Hsuan-Chun Lin

(216) 712-2555 Permanent Resident hsuanchunlin1983@gmail.com

Github: hsuanchunlin

- Ph.D. in Bioinformatics and biochemistry with 3 years postdoc experience.
- 6 high-impact publications and 10 conference presentations of research results.
- Accelerated NGS and gene therapy data analysis and visualization pipeline 10-fold faster by using Python, pandas, matplotlib, R, C++, scikit-learn, statistical modeling, data visualization, and machine learning.
- Developed novel next-generation sequencing (NGS) methods to increase over 4,000-time efficiency in improvement of efficacy and safety in gene editing therapeutics.
- 7 cross-functional biochemical projects, resulting in 4 scientific collaborations with \$2,540,000 funding.

SKILLS

Programming Languages
Experienced with

Python, R, Perl, Matlab, SQL, C++, LATEX, MarkDown

Next-generation sequencing (NGS) methods development, RNA-Seq, classification, regression, clustering algorithms, DNA, Apache Airflow, Tensorflow, PyTorch, pandas, matplotlib, scikit-learn, Data visualization, Natural language processing, Origin, High throughput assays, HPLC, Mess Spectroscopy, Biochemistry, Molecular Biology, RNA, Protein Purifica-

tion, time-management, communication skills

Miscellaneous

SQL, git

EXPERIENCE

Postdoctoral Associate

Feb 2017 — Dec 2019

Gainesville FL, USA

Department of Chemistry, University of Florida

- Managed 4 projects and presented in 2018 national ACS meeting.
- Accelerated NGS data analysis pipeline 10-fold faster by using Unix/Linux shell commands, Perl, Python, R,C++, Pandas, scikit-learn, MATLAB, statistical modeling, data visualization, and machine learning algorithms.
- Optimized the accuracy and efficiency of enzyme kinetic isotope effect measurements for drug discovery 10-fold by introducing HPLC, LC-MS, mass spectrometry, FRET, stopped-flow, CD spectroscopy, and micro-plate assay.

Technologies: Python, R, Tensorflow, Pytorch, Scikit-learn, Data visualization, Perl, LC-MS, Next Generation Sequencing (NGS), RNA-Seq, Enzyme assays, Origin, FPLC, HPLC, Mass Spectroscopy

Graduate Research Assistant

Aug 2011 — Jan 2017

Cleveland OH, USA

Case Western Reserve University,

- Led 3 projects, presented in 7 national/regional conferences and published 5 papers on top peer reviewed journals.
- Integrated biological knowledge, statistics and genomics to explore and convert unstructured data (e.g. , Next generation sequencing (NGS) results and RNA structures) into numerical features and developed feature selection and pattern recognition pipeline by Python, scikit-learn, R, C++, and MATLAB.
- Applied Machine learning algorithms (e.g. , k-mean, random forest, neural network, novel linear regression models, PCA, and t-SNE) to predict and visualize the rules of biomolecule interactions and accelerate the data driven experimental design 30-fold faster than current methods.
- \bullet Developed and implemented High Throughput Sequencing methods, KINetics and EQuilibrium (HTS-KIN/EQ) to increase the pace of gene editing research by more than 4000 times.

Technologies: R, Python, Matlab, Scikit-learn, Data visualization, Tensorflow, Pytorch, t-SNE, PCA, NGS, Origin, FPLC

Research Assistant

Jun 2009 — July 2011

Kaohsiung Medical University,

Kaohsiung Taiwan

• Developed and optimized BMP-2 gene therapy for osteonecrosis by applying micro-CT, immunohistochemistry, Western blot, ELISA, and real-time PCR.

HANDS-ON EXPERIENCE

- Built CycleGAN voice converter and miRNA generator from scratch by Tensorflow 2.0 and Keras.
- Applied Natural language processing, Embedding, LSTM, and Transformer models to generate texts, categorize articles, and visualize the rules of RNA-Protein interactions.

Hsuan-Chun Lin

(216) 712-2555 Permanent Resident hsuanchunlin1983@gmail.com

suanchunlin1983@gmail.com

Github: hsuanchunlin

EDUCATION

Ph.D. in Biochemistry, Case Western Reserve University, Cleveland OH, USA

M.S. in Biochemistry and Molecular Biology, National Cheng Kung University, Tainan Taiwan

B.S. in Chemistry, National Taiwan University, Taipei Taiwan

2005 — 2007

2001 — 2005

PUBLICATIONS

- 1. Jain, N.*; Lin, H. C.*; Morgan, C. E.; Harris, M. E.; Tolbert, B. S., Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution. **Proc. Natl. Acad. Sci. U.S.A** 2017. N.J. and H.-C.L. contributed equally to this work.
- 2. <u>Lin, H. C.</u>; Zhao, J.; Niland, C. N.; Tran, B.; Jankowsky, E.; Harris, M. E., Analysis of the RNA Binding Specificity <u>Landscape</u> of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity. **Cell Chem. Biol** 2016, 23 (10), 1271-1281.
- 3. <u>Lin, H. C.</u>, Yandek, L.E., Gjermeni, I. & Harris, M.E. Determination of relative rate constants for in vitro RNA processing reactions by internal competition. **Anal. Biochem.** 467, 54-61 (2014).
- 4. Niland, C. N.; Zhao, J.; <u>Lin, H. C.</u>; Anderson, D. R.; Jankowsky, E.; Harris, M. E., Determination of the Specificity Landscape for Ribonuclease P Processing of Precursor tRNA 5' Leader Sequences. **ACS Chem. Biol** 2016, 11 (8), 2285-92.
- 5. Yandek, L.E., Lin, H. C. & Harris, M.E. Alternative substrate kinetics of Escherichia coli ribonuclease P: determination of relative rate constants by internal competition. J. Biol. Chem 288, 8342-8354 (2013).
- 6. Chang, P.C., Wu, H.L., <u>Lin, H. C.</u>, Wang, K.C. & Shi, G.Y. Human plasminogen kringle 1-5 reduces atherosclerosis and neointima formation in mice by suppressing the inflammatory signaling pathway. **J Thromb Haemost** 8, 194-201 (2010).

Conference Talks

- 1. <u>Hsuan-Chun Lin</u>, Benjamin Weissman, Syed Shahbaz Gardezi, Vernon Anderson, Darrin York, Joseph Piccirilli, Michael Harris 2018 ACS National meeting New Orleans, March 22-26 Kinetic isotope effects on catalysis by the HDV ribozyme-precise determination of isotope ratios using electrospray ionization time-of-flight mass spectrometry
- Hsuan-Chun Lin, 2014 Rustbelt RNA meeting Pittsburgh, October 17-18
 Next-generation tools for RNA enzymology: Determination of rate and equilibrium constants for large populations of RNA substrate variants using high throughput sequencing.