0. ZBIORY I FUNKCJE LICZBOWE

0.1 ZBIORY LICZB

 $N = \{1,2,3,...\}$ – zbiór liczb naturalnych

 $Z = \{0,\pm 1,\pm 2,...\}$ – zbiór liczb całkowitych

$$Q = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\} - \text{zbi\'or liczb wymiernych}$$

R – zbiór liczb rzeczywistych

0.2 ZBIORY OGRANICZONE

Def. 0.2.1 (zbiór ograniczony z dołu)

Zbiór $A \subset R$ jest ograniczony z dołu, jeżeli

$$\bigvee_{m\in R} \bigwedge_{x\in A} x \geq m$$
.

Liczbę m nazywamy ograniczeniem z dołu zbioru A. Obrazowo, zbiór jest ograniczony z dołu, gdy wszystkie jego elementy leżą na prawo od pewnego punktu osi liczbowej.

Def. 0.2.2 (zbiór ograniczony z góry)

Zbiór $A \subset R$ jest ograniczony z góry, jeżeli

$$\bigvee_{M\in R} \bigwedge_{x\in A} x \leq M \ .$$

Liczbę *M* nazywamy ograniczeniem z góry zbioru *A*. Obrazowo, zbiór jest ograniczony z góry, gdy wszystkie jego elementy leżą na lewo od pewnego punktu osi liczbowej.

Def. 0.2.3 (zbiór ograniczony)

Zbiór $A \subset R$ jest ograniczony wtedy i tylko wtedy, gdy jest ograniczony z dołu i z góry, tzn.

$$\bigvee_{m,M\in R}\bigwedge_{x\in A}m\leq x\leq M.$$

Uwaga. W definicji można tak dobrać stałe m i M, aby 0 < M = -m. Wtedy

$$\bigwedge_{x \in A} |x| \le M .$$

Obrazowo, zbiór jest ograniczony, gdy wszystkie jego elementy są położone między dwoma punktami osi liczbowej.

0.3 KRESY ZBIORÓW

Def. 0.3.1 (element najmniejszy zbioru)

Liczba a jest najmniejszym elementem zbioru $A \subset R$, co zapisujemy

$$a = \min A$$
.

wtedy i tylko wtedy, gdy

$$a \in A \text{ oraz } \bigwedge_{x \in A} x \ge a$$
.

Obrazowo, elementem najmniejszym zbioru nazywamy element tego zbioru leżący najbardziej w lewo na osi liczbowej.

Def. 0.3.2 (element największy zbioru)

Liczba a jest największym elementem zbioru $A \subset R$, co zapisujemy

$$a = \max A$$

wtedy i tylko wtedy, gdy

$$a \in A \text{ oraz } \bigwedge_{x \in A} x \le a$$
.

Obrazowo, elementem najmniejszym zbioru nazywamy element tego zbioru leżący najbardziej w prawo na osi liczbowej.

Def. 0.3.3 (kres dolny zbioru)

Niech zbiór $A \subset R$ będzie niepusty i ograniczony z dołu. Liczba a jest kresem dolnym tego zbioru, co zapisujemy

$$a = \inf A$$
,

wtedy i tylko wtedy, gdy

Obrazowo, kres dolny zbioru jest największą liczbą ograniczającą ten zbiór z dołu. Jeżeli zbiór A jest nieograniczony z dołu, to przyjmujemy

$$\inf A = -\infty$$

Def. 0.3.4 (kres górny zbioru)

Niech zbiór $B \subset R$ będzie niepusty i ograniczony z góry. Liczba b jest kresem górnym tego zbioru, co zapisujemy $b = \sup B$.

wtedy i tylko wtedy, gdy

$$\bigwedge_{x \in B} x \le b \text{ oraz } \bigwedge_{\varepsilon > 0} \bigvee_{x_0 \in B} x_0 > b - \varepsilon.$$

Obrazowo, kres górny zbioru jest najmniejszą liczbą ograniczającą ten zbiór z góry. Jeżeli zbiór *B* jest nieograniczony z góry, to przyjmujemy

$$\sup B = \infty.$$

Uwaga. Najmniejszy element zbioru jest jednocześnie kresem dolnym tego zbioru. Analogicznie, największy element zbioru jest jego kresem górnym.

Fakt 0.3.5 (aksjomat ciągłości)

Każdy niepusty zbiór ograniczony z dołu ma kres dolny.

Każdy niepusty zbiór ograniczony z góry ma kres górny.

0.4 FUNKCJE – PODSTAWOWE OKREŚLENIA

Def. 0.4.1 (funkcja)

Niech zbiory X, $Y \subset R$ będą niepuste. Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy przyporządkowanie każdemu elementowi $x \in X$ dokładnie jednego elementu $y \in Y$. Funkcję taką oznaczamy przez $f: X \to Y$. Wartość funkcji f w punkcie x oznaczamy przez f(x).

Def. 0.4.2 (dziedzina, przeciwdziedzina, zbiór wartości funkcji)

Niech $f: X \to Y$. Wtedy zbiór X nazywamy dziedziną funkcji f i oznaczamy przez D_f , a zbiór Y nazywamy jej przeciwdziedziną. Ponadto zbiór

$$\left\{ f(x) \in Y : x \in D_f \right\}$$

nazywamy zbiorem wartości funkcji f i oznaczamy przez W_f . Jeżeli dany jest tylko wzór określający funkcję, to zbiór elementów z R, dla których wzór ten ma sens liczbowy, nazywamy dziedziną naturalną funkcji.

Def. 0.4.3 (wykres funkcji)

Wykresem funkcji $f: X \rightarrow Y$ nazywamy zbiór

$$\{(x, y) \in \mathbb{R}^2 : x \in X, y = f(x)\}.$$

Uwaga. Podzbiór płaszczyzny *xOy* jest wykresem pewnej funkcji zmiennej *x*, gdy każda prosta pionowa przecina go co najwyżej w jednym punkcie.

Def. 0.4.4 (funkcja "na")

Funkcja f odwzorowuje zbiór X na zbiór Y, co notujemy

$$f: X \xrightarrow{na} Y$$
,

wtedy i tylko wtedy, gdy

$$W_f = Y$$
, tzn. $\bigwedge_{y \in Y} \bigvee_{x \in X} f(x) = y$.

Funkcja $f: X \to Y$ jest "na", gdy rzut prostokątny jej wykresu na oś Oy pokrywa się ze zbiorem Y.

0.5 FUNKCJE OKRESOWE, PARZYSTE I NIEPARZYSTE

Def. 0.5.1 (funkcja okresowa)

Funkcja $f: X \to R$ jest okresowa, jeżeli

$$\bigvee_{T>0} \bigwedge_{x \in X} (x \pm T \in X \text{ oraz } f(x+T) = f(x)).$$

Liczbę T nazywamy okresem funkcji f. Jeżeli istnieje najmniejszy okres funkcji f, to nazywamy go okresem podstawowym. Obrazowo, funkcja jest okresowa, gdy jej wykres po przesunięciu o wektor $\vec{v} = (T,0)$ nałoży się na siebie.

Def. 0.5.2 (funkcja parzysta)

Funkcja $f: X \to R$ jest parzysta, jeżeli

$$\bigwedge_{x \in X} \left(-x \in X \text{ oraz } f(-x) = f(x) \right).$$

Obrazowo, funkcja jest parzysta, gdy oś Oy jest osią symetrii jej wykresu

Def. 0.5.3 (funkcja nieparzysta)

Funkcja $f: X \to R$ jest nieparzysta, jeżeli

$$\bigwedge_{x \in X} \left(-x \in X \text{ oraz } f(-x) = -f(x) \right).$$

Obrazowo, funkcja jest nieparzysta, gdy początek układu współrzędnych jest środkiem symetrii jej wykresu.

0.6 FUNKCJE OGRANICZONE

Def. 0.6.1 (funkcja ograniczona z dołu)

Funkcja f jest ograniczona z dołu na zbiorze $A \subset D_6$ jeżeli zbiór jej wartości na tym zbiorze jest ograniczony z dołu, tzn.

$$\bigvee_{m\in R} \bigwedge_{x\in A} f(x) \ge m.$$

Obrazowo, funkcja jest ograniczona z dołu, gdy jej wykres leży nad pewną prostą poziomą (rys. 0.6.1).

Ilustracja wykresu funkcji ograniczonej z dołu na zbiorze

Def. 0.6.2 (funkcja ograniczona z góry)

Funkcja f jest ograniczona z góry na zbiorze $A \subset D_f$, jeżeli zbiór jej wartości na tym zbiorze jest ograniczony z góry, tzn.

$$\bigvee_{m \in R} \bigwedge_{x \in A} f(x) \leq M.$$

Obrazowo, funkcja jest ograniczona z dołu, gdy jej wykres leży pod pewną prostą poziomą (rys. 0.6.2).

Rys. 0.6.2 Ilustracja wykresu funkcji ograniczonej z góry na zbiorze

Def. 0.6.3 (funkcja ograniczona)

Funkcja f jest ograniczona na zbiorze $A \subset D_f$, jeżeli jest ograniczona z dołu i z góry na tym zbiorze, tzn.

$$\bigvee_{m,M\in R} \bigwedge_{x\in A} m \le f(x) \le M.$$

Uwaga. W definicji można tak dobrać stałe m i M, aby 0 < M = -m. Wtedy

$$\bigwedge_{x \in A} |f(x)| \le M .$$

Obrazowo, funkcja jest ograniczona, gdy jej wykres jest położony między dwiema prostymi poziomymi.

0.7 FUNKCJE MONOTONICZNE

Def. 0.7.1 (funkcja rosnaca)

Funkcja f jest rosnąca na zbiorze $A \subset D_f$, jeżeli

$$\bigwedge_{x_1, x_2 \in A} \left[\left(x_1 < x_2 \right) \Rightarrow \left(f(x_1) < f(x_2) \right) \right].$$

Obrazowo, funkcja jest rosnąca, gdy poruszając się w prawo po jej wykresie wznosimy się do góry.

Def. 0.7.2 (funkcja malejąca)

Funkcja f jest malejąca na zbiorze $A \subset D_f$, jeżeli

$$\bigwedge_{x_1, x_2 \in A} \left[\left(x_1 < x_2 \right) \Longrightarrow \left(f(x_1) > f(x_2) \right) \right].$$

Obrazowo, funkcja jest malejąca, gdy poruszając się w prawo po jej wykresie opadamy na dół.

Def. 0.7.3 (funkcja niemalejąca)

Funkcja f jest niemalejąca na zbiorze $A \subset D_f$, jeżeli

$$\bigwedge_{\substack{x_1, x_2 \in A}} \left[\left(x_l < x_2 \right) \Rightarrow \left(f(x_1) \le f(x_2) \right) \right].$$

Obrazowo, funkcja jest niemalejąca, gdy poruszając się w prawo po jej wykresie wznosimy się lub pozostajemy na tym samym poziomie.

Def. 0.7.4 (funkcja nierosnąca)

Funkcja f jest malejąca na zbiorze $A \subset D_f$, jeżeli

$$\bigwedge_{x_1, x_2 \in A} \left[\left(x_1 < x_2 \right) \Rightarrow \left(f(x_1) \ge f(x_2) \right) \right].$$

Obrazowo, funkcja jest nierosnąca, gdy poruszając się w prawo po jej wykresie opadamy lub pozostajemy na tym samym poziomie.

Def. 0.7.5 (funkcja monotoniczna)

Funkcja f jest monotoniczna na zbiorze $A \subset D_6$ jeżeli jest rosnąca lub malejąca lub nierosnąca lub też niemalejąca na tym zbiorze.

0.8 ZŁOŻENIA FUNKCJI

Def. 0.8.1 (funkcja złożona)

Niech zbiory X, Y, Z, $W \subset R$ będą niepuste, przy czym $Y \subset Z$ oraz niech $f: X \to Y$, $g: Z \to W$. Złożeniem funkcji g: fnazywamy funkcję $g \circ f : X \to W$ określoną wzorem:

$$(g \circ f)(x) = g(f(x))$$
 dla $x \in X$.

Uwaga. Analogicznie określa się złożenie większej liczby funkcji. Składanie funkcji nie jest przemienne.

0.9 FUNKCJE ODWROTNE

Def. 0.9.1 (funkcja różnowartościowa)

Funkcja
$$f$$
 jest różnowartościowa na zbiorze $A \subset D_f$; jeżeli:
$$\bigwedge_{x_1, x_2 \in A} \left[\left(x_l \neq x_2 \right) \Longrightarrow \left(f(x_1) \neq f(x_2) \right) \right].$$

Obrazowo, funkcja f jest różnowartościowa na zbiorze A, gdy każda prosta pozioma przecina fragment wykresu leżący nad lub pod zbiorem A co najwyżej w jednym punkcie.

Uwaga. Przy sprawdzaniu różnowartościowości funkcji wygodnie jest korzystać z definicji równoważnej

$$\bigwedge_{\substack{x_1, x_2 \in A}} \left[\left(x_1 = x_2 \right) \Rightarrow \left(f(x_1) = f(x_2) \right) \right].$$

Fakt 0.9.2 (warunek wystarczający różnowartościowości funkcji)

Jeżeli funkcja jest rosnąca albo malejąca na zbiorze, to jest różnowartościowa na tym zbiorze.

Uwaga. Implikacja odwrotna nie jest prawdziwa.

Def. 0.9.3 (funkcja odwrotna)

Niech funkcja $f: X \xrightarrow{na} Y$ będzie różnowartościowa na dziedzinie. Funkcją odwrotną do funkcji f nazywamy funkcję $f^{-1}: Y \to X$ określona przez warunek:

$$f^{-1}(y) = x \Leftrightarrow y = f(x)$$
, gdzie $x \in X$, $y \in Y$.

Wykres funkcji f' otrzymujemy z wykresu funkcji f odbijając go symetrycznie względem prostej y=x oraz zamieniając między sobą jednocześnie nazwy osi x ↔ y. Funkcja odwrotna do funkcji rosnącej jest funkcją rosnącą. Funkcja odwrotna do funkcji malejącej jest funkcją malejącą.

Fakt 0.9.4 (o składaniu funkcji prostej i odwrotnej)

Niech funkcja $f: X \xrightarrow{na} Y$ będzie różnowartościowa. Wtedy

$$\bigwedge_{x \in X} f^{-1}(f(x)) = x \text{ oraz } \bigwedge_{y \in Y} f(f^{-1}(y)) = y.$$

0.10 FUNKCJE CYKLOMETRYCZNE

Def. 0.10.1 (arkus sinus)

Funkcją arcsin nazywamy funkcję odwrotną do funkcji sin określonej na przedziałe $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Dziedziną funkcji arcsin jest przedział [-1,1].

Def. 0.10.2 (arkus cosinus)

Funkcją arccos nazywamy funkcję odwrotną do funkcji cos określonej na przedziałe $[0,\pi]$. Dziedziną funkcji arccos jest przedział [-1,1].

Def. 0.10.3 (arkus tangens)

Funkcją arctg nazywamy funkcję odwrotną do funkcji tg określonej na przedziale $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Dziedziną funkcji arctg jest R.

Def. 0.10.4 (arkus kotangens)

Funkcją arcctg nazywamy funkcję odwrotną do funkcji ctg określonej na przedziale $(0,\pi)$. Dziedziną funkcji arcctg jest R.

Rvs. 0.10.1 $f(x) = \arcsin x$

Rys. 0.10.2 $f(x) = \arccos x$

Rys. 0.10.3 f(x) = arctgx

Rys. 0.10.4 $f(x) = \operatorname{arcctg} x$

Fakt 0.10.5 (tożsamości z funkcjami cyklometrycznymi)

$$\arcsin x + \arccos x = \frac{\pi}{2} \text{ dla każdego } x \in [-1,1],$$

$$\arctan x + \arctan x = \frac{\pi}{2} \text{ dla każdego } x \in R.$$

0.11 FUNKCJE ELEMENTARNE

Def. 0.11.1 (funkcje elementarne)

Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe, potęgowe, wykładnicze, logarytmiczne, trygonometryczne oraz cyklometryczne. Funkcje, które można otrzymać z podstawowych funkcji elementarnych za pomocą skończonej liczby działań arytmetycznych oraz operacji złożenia funkcji, nazywamy funkcjami elementarnymi.

Def. 0.11.2 (wartość bezwzględna)

Wartością bezwzględną (modułem) nazywamy funkcję | ullet | : R o R określoną wzorem:

$$|x| = \begin{cases} \dot{x} & dla \ x \ge 0 \\ -x & dla \ x < 0 \end{cases}.$$

Uwaga. Moduł jest funkcją elementarną, gdyż $|x| = \sqrt{x^2}$ dla każdego $x \in \mathbb{R}$.

Def. 0.11.3 (wielomian)

Wielomianem nazywamy funkcje $W: R \rightarrow R$ określoną wzorem

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

gdzie $n \in \mathbb{N} \cup \{0\}$, $a_i \in \mathbb{R}$ dla $0 \le i \le n$ oraz $a_n \ne 0$. Liczbę n nazywamy stopniem wielomianu W i oznaczamy przez st W. Przyjmujemy dodatkowo, że $W(x) \equiv 0$ jest wielomianem stopnia $-\infty$.

Def. 0.11.4 (funkcja wymierna)

Funkcję, którą można zapisać w postaci ilorazu dwóch wielomianów nazywamy funkcją wymierną.

Def. 0.11.5 (funkcje hiperboliczne)

Funkcję sinus hiperboliczny (sh) określamy wzorem:

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}, \quad x \in R.$$

Funkcję kosinus hiperboliczny (ch) określamy wzorem:

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \quad x \in R.$$

Funkcję tangens hiperboliczny (th) określamy wzorem:

$$th x = \frac{sh x}{ch x}, \quad x \in R.$$

Funkcję kotangens hiperboliczny (cth) określamy wzorem:

$$\operatorname{cth} x \stackrel{\text{def}}{=} \frac{ch \, x}{sh \, x}, \quad x \in R \setminus \{0\} \, .$$

Uwaga. W powyższej definicji e oznacza liczbę rzeczywistą równą w przybliżeniu 2,7182818....

Fakt 0.11.6 (ważniejsze tożsamości z funkcjami hiperbolicznymi)

$$\cosh^2 x - \sinh^2 x = 1$$
 dla każdego $x \in R$,
 $\sinh 2x = 2\sinh x \cosh x$ dla każdego $x \in R$,
 $\cosh 2x = \sinh^2 x + \cosh^2 x$ dla każdego $x \in R$.

0.12 NIEKTÓRE FUNKCJE NIEELEMENTARNE

Def. 0.12.1 (funkcja część całkowita)

Funkcją część całkowita nazywamy funkcję $[ullet]: R \to R$ określoną wzorem:

$$[x]$$
 = k dla $k \le x < k + 1$, gdzie $k \in Z$.

Część całkowita liczby x jest największą liczbą całkowitą nie większą niż x.

Def. 0.12.2 (funkcja signum)

Funkcją signum nazywamy funkcję sgn : $R \rightarrow \{-1,0,1\}$ określoną wzorem:

$$\operatorname{sgn} x = \begin{cases} -1 \ dla \ x < 0 \\ 0 \ dla \ x = 0 \\ 1 \ dla \ x > 0 \end{cases}$$

Def. 0.12.3 (funkcja Dirichleta)

Funkcją Dirichleta nazywamy funkcję $D: R \to \{0,1\}$ określoną wzorem:

$$D(x) \stackrel{\text{def}}{=} \begin{cases} 1 & dla \ x \in Q \\ 0 & dla \ x \notin Q \end{cases}$$

Rys. 0.12.3 Wykres funkcji Dirichleta

1. CIĄGI LICZBOWE

1.1 PODSTAWOWE OKREŚLENIA

Def. 1.1.1 (ciag liczbowy)

Ciągiem liczbowym nazywamy funkcję określoną na zbiorze liczb naturalnych i przyjmującą wartości ze zbioru liczb rzeczywistych. Wartość tej funkcji dla liczby naturalnej n nazywamy n-tym wyrazem ciągu i oznaczamy przez a_n , b_n , itp. Ciągi o takich wyrazach oznaczamy odpowiednio przez (a_n) , (b_n) , itp. Zbiór wyrazów ciągu (a_n) , tj. zbiór $\{a_n : n \in N\}$ oznaczamy króko przez $\{a_n\}$.

Obrazowo, ciąg można traktować jako zbiór ponumerowanych liczb rzeczywistych, które są ustawione według rosnących numerów. Ciągi będziemy przedstawiali na płaszczyźnie jako zbiór punktów o współrzędnych $(n,a_n), n \in \mathbb{N}$.

Def. 1.1.2 (ciag ograniczony z dołu)

Ciąg (a_n) jest ograniczony z dołu, jeżeli zbiór $\{a_n\}$ jest ograniczony z dołu, tzn.

$$\bigvee_{m\in R}\bigwedge_{n\in N}a_n\geq m.$$

Obrazowo, ciąg jest ograniczony z dołu, gdy wszystkie jego wyrazy leżą nad pewną prostą poziomą.

Def. 1.1.3 (ciąg ograniczony z góry)

Ciąg (a_n) jest ograniczony z góry, jeżeli zbiór $\{a_n\}$ jest ograniczony z góry, tzn.

$$\bigvee_{M\in R}\bigwedge_{n\in N}a_n\leq M\;.$$

Obrazowo, ciąg jest ograniczony z góry, gdy wszystkie jego wyrazy leżą pod pewną prostą poziomą.

Def. 1.1.4 (ciag ograniczony)

Ciąg (a_n) jest ograniczony, jeżeli zbiór $\{a_n\}$ jest ograniczony, tzn.

$$\bigvee_{m,M\in R} \bigwedge_{n\in N} m \le a_n \le M$$

 $\bigvee_{m,M\in R} \bigwedge_{n\in N} m \leq a_n \leq M \ .$ Uwaga. W definicji można dobrać stałe m i M, aby 0 < M = - m. Wtedy

$$\bigwedge_{n\in\mathbb{N}} |a_n| \le M.$$

Obrazowo, ciąg jest ograniczony, gdy wszystkie jego wyrazy leżą między dwiema prostymi poziomymi.

Def. 1.1.5 (ciąg rosnący)

Ciąg (a_n) jest rosnący, jeżeli

$$a_1 < a_2 < a_3 < \ldots < a_n < \ldots$$
, tzn. $\bigwedge_{n \in N} a_{n+1} > a_n$.

Obrazowo, ciąg jest rosnący, gdy jego wyrazy powiększają się ze wzrostem indeksów.

Def. 1.1.6 (ciag niemalejacy)

Ciąg (a_n) jest niemalejący, jeżeli

$$a_1 \le a_2 \le a_3 \le \ldots \le a_n \le \ldots$$
, tzn. $\bigwedge_{n \in N} a_{n+1} \ge a_n$.

Obrazowo, ciąg jest niemalejący, gdy ze wzrostem indeksów wyrazy ciągu powiększają się lub pozostają bez zmian.

Uwaga. Analogicznie można zdefiniować ciąg malejący i nierosnący. Ciągi rosnące, malejące, nierosnące i niemalejące nazywamy ciągami monotonicznymi. Definicje ciągów monotonicznych są szczególnymi przypadkami definicji funkcji monotonicznych. Wprowadza się także pojęcie ciągów monotonicznych od pewnego miejsca $n_0 \in N$.

1.2 GRANICE CIĄGÓW

Def. 1.2.1 (granica właściwa ciągu)

Ciąg (a_n) jest zbieżny do granicy właściwej a, co zapisujemy

$$\lim_{n\to\infty}a_n=a\;,$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{\varepsilon>0} \bigvee_{n_0 \in N} \bigwedge_{n \in N} \left[(n > n_0) \Longrightarrow \left(|a_n - a| < \varepsilon \right) \right].$$

Obrazowo, ciąg jest zbieżny do granicy a, gdy dostatecznie dalekie wyrazy tego ciągu leżą dowolnie blisko punktu a. Zamiast równości $\lim_{n\to\infty}a_n=a$ można pisać $a_n\xrightarrow[n\to\infty]{}a$, można również pisać krótko $\lim a_n=a$ lub $a_n\to a$.

Tw. 1.2.2 (o jednoznaczności granicy ciągu)

Każdy ciąg zbieżny ma dokładnie jedną granicę.

Def. 1.2.3 (granice niewłaściwe ciągu)

Ciąg (a_n) jest zbieżny do granicy niewłaściwej ∞ , co zapisujemy

$$\lim_{n\to\infty} a_n = \infty$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{E>0} \bigvee_{n_0 \in N} \bigwedge_{n \in N} [(n > n_0) \Longrightarrow (a_n > E)].$$

Obrazowo, ciąg jest zbieżny do ∞ , gdy dostatecznie dalekie wyrazy tego ciągu są większe od dowolnie dużej liczby. Zamiast równości $\lim_{n\to\infty}a_n=\infty$ można pisać $a_n\xrightarrow[n\to\infty]{}\infty$, można również pisać krótko $\lim a_n=\infty$ lub $a_n\to\infty$.

Ciąg (a_n) jest zbieżny do granicy niewłaściwej $-\infty$, co zapisujemy

$$\lim_{n\to\infty}a_n=-\infty$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{E < 0} \bigvee_{n_0 \in N} \bigwedge_{n \in N} [(n > n_0) \Longrightarrow (a_n < E)].$$

Obrazowo, ciąg jest zbieżny do - ∞ , gdy jego dostatecznie dalekie wyrazy są mniejsze od dowolnie małej liczby. Zamiast równości $\lim_{n\to\infty} a_n = -\infty$ można pisać $a_n \xrightarrow[n\to\infty]{} -\infty$, można również pisać krótko $\lim a_n = -\infty$ lub $a_n \to -\infty$.

Uwaga. Ciągi, które nie mają granicy właściwej ani niewłaściwej, nazywamy ciągami rozbieżnymi. Przykładami takich ciągów są: $a_n = (-1)^n$, $b_n = \sin \frac{n\pi}{2}$. W niektórych podręcznikach ciągi zbieżne do ∞ lub $-\infty$ nazywa się ciągami rozbieżnymi ∞ lub $-\infty$.

Fakt 1.2.4 (o niezależności granicy od początkowych wyrazów ciągu)

Granica ciągu zbieżnego do granicy właściwej lub niewłaściwej nie zależy od wartości skończenie wielu wyrazów tego ciągu.

Fakt 1.2.5 (granice ciągu geometrycznego)

$$\lim_{n \to \infty} q^{n} \begin{cases} = 0 & dla |q| < 1 \\ = 1 & dla |q| = 1 \\ = \infty & dla |q| < 1 \end{cases}$$
nie istnieje dla $q \le -1$

Def. 1.2.6 (podciąg)

Niech (a_n) będzie dowolnym ciągiem oraz niech (k_n) będzie rosnącym ciągiem liczb naturalnych. Podciągiem ciągu (a_n) nazywamy ciąg (b_n) określony wzorem

$$b_n \stackrel{def}{=} a_{k_n}, \ n \in \mathbb{N}.$$

Obrazowo mówiąc, podciągiem nazywamy ciąg powstały przez skreślenie pewnej (być może nieskończonej) liczby wyrazów wyjściowego ciągu.

Tw. 1.2.7 (o granicy podciągu ciągu zbieżnego)

Każdy podciąg ciągu zbieżnego (do granicy właściwej lub niewłaściwej) jest zbieżny do tej samej granicy.

1.3 WŁASNOŚCI CIĄGÓW ZBIEŻNYCH

Tw. 1.3.1 (o ograniczoności ciągu zbieżnego)

Jeżeli ciąg jest zbieżny do granicy właściwej, to jest ograniczony.

Uwaga. Implikacja odwrotna w powyższym twierdzeniu nie jest prawdziwa. Ilustruje to ciąg $a_n = (-1)^n$, który jest ograniczony, ale nie jest zbieżny.

Fakt 1.3.2 (o równoważności granic)

$$\lim_{n\to\infty} a_n = 0 \Leftrightarrow \lim_{n\to\infty} |a_n| = 0$$

Tw. 1.3.3 (o granicy sumy ciągów)

1.
$$\lim_{n \to \infty} a_n = a$$

2. $\lim_{n \to \infty} b_n = b$ $\Rightarrow \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = a + b$

Tw. 1.3.4 (o granicy iloczynu ciągów)

1.
$$\lim_{n \to \infty} a_n = a$$

2. $\lim_{n \to \infty} b_n = b$ $\Rightarrow \lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = a \cdot b$

Tw. 1.3.5 (o granicy ilorazu ciągów)

1.
$$\lim_{n \to \infty} a_n = a$$

2. $b_n \neq 0$ dla każdego $n \in N$
3. $\lim_{n \to \infty} b_n = b \neq 0$
$$\Rightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{a}{b}$$

Uwaga. Wszystkie granice występujące w trzech poprzednich twierdzeniach są właściwe.

Fakt 1.3.6 (arytmetyka granic ciągów)

1.
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$
2.
$$\lim_{n \to \infty} (c \cdot a_n) = c \cdot \lim_{n \to \infty} a_n, \ gdzie \ c \in R$$

2.
$$\lim_{n\to\infty} (c \cdot a_n) = c \cdot \lim_{n\to\infty} a_n$$
, $gdzie \ c \in R$

3.
$$\lim_{n \to \infty} (a_n)^p = (\lim_{n \to \infty} a_n)^p$$
, $gdzie \ p \in Z$

4.
$$\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{\lim_{n \to \infty} a_n}, \ gdzie \ k \in \mathbb{N}$$

Wzory te są uproszczonymi formami zapisu odpowiednich twierdzeń. Zakładamy przy tym, że wszystkie wyrażenia występujące we wzorach mają sens.

Tw. 1.3.7 (o trzech ciągach)

1.
$$a_n \le b_n \le c_n$$
 dla każdego $n \ge n_0$
2. $\lim_{n \to \infty} a_n = b$
3. $\lim_{n \to \infty} c_n = b$

$$\Rightarrow \lim_{n \to \infty} b_n = b$$

Tw. 1.3.8 (o ciagu monotonicznym i ograniczonym)

Jeżeli

- 1. ciąg (a_n) jest niemalejący dla $n \ge n_0$,
- 2. ciąg (a_n) jest ograniczony z góry,

to jest zbieżny do granicy właściwej $\sup\{a_n\}$.

Uwaga. Prawdziwe jest także analogiczne twierdzenie dla ciągu nierosnącego i ograniczonego z dołu.

Tw. 1.3.9 (określenie liczby e)

Ciąg $e_n = \left(1 + \frac{1}{n}\right)^n$ jest rosnący i ograniczony z góry, a zatem jest zbieżny. Granicę tego ciągu oznaczmy przez e:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Liczba e jest w przybliżeniu równa 2,7182818285.

Uwaga. Logarytm przy podstawie e z liczby x nazywamy logarytmem naturalnym i oznaczamy przez $\ln x$; $\ln x = \log_e x$.

Natomiast funkcję wykładniczą przy podstawie e nazywamy eksponens i oznaczamy przez exp; $\exp x = e^x$. Podane niżej dwa fakty czesto wykorzystujemy do znajdowania granic ciagów potegowych.

Fakt 1.3.10 (o ciągach z granicą e)

Uwaga. Pierwszy fakt jest prawdziwy także wtedy, gdy ciąg (a_n) jest zbieżny do granicy niewłaściwej $-\infty$, a drugi, gdy ciąg (b_n) ma wyrazy ujemne.

1.4 TWIERDZENIA O GRANICACH NIEWŁAŚCIWYCH

Tw. 1.4.1 (o dwóch ciagach)

1.
$$a_n \le b_n$$
 dla każdego $n \ge n_0$
2. $\lim_{n \to \infty} a_n = \infty$ $\implies \lim_{n \to \infty} b_n = \infty$

Tw. 1.4.2 (tabelka "działań" z symbolem ∞)

$a + \infty = \infty$ dla $-\infty < a \le \infty$	$a \cdot \infty = \infty$ dla $0 < a \le \infty$
$\frac{a}{\infty} = 0 \text{ dla } -\infty < a < \infty$	$\frac{a}{0^+} = \infty \text{ dla } 0 < a \le \infty$
$a^{\infty} = 0 \text{ dla } 0^+ \le a < 1$	$a^{\infty} = \infty$ dla $1 < a \le \infty$
$\infty^b = 0 \text{ dla } -\infty \le b < 0$	$\infty^b = \infty \text{ dla } 0 < b \le \infty$

Podobnie wygląda tabelka "działań" z symbolem -∞.

Opuszczone w tabeli wyrażenia:

uzemu.						
$\infty - \infty$	$0\cdot\infty$	0	8	1 [∞]	$\infty_{_0}$	0_{0}
		0	∞			

Nazywamy wyrażeniami nieoznaczonymi. Ich wartość zależy od postaci ciągów tworzących dane wyrażenie.

1.5 GRANICE DOLNA I GÓRNA CIĄGÓW

Tw. 1.5.1 (Weierstrassa dla ciągów)

Jeżeli ciąg jest ograniczony, to istnieje podciąg tego ciągu zbieżny do granicy właściwej.

Def. 1.5.2 (punkt skupienia ciągu)

Liczba a jest punktem skupienia ciągu, jeżeli istnieje podciąg tego ciągu zbieżny do granicy a.

Def. 1.5.3 (granice dolna i górna ciągu)

Niech ciąg (a_n) będzie ograniczony oraz niech S oznacza zbiór punktów skupienia tego ciągu. Granicę dolną ciągu (a_n) określamy wzorem

$$\liminf_{n\to\infty} a_n \stackrel{def}{=} \inf S.$$

Podobnie określamy granicę górną ciągu (a_n)

$$\limsup_{n\to\infty} a_n \stackrel{def}{=} \sup S.$$

Uwaga. Jeżeli ciąg (a_n) jest ograniczony z dołu oraz zbiór jego punktów skupienia jest pusty, to przyjmujemy

$$\liminf_{n\to\infty} a_n \stackrel{def}{=} \infty.$$

W przypadku ciągu (a_n) nieograniczonego z dołu przyjmujemy

$$\liminf_{n\to\infty} a_n \stackrel{def}{=} -\infty.$$

Podobnie, jeżeli ciąg (a_n) jest ograniczony z góry oraz zbiór jego punktów skupienia jest pusty, to przyjmujemy

$$\limsup_{n\to\infty} a_n \stackrel{def}{=} -\infty.$$

W przypadku ciągu (a_n) nieograniczonego z góry przyjmujemy

$$\limsup_{n\to\infty} a_n \stackrel{def}{=} \infty.$$

Do oznaczenia granicy dolnej i górnej ciągu (a_n) stosowane są także symbole $\underline{\lim}_{n\to\infty} a_n$ i $\overline{\lim}_{n\to\infty} a_n$ lub krótko $\underline{\lim} a_n$ i $\overline{\lim} a_n$.

2. GRANICE FUNKCJI

2.1 PODSTAWOWE OKREŚLENIA

Def. 2.1.1 (Heinego granicy właściwej funkcji w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$, z wyjątkiem być może punktu $x_0 \in (a,b)$. Liczba g jest granicą właściwą funkcji f w punkcie x_0 , co zapisujemy

$$\lim_{x\to x_0} f(x) = g,$$

wtedy i tylko wtedy, gdy

$$\bigcap_{\substack{(x_n) \\ \{x_n\} \subseteq (a,b)}} \left[\left(\begin{matrix} x_n \neq x_0 & dla \ ka\dot{z}dego \ n \in N \\ \lim_{n \to \infty} x_n = x_0 \end{matrix} \right) \Rightarrow \left(\lim_{n \to \infty} f(x_n) = g \right) \right].$$

Rys. 2.1.1 Ilustracja definicji Heinego granicy właściwej funkcji w punkcie

Obrazowo, funkcja f ma w punkcie x_{θ} granicę właściwą g, gdy jej wartości odpowiadające argumentom dążącym do punktu x_{θ} (i różnym od tego punktu) dążą do liczby g (rys. 2.1.1)

Uwaga. Wartość funkcji f w punkcie x_{θ} (o ile istnieje) nie ma wpływu na jej granicę w tym punkcie. Definicję granicy funkcji można podać także (bez większych zmian) dla funkcji określonych na sumie przedziałów otwartych, w punktach wewnętrznych przedziałów domkniętych itp. Zamiast równości $\lim_{x\to x_0} f(x) = g$ można stosować także zapis $f(x) \xrightarrow[x\to x_0]{} g$,

albo też $f(x) \rightarrow g$, gdy $x \rightarrow x_0$.

