INDEX

Page references in **bold face** refer to a major discussion of the entry. Positional and configurational designations in chemical names (e.g., 3-, α , N-, p-, trans, D-, sn-) are ignored in alphabetizing. Numbers and Greek letters are otherwise alphabetical as if they were spelled out.

Note: Chapters 33–35, which are only available on our book companion website, www.wiley.com/college/voet, are separately indexed at this website.

Acetate ion, 45, 45T, 48F Acetylsalicylic acid, 998 A77, 1116 N-Acetylserine, 79F Acetic acid: AAA⁺ domain, 1184–1185 AAA⁺ family of ATPases, 1197, 1206 creation in Miller-Urey experiments, 32T O-Acetylserine, 1071 distribution curve, 48, 48F Acetyl transferase (AT), 967, 968 AAA⁺ proteins, 1197–1198 N-Acetylxylosamine (XylNAc) residue, 523 titration curve, 47, 47F Acetimidoquinine, 544–545, 544F Acetoacetate, 959, 960F AADP⁺ (3-aminopyridine adenine ACh, see Acetylcholine AChR, see Acetylcholine receptor dinucleotide phosphate), 1125 A antigen, 415 decarboxylation, 510-511 Acids, 45 aaRSs, see Aminoacyl-tRNA synthetase and degradation of leucine/lysine, dissociation constants, 45-47, 46T 1040-1041 polyprotic, **48–50**, 49F Abasic sites, 1218 Abbé refractometer, 156 Acid-base buffers, 48 and degradation of phenylalanine/tyrosine, 1043-1047 Acid-base catalysis, 506-510 AB blood type, 22 ABCA1 (ATP-cassette binding degradation of tryptophan, 1041-1042 Acid-base indicators, 51 protein A1), 458 ABC transporters, **766–768**, 767F Acetoacetyl-CoA, 960 Acid-base reactions, 45-47 α-Aceto-α-hyroxybutyrate, 1075 and amino acids, 72-73 Abe (abequose), 379F Acetolactate, 1075 for protein assays, 131 Abelson, J., 1312, 1351 Acetone, 959 and standard state conventions, 60 Abequose (Abe), 379F and cell wall lysis, 130 Acid chain hypothesis, 446 Aβ (amyloid-β protein), 311–312 dielectric constant and dipole Acidic solutions, 47 A β precursor protein (β PP), 311–312 moment, 43T Acidosis, 955 Ab initio methods, 305 protein solubility in, 134 Ackee fruit, 948 Abl, 708 Acetonel, 679F Ackers, G., 353 A blood type, 22 Acetonyl-CoA, 806-807 Aconitase, 789, 790F, 808-809, 808F ABO blood group system, 22, 414–415 Acetylcholine (ACh), 527, 778-780 cis-Aconitate, 789 ACP (acyl-carrier protein), 961 Abortive initiation, 1267–1268 Acetylcholine receptor (AChR), Abrin, 1395T **780–781,** 780F ACP synthase, 961 Absolute configuration, 74–75 Acetylcholinesterase, 781–782, 782F Acquired immune deficiency syndrome, see AIDS Absolute rate theory, 484–487 diffusion-limited, 490, 491 inactivation by DIPF, 527 Acridine orange, 157 Absorbance: in Beer-Lambert law, 90 Michaelis-Menten kinetic constants, 489T Acromegaly, 685 of DNA and nucleic acids, 90, 92, 92F Acetyl-CoA, 561, 561F Acrosomal protease, 525T in citric acid cycle, 789, 792–796, 792F, 795F, 816–819 Acrylamide, 147, 147F ACTH, see Adrenocorticotropic hormone Absorbance spectrum, 92 AC, see Adenylate cyclase Actin, 10, 10F, 301, 857 ac⁴C (N⁴-acetylcytidine), 1347F and degradation of leucine/lysine, ACAT, see Acyl-CoA:cholesterol 1040-1041 in erythrocyte membranes, 413F, 414 and integration of pathways, 1090 acyltransferase helical symmetry, 269 in ketogenesis, 960–961, 960F Actinomycin D, 79, 1272, 1272F Action potentials, **775–777**, 775F, 776F ACC (acetyl-CoA carboxylase), 962-964 Accepted names, enzymes, 479 pyruvate carboxylase regulation, 873–874 Acceptor, tRNA, 1346 Acetyl-CoA acetyltransferase, 960-961 Activated complex, 485 Acceptor control, 862 Activation barrier, 486 Acetyl-CoA carboxylase (ACC), 962-964 Activators, 96, 351 Accessory pigments, 908–909 Acetyl-coenzyme A, see Acetyl-CoA Active, rolling mechanism (DNA Accessory proteins: N⁴-Acetylcytidine (ac⁴C), 1347F G proteins, 692 N-Acetyl-D-galactosamine, 392F unwinding), 1185-1186, 1186F GroEL/ES system, 294-302 Acetyl-dihydrolipamide-E2, 795 Active transport, 420, **747** ATP-driven, **758–768** peptidyl prolyl cis-trans isomerases, 292 N-Acetylglucosamine, see NAG N-Acetylglutamate, 1025, 1029, 1070F, 1071 protein disulfide isomerases, 290–292, ion-driven, 768-771 290F, 291F N-Acetylglutamate-5-semialdehyde, Activity, 59-61 Accommodation, 1388 1070F, 1071 Activity coefficient, 61 N-Acetylglutamate synthase, 1029, ACE (angiotensin converting Acute intermittent porphyria, 1056 1070F, 1071 enzyme), 547F Acute lymphoblastic leukemia, 1034 ACE inhibitors, 547F N-Acetylimidazolium, 513 Acute pancreatitis, 537 Acetal, 520F ε-N-Acetyllysine, 79F Acyl-carnitine, 946 N-Acetylmuramic acid, see NAM Acyl-carrier protein (ACP), 961 Acetaldehyde, re and si faces, 77F Acetaminophen, 544–545, 544F, 1000 N-Acetylneuraminic acid, see NANA Acyl-CoA:cholesterol acyltransferase Acetate, as cholesterol precursor, 975F, N-Acetylneuraminidate, 392F (ACAT), 455, 984 976-977 Acetyl phosphate, 580, 607 Acyl-CoA dehydrogenase, 948F

Adhesins, 382

Acyl-CoA dehydrogenase (AD), 947, 948 Adipocytes, 388-389, 388F, 1096, 1097F AICAR, see 5-Aminoimidazole-4-Adiponectin, 1096, 1097F Acyl-CoA oxidase, 958 carboxamide ribotide Acyl-CoA synthases, 945-946 Adiponectin receptors, 1096 AICAR transformylase (PurH), 1109F, 1111 Acyl-dihydroxyacetone phosphate, 971 Adipose tissue, 389 AIDS (acquired immune deficiency 1-Acyldihydroxyacetone phosphate, 1007 syndrome), 123, **545–546**. See also HIV brown, 860 glucose uptake regulation in, 751F AIR, see 5-Aminoimidazole ribotide Acyl-enzyme intermediate, 533 2-Acylglycerol, 941 and other organs, 1091F, 1093 AIR carboxylase, 1109F, 1111 A-DNA, 1146F, 1147F, **1148–1149**, 1148T, 1151 AdoCbl, *see* 5'-Deoxyadenosylcobalamin 1-Acylglycerol-3-phosphate acyltransferase, AIR synthetase (PurM), 1109F, 1110 AK, see Adenylate kinase Acyl group transfer, 565 AdoMet, see SAM AKAPs (A-kinase anchoring proteins), 714 Acyl phosphates, 580 ADP (adenosine diphosphate), 17, 82 Akey, C., 424 N-Acylsphingosine phosphocholine, 1008 in Calvin cycle, 931 A-kinase anchoring proteins (AKAPs), 714 Acyltransferase (AT), 968 in catabolism, 561, 561F Akt, see Protein kinase B Akt1/PKBα, 734 in citric acid cycle, 816-817 AD, see Acyl-CoA dehydrogenase; Akt2/PKBB, 734 Alzheimer's disease in glycolysis, 594F, 595 ADA, see Adenosine deaminase in GroEL/ES system, 295-302 Akt3/PKBy, 734 ada gene, 1216 RuvB binding of, 1231 Ala, see Alanine Adair, G., 348 and thermodynamics of life, 578-583 ALA (δ-aminoleuvulinic acid), 1048 Adair constants, 349 ALAD (δ-aminoleuvulinic acid ADP/ATP carrier, 771 Adair equation, 348-349 ADP-glucose, 645 dehydratase), 1048 ADP-glucose pyrophosphorylase, 931 Ada protein, 1216 Alanine: Adapter proteins, see APs ADPNP, see AMPPNP biosynthesis, 1067-1073 Adaptive enzymes, 1261 Adaptor, **705–711**, 709 degradation of, 1030-1034 ADP-ribosylated diphthalamide residue, eEF2, 1398 and degradation of tryptophan, Adaptor hypothesis, 1345 ADP-ribosylation, 1398 1041-1042 ADAR1, 1150-1151, 1150F ADP-ribosylation factor, see ARF1 genetic codes for, 100T, 1343T and RNA editing, 1322–1323, 1323F Adrenal glands, 672F half-life, 1413T ADAR2 Adrenaline, see Epinephrine α helix/ β sheet propensity, 302T, 304 and RNA editing, 1322, 1323F β-Adrenergic receptors, 664, 680 hydropathy scale for, 264T Addison's disease, 681 Adrenocortical steroids, 680 in Miller-Urey experiments, 32T Adducin, 412F-413F Adrenocorticotropic hormone (ACTH), in native unfolded proteins, 283 Ade, see Adenine 673T, 682-683 nonessential amino acid, 1065T Adenine, 18, 83, 83T. See also Watson-Crick Adrenoleukodystrophy (ALD), 767, 958 nonpolar side chain, 70 base pairs β-Adrenoreceptors, 660, 680 Ramachandran diagram, 224F, 225 Adriamycin, 1169 and genetic code, 100T, 1343T structure and general properties, 68T, 71F IR spectra of derivatives, 1155F (S)-Alanine, 76, 77F Adsorption chromatography, 132T, 135, modified nucleosides of, 1347F 143-144 β-Alanine: and point mutations, 1339-1340 Adult-onset diabetes, 1102-1103 creation in Miller-Urey experiments, 32T Adenine phosphoribosyltransferase Aeguorea victoria, 120 in pyrimidine catabolism, 1136 (APRT), 1114 Aerobes, 6. See also specific organisms L-Alanine, 76, 77F Adenohypophysis, 682 Adenosine, 83T, 578, 1130F Aerobic fermentation, 594F Alanine tRNA, 176, 1345 Aerobic metabolism, 864-865 AlaRS, 1351 Adenosine-3',5'-cyclic monophosphate, Aerobic oxidation, 594F ALAS-1, 1056 see cAMP Affinity chromatography, 132T ALAS-2, 1056 Adenosine-5'-(β-amino) diphosphate (AMPPN), 763, 763F ALA synthase, 1056 Ala-tRNA^{Cys}, 1359 ion exchange, 136 metal chelation, 145 Adenosine-5'-(β , γ -imido) triphosphate, mRNA, 158 Albumin, 154F, 542, 677. See also see AMPPNP for proteins, 118, 141-143, 141F Serum albumin Affinity labeling, 527 Adenosine-5'-(β,γ-methylene) triphosphate (AMPPCP), 763, 763F, 764 Alcaptonuria, 569 Aflatoxin B₁, 1225 Alcohols: Adenosine-5'-phosphosulfate, 183 Adenosine-5'-phosphosulfate (APS) kinase, 1072 AFM (atomic force microscopy), 376 effect on protein denaturation, 265 reactions to form hemiacetals and Africa, sickle-cell anemia in, 188, 343 African clawed toad, 1202 hemiketals, 361F Adenosine deaminase (ADA), 1130F, 1131 African sleeping sickness, 799 Alcohol dehydrogenase (ADH), 479 Adenosine diphosphate, see ADP Agard, D., 456 in fermentation, 618-619 Adenosine monophosphate, see AMP Agarose gel electrophoretogram, 106F and methanol oxidation, 505 Adenosine triphosphate, see ATP Agarose gels: molecular mass of, 140F S-Adenosylhomocysteine, 1034 stereospecificity of, 470-473 in affinity chromatography, 142, 142F S-Adenosylmethionine, see SAM Alcoholic fermentation, 470, 593-594, in gel electrophoresis, 147-149 Adenyl-3',5'-uridyl-3,'5'-cytidyl-3,'5'in gel filtration chromatography, 616-619, 616F guanylyl-3'-phosphate, 84F Alcohol:NAD⁺ oxidoreductase, 479 139, 140T, 141 Adenylate cyclase (AC), 653, 697-698, 1286 ALD, see Adrenoleukodystrophy in ion exchange chromatography, 137 Adenylate kinase (AK), 582 AGC family of protein kinases, 730 Aldehydes, hemiacetal formation of, 361F and glycolysis control in muscle, A⁺ gene, 1261–1262, 1264 Aldehyde dehydrogenase, 447F 627-628, 628F Alditols, 364 a gene (fruit fly), 25F Agglutinin, 366 Aldohexoses, 360F X-ray structure of porcine, 254, 255F Aggrecan, 373–375, 373T, 374F Adenylic acid, see AMP Aldolase, 568 Adenylosuccinate, 1112 Aging, telomere length and, 1210-1211 binding to erythrocyte membrane, 412 Adenylosuccinate lyase (PurB), 1109F, Aglycone, 366 in glycolysis, 596F, 600-603, 600F, 602F half-life, 1408T 1111, 1112 AGO, see Argonaute molecular mass determination by gel Adenylosuccinate synthetase, 1112F Agonist, 539, 680 Agouti related peptide (AgRP), 1099 Adenyltransferase, 1069, 1071 filtration chromatography, 140F sedimentation coefficient, 154F ADH, see Alcohol dehydrogenase; Agrin, 373T Antidiuretic hormone Agrobacterium radiobacter, 106F Aldol condensation, 568

AgRP (agouti related peptide), 1099

Aldol histidine, 239F

Aldonic acids, 364	α-Amanitin, 1280	alanine, cysteine, glycine, serine, and
Aldopentoses, 360F	amber codon, 1343	threonine degradation, 1030-1034
Aldoses, 360F, 361	amber mutants, half-lives of, 1408	amino acids as metabolic fuels, 1094–1095
Aldose-ketose interconversion, 567, 567F	amber suppressor, 1362	arginine, glutamate, glutamine, histidine,
Aldosterone, 681	Ambros, V., 1326	and proline degradation, 1034
Aldotetroses, 360F	Ames, B., 1224	asparagine and aspartate degradation, 1034
Aldotrioses, 360F	Ames test, 1224–1225, 1225F	biosynthesis of psychologically active
ALD protein, 958	Amethopterin, 492, 1129	amines, 1058–1062
Aledronate, 679F al gene (fruit fly), 25F	Amido black, 149F Amidophosphoribosyl transferase, 1108,	deamination of famino acids, 1019–1025 glucogenic and ketogenic amino acids,
Alignment score (AS), 196	1109F, 1114	1029–1030
Alkaptonuria, 25–26, 1045–1047	Amines, biosynthesis of, 1058–1062	heme biosynthesis, 1047–1058
1-Alkyl-2-acyl-	α-Amino acids, 67, 67F, 70F	heme degradation, 1056
sn-glycerophosphoethanolamine,	D-Amino acids, 73–75, 79	integration and interrelationships with
1007, 1007F	L-α-Amino acids, 75, 75F, 226	other pathways, 1090
Alkylacylglycerophospholipids, 574, 1005,	L-Amino acids, 73–75, 75F, 78	isoleucine, methionine, and valine
1007–1008	Amino acids, 15, 67–80. See also	degradation, 1034–1039
O ⁶ -Alkylguanine-DNA alkyltransferase,	Protein sequencing	leucine and lysine degradation, 1040–1041
1216	acid-base properties, 72	overview of common metabolic
O ⁶ -Alkylguanine residues, 1215, 1216	as biosynthetic precursors, 1047–1064	intermediates, 1029F
1-Alkyl- <i>sn</i> -glycerol-3-phosphate, 1007 Allantoic acid, 1134	chemical synthesis of polypeptides, 206–209	phenylalanine and tyrosine degradation, 1043–1047
Allantoin, 1134	classification and characteristics, 70–71	tryptophan degradation, 1041–1042
Allantoinase, 1135F	conformation angle distribution, 224F	and urea cycle, 1025–1029
Alleles, 21	creation in Miller-Urey experiments,	D-Amino acid oxidase, 1025
Allison, A., 187	32T, 33	L-Amino acid oxidase, 1025
Allo forms (enantiomers), 75–76	defined, 67	Amino acid residues, 70, 188, 302T
Allolactose, 97, 117	energy recovery by citric acid cycle, 789	Amino acid sequencing, see Protein
1,6-Allolactose, 1261	essential and nonessential, 1019, 1065T	sequencing
Allopurinol, 1135	genetic code, 99, 100T, 1338–1345, 1343T	Amino acid stem, tRNA, 1346
D-Allose, 360F	hydropathy scale for side chains, 264T	Aminoacrylate, 1031
Allosteric control:	as metabolic fuels, 1095=4–1095	Aminoacrylate-PLP Schiff base, 1078
ATCase activity, 476–479 gluconeogenesis, 878–879, 879F, 879T	as neurotransmitters, 782–783, 783F nomenclature, 72–73	Aminoacylation, tRNA, 1345–1362 Aminoacyl peptide, 170
glycogen phosphorylase and glycogen	nonstandard, 78–80 , 79F, 80F	Aminoacyl site, see A site
synthase, 647–650	optical activity, 73–78	Aminoacyl-tRNA, 98, 1349, 1349F
hemoglobin, 347–354	peptide bonds, 70	Aminoacyl-tRNA synthetase (aaRS), 99,
and metabolic flux, 620, 624	and phylogenetic tree, 6	1349–1359
D-allo-Threonine, 76, 76F	of proteins, 67–73, 68T–69T	characteristics of, 1350F
L-allo-Threonine, 76, 76F	in protein synthesis, 98–100	classes of, 1350–1351
Allorransplantation, 121	racemization, 116	Class I, 1350–1354, 1350T, 1355F,
Alloxanthine, 1135 Allysine, 238	side chains as covalent catalysts, 511 transport in blood, 973	1358, 1358F Class II, 1350–1351, 1350T, 1354–1355,
Allysine aldol, 239F	Amino acid biosynthesis:	1355F, 1358, 1358F
α_1 Adrenergic receptors, 680	alanine, 1067–1073	and CysRS in archaebacteria, 1359
α ₂ Adrenergic receptors, 680	arginine, 1071	and Gln-tRNA ^{Gln} formation, 1358–1359
α/α Barrels, 982	asparagine, 1067–1073	proofreading by, 1355–1358
αα Motifs, 249–250, 249F	aspartate, 1067–1073	recognition by, 1351–1352, 1351F, 1352F
α/β Barrels, 250, 252, 254, 300	citric acid cycle intermediates, 818	γ-Aminobutyric acid (GABA), 79–80, 80F,
α/β Domains, 250, 300	cysteine, 1071–1072	783, 1049
α Configuration, of nucleotides, 83 α Domains, 249F	essential amino acids, 1072–1078 GCN2 regulates, 1400–1401	biosynthesis, 1058–1060 α-Amino-β-chlorobutyrate, 1408
α Helix, 226, 226F, 227F	glutamate, 1065–1071	Aminoglycosides, 1395
globular proteins, 246	glutamine, 1067–1073	Amino groups, 43F
helix forms vs., 228F	glycine, 1071–1072	5-Aminoimidazole-4-carboxamide ribotide
physical basis of, 304	histidine, 1078	(AICAR), 1078, 1104, 1109F, 1111
Ramachandran diagram, 224F	integration and interrelationships of, 1090	5-Aminoimidazole-4-(<i>N</i> -
and space filling, 281	isoleucine, 1075	succinylocarboxamide) ribotide
α-Ketoglutarate:ferredoxin reductase, 815	leucine, 1075	(SAICAR), 1109F, 1111
α-MSH (α-melanocyte stimulating	lysine, 1072–1073, 1075	5-Aminoimidazole ribotide (AIR),
hormone), 1099 α Oxidation, of fatty acids, 958–959, 959F	methionine, 1072–1073, 1075 nonessential amino acids, 1064–1072	1109F, 1110 β-Aminoisobutyrate, 1136
α Particles, 572	ornithine, 1071	α-Aminoisobutyric acid, 32T
α Solenoid, 433	phenylalanine, 1075–1078	δ-Aminoleuvulinate synthase, 1048, 1049
α-Synuclein, 720	proline, 1071	δ-Aminoleuvulinic acid (ALA), 1048
α-Tocopherol, 866	serine, 1071–1072	δ-Aminoleuvulinic acid dehydratase
Alternative splicing, 1317–1318	threonine, 1072–1073, 1075	(ALAD), 1048
Altman, S., 1330	tryptophan, 1075–1078	Aminomethyltranferase (AMT), 1032
D-Altrose, 360F Altschul, S., 201	tyrosine, 1075–1078 valine, 1075	α-Amino- <i>n</i> -butyric acid, 32T Aminopeptidases, 166, 168, 168T
AluI, 105T, 106, 109	Amino acid deamination, 1019–1020	Aminopeptidases, 100, 100, 1001 Aminopeptidase M, specificity of, 168T
Alumina, 144	oxidative, 1023–1025	Aminoprocollagen peptidase, 1403–1404
Alzheimer's disease (AD), 309, 311–312 ,	transamination, 1020-1023	β-Aminopropionitrile, 239, 276
458–459, 720	Amino acid metabolism, 561F. See also	Aminopterin, 1129
Amanita phalloides (death cap), 1280	Urea cycle	2-Aminopurine, see 2AP

Anderson, W. F., 122

3-Aminopyridine adenine dinucleotide Androgens, 673T, 680, 991 Aphidicolin, 1203 Apical domain, 410 phosphate (AADP+), 1125 Anencephaly, 1035 Amino sugars, 365 Anesthetics, neuronal membranes and, ApoA-I, see Apolipoprotein A-I 398-399 ApoA-II, see Apolipoprotein A-II Amino terminus, see N-terminus Aminotransferases, 1020, 1136F Apocytochrome c, 448 Anfinsen, C., 278 Ammonia, 32, 33, 43T, 1025 Anfinsen cage, 298, 300 ApoE, see Apolipoprotein E Ammonification, 1083 Angelman syndrome (AS), 1251 apoE4 gene, 312 Ammonium ion (NH₄⁺), 45, 45T, 47, 47F Angina pectoris, 686 Apoenzyme, 473-474, 1023 Apoferritin, 140F Ammonium persulfate, 146F Angiosperms, 13F Ammonium sulfate, 133F, 134 Angiotensin converting enzyme (ACE), 547F Apolipoproteins, 449-451, 986 Apolipoprotein A-I (apoA-I), 450-451, Ammonotelic organisms, 1025 Angiotensin I, 547F Amoeba, 13F, 398T Angiotensin II, 547F 450F, 450T, 451F, 458 AMP (adenosine monophosphate), 83T Angiotensinogen, 547F Apolipoprotein A-II (apoA-II), 450T, 458 Apolipoprotein B-48, 450T, 452, 1322 in animal catabolism, 1130F Anhydrides, formation of, 515T Apolipoprotein B-100, 449F, 450T, 452, and DNA ligase, 1187 8-Anilino-1-naphthalenesulfonate (ANS), 287 in glycogen metabolism, 648-650 Animals, 7F, 12, 13F. See also specific 455, 1322 from IMP, 1112F Apolipoprotein C-I, 450T organisms synthesis of, 1111-1113 Apolipoprotein C-II, 450T, 451 in carcinogenesis tests, 1224 Apolipoprotein C-III, 450T and thermodynamics of life, 578 divergence, 192 AMP deaminase, 1131 DNA polymerases, 1202-1205, Apolipoprotein D, 450T AMP-dependent protein kinase (AMPK), 963 1202T, 1203T Apolipoprotein E (apoE), 312, 450T, 453, and cholesterol biosynthesis, 989 FAS-I, 965-967, 966F 455–456, 456F Apolipoprotein E2, 458–459 Apolipoprotein E3, 458, 459 in fatty acid metabolism, 973, 975 metabolic homeostasis, 1096-1101 and glycogen synthase cascade, 660 organ specialization, 1090-1095 and hypoxia, 864 Animal cells, 7F Apolipoprotein E4, 458, 459 and metabolic homeostasis, Animalia, 12 Apomyoglobin, 173F, 284, 289 Apoproteins, 449-451 1095-1097, 1097F Anion channel, 412, 413F and noninsulin-dependent Anion exchangers, 135, 989-990 Apoptosis, 717 Ankyrin, 413F, 414 diabetes, 1103-1104 Apparent dissociation constants, 348 Amphibolic pathways, 789 Appetite control, 1098, 1099, 1100F Ankyrin repeats, 414, 414F Amphipathic materials, 44 Annealing conditions, 93 Applied Biosystems, 184 Amphiphilic materials, 43-44 Aβ precursor protein, 311–312 Anomeric carbon, 361 Ampholytes, 67, 151, 151F Anomeric forms, cyclic sugars, 361–363 APRT (adenine Amphoteric substances, 67 ANS (8-anilino-1-naphthalenesulfonate), phosphoribosyltransferase), 1114 Ampicillin, 26, 107F, 111, 377F, 378, 621 AP (adapter protein), 435–436, 436F APS/Cbl complex, 738 AMPK, see AMP-dependent protein kinase Antagonist, 539, 680 Antenna chlorophylls, 905-906, 906F AP sites, 1218 AMPPCP, see Adenosine-5'-(β, γ-methylene) triphosphate Anterograde transport, 428 APS (adenosine-5'-phosphosulfate) AMPPN, see Adenosine-5'-(β-amino) Anthrax, 714–715 reductase, 1072 Anthrax toxin, 714–715 Aptamers, 214, 1300 diphosphate Antibiotics, protein synthesis inhibition AMPPNP (adenosine-5'-(β, γ-imido) Apurinic sites, 1218 triphosphate), 609, 633, 768, 1231 and, 1395-1398 Apyrase, 183 Amprenavir, 550F Antibiotic-resistant transposons, 1242 Apyrimidinic sites, 1218 amp^R gene, 107F, 111, 621 AMT (aminomethyltranferase), 1032 AQP0, 756 AQP1, 756–757, 757F, 787 Antibodies, 131, 150. See also Monoclonal antibodies α-Amylase, 370, 469 Anticodons, 98, 1330, 1346, 1389F AQP12, 756 Amylin, 310 Anticodon arm, 1346 Aquaglyceroporins, 756 Aquaporins, 399F, **756–757**, 757F, 787 Amylo- $(1,4 \rightarrow 1,6)$ -transglycosylase, 646, 667 Anticodon stem-loop (ASL), 1394, 1394F Amylo-1,6-glucosidase, 667 Anti conformation, 1152F Aqueous solutions, 40-50 acids, bases, and buffers, 45-50 β-Amyloid, 312 Antidiuretic hormone (ADH), 683 Amyloids, 309-310 Antifolates, 1129-1130 hydrocarbon transfer in, 262-264, 263T Amyloid diseases, 310-311 Antigens, 376 nucleotide base stacking in, 1156-1157 Amyloid fibrils, 309, 309F Antigenic groups, in bacterial cell walls, polyprotic acids, 48-50 378-379 Amyloidoses, 309-310 and properties of water, 40-45 Antimycin, 831, 849 Amyloid plaques, 311-312, 458-459 araBAD operon, 1287, 1291-1294, Amyloid-β protein (Aβ), 311–312 Antioxidants, 865-866 1292F, 1293F Amylopectin, 369–370, 370F Antipain, 1409 Arabidopsis thaliana, 177T, 182, 1410F Antiparallel β pleated sheets, 224F, Amyloplast, 11F Arabinose, glucose and, 1286 α-Amylose, 369, 369F 229-230, 232 D-Arabinose, 360F Amytal, 831 Antiport, 758F L-Arabinose, 1291-1294 AraC, 1292-1294 Anabaena, 4F Antirrhinum, 22 Anabolism, 17, 561–562 Arachidic acid, 387T Antisense oligodeoxynucleotide, 1402–1403 Anaerobes, 6. See also specific organisms Arachidonate, 994 Antisense oligonucleotides, 1402–1403 Arachidonic acid, 387T, 994-997, 995F Anaerobic autotrophs, 814 Antisense RNA, 1323, 1402 $araI_1$, 1292 $araO_2$, 1292 Anaerobic fermentation, 594F, 614-619 Antisense strand, 1266 Anaerobic metabolism, 864-865 Antisnorkeling, 406 Arber, W., 104 Analbuminemia, 944 2AP (2-aminopurine), 1339, 1339F Analytical ultracentrifuge, 154 AP1, 435-436 Archaea, 6, 7F, 13F, 192 Anaphase, 20F, 21F AP2, 435-436, 436F Archaeal introns, 1307T AP3, 436 Anaphase-promoting complex (APC), 1414 Archaebacteria, 6, 1359 AP4, 436 Archaeoglobus fulgidus, 177T Anaphylaxis, 1000 Anaplerotic reactions, 818-819 $Ap_5A, 628$ Arcuate nucleus, 1099 Anchoring proteins, 714 ApA, melting curve of, 1157F AREs (AU-rich elements), 1327 ARF1 (ADP-ribosylation factor), 434-435, Andersen's disease, 667 APC (anaphase-promoting complex), 1414

AP endonuclease, 1218

435F, 695–696

ARF GAP, 437	Aspartic proteases, 546–549, 548F	ATPases:
ARF nucleotide-binding site opener	Aspartokinase, 1072, 1075T	A-, F-, P-, and V-types, 758
(ARNO), 434	β-Aspartyl-AMP, 1068	(Ca^{2+}) -ATPase, 762–764
Arginine	Aspartyl R phosphete 1075	(H ⁺ -K ⁺)-ATPase, 764–765
Arginine: biosynthesis, 571F, 1071	Aspartyl-β-phosphate, 1075 Aspirin, 994, 998, 999F	(Na ⁺ -K ⁺)-ATPase, 758–762 and molecular chaperones, 293
degradation, 1034	Aspirin-triggered <i>epi</i> -lipoxins (ATLs), 1004	ATP-cassette binding protein A1
as essential amino acid, 1065T	AspRS, tRNA ^{Asp} and, 1354–1355,	(ABCA1), 458
genetic codes for, 100T, 1343T	1354F, 1355F	ATP-citrate lyase, 818, 968
α helix/β sheet propensity, 302T	Asp-tRNA ^{Asn} , 1358	ATP-driven active transport, 758–768
isoelectric point, 72	Assembly factors, 1365	ATP s 608
location in globular proteins, 246 side chains, 71, 264T	Astbury, W., 233 Asthma, 680	ATPαS, 698 ATPγS, 294, 444–445, 1204F
specific rotation, 74	Asx, 68T, 73. See also Asparagine;	ATP sulfurylase, 183, 1072
structure and general properties, 69T	Aspartic acid	Atractyloside, 771
trypsin-catalyzed cleavage, 170	Asymmetric centers, 74–76	Attenuation, 1296–1299
Argininosuccinase, 1028	Asymmetric PCR, 116	Attenuator, 1297–1299
Argininosuccinate synthetase, 1028 Argonaute (AGO), 1324, 1325, 1325F	AT, see Acetyl transferase	A-type ATPases, 758 AU-AC introns, 1307T, 1319
ArgRS, 1352	AT-AC introns, 1319 AT-AC spliceosome, 1319	AU-AC spliceosome, 1319
A-RNA, 1151	Ataxin-1, 1252	AUG (codon), 1343
ARNO (ARF nucleotide-binding	ATCase (aspartate transcarbamoylase),	AU-rich elements (AREs), 1327
site opener), 434	475F, 478F	Aurora, 1402
Arnold, E., 1208	allosteric control, 476–479	Autocrine hormones, 671
Arnold, W., 906	feedback inhibition, 474–479	Autoimmune disorders, 688 cyclosporin A for, 292
aroH operon, 1297 Aromatic amino acid decarboxylase, 1060	in UMP synthesis, 1115F, 1116 X-ray structure, 476F	multiple sclerosis, 777
ar/R constriction, 756	Atheromas, 456	and type 1 diabetes, 1102
Arrhenius, A., 45	Atherosclerosis, 456–458	Autolysis, 131
Arsenate, 636	Atherosclerotic plaques, 240, 457F	Autonomously replicating sequences
Arsenic, 799, 822	ATLs (aspirin-triggered <i>epi</i> -lipoxins), 1004	(ARSs), 109, 1205
Arsenicals, 799 Arsenite, 799	Atomic fluctuations, 307, 308	Autophagic vacuoles, 1409 Autophosphorylation, 670, 700
ARSs, see Autonomously replicating	Atomic force microscopy (AFM), 376 Atorvastatin, 990, 991F	Autophosphorylation, 676, 766 Autoradiography, 94–95 , 95F, 148, 572
sequences	ATP (adenosine triphosphate), 82, 559, 586.	of sequencing gels, 177–178, 178F
Arteriosclerosis, 456–458	See also Electron transport; Oxidative	Autosomes, 23
Arthropods, 13F	phosphorylation; Photosynthesis	Autotrophs, 5
AS, see Alignment score; Angelman	and aerobic vs. anaerobic metabolism,	Auxilin, 436
syndrome	864–866	Auxotropic mutants, 570
Ascobolus, 13F Ascorbic acid (vitamin C), 236, 364–365 , 364F	in ATCase feedback inhibition, 475 in Calvin cycle, 931	Avery, O., 86 Avidin, 577, 873
A-side transfer, 472	in catabolism, 561, 561F	Avogadro's number, 53T
A (aminoacyl) site, 98F, 1373, 1385, 1387	in citric acid cycle, 789, 816–817, 819	Axial groups, in sugars, 363
ASL, see Anticodon stem-loop	consumption of, 582–583	Axon, 771
Asn, see Asparagine	coupled reactions with, 579F	5-Azacytosine (5-AzaC) residue, 1249
Asp, see Aspartic acid L-Asparaginase, 1034	and DNA ligase, 1188 effect on hemoglobin oxygen	Azaserine, 80, 80F, 1142 3'-Azido-3'-deoxythymidine (AZT;
Asparagine:	binding, 330	zidovudine), 546, 1207
biosynthesis, 1067–1073	in electron transport chain, 823–824, 824F,	Azidomet, 135F
degradation, 1034	828, 829	Azotobacter vinelandii, 1080F-1081, 1341
genetic codes for, 100T, 1343T	formation, 582–583	AZT, see 3'-Azido-3'-deoxythymidine
in globular proteins, 246–247	in gluconeogenesis, 877–878	Azurin, 135F
half-life, 1413T α helix/β sheet propensity, 302T	in glycogen metabolism, 648–649 in glycolysis, 593, 594F, 595, 600,	В
as nonessential amino acid, 1065T	608–610, 613	Babcock, G., 844
side chains, 71, 264T	in GroEL/ES system, 294, 298–300	Baboons, xenotransplantation with, 121
structure and general properties, 69T	in mitochondria, 9	BAC-ends (sequence-tagged
Asparagine synthetase, 1068	in nitrogen fixation, 1082	connectors), 181
Aspartate, 71. San also Aspartia acid	overview of roles, 17	Bacilli, 4 Bacillus, 4F
Aspartate, 71. See also Aspartic acid biosynthesis, 1067–1073	in oxidative phosphorylation, 845–863, 846F	Bacillus subtilis, 376, 377F, 1284
degradation, 1034	photorespiration dissipates, 935	Bacillus thuringiensis (Bt), 122
half-life, 1413T	in photosynthesis, 902, 926	Bacitracin, 888–889, 889F
as nonessential amino acid, 1065T	production control for, 863–864, 863F	Backside attack, 514F
Aspartate aminotransferase, 876, 877F	in protein folding, 300	BACs (bacterial artificial chromosomes),
Aspartate transcarbamoylase, see ATCase	source of free energy for metabolic	108–109, 113, 114, 181
Aspartic acid: degradation, 1034	pathways, 561F sources of, during exercise, 1092F	Bacteria. See also specific organisms conjugation of, 1262–1264, 1262F
genetic codes for, 100T, 1343T	structure, 578F	divergence of, 192
in globular proteins, 246	and thermodynamics of life, 578-583	DNA base composition, 84
α helix/ β sheet propensity, 302T	in transcription, 95–96, 1265	DNA size, 94T
isoelectric point, 72	turnover rate, 583	and eukaryotic protein production, 118
in Miller-Urey experiments, 32T side chains, 71, 264T	and vesicle fusion, 444–445 ATP/ADP carrier, 448	fatty acids of, 387 genetic regulation of sugar transport,
structure and general properties, 69T	ATP-ADP translocator, 448, 768, 771	765T, 766, 767F
÷ 1 1		

Bacteria (Contd.)	α/β , 250, 252, 254, 300	β ₁ -Adrenergic receptors, 690
genetics of, 26	β, 231F, 448–449	β ₂ -Adrenergic receptors, 690
glutamine synthetase regulation, 1069F glycogen synthase, 645	Swiss roll, 252, 253F TIM, 252, 254F, 300	β-Adrenergic receptor kinase (βARK), 697 βαβ Motif, 249, 249F
glycoproteins of, 375–379	up-and-down β, 251–252	βARK (β-Adrenergic receptor kinase), 697
homologous recombination in, 1225	Barré-Sinoussi, F., 545	β-Arrestins, 697
microfossil, 29F	Basal cells, 16F Basal laminae, 373	β Barrel, 231F, 448–449
phylogenetic tree for, 7F in prokaryotic classification, 6	Basal level, 1261	β Bends, 232, 233F β _c , 717–718
RNAP, 96, 1265–1266	Bases, 45–47 . See also Nucleotide bases	β Cells, pancreatic, see Pancreatic β cells
self-compartmentalized proteases of,	and buffers, 48	β Clamp, Pol III, 1182–1183, 1183F
1419–1420 spores of, <i>see</i> Spores	nucleic acid, see Nucleic acid bases Base-catalyzed hydrolysis, RNA, 85, 85F	β Configuration, nucleotides, 83 β Domains, 249–254, 249F
virulence of, 375	Base excision repair (BER), 1216, 1218	β Hairpin motif, 249, 249F
Bacterial artificial chromosomes, see BACs	Base flipping, 1215	β Helix, 314
Bacteriochlorophyll a (BChl a), 135F,	Basement membranes, 373	β-Horseshoe, GyrA intein, 1407
903, 904F Bacteriochlorophyll <i>b</i> (BChl <i>b</i>), 903, 904F, 916	Base pairs, 18, 84 , 1154–1156. <i>See also</i> Watson–Crick base pairs	β-Lactamase, 378 β Oxidation, fatty acids, 945, 947–950 , 958
Bacteriophages, 27 , 1190	association constants for formation, 1155T	β Particles, 572
DNA, 86–88	complementary, 89	β Pleated sheets, 229–232 , 229F–232F
RNAP, 1265	non-Watson–Crick, 1154–1156, 1154F and recombination, 28	globular proteins, 246 propensities and classifications of amino
Bacteriophage λ: cloning vector, 108, 108F, 111F	Base stacking, in B-DNA, 89	acid residues for, 302T
DNA size, 94T	Basic helix-loop-helix/leucine zipper	Ramachandran diagram, 224F
electron micrograph, 108F	(bHLH/Zip), 987	and space filling, 281
helix–turn–helix motif, 1288 template binding, 1264	Basic Local Alignment Search Tool, see BLAST	β PP (Aβ precursor protein), 311–312 β-Propeller, 692
Bacteriophage 434, helix–turn–helix motif,	Basic solutions, 47	β Ribbons, 1290–1291
1288, 1289F	Basolateral domain, 410	β Sandwich, 251
Bacteriophage M13:	Bassham, J., 927	Beta structures, proteins, 229–232 , 229F–232F
cloning vector, 108, 108F replication, 1190, 1190F	Batrachotoxin, 777 Battersby, A., 1053	β Subunit, Pol III, 1182–1183 b gene (fruit fly), 25F
Bacteriophage MS2, sequencing, 176	Baumeister, W., 1414	BgII, 105T
Bacteriophage P1, Cre recombinase,	Bax, A., 656	BglII, 105T
1243–1244 Protosion hana P22, 1288	B blood type, 22	BH ₄ (5,6,7,8-tetrahydrobiopterin), 686,
Bacteriophage P22, 1288 Bacteriophage ФX174:	BBP (branch point-binding protein), 1312, 1314	1043–1044 bHLH/Zip (basic helix–loop–helix/leucine
genetic map, 1344, 1344F	BChl a, see Bacteriochlorophyll a	zipper), 987
Pol I, 1177	BChl b, see Bacteriochlorophyll b	Bi Bi reactions, 498–499
replication, 1190–1193 , 1192F	BCKDH kinase, 1039	Bibliome, 576
template binding, 1266 Bacteriophage SP01, 1284	BCKDH phosphatase, 1039 BCM7, 534–535	Bicyclic cascade, 650, 651F Bidirectional replication, 1174, 1176
Bacteriophage T2, 1264, 1265F	Bcr, 718	Bienert, H., 808
attachment to E. coli, 87F	B-DNA, 88F, 1145–1148 , 1146F, 1147F	Bifurcated hydrogen bond, 261
DNA, 94F, 94T in Hershey–Chase experiment, 87, 87F	conversion to Z-DNA, 1149F structure of ideal, 1148T	Bilayers, see Lipid bilayers Bile acids, 941, 992, 993F
Bacteriophage T4, 27F, 28, 1264, 1265F	three-dimensional structure, 89F	Bile pigments, 1056
cloning vector, 109	Watson-Crick structure, 88-90	Bile salts, 941, 943–944, 989–990, 992–993
DNA size, 94T	Beadle, G., 26, 570	Bilins, 909
FC0 mutation, 1340 template binding, 1266	Becker, J., 1002 Beckmann, R., 422, 424	Bilirubin, 1056 Bilirubin diglucuronide, 1056, 1057
Bacteriophage T5, attachment of, 86F	Bed volume, in gel filtration	Bilirubin UDP-glucuronosyltransferase, 1056
Bacteriophage T6, 94T, 1263F	chromatography, 138	Biliverdin, 1056
Bacteriophage T7, in chain-terminator	Beer–Lambert law, 90 Begg, G., 171	Bimolecular reactions, 483 Binding modules, 705–711
method, 179 Bacteriopheophytin b (BPheo b),	Behenic acid, 387T	Binding modules, 705–711 Binding specificity, protein purification
910–911	Beinert, H., 834	and, 132
Bacteriorhodopsin (BR), 850–851 , 851F	Benign tumors, 703	Bioavailability, 542
membrane structure, 402–403, 403F Baculovirus vectors, 108	Benner, S., 472 Benson. A., 927	Biochemical literature, 34–36 Biochemical review publications, 35T
Baker, D., 305, 306, 310	Benzamidine, 556	Biochemistry, 14–19
Baker's yeast, see Saccharomyces cerevisiae	Benzene, 43, 43T	biological structures, 14-17, 16F
Balch, W., 437	Benzer, S., 28	defined, 3
Baldwin, R., 285, 287 Baltimore, D., 545, 1207	Benzoic acid, 945 BER, see Base excision repair	expression and transmission of genetic information, 18–19
Bamacan, 373T	Berg, P., 109, 1350	genetics review, 19–28
BamHI, 105T	Berger, J., 1167–1168, 1188, 1195, 1275	metabolic processes, 17
Ban, N., 966–968	Bergström, S., 994 Beriberi 474T 617 618	Bioethics, 123
B antigen, 415 Banting, F., 575, 1102	Beriberi, 474T, 617–618 Berman, H., 236, 1287	Bio-Gel A, 139 Bio-Gel P, 139
Barber, J., 916	Bernal, J. D., 241, 331	Biogenic amines, 782
Barford, D., 722, 723	Berry, E., 838, 840	Bioinformatics, 194
Barnett, J., 750 Barrels:	Berzelius, J., 469 Best, C., 575	globular proteins, 256–259 phylogenetic tree construction,
α/α , 982	Best, G., 1102	203–205, 203F

sequence alignment, 195-203 Brown fat, 860 Bovine pancreatic ribonuclease A, 470. Brownian ratchet, 428, 1280 sequence databases, 194-195 See also RNAse A Biological evolution, 29, 30F acid-base catalytic mechanism, Bruice, T., 514, 515 Biological membranes, see Membranes 508-510, 509F Brünger, A., 441, 444 Biological structures, 14-17, 16F physical constants, 153T Brush border cells, 38, 768 Biopterin, 1043 BSE, see Bovine spongiform encephalopathy Bovine pancreatic trypsin inhibitor, BIOSIS Previews, 35 see BPTI B-side transfer, 472 Biosynthesis, 561 Bovine papillomavirus, E1 protein, bST (bovine somatotropin), 119 Bt (Bacillus thuringiensis), 122 Biotin, 473T, 577, 857, 873 1184–1185, 1185F Biotin carboxylase, 963 Bt corn, 122 Bovine somatotropin (bST), 119 5-BU, see 5-Bromouracil Bovine spongiform encephalopathy (BSE), Biotin carboxyl-carrier protein, 963 Biotinyllysine, 873 312,315 Bubonic plague, 722 Bipolar disorder, 736 Box C/D snoRNAs, 1329 Buchanan, J., 1107 Box H/ACA snoRNAs, 1329 Buchner, E., 470, 593 Bishop, M., 705 1,3-Bisphosphoglycerate, see 1,3-BPG Budding yeast, see Saccharomyces cerevisiae Buffers, 47–48 Boyer, H., 107 Boyer, P., 612, 845, 856, 857 2,3-Bisphosphoglycerate, see 2,3-BPG Bisphosphoglycerate mutase, 596F, 1,3-BPG (1,3-bisphosphoglycerate), 580, Buffer capacity, 51 Bugg, C., 656 Bundle-sheath cells, 936 611, 611F 596F, 607, 609 2,3-Bisphosphoglycerate phosphatase, 2,3-BPG (2,3-bisphosphoglycerate): 596F, 611 in glycolysis, 610 α-Bungarotoxin, 781 and hemoglobin oxygen binding, **329–331**, 329F–331F, 340–341 Burley, S., 1303, 1378 Burns, J., 620 Bisphosphonates, 679, 679F Bisubstrate enzyme reactions, 497-501, 498F Bisulfite ion, 1249 BPheo b (bacteriopheophytin b), 910-911 Burst phase, in protein folding, 286 Butryl-ACP, 965 Bisulfite sequencing, 1249 B protein, 1314 Black, J., 764 BPTI (Bovine pancreatic trypsin inhibitor), tert-Butyloxycarbonyl (BOC) group, Blackburn, E. H., 1210 308–309, **533**, 533F 206-208 Black mouth, 342 BR, see Bacteriorhodopsin Butyrylcholinesterase, 782 Brachet, J., 1260 Blaese, M., 122 bw gene (fruit fly), 25, 25F BLAST (Basic Local Alignment Search Bradykinin, 208 Bypass DNA polymerases, 1222 Tool), 201, 202F Bragg, L., 331 Blastocyst, 1250 Bragg, W., 331 Blobel, G., 420, 424, 1371 Brain, metabolic relationships, C1 domain, 730-731 Bloch, K., 961, 975, 976 1090-1091, 1091F C2 domain, 727, 730-731 Block, S., 1273 Branch, phylogenetic trees, 203-204, 203F C3G, 737F Blood, 973 Branched-chain α-keto acid C₄ cycle, 934–937, 936F ABO blood groups system, 22, 414-415 dehydrogenase, 1039 CA1P (2-carboxyarabinitol-1phosphate), 930 Ca²⁺, see Calcium ion Ca²⁺-binding protein, 678 (Ca²⁺)-ATPase, **762–764** Branching enzyme, 646, 667 buffering, 48 universal donors/recipients, 466 Branch migration, 1226, 1230-1234 Branch points, phylogenetic trees, 203–204, 203F Blood-brain barrier, 542, 783 Blood clotting factors, recombinant, 119 Blood glucose, 638, **661–664**, 1094 CABP (2-carboxyarabinitol-1, Branch point-binding protein, see BBP Blood groups, 22, 414-415 Brändén, C.-I., 256, 929 5-bisphosphate), 930, 930F Blood group determinants, 414-415 Branton, D., 408 CACCC box, 1282 Braunstein, A., 1021 BRCA1, 1236 Blood plasma, 323-324 cacophony pre-mRNA (Drosophila Blood vessels, 235 melanogaster), 1322 BLOSUM45 substitution matrix, 201 BRCA2, 1236 Caenorhabditis elegans: BLOSUM62 substitution matrix, 201, 203 Breaker, R. R., 1300, 1318 genome sequencing, 177T, 182 Breast cancer, 119-120, 1236 Blow, D., 527 miRNA, 1326 Blue-green algae, *see* Cyanobacteria Blundell, T., 549 sense RNA injection for, 1323 Breathing motions, 306 Breathnach, R., 1305 trans-splicing in, 1320 Blunt ends, 106 Brenner, S., 1264, 1340, 1341 Cahn, R., 76 Blunt end ligation, 1188 Cahn-Ingold-Prelog system, 76-77 Brewer's yeast, 617F Briggs, G. E., 488 Brij 30, 399F Boat conformation, 363, 363F *N*⁵-CAIR, 1111 BOC-amino acid, 206 CAIR (carboxyaminoimidazole ribotide), BOC (tert-Butyloxycarbonyl) group, Brij 35, 399F 1109F, 1111 206-208 Brinster, R., 86 Cairns, J., 1173, 1181 Bohm, A., 1303 Bohr, C., 328 Bohr, N., 329 Calcineurin (CaN), 724–725 Calcitonin, 673T, 677, 678 British anti-lewisite, 822 Brittle bone disease, 240 Calcium ion (Ca²⁺), 45T, 805, 816–817 Brodsky, B., 236 Bohr effect, hemoglobin, 328-329, 328F, Bromide ion, 45T Calcium metabolism, 677-678 5-Bromo-4-chloro-3-hydroxyindole, 110 Calmodulin (CaM), 655-658, 688, 764 **329,** 340 5-Bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal), 110 Calmodulin-dependent protein kinase I (CaMKI), 658 Boltzmann, Ludwig, 55 Boltzmann constant (k_B) , 53T, 55, 486 Calmodulin-dependent protein kinase II (CaMKII), 699 Bonaparte, N., 799 Bromohydroxyacetone phosphate, 604 Bone, 235, 540 5-Bromouracil, 1339, 1339F Bongkrekic acid, 771 Bronsted, J., 45 Calnexin (CNX), 427, 885-887, 886F, 887F Bronsted acid, 45 Caloric restriction, 1101 Boniva, 679F BoNT/A, 442 Bronsted base, 45 Calorie (unit), 53, 53T BoNT/G, 442 Brouillette, C., 451 Calpain, 736 Calreticulin (CRT), 427, 885–887, 886F Calvin, M., 927, 930 Borhani, D., 451 Brown, A., 323, 488 Boron, 31 Brown, D., 1283 Borsook, H., 1408 Brown, M., 452, 453, 987 Calvin cycle: Botulinus toxin, 780 Brown adipose tissue, 860 control of, 932-934 Botulism, 442, 1340 free energy changes from, 933T Brown algae, 13F

