IGEE-UMBB EE 174: Recitations set 3

- 1. Check the linear independence of the following vectors of \mathbb{R}^3
 - a) $\{(0,0,-1);(1,0,4)\}$
 - **b**) $\{(1,1,0);(-1,2,0)\}$
 - c) $\{(1,1,0);(-1,1,2);(0,2,2)\}$
- 2. Let P_2 be the space of real polynomials of degree ≤ 2 ; Check the linear independence of the following sets
 - a) $\{1, x, x^2\}$
 - **b)** $\{-1 + 4x x^2, 1 + 7x, 2 + 3x + x^2\}$
 - c) Can we select a basis for P_2 from these sets?
- 3. Let $S = \{v_1, v_2, \dots, v_k\}$ be a subset of the vector space V(F); Show that $[S] = [v_1, v_2, \dots, v_k] = [v_1, v_2, \dots, v_k, v_{k+1}]$ if and only if $v_{k+1} \in [v_1, v_2, \dots, v_k]$ for any $v_{k+1} \in V(F)$. What conclusions can you draw from this result?
- 4. Let S, T be linearly independent subsets of vectors of the vector space V(F)
 - a) Is $S \cap T$ linearly independent? Justify.
 - **b)** Are the complements \overline{S} and \overline{T} linearly independent? Justify.
- 5. Let P_3 be the space of real polynomials of degree ≤ 3 ; Is the subset $\{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$ a basis for P_3 ? If so, express $p(x) = x^2 + x^3$ in this basis.
- 6. Find a basis and the dimension of the solution space of the following system of linear equations:

$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$

$$2x_1 - 8x_2 + 6x_3 - 2x_4 = 0$$