Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE

ANALYTE MATERIAL Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

1/44

FIG. 1A

RECEIVED

AUG 1 8 2003

TITIE: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL

Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

2/44

RECEIVED

AUG 1 8 2003

3/44

FIG. 2A

FIG. 2B

RECEIVED

AUG 1 8 2003

4/44

RECEIVED

AUG 1 8 2003

5/44

FIG. 3B

RECEIVED

AUG 1 8 2003

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL

Inventor: Mark O, Worthington Docket No: BTI1 98100804(US)USX1P1X1

6/44

FIG. 3E

AUG 1 8 2003

8/44

FIG. 5C

FIG. 5D

RECEIVED

AUG 1 8 2003

9/44

FIG. 6A

FIG. 6B

RECEIVED

AUG 1 8 2003

10/44

FIG. 7A

FIG. 7B

11/44

G. E

FIG. 9

TECH CENTER 1600/2900

RECEIVED

13/44

FIG. 10

- i C I - I I

14/44

F1G. 11

Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

16/44

RECEIVED

AUG 1 8 2003

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL Inventor: Mark O. Worthington

Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

17/44

RECEIVED

AUG 1 8 2003

18/44

RECEIVED

AUG 1 8 2003

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE

ANALYTE MATERIAL Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

19/44

RECEIVED

AUG 1 8 2003

20/44

RECEIVED

AUG 1 8 2003

21/44

Ref4 BrstWd 5.68µs Low signal amplitude Ref4 Pk-Pk 1.96 V

RECEIVED

AUG 1 8 2003

AUG 1 8 2003

23/44

FIG. 22

FIG. 23

RECEIVED

AUG 1 8 2003

24/44

FIG. 24

FIG. 25

RECEIVED

AUG 1 8 2003

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE

ANALYTE MATERIAL Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

26/44

FIG. 30

RECEIVED

AUG 1 8 2003

27/44

Surface distance	nce	912.31 лм
Horiz distance(L)	(T) a:	898.44 пн
Vert distance		100.00 nm
Angle		6.351 deg
Surface distance	nce	969.10 пм
Horiz distance	eu eu	957.03 NM
Vert distance		7.528 nm
Angle		0.451 deg
Surface distance	ince	817,07 NM
Horiz distance	ä	800.78 nm
Vert distance	4.	0.740 пм
Angle		0.053 deg
Spectral period	po	DC
Spectral freq	_	0 Hz
Spectral RMS amp	амъ	4.523 пм

FIG 31

r#159in.000

Ä.

AUG 1 8 2003

ECEIVED

28/44

AUG 1 8 2003

29/44

Ξ 67.772 пм 66.682 лм Ē 21.794 пм 715.65 NM 937.50 пн 107.52 пн B.543 deg 0.220 deg 683.59 пм 0.330 deg 8.514 nm 1.074 рм 4.127 n⋈ 1.084 µм 3.943 пм 3.603 nm 683.59 Radius 820.71 16.951 ЭC Rz Cnt Ra(1c) Horiz distance(L) Sigma Surface distance Spectral RMS amp Внаж Surface distance Surface distance Spectral period RMS RzHoriz distance Horiz distance <u>ပ</u> Spectral freq Vert distance Vert distance Vert distance Angle Angle Angle Section Analysis Ë Cen line: Off Spectrum 4.00 3.00 Cursor: average Zoom: 2:1 Ξ 2.00 1.00 M160in,000 Ē ò OOT 001-

FIG. 33

TECH CENTER 1600/2900

RECEIVED
AUG 1 8 2003

30/44

Ra(1c) 14.972 пм Вмах 66.116 пм Rz 64.871 пм 20.135 пм DC Radius 824.44 пм Sigна 8.988 пм 664.06 nH Rz Cnt 2

695.52 пм 664.06 n₩ 0.243 deg 102,80 nm 6,821 deg 0.251 deg Horiz distance(L) 859.38 nm 4.540 пм 2.814 пн 1.046 µм 1,035 µM 3.340 nm Surface distance Surface distance Spectral RMS amp Surface distance Spectral period Horiz distance Horiz distance Spectral freq Vert distance Vert distance Vert distance Angle Angle Angle

