -algebras form an algebraic category. What about the converse?

Before going forward, we take a glance at a generalization.

- **5** ¶Remark (PROPs) Any category with finite products can be considered as a cartesian monoidal category. So we may generalize the above into monoidal categories. Let \mathcal{C} be a monoidal category with tensor product \otimes and unit **1**. For any $X \in \text{ob } \mathcal{C}$, let $X^{\otimes n}$ denote the *n*-fold tensor product of X. In particular, $X^{\otimes 0} = \mathbf{1}$.
 - A *n*-ary operation on X is a morphism from $X^{\otimes n}$ to X. Conversely, a *n*-ary cooperation on X is a morphism from X to $X^{\otimes n}$. More generally, a (m, n)-operation on X is a morphism from $X^{\otimes n}$ to $X^{\otimes m}$.
- **5.a Example (Monoids)** A **monoid** in a monoidal category C is an object M with a 0-ary operation e called unit and a 2-ary operation m called multiplication satisfying the following commutative diagrams.

The followings are common examples:

- A monoid in **Set** is a *monoid*.
- A monoid in **Top** is a *topological monoid*.
- A monoid in **Mon** is an abelian monoid.
- A monoid in **Ab** (with the tensor products of abelian groups) is a *ring*.
- A monoid in $\mathbf{Mod}(A)$ (with the tensor products of A-modules) for some commutative algebra A is an A-algebra.
- A monoid in $\operatorname{End}(\mathcal{C})$ for some category \mathcal{C} is a monad on \mathcal{C} .

A homomorphism of monoids is then a morphism commutes with unit and multiplication. The category of monoid is denoted by $\mathbf{Mon}(\mathcal{C})$.

5.b Example (Commutative monoid) Let \mathcal{C} be a symmetric monoidal category, then there is a natural transformation $\gamma_{X,Y} \colon X \otimes Y \to Y \otimes X$ called braiding. Then any monoid (M, m, e) in \mathcal{C} admits another monoid structure $(M, m \circ \gamma_{M,M}, e)$, called the **opposite monoid** of M. If the two monoid structures coincide, we call it a **commutative monoid**. The category of commutative monoids is denoted by $\mathbf{CMon}(\mathcal{C})$.

The data of operations and relations of them can be encoded into a monoidal category \mathbb{T} in which all objects are finite tensor products of a distinguished object x called the **generic object**. Such a monoidal category is called a **PROP** (abbreviating of "products and permutations category"). A morphism of PROP is a monoidal functor.

Use this notion, we define

• An **algebraic object of type** \mathbb{T} in a monoidal category \mathcal{C} is an object X with a monoidal functor, also denoted by X, from \mathbb{T} to \mathcal{C} which maps x to X. A **homomorphism** between algebraic objects X and Y is a monoidal natural transformation $X \Rightarrow Y$.

Monads

6 (Monads) We now turn to another way to encode an algebraic theory. Recall that a **monad** on a category \mathcal{C} is a monoid in the category $\operatorname{End}(\mathcal{C})$ of endofunctors. More precisely, a **monad** on \mathcal{C} is an endofunctor $\mathfrak{T} \colon \mathcal{C} \to \mathcal{C}$ with two natural transformations $\eta \colon \operatorname{id}_{\mathcal{C}} \Rightarrow \mathfrak{T}$ (called *unit*) and $\mu \colon \mathfrak{T} \circ \mathfrak{T} \Rightarrow \mathfrak{T}$ (called *multiplication*) satisfying the following commutative diagrams.

7 (Modules over a monad and \mathfrak{T} -algebras) Let \mathfrak{T} be a monad on a category \mathcal{C} , a **left \mathfrak{T}-module** is a functor $M \colon \mathcal{D} \to \mathcal{C}$ with a natural transformation $\lambda \colon \mathfrak{T} \circ M \Rightarrow M$ satisfying the following commutative diagrams.

$$\mathfrak{T} \circ \mathfrak{T} \circ M \xrightarrow{\mathfrak{T} * \lambda} \mathfrak{T} \circ M \qquad \text{id}_{\mathcal{C}} \circ M \xrightarrow{\eta * M} \mathfrak{T} \circ M \\
\downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda} \qquad$$

A homomorphism of left \mathfrak{T} -modules is a natural transformation preserving λ . Similarly, one can define the notion of **right** \mathfrak{T} -modules. In the case M is a constant functor, we call it a \mathfrak{T} -algebra. The category of \mathfrak{T} -algebras is called the **Eilenberg-Moore category** of \mathfrak{T} and denoted by $\mathbf{Alg}(\mathfrak{T})$.

For any object S in C, it is easy to see that $(\mathfrak{T}(S), \mu_S)$ is a \mathfrak{T} -algebra, called the **free** \mathfrak{T} -algebra **generated by** S. This factors \mathfrak{T} itself as $F \circ \overline{\mathfrak{T}}$ with $F \colon \mathbf{Alg}(\mathfrak{T}) \to C$ the forgetful functor. The full subcategory $\langle \mathfrak{T} \rangle$ of $\mathbf{Alg}(\mathfrak{T})$ consisting of free \mathfrak{T} -algebras is called the **Kleisli category**.

8 Lemma (Free algebras) $\overline{\mathfrak{T}}$: $\mathcal{C} \to \mathbf{Alg}(\mathfrak{T})$ is left adjoint to the forgetful functor $F \colon \mathbf{Alg}(\mathfrak{T}) \to \mathcal{C}$.

Proof: By the definition of monad, $\overline{\mathfrak{T}} \dashv F$ is an adjunction with the unit $\eta \colon \mathrm{id}_{\mathcal{C}} \Rightarrow F \circ \overline{\mathfrak{T}}$ and the counit $\epsilon \colon \overline{\mathfrak{T}} \circ F \Rightarrow \mathrm{id}_{\mathbf{Alg}(\mathfrak{T})}$ given by setting $\epsilon_{(M,\lambda)}$ as λ for every \mathfrak{T} -algebra (M,λ) .

A typical way to get a monad is through an adjunction.

9 Lemma Any adjunction induces a monad.

Proof: Let $L \dashv R \colon \mathcal{D} \to \mathcal{C}$ be an adjunction. Let $\eta \colon \mathrm{id}_{\mathcal{C}} \Rightarrow R \circ L$ be the unit and $\epsilon \colon L \circ R \Rightarrow \mathrm{id}_{\mathcal{C}}$ the counit. Then the counit induces a natural transformation $\mu \colon R \circ L \circ R \circ L \Rightarrow R \circ L$. Let $\mathfrak{T} = R \circ L$, then the commutative diagram comes from the triangle identities for adjunction.

10 Example (Monadic adjunction) We have seen that for a monad \mathfrak{T} , the free algebra functor and the forgetful functor form an adjunction. The monad associated to this adjunction is nothing but \mathfrak{T} itself.

More generally, let $L \dashv R \colon \mathcal{D} \to \mathcal{C}$ be an adjunction with unit η and counit ϵ . Let $\mathfrak{T} = R \circ L$. Then the natural transformation $\mathfrak{T} * \epsilon \colon \mathfrak{T} \circ R \Rightarrow R$ defines a canonical \mathfrak{T} -algebra structure on every R(S) with $S \in \text{ob } \mathcal{D}$. This makes R become a functor $\kappa = \overline{R} \colon \mathcal{D} \to \mathbf{Alg}(\mathfrak{T})$, called the **comparison functor**. An adjunction $L \dashv R$ is said to be **monadic** if this comparison functor is an equivalence of categories. A functor R is said to be **monadic** if it admits a monadic adjunction.

Recall that a Lawvere theory \mathbb{T} admits a forgetful functor $F \colon \mathbf{Alg}(\mathbb{T}) \to \mathbf{Set}$ and its left adjoint T. Then the adjunction $T \dashv F$ provides a monad \mathfrak{T} on \mathbf{Set} . The following theorem shows the relation of them.

11 Theorem Let \mathfrak{T} be a monad associate to a Lawvere theory \mathbb{T} . Then the \mathfrak{T} -algebras are equivalent to the \mathbb{T} -algebras.

Proof: Given a \mathbb{T} -algebra X. Define M = X(x) and $\lambda = F * \epsilon$. Then this (M, λ) is a \mathfrak{T} -algebra by the triangle identities. A homomorphism of \mathbb{T} -algebras induces a homomorphism of \mathfrak{T} -algebras by the functorality of F and ϵ . Therefore, we have a functor Φ from $\mathbf{Alg}(\mathbb{T})$ to $\mathbf{Alg}(\mathfrak{T})$. In particular, each \widetilde{n} induces a \mathfrak{T} -algebra, also denoted by \widetilde{n} .

Conversely, any \mathfrak{T} -algebra (M,λ) admits a functor

$$X \colon \mathbb{T} \longrightarrow \mathbf{Set}$$

 $x^n \longmapsto \mathrm{Hom}_{\mathbf{Alg}(\mathfrak{T})}(\widetilde{n}, M).$

By Lemma 8, we have

$$\operatorname{Hom}_{\mathbf{Alg}(\mathfrak{T})}(\mathfrak{T}([n]), M) \cong \operatorname{Hom}_{\mathbf{Set}}([n], M).$$

Note that $\operatorname{Hom}_{\mathbf{Set}}([n], M) = M^n$. Therefore $X(x^n) = M^n$ and thus X is a finite-product preserving functor. In this way, we get a functor

$$\Psi \colon \operatorname{\mathbf{Alg}}(\mathfrak{T}) \longrightarrow \operatorname{\mathbf{Alg}}(\mathbb{T})$$
$$(M, \lambda) \longmapsto X.$$

Obviously, Φ and Ψ are weakly inverse to each other and thus $\mathbf{Alg}(\mathfrak{T})$ is equivalent to $\mathbf{Alg}(\mathbb{T})$.

Given a monad \mathfrak{T} on **Set**, one can see from the above proof that $\mathfrak{T}([n])$ is the n-fold coproduct of $\mathfrak{T}([1])$ in $\mathbf{Alg}(\mathfrak{T})$. There fore the opposite of the full subcategory \mathbb{T} of $\mathbf{Alg}(\mathfrak{T})$ consisting of object of the form $\mathfrak{T}([n])$ is a Lawvere theory which is isomorphic to the original one if \mathfrak{T} is associated to some. Let \mathfrak{T}' be the monad associated to \mathbb{T} . What's the relation of \mathfrak{T}' and \mathfrak{T} ?

12 Proposition $\mathfrak{T}' \cong \mathfrak{T}$.

Proof: First, for [n], we have

$$\mathfrak{T}'([n]) = T([n])(\mathfrak{T}([1]))$$

$$= \operatorname{Hom}_{\mathbf{Alg}(\mathfrak{T})}(\mathfrak{T}([1]), \mathfrak{T}([n]))$$

$$\cong \operatorname{Hom}_{\mathbf{Set}}([1], \mathfrak{T}([n])) \cong \mathfrak{T}([n]).$$

For any set S, write it as the colimit $\varinjlim U$ of its finite subsets. Then, since \mathfrak{T} has a right adjoint, it commutes with colimits and therefore $\mathfrak{T}'(S) = \varinjlim \mathfrak{T}'(U) = \varinjlim \mathfrak{T}(U) = \mathfrak{T}(S)$.

For now, we have algebras over a Lawvere theory or a monad, and those notions are equivalent. So, what's the relation of the category of algebras over a Lawvere theory or a monad with the notion of *algebraic category*?

It turns out that they are equivalent. This is a corollary of the following monadicity theorem of Beck.

- **13 Theorem (Monadicity theorem)** A functor $F: : \mathcal{D} \to \mathcal{C}$ is monadic if and only if
 - 1. F admits a left adjoint;
 - 2. F reflects isomorphisms;
 - 3. For any pair of parallel morphisms (f,g) in \mathcal{D} , if (F(f), F(g)) admits a split coequalizer, then (f,g) has a coequalizer preserved by F.

Proof: If F is monadic with the associated monad \mathfrak{T} , then it is equivalent to the forgetful functor $F \colon \mathbf{Alg}(\mathfrak{T}) \to \mathcal{C}$. For the forgetful functor, I. and

2. are obvious. As for 3., consider any pair of parallel morphisms (f,g) of \mathfrak{T} -algebras A,B. Let

$$F(A) \xrightarrow{F(f)} F(B) \xrightarrow{c} C,$$

be the split coequalizer of (F(f), F(g)). Since such coequalizer is absolute, it is preserved by \mathfrak{T} . This gives C a \mathfrak{T} -algebra structure and making c a homomorphism of \mathfrak{T} -algebras.

Conversely, assume F satisfying 1. to 3., and let L be its left adjoint. Let \mathfrak{T} be the associated monad and $\kappa \colon \mathcal{D} \to \mathbf{Alg}(\mathfrak{T})$ the comparison functor. It remains to show κ is an equivalence. By Lemma 13.b, there is a unique comparison functor $K \colon \mathbf{Alg}(\mathfrak{T}) \to \mathcal{D}$. One can see that the compositions $K \circ \kappa$ and $\kappa \circ K$ are also comparison functors. Therefore, by the uniqueness, $K \circ \kappa \cong \mathrm{id}_{\mathcal{D}}, \ \kappa \circ K \cong \mathrm{id}_{\mathbf{Alg}(\mathfrak{T})}$.

13.a (Beck coequalizers) Recall (ref. §2.10 in *BMO* or [Bor94]) that a colimit is said to be **absolute** if it is preserved by any functors. A **fork** is a diagram of the form

$$A \xrightarrow{f} B \xrightarrow{c} C$$

where $c \circ f = c \circ g$. A fork is called a **split coequalizer** if the morphism $(f,c) \colon g \to c$ admits a section in the *arrow category*. A split coequalizer is an absolute coequalizer.

Every \mathfrak{T} -algebra (M,λ) is the coequalizer of the first stage of its **bar** resolution:

$$(\mathfrak{T}^2(M), \mu_{\mathfrak{T}(M)}) \xrightarrow{\stackrel{\mu_M}{\mathfrak{T}(\lambda)}} (\mathfrak{T}(M), \mu_M) \xrightarrow{\lambda} (M, \lambda).$$

Moreover, the underlying fork in C

$$\mathfrak{T}^2(M) \xrightarrow{\mu_M} \mathfrak{T}(M) \xrightarrow{\lambda} M.$$

is a split coequalizer with the splitting

$$\mathfrak{T}^2(M) \stackrel{\eta_{\mathfrak{T}(M)}}{\longleftarrow} \mathfrak{T}(M) \stackrel{\eta_M}{\longleftarrow} M.$$

Moreover, those conditions determines the \mathfrak{T} -algebra structure (M, λ) .

Note that for (M, λ) a \mathfrak{T} -algebra, $\mathfrak{T}(\eta_M)$ is a common section of both μ_M and λ_M . Therefore the first stage of bar resolution is actually a sifted colimit diagram.

13.b Lemma Let $F: \mathcal{D} \to \mathcal{C}$ be a functor satisfying condition 1 and 3 of Theorem 13. Let $L' \dashv R': \mathcal{D}' \to \mathcal{C}$ be another adjunction defining the same monad

with F. Then there exists a unique (up to unique isomorphism) comparison functor $K: \mathcal{D}' \to \mathcal{D}$ such that the following diagrams commute.

Proof: If such a functor K exists, then we have LFK = KL'R' and $\epsilon * K = K * \epsilon'$. Note that any object $S' \in \text{ob } \mathcal{D}'$ admits a fork

$$L'R'L'R'(S') \xrightarrow{\epsilon'*L'R'} L'R'(S') \xrightarrow{\epsilon'_{S'}} S'.$$

Apply K to it, we obtain a fork

$$LFLR'(S') \xrightarrow[LR'*\epsilon']{\epsilon*LR'} LR'(S') \xrightarrow{K*\epsilon'} K(S').$$

Apply F to it, we obtain

$$\mathfrak{T}^2R'(S') \xrightarrow{F \in LR' \atop \mathfrak{T}R' \epsilon'} \mathfrak{T}R'(S') \xrightarrow{R' \epsilon'} R'(S'),$$

which is of the form as in 13.a. Note that $(R'(S'), R'\epsilon'_{S'})$ is a \mathfrak{T} -algebra, thus the above fork is a split coequalizer. Since F satisfies condition 3., the former fork is a coequalizer. Then, the uniqueness of coequalizer ensure the uniqueness of K.

Moreover, the above discussion also shows the existence of K: K(S') is the coequalizer of $(\epsilon_{LR'(S')}, LR'(\epsilon'_{S'}))$.

14 Theorem (Universal algebra theorem) Let C be an algebraic category, then it is equivalent to the category of algebras over a monad.

Proof: It suffices to show the forgetful functor is monadic. By its definition, it remains to show the condition 3. in Theorem 13. Let L be the left adjoint of the forgetful functor $F \colon \mathcal{C} \to \mathbf{Set}$ and \mathfrak{T} be the monad associated to them.

Let $f, g: A \Rightarrow B$ be two morphisms in \mathcal{C} such that the following diagram is a split coequalizer diagram of sets.

$$F(A) \xrightarrow{F(g)} F(B) \xrightarrow{c} C$$

Then, since split coequalizers are absolute, the horizontal arrows in the following diagram are coequalizers.

The first two vertical arrows are just $F*\epsilon$, they give the canonical \mathfrak{T} -algebraic structure on F(A) and F(B). Then, the universal property of coequalizers guarantees the third vertical arrow and further gives a \mathfrak{T} -algebraic structure on C and making c becoming a homomorphism.

Now consider the diagram

$$L\mathfrak{T}(C) \xrightarrow[L(\lambda)]{\epsilon_{L(C)}} L(C).$$

One can see $L(\eta_C)$ is a common section of them. Therefore the coeqalizer $\Lambda: L(C) \to D$ of this diagram is a sifted colimit, thus exists in \mathcal{C} and is preserved by F. But we already have a coeqalizer diagram

$$\mathfrak{T}^2(C) \xrightarrow{\mu_C} \mathfrak{T}(\lambda) \xrightarrow{\chi(\lambda)} \mathfrak{T}(C) \xrightarrow{\lambda} C,$$

where the left pair is obtained by apply F to the previous diagram. Therefore $F(\Lambda) = \lambda$.

Now, consider the following diagram.

Here, we have seen the first two rows and the last column are coequalizer. Apply F to the first two columns, we obtained the first stage of the bar resolutions of F(A) and F(B). By Lemma 14.b, F reflects sifted colimits, thus the first wo columns are coequalizers. Then the dotted arrow exists by the universal property. By the 9-lemma, the bottom is a coequalizer diagram. Apply F to the whole diagram and use 9-lemma again, we see F(d) is the coequalizer of F(f) and F(g), thus F(d) = c as desired.

- 14.a (Regular and effective epimorphisms) Recall that a morphism is called a regular epimorphism if it is a coequalizer, called an effective epimorphism if it is the coequalizer of its kernel pair. Since if a coequalizer has a kernel pair, then it is the coequalizer of its kernel pair, we see the two notions coincides in an algebraic category.
- **14.b** Lemma Let C be an algebraic category with the forgetful functor F. Then F reflects limits, sifted colimits, isomorphisms, monomorphisms and regular epimorphisms.

Proof: By the definition and Proposition I.2.6.c, F reflects isomorphisms and monomorphisms and commutes with limits and sifted colimits. Since F reflects isomorphisms, by the universal property, F reflects a limit or colimit when commutes with it. Thus it remains to show F reflects regular epimorphisms.

Note that for $k_1, k_2 : \bullet \Rightarrow \bullet$ a kernel pair, there is a unique section s of both k_1 and k_2 via the universal property of kernel pair. In this way, the coequalizer of a kernel pair is the same as the colimit of the diagram

$$\bullet \xrightarrow{k_1} \xrightarrow{k_1} \bullet$$

which is, however, sifted. Therefore, since F reflects sifted colimits, it reflects regular epimorphisms. \Box

§ II.2 Linear cosmoses

In this section, we give the notion of linear cosmoses and discuss some basic algebraic notions in them.

1 (Linear cosmoses) Recall that an pre-abelian category is a finite-complete and finite-cocomplete Ab-enriched category. Then we have the notion of biproducts, kernels, cokernels, images and coimages. Any morphism in a pre-abelian category can be uniquely factored as a composition of an effective epimorphism (its coimage), a canonical morphism and a regular monomorphism (its image). A pre-abelian category is an abelian category if for each morphism, the canonical morphism is an isomorphism.

An abelian tensor category, or finitary linear cosmos, is

- an abelian category K
- equipped with a symmetric monoidal structure on it,

such that

• for any $X \in \text{ob } \mathcal{K}$, $X \otimes -$ gives rise to an additive functor which is right exact.

The *morphisms* between them, called the **abelian lax functors**, or **changes of linear cosmoses**, are functors additive, symmetric lax and commute with colimits. Similar, we have **abelian tensor functors**.

Remark Note that the tensor product functor is NOT a lax functor, a fortior ia change of linear cosmoses.

A cocomplete abelian tensor category¹, or a linear cosmos, is an abelian tensor category K which is also a cocomplete tensor category, meaning

• \mathcal{K} is cocomplete (this is equivalent to say \mathcal{K} is closed under suitable assumptions, such as \mathcal{K} has a generator) and for any $X \in \text{ob } \mathcal{K}$, $X \otimes -$ commutes with colimits.

Finally, a **Grothendieck cosmos**² is a linear cosmos \mathcal{K} which is a **Grothendieck abelian category**, meaning

- 1. K has a generator, which is an object S such that $\operatorname{Hom}_{K}(S, -)$ is faithful.
- 2. Grothendieck's axiom AB5:

K is cocomplete and filtered colimits of exact sequences are exact.

¹The terminology is different with Lurie's in [Lur04].

²The terminologies "linear cosmos" and "Grothendieck cosmos" are not standard.

- **1.a Example** The category \mathbf{Ab} of abelian groups is definitely a Grothendieck cosmos. More general, the category $\mathbf{Mod}(R)$ of modules over a ring R is a Grothendieck cosmos. For $f: R \to S$ a homomorphism of rings, the induced functor $S \otimes_R -: \mathbf{Mod}(R) \to \mathbf{Mod}(S)$ is an abelian tensor functor. However, the forgetful functor $\mathbf{Mod}(S) \to \mathbf{Mod}(R)$ taking S-modules to their restrictions to R is merely an abelian lax functor.
- **1.b Example** Let \mathcal{I} be a small category and \mathcal{K} a (cocomplete) abelian tensor category. Then the category $[\mathcal{I}, \mathcal{K}]$ of functors $\mathcal{I} \to \mathcal{K}$ is a (cocomplete) abelian tensor category, denoted by ${}^{\mathcal{I}}\mathcal{K}$. In particular, Let G be a group. Viewed G as a category with one object, we get the category $\mathbf{Rep}_{\mathcal{K}}(G)$ of representations of G on \mathcal{K} . Note that this category is rarely a Grothendieck cosmos even if \mathcal{K} is since $S \in \mathrm{ob}\,\mathcal{K}$ is a generator does NOT imply that the constant functor Δ_S is a generator.
- 1.c Example The category $\mathbf{Vect}(R)$ of free modules over a ring R is NOT a linear cosmos since it has no cokernels. In fact, $\mathbf{Mod}(R)$ is the cocompletion of $\mathbf{Vect}(R)$. So, $\mathbf{Vect}(R)$ is a linear cosmos if and only if R is a field.
- **1.d Example** The category of vector bundles on a nontrivial manifold is *NOT* a linear cosmos since it has no kernels and cokernels. One way to make up this is to enaloge the category, for instance, the category of *quasi-coherent* sheaves.
- 1.e (Elements) In a category C, one can use the **element notation** is help reasoning. In this notation system, an **element** of an object is actually an arbitrary morphism to it. The Yoneda lemma guarantees that we can verify commutative diagrams by chasing an arbitrary element.

If C is abelian and has a generator, then we may restrict *elements* to those from the generator, saying an **element** of an object X in an abelian category with a generator S is a morphism from S to X.

In a monoidal category, we call a morphism from the tensor unit $\mathbf{1}$ to an object X a **global element** of X. Note that the global elements may NOT be enough to determine X.

The following basic result will be used very often.

- 1.f Lemma (Tensor product of presentations) Let K be an abelian tensor category. Then
 - 1. The tensor product of two epimorphisms is again an epimorphism.
 - 2. The tensor product of two coequalizer diagrams is again a coequalizer diagram. In particular, the tensor product of two regular epimorphisms is again a regular epimorphism.

Monoids

2 (Algebras) A monoid in an abelian tensor category is called an algeba. Similarly, a commutative monoid in an abelian tensor category is called a commutative algeba. We have seen the definition and basic examples of monoids and commutative monoids in Example 1.5.a and Example 1.5.b.

Before going forward to deal with algebras, we give some further discussion on general monoids. To distinguish, we use \mathcal{C} to refer to an arbitrary symmetric monoidal category and \mathcal{K} to refer in particular to an abelian tensor category.

The following lemmas are obvious.

2.a Lemma (Monoids form a monoidal category) Let C be a symmetric monoidal category, then the category $\mathbf{Mon}(C)$ of monoids in C is again a symmetric monoidal category, in which the tensor product of two monoids (M_1, m_1, e_1) and (M_2, m_2, e_2) is given by $(M_1 \otimes M_2, m, e)$ where m is the composition

$$(M_1 \otimes M_2) \otimes (M_1 \otimes M_2) \xrightarrow{\gamma} (M_1 \otimes M_1) \otimes (M_2 \otimes M_2) \xrightarrow{m_1 \otimes m_2} M_1 \otimes M_2,$$

and e is the composition

$$\mathbf{1} \cong \mathbf{1} \otimes \mathbf{1} \stackrel{e_1 \otimes e_2}{\longrightarrow} M_1 \otimes M_2.$$

As a full subcategory of $\mathbf{Mon}(\mathcal{C})$, the category $\mathbf{CMon}(\mathcal{C})$ of commutative monoids in \mathcal{C} inherits this symmetric monoidal category structure. Moreover, the coproducts in $\mathbf{CMon}(\mathcal{C})$ are given by the tensor products.

2.b Lemma (Eckmann-Hilton Principle) Mon(Mon(C)) is isomorphic to CMon(C). In precise, if an object M equipped two monoid structure such that one of them makes M an object in Mon(C) and the other gives also a monoid structure on it, then the two structures coincide and become a commutative monoid structure.

Proof: Follows from the Eckmann-Hilton argument.

- **2.c** Lemma (Lifting adjunctions) Any monoidal functor $F: \mathcal{C} \to \mathcal{D}$ induces a monoidal functor $\widehat{F}: \mathbf{Mon}(\mathcal{C}) \to \mathbf{Mon}(\mathcal{D})$. Moreover, if F admits a right adjoint G, then so does \widehat{G} and the two adjunctions are compatible with the forgetful functors $\mathbf{Mon}(\mathcal{C}) \to \mathcal{C}$ and $\mathbf{Mon}(\mathcal{D}) \to \mathcal{D}$.
- **2.d Example (Initial monoid)** The category $Mon(\mathcal{C})$ has an initial object, that is **1** with the obvious monoid structure. Furthermore, **1** is commutative.

2.e Example (Endomorphism monoid) Let \mathcal{C} be a closed symmetric monoidal category. Then any object $M \in \text{ob } \mathcal{C}$ admit a monoid $\underline{\text{End}}(M)$ whose underlying object is $\underline{\text{Hom}}(M,M)$ and whose unit is the *identity operation* $\mathbf{1} \to \underline{\text{Hom}}(M,M)$ and whose multiplication is the *composition operation*

$$\underline{\operatorname{Hom}}(M,M)\otimes\underline{\operatorname{Hom}}(M,M)\longrightarrow\underline{\operatorname{Hom}}(M,M).$$

This monoid is called the **endomorphism monoid** of M.

- **2.f Example (Center)** Let \mathcal{C} be a closed symmetric monoidal category and A a monoid in it. Then corresponding to the multiplications of A and its opposite monoid, we have two morphisms $A \to \underline{\mathrm{Hom}}(A,A)$. The equalizer of them is called the **center** of A, denoted by Z(A). It turns out to be a submonoid of A.
- **2.g Lemma (Algebraicness)** Let C be a closed symmetric monoidal category and $F \colon \mathbf{Mon}(C) \to C$ the forgetful functor, then
 - 1. F is faithful;
 - 2. F commutes with limits;
 - 3. F commutes with filtered colimits;
 - 4. F reflects isomorphisms.

Proof: Note that the unit and multiplication of limits are the dotted morphisms obtained by the universal property in the following diagrams.

Let $M = \varinjlim M_i$ be a filtered colimit of underlying objects of monoids in \mathcal{C} . Then the composition $\mathbf{1} \to M_i \to \varinjlim M_i$ gives M a unit, which is well-defined since the diagram is filtered. Since \mathcal{C} is closed, we have

$$(\varinjlim M_i) \otimes (\varinjlim M_j) \cong \varinjlim (M_i \otimes M_j)$$

and this filtered diagram has a final family $M_i \otimes M_i$. Therefore

$$M \otimes M \cong \underline{\lim}(M_i \otimes M_i).$$

Then the multiplications $m_i : M_i \otimes M_i \to M_i$ induces a multiplication

$$\underline{\lim}(M_i\otimes M_i)\xrightarrow{m}\underline{\lim}\,M_i.$$

The rests are easy to verify.

2.h Example (Tensor algebras) Let \mathcal{C} be a closed symmetric monoidal category having denumerable coproducts. Then, for any object M in \mathcal{C} , there is a canonical monoid structure on the coproduct

$$T(M) := \bigoplus_{n=0}^{\infty} M^{\otimes n},$$

where the unit is the inclusion $M^{\otimes 0} \hookrightarrow T(M)$ and the multiplication is the isomorphism $M^{\otimes p} \otimes M^{\otimes q} \to M^{\otimes p+q}$. This monoid is called the **tensor algebra** generated by M.

Note that the tensor algebras give rise to a symmetric monoidal functor $T: \mathcal{C} \to \mathbf{Mon}(\mathcal{C})$, which is left adjoint to the forgetful functor $\mathbf{Mon}(\mathcal{C}) \to \mathcal{C}$. In particular, T maps the initial object 0 of \mathcal{C} to the initial monoid 1.

3 ¶ (Bimonoids) A comonoid in a monoidal category \mathcal{C} is an object which is a monoid in \mathcal{C}^{opp} . Note that the category $\mathbf{CoMon}(\mathcal{C})$ of comonoids is $(\mathbf{Mon}(\mathcal{C}^{\text{opp}}))^{\text{opp}}$, not $\mathbf{Mon}(\mathcal{C}^{\text{opp}})$.

A **bimonoid** is then an object which is both a monoid and a comonoid in a compatible way. In the case C is symmetric monoidal, this compatibility is easy to describe: a **bimonoid** is an object B with a 0-ary operation e called unit, a 0-ary cooperation e called unit, a 2-ary operation e called unit, a 2-ary operation e called unit unit

- (B, m, e) is a monoid;
- (B, δ, ϵ) is a comonoid;

and satisfying one of the following equivalent compatible conditions:

- 1. δ and ϵ are homomorphisms of monoids;
- 2. m and e are homomorphisms of comonoids.

A homomorphism of bimonoids $f:(B,m,e,\delta,\epsilon)\to (B',m',e',\delta',\epsilon')$ is then a morphism $f:B\to B'$ which is both a homomorphism of monoids $f:(B,m,e)\to (B',m',e')$ and a homomorphism of comonoids $f:(B,\delta,\epsilon)\to (B',\delta',\epsilon')$. The category of bimonoids is denoted by **BiMon**(\mathcal{C}).

A bimonoid $(B, m, e, \delta, \epsilon)$ is said to be **commutative** (resp. **cocommutative**) if (B, m, e) is commutative (resp. (B, δ, ϵ) is cocommutative).

3.a Proposition The following three symmetric monoidal categories are equivalent: $\mathbf{Mon}(\mathbf{CoMon}(\mathcal{C}))$, $\mathbf{CoMon}(\mathbf{Mon}(\mathcal{C}))$ and $\mathbf{BiMon}(\mathcal{C})$.

Next, we can define Hopf algebras in a symmetric monoidal category. The Hopf algebras are actually a very important kind of quantum groups. We refer Etingof's book [Eti00] for details.

4 \P (Hopf monoids) A Hopf monoid H is a bimonoid with an extra 1-ary operation s called **antipode** such that the following diagram commutes.

$$\begin{array}{c|c} H & \xrightarrow{e} & \mathbf{1} & \xrightarrow{\epsilon} & H \\ \delta & & \uparrow^{m} \\ H \otimes H & \xrightarrow{S \otimes H} & H \otimes H \end{array}$$

Remark The antipode is unique if it exists for a bimonoid.

- **4.a Example (Groups)** In a Cartesian monoidal category, for example **Set**, a monoid object can only be a bimonoid in a unique way. Such a bimonoid is a Hopf monoid if and only if it is a group object. In this way *Hopf monoid* is a generalization of group objects.
- **4.b Example (Group algebras)** As any set is a disjoint union of its elements, there is a unique symmetric monoidal functor, denoted by $\mathcal{C}[-]$, from **Set** to a symmetric monoidal category \mathcal{C} such that $\mathcal{C}[-]$ commutes with colimits. In particular, this functor maps a group G to a Hopf monoid $\mathcal{C}[G]$, called the **group algebra** associated to G in \mathcal{C} . For $\mathcal{C} = \mathbf{Mod}(R)$, this is the usual notion of group algebras. In this case, we denote the functor by R[-]. Note that this functor is left adjoint to the functor $(-)^{\times}$ mapping any R-algebra to its unit group.
- **4.c** Proposition A commutative Hopf monoid in C is the same thing as a group object in $\mathbf{CMon}(C)^{\mathrm{opp}}$.

Proof: Note that the tensor products in $\mathbf{CMon}(\mathcal{C})$ give rise to the coproducts in it and hence products in $\mathbf{CMon}(\mathcal{C})^{\mathrm{opp}}$. This makes $\mathbf{CMon}(\mathcal{C})^{\mathrm{opp}}$ a Cartesian monoidal category.

