This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

TTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCCTTGCACACCTACCCTAA
GGAAGAGGAGTTGTACGCATGTCAGAGAGGTTGCAGGCTGTTTTCAATTTGTCAGTTTGTGGATG
ATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTACAGAAGCATATTCCCAA
TCTGATGAGCAATATGCTTGCCATCTTGGTTGCCAGAATCAGCTGCCATTCGCTGAACTGAGACA
AGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCTAACTCTGGTGAGGTCAT
TCTGGAGTGACATGATGGACTCCGC

CACACTGGCCGGATCTTTTAGAGTCCTTTGACCTTGACCAAGGGTCNGGAAAACAGCAACAAGCT
GAGCTGCTGTGACAGAGGGAACAAGATGGCGGCGCCGAAGGGAGCCTTTGGGTGAGGACCCAACT
GGGGCTCCCGCCGCTGCTGCTGCTGACCATGGCCTTGGCCGGAGGTTCGGGGACCGCTTCGGCTG
AAGCATTTGACTCGGTCTTGGGTGATACGGCGTCTTGCCACCGGGCCTGTCAGTTGACCTACCCC
TTGCACACCTACCCTAAGGAAGAGGAGTTGTACGCATGTCAGAGGAGGTTGCAGGCTGTTTTCAAT
TTGTCAGTTTGTGGATGATGGAATTGACTTAAATCGAACTAAATTGGAATGTGAATCTGCATGTA
CAGAAGCATATTCCCAATCTGATGAGCAATATGCTTGCCATCTTTGGTTGCCAGAATCAGCTGCCA
TTCGCTGAACTGAGACAAGAACAACTTATGTCCCTGATGCCAAAAATGCACCTACTCTTTCCTCT
AACTCTGGTGAGGTCATTCTGGAGTGACATGATGGACTCCGC

GCGAGGTGGCGATCGCTGAGAGGCAGGAGGCCGAGGCGGGCCTGGGAGGCGGCCCGGAGGTGGG GCGCCGCTGGGGCCGGCCCGCACGGGCTTCATCTGAGGGCGCACGGCCCGCGACCGAGCGTGCGG ACTGGCCTCCCAAGCGTGGGGCGACAAGCTGCCGGAGCTGCAATGGGCCGCGGCTGGGGATTCTT GTTTGGCCTCCTGGGCGCCGTGTGGCTGCTCAGCTCGGGCCACGGAGAGGAGCAGCCCCCGGAGA CAGCGGCACAGAGGTGCTTCTGCCAGGTTAGTGGTTACTTGGATGATGTTGTACCTGTGATGTTGAA ACCATTGATAGATTTAATAACTACAGGCTTTTCCCAAGACTACAAAAACTTCTTGAAAGTGACTA CTTTAGGTATTACAAGGTAAACCTGAAGAGGCCGTGTCCTTTCTGGAATGACATCAGCCAGTGTG GAAGAAGGGACTGTGCTGTCAAACCATGTCAATCTGATGAAGTTCCTGATGGAATTAAATCTGCG AGCTACAAGTATTCTGAAGAAGCCAATAATCTCATTGAAGAATGTGAACAAGCTGAACGACTTGG AGCAGTGGATGAATCTCTGAGTGAGGAAACACAGAAGGCTGTTCTTCAGTGGACCAAGCATGATG ATTCTTCAGATAACTTCTGTGAAGCTGATGACATTCAGTCCCCTGAAGCTGAATATGTAGATTTG CTTCTTAATCCTGAGCGCTACACTGGTTACAAGGGACCAGATGCTTGGAAAATATGGAATGTCAT CTACGAAGAAACTGTTTTAAGCCACAGACAATTAAAAGACCTTTAAATCCTTTGGCTTCTGGTC AAGGGACAAGTGAAGAACACTTTTTACAGTTGGCTAGAAGGTCTCTGTGTAGAAAAAAGAGCA TTCTACAGACTTATATCTGGCCTACATGCAAGCATTAATGTGCATTTGAGTGCAAGATATCTTTT ACAAGAGACCTGGTTAGAAAAGAAATGGGGACACAACATTACAGAATTTCAACAGCGATTTGATG GAATTTTGACTGAAGGAGAGGTCCAAGAAGGCTTAAGAACTTGTATTTCTCTACTTAATAGAA CTAAGGGCTTTATCCAAAGTGTTACCATTCTTCGAGCGCCCAGATTTTCAACTCTTTACTGGAAA TAAAATTCAGGATGAGGAAAACAAAATGTTACTTCTGGAAATACTTCATGAAATCAAGTCATTTC CTTTGCATTTTGATGAGAATTCATTTTTTGCTGGGGATAAAAAAAGAAGCACACAAACTAAAGGAG TCTGTGGGGAAAGCTTCAGACTCAGGGTTTGGGCACTGCTCTGAAGATCTTATTTTCTGAGAAAT TGATAGCAAATATGCCAGAAAGTGGACCTAGTTATGAATTCCATCTAACCAGACAAGAAATAGTA TCATTATTCAACGCATTTGGAAGAATTTCTACAAGTGTGAAAGAATTAGAAAACTTCAGGAACTT GTTACAGAATATTCAT**TAA**AGAAAACAAGCTGATATGTGCCTGTTTCTGGACAATGGAGGCGAAA GAGTGGAATTCATTCAAAGGCATAATAGCAATGACAGTCTTAAGCCAAACATTTTATATAAAGT TGCTTTTGTAAAGGAGAATTATATTGTTTTAAGTAAACACATTTTTAAAAATTGTGTTAAGTCTA TGTATAATACTACTGTGAGTAAAAGTAATACTTTAATAATGTGGTACAAATTTTAAAGTTTAATA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53974</pre>

<subunit 1 of 1, 468 aa, 1 stop

<MW: 54393, pI: 5.63, NX(S/T): 2

MGRGWGFLFGLLGAVWLLSSGHGEEQPPETAAQRCFCQVSGYLDDCTCDVETIDRFNNYRLFPRL QKLLESDYFRYYKVNLKRPCPFWNDISQCGRRDCAVKPCQSDEVPDGIKSASYKYSEEANNLIEE CEQAERLGAVDESLSEETQKAVLQWTKHDDSSDNFCEADDIQSPEAEYVDLLLNPERYTGYKGPD AWKIWNVIYEENCFKPQTIKRPLNPLASGQGTSEENTFYSWLEGLCVEKRAFYRLISGLHASINV HLSARYLLQETWLEKKWGHNITEFQQRFDGILTEGEGPRRLKNLYFLYLIELRALSKVLPFFERP DFQLFTGNKIQDEENKMLLLEILHEIKSFPLHFDENSFFAGDKKEAHKLKEDFRLHFRNISRIMD CVGCFKCRLWGKLQTQGLGTALKILFSEKLIANMPESGPSYEFHLTRQEIVSLFNAFGRISTSVK ELENFRNLLQNIH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 280-283 and 384-387

Amidation site.

amino acids 94-97

Glycosaminoglycan attachment site.

amino acids 20-23 and 223-226

Aminotransferases class-V pyridoxal-phosphate

amino acids 216-222

Interleukin-7 proteins

amino acids 338-343

GAAGAAACAGAAAAGGAGAGGGCAGAGGCCAGAGGACTTCTCATACTGGACAGAAACCGATCA GGCATGAACTCCCCTTCGTCACTCACCTGTTCTTGCCCCTGGTGTTCCTGACAGGTCTCTGCTC CCCCTTTAACCTGGATGAACATCACCCACGCCTATTCCCAGGGCCACCAGAAGCTGAATTTGGAT CCTTCAGGCGACCGGAGGGGGACGTTTATCGCTGCCCTGTAGGGGGGGCCCACAATGCCCCATG TGCCAAGGGCCACTTAGGTGACTACCAACTGGGAAATTCATCTCATCCTGCTGTGAATATGCACC TGGGGATGTCTCTGTTAGAGACAGATGGTGATGGGGGATTCATGGTGAGCTAAGGAGAGGGTGGT GGCAGTGTCTCTGAAGGTCCATAAAAGAAAAAAGAGAAGTGTGGTAAGGGAAAATGGTCTGTGTG GCCTCCTTCAACTGGGAGCATGTTCTGAGGGTGCCCTCCCAAGCCTGGGAGTAACTATTTCCCCC ATCCCCAGGCCTGTGCCCCTCTCTGGTCTCGTGCTTGTGGCAGCTCTGTCTTCAGTTCTGGGATA TGTGCCCGTGTGGATGCTTCATTCCAGCCTCAGGGAAGCCTGGCACCCACTGCCCAACGTGAGCC GTATGATGCCTGGCAAAGGGCCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCT CCATGTTTCCTAACAGATTCAGACTCCTGGCCAGGTGTGGTGGCCCACACCTGTAATTCTAGCAC TTTGGGAGGCCAAGGTGGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGG TGAAACTCCATCTCTACTAAAAAAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCATGCCT GTAATCTCATCTACTCGGGAGGCTAAGACAGGAGACTCTCACTTCAACCCAGGAGGTGGAGGTTG CGGTGAGCCAAGATTGTGCCTCTGCACTCTAGCGTGGGTGACAGAGTAAGCGAGACTCCATCTCA AAAATAATAATAATAATTCAGACTCCTTATCAGGAGTCCATGATCTGGCCTGGCACAGTAAC TCATGCCTGTAATCCCAACATTTTGGGAGGCCAACGCAGGAGGATTGCTTGAGGTCTGGAGGTTT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039</pre>

><subunit 1 of 1, 124 aa, 1 stop

><MW: 13352, pI: 5.99, NX(S/T): 1

MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPWDGP SGDRRGDVYRCPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMHLGMSLLETDGDGGFMVS

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

AAAGTTACATTTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTGGGC AGAAAGGAGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACAATTCAG AGAATGCTTTATTTTGGAAAGAACAATGTTCTAGGTCAAACTGAGTCTACCAA**ATG**CAGACTTT CACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTCTACGCATTGATTCCAT ATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGAAACAGTGTACTATTCTGTCGA ATACCAGGGGGAGTACGAGAGCCTGTACACGAGCCACATCTGGATCCCCAGCAGCTGGTGCTCAC TCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATCACGGCCACTGTGCCATACAACCTTCGT GTCAGGGCCACATTGGGCTCACAGACCTCAGCCTGGAGCATCCTGAAGCATCCCTTTAATAGAAA CTCAACCATCCTTACCCGACCTGGGATGGAGATCACCAAAGATGGCTTCCACCTGGTTATTGAGC GAACATGTCAAAATGGTGAGGAGTGGGGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGC TGCATACTGTGTAAGGCCCAGACATTCGTGAAGGCCATTGGGAGGTACAGCGCCTTCAGCCAGA CAGAATGTGTGGAGGTGCAAGGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGC TTCATGCTGATCCTTGTGGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTC CTGTTGCCCCGTGGTGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCA GCTGCAGAAGGGAGGAGGTGGATGCCTGTGCCACGGCTGTGATGTCTCCTGAGGAACTCCTCAGG GCCTGGATCTCATAGGTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGG AAACCATGAGGGGACAAGTTGTGTTTCTGTTTTCCGCCACGGACAAGGGATGAGAGAAGTAGGAA GAGCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACACT GAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACCTACACAC CTGCTAAACACACACACAGAGTCTCTCTATATATACACACGTACACATAAATACACCCAGC CAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGTGGCTTGGAGAGCCCAC TTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGGTGTTGAGTTCACTTCAAGC CCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGTAGGTGACCTGGAGGAAGGTCAC AGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATCCATGAACTACTGTAAAGTGTTGACA GTGTGTGCACACTGCAGACAGCAGGTGAAATGTATGTGTGCAATGCGACGAGAATGCAGAAGTCA GTAACATGTGCATGTTTGTTGTGCTCCTTTTTTCTGTTGGTAAAGTACAGAATTCAGCAAATAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57033</pre>

<subunit 1 of 1, 311 aa, 1 stop

<MW: 35076, pI: 5.04, NX(S/T): 2

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGETVY
YSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAWSILKHP
FNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSGGIPVHLETM
EPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILVVVPLFVWKMGRL
LQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation site.

amino acids 40-43 and 134-137

Tissue factor proteins.

amino acids 92-119

Integrins alpha chain proteins

amino acids 232-262

GAAGAAGGAGAGAGGAGAAGAGGCAGGAGCTGGAAAGGAGAGGAGGAGGAGGAGGAGGAGATG CGGGATGGAGACCTGGAGTTAGGTGGCTTGGGAGAGCTTAATGAAAAGAGAACGGAGAGGAGGTG TGGGTTAGGAACCAAGAGGTAGCCCTGTGGGCAGCAGAAGGCTGAGAGGGAGTAGGAAGATCAGGA GCTAGAGGGAGACTGGAGGGTTCCGGGAAAAGAGCAGAGGAAAGAGACACAGAGAGACGG GAGAGAGAAGAGTGGGTTTGAAGGGCGGATCTCAGTCCCTGGCTGCTTTGGCATTTGGGGAA CTGGGACTCCCTGTGGGGAGGAGAGGAAGCTGGAAGTCCTGGAGGGACAGGGTCCCAGAAGGAG GGGACAGAGGGCTGAGAGAGGGGGGCCGTTGGGCAGGGGTCCCTCGGAGGCCTCCTGGGG **ATG**GGGGCTGCAGCTCGTCTGAGCGCCCCTCGAGCGCTGCTACTCTGGGCTGCACTGGGGGCAGC AGCTCACATCGGACCAGCACCTGACCCCGAGGACTGGTGGAGCTACAAGGATAATCTCCAGGGAA AAGCGGCAGAGCCCCGTGGATGTGGAGCTGAAGAGGGTTCTTTATGACCCCTTTCTGCCCCCATT AAGGCTCAGCACTGGAGGAGAAGCTCCGGGGAACCTTGTACAACACCGGCCGACATGTCTCCT TCCTGCCTGCACCCGACCTGTGGTCAATGTGTCTGGAGGTCCCCTCCTTTACAGCCACCGACTC AGTGAACTGCGGCTGCTGTTTGGAGCTCGCGACGGAGCCGGCTCGGAACATCAGATCAACCACCA GGGCTTCTCTGCTGAGGTGCAGCTCATTCACTTCAACCAGGAACTCTACGGGAATTTCAGCGCTG CCTCCCGCGCCCCAATGGCCTGGCCATTCTCAGCCTCTTTGTCAACGTTGCCAGTACCTCTAAC CCATTCCTCAGTCGCCTCCTTAACCGCGACACCATCACTCGCATCTCCTACAAGAATGATGCCTA CTTTCTTCAAGACCTGAGCCTGGAGCTCCTGTTCCCTGAATCCTTCGGCTTCATCACCTATCAGG GCTCTCTCAGCACCCCGCCCTGCTCCGAGACTGTCACCTGGATCCTCATTGACCGGGCCCTCAAT ATCACCTCCCTTCAGATGCACTCCCTGAGACTCCTGAGCCAGAATCCTCCATCTCAGATCTTCCA GAGCCTCAGCGGTAACAGCCGGCCCCTGCAGCCCTTGGCCCACAGGGCACTGAGGGCCAACAGGG ACCCCGGCACCCCGAGAGGCGCTGCCGAGGCCCCAACTACCGCCTGCATGTGGATGGTGTCCCC GGGAGTTACCCCTAAAACAAAGCTATTAAAGGGACAGAATACTTA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34353</pre>

<subunit 1 of 1, 328 aa, 1 stop</pre>

<MW: 36238, pI: 9.90, NX(S/T): 3

MGAAARLSAPRALVLWAALGAAAHIGPAPDPEDWWSYKDNLQGNFVPGPPFWGLVNAAWSLCAVG
KRQSPVDVELKRVLYDPFLPPLRLSTGGEKLRGTLYNTGRHVSFLPAPRPVVNVSGGPLLYSHRL
SELRLLFGARDGAGSEHQINHQGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSLFVNVASTSN
PFLSRLLNRDTITRISYKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSETVTWILIDRALN
ITSLQMHSLRLLSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPERRCRGPNYRLHVDGVP
HGR

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 177-199

N-glycosylation site.

amino acids 118-121, 170-173 and 260-263

Eukaryotic-type carbonic anhydrases proteins

amino acids 222-270, 128-164 and 45-92

GGCGCCTGGTTCTGCGCGTACTGGCTGTACGGAGCAGGAGCAAGAGGTCGCCGCCAGCCTCCGCCGCCGAGCCTCGTT CGTGTCCCCGCCCTCGCTCCTGCAGCTACTGCTCAGAAACGCTGGGGCGCCCACCCTGGCAGACTAACGAAGCAGCT GGAGGCTCGCGTATTCCTGCAGTCAGCACCCACGTCGCCCCCGGACGCTCGGTGCTCAGGCCCTTCGCGAGCGGGGCT **ATG**AAGTGTACCGCGCGGGAGTGGCTCAGAGTAACCACAGTGCTGTTCATGGCTAGAGCAATTCCAGCCATGGTGGTT CCCAATGCCACTTTATTGGAGAAACTTTTGGAAAAATACATGGATGAGGATGGTGAGTGGTGGATAGCCAAACAACGA GGGAAAAGGGCCATCACAGACAATGACATGCAGAGTATTTTGGACCTTCATAATAAATTACGAAGTCAGGTGTATCCA ACAGCCTCTAATATGGAGTATATGACATGGGATGTAGAGCTGGAAAGATCTGCAGAATCCTGGGCTGAAAGTTGCTTG TGGGAACATGGACCTGCAAGCTTGCTTCCATCAATTGGACAGAATTTGGGAGCACACTGGGGAAGATATAGGCCCCCG ACGTTTCATGTACAATCGTGGTATGATGAAGTGAAAGACTTTAGCTACCCATATGAACATGAATGCAACCCATATTGT CCATTCAGGTGTTCTGGCCCTGTATGTACACACTTATACACAGGTCGTGTGGGCAACTAGTAACAGAATCGGTTGTGCC ATTAATTTGTGTCATAACATGAACATCTGGGGGCAGATATGGCCCAAAGCTGTCTACCTGGTGTGCAATTACTCCCCA AAGGGAAACTGGTGGGGCCATGCCCCTTACAAACATGGGCGGCCCTGTTCTGCTTGCCCACCTAGTTTTGGAGGGGGC TGTAGAGAAAATCTGTGCTACAAAGAAGGGTCAGACAGGTATTATCCCCCTCGAGAAGAGGGAAACAAATGAAATAGAA CGACAGCAGTCACAAGTCCATGACACCCATGTCCGGACAAGATCAGATGATAGTAGCAGAAATGAAGTCATAAGCGCA CAGCAAATGTCCCAAATTGTTTCTTGTGAAGTAAGATTAAGAGATCAGTGCAAAGGAACAACCTGCAATAGGTACGAA TGTCCTGCTGGCTGTTTGGATAGTAAAGCTAAAGTTATTGGCAGTGTACATTATGAAATGCAATCCAGCATCTGTAGA GCTGCAATTCATTATGGTATAATAGACAATGATGGTGGCTGGGTAGATATCACTAGACAAGGAAGAAAGCATTATTTC ATCAAGTCCAATAGAAATGGTATTCAAACAATTGGCAAATATCAGTCTGCTAATTCCTTCACAGTCTCTAAAGTAACA GTTCAGGCTGTGACTTGTGAAACAACTGTGGAACAGCTCTGTCCATTTCATAAGCCTGCTTCACATTGCCCAAGAGTA TACTGTCCTCGTAACTGTATGCAAGCAAATCCACATTATGCTCGTGTAATTGGAACTCGAGTTTATTCTGATCTGTCC AGTATCTGCAGAGCAGCAGTACATGCTGGAGTGGTTCGAAATCACGGTGGTTATGTTGATGTAATGCCTGTGGACAAA AGAAAGACCTACATTGCTTCTTTTCAGAATGGAATCTTCTCAGAAAGTTTACAGAATCCTCCAGGAGGAAAGGCATTC AGAGTGTTTGCTGTTGTGAAACTGAATACTTGGAAGAGGACCATAAAGACTATTCCAAATGCAATATTTCTGAATT TTGTATAAAACTGTAACATTACTGTACAGAGTACATCAACTATTTTCAGCCCAAAAAGGTGCCAAATGCATATAAATCTTGATAAACAAAGTCTATAAAATAAAACATGGGACATTAGCTTTGGGAAAAGTAATGAAAATATAATGGTTTTAGAAA TCCTGTGTTAAATATTGCTATATTTTCTTAGCAGTTATTTCTACAGTTAATTACATAGTCATGATTGTTCTACGTTTC ATATATTATGGTGCTTTGTATATGCCACTAATAAAATGAATCTAAACATTGAATGTGAATGGCCCTCAGAAAATCA TATTAAATTCTGATATTGCACTTCTTATTTATATAAAATAATCCTTTAATATCCAAATGAATCTGTTAAAATGTTTG ATTCCTTGGGAATGGCCTTAAAAATAAATGTAATAAAGTCAGAGTGGTGGTATGAAAACATTCCTAGTGATCATGTAG TAAATGTAGGGTTAAGCATGGACAGCCAGAGCTTTCTATGTACTGTTAAAATTGAGGTCACATATTTTCTTTTGTATC CTGGCAAATACTCCTGCAGGCCAGGAAGTATAATAGCAAAAAGTTGAACAAAGATGAACTAATGTATTACATTACCAT TGCCACTGATTTTTTTAAATGGTAAATGACCTTGTATATAAATATTTGCCATATCATGGTACCTATAATGGTGATATA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45417
<subunit 1 of 1, 500 aa, 1 stop
<MW: 56888, pI: 8.53, NX(S/T): 2
MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWW</pre>

MKCTAREWLRVTTVLFMARAIPAMVVPNATLLEKLLEKYMDEDGEWWIAKQRGKRAITDNDMQSI LDLHNKLRSQVYPTASNMEYMTWDVELERSAESWAESCLWEHGPASLLPSIGQNLGAHWGRYRPP TFHVQSWYDEVKDFSYPYEHECNPYCPFRCSGPVCTHYTQVVWATSNRIGCAINLCHNMNIWGQI WPKAVYLVCNYSPKGNWWGHAPYKHGRPCSACPPSFGGGCRENLCYKEGSDRYYPPREEETNEIE RQQSQVHDTHVRTRSDDSSRNEVISAQQMSQIVSCEVRLRDQCKGTTCNRYECPAGCLDSKAKVI GSVHYEMQSSICRAAIHYGIIDNDGGWVDITRQGRKHYFIKSNRNGIQTIGKYQSANSFTVSKVT VQAVTCETTVEQLCPFHKPASHCPRVYCPRNCMQANPHYARVIGTRVYSDLSSICRAAVHAGVVR NHGGYVDVMPVDKRKTYIASFQNGIFSESLQNPPGGKAFRVFAVV

Important features:
Signal peptide:
amino acids 1-20

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 protein amino acids 165-186, 196-218, 134-146, 96-108 and 58-77

N-glycosylation site amino acids 28-31

GCGGAGACAAGCGCAGAGCGCACGGCCACAGACAGCCCTGGGCATCCACCGACGCGCAG CCGGAGCCAGCAGAGCCGGAAGGCGCCCCGGGCAGAGAAAGCCGAGCAGAGCTGGGTGGCGTC GGTCAGCATGAGGCTCCTGGCGGCCGCGCTGCTCCTGCTGCTGCTGCGCGCTGTACACCGCGCGTG TGGACGGGTCCAAATGCAAGTGCTCCCGGAAGGGACCCAAGATCCGCTACAGCGACGTGAAGAAG CTGGAAATGAAGCCAAAGTACCCGCACTGCGAGGAGAAGATGGTTATCATCACCACCAAGAGCGT GTCCAGGTACCGAGGTCAGGAGCACTGCCTGCACCCCAAGCTGCAGAGCACCAAGCGCTTCATCA AGTGGTACAACGCCTGGAACGAGAAGCGCAGGGTCTACGAAGAATAGGGTGAAAAACCTCAGAAG AAAAAAAAAAAAAAAAAAAAAAAAAAAGCCTTTCTTTCTCACAGGCATAAGACACAAATTATAT CCAGATGGGAGACCCATCTCTTGTGCTCCAGACTTCATCACAGGCTGCTTTTTATCAAAAAGG GGAAAACTCATGCCTTTCCTTTTTAAAAAATGCTTTTTTGTATTTGTCCATACGTCACTATACAT CTGAGCTTTATAAGCGCCCGGGAGGAACAATGAGCTTGGTGGACACATTTCATTGCAGTGTTGCT CCATTCCTAGCTTGGGAAGCTTCCGCTTAGAGGTCCTGGCGCCTCGGCACAGCTGCCACGGGCTC TCCTGGGCTTATGGCCGGTCACAGCCTCAGTGTGACTCCACAGTGGCCCCTGTAGCCGGGCAAGC AGGAGCAGGTCTCTCTGCATCTGTTCTCTGAGGAACTCAAGTTTGGTTGCCAGAAAAATGTGCTT CATTCCCCCCTGGTTAATTTTTACACACCCTAGGAAACATTTCCAAGATCCTGTGATGGCGAGAC AAATGATCCTTAAAGAAGGTGTGGGGTCTTTCCCAACCTGAGGATTTCTGAAAGGTTCACAGGTT CAATATTTAATGCTTCAGAAGCATGTGAGGTTCCCAACACTGTCAGCAAAAACCTTAGGAGAAAA CTTAAAAATATATGAATACATGCGCAATACACAGCTACAGACACACTTCTGTTGACAAGGGAAA ACCTTCAAAGCATGTTTCTTTCCCTCACCACAACAGAACATGCAGTACTAAAGCAATATTTTGT GATTCCCCATGTAATTCTTCAATGTTAAACAGTGCAGTCCTCTTTCGAAAGCTAAGATGACCATG CGCCCTTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCCCAGTATATGC

MSLLPRRAPPVSMRLLAAALLLLLLALYTARVDGSKCKCSRKGPKIRYSDVKKLEMKPKYPHCEE KMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE

Signal sequence:

amino acids 1-34

 ${\tt GCCCCAGGGACTGCTATGGCTTCCTTTGTTGTTCACCCCGGTCTGCGTCATGTTAAACTCCAATGTCCTCCTGTGGTT}$ AACTGCTCTTGCCATCAAGTTCACCCTCATTGACAGCCAAGCACAGTATCCAGTTGTCAACACAAATTATGGCAAAAT ${\tt CCGGGGCCTAAGAACACCGTTACCCAATGAGATCTTGGGTCCAGTGGAGCAGTACTTAGGGGTCCCCTATGCCTCACC}$ CCCCACTGGAGAGAGGCGGTTTCAGCCCCCAGAACCCCCGTCCTCCTGGACTGGCATCCGAAATACTACTCAGTTTGC TGCTGTGTGCCCCAGCACCTGGATGAGAGATCCTTACTGCATGACATGCTGCCCATCTGGTTTACCGCCAATTTGGA TACTTTGATGACCTATGTTCAAGATCAAAATGAAGACTGCCTTTACTTAAACATCTACGTGCCCACGGAAGATGGAGC CAACACAAAGAAAACGCAGATGATATAACGAGTAATGACCGTGGTGAAGACGAAGATATTCATGATCAGAACAGTAA GAAGCCCGTCATGGTCTATATCCATGGGGGATCTTACATGGAGGGCACCGGCAACATGATTGACGGCAGCATTTTTGGC AAGCTACGGAAACGTCATCGTGATCACCATTAACTACCGTCTGGGAATACTAGGGTTTTTAAGTACCGGTGACCAGGC AGCAAAAGGCAACTATGGGCTCCTGGATCAGATTCAAGCACTGCGGTGGATTGAGGAGAATGTGGGAGCCTTTGGCGG GGACCCCAAGAGAGTGACCATCTTTGGCTCGGGGGCTGGGGCCTCCTGTGTCAGCCTGTTGACCCTGTCCCACTACTC AGAAGGTCTCTTCCAGAAGGCCATCATTCAGAGCGGCACCGCCCTGTCCAGCTGGGCAGTGAACTACCAGCCGGCCAA GTACACTCGGATATTGGCAGACAAGGTCGGCTGCAACATGCTGGACACCACGGACATGGTAGAATGCCTGCGGAACAA GAACTACAAGGAGCTCATCCAGCAGACCATCACCCCGGCCACCTACCACATAGCCTTCGGGCCGGTGATCGACGGCGA CGTCATCCCAGACGACCCCCAGATCCTGATGGAGCAAGGCGAGTTCCTCAACTACGACATCATGCTGGGCGTCAACCA AGGGGAAGGCCTGAAGTTCGTGGACGGCATCGTGGATAACGAGGACGGTGTGACGCCCAACGACTTTGACTTCTCCGT GTCCAACTTCGTGGACAACCTTTACGGCTACCCTGAAGGGAAAGACACTTTGCGGGAGACTATCAAGTTCATGTACAC CGAAATGAAGCCCAGCTGGGCAGATTCGGCCCATGGTGATGAGGTCCCCTATGTCTTCGGCATCCCCATGATCGGTCC CACCGAGCTCTTCAGTTGTAACTTTTCCAAGAACGACGTCATGCTCAGCGCCGTGGTCATGACCTACTGGACGAACTT AGTGGCCTGGTCCAAGTATAATCCCAAAGACCAGCTCTATCTGCATATTGGCTTGAAAACCCAGAGTGAGAGATCACTA CCGGGCAACGAAAGTGGCTTTCTGGTTGGAACTCGTTCCTCATTTGCACAACTTGAACGAGATATTCCAGTATGTTTC AACAACCACAAAGGTTCCTCCACCAGACATGACATCATTTCCCTATGGCACCCGGCGATCTCCCGCCAAGATATGGCC AACCACCAAACGCCCAGCAATCACTCCTGCCAACAATCCCAAACACTCTAAGGACCCTCACAAAACAGGGCCTGAGGA CAÇAACTGTCCTCATTGAAACCAAACGAGATTATTCCACCGAATTAAGTGTCACCATTGCCGTCGGGGCGTCGCTCCT CTTCCTCAACATCTTAGCTTTTGCGGCGCTGTACTACAAAAAGGACAAGAGGCGCCCATGAGACTCACAGGCGCCCCAG TCCCCAGAGAAACACCACAAATGATATCGCTCACATCCAGAACGAAGAGATCATGTCTCTGCAGATGAAGCAGCTGGA ACACGATCACGAGTGTGAGTCGCTGCAGGCACACGACACTGAGGCTCACCTGCCCGCCAGACTACACCCTCACGCT GCGCCGGTCGCCAGATGACATCCCACTTATGACGCCAAACACCATCACCATGATTCCAAACACACTGACGGGGATGCA GCCTTTGCACACTTTTAACACCTTCAGTGGAGGACAAAACAGTACAAATTTACCCCACGGACATTCCACCACTAGAGT GAAAGAGAGAGAAAGAAGTCTCCAGACCAGGAATGTTTTTGTCCCACTGACTTAAGACAAAAATGCAAAAAGGCA GTCATCCCATCCCGGCAGACCCTTATCGTTGGTGTTTTCCAGTATTACAAGATCAACTTCTGACCCTGTGAAATGTGA CATTTCAAGGCCCGGGTGTTTCCAACGTCATGGAAGCAGCTGACACTTCTGAAACTCAGCCAAGGACACTTGATATT ATGAGATTTTGCCCAGCACATGGAGCTGTAATCCAGAGAGAAACGTAGAAATTTATTATTAAAAAGAATGGACTG TGCAGCGAAATCTGTACGGTTCTGTGCAAAGAGGTGTTTTGCCAGCCTGAACTATATTTAAGAGACTTTGT

