RAPPORT DU PROJET MADMC

M2 Informatique - Spécialité ANDROIDE Sorbonne Université

Année universitaire 2019-2020

1	Organisation du code	3
2	Méthode Heuristique2.1 Bin Packing PLNE + Glouton	3 3 4
3	MTZ	6
4	Branch and Cut 4.1 Inégalités pour Couper des solutions entières 4.2 Experiences 4.3 Inégalités pour Couper de solutions fractionaires 4.4 Experiences 4.5 Remarques	10 10
5	Comparaison	10

1 Organisation du code

- 1. Class Solveur
 - (a) plne MTZ():
 - i. Résolution de l'instance par la PLNE avec la formulation MTZ
 - (b) Branch-and-Cut():
 - i. Résolution de l'instance par la PLNE avec la méthode Branch and Cut
 - (c) bin plne heuristique():
 - i. Résolution de l'instance par la PLNE pour obtenir une solution exacte de Bin Packing
 - ii. Produire une solution avec une méhode gloutonne à partir de la solution de la pahse précédente
 - (d) bin glouton heuristique():
 - i. Résolution de l'instance par l'algorithme First fit decreasing pour obtenir une solution de Bin Packing
 - ii. Produire une solution avec une méhode gloutonne à partir de la solution de la pahse précédente
 - (e) setInstance():
 - i. Lier une instance avec le solveur
 - (f) Instance*
 - (g) Solution*
- 2. class Solution
 - (a) write SVG tour()
 - i. Generer une fichier "CVRP" solution.svg" qui permet de visualiser la solution via un avigateur
 - (b) visualisation()
 - i. Generer une fichier "cvrp_solution.dot" et un fichier "cvrp_solution.png" qui permet de visualiser la solution
 - (c) affichage():
 - i. afficher la solution dans std::cout
- 3. class Instance
 - (a) read-File()
 - (b) Clients[], distance[][]
 - (c) Q, n, m
- 4. Client
 - (a) x, y, i, demande

2 Méthode Heuristique

2.1 Bin Packing PLNE + Glouton

- 1. Générer une solution exacte de Bin Packing avec la methode First Fit Decreasing si possible, sinon avec la PLNE
- 2. Améliorer la solution avec une méthode gloutonne

2.2 Experiences

L'ensemble des instances: Vrp-Set-P

instance	temps d'éxecution	borne superieure trouvée	valeur optimale	gap
n = 16, k = 8	0.00s	526	450	16.9%
n = 19, k = 2	0.00s	300	212	41.5%
n = 22, k = 8	0.00s	921	603	52.7%
n = 40, k = 5	0.00s	927	458	102.4%

Table 1: BinPacking plne + glouton

Figure 1: P,n = 16,k = 8

Figure 2: P,n = 19,k = 2.

Figure 3: P,n = 22,k = 8.

3 MTZ

L'ensemble des instances: Vrp-Set-P

instance	temps d'éxecution	cout obtenu	cout indiqué dans le ficher
n = 16, k = 8	2.26	451.335	450
n = 19, k = 2	18.07	212.657	212
n = 22, k = 8	441.36	600.826	603

Table 2: MTZ

Figure 4: P,n = 16,k = 8

Figure 5: P,n = 19,k = 2.

Figure 6: P,n = 22,k = 8.

4 Branch and Cut

4.1 Inégalités pour Couper des solutions entières

Pour une solution entière trouvée au cours de branchement, pour chaque tour S, on considère trois cas:

1. S'il est un sous tour, on ajoute la contrainte

$$\sum_{i \in S, j \in V \backslash S} X[i][j] >= ceil((\sum_{i \in S}) d[i])/Q)$$

2. S'il est un tour S passant par 0 avec $\sum_{i \in S} d[i] > Q$, on ajoute la contrainte

$$\sum_{i \in S \backslash \{0\}} X[i][j] * d[i] = ceil((\sum_{i \in S}) d[i])/Q)Q$$

3. sinon, c'est une solution admissible.

4.2 Experiences

Benchmark: Vrp-Set-P

instance	temps d'éxecution	borne inférieur	cout indiqué dans le ficher	nombre de coupes
n = 16, k = 8	1.77s	451.33	450	287
n = 19, k = 2	0.41s	212.65	212	97
n = 22, k = 8	3082s	600.826	603	3221

Table 3: Lazy cut

Figure 7: P,n = 22,k = 8

Figure 8: P, n = 22, k = 8

Figure 9: P,n = 22,k = 8.

4.3 Inégalités pour Couper de solutions fractionaires

Méthode utilisée: Greedy randomized algorithm

- 1. Posons $S=\{i\}$ où i est un élément arbitraire de V
- 2. À chaque étape, on cherche dans V un élément v qui maximise

$$\sum_{s \in S} solx[v][s]$$

3. Ajouter v dans S et vérifier l'inégalité $\sum_{i \in S, j \in V \setminus S} X[i][j] >= ceil((\sum_{i \in S})d[i])/Q)$

4.4 Experiences

instance	temps d'éxecution	borne inférieur trouvée	valeur optimale	user cuts applied
n = 16, k = 8	3.81	451.335	450	335
n = 19, k = 2	0.59	212.657	212	97
n = 22, k = 8	4194	600.826	603	3221

Table 4: coupe de sous tours

4.5 Remarques

- 1. Les implémentations des coupes ne sont pas efficaces, parce que le graph est interprété par une matrice d'incidence.
- 2. Les coupes des solutions entières sont correctes.
- 3. Les coupes des solutions fractionnaires ne renforcent pas le programme. Par contre, elles fournissent de bonnes bornes inférieures:

instance	temps d'éxecution	borne inférieur trouvée	valeur optimale	gap
n = 16, k = 8	0.41	417	450	7.3%
n = 19, k = 2	0.34	196	212	7.5%
n = 22, k = 8	59	550	603	8.8%

Table 5: coupes des solutions fractionnaires

5 Comparaison

- 1. La méthode heuristique trouve une solution très rapide, mais la solution n'est pas optimale.
- 2. La méthode MTZ trouve la solution optimale, mais le temps augmente vite.
- 3. La méthode Branch and Cut qui utilise la liste d'incidence même avec seulement les coupes des solutions entières seraient beaucoup plus efficaces que MTZ.