4.d ¶Example (Function algebras) Let \mathcal{C} be a symmetric monoidal category and H a Hopf monoid in it. Let \mathcal{A} be a closed symmetric monoidal category equipped with a forgetful functor $F: \mathcal{A} \to \mathcal{C}$ whose left adjoint is symmetric monoidal. Let A be a commutative monoid in \mathcal{A} . Let A[-] denote the left adjoint of the composition of the forgetful functors $\mathbf{Mod}(A) \to \mathcal{A} \to \mathcal{C}$. Let A(-) denote the composition $\underline{\mathrm{Hom}}_A(A[-],A)$. Then A(H) is a commutative A-algebra. In good case, one has

$$A(H \otimes H) \cong A(H) \otimes_A A(H)$$
.

Then one can define the comultiplication and thus make A(H) become a Hopf A-algebra, called the **function algebra** of H with values in A. In the case H is a finite group and A a commutative ring, this is the usual notion of function algebras. One may also consider some functoral subalgebra of A(H), such as the Hopf algebra of regular functions on an algebraic group.

Modules

Next, we consider modules.

5 (Modules over a monoid) Recall that monads on a category \mathcal{C} are the same as monoids in $\operatorname{End}(\mathcal{C})$. The definition in 1.7 can be easily generalized. Let A be a monoid in a monoidal category \mathcal{C} , a **left** A-module, or simply called A-module, is an object $M \in \operatorname{ob} \mathcal{C}$ with a morphism $l: A \otimes M \to M$, called action, satisfying the following commutative diagrams.

A homomorphism of A-modules, or an A-homomorphism, is a morphism commuting with the A-module actions. The category of A-modules is denoted by $\mathbf{Mod}(A)$. Similarly, one can define the notion of **right** A-modules. Let A, B be two monoids, then an (A, B)-bimodule is an object equipped both a left A-module structure and a right B-module structure. An (A, A)-bimodule is called an A-bimodule.

Remark This definition actually generalize nothing. Indeed, one can see that a monoid in \mathcal{C} admits a monad $A \otimes -$ and that the modules over a monoid A are precisely the algebras over the monad $A \otimes -$.

Remark If \mathcal{C} is closed. Then a left A-module structure on M can be identified with a homomorphism of monoids $A \to \operatorname{Hom}(M, M)$.

5.a Remark (Category of modules over a commutative monoid) Let \mathcal{C} be a symmetric monoidal category and A a commutative monoid in it, then any left A-module is also a right A-module and thus an A-bimodule. Then, just like in commutative algebras, we can define the **tensor product** of two A-modules M and N as follows.

First, the object $M \otimes_A N$ is the coequalizer of

$$M \otimes A \otimes N \xrightarrow[M \otimes l_N]{l_M \otimes N} M \otimes N$$

in \mathcal{C} . Then action $l: A \otimes (M \otimes_A N) \to M \otimes_A N$ is unique dotted morphism making the following commutative diagram whose uniqueness and existence are guaranteed by the universal property of coequalizer.

$$\begin{array}{c|c} A\otimes M\otimes A\otimes N \xrightarrow[M\otimes N]{l_M\otimes N} A\otimes M\otimes N \longrightarrow A\otimes (M\otimes_A N) \\ \downarrow l_M\otimes A\otimes N \downarrow & \downarrow l_M\otimes N \downarrow & \downarrow l_M \\ M\otimes A\otimes N \xrightarrow[M\otimes l_N]{l_M\otimes N} M\otimes N \longrightarrow M\otimes_A N \end{array}$$

In this way, $\mathbf{Mod}(A)$ becomes a symmetric monoidal category with tensor product \otimes_A , unit A and braiding $M \otimes_A N \to N \otimes_A M$ induced by the braiding γ of \mathcal{C} .

If \mathcal{C} is further closed and has equalizers. Then so does $\mathbf{Mod}(A)$. The internal $\mathrm{Hom}_A(M,N)$ is given by the equalizer of the morphism

$$\operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}(M, \operatorname{Hom}(A, N)),$$

which is induced by the action of A on N, and the morphism

$$\underline{\operatorname{Hom}}(M,N) \longrightarrow \underline{\operatorname{Hom}}(M \otimes A,N) \cong \underline{\operatorname{Hom}}(M,\underline{\operatorname{Hom}}(A,N)),$$

which is induced by the action of A on M.

Recall (A.1.10.a) that the A-homomorphism

ev:
$$M \otimes_A \operatorname{Hom}_A(M, N) \longrightarrow N$$

corresponding to $id_{\text{Hom}_A(M,N)}$ is called the **evaluation**.

5.b Remark (Internal Tensor-Hom adjunction) Recall (Theorem A.1.11) that in a right closed monoidal category C, the *Tensor-Hom adjunction*

$$-\otimes A\dashv \underline{\mathrm{Hom}}(A,-)$$

further induce natural isomorphisms

$$\underline{\operatorname{Hom}}(X \otimes A, Y) \cong \underline{\operatorname{Hom}}(X, \underline{\operatorname{Hom}}(A, Y)).$$

5.c Lemma (Limits and colimits in a module category) Let C be a closed symmetric monoidal category and A a monoid in it. Then the limits and colimits in $\mathbf{Mod}(A)$ are computed in C.

Proof: The A-module structure of a limit of A-modules is given by the dotted morphism in the following diagram.

$$A \otimes (\varprojlim M_i) - - > \varprojlim M_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \otimes M_i \xrightarrow{l_{M_i}} M_i$$

The A-module structure of a colimit of A-modules is given by the dotted morphism in the following diagram.

$$A \otimes M_i \xrightarrow{l_{M_i}} M_i$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A \otimes (\varinjlim M_i) \cong \varinjlim (A \otimes M_i) - - > \varinjlim M_i$$

Therefore the forgetful functor $\mathbf{Mod}(A) \to \mathcal{C}$ is

- 1. faithful,
- 2. reflects limits, colimits and isomorphisms.

It is further a *symmetric lax functor* as we have canonical morphisms:

$$M \otimes N \longrightarrow M \otimes_A N$$
 and $\mathbf{1} \xrightarrow{e_A} A$.

However, it is *NOT* monoidal since it doesn't preserve the tensor unit.

5.d Example (Free modules) Let \mathcal{C} be a symmetric monoidal category and A a commutative monoid in it. For any object X in \mathcal{C} , $A \otimes X$ is an A-module with the action

$$A \otimes A \otimes X \xrightarrow{m_A} A \otimes X$$
.

This module is called the **free module** on X.

The free modules give rise to the left adjoint functor of the forgetful functor $\mathbf{Mod}(A) \to \mathcal{C}$. The unit $-\to A \otimes -$ is given by the unit of A and the counit $A \otimes - \to -$ is given by the module actions.

Moreover the free module functor is a symmetric monoidal functor since we have the natural isomorphisms

$$A \otimes (X \otimes Y) \cong (A \otimes X) \otimes_A (A \otimes Y)$$
 and $A \otimes \mathbf{1} \cong A$.

In the case $A \otimes -$ commutes with coproducts, the *n*-fold coproducts $A^{\oplus n}$ of A is a free module, called the **free module of rank** n.

5.e Example (Cofree modules) Let \mathcal{C} be a closed symmetric monoidal category and A a commutative monoid in it. For any object X in \mathcal{C} , we first have a morphism

$$\underline{\operatorname{Hom}}(A,X) \xrightarrow{m_A} \underline{\operatorname{Hom}}(A \otimes A,X)$$

induced by the multiplication of A. Apply the *Tensor-Hom* adjunction to it and note that (by Remark 5.b)

$$\underline{\operatorname{Hom}}(A \otimes A, X) \cong \underline{\operatorname{Hom}}(A, \underline{\operatorname{Hom}}(A, X))$$

we get a morphism

$$A \otimes \operatorname{Hom}(A, X) \longrightarrow \operatorname{Hom}(A, X).$$

Furthermore, this morphism gives an A-module structure on $\underline{\text{Hom}}(A, X)$. This module is called the **cofree module** on X.

The cofree modules give rise to the right adjoint functor of the forgetful functor $\mathbf{Mod}(A) \to \mathcal{C}$. The unit is given by the A-homomorphisms

$$M \longrightarrow \underline{\operatorname{Hom}}(A, M)$$

corresponding to the module actions $M \otimes A \to M$. The counit is given by the composition of the unit of A and the evaluations (ref. Example A.2.5)

$$\underline{\operatorname{Hom}}(A,X) \xrightarrow{e_A} A \otimes \underline{\operatorname{Hom}}(A,X) \xrightarrow{\operatorname{ev}} X.$$

Note that the cofree module functor is NOT a symmetric lax functor. For instance, $\underline{\mathrm{Hom}}(A,\mathbf{1})$ is rarely isomorphic to A as A-modules, actually there may be even no A-homomorphisms.

- **5.f Example (Dual modules)** Let M be a module over a commutative monoid A in a closed symmetric monoidal category C. The module $\underline{\operatorname{Hom}}_A(M,A)$ is called the **weak dual** of M, denoted by M^{\vee} .
 - **6** ¶ (Modules over Hopf monoids) A module over a bimonoid B is a module over the monoid B. We have seen $\mathbf{Mod}(B)$ is a symmetric monoidal category. However, we give $\mathbf{Mod}(B)$ another monoidal structure which directly inherits from \mathcal{C} . Indeed, if B is a bimonoid, then for any two B-modules M and N, their tensor product $M \otimes N$ admits an action as the composition

$$B\otimes (M\otimes N)\stackrel{\delta}{\longrightarrow} (B\otimes B)\otimes (M\otimes N)\stackrel{\gamma}{\longrightarrow} (B\otimes M)\otimes (B\otimes N)\stackrel{l\otimes l}{\longrightarrow} M\otimes N.$$

Similarly, the counit $\epsilon \colon B \to \mathbf{1}$ induces a B-module structure on $\mathbf{1}$. In this way, we see the forgetful functor $\mathbf{Mod}(B) \to \mathcal{C}$ is a *strong monoidal functor*, meaning it preserves the monoidal structures.

6.a Theorem (Closed monoidal structure on modules) If H is a Hopf monoid in a closed symmetric monoidal category C, then the category H Mod is also closed and the forgetful functor is strong closed, meaning it preserves internal hom.

Proof: It suffices to give an H-module structure on $\underline{\text{Hom}}(M,N)$ for any H-modules M,N. Indeed, since

$$\operatorname{Hom}_{\mathcal{C}}(H \otimes \operatorname{\underline{Hom}}(M, N), \operatorname{\underline{Hom}}(M, N)) = \operatorname{Hom}_{\mathcal{C}}(H \otimes \operatorname{\underline{Hom}}(M, N) \otimes M, N),$$

it suffices to give a morphism $H \otimes \text{Hom}(M, N) \otimes M \to N$. Here it is

$$\begin{split} H \otimes \operatorname{\underline{Hom}}(M,N) \otimes M & \stackrel{\delta}{\longrightarrow} (H \otimes H) \otimes \operatorname{\underline{Hom}}(M,N) \otimes M \\ & \stackrel{\gamma}{\longrightarrow} (H \otimes \operatorname{\underline{Hom}}(M,N)) \otimes (H \otimes M) \\ & \stackrel{l \otimes l}{\longrightarrow} \operatorname{\underline{Hom}}(M,N) \otimes M \\ & \stackrel{\operatorname{ev}}{\longrightarrow} N, \end{split}$$

where ev is the **evaluation**.

Algebras and modules in a linear cosmos

We now, turn back to consider modules in an abelian tensor category.

- 7 Theorem (Abelian tensor category of modules) Let A be a monoid in an abelian tensor category K.
 - 1. The category Mod(A) of A-modules is naturally an abelian category.
 - 2. If A is commutative, then Mod(A) is an abelian tensor category.
 - 3. If K is further a linear cosmos, then so is Mod(A). In this case, the forgetful functor Mod(A) → K is a change of linear cosmoses, is faithful, reflects limits, colimits and isomorphisms and has a left adjoint A⊗ −, which is an abelian tensor functor.
 - 4. If K is further a Grothendieck cosmos, then so is $\mathbf{Mod}(A)$.

Proof: First, $\mathbf{Mod}(A)$ is \mathbf{Ab} -enriched. Indeed, for any two A-modules M and N, $\mathrm{Hom}_A(M,N)$ is a subset of $\mathrm{Hom}_{\mathcal{K}}(M,N)$. It is further a subgroup: let f,g be two A-morphisms from M to N, then so is f-g since $A\otimes -$ is an additive functor.

Next, $\mathbf{Mod}(A)$ is finite-complete and finite-cocomplete. This follows from a similar argument for Lemma 5.c except we only consider finite limits and finite colimits.

Now, any A-morphism can be uniquely factored into a triple which gives the its factorization as \mathcal{K} -morphisms. Thus the canonical morphism must be an isomorphism. This shows $\mathbf{Mod}(A)$ is an abelian category.

Assume A is commutative, then as shown in Remark 5.a, $\mathbf{Mod}(A)$ has a tensor product \otimes_A with the tensor unit A making it a symmetric monoidal category. Moreover, by the construction of \otimes_A , we see that for any A-module M, $M \otimes_A$ — is additive and right exact.

We have seen in Example 5.d that the adjunction of the free module functor $A \otimes -$ and the forgetful functor $\mathbf{Mod}(A) \to \mathcal{K}$ is given by the unit of A and the A-module structures. It is easy to see both of them are additive.

Now assume \mathcal{K} is a linear cosmos. Then, by Lemma 5.c, the forgetful functor is faithful, reflects limits, colimits and isomorphisms and thus an abelian lax functor. Then, $\mathbf{Mod}(A)$ is cocomplete, colimits and exact sequences in $\mathbf{Mod}(A)$ are computed in \mathcal{K} and $M \otimes_A$ — has a right adjoint $\underline{\mathrm{Hom}}_A(M,-)$ for every A-module M. Therefore $\mathbf{Mod}(A)$ is a linear cosmos. As a left adjoint functor, $A \otimes -$ commutes with colimits. By Example 5.d, $A \otimes -$ is a symmetric monoidal functor, and thus an abelian tensor functor.

Finally, if there is a generator S of K, then $A \otimes S$ is an A-module and is a generator of $\mathbf{Mod}(A)$. Indeed, let $f, g \colon M \rightrightarrows N$ be two A-homomorphisms such that for any A-homomorphism $t \colon A \otimes S \to M$, we have $f \circ t = g \circ t$.

Then for any morphism $s \colon S \to M$ in \mathcal{K} , consider the following diagram.

One can verify that the above diagrams are commutative. Then $\bar{s} := l_M \circ s$ is an A-homomorphism and thus $f \circ \bar{s} = g \circ \bar{s}$. Then the bottom diagrams show that this implies $f \circ s = g \circ s$. Since S is a generator, f = g.

8 Lemma (Uniqueness of rank) Let A be a commutative monoid in an abelian tensor category K and assume $A \neq 0$. If $A^{\oplus n} \cong A^{\oplus m}$ as A-modules, then n = m.

Proof: Let $R = \operatorname{Hom}_A(A, A)$. This is a nontrivial ring since $A \neq 0$. Then, apply the functor $\operatorname{Hom}_A(A, -) \colon \operatorname{\mathbf{Mod}}(A) \to \operatorname{\mathbf{Mod}}(R)$ to the isomorphism $A^{\oplus n} \cong A^{\oplus m}$, we get $R^n \cong R^m$, which implies n = m.

Remark The similar statement fails to be true in general.

9 (Algebras over a commutative monoid) Let \mathcal{K} be an abelian tensor category \mathcal{K} and A a commutative monoid in it. Then, a monoid in $\mathbf{Mod}(A)$ is called an A-algebra.

Note that an A-algebra (B, n, f) is also a monoid in K, whose unit e is the composition

$$\mathbf{1} \to A \stackrel{f}{\longrightarrow} B$$

and whose multiplication m is the composition

$$B \otimes B \to B \otimes_A B \xrightarrow{n} B$$
.

Then, the action $l: A \otimes B \to B$ can be factored as the composition

$$A \otimes B \stackrel{f \otimes B}{\longrightarrow} B \otimes B \stackrel{m}{\longrightarrow} B.$$

Moreover, the unit $A \to B$ is a homomorphism of monoids in \mathcal{C} such that the following diagram commutes.

$$\begin{array}{c|c} A \otimes B \xrightarrow{f \otimes B} B \otimes B \xrightarrow{m} B \\ f \otimes B & & \parallel \\ B \otimes B \xrightarrow{\gamma_{B,B}} B \otimes B \xrightarrow{m} B \end{array}$$

Conversely, given any homomorphism $f: A \to B$ of monoids satisfying the above commutative diagram, then B is an A-algebra. The A-module structure is given by

$$A \otimes B \xrightarrow{f} B \otimes B \xrightarrow{m} B$$
.

the unit of B is f, and the multiplication of B is the dotted morphism determined by the universal property in the following diagram.

$$B\otimes A\otimes B \Longrightarrow B\otimes_A B$$

$$\downarrow B$$

$$\downarrow B$$

$$\downarrow B$$

In particular, we have the following equivalence of symmetric monoidal categories:

$$\mathbf{CMon}(A) \simeq \mathbf{CMon}(\mathcal{K})/A.$$

10 (Restrictions and extensions of scalars) Let $f: A \to B$ be a homomorphism of commutative monoids in an abelian tensor category \mathcal{K} . On one hand, any B-module N admits an A-module structure given by the composition

$$A \otimes N \stackrel{f}{\longrightarrow} B \otimes N \longrightarrow N.$$

This A-module is called the **restriction** of N to A, denoted by $N|_A$. The restrictions give rise to a functor, which is actually the forgetful functor from $\mathbf{Mod}(B)$ to $\mathbf{Mod}(A)$. On the other hand, for any A-module M, there is a natural B-module structure on the tensor product $B \otimes_A M$ given by the multiplication m of B:

$$B \otimes B \otimes_A M \xrightarrow{m} B \otimes_A M.$$

This gives rise to an abelian tensor functor $\mathbf{Mod}(A) \to \mathbf{Mod}(B)$, called **extension of scalars**.

It turns out to be that the two functors form an adjunction of changes of linear cosmoses. In fact, this is just a special case of Example 5.d.

The restriction functor also has a right adjoint, given by mapping each A-module M to the B-module $\underline{\mathrm{Hom}}_A(B,M)$. The B-module structure on $\underline{\mathrm{Hom}}_A(B,M)$ is given by the morphism

$$B \otimes_A \underline{\operatorname{Hom}}_A(B, M) \longrightarrow \underline{\operatorname{Hom}}_A(B, M)$$

corresponding to

$$\underline{\operatorname{Hom}}_A(B,M) \xrightarrow{m_A} \underline{\operatorname{Hom}}_A(B \otimes_A B, M) \cong \underline{\operatorname{Hom}}_A(B,\underline{\operatorname{Hom}}_A(B,M))$$

under the *Tensor-Hom adjunction*. Actually, this is just a special case of Example 5.e.

Ideals

- 11 (Ideals) Let A be a monoid in an abelian tensor category K. Then an (two-side) ideal is a subobject of A in Mod(A). The smallest ideal is the zero ideal 0 and the largest ideal is A itself.
- 11.a Lemma (Quotient algebra) Let A be a commutative monoid in an abelian tensor category K and I an ideal of A. Then the quotient A-module A/I is further a commutative A-algebra.

Proof: The unit of A/I is given by the projection $A \to A/I$.

As for the multiplication, consider the following exact sequence of Amodules:

$$0 \longrightarrow I \longrightarrow A \longrightarrow A/I \longrightarrow 0.$$

Apply $-\otimes_A A/I$ to it, we get a right exact sequence

$$I \otimes_A A/I \longrightarrow A \otimes_A A/I \longrightarrow A/I \otimes_A A/I \longrightarrow 0.$$

The first arrow is a zero morphism as we have the following commutative diagram,

where the rows are right exact sequences. Therefore, the projection

$$A/I = A \otimes_A A/I \longrightarrow A/I \otimes_A A/I$$

is an isomorphism whose inverse gives the multiplication of A/I.

11.b Lemma (Quotient monoid) Let A be a monoid in an abelian tensor category K and I an ideal of A. Then the quotient A-module A/I is a monoid in K.

Proof: Similar to Lemma 11.a except that the tensor products are taking in \mathcal{K} .

§ II.3 Ringed spaces

Ringed spaces and \mathcal{O}_X -modules

In this subsection, we introduce ringed spaces and their modules. For now, we temporarily not assume rings to be commutative.

1 (Ringed spaces) A ringed space is a pair (X, \mathcal{O}_X) of a topological space X and a sheaf of rings on X. A morphism of ringed spaces is a pair (f, f^{\sharp}) of a continuous map $f: X \to Y$ and an f-map (ref. I.5.6) of sheaves of rings $f^{\sharp}: \mathcal{O}_Y \to \mathcal{O}_X$.

Let $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ and $(g, g^{\sharp}): (Y, \mathcal{O}_Y) \to (Z, \mathcal{O}_Z)$ be two morphisms of ringed spaces. The composition of morphisms of ringed spaces is given by

$$(g, g^{\sharp}) \circ (f, f^{\sharp}) = (g \circ f, f^{\sharp} \circ g^{\sharp}).$$

Note that here the composition $f^{\sharp} \circ g^{\sharp}$ follows I.5.6.

Recall that \mathbf{Ab} is a Grothendieck cosmos (Example 2.1.a) whose tensor products are characterized as *universal bilinear maps*.

2 (\mathscr{O} -modules) Let \mathscr{F} and \mathscr{G} be two presheaves of abelian groups, then their **tensor product** $\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G}$ is given by

$$(\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G})(U) := \mathscr{F}(U) \otimes \mathscr{G}(U).$$

Remark (Bilinear morphisms) A bilinear morphism of (pre)sheaves of abelian groups $\varphi \colon \mathscr{F} \times \mathscr{G} \to \mathscr{H}$ is a morphism between their underlying (pre)sheaves of sets such that the components φ_U are bilinear maps of abelian groups.

One can verify that this tensor product satisfies the following universal property.

There is a bilinear morphism of presheaves of abelian groups $\mathscr{F} \times \mathscr{G} \to \mathscr{F} \otimes \mathscr{G}$ and for any bilinear morphism of presheaves of abelian groups $\varphi \colon \mathscr{F} \times \mathscr{G} \to \mathscr{H}$, there is a unique morphism of presheaves of abelian groups $\widetilde{\varphi} \colon \mathscr{F} \otimes \mathscr{G} \to \mathscr{H}$ making the following diagram commute.

In this way, $\mathbf{PAb}(X)$ becomes a symmetric monoidal category. By Theorem 1.2 or direct check, a presheaf of rings \mathscr{O} is the same as a monoid in $\mathbf{PAb}(X)$. A **presheaf of** \mathscr{O} -modules is then a module over such a

monoid. In other words, an \mathscr{O} -module is an abelian presheaf \mathscr{F} with an abelian presheaf morphism $\mathscr{O} \otimes^{\operatorname{pre}} \mathscr{F} \to \mathscr{F}$, called the *action*, such that each $\mathscr{O}(U) \otimes \mathscr{F}(U) \to \mathscr{F}(U)$ gives $\mathscr{F}(U)$ an $\mathscr{O}(U)$ -module structure. A morphism between presheaves of \mathscr{O} -modules is then a morphism of abelian presheaves preserving the actions. The category of presheaves of \mathscr{O} -modules is denoted by $\operatorname{\mathbf{PMod}}(\mathscr{O})$.

2.a Lemma Let \mathscr{F} and \mathscr{G} be two abelian presheaves, then

1.
$$(\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G})_x = \mathscr{F}_x \otimes \mathscr{G}_x \text{ for all } x \in X;$$

2.
$$(\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G})^{\#} = (\mathscr{F}^{\#} \otimes^{\operatorname{pre}} \mathscr{G})^{\#} = (\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G}^{\#})^{\#} = (\mathscr{F}^{\#} \otimes^{\operatorname{pre}} \mathscr{G}^{\#})^{\#}.$$

Proof: 1. For any $x \in X$, we have

$$\begin{split} \mathscr{F}_x \otimes \mathscr{G}_x &= (\varinjlim_{x \in U} \mathscr{F}(U)) \otimes (\varinjlim_{x \in V} \mathscr{G}(V)) \\ &= \varinjlim_{x \in U} \varinjlim_{x \in V} (\mathscr{F}(U) \otimes \mathscr{G}(V)). \end{split}$$

Note that pairs of the form (U, U) with $x \in U$ are cofinal in the category of pairs (U, V) of neighborhoods U, V of x. Therefore $\mathscr{F}_x \otimes \mathscr{G}_x = (\mathscr{F} \otimes \mathscr{G})_x$.

2. There already exist the following canonical morphisms

$$\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G} \longrightarrow \mathscr{F}^{\#} \otimes^{\operatorname{pre}} \mathscr{G}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G}^{\#} \longrightarrow \mathscr{F}^{\#} \otimes^{\operatorname{pre}} \mathscr{G}^{\#}$$

it remains to verify they become isomorphisms after sheafification, which is obvious since they are isomorphisms at the level of stalks. \Box

Therefore, for any abelian sheaves \mathscr{F},\mathscr{G} , we may define their **tensor product** $\mathscr{F} \otimes \mathscr{G}$ as the sheafification of $\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G}$. By the universal property of sheafification, $\mathscr{F} \otimes \mathscr{G}$ satisfies the following universal property.

There is a bilinear morphism of abelian sheaves $\mathscr{F} \times \mathscr{G} \to \mathscr{F} \otimes \mathscr{G}$ and for any bilinear morphism of abelian sheaves $\varphi \colon \mathscr{F} \times \mathscr{G} \to \mathscr{H}$, there is a unique morphism of abelian sheaves $\widetilde{\varphi} \colon \mathscr{F} \otimes \mathscr{G} \to \mathscr{H}$ making the following diagram commute.

$$\mathscr{F} \times \mathscr{G} \longrightarrow \mathscr{F} \otimes \mathscr{G}$$

$$\varphi \qquad \qquad \downarrow \tilde{\varphi}$$

$$\mathscr{H}$$

This makes $\mathbf{Ab}(X)$ become a symmetric monoidal category with the tensor unit $\underline{\mathbb{Z}}$. In this symmetric monoidal category, a sheaf of rings is the

same as a monoid. We call a module over such a monoid \mathscr{O} as a **sheaf** of \mathscr{O} -modules or simply \mathscr{O} -module. A morphism of \mathscr{O} -modules is then a morphism of abelian sheaves preserving module actions. The category of \mathscr{O} -modules is denoted by $\mathbf{Mod}(\mathscr{O})$.

2.b Remark Note that the unit and multiplication of a monoid in $\mathbf{Ab}(X)$ are NOT the unit and multiplication of the corresponding sheaf of rings. In fact, they are the sheafification. If we use e and m denote the unit and multiplication of a monoid \mathscr{O} in $\mathbf{Ab}(X)$, then the unit and multiplication of the corresponding sheaf of rings \mathscr{O} is given by the following compositions:

$$\mathbb{Z} \xrightarrow{\#} \underline{\mathbb{Z}}(U) \xrightarrow{e} \mathscr{O}(U)$$

$$\mathscr{O}(U) \otimes \mathscr{O}(U) \xrightarrow{\#} (\mathscr{O} \otimes \mathscr{O})(U) \xrightarrow{m} \mathscr{O}(U).$$

For any $n \in \mathbb{Z}$, we denote its image in $\mathcal{O}(U)$ by n again. For any $s \otimes t \in \mathcal{O}(U) \otimes \mathcal{O}(U)$, we denote its image in $\mathcal{O}(U)$ by $s \cdot t$ or simply st.

2.c Corollary Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} a presheaf of \mathcal{O}_X -modules. Then $\mathscr{F}^{\#}$ is an \mathcal{O}_X -module and for each $x \in X$, \mathscr{F}_x is an $\mathcal{O}_{X,x}$ -module.

We have seen $\mathbf{Ab}(X)$ is an abelian category in Theorem I.4.8, and we also have seen $\mathbf{Ab}(X)$ is a symmetric monoidal category. What's the relation?

3 Lemma Ab(X) is a linear cosmos satisfying AB5.

Proof: It is easy to see that the category of abelian presheaves form an abelian category. Furthermore, we have seen in Theorem I.4.8 that abelian sheaves also form an abelian category. Then, Proposition I.4.9 implies that $\mathbf{Ab}(X)$ is complete and cocomplete and colimits in it are sheafifications of colimits in $\mathbf{PAb}(X)$.

Now, since colimits are computed open sets by open sets in $\mathbf{PAb}(X)$ and filtered colimits in \mathbf{Ab} are exact, so are filtered colimits in $\mathbf{PAb}(X)$. Since colimits in $\mathbf{Ab}(X)$ are sheafifications of colimits in $\mathbf{PAb}(X)$ and the sheafification is exact, so are filtered colimits in $\mathbf{Ab}(X)$.

3.a Corollary The category Ring(X) of sheaves of rings over a topological space X is a symmetric monoidal category, in which the constant sheaf Z is the initial object and unit object and sheaves of commutative rings are the monoids. Moreover, the opposite of the subcategory CRing(X) of sheaves of commutative rings is a Cartesian category. The forgetful functor Ring(X) → Ab(X) is faithful, commutes with limits and filtered colimits, reflects isomorphisms and has a left adjoint.

Proof: From Lemma 2.2.a, Lemma 2.2.b, Example 2.2.d, Lemma 2.2.g and Example 2.2.h. \Box

3.b Proposition (Sheaf Hom) The category Ab(X) of abelian sheaves is a closed category.

Proof: Similar to I.4.11, we can define the notion of *sheaf Hom* for abelian sheaves, say

$$\mathcal{H}om(\mathscr{F},\mathscr{G})(U) := \operatorname{Hom}_{\mathbf{Ab}(U)}(\mathscr{F}|_{U},\mathscr{G}|_{U}).$$

Then, one can verify that it is an abelian sheaf and, like in Theorem I.4.15, the sheaf Hom gives rise to the internal Hom in $\mathbf{Ab}(X)$.

Indeed, the tensor-Hom adjunction is given by the unit η :

$$\eta_{\mathscr{F}}(U) : \mathscr{F}(U) \longrightarrow \operatorname{Hom}_{\mathbf{Ab}(U)}(\mathscr{G}|_{U}, \mathscr{F}|_{U} \otimes \mathscr{G}|_{U})$$

$$s \longmapsto \left(t \in \mathscr{G}(V) \mapsto (s|_{V} \otimes t)^{\#} \in (\mathscr{F} \otimes \mathscr{G})(V) \right),$$

and the counit ϵ , given by the sheafification of

$$\varepsilon_{\mathscr{F}}(U) \colon \operatorname{Hom}_{\mathbf{Ab}(U)}(\mathscr{G}|_{U}\,,\,\mathscr{F}|_{U}) \otimes \mathscr{G}(U) \longrightarrow \mathscr{F}(U)$$

$$\varphi \otimes s \longmapsto \varphi(s). \qquad \Box$$

3.c Remark (Endomorphism sheaf) For any abelian sheaf \mathscr{F} , the sheaf $\mathcal{H}om(\mathscr{F},\mathscr{F})$ admits a ring structure by the sheafification of

$$\operatorname{Hom}_{\mathbf{Ab}(U)}(\mathscr{F}|_{U},\mathscr{F}|_{U}) \otimes \operatorname{Hom}_{\mathbf{Ab}(U)}(\mathscr{F}|_{U},\mathscr{F}|_{U}) \longrightarrow \operatorname{Hom}_{\mathbf{Ab}(U)}(\mathscr{F}|_{U},\mathscr{F}|_{U})$$
$$\varphi \otimes \psi \longmapsto \varphi \circ \psi.$$

Then, one has the notion of **sheaf of center** of a sheaf of rings.

3.d Remark (Center) For any sheaf of rings \mathcal{O} , the equalizer $Z(\mathcal{O})$ of the morphisms

$$\mathscr{O} \rightrightarrows \mathcal{H}om(\mathscr{O},\mathscr{O})$$

corresponding to its multiplication and opposite of multiplication in $\mathbf{Ab}(X)$ is a subsheaf of rings, called the **center** of \mathscr{O} .

In concrete, the subsheaf $Z(\mathcal{O})$ is given by

$$Z(\mathscr{O})(U) = \{ s \in \mathscr{O}(U) | \forall V \subset U, t \in \mathscr{O}(V), s|_{V} \cdot t = t \cdot s|_{V} \}.$$

Note that this ring is NOT the same as $Z(\mathcal{O}(U))$.

4 Theorem (Linear cosmoses for sheaf theory) Let (X, \mathcal{O}_X) be a ringed space. Then $\mathbf{PMod}(\mathcal{O}_X)$ and $\mathbf{Mod}(\mathcal{O}_X)$ are AB5 categories and $\# \dashv F$ is an adjunction of additive functors. If \mathcal{O}_X is further commutative, then $\mathbf{PMod}(\mathcal{O}_X)$ and $\mathbf{Mod}(\mathcal{O}_X)$ are linear cosmoses and $\# \dashv F$ is an adjunction of abelian tensor functors.

Proof: By Theorem 2.7, as the category of modules over a monoid in a linear cosmos, $\mathbf{Mod}(\mathscr{O}_X)$ is an AB5 category. If further \mathscr{O}_X is commutative, then $\mathbf{Mod}(\mathscr{O}_X)$ is again a linear cosmos by Theorem 2.7.

4.a Remark In the case \mathscr{O}_X is commutative, we denote the tensor product in $\mathbf{PMod}(\mathscr{O}_X)$ and $\mathbf{Mod}(\mathscr{O}_X)$ by $\otimes_{\mathscr{O}_X}^{\mathrm{pre}}$ and $\otimes_{\mathscr{O}_X}$ respectively. For any presheaves of \mathscr{O}_X -modules \mathscr{F} and \mathscr{G} , obviously we have

$$(\mathscr{F} \otimes^{\mathrm{pre}}_{\mathscr{O}_X} \mathscr{G})(U) = \mathscr{F}(U) \otimes_{\mathscr{O}_X(U)} \mathscr{G}(U).$$

But the similar formula doesn't hold in $\mathbf{Mod}(\mathscr{O}_X)$ since there $\otimes_{\mathscr{O}_X}$ is obtained by sheafification of $\otimes_{\mathscr{O}_X}^{\mathrm{pre}}$. However, since sheafification preserves stalks, for any \mathscr{O}_X -modules \mathscr{F} and \mathscr{G} , we still have

$$(\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G})_x = \mathscr{F}_x \otimes_{\mathscr{O}_{X,x}} \mathscr{G}_x.$$

As we have get the linear cosmos, from now on, we assume rings to be commutative.

