Ryuhei Mori

Tokyo Institute of Technology

30, Oct., 2020

## Quantum circuit

- Quantum circuit is a model of computation of Boolean functions which consists of quantum gates.
- Single qubit gate: X gate, Y gate, Z gate, H gate,

$$S := \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \text{ gate } \mathbf{T} := \begin{bmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{bmatrix} \text{ gate } \mathbf{X}$$

Two qubit gate: CNOT gate \_\_\_\_\_



• Three qubit gate: Toffoli gate



## Spectral norm

For  $A \in \mathcal{L}(\mathbb{C}^n, \mathbb{C}^m)$ ,

$$||A|| := \max_{|\psi\rangle \in \mathbb{C}^n \colon \langle \psi|\psi\rangle = 1} \sqrt{\langle \psi|A^{\dagger}A|\psi\rangle}$$

For the singular value decomposition  $A = \sum_i \lambda_i |\psi_i\rangle \langle \varphi_i|$ ,

$$A^{\dagger}A = \left(\sum_{i} \lambda_{i} |\varphi_{i}\rangle \langle \psi_{i}|\right) \left(\sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \varphi_{j}|\right) = \sum_{i} \lambda_{i}^{2} |\varphi_{i}\rangle \langle \varphi_{i}|$$

Hence, 
$$\langle \psi | A^{\dagger} A | \psi \rangle = \sum_{i} \lambda_{i}^{2} |\langle \psi | \varphi_{i} \rangle|^{2} \leq \max_{i} \lambda_{i}^{2}$$

That means ||A|| is the largest singular value of A.

For any unitary matrices 
$$U \in \mathcal{L}(\mathbb{C}^m)$$
 and  $V \in \mathcal{L}(\mathbb{C}^n)$ ,  $\|UAV\| = \|A\|$ .

## Theorem (Universality of finite gate set)

For any unitary matrix  $U \in \mathcal{L}(\mathbb{C}^{2^n})$  and  $\epsilon > 0$ , there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing  $\widetilde{U}$  satisfying  $\|U - \widetilde{U}\| < \epsilon$ .

#### Proof.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices.
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates.
- **3** Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.
- 4 Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

## Two-level unitary matrix

There exist  $x \neq y \in \{0, 1\}^n$  such that

$$|x\rangle \longmapsto u_{1,1} |x\rangle + u_{1,2} |y\rangle$$
  
 $|y\rangle \longmapsto u_{2,1} |x\rangle + u_{2,2} |y\rangle$ 

and for any  $z \in \{0,1\}^n \setminus \{x,y\}, |z\rangle \longmapsto |z\rangle$ .

## Two-level unitary matrix

## Theorem (Decomposition to two-level unitary matrices)

For any unitary matrix  $U \in \mathcal{L}(\mathbb{C}^d)$ , there is a sequence  $U_1, U_2, ..., U_m$  of two-level unitary matrices such that  $U = U_1 U_2 \cdots U_m$ .

#### Proof.

We will show that there is a sequence  $V_1,\ V_2,\ \dots,\ V_m$  of two-level unitary matrices such that

$$V_m V_{m-1} \cdots V_1 U = I$$
.

Since  $U_i := V_i^{-1}$  is two-level unitary, this completes a proof.  $\square$ 

# Decomposition to two-level unitary matrix 1/3

$$U = \begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & u_{1,4} \\ u_{2,1} & u_{2,2} & u_{2,3} & u_{2,4} \\ u_{3,1} & u_{3,2} & u_{3,3} & u_{3,4} \\ u_{4,1} & u_{4,2} & u_{4,3} & u_{4,4} \end{bmatrix}$$

If  $u_{2,1} = 0$ , we skip this step. If  $u_{2,1} \neq 0$ , apply the two-level unitary matrix

$$V_1 = \frac{1}{z} \begin{bmatrix} u_{1,1}^* & u_{2,1}^* & 0 & 0 \\ u_{2,1} & -u_{1,1} & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & z \end{bmatrix}$$

for 
$$z := \sqrt{|u_{1,1}|^2 + |u_{2,1}|^2}$$
.

# Decomposition to two-level unitary matrix 2/3

$$V_1 U = \begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & u_{1,4} \\ 0 & u_{2,2} & u_{2,3} & u_{2,4} \\ u_{3,1} & u_{3,2} & u_{3,3} & u_{3,4} \\ u_{4,1} & u_{4,2} & u_{4,3} & u_{4,4} \end{bmatrix}$$

 $u_{i,j}$ s are not equal to those in the previous slide for  $i \in \{1, 2\}$ .

If  $u_{3,1} = 0$ , we skip this step.

If  $u_{3,1} \neq 0$ , apply the two-level unitary matrix

$$V_2 = \frac{1}{z} \begin{bmatrix} u_{1,1}^* & 0 & u_{3,1}^* & 0 \\ 0 & z & 0 & 0 \\ u_{3,1} & 0 & -u_{1,1} & 0 \\ 0 & 0 & 0 & z \end{bmatrix}$$

for 
$$z := \sqrt{|u_{1,1}|^2 + |u_{3,1}|^2}$$
.

