2 punti

Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	e	matricol	a:
COSHOING	1101110	\sim	III COI	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

- (a) Quali delle seguenti sono formule che formalizzano correttamente 2 punti "x è un numero primo" utilizzando il linguaggio \cdot , 1 e relativamente alla struttura $\langle \mathbb{N}, \cdot, 1 \rangle$

 - $\exists x \neg (x=1) \land \neg \exists y (\neg (y=1) \land y \cdot x = x)$
 - $\Box \ (x=1) \rightarrow \forall y \forall z (y \cdot z = x \rightarrow y = 1 \lor z = 1)$
 - $\ \ \Box \ \ \neg(x=1) \land \forall y \forall z (x=y \cdot z \land y=1 \land x=1)$
- (b) Sia $L = \{S, k, f, d\}$ un linguaggio del prim'ordine con S simbolo di relazione 2 punti binario, k simbolo di funzione unario, f simbolo di funzione binario e d simbolo di costante. Quali dei seguenti sono L-termini?
 - \square S(d, k(d))
 - $\blacksquare \ k(f(f(d,k(d)),f(k(d),d)))$
 - $\Box \ f(k(k(f(d,d),d)),d)$
 - $\qquad \qquad f(f(k(d),k(d)),f(k(d),k(d)))$
- (c) Siano $\varphi(w)$ e $\psi(w,x)$ formule del prim'ordine e σ un enunciato.
 - Se \mathcal{A} è una struttura tale che $\mathcal{A} \models \exists x \neg \varphi(x)$, allora $\mathcal{A} \models \exists x (\neg \sigma \lor \neg \varphi(x))$.
 - Se \mathcal{D} è una struttura tale che $\mathcal{D} \models \forall w \neg \varphi(w)$, allora $\mathcal{D} \models \forall w \, (\varphi(w) \rightarrow \sigma)$.
 - $\exists w \forall x \, \psi(w, x) \models \forall x \exists w \, \psi(w, x)$
 - $\Box \neg \exists w \neg \varphi(w) \models \forall w \neg \varphi(w)$
- (d) Siano A e B insiemi tali che $B\subseteq A$. Allora possiamo concludere con certezza che 2 punti
 - $\blacksquare (A \cap B) \cup (A \setminus B) = A.$
 - \blacksquare se B è più che numerabile allora anche A lo è.
 - \square se Ae Bsono entrambi infiniti e numerabili allora $A \setminus B$ è finito.
 - $\Box A \setminus B \neq A.$

(e) Consideriamo le funzioni $k \colon \mathbb{N}^2 \to \mathbb{N}, \quad (w, x) \mapsto 5w^2 + x$ 2 punti e $f: \mathbb{N} \to \mathbb{N}^2$, $w \mapsto (w, 5w)$. Allora $\blacksquare k \circ f(w) = 5w(w+1)$ per ogni $w \in \mathbb{N}$. \Box f è iniettiva ed è l'inversa di k. \square la funzione k è iniettiva. \blacksquare Esistono $w, x \in \mathbb{N}$ tali che k(w, x) = 1. (f) Sia Q una relazione binaria su un insieme non vuoto D. 2 punti \square Se Q è simmetrica, allora non può essere anche antisimmetrica. \blacksquare Se Q è irriflessiva, allora non può essere anche riflessiva. \blacksquare Se Q è una relazione di equivalenza, allora è anche un preordine. \blacksquare Se Q è una relazione d'equivalenza e R è un'altra relazione binaria su D tale che $Q \subseteq R$, allora R è riflessiva. (g) Sia S la proposizione $\neg D \lor (A \to B)$. Allora 2 punti \square S è tale che $i^*(S) = 0$ per ogni interpretazione i. \square Se i è un'interpretazione tale che i(B) = 0 allora necessariamente i(D) = i(A) =0.

□ S è una tautologia.

 \blacksquare S è conseguenza logica di D \rightarrow B.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{S, k, d\}$ con S simbolo di relazione binaria, k simbolo di funzione binaria e d simbolo di costante. Consideriamo la L-struttura $\mathcal{D} = \langle \mathbb{Z}, \geq, \cdot, 3 \rangle$, dove \cdot è l'usuale funzione moltiplicazione.

