Lipschitz Continuity

<u>Definition</u> of Lipschitz Continuity of a function at a point:

A function f from $S \subset \mathbb{R}^n$ into \mathbb{R}^m is Lipschitz continuous at $x \in S$ if there is a constant C such that

for all yes sufficiently near x

* Lipschitz Continuity at a point depends only on the behavior of the function near that point

< Properties>

. f is Lipschitz continuous at x o continuous at x

. f is a real-valued function defined on SCR and f is differentiable at $\alpha \in S \to f$ is Lipschitz continuous at α

:. differentiable at $x \rightleftharpoons \text{Lipschitz Continuous at } x \rightleftharpoons \text{Continuous at } x$

$$||f(x)-f(y)|| \le C ||x-y||$$

 $\frac{||f(x)-f(y)||}{||x-y||} \le C$

---- function f with derivative less than C

--- No radical Change in devivative

area that the derivative of fexists.