Computer Architecture Ch. 3-1: Design Process & ALU Design

Fall, 2014

Sao-Jie Chen (csj@ntu.edu.tw)

The Design Process

"To Design Is To Represent"

- Design activity yields description/representation of an object
- ⇒ Traditional craftsman does not distinguish between the conceptutilization and the artifact
- ⇒ Separation comes about because of *complexity*
- ⇒ The concept is captured in one or more *representation languages*
- ⇒ This process IS design

- Design Begins With Requirements
 - ⇒ Functional Capabilities: what it will do
 - ⇒ Performance Characteristics: Speed, Power, Area, Cost, . . .

Design Process (cont.)

- Design Finishes as Assembly
 - ⇒ Design understood in terms of components and how they have been assembled
 - ⇒ Top Down decomposition of complex functions (behaviors) into more primitive functions
 - ⇒ bottom-up *composition* of primitive building blocks into more complex assemblies
- Design is a "creative process," not a simple method

Design Refinement

refinement increasing level of detail

. ..yoroa.p.o...o...a..o.

Design as Representation (Example)

(1) Functional Specification

"VHDL Behavior"

Inputs: 2 x 16 bit operands: A, B; 1 bit carry input: Cin.

Outputs: 1 x 16 bit result: S; 1 bit carry output: Co.

Operations: PASS, ADD (A plus B plus Cin), SUB (A minus B

minus Cin), AND, XOR, OR, COMPARE (equality)

Performance: left unspecified for now!

(2) Block Diagram

"VHDL Entity"

Understand the data and control flows

Elements of the Design Process

- Divide and Conquer
 - Formulate a solution in terms of simpler components.
 - Design each of the components (subproblems)
- Generate and Test
 - Given a collection of building blocks, look for ways of putting them together that meets requirement
- Successive Refinement
 - Solve most of the problem (i.e., ignore some constraints or special cases), examine and correct shortcomings.
- Formulate High-Level Alternatives
 - Articulate many strategies to in mind while pursuing any one approach.
- Work on the Things you Know How to Do
 - The unknown will become obvious as you make progress.

Summary of the Design Process

- Hierarchical Design to manage complexity
- Top Down vs. Bottom Up vs. Successive Refinement
- Importance of Design Representations:

Other Descriptions: state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

Arithmetic

- Where we've been:
 - Performance (seconds, cycles, instructions)
 - Abstractions:

 Instruction Set Architecture
 Assembly Language and Machine Language
- What's up ahead:
 - Implementing the Architecture

Numbers

- Bits are just bits (no inherent meaning)
 conventions define relationship between bits and numbers
- Binary numbers (base 2)
 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
 decimal: 0 ... 2ⁿ-1
- Of course it gets more complicated:
 numbers are finite (overflow)
 fractions and real numbers
 negative numbers
 (e.g., no MIPS subi instruction; addi can add a negative number)
- How do we represent negative numbers?
 i.e., which bit patterns will represent which numbers?

Lec 6 design.9

Possible Representations

Signed Magnitude:	One's Complement	Two's Complement
000 = +0	000 = +0	000 = +0
001 = +1	001 = +1	001 = +1
010 = +2	010 = +2	010 = +2
011 = +3	011 = +3	011 = +3
100 = -0	100 = -3	100 = -4
101 = -1	101 = -2	101 = -3
110 = -2	110 = -1	110 = -2
111 = -3	111 = -0	111 = -1

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

MIPS

32 bit signed numbers (2's Complement):

Lec 6 design.11 © MKP 2004

Two's Complement Representation

- 2's complement representation of negative numbers
 - Bitwise inverse and add 1
 - The MSB is always 1 for negative number => sign bit
- Biggest 4-bit Binary Number: 7 **Smallest 4-bit Binary Number: -8**

Decimal	Binary	Decimal	Bitwise Inverse	2's Complement
0	0000	0	1111	0000
1	0001	-1	1110	1111
2	0010	-2	1101	1110
3	0011	-3	1100	1101
4	0100	-4	1011	1100
5	0101	-5	1010	1011
6	0110	-6	1001	1010
7	0111	-7	1000	1001
8	1000	-8	0111	1000
		"illegal" Positiv	ve Number!	

