Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Estatística Descritiva

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Estatística

Ciência que tem por objetivo planejar, coletar, organizar, resumir, analisar e interpretar dados.

- Estatística Descritiva: descreve um conjunto de dados a partir de medidas de centralidade e dispersão.
- Estatística Inferencial ou Indutiva: faz afirmações sobre uma população a partir da análise de uma amostra.
- Probabilidade: ramo da matemática que estuda eventos aleatórios e analisa as chances de um determinado evento ocorrer.

Estatística

 População: conjunto de elementos que possuem pelo menos uma característica em comum de interesse a ser analisado.

 Amostra: subconjunto finito de elementos em uma população, que são representativos para o estudo de uma determinada característica de interesse na população.

Estatística

Variáveis Quantitativas

- **Contínuas**: assumem qualquer valor dentro de um intervalo de interesse.
- **Discretas**: assumem somente valores.

Variáveis Qualitativas ou Categóricas

- Nominais: assumem estados ou categorias, que não implicam em precedência.
- Ordinais: assumem categorias que são ordenadas ou avaliadas segundo algum critério.

Qualitativas		Quantitativas	
Nominal - Profissão - Sexo - Religião	Ordinal - Escolaridade - Estágio da doença - Classe social	Discreta - Nº de filhos - Nº de acessos à plataforma	- Altura - Peso - Salário

Estatística Descritiva

- Gráficos são uma boa forma de mostrar como uma amostra se comporta, mas os descrições numéricas são bem informativas e precisas!
- Podemos começar perguntando qual é a média da expectativa de vida medida em 2007? Há algum valor típico?
- Quais são os limites inferior e superior desta distribuição? Qual é a dispersão?

Medidas de Tendência Central (MTC)

- Representam um conjunto de dados com valores centrais pelos quais os dados tendem a concentrar-se.
- Também chamadas de estatísticas de centralidade ou de localização.
- Indicam onde localiza-se o centro (o ponto médio) de um conjunto de dados.
- São medidas de resumo dos dados.
- As mais comuns: **Média**, **Mediana** e **Moda**.

Média Aritmética

- É a soma dos valores observados dividido pelo número de observações.
- Indica o "centro de gravidade" dos dados e funciona bem com valores que se ajustam a distribuição normal.
- É altamente sensível a valores discrepantes ou atípicos ("outliers").

Mediana

- É a observação que indica exatamente a posição central de um conjunto de dados quando estes estão ordenados (crescente ou decrescente).
- Divide o conjunto de dados em duas partes com o mesmo número de elementos:
 - O Quantidade impar de valores: termo central do conjunto de dados.
 - O Quantidade par de valores: média dos dois termos centrais.
- Útil para lidar com distribuições altamente distorcidas.
- Útil quando é impraticável medir todos os valores, como em 'tempo para evento'.

Método para determinação da Mediana

Amostra ordenada

$$\{x_1, x_2, \dots, x_k, \dots, x_n\} \longrightarrow \{x_{(1)}, x_{(2)}, \dots, x_{(k)}, \dots, x_{(n)}\}$$

$$\min \quad \text{min} \quad \text{k-ésima} \quad \max$$

$$n impar: Med(x) = x_{\left(\frac{n+1}{2}\right)}$$

$$n \quad par: \ Med(x) = \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n+2}{2}\right)}}{2}$$

Moda

- É a observação mais comum (frequente) em um conjunto de dados.
- Requer que uma variável contínua seja agrupada em um número relativamente pequeno de classes.
- É também usada com variáveis categóricas.
- Útil para distinguir distribuições:
 - Amodal: não apresenta uma moda.
 - Unimodal: 1 único valor aparece mais.
 - o Bimodal: 2 valores aparecem mais.
 - Multimodal: 3 ou mais valores se destacam.