Browner, M., 1001

net reaction, 931

Bovine 20S proteasome, 1417

Calvin (Contd.)	analysis of, 366–367	к-Casein, 547
in photosynthesis, 927–934, 929F	in collagen, 238	Casein kinase 1,660
stoichiometry of, 931	energy recovery from, 789	Casein kinase 2, 660
CaM, see Calmodulin	Fischer convention for, 360–361	CASP (Critical Assessment of Structure
CAM (Crassulacean acid metabolism), 937	functional groups of, 43	Prediction), 305
Cambillau, C., 941	glycoprotein, 380–381	Caspersson, T., 1260
Camels, erythrocyte membranes, 414 CaMKI (calmodulin-dependent protein	low carbohydrate diets, 1106 from photosynthesis, 5	Cassette exons, 1318 Cassette mutagenesis, 119–120
kinase I), 658	Carbohydrate metabolism, 561F	Catabolism, 17, 561–562, 561F
CaMKII (calmodulin-dependent protein	Carbohydrate microarrays, 383	purine ribonucleotides, 1130–1134
kinase II), 699	Carbohydrate recognition markers, 439	pyrimidine ribonucleotides, 1136
cAMP (adenosine-3',5'-cyclic	Carbon, properties of, 29, 31	Catabolite gene activator protein
monophosphate), 653	Carbon-carbon bonds, breaking and mak-	(CAP), 654
and AraC, 1292	ing, 562–563, 567–569, 568F	and AraC, 1292
and blood glucose control, 661	Carbon dioxide:	and catabolite repression,
and catabolite repression, 1286	in Calvin cycle, 927, 931	1286–1288, 1287F
controlling fatty acids with, 861 and eicosanoid mediation, 993	compensation point in plants, 935–936 in photosynthesis, 901, 903, 935–937	Catabolite repression, 766, 1285–1288 Catalase, 10, 866, 935
and integration of metabolic cycles, 1089	transport by hemoglobin, 328–329	heme group in, 324
cAMP-dependent protein kinase (CAPK), 653	Carbonic anhydrase:	horse liver, 153T
cAMP-phosphodiesterases	diffusion-limited, 490	Michaelis–Menten kinetic constants, 489T
(cAMP-PDEs), 698	metal ion catalysis, 511–513, 512F	molecular mass of, 140F
cAMP receptor protein (CRP), 1286	Michaelis-Menten kinetic constants, 489T	sedimentation coefficient, 154F
cAMP response element (CRE), 879	tertiary structure, 246F	Catalysis, free energy of reaction for,
Camptothecin, 1170	Carbon monoxide, heme group and, 324	487, 487F
CaN (calcineurin), 724–725	Carbon monoxide dehydrogenase, 954	Catalysts, 469
Cancer. See also related topics, e.g.:	Carbonylcyanide-p-	Catalytic constant, 490
Carcinogenesis and cell cycle, 1202	trifluoromethoxyphenylhydrazone (FCCP), 860	Catalytic triad, 529
cell metabolism, 864–865	Carboxyaminoimidazole ribotide, see CAIR	Cataplerosis, 1090 Cataplerotic reactions, 818
and chaperone proteins, 720	2-Carboxyarabinitol-1,5-bisphosphate,	Cataracts, and galactose, 633
and DNA methylation, 1251	see CABP	Cate, J., 1366
and gene therapy, 123	2-Carboxyarabinitol-1-phosphate	Catechol, 680, 1059
role of glycoproteins in, 381	(CA1P), 930	Catecholamines, 680, 1058–1060
and telomeres, 1211–1212	Carboxyatractyloside (CATR), 771	Catenation, 1163, 1163F
thymidylate synthesis inhibition, 1129–1130	γ-Carboxyglutamate, 79F	CATH (Class, Architecture, Topology, and
and tyrosine kinase-based signaling,	γ-Carboxyglutamic acid, 79	Homologous superfamily), 256T, 258
703–705 Canis familiaris (dog), genome sequencing,	Carboxy-hemoglobin, solubility and ionic strength of, 133F	Cathepsins, 1408–1409 Cathepsin D, 439, 547
177T	Carboxyl groups, 43F	Cathepsin E, 547
Cantor, C., 158	Carboxyl terminus, see C-terminus	Cathepsin K, 540
CAP, see Catabolite gene activator protein;	Carboxyltransferase, 963	Cation exchangers, 135–136
Cbl-associated protein	Carboxymethyl-cellulose ion exchangers,	CATR (carboxyatractyloside), 771
cap-0, 1302	see CM-cellulose ion exchangers	Cattle, see Cow
cap-1, 1302	Carboxymethyl-CoA, 806	Caveolae, 411
cap-2, 1302 Cap binding protein, eIF4E, 1378	Carboxymethylcysteine, 607 Carboxymyoglobin, 1057	Caveolins, 411 C_{α} backbone, 244–245
Capillary electrophoresis (CE), 152	Carboxymyoglobii, 1657 Carboxypeptidases, 165–166, 168T	C_{α} backbone, 244–243 Cbl-associated protein (CAP), 737F
CAPK (cAMP-dependent protein	Carboxypeptidase A, 168T, 231F, 254F, 473	CBP, see CREB-binding protein
kinase), 653	Carboxypeptidase B, 168T	CCA-adding polymerase, 1331
Capping, of telomeres, 1210	Carboxypeptidase C, 168T	CCAAT box, 1282
Capping enzyme, 1302, 1302F	Carboxypeptidase Y, 168T	CCAAT/enhancer-binding protein α
19S Caps, 1411F	Carboxyphosphate, 873, 1025	$(C/EBP\alpha)$, 572
Capsids, 26	Carboxyprocollagen peptidase, 1403–1404	c-Cbl, 1412–1413, 1412F
Caps structure, 1302, 1302F Capsule, bacterial, 4	Carboxypropyl-CoA, 955 Carcinogens, 1202, 1224–1225	CCdA-p-Puro, 1383, 1383F C chain, proinsulin, 280–281, 280F
Carbamates, 329, 1025	Carcinogenesis, 1202, 1224–1223	CCHL (cytochrome <i>c</i> heme lyase), 448
N-Carbamoylaspartate, 475	Cardiac glycosides, 761–762, 761F	CCK, see Cholecystokinin
Carbamoyl aspartate, in UMP synthesis,	Cardiolipin, 389T, 398T, 1005, 1006F	CCT chaperonins, 301–302, 301F
1115F, 1116	Cardiotonic steroids, 761–762	CCVs, see Clathrin-coated vesicles
Carbamoylation, hemoglobin, 340	Carell, T., 1215	CD, see Circular dichromism
Carbamoyl phosphate, 475,	Carnitine, 946	Cdc6, 1206–1207
1025–1028, 1115F Carbamoyl phosphate synthetase (CPS),	Carnitine palmitoyltransferase I, 946, 975 Carnitine palmitoyltransferase II, 946	Cdc7, 1205 Cdc18, 1206–1207
1025–1028	β-Carotene, 122, 908, 976	Cdc45, 1205
Carbamoyl phosphate synthetase I	Carotenoids, 905F, 907–909	CDKs (cyclin-dependent protein kinases),
(CPS I), 1116	Carrager, B., 437	1202, 1206–1207, 1414
Carbamoyl phosphate synthetase II (CPS II),	Carriers, 745, 748	cDNA:
1115F-1116	Carsonella ruddii, 177T	depositing on DNA chips, 212–213
Carbanions, 563, 563F, 568–569, 569F	CART (cocaine and amphetamine-	and PCR, 116
Carbodiimides 207	regulated transcript), 1099	reverse transcriptase, 1207–1208
Carbodiimides, 207 Carbohydrates, 359 . <i>See also</i> Glycoproteins;	Cartilage, 235, 240T, 375 Caruthers, M., 211	CDP-diacylglycerol, 1004–1005 CD spectroscopy, 284–285, 285F
Monosaccharides; Oligosaccharides;	Casein, 150	Cdt1, 1206, 1207
Photosynthesis; Polysaccharides	β-Casein, 534	CE (capillary electrophoresis), 152

C/EBPα (CCAAT/enhancer-binding	Chain initiation:	Chicken foot (Holliday junction), 1234
protein α), 572	codons for, 1343	Chimeric vector, 104
Cech, T., 1306–1308	protein synthesis, 1373–1379	Chimpanzees, 116, 177T
Celebrex, 543, 1000 Celecoxib, 999–1000	RNAP, 1267–1269 Chain termination:	Chipman, D., 523 Chiral centers, 74–76
Celera Genomics, 181–182	protein synthesis, 1391–1395	Chirality, 74, 78, 225–226
Cells, 3 , 16F. <i>See also</i> Prokaryotes	RNAP, 1271F, 1273–1275	Chiral organic synthesis, 78
eukaryote, 7F	Chain-terminator method, 176. See also	Chi sequences, 1230
human, 12F	Sanger method	Chi structures, 1228
plant, 11F	Chair conformation, 363, 363F, 519F	Chitin, 369, 369F
prokaryotic, 4F Cell cycle, 1202 , 1202F. <i>See also</i> Apoptosis	Chalfie, M., 120 Chamberlin, M., 1273	Chiu, W., 301 Chl, see Chlorophyll
Cell division:	Chambon, P., 1305	Chl <i>a, see</i> Chlorophyll <i>a</i>
meiosis, 21F	Chang, G., 767	Chl b, see Chlorophyll b
mitosis, 20F	Changeux, JP., 349	Chloramphenicol, 107, 1395T, 1396F, 1397
in mitosis, 1202	Channel formers (ionophores), 748	Chloride ion, 45T
Cell growth, 1202, 1211	Channel-forming membrane proteins, 416–418	Chloroform 42T 144
Cell membranes, 4, 4F, 7F. See also Plasma membranes	Channel-forming toxins (CFTs), 416–418 Channeling, 794, 1028, 1075	Chloroform, 43T, 144 Chlorophyll (Chl), 12, 403, 903–912 . See also
Cellobiose, 367, 367F	Ca ²⁺ channels, 772	Photosynthesis
Cellophane, 141	Chaotropic ions, 266	absorption spectrum, 905F
Cell proliferation, 1202. See also Cancer	Chaperone proteins, 293–302, 720	electronic states, 905F
Cell sorters, 575	role in secretory pathway, 421F, 427–428	Chlorophyll a (Chl a), 903, 904F, 905F, 908,
Cellular immunity, 292	Chaperonins, 293	916, 917 Chlorophyll b (Chl.b), 903, 904E 905E 908
Cellulase, 369 Cellulose, 11, 359, 367–369 , 368F	CHAPS (detergent), 399F Chargaff, E., 84, 86, 88	Chlorophyll <i>b</i> (Chl <i>b</i>), 903, 904F, 905F, 908 Chloroplasts, 11F, 13F
Cellulose-based ion exchangers,	Chargaff's rules, 84, 85, 88	photorespiration in, 935
137–138, 137F	Charge relay system, 536	photosynthesis site, 11–12, 901–903
Cell walls, 4	Charges, of amino acid side chains, 71	Chloroquine, 1058, 1409
plant cells, 11, 11F	Charge shielding, 513	Cholate, 992
prokaryotes, 4F Central dogma of molecular biology, 95,	Charge transfer complex, 803–804, 804F Chase, M., 87	Cholecalciferol-25-hydroxylase, 678 Cholecystokinin (CCK), 673T, 675
95F, 1260	CHCRs, see Clathrin heavy chain repeats	Cholera toxin (CT), 694–697, 1398
Centrifugation:	Checkpoint, in cell cycle, 1202	Cholesterol, 392–393 , 393F
differential, 130	C Helix, 242F	and dietary EPA, 1002-1003
ultra-, 132T, 152–156, 159	Chemical carcinogens, 704–705	excretion of, 993
Centrioles, 7F	Chemical damage DNA association	fluidity of, 398
Centromeres, 20, 24F, 109 Ceramides, 390, 1008–1009	Chemical damage, DNA susceptibility to, 1214F	and LDL, 449F in membranes, 398T, 400F
Cerebrosides, 391, 1008–1010, 1009F, 1010F	Chemical equilibria, see Equilibrium	metabolism of, 975, 984–987
Ceruloplasmin, 140F	Chemical evolution, 29, 30F, 31–33 , 185–194	synthesis of, 1096
Cesium chloride, 156, 156F	and gene duplication, 192-194	takeup by LDL, 453–455
CETP (cholesteryl ester transfer	and neutral drift, 188–192	transport of, 452F, 456
protein), 458 Cetuximab, 720	rates for proteins, 191F, 192 and sickle-cell anemia, 185–188	utilization of, 991–993 Cholesterol 7α-hydroxylase, 993
Cetyltrimethylammonium bromide	Chemical kinetics:	Cholesterol biosynthesis, 975–976
(CTAB), 399F	elementary reactions, 483	citric acid cycle intermediates, 818
CE website, see Combinatorial extension	reaction rates, 483–484	control of, 989–991
of optimal pathway	and spontaneous processes, 54	HMG-CoA in, 976–977
C-extein, 1407 CF ₁ CF ₀ complex, 926	transition state theory, 484–487 Chemical logic, 563–565	HMG-CoA reductase in, 987–989 lanosterol in, 982–984 , 985F
cf gene (fruit fly), 25, 25F	Chemical nutagenesis, 1339–1340	and LDL receptor activity, 989–991
CFI (cleavage factor I), 1302	Chemical mutagens, 1181, 1339–1340	pyrophosphomevalonate decarboxylase
CFII (cleavage factor II), 1302	Chemical potential, 58, 744	in, 977–978
c-fos proto-oncogene, 705	Chemical protons, 843	squalene formation, 978–982 , 979F
CFTR (cystic fibrosis transmembrane	Chemical synapses, 778	Cholesteryl esters, 393, 449F, 984, 986
regulator) protein, 427–428 CFTs (channel-forming toxins), 416–418	Chemical synthesis: of genes, 118	Cholesteryl ester hydrolase, 466 Cholesteryl ester transfer protein
CG, see Chorionic gonadotropin	of oligonucleotides, 209–214	(CETP), 458
c gene (fruit fly), 25F	of polypeptides, 205–209	Cholesteryl stearate, 393
cGMP, 687	Chemiluminescence, 183	Cholestyramine, 990
cGMP-dependent protein kinase, 687	Chemiosmotic hypothesis, 846	Choline, 389T, 390, 779
cGMP-phosphodiesterase (cGMP-	Chemokines, 717 Chemolithotrophs, 5	Choline acetyltransferase, 779 Cholinergic synapses, 778–780
PDE), 692 CGN, see Cis Golgi network	Chemotaxis, 717	Chondroitin-4-sulfate, 371F, 372
Chagas-Cruz disease, 799	Chemotrophs, 559	Chondroitin-6-sulfate, 371F, 372
α Chain, hemoglobin, 193, 194	Cheng, X., 1248	Chorionic gonadotropin (CG), 132,
β Chain, hemoglobin, 193, 194	Chenodeoxycholate, 992	673T, 684
δ Chain, hemoglobin, 194	Chickens:	Chorthippus parallelus, 24F
ε Chain, hemoglobin, 194 γ Chain, hemoglobin, 194	cancer viruses, 704–705 embryonic development, 14F	Chou, P., 302, 303 Chou–Fasman method, 302–303
γ Chain, hemoglobin, 194 ζ Chain, hemoglobin, 194	lactate dehydrogenase H, 153T	Chromate, 1075, 1076F, 1077F
Chain elongation:	ovalbumin, 1304, 1304F, 1305F	Chromatids, 20, 24, 24F
protein synthesis, 1372–1373, 1379–1388	as source of proteins for purification, 130	Chromatin, 7F, 8
RNAP, 1270–1272, 1270F, 1271F	triose phosphate isomerase, 231F, 252, 254F	Chromatogram, 144

Chromatographic separations, 135	amphibolic functions, 789,	Cleavage stimulating factor (CstF),
affinity chromatography, 118, 141–143	817–819, 818F	1302–1303
gel filtration chromatography, 138–141	citrate synthase, 789, 790F, 806–808 , 806F,	Cleland, W. W., 498, 536
ion exchange chromatography, 135–138	807F, 815–816	Clinical trials, 542–543
nucleic acids, 157	coupling to glycolysis, 594F	Clones, 104, 113–114
proteins, 135–146	electron-transport chain, 824F	Cloning. See also Molecular cloning
Chromatophores, 902	energy-producing capacity, 813	directional, 117, 117F
Chromogenic substrates, 110	enzymes of, 806–815	molecular, see Molecular cloning
Chromophore, 402, 908	evolution of, 814–815	shotgun, 113
Chromosomal theory of inheritance, 22–26	fumarase, 790F, 791, 812–813, 812F	Cloning vectors (vehicles), 104, 106–109
Chromosomes, 4, 19–20 , 19F	integration of, 813–814, 1090	Clore, M., 656
bacterial artificial, see BACs [bacterial	isocitrate dehydrogenase, 789, 809–810 ,	Closed complexes, 1268
artificial chromosomes]	809F, 815–816	Closed conformations:
in meiosis, 21F	α -ketoglutarate dehydrogenase, 789, 810 ,	Klentaq1, 1179–1180, 1179F
in mitosis, 20F	815–816	Rep helicase, 1186
multiforked, 1195, 1195F	malate dehydrogenase, 790F, 791, 813	Closed systems, 52
number of, in eukaryotes, 19T	net reaction, 791	Clostridium botulinum, 442, 1340
of prokaryotes, 4	overview, 789–792, 790F	Clotting, see Blood clotting
recombination of, see Recombination	oxaloacetate in, 873F	Cloverleaf structure, 1329–1330,
replication of, see DNA replication	pathways using intermediates, 818, 872F	1329F, 1346F
sex, 22–23	pyruvate dehydrogenase complex,	ClpA, 1419
and telomere capping, 1210	792–800, 804–805, 805F	ClpP, 531, 531F, 1419, 1419F
yeast artificial, see YACs (yeast artificial	rate-controlling reactions of, 815–816	Clp protease, 1419
chromosomes)	regulation, 815–817, 816F	ClpX, 1419
Chromosome walking, 114, 114F, 180	replenishing intermediates of, 818–819	CLUSTAL, 201–202, 202F, 205, 304
Chronic myelogenous leukemia (CML), 718	succinate dehydrogenase, 791,	Cmc (critical micelle concentration), 394
Chyle, 451	811–812, 812F	CM-cellulose ion exchangers, 137–138, 141
Chylomicrons, 449, 451–452, 944	succinyl-CoA synthetase, 791,	CML (chronic myelogenous leukemia), 718
and cholesterol biosynthesis, 986	810–811, 811F	CMP (cytidine monophosphate), 83T, 1136F
properties, 449T	Citrulline, 80, 80F, 571F, 1028	CMV (cytomegalovirus), 1403
transport in blood, 973	L-Citrulline, 686	Cn3D, 256T, 258
Chylomicron remnants, 451–452, 986	Citryl-CoA, 807	CNBr, see Cyanogen bromide
Chymosin, 547	CJD, see Creutzfeldt-Jakob disease	CNX, see Calnexin
Chymotrypsin, 470, 525, 525T, 529T, 565	Claisen ester cleavage, 949–950	CO ₂ compensation point, 935–936
active sites, 529F, 531F	Claisen ester condensation, 568	CoA, see Coenzyme A
catalytic mechanism, 531–537	Clamp loader, 1196–1198, 1197F	Coagulation, see Blood clotting
gene duplication, 194	Clans, of Pfam families, 258	Coated pits, 454, 454F
kinetics and catalytic group, 525–527	Clardy, J., 1116	Coated vesicles, 428–439, 429F
Michaelis–Menten kinetic constants, 489T	Clark, B., 1380	Coatomer, 430
proenzymes, 538	Class, Architecture, Topology, and	Cobalamin coenzymes, 473T, 474T
X-ray structure, 527–529, 528F	Homologous superfamily, see CATH	Cobalt ion, 1158
α-Chymotrypsin, 153T, 538, 538F	Class I aaRSs (aminoacyl-tRNA	Cobratoxin, 781
π-Chymotrypsin, 538, 538F	synthetases), 1350–1351, 1350T, 1355F,	Cocaine and amphetamine-regulated
Chymotrypsinogen, 140F, 264F, 527,	1358, 1358F	transcript (CART), 1099
538, 538F	X-ray structure of, 1352–1354	Cocci, 4
CIC channels, 755–756, 755F	Class I promoters, 1286	Cochaperone proteins, 293
Ciechanover, A., 1410	Class I release factors, 1391–1392	Cockayne syndrome (CS), 1218
Cilia, 10	Class II aaRSs (aminoacyl-tRNA	Cocoonase, 525T
Ciliates, 7F, 13F	synthetases), 1350–1351, 1350T, 1355F,	Coding strand, 1266
Cimetidine, 764	1358, 1358F	Codominant traits, 22, 23F
Ciprofloxacin (Cipro), 1167, 1170, 1395	X-ray structure of, 1354–1355	Codons, 95F, 98–101, 1338 , 1343T
Circular dichromism (CD), 284–285, 285F	Class II major histocompatibiliy complex	anticodon interactions with, 1389F
cI repressor, 1288	(MHC) proteins, 1102	frequently used, 1360
Cis-acting elements, 1264	Class II promoters, 1286–1287	nonsense suppressors, 1362, 1362T
Cis cisternae, 428, 429F	Class III promoters, 1287	triplet, 1340–1341
Cis configuration, 28, 388	Classical thermodynamics, 587	Coelenterates, 13F
Cis Golgi network (CGN), 428, 429F	Classification number, 470	Coenzymes, 473–474 , 473T, 474T
Cis-SNARE complex, 444–445	Clathrates, 262F, 263	biosynthesis of flavin, 1138
Cis-splicing, 1320	Clathrin, 430–439	biosynthesis of nicotinamide, 1136–1138
Cisternae, 428	Clathrin barrel, 437F	as covalent catalysts, 511
Cisternal maturation, 428	Clathrin-coated vesicles (CCVs), 431–439,	Coenzyme A (CoA), 82, 473T, 795T. See also
		Acetyl-CoA
Cisternal progression, 428	431F, 433F, 434F Clathrin heavy chain repeats (CHCRs),	biosynthesis, 1138–1139
Cistrans test, 28, 28F	432F, 433	discovery, 791–792
Cistrons, 28, 1264, 1340 Citrate:	Clathrin heavy chains, 430, 432, 432F	Coenzyme B ₁₂ , 954–955, 954F
in citric acid cycle, 789, 790F	Clathrin light chains, 430, 432, 432F, 433F	Coenzyme Q (CoQ; ubiquinone):
glycolysis inhibition, 863–864	Claude, A., 1362	electron-transport chain coenzyme,
and metabolic cycles, 1088–1089	Clausius, R., 56 Cl ⁻ channels, 755–756 , 755F	829–830, 836F in oxidative phosphorylation, 848–849
Citrate condensing enzyme, 806		Coenzyme Q:Cytochrome c oxidoreductase
Citrate synthase, 568, 621 in citric acid cycle, 789, 790F, 806–808 ,	Cleavage and polyadenylation specifying	(Complex III), 840–841, 840F
	factor (CPSF), 1302–1303	
806F, 807F, 815–816 Citric acid cycle, 561F, 789–820	Cleavage factor I, 1302 Cleavage factor II, 1302	Coenzyme QH*, 836F Coenzyme QH ₂ , 836F, 848–849
	Cleavage sites, type II restriction enzymes,	Coenzyme Q reductase, 834–835, 837–840
acetyl-CoA synthesis, 792–805	105, 105T	
aconitase, 789, 790F, 808–809, 808F	105, 1051	Cofactors, 473

Cohen, P., 1025 Conjugate redox pair, 584 cellulose digestion, 369 Cohen, S., 107 Conjugation, 122 mad cow disease, 312, 315 Cohesive ends, 105. See also Sticky ends Connective tissues, 235 as source of proteins for purification, 130 Coil conformation, 230, 232 Connexins, 415, 416 COX, see Complex IV Connexin 26 (Cx26), 416, 417F Coiled coil structure (keratin), 234, 235F Cox, M. M., 1234 Connexons, 415–416 Cointegrate, 1239-1240, 1239F-1241F COX-1, 998, 999 COX-2, 998, 999 Cold denatured proteins, 284 Conservatively substituted positions, 188 Cold-labile proteins, 130 Conservative replication, 90 COX-2 inhibitors, 999-1000, 999F Colicins, 418 Constitutive enzymes, 1261 COX-3, 1000 Colicin E3, 1375 Constitutive heterochromatin, 182 Coxibs, 999 Colipase, 941–942, 941F Cozymase, 594 Constitutive mutation, 1262 Coliphage, 1190 Contact inhibition, 381, 703, 1202 CP43 subunit (PsbC), of photosystem, 916 CP47 subunit (PsbB), of photosystem, 916 Collagen, 78, 163, 235-240 Contigs, 180 assembly, 1405 Contour lengths, 94 CP-320473, 982 Controlled rotation, 1166, 1166F CPDs (cyclobutane pyrimidine dimers), diseases associated with, 240 isoelectric point, 134T Convergent evolution, 317 1214-1215 CPE (cytoplasmic polyadenylation Ramachandran diagram, 224F Cooley's anemia, 219 sedimentation coefficient, 154F Coomassie brilliant blue, 149, 411 element), 1402 CPE-binding protein (CPEB), 1402, 1402F Collagen α1(I), 236F Cooper, J., 1048 Collagen fibrils, 237-240, 237F, 239F, 240T Cooperative binding, 326 CpG islands, 1249 cPLA₂ (cytosolic phospholipase A₂), 727 Cpn10, 294 Collective motions, 307, 308 Cooperative process, 92 Collins, F., 181 Cooperman, B., 1122 Cpn60, 294 Collman, J., 328 Coordinate expression, of enzymes, 1264 Collodion, 141 CPS (carbamoyl phosphate synthetase), Copia, 1246 Colony hybridization, 113-114, 114F COPII protein, 429F, 430, 437-439, 437F, 439F 1025-1028 COPI protein, 429F, 430, 437 Colony-stimulating factors, 119 CPS I (carbamoyl phosphate synthetase I), Coproporphyrinogen I, 1056 Combinatorial chemistry, 541 1116 Coproporphyrinogen oxidase, 448, 1053 CPS II (carbamoyl phosphate synthetase II), Combinatorial extension of optimal pathway, 256T, 258 CoQ, see Coenzyme Q 1115F-1116 Comparative modeling, 304–305 Cordycepin, 1270 CPSF (cleavage and polyadenylation Compare 3D, 258 Core enzyme, 1265, 1267, 1269 specifying factor), 1302-1303 Competitive-binding studies, 674-675 Corepressor, 1297 Craik, C., 530 Competitive inhibition, 493–494, 494F, 747 Cramer, W., 920 Core promoter element, 1282 Complementary base pairing, 18, 89 Core proteins, 373 c-Ras proto-oncogene, 705, 708-709 Complementation group, 27 Crassulacean acid metabolism (CAM), 937 Corev, R., 221, 229 Cori, C., 595, 651, 880 Cori, G., 595, 651, 880 Complementation tests, 24–25, 25F, 27 Cravatt, B., 404 Complement C1, 525T CRE (cAMP response element), 879 Complement C9, 1317 Cori cycle, 880, 880F Creatine, 1092 Creatine kinase, 505, 570, 571F, 583 Complement system-mediated reactions, 121 Cori's disease, 667 CREB, see CRE binding protein Complex I (NADH dehydrogenase, NADH: Corn: Bt corn, 122 CREB-binding protein (CBP), 283-284, 283F coenzyme Q oxidoreductase), 832T, chloroplast, 902F 834-837, 836F-837F, 845 CRE binding protein (CREB), 283-284, Complex II (Succinate dehydrogenase, and pellagra, 474 283F, 879 succinate: coenzyme Q oxidoreductase) 493, 947 in citric acid cycle, 791, **811–812,** 812F transposons, 1236, 1244 CORN crib mnemonic, for handedness of Cre recombinase, 1243-1244, 1245F, 1259 Cretinism, 677 amino acids, 75, 75F Creutzfeldt-Jakob disease (CJD), 312, and electron transport, 832T, 837-840, Cornea, collagen fibrils in, 240T 839F, 845 Cornish-Bowden, A., 623 CRF, see Corticotropin-releasing factor Crick, F., 88, 95, 236, 1146, 1173, 1260, 1340, Cornynephage b, 1397 Complex III (Coenzyme Q:Cytochrome c 1341, 1345, 1360 oxidoreductase, cytochrome bc_1), 832T, Corpeus luteum, 683 840-841, 840F, 847-850, 849F, 912 Correlated invariants, 1346 Cristae, 9, 824, 825F Complex IV (Cytochrome c oxidase, COX), Correlated spectroscopy (COSY), 243 Critical Assessment of Structure Prediction 153T, 188, 584, 832T, **841–845,** 842F, Corrin, 954 (CASP), 305 **851–852,** 851F, 852F Cortex, 679 Critical micelle concentration (cmc), 394 Complex V (proton-translocating ATP Corticosterone, 680 Critical nucleus, 347F synthase), see F₁F₀-ATPase Corticotropin-releasing factor (CRF), CrkII, 737F 673T, 682 Complex oligosaccharides, 888 Crocodiles, blood oxygen utilization, 357 Complex systems, 736–738 Cortisol, 680 Crofts, A., 840 Complimentary DNA, see cDNA Crop plants, 122. See also Corn; Rice Cosmid vectors, 108 Composite transposons, 1237, 1237F Cosmid walking, 181 Cro protein, 1288, 1289F Crossing-over, 20, 24, 24F, 1226–1228 α-Conarachin, 140F Cos site, 108 Concanavalin A, 230, 231F, 246F, 249F, 366 COSY (correlated spectroscopy), 243 Cross-linking agents, 270–271, 270F Concanavalin B, 153T Coulomb (unit), 537 Cross-β spines, 310–311 Crotoxin, 153T Concentration, free energy and, 58, 61 Coulomb's law, 42, 259 Concentration cells, 586 Coumadin, 543F CRP (cAMP receptor protein), 1286 CRT, see Calreticulin Concerted general acid-base catalyzed Coumarin, 1167 reaction, 507 Coupled reactions, **60–61**, 131 Cryo-electron microscopy (cryo-EM), 301, Condensation reactions, for peptide Coupling, translational, 1398 1365-1366 bonds, 70F Covalent catalysis, 510-511 in citric acid cycle research, 798 in secretory pathway research, 422–426, 422F, 423F, 425F Condensing enzyme, 965 Covalent modification, 624 Conformational coupling hypothesis, 845 gluconeogenesis, 878-879 Conformation maps, 223-225 glycogen metabolism, 650-651 Cryptic branch site, 1306 Congenital erythropoietic porphyria, 1056 Cow. See also related topics e.g.: Bovine Cryptic splice sites, 1318 pancreatic ribonuclease A α Crystallin, 140F Conjugate acid, 45

20S proteasome, 1417

γ-B Crystallin, 252, 253F

Conjugate base, 45

Crystallization, protein, 134–135, 241–243	genetic codes for, 100T, 1343T	Cytosine, 18, 83 , 83T. See also Watson–Crick
Crystallographic symmetry, 270	α helix/β sheet propensity, 302T	base pairs
Crystal proteins, 122	as nonessential amino acid, 1065T	and genetic code, 100T, 1343T
CS (Cockayne syndrome), 1218	side chains, 71, 208F, 264T	IR spectra of derivatives, 1155F
CsA, see Cyclosporin A	structure and general properties, 69T	modified nucleosides occurring in
c- <i>Src</i> gene, 705, 706	Cysteine proteases, 1417	tRNAs, 1347F
CstF (cleavage stimulating factor),	Cysteinyl-adenylate, 1359	and point mutation generation,
1302–1303	Cystic fibrosis, 122–123, 427–428	1339–1340, 1340F
CT, see Cholera toxin	Cystic fibrosis transmembrane regulator	Cytoskeleton, 10–11, 10F
CTAB (cetyltrimethylammonium	(CFTR) protein, 427–428	Cytosol, 9–11 . See also related topics, e.g.:
bromide), 399F	Cystine, 71. See also Cysteine	Fatty acid biosynthesis
CTD (C-terminal domain), 1277, 1286–1288	disulfide bond cleavage in protein	citric acid cycle in, 815
CTD (C-terminal domain) kinases, 1277	sequencing, 168–169	gluconeogenesis in, 876–877, 877F
CTD (C-terminal domain) phosphatases, 1277	stereoisomers, 76, 76F	glycolysis in, 595
C-terminal domain, see CTD	D-Cystine, 76, 76F	heme biosynthesis in, 1054
C-terminus, 73	L-Cystine, 76, 76F	metabolic functions, 562T
in protein sequencing, 165–168	meso-Cystine, 76, 76F	mRNA transport to, 101
in protein synthesis, 1371–1373	Cys-tRNA ^{Cys} , 1359	Cytosolic phospholipase A_2 (cPLA ₂), 727
CTP (cytidine triphosphate), 475F	Cyt, see Cytosine	_
in ATCase feedback inhibition, 475	Cytidine, 83T, 1136F	D
synthesis of, 1118–1119	Cytidine deaminase, 1136F, 1322	D, see Dihydrouridine
in transcription, 96, 1265	Cytidine monophosphate, see CMP	D1 protein, 1314
CTP synthetase, 1118	Cytidine triphosphate, see CTP	D1 protein (PsbA), of photosystem, 916
C-Type cytochromes, 316, 316F, 317F	Cytidylic acid, see CMP	D2 protein (PsbD), of photosystem, 916
Cud chewing, 369	Cytochalasin B, 769	DAG, see Diacylglycerol
Cul1, 1412, 1413F	Cytochrome <i>a</i> , 838 , 838F	DAHP (2-keto-3-deoxy-D-
Cullin family, 1412, 1421	Cytochrome b, 838 , 838F, 1408T	arabinoheptulosonate-7-phosphate),
Curare, 781	Cytochrome <i>b</i> ₅ , 401–402, 402F, 971	1075, 1076F
Curie (Ci), 591	Cytochrome b_6 , 920	DAI (double-stranded RNA-activated
Curry, S., 944	Cytochrome <i>b</i> ₆ <i>f</i> complex, 915, 920–921, 921F	inhibitor), 1400
Curved arrow convention, 564	Cytochrome b_{559} , 916	Dailey, H., 1055
Cusack, S., 1381	Cytochrome b_{562} , 250F, 251	Dalgarno, L., 1374
Cushing's syndrome, 681, 743	Cytochrome bc_1 , see Complex III	Dalton (unit), 5
Cut-and-paste transposition mechanism,	Cytochrome $b_{\rm H}$, 838	dam gene, 1247
1237–1239, 1238F	Cytochrome b_1 , 838	Dam methyltransferase (Dam MTase), 1196,
Cx26, see Connexin 26	Cytochrome <i>c</i> , 16F, 188–189, 838, 838F,	1220, 1247
Cyanate, Hb and, 340	841–843	Danio rerio, 177T
Cyanide, 831	amino acid sequence, 186T–187T,	Dansylamino acid, 165, 166F
β-Cyanoalanine, 80, 80F	189F, 196F	Dansylaminoethylthiogalactoside, 770
Cyanobacteria, 5–6, 7F, 12, 13F	evolution of, 189, 191F, 316, 317F	Dansyl chloride, 165, 166F
Cyanogen bromide (CNBr), 142, 170–171	folding of, 284, 289, 289F	Dansyl polypeptide, 166F
Cyanosis, 342	half-life, 1408T	Dark reactions, photosynthesis, 902, 926–937
3',5'-Cyclic AMP, see cAMP	isoelectric point, 134T	C ₄ cycle, 934–937
Cyclic AMP response element-binding pro-	molecular mass, 140F	Calvin cycle, 927–934
tein, see CREB-binding protein (CBP)	phylogenetic tree, 189, 190F	photorespiration and C ₄ cycle, 934–937
Cyclic cascade, 647–650	physical constants of, 153T	D arm, 1346
Cyclic depsipeptide, 748	sedimentation coefficient, 154F	Darnell, J., 718
3',5'-Cyclic GMP, see cGMP	visible absorption spectrum, 838F	Darst, S., 1268
2',3'-Cyclic nucleotides, 508	X-ray structure of, 247F	Darwin, C., 19, 28–29, 799
Cyclic processes, 53	Cytochrome c_1 , 838F, 840, 848	Davies, D., 1076
Cyclic symmetry, of proteins, 268, 268F	Cytochrome c_2 , 912	Davis, R., 109
Cyclins, 214F, 1202	Cytochrome c heme lyase (CCHL), 448	Dayhoff, M., 198
Cyclin-dependent protein kinases, see CDKs	Cytochrome c oxidase (COX), see	Dbf4, 1206
Cyclobutane pyrimidine dimers (CPDs),	Complex IV	Dbf4-dependent kinase (DDK), 1206
1214–1215	Cytochrome c reductase, 188	Dbp5, 1327
Cyclobutylthymine dimer, 1214–1215, 1214F	Cytochrome f, 914–915, 915F, 920	DCCD (dicyclohexylcarbodiimide), 207–208
Cyclohexane, conformations of, 363, 363F	Cytochrome P450:	dcm gene, 1247
Cycloheximide, 1395T, 1396F	detoxification reactions, 1225	Dcm methyltransferase (Dcm MTase), 1247
Cyclooxygenase (COX), 406, 997	and drug metabolism, 543–545	DCMU (3-(3,4-dichlorophenyl)-1,
Cyclopentanoperhydrophenanthrene, 392	in fatty acid oxidation, 959	1-dimethylurea), 915
Cyclophilin, 724F, 725	in heme biosynthesis, 1055	DDBJ (DNA Data Bank of Japan), 195T
Cyclopropane, 398	polymorphic, 545	ddC (2',3'-dideoxycytidine), 1208
Cyclosome, 1414	X-ray structure, 543F	dd CTP (2',3'-dideoxyCTP), 1178–1180
Cyclosporin A (CsA), 292–293, 724	Cytochrome P450 reductase, 686	DDE motif, 1238–1239
Cyglar, M., 886	Cytoglobin, 325	ddI (2',3'-dideoxyinosine), 1208
Cys, see Cysteine	Cytokines, 688	DDK (Dbf4-dependent kinase), 1206
CysRS, in archaebacteria, 1359	γc Cytokine receptor, 123	ddNTP (2',3'-dideoxynucleoside
Cystathione, 1034	Cytokine receptors, 717	triphosphate), 117
Cysteine:	Cytokinesis, 20F, 21F	DEAD-box family, 1379
amino groups, 208F	Cytomegalovirus (CMV), 1403	Deadenylases, 1327
biosynthesis, 1071–1072	Cytoplasm, 4, 1326–1327	DEAE-cellulose ion exchangers, 137, 141
degradation, 1030–1034	Cytoplasmic polyadenylation,	Deamination:
disulfide bonds, 71, 71F, 168–169	1401–1402	of amino acids, see Amino acid deamination
and fluorescence resonance energy	Cytoplasmic polyadenylation element	of bases, 1322–1323, 1339–1340, 1339F
transfer, 286	(CPE), 1402	Death cap (Amanita phalloides), 1280

Death-inducing signal complex, see DISC Detergents, 262, 265, 399F Dihydroceramide, 1009 5-Deazaflavin, 1215 Detergent-resistant membranes Dihydroceramide reductase, 1009 6dEB (6-deoxyerythronolide B), 968 (DRMs), 411 Dihydrofolate (DHF), 445, 492, 1062, 1127 Debranching enzyme, 370, 639, **642–643**, 667 Dihydrofolate reductase (DHFR), 300, 445, Deubiquitinating enzymes, see DUBs DEBS (deoxyerythronolide B synthase), 968 Deuterium, see Hydrogen exchange 492, 1044, 1062, 1129-1130 Dihydrolipoamide, in citric acid cycle, Decamethonium ion, 788 de Vos, A., 684 Decapping enzyme, 1327 Dextran gels, 137, 139, 140T, 141 794-795, 795F Decay, of DNA, 116-117 α-Dextrinase, 370 Dihydrolipoamide dehydrogenase, 796 Decoding, 1379 Dextrins, 370 Dihydrolipoyl dehydrogenase, 792, 801-804, Decorin, 373T Dextrorotatory molecules, 74 **801–814,** 802F, 804F de Duve, C., 9 D forms (amino acids), 74-76 Dihydrolipoyl transacetylase (E2), 792, Deep View, 257 d gene (fruit fly), 25F 793F, **795–797,** 796F, 797F Deformylase, 1374 DGLA (dihomo-γ-linolenic acid), 994 Dihydrolipoyl transsuccinylase (E2o), 810 Degeneracy, of genetic code, 99, 1338, 1341, 1343–1344, 1360–1361 DH (β-hydroxyacyl-ACP dehydrase), 965 Dihydroorotase, 1115F, 1116, 1118 DHA (4,7,10,13,16, 19-Docosahexenoic Dihydroorotate, 1115F, 1116 Dehydroascorbic acid, 364 acid), 387T, 971 Dihydroorotate dehydrogenase (DHODH), L-Dehydroascorbic acid, 364F DHAP, see Dihydroxyacetone phosphate 1115F, 1116 7-Dehydrocholesterol, 678 Dhe-Paganon, S., 1250 Dihydropteridine reductase, 1044 Dihydrosphingosine, 391F, 1009 Dehydrogenases, 318, 498 DHF, see Dihydrofolate Deinococcus radiodurans, 1259 DHFR, see Dihydrofolate reductase Dihydrouracil, 1136F Deisenhofer, J., 294, 403, 453, 840, 910 DHODH, see Dihydroorotate Dihydrouracil dehydrogenase, 1136F de Lange, T., 1213 dehydrogenase Dihydrouridine (D), 1346, 1347F Diabetes insipidus, 743 Deletion mutations, 1340 Dihydroxyacetone, 361, 361F DeLucia, P., 1181 Diabetes mellitus, 310, 1102-1104, 1409. Dihydroxyacetone phosphate (DHAP), Dematin, 412 See also Insulin 596F, 600-603, 929, 944F Denaturation: 1,2-Diacylglycerol, 941 Dihydroxyacetone phosphate of DNA, 90-93, 92F Diacylglycerol (DAG), 661, 994 acyltransferase, 971 Diacylglycerol acyltransferase, 971 of proteins, see Protein denaturation 1α,25-Dihydroxycholecalciferol Denaturation temperature, 57 Diacylglycerol lipase, 994 (1,25(OH)2D), 678, 679 Denatured proteins, 57 3,4-Dihydroxyphenylalanine, see L-DOPA Diacylglycerophospholipids, 1004–1005, 1005F Diagonal plot, 196 Dialysis, 117, 132T, 141, 141F Denitrification, 1083 Dihydroxythymine, 1136F Diimine, 1082 Denitrifying bacteria, 6 De novo methods, 305 Diaminopimelic acid, 123, 377F Diisopropylphosphofluoridate (DIPF), Density gradients, 155 Diastase, 469 526-52 Diketogulonic acid, 364 3'-Deoxyadenosine, 1270 Diastereomers, 75-76 5'-Deoxyadenosylcobalamin (AdoCbl), Diatoms, 13F L-Diketogulonic acid, 364F 954–955, 954F Diatomaceous earth, 144 Diketopiperazine, 243F Deoxycytidine deaminase, 1124 6-Diazo-5-oxo-L-norleucine (DON), 1142 Dill, K., 262, 281, 287 6-Deoxyerythronolide B (6dEB), 968 O-diazoacetyl-L-serine, 1142 Dimers, 267 Dimethoxytrityl (DMTr) protecting group, Deoxyerythronolide B synthase (DEBS), 968 Diazotrophs, 1080 Deoxygenated hemoglobin (deoxyHb), Dicer (RNase), 1324 210F, 211 N^6 - N^6 -Dimethyladenosine, 1156–1157 329, 331 3-(3,4-Dichlorophenyl)-1,1-dimethylurea and BPG, 341, 341F (DCMU), 915 Dimethylallyl pyrophosphate, 977 structure, 331-333, 334F-335F Dickens, F., 892 1-Dimethylamino-naphthalene-5-sulfonyl Deoxygenated hemoglobin S (deoxyHbS), Dickerson, R., 89, 529, 1148 chloride, see Dansyl chloride Dicyclohexylcarbodiimide (DCCD), 343-344, 343F-347F 5,6-Dimethylbenzimidazole (DMB), 954 DeoxyHb, see Deoxygenated hemoglobin 207-208 N,N-Dimethylformamide, see DMF DeoxyHbS, see Deoxygenated hemoglobin S N-,N'-Dicyclohexylurea, 207 N^2 , N^2 -Dimethylguanosine (m_2^2 G), 1347F Deoxynucleoside triphosphates, *see* dNTPs Deoxynucleotides, **82–83** Didanosine, 1208 Dimethyloxaloacetate, 511 2',3'-Didehydro-3'-deoxythymidine, 1208 Dimethylsuberimidate, 270, 270F 2-Deoxy-PIP₂, 728 2',3'-DideoxyCTP (ddCTP), 1178–1180 Dimethyl sulfate (DMS), 1267 2',3'-Dideoxycytidine (ddC), 1208 Dimethyl sulfoxide, see DMSO Deoxyribonucleic acid, see DNA Deoxyribonucleotides, 82-83, 82F, 2',3'-Dideoxyinosine (ddI), 1208 dinB gene, 1222 1119-1130. See also specific nucleotides Dideoxy method, 176. See also 2,4-Dinitrofluorotoluene base, 1177 Deoxy-D-ribose, 18 Sanger method 2,4-Dinitrophenol (DNP), 860 β-D-2-Deoxyribose, 365 3'-Dideoxynucleoside triphosphate Dinoflagellates, 13F (ddNTP), 177 2'-Deoxyribose, **1119–1126** Dintzis, H., 1371 Dinucleotide-binding fold, 256 2'-Deoxy-D-ribose, 83 Dielectric constants, 42-43, 43T Dioldehydrase, 1018 Deoxyribosomes, 1308 2,4-Dienoyl-CoA reductase, 952 Deoxy sugars, 365 3,5-2,4-Dienoyl-CoA reductase, 952 Dipeptides, 70, 70F Deoxythymidine, 83T, 1136F DIPF (diisopropylphosphofluoridate), Diethylaminoethyl cellulose ion exchangers, Deoxythymidine monophosphate (dTMP), see DEAE-cellulose ion exchangers 526-52 Diphosphatidylglycerol, 389T 83T, 1127-1128 Diethyl ether, 43T, 144, 398 Dephospho-CoA kinase, 1138, 1139F Diethylpyrocarbonate, 312-313, 313F 1,3-Diphosphoglycerate, 607 Dephospho-CoA pyrophosphorylase, 2,3-Diphosphoglycerate (DPG), 329 Diet-induced thermogenesis, 1099-1100 1138, 1139F Differential centrifugation, 130 Diphthalamide residue, eEF2, 1398 Diffusion coefficient, 745 Diphtheria, 1397-1398 Depsipeptides, 1272 Dermatan sulfate, 371F, 372 Diffusion-controlled limit, 490 Diphtheria toxin (DT), 123, 153T, 1395T, Dermatosparaxis, 1404 Digalactosyl diacylglycerol, 902 1397-1398 Desamido NAD⁺ (nicotinate adenine dinucleotide), 1138 Digitalis, 539, 761–762, 761F Digitoxin, 761–762 Diplococcus pneumoniae, 85 Diploid cells, 24F Dihedral angles, 222–225 Desaturases, 969-971 Diploid genome, 182 de Saussure, T., 901 Dihedral symmetry, of proteins, 268, 268F Diploid number, 19 Desensitization, 697 Dihomo-γ-linolenic acid (DGLA), 994 Dipolar ions, 70

