Modelling and Optimization

INF170

#8:MILP

AHMAD HEMMATI

Optimization Group
Dept. of Informatics
University of Bergen

Fall Semester 2018

AGENDA

• Integer programming: IPs and MIPs

Power of Binary Variables

• Facility Location Problem

A SMALL EXAMPLE

maximize x + 2y (0) subject to $x + y \le 10$ (1) $-x + 3y \le 9$ (2) $x \le 7$ (3) $x, y \ge 0$ (4,5)

A SMALL EXAMPLE

	cost	min	max	A	C	B1	B2	NA	CAL
BEEF	3.19	2	10	60	20	10	15	938	295
CHK	2.59	2	10	8	0	20	20	2180	770
FISH	2.29	2	10	8	10	15	10	945	440
HAM	2.89	2	10	40	40	35	10	278	430
MCH	1.89	2	10	15	35	15	15	1182	315
MTL	1.99	2	10	70	30	15	15	896	400
SPG	1.99	2	10	25	50	25	15	1329	370
TUR	2.49	2	10	60	20	15	10	1397	450

	min	max
A	700	20000
C	700	20000
B1	700	20000
B2	700	20000
NA	0	50000
CAL	16000	24000

```
Xbeef = 5.36061
Xchk = 2
Xfish = 2
Xham = 10
Xmch = 10
Xmtl = 10
Xspg = 9.30605
Xtur = 2
Objective: 118.0594032
```

	Diet
A	1956.29
B1	1036.26
B2	700
С	1682.51
NA	50000
CAL	19794.6

	cost	min	max	A	C	B1	B2	NA	CAL
BEEF	3.19	2	10	60	20	10	15	938	295
CHK	2.59	2	10	8	0	20	20	2180	770
FISH	2.29	2	10	8	10	15	10	945	440
HAM	2.89	2	10	40	40	35	10	278	430
MCH	1.89	2	10	15	35	15	15	1182	315
MTL	1.99	2	10	70	30	15	15	896	400
SPG	1.99	2	10	25	50	25	15	1329	370
TUR	2.49	2	10	60	20	15	10	1397	450

	min	max
A	700	20000
C	700	20000
B1	700	20000
B2	700	20000
NA	0	50000
CAL	16000	24000

Xbeef	=	5
Xchk	=	2
Xfish	=	2
Xham	=	10
Xmch	=	10
Xmtl	=	10
Xspg	=	9
Xtur	=	2

	Diet
A	1927
B1	1025
B2	690
С	1660
NA	49255
CAL	19575

	cost	min	max	A	C	B1	B2	NA	CAL
BEEF	3.19	2	10	60	20	10	15	938	295
CHK	2.59	2	10	8	0	20	20	2180	770
FISH	2.29	2	10	8	10	15	10	945	440
HAM	2.89	2	10	40	40	35	10	278	430
MCH	1.89	2	10	15	35	15	15	1182	315
MTL	1.99	2	10	70	30	15	15	896	400
SPG	1.99	2	10	25	50	25	15	1329	370
TUR	2.49	2	10	60	20	15	10	1397	450

	min	max
A	700	20000
C	700	20000
B1	700	20000
B2	700	20000
NA	0	50000
CAL	16000	24000

Xbeef	=	6
Xchk	=	2
Xfish	=	2
Xham	=	10
Xmch	=	10
Xmtl	=	10
Xspg	=	10
Xtur	=	2

	Diet
A	2012
В1	1060
В2	720
С	1730
NA	51522
CAL	20240

	cost	min	max	A	C	B1	B2	NA	CAL
BEEF	3.19	2	10	60	20	10	15	938	295
CHK	2.59	2	10	8	0	20	20	2180	770
FISH	2.29	2	10	8	10	15	10	945	440
HAM	2.89	2	10	40	40	35	10	278	430
MCH	1.89	2	10	15	35	15	15	1182	315
MTL	1.99	2	10	70	30	15	15	896	400
SPG	1.99	2	10	25	50	25	15	1329	370
TUR	2.49	2	10	60	20	15	10	1397	450

	min	max
A	700	20000
C	700	20000
B1	700	20000
B2	700	20000
NA	0	50000
CAL	16000	24000