Fakt 2.1.2 (o nieistnieniu granicy funkcji w punkcie) Jeżeli

- 1. $\lim_{n\to\infty} x_n' = x_0 \text{ oraz } \lim_{n\to\infty} f(x_n') = g',$
- 2. $\lim_{n \to \infty} x_n = x_0 \text{ oraz } \lim_{n \to \infty} f(x_n) = g,$

3.
$$g' \neq g''$$

to granica $\lim_{x\to x_0} f(x)$ nie istnieje (właściwa ani niewłaściwa).

Uwaga. Powyższy fakt jest prawdziwy także wtedy, gdy $g' = \pm \infty$ lub $g'' = \pm \infty$.

Def. 2.1.3 (Cauchy'ego granicy właściwej funkcji w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$, z wyjątkiem być może punktu $x_0 \in (a,b)$. Liczba g jest granicą właściwą funkcji f w punkcie x_0 , co zapisujemy

$$\lim_{x\to x_0} f(x) = g,$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{\varepsilon > 0} \bigwedge_{\delta > 0} \bigwedge_{x \in (a,b)} \left[\left(x_n \neq x_0 \atop \left| x_n - x_0 \right| < \delta \right) \right] \Rightarrow \left(\left| f(x) - g \right| < \varepsilon \right) \right].$$

Rys. 2.1.2 Ilustracja definicji Cauchy'ego granicy właściwej funkcji w punkcie

Obrazowo, funkcja f ma w punkcie x_{θ} granicę właściwą g, gdy jej wartości różnią się dowolnie mało od granicy, o ile jej tylko argumenty leżą dostatecznie blisko punktu x_{θ} (rys. 2.1.2).

Def. 2.1.4 (Heinego granicy lewostronnej właściwej funkcji w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$, z wyjątkiem być może punktu $x_0 \in (a,b]$. Liczba g jest granicą właściwą lewostronną funkcji f w punkcie x_0 , co zapisujemy

$$\lim_{x\to x_0^-} f(x) = g ,$$

wtedy i tylko wtedy, gdy

$$\bigcap_{\substack{(x_n) \\ (x_n) \subseteq (a,b)}} \left[\left(\begin{matrix} x_n < x_0 & dla \ ka\dot{z}dego \ n \in N \\ \lim_{n \to \infty} x_n = x_0 \end{matrix} \right) \Rightarrow \left(\lim_{n \to \infty} f(x_n) = g \right) \right].$$

Rys. 2.1.3 Ilustracja definicji Heinego granicy lewostronnej właściwej funkcji w punkcie

Obrazowo, liczba g jest granicą lewostronną funkcji f w punkcie x_0 , gdy jej wartości odpowiadające argumentom dążącym do punktu x_0 przez wartości mniejsze od x_0 , dążą do liczby g (rys. 2.1.3). Zamiast równości $\lim_{x\to x_0^-} f(x) = g$ stosowany jest także

zapis
$$f(x_0 - 0) = g$$
 lub $f(x_0^-) = g$.

Uwaga. Podobnie jak w poprzednich definicjach, wartość funkcji w punkcie x_0 (o ile istnieje) nie ma wpływu na granicę lewostronną funkcji w punkcie x_0 . Granicę prawostronną funkcji f w punkcie x_0 definiuje się analogicznie. Oznaczamy ją symbolem $\lim_{x \to x_0^+} f(x) = g$, $f(x_0 + 0) = g$ lub $f(x_0^+) = g$.

Def. 2.1.5 (Cauchy'ego granicy lewostronnej właściwej funkcji w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$, z wyjątkiem być może punktu $x_0 \in (a,b]$. Liczba g jest granicą lewostronną właściwą funkcji f w punkcie x_0 , co zapisujemy

$$\lim_{x \to x_0^+} f(x) = g \,,$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x\in(a,b)} \left[\left(0 < x_n - x < \delta \right) \Rightarrow \left(\left| f(x) - g \right| < \varepsilon \right) \right].$$

Rys. 2.1.4 Ilustracja definicji Caucgy'ego granicy lewostronnej właściwej funkcji w punkcie

Obrazowo, liczba g jest granicą lewostronną funkcji f, gdy x dąży do punktu x_0 , jeżeli jej wartości różnią się od granicy dowolnie mało, o ile argumenty leżą dostatecznie blisko (po lewej stronie) punktu x_0 (rys. 2.1.4). Definicja Cauchy'ego granicy prawostronnej funkcji w punkcie jest analogiczna.

Def. 2.1.6 (Heinego granicy niewłaściwej funkcji w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$, z wyjątkiem być może punktu $x_0 \in (a,b)$. Funkcja f ma granicą niewłaściwą w punkcie x_0 , co zapisujemy

$$\lim_{x\to x_0} f(x) = \infty ,$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{\substack{(x_n) \\ \{x_n\} \subseteq (a,b)}} \left[\left(\begin{matrix} x_n \neq x_0 & dla \ ka\dot{z}dego \ n \in N \\ \lim_{n \to \infty} x_n = x_0 \end{matrix} \right) \Rightarrow \left(\lim_{n \to \infty} f(x_n) = \infty \right) \right].$$

Rys. 2.1.5 Ilustracja definicji Heinego granicy niewłaściwej funkcji w punkcie

Obrazowo, funkcja f ma granicę niewłaściwą ∞ , gdy x dąży x_0 , jeżeli jej wartości odpowiadające argumentom dążącym do punktu x_0 (i różnym od x_0), dążą do ∞ (rys.2.1.5). Zamiast równości $\lim_{x\to x_0} f(x) = \infty$ można stosować także zapis

$$f(x) \xrightarrow[x \to x_0]{} \infty$$
 lub też $f(x) \to \infty$, gdy $x \to x_0$.

Uwaga. Podobnie jak poprzednio, wartość funkcji w punkcie x_0 (o ile istnieje) nie ma wpływu na granicę niewłaściwą funkcji w tym punkcie. Definicja Heinego granicy niewłaściwej $-\infty$ funkcji w punkcie jest analogiczna do definicji podanej wyżej.

Def. 2.1.7 (Cauchy'ego granicy niewłaściwej funkcji w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$, z wyjątkiem być może punktu $x_0 \in (a,b)$. Funkcja f ma granicą niewłaściwą w punkcie x_0 , co zapisujemy

$$\lim_{x\to x_0} f(x) = \infty ,$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{E>0} \bigwedge_{\delta>0} \bigwedge_{x\in(a,b)} \left[\begin{pmatrix} x_n \neq x_0 \\ |x_n - x_0| < \delta \end{pmatrix} \Rightarrow (f(x) > E) \right].$$

Rvs. 2.1.6 Ilustracja definicji Cauchy'ego granicy niewłaściwej funkcji w punkcie

Obrazowo, funkcja f ma granicę niewłaściwą ∞, gdy x dąży do x₀, jeżeli jej wartości są dowolnie duże, o ile tylko argumenty leżą dostatecznie blisko punktu x_0 (i są od niego różne, rys.2.1.6).

Uwaga. Definicja Cauchy'ego granicy niewłaściwej -∞ funkcji w punkcie jest analogiczna do definicji podanej wyżej.

Uwaga. Wprowadza się pojęcia granic jednostronnych niewłaściwych funkcji w punkcie. Definicje Heinego i Cauchy'ego takich granic są analogiczne do odpowiednich definicji granic jednostronnych właściwych. Do oznaczenia tych granic stosuje się zapis: $f(x_0^-) = \infty$, $f(x_0^-) = -\infty$, $f(x_0^+) = \infty$, $f(x_0^+) = -\infty$.

Tw. 2.1.8 (warunek konieczny i wystarczający istnienia granicy)

Funkcja f ma w punkcie x_0 granicę właściwą lub niewłaściwą wtedy i tylko wtedy, gdy

$$\lim_{x \leftarrow x_0^-} f(x) = \lim_{x \leftarrow x_0^+} f(x) \, .$$

Wspólna wartość granic jednostronnych jest granicą funkcji.

Def. 2.1.9 (Heinego granicy właściwej funkcji w nieskończoności)

Niech funkcja f będzie określona na przedziale (a, ∞) , $-\infty \le a < \infty$. Liczba g jest granicą właściwą funkcji f w ∞ , co zapisujemy

$$\lim_{x\to\infty}f(x)=g\;,$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{\substack{(x_n) \\ \{x_n\} \subseteq (a,\infty)}} \left[\left| \lim_{n \to \infty} x_n = \infty \right| \Longrightarrow \left| \lim_{n \to \infty} f(x_n) = g \right| \right].$$

Rys. 2.1.7 Ilustracja definicji Heinego granicy właściwej funkcji w nieskończoności

Obrazowo, funkcja f ma w ∞ granicę właściwą g, jeżeli jej wartości odpowiadające argumentom dążącym do ∞ dążą do granicy g (rys. 2.1.7). Zamiast równości $\lim_{x\to\infty} f(x) = g$ stosowany jest także zapis $f(x) \xrightarrow[x\to\infty]{} g$; $f(x)\to g$, gdy $x\to\infty$ albo też $f(\infty) = g$.

Uwaga. Definicja Heinego granicy właściwej funkcji w -∞ jest podobna do poprzedniej definicji.

Fakt 2.1.10 (o nieistnieniu granicy funkcji w nieskończoności) Jeżeli

- $\lim_{n \to \infty} x_n' = \infty \text{ oraz } \lim_{n \to \infty} f(x_n') = g',$ $\lim_{n \to \infty} x_n'' = \infty \text{ oraz } \lim_{n \to \infty} f(x_n'') = g'',$

3. $g' \neq g''$,

to granica $\lim_{x\to x_0} f(x)$ nie istnieje (właściwa ani niewłaściwa).

Uwaga. Powyższy fakt jest prawdziwy także wtedy, gdy $g' = \pm \infty$ lub $g'' = \pm \infty$.

Def. 2.1.11 (Cauchy'ego granicy właściwej w nieskończoności)

Niech funkcja f będzie określona na przedziałe (a,∞) , $-\infty \le a < \infty$. Liczba g jest granicą właściwą funkcji f w ∞ , co zapisujemy $\lim_{x\to\infty} f(x) = g$,

wtedy i tylko wtedy, gdy

$$\bigwedge_{\varepsilon>0} \bigvee_{\Delta \in R} \bigwedge_{x \in (a,\infty)} \left[\left(x > \Delta \right) \Longrightarrow \left(\left| f(x) - g \right| < \varepsilon \right) \right].$$

Rys. 2.1.8 Ilustracja definicji Cauchy'ego granicy właściwej funkcji w nieskończoności

Obrazowo, funkcja f ma granicę właściwą w ∞ , jeżeli jej wartości różnią się od granicy dowolnie mało, o ile tylko argumenty są dostatecznie duże (rys. 2.1.8).

Uwaga. Definicja Cauchy'ego granicy właściwej w -∞ jest podobna do podanej wyżej definicji.

Def. 2.1.12 (Heinego granicy niewłaściwej funkcji w nieskończoności)

Niech funkcja f będzie określona na przedziale (a,∞) , $-\infty \le a < \infty$. Funkcja f ma w ∞ granicę niewłaściwą ∞ , co zapisujemy $\lim f(x) = \infty$,

wtedy i tylko wtedy, gdy

$$\bigwedge_{\substack{(x_n) \\ \{x_n\} \subset (a,\infty)}} \left[\lim_{n \to \infty} x_n = \infty \right] \Rightarrow \left(\lim_{n \to \infty} f(x_n) = \infty \right) .$$

Rys. 2.1.9 Ilustracja definicji Heinego granicy niewłaściwej funkcji w nieskończoności

Obrazowo, funkcja f ma granicę niewłaściwą ∞ , gdy x dąży do ∞ , jeżeli jej wartości odpowiadające argumentom dążącym do ∞ dążą ∞ (rys. 2.1.9). Zamiast równości $\lim_{x\to\infty} f(x) = \infty$ stosowany jest także zapis $f(x) \xrightarrow[x\to\infty]{} \infty$; $f(x) \to \infty$, gdy $x\to\infty$ albo też $f(\infty)=\infty$.

Def. 2.1.13 (Cauchy'ego granicy niewłaściwej funkcji w nieskończoności)

Niech funkcja f będzie określona na przedziale (a,∞) , $-\infty \le a < \infty$. Funkcja f ma w ∞ granicę niewłaściwą ∞ , co zapisujemy

$$\lim_{x\to\infty}f(x)=\infty\,,$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{E>0} \bigvee_{\Delta \in R} \bigwedge_{x \in (a,\infty)} \left[\left(x > \Delta \right) \Longrightarrow \left(f(x) > E \right) \right].$$

Rys. 2.1.10 Ilustracja definicji Cauchy'ego granicy niewłaściwej funkcji w nieskończoności

Obrazowo, funkcja w ∞ ma granicę niewłaściwą ∞, jeżeli jej wartości są dowolnie duże, o ile tylko argumenty są dostatecznie duże (rys. 2.1.10).

Tw. 2.1.14 (o równoważności definicji granic funkcji)

Odpowiadające sobie definicje Heinego i Cauchy'ego granic funkcji są równoważne.

2.2 ASYMPTOTY FUNKCJI

Def. 2.2.1 (asymptota pionowa lewostronna funkcji)

Prosta x = a jest asymptotą pionową lewostronną funkcji f, jeżeli

$$\lim_{x \to a^{-}} f(x) = -\infty \text{ albo } \lim_{x \to a^{-}} f(x) = \infty.$$

Uwaga. Analogicznie definiuje się asymptotę pionową prawostronną (rys. 2.2.2). Prostą, która jest jednocześnie asymptotą lewostronną i prawostronną funkcji nazywamy asymptotą pionową obustronną lub krótko asymptotą pionową tej funkcji (rys.2.2.3). Funkcja elementarna **może mieć** asymptoty pionowe jedynie w skończonych krańcach swej dziedziny.

Rys. 2.2.1 Asymptota pionowa lewostronna

Rys. 2.2.2 Asymptota pionowa prawostronna

Rys. 2.2.3 Przykłady asymptot pionowych obustronnych

Def. 2.2.2 (asymptota ukośna funkcji)

Prosta $y=A_+x+B_+$ jest asymptotą ukośną funkcji f w $+\infty$, wtedy i tylko wtedy, gdy $\lim_{x\to\infty} \Bigl[f(x)-(A_+x+B_+)\Bigr]=0 \ .$

$$\lim_{x \to \infty} [f(x) - (A_{+}x + B_{+})] = 0$$

Rys. 2.2.4 Asymptota ukośna

Rys. 2.2.5 Asymptota pozioma

Obrazowo, prosta jest asymptotą ukośną funkcji w ∞ , gdy jej wykres dla argumentów leżących "blisko" ∞ praktycznie pokrywa się z tą prostą (rys. 2.2.4).

 $\it Uwaga$. Analogicznie definiuje się asymptotę ukośną funkcji w $-\infty$. Współczynniki asymptoty oznaczamy wtedy symbolami $\it A_{-}$ i $\it B_{-}$. Jeżeli współczynnik $\it A_{\pm}$ w równaniu asymptoty jest równy 0, to asymptotę ukośną nazywamy poziomą (rys. 2.2.5). Warto podkreślić, że asymptota ukośna może przecinać wykres funkcji nawet nieskończenie wiele razy.

Tw. 2.2.3 (warunek istnienia asymptoty ukośnej)

Prosta $y = A_{\perp}x + B_{\perp}$ jest asymptotą ukośną funkcji f w $+\infty$, wtedy i tylko wtedy, gdy

$$A_{+} = \lim_{x \to \infty} \frac{f(x)}{x} \text{ oraz } B_{+} = \lim_{x \to \infty} (f(x) - Ax).$$

Uwaga. Prawdziwe jest także analogiczne twierdzenie o asymptotach ukośnych funkcji w −∞.

Fakt 2.2.4 (warunek istnienia asymptot poziomych)

Prosta $y = B_+$ jest asymptotą poziomą funkcji f w ∞ , wtedy i tylko wtedy, gdy

$$\lim_{x\to\infty} f(x) = B_+.$$

Uwaga. Podobnie wygląda warunek istnienia asymptoty poziomej w −∞.

2.3 TWIERDZENIA O GRANICACH FUNKCJI

Tw. 2.3.1 (o granicy sumy i różnicy funkcji)

1.
$$\lim_{x \to x_0} f(x) = p$$

2. $\lim_{x \to x_0} g(x) = q$ $\Rightarrow \lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = p \pm q$.

Tw. 2.3.2 (o granicy iloczynu funkcji)

1.
$$\lim_{x \to x_0} f(x) = p$$
2.
$$\lim_{x \to x_0} g(x) = q$$

$$\Rightarrow \lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = p \cdot q$$
.

Tw. 2.3.3 (o granicy ilorazu funkcji)

1.
$$\lim_{x \to x_0} f(x) = p$$

2. $\lim_{x \to x_0} g(x) = q$ $\Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{p}{q}$.

Tw. 2.3.4 (o granicy potęg funkcji)

1.
$$f(x) > 0$$
 $dla \ x \neq x_0$
2. $\lim_{x \to x_0} f(x) = p$
3. $\lim_{x \to x_0} g(x) = q$
4. $p + |q| > 0$ $\Rightarrow \lim_{x \to x_0} (f(x))^{g(x)} = \left(\lim_{x \to x_0} f(x)\right)^{\lim_{x \to x_0} g(x)} = p^q$.

Przyjmujemy przy tym, że $(0^+)^q = \infty$ dla q < 0.

Uwaga. Powyższe twierdzenia o arytmetyce granic są prawdziwe także dla granic jednostronnych funkcji w punkcie x_0 oraz w $-\infty$ lub ∞ . Twierdzenia te są ponadto prawdziwe dla granic niewłaściwych w punkcie lub w nieskończoności. W takich przypadkach stosujemy reguły "działań" z symbolami ∞ i $-\infty$ podane w tw. 1.4.2.

Tw. 2.3.5 (o granicy funkcji złożonej)

1.
$$\lim_{x \to x_0} f(x) = y_0$$

2. $f(x) \neq y_0$ dla $x \neq x_0$
3. $\lim_{y \to y_0} g(y) = q$ $\Rightarrow \lim_{x \to x_0} (g(f(x))) = q$.

2.4 METODY ZNAJDOWANIA GRANIC FUNKCJI

Tw. 2.4.1 (o trzech funkcjach)

1.
$$f(x) \le g(x) \le h(x)$$
 dla każdego $x \ne x_0$
2. $\lim_{x \to x_0} f(x) = p$
3. $\lim_{x \to x_0} h(x) = p$

Uwaga. Powyższe twierdzenie jest także prawdziwe dla granic jednostronnych oraz granic w nieskończoności.