7,8-Dihydrobiopterin, 1043–1044

Dipole-dipole interactions, 260–261, 260F

Destruction box, 1414

Dipole moment, 39, 43T	DNA chips, see DNA microarrays	DNA polymerase Y family, 1202
Dipyrromethane, 1053	DnaC protein, 1190, 1190T, 1195, 1206	dnaQ gene, 1182T
Directional cloning, 118, 118F	DNA Data Bank of Japan (DDBJ), 195T	DNA recombination, see Recombination
Direct transposition, 1237–1239	DNA-directed DNA polymerases, see DNA	DNA repair, 1213–1225
Disaccharides, 367 Disc electrophoresis, 148, 148F, 149F	polymerases	and carcinogen identification, 1224–1225
Discontinuous pH electrophoresis, 148, 148F	DNA-directed polymerases, 1173. See also DNA polymerases	direct damage reversal, 1214–1216 double-strand break repair, 1223–1224
Discriminator base, 1351F	dnaG gene, 1176	excision repair, 1216–1219
Disorder, entropy and, 54–57	DNA glycosylases, 1218	mismatch repair, 1220
Dissociation constant (K_a) :	DnaG protein, 1190T	and Pol I, 1181
and acid strength, 45–47, 46T	DNA gyrase, 1166–1169, 1174–1175 ,	and replication fidelity, 1200-1201
and pH, 47	1190, 1195	and SOS response, 1221–1223
of polyprotic acids, 49–50	DnaJ, 293	DNA replicase, 1182
Distal histidine, in hemoglobin, 332, 340	DnaK, 293	DNA replication, 18–19, 1145, 1173–1213.
Distance-based tree-building, 205 Distance matrix, 204–205	DNA ligase, 103, 103F, 1176 in DNA replication, 1187–1188 ,	See also related topics, e.g.: DNA ligase enzymes for, 1176–1189
Distributive enzymes, 1177	1188F, 1189F	in eukaryotes, 1201–1213
Disulfide bonds:	in mismatch repair, 1220	in meiosis, 21F
cysteine, 71, 71F	DNA ligase IV, 1224	in mitosis, 20F
insulin, 165F	DNA methylation, 1246–1252	overview, 1173–1176
interchange reaction, 280F	DNA methyltransferase, 104, 105	in prokaryotes, 1173, 1190–1201 , 1200F
keratin, 235	DNA microarrays, 211–213 , 211F, 212F,	semiconservative nature of, 90, 91F,
in native proteins, 292	213F	1173–1174
in protein sequencing, 168–169, 172, 184 and protein stability, 264–265	<i>dnaN</i> gene, 1182T DNA photolyases, 1214–1215, 1215F	semidiscontinuous, 1175–1176, 1175F telomeres, 1209–1213
Divergent evolution, 254, 317	DNA polymerase, 101–103, 102F,	unwinding, 1183–1187
Dixon, J., 736	1173–1174, 1174F	and viruses, 27
DL3,714	bypass, 1222	DNA-RNA hybrids, 96, 1151, 1151F
D-loops, 1213	error-prone, 1222	DNase I, 1181
DM (myotonic dystrophy), 1252	eukaryotic, 1202–1205, 1203T	DNA sequencing:
DMB (5,6-dimethylbenzimidazole), 954	intercalating agents inhibit, 1272	automated, 179–180
DMF (<i>N</i> , <i>N</i> -dimethylformamide), 134, 262	nucleotidyl transferase mechanism, 1180F	genome sequencing, 180–182
DMS (dimethyl sulfate), 1267 DMSO (dimethyl sulfoxide), 43T, 134, 262	in PCR, 114–115 properties of selected animal, 1203T	Sanger method, 176–180 sequence databases, 194–195
DNA (deoxyribonucleic acid), 3, 18, 1145.	replication fidelity, 1200–1201, 1201F	DNA topoisomerases, 1176
See also related topics, e.g.: DNA repair	RNA-directed, 95F, 116	DnaT protein, 1190, 1190T
A-DNA, 1146F, 1147F, 1148–1149 ,	and semidiscontinuous replication,	DNA unwinding elements (DUEs), 1194
1148T, 1151	1175–1176	dnaX gene, 1182T
B-DNA, 1145–1148, see B-DNA	and TERT, 1210	DNMT1, 1250
as carrier of genetic information, 85–88	T7 DNA polymerase, 179	DNMT3a, 1250
and central dogma of molecular biology, 95, 1260	DNA polymerase α (pol α), 1202–1203 DNA polymerase β (pol β), 1205	DNMT3b, 1250 DNP (2,4-dinitrophenol), 860
chemical structure, 84–85	DNA polymerase γ , see Pol γ	dNTPs (deoxynucleoside triphosphates):
cloning, see Molecular cloning	DNA polymerase δ , see Pol δ	in chain-terminator method, 177–179
complementary base pairing, 18	DNA polymerase ε , see Pol ε	in DNA replication, 101, 1170, 1174F
decay of, 116–117	DNA polymerase ζ , see Pol ζ	and replication fidelity, 1200-1201
denaturation and renaturation, 90–93,	DNA polymerase η , see Pol η	Docking proteins, 420, 710
92F, 93F	DNA polymerase ı, see Pol ı	4,7,10,13,16,19-Docosahexenoic acid,
double helical structure, 1145–1148	DNA polymerase κ, see Pol κ	see DHA Dodecyltriethylammonium bromide
fractionation, 156–159 frictional ratio, 155	DNA polymerase I (Pol I), 103, 103F, 1176–1181	(DTAB), 399F
junk, 1317	in bacteriophage ϕ X174 replication, 1191	Dodson, E., 1216
mutationos of, see Mutations	in bacteriophage M13 replication, 1190F	Dogs:
in nucleus, 8–9	error correction, 103–104	fatty acid experiments with, 945
replication, 18F, 90, 101-104, 102F	error rate, 1220	number of chromosomes, 19T
sedimentation coefficients, 154F	as A family polymerase, 1202	Dolichol, 883, 883F
semiconservative replication, 1173–1174	in gene manipulation, 109	Dolichol-P-mannose, 884
semidiscontinuous replication, 1175–1176, 1175F	role in recombination repair, 1234 in site-directed mutation, 119	Dolichol-PP-oligosaccharide synthesis, 884F, 885
size, 94–95	T. thermophilus, 1179F	Domains:
structure, 18F	use in nucleic acid sequencing, 177–179	of life, 6
supercoiled, 1158–1170	DNA polymerase II (Pol II), 1181 , 1181T	of proteins, 247 , 281
transcription, 95–98	as B family polymerase, 1202	Domain swapping, 718
X-ray diffraction, 88F	role in SOS repair, 1222	Dominant traits, 20–22
Z-DNA, 1146F, 1147F, 1148T, 1149–1151	DNA polymerase III (Pol III), 103, 1182–1183	DON (6-Diazo-5-oxo-L-norleucine), 1142
DnaA boxes, 1194, 1195	as C family polymerase, 1202	Donahua I 88
<i>dnaA</i> gene, 1196 DnaA protein, 1194–1195, 1206	error correction, 103–104 role in mismatch repair, 1220	Donohue, J., 88 Dopamine, 80, 80F, 783, 1058–1060
dnaB gene, 1182T	DNA polymerase IV (Pol IV), 1182, 1222	Dopamine β-hydroxylase, 1060F
DnaB helicase, 1191, 1193–1194	DNA polymerase V (Pol V), 1182, 1222	Dopamine receptors, 689
DNA-binding domain, 705	DNA polymerase A family, 1202, 1205	Dot matrices, sequence alignment using,
DnaB protein, 1206	DNA polymerase B family, 1202	196–197, 197F
in prokaryotic replication, 1190, 1190T,	DNA polymerase C family, 1202	Dot plot, 196
1191, 1195, 1199 in unwinding of DNA 1182 1184 1184T	DNA polymerase D family, 1202	Double blind tests, 542–543 Double displacement reactions, 400
in unwinding of DNA, 1183, 1184, 1184T	DNA polymerase X family, 1202	Double-displacement reactions, 499

Double helical structure, of DNA, 88-90 heat shock proteins, 293, 294 Ducruix, A., 709 homologous recombination, 1228-1230 Double-reciprocal plot, 490, 490F, DUEs (DNA unwinding elements), 1194 494F-496F, 499F, 500F Dunathan, H., 1033 inclusion bodies, 117, 117F doublesex (dsx) pre-mRNA (Drosophila Dunn, M., 1078 internal structure, 5F melanogaster), 1318 Duplex DNA, 90, 1159F. See also dsDNA isocitrate dehydrogenase, 817 lac operon, 97, 97F Double-sieve mechanism, 1356 (double-stranded DNA) Double-strand breaks, see DSBs dUTP, 1218 membrane of, 398T Double-stranded DNA, see dsDNA dUTP diphosphohydrolase (dUTPase; mismatch repair, 1220, 1220F molecular composition, 5T Double-stranded RNA, see dsRNA dUTP pyrophosphate), 1126 Double-stranded RNA-activated inhibitor Dutton, L., 841 multiforked chromosomes, 1195, 1195F Dutzler, R., 755 (DAI), 1400 nonsense suppressors, 1362, 1362T Double-stranded RNA-activated protein du Vigneaud, V., 205 nucleotide excision repair, 1217 kinase (PKR), 1400 Duysens, L., 909 Pol I, 1176-1181, 1181T Pol I Klenow fragment, 1178F Doublié, S., 1303 Dwarfism, 685 Doubly wound sheets, 254, 255F Dyad axes, 89F Pol II, 1181, 1181T Pol III, 1181T, 1182-1184, 1182T, 1183F Douce, R., 1032 Dynamic mutations, 1251–1252 Doudna, J., 1324 Dynamin, 436 Pol IV, 1182 Down mutations, 1266 Dynamite, 743 Pol V, 1182 Down's syndrome, 312 pre-mRNA splicing, 1312 Dynein, 440 primase, 1188-1189, 1189F Doxorubicin, 1169, 1170 Dystrophin, 1305 DPG (2,3-diphosphoglycerate), 329 promoters, 1266, 1267F pUC18 cloning vector, 107, 107F, 111 dp gene (fruit fly), 25F pyrimidine synthesis regulation, 1118F Dpo4, 1222, 1222F E1, see Pyruvate dehydrogenase; Drew, H., 89, 1148 pyruvate dehydrogenase complex, Ubiquitin-activating enzyme Driving force, 587 792, 793F RecBCD, 1231, 1231F drk protein, 709 EI (Enzyme I), of PTS system, 765 replication, 1174F, 1192-1200, 1193F DRMs (detergent-resistant membranes), 411 E10, see α-Ketoglutarate dehydrogenase E1p, 799 replication in, 1183-1187, 1184T Drosha, 1325 Drosophila melanogaster, 23F E1 protein: replication rate, 1174-1175 alternative splicing, 1318, 1319F of bovine papillomavirus, 1184–1185, 1185F replisome, 1196F cacophony pre-mRNA, 1322 and Rho factor, 1275-1276 Rho factor, 1276F chromosome number, 19T ribosome complements, 1363T E2, see Dihydrolipoyl transacetylase; complementation test, 25F Ubiquitin-conjugating enzyme ribosomes, 367F, 1363-1365, 1363F-1366F, DNA, 94, 94T, 95F EIIA, of PTS system, 765, 767F 1370-1371 EIIB, of PTS system, 765 RNAP, 1265-1266 Dscam protein, 1318 genetic experiments, 23-26 EIIC, of PTS system, 765 RNA primers, 1176 genetic map, 25F EII, of PTS system, 765 RNAP subunits, 1277T genome sequencing, 113, 177T, 182 E2o (dihydrolipoyl transsuccinylase), 810 RuvABC in, 1231 mitochondria, 1344T E3, see Ubiquitin-protein ligase semidiscontinuous replication, 1175 per gene, 120F Ε3α, 1413, 1414 shuttle vectors, 118 26S proteasome, 1411F E3b, 799 σ factors, 1284 replication, 1176F, 1202, 1205F E3 binding protein (E3BP), 798 simultaneous transcription and RNA interference, 1324 E3o, 799 translation, 1283F spliceosomes, 1312F transposons, 1244, 1246 E3p, 799 as source of proteins for purification, 130 termination pathway in ribosomes, 1391F E4P, see Erythrose-4-phosphate ubiquitin, 1409 E6-associated protein (E6AP), 1414 Ter sites and oriC locus, 1199F Drugs, 78, 396, 968 E6 protein, 1414 thymine dimer effect, 1214-1215 Drug design, 539 E. coli, 4-5, 4F. See also Bacteriophages; topoisomerase III Y328F mutant, cytochromes P450, 543-545 specific genes χ^{1776} strain, 123 . 1163–1165, 1164F discovery techniques, 539-541 TPP-sensing riboswitch, 1300, 1300F HIV protease and its inhibitors, 545-551 Ada protein, 1216 transcription in, 1271-1273, 1273F, pharmacology, 542-545 ampicillin resistant, 26 structure-based, 541 aspartokinase isoenzymes, 1075T translation in, 1375F, 1376F Drug discovery, 539-541 BAC replication in, 109 tRNA genes, 1330 Drug-drug interactions, 544 and bacteriophages, 27F, 28, 86F, 87, two-dimensional gel electrophoresis Druker, B., 719 87F, 1340 of, 152F DSBs (double-strand breaks), biological structures, 14, 15F type II restriction enzymes, 105T 1223–1224, 1235F carbamoyl phosphate synthetase, UV absorbance spectra of nucleic acids Dscam protein, 1318 and DNA, 92F 1027-1028 dsDNA (double-stranded DNA), 18F catabolite repression, 1285-1288 E54K mutation, 1239 detection by electrophoresis, 158, 158F Ealick, S., 1116 CCA-adding polymerase, 1331 Early endosome antigen 1 (EEA 1), chromosome replication, 1195 Klentaq1, 1180 replication, 102-103, 1174 cloning of, 104 734, 735F from semiconservative replication, 90 DNA conservation experiments, 90, 91F early genes, 1284 dsRNA (double-stranded RNA), 85, 1323 DNA ligase, 1188, 1188F, 1189F Eaton, W., 346, 353 DSX-F protein, 1318 DNA methylation, 1247 4E-BP1, 1401 DNA of humans vs., 8-9 DSX-M protein, 1318 4E-BP2, 1401 dsx (doublesex) pre-mRNA (Drosophila 4E-BP3, 1401 DNA repair, 1214 melanogaster), 1318 DNA replication, 102F-104F, 103, 104 Ebright, R., 1286, 1287 DT, see Diphtheria toxin DNA size, 94T EBS (epidermolysis bullosa simplex), 235 DTAB (dodecyltriethylammonium elongation cycle, 1380F Echinoderms, 13F enzyme induction, 1260-1264 bromide), 399F Eck, M., 716, 721 dTMP, see Deoxythymidine monophosphate Eclipsed conformation, 222, 223F genome sequencing, 113, 177T EcoRI, 105, 105F, 105T, 106 DUBs (deubiquitinating enzymes), 1417-1418, 1420-1421 GroEL/ES system, 294-302 EcoRII, 105T

EcoRV, 105–106, 105F, 105T, 109	gene duplication, 194	Elongation factor (EF), 422–423,
ECS (editing site complementary	proenzymes, 538	1375T, 1379
sequence), 1323F	specificity, 169T	Elution, in ion exchange chromatography, 136
Ectodomains, 453, 684	X-ray structure, 528F, 530, 534–535, 535F	Embden, G., 595
$ED_{50}, 539$	Elasticity coefficient, 622	Embden–Meyerhoff–Parnas pathway, 595.
Edema factor (EF), anthrax, 715 Edidin, M., 408	Elastin, 240, 529	See also Glycolysis EMBL Nucleotide Sequence Database,
Editing:	Electrical synapses, 778 Electric fish, 779–780	195T
of DNA chain, 1170, 1201	Electroblotting, 111	Embryogenesis, 1250–1251, 1401
of tRNA, 1355–1358	Electrochemical cells, 584, 584F	Embryological development, 14F
Editing site complementary sequence	Electrochemical potential, 745	Embryonic stem cells, 121
(ECS), 1323F	Electromotive force (emf), 584	Emergent properties, 738 Emf (electrometive force), 584
Editosome, 1321–1322 Edman, P., 165, 171	Electron acceptor, 584 Electron density, 241	Emf (electromotive force), 584 Enantiomers, 74–76, 74F
Edman, 1., 105, 171 Edman degradation, 165, 167F, 171, 172, 174	Electron density, 241 Electron density maps, 241–242, 242F	Endergonic processes, 57
Edman's reagent, 165, 167F	Electron donor, 584	End groups, amino acid, 165–168
EDTA (ethylenediaminetetraacetic	Electronic complementarity, Watson-Crick	Endo, T., 446
acid), 157	base pairs, 1155–1156	Endo conformation, 1153, 1153F
EEA 1, see Early endosome antigen 1 eEF1A, 1388, 1389F	Electron pairs, acids/bases and, 45	Endocrine glands, 671, 672F Endocrine hormones, 671
eEF1B, 1388	Electron paramagnetic resonance (EPR), 911	Endocrine normones, 671 Endocrine system, 672F
eEF1B α, 1388, 1389F	Electron paramagnetic spectroscopy, 911	Endocytosis, 8, 433, 454F, 986, 986F
eEF1B β, 1388	Electron spin resonance (ESR)	Endoglycosidases, 366
eEF2, 1388, 1398, 1405	spectroscopy, 911	Endonucleases, 1160, 1407–1408. See also
EF, see Edema factor; Elongation factor	Electron-transfer flavoprotein (ETF), 948	Restriction endonucleases
EF1A, 1379 EF1B, 1379	Electron-transfer reactions, 586 Electron transport, 188, 386, 823, 828–845 .	Endopeptidases, 169–170, 169T, 194 Endopeptidase Arg-C, 169T
EF2, 1385–1386	See also Oxidative phosphorylation	Endopeptidase Asp-N, 169T
Effectors, 348, 442, 625T, 688	and acyl-CoA reoxidation, 948	Endopeptidase Glu-C, 169T
EF-G, 1375T, 1385–1388 , 1386F	Coenzyme Q:Cytochrome c	Endopeptidase Lys-C, 169T
EF hands, 656	oxidoreductase, 832T, 840–841, 841F	Endoplasmic reticulum (ER), 7F, 9, 11F
Efstradiadis, A., 1306 EF-Ts, 1375T, 1379, 1381–1382, 1382F	components of, 833–845 cytochrome <i>c</i> oxidase, 832T,	metabolic functions, 562T rough, see Rough endoplasmic reticulum
EF-Tu, 1375T	841–845, 842F	secretory pathway in, 420–424
in chain initiation, 1382F, 1386, 1386F, 1388	inhibitor studies, 831, 831F	smooth, see Smooth endoplasmic reticulum
and Gln-tRNA ^{Gln} , 1358	in mitochondria, 823-828	β-Endorphin, 673T, 685
and initiator tRNA, 1380–1381, 1381F	NADH:Coenzyme Q reductase, 832T,	Endosomes, 455F
and translational accuracy, 1390–1391	834–835	Endothelial NOS (eNOS), 686–688
Egelman, E., 1228 EGF, see Epidermal growth factor	net reaction, 824F, 829–830, 829F P/O ratio, 831–833, 833F	Endothelium, 686 Endothermic processes, 53
EGF receptor, 699	in purple photosynthetic bacteria,	Endotoxins, 688
EH, see Enoyl-CoA hydratase	909–913, 913F	δ-Endotoxins, 122
E Helix, 242F	reduction potentials of components in	End point, of titration, 51
EHK (epidermolytic hyperkeratosis), 235	testing mitochondria, 832T	Enediolate anion, 567
Ehlers-Danlos syndromes, 240, 1404 Eicosanoid metabolism, 993–997	rigid coupling of phosphorylation and oxidation, 831–833	Energy, 53 conservation of, 52–54
for leukotrienes and lipoxins, 996F,	sequence of, 829–833	and evolution, 34
1000–1004	thermodynamics, 828–829	metabolic processes, 17
for prostaglandins, prostacyclins, and	two-center, in photosynthesis, 913-925	for prokaryotes, 5–6
thromboxanes, 996F, 997–1000	Electron tunneling, 841	Energy barrier, to free rotation of
Eicosanoid receptors, 689 5,8,11,14,17-Eicosapentaenoic acid, <i>see</i> EPA	Electrophiles, 563–564, 563F Electrophilic catalysis, 510	polypeptide backbone, 222–223 Energy coupling, 845
8,11,14-Eicosatrienoic acid, 994	Electrophine catalysis, 310 Electrophoresis, 132T	Energy metabolism strategies, 1088–1090
eIF1A, 1376	capillary, 152	Energy-rich bonds, 580
eIF2, 1376, 1399–1401	gel, 147–150	Energy-rich compounds, see High-energy
eIF2α, 1399–1401	isolelectric focusing, 150–152	compounds
eIF2B, 1379, 1399 eIF2α kinases, 1399	nucleic acids, 158–159 paper, 146–147	Energy surface, in landscape theory, 287 Energy transduction, 587, 845
eIF2 phosphatase, 1399	proteins, 146–152	Engelman, D., 1365
eIF3,1376	SDS-PAGE, 150	Englander, W., 285
eIF4A, 1378	Electrophoretic mobility, 146	Englemann, T., 901
eIF4B, 1365, 1379	Electroplaques, 779, 779F	Enhancers, 1282–1283, 1337
eIF4E, 1378, 1399, 1401 eIF4F, 1378	Electrospray ionization (ESI), 172 Electrostatic forces, protein stability and,	Enolase, 567, 596F, 612–613 , 613F Enolate, 568, 569F
eIF4G, 1327, 1378	259–261	Enol forms, of nucleotide bases, 88
eIF4H, 1379	Elements, periodic table, 31F	Enol phosphates, 580
eIF5, 1379	Elemental composition, humans, 29T	5-Enolpyruvylshikimate-3-phosphate
eIF5B, 1379	Elementary reactions, 483	synthase (ESPS-synthase), 1075
eIF <i>n</i> , 1376, 1378 80S subunit (ribosome), 1370T, 1371, 1371F	11S regulator, 1418–1419 Elimination reactions, 566–567 , 567F	eNOS (endothelial NOS), 686–688 Enoyl-ACP reductase (ER), 965
Einstein (unit), 903	Elion, G., 1130	Enoyl-CoA hydratase (EH), 947, 947F,
Eisenberg, D., 310, 929, 1068, 1315	ELISA, see Enzyme-linked immunosorbent	948, 958
EJC (exon junction complex), 1326–1327	assay	Enoyl-CoA isomerase, 950
Eklund, H., 934, 1119, 1122	Ellis, J., 293	3,2-Enoyl-CoA isomerase, 952
Elastase, 525, 525T, 529T	Elongases, 969–971	Enteropeptidase, 537

Enthalpy, 53-54 ESTs (expressed sequence tags), 181 in fatty acid metabolism regulation, 973 Entner-Doudoroff pathway, 636-637 ETF (electron-transfer flavoprotein), 948 in glycogen metabolism regulation, 660 Entropy, 55-57 synthesis, 1058-1060 ETF:ubiquinone oxidoreductase, 837, 948 Epithelial cells, 373, 410 Ethanol, 783. See also Yeast alcohol of peptidyl transferase reaction, 1384-1385 Epitopes, 205 and protein folding, 284, 287 dehydrogenase dielectric constant and dipole moment, 43T and temperature, 56F EPO, see Erythropoietin unitary entropy change, 263T Epoxy-activated agarose, 142, 143F from Entner-Doudoroff pathway, 636, 637F env, 1246 2',3'-Epoxy-ATP, 1180 from fermentation, 616 EPR (electron paramagnetic resonance), 911 Enzymatic interconversion, see Covalent prochiral atoms of, 77F protein solubility in, 134 E protein, 1314 modification Enzymes, 4, 163, 469-479. See also Ethanolamine, 389T, 390, 1004 Equatorial groups, in sugars, 363 specific enzymes Equilibrium, 55, **58–61,** 587 Ethics, of gene therapy, 123-124 activity control, 474-479 Equilibrium constants, 45–47, 58–59, 58T Ethidium ion, 157, 1161-1162, 1162F Ethyl-CoA, 874 Equilibrium density gradient ultracentrifuallosteric control, 476-479 in assays, 131 gation, 90, 91F, 155, 156, 159 Ethylenediaminetetraacetic acid (EDTA), 157 catalytic activity of, 243 Equilibrium thermodynamics, 587–588 Ethylene glycol, 265 chemical catalysts vs., 469 Equivalence point, 48 O^6 -Ethylguanine residues, 1216 coenzymes, 473-474 ER, see Endoplasmic reticulum; Enoyl-ACP N-Ethylmaleimide (NEM), 440–441 for DNA replication, 1176-1189 Ethylnitrosurea, 1340 reductase DNA replication error repairing, 103-104 Erabutoxin, 781 Etoposide, 1169, 1170 feedback inhibition control for, 475 ERAD process, 427 Eubacteria, 6, 192 Erbitux, 720 Euchromatin, 182 geometric specificity, 472-473 eRF1, 1392 as globular proteins, 241 Eukarya, 6, 7F historical perspective, 469-470 Eukaryotes, 3, 6-14 eRF3, 1392 for liposome delivery, 396 Ergocalciferol, 678 cellular architecture, 8-12 nomenclature, 479 Ergosterol, 393, 678 chromosome number, 19T ERKs (extracellular-signal-regulated one gene-one enzyme maxim, 26 citric acid cycle in, 789 processive and distributive, 1177 kinases), 713 DNA, 86, 88, 94T selective catalysis by, 588–589 Ernst, O., 694 DNA methylation, 1248-1251 stereospecificity, 470-472 ERp57, 886 DNA replication, 1201-1213 substrate specificity, 470-473, 470F Error catastrophe, 587 evolution of, 13F, 34 Enzyme I (EI), of PTS system, 765 Error correction: genome sequencing, 176 in DNA replication, 103-104 Enzyme catalysis. See also Drug design glucose transporters, 751 acid-base catalysis, 506-510 in RNA replication, 1281, 1281F introns of, 1316 covalent catalysis, 510-511 Error-prone DNA polymerases, 1222 metabolic pathway location, 562 mismatch repair, 1220 Erythomycin, 1395T, 1396F electrostatic catalysis, 512 lysozyme, 517-525 Erythrocruorins, 325 mRNA posttranscriptional modification, metal ion catalysis, 511-512 Erythrocytes, 324–325 1302-1327 and preferential transition state binding, heme synthesis regulation, 1055-1056 nuclear pores of, 1327 nucleotide excision repair, 1217 **515–516.** 516F and sickle-cell anemia, 185-188, 185F, and proximity/orientation effects, 512-515 phylogeny and differentiation, 12-14 serine proteases, 525-537 Erythrocyte ghosts, 411 polypeptide synthesis, 1376-1379, zymogens, 537-538 Erythrocyte glucose transporter, 746-748, 1388, 1392 Enzyme Commission, 470 746F, 747F RecA-like proteins, 1230 ribosomes, 1369–1371 Enzyme induction, 1260-1264 Erythrocyte membranes, 411-414, 411F Enzyme inhibition, 493–496 and blood groups, 414-415 rRNA processing, 1328-1329 Enzyme kinetics, 482, 487-492 composition, 398T secretary proteins, 421F bisubstrate reactions, 497-501 freeze-etch micrograph, 410F translational in, 1376-1379, 1377F competitive inhibition, 493-494 glycophorin A, 401F translation in, 1398-1402 Erythromycin A, 968, 969F transposons, 1244-1246 data analysis, 490-491 and flux control coefficient, 621-622 Erythropoietic protoporphyria, 1055 Eukaryotic gene expression: Erythropoietin (EPO), 119, 123, 717 in bacteria vs. eukaryotic cells, 118–119 Haldane relationship, 491-492 Michaelis-Menten kinetics, 488-491, D-Erythrose, 360F and colony hybridization, 114 496-497, 501-503 Erythrose-4-phosphate (E4P), 636, and mRNA lifetime, 101 mixed inhibition, 495-496 896, 929 posttranscriptional modification, 97-98 pH effects, 496-497 D-Erythrulose, 361F RNAP, 96, 1276–1283 reversible reaction, 491–492 Escherich, T., 4 transcriptional initiation, 96 Escherichia coli, see E. coli uncompetitive inhibition, 495 European corn borer, 122 Enzyme-linked immunosorbent assay ESEs, see Exonic splicing enhancers Evans, M., 262 (ELISA), **131-132,** 132F ESI (electrospray ionization), 172 Evans, R., 1104 Enzyme-substrate complex, 470F, 488 ESI-MS, 173 Even-chain fatty acids, 945F Enzymology, 469 EPA (5,8,11,14,17-eicosapentaenoic acid), Evolution, 29, 30F. See also Chemical E (exit) site, 1373, 1385, 1387 ESPS-synthase (5-enolpyruvylshikimateevolution; Mutations 387T, 971, 994, 1002-1003 3-phosphate synthase), 1075 of citric acid cycle, 814-815 Epidermal growth factor (EGF), 453-454, convergent and divergent, 252, 254, ESR (electron spin resonance) spectroscopy, 911 **317,** 531 997, 1317 Essen, L.-O., 1215 Epidermal growth factor (EGF) receptor, 699 and divergence of kingdoms, 192 Epidermis, 16F Essential amino acids, 1019, 1065T, of protein structures, 316-318 Epidermolysis bullosa simplex (EBS), 235 1072-1078 and transposition, 1242 Epidermolytic hyperkeratosis (EHK), 235 Essential fatty acids, 971 Evolutionary distance, 189 Evolutionary tree, 13F Epigenetic genome changes, 1249–1250 ESSs (exonic splicing silencers), 1306 Epigenetic reprogramming, 1250-1251 Esters, rates of reaction and motional Excinuclease, 1217 Epimers, 361 freedom, 515T Excision repair, 1216-1219 Epimerization, 567 β-Estradiol, 681 Excitatory synapses, 778 Epinephrine, 673T, 679-680 Estrogens, 458, 673T, 680, 991 Exciton transfer, 905

Exclusion limit, in gel filtration	FAD pyrophosphorylase, 1138	FCCP (carbonylcyanide-p-
chromatography, 138	FAICAR (5-formaminoimidazole-4-	trifluoromethoxyphenylhydrazone), 860
Exercise, ATP for, 1092F	carboxamide ribotide), 1109F, 1111	F ⁺ cell, 1262–1263
Exergonic processes, 57	Familial amyloid polyneuropathy, 310	F ⁻ cell, 1262–1263
Exit site, see E site	Familial Creutzfeldt–Jakob disease, 314	Fd, see Ferredoxin
Exo conformation, 1153, 1153F	Familial hypercholesterolemia (FH),	FDP (fructose-1,6-diphosphate), 600
Exocrine gland, 675	456–457, 466, 989	FdUMP (5-fluorodeoxyuridylate),
Exocytosis, 8, 440F, 751–752	Familial type III hyperlipoproteinemia, 459	1127–1129
Exoglycosidases, 366	Faraday (unit), 53T, 584	Feathers, 233
Exons, 98, 1304–1305	Farber's lipogranulomatosis, 1013T	Feedback inhibition, 474–479, 620, 623–624
cassette, 1318	Farnesyl group, 406, 838	Feher, G., 910
and protein modules, 1317	Farnesyl pyrophosphate (FPP), 978, 979F	Feigon, J., 1212
splicing, 1305–1308	Farnesyl pyrophosphate synthase, 978	Female sex hormones, 681
Exonic splicing enhancers (ESEs),	FAS, see Fatty acid synthase	FeMo-cofactor, 1081-1082
1306, 1314	Fasman, G., 302, 303	Fen (fenfluramine), 543
Exonic splicing silencers (ESSs), 1306	Fast-twitch muscle fibers, 619	FEN-1 (flap endonuclease-1), 1207
Exon junction complex (EJC), 1326–1327	Fat, see Adipose tissue	Fenfluramine (fen), 543
Exon skipping, 1314	Fats, 940. See also Triacylglycerols	Fenn, J., 172
$3' \rightarrow 5'$ Exonuclease, 103–104, 104F	Fatal familial insomnia (FFI), 314	Fen-phen, 543
Pol I, 1177, 1180-1181	Fat cells, see Adipocytes	Fe-protein, 1080–1082
and reverse synthesis of DNA,	Fat-soluble vitamins, 474, 993	Fermentation, 6, 469–470, 593–594
1200–1201, 1201F	Fatty acids, 386–388	alcoholic, 593–594, 616–619
$5' \rightarrow 3'$ Exonuclease, 103, 103F	activation, 945–946, 946F	energetics, 619
in chain-terminator method, 177	in citric acid cycle, 789	homolactic, 593, 614–616
Pol I, 1177, 1181	essential, 971	Ferns, 13F
Exonuclease I, 1220	glycogen vs., 638	Ferredoxin (Fd), 835, 835F, 934F
Exonuclease VII, 1220	and insulin resistance, 1102, 1103F	Ferredoxin-NADP ⁺ reductase (FNR),
Exopeptidases, 165–166, 168T	names of, 387T	924, 924F
Exosomes, 1327, 1327F	transport in blood, 973	Ferredoxin-thioredoxin reductase (FTR),
Exothermic processes, 53	Fatty acid amide hydrolase (FAAH),	933–934, 934F
Expressed sequences, 97, 1304	404–406, 405F	Ferritin, 140F, 381
Expressed sequence tags (ESTs), 181	Fatty acid anions, 44, 44F	Ferrochelatase, 1055
Expression, see Gene expression	Fatty acid biosynthesis, 964F	Fe–S cluster, see Iron–sulfur clusters
Expression platform, 1300–1301	acetyl-CoA carboxylase, 962–964	Fesik, S., 707
Expression profile, 213	carbon–carbon bond formation, 965F	Fetal hemoglobin, 193–194, 331
Expression vector, 117	citric acid cycle intermediates, 818	Fetulin, 140F
Exteins, 1405 , 1406F, 1407	elongases and desaturases, 969–971	F factor, 1262–1263
Extensive quantities, 61	fatty acid synthase, 964–968	F' factor, 1263
External nodes, phylogenetic trees, 203, 203F	mitochondrial acetyl-CoA transport,	Ffh polypeptide, 422
Extracellular-signal-regulated kinases	968–969	FFI (fatal familial insomnia), 314
(ERKs), 713	and other pathways, 1089–1090	FGAM, see Formylglycinamidine ribotide
Extrinsic membrane proteins, 400 Ex vivo gene therapy, 122	regulation, 974F triacylglycerol synthesis, 971–973, 972F	FGAM synthetase (PurL), 1109F, 1110 FGAR, see Formylglycinamide ribotide
Eyring, H., 484	Fatty acid oxidation, 945	FGF, see Fibroblast growth factor
Eyring, 11., 404	and AMP-dependent protein kinase, 1096	FH, see Familial hypercholesterolemia
F	glycolysis inhibition, 864	Fibrillarin, 1329
F1,6P, see Fructose-1,6-bisphosphate	hormonal regulation, 973–975, 974F	Fibrils, 238–240
F ₁ F ₀ -ATPase (Complex V, proton-	minor pathways, 958–959	Fibrin, 191, 310
translocating ATP synthase), 758,	odd-chain fatty acids, 952–957	Fibrinogen, 191
852–859, 865	and other pathways, 1089–1090	in amyloid diseases, 310
F1P, see Fructose-1-phosphate	β oxidation, 947–950 , 958	frictional ratio, 155
F2,6P, <i>see</i> Fructose-2,6-bisphosphate	regulation, 973–975 , 974F	isoelectric point (human), 134T
f ⁵ C (5-Fluorocytosine) residue, 1248	and transport, 946–947, 946F	molecular mass, 140F
F6P, see Fructose-6-phosphate	unsaturated fatty acids, 950-952	physical constants (human), 153T
FAAH, see Fatty acid amide hydrolase	$\omega - 3$ Fatty acids, 1003	solubility, 133F, 134
Fab New hemoglobin fragment, 251F	$\omega - 6$ Fatty acids, 1003	Fibrinogen amyloidosis, 310
Fabry's disease, 1013T	Fatty acid synthase (FAS), 568, 962, 964–968	[Glu ¹]Fibrinopeptide B, 175F
Facilitated diffusion, 420, 750–752	Fatty acylated proteins, 407	Fibrinopeptides, 190, 191F
Factor IX, 1317	Fatty acyl-CoA, 947F	Fibroblasts, 9F, 454F, 1211–1212
Factor X, 1317	Fatty acyl-CoA desaturases, 970–971, 971F	Fibroblast growth factor (FGF), 375, 700
Facultative anaerobes, 6	Fatty streak lesions, 458	Fibroblast interferon, 1399
FAD (flavin adenine dinucleotide),	Favism, 897	Fibromodulin, 373T
82, 790F	FBLD (fragment-based lead discovery),	Fibronectin, 684
biosynthesis, 1138	541–542	Fibrous proteins, 226, 232–240 . <i>See also</i>
in catabolism, 561F	F-box, 1412, 1413F	Collagen; Keratin
in citric acid cycle, 791, 794, 795T	F-box protein family, 1412	collagen, 235–240
reactions of, 565, 566F	FBP, see Fructose-1,6-bisphosphate	keratin in, 233–235 , 234F
FADH: (flavin adenine dinucleotide,	FBPase, see Fructose-1,6-bisphosphatase	Fick's first law of diffusion, 745
radical form), 565F	FBPase-2 (fructose bisphosphatase-2), 663	Fields, S., 705
FADH ₂ (flavin adenine dinucleotide, fully	FC0 mutation (phage T4), 1340	Fiers, W., 176
reduced form), 565F	FC1 mutation (phage T4), 1340	50S subunit (ribosome), 1363T, 1366–1368,
in catabolism, 561F	FC2 mutation (phage T4), 1340	1368F, 1371, 1384F
in citric acid cycle, 789, 790F, 791, 819	FC3 mutation (phage T4), 1340	Fight or flight response, 664
in electron-transport chain, 823, 824F,	FC4 mutation (phage T4), 1340	Filamentateous bacteriophage M13, 108, 108F
828, 829	FC5 mutation (phage T4), 1340	Fillingame, R., 853

Filmer, D., 352 Fragment-based lead discovery (FBLD), Flurbiprofen, 998 Flux, 589, 593, 619, 745 Fingerprinting, 147, 174 541-542 Finishing, 181 Flux control coefficient, 620-622 Frame, 1341 Frameshift mutations, 1222, 1341 Fink, G., 1245 fMet, see N-Formylmethionine fMet-tRNA_f^{Met}, **1373–1374**, 1376 FMN (flavin mononucleotide), 686, 834, Frameshift suppressors, 1362 Franceschii, F., 1376 Finzel, B., 1151 Fire, A., 1323 FirstGlance, 256T, 257 836F, 1138 Frank, H., 262 First law of thermodynamics, 52-54 FMNH· (flavin mononucleotide, radical Frank, J., 422, 1365, 1371, 1388 First-order rate equation, 483-484 Franklin, B., 393-394 form), 836F First-order reactions, 483, 484F FMNH₂ (flavin mononucleotide, reduced Franklin, R., 88 FRAP (FKBP12-rapamycin-associated Fischer, A., 123 form), 836F Fischer, E., 70, 75, 352, 360, 470, 651, 722 Fmoc (9-fluorenylmethoxycarbonyl) protein), 737F Fischer convention, 75-76 group, 207 FMR1 gene, 1251, 1252 Free energy, 57–58 Fischer projections, 75, 75F and concentration, 58, 61 FMR protein (FMRP), 1251 Fish, embryonic development of, 14F and enzyme catalysis, 537 Fission yeast, see Schizosaccharomyces FNR, see Ferredoxin-NADP+ reductase and equilibrium constants, 58T Foam cells, 457 pombe membrane transport, 744 Fitzgerald, P., 549 Fodor, S., 212 and protein folding, 284, 287 Folate, 1062 5' end, of nucleic acids, 84 standard state, 58-60 FK506, 292-293 Folds, 249F, 250-251 unitary Gibbs free energy change, 263T Folding-trap mechanism, 448 Foldons, 289, 289F FK506 binding protein (FKBP12), 292, 293, Free energy of activation, 486, 487 Free energy of formation, 59-60, 59T 724-725 FKBP12-rapamycin-associated protein (FRAP), 737F Fold recognition, 305 Freeman, H., 921 Folic acid, 474T, 1062 Freeze-etch technique, 408-410, 409F Flagella, 4, 4F, 10 Follicle-stimulating hormone (FSH), Freeze-fracture technique, 408-410, 409F Flagellates, 7F 673T, 683 French press, 130 FRET, see Fluorescence resonance energy Flagellin, 10, 1243, 1388 Following substrate, 498 Fomivirsen (Vitravene), 1403 FLAP, see 5-lipoxygenase-activating protein transfer Flap endonuclease-1 (FEN-1), 1207 Fontecilla-Camps, J., 941 Frey, P., 536 Flatworms, trans-splicing in, 1320 Frictional coefficient, 146, 155 Food, energy content of, 941T Footprinting, 1267 Flavin, 566 Frictional ratio, 155 Flavin adenine dinucleotide, see FAD Forespore, 1284 Fridovich, I., 865 Flavin adenine dinucleotide, fully reduced Fork-junction promoter DNA fragment, 1268 Frogs, chromosome number of, 19T form, see FADH2 Formaldehyde, 505 Fromme, P., 922 Formamide, 43T Fructofuranose, 361 Flavin adenine dinucleotide, radical form 5-Formaminoimidazole-4-carboxamide β-D-Fructofuranose, 362F (FADH·), 565F Flavin coenzymes, 473T, 1138 ribotide, see FAICAR β-Fructofuranosidase, 488 Flavin mononucleotide, see FMN Formate dehydrogenases, 1361 Fructokinase, 630 Flavin mononucleotide, radical form, Formic acid, 32T Fructose, 361, 361F, 362F, 630-631, 631F N-Formiminoglutamate, 1034 see FMNH· Fructose-1,6-bisphosphatase (FBPase), 582, 630, 877, 933F Flavin mononucleotide, reduced form, N⁵-Formimino-tetrahydrofolate, 1034, 1062 and glycolysis, 593, 594F, 629see FMNH2 Formylglycinamide ribotide (FGAR), Flavobacteria, 7F 1109F, 1110 and metabolic cycles, 1088-1089 Flavodoxin, 135F Formylglycinamidine ribotide (FGAM), Fructose-1,6-bisphosphate (FBP; F1,6P), 479, 596F, 600 Flavokinase, 1139F 1109F, 1110 N-Formylmethionine (fMet), 79, 79F, Flavoprotein, 801 Fructose-1,6-diphosphate (FDP), 600 Flavoprotein dehydrogenase, 828, 828F 1373–1374 Fructose-1-phosphate, 630 N-Formylmethionine-tRNA_f^{Met} Fructose-1-phosphate aldolase, 630 Flavr Savr tomato, 1403 (Met-tRNA_f^{Met}), **1373–1374** Formylmethionyl-tRNA, 1063 Fleming, A, 376 Fletterick, R., 433, 530, 640 Fructose-2,6-bisphosphate (F2,6P), 627, 663-664 Flipases, 420 N^{10} -Formyl-tetrahydrofolate, 1062 Fructose-6-phosphate (F6P), 582, 582F Flip-flop, 396, 419-420 Forskolin, 698 and erythrose-4-phosphate, 636 fljA gene, 1243 Förster, T., 286 in glycolysis, 596F, 598-600 *fljB* gene, 1243 Förster distance, 286 Fructose bisphosphatase-2 (FBPase-2), 663 fljC gene, 1243 48S Initiation complex, 1379 Fructose intolerance, 630 Fluid mosaic model, of membranes, 408-411 40S subunit (ribosome), 1370T Fruit flies, see Drosophila melanogaster 9-Fluorenylmethoxycarbonyl (Fmoc) 43S Preinitiation complex, 1376–1377 Frydman, J., 301 group, 207 FSH, see Follicle-stimulating hormone Fos, 713, 737F Fluorescamine, 149 Fosamax, 679F FTR, see Ferredoxin-thioredoxin reductase Fluorescence, 286, 904-905 Fossil fuels, 901 FtsY, 423 Fluorescence recovery after photobleaching Fossil record, 29, 192 F-type ATPases, 758 F-type H⁺-ATPase, 852, 854F L-Fucose, 365 (FRAP), 396–397, 396F Foster, S., 376 4-Helix bundle, 241, 250F Fluorescence resonance energy transfer (FRET), 284, 286, 286F, 299, 300 454 Life Sciences, 182 Fumarase, 481, 567, 947 Fluoroacetyl-CoA, 809 in citric acid cycle, 790F, 791, 454 sequencing system, 182-184, 183F 4-Helix bundle, of SNAREs, 441–442 Fluorochlorobromomethane, **812–813,** 812F diffusion-limited, 490 enantiomers, 74F 4.4₁₆ Helix, 228 Fluorocitrate, 809 Fowler's solution, 799 Michaelis-Menten kinetic constants, 489T (2R,3R)-2-Fluorocitrate, 809 Fowlpox virus, 94T molecular mass, 140F 5-Fluorocytosine (f⁵C) residue, 1248 F pili, 1262 Fumarate, 493, 947 in citric acid cycle, 790F, 791, **811** 5-Fluorodeoxyuridine, 1129 FPP, see Farnesyl pyrophosphate 5-Fluorodeoxyuridylate (FdUMP), F protein, 1314 degradation of phenylalanine and 1127-1129 Fractional saturation, 325 tyrosineto, 1043-1047 Fluorophore, 396 Fractionation, 132, 156-159 hydration, 481

Fragile X syndrome, 1251-1252

Fumarate hydratase, 812-813

5-Fluorouracil, 1129

Functional groups:	GAPDH, see Glyceraldehyde-3-phosphate	eukaryotic, see Eukaryotic gene expression
C 1		overview, 18–19, 95–101
in Cahn–Ingold–Prelog system, 76	dehydrogenase	
hydrogen bonding, 43F	Gap junctions, membranes, 415–416 , 416F	prokaryotic, see Prokaryotic gene
pK values of, 72	Gap penalties, 201	expression
Fungi, 7F, 12, 13F	GAPs, 705–711	and RNAi, 1325–1326
divergence of, 192	GAR (glycinamide ribotide), 1109F	transcription, 95–98
FAS-I, 967–968, 967F	Garavito, M., 997	translation, 95, 98–101
Furan, 361	Garrod, A., 25–26	General acid catalysis, 506–507
Furanoses, 361	GAR synthetase (PurD), 1109F, 1110	General base catalysis, 507
Furey, W., 616	GAR transformylase (PurN), 1109F, 1110	General import protein (GIP), 446
Furylfuramide, 1225	Gas constant, 53T	General recombination, 1225
Fusidic acid, 1395T, 1396F	Gas-liquid chromatography (GLC), 366	Gene sequence databanks, 195T
Fusion pore, 442, 443F		
1	Gassman, P., 536	Gene splicing, 97–98, 1305. See also
Fusion proteins, 118, 431	Gastric inhibitory peptide (GIP), 673T, 675	Spliceosomes
Futai, M., 857	Gastric mucosa, 764–765	alternative splicing, 1317–1318
Futile cycle, 629	Gastrin, 673T, 675	cis- and trans-splicing, 1319–1320
Fyn, 708, 715	Gastroesophageal reflux disease	exons, 1305–1308
FYVE domains, 734, 735F	(GERD), 764	pre-mRNAs, 1312
	Gastrointestinal hormones, 675–676	role of splicing-associated factors,
G	Gastrula, 1250	1312, 1314
G ₀ phase, 1163 , 1206	GatA subunit of Glu-Adt, 1358	self-splicing genes, 1306–1308
$G_{t\alpha}$, see Transducin	GatB subunit of Glu-Adt, 1358	significance of, 1316–1317
G1,6P (glucose-1,6-bisphosphate), 642	GatC subunit of Glu-Adt, 1358	Gene therapy, 122–124 , 991
G1P, see Glucose-1-phosphate		
	Gated pore, 750–751	Genetic anticipation, 1251
G ₁ phase, 1202 , 1205, 1206F	Gating, of ion channels, 771–775	Genetic code, 87, 88, 1338–1345
G, see Free energy	Gaucher's disease, 1013T	briefly summarized, 1421
G ₂ phase, 1202 , 1206	Gay-Lussac, J., 469	deciphering, 1341–1343
G6P, see Glucose-6-phosphate	GC (guanylate cyclase), 687	mitochondrial deviations from ideal,
G6Pase, see Glucose-6-phosphatase	GC box, 1282	1344T
G6PD, see Glucose-6-phosphate	GCN2, 1400-1401	nature of, 1343–1344
dehydrogenase	GCN4, 1400-1401	nonuniversality of, 185, 1344–1345
G6P translocase, 661	GCPR kinases (GRKs), 697	standard, 1343T
G _{A2} ganglioside, 1011	G-CSF (granulocyte colony-stimulating	in translation, 99, 100T
GABA, see γ-Aminobutyric acid	factor), 717	Genetic control, metabolic flux and, 624
Gab-1 (Grb2-associated binder-1), 738	G _{D3} ganglioside, 1011	Genetic crosses, 20, 21F
gag, 1245	GDH, see Glutamate dehydrogenase	Genetic diseases, 26, 112–113, 122–123.
Gag-pol polyprotein, 546	GDI, see GDP dissociation inhibitor;	See also specific diseases
Gag polyprotein, 546	Guanine nucleotide dissociation	Genetic engineering, 104. See also
Gal, see Galactose	inhibitor	Molecular cloning; Recombinant
Galacitol, 633	GDP (guanosine diphosphate):	DNA technology
Galactans, 366	in citric acid cycle, 790F, 791	Genetic information, 18–19. See also Genes
Galactocerebrosides, 391, 1009–1010	and EF-Tu, 1380–1381, 1381F	Genetic maps, 24, 25F
Galactocerebroside-3-sulfate, 1010	in secretory pathway, 420, 423-424	Genetic mutations, see Mutations
Galactokinase, 631	in vesicle formation, 434–435, 437	Genetic recombination, 1225
D-Galactosamine, 365	GDP dissociation inhibitor (GDI), 441	Genetics, 19–28 . See also specific topics
D-Galactose, 110, 360F, 361, 392F	GEFs, see Guanine nucleotide exchange	bacterial, 26
Galactose (Gal):	factors	chromosomal theory of inheritance,
and glucose in E. coli, 1286	Geiger counting, 572	22–26
in glycolysis, 630–633, 632F	Gelatin, 236	chromosomes, 19–20
Galactose-1-phosphate uridyltransferase, 631	Gel electrophoresis:	Mendelian inheritance, 20–22
Galactosemia, 632–633	for measuring supercoiling, 1162	viral, 26–28
β-Galactosidase, 107F, 110, 366, 367	of nucleic acids, 158–159 , 158F, 179	Genome, 8–9, 94, 1173. See also Human
in enzyme induction, 1261–1262	of proteins, 132T, 147–150, 148F	genome
molecular mass, 140F	pulsed-field, 158–159, 159F	Genome Analyzer, 184
sequencing, 165	for restriction maps, 106, 106F	GenomeNet, 195T
Galactoside permease, 769. See also	two-dimensional, 152, 152F	Genome sequencing, 176, 177T,
Lactose permease	Gel filtration chromatography, 138–141 ,	180–185, 180F
1-β-Galactosylceramide, 1010	139F, 157, 169	Genomes OnLine Database (GOLD), 195T
Galactosyl diacylglycerol, 902	Geminin, 1206–1207	Genomic imprinting, 1251
Galactosyl diacyigiyeeroi, 302 Galactosyltransferase, 882	GenBank, 195T	Genomic libraries, 113–114
		· · · · · · · · · · · · · · · · · · ·
D-Galacturonic acid, 364	Genes, 21–22. See also Chromosomes; DNA	Genotypes, 21–22, 22F
Gallo, R., 545	and bacterial conjugation, 1262–1264	Gentisic acid, 173
Gallus gallus, genome sequencing of, 177T	chemical synthesis, 118	Geometric complementarity, of Watson-
GalNAc transferase, 890	duplication of, 193–194 , 317–318	Crick base pairs, 1154–1155
Gametes, 20	fruit fly experiments, 22–25	Geometric specificity, enzymes, 472–473
γ Complex, Pol III, 1182	liposome delivery, 396	George III, King of England, 1056
Gamma radiation, 572	manipulation, 109–111	Geranylgeraniol, 903
γδ Resolvase, 1239–1241, 1241F	one gene-one enzyme maxim, 26	Geranylgeranyl groups, 406
γδ Transposon, 1239–1241, 1241F	reporter, 120–121, 120F	Geranyl pyrophosphate, 978–979
Gangliosides, 392, 392F, 1008	self-splicing, 1306–1308	GERD (gastroesophageal reflux
biosynthesis, 1010–1011, 1011F	sex linked, 24	disease), 764
GAP, see Glyceraldehyde-3-phosphate;	and tetranucleotide hypothesis, 85	Gerhart, J., 475
GAP containing inesited phosphotose	Gene A protein, 1191, 1193	Gerlt, J., 536
GAP-containing inositol phosphatase	Gene expression, 25–26, 95–104, 95F	Germ cells, 19, 20, 21F
(GIP), 735	DNA replication, 101–104	Germ plasm theory, 19

