

PRÄSENTATIONSINHALT

- Projektbeschreibung
- Ideenfindung
- HCD-Prozess Aufbau, Umsetzung und Implementierung
- Umsetzung des Projektes
 - Hardware
 - Software
 - Live-Demonstration
 - Endergebnis
 - Webinterface
 - genutzte Arbeitsumgebungen
- Projektabschluss
- Quellen

PROJEKTBESCHREIBUNG INTERAKTIVE MEDIEN

- Konzeption und Entwicklung interaktiver Medienprodukte
- Bedürfnisse und Verhaltensweisen von potenziellen Nutzern berücksichtigen
- Umsetzung mit HCD-Prozess
- Prototypgestaltung nach Interaktivität

- Weiterführung: Was kann man dagegen tun? Gibt es eine technische Lösung?
- Folge: Recherche über "smarte"
 Blumentöpfe

Ideenfindung

RECHERCHE AKTUELLER PROJEKTE

Was ist/war bereits an smarten Blumentöpfen auf dem Markt?

Flaura, the Smart Watering Pot No green thumb? No problem! This

omo www.ono.de

ERSTER ENTWURF: DES BLUMENTOPFES

- Licht-, Temperatur- und Feuchtigkeitssensoren
- Auswählbare Pflanzenarten und Informationen zu idealen Haltungsverhältnissen
- Information durch App, LEDs und Display abrufbar

HCD-PROZESS: AUFBAU UND UMSETZUNG

Aufbau der Semesterorganisation auf Grundlage des HCDs

Einteilung HCD in 2 große Phasen ("Teilabgabe" und "Endabgabe")

2 Fragebögen entworfen und ausgewertet

Auswertung, Implementierung, testen und erneute Befragung

HCD-PROZESS: UMFRAGE

Umfrage 1:

- Zielgruppe ist vergesslich
- Automatisierung (insbesondere Bewässerung)
- Steuerung über APP

Umfrage 2:

- LED Farben & Icons bestimmt
- Blinken vermeiden

PERSONA GRUNDPROFIL

PROFIL

- Durchschnittsalter: 28 Jahre
- besitzt bereits Pflanzen
- berufstätig

SCHWÄCHEN

- Vergesslichkeit

CHARAKTEREIGENSCHAFTEN

- kann mit einfachen Problemen gut umgehen
 - niedrige Frustrationstoleranz

STÄRKEN

- starke Technikaffinität

WÜNSCHE

- einfache Lösungen zur Haltung von Pflanzen
- Automatisierung, wenn niemand Zuhause ist
- Erinnerungen zur Pflege
- Erstellung von Pflanzenprofilen

ENTWICKLUNGSZIELE

- Effiziente Lösungen, die an den Nutzer angepasst sind
- Technische Unterstützung der Pflanzenpflege
- Anregung zur Verbesserung der Pflegeroutine
- Abnahme der Bewässerung

HARDWARE

HARDWARE - SCHALTPLAN

HARDWARE - BAUTEILE

Bauteile	Bezeichnung
Prozessor	ESP32 V2 WROOM
Bodenfeuchtigkeits- sensor	Adafruit STEMMA Soil Sensor - I2C Capacitive Moisture Sensor - JST PH 2mm
Temperatursensor	ds18b20
Helligkeitssensor	GY-302 BH1750
Display	DEBO LCD 16X2 BL
Relais	Songle sdr-05vdc-sl-c
Pumpe	PDM5 D916 5V

HARDWARE - BLENDER

HARDWARE - AUSGABE

SOFTWARE

- Arbeitsumgebung in Thonny
- Umsetzung in Python, basierend auf 00P
- Kommunikationsstruktur zwischen ESP, Hardware und Webserver/Website?
- Aufbau des Programmes nach dem MVC-Modell?