MLNSNVLLWLTALAIKFTLIDSQAQYPVVNTNYGKIRGLRTPLPNEILGPVEQYLGVPYASPPTG
ERRFQPPEPPSSWTGIRNTTQFAAVCPQHLDERSLLHDMLPIWFTANLDTLMTYVQDQNEDCLYL
NIYVPTEDGANTKKNADDITSNDRGEDEDIHDQNSKKPVMVYIHGGSYMEGTGNMIDGSILASYG
NVIVITINYRLGILGFLSTGDQAAKGNYGLLDQIQALRWIEENVGAFGGDPKRVTIFGSGAGASC
VSLLTLSHYSEGLFQKAIIQSGTALSSWAVNYQPAKYTRILADKVGCNMLDTTDMVECLRNKNYK
ELIQQTITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLNYDIMLGVNQGEGLKFVDGIVDNEDG
VTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADKENPETRRKTLVALFTDHQWVAPAV
AADLHAQYGSPTYFYAFYHHCQSEMKPSWADSAHGDEVPYVFGIPMIGPTELFSCNFSKNDVMLS
AVVMTYWTNFAKTGDPNQPVPQDTKFIHTKPNRFEEVAWSKYNPKDQLYLHIGLKPRVRDHYRAT
KVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTSFPYGTRRSPAKIWPTTKRPAITPANNPKHS
KDPHKTGPEDTTVLIETKRDYSTELSVTIAVGASLLFLNILAFAALYYKKDKRRHETHRRPSPQR
NTTNDIAHIQNEEIMSLQMKQLEHDHECESLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTIT
MIPNTLTGMQPLHTFNTFSGGQNSTNLPHGHSTTRV

Signal sequence:

amino acids 1-24

Transmembrane domains:

amino acids 189-204, 675-692

GGGAAAGATGGCGGCGACTCTGGGACCCCTTGGGTCGTGGCAGCAGTGGCGGCGATGTTTGTCGG CTCGGGATGGCTCCAGGATGTTACTCCTTCTTCTTTGTTGGGGTCTGGGCAGGGGCCACAGCAA GTCGGGGCGGTCAAACGTTCGAGTACTTGAAACGGGAGCACTCGCTGTCGAAGCCCTACCAGGG TGTGGGCACAGGCAGTTCCTCACTGTGGAATCTGATGGGCAATGCCATGGTGATGACCCAGTATA TCCGCCTTACCCCAGATATGCAAAGTAAACAGGGTGCCTTGTGGAACCGGGTGCCATGTTTCCTG AGAGACTGGGAGTTGCAGGTGCACTTCAAAATCCATGGACAAGGAAAGAAGAATCTGCATGGGGA TGGCTTGGCAATCTGGTACACAAAGGATCGGATGCAGCCAGGGCCTGTGTTTTGGAAACATGGACA AATTTGTGGGGCTGGGAGTATTTGTAGACACCTACCCCAATGAGGAGAAGCAGCAAGAGCGGGTA TTCCCCTACATCTCAGCCATGGTGAACAACGGCTCCCTCAGCTATGATCATGAGCGGGATGGGCG GCCTACAGAGCTGGGAGGCTGCACAGCCATTGTCCGCAATCTTCATTACGACACCTTCCTGGTGA TTCGCTACGTCAAGAGGCATTTGACGATAATGATGGATATTGATGGCAAGCATGAGTGGAGGGAC TGCATTGAAGTGCCCGGAGTCCGCCTGCCCCGCGGCTACTACTTCGGCACCTCCTCCATCACTGG GGATCTCTCAGATAATCATGATGTCATTTCCTTGAAGTTGTTTGAACTGACAGTGGAGAGAACCC CAGAAGAGGAAAAGCTCCATCGAGATGTGTTCTTGCCCTCAGTGGACAATATGAAGCTGCCTGAG ATGACAGCTCCACTGCCCCCCTGAGTGGCCTGGCCCTCTTCCTCATCGTCTTTTTCTCCCTGGT GTTTTCTGTATTTGCCATAGTCATTGGTATCATACTCTACAACAAATGGCAGGAACAGAGCCGAA AGCGCTTCTACTGAGCCCTCCTGCTGCCACCACTTTTGTGACTGTCACCCATGAGGTATGGAAGG AGCAGGCACTGGCCTGAGCATGCAGCCTGGAGAGTGTTCTTGTCTCTAGCAGCTGGTTGGGGACT ATATTCTGTCACTGGAGTTTTGAATGCAGGGACCCCGCATTCCCATGGTTGTGCATGGGGACATC TAACTCTGGTCTGGGAAGCCACCCACCCCAGGGCAATGCTGCTGTGATGTGCCTTTCCCTGCAGT CCTTCCATGTGGGAGCAGAGGTGTGAAGAGAATTTACGTGGTTGTGATGCCAAAATCACAGAACA GAATTTCATAGCCCAGGCTGCCGTGTTGTTTGACTCAGAAGGCCCTTCTACTTCAGTTTTGAATC TGACCCAACCCTCTGCCTACCTGAGGAGCTTTCTTTGGAAACCAGGATGGAAACTTCTTCCCTGC CTTACCTTCCTTTCACTCCATTCATTGTCCTCTCTGTGTGCAACCTGAGCTGGGAAAGGCATTTG GATGCCTCTCTGTTGGGGCCTGGGGCTGCAGAACACACCTGCGTTTCACTGGCCTTCATTAGGTG GCCCTAGGGAGATGGCTTTCTGCTTTGGATCACTGTTCCCTAGCATGGGTCTTGGGTCTATTGGC ATGTCCATGGCCTTCCCAATCAAGTCTCTTCAGGCCCTCAGTGAAGTTTGGCTAAAGGTTGGTGT AAAAATCAAGAGAAGCCTGGAAGACATCATGGATGCCATGGATTAGCTGTGCAACTGACCAGCTC CAGGTTTGATCAAACCAAAAGCAACATTTGTCATGTGGTCTGACCATGTGGAGATGTTTCTGGAC TTGCTAGAGCCTGCTTAGCTGCATGTTTTGTAGTTACGATTTTTGGAATCCCACTTTGAGTGCTG AAAGTGTAAGGAAGCTTTCTTCTTACACCTTGGGCTTGGATATTGCCCAGAGAAGAAATTTGGCT TTTTTTTTTTTTAATGGACAAGAGACAGTTGCTGTTCTCATGTTCCAAGTCTGAGAGCAACAGACC CTCATCATCTGTGCCTGGAAGAGTTCACTGTCATTGAGCAGCACAGCCTGAGTGCTGGCCTCTGT CAACCCTTATTCCACTGCCTTATTTGACAAGGGGTTACATGCTGCTCACCTTACTGCCCTGGGAT TAAATCAGTTACAGGCCAGAGTCTCCTTGGAGGGCCTGGAACTCTGAGTCCTCCTATGAACCTCT GACTCTAGAGTCGACCTGCAGTAGGGATAACAGGGTAATAAGCTTGGCCGCCATGG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50911</pre>

><subunit 1 of 1, 348 aa, 1 stop

><MW: 39711, pI: 8.70, NX(S/T): 1

MAATLGPLGSWQQWRRCLSARDGSRMLLLLLLLGSGQGPQQVGAGQTFEYLKREHSLSKPYQGVG
TGSSSLWNLMGNAMVMTQYIRLTPDMQSKQGALWNRVPCFLRDWELQVHFKIHGQGKKNLHGDGL
AIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVFPYISAMVNNGSLSYDHERDGRPT
ELGGCTAIVRNLHYDTFLVIRYVKRHLTIMMDIDGKHEWRDCIEVPGVRLPRGYYFGTSSITGDL
SDNHDVISLKLFELTVERTPEEEKLHRDVFLPSVDNMKLPEMTAPLPPLSGLALFLIVFFSLVFS
VFAIVIGIILYNKWQEQSRKRFY

Signal sequence:

amino acids 1-38

Transmembrane domain:

amino acids 310-329

CCGATTTGAGGTGAAACCATGAAGAGAAAATAGAATACTTAATAATGCTTTTCCGCAACCGCTTCTTGCTGCTGCTGG ${\tt CCCTGGCTGCGCTGCTGGCCTTTGTGAGCCTCAGCCTGCAGTTC\overline{TTC}CACCTGATCCCGGTGTCGACTCCTAAGAATG}$ GAATGAGTAGCAAGAGTCGAAAGAGAATCATGCCCGACCCTGTGACGGAGCCCCCTGTGACAGACCCCGTTTATGAAG CTCTTTTGTACTGCAACATCCCCAGTGTGGCCGAGCGCAGCATGGAAGGTCATGCCCCGCATCATTTTAAGCTGGTCT CAGTGCATGTGTTCATTCGCCACGGAGACAGGTACCCACTGTATGTCATTCCCAAAACAAAGCGACCAGAAATTGACT GCACTCTGGTGGCTAACAGGAAACCGTATCACCCAAAACTGGAAGCTTTCATTAGTCACATGTCAAAAAGGATCCGGAG CCTCTTTCGAAAGCCCCTTGAACTCCTTGCCTCTTTACCCAAATCACCCATTGTGTGAGATGGGAGAGCTCACACAGA ATTGGTCTGCAGACCAGCTCTATTTAGAGACCACTGGGAAAAGCCGGACCCTACAAAGTGGGCTGGCCTTGCTTTATG GCTTTCTCCCAGATTTTGACTGGAAGAAGATTTATTTCAGGCACCAGCCAAGTGCGCTGTTCTGCTCTGGAAGCTGCT AGAAGACCTACGGGGAGATGGCCAAGATCGTGGATGTCCCCACCAAGCAGCTTAGAGCTGCCAACCCCATAGACTCCA TGCTCTGCCACTTCTGCCACAATGTCAGCTTTCCCTGTACCAGAAATGGCTGTGTTGACATGGAGCACTTCAAGGTAA TTAAGACCCATCAGATCGAGGATGAAAGGGAAAGACGGGAGAAGAATTGTACTTCGGGTATTCTCTCCTGGGTGCCC ACCCCATCCTGAACCAAACCATCGGCCGGATGCAGCGTGCCACCGAGGGCAGGAAAGAAGAGCTCTTTGCCCTCTACT CTGCTCATGATGTCACTCTGTCACCAGTTCTCAGTGCCTTGGGCCTTTCAGAAGCCAGGTTCCCAAGGTTTGCAGCCA TCACATTCCACACCTCTTTCTGCCAAGACCACCACAAGCGTTCTCCCAAGCCCATGTGCCCGCTTGAAAACTTGGTCC GCTTTGTGAAAAGGGACATGTTTGTAGCCCTGGGTGGCAGTGGTACAAATTATTATGATGCATGTCACAGGGAAGGAT TCTAAAAGGTATGCAGTACAGCAGTATAGAATCCATGCCAATACAGAGCATAGGGAAAGGTCCACTTCTAGTTTTGTC AGTAAGCACATTGCTGCAATGTGGTACGTGAATTGCTTGGTACAAAATGGCCAGTTCACAGAGGAATAGAAGGTACTT TATCATAGCCAGACTTCGCTTAGAATGCCAGAATAATATAGTTCAAGACCTGAAGTTGCCAATCCAAGTTTGCACTCT TCTGGCCTGCCCCATGTTACTATGTGATGGAACCAGCACACCTCAACCAAAATTTTTTTAATCTTAGACATTTTTACC $\tt TTGTCCTTGTTAAGAATTTCTTGAAGTGATTTATCTAAAATAAAGGTTGGCAAACTTTTTCTGTAAAGGGCCAGATTG$ TAAATATTTCAGACTGTGTGGACCAAAAGGCCACATACAGTCTCTGTCATAACTACTCAACTCTGTTTCTGAAGCAGG AAAGCCACCACAGACAGTACATAAAGGAATATGTGTAGCTGGGTTCCCAGGCCAGACAAAACAGATGGTGACCAGACT TGGCCCCTGGGCTGTAGTTTGCTGACCCCTCATCTAAAAAATAGGCTATACTACAATTGCACTTCCAGCACTTTGAGA ACGAGTTGAATACCAAGAATTATTCAATGGTTCCTCCAGTAACTTCTGCTAGAAACACAGAATTTGGTCTGTATCTGA TTTATGATGATTGTGGTACAAGATAGTTTTAAGTATGTTCTAAATATTTGTCTGCTGTAGTCTATTTGCTGTATATGC TGAAATTTTTGTATGCCATTTAGTATTTTTATAGTTTAGGGAAAATATTTTCTAAGACCAGTTTTAGATGACTCTTATT CCTGTAGTAATATTCAATTTGCTGTACCTGCTTGGTGGTTAGAAGGAGGCTAGAAGATGAATTCAGGCACTTTCTTCC AATAAAACTAATTATGGCTCATTCCCTTTGACAAGCTGTAGAACTGGATTCATTTTAAACCATTTTCATCAGTTTCA AATGGTAAATTCTGATTGATTTTAAATGCGTTTTTGGAAGAACTTTGCTATTAGGTAGTTTACAGATCTTTATAAGG TGTTTTATATATAGAAGCAATTATAATTACATCTGTGATTTCTGAACTAATGGTGCTAATTCAGAGAAATGGAAAGT TGTTTCTATAAATAAATTTTTTTAAGAATAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48329</pre>

><subunit 1 of 1, 480 aa, 1 stop

><MW: 55240, pI: 9.30, NX(S/T): 2

MLFRNRFLLLLALAALLAFVSLSLQFFHLIPVSTPKNGMSSKSRKRIMPDPVTEPPVTDPVYEAL
LYCNIPSVAERSMEGHAPHHFKLVSVHVFIRHGDRYPLYVIPKTKRPEIDCTLVANRKPYHPKLE
AFISHMSKGSGASFESPLNSLPLYPNHPLCEMGELTQTGVVQHLQNGQLLRDIYLKKHKLLPNDW
SADQLYLETTGKSRTLQSGLALLYGFLPDFDWKKIYFRHQPSALFCSGSCYCPVRNQYLEKEQRR
QYLLRLKNSQLEKTYGEMAKIVDVPTKQLRAANPIDSMLCHFCHNVSFPCTRNGCVDMEHFKVIK
THQIEDERERREKKLYFGYSLLGAHPILNQTIGRMQRATEGRKEELFALYSAHDVTLSPVLSALG
LSEARFPRFAARLIFELWQDREKPSEHSVRILYNGVDVTFHTSFCQDHHKRSPKPMCPLENLVRF
VKRDMFVALGGSGTNYYDACHREGF

Signal sequence:

amino acids 1-18

AAAAAAGCTCACTAAAGTTTCTATTAGAGCGAATACGGTAGATTTCCATCCCCTTTTGAAGAACAGTACTGTGGAGCT ATTTAAGAGATAAAAACGAAATATCCTTTCTGGGAGTTCAAGATTGTGCAGTAATTGGTTAGGACTCTGAGCGCCGCT GTTCACCAATCGGGGAGAAAAAGCGGAGATCCTGCTCGCCTTGCACGCCTGAAGCACAAAGCAGATAGCTAGGAA TGAACCATCCCTGGGAGTATGTGGAAACAACGGAGGAGCTCTGACTTCCCAACTGTCCCATTCTATGGGCGAAGGAAC TGCTCCTGACTTCAGTGGTTAAGGGCAGAATTGAAAATAATTCTGGAGGAAGATAAGA**ATG**ATTCCTGCGCGACTGCA CCGGGACTACAAAGGGCTTGTCCTGCTGGGAATCCTCCTGGGGACTCTGTGGGAGACCGGATGCACCCAGATACGCTA TTCAGTTCCGGAAGAGCTGGAGAAAGGCTCTAGGGTGGGCGACATCTCCAGGGACCTGGGGCTGGAGCCCCGGGAGCT CGCGGAGCGCGGAGTCCGCATCATCCCCAGAGGTAGGACGCAGCTTTTCGCCCTGAATCCGCGCAGCGGCAGCTTGGT CACGGCGGCAGGATAGACCGGGAGGAGCTCTGTATGGGGGCCATCAAGTGTCAATTAAATCTAGACATTCTGATGGA GGATAAAGTGAAAATATATGGAGTAGAAGTAGAAGTAAGGGACATTAACGACAATGCGCCTTACTTTCGTGAAAGTGA ATTAGAAATAAAAATTAGTGAAAATGCAGCCACTGAGATGCGGTTCCCTCTACCCCACGCCTGGGATCCGGATATCGG TAAGTACCCCGAATTGGTGCTGAAACGCGCCCTGGACCGCGAAGAAAAGGCTGCTCACCACCTGGTCCTTACGGCCTC CGACGGGGGCGACCGGTGCGCACAGGCACCGCGCGCATCCGCGTGATGGTTCTGGATGCGAACGACGACCAGC GTTTGCTCAGCCCGAGTACCGCGCGAGCGTTCCGGAGAATCTGGCCTTGGGCACGCAGCTGCTTGTAGTCAACGCTAC ACTAGATTGTAATTCAGGGACAATATCAACAATAGGGGAGTTGGACCACGAGGAGTCAGGATTCTACCAGATGGAAGT GCAAGCAATGGATAATGCAGGATATTCTGCGCGAGCCAAAGTCCTGATCACTGTTCTGGACGTGAACGACAATGCCCC AGAAGTGGTCCTCACCTCTCTCGCCAGCTCGGTTCCCGAAAACTCTCCCAGAGGGACATTAATTGCCCTTTTAAATGT AAATGACCAAGATTCTGAGGAAAACGGACAGGTGATCTGTTTCATCCAAGGAAATCTGCCCTTTAAATTAGAAAAATC TTACGGAAATTACTATAGTTTAGTCACAGACATAGTCTTGGATAGGGAACAGGTTCCTAGCTACAACATCACAGTGAC CGCCACTGACCGGGGAACCCCGCCCTATCCACGGAAACTCATATCTCGCTGAACGTGGCAGACACCAACGACAACCC GCCGGTCTTCCCTCAGGCCTCCTATTCCGCTTATATCCCAGAGAACAATCCCAGAGGAGTTTCCCTCGTCTCTGTGAC CGCCCACGACCCCGACTGTGAAGAGAACGCCCAGATCACTTATTCCCTGGCTGAGAACACCATCCAAGGGGCAAGCCT ATCGTCCTACGTGTCCATCAACTCCGACACTGGGGTACTGTATGCGCTGAGCTCCTTCGACTACGAGCAGTTCCGAGA CTTGCAAGTGAAAGTGATGGCGCGGGACAACGGGCACCCGCCCCTCAGCAACGTGTCGTTGAGCCTGTTCGTGCT CCGCTCCGCAGAGCCCGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACAGAGACTCCGGCCAGAACGCCTGGCTGTC CTACCGTCTGCTCAAGGCCAGCGAGCCGGGACTCTTCTCGGTGGGTCTGCACACGGGCGAGGTGCGCACGGCGCGAGC CCTGCTGGACAGAGACGCGCTCAAGCAGAGCCTCGTAGTGGCCGTCCAGGACCACGGCCAGCCCCTCTCTCCGCCAC TGTCACGCTCACCGTGGCCGTGGCCGACAGCATCCCCCAAGTCCTGGCGGACCTCGGCAGCCTCGAGTCTCCAGCTAA CTCTGAAACCTCAGACCTCACTCTGTACCTGGTGGTAGCGGTGGCCGCGGTCTCCTGCGTCTTCCTGGCCTTCGTCAT CTTGCTGCTGCGCCTCAGGCTGCGCGCTGGCACAAGTCACGCCTGCTGCAGGCTTCAGGAGGCGGCTTGACAGGAGC GCCGGCGTCGCACTTTGTGGGCGTGGACGGGTGCAGGCTTTCCTGCAGACCTATTCCCACGAGGTTTCCCTCACCAC GGACTCGCGGAAGAGTCACCTGATCTTCCCCCAGCCCAACTATGCAGACATGCTCGTCAGCCAGGAGAGCTTTGAAAA ${\tt AAGCGAGCCCTTTTGCTGTCAGGTGATTCGGTATTTCTAAAGACAGTCATGGGTTAATTGAGGTGAGTTTATATCA}$ AATCTTCTTTCTTTTTTTTTTTAATTGCTCTGTCTCCCAAGCTGGAGTGCAGCGGTACGATCATAGCTCACTGCGGCC ${\tt TCAAACTCCTAGGCTCAAGCAATTATCCCACCTTTGCCTCCGGTGTAACAGGGACTACAGGTGCAAGCCACCTACTGT}$ TCTCACGCCTGTAATCCCAGTACTTTGGGAGGCCGAGGCGGGTGGATCACCTGAGGTTGGGAGTTTGAGACCAGCCTG **ACCAACATGGAGAAACCCCGTCTATACTAAAAAAATACAAAATTAGCCGGGCGTGGTGGTGCATGTCTGTAATCCCAG** TACTTGGGAGGCTGAGTCAGGAGAATTGCTTTAACCTGGGAGGTGGAGGTTGCAATGAGCTGAGATTGTGCCATTGC ACTCCAGCCTGGGCAACAAGAGTGAAACTCTATCTCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48306

><subunit 1 of 1, 916 aa, 1 stop

><MW: 100204, pI: 4.92, NX(S/T): 4

MIPARLHRDYKGLVLLGILLGTLWETGCTQIRYSVPEELEKGSRVGDISRDLGLEPRELAERGVR

IIPRGRTQLFALNPRSGSLVTAGRIDREELCMGAIKCQLNLDILMEDKVKIYGVEVEVRDINDNA

PYFRESELEIKISENAATEMRFPLPHAWDPDIGKNSLQSYELSPNTHFSLIVQNGADGSKYPELV

LKRALDREEKAAHHLVLTASDGGDPVRTGTARIRVMVLDANDNAPAFAQPEYRASVPENLALGTQ

LLVVNATDPDEGVNAEVRYSFRYVDDKAAQVFKLDCNSGTISTIGELDHEESGFYQMEVQAMDNA

GYSARAKVLITVLDVNDNAPEVVLTSLASSVPENSPRGTLIALLNVNDQDSEENGQVICFIQGNL

PFKLEKSYGNYYSLVTDIVLDREQVPSYNITVTATDRGTPPLSTETHISLNVADTNDNPPVFPQA

SYSAYIPENNPRGVSLVSVTAHDPDCEENAQITYSLAENTIQGASLSSYVSINSDTGVLYALSSF

DYEQFRDLQVKVMARDNGHPPLSSNVSLSLFVLDQNDNAPEILYPALPTDGSTGVELAPRSAEPG

YLVTKVVAVDRDSGQNAWLSYRLLKASEPGLFSVGLHTGEVRTARALLDRDALKQSLVVAVQDHG

QPPLSATVTLTVAVADSIPQVLADLGSLESPANSETSDLTLYLVVAVAAVSCVFLAFVILLLALR

LRRWHKSRLLQASGGGLTGAPASHFVGVDGVQAFLQTYSHEVSLTTDSRKSHLIFPQPNYADMLV

SQESFEKSEPLLLSGDSVFSKDSHGLIEVSLYQIFFLFFFNCSVSQAGVQRYDHSSLRPQTPRLK

QLSHLCLRCNRDYRCKPPTVCLSIYLSIYLSIYLSIYLLSCTDGSLTPVIPVLWEAEAGGSPEV

GSLRPA

Signal sequence:

amino acids 1-30

Transmembrane domains:

amino acids 693-711, 809-823, 869-888

CCCAGGCTCTAGTGCAGGAGGAGAAGGAGGAGGAGGAGGAGGTGGAGATTCCCAGTTAAAAGGCT CCAGAATCGTGTACCAGGCAGAGAACTGAAGTACTGGGGCCTCCTCCACTGGGTCCGAATCAGTA GGTGACCCCGCCCTGGATTCTGGAAGACCTCACCATGGGACGCCCCCGACCTCGTGCGGCCAAG ACGTGGATGTTCCTGCTCTTGCTGGGGGGGGCCTGGGCAGGACACTCCAGGGCACAGGAGGACAA GGTGCTGGGGGGTCATGAGTGCCAACCCCATTCGCAGCCTTGGCAGGCGGCCTTGTTCCAGGGCC AGCAACTACTCTGTGGCGGTGTCCTTGTAGGTGGCAACTGGGTCCTTACAGCTGCCCACTGTAAA AAACCGAAATACACAGTACGCCTGGGAGACCACAGCCTACAGAATAAAGATGGCCCAGAGCAAGA AATACCTGTGGTTCAGTCCATCCCACACCCCTGCTACAACAGCAGCGATGTGGAGGACCACAACC ATGATCTGATGCTTCTTCAACTGCGTGACCAGGCATCCCTGGGGTCCAAAGTGAAGCCCATCAGC CTGGCAGATCATTGCACCCAGCCTGGCCAGAAGTGCACCGTCTCAGGCTGGGGCACTGTCACCAG TCCCCGAGAGAATTTTCCTGACACTCTCAACTGTGCAGAAGTAAAAATCTTTCCCCAGAAGAAGT GACACGTGCCAGGGCGATTCTGGAGGCCCCCTGGTGTGTGATGGTGCACTCCAGGGCATCACATC CTGGGGCTCAGACCCCTGTGGGAGGTCCGACAAACCTGGCGTCTATACCAACATCTGCCGCTACC TGGACTGGATCAAGAAGATCATAGGCAGCAAGGGCTGATTCTAGGATAAGCACTAGATCTCCCTT AATAAACTCACAACTCTCTGGTTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48336</pre>

<subunit 1 of 1, 260 aa, 1 stop

<MW: 28048, pI: 7.87, NX(S/T): 1

MGRPRPRAAKTWMFLLLLGGAWAGHSRAQEDKVLGGHECQPHSQPWQAALFQGQQLLCGGVLVGG NWVLTAAHCKKPKYTVRLGDHSLQNKDGPEQEIPVVQSIPHPCYNSSDVEDHNHDLMLLQLRDQA SLGSKVKPISLADHCTQPGQKCTVSGWGTVTSPRENFPDTLNCAEVKIFPQKKCEDAYPGQITDG MVCAGSSKGADTCQGDSGGPLVCDGALQGITSWGSDPCGRSDKPGVYTNICRYLDWIKKIIGSKG

Important Features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 51-71

N-glycosylation site.

amino acids 110-113

Serine proteases, trypsin family, histidine active site.

amino acids 69-74 and 207-217

Tyrosine kinase phosphorylation site.

