

- 1 Mai 1 Mai

(43) International Publication Date 3 June 2004 (03.06.2004)

PCT

(10) International Publication Number WO 2004/046340 A2

(51) International Patent Classification7:

C12N

(21) International Application Number:

PCT/US2003/037047

(22) International Filing Date:

14 November 2003 (14.11.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/426,095

14 November 2002 (14.11.2002) Us

- (71) Applicant (for all designated States except US): GENEN-TECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080-4990 (US).
- (72) Inventors; and

2004/046340 A2

- (75) Inventors/Applicants (for US only): KRUMMEN, Lynne [US/US]; 3030 22nd Avenue, San Francisco, CA 94132 (US). SHEN, Amy [US/US]; 1828 Parrott Drive, San Mateo, CA 94402 (US).
- (74) Agents: STEFFES, David et al.; Sidley Austin Brown & Wood LLP, 1501 K Street, N.W., Washington, D.C. 20005 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

SEST AVAILABLE COPY

(54) Title: INTRON FUSION CONSTRUCT AND METHOD OF USING FOR SELECTING HIGH-EXPRESSING PRODUCTION CELL LINES

(57) Abstract: This invention relates to a DNA construct, methods of selecting for high-expressing host cells, a method of producing a protein of interest in high yields and a method of producing eukaryotic cells having multiple copies of a sequence encoding a protein of interest. In one method, stable clones capable of producing a high level of a product of interest are generated from one step of a direct selection immediately after transfection.

INTRON FUSION CONSTRUCT AND METHOD OF USING FOR SELECTING HIGH-EXPRESSING PRODUCTION CELL LINES

This application claims priority under 35 U.S.C. § 119(e) from U.S. provisional application serial no. 60/426,095, filed November 14, 2002, which is herein incorporated by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to a DNA construct, a method of selecting for high-expressing host cells, a method of producing a protein of interest in high yields and a method of producing eukaryotic cells having multiple copies of a sequence encoding a protein of interest.

Description of Background and Related Art

The discovery of methods for introducing DNA into living host cells in a functional form has provided the key to understanding many fundamental biological processes, and has made possible the production of important proteins and other molecules in commercially useful quantities.

Despite the general success of such gene transfer methods, several common problems exist that may limit the efficiency with which a gene encoding a desired protein can be introduced into and expressed in a host cell. One problem is knowing when the gene has been successfully transferred into recipient cells. A second problem is distinguishing between those cells that contain the gene and those that have survived the transfer procedures but do not contain the gene. A third problem is identifying and isolating those cells that contain the gene and that are expressing high levels of the protein encoded by the gene.

In general, the known methods for introducing genes into eukaryotic cells tend to be highly inefficient. Of the cells in a given culture, only a small proportion take up and express exogenously added DNA, and an even smaller proportion stably maintain that DNA.

Identification of those cells that have incorporated a product gene encoding a desired protein typically is achieved by introducing into the same cells another gene, commonly referred to

ر فهرهٔ

as a selectable gene, that encodes a selectable marker. A selectable marker is a protein that is necessary for the growth or survival of a host cell under the particular culture conditions chosen, such as an enzyme that confers resistance to an antibiotic or other drug, or an enzyme that compensates for a metabolic or catabolic defect in the host cell. For example, selectable genes commonly used with eukaryotic cells include the genes for aminoglycoside phosphotransferase (APH), hygromycin phosphotransferase (hyg), dihydrofolate reductase (DHFR), thymidine kinase (tk), neomycin resistance, puromycin resistance, glutamine synthetase, and asparagine synthetase.

The method of identifying a host cell that has incorporated one gene on the basis of expression by the host cell of a second incorporated gene encoding a selectable marker is referred to as cotransfectation (or cotransfection). In that method, a gene encoding a desired polypeptide and a selection gene typically are introduced into the host cell simultaneously. In this case of simultaneous cotransfectation, the gene encoding the desired polypeptide and the selectable gene may be present on a single DNA molecule or on separate DNA molecules prior to being introduced into the host cells. Wigler et al., Cell, 16:777 (1979). Cells that have incorporated the gene encoding the desired polypeptide then are identified or isolated by culturing the cells under conditions that preferentially allow for the growth or survival of those cells that synthesize the selectable marker encoded by the selectable gene.

The level of expression of a gene introduced into a eukaryotic host cell depends on multiple factors, including gene copy number, efficiency of transcription, messenger RNA (mRNA) processing, stability, and translation efficiency. Accordingly, high level expression of a desired polypeptide typically will involve optimizing one or more of those factors.

For example, the level of protein production may be increased by covalently joining the coding sequence of the gene to a "strong" promoter or enhancer that will give high levels of transcription. Promoters and enhancers are nucleotide sequences that interact specifically with proteins in a host cell that are involved in transcription. Kriegler, Meth. Enzymol., 185:512 (1990); Maniatis et al., Science, 236:1237 (1987). Promoters are located upstream of the coding sequence of a gene and facilitate transcription of the gene by RNA polymerase. Among the eukaryotic promoters that have been identified as strong promoters for high-level expression are the SV40 early promoter, adenovirus major late promoter, mouse metallothionein-I promoter, Rous sarcoma virus long terminal repeat, and human cytomegalovirus immediate early promoter (CMV).

Enhancers stimulate transcription from a linked promoter. Unlike promoters, enhancers are active when placed downstream from the transcription initiation site or at considerable distances from the promoter, although in practice enhancers may overlap physically and functionally with promoters. For example, all of the strong promoters listed above also contain strong enhancers. Bendig, Genetic Engineering, 7:91 (Academic Press, 1988).

The level of protein production also may be increased by increasing the gene copy number in the host cell. One method for obtaining high gene copy number is to directly introduce into the host cell multiple copies of the gene, for example, by using a large molar excess of the product gene relative to the selectable gene during cotransfectation. Kaufman, Meth. Enzymol., 185:537 (1990). With this method, however, only a small proportion of the cotransfected cells will contain the product gene at high copy number. Furthermore, because no generally applicable, convenient method exists for distinguishing such cells from the majority of cells that contain fewer copies of the product gene, laborious and time-consuming screening methods typically are required to identify the desired high-copy number transfectants.

Another method for obtaining high gene copy number involves cloning the gene in a vector that is capable of replicating autonomously in the host cell. Examples of such vectors include mammalian expression vectors derived from Epstein-Barr virus or bovine papilloma virus, and yeast 2-micron plasmid vectors. Stephens & Hentschel, <u>Biochem. J.</u>, 248:1 (1987); Yates *et al.*, <u>Nature</u>, 313:812 (1985); Beggs, <u>Genetic Engineering</u>, 2:175 (Academic Press, 1981).

Yet another method for obtaining high gene copy number involves gene amplification in the host cell. Gene amplification occurs naturally in eukaryotic cells at a relatively low frequency. Schimke, J. Biol. Chem., 263:5989 (1988). However, gene amplification also may be induced, or at least selected for, by exposing host cells to appropriate selective pressure. For example, in many cases it is possible to introduce a product gene together with an amplifiable gene into a host cell and subsequently select for amplification of the marker gene by exposing the cotransfected cells to sequentially increasing concentrations of a selective agent. Typically the product gene will be coamplified with the marker gene under such conditions.

The most widely used amplifiable gene for that purpose is a DHFR gene, which encodes a dihydrofolate reductase enzyme. The selection conditions used in conjunction with a DHFR gene are the absence of glycine, hypoxanthine and thymidine (GHT) with or without the presence of methotrexate (Mtx). A host cell is cotransfected with a product gene encoding a desired protein

and a DHFR gene, and transfectants are identified by first culturing the cells in GHT—free culture medium that may contains Mtx. A suitable host cell when a wild-type DHFR gene is used is the Chinese Hamster Ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub & Chasin, Proc. Nat. Acad. Sci. USA, 77:4216 (1980). The transfected cells then are exposed to successively higher amounts of Mtx. This leads to the synthesis of multiple copies of the DHFR gene, and concomitantly, multiple copies of the product gene. Schimke, J. Biol. Chem., 263:5989 (1988); Axel et al., U.S. Patent No. 4,399,216; Axel et al., U.S. Patent No. 4,634,665. Other references directed to co-transfection of a gene together with a genetic marker that allows for selection and subsequent amplification include Kaufman in Genetic Engineering, ed. J. Setlow (Plenum Press, New York), Vol. 9 (1987); Kaufman and Sharp, J. Mol. Biol., 159:601 (1982); Ringold et al., J. Mol. Appl. Genet., 1:165-175 (1981); Kaufman et al., Mol. Cell Biol., 5:1750-1759 (1985); Kaetzel and Nilson, J. Biol. Chem., 263:6244-6251 (1988); Hung et al., Proc. Natl. Acad. Sci. USA, 83:261-264 (1986); Kaufman et al., EMBO J., 6:87-93 (1987); Johnston and Kucey, Science, 242:1551-1554 (1988); Urlaub et al., Cell, 33:405-412 (1983).

To extend the DHFR amplification method to other cell types, a mutant DHFR gene that encodes a protein with reduced sensitivity to methotrexate may be used in conjunction with host cells that contain normal numbers of an endogenous wild-type DHFR gene. Simonsen and Levinson, <u>Proc. Natl. Acad. Sci. USA</u>, 80:2495 (1983); Wigler *et al.*, <u>Proc. Natl. Acad. Sci. USA</u>, 77:3567-3570 (1980); Haber and Schimke, <u>Somatic Cell Genetics</u>, 8:499-508 (1982).

Alternatively, host cells may be co-transfected with the product gene, a DHFR gene, and a dominant selectable gene, such as a neo^r gene. Kim and Wold, <u>Cell</u>, 42:129 (1985); Capon *et al.*, U.S. Pat. No. 4,965,199. Transfectants are identified by first culturing the cells in culture medium containing neomycin (or the related drug G418), and the transfectants so identified then are selected for amplification of the DHFR gene and the product gene by exposure to successively increasing amounts of Mtx.

As will be appreciated from this discussion, the selection of recombinant host cells that express high levels of a desired protein generally is a multi-step process. In the first step, initial transfectants are selected that have incorporated the product gene and the selectable gene. In subsequent steps, the initial transfectants are subject to further selection for high-level expression of the selectable gene and then random screening for high-level expression of the product gene. To identify cells expressing high levels of the desired protein, typically one must screen large numbers

of transfectants. The majority of transfectants produce less than maximal levels of the desired protein. Further, Mtx resistance in DHFR transformants is at least partially conferred by varying degrees of gene amplification. Schimke, <u>Cell</u>, 37:705-713 (1984). The inadequacies of co-expression of the non-selected gene have been reported by Wold *et al.*, <u>Proc. Natl. Acad. Sci. USA</u>, 76:5684-5688 (1979). Instability of the amplified DNA is reported by Kaufman and Schimke, <u>Mol. Cell Biol.</u>, 1:1069-1076 (1981); Haber and Schimke, <u>Cell</u>, 26:355-362 (1981); and Fedespiel *et al.*, J. Biol. Chem., 259:9127-9140 (1984).

Several methods have been described for directly selecting such recombinant host cells in a single step. One strategy involves co-transfecting host cells with a product gene and a DHFR gene, and selecting those cells that express high levels of DHFR by directly culturing in medium containing a high concentration of Mtx. Many of the cells selected in that manner also express the co-transfected product gene at high levels Page and Sydenham, Bio/Technology, 9:64 (1991). This method for single-step selection suffers from certain drawbacks that limit its usefulness. High-expressing cells obtained by direct culturing in medium containing a high level of a selection agent may have poor growth and stability characteristics, thus limiting their usefulness for long-term production processes Page and Snyderman, Bio/Technology, 9:64 (1991). Single-step selection for high-level resistance to Mtx may produce cells with an altered, Mtx-resistant DHFR enzyme, or cells that have altered Mtx transport properties, rather than cells containing amplified genes. Haber et al., J. Biol. Chem., 256:9501 (1981); Assaraf and Schimke, Proc. Natl. Acad. Sci. USA, 84:7154 (1987).

Another method involves the use of polycistronic mRNA expression vectors containing a product gene at the 5' end of the transcribed region and a selectable gene at the 3' end. Because translation of the selectable gene at the 3' end of the polycistronic mRNA is inefficient, such vectors exhibit preferential translation of the product gene and require high levels of polycistronic mRNA to survive selection. Kaufman, Meth. Enzymol., 185:487 (1990); Kaufman, Meth. Enzymol., 185:537 (1990); Kaufman et al., EMBO J., 6:187 (1987). Accordingly, cells expressing high levels of the desired protein product may be obtained in a single step by culturing the initial transfectants in medium containing a selection agent appropriate for use with the particular selectable gene. However, the utility of these vectors is variable because of the unpredictable influence of the upstream product reading frame on selectable marker translation and because the upstream reading frame sometimes becomes deleted during methotrexate amplification (Kaufman

et al., J. Mol. Biol., 159:601-621 (1982); Levinson, Methods in Enzymology, San Diego: Academic Press, Inc. (1990)). Later vectors incorporated an internal translation initiation site derived from members of the picornavirus family which is positioned between the product gene and the selectable gene (Pelletier et al., Nature, 334:320 (1988); Jang et al., J. Virol., 63:1651 (1989)).

A third method for single-step selection involves use of a DNA construct with a selectable gene containing an intron within which is located a gene encoding the protein of interest. See U.S. Patent No. 5,043,270 and Abrams *et al.*, J. Biol. Chem., 264(24): 14016-14021 (1989). In yet another single-step selection method, host cells are co-transfected with an intron-modified selectable gene and a gene encoding the protein of interest. See WO 92/17566, published October 15, 1992. The intron-modified gene is prepared by inserting into the transcribed region of a selectable gene an intron of such length that the intron is correctly spliced from the corresponding mRNA precursor at low efficiency, so that the amount of selectable marker produced from the intron-modified selectable gene is substantially less than that produced from the starting selectable gene. These vectors help to insure the integrity of the integrated DNA construct, but transcriptional linkage is not achieved as selectable gene and the protein gene are driven by separate promoters.

Other mammalian expression vectors that have single transcription units have been described. Retroviral vectors have been constructed (Cepko *et al.*, <u>Cell.</u>, 37:1053-1062 (1984)) in which a cDNA is inserted between the endogenous Moloney murine leukemia virus (M-MuLV) splice donor and splice acceptor sites which are followed by a neomycin resistance gene. This vector has been used to express a variety of gene products following retroviral infection of several cell types.

A method for selecting recombinant host cells expressing high levels of a desired protein was previously described by the applicants in Lucas *et al.*, Nucleic Acid Research, 24, No. 9: 1774-1779 and U.S. Patent No. 5,561,053. That method utilizes eukaryotic host cells harboring a DNA construct comprising a selectable gene (preferably an amplifiable gene) and a product gene provided 3' to the selectable gene. The selectable gene is positioned within an intron defined by a splice donor site and a splice acceptor site and the selectable gene and product gene are under the transcriptional control of a single transcriptional regulatory region. The splice donor site is generally an efficient splice donor site and thereby regulates expression of the product gene using the transcriptional regulatory region. The transfected cells are cultured so as to express the gene encoding the product in a selective medium which may contain an amplifying agent for sufficient

time to allow cells having multiple copies of the product gene, or cells with a single (or multiple) copy of the gene in a chromosomal loci with high transcriptional activity to be identified.

Other fusion expression constructs have been developed. For example, a fusion of green flourescent protein with the Zeocin-resistance marker construct has been created. Bennet, R.P. et al., <u>Biotechniques</u>. 24(3):478-82, 1998 March. Such constructs were used to allow visual screening and drug selection of transfected eukaryotic cells.

In another example, human prothrombin was overexpressed in transformed eukaryotic cells using a dominant bifunctional selection and amplification marker. Herlitschka, Sabine E. et al., Protein Expression and Purification. 8, 358-364, 1996 July. In this reference the marker consisted of the murine wild-type dihydrofolate reductase cDNA and the E. coli hygromycin phosphotransferase gene fused in frame. The gene of interest is connected, upstream, by the EMCV untranslated region to the fusion marker gene, forming a dicistronic transcription unit.

With the state of the art in mind, it is one object of the present invention to increase the level of homogeneity with regard to expression levels of stable clones transfected with a product gene of interest, by expressing fused selectable markers (i.e. DHFR and puromycin) and a protein of interest from a single promoter.

It is another object to provide a method for selecting stable, recombinant host cells that express high levels of a desired protein product, which method is rapid and convenient to perform, and reduces the numbers of transfected cells which need to be screened. Furthermore, it is an object to allow high levels of single and multiple unit polypeptides to be rapidly generated from clones or pools of stable host cell transfectants.

It is an additional object to provide expression vectors which bias for active integration events (i.e. have an increased tendency to generate transformants wherein the DNA construct is inserted into a region of the genome of the host cell which results in high level expression of the product gene) and can accommodate a variety of product genes without the need for modification.

SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to a DNA construct (DNA molecule) comprising a 5' transcriptional initiation site and a 3' transcriptional termination site, two selectable genes that have been fused into one open reading frame (preferably amplifiable genes) and a product gene provided 3' to the fused selectable genes, a transcriptional regulatory region

regulating transcription of both the fused selectable genes and the product gene, the fused selectable genes positioned within an intron defined by a splice donor site and a splice acceptor site. The splice donor site preferably comprises an effective splice donor sequence as herein defined and thereby regulates expression of the product gene using the transcriptional regulatory region.

In another embodiment, the invention provides a method for producing a product of interest comprising culturing a eukaryotic cell which has been transfected with the DNA construct described above, so as to express the product gene and recovering the product.

In a further embodiment, the invention provides a method for producing eukaryotic cells having multiple copies of the product gene comprising transfecting eukaryotic cells with the DNA construct described above (where the selectable fused genes are amplifiable genes), growing the cells in a selective medium comprising an amplifying agent(s) for a sufficient time for amplification to occur, and selecting cells having multiple copies of the product gene. After transfection of the host cells, most of the transfectants fail to exhibit the selectable phenotype characteristic of the protein encoded by either of the selectable genes, but surprisingly a small proportion of the transfectants do exhibit one or both of the selectable phenotype, and among those transfectants, the majority are found to express high levels of the desired product encoded by the product gene. Thus, the invention provides an improved method for the selection of recombinant host cells expressing high levels of a desired product, which method is useful with a wide variety of eukaryotic host cells and avoids the problems inherent in, and improves upon, existing cell selection technology.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates schematically the construction of the pSV.IPD. The gene for the protein of interest would be inserted at the polylinker site.

Figures 2-1 to 2-4 depict the nucleotide sequence of the pSV.IPUR plasmid used in constructing pSV.IPD (SEQ ID NO 1).

Figures 3-1 to 3-4 depict the nucleotide sequence of the pSV.ID plasmid used in constructing pSV.IPD (SEQ ID NO 2).

Figures 4-1 to 4-4 depict the nucleotide sequence of the pSV.IPD (SEQ ID NO 3).

Figure 5 illustrates schematically the plasmid, pSV.ID.VEGF, used as a control in Example 1.

Figure 6 illustrates schematically the plasmid, pSV.IPD.2C4, used in Example 1 (SEQ ID NO 4).

Figures 7-1 to 7-8 depict the nucleotide sequence of the pSV.IPD.2C4 plasmid used in Example 1.

Figure 8 depicts a FACS analysis of transiently transfected CHO cells with a GTP plasmid in 250ml spinner transfection. FACS analysis was performed 24 hours after transfection.

Figure 9 depicts the expression level of clones from traditional 10nM MTX selection. Cells were transfected with commercial transfection reagent and directly selected in 10 nM MTX. Individual clones were grown in a 96-well plate. Product accumulated for 6 days prior to ELISA.

Figures 10-1 and 10-2 depict the expression level of clones from 25 and 50 nM MTX direct selections, respectively, of SV40-based constructs derived from spinner transfection. The assay was performed the same as in Figure 9.

Figure 11 depicts the expression level of clones from 25 nM MTX direct selection of CMV-based construct derived from spinner transfection. The assay was performed the same as in Figure 9.

Figure 12 depicts the titer evaluation in Miniferm. Samples were collected every day and submitted to an HPLC protein A assay for titer.

Figure 13-1 to 13-7 depict the nucleotide sequence of the pCMV.IPD.Heterologous polypeptide (HP) plasmid used in Example 3.

