Introduction to Bioinformatics

Continuation of GSEA

 Gene set enrichment analysis (GSEA) is a statistical method to determine if predefined sets of genes are differentially expressed in different phenotypes

- Gene set enrichment analysis (GSEA) is a statistical method to determine if predefined sets of genes are differentially expressed in different phenotypes
- Predefined gene sets may be genes in a known metabolic pathway, located in the same cytogenetic band, sharing the same Gene Ontology category, or any user-defined set

- Gene set enrichment analysis (GSEA) is a statistical method to determine if predefined sets of genes are differentially expressed in different phenotypes
- Predefined gene sets may be genes in a known metabolic pathway, located in the same cytogenetic band, sharing the same Gene Ontology category, or any user-defined set
- In array experiments where no single gene shows statistically significant differential expression between phenotypes, GSEA has identified significant differentially expressed sets of genes

- Gene set enrichment analysis (GSEA) is a statistical method to determine if predefined sets of genes are differentially expressed in different phenotypes
- Predefined gene sets may be genes in a known metabolic pathway, located in the same cytogenetic band, sharing the same Gene Ontology category, or any user-defined set
- In array experiments where no single gene shows statistically significant differential expression between phenotypes, GSEA has identified significant differentially expressed sets of genes
- GSEA is likely to be more powerful than conventional single-gene methods for studying the large number of common diseases in which many genes each make subtle contributions

Why GSEA?

- The conventional statistical analysis method for array experiments is to
 - examine one gene at a time,
 - determine a p-value that the gene is differentially expressed/methylated in different phenotypes
 - apply a correction (penalty) to the p-value for having tested multiple genes (described further below)

Why GSEA?

- The conventional statistical analysis method for array experiments is to
 - examine one gene at a time,
 - determine a p-value that the gene is differentially expressed/methylated in different phenotypes
 - apply a correction (penalty) to the p-value for having tested multiple genes (described further below)
- This method had limitations
 - One such that; In common diseases, a large number of genes each make subtle contributions, and these genes are difficult to detect in single gene analyses.

Why GSEA?

- The conventional statistical analysis method for array experiments is to
 - examine one gene at a time,
 - determine a p-value that the gene is differentially expressed/methylated in different phenotypes
 - apply a correction (penalty) to the p-value for having tested multiple genes (described further below)
- This method had limitations
 - One such that; In common diseases, a large number of genes each make subtle contributions, and these genes are difficult to detect in single gene analyses.

We already did it previously, what now?

How do we turn this one to this visualization?

