Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua Departamentua: Teknologia Elektronikoa

eman ta zabał zazu	
Universidad	Euskal Herriko
del País Vasco	Unibertsitatea

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

	raiuea.	J.
Nota:		

Maila: 1.

Izen-Abizenak

Konputagailuen Teknologiaren Oinarriak

Iraupena: 3 ordu Data: 2019/01/10

- 1. (1 puntu) Irakurri arretaz hurrengo baieztapenak eta esan egia edo gezurra diren zure erantzuna arrazoituz kasu guztietan.
 - (a) Irudiko zirkuituan zeroren ezberdina den I_D korronte bat existituko da.

Erantzuna:

EGIA: Urritze MOSFET bat da, beraz V_{GS} tentsio gabe kanala existitzen da. Gainera N kanal bat MOSFET bat denez $V_{DS} > 0$ denez korrontea egongo da.

(b) Irudiko voltimetroarekin neurtzerakoan, honek 12V-eko tentsio bat adieraziko du.

Erantzuna:

GEZURRA: Voltimetro AC moduan dago beraz balio efikaza edo RMS-a neurtuko du, beraz markatuko duen balioa $\frac{12}{\sqrt{2}} = 8.49V$ izango da.

(c) Kondentsadore batetik igarotzen den korrontea errejimen egonkorrean (korronte jarraian edo alternoan) beti zero izango da.

Erantzuna:

GEZURRA: Errejimen egonkor sinusoidalean (korronte alternoan) korrontea 0-ren desberdina izango da.

(d) Tentsio sorgailu bat beti da gailu aktibo bat zirkuitu batean.

Erantzuna:

GEZURRA: Konektatzen den zirkuituaren arabera osagai pasibo bezala funtziona dezake.

(e) MOSFET transistoreen artean 4 mota nagusi ezberdintzen ditugu.

Erantzuna:

EGIA: P kanalekoa eta N kanalekoa eta hauen artean bakoitza izan daiteke urritze edo ugaltzekoa.

(f) Harila baten portaera ekuazio hau da: $i(t) = L(t) \cdot \frac{dv(t)}{dt}$. Hori dela eta errejimen egonkorrean eta korronte jarraian zirkuitu labur bezala egiten dute lan.

Erantzuna:

GEZURRA:Harilak zirkuitu labur bezala egiten du lan bere tentsioa nulua izanez beraz bere portaera ekuazioa $v(t) = L(t) \cdot \frac{div(t)}{dt} da$.

(g) Hurrengo inpedantzia konplexua seriean dauden erresistentzia eta kondentsadore batena izan daiteke: $Z=(50-j30)\Omega$

Erantzuna:

EGIA: Zati erresistobo eta erreaktiboa dauka. Gainera zati erreaktiboa negatiboa da beraz kondentsadore batekin bat dator.

(h) Material isolatzaileetan banda debekatua edo GAP-a handia da.

Erantzuna:

EGIA: Elektroiek energia handia behar dute eroapen edo kondukzio bandara pasatzeko eta horregatik ez da korronterik existitzen.

(i) Edozein bi karga haien artean hurbiltzen badira, elkarrekiko indar elektrikoa txikiagoa izango da.

Erantzuna:

GEZURRA: Bi kargen arteko indar elektrikoa $\vec{F} = K_e \cdot \frac{q_1 q_2}{r^2} \vec{u_r}$ da. Beraz distantzia txikiagoa bada haien arteko indarra handiagoa izango da.

(j) RTL familia logikoan transistoreak, diodoak eta erresistentziak erabiltzen dira.

Erantzuna:

GEZURRA: RTL hizkiek Resistor Transistor Logic esan nahi dute eta teknologia honek ez du diodorik erabiltzen.

- 2. (2.75 puntu) Irudiko zirkuitua kontutan hartuta:
 - (a) Honen analisia egin mailen metodoa erabiliz eta osagai guztien tentsioak eta korronteak adierazi.

Erantzuna:

$$V_{1} = 2V; I_{V1} = 5mA$$
 $V_{R1} = 4V; I_{R1} = 1mA$ $V_{I2} = 18V; I_{2} = 4mA$ $V_{R2} = -6V; I_{R2} = I_{I} - III = -3mA$ $V_{I1} = -2V; I_{1} = 1mA$ $V_{R3} = 2V; I_{R3} = I_{III} - I_{II} = 1mA$ $V_{2} = 10V; I_{V2} = 4mA$ $V_{R4} = 4V; I_{R4} = 4mA$

(b) Potentzien balantzea egin.

