1
$$u_{c} = u_{c}(\lambda u_{4} - \overline{f})$$
 $c = 1, 2, 3$. (2) $u_{4} = u_{4}(35 - \overline{f})$ (3)

2
$$u_i = u_i(\lambda u_i + k_i u_{i-1} - f)$$
, $i = 1,2,3$ $u_0 = u_3$
 $u_i = u_i(\beta S - f)$

3
$$u_1 = u_1(3u_1 + k_1u_{i-2} + k_2u_{i-1})$$
 $i = 1,2,3$ $u_0 = u_3$
 $u_1 = u_1(3s - 1)$
 $u_1 = u_1(3s - 1)$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{1}{4} \frac{1}{4} - \frac{1}{4} \right)$$
 $\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4} \frac{1}{4} \frac{1}{4} \right)$
 $\frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$
 $\frac{1}{4} = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$

6
$$u_{c} = u_{i} (Ju_{q}^{2} - \bar{f})$$
 $u_{r} = u_{r} (JSS - \bar{f})$

$$U_1 + U_2 + U_3 + U_4 = 1$$
 γ $U_K > 0, K = 1, 2, 3, 4.$
 $S = u_1 + u_2 + u_3$

$$J=0,1$$
, $K_2=K_1=0,01$.
 $P_1=0,01$, $P_2=0,02$, $P_3=0,03$.