UNIT 8A: Infectious disease

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Infectious disease

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - ► How many people are there?
 - ► How many influenza viruses are there?
 - ► How do they find each other?

Disease agents

- ▶ Name an infectious agent that causes disease in humans.
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Tuberculosis, anthrax, pertussis
 - Eukaryotic pathogens are nucleated cells who are more closely related to you than they are to bacteria
 - * Malaria, various worms

Influenza_virus (present)

Tuberculosis bacilli (present)

Malaria sporozoite (present)

Microparasites

- ▶ For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - Productively infected
 - Recovered

Microparasite models

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - ▶ Infectious individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models might include other states, such as latently infected hosts who are infected with the pathogen but cannot yet infect others

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

Measles reports from England and Wales

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Rate of spread

- ► For many diseases, especially new diseases, we can *observe* and *estimate r*.
 - * Instantaneous rate of increase (per capita)
 - ▶ * Units of 1/t
 - * Gives the exponential rate of spread
- ightharpoonup Want to know what factors contribute to that, and how it relates to \mathcal{R} .
 - * number of new cases per case
 - * Unitless

Basic reproductive number

- lacktriangle People in the disease field love to talk specifically about \mathcal{R}_0
- ightharpoonup But they don't always mean the same thing when they say \mathcal{R}_0 :
 - ightharpoonup Actual value of $\mathcal R$ before an epidemic
 - Hypothetical value assuming no immunity
 - Hypothetical value assuming no immunity and no control efforts whatsoever
- lacksquare Often easier to talk simply about ${\cal R}.$

Example: the West African Ebola epidemic

COVID in Ontario (repeat)

COVID in Ontario (repeat)

COVID in Ontario (preview)

COVID in Ontario (repeat)

COVID in Ontario (repeat)

COVID in Ontario

Scales

- Which scale should we look at?
 - * Log scale is better for looking at trends
 - * Linear scale is better for looking at impacts

Population biology

- ▶ What quantities do we want to look at?
 - ► * Speed of exponential growth *r*
 - \blacktriangleright * Finite rate of increase λ
 - * Skipped this year
 - * Lifetime reproduction

Instantaneous rate of growth r

- ► What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - ► * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- How do you think we estimate?
 - ▶ * We estimate *r* from the population-level increase in disease
 - ▶ * Then we use that to estimate b = d + r
 - * Models go both directions!
 - ▶ Individuals ↔ Populations

Reproductive number \mathcal{R}

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - * An important measure of how hard the epidemic will be to stop
- ► How do we calculate it?
 - * $\mathcal{R} = b/d$; if we can estimate those

Example

- $ightharpoonup r \approx 0.14/\,\mathrm{day}$
- \blacktriangleright What is our estimate of \mathcal{R} ?
 - ▶ When average length of infection $L = 5 \,\text{day}$?

$$d = 1/(5 \, \text{day}) = 0.2/ \, \text{day}$$

$$b = 0.14 \, \text{day} + 0.2 \, \text{day} = 0.34 / \, \text{day}$$

$$R = 0.34/0.2 = 1.7$$

▶ When average length of infection $L = 10 \,\text{day}$?

$$d = 1/(10 \, \text{day}) = 0.1/ \, \text{day}$$

$$b = 0.14 \, \text{day} + 0.1 \, \text{day} = 0.24 / \, \text{day}$$

$$R = 0.24/0.1 = 2.4$$

Generation intervals

- Researchers try to estimate the proportion of transmission that happens for different ages of infection
- How long from the time you are infected to the time you infect someone else?
- Analogous to a life table
- The effective generation time \hat{G} has units of time
 - Ĝ is fairly deep; we'll skip the details

Generation intervals

Approximate generation intervals

Speed and risk

- ▶ Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - What do we already know?

Fighting Ebola (present)

Generation time and risk

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - ▶ * The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- ▶ If we know r, what does the generation time tell us about R?
 - * The faster the generations (small \hat{G}), the *smaller* the strength of the epidemic (small reproductive number \mathcal{R})
- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$

Generation time and risk (repeat)

Generation time and risk (repeat)

Generation time and risk

Generation time and risk

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- ▶ If we know generation speed, then a faster epidemic speed means:
 - ▶ * More strength required (greater R)
- If we know epidemic speed, a faster generation speed means
 - ► * Less strength required (smaller R)

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Single-epidemic model

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- ▶ We also use *N* to mean the total population

Transition rates

- What factors govern movement through the boxes?
 - ► People get better independently
 - People get infected by infectious people

Conceptual modeling

- What happens in the long term if we introduce an infectious individual?
 - ► * The may be an epidemic
 - an outbreak of disease
 - ▶ * Disease burns out
 - * Everyone winds up either recovered
 - ▶ * ... or susceptible

Interpreting

- Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .
 - * Demographic stochasticity: if we only start with one individual, we expect an element of chance
- ▶ Why doesn't everyone get infected?
 - * NOANS

Implementing the model

The simplest way to implement this conceptual model is with differential equations:

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$N = S + I + R$$

Quantities

State variables

 \triangleright S, I, R, N: [people] or [people/ha]

Quantities

Parameters

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - ► These are contacts that would lead to infection if the person contacted is infectious
 - ▶ Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- ▶ Infectious people recover at *per capita* rate γ (units [1/time])
 - ▶ Total recovery rate is γI
 - Mean time infectious is $D=1/\gamma$ (units [time])

Simulating the model (repeat)

Simulating the model

Basic reproductive number

- ▶ What *unitless* parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number
 - * The potential number of infections caused by an average infectious individual
 - * That is: the number they would cause on average if everyone else were susceptible
 - ▶ * The product of the rate β (units [1/t]) and the duration D ([t])

