GPS Navstar Różnicowy GPS Rosyjski system Glonass Inicjatywy europejskie <u>Inne strony o nawigacji satelitarnej</u>

Konstelacja Navstar rysunek ze strony <u>Aerospace Corporation</u>

Podstawowymi zadaniami systemy nawigacyjnych jest ustalanie pozycji terminali odbierających od nich sygnał i podawanie dokładnego czasu. Obecnie, terminale (odbiorniki) nawigacyjne pozwalają też obliczyć prędkość i pomagają zorientować się w terenie przy pomocy elektronicznej mapy.

GPS (Global Positioning System) Navstar

Navstar (NAVigational Satellite Time And Ranging) został sfinansowany przez Departament Obrony USA. Jego kontrolą i zarządzaniem zajmuje się obecnie amerykańska komisja PNT (The National Space-Based Positioning, Navigation, and Timing Executive Committee). Pierwszy satelita tego systemu został wystrzelony już w 1978 roku, lecz o w pełni działającym systemie można mówić dopiero od roku 1995.

Człon kosmiczny systemu stanowią co najmniej 24 satelity krążące po po 6 orbitach - po 4 na każdej. Zazwyczaj jest jeszcze kilka satelitów nadmiarowych - bieżący status konstelacji rejestruje m.in. Obserwatorium Astronomiczne Marynarki Wojennej USA. Wysokość orbit to 20 200 km nad powierzchnią Ziemi, ich inklinacja jest równa 55°, satelity okrążają glob dwukrotnie w ciągu doby. Z każdego miejsca na Ziemi jest jednocześnie widocznych co najmniej 5 satelitów (ściślej: prawdopodobieństwo widoczności przynajmniej 5 satelitów wynosi 99.96%).

Na Ziemi znajduje się główna stacja kontrolna (Master Control Station) w Colorado Springs, 4 stacje monitorujące (Monitor Stations) - Hawaje, Wyspy Wniebowstąpienia, Kwajalein i Diego Garcia - oraz 6 stacji NGA (National Geospatial Agency) - w Argentynie, Bahrajnie, Australii, Ekwadorze, Wielkiej Brytanii i USA. Segment naziemny sieci GPS jest odpowiedzialny za odbieranie sygnałów od satelitów i obliczanie na tej podstawie poprawek do ich pozycji (efemeryd). Poprawki te są odsyłane z powrotem do satelitów.

Istnieją dwie wersje systemu Navstar.

PPS (Precise Positioning System) jest dostępny dla wojska USA i NATO oraz wybranych organizacji. Jest on dokładniejszy niż druga wersja - SPS (Standard Positioning System). Korzystanie z systemu SPS było i jest bezpłatne i powszechnie dostępne. Konieczny jest oczywiście zakup odbiornika, ale może to zrobić każdy i nie trzeba płacić za odbiór sygnału satelitarnego.

Odbiorniki GPS, na podstawie sygnałów z satelitów obliczają swoje położenie, prędkość i dokładny czas. Większość z nich obecnie zaopatrzona jest w cyfrowe mapy i oprogramowanie wspomagające przetwarzanie tych danych w nawigacji morskiej i lotniczej, geodezji czy prowadzeniu pojazdów w miastach. Należy tutaj zauważyć, że informacja w systemie GPS przesyłana jest jednokierunkowo, odbiorniki pozostają bierne i nie wysyłają żadnych sygnałów do satelitów.

Satelity nadają dwa rodzaje sygnałów: C/A na nośnej L1 = 1575.42 MHz (pasmo sygnału - 1.023 MHz) odbierany przez wszystkie urządzenia GPS (SPS i PPS) oraz sygnał P na nośnej L2 = 1227.60 MHz (pasmo sygnału 10.23 MHz) odbierany tylko przez

urządzenia PPS. Odseparowanie sygnałów pochodzących od poszczególnych satelitów następuje przy pomocy techniki CDMA - każdy satelita nadaje sygnał stosując inny ciąg rozpraszający PRN (Pseudo random Noise).