4.b (Internal Hom) Let (X, \mathcal{O}_X) be a ringed space and \mathcal{F}, \mathcal{G} two \mathcal{O}_X -modules. Then, similar to I.4.11, we can define the sheaf Hom by

$$\mathcal{H}om_{\mathscr{O}_X}(\mathscr{F},\mathscr{G})(U) := \operatorname{Hom}_{\mathscr{O}_X|_U}(\mathscr{F}|_U,\mathscr{G}|_U).$$

One can see this is an abelian subsheaf of $\mathcal{H}om(\mathscr{F},\mathscr{G})$ and further an \mathscr{O}_X module whose action is given by

$$\mathscr{O}_X(U) \otimes \operatorname{Hom}_{\mathscr{O}_X|_U}(\mathscr{F}|_U, \mathscr{G}|_U) \longrightarrow \operatorname{Hom}_{\mathscr{O}_X|_U}(\mathscr{F}|_U, \mathscr{G}|_U)$$

$$f \otimes \varphi \longmapsto f\varphi,$$

here $f\varphi$ is the composition of φ and multiplication by f. One can verify the followings.

1. There are canonical homomorphisms of $\mathcal{O}_{X,x}$ -modules

$$\mathcal{H}om_{\mathscr{O}_X}(\mathscr{F},\mathscr{G})_x \to \mathrm{Hom}_{\mathscr{O}_{X,x}}(\mathscr{F}_x,\mathscr{G}_x).$$

2. There are canonical isomorphisms of \mathcal{O}_X -modules

$$\mathcal{H}om_{\mathscr{O}_X}(\mathscr{O}_X,\mathscr{F})\cong\mathscr{F}.$$

- 3. The covariant functor $\mathcal{H}om_{\mathscr{O}_X}(\mathscr{F},-)$ maps limits to limits and the contravariant functor $\mathcal{H}om_{\mathscr{O}_X}(-,\mathscr{F})$ maps colimits to limits.
- 4. There is an adjunction of additive functors on $\mathbf{Mod}(\mathscr{O}_X)$:

$$\mathscr{F} \otimes_{\mathscr{O}_X} - \dashv \mathcal{H}om_{\mathscr{O}_X}(\mathscr{F}, -).$$

5. There are canonical homomorphisms of \mathcal{O}_X -modules

$$\mathscr{F} \otimes_{\mathscr{O}_X} \mathcal{H}om_{\mathscr{O}_X}(\mathscr{F},\mathscr{G}) \longrightarrow \mathscr{G},$$

called the evaluation. It is the sheafification of the evaluation

$$s \otimes \varphi \longmapsto \varphi(s)$$
.

6. There are canonical homomorphisms of \mathcal{O}_X -modules

$$\mathscr{F} \longrightarrow \mathcal{H}om_{\mathscr{O}_{\mathbf{Y}}}(\mathscr{G}, \mathscr{F} \otimes_{\mathscr{O}_{\mathbf{Y}}} \mathscr{G}),$$

called the **left multiplication**. It maps each $s \in \mathcal{F}(U)$ to

$$t \in \mathscr{G}(V) \mapsto (s|_V \otimes t)^\#.$$

- 7. The \mathcal{O}_X -module $\mathcal{H}om_{\mathcal{O}}(\mathcal{F}, \mathcal{F})$ is further a \mathcal{O}_X -algebra whose multiplication inherits from $\mathcal{H}om(\mathcal{F}, \mathcal{F})$.
- 8. For any \mathcal{O}_X -algebra \mathcal{A} , the equalizer $Z(\mathcal{A})$ of the morphisms

$$\mathscr{A} \rightrightarrows \mathcal{H}om_{\mathscr{O}_X}(\mathscr{A},\mathscr{A})$$

corresponding to its multiplication and opposite of multiplication in $\mathbf{Mod}(\mathcal{O}_X)$ is a subalgebra, called the **center** of \mathscr{A} .

4.c Proposition If there is a homomorphism of sheaves of rings $\mathcal{O}_1 \to \mathcal{O}_2$, then we have the following adjunctions of additive functors.

$$\begin{aligned} \mathscr{O}_2 \otimes_{\mathscr{O}_1} - \dashv \mid_{\mathscr{O}_1} \colon \mathbf{Mod}(\mathscr{O}_2) &\leftrightarrows \mathbf{Mod}(\mathscr{O}_1), \\ \mid_{\mathscr{O}_1} \dashv \mathcal{H}om_{\mathscr{O}_1}(\mathscr{O}_2, -) \colon \mathbf{Mod}(\mathscr{O}_1) &\leftrightarrows \mathbf{Mod}(\mathscr{O}_2), \end{aligned}$$

In particular,

- 1. $\mathscr{O}_2 \otimes_{\mathscr{O}_1} -: \mathbf{Mod}(\mathscr{O}_1) \to \mathbf{Mod}(\mathscr{O}_2)$ is an abelian tensor functor;
- 2. $|_{\mathscr{O}_1}: \mathbf{Mod}(\mathscr{O}_2) \to \mathbf{Mod}(\mathscr{O}_1)$ is a faithful abelian lax functor reflecting limits, colimits and isomorphisms.

Proof: From Theorem 4, one can see this is just a special case of 2.10 and further of Lemma 2.5.c, Example 2.5.d and Example 2.5.e.

Supports

- **5** (Supports) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module.
 - The **support** of \mathscr{F} is the set

$$\operatorname{supp}(\mathscr{F}) := \{ x \in X | \mathscr{F}_x \neq 0 \}.$$

• The **support** of a global section $s \in \Gamma(X, \mathcal{F})$ is the set

$$\operatorname{supp}(s) := \{ x \in X | s_x \neq 0 \in \mathscr{F}_x \}.$$

• Likewise, the **support** of a local section $s \in \Gamma(U, \mathcal{F})$ is the set

$$\operatorname{supp}(s) := \{ x \in U | s_x \neq 0 \in \mathscr{F}_x \}.$$

This notion has already been defined in I.3.4 and the following lemma follows straightforward from Proposition I.3.4.a.

- **5.a Lemma** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module. Let U be a open subset of X.
 - 1. For $s \in \mathcal{F}(U)$, its support supp(s) is closed in U.
 - 2. For $s, s' \in \mathcal{F}(U)$, we have

$$\operatorname{supp}(s+s') \subset \operatorname{supp}(s) \cup \operatorname{supp}(s').$$

3. For $f \in \mathcal{O}_X(U)$ and $s \in \mathcal{F}(U)$, we have

$$supp(fs) \subset supp(f) \cap supp(s)$$
.

- 4. The support $supp(\mathscr{F})$ is the union of all supports of all local sections of \mathscr{F} .
- 5. For $\varphi \colon \mathscr{F} \to \mathscr{G}$ a homomorphism of \mathscr{O}_X -modules and $s \in \mathscr{F}(U)$, we have

$$\operatorname{supp}(\varphi(s))\subset\operatorname{supp}(s).$$

Remark Note that the support $supp(\mathscr{F})$ is not closed in general.

5.b Lemma Let (X, \mathcal{O}_X) be a ringed space, then $\operatorname{supp}(\mathcal{O}_X)$ is closed.

Proof: Note that a ring is 0 if and only if 1 = 0 in it. Thus the support $\operatorname{supp}(\mathcal{O}_X)$ equals to the support $\operatorname{supp}(1)$ of the **unit section**.

Pushforwards and pullbacks

Our goal in this subsection is the following adjunction.

6 Theorem (Pushforwards and pullbacks) Let $(f, f^{\sharp}): (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ be a morphism of ringed spaces, then there is an adjunction

$$f^* \dashv f_* \colon \mathbf{Mod}(\mathscr{O}_X) \leftrightarrows \mathbf{Mod}(\mathscr{O}_Y).$$

The meaning of the notations will be explained in the follows.

6.a Lemma Let $f: X \to Y$ be a continuous map. Then we have an adjunction of abelian tensor functors:

$$f_p \dashv f_* \colon \mathbf{PAb}(X) \leftrightarrows \mathbf{PAb}(Y).$$

Proof: It is obvious that they are additive. It suffices to show that for any presheaves of abelian groups \mathscr{F} and \mathscr{G} on X and \mathscr{F}' and \mathscr{G}' on Y. We have

$$f_*(\mathscr{F} \otimes^{\operatorname{pre}} \mathscr{G}) = f_* \mathscr{F} \otimes^{\operatorname{pre}} f_* \mathscr{G}$$
$$f_p(\mathscr{F}' \otimes^{\operatorname{pre}} \mathscr{G}') = f_p \mathscr{F}' \otimes^{\operatorname{pre}} f_p \mathscr{G}'.$$

which are straightforward.

Let $f: X \to Y$ be a continuous map. Let \mathcal{O}_X be a sheaf of rings on X and let \mathcal{O}_Y be a sheaf of rings on Y. Then we have the following functors:

$$f_* \colon \mathbf{PMod}(\mathscr{O}_X) \longrightarrow \mathbf{PMod}(f_*\mathscr{O}_X),$$

 $f_* \colon \mathbf{Mod}(\mathscr{O}_X) \longrightarrow \mathbf{Mod}(f_*\mathscr{O}_X),$
 $f_p \colon \mathbf{PMod}(\mathscr{O}_Y) \longrightarrow \mathbf{PMod}(f_p\mathscr{O}_Y),$
 $f^{-1} \colon \mathbf{Mod}(\mathscr{O}_Y) \longrightarrow \mathbf{Mod}(f^{-1}\mathscr{O}_Y).$

So, what's their relation?

6.b Lemma Let $f: X \to Y$ be a continuous map. Let $\mathscr O$ be a sheaf of rings on Y. Then we have adjunctions:

$$f_p \dashv f_* \colon \mathbf{PMod}(f_p \mathscr{O}) \leftrightarrows \mathbf{PMod}(\mathscr{O}),$$

 $f^{-1} \dashv f_* \colon \mathbf{Mod}(f^{-1} \mathscr{O}) \leftrightarrows \mathbf{Mod}(\mathscr{O}).$

Proof: One can verify that if \mathscr{F} is a presheaf of $f_p\mathscr{O}$ -modules, then $f_*\mathscr{F}$ is a presheaf of \mathscr{O} -modules whose modules action is given by the composition

$$\mathscr{O} \otimes^{\mathrm{pre}} f_* \mathscr{F} \xrightarrow{\eta} f_* f_p \mathscr{O} \otimes^{\mathrm{pre}} f_* \mathscr{F} = f_* (f_p \mathscr{O} \otimes^{\mathrm{pre}} \mathscr{F}) \longrightarrow f_* \mathscr{F}.$$

One can verify that the unit $\eta \colon \mathscr{O} \to f_* f_p \mathscr{O}$, the counit $\epsilon \colon f_p f_* \mathscr{O} \to \mathscr{O}$ and the forgetful functors are compatible with the module actions. Therefore the required adjunction follows.

6.c Lemma Let $f: X \to Y$ be a continuous map. Let $\mathscr O$ be a sheaf of rings on X. Then we have adjunctions of abelian tensor functors:

$$\mathscr{O} \otimes_{f_p f_* \mathscr{O}}^{\operatorname{pre}} f_p \dashv f_* \colon \operatorname{\mathbf{PMod}}(\mathscr{O}) \leftrightarrows \operatorname{\mathbf{PMod}}(f_* \mathscr{O}),$$
$$\mathscr{O} \otimes_{f^{-1} f_* \mathscr{O}} f^{-1} \dashv f_* \colon \operatorname{\mathbf{Mod}}(\mathscr{O}) \leftrightarrows \operatorname{\mathbf{Mod}}(f_* \mathscr{O}).$$

Proof: Apply Proposition 4.c to $\epsilon: f_p f_* \mathcal{O} \to \mathcal{O}$, we have adjunctions

$$\mathscr{O} \otimes_{f_p f_* \mathscr{O}}^{\mathrm{pre}} - \dashv \mid_{f_p f_* \mathscr{O}} : \mathbf{PMod}(\mathscr{O}) \leftrightarrows \mathbf{PMod}(f_p f_* \mathscr{O}),$$

$$\mathscr{O} \otimes_{f^{-1} f_* \mathscr{O}} - \dashv \mid_{f^{-1} f_* \mathscr{O}} : \mathbf{Mod}(\mathscr{O}) \leftrightarrows \mathbf{Mod}(f^{-1} f_* \mathscr{O}).$$

Apply Lemma 6.b to $f_*\mathcal{O}$, we have adjunctions

$$f_p \dashv f_* \colon \mathbf{PMod}(f_p f_* \mathscr{O}) \leftrightarrows \mathbf{PMod}(f_* \mathscr{O}),$$

 $f^{-1} \dashv f_* \colon \mathbf{Mod}(f^{-1} f_* \mathscr{O}) \leftrightarrows \mathbf{Mod}(f_* \mathscr{O}).$

Combining them, we get the required adjunctions.

Let $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces.

• For any \mathscr{O}_X -module \mathscr{F} , we define the **pushforward** of \mathscr{F} as the \mathscr{O}_Y -module obtained by restricting the $f_*\mathscr{O}_X$ -module $f_*\mathscr{F}$ to \mathscr{O}_Y via $f^{\sharp}\colon \mathscr{O}_Y \to f_*\mathscr{O}_X$. We still denote it by $f_*\mathscr{F}$.

• For any \mathcal{O}_Y -module \mathcal{G} , we define the **pullback** of \mathcal{G} as the \mathcal{O}_X -module obtained by the extension of scalars:

$$f^*\mathscr{G} := \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathscr{G},$$

where the homomorphism $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ is the one corresponding to f^{\sharp} via the adjunction $f^{-1} \dashv f_*$.

Proof (Proof of Theorem 6): This proof is just an analogy of Lemma 6.c. Apply Proposition 4.c to $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$, we have the adjunction

$$\mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} - \dashv \mid_{f^{-1}\mathscr{O}_Y} : \mathbf{Mod}(\mathscr{O}_X) \leftrightarrows \mathbf{Mod}(f^{-1}\mathscr{O}_Y).$$

Apply Lemma 6.b to \mathcal{O}_Y , we have the adjunction

$$f^{-1} \dashv f_* \colon \mathbf{Mod}(f^{-1}\mathscr{O}_Y) \leftrightarrows \mathbf{Mod}(\mathscr{O}_Y).$$

Combining them, we get the required adjunctions.

7 (f-maps) Let $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces. Given an \mathcal{O}_X -module F and an \mathcal{O}_Y -module \mathcal{G} , an f-map $\varphi: \mathcal{G} \to \mathcal{F}$ of modules is an f-map of abelian sheaves compatible with the module actions. The canonical map at stalks

$$\varphi_x \colon \mathscr{G}_{f(x)} \longrightarrow \mathscr{F}_x$$

is now a homomorphism of $\mathscr{O}_{Y,f(x)}$ -modules. Here \mathscr{F}_x is viewed as an $\mathscr{O}_{Y,f(x)}$ -module by restricting it via the homomorphism $f_x^{\sharp} \colon \mathscr{O}_{Y,f(x)} \to \mathscr{O}_{X,x}$.

Here is a related lemma.

7.a Lemma Let $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces and \mathcal{G} an \mathcal{O}_Y -module. Then for any $x \in X$, we have an isomorphism

$$(f^*\mathscr{G})_x = \mathscr{O}_{X,x} \otimes_{\mathscr{O}_{Y,f(x)}} \mathscr{G}_{f(x)}$$

of $\mathscr{O}_{X,x}$ -modules. Here the extension of scalars is induced by the homomorphism $f_x^{\sharp} \colon \mathscr{O}_{Y,f(x)} \to \mathscr{O}_{X,x}$.

Proof: Follows from the definition of pullbacks and Remark 4.a. \Box

Abelian sheaves under Immersions

- **8** (Open immersions of topological spaces) Recall that for open immersion $j: U \hookrightarrow X$ of topological spaces, there is a left adjoint $j_!$ of j^{-1} . Usually, this functor is not left exact. But we have
- **8.a Lemma** Let $j: U \hookrightarrow X$ be an open immersion of topological spaces. Then the functor $j_!: \mathbf{Ab}(U) \to \mathbf{Ab}(X)$ is exact.

Proof: It remains to show $j_!$ is left exact, which is obvious sine j maps the zero sheaf on U to the zero sheaf on X.

Let (X, \mathcal{O}_X) be a ringed space. Then for any open subset U of X, $(U, \mathcal{O}_X|_U)$ is also a ringed space, called the **open subspace** of X. We also denote $\mathcal{O}_X|_U$ by \mathcal{O}_U if there is no ambiguities. The open immersion $j: U \hookrightarrow X$ gives rise to a morphism of ringed spaces $j: (U, \mathcal{O}_U) \to (X, \mathcal{O}_X)$.

- **8.b** Proposition Let $j: U \hookrightarrow X$ be an open immersion of topological spaces.
 - 1. We have adjunctions

$$j_{p!} \dashv j_p \colon \mathbf{PMod}(\mathscr{O}_X) \leftrightarrows \mathbf{PMod}(\mathscr{O}_U),$$

 $j_! \dashv j^{-1} \colon \mathbf{Mod}(\mathscr{O}_X) \leftrightarrows \mathbf{Mod}(\mathscr{O}_U).$

2. Let \mathscr{F} be an \mathscr{O}_U -module. Then the stalks of the sheaf $j_!\mathscr{F}$ are described as follows

$$j_! \mathscr{F}_x = \begin{cases} \mathscr{F}_x & \text{if } x \in U \\ 0 & \text{if } x \notin U. \end{cases}$$

- 3. We have $j_p j_{p!} = \operatorname{id} \text{ on } \mathbf{PMod}(\mathscr{O}_U) \text{ and } j^{-1} j_! = \operatorname{id} \text{ on } \mathbf{Mod}(\mathscr{O}_U).$
- 4. The functor

$$j_! \colon \mathbf{Mod}(\mathscr{O}_U) \longrightarrow \mathbf{Mod}(\mathscr{O}_X)$$

is fully faithful and induces an equivalence between $\mathbf{Mod}(\mathcal{O}_U)$ and the full subcategory of $\mathbf{Mod}(\mathcal{O}_X)$ consisting of \mathcal{O}_X -modules vanishing outside of U. Those modules can be called \mathcal{O}_X -modules on U.

- **9 Proposition (Closed immersions of topological spaces)** Let $i: Z \rightarrow X$ be a closed immersion of topological spaces. Then we have
 - 1. Let $\mathscr F$ be an abelian sheaf on Z. Then the stalks of the sheaf $i_*\mathscr F$ on X can be described as

$$i_* \mathscr{F}_x = \begin{cases} \mathscr{F}_x & \text{if } x \in Z \\ 0 & \text{if } x \notin Z. \end{cases}$$

- 2. We have $i^{-1}i_* = id$ on $\mathbf{Ab}(Z)$.
- 3. The functor

$$i_* \colon \mathbf{Ab}(Z) \longrightarrow \mathbf{Ab}(X)$$

is exact, fully faithful and induces an equivalence of $\mathbf{Ab}(Z)$ and the full subcategory of $\mathbf{Ab}(X)$ consisting of abelian sheaves whose support is contained in Z.

Proof: The exactness follows from the description of stalks in 1 and that the exactness of taking stalks. The rest follow from Proposition I.5.12 and Theorem I.5.13.

Let $i: Z \to X$ be a closed immersion of topological spaces. Then for any abelian sheaf \mathscr{F} on X, there is a largest abelian subsheaf $\mathscr{H}_Z(\mathscr{F})$ of \mathscr{F} whose support is contained in Z. Indeed, by Lemma 5.a, this subsheaf is given by

$$U \longmapsto \{s \in \mathscr{F}(U) | \operatorname{supp}(s) \subset Z \cap U \}$$
.

Moreover, this construction gives rise to a functor

$$\mathcal{H}_Z \colon \mathbf{Ab}(X) \longrightarrow \mathbf{Ab}(X).$$

We have seen in Remark I.5.14 that i_* has no right adjoint in general. However, we have

9.a Proposition (Right adjoint of i_*) Let $i: Z \to X$ be a closed immersion of topological spaces. Then we have an adjunction

$$i_* \dashv i^! \colon \mathbf{Ab}(X) \leftrightarrows \mathbf{Ab}(Z),$$

where i! is given by $i^{-1}\mathcal{H}_Z$.

Proof: The adjunction is given by the unit $\mathscr{G} = i^! i_* \mathscr{G}$ and the counit $i_* i^! \mathscr{F} = \mathscr{H}_Z(\mathscr{F}) \hookrightarrow \mathscr{F}$.

The following exact sequence is very useful.

10 Lemma (The canonical exact sequence) Let X be a topological space, U an open subset of X and Z its complement. Denote $j: U \hookrightarrow X$ the open immersion and $i: Z \to X$ the closed immersion. Then, there is a canonical exact sequence:

$$0 \longrightarrow j_! j^{-1} \mathscr{F} \longrightarrow \mathscr{F} \longrightarrow i_* i^{-1} \mathscr{F} \longrightarrow 0,$$

naturally for any abelian sheaf \mathscr{F} on X.

Proof: We can verify this at the level of stalks. Note that for $x \in U$, we have

$$(j_!j^{-1}\mathscr{F})_x = (j^{-1}\mathscr{F})_x = \mathscr{F}_x$$
 and $(i_*i^{-1}\mathscr{F})_x = 0$,

For $x \in \mathbb{Z}$, we have

$$(i_*i^{-1}\mathscr{F})_x = (i^{-1}\mathscr{F})_x = \mathscr{F}_x$$
 and $(j_!j^{-1}\mathscr{F})_x = 0$,

Then the exact sequence follows.

§ II.4 Basic notions on modules

Modules generated by sections

1 (Generated by global sections) We have defined the notion of global sections in I.3.1.a. For (X, \mathcal{O}_X) a ringed space and \mathscr{F} an \mathcal{O}_X -module, we say \mathscr{F} is **generated by global sections** if there is a family of global sections $s_i \in \Gamma(X, \mathscr{F})$ indexed by a set I such that the homomorphism

$$\bigoplus_{i\in I}\mathscr{O}_X\longrightarrow\mathscr{F},$$

whose summand is induced by s_i , is an epimorphism. If this is the case, we say $\{s_i\}$ generates \mathscr{F} . If this homomorphism is further an isomorphism, we call $\{s_i\}$ is a global basis of \mathscr{F} .

Remark One can the this is a generalization of the notion of a module over a ring generated by elements. However, unlike modules over a ring, not every \mathscr{O}_X -module is generated by global sections. This is because \mathscr{O}_X is in general NOT the generator of $\mathbf{Mod}(\mathscr{O}_X)$.

The following lemmas are obvious.

- **1.a Lemma** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathscr{O}_X -module. Let $\{s_i\}_{i\in I}$ be a family of global sections indexed by a set I. Then $\{s_i\}$ generates \mathscr{F} if and only if for all $x \in X$, the family of their germs $\{s_{i,x}\}$ generates the $\mathscr{O}_{X,x}$ -modules \mathscr{F}_x .
- **1.b Lemma** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F}, \mathscr{G} two \mathcal{O}_X -modules. If \mathscr{F} and \mathscr{G} are generated by global sections $\{s_i\}_{i\in I}$ and $\{t_j\}_{j\in J}$ respectively, then $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$ is generated by the global sections $\{s_i \otimes t_j\}_{i\in I, j\in J}$.
 - **2** (Generated by local sections) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathscr{O}_X -module. Let $\{s_i \in \mathscr{F}(U_i)\}_{i \in I}$ be a family of local sections indexed by a set I. Then there is a smallest \mathscr{O}_X -submodule \mathscr{G} of \mathscr{F} containing those local sections. This subsheaf \mathscr{G} is called the **subsheaf of** \mathscr{F} **generated by the local sections** $\{s_i\}$.

This \mathcal{G} is actually the local image of the homomorphism

$$\bigoplus_{i\in I}\mathscr{O}_X\longrightarrow\mathscr{F},$$

whose summand is induced by the extension by zero of s_i . In more concrete way, \mathscr{G} is the sheafification of the subpresheaf

$$U \longmapsto \left\{ \sum_{i \in J} f_i(s_i|_U) \middle| J \text{ is finite, } U_i \subset U \text{ for } i \in J \text{ and } f_i \in \mathscr{O}_X(U) \right\}.$$

- **2.a Lemma** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathscr{O}_X -module. Let $s_i \in \mathscr{F}(U_i)$ be a family of local sections indexed by a set I. Let \mathscr{G} be the subsheaf generated by them. Then for any $x \in X$, \mathscr{G}_x is the $\mathscr{O}_{X,x}$ -submodule of \mathscr{F}_x generated by the germs $s_{i,x}$ of those s_i defined at x.
 - **3** (Locally generated by sections) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathscr{O}_X -module. We say that \mathscr{F} is **locally generated by sections** if for every $x \in X$ there exists an open neighborhood U of x such that $\mathscr{F}|_U$ is generated by global sections as an \mathscr{O}_U -module.
- **3.a Lemma** Let $f:(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be a morphism of ringed spaces and \mathscr{F} an \mathscr{O}_X -module which is locally generated by sections. Then $f^*\mathscr{F}$ is locally generated by sections.

Proof: First, if \mathscr{F} is generated by global sections, then so is $f^*\mathscr{F}$ since f^* commutes with colimits.

Then, for any open subspace U of X, by the following commutative diagram

$$\begin{array}{ccc}
f^{-1}(U) & \longrightarrow Y \\
f' \downarrow & f \downarrow \\
U & \longrightarrow X
\end{array}$$

we have $f^*\mathscr{F}|_{f^{-1}(U)} = f'^*(\mathscr{F}|_U)$. Then the result follows.

- **4** (Modules of finite type) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module. We say that \mathscr{F} is of finite type, or call it a finite \mathcal{O}_X -module, if for every $x \in X$ there exists an open neighborhood U of x such that $\mathscr{F}|_U$ is generated by of finitely many sections as an \mathcal{O}_U -module.
- **4.a Lemma** Let $f:(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be a morphism of ringed spaces and \mathscr{F} a finite \mathscr{O}_X -module. Then $f^*\mathscr{F}$ is a finite \mathscr{O}_Y -module.

Proof: Similar to Lemma 3.a.

4.b Lemma Let (X, \mathcal{O}_X) be a ringed space and

$$0 \longrightarrow \mathscr{F}_1 \stackrel{\varphi}{\longrightarrow} \mathscr{F}_2 \stackrel{\psi}{\longrightarrow} \mathscr{F}_3 \longrightarrow 0$$

an exact sequence of \mathcal{O}_X -modules. If \mathscr{F}_1 and \mathscr{F}_3 are of finite type, so is \mathscr{F}_2 .

Proof: We claim that for every $x \in X$ there exists an open neighborhood U of x such that there exists the following commutative diagram

where the rows are short exact sequence and the vertical arrows on left and right are epimorphisms. Then, by the *five lemma*, the middle arrow is also an epimorphism and therefore \mathscr{F}_2 is of finite type.

Indeed, let U be an open neighborhood U of x such that there are epimorphisms $\mathscr{O}_U^{\oplus r_1} \to \mathscr{F}_1|_U$ and $\mathscr{O}_U^{\oplus r_3} \to \mathscr{F}_3|_U$. Let e_1, \cdots, e_{r_3} be a family generating $\mathscr{F}_3|_U$, then, by shrinking U, one can find sections x_1, \cdots, x_{r_3} such that $\psi(x_i) = e_i, i = 1, \cdots, r_3$. In this way, we get a morphism $\mathscr{O}_U^{\oplus r_3} \to \mathscr{F}_2|_U$. Compositing it with the projection $\mathscr{O}_U^{\oplus r_1+r_3} \to \mathscr{O}_U^{\oplus r_3}$, we get a morphism $\mathscr{O}_U^{\oplus r_1+r_3} \to \mathscr{F}_2|_U$. Plus it with the composition

$$\mathscr{O}_U^{\oplus r_1 + r_3} \longrightarrow \mathscr{O}_U^{\oplus r_1} \longrightarrow \mathscr{F}_1|_U \stackrel{\varphi}{\longrightarrow} \mathscr{F}_2|_U$$
,

we get a morphism $\mathscr{O}_U^{\oplus r_1+r_3} \to \mathscr{F}_2|_U$ fitting the required diagram. \square

4.c Lemma Let (X, \mathcal{O}_X) be a ringed space and $\varphi \colon \mathscr{F} \to \mathscr{G}$ a morphism of \mathscr{O}_X modules. If \mathscr{G} is of finite type and φ_x is surjective for some point $x \in X$, then
there exists an open neighborhood U of x such that $\varphi|_U$ is an epimorphism.

Proof: Let U be an open neighborhood U of x such that there is an epimorphisms $\mathscr{O}_U^{\oplus r} \to \mathscr{G}|_U$ and let e_1, \dots, e_r be a family generating $\mathscr{G}|_U$. Then since φ_x is surjective, one can find the preimage of each e_i by shrinking U. Since there are finitely many e_i , one can find a common U which satisfies all the requirements.

4.d Lemma Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module. If \mathscr{F} is of finite type, then \mathscr{F} vanishes at $x \in X$ implies it is zero on an open neighborhood U of x. In particular, $\operatorname{supp}(\mathscr{F})$ is closed.

Proof: Apply Lemma 4.c to the zero morphism $0 \to \mathcal{F}$.

4.e Lemma Let (X, \mathcal{O}_X) be a ringed space and $(\mathcal{F}_j, \varphi_{jj'})$ a filtered diagram of \mathcal{O}_X -modules. Let $\mathscr{F} = \varinjlim \mathscr{F}_j$. Assume \mathscr{F} is of finite type and X is quasicompact. Then some $\mathscr{F}_j \to \mathscr{F}$ are epimorphisms. If further the transition morphisms $\varphi_{jj'}$ are monomorphisms, then some $\mathscr{F}_j \to \mathscr{F}$ are isomorphisms.

Proof: For any point $x \in X$, there exists an open neighborhood U of x such that $\mathscr{F}|_U$ is generated by finitely many sections $e_1, \dots, e_r \in \mathscr{F}(U)$ and each e_k comes from a section of some \mathscr{F}_i . Since X is quasi-compact, there is a finite covering $\{U_i \subset X\}_{i=1,\dots,m}$ such that for each U_i , there are sections $e_{i1}, \cdot, e_{ik_i} \in \mathscr{F}_{j_i}(U_i)$ whose images generate $\mathscr{F}|_{U_i}$. Let j be any index after all j_i , then $\mathscr{F}_j \to \mathscr{F}$ satisfies the requirements. \square

4.f Lemma Let (X, \mathcal{O}_X) be a ringed space. Then the category of finite \mathcal{O}_X -modules is essentially small, i.e. the isomorphism class of finite \mathcal{O}_X -modules form a set.

Proof: Note that a typical epimorphism comes from the quotient of a submodule. Therefore, by Theorem I.4.17, the category of finite \mathcal{O}_X -modules is equivalent to the union of small categories of gluing data, respect to each open covering $\{U_i \subset X\}_{i \in I}$ with $I \subset \mathcal{P}(X)$, of the following form

$$\left(\mathscr{O}_{U_i}^{\oplus r_i}/\mathscr{M}_i,\mathscr{O}_{U_i\cap U_{i'}}^{\oplus r_i}/(\mathscr{M}_i|_{U_i\cap U_{i'}})\to\mathscr{O}_{U_i\cap U_{i'}}^{\oplus r_{i'}}/(\mathscr{M}_{i'}|_{U_i\cap U_{i'}})\right)$$

where \mathcal{M}_i are submodules of $\mathcal{O}_{U_i}^{\oplus r_i}$.

- **5** (Locally free sheaves) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module.
 - 1. We call \mathscr{F} a **locally free sheaf** if for every $x \in X$ there exists a set I and an open neighborhood U of x such that $\mathscr{F}|_{U} \cong \bigoplus_{i \in I} \mathscr{O}_{U}$ as \mathscr{O}_{U} -modules.
 - 2. If further I is finite, we say \mathcal{F} is a finite locally free.
 - 3. If further I equals the cardinal r, we say \mathscr{F} is of rank r.
- **5.a Lemma** Let $f: (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be a morphism of ringed spaces and \mathscr{F} a locally free \mathscr{O}_X -module. Then $f^*\mathscr{F}$ is a locally free \mathscr{O}_Y -module.
- **5.b Lemma (Locally constantness of rank)** Let (X, \mathcal{O}_X) be a ringed space such that $\operatorname{supp}(\mathcal{O}_X) = X$ and \mathscr{F} a finite locally free \mathcal{O}_X -module. Then there exists a locally constant function

$$\operatorname{rank}_{\mathscr{F}}\colon X\longrightarrow \mathbb{N}$$

such that for any point $x \in X$ the cardinality of the set I is rank $_{\mathscr{F}}(x)$.

Proof: Note that $\mathscr{F}|_U \cong \bigoplus_{i \in I} \mathscr{O}_U$ implies $\mathscr{F}_x \cong \bigoplus_{i \in I} \mathscr{O}_{X,x}$. Then since $\mathscr{O}_{X,x}$ is nonzero, we have $|I| = \operatorname{rank}(\mathscr{F}_x)$.

5.c Lemma Let (X, \mathcal{O}_X) be a ringed space and $\varphi \colon \mathscr{F} \to \mathscr{G}$ a morphism of finite locally free \mathscr{O}_X -modules of rank r. Then φ is an isomorphism if and only it is an epimorphism.

Proof: Assume φ is an epimorphism. Then for each point x, we have surjective homomorphism of $\mathscr{O}_{X,x}$ -modules $\varphi_x \colon \mathscr{F}_x \to \mathscr{G}_x$. Since both \mathscr{F} and \mathscr{G} are locally free of rank r, we get the following commutative diagram of $\mathscr{O}_{X,x}$ -modules

$$\begin{array}{ccc} \mathscr{F}_{x} & \xrightarrow{\varphi_{x}} \mathscr{G}_{x} \\ \cong & & & \cong \\ \mathscr{O}_{X,x}^{\oplus r} & \xrightarrow{\widetilde{\varphi}_{x}} \mathscr{O}_{X,x}^{\oplus r} \end{array}$$

where φ_x is surjective implies so is $\widetilde{\varphi_x}$ and thus it is bijective. Then every φ_x is bijective implies that φ is an isomorphism.

