Домашнее задание 2-4

Янко Иван, Б05-006

Задание 1

Условия

Уважаемый сэр подбросил 3 симметричные монетки. Он говорит: "Хотя бы 2 монетки дадут одинаковый результат, в любом случае. Шансы на то, что третья монетка выпала орлом или решкой, одинаковы. Следовательно, с вероятностью $\frac{1}{2}$ она даст тот же результат, что и остальные две, а значит, вероятность того, что все монетки дадут один и тот же результат, равна $\frac{1}{2}$. "Согласны ли вы с рассуждениями данного сэра? Если рассуждения верные - обоснуйте почему, если нет - найдите в них ошибку.

Решение

Это рассуждение не верно, как минимум из-за того, что можно составить табличку и посчитать вероятность такого события правильно. Основная проблема этого рассуждения заключается в предположении того, что 2 монеты выпадут одинаково и будет еще одна, у которой не будет определен результат. Утверждать, что 2 монеты дадут один и тот же результат можно лишь при броске трех монет, а тогда уже результат броска дополнительной монеты будет предопределен. Коротко говоря, эти события "2 монеты дадут один и тот же результат"и "третья монета с вероятность $\frac{1}{2}$ даст такой же результат "зависимы, поэтому их вероятность нельзя перемножать.

Задание 2

Условия

В самолёте n мест. Есть n пассажиров, выстроившихся друг за другом в очередь. Во главе очереди — "заяц" (пассажир без билета). У всех, кроме "заяц", есть билет, на котором указан номер посадочного места. Так как "заяц" входит первым, он случайным образом занимает некоторое место. Каждый следующий пассажир, входящий в салон самолёта, действует по такому принципу: если его место свободно, то садится на него, если занято, то занимает с равной вероятностью любое свободное. Найдите вероятность того, что последний пассажир сядет на своё место.

Решение

Заметим, что решение может описываться таким рекуррентным соотношением, ведь есть вероятность $\frac{1}{n}$, что "заяц"сядет на свое место и такая же вероятность, что он сядет на место пассажира с номером в очереди $k \in \overline{2,n-1}$. Это соотношение записано на следующей строчке

$$f(n) = \frac{1}{n} + \frac{1}{n} \sum_{i=2}^{n-1} f(i)$$

Также скажем, что из очевидных соображений для n=2,3 вероятность в $\frac{1}{2}$ очевидна. Докажем по методу математической индукции, что и для любых n вероятность будет $\frac{1}{2}$. База индукции - очевидна, докажем шаг. Для этого достаточно показать, что если $f_i=\frac{1}{2}, i\in\overline{2,n}$, то и

$$f(n+1) = \frac{1}{n+1} \left(1 + \sum_{i=2}^{n} \frac{1}{2} \right) = \frac{1}{n+1} \cdot \left(1 + (n-1)\frac{1}{2} \right) = \frac{n+1}{2(n+1)} = \frac{1}{2}$$

Значит вероятность того, что последний пассажир сядет на свое место равно $\frac{1}{2}$

Задание 3

Условия

В урне лежит 1 белый шар. В урну добавляют ещё один шар неизвестного цвета, однако известно, что он с вероятностью $\frac{1}{2}$ чёрного цвета, а с вероятностью $\frac{1}{2}$ — белого. Затем из урны не глядя вытаскивается шар и он оказывается белым. Какова при этом вероятность того, что в урну добавили белый шар?

Решение

Обозначим за A - в урну добавили белый шар, а за B - из урны вытащили белый шар. Тогда \overline{A} - в урну добавили черный шар. Тогда по формуле Байеса получим

$$\mathbb{P}\{A|B\} = \frac{\mathbb{P}\{B|A\}\mathbb{P}\{A\}}{\mathbb{P}\{B|A\}\mathbb{P}\{A\} + \mathbb{P}\{B|\overline{A}\}\mathbb{P}\{\overline{A}\}} = \frac{1 \cdot \frac{1}{2}}{1 \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{2}{3}$$

Задание 4

Условия

Глюк спаял схему из 5 резисторов (k = 1, 2, 3, 4, 5). Событие A_k - "резистор с номером k проводит ток". К сожалению, резисторы оказались китайскими и $\mathbb{P}\{A_k\} = 1/2$ для любого k. Но, к удивлению Глюка,вся схема проводит ток. Найдите вероятность, что резистор с номером k (для всех k) проводит ток, т.е. $\mathbb{P}\{A_k|B\}$, где B - "схема проводит ток".