Teoretycznie do ustalenia trójwymiarowej pozycji obiektu i dokładnego czasu wystarczyłyby sygnały z czterech satelitów. Zazwyczaj odbiornik GPS śledzi co najmniej 5 satelitów, dla większej dokładności obliczeń i na wypadek utraty sygnału od jednego z nich. Sygnały zawierają informacje, od którego satelity pochodzą i kiedy zostały nadane, przesyłana jest także poprawka ich aktualnej pozycji obliczona przez naziemne stacje kontrolne. Na tej podstawie odbiornik GPS, znając teoretyczne pozycje satelitów, może obliczyć:

- prawdziwe pozycje satelitów w danym momencie czasu,
- odległości odbiornik-satelita, na podstawie czasu transmisji sygnału od satelity do odbiornika,
- swoją pozycję.

Szczegółowy algorytm obliczeniowy oparty jest na technice trilateracji, odmianie triangulacji.

Trilateracja w nawigacji satelitarnej. Kolorowe odcinki symbolizują znane przez odbiornik odległości do satelitów. Okręgi wskazują zbiór punktów równo odległych od danego satelity. Punkt przecięcia się wszystkich okręgów jest rozwiązaniem - pozycją odbiornika.

Zaraz po włączeniu odbiornika GPS konieczna jest jeszcze synchronizacja z zegarami satelitów (ustalenie dokładnego czasu), stąd konieczność odbioru sygnału nie z trzech lecz z czterech satelitów (dla ustalenia czterech niewiadomych - trzy współrzędne przestrzenne i czas - konieczne są cztery informacje).

Odbiorniki PPS odbierają dodatkowo drugi sygnał P - na innej częstotliwości. Pozwala to na obliczenie poprawki i zniwelowanie błędu pomiaru wynikającego z zaburzeń sygnałów radiowych w jonosferze (podstawowa przyczyna błędów pomiaru).

W celu zmniejszenia dokładności odbiorników SPS, do sygnału C/A wprowadzane były zaburzenia określane mianem Selective Availability (SA). Odbiorniki PPS potrafiły niwelować zakłócenia SA. Zaburzenia te zostały jednak wyłączone 1 maja 2000 roku i pozostały wyłączone po 11 września 2001 roku. Poza tym, na błąd pozycji i czasu podawanych przez odbiorniki GPS wpływ mają :

- opóźnienie jonosferyczne zaburzenia w prędkości rozchodzenia się sygnałów z satelit w jonosferze (błąd około 7 m),
- opóźnienie troposferyczne analogiczne zjawisko w troposferze wywołane zmianami wilgotności, temperatury i ciśnienia powietrza (± 0.5 m), • błąd efemeryd - różnice między teoretyczną a rzeczywistą pozycją satelitów (± 2.5 m),
- niedokładności zegara satelitów (± 2 m),
- odbiór sygnałów odbitych, docierających do odbiornika innymi drogami niż bezpośrednio od satelity (± 1 m),
- błędy odbiornika szumy zakłócające transmisję, niedokładności procedur obliczeniowych w oprogramowaniu (± 1 m).

Drugi sygnał (P) o niższej częstotliwości pozwala odbiornikom PPS zniwelować opóźnienia jonosferyczne, które są różne dla różnych częstotliwości. Dzięki temu precyzja odbiorników tych jest większa. Sygnał P jest czasem zakodowywany w tzw. sygnał Y, co ma uniemożliwić fałszywe nadawanie go przez osoby niepowołane.

Do maja 2000 r. system SPS podawał pozycję z dokładnością (w 95 % przypadków) do 100 metrów - w praktyce było to 20-40 metrów - w przypadku pomiarów w dwóch wymiarach. Dla pomiarów w trzech wymiarach dokładność wynosiła 160 metrów. Pomiar czasu miał dokładność 340 nanosekund. Dla systemu PPS te wartości wynosiły odpowiednio: 10 metrów, 30 metrów i 100 nanosekund. Obecnie, odbiorniki cywilne śledzą większą liczbę satelitów (zazwyczaj nawet 12) i przy braku zakłóceń SA błąd pomiaru jest nie większy niż 15 metrów. Dodatkowo, dostępne obecnie odbiorniki GPS często korzystają z poprawek różnicowych systemów WAAS/EGNOS, co dodatkowo zwiększa dokładność do 3-5 metrów. Dokładne wartości błędów pomiarów zależą od parametrów odbiornika. System Navstar jest cały czas modernizowany. Planowana jest rozbudowa naziemnego segmentu kontrolnego o back-up'ową główną stację kontrolną, dodatkowe stacje monitorujące i zwiększenie częstotliwości wysyłania poprawek do satelitów.

