Activité Fonction cube

- 1) On considère la fonction $f: x \mapsto x^3$ définie sur $]-\infty; +\infty[$
- a. Aucun nombre n'est tel que $x^2=-2$ donc $\sqrt{-2}$ n'existe surement pas ! Il existe un nombre tel que $x^3=2$ donc $\sqrt[3]{2}$ existe !

b.
$$f(7) = 343$$
, $f(-11) = -1331$, $f(\sqrt[3]{3}) = 3$, $f\left(\frac{\sqrt[3]{2}}{4}\right) = \frac{2}{4^3} = \frac{2}{64} = \frac{1}{32}$

- c. On veut résoudre f(x)=1000 donc : $x=\sqrt[3]{1000}=10$. De même, on trouve : $x=\sqrt[3]{-1000}=-10$ qui est l'opposé. On a donc f(10)=1000 et f(-10)=-1000. Donc si on fait f(10)+f(-10), on trouve 0. Cela semble être la parité de la fonction qui peut nous aider ici.
- 2) a. $x^3 < 8 \iff x < \sqrt[3]{8} \iff x < 2 \text{ donc } S =] \infty, 2[$
- b. Développons les deux cotés de cette inéquation : $x^3+3x\geq 3x-6$. On simplifie : $x^3\geq -6$. La solution est $x\geq \sqrt[3]{-6}$ donc, si on calcule une valeur approchée à la calculette, on trouve $x\geq -1.817...$

L'ensemble solution vaut : $S = [\sqrt[3]{-6}; +\infty[$