CS245: Big Data Analytics (Fall 2023)

October 10, 2023

Assignment 1: Frequent Pattern Mining

Due Date: October 24, 2023

Instructions

- Submit your answer on Gradescope as a PDF file. Both typed and scanned handwritten answers are acceptable.
- Submit your answer on Gradescope as a PDF file. Both typed and scanned handwritten answers are acceptable.
- Late submissions will not be accepted. Exceptionally, each student may request a *one-day* extension for **one of the three** assignments, provided they contact the instructor and TA *before* the deadline.
- Cite all resources used. Plagiarism will be reported.

Problems

For this problem, consider the following set of transactions:

Transaction	Items		
T1	{Python, Machine Learning}		
T2	{Introduction to AI, JavaScript, C++}		
T3	{Python, Machine Learning, Data Science, Introduction to AI, JavaScript}		
T4	{Mathematics, Machine Learning}		
T5	{Python, Data Science, Introduction to AI, Machine Learning}		
T6	{Python, Data Science}		
T7	{Mathematics, Machine Learning, Data Science}		
T8	{Python, Mathematics}		
T9	{Python, Machine Learning, Introduction to AI}		
T10	{Introduction to AI, Mathematics, C++}		

Problem 1: The Apriori Algorithm (50 points)

This problem can be done by hand or using a Python script (hint: use the Python package mlextend).

- 1. (20 points) Given a minimum support of 3, apply the Apriori algorithm to the above transaction dataset to find frequent itemsets.
- 2. (20 points) Generate association rules based on the frequent itemsets with a minimum confidence level of 60 percent. (Hint: Confidence of a rule $A \to B$ is defined as the support count of $A \cup B$ divided by the support count of A.)
- 3. (10 points) Discuss the key strengths and limitations of the Apriori algorithm.

Problem 2: FP-Tree and FP-Growth (35 points)

Introduction to AI, Mathematics, C++ Use the below dataset to complete the rest of the assignment.

Transaction	Items		
T1	{Python, Machine Learning, C++}		
T2	{Introduction to AI, JavaScript, C++, Machine Learning}		
Т3	{Python, Data Science, Introduction to AI}		
T4	{Mathematics, Machine Learning}		
T5	{Python, Data Science, Introduction to AI, Machine Learning}		
T6	{Python, Data Science}		
T7	{Mathematics, Machine Learning, Data Science, JavaScript}		
T8	{Python, Mathematics, Machine Learning}		
T9	{Python, Machine Learning, Introduction to AI}		
T10	{Python, Machine Learning, Introduction to AI}		

- 1. (15 points) Construct the FP-Tree for the given transaction dataset. Describe the process and provide a visual representation of the final tree.
- 2. (10 points) Based on the FP-Tree, use the FP-Growth algorithm to generate the frequent itemsets. Please do NOT use a script for this.
- 3. (10 points) Compare the key strengths and limitations of the FP-Growth algorithm and the Apriori algorithm.

Problem 3: Constraint-based Frequent Pattern Mining (15 points)

If you wrote a script for Question 1, you are permitted to use it to answer this question as well. Consider a budget constraint of \$3800 for purchasing books. Assume the cost of each item is as follows:

Item	Cost	Timeslot (50 mins)
Python	\$200	8 am
Mathematics	\$750	9 am
Machine Learning	\$3000	1 pm
Introduction to AI	\$1000	10 am
JavaScript	\$400	8 am
C++	\$500	$8 \mathrm{am}$
Data Science	\$500	9 am

Please use the dataset in Question 2 to answer this question.

- 1. (5 points) Generate frequent itemsets from the given dataset that comply with the budget and timeslot constraint using either the Apriori or FP-Growth algorithms. Assume that only classes that start at the same time introduce conflicts.
- 2. (5 points) Discuss whether the budget constraint mentioned above is anti-monotone or not. Justify your response and explain why it is useful to consider.
- 3. (5 points) Describe a constraint that could be applied to this dataset that will be either (a) anti-monotone if you answered monotone for the previous question, or (b) monotone if your previous answer was anti-monotone. Explain why this type of constraint is useful to consider.