Wystrzeliwywane są satelity nowszych generacji (ostatnio satelita IIR-M w sierpniu 2005 roku). Przewiduje się też wprowadzenie sygnału cywilnego na częstotliwości L2 oraz trzeciego sygnału GPS na częstotliwości L5 = 1176.45 MHz.

GPS różnicowy - DGPS (Differential GPS)

Dokładność systemu GPS jest niewystarczająca do wielu zastosowań, takich jak pomiary geodezyjne czy nawigacja lądujących samolotów. W sytuacjach wymagających większej precyzji pomiarów stosuje się system DGPS korzystający z poprawek różnicowych do danych z satelitów GPS. System ten bazuje na fakcie, że większość czynników powodujących niedokładności pomiaru położenia w cywilnym GPS jest właściwie taka sama na niewielkim obszarze geograficznym. Tak więc odbierając sygnał GPS w miejscu o znanym i niezmiennym położeniu można wyznaczyć niedokładności pomiaru i przesłać je do odbiorników GPS znajdujących się w pobliżu. Na tej zasadzie działają stacje różnicowe (referencyjne) GPS. Odbierają sygnały z satelitów Navstar, obliczają błędy pomiaru i taką poprawkę przesyłają do znajdujących się w pobliżu odbiorników GPS. Oczywiście odbiorniki GPS muszą być przystosowane do odbioru takich poprawek. Możliwe jest też wykonanie serii pomiarów bez poprawek różnicowych i późniejsza ich obróbka przy pomocy danych uzyskanych ze stacji różnicowej. Ta druga technika, zwana "post-processing" jest bardzo popularna w pomiarach geodezyjnych. Przy długich pomiarach, wykorzystujących co najmniej 2 odbiorniki GPS jednocześnie i poprawki różnicowe, możliwe jest wyznaczanie punktów geodezyjnych z dokładnością centymetrową a nawet milimetrową.

Jako stacje różnicowe, korygujące dane z sieci GPS, można też wykorzystywać satelity geostacjonarne. Europejski system EGNOS opiera się na trzech takich satelitach, które nie tylko wysyłają korekty pozycji i czasu od odbiorników GPS, ale także informują je o ewentualnych przerwach i awariach systemu Navstar lub rosyjskiego systemu Glonass. Również w Stanach Zjednoczonych istnieje system WAAS (Wide Area Augmentation System) składający się zarówno z satelitów geostacjonarnych jak i naziemnych stacji referencyjnych. Sieci stacji różnicowych powstają m.in. w Niemczech (sieć SAPOS), Szwecji (SWEPOS), Japonii (MSAS z satelitą geostacjonarnym) i wielu innych państwach. W Polsce istnieją sieci stacji referencyjnych na Śląsku i w okolicach Warszawy o zasięgu nadajników około 25 kilometrów. Są również stacje w Dziwnowie i na Rozewiu (zasięg około 100 km) wykorzystywane głównie przez jednostki morskie do celów nawigacyjnych.

Glonass

Glonass (Globalnaja Nawigacjonnaja Satelitarnaja Sistemma) to rosyjski odpowiednik systemu Navstar. Technicznie działa on na zasadach bardzo podobnych do systemu amerykańskiego. Z początku miał być on dostępny tylko dla wojska, najprawdopodobniej dlatego w systemie w ogóle nie ma błędów typu SA. Występują jednak również dwa kanały: standardowy ma dokładność 60 metrów dla pomiarów dwuwymiarowych i 75 metrów dla trójwymiarowych. Nie stosuje się CDMA, każdy satelita nadaje w innym paśmie częstotliwości. Satelitów miało być docelowo 24, tak jak w systemie Navstar, ale krążyć miały na 3 orbitach - po 8 na każdej. Liczba ta nigdy jednak nie została osiągnięta - wystrzeliwywano nowe satelity, ale jednocześnie te

już działające szybko ulegały awariom. Stan systemu Glonass nadal nie jest dobry, jako że Rosja nie ma pieniędzy na utrzymywanie go. Nawiązano współpracę z Unią Europejską, która jest zainteresowana istnieniem ogólnoświatowych systemów nawigacyjnych, z którymi mógłby współpracować projektowany w Europie system Galileo.