amino acids 182-188

Kringle domain proteins motif

amino acids 205-217

GCGGGGGAACCGGGCGGATTCCTCGCGCGTCAAACCACCTGATCCCATAAAACATTCATCCTCCC GGCGGCCGCGCTGCGAGCGCCCGCCAGTCCGCCGCCGCCGCCCTCGCCCTGTGCGCCCTGC GCGCCTGCGCACCCGCGGCCCGAGCCAGCCAGAGCCGGGCGGAGCGGAGCGCGCGCGAGCCTCG TCCCGCGGCCGGGCCGGGCCGTAGCGGCGCCTGGATGCGGACCCGGCCGCGGGGAG GGGCGTCCGCTGGAGGGAGCCGGCTGCTGGCATGGGTGCTGTGGCTGCAGGCCTGGCAGGTGCCA GCCCCATGCCCAGGTGCCTGCGTATGCTACAATGAGCCCAAGGTGACGACAAGCTGCCCCCAGCA GCATCTCGCATGTGCCAGCTGCCAGCTTCCGTGCCTGCCGCAACCTCACCATCCTGTGGCTGCAC TCGAATGTGCTGGCCCGAATTGATGCGGCTGCCTTCACTGGCCTGGCCCTCCTGGAGCAGCTGGA CCTCAGCGATAATGCACAGCTCCGGTCTGTGGACCCTGCCACATTCCACGGCCTGGGCCGCCTAC ACACGCTGCACCTGGACCGCTGCGGCCTGCAGGAGCTGGGCCCGGGGCTGTTCCGCGGCCTGGCT GCCCTGCAGTACCTCTACCTGCAGGACAACGCGCTGCAGGCACTGCCTGATGACACCTTCCGCGA CCTGGGCAACCTCACACCTCTTCCTGCACGGCAACCGCATCTCCAGCGTGCCCGAGCGCCCT TCCGTGGGCTGCACAGCCTCGACCGTCTCCTACTGCACCAGAACCGCGTGGCCCATGTGCACCCG CATGCCTTCCGTGACCTTGGCCGCCTCATGACACTCTATCTGTTTGCCAACAATCTATCAGCGCT GCCCACTGAGGCCCTGGCCCCCTGCGTGCCCTGCAGTACCTGAGGCTCAACGACAACCCCTGGG TGTGTGACTGCCGGGCACGCCCACTCTGGGCCTGCCAGAAGTTCCGCGGCTCCTCCTCCGAG GTGCCTGCAGCCTCCGCAACGCCTGGCTGGCCGTGACCTCAAACGCCTAGCTGCCAATGACCT GCAGGGCTGCGCTGTGGCCACCGGCCCTTACCATCCCATCTGGACCGGCAGGGCCACCGATGAGG AGCCGCTGGGGCTTCCCAAGTGCTGCCAGCCAGATGCCGCTGACAAGGCCTCAGTACTGGAGCCT GGAAGACCAGCTTCGGCAGGCAATGCGCTGAAGGGACGCGTGCCGCCGGTGACAGCCCGCCGGG CAACGGCTCTGGCCCACGGCACATCAATGACTCACCCTTTGGGACTCTGCCTGGCTCTGCTGAGC CCCCGCTCACTGCAGTGCGGCCCGAGGGCTCCGAGCCACCAGGGTTCCCCACCTCGGGCCCTCGC CGGGGGTGGCGGACTGGTGACTCAGAAGGCTCAGGTGCCCTACCCAGCCTCACCTGCAGCCTCA CCCCCTGGGCCTGGCGCTGTGTGGACAGTGCTTGGGCCCTGCTGACCCCCAGCGGACACA CCATCTCCACCCCATCATGTTTACAGGGTTCGGCGGCAGCGTTTGTTCCAGAACGCCGCCTCCCA CCCAGATCGCGGTATATAGAGATATGCATTTTATTTTACTTGTGTAAAAATATCGGACGACGTGG AATAAAGAGCTCTTTTCTTAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44184</pre>

><subunit 1 of 1, 473 aa, 1 stop

><MW: 50708, pI: 9.28, NX(S/T): 6

MKRASAGGSRLLAWVLWLQAWQVAAPCPGACVCYNEPKVTTSCPQQGLQAVPVGIPAASQRIFLH GNRISHVPAASFRACRNLTILWLHSNVLARIDAAAFTGLALLEQLDLSDNAQLRSVDPATFHGLG RLHTLHLDRCGLQELGPGLFRGLAALQYLYLQDNALQALPDDTFRDLGNLTHLFLHGNRISSVPE RAFRGLHSLDRLLLHQNRVAHVHPHAFRDLGRLMTLYLFANNLSALPTEALAPLRALQYLRLNDN PWVCDCRARPLWAWLQKFRGSSSEVPCSLPQRLAGRDLKRLAANDLQGCAVATGPYHPIWTGRAT DEEPLGLPKCCQPDAADKASVLEPGRPASAGNALKGRVPPGDSPPGNGSGPRHINDSPFGTLPGS AEPPLTAVRPEGSEPPGFPTSGPRRPGCSRKNRTRSHCRLGQAGSGGGGTGDSEGSGALPSLTC SLTPLGLALVLWTVLGPC

Important features:

Signal peptide:

amino acids 1-26

Leucine zipper pattern.

amino acids 135-156

Glycosaminoglycan attachment site.

amino acids 436-439

N-glycosylation site.

amino acids 82-85, 179-183, 237-240, 372-375 and 423-426

VWFC domain

amino acids 411-425

GGAAGTCCACGGGGAGCTTGGATGCCAAAGGGAGGACGGCTGGGTCCTCTGGAGAGGACTACTCA CTGGCATATTTCTGAGGTATCTGTAGAATAACCACAGCCTCAGATACTGGGGACTTTACAGTCCC ACAGAACCGTCCTCCCAGGAAGCTGAATCCAGCAAGAACA**ATG**GAGGCCAGCGGGAAGCTCATTT CCTAGAAGCTATTCTGTGGTGGAGGAAACTGAGGGCAGCTCCTTTGTCACCAATTTAGCAAAGGA CCTGGGTCTGGAGCAGAGGGAATTCTCCAGGCGGGGGGTTAGGGTTGTTTCCAGAGGGAACAAAC TACATTTGCAGCTCAATCAGGAGACCGCGGATTTGTTGCTAAATGAGAAATTGGACCGTGAGGAT CTGTGCGGTCACACAGAGCCCTGTGTGCTACGTTTCCAAGTGTTGCTAGAGAGTCCCTTCGAGTT TGTTGGTGAAAGTATCAGAGAGCAGTCCTCCTGGGACTACGTTTCCTCTGAAGAATGCCGAAGAC TTAGATGTAGGCCAAAACAATATTGAGAACTATATAATCAGCCCCAACTCCTATTTTCGGGTCCT CACCCGCAAACGCAGTGATGGCAGGAAATACCCAGAGCTGGTGCTGGACAAAGCGCTGGACCGAG AGGAAGAGCTGAGCTCAGGTTAACACTCACAGCACTGGATGGTGGCTCTCCGCCCAGATCTGGC ACTGCTCAGGTCTACATCGAAGTCCTGGATGTCAACGATAATGCCCCTGAATTTGAGCAGCCTTT CTATAGAGTGCAGATCTCTGAGGACAGTCCGGTAGGCTTCCTGGTTGTGAAGGTCTCTGCCACGG ATGTAGACACAGGAGTCAACGGAGAGATTTCCTATTCACTTTTCCAAGCTTCAGAAGAGATTGGC AAAACCTTTAAGATCAATCCCTTGACAGGAGAAATTGAACTAAAAAAACCAACTCGATTTCGAAAA ACTTCAGTCCTATGAAGTCAATATTGAGGCAAGAGATGCTGGAACCTTTTCTGGAAAATGCACCG TTCTGATTCAAGTGATAGATGTGAACGACCATGCCCCAGAAGTTACCATGTCTGCATTTACCAGC CCAATACCTGAGAACGCGCCTGAAACTGTGGTTGCACTTTTCAGTGTTTTCAGATCTTGATTCAGG AGAAAATGGGAAAATTAGTTGCTCCATTCAGGAGGATCTACCCTTCCTCCTGAAATCCGCGGAAA ACTTTTACACCCTACTAACGGAGAGACCACTAGACAGAGAAAGCAGAGCGGAATACAACATCACT ATCACTGTCACTGACTTGGGGACCCCTATGCTGATAACACAGCTCAATATGACCGTGCTGATCGC CGATGTCAATGACAACGCTCCCGCCTTCACCCAAACCTCCTACACCCTGTTCGTCCGCGAGAACA GTCACCTACTCGCTGCTGCCCCCCAGGACCCGCACCTGCCCCTCACATCCCTGGTCTCCATCAA CGCGGACAACGGCCACCTGTTCGCCCTCAGGTCTCTGGACTACGAGGCCCTGCAGGGGTTCCAGT TCCGCGTGGCGCTTCAGACCACGGCTCCCCGGCGCTGAGCAGCGAGGCGCTGGTGCGCGTGGTG GTGCTGGACGCCAACGACAACTCGCCCTTCGTGCTGTACCCGCTGCAGAACGGCTCCGCGCCCTG CACCGAGCTGGTGCCCCGGGCGGCCGAGCCGGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACG GCGACTCGGCCAGAACGCCTGGCTGTCGTACCAGCTGCTCAAGGCCACGGAGCTCGGTCTGTTC GCACAGGCTGGTGGTGGTCAAGGACAATGGCGAGCCTCCGCGCTCGGCCACCGCCACGCTGC ACGTGCTCCTGGTGGACGGCTTCTCCCAGCCCTACCTGCCTCTCCCGGAGGCGGCCCCGACCCAG CTTTTCGGTGCTCCTGTTCGTGGCGGTGCGGCTGTGTAGGAGGAGCAGGGCGGCCTCGGTGGGTC GCTGCTTGGTGCCCGAGGGCCCCCTTCCAGGGCATCTTGTGGACATGAGCGGCACCAGGACCCTA TCCCAGAGCTACCAGTATGAGGTGTGTCTGGCAGGAGGCTCAGGGACCAATGAGTTCAAGTTCCT TCCCCAATAACTTTGGGTTCAATATTCAGTGACCATAGTTGACTTTTACATTCCATAGGTATTTT TTTACTCTTGATTTTTCTCATGTTCTTCTCCCTTTGTTTTAAAGTGAACATTTACCTTTATTCC TGGTTCTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48314</pre>

<subunit 1 of 1, 798 aa, 1 stop

<MW: 87552, pI: 4.84, NX(S/T): 5

MEASGKLICRQRQVLFSFLLLGLSLAGAAEPRSYSVVEETEGSSFVTNLAKDLGLEQREFSRRGV
RVVSRGNKLHLQLNQETADLLLNEKLDREDLCGHTEPCVLRFQVLLESPFEFFQAELQVIDINDH
SPVFLDKQMLVKVSESSPPGTTFPLKNAEDLDVGQNNIENYIISPNSYFRVLTRKRSDGRKYPEL
VLDKALDREEEAELRLTLTALDGGSPPRSGTAQVYIEVLDVNDNAPEFEQPFYRVQISEDSPVGF
LVVKVSATDVDTGVNGEISYSLFQASEEIGKTFKINPLTGEIELKKQLDFEKLQSYEVNIEARDA
GTFSGKCTVLIQVIDVNDHAPEVTMSAFTSPIPENAPETVVALFSVSDLDSGENGKISCSIQEDL
PFLLKSAENFYTLLTERPLDRESRAEYNITITVTDLGTPMLITQLNMTVLIADVNDNAPAFTQTS
YTLFVRENNSPALHIRSVSATDRDSGTNAQVTYSLLPPQDPHLPLTSLVSINADNGHLFALRSLD
YEALQGFQFRVGASDHGSPALSSEALVRVVVLDANDNSPFVLYPLQNGSAPCTELVPRAAEPGYL
VTKVVAVDGDSGQNAWLSYQLLKATELGLFGVWAHNGEVRTARLLSERDAAKHRLVVLVKDNGEP
PRSATATLHVLLVDGFSQPYLPLPEAAPTQAQADLLTVYLVVALASVSSLFLFSVLLFVAVRLCR
RSRAASVGRCLVPEGPLPGHLVDMSGTRTLSQSYQYEVCLAGGSGTNEFKFLKPIIPNFPPQCPG
KEIQGNSTFPNNFGFNIQ

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 685-712

Cadherins extracellular repeated domain signature.

amino acids 122-132, 231-241, 336-346, 439-449 and 549-559

ATP/GTP-binding site motif A (P-loop).

amino acids 285-292

N-glycosylation site.

amino acids 418-421, 436-439, 567-570 and 786-789

ACCCACGCGTCCGCCCACGCGTCCGCCCACGCGTCCGCGCGTAGCCGTGCGCC GATTGCCTCTCGGCCTGGGCA**TG**GTCCCGGCTGCCGGTCGACGACCGCCCCGCGTCATGCGGCT CCTCGCTGGTGGCAAGTATTGCTGTGGGTGCTGGGACTTCCCGTCCGCGGCGTGGAGGTTGCAG AGGAAAGTGGTCGCTTATGGTCAGAGGAGCAGCCTGCTCACCCTCTCCAGGTGGGGGCTGTGTAC CTGGGTGAGGAGGAGCTCCTGCATGACCCGATGGGCCAGGACAGGCCAGAAGAGGCCAATGC AGGACAAAGTGAGTTCAGAGCCTAGCGGCGTCACCTGTGGTGCTGGAGGAGCGGAGGACTCAAGG TGCAACGTCCGAGAGAGCCTTTTCTCTCTGGATGGCGCTGGAGCACACTTCCCTGACAGAGAAGA GGAGTATTACACAGAGCCAGAAGTGGCGGAATCTGACGCAGCCCCGACAGAGGACTCCAATAACA CTGAAAGTCTGAAATCCCCAAAGGTGAACTGTGAGGAGAGAAACATTACAGGATTAGAAAATTTC ACTCTGAAAATTTTAAATATGTCACAGGACCTTATGGATTTTCTGAACCCAAACGGTAGTGACTG TACTCTAGTCCTGTTTTACACCCCGTGGTGCCGCTTTTCTGCCAGTTTGGCCCCTCACTTTAACT CTCTGCCCCGGGCATTTCCAGCTCTTCACTTTTTGGCACTGGATGCATCTCAGCACAGCAGCCTT TCTACCAGGTTTGGCACCGTAGCTGTTCCTAATATTTTATTATTTCAAGGAGCTAAACCAATGGC CAGATTTAATCATACAGATCGAACACTGGAAACACTGAAAATCTTCATTTTTAATCAGACAGGTA TAGAAGCCAAGAAGAATGTGGTGGTAACTCAAGCCGACCAAATAGGCCCTCTTCCCAGCACTTTG TACCATTCGAACTGAGAGTATTCGGTGGCTAATTCCAGGACAAGAGCAGGAACATGTGGAGTAGT GATGGTCTGAAAGAAGTTGGAAAGAGGAACTTCAATCCTTCGTTTCAGAAATTAGTGCTACAGTT TCATACATTTCTCCAGTGACGTGTTGACTTGAAACTTCAGGCAGATTAAAAGAATCATTTGTTG AACAACTGAATGTATAAAAAAATTATAAACTGGTGTTTTTAACTAGTATTGCAATAAGCAAATGCA AAAATATTCAATAG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48333</pre>

><subunit 1 of 1, 360 aa, 1 stop

><MW: 39885, pI: 4.79, NX(S/T): 7

MVPAAGRRPPRVMRLLGWWQVLLWVLGLPVRGVEVAEESGRLWSEEQPAHPLQVGAVYLGEEELL HDPMGQDRAAEEANAVLGLDTQGDHMVMLSVIPGEAEDKVSSEPSGVTCGAGGAEDSRCNVRESL FSLDGAGAHFPDREEEYYTEPEVAESDAAPTEDSNNTESLKSPKVNCEERNITGLENFTLKILNM SQDLMDFLNPNGSDCTLVLFYTPWCRFSASLAPHFNSLPRAFPALHFLALDASQHSSLSTRFGTV AVPNILLFQGAKPMARFNHTDRTLETLKIFIFNQTGIEAKKNVVVTQADQIGPLPSTLIKSVDWL LVFSLFFLISFIMYATIRTESIRWLIPGQEQEHVE

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 321-340

Homologous region to dilsufide isomerase

amino acids 212-302

N-glycosylation site.

amino acids 165-168, 181-184, 187-190, 194-197, 206-209, 278-281 and 293-296

Thioredoxin domain

amino acids 211-227

CAGCCCGACTTCTCCTACAAGCGCAGCAATTGCAAGCCCATCCCGGTCAACCTGCAGCTGTGCCA CGGCATCGAATACCAGAACATGCGGCTGCCCAACCTGCTGGGCCACGAGACCATGAAGGAGGTGC TGGAGCAGGCCGCTTGGATCCCGCTGGTCATGAAGCAGTGCCACCCGGACACCAAGAAGTTC CTGTGCTCGCTCTCGCCCCGTCTGCCTCGATGACCTAGACGAGACCATCCAGCCATGCCACTC GCTCTGCGTGCAGGTGAAGGACCGCTGCGCCCCGGTCATGTCCGCCTTCGGCTTCCCCTGGCCCG ACATGCTTGAGTGCGACCGTTTCCCCCAGGACAACGACCTTTGCATCCCCCTCGCTAGCAGCGAC CACCTCCTGCCAGCCACCGAGGAAGCTCCAAAGGTATGTGAAGCCTGCAAAAATAAAAATGATGA TGACAACGACATAATGGAAACGCTTTGTAAAAATGATTTTGCACTGAAAATAAAAGTGAAGGAGA TAACCTACATCAACCGAGATACCAAAATCATCCTGGAGACCAAGAGCAAGACCATTTACAAGCTG AACGGTGTCCGAAAGGGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGCTTGCAGTGCAC CTGTGAGGAGATGAACGACATCAACGCGCCCTATCTGGTCATGGGACAGAAACAGGGTGGGGAGC ATCCGCAAGCTGCAGTGCTAGTCCCGGCATCCTGATGGCTCCGACAGGCCTGCTCCAGAGCACGG CTGACCATTTCTGCTCCGGGATCTCAGCTCCCGTTCCCCAAGCACACTCCTAGCTGCTCCAGTCT CAGCCTGGGCAGCTTCCCCCTGCCTTTTGCACGTTTGCATCCCCAGCATTTCCTGAGTTATAAGG CCACAGGAGTGGATAGCTGTTTTCACCTAAAGGAAAAGCCCACCGGAATCTTGTAGAAATATTCA AACTAATAAAATCATGAATATTTTAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50920</pre>

><subunit 1 of 1, 295 aa, 1 stop

>< MW: 33518, pI: 7.74, NX(S/T): 0

MLQGPGSLLLLFLASHCCLGSARGLFLFGQPDFSYKRSNCKPIPVNLQLCHGIEYQNMRLPNLLG HETMKEVLEQAGAWIPLVMKQCHPDTKKFLCSLFAPVCLDDLDETIQPCHSLCVQVKDRCAPVMS AFGFPWPDMLECDRFPQDNDLCIPLASSDHLLPATEEAPKVCEACKNKNDDDNDIMETLCKNDFA LKIKVKEITYINRDTKIILETKSKTIYKLNGVSERDLKKSVLWLKDSLQCTCEEMNDINAPYLVM GQKQGGELVITSVKRWQKGQREFKRISRSIRKLQC

Important features:

Signal peptide:

amino acids 1-20

Cysteine rich domain, homolgous to frizzled N terminus amino acids 6-153

GTGGAGGCCGCCGACGATGGCGGGGCCGACGGAGGCCGAGACGGGGTTGGCCGAGCCCCGGGCCC CTCAACTGCTCCAACGCCACGCTGTGGCTCAGCTTTGCACCTGTGGCTGACGTCATTGCTGAGGA CTTGGTCCTGTCCATGGAGCAGATCAACTGGCTGTCACTGGTCTACCTCGTGGTATCCACCCCAT TTGGCGTGGCGGCCATCTGGATCCTGGACTCCGTCGGGCTCCGTGCGGCGACCATCCTGGGTGCG TGGCTGAACTTTGCCGGGAGTGTGCTACGCATGGTGCCCTGCATGGTTGTTGGGACCCAAAACCC ATTTGCCTTCCTCATGGGTGGCCAGAGCCTCTGTGCCCAGAGCCTGGTCATCTTCTCTC ${\tt CAGCCAAGCTGCCTTGTGGTTCCCAGAGCACCAGCGAGCCACGGCCAACATGCTCGCCACC}$ ATGTCGAACCCTCTGGGCGTCCTTGTGGCCAATGTGCTGTCCCCTGTGCTGGTCAAGAAGGGTGA TCTGCCTGTGGGAGAGTGTGCCCCCCCCCCCCCCTCTGCCGGGGCTGCCAGCTCCACCTCAGAG AAGTTCCTGGATGGGCTCAAGCTGCAGCTCATGTGGAACAAGGCCTATGTCATCCTGGCTGTGTG CTTGGGGGGAATGATCGGGATCTCTGCCAGCTTCTCAGCCCTCTGGAGCAGATCCTCTGTGCAA GCGCCACTCCAGTGGGTTTTCCGGCCTCTGTGGCGCTCTCTTCATCACGTTTGGGATCCTGGGG GCACTGGCTCTCGGCCCCTATGTGGACCGGACCAAGCACTTCACTGAGGCCACCAAGATTGGCCT GTGCCTGTTCTCTCTGGCCTGCGTGCCCTTTGCCCTGGTGTCCCAGCTGCAGGGACAGACCCTTG CCCTGGCTGCCACCTGCTCGCTCGGGCTGTTTTGGCTTCTCGGTGGGCCCCGTGGCCATGGAG TTGGCGGTCGAGTGTTCCTTCCCCGTGGGGGGGGGGGGCTGCCACAGGCATGATCTTTGTGCTGGG CCTTGTCCACCTGCCAGCAGGGGGGGGGATCCACTTGACTGGACAGTGTCTCTGCTGCTGATGGCC GGCCTGTGCACCTTCTTCAGCTGCATCCTGGCGGTCTTCTTCCACACCCCATACCGGCGCCTGCA GGCCGAGTCTGGGGAGCCCCCTCCACCCGTAACGCCGTGGGCGGCGCAGACTCAGGGCCGGGTG TGGACCGAGGGGGGCAGGAAGGGCTGGGGTCCTGGGGCCCAGCACGCGACTCCGGAGTGCACG GGGTCCAAGCGTCCAGGTTTATTGACCCGGCTGGGTCTCACTCCTCCTCTCCTCCCCGTGGGTG ATCACGTAGCTGAGCGCCTTGTAGTCCAGGTTGCCCGCCACATCGATGGAGGCGAACTGGAACAT CTGGTCCACCTGCGGGCGGGGCGAAAGGGCTCCTTGCGGGCTCCGGGAGCGAATTACAAGCGCG CACCTGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50988

><subunit 1 of 1, 560 aa, 1 stop

><MW: 58427, pI: 6.86, NX(S/T): 2

MAGPTEAETGLAEPRALCAQRGHRTYARRWVFLLAISLLNCSNATLWLSFAPVADVIAEDLVLSM
EQINWLSLVYLVVSTPFGVAAIWILDSVGLRAATILGAWLNFAGSVLRMVPCMVVGTQNPFAFLM
GGQSLCALAQSLVIFSPAKLAALWFPEHQRATANMLATMSNPLGVLVANVLSPVLVKKGEDIPLM
LGVYTIPAGVVCLLSTICLWESVPPTPPSAGAASSTSEKFLDGLKLQLMWNKAYVILAVCLGGMI
GISASFSALLEQILCASGHSSGFSGLCGALFITFGILGALALGPYVDRTKHFTEATKIGLCLFSL
ACVPFALVSQLQGQTLALAATCSLLGLFGFSVGPVAMELAVECSFPVGEGAATGMIFVLGQAEGI
LIMLAMTALTVRRSEPSLSTCQQGEDPLDWTVSLLLMAGLCTFFSCILAVFFHTPYRRLQAESGE
PPSTRNAVGGADSGPGVDRGGAGRAGVLGPSTATPECTARGASLEDPRGPGSPHPACHRATPRAQ
GPAATDAPSRPGRLAGRVQASRFIDPAGSHSSFSSPWVIT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 61-79, 98-112, 126-146, 169-182, 201-215, 248-268, 280-300, 318-337, 341-357, 375-387, 420-441

N-glycosylation site.

amino acids 40-43 and 43-46

Glycosaminoglycan attachment site.

amino acids 468-471

GTCCCACATCCTGCTCAACTGGGTCAGGTCCCTCTTAGACCAGCTCTTGTCCATCATTTGCTGAAGTGGACCAACTAG TTCCCCAGTAGGGGGTCTCCCCTGGCAATTCTTGATCGGCGTTTTGGACATCTCAGATCGCTTCCAATGAAGATGGCCT TGCCTTGGGGTCCTGCTTGTTTCATAATCATCTAACTATGGGACAAGGTTGTGCCGGCAGCTCTGGGGGAAGGAGCAC GGGGCTGATCAAGCCATCCAGGAAACACTGGAGGACTTGTCCAGCCTTGAAAGAACTCTAGTGGTTTCTGAATCTAGC CCACTTGGCGGTAAGCATGATGCAACTTCTGCAACTTCTGCTGGGGCCTTTTTGGGGCCCAGGTGGCTACTTATTTCTTTT AGGGGATTGTCAGGAGGTGACCACTCTCACGGTGAAATACCAAGTGTCAGAGGAAGTGCCATCTGGTACAGTGATCGG GAAGCTGTCCCAGGAACTGGGCCGGGAGGAGAGGCGGAGGCAAGCTGGGCCGCCTTCCAGGTGTTGCAGCTGCCTCA ACAGTGGGATCCCTGCTTGCTTTGATGTGCTTGCCACAGGGGATTTGGCTCTGATCCATGTGGAGATCCAAGT GCTGGACATCAATGACCACCAGCCACGGTTTCCCAAAGGCGAGCAGGAGCTGGAAATCTCTGAGAGCGCCTCTCTGCG AACCCGGATCCCCTGGACAGAGCTCTTGACCCAGACACAGGCCCTAACACCTGCACACCTACACTCTGTCTCCCAG TGAGCACTTTGCCTTGGATGTCATTGTGGGCCCTGATGAGACCAAACATGCAGAACTCATAGTGGTGAAGGAGCTGGA CAGGGAAATCCATTCATTTTTGATCTGGTGTTAACTGCCTATGACAATGGGAACCCCCCCAAGTCAGGTACCAGCTT GGTCAAGGTCAACGTCTTGGACTCCAATGACAATAGCCCTGCGTTTGCTGAGAGTTCACTGGCACTGGAAATCCAAGA AGATGCTGCACCTGGTACGCTTCTCATAAAACTGACCGCCACAGACCCTGACCAAGGCCCCAATGGGGAGGTGGAGTT CTTCCTCAGTAAGCACATGCCTCCAGAGGTGCTGGACACCTTCAGTATTGATGCCAAGACAGGCCAGGTCATTCTGCG TCGACCTCTAGACTATGAAAAGAACCCTGCCTACGAGGTGGATGTTCAGGCAAGGGACCTGGGTCCCAATCCTATCCC AGCCCATTGCAAAGTTCTCATCAAGGTTCTGGATGTCAATGACAACATCCCAAGCATCCACGTCACATGGGCCTCCCA GCCATCACTGGTGTCAGAAGCTCTTCCCAAGGACAGTTTTATTGCTCTTGTCATGGCAGATGACTTGGATTCAGGACA GTTGCTAACCAATGCCACACTGGACAGAGAGCÄGTGGCCCAAATATACCCTCACTCTGTTAGCCCAAGACCAAGGACT CCAGCCCTTATCAGCCAAGAAACAGCTCAGCATTCAGATCAGTGACATCAACGACAATGCACCTGTGTTTGAGAAAAG CAGGTATGAAGTCTCCACGCGGGAAAACAACTTACCCTCTCTCACCTCATTACCATCAAGGCTCATGATGCAGACTT GGGCATTAATGGAAAAGTCTCATACCGCATCCAGGACTCCCCAGTTGCTCACTTAGTAGCTATTGACTCCAACACAGG AGAGGTCACTGCTCAGAGGTCACTGAACTATGAAGAGATGGCCGGCTTTGAGTTCCAGGTGATCGCAGAGGACAGCGG GCAACCCATGCTTGCATCCAGTGTCTCTGTGTGGGTCAGCCTCTTGGATGCCAATGATAATGCCCCAGAGGTGGTCCA GCCTGTGCTCAGCGATGGAAAAGCCAGCCTCTCCGTGCTTGTGAATGCCTCCACAGGCCACCTGCTGGTGCCCATCGA GACTCCCAATGGCTTGGGCCCAGCGGGCACTGACACCTCCACTGGCCACTCACAGCTCCCGGCCATTCCTTTTGAC AACCATTGTGGCAAGAGATGCAGACTCGGGGGCAAATGGAGAGCCCCTCTACAGCATCCGCAATGGAAATGAAGCCCA GGAGCTGGAGATAGTAGTAGAGGACCAGGGAAGCCCCCCTTACAGACCCCGAGCCCTGTTGAGGGTCATGTTTGTCAC CAGTGTGGACCACCTGAGGGACTCAGCCCGCAAGCCTGGGGCCTTGAGCATGTCGATGCTGACGGTGATCTGCCTGGC TGTACTGTTGGGCATCTTCGGGTTGATCCTGGCTTTGTTCATGTCCATCTGCCGGACAGAAAAGAAGGACAACAGGGC CTACAACTGTCGGGAGGCCGAGTCCACCTACCGCCAGCAGCCCAAGAGGCCCCAGAAACACATTCAGAAGGCAGACAT CCACCTCGTGCCTGTGCTCAGGGGTCAGGCAGGTGAGCCTTGTGAAGTCGGGCAGTCCCACAAAGATGTGGACAAGGA GGCGATGATGGAAGCAGGCTGGGACCCCTGCCTGCAGGCCCCCTTCCACCCCGACCCTGTACAGGACGCTGCG TAATCAAGGCAACCAGGGAGCCCGGCGGAGAGCCGAGAGGTGCTGCAAGACACGGTCAACCTCCTTTTCAACCATCC TCTGAAGGTTGCAGGCAGCCCCACAGGGAGGCTGGCTGGAGACCAGGGCAGTGAGGAAGCCCCACAGAGGCCACCAGC $\tt CCTGCGGAGCCTGGTCCGGCTGTCTGTGGCTGCCTTCGCCGAGCGGAACCCCGTGGAGGAGCTCACTGTGGATTCTCC$ TCCTGTTCAGCAAATCTCCCAGCTGCTGTCCTTGCTGCATCAGGGCCAAATCCAGCCCAAACCAAACCACCGAGGAAA TAAGTACTTGGCCAAGCCAGGAGGCAGGAGTGCAATCCCAGACACAGATGGCCCAAGTGCAAGGGCTGGAGGCCA GACAGACCCAGAACAGGAGGAGGGCCTTTGGATCCTGAAGAGGACCTCTCTGTGAAGCAACTGCTAGAAGAAGAGGCT GTCAAGTCTGCTGGACCCCAGCACAGGTCTGGCCCTGGACCGGCTGAGCCCCCTGACCCGGCCTGGATGCCGAGACT CTCTTTGCCCCTCACCACCAACTACCGTGACAATGTGATCTCCCCGGATGCTGCAGCCACGGAGGAGCCGAGGACCTT CCAGACGTTCGGCAAGGCAGAGGCACCAGAGCTGAGCCCAACAGGCACGAGGCTGGCCAGCACCTTTGTCTCGGAGAT GAGCTCACTGCTGGAGATGCTGCTGGAACAGCGCTCCAGCATGCCCGTGGAGGCCGCCTCCGAGGCGCTGCGGCGGCT CTCGGTCTGCGGGAGGACCCTCAGTTTAGACTTGGCCACCAGTGCAGCCTCAGGCATGAAAGTGCAAGGGGACCCAGG TGGAAAGACGGGGACTGAGGGCAAGAGCAGGAGCAGCAGCAGCAGCAGGTGCCTGTGAACATACCTCAGACGCCT ${\tt AAGCAGCCCTTGTAAGCAGCTCTGAGTCTTTTGGAGGACAGGGACGGTTTGTGGCTGAGATAAGTGTTTCCTGGCAA}$ TCTTGGGTAGCAGGAGTCAGGGGGCTGTACCCTGGGGGTGCCAGGAAATGCTCTCTGACCTATCAATAAAGGAAAAGC AGTAAAAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA48331</pre>