Figure 14-1 to 14-8 depicts the nucleotide sequence of the pSV40.IPD.HP plasmid used in Example 3.

Figure 15 illustrates schematically the plasmid, pCMV.IPD.HP, used in Example 3.

Figure 16 illustrates a time line and titer comparison between a traditional selection and direct selection method described in Example 3. Equivalent titers are indicated horizontally across the illustration. For example, the titers for a 200/300nM SV40-plasmid traditional selection, 100nM SV40-plasmid direct selection and 25nm CMV-plasmid direct selection are roughly equivalent.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Definitions:

The "DNA construct" disclosed herein comprises a non-naturally occurring DNA molecule or chemical analog which can either be provided as an isolate or integrated in another DNA molecule *e.g.* in an expression vector or the chromosome of an eukaryotic host cell.

The term "selectable gene" as used herein refers to a DNA that encodes a selectable marker necessary for the growth or survival of a host cell under the particular cell culture conditions chosen. Accordingly, a host cell that is transformed with a selectable gene will be capable of growth or survival under certain cell culture conditions wherein a non-transfected host cell is not capable of growth or survival. Typically, a selectable gene will confer resistance to a drug or compensate for a metabolic or catabolic defect in the host cell. Examples of selectable genes are provided in the following table. See also Kaufman, Methods in Enzymology, 185: 537-566 (1990), for a review of these.

"Fused selectable genes" as used herein refers to a DNA that encodes at least two selectable markers in the same open reading frame and inserted into an intron sequence.

<u>TABLE 1</u>
Examples of <u>Selectable Genes and their Selection Agents</u>

Selection Agent	Selectable Gene		
Puromycin	Puromycin-N-acetyltransferase		
Methotrexate	Dihydrofolate reductase		
Cadmium	Metallothionein		
PALA	CAD		
Xyl-A-or adenosine and 2'- deoxycoformycin	Adenosine deaminase		
Adenine, azaserine, and coformycin	Adenylate deaminase		
6-Azauridine, pyrazofuran	UMP Synthetase		
Mycophenolic acid	IMP 5'-dehydrogenase		
Mycophenolic acid with limiting	Xanthine-guanine		
xanthine	phosphoribosyltransferase		
Hypoxanthine, aminopterin, and	Mutant HGPRTase or mutant		
thymidine (HAT)	thymidine kinase		
5-Fluorodeoxyuridine	Thymidylate synthetase		
Multiple drugs e.g. adriamycin,	P-glycoprotein 170		
vincristine or colchicine			
Aphidicolin	Ribonucleotide reductase		
Methionine sulfoximine	Glutamine synthetase		

β-Aspartyl hydroxamate or Albizziin	Asparagine synthetase	
Canavanine	Arginosuccinate synthetase	
α-Difluoromethylornithine	Ornithine decarboxylase	
Compactin	HMG-CoA reductase	
Tunicamycin	N-Acetylglucosaminyl transferase	
Borrelidin	Threonyl-tRNA synthetase	
Ouabain	Na ⁺ K ⁺ -ATPase	

The preferred selectable genes are amplifiable genes. As used herein, the term "amplifiable gene" refers to a gene which is amplified (*i.e.* additional copies of the gene are generated which survive in intrachromosomal or extrachromosomal form) under certain conditions. The amplifiable gene(s) usually encodes an enzyme (*i.e.* an amplifiable marker) which is required for growth of eukaryotic cells under those conditions. For example, the gene may encode DHFR which is amplified when a host cell transformed therewith is grown in Mtx. According to Kaufman, the selectable genes in Table 1 above can also be considered amplifiable genes. An example of a selectable gene which is generally not considered to be an amplifiable gene is the neomycin resistance gene (Cepko *et al.*, *supra*).

As used herein, "selective medium" refers to nutrient solution used for growing eukaryotic cells which have the selectable gene(s) and therefore is deficient in components supplied by the selectable gene or includes a "selection agent". Commercially available media based on formulations such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are exemplary nutrient solutions. In addition, any of the media described in Ham and Wallace, Meth. Enz., 58:44 (1979), Barnes and Sato, Anal. Biochem., 102:255 (1980), U.S. Patent Nos. 4,767,704; 4,657,866; 4,927,762; or 4,560,655; WO 90/03430; WO 87/00195; U.S. Patent Re. 30,985; or U.S. Patent No. 5,122,469, the disclosures of all of which are incorporated herein by reference, may be used as culture media. Any of these media may be supplemented as necessary with hormones and/or other

growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The preferred nutrient solution comprises fetal bovine serum.

The term "selection agent" refers to a substance that interferes with the growth or survival of a host cell possibly because the cell is deficient in a particular selectable gene. Examples of selection agents are presented in Table 1 above. The selection agent preferably comprises an "amplifying agent" which is defined for purposes herein as an agent for amplifying copies of the amplifiable gene or causing integration of multiple copies of the amplifiable gene into the genome, such as Mtx if the amplifiable gene is DHFR. See Table 1 for examples of amplifying agents.

As used herein, the terms "direct selection" or "direct culturing" means the first exposure to selective conditions either without MTX or GHT or with MTX, and production of a heterologous polypeptide in an amount of about 250mg/l, 400mg/l, 600mg/l or 800mg/l up to about 1g/l or more.

As used herein, the term "transcriptional initiation site" refers to the nucleic acid in the DNA construct corresponding to the first nucleic acid incorporated into the primary transcript, *i.e.*, the mRNA precursor, which site is generally provided at, or adjacent to, the 5' end of the DNA construct.

The term "transcriptional termination site" refers to a sequence of DNA, normally represented at the 3' end of the DNA construct, that causes RNA polymerase to terminate transcription.

As used herein, "transcriptional regulatory region" refers to a region of the DNA construct that regulates transcription of the selectable gene and the product gene. The transcriptional regulatory region normally refers to a promoter sequence (*i.e.* a region of DNA involved in binding of RNA polymerase to initiate transcription) which can be constitutive or inducible and, optionally, an enhancer (*i.e.* a cis-acting DNA element, usually from about 10-300 bp, that acts on a promoter to increase its transcription).

As used herein, "product gene" refers to DNA that encodes a desired protein or polypeptide product. Any product gene that is capable of expression in a host cell may be used, although the methods of the invention are particularly suited for obtaining high-level expression of a product gene that is not also a selectable or amplifiable gene. Accordingly, the protein or polypeptide encoded by a product gene typically will be one that is not necessary for the growth or survival of a host cell under the particular cell culture conditions chosen. For example, product genes suitably encode a peptide, or may encode a polypeptide sequence of amino acids for which the chain length is sufficient to produce higher levels of tertiary and/or quaternary structure.

Examples of bacterial polypeptides or proteins include, e.g., alkaline phosphatase and βlactamase. Examples of mammalian polypeptides or proteins include molecules such as renin; a growth hormone, including human growth hormone, and bovine growth hormone; growth hormone releasing factor; parathyroid hormone; thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and -beta; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (MIP-1-alpha); a serum albumin such as human serum albumin; mullerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; a microbial protein, such as beta-lactamase; DNase; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; integrin; protein A or D; rheumatoid factors; a neurotrophic factor such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF-B; platelet-derived growth factor (PDGF); fibroblast growth factor such as aFGF and bFGF; epidermal growth factor (EGF); transforming growth factor (TGF) such as TGF-alpha and TGF-beta, including TGF-β1, TGF-β2, TGF-β3, TGF-β4, or TGF-β5; insulin-like growth factor-I and -II (IGF-I and IGF-II); des(1-3)-IGF-I (brain IGF-I), insulin-like growth factor binding proteins; CD proteins such as CD-3, CD-4, CD-8, and CD-19; erythropoietin; osteoinductive factors; immunotoxins; a bone morphogenetic protein (BMP); an interferon such as interferon-alpha, -beta, and -gamma; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF,

and G-CSF; interleukins (ILs), e.g., IL-1 to IL-10; superoxide dismutase; T-cell receptors; surface membrane proteins; decay accelerating factor; viral antigen such as, for example, a portion of the AIDS envelope; transport proteins; homing receptors; addressins; regulatory proteins; antibodies; chimeric proteins such as immunoadhesins and fragments of any of the above-listed polypeptides.

The product gene preferably does not consist of an anti-sense sequence for inhibiting the expression of a gene present in the host. Preferred proteins herein are therapeutic proteins such as TGF-β, TGF-α, PDGF, EGF, FGF, IGF-I, DNase, plasminogen activators such as t-PA, clotting factors such as tissue factor and factor VIII, hormones such as relaxin and insulin, cytokines such as IFN-γ, chimeric proteins such as TNF receptor IgG immunoadhesin (TNFr-IgG) or antibodies such as anti-IgE. An example of an antibody that can be produced with the pSV.IDP plasmid (Figure 4) is anti-HER2 Neu antibody, 2C4, as provided in Example 1, *supra*.

The term "intron" as used herein refers to a nucleotide sequence present within the transcribed region of a gene or within a messenger RNA precursor, which nucleotide sequence is capable of being excised, or spliced, from the messenger RNA precursor by a host cell prior to translation. Introns suitable for use in the present invention are suitably prepared by any of several methods that are well known in the art, such as purification from a naturally occurring nucleic acid or de novo synthesis. The introns present in many naturally occurring eukaryotic genes have been identified and characterized. Mount, Nuc. Acids Res., 10:459 (1982). Artificial introns comprising functional splice sites also have been described. Winey et al., Mol. Cell Biol., 9:329 (1989); Gatermann et al., Mol. Cell Biol., 9:1526 (1989). Introns may be obtained from naturally occurring nucleic acids, for example, by digestion of a naturally occurring nucleic acid with a suitable restriction endonuclease, or by PCR cloning using primers complementary to sequences at the 5' and 3' ends of the intron. Alternatively, introns of defined sequence and length may be prepared synthetically using various methods in organic chemistry. Narang et al., Meth. Enzymol., 68:90 (1979); Caruthers et al., Meth. Enzymol., 154:287 (1985); Froehler et al., Nuc. Acids Res., 14:5399 (1986).

As used herein "splice donor site" or "SD" refers to the DNA sequence immediately surrounding the exon-intron boundary at the 5' end of the intron, where the "exon" comprises the nucleic acid 5' to the intron. Many splice donor sites have been characterized and Ohshima et al., <u>J. Mol. Biol.</u>, 195:247-259 (1987) provides a review of these. An "efficient splice donor sequence" refers to a nucleic acid sequence encoding a splice donor site wherein the efficiency of splicing of

messenger RNA precursors having the splice donor sequence is between about 80 to 99% and preferably 90 to 95% as determined by quantitative PCR. Examples of efficient splice donor sequences include the wild type (WT) ras splice donor sequence and the GAC:GTAAGT sequence of Example 3. Other efficient splice donor sequences can be readily selected using the techniques for measuring the efficiency of splicing disclosed herein.

The terms "PCR" and "polymerase chain reaction" as used herein refer to the *in vitro* amplification method described in US Patent No. 4,683,195 (issued July 28, 1987). In general, the PCR method involves repeated cycles of primer extension synthesis, using two DNA primers capable of hybridizing preferentially to a template nucleic acid comprising the nucleotide sequence to be amplified. The PCR method can be used to clone specific DNA sequences from total genomic DNA, cDNA transcribed from cellular RNA, viral or plasmid DNAs. Wang & Mark, in PCR Protocols, pp.70-75 (Academic Press, 1990); Scharf, in PCR Protocols, pp. 84-98; Kawasaki & Wang, in PCR Technology, pp. 89-97 (Stockton Press, 1989). Reverse transcription-polymerase chain reaction (RT-PCR) can be used to analyze RNA samples containing mixtures of spliced and unspliced mRNA transcripts. Fluorescently tagged primers designed to span the intron are used to amplify both spliced and unspliced targets. The resultant amplification products are then separated by gel electrophoresis and quantitated by measuring the fluorescent emission of the appropriate band(s). A comparison is made to determine the amount of spliced and unspliced transcripts present in the RNA sample.

One preferred splice donor sequence is a "consensus splice donor sequence". The nucleotide sequences surrounding intron splice sites, which sequences are evolutionarily highly conserved, are referred to as "consensus splice donor sequences". In the mRNAs of higher eukaryotes, the 5' splice site occurs within the consensus sequence AG:GUAAGU (wherein the colon denotes the site of cleavage and ligation). In the mRNAs of yeast, the 5' splice site is bounded by the consensus sequence :GUAUGU. Padgett, et al., Ann. Rev. Biochem., 55:1119 (1986).

The expression "splice acceptor site" or "SA" refers to the sequence immediately surrounding the intron-exon boundary at the 3' end of the intron, where the "exon" comprises the nucleic acid 3' to the intron. Many splice acceptor sites have been characterized and Ohshima et al., J. Mol. Biol., 195:247-259 (1987) provides a review of these. The preferred splice acceptor site is an efficient splice acceptor site which refers to a nucleic acid sequence encoding a splice

acceptor site wherein the efficiency of splicing of messenger RNA precursors having the splice acceptor site is between about 80 to 99% and preferably 90 to 95% as determined by quantitative PCR. The splice acceptor site may comprise a consensus sequence. In the mRNAs of higher eukaryotes, the 3' splice acceptor site occurs within the consensus sequence (U/C)₁₁NCAG:G. In the mRNAs of yeast, the 3' acceptor splice site is bounded by the consensus sequence (C/U)AG:. Padgett, et al., supra.

As used herein "culturing for sufficient time to allow amplification to occur" refers to the act of physically culturing the eukaryotic host cells which have been transformed with the DNA construct in cell culture media containing the amplifying agent, until the copy number of the amplifiable gene (and preferably also the copy number of the product gene) in the host cells has increased relative to the transformed cells prior to this culturing.

The term "expression" as used herein refers to transcription or translation occurring within a host cell. The level of expression of a product gene in a host cell may be determined on the basis of either the amount of corresponding mRNA that is present in the cell or the amount of the protein encoded by the product gene that is produced by the cell. For example, mRNA transcribed from a product gene is desirably quantitated by northern hybridization or quantitative real-time PCR. Sambrook, et al., Molecular Cloning: A Laboratory Manual, pp. 7.3-7.57 (Cold Spring Harbor Laboratory Press, 1989). Protein encoded by a product gene can be quantitated either by assaying for the biological activity of the protein or by employing assays that are independent of such activity, such as western blotting or radioimmunoassay using antibodies that are capable of reacting with the protein. Sambrook, et al., Molecular Cloning: A Laboratory Manual, pp. 18.1-18.88 (Cold Spring Harbor Laboratory Press, 1989).

Modes for Carrying Out the Invention

Methods and compositions are provided for enhancing the stability and/or copy number of a transcribed sequence in order to allow for elevated levels of a RNA sequence of interest. In general, the methods of the present invention involve transfecting a eukaryotic host cell with an expression vector comprising both a product gene encoding a desired polypeptide and fused selectable genes.

Selectable genes and product genes may be obtained from genomic DNA, cDNA transcribed from cellular RNA, or by *in vitro* synthesis. For example, libraries are screened with

probes (such as antibodies or oligonucleotides of about 20-80 bases) designed to identify the selectable gene or the product gene (or the protein(s) encoded thereby). Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in chapters 10-12 of Sambrook *et al.*, Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the selectable gene or product gene is to use PCR methodology as described in section 14 of Sambrook *et al.*, *supra*.

A preferred method of practicing this invention is to use carefully selected oligonucleotide sequences to screen cDNA libraries from various tissues known to contain the selectable gene or product gene. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized.

The oligonucleotide generally is labeled such that it can be detected upon hybridization to DNA in the library being screened. The preferred method of labeling is to use ³²P- labeled ATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide. However, other methods may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labeling.

Sometimes, the DNA encoding the fused selectable genes and product gene is preceded by DNA encoding a signal sequence having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the expression vector, or it may be a part of the selectable gene or product gene that is inserted into the expression vector. If a heterologous signal sequence is used, it preferably is one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For yeast secretion the native signal sequence may be substituted by, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Khuveromyces α-factor leaders, the latter described in U.S. Pat. No. 5,010,182 issued 23 April 1991), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression the native signal sequence of the protein of interest is satisfactory, although other mammalian signal sequences may be suitable, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders, for example, the herpes simplex gD signal. The DNA for such precursor region is ligated in reading frame to the fused selectable genes or product gene.

As shown in Figure 1, the fused selectable genes are generally provided at the 5' end of the DNA construct and are followed by the product gene (which would be inserted into the linker site). Therefore, the full-length (non-spiced) message will contain, for example, the PURO-DHFR fusion as the first open reading frame and will therefore generate PURO-DHFR protein to allow selection of stable transfectants. The full length message is not expected to generate appreciable amounts of the protein of interest as the second AUG in a dicistronic message is an inefficient initiator of translation in mammalian cells (Kozak, J. Cell Biol., 115: 887-903 (1991)).

The fused selectable genes are positioned within an intron. Introns are noncoding nucleotide sequences, normally present within many eukaryotic genes, which are removed from newly transcribed mRNA precursors in a multiple-step process collectively referred to as splicing.

A single mechanism is thought to be responsible for the splicing of mRNA precursors in mammalian, plant, and yeast cells. In general, the process of splicing requires that the 5' and 3' ends of the intron be correctly cleaved and the resulting ends of the mRNA be accurately joined, such that a mature mRNA having the proper reading frame for protein synthesis is produced. Analysis of a variety of naturally occurring and synthetically constructed mutant genes has shown that nucleotide changes at many of the positions within the consensus sequences at the 5' and 3' splice sites have the effect of reducing or abolishing the synthesis of mature mRNA. Sharp, Science, 235:766 (1987); Padgett, et al., Ann. Rev. Biochem., 55:1119 (1986); Green, Ann. Rev. Genet., 20:671 (1986). Mutational studies also have shown that RNA secondary structures involving splicing sites can affect the efficiency of splicing. Solnick, Cell, 43:667 (1985); Konarska, et al., Cell, 42:165 (1985).

The length of the intron may also affect the efficiency of splicing. By making deletion mutations of different sizes within the large intron of the rabbit beta-globin gene, Wieringa, et al. determined that the minimum intron length necessary for correct splicing is about 69 nucleotides. Cell, 37:915 (1984). Similar studies of the intron of the adenovirus E1A region have shown that an intron length of about 78 nucleotides allows correct splicing to occur, but at reduced efficiency. Increasing the length of the intron to 91 nucleotides restores normal splicing efficiency, whereas truncating the intron to 63 nucleotides abolishes correct splicing. Ulfendahl, et al., Nuc. Acids Res., 13:6299 (1985).

To be useful in the invention, the intron must have a length such that splicing of the intron from the mRNA is efficient. The preparation of introns of differing lengths is a routine matter,

involving methods well known in the art, such as *de novo* synthesis or *in vitro* deletion mutagenesis of an existing intron. Typically, the intron will have a length of at least about 150 nucleotides, since introns which are shorter than this tend to be spliced less efficiently. The upper limit for the length of the intron can be up to 30 kB or more. However, as a general proposition, the intron is generally less than about 10 kB in length.

The intron is modified to contain the fused selectable genes not normally present within the intron using any of the various known methods for modifying a nucleic acid *in vitro*. Typically, the fused selectable genes will be introduced into an intron by first cleaving the intron with a restriction endonuclease, and then covalently joining the resulting restriction fragments to the fused selectable genes in the correct orientation for host cell expression, for example by ligation with a DNA ligase enzyme.

The DNA construct is dicistronic, *i.e.* the fused selectable genes and product gene are both under the transcriptional control of a single transcriptional regulatory region. As mentioned above, the transcriptional regulatory region comprises a promoter. Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman *et al.*, <u>J. Biol. Chem.</u>, **255**:2073 (1980)) or other glycolytic enzymes (Hess *et al.*, <u>J. Adv. Enzyme Reg.</u>, 7:149 (1968); and Holland, <u>Biochemistry</u>, **17**:4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in Hitzeman *et al.*, EP 73,657A. Yeast enhancers also are advantageously used with yeast promoters.

Expression control sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide.

Product gene transcription from vectors in mammalian host cells is controlled by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40) or cytomegalovirus (CMV), from heterologous mammalian promoters, e.g. the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the product gene, provided such promoters are compatible with the host cell systems. Promoters endogenous to the host cell system, such as the CHO Elongation Factor 1 alpha promoter may also be used.