Basic reproductive number implications

- ▶ What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - ▶ * Number of infected individuals grows exponentially
- ▶ What happens early in the epidemic if $\mathcal{R}_0 < 1$?
 - * Number of infected individuals does not grow (disease cannot invade)

Effective reproductive number

The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

• *
$$\mathcal{R}_{\text{eff}} = \mathcal{R}_0 S/N$$

- Is the disease increasing or decreasing?
 - lacktriangleright * It will increase when $\mathcal{R}_{\mathrm{eff}} > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- ▶ Why doesn't everyone get infected?
 - lacktriangle * When susceptibles are low enough $\mathcal{R}_{\mathrm{eff}} < 1$
 - \blacktriangleright * When $\mathcal{R}_{\rm eff} <$ 1, the disease dies out on its own (less than one case per case)

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Epidemic size

- In this model, the epidemic always burns out
 - ► No source of new susceptibles
- Epidemic size is determined by:
 - * \mathcal{R}_0 : larger \mathcal{R}_0 leads to a bigger epidemic
 - ▶ * The number of susceptibles at the beginning of the epidemic
 - * More susceptibles leads to a bigger epidemic
 - * ... and fewer susceptibles at the end
 - * The number of infected individuals at the beginning of the epidemic
 - * Usually relatively small (and a relatively small effect)

Overshoot

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - ► * More susceptibles ⇒
 - * Faster initial growth \Longrightarrow
 - * Bigger epidemic \Longrightarrow
 - * More infections at peak (same number of susceptibles) \Longrightarrow
 - * More generations needed for disease to fade out \implies

Ebola example

- ► In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January
- In fact, their model predicted many more cases than that by April
- ► What happened?

What limits epidemics?

- ▶ What limits epidemics in our simple models?
 - * Depletion of susceptibles
- ▶ What else limits epidemics in real life?
 - * Interventions
 - ► * Behaviour change
 - * Heterogeneity (differences between hosts, locations, etc.)

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Recurrent epidemic models

- ▶ If epidemics tend to burn out, why do we often see repeated epidemics?
 - * People might lose immunity
 - * Births and deaths; newborns are susceptible

Measles reports from England and Wales

Recurrent epidemics

Measles reports from England and Wales

Closing the circle

* Loss of immunity

Closing the circle

- * Births and deaths
 - * Effect on dynamics is similar to loss of immunity

Births and deaths

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

$$\begin{array}{c|c} \downarrow & & \\ \hline S & & \downarrow & \\ \downarrow & & \downarrow & \\ \end{array}$$

$$\frac{dR}{dt} = \gamma I - dR$$

- ightharpoonup We often assume b = d
 - population is constant

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Equilibrium

- lacktriangle At equilibrium, we know that $\mathcal{R}_{\mathrm{eff}}=1$
 - One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance

$$\triangleright$$
 $S/N = 1/\mathcal{R}_0$

- What does this remind you of?
 - * Reciprocal control!

Equilibrium

- Number of infectious individuals determined by number required to keep susceptibles in balance.
- ► As susceptibles go up, what happens?
 - Per capita replenishment goes down
 - ► Infections required goes down

Reciprocal control

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - ▶ * Number of susceptibles at equilibrium does not change
 - * Fewer susceptibles removed by infection (some are removed by us)
 - * Less disease
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct
 - * If we keep increasing the rate . . .
 - * Number of susceptibles goes down

Reciprocal control

- ► What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - * If we have more susceptibles, then per capita replenishment goes down
 - * So the number of infectious individuals required for balance goes down
 - ► * If we remove infectious individuals fast enough, the infection could go extinct

Tendency to oscillate

Tendency to oscillate

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - ► Tend to oscillate
 - Oscillations tend to be damped
 - System reaches an endemic equilibrium disease persists

Source of oscillations

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ► * There will be a big epidemic
 - ▶ * ...then a very low number of susceptibles
 - ▶ * ... then a very low level of disease
 - * ... then an increase in the number of susceptibles

Persistent oscillations

- If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Seasonality
 - * Environmental stochasticity
 - * School terms
 - * Demographic stochasticity
 - * Changes in Behaviour
 - * People are more careful when disease levels are high

Measles reports from England and Wales

Outline

Introduction

Rate of spread

Single-epidemic model Epidemic size

Recurrent epidemic models

Dynamics

Reproductive numbers and risk

Reproductive numbers and risk

- At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N=1/\mathcal{R}_0$
- Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$
- If you have a single, fast epidemic, the size is also predicted by \mathcal{R}_0 .

Reproductive numbers and risk (repeat)

Reproductive numbers and risk

Examples

- ► Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria
- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero
- Eradication of smallpox!

Threshold for elimination

- What proportion of the population should be vaccinated to eliminate a disease?
 - * Transmission should be reduced by a factor of \mathcal{R} , so at least fraction $1-1/\mathcal{R}$ should be vaccinated

Examples:

- ▶ Polio has an \mathcal{R}_0 of about 5.
- What proportion of the population should be vaccinated to eliminate polio?
 - ► * At least 1-1/5 = 80%
- Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - * At least 1-1/20 = 95%
- ► If gonorrhea has an R₀ of about 2, what proportion of unprotected sexual encounters should be protected to eliminate gonorrhea?
 - ► * At least 1-1/2 = 50%

Persistence of infectious disease

- Why have infectious diseases persisted?
 - ► The pathogens *evolve*
 - Human populations are heterogeneous
 - ▶ People differ in: nutrition, exposure, access to care
 - Information and misinformation
 - Vaccine scares, trust in health care in general

Heterogeneity and persistence

- ▶ Heterogeneity *increases* \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - Cases per case is high
 - Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease
 - Humans rarely do this, however: the populations that need the most support typically have the least access