Gerstmann-Sträussler-Schneiker (GSS) isoelectric point, 72 Glucose, 565F. See also Blood glucose; in Miller-Urey experiments, 32T syndrome, 314 Electron-transport chain GFP (green fluorescent protein), 120-121, complete oxidation of, 823 in native unfolded proteins, 283 and E. coli, 1285-1286, 1286F in PEST proteins, 1413 120F, 121F GGAs, 436 in Entner-Doudoroff pathway, 636, 637F side chains, 71, 264T structure and general properties, 69T GH, see Growth hormone membrane permeability coefficients, 747T Glutaminase, 1023, 1025-1027, 1034 Ghrelin, 1099 mutarotation of, 507-508 Giardia intestinalis, 1324, 1324F and noninsulin-dependent diabetes, 1103F Glutamine: transport in blood, 973 amino group, 208F Gibbs, J. W., 57 biosynthesis, 1067–1073 Gibbs free energy, 57-60, 58T. See also Free Glucose-1,6-bisphosphate (G1,6P), 642 Glucose-1-phosphate (G1P), 370, 631, degradation, 1034 Gierasch, L., 294 639, 932 and E. coli nonsense suppressor, 1362T Gigantism, 685 Glucose-6-phosphatase, 877 genetic codes for, 100T, 1343T in globular proteins, 246-247 Gilbert, W., 1284 Glucose-6-phosphatase (G6Pase), 661, 666, 1088-1089 half-life, 1413T Gilman, A., 690 GIP, see GAP-containing inositol Glucose-6-phosphate (G6P), 565F, 638-639 α helix/ β sheet propensity, 302T phosphatase; Gastric inhibitory as energy-rich compound, 580 in native unfolded proteins, 283 peptide; General import protein in Entner-Doudoroff pathway, 637F as nonessential amino acid, 1065T side chains, 71, 208F, 264T in glycolysis, 596F, 597–598 Girvin, M., 853 GK, see Glucokinase and metabolism, 1089, 1094 structure and general properties, 69T, 71F GKRP (glucokinase regulatory Glucose-6-phosphate dehydrogenase Glutamine amidotransferase, 1025-1027, (G6PD), 894, 894F, 897–898 protein), 662 1066-1067, 1078 GLA, see γ-Linolenic acid Glucose-6-phosphate isomerase, 598 Glutamine PRPP aminotransferase (PurF), D-Glucose, 359–362, 362F, 392F GLC (gas-liquid chromatography), 366 1108, 1111 GlcNAc, see NAG L-Glucose, 360 Glutamine synthetase, 269F, 591, 1023, 1029, Gleevec, 719-720 α-D-Glucose, 363F, 507 1068-1071 Gln, see Glutamine β-D-Glucose, 507 γ-Glutamyl cycle, 1061, 1061F GlnRS, 1352–1354, 1353F, 1355F Gln-tRNA^{Gln}, 1358–1359, 1359F Glucose-alanine cycle, 878, 1022-1023 γ-Glutamyl cyclotransferase, 1061 Glucose-dependent insulinotropic γ-Glutamylcysteine synthetase, 1061 Globins, 193-194, 193F, 324 Glutamyl group, 73T polypeptide, 675 Globin fold, 251 Glucose-fatty acid cycle, 864 γ-Glutamyl kinase, 1070F, 1071 Globosides, 1008, 1010-1011, 1011F γ-Glutamylphosphate, 1068 Glucose metabolism, 567 Globular proteins, 241 Glucose transport: γ-Glutamyltransferase, 1001 γ-Glutamyl transpeptidase, 1061 α helix in, 226 ATP-driven active, 758-768 in erythrocytes, 746-748, 746F, 747F Glutaraldehyde, 270, 270F β pleated sheets in, 230 hierarchical organization, 281–282, 281F and faciliated diffusion, 750-752, Glutaredoxin, 1124 Glutathione, 142 nonrepetitive structures in, 230-233 750F, 751F structural bioinformatics, 256-259 ion-driven active, 768-771 Glutathione (GSH), 544-545, 544F, 803, tertiary structure, 245-256 maltoporin in, 749-750 1060-1062 in muscle and fat, 751F X-ray and NMR structure, 241-245 Glutathione disulfide (GSSG), 803 Glutathione peroxidase, 866, 1003, 1060F γ-Globulins, 134T, 140F α-Glucosidase, 370 Glutathione reductase (GR), 801, 803, 1060F Glu, see Glutamic acid α-1,4-Glucosidase deficiency, 666 Glutathione-S-transferase, see GST Glu-tRNA^{Gln}, 1358 Glu-tRNA^{Gln} amidotransferase (Glu-AdT), Glu-AdT, see Glu-tRNA Gln Glucosidase II, 886 amidotransferase 1-β-Glucosylceramide, 1009-1010 Gluathione peroxidase, 897 D-Glucuronic acid, 364 1358, 1359F Glucagon, 140F, 660, 673T, 973 D-Glucurono-δ-lactone, 364F Glu-tRNAGlu, 1358 Glucans, 366 GluProRS, 1351 Glucocerebrosides, 391, 1010 GLUT1, 751 Glx, 68T, 73. See also Glutamic acid; Glucocorticoids, 673T, 680, 991, 1090 GLUT2, 662, 751 GLUT3, 751 Glutamine Glucocorticoid hormone response element Gly, see Glycine (GRE), 879 GLUT4, 661, 737F, 751 Glycans, 365-366 GLUT4 storage vesicles, 751 Glyceraldehyde, 75, 75F Glucocorticoid receptor, 879 D-Glyceraldehyde, 75, 75F, 360F, 361 GLUT5, 751 Glucogenic amino acids, 1029-1030, 1090, 1095 L-Glyceraldehyde, 75, 75F, 76, 77F GLUT12, 751 Glucogeonesis, 359 Glutamate, 71. See also Glutamic acid Glyceraldehyde-3-phosphate, 636 Glucokinase (GK), 597, 662-664 biosynthesis, 1065-1071 from Calvin cycle, 927-929, 931 Glucokinase regulatory protein degradation, 1034 in Entner-Doudoroff pathway, 637F in glycolysis, 595, 596F, 600–603 (GKRP), 662 and nitrogen fixation, 1080 Gluconeogenesis, 562, 571, **871–880** topological diagram, 254F as nonessential amino acid, 1065T and AMP-dependent protein kinase, 1096 Glutamate-5-phosphate, 1070F, 1071 Glyceraldehyde-3-phosphate Glutamate-5-semialdehyde, 1034, and citric acid cycle, 818 dehydrogenase (GAPDH): 1070F 1071 domains, 248, 249F and Cori cycle, 880 gluconeogenesis pathway, 872-878 Glutamate-aspartate aminotransferase, 1022 and erythrocyte membrane, 412 in glycolysis, 596F, **607–608**, 607F, 608F and glycolysis, 595, 878F Glutamate-aspartate carrier, 827–828 and other pathways, 1088-1089 half-life, 1408T Glutamate dehydrogenase, 266 regulation of, 878-879 Glutamate dehydrogenase (GDH), 153T, molecular mass, 140F 818, 1020, **1023–1033,** 1024F and starvation, 1101 (S)-Glyceraldehyde, 76, 77F stimulation by FBPase-1, 664 Glutamate receptor pre-mRNA, 1322 Glyceraldehyde kinase, 630 Gluconic acid, 364 Glutamate synthase, 934, 1065-1067 Glycerate, 935 1,5-Gluconolactone, 642 Glutamic acid, see also Glutamate L-Glycero-D-mannoheptose, 379F D-Glucono-δ-lactone, 364F Glyceroglycolipids, 1004 degradation, 1034 genetic codes for, 100T, 1343T Glycerol, 364, 388, 389T Glucopyranose, 361 α-D-Glucopyranose, 362F in globular proteins, 246 Glycerol-3-phosphate, 580, 828, 828F half-life, 1413T β-D-Glucopyranose, 362F, 363F sn-Glycerol-3-phosphate, 389, 389F Glycerol-3-phosphate acyltransferase, 971

 α helix/ β sheet propensity, 302T

D-Glucosamine, 365

Glycolate, 935

Glycerol-3-phosphate dehydrogenase, 828, G_{M2}-activator protein, 1011, 1012F Glycolate oxidase, 935 828F, 944 Glycolate phosphatase, 935 GM-CSF, see Granulocyte-macrophage Glycerolipids, 1004F Glycolic acid, 32T colony-stimulating factor Glycerol kinase, 630, 766, 944 Glycolipids, 359, 381, 398T, 400F GM-CSF receptor, 717-718, 718F Glyceroneogenesis, 971, 973, 1093 Glycerophosphate shuttle, 828, 828F Glycolipid metabolism, 1004 GMP (guanosine monophosphate), 83T, glycerophospholipids, 1004-1008 1111-1113, 1112F, 1130F Glycerophospholipids, 389–390, 389F, sphingoglycolipids, 1008-1013 GMPPNP (guanosine-5'-(β,γ -imido) 394–395, **1004–1008** sphingophospholipids, 1008-1009 triphosphate), 710-711 Glycolysis, 569, 593-634. See also Electron- N^6 -β-Glyceryl lysine, 601 GMP synthase, 1112F transport chain; Fermentation GMRα, 717–718 Glycidol phosphate, 604 Glycinamide ribotide (GAR), 1109F GnRF, see Gonadotropin-releasing factor aerobic, 864 aldolase, 596F, 600-603 Goiter, 677 Glycine: biosynthesis, 1071-1072 and AMP-dependent protein kinase, 1096 GOLD (Genomes OnLine Database), 195T anaerobic, 614–619, 864 as chemical messenger, 79-80 Gold, L., 213 Goldberg, J., 434, 438, 1223 conjugates of, 993, 993F and citrate, 863-864 degradation, 1030-1034 effectors of nonequilibrium enzymes, 625T Golden rice, 122, 122F electrostatic influences, 72 electron-transport chain, 824F Goldman equation, 775 Goldsmith, E., 713 Goldstein, J., 452, 453, 987 genetic codes for, 100T, 1343T enolase, 596F, 612-613 half-life, 1413T and fatty acid oxidation, 864 α helix/ β sheet propensity, 302T, 304 fermentation, 614-619 Golgi, C., 9 in heme biosynthesis, 1048 and free energy changes, 625T Golgi apparatus, 7F, 9, 11F. See also Postfructose utilization, 630-631 translational modification isoelectric point, 72 in Miller-Urey experiments, 32T galactose utilization, 630-633, 632F metabolic functions, 562T in native unfolded proteins, 283 and gluconeogenesis, 878F vesicle formation, 428-440 as nonessential amino acid, 1065T glyceraldehyde-3-phosphate dehydrovesicle fusion, 440-445 optical activity, 74 genase, 596F, 607-608 Golgi network, 428, 429F Golgi stack, 428, 429F steric hinderance, 224-225, 224F, 225F hexokinase, 596F, 597-598 mannose utilization, 630, 633, 633, 633F structure and general properties, 68T Gonadotropin-releasing factor (GnRF), titration curve, 72, 72F and metabolic regulation and control, 673T, 683 Glycine cleavage system, 1031-1033 Gonadotropins, 683 619-630 Glycine decarboxylase multienzyme system, net reaction, 594F, 595 Gonads, 680, 681 1031-1033 and other pathways, 1088 Goodman, M., 1222 overview of, **595–596**, 596F Glycine synthase, 1031–1033 Google Scholar, 35 Glycocalyx, 381, 414, 414F phosphofructokinase, 596F, 600, 625-627, Gorter, E., 395 Glycoconjugates, 359 Gouaux, E., 417 626F, 630 Glycoforms, 380 Gourse, R., 1266 phosphoglucose isomerase, 596F, 598-600 Glycogen, 359, 370, 370F, 638 phosphoglycerate kinase, 596F, 608–610 Gout, 1134-1135, 1142 fatty acids vs., 638 phosphoglycerate mutase, 596F, 610-612 GPCRs, see G-protein-coupled receptors pyruvate kinase, 596F, 613-614 GPI, see Glycosylphosphatidylinositol particle fabrication, 646-647 for rapid ATP production, 619 GPI-linked proteins, 407–408, 408F Glycogen branching, 646-647 Glycogen breakdown, 638-644 regulation in muscle, 624-630 GPI membrane anchors, see Glycosylphosglycogen debranching enzyme, 370, 639, triose phosphate isomerase, 596F, 603-606 phatidylinositol membrane anchors **642–643,** 667 Glycomes, 382–383 G-protein-coupled receptors (GPCRs), Glycomics, 382-383, 578 glycogen phosphorylase, 639-641 689,993 G proteins, 407, 423, 688, 692, 695F, 1314, Glycone, 366 and other pathways, 1089 phosphoglucomutase, 639, 642 Glycophorin A, 400-401, 401F, 413F **1376,** 1395 Glycogen debranching enzyme, 370, 639, Glycoproteins, 359, 373 G-quartets, 1212-1213, 1212F **642–643,** 667 GR, see Glutathione reductase in bacterial cell walls, 375-379 Glycogenin, 380, 645-646, 646F biosynthesis, 880-892 Gradient elution, 137 Glycogen metabolism, 638-668 formation, 101 Gram, C., 6 blood glucose maintenance, 661-664 glycomics, 382-383 Gramicidin A, 79, 748, 787 control of, 647-666 proteoglycans, 373-375 Gram-negative bacteria, 6, 376, covalent modification in, 650-651 structure and function, 379-382 376F, 403 glycogen breakdown, 638-644 Gram-positive bacteria, 6, 7F, 13F, 376, Glycoprotein carbohydrates, 380-381 glycogen phosphorylase bicyclic cascade, Glycosaminoglycans, 370–372 376F, 398T 651-660 Glycosidases, 364 Gram stain, 6 Glycosides, 363 glycogen storage diseases, 666-668 Grana, 902 Glycosidic bonds, 83, **363–365**, 880–881, 883F glycogen synthase bicyclic cascade, 660 Granulocyte colony-stimulating factor glycogen synthesis, 644-647 Glycosphingolipids (GSLs), 391, 1004 (G-CSF), 717 stress response, 664-665F Glycosylation, 101 Granulocyte-macrophage colony-stimulating factor (GM-CSF), 381, 717. See also thermodynamics, 643-644 Glycosylceramides, 1009-1010 Glycogen phosphorylase, 370, **639–641** allosteric control, 479, **647–650** GM-CSF receptor Glycosyl-enzyme intermediate, 522 Glycosyl group transfer, 565 Granulocytes, 381 bicyclic cascade, 651-660 Glycosylphosphatidylinositol (GPI), GRASP (Graphical Representation and covalent modification, 1405 407-408, 408F, 890-892, 891F Analysis of Surface Properties), 259 Glycosylphosphatidylinositol (GPI) Gray, H., 841 deficiency, 667 Grb2, 708, 709 Glycogen storage diseases, 666-668 membrane anchors, 882, 891F Glycogen synthase, 644, 645, 647-650 Glycosyltransferases, 881, 1010 Grb2-associated binder-1 (Gab-1), 738 Glycogen synthase kinase-3 (GSK3), 660 Glyoxylate, 935 GRE (glucocorticoid hormone response Glycogen synthesis: glycogen branching, **646–647** Glyoxylate cycle, 880, 881F element), 879 GreA, 1281 Glyoxylate pathway, 10 GreB, 1281, 1282 glycogen synthase, 644 Glyoxylic acid, 1135F and other pathways, 1089 Glyoxysome, 10, 880 Greek key motif, 249F, 250 UDP-glucose pyrophosphorylase, 644 Glyphosate, 1075 Green algae, 13F, 19T

G_{M1} Gangliosidosis, 1013T

Greenberg, G. R., 1108

Green fluorescent protein, see GFP	Guanine-7-methyltransferase, 1302	Hb Bibba, 342
Green photosynthetic bacteria, 6	Guanine deaminase, in purine	Hb Boston, 342, 343F
Green revolution, 122	catabolism, 1130F	Hb Bristol, 342
Green sulfur bacteria, 923	Guanine nucleotide dissociation inhibitor	Hb Cowtown, 358
Greider, C., 1210	(GDI), 692	HbE, 342
Grendel, F., 395	Guanine nucleotide exchange factors	Hb Hammersmith, 342
GRF, see Growth hormone-releasing factor;	(GEFs), 423, 434, 692, 705–711, 1379	Hb Harlem, 344
Guanine nucleotide releasing factor GRIF (growth hormone release-inhibiting	Guanine nucleotide releasing factor (GRF), 692	Hb Hyde Park, 358 Hb Kansas, 343
factor), 683	Guanosine, 83T, 1130F	Hb KorleBu, 344–345
Griffith, F., 86	Guanosine binding site, 1310F	HbM, 342
Griffith, J., 1213	Guanosine diphosphate, see GDP	Hb Memphis, 345, 358
Grindley, N., 1240	Guanosine monophosphate, see GMP	Hb Milwaukee, 342, 343F
GRKs (GCPR kinases), 697	Guanosine triphosphate, see GTP	HbM Iwate, 342
gRNAs (guide RNAs), 1321, 1321F, 1324	Guanylate cyclase (GC), 687	Hb Philly, 342
GroEL/ES system, 293–302 , 295F–297F, 307,	Guanylic acid, see GMP	Hb Rainer, 357
307F, 352	Guide RNAs, see gRNAs	Hb Riverdale-Bronx, 358
Gronenborn, A., 656	Guillemin, R., 683	HbS, see Hemoglobin S
Ground substance, 371	D-Gulose, 360F	Hb Savannah, 342
Group I chaperonins, 293 Group Lintrops, 1306, 1300, 1307T	GW1516, 1104 Gwmnosporms 13E	Hb Yakima, 343
Group I introns, 1306–1309, 1307T, 1309F, 1310F	Gymnosperms, 13F Gypsy moth, 122	HCR (heme-controlled repressor), 1399 HD gene, 1252
Group II chaperonins, 293, 301–302	GyrA, 1166–1169	HD (Huntington's disease), 1252
Group II introns, 1307T, 1308	GyrA intein, 1407, 1407F	HDL (high density lipoprotein), 449, 449T,
Group III introns, 1307T	Gyrase, 1166. See also DNA gyrase	451, 456, 458
Group transfer reactions, 564–565 , 564F	GyrB, 1166–1168, 1168F	HDPR (6-hydroxy-1,6-dihydropurine
Group translocation, 765–766		ribonucleoside), 1132
Growth hormone (GH), 86, 571, 683. See	H	Heart, 625T, 816, 817, 1093
also Human growth hormone	H, see Enthalpy	Heart attack, 456, 865
Growth hormone release-inhibiting factor	H1, 1243	Heartburn, 764
(GRIF), 683	H1 gene, 1243	Heart muscle, 1092
Growth hormone-releasing factor (GRF),	H2, 1243	Heat, 53
673T, 683	H2 gene, 1243	Heat-labile enterotoxin (LT), 696
Grunberg-Manago, M., 1341 G-segment, of DNA, 1169	H ₂ PO ₄ , see Hydrogen phosphate ion H ₃ PO ₄ (phosphoric acid), 49F	HEAT repeats, 722–723 Heat shock locus UV, see HslUV
GSH, see Glutathione	Haber, F., 1083	Heat shock proteins, 293, 294. See also
GSH synthetase, 1061	Haber process, 1083	Molecular chaperones
GSK3 (glycogen synthase kinase-3), 660	HAD (3-L-hydroxyacyl-CoA	Heat shock protein 10 (Hsp10), 294
GSLs, see Glycosphingolipids	dehydrogenase), 947, 947F, 948, 958	Heat shock protein 40 (Hsp40), 293
GSSG (glutathione disulfide), 803	Hadju, J., 534	Heat shock protein 60 (Hsp60), 294F
GSS (Gerstmann–Sträussler–Schneiker)	HaeII, 105T	Heat shock protein 70, see Hsp70
syndrome, 314	HaeIII, 105T, 109	Heat shock protein 90, see Hsp90
GST (glutathione-S-transferase), 142,	Haeckel, E., 12	Heavy chains, clathrin, 430
1001, 1060F	Haemophilus influenzae, 176, 177T	HECT domain, 1410
GT (UDP-glucose:glycoprotein	Hair, 233–235 , 275	Heinrich, R., 620
glucosyltransferase), 886 GTP (guanosine triphosphate):	Haldane, J. B. S., 32, 488 Haldane relationship, 491–492	Heinz bodies, 342 Helical structures, 225–229 , 225F
in citric acid cycle, 789, 790F, 791	Hales, S., 901	collagen triple helical structure,
and EF-Tu, 1380–1381	Half cell, 584	236–238, 237F
gluconeogenesis, 877–878	Half-chair conformation, 519F, 1153	Helical symmetry, proteins, 269, 269F
hydrolysis of, 1394–1395	Half-life, 484	Helicases, 1163, 1176, 1183–1187
in secretory pathway, 420, 423–424	Half reactions, 585–586	Helicase II, 1217
in transcription, 96, 1265	Half-time, 484	Heliozoansus, 13F
in vesicle formation, 436, 437	Haloarcula marismortui, 1365, 1368	Helix:
in vesicle fusion, 441	Halobacteria, 6, 398T, 402	α, 226–227
GTPase:	Halophiles, 7F	basic helix-loop-helix/leucine
in secretory pathway, 423	Hamm, H., 692	zipper, 987
in vesicle formation, 434–437 in vesicle fusion, 441	Hammerhead ribozymes, 1310–1311 , 1311F Hanson, R., 571, 879	C, 242F DNA as, 88–90, 88F
GTPase-activating protein (GAP), 423, 437,	H antigen, 415	E, 242F
692, 1376	Haploid cells, 24F	4-helix bundle, 241, 250F
GTP-binding factor, 1395	Haploid genomes, 182	H, 248F
GTPγS, 436F, 692	Haploid number, 19	interwound, 1160, 1160F
Gua, see Guanine	Haplotype, 106	left-handed, 224F, 225F, 1149–1151
GU-AG introns, 1307T	Harden, A., 594	π , 224F, 228
Guanidinium ion, 117, 169, 284	Hard water, 465	and pitch of protein, 225
Guanidino group, 580	Harrison, S., 424, 431, 433, 716, 725, 1288	right-handed, 224F–226F
Guanine, 18, 83, 83, 83T. See also	Hartly D. 525	superhelix, 433, 1158–1160, 1162
Watson–Crick base pairs and genetic code, 100T, 1343T	Hartley, B., 525 Hasemann, C., 663	3 ₁₀ , 224F, 226, 228 3.6 ₁₃ (α), 226, 227F
IR spectra of, 1155F	Hatch, M., 936	5.0 ₁₃ (α), 220, 227F toroidal, 1160, 1160F
modified nucleosides of, 1347F	Haworth, N., 366	Helix–capping position, 262
and point mutations, 1339–1340	Haworth projection formulas, 361 , 362F	Helix–turn–helix (HTF) motif, 1240,
in purine catabolism, 1130F	Hb, see Hemoglobin	1288–1290, 1289F, 1290F
tautomeric forms, 88F	HbA, see Hemoglobin A	Helper T cells, 545–546

TT 1 1 1 200		TT' 1
Hemagglutinin, 380	Henry's law, 61	High-energy compounds, 580–581. See also
β-Hematin, 1058	Henseleit, K., 791, 1025	specific compounds
Hematocrit, 324	Heparan sulfate, 373	High frequency of recombination (Hfr)
Heme <i>a</i> , 839F	Heparin, 371F, 372–373, 372F, 375, 700	cells, 1263
Heme b, 839F. See also Iron-	Hepatitis B vaccine, 119	High-mannose oligosaccharides, 888
protoporphyrin IX	Hepoxilins, 1000	High-performance liquid chromatography,
Heme b_{562} (heme $b_{\rm H}$), 838	Heptahelical receptors, 689	see HPLC
Heme b_{566} (heme b_{L}), 838	Heptoses, 360F	High potential iron-sulfur proteins, see
Heme <i>c</i> , 839F	HER2 receptor, 119–120	HIPIPs
Heme c_i (heme x), 920	Herbivores, cellulose digestion by, 369	High-throughput screening, 541
Heme-controlled repressor (HCR), 1399	Herceptin, 119–120	HI/HA, see Hyperinsulinism/
Heme group, 324–325 , 574, 574F	Hereditary elliptocytosis, 414	hyperammonemia
biosynthesis, 1047–1058	Hereditary nonpolyposis colorectal cancer	Hihydrosphingosine, 390
	(HNPCC), 1220	
degradation, 1056		Hill, A., 326
Heme oxygenase, 1056	Hereditary ovalcytosis, 414	Hill, C., 1419
Heme-regulated inhibitor (HRI),	Hereditary spherocytosis, 414	Hill, R., 903
1399, 1399F	Hermit crabs, chromosome number, 19T	Hill constant, 327
Hemerythrin, 325	Herriott, R., 86	Hill equation, 326–328 , 348
Heme x (heme c_i), 920	Hers, H,-G., 663	Hill plot, 327–328, 327F
Hemiacetals, 361 , 520F	Hers' disease, 667	Hill reaction, 903
Hemifusion, 442, 443F	Hershey, A., 87	HindIII, 105T
Hemiketals, 361	Hershey–Chase experiment, 87F	Hin DNA invertase, 1243
Hemin, 1055	Hershko, A., 1410	hin gene, 1243
Hemmings, E., 116	(15R)-HETE ([15 R]-	Hinny, 1251
Hemocyanin, 153T, 325	hydroxyeicosatetraenoic acid), 1004	HIPIPs (high potential iron–sulfur proteins),
Hemoglobin:	(15S)-HETE ([15S]-	202F, 281F
abnormal, 341–347	hydroxyeicosatetraenoic acid), 1003	Hippuric acid, 945
affinity for CO, 1056–1057	Heterocysts, 1083	His, see Histidine
allosteric regulation, 347–354	Heterogeneous nuclear ribonucleoprotein	his operon, 1299, 1299T
α and β chains, 332T–333T	(hnRNP), 1314	His tag, 145, 857
and Bohr effect, 328–329, 328F,	Heterogeneous nuclear RNA (hnRNA), 1304	Histamine, 80, 80F, 783, 1058, 1059
329 , 340	Heterogeneous nucleation, 346, 347F	Histamine receptors, 689
BPG and oxygen binding of, 329–331 ,	Heterokaryon, 408	Histidine:
329F-331F, 340-341	Heterolytic bond cleavage, 563, 956	biosynthesis, 1078
carbon dioxide transport, 329	Heteropolysaccharides, 365–366	degradation, 1034
conformational fluctuations, 306, 306F	Heterotrimeric G proteins, 688–689	as essential amino acid, 1065T
cooperativity, 352–354	adenylate cyclases, 697–698	genetic codes for, 100T, 1343T
and distal histidine residue, 340	G protein-coupled receptors (GCPRs),	in globular proteins, 246
	689–690	
and erythrocyte membrane, 412		α helix/β sheet propensity, 302T
function, 323–331	phosphodiesterases, 688–689	and hemoglobin, 332, 341
gene duplication, 193–194	structure and function, 690–697	isoelectric point, 72
heme group, 324–325	Heterotrophs, 6	side chains, 71, 264T
Hill plot, 327F	Heterotropic allosteric effect, 348, 351,	structure and general properties, 69T
as "honorary enzyme," 323	351F, 354	Histidinodehydroxymerodesmosine, 239F
hydrogen exchange for, 309F	Heterozygous genotypes, 21–22	Histones, 78, 134T
isoelectric point (human), 134T	Heuristic algorithms, 201	Histone H4, 190–191
isolation, 129	Heuser, J., 444	Histrionicatoxin, 781
lamprey, 135F	HEW, see Hen egg white lysozyme	Hitchings, G., 1130
molecular pathology, 342–343	1-O-Hexadec-1'-enyl-2-acetyl-sn-glycero-3-	HIV (human immunodeficiency virus),
optimal sequence alignment for, 197F	phosphocholine, 1008	208–209, 1207
oxygen binding, 325–328 , 334–339	Hexane, 43, 43T, 144	HIV-1, 545–546, 545F
Perutz mechanism, 334–340	Hexokinase (HK), 565	polyproteins of, 546, 546F
rate of evolution, 191, 191F	in gluconeogenesis, 872	protease of, 208–209, 546, 548–551, 548F
and sickle-cell anemia, 81, 185–188,	in glycolysis, 596F, 597–598	reverse transciptase of, 1207-1209, 1209F
343-347	mannose utilization, 633	HIV-2, 545
solubility of, 133F	Hexokinase D, 662	HIV protease:
in Southern blotting, 112	Hexokinase IV, 662	of HIV-1, 208–209, 546, 548–551, 548F
structure and mechanism, 267F, 332–341	Hexosaminidase A, 123, 1011, 1012F	inhibitors of, 545–551
Hemoglobin A (HbA), 175F, 186	Hexosaminidase B, 1013	and polyproteins, 1404
Hemoglobin E, 342	Hexoses, 360F	HK, see Hexokinase
Hemoglobin F, see Fetal hemoglobin	Hexose monophosphate (HMP) shunt, 892.	(H^+-K^+) -ATPase, 764–765
Hemoglobinopathies, 342–343	See also Pentose phosphate pathway	HMG-CoA, 960, 976–977, 1040–1041
Hemoglobin S (HbS), 175F, 186–188 , 277,	Hfr cells (high frequency of recombination),	HMG-CoA lyase, 960
343–347	1263	HMG-CoA reductase, 977 , 987–989
α-Hemolysin, 416–418, 418F	hGH, see Human growth hormone	HMG-CoA reductase kinase (RK), 989
Hemolytic anemia, 185, 342, 343	hGHbp (human growth hormone binding	HMG-CoA synthase, 960, 976
Hemophilia, 119	protein), 684	HMIT, 751
*		
Hemozoin, 1058	HGPRT (hypoxanthine-guanine	HMMs (hidden Markov models), 202
Henderson, R., 402	phosphoribosyltransferase), 1114	HMP (hexose monophosphate) shunt, 892.
Henderson–Hasselbalch equation,	H Helix, 248F	See also Pentose phosphate pathway
47–48, 72	HIC, see Hydrophobic interaction	HNPCC (hereditary nonpolyposis
Hendrickson, W., 702	chromatography	colorectal cancer), 1220
Hen egg white (HEW) lysozyme, 275–276,	Hidden Markov models (HMMs), 202	hnRNA (heterogeneous nuclear RNA), 1304
276T, 470, 517–525, 517F, 518F, 524F	High-altitude adaptation, 330–331, 330F, 357	hnRNP (heterogeneous nuclear
Henri, V., 488	High density lipoproteins, see HDL	ribonucleoprotein), 1314
	·	* **

HO₂ · 865 hormones, 673T Hormone-sensitive triacylglycerol lipase, Hoagland, M., 1345 Hodgkin, A., 776 Hodgkin, D. C., 241, 331 861, 944, 973 Pot1, 1213 Horn, 233, 234 RFLPs of, 106 Horowitz, N., 3, 34 Skp1-Skp2 complex, 1412 β-Horseshoe, GyrA intein, 1407 Horwich, A., 294, 297, 298 telomere length, 1211 transposons, 1244, 1246 Hofmeister, F., 70 Hofmeister series, 266 Hofmeyr, J.-H, 623 Host organism, 104 ubiquitin, 1409 Hofrichter, J., 346 Host-specific modifications, 104 UDG, 1219F Hough, E., 1044 Hünefeld, F., 323 Hol, W., 696, 792, 1165 Housekeeping genes, 1282 HpaII, 105T, 1249 Hunger, 1098, 1099 holA gene, 1182T holB gene, 1182T Huntingtin, 1252 holC gene, 1182T (15S)-HPETE ([15S]-hydroperoxyeicosa-Huntington's disease (Huntington's holD gene, 1182T holE gene, 1182T tetraenoic acid), 1003 chorea), 1252 5-HPETE, see 5-Hurley, T., 646 Holley, R., 176, 1345 Hurwitz, J., 1265 Hydroperoxyeicosatetraenoic acid Holliday, R., 1226 12-HPETE, see 12-Huxley, A., 776 Holliday junction, 1226, 1226F, 1233F Hwang, P., 431 Hydroperoxyeicosatetraenoic acid in recombination repair, 1234-1236 15-HPETE, see 15-Hyaluronan, 371–372 and RuvABC, 1230-1234 Hyaluronate, 371F, 372, 372F Hydroperoxyeicosatetraenoic acid Holoenzymes, 473, 722, 1265. See also Pol III HPETEs (hydroperoxyeicosatetraenoic Hyaluronic acid, **371–372**, 375 holoenzyme; RNAP holoenzyme acids), 1000 Hyaluronidase, 372 Homeostasis, 619-620, 1096-1101 Hybridization, 93 HPK1, 714 Homing endonuclease, 1407-1408 Hybrid oligosaccharides, 888 HPLC (high-performance liquid Hybridoma, 131 Hominy grits, 481 chromatography), 145-146, 157, 171, 366 Homocitrate, 1081-1082 HPr, of PTS system, 765 Hybrid proteins, 118 Hyde, C., 1076 Hydrated ions, 43 Homocysteine, 80, 80F, 1034 H-protein, 1031 Homocysteine methyltransferase, 1037 HPV (human papillomavirus), 1414 Homogeneous nucleation, 346, 347F H-Ras, 709 Hydrazine, 166, 168 Homogenizer, 130 HRI, see Heme-regulated inhibitor Hydrazinolysis, 166, 168 Homogentisate, 1045, 1047F Hydrochloric acid, 46 Hsc70, 436 Homogentisate dioxygenase, 1045 Homogentisic acid, 25, 569 HslU caps, 1419 HslUV (heat shock locus UV), 1419, 1420F Hydrocortisone, 680 Hydrodynamic volume, 155 Homolactic fermentation, 593, **614–616** HslUV protease, 1419 Hydrogen, in Miller-Urey experiments, 32 Homologous end-joining, 1235-1236, 1235F HslV subunit, 1419-1420, 1420F Hydrogen bonding: Hsp10 proteins, 294 in base pairs, 84, 89, 1156 Homologous pairs, 19 Homologous proteins, 188–192, 194–196 Hsp40 proteins, 293 in collagen triple helical structure, 237F Homologous recombination, 1222, Hsp60 proteins, 294F and enzyme substrate specificity, 470F **1225–1236,** 1227F Hsp70 proteins, 293, 421F, 445 in functional groups, 43F Hsp90 proteins, 293, 720 Homology modeling, 304-305 in α helix, 227F Homolytic bond cleavage, 563, 956 HTH, see Helix-turn-helix motif in HIV protease-1, 549F Homo neandertalensis, 116 HU, 1195 low-barrier vs. short, strong, 535-536 in β pleated sheet, 229–230, 229F Homopolypeptides, 205 Hubbard, S., 700 Homopolysaccharides, 365–366 Huber, R., 403, 653, 806, 910, 1414, 1415, in proteins, 261-262 *Homo sapiens*, 14, 116. *See also* Humans Homoserine, 759 and tRNA tertiary structure, 1348–1349 in water, 41–42, 41F 1419, 1420 Hugging dimer, 1050 Homotropic allosteric effect, 348, Human cells, 12F Hydrogen exchange, 285-286, 309F 350-351, 354 Human cytomegalovirus protease, 531 Hydrogen ions, 60 Homozygous genotypes, 21–22 Human genome, 176, 177T, 1402 Hydrogen peroxide, 10 Honig, B., 259 Hydrogen phosphate ion $(H_2PO_4^-)$, 47, 47F Human genome project, 181-182 Hood, L., 181 Human Genome Sequencing Consortium, Hoogsteen geometry, 1154 181, 182 Hydrogen sulfide, 324 Hooke, R., 3 Human growth hormone (hGH), 119, 250F, Hydrolases, 479T Hop diffusion, 411, 411F 251, 259F, **684–685** Hydrolysis, base-catalyzed, 85, 85F Hopene, 983 Hydronium ion, 45, 45F, 46 Human growth hormone binding protein Horecker, B., 892 (hGHbp), 684 Hydropathies, 264, 264T, 304 Hormones, 671-674, 673T. See also Human growth hormone receptor, 684-685 5-Hydroperoxyeicosatetraenoic acid (5-HPETÉ), 996F, 997, 1000 Glucagon; Insulin Human immunodeficiency virus, see HIV Human papillomavirus (HPV), 1414 12-Hydroperoxyeicosatetraenoic acid assays for, 131 (12-HPETE), 996F, 997, 1000 in brown fat, 860-862, 861F Humans, 16F. See also Homo sapiens for calcium metabolism, 677-678 apoB, 1322 15-Hydroperoxyeicosatetraenoic acid classification, 671, 672F BBP, 1314F (15-HPETE), 996F, 997, 1000 epinephrine and norepinephrine, biological structures, 14 Hydroperoxyeicosatetraenoic acids 679-680 c-Cbl-UbcH7-ZAP-70 complex, 1412F (HPETEs), 1000 (15*S*)-Hydroperoxyeicosatetraenoic acid([15*S*]-HPETE), 1003 for fatty acid metabolism, 973-975, 974F chromosome number, 19T gastrointestinal, 675-676 cloning, 1251 growth, **684–685** Cul1–Rbx1–Skp1–F-box^{Skp2} complex, 1412F Hydrophilic materials, 42 hypothalamus and pituitary, 682-683, Hydrophobic bonding, 264 cytochrome c, 196F 1099, 1100F DNA repair, 1214 Hydrophobic collapse, 286-287 menstrual cycle control, 683-684 DNA size, 94T Hydrophobic effect, 262-264 nitric oxide, 685-688 E. coli DNA vs., 8-9 Hydrophobic forces, 44 opioid peptides, 685 and enzyme substrate specificity, 470F elemental composition, 29T in integral membrane proteins, 406 pancreatic islet, 675 embryonic development, 14F quantitative measurements, 674-675 evolutionary divergence of, 116 in nucleic acid bases, 1156-1157 steroid, 680-682 fuel reserves for, 1101T and protein stability, 262-264 thyroid, 676-677 genomic libraries, 113 and reverse turns, 304

Hypothyroidism, 677

Hydrophobic interaction chromatography Hypotonic solutions, 130 Independent segregation, 23F Hypoxanthine, 127, 1108, 1130F, 1135, Indinavir, 550F, 551 (HIC), 132T, 145 Hydrophobic interactions, 44 1339-1340 Indirect readout, 1290 Hydrophobic materials, 42 Indole-3-glycerol phosphate, 1075 Hypoxanthine-guanine Hydropyrimidine hydratase, 1136F phosphoribosyltransferase Indolepropanol phosphate (IPP), 1078 Hydroxide ions, 45, 45T, 46, 688 (HGPRT), 1114 Induced-fit hypothesis, 352 6-Hydroxy-1,6-dihydropurine Hypoxia, 331, 864 Induced-fit model, of allosteric ribonucleoside (HDPR), 1132 Hypoxic, 324 interactions, 352 Inducers, 97, 97F, 1261 8-Hydroxy-7,8-dimethyl-5-deazariboflavin, Inducible enzymes, 1261 1215 β-Hydroxyacyl-ACP dehydrase (DH), 965 i^6 A, see N^6 -Isopentenyladenosine Inducible NOS (iNOS), 686-688 IAPP (islet amyloid polypeptide), 3-L-Hydroxyacyl-CoA, 947, 947F -ine suffix, 73 3-L-Hydroxyacyl-CoA dehydrogenase, 310-311, 311F Infarction, 456 ΙκΒα, 1414 Inflammatory response, 993, 1003–1004 see HAD Ibandronate, 679F 3-Hydroxyanthranilate, 1042 Influenza virus neuraminidase, 466 Hydroxyapatite, 540, 677 Ibuprofen, 78, 78F Ingen-Housz, J., 901 Hydroxyapatite chromatography, IC_{50} , 539 Ingold, C., 76 ICATs, see Isotope-coded affinity tags Ice, 41–42, 41F Ingram, V., 186 144, 157 β-Hydroxybutyrate, 831 Inheritance, 20-26 D-β-Hydroxybutyrate, 959 I-cell disease, 439 Inherited diseases, see Genetic diseases D-β-Hydroxybutyrate dehydrogenase, 960 Icosahedral symmetry, 268, 268F Inhibition, of enzymes, see Enzyme inhibition IDL (intermediate density lipoproteins), Inhibitors, 351, 492 α-Hydroxybutyric acid, 32T 449, 449T, 986, 1322 25-Hydroxycholecalciferol, 678 Inhibitory synapses, 778 D-Idose, 360F Initial velocity, 489 (15R)-Hydroxyeicosatetraenoic acid ([15R]-HETE), 1004IEF (isoelectric focusing), 150-152 Initiating codon, 100-101, 100T (15S)-Hydroxyeicosatetraenoic acid IF, see Initiation factor 48S Initiation complex, 1379 ([15S]-HETE), 1003IF-1, 1375-1376, 1375T Initiation factor (IF), 1375–1376, 1375T IF₁ protein, 865 IF-2, 1375–1376, 1375T Hydroxyethylthiamine pyrophosphate, Inorganic pyrophosphatase, 582, 946 iNOS (inducible NOS), 686-688 616-617 3-Hydroxykynurenine, 1041-1042 IF-3, 1375-1376, 1375T Inosine, 1130F, 1347F I-FABP (intestinal fatty acid-binding protein), 943–944, 944F Hydroxylamine, 312-313 Inosine monophosphate, see IMP Inosine triphosphate, see ITP point mutations caused by, 1340, 1340F prion reactivation with, 312-313, 313F I gene, 1262 myo-Inositol, 364, 389T Hydroxyl groups, 43F IgG, see Immunoglobulin G Inositol-1,4,5-triphosphate, see IP: Hydroxyl radical, 325, 865 Inositol hexaphosphate (IHP), 330 IHF (integration host factor), 1195 Inositol polyphosphate 1-phosphatase, 736 5-Hydroxylysine (Hyl), 78, 79F, 236 IHP (inositol hexaphosphate), 330 Hydroxymethylbilane, 1053 Inositol polyphosphate 3-phosphatases, 736 IκB kinase (IKK), 1420 Hydroxymethylbilane synthase, 1053 IL-1, see Interleukin-1 Inositol polyphosphate phosphatases, 734–736 Insects, mutation rate of, 192 5-Hydroxymethylcytosine residue, 1247 IL-3 receptors, 717 Hydroxymethylglutaryl-CoA, see IL-5 receptors, 717 Insertion/deletion mutations (indels), HMG-CoA Ile, see Isoleucine 196, 1340 p-Hydroxyphenylpyruvate, 1045, 1047F Insertion sequences (IS), 1236 IleRS, 1352, 1356-1357, 1357F p-Hydroxyphenylpyruvate dioxygenase, 1045 Illegitimate recombination, 1236 In situ gene therapy, 122-123 4-Hydroxyproline (Hyp), 78, 79F, 236 3-Hydroxyproline, 236 Illumina system, 184 ilv operon, 1299, 1299T In situ hybridization, 113-114, 114F InsR, see Insulin receptor Hydroxypyruvate, 935 Image reconstruction, 1363F Insulin, 164-165, 165F, 673T, 1099 8-Hydroxyquinone, 1119 Imatinib, 719 affinity chromatographic isolation, 142 5-Hydroxytryptophan, 1046, 1060 Imidazole, 513 in fatty acid metabolism regulation, 974 Hydroxyurea, 347, 1119 β,γ-Imido nucleoside triphosphate, 1275 in glycogen metabolism regulation, 660 Hyl (5-hydroxylysine), 236 Iminoacetic propionic acid, 32T glycogen synthase kinase-3 inhibition, 660 Hyp (4-hydroxyproline), 236 Iminodiacetic acid, 32T isoelectric point, 134T Hyperacute rejection, 121 Immobilized pH gradients, 151 and passive-mediated glucose transport, Hyperammonemia, 1023, 1025 Immune electron microscopy, 1365 751-752 Hypercholesterolemia, 456-457, 466, pyruvate dehydrogenase phosphatase Immune system, 1132 989-991 Immunoaffinity chromatography, 143 activation, 805 Hyperchromic effect, 92 Immunoblotting, 149–150, 150F recombinant human, 119 Hyperglycemia, 1102, 1103 Hyperhomocysteinemia, 1034–1035 Immunochemical procedures, 131–132 renaturation, 280-281 sequencing of bovine, 165F Immunofluorescence, 408 Hyperinsulinism/hyperammonemia Insulin-dependent diabetes, 1102, 1400 Immunoglobulins, 163 (HI/HA), 1023, 1025 Immunoglobulin fold, 251, 251F Insulinlike growth factor II receptor, 890 Hyperlysinemia, 1041 Immunoglobulin G (IgG), 154F, 282, **380** Insulin receptor (InsR), 142, 699–703, 737F Hyperlysinuria, 1041 Immunophilins, 292, 724 Insulin receptor substrate (IRS), 710, 1103 Hyperphenylalaninemia, 1045 IMP (inosine monophosphate), 1108 Insulin resistance, 1103, 1103F Hypertension, 547F animal catabolism pathway, 1130F Insulin signaling system, 736-738 Hyperthermophiles, 266 conversion to AMP or GMP, 1112F Insulin-stimulated protein kinase, 659-660 Hyperthyroidism, 677 synthesis, 1108-1111, 1109F Integral membrane proteins, 399-406 Hypervariable position, 188 IMP cyclohydrolase (PurJ), 1109F, 1111 Integrase, 545, 1245 Hyperventilation, 357 IMP dehydrogenase, 1112F Integration host factor (IHF), 1195 Hypoglycemia, 666 IMS, see Intermembrane space Intein Database, 1407 Hypoglycin A, 948, 948F Inteins, 1405-1407, 1406F Inactivation, of ion channels, 774-775 Hypothalamus, 672F, 682 Inactivators, 494 Intensive quantities, 61 hunger signal transmission, 1099 Intercalating agents, 1160-1162, 1272 Inborn errors of metabolism, 26 integration of signals, 1099, 1100F Inclusion bodies, 117, 117F Intercalation, 157 Indels, see Insertion/deletion mutations leptin expression, 1098 Interfacial activation, 941