<subunit 1 of 1, 1184 aa, 1 stop</pre>

<MW: 129022, pI: 5.20, NX(S/T): 5

MMQLLQLLLGLLGPGGYLFLLGDCQEVTTLTVKYQVSEEVPSGTVIGKLSQELGREERRRQAGAA FOVLOLPOALPIOVDSEEGLLSTGRRLDREOLCROWDPCLVSFDVLATGDLALIHVEIOVLDIND HOPRFPKGEOELEISESASLRTRIPLDRALDPDTGPNTLHTYTLSPSEHFALDVIVGPDETKHAE LIVVKELDREIHSFFDLVLTAYDNGNPPKSGTSLVKVNVLDSNDNSPAFAESSLALEIQEDAAPG TLLIKLTATDPDQGPNGEVEFFLSKHMPPEVLDTFSIDAKTGQVILRRPLDYEKNPAYEVDVQAR DLGPNPIPAHCKVLIKVLDVNDNIPSIHVTWASOPSLVSEALPKDSFIALVMADDLDSGHNGLVH CWLSOELGHFRLKRTNGNTYMLLTNATLDREOWPKYTLTLLAQDOGLQPLSAKKQLSIQISDIND NAPVFEKSRYEVSTRENNLPSLHLITIKAHDADLGINGKVSYRIQDSPVAHLVAIDSNTGEVTAQ RSLNYEEMAGFEFQVIAEDSGQPMLASSVSVWVSLLDANDNAPEVVQPVLSDGKASLSVLVNAST GHLLVPIETPNGLGPAGTDTPPLATHSSRPFLLTTIVARDADSGANGEPLYSIRNGNEAHLFILN PHTGQLFVNVTNASSLIGSEWELEIVVEDQGSPPLQTRALLRVMFVTSVDHLRDSARKPGALSMS MLTVICLAVLLGIFGLILALFMSICRTEKKDNRAYNCREAESTYROOPKRPOKHIOKADIHLVPV LRGQAGEPCEVGQSHKDVDKEAMMEAGWDPCLQAPFHLTPTLYRTLRNQGNQGAPAESREVLQDT VNLLFNHPRORNASRENLNLPEPOPATGOPRSRPLKVAGSPTGRLAGDOGSEEAPORPPASSATL RRORHLNGKVSPEKESGPROILRSLVRLSVAAFAERNPVEELTVDSPPVOQISQLLSLLHQGQFQ PKPNHRGNKYLAKPGGSRSAIPDTDGPSARAGGOTDPE0EEGPLDPEEDLSVKOLLEEELSSLLD PSTGLALDRLSAPDPAWMARLSLPLTTNYRDNVISPDAAATEEPRTFOTFGKAEAPELSPTGTRL ASTFVSEMSSLLEMLLEQRSSMPVEAASEALRRLSVCGRTLSLDLATSAASGMKVQGDPGGKTGT EGKSRGSSSSSRCL

Important features:

Signal peptide:

amino acids 1-13

Transmembrane domain:

amino acids 719-739

N-glycosylation site.

amino acids 415-418, 582-585, 659-662, 662-665 amd 857-860

Cadherins extracellular repeated domain signature.

amino acids 123-133, 232-242, 340-350, 448-458 and 553-563

CGGACGCGTGGGCGGACGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGGCAG ACCGTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAGGCAGGA GCCTTCCTTACACTTCGCCATGAGTTTCCTCATCGACTCCAGCATCATGATTACCTCCCAGATAC TATTTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAG TATGTTGTACAGGTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCAT CTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTG TAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATC CGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTTATGGCTGACCTTTATGTATTTCTT CTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAAAACATGGGATCTTATCCATAGAACAGC GGAACGCGACTGCTGCAAACCATGGATATGATCATAAGCAAAAAGAAAAGGATGGCAATGGCAC GGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACAAACCATCAGGTTTCTGGGGAATGATAAAA AGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTACTCTTATTCAACAGGAAGTGGATGCTTT GGAAGAATTAAGCAGCAGCTTTTTCTGGAAACAGCTGATCTATATGCTACCAAGGAGAAATAG AATACTCCAAAACCTTCAAGGGGAAATATTTTAATTTTCTTGGTTACTTTTTCTCTATTTACTGT GTTTGGAAAATTTTCATGGCTACCATCAATATTGTTTTTGATCGAGTTGGGAAAACGGATCCTGT CACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGTGAAGTTTTGGTCCC CTTACCAAGTTCTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTGCTATTAGC ACAGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTTAGAAT ACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTGAT GTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACC AGAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTTCAAAA TGGTAGCATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAG CATCAGCCAGAACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTG GATATGAGGCTGGTAGAGGCGGAGAGGAGCCAAGAAACTAAAGGTGAAAAATACACTGGAACT CTGGGGCAAGACATGTCTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACAT AAAAAAAAAAGGGCGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAAC TTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWKLGDP
FPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLLAQIMGMY
FVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

CATGGGAAGTGGAGCCGGAGCCTTCCTTACACTCGCCATGAGTTTCCTCATCGACTCCAGCATCA
TGATTACCTCCCNGANACTATTTTTTGGATTTGGGTGGCTTTTCTTCNGCGCCAATGTTTAAAGA
CTATGAGATACGTCAGTATGTTGTACNGGTGATCTTCTCCGTGACGTTTGCCATTTCTTGCACCA
TGTTTGAGCTCATCATCTTTGAAATCTTNGGAGTATTGAATAGCAGCTCCCGTTATTTTCACTGG
AAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTNTCATGGTGCCTTTTTACATTGGCTGAT
TATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTTATGGCTGA
CCTTTATGTATTTCCAG

GTGTTGCCCTTGGGGAGGGAAGGGGAGCCNGGCCCTTTCCTAAAATTTGGCCAAGGGTTTCTTT
NTTGAATTCCGGGTTNNGNATACCTTCCCAGAAAATATTTTTTTGGATTTGGGGTAGNTTTTTTC
ATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAGGTGATNTTNTCCGTGAC
GTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATNTTTGAAATNTTAGGAGTATTGAATAGCA
GCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTG
CCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTT
TTCCTGTCTNTTATGGCTGACCTTTATGTATTTNTTNTGGAAANTAGGAGATCCCTTTCCCATTC
TC

CTCCCTGCTCGTACTGCTCTTCTCACGGGCTGTCGCCTTCAATCTGGACGTGATGGGTGCCTTGCGCAAGGAGGG GGGTGCTCCCCAGGCCCTGGCTCTTCCTGGGCAGCAGGCGAATCGCACTGGAGGCCTCTTCGCTTGCCCGTTGAGCCT GGAGGAGACTGACTGCTACAGAGTGGACATCGACCAGGGAGCTGATATGCAAAAGGAAAGCAAGGAAACCAGTGGTT GGGAGTCAGTGTTCGGAGCCAGGGGCCTGGGGGCAAGATTGTTACCTGTGCACACCGATATGAGGCAAGGCAGCGAGT GGACCAGATCCTGGAGACGCGGGATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCTGGCCATCCGGGATGAGTT GGATGGTGGGGAATGGAAGTTCTGTGAGGGACGCCCCCAAGGCCATGAACAATTTGGGTTCTGCCAGCAGGGCACAGC TGCCGCCTTCTCCCCTGATAGCCACTACCTCCTCTTTGGGGCCCCAGGAACCTATAATTGGAAGGGCACGGCCAGGGT AGAAGAGCTGAGCTTTGTGGCTGGAGCCCCCCGCGCCAACCACAAGGGTGCTGTGGTCATCCTGCGCAAGGACAGCGC CAGTCGCCTGGTGCCCGAGGTTATGCTGTCTGGGGAGCGCCTGACCTCCGGCTTTGGCTACTCACTGGCTGTGGCTGA CCTCAACAGTGATGGCTGGCCAGACCTGATAGTGGGTGCCCCCTACTTCTTTGAGCGCCAAGAAGAGCTGGGGGGTGC TGTGTATGTGTACTTGAACCAGGGGGGTCACTGGGCTGGGATCTCCCCTCTCCGGCTCTGCGGCTCCCCTGACTCCAT GTTCGGGATCAGCCTGGCTGTCCTGGGGGACCTCAACCAAGATGGCTTTCCAGATATTGCAGTGGGTGCCCCCTTTGA TGGTGATGGGAAAGTCTTCATCTACCATGGGAGCAGCCTGGGGGTTGTCGCCAAACCTTCACAGGTGCTGGAGGGCGA TCCACGAAGCATCGACCTGGAGCAGCCCAACTGTGCTGGCGGCCACTCGGTCTGTGTGGACCTAAGGGTCTGTTTCAG $\tt CCGGGGCCAGGTTCCCGTGTGACGTTCCTGAGCCGTAACCTGGAAGAACCCAAGCACCAGGCCTCGGGCACCGTGTG$ GCTGAAGCACCAGCATGACCGAGTCTGTGGAGACGCCATGTTCCAGCTCCAGGAAAATGTCAAAGACAAGCTTCGGGC CATTGTAGTGACCTTGTCCTACAGTCTCCAGACCCCTCGGCTCCGGCGACAGGCTCCTGGCCAGGGGCTGCCTCCAGT GGCCCCATCCTCAATGCCCACCAGCCCAGCACCAGCGGGGAGAGATCCACTTCCTGAAGCAAGGCTGTGGTGAAGA CAAGATCTGCCAGAGCAATCTGCAGCTGGTCCACGCCCGCTTCTGTACCCGGGTCAGCGACACGGAATTCCAACCTCT GCCCATGGATGTGGATGGAACAACAGCCCTGTTTGCACTGAGTGGGCAGCCAGTCATTGGCCTGGAGCTGATGGTCAC CAACCTGCCATCGGACCCAGCCCAGGCCCAGGCTGATGGGGATGATGCCCATGAAGCCCAGCTCCTGGTCATGCTTCC TGACTCACTGCACTACTCAGGGGTCCGGGCCCTGGACCCTGCGGAGAAGCCACTCTGCCTGTCCAATGAGAATGCCTC $\tt CCATGTTGAGTGTGAGCTGGGGAACCCCATGAAGAGAGGTGCCCAGGTCACCTTCTACCTCATCCTTAGCACCTCCGG$ GATCAGCATTGAGACCACGGAACTGGAGGTAGAGCTGCTGTTGGCCACGATCAGTGAGCAGGAGCTGCATCCAGTCTC TGCACGAGCCCGTGTCTTCATTGAGCTGCCACTGTCCATTGCAGGAATGGCCATTCCCCAGCAACTCTTCTTCTCTGG TGTGGTGAGGGGCGAGAGAGCCATGCAGTCTGAGCGGGATGTGGGCAGCAAGGTCAAGTATGAGGTCACGGTTTCCAA CCAAGGCCAGTCGCTCAGAACCCTGGGCTCTGCCTTCCTCAACATCATGTGGCCTCATGAGATTGCCAATGGGAAGTG GTTGCTGTACCCAATGCAGGTTGAGCTGGAGGGCGGGCAGGGGCCTGGGCAGAAAGGGCTTTGCTCTCCCAGGCCCAA CATCCTCCACCTGGATGTGGACAGTAGGGATAGGAGGCGGCGGGAGCTGGAGCCACCTGAGCAGCAGGAGCCTGGTGA GCGGCAGGAGCCCAGCATGTCCTGGTGGCCAGTGTCCTCTGCTGAGAAGAAGAAAAACATCACCCTGGACTGCGCCCG GGGCACGGCCAACTGTGTGTTCAGCTGCCCACTCTACAGCTTTGACCGCGCGGCTGTGCTGCATGTCTGGGGCCG ${\tt TCTCTGGAACAGCACCTTTCTGGAGGAGTACTCAGCTGTGAAGTCCCTGGAAGTGATTGTCCGGGCCAACATCACAGT}$ GAAGTCCTCCATAAAGAACTTGATGCTCCGAGATGCCTCCACAGTGATCCCAGTGATGGTATACTTGGACCCCATGGC GCTGCTCCTGTGGAAGATGGGATTCTTCAAACGGCCGAGCCACCCGAGGCCACCGTGCCCCAGTACCATGCGGTGAA GATTCCTCGGGAAGACCGACAGCAGTTCAAGGAGAGAGACGGGCACCATCCTGAGGAACAACTGGGGCAGCCCCCG GCGGGAGGGCCCGGATGCACACCCCATCCTGGCTGCTGACGGGCATCCCGAGCTGGGCCCCGATGGGCATCCAGGGCC $AGGCACCGCC{\color{blue}{TAG}}GTTCCCATGTCCCAGCCTGGCCTGGCCTGCCCTCCATCCCTTCCCCAGAGATGGCTCCTTGGGA$ ${\tt TGAAGAGGGT\overline{AGA}GTGGGCTGCTGGTGTCGCATCAAGATTTGGCAGGATCGGCTTCCTCAGGGGCCACAGACCTCTCCCC}$ ACCCACAAGAACTCCTCCCACCCAACTTCCCCTTAGAGTGCTGTGAGATGAGAGTGGGTAAATCAGGGACAGGGCCAT GGGGTAGGGTGAGAGGGCAGGGGTGTCCTGATGCAAAGGTGGGGAGAAGGGATCCTAATCCCTTCCTCTCCCATTCA CCCTGTGTAACAGGACCCCAAGGACCTGCCTCCCGGAAGTGCCTTAACCTAGAGGGTCGGGGAGGAGGTTGTGTCAC TGACTCAGGCTGCTCCTTCTCTAGTTTCCCCTCTCATCTGACCTTAGTTTGCTGCCATCAGTCTAGTGGTTTCGTGGT

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA55737

><subunit 1 of 1, 1141 aa, 1 stop

><MW: 124671, pI: 5.82, NX(S/T): 5

MAGARSRDPWGASGICYLFGSLLVELLFSRAVAFNLDVMGALRKEGEPGSLFGFSVALHROLOPR POSWLLVGAPOALALPGOQANRTGGLFACPLSLEETDCYRVDIDQGADMQKESKENQWLGVSVRS QGPGGKIVTCAHRYEARQRVDQILETRDMIGRCFVLSQDLAIRDELDGGEWKFCEGRPQGHEQFG FCOOGTAAAFSPDSHYLLFGAPGTYNWKGTARVELCAOGSADLAHLDDGPYEAGGEKEODPRLIP VPANSYFGFSIDSGKGLVRAEELSFVAGAPRANHKGAVVILRKDSASRLVPEVMLSGERLTSGFG YSLAVADLNSDGWPDLIVGAPYFFERQEELGGAVYVYLNQGGHWAGISPLRLCGSPDSMFGISLA VLGDLNODGFPDIAVGAPFDGDGKVFIYHGSSLGVVAKPSQVLEGEAVGIKSFGYSLSGSLDMDG NQYPDLLVGSLADTAVLFRARPILHVSHEVSIAPRSIDLEQPNCAGGHSVCVDLRVCFSYIAVPS SYSPTVALDYVLDADTDRRLRGQVPRVTFLSRNLEEPKHQASGTVWLKHQHDRVCGDAMFQLQEN VKDKLRAIVVTLSYSLQTPRLRRQAPGQGLPPVAPILNAHQPSTQRAEIHFLKQGCGEDKICQSN LQLVHARFCTRVSDTEFQPLPMDVDGTTALFALSGQPVIGLELMVTNLPSDPAQPQADGDDAHEA QLLVMLPDSLHYSGVRALDPAEKPLCLSNENASHVECELGNPMKRGAQVTFYLILSTSGISIETT ELEVELLLATISEOELHPVSARARVFIELPLSIAGMAIPQOLFFSGVVRGERAMQSERDVGSKVK YEVTVSNQGQSLRTLGSAFLNIMWPHEIANGKWLLYPMQVELEGGQGPGQKGLCSPRPNILHLDV DSRDRRRRELEPPEQQEPGERQEPSMSWWPVSSAEKKKNITLDCARGTANCVVFSCPLYSFDRAA VLHVWGRLWNSTFLEEYSAVKSLEVIVRANITVKSSIKNLMLRDASTVIPVMVYLDPMAVVAEGV PWWVILLAVLAGLLVLALLVLLLWKMGFFKRAKHPEATVPQYHAVKIPREDRQQFKEEKTGTILR NNWGSPRREGPDAHPILAADGHPELGPDGHPGPGTA

Important features:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 1040-1062

N-glycosylation sites.

amino acids 86-89, 746-749, 949-952, 985-988 and 1005-1008

Integrins alpha chain proteins.

amino acids 1064-1071, 384-408, 1041-1071, 317-346, 443-465, 385-407, 215-224, 634-647, 85-99, 322-346, 470-479, 442-466, 379-408 and 1031-1047

CAGCGAGTTGGCAGAGCAGGGCTGCATTTCCAGCAGGAGCTGCGAGCACAGTGCTGGCTCACAAC AGCTGCCGCGGCGTGGCTGCAGCCGGGGGGGGGGGCGGTCGGCGGTAATTTTCTGGATGATAAAC AATGGCTCACCACAATCTCTCAGTATGACAAGGAAGTCGGACAGTGGAACAAATTCCGAGACGAA GTAGAGGATGATTATTTCCGCACTTGGAGTCCAGGAAAACCCTTCGATCAGGCTTTAGATCCAGC TAAGGATCCATGCTTAAAGATGAAATGTAGTCGCCATAAAGTATGCATTGCTCAAGATTCTCAGA CTGCAGTCTGCATTAGTCACCGGAGGCTTACACACAGGATGAAAGAAGCAGGAGTAGACCATAGG CAGTGGAGGGTCCCATATTATCCACCTGCAAGCAGTGCCCAGTGGTCTATCCCAGCCCTGTTTG TGGTTCAGATGGTCATACCTACTCTTTTCAGTGCAAACTAGAATATCAGGCATGTGTCTTAGGAA AACAGATCTCAGTCAAATGTGAAGGACATTGCCCATGTCCTTCAGATAAGCCCACCAGTACAAGC AGAAATGTTAAGAGAGCATGCAGTGACCTGGAGTTCAGGGAAGTGGCAAACAGATTGCGGGACTG GTTCAAGGCCCTTCATGAAAGTGGAAGTCAAAACAAGAAGACAAAAACATTGCTGAGGCCTGAGA GAAGCAGATTCGATACCAGCATCTTGCCAATTTGCAAGGACTCACTTGGCTGGATGTTTAACAGA CTTGATACAAACTATGACCTGCTATTGGACCAGTCAGAGCTCAGAAGCATTTACCTTGATAAGAA TGAACAGTGTACCAAGGCATTCTTCAATTCTTGTGACACATACAAGGACAGTTTAATATCTAATA ATGAGTGGTGCTACTGCTTCCAGAGACAGCCAAGACCCACCTTGCCAGACTGAGCTCAGCAATATT CAGAAGCGGCAAGGGTAAAGAAGCTCCTAGGACAGTATATCCCCCTGTGTGATGAAGATGGTTA CTACAAGCCAACACAATGTCATGGCAGTGTTGGACAGTGCTGGTGTTGACAGATATGGAAATG AAGTCATGGGATCCAGAATAAATGGTGTTGCAGATTGTGCTATAGATTTTGAGATCTCCGGAGAT ATGTATACATT**TGA**TTGATGACAGTTGAAATCAATAAATTCTACATTTCTAATATTTTACAAAAAT GATAGCCTATTTAAAATTATCTTCTTCCCCAATAACAAAATGATTCTAAACCTCACATATATTTT GTATAATTATTTGAAAAATTGCAGCTAAAGTTATAGAACTTTATGTTTAAATAAGAATCATTTGC TTTGAGTTTTTATATTCCTTACACAAAAAGAAAATACATATGCAGTCTAGTCAGACAAAATAAAG TTTTGAAGTGCTACTATAATAATTTTTCACGAGAACAACTTTGTAAATCTTCCATAAGCAAAA TGACAGCTAGTGCTTGGGATCGTACATGTTAATTTTTTGAAAGATAATTCTAAGTGAAATTTAAA TTCCAAAGTAGCATCTTGCTAGACCTAGATGAGTCAGGATAACAGAGAGATACCACATGACTCCA AAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49829</pre>

><subunit 1 of 1, 436 aa, 1 stop

><MW: 49429, pI: 4.80, NX(S/T): 0

MLKVSAVLCVCAAAWCSQSLAAAAAVAAAGGRSDGGNFLDDKQWLTTISQYDKEVGQWNKFRDEV EDDYFRTWSPGKPFDQALDPAKDPCLKMKCSRHKVCIAQDSQTAVCISHRRLTHRMKEAGVDHRQ WRGPILSTCKQCPVVYPSPVCGSDGHTYSFQCKLEYQACVLGKQISVKCEGHCPCPSDKPTSTSR NVKRACSDLEFREVANRLRDWFKALHESGSQNKKTKTLLRPERSRFDTSILPICKDSLGWMFNRL DTNYDLLLDQSELRSIYLDKNEQCTKAFFNSCDTYKDSLISNNEWCYCFQRQQDPPCQTELSNIQ KRQGVKKLLGQYIPLCDEDGYYKPTQCHGSVGQCWCVDRYGNEVMGSRINGVADCAIDFEISGDF ASGDFHEWTDDEDDEDDIMNDEDEIEDDDEDEGDDDDGGDDHDVYI

Important features:

Signal peptide:

amino acids 1-16 ·

Leucine zipper pattern.

amino acids 246-267

N-myristoylation sites.

amino acids 357-362, 371-376 and 376-381

Thyroglobulin type-1 repeat proteins

amino acids 353-365 and 339-352

CAGACTCCAGATTTCCCTGTCAACCACGAGGGGTCCAGAGGGGAAACGCGGAGCGGAGACAACAGTACCTGACGCCTC TTTCAGCCCGGGATCGCCCCAGCAGGGATGGCCGACAAGATCTGGCTGCCCTTCCCCGTGCTCCTTCTGGCCGCTCTG ${\tt CCTCCGGTGCTGCCTGGGGCGGCC\overline{GGCTTCACACCTTCCCTCGATAGCGACTTCACCTTTACCCTTCCCGCCGGC}$ CAGAAGGAGTGCTTCTACCAGCCCATGCCCCTGAAGGCCTCGCTGGAGATCGAGTACCAAGTTTTAGATGGAGCAGGA TTAGATATTGATTTCCATCTTGCCTCTCCAGAAGGCAAAACCTTAGTTTTTGAACAAAGAAAATCAGATGGAGTTCAC ACTGTAGAGACTGAAGTTGGTGATTACATGTTCTGCTTTGACAATACATTCAGCACCATTTCTGAGAAGGTGATTTTC TTTGAATTAATCCTGGATAATATGGGAGAACAGGCACAAGAACAAGAAGATTGGAAGAATATATTACTGGCACAGAT ATATTGGATATGAAACTGGAAGACATCCTGGAATCCATCAACAGCATCAAGTCCAGACTAAGCAAAAGTGGGCACATA CAAATTCTGCTTAGAGCATTTGAAGCTCGTGATCGAAACATACAAGAAAGCAACTTTGATAGAGTCAATTTCTGGTCT ${\tt ATGGTTAATTTAGTGGTCATGGTGGTGTTCAGCCATTCAAGTTTATATGCTGAAGAGTCTGTTTGAAGATAAGAGG}$ AAAAGTAGAACTTAAAACTCCAAACTAGAGTACGTAACATTGAAAAATGAGGCATAAAAATGCAATAAACTGTTACAG ${ t TCAAGACCATTAATGGTCTTCTCCAAAATATTTTGAGATATAAAAGTAGGAAACAGGTATAATTTTAATGTGAAAATT$ AAGTCTTCACTTTCTGTGCAAGTAATCCTGCTGATCCAGTTGTACTTAAGTGTGTAACAGGAATATTTTGCAGAATAT AGGTTTAACTGAATGAAGCCATATTAATAACTGCATTTTCCTAACTTTGAAAAATTTTGCAAATGTCTTAGGTGATTT AAATAAATGAGTATTGGGCCTAATTGCAACACCAGTCTGTTTTTAACAGGTTCTATTACCCAGAACTTTTTTGTAAAT GCGGCAGTTACAAATTAACTGTGGAAGTTTTCAGTTTTAAGTTATAAATCACCTGAGAATTACCTAATGATGGATTGA ATAAATCTTTAGACTACAAAAGCCCAACTTTTCTCTATTTACATATGCATCTCCTATAATGTAAATAGAATAATAG CTTTGAAATACAATTAGGTTTTTGAGATTTTTATAACCAAATACATTTCAGTGTAACATATTAGCAGAAAGCATTAGT CTTTGTACTTTGCTTACATTCCCAAAAGCTGACATTTTCACGATTCTTAAAAACACAAAGTTACACTTACTAAAATTA GGACATGTTTTCTCTTTGAAATGAAGAATATGTTTAAAAGCTTCCTCCTCCATAGGGACACATTTTCTCTAACCCTT AACTAAAGTGTAGGATTTTAAAATTAAATGTGAGGTAAAATAAGTTTATTTTTAATAGTATCTGTCAAGTTAATATCT GTCAACAGTTAATAATCATGTTATGTTAATTTTTAACATGATTGCTGACTTGGATAATTCATTATTACCAGCAGTTATG AGAATCTGACTGGCTCATCATGACATCCTACTCATAACATAAATCAAAGGAGATGATTAATTTCCAGTTAGCTGGAAG AAACTTTGGCTGTAGGTTTTTATTTTCTACAAGAATTCTGGTTTGAATTATTTTTTGTAAGCAGGTACATTTTATAAAA GGCCTTTCTGAACACTTTATTTATTGATGTTGAAGTAAGGATTAGAAACATAGACTCCCAAGTTTTAAACACCTAAAT GTGAATAACCCATATATACAACAAAGTTTCTGCCATCTAGCTTTTTGAAGTCTATGGGGGGTCTTACTCAAGTACTAGT AATTTAACTTCATCATGAATGAACTATAATTTTTAAGTTATGCCCATTTATAACGTTGTTTATGACTACATTGTGAGT TAGAAACAAACTTAAAATTTGGGGTATAGAACCCCTCAACAGGTTAGTAATGCTGGAATTCTTGATGAGCAATAATGA TAACCAGAGAGTGATTTCATTTACACTCATAGTAGTATAAAAAAGAGATACATTTCCCTCTTAGGCCCCTGGGAGAAGA GCAGCTTAGATTTCCCTACTGGCAAGGTTTTTAAAAATGAGGTAAATGCCGTATATGATCAATTACCTTAATTGGCCA AGAAAATGCTTCAGGTGTCTAGGGGTATCCTCTGCAACACTTGCAGAACAAAGGTCAATAAGATCCTTGCCTATGAAT ACCCCTCCTTTTGCGCTGTTAAATTTGCAATGAGAAGCAAATTTACAGTACCATAACTAATAAAGCAGGGTACAGAT ATAAACTACTGCATCTTTTCTATAAAACTGTGATTAAGAATTCTACCTCTCCTGTATGGCTGTTACTGTACTGTACTC TCTGACTCCTTACCTAACAATGAATTTGTTACATAATCTTCTACATGTATGATTTGTGCCACTGATCTTAAACCTATG ATTCAGTAACTTCTTACCATATAAAAACGATAATTGCTTTATTTGGAAAAGAATTTAGGAATACTAAGGACAATTATT TTTATAGACAAAGTAAAAAGACAGATATTTAAGAGGCATAACCAAAAAAGCAAAACTTGTAAACAGAGTAAAAATCTT TAATATTTCTAAAGACATACTGTTTATCTGCTTCATATGCTTTTTTTAATTTCACTATTCCATTTCTAAATTAAAGTT ATGCTAAATTGAGTAAGCTGTTTATCACTTAACAGCTCATTTTGTCTTTTTCAATATACAAATTTTAAAAATACTACA ATATTTAACTAAGGCCCAACCGATTTCCATAATGTAGCAGTTACCGTGTTCACCTCACACTAAGGCCTAGAGTTTGCT CTGATATGCATTTGGATGATTAATGTTATGCTGTTCTTTCATGTGAATGTCAAGACATGGAGGGTGTTTGTAATTTTA TGGTAAAATTAATCCTTCTTACACATAATGGTGTCTTAAAATTGACAAAAAATGAGCACTTACAATTGTATGTCTCCT CAAATGAAGATTCTTTATGTGAAATTTTAAAAGACATTGATTCCGCATGTAAGGATTTTTCATCTGAAGTACAATAAT GCACAATCAGTGTTGCTCAAACTGCTTTATACTTATAAACAGCCATCTTAAATAAGCAACGTATTGTGAGTACTGATA TGTATATAATAAAAATTATCAAAGGAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52196</pre>

><subunit 1 of 1, 229 aa, 1 stop

><MW: 26017, pI: 4.73, NX(S/T): 0

MGDKIWLPFPVLLLAALPPVLLPGAAGFTPSLDSDFTFTLPAGQKECFYQPMPLKASLEIEYQVL DGAGLDIDFHLASPEGKTLVFEQRKSDGVHTVETEVGDYMFCFDNTFSTISEKVIFFELILDNMG EQAQEQEDWKKYITGTDILDMKLEDILESINSIKSRLSKSGHIQILLRAFEARDRNIQESNFDRV NFWSMVNLVVMVVVSAIQVYMLKSLFEDKRKSRT