Modules represented by sections

6 (Quasi-coherent sheaves) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathscr{O}_X module. We call \mathscr{F} is a quasi-coherent sheaf if for every $x \in X$ there
exists an open neighborhood U of x such that $\mathscr{F}|_U$ is (isomorphic to) the
cokernel of a morphism

$$\bigoplus_{j\in J} \mathscr{O}_U \longrightarrow \bigoplus_{i\in I} \mathscr{O}_U.$$

Remark The category of quasi-coherent sheaves is denoted by $\mathbf{QCoh}(\mathcal{O}_X)$. However, it is NOT an abelian category in general.

Remark A right exact sequence of the form

$$\bigoplus_{j\in J}\mathscr{O}_X\longrightarrow\bigoplus_{i\in I}\mathscr{O}_X\longrightarrow\mathscr{F}\longrightarrow 0$$

is called a **representation** of \mathscr{F} . A **local representation** of \mathscr{F} on some open subset U is a representation of $\mathscr{F}|_{U}$.

6.a Lemma Let (X, \mathcal{O}_X) be a ringed space. Then the direct sum of finitely many quasi-coherent sheaves is also quasi-coherent.

Proof: Let $\mathscr{F}_1, \dots, \mathscr{F}_m$ be finitely many quasi-coherent sheaves. For every point $x \in X$, we can find an open neighborhood U of x such that all $\mathscr{F}_i|_U$ admit a representation. Then clearly so does the direct sum of them.

Remark However, the infinite direct sum of quasi-coherent sheaves may NOT be quasi-coherent again.

6.b Lemma Let $f: (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be a morphism of ringed spaces and \mathscr{F} a quasi-coherent sheaf. Then $f^*\mathscr{F}$ is quasi-coherent.

Proof: We may assume \mathscr{F} has a representation

$$\bigoplus_{j\in J}\mathscr{O}_X\longrightarrow\bigoplus_{i\in I}\mathscr{O}_X\longrightarrow\mathscr{F}\longrightarrow 0.$$

Then, apply f^* to it, we get a representation of $f^*\mathscr{F}$:

$$\bigoplus_{j\in J} \mathscr{O}_Y \longrightarrow \bigoplus_{i\in I} \mathscr{O}_Y \longrightarrow f^*\mathscr{F} \longrightarrow 0.$$

Therefore $f^*\mathscr{F}$ is quasi-coherent.

7 (Modules of finite presentation) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathscr{O}_X -module. We say that \mathscr{F} is of finite presentation if for every $x \in X$ there exists an open neighborhood U of x such that $\mathscr{F}|_U$ is (isomorphic to) the cokernel of a morphism

$$\mathscr{O}_U^{\oplus m} \longrightarrow \mathscr{O}_U^{\oplus n}.$$

7.a Lemma Let $f:(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be a morphism of ringed spaces and \mathscr{F} is an \mathscr{O}_X -module of finite presentation. Then $f^*\mathscr{F}$ is of finite presentation.

Proof: Similar to Lemma 6.b.

- **7.b Lemma** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module of finite presentation.
 - 1. For any epimorphism $\psi \colon \mathscr{O}_{X}^{\oplus r} \to \mathscr{F}$, $\ker(\psi)$ is of finite type.
 - 2. For any epimorphism $\psi \colon \mathscr{G} \to \mathscr{F}$ with \mathscr{G} of finite type, $\ker(\psi)$ is of finite type.

Proof: The problem is local so we may assume \mathscr{F} has a finite presentation

$$\mathscr{O}_X^{\oplus m} \longrightarrow \mathscr{O}_X^{\oplus n} \stackrel{\varphi}{\longrightarrow} \mathscr{F} \longrightarrow 0$$

and \mathscr{G} has a finite generating family giving the epimorphism $\mathscr{O}_X^{\oplus r} \to \mathscr{G}$. Thus it suffices to prove 1.

First, by the proof of Lemma 4.b, there is a morphism of short exact sequences:

where the dotted arrows form a homotopy between this morphism and the zero morphism of short exact sequences. Since the vertical arrows are all epimoephisms, by the *snake lemma*, we get the following epimorphism of short exact sequences:

where the dotted arrows form a homotopy between this morphism and the zero morphism of short exact sequences. Then $\gamma \colon \mathscr{O}_X^{\oplus m+r} \to \ker(\psi)$ is an epimorphism and thus $\ker(\psi)$ is of finite type as desired.

7.c Lemma Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module of finite presentation. Let $x \in X$ and assume that $\mathscr{F}_x \cong \mathscr{O}_{X,x}^{\oplus r}$. Then there exists an open neighborhood U of x such that $\mathscr{F}|_U \cong \mathscr{O}_U^{\oplus r}$.

Proof: Let e_1, \dots, e_r be a basis of \mathscr{F}_x . Then, by Lemma 4.c, we may choose an open neighborhood U of x such that there is an epimorphism $\psi \colon \mathscr{O}_X^{\oplus r} \to \mathscr{F}$. By Lemma 7.b, $\ker(\psi)$ is of finite type. Therefore, by Lemma 4.d, we have $\ker(\psi) = 0$ after shrinking U since $\ker(\psi_x) = 0$.

8 (Coherent modules) Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_{X} module. We call \mathscr{F} is a **coherent sheaf** if it is of finite type and for
every open set U of X and every finite family of sections $s_1, \dots, s_r \in \mathscr{F}(U)$,
the associated morphism $\mathcal{O}_U^{\oplus r} \to \mathscr{F}|_U$ has finite kernel.

Remark The category of coherent sheaves is denoted by $\mathbf{Coh}(\mathscr{O}_X)$.

8.a Lemma Any coherent \mathcal{O}_X -module is of finite presentation and hence quasi-coherent.

Proof: Let \mathscr{F} be a coherent \mathscr{O}_X -module. Let x be an arbitrary point. Since \mathscr{F} is of finite type, there is an open neighborhood U of x such that there is an epimorphism $\psi \colon \mathscr{O}_U^{\oplus n} \to \mathscr{F}|_U$. By the definition, its kernel is of finite type, therefore, after shrinking U, there is an epimorphism $\mathscr{O}_U^{\oplus m} \to \ker(\psi)$. Thus we get a local presentation

$$\mathscr{O}_U^{\oplus m} \longrightarrow \mathscr{O}_U^{\oplus n} \stackrel{\psi}{\longrightarrow} \mathscr{F}|_U \longrightarrow 0$$

as desired. \Box

- **8.b Lemma** Let (X, \mathcal{O}_X) be a ringed space.
 - 1. Any finite type subsheaf of a coherent sheaf is coherent.
 - 2. Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism from a finite sheaf \mathscr{F} to a coherent sheaf \mathscr{G} . Then $\ker(\varphi)$ is of finite type.
 - 3. Let $\varphi \colon \mathscr{F} \to \mathscr{G}$ be a morphism between coherent sheaves. Then both $\ker(\varphi)$ and $\operatorname{coker}(\varphi)$ are coherent.
 - 4. Given a short exact sequence of \mathcal{O}_X -modules

$$0 \longrightarrow \mathscr{F}_1 \longrightarrow \mathscr{F}_2 \longrightarrow \mathscr{F}_3 \longrightarrow 0.$$

If wo out of three are coherent so is the third.

5. The category $\mathbf{Coh}(\mathscr{O}_X)$ is a weak Serre subcategory of $\mathbf{Mod}(\mathscr{O}_X)$. In particular, the category of coherent modules is abelian and the inclusion functor $\mathbf{Coh}(\mathscr{O}_X) \to \mathbf{Mod}(\mathscr{O}_X)$ is exact.

- **8.c** Lemma Let (X, \mathcal{O}_X) be a ringed space such that \mathcal{O}_X is a coherent \mathcal{O}_X -module. Then an \mathcal{O}_X -module \mathscr{F} is coherent if and only if it is of finite presentation.
- **8.d Lemma** Let (X, \mathcal{O}_X) be a ringed space and $\varphi \colon \mathscr{F} \to \mathscr{G}$ a morphism of \mathscr{O}_X modules. If \mathscr{F} is of finite type \mathscr{G} coherent and φ_x is injective for some point $x \in X$, then there exists an open neighborhood U of x such that $\varphi|_U$ is an monomorphism.

Tensor products and Tensor algebras

- **9 Lemma (Tensor product)** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F}, \mathscr{G} two \mathcal{O}_X -modules.
 - 1. If \mathscr{F},\mathscr{G} are locally generated by sections, then so is $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$.
 - 2. If \mathscr{F},\mathscr{G} are of finite type, then so is $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$.
 - 3. If \mathscr{F},\mathscr{G} are locally free, then so is $\mathscr{F} \otimes_{\mathscr{O}_{\mathbf{X}}} \mathscr{G}$.
 - 4. If \mathscr{F},\mathscr{G} are quasi-coherent, then so is $\mathscr{F} \otimes_{\mathscr{O}_{\mathbf{X}}} \mathscr{G}$.
 - 5. If \mathscr{F},\mathscr{G} are of finite presentation, then so is $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$.
 - 6. If \mathscr{F} is of finite presentation and \mathscr{G} is coherent, then $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$ is coherent.
 - 7. If \mathscr{F},\mathscr{G} are coherent, then so is $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$.
- 10 (Symmetric and exterior algebras) Since $\operatorname{Mod}(\mathscr{O}_X)$ is a linear cosmos, by Example 2.2.h, for every \mathscr{O}_X -module \mathscr{F} , there is a universal \mathscr{O}_X -algebra associated to \mathscr{F} , which is the tensor algebra

$$T(\mathscr{F}):=\bigoplus_{n=0}^{\infty}T^{n}(\mathscr{F}),$$

where $T^n(\mathscr{F})$ denotes the *n*-fold tensor product of \mathscr{F} in $\mathbf{Mod}(\mathscr{O}_X)$.

- 1. Let \mathscr{I} denote the ideal of $T(\mathscr{F})$ generated by local sections $s \otimes t t \otimes s$ of $T^2(\mathscr{F})$ with s, t local sections of \mathscr{F} . We call the quotient $\operatorname{Sym}(\mathscr{F}) := T(\mathscr{F})/\mathscr{I}$ the **symmetric algebra** of \mathscr{F} .
- 2. Let \mathscr{J} denote the ideal of $T(\mathscr{F})$ generated by local sections $s \otimes s$ of $T^2(\mathscr{F})$ with s a local section of \mathscr{F} . We call the quotient $\wedge(\mathscr{F}) := T(\mathscr{F})/\mathscr{J}$ the **exterior algebra** of \mathscr{F} .

Note that both $\operatorname{Sym}(\mathscr{F})$ and $\wedge(\mathscr{F})$ are graded \mathscr{O}_X -algebras with grading inherited from $T(\mathscr{F})$. Moreover, $\operatorname{Sym}(\mathscr{F})$ is commutative and $\wedge(\mathscr{F})$ is graded commutative, meaning its multiplication is compatible with, instead of the braiding γ of \mathscr{O}_X -modules, the braiding γ^{\bullet} of graded \mathscr{O}_X -modules.

- **10.a Lemma** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module.
 - 1. The sheaf $\operatorname{Sym}^n(\mathscr{F})$ is the sheafification of the presheaf

$$U \longmapsto \operatorname{Sym}_{\mathscr{O}_X(U)}^n \mathscr{F}(U).$$

2. The sheaf $\wedge^n(\mathscr{F})$ is the sheafification of the presheaf

$$U \longmapsto \wedge_{\mathscr{O}_{\mathbf{Y}}(U)}^{n} \mathscr{F}(U).$$

3. There are canonical isomorphisms of $\mathcal{O}_{X,x}$ -modules

$$T(\mathscr{F})_x \cong T(\mathscr{F}_x), \qquad \operatorname{Sym}(\mathscr{F})_x \cong \operatorname{Sym}(\mathscr{F}_x), \qquad \wedge (\mathscr{F})_x \cong \wedge (\mathscr{F}_x).$$

10.b Lemma Let $f: (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be a morphism of ringed spaces and \mathscr{F} an \mathcal{O}_X -module. Then

$$f^*T(\mathscr{F}) = T(f^*\mathscr{F}), \qquad f^*\operatorname{Sym}(\mathscr{F}) = \operatorname{Sym}(f^*\mathscr{F}), \qquad f^* \wedge (\mathscr{F}) = \wedge (f^*\mathscr{F}).$$

- **10.c Lemma** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{F} an \mathcal{O}_X -module.
 - 1. If \mathscr{F} is locally generated by sections, then so are $T^n(\mathscr{F})$, $\operatorname{Sym}^n(\mathscr{F})$ and $\wedge^n(\mathscr{F})$.
 - 2. If \mathscr{F} is of finite type, then so are $T^n(\mathscr{F})$, $\operatorname{Sym}^n(\mathscr{F})$ and $\wedge^n(\mathscr{F})$.
 - 3. If \mathscr{F} is locally free, then so are $T^n(\mathscr{F})$, $\operatorname{Sym}^n(\mathscr{F})$ and $\wedge^n(\mathscr{F})$.
 - 4. If \mathscr{F} is quasi-coherent, then so are $T^n(\mathscr{F})$, $\operatorname{Sym}^n(\mathscr{F})$ and $\wedge^n(\mathscr{F})$.
 - 5. If \mathscr{F} is of finite presentation, then so are $T^n(\mathscr{F})$, $\operatorname{Sym}^n(\mathscr{F})$ and $\wedge^n(\mathscr{F})$.
 - 6. If \mathscr{F} is coherent, then so are $T^n(\mathscr{F})$, $\operatorname{Sym}^n(\mathscr{F})$ and $\wedge^n(\mathscr{F})$.
 - 7. If \mathscr{F} is locally free, then so are $T(\mathscr{F})$, $\operatorname{Sym}(\mathscr{F})$ and $\wedge(\mathscr{F})$.
 - 8. If \mathscr{F} is quasi-coherent, then so are $T(\mathscr{F})$, $\operatorname{Sym}(\mathscr{F})$ and $\wedge(\mathscr{F})$.

§ II.5 Immersions of ringed spaces and locally ringed spaces

Immersions

1 (Open immersions) Let (X, \mathcal{O}_X) be a ringed space. We have seen in 3.8 that any open immersion $j: U \hookrightarrow X$ of topological spaces induces a morphism of ringed spaces

$$(j, j^{\sharp}) \colon (U, \mathscr{O}_X|_U) \longrightarrow (X, \mathscr{O}_X),$$

where the j-map j^{\sharp} is given by the unit $\mathscr{O}_X \to j_* j^{-1} \mathscr{O}_X$ and moreover, $j^{\sharp}|_U$ is an isomorphism.

Conversely, let

$$(j, j^{\sharp}) \colon (U, \mathscr{O}_U) \longrightarrow (X, \mathscr{O}_X)$$

be a morphism of ringed spaces such that j is an open immersion of topological spaces and

$$j^{\sharp}\Big|_{U}: \mathscr{O}_{X}|_{U} \longrightarrow j^{-1}j_{*}\mathscr{O}_{U} \cong \mathscr{O}_{U}$$

is an isomorphism. Then we call (j, j^{\sharp}) an **open immersion of ringed spaces**.

Remark One can see that any open immersion of ringed spaces $f: Y \to X$ can be uniquely factorized as the composition $f = j \circ f'$ of an inclusion $j: f(Y) \hookrightarrow X$ and an isomorphism $f': Y \cong f(Y)$.

In general, given any morphism of ringed spaces $f: Y \to X$ and open subset U of X such that $f(Y) \subset U$. Then f can be uniquely factorized as the composition $Y \to U \to X$ of morphism of ringed spaces.

2 (Closed immersions) Let (X, \mathcal{O}_X) be a ringed space. Then a closed immersion $i: Z \hookrightarrow X$ of topological spaces induces a morphism of ringed spaces

$$(i, i^{\sharp}) \colon (Z, i^{-1} \mathscr{O}_X) \longrightarrow (X, \mathscr{O}_X),$$

where the *i*-map i^{\sharp} is given by the unit $\mathscr{O}_X \to i_*i^{-1}\mathscr{O}_X$, which is an epimorphism by Lemma 3.10.

Conversely, let

$$(i, i^{\sharp}) \colon (Z, \mathscr{O}_Z) \longrightarrow (X, \mathscr{O}_X)$$

be a morphism of ringed spaces such that i is an closed immersion of topological spaces and $\mathscr{O}_X \to i_*\mathscr{O}_Z$ is an epimorphism. Then we call (i, i^{\sharp}) a closed immersion of ringed spaces. The kernel \mathscr{I} of $i^{\sharp} \colon \mathscr{O}_X \to i_*\mathscr{O}_Z$ in $\mathbf{Mod}(\mathscr{O}_X)$ is called the **ideal sheaf** of (i, i^{\sharp}) .

- **2.a Lemma** Let $f: Z \to X$ be a morphism of locally ringed spaces. Then f is a closed immersion if there exists an open covering $\{U_i \to X\}$ such that each $f^{-1}(U_i) \xrightarrow{f} U_i$ is a closed immersion.
- **2.b Example** Let (X, \mathcal{O}_X) be a ringed space and \mathscr{I} a sheaf of ideal of \mathscr{O}_X . Let Z be support of $\mathscr{O}_X/\mathscr{I}$. It is a closed set in X. Let $i\colon Z\to X$ denote the inclusion. Then, by Proposition 3.9, there is a unique sheaf of rings \mathscr{O}_Z on Z such that $i_*\mathscr{O}_Z=\mathscr{O}_X/\mathscr{I}$. This gives a closed immersion of ringed spaces $i\colon Z\to X$. We call (Z,\mathscr{O}_Z) the **closed subspace** of X associated to the sheaf of ideals \mathscr{I} .

Remark One can see that any closed immersion of ringed spaces $f: X \to Y$ can be uniquely factorized as the composition $f = i \circ f'$ of a closed inclusion $i: f(X) \to Y$ and an isomorphism $f': X \cong f(X)$.

- **2.c** Theorem Let $(i, i^{\sharp}): (Z, \mathcal{O}_Z) \longrightarrow (X, \mathcal{O}_X)$ be a closed immersion of ringed spaces with the ideal sheaf \mathscr{I} . Then
 - 1. $i^*i_* = id \ on \ \mathbf{Mod}(\mathscr{O}_Z);$
 - 2. the functor

$$i_* \colon \mathbf{Mod}(\mathscr{O}_Z) \longrightarrow \mathbf{Mod}(\mathscr{O}_X)$$

is exact, fully faithful and induces an equivalence of $\mathbf{Mod}(\mathcal{O}_Z)$ and the full subcategory of $\mathbf{Mod}(\mathcal{O}_X)$ consisting of \mathcal{O}_X -module \mathscr{G} killed by \mathscr{I} , i.e. $\mathscr{I} \otimes_{\mathscr{O}_X} \mathscr{G} = 0$.

Proof: We verify 1. at the level of stalks. Let \mathscr{F} be an \mathscr{O}_Z -module, $z \in Z$ and x = i(z). Then, the canonical map of stalks at x is

$$(i^*i_*\mathscr{F})_z = \mathscr{O}_{Z,z} \otimes_{\mathscr{O}_{X,x}} (i_*\mathscr{F})_x \xrightarrow{\text{action}} (i_*\mathscr{F})_x \xrightarrow{\cong} \mathscr{F}_z.$$

Since the ring homomorphism $\mathcal{O}_{X,x} \to \mathcal{O}_{Z,z}$ is surjective, the above homomorphism of $\mathcal{O}_{Z,z}$ -modules is an isomorphism. In particular, the functor i_* is fully faithful.

Since \mathscr{I} is the kernel of $\mathscr{O}_X \to i_*\mathscr{O}_Z$, we have $\mathscr{I} \otimes_{\mathscr{O}_X} i_*\mathscr{F} = 0$ for any \mathscr{O}_Z -module \mathscr{F} .

Conversely, let \mathscr{G} be an \mathscr{O}_X -module such that $\mathscr{I}\otimes_{\mathscr{O}_X}\mathscr{G}=0$. Then for any $x\in X$ outside of i(Z), we have $\mathscr{I}_x=\mathscr{O}_{X,x}$ and thus $\mathscr{G}_x=0$. Therefore $\mathrm{supp}(\mathscr{G})\subset i(Z)$. By Proposition 3.9, there is an abelian sheaf \mathscr{F} on Z such that $i_*\mathscr{F}=\mathscr{G}$. We need to show \mathscr{F} is an \mathscr{O}_Z -module. Since \mathscr{I} is the kernel of $\mathscr{O}_X\to i_*\mathscr{O}_Z$, we have $i_*\mathscr{O}_Z\otimes_{\mathscr{O}_X}\mathscr{G}\cong\mathscr{G}$ and which gives \mathscr{G} , i.e. $i_*\mathscr{F}$ an $i_*\mathscr{O}_Z$ -module structure. Apply i^{-1} to the module action

$$i_*\mathscr{O}_Z\otimes i_*\mathscr{F}\longrightarrow i_*\mathscr{F},$$

we get an \mathscr{O}_Z -module structure on \mathscr{F} such that $i_*\mathscr{F} = \mathscr{G}$ as \mathscr{O}_X -modules. This proves the statements.

- **3** (Immersions) A morphism of ringed spaces $f: X \to Y$ is called an immersion if it can be factored as $j \circ i$, where i is a closed immersion and j is an open immersion.
- **3.a Lemma** An immersion of ringed spaces $f: Y \to X$ is a closed immersion if and only if f(Y) is closed in X.

Proof: Let $f: Y \to X$ be an immersion such that f(Y) is closed in X. Let

$$Y \xrightarrow{i} U \xrightarrow{j} X$$

be a factorization of f such that i is a closed immersion and j is an open immersion. Let \mathscr{I} be the ideal sheaf of i. Since

$$\mathscr{I}|_{U\setminus i(Y)} = \mathscr{O}_{X\setminus i(Y)}|_{U\setminus i(Y)},$$

we may glue \mathscr{I} and $\mathscr{O}_{X\setminus i(Y)}$ to a sheaf of ideals \mathscr{I} of \mathscr{O}_X . Moreover, we have

$$\operatorname{supp}(\mathscr{O}_X/\mathscr{J}) = \operatorname{supp}(\mathscr{O}_U/\mathscr{I}) \subset U.$$

Then, by Example 2.b, the closed subspace of U associated to \mathscr{I} , which is i(Y), is isomorphic to the closed subspace of X associated to \mathscr{I} . Therefore $Y \to U \to X$ is a closed immersion.

Locally ringed spaces

4 (Local rings and locally ringed spaces) Recall that a local ring (A, \mathfrak{m}) is a ring A with its unique maximal ideal \mathfrak{m} . The quotient A/\mathfrak{m} is a field, called the **residue field** of A. A homomorphism between local rings, or a **local homomorphism**, is a ring homomorphism preserving the maximal ideal. Therefore every local homomorphism induces a homomorphism between the residue fields, called the **homomorphism of residues**.

A locally ringed space is a ringed space (X, \mathcal{O}_X) such that the stalk $\mathcal{O}_{X,x}$ at each point x is a local ring. We denote $\mathfrak{m}_{X,x}$ or simply \mathfrak{m}_x the maximal ideal of $\mathcal{O}_{X,x}$, and call $\kappa(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$ the **residue field of** X **at** x.

A morphism of locally ringed spaces $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces such that at every point x, the induced homomorphism $f_x^{\sharp}: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is a local homomorphism.

Since a composition of local homomorphisms is a local homomorphism again, a composition of morphism of locally ringed spaces is also a morphism of locally ringed spaces. Therefore, the locally ringed spaces with morphisms between them form a subcategory of ringed spaces.

Locally Ringed space \hookrightarrow Ringed spaces

Moreover, this subcategory reflects isomorphisms.

4.a Remark (Geometric interpretation) We view sections on a locally ringed space (X, \mathscr{O}_X) as **functions**: for any section $s \in \mathscr{O}_X(U)$, we define its **value** at a **point** x to be the image of s under the composition

$$\mathscr{O}_X(U) \longrightarrow \mathscr{O}_{X,x} \longrightarrow \kappa(x).$$

Note that this composition is a ring homomorphism, thus we can add and multiple functions. A section s is said to **vanish** at a point x if the value of s at x is zero.

The set of points where s doesn't vanish is called the **standard open** set of s and denoted by D(s).

4.b Lemma The standard open set D(s) is open.

Proof: A section s doesn't vanish at a point x if and only if its germ at x is invertible if and only if its restriction to a neighborhood of x is invertible. Therefore D(s) is open.

5 (Opne immersions of locally ringed spaces) Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be two locally ringed spaces and $f \colon X \to Y$ a morphism of ringed spaces between them. If f is an open immersion of ringed spaces, then it is a morphism of locally ringed spaces, we call it an **open immersion of locally ringed spaces**.

Remark One can see that any open immersion of locally ringed spaces $f: Y \to X$ can be uniquely factorized as the composition $f = j \circ f'$ of an inclusion $j: f(Y) \hookrightarrow X$ and an isomorphism $f': Y \cong f(Y)$.

In general, given any morphism of locally ringed spaces $f: Y \to X$ and open subset U of X such that $f(Y) \subset U$. Then f can be uniquely factorized as the composition $Y \to U \to X$ of morphism of locally ringed spaces.

- 6 (Closed immersions of locally ringed spaces) The similar result does not hold for closed immersions. Instead, we define a **closed immersion of locally ringed spaces** to be a morphism $i: (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ of locally ringed spaces such that
 - 1. i is a closed immersion of ringed spaces;
 - 2. the ideal sheaf of i is locally generated by sections.

Remark The second condition guarantees $i_*\mathcal{O}_Z$ is a quasi-coherent \mathcal{O}_X -module.

6.a Lemma Let $f: Y \to X$ be a morphism of ringed spaces and \mathscr{I} a sheaf of ideals of \mathscr{O}_X with the associated closed subspace Z. Then f factors through Z if and only if the morphism $f^*\mathscr{I} \to f^*\mathscr{O}_X = \mathscr{O}_Y$ is zero. If this is the case, the factorization $f = i \circ g$ is unique.

Proof: If f factors through Z, then the morphism $f^*\mathscr{I} \to \mathscr{O}_Y$ is zero. Conversely, if the morphism $f^*\mathscr{I} \to \mathscr{O}_Y$ is zero, then so is the composition $\mathscr{I} \to \mathscr{O}_X \to f_*\mathscr{O}_Y$. Therefore the morphism $f^{\sharp} \colon \mathscr{O}_X \to f_*\mathscr{O}_Y$ can be factored as

$$\mathscr{O}_X \longrightarrow \mathscr{O}_X/\mathscr{I} \xrightarrow{\overline{f^{\sharp}}} f_*\mathscr{O}_Y.$$

Note that the stalk $\mathscr{O}_{Y,y}$ is nonzero, thus so is the stalk of $\mathscr{O}_X/\mathscr{I}$ at f(y). Therefore $f(y) \in \operatorname{supp}(\mathscr{O}_X/\mathscr{I}) = Z$. Hence the continuous map f can be factored as

$$Y \stackrel{g}{\longrightarrow} Z \stackrel{i}{\longrightarrow} X.$$

Define $g^{\sharp} \colon \mathscr{O}_Z \to g_* \mathscr{O}_Y$ to be the unique morphism whose pullback along i is $\overline{f^{\sharp}}$. Then, we can see the above factorization is further of locally ringed spaces and is unique.

6.b Corollary Let $f: Y \to X$ be a morphism of ringed spaces and \mathscr{I} a sheaf of ideals of \mathscr{O}_X locally generated by sections. Let $i: Z \to X$ be the associated closed subspace of \mathscr{I} . Let \mathscr{I} be the image of the morphism $f^*\mathscr{I} \to f^*\mathscr{O}_X = \mathscr{O}_Y$. Then \mathscr{I} is locally generated by sections. Moreover, let $i': Z' \to Y$ be the associated closed subspace of \mathscr{I} . There exists a unique morphism of locally ringed spaces $f': Z' \to Z$ such that the following diagram of locally ringed spaces commutes.

$$Z' \xrightarrow{i'} Y$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Z \xrightarrow{i} X$$

Moreover, this diagram is a Cartesian diagram of locally ringed spaces.

Proof: First, \mathscr{J} is locally generated by sections by Lemma 4.3.a. Since $f^*\mathscr{I} \to f^*\mathscr{O}_X = \mathscr{O}_Y \to \mathscr{O}_Y/\mathscr{J} = i'_*\mathscr{O}_Z$ is zero, so is $i'^*f^*\mathscr{I} \to \mathscr{O}_Z$. Thus the commutative diagram follows. Let T be an arbitrary locally ringed space with morphisms $t\colon T\to Z, t'\colon T\to Y$ such that $i\circ t=f\circ t'$. Then, by Lemma 6.a, $(i\circ t)^*\mathscr{I}\to\mathscr{O}_T$ is zero. Thus $f^*\mathscr{I}\to f^*\mathscr{O}_X = \mathscr{O}_Y\to t'_*\mathscr{O}_T$ is zero and then so is $\mathscr{J}\to\mathscr{O}_Y\to t'_*\mathscr{O}_T$. By Lemma 6.a again, there exists a unique morphism of locally ringed spaces $g\colon T\to Z'$ fits the desired commutative diagram. This shows the above diagram is Cartesian.

- 7 (Immersions of locally ringed spaces) A morphism of locally ringed spaces $f: X \to Y$ is called an **immersion** if it can be factored as $j \circ i$, where i is a closed immersion and j is an open immersion.
- **7.a Lemma** An immersion of locally ringed spaces $f: Y \to X$ is a closed immersion if and only if f(Y) is closed in X.

§ II.6 Manifolds, bundles and étalé spaces

Manifolds

Recall that a **manifold** M is a topological space locally like \mathbb{R}^n and satisfies some extra requirements such as second countability and Hausdorff property. More precisely, for every point $x \in M$, there exists a neighborhood U of x equipped with an embedding $\phi \colon U \to \mathbb{R}^n$, called a **chart**, and those charts are compatible. Two charts (U, ϕ) and (V, ψ) are said to be compatible if the **transition map** $\psi \circ \phi^{-1}$ is a continuous (or k-differential, smooth, etc. depending on what kind of manifold is considered) map in \mathbb{R}^n .

1 (Structure sheaf) Any manifold M admits a canonical sheaf \mathcal{O}_M , called its structure sheaef. For a topological manifold, it is just the sheaf \mathcal{C}_M of continuous maps to \mathbb{R} .

Next, we consider the differential manifolds. But before that, let's recall that there are many subsheaves of \mathscr{C} on the Euclidean space \mathbb{R}^n such as \mathscr{C}^k , the sheaf of k-differential functions, \mathscr{C}^{∞} , the sheaf of real analytic functions, et cetera.

Anyhow, let $\mathscr O$ denotes one of those subsheaf, for instance $\mathscr C^\infty$. Let's see how the definition of a manifold translate them to the manifold M. Recall a chart is nothing but an embedding $\phi\colon U\to\mathbb R^n$, this embedding translates the sheaf $\mathscr O$ to U via inverse image ϕ^{-1} . Then the compatible condition of charts (U,ϕ) and (V,ψ) require the transition maps $\psi\circ\phi^{-1}$ being smooth. In this way the transition maps provides isomorphisms between $\phi^{-1}\mathscr O|_{U\cap V}$ and $\psi^{-1}\mathscr O|_{U\cap V}$ via

$$\psi^{-1}\mathscr{O}\big|_{U\cap V}(W)=\mathscr{O}(\psi(W))\longrightarrow \phi^{-1}\mathscr{O}\big|_{U\cap V}(W)=\mathscr{O}(\phi(W))$$

$$s\longmapsto s\circ\psi\circ\phi^{-1}.$$

Now, we have a system of sheaves on open sets of M together with isomorphisms on their overlaps. Obviously, this system can be extended into a gluing data. Then, by Theorem I.4.17, we obtain a sheaf \mathcal{O}_M on M. This sheaf is called the **structure sheaef** of M and in the smooth case it is called the **sheaf of smooth functions** on M and denoted by \mathscr{C}_M^{∞} .

1.a (Local structures) Note that $(\mathbb{R}^n, \mathcal{O})$ is a locally ringed space. Indeed, at every point x, the stalk \mathcal{O}_x is the local ring of germs of smooth (resp. k-differential, real analytic, et cetera) functions at x with the maximal ideal consisting of germs vanishing at x. The evaluation map gives rise to the canonical projection from each stalk to its residue field, which is isomorphic to \mathbb{R} .

Therefore, by the construction of structure sheaf above, (M, \mathcal{O}_M) is also a locally ringed space. We call the stalks of \mathcal{O}_M the local rings of germs of smooth (resp. k-differential, real analytic, et cetera) functions and the projection $\mathcal{O}_{M,x} \to \kappa(x)$ the evaluation map.

- **1.b Remark (Chosen of canonicality)** The construction of structure sheaf above relies on the chosen of charts. For convenience, we should fix a canonical one. It is natural to require the structure sheaf \mathcal{O}_M being a subsheaf of the sheaf \mathcal{C}_M of continuous functions on M. Indeed, the inverse image of the sheaf of continuous functions on \mathbb{R}^n along each chart is canonically isomorphic to the sheaf of continuous functions on this chart. This gives us canonical monomorphisms from the structure sheaves to the sheaves of continuous functions on charts, thus form a monomorphism $\mathcal{O}_M \hookrightarrow \mathcal{C}_M$. We call the image sheaf the **(standard) structure sheaf** of M.
- 1.c (Smooth functions) Let (M, \mathcal{O}_M) be a manifold with its standard structure sheaf. Then the sections of \mathcal{O}_M on U are special kind of continuous functions on U. They called **smooth functions** in the smooth case. The stalk of \mathcal{O}_M at each point is the local ring of germs of smooth functions with its maximal ideal consisting of germs vanishing at x. The canonical projection from each stalk to its residue field, which is isomorphic to \mathbb{R} , is the usual evaluation map.
- 1.d Remark (Paracompactness and partitions of unity) Recall that a covering $\{U_i \to U\}$ is called a **locally finite covering** if any point of U has a neighborhood that intersects only finitely many U_i . A topological space is said to be **paracompact** if its every covering admits a locally finite refinement.