Xbeef = 9
Xchk = 2
Xfish = 2
Xham = 8
Xmch = 10
Xmtl = 10
Xspg = 7
Xtur = 2
Objective: 119.3

	Diet
А	2037
В1	945
В2	700
С	1560
NA	49793
CAL	19155

INTEGRAL DECISION VARIABLES

- A decision variable is <u>integral</u> if it is restricted to a specified interval of integers
 - Sometimes referred to as <u>discrete</u>
 - Example: <u>binary</u> (0 or 1) variables are integral

$$x_i$$
 binary = $x_i \in \{0,1\} = \begin{cases} x_i & \leq 1 \\ x_i & \geq 0 \\ x_i & \text{integer} \end{cases}$

INTEGER PROGRAMS

- An optimization model is an <u>integer program</u> if at least one of its decision variables is integral
- > Finer classification:
 - If all variables are integral → pure integer program
 - Otherwise → mixed integer program

MILP

- > Advantages of integer programs
 - > More realistic
 - More modeling power
- Disadvantages of integer programs
 - More difficult to model
 - > Can be much more difficult to solve

Situation

- Banner Chemicals manufactures specialty chemicals. One of their products comes in two grades, high and supreme. The capacity at the plant is 110 barrels per week.
- The high and supreme grade products use the same basic raw materials but require different ratios of additives. The high grade requires 3 gallons of additive A and 1 gallon of additive B per barrel while the supreme grade requires 2 gallons of additive A and 3 gallons of additive B per barrel.
- The supply of both of these additives is quite limited. Each week, this product line is allocated only 300 gallons of additive A per week and 280 gallons of additive B.
- A barrel of the high grade has a profit margin of \$80 per barrel while the supreme grade has a profit margin of \$200 per barrel.

Question

How many barrels of High and Supreme grade should Banner Chemicals produce each week assuming you can only produce in 10 barrel lots?

Banner Chemicals

University of Berger

Page 13

- Let's try "rounding" the solution to the closest acceptable integer values?
 - LP Solution:
 - \rightarrow X_H =25 barrels X_S = 85 barrels
 - Rounding to closest "10 barrel" solution for (X_H, X_S) :
 - 1. $z_{LOT}(30, 90) = $20,400$ but it is infeasible (Plant constraint)
 - 2. $z_{LOT}(30, 80) = $18,400$ feasible
 - 3. $z_{LOT}(20, 90) = $19,600$ but it is infeasible (Additive B constraint)
 - So, using this approach $z_{LOT}^* = $18,400 \text{ with } X_H = 30, X_S = 80$
 - But, is it the best?
- Let's solve all of the points to make sure!
 - This approach is called *Mass Enumeration*.

University of Bergen

Ahmad Hemmati Page 15

In order to solve in integer values of "lots of ten", we need to:

- ✓ Convert Decision Variables
 - XHL = XH /10 XSL = XS /10
- ✓ Scale the coefficients and constraint RHS
 - e.g. 110 barrels becomes 11 lots of ten
- ✓ Indicate that the new variables are Integers

Max
$$z(X_{H}, X_{S}) = 80X_{H} + 200X_{S}$$

s.t.
Plant $X_{H} + X_{S} \le 110$
Add. A $3X_{H} + 2X_{S} \le 300$
 $Add. B$ $X_{H} + 3X_{S} \le 280$
 $X_{H} \ge 0$
 $X_{S} \ge 0$

$$\begin{aligned} \text{Max } z(X_{\text{HL}}, X_{\text{SL}}) &= 800X_{\text{HL}} + 2000X_{\text{SL}} \\ s.t. \\ p_{lant} & X_{\text{HL}} + X_{\text{SL}} \leq 11 \\ Add. & 3X_{\text{HL}} + 2X_{\text{SL}} \leq 30 \\ Add. & A & X_{\text{HL}} + 3X_{\text{SL}} \leq 28 \\ X_{\text{HL}}, X_{\text{SL}} &\geq 0 \text{ Integers} \end{aligned}$$

INTEGRAL DECISION VARIABLES

Why use them?