Independent assortment, 21-22, 22F

Interferons, 1399-1400, 1400F

Keto-enol tautomerization, 506-507, 507F

Intergenic suppressors, 1362 IS5, 1236T JAK3, 718 Interleukins, 657, 671, 717 Ischemia, 325, 864 JAK4, 718 Interleukin-1 (IL-1), 671, 1414 IS elements, 1236 JAK-STAT pathway, 717-718 Interleukin-1\(\beta\)- converting enzyme, see ICE ISEs (intronic splicing enhancers), 1306 Jamaican vomiting sickness, 948 Interleukin-2, 671 Islest of Langerhans, 675 James M. 523 Intermediates, reaction, 483 Islet amyloid polypeptide, see IAPP Jansonius, J., 403 Isoaccepting tRNAs, 1351 Intermediate density lipoproteins, see IDL Janus, 283 Intermediate fibers, 10-11 Isoalloxazine, 566 Janus kinase (JAK), 718 Jap, B., 840 Intermediate filaments, 10-11 Isocaudamers, 128 Isocitrate, 789, 790F, **809** Intermembrane space (IMS), 9, 446, 448 Jaundice, 1056 Isocitrate dehydrogenase, 568, 789, 809-810, Jefferson, T., 116 Internal conversion, 904 Internally compensated molecules, 76 810F, 815–816 Jelly roll, 252, 253F Internal nodes, phylogenetic trees, Isocitrate lyase, 880 Jencks, W., 515 203-204, 203F JIP-1, see JNK interacting protein-1 Isoelectric focusing (IEF), 132T, 150-152 Internal resolution site, 1237 Isoelectric point (p*I*), 72, 134, 134T, 150 Jmol, 256T, 257 JNK, 714 Internal ribosome entry site (IRES), 1379 Isoelectric precipitation, 134 Interphase, 20F, 21F Isoflurane, 398–399 JNK interacting protein-1 (JIP-1), 714, 743 Intervening sequences, 97, 1304 Isoforms, 543 Interwound helix, 1160, 1160F Johnson, A., 424 Isoionic point, 81 Intestinal fatty acid-binding protein, Isolated systems, 52 Johnson, L., 640, 658 see I-FABP Isolation, protein, 129-133 Joliet, P., 917 Jones, M. E., 1117 Intragenic suppressors, 1340 Isoleucine: biosynthesis, 1075 Intrasteric mechanism, 658 Jorgensen, R., 1323 chiral centers, 76, 77F Joshua-Tor, L., 1184 Intrinsic dissociation constants, 348 Intrinsic factor, 956 degradation, 1034-1039 Joule (unit), 53, 53T Intrinsic membrane proteins, see Integral as essential amino acid, 1065T Jpred3 algorithm, 304 genetic codes for, 100T, 1343T membrane proteins Jun, 705, 713, 737F Intrinsic proteins, 399–406 Junk DNA, 1317 in globular proteins, 246 Intrinsic terminators, 1273–1275, 1273F half-life, 1413T Juvenile-onset diabetes, 310, 1102 Intronic splicing enhancers (ISEs), 1306 α helix/β sheet propensity, 302T in native unfolded proteins, 283 Intronic splicing silencers (ISSs), 1306 Introns, 98, **1304–1305** side chains, 70, 264T K_M (Michaelis constant), 489 AU-AC, 1319 stereoisomers, 77F K_a , see Dissociation constant Group I, 1306-1309, 1307T structure and general properties, 68T Kaback, R., 770 Group II, 1307T, 1308 (2S,3S)-Isoleucine, 76, 77F Kacser, H., 620 in prokaryotes vs. eukaryotes, 1316 Kahn, R., 1104 Isomaltose, 367, 367F Isomerases, 479T types of, 1307T Kaiser, D., 109 Invariant residues, 188 Isomerization, 567 Kaiser, T., 450 Invertase, 367, 488 N⁶-Isopentenyladenosine (i⁶A), 976, 1347F Kalckar, H., 578 Inverted micelles, 51 Isopentenyl pyrophosphate, 977, 977F, 978F Kallikrein, 525T Invert sugar, 367 Isopentenyl pyrophosphate isomerase, Kamen, M., 813, 903 Kaplan, N., 791 In vivo gene therapy, 123 978, 978F Kaptein, R., 1295 Iodoacetic acid, 168-169 Isopeptide bond, 1409 Isoprene, 406, 975 Isoprenoids, 976–977, 976F Karplus, M., 307, 857 Kauzmann, W., 264 Ions, solvation of, 43F Ion-driven active transport, 768-771 Ion exchange, 135 Isoprenoid groups, 406 kb (kilobase pairs), 95 $k_{\rm B}$, see Boltzman constant Ion exchange chromatography, 132T, Isoprenylation site, 406 135-138, 136F, 157 K⁺ channels, **752–755**, 753F, 754F α-Isopropylmalate, 1075 Isopropylthiogalactoside, see IPTG KDEL receptors, 440 Ion exchangers, 137-138, 138T Ionic charge, protein purification and, 132 KDO (2-keto-3-deoxyoctanoate), 379F Isoproterenol, 680 Ke, H., 725 Ionic interactions, 259–260, 1158 Isopycnic ultracentrifugation, 156, 157F Ionic mobility, 44–45, 45T Isoschizomers, 127–128 Keilin, D., 838 Ionic strength, 133-134, 133F Isotonic saline solution, 161 Kelvin temperature scale, 53T Ionization constants, 47, 49-50, 497, 502-503 Kendrew, J., 246, 331 Isotopes, 573T Ionizing radiation, 1214 Isotope-coded affinity tags (ICATs), Kennedy, E., 419, 823, 946 Ionophores, 748-749, 748F 577-578, 577F Kent, S., 209 Ion pair, 259–260, 260F $K_{\rm eq}$, see Equilibrium constant Isotope effects, 572 IP₃ (inositol-1,4,5-triphosphate), 661, 665, Isotope studies, 500–501, **572–575** Keratan sulfate, 371F, 372, 373 Keratin, 10-11, 10F, 233-235 725-726 Isotope tests, 813-814 IP₃ receptor, 726 Isozymes, 202F, 277, 543 α Keratins, 233-235, 234F IPP (indolepropanol phosphate), 1078 β Keratins, 233-235 ISP (iron–sulfur protein), 840 2-Keto-3-deoxy-6-phosphogluconate, 637F IPTG (isopropylthiogalactoside), 117, 621, ISSs (intronic splicing silencers), 1306 1261, 1295 Iterative annealing model (GroEL/ES 2-Keto-3-deoxy-D-arabinoheptulosonate-7-IRES (internal ribosome entry site), 1379 system), 299–300 phosphate, see DAHP Iron, in heme biosynthesis, 1056 ITP (inosine triphosphate), 1273 2-Keto-3-deoxyoctanoate (KDO), 379F Iwata, S., 838, 916 Iron-protoporphyrin IX, 316, 316F, 324, 838, 2-Keto acid dehydrogenases, 799 Ketoacidosis, 961, 1102 904F. See also Heme b Iron-sulfur clusters, 808F, 809, 834-835 β-Ketoacyl-ACP reductase (KR), 965 Iron-sulfur protein (ISP), 840 Jacob, F., 1262, 1264-1265 β-Ketoacyl-ACP synthase (KS), 965 β-Ketoacyl-CoA, 947F, 949F Irreversible thermodynamics, 587 Jaenisch, R., 1251 IRS, see Insulin receptor substrate β-Ketoacyl-CoA thiolase, see KT Jaffe, E., 1050 IS (insertion sequences), 1236 Jahn, R., 441, 444 3-Ketoacyl-CoA transferase, 961 IS1, 1236, 1236T JAK (Janus kinase), 718 α-Ketoadipate, 1042 IS2, 1236, 1236T α-Ketobutyrate, 1034, 1075 JAK1,718

JAK2,718

IS4, 1236T

Keto forms, of nucleotide bases, 88	KT (β-ketoacyl-CoA thiolase), 947, 947F,	Large-T antigen, SV40, 1211
Ketogenic amino acids, 1029–1030,	948, 949F	Lariat structure, 1306, 1306F
1090, 1094	Ku, 1223–1224, 1223F	<i>late</i> genes, 1284
α-Ketoglutarate, 789, 809, 1034, 1067F	Ku70, 1223 Ku70, 1223	Lateral diffusion, 396
α -Ketoglutarate dehydrogenase (E10), 789,	Ku80, 1223	Lathyrism, 238–239
799, 810 , 815–816	Kuhn, H., 1001	α-Latrotoxin, 780
α-Ketoglutarate dehydrogenase	Kühne, F. W., 470	Lattman, E., 282
complex, 799	Kunitz, M., 470	Lauric acid, 387T
Keto groups, hydrogen bonding in, 43F	Kunkel, T., 1205	Lavoisier, A., 823, 901
α-Ketoisovalerate, 1075	Kurisu, G., 924	LBHBs (low-barrier hydrogen bonds), 536
α-Ketoisovalerate, 1075 α-Ketoisovalerate dehydrogenase, 1039	Kuriyan, J., 706, 710, 720, 1125, 1182, 1196,	LCa (clathrin light chain), 430, 432, 432F
Ketones, 361F	1197, 1204	LCA2 (Leber's congenital amaurosis 2), 123
Ketone bodies, 959–961 , 973, 1095, 1101	Kuru, 312	LCAT, see Lecithin-cholesterol
Ketonic sodies, 959–961, 975, 1095, 1101 Ketonogenesis, 959–961	Kushmerick, M., 863	acyltransferase
Ketonogenesis, 939–901 Ketopentose, 360	Kv1.2 channels, 773, 773F, 774F	LCb (clathrin light chain), 430, 432, 432F
Ketoses, 360F, 361, 361F	Kv 1.2 channels, 773, 7731, 7741 Kv channels, 772–774	Lck, 715
Ketosis, 961	$K_{\rm w}$ (ionization constant of water), 47	LD ₅₀ , 539
3-Ketosphinganine, 1008	Kwashiorkor, 1087	LDH (lactate dehydrogenase):
3-Ketosphinganine, 1000 3-Ketosphinganine reductase, 1009	Kynureninase, 1042	half-life, 1408T
3-Ketosphinganine synthase, 1008	Kynurenniase, 1042	in homolactic fermentation, 614–615, 615F
KF (Klenow fragment), 177, 1177–1178,	L	
	<i>lacI</i> gene, 107F, 621, 1264	isozymes, 277 molecular mass, 140F
1178F, 1180–1181 KFERQ proteins, 1409	S-lac-NAD ⁺ , 614, 615F	X-ray structure of dogfish, 254, 255F, 256
Khorana, H. G., 209, 211, 1342 Kidnaya, 871, 1001F, 1005	lac operators, 1284–1285, 1285F, 1294	LDL (low density lipoproteins), 449, 449F
Kidneys, 871, 1091F, 1095	lac operon, 97, 97F, 1261–1262, 1294	and apoB-100, 1322
Kidney stones, 1134	lac promoter, 117, 621, 1266, 1294	and atherosclerosis, 458
Kieselguhr, 144	lac repressor, 97, 107F, 117, 621, 1263–1264	as cholesterol carrier, 449F
Kilobase pairs (kb), 95	allosterically important residues, 1296	cholesterol takeup by, 453–455
Kim, JJ., 948	isolation of, 129	properties, 449T
Kim, K. K., 1151	in prokaryote transcription control,	LDL receptors (LDLR), 453–457, 453F,
Kim, P., 282	1284–1285	454, 1317
Kim, S., 1346	structure, 1294–1296, 1296F	and apoB-100, 1322
Kim, SH., 840	α-Lactalbumin, 882	and atherosclerosis, 456–457
Kinases, 513, 581, 597	β-Lactamase, 1237	and cholesterol homeostasis, 989–991, 990F
Kinemages, 257	Lactase, 367	and endocytosis mediation, 986, 986F
Kinesin, 440	Lactate:	L-DOPA, 1046, 1059–1060F
Kinetics:	converting to oxaloacetate, 872F	Lead compounds (drug discovery), 539
chemical, 54, 482–486	in Cori cycle, 880	Leader sequence, 1297–1298
enzyme, 487–492	from fermentation, 594, 594F, 614–619	Leading strand synthesis, 102–103, 1175,
membrane transport, 745–757	transport in blood, 973	1175F, 1190–1193
Kinetic barrier, 486	Lactate dehydrogenase, see LDH	Leading substrate, 498
KiNG, 256T, 257	Lactate dehydrogenase H, 153T	Lead poisoning, 1134
King, J., 289	Lactic acid, 32T	Leaves, phylogenetic trees, 203, 203F
Kinosita, K., Jr., 857, 1271	D-Lactic acid, 365	Leberman, R., 1381–1382
Kirchhausen, T., 431	β-Lactoglobulin, 133F, 134	Leber's congenital amaurosis 2 (LCA2), 123
Kjeldgaard, M., 1381, 1388	Lactoperoxidase, 140F	Le Châtelier's principle, 59 Lecithins, 389T, 390
Kleinschmidt procedure, 94F	Lactose, 367 , 367F, 631	
Klenow fragment, see KF	and glucose, 1286	Lecithin-cholesterol acyltransferase
Klentaq1, 1178–1180, 1223	metabolism in <i>E. coli</i> , 97	(LCAT), 450T, 452, 453F
Klinefelter's syndrome, 682	synthesis, 882	Lectins, 366, 885
Klug, A., 1346, 1363	Lactose intolerance, 367	Leder, P., 1342
KNF model, of allosteric interactions, 352	Lactose permease, 766, 768–771 , 769F,	Lederberg, J., 1262 Leflunomide, 1116
Knockout mice, 121, 572 Knoop, F., 572, 791, 945	770F, 1261	Left-handed helix, 225F, 1149–1151
Knowles, J., 565	Lactose synthase, 883F Lactosyl ceramide, 1010	Left-handed helix, 223F, 1149–1131 Left-handed α helix, 224F
Kohda, D., 446	lacZ gene, 107F, 120, 1294	Leghemoglobin, 219, 1083
Kok, B., 917	lacZ' gene, 107F, 120, 1254 lacZ' gene, 107F, 110, 111	Lenninger, A., 823, 946
Kool, E., 1177	LADH, see Liver alcohol dehydrogenase	Leloir, L., 631, 883
Kool, E., 1177 Kornberg, A., 1116, 1176, 1194, 1195, 1281	Lagging strand synthesis, 103, 103F, 1175,	Leloir pathway, 631
Kornberg, R., 1277–1278	1175F, 1190–1191	Lennarz, W., 291
Kornfeld, S., 884, 888	Lake, J., 1365	Leptins, 1096–1099, 1101
Koshland, D., 352, 513, 514, 621, 817	Lamarck, Jean Baptiste de, 19	Leptin-E100, 1098F
Kossiakoff, A., 684	Lamarckism, 19	Lesch–Nyhan syndrome, 1114, 1135
KR (β-ketoacyl-ACP reductase), 965	λ integrase, 1243–1244	Leslie, A., 853, 857, 865
Krabbe's disease, 1013T	Lamprey, hemoglobin of, 194	let-7 gene, 1326
K-Ras 4A, 709	Lamprey, hemogroum of, 194 Lander, E., 181	Lethal factor (LF), anthrax, 715
K-Ras 4B, 709	Landick, R., 1273	Letsinger, R., 211
K-Ras 4B, 709 Krauss, N., 922	Landick, K., 1275 Lands, W., 1005	Leucine, 26
Kraut, J., 534	Lands, w., 1003 Landscape theory, of protein folding,	basic helix-loop-helix/leucine zipper, 987
Krebs, E., 722	287–289, 288F	biosynthesis, 1075
Krebs, H., 651, 791, 1025	Landsteiner, K., 414–415	degradation, 1040–1041
Krebs cycle, 789. See also Citric	Lanosterol, 982–984 , 985F	as essential amino acid, 1065T
acid cycle	Lanosterol synthase, 982	genetic codes for, 100T, 1343T
Kreevoy, M., 536	Lanzilotta, W., 1055	in globular proteins, 246
KS (β-ketoacyl-ACP synthase), 965	Large calorie (Cal), 53, 53T	half-life, 1413T
IN IN ACCOUNT AND DYNHIAM IN AUG	Large caronic (Car), 55, 551	11011 1110, 1710 1

Lipoxins (LXs), 993, 1003-1004 α helix/ $\!\beta$ sheet propensity, $\!302T$ electron transport in purple bacteria, 15-epi-Lipoxin A₄ (15-epi-LXA₄), 1004 inserted by E. coli nonsense 909-913 suppressor, 1362T light absorption, 903-909 Lipoxin A₄ (LXA₄), 1003F, 1004 in native unfolded proteins, 283 photophosphorylation, 925-926 Lipoxin receptors, 689 5-Lipoxygenase (5LO), 1000 12-Lipoxygenase (12LO), 1000 side chains, 70, 264T two-center electron transport, 913–925 Lignin, 369 specific rotation, 74 15-Lipoxygenase (15LO), 1000, 1001 structure and general properties, 68T Lignoceric acid, 387T, 958 Lilijas, A., 1385 Lima, C., 1327 Leucine aminopeptidase, 168T Lipoxygenase-1, 1001 Leucine-rich repeats (LRRs), 1412 5-Lipoxygenase-activating protein (FLAP), 1001, 1002, 1002F Leuconostoc mesenteroides, 139 Limit dextrins, 385 Lipoyllylsyl arm, dihydrolipoyl Leu-enkephalin, 673T, 685 Limited proteolysis, 170 Leukocytes, 85 lin-4 gene, 1326 dehydrogenase, 797 Leukocyte elastase, 533 LIN-14 protein, 1326 Lipscomb, W., 476 Leukocyte interferon, 1399 Liquid scintillation counting, 572 Linear concentration gradients, 137F Leukotrienes, 993 Linear gradient elution, 137 Literature search, 34–35 arachidonic acid precursor, 995-997 Linear polymers, 70 Lithgow, T., 445 biosynthesis, 1000-1002, 1002F, 1060F LINEs (long interspersed nuclear Lithium ion, 45T, 1158 elements), 1246, 1249 series-5, 1003 Liver: AMP-dependent protein kinase in, Lineweaver-Burk plot, 490, 490F, Leukotriene A₄ (LTA₄), 1000 494F–496F, 499F, 500F Leukotriene B₄ (LTB₄), 1001 1096, 1097F Leukotriene C₄ (LTC₄), 1001 Leukotriene D₄ (LTD₄), 1001 Linked genes, 24 and cholesterol biosynthesis, 987 Linkers, in gene manipulation, citric acid cycle in, 816, 817 109–110, 110F fructose utilization in, 630-631 Leukotriene E₄ (LTE₄), 1001 Linking number, 1158, 1162 glucokinase in, 597 Leukotriene receptors, 689 leu operon, 1299T Link proteins, 375 gluconeogenesis in, 871 glycogen storage in, 638–639, 667–668 half-lives of enzymes in, 1408T Leupeptin, 556 Levine, P., 83 Linoleic acid, 386, 387F, 387T, 950F, 971 α-Linolenic acid, 387F, 387T, 971, 994 Levinthal, C., 284, 287 γ-Linolenic acid (GLA), 387T, 994 heme synthesis regulation, 1055-1056 Lipase, 153T, 941-942, 941F Levinthal paradox, 284 and other organs, 1091F, 1093-1094 Levitt, M., 523 Lipids, 15, 16F. See also related topics. e.g.: rat liver cytoplasmic ribosomes, 1370T Fatty acids and acid-base groups, 48 aggregates of, **393–399** Levorotatory molecules, 74 stress response of, 665F Liver alcohol dehydrogenase (LADH), 472, Lewis, G., 45 Lewis, M., 1294 505, 618-619 Lewis acids, 45, 511 biosynthesis, 818, 973 Liver glycogen synthase deficiency, 668 Lewis bases, 45 classification, 386-393 Liverworts, 13F fluidity, 388, 397–399 Living systems, rise of, 33-34 Lewisite, 822 LexA, 1221-1222, 1228 metabolism, 561F LKB1, 1096 lexA gene, 1221 in thylakoid membrane, 902 5LO (5-lipoxygenase), 1000 12LO (12-lipoxygenase), 1000 LF (lethal factor), anthrax, 715 Lipid bilayers, 44F, 395F, 397F. See also 15LO, see 15-Lipoxygenase L forms (amino acids), 74–76 Membranes dynamics, 396-399, 397F LH, see Luteinizing hormone Local energy maxima, 289 fluidity, 397-399 LHC-II, 908-909, 909F Local mediators, 671 Lock-and-key hypothesis, 470 Loewenstein, W., 416 Logan, D., 1385 LHCs, see Light-harvesting complexes liposomes, 395-396 Licensing, see Pre-replicative complex micelles, 394-395, 394F phospholipid diffusion, 396F (Pre-RC) Lipid-linked membrane proteins, 406–408 Lipid metabolism, 561F, 940–944 Lienhard, G., 515 Log odds, 198 Life, 3-37 Log odds substitution matrix, 198 Lohman, T., 1186 cholesterol, 975–993 and biochemical literature, 34-36 eicosanoid, 993-1004 Lon, 1419 and biochemistry, 14-19 fatty acid biosynthesis, 961-973 London dispersion forces, 260-261, 261F chiral molecules and, 78 defined, 3 fatty acid oxidation, 945-959 Longevity, and caloric restriction, 1101 divergence of major kingdoms, 192 ketone bodies, 959-961 Long interspersed nuclear elements, phospholipids and glycolipids, 1004-1013 see LINEs eukarvotes, 6-14 Long terminal repeats (LTRs), 1245-1246 regulation of fatty acid metabolism, evolutionary tree, 13F and genetics, 19-28 973–975 Long-term regulation, of fatty acid origin of, 28-34 Lipidomics, 578 metabolism, 973 prokaryotes, 3-6 Lipid-soluble vitamins, 474 Loop conformation, 230, 232 Lipid storage disease, 1011, 1013 Looped rolling circle replication, and thermodynamics, 52, 586-589 1191–1193, 1192F and water's properties, 40, 41 Lipid-water interfaces, 940-941 Life Science Directory, 194-195 Lipinski, C., 542 Lopez, A., 717 Lord, R., 1155 LigA, 1187 Lipinski's rule of five, 542 Ligament, 235 Lipitor, 990–991, 991F Lorimer, G., 300 Lipmann, F., 578, 791, 892 Lovastatin, 990, 991F Ligands: Adair equation, 348–349 Lipoamide, in citric acid cycle, 794, 795F Low-barrier hydrogen bonds in affinity chromatography, 142, 142F (LBHBs), 536 Lipogenesis, 1096 Hill equation for binding, 326–328 Lipoic acid, 473T, 794, 795T Low density lipoproteins, see LDL Ligand-gated binding, 606 Lipolysis, 1096 Lowenstein, J., 1132 Ligand-gated channels, 771–772 Lipopolysaccharides, 378 Lowe syndrome, 735 Ligases, 479T Lipoproteins: Lowry, T., 45 loxP gene, 1244 LPL, see Lipoprotein lipase Light absorption, 903-909 characteristics of major classes, 449T Light chains, clathrin, 430 dysfunctions, 456-459 Light-harvesting complexes (LHCs), function, 451-456 L-protein, 1032 906–909, 908F structure, 449-451 LRRs (leucine-rich repeats), 1412 Light reactions, photosynthesis, Lipoprotein lipase (LPL), 450T, 451, 943 LT (heat-labile enterotoxin), 696 Liposomes, 122, 395-396 902-926 LTA₄ (leukotriene A₄), 1000

LTB ₄ (leukotriene B ₄), 1001	$m^4C(N^4$ -Methylcytosine) residue, 1246	mRNAs, 1302
LTC ₄ (leukotriene C ₄), 1001	m ⁵ C-MTase, see 5-Methylcytosine	mutation rate, 192
LTC ₄ synthase, 1001	methyltransferase	
		myoglobin, 324
LTD ₄ (leukotriene D ₄), 1001	m ⁵ C (5-Methylcytosine) residue, 1246	POH1, 1418
LTE_4 (leukotriene E_4), 1001	m ⁶ A (N ⁶ -Methyladenine), 1246	signal recognition particles, 422
LTRs (long terminal repeats), 1245–1246	M6P/IGF-II receptor, 890	snoRNAs, 1329
Lu, P., 1294	m^7G , see N^7 -Methylguanosine	Mammalian target of rapamycin (mTOR),
Luciferase, 183	m ⁷ GDP, 1378	734,738
Luciferin, 183	m_2^2G (N^2 , N^2 -Dimethylguanosine), 1347F	Man, see Mannose
Ludwig, M., 1036, 1037, 1125	MacKinnon, R., 751, 752, 755, 774	Manganese ion, 1158
Lührmann, R., 1314, 1315	MacLeod, C., 86	Maniatis, T., 1306
Luisi, B., 800	Macrocytes, 1064	Manley, J., 1312
Lungfish, 94T	Macrofibrils, 234, 234F	Mannose, 630, 633, 633F, 747T
Luteinizing hormone (LH), 154F, 673T, 683	α ₂ -Macroglobulin, 154F	D-Mannose, 360F, 361
LXA ₄ , see Lipoxin A ₄	Macromolecular mimicry, 1386	Mannosidase, 366
	Macromolecules, 15, 16F, 17, 257	
15-epi-LXA ₄ (15-epi-lipoxin A ₄), 1004		D-Mannuronic acid, 364
LXs, see Lipoxins	Macrophages, 381, 457, 671	Map-based genomic sequencing,
Lyases, 479T	Macrophage colony-stimulating factor	180–181, 181F
Lycopenes, 905F, 907	(M-CSF), 717	MAP (mitogen-activated protein) kinase,
Lydon, N., 719	Macroscopic dissociation constants, 348	712–714
Lynen, F., 791	Mad cow disease, 312, 315	MAP kinase kinase (MKK), 713
Lyophilization, 141	Magnesium ion, 45T, 1158, 1308–1309	MAP kinase kinase (MKKK), 713
3 1		
Lys, see Lysine	Maintenance methylation, 1249–1251, 1249F	MAP-kinase signaling cascades, 712–714
Lysate, 130	Maize, see Corn	Maple syrup urine disease (MSUD), 1039
Lysidine, 1347F, 1352	Major facilitator superfamily (MFS), 751	Margaric acid, 1018
Lysine:	Major groove, in DNA 90, 1145	Margoliash, E., 189
amino group, 208F	Major histocompatibiliy complex (MHC)	Margulis, L., 9
biosynthesis, 1072–1073, 1075	proteins, 1102	Marmur, J., 93
degradation, 1040–1041	Malaria, 187–188, 343, 898, 1058	Mars, 39
and E. coli nonsense suppressor, 1362T	Malate, 790F, 791, 813, 936	Martin, A., 144
as essential amino acid, 1065T	L-Malate, 481, 947	Martius, C., 791
genetic codes for, 100T, 1343T	Malate-aspartate carrier, 827, 827F	Mas37, 449
half-life, 1413T	Malate dehydrogenase, 876, 947	Masking, of mRNA, 1401–1402
α helix/β sheet propensity, 302T	in citric acid cycle, 790F, 791, 813	Massey, V., 801
isoelectric point, 72	molecular mass, 140F	Mass spectrometry, see MS
in native unfolded proteins, 283	Malate dehydrogenase, decarboxylating, 956	Mast cells, 372
side chains, 71, 208F, 264T	Malate-α-ketoglutarate carrier, 827	MAT (malonyl/acetyl-CoA-ACP
structure and general properties, 69T	Malate synthase, 880	transacylase), 964
trypsin-catalyzed cleavage, 170	Malathion, 527	Matrix, 9, 445, 448, 824, 825F
Lysis, 27, 130	MALDI (matrix-assisted laser	Matrix-assisted laser desorption/ionization
Lysogenic mode, 1243	desorption/ionization), 172–173	(MALDI), 172–173
• •		
Lysolecithin, 452	Male sex hormones, 681	Matrix-associated regions, see MARs
Lysophosphatidic acid, 971	Malic enzyme, 956	Matrix processing peptidase (MPP), 447
Lysophospholipase A ₂ , 942	Malignant transformation, 1211–1212	Matrix protein 1, see M1
Lysophospholipids, 942	Malignant tumors, 381, 703. See also Cancer	Matrix space, 9
Lysosomal protease, 525T	Malonate, 493, 791, 811	Mattevi, A., 1066
Lysosomes, 7F, 9–10, 1408–1409	Malonic semialdehyde, 1136F	Matthaei, H., 1341, 1343
metabolic functions, 562T	Malonyl/acetyl-CoA-ACP transacylase	Matthews, B., 282
in secretory pathway, 420, 421F	(MAT), 964	Matthews, D., 1128
and vesicle formation, 428–440	Malonyl-CoA, 961, 1136F	Matthews, R., 1036, 1037
and vesicle fusion, 440–445	Malonyl/palmitoyl transferase (MPT), 967	Maturity-onset diabetes, 310, 1102–1103
Lysozyme, 470, 479, 517	Maltodetxrins, 749	Maximal velocity (V_{max}) , 489
in amyloid diseases, 310–311	Maltoheptaose, 640F	Maximum likelihood (ML) tree-building
and bacterial cell walls, 376	Maltoporin, 749–750, 749F	criteria, 205
catalytic mechanism, 520–525 , 521F	Maltose, 367, 367F	Maximum parsimony (MP) tree-building
covalent intermediate of, 524F	Maltose binding protein, 300	criteria, 205
hen egg white, 275–276, 276T, 470,	Maltose phosphorylase, 501	Mayer, R., 901
517–525, 517F, 518F	Maltotriose, 370	Mb, see Myoglobin
isoelectric point, 134T	Mammals. See also specific types	MBD (methyl-CpG binding domain), 1249
for protein solubilization, 130	cloning, 1251	MCAD (medium-chain acyl-CoA
structure, 517–520	CpG methylation, 1249	dehydrogenase), 948
substrate interactions with, 510F	cytoplasmic adenylation of mRNAs, 1402	McArdle's disease, 644, 667
transition state, 523F	DNA base composition, 84	McCarty, M., 86
Lysozyme amyloidosis, 310	energy metabolism strategies, 1088–1090	McClintock, B., 1236
LysRS, 1351	genomic imprinting, 1251	McDermott, A., 604, 606
Lysyl group, 73T	glycogen synthase, 645	Mcm2, 1205
Lysyl hydroxylase, 240, 1405	homolactic fermentation, 614–615	Mcm3, 1205
Lysyl oxidase, 238, 240	isoprenoid metabolism, 976F	Mcm4, 1205
Lytic mode, 1243	keratin, 232–233	Mcm5, 1205
α -Lytic protease, 525T	LDL-receptor mediated endocytosis,	Mcm6, 1205
D-Lyxose, 360F	986, 986F	Mcm7, 1205
	mitochiondrial DNA replication,	Mcm10, see DDK
M	1207, 1207F	MCM complex, 1205, 1206
m ¹ A (1-Methyladenosine), 1347F	mitochondrial deviations from	MCPA-CoA (methylenecyclopropylacetyl-
m ³ C (Methylcytidine), 1347F	ideal, 1344T	CoA), 948, 948F

M-CSF (macrophage colony-stimulating Methemoglobinemia, 342 thermodynamics of, 744-745 Methemoglobin reductase, 324–325 N^5 , N^{10} -Methenyltetrahydrofolate, *see* MTHF factor), 717 voltage-gated ion channels, 771-775 Mdm10, 449 Menaquinone, 910 Methionine: Mendel, G., 20–22 MDPK (myotonic dystrophy protein kinase), 1252 Mendelian inheritance, 20-22, 107F biosynthesis, 1072-1073, 1075 degradation, 1034-1039 MDR (multidrug resistance) transporter, Menstrual cycle control, 683-684 766-767 Menten, M., 488 as essential amino acid, 1065T Mechanism-based inhibitors, 1128 2-Mercaptoethanol, 168 genetic codes for, 100T, 1343T Mechanosensitive channels, 772 6-Mercaptopurine, 1142 in globular proteins, 246 Merozygote, 1263 Medial cisternae, 428, 429F half-life, 1413T Mediated membrane transport, 745-748 Merrifield, B., 206, 208 α helix/ β sheet propensity, 302T Medium-chain acyl-CoA dehydrogenase Mertz, J., 109 in native unfolded proteins, 283 (MCAD), 948 Meselson, M., 90, 1173, 1264 side chains, 70, 264T MedLine, 35, 195 structure and general properties, 68T Meso form, 76 Medulla, 679 Mesophiles, 266 Methionine sulfone, 1066 Mesophyll cells, 904 Megaloblastic anemia, 474T Methionine synthase, 955, 1037 Meiosis, 20, 21F, 24F, 1224 Mesosomes, 4, 4F Methionyl-tRNA synthetase (MetRS), Meister, A., 1061 Messenger RNA, see mRNA 100, 1352 MEK, 713 Methotrexate, 445, 492-493, 1129 Met, see Methionine MEKK1, 714 Metabolic adaptation, 1102-1104 9-Methyladenine, 1156F N⁶-Methyladenine (m⁶A) residue, 1246 1-Methyladenosine (m¹A), 1347F Melanin, 1046 Metabolic control, 619-621 α-Melanocyte stimulating hormone Metabolic control analysis, 620-624 (α-MSH), 1099 Metabolic flux, 620, 624 N-Methylalanine, 32T Melezitose, 385 Methylamine methyltransferase, 1361 Metabolic homeostasis, 619-620, 1096-1101 Mello, C., 1323 Metabolic inhibitors, 569 Methyl arachidonyl fluorophosphonate, 405F Melting curve: Metabolic pathways, 14, 17, 559-562 ω-N-Methylarginine, 79F DNA, 93, 93F and carbon-carbon bonds, 567-569, 568F α-Methylaspartate, 1033F in cells, 560F Methylation analysis, 366 proteins, 265F Melting temperature (T_m) : chemical logic, 563-565 Methylcobalamin, 1037 DNA, 93, 93F Methyl-CpG binding domain (MBD), 1249 eliminations, isomerizations, and proteins, 265 rearrangements, 566-567 β-Methylcrotonyl-CoA carboxylase, 962 Memapsin 2, 547 energy metabolism, 1088-1090 Methylcytidine (m³C), 1347F Membranes: evolution, 34 N^4 -Methylcytosine (m 4 C) residue, 1246 assembly and protein targeting, group transfer reactions, 564-565 5-Methylcytosine methyltransferase 418-449 interorgan specialization, 1090-1095 (m⁵C-MTase), 1247–1248, 1247F 5-Methylcytosine (m⁵C) residue, 1246 and blood groups, 414-415 organelles in, 562T composition of, 398T organic reaction mechanisms, 562-569 N^6 -Methyl-dA, 85 Donnan equilibrium for, 787 oxidations and reductions, 565-566 5-Methyl-dC, 85 of erythrocytes, **411–414**, 411F Metabolic regulation, 619 α-β-Methylene-ADP, 1108F fluid mosaic model, 408-411 N,N'-Methylenebisacrylamide, 147, 147F Metabolic syndrome, 1104 function of, 386 Metabolism, 559. See also specific types of Methylenecyclopropylacetyl-CoA, see gap junctions, 415-416 MCPA-CoA metabolism lipid distribution in, 419-420 cancer cells, 864-865 N^5 - N^{10} -Methylene-tetrahydrofolate, secretory pathway, 420-428 experimental study of, 569-575 1031, **1062** N^5 - N^{10} -Methylene-tetrahydrofolate vesicle formation, 428–440 inborn errors of, 26 vesicle fusion, 440-445 isotope studies of, 572-575 reductase (MTHFR), 1035-1037 Membrane potential, 447, 745 metabolic inhibitors, growth studies, and Methyl-D-glucosides, 363F Membrane proteins, 399-406 Methylglyoxal, 606 biochemical genetics, 569-572 O^6 -Methylguanine residue, 1216 channel-forming, 416-418 organs, cells, and subcellular organelles integral, 399-406 in, **575** N^7 -Methylguanosine (m 7 G), 1302, 1347F lipid-linked, 406-408 oxidation-reduction reactions, 584-586 3-Methylhistidine, 79F Membrane transport: Methylmalonic aciduria, 955 phosphate compound thermodynamics, ABC transporters, **766–768** 578-583 Methylmalonic semialdehyde, 737F action potentials, 775-777 systems biology, 576-578 Methylmalonyl-CoA, 1136F aquaporins, 756-757 and thermodynamics of life, 586-589 L-Methylmalonyl-CoA, 567 ATP-ADP translocator, 771 Metabolites, 559 (S)-Methylmalonyl-CoA, 952, 952F, 953 ATP-driven active, **758–768** Ca²⁺-ATPase, **762–764** Metabolite carrier proteins, 448 Methylmalonyl-CoA mutase, 567, 953-956, Metabolome, 576 954F, 955F, 957F Cl⁻ channels, **755–756** Metabolomics, 578 Methylmalonyl-CoA racemase, 953 general scheme, 747F Metabolons, 595, 817 Methyl-p-nitrobenzene sulfonate, 536-537 group translocation, 765-766 Metachromatic leukodystrophy, 1013T N-Methyl-N'-nitro-N-nitrosoguanidine and (H^+-K^+) -ATPase, **764–765** ion-driven active, **768–771** MNNG), 1215–1216 Metal-activated enzymes, 511 Metal chelation affinity chromatography, 145 Methylphosphonate, 1402 in ionophores, 748-749 Metal ion catalysis, 511–512 $O^{2'}$ -Methylribose, 1328 K⁺ channels, **752–755** Methyl silicones, 31 Metalloenzymes, 511 Metaphase, 20F, 21F N⁵-Methyl-tetrahydrofolate, 1034, 1062 kinetics of mediated transport, 746-748 lactose permease, **769–770** maltoporin, **749–750** Metastisis, 703 Methyl thiocyanate, 170 Metazoa, 12, 1202, 1206-1207 4-Methylumbelliferyl-β-D-Nmediated, 745-748 Met-enkephalin, 673T, 685 acetylglucosamine, 1011 Na⁺–glucose symport, **768–769** (Na⁺–K⁺)-ATPase, **758–762** Methane, 32, 42 5-Methyluracil, see Thymine N-Methylurea, 32T Methanococcus, 7F and neurotransmission, 771-784 Methanococcus jannaschii, 424, 425F MetJ, 1290 nonmediated, 745-746 Methanogens, 6 Metmyoglobin (metMb), 324 Methanol, 43T, 505 Metmyoglobin reductase, 325 passive-mediated glucose transport, Methemoglobin (metHb), 324, 342 750-752 met repressor, 1290-1291, 1291F

MetRS, see Methionyl-tRNA synthetase	fatty acid transport in, 946–947, 946F	Molecular dynamics simulation, 307–308,
Met-tRNA ^{Met} , 1373-1374	gluconeogenesis in, 876–877, 877F	308F, 397
Met-tRNA _i ^{Met} , 1376, 1401	heme biosynthesis in, 1054	Molecular ionization constants, 49–50
Metzler, D., 1021	lipid composition of beef heart	Molecularity, reactions, 483
Mevacor, 990, 991F	membrane, 398T	Molecular mass, 5n
Mevalonate, 977	membranes of, 853F	by gel filtration chromatography, 138, 139,
Mevalonate-5-phosphotransferase, 977	metabolic functions of, 562T	140F
Mevalonolactone, 987	mouse liver, 833F	in protein sequencing, 169
Mevinolin, 990	photorespiration in, 935	by SDS-PAGE, 150, 151F
Meyerhof, O., 595	protein importing in, 445, 446F	Molecular Modeling Database (MMDB),
Mfd protein, 1218	protein targeting in, 445–449	256T, 258
MFS (major facilitator superfamily), 751	sedimentation coefficient, 154F	Molecular sieve chromatography, 138
Mge1, 447	transport systems, 824–828, 826F	Molecular size, protein purification and, 132
MHC (major histocompatibiliy complex)	wobble pairings of tRNA, 1361	Molecular weight, 5n
proteins, 1102	Mitochondrial carrier family, 771	Molecular weight cutoff, 141
M.HhaI, 1248, 1250	Mitochondrial DNA, see mtDNA	Mollusks, 13F
M.HhaI DNA methyltransferase, 1248F	Mitochondrial electron-transport chain, see	Molten globule, 287
mHsp70, 447	Electron-transport chain	Molybdopterin complex (Mo-pt), 1132
Mice:	Mitochondrial import stimulation factor	Mondragón, A., 1164–1165, 1331
cancer cells, 382F	(MSF), 445	Monera, 6
carcinogenesis tests, 1224	Mitochondrial inner membrane, 398T	Monoclonal antibodies, 119–120, 131–132, 143
genome sequencing, 176, 177T	Mitochondrial outer membrane, 398T	Monocyclic cascade, 650
injection with transformed pneumococci, 86	Mitochondrial trifunctional protein,	Monod, J., 349, 1262, 1264–1265
knockout, 121	948–949	Monogalactosyl diacylglycerol, 902
liver membrane composition, 398T	Mitogens, 1202, 1401	Monooxygenases, 543
monoclonal antibodies from, 119	Mitogen-activated protein (MAP) kinase,	Monoprotic acids, 49
obese and diabetic, 1098–1099	712–714	Monosaccharides, 359–363 . <i>See also</i> specific
telomere length, 1211–1212	Mitosis, 20 , 20F, 1202	Monosaccharides
transgenic, 86, 86F, 121F	Mitotic spindle, 10, 20, 1202	Monosodium glutamate (MSG), 1064
Micelles, 44, 44F, 51, 394–395 , 394F	Mixed inhibition, 495–496 , 496F, 502	Monotopic proteins, 404, 426
Michaelis, L., 488	Mixed triacylglycerols, 388	Montagnier, L., 545
Michaelis complex, 488	MJ33, 943	Moody, P., 1216
Michaelis constant (K_M) , 489	MK-591, 1001–1002, 1002F	Moore, P., 1365, 1366, 1383
Michaelis–Menten equation, 488–491 , 488F	MK0886, 1001	Mo-pt (molybdopterin complex), 1132
Michaelis–Menten kinetics:	MKK (MAP kinase kinase), 713	Moras, D., 1357
derivations, 501–503	MKK4,714	Morgan, T. H., 23, 24
for enzymes, 489T	MKK7,714	Morikawa, K., 1199, 1231
inhibition, 493–496	MKKK (MAP kinase kinase kinase), 713	Morpheeins, 1050
pH dependence, 496–497	MKKK kinase (MKKKK), 714	Mosses, 13F
Michel, H., 403, 840, 907, 910	ML (maximum likelihood tree-building	Most Representative NMR Structure in an
Microbodies, 10	criteria), 205	Ensemble, 256T
Microdomains, 410	MLCK (myosin light chain kinase), 656	Mother cell, 1284
Microfibrils, 234, 234F	MLK3,714	Motifs, 249–251
Microfilaments, 10	MMDB, see Molecular Modeling Database	Mouse, see Mice
Microheterogeneity, 373	MNNG (<i>N</i> -methyl- <i>N</i> '-nitro- <i>N</i> -nitrosoguani-	Moving boundary electrophoresis, 146
MicroRNAs (miRNAs), 1325–1326	dine), 1215–1216	Mozzarelli, A., 353
Microscopic dissociation constants, 348	Mobile genetic elements, 1225–1236	MPA (mycophenolic acid), 1112
Microscopic ionization constants, 49, 50	Mobile loop, GroES system, 294, 307F	M phase, 1202 , 1206
Microsomes, 154F, 883, 1362	Mobile phase, 135	MPP (matrix processing peptidase), 447
Microsporidiae, /F	Mobility, 45–46, 45F, 45T, 745	MPT (Malonyl/palmitoyl transferase), 967
Microtubules, 10	Modrich, P., 1220	MP (maximum parsimony) tree-building
Microvilli, 38	Modulator, 348	criteria, 205
middle genes, 1284	MoFe-protein, 1080–1081	Mre11 complex, 1224
Miescher, F., 85	Mohammadi, M., 701	mRNA (messenger RNA), 1145, 1260,
Migration rate (paper chromatography), 144	Molar extinction coefficient, 90	1264–1265
Miles, E., 1076	Molecular archeology, 116	affinity chromatographic isolation, 158
Miller, C., 774	Molecular biology, 95, 95F, 1260	base pairing with 16S rRNA, 1374–1375
Miller, S., 32–33	Molecular chaperones, 290, 293–302 .	degradation, 1327
Miller-Urey experiments, 32T	See also Chaperone proteins	and enzyme induction, 1260–1264
Milstein, C., 420	Molecular clock, 192	masking and cytoplasmic
Mineral acids, 46	Molecular cloning, 104–124	polyadenylation, 1401–1402
Mineralcorticoids, 673T, 680, 991	cloning vectors, 106–109	methylation, 1320
Minor groove, in DNA, 90, 1145	gene manipulation, 109–111	posttranscriptional modification,
Minot, G., 956 miRBase database, 1326	gene therapy, 122–123	1302–1327 reading of 1342, 1343 1342F 1372
MiRNAs (microRNAs), 1325–1326	genomic libraries, 113–114 and nuclear sequencing, 176	reading of, 1342–1343, 1342F, 1372
	·	transport of, 1326–1327 MS (mass spectrometry) 160, 172, 174
Mismatch repair, 1220 , 1220F	and polymerase chain reaction, 114–117	MS (mass spectrometry), 169, 172–174,
Missense suppressors, 1362 Mitchell, P., 846	protein production, 117–121 and protein purification, 130	172F, 366 MsbA, 767–768, 767F
Mitochondria, 7F, 9 , 11F, 16F, 823–828 , 825F.	restriction endonucleases, 104–106	MSF (mitochondrial import stimulation
See also Electron-transport chain	social, ethical, and legal considerations,	factor), 445
acetyl-CoA transport in, 968–969	123, 124F	MSG (monosodium glutamate), 1064
anatomy, 824, 825F	Southern blotting, 111–113	α -MSH (α -melanocyte stimulating
citric acid cycle in, 809, 815	transgenic organisms, 121–123	hormone), 1099
cytoplasmic shuttle systems, 827–828	Molecular disease, 185–187	MS/MS, see Tandem mass spectrometry
	, -	, r

mSos, 709	Myc, 713, 737F	NADH:Coenzyme Q reductase, see
MspI, 105T	Mycobacterium leprae, 1234	Complex II
MspI, 1249	Mycobacterium tuberculosis, 177T	NADH-cytochrome b_5 reductase, 971
MSUD (maple syrup urine disease), 1039	Mycobacterium xenopi, 1407, 1407F	NADH dehydrogenase, see Complex I
MTase, 1247–1248	Mycophenolic acid (MPA), 1112	NADH-dependent dehydrogenases, 472
mtDNA, 116, 1207, 1207F	Mycoplasma, 4F	NAD ⁺ kinase, 1137F, 1138
MTHF (N^5 , N^{10} -methenyltetrahydrofolate),	Mycoplasma genitalium, 177T	NADP ⁺ (nicotinamide adenine dinucleotide
1129, 1215	Mycoplasma hominis, 94T	phosphate), 471F, 473, 931, 1137F
MTHFR $(N^5-N^{10}$ -methylene-tetrahydrofolate	Mycoplasmas, 6	NADPH (nicotinamide adenine
reductase), 1035–1037	Myelin, 398T, 777	dinucleotide phosphate, reduced form)
mtHsp70, 447	Myelination, 777–778, 778F	in Calvin cycle, 931
mTOR, see Mammalian target of rapamycin	Myelin membrane, 398T	in metabolic pathways, 561, 561F
Mtr3, 1327	Myeloma, 131	and photorespiration, 935
· ·		
Mucin, 381, 890, 890F	Myoadenylate deaminase deficiency, 1132	in photosynthesis, 902, 926
Mucolipidosis II, 439	Myocardial infarction, 456, 865	and yeast alcohol dehydrogenase
Mucopolysaccharides, 371	Myoglobin (Mb), 323, 331–332, 332F	activity, 471F
Mucus, 381	α and β chains of, 332T–333T	NADPH-P450 reductase, 543–545
Mule, 1251	conformation of, 306F	NAD ⁺ pyrophosphorylase, 1137F, 1138
Müller-Hill, B., 1284, 1294	electron density map, 242F	NAG (N-Acetylglucosamine), 365, 371,
Mullis, K., 114	ESI-MS spectrum, 173, 173F	376, 377F
Multicellular organisms, 12, 34, 1202.	gene duplication, 193–194	lysozyme catalytic mechanism, 517–520,
See also specific organisms	α helix, 227F	517F, 522–525
Multidrug resistance (MDR) transporter,	H helix, 248F	in peptidoglycan, 377F
766–767	Hill plot, 327F	rates of hydrolysis, 518T
Multienzyme complexes, 792, 794	isoelectric point, 134T	X-ray structure of, 518F
Multiforked chromosomes, 1195, 1195F	mobility, 308F	NAG- $\beta(1 \rightarrow 4)$ -2-deoxy-2-fluoro- β -
	in molecular dynamics simulation, 308F	D-glucopyranosyl fluoride
Multiplass transmembrane proteins, 426		
Multiple sclerosis, 777	molecular mass, 140F	(NAG2FGlcF), 524
Multiple sequence alignment, 201–203	nitric oxide detoxification by, 325	Nagai, K., 1314, 1315
Munc18, 441	oxygen binding by, 325–326, 326F	Na ⁺ -glucose symport, 768-769 , 768F, 769F
Mupirocin, 1356, 1356F	physical constants of, 153T	Nails, 233, 234, 275
Murein, 376	sequence alignment, 197F	Nakamura, Y., 1394
Murine eIF4e, 1378F	solubility in ammonium sulfate	(Na^+-K^+) -ATPase $((Na^+-K^+)$ pump),
Murphy, W., 956	solution, 133F	758–762, 761F
Musacchio, A., 708	tertiary structure, 245–246	NAM (<i>N</i> -acetylmuramic acid), 365, 365F,
Muscarine synapses, 778	X-ray structure, 241F, 245F	376, 377F
Muscarinic synapses, 778	Myokinase, 627. See also Adenylate kinase	lysozyme catalytic mechanism, 517, 517F,
Muscle, 10	(AK)	519–520, 522–525
AMP-dependent protein kinase in,	Myosin, 10, 301	rates of hydrolysis, 518T
1096, 1097F	Myosin light chain kinase (MLCK), 656	NANA (<i>N</i> -acetylneuraminic acid), 365,
anaerobic glycolysis in, 615	Myotonic dystrophy (DM), 1252	365F, 1010
citric acid cycle for, 792, 817	Myotonic dystrophy protein kinase, 1252	NAS, see Normalized alignment score
fibrous proteins, 232	Myristic acid, 387T, 407	Nathans, D., 105
free energy changes of glycolysis		
	Myxobacteria, 13F	National Center for Biotechnology
in, 625T	Myxothiazol, 849	Information (NCBI), 35, 201
fructose utilization in, 630		Native chemical ligation, 209, 209F
glucose uptake regulation in, 751F	N	Native form (DNA), 88
glycogen storage in, 638–639, 667	Na ⁺ , see Sodium ion	Native proteins, 221, 264
glycolysis regulation in, 624–630	N-Acetylneuraminic acid, see NANA	crystalline, 243
and other organs, 1091–1093, 1091F	Na ⁺ channels, 772, 776–777	folding into, 278
slow and fast-twitch fibers, 619	NAD ⁺ (nicotinamide adenine dinucleotide),	free energy, 57
Muscle fatigue, 615, 1092–1093	82, 471F, 791	unfolded forms, 283–284 , 284F
Muscle glycogen synthase deficiency	790F, 766F	Natural selection, see Evolution
disease, 668	biosynthesis, 1137F, 1138	Navia, M., 549, 724
Muscular dystrophy, 1252	in catabolism, 561F	NCBI, see National Center for Biotechnology
Mutagens, 104, 570	in citric acid cycle, 794, 795T	Information
Mutagenesis, 119–120, 1224–1225, 1225F	and DNA ligase, 1187	NDB, see Nucleic Acid Database
Mutarotation, 362–363, 507–508	domains, 248	NDP, see Nucleoside diphosphate
Mutase, 610	in glycolysis, 585, 594F	Neandertals, 116
Mutations:		Nearest-neighbor analysis, 127
	in glyoxylate cycle, 880	
in DNA replication, 102	in oxidation-reduction reactions, 565	NEDD8, 1421
dynamic, 1251–1252	and yeast alcohol dehydrogenase, 471–472	Needleman, S., 199
and evolution, 18–19, 185	NADD, 471	Needleman–Wunsch sequence alignment
nonsense, 1362	NADH (nicotinamide adenine dinucleotide,	algorithm, 199–201, 200F
point, 192 , 1339–1340	reduced form):	Negative allosteric effect, 348
random nature of, 195	766F, 766F	Negative design, of proteins, 305
rates of, 192	in catabolism, 561F	Negatively cooperative binding, 327
up and down, 1266	in citric acid cycle, 789, 791, 819	Negative regulator, 1286
and viruses, 27, 27F	as electron-transfer coenzyme, 586	Neighbor-joining (N-J) method, for
MutH, 1220	in electron-transport chain, 823, 824F,	phylogenetic tree construction, 204
MutL, 1220	828, 829	Nelfinavir, 550F
MutS, 1220	in fatty acid oxidation, 950	Nelson, N., 923
MWC model, of allosteric interactions,	in glycolysis, 585, 594F	NEM (N-ethylmaleimide), 440–441
349–351	in oxidation-reduction reactions, 565	Nematodes, 13F, 1320. See also
Myasthenia gravis, 781	and yeast alcohol dehydrogenase, 471-472	Caenorhabditis elegans
	J 6:,	<i>U</i> -

