Ubinos model

● 소개:

-	본 model은 OSEK/VDX OS기반으로 확장하여 개발하였다. Ubinos책에서(사물 점퓨팅	0
	론 및 실습) 있는 API기빈으로 최대한 mapping하였다.	

model	파일	list
model	ᄴᄅ	HSU

- ◆ config.h

- ◆ model.c
- ◆ mylib.c ------

- ♦ messageQ.c
- message.h
- readyQ.h
- readyQ.c
- waitingQ.c
- waitingQ.h

■ API list:

- ◆ Task 부분:
 - int task_create(unsigned char tid);
 - int TerminateTask();
 - int task_sleep(unsigned int time);
 - int time_checker(unsigned char);-> sleeping 중인 task가 resume 하는지 check
 - int Round_Robin_Schedule();

◆ Mutex 부분:

- int mutex_create(mutex_pt*)
- int mutex_delete(mutex_pt*);
- int mutex_lock(mutex_pt*);
- int mutex_unlock(mutex_pt*)
- int mutex_is_locked(mutex_pt*);
- int mutex_lock_timed(mutex_pt*, unsigned int time);
- int mutex_time_checker(mutex_pt *, unsigned char tid);

◆ semaphore 부분:

- int sem_create(sem_pt *);
- int sem_delete(sem_pt *);
- int sem_take(sem_pt*);
- int sem_give(sem_pt*);
- int sem_take_timed(sem_pt*, unsigned int time);
- int sem_time_checker(sem_pt*, unsigned char tid);

◆ message 부분

- int msgq_create(msgq_pt* , unsigned int, unsigned int);
- int msgq_receive(msgq_pt*, unsigned char *);
- int msgq_send(msgq_pt*, unsigned char *);

◆ start up & shut down:

- void ubik_comp_statr();
- void ShutDownOS();

- model 사용법 (필요한면 수정):
 - config 파일 부분:
 - ◆ Task 몇 개 있는지
 - ◆ 최대한 Tid 및 최소한 Tid 얼마인지
 - ◆ 최대한 우선순위 정의
 - ◆ Tid 정의
 - Initialize 파일 부분:
 - ◆ task의 priority 정의
 - ◆ 밑에 그대로 사용
 - Source code 부분:
 - ◆ 해더파일 include
 - #Include "os.h"
 - ◆ TASK macro 및 jump macro
 - #define TASK(t) TASK_##t()
 - 여기인 tid는 실제 사용할 때 대응한 task id
 로 바꾸면 된다. (Task 1인 경우 jump_1{})
 - ◆ Task create, Terminate 및 Round Robin

```
#ifndef CONFIG_H_
#define CONFIG_H_
#define NUM_OF_TASKS 10
#define MIN_TASK_ID 1
#define MAX_TASK_ID 10
#define MAX_PRIORITY 5

#define Task1 1
#define Task2 2
#define Task3 3
#define Task4 4

#define testalarm 1
#endi
```

```
task_static_info[1].max_act_cnt = 1;
    task_static_info[1].prio = 3;

task_dyn_info[1].dyn_prio = task_static_info[1].prio;
task_dyn_info[1].act_cnt = 0;
```

flag = task_create(1);

■ flag는 1인 경우 create successful, 0인 경우는 더 높은 priority인 task가 수행하고 있으면 create한 task가 readyQ으로 들어간다.

flag = TerminateTask();

■ 수행중인 task가 terminate

• Round robin 해야 하는 위치에서 Round_Robin_Schedule() 호출하면 된다.

(context switching point 미이 기록해야 한다)

Scheduler(running 함수):

nutex_pt *mutex;

- ◆ Mutex 부분:
 - memory allocation 및 mutex create
 - muntx lock 및 unlock
 - Mutex lock timed 및 time checker

```
mutex = (mutex_pt*)malloc(sizeof(mutex_pt));

    flag = mutex_lock(mutex);

    flag = mutex_unlock(mutex);

current_pc[1]++;
    flag = mutex_lock_timed(mutex, 1000);
    if (flag)
        return;
```

- ◆ Semaphore 부분:
 - memory allocation 및 sem create
 - Sem give 및 take

- Sem take timed는 mutex 랑 똑같은 식으로 구현 하면 된다.
- ◆ Message queue 부분:
 - memory allocation 및 message 생성
 - Meesage send 및 receive

```
msgq_pt* _g_msgq;
_g_msgq = (msgq_pt*)malloc(sizeof(msgq_pt));
msgq_create(_g_msgq, 25, 0);
```

mess_flag[1] = msgq_send(_g_msgq, buf);
mess_flag[2] = msgq_receive(_g_msgq, buf1);

- 참고 예제
 - RR_test:
 - ◆ 같은 priority인 task가 Round robin schedule는 정상적으로 수행되는지 check하는 case.

- mutex_test1.c 및 mutex_test2.c
 - ◆ 간단한 mutex lock 및 unlock test 하는 case
 - ◆ Mutex priority 특성 test 하는 case
- sem_test.c
 - ◆ semaphore behavior check 하는 case
- messageQ.c
 - ◆ message queue 부분 test 하는 case