



# PRODUÇÃO DE RADIAÇÃO EM JATOS RELATIVÍSTICOS EM NÚCLEOS ATIVOS DE GALÁXIAS

Luiz Augusto Stuani Pereira (luizstuani@uaf.ufcg.edu.br)





### ESPECTRO ELETROMAGNÉTICO



## **ASTROFÍSICA MULTIMENSAGEIRA**



### **NÚCLEO ATIVO DE GALÁXIA (AGN)**







rest frame : isotropic emission



Beaming factor:

Observer frame: beamed



• 
$$\delta = \frac{1}{\Gamma(1 - \beta cos(\theta))}$$

• 
$$\theta = 1/\Gamma$$

#### **CLASSES DE BLAZARES**



- -Emissão de linhas largas no espectro óptico;
- -Eficiência na emissão de radiação do disco;
- -Acresção de matéria a taxas de Eddington;
- -Alta potência do jato e luminosidade de raios gama.
- -Fraca ou pouca emissão de linhas largas no espectro óptico;
- -Ineficiência na emissão de radiação do disco;
- -Acresção de matéria a sub-taxas de Eddington;
- -Baixa potência do jato e luminosidade de raios gama.

#### PRODUÇÃO DE RADIAÇÃO EM AMBIENTES ASTROFÍSICOS



# PRODUÇÃO DE RADIAÇÃO EM JATOS RELATOVÍSTICOS



### IMAGEM ELETROMAGNÉTICA DE BLAZARES



#### MODELOS DE EMISSÃO CONSIDERANDO UMA ÚNICA ZONA



# EMISSÃO HADRÔNICA EM JATOS RELATIVÍTICOS - PRODUÇÃO DE NEUTRINOS



Colisão pp



# EMISSÃO HADRÔNICA EM JATOS RELATIVÍTICOS - PRODUÇÃO DE NEUTRINOS

<u>Interação</u> <u>fotohadrônica/fotopíon (py)</u>

DENSE PHOTON FIELDS

$$p+\gamma \rightarrow p/n+\pi^{\pm}, \pi^0 \rightarrow 2\gamma+2\nu_{\mu}+\nu_{e}$$

100 TEV NEUTRINO -> 2 PEV PROTON

# PRODUÇÃO DE RADIAÇÃO EM JATOS RELATIVÍSTICOS DE AGNS



# MODELOS DE DISTRIBUIÇÃO DE ENERGIA ESPECTRAL (QUALITATIVO)

 Synchrotron self-Compton (SSC) or external Compton (EC) models



Proton synchrotron models (require large B')



Pion cascade models



More exotic hadronic models, for example:



# ESPECTRO DE EMISSÃO DE AGN DEVIDO A PROCESSOS LEPTÔNICOS E HADRÔNICOS



ESPALAHAMENTO COMPTON INVERSO E DECAIMENTO DO PÍON NEUTRO SÃO OS PROCESSOS DOMINANTES NA FAIXA DE TeV

### ESPECTRO DE EMISSÃO DE UM BLAZAR



### PROPAGAÇÃO DE RAIOS GAMA



### ATENUAÇÃO DO ESPECTRO DE RAIOS GAMA POR EBL





#### **CASCATA INDUZIDA POR RAIOS GAMA**



### CASCATA INDUZIDA POR RAIOS CÓSMICOS



# PACOTES OPEN-SOURCE PARA MODELAGEM DA DISTRIBUIÇÃO DE ENERGIA ESPECTRAL

|            |                                      |                              | P       | es        |           | Processes |     |                |        |            |                |                   |                              |
|------------|--------------------------------------|------------------------------|---------|-----------|-----------|-----------|-----|----------------|--------|------------|----------------|-------------------|------------------------------|
| Software   | Sources                              | Approach                     | Thermal | Nor       | n-Thermal |           | Le  | ptonic         |        | Hadronic   | Absorption     | Temp. ev.         | <b>Emission Region</b>       |
|            |                                      |                              |         | $e^{\pm}$ | p         | Synch.    | SSC | EC             | Brems. | pp         | $\gamma\gamma$ |                   |                              |
| naima      | PWN, SNR, GRB                        | numerical                    | X       | /         | ✓         | 1         | ✓   | <b>√</b> (CMB) | ✓      | <b>√</b> † | <b>✓</b> (EBL) | ×                 | not specified                |
| GAMERA     | PWN, SNR, AGN<br>microquasars        | numerical                    | ×       | <b>✓</b>  | <b>/</b>  | 1         | 1   | ✓ •            | 1      | <b>✓</b> † | <b>√</b> *     | ✓<br>(only cool.) | multiple uniform             |
| Jetset     | jetted AGN, PWN<br>microquasars, SNR | numerical                    | ×       | <b>✓</b>  | 1         | 1         | 1   | 1              | 1      | <b>✓</b> ‡ | <b>✓</b> (EBL) | ✓ (acc. + cool.)  | multiple uniform acc. + rad. |
| agnpy      | jetted AGN                           | numerical                    | X       | /         | ×         | 1         | ✓   | <b>√</b> *     | X      | X          | <b>✓</b> *     | ×                 | single uniform               |
| BHJet      | binaries, AGN                        | numerical<br>semi-analytical | ✓       | ✓         | X         | 1         | 1   | 1              | X      | ×          | Х              | X                 | whole jet                    |
| FLAREMODEL | synch. sources                       | numerical<br>ray-tracing     | ✓       | ✓         | X         | 1         | 1   | X              | X      | ×          | X              | ✓<br>(only cool.) | single<br>radial dep.        |