Nicotinate mononucleotide, 1137F, 1138

Némethy, G., 352 Noninsulin-dependent diabetes (NIDDM), Nicotinate phosphoribosyltransferase, 1136, 310, 1102-1104, 1103F NEMO subunit, 1420 1137F, 1138 NEM-sensitive fusion protein, Nicotine, 778 Nonketonic hyperglycinemia, 1032-1033 Nicotinic acid, 474 Nonmediated membrane transport, see NSF protein N-end rule, 1413 Nicotinic synapses, 778 NER, see Nucleotide excision repair Nonpolar amino acids, 70-71 NIDDM, see Noninsulin-dependent diabetes Nonreceptor tyrosine kinases (NRTKs), 715 Nernst, W., 584 Niemann-Pick disease, 1013T Nernst equation, 584 Nierhaus, K., 1373, 1388 Nonsense codons, 1343 Nernst-Planck equation, 745 Nigericin, 869 Nonsense mutations, 1362 NIH shift, 1045 Nerve growth factor (NGF), 717 Nonsense suppression, 1362 19S caps, 1414, 1417 Nerve transmission, 440F Nonshivering thermogenesis, 629, Nervonic acid, 387T 19S regulator, 1414 860-861 Nested primers, 116 Nirenberg, M., 1341-1343 Nonstandard amino acids, 78-80, 79F, 80F Neuberg, C., 595 Neupert, W., 445 Nitrate ion, 324 Nonsteroidal anti-inflammatory drugs Nitrate reductase, 1083 (NSAIDs), 994, 995, 998-999, 999F Neural tube defects, 1035 Nitric acid, 46 Nonviral retrotransposons, 1246, 1246F Neurocan, 373T Nitric oxide (NO), 324 Noonan syndrome, 721 Neurofibrillary tangles, 311, 312 Neuroglobin, 325 Norepinephrine, 673T, 679–680, 1046 binding to heme group, 324 controls fatty acids in brown fat, 861 detoxification by myoglobin, 324 Neurohypophysis, 683 hormonal roles, 685-688 role in fatty acid metabolism regulation, 973 Neurons, 12F Nitric oxide synthase, 685-687 role in glycogen metabolism regulation, 660 Neuronal membranes, anesthetics and, synthesis from tyrosine, 1058–1060 Nitrification, 1083 398-399 Nitriloacetic acid, 857 Normalized alignment score (NAS), Neuronal NOS (nNOS), 686-687, 687F 196, 198F Nitrite, 1340 Neuropeptides, 783-784 Nitrite ion, 324 Northern transfer (Northern blot), 113 Neuropeptide Y (NPY), 1099 Nitrite reductase, 934, 1083 Northrop, J., 470 Neurospora, 13F, 26 3-Nitro-2-(S)-hydroxypropionate, 812 NO synthase (NOS), 685–687 Neurospora crassa, 1319, 1320F, 1344T Nitrocellulose, 111, 113 Novobiocin, 1167, 1169, 1170, 1175 Neurotoxins, 442, 442F, 776-777 Nitrogen, 31 NPCs (nuclear pore complexes), 1327 Neurotransmission: Nitrogenase, 1080-1082 NPY (neuropeptide Y), 1099 action potentials, 775-777 Nitrogen cycle, 1083, 1083F NPY/AgRP cell type, 1099 voltage-gated ion channels, 771-775 Nitrogen excretion, 1134-1135 N-Ras, 709 Neurotransmitters, 527, 778-784 Nitrogen fixation, 5–6, **1078–1083** NRTKs (nonreceptor tyrosine kinases), 715 amino acids as, 80 Nitrogen-fixing bacteria, 1080-1082 NSAIDs, see Nonsteroidal antisynthesis of, 1058-1060 Nitrogen mustard, 1340 inflammatory drugs in vesicles, 440 nSec1, 433F, 442-444 Nitrogenous bases, 83. See also Nucleic NSF (NEM-sensitive fusion) protein, 441, Neurotransmitter receptors, 778–784 acid bases Neutral drift, 188-192 Nitroglycerin, 686 444-445, 444F, 445F, 1159 Neutral fats, 388 p-Nitrophenolate ion, 513, 525–526 nt (nucleotides), 1175 Neutral solutions, 47 *p*-Nitrophenylacetate, 513, 525–526, 526F N-terminal nucleophile (Ntn) family, Nitrosamines, 1340 Neutrophils, 688 1066, 1417 Newsholme, E., 629, 973 Nitrosoheme, 687 N-terminus (amino acids), 73, 165, New variant Creutzfeldt-Jakob disease Nitrous acid, 1339, 1340F 1371-1373 (nvCJD), 315 N-J method, for phylogenetic tree Ntn family, see N-terminal nucleophile family NTPase, 1275–1276 N-extein, 1406F, 1407 construction, 204 NTPs, see Nucleoside triphosphates NFAT_p, 724 N-Linked glycoproteins, 882–889 NF-κB (nuclear factorκB), 1414 N-Linked oligosaccharides, 374F, 379–380, Nuclear envelope, 9 Nuclear factor kB (NF-kB), 1414 NGF (nerve growth factor), 717 379F, 881, 888F NH₄, see Ammonium ion Nuclear localization signal (NLS), 1414 synthesis of glycoproteins from, 882-889 Nuclear membrane, 7F, 9 NHEJ (nonhomologous end-joining), NLS (nuclear localization signal), 1414 1223-1224, 1224F NMN (nicotinamide mononucleotide), Nuclear Overhauser effect spectroscopy N^{ω} -hydroxyl-L-arginine (NOHA), 686, 686F (NOESY), 243, 244F 1137F, 1138, 1187 Niacin, 474 NMR spectroscopy: Nuclear pore complexes (NPCs), 1327 Niacinamide, 474 interpretation of structures, 243-244 Nucleases, 101 Nicholls, A., 259 for metabolism studies, 569, 572 Nucleation, 346, 347F Nuclei, in landscape theory of protein folding, 287–289, 288F Nucleic acids, 15, 82–95. See also Nicholson, G., 408 with pulsed H/D exchange, 285-286 Nick translation, 1181, 1187 nNOS, see Neuronal NOS Nicotinamide, 474T, 1137F NO, see Nitric oxide Nodes of Ranvier, 777 DNA; RNA Nicotinamide adenine dinucleotide, see NAD NOESY, see Nuclear Overhauser effect and amino acid sequence, 70 spectroscopy NOHA, see N^w-hydroxyl-L-arginine base pairing, 1154–1156 Nicotinamide adenine dinucleotide, reduced base stacking, 1156-1157 form, see NADH Noller, H., 1364, 1366, 1387, 1388, 1392, 1394 Nicotinamide adenine dinucleotide as buffer components, 48 phosphate, see NADP+ Nomenclature: chemical structure, 84-85, 84F Nicotinamide adenine dinucleotide dietary, 1130 amino acid, 72-73 phosphate, reduced form, see NADPH enzymes, 479 and DNA function, 85-88 Nicotinamide coenzymes, 471F, 473T, Nomura, M., 1365 and DNA structure, 88-95 Noncompetitive (mixed) inhibition, 1136-1138 double-helical structures, 1145-1148 Nicotinamide mononucleotide, see NMN **495–496,** 496F, 502 evolution, 33 Nicotinamide phosphoribosyltransferase, Nonconjugate flow, 587 functional groups, 43 1137F, 1138 hydrophobic forces, 1157–1158 Noncooperative binding, 327 Nicotinate, 1137F Nonequilibrium thermodynamics, 587 and nucleotides, 82-84 Nicotinate adenine dinucleotide (desamido Nonessential amino acids, 1019, oligonucleotide synthesis, 209-213 organization of, 163-164 NAD^{+}), 1138 1064-1072, 1065T

Nonhomologous end-joining, see NHEJ

polymeric organization, 17F

sedimentation coefficients, 154F Open conformation: O-antigens, 85, 378-379 of Klentaq1, 1179–1180, 1179F stability of, 1151-1158 sugar-phosphate chain conformation, Obesity, 629, 862, 1093, 1096-1099, 1104 of Rep helicase, 1186 1152-1154 Open reading frames (ORFs), 182, 304 OB folds, 1213 Open β sheets, 251, 254–256 supercoiled DNA, 1158-1170 Obligate aerobes, 6 Open systems, 52, 587, 588F Nucleic acid bases, 82-83. See also Obligate anaerobes, 6 Nucleotide bases O blood type, 22 Open-X conformation, 1227F Chargaff's rules for, 84, 85 OB-R protein, 1098 Operators, 97 Ochoa, S., 791, 1341, 1342 modification of, 85 Operator constitutive mutation, 1264 names, structures, and abbreviations, 83T ochre codon, 1343 Operon, 1262 tautomeric forms of, 88, 88F ochre mutants, 1408 Opiate receptors, 685 UV absorbance spectra, 92F ochre suppressor, 1362 Opsin, 689, 694 Nucleic Acid Database (NDB), 256T, 257 O^c mutation, 1264 Optical activity, 73-78 Nucleic acid fractionation, 156-159 OCRL, 735 Optical density, in Beer-Lambert law, 90 Octahedral symmetry, proteins, 268, 268F Nucleic acid sequencing, 176, 180–182 Optical isomers, 75 amino acid sequencing contrasted, 184-185 Octanoyl-CoA, 948 Optical traps, 1273-1274 genome sequencing, 180-184 Oculocerebrorenal dystrophy, 735 Optical tweezers, 1274, 1274F Sanger method, 176–180 ODCase, see OMP decarboxylase Oral rehydration therapy, 768 Nuclei scaffolding, 287 Odd-chain fatty acids, 945F, 952-957 ORC (origin recognition complex), Nucleoid, 4, 4F O'Donnell, M., 1182, 1196, 1197, 1222 1205-1207 Nucleolus, 7F, 9, 11F, 1328 OEC (oxygen-evolving complex), 916 Orc1, 1205 Nucleophiles, 563, 563F, 564 Orc2, 1205 OE (outside end) sequences, 1237, 1238F Nucleophilic catalysis, 510–513 OGDH (2-Oxoglutarate Orc3, 1205 Nucleoplasmin, 293 Orc4, 1205 dehydrogenase), 799 Nucleoporins, 1327 O⁺ gene, 1264 Orc5, 1205 Ogston, A., 814 1, 25(OH)2D (1α, 25-Nucleosidases, 1130 Orc6, 1205 Nucleosides, 82-83, 83T Order, probability of, 55F Dihydroxycholecalciferol), 678 Order-disorder transition, 397, 397F Nucleoside-5'-phosphate, 83 Nucleoside diphosphate (NDP), 582, 1125 Oils, 387, 393-394, 394F Ordered Bi Bi reactions, 498-500 Nucleoside diphosphate kinases, 582, Ordered mechanisms, 498 Okazaki, R., 1175 Okazaki fragments, **1174–1176,** 1187, 1219 Order of reaction, 483 644, 1113 ORFs, see Open reading frames Nucleoside monophosphate kinases, 1113 in *E. coli* replication, 1193F, 1194, 1198 Organs, 16F, 1090-1095. See also Nucleoside phosphorylases, 1130 eukaryotes, 1207 Nucleoside triphosphates, 82 Oleate, 44F specific organs Nucleoside triphosphates (NTPs), Oleic acid, 386, 387F, 387T, 950F Organelles, 16F, 562T 95-96, 582 Organic arsenicals, 799 (2', 5')-Oligoadenylate synthetase Nucleosomes, 291–293 (2,5A synthetase), 1400 Organic compounds, synthesizing, 32F Nucleotidase, 1130F, 1136F Oligomers, 267, 270–271, 271F Organic reaction mechanisms, 562-569 3'-Nucleotide, 83 Oligomycin B, 870 Organic solvents, 134 Organisms, 16F, 192. See also specific Oligomycin sensitivity conferring protein, 5'-Nucleotide, 83 Nucleotides, 15, 18, 82-83 see OSCP organisms defined, 82 Oligonucleotides, 209–214, 1402–1403 Organ perfusion, 575 degradation, 1130-1136 Oligonucleotide adaptors, 110F oriC locus, 1194-1195, 1194F, 1199F names, structures, and abbreviations, 83T Oligonucleotide probes, 112-113, 113F Orientation effects, enzyme catalysis by, as units, 1175 512-515 Oligopeptides, 70 Nucleotide bases. See also Nucleic Oligosaccharides, 359 Origin-independent replication restart, 1235 biosynthesis, 880-892 Origin recognition complex, see ORC acid bases in aqueous solution, 1156-1157 Ornithine, 80, 80F, 571F, 1028, 1071 N- and O-linked, 374F, 379-380, 379F in plasma membranes, 400F Ornithine-δ-aminotranferase, 1070F, 1071 ionic interactions, 1158 synthesizing, 382-383 in prebiotic conditions, 33 Ornithine decarboxylase, 1408T Nucleotide coenzyme biosynthesis, Oligosaccharyltransferase, see OST Ornithine transcarbamoylase, 1028 O-Linked glycoproteins, 890–892 Ornithorhyncus anatinus, 177T 1136-1139 Nucleotide excision repair (NER), O-Linked oligosaccharides, 374F, 379-381, Orotate, 1115F, 1116 1216–1218, 1217F 380F, 881 Orotate phosphoribosyl transferase, Nucleotide metabolism, 1107-1140 synthesis of glycoproteins from, 890-892 1115F, 1116 biosynthesis of nucleotide coenzymes, ω oxidation, fatty acids, 959 Orotic acid, 1114 ω protein, 1163. See also Topoisomerase I Orotic aciduria, 1118-1119 1136-1139 Orotidine-5'-monophosphate (OMP), degradation of nucleotides, 1130-1136 Omeprazole, 765 1115F, 1116–1117 deoxyribonucleotide formation, 2'-O'-methyltransferase, 1302 1119-1130 OMP, see Orotidine-5'-monophosphate Orthologous proteins, 194 purine ribonucleotide synthesis, Omp85, 449 Orthophosphate (P_i) , 578 OMP decarboxylase (ODCase), 1115F, Orthophosphate cleavage, 582 1107-1114 1116-1117 pyrimidine ribonucleotide synthesis, OSCP (oligomycin sensitivity conferring 1114-1119 OmpF porin, 403–404, 405F protein), 855, 870 Nucleotide sugars, 882F Oncogenes, 705-711 Osmotic coefficient, 1156, 1157F Nucleus, 3, **8–9**. See also DNA replication; Osmotic lysis, 130 One gene-one enzyme maxim, 26 One gene-one polypeptide maxim, 26 animal cell, 7F OST (oligosaccharyltransferase), metabolic functions, 562T One-intermediate model, of reversible 885-886, 885F plant cell, 11F enzyme reactions, 491 Osteoarthritis, 240 transport of mRNA from, 1326-1327 Ontogeny, phylogeny and, 12 Osteoblasts, 540, 677–678 Oocytes, mRNA masking and, 1401 NutraSweet (aspartame), 1087 Osteoclastoma, 540 Osteoclasts, 540, 677-678 nvCJD (new variant Creutzfeldt-Jakob opal codon, 1343 disease), 315 opal suppressor, 1362 Osteocytes, 12F Nyborg, J., 1380, 1381, 1388 Oparin, A., 32 Osteogenesis imperfecta (brittle bone Nylon, 111 Open complex, 1267–1268 disease), 240

Osteoglycin, 373T	p66, 1208–1209, 1209F	Parallel β pleated sheets, 224F, 229–230
Osteogrychi, 5751 Osteomalacia, 677–678	p85, PI3K subunit, 732	Paralogous proteins, 194
Osteoporosis, 540, 678–679, 1400	p101, PI3K subunit, 733	Parathion, 527
Ouabain, 761–762, 761F	p150, PI3K subunit, 733	Parathyroid, 672F
Outer membrane, 6	P680, 916–917	Parathyroid hormone (PTH), 673T, 677
Outgroups, 204	P700, 922–923	Pardee, A., 475, 1262
Outside end sequences, see OE sequences	P870, 909	Parent DNA, 1174F
Ovalbumin, 134T, 140F, 1304, 1304F, 1305F	P960, 912	Parker, M., 718
Ovarian cancer, 1236	PA (protective antigen), anthrax, 715	Parkinson's disease, 309, 720, 1059, 1060
Ovaries, 672F	PA26, 1418–1419, 1418F	Parnas, J., 595
Overproducers, 117	PA28, 1418	Parodi, A., 883
Ovomucoid, 140F	PA700, 1414	Paromomycin, 1395T, 1396F, 1397 , 1397F
Oxa1, 448	Pääbo, S., 116	Partial molar free energy, 58
Oxalic acid, 49	PAB II (poly(A)-binding protein II), 1303	Partial specific volume, 153
Oxaloacetate, 947	PABP (poly(A)-binding protein),	Partition coefficient, 144, 540, 745–746
in citric acid cycle, 791, 814	1303, 1304F	PAS (periodic acid-Schiff's reagent),
synthesis of, 872F, 1034, 1067F	Pace, N., 1331	411–412
Oxalosuccinate, 789, 809	Pacific Biosciences, 184	pas (primosome assembly site), 1190
Oxidants, 584	Packing density, 247	Passenger RNAs, 1324
Oxidation, 583	PAF (platelet-activating factor), 1008	Passive-mediated transport, 745, 750–752
Oxidation-reduction reactions, 364–365,	PAGE (polyacrylamide gel electrophoresis),	Pastan, I., 1286
565–566, 584–586	147–148. See also SDS-PAGE	Pasteur, L., 469, 593, 619, 864
Oxidative deamination, 1023–1025 , 1340F	PAH (phenylalanine hydroxylase), 1043	Pasteur effect, 619, 864, 1088
Oxidative phosphorylation, 386, 561F,	Pai, E., 1133	Patel, D., 1300, 1324
845–862	Pain, prostaglandins and, 993–994	Path dependence, 53
and ATP synthesis, 852–859	Pairwise alignment, 196, 201	Pauling, L., 185–186, 221, 226, 229,
control of, 862–863	PaJaMo experiment, 1236F, 1262–1263	515, 1355
and electron-transport chain, 823, 829,	Palade, G., 9, 1362	Pavletich, N., 736, 1412, 1413
831–833	PALA (<i>N</i> -(phosphonacetyl)-L-aspartate),	PBG (porphobilinogen), 1048
energy coupling hypothesis for, 845–846	476–477	PBGS, see Porphobilinogen synthase
and glycolysis, 594F	Palindromes, 105, 106	P bodies, 1325
and other pathways, 1090	Palmitate, 44F	PbRCs (purple photosynthetic bacteria
proton gradient generation, 846–852	Palmitic acid, 386, 387T, 407	RCs), 909
uncoupling, 859–862 , 860F	Palmitoleic acid, 387T	PC, see Plastocyanin
Oxidizing agent, 584	1-Palmitoleoyl-2,3-dioleoyl-glycerol, 940	PCC, see Protein-conducting channel
Oxidizing atmosphere, 32	1-Palmitoleoyl-2-linoleoyl-3-stearoyl-	P-cluster, 1081
Oxidoreductases, 479T	glycerol, 388	PCNA (proliferating cell nuclear antigen),
Oxidoreduction reactions, 583	Palmitoyl-ACP, 965	1204, 1204F, 1206
2,3-Oxidosqualene, 982, 983f	Palmitoyl thioesterase (TE), 965	PCR, see Polymerase chain reaction
Oxidosqualene cyclase, 983F, 984F	PAM (presequence translocase-associated	PDB, see Protein Data Bank
2,3-Oxidosqualene cyclase, 982, 983	motor), 447	PDBid, 256–257
2-Oxoacid dehydrogenase family, 799	PAM-1 matrix, 198	PDC, see Pyruvate decarboxylase; Pyruvate
2-Oxoglutarate dehydrogenase	Pam16, 447	dehydrogenase multienzyme complex
(OGDH), 799	Pam17, 447	PDGFR (platelet-derived growth factor
Oxonium ion, 520	Pam18, 447	receptor), 699
5-Oxoprolinase, 1061	PAM-250 log odds substitution matrix,	PDI (protein disulfide isomerase), 280,
5-Oxoproline, 1062	198–199, 199F, 201, 203	290–292 , 290F, 291F
Oxyanion hole, 534	PAM units (Percentage of Accepted point	PDK-1 (phosphoinositide-dependent
Oxygen:	Mutations), 189, 197–199	protein kinase-1), 731
adaptation of life to, 34	Pancreas, 672F	PDZ domain, 708
partial reduction of, 865	Pancreatic δ cells, 675	PE, see Phosphatidylethanolamine
production of, 914–920, 934–937	Pancreatic aciner cells, 12F, 525	Pearl, L., 1234
transport of, 56, 323–234, 329	Pancreatic α cells, 675 , 973	Peas, 19T, 20–22
Oxygenated hemoglobin (oxyHb), 325, 329,		
332, 333F–335F	Pancreatic β cells, 661, 675 , 973, 1102–1103 Pancreatic cancer, 1236	PEG (polyethylene glycol), 1132 PEG-ADA, 1132
Oxygenated myoglobin (oxyMb), 325	Pancreatic DNase, 157	Pellagra, 474, 1138
Oxygen binding, by hemoglobin, 325–328	Pancreatic DNase I, 1160	Penetrance, of diseases, 1251
and BPG, 329–331 , 329F–331F	Pancreatic islet hormones, 675	Penicillin, 377–378 , 377F, 378F, 1395
cooperativity, 334–340, 351–354	· · · · · · · · · · · · · · · · · · ·	Penicillinase, 378
	Pancreatic phospholipase A ₂ , 942–943,	Penicillinoic acid, 378F
free energy and saturation curves, 339F Oxygen debt, 880	942F, 943F Pandit Jayyardhan 082	
, ,	Pandit, Jayvardhan, 982	Pentoses, 82–83, 360F
Oxygen electrode, 830, 830F Oxygen-evolving complex (OEC), 916	Pangenesis 10	Pentose phosphate pathway, 892–898 , 893F, 1090
	Pangenesis, 19	
Oxygen tension, 325	Pantothenate, 474T, 1138, 1139F	PEP, see Phosphoenolpyruvate
oxyHb, see Oxygenated hemoglobin	Pantothenate kinase, 1138, 1139F	PEP carboxykinase (PEPCK), 818, 1089
Oxyluciferin, 183	Pantothenic acid, 792	in gluconeogenesis, 872–873, 876, 876F, 879
oxyMb (oxygenated myoglobin), 325	Pan troglodytes, 177T	PEPCK see PEP carbovykings
Oxytocin, 205, 673T, 683	PAP (poly(A) polymerase), 1302, 1303F	PEPCK, see PEP carboxykinase
Oxytricha nova, 1212, 1212F	Paper chromatography, 132T, 144–145, 144F	Pepsin, 134T, 169T, 470, 547, 547F
P	Paper electrophoresis, 146–147, 147F	Pepsinogen, 675
	PapG-protein, 382	Peptidases, 79 Pentidas, 70, San alas Polymentidas
P1 plasmids, 1259	PAPS (3'-phosphoadenosine-5'-	Peptides, 70. See also Polypeptides
p44 subunit, 1218	phosphosulfate), 1010, 1072	mass spectrometry of, 172–175, 172F
p51, 1208–1209, 1209F	Parabiosis, 1096–1099	in protein sequencing, 169–171
p53, 1211, 1414	Paracrine glands, 671	release of, 1392–1394

Phosphoinositide 5-kinases (PIP5Ks), 732

Peptide- N^4 -(N-acetyl- β -D-glucosaminyl) 5-Phosphatase II, 735 PGI, see Phosphoglucose isomerase asparagine 253F, 252F PGI₂, see Prostacyclin I₂ Phosphate, 578 Peptide- N^{4} -(N-acetyl- β -D-glucosaminyl) PGK, see Phosphoglycerate kinase Phosphate carrier, 448, 826 P-glycoprotein, 766–767 Phosphate compound thermodynamics, asparagine amidase F, 252 Peptide bonds, 70, 99F, 222, 1384–1385 PGM, see Phosphoglycerate mutase 578-583 PGs, see Prostaglandins Phosphatidic acid phosphatase, 971 Peptide group, 221-225 cis-Peptide group, 222F pH, **47-48** Phosphatidic acids, 389, 389T, 398T trans-Peptide group, 222F and biochemical standard state, 60 Phosphatidylcholine, 389T, 398T Peptide mapping, 174–175, 175F and buffers, 48 Phosphatidylethanolamide: serine Peptide recognition particle (prp73), 1409 in disc electrophoresis, 148 transferase, 1004 Phosphatidylethanolamine (PE), 389T, Peptide units, 70 immobilized pH gradients, 150 Peptidoglycan, 376 in ion exchange chromatography, 136 398T, 419 Peptidoglycan N-acetylmuramoyhydrolase, and isoelectric focusing, 150, 151 Phosphatidylglycerol, 389T, 398T, 1004, 1006F and Michaelis-Menten kinetics, 496-497 Phosphatidylglycerol phosphate, 1005 479 Peptidoleukotrienes, 1000, 1001 and protein denaturation, 265 Phosphatidylinositol (PI), 891F Peptidomimemtics, 550-551 and protein solubility, 133F, 134 Phosphatidylinositol (PtdIns), 389T, 398T, Peptidyl-L-amino acid hydrolase, 470 732, 1004–1006, 1006F and protein stabilization, 130-131 Peptidyl homoserine lactone, 170 Phages, see Bacteriophages Phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P₂), 435, 665, 725 Peptidyl prolyl cis-trans isomerases (PPIs), Pharmacodynamics, 539 Phosphatidylserine, 389T, 398T, 1004, 1005F 290, **292** Pharmacogenomics, 545 Peptidyl site, see P site Pharmacokinetics, 542 Phosphinothricin, 1068 Peptidyl transferase, 1382, 1383, Pharmacology, 539, **542–545** 3'-Phosphoadenosine-5'-phosphosulfate, 1383F, 1385F see PAPS Phase variation, 1243, 1243F Peptidyl-tRNA, 98F, 1373, 1391 PHAS-I, 1401 3'-Phosphoadenosine-5'-phosphosulfate Percentage of accepted point mutations, see PHAS-II, 1401 (APS) reductase, 1072 PH (pleckstrin homology) domain, 435, PAM units Phosphoanhydride bond, 578 Perchloric acid, 46 708, 729 Phosphoarginine, 580 Phe, see Phenylalanine Phosphocholine, 1004 per gene, 120F Perham, R., 796, 800 pheA operon, 1299T Phosphocreatine, 570-571, 580, 583, 1092 Periodic acid-Schiff's reagent (PAS), 411-412 (2',5')-Phosphodiesterase, 1400 Phen (phentermine), 543 Periodic table of elements, 31F Phenolphthalein, 51 Phosphodiesterases, 176, 653, 688-689 Phenotypes, 21-22, 22F Peripheral proteins, 400 Phosphodiester groups, 84 Peripheral subunit-binding domain (PSBD), Phenoxazone ring system, 1272 Phosphodiester method, of oligonucleotide 796, 800, 800F Phentermine (phen), 543 synthesis, 209, 211 Periplasmic space, 117, 378 Phentolamine, 680 Phosphoenolpyruvate (PEP), 581F, 596F, PERK (PKR-like endoplasmic reticulum Phenylacetic acid, 945 612,872 kinase), 1400 Phenylaceturic acid, 945 Phosphoenolpyruvate carboxykinase, see Perlecan, 373T Phenylalanine: PEP carboxykinase aromatic ring flipping and protein core mobility, 308–309 Permeability coefficient, 745, 747T, 775 Phosphoenolpyruvate carboxykinase Permeases, 745 (PEPCK), 571 biosynthesis, 1075–1078 Permethylation analysis, 366 Phosphoenolpyruvate-dependent phospho-Permissive conditions, 27 degradation, 570, 570F, 1043-1047 transferase (PTS) system, 765, 765F Pernicious anemia, 474T, 956-957, 1064 as essential amino acid, 1065T Phosphoester bond, 578 Peroxisomal β oxidation, fatty acids, **958** Peroxisomes, 10, 562T, 935, 958F. *See also* Phosphoethanolamine, 1004 Phosphofructokinase (PFK), 667 genetic codes for, 100T, 1341-1342, 1343T in globular proteins, 246 Amino acid metabolism; Glyoxylate half-life, 1413T allosteric control, 479 α helix/β sheet propensity, 302T binding to erythrocyte membrane, 412 in native unfolded proteins, 283 Peroxisome proliferator-activated receptor in gluconeogenesis, 872 $\gamma~(PPA\dot{R}\gamma), 1104$ in glycolysis, 596F, 600, 625-627, 626F, Ramachandran diagram, 225 Peroxynitrite, 688 side chains, 70-71, 264T 627F, 630 Pertussis toxin (PT), 697, 1398 structure and general properties, 68T, 71F and integration of pathways, 1088 Perutz, M., 331, 341, 1252 Phenylalanine hydroxylase (PAH), 1043 Phosphofructokinase-2 (PFK-2), 663-664 Phosphoglucokinase, 642 Perutz mechanism, 334-340 Phenylethanolamine N-methyltransferase, Phosphoglucomutase, 632, 639, 642 Petsko, G., 308 1060F 6PF-2-K (phosphofructokinase-2), 663-664 2-Phenylethyl boronic acid, 556 6-Phosphogluconate, 637F, 894, 894F Pfam, see Protein families Phenylisothiocyanate, see PITC 6-Phosphogluconolactonase, 894 Phenylketonuria (PKU), 569-570, 948, Pfanner, N., 445 6-Phosphoglucono-δ-lactone, 894 1045-1047 PFGE, see Pulsed-field gel electrophoresis Phosphoglucose isomerase (PGI), 596F, **598–600,** 599F PFK, see Phosphofructokinase β-Phenylpropionate, 527 PFK-2 (phosphofructokinase-2), 663-664 Phenylpyruvate, 570, 1045 Phosphoglycerate kinase (PGK), 596F, PFK-2/FBPase-2, 663 Phenylthiocarbamyl (PTC), 165 608-610,609F Pfu DNA polymerase, 114 Phenylthiohydantoin (PTH), 165 Phosphoglycerate mutase (PGM), 596F, 2PG, see 2-Phosphoglycerate 610-612, 610F Pheophytin a (Pheo a), 916 2-Phosphoglycerate (2PG), 594-595, 610 3PG, see 3-Phosphoglycerate Pheromones, 671-672, 976 3-Phosphoglycerate (3PG), 594–595, 608 PG (polygalacturonase), 1403 PheRS, 1351 PGAs, 994 Philadelphia chromosome, 718 Phosphoglycerides, 389-390 PGE₂, 997 Phillips, D., 252, 517, 519, 521-524 Phosphoglycohydroxamate, 603 PGEs, 994 Phillips, S., 1290, 1291 2-Phosphoglycolate, 603, 934–935 PGF_{α} , 994 PGF_{β} , 994 PGFs, 994 PhK, see Phosphorylase kinase Phosphoguanidines, 580, 581F Phlorizin, 768 3-Phosphohydroxypyruvate, 1070F, 1071 PHLPP protein phosphatase, 732 Phosphoimager, 111 $PGF_{2\alpha}$, 997 pH meter, 47 Phosphoinositide 3-kinases (PI3Ks), PGG₂, 997 PhoE porin, 403–404 Phosphagens, 583 Phosphoinositide 4-kinases (PIP4Ks), 732

Phosphatase, 140F

PGH synthase (PGHS), 997–999, 997F, 999F

Phosphoinositide cascade, 725–738	light absorption, 903–909	divergence from other kingdoms, 192
inositol polyphosphate phosphatases, 734–736	light reactions, 902–926 membrane process, 386	glycogen synthase, 645 glyoxylate cycle, 880–881
phosphoinositide 3-kinases, 732–734	photophosphorylation, 925–926	mitochondrial deviations from ideal, 13447
phospholipases C, 727–730	photorespiration and C ₄ cycle, 934–937	mutation rate, 192
protein kinases C, 730–732	two-center electron transport, 913–925	transgenic, 122
second messengers, 725–727 Phosphoinositide-dependent protein	Photosynthetic bacteria, 6 Photosynthetic reaction center (PRC), 905	Plantae, 12 Plant cells, 11, 11F
kinase-1 (PDK-1), 731	integral membrane proteins, 403, 404F	Plant medicines, 539
Phosphoinositol, 994	purple bacteria, 909–911, 909F, 911F	Plaques, 27
Phospholipases, 408, 410	Photosystem I (PS I), 913–925 , 922F, 923F, 925F	Plasma glucose, 1103F Plasmalogens, 390, 574, 1005, 1007–1008, 1007F
Phospholipase A ₂ , 942–943, 942F, 943F, 994, 1017	Photosystem II (PS II), 913–925 , 918F, 925F	Plasma membranes, 4. See also Cell
Phospholipase C, 664, 706, 725, 727–730 ,	Phototrophs, 559	membrane
728F, 994	Phycobiliproteins, 909	composition, 398T
Phospholipase C-β (PLC-β), 690, 692 Phospholipase C-γ, 706	Phycocyanin, 905F, 909 Phycocyanobilin, 909	of eukaryotes, 8, 11F of prokaryotes, 4F
Phospholipids, 400F, 410F, 419–420	Phycoerythrin, 905F, 909	schematic diagram, 400F
Phospholipid exchange proteins, 420	R-Phycoerythrin, 140F	secretory pathway, 420–428
Phospholipid metabolism, 1004	Phytocrythrobilin, 909	sedimentation coefficient, 154F
glycerophospholipids, 1004–1008 sphingoglycolipids, 1008–1013	Phylloquinone, 922 Phylogenesis, 6	vesicle formation, 428–440 vesicle fusion, 440–445
sphingophospholipids, 1008–1009	Phylogenetic trees, 6 , 7F, 13F	Plasmids, 106–108, 1228F, 1262, 1262F
Phospholipid translocases, 420	and bioinformatics, 203–205, 203F	Plasmid-based cloning vectors, 106–108
Phosphomannose isomerase, 633 Phosphomevalonate kinase, 977	and protein sequencing, 189, 190F Phylogeny, eukaryotes, 12–14	Plasmin, 525T Plasminogen, 458
N-(Phosphonacetyl)-L-aspartate (PALA),	Phytanic acid, 958	Plasmodesma, 11F
476–477	Phytanic acid storage syndrome, 959	Plasmodium falciparum, 177T, 188, 898, 1058
Phosphopantetheine transferase, 961	Phytanoyl-CoA hydroxylase, 958	Plastids, 901
Phosphopantetheine transferase (PPT), 967 Phosphopantothenoylcysteine decarboxylase,	Phytol, 903 PI, see Phosphatidylinositol	Plastocyanin (PC), 916, 921–922, 921F Plastoquinol (QH ₂), 915
1138,1139F	p <i>I</i> , see isoelectric point	Plastoquinone (Q), 915
Phosphopantothenoylcysteine synthetase,	P _i (orthophosphate), 578	Platelet-activating factor (PAF), 1008
1138, 1139F	PI3Ks (phosphoinositide 3-kinases), 732–734	Platelet-derived growth factor receptor
Phosphopentose epimerase, 929 Phosphoprotein phosphatase-1 (PP1), 651,	PIC (preinitiation complex), 1376–1377 Pickart, C., 1417	(PDGFR), 699 PLC-β, <i>see</i> Phospholipase C-β
658–660	Picket-fence Fe-porphyrin complexes,	Pleckstrin, 735
Phosphoprotein phosphatase-2A, 963	328, 328F	Pleckstrin homology domain, see PH domain
Phosphoramidite method, of oligonucleotide synthesis, 210F, 211	Picot, D., 920 Pigs, 121, 130	Pleurodeles waltl, 1271F P-loop, 710
β-5-Phosphoribosylamine (PRA), 1108,	π Helix, 224F, 228	PLP, see Pyridoxal-5'-phosphate
1109F, 1111	Pili, 4, 4F	Pmf (proton-motive force), 846
5-Phosphoribosyl-α-pyrophosphate (PRPP),	Pilkis, S., 663	PMP (pyridoxamine-5'-phosphate), 1020
1078, 1108, 1109F, 1114 5-Phosphoribosylpyrophosphate	Ping Pong reactions, 498–499 , 499F, 501 PIP ₂ , <i>see</i> Phosphatidylinositol-4,5-	Pneumococci, S and R form, 86, 86F PNP, see Purine nucleoside phosphorylase
synthetase, 1108	bisphosphate	POH1, 1418
Phosphoribulokinase, 927	PIP4Ks (phosphoinositide 4-kinases), 732	Point mutations, 192 , 1339–1340
Phosphoric acid (H ₃ PO ₄), 49F Phosphorothioate oligonucleotides, 1402	PIP5Ks (phosphoinositide 5-kinases), 732 PIR (Protein Information Resource), 195T	Point symmetry, 267 pol, 1246
Phosphorus, 31	PISA (Protein Interfaces, Surfaces and	Pol α (DNA polymerase α), 1202–1203
Phosphorylase, see Glycogen phosphorylase	Assemblies), 256T	Pol α/primase, 1203, 1206, 1207
Phosphorylase kinase (PhK), 651, 655, 658,	Pisum sativum, 20	Pol β (DNA polymerase β), 1205
667, 670 Phosphoryl groups, 578	PITC (phenylisothiocyanate), 165, 167F Pitch, of helix, 89, 225	Pol γ (DNA polymerase γ), 1202, 1205 Pol δ (DNA polymerase δ), 1202–1207, 1203F
Phosphoryl group-transfer potentials,	Pituitary, 672F, 682	Pol ϵ (DNA polymerase ϵ), 1202, 1205, 1206
578–579	PK, see Pyruvate kinase	Pol ζ (DNA polymerase ζ), 1205, 1223
Phosphoryl group-transfer reactions, 565, 565F, 578–579	pK, 47 of amino acid ionizable groups, 68T–69T, 70	Pol η (DNA polymerase η), 1205, 1223
O-Phosphoserine, 79F	and pH, 48	Pol ι (DNA polymerase ι), 1205, 1223 Pol κ (DNA polymerase κ), 1205, 1223
Phosphotyrosine-binding (PTB) domain, 707	of polyprotic acids, 49–50	Pol I, see DNA polymerase I; RNAP I
Photoautotrophs, 5–6	of weak acids, 46T	Pol II, see DNA polymerase II; RNAP II
Photooxidation, 905 Photophosphorylation, 582, 912–913,	PKA, see Protein kinase A PKB, see Protein kinase B	Pol III, see DNA polymerase III; RNAP III Pol III core, 1182, 1198, 1222
925–926	PKC, see Protein kinase C	Pol III holoenzyme, 1182, 1183F, 1190, 1191
Photoprotective agents, 976	PKR (double-stranded RNA-activated	in E. coli replication, 195, 1193F, 1194
Photoreactivating enzymes, 1214–1215 Photorespiration 024 027 035E	protein kinase), 1400	in SOS repair, 1222
Photorespiration, 934–937 , 935F Photosynthesis, 5–6, 559, 901 . <i>See also</i> Calvin	PKR-like endoplasmic reticulum kinase (PERK), 1400	Pol IV, see DNA polymerase IV Pol V, see DNA polymerase V
cycle	PKU, see Phenylketonuria	Pol V mutasome, 1222
carbohydrates product of, 359	Placebo, 542	POLA, see Pol α
chloroplasts as site of, 11–12, 901–902 dark reactions, 902, 926–937	Planck's constant, 903 Planck's law, 903	Polarimeter, 74, 74F Polarity, 132, 1398
electron transport in purple bacteria,	Plants, 7F, 12, 13F. See also Photosynthesis	Polar side chains, amino acid, 71
909–913	C_3 and C_4 , 936	POLB, see Pol β
evolution, 34	cell structure of, 11, 11F	polC gene, 1182T

polC mutants, 1182 Precipitation, isoelectric, 134 Polyserine, 205 Polysomes, 154F, 1372, 1373F Precursor-product relationships, 574 POLD1, see Pol δ POLE, see Pol ε Polystyrene gels, 137 Preinitiation complex (PIC), 1376-1377 POLG, see Pol y Polytopic proteins, 402–403 Prelog, V., 76 Poly(UAUC), 1343 Pre-miRNAs, 1325, 1326F POLH, see Pol η Polyubiquitin (PolyUb), 1411 Pre-mRNAs, 1304-1305, 1312 POLI, see Pol ı Poliomyelitis, 1404 Prenylated proteins, 406-407, 407F Polyunsaturated fatty acids, 387 POLK, see Pol K Polyvinylidine difluoride, see PVDF Prenylation site, 406 Polubiqtuitin, 1404 POLZ, see Pol ζ Prenyltransferase, 679, 978 Preparative ultracentrifugation, **155–156**, 155F Poly(A), 1157F, 1302-1303 POM/CART cell type, 1099 Poly(A)-binding protein, see PABP Pompe's disease, 666 Popot, J.-L., 920 Poly(A)-binding protein II (PAB II), 1303 Prephenate, 1075 Polyacrylamide gel, 139, 140T, 147, 147F P/O ratio, **831–833**, 833F Preprimosome, 1190 Polyacrylamide gel electrophoresis, see PAGE Porcine somatotropin (pST), 119 Porins, 403–404, 405F, 749–750, 824 Preprocollagen, 1404 Polyadenylation, 1401–1402 Preproinsulin, 1404 Polyadenylic acid [poly(A)] tail, 97 Porphobilinogen (PBG), 1048 Preproproteins, 1404 Porphobilinogen deaminase, 1048, 1053 Preproteins, 422, 1404 Poly(A) polymerase, see PAP Poly(A) (polyadenylic acid) tail, 97 Poly(AUAG), 1343 Pre-replicative complex (Pre-RC), 1205–1207, 1206F Porphobilinogen synthase (PBGS), 1048-1051, 1051F Polybrene, 171 Porphyrias, 1056 Presequences, 422 Polycistronic mRNA, 1264 Porphyrin, 324, 818 Presequence translocase-associated motor Porters, 745 (PAM), 447 Polycythemia, 343 Presqualene pyrophosphate, 979F, 980–981, 981F Porter, D., 812 Polydispersity, 375 Polyelectrolytes, 136 Porter, K., 9 Polyethylene glycol (PEG), 1132 Position-Specific Iterated BLAST, Presynaptic membrane, 440, 440F Polygalacturonase (PG), 1403 see PSI-BLAST Pretranslocational state, 1387F, 1388 Polyglycine, 205, 224F, 228-229, 229F Position-specific score matrices, 202 Pre-tRNA introns, 1307T Positive allosteric effect, 348 Pre-tRNAs, 1331 Poly(GUAA), 1343 Polyketide biosynthesis, 968, 969F Positive-inside rule, 427 PRF (Protein Research Foundation), 195T Positively cooperative binding, 327 pr gene (fruit fly), 25, 25F Polylinkers, 107 Positive regulator, 1286 PriA helicase, 1191 Polylysine, 205 PriA protein, 1184T, 1185-1186, 1190, Polymerase chain reaction (PCR), 114-117, Postranslational transport, of proteins, 115F, 212-213 428, 428F 1190T, 1191 Polymerase switching, 1204 Posttranscriptional modification, 97-98, 97F, Pribnow, D., 1266 1301-1331 Pribnow box, 1266 Polymorphic enzymes, 545 Polynucleotides, 84, 209-213. See also PriB protein, 1190, 1190T covalent modification, 1405 PriC protein, 1190, 1190T Nucleic acids mRNA processing, 1302-1327 Polyomavirus, 94T, 1172 protein splicing, 1405-1408 Priestley, J., 901 Polyoxyethylene-p-isooctylphenyl ether, 399F proteolytic cleavage, 1403-1404 Primaquine, 897-898 rRNA processing, 1328–1329 Primary structure, 163, 289-290, 1345-1346. Polyoxyethylenelauryl ether, 399F tRNA processing, 1329-1331 Polypeptides, 70. See also specific types, e.g.: See also Nucleic acid sequencing; Proteins Posttranslational modification, 101, Protein sequencing backbone conformations, 222-225 1403-1408 Primary transcripts, 1301 Primase, 101, 113F, 1176, **1188–1189,** 1190T Primers, 101–102, 103F, 116, 1176 chemical synthesis of, 205-209 and renaturation, 280-281 one gene-one polypeptide maxim, 26role in secretory pathway, 422 in protein sequencing, 169 Posttranslocational state, 1387–1388, 1387F Primer strand, 1209 titration curves, 72, 73F POT1 (protection of telomeres 1), 1213 Pri-miRNAs, 1325, 1325F Potassium channels, **752–755**, 753F, 754F Primordial atmosphere, 32 Polypeptide hormones, 673T Primosome, 1190-1193, 1190T Polypeptide synthesis. See also Protein Potassium ion, 45T, 1158 Potassium ion channels, **752–755**, 753F, 754F synthesis Primosome assembly site (pas), 1190 chain elongation, 1372-1373, 1373F, Potatoes, 19T Prions, 313 Poulos, T., 686 1379-1388 Prion diseases, 312-316 chain initiation, 1373-1379 Poulter, D., 979 Prion hypothesis, 314–315 PP1, see Phosphoprotein phosphatase-1 PrionProtein (PrP), 313-315 chain termination, 1391-1395 chemical, 205-209 PPAR γ (peroxisome proliferator-activated Prn-p, 313, 314 direction of, 1371-1373, 1372F Pro, see Proline receptor γ), 1104 ppGpp, 1301 PP_i, see Pyrophosphate Procarboxypeptidase A, 538 summary of, 1365 translational accuracy of, 1388-1391 Procarboxypeptidase B, 538 P pili, 382 Polyproline, 224F Processive enzymes, 1177 Polyproline II helix, 228-229, 229F PPI, see Peptidyl prolyl cis-trans isomerase Processivity, of transcription, 1271-1272 Polyproteins, HIV-1, 546 PPM family, 722 Prochiral atoms, 77 pppA(2'p5'A)_n, 1400 PPP family, 722–725 Polyproteins, of HIV-1, 546F Prochiral differentiation, 471F Prochymosin, 117F Polyprotic acids, 48-50, 49F Polyribonucleotides, 1342 pppGpp, 1301 Procollagen, 1403-1404, 1403F-1405F (p)ppGpp, 1301 ProCysRS, 1359 Polyribosomes (polysomes), 154F, 1372, 1373F P-protein, 1031 Product inhibition studies, 500 Polysaccharides, 15, 359, 365-366. See also PPRP, see 5-Phosphoribosyl- α-pyrophosphate Proelastase, 538 Proenzymes (zymogens), 537-538 specific polysaccharides PPT (phosphopantetheine transferase), 967 carbohydrate analysis, 366-367 PRA, see β-5-Phosphoribosylamine Profiles, sequence alignment, 202 Prader-Willi syndrome (PWS), 1251 disaccharides, 367 Proflavin, 1340 glycosaminoglycans, 370-373 Pravachol, 990, 991F Progeria, 1211 Pravastatin, 990, 991F glycosidic bonds in, 363-365 Progesterone, 681 polymeric organization, 17F PRC, see Photosynthetic reaction center Progestins, 673T, 681, 991 storage, **369–370** Prealbumin, 268, 268F, 269F, 677 Proinsulin, 280-281, 280F structural, 367-369 Prebiotic era, 29 Prokaryotae, 6