The most important property of paracompact spaces are that they admits **smooth partitions of unity**. That means, given a locally finite covering $\{U_i \to M\}$ of a manifold, there exist smooth functions s_i on M with values in the unit interval [0,1] such that $\sup(s_i) \subset U_i$ and $\sum s_i = 1$.

Since smooth partitions of unity is a fundamental tools in differential geometry, some often require smooth manifolds being paracompact.

- **2** (Manifolds) Conversely, a manifold is determined by its structure sheaf. To see this, we define a **variété** to be a locally ringed space (M, \mathcal{O}_M) such that
 - 1. M has second countability and Hausdorff property;
 - 2. For any point $x \in M$, there is a neighborhood U of x such that $(U, \mathcal{O}_M|_U)$ is isomorphic to $(\mathbb{R}^n, \mathcal{O})$.

We will show

3 Theorem A manifold M is equivalent to a variété (M, \mathcal{O}_M) .

Proof: We have seen a manifold admits a variété (M, \mathcal{O}_M) , where \mathcal{O}_M is its structure sheaf. Conversely, let (M, \mathcal{O}_M) be a variété and let $\{U_i \subset M\}$ be a

covering of M such that there are isomorphisms $\varphi_i \colon (U_i, \mathscr{O}_M|_{U_i}) \to (\mathbb{R}^n, \mathscr{O})$. We can view (U_i, φ_i) as charts and it remains to show they are compatible. We have the isomorphisms

$$\varphi_j \circ \varphi_i^{-1} \colon (\varphi_i(U_i \cap U_j), \mathscr{O}|_{\varphi_i(U_i \cap U_j)}) \longrightarrow (\varphi_j(U_i \cap U_j), \mathscr{O}|_{\varphi_j(U_i \cap U_j)}).$$

By Lemma 3.a, they are smooth. Therefore the charts (U_i, φ_i) are compatible as desired.

3.a Lemma Let U and V be two open sets in \mathbb{R}^n and $(f,\psi)\colon (U,\mathscr{O}|_U)\to (V,\mathscr{O}|_V)$ an isomorphism of locally ringed spaces. Then, ψ is give by

$$\mathscr{O}(W) \longrightarrow \mathscr{O}(f^{-1}(W))$$

 $s \longmapsto s \circ f.$

Proof: For any open subset W of V and any section $s \in \mathcal{O}(W)$, consider the following commutative diagram:

where ψ_x is the stalk-level canonical morphism of the f-map ψ and $\bar{\psi}_x$ is the residue induced by ψ_x as it is a local ring homomorphism. The bottom diagram is commutative since the only ring homomorphism between \mathbb{R} is the identity and thus the isomorphism from a ring to \mathbb{R} is unique.

Note that the vertical morphisms map functions on W (resp. $f^{-1}(W)$) to their values at f(x) (resp. x). Thus we have

$$s(f(x)) = (\psi(s))(x).$$

Then the formula follows.

3.b Remark (Chosen of canonicality) Let (M, \mathcal{O}_M) be a variété. Then there is a canonical monomorphism $\mathcal{O}_M \hookrightarrow \mathcal{C}_M$ of sheaves of rings. If it is given by the inclusions, we call \mathcal{O}_M the **standard structure sheaf** on M.

From now on, we do not distinguish the notion of manifolds and variétés.

4 (Smooth maps and morphisms of manifolds) Let $f: M \to N$ be a continuous map between two manifolds. We say f is smooth (resp. k-differential, real analytic, et cetera) at $x \in M$, if for any neighborhood V of f(x) and $s \in \mathcal{O}_M(V)$, $s \circ f \in \mathcal{O}_M(f^{-1}(V))$. If f is smooth at every point, we say it is a smooth map.

A smooth map $f: M \to N$ gives rise to a morphism of locally ringed spaces $(f, f^{\sharp}): (M, \mathcal{O}_M) \to (N, \mathcal{O}_N)$, given by

$$f^{\sharp} \colon \mathscr{O}_{N}(V) \longrightarrow \mathscr{O}_{M}(f^{-1}(W))$$

 $s \longmapsto s \circ f.$

Conversely, the following lemma shows morphisms of manifolds are all given by smooth maps.

4.a Lemma (Morphisms of manifolds are all given by smooth maps) Let $(f, \psi) \colon (M, \mathscr{O}_M) \to (N, \mathscr{O}_N)$ be a morphism of manifolds, then f is smooth and $\psi = f^{\sharp}$.

Proof: For any open set V of N and any section $s \in \mathcal{O}_N(V)$, consider the following commutative diagram:

where ψ_x is the stalk-level canonical morphism of the f-map ψ and $\bar{\psi}_x$ is the residue induced by ψ_x as it is a local ring homomorphism. The bottom diagram is commutative since the only ring homomorphism between \mathbb{R} is the identity.

Note that the vertical morphisms map functions on V (resp. $f^{-1}(V)$) to their values at f(x) (resp. x). Thus we have

$$s(f(x)) = (\psi(s))(x).$$

Then the formula follows and f is smooth.

4.b Remark It is obvious that the compositions of smooth maps are smooth maps again. Then we have the category **SmoothMfd** of smooth manifold with smooth maps. In particular, two manifolds are said to be **diffeomorphism** if there is a smooth homeomorphism between them.

5 Example (Open submanifolds) Let M be a manifold and $j: N \hookrightarrow M$ an open immersion of locally ringed spaces. Then, N is also a manifold, called a **open submanifold** of M.

Vector bundles and locally free sheaves

In the most general sense, a **bundle** over an object B in a category C is simply an object in C/B.

- 6 (Topological vector bundles) Let B be a topological space. Then a (topological) vector bundle on B is a bundle $\pi: E \to B$ such that
 - 1. π is a \mathbb{R} -vector space object in **Top** /B;
 - 2. For any point $x \in B$, there is an open neighborhood U of x and an isomorphism of \mathbb{R} -vector spaces objects (the **local trivialization**) from the pullback $U \times_B E \to U$ to the projection $U \times \mathbb{R}^r \to U$.

Note that those conditions are equivalent to the following ones:

- 1. Each fiber $E_x := \pi^{-1}(x)$ has a \mathbb{R} -vector space structure;
- 2. For any point x, there is an open neighborhood U of x and a homeomorphism (the **local trivialization**) from the pullback $U \times_B E \to U$ to the projection $U \times \mathbb{R}^r \to U$:

- 3. The local trivializations ϕ_U induce isomorphisms of \mathbb{R} -vector spaces $\phi_x \colon E_x \to \mathbb{R}^r$.
- **6.a Remark (Rank)** Note that the local trivializations show that the function $x \mapsto \dim E_x$ is locally constant. If it is constant, say, equals r, we say this vector bundle is of **rank** r. In particular, vector bundles of rank 1 are often called **line bundles**.
- **6.b Example (Trivial bundles)** It is clear that the projection $B \times \mathbb{R}^r \to B$ gives rise to a vector bundle of rank r, called the **trivial bundle**.

- 6.c (Smooth vector bundles) A vector bundle $\pi \colon E \to B$ is called a smooth vector bundle if it lies in the subcategory SmoothMfd.
- **6.d** (Morphisms of vector bundles) A morphism of vector bundles is just a morphism of vector space object in Top/B. It is also called a bundle homomorphism.
 - 7 (Transition functions) Let $\pi: E \to B$ be a vector bundle. Let

$$\pi^{-1}(U) \xrightarrow{\phi_U} U \times \mathbb{R}^r, \qquad \pi^{-1}(V) \xrightarrow{\phi_V} V \times \mathbb{R}^r$$

be two local trivializations. Then we have a map

$$\phi_V \circ \phi_U^{-1} \colon (U \cap V) \times \mathbb{R}^r \longrightarrow (U \cap V) \times \mathbb{R}^r$$

over $U \cap V$ and at each point $x \in U \cap V$, it induces a function

$$g_{UV}: U \cap V \longrightarrow \mathrm{GL}(r, \mathbb{R}).$$

They are called **transition functions** of the vector bundle.

Note that the transition functions satisfies the cocycle condition

$$g_{VW}(x) \cdot g_{UV}(x) = g_{UW}(x) \qquad \forall x \in U \cap V.$$

In abstract, given an open covering \mathfrak{U} of B, we call a **compatible family** of transition functions as a function

$$g_{UV} \colon U \cap V \longrightarrow \mathrm{GL}(r, \mathbb{R})$$

for every pair (U, V) with $U, V \in \mathfrak{U}$ such that those functions satisfy the cocycle condition.

Given two compatible families of transition functions

$$g_{UV}: U \cap V \longrightarrow \mathrm{GL}(n, \mathbb{R})$$

and

$$g'_{UV} \colon U \cap V \longrightarrow \mathrm{GL}(m, \mathbb{R}),$$

a morphism from (g_{UV}) to (g'_{UV}) is a family of functions

$$f_U \colon U \longrightarrow \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R}^m).$$

with $U \in \mathfrak{U}$ and such that

$$f_V(x) \cdot g_{UV}(x) = g'_{UV}(x) \cdot f_U(x) \qquad \forall x \in U \cap V.$$

It is clear that a bundle homomorphism f gives a morphism of their associated compatible families of transition functions via:

$$\phi'_U \circ f \circ \phi_U^{-1}(x, v) = (x, f_U(v)) \qquad \forall (x, v) \in U \times \mathbb{R}^n.$$

8 (Sections and locally free sheaves) Any bundle naturally admit a sheaf, the sheaf \mathscr{E} of *sections*, see Example I.3.7.c. Moreover, since for a vector bundle $\pi \colon E \to B$, E is clearly an abelian topological group, \mathscr{E} is a sheaf of abelian groups. It is not difficult to verify that \mathscr{E} is further a sheaf of \mathbb{R} -vector spaces.

Note that a section of the projection $B \times \mathbb{R}^r \to B$ is nothing but a \mathbb{R}^r -valued function on B. Therefore, in the case E is a trivial bundle of rank r, \mathscr{E} equals to the free sheaf $\mathscr{C}_B^{\oplus r}$ of rank r. Then, through the local trivializations, we see that for a general vector bundle E, the associated sheaf \mathscr{E} is locally free and they have same ranks.

Note that there are canonical morphisms between those sheaves giving by compositing with the bundle homomorphisms.

- **9 Theorem** Let B be a topological space and \mathfrak{U} a covering of it, then the following categories are equivalent.
 - 1. the category of vector bundles over B with the bundle homomorphisms;
 - 2. the category of compatible families of transition functions respect to \mathfrak{U} ;
 - 3. the category of finite locally free sheaves over C_B with the homomorphisms.

We use $\mathbf{Vect}(B)$ to denote the category mentioned in the theorem.

Proof: We already have the functors from 1 to others, say a and b.

It is clear that a is fully faithful. a is further essentially surjective. Indeed, given given a compatible family of transition functions

$$g_{UV}: U \cap V \longrightarrow \mathrm{GL}(r, \mathbb{R}),$$

we can get a vector bundle E, which is given as the coequalizer of

$$\coprod_{U,V\in\mathfrak{U}}(U\cap V)\times\mathbb{R}^r \xrightarrow{\quad i\quad} \coprod_{U\in\mathfrak{U}}U\times\mathbb{R}^r$$

in the category of vector space objects in \mathbf{Top}/B . Here the morphism i is given by the inclusions

$$(U \cap V) \times \mathbb{R}^r \longrightarrow U \times \mathbb{R}^r$$
,

and the morphism μ is given by the compositions

$$(U \cap V) \times \mathbb{R}^r \longrightarrow V \times GL(r, \mathbb{R}) \times \mathbb{R}^r \longrightarrow V \times \mathbb{R}^r$$

where the first arrow is given by the projection $U \cap V \to V$ and the transition function g_{UV} , and the second arrow is given by the canonical action $GL(r, \mathbb{R}) \times \mathbb{R}^r \to V \times \mathbb{R}^r$.

Now, given a compatible family of transition functions

$$g_{UV}: U \cap V \longrightarrow \mathrm{GL}(r, \mathbb{R}),$$

we get a gluing date of \mathcal{C}_B -modules respect to \mathfrak{U} :

$$(\mathscr{C}_{U}^{\oplus r}, l_{g_{UV}})$$

where $l_{g_{UV}}$ is the morphism given by mapping each $s \in \mathscr{C}_U^{\oplus r}(W)$ to the product of functions $g_{UV}|_{U \cap V \cap W} \cdot s|_{U \cap V \cap W}$.

Given a morphism of compatible families of transition functions (f_U) , we get a morphism of gluing data l_{f_U} .

In this way we get a functor from 2 to the category of gluing data, say c. It is clear that c is fully faithful. Let d denote the restriction of the equivalence of the category of sheaves and the category of gluing data to the subcategory of finite locally free sheaves. Then, one can verify that the essential images of c and d coincide.

Now, we have the following commutative diagram:

where a, c, d are fully faithful, a is essentially surjective and the essential image of c and d coincide. Then the required equivalences of categories follow.

- **9.a Theorem** Let B be a smooth manifold and \mathfrak{U} a covering of it, then the following categories are equivalent.
 - 1. the category of smooth vector bundles over B with the bundle homomorphisms;
 - 2. the category of compatible families of smooth transition functions respect to \mathfrak{U} ;
 - 3. the category of finite locally free sheaves over \mathcal{O}_B with the homomorphisms.

Proof: Similar to Theorem 9. Note that the local trivializations are smooth implies that so are the transition functions. \Box

More general notions than vector bundles include principal bundles, associated bundles and fibre bundles.

Bundles

10 (Principal bundles) We first define the trivial principal bundles.

Let B be a topological space and G a topological group. Then the **trivial** G-**principal bundle**, or a **trivial** G-**torsor**, on B is the trivial bundle $B \times G \to B$ equipped with the right action of G on $B \times G$ given by the multiplication of G.

A G-principal bundle, or a G-torsor, on B is a topological space P equipped with

- a continuous function $\pi: P \to B$;
- an action $\rho \colon P \times G \to P$ of G on P over B, hence fitting into a coequalizing diagram

$$P \times G \xrightarrow{\rho} P \xrightarrow{\pi} B$$

such that this is *locally trivial* in the sense that for any point $x \in B$, there is an open neighborhood U of x and an isomorphism of G-spaces over U (the **local trivialization**) from the pullback $U \times_B P \to U$ to the trivial G-principal bundle $U \times G \to U$.

A morphism of G-principal bundles are morphisms in \mathbf{Top}/B preserving the actions of G.

10.a Remark Any G-principal bundle P admits a sheaf of sections \mathscr{P} . Moreover, \mathscr{P} is a sheaf of G-sets.

For the trivial G-principal bundle $P = B \times G$. The associated sheaf is the sheaf $\mathscr G$ of continuous maps from B to G equipped with the obvious G-action. Therefore, a sheaf associated to a G-principal bundle is a sheaf of G-sets which is locally isomorphic to $\mathscr G$.

- **10.b Example** The transition functions show that vector bundles of rank r are $GL(r, \mathbb{R})$ -principal bundles.
- **10.c** (Smooth principal bundles) Let G be a Lie group. Then a smooth G-principal bundle is just a G-principal bundle in SmoothMfd.
 - 11 (Associated bundles) Let B be a topological space and G a topological group. Given a G-principal bundle $\pi \colon P \to B$ whose action is denoted by

 ρ and a left G-action σ on a space F, the bundle with fiber F associated to the principal bundle π is the dotted bundle π' in the following commutative diagram

$$P \times G \times F \xrightarrow{\rho \times \operatorname{id}} P \times F \longrightarrow P \underset{\mid \pi' \\ P}{\longrightarrow} P \xrightarrow{\pi} B$$

where $P \otimes_G F$ denotes the coequalizer of $\rho \times id$ and $id \times \sigma$.

12 (Fibre bundles) Let B, F be topological spaces. Then a fibre bundle with standard fiber F over B is a bundle $\pi \colon E \to B$ such that every fiber $\pi^{-1}(x)$ is isomorphic to F.

A fibre bundle $\pi \colon E \to B$ is said to be **locally trivial** if for any point $x \in B$, there is an open neighborhood U of x and a homeomorphism over U (the **local trivialization**) from the pullback $U \times_B E \to U$ to the **trivial bundle** $U \times F \to U$.

- **12.a Example** Obviously, any G-principal bundle is a fibre bundle with standard fiber G and any associated bundle with fiber F is a fibre bundle with standard fiber F.
- **12.b** Remark Given any fibre bundle $\pi \colon E \to B$ with standard fiber F, we have a *sheaf of sections* \mathscr{E} . One can further verify that this sheaf has the constant stalk F at each point.

For the trivial bundle $B \times F \to B$, its associated sheaf \mathscr{F} is the sheaf of continuous maps from B to F. Therefore, the sheaf associated to a locally trivial bundle is a sheaf locally isomorphic to \mathscr{F} .

13 (Bundles) In the most general sense, a bundle over an object B in a category C is simply an object in C/B and a bundle morphism is simply a morphism in C/B. We restrict to consider $C = \mathbf{Top}$ now. but one can see the following argument works for any site C.

Any bundle $\pi \colon E \to B$ admits a **sheaf of sections** of π and any bundle morphism f gives rise to a morphism of sheaves given by compositing with f. Therefore, we have a functor

$$\Gamma \colon \operatorname{\mathbf{Top}} / B \longrightarrow \operatorname{\mathbf{Sh}}(B).$$

Since for any open set U of B and any bundle $E \to B$, $\Gamma_E(U) = \text{Hom}_B(U, E)$. Therefore for any diagram of bundles (E_i) , we have

$$\underline{\lim} \operatorname{Hom}_B(U, E_j) = \operatorname{Hom}_B(U, \underline{\lim} E_j).$$

Thus the functor Γ commutes with all limits.

Espace étalé

14 (Espace étalé) We have seen there is a functor from Top/B to Sh(B) commuting with all limits. Therefore one may not be surprised that this functor has a left adjoint.

Indeed, we will give an adjunction:

$$L \dashv \Gamma \colon \operatorname{\mathbf{Top}} / B \leftrightarrows \operatorname{\mathbf{PSh}}(B),$$

which can be factored as the composition of the required adjunction and the adjunction between presheaves and sheaves.

To begin with, we consider the representable presheaf h_U . Then, for any bundle $\pi \colon E \to B$, we should have

$$\operatorname{Hom}_B(L(h_U), E) \cong \operatorname{Hom}_{\mathbf{PSh}(B)}(h_U, \Gamma_E) = \Gamma_E(U) = \operatorname{Hom}_B(U, E).$$

Therefore, we may define $L(h_U)$ to be U.

By Theorem I.1.2.f, any presheaf \mathscr{F} can be written as a colimit

$$\mathscr{F} = \varinjlim_{(s,U)} h_U$$

where the diagram taking over all sections $s \in \mathcal{F}(U)$. As L should be a left adjoint, it should commute with colimits. Therefore, we define

$$L(\mathscr{F}) := \varinjlim_{(s,U)} U$$

where the colimit is taking in \mathbf{Top}/B .

We use \mathcal{F} to denote $L(\mathcal{F})$. First, note that the above diagram can be divided into disjoint pieces indexed by points of B, any two vertexes (s, U) and (s', U') lies in a same piece when s and s' have the same germ at x. Therefore, we have

$$\mathcal{F} = \coprod_{x \in B} \mathscr{F}_x.$$

Note that the image of U with index (s, U) in this colimit is the subset

$$\{(x, s_x)|x \in U\}.$$

Therefore, the topology on \mathcal{F} is generated by those subsets.

This space \mathcal{F} is called the **espace étalé** of \mathscr{F} .

14.a (Étale bundles) A continuous map $\pi: E \to B$ is called an étale map, or an étale bundle, if for every $e \in E$, there is an open neighborhood U of e such that $\pi(U)$ is open in B and $\pi|_{U}: U \to \pi(U)$ is a homeomorphism.

One can see that the espace étalé of a presheaf ${\mathscr F}$ is an étale bundle.

15 Theorem There is an adjunction

$$L \dashv \Gamma \colon \operatorname{\mathbf{Top}}/B \leftrightarrows \operatorname{\mathbf{PSh}}(B),$$

Let η : id $\Rightarrow \Gamma \circ L$ and ϵ : $L \circ \Gamma \Rightarrow$ id be the unit and counit. Then, $\eta_{\mathscr{F}}$ is an isomorphism if \mathscr{F} is a sheaf; ϵ_E is an isomorphism if E is an étale bundle.

Proof: The unit is given by

$$\eta_{\mathscr{F}}(U) : \mathscr{F}(U) \longrightarrow \Gamma_{L(\mathscr{F})}(U)$$

$$s \longmapsto (x \mapsto (x, s_x)).$$

The counit is given by

$$\epsilon_E \colon L(\Gamma_E) \longrightarrow E$$
 $(x, s_x) \longmapsto s(x).$

Note that this definition is independent of the choice of the representation $s \in \Gamma_E(U)$ of s_x since two sections of Γ_E have same germs when they have same values.

Now, it is not difficult to show that $\eta_{\mathscr{F}}$ is an isomorphism if \mathscr{F} is a sheaf; ϵ_E is an isomorphism if E is an étale bundle. Moreover, one can verify that η and ϵ satisfy the triangle identities.

Let $\mathbf{EtBund}(B)$ denote the full subcategory of \mathbf{Top}/B consisting of étale bundles.

15.a Corollary The previous adjunction induces an equivalence of categories:

$$\mathbf{EtBund}(B) \leftrightarrows \mathbf{Sh}(B).$$

Moreover, $\mathbf{Sh}(B)$ is a reflective subcategory of $\mathbf{PSh}(B)$ and $\mathbf{EtBund}(B)$ is a coreflective subcategory of \mathbf{Top}/B .

Remark Recall that a subcategory $S \subset C$ is said to be **reflective** (resp. **coreflective**) if the inclusion functor has a left (resp. right) adjoint.

Proof: This follows from Theorem 15 and Lemma 15.b. \Box

15.b Lemma (Idempotent adjunctions) Consider an adjunction

$$L \dashv R \colon \mathcal{C} \leftrightarrows \mathcal{D}$$

with unit η and counit ϵ satisfying the condition:

• both $\eta * R: R \to RLR$ and $\epsilon * L: LRL \to L$ are isomorphisms.

Let C_0 and D_0 denote the essential image of L and R. Then the adjunction induces an equivalence of categories between C_0 and D_0 . Moreover, C_0 is coreflective in C and D_0 is reflective in D.

Remark Such kind of adjunctions are said to be idempotent.

Proof: The condition shows that the restriction of η and ϵ to \mathcal{C}_0 and \mathcal{D}_0 are isomorphisms, thus the adjunction gives an equivalence of categories. Moreover, let $i: \mathcal{C}_0 \to \mathcal{C}$ and $j: \mathcal{D}_0 \to \mathcal{D}$ be the inclusions. By the definitions of \mathcal{C}_0 and \mathcal{D}_0 , we have the following commutative diagram

Then, one can see the composition

$$\mathcal{C} \xrightarrow{R} \mathcal{D}_0 \xrightarrow{L} \mathcal{C}_0$$

gives the right adjoin of i and the composition

$$\mathcal{D} \xrightarrow{L} \mathcal{C}_0 \xrightarrow{R} \mathcal{D}_0$$

gives the left adjoin of j

16 (Covering space) A covering space is a bundle $\pi \colon E \to B$ such that for every point x of B, there is an open neighborhood U of x evenly covered by π , which means the pullback $\pi^{-1}(U) \to U$ is isomorphic to the trivial bundle $U \times E_x \to U$.

Obviously a covering space is an étale bundle but not vice versa.

16.a Remark Different points in B may have non-isomorphic fibers. However, if U and V are two open sets of B evenly covered by π and have nonempty intersection. Then there are canonical identifications

$$E_x \cong E_z \cong E_u$$

between fibers over $x \in U, y \in V$, and $z \in U \cap V$.

16.b Remark (Covering projections) Note that in this definition, a fiber E_x may be empty. To avoid this, one may restrict to consider the **covering** projections, which are covering spaces such that π is surjective.

- $\$ II.7 Tensor products and flatness
- § II.8 Duality and invertible sheaves
- § II.9 Localizations

III

Schemes

§III.1	Ideals and affine schemes
	Ideals and spectra
	Zariski topology
	Topological properties of spectra
	Structure sheaves on spectra
	Affine schemes
$\S III.2$	Affine spaces
	Affine lines
	Affine spaces
§III.3	Schemes
	Schemes
	Topology of schemes
$\S III.4$	Projective schemes
§III.5	Morphisms of schemes

§ III.1 Ideals and affine schemes

A commutative monoid can be understood through its spectrum. Actually, there exists more general theorems (*reconstruction theorems*) describe the relation of a symmetric object and its spectrum. However, we restrict to only consider spectra of rings.

Ideals and spectra

- 1 (ideals) Recall that an ideal of a commutative monoid A in an abelian tensor category \mathcal{K} is a subobject of A in $\mathbf{Mod}(A)$. The smallest ideal is the zero ideal 0 and the largest ideal is A itself. The ideals of A, together with the inclusions, form a pre-ordered set $\mathcal{I}(A)$.
- **1.a** (Sum of ideals) Let I_i be a family of ideals of A. Then the image of the canonical morphism $\bigoplus I_i \to A$ is called the sum of I_i , denoted by $\sum I_i$. One can see that $\sum I_i$ is indeed the smallest ideal of A containing all I_i . In other words, $\sum I_i$ is the *supremum*, i.e. the *join*, of all I_i in $\mathcal{I}(A)$.
- **1.b** (Product of ideals) Let I, J be two ideals of A. Then the image of the canonical morphism $I \otimes J \to A \otimes A \to A$ is called the **product of** I and J, denoted by $I \cdot J$ or IJ. One can see it is also an ideal of A. Note that the products are not the *meets* in $\mathcal{I}(A)$.
- **1.c** Lemma The pre-ordered set $\mathcal{I}(A)$ of ideals of A is a commutative affine quantale, which means:
 - 1. the products give a commutative monoid structure on $\mathcal{I}(A)$ whose identity is A;
 - 2. the product distributes over arbitrary sums:

$$(\sum I_i) \cdot J \cong \sum (I_i \cdot J).$$

Proof: It follows from the properties and formulas for coproducts and tensor products. \Box

1.d Remark (Frames) Recall that a **frame** is a pre-ordered set has all *joins* and all finite *meets*. If a quantale (L, \cdot, \vee) is commutative, affine and idempotent, meaning $x \cdot x = x$ for all $x \in L$, then one can see that \cdot must be the *meet* and hence L becomes a frame.

However, for an ideal I of A, it is rarely $I \cdot I = I$. By taking the quotient of $\mathcal{I}(A)$ by the relation generated by $I \cdot I \sim I$, we get a frame Fr(A). One may then hope to realize this frame as a frame of closed sets of a topological space.

2 (Prime ideals and spectra) An ideal \mathfrak{p} of A is called a prime ideal of A if for any $I, J \in \mathcal{I}(A)$, we have

$$I \cdot J \subset \mathfrak{p} \Longrightarrow I \subset \mathfrak{p} \text{ or } J \subset \mathfrak{p}.$$

The set of all prime ideals of A is called its **spectrum** and denoted by Spec A.

Remark The notions of ideals and spectrum can be generalized to *cocomplete tensor categories*. But we restrict to the usual case, say A is a ring.

- **2.a Example (Zero ring)** Let 0 denote the zero ring, then Spec $0 = \emptyset$. Conversely, any nonzero ring has at least one prime ideal, the maximal ideal containing 0. Therefore, Spec $A = \emptyset$ if and only if A = 0.
- **2.b Remark (Geometric interpretation)** We view the ring A as the **ring of functions** on Spec A: for f an element of A, we define its **value** at $\mathfrak{p} \in \operatorname{Spec} A$ to be $f \operatorname{mod} \mathfrak{p}$. Then, " $f \in \mathfrak{p}$ " can be interpreted as "f vanishes at \mathfrak{p} ". Since the projection $A \to A/\mathfrak{p}$ is a ring homomorphism, we have

$$(f+g)(\mathfrak{p}) = f(\mathfrak{p}) + g(\mathfrak{p}),$$
 and $fg(\mathfrak{p}) = f(\mathfrak{p})g(\mathfrak{p}).$

Note that a function vanishes nowhere if and only if it doesn't belong any prime ideal if and only if it is invertible.

- **2.c** Example (Quotients) Let A be a ring and I an ideal of A. Then there is an inclusion-preserving bijection between prime ideals of A/I and prime ideals of A containing I. Therefore, we may view Spec A/I as a subset of Spec A.
- **2.d Example (Localizations)** Let A be a ring and S a multiplicative subset of A. Then there is an inclusion-preserving bijection between prime ideals of $S^{-1}A$ and prime ideals of A outside of S. Therefore, we may view $\operatorname{Spec} S^{-1}A$ as a subset of $\operatorname{Spec} A$. In particular, $\operatorname{Spec} A_f$ consists of points where f doesn't vanish. $\operatorname{Spec} A_{\mathfrak{p}}$ consists of prime ideals contained in \mathfrak{p} .
- **2.e** Remark (Morphisms of spectra) If $\phi \colon A \to B$ is a ring homomorphism, then taking preimages gives a map from Spec B to Spec A. In this way, Spec is a contravariant functor from **CRing** to **Set**.
 - 3 Remark (Functions are not determined by their values at points) One may surprise that even a function vanishes everywhere, it still may not be the zero function. Under our interpretation, this means the intersection of all prime ideals may not be 0.

Recall that in a ring, an element which has a power equals 0 is said to be **nilpotent**. The nilpotents of a ring form an ideal \mathfrak{N} , called the **nilradical**. Note that if an ideal I is contained in \mathfrak{N} , then the map $\operatorname{Spec} A/I \to \operatorname{Spec} A$ is bijective.

3.a Theorem \mathfrak{N} is the the intersection of all the prime ideals of A. In other words, a function on Spec A vanishes everywhere if and only if it is nilpotent.

Proof: By definition, any nilpotent vanishes everywhere. Conversely, if a function f is not nilpotent, then we wish to show Spec A_f is not empty, which is equivalent to say $A_f \neq 0$, which is clear.

If a ring has no nonzero nilpotents, we say that it is **reduced**. In a reduced ring, functions are determined by their values.

Zariski topology

4 (Zariski topology) We define the following map

$$V: \mathcal{I}(A) \longrightarrow \operatorname{Spec} A$$

 $I \longmapsto \{\mathfrak{p} \in \operatorname{Spec} A | I \subset \mathfrak{p}\}.$

One can see that

- 1. V is inclusion-reversing;
- 2. $V(0) = \operatorname{Spec} A, V(A) = \emptyset;$
- 3. $V(I \cdot J) = V(I) \cup V(J)$;
- 4. $V(\sum I_i) = \bigcap V(I_i)$.

Therefore, the map V translate the frame structure of Fr(A) to the image of V in $\mathcal{P}(\operatorname{Spec} A)$. Therefore, the frame $V(\mathcal{I}(A))$ defines a topology on $\operatorname{Spec} A$, called the **Zariski topology**. The topological space $\operatorname{Spec} A$ is called the **spectrum** of A.

Remark The inclusion-reversing map V can be extended to $\mathcal{P}(A)$. In particular, we use V(f) to denote $V(\{f\})$.

Note that under the interpretation of Remark 2.b, V(S) is the set of common zero points of functions belonging to S. So we call it the **vanishing** set of S. Clearly we have

- 1. V(S) = V((S)), where $S \subset A$ and (S) is the ideal generated by S;
- 2. $V(I \cap J) = V(I \cdot J)$;
- 3. $V(\bigcup I_i) = V(\sum I_i)$.
- **4.a** (Radicals) Let A be a ring and I an ideal of A. Then the ideal

$$\sqrt{I}:=\{f\in A|f^n\in I \text{ for some } n\in\mathbb{N}\}$$

is called the **radical** of I. An ideal is said to be **radical** if it equals its radical.

It is straightforward to verify that

- 1. $V(\sqrt{I}) = V(I);$
- 2. $\sqrt{\sqrt{I}} = \sqrt{I}$;
- 3. $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$;
- 4. \sqrt{I} is the intersection of all prime ideals of A containing I.
- **4.b Remark (Morphisms of spectra)** If $\phi: A \to B$ is a ring homomorphism, then taking preimages gives a map f from Spec B to Spec A. Moreover, this map is continuous since $f^{-1}(V(S)) = V(\phi(S))$. In this way, Spec is a contravariant functor from **CRing** to **Top**.
- **4.c Example (Quotients and localizations)** Let A be a ring, I an ideal of A and S a multiplicative subset of A. Then
 - 1. Spec A/I is a closed subspace of Spec A, actually it is V(I);
 - 2. Spec $S^{-1}A$ is a subspace of Spec A (however, it need not to be open or closed);
 - 3. Spec A_f is an open subspace of Spec A.
- **4.d Remark (The fundamental commutative diagram)** Let A be a ring and \mathfrak{p} be a prime ideal. Then there is a commutative diagram of rings.

Here we use $\kappa(\mathfrak{p})$ to denote the *residue field* associated to \mathfrak{p} , Frac(A) to denote the *ring of fractions* of A.

Let $\phi: A \to B$ be a ring homomorphism. Let $\mathfrak{q}, \mathfrak{p} = \phi^{-1}(\mathfrak{p})$ be prime ideals of B and A respectively. Then there is a commutative diagram of rings.

$$\kappa(\mathfrak{q}) = B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}} \longleftarrow B_{\mathfrak{q}} \longrightarrow B/\mathfrak{q} \longrightarrow \kappa(\mathfrak{q}) = \operatorname{Frac}(B/\mathfrak{q})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\kappa(\mathfrak{p}) \otimes_{A} B = B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} \longleftarrow B_{\mathfrak{p}} \longleftarrow B_{\mathfrak{p}} \longrightarrow B/\mathfrak{p}B \longrightarrow (A \setminus \mathfrak{p})^{-1}B/\mathfrak{p}B$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\kappa(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \longleftarrow A_{\mathfrak{p}} \longleftarrow A_{\mathfrak{p}} \longrightarrow \kappa(\mathfrak{p}) = \operatorname{Frac}(A/\mathfrak{p})$$

Note that the arrows in the outer left and outer right columns are identical.

This commutative diagram of rings induces a commutative diagram of topological spaces, in which the horizontal maps are inclusions and the lower squares are Cartesian.