- When its physically impossible to have fractional solutions
 - For example; number of people to hire, number of ships to make
 - However, in some cases when we are dealing with large numbers, continuous is fine
- Modeling logical conditions (Binary)
 - ✓ If Then:
 - If we have product leaving plant A then we must open it
 - ✓ Either Or:
 - We can either produce ≥ 1000 units or none at all.
 - ✓ Select From:
 - We must select \geq 4 DCs to open from the 10 possible
 - We must select \leq 5 products to make from the 15 available

Modeling Mutually Exclusive Choices

- Sometimes decisions are mutually exclusive
- > e.g. "At most one of these projects should be executed."
- > Let

$$x_i = \begin{cases} 1 & \text{if element } i \text{ is picked} \\ 0 & \text{otherwise} \end{cases}$$

- Let E be a set of elements, from which we want to make sure at most one is picked
- Can model these types of constraints as:

$$\sum_{i \in E} x_i \le 1$$

$$x_i \in \{0,1\} \quad \text{for } i \in E$$

Modeling Dependencies between Decisions

- Sometimes one decision depends on another being made (or not being made)
- \triangleright Suppose activity j depends on activity k being performed
- Can model these types of constraints as:

$$x_j \leq x_k$$

 \triangleright x_j cannot be equal to 1 unless x_k is equal to 1 also

COVERING CONSTRAINTS

- Sometimes we want to make sure at least one element from a set of elements is picked
- Let *E* be a set of elements, from which we want to make sure at least one is picked
- Can model these types of constraints as:

$$\sum_{i \in E} x_i \ge 1$$

$$x_i \in \{0,1\} \quad \text{for } i \in E$$

➤ "We've covered *E*"

PARTITIONING CONSTRAINTS

- Sometimes we want to make sure <u>exactly</u> one element from a set of elements is picked
- Let *E* be a set of elements, from which we want to make sure exactly one is picked
- > Can model these types of constraints as:

$$\sum_{i \in E} x_i = 1$$

$$x_i \in \{0,1\} \text{ for } i \in E$$

FIXED CHARGES

- Linear programming: easy to model linear (per-unit) costs
- > Sometimes we need to model fixed costs
- Example: inventory management
 - \triangleright holding cost h_j per jacket in period j
 - \triangleright setup cost f_i must be paid before warehouse can be used in period j
 - \rightarrow cost of holding x_i jackets in inventory in period j

$$\theta(x_j) = \begin{cases} f_j + h_j x_j & \text{if } x_j > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Nonlinear costs!
- ➤ How to model as linear costs using binary variables?

FIXED CHARGES

$$\theta(x_j) = \begin{cases} f_j + h_j x_j & \text{if } x_j > 0 \\ 0 & \text{otherwise} \end{cases}$$

 \triangleright Introduce binary variable y_i

$$y_i = \begin{cases} 1 & \text{if } x_j > 0 \text{ (if there is inventory held in period } j)} \\ 0 & \text{otherwise} \end{cases}$$

- Solution Objective (for x_j and y_j): $f_j y_j + h_j x_j$
- - ► *M* is large enough number
 - \triangleright Can use upper bound on x_i (if it is available) instead of M
 - $> y_j = 0 \rightarrow x_j = 0, \ y_j = 1 \rightarrow x_j \le M$

SANITY CHECK

- When writing constraints with binary variables, it is sometimes helpful to do a sanity check by checking all possible combinations of decision variable values
- For example, "If I get (x_5) , I should definitely get a (x_6) ."

x_5	x_6	OK?
0	0	Yes
1	0	No
0	1	Yes
1	1	Yes

> The constraint we formulated

$$x_5 \le x_6$$

works with this table

FACILITY LOCATION

- Willy Wonka is opening new chocolate factories to meet demand in new markets
- Data:
 - \triangleright C = set of markets (or customers) that need to be served
 - \triangleright F = set of possible factory locations
 - \triangleright d_i = demand of customer j, for each $j \in C$
 - \succ $c_{i,j}$ = unit cost of fulfilling j's demand from factory location i
 - \rightarrow f_i = fixed cost of opening factory at location i
 - \triangleright u_i = capacity of factory at location i
- Which factories should Willy Wonka open in order to meet demand in these new markets at minimum cost?

FACILITY LOCATION

Decision variables:

> Which factories to open?

$$y_i = \begin{cases} 1 & \text{if facility } i \text{ is opened} \\ 0 & \text{otherwise} \end{cases} \quad \text{for } i \in F$$

- ➤ How to allocate demand to factories?
- $\succ x_{i,j}$ = fraction of customer j demand satisfied by facility i

for
$$i \in F$$
, $j \in C$

FACILITY LOCATION

Objective:

$$\min \sum_{i \in F} \sum_{j \in C} (c_{i,j} d_j) x_{i,j} + \sum_{i \in F} f_i y_i$$

Demand satisfied for each customer $j \in C$:

$$\sum_{i \in F} x_{i,j} = 1 \quad \text{for } j \in C$$

Capacity for each open factory $i \in F$:

$$\sum_{j \in C} d_j x_{i,j} \le u_i y_i \quad \text{for } i \in F$$

Variable-type constraints:

$$x_{i,j} \ge 0 \text{ for } i \in F, j \in C$$

 $y_i \in \{0,1\} \text{ for } i \in F$

GoNuts manufactures different juices made entirely of various exotic nuts. Their primary market is China and they operate three plants located in Ethiopia, Tanzania, and Nigeria. You have been asked to help them determine where to manufacture the two newest juices they offer, Gingko Nut and Kola Nut. Each plant has a different variable cost structure and capacity for manufacturing the different juices. Also, each juice has an expected demand.

Cost/Unit	Ginko	Kola
Ethiopia	¥21.00	¥22.50
Tanzania	¥22.50	¥24.50
Nigeria	¥23.00	¥25.50

Capacity	Units/Month
Ethiopia	425
Tanzania	400
Nigeria	750

Demand	Units/Month
Ginko	550
Kola	450

How much of each juice should be made at each plant in order to minimize total cost while meeting demand and adhering to plant capacity?

Page 28

Decision variables:

 $x_{G,E}$ = Number of *Ginko Juice* units made in *Ethiopia* plant

 x_{ij} = Number of units of product i made in plant j

$$x_{ii} \ge 0$$

for all *i,j*

Objective Function:

$$min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

 c_{ij} = Cost per unit of product i made at plant j

Constraints:

Plant capacity:

$$\sum_{i} x_{ij} \le C_j \qquad \forall j$$

 C_i = Capacity in units at plant j

Product demand:

$$\sum_{i} x_{ij} \ge D_i \qquad \forall i$$

 D_i = Demand for product i in units

$$min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

s.t.

$$\sum_{i} x_{ij} \le C_j \qquad \forall j$$

$$\sum_{i} x_{ij} \le C_{j} \qquad \forall j$$

$$\sum_{j} x_{ij} \ge D_{i} \qquad \forall i$$

$$x_{ij} \ge 0 \qquad \forall i,j$$

$$c_{ij} \ge 0 \quad \forall i,j$$

Where:

 x_{ij} = Number of units of product i made in plant j

 c_{ij} = Cost per unit of product i made at plant j

 C_i = Capacity in units at plant j

 D_i = Demand for product i in units

Optimal Solution

	Ginko	Kola
Ethiopia	0	425
Tanzania	375	25
Nigeria	175	0

Total min cost = $\frac{1}{2}$ 22,637.50

GoNuts manufactures different juices made entirely of various exotic nuts. Their primary market is China and they operate three plants located in Ethiopia, Tanzania, and Nigeria. You have been asked to help them determine where to manufacture the two newest juices they offer, Gingko Nut and Kola Nut. Each plant has a different fixed and variable cost structure and capacity for manufacturing the different juices. The fixed cost only applies if the plant produces any juice. Also, each juice has an expected demand.

