Modal sense classification

using a convolutional neural network

Ana Marasović

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

01.07.2016.

Modal verbs are ambiguous between the following senses:

1. epistemic (possibility)

He could be at home.

2. deontic (permission/obligation)

You can enter now.

3. dynamic (capability)

Only John can solve this problem.

MSC is special case of WSD

Mein Gott, sie _____ sich schrecklich gefühlt haben!

Why do we care about it?

Distinguishing facts from hypotheses and speculations, or apprehended, planned, desired states of affairs

- planned (positively): should, must + deontic
- apprehended (negative): should not + deontic
- disliked or forbidden (negative): may not +deontic
- desired (positive): should + deontic

Tasks of relevance

- factuality recognition
- sentiment analysis
- opinion mining
- argumentation
- opinion summarization

- Ruppenhofer and Rehbein (2012) → R&R
 - relatively high performance
 - shallow lexical and syntactic features
 - small-scale manually annotated corpora
 - large distributional bias
- Zhou et al. (2015) → Z+

- Ruppenhofer and Rehbein (2012) \rightarrow R&R
- Zhou et al. (2015) → Z+

- Ruppenhofer and Rehbein (2012) → R&R
- Zhou et al. (2015) → Z+

- Ruppenhofer and Rehbein (2012) → R&R
- Zhou et al. (2015) → Z+

- Ruppenhofer and Rehbein (2012) → R&R
- Zhou et al. (2015) → Z+

- Ruppenhofer and Rehbein (2012) → R&R
- Zhou et al. (2015) → Z+

- Ruppenhofer and Rehbein (2012) → R&R
- Zhou et al. (2015) → Z+

- Ruppenhofer and Rehbein (2012) → R&R
- Zhou et al. (2015) → Z+

Outline

- Introduction
- Convolutional neural network (CNN) for sentence modeling
- CNN for MSC
- CNN for general word sense disambiguation (WSD)
- Future work

Convolutional neural networks

for sentence modeling

N. Kalchbrenner et al. "A Convolutional Neural Network for Modelling Sentences." ACL (2014).

Y. Kim "Convolutional Neural Networks for Sentence Classification." EMNLP (2014).

One-layer convolutional neural network

One-channel convolutional neural network used in Kim (2014). Figure taken from Zhang et al. (2015).

Properties of one-layer CNN

- CNN handles input sequences of varying length
- CNN does not depend on external language-specific features such as dependency or constituent parse trees
- CNN is sensitive to the order of the words in the sentence
- Filters serve as feature detectors
- Convolving the same filter with the n-gram at every position in the sentence allows the features to be extracted independently of their position in the sentence

CNN for MSC

MSC as a sentence classification task with a fixed sense inventory

Experimental setup: data

Corpora

- MPQA_E (R&R)
- EPOS_E and EPOS_G
 - from EuroParl & OpenSubtitles (EPOS) heuristically tagged via cross-lingual sense projection
 - in case of rare extractions for German: additional data from MVs with shared senses was added
- MASC_F: manually annotated subset of the multi-genre corpus MASC
- TEST_G: manually annotated instances from EPOS_G

Experimental setup: continued

Hyperparameters (Zhang, 2015):

- non-linearity: ReLU
- filter region sizes: 3, 4, 5
- number of filters per region size: 100
- dropout keep probability: 0.5
- I_2 regularization coefficient: 10^{-3}
- number of iterations: 1001
- mini-batch size: 50
- optimizer: Adam optimization algorithm with learning rate 10⁻⁴

Input representation: tuned and static versions of the following word vectors

- randomly initialized
- word2vec (Mikolov et al.)
- dependency-based (Levy et al.)

Impact of word vectors (E)

- train dataset: balanced 80% MPQA (R&R) + EPOS_E
- test dataset: (unbalanced) 20% MPQA
- accuracy with 5-fold CV

Comparison of CNN and baselines (E)

	can (3)	could (3)	may (2)	must (2)	should (2)	micro
BL_{random}	33.33	33.33	50.00	50.00	50.00	41.49
MaxEnt	59.64	61.25	92.14	87.60	90.11	74.88
NN	56.01	55.42	90.00	75.42	88.68	69.74
CNN	<u>65.78</u>	<u>67.50</u>	93.57	93.82	90.77	79.29

Classifiers trained on the **balanced** dataset. For every modal verb the best word vectors for it are used.