- **4.e Lemma** Let A be a ring and I an ideal of A. If $I \subset \mathfrak{N}$, then the map $\operatorname{Spec} A/I \to \operatorname{Spec} A$ is a homeomorphism.
- **4.f Lemma** Let A be a ring and I an ideal of A. f vanishes on points in V(I) if and only if $f \in \sqrt{I}$.

Proof: This follows from that \sqrt{I} is the intersection of all prime ideals of A containing I.

5 (Standard open sets) Let A be a ring. Then the spectrum Spec A has a topological basis given as follows.

Let f be an element of A, then V(f) is a closed set in Spec A. Then, its complement is an open set of Spec A. We denote this open set by D(f) and call it a **standard open set**. The followings are easy to verify.

- 1. $D(f) \cap D(g) = D(fg);$
- 2. $D(f) = \operatorname{Spec} A_f$ as open subspaces of $\operatorname{Spec} A_f$
- 3. The complement of V(S) is the union $\bigcup_{f \in S} D(f)$. Hence the collection of all standard open sets form a basis of the Zariski topology.
- **5.a Lemma** Let A be a ring. Then $D(g) \subset D(f)$ if and only if either of the following is true.
 - 1. f is invertible in A_q ;
 - 2. $g \in \sqrt{(f)}$;
 - 3. There is a canonical ring homomorphism $A_f \to A_g$;
 - 4. There is a canonical A_f -homomorphism $M_f \to M_g$ for every A-module M

Proof: If $D(g) \subset D(f)$, then g vanishes outside on V(f), thus g lies in the nilradical of A/(f), i.e. $\sqrt{(f)}$. Conversely, if $g \in \sqrt{(f)}$, then $V(g) \supset V(\sqrt{(f)}) = V(f)$ and thus $D(g) \subset D(f)$.

Also, if $D(g) \subset D(f)$, then f doesn't vanish on D(g), hence is invertible in A_g . If so, then there is a canonical ring homomorphism $A_f \to A_g$ by the universal property of A_f . Apply $M \otimes_A$ to $A_f \to A_g$, we get the desired A_f -homomorphism. Conversely, \mathcal{A} implies \mathcal{A} implies that there is a canonical continuous map Spec $A_g \to \operatorname{Spec} A_f$, i.e. $D(g) \to D(f)$. One can then verify that this map is just an inclusion.

- **5.b** (Standard open coverings) A standard open covering is a covering of the form $\{D(f_i)\}_{i\in\mathcal{I}}$. It is easy to verify the followings.
 - 1. $\{D(f_i)\}_{i\in\mathcal{I}}$ is a standard open covering of Spec A if and only if those f_i generate the whole A;
 - 2. Any covering of D(f) can be refined by a finite standard open covering. In particular, Spec A is quasi-compact.

Proof: $\{D(f_i)\}_{i\in\mathcal{I}}$ covers Spec A if and only if $V(\{f_i\}_{i\in\mathcal{I}})=\varnothing$ if and only if $\{f_i\}_{i\in\mathcal{I}}$ generates A. Note that this means there exists finitely many $a_1, \dots, a_n \in A$ and $f_1, \dots, f_n \in \{f_i\}_{i\in\mathcal{I}}$ such that $a_1f_1 + \dots + a_nf_n = 1$. Then $D(f_1), \dots, D(f_n)$ forms a subcovering of $\{D(f_i)\}_{i\in\mathcal{I}}$.

Topological properties of spectra

6 (Connectedness) Recall that a topological space is said to be connected if it cannot be written as the disjoint union of two nonempty open sets.

If $A = A \times A$, then the universal property gives a canonical continuous

If $A = A_1 \times A_2$, then the universal property gives a canonical continuous map Spec $A_1 \sqcup \operatorname{Spec} A_2 \to \operatorname{Spec} A$.

6.a Lemma The canonical map $\operatorname{Spec} A_1 \sqcup \operatorname{Spec} A_2 \to \operatorname{Spec} A_1 \times A_2$ is a homeomorphism.

Proof: Let $f_1 = (1,0)$ and $f_2 = (0,1)$. Note that the images of Spec A_1 and Spec A_2 in Spec $A_1 \times A_2$ are $D(f_1)$ and $D(f_2)$ respectively. Then the statement follows.

- **6.b** Corollary Spec A is not connected if and only if it can be written as the product of nonzero rings.
 - 7 (Inverse of V) Let A be a ring and S a nonempty subset of Spec A. We define

$$I(S) := \{ f \in A | f \text{ vanishes on } S \} = \bigcap_{\mathfrak{p} \in S} \mathfrak{p}.$$

It is easy to verify that

- 1. I(S) is an ideal of A;
- 2. *I* is inclusion-reversing;
- 3. $I(S \cup S') = I(S) \cap I(S')$;
- 4. $I(\overline{S}) = I(S)$;
- 5. $V(I(S)) = \overline{S}$;
- 6. $I(V(J)) = \sqrt{J}$, where J is an ideal of A.

8 (Irreducibility) Recall that a topological space is said to be irreducible if it is nonempty and is not the union of two proper closed subsets.

The followings are typical properties of irreducible topological spaces.

- 1. In an irreducible topological space, any nonempty open set is dense.
- 2. The closure of an irreducible subset is again irreducible.
- 3. Irreducible topological spaces are connected.
- **9 Theorem** V and I give rise to the following inclusion-reversing bijections of the pre-ordered sets:

$$\{ closed \ subsets \ of \ \operatorname{Spec} A \} \xrightarrow{I} \{ radical \ ideals \ of \ A \} \ .$$

$$\cup \qquad \qquad \cup$$

$$\{ irreducible \ closed \ subsets \ of \ \operatorname{Spec} A \} \xrightarrow{I} \{ prime \ ideals \ of \ A \} \ .$$

$$\cup \qquad \qquad \cup$$

$$\{ irreducible \ components \ of \ \operatorname{Spec} A \} \xrightarrow{I} \{ minimal \ prime \ ideals \ of \ A \} \ .$$

Proof: The first bijection is obvious.

First, since $\mathfrak{p} \in V(I)$ implies $I \subset \mathfrak{p}$, we see that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$. Then, $V(\mathfrak{p})$ is an irreducible closed subset of Spec A as it is the closure of a point.

Conversely, let S be an irreducible closed subset of Spec A, then I(S) is a prime ideal. Indeed, if not, then there exists two element $f, g \in A$ such that $f, g \notin I(S)$ and $fg \in I(S)$. Then

$$V(I(S),f) \cup V(I(S),g) = V(I(S)) = S,$$
 but $V(I(S),f) \neq S$ and $V(I(S),g) \neq S$.
Now the last bijection is clear. \Box

- **9.a Remark (Generic point)** From above, we see the irreducible closed subsets of Spec A are one-one corresponding to its points. More precisely, every irreducible closed subset S is the closure of a point. This point is called the **generic point** of S.
- **9.b** Corollary If A is an integral domain, then Spec A is irreducible.

Proof: Note that in this case 0 is a prime ideal. \Box

9.c Corollary (Closed points) The closed points of Spec A are one-one corresponding to the maximal ideals of A.

Proof: If \mathfrak{p} is maximal, then $V(\mathfrak{p}) = \{\mathfrak{p}\}$. Conversely, if $\{\mathfrak{p}\}$ is closed, then $V(\mathfrak{p}) = V(I(\{\mathfrak{p}\})) = \{\mathfrak{p}\}$ and thus \mathfrak{p} is maximal.

Structure sheaves on spectra

10 (Structure sheaves) We now define a sheaf on Spec A.

First, we define a sheaf on the base of standard open sets. For D(f), let S denote the multiplicative subset of A consisting of all functions don't vanish on D(f). Then we define

$$\Gamma(D(f), \mathcal{O}_{\operatorname{Spec} A}) = S^{-1}A.$$

By Lemma 5.a, this ring is canonically isomorphic to A_f . If $D(g) \subset D(f)$, then there is a canonical homomorphism

$$\Gamma(D(f), \mathscr{O}_{\operatorname{Spec} A}) \longrightarrow \Gamma(D(g), \mathscr{O}_{\operatorname{Spec} A}),$$

which serves as the restriction map.

10.a Theorem The above data defines a sheaf on base and thus induces a sheaf on Spec A.

Proof: As $D(f) = \operatorname{Spec} A_f$, we only need to verify the followings for any standard open covering $\bigcup D(f_i) = \operatorname{Spec} A$. Since $\operatorname{Spec} A$ is quasi-compact, we may assume $\{f_i\}$ is finite.

- 1. Let $s \in A$, if $s|_{D(f_i)} = 0$ for all f_i , then s = 0.
- 2. Let $s_i \in A_{f_i}$, if the images of s_i and s_j in $A_{f_if_j}$ agree, then there exists $s \in A$ such that s_i is the image of s in A_{f_i} .
- 1. $s|_{D(f_i)} = 0$ implies there exists some $m_i \in \mathbb{N}$ such that $f_i^{m_i} s = 0$. Since $\bigcup D(f_i^{m_i}) = \bigcup D(f_i) = \operatorname{Spec} A$, those $f_i^{m_i}$ generates A, say $\sum a_i f_i^{m_i} = 1$. Then

$$s = \left(\sum a_i f_i^{m_i}\right) s = \sum a_i (f_i^{m_i} s) = 0$$

2. Write $s_i = \frac{a_i}{f_i^{n_i}}$, then since $D(f_i^{n_i}) = D(f_i)$, we may assume $n_i = 1$. Now, the images of s_i and s_j in $A_{f_if_j}$ agree means there exists some $m_{ij} \in \mathbb{N}$, such that $(f_if_j)^{m_{ij}}(a_if_j - a_jf_i) = 0$. Let m be any integer larger than all m_{ij} , we have

$$(f_i f_j)^m (a_i f_j - a_j f_i) = 0$$

Let $b_i = a_i f_i^m$ and $g_i = f_i^{m+1}$. Note that $D(g_i) = D(f_i)$, we may write $s_i = \frac{b_i}{g_i}$ with the condition

$$b_i g_j = b_j g_i.$$

Now, since $\bigcup D(g_i) = \operatorname{Spec} A$, there exists $c_i \in A$ such that $\sum c_i g_i = 1$. Let

$$s = \sum_{i} c_i b_i \in A.$$

Then we have

$$s|_{D(g_j)} = \frac{sg_j}{g_j} = \frac{\sum_i c_i b_i g_j}{g_j} = \frac{\sum_i c_i g_i b_j}{g_j} = \frac{b_i}{g_i} = s_i.$$

This sheaf $\mathcal{O}_{\operatorname{Spec} A}$ is called the **structure sheaf** of $\operatorname{Spec} A$.

10.b (Associated sheaves) Let M be an A-module. We define $\Gamma(D(f), \widetilde{M})$ similarly to $\Gamma(D(f), \mathscr{O}_{\operatorname{Spec} A})$, i.e.

$$\Gamma(D(f), \widetilde{M}) = M_f.$$

Then similarly to Theorem 10.a, this defines a sheaf on the base and thus a sheaf on Spec A. This sheaf is called the **sheaf associated to** M.

Now, we consider the stalks. First, we need a lemma

10.c Lemma Let A be a ring, M an A-module and S a multiplicative subset of A. Then

$$S^{-1}M = \varinjlim_{f \in S} M_f.$$

Proof: It suffices to show this for M = A. Let B be an arbitrary ring with the unit group U. By the universal property, we have

$$\operatorname{Hom}(S^{-1}A, B) = \{ \phi \in A \to B | \phi(S) \subset U(B) \}$$

$$\operatorname{Hom}(A_f, B) = \{ \phi \in A \to B | \phi(f) \in U(B) \}$$

Therefore,

$$\operatorname{Hom}(S^{-1}A, B) = \varprojlim_{f \in S} \operatorname{Hom}(A_f, B)$$

where the diagram is given by inclusions between D(f).

10.d Lemma Let A be a ring and M an A-module. Let \mathfrak{p} be a prime ideal of A and $x \in \operatorname{Spec} A$ the corresponding point. Then

$$\mathscr{O}_{\operatorname{Spec} A,x} = A_{\mathfrak{p}}, \qquad \widetilde{M}_x = M_{\mathfrak{p}}.$$

Proof: Follows from the above lemma.

By the above lemma, (Spec A, $\mathcal{O}_{\operatorname{Spec} A}$) is a locally ringed space, called the **spectrum** of A.

10.e Lemma In an affine scheme, the standard open sets in the sense of 5 are precisely what we have defined in Remark II.5.4.a.

Proof: This is because a function f on Spec A doesn't vanish at a point x (whose corresponding prime ideal is \mathfrak{p}) if and only if $f \notin \mathfrak{p}$ if and only if the image of f in $A_{\mathfrak{p}}$ is invertible.

Affine schemes

11 (Affine schemes) Let A be a ring. We have seen Spec A is a locally ringed space. Moreover, let $\phi: A \to B$ be a ring homomorphism and $f: \operatorname{Spec} B \to \operatorname{Spec} A$ the induced continuous map. We will define an f-map f^{\sharp} . To do this it suffices to define compatible ring homomorphisms

$$f_{D(g)}^{\sharp} \colon \Gamma(D(g), \mathscr{O}_{\operatorname{Spec} A}) \longrightarrow \Gamma(D(\phi(g)), \mathscr{O}_{\operatorname{Spec} B}).$$

This can be done by setting $f_{D(q)}^{\sharp}$ to be the canonical homomorphism

$$\phi_q \colon A_q \longrightarrow B_{\phi(q)}$$

induced by ϕ .

Let $\mathfrak{q}, \mathfrak{p} = \phi^{-1}(\mathfrak{p})$ be prime ideals of B and A respectively and $x \in \operatorname{Spec} B$, $f(x) \in \operatorname{Spec} A$ the points corresponding to them. Then, one can verify that at the level of stalks

$$f_x^{\sharp} \colon \mathscr{O}_{\operatorname{Spec} A, f(x)} \longrightarrow \mathscr{O}_{\operatorname{Spec} B, x}.$$

equals the canonical local homomorphism

$$\phi_{\mathfrak{q}}\colon A_{\mathfrak{p}}\longrightarrow B_{\mathfrak{q}}$$

induced by ϕ . Therefore, (f, f^{\sharp}) is a morphism of locally ringed spaces.

In this way, we get a functor Spec from **CRing**^{opp} to the category of locally ringed spaces. We call the essential image of Spec the category of **affine schemes**, denoted by **Aff**.

Conversely, taking global sections gives rise to a functor from the category of locally ringed spaces to **CRing**^{opp}.

12 Lemma Let X be a locally ringed space and Y an affine scheme. Then the canonical map

$$\operatorname{Hom}(X,Y) \longrightarrow \operatorname{Hom}(\Gamma(Y,\mathscr{O}_Y),\Gamma(X,\mathscr{O}_X))$$

is bijective.

Proof: It suffices to construct an inverse of this canonical map.

Let $\Gamma(Y, \mathscr{O}_Y) = A$ and $\Gamma(X, \mathscr{O}_X) = B$. It is clear that $Y = \operatorname{Spec} A$. Let $\phi \colon A \to B$ be a ring homomorphism. We define a morphism of locally ringed spaces $\Phi \colon X \to Y$.

First, by Lemma 12.a, we have to define $\Phi(x)$ to be the point of Y corresponding to the preimage of \mathfrak{m}_x under the ring homomorphism

$$\Gamma(Y, \mathscr{O}_Y) \xrightarrow{f^{\sharp}} \Gamma(X, \mathscr{O}_X) \longrightarrow \mathscr{O}_{X,x}.$$

Then, this Φ is continuous. Indeed, it suffices to show each $\Phi^{-1}D(g)$ is open in X. But by the above construction, we have $\Phi^{-1}D(g) = D(\phi(g))$, which is open.

Now, we need to define a Φ -map Φ^{\sharp} . It suffices to define compatible ring homomorphisms

$$\Phi_{D(g)}^{\sharp} \colon \Gamma(D(g), \mathscr{O}_Y) \longrightarrow \Gamma(D(\phi(g)), \mathscr{O}_X).$$

Note that the image of g in $\Gamma(D(\phi(g)), \mathcal{O}_X)$ is invertible. Thus, by the universal property of A_g , there exists a unique dotted homomorphism making the following diagram commute.

$$A = \Gamma(Y, \mathscr{O}_Y) \xrightarrow{} \Gamma(X, \mathscr{O}_X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A_g - - - - - > \Gamma(D(\phi(g)), \mathscr{O}_X).$$

Therefore, we have to define $\Phi_{D(g)}^{\sharp}$ to be the above dotted homomorphism. The uniqueness guarantees those homomorphisms are compatible.

We have define a morphism of ringed spaces (Φ, Φ^{\sharp}) . To see it is a morphism of locally ringed spaces, we need to show the homomorphisms

$$\Phi_x^{\sharp} \colon \mathscr{O}_{Y,\Phi(x)} \longrightarrow \mathscr{O}_{X,x}$$

are local homomorphisms. This is true since by the universal property of A_g , there exists a unique dotted homomorphism making the following diagram commute and this homomorphism is local.

$$A = \Gamma(Y, \mathscr{O}_Y) \longrightarrow \Gamma(X, \mathscr{O}_X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_{\mathfrak{p}} - - - - - > \mathscr{O}_{X,x}.$$

It remains to show the above $\phi \mapsto (\Phi, \Phi^{\sharp})$ is the inverse of the canonical map $(f, f^{\sharp}) \mapsto f_Y^{\sharp}$. We have seen $\phi \mapsto (\Phi, \Phi^{\sharp}) \mapsto \phi$. The Lemma 12.a implies that $(f, f^{\sharp}) \mapsto f_Y^{\sharp} \mapsto (f, f^{\sharp})$.

12.a Lemma Let X be a locally ringed space and Y an affine scheme. Let $f \colon X \to Y$ a morphism of locally ringed spaces. Consider the ring homomorphism

$$\Gamma(Y, \mathscr{O}_Y) \xrightarrow{f_Y^{\sharp}} \Gamma(X, \mathscr{O}_X) \longrightarrow \mathscr{O}_{X,x}.$$

Let $\mathfrak{q} \subset \Gamma(Y, \mathscr{O}_Y)$ be the preimage of \mathfrak{m}_x under this homomorphism and $y \in Y$ its corresponding point. Then f(x) = y.

Proof: Consider the following commutative diagram

Since the bottom arrow is a local homomorphism, the preimage of \mathfrak{m}_x is $\mathfrak{m}_{f(x)}$. Thus f(x) = y.

12.b Theorem There is an equivalence of categories

$$\mathbf{CRing}^{\mathrm{opp}} \cong \mathbf{Aff}$$
.

Proof: By Lemma 12, the functors Spec and taking global sections are weak inverse to each other. \Box

12.c Lemma Spec \mathbb{Z} is the terminal object in the category of locally ringed spaces. The products and fibre products in the category of affine schemes are the same as in the category of locally ringed spaces. In formulas, we have

$$\operatorname{Spec} A \times \operatorname{Spec} B = \operatorname{Spec}(A \otimes B),$$

and

$$\operatorname{Spec} B \times_{\operatorname{Spec} A} \operatorname{Spec} C = \operatorname{Spec}(B \otimes_A C).$$

Proof: By Lemma 12, Spec \mathbb{Z} is the terminal object in the category of locally ringed spaces. Then it suffices to show

$$\operatorname{Spec} B \times_{\operatorname{Spec} A} \operatorname{Spec} C = \operatorname{Spec} (B \otimes_A C).$$

Indeed, for any locally ringed space X, we have

$$\begin{aligned} \operatorname{Hom}(X,\operatorname{Spec}(B\otimes_A C)) &= \operatorname{Hom}(B\otimes_A C,\mathscr{O}_X(X)) \\ &= \operatorname{Hom}(B,\mathscr{O}_X(X)) \times_{\operatorname{Hom}(A,\mathscr{O}_X(X))} \operatorname{Hom}(C,\mathscr{O}_X(X)) \\ &= \operatorname{Hom}(X,\operatorname{Spec} B) \times_{\operatorname{Hom}(X,\operatorname{Spec} A)} \operatorname{Hom}(X,\operatorname{Spec} C) \\ &= \operatorname{Hom}(X,\operatorname{Spec} B \times_{\operatorname{Spec} A} \operatorname{Spec} C). \end{aligned}$$

Then the formula follows.

12.d Lemma Let X be a locally ringed space. Assume $A = U \coprod V$ with U, V open and such that U, V are affine schemes. Then So is X.

Proof: Let $A = \mathscr{O}_X(X)$. One can see that $A = \mathscr{O}_X(U) \times \mathscr{O}_X(V)$. Then there is a canonical morphism of locally ringed spaces $X \to \operatorname{Spec} A$. On the other hand, we have $\operatorname{Spec} \mathscr{O}_X(U) \coprod \operatorname{Spec} \mathscr{O}_X(V) = \operatorname{Spec} A$, where the maps come from the projections $A \to \mathscr{O}_X(U)$ and $A \to \mathscr{O}_X(V)$. By assumptions, the morphism $X \to \operatorname{Spec} A$ induces isomorphisms $U \to \operatorname{Spec} \mathscr{O}_X(U)$ and $V \to \operatorname{Spec} \mathscr{O}_X(V)$. Therefore $X \to \operatorname{Spec} A$ is also an isomorphism. \square

§ III.2 Affine spaces

In this section, we discuss some basic examples. First, we give some conventions here.

- 1. A point x is said to be **closed** if $\{x\}$ is a closed set.
- 2. A non-closed point η is called the **generic point** of a closed set F if its closure is F.
- 3. We use |X| to denote the subspace of X consisting of all closed points.
- 1 (Points and empty) Let k be a field. Then Spec k is just a point.

 $\operatorname{Spec} 0$ is the empty, which is also the initial object in the category of locally ringed spaces.

2 (Infinitesimal) Let k be a field and $D = \operatorname{Spec} k[\epsilon]/(\epsilon^2)$. Then D consists of one closed point (ϵ) , which is the only nontrivial closed set, and one generic point. The function ϵ is nonzero but vanishes everywhere.

Affine lines

3 (Complex affine line) $\mathbb{A}^1_{\mathbb{C}} := \operatorname{Spec} \mathbb{C}[t]$ (Of course we can replace \mathbb{C} by any algebraic closed field).

Since $\mathbb{C}[t]$ is a PID and \mathbb{C} is algebraic closed, the prime ideals of $\mathbb{C}[t]$ are those generated by monic linear polynomials, which are all maximal ideals, plus the zero ideal. The monic linear polynomials t-a are one-one corresponding to complex numbers $a \in \mathbb{C}$. Therefore, we can illustrate $\mathbb{A}^1_{\mathbb{C}}$ as the complex plane \mathbb{C} plus a ghost point (0). We denote the point corresponding to (t-a) by a to illustrate this.

The vanishing set V(f) for a function $f \in \mathbb{C}[t]$ is a discrete set of finitely many points (called **zeros** of f), which is closed in \mathbb{C} . As they are all the closed sets, D(f) are all the open sets. Then, one can see that $\mathbb{A}^1_{\mathbb{C}}$ is connected and irreducible. The ghost point (0) is not closed, we call it the **generic point** since the closure of $\{(0)\}$ is the whole $\mathbb{A}^1_{\mathbb{C}}$. The other points are closed and one-one corresponding to points of \mathbb{C} . However, since V(f) are the only nontrivial closed sets in $|\mathbb{A}^1_{\mathbb{C}}|$, we see that the Zariski topology on $|\mathbb{A}^1_{\mathbb{C}}|$ is coarser than the classical topology on \mathbb{C} . For instance, \mathbb{C} is reducible while $|\mathbb{A}^1_{\mathbb{C}}|$ is irreducible. Actually, the Zariski topology on $|\mathbb{A}^1_{\mathbb{C}}|$ is the cofinite topology, meaning a proper subset of $|\mathbb{A}^1_{\mathbb{C}}|$ is closed if and if it is finite.

A function f on $\mathbb{A}^1_{\mathbb{C}}$ is a complex polynomial. The value of f at the point a is f(a), which coincides with our intuition. A section s on an open set D(f) is a rational function whose poles belong to V(f). Likewise, the value of s at the point a is s(a).

4 (Spec \mathbb{Z}) The prime ideals of \mathbb{Z} are those generated by a prime number, which are all maximal ideals, plus the zero ideal. Therefore Spec \mathbb{Z} consists of closed points (p) with p a prime number plus a generic point (0). The closed set V(f) is a finite set consisting of prime factors of f.

A function f on $\operatorname{Spec} \mathbb{Z}$ is a integer, its value on (p) is $f \operatorname{mod} p$. In particular, if $p^r \mid\mid f$, then we say that f has a **zero** of degree r at (p). A section s on D(f) is a rational number $\frac{a}{g}$ such that the prime factors of g belong to those of f. If (a,g)=1 and $p^r \mid\mid g$, then we say that s has a **pole** of degree r at (p).

- **5** (Real affine line) $\mathbb{A}^1_{\mathbb{R}} := \operatorname{Spec} \mathbb{R}[t]$. $\mathbb{R}[t]$ has three kinds of prime ideals:
 - 1. (t-a) where $a \in \mathbb{R}$, which are maximal ideals and therefore corresponding to closed points. Note that $\mathbb{R}[t]/(t-a) \cong \mathbb{R}$, hence functions taking real values on those points.
 - 2. $(t^2 + at + b)$ where $t^2 + at + b$ is a monic irreducible quadratic polynomial, which are also maximal ideals and thence corresponding to closed points. Note that $\mathbb{R}[t]/(t^2 + at + b) \cong \mathbb{C}$, hence functions taking complex values on those points.
 - 3. (0), corresponding to the generic point.

How to picture this? We can image $|\mathbb{A}^1_{\mathbb{R}}|$ as the complex plane folded along the real axis: (t-a) corresponds to the real point a, (t^2+at+b) corresponds to the conjugate pair consisting of the roots of t^2+at+b . The Zariski topology on $|\mathbb{A}^1_{\mathbb{R}}|$ is again the cofinite topology.

6 (Affine lines over finite fields) $\mathbb{A}^1_{\mathbb{F}_q} := \operatorname{Spec} \mathbb{F}_q[t]$. $\mathbb{F}_q[t]$ has infinitely many prime ideals: (0) and (f) where f is a monic irreducible polynomial over \mathbb{F}_q . A function, i.e. a polynomial over \mathbb{F}_q , is not determined by its values at the q points corresponding to \mathbb{F}_q . However, it is determined by its value at the infinitely many points of $\mathbb{A}^1_{\mathbb{F}_q}$.

Affine spaces

- 7 (Complex affine plane and curves on it) $\mathbb{A}^2_{\mathbb{C}} := \operatorname{Spec} \mathbb{C}[x,y]$. The prime ideals of $\mathbb{C}[x,y]$ are precisely the followings.
 - 1. (x-a, y-b) where $(a, b) \in \mathbb{C}^2$, which are maximal ideals and therefore corresponding to closed points;
 - 2. (f(x,y)) where f(x,y) is a complex irreducible polynomial;
 - 3. (0), corresponding to the generic point.

Therefore, $\mathbb{A}^2_{\mathbb{C}}$ looks like this:

- 1. the closed points can be identified with \mathbb{C}^2 with a coarser topology;
- 2. the point (f(x,y)) is the *generic point* of the one-dimensional closed subset V(f) (called a **curve**), whose closed points are

$$|V(f)| = \{(a,b) \in \mathbb{C}^2 | f(a,b) = 0\};$$

3. (0) is the generic point of whole $\mathbb{A}^2_{\mathbb{C}}$.

The closed sets of $\mathbb{A}^2_{\mathbb{C}}$ are the followings:

- 1. the whole $\mathbb{A}^2_{\mathbb{C}}$;
- 2. a finite union of curves and closed points.

By Theorem 1.9, $\mathbb{A}^2_{\mathbb{C}}$ is irreducible while \mathbb{C} is reducible.

- 8 (Complex affine spaces) $\mathbb{A}^n_{\mathbb{C}} := \operatorname{Spec} \mathbb{C}[x_1, x_2, \cdots, x_n].$
- **8.a Lemma (Hilbert's Weak Nullstellensatz)** If k is an algebraic closed field, then the maximal ideals of $k[x_1, x_2, \dots, x_n]$ are precisely those ideals of the form $(x_1 a_1, x_2 a_2, \dots, x_n a_n)$ with $a_i \in k$.

Proof: content

Now, we have seen $|\mathbb{A}^n_{\mathbb{C}}| = \mathbb{C}^n$. How about the other points? (0) is the generic point of the whole $\mathbb{A}^n_{\mathbb{C}}$. For $f(x_1, x_2, \dots, x_n)$ an irreducible polynomial, (f) is the generic point of a one-codimensional hypersurface. The rest points are generic points of curves, surfaces, hypersurfaces, et cetera. There are no simple algebraic description of those prime ideals. However, it is not difficult to image those geometric objects.

- 9 (\mathbb{A}^n -bundle) The bundle $\pi: \mathbb{A}^n_{\mathbb{Z}} \to \operatorname{Spec} \mathbb{Z}$ (induced from the inclusion $\mathbb{Z} \to \mathbb{Z}[x_1, x_2, \cdots, x_n]$) can be imaged as an \mathbb{A}^n -bundle: for each prime number $p \in \mathbb{Z}$, the fiber $\pi^{-1}(p)$ is isomorphic to $\mathbb{A}^n_{\mathbb{F}_p}$, which is V(p) in $\mathbb{A}^n_{\mathbb{Z}}$. As for the generic point (0), note that a prime ideal \mathfrak{p} of $\mathbb{Z}[x_1, x_2, \cdots, x_n]$ lies in $\pi^{-1}(0)$ if and only if $\mathfrak{p} \cap \mathbb{Z} = \{0\}$. Therefore the fiber $\pi^{-1}(0)$ is isomorphic to $\mathbb{A}^n_{\mathbb{O}}$.
- 10 (Rational plane) content

§ III.3 Schemes

Schemes

- 1 (Schemes) A scheme is a locally ringed space such that every point has an open neighborhood which is an affine scheme. A morphism of schemes is a morphism of locally ringed spaces. The category of schemes will be denoted Sch.
- **1.a** (Affine open sets) Let X be a scheme, and $j: U \to X$ is an open immersion of locally ringed spaces. We say U is said to be affine open if U is an affine scheme.
- **1.b Lemma** Let X be a scheme, and $j: U \to X$ is an open immersion of locally ringed spaces. Then U is a scheme.

Topology of schemes

- 2 content
- 3 (Immersions of schemes) content
 - § III.4 Projective schemes
 - \S III.5 Morphisms of schemes

Riemann-Roch

§ IV.1 Riemann-Roch Formalism

Riemann-Roch Functors

1 (K-functors) A K-functor is a functor K which is simultaneously contravariant and covariant. Such a functor maps each object X to a ring K(X) and each morphism $f: X \to Y$ to morphisms

$$f^K \colon K(Y) \longrightarrow K(X)$$
 and $f_K \colon K(X) \longrightarrow K(Y)$.

satisfying the following axioms:

- 1. K is a contravariant functor to **CRing** via f^K ;
- 2. K is a covariant functor to \mathbf{Ab} via f_K ;
- 3. The **projection formula** holds:

for any
$$f: X \to Y$$
 and any $x \in K(X)$ and $y \in K(Y)$,

$$f_K(x \cdot f^K(y)) = f_K(x) \cdot y.$$

2 (Riemann-Roch functors) A Riemann-Roch functor is a triple (K, A, ρ) where K, A are K-functors and

$$\rho \colon K \longrightarrow A$$

is a natural transformation between contravariant functors, called the **Riemann-Roch character**.

We say **Riemann-Roch holds** for a morphism $f: X \to Y$ if there is an element $\tau_f \in A(X)$, called the **Riemann-Roch multiplier**, making the

following diagram commutes.

$$K(X) \xrightarrow{\tau_f \cdot \rho} A(X)$$

$$f_K \downarrow \qquad \qquad \downarrow f_A$$

$$K(Y) \xrightarrow{\rho} A(Y).$$

3 Theorem (Composition of Riemann-Roch) Let $f: X \to Y$ and $g: Y \to Z$ be morphisms. Assume that Riemann-Roch holds for f and g with multipliers τ_f and τ_g . Then Riemann-Roch holds for $g \circ f$ with multiplier

$$\tau_{g \circ f} = f^A(\tau_g) \cdot \tau_f.$$

Proof:

$$\rho(g_K f_K(x)) = g_A(\tau_g \cdot \rho(f_K(x)))$$

$$= g_A(\tau_g \cdot f_A(\tau_f \cdot \rho(x)))$$

$$= g_A f_A(f^A(\tau_g) \cdot \tau_f \cdot \rho(x).$$

Some generalities

§A.1	Monoidal categories and coherence theorems
	Monoidal categories, functors and natural transformations 207
	Coherence theorems
	Element notations
§A.2	Enriched categories
	Enriched categories
	Tensor products of K -categories
	Representability
	Actions 23

§ A.1 Monoidal categories and coherence theorems

In this section, we give basic notions on monoidal categories. Especially, we give a proof of the coherence theorems.

