	Question number	Answer	Notes	Marks
10	a	any two from: MP1. comets orbit the Sun but moons orbit planets; MP2. moons have (approximately) circular orbits but comets have elliptical orbits; MP3. a comet has variable speed but a moon's speed is (approximately) constant;	allow 'comet orbits are more elliptical'	2
	b (i)	gravitational potential energy = mass x g x height;	allow rearrangements and standard symbols e.g. GPE = mgh reject 'gravity' for g	1
	(ii)	substitution; rearrangement; evaluation to more than 1 significant figure; e.g. 2.2 = 0.75 x 1.6 x height (height =) 2.2 / (0.75 x 1.6)	award 2 marks max. if mass not converted to kg giving 0.00183	3
	(;;;)	(height =) 1.83333		1
	(iii)	2.2 (J);		1
	(iv)	 any three from: MP1. gravitational field strength is greater on the Earth; MP2. (therefore) hammer has a greater weight on Earth; MP3. (therefore) astronaut has to apply a greater force (to lift the hammer); 	allow use of $g = 10$ in calculation condone 'gravity is more on Earth' ORA allow 'downward force greater' condone 'hammer is heavier'	3
		MP4. hammer gains more GPE on Earth;	GPE on Earth is 15J gains MP1 and MP4	
	C	substitution; rearrangement; evaluation of time period; evaluation of number of orbits; e.g. $7.66 = \frac{2\pi \times 6780}{T}$ T $T = \frac{2\pi \times 6780}{7.66}$	allow method of finding total distance travelled and dividing by distance of one orbit $(2\pi r)$	4
		(T =) 5560 (s) (number of orbits = (24x60x60) / 5560 =) 15.5	5561 allow 15, 16	