

Identificação de Áreas Agrícolas em Imagens de Satélite

Este projeto visa identificar áreas agrícolas em imagens de satélite utilizando o algoritmo de segmentação K-means.

O código, desenvolvido em Python, processa imagens .png, dividindo-as em clusters baseados nas cores dos pixels para destacar a vegetação.

Paulo Vinicius Cruvel Viegas e Jeielma Pereira Dias

O Desafio da Análise de Imagens de Satélite

Com o volume crescente de imagens de satélite, a identificação manual de áreas agrícolas é inviável. O principal desafio é acelerar a segmentação de grandes conjuntos de imagens, mantendo a eficiência através da paralelização com múltiplos núcleos de CPU.

Tecnologias Utilizadas

- Python: Linguagem principal.
- OpenCV: Manipulação de imagens.
- Scikit-learn: Algoritmo K-means.
- Matplotlib: Visualização.
- Multiprocessing/Dask: Paralelização.

Funcionalidades do Sistema

- Converte imagens .png para matriz RGB.
- Aplica K-means para segmentação.
- Gera visualizações das áreas detectadas.
- Processamento otimizado e paralelo.

Estratégia de Solução e Justificativa

A identificação automática de áreas agrícolas é crucial para monitoramento ambiental e agricultura de precisão. Nosso projeto combina segmentação automática e processamento paralelo para uma solução ágil e escalável, superando desafios de memória com imagens grandes.

Paralelismo com MPI

Distribui imagens entre processos para processamento simultâneo em diferentes núcleos de CPU.

Processamento por Blocos

Divide imagens grandes em blocos de 2000x2000 pixels para controlar o consumo de RAM.

Multithreading por Imagem

Segmenta blocos em paralelo dentro de cada processo MPI, otimizando a eficiência.

Segmentação com K-means

Aplica K-means com 3 clusters para identificar vegetação com base nas cores RGB.

Resultados e Conclusão

A paralelização reduziu significativamente o tempo de execução, mas o ganho de desempenho não foi linear. Houve queda na eficiência e alto consumo de memória com imagens muito grandes, indicando a necessidade de otimizações futuras.

Tabela de Resultados

Processos	Tempos	Speed-UP	Eficiência
1	6202.87	1.00	100%
2	4156.21	1.49	74.50%
4	3103.72	2.00	50%
6	1789.43	3.47	57.80%
8	1149.19	5.40	67.50%
12	3507,32	1.77	14.80%

Observações Técnicas

Testes com imagens de 27.000 × 27.000 pixels causaram travamentos e falhas por uso excessivo de RAM, limitando a escalabilidade.

O projeto automatizou a identificação de áreas agrícolas de forma rápida, sendo promissor para monitoramento ambiental e agricultura de precisão.

Isso destaca a importância de equilibrar processos com recursos disponíveis.

••••••

•

