Deep Learning Foundations

Winter term 2024/25

Sandipan Sikdar

Who is giving the course?

- Assistant Professor at the Faculty of Electrical Engineering and Computer Science (Nov'22 -)
- Postdoctoral Researcher at RWTH Aachen (2018 2022)
- PhD, Computer Science and Engineering from Indian Institute of Technology Kharagpur

Deep Learning Revolution

Deep Learning

Setup

- Lectures: WED 8:00 9:30 (2 * 45 minutes)
- Exercises: WED 15:00 16:30 (2 * 45 minutes)
- Lecture
 - Mostly theory, algorithms, findings
- Exercise
 - Presentation on how to do in practice
 - Hands on implementations (Python/Pytorch)
 - Finish exercises at home (own responsibilty)

Setup

- Home assignments
 - 3 home assignments (3 weeks time)
 - Teams of upto 3 students
 - No plagiarism! (Can result in exclusion from the course)
 - Tentative dates:
 - Home assignment 1 (13.11.2024)
 - Home assignment 2 (04.12.2024)
 - Home assignment 3 (08.01.2025)

Grading

• Final exam:

- Pen and paper exam
- The final exam will be scaled to 100 points. The minimum passing score is 50 points.
- Bonus points for home assignments: Points from the home assignments will be scaled to 10 points and added to the final score.

Course Plan

Week	Date	Theme	Topics	
1	16.10	Intro + Preliminaries	Neural network basics	
2	23.10	No lectures		
3	30.10	Neural Networks	Training neural networks	
4	06.11	Deeper architectures	CNNs/RNNs/Transformers	
5	13.11	Generative models I	Preliminaries, latent variable models	
6	20.11	Generative models II	Variational Auto Encoder (VAE)	
7	27.11	Generative models III	Diffusion models	
8	04.12	Generative models IV	Flow Models	
9	11.12	Generative models V	GANs	
10	18.12	Learning paradigm	Self-supervised and contrastive learning	
11	08.01	Learning paradigm	Multi-task and Meta learning	
12	15.01	Adversarial Robustness	Poisoning attacks	
13	22.01	Adversarial Robustness	Attacks and defenses	
14	29.01	Summary and outlook		

Preliminaries

• We are given a set of training examples of the form

$$\{(x^1, y^1), \dots, (x^n, y^n)\}$$

- x^i represents the feature vector for the ith training example
- y^i represents the ground truth
 - Classification: $y^i \in [c]$
 - Regression: $y^i \in R$

• We are given a set of training examples of the form $\{(x^1, y^1), ..., (x^n, y^n)\}$

- x^i represents the feature vector for the ith training example
- y^i represents the ground truth
- Goal: Find $f_W: R^d \to R$, $f_W(x^i) \approx y^i$
- *W*: model parameters

- Goal: Find $f_W: \mathbb{R}^d \to \mathbb{R}$, $f_W(x^i) \approx y^i$
- How do we find W?

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} l(f_W(x^i), y^i)$$

- l -> loss/cost function
- Emperical risk minimization

- A function that measures, for each value of the Ws how close $f_W(x^i)$'s are to the corresponding y^i s
- Regression:

$$l(f_W(x^i), y^i) = \frac{1}{2} (f_W(x^i) - y^i)^2$$

- A function that measures, for each value of the Ws how close $f_W(x^i)$'s are to the corresponding y^i s
- Classification:

$$y^i = \begin{cases} 1 \\ 0 \end{cases}$$

Convert the output of the model to probabilities

• Sigmoid function:
$$g(x) = \frac{1}{1 + e^{(-x)}}$$

$$\begin{cases} P(y^i = 1 | x^i, W) = g(f_W(x^i)) \\ P(y^i = 0 | x^i, W) = 1 - g(f_W(x^i)) \end{cases}$$

$$\begin{cases} P(y^i = 1 | x^i, W) = g(f_W(x^i)) \\ P(y^i = 0 | x^i, W) = 1 - g(f_W(x^i)) \end{cases}$$

$$P(y^i|x^i,W) = g(f_W(x_i))^{y^i} \left(1 - g(f_W(x^i))\right)^{1-y^i}$$

$$\max_{W} \prod_{i=1}^{n} P(y^{i}|x^{i}, W)$$

$$= \max_{W} \sum_{i=1}^{n} \log P(y^{i}|x^{i}, W)$$

$$= \min_{W} - \sum_{i=1}^{n} \log P(y^{i}|x^{i}, W)$$

$$\min_{W} - \sum_{i=1}^{n} \log P(y^{i}|x^{i}, W)$$

$$= \min_{W} - \sum_{i=1}^{n} y^{i} \log (g(f_{W}(x))) + (1 - y^{i}) \log(1 - g(f_{W}(x^{i})))$$

