Bevis af afstandsformlen

$$|\overrightarrow{RP}| = \frac{ax_1 + by_1 + c}{\sqrt{(a^2 + b^2)}}$$

Jeg vil nu bevise at man kan bruge denne formel, til at regne distancen mellem et punkt og en linje.

Her har vi

- en linje defineret som y = ax + b
- punktet P, som er defineret som (x_1, y_1)
- punktet P_0 , som er defineret som (x_0, y_0)
- punktet R
- Normalvektoren \hat{n} til linjen
- Vektoren $\overline{P_0P}$
- Vektoren \overrightarrow{RP}

Vi vil gerne regne afstanden mellem linjen og P.

For at finde afstanden, skal vi først finde normalvektoren \hat{n} til linjen. Siden vi kan definere ligningen som:

$$y = ax + b \Rightarrow 0 = ax + by + c$$

Kan vi definere \hat{n} som:

$$\hat{n} = \begin{pmatrix} a \\ b \end{pmatrix}$$

hvor a og b stammer fra 0=ax+by+c

Så finder vi vektoren $\overline{P_0P}$, som er længden mellem P_0 og P :

$$\overrightarrow{P_0P} = \begin{pmatrix} x_1 - x_0 \\ y_1 - y_0 \end{pmatrix}$$

Nu skal vi finde vektoren \overline{RP} , det gør vi ved at finde $\overline{P_0P}$'s projection på \hat{n} :

$$|\overrightarrow{RP}| = |\overrightarrow{P_0P_n}| = \frac{|\overrightarrow{P_0P} \cdot \hat{n}|}{|\hat{n}|}$$

$$|\overrightarrow{RP}| = \frac{xa_1 - ax_0 + by_1 - by_0}{|\widehat{n}|}$$

Så hvis vi sammenligner dette med linjens formel:

$$0 = ax + by + c$$

Kan vi se at $-ax_0$ kan gå ud med ax og $-by_0$ går ud med by hvis vi også lægger c til:

$$|\overrightarrow{RP}| = \frac{xa_1 + by_1 + c}{|\widehat{n}|}$$

Og så siden længden af en vektor er:

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2}$$

Kan vi omskrive formlen til:

$$|\overrightarrow{RP}| = \frac{xa_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

Og derved er det bevist.