Two's Complement Arithmetic

Decimal	Binary	Dec	
0	0000	(
1	0001	-1	
2	0010	-2	
3	0011	-3	
4	0100	-2	
5	0101	5	
6	0110	-6	
7	0111	-7	
		c	

Decimal	2's Complement		
0	0000		
-1	1111		
2	1110		
-3	1101		
-4	1100		
<u>-5</u>	1011		
6	1010		
-7	1001		
-8	1000		

• Examples:
$$7 - 6 = 7 + (-6) = 1$$
 $3 - 5 = 3 + (-5) = -2$

$$3 - 5 = 3 + (-5) = -2$$

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: negate and invert are quite different!
- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits

```
0010 -> 0000 0010
1010 -> 1111 1010
```

"sign extension" (lbu vs. lb)

Functional Specification of the ALU

<u>ALU</u>	Control	Lines	(ALUop)	
	000			

000

001

010

110

111

Function

And

Or

Add

Subtract

Set-on-less-than

Review: The Multiplexor

Selects one of the inputs to be the output, based on a control input

Note: we call this a 2-input mux even though it has 3 inputs!

Let's build our ALU using a MUX:

Different Implementations

- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Don't want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU (FA) for addition:

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

A One-bit ALU

This 1-bit ALU will perform AND, OR, and ADD

Lec 6 design.18 © MKP 2004

A One-bit Full Adder

• This is also called a (3, 2) adder

Half Adder: No CarryIn nor CarryOut

• Truth Table:

3 Inputs		2 Outputs			
Α	В	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0 + 0 + 0 = 00
0	0	1	0	1	0 + 0 + 1 = 01
0	1	0	0	1	0 + 1 + 0 = 01
0	1	1	1	0	0 + 1 + 1 = 10
1	0	0	0	1	1 + 0 + 0 = 01
1	0	1	1	0	1 + 0 + 1 = 10
1	1	0	1	0	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11

Logic Equation for CarryOut

Inputs		Outputs			
Α	В	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0 + 0 + 0 = 00
0	0	1	0	1	0 + 0 + 1 = 01
0	1	0	0	1	0 + 1 + 0 = 01
0	1	1	1	0	0 + 1 + 1 = 10
1	0	0	0	1	1 + 0 + 0 = 01
1	0	1	1	0	1 + 0 + 1 = 10
1	1	0	1	0	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11

- CarryOut = (!A & B & CarryIn) | (A & !B & CarryIn) | (A & B & !CarryIn)
 | (A & B & CarryIn)
- CarryOut = B & CarryIn | A & CarryIn | A & B

Logic Equation for Sum

	Inputs Outputs				
Α	В	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0 + 0 + 0 = 00
0	0	1	0	1	0 + 0 + 1 = 01
0	1	0	0	1	0 + 1 + 0 = 01
0	1	1	1	0	0 + 1 + 1 = 10
1	0	0	0	1	1 + 0 + 0 = 01
1	0	1	1	0	1 + 0 + 1 = 10
1	1	0	1	0	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11

Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)| (A & B & CarryIn)

Logic Equation for Sum (continued)

- Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)| (A & B & CarryIn)
- Sum = A XOR B XOR CarryIn
- Truth Table for XOR:

Х	Υ	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0

Lec 6 design.22

Logic Diagrams for CarryOut and Sum

• CarryOut = B & CarryIn | A & CarryIn | A & B

• Sum = A XOR B XOR Carryln

A 4-bit ALU

1-bit ALU

4-bit ALU

Lec 6 design.24

Building a 32-bit ALU

Lec 6 design.25 © MKP 2004

How About Subtraction?

- Keep in mind the following:
 - (A B) is the same as: A + (-B)
 - 2's Complement: Take the inverse of every bit and add 1
- Bit-wise inverse of B is !B:
 - A + !B + 1 = A + (!B + 1) = A + (-B) = A B

What about subtraction (a - b)?

- Two's complement approach: just negate b and add.
- How do we negate?
- A very clever solution:

