Gerenciamento de Projetos e Contratos Aula Análise de Viabilidade

Prof. Dr. Robson Marinho da Silva¹

¹ACSO (Núcleo de Arquitetura de Computadores e Sistemas Operacionais) BRT (Bahia Robotics Team) Universidade do Estado da Bahia (UNEB) Departamento de Ciências Exatas e da Terra, Salvador/BA (DCET-I)

May 10, 2022

Sumário

- Indicadores
- 2 Bibliografia

Indicadores de viabilidade financeira

- Relação Custo Benefício (RCB)
- Valor Presente Líquido (VPL)
- Tempo de retorno do investimento (Payback)
- Taxa Interna de Retorno (TIR)

Relação custo-benefício

É um indicador que relaciona os benefícios de um projeto e o seus custo, em valores presentes.

A RCB permite verificar se:

- Vale a pena financiar o Projeto?
 - Se o Valor Presente Líquido (VPL) do projeto for > 0
- O projeto precisa ser re-financiado?
 - Se o VPL do investimento sem a contribuição dos Fundos for < 0, o projeto deve ser re-financiado.

Portanto:

- É um critério para seleção de projetos
- Quanto maior a relação, melhor será o projeto

Relação custo-benefício - Exemplo

- Projeto A tem um investimento de R\$ 150.000,00 e receitas previstas de R\$ 420.000,00
- Projeto B tem um investimento de R\$ 120.000,00 e receitas previstas de R\$ 348.000,00

Usando o critério de seleção RCB, qual é o Projeto a ser selecionado?

Relação custo-benefício - Exemplo

- Projeto A tem um investimento de R\$ 150.000,00 e receitas previstas de R\$ 420.000.00
- Projeto B tem um investimento de R\$ 120.000,00 e receitas previstas de R\$ 348.000.00

Usando o critério de seleção RCB, qual é o Projeto a ser selecionado? Resposta:

- RCB projeto A = $\frac{R$420.000,00}{R$150.000,00} = 2,8$
- RCB projeto B = $\frac{R$348.000,00}{R$120.000,00} = 2,9$

Assim, a escolha deve ser do Projeto B, pois o mesmo tem um RCB maior do que o Projeto A.

Valor Presente Líquido (VPL)

- É calculado com o valor presente de pagamentos futuros descontados a uma taxa de juros apropriada, menos o custo do investimento inicial.
- Basicamente, é o calculo de quanto os futuros pagamentos somados a um custo inicial estariam valendo atualmente.
- Se VPL > 0, então o projeto deve ser aceito
- Se VPL < 0, então o projeto deve ser rejeitado

Entre vários projetos, escolheremos o de maior VPL

Valor Presente Líquido (VPL) - Exemplo

Exemplo:

Investimento inicial: R\$ 10.000,00

• Receitas: R\$ 3.500,00 por ano durante 4 anos

• Taxa de juros: 5% a.a.

Α	В	С	D
Juros	0,05		
Ano	Fluxo de Caixa	Valor Presente	Acumulado
0	-10000	-10000	-10000
1	3500	=VP(\$B\$1;1;-B4)	=D3+C4
2	3500	=VP(\$B\$1;1;-C4)	=D4+C5
3	3500	=VP(\$B\$1;1;-C5)	=D5+C6
4	3500	=VP(\$B\$1;1;-C6)	=D6+C7

А	В	С	D
Juros	5%		
Ano	Fluxo de Caixa	Valor Presente	Acumulado
0	-10.000,00	-10.000,00	-10.000,00
1	3.500,00	3.333,33	-6.666,67
2	3.500,00	3.174,60	-3,492,06
3	3.500,00	3.023,43	-468,63
4	3.500,00	2.879,46	2.410,83

Tempo de retorno do investimento (Payback)

Período de tempo em que o projeto tem o seu investimento total recuperado, ou seja, tempo em que as entradas (receitas) igualem as das saídas (despesas).

- pode ser considerado com o fluxo de caixa atualizado
 - Payback Simples não considera o valor do \$\$\$ no tempo
- sem o fluxo de caixa atualizado.
 - Payback Descontado considera o valor do \$\$\$ no tempo (usa o conceito do VPL)

Entre vários projetos, escolheremos o projeto que tiver o menor Payback

Tempo de retorno do investimento (Payback) - Exemplo

- Dado um projeto com investimento inicial de 1 milhão de receitas previstas de R\$ 300 mil por semestre, qual é o tempo de retorno (payback)?
- Dado um projeto com investimento inicial de 1 milhão de receitas previstas de R\$ 300 mil por ano, qual é o tempo de retorno (payback), sendo a taxa de juros de 6% a.a.?

Tempo de retorno do investimento (Payback) - Exemplo

- Dado um projeto com investimento inicial de 1 milhão de receitas previstas de R\$ 300 mil por semestre, qual é o tempo de retorno (payback)?
 - Tempo de retorno = 1 milhão / 300 mil = 3,33 semestres (1 ano e 8 meses)
- Dado um projeto com investimento inicial de 1 milhão de receitas previstas de R\$ 300 mil por ano, qual é o tempo de retorno (payback), sendo a taxa de juros de 6% a.a. ?

Α	В	С	D	E
Juros	0,06			l
Ano	Fluxo de Caixa	Valor Presente	Acumulado	ĺ
0	-1000000	=B3	=C3	
1	300000	=VP(\$B\$1;1;-B4)	=D3+C4	
2	=B4	=VP(\$B\$1;1;-C4)	=D4+C5	
3	=B5	=VP(\$B\$1;1;-C5)	=D5+C6	
4	=B6	=VP(\$B\$1;1;-C6)	=D6+C7	
5	=B7			
		Anos	Meses	
	PayBack	=ARRED(-B3/B4;0)	=-D6/C7	=C10+D10

Α	В	С	D	E
Juros	6%			
Ano	Fluxo de Caixa	Valor Presente	Acumulado	
0	-1.000.000,00	-1.000.000,00	-1.000.000,00	
1	300.000,00	283.018,87	-716.981,13	
2	300.000,00	266.998,93	-449.982,20	
3	300.000,00	251.885,78	-198.096,42	
4	300.000,00	237.628,10	39.531,68	
5	300.000,00			
		Anos	Meses	
	PayBack	3	0,83	3,83
				UINED *

Taxa Interna de Retorno (TIR) - É a taxa necessária para igualar o valor de um investimento (valor presente) com os seus respectivos retornos futuros ou saldos de caixa gerados em cada período. Sendo usada em análise de investimentos, significa a taxa de retorno de um projeto. É calculada sendo a taxa que zera o valor de um fluxo de caixa

A Taxa Interna de Retorno de um investimento pode ser:

Maior do que a Taxa Interna de Retorno: significa que o investimento é economicamente atrativo. Igual à Taxa Interna de Retorno: o investimento está economicamente numa situação de indiferença. Menor do que a Taxa Interna de Retorno: o investimento não é economicamente atrativo pois seu retorno é superado pelo retorno de um investimento com o mínimo de retorno já definido.

Exemplo

Qual a Taxa de Retorno de Investimento (TIR) de um dado um projeto com investimento inicial de 1 milhão

Sumário

- Indicadores
- ② Bibliografia

Bibliografia

S. Serpa, "Análise de viabilidade de projeto.

https://escritoriodeprojetos.com.br/analise-de-viabilidade-de-projeto, journal=Escritório de Projetos," acessed in April, 2022.

ANSI/ISA, Batch Control Part 1: Models and Terminology, American National Stan-dard.

Research Triangle Park, NC: ANSI/ISA-88.01, 1995.