The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. Fiers et al., Nature, 273:113 (1978); Mulligan and Berg, Science, 209:1422-1427 (1980); Pavlakis et al., Proc. Natl. Acad. Sci. USA, 78:7398-7402 (1981). The immediate early promoter of the human cytomegalovirus (CMV) is conveniently obtained as a HindIII E restriction fragment. Greenaway et al., Gene, 18:355-360 (1982). A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. 4,419,446. A modification of this system is described in U.S. 4,601,978. See also Gray et al., Nature, 295:503-508 (1982) on expressing cDNA encoding immune interferon in monkey cells; , Reyes et al., Nature, 297:598-601 (1982) on expression of human β-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus, Canaani and Berg, Proc. Natl. Acad. Sci. USA, 79:5166-5170 (1982) on expression of the human interferon \$1 gene in cultured mouse and rabbit cells, and Gorman et al., Proc. Natl. Acad. Sci. USA, 79:6777-6781 (1982) on expression of bacterial CAT sequences in CV-1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, HeLa cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter.

Preferably the transcriptional regulatory region in higher eukaryotes comprises an enhancer sequence. Enhancers are relatively orientation and position independent having been found 5' (Lainins et al., Proc. Natl. Acad. Sci. USA, 78:993 (1981)) and 3' (Lusky et al., Mol. Cell Bio., 3:1108 (1983)) to the transcription unit, within an intron (Banerji et al., Cell, 33:729 (1983)) as well as within the coding sequence itself (Osborne et al., Mol. Cell Bio., 4:1293 (1984)). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-

fetoprotein and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer (CMV), the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature, 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the product gene, but is preferably located at a site 5' from the promoter.

The DNA construct of the present invention has a transcriptional initiation site following the transcriptional regulatory region and a transcriptional termination region following the product gene (see, e.g., Figure 1). These sequences are provided in the DNA construct using techniques which are well known in the art.

The DNA construct normally forms part of an expression vector which may have other components such as an origin of replication (*i.e.*, a nucleic acid sequence that enables the vector to replicate in one or more selected host cells) and, if desired, one or more additional selectable gene(s). Construction of suitable vectors containing the desired coding and control sequences employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required.

Generally, in cloning vectors the origin of replication is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known. The 2µ plasmid origin of replication is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).

Most expression vectors are "shuttle" vectors, *i.e.*, they are capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in *E. coli* and then the same vector is transfected into yeast or mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.

For analysis to confirm correct sequences in plasmids constructed, plasmids from the transformants are prepared, analyzed by restriction, and/or sequenced by the method of Messing et

al., Nucleic Acids Res., 9:309 (1981) or by the method of Maxam et al., Methods in Enzymology, 65:499 (1980).

The expression vector having the DNA construct prepared as discussed above is transformed into a eukaryotic host cell. Suitable host cells for cloning or expressing the vectors herein are yeast or higher eukaryote cells.

Eukaryotic microbes such as filamentous fungi or yeast are suitable hosts for vectors containing the product gene. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as S. pombe (Beach and Nurse, Nature, 290:140 (1981)), Kluyveromyces lactis (Louvencourt et al., J. Bacteriol., 737 (1983)), kyarrowia (EP 402,226), Pichia pastoris (EP 183,070), Trichoderma reesia (EP 244,234), Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 (1979)), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 (1983); Tilburn et al., Gene, 26:205-221 (1983); Yelton et al., Proc. Natl. Acad. Sci. USA, 81:1470-1474 (1984)) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 (1985)).

Suitable host cells for the expression of the product gene are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as *Spodoptera frugiperda* (caterpillar), *Aedes aegypti* (mosquito), *Aedes albopictus* (mosquito), *Drosphila melanogaster* (fruitfly), and *Bombyx mori* host cells have been identified. See, e.g., Luckow *et al.*, Bio/Technology, 6:47-55 (1988); Miller *et al.*, in Genetic Engineering, Setlow, J.K. *et al.*, eds., Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda *et al.*, Nature, 315:592-594 (1985). A variety of such viral strains are publicly available, e.g., the L-1 variant of *Autographa californica* NPV and the Bm-5 strain of *Bombyx mori* NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of *Spodoptera frugiperda* cells.

Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected by incubation with certain strains of the bacterium *Agrobacterium tumefaciens*, which has been previously manipulated to contain the product gene. During incubation of the plant cell culture with *A. tumefaciens*, the product gene is

transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the product gene. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker *et al.*, J. Mol. Appl. Gen., 1:561 (1982). In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue. EP 321,196 published 21 June 1989.

However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (<u>Tissue Culture</u>, Academic Press, Kruse and Patterson, editors (1973)). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham *et al.*, J. Gen Virol., **36**:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, <u>Proc. Natl. Acad. Sci. USA</u>, 77:4216 (1980)); dp12.CHO cells (EP 307,247 published 15 March 1989); mouse sertoli cells (TM4, Mather, <u>Biol. Reprod.</u>, **23**:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather *et al.*, <u>Annals N.Y. Acad. Sci.</u>, **383**:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).

Host cells are transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) may be used. General aspects of mammalian cell host system transformations have been described by Axel in U.S. 4,399,216 issued 16 August 1983. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829

(1979). However, other methods for introducing DNA into cells such as by nuclear injection or by protoplast fusion may also be used.

In preferred embodiments the DNA is introduced into the host cells using electroporation, lipofection or polyfection techniques. In a particularly preferred embodiment, the transfection is performed in a spinner vessel as illustrated by Example 3 or in some other form of suspension culture. Transfection performed in a spinner vessel is also referred to as "spinner transfection". Culturing the cells in suspension allows them to reach a cell density of at least about 5x10⁵/ml and more preferrably at least about 1.5x10⁶/ml prior to transfection. See Andreason, J. Tiss. Cult. Meth., 15:56-62 (1993), for a review of electroporation techniques useful for practicing the claimed invention. It was discovered that these techniques for introducing the DNA construct into the host cells are preferable over calcium phosphate precipitation techniques insofar as the latter could cause the DNA to break up and form concatemers.

The mammalian host cells used to express the product gene herein may be cultured in a variety of media as discussed in the definitions section above. The media is formulated to provide selective nutrient conditions or a selection agent to select transformed host cells which have taken up the DNA construct (either as an intra- or extra-chromosomal element). To achieve selection of the transformed eukaryotic cells, the host cells may be grown in cell culture plates and individual colonies expressing one or both of the selectable genes (and thus the product gene) can be isolated and grown in growth medium under defined conditions. The host cells are then analyzed for transcription and/or transformation as discussed below. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)), dot blotting (DNA or mRNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Various labels may be employed, most commonly radioisotopes, particularly ³²P. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescence, enzymes, or the like. Alternatively, antibodies may be employed that can recognize specific

duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in the present invention is described by Hsu *et al.*, Am. J. Clin. Path., 75:734-738 (1980).

In the preferred embodiment protein expression is measured using ELISA as described in Example 1 herein.

The product of interest preferably is recovered from the culture medium as a secreted polypeptide, although it also may be recovered from host cell lysates when directly expressed without a secretory signal. When the product gene is expressed in a recombinant cell other than one of human origin, the product of interest is completely free of proteins or polypeptides of human origin. However, it is necessary to purify the product of interest from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to the product of interest. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. The product of interest thereafter is purified from contaminant soluble proteins and polypeptides, for example, by fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel electrophoresis using, for example, Sephadex G-75; chromatography on plasminogen columns to bind the product of interest and protein A Sepharose columns to remove contaminants such as IgG.

The following examples are offered by way of illustration only and are not intended to limit the invention in any manner. All patent and literature references cited herein are expressly incorporated by reference.

EXAMPLE 1

2C4 production using the fusion construct expression vector

Vectors related to those described by Lucas et al (Lucas BK, Giere LM, DeMarco RA, Shen A, Chisholm V and Crowley C. High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. (1996) Nucleic Acids Res. 24(9), 1774-1779.), which contain an intron between the SV40 promoter and enhancer and the cDNA that encodes the polypeptide of interest, were constructed. The intron is boardered on its 3' and 5' ends, respectively, by a splice donor site derived from cytomegalovirus immediate early gene (CMVIE), and a splice acceptor site from an IgG heavy chain variable region (V_H) gene (Eaton *et al.*, <u>Biochem.</u>, 25:8343 (1986)). The splice sites selected provide slightly inefficient splicing such that only about 90% of the transcripts produced are intron free. Previous studies have demonstrated that when a selectable marker such as DHFR is integrated within this intron, as in the plasmid pSV.ID, marker gene transcription proceeds from any unspliced transcripts, providing a highly efficient means of maintaining linkage between the expression of the marker gene and the cDNA of interest as well as enhanced product expression relative to expression of the marker gene.

Vectors containing a murine puromycin/DHFR fusion sequence in the intron following the SV40 promoter elements were constructed by linearizing a pSV.IPUR plasmid, which contained the puromycin resistance gene in an intron following the SV40 promoter/enhancer (pSV.IPUR, Figures 1 and 2), with Hpa I immediately following the end of the puromycin ORF. A 564 bp PCR fragment containing the entire coding region for the murine DHFR gene was subsequently ligated into this linearized vector 3' of the puromycin resistance gene. The stop codon TAG between the puromycin resistance gene and the DHFR gene was deleted by site-directed mutagenesis resulting in a pSV.I plasmid containing a Puro/DHFR fusion gene within the intron of the expression cassette (pSV.IPD, Figures 1 and 4).

The cDNA of the Heavy chain (HC) and light chain (LC) sequences of an anti-HER2 Neu antibody, 2C4, were inserted into pSV.IPD as shown in Figure 6. The sequence of the resulting pSV.IPD.2C4 vector is shown in Figure 7. Data collected using the pSV.IPD.2C4 vector are shown in Table 2.

Additionally, a vector containing only a murine DHFR sequence within the intron (pSV.ID) was prepared. The DNA sequence for the pSV.ID vector is shown in Figure 3. The preparation of such vectors is disclosed in U.S. Patent No. 5,561,053, which is herein incorporated by reference. Into that vector, the HC and LC sequences of monoclonal antibodies to VEGF were inserted. The sequence of the resulting pSV.IPD.VEGF vector is shown in Figure 5.

Plasmid DNA's that contained either the Puro/DHFR fusion sequences in the intron or murine DHFR alone preceding cDNA sequences for HC and LC of 2C4 and anti-VEGF, respectively were introduced into CHO DHFR minus cells by lipofection. Briefly, for transfection, 4 million CHO DUX-B11 (DHFR minus) were seeded in 10 cm plates the day before transfection. On the day of transfection, 4 ug DNA was mixed with 300 ul of serum free medium and 25 ul of polyfect from Qiagen. The mixture was incubated at room temperature for 5 to 10 minutes and added to the cells. Cells were fed with fresh glycine, hypoxanthine and thymidine-free (GHT-free) medium and twenty-four hours later, were trypsinzed and selected in fresh GHT- free medium with 0-5 nM of methotrexate (MTX) in order to select for stable DHFR+ clones. Approximately 300 – 400 individual clones were selected in this first round of screening for measurement of protein expression levels. Clones from each vector which expressed the highest levels of antibody were then re-exposed to higher levels of methotrexate to affect a second round of gene amplification and selection. The screening process was repeated on all available clones, the highest of which were exposed to a third round of amplification. The methotrexate concentrations used during amplification using the pSV.ID-derived vector was 50 to 1000 nM in the 2nd round and 200 to 1000 nM in the 3rd round. These concentrations are typically required to achieve growth-limiting toxicity, which is required to achieve sufficient selective pressure for gene amplification. Concentrations required to reach this same degree of toxicity using the pSV.IPD-derived vectors were remarkably lower.

The level of antibody expression was determined by seeding cells in 1 ml of serum-free F12:DMEM-based media supplemented with protein hydrolysate and amino acids in 24 well dishes at 3 X 10⁶ cells/ml or in 100 ul of similar media in individual wells of a 96 well plate. Growth media was collected after 3-4 days and titers were assayed by an ELISA directed towards the intact IgG molecule. In experiments where cells were not seeded at equal cell densities, a fluorescent measure of viable cell number was performed on each well in order to normalize expression data. An Intact IgG ELISA was performed on microtiter plates which used a capture

antisera directed to framework Fab residues common in both antibodies. Media samples were added to the wells followed by washing and a horseradish peroxidase labeled second antibody directed towards common framework Fc residues was used for detection.

Table 2 presents expression level distributions of clones isolated during each round of screening of anti VEGF clones, which resulted from transfection with the plasmid containing only the DHFR sequence in the intron (pSV.ID.aVEGF), and 2C4 clones that were created using the Puro/DHFR fusion sequence in the same intron (pSV.IPD.2C4). The distribution of expression levels seen in the case of anti VEGF is typical of the performance of the vector containing only the murine DHFR gene in the intron (pSV.ID). All isolates identified in the first and second rounds of screening have relatively low expression levels. In the intial selection round, no clones with expression above 5 were isolated. At least three rounds of amplification are required to identify clones capable of specific productivity greater than 50. The 2C4 clones were screened after the first exposure to methotrexate (0-2.5 nM) and the most productive of these were exposed to a second round of amplification in 10-25 nM MTX. Cells surviving this amplification were pooled and exposed to 3rd round amplification prior to selection for further screening. In contrast to the pSV.ID vetor, using the pSV.IPD vector, clones with an expression level of up to 25 were identified even in the first round of screening. Clones with an expression level greater than 25 represented 95% of the population after their third round of amplification and screening.

The data from Example 1 indicates that use of the Puro/DHFR fusion protein as the selectable marker allows for faster, more efficient isolation of highly productive CHO clones using significantly lower levels of methotrexate. The data suggests that exposure to low concentrations and stepwise increments in methotrexate allow for the efficient initial selection of highly expressing clones and subsequent gene amplification. Exposure to excessively high concentrations of methotrexate or large incremental increases in exposure often does not yield increases in gene expression since cells rapidly acquire methotrexate resistance through non-gene amplification mechanisms. Importantly, the data also shows that the Puro/DHFR fusion protein provides an unexpectedly impaired activity of the DHFR gene product or an enhanced sensitivity to methotrexate, which results in a highly stringent initial selection step, and allows efficient gene amplification at concentrations of methotrexate not frequently associated with the acquisition of drug resistance through alternative mechanisms. The ability to select cells which have incorporated the plasmid either in the presence of puromycin or methotrexate, prior to initiating exposure to

methotrexate also provides a means of transferring this efficient system to DHFR (positive) host cells.

For Example 1 the structure of the expressed antibody has been extensively characterized. The proteins generated from the pSV.IPD are indistinguishable from the antibody produced by the pSV.ID vector, with no apparent increase of free heavy or light chain expressed by the pool.

TABLE 2. PERCENTAGES OF pSV.IPD.2C4 CLONES ISOLATED AT VARIOUS EXPRESSION LEVELS AFTER MTX EXPOSURE¹

Expression	pSV.ID.aVEGF	pSV.IPD.2C4	pSV.ID.aVEGF	pSV.IPD.2C4
Level ²	1st Rd	1st Rd	3rd Rd	3rd Rd
<1	· 71	16	0	0
1-5	29	67	0	0
5-10	0	14	2	3
10-25	0	3	15	4
25-50	0	0	35	21
50-100	0	0	46	61
100-150	0	0	2	3

¹MTX concentration for Control SD vector = 0-10 nM 1st round, 50 –1000 nM 2nd round, 200-1000 nM, 3rd round. SD- Puro/DHFR vector = 2.5 nM 1st round, 25 nM 2nd round, 100 nM 3rd round

This example demonstrate the general applicability of the Puro/DHFR fusion sequence for selection of highly productive recombinant cell lines following minimal exposure to MTX.

EXAMPLE 2

Recombinant protein production using a pSV.I construct containing DHFR

and a fusion gene other than Puro

Constructs can also be produced that contain a fusion sequence of an alternative selectable marker and DHFR within an intron region as described in Example 1. For instance

² Expression levels are in mg/ml or (mg/ml)/Fluorescent Unit

starting with the vector pSVID, the coding sequences for the neomycin resistance gene (Neo), hygromycin resistance gene (Hygro), glutamine synthase (GS), thymidine kinase (TK) or zeocin (Zeo) could be inserted in frame with the start site of the murine DHFR sequence contained within the intron. The stop codon of this inserted gene would then be removed using site directed mutagenesis according to example 1. Depending upon the phenotype of the host cell selected, cells incorporating the plasmid could then be selected using either GHT-free or MTX containing media as described in examples 1-3 or using an appropriate quantity of the alternative selective agent. Gene expression by the resulting clones could then be amplified in the presence of increased levels of methotrexate.

EXAMPLE 3

Direct Selection with plasmids SV.IPD.HP and CMV.IPD.HP after spinner transfection

DP12 CHO cells were grown in growth medium with 5% FBS (fetal bovine serum) and 1X GHT (glycine, hypoxanthine and thymidine). The process typically took about 4 days. On day 1, cells were seeded at 4X10⁵/ml in 400 ml growth medium in a 500 ml spinner vessel and grown for 2 days at 37 °C. On day 3, the exponentially grown cells were seeded at 1.5X10^6 cells/ml in a 250 ml spinner vessel containing 200 ml of growth medium plus 5% FBS and 1X GHT. The cells were grown for 1 to 2 hours at 37 °C before transfection. During that time, serum-free growth medium and 1X GHT was warmed to 37 °C. 400 µg plasmid construct DNA and 1 ml of Lipofectamine 2000[®] (Oiagen) were separately diluted into 25 ml of warm serumfree medium in 50 ml Falcon tubes. The solutions in the tubes were combined and incubated at room temperature for 30 minutes. The cells were then transfected with plasmid constructs pSV.IPD.HP and pCMV.IPD.HP, which constructs are illustrated in Figures 13 and 14, respectively. At the end of incubation, the cells were transfected by adding all 50 ml of the mixture of diluted plasmid construct and Lipofectamine 2000® to the 250 ml spinner vessel containing cells in serum-free medium, and the cells continued to grow at 37 °C for about 24 hours. On day 4, 250 ml of transfected cells were centrifuged at 1000 rpm for 5 minutes to collect the pellet. The transfection efficiency was monitored by transfecting cells with a GFP plasmid followed by FACS analysis 24 hours after transfection. The transfection efficiency with this protocol was typically approximately 55 to 70 % in CHO cells as shown in Figure 8.

After the transfection, cells were centrifuged to collect the pellet. The pellet was then resuspended in growth medium containing methotrexate (MTX) ranging from 10 to 100 nM for either SV40 or CMV based constructs. Approximately 100 clones survived the direct selection. Cell growth medium was changed every 3 to 4 days. At approximately 2 weeks after transfection, individual clones were picked and grown in 96-well plates in growth medium containing MTX. Heterologous polypeptide expression levels were evaluated by ELISA. Figures 10-1, 10-2, and 11 show the results from 25 nM and 50 nM MTX selection. Figure 9 shows heterologous polypeptide expression levels of clones from a traditional 10 nM MTX selection where the cells were not transfected in a spinner flask.

It took about 1 week for cells to grow confluent in a 96-well plate. When they were confluent, the growth medium was removed and commercially available enriched cell culture medium (which includes 1x GHT but no MTX) was added into each well. On the day after adding the commercially available enriched cell culture medium, the plate was incubated at 33 °C for 5-6 days before performing an ELISA assay to quantitate the amount of humanized monoclonal antibody produced by the cells. ELISA was typically performed with serial dilutions of the commercially available enriched cell culture medium. Results from a humanized monoclonal antibody production were shown in Figures 9, 10-1, 10-2 and 11.

The four clones producing the greatest amount over 100 µg/ml of intact IgG based on direct selection at 25 nM MTX using a CMV-based construct were scaled up from a 96-well plate to a 6-well plate and then to a 10 cm plate. Cells were seeded at 3X10^5/ml in 200 ml volume in a 250 ml spinner vessel in serum-free growth medium with 2 µg/ml human insulin and 1X Trace Elements (TE). Cells were initially passaged at either two- or three-day intervals with medium exchange. Then they were passaged at either three- or four-day intervals for about 6 weeks before bioreactor evaluation. At each passage time, cell viability and count number were monitored. To determine the cell growth after serum-free adaptation, a spinner vessel growth experiment was performed. Cells were seeded at 3X10^5 cells/ml into 400 ml of growth medium with 2 µg/ml recombinant human insulin and 1X TE in a 500 ml spinner vessel on day 1. On each day, packed cell volume (PCV) was monitored until day 5. PCVs reached between 0.4 % to 0.6% by day 4. Two serum-free adapted clones from 25 nM MTX selection with CMV-based construct were evaluated in bioreactors. Two liter bioreactors with commercially available

enriched cell culture medium were run for a total of 14 days. The data from the titer evaluation is shown in Figure 12.