- train dataset: balanced 80% MPQA (R&R) + EPOS_E
- test dataset: (unbalanced) 20% MPQA
- accuracy with 5-fold CV

Comparison of CNN and baselines (E)

	can (3)	could (3)	may (2)	must (2)	should (2)	micro
$BL_{majority}$	69.92	65.00	93.57	94.32	90.81	80.18
MaxEnt	64.76	63.33	92.14	92.78	91.48	78.01
NN	67.29	66.08	94.23	86.37	90.96	77.93
CNN	<u>70.87</u>	66.55	93.49	94.97	90.59	80.74

Classifiers trained on the unbalanced dataset. For every modal verb the best word vectors for it are used.

- train dataset: unbalanced 80% MPQA (R&R) + EPOS_E
- test dataset: (unbalanced) 20% MPQA
- accuracy with 5-fold CV

Impact of word vectors (G)

- train dataset: balanced EPOS_G
- test dataset: TEST_G
- accuracy on the test dataset
- 1772 words from 10166 in vocabulary don't have pre-trained word2vec
- 2087 words from 10166 in vocabulary don't have pre-trained dep.-based vector

Comparison of CNN and baselines (G)

	dürfen	können	müssen	sollen	micro
BL_{random}	50.00	33.33	50.00	50.00	39.10
NN	80.30	48.89	74.63	49.75	60.00
CNN	99.49	<u>81.78</u>	<u>88.06</u>	<u>76.62</u>	86.02

train dataset: balanced EPOS_G

test dataset: TEST_G

accuracy on the test dataset

Visualizing what filters have learned

top 15 sentences w.r.t. the max value

 \Downarrow

n-gram from each sentence corresponding to the max value

Top 15 5-grams with respect to one filter illustrated in the embedded space

Feature detectors for *must*

feature	sense	example	
past reading of the emb. verb	ер	you must have been out last night	
non-past reading of the emb. verb	de	we must take further efforts	
stative reading of the emb. verb	ер	you must think me a perfect tool	
eventive reading of the emb. verb	de	we must develop a policy	
passive construction	de	actual steps must be taken	
negation	de	we must not fear	
domain specific vocabulary	de	European parliament, present regulation, fisheries policy	
telic clauses	de	to address these problems, to prevent both forum, to exert maximum influence	
discourse markers	de	but, and (then)	

Feature detectors for müssen and können

feature	sense	example			
features that relate to observations on English					
attitude predicates	ер	believe, not know, tell me, have an idea, be afraid			
adverbials	ер	possibly			
conditionals	ер	if			
counterfactual and negative polarity context	ер	bot be the case, how, ever			
placeholders for propositions	ер	it			
abstract concepts	ер	Idea, music, grades, application			
indefinite subjects	ер	one			
3 rd person pronouns	ер	-			
verb-object combinations for action that can be granted	de	use telephone			
achievements (können only)	dy	present report			

Other observations

Statistics

- 1) average distance of top ngrams from the modal verb
- 2) average distance of top ngrams which are on the left from the modal verb
- 3) as 2) but for ngrams on the right and ngrams starting with the modal

Observations

- there are no greater overall distances for German compared to English
- for German considerably more ngrams that include the modal verb, especially for epistemic readings of können, müssen, dürfen, but not for sollen
- strikingly larger distances to the left of the modal verb for epistemic readings compared to non-epistemic

Recap

- novel approach for multilingual MSC using a one-layer CNN
- CNN approach outperforms feature-based baselines
- CNN is able to learn meaningful structure from data
- CNN learns both known and previously unattested linguistic features for MSC and domain-specific concepts
- CNN learns linguistic and semantic features from flexible window regions without syntactic pre-processing
- CNN is easily adaptable to novel languages
- CNN allows for insightful model inspection, but this requires manual work

Word sense disambiguation

- if features CNN picks relate to semantic factors
 - → CNN should be a good candidate for WSD
- features CNN picks relate to n-grams independent of their position in the sentence
 - → CNN is flexible
 - → can wider context be useful for WSD?