<sup>&</sup>lt;sup>†</sup> pp interaction: computing only gammas from  $\pi_0$  decay. <sup>‡</sup> pp interaction: computation of radiation from secondaries of charged pions (pairs evolved in time to equilibrium) and of  $\nu$  spectra. <sup>©</sup> Full angular dependency of the Compton cross section: anisotropic electrons and anisotropic photon fields. \* Full angular dependency of the Compton or  $\gamma\gamma$  cross sections: anisotropic photon fields.

| Physical Processes                  | Codes |        |     |            |  |  |
|-------------------------------------|-------|--------|-----|------------|--|--|
|                                     | AM3   | ATHEVA | B13 | LeHa-Paris |  |  |
| electron synchrotron radiation      | /     | /      | 1   | 1          |  |  |
| synchrotron self-absorption         | 1     | /      | 1   | 1          |  |  |
| electron inverse Compton scattering | /     | /      | 1   | <b>/</b>   |  |  |
| electron-positron annihilation      | 1     | /      | 1   | X          |  |  |
| photon-photon pair production       | /     | /      | 1   | 1          |  |  |
| triplet pair production             | X     | /      | X   | ×          |  |  |
| proton synchrotron radiation        | /     | /      | 1   | 1          |  |  |
| proton inverse Compton scattering   | /     | X      | X   | X          |  |  |
| proton-photon pair production       | 1     | /      | 1   | 1          |  |  |
| neutron-photon pion production      | 1     | /      | X   | X          |  |  |
| kaon synchrotron radiation          | X     | /      | X   | X          |  |  |
| pion synchrotron radiation          | 1     | 1      | X   | Х          |  |  |
| muon synchrotron radiation          | 1     | /      | X   | /          |  |  |

# AGNpy é um pacote Python open-source para modelar os processo radioativos em AGNs.



# PARÂMETROS PRINCIPAIS PARA A MODELAGEM DA DISTRIBUIÇÃO DE ENERGIA ESPECTRAL DE FONTES ASTROFÍSICAS

|                           | Symbol        | Quantity                                                                            |  |  |  |  |
|---------------------------|---------------|-------------------------------------------------------------------------------------|--|--|--|--|
| source<br>properties      | z             | redshift                                                                            |  |  |  |  |
|                           | Γ             | Lorentz factor                                                                      |  |  |  |  |
|                           | δ             | Doppler factor                                                                      |  |  |  |  |
|                           | R             | size of region                                                                      |  |  |  |  |
|                           | V             | V volume of region                                                                  |  |  |  |  |
|                           | B             | magnetic field                                                                      |  |  |  |  |
| particle<br>distributions | Е             | particle/ photon energy                                                             |  |  |  |  |
|                           | γ             | particle Lorentz factor $\gamma = E'/m$                                             |  |  |  |  |
|                           | p             | slope of particle distribution $n(\gamma) = \frac{dn}{d\gamma} \propto \gamma^{-p}$ |  |  |  |  |
|                           | ν             | photon frequency $v = E_{\gamma}/h$                                                 |  |  |  |  |
|                           | $\epsilon$    | dimensionless photon energy $\epsilon = E_{\gamma}/m_e c^2$                         |  |  |  |  |
| observed<br>quantities    | $F_{ u}$      | Differential energy Flux $F_{\nu} = \frac{\nu dN}{d\nu dA dt}$                      |  |  |  |  |
|                           | $\alpha$      | slope of $F_{\nu} \propto \nu^{\alpha}$                                             |  |  |  |  |
|                           | $\nu F_{\nu}$ | Spectral Energy Distribution (SED) $\nu F_{\nu} = \frac{\nu^2 dN}{d\nu dA dt}$      |  |  |  |  |
|                           | ' (primed)    | comoving quantities                                                                 |  |  |  |  |

#### Representação esquemática dos módulos do AGNpy



Densidades de energia de diferentes campos de fótons gerados peo CMB, disk, BLR e anel de torus





Distribuição de energia espectral (SED) da fonte PKS 1510-089 ajustado com o agnpy.



### AM<sup>3</sup>: MODELAGEM LEPTO-HADRÔNICA DE FONTES ASTROFÍSICAS



### AM<sup>3</sup>: MODELAGEM LEPTO-HADRÔNICA DE FONTES ASTROFÍSICAS



### AM<sup>3</sup>: MODELAGEM LEPTO-HADRÔNICA DE FONTES ASTROFÍSICAS



#### PACOTES OPEN-SOURCE PARA MODELAGEM DE FONTES ASTROFÍSICAS

Katu: https://github.com/hveerten/katu

LeHaMoC: https://github.com/mariapetro/LeHaMoC

AM3: https://am3.readthedocs.io/en/latest/

Jetset: https://jetset.readthedocs.io/en/latest/

AGNpy: https://agnpy.readthedocs.io/en/latest/

**GAMERA:** http://libgamera.github.io/GAMERA/

NAIMA: https://naima.readthedocs.io/en/latest/

Flaremodel: https://github.com/ydallilar/flaremodel

Bjet\_MCMC: https://github.com/Ohervet/Bjet\_MCMC

# **OBRIGADO PELA ATENÇÃO!**