Fakt 2.4.2 (zamiana granic)

1.
$$\lim_{x \to x_0} f(x) = \lim_{u \to 0} f(u + x_0)$$
.

2.
$$\lim_{x \to \pm \infty} f(x) = \lim_{u \to 0^{\pm}} f\left(\frac{1}{u}\right).$$

2.5 GRANICE PODSTAWOWYCH WYRAŻEŃ NIEOZNACZONYCH

Tw. 2.5.1 (o dwóch funkcjach)

1.
$$f(x) \le g(x)$$
 dla każdego $x \ne x_0$
2. $\lim_{x \to x_0} f(x) = \infty$ $\Rightarrow \lim_{x \to x_0} g(x) = \infty$.

 $\it Uwaga$. Twierdzenie o dwóch funkcjach jest prawdziwe także dla granic jednostronnych oraz dla granic w nieskończoności. Ponadto prawdziwe są analogiczne twierdzenia dla granicy niewłaściwej funkcji równej $-\infty$.

Fakt 2.5.2 (granice podstawowych wyrażeń nieoznaczonych)

$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, a > 0$	$\lim_{x\to 0}\frac{e^x-1}{x}=1$
$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \log_a e, \ 0 < a \ne 1$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
$\lim_{x \to \pm \infty} \left(1 + \frac{a}{x} \right)^x = e^a, \ a \in \mathbb{R}$	$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$
$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$	$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a, \ a \in R$
$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$	$\lim_{x \to 0} \frac{\operatorname{ar} \operatorname{ctg} x}{x} = 1$

3. FUNKCJE CIĄGŁE

3.1 CIĄGŁOŚĆ FUNKCJI

Def. 3.1.1 (funkcja ciągła w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x\to x_0} f(x) = f(x_0).$$

Obrazowo, funkcja jest ciągła w punkcie, gdy jej wykres nie "przerywa" się w tym punkcie.

Def. 3.1.2 (Heinego funkcji ciągłej w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

 $\bigwedge_{\substack{(x_n) \\ \{x_n\} \subseteq (a,b)}} \left[\lim_{n \to \infty} x_n = x_0 \right] \Rightarrow \left[\lim_{n \to \infty} f(x_n) = f(x_0) \right].$

Rys. 3.1.1 Ilustracja definicji Heinego funkcji ciągłej w punkcie

Def. 3.1.3 (Cauchy'ego funkcji ciągłej w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

 $\bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x\in(a,b)} \left[\left(\left| x - x_0 \right| < \delta \right) \Longrightarrow \left(\left| f(x) - f(x_0) \right| < \varepsilon \right) \right].$

Rys. 3.1.2 Ilustracja definicji Heinego funkcji ciągłej w punkcie

Funkcja f jest ciągła w punkcie x_0 , gdy małe zmiany argumentu x względem punktu x_0 powodują małe zmiany wartości funkcji f(x) względem wartości $f(x_0)$.

Tw. 3.1.4 (o równoważności definicji ciagłości funkcji)

Definicje Heinego i Cauchy'ego ciągłości funkcji w punkcie są równoważne.

Def. 3.1.5 (funkcja lewostronnie ciągła w punkcie)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f jest lewostronnie ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x\to x_0^-} f(x) = f(x_0).$$

Uwaga. Podobnie wygląda definicja ciągłości lewostronnej funkcji $f:(a,b] \to R$, gdzie $-\infty \le a < b \le \infty$, w punkcie $x_0 \in (a,b]$. Analogicznie definiuje się funkcję prawostronnie ciągłą w punkcie.

Tw. 3.1.6 (warunek konieczny i wystarczający ciągłości)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy jest lewostronnie i prawostronnie ciągła w tym punkcie.

Def. 3.1.7 (funkcja ciągła na przedziale)

Funkcja f jest ciągła na przedziale, jeżeli jest ciągła w każdym punkcie tego przedziału.

Uwaga. Ciągłość funkcji na przedziale [a,b] oznacza jej ciągłość w każdym punkcie przedziału otwartego oraz prawostronną ciągłość w punkcie a i lewostronną ciągłość w punkcie b. Analogicznie można zdefiniować ciągłość funkcji na sumie przedziałów lub na bardziej skomplikowanych podzbiorach prostej.

3.2 NIECIĄGŁOŚCI

Def. 3.2.1 (nieciągłości pierwszego rodzaju)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f ma w punkcie x_0 nieciągłość pierwszego rodzaju, jeżeli istnieją granice skończone

$$\lim_{x \to x_0^-} f(x)$$
, $\lim_{x \to x_0^+} f(x)$

oraz

$$\lim_{x \to x_0^-} f(x) \neq f(x_0) \quad \text{lub} \quad \lim_{x \to x_0^+} f(x) \neq f(x_0).$$

Uwaga. Mówimy, że funkcja f ma w punkcie x_0 nieciągłość pierwszego rodzaju typu "skok", jeżeli spełnia warunek

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x) \, .$$

Natomiast, jeżeli funkcja f spełnia warunek

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0),$$

to mówimy, że ma ona w punkcie x_0 nieciągłość pierwszego rodzaju typu "luka".

Rys. 3.2.1 Funkcja *f* ma w punkcie x_0 nieciągłość pierwszego rodzaju typu "skok"

Rys. 3.2.2 Funkcja f ma w punkcie x_0 nieciągłość pierwszego rodzaju typu "luka"

Def. 3.2.2 (nieciągłość drugiego rodzaju)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f ma w punkcie x_0 nieciągłość drugiego rodzaju, jeżeli przynajmniej jedna z granic

$$\lim_{x \to x_0^-} \bar{f}(x), \quad \lim_{x \to x_0^+} f(x)$$

nie istnieje lub jest niewłaściwa.

Rys. 3.2.3 Funkcja f ma w punkcie x_0 obie granice jednostronne niewłaściwe

Rys. 3.2.4 Granica lewostronna funkcji f w punkcie x_0 nie istnieje

Uwaga. Nieciągłość funkcji można badać jedynie w punktach należących do jej dziedziny. Rozważa się także nieciągłości jednostronne funkcji.

3.3 DZIAŁANIA NA FUNKCJACH CIĄGŁYCH

Tw. 3.3.1 (o ciągłości sumy, różnicy, iloczynu i ilorazu funkcji)

Jeżeli funkcje f i g są ciągłe w punkcie x_0 , to:

- a) funkcje f + g, f g są ciągłe w punkcie x_0 ;
- b) funkcja $f \cdot g$ jest ciągła w punkcie x_0 ;
- c) funkcja $\frac{f}{g}$ jest ciągła w punkcie x_0 , o ile $g(x_0) \neq 0$.

Uwaga. Powyższe twierdzenie jest prawdziwe także dla funkcji ciągłych jednostronnie.

Tw. 3.3.2 (o ciągłości funkcji złożonej)

Jeżeli

- 1. funkcja f jest ciągła w punkcie x_0 ,
- 2. funkcja g jest ciągła w punkcie $y_0 = f(x_0)$,

to funkcja złożona $g \circ f$ jest ciągła w punkcie x_0 .

Uwaga. Jeżeli funkcja f jest ciągła jednostronnie, a funkcja g jest ciągła, to funkcja złożona $g \circ f$ jest ciągła jednostronnie.

Tw. 3.3.3 (o ciągłości funkcji odwrotnej)

Jeżeli funkcja f jest ciągła i rosnąca na przedziale [a,b], to funkcja odwrotna f^l jest ciągła i rosnąca na przedziale [f(a),f(b)].

Uwaga. Prawdziwe jest także analogiczne twierdzenie dla funkcji malejącej.

Tw. 3.3.4 (o ciągłości funkcji elementarnych)

Funkcje elementarne są ciągłe w swoich dziedzinach.

Tw. 3.3.5 (o monotoniczności funkcji ciągłej i różnowartościowej)

Niech funkcja f będzie ciągła na przedziale [a,b]. Wówczas, funkcja f jest różnowartościowa na przedziale [a,b] wtedy i tylko wtedy, gdy jest malejąca albo rosnąca na tym przedziale.

3.4 TWIERDZENIA O FUNKCJACH CIĄGŁYCH

Tw. 3.4.1 (Weierstrassa o ograniczoności funkcji ciągłej)

Jeżeli funkcja jest ciągła na przedziale [a,b], to jest na tym przedziale ograniczona.

Uwaga. Założenie domkniętości przedziału jest istotne, bo np. funkcja $f(x) = \operatorname{ctg} x$ jest ciągła na przedziale $(0,\pi)$, ale nie jest na nim ograniczona. Także założenie ograniczoności przedziału jest istotne, gdyż np. funkcja f(x) = x jest ciągła na przedziale $[0,\infty)$, ale nie jest na nim ograniczona. Podobnie założenie ciągłości funkcji jest istotne, bo np. funkcja

$$f(x) = \begin{cases} 0 & dla \ x \in Q \\ \frac{1}{x} & dla \ x \notin Q \end{cases}$$

nie jest ograniczona na przedziale domkniętym [-1,1].

Tw. 3.4.2 (Weierstrassa o osiąganiu kresów)

Jeżeli funkcja f jest ciągła na przedziale [a,b], to

$$\bigvee_{c \in [a,b]} f(c) = \inf_{x \in [a,b]} f(x) \text{ oraz } \bigvee_{d \in [a,b]} f(d) = \sup_{x \in [a,b]} f(x).$$

Uwaga. Założenie domkniętości przedziału [a,b] jest istotne, bo np. funkcja f(x) = x nie osiąga swoich kresów na przedziale (0,1).

Tw. 3.4.3 (Darboux o przyjmowaniu wartości pośrednich)

Jeżeli

- 1. funkcja f jest ciągła na przedziale [a,b],
- 2. f(a) < f(b),

to

$$\bigwedge_{w \in (f(a), f(b))} \bigvee_{c \in (a,b)} f(c) = w.$$

Obrazowo, każda prosta y = w, gdzie f(a) < w < f(b) lub f(b) < w < f(a), przecina wykres funkcji f co najmniej raz.

Uwaga. Jeżeli w powyższym twierdzeniu założyć dodatkowo, że funkcja f jest rosnąca, to punkt c określony będzie jednoznacznie. Analogiczne twierdzenie jest także prawdziwe dla przypadku f(a) > f(b).

Tw. 3.4.4 (Darboux o miejscach zerowych funkcji)

Ieżeli

1. funkcja f jest ciągła na przedziale [a,b],

$$2. \quad f(a) \cdot f(b) < 0,$$

to

$$\bigvee_{c \in (a,b)} f(c) = 0.$$

 $\it Uwaga$. Jeżeli funkcja $\it f$ w powyższym twierdzeniu jest dodatkowo malejąca albo rosnąca, to punkt $\it c$ będzie określony jednoznacznie. Twierdzenie to ma zastosowanie przy wyznaczaniu miejsc zerowych skomplikowanych funkcji z dowolną dokładnością.

4. POCHODNE FUNKCJI

4.1 PODSTAWOWE POJĘCIA

Def.4.1.1 (iloraz różnicowy)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$, $x_0 + \Delta x \in (a,b)$. Ilorazem różnicowym funkcji f w punkcie x_0 odpowiadającym przyrostowi $\Delta x \ne 0$ zmiennej niezależnej nazywamy liczbę

$$\frac{\Delta f}{\Delta x} \stackrel{def}{=} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Rys. 4.1.1 Ilustracja definicji ilorazu różnicowego

Fakt 4.1.2 (interpretacja geometryczna ilorazu różnicowego)

Iloraz różnicowy jest tangensem kąta nachylenia siecznej przechodzącej przez punkty $(x_0, f(x_0), (x_0 + \Delta x, f(x_0 + \Delta x))$ wykresu funkcji f do dodatniej części osi Ox;

$$\operatorname{tg} \alpha = \frac{\Delta f}{\Delta x}$$
.

Def. 4.1.3 (pochodna właściwa funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$, $x_0 + \Delta x \in (a,b)$. Pochodną właściwą funkcji f w punkcie x_0 nazywamy granicę skończoną

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

Uwaga. Jeżeli istnieje pochodna właściwa funkcji f w punkcie x_0 , to mówimy, że funkcja f jest różniczkowalna w tym punkcie.

Do oznaczenia pochodnej funkcji f w punkcie x_0 stosowane są także symbole $\frac{df}{dx}(x_0)$, $Df(x_0)$.

Fakt 4.1.4 (pochodne ważniejszych funkcji elementarnych)

Funkcja	Pochodna	Zakres zmienności
С	0	$c \in R$
χ^{n}	nx^{n-1}	$n \in \mathbb{N}, x \in \mathbb{R}$
x^p	px^{p-1}	$p \in \{-1, -2, -3,\}, x \neq 0$
x^{α}	$\alpha x^{\alpha-1}$	$\alpha \in \mathbb{R}, \ x > 0$
$\sin x$	$\cos x$	$x \in R$
$\cos x$	$-\sin x$	$x \in R$

Funkcja	Pochodna	Zakres zmienności
tg x	$\frac{1}{\cos^2 x} = 1 + tg^2 x$	$x \neq \frac{\pi}{2} + k\pi$, $gdzie \ k \in Z$
ctg x	$\frac{-1}{\sin^2 x} = -1 - \operatorname{ctg}^2 x$	$x \neq k\pi$, $gdzie \ k \in Z$
a^x	$a^x \ln a$	$0 < a \neq 1, x \in \mathbb{R}$
e^x	e^x	$x \in R$
shx	chx	$x \in R$
chx	shx	$x \in R$
thx	$\frac{1}{\cosh^2 x}$	$x \in R$
cthx	$ \frac{\cosh^2 x}{-1} $ $ \frac{-1}{\sinh^2 x} $	$x \neq 0$
arc sin x	$\frac{1}{\sqrt{1-x^2}}$	x < 1
arccosx	$ \frac{1}{\sqrt{1-x^2}} $ $ \frac{-1}{\sqrt{1-x^2}} $ $ \frac{1}{\sqrt{1-x^2}} $ $ \frac{1}{1+x^2} $ $ -1 $	x < 1
arctgx	$\frac{1}{1+x^2}$	$x \in R$
arcctgx	$\frac{-1}{1+x^2}$	$x \in R$
$\log_a x$	$\frac{1}{x \ln a}$	$0 < a \neq 1, x \in \mathbb{R}$
ln x	$\frac{1}{x}$	x > 0

Uwaga. Do obliczania pochodnych funkcji postaci f^g oraz $\log_f g$ stosujemy wzory:

$f^g = e^{g \ln f}$	$\log_f g = \frac{\ln g}{\ln f}$
---------------------	----------------------------------

Def. 4.1.5 (styczna do wykresu funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Prosta jest styczna do wykresu funkcji f w punkcie $(x_0, f(x_0))$, jeżeli jest granicznym położeniem siecznych funkcji f przechodzących przez punkty $(x_0, f(x_0))$, (x, f(x)), gdy $x \to x_0$.

Geometrycznie styczna jest prostą, która w pobliżu punktu styczności "najlepiej" przybliża wykres funkcji. Nie jest prawdą, że każda prosta, która ma dokładnie jeden punkt wspólny z wykresem funkcji jest styczna do tego wykresu (może np. przecinać wykres).

Fakt 4.1.6 (interpretacja geometryczna pochodnej)

Niech α oznacza kąt między styczną do wykresu funkcji f w punkcie $(x_0, f(x_0))$ i dodatnią częścią osi Ox (rys. 4.1.2). Wtedy

$$f'(x_0) = \operatorname{tg} \alpha .$$

Równanie stycznej do wykresu funkcji f w punkcie $(x_0, f(x_0))$ ma postać:

$$y = f(x_0) + f'(x_0)(x - x_0)$$
.

Rys. 4.1.2 Interpretacja geometryczna pochodnej

Def. 4.1.7 (kat przecięcia wykresów funkcji)

Niech wykresy funkcji f i g mają punkt wspólny (x_0,y_0) , przy czym obie funkcje mają pochodne właściwe w punkcie x_0 . Kątem przecięcia wykresów funkcji f i g nazywamy kąt ostry φ między stycznymi wystawionymi do wykresów tych funkcji w punkcie przecięcia.

Rys. 4.1.3 Kat przecięcia wykresów funkcji

Fakt 4.1.8 (o mierze kata między wykresami funkcji)

Miara kąta ostrego przecięcia wykresów funkcji f i g w punkcie (x_0,y_0) wyraża się wzorem

$$\varphi = \arctan \lg \left| \frac{f'(x_0) - g'(x_0)}{1 + f'(x_0)g'(x_0)} \right|.$$

Jeżeli
$$f'(x_0)g'(x_0) = -1$$
, to przyjmujemy $\varphi = \frac{\pi}{2}$

Tw. 4.1.9 (warunek konieczny różniczkowalności funkcji)

Jeżeli funkcja jest różniczkowalna w punkcie, to jest ciągła w tym punkcie.

Uwaga. Implikacja odwrotna nie jest prawdziwa. Np. funkcja f(x) = |x| jest ciągła w punkcie $x_0 = 0$, ale pochodna f'(0) nie istnieje.

4.2 POCHODNE JEDNOSTRONNE FUNKCJI

Def. 4.2.1 (pochodne jednostronne funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Pochodną lewostronną właściwą funkcji f w punkcie x_0 nazywamy granicę właściwą

$$f_{-}^{/}(x_{0}) \stackrel{\text{def}}{=} \lim_{x \to x_{0}^{-}} \frac{f(x) - f(x_{0})}{x - x_{0}} = \lim_{\Delta x \to 0^{-}} \frac{\Delta f}{\Delta x}.$$

Analogicznie definiuje się pochodną prawostronną właściwą funkcji f w punkcie x_0 . Pochodną tą oznaczamy $f_+^{\prime}(x_0)$.

Uwaga. Jeżeli funkcja ma w punkcie pochodną lewostronną (prawostronną) właściwą, to jest w tym punkcie ciągła lewostronnie (prawostronnie).

Fakt 4.2.2 (interpretacja geometryczna pochodnych jednostronnych)

Niech α i β oznaczają odpowiednio kąty nachylenia prawej i lewej stycznej wykresu funkcji do dodatniej części osi Ox. Wtedy

$$tg \alpha = f'_{+}(x_0), tg \beta = f'_{-}(x_0).$$

Tw. 4.2.3 (warunek konieczny i dostateczny istnienia pochodnej)

Pochodna $f'(x_0)$ istnieje wtedy i tylko wtedy, gdy

$$f_{-}^{/}(x_0) = f_{+}^{/}(x_0)$$
.