Рис. 1: Схема Глюка

Решение

Вспомним из курса общей физики, что данная схема симметрична относительно резисторов под номерами $k = \overline{1,4}$, поэтому для них вероятности будут одинаковые и равны $\mathbb{P}\{A_{\overline{1,4}}\}$ (обозначим эту вероятность так).

$$\mathbb{P}\{A_{\overline{1,4}}|B\} = \mathbb{P}\{A_1|B\} = \frac{\mathbb{P}\{B|A_1\}\mathbb{P}\{A_1\}}{\sum_{k=1}^{5} (\mathbb{P}\{B|A_k\}\mathbb{P}\{A_k\})}$$

Найдем $\mathbb{P}\{B|A_{\overline{1,4}}\}=\mathbb{P}\{B|A_1\}$ по стандартному определению. Всего 16 событий, составив таблицу, можно понять, что только при 11 из них цепь будет проводить ток. Значит $\mathbb{P}\{B|A_{\overline{1,4}}\}\mathbb{P}\{A_{\overline{1,4}}\} = \frac{11}{16} \cdot \frac{1}{2} = \frac{11}{32}$. Для 5 резистора тем же способом $\mathbb{P}\{B|A_5\}\mathbb{P}\{A_5\} = \frac{9}{16} \cdot \frac{1}{2}$.

$$\mathbb{P}\{A_{\overline{1,4}}|B\} = \frac{\frac{11}{32}}{\frac{4\cdot11+9}{32}} = \frac{11}{4\cdot11+9} = \frac{11}{53}$$

Аналогичным способом $\mathbb{P}\{A_5|B\} = \frac{9}{53}$

Задание 5

Условия

Пусть для событий A, B и C известно, что $\mathbb{P}\{A \cap B \cap C\} = \mathbb{P}\{A\}\mathbb{P}\{B\}\mathbb{P}\{C\}$, и $\mathbb{P}\{A\} > 0$, $\mathbb{P}\{B\} > 0$, $\mathbb{P}\{C\} > 0$. Достаточно ли этого условия, чтобы утверждать, что A, B и C независимы в совокупности?

Решение

Приведем пример, в для которого выполнены условия задачи, но A, B и C не являются независимыми в совокупности. Попытаемся привести что-то на подобии тетраэдра Бернштейна. Очевидно, что и в этом случае будем рассматривать фигуру с п гранями, что вероятность выпадения каждой из них одинакова. Ниже приведем таблицу примера раскраски для кубика с 8 гранями:

A:	r	r	r	r				
B:	b				b	b	b	
C:	g		g	g				g

Для этого случая выполнено $\mathbb{P}\{A\cap B\cap C\}=\frac{1}{8}=\mathbb{P}\{A\}\mathbb{P}\{B\}\mathbb{P}\{C\}=\frac{1}{2^3}.$ Но при этом $\mathbb{P}\{A\cap C\}=\frac{3}{8}\neq\frac{1}{2^2}$

Задание 6

Условия

Дана $\xi \sim U[0,1]$. F_N - функция распределения нормального распределения N(0,1).

Найдите распределение случайной величины $\eta = F_N^{-1}(\xi)$. Обратная функция определена, как $F^{-1}(y) = \inf\{x|F(x)=y\}$ (точно так же, как на семинаре).

Решение

Попытаюсь доказать также, как и на семинаре. Нам надо найти $F_{\eta}=\mathbb{P}\{\eta < x\}=\mathbb{P}\{F_N^{-1}(\xi) < x\}=\mathbb{P}\{\xi < F_N(x)\}=F_{\xi}(F_N(x))$. Заметим, что по условиям задачи F_{ξ} есть функция распределения непрерывного равномерного распределения на отрезке [0,1], поэтому $F_{\xi}(x)=x$ (так можно сказать лишь из-за заданного отрезка и ξ). Значит $F_{\eta}=F_{\xi}(F_N(x))=F_N(x)\in N(0,1)$.

Задание 7

Условия

Даны независимые случайные величины ξ и η с функциями распределения F_{ξ} и F_{η} соответственно. Найти функции распределения случайных величин $\min\{\xi,\eta\}$ и $\max\{\xi,\eta\}$.

Решение

 $F_{min\{\xi,\eta\}} = \mathbb{P}\{min\{\xi,\eta\} < x\} = 1 - \mathbb{P}\{min\{\xi,\eta\} \geqslant x\} = 1 - \mathbb{P}\{\xi \geqslant x,\eta \geqslant x\}$ Т.к. случайные величины независимы, то $1 - \mathbb{P}\{\xi \geqslant x,\eta \geqslant x\} = 1 - \mathbb{P}\{\xi \geqslant x\} \cdot \mathbb{P}\{\eta \geqslant x\}$ Зная, что $\mathbb{P}\{\xi \geqslant x\} = 1 - F_{\xi}$ Получим $F_{min\{\xi,\eta\}} = F_{\xi} + F_{\eta} - F_{\xi} \cdot F_{\eta}$ $F_{\max\{\xi,\eta\}} = \mathbb{P}\{\max\{\xi,\eta\} < x\} = \mathbb{P}\{\xi < x,\eta < x\} = F_{\xi} \cdot F_{\eta}$

Задание 8

Условия

Равнобедренный треугольник образован единичным вектором в направлении оси абсцисс и единичным вектором в случайном направлении. Найдите функцию распределения длины третьей стороны:

- 1) в \mathbb{R}^2 ;
- 2) \mathbb{R}^3 .

Hint: Формализуйте понятие случайного направления, пользуясь аналогией с равномерным распределением на отрезке.

Решение

Сначала формализуем понятие случайного направления в каждом из случаев. В \mathbb{R}^2 однозначно это направление может задать один угол, который будет отсчитываться от оси абсцисс $\varphi \in [0, \pi]$. В случае с \mathbb{R}^3 можно поступить аналогично сферическим координатам и направление задавать с помощью двух углов $\varphi, \psi \in [0, \pi]$. Рассматривать их на отрезке $[0, 2\pi]$ не имеет смысла, т.к. задача симметрична.

1) в \mathbb{R}^2 :

Найдем зависимость длины третьей стороны треугольника от угла. Обозначим длину этой стороны за l. Воспользовавшись теоремой косинусов и учитывая единичные длины сторон найдем $l = (2(1 - cos(\varphi)))^{1/2}$.

$$F_l(x) = \mathbb{P}\{l < x\} = \mathbb{P}\{(2(1 - \cos(\varphi)))^{1/2} < x\} = \mathbb{P}\{\cos(\varphi) > 1 - \frac{x^2}{2}\}$$

Т.к. мы рассматриваем только углы от $\varphi \in [0,\pi]$, то при x < 0 вероятность 0, если же x > 2 вероятность 1. $F_l(x) = \mathbb{P}\{\varphi > \arccos(1-\frac{x^2}{2})\}$. Далее перейдем к вероятности по мере. Зная, что всего длина отрезка π вероятность того, что $\varphi > \arccos(1-\frac{x^2}{2})$ равна $\frac{\arccos(1-\frac{x^2}{2})}{\pi}$.

$$F_l(x) = \begin{cases} 0, & x < 0\\ \frac{\arccos(1 - \frac{x^2}{2})}{\pi}, & x \in [0, 2]\\ 1, & x > 2 \end{cases}$$

2) в \mathbb{R}^{3} :

Зададим два угла - φ , ψ таким образом, что первый угол будет задавать направление в плоскости, перпендикулярной данному единичному вектору, а второй угол Будет задавать направление в плоскости, содержащей данный единичный вектор. Тогда заметим, что от первого угла не будет зависеть длина вектора, а значит ответ на этот пункт задачи аналогичен первому. Замечу, что данные рассуждения можно продлить и на \mathbb{R}^n .