Inicjatywy europejskie

"When you get a GPS navigation signal, how do you know you can trust it?"

Obecnie, w systemie Glonass pracuje około dziesięciu satelitów.

Laurent Gauthier, EGNOS project manager

Pomysł cywilnej sieci satelitów nawigacyjnych pojawił się z kilku powodów. Potrzebny jest system dokładniejszy od już istniejących, z którego można by korzystać na skalę międzynarodową, m.in. w nawigacji lotniczej i podczas akcji ratunkowych. System ten nie powinien być zależny od jednego państwa i jego polityki. Powinien też cechować się większą odpornością na zakłócenia i uszkodzenia satelitów. Koncepcję takiego systemu zaproponowała Unia Europejska. Cały projekt początkowo nosił nazwę GNSS (Global Navigation Satellite System - akronim analogiczny do Glonass). W pierwszej kolejności powstał EGNOS, weryfikujący i korygujący dane z sieci Navstar (i ewentualnie Glonass). Trwa projektowanie i budowa systemu Galileo.

Europejski system EGNOS (European Geostationary Navigation Overlay Service) wspomaga działanie istniejących systemów nawigacji satelitarnej (głównie sieci Navstar). Do odbiorników GPS współpracujących z EGNOS wysyłane są sygnały korekcyjne pochodzące z satelitów geostacjonarnych znajdujących się nad Europą. Sygnały te zawierają korekty pozycji podawanych przez sieć Navstar, co kilkukrotnie zwiększa ich dokładność. Przede wszystkim jednak, EGNOS weryfikuje dane pochodzące z sieci Navstar, sprawdzając, czy nie doszło do awarii tych satelitów lub błędów podczas transmisji. Dzięki temu, dane z sieci Navstar/EGNOS mogą być zastosowane tam, gdzie ze względów bezpieczeństwa, muszą być w pełni wiarygodne. Są to tzw. aplikacje typu "Safety of Life", np. precyzyjna nawigacja samolotów, sterowanie ruchem pociągów czy niektóre akcje ratunkowe.

EGNOS opiera się na trzech satelitach geostacjonarnych (15.5°W, 21.5°E i 25°E). Na Ziemi znajdują się stacje pomiarowe i kontrolne, które prowadzą ciągłe testy sieci Navstar i satelitów EGNOS. Obliczają poprawki danych GPS, wykrywają nieprawidłowości w transmisji i sprawdzają, czy nie doszło do awarii któregoś z satelitów. Poprawki i dane o stanie sieci GPS są transmitowane do satelitów EGNOS, które z kolei wysyłają je do odbiorników GPS. Jedna ze stacji kontrolnych sieci EGNOS znajduje się w Warszawie, w Centrum Badań Kosmicznych.

Nad projektem Galileo rozpoczętym w 1998 roku, kontrolę sprawują Komisja Europejska i Europejska Agencja Kosmiczna (ESA). Docelowo, Galileo ma być cywilnym systemem nawigacji satelitarnej, zupełnie niezależnym od wojskowych sieci Navstar i Glonass. Segment kosmiczny ma stanowić 30 satelitów (27 operacyjnych i 3 zapasowe aktywne), krążących po trzech orbitach o wysokości 23 616 kilometrów i inklinacji 56°. Poza danymi o pozycji i dokładnym czasie, do odbiorników użytkowników będą transmitowane informacje o wiarygodności tych danych i ewentualnych awariach systemu. Dzięki temu, możliwe będzie zastosowanie danych z sieci Galileo w aplikacjach "Safety of Life", podobnie jak ma to miejsce w systemie EGNOS. Koszt budowy całej sieci został oszacowany na 3.2 G€, a jej roczne utrzymanie - na około 200 M€.

W grudniu 2005 roku wystrzelono pierwszego testowego satelitę Galileo, o nazwie Giove-A, a dwa tygodnie później odebrano jego pierwsze sygnały. Planowany start systemu ma nastąpić w roku 2012.

Konstelacja Galileo. © <u>ESA</u>