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 195-217

N-myristoylation site.

amino acids 43-48

Tyrosine kinase phosphorylation site.

amino acids 55-62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965</pre>

<subunit 1 of 1, 175 aa, 1 stop

<MW: 19330, pI: 7.25, NX(S/T): 1

MLPPMALPSVSWMLLSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWMDAD LACQKRPSGKLVSVLSGAEGSFVSSLVRSISNSYSYIWIGLHDPTQGSEPDGDGWEWSSTDVMNY FAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56405
<subunit 1 of 1, 125 aa, 1 stop
<MW: 13115, pI: 5.90, NX(S/T): 1
MRGTRLALLALVLAACGELAPALRCYVCPEPTGVSDCVTIATCTTNETMCKTTLYSREIVYPFQG
DSTVTKSCASKCKPSDVDGIGQTLPVSCCNTELCNVDGAPALNSLHCGALTLLPLLSLRL</pre>

Important features:
Signal peptide:
amino acids 1-17

N-glycosylation site. amino acids 46-49

CTGCAGTCAGGACTCTGGGACCGCAGGGGGCTCCCGGACCCTGACTCTGCAGCCGAACCGGCACG TTCTGAGATGATGGCTCTGGGCGCAGCGGGAGCTACCCGGGTCTTTGTCGCGATGGTAGCGGCGG CTCTCGGCGCCACCTCTGCTGGGAGTGAGCGCCACCTTGAACTCGGTTCTCAATTCCAACGCT GCCGGGAATCCTGTACCCGGGCGGAATAAGTACCAGACCATTGACAACTACCAGCCGTACCCGT GCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGTCCCACCCGCGGAGGGGACGCA GGCGTGCAAATCTGTCTCGCCTGCAGGAAGCGCCGAAAACGCTGCATGCGTCACGCTATGTGCTG CCCCGGGAATTACTGCAAAAATGGAATATGTGTGTCTTCTGATCAAAATCATTTCCGAGGAGAAA TTGAGGAAACCATCACTGAAAGCTTTGGTAATGATCATAGCACCTTGGATGGGTATTCCAGAAGA ACCACCTTGTCTTCAAAAATGTATCACACCAAAGGACAAGAAGGTTCTGTTTGTCTCCGGTCATC AGACTGTGCCTCAGGATTGTGTTGTGCTAGACACTTCTGGTCCAAGATCTGTAAACCTGTCCTGA AAGAAGGTCAAGTGTGTACCAAGCATAGGAGAAAAGGCTCTCATGGACTAGAAATATTCCAGCGT TGTTACTGTGGAGAAGGTCTGTCTTGCCGGATACAGAAAGATCACCATCAAGCCAGTAATTCTTC TAGGCTTCACACTTGTCAGAGACACTAAACCAGCTATCCAAATGCAGTGAACTCCTTTTATATAA TAGATGCTATGAAAACCTTTTATGACCTTCATCAACTCAATCCTAAGGATATACAAGTTCTGTGG TTTCAGTTAAGCATTCCAATAACACCTTCCAAAAACCTGGAGTGTAAGAGCTTTGTTTCTTTATG GAACTCCCCTGTGATTGCAGTAAATTACTGTATTGTAAATTCTCAGTGTGGCACTTACCTGTAAA TGCAATGAAACTTTTAATTATTTTTCTAAAGGTGCTGCACTGCCTATTTTTCCTCTTGTTATGTA AATTTTTGTACACATTGATTGTTATCTTGACTGACAAATATTCTATATTGAACTGAAGTAAATCA TTTCAGCTTATAGTTCTTAAAAGCATAACCCTTTACCCCATTTAATTCTAGAGTCTAGAACGCAA GGATCTCTTGGAATGACAAATGATAGGTACCTAAAATGTAACATGAAAATACTAGCTTATTTTCT GAAATGTACTATCTTAATGCTTAAATTATATTTCCCTTTAGGCTGTGATAGTTTTTGAAATAAAA TTTAACATTTAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57530</pre>

<subunit 1 of 1, 266 aa, 1 stop

<MW: 28672, pI: 8.85, NX(S/T): 1

MMALGAAGATRVFVAMVAAALGGHPLLGVSATLNSVLNSNAIKNLPPPLGGAAGHPGSAVSAAPG
ILYPGGNKYQTIDNYQPYPCAEDEECGTDEYCASPTRGGDAGVQICLACRKRRKRCMRHAMCCPG
NYCKNGICVSSDQNHFRGEIEETITESFGNDHSTLDGYSRRTTLSSKMYHTKGQEGSVCLRSSDC
ASGLCCARHFWSKICKPVLKEGQVCTKHRRKGSHGLEIFQRCYCGEGLSCRIQKDHHQASNSSRL
HTCQRH

Important features:

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 256-259

Fungal Zn(2)-Cys(6) binuclear cluster domain amino acids 110-126

GAGGAACCTACCGGTACCGGCCGCGCGCTGGTAGTCGCCGGTGTGGCTCCACCCAATCCCGTGCGCCGCGGCTG GGCCGTCGGAGAGTGCGTGTGCTTCTCTCCTGCACGCGGTGCTTGGGCTCGGCCAGGCGGGGTCCGCCAGGGTTT GAGGATGGGGGAGTAGCTACAGGAAGCGACCCCGCGATGGCAAGGTATATTTTTGTGGAATGAAAAGGAAGTATTAGA AATGAGCTGAAGACCATTCACAGATTAATATTTTTGGGGACAGATTTGTGATGCTTGATTCACCCCTTGAAGTAATGTA GACAGAAGTTCTCAAATTTGCATATTACATCAACTGGAACCAGCAGTGAATCTTAATGTTCACTTAAATCAGAACTTG CATAAGAAAGAGAATGGGAGTCTGGTTAAATAAAGATGACTATATCAGAGACTTGAAAAAGGATCATTCTCTGTTTTCT GATAGTGTATATGGCCATTTTAGTGGGCACAGATCAGGATTTTTACAGTTTACTTGGAGTGTCCAAAACTGCAAGCAG TAGAGAAATAAGACAAGCTTTCAAGAAATTGGCATTGAAGTTACATCCTGATAAAAACCCGAATAACCCAAATGCACA TGGCGATTTTTTAAAAATAAATAGAGCATATGAAGTACTCAAAGATGAAGATCTACGGAAAAAGTATGACAAATATGG AGAAAAGGGACTTGAGGATAATCAAGGTGGCCAGTATGAAAGCTGGAACTATTATCGTTATGATTTTGGTATTTATGA TGATGATCCTGAAATCATAACATTGGAAAGAAGAAGAATTTGATGCTGCTGTTAATTCTGGAGAACTGTGGTTTGTAAA TTTTTACTCCCCAGGCTGTTCACACTGCCATGATTTAGCTCCCACATGGAGAGACTTTGCTAAAGAAGTGGATGGGTT ACTTCGAATTGGAGCTGTTAACTGTGGTGATGATAGAATGCTTTGCCGAATGAAAGGAGTCAACAGCTATCCCAGTCT GCAGCATGTTAGAAGTACAGTGACAGAACTTTGGACAGGAAATTTTGTCAACTCCATACAAACTGCTTTTGCTGCTGG TATTGGCTGGCTGATCACTTTTTGTTCAAAAGGAGGAGATTGTTTGACTTCACAGACACGACTCAGGCTTAGTGGCAT ${\tt GTTGTTTCTCAACTCATTGGATGCTAAAGAAATATATTTGGAAGTAATACATAATCTTCCAGATTTTGAACTACTTTC}$ GGCAAACACACTAGAGGATCGTTTGGCTCATCATCGGTGGCTGTTATTTTTTCATTTTGGAAAAAATGAAAATTCAAA TGATCCTGAGCTGAAAAAACTAAAAACTCTACTTAAAAATGATCATATTCAAGTTGGCAGGTTTGACTGTTCCTCTGC ACCAGACATCTGTAGTAATCTGTATGTTTTTCAGCCGTCTCTAGCAGTATTTAAAGGACAAGGAACCAAAGAATATGA TGGACCTCAAAATTTTCCTGCCAATGACAAAGAACCATGGCTTGTTGATTTCTTTGCCCCCTGGTGTCCACCATGTCG AGCTTTACTACCAGAGTTACGAAGAGCATCAAATCTTCTTTATGGTCAGCTTAAGTTTGGTACACTAGATTGTACAGT TCATGAGGGACTCTGTAACATGTATAACATTCAGGCTTATCCAACAACAGTGGTATTCAACCAGTCCAACATTCATGA GTATGAAGGACATCACTCTGCTGAACAAATCTTGGAGTTCATAGAGGATCTTATGAATCCTTCAGTGGTCTCCCTTAC ACCCACCACCTTCAACGAACTAGTTACACAAAGAAAACACAACGAAGTCTGGATGGTTGATTTCTATTCTCCGTGGTG TCATCCTTGCCAAGTCTTAATGCCAGAATGGAAAAGAATGGCCCGGACATTAACTGGACTGATCAACGTGGGCAGTAT AGATTGCCAACAGTATCATTCTTTTTGTGCCCAGGAAAACGTTCAAAGATACCCTGAGATAAGATTTTTTCCCCCAAA ATCAAATAAAGCTTATCAGTATCACAGTTACAATGGTTGGAATAGGGATGCTTATTCCCTGAGAATCTGGGGTCTAGG ATTTTTACCTCAAGTATCCACAGATCTAACACCTCAGACTTTCAGTGAAAAAGTTCTACAAGGGAAAAATCATTGGGT GATTGATTTCTATGCTCCTTGGTGTGGACCTTGCCAGAATTTTGCTCCAGAATTTGAGCTCTTGGCTAGGATGATTAA AGGAAAAGTGAAAGCTGGAAAAGTAGACTGTCAGGCTTATGCTCAGACATGCCAGAAAGCTGGGATCAGGGCCTATCC AACTGTTAAGTTTTATTCTACGAAAGAGCAAAGAGAAATTTTCAAGAAGAGCAGATAAATACCAGAGATGCAAAAGC AATCGCTGCCTTAATAAGTGAAAAATTGGAAACTCTCCGAAATCAAGGCAAGAGGAATAAGGATGAACTT**TGA**TAATG $\mathtt{TTGAAGATGAAGAAAAGTTTAAAAGAAATTCTGACAGATGACATCAGAAGACACCTATTTAGAATGTTACATTTATG$ ATGGGAATGAACATTATCTTAGACTTGCAGTTGTACTGCCAGAATTATCTACAGCACTGGTGTAAAAGAAGGGT $\tt CTGCAAACTTTTCTGTAAAGGGCCGGTTTATAAATATTTTAGACTTTGCAGGCTATAATATATGGTTCACACATGAG$ AACAAGAATAGAGTCATCATGTATTCTTTGTTATTTGCTTTTAACAACCTTTAAAAAAATATTAAAAACGATTCTTAGCT CAGAGCCATACAAAAGTAGGCTGGATTCAGTCCATGGACCATAGATTGCTGTCCCCCTCGACGGACTTATAATGTTTC AGGTGGCTGGCTTGAACATGAGTCTGCTGTGCTATCTACATAAATGTCTAAGTTGTATAAAGTCCACTTTCCCTTCAC GTTTTTTGGCTGACCTGAAAAGAGGTAACTTAGTTTTTGGTCACTTGTTCTCCTAAAAATGCTATCCCTAACCATATA CTTCATTGTTTTCTTTCCTTCTCA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56439</pre>

<subunit 1 of 1, 747 aa, 1 stop

<MW: 86127, pI: 7.46, NX(S/T): 2

MGVWLNKDDYIRDLKRIILCFLIVYMAILVGTDQDFYSLLGVSKTASSREIRQAFKKLALKLHPD
KNPNNPNAHGDFLKINRAYEVLKDEDLRKKYDKYGEKGLEDNQGGQYESWNYYRYDFGIYDDDPE
IITLERREFDAAVNSGELWFVNFYSPGCSHCHDLAPTWRDFAKEVDGLLRIGAVNCGDDRMLCRM
KGVNSYPSLFIFRSGMAPVKYHGDRSKESLVSFAMQHVRSTVTELWTGNFVNSIQTAFAAGIGWL
ITFCSKGGDCLTSQTRLRLSGMLFLNSLDAKEIYLEVIHNLPDFELLSANTLEDRLAHHRWLLFF
HFGKNENSNDPELKKLKTLLKNDHIQVGRFDCSSAPDICSNLYVFQPSLAVFKGQGTKEYEIHHG
KKILYDILAFAKESVNSHVTTLGPQNFPANDKEPWLVDFFAPWCPPCRALLPELRRASNLLYGQL
KFGTLDCTVHEGLCNMYNIQAYPTTVVFNQSNIHEYEGHHSAEQILEFIEDLMNPSVVSLTPTTF
NELVTQRKHNEVWMVDFYSPWCHPCQVLMPEWKRMARTLTGLINVGSIDCQQYHSFCAQENVQRY
PEIRFFPPKSNKAYQYHSYNGWNRDAYSLRIWGLGFLPQVSTDLTPQTFSEKVLQGKNHWVIDFY
APWCGPCQNFAPEFELLARMIKGKVKAGKVDCQAYAQTCQKAGIRAYPTVKFYFYERAKRNFQEE
QINTRDAKAIAALISEKLETLRNQGKRNKDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 744-747

Cytochrome c family heme-binding site signature.

amino acids 158-163

Nt-dnaJ domain signature.

amino acids 77-96

N-glycosylation site.

amino acids 484-487

ATGAACATCATCCTAGAAATCCTTCTGCTTCTGATCACCATCATCTACTCCTACTTGGAGTCGTT GGTGAAGTTTTCATTCCTCAGAGGAGAAAATCTGTGGCTGGGGAGATTGTTCTCATTACTGGAG CTGGGCATGGAATAGGCAGGCAGACTACTTATGAATTTGCAAAACGACAGAGCATATTGGTTCTG TGGGATATTAATAAGCGCGGTGTGGAGGAAACTGCAGCTGAGTGCCGAAAACTAGGCGTCACTGC GCATGCGTATGTGGTAGACTGCAGCAACAGAGAAGAGATCTATCGCTCTCTAAATCAGGTGAAGA AAGAAGTGGGTGATGTAACAATCGTGGTGAATAATGCTGGGACAGTATATCCAGCCGATCTTCTC AGCACCAAGGATGAAGAGATTACCAAGACATTTGAGGTCAACATCCTAGGACATTTTTTGGATCAC AAAAGCACTTCTTCCATCGATGATGGAGAGAAATCATGGCCACATCGTCACAGTGGCTTCAGTGT GCGGCCACGAAGGGATTCCTTACCTCATCCCATATTGTTCCAGCAAATTTGCCGCTGTTGGCTTT CACAGAGGTCTGACATCAGAACTTCAGGCCTTGGGAAAAACTGGTATCAAAACCTCATGTCTCTG CCCAGTTTTTGTGAATACTGGGTTCACCAAAAATCCAAGCACAAGATTATGGCCTGTATTGGAGA CAGATGAAGTCGTAAGAAGTCTGATAGATGGAATACTTACCAATAAGAAAATGATTTTTGTTCCA TCGTATATCAATATCTTTCTGAGACTACAGAAGTTTCTTCCTGAACGCGCCTCAGCGATTTTAAA TCGTATGCAGAATATTCAATTTGAAGCAGTGGTTGGCCACAAAATCAAAATGAAA**TGA**ATAAATA AGCTCCAGCCAGAGATGTATGCATGATAATGATATGAATAGTTTCGAATCAATGCTGCAAAGCTT TATTTCACATTTTTCAGTCCTGATAATATTAAAAACATTGGTTTGGCACTAGCAGCAGTCAAAC GAACAAGATTAATTACCTGTCTTCCTGTTTCTCAAGAATATTTACGTAGTTTTTCATAGGTCTGT TTTTCCTTTCATGCCTCTTAAAAACTTCTGTGCTTACATAAACATACTTAAAAGGTÍTTCTTTAA GATATTTTATTTTCCATTTAAAGGTGGACAAAAGCTACCTCCCTAAAAGTAAATACAAAGAGAA CTTATTTACACAGGGAAGGTTTAAGACTGTTCAAGTAGCATTCCAATCTGTAGCCATGCCACAGA CAACCTGGACATATTTTAAGATTCAGCATTTGAAAGATTTCCCTAGCCTCTTCCTTTTTCATTAG CCCAAAACGGTGCAACTCTATTCTGGACTTTATTACTTGATTCTGTCTTCTGTATAACTCTGAAG TCCACCAAAAGTGGACCCTCTATATTTCCTCCCTTTTTATAGTCTTATAAGATACATTATGAAAG GTGACCGACTCTATTTTAAATCTCAGAATTTTAAGTTCTAGCCCCATGATAACCTTTTTCTTTGT AATTTATGCTTTCATATATCCTTGGTCCCAGAGATGTTTAGACAATTTTAGGCTCAAAAATTAAA GCTAACACAGGAAAAGGAACTGTACTGGCTATTACATAAGAAACAATGGACCCAAGAGAAGAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56409</pre>

<subunit 1 of 1, 300 aa, 1 stop

<MW: 33655, pI: 9.31, NX(S/T): 1

MNIILEILLLITIIYSYLESLVKFFIPQRRKSVAGEIVLITGAGHGIGRQTTYEFAKRQSILVL WDINKRGVEETAAECRKLGVTAHAYVVDCSNREEIYRSLNQVKKEVGDVTIVVNNAGTVYPADLL STKDEEITKTFEVNILGHFWITKALLPSMMERNHGHIVTVASVCGHEGIPYLIPYCSSKFAAVGF HRGLTSELQALGKTGIKTSCLCPVFVNTGFTKNPSTRLWPVLETDEVVRSLIDGILTNKKMIFVP SYINIFLRLQKFLPERASAILNRMQNIQFEAVVGHKIKMK

Important features:

Signal peptide:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-33 and 58-61

Short-chain alcohol dehydrogenase family protein amino acids 165-202, 37-49, 112-122 and 210-219

CGGCGGCGGCTGCGGGCGCGAGGTGAGGGGCGCGAGGTGAGGGCGCGAGGTTCCCAGCAGGATG ACCAAGGCCCGGCTGTTCCGGCTGTGGCTGGTGCTGGGGTCGGTGTTCATGATCCTGCTGATCAT CGGGGCCGCCGCCCACGCCCGGGCCGGACAGGGACAGGGAGCTCACGGCCGACTCCGATGTC GACGAGTTTCTGGACAAGTTTCTCAGTGCTGGCGTGAAGCAGAGCGACCTTCCCAGAAAGGAGAC GGAGCAGCCGCCTGCGCCGGGGAGCATGGAGGAGAGCGTGAGAGGCTACGACTGGTCCCCGCGCG ACGCCCGGCGCAGCCCAGACCAGGCCGGCAGCAGGCGGAGCGAGCGTGCTGCGGGGCTTC TGCGCCAACTCCAGCCTGGCCTTCCCCACCAAGGAGCGCGCATTCGACGACATCCCCAACTCGGA GCTGAGCCACCTGATCGTGGACGACCGGCACGGGGCCATCTACTGCTACGTGCCCAAGGTGGCCT GCACCAACTGGAAGCGCGTGATGATCGTGCTGAGCGGAAGCCTGCTGCACCGCGGTGCGCCCTAC CGCGACCCGCTGCGCATCCCGCGCGAGCACGTGCACAACGCCAGCGCGCACCTGACCTTCAACAA GTTCTGGCGCCGCTACGGGAAGCTCTCCCGCCACCTCATGAAGGTCAAGCTCAAGAAGTACACCA AGTTCCTCTTCGTGCGCGACCCCTTCGTGCGCCTGATCTCCGCCTTCCGCAGCAAGTTCGAGCTG GAGAACGAGGAGTTCTACCGCAAGTTCGCCGTGCCCATGCTGCGGCTGTACGCCAACCACACCAC $\tt CCTGCCGGCTCGGCGCGAGGCCTTCCGCGCTGGCCTCAAGGTGTCCTTCGCCAACTTCATCC$ AGTACCTGCTGGACCCGCACACGGAGAAGCTGGCGCCCTTCAACGAGCACTGGCGGCAGGTGTAC CGCCTCTGCCACCCGTGCCAGATCGACTACGACTTCGTGGGGAAGCTGGAGACTCTGGACGAGGA CGCCGCGCAGCTGCAGCTACTCCAGGTGGACCGGCAGCTCCGCTTCCCCCCGAGCTACCGGA ACAGGACCGCCAGCAGCTGGGAGGAGGACTGGTTCGCCAAGATCCCCCTGGCCTGGAGGCAGCAG CTGTATAAACTCTACGAGGCCGACTTTGTTCTCTTCGGCTACCCCAAGCCCGAAAACCTCCTCCG TTTTTATGACCTACGATTTTGCAATCTGGGCTTCTTGTTCACTCCACTGCCTCTATCCATTGAGT ACTGTATCGATATTGTTTTTTAAGATTAATATTTTCAGGTATTTAATACGA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56112</pre>

<subunit 1 of 1, 414 aa, 1 stop

<MW: 48414, pI: 9.54, NX(S/T): 4

MTKARLFRLWLVLGSVFMILLIIVYWDSAGAAHFYLHTSFSRPHTGPPLPTPGPDRDRELTADSD VDEFLDKFLSAGVKQSDLPRKETEQPPAPGSMEESVRGYDWSPRDARRSPDQGRQQAERRSVLRG FCANSSLAFPTKERAFDDIPNSELSHLIVDDRHGAIYCYVPKVACTNWKRVMIVLSGSLLHRGAP YRDPLRIPREHVHNASAHLTFNKFWRRYGKLSRHLMKVKLKKYTKFLFVRDPFVRLISAFRSKFE LENEEFYRKFAVPMLRLYANHTSLPASAREAFRAGLKVSFANFIQYLLDPHTEKLAPFNEHWRQV YRLCHPCQIDYDFVGKLETLDEDAAQLLQLLQVDRQLRFPPSYRNRTASSWEEDWFAKIPLAWRQ OLYKLYEADFVLFGYPKPENLLRD

Important features:

Signal peptide:

amino acids 1-31

N-glycosylation sites.

amino acids 134-137, 209-212, 280-283 and 370-373

TNFR/NGFR family cysteine-rich region protein amino acids 329-332

TCGGGCCAGAATTCGGCACGAGGCGGCACGAGGCGCCTCACGGGGCTTTGGAGGTGAAAG AGGCCCAGAGTAGAGAGAGAGAGAGACCGACGTACACGGGATGCTACGGGAACGCGCTATGCCG GGAAGGTGGTGGTCGTGACCGGGGGCGGGCGCGCATCGGAGCTGGGATCGTGCGCGCCTTCGTG AACAGCGGGGCCCGAGTGGTTATCTGCGACAAGGATGAGTCTGGGGGCCGGGCCCTGGAGCAGGA GCTCCCTGGAGCTGTCTTTATCCTCTGTGATGTGACTCAGGAAGATGATGTGAAGACCCTGGTTT CCACAGAGGCCTGAGGAGACCTCTGCCCAGGGATTCCGCCAGCTGCTGGAGCTGAACCTACTGGG GACGTACACCTTGACCAAGCTCGCCCTCCCCTACCTGCGGAAGAGTCAAGGGAATGTCATCAACA TCTCCAGCCTGGTGGGGGCAATCGGCCAGGCCCAGGCAGTTCCCTATGTGGCCACCAAGGGGGCA GTAACAGCCATGACCAAAGCTTTGGCCCTGGATGAAAGTCCATATGGTGTCCGAGTCAACTGTAT CTCCCCAGGAAACATCTGGACCCCGCTGTGGGAGGAGCTGGCAGCCTTAATGCCAGACCCTAGGG CCACAATCCGAGAGGGCATGCTGGCCCAGCCACTGGGCCGCATGGGCCAGCCCGCTGAGGTCGGG GCTGCGGCAGTGTTCCTGGCCTCCGAAGCCAACTTCTGCACGGGCATTGAACTGCTCGTGACGGG GGGTGCAGAGCTGGGGTACGGGTGCAAGGCCAGTCGGAGCACCCCCGTGGACGCCCCCGATATCC $\tt CTTCCTGATTTCTCTCATTTCTACTTGGGGCCCCCTTCCTAGGACTCTCCCACCCCAAACTCCAA$ CCTGTATCAGATGCAGCCCCAAGCCCTTAGACTCTAAGCCCAGTTAGCAAGGTGCCGGGTCACC CTGCAGGTTCCCATAAAAACGATTTGCAGCC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56045
<subunit 1 of 1, 270 aa, 1 stop
<MW: 28317, pI: 6.00, NX(S/T): 1

MATGTRYAGKVVVVTGGGRGIGAGIVRAFVNSGARVVICDKDESGGRALEQELPGAVFILCDVTQ
EDDVKTLVSETIRRFGRLDCVVNNAGHHPPPQRPEETSAQGFRQLLELNLLGTYTLTKLALPYLR
KSQGNVINISSLVGAIGQAQAVPYVATKGAVTAMTKALALDESPYGVRVNCISPGNIWTPLWEEL
AALMPDPRATIREGMLAQPLGRMGQPAEVGAAAVFLASEANFCTGIELLVTGGAELGYGCKASRS
TPVDAPDIPS</pre>

Important features: N-glycosylation site. amino acids 138-141

Short-chain alcohol dehydrogenase family protein amino acids 10-22, 81-91, 134-171 and 176-185

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59294</pre>

<subunit 1 of 1, 180 aa, 1 stop

<MW: 20437, pI: 9.58, NX(S/T): 1

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRPGPLAPGPHQVPLDLVSRMKPYARMEEYERN IEEMVAQLRNSSELAQRKCEVNLQLWMSNKRSLSPWGYSINHDPSRIPVDLPEARCLCLGCVNPF TMQEDRSMVSVPVFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 75-78

Homologous region to IL-17

amino acids 96-180.