Jeżeli pochodne jednostronne funkcji są równe, to ich wspólna wartość jest pochodną funkcji.

Def. 4.2.4 (różniczkowalność funkcji na przedziale)

Funkcja jest różniczkowalna na przedziale wtedy i tylko wtedy, gdy jest różniczkowalna w każdym punkcie tego przedziału. Funkcję określoną na przedziale, której wartości w punktach x tego przedziału są równe f'(x) nazywamy pochodną funkcji f na przedziale i oznaczamy przez f'.

 $\it Uwaga$. Różniczkowalność funkcji na przedziale domkniętym [a,b] oznacza jej różniczkowalność w każdym punkcie przedziału otwartego (a,b) oraz istnienie pochodnej lewostronnej właściwej w punkcie b i prawostronnej właściwej w punkcie a.

Def. 4.2.5 (pochodna niewłaściwa funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech będzie **ciągla** w punkcie $x_0 \in (a,b)$. Funkcja f ma w punkcie x_0 pochodną niewłaściwą wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty \text{ albo } \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = -\infty.$$

Uwaga. W podobny sposób definiuje się pochodne niewłaściwe jednostronne. Pochodne te oznacza się tym samym symbolem co pochodne jednostronne właściwe.

4.3 TWIERDZENIA O POCHODNEJ FUNKCJI

Tw. 4.3.1 (o pochodnej sumy, różnicy, iloczynu i ilorazu funkcji)

Jeżeli funkcje f i g sa różniczkowalne w punkcie x_0 , to

a) funkcja $f \pm g$ jest różniczkowalna w punkcie x_0 oraz

$$(f \pm g)^{\prime}(x_0) = f^{\prime}(x_0) \pm g^{\prime}(x_0),$$

b) funkcja $f \cdot g$ jest różniczkowalna w punkcie x_0 oraz

$$(f \cdot g)^{\prime}(x_0) = f^{\prime}(x_0) \cdot g(x_0) + f(x_0) \cdot g^{\prime}(x_0),$$

c) przy założeniu, że $g(x_0) \neq 0$ funkcja $\frac{f}{g}$ jest różniczkowalna w punkcie x_0 oraz

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g^2(x_0)}.$$

Uwaga. Powyższe wzory są prawdziwe także dla pochodnych jednostronnych oraz dla pochodnych niewłaściwych (stosujemy wtedy reguły działań z nieskończonością). Ponadto analogiczne wzory do podanych w punktach a) i b) są prawdziwe również dla dowolnej liczby odpowiednio składników i czynników.

Tw. 4.3.2 (o pochodnej funkcji złożonej)

Jeżeli

- 1. funkcja f jest różniczkowalna w punkcie x_0 ,
- 2. funkcja g jest różniczkowalna w punkcie $f(x_0)$,

to funkcja złożona $g \circ f$ jest różniczkowalna w punkcie x_0 oraz

$$(g \circ f)^{\prime}(x_0) = g^{\prime}(f(x_0))f^{\prime}(x_0).$$

Uwaga. Prawdziwy jest także analogiczny wzór dla dowolnej liczby składanych funkcji oraz dla pochodnych jednostronnych funkcji złożonej.

Tw. 4.3.3 (o pochodnej funkcji odwrotnej)

Niech

- 1. funkcja f będzie ciągła na przedziale (a,b),
- 2. funkcja f będzie malejąca albo rosnąca na przedziale (a,b),
- 3. $f'(x_0) \neq 0, x_0 \in (a,b)$.

Wtedy funkcja odwrotna f^{-1} jest różniczkowalna w punkcie $y_0 = f(x_0)$ oraz

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Uwaga. Wzór ten jest prawdziwy także dla pochodnych jednostronnych właściwych i niewłaściwych.

Fakt 4.3.4 (pochodna funkcji elementarnej)

Pochodne funkcji elementarnych są funkcjami elementarnymi.

4.4 RÓŻNICZKA FUNKCJI

Def. 4.4.1 (różniczka funkcji)

Niech funkcja f ma pochodną właściwą w punkcie x_0 . Różniczką funkcji f w punkcie x_0 nazywamy funkcję df zmiennej $\Delta x = x - x_0$ określoną wzorem

$$df(\Delta x) \stackrel{def}{=} f'(x_0) \Delta x$$
.

Fakt 4.4.2 (zastosowanie różniczki do obliczania przyrostu funkcji)

Niech funkcja f będzie różniczkowalna w punkcie x_0 . Wtedy

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$
.

Fakt 4.4.3 (zastosowanie różniczki do szacowania błedów pomiarów)

Niech wielkości fizyczne x i y będą związane zależnością y = f(x). Ponadto niech Δ_x oznacza błąd bezwzględny pomiaru wielkości x. Wtedy błąd bezwzględny Δ_y obliczanej wielkości y wyraża się wzorem przybliżonym

$$\Delta_v \approx |f'(x_0)| \Delta_x$$

gdzie x_0 jest wynikiem pomiaru wielkości x.

Tw. 4.4.4 (o wielkości błędu w rachunkach przybliżonych)

Jeżeli funkcja f jest różniczkowalna w punkcie x_0 , to

$$\lim_{\Delta x \to 0} \frac{\Delta f - df}{\Delta x} = 0.$$

Obrazowo, błąd jaki popełniamy zastępując przyrost funkcji Δf jej różniczką df, dąży szybciej do zera niż Δx .

4.5 POCHODNE WYŻSZYCH RZĘDÓW

Def. 4.5.1 (pochodna n-tego rzędu funkcji)

Pochodną n-tego rzędu funkcji f w punkcie x_0 definiujemy indukcyjnie:

$$f^{(n)}(x_0) = [f^{(n-1)}]'(x_0) dla \quad n \ge 2,$$

gdzie
$$f^1(x_0)\stackrel{\rm def}{=} f^{/}(x_0)$$
. Ponadto przyjmujemy $f^{(0)}(x_0)\stackrel{\rm def}{=} f(x_0)$.

Jeżeli istnieje pochodna właściwa $f^{(n)}(x_0)$, to mówimy, że funkcja f jest n-krotnie różniczkowalna w punkcie x_0 . Funkcję określoną na przedziałe, której wartości w punktach x tego przedziału są równe $f^{(n)}(x)$, nazywamy pochodną n-tego rzędu funkcji f na tym przedziałe i oznaczamy przez $f^{(n)}$. Piszemy także f'', f''', f^{iv} zamiast odpowiednio $f^{(2)}$, $f^{(3)}$, $f^{(4)}$. W fizyce stosuje się oznaczenia f, f zamiast odpowiednio f', f''.

Uwaga. Dla istnienia n-tej pochodnej funkcji w punkcie x_0 konieczne jest istnienie pochodnej $f^{(n-1)}$ (i co za tym idzie także wszystkich poprzednich pochodnych) na pewnym otoczeniu punktu x_0 . Do oznaczania pochodnej n-tego rzędu funkcji f w punkcie x_0 stosuje się także symbole $\frac{d^n f}{dx^n}(x_0)$, $D^n f(x^0)$, a do oznaczenia tej przedziale symbole $\frac{d^n f}{dx^n}$, $D^n f$.

Tw. 4.5.2 (wzór Leibniza)

Niech funkcje f i g mają pochodne właściwe n-tego rzędu w punkcie x_0 . Wtedy

$$(f \cdot g)^{(n)}(x_0) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x_0) \cdot g^{(k)}(x_0).$$

Fakt 4.5.3 (pochodne wyższych rzędów ważniejszych funkcji)

Funkcja	n-ta pochodna	Zakres zmienności
e^x	e^x	$x \in R$
sin x	$\sin\left(x+\frac{n\pi}{2}\right)$	$x \in R$
cosx	$\cos\left(x + \frac{n\pi}{2}\right)$	$x \in R$
x ^m	$\frac{m!}{(m-n)!}x^{m-n}$	$n \le m, \ x \in R$
$\frac{1}{x}$	$\frac{(-1)^n n!}{x^{n+1}}$	$x \neq 0$
ln x	$\frac{(-1)^{n-1}(n-1)!}{x^n}$	<i>x</i> > 0

Def. 4.5.4 (pochodna funkcji wektorowej)

Niech $\vec{r}(t) = (x(t), y(t))$, gdzie $t \in (\alpha, \beta)$, będzie funkcją wektorową. Pochodną funkcji \vec{r} w punkcie t określamy wzorem:

$$\vec{r}^{\prime}(t) = (x^{\prime}(t), y^{\prime}(t)).$$

Podobnie określamy pochodną funkcji wektorowej $\vec{r}(t) = (x(t), y(t), z(t))$, a także pochodne wyższych rzędów takich funkcji.

Fakt 4.5.5 (interpretacja fizyczna pochodnej funkcji wektorowej)

Niech $\vec{r}(t)$ oznacza wektor wodzący punktu materialnego w chwili $t \in [t_0, t_1]$. Wektor prędkości tego punktu wyraża się wzorem

$$\vec{v}(t) = \vec{r}'(t),$$

gdzie $t \in [t_0, t_1]$. Wektor przyspieszenia tego punktu wyraża się wzorem

$$\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t)$$

gdzie $t \in [t_0, t_1]$.

Uwaga. W każdej chwili $t \in [t_0, t_1]$ wektor prędkości $\vec{v}(t)$ jest styczny do trajektorii punktu, a dla duchu ze stałą prędkością $|\vec{v}(t)| = const$) wektor przyspieszenia $\vec{a}(t)$ jest prostopadły do tej trajektorii.

Rys. 4..5.1 Wektor prędkości i wektor przyspieszenia punktu materialnego

5. TWIERDZENIA O FUNKCJACH RÓŻNICZKOWALNYCH

5.1 TWIERDZENIA O WARTOŚCI ŚREDNIEJ

Tw. 5.1.1 (Rolle'a)

- 1. funkcja f jest ciągła na [a,b]
- 2. funkcja f ma pochodną na (a,b)
- 3. f(a) = f(b)

$$\Rightarrow \bigvee_{c \in (a,b)} f^{\prime}(c) = 0$$

Fakt 5.1.2 (interpretacja geometryczna twierdzenia Rolle'a)

Na wykresie funkcji ciągłej na przedziałe domkniętym, różniczkowalnej na wnętrzu tego przedziału i przyjmującej jednakowe wartości na jego końcach istnieje punkt, w którym styczna jest pozioma (rys. 5.1.1).

Rys. 5.1.1 Ilustracja twierdzenia Rolle'a

Tw. 5.1.3 (Lagrange'a)

- 1. funkcja f jest ciągła na [a,b]
- 2. funkcja f ma pochodną na (a,b)

$$\Rightarrow \bigvee_{c \in (a,b)} f'(c) = \frac{f(b) - f(a)}{b - a}$$

Fakt 5.1.4 (interpretacja geometryczna twierdzenia Lagrange'a)

Na wykresie funkcji ciągłej na przedziałe domkniętym i różniczkowalnej na wnętrzu tego przedziału istnieje punkt, w którym styczna do wykresu jest równoległa do siecznej łączącej końce wykresu (rys. 5.1.2).

Rys. 5.1.2 Ilustracja twierdzenia Lagrange'a

Tw. 5.1.5 (warunki wystarczające monotoniczności funkcji)

Niech $I \subset R$ oznacza dowolny przedział. Wtedy

$$\bigwedge_{x \in I} f'(x) = 0 \Rightarrow \text{funkcja } f \text{ jest stała na } I,$$

$$\wedge f'(x) > 0 \Rightarrow$$
 funkcja f jest rosnąca na I ,

$$\bigwedge_{x \in I} f'(x) \ge 0 \Rightarrow$$
 funkcja f jest niemalejąca na I,

$$\bigwedge_{x \in I} f^{/}(x) < 0 \Rightarrow$$
 funkcja f jest malejąca na I ,

$$\bigwedge_{x \in I} f'(x) \le 0 \Rightarrow$$
 funkcja f jest nierosnąca na I.

Uwaga. Jeżeli $f'(x) \ge 0$ dla każdego $x \in I$, przy czym równość f'(x) = 0 zachodzi jedynie dla skończonej liczby punktów z przedziału I, to funkcja f jest rosnąca na I. Podobnie jest dla funkcji malejącej.

Tw. 5.1.6 (o pochodnej funkcji monotonicznej)

- 1. funkcja f jest rosnąca na $I \in R$

funkcja f ma pochodną na przedziale I $\Rightarrow f'(x) \ge 0$ dla każdego $x \in I$

Uwaga. Prawdziwe są także analogiczne twierdzenia dla pozostałych rodzajów funkcji monotonicznych.

Tw. 5.1.7 (o tożsamościach)

Niech funkcje f i g będą określone na przedziałe $I \subset R$ oraz niech $x_0 \in I$. Wtedy

1.
$$f(x_0) = g(x_0)$$

1.
$$f(x_0) = g(x_0)$$

2. $f'(x) = g'(x)$ dla kazdego $x \in I$ $\Rightarrow f \equiv g$ na I .

2.
$$f'(x) = g'(x)$$
 dla kazdego $x \in I$

Tw. 5.1.8 (o nierównościach)

Niech funkcje f i g będą określone na przedziale $I \subset R$ oraz niech $x_0 \in I$. Wtedy

1.
$$f(x_0) \le g(x_0)$$

1.
$$f(x_0) \le g(x_0)$$

2. $f'(x) \le g'(x)$ dla kazdego $x > x_0$ $\Rightarrow f(x) \le g(x)$ dla kazdego $x > x_0$.

Uwaga. Jeżeli jedna z nierówności w założeniach powyższego twierdzenia jest ostra, to nierówność w tezie także jest ostra. Analogiczne twierdzenie prawdziwe jest także dla $x < x_0$.

Tw. 5.1.9 (Cauchy'ego)

- 1. funkcje f i g są ciągłe na [a,b]

2. funkcje f i g mają pochodne na
$$(a,b)$$

$$\Rightarrow \bigvee_{c \in (a,b)} \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

3.
$$g'(x) \neq 0$$
 dla każdego $x \in (a,b)$

Fakt 5.1.10 (interpretacja geometryczna twierdzenia Cauchy'ego)

Niech $\vec{r}(x) = (g(x), f(x))$, gdzie $x \in [a,b]$, będzie przedstawieniem parametrycznym krzywej Γ na płaszczyźnie. Wtedy istnieje punkt $P \in \Gamma$, w którym styczna jest równoległa do siecznej łaczącej końce A, B tej krzywej.

5.2 TWIERDZENIA O GRANICACH NIEOZNACZONYCH

Tw. 5.2.1 (regula de L'Hospitala dla nieoznaczoności $\frac{0}{0}$)

Niech

- 1. funkcje $\frac{f(x)}{g(x)}$, $\frac{f'(x)}{g'(x)}$ będą określone dla każdego $x \neq x_0$,
- 2. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$,
- 3. istnieje granica $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ (właściwa lub niewłaściwa).

Wtedy

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Uwaga. Powyższe twierdzenie jest prawdziwe także dla granic jednostronnych w punkcie x_0 oraz w $-\infty$ lub w ∞ .

Fakt 5.2.2 (interpretacja reguły de L'Hospitala dla nieoznaczoności $\frac{0}{0}$)

Niech $\vec{r}(x) = (g(x), f(x))$, gdzie $x \in (x_0, x_0 + a)$, będzie przedstawieniem parametrycznym krzywej płaskiej Γ wychodzącej z początku układu współrzędnych. Wtedy kierunek graniczny siecznych przechodzących przez początek układu i przez punkty $\vec{r}(x)$ na krzywej Γ , gdy $x \to x_0$, pokrywa się z granicznym kierunkiem stycznych do tej krzywej w punktach $\vec{r}(x)$, gdy $x \to x_0$.

Tw. 5.2.3 (regula de L'Hospitala dla nieoznaczoności $\frac{0}{0}$)

Niech

- 4. funkcje $\frac{f(x)}{g(x)}$, $\frac{f'(x)}{g'(x)}$ będą określone dla każdego $x \neq x_0$,
- 5. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty$,
- 6. istnieje granica $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ (właściwa lub niewłaściwa).

Wtedy

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.$$

Uwaga. Powyższe twierdzenie jest prawdziwe także dla granic jednostronnych w punkcie x_0 oraz w $-\infty$ lub w ∞ .

Fakt 5.2.4 (tożsamości zmieniające rodzaje nieoznaczoności)

Nieoznaczoność	Stosowana tożsamość	Otrzymana nieoznaczoność
$0\cdot\infty$	$f \cdot g = \frac{f}{\frac{1}{g}}$	$rac{0}{0}\; \mathrm{lub}\; rac{\infty}{\infty}$
$\infty - \infty$	$f - g = \frac{\frac{1}{g} - \frac{1}{f}}{\frac{1}{fg}}$	$\frac{0}{0}$
$1^{\infty}, \infty^{0}, 0^{0}$	$f^g = e^{g \ln f}$	$0\cdot\infty$

Uwaga. Ze względu na skomplikowanie obliczeń, tożsamość podaną dla nieoznaczoności $\infty - \infty$ stosujemy dopiero wtedy, gdy zawiodą inne sposoby jej usuwania.

Def 5.3.1 (wielomian Taylora i Maclaurina)

Niech funkcja f ma w punkcie x_0 pochodną właściwą k-tego rzędu, $k \in \mathbb{N} \cup \{0\}$. Wielomian

$$P_k(x) \stackrel{\text{def}}{=} f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

nazywamy wielomianem Taylora rzędu k Funkcji f w punkcie x_0 . Jeżeli $x_0 = 0$, to wielomian P_k nazywamy wielomianem Maclaurina.