Tipo Sanguíneo	Número de indivíduos
0	1500
А	700
В	543
AB	200

Média, Moda e Mediana

Considerando os conjuntos A e B, abaixo:

$$A = (1, 3, 5, 7, 9)$$
 $B = (2, 3, 5, 7, 58)$

Enquanto a média é afetada por valores extremos, a mediana é mais "robusta", ou seja, não sofre influência de valores extremos.

→ Distribuição Assimétrica à Esquerda (ou de Assimetria Negativa):

→ Distribuição Simétrica:

Estatística descritiva em R

- O Maryland Biological Stream
 Survey usou a pesca elétrica para
 contar o número de indivíduos de
 cada espécie de peixe em segmentos
 de riachos de 75 m de comprimento
 selecionados aleatoriamente em
 Maryland.
- Calcule a média, mediana e a moda da amostra.

The blacknose dace, Rhinichthys atratulus.

Stream	fish/75m
Mill_Creek_1	76
Mill_Creek_2	102
North_Branch_Rock_Creek_1	12
North_Branch_Rock_Creek_2	39
Rock_Creek_1	55
Rock_Creek_2	93
Rock_Creek_3	98
Rock_Creek_4	53
Turkey_Branch	102

Estatística descritiva em R

```
# Média Aritimética
# Use na.rm=TRUE para não retornar erro. Algumas funções excluem NA por padrão.
mean(Data$Fish, na.rm=TRUE)
# Mediana
median(Data$Fish, na.rm=TRUE)
# Moda
Mode(Data$Fish)
# Resumos de estatisticas descritivas e gráficos
# funcionam com todo o dataframe ou com variáveis individuais
summary(Data$Fish)
                              # auartis
describe(Data$Fish, type=2) # outras estatisticas
# Histograma
hist(Data$Fish,
     col="gray",
     main="Maryland Biological Stream Survey",
     xlab="Fish count")
# Adicione uma variável numérica com os mesmos valores de Fish
Data$Fish.num = as.numeric(Data$Fish)
# Descfunction produz informações resumidas para cada tipo de variável e gráficos
Desc(Data, plotit=TRUE)
```


The blacknose dace, Rhinichthys atratulus.

Stream	fish/75m
Mill_Creek_1	76
Mill_Creek_2	102
North_Branch_Rock_Creek_1	12
North_Branch_Rock_Creek_2	39
Rock_Creek_1	55
Rock_Creek_2	93
Rock_Creek_3	98
Rock_Creek_4	53
Turkey_Branch	102

Como são os dados que possuem média = 50?

Medidas de dispersão

São medidas que descrevem o espalhamento dos dados e junto com as MTCs descrevem a distribuição.

Medida de dispersão ideal:

- Definição clara e rígida;
- Fácil cálculo e entendimento;
- Não deve ser muito afetada por flutuações;
- Baseado em todas as observações.

Fonte: https://uc-r.github.io/correlations

Medidas de dispersão

Medidas de dispersão absoluta

- Quantificam a variação em termos da unidade de medida dos dados
 - Amplitude;
 - Desvio entre quartis;
 - Desvio absoluto da média;
 - Desvio padrão.

Medidas de dispersão relativa

- Não possuem unidade de medida, comparação entre as distribuições.
 - o Coeficiente de amplitude;
 - Coeficiente de desvio entre quartis;
 - Coeficiente de desvio da média;
 - Coeficiente de variação;

Amplitude

- Diferença entre o valor máximo e mínimo.
- Pode não ser muito informativo.
- Depende do número de observações.

Vantagens:

- Medidas de dispersão mais simples;
- Fácil cálculo e entendimento.

Desvantagens:

- Baseado em apenas duas observações extremas;
- Não é uma medida de dispersão confiável.

Quantis

- São as observações em um conjunto de dados ordenados, que estabelecem divisões do conjunto em partes iguais.
- Denota-se Pk o percentil de ordem k, ao valor que deixa k% dos dados abaixo de si.
- Neste grupo uma conotação de interesse são os "quartis", que dividem o conjunto de dados em quatro partes iguais, cada uma contendo 25% das observações.

