Ρομποεική Ι: Ανάλυση, Ελεγχος, Εργασεήριο Δάσκας βαφαή)- Α.Η.: 03116049 Σ. ΗΜ. Η.Υ. - Ε.Μ. Π.

17 σειρά αναλυτικών ασκήσων 7° εξάμηνο - 2019 - 2020

Poj E: Enplaca, Edyxos Kon Popoziký

Άσκηση 1.1 (ωθύ χεωμερρικό μονεέλο)

Θέλουμε να πρησιμοποιήσουμε την ποσδιορισμό του ευθέος χεωμετρικοί μοντέλο

Ισχύει ότι: $A_{\varepsilon}^{\circ} = A_{1}^{\circ}$, A_{2}^{1} , A_{ε}^{2} οπότε αρχικά χρειάζεται να υπολοχίσουμε τους 3 πίνακες

MATTATATATATA opisoulis ws: G= cosq, s1= sing

(9 = 605 q2, 52 = sinq

$$A_{1}^{0} = tra(z, l0) \cdot tra(x, l_{1}) = \begin{pmatrix} 1000 \\ 0100 \\ 0001 \\ 0001 \end{pmatrix} \begin{pmatrix} 1000 \\ 0100 \\ 0001 \\ 0001 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & l_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & l_{0} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

•	•	1			
E WI	EXO	, ,	TOV	Pirana	D-H:
	7	4 C.	CUV	- Ci a nec	

Ī	i	a_i	ai	di	θί
	1	L ₂	- 90°	-l ₁	0
	2	l ₃	0	0	90°+9/2
	3	0	90°	0	93
	4	0	0	l4+94	0
	ϵ	0	0	ls l	0

χρησιμαποιούμε

χια το
$$A_i^{i-1} = \begin{cases} cos \theta_i - sin \theta_i cos \alpha_i & sin \theta_i sein \alpha_i \\ sin \theta_i & cos \theta_i & cos \theta_i & cos \theta_i sin \alpha_i \\ 0 & sin \alpha_i & cos \alpha_i & d_i & sin \theta_i \end{cases}$$
 $G = cos q_1$, $S_1 = sin q_2$
 $G = cos q_2$, $S_2 = sin q_2$

ono
$$c_1$$
 c_2 c_3 c_4 c_5 c_5 c_5 c_6 c_6 c_6 c_7 c_8 c_8

$$A_{q}^{1} = \begin{pmatrix} -52 & -62 & 0 & -13.52 \\ 62 & -52 & 0 & 13.62 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$Kax i Co_1 \qquad A_2^1 = \begin{pmatrix} -C_1 S_2 & -C_1 C_2 & -S_1 & l_2 C_1 - l_3 C_1 S_2 \\ -S_1 S_2 & -C_2 S_1 & C_1 & l_2 S_1 - l_3 S_1 S_2 \\ -C_2 & S_2 & 0 & -l_1 - l_3 C_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$