An ELISA assay of clones surviving the direct selection shows that the best clones coming out of the method described in this example produce as much product of interest as highly amplified clones from a traditional method. See Figure 16. Evaluations of 2 clones from the direct selection shows that those clones produce about 1g/L of a product of interest in a bioreactor process. Since those clones were generated from one step of a direct selection immediately after transfection, it only takes about 5 to 6 weeks to generate a stable cell line producing 1g/L of a product of interest in a bioreactor leading to significant timeline reduction, about 3 months, which is critical for efficiency of product development.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the examples presented herein, since the exemplified embodiments are intended as illustrations of certain aspects of the invention and any functionally equivalent embodiments are within the scope of this invention. The examples presented herein are not intended as limiting the scope of the claims to the specific illustrations. Indeed, various modifications of the invention, in addition to those shown and described herein and which fall within the scope of the appended claims, may become apparent to those skilled in the art from the foregoing description.

CLAIMS

What is claimed is:

1. A method of producing a host cell capable of producing a product of interest, comprising:

transfecting a host cell culture with a DNA construct comprising a transcriptional regulatory region, a fused selectable gene sequence and a gene encoding a product of interest;

directly culturing the transfected host cells in a selective medium;

allowing the host cells to grow in the selective medium for a sufficient time to allow amplification of gene encoding the product of interest to occur; and

selecting a host cell clone that is capable of producing at least about 250mg/l of the product of interest.

- 2. A method of claim 1 wherein the selective medium contains at least about 25nM methotrexate.
- 3. A method of claim 1 wherein the selective medium contains at least about 50nM methotrexate.
- 4. A method of claim 1 wherein the host cell is a CHO cell.
- 5. A method of claim 1 wherein the product of interest is a protein selected from the group consisting of an antibody, enzyme, hormone, lipoprotein, clotting factor, anti-clotting factor, cytokine, viral antigen, chimeric protein, transport protein, regulatory protein, homing receptor, and addressin; or a fragment of said protein.
- 6. A method of claim 1 wherein said product of interest is a humanized antibody.
- 7. A host cell produced according to the method of claim 1.

8. A method of producing a product of interest, comprising culturing a host cell produced according to the method of claim 1 under conditions suitable to cause expression of the product of interest in an amount at least about 250mg/l.

- 9. A method of claim 1 wherein the DNA construct comprises, in order 5' to 3':
- a) a transcriptional regulatory region capable of regulating transcription of both the selectable gene and the product gene;
 - b) a transcriptional initiation site;
- c) a fused selectable gene sequence positioned within an intron defined by a 5' splice donor site comprising a splice donor sequence such that the efficiency of splicing messenger RNA having said splice donor sequence is between about 80% and 99% as determined by PCR, and a 3' splice acceptor cite;
 - d) a product gene encoding a product of interest; and
 - e) a transcriptional termination site.
- 10. The method of claim 9 further comprising recovering the product of interest from the culture.
- 11. A method of claim 9 wherein the transcriptional regulatory region capable of regulating transcription of both the selectable gene and the product gene is driven by a SV40 promoter.
- 12. A method of claim 9 wherein the transcriptional regulatory region capable of regulating transcription of both the selectable gene and the product gene is driven by a CMV promoter.

WO 2004/046340 PCT/US2003/037047

13. A cell culture composition comprising a host cell according to claim 9 and at least about 250mg/l of the product of interest.

- 14. A method of producing a host cell capable of producing at least about 250mg/ml of a product of interest comprising transfecting a host cell with a DNA construct comprising in order from 5' to 3':
- a) a transcriptional regulatory region capable of regulating transcription of both the selectable gene and the product gene;
 - b) a transcriptional initiation site;
- c) a fused selectable gene sequence positioned within an intron defined by a 5' splice donor site comprising a splice donor sequence such that the efficiency of splicing messenger RNA having said splice donor sequence is between about 80% and 99% as determined by PCR, and a 3' splice acceptor cite;
 - d) a product gene encoding a product of interest; and
 - e) a transcriptional termination site;

wherein the transfection is performed in suspension culture.

- 15. A method of claim 14, wherein the DNA construct is introduced into the host cells by lipofection.
- 16. A method of claim 14 wherein said transfection is performed in a spinner vessel.
- 17. The method of claim 14 wherein the suspension culture has cell density of at least about 5×10^5 /ml at the time of transfection.

WO 2004/046340 - PCT/US2003/037047

18. The method of claim 14 wherein the suspension culture has a cell density of at least about 1.5×10^5 /ml at the time of transfection

- 19. A method of claim 15 wherein the product of interest is selected from the group consisting of an antibody, enzyme, hormone, lipoprotein, clotting factor, anti-clotting factor, cytokine, viral antigen, chimeric protein, transport protein, regulatory protein, homing receptor, and addressin and a fragment of any of said product of interest.
- 20. A method of rapidly selecting a host cell producing a product of interest, comprising:

transfecting a host cell culture with a DNA construct comprising a transcriptional regulatory region, a fused selectable gene sequence and a gene encoding a product of interest;

directly culturing the transfected host cells in a selective medium; and

allowing the host cells to grow in the selective medium for a sufficient time to allow amplification of gene encoding the product of interest to occur.

Figure 1. Construction of pSV.IPD Plasmid

Figure 2 pSV.IPUR length: 5147 (circular)

	н	1 TTCGAGCTCG AAGCTCGAGC	CCCGACATTG	attattgact Taataactga	AGAGTCGATC TCTCAGCTAG	GACAGCTGTG CTGTCGACAC	GAATGTGTGT CTTACACACA	CAGTTAGGGT GTCAATCCCA	G'IGGAAAGTC CACCTTTCAG	CCCAUGCTCC GGGTCCCAGG	CCAGCAGGCA
	101	101 GAAGTATGCA CTTCATACGT	AAGCATGCAT	CTCAATTAGT GAGTTAATCA	CAGCAACCAG	GTGTGGAAAG CACACCTTTC	TCCCCAGGCT	ccccagcagg ggggrcgrcc	CAGAAGTATG GTCTTCATAC	CAAAGCATGC	ATCTC&ATTA TAGAGTTÁAT
	201	201 GTCAGCAACC CAGTCGTTGG	ATAGTCCCGC TATCAGGGCG	CCCTAACTCC GGGATTGAGG	GCCCATCCCG	CCCCTAACTC	CGCCCAGITIC	CGCCCATTCT	CCGCCCCATG	GCT GAUTAAT CGACT GATTA	TTTTTTTTTT AAAAAATTAA
	301	301 TATGCAGAGG ATACGTCTCC	CCGAGGCCGC	CTCGGCCTCT	GAGCTATTCC CTCGATAAGG	AGAAGTAGTG TCTTCATCAC	AGGAGGC1TT TCCTCCGAAA	TTTGGAGGCC	TAGĠCTTTTG ATCCGAAAAC	Caaaaagc'i'a Gtt'i'ttcgat	GCTTATCCCC
	401	401 CCGGGAACGG GGCCCTTGCC	TGCATTGGAA ACGTAACCTT	CGCGGATTCC GCGCCTAAGG	CCGTGCCAAG GGCACGGTTC	AGTGACGTAA TCACTGCATT	GTACCGCCTA	TAGAGCGACT ATCTCGCTGA	AGTCCACCAT TCALESTGGTA	GACCGAGTAU CTGGCTCATG	AAGCCCACGC
	501	501 TGCGCCTCGC ACGCGGAGCG	CACCCGCGAC GTGGGCGCTG	GACGTCCCCC	GGGCCGTACG	CACCCTCGCC GTGGGAGCGG	GCCGCGTTCG	CCGACTACCC GGCTGATGGG	CGCCACGCGC GCGGTGCGCG	CACACCGTCC GTGTGGCCAGC	ACCCCCCACTC TGGCCCTCGC
	109	CCACATCGAG GGTGTAGCTC	CGGGTCACCG GCCCAGTGGC	agctgcaaga Tcgacgttct	ACTCTTCCTC TGAGAAGGAG	ACGCGCGTCG TGCGCGCAGC	GGCTCGACAT CCGAGCTGTA	CGGCAAGGTG GCCGTTCCAC	TGGGTCGCGG ACCCAGCGCC	ACGACGGCGC TGCTGCCGCG	CGVGCTCCCC GCCCACvGv
	701	GTCTGGACCA	CGCCGGAGAG GCGGCCTCTC	CGTCGAAGCG GCAGCTTCGC	GGGGCGGTGT	TCGCCGAGAT AGCGGCTCTA	ອວອວອອອວວອ ວອວອວວວວອວ	ATGGCCGAGT TACCGGCTCA	TGAGCGGTTC ACTCGCCAAG	CCGGCTGCCC	GUGUAGUAAU CGUUTUUTTG
	801	801 AGATGGAAGG TCTACCTTCC	CCTCCTGGCG GGAGGACCGC	CCGCACCGGC	CCAAGGAGCC GGTTCCTCGG	CGCGTGGTTC GCGCACCAAG	CTGGCCACCG	TCGGCGTCTC	GCCCGACCAC	CAGGGCAAGG GTCCCGTTCC	GTCFCGGCAC
	901	CECCGTCGTC	CTCCCCGGAG GAGGGGCCTC	TGGAGGGGGC	CGAGCGCGCC GCTCGCGCGG	GGGGTGCCCG	CCTTCCTGGA	GACCTCCGCG	CCCCGCAACC	TCCCCTTCTA AGGGGAAGAT	CGAGCCCCTC
	100	1001 GGCTTCACCG CCGAAGTGGC	TCACCGCCGA	CGTCGAGTGC GCAGCTCACG	CCGAAGGACC GGCTTCCTGG	GCGCGACCTG	GTGCATGACC	CGCAAGCCCG GCGTTCGGGC	GTGCCTGAGT CACGGACTCA	TAACTGCTCC	CCTCCTAAAC GCAGGATTTC
7	1101	CTATGCATTT GATACGTAAA	TTATAAGACC AATATTCTGG	ATGGGACTTT TACCCTGAAA	TGCTGGCTTT	AGATCCCCTT TCTAGGGGAA	GGCTTCGTTA	GAACGCAGCT	acaattaata Tgttaattat	CAT'AACCT''FA GTAT'TGGAA'!	TUTAFCATAC
	201	1201 ACATACGATT TGTATGCTAA	TAGGTGACAC ATCCACTGTG	TATAGATAAC ATATCTATTG	ATCCACTTTG TAGGTGAAAC	CCTTTCTCTC GGAAAGAGAG	CACAGGTGTC (CACTCCCAGG '	TCCAACTGCA	CCTCGGTTCT ATCCATTGAA GGAGCCAAGA TACCTAACTT	ATCCATTGM: TACCTAACTT
-	301	1301 Treceeses	ATCCTCTAGA	GTCGACCTGC	AGAAGCTTCG	ATGGCCGCCA	ATCCTCTAGA GTCGACTAG AGAGCTTAG ATGCCTGCTA TGCCCTAAAN	こくかかか ひかからごれ	(0 V V 0) W (1) (1) (1) (1)	di V V W. Malaila.	

Figure 2-1

1301 TICCCCGGGG AICCTCIAGA GICGACCIGC AGAAGCTICG AIGCCCGCCA IGGCCCAACT TGTTTATTGC AUCTTATAAT GGTTAUAAAT AAAAAAAAA AAGGGGCCCC TAGGAGAICT CAGGTGGACG ICCGAAGG TCCGGGGGGT ACCGGGGGT ACCAGGTTGA ACAAATAACG TCGAAGGTTATTA TTTUUTTATTA

1401	1 CATCACAAAT GTAGTGTTTA	r ttcacaaata a aagtgtttat	A AAGCATTTT F TTCGTAAAAA	ttcactgcat Aagtgacgta	TCTAGTTGTG AGATCAACAC	Gtttgtccaa Caaacaggtt	actcatcaat tgagtagtta	GTATCTTATC CATAGAATAG	A'IG'I'CTGGA'I' TACAGACC'I'A	CUATCOGGAA UCTAGCCCTT
1501	1 TTAATTCGGC AATTAAGCCG	cercercers cercereera	F GGCCTGAAAT A CCGGACTTTA	AACCTCTGAA TTGGAGACTT	AGAGGAACTT TCTCCTTGAA	GGTTAGGTAC CCAATCCATG	CTTCTGAGGC GAAGACTCCG	GGAAAGAACC CCTTTCTTGG	AGCTGTGGAA TCGACACCTT	TGTGTGTGAG
1601	1 TTAGGGTGTG AATCCCACAC	GRAAGTCCCC CTTTCAGGGG	AGGCTCCCCA TCCGAGGGGT	GCAGCCAGAA CGTCCGTCTT	GTATGCAAAG CATACGTTTC	CATGCATCTC GTACGTAGAG	AATTAGTCAG TTAATCAGTC	CAACCAGGTG GITGGTCCAC	TGGAAAGTCC ACCTTTCAGG	CCAGGCTCCC
1701	1 CAGCAGGCAG GTCGTCCGTC	S AAGTATGCAA C TTCATACGTT	AGCATGCATC TCGTACGTAG	TCAATTAGTC AGTTAATCAG	AGCAACCATA TCGTTGGTAT	GTCCCGCCCC	TAACTCCGCC ATTGAGGCGG	CATCCCGCCC	CYAACTCCCC	ccadimecoc Gercaagged
1801	1 CCATTCTCCG GGTAAGAGGC	S CCCCATGGCT	GACTAATTTT CTGATTAAAA	ttttattat Aaaataaata	GCAGAGGCCG CGTĊTCCGGC	AGGCCGCCTC TCCGGCGGAG	GGCCTCTGAG CCGGAGACTC	CTATTCCAGA GATAAGGTCT	AGTAGTGAGG TCATCACTCC	AGGCTTTTTTT TCCGAAAAAA
1901	1 GGAGGCCTAG CCTCCGGATC	S GCTTTTGCAA	AAAGCTGTTA	CCTCGAGCGG	CCGCTTAATT GGCGAATTAA	AAGGCGCGCC TTCCGCGCGG	ATTTAAATCC TAAATTTAGG	TGCAGGTAAC ACGTCCATTG	AGCTTGGCAC TCGAACCGTG	TGGCCGTCGT ACCGGCAGCA
2001	1 TTTACAACGT AAATGTTGCA	r cergacrege	AAAACCCTGG	CGTTACCCAA GCAATGGGTT	CTTAATCGCC GAATTAGCGG	TTGCAGCACA AACGTCGTGT	TCCCCCCTTC AGGGGGGAAG	GCCAGCTGGC CGGTCGACCG	GTAATAGCGA CATTATCGCT	AGAGGCCGC TCTCCGGGCG
210	2101 ACCGATCGCC TGCCTAGCGG	CTTCCCAACA	GTTGCGTAGC	CTGAATGGCG GACTTACCGC	AATGGCGCCT TTACCGCGGA	GATGCGGTAT CTACGCCATA	T'TCTCCTTA AAAGAGGAAT	CGCATCTGTG GCGTAGACAC	CGGTATTTCA GCCATAAAGT	CACCUCATAC
220	2201 GTCAAAGCAA CAGTTTCGTT	CCATAGTACG	GCCCCTGTAG	CGGCGCATTA	AGCGCGGCGG	GTGTGGTGGT CACACCACCA	TACGCGCAGC	GTGACCGCTA	CACTTGCCAG GTGAACGGTC	CGCCCTAGCG GCGGGATCGC
2301	CCCGCTCCTT GGGCGAGGAA	TCGCTTTCTT	CCCTTCCTTT	CTCGCCACGT	TCGCCGGCTT AGCGGCCGAA	TCCCCGTCAA	GCTCTAAATC.	GGGGGCTCCC	TTTAGGG1TC AAATCCCAAG	CCATTTACTC GCTAAATCAC
2401	CTTTACGGCA CANATGCCGT	CCTCGACCCC	AAAAAACTTG	ATTTGGGTGA	TGGTTCACGT	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	CGCCCTTTGA	CCTTGGAGTC GCAACCTCAG
2501	CACGTTCTTT GTGCAAGAAA	ANTAGTGGAC	TCTTGTTCCA	<i>NACTGGAACA</i> TTGACCTTGT	ACACTCAACC TGTGAGTTGG	CTATCTCGGG	CTATTCTTTT (GATTTATAAG CTAAATATTC	GGATTTTGCC C	GATTTCGGCC
2601	L TATTGGTTAA ATAACCAATT	AAAATGAGCT	GATTTAACAA CTAAATTGTT	AAATTTAACG TTTAAATTGC	CGAATTTTAA GCTTAAAATT	CAAAATATTA GETTTATA	ACGTTTACAA TGCAAATGTT	TTTTATGGTG (CACTCTCAGT G	ACAATCTCCT TGTTAGACGA
2701	CTGATGCCGC	: ATAGTTAAGC	CAACTCCGCT	atcectacet tagceateca	GACTGGGTCA	TGGCTGCGCC	CCGACACCCG (GCTGTGTCC)	CCAACACCCG (CTGACGCGCC (CTUACGGUIT GAUTGCCCGA
2801	TGTCTGCTCC	CGGCATCCGC	TTACAGACAA AATGTCTGTT	GCTGTGACCG	TCTCCGGGAG AGAGGCCCTC	CTGCATGTGT (CAGAGGTTTT (GTCTCCAAAA	CACCGTCATC /	ACCGAAACGC C	GCGAGGCAGT
2901	ATTCTTGAAG TAAGAACTTC	ACGAAAGGGC TGCTTTCCCG	CTCGTGATAC GAGCACTATG	GCCTATTTTT CGGATAAAAA	ATAGGTTAAT TATCCAATTA	GTCATGATAA CAGTACTAT	TAATGGTTTU 1 ATTACCAAAG 1	TTAGACGTCA C	GGTUGCACIT 1	TTCGGGGAAA AAGUGCCTTTT
3001	Terececed	ACCCCTATT	GTTTATTTT	CTAAATACAT	TCAAATATGT	Arccgcrcar (GAGACAATAA	CCCTGATAAA TGCTTCAATA		A'TA'T'T'CAAAA