Cost/Unit	Ginko	Kola
Ethiopia	¥21.00	¥22.50
Tanzania	¥22.50	¥24.50
Nigeria	¥23.00	¥25.50

Capacity	Units/Month	Fixed (¥/Month)
Ethiopia	425	¥1,500
Tanzania	400	¥2,000
Nigeria	750	¥3,000

Demand	Units/Month
Ginko	550
Kola	450

How much of each juice should be made at each plant in order to minimize total cost while meeting demand and adhering to plant capacity?

Page 32

Decision variables:

 x_{ij} = Number of units of product i made in plant j

 $y_i = 1$ if plant j is opened; = 0 otherwise

$$x_{ij} \ge 0$$

for all *i,j*

Objective Function:

$$min z = \sum_{i} \sum_{j} c_{ij} x_{ij} + \sum_{j} f_{j} y_{j}$$

 c_{ij} = Cost per unit of product i made at plant j f_i = Fixed cost per month if plant j is used

- You need to ensure that if a plant produces product, then it is actually opened!
- > If Then conditions require both a
 - ✓ Binary Variable
 - ✓ Linking Constraint

New Constraints:

If-Then Condition:

$$\sum_{i} x_{ij} \le M y_j \qquad \forall j$$

M = a big number (such as C_j in this case)

 C_i = Capacity in units at plant j

Page 34

$$min z = \sum_{i} \sum_{j} c_{ij} x_{ij} + \sum_{j} f_{j} y_{j}$$

s.t.

$$\sum_{i} x_{ij} \le C_j \qquad \forall j$$

$$\sum_{i} x_{ij} \le C_{j} \qquad \forall j$$

$$\sum_{j} x_{ij} \ge D_{i} \qquad \forall i$$

$$\sum_{i} x_{ij} - My_{j} \le 0 \qquad \forall j$$

$$x_{ij} \ge 0 \qquad \forall i,j$$

$$y_{j} = \{0,1\} \qquad \forall j$$

Where:

 x_{ij} = Number of units of product i made in plant j

 $y_i = 1$ if plant j is opened; = 0 otherwise

 c_{ij} = Cost per unit of product i made at plant j

 f_j = Fixed cost per month if plant j is used

 C_i = Capacity in units at plant j

 D_i = Demand for product i in units

M = a big number (such as C_i in this case)

	Ginko	Kola
Ethiopia	0	425
Tanzania	0	0
Nigeria	550	25

z = $\pm 27,350.00$

GoNuts manufactures different juices made entirely of various exotic nuts. Their primary market is China and they operate three plants located in Ethiopia, Tanzania, and Nigeria. You have been asked to help them determine where to manufacture the two newest juices they offer, Gingko Nut and Kola Nut. Each plant has a different fixed and variable cost structure and both minimum and maximum capacities for manufacturing the different juices if the plant opens. The fixed cost only applies if the plant produces any juice. Also, each juice as

an expected demand.

Cost/Unit	Ginko	Kola
Ethiopia	¥21.00	¥22.50
Tanzania	¥22.50	¥24.50
Nigeria	¥23.00	¥25.50

Demand	Units/Month
Ginko	550
Kola	450

Capacity	Max	Min	Fixed
(units/Month)	Capacity	Capacity	(¥/Month)
Ethiopia	425	100	¥1,500
Tanzania	400	250	¥2,000
Nigeria	750	600	¥3,000

If the Nigeria plant opens, it must produce at least 600 units

How much of each juice should be made at each plant in order to minimize total cost while meeting demand and adhering to plant capacity?

We need to add a constraint that ensures that if we DO use plant j, that the volume is between the minimum allowable level, L_j , and the maximum capacity, C_j . This is sometimes called an Either-Or condition.