Erantzuna:

Elementu bakoitzerako potentzia kalkulatzen dugu $P = V \cdot I$ erabiliz.

$$P_{E_{V1}} = 10mW$$
 (Aktibo) $P_{X_{R1}} = 4mW$ (Pasibo) $P_{E_{I2}} = 72mW$ (Aktibo) $P_{X_{R2}} = 18mW$ (Pasibo) $P_{X_{R1}} = 2mW$ (Pasibo) $P_{X_{R3}} = 2mW$ (Pasibo) $P_{X_{R4}} = 40mW$ (Pasibo) $P_{X_{R4}} = 16mW$ (Pasibo)

$$\sum_{AKT} P_E = \sum_{AKT} P_X$$
$$82mW = 82mW$$

(c) A eta B puntuen arteko Thévenin baliokidea kalkulatu.

Erantzuna:

$$V_{Th} = 14V; R_{Th} = 1k\Omega$$

Suposatu aurreko zirkuituko A eta B puntuen artean zirkuitu bat konektatu nahi dugula. Zirkuitu hau seriean dauden Zener diodo batez eta erresistentzia batez osatuta dago. Zener diodoa alderantziz polarizatuta egotea nahi dugu eta bere barnetik 10mA-ko korronte bat igarotzea nahi dugu. Diodoaren Zener tentsioa 2V-ekoa dela jakinda:

(d) Zirkuitua marraztu Zener diodoa eta erresistentzia gehituz eta kokatu behar den erresistentziaren balioa kalkulatu.

Erantzuna:

$$R = 200\Omega$$

- 3. (2 puntu) Ingeniari batek irudiko zirkuituan agertzen diren Es eta R magnitudeen balioak kalkulatu behar ditu. Horretarako hurrengo neurketak egin ditu:
 - Voltmetro bat erabiliz A eta B puntuen arteko tentsioa neurtu du eta 10V-eko balio bat lortu du.
 - Anperemetro bat erabiliz A eta B puntuak zirkuitu laburtu ditu eta A-tik B-ra igarotzen den korrontea neurtu du 2mA-ko balio bat lortuz.
 - (a) Thévenin eta Norton zirkuitu baliokideak marraztu osagaien balioak adieraziz. Zure erantzuna arrazoitu.

Erantzuna:

$$V_{Th} = 10V; R_{Th} = 5k\Omega$$

 $V_{No} = 2mA; R_{No} = 5k\Omega$

(b) Es eta R balioak kalkulatu emandako datuak kontutan hartuz. **Erantzuna:**

$$E_S = 4V; R = 13.005k\Omega$$

(c) A eta B puntuen artean kokatu behar den erresistentziaren balioa eman zirkuituak ahal den potentzia maximoa eman diezaion erresistentziari. Zein da potentzia maximo hori? Zure erantzunak arrazoitu.

Erantzuna:

$$R = 5k\Omega; P = 5mW$$

- 4. (2 puntu) Irudiko zirkuitua kontutan hartu hurrengo galderak erantzuteko:
 - (a) Etengailua denbora luzez A posizioan egon da eta t=0 aldiunean B posiziora pasa da. Hurrengo magnitudeen balioak kalkulatu: $v_c(0^-), v_c(0^+), i_c(0^-), i_c(0^+), v_c(\infty), i_c(\infty)$ Erantzuna:

$$v_c(0^-) = 3V, v_c(0^+) = 3V, i_c(0^-) = 0A, i_c(0^+) = -1mA, v_c(\infty) = 0V, i_c(\infty) = 0A$$

(b) Adierazi zenbat denbora pasa behar den kommutadoreak posizioa aldatzen duenetik kondentsadoreak 1V edukitzeko bere borneen artean. **Erantzuna:**

$$t = 0.3296s$$

(c) Deskarga denbora konstantea kalkulatu. Zein izango da, gutxi gora behera, aldiune horretan v_c tentsioak edukiko duen balorea? **Erantzuna:**

$$t_{deskarga} = 0.3s; \ v_c(\tau) \simeq 1.11V$$

- 5. (1.5 puntu) Irudiko zirkuitua emanda:
 - (a) LED diodoa korrontea eroaten has dezan Vi balioa eman. Vi-ren balio hori, maximo edo minimoa da?

Erantzuna:

 $V_i < 0.97V \; Maximoa$

(b) Vi balio horretarako zein gunetan egiten du lan transistoreak? Eta diodoak? Erantzuna:

Diodoa eroapen edo kondukzioan eta transistorea gune aktiboan

6. (0.75 puntu) Adierazi zein famili logikoko zirkuitua den irudian agertzen dena. Bere funtzionamendua aztertu sarreren hurrengo bi konbinazioetarako:

Erantzuna:

CMOS familia