Comparison with the results from Rothe and Schütze (2015)

SensEval-3					
surrounding word	65.30				
local collocation	64.70	IMS (state-of-the art)	72.30		
S _{naive} - product	62.20	IMS + S _{naive} - product	69.40		
S - cosine	60.50	IMS + S - cosine	72.40		
S - product	64.30	IMS + S - product	73.60		
S - raw	63.10	IMS + S - raw	66.80		
CNN	67.90	IMS + CNN	72.00		

 $w \dots$ ambiguous word with k senses

c... centroid = sum of all w2v vectors of words in the sentence

 $s^{(j)}\dots$ embedding of the j-th synset of w

S-cosine =
$$\langle \cos(c, s^{(1)}), \dots, \cos(c, s^{(k)}) \rangle$$

S-product =
$$\langle c_1 s_1^{(1)}, \dots, c_n s_n^{(1)}, \dots, c_1 s_1^{(k)}, \dots, c_n s_n^{(k)} \rangle$$

S-raw =
$$\langle c_1, ..., c_n, ..., s_1^{(k)}, ..., s_n^{(k)} \rangle$$

AutoExtend

- for the sentence representation all constituent words are available
- rich knowledge about the target word

CNN

- for sentence representation all constituent word are available
- without any knowledge of the target word
- flexibility (wider context) in picking relevant n-grams

Future work

Feature work on WSD

- tune hyperparameters
- use more data
- use deeper network

Feature work in general

- extraction of opinion entities: opinion expressions, their holders and targets
- implicit sentiment: where MSC plays role
 - planned (positively): should, must + deontic
 - apprehended (negative): should not + deontic
 - disliked or forbidden (negative): may not +deontic
 - desired (positive): should + deontic

Thank you for your attention!

References

- N. Kalchbrenner et al. "A Convolutional Neural Network for Modelling Sentences." ACL (2014).
- Y. Kim "Convolutional Neural Networks for Sentence Classification." EMNLP (2014).
- O. Levy and Y. Goldberg. "Dependency-Based Word Embeddings." ACL (2014).
- T. Mikolov et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems 26 (2013).
- S. Rothe and H. Schütze. "AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes." ACL (2015).
- J. Ruppenhofer and I. Rehbein. Yes we can!? Annotating the senses of English modal verbs. In *Proceedings of the 8th International Conference on Language Resources and Evaluation* (LREC) (pp. 24-26). (2012)
- Y. Zhang and W. Byron. "A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification." CoRR abs/1510.03820 (2015): n. pag.
- M. Zhou, A. Frank, A. Friedrich and A. Palmer. Semantically Enriched Models for Modal Sense Classification. In *Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics (LSDSem)* (p. 44) (2015).

Narrow and wide convolution

s = sentence length
m = filter region size
narrow convolution ⇒ feature map size equals to s-m+1
wide convolution ⇒ feature map size equals to s+m-1

Will a one-layer CNN be sufficient?

Soldiers can drink alcohol until they fall over. (dynamic-capability) Soldiers can drink alcohol at late hours only. (deontic-permission)

how can does this miracle come about? filter that was trained to capture occurrence of phrases like the unigram "soldiers"

filter that was trained to capture occurrence of phrases like the 4-gram "at late hours only"

Dynamic Convolutional Neural Network (DCNN)

Kalchbrenner et al. (2014)

- Wide type of convolution
- One-dimensional filter to each row of the input matrix
- Stacked convolutional layers
- *k*-max pooling
- k is a function of the length of the sentence and the depth of the network

Train-test configurations

	train	test		
English	80% MPQA _E (R&R) + EPOS _E +/- balancing	a. 20% MPQA _E (R&R) w/ 5-fold CV b. MASC _E		
German	EPOS _G	TEST _G		

Impact of word vectors (E)

	can (3)	could (3)	may (2)	must (2)	should (2)
w2v-static	65.02	51.67	93.57	93.82	90.77
w2v-tuned	63.73	54.17	93.57	93.82	90.77
deps-static	65.78	56.67	93.57	93.82	90.77
deps-tuned	59.89	67.50	93.57	93.29	90.42
rand-static	63.99	46.67	93.57	92.79	90.77
rand-tuned	64.50	48.33	93.57	92.79	90.77

- train dataset: balanced 80% MPQA (R&R) + EPOS_E
- test dataset: (unbalanced) 20% MPQA
- accuracy with 5-fold CV

MASC

	test dataset	training dataset: balanced/unbalanced		
MayEnt	MPQA _E	BA (74.88)	UBA (78.01)	
MaxEnt	MASC _E	BA (3/19)	UBA (15/19)	
CNINI	MPQA _E	BA (79.92)	UBA (80.74)	
CNN	MASC _E	BA (13/19)	UBA (3/19)	

Balanced vs. unbalanced training when evaluated on $MPQA_E$ and $MASC_E$ for CNN and MaxEnt.

balanced (BA) training data	CNN (19/19)	MaxEnt (0/19)
unbalanced (UBA) training data	CNN (12/19)	MaxEnt (7/19)

Difference between CNN and MaxEnt trained on MPQA $_{\rm E}$ +EPOS and evaluated on MASC.