Q₁= 1° QUARTIL, DEIXA 25% DOS ELEMENTOS.

Q2 = 2° QUARTIL, COINCIDE COM A MEDIANA, DEIXA 50% DOS ELEMENTOS.

Q3 = 3° QUARTIL, DEIXA 75% DOS ELEMENTOS.

Desvio entre Quartis (IQR)

Desvio entre quartis

Vantagens:

- Fácil de calcular;
- O cálculo envolve apenas o Q1 e o Q3;
- Não é afetado por valores extremos;

Desvantagens:

Utiliza apenas 50% dos dados para o seu cálculo;

Representação gráfica em Boxplot

Outliers

- Determinação dos *outliers* utilizando a separação dos dados em quartis:
- Limite inferior: Q1 1.5 * IQR
- Limite superior: Q3 + 1.5 * IQR
- Onde IQR = Q3 Q1
- Os dados que estiverem fora deste limite são considerados outliers.

Fonte: https://sudar.me/pgdmlainotes/eda/assets/images/box-plot.png

Desvio envolvendo a média

Média do desvio =
$$\sum (xi - x)/n = 0$$

Desvio envolvendo a média

Desvio absoluto

xi	xi - x	xi - x
2	2 - 5.5 = -3.5	2 - 5.5 = 3.5
4	4 - 5.5 = -1.5	4 - 5.5 = 1.5
5	5 - 5.5 = -0.5	5 - 5.5 = 0.5
6	6 - 5.5 = 0.5	6 - 5.5 = 0.5
7	7 - 5.5 = 1.5	7 - 5.5 = 1.5
9	9 - 5.5 = 3.5	9 - 5.5 = 3.5

Média do $= \sum (|xi - x|)/n = 5.5$ desvio absoluto

Desvio envolvendo a média

Quadrado do Desvio

xi	xi - x	xi - x	(xi - x̄)**2
2	2 - 5.5 = -3.5	2 - 5.5 = 3.5	(2 - 5.5)**2 = 12.25
4	4 - 5.5 = -1.5	4 - 5.5 = 1.5	(4 - 5.5)**2 = 2.25
5	5 - 5.5 = -0.5	5 - 5.5 = 0.5	(5 - 5.5)**2 = 0.25
6	6 - 5.5 = 0.5	6 - 5.5 = 0.5	(6 - 5.5)**2 = 0.25
7	7 - 5.5 = 1.5	7 - 5.5 = 1.5	(7 - 5.5)**2 = 2.25
9	9 - 5.5 = 3.5	9 - 5.5 = 3.5	(9 - 5.5)**2 = 12.25

Média do quadrado dos desvios

Variância

Variância

- 1. Subtraia a média de cada observação, eleve ao quadrado, some => soma dos quadrados
- Divida pelo número de observações => desvio quadrático médio (da população)!
- O resultado é um número elevado ao quadrado => quadrado da unidade de medida!
- Quanto maior a variância, maior o espalhamento dos dados.

Desvio-padrão

• É uma medida mais fácil de entender uma vez que não é elevada ao quadrado!

Vantagens:

- Envolve todas as observações para o seu cálculo;
- É pouco afetado por flutuações dos valores;
- Bem definido;

Desvantagens:

- Seu cálculo pode ser laborioso, especificamente se o tamanho dos dados é grande o suficiente;
- Pode ser afetado por valores extremos;

Variância

$$\sigma^2 = rac{\sum (xi-x)^2}{(n)}$$

Desvio padrão

$$\sigma = \sqrt{rac{\sum (xi-x)^2}{n}}$$

Muitas vezes...

- Em relação às medidas de variância e desvio padrão, usamos o divisor como n-1.
- Ele indica os graus de liberdade da amostra, ou seja, o número de desvios que estão livres para variar.
- Lembrando que a soma dos desvios é sempre zero, em uma amostra com n elementos, eu posso variar n-1 destes elementos.
- Depois de determinados eles n-1 valores, o último só pode assumir um único valor.