GCGCCGCCAGGCGTAGGCGGGGGGCCCTTGCGTCTCCCGCTTCCTTGAAAAACCCGGCGGCGA AACATGCCGGCTGCGCCCCGCAGCTAACGGCGCTCCTGGCCGCCTGGATCGCGGCTGT GGCGGCGACGCCCGAGGAGGCCGCGCTGCCGCGGAGCAGAGCCGGGTCCAGCCCATGA CCGCCTCCAACTGGACGCTGGTGATGGAGGCGAGTGGATGCTGAAATTTTACGCCCCATGGTGT CCATCCTGCCAGCAGACTGATTCAGAATGGGAGGCTTTTGCAAAGAATGGTGAAATACTTCAGAT CAGTGTGGGGAAGGTAGATGTCATTCAAGAACCAGGTTTGAGTGGCCGCTTCTTTGTCACCACTC TCCCAGCATTTTTTCATGCAAAGGATGGGATATTCCGCCGTTATCGTGGCCCAGGAATCTTCGAA CCCAGCTTCTCTAACGATGTCTGGAATGGCTGGTCTTTTTAGCATCTCTGGCAAGATATGGCATC TTCACAACTATTTCACAGTGACTCTTGGAATTCCTGCTTGGTGTTCTTATGTGTTTTTCGTCATA GCCACCTTGGTTTTTTGGCCTTTTTATGGGTCTGGTCTTGGTGGTAATATCAGAATGTTTCTATGT GCCACTTCCAAGGCATTTATCTGAGCGTTCTGAGCAGAATCGGAGATCAGAGGAGGCTCATAGAG CTGAACAGTTGCAGGATGCGGAGGAGAAAAAGATGATTCAAATGAAGAAGAAAACAAAGACAGC CTTGTAGATGAAGAAGAAGAAGAAGATCTTGGCGATGAGGATGAAGCAGAGGAAGAAGAAGA GGAGGACAACTTGGCTGCTGGTGGATGAGGAGAGAGTGAGGCCAATGATCAGGGGCCCCCAG GAGAGGACGTGTGACCCGGGAGGAGTAGAGCCTGAGGAGGCTGAAGAAGGCATCTCTGAGCAA CCCTGCCCAGCTGACACAGAGGTGGTGGAAGACTCCTTGAGGCAGCGTAAAAGTCAGCATGCTGA CAAGGGACTG**TAG**ATTTAATGATGCGTTTTCAAGAATACACACCAAAACAATATGTCAGCTTCCC TTTGGCCTGCAGTTTGTACCAAATCCTTAATTTTTCCTGAATGAGCAAGCTTCTCTTAAAAGATG CTCTCTAGTCATTTGGTCTCATGGCAGTAAGCCTCATGTATACTAAGGAGAGTCTTCCAGGTGTG ACAATCAGGATATAGAAAAACAAACGTAGTGTTGGGATCTGTTTGGAGACTGGGATGGGAACAAG TTCATTTACTTAGGGGTCAGAGAGTCTCGACCAGAGGAGGCCATTCCCAGTCCTAATCAGCACCT TCCAGAGACAAGGCTGCAGGCCCTGTGAAATGAAAGCCAAGCAGGAGCCTTGGCTCCTGAGCATC CAGGAAACATCAGGCACCACAGTGCATGAAAAATCTTTCACAGCTAGAAATTGAAAGGGCCTTGG GTATAGAGAGCAGCTCAGAAGTCATCCCAGCCCTCTGAATCTCCTGTGCTATGTTTTATTTCTTA CCTTTAATTTTTCCAGCATTTCCACCATGGGCATTCAGGCTCTCCACACTCTTCACTATTATCTC GGTTTAGATAATCAGTAACCCATAACCCCTGAAGCTGTGACTGCCAAACATCTCAAATGAAATGTT TCCAAAATATAGTTGTTGTTGATTTTTTTTTAAGTTTTCTAAGCAATATTTTTCAAGCCAGAAGT CCTCTAAGTCTTGCCAGTACAAGGTAGTCTTGTGAAGAAAAGTTGAATACTGTTTTGTTTTCATC TCAAGGGGTTCCCTGGGTCTTGAACTACTTAATAATAACTAAAAAACCACTTCTGATTTTCCTT CAGTGATGTGCTTTTGGTGAAAGAATTAATGAACTCCAGTACCTGAAAGTGAAAGATTTGATTTT GTTTCCATCTTCTGTAATCTTCCAAAGAATTATATCTTTGTAAATCTCTCAATACTCAATCTACT GTAAGTACCCAGGGAGGCTAATTTCTTT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56433</pre>

<subunit 1 of 1, 349 aa, 1 stop

<MW: 38952, pI: 4.34, NX(S/T): 1

MAGGRCGPQLTALLAAWIAAVAATAGPEEAALPPEQSRVQPMTASNWTLVMEGEWMLKFYAPWCP SCQQTDSEWEAFAKNGEILQISVGKVDVIQEPGLSGRFFVTTLPAFFHAKDGIFRRYRGPGIFED LQNYILEKKWQSVEPLTGWKSPASLTMSGMAGLFSISGKIWHLHNYFTVTLGIPAWCSYVFFVIA TLVFGLFMGLVLVVISECFYVPLPRHLSERSEQNRRSEEAHRAEQLQDAEEEKDDSNEEENKDSL VDDEEEKEDLGDEDEAEEEEEEDNLAAGVDEERSEANDQGPPGEDGVTREEVEPEEAEEGISEQP CPADTEVVEDSLRQRKSQHADKGL

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 191-211

N-glycosylation site.

amino acids 46-49

Thioredoxin family proteins. (homologous region to disulfide isomerase) amino acids 56-72

Flavodoxin proteins

amino acids 173-187

ATCTGGTTGAACTACTTAAGCTTAATTTGTTAAACTCCGGTAAGTACCTAGCCCACATGATTTGA CTATATCTATTCAGGGGCTCTCAAGAACA**ATG**GAATATCATCCTGATTTAGAAAATTTGGATGAA GATGGATATACTCAATTACACTTCGACTCTCAAAGCAATACCAGGATAGCTGTTGTTTCAGAGAA AGGATCGTGTGCTGCATCTCCTTCGCGCCCTCATTGCTGTAATTTTGGGAATCCTATGCTTGG TAATACTGGTGATAGCTGTGGTCCTGGGTACCATGGGGGTTCTTTCCAGCCCTTGTCCTCCTAAT TGGATTATATATGAGAAGAGCTGTTATCTATTCAGCATGTCACTAAATTCCTGGGATGGAAGTAA AAGACAATGCTGGCAACTGGGCTCTAATCTCCTAAAGATAGACAGCTCAAATGAATTGGGATTTA TAGTAAAACAAGTGTCTTCCCAACCTGATAATTCATTTTGGATAGGCCTTTCTCGGCCCCAGACT GAGGTACCATGGCTCTGGGAGGATGGATCAACATTCTCTTCTAACTTATTTCAGATCAGAACCAC TGTGTAGTGTGCCCTCATATAGTATTTGTGAGAAGAAGTTTTCAATG**TAA**GAGGAAGGGTGGAGA AGGAGAGAAATATGTGAGGTAGTAAGGAGGACAGAAAACAGAACAGAAAAGAGTAACAGCTGA GGTCAAGATAAATGCAGAAAATGTTTAGAGAGCTTGGCCAACTGTAATCTTAACCAAGAAATTGA AGGGAGAGGCTGTGATTTCTGTATTTGTCGACCTACAGGTAGGCTAGTATTATTTTTCTAGTTAG TTGAGATAGGGTCTCACTTTGTTACCCAGGCTGGAGTGCAGTGGCACAATCTCGACTCACTGCAG CTATCTCTCGCCTCAGCCCCTCAAGTAGCTGGGACTACAGGTGCATGCCACCATGCCAGGCTAAT ${\tt TTTTGGTGTTTTTTGTAGAGACTGGGTTTTGCCATGTTGACCAAGCTGGTCTCTAACTCCTGGGC$ TTAAGTGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGATGTGAGCCACCACACCTG GCCCCAAGCTTGAATTTTCATTCTGCCATTGACTTGGCATTTACCTTGGGTAAGCCATAAGCGAA TCTTAATTTCTGGCTCTATCAGAGTTGTTTCATGCTCAACAATGCCATTGAAGTGCACGGTGTGT TGCCACGATTTGACCCTCAACTTCTAGCAGTATATCAGTTATGAACTGAGGGTGAAATATATTTC TGAATAGCTAAATGAAGAAATGGGAAAAAATCTTCACCACAGTCAGAGCAATTTTATTATTTTCA TCAGTATGATCATATTATGATTATCATCTTAGTAAAAAGCAGGAACTCCTACTTTTTCTTTATC TTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAGTGCAACGGCACGATCTCGGCTCACCGC AACCTCCGCCCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGT CAGGCACCACCACCCGGCTAATTTTGTATTTTTTAGTAGAGACAGGGTTTCTCCATGTCGGT ACAGGCGTGAGCCACTGCACCCAGCCTAGAATCTTGTATAATATGTAATTGTAGGGAAACTGCTC TCATAGGAAAGTTTTCTGCTTTTTAAATACAAAAATACATAAAAATACATAAAATCTGATGATGA ATATAAAAAAGTAACCAACCTCATTGGAACAAGTATTAACATTTTGGAATATGTTTTATTAGTTT TGTGATGTACTGTTTTACAATTTTTACCATTTTTTTCAGTAATTACTGTAAAATGGTATTATTGG AATGAAACTATATTTCCTCATGTGCTGATTTGTCTTATTTTTTTCATACTTTCCCACTGGTGCTA TTTTTATTTCCAATGGATATTTCTGTATTACTAGGGAGGCATTTACAGTCCTCTAATGTTGATTA ATATGTGAAAAGAAATTGTACCAATTTTACTAAATTATGCAGTTTAAAAATGGATGATTTTATGTT AAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA53912</pre>

<subunit 1 of 1, 201 aa, 1 stop</pre>

<MW: 22563, pI: 4.87, NX(S/T): 1

MEYHPDLENLDEDGYTQLHFDSQSNTRIAVVSEKGSCAASPPWRLIAVILGILCLVILVIAVVLG TMGVLSSPCPPNWIIYEKSCYLFSMSLNSWDGSKRQCWQLGSNLLKIDSSNELGFIVKQVSSQPD NSFWIGLSRPQTEVPWLWEDGSTFSSNLFQIRTTATQENPSPNCVWIHVSVIYDQLCSVPSYSIC EKKFSM

Important features:

Type II transmembrane domain:

amino acids 45-65

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 197-200

N-myristoylation sites.

amino acids 35-40 and 151-156

Homologous region to LDL receptor amino acids 34-67 and 70-200.

GGAAGGGGAGGAGCACACAGGCACAGGCCGGTGAGGGACCTGCCCAGACCTGGAGGGTCTCGCTCTGTCACAC AGGCTGGAGTGCAGTGTGTGATCTTGGCTCATCGTAACCTCCACCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCC TCCCGAGTAGCTGGGATTACAGGTGGTGACTTCCAAGAGTGACTCCGTCGGAGGAAAATGACTCCCCAGTCGCTGCTG $CAGACGACACTGTTCCTGCTGAGTCTGCTCTTCCTGGTCCAAGGTGCCCACGGCAGG\overline{GGC}CACAGGGAAGACTTTCGC$ TTCTGCAGCCAGCGGAACCAGACACACAGGAGCAGCCTCCACTACAAACCCACACCAGACCTGCGCATCTCCATCGAG AACTCCGAAGAGGCCCTCACAGTCCATGCCCCTTTCCCTGCAGCCCACCCTGCTTCCCGATCCTTCCCTGACCCCAGG GGCCTCTACCACTTCTGCCTCTACTGGAACCGACATGCTGGGAGATTACATCTTCTCTATGGCAAGCGTGACTTCTTG CTGAGTGACAAAGCCTCTAGCCTCTGCTTCCAGCACCAGGAGGAGAGCCTGGCTCAGGGCCCCCGCTGTTAGCC ACTTCTGTCACCTCCTGGTGGAGCCCTCAGAACATCAGCCTGCCCAGTGCCGCCAGCTTCACCTTCTCCTTCCACAGT $\tt CCTCCCACACGGCCGCTCACAATGCCTCGGTGGACATGTGCGAGCTCAAAAGGGACCTCCAGCTGCTCAGCCAGTTC$ CTGACCTCTGTGAGATTCATGGGGGACATGGTGTCCTTCGAGGAGGACCGGATCAACGCCACGGTGTGGAAGCTCCAG $\tt CCCACAGCCGGCCTCCAGGACCTGCACATCCACTCCCGGCAGGAGGAGGAGCAGAGCGAGATCATGGAGTACTCGGTG$ AGCAGCCAAGCCCTGTTCCAGGACAAGAATTCCAGCCAAGTCCTGGGTGAGAAGGTCTTGGGGATTGTGGTACAGAAC ACCAAAGTAGCCAACCTCACGGAGCCCGTGGTGCTCACTTTCCAGCACCAGCTACAGCCGAAGAATGTGACTCTGCAA TGTGTGTTCTGGGTTGAAGACCCCACATTGAGCAGCCCGGGGCATTGGAGCAGTGCTGGGTGTGAGACCGTCAGGAGA GAAACCCAAACATCCTGCTTCTGCAACCACTTGACCTACTTTGCAGTGCTGATGGTCTCCTCGGTGGAGGTGGACGCC GCCTACCTCTGCTCCAGGGTGCCCCTGCCGTGCAGGAGGAAACCTCGGGACTACACCATCAAGGTGCACATGAACCTG CGACTCGTGGTGGAGGTCTTTGGCACCTATGTCCCTGGCTACCTAAGCTGAGCGCCATGGGCTGGGGCTTCCCC ATCTTTCTGGTGACGCTGGTGGCCCTGGTGGATGTGGACAACTATGGCCCCATCATCTTGGCTGTGCATAGGACTCCA GAGGGCGTCATCTACCCTTCCATGTGCTGGATCCGGGACTCCCTGGTCAGCTACATCACCAACCTGGGCCTCTTCAGC TCTGGCACCTTCCAGCTTGTCGTCCTCTACCTTTTCAGCATCATCACCTCCTTCCAAGGCTTCCTCATCTTCATCTGG TACTGGTCCATGCGGCTGCAGGCCCGGGGTGGCCCCTCCCCTCTGAAGAGCAACTCAGACAGCGCCAGGCTCCCCATC AGCTCGGGCAGCACCTCGTCCAGCCGCATCTAGGCCTCCAGCCCACCTGCCCATGTGATGAAGCAGAGATGCGGCCTC GTCGCACACTGCCTGTGGCCCCGAGCCAGGCCCAGGCCCAGGCCAGACTTTGGAAAGCCCAACGACC ATGGAGAGATGGGCCGTTGCCATGGTGGACGGACTCCCGGGCTGGGCTTTTGAATTGGCCTTGGGGACTACTCGGCTC TCACTCAGCTCCCACGGGACTCAGAAGTGCGCCGCCATGCTGCCTAGGGTACTGTCCCCACATCTGTCCCAACCCAGC TGGAGGCCTGGTCTCTCTTACAACCCCTGGGCCCAGCCCTCATTGCTGGGGGCCAGGCCTTGGATCTTGAGGGTCTG GCACATCCTTAATCCTGTGCCCCTGCCTGGGACAGAAATGTGGCTCCAGTTGCTCTGTCTCTCGTGGTCACCCTGAGG GCACTCTGCATCCTCTGTCATTTTAACCTCAGGTGGCACCCAGGGCGAATGGGGCCCAGGGCAGACCTTCAGGGCCAG CTCAGCCCCCAGTCCTCCATCTTCCCTGGGGTTCTCCTCCTCCCAGGGCCTCCTTGCTCCTTCGTTCACAG CTGGGGGTCCCCGATTCCAATGCTGTTTTTTGGGGAGTGGTTTCCAGGAGCTGCCTGGTGTCTGCTGTAAATGTTTGT $\tt CTACTGCACAAGCCTCGGCCTGAGCCAGGCTCGGTACCGATGCGTGGGCTAGGTCCCTCTGTCCATC$ TGGGCCTTTGTATGAGCTGCATTGCCCTTGCTCACCCTGACCAAGCACGCCTCAGAGGGGCCCTCAGCCTCTCCTG AAGCCCTCTTGTGGCAAGAACTGTGGACCATGCCAGTCCCGTCTGGTTTCCATCCCACCACCACTCCAAGGACTGAGACTG ACCTCCTCTGGTGACACTGGCCTAGAGCCTGACACTCTCCTAAGAGGTTCTCTCCAAGCCCCCAAATAGCTCCAGGCG GGAGCTACAGGGACAGGGAGCCATCATTCCTGCCTGGGAATCCTGGAAGACTTCCTGCAGGAGTCAGCGTTCAATCTT GACCTTGAAGATGGGAAGGATGTTCTTTTTACGTACCAATTCTTTTTGTCTTTTGATATTAAAAAGAAGTACATGTTCA TTGTAGAGAATTTGGAAACTGTAGAAGAAGAATCAAGAAGAAAAATAAAAATCAGCTGTTGTAATCGCCTAGCAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA50921</pre>

<subunit 1 of 1, 693 aa, 1 stop

<MW: 77738, pI: 8.87, NX(S/T): 7

MTPQSLLQTTLFLLSLLFLVQGAHGRGHREDFRFCSQRNQTHRSSLHYKPTPDLRISIENSEEAL TVHAPFPAAHPASRSFPDPRGLYHFCLYWNRHAGRLHLLYGKRDFLLSDKASSLLCFQHQEESLA QGPPLLATSVTSWWSPQNISLPSAASFTFSFHSPPHTAAHNASVDMCELKRDLQLLSQFLKHPQK ASRRPSAAPASQQLQSLESKLTSVRFMGDMVSFEEDRINATVWKLQPTAGLQDLHIHSRQEEEQS EIMEYSVLLPRTLFQRTKGRSGEAEKRLLLVDFSSQALFQDKNSSQVLGEKVLGIVVQNTKVANL TEPVVLTFQHQLQPKNVTLQCVFWVEDPTLSSPGHWSSAGCETVRRETQTSCFCNHLTYFAVLMV SSVEVDAVHKHYLSLLSYVGCVVSALACLVTIAAYLCSRVPLPCRRKPRDYTIKVHMNLLLAVFL LDTSFLLSEPVALTGSEAGCRASAIFLHFSLLTCLSWMGLEGYNLYRLVVEVFGTYVPGYLLKLS AMGWGFPIFLVTLVALVDVDNYGPIILAVHRTPEGVIYPSMCWIRDSLVSYITNLGLFSLVFLFN MAMLATMVVQILRLRPHTQKWSHVLTLLGLSLVLGLPWALIFFSFASGTFQLVVLYLFSIITSFQ GFLIFIWYWSMRLQARGGPSPLKSNSDSARLPISSGSTSSRI

Important features:

Signal peptide:

amino acids 1-25

Putative transmembrane domains:

amino acids 382-398, 402-420, 445-468, 473-491, 519-537, 568-590 and 634-657

Microbodies C-terminal targeting signal.

amino acids 691-693

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 198-201 and 370-373

N-glycosylation sites.

amino acids 39-42, 148-151, 171-174, 234-237, 303-306, 324-327 and 341-344

G-protein coupled receptors family 2 proteins

amino acids 475-504

CGGACGCGTGGGCGGACGCGGACGCGTGGCCGGACGCGTGGGTTCAGGTTCAGGTTTTGCTTTGATCC TTTTCAAAAACTGGAGACACAGAAGAGGGCTCTAGGAAAAAGTTTTGGATGGGATTATGTGGAAACTACCCTGCGATT CTCTGCTGCCAGAGCAGGCTCGGCGCTTCCACCCCAGTGCAGCCTTCCCCTGGCGGTGGTGAAAGAGACTCGGGAGTC GCTGCTTCCAAAGTGCCCGCCGTGAGTGAGCTCTCACCCCAGTCAGCCAAATGAGCCTCTTCGGGCTTCTCCTGCTGA CATCTGCCCTGGCCGGCCAGAGACAGGGGGACTCAGGCGGAATCCAACCTGAGTAGTAAATTCCAGTTTTCCAGCAACA AGGAACAGAACGGAGTACAAGATCCTCAGCATGAGAGAATTATTACTGTGTCTACTAATGGAAGTATTCACAGCCCAA GGTTTCCTCATACTTATCCAAGAAATACGGTCTTGGTATGGAGATTAGTAGCAGTAGAGGAAAATGTATGGATACAAC TTACGTTTGATGAAAGATTTGGGCTTGAAGACCCAGAAGATGACATATGCAAGTATGATTTTGTAGAAGTTGAGGAAC CCAGTGATGGAACTATATTAGGGCGCTGGTGTGGTTCTGGTACTGTACCAGGAAAACAGATTTCTAAAGGAAATCAAA TTAGGATAAGATTTGTATCTGATGAATATTTTCCTTCTGAACCAGGGTTCTGCATCCACTACAACATTGTCATGCCAC AATTCACAGAAGCTGTGAGTCCTTCAGTGCTACCCCCTTCAGCTTTGCCACTGGACCTGCTTAATAATGCTATAACTG CCTTTAGTACCTTGGAAGACCTTATTCGATATCTTGAACCAGAGAGATGGCAGTTGGACTTAGAAGATCTATATAGGC CAACTTGGCAACTTCTTGGCAAGGCTTTTGTTTTTGGAAGAAAATCCAGAGTGGTGGATCTGAACCTTCTAACAGAGG AGGTAAGATTATACAGCTGCACACCTCGTAACTTCTCAGTGTCCATAAGGGAAGAACTAAAGAGAACCGATACCATTT GTGTCCCAAGCAAAGTTACTAAAAAATACCACGAGGTCCTTCAGTTGAGACCAAAGACCGGTGTCAGGGGATTGCACA ${\tt CCTTAATCTCAGTTGTTTGCAGGACCTTTCATCTTCAGGATTTACAGTGCATTCTGAAAGAGGAGACATCAAAC}$ AGAATTAGGAGTTGTGCAACAGCTCTTTTGAGAGGAGGCCTAAAGGACAGGAGAAAAGGTCTTCAATCGTGGAAAGAA AATTAAATGTTGTATTAAATAGATCACCAGCTAGTTTCAGAGTTACCATGTACGTATTCCACTAGCTGGGTTCTGTAT TTCAGTTCTTTCGATACGGCTTAGGGTAATGTCAGTACAGGAAAAAAACTGTGCAAGTGAGCACCTGATTCCGTTGCC TCACATATGTAAACCAGAACATTCTATGTACTACAAACCTGGTTTTTAAAAAGGAACTATGTTGCTATGAATTAAACT TGTGTCATGCTGATAGGACAGACTGGATTTTCATATTTCTTATTAAAATTTCTGCCATTTAGAAGAAGAAGAACTACA TTCATGGTTTGGAAGAGATAAACCTGAAAAGAAGAGTGGCCTTATCTTCACTTTATCGATAAGTCAGTTTATTTGTTT CATTGTGTACATTTTTATATTCTCCTTTTGACATTATAACTGTTGGCTTTTCTAATCTTGTTAAATATATCTATTTT ${\tt ACCAAAGGTATTTAATATTCTTTTTTATGACAACTTAGATCAACTATTTTTAGCTTGGTAAATTTTTCTAAACACAAT}$ TGTTATAGCCAGAGGAACAAAGATGATATAAAATATTGTTGCTCTGACAAAAATACATGTATTTCATTCTCGTATGGT GCTAGAGTTAGATTAATCTGCATTTTAAAAAACTGAATTGGAATAGAATTGGTAAGTTGCAAAGACTTTTTGAAAATA ATTAAATTATCATATCTTCCATTCCTGTTATTGGAGATGAAAATAAAAAGCAACTTATGAAAGTAGACATTCAGATCC AGCCATTACTAACCTATTCCTTTTTTGGGGAAATCTGAGCCTAGCTCAGAAAAACATAAAGCACCTTGAAAAAGACTT TTAAACTCTGTTCCATACACTTGTATAAATACATGGATATTTTTATGTACAGAAGTATGTCTCTTAACCAGTTCACTT ATTGTACTCTGGCAATTTAAAAGAAAATCAGTAAAATATTTTGCTTGTAAAATGCTTAATATNGTGCCTAGGTTATGT AAAAAAAAAAAAGGTTTAGGGATAACAGGGTAATGCGGCC

MSLFGLLLTSALAGQRQGTQAESNLSSKFQFSSNKEQNGVQDPQHERIITVSTNGSIHSPRFPH
TYPRNTVLVWRLVAVEENVWIQLTFDERFGLEDPEDDICKYDFVEVEEPSDGTILGRWCGSGTVP
GKQISKGNQIRIRFVSDEYFPSEPGFCIHYNIVMPQFTEAVSPSVLPPSALPLDLLNNAITAFST
LEDLIRYLEPERWQLDLEDLYRPTWQLLGKAFVFGRKSRVVDLNLLTEEVRLYSCTPRNFSVSIR
EELKRTDTIFWPGCLLVKRCGGNCACCLHNCNECQCVPSKVTKKYHEVLQLRPKTGVRGLHKSLT
DVALEHHEECDCVCRGSTGG

Signal sequence:

amino acids 1-14

CCCATCTCAAGCTGATCTTGGCACCTCTCATGCTCTGCTCTTCAACCAGACCTCTACATTCCATTTTGGAAGAAGA CTAAAAATGGTGTTTCCAATGTGGACACTGAAGAGACAAATTCTTATCCTTTTTAACATAATCCTAATTTCCAAACTC TGCACAGACAAGCATTTGACAGAAATTCCTGGAGGTATTCCCACGAACACCACGAACCTCACCCTCACCATTAACCAC ATACCAGACATCTCCCCAGCGTCCTTTCACAGACTGGACCATCTGGTAGAGATCGATTTCAGATGCAACTGTGTACCT ATTCCACTGGGGTCAAAAAACAACATGTGCATCAAGAGGCTGCAGATTAAACCCAGAAGCTTTAGTGGACTCACTTAT TTAAAATCCCTTTACCTGGATGGAAACCAGCTACTAGAGATACCGCAGGGCCTCCCGCCTAGCTTACAGCTTCTCAGC CTTGAGGCCAACACATCTTTTCCATCAGAAAAGAGAATCTAACAGAACTGGCCAACATAGAAATACTCTACCTGGGC CAAAACTGTTATTATCGAAATCCTTGTTATGTTTCATATTCAATAGAGAAAGATGCCTTCCTAAACTTGACAAAGTTA AAAGTGCTCTCCCTGAAAGATAACAATGTCACAGCCGTCCCTACTGTTTTGCCATCTACTTTAACAGAACTATATCTC TACAACAACATGATTGCAAAAATCCAAGAAGATGATTTTAATAACCTCAACCAATTACAAATTCTTGACCTAAGTGGA AATTGCCCTCGTTGTTATAATGCCCCATTTCCTTGTGCGCCGTGTAAAAATAATTCTCCCCTACAGATCCCTGTAAAT GCTTTTGATGCGCTGACAGAATTAAAAGTTTTACGTCTACACAGTAACTCTCTTCAGCATGTGCCCCCCAAGATGGTTT AAGAACATCAACAAACTCCAGGAACTGGATCTGTCCCAAAACTTCTTGGCCAAAGAAATTGGGGATGCTAAATTTCTG CATTTTCTCCCCAGCCTCATCCAATTGGATCTGTCTTTCAATTTTGAACTTCAGGTCTATCGTGCATCTATGAATCTA TCACAAGCATTTTCTTCACTGAAAAAGCCTGAAAATTCTGCGGATCAGAGGATATGTCTTTAAAGAGTTGAAAAAGCTTT AACCTCTCGCCATTACATAATCTTCAAAATCTTGAAGTTCTTGATCTTGGCACTAACTTTATAAAAATTGCTAACCTC AGCATGTTTAAACAATTTAAAAGACTGAAAGTCATAGATCTTTCAGTGAATAAAATATCACCTTCAGGAGATTCAAGT GAAGTTGGCTTCTGCTCAAATGCCAGAACTTCTGTAGAAAGTTATGAACCCCAGGTCCTGGAACAATTACATTATTTC AGATATGATAAGTATGCAAGGAGTTGCAGATTCAAAAACAAAGAGGCTTCTTTCATGTCTGTTAATGAAAGCTGCTAC CTCAAATGCCTGAATCTGTCAGGAAATCTCATTAGCCAAACTCTTAATGGCAGTGAATTCCAACCTTTAGCAGAGCTG AGATATTTGGACTTCTCCAACAACCGGCTTGATTTACTCCATTCAACAGCATTTGAAGAGCTTCACAAACTGGAAGTT CTGGATATAAGCAGTAATAGCCATTATTTTCAATCAGAAGGAATTACTCATATGCTAAACTTTACCAAGAACCTAAAG ACTCTGGAATTCAGAGGAAATCACTTAGATGTTTTATGGAGAGAGGTGATAACAGATACTTACAATTATTCAAGAAT CTGCTAAAATTAGAGGAATTAGACATCTCTAAAAATTCCCTAAGTTTCTTGCCTTCTGGAGTTTTTGATGGTATGCCT CCAAATCTAAAGAATCTCTCTTTGGCCAAAAATGGGCTCAAATCTTTCAGTTGGAAGAAACTCCAGTGTCTAAAGAAC CTGGAAACTTTGGACCTCAGCCACAACCAACTGACCACTGTCCCTGAGAGATTATCCAACTGTTCCAGAAGCCTCAAG **AATCTGATTCTTAAGAATAATCAAATCAGGAGTCTGACGAAGTATTTTCTACAAGATGCCTTCCAGTTGCGATATCTG** GATCTCAGCTCAAATAAAATCCAGATGATCCAAAAGACCAGCTTCCCAGAAAATGTCCTCAACAATCTGAAGATGTTG CTTTTGCATCATAATCGGTTTCTGTGCACCTGTGATGCTGTGTGTTTTCTCTGGTGGGTTAACCATACGGAGGTGACT ATTCCTTACCTGGCCACAGATGTGACTTGTGTGGGGCCAGGAGCACACAGGGCCAAAGTGTGATCTCCCTGGATCTG TACACCTGTGAGTTAGATCTGACTAACCTGATTCTGTTCTCACTTTCCATATCTGTATCTCTCTTTCTCATGGTGATG ATGACAGCAAGTCACCTCTATTTCTGGGATGTGTGGTATATTTACCATTTCTGTAAGGCCAAGATAAAGGGGTATCAG TTGGCTGAGCTGGTGGCCAAACTGGAAGACCCAAGAGAGAAACATTTTAATTTATGTCTCGAGGAAAGGGACTGGTTA TATGCAAAGACTGAAAATTTTAAGATAGCATTTTACTTGTCCCATCAGAGGCTCATGGATGAAAAAGTTGATGTGATT ATCTTGATATTTCTTGAGAAGCCCTTTCAGAAGTCCAAGTTCCTCCAGCTCCGGAAAAGGCTCTGTGGGAGTTCTGTC CTTGAGTGGCCAACAACCCGCAAGCTCACCCATACTTCTGGCAGTGTCTAAAGAACGCCCTGGCCACAGACAATCAT GCCTGGC

MVFPMWTLKRQILILFNIILISKLLGARWFPKTLPCDVTLDVPKNHVIVDCTDKHLTEIPGGIPT NTTNLTLTINHIPDISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLQIKPRSFSGLTYLK SLYLDGNQLLEIPQGLPPSLQLLSLEANNIFSIRKENLTELANIEILYLGQNCYYRNPCYVSYSI EKDAFLNLTKLKVLSLKDNNVTAVPTVLPSTLTELYLYNNMIAKIQEDDFNNLNQLQILDLSGNC PRCYNAPFPCAPCKNNSPLOIPVNAFDALTELKVLRLHSNSLQHVPPRWFKNINKLQELDLSQNF LAKEIGDAKFLHFLPSLIOLDLSFNFELOVYRASMNLSQAFSSLKSLKILRIRGYVFKELKSFNL SPLHNLONLEVLDLGTNF1K1ANLSMFKOFKRLKV1DLSVNK1SPSGDSSEVGFCSNARTSVESY EPOVLEOLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGQTLDLSKNSIFFVKSSDFQHLSFLK CLNLSGNLISOTLNGSEFOPLAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGI THMLNFTKNLKVLOKLMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLL KLEELDISKNSLSFLPSGVFDGMPPNLKNLSLAKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVP ERLSNCSRSLKNLILKNNOIRSLTKYFLODAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLL HHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPGAHKGQSVISLDLYTCELDLTNLILFSL SISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYORLISPDCCYDAFIVYDTKDPAVTEWVLA ELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTDKYAKTENFKIAFYLSH ORLMDEKVDVIILIFLEKPFOKSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVA YSOVFKETV

