Introduction to Machine Learning

Advanced Risk Minimization Properties of Loss Functions

Learning goals

- Statistical properties
- Robustness
- Optimization properties
- Some fundamental terminology

THE ROLE OF LOSS FUNCTIONS

Why should we care about the choice of the loss function $L(y, f(\mathbf{x}))$?

- **Statistical** properties: choice of loss implies statistical assumptions about the distribution of $y \mid \mathbf{x} = \tilde{\mathbf{x}}$ (see *maximum likelihood estimation vs. empirical risk minimization*).
- Robustness properties: some loss functions are more robust towards outliers than others.
- Optimization properties: the computational complexity of

$$\underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,min}} \, \mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta})$$

is influenced by the choice of the loss function.

NB: We use some losses as examples which are only introduced later in the chapter.

SOME BASIC TERMINOLOGY

Classification losses are usually expressed in terms of the **margin**: $\nu := y \cdot f(\mathbf{x})$.

SOME BASIC TERMINOLOGY

- Regression losses often only depend on the **residuals** $r(\mathbf{x}) := y f(\mathbf{x})$.
- Losses are called **symmetric** if $L(y, f(\mathbf{x})) = L(f(\mathbf{x}), y)$.
- A loss is translation-invariant if $L(y + a, f(\mathbf{x}) + a) = L(y, f(\mathbf{x})), a \in \mathbb{R}$.
- A loss is called distance-based if
 - it can be written in terms of the residual, i.e., $L(y, f(\mathbf{x})) = \psi(r)$ for some $\psi : \mathbb{R} \to \mathbb{R}$, and
 - $\psi(r) = 0 \Leftrightarrow r = 0$.

ROBUSTNESS

Outliers (in y) have large residuals $r(\mathbf{x}) = y - f(\mathbf{x})$. Some losses are more affected by large residuals than others. If loss goes up superlinearly (e.g. L2) it is not robust, linear (L1) or even sublinear losses are more robust.

$y - \hat{f}(\mathbf{x})$	<i>L</i> 1	L2	Huber ($\epsilon=5$)
1	1	1	0.5
5	5	25	12.5
10	10	100	37.5
50	50	2500	237.5

As a consequence, a model is less influenced by outliers than by "inliers" if the loss is **robust**.

Outliers e.g. strongly influence L2.

OPTIMIZATION PROPERTIES: SMOOTHNESS

- Smoothness of a function is a property measured by the number of continuous derivatives.
- ullet Derivative-based optimization requires smoothness of the risk $\mathcal{R}_{\mathsf{emp}}(heta)$
 - If loss is unsmooth, we might have to use derivative-free optimization (or worse, in case of 0-1)
 - Smoothness of $\mathcal{R}_{emp}(\theta)$ not only depends on L, but also requires smoothness of $f(\mathbf{x})$!

Squared loss, exponential loss and squared hinge loss are continuously differentiable. Hinge loss is continuous but not differentiable. 0-1 loss is not even continuous.

OPTIMIZATION PROPERTIES: CONVEXITY

ullet Our risk $\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})$ is convex if

$$\mathcal{R}_{\mathsf{emp}}\left(t\cdot oldsymbol{ heta} + (\mathsf{1}-t)\cdot ilde{oldsymbol{ heta}}
ight) \leq t\cdot \mathcal{R}_{\mathsf{emp}}\left(oldsymbol{ heta}
ight) + (\mathsf{1}-t)\cdot \mathcal{R}_{\mathsf{emp}}\left(ilde{oldsymbol{ heta}}
ight)$$

 $\forall t \in [0, 1], \ \theta, \tilde{\theta} \in \Theta$ (strictly convex if the above holds with strict inequality).

- \rightarrow strictly convex function has at most **one** global min (uniqueness).
- ullet For $\mathcal{R}_{\text{emp}} \in \mathcal{C}^2$, \mathcal{R}_{emp} is convex iff Hessian $\nabla^2 \mathcal{R}_{\text{emp}}(\theta)$ is PSD.
- Above are general definitions for arbitrary functions.

OPTIMIZATION PROPERTIES: CONVEXITY

- Convexity of $\mathcal{R}_{emp}(\theta)$ depends both on convexity of $L(\cdot)$ (given in most cases) and $f(\mathbf{x} \mid \theta)$ (often problematic).
- If we model our data using an exponential family distribution, we always get convex losses
 - For $f(\mathbf{x} \mid \theta)$ linear in θ , linear/logistic/softmax/poisson/... regression are convex problems (all GLMs)!

Li et al., 2018: Visualizing the Loss Landscape of Neural Nets. The problem on the bottom right is convex, the others are not (note that very high-dimensional surfaces are coerced into 3D here).