Desvio padrão da população

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{n}}$$

Desvio padrão da amostra

$$s=\sqrt{rac{\sum (x_i-ar{x})^2}{(n-1)}}$$

Desvio padrão amostral

Uma amostragem não consegue representar toda a variabilidade da população, por isso utilizamos a **correção de Bessel**, para corrigir esta limitação da amostragem.

$$s=\sqrt{rac{\sum (x_i-ar{x})^2}{(n-1)}}$$

$$\sigma = 2.243756 \ s = 1.9518 \ (\sigma = 1.807016)$$

Medidas de dispersão relativa

- Não possuem unidade de medida.
- Permitem a comparação entre distribuições.
 - \circ Coeficiente de Amplitude: (H L)/(H + L)
- O Coeficiente de desvio entre quartis: (Q3 Q1)/(Q3 + Q1)
- Coeficiente de desvio da média: (desvio da média)/(média ou mediana)
- O Coeficiente de variação: (desvio padrão)/(média)

Medidas de dispersão relativa

- Resume a quantidade de variação como uma porcentagem ou proporção do total.
- É útil ao comparar a quantidade de variação de uma variável entre grupos com médias diferentes ou entre variáveis de medição diferentes.

Coef. de variação = (desvio padrão)/(média)

Idade grupo 1	Idade grupo 2
1	53
3	55
5	57

$$S^2 = 4$$

$$CV(1) = 2/3 * 100 = 66,67 %$$

$$CV(2) = 2/55 * 100 = 3,64 %$$

Estatística descritiva em R

- O Maryland Biological Stream
 Survey usou a pesca elétrica para
 contar o número de indivíduos de
 cada espécie de peixe em segmentos
 de riachos de 75 m de comprimento
 selecionados aleatoriamente em
 Maryland.
- Calcule a amplitude, variância, desvio padrão e coeficiente de variação da amostra.

The blacknose dace, Rhinichthys atratulus.

Stream	fish/75m
Mill_Creek_1	76
Mill_Creek_2	102
North_Branch_Rock_Creek_1	12
North_Branch_Rock_Creek_2	39
Rock_Creek_1	55
Rock_Creek_2	93
Rock_Creek_3	98
Rock_Creek_4	53
Turkey_Branch	102

Estatística descritiva em R

```
e
```

The blacknose dace, Rhinichthys atratulus.

```
## Estatísticas de Dispersão -----
# Intervalo
range(Data$Fish, na.rm=TRUE)
max(Data$Fish, na.rm=TRUE) - min(Data$Fish, na.rm=TRUE)
# Variância (amostra)
var(Data$Fish, na.rm=TRUE)
# Desvio Padrão (amostra)
sd(Data$Fish, na.rm=TRUE)
round(sd(Data$Fish, na.rm=TRUE), 2)
# Coeficiente de variação, como porcentagem
sd(Data$Fish, na.rm=TRUE)/mean(Data$Fish, na.rm=TRUE)*100
```

Stream	fish/75m
Mill_Creek_1	76
Mill_Creek_2	102
North_Branch_Rock_Creek_1	12
North_Branch_Rock_Creek_2	39
Rock_Creek_1	55
Rock_Creek_2	93
Rock_Creek_3	98
Rock_Creek_4	53
Turkey_Branch	102

Referências

- Vieira, S. *Introdução à Bioestatística*. 4ª ed. Rio de Janeiro: Elsevier, 2008.
- McDonald, J.H. 2014. Handbook of Biological Statistics (3rd ed.). Sparky House Publishing,
 Baltimore, Maryland. http://www.biostathandbook.com/index.html
- Mangiafico, S.S. 2015. *An R Companion for the Handbook of Biological Statistics*, version 1.3.2. <u>reompanion.org/reompanion/</u>.