パワーエレクトロニクス No.10

61908697 佐々木良輔

フォワードコンバーター

S の導通時には $v_{n_1}=E$ となる. したがって n_2 の電圧は $v_{n_2}=E\cdot n_2/n_1$ となる. また D_2 には順方向の電流が流れているので $v_{D_2}=0$ となる. したがって D_2 が導通であるから D には電圧 v_{n_2} の逆バイアスがかかるので $v_D=-E\cdot n_2/n_1$ となる. また n_3 には D_3 によって電流が流れないので $v_{n_3}=0,\,v_{D_3}=-E$ となる. 以上から

$$v_{n_1} = 100 \text{ V}, \quad v_{n_2} = 20 \text{ V}, \quad v_{n_3} = 0 \text{ V}$$

 $v_D = -20 \text{ V}, \quad v_{D_2} = 0 \text{ V} \quad v_{D_3} = -100 \text{ V}$

となる。次に S の非導通時には n_1 に逆起電力によって $v_{n_1}=-E$ の電圧が発生する。このとき n_3 の負側には -E の電圧が生じているため D_3 には順バイアスがかかり $v_{D_3}=0$ となる。また $v_{n_3}=0-(-E)=E$ となる。また n_2 も逆起電力によって $v_{n_2}=-E\cdot n_2/n_1$ となっている。また D には順バイアスが加わるので $v_D=0$ となるしたがって $v_{D_2}=-E\cdot n_2/n_1$ となる。以上から

$$v_{n_1} = -100 \text{ V}, \quad v_{n_2} = -20 \text{ V}, \quad v_{n_3} = 100 \text{ V}$$

$$v_D = 0 \text{ V}, \quad v_{D_2} = -20 \text{ V} \quad v_{D_3} = 0 \text{ V}$$

となる.

フライバックコンバーター

S の導通時は明らかに $v_S=0,\,v_{n_1}=E$ である。また n_2 の極性が逆なので $v_{n_2}=-E\cdot n_2/n_1$ となる。C が十分大きいことから v_R は定常であると考えるが,その値は後ほど計算する。これが OFF になった瞬間を考えると $v_{n_1}=E,\,v_S=-2E,\,v_{n_2}=E\cdot n_2/n_1$ となる。このとき D は導通 状態になるので $v_D=0$ 、となる。したがって $v_R=d\cdot E\cdot n_2/n_1$ である。以上から導通時は

$$v_{n_1} = 140 \text{ V}, \quad v_{n_2} = -14 \text{ V}, \quad v_S = 0 \text{ V}$$

 $v_D = -21 \text{ V}, \quad v_R = 7 \text{ V}$

非導通時は

$$v_{n_1} = 140 \text{ V}, \ v_{n_2} = 14 \text{ V}, \ v_S = -280 \text{ V}$$

$$v_D = 0 \text{ V}, \ v_R = 7 \text{ V}$$

となる.