CNN_BA - CNN_UBA	must	may	can	could	should	
letters	0	0	0	-7,692307692	0	-0,970873786
email	0	0	4,44444444	-4,545454545	-5	0
twitter	0	0	1,666666667	0	0	0,877192982
blog	-20	0	0	7,692307692	0	0
essays	0	0	0	20	0	4,301075269
journal	0	-6,25	0	11,11111111	0	1,075268817
non-fiction	0	0	0	16,66666667	0	0,884955752
govt-docs	0	0	0	12,82051282	0	4,464285714
newspaper	0	0	0	20	0	7,058823529
travel-guides	0	0	-1,886792453	14,28571429	0	0
technical	0	0	0	-4,166666667	0	-1,25
ficlets	-11,11111111	0	-2,325581395	29,72972973	0	8,411214953
fiction	-6,666666667	0	-6,451612903	28,88888889	0	7,407407407
jokes	11,11111111	0	-5,454545455	21,05263158	0	2,127659574
movie-script	0	20	0	6,25	0	2,083333333
face-to-face	0	0	1,470588235	28,94736842	0	8,163265306
telephone	0	0	0	18,18181818	0	4,545454545
court-transcript	0	3,846153846	-4,411764706	6,25	0	4,255319149
debate-transcript	-16,66666667	0	1,515151515	25	0	-0,709219858
micro-avg	-2,083333333	0,380228137	-0,574712644	15,32846715	-0,398406374	2,840610205
macro-avg	-2,407407407	0,92611336	-0,601760318	13,18275371	-0,263157895	

CL2BA - CL2UBA	must	may	can	could	should	
letters	-12,5	0	-8,7	-7,69	0	-7,77
email	0	0,01	-6,67	4,55	-10	-3,7
twitter	-10	0	0	0	-5	-1,75
blog	0	0	-17,78	30,77	0	-3,77
essays	-11,11	0	-2,94	15	-9,09	0
journal	0	0	-13,16	16,66	0	-2,15
non-fiction	0	0	-5,88	16,66	0	-2,66
govt-docs	-10	0	-5	15,39	-18,75	0,89
newspaper	-16,66	0	-13,05	6,66	-9,08	-3,53
travel-guides	0	0	-3,77	14,28	0	-1,12
technical	0	0	0	-12	0	-3,71
ficlets	-11,11	0	-4,65	0	0	-2,81
fiction	0	7,15	-9,38	20	0	5,15
jokes	11,11	0	-10,91	15,79	-22,22	-4,26
movie-script	0	0	-7,84	-18,75	7,69	-6,18
face-to-face	50	0	-7,35	2,63	-2,86	-2,72
telephone	0	0	-7,69	-9,09	-21,05	-13,63
court-transcript	0	0	-1,47	15,62	0	2,9
debate-transcript	0	0	-1,51	0	0	-1,13
micro-avg,	-2,78	0,38	-6,43	7,52	-5,58	-2,16
macro-avg,	-0,54	0,37	-6,73	6,66	-4,76	