Section Analysis 4.00 3.00 Ĭ 2.00 1.00 Ē 001-100 Ó

FIG. 34

Min n

TECH CENTER 1600/2900 AUG 1 8 2003

Cursor: average

₩160out,000

RECEIVED

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL

Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

31/44

FIG. 35

RECEIVED

AUG 1 8 2003

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL Inventor: Mark O. Worthington

Docket No: BTI1 98100804(US)USX1P1X1

32/44

RECEIVED

AUG 1 8 2003

TECH CENTER 1600/2900

FIG. 36

33/44

FIG. 37A
20 femtomoles

FIG. 37B
20 attamoles

FIG. 37C
20 zeptomoles

34/44

76. 38

RECEIVED

35/44

FIG. 39

RECEIVED

AUG 1 8 2003

36/44

F1G. 4

RECEIVED

AUG 1 8 2003

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE

WILL CONCORDED IT DEVENOES
ANALYTE MATERIAL
Inventor: Mark O. Worthington
Docket No: BTI1 98100804(US)USX1P1X1

AUB TRADENAN	ST.C.					;	37/44						
THAUS	CD-3-AWM	- Itpl	Praduct Cade Na. 256	1/4 . Center hale		3		1.462 0.33 0.876	0.162	1 2 2		F/G. 41A	
	tonce test	Ram hold vac + mech	Rom dio. 24	Visuol faults Streoks	n Clouds Voide		Scratches Diesel effect Brawn Discolaratian	Molding compaund cald Thickness of cavity (3) Venting gop (5) Position of embosser (9)	Position of spure bush (10) Embossing strake	<i>Measuring means</i> Palorized light Halaaen liaht	Neon Light Black (UV Light) White noner	Micrometer Balance	
	Supplementory sheet, mald occeptonce	Agent CR-R	Custamer Ex	0° 90° 180° 270° 5 1.15 1.155 1.15 1.15 mm 0 1.155 1.155 1.155 mm	15.05 Drm. 120+/-0.3mm	15.26 15.27 15.26 15.26 15.26 15.26 15.26 15.26 15.26 15.26 15.26 15.26 15.26	1L DESIRED Tal. 1tr./Min. 7 —1/+3 1tr./MIN. 7 —1/+3	withaut with diff. tal.	Row moterial Makrolon 2005 V	Lexon 1020 Panlite 5503	·	TECH CENTER 1600/2900	700
	AWM Muri	105 No 1 36-10236		Dimensians 0'=mold at top R15 Thickness R40	Center hale $15.05+/-0.3$	Weight in g Meosure every 15 min. 9 during test Mox. diff±0.1 g	Water in mald ACTUAL Sprue bush 9 Embosser 6	<i>Vocuum</i> Hondling bar Ram bar	Mold Function Embosser	Sprue ejector	let ,	aid.	

AUG 1 8 2003 はこうに、マーナ

Graph 1. Injection - Holding pressure

Cycle illustrated: 533957 Curve display: continuous Title: TRACKABLE OPTICAL DISCS
WITH CONCURRENTLY READABLE
ANALYTE MATERIAL
Inventor: Mark O. Worthington
Docket No: BTI1 98100804(US)USX1P1X1

38/44

AUB 1 1 2000 CS

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

39/44

01.01 Mold movement									
Closing movement	V33	100%		Clasing time S33 = 019.0mm	T32	lí	.000		ı
Pressure initiation	V34	100%		II					
Opening movement	741	=100%		Opening time S41 = 055.0mm	136	11	.000		
Braking	V42								
Pouse time	T4(T40 =000.000s	s00	Mold position	S640	11	075.		
Mald closing pressures Closing pressure Pressure Build-up	P682 P681	32 = 085% 31 = 020%	%° %°	T681 = 000.10s					0.
		C608 =	0 =	Switched off					
02.01 Summory of mold of	uxiliary	ouxiliary contrals	s/robotics			}			r
Enoble removol		1680 =	= 0065.0						
Delays									
Blow off sprue Advonce ejector pin		T602 = T53 = T55	= 000.03 = 000.10s	Sprue blowing time	T603	П	000.1		
Ironsfer Stroke lorward Tronsfer Stroke return		T26		Extend removal	1668	Ш	000.2		
Embosser forword Blow on nozzle side		T62 = T75 = T75	= 001.20s = 000.50s	Embosser return Nozzle side blowing time	163 174	11 11	000.1		
Blow on moving side Unit Forward		T671 = T680 =		Moving side blowing time	171	II	000.1		
	RE	C683 =	00000 =	7683 = 000.00s	S683	II	0004.		
Cyle time Removol time	ECE	T11 = T640 =	= 009.05s = 000.70s					FIG. 41C	41C
2003 1600/29	VED				•				
)(