Prokaryotes, 3-6, 4F. See also specific Prostanoic acid, 993-994 Protein disulfide isomerase, see PDI Protein dynamics, 306-309 organisms Prostate cancer, 1236 chain elongation, 1379-1388 Prosthetic group, 473 Protein families (Pfam), 256T, 258 chain initiation, 1373–1376 Proteases, 101, 131, 1419–1420 Protein folding, 537 accessory proteins, 290–302 determinants, 281–284 chain termination, 1391-1392, 1392F Protease A, 525T citric acid cycle, 789, 814–815 Protease B, 525T DNA replication, 1173, 1190-1201 20S Proteasome, 1411F, 1415, 1415F endoplasmic reticulum, 427–428 DNA size, 94T 26S Proteasome, 1411-1412, 1414 GroEL/ES system, 294-302 eukaryotic protein production in, 118 Proteasomes, in ubiquination, 1411–1412 hierarchical nature of, 289 landscape theory of, **287–289**, 288F pathways, **284–290** evolution, 13F, 34 fMet, 1373–1374 Protection of telomeres 1 (POT1), 1213 Protective antigen (PA), anthrax, 715 genome sequencing, 176 Proteins, 15. See also related topics, e.g.: peptidyl prolyl cis-trans isomerases, 292 introns of, 1316 protein disulfide isomerases, 280, 290-292, Amino acids mismatch repair, 1220 290F. 291F amino acid derivatives in, 78-79, 80F and pulsed H/D exchange, 285-286 mRNA posttranscriptional amino acids of, 67-73, 68T-69T modification, 1302 beta structures, 229-232 and renaturation, 278-281 nucleotide excision repair, 1217 Protein folding funnels, 287-289, 288F in biological processes, 67 ribosomes of, 1369-1371 and buffers, 48 Protein folding problem, 278 transcription control, 1283-1301 chemical evolution of, 189-192, 191F Protein G, 282 transformation by DNA, 85-86 and chemical synthesis of polypeptides, Protein GB1, 282, 282F translational initiation, 1375-1376 206-209 Protein growth factors, 671 transposons of, 1236-1244 in chromatin, 8 Protein Information Resource (PIR), 195T Prokaryotic gene expression: mRNA lifetime, 101 Protein Interfaces, Surfaces and Assemblies conformational diseases, 309-316 crystal, 122 (PISA), 256T RNAP, 1265 cyclic symmetry, 268, 268F Protein isolation, 129-133 transcription, 96-97, 101, 1269 Protein kinases, 670, 973, 975 denatured, 57 design of, 305-306 translation, 101 Protein kinase A (PKA), 651-654 Proliferating cell nuclear antigen, see PCNA dihedral symmetry, 268, 268F Protein kinase B (PKB), 734, 737F Proline: essential amino acids in, 1064 Protein kinase C (PKC), 660, 698, 713, 727, amino group, 67 evolution of, 192-196, 196F, 316-318 730-732 fibrous, see Fibrous proteins biosynthesis, 1071 Protein metabolism, 561F degradation, 1034 functional groups of, 43 Protein phosphatases, 721-725 genetic codes for, 100T, 1343T fusion, 118 Protein phosphatase-2A, 699, 723F α helix/ β sheet propensity, 302T globular, see Globular proteins Protein purification, 129-156 low α helix propensity, 304 helical structures, 225–229 chromatographic separations, 135-146 helical symmetry, 269, 269F homologous, 189–192 in native unfolded proteins, 283 electrophoresis, 146–152 as nonessential amino acid, 1065T general strategy, 132-133 in PEST proteins, 1413 icosahedral symmetry, 268, 268F and protein isolation, 129-133 Ramachandran diagram, 225 from inclusion bodies, 117 and protein solubilities, 133-135 side chains, 70, 264T and molecular cloning, 117-121 ultracentrifugation, 152-156 Protein renaturation, 278-281 specific rotation, 74 motifs, 249-251 Protein Research Foundation (PRF), 195T structure and general properties, 68T number of, 70 Proline racemase, 516 octahedral (cubic) symmetry, 268, 268F Protein sequence databanks, 195T one gene-one polypeptide maxim, 26 organization of, 17F, 163–164, 281–282, 281F Prolyl 3-hydroxylase, 1405 Protein sequencing, 164-165 Prolyl 4-hydroxylase, 1405 C-terminus identification, 165-168 Prolyl hydroxylase, 236 Promoters, 97, 571, 1266–1267, 1284 Pronucleus, 121, 121F physical constants of, 153T disulfide bond cleavage, 168-169 polyproteins, 1404 disulfide bond position assignment, 172 Edman degradation, 165, 167F, 171, posttranslational modification and 172, 174 Proofreading, 1201 degradation of, 101 primary structure, see Protein sequencing end group analysis, 165-168 DNA chain, 1177 of synthesized proteins, 1390-1391 pseudosymmetric, 268 N-terminus identification, 165 of tRNA, 1355-1358 for purification, 130 nucleic acid sequencing contrasted, 1, 2-Propanediol, 1018 quaternary structure, 266-271, 267F 184-185 β Propeller, 433 peptide characterization and sequencing roles of, 163 Propeptides, 1403-1404 secondary structure, 221-233, 302-304 by mass spectrometry, 172-174, 172F Prophase, 20F, 21F solubilities of, 133-135 peptide cleavage reactions, 169-171 Prophospholipase A₂, 538 structures of, 230-233 peptide fragments, ordering, 171 Propionaldehyde, 1018 subunit interactions, 267 peptide fragments, separation and purifi-Propionic acid, 32T supersecondary structures, 249-251 cation of, 171 Propionyl-CoA carboxylase, 952–953 symmetry, 267–270 peptide mapping, 174-175, 175F Propionyl-CoA carboxylase reaction, 953F separation, purification, and characterizatertiary structure, 245-256, 304-305 Proportional counting, 572 Propranolol, 680 tetrahedral symmetry, 268, 268F tion of polypeptide chains, 169 titration curves, 72, 72F sequence alignment, 194-203 Proproteins, 1403-1404 in translation, 98-101 sequence databases, 194-195 pro-R, 77, 77F sequence determination, 171, 171F ubiquitin attachment to, 1410F pro-S, 77, 77F α_1 -Proteinase inhibitor, 533 Protein Ser/Thr phosphatases, 722 Protein solubilization, 130 Prostacyclins, 993, **995–1000** Proteinase K, 1383 Prostacyclin I₂ (PGI₂), 997, 998 Protein splicing, 1405-1408 Protein assays, 131-132 Prostacyclin receptors, 689 Protein C, 1317 Protein stability, 130-131 Prostacyclin synthase, 998 Protein-conducting channel (PCC), 424, 426 and denaturation, 265-266 Prostaglandins (PGs), 971, 993-995, 994F, Protein crystals, 134F and disulfide bonds, 264-265 995F, **997-1000** Protein Data Bank (PDB), 256-257, 256T, 259 electrostatic forces, 259-261 Prostaglandin endoperoxide synthase, 997 Protein degradation, 1408-1411. See also hydrogen bonding, 261-262 Polyubiquitin; Ubiquitin Prostaglandin H₂ synthase, 406, 997 hydrophobic forces, 262-264 Prostaglandin receptors, 689 Protein denaturation, 57, 221, 262, 265-266 thermostable proteins, 266

Protein synthesis, 1260, 1362-1398. See also	Pteridine, 1043	UMP synthesis, 1114–1118
related topics, e.g.: Translation	Pterins, 1043–1045	UTP synthesis, 1118–1119
and antibiotics, 1395–1398	Pterin-4a-carbinolamine, 1044	Pyrobaculum aerophilum, 1315
chain elongation, 1372–1373, 1379–1388	Pterin-4a-carbinolamine dehydratase, 1044	Pyroccocus furiosus, 114
chain initiation, 1373–1379	PTH, see Parathyroid hormone;	Pyrolobus fumarii, 266
chain termination, 1391–1395	Phenylthiohydantoin	Pyrolysine, 1361–1362
direction of, 1371–1373	PTKs, see Protein tyrosine kinases	Pyrophosphate (PP _i), 102F, 578, 1265
secretory pathway, 420–428	PTPs (protein tyrosine phosphatases), 721	Pyrophosphate cleavage, 582, 582F
translational accuracy, 1388–1391	PTS, see Phosphoenolpyruvate-dependent	Pyrophosphate ion, 96, 96F
vesicle formation, 428–440	phosphotransferase system	5-Pyrophosphomevalonate, 977
vesicle fusion, 440–445	pUC18 cloning vector, 107, 107F	Pyrophosphomevalonate decarboxylase,
Protein tyrosine kinases (PTKs), 690, 699–703	Puckers, sugar-phosphate chain,	977–978, 978
Protein tyrosine phosphatases (PTPs), 721	1152–1153, 1153F	Pyrosequencing, 183, 184F
Proteoglycans, 373–375 , 373T	Pulmonary emphysema, 533	Pyrrole-2-carboxylate, 516
Proteoglycan subunit, 373, 375	Pulse-chase experiment, 1175	Pyrrole rings, 324
Proteolysis, limited, 170	Pulsed-field gel electrophoresis (PFGE),	Δ-1-Pyrroline-2-carboxylate, 516
Proteome, 152, 185, 258	158–159, 159F	Δ^1 -Pyrroline-5-carboxylate, 1070F, 1071
Proteomics, 152, 576–578, 577F	Pulsed H/D exchange, 284–286, 309	Pyrroline-5-carboxylate reductase, 1070F, 1071
Proteopedia, 256T, 257	Pulse labeling, 1175F	Pyrrolysine (Pyl), 1361–1362
Protista, 12, 13F	Pumped protons, 843	Pyruvamide, 617
Protofilaments, keratin, 234F	PurB, see Adenylosuccinate lyase	Pyruvate:
Protomers, 267	PurC, see SAICAR synthetase	alanine biosynthesis from, 1067F
Protons, 45–46, 45F, 45T	PurE, 1111	biosynthesis of, 561F
Proton-motive force (pmf), 846	PurF, see Glutamine PRPP	in citric acid cycle, 766F, 790–792, 790F,
Proton pump mechanism, 846–847, 850, 850F	aminotransferase	794–795, 816
Proton-translocating ATP synthase, 852–859 Proton translocating ATP synthase	PurH, see AICAR transformylase	degradation of amino acids to, 1030–1034 in Entner–Doudoroff pathway, 637F
Proton-translocating ATP synthase	Purification tables, 161	
(Complex V), see F ₁ F ₀ -ATPase Proton wire, 800	Purine, 83 Purine nucleoside phosphorylase (PNP),	fermentation of, 594F, 614–619 in glycolysis, 593, 594F, 595, 596F
Proto-oncogenes, 705	1130F, 1131	and integration of pathways, 1090
Protoplasts, 378	Purine nucleotide cycle, 1132, 1133F	and oxaloacetate, 872–876, 872F
Protoporphyrin IX, 316, 316F, 324	Purine repressor (PurR), 1296	Pyruvate carboxylase, 818–819, 872–876,
biosynthesis, 1053–1055	Purine ribonucleotides, 1107–1108. See also	874F, 875F
and electron-transport chain, 838	Adenine; Guanine	Pyruvate decarboxylase (PDC), 616, 617F
Protoporphyrinogen IX, 1054	AMP synthesis, 1111–1113 , 1113F	Pyruvate dehydrogenase (E1), 794–795,
Protoporphyrinogen oxidase, 1053–1055	catabolism, 1130–1134	798F, 799–800, 800F
Protosterol, 982	GMP synthesis, 1111–1113 , 1113F	Pyruvate dehydrogenase kinase, 799,
Protozoa, 13F, 185, 192, 1344T. See also	IMP synthesis, 1108–1111 , 1113F	804–805, 805F
specific organisms	orientations of, 1152F	Pyruvate dehydrogenase multienzyme com-
Pro-tRNA ^{Pro} , 1359	and purine ring atoms, 1107F	plex (PDC), 792–800 , 1111
Proximal histidine, in hemoglobin, 332	salvage, 1114	coenzymes and prosthetic groups, 795T
Proximity effects, enzyme catalysis by,	synthesis regulation, 1113–1114	reactions of, 794F
512–515	Purity, 132	regulation, 804–805, 805F
PrP (PrionProtein), 313–315	PurJ, see IMP cyclohydrolase	Pyruvate dehydrogenase phosphatase,
PrP 27-30, 315	PurK, 1111	799, 805
Prp73 (peptide recognition particle), 1409	PurL, see FGAM synthetase	Pyruvate:ferredoxin oxidoreductase,
PrP ^C , 314–315	PurM, see AIR synthetase	814–815
PRPP, see 5-Phosphoribosyl-α-pyrophosphate	PurN, see GAR transformylase	Pyruvate kinase (PK), 581–582, 1089
PrP ^{Sc} , 314–315	Puromycin, 424, 1376, 1382, 1382F,	in gluconeogenesis, 872
Prusiner, S., 312	1395, 1395T	in glycolysis, 596F, 613–614 , 614F
PS I, see Photosystem I	Purple membrane, 402	Pyruvate-phosphate dikinase, 936
PS II, see Photosystem II	Purple photosynthetic bacteria, 6, 7F, 13F, 403	Pythagoras, 897
PsbB, of photosystem, 916	electron transport in, 909–913, 913F	PYY ₃₋₃₆ , 1099
PsbC, of photosystem, 916	light-harvesting complexes, 906–909	_
PSBD, see Peripheral subunit-binding	PVDF (polyvinylidine difluoride), 111, 171	Q
domain	PvuII, 105T	Q (plastoquinone), 915
Pseudoglobulin, 133F	PWS (Prader–Willi syndrome), 1251	Q cycle, 848–849, 848F
Pseudorotation, 591	Pycnodysostosis, 540	QFR (quinol–fumarate reductase), 840
Pseudosymmetric proteins, 268	Pyl (pyrrolysine), 1361–1362	QH ₂ (plastoquinol), 915
Pseudouridine, 1219, 1346, 1347F	PylRS, 1362	QSAR, see Quantitative structure-activity
[PSI], 315	Pyran, 361	relationships
PSI-BLAST (Position-Specific Iterated	Pyranoses, 361	Q-SNAREs (SNAP receptors), 441, 442,
BLAST), 202–203 , 304	Pyridine nucleotides, 471F	779, 780
D-Psicose, 361F P site (peptidyl site), 98F, 1373, 1385, 1387	α-Pyridone, 508 Pyridoxal-5'-phosphate (PLP), 511, 640, 1020	Quantitative structure-activity relationships (QSAR), 540, 540F
Psoriasis, 993	Pyridoxal phosphate, 473T	Quantum yield, 912
pST (porcine somatotropin), 119	Pyridoxar phosphate, 4751 Pyridoxamine-5'-phosphate (PMP), 1020	Quasi-equivalent subunits, 269
PstI, 105T	Pyridoxine, 474T, 1020	Quaternary structure, proteins, 164,
PT, see Pertussis toxin	Pyrimidine, 83 , 475–479	266–271, 267F
PTB (phosphotyrosine-binding) domain, 707	Pyrimidine, 33 , 475–477 Pyrimidine dimers, 1214–1215, 1214F	Questran, 990
PTC (phenylthiocarbamyl), 165	Pyrimidine ribonucleotides, 736–738 , 1136 .	Quiescence, 1202
PtdIns, see Phosphatidylinositol	See also Cytosine; Thymine; Uracil	Quinine, 539, 1058
PtdIns-4,5-P ₂ , see Phosphatidylinositol-	CTP synthesis, 1118–1119	Quinolate, 1137F, 1138
4,5-bisphosphate	sterically allowed orientations, 1152F	Quinolate phosphoribosyltransferase,
PTEN, 736	synthesis regulation, 1118	1137F, 1138

Quinol-fumarate reductase (QFR), 840 Quinolone antibiotics, 1167, 1169–1170	RecA, 1221, 1222, 1239 and recombination in <i>E. coli</i> , 1228–1230 ,	Renin, 547, 547F Reperfusion injury, 325
Quiocho, F., 1131	1229F, 1230F	Repetitive sequences, 181
R	and recombination repair, 1234 recA gene, 1221	Repetitive sequences, ultracentrifugation of nucleic acids, 159
R5P, see Ribose-5-phosphate	RecBCD, 1230–1231, 1230F, 1231F, 1235	Rep helicase, 1183–1186 , 1191–1193
Rab5, 734	recB gene, 1230	Replica DNAs, 1174F
Rab-GAP, 441 Rab-GEF, 441	recC gene, 1230 recD gene, 1230	Replica plating, 26, 26F Replication, see DNA replication
Rab proteins, 406, 441–444	Receptors, 660	Replication bubbles, 1173–1174, 1173F
Rac1, 727–728, 728F	hormone binding, 674–675	Replication eyes, 1173–1174, 1173F, 1176F
Racemic mixtures, 78 Racker, E., 852, 860, 892	target of drug design, 539 Receptor-mediated endocytosis, 454	Replication factor C, see RFC Replication forks, 102–103, 1173–1174
Rack mechanism, 515	Receptor tyrosine kinases (RTKs), 293,	in <i>E. coli</i> replication, 1199
RACKs, 730	699–703	eukaryotes, 1206
Rad50, 1224	Recessive traits, 20–22	in recombination repair, 1234–1235,
RAD51, 1230, 1236 Radioactive counting, 149	RecG, 1234 RecJ, 1220	1234F, 1235F Replication fork collapse, 1222
Radioactive decay, 572	Recognition helix, 1288	Replication origin, 106, 1174 , 1205–1206
Radioimmunoassays, 130, 674	Recognition sites, Type II restriction	Replication protein A (RPA), 1206
Raf, 712–713 Raffinose, 385	enzymes, 105, 105T Recombinant DNA, 104, 109F, 110F, 621. See	Replicative forms, see RF; RFI; RFII Replicative transposition, 1237, 1239, 1239F
Rafts, 411	also Molecular cloning	Replicative transposons, 1242
Ramachandran, G. N., 223	Recombinant proteins, 119	Replicons, 1205, 1226
Ramachandran diagram, 223–226 ,	Recombinases, 1239	Replisome, 1193F, 1194, 1196, 1196F
224F, 229 Ramakrishnan, V., 1365, 1389, 1392, 1394	Recombination, 24, 1225–1246 chromosomal rearrangement by, 1242F	Reporter genes, 120–121, 120F, 571 Rep protein, 1184T
Ran, 709	homologous, 1225–1236 , 1227F	Repressors, 96
Randle, P., 864	site-specific, 1239–1240, 1242–1246	RER, see Rough endoplasmic reticulum
Randle cycle, 864 Random Bi Bi reactions, 498–500	transposition, 1236–1246 viruses, 27–28, 28F	Research articles, reading of, 35–36 Resequencing, 184
Random coil conformation, 90, 155,	Recombination repair, 1222, 1234–1236 ,	Resins, 137–138, 207–208
230, 232	1234F, 1235F	Resistin, 1104
Random mechanism, 498	Recommended names, enzymes, 479	Resolvase, 1239–1241, 1241F
Rao, Z., 838 RAP1, 1213	Red algae, 13F Redox loop mechanism, 847–849, 847F	Resonance energy transfer, 905 Respiration, 9, 34, 323
Rap1A, 713	Redox reactions, 583. See also Oxidation-	Respiratory chain, 823
Rapamycin, 734, 737F	reduction reactions	Respiratory distress syndrome, 1005
Rapid equilibrium random Bi Bi reactions, 499,500	Red tide, 777, 939	Restart primosome, 1235 Restriction endonucleases, 104–106 , 105F
Rapoport, T., 424, 620	Reducing agent, 584 Reducing atmosphere, 32	digests from, 106F
RasGAP,711	Reducing sugars, 364	for gene manipulation, 109
Ras proteins, 407, 434, 688, 708–709	Reductant, 584	use in nucleic acid sequencing, 176
Rats: carcinogenesis tests, 1224	Reduction, 583. See also Oxidation- reduction reactions	Restriction enzymes, 104 , 105T Restriction-fragment length polymorphisms
chromosome number, 19T	Reduction potentials, 585, 585T	(RFLPs), 106, 106F, 107F
genome sequencing, 177T	Reductive pentose phosphate cycle, 927.	Restriction maps, 107F
liver cytoplasmic ribosomes, 1370T liver enzymes, 1408T	See also Calvin cycle Reed, G., 613	Restriction-modification systems, 104 Restrictive conditions, 27
liver membrane composition, 398T	Reed, L., 792, 798	Retaining β-glycosidases, 524
proteins for purification from, 130	Rees, D., 910, 1080	Reticulocytes, 111–112, 1056
Rat1 exonuclease, 1304	re face, 77, 77F	Retinal, 123, 402, 402F, 689, 850–851, 976
Rate constant, 483 Rate-determining step, 487	Refsum's disease, 958 REG, 1418–1419	Retinol, 252 Retinol binding protein, 252, 252F, 310
Rate equations, 483	REGα, 1418–1419	Retrograde transport, 428
Ratner, S., 1025	REGβ, 1418	Retrotranslocation, 428
Rayment, I., 613, 874, 1238 Rb, 1211	Reichard, P., 1119, 1122 Reichert, E., 323	Retrotransposons, 1244–1246 Retroviruses, 116, 545, 1207, 1245–1246, 1245F
RB69 pol, 1223	RelA (stringent factor), 1301	Reverse genetics, 185
RBD, see RNA-binding domain	relA gene, 1301	Reverse gyrase, 1163
RBP1, 1318	Relatedness odds, 198	Reverse-phase chromatography (RPC),
Rbx1, 1412–1413, 1413F RdRP (RNA-dependent RNA	Relatedness odds matrix, 198 Related-to-ubiquitin-1 (RUB1), 1421	132T, 145, 171, 172 Reverse transcriptase, 95F, 116, 545,
polymerase), 1324	Relative elution volume, in gel filtration	1207–1209, 1208F
Reaction coordinate diagram, 485–486 , 485F	chromatography, 138	Reverse transcriptase inhibitors, 546
Reaction kinetics, <i>see</i> Enzyme kinetics; Kinetics	Relaxed circles, 1160 Relaxed control, 107, 1301	Reverse translation, 313 Reverse turns, 232, 233F, 246, 304
Reaction rates, non-enzymatic reactions,	Release factors, 682, 1375T. See also RF-1;	Reversible processes, 56–57
483–484	RF-2; RF-3	Reversible reactions, 491–492 , 501–502
Reactions, coupled, 60–61 Reactive oxygen species (ROS) 325	Release-inhibiting factors, 682	Reznikoff, W. S., 1237, 1238 RF (replicative form), 1190, 1266
Reactive oxygen species (ROS), 325, 840, 865	Remington, J., 766, 806, 807 Remnant receptor, 454	RF-1 (release factor), 1375T,
Reading frames, 101, 101F, 1342F	Renaturation:	1391–1394, 1393F
Reads, 181	of DNA, 93, 93F	RF-2 (release factor), 1375T, 1391–1394
Rearrangement reactions, 567	of proteins, see Protein renaturation	RF-3 (release factor), 1375T, 1392

RFC (replication factor C), 1204-1205, 1204F of bacteriophage M13, 1190 Ribulose-1,5-bisphosphate (RuBP), 927 RF I (replicative form), 1190, 1191, 1191F Rice, 122, 122F, 177T in catabolite repression, 1286 RF II (replicative form), 1190 Rich, A., 236, 1149-1151, 1155, 1323, chain elongation, 1270-1272, 1270F chain initiation, 1267-1269 RFLPs, see Restriction-fragment length 1346, 1372 polymorphisms chain termination, 1271F, 1273–1275 Richter, J., 1402 R form (RS system), 76–77 Ricin, 1395T eukaryotic, 1276-1283, 1277T R Groups, amino acids, 70 Rickets, 677 and intercalating agents, 1272 RGS proteins, 692 Rickettsia, 4F and lac repressor, 1285 in replication, 1176 Rickettsia prowazeki, 177T rh1 gene, 1243 L-Rhamnose, 365 RNA-directed, 95F Rieske, J., 835 Rh (Rhesus) blood group system, 414-415 Rieske iron-sulfur proteins, 835 and stringent response, 1301 Rheumatoid arthritis, 1409 Rifampcin, 1176, 1269 structure, 1268, 1268F-1269F Rhizobium, 1080F Rifamycin B, 1269, 1395 template binding, 1266-1267, 1266F Rho13N, 1276F Right-handed helix, 224F, 225F, 227F of Thermus aquaticus, 1268, 1269F Rhodopsin, 163, 689 rIIA complementation group, 28 of Thermus thermophilus, 1268, Rho factor, 1275-1276, 1276F rIIB cistron, 1340 1268F-1269F Rho proteins, 688, 709, 1365 in transcription, 95-96, 1265-1283 rIIB complementation group, 28 Rilling, H., 979 Ribitol, 364 transcription cycle and translocation Riboflavin, 474T, 565F, 1138 Ringe, D., 308, 434 mechanism of, 1280F Ribonuclease A, see RNase A RING finger, 1410 RNAP A, see RNAP I Ribonuclease B, see RNase B RISC (RNA-induced silencing complex), 1324 RNAP B, see RNAP II Ribonuclease T1, 176 RNAP C, see RNAP III Risedronate, 679F Ritonavir, 550F, 551 RNAP core enzyme, 1265, 1267, 1269 Ribonucleic acid, see RNA Ribonucleoproteins, 1145 Rittenberg, D., 574, 961, 1048 RNAP holoenzyme, 1265-1266 Ribonucleotides, 82, 82F RK (HMG-CoA reductase kinase), 989 chain elongation, 1270-1272, 1270F, 1271F Ribonucleotide reductase (RNR), 844, RMM (RNA-recognition motif), 1365 1119-1126 RNA-11, 1151 chain initiation, 1267-1269 D-Ribose, 19, 82, 360F, 361 chain termination, 1271F, 1273–1275 16S RNA, 159 Ribose phosphate isomerase, 929 23S RNA, 1329F and lac repressor, 1285 and template binding, 1266-1267, 1266F Ribose phosphate pyrophosphokinase, 1108, 45S RNA, 1328 1109F, 1111 RNAP I (RNA polymerase I) (Pol I), 1276, RNA (ribonucleic acid), 4, 1145. See also 1280-1282, 1408T Ribose-5-phosphate (R5P): related topics, e.g.: Translation in AMP/GMP synthesis, 1112F and central dogma of molecular biology, RNAP II (RNA polymerase II) (Pol II), in Calvin cycle, 929 95, 1260 1276-1283 in IMP synthesis, 1108 chemical structure, 85 and amatoxins, 1280 in pentose phosphate cycle, 892-894 error correction by, 1281, 1281F on DNA chips, 213 in DNA replication, 101-102 Ribosomal recycling factor, see RRF and mRNa capping, 1302 Ribosomal RNA, see rRNA and early evolution, 33-34 and splicing factors, 1314 5S Ribosomal RNA, 176 fractionation, 156-159 structure of yeast, 1277-1280, 1278F 70S Ribosome, 1363T, 1369F, 1375 hybridization, 93 RNAP II elongation complex, 1279F Ribosomes, 1145, 1338. See also Protein messenger, see mRNA [messenger RNA] RNAP III (RNA polymerase III) (Pol III), synthesis metabolite-sensing, 1299-1301 1280, 1281, 1283 architecture, 1366-1368 modes of growth for, 1270F RNA polymerase, see RNAP binding sites, 1368 of *E. coli*, 367F, 1363F–1366F Northern blot for, 113 RNA polymerase I, see RNAP I PCR amplification, 116 RNA polymerase II, see RNAP II of eukaryotes, 7F, 9, 1369-1371 ribosomal, see rRNA [ribosomal RNA] RNA polymerase III, see RNAP III of prokaryotes, 4, 4F synthesis of, 95-98 RNA primers, 101-102, 103F, 1176 transcript editing, 185 reading direction in, 1342-1343, 1372 of bacteriophage M13, 1190 in transcription, 1260–1265 transfer, see tRNA [transfer RNA] as ribozyme, 1383-1384 in E. coli replication, 1193F RNA synthesis regulation, 1301 eukaryotic, 1207 sedimentation coefficient, 154F translation of, 98-101 Pol I excises, 1181, 1187 RNA-recognition motif, see RRM self-assembly of, 1365 zonal ultracentrifugation, 159 structure, 1363-1371 RNAase D, 1328 RNase, for nucleic acid fractionation, 157 synthesis in secretory pathway, 421F RNase III, 1324, 1328 RNAase M5, 1328 translation by, 98-101, 1363-1398 RNAase M16, 1328 RNase A (ribonuclease A), 63, 176, 470 vesicle formation, 428-440 RNAase M23, 1328 acid-base catalytic mechanism, vesicle fusion, 440-445 RNA-binding domain (RBD), 1303. See also 508-510, 509F Riboswitches, 1299-1301, 1300F, denaturation of, 265F, 266 RRM (RNA recognition motif) 1318-1319, 1320F RNA-dependent RNA ATPases, 1313F folding rate, 284, 381 Ribothymidine (T), 1347F RNA-dependent RNA helicases, 1313F isoelectric point, 134T Ribozymes, 82, 1078 RNA-dependent RNA polymerase physical constants, 153T and Group I introns, 1308-1309 (RdRP), 1324 renaturation, 278-281, 279F hammerhead, **1310–1311**, 1311F RNA-directed DNA polymerase, 95F, 116, state of 308 ribosomes as, 1383-1384 1207-1208. See also Reverse transcriptase titration curve, 73F D-Ribulose, 359, 361F RNA-directed RNA polymerase, 95F RNase B (ribonuclease B), 380-381, 380F Ribulose-5-phosphate epimerase, 894, 895F RNA-DNA hybrid helix, 96, 1151, RNase E, 1328 Ribulose-5-phosphate isomerase, 894, 895F 1151F, 1207 RNase F, 1328 Ribulose-5-phosphate (Ru5P), 892-895, RNA editing, 1320, 1322–1323 RNase H, 1151, 1207-1209 895F, 927 RNAi, see RNA interference RNase H1, 1207 Ribulose bisphosphate carboxylase activase, RNA-induced silencing complex (RISC), 1324 RNase L, 1400 RNA interference (RNAi), 1145, 931, 933 RNase P, 1328 Ribulose-1,5-bisphosphate carboxylase-1323-1326, 1323F RNA sequencing, 176, 179 oxygenase, see RuBisCO RNA ligase, 1322 RNA triphosphatase, 1302 RNAP (RNA polymerase), 96F, 1265-1283 Ribulose bisphosphate carboxylase (RuBP RNA world, 33–34, 1126 carboxylase), 929-931, 930F and AraC, 1292-1294 RNR, see Ribonucleotide reductase

Roach, P., 646	R state (oxyHb quaternary conformation),	Salting out, 132T, 134
Roberts, R., 1248, 1304	333–334, 336–339, 336F, 337F	Salvage pathways, 1114
Robison, R., 595	and hemoglobin cooperativity,	SAM (S-adenosylmethionine), 80, 80F,
Rodbell, M., 690	352–353	1004, 1034
Rodnina, M., 1384	and sequential model of allosterism, 351	and Dam/Dcm MTases, 1247, 1247F
Rofecoxib, 999–1000	and symmetry model of allosterism,	as methylating agent, 1062, 1214F, 1218
Rolling circle replication, 1191–1193, 1192F Rooted trees, 203F, 204	349–351 R state, ATCase, 476–479, 477F	<i>met</i> repressor complexed with, 1290–1291 1291F, 1297
Rop protein, 282–283, 283F	RSV (Rous sarcoma virus), 704	and mRNA capping, 1302
ROS, see Reactive oxygen species	RTKs, see Receptor tyrosine kinases	rRNA methylation, 1328
Rosbash, M., 1306	Rtt103 protein, 1304	Sam35, 449
Rose, G., 262, 281, 282, 304	R-type pneumococci, 86, 86F	Sam37, 449
Rose, I., 1119	Ru5P, see Ribulose-5-phosphate	Sam50, 449
Roseman, S., 765, 766	RUB1 (related-to-ubiquitin-1), 1421	SAM complex, 448–449
Rosetta algorithm, 305, 306	Ruben, S., 813, 903	Samuelson, B., 994
Rossman, M., 256, 615	RuBisCo (ribulose-1,5-bisphosphate	Sancar, A., 1217
Rossman fold, 256	carboxylase-oxygenase), 299–300,	Sandhoff's disease, 1013T
Rotamases, 292	934–935 , 934F	Sanger, F., 164, 165, 176, 1344
Rotamers, 306	RuBP (ribulose-1,5-bisphosphate), 927	Sanger method, of nucleic acid sequencing,
Rotation angles, 222–225 Rotation symmetry, protein, 268	RuBP carboxylase, <i>see</i> Ribulose bisphosphate carboxylase	176–180, 184 Santi, D., 1127, 1247
Rotenone, 831	Rubredoxin, 135F	SAP-A, 1011
Rothman, J., 419, 442, 888	Running gel, in disc electrophoresis, 148	SAP-B, 1011
Rough endoplasmic reticulum (RER), 7F, 9	Rupley, J., 520	SAP-C, 1011
metabolic functions, 562T	Rutter, W., 530	SAP-D, 1011
secretory pathway in, 420–424	RuvA, 1231–1233, 1232F, 1234	Saposins, 1011
vesicle formation, 428–440	RuvAB, 1231, 1234, 1235	SAPs (sphingolipid activator proteins), 1011
vesicle fusion, 440–445	RuvABC, 1230–1234	Saquinavir, 550F, 551
Round-up, 1075	RuvABC resolvosome, 1234	Sar1, 430
Roundworms, trans-splicing in, 1320	RuvB, 1231–1234	Sar1p, 437
Rous, P., 704	RuvC, 1233, 1234	α-Sarcin, 1395T
Rous sarcoma virus (RSV), 704	Rye, H., 299	Sarcomas, 704
RPA (replication protein A), 1206	S	Sarcoplasmic reticulum (SR), 761, 763
RPC, see Reverse-phase chromatography RPE65 gene, 123	S, see Entropy	Sarcosine, 32T Sareste, M., 708
Rpn11, 1418	S1P, see Site-1 protease	Sarin, 782
Rpr4, 1327	S2P (site-2 protease), 988	SARs (structure–activity relationships), 540
Rpr6, 1327	s ⁴ U (4-thiouridine), 1347F	SASPs (small acid-soluble spore
Rpr40, 1327	S6', 1417	proteins), 1149
Rpr41, 1327	S7P, see Sedoheptulose-7-phosphate	Satellite bands, 159
Rpr42, 1327	S20/L26, 1364	Sattler, M., 1314
Rpr43, 1327	Sabatini, D., 420	Saturated enzymes, 489
Rpr44, 1327	Sac1,736	Saturated fatty acids, 387–388, 387T
Rpr45, 1327	Saccharides, 359 . See also Glycoproteins;	Saturation function, 747
Rpr46, 1327 Rpt5, 1417	Monosaccharides; Polysaccharides Saccharomyces cerevisiae (Baker's yeast):	Saturation kinetics, 747 Sax, M., 616
RRF (ribosomal recycling factor), 1375T,	Cdc6, 1206–1207	Saxitoxin, 777
1392, 1394, 1394F	genome sequencing, 177T, 182	Sazanov, L., 835
RRM (RNA recognition motif), 1303–1304,	mitochondrial deviations from ideal, 1344T	SBPase, <i>see</i> Sedoheptulose bisphosphatase
1304F, 1365	replication origins, 1205	SCA (spinocerebellar ataxia), 1252
5.8S rRNA, 1328, 1370	replication studies, 1202	Scaffold-attachment regions, see SARs
5S rRNA, 1301, 1328, 1364, 1370	RNAP II structure, 1277–1280, 1278F	Scaffold proteins, 713–714
16S rRNA, 1328, 1364–1366, 1370F	RNAP subunits, 1277T	Scalar protons, 843
base pairing with rRNA, 1374–1375	as source of proteins for purification, 130	Scanning microcalorimeter, 59
and stringent response, 1301	topoisomerase II, 1167–1168, 1168F	SCAP, see SREBP cleavage-activating
18S rRNA, 1328, 1370	Saccharopine, 1040 Sacchetini, J., 944, 1407	protein Scatchard, G., 674
23S rRNA, 1301, 1328, 1364, 1366 28S rRNA, 1328, 1370	Saenger, W., 916, 922	Scatchard plot, 674
30S rRNA, 1370	Saibil, H., 297	Scavenger Receptor Class B type I
40S rRNA, 1370T	SAICAR, see 5-Aminoimidazole- 4-(N-	(SR-BI), 456
50S rRNA, 1370	succinylocarboxamide) ribotide	Scavenger receptors, 457
60S rRNA, 1370T	SAICAR synthetase (PurC), 1109F, 1111	SCF ^{Skp2} , 1412, 1413F
80S rRNA, 1370T, 1371, 1371F	Salamanders, 14F	SCF complexes, 1412
rRNA (ribosomal RNA), 1260. See also	SalI, 105T	Schachman, H., 475
Ribosomes	Sali, A., 1371	Schaftingen, E., 663
methylation, 1328	Salmine, 134T	Schally, A., 683
posttranscriptional modification,	Salmonella typhimurium, 1224, 1243	Schiff have 510 568 560F 1020 1021
1328–1329, 1328F in protein synthesis, 98	Salts: dissolution in water, 42–43	Schiff base, 510, 568, 569F, 1020–1021 Schiffer, M., 910
structure of, 213	and protein denaturation, 265–266	Schimmel, P., 1351, 1356
zonal ultracentrifugation, 159	protein solubilities and concentrations of,	Schimmel, P. R., 1329
RS75091, 1001	133–134, 133F	Schindelin, H., 291
R-SNAREs (SNAP receptors), 441, 442,	Saltatory conduction, 777	Schirmer, H., 803
779, 780	Salt bridges, 259–260, 262, 339	Schirmer, T., 749
<i>RS</i> system, 76–77	Salting in, 132T, 133–134	Schistosoma mansoni, 1310–1311, 1311F

Schizosaccharomyces pombe, 1202, Serum albumin C. 133F SELEX (Systematic Evolution of Ligands 1206-1207 by EXponential enrichment), 213-214 Serum albumin dimer, 140F Schleiden, M., 3 Self-assembly, 17, 278, 302 Seryl-adenylate, 1358 Schleif, R., 1292, 1293 Self-compartmentalized proteases, Severe combined immunodeficiency disease (SCID), 122, 123, 1132 Sex chromosomes, 22–23 Schlessinger, J., 729 1419-1420 Schoenheimer, R., 1408 Self organization, 29, 30F Schofield, C., 534 Self-splicing genes, 1306–1308 sex-lethal (sxl) gene (Drosophila Schulman, L., 1351 Sem-5, 709 melanogaster), 1318 Schultz, S., 1212 Schulz, G., 403, 628, 803, 983 Semiconservative replication, 90 Sex linked genes, 24 SF1 (splicing factor 1), 1312 Semiconservative replication, of DNA, 90, 1173-1174 Schwann, T., 3 S form (RS system), 76-77Schwann cell, 778F Semidiscontinuous replication, of DNA, SH1 domains, 706 SCID, see Severe combined **1175–1176,** 1175F SH2-containing inositol- 5-phosphatases immunodeficiency disease Semi-invariant position, 1346 (SHIPs), 735 SCID-X1, 123 Sendai virus, 408, 409F SH2 domains, 706-707, 1317 SciFinder Scholar, 35 Senebier, J., 901 SH3 domains, 708, 1317 Scintillation counter, 149 Senescence, 703, 1210 Sharon, N., 523 Sharp, K., 259 Sharp, P., 1304, 1306 SCIPs, 735 Sense RNA, 1323 Scissile peptide bond, 169 Sense strand, 203, **1266**, 1267F SCOP, see Structural Classification of Sephadex gels, 139 Shc, 707, 709-710 Sepharose gels, 139 Shear degradation, DNA, 95 Scorpion venom, 777 Septic shock, 688 Sheep, scrapie in, 312-315 Scott, W., 1310 seqA gene, 1196 Shelterin, 1213 Shemin, D., 574, 1048 Scrapie, 312-315, 313F SeqA protein, 1196 Screens, for drugs, 539 Sequence databases, 194–195 Shi, Y., 722 Scrunching, 1268 Scurvy, 236, 364 Sequence-tagged connectors (STCs), 181 Shimomura, O., 120 Sequence-tagged sites (STSs), 181 Shine, J., 1374 Shine-Dalgarno sequences, 1300, 1301, SDS (sodium dodecyl sulfate), 150, 169, Sequencing, see Nucleic acid sequencing; 171,399F Protein sequencing 1374-1375, 1398 SDS-PAGE (polyacrylamide gel Sequencing gel, 177–178, 178F, 179F SHIP2, 735 electrophoresis), **150**, 151F, 169, 411F. Sequential model, of allosteric interactions, Shipley, G., 696 SHIPs (SH2-containing inositol-See also PAGE (polyacrylamide gel 351-352 electrophoresis) Sequential reactions, 498-501, 500F 5-phosphatases), 735 Sec (selenocysteine), 1361 Sequestration, 1195 Shirakawa, M., 1250 Shoelson, S., 721 Sec1, 441 SER, see Smooth endoplasmic reticulum Shoolingin-Jordan, P., 1053 Sec7, 435 Ser, see Serine SERCA complex, 762-764, 762F, 763F Sec12p, 437 Short, strong hydrogen bonds, 536 Sec13/31, 430, 438-439, 438F Series-5 leukotrienes, 1003 Short tandem repeats (STRs), 115-116 Sec23/24, 430 Serine: Short-term regulation, of fatty acid Sec61, 424 metabolism, 973 amino group, 208F biosynthesis, 1071–1072 Sec62/Sec63 complex, 428 Shotgun cloning, 113 SecA, 428 degradation, 1030-1034 Shotgun sequencing, 181 SecB, 428 genetic codes for, 100T, 1343T Shotton, D., 529 in globular proteins, 246–247 in glycerophospholipids, 389T SHP-2, 721-722 Secondary lysosome, 455F Secondary structure, 163, **221–233** helical, 225–229, 225F Shulman, G., 1103 half-life, 1413T Shuman, S., 1188 nonrepetitive, 230, 232 α helix/β sheet propensity, 302T Shuttle vectors, 118 peptide group in, 221-225 inserted by E. coli nonsense Sialic acid, 1010 suppressor, 1362T predicting, for proteins, 302-304 Sialic acids, 365, 392F. See also NANA proteins, 221-233 in native unfolded proteins, 283 Sialidase, 381 tRNA, 1345–1346, 1346F as nonessential amino acid, 1065T Sickle-cell anemia, 185-188, 343-347 Second law of thermodynamics, 54-57 in PEST proteins, 1413 gene therapy, 123 Southern blot for diagnosis or prenatal Second messengers, 661, 725-727 side chains, 71, 208F, 264T Second-order rate equation, 484 structure and general properties, 69T detection, 112-113 Second-order reactions, 483, 484F Serine carboxypeptidase II, 531, 531F Sickle-cell hemoglobin, 81. See also Serine dehydratase, 1031, 1408T Hemoglobin S Secretary proteins, 421F β-Secretase, 312, 547 γ-Secretase, 312 Serine hydroxymethyltransferase, 1031, Sickle-cell trait, 187-188 1033–1034, 1129 Side chains, of amino acids, 70-71, 208F, Serine palmitoyltransferase, 1008 Secretin, 673T, 675 264T, 511 Secretory pathway, 420–428 Serine proteases, 525T SIDS (sudden infant death syndrome), 948 Secretory vesicles, 429F, 1405 Sigler, P., 294, 692, 729, 942, 1288 σ^{32} , 1284 catalytic mechanism, 531-537, 532F SecY, 424-425, 425F evolutionary relationships among, σ^{32} , 1284 σ^{54} , 1284 σ^{gp28} , 1284 $\sigma^{gp33/34}$, 1284 530-531 SeCys (selenocysteine), 1361 Sedimentation, 152-153 kinetics and catalytic groups, 525-527 Sedimentation coefficient, 153, 154F specificity pockets, 529F transition state stabilization, 534F Sedoheptulose-7-phosphate (S7P), σ^{70} , 1265, 1284 636, 894 X-ray structures, 527-531 σ factors, 1265, 1266, 1284 Sedoheptulose bisphosphatase (SBPase), zymogens, **537–538** 929, 933F Serine recombinase, 1239 σ-Replication, 1191-1193, 1192F Seeberger, P., 383 Serotonin, 783, 1046, 1059 Sigmoidal shape, oxygen-binding curve, 326, 326F, 339 Seed sequence, 1325 Serotonin receptors, 689 Séguin, A., 823 Serpentine receptors, 689 Signal-anchor sequence, 426 SELB, 1361 SerRS, 1351 Signal-gated channels, 772 Signal peptidase, 422, 1404 Selectable markers, 111 Serum, disc electrophoresis of, 149F Selenocysteine (Sec) (SeCys), 1361 Serum albumin, 134T, 140F, 944–945, 945F Signal peptides, 420, 1404

Smith, M., 119

Signal recognition particle, see SRP Smith, T., 200, 1023 S phase, 1202, 1205, 1207 Spheroplasts, 378 Signal sequence, 117 Smith-Waterman alignment algorithm, 201 Signal transducers and activators of Sphinganine, 1009 Smoking, 458 Sphingoglycolipids, 391, 1004, transcription (STATS), 718 Smooth endoplasmic reticulum (SER), 7F, **1008–1013,** 1009F Signal transduction, 671, 1099. See also 9.562T Sphingolipids, **390–392**, 395, 1004F SM proteins, 441 related topics, e.g.: Hormones Sildenafil, 699, 743 Sm proteins, 1314, 1315F Sphingolipid activator proteins Silica, 138, 144, 145 Sm RNA motif, 1314 (SAPs), 1011 Sphingolipid storage diseases, 392, 1011, 1013 Sphingomyelins, 390–391, 391F, 398T, Silica gel, 144 S_N2 reaction, 514, 514F Silicon, 31 Snake venom, 781, 1017 Snake venom phosphodiesterase, 176 1008, 1008F Silicones, 31 Silk, 233F SNAP-25, 441, 441F, 443, 444 Sphingophospholipids, 390-391, 1004, Silver stain, 149 SNAP receptors (SNAREs), 441-445, 443F 1008-1009 SNAPs, see Soluble NSF attachment proteins Sphingosine, 390, 391F, 392F Simian sarcoma virus, 705 SNAREs, see SNAP receptors Spiegelman, S., 1264-1265 Simian virus 40, see SV40 Simmons, D., 1000 Snell, E., 1021 Spina bifida, 1035 Simon, M., 1243 Snorkeling, 406 Spinocerebellar ataxia (SCA), 1252 Simple sugars, 359 snoRNAs, 1329 Spirilla, 4 Simple transposition, 1237 Spirillum, 4F snoRNPs, 1329 Simple triacylglycerols, 388 SNPs, see Single nucleotide polymorphisms Spirochetes, 4F Simvastatin, 990, 991F snRNAs, 1311-1312 Spleen phosphodiesterase, 176 Singer, J., 408 snRNPs (small nuclear ribonucleoproteins), Spliced leader (SL) RNA, 1320 Spliceosomes, 1308, **1312–1313**, 1312F, 1313F Single blind tests, 542 **1312,** 1314 Single-displacement reactions, 498, 501 Snu114, 1313F AU-AC, 1319 Single nucleotide polymorphisms (SNPs), SOD, see Superoxide dismutase structures, 1314-1316, 1316F Splicing, see Gene splicing Splicing factor 1 (SF1), 1312 184, 213 Sodium azide, 131 Single-pass transmembrane proteins, 426 Sodium channels, 772, 776-777 Single-strand binding protein, see SSB Sodium cholate, 399F Sponges, 13F Sodium deoxycholate, 399F Spontaneity, 52, 57–58, 57T Single-stranded DNA, see ssDNA Spontaneous processes, 52, 57–58, 57T Spores, **4,** 117, 1149, 1284 Single-strand nicks, 1230, 1235F Sodium dodecyl sulfate, see SDS Single-tailed lipids, 394, 394F Sodium ion, 45T, 1158 Sinning, I., 424 Solid phase peptide synthesis (SPPS), Sporulation, 1149 206, 206F siRNAs (small interfering RNAs), SPPS, see Solid phase peptide synthesis 1323-1324 SOLiD system, 184 SQS, see Squalene synthase Site-1 protease (S1P), 988, 989 Söll, D., 1358 Squalene, 975, 975F, 983F cyclization, 982–983 Site-2 protease (S2P), 988 Solubility, protein, 132-135 Site-directed mutagenesis, 119-120 formation, 978-982, 979F Solubilization, protein, 130 Site-specific recombination, 1237, Soluble NSF attachment proteins (SNAPs), Squalene epoxidase, 982 1239–1240, 1242–1246 441, 444 Squalene-hopene cyclase, 406, 983 B-Sitosterol, 393 Solution methods, for nucleic acid Squalene synthase (SOS), 978, 982F 60S subunit (ribosome), 1370T, 1371 fractionation, 156-157 SR, see Sarcoplasmic reticulum; SRP receptor Size exclusion chromatography, 138 Solvated ions, 43 $SR\alpha, 423$ Sjöstrand, F., 9 Solvents: SRβ, 423 Skeletal muscle, 1091–1092 Skin, 16F, 235, 238F, 240T dielectric constants and dipole SR1 mutant, 299–300 SRA domain, 1250 moments, 43T Skp1, 1412-1413, 1412F, 1413F water and nonpolar, 262-264, 263T SR-BI (Scavenger Receptor Class B Skp2, 1412-1413, 1412F water as, 42-44 type I), 456 Slab gel electrophoresis, 148F. See also Gel Somatic cells, 19, 20 Src, 244F, 706-707, 715 Src family, 715 electrophoresis Somatomedins, 673T, 683 Src homology domains, see SH 1 domains; Slack, R., 936 Somatostatin, 673T, 675, 683 Slater, E., 845 Somatotropin, 119, 673T, 683 SH2 domains; SH3 domains Sondek, J., 728 SRE (sterol regulatory element), 987 Slicer, 1324 Sonenberg, N., 1378 Sliding clamp, Pol III, 1182-1183, 1183F, SREBP, see Sterol regulatory element bind-Sonication, 95, 130, 395 ing protein 1196-1198 Slime molds, 7F, 13F D-Sorbose, 361F SREBP cleavage-activating protein Slow reacting substances of anaphylaxis Sorensen, S., 47 (SCAP), 987-989 (SRS-A), 1000 Soret bands, 838 SRP (signal recognition particle), 420-424, 421F, 423F, **1404** Slow-twitch muscle fibers, 619 Sorting sequence, of LDL receptors, 457 Sos, 709-711 SRP9, 422 SL (spliced leader) RNA, 1320 Small acid-soluble spore proteins SOS box, 1221 SRP14, 422 (SASPs), 1149 SOS repair, 1222–1223 SRP19, 422 SOS response, 1181, 1221–1223, 1221F, 1234 Southern, E., 111 Small interfering RNAs (siRNAs), SRP54, 422 1323-1324 SRP68, 422 SRP72, 422 Small nuclear ribonucleoproteins, see Southern blotting (Southern transfer technique), **111–113**, 112F, 149, 1207–1208 Sowadski, J., 653 snRNPs SRP receptor (SR), 420-421, 421F, 423 SR proteins, 1314 Small nuclear RNAs, see snRNAs Small nucleolar RNAs, see snoRNAs Spacer gel, 148 SRS-A (slow reacting substances of Small ubiquitin-related modifier Spacer groups, 142 anaphylaxis), 1000 (SUMO), 1421 Special pair, in photosynthesis, 910-912, 913F SSB (single-strand binding protein), 1183–1184, 1184F, 1184T, **1187**, 1187F, Sm core domain, 1315-1316 Specific rotation, 74 Smith, C., 158 Spectrin, 412, 413F 1195 Smith, E., 189 Sperm cells, 12F, 1211 (SSB)₃₅, 1187 Smith, H., 105, 181 Sperm whale myoglobin, see Myoglobin $(SSB)_{65}, 1187$ Smith, J., 920 ssDNA (single-stranded DNA), 1180, SPGA (Streptomyces griseus protease A),