Uwaga. Wielomian P_k jest jedynym wielomianem stopnia k, który spełnia warunki:

$$P_k(x_0) = f(x_0), P_k'(x_0) = f'(x_0), ..., P_k^{(k)}(x_0) = f^{(k)}(x_0).$$

Tw. 5.3.2 (wzór Taylora z reszta Lagrange'a)

Jeżeli

- 1. funkcja f ma ciągłą pochodną rzędu n-1 na przedziale $[x_0,x]$,
- 2. istnieje właściwa pochodna $f^{(n)}$ na przedziale (x_0,x) ,

to

$$\bigvee_{c \in (x_0, x)} f(x) = P_{n-1}(x) + \frac{f^{(n)}(c)}{n!} (x - x_0)^n.$$

Uwaga. Twierdzenie powyższe jest prawdziwe także dla przedziału $[x,x_0]$, wtedy $c \in (x,x_0)$. Równość występującą w tezie twierdzenia nazywamy wzorem Taylora. Wyrażenie

$$R_n(x) \stackrel{\text{def}}{=} \frac{f^{(n)}(c)}{n!} (x - x_0)^n$$

nazywamy n-tą resztą Lagrange'a. Resztę tę można także zapisać w postaci

$$R_n(x) = \frac{f^{(n)}(x_0 + \Theta \Delta x)}{n!} (\Delta x)^n,$$

gdzie $0 < \Theta < 1$ oraz $\Delta x = x - x_0$. Dla $x_0 = 0$ wzór Taylora przyjmuje postać

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + \frac{f^{(n)}(c)}{n!}x^n,$$

gdzie $c \in (0,x)$ dla x > 0 lub $c \in (x,0)$ dla x < 0. Równość te nazywamy wzorem Maclaurina.

Fakt 5.3.3 (wzory Maclaurina dla niektórych funkcji elementarnych)

Funkcja	Wzór Maclaurina
e ^x	$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} e^c$
$\sin x$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-3}}{(2n-3)!} + (-1)^n \frac{x^{2n-1}}{(2n-1)!} \cos c$
$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{n-1} \frac{x^{2n-2}}{(2n-2)!} + (-1)^n \frac{x^{2n}}{(2n)!} \cos c$
ln(1+x)	$x - \frac{x^2}{2} + \frac{x^4}{4} - \dots + (-1)^n \frac{x^{n-1}}{n-1} + (-1)^{n+1} \frac{x^n}{n(1+c)^n}$

Uwaga. W powyższej tabeli punkt pośredni c należy do przedziału (0,x), gdy x > 0 albo do przedziału (x,0), gdy x < 0.

Tw. 5.3.4 (uzasadnienie nierówności za pomocą wzoru Taylora)

Niech funkcja f spełnia założenia twierdzenia Taylora oraz niech $R_n(t) \ge 0$ dla każdego $t \in (x_0,x)$. Wtedy

$$f(t) \ge P_{n-1}(t)$$
 dla każdego $t \in [x_0,x]$.

6. BADANIE FUNKCJI

6.1 EKSTREMA FUNKCJI

Def. 6.1.1 (minimum lokalne funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f ma w punkcie x_0 minimum lokalne jeżeli

 $\bigvee_{\delta>0} \bigwedge_{x \in (a,b)} \left[\left(\left| \left(x - x_0 \right| < \delta \right) \right) \Rightarrow \left(f(x) \ge f(x_0) \right) \right].$

Def. 6.1.2 (maksimum lokalne funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f ma w punkcie x_0 maksimum lokalne jeżeli

 $\bigvee_{\delta>0} \bigwedge_{x \in (a,b)} \left[\left(|x - x_0| < \delta \right) \Rightarrow \left(f(x) \le f(x_0) \right) \right].$

Def. 6.1.3 (minimum lokalne właściwe funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f ma w punkcie x_0 minimum lokalne właściwe jeżeli

 $\bigvee_{\delta > 0} \bigwedge_{x \in (a,b)} \left[\left(\left| x - x_0 \right| < \delta \right) \Rightarrow \left(f(x) > f(x_0) \right) \right].$

Def. 6.1.4 (maksimum lokalne właściwe funkcii)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Funkcja f ma w punkcie x_0 maksimum lokalne właściwe jeżeli

 $\bigvee_{\delta>0} \bigwedge_{x \in (a,b)} \left[\left(|x - x_0| < \delta \right) \Rightarrow \left(f(x) < f(x_0) \right) \right].$

Def. 6.1.5 (wartość najmniejsza funkcji na zbiorze)

Liczba $m \in R$ jest wartością najmniejszą funkcji f na zbiorze $A \subset D_f$, jeżeli

$$\bigvee_{x_0 \in A} f(x_0) = m \text{ oraz } \bigwedge_{x \in A} f(x) \ge m.$$

Def. 6.1.6 (wartość największa funkcji na zbiorze)

Liczba $M \in R$ jest wartością największą funkcji f na zbiorze $A \subset D_f$, jeżeli

$$\bigvee_{x_0 \in A} f(x_0) = M \text{ oraz } \bigwedge_{x \in A} f(x) \le M.$$

Uwaga. Funkcja rosnąca na przedziale domknietym [a,b] przyjmuje wartość najmniejszą w punkcie a oraz wartość największą w punkcie b. Odwrotnie jest dla funkcji malejącej na przedziale.

Tw. 6.1.7 (Fermata, warunek konieczny istnienia ekstremum)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Wówczas

Niech funkcja f będzie okresiona na przez 1. funkcja f ma ekstremum lokalne w punkcie x_0 $\Rightarrow f'(x_0) = 0$.

Uwaga. Implikacja odwrotna (\Leftarrow) jest fałszywa. Świadczy o tym przykład funkcji $f(x) = x^3$, która spełnia w punkcie $x_0 = 0$ warunek $f'(x_0) = 0$, ale nie ma w tym punkcie ekstremum lokalnego. Ponadto założenie różniczkowalności funkcji f jest istotne. Świadczy o tym przykład funkcji f(x) = |x|, która w punkcie $x_0 = 0$ ma minimum lokalne właściwe, ale $f'(x_0)$ nie istnieje.

Fakt 6.1.8 (interpretacja geometryczna twierdzenia Fermata)

Jeżeli funkcja ma ekstremum lokalne w punkcie oraz jeżeli w tym punkcie istnieje styczna do wykresu funkcji, to styczna jest pozioma.

Fakt 6.1.9 (o lokalizacji ekstremów funkcji)

Funkcja może mieć ekstrema lokalne tylko w punktach, w których jej pochodna równa się zero albo w punktach, w których jej pochodna nie istnieje.

Tw. 6.1.10 (I warunek wystarczający istnienia ekstremum)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Wówczas, jeżeli

1.
$$f'(x_0) = 0$$
,

2.
$$\bigvee_{\delta>0} \begin{cases} f'(x_0) > 0 & \text{dla kazdego } x \in (x_0 - \delta, x_0), \\ f'(x_0) < 0 & \text{dla kazdego } x \in (x_0, x_0 + \delta), \end{cases}$$

to funkcja f ma w punkcie x_0 maksimum lokalne właściwe.

Uwaga. Zamiast założenia 1 tego twierdzenia można przyjąć, że funkcja f jest ciągła w punkcie x_0 . Natomiast zamiast założenia 2 można przyjąć, że funkcja f jest rosnąca i malejąca odpowiednio na przedziałach $(x_0 - \delta_x x_0)$, $(x_0, x_0 + \delta)$. Twierdzenie o minimum lokalnym właściwym jest analogiczne.

Tw. 6.1.11 (II warunek wystarczający istnienia ekstremum)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Wówczas, jeżeli

- 1. istnieje $f^{(n)}(x_0)$, gdzie $n \ge 2$,
- 2. $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$,
- 3. $f^{(n)}(x_0) < 0$,
- 4. *n* jest liczbą parzystą,

to funkcja f ma w punkcie x_0 maksimum lokalne właściwe.

Uwaga. Jeżeli założenie 3 twierdzenia ma postać " $f^{(n)}(x_0) > 0$ ", to funkcja f ma w punkcie x_0 minimum lokalne właściwe. Natomiast jeżeli założenie 4 ma postać "n jest liczbą nieparzystą", a założenie 3 postać " $f^{(n)}(x_0) \neq 0$ ", to funkcja f w punkcie x_0 nie ma ekstremum lokalnego.

Fakt 6.1.12 (algorytm szukania wartości ekstremalnych funkcji)

Niech funkcja $f:[a,b] \to R$ będzie ciągła na przedziale [a,b] i różniczkowalna poza skończoną liczbą punktów tego przedziału. Wartości najmniejszej i największej tej funkcji na tym przedziale szukamy postępując według algorytmu:

- 1. znajdujemy punkty $c_1, c_2, ..., c_n$ zerowania się pochodnej funkcji f na przedziale (a,b) oraz punkty $d_1, d_2, ..., d_m$, w których pochodna tej funkcji nie istnieje;
- 2. obliczamy wartości funkcji f: w punktach końcowych a, b; w punktach zerowania się pierwszej pochodnej c_1 , c_2 , ..., c_n oraz w punktach bez pochodnej d_1 , d_2 , ..., d_m ;
- 3. spośród liczb f(a), f(b); $f(c_1)$, $f(c_2)$, ..., $f(c_n)$ oraz $f(d_1)$, $f(d_2)$, ..., $f(d_m)$ wybieramy najmniejszą i największą. Będą to odpowiednio wartości najmniejsza i największa funkcji f na przedziale [a,b].

6.2 FUNKCJE WYPUKŁE I WKLĘSŁE

Def. 6.2.1 (funkcja wypukła)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$. Funkcja f jest wypukła na przedziale (a,b), jeżeli

$$\bigwedge_{a < x_1 < x_2 < b} \bigwedge_{0 < \lambda < 1} f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Rys. 6.2.1 Funkcja f jest wypukła na R.

Rys. 3.2.4 Funkcji f jest ściśle wypukła na R.

Geometrycznie, wypukłość funkcji oznacza, że każdy odcinek siecznej wykresu leży wyżej lub pokrywa się z fragmentem wykresu położonym między punktami, przez które przechodzi sieczna (rys. 6.2.1). Funkcję wypukłą nazywa się także wypukłą w dół.

Def. 6.2.2 (funkcja ściśle wypukła)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$. Funkcja f jest ściśle wypukła na przedziale (a,b), jeżeli $\bigwedge_{a < x_1 < x_2 < b} \bigwedge_{0 < \lambda < 1} f \left(\lambda x_1 + (1-\lambda) x_2 \right) < \lambda f(x_1) + (1-\lambda) f(x_2).$

Geometrycznie, funkcja jest ściśle wypukła, gdy każdy odcinek wykresu leży wyżej niż fragment wykresu położony między punktami, przez które przechodzi sieczna (rys. 6.2.2). Funkcję ściśle wypukłą nazywa się także ściśle wypukłą w dół.

Def. 6.2.3 (funkcja wklęsła)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$. Funkcja f jest wklęsła na przedziale (a,b), jeżeli

$$\bigwedge_{a < x_1 < x_2 < b} \bigwedge_{0 < \lambda < 1} f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Rys. 6.2.3 Funkcja f jest wklęsła na R

Rys. 6.2.4 Funkcja f jest ściśle wklęsła na R

Geometrycznie, wklęsłość funkcji oznacza, że każdy odcinek siecznej wykresu leży niżej lub pokrywa się z fragmentem wykresu położonym między punktami, przez które przechodzi sieczna (rys. 6.2.3). Funkcję wklęsłą nazywa się także wypukłą w górę.

Def. 6.2.4 (funkcja ściśle wklęsła)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$. Funkcja f jest ściśle wklęsła na przedziale (a,b), jeżeli $\bigwedge_{a < x_1 < x_2 < b} \bigwedge_{0 < \lambda < 1} f \Big(\lambda x_1 + (1-\lambda) x_2 \Big) > \lambda f \Big(x_1 \Big) + (1-\lambda) f \Big(x_2 \Big) \, .$

Geometrycznie, funkcja jest ściśle wklęsła, gdy każdy odcinek wykresu leży niżej niż fragment wykresu położony między punktami, przez które przechodzi sieczna (rys. 6.2.4). Funkcję ściśle wklęsłą nazywa się także ściśle wypukłą w górę.

Tw. 6.2.5 (warunek wystarczający wypukłości)

$$\bigwedge_{x \in (a,b)} f''(x) > 0 \Rightarrow \text{funkcja } f \text{ jest ściśle wypukła na } (a,b).$$

Uwaga. Prawdziwe są także twierdzenia dla pozostałych typów funkcji wypukłych. Jeżeli $f''(x) \ge 0$ dla każdego $x \in (a,b)$, przy czym równość f''(x) = 0 zachodzi jedynie dla skończonej liczby punktów z odcinka (a,b), to funkcja f jest ściśle wypukła. Podobnie jest dla funkcji ściśle wklęsłej.

6.3 PUNKTY PRZEGIĘCIA WYKRESU FUNKCJI

Def. 6.3.1 (punkt przegięcia wykresu funkcji)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Ponadto niech funkcja f będzie różniczkowalna na (a,b). Dopuszczamy tu różniczkowalność funkcji f w sensie niewłaściwym w punkcie x_0 . Punkt $(x_0, f(x_0))$ jest punktem przegięcia wykresu funkcji f wtedy i tylko wtedy, gdy istnieje $\delta > 0$ taka, że funkcja f jest ściśle wypukła na przedziale $(x_0 - \delta, x_0)$ oraz ściśle wklęsła na przedziale $(x_0, x_0 + \delta)$ albo jest odwrotnie.

Obrazowo, punkt wykresu funkcji jest punktem przegięcia, jeżeli funkcja zmienia w nim rodzaj wypukłości. Wykres funkcji przechodzi wtedy z jednej strony stycznej na drugą (rys. 6.3.1). Mówi się także, że punkt x_0 jest punktem przegięcia funkcji f.

Rys. 6.3.1 Funkcja f ma w punkcie $(x_0,f(x_0))$ punkt przegięcia

Rys. 6.3.2 Funkcja f nie ma w punkcie $(x_0,f(x_0))$ punktu przegięcia

Tw. 6.3.2 (warunek konieczny istnienia punktu przegięcia)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Wówczas, jeżeli 1. punkt $(x_0, f(x_0))$ jest punktem przegięcia wykresu funkcji f,

2. istnieje $f''(x_0)$,

to
$$f''(x_0) = 0$$
.

Uwaga. Implikacja odwrotna w tym twierdzeniu nie jest prawdziwa. Świadczy o tym przykład funkcji $f(x) = x^4$, która spełnia warunek f'(0) = 0, ale punkt (0,0) nie jest punktem przegięcia wykresu tej funkcji.

Fakt 6.3.3 (o lokalizacji punktów przegięcia wykresu funkcji)

Funkcja **może mieć** punkty przegięcia **jedynie** w punktach zerowania się jej drugiej pochodnej albo w punktach, w których ta pochodna nie istnieje.

Tw. 6.3.4 (I warunek wystarczający istnienia punktu przegięcia)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech w punkcie $x_0 \in (a,b)$ ma pochodną właściwą lub niewłaściwą. Wówczas, jeżeli

$$\int_{\delta>0} \begin{cases} f''(x_0) < 0 & \text{dla kazdego } x \in (x_0 - \delta, x_0), \\ f''(x_0) > 0 & \text{dla kazdego } x \in (x_0, x_0 + \delta), \end{cases}$$

to punkt $(x_0, f(x_0))$ jest punktem przegięcia wykresu tej funkcji.

Uwaga. Twierdzenie powyższe jest prawdziwe także, gdy nierówności dla drugiej pochodnej f' są odwrotne w sąsiedztwie punktu x_0 .

Tw. 6.3.5 (II warunek wystarczający istnienia punktu przegięcia)

Niech funkcja f będzie określona na przedziale (a,b), $-\infty \le a < b \le \infty$ oraz niech $x_0 \in (a,b)$. Wówczas, jeżeli

- 1. istnieje $f^{(n)}(x_0)$, gdzie $n \ge 3$,
- 2. $f''(x_0) = f'''(x_0) = \dots = f^{(n-1)}(x_0) = 0$,
- 3. $f^{(n)}(x_0) \neq 0$,
- 4. *n* jest liczbą nieparzystą,

to punkt $(x_0, f(x_0))$ jest punktem przegięcia wykresu tej funkcji.

Uwaga. Jeżeli założenie 4 twierdzenia ma postać "n jest liczbą parzystą", to punkt $(x_0, f(x_0))$ nie jest punktem przegięcia wykresu funkcji.

6.4 BADANIE FUNKCJI

- 1. Ustalenie dziedziny funkcji.
- 2. Wskazanie podstawowych własności funkcji:
 - a) parzystość lub nieparzystość,
 - b) okresowość,
 - c) miejsca zerowe,
 - d) ciągłość.
- 3. Obliczanie granic lub wartości funkcji na "krańcach" dziedziny.
- 4. Znalezienie asymptot pionowych i ukośnych.
- 5. Znalezienie pierwszej pochodnej funkcji:
 - a) wyznaczenie dziedziny pochodnej i jej obliczenie,
 - b) wyznaczenie punktów, w których funkcja może mieć ekstrema,
 - c) ustalenie przedziałów monotoniczności funkcji,
 - d) ustalenie ekstremów funkcji,
 - e) obliczenie granic lub wartości pochodnej na "krańcach" dziedziny.
- 6. Zbadanie drugiej pochodnej funkcji:
 - a) wyznaczenie dziedziny drugiej pochodnej i jej obliczenie,
 - b) ustalenie przedziałów wklęsłości i wypukłości,
 - c) wyznaczenie punktów przegięcia wykresu funkcji,
 - d) obliczenie pierwszej pochodnej w punktach przegięcia.
- 7. Sporządzenie tabelki (nieobowiązkowe).
- 8. Sporządzenie wykresu funkcji.

7. CAŁKI NIEOZNACZONE

7.1 FUNKCJE PIERWOTNE

Def. 7.1.1 (funkcja pierwotna)

Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli

$$F'(x) = f(x)$$
 dla każdego $x \in I$.

Uwaga. Nie każda funkcja ma funkcję pierwotną, np. funkcja $f(x) = \operatorname{sgn} x$ nie ma funkcji pierwotnej na przedziale (-1,1). Funkcja pierwotna funkcji elementarnej nie musi być funkcją elementarną, np. funkcje pierwotne funkcji: $e^{-x^2}, \frac{e^x}{x}, \frac{\sin x}{x}, \sin x$, $\sin x^2, \sqrt{1+x^2}$ nie są funkcjami elementarnymi.

Tw. 7.1.2 (podstawowe o funkcjach pierwotnych)

Niech funkcja F jest funkcją pierwotną funkcji f na przedziale I. Wtedy

- a) funkcja G(x) = F(x) + C, gdzie $C \in R$, jest funkcją pierwotną funkcji f na przedziale I,
- b) każdą funkcję pierwotną funkcji f na przedziale I można przedstawić w postaci F(x) + D, gdzie $D \in R$.