40/44

03.01 Metering	1				
Screw retraction	C17 =	0	Switched off		
Metering Deloy Metering stages	T20 = C124 =	000.50 s 2	Metering time T21 =	005.9	-
Metering end point	\$23 = \$24 =	026.0 mm 029.0 mm	P23 = 0060 bar P24 = 0010 bar	N23 = N24 =	100 1. 020 1.
Holding pressure	P27 =	0010 bar	Stort of injection	= 0S	029.0
04.01 Injection					
Enable injection	S682 =	0002.0 mm	Screw position S641 =	029.0	
Injection values	C121 =	10	Start of injection SO ≈	0.59.0	
	V196 =	0050 mm/s	$= 030.0 \mathrm{mm}$		
	V197 =	0062 mm/s	IJ		
RE AU	V198 =	0085 mm/s	S198 = 025.6 mm		
	V199 =	0115 mm/s	11		
Έ 1 [{]	V200 =	0120 mm/s	N		
IV 3 2	V201 =	0110 mm/s	S201 = 016.2 mm		
Æ	V202 =	0085 mm/s	11		
ID	V203 =	s/ww 5900	И		
Enoble V/P changeover	V204 =	0040 mm/s	13		
Forcible changeover	V205 =	0025 mm/s			
			V/P chongeover point S11 =	- 004.0	
Flow number	S121 =	018.2 mm	S122 = 015.0 mm C125 =		
Pressure monitoring			pressure	01044	
First stage		01300 bar	= 00.02 s		
Second stoge	P102 =	01100 bor	T201 = 00.02 s S102 =	0.900	•

41/44

04.02 Holding pressure, cooling					:				
Holding pressure volues	C122 P12	11 11	04 00550 bor	Changeover point	oint	S11	II	004.0	
Holding pressure time Cooling time	P117 P118 P119	H H H U	00420 bar 00380 bor 00200 bor 005.30 s	T117 = C T118 = C T119 = C T120 = C	000.20 000.40 000.90 002.00				
Melt cushion monitoring Upper limit	\$219	H	010.0 MM	Melt cushion Lower limit		S19 S119	11 11	003.7	
05.01 Nozzles, unit, purging/dry cycles	cycles								
Stondstill monitoring	9090	11	60 min	C640 = (0004 min				
AUG 1 CH CENTER prownoj tinu	1680	11	000.70 s		030 %			~	
8 2003	T30	II	000.30 s	V30 = (020 %				
Ē	ents V816	!!	030 %	Lift V806 =	= 030 %				
Purge/dry cycle/cleon Number of metering strokes Metering Injection Delay for purging	C16 S16 S18 T606	II II II B	20 028.0 mm 001.5 mm 000.00 s	C201 = 1 P16 = (50 0060 bar 05 mm/s	N16	Ш	200	TT.