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 840-860

GGGTACCATTCTGCGCTGCTGCAAGTTACGGAATGAAAAATTAGAACAACAGAAACATGGAAAACATGTTCCTTCAGT ${\tt CGTCAATGCTGACCTGCATTTTCCTGCTAATATCTGGTTCCTGTGAGTTATGCGCC\overline{{\tt GAA}}{\tt GAAAATTTTTCTAGAAGCT}$ ATCCTTGTGATGAGAAAAAGCAAAATGACTCAGTTATTGCAGAGTGCAGCAATCGTCGACTACAGGAAGTTCCCCAAA TGCAAAATCTCACTAAAATAAATCTAAACCACAACCCCAATGTACAGCACCAGAACGGAAATCCCGGTATACAATCAA ATGGCTTGAATATCACAGACGGGGCATTCCTCAACCTAAAAAACCTAAGGGAGTTACTGCTTGAAGACAACCAGTTAC CCCAAATACCCTCTGGTTTGCCAGAGTCTTTGACAGAACTTAGTCTAATTCAAAACAATATATACAACATAACTAAAG AGGGCATTTCAAGACTTATAAACTTGAAAAATCTCTATTTGGCCTGGAACTGCTATTTTAACAAAGTTTGCGAGAAAA CTAACATAGAAGATGGAGTATTTGAAACGCTGACAAATTTGGAGTTGCTATCACTATCTTTCAATTCTCTTTCACACG TGCCACCCAAACTGCCAAGCTCCCTACGCAAACTTTTTCTGAGCAACACCCCAGATCAAATACATTAGTGAAGAAGATT TCAAGGGATTGATAAATTTAACATTACTAGATTTAAGCGGGAACTGTCCGAGGTGCTTCAATGCCCCATTTCCATGCG TGCCTTGTGATGGTGGTGCTTCAATTAATATAGATCGTTTTGCTTTTCAAAACTTGACCCAACTTCGATACCTAAACC TCTCTAGCACTTCCCTCAGGAAGATTAATGCTGCCTGGTTTAAAAATATGCCTCATCTGAAGGTGCTGGATCTTGAAT TCAACTATTTAGTGGGAGAAATAGTCTCTGGGGCATTTTTAACGATGCTGCCCCGCTTAGAAATACTTGACTTGTCTT TTAACTATATAAAGGGGAGTTATCCACAGCATATTAATATTTCCAGAAACTTCTCTAAACTTTTGTCTCTACGGGCAT TGCATTTAAGAGGTTATGTGTTCCAGGAACTCAGAGAAGATGATTTCCAGCCCCTGATGCAGCTTCCAAACTTATCGA CTATCAACTTGGGTATTAATTTTATTAAGCAAATCGATTTCAAACTTTTCCAAAATTTCTCCAATCTGGAAATTATTT ACTTGTCAGAAAACAGAATATCACCGTTGGTAAAAGATACCCGGCAGAGTTATGCAAATAGTTCCTCTTTTCAACGTC ATATCCGGAAACGACGCTCAACAGATTTTGAGTTTGACCCACATTCGAACTTTTATCATTTCACCCGTCCTTTAATAA AGCCACAATGTGCTGCTTATGGAAAAGCCTTAGATTTAAGCCTCAACAGTATTTTCTTCATTGGGCCAAACCAATTTG AAAATCTTCCTGACATTGCCTGTTTAAATCTGTCTGCAAATAGCAATGCTCAAGTGTTAAGTGGAACTGAATTTTCAG CCATTCCTCATGTCAAATATTTGGATTTGACAAACAATAGACTAGACTTTGATAATGCTAGTGCTCTTACTGAATTGT CCGACTTGGAAGTTCTAGATCTCAGCTATAATTCACACTATTTCAGAATAGCAGGCGTAACACATCATCTAGAATTTA TTCAAAATTTCACAAATCTAAAAGTTTTAAACTTGAGCCACAACAACATTTATACTTTAACAGATAAGTATAACCTGG AAAGCAAGTCCCTGGTAGAATTAGTTTTCAGTGGCAATCGCCTTGACATTTTTGTGGAATGATGATGACAACAGGTATA TCTCCATTTTCAAAGGTCTCAAGAATCTGACACGTCTGGATTTATCCCTTAATAGGCTGAAGCACATCCCAAATGAAG CATTCCTTAATTTGCCAGCGAGTCTCACTGAACTACATATAAATGATAATATGTTAAAGTTTTTTAACTGGACATTAC GTAGTCTGAAGCACCTCGATTTAAGTTCCAATCTGCTAAAAAACAATCAACAAATCCGCACTTGAAACTAAGACCACCA ATGAACATCTGAATGTCAAAATTCCCAGACTGGTAGATGTCATTTGTGCCAGTCCTGGGGATCAAAGAGGGAAGAGTA ${\tt TTGTGAGTCTGGAGCTAACAACTTGTGTTTCAGATGTCACTGCAGTGATATTATTTTCTTCACGTTCTTTATCACCA}$ AGGTAAAAGGCTACAGGTCTCTTTCCACATCCCAAACTTTCTATGATGCTTACATTTCTTATGACACCAAAGATGCCT CTGTTACTGACTGGTGATAAATGAGCTGCGCTACCACCTTGAAGAGAGCCGAGACAAAAACGTTCTCCTTTGTCTAG AGGAGAGGGATTGGGACCGGGATTGGCCATCATCGACAACCTCATGCAGAGCATCAACCAAAGCAAGAAAACAGTAT TTGTTTTAACCAAAAAATATGCAAAAAGCTGGAACTTTAAAACAGCTTTTTACTTGGCTTTTGCAGAGGCTAATGGATG AGAACATGGATGTGATTATATTTATCCTGCTGGAGCCAGTGTTACAGCATTCTCAGTATTTGAGGCTACGGCAGCGGA TCTGTAAGAGCTCCATCCTCCAGTGGCCTGACAACCCGAAGGCAGAAGGCTTGTTTTGGCAAACTCTGAGAAATGTGG ATTTCGCGCCATAATAAAGATGCAAAGGAATGACATTTCTGTATTAGTTATCTATTGCTATGTAACAAATTATCCCAA AACTTAGTGGTTTAAAACAACACATTTGCTGGCCCACAGTTTTTGAGGGTCAGGAGTCCAGGCCCAGCATAACTGGGT ${\tt CCTCTGCTCAGGGTGTCTCAGAGGCTGCAATGTAGGTGTTCACCAGAGACATAGGCATCACTGGGGTCACACTCATGT}$ GGTTGTTTTCTGGATTCAATTCCTCCTGGGCTATTGGCCAAAGGCTATACTCATGTAAGCCATGCGAGCCTCTCCCAC AAGGCAGCTTGCTTCATCAGAGCTAGCAAAAAAGAGAGGTTGCTAGCAAGATGAAGTCACAATCTTTTGTAATCGAAT CAAAAAGTGATATCTCATCACTTTGGCCATATTCTATTTGTTAGAAGTAAACCACAGGTCCCACCAGCTCCATGGGA GTGACCACCTCAGTCCAGGGAAAACAGCTGAAGACCAAGATGGTGAGCTCTGATTGCTTCAGTTGGTCATCAACTATT TTCCCTTGACTGCTGTCCTGGGATGGCCTGCTATCTTGATGATAGATTGTGAATATCAGGAGGCAGGGATCACTGTGG ACCATCTTAGCAGTTGACCTAACACATCTTCTTTTCAATATCTAAGAACTTTTGCCACTGTGACTAATGGTCCTAATA CAGTTGCTTTTACAAATATTTGCTGTAACATTTGACTTCTAAGGTTTAGATGCCATTTAAGAACTGAGATGGATAGCT TTTAAAGCATCTTTTACTTCTTACCATTTTTTAAAAGTATGCAGCTAAATTCGAAGCTTTTGGTCTATATTGTTAATT

MENMFLQSSMLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQTVGKYV TELDLSDNFITHITNESFOGLONLTKINLNHNPNVQHQNGNPGIQSNGLNITDGAFLNLKNLREL LLEDNQLPQIPSGLPESLTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKVCEKTNIEDG VFETLTNLELLSLSFNSLSHVPPKLPSSLRKLFLSNTOIKYISEEDFKGLINLTLLDLSGNCPRC FNAPFPCVPCDGGASINIDRFAFQNLTQLRYLNLSSTSLRKINAAWFKNMPHLKVLDLEFNYLVG EIVSGAFLTMLPRLEILDLSFNYIKGSYPOHINISRNFSKLLSLRALHLRGYVFQELREDDFQPL MOLPNLSTINLGINFIKQIDFKLFQNFSNLEIIYLSENRISPLVKDTRQSYANSSSFQRHIRKRR STDFEFDPHSNFYHFTRPLIKPOCAAYGKALDLSLNSIFFIGPNOFENLPDIACLNLSANSNAQV LSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEVLDLSYNSHYFRIAGVTHHLEFIQNFTN LKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRLDILWNDDDNRYISIFKGLKNLTRLDLSLNR LKHIPNEAFLNLPASLTELHINDNMLKFFNWTLLOOFPRLELLDLRGNKLLFLTDSLSDFTSSLR TLLLSHNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTTKLSMLELHGNPFECTCDI GDFRRWMDEHLNVKIPRLVDVICASPGDORGKSIVSLELTTCVSDVTAVILFFFTFFITTMVMLA ALAHHLFYWDVWFIYNVCLAKVKGYRSLSTSOTFYDAYISYDTKDASVTDWVINELRYHLEESRD KNVLLCLEERDWDPGLAIIDNLMQSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVI IFILLEPVLQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQ Y

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 826-848

CCAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGA CCTCGACCCACGCGTCCGCCAAGCTGGCCCTGCACGCTGCAAGGGAGGCTCCTGTGGACAGGCC AGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAG GGTCCATCTCCAGTCCCAGGACACAGCAGCGCCACCATGGCCACGCCTGGGCTCCAGCAGCATC AGCAGCCCCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCGGAGGAGCAGCTCCTGCCCCT GTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAGAAGGCCACCCCGCCTGGAGG CACAGGCCATGAGGGGCTCTCAGGAGGTGCTGCTGATGTGGCTTCTGGTGTTGGCAGTGGGCGGC ACAGAGCACGCCTACCGGCCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTC CGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCA GCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCT CGCTACGCGTGCTGCCCCGGCTGGAAGAGGCCCAGCGGCCTTCCTGGGGCCTGTGGAGCAGCAAT ATGCCAGCCGCCATGCCGGAACGGAGGGAGCTGTGTCCAGCCTGCCGCTGCCGCTGCCCTGCAG GATGGCGGGTGACACTTGCCAGTCAGATGTGGATGAATGCAGTGCTAGGAGGGGCGGCTGTCCC CAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGC AGACGGTACACTCTGTGTGCCCAAGGGAGGGCCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGG ACAGTGCAATGAAGGAAGAAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTG CAGCTGGTGCTGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCC GGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCC TCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCT GGCTACCCCACCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAG AAAAAAAAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTT GGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAT

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTY
RTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWR
GDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSA
MKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFL
EEQLGSCSCKKDS

Signal sequence:

1-19

GCCAGGCAGGTGGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGC TAGGGTCCATCTCCAGTCCCAGGACACAGCAGCGCCCACCATGGCCACGCCTGGGCTCCAGCAGC ATCAGAGCAGCCCTGTGGTTGGCAGCAAAGTTCAGCTTGGCTGGGCCCGCTGTGAGGGGCTTCG CGCTACGCCCTGCGGTGTCCCGAGGGCTGAGGTCTCCTCATCTTCTCCCTAGCAGTGGATGAGCA ACCCAACGGGGGCCCGGGGAGGGAACTGGCCCCGAGGGAGAGGAACCCCAAAGCCACATCTGTA GCCAGGATGAGCAGTGTGAATCCAGGCAGCCCCCAGGACCGGGAGGCACAGGTGGCCCCCACCA CCCGGAGGAGCAGCTCCTGCCCCTGTCCGGGGGATGACTGATTCTCCTCCGCCAGGCCACCCAGA GGAGAAGGCCACCCGCCTGGAGGCACAGGCCATGAGGGGGCTCTCAGGAGGTGCTGATGTGG CCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCA CCTGCGACGGGCACCGGGCCTGCAGCACCTACCGAACCATCTATAGGACCGCCTACCGCCGCAGC CCTGGGCTGCCCTGCCAGGCCTCGCTACGCGTGCTGCCCCGGCTGGAAGAGGACCAGCGGGCT CTGGCCGCTGCCGCTGCAGGATGGCGGGGTGACACTTGCCAGTCAGATGTGGATGAATGC AGTGCTAGGAGGGGGGTGTCCCCAGCGCTGCATCAACACCGCCGGCAGTTACTGGTGCCAGTG TTGGGAGGGCACAGCCTGTCTGCAGACGGTACACTCTGTGTGCCCAAGGGAGGCCCCCCAGGG GTGGACCTGCTGGAGGAGAGCTGCAGCTGGTGCTGGCCCCACTGCACAGCCTGGCCTCGCAGGC ACTGGAGCATGGGCTCCCGGACCCCGGCAGCCTCCTGGTGCACTCCTTCCAGCAGCTCGGCCGCA TCGACTCCCTGAGCGAGCAGATTTCCTTCCTGGAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAA GACTCGTGACTGCCCAGCGCTCCAGGCTGGACTGAGCCCCTCACGCCGCCCTGCAGCCCCCATGC CCTTCCTCCTCCTCCCCCTTCCTCGGGAGGCTCCCCAGACCCTGGCATGGGATGGGCTGG GATCTTCTCTGTGAATCCACCCTGGCTACCCCACCCTGGCTACCCCAACGGCATCCCAAGGCC AGGTGGACCCTCAGCTGAGGGAAGGTACGAGCTCCCTGCTGGAGCCTGGGACCCATGGCACAGGC CAGGCAGCCCGGAGGCTGGGGGGCCTCAGTGGGGGGCTGCTGCCTGACCCCCAGCACAATAAAA **ATGAAACGTG**

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTY
RTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWR
GDTCQSDVDECSARRGGCPQRCINTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSA
MKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFL
EEQLGSCSCKKDS

Signal sequence:

1-19

 ${\tt GGGCCTCAGGAGGTGCCTCCAGGCGGCCAGTGGGCCTGAGGCCCCAGCAAGGGCTAGGGTCCATC}$ TCCAGTCCCAGGACACAGCAGCGCCACCATGGCCACGCCTGGGCTCCAGCAGCATCAGCAGCCC CCAGGACCGGGGAGGCACAGGTGGCCCCCACCACCGGAGGAGCAGCTCCTGCCCCTGTCĆGGG GATGACTGATTCTCCTCCGCCAGGCCACCCAGAGGAAGGCCACCCCGCCTGGAGGCACAGGCC **ATG**AGGGGCTCTCAGGAGGTGCTGATGTGGCTTCTGGTGTTTGGCAGTGGCCGCACAGAGCA CGCCTACCGGCCGGCCGTAGGGTGTGTGCTGTCCGGGCTCACGGGGACCCTGTCTCCGAGTCGTTCGTGCAGCGTGTGTACCAGCCCTTCCTCACCACCTGCGACGGGCACCGGGCCTGCAGCACCTAC CGAACCATCTATAGGACCGCCTACCGCCGCAGCCCTGGGCTGGCCCCTGCCAGGCCTCGCTACGC GTGCTGCCCGGCTGGAAGAGGACCAGCGGGCTTCCTGGGGCCTGTGGAGCAGCAATATGCCAGC CGCCATGCCGGAACGGAGGGAGCTGTCCCAGCCTGGCCGCTGCCCTGCAGGATGGCGG $\tt CGTCAACACCGCCGGCAGTTACTGGTGCCAGTGTTGGGAGGGGCACAGCCTGTCTGCAGACGGTA$ CACTCTGTGTGCCCAAGGGAGGGCCCCCAGGGTGGCCCCCAACCCGACAGGAGTGGACAGTGCA ATGAAGGAAGAGTGCAGAGGCTGCAGTCCAGGGTGGACCTGCTGGAGGAGAAGCTGCAGCTGGT GCTGGCCCCACTGCACAGCCTGGCCTCGCAGGCACTGGAGCATGGGCTCCCGGACCCCGGCAGCC GAGGAGCAGCTGGGGTCCTGCTCCTGCAAGAAAGACTCGTGACTGCCCAGCGCCCCAGGCTGGAC TGAGCCCTCACGCCGCCCTGCAGCCCCCATGCCCCTGCCCAACATGCTGGGGGTCCAGAAGCCA $\tt CCTCGGGGTGACTGAGCGGAAGGCCAGGCAGGGCCTTCCTCCTCTCCTCCTCCTCCTCCTCGGG$ AGGCTCCCCAGACCCTGGCATGGGATGGGCTGGGATCTTCTCTGTGAATCCACCCCTGGCTACCC CCACCCTGGCTACCCCAACGCCATCCCAAGGCCAGGTGGGCCCTCAGCTGAGGGAAGGTACGAGC GGGGGCTGCTGACCCCCAGCACAATAAAAATGAAACGTG

MRGSQEVLLMWLLVLAVGGTEHAYRPGRRVCAVRAHGDPVSESFVQRVYQPFLTTCDGHRACSTY RTIYRTAYRRSPGLAPARPRYACCPGWKRTSGLPGACGAAICQPPCRNGGSCVQPGRCRCPAGWR GDTCQSDVDECSARRGGCPQRCVNTAGSYWCQCWEGHSLSADGTLCVPKGGPPRVAPNPTGVDSA MKEEVQRLQSRVDLLEEKLQLVLAPLHSLASQALEHGLPDPGSLLVHSFQQLGRIDSLSEQISFL EEQLGSCSCKKDS

Signal sequence:

1-19

GGTTGCCACAGCTGGTTTAGGGCCCCGACCACTGGGGCCCCTTGTCAGGAGGAGACAGCCTCCCGGCCCGGGAGGAC GTCTCCGTGTTTCAGGCCGGCTCCCCTTCCTGGTCTCCCTTCTCCCGCTGGGCCGGTTTATCGGGAGAGATTGTCT TCCAGGGCTAGCAATTGGACTTTTGATGATGTTTGACCCAGCGCAGGAATAGCAGGCAACGTGATTTCAAAGCTGGG $\tt CCCGGCAAAAGGGCATTTTCTACCTGACCCTTTTCCTCATCCTGGGGACATGTACACTCTTCTTCGCCTTTGAGTGCC$ GCTACCTGGCTGTTCAGCTGTCTCCTGCCATCCCTGTATTTGCTGCCATGCTCTTTCTCCATGGCTACACTGT TGAGGACCAGCTTCAGTGACCCTGGAGTGATTCCTCGGGCGCTACCAGATGAAGCAGCTTTCATAGAAATGGAGATAG AAGCTACCAATGGTGCGGTGCCCCAGGGCCAGCGACCACCGCCTCGTATCAAGAATTTCCAGATAAACAACCAGATTG TGAAACTGAAATACTGTTACACATGCAAGATCTTCCGGCCTCCCCGGGCCTCCCATTGCAGCATCTGTGACAACTGTG TGGAGCGCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTGGAAAGAGGAACTACCGCTACTTCTACCTCTTCA TCCTTTCTCTCTCCCTCACAATCTATGTCTTCGCCTTCAACATCGTCTATGTGGCCCTCAAATCTTTGAAAATTG GCTTCTTGGAGACATTGAAAGAAACTCCTGGAACTGTTCTAGAAGTCCTCATTTGCTTCTTTACACTCTGGTCCGTCG TGGGACTGACTGGATTCATACTTTCCTCGTGGCTCTCAACCAGACAACCAATGAAGACATCAAAGGATCATGGACAG GGAAGAATCGCGTCCAGAATCCCTACAGCCATGGCAATATTGTGAAGAACTGCTGTGAAGTGCTGTGTGGCCCCCTTGC CCCCCAGTGTGCTGGATCGAAGGGGTATTTTGCCACTGGAGGAAAAGTGGAAGTCGACCTCCCAGTACTCAAGAGACCA GTAGCAGCCTCTTGCCACAGAGCCCAGCCCCCACAGAACACCTGAACTCAAATGAGATGCCGGAGGACAGCAGCACTC GAGACTTTTGTTTGTGTTTAATTAGGGCTATGAGAGATTTCAGGTGAGAAGTTAAACCTGAGACAGAGAGCAAGTAAG CTGTCCCTTTTAACTGTTTTTCTTTGGTCTTTAGTCACCCAGTTGCACACTGGCATTTTCTTGCTGCAAGCTTTTTTA AATTTCTGAACTCAAGGCAGTGGCAGAAGATGTCAGTCACCTCTGATAACTGGAAAAATGGGTCTCTTGGGCCCTGGC ACTGGTTCTCCATGGCCTCAGCCACAGGGTCCCCTTGGACCCCCTCTCTTCCCTCCAGATCCCAGCCCTCCTGCTTGG GGTCACTGGTCTCATTCTGGGGCTAAAAGTTTTTGAGACTGGCTCAAATCCTCCCAAGCTGCTGCACGTGCTGAGTCC AGAGGCAGTCACAGAGACCTCTGGCCAGGGGATCCTAACTGGGTTCTTGGGGTCTTCAGGACTGAAGAGGAGGAGGAGAG TGGGGTCAGAAGATTCTCCTGGCCACCAAGTGCCAGCATTGCCCACAAATCCTTTTAGGAATGGGACAGGTACCTTCC ACTTGTTGTANNNNNNNNNNNNNNNNNNNNNNNNTTGTTTTTCCTTTTGACTCCTGCTCCCATTAGGAGCAGGAA TGGCAGTAATAAAAGTCTGCACTTTGGTCATTTCTTTTCCTCAGAGGAAGCCCGAGTGCTCACTTAAACACTATCCCC TCAGACTCCCTGTGTGAGGCCTGCAGAGGCCCTGAATGCACAAATGGGAAACCAAGGCACAGAGAGGCTCTCCTCTCC AAGCCCAGCACTGCTGCCCTCTCGGGTAACTCACCCTAAGGCCTCGGCCCACCTCTGGCTATGGTAACCACACTGGGG GCTTCCTCCAAGCCCCGCTCTTCCAGCACTTCCACCGGCAGAGTCCCAGAGCCACTTCACCCTGGGGGTGGGCTGTGG CCCCCAGTCAGCTCTGCTCAGGACCTGCTCTATTTCAGGGAAGAAGATTTATGTATTATATGTGGCTATATTTCCTAG AGCACCTGTGTTTTCCTCTTTCTAAGCCAGGGTCCTGTCTGGATGACTTATGCGGTGGGGGGAGTGTAAACCGGAACTT TTCATCTATTTGAAGGCGATTAAACTGTGTCTAATGCA

MSVMVVRKKVTRKWEKLPGRNTFCCDGRVMMARQKGIFYLTLFLILGTCTLFFAFECRYLAVQLS
PAIPVFAAMLFLFSMATLLRTSFSDPGVIPRALPDEAAFIEMEIEATNGAVPQGQRPPPRIKNFQ
INNQIVKLKYCYTCKIFRPPRASHCSICDNCVERFDHHCPWVGNCVGKRNYRYFYLFILSLSLLT
IYVFAFNIVYVALKSLKIGFLETLKETPGTVLEVLICFFTLWSVVGLTGFHTFLVALNQTTNEDI
KGSWTGKNRVQNPYSHGNIVKNCCEVLCGPLPPSVLDRRGILPLEESGSRPPSTQETSSSLLPQS
PAPTEHLNSNEMPEDSSTPEEMPPPEPPPQEAAEAEK

Putative transmembrane domains:

amino acids 36-55 (type II TM), 65-84, 188-208, 229-245

AAAACCCTGTATTTTTACAATGCAAATAGACAATNANCCTGGAGGTCTTTGAATTAGGTATTAT
AGGGATGGTGGGGTTGATTTTTTTCCTGGAGGCTTTTGGCTTTGGACTCTCNCTTTCTCCCACA
GAGCNCTTCGACCATCACTGCCCCTGGGTGGGGAATTGTGTTTGGAAAGAGGAACTACCGCTANTT
CTACCTCTTCATCCTTTNTCTCTCCCNCCTCACAATCTATGTCTTCGCCTTCAACATCGT

GTTGTGTCCTTCAGCAAAACAGTGGATTTAAATCTCCTTGCACAAGCTTGAGAGCAACACAATCT ATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCACGGGGCTGGC TGCTCTGTGTCTCTTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCCCCAAAGCTATGG ACAACGTGACGGTCCGGCAGGGGGAGAGCGCCACCCTCAGGTGCACTATTGACAACCGGGTCACC CGGGTGGCCTGAAACCGCAGCACCATCCTCTATGCTGGGAATGACAAGTGGTGCCTGGATCC TCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCGAGATCCAGAACGTGGATGTGT ATGACGAGGCCCTTACACCTGCTCGGTGCAGACAGACAACCACCCAAAGACCTCTAGGGTCCAC CTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTCTTCAGATATCTCCATTAATGAAGGGAA CAATATTAGCCTCACCTGCATAGCAACTGGTAGACCAGAGCCTACGGTTACTTGGAGACACATCT CTCCCAAAGCGGTTGGCTTTGTGAGTGAAGACGAATACTTGGAAATTCAGGGCATCACCCGGGAG CAGTCAGGGGACTACGAGTGCCTCCAATGACGTGGCCGCCCCGTGGTACGGAGAGTAAA GGTCACCGTGAACTATCCACCATACATTTCAGAAGCCAAGGGTACAGGTGTCCCCGTGGGACAAA AGGGGACACTGCAGTGTGAAGCCTCAGCAGTCCCCTCAGCAGAATTCCAGTGGTACAAGGATGACAAAAGACTGATTGAAGGAAAGAAGGGGTGAAAGTGGAAAACAGACCTTTCCTCTCAAAACTCAT $\tt CTTCTTCAATGTCTCTGAACATGACTATGGGAACTACACTTGCGTGGCCTCCAACAAGCTGGGCC$ ACACCAATGCCAGCATCATGCTATTTGGTCCAGGCGCCGTCAGCGAGGTGAGCAACGGCACGTCG AGGAGGCAGGCTGCGTCTGCTGCTCTCTTCTGGTCTTGCACCTGCTTCTCAAATTT**TGA**TG TGAGTGCCACTTCCCCACCCGGGAAAGGCTGCCGCCACCACCACCACCAACACACAGCAATGGC AACACCGACAGCAACCAATCAGATATATACAAATGAAATTAGAAGAACACAGCCTCATGGGACA GAAATTTGAGGGAGGGAACAAAGAATACTTTGGGGGGGAAAAGAGTTTTAAAAAAAGAAATTGAAA ATTGCCTTGCAGATATTTAGGTACAATGGAGTTTTCTTTTCCCAAACGGGAAGAACACAGCACAC CCGGCTTGGACCCACTGCAAGCTGCATCGTGCAACCTCTTTGGTGCCAGTGTGGGCAAGGGCTCA GCCTCTCTGCCCACAGAGTGCCCCCACGTGGAACATTCTGGAGCTGGCCATCCCAAATTCAATCA GTCCATAGAGACGAACAGAATGAGACCTTCCGGCCCAAGCGTGGCGCTGCGGGCACTTTGGTAGA

MKTIQPKMHNSISWAIFTGLAALCLFQGVPVRSGDATFPKAMDNVTVRQGESATLRCTIDNRVTR VAWLNRSTILYAGNDKWCLDPRVVLLSNTQTQYSIEIQNVDVYDEGPYTCSVQTDNHPKTSRVHL IVQVSPKIVEISSDISINEGNNISLTCIATGRPEPTVTWRHISPKAVGFVSEDEYLEIQGITREQ SGDYECSASNDVAAPVVRRVKVTVNYPPYISEAKGTGVPVGQKGTLQCEASAVPSAEFQWYKDDK RLIEGKKGVKVENRPFLSKLIFFNVSEHDYGNYTCVASNKLGHTNASIMLFGPGAVSEVSNGTSR RAGCVWLLPLLVLHLLLKF

Signal peptide:

amino acids 1-28

GAAAAAAATCATGAAAACCATCCAGCCAAAAATGCACAATTCTATCTCTTGGGCAATCTTCACG
GGGCTGGCTGCTCTGTGTCTCTCCAAGGAGTGCCCGTGCGCAGCGGAGATGCCACCTTCCCCAA
AGCTATGGACAACGTGACGGTCCGGCAGGGGGGAGAGCGCCACCCTCAGGTGCACTATTGACAACC
GGGTCACCCGGGTGGCCTGGCTAAACCGCAGCACCATCCTCTATGCTGGGAATGACAAGTGGTGC
CTGGATCCTCGCGTGGTCCTTCTGAGCAACACCCAAACGCAGTACAGCATCCAGAACGT
GGATGTGTATGACGAGGGCCCTTACACCTGCTCGGTGCAGACAACCACCCAAAGACCTCTA
GGGTCCACCTCATTGTGCAAGTATCTCCCAAAATTGTAGAGATTTCTTCAGATATCTCCATTAAT
GAAGGGAACAATATTAGCCTCACCTGCATAGCAACTGGTAGACCAGAG

ATGGCTGGTGACGGCGGGCCGGGCAGGGGACCGGGGCCGGGCCCGGGAGCCGGGCCAGCTGCCGGGAGCCCTGAATC ACCGCCTGGCCCGACTCCACC<u>ATG</u>AACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAGAAGGGG CTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCATCCCACAGCACCTGCCTTACAGAGGCCTGCATT GGCTGGATTCGGAGGAACCCCCTGCCCGATGGGCGTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAACCAG GCCATACTGAAGCACCTGCTTGAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCAGAAGACACAGCGCTTCTAC TGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAGGCAGTAGCAGGGACCTACAGGGCCACC TTTCTGCCCTCTCGGGATTACTACTTAAACAGAACTGCCAATGAGAAAGTGCTCACTGCCTATCTGGATTACATGGAG GAACTGGGGATGCTGGTGGGCGGCCCCACCTCCACGAGGGAGCAGATGCAGCAGGTGCTGGAGTTGGAGATACAG CCTGTGGTGGTGTATGGGATGGATTATTTGCAGCAGGTGTCAGAGCTCATCAACCGCACGGAACCAAGCATCCTGAAC AATTACCTGATCTGGAACCTGGTGCAAAAGACAACCTCAAGCCTGGACCGACGCTTTGAGTCTGCACAAGAGAAGCTG $\tt CTGGAGACCCTCTATGGCACTAAGAAGTCCTGTGTGCCGAGGTGGCAGACCTGCATCTCCAACACGGATGACGCCCTT$ GGCTTTGCTTTGGGGTCACTCTTCGTGAAGGCCACGTTTGACCGGCAAAGCAAAGAAATTGCAGAGGGGATGATCAGC AAAGCAGATGCCATCTATGATATGATTGGTTTCCCAGACTTTATCCTGGAGCCCAAAGAGCTGGATGATGTTTATGAC GGGTACGAAATTTCTGAAGATTCTTTCTTCCAAAACATGTTGAATTTGTACAACTTCTCTGCCAAGGTTATGGCTGAC AATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTCTATGCCCGCAACCACCCCCAAGGCCCTGAACTTCGGT GGCATCGGTGTGGTCATGGGCCATGAGTTGACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAAC $\tt CTGCGGCCCTGGTGGCAGAATGAGTCCCTGGCAGCCTTCCGGAACCACACGGCCTGCATGGAGGAACAGTACAATCAA$ TACCAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGGAGAACATTACTGACAACGGGGGGCTGAAGGCT GACCCCCACAGCCCTGCCCGCTTCCGCGTGCTGGGCACTCTCTCCAACTCCCGTGACTTCCTGCGGCACTTCGGCTGC $\tt CCTGTCGGCTCCCCCATGAACCCAGGGCAGCTGTGTGAGGTGTGG\underline{TAG}{ACCTGGATCAGGGGGAGAAATGGCCAGCTGT}$ GGCCAGTTCCCATAGGAAGGAGTCTGCC