Monoidal categories, functors and natural transformations

1 (Monoidal categories) monoidal category is a category $\mathcal C$ equipped with a bifunctor

$$\otimes: \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}.$$

called the tensor product, an object

$$1 \in ob \mathcal{C}$$
,

called the unit object or tensor unit, a natural isomorphism

$$\alpha_{A,B,C} \colon (A \otimes B) \otimes C \xrightarrow{\cong} A \otimes (B \otimes C),$$

called the associator, a natural isomorphism

$$\lambda_A \colon \mathbf{1} \otimes A \stackrel{\cong}{\longrightarrow} A,$$

called the **left unitor**, and a natural isomorphism

$$\rho_A \colon A \otimes \mathbf{1} \stackrel{\cong}{\longrightarrow} A,$$

called the **right unitor**, such that the *pentagon identity* hold for every $A, B, C, D \in \text{ob } \mathcal{C}$,

$$(A \otimes B) \otimes (C \otimes D)$$

$$((A \otimes B) \otimes C) \otimes D$$

$$A \otimes (B \otimes (C \otimes D))$$

$$A \otimes (B \otimes (C \otimes D))$$

$$A \otimes (A \otimes B) \otimes C \otimes D$$

$$A \otimes (B \otimes C \otimes D)$$

$$A \otimes (A \otimes B) \otimes C \otimes D \otimes D$$

$$A \otimes (A \otimes B) \otimes C \otimes D \otimes D$$

$$A \otimes (A \otimes B) \otimes C \otimes D \otimes D$$

$$A \otimes (A \otimes B) \otimes C \otimes D \otimes D$$

$$A \otimes (A \otimes B) \otimes C \otimes D \otimes D$$

$$A \otimes (A \otimes C) \otimes D \otimes D$$

$$A \otimes (A \otimes C) \otimes D \otimes D$$

and the triangle identity holds for every $A, B \in \text{ob } \mathcal{C}$.

$$(A \otimes \mathbf{1}) \otimes B \xrightarrow{\alpha_{A,\mathbf{1},B}} A \otimes (\mathbf{1} \otimes B)$$

$$A \otimes B \xrightarrow{A \otimes \lambda_B}$$

Moreover, a **symmetric monoidal category** is a monoidal category $(\mathcal{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$ equipped a natural isomorphism

$$\gamma_{A,B} \colon A \otimes B \stackrel{\cong}{\longrightarrow} B \otimes A,$$

called the **symmetric braiding**, such that the *hexagon identity* holds for every $A, B, C \in \text{ob } \mathcal{C}$,

and the *involution law* holds for every $A, B \in \text{ob } \mathcal{C}$.

Remark The symmetric monoidal categories are special cases of *braiding* monoidal categories, which are defined like symmetric monoidal categories except the involution law fails and another hexagon identity is required.

- **1.a Example (Linear cosmoses)** There is a standard symmetric monoidal category structure on the category \mathbf{Ab} of abelian groups, or more general, the category $\mathbf{Mod}(R)$ of modules over a ring R. Those symmetric monoidal categories are the usual *linear cosmoses*.
- 1.b Example (Cartesian categories) There are other familiar examples of monoidal categories: The cartesian products provide a symmetric monoidal category structure on Set, whose tansor unit is the singleton. The cartesian products also provide another symmetric monoidal category structure on Ab, whose tensor unit is the trivial group. Such kind of monoidal categories are so-called cartesian ones.
 - 2 (Monoidal functors and natural transformations) As monoidal categories are categories equipped with extra structures, the correct morphisms between them should be functors preserving those extra structures.

But this requirement may be too strong. So, we define a **lax functor** to be a functor $F: \mathcal{C} \to \mathcal{C}'$ between monoidal categories, equipped with a natural transformation

$$\Phi_{A,B} \colon F(A) \otimes F(B) \longrightarrow F(A \otimes B),$$

and a morphism

$$\phi \colon \mathbf{1} \longrightarrow F(\mathbf{1}),$$

such that the following diagram commutes for every $A, B, C \in \text{ob } \mathcal{C}$,

$$F(A \otimes B) \otimes F(C)$$

$$\Phi_{A,B} \otimes F(C)$$

$$(F(A) \otimes F(B)) \otimes F(C)$$

$$\alpha_{F(A),F(B),F(C)}$$

$$F(A) \otimes (F(B) \otimes F(C))$$

$$F(A) \otimes \Phi_{B,C}$$

$$F(A) \otimes F(B \otimes C)$$

and the following diagrams commute for every $A \in \text{ob } \mathcal{C}$.

$$\mathbf{1} \otimes F(A) \xrightarrow{\lambda_{F(A)}} F(A) \qquad F(A) \otimes \mathbf{1} \xrightarrow{\rho_{F(A)}} F(A) \\
\downarrow^{\phi \otimes F(A)} \downarrow \qquad \uparrow^{F(\lambda_A)} \qquad F(A) \otimes \phi \downarrow \qquad \uparrow^{F(\rho_A)} \\
F(\mathbf{1}) \otimes F(A) \xrightarrow{\Phi_{\mathbf{1},A}} F(\mathbf{1} \otimes A) \qquad F(A) \otimes F(\mathbf{1}) \xrightarrow{\Phi_{A,\mathbf{1}}} F(A \otimes \mathbf{1})$$

Remark The morphism ϕ is uniquely determined by the above diagrams.

Like functors, lax functors can be *composed*. More precisely, if F and G are two lax functors and can be composed as functors. Then the composition $G \circ F$ has a natural lax functor structure given by

$$G(F(A)) \otimes G(F(B)) \longrightarrow G(F(A) \otimes F(B)) \longrightarrow G(F(A \otimes B)).$$

A symmetric lax functor is simply a lax functor $F: \mathcal{C} \to \mathcal{C}'$ making the following diagram commute for every $A, B \in \text{ob } \mathcal{C}$.

$$F(A) \otimes F(B) \xrightarrow{\gamma_{F(A),F(B)}} F(B) \otimes F(A)$$

$$\Phi_{A,B} \downarrow \qquad \qquad \downarrow \Phi_{B,A}$$

$$F(A \otimes B) \xrightarrow{F(\gamma_{A,B})} F(B \otimes A)$$

Dually, we have the notion of **oplax functors**, which are similar to lax functors except reversing the canonical morphisms Φ and ϕ .

Let (F, Φ, ϕ) be a lax functor. If Φ is further a natural isomorphism and ϕ is an isomorphism, we call F a **monoidal functor**. If they are identities, we call F a **strict monoidal functor**. For example, the identity functor of a monoidal category has a trivial obvious strict monoidal functor structure.

2.a Example Any (symmetric) monoidal category C admits a (symmetric) lax functor to **Set**, given by

$$|-| := \text{Hom}_{\mathcal{C}}(1, -).$$

However, this functor may NOT be faithful in general. But if it is, then I is a generator in K. In this case, we call a morphism from I to an object $A \in \text{ob } K$ an **element** of A.

A monoidal functor is said to be an **equivalence** of monoidal categories if it is an equivalence of categories. This definition seems not correct since the right concept of "equivalence" of monoidal categories should be stronger than the concept of equivalence of categories.

To explain this in detail, we should define the *monoidal natural trans*formations. They are the natural transformations respect the monoidal structure in an obvious way.

More precisely, a **monoidal natural transformation** is a natural transformation $\eta \colon F \Rightarrow G$ between two monoidal functors (or, symmetric monoidal functors) (F, Φ, ϕ) and (G, Ψ, ψ) making the following diagrams commute for every $A, B \in \text{ob } \mathcal{C}$.

$$F(A) \otimes F(B) \xrightarrow{\eta_A \otimes \eta_B} G(A) \otimes G(B)$$

$$\Phi_{A,B} \downarrow \qquad \qquad \downarrow \Psi_{A,B} \qquad \downarrow \psi$$

$$F(A \otimes B) \xrightarrow{\eta_{A \otimes B}} G(A \otimes B) \qquad F(1) \xrightarrow{\eta_1} G(1)$$

A monoidal functor $F: \mathcal{C} \to \mathcal{C}'$ between two monoidal categories is said to be an **monoidal equivalence** and thus \mathcal{C} and \mathcal{C}' are said to be **monoidally equivalent** if it has a **monoidal weak inverse**, that is a monoidal functor $G: \mathcal{C}' \to \mathcal{C}$ such that there exist monoidal natural isomorphisms $F \circ G \cong \mathrm{id}_{\mathcal{C}'}$ and $\mathrm{id}_{\mathcal{C}} \cong G \circ F$. The **symmetric monoidal equivalence** and **symmetric monoidal weak inverse** are defined likewise.

However, we have

3 Lemma If a monoidal functor is an equivalence of monoidal categories, then it is a monoidal equivalence.

Proof: Let $F: \mathcal{C} \to \mathcal{C}'$ be an equivalence of monoidal categories and G be its weak inverse. Then we have a natural isomorphism:

$$G(A \otimes B) \cong G(F(G(A)) \otimes F(G(B))) \cong G(F(G(A) \otimes G(B))) \cong G(A) \otimes G(B).$$

It is straightforward to see that this gives G a monoidal functor structure. Moreover, it is not difficult to verify that the natural isomorphisms $F \circ G \cong \mathrm{id}_{\mathcal{C}'}$ and $\mathrm{id}_{\mathcal{C}} \cong G \circ F$ are monoidal. \square

Coherence theorems

Now we should prove the coherence theorems for monoidal categories and symmetric monoidal categories. But before going further, we should clarify that the theorems should talk about the commutativities of "formal" diagrams instead of individual diagrams because in a particular monoidal category, a same object can accidentally become tensor products defined from different sorts, thus provides accidental identities and brings some diagrams beyond our expectation and may be unfortunately not commutative. A suitable approach is to consider the diagrams of functors and natural transformations instead of objects and morphisms.

So, the coherence theorem states

4 Theorem (Coherence theorem for monoidal categories) [ML63] In a monoidal category, any two chains of associators and unit isomorphisms connecting two functors built from tensor products and identities will provide the same identification.

Remark The coherence theorem is first proved by Mac Lane and a well-known version can be found in his famous textbook *Categories for the Working Mathematician*, where the statement is a little different. Our statement basically follows a course note of [Eti00].

Other coherence conditions

To prove the coherence theorem, we need some lemmas, they are actually the extra axioms given by [ML63] and showed by [Kel64] later that they could be implied from the *pentagon* and *triangle* identities.

5 Lemma In a monoidal category, the following diagrams commute.

Proof: We only prove the first. Note that the functor $\mathbf{1} \otimes -$ is isomorphic to the identity, thus an equivalence. Therefore it suffices to check the commutativity of the triangle below.

$$\mathbf{1} \otimes ((\mathbf{1} \otimes A) \otimes B) \xrightarrow{\mathbf{1} \otimes \alpha_{\mathbf{1},A,B}} \mathbf{1} \otimes (\mathbf{1} \otimes (A \otimes B))$$

$$\mathbf{1} \otimes (\lambda_A \otimes B) \xrightarrow{\mathbf{1} \otimes (\lambda_A \otimes B)} \mathbf{1} \otimes (A \otimes B)$$

To do this, we consider the following diagram,

Here, the outside commutes by the *pentagon identity*, regions II and IV by the *triangle identity*, and regions III and V by the naturality of α . It follows that region I commutes as desired.

6 Lemma In a monoidal category, $\lambda_1 = \rho_1$.

Proof: From the *triangle identity*, we have $(\mathbf{1} \otimes \lambda_1) \circ \alpha_{1,1,1} = \rho_1 \otimes \mathbf{1}$. On the other hand, by Lemma 5, we have $(\mathbf{1} \otimes \lambda_1) \circ \alpha_{1,1,1} = \lambda_1 \otimes \mathbf{1}$. Therefore $\rho_1 \otimes \mathbf{1} = \lambda_1 \otimes \mathbf{1}$. Then $\lambda_1 = \rho_1$ since $- \otimes \mathbf{1}$ is an equivalence.

The strictness theorem

It is obvious that if the associator α and the two unitors λ and ρ are all identities, then the coherence theorem for monoidal categories trivially holds. Such kind of monoidal categories are said to be **strict**.

Then, the main step of proving the coherence theorem is to prove the following strictness theorem.

7 Theorem (Strictness theorem for monoidal categories) [JS93] Every monoidal category is monoidally equivalent to a strict monoidal category.

Proof: Let \mathcal{C} be a monoidal category, we now construct a strict monoidal category \mathcal{C}_s as follows. The objects of \mathcal{C}_s are pairs (F,ζ) , where $F:\mathcal{C}\to\mathcal{C}$ is a functor and

$$\zeta_{A,B} \colon F(A) \otimes B \xrightarrow{\cong} F(A \otimes B)$$

is a natural isomorphism, such that the following diagram commutes for any

 $A, B, C \in ob \mathcal{C}$.

A morphism $\theta: (F, \zeta) \to (F', \zeta')$ in \mathcal{C}_s is a natural transformation $\theta: F \Rightarrow F'$ such that the following square commutes for any $A, B \in \text{ob } \mathcal{C}$.

$$F(A) \otimes B \xrightarrow{\theta_A \otimes B} F'(A) \otimes B$$

$$\downarrow^{\zeta_{A,B}} \qquad \qquad \downarrow^{\zeta'_{A,B}}$$

$$F(A \otimes B) \xrightarrow{\theta_{A \otimes B}} F'(A \otimes B)$$

Composition of morphisms is the *vertical composition* of natural transformations. The tensor product of objects is given by

$$(F,\zeta)\otimes(F',\zeta'):=(F\circ F',\tilde{\zeta}),$$

where $\tilde{\zeta}$ is given by the composition

$$F(F'(A)) \otimes B \stackrel{\zeta_{F'(A),B}}{\longrightarrow} F(F'(A) \otimes B) \stackrel{F(\zeta'_{A,B})}{\longrightarrow} F(F'(A \otimes B)),$$

and the tensor product of morphisms is the *horizontal composition* of natural transformations. Then one can verify that C_s is a strict monoidal category with identity functor id as the tensor unit.

Next, we define a functor $L: \mathcal{C} \to \mathcal{C}_s$ as follows:

$$L(A) = (A \otimes -, \alpha_{A,-,-}), \qquad L(f) = f \otimes -.$$

Now, we claim that this functor L is a monoidal equivalence.

First, it is easy to verify that for any $(F,\zeta) \in \text{ob } \mathcal{C}_s$, (F,ζ) is isomorphic to $L(F(\mathbf{1}))$ by check the commutativity of the following square. Here the natural transformation θ is defined by $\theta_A := F(\lambda_A) \circ \zeta_{1,A}$.

$$(F(\mathbf{1}) \otimes A) \otimes B \xrightarrow{\theta_A \otimes B} F(A) \otimes B$$

$$\uparrow_{A_{1,A,B}} \downarrow \qquad \qquad \downarrow_{\zeta_{A,B}} \downarrow$$

$$F(\mathbf{1}) \otimes (A \otimes B) \xrightarrow{\theta_{A \otimes B}} F(A \otimes B)$$

Thus L is essentially surjective.

Then us should show that L is full. Let $\theta: L(A) \to L(B)$ be a morphism in C_s , we define $f: A \to B$ to be the composite

$$A \xrightarrow{\rho_A^{-1}} A \otimes \mathbf{1} \xrightarrow{\theta_1} B \otimes \mathbf{1} \xrightarrow{\rho_B} B.$$

To show $\theta = L(f)$, it suffices to show that for any $C \in \text{ob } \mathcal{C}$, $\theta_C = f \otimes C$. Indeed, this follows from the commutativity of the diagram,

where the rows are the identities by the triangle identity, the left square commutes by the definition of f, the right square commutes by naturality of θ , and the central square commutes since θ is a morphism in C_s .

Next, if L(f) = L(g) for some morphisms f, g in \mathcal{C} then, in particular $f \otimes \mathbf{1} = g \otimes \mathbf{1}$ so that f = g. Thus L is faithful.

Finally, we define a monoidal functor structure

$$\Psi_{A,B} \colon L(A) \otimes L(B) \xrightarrow{\cong} L(A \otimes B), \qquad \psi \colon \operatorname{id} \xrightarrow{\cong} L(\mathbf{1})$$

on L as follows. First,

$$L(A) \otimes L(B) = (A \otimes (B \otimes -), \zeta),$$

$$L(A \otimes B) = ((A \otimes B) \otimes -, \zeta').$$

(Here we omit the explicit formulas for ζ and ζ').

Thus we can define $\Psi_{A,B}$ to be $\alpha_{A,B,-}^{-1}$. To show it is a morphism in \mathcal{C}_s , we should check the commutativity of the square for any $C, D \in \text{ob } \mathcal{C}$.

$$L(A) \circ L(B)(C) \otimes D \xrightarrow{\alpha_{A,B,C}^{-1} \otimes D} L(A \otimes B)(C) \otimes D$$

$$\downarrow^{\zeta_{C,D}} \qquad \qquad \downarrow^{\zeta_{C,D}}$$

$$L(A) \circ L(B)(C \otimes D) \xrightarrow{\alpha_{A,B,C \otimes D}^{-1}} L(A \otimes B)(C \otimes D)$$

But $\zeta_{C,D}$ is the composite

$$(A \otimes (B \otimes C)) \otimes D \xrightarrow{\alpha_{A,B \otimes C,D}} A \otimes ((B \otimes C) \otimes D) \xrightarrow{A \otimes \alpha_{B,C,D}} A \otimes (B \otimes (C \otimes D)),$$

and $\zeta'_{C,D}$ is $\alpha_{A\otimes B,C,D}$. Thus the square becomes the *pentagon identity*. The tensor unit of \mathcal{C}_s is the identity functor id, so the isomorphism ϕ can be defined as $\phi_A = \lambda_A^{-1} : A \xrightarrow{\cong} \mathbf{1} \otimes A$. To show it is a morphism in \mathcal{C}_s ,

we need to verify the commutativity of the square for any $A, B \in \text{ob } \mathcal{C}$.

$$A \otimes B \xrightarrow{\lambda_A^{-1} \otimes B} (\mathbf{1} \otimes A) \otimes B$$

$$\parallel \qquad \qquad \downarrow^{\alpha_{\mathbf{1},A,B}}$$

$$A \otimes B \xrightarrow{\lambda_{A \otimes B}^{-1}} \mathbf{1} \otimes (A \otimes B)$$

It follows directly from Lemma 5.

Now we check that (Φ, ϕ) give a monoidal functor structure on L. To check the hexagon condition of (L, Φ, ϕ) , i.e.

we apply it on an object D. Then it becomes the *pentagon identity*, thus holds. The rest two conditions are

we apply them on an object B, then they become

where the left triangle commute by Lemma 5 and the right by the triangle identity.

The coherence theorems

Once we have the strictness theorem, the coherence theorem follows almost directly.

Proof (Proof for Theorem 4): Let $F: \mathcal{C} \to \mathcal{C}_s$ be a monoidal equivalence from a monoidal category to a strict monoidal category. Then, for two chains θ and θ' connected two expressions f and g, we have the following commutative diagram by the definition of monoidal functors.

$$f(F(A_1), F(A_2), \cdots, F(A_n)) \xrightarrow{\theta_s} g(F(A_1), F(A_2), \cdots, F(A_n))$$

$$\downarrow^{\Phi_g} \qquad \qquad \downarrow^{\Phi_g}$$

$$F(f(A_1, A_2, \cdots, A_n)) \xrightarrow{F(\theta)} F(g(A_1, A_2, \cdots, A_n))$$

Here, the columns are natural isomorphisms and rows are chains of associators and unit isomorphisms. Since C_s is strict, both θ_s and θ_s' are just chains of identities, thus equal. Then we have

$$F(\theta) \circ \Phi_f = \Phi_q = F(\theta') \circ \Phi_f$$
.

Since Φ_f is an isomorphism and F is an equivalence, $\theta = \theta'$ as desired. \square

Now we give the coherence theorem for symmetric monoidal categories and prove it.

8 Theorem (Coherence theorem for symmetric monoidal categories)
In a symmetric monoidal category, any two chains of associators, unit isomorphisms and braiding isomorphisms connecting two functors built from tensor products, identities and permutations will provide the same identification.

Proof: Let \mathcal{C} be a symmetric monoidal category. Then, by Theorem 4, we can safely assume that it is strict, thus all n-ary functors built from tensor products and identities are equal. Let's call it the n-ary tensor product functor. Then we only need to show that any two chains of braiding isomorphisms connecting two permutations of the n-ary tensor product functor will provide the same identification. Moreover, we only need to check this for the *closed chains*, that is a chain whose start equals to the end.

Note that, the hexagon identity in the strict case shows that we can replace any braiding isomorphism by a chain of adjacent transposition braiding isomorphisms, that is a braiding isomorphism whose domain and codomain differ by an adjacent transposition. For example, the braiding isomorphism $\gamma_{A,B\otimes C}\colon A\otimes B\otimes C\to B\otimes C\otimes A$ is equal to the composite

$$A\otimes B\otimes C\stackrel{\gamma_{A,B}\otimes C}{\longrightarrow} B\otimes A\otimes C\stackrel{B\otimes\gamma_{A,C}}{\longrightarrow} B\otimes C\otimes A.$$

Then, we can label every adjacent transposition braiding isomorphism by the corresponding adjacent transposition. We define the label of a chain to be the *formal* product of the labels of its components. That means we do not take products in the *n*th symmetric group \mathfrak{S}_n , instead, we should take products in the free group \mathfrak{F}_n generated by the adjacent transpositions. Thus a chain is closed if and only if its label belongs to the kernel of the canonical map $\mathfrak{F}_n \to \mathfrak{S}_n$.

Recall that this kernel is generated by the following elements

$$\sigma_i^2, \quad 1 \leqslant i \leqslant n-1;$$

$$(\sigma_i \sigma_j)^2, \quad 1 \leqslant i < j-1 \leqslant n-2;$$

$$(\sigma_i \sigma_{i+1})^3, \quad 1 \leqslant i \leqslant n-2.$$

Then, we can decompose a closed chain as a composite of some *elementary* ones, each of them is labelled by one of the above elements.

Thus, it suffices to verify that every elementary closed chain provides the trivial identification. For chains labelled by σ_i^2 , this follows by the *involution law*; for chains labelled by $(\sigma_i \sigma_j)^2$, this follows from the naturality of γ ; for chains labelled by $(\sigma_i \sigma_{i+1})^3$, this follows from the commutativity of the diagram below.

This is the **Yang-Baxter identity**, one can verify it directly from the hexagon identity. \Box

Reference

- [ML63] Saunders Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28–46.
- [Kel64] Gregory Maxwell Kelly, On MacLane's conditions for coherence of natural associativities, commutativities, etc, J. Algebra 1 (1964), 397–402.
- [Eti00] Pavel Etingof, Tensor categories (2000), http://www-math.mit.edu/~etingof/tenscat.pdf.
- [JS93] André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78.
- [Lei04] Tom Leinster, *Higher operads, higher categories*, London Mathematical Society Lecture Note Series, vol. 298, Cambridge University Press, Cambridge, 2004.

Element notations

9 (Elements) Let \mathcal{C} be a monoidal category. By an element a of an object A, we mean an arbitrary morphism to A in \mathcal{C} and denote $a \in A$. In particular, a morphism from $\mathbf{1}$ to A is called a global element of A. The Yoneda lemma guarantees that we can verify commutative diagrams by chasing an arbitrary element. However, unless the tensor unit $\mathbf{1}$ is also a generator of \mathcal{C} , the global elements are NOT enough to determine A.

For $f: A \to B$ a morphism in \mathcal{C} and a an element of A, we view the composition $f \circ a$ an element of B and denote it by f(a).

Let a and b be elements of A and B respectively. Then the tensor product of a of b is an element of $A \otimes B$. Note that to verify two morphisms $f,g\colon A\otimes B\to C$ are the same it suffices to verify for elements of the form $a\otimes b$, we have $f(a\otimes b)=g(a\otimes b)$. Thus we only consider such kind of elements for a tensor product. Note that $\mathrm{id}_1\otimes a$ is canonical isomorphic to a. To simplify notations, we always assume $\mathcal C$ is strict and denote id_1 by 1.

10 (generalized morphisms) Let C be a (right) closed monoidal category (ref. Example 2.5). Under the canonical bijection

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \cong \operatorname{Hom}_{\mathcal{C}}(\mathbf{1},\underline{\operatorname{Hom}}(A,B)),$$

we may identify morphisms from A to B and global elements of $\underline{\text{Hom}}(A, B)$. So elements of $\underline{\text{Hom}}(A, B)$ can be viewed as **generalized morphisms** between A and B.

10.a (Evaluation and left multiplication) The adjuction of tensor product and internal Hom defines the following two canonical morphisms:

$$\operatorname{ev}_B^A \colon \operatorname{\underline{Hom}}(A,B) \otimes A \longrightarrow B, \qquad l_B^A \colon B \longrightarrow \operatorname{\underline{Hom}}(A,B \otimes A)$$

called the **evaluation** and the **left multiplication** and the canonical bijection

$$\operatorname{Hom}_{\mathcal{C}}(A \otimes B, C) \cong \operatorname{Hom}_{\mathcal{C}}(A, \operatorname{Hom}(B, C))$$

is given by

$$(A \otimes B \xrightarrow{f} C) \longmapsto (A \xrightarrow{l_A^B} \underline{\operatorname{Hom}}(B, A \otimes B) \xrightarrow{\underline{\operatorname{Hom}}(B, f)} \underline{\operatorname{Hom}}(B, C),$$
$$(A \xrightarrow{g} \underline{\operatorname{Hom}}(B, C)) \longmapsto (A \otimes B \xrightarrow{g \otimes B} \underline{\operatorname{Hom}}(B, C) \otimes B \xrightarrow{\operatorname{ev}_C^B} C),$$

For f a global element of $\underline{\text{Hom}}(A, B)$, i.e. a morphism $f: A \to B$, and a an element of A, we have

$$\operatorname{ev}(f \otimes a) = f(a)$$

since $\operatorname{ev} \circ (f \otimes \operatorname{id}_A) = f$ by the above canonical bijection.

So, for general $f \in \underline{\text{Hom}}(A, B)$ and $a \in A$, we define

$$f(a) := \operatorname{ev}(f \otimes a) \in B.$$

For b an element of B, the left multiplication gives an element $l_B^A \circ b$ of $\underline{\text{Hom}}(A, B \otimes A)$, denoted by l_b .

10.b (Composition) The adjunction above also gives the following canonical morphism

$$\bullet_{A,B,C}$$
: $\underline{\text{Hom}}(B,C) \otimes \underline{\text{Hom}}(A,B) \longrightarrow \underline{\text{Hom}}(A,C)$,

which is corresponding to the morphism

$$\underline{\mathrm{Hom}}(B,C)\otimes\underline{\mathrm{Hom}}(A,B)\otimes A\overset{\mathrm{ev}_{B}^{A}}{\longrightarrow}\underline{\mathrm{Hom}}(B,C)\otimes B\overset{\mathrm{ev}_{C}^{B}}{\longrightarrow}C.$$

For f (resp. g) a global element of $\underline{\mathrm{Hom}}(A,B)$ (resp. $\underline{\mathrm{Hom}}(B,C)$), i.e. a morphism $f\colon A\to B$ (resp. $g\colon B\to C$), we have

$$\bullet_{A,B,C}(g\otimes f)=g\circ f$$

as elements of $\underline{\text{Hom}}(A, C)$ by the following commutative diagram.

Therefore, for general $f \in \underline{\text{Hom}}(A,B), g \in \underline{\text{Hom}}(B,C)$, we denote the element $\bullet_{A,B,C}(g \otimes f) \in \underline{\text{Hom}}(A,C)$ by $g \circ f$.

We have

- **10.c Lemma** Let $f, f' \in \underline{\text{Hom}}(A, B), g \in \underline{\text{Hom}}(B, C), h \in \underline{\text{Hom}}(C, D)$ and $a \in A, b \in B$, we have
 - 1. $(g(f(a))) = (g \circ f)(a);$
 - 2. f = f' if and only if f(a) = f'(a) for all a;
 - 3. $(h \circ g) \circ f = h \circ (g \circ f)$;
 - 4. $id_A(a) = a;$
 - 5. $l_b(a) = b \otimes a$.

Proof: 1. This follows from the following commutative diagram.

$$\underbrace{\operatorname{Hom}(B,C)\otimes \operatorname{Hom}(A,B)\otimes A}_{\operatorname{ev}_{B}^{A}} \underbrace{\operatorname{Hom}(A,C)\otimes A}_{\operatorname{ev}_{C}^{A}} \underbrace{\operatorname{Hom}(B,C)\otimes B}_{\operatorname{ev}_{C}^{B}} \xrightarrow{\operatorname{ev}_{C}^{B}} C$$

- 2. This follows from that to verify two morphisms $f, g: A \otimes B \to C$ are the same it suffices to verify for elements of the form $a \otimes b$, we have $f(a \otimes b) = g(a \otimes b)$.
 - 3. This follows from $((h \circ g) \circ f)(a) = h(g(f(a))) = (h \circ (g \circ f))(a)$.
 - 4. This follows from the triangle identity

$$(A \xrightarrow{\mathrm{id}_A} \underline{\mathrm{Hom}}(A, A) \otimes A \xrightarrow{\mathrm{ev}} A) = (A \xrightarrow{\mathrm{id}_A} A).$$

5. This follows from the triangle identity

$$(B\otimes A \xrightarrow{l_B^A} \underline{\mathrm{Hom}}(A,B\otimes A)\otimes A \xrightarrow{\mathrm{ev}} B\otimes A) = (B\otimes A \xrightarrow{\mathrm{id}} B\otimes A). \quad \ \, \Box$$

Using above notations, one may rewrite the canonical bijection

$$\operatorname{Hom}_{\mathcal{C}}(A \otimes B, C) \cong \operatorname{Hom}_{\mathcal{C}}(A, \underline{\operatorname{Hom}}(B, C))$$

as follows.

$$(A \otimes B \xrightarrow{f} C) \longmapsto (a \mapsto (b \mapsto f(a \otimes b))),$$
$$(A \xrightarrow{g} \underline{\operatorname{Hom}}(B, C)) \longmapsto (a \otimes b \mapsto g(a)(b)).$$

Furthermore, we have

11 Theorem (Internal Tensor-Hom adjunction) There are canonical isomorphisms

$$\underline{\operatorname{Hom}}(A \otimes B, C) \cong \underline{\operatorname{Hom}}(A, \underline{\operatorname{Hom}}(B, C)),$$

given by

$$f \in \underline{\operatorname{Hom}}(A \otimes B, C) \longmapsto (a \mapsto (b \mapsto f(a \otimes b))),$$

$$g \in \underline{\operatorname{Hom}}(A, \underline{\operatorname{Hom}}(B, C)) \longmapsto (a \otimes b \mapsto g(a)(b)).$$

Proof: We define the canonical morphism

$$\alpha \colon \operatorname{Hom}(A \otimes B, C) \longrightarrow \operatorname{Hom}(A, \operatorname{Hom}(B, C))$$

be the one corresponding to the morphism

$$\underline{\operatorname{Hom}}(A \otimes B, C) \otimes A \longrightarrow \underline{\operatorname{Hom}}(B, C),$$

which is the one corresponding to the morphism

$$\underline{\operatorname{Hom}}(A\otimes B,C)\otimes (A\otimes B)\stackrel{\operatorname{ev}}{\longrightarrow} C.$$

We also define the canonical morphism

$$\beta \colon \underline{\mathrm{Hom}}(A,\underline{\mathrm{Hom}}(B,C)) \longrightarrow \underline{\mathrm{Hom}}(A \otimes B,C)$$

be the one corresponding to the composition

$$\underline{\mathrm{Hom}}(A,\underline{\mathrm{Hom}}(B,C))\otimes A\otimes B\stackrel{\mathrm{ev}}{\longrightarrow}\underline{\mathrm{Hom}}(B,C)\otimes B\stackrel{\mathrm{ev}}{\longrightarrow}C.$$

Then, for any $f \in \underline{\text{Hom}}(A \otimes B, C)$ and $g \in \underline{\text{Hom}}(A, \underline{\text{Hom}}(B, C))$, we have

$$\alpha(f) = (a \mapsto (b \mapsto \operatorname{ev}(f \otimes a \otimes b) = f(a \otimes B)),$$

$$\beta(g) = (a \otimes b \mapsto \operatorname{ev}(\operatorname{ev}(g \otimes a) \otimes b) = g(a)(b)).$$

One can see those α and β are mutually inverse to each other and coincide with the descriptions in the theorem.

§ A.2 Enriched categories

In this section, we give basic notions on enriched categories.

Enriched categories

- 1 (Enriched categories) Let \mathcal{K} be a monoidal category. Then a \mathcal{K} -enriched category, or simply a \mathcal{K} -category \mathcal{C} consists of the following data:
 - a collection ob $\mathcal C$ of objects.
 - for every two objects A and B in C, an object $\underline{\operatorname{Hom}}_{C}(A,B) \in \operatorname{ob} \mathcal{K}$ called the **hom-object**.
 - for every three objects A, B and C in C, a morphism

$$\bullet_{A,B,C} : \underline{\operatorname{Hom}}_{\mathcal{C}}(B,C) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(A,B) \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(A,C)$$

called the **composition**.

• for every object A in C, a K-morphism $id_A : \mathbf{1} \to \underline{\mathrm{Hom}}_{\mathcal{C}}(A, A)$, called the **identity**.

subject to the following axioms:

1. the composition is associative, which means for every $A, B, C, D \in$ ob C, the following diagram commutes;

$$\underline{\operatorname{Hom}}_{\mathcal{C}}(C,D) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(B,C) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(A,B)$$

$$\underline{\operatorname{Hom}}_{\mathcal{C}}(C,D) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(A,C) \qquad \underline{\operatorname{Hom}}_{\mathcal{C}}(B,D) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(A,B)$$

2. composition is *unital*, which means for every $A, B \in \text{ob } \mathcal{C}$, the following diagram commutes.

$$\mathbf{1} \otimes \underline{\mathrm{Hom}}_{\mathcal{C}}(A,B) \xrightarrow{\mathrm{id}_{B}} \underline{\mathrm{Hom}}_{\mathcal{C}}(B,B) \otimes \underline{\mathrm{Hom}}_{\mathcal{C}}(A,B)$$

$$\cong \underline{\mathrm{Hom}}_{\mathcal{C}}(A,B)$$

$$\cong \underline{\mathrm{Hom}}_{\mathcal{C}}(A,B) \otimes \mathbf{1} \xrightarrow{\mathrm{id}_{A}} \underline{\mathrm{Hom}}_{\mathcal{C}}(A,B) \otimes \underline{\mathrm{Hom}}_{\mathcal{C}}(A,A)$$

2 Example Set is a monoidal category with Cartesian products as tensor products. In this sense, a **Set**-category is merely a category.