Cross entropy loss

- Generalizing cross entropy to multiple class
- Model output -> vector of the dimension of the number of classes
- Use softmax instead of sigmoid

- Class: c_j : $j \in \{0,1,2\}$
- Each class represented by a 1-hot vector

$$c_j = \begin{cases} 0, [0,0,1] \\ 1, [0,1,0] \\ 2, [1,0,0] \end{cases}$$

Cross-entropy loss for multiclass classification is then computed as -

$$-\sum_{j=0}^{|c|} c[j] \log(f_W(x^i)[j])$$

Choice of model

- $f_W: \mathbb{R}^d \to \mathbb{R}$, $f_W(x^i) \approx y^i$
- What should f_W look like?
- Linear function
- $\bullet \ f_W(x) = W^T x + b$
- + Convex optimization
- - Limited representation

Choice of model

Non-linear functions

Simplest neural network

Neural Network

Cascaded layers

Input 1 Hidden Output layer

Input 1 Output 1

Input 2 Output

Input 4 Input 5

Single Neuron

Neural Network

Neural Network

Neural Network – Forward Pass

- Given
 - A neural network with a fixed set of weights
 - An input sample to be classified
- How to get the classification?
- A layer is applied by multiplying its weight matrix with its input vector

Neural Network – Forward Pass

$$h = \phi(W_1x + b_1)$$
$$y = \phi(W_2h + b_2)$$

Neural Network — Forward Pass

Chained Linear Classifiers

- Remember
 - A linear classifier provides class scores by calculating $y = \phi(Wx + b)$
 - A neural network is a chain of linear classifiers with activation functions
- A neural network is some function like this:

$$y = \phi(W_3\phi(W_2\phi(W_1x + b_1) + b_2) + b_3)$$

• We can chain this as deep as we want

Activation Functions

- After each layer, an activation function is used
- An activation function can be any function
- However, non-linearity is required for a more expressive model
- Why do we need this?
 - Remember: Linear classifiers can separate data linearly
 - A neural network with a linear activation function is still a linear classifier
 - Non-linear activation functions enable us to learn non-linear relations

Using Linear Activations

• Consider a linear activation $\phi(a) = a$

$$y = \phi(W_3\phi(W_2\phi(W_1x + b_1) + b_2) + b_3)$$

$$= W_3(W_2(W_1x + b_1) + b_2) + b_3)$$

$$= W_3(W_2W_1x + W_2b_1 + b_2) + b_3)$$

$$= W_3W_2W_1x + W_3W_2b_1 + W_3b_2 + b_3$$

$$= \mathbf{W}x + \mathbf{b}$$
constant term

Chained Linear Classifiers

$$y = \phi(W_3\phi(W_2\phi(W_1x + b_1) + b_2) + b_3)$$

$$y = softmax(W_3 \tanh(W_2 \tanh(W_1 x + b_1) + b_2) + b_3)$$

Activation Functions

Some common activation functions:

Activation Functions

Name \$	Plot	Function, $g(x)$ $\qquad \qquad \Rightarrow$	Derivative of $g,g'(x)$ \Rightarrow	Range \$	Order of continuity •
Identity		x	1	$(-\infty,\infty)$	C^{∞}
Binary step		$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{array} ight.$	0	{0,1}	C^{-1}
Logistic, sigmoid, or soft step		$\sigma(x) \doteq rac{1}{1+e^{-x}}$	g(x)(1-g(x))	(0,1)	C^{∞}
Hyperbolic tangent (tanh)		$ anh(x) \doteq rac{e^x - e^{-x}}{e^x + e^{-x}}$	$1-g(x)^2$	(-1,1)	C^{∞}
Rectified linear unit (ReLU) ^[8]		$(x)^+ \doteq egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ & = \max(0,x) = x 1_{x>0} \end{cases}$	$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$	$[0,\infty)$	C^0
Gaussian Error Linear Unit (GELU) ^[5]		$rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$	$\Phi(x) + x\phi(x)$	$(-0.17\ldots,\infty)$	C^{∞}
Softplus ^[9]		$\ln(1+e^x)$	$\frac{1}{1+e^{-x}}$	$(0,\infty)$	C^{∞}
Exponential linear unit (ELU) ^[10]		$\begin{cases} \alpha \left(e^x - 1 \right) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ with parameter α	$\begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \text{ and } \alpha = 1 \end{cases}$	$(-lpha,\infty)$	$\left\{egin{array}{ll} C^1 & ext{if } lpha=1 \ C^0 & ext{otherwise} \end{array} ight.$
Scaled exponential linear unit (SELU) ^[11]		$\lambda \begin{cases} \alpha(e^x-1) & \text{if } x<0 \\ x & \text{if } x\geq 0 \\ \text{with parameters } \lambda=1.0507 \\ \text{and } \alpha=1.67326 \end{cases}$	$\lambda egin{cases} lpha e^x & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{cases}$	$(-\lambdalpha,\infty)$	C^0
Leaky rectified linear unit (Leaky ReLU) ^[12]		$\left\{egin{array}{ll} 0.01x & ext{if } x < 0 \ x & ext{if } x \geq 0 \end{array} ight.$	$\begin{cases} 0.01 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$	$(-\infty,\infty)$	C^0