MNVALQELGAGSNVGFQKGTRQLLGSRTQLELVLAGASLLLAALLLGCLVALGVQYHRDPSHSTC
LTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNPLPDGRSRWNTFNSLWDQNQAILKHLL
ENTTFNSSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNITGPWDQDNFMEVLKAVA
GTYRATPFFTVYISADSKSSNSNVIQVDQSGLFLPSRDYYLNRTANEKVLTAYLDYMEELGMLLG
GRPTSTREQMQQVLELEIQLANITVPQDQRRDEEKIYHKMSISELQALAPSMDWLEFLSFLLSPL
ELSDSEPVVVYGMDYLQQVSELINRTEPSILNNYLIWNLVQKTTSSLDRRFESAQEKLLETLYGT
KKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMISEIRTAFEEALGQLVWMDEKT
RQAAKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSFFQNMLNLYNFSAKVMADQLRKPPS
RDQWSMTPQTVNAYYLPTKNEIVFPAGILQAPFYARNHPKALNFGGIGVVMGHELTHAFDDQGRE
YDKEGNLRPWWQNESLAAFRNHTACMEEQYNQYQVNGERLNGRQTLGENITDNGGLKAAYNAYKA
WLRKHGEEQQLPAVGLTNHQLFFVGFAQVWCSVRTPESSHEGLVTDPHSPARFRVLGTLSNSRDF
LRHFGCPVGSPMNPGQLCEVW

Type II Transmembrane domain: amino acids 32-57

CCGGCCGGCCGCGCCCGGCCCAGAGCCCCCCGTGCTGCCCATCCGTTCTGAGAAGGAGCCGCTGCCCGTTCGGGG GGCGCGGGGCGCAGGTGGCTCGGCGCGGGGGGGGCCGGAGGGTGGGCGGGGGCAGAAGGGCGCGGTGCCTGGGACC CGGGACCCGCGGGCAGCCCCCGGGGCGCACACGGCGCGAGCTGGGCAGCCGCCTCCAGCCAAGCCCGTCCCCGCAGG $\tt CTGCGTGCTGCGCGCGGGGCGCAGTGGGGTCGCCGTACCAGGGGCCCTGGCAGGGTCAGCTGCAAGAACATCAA$ ACCAGAGTGCCCAACCCGGCCTGTGGGCAGCCGCGCCAGCTGCCGGGACACTGCTGCCAGACCTGCCCCAGGACTT CGTGGCGCTGCTGACAGGGCCGAGGTCGCAGGCGGTGGCACGAGCCCGAGTCTCGCTGCTGCGCTCTAGCCTCCGCTT CCCTGCAGCCCCACCCAAGATGGCCTGGTCTGTGGGGGTGTGGCGGGCAGTGCCTCGGTTGTCTCTGCGGCTCCTTAG ${\tt GGCCCTGTCCCCAGAGACCTTCAGTGCCATCCTGACTCTAGAAGGCCCCCACCAGCAGGGGGGCGTAGGGGGCATCACCCT}$ GCTCACTCTCAGTGACACAGAGGACTCCTTGCATTTTTTGCTGCTCTTCCGAGGCCTTGCAGGACTAACCCAGGTTCC $\tt CTTGAGGCTCCAGATTCTACACCAGGGGCAGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGAACCAGGCTT$ GGCAGGCAGGCCAGGGCTGCGCATCAGTGGACACATTGCTGCCAGGAAGAGCTGCGACGTCCTGCAAAGTGTCCTTTG GATCCTCCAGGTGCAATTGGTAGGGACAACCAGTGAGGTGGTGGCCATGACACTGGAAACCAAGCCTCAGCGGAGGGA TCAGCCCACTGTCCTGTGCCACATGGCTGGCCTATCCTCCCCTGCCCCAGGCCGTGGGTATCTGCCCTGGGCTGGG TGCCCGAGGGGCTCATATGCTGCTGCAGAATGAGCTCTTCCTGAACGTGGGCACCAAGGACTTCCCAGACGGAGAGCT GCTACCCCCTGTGAAGAGCCAAGCAGCAGGGCACGCCTGGCTTTCCTTGGATACCCACTGTCACCTGCACTATGAAGT GCTGCTGGCTGGGCTTGGTGGCTCAGAACAAGGCACTGTCACTGCCCACCTCCTTGGGCCTCCTGGAACGCCAGGGCC TCGGCGGCTGCTGAAGGGATTCTATGGCTCAGAGGCCCAGGGTGTGGTGAAGGACCTGGAGCCGGAACTGCTGCGGCA CCTGGCAAAAGGCATGGCTTCCCTGATGATCACCACCAAGGTAGCCCCAGAGGGGAGCTCCGAGGGCAGCCTCTCCTC CCAGGTGCACATAGCCAACCAATGTGAGGTTGGCGGACTGCGCCTGGAGGCGGCCGGGGCCGAGGGGGTGCGGCCGC TCCTGGGCGGCCCGAGACCCCAACACATGCTTCTTCGAGGGGCAGCAGCGCCCCCACGGGGCTCGCTGGGCGCCCAA $\tt CTGCCCACACCCGGTGCAGGCTCCCGACCAGTGCTGCCTGTTTGCCCTGGCTGCTATTTTGATGGTGACCGGAGCTG$ GGGGGGCACTGGAGAGGTGCACTGTGAGAAGGTGCAGTGTCCCCGGCTGGCCTGTGCCCAGCCTGTGCGTGTCAACCC CACCGACTGCTGCAAACAGTGTCCAGGTGAGGCCCACCCCCAGCTGGGGGGACCCCATGCAGGCTGATGGGCCCCGGGG CTGCCGTTTTGCTGGGCAGTGGTTCCCAGAGAGTCAGAGCTGGCACCCCTCAGTGCCCCCGTTTGGAGAGATGAGCTG TATCACCTGCAGATGTGGGGTAAGTGGGGAGCAGAGGCTTGTGTGAGGTGGGTACTGGGAGCCTGGTCTGGAGTAGGG AGACCTTCCCAGGGAGGTCCCTGAAGAAGCTGAAGGTCACTGTGTCCCAGTGCCTCTGGGGGACACTCAGTGTCTGCT AGAGTCGATGCTGTTCCCGCTGCACGGCCCACCGGCGCGTAAGTGAGGGAGTCCAGGGTCAGCAGCTGTGAGTGGAG GTGCCATTCCAATCCACCCTCACAGCAACCTGGTGGAATTGTTATTATGACCTTTTCTTTACAAATGAGATTTCTGA AGCTCAGAGAAATTAAGCAACGAGATGAAGGTCACCCAGCTGTGTGCACTGACCTGTTTAGAAAATACTGGCCTTTCT GGGACCAAGGCAGGGATGCTTTGCCCTGCCCTCTATGCCTCTCTGTGCCTCTCCACTCCCTCTCCCCTCCCAACAT AGCAGCCAGAGGGCCAAGTGACCAAGAGGATGGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTTGCATTC TCCTGTGGGAAGCCCAGTGCCTTTGCTCCTGTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAACCACAGCTC CACAAGGGGGAGAGGCAGCTGGGCCAGACCGAGGTCACAGCCACTCCAAGTCCTGCCCTGCCACCCTCGGCCTCTGTC AAGGGCCCCGGACACTCCACTCCTGCTGCCCCTGAGCTGAGCAGAGTCATTATTGGAGAGTTTTGTATTATAAAAC ATTTCTTTTTCAGTCTTTGGGCATGAGGTTGGCTCTTTGTGGCCAGGAACCTGAGTGGGGCCTGGTGGAGAAGGGGCN GAGAGTAGGAGGTGAGAGAGAGGAGCTCTGACACTTGGGGAGCTGAAAGAGACCTGGAGAGGCAGAGGATAGCGTGGC NNTTGGCTGGCATNCCTGGGTTCCGCAGAGGGGCTGGGGATGGTTCTTGAGATGGTCTAGAGACTCAAGAATTTAGGG AAGTAGAAGCAGGATTTTGACTCAAGTTTAGTTTCCCACATCGCTGGCCTGTTTGCTGACTTCATGTTTGAAGTTGCT TCCCCTCCCCTCC

GGCCGAGCGGGGGTGCTGCGCGGCGGCCGTGATGGCTGGTGACGGCGGGGCCGGGCAGGGGACCG GGGCCGCGGCCCGGGAGCCAGCTGCCGGGAGCCCTGAATCACCGCCTGGCCCGACTCCACC ATGAACGTCGCGCTGCAGGAGCTGGGAGCTGGCAGCAACGTGGGATTCCAGAAGGGGACAAGACA TGCTTCTGGGCTGCCTTGTGGCCCTAGGGGTCCAGTACCACAGAGACCCCATCCCACAGCACCTGC $\tt CTTACAGAGGCCTGCATTCGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGGTGAGCCCC$ $\tt CTGTGAGGACTTTTACCAGTTCTCCTGTGGGGGCTGGATTCGGAGGAACCCCCTGCCCGATGGGC$ GTTCTCGCTGGAACACCTTCAACAGCCTCTGGGACCAAAACCAGGCCATACTGAAGCACCTGCTT GAAAACACCACCTTCAACTCCAGCAGTGAAGCTGAGCAGAAGACACAGCGCTTCTACCTATCTTG CCTACAGGTGGAGCGCATTGAGGAGCCTGGGAGCCCAGCCACTGAGAGACCTCATTGAGAAGATTG GTGGTTGGAACATTACGGGGCCCTGGGACCAGGACAACTTTATGGAGGTGTTGAAGGCAGTAGCA GGGACCTACAGGGCCACCCCATTCTTCACCGTCTACATCAGTGCCGACTCTAAGAGTTCCAACAG CAATGTTATCCAGGTGGACCAGTCTGGGCTCTTTCTGCCCTCTCGGGATTACTACTTAAACAGAA CTGCCAATGAGAAAGTAAGGAACATCTTCCGAACCCCCATCCCTACCCCTGGCTGAGCTGGGCTG ${\tt ATCCCTGTTGACTTTTCCCTTTGCCAAGGGTCAGAGCAGGGAAGGTGAGCCTATCCTGTCACCTA}$ ${\tt CCTTCCTTCCTTCTTATTCTTCTAGTAGGTTTCATAGACACCTACTGTGTGCCAGGTCCAGT}$ GGGGGAATTCGGAGATATAAGTTTCCGAGCCATTGCCACAGGAAGCGTTCAGTGTCGATGGGTTC ${\tt ATGGACCTAGATAGGCTGATAACAAAGCTCACAAGAGGGTCCTGAGGATTCAGGAGAGACTTATG}$ GAGCCAGCAAAGTCTTCCTGAAGAGATTGCATTTGAGCCAGGTCCTGTAG

ATGCCTACTACCTTCCAACTAAGAATGAGATCGTCTTCCCCGCTGGCATCCTGCAGGCCCCCTTC TATGCCCGCAACCACCCCAAGGCCCTGAACTTCGGTGGCATCGGTGTGGTCATGGGCCATGAGTT GACGCATGCCTTTGATGACCAAGGGCGCGAGTATGACAAAGAAGGGAACCTGCGGCCCTGGTGGC CAGGTCAATGGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGGAGAACATTGCTGACAACGGGGG GCTGAAGGCTGCCTACAATGCTTACAAAGCATGGCTGAGAAAGCATGGGGAGGAGCAGCAACTGC ${\tt GCTGGGCACTCTCCCAACTCCCGTGACTTCCTGCGGCACTTCGGCTGCCCTGTCGGCTCCCCCA}$ TGAACCCAGGGCAGCTGTGTGAGGTGTGGTAGACCTGGATCAGGGGAGAAATGGCCAGCTGTCAC CAGACCTGGGGCAGCTCTCCTGACAAAGCTGTTTGCTCTTGGGTTGGGAGGAAGCAAATGCAAGC TGGGCTGGGTCTAGTCCCTCCCCCCACAGGTGACATGAGTACAGACCCTCCTCAATCACCACAT ${\tt TGTGCCTCTGCTTTGGGGGTGCCCCTGCCTCCAGCAGAGCCCCCACCATTCACTGTGACATCTTT}$ $\tt CTTCTGTCCCCAGGCTCACTCAGCCTGGCGGCCCATGGGGCCTGCCGTGCCCCACTGTGACC$ GACTCAGCTCTGTCTGGCTCACCCTCACGGGCTACCCCCACCTCACCCTGTGCTCCTTGTGCCAC $\tt CCTCCTGCTGCCCACTGTTTCCCTGGGCTGAGAGGGGGAAGTGCATATGTGTAGCGGGTACTGGTT$ ${\tt CCTGTGTCTTAGGGCACAAGCCTTAGCAAATGATTGATTCTCCCTGGACAAAGCAGGAAAGCAGA}$ TAGAGCAGGGAAAAGGAAGAACAGAGTTTATTTTTACAGAAAAGAGGGTGGGAGGGTGTGGTCTT GGCCCTTATAGGACC

CCCACGCGTCCGAGCCGCCCGAGAATTAGACACACTCCGGACGCGGCCAAAAGCAACCGAGAGGA AAATCCTGTGGCGCGCCCCGGTTCCCGGGAAGACTCGCCAGCACCAGGGGGTGGGGGAGTGCG ${\tt AGCTGAAAGCTGCTGGAGAGTGAGCAGCCCTAGCAGGGATGGAC} \underline{{\tt ATG}} {\tt ATG} {\tt ATGCTGTTGGTGCAGGGT}$ CCTCCCGGCTGGACAGAGTGTGGACTTCCCCTGGGCGGCCGTGGACAACATGATGGTCAGAAAAG GGGACACGGCGTGCTTAGGTGTTATTTGGAAGATGGAGCTTCAAAGGGTGCCTGGCTGAACCGG TCAAGTATTATTTTTGCGGGAGGTGATAAGTGGTCAGTGGATCCTCGAGTTTCAATTTCAACATT GAATAAAAGGGACTACAGCCTCCAGATACAGAATGTAGATGTGACAGATGATGGCCCATACACGT GTTCTGTTCAGACTCAACATACACCCAGAACAATGCAGGTGCATCTAACTGTGCAAGTTCCTCCT ${\tt AAGATATGACATCTCAAATGATATGACCGTCAATGAAGGAACCAACGTCACTCTTACTTGTTT}$ GGCCACTGGGAAACCAGAGCCTTCCATTTCTTGGCGACACATCTCCCCATCAGCAAAACCATTTG AAAATGGACAATATTTGGACATTTATGGAATTACAAGGGACCAGGCTGGGGAATATGAATGCAGT GCGGAAAATGCTGTGTCATTCCCAGATGTGAGGAAAGTAAAAGTTGTTGTCAACTTTGCTCCTAC TATTCAGGAAATTAAATCTGGCACCGTGACCCCCGGACGCAGTGGCCTGATAAGATGTGAAGGTG CAGGTGTGCCGCCTCCAGCCTTTGAATGGTACAAAGGAGAGAAGAAGCTCTTCAATGGCCAACAA GGAATTATTATTCAAAATTTTAGCACAAGATCCATTCTCACTGTTACCAACGTGACACAGGAGCA ACCCTCCAAGTACAGCCCAGTATGGAATTACCGGGAGCGCTGATGTTCTTTTCTCCTGCTGGTAC $\tt CTTGTGTTGACACTGTCCTCTTTCACCAGCATATTCTACCTGAAGAATGCCATTCTACAA{\color{red}{\textbf{TAA}}} AT$ $\overline{ ext{TCAAAGACCCATAAAAGGCTTTTAAGGATTCTCTGAAAGTGCTGATGGCTGGATCCAATC\overline{ ext{TGG}}}$ CAGTTTGTTAAAAGCAGCGTGGGATATAATCAGCAGTGCTTACATGGGGATGATCGCCTTCTGTA GAATTGCTCATTATGTAAATACTTTAATTCTACTCTTTTTTGATTAGCTACATTACCTTGTGAAG CAGTACACATTGTCCTTTTTTTAAGACGTGAAAGCTCTGAAATTACTTTTAGAGGATATTAATTG TGATTTCATGTTTGTAATCTACAACTTTTCAAAAGCATTCAGTCATGGTCTGCTAGGTTGCAGGC TGTAGTTTACAAAAACGAATATTGCAGTGAATATGTGATTCTTTAAGGCTGCAATACAAGCATTC AAAGCAAATAATATTGCCTTCAGATTATTTCTTCAAAATATAACACATATCTAGATTTTTCTGCT ${\tt TGCATGATATTCAGGTTTCAGGAATGAGCCTTGTAATATAACTGGCTGTGCAGCTCTGCTTCTCT}$ ATAAAATGTTTTGCTAAATCTTACAATTTGAAAGTAAAAATAAACCAGAGTGATCAAGTTAAACC ${\tt ATACACTATCTCTAAGTAACGAAGGAGCTATTGGACTGTAAAAATCTCTTCCTGCACTGACAATG}$ GGGTTTGAGAATTTTGCCCCACACTAACTCAGTTCTTGTGATGAGAGACAATTTAATAACAGTAT AGTAAATATACCATATGATTTCTTTAGTTGTAGCTAAATGTTAGATCCACCGTGGGAAATCATTC CCTTTAAAATGACAGCACAGTCCACTCAAAGGATTGCCTAGCAATACAGCATCTTTTCCTTTCAC TAGTCCAAGCCAAAAATTTTAAGATGATTTGTCAGAAAGGGCACAAAGTCCTATCACCTAATATT ACAAGAGTTGGTAAGCGCTCATCATTAATTTTATTTTGTGGCAGGTATTATGACAGTCGACCTGG ${\tt AGGGTATGGATATGGACGTTCCAGAGACTATAATGGCAGAAACCAGGGTGGTTATGACCC}$ GCTACTCAGGAGGAAATTACAGAGACAATTATGACAACTGAAATGAGACATGCACATAATATAGA TACACAAGGAATAATTTCTGATCCAGGATCGTCCTTCCAAATGGCTGTATTTATAAAGGTTTTTG GAGCTGCACTGAAGCATCTTATTTTATAGTATATCAACCTTTTGTTTTTAAATTGACCTGCCAAG

MMLLVQGACCSNQWLAAVLLSLCCLLPSCLPAGQSVDFPWAAVDNMMVRKGDTAVLRCYLEDGAS KGAWLNRSSIIFAGGDKWSVDPRVSISTLNKRDYSLQIQNVDVTDDGPYTCSVQTQHTPRTMQVH LTVQVPPKIYDISNDMTVNEGTNVTLTCLATGKPEPSISWRHISPSAKPFENGQYLDIYGITRDQ AGEYECSAENAVSFPDVRKVKVVVNFAPTIQEIKSGTVTPGRSGLIRCEGAGVPPPAFEWYKGEK KLFNGQQGIIIQNFSTRSILTVTNVTQEHFGNYTCVAANKLGTTNASLPLNPPSTAQYGITGSAD VLFSCWYLVLTLSSFTSIFYLKNAILQ

Important features of the protein:

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 326-345

N-glycosylation sites.

amino acids 71-75, 153-157, 273-277, 284-288, 292-296, 305-309

Casein kinase II phosphorylation site.

amino acids 147-151, 208-212, 224-228

Tyrosine kinase phosphorylation site.

amino acids 178-186

N-myristoylation sites.

amino acids 7-13, 63-70, 67-73, 151-157, 239-245, 291-297, 302-308, 319-325

Myelin P0 protein:

amino acids 92-121

AGTGGTTCGATGGGAAGGATCTTTCTCCAAGTGGTTCCTCTTGAGGGGAGCATTTCTGCTGGCTC ${\tt CAGGACTTTGGCCATCTATAAAGCTTGGCA} {\tt ATG} {\tt AGGAAATAAGAAAATTCTCAAGGAGGACGACCT}$ ${\tt CTTGAGTGAGACCCAACAAGCTGCTTTTCACCAAATTGCAATGGAGCCTTTCGAAATCAATGTTC}$ CAAAGCCCAAGAGGAGAAATGGGGTGAACTTCTCCCTAGCTGTGGTGGTCATCTACCTGATCCTG $\tt CTCACCGCTGGCGCTGGTGGTGGTCCAAGTTCTGAATCTGCAGGCGCGGCTCCGGGTCCT$ GGAGATGTATTTCCTCAATGACACTCTGGCGGCTGAGGACAGCCCGTCCTTCTCCTTGCTGCAGT CAGCACACCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTGCAAGTCCTGCAGGCCCAACTC GATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTCTTCAAGGTCACAAGGGGGCCCATGGGCA TGCCTGGTGCCCCTGGCCCGGGGACCACCTGCTGAGAAGGGAGCCAAGGGGGCTATGGGACGA GATGGAGCAACAGGCCCCTCGGGACCCCAAGGCCCACCGGGAGTCAAGGGAGAGGCGGGCCTCCA GCAGCAAAGGCGATGGGGGTCTCATTGGCCCCAAAAGGGGAAACTGGAACTAAGGGAGAAAAGGA GACCTGGGTCTCCCAGGAAGCAAAGGGGACAGGGGCATGAAAGGAGATGCAGGGGTCATGGGGCC ${\tt TCCTGGAGCCCAGGGGAGTAAAGGTGACTTCGGGAGGCCAGGCCCACCAGGTTTGGCTGGTTTTC}$ CTGGAGCTAAAGGAGATCAAGGACAACCTGGACTGCAGGGTGTTCCGGGCCCTCCTGGTGCAGTG GGACACCCAGGTGCCAAGGGTGAGCCTGGCAGTGCTGGCTCCCCTGGGCGAGCAGGACTTCCAGG GAGCCCCGGGAGTCCAGGAGCCACAGGCCTGAAAGGAAGCAAAGGGGACACAGGACTTCAAGGAC AGCAAGGAAGAAAAGGAGAATCAGGAGTTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGGAGC CCAGGGCTGGCAGGTCCCAAGGGAGCCCCTGGACAAGCTGGCCAGAAGGGAGACCAGGGAGTGAA AGGATCTTCTGGGGAGCAAGGAGTAAAGGGAGAAAAAGGTGAAAGAGGTGAAAACTCAGTGTCCG ${\tt TCAGGATTGTCGGCAGTAGTAACCGAGGCCGGGCTGAAGTTTACTACAGTGGTACCTGGGGGACA}$ ${\tt ATTTGCGATGACGAGTGGCAAAATTCTGATGCCATTGTCTTCTGCCGCATGCTGGGTTACTCCAA}$ GGGGCACGGAGAGTACCCTGTGGAGCTGCACCAAGAATAGCTGGGGCCATCATGACTGCAGCCAC ${\tt GAGGAGGACGCAGGCGTGGAGTGCAGCGTC} {\color{red}{\bf TGA}} {\tt CCCGGAAACCCTTTCACTTCTGCTCCCGAG}$ AGCCTCTGGAGAGGGGCCATTAATAAAGCTCAACATCATTGA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886

><subunit 1 of 1, 520 aa, 1 stop

><MW: 52658, pI: 9.16, NX(S/T): 3

MRNKKILKEDELLSETQQAAFHQIAMEPFEINVPKPKRRNGVNFSLAVVVIYLILLTAGAGLLVV QVLNLQARLRVLEMYFLNDTLAAEDSPSFSLLQSAHPGEHLAQGASRLQVLQAQLTWVRVSHEHL LQRVDNFTQNPGMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRDGATGPSGPQ GPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGLIGPKGETGTKGEKGDLGLPGSKGD RGMKGDAGVMGPPGAQGSKGDFGRPGPPGLAGFPGAKGDQGQPGLQGVPGPPGAVGHPGAKGEPG SAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPAGVKGEQGSPGLAGPKGAP GQAGQKGDQGVKGSSGEQGVKGEKGERGENSVSVRIVGSSNRGRAEVYYSGTWGTICDDEWQNSD AIVFCRMLGYSKGRALYKVGAGTGQIWLDNVQCRGTESTLWSCTKNSWGHHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.

amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352, 400-406, 441-447, 475-481, 490-496, 515-521

Amidation site.

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

Clq domain proteins.

amino acids 151-184, 301-334, 316-349

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52758
<subunit 1 of 1, 98 aa, 1 stop
<MW: 11081, pI: 6.68, NX(S/T): 1
MKLMVLVFTIGLTLLLGVQAMPANRLSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDGKGC
EMICYCNFSELLCCPKDVFFGPKISFVIPCNNQ</pre>

Important features:
Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-76

Tyrosine kinase phosphorylation site.

amino acids 63-71

CCCACGCGTCCGCGGACGCGTGGGCTGGACCCCAGGTCTGGAGCGAATTCCAGCCTGCAGGGCTG ATAAGCGAGGCATTAGTGAGATTGAGAGAGACTTTACCCCGCCGTGGTGGTTGGAGGGCGCGCAG AAGCTACTAACATTACTCCAAAGCATAATATGAAAGCATTTTTGGATGAATTGAAAGCTGAGAAC ATCAAGAAGTTCTTACATAATTTTACACAGATACCACATTTAGCAGGAACAGAACAAAACTTTCA GGAAATGAGATTTTCAACACATCATTATTTGAACCACCTCCTCCAGGATATGAAAATGTTTCGGA TATTGTACCACCTTTCAGTGCTTTCTCTCCTCAAGGAATGCCAGAGGGCGATCTAGTGTATGTTA ACTATGCACGAACTGAAGACTTCTTTAAATTGGAACGGGACATGAAAATCAATTGCTCTGGGAAA ATTGTAATTGCCAGATATGGGAAAGTTTTCAGAGGAAATAAGGTTAAAAATGCCCAGCTGGCAGG ${\tt GGCCAAAGGAGTCATTCTCTACTCCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATC}$ CAGACGGTTGGAATCTTCCTGGAGGTGGTGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCA GGAGACCCTCTCACACCAGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAGAGGC TGTTGGTCTTCCAAGTATTCCTGTTCATCCAATTGGATACTATGATGCACAGAAGCTCCTAGAAA AAATGGGTGGCTCAGCACCACCAGATAGCAGCTGGAGAGGAAGTCTCAAAGTGCCCTACAATGTT GGACCTGGCTTTACTGGAAACTTTTCTACACAAAAAGTCAAGATGCACATCCACTCTACCAATGA ${\tt TTCTGGGAGGTCACCGGGACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGTT}$ ATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGACTCATCTATAGAAGGAAAC TACACTCTGAGAGTTGATTGTACACCGCTGATGTACAGCTTGGTACACAACCTAACAAAAGAGCT GAAAAGCCCTGATGAAGGCTTTGAAGGCAAATCTCTTTATGAAAGTTGGACTAAAAAAAGTCCTT CCCCAGAGTTCAGTGGCATGCCCAGGATAAGCAAATTGGGATCTGGAAATGATTTTGAGGTGTTC CAGCGGCTATCCACTGTATCACAGTGTCTATGAAACATATGAGTTGGTGGAAAAGTTTTATGATC CAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCGAGGAGGGATGGTGTTTGAGCTAGCCAAT TCCATAGTGCTCCCTTTTGATTGTCGAGATTATGCTGTAGTTTTAAGAAAGTATGCTGACAAAAT CTACAGTATTTCTATGAAACATCCACAGGAAATGAAGACATACAGTGTATCATTTGATTCACTTT TTTCTGCAGTAAAGAATTTTACAGAAATTGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGAC AAAAGCAACCCAATAGTATTAAGAATGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTAT TGATCCATTAGGGTTACCAGACAGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACA ACAAGTATGCAGGGGAGTCATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAGCAAAGTG ${\tt AGCTGCAGAGACTTTGAGTGAAGTAGCC} {\bf TAA} {\tt GAGGATTTTTTAGAGAATCCGTATTGAATTTGTG}$ ATAAAGTTGAATATTATATATAA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA52756

><subunit 1 of 1, 750 aa, 1 stop

><MW: 84305, pI: 6.93, NX(S/T): 10

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFLDEL
KAENIKKFLHNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTHPNYISI
INEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKIN
CSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNLPGGGVQRGNILN
LNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKV
PYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQS
GAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYINADSS
IEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPEFSGMPRISKLGSGND
FEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVF
ELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERL
QDFDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFYRHVIYAPSSHNKYAGESFPGIYDALFDI
ESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA

Signal sequence:

amino acids 1-40

N-glycosylation sites.

amino acids 76-80, 121-125, 140-144, 153-157, 195-199, 336-340, 459-463, 476-480, 638-642

Tyrosine kinase phosphorylation sites.

amino acids 363-372, 605-613, 606-613, 617-626

N-myristoylation sites.

amino acids 85-91, 168-174, 252-258, 256-262, 282-288, 335-341, 360-366, 427-433, 529-535, 707-713

W:\DOCS\BGY\BGY-2104.DOC