# Decomposition to two-level unitary matrix 3/3

$$V_3V_2V_1U = \begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} & u_{1,4} \\ 0 & u_{2,2} & u_{2,3} & u_{2,4} \\ 0 & u_{3,2} & u_{3,3} & u_{3,4} \\ 0 & u_{4,2} & u_{4,3} & u_{4,4} \end{bmatrix} = \begin{bmatrix} u_{1,1} & 0 & 0 & 0 \\ 0 & u_{2,2} & u_{2,3} & u_{2,4} \\ 0 & u_{3,2} & u_{3,3} & u_{3,4} \\ 0 & u_{4,2} & u_{4,3} & u_{4,4} \end{bmatrix}$$

 $u_{1,1} = 1$  unless  $u_{2,1}$ ,  $u_{3,1}$ ,  $u_{4,1}$  are originally 0. In this case, apply one-level unitary for making  $u_{1,1} = 1$ .

Arbitrary  $d \times d$  unitary matrix can be decomposed to a product of at most d(d-1)/2 two-level unitary matrices for d > 2.

## Theorem (Universality of finite gate set)

For any unitary matrix  $U \in \mathcal{L}(\mathbb{C}^{2^n})$  and  $\epsilon > 0$ , there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing  $\widetilde{U}$  satisfying  $\|U - \widetilde{U}\| < \epsilon$ .

#### Proof.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates.
- **3** Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.
- 4 Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

# Controlled-unitary



# Special cases

| 0 | 0                     | 0   | 0                                                                  | 0                                                     | 0                                       | ٦0                                                    |
|---|-----------------------|-----|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|
| 1 | 0                     | 0   | 0                                                                  | 0                                                     | 0                                       | 0                                                     |
| 0 |                       | 0   | 0                                                                  | 0                                                     | $u_{1,2}$                               | 0                                                     |
|   |                       | 1   | 0                                                                  | 0                                                     |                                         | 0                                                     |
| 0 | 0                     | 0   |                                                                    | 0                                                     | 0                                       | 0                                                     |
|   | 0                     | 0   | 0                                                                  | 1                                                     | 0                                       | 0                                                     |
| 0 | $u_{2,1}$             | 0   | 0                                                                  | 0                                                     | <i>u</i> <sub>2,2</sub>                 | 0                                                     |
|   |                       | 0   | 0                                                                  | 0                                                     | 0                                       | $1 \rfloor$                                           |
|   | 1<br>0<br>0<br>0<br>0 | 1 0 | 1 0 0<br>0 $u_{1,1}$ 0<br>0 0 1<br>0 0 0<br>0 0 0<br>0 $u_{2,1}$ 0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |



#### Lemma

Any  $2^n \times 2^n$  two-level unitary matrix can be decomposed to a product of controlled-unitary gates.

#### Proof.

Assume that the two-level unitary matrix acts on a 2-dimentional subspace span( $\{|x\rangle, |y\rangle\}$ ) for  $x \neq y \in \{0, 1\}^n$ .

Assume that for  $i \in \{1, 2, ..., n\}$ ,  $x_i = 1$  and  $y_i = 0$ . Apply at most

n-1 CNOT gates such that

$$|x\rangle \longmapsto |y \oplus e_i\rangle$$

$$|y\rangle \longmapsto |y\rangle$$

$$\forall z \neq x, y \qquad \exists \tilde{z} \neq x, y \qquad |z\rangle \longmapsto |\tilde{z}\rangle,$$

Then, apply "controlled unitary" and reverse the permutation of the basis.

## The first part

Let x = 00101, y = 11000.



## Controlled-unitary

$$|x\rangle = |00101\rangle \longmapsto |11100\rangle$$

$$|y\rangle = |11000\rangle \longmapsto |11000\rangle$$

$$|1\rangle \longrightarrow 0$$

$$|u\rangle \longrightarrow 0$$

$$|0\rangle \longrightarrow 0$$

#### Finally, reverse the basis

$$|11100\rangle \longmapsto |00101\rangle = |x\rangle$$
  
 $|11000\rangle \longmapsto |11000\rangle = |y\rangle$ 

## Whole quantum circuit

Let x = 00101, y = 11000.



$$\begin{array}{c} |00101\rangle \longmapsto |11100\rangle \longmapsto |00101\rangle \\ |11000\rangle \longmapsto |11000\rangle \longmapsto |11000\rangle \end{array}$$

## Theorem (Universality of finite gate set)

For any unitary matrix  $U \in \mathcal{L}(\mathbb{C}^{2^n})$  and  $\epsilon > 0$ , there is a quantum circuit with X, Y, Z, H, S, T, CNOT gates computing  $\widetilde{U}$  satisfying  $\|U - \widetilde{U}\| < \epsilon$ .

#### Proof.

- Any unitary matrix can be decomposed to a product of two-level unitary matrices. Done
- 2 Any two-level unitary matrix can be decomposed to a product of controlled-unitary gates. Done
- **3** Any controlled-untary gate can be decomposed to a product of CNOT and arbitrary single-qubit gates.
- **4** Any single-qubit gate can be approximated by X, Y, Z, H, S and T.

# Assignments

1 Show a decomposition of

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

into a product of two-level unitary matrices.

2 Show a decomposition of two-level unitary

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 & 0 & c \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & b & 0 & 0 & 0 & 0 & d \end{bmatrix}$$

into a product of controlled-unitary gates.