CNN_BA - CL2BA	must	may	can	could	should	
letters	12,5	-0,001818182	14,49434783	-15,38384615	0	8,736893204
email	8,333333333	-0,002222222	17,77777778	-9,093636364	5	7,407037037
twitter	-10	0	5	-15,38384615	5	0,872982456
blog	-20	5	22,22666667	-15,38384615	-0,002352941	7,77
essays	22,22	-0,003157895	8,819411765	5	9,089090909	7,530430108
journal	-0,003333333	-12,5	13,15578947	5,56	0	4,298817204
non-fiction	0	0,001724138	7,354117647	-16,66333333	0	3,541415929
govt-docs	20	-3,69962963	5	-5,131025641	18,75	2,681428571
newspaper	33,33	0	13,04521739	13,33666667	9,088181818	11,76705882
travel-guides	0	0	3,768867925	14,28714286	0	3,369662921
technical	0	0	-0,001428571	10,83333333	-0,001111111	3,49
ficlets	-0,002222222	0	13,95209302	10,80567568	-0,004615385	9,347570094
fiction	-13,33666667	-7,147142857	31,0483871	4,443333333	-3,333333333	5,729259259
jokes	-0,001111111	0	10,91181818	-0,002105263	22,22	8,513404255
movie-script	0,003333333	0	17,25	-12,5	-7,691538462	5,895
face-to-face	-50	0	20,58588235	13,16263158	2,86	12,92292517
telephone	0	0	15,38538462	9,093636364	21,05	15,90545455
court-transcript	33,33	0,004615385	17,64941176	-9,375	-0,001111111	17,81106383
debate-transcript	-33,33333333	0	16,6630303	12,5	0	2,453546099
micro-avg	1,392222222	-1,137984791	13,71977011	1,616885645	4,784621514	7,076670174
macro-avg	4,665555556	-0,960927961	13,37614607	0,00030425	4,319116336	

CNN_UBA - CL2UBA	must	may	can	could	should	
letters	0	-0,001818182	5,794347826	-15,38153846	0	1,93776699
email	8,333333333	0,007777778	6,663333333	0,001818182	0	3,707037037
twitter	-20	0	3,333333333	-15,38384615	0	-1,754210526
blog	0	5	4,446666667	7,693846154	-0,002352941	4
essays	11,11	-0,003157895	5,879411765	0	-0,000909091	3,229354839
journal	-0,003333333	-6,25	-0,004210526	11,10888889	0	1,073548387
non-fiction	0	0,001724138	1,474117647	-16,67	0	-0,003539823
govt-docs	10	-3,69962963	0	-2,561538461	0	-0,892857143
newspaper	16,67	0	-0,004782609	-0,003333333	0,008181818	1,178235294
travel-guides	0	0	1,885660377	14,28142857	0	2,249662921
technical	0	0	-0,001428571	3	-0,001111111	1,03
ficlets	-0,001111111	0	11,62767442	-18,92405405	-0,004615385	-1,87364486
fiction	-6,67	0,002857143	28,12	-4,445555556	-3,333333333	3,471851852
jokes	-0,002222222	0	5,456363636	-5,264736842	0	2,125744681
movie-script	0,003333333	-20	9,41	-37,5	-0,001538461	-2,368333333
face-to-face	0	0	11,76529412	-13,15473684	0	2,039659864
telephone	0	0	7,695384615	-18,17818182	0	-2,27
court-transcript	33,33	-3,841538461	20,59117647	-0,005	-0,001111111	16,45574468
debate-transcript	-16,66666667	0	13,63787879	-12,5	0	2,032765957
micro-avg,	0,69555556	-1,138212928	7,864482759	-6,191581509	-0,396972112	2,076059968
macro-avg,	6,532962963	-1,517041322	7,247906384	-6,522449459	-0,177725769	

Comparison of CNN and baselines (G)

	dürfen	können	müssen	sollen	micro
BL_{random}	50.00	33.33	50.00	50.00	39.10
NN	80.30	48.89	74.63	49.75	60.00
CNN	99.49	81.78	88.06	76.62	86.02

train dataset: balanced EPOS_G

test dataset: TEST_G

accuracy on the test dataset

CNN (German)

NN (German)

Appendix: number of instances

	CL	$\frac{-b}{ME}$ tra	ain	CI	$\Box_{ME}^{+b} ext{tra}$	ain	MP	QA t	est
	ep	de	dy	ep	de	dy	ep	de	$\mathrm{d}y$
must	806	949	0	870	870	0	5	34	(
may	1055	956	0	999	1000	0	25	3	C
can	151	248	362	250	250	250	1	17	60
could	160	55	97	94	94	94	36	2	10
should	171	355	0	250	250	0	5	52	0
shall	0	14	6	0	15	15	0	2	1

Appendix: number of instances (G)

	ер	de	dy
dürfen	1000	1000	0
können	1000	1000	1000
müssen	1000	1000	0
sollen	1000	1000	0

ер	de	dy
98	100	0
100	47	100
34	100	0
101	100	0

train dataset: balanced EPOS_G

• test dataset: TEST_G