Powyższe twierdzenie mówi o postaci funkcji pierwotnych dla ustalonej funkcji. Funkcje pierwotne mają postać F(x) + C i tylko takie są funkcjami pierwotnymi.

Tw. 7.1.3 (warunek wystarczający istnienia funkcji pierwotnej)

Jeżeli funkcja jest ciągła na przedziale, to ma funkcje pierwotną na tym przedziale.

7.2 CAŁKI NIEOZNACZONE

Def. 7.2.1 (całka nieoznaczona)

Niech funkcja F będzie funkcją pierwotną funkcji f na przedziale I. Całką nieoznaczoną funkcji f na przedziale I nazywamy zbiór funkcji

$${F(x)+C: C\in R}.$$

Całkę nieoznaczoną funkcji f oznaczmy przez $\int f(x)dx$ lub krótko $\int f$.

Uwaga. W dalszej części będziemy opuszczali nawiasy klamrowe w definicji całki nieoznaczonej. Działania na całkach nieoznaczonych oznaczają działania na funkcjach pierwotnych reprezentujących te całki. Równość całek nieoznaczonych oznacza równość odpowiednich funkcji pierwotnych reprezentujących te całki.

Fakt 7.2.2 (pochodna całki nieoznaczonej)

Niech funkcja f ma funkcję pierwotną na przedziale I. Wtedy

$$\left[\int f(x)dx\right] = f(x) \text{ dla każdego } x \in I.$$

Uwaga. Powyższą równość należy rozumieć w ten sposób, że po lewej różniczkujemy dowolną funkcję pierwotną reprezentującą całkę nieoznaczoną.

Fakt 7.2.3 (całka nieoznaczona pochodnej)

Niech funkcja f' ma funkcją pierwotną na przedziale I. Wtedy

$$\int f'(x)dx = f(x) + C, \ C \in R \text{ dla każdego } x \in I.$$

Fakt 7.2.4 (całki nieoznaczone ważniejszych funkcji elementarnych)

Funkcja	Całka nieoznaczona	Zakres zmienności
0	C	$x \in R$
x ⁿ	$\frac{x^{n+1}}{n+1} + C$	$n \in \mathbb{N} \cup \{0\}, x \in R$
x ^p	$\frac{x^{p+1}}{p+1} + C$	$p \in \{-2, -3, -4,\}, x \neq 0$
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$	$\alpha \in R \setminus \{-1\}, \ x > 0$
$\frac{1}{x}$	$\ln x + C$	$x \neq 0$
a^x	$\frac{a^x}{\ln a} + C$	$0 < a \neq 1, x \in R$
e^x	$e^x + C$	$x \in R$
$\sin x$	$-\cos x + C$	$x \in R$
cos x	$\sin x + C$	$x \in R$

Funkcja	Całka nieoznaczona	Zakres zmienności
1	$-\operatorname{ctg} x + C$	$x \neq k\pi$, $gdzie \ k \in Z$
$\frac{1}{\sin^2 x}$		
1	tg x + C	$x \neq \frac{\pi}{2} + k\pi$, $gdzie$ $k \in \mathbb{Z}$
$\frac{1}{\cos^2 x}$		2
1	arctgx + C lub - $arcctgx + C$	$x \in R$
$\overline{1+x^2}$		
1	$\arcsin x + C \text{lub} - \arccos x + C$	x < 1
$\sqrt{1-x^2}$		• •
shx	chx + C	$x \in R$
chx	shx + C	$x \in R$
1	$-\operatorname{cth}x + C$	$x \neq 0$
$\frac{1}{\sinh^2 x}$		
1	thx + C	$x \in R$
$\frac{\overline{\operatorname{ch}^2 x}}{}$		

Uwaga. W powyższej tabeli symbol C oznacza dowolną stałą rzeczywistą.

Fakt 7.2.5 (tabela całek ważniejszych typów funkcji)

Wzór	Zakres zmienności
$\int f^{n}(x)f'(x)dx = \frac{f^{n+1}}{n+1} + C$	$n \in N \cup \{0\}$
$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$	$f(x) \neq 0$
$\int \frac{f'(x)}{f^2(x)} dx = -\frac{1}{f(x)} + C$	$f(x) \neq 0$
$\int e^{f(x)} f'(x) dx = e^{f(x)} + C$	$x \in D_f$
$\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + C$	f(x) > 0

Uwaga. Powyższe wzory wynikają bezpośrednio z reguł różniczkowania funkcji złożonych oraz definicji całki nieoznaczonej.

7.3 TWIERDZENIA O CAŁKACH NIEOZNACZONYCH

Tw. 7.3.1 (o liniowości całki nieoznaczonej)

Jeżeli funkcje f i g mają funkcje pierwotne na przedziale $I \subset R$, to

a) funkcja f+g ma funkcję pierwotną na przedziale I oraz

$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx \text{ dla każdego } x \in I,$$

b) funkcja cf, gdzie c jest dowolną stałą, ma funkcję pierwotną na przedziale I oraz

$$\int cf(x)dx = c\int f(x)dx \text{ dla każdego } x \in I.$$

Uwaga. Równość oraz działania na całkach nieoznaczonych występujące w tezie twierdzenia rozumiemy jako działania na pewnych reprezentantach tych całek oraz ich równość.

Tw. 7.3.2 (o całkowaniu przez części)

Jeżeli funkcje f i g mają ciągłe pochodne na przedziale $I \subset R$, to

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx \text{ dla każdego } x \in I.$$

Fakt 7.3.3 (wzory rekurencyjne dla całek $\int \sin^n x dx$, $\int \cos^n x dx$)

$$\int \sin^n x dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x dx, n \ge 2.$$

$$\int \cos^n x dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x dx, n \ge 2.$$

Tw. 7.3.4 (o całkowaniu przez podstawienie)

Jeżeli

- 1. funkcja $f: I \to R$ jest ciągła na I,
- 2. funkcja $\varphi: J \to I$ ma ciągłą pochodną na J,

to

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + C$$

gdzie F jest dowolną funkcją pierwotną funkcji f, $C \in R$.

Fakt 7.3.5 (ważniejsze całki zawierające funkcje hiperboliczne)

Funkcja podcałkowa	Całka nieoznaczona	Zakres zmienności
thx	lnchx + C	$x \in R$
cthx	$\ln \operatorname{sh} x + C$	$x \neq 0$
$\frac{1}{\sinh x}$	$\ln\left \operatorname{th}\frac{x}{2}\right + C$	$x \neq 0$
$\frac{1}{\mathrm{ch}x}$	$2\operatorname{ar}\operatorname{ctg} e^x + C$	$x \in R$
sh^2x	$-\frac{x}{2} + \frac{\sinh 2x}{4} + C$	$x \in R$
ch ² x	$\frac{x}{2} + \frac{\sinh 2x}{2} + C$	$x \in R$

7.4 CAŁKOWANIE FUNKCJI WYMIERNYCH

Def. 7.4.1 (funkcja wymierna właściwa)

Funkcję wymierną $W(x) = \frac{L(x)}{M(x)}$ nazywamy właściwą, gdy stopień wielomianu w liczniku jest mniejszy od stopnia wielomianu w mianowniku.

Uwaga. Każdą funkcję wymierną można przedstawić w postaci sumy wielomianu i funkcji wymiernej właściwej.

Def. 7.4.2 (ułamki proste pierwszego i drugiego rodzaju)

Funkcję wymierną właściwą postaci $\frac{A}{(x+a)^n}$, gdzie $n \in N$ oraz $a, A \in R$, nazywamy ułamkiem prostym pierwszego rodzaju.

Funkcję wymierną właściwą postaci $\frac{Px+Q}{\left(x^2+px+q\right)^n}$, gdzie $n\in N$ oraz $p,q,P,Q\in R$ oraz $\Delta=p^2-4q<0$, nazywamy ułamkiem prostym drugiego rodzaju.

Tw. 7.4.3 (o rozkładzie funkcji wymiernej na ułamki proste)

Niech W będzie funkcją wymierną właściwą oraz niech mianownik tej funkcji ma rozkład na czynniki postaci:

$$(x - a_1)^{n_1} \cdot ... \cdot (x - a_r)^{n_r} \cdot (x^2 + p_1 x + q_1)^{m_1} \cdot ... \cdot (x^2 + p_s x + q_s)^{m_s},$$
gdzie $r, s \in N$, $n_i \in N$, $a_i \in R$ dla $1 \le i \le r$ oraz $m_j \in N$, $p_j, q_j \in R$, $\Delta_j = p_j^2 - 4q_j < 0$ dla $1 \le j \le s$. Wtedy

$$W(x) = \left[\frac{A_1}{(x - a_1)} + \frac{A_2}{(x - a_1)^2} + \dots + \frac{A_{n_1}}{(x - a_1)^{n_1}} \right] +$$

$$+ \left[\frac{B_1}{(x - a_2)} + \frac{B_2}{(x - a_2)^2} + \dots + \frac{BA_{n_2}}{(x - a_2)^{n_2}} \right] + \dots$$

$$+ \left[\frac{P_1 x + Q_1}{(x^2 + p_1 x + q_1)} + \frac{P_2 x + Q_2}{(x^2 + p_1 x + q_1)^2} + \dots + \frac{P_{m_1} x + Q_{m_1}}{(x^2 + p_1 x + q_1)^{m_1}} \right] +$$

$$+ \left[\frac{R_1 x + S_1}{(x^2 + p_2 x + q_2)} + \frac{R_2 x + S_2}{(x^2 + p_2 x + q_2)^2} + \dots + \frac{R_{m_2} x + S_{m_2}}{(x^2 + p_2 x + q_2)^{m_2}} \right] + \dots$$

gdzie $A_1, \ldots, B_1, \ldots, P_1, Q_1, \ldots, R_l, S_l, \ldots$ są odpowiednio dobranymi liczbami rzeczywistymi

Uwaga. Inaczej mówiąc, każda funkcja wymierna właściwa jest sumą ułamków prostych pierwszego i drugiego rodzaju.

Fakt 7.4.4 (wzór rekurencyjny dla całek
$$\int \frac{dx}{(x^2 + a^2)^n}$$
)

Niech
$$I_n = \int \frac{dx}{\left(x^2 + a^2\right)^n}$$
, $a > 0$, $n \in \mathbb{N}$. Wtedy
$$I_1 = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$$

$$I_{n+1} = \frac{x}{2na^2 \left(x^2 + a^2\right)^n} + \frac{2n-1}{2na^2} I_n$$

Fakt 7.4.5 (całkowanie ułamków prostych)

Ułamki proste pierwszego rodzaju	
$\int \frac{Adx}{x+a} = A \ln x+a + C$	
$\int \frac{Adx}{(x+a)^n} = -\frac{A}{(n-1)(x+a)^{n-1}} + C, n > 1$	
Ułamki proste drugiego rodzaju	
$\int \frac{(Px+Q)dx}{x^2 + px + q} = \frac{P}{2}\ln(x^2 + px + q) + \frac{2Q - pP}{\sqrt{4q - p^2}} \operatorname{arctg} \frac{2x + p}{\sqrt{4q - p^2}} + C$	
$\int \frac{(Px+Q)dx}{\left(x^2+px+q\right)^n} = \frac{P}{2(1-n)}\left(x^2+px+q\right)^{1-n} + \frac{2Q-pP}{2}\int \frac{dx}{\left(x^2+px+q\right)^n}, n > 1$	

Fakt 7.4.6 (algorytm całkowania funkcji wymiernych)

- 1. Funkcję wymierną zapisujemy w postaci sumy wielomianu (być może zerowego) i funkcji wymiernej właściwej.
- 2. Mianownik funkcji wymiernej właściwej rozkładamy na czynniki liniowe i kwadratowe nierozkładalne.
- 3. Zapisujemy rozkład (teoretyczny) funkcji wymiernej właściwej na ułamki proste pierwszego i drugiego rodzaju.
- 4. Znajdujemy nieznane współczynniki tego rozkładu.
- 5. Obliczamy całki poszczególnych składników rozkładu funkcji wymiernej, tj. wielomianu i ułamków prostych:
 - a) dla ułamków pierwszego rodzaju wykorzystujemy wzory z faktu 7.4.4
 - dla ułamków drugiego rodzaju wykorzystujemy przekształcenie podane w fakcie 7.4.4 oraz ewentualnie wzór rekurencyjny z faktu 7.4.5 (podstawiając wcześniej $t = x + \frac{p}{2}$).

Fakt 7.4.7 (najczęściej spotykane całki postaci
$$\int \frac{dx}{(x^2+a^2)^n}$$
)

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arc} \operatorname{tg} \frac{x}{a} + C$$

$$\int \frac{dx}{\left(x^2 + a^2\right)^2} = \frac{x}{2a^2 \left(x^2 + a^2\right)} + \frac{1}{2a^3} \operatorname{arc} \operatorname{tg} \frac{x}{a} + C$$

$$\int \frac{dx}{\left(x^2 + a^2\right)^3} = \frac{x}{4a^2 \left(x^2 + a^2\right)^2} + \frac{3x}{8a^4 \left(x^2 + a^2\right)} + \frac{3}{8a^5} \operatorname{arc} \operatorname{tg} \frac{x}{a} + C$$

$$\int \frac{dx}{\left(x^2 + a^2\right)^4} = \frac{x}{6a^2 \left(x^2 + a^2\right)^3} + \frac{5x}{24a^4 \left(x^2 + a^2\right)^2} + \frac{5x}{16a^6 \left(x^2 + a^2\right)} + \frac{5}{16a^7} \operatorname{arc} \operatorname{tg} \frac{x}{a} + C$$

7.5 CAŁKOWANIE FUNKCJI TRYGONOMETRYCZNYCH

Def 7.5.1 (funkcja wymierna dwóch zmiennych)

Funkcję, którą można przedstawić w postaci ilorazu wielomianów dwóch zmiennych nazywamy funkcją wymierną dwóch zmiennych.

Fakt 7.5.2 (całkowanie funkcji postaci $R(\sin x,\cos x)$)

Niech R(u,v) będzie funkcją wymierną dwóch zmiennych. Do obliczania całek postaci

$$\int R(\sin x, \cos x) dx \,,$$

w zależności od warunków jakie spełnia funkcja R, stosujemy podstawienie podane w tabeli:

Warunek	Podstawienie	Przedstawienie funkcji	Różniczka
R(-u,v) = -R(u,v)	$t = \cos x$	$\sin x = \sqrt{1 - t^2}$	$dx = \frac{-dt}{\sqrt{1 - t^2}}$
R(u,-v) = -R(u,v)	$t = \sin x$	$\cos x = \sqrt{1 - t^2}$	$dx = \frac{dt}{\sqrt{1 - t^2}}$
R(-u,-v) = R(u,v)	$t = \operatorname{tg} x$	$\sin x = \frac{t}{\sqrt{1+t^2}}$ $\cos x = \frac{1}{\sqrt{1+t^2}}$	$dx = \frac{dt}{1+t^2}$
Podstawienie uniwersalne	$t = \operatorname{tg} \frac{x}{2}$	$\sin x = \frac{2t}{1+t^2}$ $\cos x = \frac{1-t^2}{1+t^2}$	$dx = \frac{2dt}{1+t^2}$

Fakt 7.5.3 (calki typu: $\int \sin ax \cos bx dx$, $\int \sin ax \sin bx dx$, $\int \cos ax \cos bx dx$)

$$\int \sin ax \cos bx dx = \frac{-1}{2(a+b)} \cos(a+b)x - \frac{1}{2(a-b)} \cos(a-b)x, \ |a| \neq |b|$$

$$\int \sin ax \sin bx dx = \frac{1}{2(a-b)} \sin(a-b)x - \frac{1}{2(a+b)} \sin(a+b)x, \ |a| \neq |b|$$

$$\int \cos ax \cos bx dx = \frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x, \ |a| \neq |b|$$

Fakt 7.5.4 (całki z ważniejszych funkcji trygonometrycznych)

Wzór	Założenia
$\int \operatorname{tg} x dx = -\ln \cos x + C$	$x \neq \frac{\pi}{2} + k\pi, \ k \in Z$
$\int \operatorname{ctg} x dx = -\ln \sin x + C$	$x \neq k\pi, \ k \in \mathbb{Z}$
$\int \sin^2 x dx = \frac{x}{2} - \frac{\sin 2x}{4} + C$	$x \in R$
$\int \cos^2 x dx = \frac{x}{2} + \frac{\sin 2x}{4} + C$	$x \in R$
$\int \sin^3 x dx = -\cos x + \frac{\cos^3 x}{3} + C$	$x \in R$
$\int \cos^3 x dx = \sin x - \frac{\sin^3 x}{3} + C$	$x \in R$
$\int \frac{dx}{\sin x} = \ln \left \operatorname{tg} \frac{x}{2} \right + C$	$x \neq k\pi, \ k \in \mathbb{Z}$
$\int \frac{dx}{\cos x} = \ln \left \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right + C$	$x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$
$\int \frac{dx}{\sin^3 x} = -\frac{\cos x}{2\sin^2 x} + \frac{1}{2} \ln \left \operatorname{tg} \frac{x}{2} \right + C$	$x \neq k\pi, \ k \in \mathbb{Z}$
$\int \frac{dx}{\cos^3 x} = \frac{\sin x}{2\cos^2 x} + \frac{1}{2} \ln \left \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right + C$	$x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$

Fakt 7.5.5 (calki postaci
$$\int R(x, \sqrt{a^2 \pm x^2}) dx$$
, $\int R(x, \sqrt{x^2 - a^2}) dx$)

Niech $R(u,v)$ będzie funkcją wymierną dwóch zmiennych. Do obliczania całek:
$$\int R(x, \sqrt{a^2 - x^2}) dx$$
, $\int R(x, \sqrt{x^2 - a^2}) dx$, $\int R(x, \sqrt{x^2 + a^2}) dx$,

gdzie a > 0, stosujemy podstawienie podane w tabeli:

Funkcja podcałkowa	Podstawienie	Postać pierwiastka	Różniczka
$R(x, \sqrt{a^2-x^2})$	$x = a \sin t$	$\sqrt{a^2 - x^2} = a \cos t$	$dx = a\cos tdt$
$R(x, \sqrt{x^2 - a^2})$	$x = a \operatorname{ch} t$	$\sqrt{x^2 - a^2} = a \operatorname{sh} t$	$dx = a \operatorname{sh} t dt$
$R\left(x,\sqrt{x^2+a^2}\right)$	$x = a \sinh t$	$\sqrt{x^2 + a^2} = a \operatorname{ch} t$	$dx = a \operatorname{ch} t dt$

Fakt 7.5.6 (ważniejsze całki z funkcji niewymiernych)

Wzór	Założenia
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$	x < a
$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left x + \sqrt{x^2 + a^2} \right + C$	$x \in R$
$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln \left x + \sqrt{x^2 - a^2} \right + C$	x > a
$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left x + \sqrt{x^2 + a^2}\right + C$	$x \in R$
$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left x + \sqrt{x^2 - a^2}\right + C$	x > a
$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$	$ x \le a$

8. CAŁKI OZNACZONE

8.1 DEFINICJE I OZNACZENIA

Def. 8.1.1 (podział odcinka)

Podziałem odcinka [a,b] na n części nazywamy zbiór

$$P = \{x_0, x_1, ..., x_n\},\$$

gdzie $a = x_0 < x_1 < ... < x_n = b$.