SOFTWARE: KLASSENSTRUKTUR

19

SOFTWARE: KOMMUNIKATIONSSTRUKTUR

ENDERGEBIS: DER BLUMENTOPF

- Messung von Licht, Temperatur und Bodenfeuchtigkeit
- Bewässerung
- Status LEDs
- Button zur Ausgabe auf dem Display
- Website zur Einsicht von Daten und zur Bearbeitung und Einstellungen von Profilen

WEBINTERFACE: MOBILE ANSICHT

ARBEITSUMGEBUNGEN

ZUKUNFTSPLÄNE - VERSION 2.0

- Pumpenprotokoll in JSON
- Web-App Integration
- Stand-Alone-System ohne separaten Server
- Pumpensteuerung über Website/App

- Pushnachrichten auf Handy und Web
- ID für ESP, Login und Nutzerprofile (Datenbank)
- Lautsprecher
- UV-Lampe, LED-Streifen
- besseres Display (Touch?)

FEEDBACK – EVALUATION DER ZUSAMMENARBEIT

- Kommunikation, Umgang mit Konflikten
- Organisation der Aufgaben
- Projektleitung
- Semesterplanung

Projektabschluss

LESSONS LEARNED

- Umsetzungsstruktur, klare Definition von Aufgaben, Bearbeitung
- jedoch zusammen
- feste Deadlines und Ziele, wenn wir nicht studieren würden
- bessere Planbarkeit der eigenen Zeit -> einfachere Selbstorganisation
- intrinsische Motivation, ohne Projektleitung zusammenzuarbeiten

QUELLEN – SEITE 1

Zur Hardware:

https://eckstein-shop.de/Adafruit-STEMMA-Soil-Sensor-I2C-Capacitive-Moisture-

<u>Sensor?googlede=1&ws_oss_lieferland=DE&gad_source=1&gclid=CjwKCAi</u> <u>AmZGrBhAnEiwAo9qHiXt5Nre_6m5Kz1sdpd4R8GcuMv9Bs6_Ypvi2xkvfczcf</u> <u>BGG-LyjCThoC4QYQAvD_BwE</u>

https://www.amazon.de/dp/B0B76YGDV4?ref_=cm_sw_r_apin_dp_6MJYBT XBB2EM95Y4J3JD&language=de-DE&th=1

Informationen zum ESP:

https://docs.micropython.org/en/latest/esp32/quickref.html

https://github.com/espressif/esptool/releases/tag/v4.6.2

https://micropython.org/download/#esp32

https://www.instructables.com/Getting-Started-With-ESP32-on-a-Mac/

https://randomnerdtutorials.com/projects-esp32/

QUELLEN - SEITE 2

Infomationen zum Code:

https://randomnerdtutorials.com/micropython-oled-display-esp32-esp8266/

https://thonny.org/

https://randomnerdtutorials.com/micropython-wi-fi-manager-esp32-esp8266/

https://randomnerdtutorials.com/micropython-ds18b20-esp32-esp8266/

https://wokwi.com/projects/new/micropython-esp32

https://microcontrollerslab.com/i2c-lcd-esp32-esp8266-micropython-tutorial/

Infomationen zur Website:

https://jqueryui.com/

https://coolors.co/contrast-checker/112a46-acc8e5

Präsentationslayout:

QUELLEN - SEITE 3

Inspirationen smarter Blumentöpfe:

https://vivien-muller.fr/lua#super-simple-app

https://img.thingiverse.com/cdn-cgi/image/fit=contain,quality=95/https://cdn.thingiverse.com/assets/71/50/83/30/e7/large_display_Sketch.PNG

https://www.youtube.com/watch?v=rHHFL17ncnc, Flaura automatic smart plant pot

https://www.youtube.com/watch?v=fNg8nQjqlq4, how to make a smart plant pot

https://www.youtube.com/watch?v=5_nwNWQxWsc, top 5 smart plant pots

https://www.otto.de/p/lazy-leaf-pflanzkuebel-blumentopf-o-32-cm-wassertankgroesse-6-35-l-selbstgiessend-S0U2M0XW/#alternative&seoRedirect=threeWord&seoRedirectOrigin=CS0A0A0CA, Lazy leaf plant pot