- **3 Example (Change of bases)** Let $u: \mathcal{K} \to \mathcal{K}'$ be a *lax functor*. Let \mathcal{C} be a \mathcal{K} -category. Then we may define a \mathcal{K}' -category $u\mathcal{C}$ as follows:
 - objects of $u\mathcal{C}$ are objects of \mathcal{C} ;
 - for every two objects A and B in \mathcal{C} , we set

$$\underline{\operatorname{Hom}}_{u\mathcal{C}}(A,B) = u(\underline{\operatorname{Hom}}_{\mathcal{C}}(A,B));$$

• for every three objects A, B and C in C, the *composition* is give by the composition of $u(\bullet)$ with the comparison of monoidal structures:

$$u(\underline{\operatorname{Hom}}_{\mathcal{C}}(B,C)) \otimes u(\underline{\operatorname{Hom}}_{\mathcal{C}}(A,B)) \longrightarrow u(\underline{\operatorname{Hom}}_{\mathcal{C}}(B,C) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(A,B))$$

$$\xrightarrow{u(\bullet)} u(\underline{\operatorname{Hom}}_{\mathcal{C}}(A,C));$$

• for every object A in C, the identity of A in uC is the composition of $u(\mathrm{id}_A)$ with the comparison of monoidal structures:

$$1 \longrightarrow u(1) \stackrel{u(\mathrm{id}_A)}{\longrightarrow} u(\underline{\mathrm{Hom}}_{\mathcal{C}}(A,A)).$$

Especially, for $\mathcal{K}' = \mathbf{Set}$, we have

4 (Underlying category) Let \mathcal{K} be a monoidal category and \mathcal{C} a \mathcal{K} -category. Then we may define a category via the monoidal functor $K := \operatorname{Hom}_{\mathcal{K}}(\mathbf{1}, -)$ from \mathcal{K} to **Set**. This category is called the **underlying ccategory** of \mathcal{C} . For any $A, B \in \operatorname{ob} \mathcal{C}$, the set $\operatorname{Hom}_{\mathcal{K}}(\mathbf{1}, \operatorname{\underline{Hom}}_{\mathcal{C}}(A, B))$ is called the **underlying Hom-set** and denoted by $\operatorname{Hom}_{\mathcal{C}}(A, B)$. Usually, we do not distinguish \mathcal{C} with its underlying category and thus we may call an element f of $\operatorname{Hom}_{\mathcal{C}}(A, B)$ as a morphism from A to B and denote it as $f : A \to B$.

Let $f: A \to B$ be a morphism. Then it induces two K-morphisms

$$\begin{array}{c} \underline{\operatorname{Hom}}_{\mathcal{C}}(B,C) \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(B,C) \otimes \mathbf{1} \\ \stackrel{f}{\longrightarrow} \underline{\operatorname{Hom}}_{\mathcal{C}}(B,C) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(A,B) \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(A,C); \\ \underline{\operatorname{Hom}}_{\mathcal{C}}(C,A) \longrightarrow \mathbf{1} \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(C,A) \\ \stackrel{f}{\longrightarrow} \underline{\operatorname{Hom}}_{\mathcal{C}}(A,B) \otimes \underline{\operatorname{Hom}}_{\mathcal{C}}(C,A) \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(C,B). \end{array}$$

In this way, $\underline{\text{Hom}}_{\mathcal{C}}(-,-)$ becomes a bifunctor from \mathcal{C} to \mathcal{K} .

5 Example (Tensor-Hom adjunction) A monoidal category \mathcal{C} is said to be **right closed** if every functor $-\otimes M$ with $M \in \text{ob } \mathcal{C}$ has a right adjoint, denoted by Hom(M, -).

If this is the case, we get a bifunctor $\underline{\text{Hom}}(-,-): \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, called the **internal Hom** in \mathcal{C} . If this is the case, then \mathcal{C} is enriched over itself by setting $\underline{\text{Hom}}_{\mathcal{C}}(A,B)$ to be the internal-Hom $\underline{\text{Hom}}(A,B)$. Then, there is a

underlying category of the C-category C. But C itself is a priori a category. So, what's the relation?

By the Tensor-Hom adjunction, we have

$$\operatorname{Hom}_{\mathcal{C}}(A, B) \cong \operatorname{Hom}_{\mathcal{C}}(\mathbf{1} \otimes A, B) \cong \operatorname{Hom}_{\mathcal{C}}(\mathbf{1}, \operatorname{Hom}(A, B)).$$

Therefore, the two category structures on \mathcal{C} coincides.

In general, for any object A of C, we call the set $\operatorname{Hom}_{\mathcal{C}}(\mathbf{1}, A)$ the set of **global element** of A.

For any objects A and B in a right closed monoidal category, there is a canonical morphism

ev:
$$\operatorname{Hom}(A, B) \otimes A \longrightarrow B$$

corresponding to $id_{\underline{\text{Hom}}(A,B)}$ under the *Tensor-Hom adjunction*. It is called the **evaluation**.

- 6 (Enriched functors and enriched natural transformations) Given two \mathcal{K} -categories \mathcal{C} and \mathcal{D} , a \mathcal{K} -enriched functor, or simply a \mathcal{K} -functor $F \colon \mathcal{C} \to \mathcal{D}$ consists of following data:
 - A mapping between the collection of objects;
 - A collection of morphisms $\underline{\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \underline{\mathrm{Hom}}_{\mathcal{D}}(FA,FB)$ which are natural in $A,B \in \mathrm{ob}\,\mathcal{C}$.

subject to the following axioms:

1. the functor is compatible with enriched compositions, which means for every $A, B, C \in \text{ob } \mathcal{C}$, the following diagram commutes;

$$\underbrace{\operatorname{Hom}_{\mathcal{C}}(B,C)\otimes \operatorname{Hom}_{\mathcal{C}}(A,B)}_{F} \longrightarrow \underbrace{\operatorname{Hom}_{\mathcal{C}}(A,C)}_{F}$$

$$\underbrace{\operatorname{Hom}_{\mathcal{D}}(FB,FC)\otimes \operatorname{Hom}_{\mathcal{D}}(FA,FB)}_{F} \longrightarrow \underbrace{\operatorname{Hom}_{\mathcal{D}}(FA,FC)}_{F}$$

2. the functor is compatible with enriched identity, which means for every $A \in \text{ob } \underline{\text{Hom}}_{\mathcal{C}}$, the following diagram commutes.

A K-functor F is said to be **full** (resp. **faithful**, **fully faithful**) if each morphism $\underline{\operatorname{Hom}}_{\mathcal{C}}(A,B) \to \underline{\operatorname{Hom}}_{\mathcal{D}}(FA,FB)$ is a monomorphism (resp. epimorphism, isomorphism).

For two \mathcal{K} -enriched functors $F,G:\mathcal{C}\to\mathcal{D}$, a \mathcal{K} -enriched natural transformation, or simply a \mathcal{K} -natural transformation $\alpha\colon F\Rightarrow G$ is a natural transformation $\alpha_A\colon \mathbf{1}\to \underline{\mathrm{Hom}}_{\mathcal{D}}(FA,GA)$ of functors from \mathcal{C} to \mathcal{K} such that the following diagram commutes for every $A,B\in\mathrm{ob}\,\mathcal{C}$.

$$\underbrace{\operatorname{Hom}}_{\mathcal{C}}(A,B) \xrightarrow{F} \underbrace{\operatorname{Hom}}_{\mathcal{D}}(FA,FB)$$

$$\downarrow^{\alpha_B}$$

$$\underbrace{\operatorname{Hom}}_{\mathcal{D}}(GA,GB) \xrightarrow{\alpha_A} \underbrace{\operatorname{Hom}}_{\mathcal{D}}(FA,GB)$$

The **vertical composition** $\beta \circ \alpha$ of two \mathcal{K} -enriched natural transformations $\alpha \colon F \Rightarrow G$ and $\beta \colon G \Rightarrow H$ is obtained by the composition:

$$\mathbf{1} \cong \mathbf{1} \otimes \mathbf{1} \xrightarrow{\beta \otimes \alpha} \underline{\mathrm{Hom}}_{\mathcal{D}}(GA, HA) \otimes \underline{\mathrm{Hom}}_{\mathcal{D}}(FA, GA) \xrightarrow{\bullet} \underline{\mathrm{Hom}}_{\mathcal{D}}(FA, HA).$$

As for the **horizontal composition** $\beta * \alpha$ of two \mathcal{K} -enriched natural transformations:

$$\mathcal{C} \underbrace{\psi_{\alpha}}_{G} \mathcal{D} \underbrace{\psi_{\beta}}_{G'} \mathcal{E}$$

there are two possible compositions:

one can verify that they are the same.

6.a Remark (Underlying functors and natural transformations) Every \mathcal{K} -functor $F: \mathcal{C} \to \mathcal{D}$ induces a functor between their underlying categories: for any $A, B \in \text{ob } \mathcal{C}$, the map

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(FA,GA)$$

is given by mapping any $f: A \to B$ to the composition

$$\mathbf{1} \xrightarrow{f} \underline{\mathrm{Hom}}_{\mathcal{C}}(A, B) \xrightarrow{F} \underline{\mathrm{Hom}}_{\mathcal{D}}(FA, FB).$$

A \mathcal{K} -natural transformation $\alpha \colon F \Rightarrow G$, by its definition, is already a natural transformation between their underlying functors. So there is no need to distinguish them. In this way all notions about natural transformations apply to \mathcal{K} -natural transformations. In particular, we have the notion of natural isomorphisms, vertical composition, horizontal composition and the interchange law.

Tensor products of K-categories

We have seen that \mathcal{K} -categories form a 2-category \mathcal{K} Cat. In the case \mathcal{K} is symmetric monoidal, \mathcal{K} Cat is future a *symmetric monoidal 2-category*. Throughout this subsection, \mathcal{K} is assumed to be symmetric monoidal.

- 7 (Tensor products of \mathcal{K} -categories) Let \mathcal{K} be a symmetric monoidal category and \mathcal{C}, \mathcal{D} two \mathcal{K} -categories. We define the \mathcal{K} -category $\mathcal{C} \otimes \mathcal{D}$ as follows.
 - objects of $\mathcal{C} \otimes \mathcal{D}$ is ob $\mathcal{C} \times \operatorname{ob} \mathcal{D}$;
 - for every two objects A and B in C and two objects A' and B' in D, the hom-object is

$$\underline{\operatorname{Hom}}_{\mathcal{C}\otimes\mathcal{D}}((A,A'),(B,B'):=\underline{\operatorname{Hom}}_{\mathcal{C}}(A,B)\otimes\underline{\operatorname{Hom}}_{\mathcal{D}}(A',B');$$

• for every three objects A, B and C in C and three objects A', B' and C' in D, the *composition* is given by the composition

$$\underline{\operatorname{Hom}}_{\mathcal{C}\otimes\mathcal{D}}((B,B'),(C,C'))\otimes\underline{\operatorname{Hom}}_{\mathcal{C}\otimes\mathcal{D}}((A,A'),(B,B'))$$

$$\longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(B,C)\otimes\underline{\operatorname{Hom}}_{\mathcal{C}}(A,B)\otimes\underline{\operatorname{Hom}}_{\mathcal{D}}(B',C')\otimes\underline{\operatorname{Hom}}_{\mathcal{D}}(A',B')$$

$$\longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}\otimes\mathcal{D}}((A,A'),(C,C'));$$

• for every object A in C and A' in D, the *identity* is given by the composition

$$\mathbf{1} \longrightarrow \mathbf{1} \otimes \mathbf{1} \stackrel{\mathrm{id}_A \otimes \mathrm{id}_{A'}}{\longrightarrow} \underline{\mathrm{Hom}}_{\mathcal{C}}(A,A) \otimes \underline{\mathrm{Hom}}_{\mathcal{D}}(A',A').$$

Then, one can define the tensor products of \mathcal{K} -functors and \mathcal{K} -natural transformations. In this way, \mathcal{K} -categories form a *symmetric monoidal 2-category* \mathcal{K} **Cat**. Here the unit is the \mathcal{K} -category \mathcal{I} with one object * and $\underline{\mathrm{Hom}}_{\mathcal{I}}(*,*)=\mathbf{1}$.

Note that the underlying category of $\mathcal{C} \otimes \mathcal{D}$ is rarely $\mathcal{C} \times \mathcal{D}$ and the underlying category of \mathcal{I} is usually not *. Instead, there are canonical functors $\mathcal{C} \times \mathcal{D} \to \mathcal{C} \otimes \mathcal{D}$ and $* \to \mathcal{I}$.

8 (Partial functors) Let \mathcal{C}, \mathcal{D} and \mathcal{E} be three \mathcal{K} -categories. Then a \mathcal{K} -functor $F: \mathcal{C} \otimes \mathcal{D} \to \mathcal{E}$ gives rise to partial functors $F(A, -): \mathcal{D} \to \mathcal{E}$ and $F(-, A'): \mathcal{C} \to \mathcal{E}$ by

$$\mathcal{D} \cong \mathcal{I} \otimes \mathcal{D} \overset{A \otimes \mathrm{id}}{\longrightarrow} \mathcal{C} \otimes \mathcal{D} \overset{F}{\longrightarrow} \mathcal{E} \quad \mathrm{and} \quad \mathcal{C} \cong \mathcal{C} \otimes \mathcal{I} \overset{\mathrm{id} \otimes A'}{\longrightarrow} \mathcal{C} \otimes \mathcal{D} \overset{F}{\longrightarrow} \mathcal{E}.$$

The partial functors of the composition

$$\mathcal{C} \times \mathcal{D} \longrightarrow \mathcal{C} \otimes \mathcal{D} \stackrel{F}{\longrightarrow} \mathcal{E}$$

are just the underlying functors of the partial functors of F.

Conversely, given a family of K-functors $G_A : \mathcal{D} \to \mathcal{E}$ indexed by objects of \mathcal{C} and a family of K-functors $H_{A'} : \mathcal{C} \to \mathcal{E}$ indexed by objects of \mathcal{D} such that $G_A(A') = H_{A'}(A)$ for all $A \in \text{ob}\,\mathcal{C}$ and $A' \in \text{ob}\,\mathcal{D}$. Let T(A, A') denote the object $G_A(A')$. Then there is a K-functor $T : \mathcal{C} \otimes \mathcal{D} \to \mathcal{E}$ whose partial functors are G_A and $H_{A'}$ if and only if they fit into the following commutative diagram.

Now, we take a look at natural transformations. Let $T, S: \mathcal{C} \otimes \mathcal{D} \to \mathcal{E}$ be two \mathcal{K} -functors and $\alpha: T \Rightarrow S$ a natural transformation between the underlying functors of T and S. Then the following two statements are equivalent.

- 1. α is a natural transformation between K-functors;
- 2. for each $A \in \text{ob } \mathcal{C}$ and $A' \in \text{ob } \mathcal{D}$, $\alpha_{A,-} : T(A,-) \Rightarrow S(A,-)$ and $\alpha_{-,A'} : T(-,A') \Rightarrow S(-,A')$ are natural transformations between \mathcal{K} -functors.
- 9 (Opposites and presheaves) For any \mathcal{K} -category \mathcal{C} , there is a \mathcal{K} -category \mathcal{C}^{opp} whose underlying category is the opposite of \mathcal{C} . Indeed, for every two objects A, B in \mathcal{C} , the hom-object $\underline{\text{Hom}}_{\mathcal{C}^{\text{opp}}}(A, B)$ is defined as the object $\underline{\text{Hom}}_{\mathcal{C}}(B, A)$. One can see $(\mathcal{C} \otimes \mathcal{D})^{\text{opp}} = \mathcal{C}^{\text{opp}} \otimes \mathcal{D}^{\text{opp}}$.

A \mathcal{K} -functor from \mathcal{C}^{opp} is called a \mathcal{K} -presheaf on \mathcal{C} .

10 Example (Hom bifunctor) Let \mathcal{C} be a \mathcal{K} -category, then $\underline{\mathrm{Hom}}_{\mathcal{C}}(-,-)$ is a \mathcal{K} -functor $\mathcal{C}^{\mathrm{opp}} \otimes \mathcal{C} \to \mathcal{K}$. Indeed, fixing $A \in \mathrm{ob}\,\mathcal{C}$, then $\underline{\mathrm{Hom}}_{\mathcal{C}}(A,-)$ is a \mathcal{K} -functor and $\underline{\mathrm{Hom}}_{\mathcal{C}}(-,A)$ is a \mathcal{K} -presheaf. Furthermore, one can see they give rise to a \mathcal{K} -functor $\underline{\mathrm{Hom}}_{\mathcal{C}} \colon \mathcal{C}^{\mathrm{opp}} \otimes \mathcal{C} \to \mathcal{K}$.

Now, we consider the composition

$$\mathcal{C}^{\mathrm{opp}} \times \mathcal{C} \longrightarrow \mathcal{C}^{\mathrm{opp}} \otimes \mathcal{C} \stackrel{\operatorname{Hom}}{\longrightarrow} \mathcal{K} \stackrel{\mathit{K}}{\longrightarrow} \mathbf{Set}$$
.

Since the partial functors of the composition of the first two are precisely the partial functors of $\underline{\mathrm{Hom}}_{\mathcal{C}}$ and that

$$K \circ \underline{\operatorname{Hom}}_{\mathcal{C}}(A, -) = \operatorname{Hom}_{\mathcal{C}}(A, -), \qquad K \circ \underline{\operatorname{Hom}}_{\mathcal{C}}(-, A) = \operatorname{Hom}_{\mathcal{C}}(-, A),$$

we see the resulted composition is $\operatorname{Hom}_{\mathcal{C}}(-,-)$.

11 Example (Tensor product functor) The tensor product in \mathcal{K} gives rise to a \mathcal{K} -functor Ten: $\mathcal{K} \otimes \mathcal{K} \to \mathcal{K}$. Here Ten $(A, B) := A \otimes B$ and the morphism

$$\underline{\operatorname{Hom}}(A, A') \otimes \underline{\operatorname{Hom}}(B, B') \longrightarrow \underline{\operatorname{Hom}}(A \otimes B, A' \otimes B')$$

is given as the one corresponding under the *Tensor-Hom adjunction* to the composition

$$(\underline{\operatorname{Hom}}(A,A')\otimes\underline{\operatorname{Hom}}(B,B'))\otimes(A\otimes B)\\ \longrightarrow (\underline{\operatorname{Hom}}(A,A')\otimes A)\otimes(\underline{\operatorname{Hom}}(B,B')\otimes B)\\ \longrightarrow A'\otimes B'.$$

One can see the composition

$$\mathcal{K} \times \mathcal{K} \longrightarrow \mathcal{K} \otimes \mathcal{K} \stackrel{\mathrm{Ten}}{\longrightarrow} \mathcal{K}$$

is precisely the bifunctor $-\otimes -$. Note that the natural transformations in the symmetric monoidal structure on \mathcal{K} are thus the \mathcal{K} -natural transformations in its \mathcal{K} -enriched symmetric monoidal structure.

12 Lemma (Hom of tensor products) Let C, D be two K-categories, then the composition

$$\mathcal{C}^{\mathrm{opp}} \otimes \mathcal{C} \otimes \mathcal{D}^{\mathrm{opp}} \otimes \mathcal{D} \xrightarrow{\mathrm{Hom}_{\mathcal{C}} \otimes \mathrm{Hom}_{\mathcal{D}}} \mathcal{K} \otimes \mathcal{K} \xrightarrow{\mathrm{Ten}} \mathcal{K}$$

is $\underline{\mathrm{Hom}}_{\mathcal{C}\otimes\mathcal{D}}$.

Representability

13 Theorem (Weak Yoneda lemma) Let K be a right closed monoidal category and C be a K-category. There is a canonical bijection

$$\operatorname{Nat}(\underline{\operatorname{Hom}}_{\mathcal{C}}(A,-),F) \longrightarrow \operatorname{Hom}_{\mathcal{K}}(\mathbf{1},F(A))$$

$$\alpha \longmapsto \left(\mathbf{1} \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(A,A) \xrightarrow{\alpha_A} F(A),\right)$$

which is natural in both the object $A \in ob \mathcal{C}$ and the \mathcal{K} -functor $F \colon \mathcal{C} \to \mathcal{K}$.

Proof: Let $x: \mathbf{1} \to F(A)$ be an element of F(A), then the following composition

$$\underline{\operatorname{Hom}}_{\mathcal{C}}(A,B) \xrightarrow{F} \underline{\operatorname{Hom}}(F(A),F(B)) \xrightarrow{x} \underline{\operatorname{Hom}}(\mathbf{1},F(B)) \xrightarrow{\operatorname{ev}} F(B)$$

gives rise to a natural transformation α from $\underline{\mathrm{Hom}}_{\mathcal{C}}(A,-)$ to F.

This corresponding gives the inverse of the map described in the statement. Indeed, $\alpha_A \circ \mathrm{id}_A$ equals x by the is the following commutative diagrams.

Conversely, given a natural transformation α from $\underline{\text{Hom}}_{\mathcal{C}}(A, -)$ to F, if it corresponds to $x \colon \mathbf{1} \to F(A)$. Then, the natural transformation corresponding to x is the whole composition of the following commutative diagrams.

Since the composition of the left verticals is the identity, the whole composition is α_B as desired.

- **14** (Representable functors) A K-functor (resp. K-presheaf) F is said to be **representable** if there is a natural isomorphism from $\underline{\mathrm{Hom}}_{\mathcal{C}}(A,-)$ (resp. $\underline{\mathrm{Hom}}_{\mathcal{C}}(-,A)$) to F. Such a natural isomorphism is called a **representation** and we say F is represented by A. By the weak Yoneda lemma, a representation can also be written as a pair (A,x) of an object $A \in \mathrm{ob}\,\mathcal{C}$ and a morphism $x\colon \mathbf{1}\to F(A)$ such that the corresponding natural transformation is invertible,
- **15 Lemma** Let K be a right closed monoidal category, C be a K-category and $F: C \to K$ be a K-functor. Given two representations (A, x) and (B, y) of F, there exists a unique morphism $f: A \to B$ in the underlying category of C such that $F(f) \circ x = y$.
- **16** (Adjunctions) A pair of \mathcal{K} -functors $L: \mathcal{C} \to \mathcal{D}$ and $R: \mathcal{D} \to \mathcal{C}$ is called a **adjoint pair** or **adjunction** if they admit two natural transformations $\eta: \mathrm{id} \Rightarrow RL$ and $\epsilon: LR \Rightarrow \mathrm{id}$ satisfy the **triangle identities**.

229

If this is the case, then the compositions

$$\underline{\operatorname{Hom}}_{\mathcal{D}}(L(A),B) \xrightarrow{R} \underline{\operatorname{Hom}}_{\mathcal{C}}(RL(A),R(B) \xrightarrow{\underline{\operatorname{Hom}}_{\mathcal{C}}(\eta_{A},R(B))} \underline{\operatorname{Hom}}_{\mathcal{C}}(A,R(B))$$

and

$$\underline{\operatorname{Hom}}_{\mathcal{C}}(A,R(B)) \xrightarrow{L} \underline{\operatorname{Hom}}_{\mathcal{D}}(L(A),LR(B) \xrightarrow{\underline{\operatorname{Hom}}_{\mathcal{C}}(L(A),\epsilon_{B})} \underline{\operatorname{Hom}}_{\mathcal{D}}(L(A),B)$$

give rise to a mutually inverse pair of natural transformations:

$$\underline{\operatorname{Hom}}_{\mathcal{D}}(L(-), -) \cong \underline{\operatorname{Hom}}_{\mathcal{C}}(-, R(-)).$$

Conversely, if there are such a mutually inverse pair of natural transformations

$$\underline{\operatorname{Hom}}_{\mathcal{D}}(L(-),-) \xrightarrow{\alpha} \underline{\operatorname{Hom}}_{\mathcal{C}}(-,R(-)),$$

then the compositions

$$I \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{D}}(L(A),L(A)) \stackrel{\alpha_{A,L(A)}}{\longrightarrow} \underline{\operatorname{Hom}}_{\mathcal{C}}(A,RL(A))$$

and

$$I \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(R(B), R(B)) \stackrel{\beta R(B), B}{\longrightarrow} \underline{\operatorname{Hom}}_{\mathcal{D}}(LR(B), B)$$

give rise to a pair of natural transformations η : id $\Rightarrow RL$ and ϵ : $LR \Rightarrow$ id satisfy the **triangle identities**.

17 Example (Enriched Tensor-Hom adjunction) Recall (Example 5) that in a right closed monoidal category K, there are adjunction

$$-\otimes A\dashv \operatorname{Hom}(A,-)$$

of functors. But each of them induces a K-functor.

For $-\otimes A$, the morphism

$$\operatorname{Hom}(B,C) \longrightarrow \operatorname{Hom}(B \otimes A, C \otimes A)$$

is the one corresponding to the evaluation

$$\underline{\operatorname{Hom}}(B,C)\otimes B\otimes A\stackrel{\operatorname{ev}\otimes A}{\longrightarrow}C\otimes A$$

under the Tensor-Hom adjunction.

For $\underline{\mathrm{Hom}}(A,-)$, the morphism

$$\underline{\operatorname{Hom}}(B,C) \longrightarrow \underline{\operatorname{Hom}}(\underline{\operatorname{Hom}}(A,B),\underline{\operatorname{Hom}}(A,C))$$

is the one corresponding to the composition operation

$$\underline{\operatorname{Hom}}(B,C)\otimes\underline{\operatorname{Hom}}(A,B)\stackrel{\bullet}{\longrightarrow}\underline{\operatorname{Hom}}(A,C)$$

under the Tensor-Hom adjunction.

Furthermore, the above two K-functors form an adjunction.

- **18 Lemma (Equivalence of K-categories)** Let K be a monoidal category and $F: \mathcal{C} \to \mathcal{D}$ a K-functor. Then the followings are equivalent:
 - $1.\ F$ is fully faithful and essentially surjective;
 - 2. F admits a left or right adjoint K-functor such that the unit and the counit are natural transformations;
 - 3. there exist an adjunction $L \dashv R$ of K-functors and natural isomorphisms $id_{\mathcal{C}} \cong LF$ and $FR \cong id_{\mathcal{D}}$.

Actions

Index

(A, B)-bimodule, 139 algebraic category, 18 (m, n)-operation, 122, 125 algebraic object, 123, 126 2-morphism, 70 antipode, 138 A-algebra, 144 associative algebra, 1 A-bimodule, 139 associator, 179 A-homomorphism, 139 bar resolution, 129 A-module, 139 base for topology, 28 T-algebra, 126 base object, 81 \mathcal{O} -module, 148 bimonoid, 137 f-map, 46 f-map of modules, 154 canonical pretopology, 66 n-ary cooperation, 122, 125 cartesian monoidal category, 180 n-ary operation, 122, 125 category of algebraic structures, 18 n-ary tensor product functor, 188 category of elements, 117 K-category, 194 category-theoretic image, 62 \mathcal{K} -functor, 196 center, 136, 149, 151 K-natural transformation, 197 change of linear cosmoses, 133 K-presheaf, 199 chaotic topology, 15 chart, 171 abelian category, 133 closed immersion of locally ringed spaces, abelian lax functor, 133 170 abelian presheaf, 18 closed immersion of ringed spaces, 167 abelian sheaf, 18 closed monoidal category, 195 abelian tensor category, 133 closed subspace, 168 abelian tensor functor, 133 cocommutative bimonoid, 137 absolute colimit, 129 cocomplete abelian tensor category, adjoint pair, 44, 201 133 adjunction, 44, 201 cocomplete tensor category, 133 algeba, 135 cocontinuous functor, 74

cocycle condition, 41, 93 cofree module, 141 coherent sheaf, 164 combinatorially equivalent, 16 commutative algeba, 135 commutative bimonoid, 137 commutative monoid, 125 comonoid, 137 compact object, 63 comparison functor, 127, 130 compatible germs, 22 compatible sections, 57 composition, 194 concrete category, 18 conservative, 114 constant presheaf, 24 constant sheaf, 24 continuous functor, 72 cotangent space, 24 coverage, 15 covering, 14

descent condition, 17 diffeomorphism, 174 differential map, 174 direct image, 43, 70

effective epimorphism, 131 effective-epic, 67 Eilenberg-Moore category, 126 element, 134, 182, 190 element notation, 134 embedding functor, 5 endomorphism monoid, 136 enriched category, 194 enriched functor, 196 enriched natural transformation, 197 equivalence of categories, 182 evaluation, 140, 142, 151, 190, 196 evaluation map, 171 exact functor, 36 extension by empty, 81 extension by empty, 48, 77

extension by zero, 49, 77

extension of scalars, 145 exterior algebra, 165

faithful functor, 196 filtered category, 9 finitary linear cosmos, 133 finite locally free sheaf, 161 finite module, 159 finite presentation, 163 flat respect to a site, 116 forgetful functor, 18 fork, 129 free algebra, 124, 126 free functor, 18 free module, 141 full functor, 196 fully faithful functor, 196 function algebra, 138 functor of points, 5

generalized morphism, 190 generate, 158 generated by global sections, 158 generated by local sections, 158 generic object, 123, 126 geometric embedding, 72 geometric moprhism, 70 germ, 22, 28 global basis, 158 global element, 134, 190, 196 global section, 21 gluing axiom, 17 gluing data, 41, 93 Grothendieck abelian category, 133 Grothendieck cosmos, 133 Grothendieck pretopology, 14 Grothendieck topos, 70 group algebra, 138 group object, 122

has enough points, 114 hom-object, 194 homomorphism, 123, 126, 139 homomorphism of residues, 169 Hopf monoid, 138 horizontal composition, 197

ideal, 146 ideal sheaf, 167 identity, 194 image, 8 immersion, 169, 170 indiscrete topology, 15 injective morphism of presheaves, 7 internal Hom, 195 inverse image, 44, 46, 70

Kan extension, 11 Kan extension operation, 11 Kleisli category, 126

Lawvere theory, 123 lax functor, 180 left T-module, 126 left A-module, 139 left exact functor, 36 left Kan extension, 12, 13 left multiplication, 151, 190 left unitor, 179 linear cosmos, 133 local homomorphism, 169 local image, 62 local representation, 162 local ring, 169 local ring of germs, 171 localization morphism, 81, 101 localization of a site, 81 localization of topos, 101 locally finite covering, 172 locally free sheaf, 161 locally generated by sections, 159 locally surjective, 60

manifold, 171
module, 142
monad, 126
monadic adjunction, 127
monadic functor, 127
monoid, 125
monoidal category, 179

monoidal equivalence, 182 monoidal functor, 181 monoidal natural transformation, 182 monoidal weak inverse, 182 monoidally equivalent, 182 morphism of coverings, 15 morphism of points, 113 morphism of sites, 73

neighborhood, 105 non-commutative ring, 1

of finite type, 159
open immersion of locally ringed spaces,
170
open immersion of ringed spaces, 167
open submanifold, 175
open subspace, 155
oplax functor, 181
opposite monoid, 125

paracompact space, 172
partial functor, 198
partition of unity, 172
point of a site, 105
point of a topos, 106
presheaf, 5
presheaf of \(\mathcal{O}\)-modules, 147
PROP, 126
property P, 86
pullback, 44, 46, 154
pushforward, 43, 154

quasi-coherent sheaf, 162 quasi-compact object, 63 quasi-Grothendieck pretopology, 14 quotient sheaf, 32

rank of a locally free sheaf, 161 rank of free modules, 141 real analytic map, 174 refinement, 16 regular epimorphism, 131 representable functor, 201 representable presheaf, 5

representable sheaf, 68
representation, 5, 162, 201
residue field, 169
restriction, 145
restriction maps, 21
restriction of a sheaf, 23, 81
right \(\mathcal{T}\)-modules, 126
right \(A\)-modules, 139
right exact functor, 36
right Kan extension, 13
right unitor, 179
ring, 1
ringed space, 147

section, 5, 24 section functor, 8 separated presheaf, 17 set of global sections, 6 sheaf, 17, 21 sheaf cokernel, 34 sheaf Hom, 38, 91 sheaf image, 61 sheaf kernel, 34 sheaf of \mathcal{O} -modules, 148 sheaf of center, 149 sheaf on base, 28 sheafification, 24, 57 sieve, 116 sifted category, 18 site, 14 skyscraper sheaf, 23, 106 smooth function, 171, 172 smooth map, 174 special cocontinuous functor, 95 specialization, 113 specializing morphism, 114 split coequalizer, 129 stalk, 21, 28, 105 stalk functor, 21 standard structure sheaf, 173 strict monoidal category, 184 strict monoidal functor, 181

structure sheaf, 171 structure sheaf, 172

subcanonical pretopology, 66 subcanonical topology, 66 subpresheaf, 8 subsheaf, 31 support, 22, 152 surjective morphism of presheaves, 7 symmetric algebra, 165 symmetric braiding, 180 symmetric lax functor, 181 symmetric monoidal category, 179 symmetric monoidal equivalence, 182 symmetric monoidal weak inverse, 182 system of compatible sections, 21

tautologically equivalent, 16
tensor algebra, 137, 165
tensor product, 117, 139, 147, 148,
179
tensor unit, 179
the category of sections, 6
transformation group, 175
transition map, 171
triangle identities, 44, 201, 202

underlying ccategory, 195 underlying Hom-set, 195 underlying presheaf of sets, 18 underlying set, 124 unit object, 179 unit section, 152 universal effective-epic, 67

value of a germ, 24 vanish of sheaf, 50 variété, 172 vertical composition, 197

weak dual, 142

Yang-Baxter identity, 189 Yoneda embedding, 5 Yoneda extension, 13

zeroth Čech cohomology, 51, 52

Bibliography

- [Stacks] The Stacks Project Authors, Stacks Project, 2015.
- [RV15] Ravi Vakil, THE RISING SEA: Foundations of Algebraic Geometry, 2015.
- [Milne] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, 1980.
- [Pri03] H. A. Priestley, Introduction to complex analysis, 2nd ed., Oxford University Press, Oxford, 2003.
- [Kel05] G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137. Reprint of the 1982 original.
- [Bor94] Francis Borceux, *Handbook of categorical algebra.* 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge, 1994. Basic category theory.
- [Joh02] Peter T. Johnstone, Sketches of an elephant: a topos theory compendium. Vol. 2, Oxford Logic Guides, vol. 44, The Clarendon Press, Oxford University Press, Oxford, 2002.
- [Kar04] Panagis Karazeris, Notions of flatness relative to a Grothendieck topology, Theory Appl. Categ. 12 (2004), No. 5, 225–236.
- [Mar09] Florian Marty, Des ouverts Zariski et des morphismes lisses en géométrie relative, Ph.D. Thesis, Université Toulouse III-Paul Sabatier, 2009.
- [Lur04] J. Lurie, Tannaka Duality for Geometric Stacks, ArXiv Mathematics e-prints (2004), available at math/0412266.
- [EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015.