Figure 2-2

TATAACTTTT	C'FGGTGAAAG GACCACTTTC	AAGAACGTTT TTCTTCCAAA	Charretead	AGTUATANUA TCACTAITIUT	ATCGTFCCCA TAGCAACCCT	CGAACTALTT GCTTGATUAA	TTTATTGCTG AAATAAGGAC	CCACCGGGAG GCTGCCCCTC	ATATATACTT TATATATONA	TTTTCCTTCC AAAAUCAAGU	CACCUUPPALU GROUUMFOU	TCTAGTGTAG	GATAAUTUGT CTATTCAGCA	AGCCAACGAC TCCCTTGCTG	CAGGGTCGGA GTCCCAGCCT	THUTTURGET AMANGETTA	Traffiguestrae
ACGAAGTTAT	CCCAGAAACU	Trrescedes	GCCCCATACA	CATAACCATG	ACTUCCCTTG TGAGUGGAAC	TATTAACTGG ATAATTGACC	GGCTGGCTGG	GTTATCTACA CAATAGATGT	AAGTTTACTC TTCAAATGAG	TTAACGTGAG AATTGCACTC	ACAAAAAAC TGTT!"!"I'I'G	ATACTGTCCT TATGACAGGA	TGCCAGTGGC	CCCAGCTING A	CGGTAAGUGG (GCCATTICGCC (TGAGUUTUGA :	GCTCACATGT
GGGACTATIT	TTTTTGCTCA	CCTTGAGAGT	CAACTCGGTC GTTGAGCCAG	GCAGTGCTGC GC CGCGCGCGCGCGCGCGCGCGCGCGCGCGC	GGATCATGTA	TTGCGCAAAC AACGCGTTTG	CGGCCCTTCC	CCGTATCGTA GGCATAGCAT	CTGTCAGACC GACAGTCTGG	CCAAAATCCC GGTTTTAGGG	CTGC1TGCAA GACGAACGTT	CAGATACCAA	CACTGGCTGC	GIGCACACAG	GACAGGTATC CTGTCCATAG	ACCTCTGACT TGGAGACTGA	CTGCCCTTTT
CTCTGTTATT	recentects Accendede	GCGGTAAGAT	CGGGCAAGAG; GCCCGTTCTC	AGAGAATTAT TCTCTTAATA	ACAACATGGG	GCCAACAACG	CTTCTGCGCT	GTAAGCCCTC CATTCGGGAG	GCATTGGTAA CGTAACCATT	AATCTCATGA TTAGAGTACT	GCGTAATCTG CGCATTAGAC	CAGCAGAGCG GTCGTCTCGC	ATCCTGTTAC TAGGACAATG	CGGGGGGTTC	GAGAAAGGCG CTCTTTCCGC	GGGTTTCGCC	TTACGGTTCC TGGCCTTTTG
A TAGGCGAGTA	TGCGGCATTT ACGCCGTAAA	GATCTCAACA	GTGATGACGC	CATGACAGTA	GCTTTTTTGC	CAGCAGCAAT	TGCAGGACCA	GGGCCAGATG	CACTGATTAA	CCTTTTTGAT GGAAAAACTA	TTTTTTCTGC AAAAAAGACG	TAACTGGCTT ATTGACCGAA	CCCTCTCCTA	TCGGGCTGAA AGCCCGACTT	TTCCCGAAGG AAGGGCTTCC	TAGTCCTGTC	TACGGTTCC
A AGTTTATACA	A TTCCCTTTTT	CATCGAACTG	GTATTATCCC: CATAATAGGG	: TTACGGATGG	GGAGCTAACC CCTCGATTGG	ACCACGATGC TGGTGCTACG	GCCTATTTCA	TGCAGCACTG	ATAGGTGCCT TATCCACGGA	AGGTGAAGAT TCCACTTCTA	TTGAGATCCT AACTCTAGGA	TTTCCGAAGG AAAGGCTTCC	CTACATACCT GATGTATGGA	GGCGCAGCGG	AGCGCCACGC TCGCGGTGCG	GGTATCTTTA CCATAGAAAT	CCCGCCTTT
A GATTTATGTA	GTCGCCCTTA	GAGTGGGTTA CTCACCCAAT	ATGTGGCGCG	GAAAAGCATC	GAGGACCGAA : CTCCTGGCTT	. CGAGCGTGAC	TGGATGGAGG	GCGGTATCAT	GATCGCTGAG CTAGCGACTC	AAAAGGATCT TTTTCCTAGA	AAGGATCTTC TTCCTAGAAG	accaactett tggttgagaa	GTAGCACOSC	TACCGGATAA ATGGCCTATT	GCATTGAGAA CGTAACTCTT	GGAAACGCCT CCTTTGCGGA	ACGCCAGCAA
CAAATAAAA	AGATTTCCGT	TTGGGTGCAC	AAGTICTGCT	ACCAGTCACA:	ACAACGATCG:	TACCAAACGA	ATTAATAGAC TAATTATCTG	CGTGGGTCTC	GAAATAGACA	TTTTTAATTT AAAATTAAA	GAAAAGATCA CTTTTCTAGT	ATCAAGAGCT TAGTTCTCGA	CAAGAACTCT GTTCTTGAGA	AGACGATAGT TCTGCTATCA	tacagegtga Atgtegeact	CCTTCCAGGG	CTATGGAAAA
TGGGGATAAA	TGAGTATTCA ACTCATAAGT	TGAAGATCAG	AGCACTITIA TCGTGAAAAI	TTGAGTACTC	CTTACTTCTG A	AATGAAGCCA TTACTTCGGT	CCCGGCAACA GGGCCGTTGT	AGCCGGTGAG TCGGCCACTC	ATGGATGAAC TACCTACTTG	ragaitgait taaaactica atctaactaa attitgaagt	AGACCCCGTA TCTGGGGCAT	TGTTTGCCGG	GCCACCACTT	GTTGGACTCA CAACCTGAGT	CTGAGATACC GACTCTATGG	GCACGAGGGA	GGGCGGAGC
ACACGCGCCT	AGGAAGAGTA TCCTTCTCAT	TAAAAGATGC	TCCAATGATG AGGTTACTAC	AATGACTTGG TTACTGAACC	CTGCGGCCAA	ACCGGAGCTG TGGCCTCGAC	ACTCTAGCTT TGAGATCGAA	ATAMATCTGG TATTTAGACC	TCAGGCAACT AGTCCGTTGA		ACTGAGCGTC TGACTCGCAG	AGCGGTGGTT TCGCCACCAA	CCGTAGTTAG GGCATCAATC	GTCTTACCGG CAGAATGGCC	CTACACCGAA GATGTGGCTT	ACAGGAGAGC TGTCCTCTCG	GCTCGTCAGG
	3101	3201	3301	3401	3501	3601	3701	3801	3901	4001	4101	4201	4301	4401	4501	4601	4701

<u> </u>	≤ E	္ဟာ ပ
1000c	2000	SACCE
ACTG TCAC	AAAC	TTCT(
AG1'C I'CAG	SACC	SGAA
AGCG/ TCGC/	CCGAC	GTGTC
ပ္ပတ္သ ပ္တတ္သ	TT TC	G TT
CCGAC	CAGG'I GTCCA	CGTAT
ACGA	ACGA	GGCT
CCGA	TGGC ACCG	TTCC
SCCAG	CAGC	TATGC
უ ც ც ც	AA TC	CT TJ
CGCT	CATT	TACA
ATAC	GATT	GCTT
AGCTG	99221	CCAG
AGTGP TCACT	GCGTT	SCACC
FFF G Q	0 0 0 0 0 0 0	TA G
2000 2000	CTCCC	CTCAT
TAC	CCT.	TCA
CGTAT	PACCG	TTACC
STIAICCCCT GATICIGIGG ATACCGTAI TACCGCCTII GAGIGAGCIG ATACCGCTCG CCGCAGCCGA ACGACCGAGC GCAGCGAGIC AUTGAGCAAU SATAGGGGA CTAAGACACC TAITGGCAIA AIGGCGGAAA CICACICGAC TAIGGCGAGC GGCGICGGCT IGCTGGCTCG CGTCGCTLAG TCAUTGGCTC	SAAGCGGAAG AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TCCAGCTGGC ACGACAGGTT TCCCGACTGG AAAUUGUUAA CTTCGCCTTC TCGCGGGTTA TGCGTTTGGC GGAGAGGGGC GCGCAACCGG CTAAGTAATT AGGTCGACCG TGCTGTCCAA AGGGCTGACC TTTCGCCUT	TGAGCGCAA CGCAATTAAT GIGAGTTACC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCC. ACTCGCGTT GCGTTAATTA CACTCAATGG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG CCGAGCATAC AACACACCT AACACTCUCC
TGG 1	AAT I	AAT C
TCTG	99926	STTAR
r GAT	S AGC	7 CGC
09999	GGAA	CGCA
GTTA	GAAGC	SOO1 GTGAGCGCAA CGCAATTAAT GTGAGTTACC TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAUCUU CACTCGCGTT GCGTTAATTA CACTCAATGG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG CCGAGCATAC AACACACTT AACACTCUCU
4801 GTTATCCCCT GATTCTGTGG ATAACCGTAT TACCGCCTTT GAGTGAGCTG ATACCGCTCG CCGCAGCCGA ACGACCGAGC GCAGCGAGTC AUTGAGCUAN, CAATAGGCGAG CTAAGACACC TATTGGCATA ATGGCGGAAA CTCACTCGAC TATGGCGAAG GGCGTCGGCTCG CGTCGCTCG TAAGACACC TATTGGCAAA CTCACTCGAC TATGGCGAAG GGCGTCGCTT TGCTGGCTCG CGTCGCTCAG TCACTCGCTT	4901 GAAGCGGAAG AGCGCCCAAT ACGCAAACCG CTCTCCCCG CGCGTTGGCC GATTCATTAA TCCAGCTGGC ACGACAGGTT TCCCGACTGG AAAUUGUUAA CTTCGCCTTC TCGCGGGTTA TGCGTTGGC GGAGAGGGGC GCGCAACCGG CTAAGTAATT AGGTCGACCG TGCTGTCCAA AGGGCTGACC T1"UUGCCCUT	5001
•	-	

TATTETTAAA GTGTGTCCTT TGTCGATACT GGTACTAATG CTTAATT

>length: 5147

igure 2-7

(circular Figure psv. id 5171 length:

TICGAGCTCG CCCGACATTG ATTATTGACT AGAGTCGATC GACAGCTGTG GAATGTGTGT CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CUAGUAGGGAAAGAAAAAAAAAAAAAAAAAAAAAAAA	101 GANGTATGCA ANGCATGCAT CTCAATTAGT CAGCAACCAG GTGTGGAAAG TCCCCAGGGT CCCCAGCAGG CAGAAGTATG CAAAGCATGC ATCTTAATTA CTTTCAAACGT TTCGTACGTA GAGTTAATCA GTCGTTGGTC CACACCTTTC AGGGGTCCGA GGGGTCGTCC GTCTTCATAC GTTTCGTACG TAGAUTTAATT	201 GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCTAACTC CGCCCAGTTC CGCCCATTCT CCGCCCATG GCTUACTAAT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TICGACCICG CCCGACATIG ATTATIGACT AGAGICCAIC GACAGCICIG GAATGIGIGI CAGTIAGGGI GIGGAAAGIC CCCAGGGUICC CUAUUAGUUA AAGCICGAGC GGGCIGIAAC IAAIAACIGA ICICAGCIAG CIGICGACAC CITACACACA GICAAICCCA CACCITICAG GGGICCGAGG GUITGIICGI	CAAAGCATGC GTTTCGTACG	GCTGACTAAT GGACTGATTA
GTGGAAAGTC CACCTTTCAG	CAGAAGTATG GTCTTCATAC	CCCCCCATG
CAGTTAGGGT GTCAATCCCA	CCCCAGCAGG	CGCCCATTCT GCGGGTAAGA
GAATGTGTGT CTTACACACA	TCCCCAGGCT AGGGGTCCGA	CGCCCAGTTC GCGGGTCAAG
GACAGCTGTG	GTGTGGAAAG CACACCTTTC	CCCCTAACTC
AGAGTCGATC TCTCAGCTAG	CAGCAACCAG GTCGTTGGTC	GCCCATCCCG
ATTATTGACT TAATAACTGA	CTCAATTAGT GAGTTAATCA	CCCTAACTCC GGGATTGAGG
CCCGACATTG GGGCTGTAAC	AAGCATGCAT TTCGTACGTA	atagtcccgc tatcagggcg
TTCGAGCTCG AAGCTCGAGC	GAAGTATGCA CTTCATACGT	GTCABCAACC CAGTCGTTGG
1	101	201

TATGCAGAGG CCGAGGCCGC CTCGGCCTCT GAGCTATTCC AGAAGTAGTG AGGAGGCTTT TTTGGAGGCC TAGGCTTTTG CAAAAAGCTA GCTTATTCUGG ATACGTCTCC GGCTCCGGGG GAGCCGGAGA CTCGATAAGG TCTTCATCAC TCCTCCGAAA AAACCTCCGG ATCCGAAAAC GTTTTTCGAT GGAATAGGCC 301

CCGGGAACGG TGCATTGGAA CGCGGATTCC CCGTGCCAAG AGTGACGTAA GTACCGCCTA TAGAGTCTAT AGGCCCACCC CTTGGCTUA GAGAGANANA GGCCCTTGCC ACGTAACCTT GCGCCTAAGG GGCACGGTTC TCACTGCATT CATGGCGGAT ATCTCAGATA TCCGGGTGGG GAACCGAGAT CTCTUTANAN ^\$plice donor 401

501

AGCCTAGGAT TITATCCCCG GIGCCALCAI GGTICGACCA TIGAACIGCA TOGICGCCGI GYCCCAAAAT AYGGGGATIG GCAAGAACGG AGACTAAAA T TOGGAICCIA AAATAGGGGC CACGGIAGIA CCAAGCIGGI AACIIGACGI AGCAGGGGCA CAGGGITITA TACCCCIAAC GGTICTTUGC TCTGGATUGG TCAGGAACGC GITCAAGIRC TICCAAAGAA IGACCACAAC CICTICAGIG GAAGGIAAAC AGAATCIGGT GAYTATGGGI AUGAAAACUT AGICCIIGGG CAAGIICAIG AAGGIIICII ACIGGIGIIG GAGAAGICAC CITCCAITIG ICTIAGACCA CIAATACUCA YUUTIYYGUA ACGGGAGGCG TGCCCTCCGC 501

GCTCCTCGAG TAAAAGAACU CGAGGAGCTC ATTITITION AGAACCACCA C AATTAATATA GTTCTCAGTA GAGAACTCAA TTAATTATAT CAAGAGTCAT CTCTTGAGTT TCCTGAGAAG AATCGACCTT TAAAGGACAG AGGACTCTTC TTAGCTGGAA ATTTCCTGTC GGTTCTCCAT CCAAGAGGTA 701

ATAGTCGGAG GCAGTTCTGT TTACCACACACTTCTTT GTAAAGTAGA CATGGTTTGG CATTTCATCT GTACCAAACC GAATTGGCAA CAAAAGTTTG GATGATGCCT TAAGACTTAT TGAACAACCG GTTTTCAAAC CTACTACGGA ATTCTGAATA ACTTGTTGGC 301

AATTGATTTG GGGAAATATA TTAACTAAAC UCUTTTATAT AATTGATTTG AGTGACACGT TTTTCCCAGA TCACTGTGCA AAAAGGGTCT GGAATTTGAA 1 GGATCATGCA CCTTAGACTC TTTGTGACAA GGAATCTGAG AAACACTGTT GCCATGAATC AACCAGGCCA CGGTACTTAG TTGGTCCGGT

GCAGGADARA GGCATCAAGT ATAAGTTTGA AGTCTACGAG AAGAAAGACT AACAUCAAGA CCTCCTTTTT CCGTAGTTCA TATTCAAACT TCAGATGCTC TTCTTTCTGA TTGTTCTTTCTTTT AACCTCTCCC AGAATACCCA GGCGTCCTCT CTGAGGTCCA TTGGAGAGGG TCTTATGGGT CCGCAGGAGA GACTCCAGGT

TGCTTTCAAG TTCTCTGCTC CCCTCCTAAA GCTATGCATT TTTATAAGAC CATGGGACTT TTGCTGGCTT TAGACCCCCT TGGTTUCTT AGAGCCCCCT AGGAGAGGGG GGGAGGATT CGATACGTAA AAATATTCTG GTACCCTGAA AACGACCGAA ATCTGGGGGA ACCGAAGGAA TCCTGGAGGAA TCTTGGAAGCAA

TACAATTAAT ACATAACCTT ATGTATCATA CACATAGATT TAGGTGACAC TATAGAATAA CATCCACTTT GCCTTTCTCF CUACAGGIGT LANTHUNAHEN ATGTTAATTA TGTATTGGAA TACATAGTAT GTGTATCTAA ATCCACTGTG ATATCTTATT GTAGGIGAAA GGGAAGAGG GGIGHCHUACA UHGAAGHUA AACT"ICT"T" CGACCTGCAG AAGCTTGGCC TCGGTTCTAT

1401 TAATGGTTAC AAATAAAGGA ATAGGATCAC AAATTTGACA AATAAAGGAT TTTTTTGACT GGATTGTAGT TGTGGTTTGT CCAAAGTLTCAT CAATGTWOT TTGAACAAAT GUCATIGGCUC CGGTACCUGG GCTGGACGIRC 1"TCGAACCGG CCTCTAGAGT GGAGACT CCATTGAATT CCCCGGGGAT GCTAACTTAA GGGGCCCCTA AGCCAAGATA CAACTGCACC GTTGACG

CGTAAGATCA ACACCAAACA GGTTTGAGTA GTTACATAGA TATCGTAGTG TTTAAAGTGT TTATTTCGTA AAAAAAGTGA TTTATTTCGT

CATGGAAGAC TCCGCCTTTC ACTTGGTTAG (TGAACCAATC (TGAAAGAGGA / AAATAACCTC TTTATTGGAG CCATGGCCTG P GCAATTAATT CGGCGCAGCA CCTTAATTAA GCCGCGTCGT sv40 origin GGATCGATCG TATCATGTCT (

AAAGCATGCA TCTCAATTAG TCACCAAUUA TTTCGTACGT AGAGTTAATC AUTUGTTGGT AGAAGTATGC A CCCCAGGCTC CCCAGCAGGC GGGGTCCGAG GGGTCCGAG GGAATGTGTG TCAGTTAGGG TGTGGAAAGT CCTTACACAC AGTCAATCCC ACACCTTTCA AACCAGCTGT TTGGTCGACA 1601

GCAAAGCAIG CAICTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGITTCGIAC GTAGAGTTAA TCAGTCGTIG GTATCAGGGC GGGAATTGAG GTCCCCAGGG TCCCCAGCAG GCAGAAGTAT CAGGGGTCCG AGGGGTCGTC CGTCTTCATA GGTGTGGAAA 1701

CCTCGGCCTC C GGCTGACTAA TTTTTTTAT TTATGCAGAG GCCGAGGCCG CCGACTGATT AAAAAAATA AATACGTCTC CGGCTCCGGC CCGCCCATTC TCCGCCCCAT GGCGGGTAAG AGGCGGGGTA CCGCCCAGTT GGCGGGTCAA CCCCCTAACT CGGGGATTGA 1801

ATCCTGCAGG TAGGACGTGG CGCCATTTAA 1 AATTAAGGCG TTAATTCCGC GAGGAGGCTT TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT GTTACCTCGA GCGGCGGCTT CTCCTCCGGAA AAAACCTCCG GATCCGAAAA CGTTTTTCGA CAATGGAGCT CGCCGGGGGAA *start pUC118 GTCTTCATCA CAGAAGTAGT 1901

TAACASCTIG GCACTGGCCG TOGITITACA ACGICGIGAC IGGGAAAACC CIGGCGITAC CCAACTIAAT CGCCTIGCAG CACATCCCCC ATTGICGAAC CGIGACCGGC AGCAAAAIGI IGCAGCACTTGG ACCTITIGG GACCCCAATG GGIIGAAITA GCGGAACGIC GIGIAAGGGGG 'linearization linker 2001

GAAGCGGTCG GAATGCCTAU CATAAAAGAG GCCTGATGCG C GGCGAATGGC GCGAAGAGG CGGCACCGAT CGCCCTTCCC AACAGTTGCG FACCCTGAAT CGCTTCTCCG GGCGTGGCTA GCGGGAAGGG TTGTCAACGC ATCGGACTTA ACCGCATTAT TGGCGTAATA 2101

GTUGUACTUG ACCAATIGCGC ATTAAGGGG GCGGGTGTGG TAATTCGCGC CGCCCACACC GTAGCGGCGC CATCGCCGCG TGTGCGGTAT TTCACACCGC ATACGTCAAA GCAACCATAG TACGCGCCCT ACACGCCATA AAGTGTGGCG TATGCAGTTT CGTTGGTATC ATGCGCGGGA TCTCCGGTAT 2201

AATCGGGGC TTAGCCCCCG TCAAGCTCTA AGTTCGAGAT GCTTTCCCCG 1 ACGTTCGCCG TGCAAGCGGC CTTTCTCCCC GAAAGAGCGG AGAAGGGAAG TCTTCCCTTC CCTTTCGCTT GGAAAGCGAA CCAGCGCCCT AGCGCCCGCT GCTCGCGGGA TCGCGGGGGAA GCTACACTTG C

TGCATCACCC GGTAGCGGGA CCATCGCCCT ACGTAGTGGG GTGATGGTTC CACTACCAAG CCCCAAAAA CTTGATTTGG GGGGTTTTTT GAACTAAACC AGTGCTTTAC GGCACCTCGA TCACGAAATG CCGTGGAGCT GTTCCGATTT TCCCTTTAGG (AGGGAAATCC (