Oznaczenia stosowane w definicji całki

 $\Delta x_k = x_k - x_{k-1} - \text{długość } k\text{-tego odcinka podziału } P, \ 1 \le k \le n;$

 $\delta(P) = \max \{ \Delta x_k : 1 \le k \le n \} - \text{średnica podziału } P;$

 $x_k^* \in [x_{k-1}, x_k]$, punkt pośredni k-tego odcinka podziału $P, 1 \le k \le n$.

Def. 8.1.2 (suma całkowa)

Niech funkcja f będzie ograniczona na przedziałe [a,b] oraz niech P będzie podziałem tego przedziału. Sumą całkową funkcji f odpowiadającą podziałowi P odcinka [a,b] oraz punktom pośrednim x_k^* , $1 \le k \le n$ tego podziału nazywamy liczbę

$$\sigma(f,P) \stackrel{\text{def}}{=} \sum_{k=1}^{n} f(x_k^*) \Delta x_k .$$

Na rys. 8.1.1 podano interpretację geometryczną sumy całkowej dla podziału odcinka [a,b] na n=4 części. Suma całkowa jest przybliżeniem pola obszaru ograniczonego wykresem funkcji y=f(x), osią Ox i prostymi x=a, x=b przez sumę pól prostokątów o podstawach Δx_k i wysokościach $f(x_k^*)$, $1 \le k \le n$.

Rys. 8.1.1 Ilustracja sumy całkowej funkcji

Def 8.1.3 (całka oznaczona Riemanna)

Niech funkcja f będzie ograniczona na przedziale [a,b]. Całkę oznaczoną Riemanna z funkcji f na przedziale [a,b] definiujemy wzorem

$$\int_{a}^{b} f(x)dx = \lim_{\delta(P)\to 0} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k} ,$$

o ile granica po prawej stronie znaku równości istnieje oraz nie zależy od sposobu podziałów P przedziału [a,b] ani od sposobów wyboru punktów pośrednich x_k^* , $1 \le k \le n$. Ponadto przyjmujemy

$$\int_{a}^{a} f(x)dx \stackrel{def}{=} 0 \text{ oraz } \int_{b}^{a} f(x)dx \stackrel{def}{=} -\int_{a}^{b} f(x)dx \text{ dla } a < b.$$

Funkcję, dla której istnieje całka oznaczona Riemanna na [a,b] nazywamy funkcją całkowalną na [a,b]. Zamiast symbolu

$$\int_{a}^{b} f(x)dx \text{ można pisać } \int_{[a,b]} f(x)dx \text{ lub krótko } \int_{a}^{b} f \text{ albo też } \int_{[a,b]} f.$$

Uwaga. Każda funkcja całkowalna jest ograniczona, ale nie każda funkcja ograniczona na przedziale jest na tym przedziale całkowalna. Przykładem takiej funkcji jest funkcja Dirichleta (def. 0.12.3) rozważana na przedziale [0,1].

8.2 INTERPRETACJA GEOMETRYCZNA CAŁKI OZNACZONEJ

1. Pole trapezu krzywoliniowego

Niech D oznacza trapez krzywoliniowy ograniczony wykresem funkcji nieujemnej f, osią Ox oraz prostymi x = a, x = b. Pole |D| trapezu krzywoliniowego jest granicą sumy pól prostokątów ΔD_k aproksymujących ten trapez, gdy średnica podziału $\delta(P) \rightarrow 0$ (rys. 8.2.1).

$$|D| = \lim_{\delta(P) \to 0} \sum_{k=1}^{n} |\Delta D_k| = \lim_{\delta(P) \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k = \int_a^b f(x) dx.$$

Gdy wykres funkcji f leży pod osią Ox, wtedy przyjmujemy, że pole trapezu D jest ujemne.

Rys. 8.2.1 Ilustracja pola trapezu krzywoliniowego

2. Objętość bryły obrotowej

Niech V oznacza bryłę ograniczoną powierzchnią powstałą z obrotu wykresu funkcji nieujemnej y = f(x), $a \le x \le b$, wokół osi Ox oraz płaszczyznami x = a, x = b. Objętość |V| bryły jest granicą sumy objętości walców ΔV_k aproksymujących tę bryłę, gdy średnica podziału $\delta(P) \to 0$ (rys. 8.2.2).

$$|V| = \lim_{\delta(P) \to 0} \sum_{k=1}^{n} |\Delta V_k| = \lim_{\delta(P) \to 0} \sum_{k=1}^{n} \pi f^2(x_k^*) \Delta x_k = \pi \int_a^b f^2(x) dx.$$

Rys. 8.2.2 Ilustracja objętości bryły obrotowej

8.3 INTERPRETACJA FIZYCZNA CAŁKI OZNACZONEJ

Droga przebyta w ruchu zmiennym

Niech S oznacza drogę przebytą w przedziale czasowym $[\alpha,\beta]$ przez punkt poruszający się ze zmienną prędkością v(t), $t \in [\alpha,\beta]$. Droga S jest granicą sumy dróg elementarnych ΔS_k przebytych przez punkt w czasie Δt_k z prędkością stałą $f(t_k^*)$ gdy $\delta(P) \to 0$.

$$S = \lim_{\delta(P) \to 0} \sum_{k=1}^{n} \Delta S_k = \lim_{\delta(P) \to 0} \sum_{k=1}^{n} v(t_k^*) \Delta t_k = \pi \int_{\alpha}^{\beta} v(t) dt.$$

Droga S jest polem trapezu krzywoliniowego ograniczonego wykresem funkcji v, osią Ot oraz prostymi $t = \alpha$, $t = \beta$ (rys. 8.3.1).

Rys. 8.3.1 Ilustracja drogi przebytej w ruchu zmiennym

8.4 PODSTAWOWE TWIERDZENIA

Tw. 8.4.1 (warunek wystarczający całkowalności funkcji)

Jeżeli funkcja f jest ograniczona na przedziale [a,b] i ma na tym przedziale skończoną liczbę punktów nieciągłości I rodzaju, to jest na nim całkowalna.

Uwaga. Z powyższego twierdzenia wynika, że funkcja ciągła na przedziale jest na tym przedziale całkowalna. Z drugiej strony funkcja całkowalna na przedziale może mieć nieskończenie wiele punktów nieciągłości. Przykładem takiej funkcji jest

$$f(x) = \begin{cases} 0 & dla \ x = 0 \\ \left[x^{-1}\right]^{-1} & dla \ 0 < x \le 1 \end{cases}$$

Funkcja f jest całkowalna na przedziale [0,1], ale w punktach $x = \frac{1}{n}$, $n \ge 2$ jest nieciągła.

Fakt 8.4.2 (obliczanie całek przy pomocy sumy całkowej podziału równomiernego)

Jeżeli funkcja f jest całkowalna na przedziale [a,b], to

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \left[\frac{b-a}{n} \sum_{k=1}^{n} f\left(a+k\frac{b-a}{n}\right) \right].$$

Uwaga. Istnienie powyższej granicy nie gwarantuje całkowalności funkcji f. Np. dla funkcji f(x) = D(x) (funkcja Dirichleta) i przedziału [0,1] granica ta jest równa 0, ale funkcja f nie jest całkowalna na tym przedziałe.

Tw. 8.4.3 (Newtona – Leibniza)

Jeżeli funkcja f jest ciągła na przedziale [a,b], to

$$\int_{a}^{b} f(x)dx = F(b) - F(a),$$

gdzie F oznacza dowolną funkcję pierwotną funkcji f na przedziale [a,b].

Uwaga. Zamiast F(b) - F(a) będziemy pisali $F(x) \Big|_a^b$ lub $[F(x)]_a^b$.

Tw. 8.4.4 (o liniowości całki oznaczonej)

Jeżeli funkcje f i g są całkowalne na przedziale [a,b] oraz $c \in R$, to

a) funkcja f + g jest całkowalna na przedziale [a,b] oraz

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx,$$

b) funkcja cf jest całkowalna na przedziale [a,b] oraz

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

8.5 METODY OBLICZANIA CAŁEK OZNACZONYCH

Tw. 8.5.1 (o całkowaniu przez podstawienie)

Jeżeli

- 1. funkcja $\varphi : [\alpha, \beta] \xrightarrow{na} [a, b]$ ma ciągłą pochodną na przedziale $[\alpha, \beta]$,
- 2. $\varphi(\alpha) = a, \varphi(\beta) = b$,
- 3. funkcja f jest ciągła na przedziale [a,b],

to

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Uwaga. W przypadku gdy funkcja φ jest rosnąca, ostatni wzór można zapisać w postaci: $\int_{a}^{b} f(x)dx = \int_{\varphi^{-1}(\alpha)}^{\varphi^{-1}(\beta)} f(\varphi(t))\varphi'(t)dt$.

Tw. 8.5.2 (o całkowaniu przez części)

Jeżeli funkcje f i g mają ciągłe pochodne na przedziale [a,b], to

$$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx.$$

8.6 WŁASNOŚCI CAŁKI OZNACZONEJ

Tw. 8.6.1 (o równości całek)

Niech funkcja f będzie całkowalna na przedziale [a,b] oraz niech funkcja g różni się od funkcji f tylko w skończonej liczbie punktów tego przedziału. Wtedy funkcja g także jest całkowalna na przedziale [a,b] oraz

$$\int_{a}^{b} g(x)dx = \int_{a}^{b} f(x)dx.$$

Tw. 8.6.2 (addytywność względem przedziałów całkowania)

Jeżeli funkcja f jest całkowalna na przedziale [a,b] oraz $c \in (a,b)$, to

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Tw. 8.6.3 (o zachowaniu nierówności przy całkowaniu)

Jeżeli

- 1. funkcje f i g są całkowalne na [a,b],
- 2. $f(x) \le g(x)$ dla każdego $x \in [a,b]$,

tc

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Uwaga. Jeżeli nierówność w założeniu twierdzenia jest ostra, to także nierówność w tezie jest ostra.

Def. 8.6.4 (wartość średnia funkcji)

Niech funkcja f będzie całkowalna na [a,b]. Wartość średnią funkcji f na przedziale [a,b] nazywamy liczbę

$$f_{\dot{s}r} \stackrel{def}{=} \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

 $\it Uwaga$. Wartość średnia funkcji $\it f$ na przedziale [a,b] jest wysokością prostokąta o podstawie długości $\it b-a$, którego pole jest równe polu trapezu krzywoliniowego ograniczonego wykresem funkcji $\it f$, osią $\it Ox$ oraz prostymi $\it x=a$, $\it x=b$.

Fakt 8.6.5 (całka funkcji nieparzystej)

Niech funkcja f będzie nieparzysta i całkowalna na przedziale [-a,a]. Wtedy

$$\int_{-a}^{a} f(x)dx = 0.$$

Rys. 8.6.1 Całka z funkcji nieparzystej na przedziale symetrycznym

Fakt 8.6.6 (całka funkcji parzystej)

Niech funkcja f będzie parzysta i całkowalna na przedziale [-a,a]. Wtedy

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

Rys. 5.1.2 Całka z funkcji parzystej na przedziale symetrycznym

8.7 TWIERDZENIA PODSTAWOWE RACHUNKU CAŁKOWEGO

Def. 8.7.1 (funkcja górnej granicy całkowania)

Niech funkcja f będzie całkowalna na przedziale [a,b] oraz niech $c \in [a,b]$. Funkcję

$$F(x) = \int_{c}^{x} f(t)dt$$

gdzie $x \in [a,b]$, nazywamy funkcją górnej granicy całkowania.

Tw. 8.7.2 (o ciągłości funkcji górnej granicy całkowania)

Jeżeli funkcja f jest całkowalna na przedziale [a,b] to funkcja

$$F(x) = \int_{c}^{x} f(t)dt$$

jest ciągła na przedziale [a,b].

Uwaga. Operacja całkowania (ze zmienną granicą całkowania) przekształca funkcje całkowalne na przedziale w funkcje ciągłe na tym przedziale.

Tw. 8.7.3 (główne twierdzenie rachunku całkowego)

Jeżeli funkcja f jest całkowalna na przedziale [a,b] oraz ciągła w punkcie x_0 tego przedziału, to funkcja

$$F(x) = \int_{c}^{x} f(t)dt$$

gdzie $c \in [a,b]$, jest różniczkowalna w punkcie x_0 oraz

$$F'(x_0) = f(x_0)$$

Uwaga. Gdy $x_0 = a$ lub $x_0 = b$, to $F'(x_0)$ oznacza tu pochodną jednostronną.

Uwaga. Operacja całkowania (ze zmienną granicą całkowania) przekształca funkcję ciągłą na przedziale w funkcje różniczkowalne na tym przedziale.

9. ZASTOSOWANIA CAŁEK OZNACZONYCH

9.1. ZASTOSOWANIA W GEOMETRII

Fakt 9.1.1 (pole trapezu krzywoliniowego)

Niech funkcje d i g będą ciągłe na przedziale [a,b] oraz niech d(x) < g(x) dla każdego $x \in (a,b)$. Pole trapezu krzywoliniowego D ograniczonego wykresami funkcji d i g oraz prostymi x = a, x = b wyraża się wzorem:

$$|D| = \int_{a}^{b} [g(x) - d(x)] dx.$$

Rys. 9.1.1 Trapez krzywoliniowy

Uwaga. Analogicznie, pole trapezu krzywoliniowego ograniczonego wykresami funkcji x = d(y), x = g(y) gdzie $y \in [p,q]$, wyraża się wzorem:

$$|D| = \int_{p}^{q} [g(y) - d(y)] dy.$$

Fakt 9.1.2 (długość krzywej)

Niech funkcja f ma ciągłą pochodną na przedziale [a,b]. Długość krzywej $\Gamma = \{(x, f(x)) : x \in [a,b]\}$ wyraża się wzorem:

$$\left|\Gamma\right| = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^{2}} dx.$$

Rys. 9.1.2 Krzywa w układzie kartezjańskim

Fakt 9.1.3 (objętość bryły)

Niech S(x), gdzie $a \le x \le b$, oznacza pole przekroju bryły V płaszczyzną prostopadłą do osi Ox w punkcie x oraz niech funkcja S będzie ciągła na przedziale [a,b]. Objętość bryły V wyraża się wzorem:

$$\left|V\right| = \int_{a}^{b} S(x) dx.$$

Rys. 9.1.3 Objętość bryły

Fakt 9.1.4 (zasady Cavalieriego)

- Jeżeli dwie figury płaskie mają jednakowe długości przekrojów każdą prostą prostopadłą do ustalonej prostej, to ich pola sa równe.
- Jeżeli dwie bryły mają jednakowe pola przekrojów każdą płaszczyzną prostopadłą do ustalonej prostej, to ich objętości są równe.

Fakt 9.1.5 (objętość bryły obrotowej)

Niech funkcja nieujemna f będzie ciągła na przedziale [a,b]. Ponadto niech T oznacza trapez krzywoliniowy ograniczony wykresem funkcji f, osią Ox oraz prostymi x = a, x = b, gdzie a < b. Objętość bryły V powstałej z obrotu trapezu krzywoliniowego T wokół osi Ox wyraża się wzorem:

$$|V| = \pi \int_a^b f^2(x) dx.$$

Rys. 9.1.4 Bryła V powstała z obrotu trapezu krzywoliniowego T wokół osi Ox

Niech funkcja nieujemna f będzie ciągła na przedziale [a,b], gdzie $0 \le a < b$. Ponadto niech T oznacza trapez krzywoliniowy ograniczony wykresem funkcji f, osią Ox oraz prostymi x = a, x = b, gdzie a < b. Objętość bryły V powstałej z obrotu trapezu krzywoliniowego T wokół osi Oy wyraża się wzorem:

$$|V| = 2\pi \int_a^b x f(x) dx.$$

Rys. 9.1.5 Bryła V powstała z obrotu trapezu krzywoliniowego T wokół osi Oy

Fakt 9.1.6 (pole powierzchni obrotowej)

Niech funkcja nieujemna f ma ciągłą pochodną na przedziale [a,b]. Pole powierzchni Σ powstałej z obrotu wykresu funkcji f wokół osi Ox wyraża się wzorem:

$$\left|\Sigma\right| = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \left[f'(x)\right]^{2}} dx.$$

Rys. 9.1.6 Powierzchnia Σ powstała z obrotu wykresu funkcji f wokół osi Ox

Niech funkcja nieujemna f ma ciągłą pochodną na przedziale [a,b], gdzie $a \ge 0$. Pole powierzchni Σ powstałej z obrotu wykresu funkcji f wokół osi Oy wyraża się wzorem:

$$\left|\Sigma\right| = 2\pi \int_{a}^{b} x \sqrt{1 + \left[f'(x)\right]^{2}} dx.$$

Rys. 9.1.7 Powierzchnia Σ powstała z obrotu wykresu funkcji f wokół osi Oy

9.2 ZASTOSOWANIA W FIZYCE

Fakt 9.2.1 (droga przebyta w ruchu zmiennym)

Niech punkt materialny porusza się ze zmienną prędkością $v(t) = |\vec{v}(t)|$. Droga przebyta przez ten punkt w przedziale czasowym $[t_l, t_2]$ wyraża się wzorem:

$$L=\int_{t_1}^{t_2}v(t)dt.$$

Fakt 9.2.2 (praca wykonana przez zmienną siłę)

Załóżmy, że równolegle do osi Ox działa zmienna siła $F(x) = |\vec{F}(x)|$. Praca wykonana przez siłę od punktu x = a do punktu x = b wyraża się wzorem:

$$W = \int_{a}^{b} F(x) dx.$$