And many more!!

Universal Approximation Theorem

• "A neural network can approximate any continuous function"

Theorem 1. Let σ be any continuous discriminatory function. Then finite sums of the form b_i

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^{\mathsf{T}} x + \theta_j)$$
 (2)

are dense in $C(I_n)$. In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, G(x), of the above form, for which

$$|G(x) - f(x)| < \varepsilon$$
 for all $x \in I_n$.

Cybenko G, "Approximation by Superpositions of a Sigmoidal Function"

Universal Approximation Theorem

• The theorem states that $\exists N$ and $\exists w_j, \theta_j, \alpha_j$ for $j=1,2,\ldots,N$ such that

$$|G(x) - f(x)| < \epsilon$$

Sigmoid: $\sigma(w_j x + b_j)$

$$x \longrightarrow \sigma(wx+b)$$

Piece

• The theorem states that $\exists N$ and $\exists w_j, b_j, \alpha_j$ for $j=1,2,\ldots,N$ such that

$$|G(x) - f(x)| < \epsilon$$

• The theorem states that $\exists N$ and $\exists w_j, \theta_j, \alpha_j$ for $j=1,2,\ldots,N$ such that

$$|G(x) - f(x)| < \epsilon$$

$$\min_{W} \frac{1}{n} \sum_{i=1}^{n} l(f_W(x^i), y^i)$$

- Use a search algorithm that starts with some initial guess and repeatedly changes W such that the loss gets smaller and smaller until we reach a point where the loss is minimized
- Gradient descent algorithm

$$L(W) = \frac{1}{n} \sum_{i=1}^{n} l(f_{W}(x^{i}), y^{i})$$

Gradient descent algorithm

$$W_j = W_j - \alpha \frac{\partial}{\partial W_j} L(W)$$

Learning rate

Computing the gradient

$$\frac{\partial}{\partial \theta_j} L(W) = \frac{\partial}{\partial W_j} \frac{1}{2} (f_W(x) - y)^2$$
$$= 2 \cdot \frac{1}{2} (f_W(x) - y) \cdot \frac{\partial}{\partial W_j} (f_W(x) - y)$$

If we consider the linear model: $f_W(x) = W^T x$

$$= (f_W(x) - y) \cdot \frac{\partial}{\partial W_j} (\sum_i W_i x_i - y)$$
$$= (f_W(x) - y) x_j$$

```
Loop {  \text{for i=1 to n, } \{ \\ W_j = W_j - \alpha \big( f_W(x^i) - y^i \big) x_j^i \quad \text{(for every j)} \}  }
```

Evaluation

- How do we know that the trained model is good?
- Split the data into train/validation/test

- Training only on the train split
- Periodically check performance on validation split
- Select model with the best performance in validation split
- Evaluate on the test split

Evaluation

- Measuring performance
- Regression:
 - Mean squared error, Mean absolute error
- Classification
 - Accuracy: fraction of cases where the predicted labels are correct

Evaluation

- K-fold cross validation
- Simple training-and-test can be subject to random fluctuations
- Better: (ten-fold) cross-validation
 - Split labeled randomly data into 10 parts
 - Use 9 parts for training, last part for testing
 - Repeat 10 times, each part is used for testing once
 - Average results
- Applied if limited training data is available and training time is reasonable

Summary

- Supervised learning
 - Linear/shallow neural models
 - Loss
 - Optimization
- Universal approximation theorem
- Next time
 - Optimization and regularization of deep neural models