Sia φ la formula

$$(S(w,x) \land \exists y (k(d,y) = x))$$

e ψ la formula

$$(S(w,x) \rightarrow \exists y (k(d,y) = x))$$

- 1. Determinare se:
 - $\mathcal{D} \models \varphi[w/-1000, x/-2000],$
 - $\mathcal{D} \models \varphi[w/-1000, x/-3000],$
 - $\mathcal{D} \models \exists x \, \varphi[w/-1000, x/-999].$
- 2. Determinare se $\mathcal{D} \models \forall w \exists x \varphi[w/0, x/0]$.
- 3. Determinare se:
 - $\mathcal{D} \models \psi[w/-1000, x/-2000],$
 - $\mathcal{D} \models \psi[w/-1000, x/-3000],$
 - $\mathcal{D} \models \forall x \psi[w/-1000, x/-998].$
- 4. Determinare se $\mathcal{D} \models \exists w \forall x \psi[w/-1, x/3]$.
- 5. Determinare se $\forall w \exists x \varphi \models \exists w \forall x \psi$.

Giustificare le proprie risposte.

Soluzione:

- 1. La formula φ è verificata in $\mathcal D$ con l'assegnamento w/n e x/m se e solo se $n \geq m$ e m è multiplo di 3. Quindi
 - $\mathcal{D} \not\models \varphi[w/-1000, x/-2000]$ perché -2000 non è multiplo di 3
 - $\mathcal{D} \models \varphi[w/-1000, x/-3000]$ perché -3000 è multiplo di 3 e $-1000 \ge -3000$
 - $\mathcal{D} \models \exists x \, \phi[w/-1000, x/-999]$, come mostrato dall'assegnazione di x a -3000 nel punto precedente.
- 2. L'enunciato $\forall w \exists x \varphi$ interpretato in \mathcal{D} afferma che

Per ogni numero intero w esiste un numero intero x minore o uguale a w che è un multiplo di 3,

ovvero

Vi sono numeri interi arbitrariamente piccoli che sono multipli di 3.

Quindi si ha che $\mathcal{D} \models \forall w \exists x \varphi$.

3. La formula ψ è verificata in \mathcal{D} con l'assegnamento w/n e x/m se e solo se si verifica che

Se $n \geq m$, allora m è multiplo di 3.

Quindi

- $\mathcal{D} \not\models \psi[w/-1000, x/-2000]$ perché $-1000 \ge -2000$ ma -2000 non è multiplo di 3, e quindi l'antecedente dell'implicazione in ψ è vero mentre il conseguente è falso;
- $\mathcal{D} \models \psi[w/-1000, x/-3000]$ perché -3000 è multiplo di 3 e quindi con questi assegnamenti il conseguente dell'implicazione in ψ è verificato, rendendo quindi vera ψ stessa. (Si può notare che anche l'antecedente dell'implicazione in ψ è vero con tale assegnamento, anche se questo è di fatto irrilevante nel determinare se $\psi[w/-1000, x/-3000]$ sia vera in \mathcal{D} .)
- $\mathcal{D} \not\models \forall x \psi[w/-1000, x/-998]$, come mostrato dall'assegnazione di x a -2000 nel punto precedente.
- 4. L'enunciato $\exists w \forall x \psi$ interpretato in \mathcal{D} afferma che

Esiste un numero intero w tale che tutti i numeri interi minori o uguali ad esso sono multipli di 3,

ovvero

Tutti i numeri interi sufficientemente piccoli sono multipli di 3.

Quindi si ha che $\mathcal{D} \not\models \exists w \forall x \psi$.

5. Poiché $\mathcal{D} \models \forall w \exists x \varphi \text{ ma } \mathcal{D} \not\models \exists w \forall x \psi$, per definizione di conseguenza logica si ha che $\forall w \exists x \varphi \not\models \exists w \forall x \psi$.

Esercizio 3 9 punti

Sia D un insieme non vuoto e $k \colon D \to D$ una funzione. Formalizzare relativamente alla struttura $\langle D, k \rangle$ mediante il linguaggio $L = \{k\}$ con un simbolo di funzione unario le seguenti affermazioni:

- 1. k è una funzione costante (ovvero il suo range contiene un solo punto)
- 2. se k è una funzione costante, allora k è suriettiva
- 3. $k \circ k$ è iniettiva
- 4. ogni elemento ha almeno due preimmagini distinte.

Soluzione:

- 1. k è una funzione costante: $\exists y \forall x (k(x) = y)$.
- 2. se k è una funzione costante, allora k è suriettiva: $\exists y \forall x (k(x) = y) \rightarrow \forall y \exists x (k(x) = y)$.
- 3. $k \circ k$ è iniettiva: $\forall x \forall y (k(k(x)) = k(k(y)) \rightarrow x = y)$.
- 4. ogni elemento ha almeno due preimmagini distinte:

$$\forall y \exists x_1 \exists x_2 (\neg(x_1 = x_2) \land k(x_1) = y \land k(x_2) = y).$$