AACCCTATCT CGGGCTATTC TTGGGATAGA GCCCGATAAG TTGTTGTGAG AACAACACTC GGACTCTTGT TCCAAACTGG CCTGAGAACA AGGTTTGACC CTTTAATAGT (AGTCCACGTT TCAGGTGCAA TTGACGTTGG AACTGCAACC TTTTCGCCCT AAAAGCGGGA

TAATTGCAAA GCGGGGCTGT TTAACAAAAT AATTGTTTA GTCATGGCTG CAGTACCGAC AACGCGAATT TTGCGCTTAA ACGTGACTGG TGCACTGACC CCGCATAGIT AAGCCAACIC CGCTATCGCT GGCGTAICAA ITCGGITGAG GCCATAGCGA TGTTTTTAAA TTAAAAATG AGCTGATTTA AATTTTTAC TCGACTAAAT TGCTCTGATG ACGAGACTAC CCGGATAACC CAGTACAATC 1 ACGGCTAAAG ATTCCCTAAA GGTGCACTCT CCACGTGAGA 2701

ACAAAAATTT

GGCCTATTGG

TGCCGATTTC

TAAGGGATTT

CACAGICICC GGAGCTGCAT CCTCGACGTA ACCGTCTCCG TGGCAGAGGC ACAAGCTGTG 1 CCGCTTACAG GAGGGCCGTA CTCCCGGCAT CGCCCTGACG GGCTTGTCTG
GCGGGACTGC CCGAACAGAC CCCGCTGACG (GGCGGACTGC (2801

GGGCCTCGTG AIAGGCCTAT TTTTATAGGT TAATGTCATG ATAATAATGG TTTCTTAGAC CCCGGAGCAC TATGCGGATA AAAATATCCA ATTACAGTAC TATTATTACC AAAGAATCTG GAAGACGAAA CTICIGCITI ACCCCCAGG CAGTATTCTT TGCGCGCTCC GTCATAAGAA CATCACCGAA GTAGTGGCTT

AGTACTCTGF TTTTCTAAAT ACATTCAAAT ATGTATCGGC AAAAGATTA TGTAAGTTTA TACATAGGCG ATTTGTTTAT TAAACAAATA GAAATGTGCG CGGAACCCCT CITTACACGC GCCTTGGGGA ACTITICGGG TGAAAGCCC GTCAGGTGGC CAGTCCACCG 3001

CCGTGTCGCC CTTATTCCCT 1TTTTGCGGC ANTHTGCCTT 3101 TAAATGCTTC AATAATATTG AAAAAGGAAG AGTATGAGIA TTCAACATTT ATTTACGAAG TTATTATAAC TITTTCCTTC TCATACTCAY AAGTTGTAAA

TCAGTTGGGT. GCACGAGTGG GTTACATCGA ACTGGATCTC AACAGCGGTA AGATCCTTGA AGTCAACCCA GGTGCTGAGC CAATGTAGCT TGACCTAGAG TTGTCGCCAT TCTAGGAACT	TTTAAAGTTC TGCTATGTGG CGCGGTATTA TCCCGTGATG ACGCUGGGCA AUAGCAAUTU AAATTTCAAG ACGATACACC GCGCCATAAT AGGGCACTAC TGCGGCCCGT TUTUGGTTGAU	ACTCACCAGT CACAGAAAAG CATCTTACGG ATGGCATCAC AGTAAGAGAA TTATUCAUTU TGAGTGGTCA GTGTCTTTC GTACAATGCC TACCGTACTG TCATTCTCTT AATACGTCAC	TCTGACAACG ATCGGAGGAC CGAAGGAGCT AACCGCTTTT TYCCACAACA TGGGGGATT;A AGACTGTTGC TAGCCTCCTG GCTTCCTCGA TTGGCGAAAA AACGTGTTGT ACCCGTAGY	GCCATACCAA ACGACGAGGG TGACACCACG ATGCCAGCAG CAATGGCAAC AAUGTTGUUU CGGTATGGTT TGCTGCTGG ACTGTGGTGC TACGGTCGTC GTTACCGTTG TTGCAACGCG	AACAATTAAT AGACTGGATG GAGGCGGATA AAGTTGCAGG ACCACTTCTG CGCTCGGCCC TTGTTAATTA TCTGACCTAC CTCCGCCTAT TTCAACGTCC TGGTGAAGAC GCGAGCCGGG	TGAGGGTGGG TCTCGCGGTA TCATTGCAGC ACTGGGGCCA GATGGTAAGC CCTCCCGTAT ACTCGCACCC AGAGGGCCAT AGTAACGTCG TGACCCCGGT CTACCATTCG GGAGGGCATA	GAACGAAATA GACAGATCGC TGACATAGGT GCCTCACTGA TTAAGCATTG GTAACTCTCA CTTGCTTTAT CTGTCTAGCG ACTCTATCCA CGGAGTGACT AATTCGTAAC CATTGACAGT	TTCATTTTTA ATTTAAAGG ATCTAGGTGA AGATCCTTTT TGATAATCTC ATGACCAAAA AAGTAAAAAT TAAATTTCC TAGATCCACT TCTAGGAAAA ACTATTAGAG 1ACTGGTTTT	CGTAGAAAG ATCAAAGGAT CTTCTTGAGA TCCTTTTTTT CTGCGCGTAA TCTGCTGCTT GCATCTTTTC TAGTTTCCTA GAAGAACTCT AGGAAAAAAA GACGCGCATT AGACGACGA	CCGGATCAAG AGCTACCAAC TCTTTTTCCG AAGGTAACTG GCTTCAGCAG AGCGCAGATA GGCCTAGTTC TCGATGGTTG AGAAAAAGGC TTCCATTGAC CGAAGTCGTC TCGCCTCTAT	ACTICAAGAA CICTGTAGGA CGGGGTAGAT ACCTGGGTGT GGTAATGGTG TTACCAUTUG TGAAGTTCTT GAGACATGGT GGGGGATGTA TGGAGGGAGA GGATAGGAG AATGGTCAGG	CTCAAGACGA TAGTTACCGG ATAAGGCGCA GCGGTCGGGC TGAACGGGGG GITTCGTGCACGCGC GAGTTCTGCCCC CAAGCACGTG	TACCTACAGC GTGAGCATTG AGANAGCGCC ACGCTTCCCG AAGGGAGAAA GGCGGACAUU ATGGATGTCG CACTCGTAAC TCTTTCGCGG TGCGAAGGGC TTCCCTCTTT CUGCCTGTCC	GGGAGCTTCC AGGGGGAAAC GCCTGGTATC TTTATAGTCC TGTCGGGTTT CGCCAUCTCT CCCTCGAAGG TCCCCCTTTG CGGACCATAG AAATATCAGG ACAGCCCAAA GCGGTGGAGA	GAGCCTATGG AAAAACGCCA GCAACGCGGC CTTTTTACGG TTCUTUGCCT TFTUUTUGCU CTCGGATACC TTTTTGCGGT CGTTGCGGCC GAAAAATGCC AAGGACCGSA AAACGAUUU	GTGGATAACC GTATTACCGC CTTTGAGTGA UCTGATACCG CTCGCCGCAG CUUAA(UARC) CACCTATTGG CATAATGGCG GAAACTCACT CGACTATGGC GAGUGUCUTC GUUTTGCTGG	CAATAGGCAA ACGGCCTCTC CCGGGGGTT GGCCGATTCA TTAATCCAGC TGGCACGAGA
AACGCTGGTG AAAGTAAAAG ATGCTGAAGA TTGCGACCAC TTTCATTTC TACGACTTCT	CCCGAAGAAC GTTTTCCAAT GATGAGCACT GGGCFTCTTG CAAAAGGTTA CTACTCGTGA	TACACTATTC TCAGAATGAC TTGGTTGAGT ATGTGATAAG AGTCTTACTG AACCAACTCA	CATGAGTGAT AACACTGCGG CCAACTTÄCT GTACTCACTA TTGTGACGCC GGTTGAATGA	CTTGATCGTT GGGAACCGGA GCTGAATGAA GAACTAGCAA CCCTTGGCCT CGACTTACTT	CTGGCGAACT ACTTACTCTA GCTTCCCGGC GACCGCTTGA TGAATGAGAT CGAAGGGCCG	CTGGTTTATT GCTGATAAAT CTGGAGCCGG GACCAAATAA CGACTATTA GACCTCGGCC	TACACGACGG GGAGTCAGGC AACTATGGAT ATGTGCTGCC CCTCAGTCCG TTGATACCTA	ACTCATATAT ACTTTAGATT GATTTAAAAC TGAGTATATA TGAAATCTAA CTAAATTTTG	TGAGTTTTCG TTCCACTGAG CGTCAGACCC ACTCADAAGC AAGGTGACTC GCAGTCTGGG	AAACCACGC TACCAGCGGT GGTTTGTTG TTTGGTGGCG ATGGTCGCCA CCAAACAAAC	TCCTTCTAGT GTAGCCGTAG TTAGGCCACC AGGAAGATCA CATCGGCATC AATCCGGTGG	TGGCGATAAG TCGTGTTTA CCGGGTTGGA ACCGCTATTC AGCACAGAAT GGCCCAACCT	TTGGAGCGAA CGACCTACAC CGAACTGAGA AACCTCGCTT GCTGGATGTG GCTTGACTCT	GCGGCAGGET OGGAACAGGA GAGCGCACGA CGCCGTCCCA GCCTTGTCCT CTCGCGTGCT	TCGATTTTTG TGATGCTCGT CAGGGGGGCG AGCTAAAAAC ACTACGAGCA GTCCCCCCGC	ATGTTCTTTC CTGCGTTATC CCCTGATTCT TACAAGAAG GACGCAATAG GGGACTAAGA	agtcagtgag cgaggaagcg gaagagggc
3201 CTCACCCAGA AA GAGTGGGTCT TT	3301 GAGTTTTCGC CC CTCAAAAGCG GG	3401 GGTCGCCGCA TA CCAGCGCGT AT	3501 CTGCCATAAC CA' GACGGTATTG GIN	3601 TGTAACTCGC CT	3701 AAACTATTAA CTG TTTGATAATT GAG	3801 TTCCGGCTGG CTC AAGGCCGACC GAC	3901 CGTAGTTATC TAC GCATCAATAG ATC	4001 GACCAAGTTT ACT CTGGTTCAAA TG	4101 TCCCTTAACG TGA AGGGAATTGC ACI	4201 GCAAACAAAA AAA CGTTTGTTTT TTT	4301 CCAAATACTG TCC GGTTTATGAC AGC	4401 CTGCTGCCAG TGG GACGACGGTC ACC	4501 ACAGCCCAGC TTG TGTCGGGTCG AAC	4601 TATCCGGTAA GCG ATAGGCCATT CGC	4701 GACTTGAGCG TCG CTGAACTCGC AGC	4801 TTTTGCTCAC ATG AAAACGAGTG TAC	4901 GAGCGCAGCG AGT

CTCGCGTCGC TCAGTCACTC GCTCCTTCGC CTTCTCGCGG GTTATGCGTT TGGCGGAGAG GGGCGCGCAA CCGGCTAAGT AATTAGGTUG ACCUTGCTL

5001 GGTTTCCCCA CTGGAAAGCG GGCAGTGAGC GCAACGCAAT TAATGTGAGT TACCTCACTC ATTAGGCACC CCAGGCTTTA CACTTFATGC TTCCGGCTTC CCAAAGGGCT GACCTTTCGC CGGTCACTCG CGTTGCGTTA ATTACACTCA ATGGAGTCAG TAATCCGTGG GGTCCGAAAT GTGAAAFACG AAGGCCGAG

5101 TATGTTGTGT GGAATTGTGA GCGGATAACA ATTTCACACA GGAAACAGCT ATGACCATGA TTACGAATTA A ATACAACACA CCTTAACACT CGCCTATTGT TAAAGTGTGT CCTTTGTCGA TACTGGTACT AATGCTTAAT T

>length: 5171

Figure 3-4

Figure

5712 (circular) pSV.IPD

0.00 P. J.	STOCTOCST
ν.σ.σσ.σ.	55 GGTC
ก็บยับสับบับ	G GGGTCCGAGG GGTCGTCCG
TGGAAAGTC	ACCUTTCA
CAGTTAGGGT G	ACACA GTCAATCCCA C
G GAATGTGTGT	CAC
GCTGT	TCGACA
AGAGTCGATC	TCTCAGCTAG CTG
ATTATTGACT	SGCTGTAAC TAATAACTGA TCTCAGCTA
TCG CCCGACATIG ATTATIGACT	GGGCTGTAAC
1 TTCGAGCTCG	AAGCTCGAGC GGGCTGTAAC TAATAA
-	

GTGTGGAAAG TCCCCAGGCT CCCCAGCAG CAGAAGTATG CAAAGCATGC ATCTCAATTA CACACTTTC AGGGTCCGA GGGGTCGTCC GTCTTCATAC GTTTCGTACG TAGAGTTAAT CAGCAACCAG GAAGTATGCA AAGCATGCAT CTCAATTAGT CTTCATACGT TTCGTACGTA GAGTTAATCA GTCAGCAACC 201

TTTTTTTT AAAAAAYIYAA CCCCTAACTC CGCCCAGTTC CGCCCATTCT CCGCCCCATG GCTGACTAAT GGGGGATTGAG GCGGGTCAAG GCGGGTTACA GCCGGGGTAC CGACTGATTA CCCTAACTCC GCCCATCCCG GGGATTGAGG CGGGTAGGGC ATAGTCCCGC (CAGTCGTTGG

GCTTATCCCC CGAATAGGCC TTTGGAGGCC TAGGCTTTTG CAAAAGCTA
AAACCTCCGG ATCCGAAAAC GTTTTTCGAT CTCGCCTCT GAGCTATTCC AGAAGTAGTG AGGAGGCTTT TTTGGAGGCC GAGCCGGAGA CTCGTATAAGG TCTTCATCAC TCCTCCGAAA AAACCTCCGG TATGCAGAGG CCGAGGCCGC ATACGTCTCC GGCTCCGGCG 301

GTACCGCCTA TAGAGCGACT AGTCCACCAT GACCGAGTAC CATGGCGGAT ATCTCGCTGA TCAGGTGGTA CTGGCTCATG CGCGGATTCC CCGTGCCAAG AGTGACGTAA GCGCCTAAGG GGCACGGTTC TCACTGCATT TGCATTGGAA CACTAGCTT C CCGGGAACGG GGCCCTTGCC 101

CCGACTACCC CGCCACGCC CACACCGTAG ACCTAGAAAA GCCTGATGGG GGGTGCGCG GTGTGGCATTG HAAAACCTAGAC GCCGCGTTCG (CGCCGCAAGC (TECECCTCGC CACCGGGAC GACGTCCCGC GGGCCGTACG CACCCTCGCC ACGCGGAGCG CTGGGAGCGG CTGGGAGCGG ^splice 501

CGGCAAGGTG TGGGTGGGG ACGACGGUG CUCUUTTULUG GCCGTTCCAC ACCCAGGGC TGCTGCCGCG GUGULACUGG CCGAGCTGTA GGCTCGACAT ACTICTICCTIC ACGUEGUEGE TEAGAAGGAG TECECECAGE CCACATCGAG CGGGTCACCG AGCTGCAAGA GGTGTAGCTC GCCCAGTGGC TCGACGTTCT 501

GGGGCGGTGT TCGCCGGAAT CGGCCCGCC ATGCCGAGT TGAGCGGTTC CCGGCTGGCC GUUCAUUAAU. GTCTGGACCA CGCCGGAGAG CGTCGAAGCG CAGACCTGGT GCGGCCTCTC GCAGCTTCGC 107

CCTCCTGGCG CGCACCGGC CCAAGGAGCC CGCGTGGTTC CTGGCCACCG TCGGCGTCTC GCCCGACCAC CAGGGCAAGG CTCTCGUCAG GGAGGACCGC GGCGTGGCCG GGTTCCTCGG GCGCACCAAG GACCGGTGGC AGCCGCAGAG CGGGCTGGTG GTCCCGTTCC CAGACCCUTY AGATGGAAGG (TCTACCTTCC) 801

CGCCGTCGTG CTCCCGGGAG TGGAGGCGGC CGAGCGCGCC GGGGTGCCCG CCTTCCTGGA GACCTCCGCG CCCGGAACC TCCCCTTCTA CUAUUUUTTC GCGGCAGCAC GAGGGGCCTC ACCTCCGCCG GCTCGCGGG CCCCACGGGC GGAAGGACCT CTGGAGGCGC GGGGGGTTGG AGGGGAAGAT GCTCGCCAAU 901

CGTCGAGTGC CCGAAGGACC GCGCGACCTG GTGCATGACC CGCAAGCCG GTGCCAACAT GGTTCGACCA GCAGCTCACG GGCTTCCTGG GCGCTGGAC CACGTACGG GCGTTCGGGC CACGGTTGTA CCAAGCTGGT TCACCGCCGA GATGGCGCGCT

TCGTCGCCGT GTCCCARAAT ATGGGGATTG GCAAGAACGG AGACCTACCC TGCCCTCCGC TCAGGAACGC GTTCAAUTAC TTCCAAAUAA AGCAGCGGCA CAGGGTTTTA TACCCCTAAC CGTTCTTGCC TCTGGATGGG ACGGGAGGCG AGTCCTTGCG CAAGTTCATG AAGGTTTTT

GGTTCTCCAT TCCTGAGAAG CCAAGAGGTA AGGACTCTTC CICTICAGIG GAAGGIAAAC AGAAICIGGI GAIIAIGGGI AGGAAAACCI GAGAAGICAC CIICCAIIIG ICIIAGACCA CIAAIACCCA ICCIIIIGGA

CARAGETTIC GATGATGCCT TAAGACTTAT TGAACCACG GTTTTCAAAC CTACTACGGA ATTCTGAATA ACTTGTTGCC GTTCTCAGTA GAGAACTCAA AGAACCACCA CGAGGAGCTC ATTTCTTGC CAAGAGTCAT CTCTGAGTT TCTTGGTGGT GCTCCTCGAG TAAAAGAAC

GCCATGAATC AACCAGGCCA CUTTAGÁCTC TYTYCTGACAA CGGTACTTAG TTGGTCCGGT GGAATCTGAG AAACACTUTT GCAGTTCTGT TTACCAGGAA CGTCAAGACA AATGGTCCTT ATAGTCGGAG TATCAGCCTC CATGGTTTGG A GTAAAGTAGA 1401