AUG 11 2003 &

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

42/44

FIG. 41F

06.01 Temperature cant	rol, plastifier	zones/temperature control	oture control	devices		;	
Zone/description	Set	Actual	Reduced	Tolerance		Heoting	Cooling
	point	volue		minus	snjd	outputs	
10 Melt temperoture	310° C	305°C	180° C	040° C	040°C		
30 Nozzle	330°C		180° C		040°C	014%	
13 Nozzle	315° C	315	180° C	040° C	040°C	025%	
Cylinder heod	310°C	310	180° C	040° C	040°C	008%	
15 Compression	305°C	305	180° C	040°C	040°C	005%	
16 Campression	305°C		180° C	040°C	040° C	2900	
18 Feed	300°C	295°	180° C	040° C	040°C	070%	
20 Inlet	ວ "090	090	060° C	040° C	040°C		024
Zone/description	Set	Actuol	Reduced	Toleronce	43	Heating	Cooling
	point	volue		•	!	sındıno	
				snulw	snid		
24 Heating/cooling device 25 Heating/cooling device	te 112° C	093° C 091° C	050°C 050°C	020°C 040°C	020°C 020°C	%000 %000	000
08.01 Disk transfer							
Peripheral interface	C684 =	0	Without	Without signol acknowledgement	nowledger	nent	
Buffer switch-off size Production deloy	C680 = 1682 =	65000 001.00 s	C605	0	.*	ith interru	With interruption of cycle
Mox. tronsfer time MaiNFO HOTE	IECH CENT						-
10 1000 JODDO	7F2110F117						

43/44

09.01 Production control							
Application Dato set number	C340 = C315 =	2 100	No opplicotion				
Production sequence							
Item number	C303 =	_	Piece counter Cycle counter	C324 C325	= 29270 $=$ 29270	0 0	
Cycle time	111	009.05 s	Failure rote	C718	= 30.56%	%3	
Production preperotion			Reason	C357	00 =		
10.01 Process stotistics				:			
Q monitoring	C340 =	2	Monitoring without screenning out	out scr	eenning ou	+	
Q report	c700 =	0	No report				
Totol Rondom sample	cycles of C325 = C326 =	which 29270 29269	out of toleronce C318 = 8946 C338 = 8946		foilure rote C718 = C738 =	30.56% 30.56%	
Process voriables	Set Point ×	Toleronce +/-	Actuol Volue x	Meon	Scotter 3s	Out of Toleronce	
Metering time Injection stort	1.20	0.30	5.98 s 29.0 mm	2.32 28.6	5.408	-06786 2028	
Injection time V/P chongeover point	0.4 / 3.5	0.20 1.0	0.53s 4.0 mm	4.0	0.04	00	
Melt cushion? peok volue	4.2 600	1.0 200	3.7 mm 871 bar	3.8 682	0.25 99.9	0 06566	
? peok volue	0	}	0 bor	0	0.0		*
Flow number Cycle time	2500 3.90	300 0.50	2776 9.05 s	2441 5.08	99.9 6.421	359 7/G. 4/ -06570	4
ACC TO THE TOTAL TO THE TOTAL	A						
23							

TECH CENTER 1600/2900

Title: TRACKABLE OPTICAL DISCS WITH CONCURRENTLY READABLE ANALYTE MATERIAL Inventor: Mark O. Worthington Docket No: BTI1 98100804(US)USX1P1X1

44/44

10.02 Canfiguration of the quality and the particular of the quality and the property of the p	of the quali	EIVED	HEC						
Reactian: Process data autside tolerance Switch—aff behaviar C703≈0 na reacti	data autside C703=0	tolerance na reactian	LE						
10.03 Q repart intermediate	rmediate stare	a					•		
Manufacturer Machine No. DVD. Job data	DVD_F50					4	FIG. 41H	I	
16.01 System characteristics	cteristics							J.	
Machine data Machine type Cantral versian Database versian Special	DISCJET 600/110 PAC 13.54 DB 05.80 350400	00/110	Order number IMC 12.26 Date created Versian	DVD_F50 CEL 10.31 23.10.1996 17106	DVD_F50 CEL_10.31 23.10.1996 17106				
Mald data Installed height	S90 = 18	160 mm							
Plasticizing Ram naminal diameter Max. permissible melt pressure Max: permissible backpressure	ter It pressure ckpressure	Identification C S801 = 0. P800=01482 bar P801 = 0.	stion C806 = = 032.0 mm 482 bar = 0317 bar	024	Max mete Max. spe	Max metering strake Max. specific melt pressure	C804 = S802 = ure P802 =	0024 100.0 01482	bar
Temperatures Cabinet Oil	Set paint/actual value TH1 = 035 026° C TH2 = 050 051° C	t/actual v 35 026° C 30 051° C	olue	Talerance – 030° C 016 041° C 01	e -/+ 010° C 011° C	Heating 000%	Coaling 005	FIG. 411	#1