Dans toute la fiche, on considère un repère orthonormé du plan.

Expression analytique du produit scalaire

Propriété: Dans un repère orthonormé, soient deux vecteurs $\overrightarrow{u}\begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v}\begin{pmatrix} x' \\ y' \end{pmatrix}$. Le produit scalaire de ces deux vecteurs est donné par :

$$\overrightarrow{u}.\overrightarrow{v}=xx'+yy'$$

E1 Considérons les vecteurs

$$\overrightarrow{u}$$
 $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$

$$\overrightarrow{v}$$
 $\begin{pmatrix} 1\\4 \end{pmatrix}$

$$\overrightarrow{w} \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

Calculez les produits scalaires suivants :

- a. $\overrightarrow{u} \cdot \overrightarrow{v}$
- c. $3\overrightarrow{v}\cdot\overrightarrow{w}$
- d. $\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w})$
- e. $(\overrightarrow{w}-\overrightarrow{v})\cdot(\overrightarrow{w}+\overrightarrow{u})$ f. $(4\overrightarrow{u}-3\overrightarrow{v})\cdot(-2\overrightarrow{w})$

E2 Considérons les points

$$B(-3; 4)$$

$$C(-5;-1)$$

Calculez les produits scalaires suivants :

a.
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$
 b. $\overrightarrow{BC} \cdot \overrightarrow{AB}$ c. $\overrightarrow{AC} \cdot \overrightarrow{BC}$ d. \overrightarrow{AB}

$$\overrightarrow{AC} \cdot \overrightarrow{BC}$$
 d \overrightarrow{AB}^2

E3 Considérons les vecteurs suivants :

considerons les vecteurs survants :
$$\overrightarrow{u_1}\begin{pmatrix}2\\3\end{pmatrix} \quad \overrightarrow{u_2}\begin{pmatrix}-2\\3\end{pmatrix} \quad \overrightarrow{u_3}\begin{pmatrix}3\\-2\end{pmatrix} \quad \overrightarrow{u_4}\begin{pmatrix}9\\6\end{pmatrix} \quad \overrightarrow{u_5}\begin{pmatrix}6\\-4\end{pmatrix}$$

Lesquels de ces vecteurs sont orthogonaux entre

E4 Considérons les points

$$B(-1;-6)$$
 $M(-3;0)$ $N(5;-4)$

Montrez que les droites (AB) et (MN) sont perpendiculaires.

E5 Considérons les points suivants :

A(1; -2)B(-2; 2)C(7; 2,5)

- a. Calculez les carrés scalaires des vecteurs formés par les sommets du triangle ABC.
- **b.** En déduire que le triangle ABC est rectangle en A.
- **c.** Montrez que le triangle ABC est rectangle en A d'une autre manière.

Vecteur normal à une droite

Définition : Un vecteur normal à une droite dest un vecteur orthogonal à tout vecteur directeur de d.

Propriété : Si un vecteur \overrightarrow{n} est orthogonal à un vecteur directeur \overrightarrow{u} d'une droite d, alors \overrightarrow{n} est normal à la droite.

E6 Dans chaque situation, déterminez si oui ou non le vecteur \overrightarrow{n} est normal à la droite d.

a. $\overrightarrow{n} \left(egin{array}{c} 3 \\ -2 \end{array}
ight)$ et d est la droite passant par A(1;2)

et de vecteur directeur \overrightarrow{u} $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$

b. $\overrightarrow{n} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$ et d est la droite passant par les points A(-3;4) et B(5;1).

et d est la droite d'équation cartésienne 3x-2y-5=0.

Propriété : Considérons une droite passant par un point A et de vecteur normal \overrightarrow{n} . Un point M appartient à cette droite si et seulement si $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$.

E7 On considère la droite passant par le point A(5;-2) et de vecteur normal \overrightarrow{n} (

a. Notons M(x;y) un point du plan. Exprimez $\overrightarrow{AM} \cdot \overrightarrow{n}$ en fonction de x et y .

b. En déduire une équation cartésienne de la droite d.

Propriété : Soit d une droite de vecteur normal $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$. Une équation cartésienne de dest ax + by + c = 0, où c est un réel. **Propriété : (réciproque)** Soit d une droite d'équation cartésienne ax+by+c=0. Un vecteur normal à d est \overrightarrow{n} $\begin{pmatrix} a \\ 1 \end{pmatrix}$

E8 Soit d la droite de vecteur normal et passant par le point A(3;4). On se propose de déterminer une équation cartésienne de d.

n est un vecteur normal à d on peut donc écrire une équation cartésienne de d sous la forme

$$\underline{}x + \underline{}y + c = 0$$

où c est un réel à déterminer. A appartient à d, donc ses coordonnées vérifient cette équation cartésienne. On a donc

$$\underline{\hspace{1cm}} \times \underline{\hspace{1cm}} + \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} + c = 0$$

En remplaçant les coordonnées de A dans cette équation, on obtient $c=$. Une équation cartésienne de d est donc

$$\underline{\hspace{1cm}} x + \underline{\hspace{1cm}} y + \underline{\hspace{1cm}} = 0$$

lacksquare On considère la droite d d'équation cartésienne 3x-8y+5=0. Déterminez un vecteur normal à cette droite.