GGAATTIGAA AGIGACACGI TITICCCAGA AATIGATIIG GGGAAAIAIA AACCICTCCC AGAAIACCCA GGCGTCCTCT CTUAUGITULA GGAGGAAAAA

CCPCCTPPFF	ACTTTTCCTG TGAAAACGAC	ATAACATCCA	CCFGCAGAAG				GCATCTCAAT	ATTTTTTTA TAAAAAATT	TGTTACCTCG	CCTGGCCTTA	GTAGCCTCAA	TGTAGCGGC	CCTTTCTCCC	ACTITICATIFIC TGAACTAAAC	Trecanaete	AACAAAATT TTGTTTTAA	CUGUTATUGU
TCACTGTGCA AAAAGGGTCT TTAACTAAAC CCCTTTATAT TTGGAGAGGG TCTTATGGGT CCGCAGGAGA GACTCCAGGT	AGACCATGGG	GACACTATAG CTGTGATATC	CTAGAGTCGA GATCTCAGCT	AAATAAAGCA TTTATTICGT		TCCCCAGGCT	TGCAAAGCAT ACGTTTCGIA	TGGCTGACTA ACCGACTGAT	TGCAAAAACC ACGTTTTTCU	CTGGGAAAAC		CATACGTCAA AGCAACCATA GTAUGCGCCC TGTAGUGUU GTATGCAGTT TCGTTGGTAT CATGCGCGG ACATCGCGG	TTCTTCCCTT C		TGGACTCTTG T ACCTGAGAAC A	CAGCTGATTT A	TAAGCCAACT C
: CCGCAGGAGA	CATTTTTATA	CGATTTAGGT GCTAAATCCA	CGGGGATCCT	CAAATTTCAC GTTTAAAGTG	TCGGCGCAGC AGCCGCGTCG	GTGTGGAAAG CACACCTTTC	GGCAGAAGTA CCGTCTTCAT	CTCCGCCCCA GAGGCCGGGT A	CCTAGGCTTT GGATCCGAAA	AACGTCGTGA TTGCAGCACT		AGCAACCATA .	TCCTTTCGCT 1	CGCCACCTCG A	TCTTTAATAG I AGAAATTATC A	GTTAAAAAT C CAATTTTTA C	CCCCATAGE T
TCTTATGGGI	TAAAGCTATG	CATACACATA GTATGTGTAT	GTTCTATCGA TTGAATTCCC CAAGATAGCT AACTTAAGGG	CAAATAAAGC AATAGCATCA GTTTATTTCG TTATCGTAGT	GGGAATTAAT CCCTTAATTA	GTCÄGTTAGG CAGTCAATCC	CTCCCCAGCA	TCCGCCCATT AGGCGGGTAA	TTTTGGAGG AAAAACCTCC	GTCGTTTTAC	CCCGCACCGA TCGCCCTTCC GGGCGTGGCT AGCGGGAAGG	CATACGTCAA	GOCHGOGCC TAGGGCCGC TCCTITICGCT TTCTTCCCTT CGGTOGCGG ATCGCGGGCG AGGAAAGCGA AAGAAGGGAA	TAGTGCTTTA C	GAGTCCACGT I	CGGCCTATTG G GCCGGATAAC C	CTGCTCTGAT GCCGCATAGT GACGAGACTA CGGCGTATCA
r Trecagage	AACGTTAACT GCTCCCCTCC TTGCAATTGA CGAGGGGAGG	TAATACATAA CCTTATGTAT ATTATGTATT GGAATACATA	GTTCTATCGA		TGCATACTAG TIGIGGITIG TOCAAACTCA TCAATGTAIC TIATCATGTC TGGATCGATC ACGTAAGATC AACACCAAAC AGGITTGAGI AGTTACATAG AATAGTACA AACATAGCTAG	TGGAATGTGT ACCTTACACA	AGTCCCCAGG TCAGGGGTCC	TCCGCCCAGT AGGCGGGTCA	TGAGGAGGCT ACTCCTCCGA	GGCACTGGCC CCGTGACCGG	AGCGAAGAGG TCGCTTCTCC	TTTCACACCG AAAGTGTGGC	GCCAGCGCC TAGCGCCCGC CGGTOGCGGG ATCGCGGGCG	CTCCCTTTAG GGTTCCGATT TAGTGCTTTA GAGGGAAATC CCAAGGCTAA ATCACGAAAT			TGGTGCACTC TCAGTACAAT CTGCTCTGAT GCCGCATAGT ACCACGTGAG AGTCATGTTA GACGAGACTA CGGCGTATCA
CCCTTTATA		TAATACATA	CTGCACCTCG	ATAATGGTTA TATTACCAAT	TTATCATGTC AATAGTACAG	GAGGCGGAAA GAACCAGCTG CTCCGCCTTT CTTGGTCGAC	AGGTGTGGAA TCCACACCTT	CGCCCCTAAC GCGGGGATTG	CCAGAAGTAG GGTCTTCATC	GTAACAGCTT (CTGGCGTAAT GACCGCATTA	CTGTGCGGTA GACACGCCAT	CGCTACACTT GCGATGTGAA	CTCCCTTTAG GAGGGAAATC	GCCATCGCCC TGATAGACGG TTTTTCGCCC TTTGACGTTG CGGTAGCGGG ACTATCTGCC AAAAAGCGGG AAACTGCAAC	ATAAGGGATT TTGCCGATTT TATTCCCTAA AAGGGCTAAA	TGGTGCACTC TCAGTACAAT ACCACGTGAG AGTCATGTTA
TTAACTAAAC	AAGAAAGACT	CAGCTACAAT GTCGATGTTA	CCAGGTCCAA GGTCCAGGTT	ATTGCAGCTT TAACGTCGAA	TCAATGTATC AGTTACATAG		GTCAGCAACC CAGTCGTTGG	CCGCCCATCC	CTGAGCTATT GACTCGATAA	AATCCTGCAG TTAGGACGTC	CCTTCGCCAG	CCTTACGCAT GGAATGCGTA	GCAGCGTCAC	AAATCGGGGG TTTAGCCCCC	TGATAGACGG	CTTTTGATTT I Gaaaactaaa 1	TACAATTTTA 1 ATGTTAAAAT 2
AAAAGGGTCI	AGTCTACGAG TCAGATGCTC	CGTTAGAACG	GTGTCCACTC CACAGGTGAG	CAACTTGTTT GTTGAACAAA	TTGTGGTTTG TCCAAACTCA AACACCAAAC AGGTTTGAGT	GGTACCTTCT CCATGGAAGA	atctcaatta tagagttaat	GCCCCTAACT	GCCTCGGCCT	GCGCCATTTA CGCGGTAAAT	GCACATCCCC CGTGTAGGGG	GGTATTTTCT	GTGGTTACGC	GTCAAGCTCT	GCCATCGCCC 1		TATTAACGTT TACAATTTTA ATAATTGCAA ATGTTAAAAT
		CCCTTGGCTT	CTCTCCACAG GAGAGGTGTC	CGCCATGGCC GCGGTACCGG	TTGTGGTTTG AACACCAAAC	AACTTGGTTA TTGAACCAAT	CAAAGCATGC GTTTCGTACG	CCATAGTCCC GGTATCAGGG	GGCCGAGGCC CCGGCTCCGG	TAATTAAGGC ATTAATTCCG	TCGCCTTGCA AGCGGAACGT	CGCCTGATGC	GGCGGGTGTG	GGCTTCCCC	CACGTAGTGG (GTGCATCACC (CAACCCTATC TCGGGCTATT GTTGGGATAG AGCCCGATAA	TTTAACAAAA 1 AAATTGTTTT A
CCTTAAACTT		GCTTTAGATC	CTTTGCCTTT GAAACGGAAA	CTTCGATGGC GAAGCTACCG	-	CTGAAAGAGG GACTTTCTCC	CAGAAGTATG GTCTTCATAC	TAGTCAGCAA ATCAGTCGTT	TTTATGCAGA AAATACGTCT	AGCGGCCGCT TCGCCGGCGA	CCCAACTTAA	TGGCGAATGG	CATTAAGCGC (GTAATTCGCG (CACGTTCGCC (GTGCAAGCGG	GGTGATGGTT C	GAACAACACT C	TAACGCGAAT TTTAACAAAA ATTGCGCTTA AAATTGTTTT
	1601	1701	1801	1901	2001	2101	2201	2301	2401	2501	2601	2701	2801 0	2901 C	3001 G	3101 G	3201 T

Figure 4-2

4901 ACGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG GCTGCTGCCA GTGGCGATAA GTCGTGTCTT ACGUGGTTGG ACTCAAAACA ATAATTAACA TGGCGGATGT ATGGAGCGAG ACGATTAGGA CAATGGTCAC CGACGACGGT CACCGCTATT CAGCACAGAA TGGCCCAAGC TGAGTTCTGC TATCAATGUC

5001 GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG CGTGAGUATT

- €	5 =	∢ ⊱	ບບ	ວ ບ	9 U	4 ~	ط د	* ;	_ ~		(0.11	,			
GACAAGCFGF CTGTTCGACA	GATACGCCTA CTATGCGGGAT	TTTTTAAA AAAAAGATTT	TCCGTGTCGC	TGCACGAGTU ACGTGCTCAC	CTGCTATGTG GACGATACAC	TCACAGAAAA AGTGTCTTTT	GATEGGAGGA CTAGCCTCCT	AACGACGAGC TTGCTGCTCG	'FAGAC'FGGAF AFCTGACCTA	Grenedeuser	AGACAGAITCG TCTG1CTAGC	aat'ttaaaag ttaaa1'tttc	GATCAAAGGA CTAGTTTCCT	CAGCTACCAA CTCGATGGTT	ACTCTGTAUC TGAGACATCG
			TCC			TCAC			'rag				GATC	CAGC	ACTC TGAG
T'I'ACA AATG'I	CTCCT	GT"T"EA CAAAT	ACAT"	TTGGG	AAG17	ACCAG FGGTC	ACAAC FGTTG	racca	ATTAA FAATT	SGTGG	SAAAT	'T'T'' AAAA	AAAA	TCAA AGIT	
TCCGCTTACA AGGCGAATGT	AGGGCCTCUT TCCCGGAGCA	TATTTG7"["[A	ATTCAACATT TAAGTTGTAA	ATCAGITIGGG TAGTCAACCC	ttrtaaagit Aaaatttcaa	TACTCACCAG ATGAGTGGTC	TTCTGACAAC AAGACTGTTG	AGCCATACUA TCGGTATGGT	CAACAATTAA GTTGTTAATT	GTGAGCGTGG CACTCGCACC	TGAACGAAAT ACTTGCTTTA	CTTCATTTT! GAAGTAAAAA	CCGTAGAAAA GGCATCTTTT	GCCGGATCAA CGGCCTAGIT	CACTTCAAGA GTGAAGTTCT
CGCCA	ACGAA FGCTT	2000	GAGT	GAAG	GCAC	TGAG	TTAC	ATGA TACT			TGGA				CAC C
CCTCCCGCCA	TGAAGACGAA ACTTCTGCTT	GCGGAACCCC CGCCTTGGGG	GAGTA1 CTCAT?	GATGCTGAAG CTACGACTTC	TGATGAGCAC TITITAAAGIT ACTACTCGTG AAAATITCAA	CTTGGTTGAG TACTCACCAG GAACCAACTC ATGAGTC	GCCAACTTAC TTCTGACAAC GGGTTGAATG AAGACTGTTG	AGCTGAATGA TCGACTTACT	AGCTTCCCGG TCGAAGGGCC	TCTGGAGCCG AGACCTCGGC	AACTA	TCATTTAAAA ACTAAATTTT	GCGTCAGACC CGCAGTCTGG	TGGTTTGTTT ACCAAACAAA	CTTAGGCCAC CACTTCAAGA CAATCCGGTG GTGAAGTTCT
GTCT		STGC	SGAA						TCT /		AGG (CTAT 7		CGG T	GTA G
GGGCTTGTCT CCTCCGGCA TCCGCTTACA CCCGAACAGA CGAGGGCGT AGGCGAATGT	GCAGTATTCT CGTCATAAGA	GGAAATGTGC GCGGAACCCC CCTTTACACG CGCCTTGGGG	GAAAAAGGAA GAGTATGAGT ATTCAACATT CTTTTTCCTT CTCATACTCA TAAGTYGTAA	GAAAGTAAAA CTTTCATTTT	CGTTTTCCAA GCAAAAGGTT	CTCAGAATGA GAGTCTTACT	TAACACTGCG ATTGTGACGC	CCTTGATCGT TGGGAACCGG GGAACTAGCA ACCCTTGGCC	GCAATGGCAA CAACGTTGCG CAAACTATTA ACTGGCGAAC TACTTACTCT CGTTACCGTT GTTGCAACGC GTTTGATAAT TGACCGCTTG ATGAATGAGA	GCTGGTTTAT TGCTGATAAA CGACCAAATA ACGACTATTT	CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT CTACACGACG GGGAGTCAGG CAACTATGGA GTGACCCCGG TCTACCATTC GGGAGGGCAT AGCATCAATA GATGTGCTGC CCCTCAGTCC GTTGATACCT	TACTCATATA TACTTTAGAT TCATTTAAAA ATGAGTATAT ATGAGATCTA ACTAAATTTT	GTGAGTTTC GTTCCACTGA CACTCAAAAG CAAGGTGACT	AAAACCACCG CTACCAGCGG TGGTTTGTTT TTTTGGTGGC GATGGTCGCC ACCAAACAAA	GGCTTCAGCA GAGGGGGAT ACCAAATACT GTCCTTCTAG TGTAGGCGTA CCGAAGTCGT CTGGGGFCTA TGGTTATGA CAGGAAGATC ACATGGGCAT
TGAC	CGAG	TCGG	TAT' ATAA	TGGT			STGA	PCGT AGCA	SAAC	TAT Y	SACG C	TATA 1	TTC (999	TAG T
GOGCCCCGAC ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC CGGGGGCTG TGGGCGGTTG TGGGCGACTG CGCGGGCTC	AACCCCCGAG TTGCCCCCTC	Cactititicg Gigaaaagcc	CAATAATAT. GTTATTATAA	CCTTATTCCC TTTTTGCGG CATITTGCCT TCCTGTTTT GCTCACCCAG AAACGCTGGT GGAATAAGGG AAAAACGCC GTAAAACGGA AGGACAAAAA CGAGTGGGTC TTTGCGACCA	CCCCGAAGAA	atacactatt Tatgegataa	CCATGAGTGA GGTACTCACT	CCTTGA: GGAACTI	ACTGGC(TGACCG(GCTGGTTTAT	CTACACGACG GATGTGCTGC	AGACCAAGTT TACTCATATA TCTGGTTCAA ATGAGTATAT	GTGAGTTTTC CACTCAAAAG	AAAACCACCG TTTTGGTGGC	PECCETIC
TGAC	ACCGA GGCT	GTGG	GCTT	CCAG	Trce	9099 0000			ATTA TĄAT		TTAT	AGTT	TAAC (MCT (
ACCCGCTGAC TGGGCGACTG	GITTTCACCG TCATCACCGA CAAAAGTGGC AGTAGTGGCT	CGTCAGGTGG GCAGTCCACC	CTCATGAGAC AATAACCCTG ATAAATGCTT GAGTACTCTG TTATTGGGAC TATTTACGAA	GCTCACCCAG	AAGATCCTTG AGAGTTTTCG TTCTAGGAAC TCTCAAAAGC	CGGTCGCCGC	GCTGCCATAA CGACGGTAFT	TAACCGCTTT TTTGCACAC ATGGGGGATC ATGTAACTCG ATTGGCGAAA AAACGTGTTG TACCCCCTAG TACATTGAGC	CAAACTATTA GTTTGATAAT	CTTCCGGCTG GAAGGCCGAC	CCCTCCCGTA TCGTAGTTAT GGGAGGCAT AGCATCAATA	agaccaagtt Tctggttcaa	ATCCCTTAAC TAGGGAATTG	TGCAAACAAA ACGTTTGTTT	CCAAA
CAAC	169C		SCTG	PTTT (SAAC			TAG 1	0 000		CAT A			GCT T	CTA T
ACCCGC	STTTTC	gtttcttaga Caaagaatct	AATAACCCTG TTATTGGGAC	CCTGT	aagatccttg Ttctaggaac	AAGAGCAACT TTCTCGTTGA	ATTATGCAGT TAATACGTCA	TGGGG	CAACGTTGCG GTTGCAACGC	GCGCTCGGCC	CCTCC	GGTAACTGTC	CATGACCAAA GTACTGGTTT	ATCTECTECT TAGACGACGA	AGCGCA
GAC F		Arg o	GAC A	CCT T	GGT A			AAC A	CAA C		PAG C	PATT G	ict Se G	STA AT	CA CA
GCGCCCCGAC ACCCGCCAAC	TGTGTCAGAG ACACAGTCTC	GATAATAATG CTATTATTAC	CTCATGAGAC GAGTACTCTG	CATITIGCCT TCCTGTTTT GTAAAAAGGA AGGACAAAAA	CAACAGCGGT GTTGTCGCCA	GACGCCGGGC	CAGTAAGAGA GTCATTCTCT	CCGAAGGAGC TAACCGCTTT TTTGCACAAC GGCTTCCTCG ATTGGCGAAA AAACGTGTTG	GCAATGGCAA CGTTACCGTT	GACCACTTCT CTGGTGAAGA	agategtaag Tctaccattc	TGCCTCACTG ATTAAGCATT GGTAACTGTC AGGGAGTGAC TAATTCGTAA CCATTGACAG	AAGATCCTTT TTGATAATCT TTCTAGGAAA AACTATTAGA	TCTGCGCGTA AGACGCGCAT	GAAGGTAACT GGCTTCAGCA CTTCCATTGA CCGAAGTCGT
SCT G	SCA T			5 55		AT G		TT TS	3 to 00		55 B	TG AT	T. 4		8 8 5 8
TACGTGACTG GGTCATGGCT ATGCACTGAC CCAGTACCGA	GGGAGCTGÇA CCCTCGACGT	TTTTTATAGG TTAATGTCAT AAAAATATCC AATTACAGTA	tatgtatccg atacataggc	TTTTTGCGG AAAAAACGCC	AACTGGATCT TTGACCTAGA	ATCCCGTGAT TAGGGCACTA	GATGGCATGA CTACCGTACT	CCGCT	GATGCCAGCA	AAAGTTGCAG TTTCAACGTC	CACTGGGGCC GTGACCCCGG	TGCCTCACTG ACGCAGTGAC	ATCCT	ATCCTTTTTT TAGGAAAAAA	GAAGGTAACT CTTCCATTGA
0 0 0 0 0		G TTP	A TAT	C TTT				TAA S ATT	GAT CTA						
TACGTGACTG	GACCGTCTCC CTGGCAGAGG	ttttatagg Aaaaatatcc	tacattcaaa atgtaagttt	CCTTATTCCC GGAATAAGGG	GGTTACATCG CCAATGTAGC	GCGCGGTATT	GCATCTTACG	CCGAAGGAGC GGCTTCCTCG	GTGACACCAC CACTGTGGTG	GGAGGCGGAT CCTCCGCCTA	ATCATTGCAG TAGTAACGTC	CTGAGATAGG GACTCTATCC	GATCTAGGTG	TCTTCTTGAG AGAAGAACTC	CTCTTTTTCC GAGAAAAAGG
								_					GATC	TCTTC	
3301	3401	3501	3601	3701	3801	3901	4001	4101	4201	4301	4401	4501	4601	4701	4801

Figure 4-3

CINITICCGCG TCGCCAGCCC GACTTGCCCC CCAAGCACGI GTGTCGGGTC GAACCTCGCT TGCTGGATGT GGCTTGACTC TATGGATGTC GCACTCGTAA	5101 GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGACTTC CACGGGAAA CTCTTTCGCG GTGCGAAGGG CTTCCCTCTT TCCGCCTGTC CATAGGCCAT TCGCCGTCCC AGCCTTGTCC TCTCGCGTGC TCCTCGAAG GTCCCCTTT	5201 CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC GTCGATTTTT GTGATGCTCG TCAGGGGGC GGAGCCTATG GAAAAACGCC GCGGACCATA GAAATATCAG GACAGCCCAA AGCGGTGGAG ACTGAACTCG CAGCTAAAAA CACTACGAGC AGTCCCCCCG CCTCGGATAC CTTTTTGCGG	5301 AGCAACGCGG CCTTTTACG GTTCCTGGCC TTTTGCTGGC CTTTTGCTCA CATGTTCTTT CCTGCGTTAT CCCCTGATTC TGTGGATAAC CGTATTACUG TCGTTGCGCC GGAAAAATGC CAAGGACCGG AAAACGACGG GAAAACGAGT GTACAAGAAA GGACGCAATA GGGGACTAAG ACACCTATTG GCATAATGGC	5401 CCTTTGAGTG AGCTGATACC GCTCGCCGCA GCCGAACGAC CGAGCCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CCAATACGCA AACCGOCTCT GGAAACTCAC TCGACTATGG CGAGGCGC TTGGCGGAGA GCGAAACTCAC CCTTCTCGC GGTTATGCGT TTGGCGGAGA	CCCCGCCCGT TGGCCGATTC ATTAATCCAG CTGGCACGAC AGGTTTCCCG ACTGGAAAGC GGGCAGTGAG CGCAACGCAA	CATTAGGCAC CCCAGGCTTT ACACTTTATG CTTCCGGCTC GTATGTTGTG TGGAATTGTG AGCGGATAAC AATTTCACAC AGGAAACAGC TATGACCATU GTAATCCGTG GGGTCCGAAA TGTGAAATAC GAAGGCCGAG CATACAACAC ACCTTAACAC TCGCCTATTG TTAAAGIGTG TCCTTTGTCG ATACTGGTAC	
srercegerc gaacero	STATCCGGTA AGCGGCA CATAGGCCAT TCGCCGT	rgacttgage gregatt actgaacteg cagetaa	CTTTTGCTCA CATGTTC SAAAACGAGT GTACAAG	CGAGCGCAGC GAGTCAG SCTCGCGTCG CTCAGTC	AGGTTTCCCG ACTGGAA TCCAAAGGGC TGACCTT	STATGTGTG TGGAATT CATACAACAC ACCTTAA	
GACTTGCCCC CCAAGCACGT	GAAGGGAGAA AGGCGGACAG CTTCCCTCTT TCCGCCTGTC	CTGTCGGGTT TCGCCACCTC GACAGCCCAA AGCGGTGGAG	GTTCCTGGCC TTTTGCTGGC CAAGGACCGG AAAACGACCG	GCTCGCCGCA GCCGAACGAC	ATTAATCCAG CTGGCACGAC TAATTAGGTC GACCGTGCTG	ACACTITIATG CITCCGGCTC TGTGAAATAC GAAGGCCGAG	
TCGCCAGCCC	CACGCTTCCC	CTTTATAGTC GAAATATCAG	CCTTTTTACG GGAAAAATGC	AGCTGATACC TCGACTATGG	TGGCCGATTC ACCGGCTAAG	CCCAGGCTTT GGGTCCGAAA	AA
CIATTCCGCG	GAGAAAGCGC CTCTTTCGCG	CGCCTGGTAT	AGCAACGCGG TCGTTGCGCC	cctttgagtg ggaactcac	CCCCGCGCGT	CATTAGGCAC GTAATCCGTG	5701 ATTACGAATT AA
	5101	5201	5301	5401	5501	5601	5701

>length: 5712

igure 4-4

Figure 5, pSV.ID.aVEGF control plasmid

Figure 6. pSV.IPD.2C4

Figure pSV. IPD.

