Probabilidades

Ricardo Prudêncio

Conhecimento com Incerteza

- Exemplo: sistema de diagnóstico odontológico
- Regra de diagnóstico
 - ∀ p sintoma (p,dor de dente) ⇒ doença (p,cárie)
 - A doença (causa do sintoma) pode ser outra.
- Regra causal
 - ∀ p doença (p,cárie) ⇒ sintoma (p,dor de dente)
 - Há circunstâncias em que a doença não provoca o sintoma.
- A conexão entre antecedente e consequente não é uma implicação lógica em nenhuma direção

Conhecimento com Incerteza

- Falha no domínio de diagnóstico médico devido a:
 - "preguiça":
 - existem causas ou consequências demais a considerar
 - ignorância teórica e prática:
 - não existe uma teoria completa para o domínio, nem podemos fazer todos os testes necessários para o diagnóstico perfeito.
- Nestes casos, o conhecimento pode apenas prover um grau de crença nas sentenças relevantes.
 - P(Cárie/Dor de Dente) = 0.6

Probabilidade

- Interpretação Frequentista
 - Frequência de um evento observado múltiplas vezes
- Interpretação Bayesiana
 - Quantificação da incerteza associada a um evento
 - Seja incerteza aleatórica ou epistêmica

Teoria da Probabilidade

- Associa às sentenças um grau de crença numérico entre 0 e 1
 - Contudo, cada sentença ou é verdadeira ou é falsa
- Grau de crença (probabilidade):
 - <u>a priori</u> (incondicional): calculado antes do agente receber percepções
 - Ex. P(cárie = true) = P(cárie) = 0.5
 - <u>condicional</u>: calculado de acordo com as evidências disponíveis (permite a inferência)
 - evidências: percepções que o agente recebeu até agora
 - Ex: P(cárie|dor de dente)= 0.8
 P(cárie|~dor de dente)= 0.3

Probabilidade - Conceitos

- Associa um grau de crença numérico entre 0 e 1 a um dado evento
 - \blacksquare Pr(Chuva) = 0.1
 - \blacksquare Pr(20 < Idade < 40) = 0.8

- 0 <= Pr(A) <= 1
- $Pr(\sim A) = 1 Pr(A)$ (Prob. de A não acontecer)

Probabilidade - Conceitos

- Probabilidade conjunta de dois eventos
 - $Pr(A,B) = Pr(A^B)$
 - Pr(A^B) = Pr(A).Pr(B), quando A e B são independentes

- Probabilidade condicional
 - Pr(A|B) = $Pr(A^B)$, quando Pr(B) > 0. Pr(B)
 - Pr(A|B) = Pr(A), quando A e B são independentes

Probabilidade Condicional

- Regra de Bayes
 - Pr(A|B) = Pr(B|A)Pr(A) Pr(B)

Aplicação da Regra de Bayes: Diagnóstico Médico

Seja

M=doença meningite

S= rigidez no pescoço

•Um Doutor sabe:

P(S/M) = 0.5

P(M)=1/50000

P(S)=1/20

$$P(M/S)=P(S/M)P(M)$$
 $P(S)$
 $=0,5*(1/50000)=0,002$
 $1/20$

•A probabilidade de uma pessoa ter meningite dado que ela está com rigidez no pescoço é 0,02% ou ainda 1 em 5000.

Variáveis Aleatórias

- X é uma variável com valor desconhecido, dentro de um espaço amostral (ou suporte)
 - E.g.,: X: resultado do lançamento de um dado, com espaço amostral $S = \{1,2,3,4,5,6\}$
- Um evento é um subconjunto do espaço amostral
 - E.g., O resultado do lançamento é um número par, ou seja $X \in \{2,4,6\}$

Variáveis Aleatórias Discretas

Espaço amostral contável (finito ou infinito)

- Probability Mass Function
 - p(x) = Pr(X = x)

Variáveis Aleatórias Discretas

Exemplo: Distribuição Uniforme

$$p(1) = p(2) = p(3) = p(4) = 0.25$$

Variáveis Aleatórias Discretas

- Bernoulli
- Binomial
- Poisson
- Geométrica
- •
- https://en.wikipedia.org/wiki/Bernoulli_distribution
- https://en.wikipedia.org/wiki/Binomial distribution
- https://en.wikipedia.org/wiki/Poisson distribution
- https://en.wikipedia.org/wiki/Geometric_distribution

Espaço amostral é o conjunto dos reais

- Interesse em eventos definidos como intervalos do espaço amostral
 - E.g., Pr(X <= a)Pr(a < X <= b)
- Pr(X = a) = 0

Cumulative Distribution Function (CDF)

$$P(x) = Pr(X \le x)$$

Normal(0,1)

Probability Density Function (PDF)

$$p(x) \triangleq \frac{d}{dx}P(x)$$

$$\Pr(a < X \le b) = \int_a^b p(x)dx = P(b) - P(a)$$

Exemplo: Normal(0,1)

Momentos da Distribuição

Valor esperado

$$\mathbb{E}\left[X\right] \triangleq \int_{\mathcal{X}} x \ p(x) dx$$

Variância

$$\mathbb{V}[X] \triangleq \mathbb{E}\left[(X - \mu)^2 \right] = \int (x - \mu)^2 p(x) dx$$

Moda

$$\boldsymbol{x}^* = \operatorname*{argmax}_{\boldsymbol{x}} p(\boldsymbol{x})$$

Quantiles

Quantile = Função Inversa da CDF

- P⁻¹(q) é o valor x_q tal que:
 - $Pr(X <= x_q) = q$

- Normal Distribution
- Gamma Distribution
- Exponential Distribution
- Beta Distribution
- •
- https://en.wikipedia.org/wiki/Normal_distribution
- https://en.wikipedia.org/wiki/Gamma_distribution
- https://en.wikipedia.org/wiki/Exponential_distribution
- https://en.wikipedia.org/wiki/Beta_distribution

Bibliografia

Probabilistic Machine Learning: An Introduction.
 Kevin P. Murphy (2022)