New Constraints:

Either-Or Condition:

$$\sum_{i} x_{ij} \ge L_j y_j \qquad \forall j$$

 L_j = Minimum level of production at plant j

$$min z = \sum_{i} \sum_{j} c_{ij} x_{ij} + \sum_{j} f_{j} y_{j}$$

s.t.

$$\sum_{i} x_{ij} \le C_{j} \qquad \forall j$$

$$\sum_{j} x_{ij} \ge D_{i} \qquad \forall i$$

$$\sum_{i} x_{ij} - M y_j \le 0 \qquad \forall j$$

$$\sum_{i} x_{ij} - L_{j} y_{j} \ge 0 \qquad \forall j$$

$$x_{ij} \ge 0 \qquad \forall i,j$$

$$y_{j} = \{0,1\} \qquad \forall j$$

Where:

 x_{ij} = Number of units of product i made in plant j

 $y_i = 1$ if plant j is opened; = 0 otherwise

 c_{ii} = Cost per unit of product i made at plant j

 f_j = Fixed cost per month if plant j is used

 C_i = Capacity in units at plant j

 L_i = Minimum level of production at plant j

 D_i = Demand for product i in units

M = a big number (such as C_i in this case)

	Ginko	Kola
Ethiopia	0	425
Tanzania	375	25
Nigeria	175	0

z*= ¥ 27,425.00

GoNuts manufactures different juices made entirely of various exotic nuts. Their primary market is China and they operate three plants located in Ethiopia, Tanzania, and Nigeria. You have been asked to help them determine where to manufacture the two newest juices they offer, Gingko Nut and Kola Nut. <u>Each plant has a different variable cost structure and a maximum capacity. GoNuts can only operate 2 plants at a maximum.</u> Also, each juice has an expected demand.

Cost/Unit	Ginko	Kola
Ethiopia	¥21.00	¥22.50
Tanzania	¥22.50	¥24.50
Nigeria	¥23.00	¥25.50

Capacity	Units/Month
Ethiopia	425
Tanzania	400
Nigeria	750

Demand	Units/Month
Ginko	550
Kola	450

How much of each juice should be made at each plant in order to minimize total cost while meeting demand and adhering to plant capacity?

Page 39

We need to add a constraint that ensures that only N plants are used! We will use the Binary Variables, y_j , the Linking Constraints, and a new constraint that says the sum of the Binary Variables must not exceed N. This is sometimes called an Select-From condition.

New Constraints:

Max Plants (Select-From condition):

$$\sum_{j} y_{j} \le N$$

N = Number of plants allowed to be opened

$$min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

s.t.

$$\sum_{i} x_{ij} \le C_j \qquad \forall j$$

$$\sum_{j}^{l} x_{ij} \ge D_i \qquad \forall i$$

$$\sum_{i} x_{ij} - M y_j \le 0 \qquad \forall j$$

$$\sum_{i} x_{ij} - My_{j} \le 0 \qquad \forall j$$

$$\sum_{j} y_{j} \le N$$

$$x_{ij} \ge 0 \qquad \forall i,j$$

$$y_{j} = \{0,1\} \qquad \forall j$$

Where:

 x_{ij} = Number of units of product i made in plant j

 $y_i = 1$ if plant j is opened; = 0 otherwise

 c_{ii} = Cost per unit of product *i* made at plant *j*

 C_i = Capacity in units at plant j

 D_i = Demand for product i in units

M = a big number (such as C_i in this case)

N = Number of plants allowed to be opened

	Ginko	Kola
Ethiopia	0	425
Tanzania	0	0
Nigeria	550	25

z = 22,850.50

ASSIGNMENT

ASSIGNMENT #5:

Write the linear form of the following questions.

QUESTION 1:

$$y = 9 - x \quad \text{if } 4 \le x \le 7$$

$$y = -5 + x \text{ if } 8 \le x \le 9$$

QUESTION 2:

x is an integer variable

If
$$2x_1 + x_2 \le 5$$
 then $2x_3 - x_4 \ge 2$

NEXT LECTURE

LECTURE #9: IP/MILP Models