530-531

1185, 1187

Stabilization, protein, 130-131 Sudden infant death syndrome (SIDS), 948 Strain, lysozyme catalytic mechanism and, Stacked-X conformation, 1227F Sugar-phosphate chain conformation, Stacking associations, in tRNAs, Strand passage mechanism, 1163-1165, 1152-1154, 1152F, 1153F 1348-1349 Sugars, 15, 359. See also Monosaccharides; 1164F Stacking gel, 148 Streptavidin, 298, 857–858, 873 Polysaccharides Stadtman, E., 1068 synthesis in prebiotic conditions, 33 Streptomyces alboniger, 1382 Stadtman, T., 1361 Streptomyces antibioticus, 1272 Suicide substrates, 1128 Staggered conformation, 222, 223F Streptomyces griseus protease A (SPGA), Sulfanilamide, 1064 Stahl, F., 90, 1173 530-531 Sulfate ion, 45T Staining, 149, 158 Streptomyces mediterranei, 1269 Sulfate-reducing bacteria, 6 Sulfatides, 391, 1008, 1010, 1010F Standard free energy changes, 59-60 Streptomycin, 1263F, 1388, **1395**, 1395T, Standard redox potential, 584, 585T 1396F, **1397** Sulfite reductase, 934, 1072 Standard state, 58–60 Streptomycin-resistant mutants, 1395, 1397 Sulfolobus solfataricus, 1222, 1222F Stanley, C., 1023 Stringent control, 107, 1301 Sulfonamides, 1064, 1111 Staphylococcal nuclease, 143F Sulfoquinovosyl diacylglycerol, 902 Stringent factor, see RelA Staphylococcus, 4F Stringent response, 1301, 1397 Sulfuric acid, 46 Starch, 359, 369-370, 932F Stroke, 865 Sulston, J., 181 Stroma, 11–12, 902 Stromal lamellae, 902 Sumner, J., 132, 470 Starch-branching enzyme, 931 Starch synthase, 645, 931 SUMO (small ubiquitin-related Stark, H., 1315-1316 Strong acids, 46-47 modifier), 1421 Starvation, 871, 973, 1101 Strong bases, 47-48, 48F Sundaralingam, M., 1153 State, of a system, 53, 56 Stroud, R., 529, 817 Sup35 protein, 315-316 Superacids, 511 State functions, 53, 54 STRs (short tandem repeats), 115–116 Statins, 990–991 Supercoiled DNA, 1158-1170, 1160F, Structural Classification of Proteins Stationary phase, 135 (SCOP), 256T, 258 1270-1271 Statistical factors, 348 Structural genes, 117, 203, 1262 measurements of supercoiling, 1160-1162 STATS (signal transducers and activators of Structural genomics project, 258-259 superhelix topology, 1158-1160 Structural polysaccharides, 367-369 transcription), 718 topoisomerases, 1162-1170 Stavudine, 1208 Structure-activity relationships (SARs), 540 Superhelix, 433, 1158-1160 STCs (sequence-tagged connectors), 181 Structure-based drug design, 541 Superhelix density, 1162 Ste5p, 713–714 STSs (sequence-tagged sites), 181 Superoxide dismutase (SOD), 489T, 491, Steady state, 488–490, 588 491F, 866 Stubbe, J., 1119 Superoxide ion, 325, 341 Stearic acid, 386, 387F, 387T, 392F Stueher, D., 686 1-Stearoyl-2-oleoyl-3-phosphatidylcholine, Sturtevant, A., 24 Superoxide radical, 491 390F S-type pneumococci, 86, 86F Superrepressed mutants, 1336 Supersecondary structures, 249–251 Steatorrhea, 943 su1 nonsense suppressor, 1362T Steitz, J., 1311, 1329, 1356 su2 nonsense suppressor, 1362T Supertwisting, 1158 Steitz, T., 597, 968, 1177, 1178, 1208, 1229, su3 nonsense suppressor, 1362T Suppressors, 1340 1240, 1286, 1353, 1366, 1375, 1383 su4 nonsense suppressor, 1362T Suppressor tRNAs, 1362 su5 nonsense suppressor, 1362T Supramolecular assemblies, 15, 16F Stem cells 121 Step-wise elution, 136-137, 136F su6 nonsense suppressor, 1362T Surface-active molecules, 51 Stercobilin, 1056, 1057 su7 nonsense suppressor, 1362T Surface hydrophobicity, 145 Stereoelectronic assistance, 514-515 Sublactam, 378 Surface labeling, 400 Stereoelectronic control, 514 Submitochondrial particles, 852 Surfactants, 51 Substania nigra, 1060 Surroundings, 52 Stereoisomers, 75 Stereo pair, 271 Substiuents, of prochiral centers, 77 Sutherland, E., 661, 722 Stereo pictures, 271, 271F Substrates, 58, 348, 469, 1128 Sutton, W., 22 Stereospecificity, enzymes, 470-472 Substrate cycles, 624, 628–629 SV40 (Simian virus 40): Stereospecific numbering, 389F Substrate-level phosphorylation, 582 enhancers, 1282-1283 GC boxes, 1282 Substrate specificity, 470–473, 470F Steric interference, polypeptides, 222-225, 223F Subtilisin, 119, 525T, 531, 531F, 534 large-T antigen, 1211 Steroid hormone receptors, 291–293 Subunits, protein: replication studies, 1202 composition, 270-271 Steroid hormones, 392, 393, 673T, supercoiling, 1162, 1162F **680–682,** 976 Svedberg, T., 152 interactions, 266, 267 biosynthesis, 991-993, 992F and nucleic acid subunits, 164 Svedbergs (unit), 153 Subunit IV, of cytochrome *b*, 920 Succinate, 493, 791, **811**, 947 Sterol, 392 Swiss-Pdb Viewer, 256T, 257 SWISS-PROT, 195, 203 Sterol regulatory element (SRE), 987 Succinate dehydrogenase, see Complex II Swiss-Prot Protein Knowledgebase, 195T Sterol regulatory element binding protein (SREBP), 988, 988F, 989 Swiss roll barrel, 252, 252F Succinate thiokinase, 810 Sterol-sensing domain, 987 Succinic acid, 32T, 49 sxl (sex-lethal) gene (Drosophila Steven, A., 436 Succinylcholine, 782 melanogaster), 1318 SXL protein, 1318 SYBR Safe, 158 Stevens, R., 404 Succinyl-CoA, 567, 956 from amino acids, 1034-1039 Sticky ends, 105, 117-118 Stigmasterol, 393 in citric acid cycle, 766F, 789, 810-811, 811F Symmetry, proteins, 267–270 Stigmatellin, 849 Symmetry model, of allosteric interactions, in heme biosynthesis, 1048 Stöffler, G., 1365 Succinyl-CoA synthetase, 791, 810-811, 811F 349-351 Symport, 758, 758F Stokes equation, 155 Succinyl-phosphate, 810 Synapses, 440, 440F, 527, **778** Stokes radius, 155 Suck, D., 1233 Stomata, 904 Sucrase, 370 Synaptic cleft, 440, 440F, 778 Stoops, J., 798 Sucrose (table sugar), 144, 265, 367, 367F, Synaptic complex, 1237 Synaptic vesicles, 440, 441F, 779, 780 Stop codons, 99, 100T, 1343 488, 932F Synaptobrevin, 441, 441F, 444 Stopped-flow device, 284, 284F Sucrose-6-phosphate, 932 Stop-transfer anchor sequence, 426 Sucrose-phosphate phosphatase, 932 Synaptojanin1, 736 Storage polysaccharides, 369-370 Sucrose-phosphate synthase, 932 Synaptosomes, 440, 779, 1241F

Sucrose phosphorylase, 501

Synaptotagmin I, 779

Stout, D., 808

Synchrotrons, 241	Temperature:	Thalassemias, 219, 342
Syn conformation, 1152F	denaturation, 57	Thalidomide, 78, 78F
Synechocystis sp., 177T	and entropy, 56F	Thapsigargin (TG), 763, 763F
Synge, R., 144	and lipid bilayer fluidity, 397–399	ThDP (thiamin diphosphate), 616
Synonyms, in genetic code, 99, 1343	Temperature-jump, 284	Theoretical plate, in chromatography, 135
Syntaxin, 433F, 441, 441F, 443, 444	Template binding, RNAP, 1266–1267, 1266F	Therapeutic index, 539
2,5A synthetase ([2',5']-oligoadenylate syn-	Template strand, 96, 102F	Thermal stability, proteins, 266
thetase), 1400	Tendons, 232, 233, 235, 240T	Thermatoga maritima, 1394F
Syphilis, arsenicals for, 799	Tensin, 736	Thermoacidophiles, 6
SYPRO dyes, 149	TER, 1210	Thermocycler, 114
Systematic Evolution of Ligands by EXpo-	TerA, 1199	Thermodynamics, 52–61 . See also
nential enrichment (SELEX), 213-214	TerB, 1199	Equilibrium
Systematic names, enzymes, 479	TerC, 1199	chemical equilibria, 58–61
	· · · · · · · · · · · · · · · · · · ·	
Systemic lupus erythematosus, 1204, 1312	TerD, 1199	defined, 52
Systems, 52–53	TerE, 1199	electron-transport chain, 828–829
Systems biology, 576–578 , 576F	TerF, 1199	first law, 52–54
Szent-Györgyi, A., 791	TerG, 1199	free energy, 57–58 , 61
Szostak, J., 1210	TerH, 1199	glycogen metabolism, 643–644
52051411, 01, 1210	TerI, 1199	of life, 586–589
T		
T	TerJ, 1199	of membrane transport, 744–745
T (ribothymidine), 1347F	Terminal deoxynucleotidyl transferase,	of phosphate compounds, 578–583
T1 G6P translocase, 665F	109, 109F	second law, 54–57
T2 transporter, 665F	Terminal desaturases, 970–971	transition state, 486
T3 transporter, 665F	Terminal transferase, 109, 109F	units and constants, 53T
T4 Endonuclease VII, 1233–1234, 1233F	Terminal uridylyltransferase (TUTase), 1322	Thermogenesis, 629, 860–861, 1099–1001
T4 Lysozyme, 282, 304	Termites, 369	Thermogenin, 861, 1101
T7 gene 4 helicase/primase, 1184, 1184F, 1188	Termolecular reactions, 483	Thermolysin, 169T
T7 gp4, 1184, 1184F	Terpenoids, 976–977	Thermoplasma acidophilum, 1415, 1415F
Tabun, 782	Ter sites, 1199, 1206	Thermoproteus, 7F
Tacrolimus, 724	TERT (telomerase subunit), 1210,	Thermosomes, 301
Tagamet, 764	1211, 1211F	Thermostable proteins, 266
D-Tagatose, 361F	Tertiary structure, 163	Thermus aquaticus, 179, 466
Tail spike protein, 289–290	α/β barrels, 252, 254	DNA polymerase I (Klentaq1),
Tainer, J., 686, 1126, 1219	domains, 247–249, 251–253, 253F	1178–1180
		EF-Tu, 1381F
D-Talose, 360F	globular proteins, 245–256	
Tandem mass spectrometry (MS/MS),	α helices and β sheets, 246	in PCR, 114
173–175, 174F, 175F	open β sheets, 254–256	RNAP, 1268, 1269, 1269F
Tangier disease, 458	predicting, for proteins, 304–305	Thermus thermophilus:
Taq DNA polymerase, 114, 179	and protein folding, 287	30S subunit, 1389–1390
TaqI, 105T	side chain polarity, 246–247	Argonaute, 1324, 1325F
Taq RNAP, 1268, 1269, 1269F	supersecondary structures, 249–251	EF-G complex with GDP, 1385–1386,
T arm, 1346	tRNA, 1348–1349	1386F
Tarui's disease, 667	Testes, 672F	proteinase K, 1383
TATA box, 1282F	Testes-determining factor (TDF), 682	ribosomal complex, 1384, 1392–1394,
Tatum, E., 26, 570, 1262	Testicular feminization, 681	1393F, 1394F
Tau protein, 312	Testosterone, 681	ribosomal subunits, 1366–1368, 1371,
Taurine conjugates, 993, 993F	Tetanus, 442	1386F
Taxonomy, 6, 12, 189	Tethering factors, 441	RNAP, 1268, 1268F–1269F
Taylor, S., 653, 654	Tetracycline, 128, 1395T, 1396F, 1397	RuvB, 1231–1233, 1232F
Tay–Sachs disease, 123, 392, 1011, 1013, 1013F	Tetracycline-resistant bacterial	θ replication, 1174, 1175F
TBSV (tomato bushy stunt virus), 277	strains, 1397	θ structures, 1174
	Tetrahedral intermediate, 531–533	THF, see Tetrahydrofolate
TφC arm, 1346		
TC10,738	Tetrahedral symmetry, proteins, 268, 268F	Thiamin diphosphate (ThDP), 616
TCA (tricarboxylic acid) cycle, 789. See also	5,6,7,8-Tetrahydrobiopterin, see BH ₄	Thiamine, 474T, 618
Citric acid cycle	Tetrahydrofolate, 473T, 492	Thiamine pyrophosphate, see TPP
T cell receptor, 724	Tetrahydrofolate (THF), 1062–1064	Thiazolidinediones (TZDs), 1103–1104
T cells, 123, 292–293, 671	Tetrahydrofuran-2-carboxylate, 516	Thiazolinone, 165
	Tetrahymena thermophila:	
TCR (transcription-coupled repair), 1217	, ,	Thiazolium ring, 616
$TD_{50}, 539$	Group I introns, 1307–1310, 1307F,	thi box, 1300
TDF (testes-determining factor), 682	1309F, 1310F	Thin layer chromatography (TLC), 145
TE (palmitoyl thioesterase), 965	telomerase, 1209–1210	Thiogalactoside transacetylase, 1261
TEBP (telomere end-binding protein),	Tetraloop, 1308	Thiohemiacetal, 608
1212–1213, 1212F	2,3,4,6- <i>O</i> -Tetramethyl-α-D-glucose, 508	Thiokinases, 945
Teeth, 235	Tetramethyl- <i>p</i> -phenylenediamine	Thiolase, 947, 958, 976
Teichoic acids, 378, 378F	(TMPD), 831	Thiolase reaction, 949–950
Telomerase, 1209–1213	Tetranucleotide hypothesis, 85	Thioredoxin (Trx), 291, 933–934, 934F, 112
Telomere end-binding protein, see TEBP	Tetrapeptides, 73F	Thioredoxin reductase (TrxR), 1125
Telomere repeat-binding factor 1	Tetraubiquitin, 1411F	4-Thiouridine (s ⁴ U), 1347F
(TRF1), 1213	Tetrazole, 211	30S subunit (ribosome), 363, 1363T, 1368,
Telomere repeat-binding factor 2	Tetrodotoxin, 777	1368F, 1369F, 1370
(TRF2), 1213	TeTx, 442	path of mRNa through, 1375, 1376F
Telomeres, 109, 1209–1213	TFIIH, 1218	Thirumalai, D., 300
Telomeric T-loops, 1213, 1213F	TFIIS protein, 1281–1282	Thr, see Threonine
Telophase, 20F, 21F	TG, see Thapsigargin	Thr-AMS, 1358
Temin, H., 545, 1207	TGN, see Trans Golgi network	Threading (fold recognition), 305
10111111, 11., 373, 1407	1 O. 1, see Italis Obigi lictwork	inicading (1010 1000ginu011), 303

3₁₀ Helix, 224F, 226, 228 TPCK (tosyl-L-phenylalanine chloromethyl Tissue regeneration, 1163 3' end, of nucleic acids, 84 Tissue slices, 575 ketone), 527, 527F 3.6₁₃ Helix, see α helix Tissue-type plasminogen activator (t-PA), TPI (triose phosphate isomerase), see TIM recombinant, 119 TPO (thyroperoxidase), 676 Threonine: biosynthesis, 1072-1073, 1075 Titin, 1305 TPP (thiamine pyrophosphate), 473T, 511, 795, 795T degradation, 1030-1034 Titration curves, 47-48, 47F, 48F as essential amino acid, 1065T of proteins and polypeptides, 72, 72F, 73F in alcoholic fermentation, 616, 616F genetic codes for, 100T, 1343T TLC (thin layer chromatography), 145 synthesis of, 1300, 1319, 1320F in globular proteins, 246-247 T-loops, telomeric, 1213, 1213F TPP1, 1213 half-life, 1413T TLS (translesion synthesis), 1222 T-protein, 1032 α helix/ β sheet propensity, 302T T_m , see Melting temperature TR (telomerase subunit), 1211 PEST proteins rich in, 1413 TMPD (tetramethyl-p-phenylenediamine), tra-2 (transformer-2) gene (Drosophila side chains, 71, 264T melanogaster), 1318 TRA2 protein, 1318 stereoisomers, 75-76, 76F, 77F TM proteins, see Transmembrane proteins structure and general properties, 69T Tn3, 1237, 1239 TRAM (translocating chain-associated D-Threonine, 75, 76, 76F L-Threonine, 75, 76, 76F Tn5, 1237-1239 membrane protein), 426 Tn5 transposase, 1237-1239, 1238F Trans-acting factors, 1264 (2S,3R)-Threonine, 76, 77F TNBS (trinitrobenezesulfonic acid), 419, Transaldolase, 894, 896–897, 896F Transaminases, 498, 1020-1023 Threonine dehydrogenase, 1034 419F Transamination, 935, 1020-1023 Threonyl adenylate, 1357 TNF-α, see Tumor necrosis factor-α D-Threose, 360F TNFs, see Tumor necrosis factors Trans cisternae, 428, 429F TnpA, 1237 Thrombin, 525T, 735 Transcobalamins, 957 Thromboxanes, 993, **995–1000** tnpA gene, 1237 Trans configuration gene mutations, 28 Thromboxane A₂ (TxA₂), 998 TnpR, 1237, 1239 Transcortin, 681 Thromboxane receptors, 689 *tnpR* gene, 1237 Transcription, 9, 19, 95–98, 1145, 1260–1333. Thromboxane synthase, 998 Toads, 1409 See also Posttranscriptional thr operon, 1299T Tob35, 449 modification; RNAP DNA replication vs., 1173 ThrRS, 1358 Tob55, 449 Thr-tRNAThr, 1358 TOB complex, 448, 449 monitoring, 120-121 Thy, see Thymine posttranscriptional modification, Todd, A., 84 Thylakoids, 12, 902, 916F, 926, 926F 1301-1331 Tollen's reagent, 364 Thymidylate synthase (TS), 1062, 1126–1128 Toluene, 130 prokaryotic control of, 1283-1301 Thymidylate synthesis, 1126–1130 Tom5, 446 proportion of genome transcribed, 182 Thymine, 18, 83, 83T, 1177. See also Watson-Tom6, 446 RNA in, 1260-1265 Crick base pairs Tom7, 446 RNAP in, 1265-1283 origin, 1126-1130 Tom20, 446, 447F speed and accuracy, 1271-1272 Tom22, 446 Transcription bubble, 96, 96F, 1267, and point mutation generation, 1339-1340 Tom37, 449 in pyrimidine catabolism, 1136F 1270-1271 tautomeric forms, 88F Tom38, 449 Transcription-coupled repair (TCR), 1217 Thymine dimer, 1214-1215, 1214F Tom40, 446 Transcription factors, 96, 572 Thyroid, 672F Tom55, 449 Transcription repair coupling factor Thyroid hormones, 676-677 Tom70, 446 (TRCF), 1218 Thyroid hormone deiodinases, 1361 Tomato bushy stunt virus (TBSV), 277 Transcriptome, 213 TOM complex, 446, 447 Transcriptomics, 576 Thyroid hormone receptor, 677 Transducin (G $_{t\alpha}$), 691, 693F Thyroid hormone response element TOM core complex, 446, 447, 447F (TRE), 879 TOM proteins, 445-447 Transduction, 1225 Tong, L., 604 Tonks, N., 721 Thyroid-stimulating hormone (TSH), 683 Transfection, 87 Thyroperoxidase (TPO), 676 Transferase reactions, 497-498 Top 7 protein, 306, 306F Transferases, 479T Thyrotropin, 673T, 683 Transferrin, 140F, 1056 Topogenesis, 427 Thyrotropin-releasing factor (TRF), 673T, 683 Topoisomerases, 1162-1170 Transfer RNA, see tRNA Thyroxine, 80, 80F, 310, 673T, 676-677 Topoisomerase I, 1165–1166, 1165F Transformation, 86, 110-111, 704 Topoisomerase II, 1163, 1166–1169, 1169F TIM (triose phosphate isomerase) (TPI): Transformation competent cells, 108 in Calvin cycle, 929 Topoisomerase III, 1163, 1164F transformer-2 (tra-2) gene (Drosophila of chicken muscle, 231F, 252, 254F Topoisomerase IV, 1166 melanogaster), 1318 in glycolysis, 596F, 603-606, 605F Topoisomerase V, 1166 transformer (tra) pre-mRNA (Drosophila Tim9, 448 Topoisomerase VI, 1166 melanogaster), 1318 Tim10, 448 Topoisomerase inhibitors, 1169–1170 Transforming principle, DNA as, 85–86 Tim12, 448 Topologically bound polynucleotide Transgenes, 121 Tim14, 447 strands, 1159F Transgenic organisms, 86, 86F, 121-122, Topological switch point, 255 570-572 Tim16, 447 Tim17, 447 Tim18, 448 Trans Golgi network (TGN), 428, 429F Topology: of integral proteins, 406 Transient phase, 488 Tim21, 447 polypeptide strands, 230 Transimination, 1022 Tim22, 448 Toprim fold, 1189 Transitions, 1339 Tim23, 446-448 TORC2, 1096 Transition state, 485-486, 515-516 Toroidal helix, 1160, 1160F Tim44, 447 Transition state analogs, 516 Tim50, 447 Transition state diagram, 485–486, 485F, 487F Torpedo model, 1304 Tim54, 448 Torsion angles, 222–225 Transition state theory, 484-487 TIM barrel, 252, 254F, 300 Tosyl-L-phenylalanine chloromethyl ketone, Transition temperature, 397 TIM proteins, 445-449 see TPCK Transketolase, 894-896, 895F. 929 Translation, 19, 95, 98-101, 98F, 1145. See TIN2, 1213 Toxoplasma gondii, 1116 Tiselius, A., 146 Toxoplasmosis, 1116 also Genetic code; Ribosomes Toyoshima, C., 760, 763 accuracy of, 1388-1391 Tissues, 16F

t-PA, recombinant, 119

and antibiotics, 1395

Tissue culture, 575

Triggered conformational changes, 307

Translation, (Contd.) Trypsinogen, 537, 537F Trigger factor, 293 Triglycerides, **388–389**, 940 Tryptophan: control of eukaryotic, 1398-1402 defined, 1338 Triglycerols, 940 biosynthesis, 1075-1078, 1297 E. coli initiation sequences, 1375F genetic code, **1338–1345** Triiodothyronine, 673T, 676 degradation, 1041-1042 Trimethoprim, 1129 as essential amino acid, 1065T initiation in E.coli, 1376F N,N,N-Trimethylalanine, 79F and fluorescence resonance energy posttranslational modification, 1403-1408 ε-N,N,N-Trimethyllysine, 79F transfer, 286 protein degradation, 1408–1421 Trinitrobenezesulfonic acid, see TNBS genetic codes for, 100T, 1343T ribosomes and polypeptide synthesis, Trinucleotide repeat expansions, 1251-1252 in globular proteins, 246–247 1362-1398 Triolein, 388 α helix/ β sheet propensity, 302T tRNA aminoacylation, 1345-1362 Trioleoylglycerol, 388 inserted by E. coli nonsense Translational coupling, 1398 Trioses, 360F suppressor, 1362T Triose phosphate isomerase, 231F, see TIM Tripeptides, 70 Translesion synthesis (TLS), 1222 in native unfolded proteins, 283 Translocating chain-associated membrane nicotinamide coenzyme from, protein (TRAM), 426 Triple binding assays, 1342 1137F, 1138 Translocation, 1379, 1387-1388, 1387F Triplet codons, 1340-1341 side chains, 70-71, 264T Translocators, 745 Tris(2,3-dibromopropyl) phosphate, 1225 structure and general properties, 68T Tryptophan hydroxylase, 1045, 1059 Tryptophan synthase, 1075–1078 Tryptophanyl-tRNA^{Trp}, 1298, 1299F Translocon, 420, 426-427, 1404 Triskelions, 430F, 431 Translocon-associated membrane protein Tristearin, 388 (TRAP), 425F, 426 Tristearoylglycerol, 388 Transmembrane helices, 426-427, 426F Triton X-20, 399F TS, see Thymidylate synthase Transmembrane (TM) proteins, 251, **400–404, 426–427,** 427F Triton X-100, 399F, 411 TSE, see Transmissible spongiform tRNA (transfer RNA), 1145, 1260, 1338 encephalopathy T-segment, of DNA, 1169 Transmissible spongiform encephalopathy aminoacylation, 1345-1362 (TSE), 309, 312 TSH (thyroid-stimulating hormone), 683 bases of, 85 Transmission coefficient, 486 cloverleaf form, 98F Tsien, R., 121 t-SNAREs (SNAP receptors), 441 Transpeptidation, 1379, 1382-1384 isoaccepting, 1351 T state (deoxyHb quaternary modified bases, 1346, 1347F Transplantation, transgenic organisms for, 121-122 posttranscriptional modification, conformation), 333-334, 336-339, Transporters, 745 336F, 337F 1329-1331 Transport proteins, 744, 745. See also and hemoglobin cooperativity, 352-353 primary structure, 1345-1346 Membrane transport role in gene expression, 95F and sequential model of allosterism, 351 Transposable elements, 1236 role in protein synthesis, 98-101 and symmetry model of allosterism, Transposase, 1236 secondary structure, 1345-1346, 1346F 349-351 Transposition, 1236-1246 sedimentation coefficients, 154F T state, ATCase, 476-479, 477F Tsukihara, T., 416, 1417 Transposons, 1236–1246 sequencing, 176 Trans-Schiffization, 1022 structure and function of, 213 Tswett, M., 135 tertiary structure, 1348-1349 Trans-SNARE complex, 442 d-Tubocurarine, 781 Trans-splicing, 1319–1320, 1321F Transthyretin, 268, 268F, 269F, 310 tRNA^{Ala}, 176, 1345, 1351F, 1352, 1352F Tubulin, 10, 10F, 269 tRNA , 170, 1343, 13311, 1332, 13 tRNA Arg , 1352 tRNA Asp , 1349, 1351F, 1354–1355, Tubulin α, 301 Transverse diffusion, 396 Tubulin β, 301 Transversion, 1339 1354F, 1355F Tumor necrosis factor-α (TNF-α), 715, tRNA^{Cys}, 1352 tRNA^{Gln}, 1351F, 1352–1354, 1353F, 1355F TRAP, see Translocon-associated membrane 1096, 1414 protein Tumor necrosis factors (TNFs), 715, 717 tRNA^{IIe}, 1352, 1355–1358, 1356F, 1357F tra (transformer) pre-mRNA (Drosophila Tumor promoters, 730-731 tRNA^{met}, 1352, 1333–1336, 13301, tRNA^{met}, 1374, 1374F tRNA^{met}, 1374 tRNA^{Phe}, 1346, 1346F, 1348, 1352 melanogaster), 1318 Tumor suppressors, 736, 1414 TRA protein, 1318 Tumor viruses, 704-705, 1163 Traps, optical, 1273-1274 Tunicamycin, 888, 889F Trastuzumab, 119-120 tRNAPyl, 1362 Tunicates, 368 tRNA⁵⁷, 1362 tRNA^{Sec}, 1361 tRNA^{Ser}, 1351F tRNA^{Tyr}, 1331 tRNA^{Val}, 1356 TRCF (transcription repair coupling Turkeys, 19T factor), 1218 Turner's syndrome, 682 Turnover number, 490 β-TrCP, 1414 tus gene, 1199 TRE, see Thyroid hormone response Tus protein, 1199, 1199F, 1206 Trophic hormones, 682 element TRF, see Thyrotropin-releasing factor Tropocollagen, 240 TUTase (terminal uridylyltransferase), 1322 TRF1 (telomere repeat-binding Tropomodulin, 412F-413F Tweezers, optical, 1274, 1274F Tropomyosin, 134T, 412F-413F Twilight zone, 196 factor 1), 1213 Twin-bulb apparatus, 54, 55F, 56 TRF2 (telomere repeat-binding α-Tropomyosin, 1317, 1317F factor 2), 1213 Trout, 1409 Twintrons, 1307T Triacylglycerol lipase, 941, 1089–1090 Trp, see Tryptophan Twist, of superhelix, 1158-1159, 1159F Triacylglycerols, 388–389, 940. See also Fatty trpL sequence, 1297–1299, 1297F–1299F Twitchin kinase, 658 2.2₇ Ribbon, 224F, 226, 228 Two-dimensional (2D) gel electrophoresis, trp operon, 1296–1299, 1297F–1299F, 1299T acids; Lipids and cholesterol biosynthesis, 986 trp repressor, 1288, 1290, 1290F and dietary EPA, 1003 Trx, see Thioredoxin 152, 152F, 175 and liver, 1094 Two-dimensional NMR spectroscopy, TrxR (thioredoxin reductase), 1125 synthesis, 971-973, 972F Trypanosoma brucei, 1418 **243–244,** 285–286 Two-dimensional paper chromatography, transport in blood, 452F, 973 Trypanosomiasis, arsenicals for, 799 Triad family, 1066 Trypansomes, 1320 144–145, 145F Tricarboxylate transport system, 968 Trypsin, 470, 525, 525T, 529T Two-hybrid system, 705 TxA2 (thromboxane A2), 998 Tricarboxylic acid (TCA) cycle, See Citric catalytic mechanism, 533, 533F acid cycle cytochrome b₅ cleavage, 401 Tv1, 1245 TRiC chaperonins, 301-302, 301F gene duplication, 194 TYA, 1246 Trichloracetic acid, 211 proenzymes, 537, 537F TYB, 1246 Tricorn protease, 1420, 1420F specificity, 169–170, 169T Tyk2, 718

X-ray structure, 528F, 529

Type 0 glycogen storage disease, 668

Type IA topoisomerases, 1162–1165,	U1-C, 1315	Universal recipients (blood), 466
1163F, 1164F	U1-snRNA, 1312, 1315–1316	Unrooted trees, 203F, 204
Type IB topoisomerases, 1162,	U1-snRNP, 1312, 1315–1316, 1316F	Unsaturated fatty acids, 386–388, 387T,
1165–1166 , 1165F	U2-snRNA, 1312	950–952, 950F
Type IC topoisomerases, 1162	U2-snRNP, 1312	Unwin, N., 402, 781
Type 1 diabetes, 310, 1102, 1400	U4atac-U6atac, 1319	uORFs (upstream open reading frame),
Type I β bends, 232, 233F	U4-snRNA, 1312	1400–1401
Type I glycogen storage disease, 661, 666	U4–U6-snRNP, 1312	Up-and-down β Barrels, 251–252
Type I restriction endonucleases, 104–105	U5, 1319	UP elements, see Upstream promoter
Type I TM proteins, 426	U5-snRNP, 1312	elements
Type I topoisomerases, 1163–1166	U6-snRNA, 1312	Up mutations, 1266
Type IIA topoisomerases, 1163	U6-snRNP, 1312	Upstream open reading frame (uORFs),
Type IIB topoisomerases, 1163	U11, 1319	1400–1401
Type 2 diabetes, 310, 1102–1103	U12, 1319	Upstream promoter elements (UP
Type II β bends, 232, 233F	UAA (codon), 1343, 1362, 1362T	elements), 1266, 1282
Type II glycogen storage disease, 666	UAG (codon), 1343, 1362, 1362T	Ura, see Uracil
Type II restriction endonucleases, 105, 105T	UbcH7, 1412–1413, 1412F	Uracil, 19, 83, 83T. See also Watson-Crick
Type II TM proteins, 426, 427F	UBDs (ubiquitin-binding domains), 1420	base pairs
Type II topoisomerase inhibitors,	Ubiquinol, 836F	and genetic code, 100T, 1343T
1169–1170	Ubiquinone, see Coenzyme Q	and mutations, 1218–1219, 1339–1340
Type II topoisomerases, 1163, 1166–1170 ,	Ubiquitin, 989, 1404, 1410–1421, 1410F. See	in pyrimidine catabolism, 1136F
1175	also Polyubiquitin	in tRNAs, 1347F
Type III glycogen storage disease, 667	Ubiquitin-activating enzyme (E1), 1410	Uracil-DNA glycosylase, see UDG
Type III restriction endonucleases, 104–105	Ubiquitination, 1414–1421	Uracil N-glycosylase (UNG), 1218
Type III TM proteins, 426, 427F	Ubiquitination signals, 1410	Urate oxidase, 1134
Type IV glycogen storage disease, 667	Ubiquitin-binding domains (UBDs), 1420	URE2 gene (yeast), 315
Type IV restriction endonucleases, 105	Ubiquitin-conjugating enzyme (E2),	Ure2p, 315
Type IV TM proteins, 426–427	1410–1421	Urea, 1025
Type V glycogen storage disease, 667	Ubiquitinlike modifiers (Ubls), 1421	in Miller-Urey experiments, 32T
Type VI glycogen storage disease, 667	Ubiquitin-protein ligase (E3),	in protein sequencing, 169, 171
Type VII glycogen storage disease, 667	1410–1421, 1410F	for renaturation of proteins, 117
Type VIII glycogen storage disease, 667	Ubisemiquinone, 836F	in stopped-flow apparatus, 284
Type IX glycogen storage disease, 667	Ubls (ubiquitinlike modifiers), 1421	from uric acid breakdown, 1135F
Type A blood, 22, 415	Ubr1, 1413	Urea cycle, 791
Type AB blood, 22, 415	UCP, see Uncoupling protein	arginase, 1025-1029
Type B blood, 22, 415	UCP1, 1100	argininosuccinase, 1028
Type O blood, 22, 415	UCP2, 862, 1101	argininosuccinate synthetase, 1028
Type α interferon, 1399	UCP3, 862, 1101	carbamoyl phosphate synthetase,
Type β interferon, 1399	UDG (uracil-DNA glycosylase),	1025–1028
Type γ interferon, 1399	1218–1219, 1219F	ornithine transcarbamoylase, 1028
Tyr, see Tyrosine	UDPG, see UDP-glucose	regulation of, 1028–1029
Tyrosine:	UDP-galactose, 631	Urease, 132, 140F, 323, 470, 489T
aromatic ring flipping and protein core	UDP–galactose-4-epimerase, 632	β-Ureidoisobutyrate, 1136F
mobility, 308–309	UDP-glucose (UDPG), 631, 644	β-Ureidopropionase, 1136F
biosynthesis, 1075–1078	UDP-glucose:glycoprotein	β-Ureidopropionate, 1136F
degradation, 1043–1047	glucosyltransferase (GT), 886	Ureotelic organism, 1025
and E. coli nonsense suppressor, 1362T	UDP-glucose pyrophosphorylase, 644	Urey, H., 32–33
and fluorescence resonance energy	3'-U-exo (3'-U-exonuclease), 1322	Uric acid, 1025, 1107, 1134–1135
transfer, 286	UGA (codon), 1343, 1362, 1362T	Uricotelic organism, 1025
genetic codes for, 100T, 1343T	UGA-1 nonsense suppressor, 1362T	Uridine, 83T, 1136F
in globular proteins, 246–247	UGA-2 nonsense suppressor, 1362T	Uridine diphosphate glucose (UDP-
half-life, 1413T	Uhlenbeck, O., 1351	glucose), 644
α helix/ β sheet propensity, 302T	UHRF1 protein, 1250, 1250F	Uridine monophosphate, see UMP
in native unfolded proteins, 283	Ultracentrifugation, 132T, 152–156 , 159	Uridine phosphorylase, 1136F
in neurotransmitter synthesis, 1059–1060	Ultrafiltration, 117, 132T, 141	Uridine triphosphate, see UTP
as nonessential amino acid, 1065T	Umami, 1064	Uridylic acid, see UMP
side chains, 71, 264T	UMP (uridine monophosphate), 83T,	Uridyltransferase, 1071
structure and general properties, 69T	1114–1118, 1136F	Urine, 1095
Tyrosine aminotransferase, 1408T	<i>umuC</i> gene, 1222	Urkingdoms, 6
Tyrosine hydroxylase, 1045, 1059	UmuD, 1222	URL (uniform resource locator), 194
Tyrosine kinase-based signaling, 699	UmuD' ₂ C, 1222	Urobilin, 1056, 1057
binding modules, adaptors, GEFs, and	<i>umuD</i> gene, 1222	Urobilinogen, 1056, 1057
GAPs, 705–711	Uncompetitive inhibition, 495 , 495F, 502	Urochordates, 13F
and cancer, 703–705	Uncoupling protein (UCP), 861–862,	Uronic acids, 364
MAP-kinase signaling cascades, 712–714	1100–1101	Uroporphyrinogen decarboxylase, 1053, 1054
protein phosphatases, 721–725	Unexpressed DNA, 1304-1305, 1316-1317	Uroporphyrinogen III, 1053, 1054
tyrosine kinase-associated receptors,	UNG (uracil N-glycosylase), 1218	Uroporphyrinogen III synthase, 1052–1054
699–703, 715–720	ung E. coli mutants, 1218–1219	Uroporphyrinogen synthase, 1053
Tyrosine recombinase, 1239	Unidirectional replication, 1174, 1175F	UTP (uridine triphosphate), 96,
Tyvelose, 379F	Uniform resource locator (URL), 194	1118–1119, 1265
TZDs (thiazolidinediones), 1103–1104	Unimolecular reactions, 483	UV absorbance spectra, 90, 92, 92F, 285F
(Uniport, 758, 758F	UV absorption, gel electrophoresis and, 149
U	Unit cells, 270	UvrABC endonuclease, 1217
U1-70K, 1315	Unit evolutionary period, 190	UV radiation, 32, 104, 1214
U1-A, 1315, 1316	Universal donors (blood), 466	uvrA gene, 1217
	* //	-

UvrA protein, 1217	Very low density lipoproteins, see VLDL	W
uvrB gene, 1217	Vesicle Associated Membrane Protein	Wagner, G., 1216, 1378
UvrB protein, 1217	(VAMP), 441	Wakil, S., 961
uvrC gene, 1217	Vesicle formation, 428–440	Waksman, G., 1178, 1186
UvrC protein, 1217	Vesicle fusion, 430, 440–445	Waksman, S., 1395
UvrD protein, 1217, 1220	Vesicular stomatitis virus (VSV), 885	Walker, J., 853, 857, 865
Uyeda, K., 663	v-fos proto-oncogene, 705	Walker A motif, 855
V	vg gene (fruit fly), 25F	Walker B motif, 855
V_{max} (maximal velocity), 489	Viagra, 699, 743 Vibrio cholerae, 576	Walsh, C., 562 Walz, T., 431
Vaccines, 205	Villafranca, E., 724	Wang, A., 1149
Vacuoles, 7F, 11, 11F	Villafranca, J., 1128	Wang, J., 1149
Vagelos, R., 961	Vimentin, 10F	Warburg, O., 575, 595, 823, 864, 892
Val, see Valine	Vinograd, J., 1160	Warfarin, 543F
Val-AMS (5'-O'-[N-(L-valyl)	Vioxx, 543, 999–1000	Warshel, A., 523
sulfamoyl]adenosine), 1356–1357	Viral strand, bacteriophage M13, 1190	Water, 40–45
Valine:	Virions, 545	activity of, 60
and α-amino-β-chlorobutyrate, 1408	Virus-based cloning vectors, 108	dielectric constant and dipole
biosynthesis, 1075	Viruses, 3. See also specific viruses	moment, 43T
degradation, 1034–1039	budding of, 466	in glycerophospholipids, 389T
as essential amino acid, 1065T	and cancer, 704–705	ionization constant, 47
genetic codes for, 100T, 1343T	DNA size, 94T in gene therapy, 122	and nitrogen excretion, 1134
in globular proteins, 246 half-life, 1413T	genetics of, 26–28, 27F, 28F	and nonpolar solvents, 262–264, 263T proton mobility, 44–45
α helix/ β sheet propensity, 302T	life cycle, 27F	reactant in Miller–Urey experiments, 32, 33
in native unfolded proteins, 283	RNA and DNA, 85	solvent properties, 42–44
side chains, 70, 264T	and RNAi, 1324–1325	structure and interactions, 40–42 , 40F–42F
structure and general properties, 68T	and RNA polymerases, 96	Waterman, M., 200
Valinomycin, 79, 748, 749F	sedimentation coefficients, 154F	Water-oxidizing center (WOC), 916
ValRS, 1356–1357	vaccines for, 205	Water-soluble vitamins, 474
Valyl-adenylate, 1356–1357	Viscosity, 155	Watson, H., 529
5'-O'-[N-(L-valyl)sulfamoyl]adenosine	Vitalism, 587	Watson, J., 88, 182, 1146, 1173, 1363
(Val-AMS), 1356–1357	Vitamins, 474, 474T, 993	Watson–Crick base pairs, 89–90, 89F, 104,
VAMP (Vesicle Associated Membrane	Vitamin A, 122, 252, 474, 943. See also	1145–1146, 1154–1156
Protein), 441 Vanadata 758	Retinol	and DNA polymerase I, 1178–1180
Vanadate, 758 van der Waals distance, 41, 224F	Vitamin B ₁ , 474T, 618 Vitamin B ₂ , 474T, 565F	electronic complementarity, 1155–1156 geometric complementarity, 1154–1155
van der Waals forces, 260	Vitamin B ₆ , 474T, 5051 Vitamin B ₆ , 474T, 640, 1020	and Pol I, 1178–1180
Van Duyne, G., 1244	Vitamin B ₁₂ , 474T, 956–957	Watson–Crick structure:
Vane, J., 994	Vitamin C (ascorbic acid), 236, 364–365 ,	of B-DNA, 88–90
van Helmont, JB., 901	364F	real DNA vs., 1146–1148
van Leeuwenhoek, A., 4	Vitamin D, 474, 673T, 677–679 , 679F, 943	Waxes, 387
van Niel, C., 903	Vitamin D_2 , 678	WD40 service motif, 433
Van Roey, P., 252	Vitamin D ₃ , 677–678	WD repeat, 987
van't Hoff plot, 59	Vitamin D-binding protein, 678	Weak acids, 46–48, 48F
Variable arm, 1346	Vitamin D intoxification, 678	Weber, P., 686
Variant surface glycoprotein (VSG), 892	Vitamin E, 866, 943 Vitamin K, 943	Web of Science, 35
Varmus, H., 705 Varshavsky, A., 1413	Vitamin K, 943 Vitamin K ₁ , 922	Weinberg, R., 1211 Weis, W., 443, 444
Vasopressin, 673T, 683, 784	Vitamin K_1 , 922 Vitamin K_2 , 910	Weismann, A., 19
Vassylyev, D., 1268	Vitravene (Fomivirsen), 1403	Weiss, S., 1265
VAST (Vector Alignment Search Tool),	v-Jun proto-oncogene, 705	Westbrook, E., 696
256T, 258	VLDL (very low density lipoproteins), 449,	Westerhoff, H., 863
vCJD (new variant Creutzfeldt-Jakob	456, 944	Western blot, 149
disease), 315	and apoB-100, 1322	Westheimer, F., 470, 471
V(D)J recombination, 1223	and atherosclerosis, 458	WGSA, see Whole genome shotgun
Vector Alignment Search Tool, see VAST	degradation, 452	sequencing
Vectorial nature, of active transport, 760	formation, 986	Whelan, W., 645
Vectorial protons, 843 Vectors:	properties, 449T transport in blood, 973	wh gene (fruit fly), 24, 25, 25F Whole genome shotgun sequencing
cloning, 104, 106–109	Void volume, in gel filtration chromatogra-	(WGSA), 180F, 181
shuttle, 118	phy, 138	Wigley, D., 1231
Vegetative cell, 1284	Voltage-gated ion channels, 771–775 , 772F,	Wikipedia, 35
Velocity, of reactions, 483, 488, 489F	779	Wikström, M., 844
Vennesland, B., 470, 471	von Euler, U., 993	Wild type, 23–24
Venom, see Snake venom	von Gierke's disease, 666, 1135	Williams, C., 803, 1125
Venter, C., 176, 181, 182	von Liebig, J., 470	Williams, J., 606
v-erbB oncogene, 705	v-Ras proto-oncogene, 705	Williams, L., 1148
Verdine, G., 1216	VSG (variant surface glycoprotein), 892	Williams, R., 728, 733
Versican, 373T	v-sis oncogene, 705	Wilson, K., 1112 Wingad haliv matif 1201
Vertebrates, 13F. See also specific types collagen of, 235	v-SNAREs (SNAP receptors), 441 v-Src protein, 704–705	Winged helix motif, 1291 Withers, S., 524
introns of, 1316	VSV (vesicular stomatitis virus), 885	Withers, S., 324 Wittinghofer, A., 711
open reading frames for, 182	VSV G-protein, 885, 887F	Wittmann, HG., 1365
rRNA methylation sites of, 1328–1329	V-type ATPases, 758	Wittmann-Liebold, B., 1365

Wlodawer, A., 549 XPF, 1217 shuttle vectors, 118 Wobble pairing, 1360–1361, 1360F, 1360T XPG, 1217, 1218 snoRNAs, 1329 WOC (water-oxidizing center), 916 XPV, 1217 transposons, 1244 tRNA Ala, 1345F, 1346 tRNA Asp, 1349 tRNA Phe, 1346, 1346F, 1348 Woese, C., 6, 8 X-ray crystallography: Wolberger, C., 1293 and double helix of DNA, 88, 88F of enzyme–substrate complexes, 470 Wolcott–Rallison syndrome, 1400 vesicle fusion, 440 Wolfenden, R., 515, 1384 interpretation of, 241-245 Wolman's disease, 466 and NMR, 244 Yeast alanine tRNA, 176 protein dynamics studies, 306 Xrcc4, 1223–1224 Yeast alcohol dehydrogenase (YADH), Wolynes, P., 287 Woodward, R. B., 975 618,619 Wool, 233, 235 Xrn1 exonuclease, 1327 geometric specificity, 472-473 Work, 53–54, 57–58 Xrn2 exonuclease, 1304 molecular mass, 140F World Wide Web, 195T, 256T Xu, W., 722 stereospecificity, 470-472 Writhing number, of superhelix, Xu5P, see Xylulose-5-phosphate Yeast artificial chromosomes, see YACs 1159-1160, 1159F Xylitol, 365 Yellow mosaic virus protein, 153T Wunsch, C., 199 Wüthrich, K., 243, 314 XylNAc residue (N-acetylxylosamine), 523 Yersinia pestis, 1420-1421 Xylose, 597–598 Y^{+} gene, 1261–1262, 1264 WW domain, 708 D-Xylose, 360F, 361 Ylid, 616 Wyman, J., 349 -yl suffix, 73 D-Xylulose, 361 Xylulose-5-phosphate (Xu5P), 892-894, Yokoyama, S., 1355-1357 Yonath, A., 1365, 1366, 1376 Yonetani, T., 354 Xanthine, 1112, 1130F Xanthine dehydrogenase, 1133 Xanthine oxidase (XO), 1130F, 1132–1133 YopJ, 1420 YACs (yeast artificial chromosomes), Yoshida, M., 857 Xanthomas, 457 108-109, 113, 114, 180-181 Yoshikawa, S., 841 Young, W., 594 Xanthosine, 1130F YADH, see Yeast alcohol dehydrogenase Xanthosine monophosphate, see XMP Yalow, R., 674 X chromosome, 22–23 Yang, W., 1222 $\begin{array}{l} Z \\ Z\alpha, 1150\text{--}1151, 1150F \end{array}$ Yanoffsky, C., 1296, 1298, 1337 Xenobiotics, 542 Xenopus borealis, 1283 Yarus, M., 1383 Zalcitabine, 1208 Xenopus laevis, 1163 Y chromosome, 23 Zamecnik, P., 1345, 1362 Xenotransplantation, 121-122 Yeast, 13F. See also Saccharomyces Zamore, Phillip, 1323 XerC, 1243 XerD, 1243 cerevisiae (Baker's yeast) ZAP-70, 1412, 1412F 20S proteasome, 1416F-1417F Z-DNA, 1146F, 1147F, 1148T, 1149-1151 Zero order reactions, 488 Xeroderma pigmentosum (XP), 1217–1218, chromosome number, 19T cloning of, in host organism, 104. See also Z⁺ gene, 1261–1262, 1264 1223, 1224 X-gal (5-bromo-4-chloro-3-indolyl-β-D-Zidovudine, see 3'-Azido-3'-deoxythymidine YACs [yeast artificial chromosomes] galactoside), 110 DNA size, 94T α Zigzag, 433 XhoĬ, 105T eEF1A-eEF1Bb, 1389F Zimm, B., 94 exon splicing, 1305–1306 fermentation, 593–594, 616–619 Zinc, 473, 511–513 X-linked phosphorylase kinase deficiency, Zinc fingers, 1402 667 Zipping, 443F XMP (xanthosine monophosphate), GCN2, 1400-1401 1112, 1130F genome sequencing, 176, 177T, 182 Zocor, 990, 991F XO, see Xanthine oxidase introns in, 1316 Zonal ultracentrifugation, 155, 156F, 159 Zone electrophoresis, 146 prions in, 315-316 XP, see Xeroderma pigmentosum XPA, 1217 protein disulfide isomerase, 291–292, 291F Z-scheme, 914, 915F, 917F XPB, 1217, 1218 RAD51, 1230 Zwitterions, 67F, 70 XPC, 1217 Rpn11, 1418 Zygote, 20 XPD, 1217, 1218 80S rRNA, 1371F Zymase, 594 rRNA methylation sites, 1328-1329 Zymogens, 537-538 XPE, 1217