(circular 12514

CCAGCAGGCA GAATGTGTG CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CTTACACACA GTCAATCCCA CACCTTTCAG GGGTCCGAGG ATTATTGACT AGAGTCGATC GACAGCTGTG TAATAACTGA TCTCAGCTAG CTGTCGACAC TTCGAGCTCG CCCGACATTG
AAGCTCGAGC GGGCTGTAAC

CCCCAGCAGG CAGAAGTATG CAAAGCATGC GGGGTCGTCC GTCTTCATAC CTTTCGTACG AAGCATGCAT CTCAATTAGT CAGCAACCAG GTGTGGAAAG TCCCCAGGCT TTCGTACGTA GAGTTAATCA GTCGTTGGTC CACACCTTTC AGGGTCCGA GRAGIATGCA 7 101

GCCCCATTCT C GCCCAGTTC (GCGGGTCAAG (GTCAGCAACC ATAGTCCGGC CCCTAACTCC GCCCATCCCG CCCCTAACTC CAGTCGTTGG TATCAGGGCG GGGATTGAGG CGGGTAGGGC GGGGATTGAG 201

AGRAGIAGTG AGGAGGCTTT TITGGAGGCC TAGGCTTTTG CAAAAAGCTA GCTTATCCGG TCTTCATCAC TCCTCCGAAA AAACCTCCGG ATCCGAAAAC GTTTTTCGAT CGAATAGGCC TATGCAGAGG CCGAGGCCGC CTCGGCCTCT GAGCTATTCC ATACGTCTCC GCCTCCGGCG GAGCCGGAGA CTCGATAAGG TATGCAGAGG 301

GGCGGATTCC CCGTGCCAAG AGTGACGTAA GCGCCTAAGG GGCACGGTTC TCACTGCATT CCGGGAACGG TGCATTGGAA GCCCCTTGCC ACGTAACCTT CCGGGAACGG 101

AGTCCACCAT GACCGAGTAC AAGCCCACGG TCAGGTGTA CTGGCTCATG TTCGGGTGCC "Start PUR coding TAGAGCGACT A GTACCGCCTA 1 donor ^splice 501

CGCCACGGG CACACGTAG ACCCGGAUCES GCGGTGCGCG GTGTGGCATC TGGGCCTTUGC CCGACTACCC (GCCTGATGGG (GACGTCCCGC GGGCCGTACG CACQCTCGCC GCCGCGTTCC CTGCAGGGCG CCCGGCATGC GTGGGAGCGG CGGCGCAAGC TGCGCCTCGC CACCCGCGAC ACGCGGAGCG GTGGGCGCTG 601

CGGCAAGGTG TGGGTCGCGG ACGACGGCGC CGCGGTTGUUU GCCGTTCCAC ACCCAGCGCC TGCTGCCGCG GCGCCACCGC ACTCTTCCTC ACGCGCTCG GCCTCGACAT TGAGAAGGAG TGCGCGCAGC CCGAGCTGTA AGCTGCAAGA TCGACGTTCT GCCCAGTGGC CCACATCGAG (GGTGTAGCTC (

ATGGCCGAGT TGAGCGGTTC CCGGCTGGCC GCGCAGCAAC TACCGGCTCA ACTCGCCAAG GCCGACCGG CGCGTCGTTG CGTCGAAGCG (CGCCGGAGAG C GTCTGGACCA C 701

CGCGTGSTTC CIGGCCACCG TCGCCGTCIC GCCCGACCAC CAGGGCAAGC GTCTGGGCAGGGCACCAAG GACCGGTGGC AGCCGCAGAG CGGGCTGGTG GICCCGTTCC CAGACCCGTG CCGCACCGGC.CCAAGGAGCC GGCGTGGCCG GGTTCCTCGG CCTCCTGGCG (GGAGGACCGC (AGATGGAAGG (TCTACCTTCC) 301

сессетсете

901

GIGCATGACC GGCAAGCCG GTGCCAACAT GGTTCGACCA TTGAACTGCA CAGGTACTGG GCGTTCGGGC CACGGTTGTA CCAAGCTGGT AACTTGACC CGAGCGGCTd GACCTCCGCG CCCCGCAACC TCCCCTTCTA CTGGAGGCGC GGGCGTTGG AGGGGAAGAT GGGGTGCCCG CCTTCCTGGA CCGAAGGACC GCGCGACCTG GGCTTCCTGG CGCGCTGGAC CTCCCCGGAG TGGAGGCGGC CGAGCGCGCC GAGGGGCCTC ACCTCCGCCG GCTCGCGCGG GCAGCTCACG (GCCTTCACCG TCACCGCCGA CCGAAGTGGC AGTGGCGGCT GCGGCAGCAC 1001

GCRAGAACGS AGACCTACCC TGCCCTCCGC TCAGGAACGC GTTCAAGTAC TTCCAAAGAA TGACCACAAd 'Start DHFR coding GTCCCAAAAT ATGGGGATTG CAGGGTTTTA TACCCCTAAC TCGTCGCCGT AGCAGCGCGCA 1101

GATTATGGET AGGAADACCT GGTTCTCCAT TCCTGAGAAG AATCGACCTT TAAAGGACAG AATTAATATA, CTAATACCCA TCCTTTTGGA CCAAGAGGTA AGGACTCTTC TTAGCTGGAA ATTTCTGTC TTAATTATATAT GAAGGTAAAC AGAATCTGGT CTTCCATTTG TCTTAGACCA GAGAAGTCAC CTCTTCAGTG 1201

TGAACAACCG C TAAGACTTAT ATTCTGAATA CGAGGGCTC ATTITCTIGC CAAAAGTITG GAIGAIGCCT GCTCCTCGAG TAAAAGAAG GITTICAAAC CTACTACGGA AGAACCACCA GAGAACTCAA 1 GTTCTCAGTA C 1301

AAACACTGTT CCTAGTACGT TTTGFGACAA GCCATGAATC AACÇAGGCCA CCTTAGACTC GGTACTTAG TTGGTCCGGT GGAATCTGAG CATGGTTTGG ATAGTCGGAG GCAGTTCTGT TTACCAGGAA GTACCAAACC TATCAGCCTC CGTCAAGACA AATGGTCCTT GTAAAGTAGA C 1401

GGAATTIGAA AGIGACACGI TITICCCAGA AAITGATIIG GGGAAAIAIA AACCICTCCC AGAAIACCCA GGCGICCICI CIGAGGICCA GGAGGAAAA

TTTT	ACTTTTGCTG TGAAAACGAC	AATAACATCC TTATTGTAGG	CATCCTTT'I'T GTAGGAAAAA	4 RCcoding TCCTGTGCAG AGGACACCTC	ACAGTGGCGG TGTCACCGCC	AGGAC	CAMGG GTTCC	GTGAC	CTGTG	TGACA	TGATCTCCCG	 	srgcalf. Acgr [[]	1 2555 1 5555 2660	GGAG III	Acc II	ge ²
T CCTCCTTT1				U ·			TCCACCAAGG	S AACCGGTGAC TTGGCCACTG	GGTGACTGTG	A TCTTGTGACA			TACAAGTGCA ATGTTCACGT	CCCCATCCCG	GCAGCCGGAG CGTCGGCC'rC	CAGGGGAACG GTCCCCITTGC	
A GACTCCAGGT	AGACCATGGG	GACACTATAG	GGTCATGTAT	ACTCCGTTTG TGAGGCAAAC	GTTAATCCTA CAATTAGGAT	ACAGCCTGCG TGTCGGACGC	CTCCTCGGCC	TACTTCCCCG	TCAGCAGCGT AGTCGTCGCA	TGAGCCCAAA ACTCGGGTTT	GACACCCTCA CTGTGGĜAGT	TGGAGGTGCA	TGGCAAGGAG ACCGTTCCTC	TACACCCTGC	AGAGCAATGG TCTCGTTACC	CAGGTGGCAG GTCCACCGTC	
CCGCAGGAGA	CATTTTATA GTAAAAATAT	. CGATTTAGGT GCTAAATCCA	ACCATGGGÀT TGGTACCCTA	CAGGGGGCTC	GGTTGCAGAT CCAACGTCTA	CTGCAGATGA GACGTCTACT	TGGTCACCGT ACCAGTGGCA	GGTCAAGGAC CCAGTTCCTG	CTCTACTCCC GAGATGAGGG	ACAAGAAAGT TGTTCTTTCA	AAAACCCAAG TTTTGGGTTC	GTGGACGGCG	ACTGGCTGAA TGACCGACTT	ACCACAGGTG TGGTGTCCAC	GTGGAGTGGG	TGGACAAGAG A	
TCTTATGGGT	TAAAGCTATG ATTTCGATAC	CATACACATA GTATGTGTAT	ATTGAATTCC TAACTTAAGG	CTGGTGCAGC GACCACGTCG	GCCTGGAATG CGGACCTTAC	CACATTATAC GTGTAATATG	CAAGGAACCC GTTCCTTGGG	TGGGCTGCCT ACCCGACGGA	GTCCTCAGGA	ACCAAGGTGG TGGTTCCACC	TCTTCCCCCC AGAAGGGGGG	CAACTGGTAC GTTGACCATG	CTGCACCAGG GACGTGGTCC	AGCCCCGAGA	CGACATCGCC (AAGCTCACCG	
Trggagaggg	GCTCCCCTCC CGAGGGGAGG	CCTTATGTAT GGAATACATA	GGTTCTATCG CCAAGATAGC	TGGCGGTGGC ACCGCCACCG	CCGGGTAAGG GGCCCATTCC	Gatctaaaaa Ctagattttt	CTACTGGGGT GATGACCCCA	ACAGOGGCCC TGTCGCCGGG	CTGTCCTACA GACAGGATGT	GCCCAGCAAC CGGGTCGTTG	TCAGTCTTCC AGTCAGAAGG	AGGTCAAGTT TCCAGTTCAA	CCTCACCGTC GGAGTGC	GCCAAAGGGC CGC CGC CGC CGC CGC CGC CGC C	TCTATCCCAG (CCTCTACAGC 1 GGAGATGTCG 1	
CCCTTTATAT	AACGTTAACT TTGCAATTGA	TAATAC? ATTATGI	ACTGCACCTC TGACGTGGAG	TGGTGGAGTC ACCACCTCAG	CCGTCAGGCC GGCAGTCCGG	AGTGTTGACA TCACAACTGT	TĊTACTTTGA AGATGAAACT	CTCTGGGGGC	ACCTTCCCGG TGGAAGGGCC	TGAATCACAA ACTTAGTGTT	GGGGGGACCG	GAAGACCCTG	TGGTCAGCGT A	CATCTCCAAA (GTAGAGGTTT (GTCAAAGGCT 1 CAGTTTCCGA 1	GCTCCTTCTT C	
Tractarac	aagaaagact ttctttctga	CAGCTACAAT GTCGATGTTA	CCCAGGTCCA	GAAGTTCAGC CTTCAAGTCG	TGGACTGGGT ACCTGACCCA	TTTCACTCTG AAAGTGAGAC	GGACCCTCTT CCTGGGAGAA	CCAAGAGCAC GGTTCTCGTG	CGGCGTGCAC GCGCCACGTG	atctgcaacg Tagacgttgc	CTGAACTCCT GACTTGAGGA	GENGAGCCAC	ACGTACCGGG TGCATGGCCC A	TCGAGAAAAC (GACCTGCCTG (GACTCCGACG (CTGAGGCTGC (
AAAAGGGTCT	AGTCTACGAG TCAGATGCTC	CGTTAGAACG GCAATCTTGC	GGTGTCCACT CCACAGGTGA	AGTACATTCA TCATGTAAGT	GACTATACCA	TCAAGGGCCG AGTTCCCGGC	TCGTAACCTG AGCATTGGAC	GCACCCTCCT	CCCTGACCAG	CCAGACCTAC GGTCTGGATG	TGCCCAGCAC ACGGGTCGTG	TGGTGGTGGA ACCACCACCT	GTACAACAGC CATGTTGTCG	CCAGCCCCCA GGTCGGGGGT	AGGTCAGCCT (TCCAGTCGGA (rcccgrecre (Agggcacgac (
TCACTGTGCA	ataagtttga Tattcaaact	CCCTTGGCTT GGGAACCGAA	TCTCTCCACA AGAGAGGTGT	CTGCAACTGG GACGTTGACC	CACCTTCACC GTGGAAGTGG	AACCAGCGCT TTGGTCGCGA	attattgtgc Taataacacg	CTTCCCCCTG GAAGGGGGAC	AACTCAGGCG TTGAGTCCGC	GCTTGGGCAC	atecccacce tacegeteec	GTCACATGCG	GGGAGGAGCA	CAAAGCCCTC GTTTCGGGAG	ACCAAGAACC TGGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTTGGTT	AGACCACGCC ;	
CCTTAAACTT	GGCATCAAGT CCGTAGTTCA	GCTTTAGATC CGAAATCTAG	ACTTTGCCTT TGAAACGGAA	CTAGTAGCAA GATCATCGTT	CTTCTGGCTT GAAGACCGAA	CTCTATCTAT GAGATAGATA	ACTGCCGTCT TGACGGCAGA	GCCCATCGGT CGGGTAGCCA	GGTGTCCTGG CCACAGCACC	CCCTCTAGCA	AAACTCACAC TTTGAGTGTG	2701 GACCCCTGAG CTGGGGACTC	2801 ACAAAGCCGC (2901 AGGTCTCCAA (TCCAGAGGTT (GGAAGAGATG 1 CCTTCTCTAC 1	3101 AACAACTACA F TTGTTGATGT 1	
	1601	1701	1801	1901	2001	2101	2201	2301	2401	2501	2601	2701	2801	2901 1	3001	3101 A	

											HIM STORET	tt ett 16		and or		# #W7.44	
CAAATAAAGC	ATGGCCTGAA TACCGGACTT	CCAGGCTCCC	AAAGCATGCA TTTCGTACGT	CTGACTÀATT GACTGATTAA	AAAAAGCTAG TTTTTCGATC	CTTGGCTTCG	TCCCAGGTCC AGGGTCCAGG	CTGCAACTGG GACGTTGACC	GGATCTCTCT CCTACACAGA	CGCTTCTCTG GCGAAGAGAC	ATCCTTACAC TAGGAATGTG	TGGAACTGCT ACCTTGACGA	GAGAGTGTCA CTCTCACAGT	GCGAAGTCAC CGCTTCAGTG	CACCTTATAA GTCGAATATT	TGTATCTTAT ACATAGAATA	AGTAGCAAGU TCATCGTTCC
ACAAATTTCA TGTTTAAAGT	GCGCAGCACC	TGGAAAGTCC ACCTTTCAGG	agaagtatgc Tcttcatacg	CGCCCCATGG GCGGGGTACC	AGGCTTTTGC TCCGAAAACG	GGCCCACCCC	AGGTGTCCAC TCCACAGGTG	CTAGTAGCAA GATCATCGTT	AGGCCAGTCA TCCGGTCAGT	AGTCCCTTCT TCAGGGAAGA	TATTATATT ATAATATAAA	AGTTGAAATC TCAACTTTAG	TAACTCCCAG ATTGAGGGTC	GTCTACGCCT	TTGTTTATTG AACAAATAAC	AACTCATCAA TTGAGTAGTT	GGTACCGACT CCATGGCTGA
CAATAGCATC GTTATCGTAG	AATTAATTCG TTAATTAAGC	AGTTAGGGTG TCAATCCCAC	CCCAGCAGGC GGGTCGTCCG	GCCCATTCTC	TTGGAGGACT AACCTCCTGA	agagectata Tctcagatat	TTTTCTCCAC AAAAGAGGTG	CATCCTTTTT GTAGGAAAAA	atcacctgca tagtggacgt	GATACACTGG	CTGTCAACAA GACAGTTGTT	TCTGATGAGC AGACTACTCG	TCCAATCGGG AGGTTAGCCC	GAAACACAAA CTTTGTGTTT	atgecccaac taccgggttg	GGTTTGTCCA CCAAACAGGT	AACTTGGTTA TTGAACCAAT
acaaataaag tgtttattec	CTGGATCGGG GACCTAGCCC	AATGTGTGTC TTACACACAG	CCCCAGGCTC	GCCCAGTTCC CGGGTCAAGG	GGAGGCTTTT CCTCCGAAAA	TACCGCCTAT ATGGCGGATA	CACTTTTTCT GTGAAAAAGA	ATGGGAT GGTCATGTAT TACCCTA CCAGTACATA	TAGGGTCACC	GCTTCCTACC	CAACTTATTA GTTGAATAAT	CTTCCCGCCA	GATAACGCCC CTATTGCGGG	CAGACTACGA GTCTGATGCT	GATGGCCGCC	TTCTAGTTGT AAGATCAACA	CTGAAAGAGG GACTTTCTCC
TATAATGGTT	CTTATCATGT GAATAGTACA	CCAGCTGTGG GGTCGACACC	TGTGGAAAGT ACACCTTTCA	CCCTAACTCC GGGATTGAGG	GAAGTAGTGA CTTCATCACT	GTCAGGTAAG CAGTCCATTC	CACTGACATC GTGACTGTAG	Acc	CTGTGGGCGA GACACCGCT	GATTTACTCG CTAAATGAGC	GAAGACTTCG CTTCTGAAGC	CTGTCTTCAT GACAGAAGTA	GTGGAAGGTG CACCTTCCAC	CTGAGCAAAG GACTCGTTTC	GTTAAGCTTC CAATTCGAAG	tttcactgca aaagtgacgt	tttaaaccet Aaatttggga
TATTGCAGCT	ATCAATGTAT TAGTTACATA	GCGGAAAGAA CGCCTTTCTT	AGCAACCAGG TCGTTGGTCC	CCCATCCCGC	AGCTATTCCA TCGATAAGGT	CGTGCCAAGA GCACGGTTCT	atcctactga taggatgact	ATTGAATTCC TAACTTAAGG	CTGTCCGCCT	CGAAACTACT GCTTTGATGA	TCTGCAGCCA	GCTGCACCAT	CCAAAGTACA GGTTTCATGT	CACCCTGACG	AGGGGAGAGT TCCCCTCTCA	AAAGCATTTT TTTCGTAAAA	Ctgaaataag Gactttattc
CCAACTTGTT GGTTGAACAA	GTCCAAACTC CAGGTTTGAG	ACCTTCTGAG TGGAAGACTC	TCAATTAGTC AGTTAATCAG	CCTAACTCCG GGATTGAGGC	TCGGCCTCTG AGCCGGAGAC	GCGGATTCCC	TTTTGGATCG AAAACCTAGC	GGCTGCATCG	CCCGAGCTCC	GGAAAAGCTC CCTTTTCGAG	CCATCAGCAG	ACGAACTGTG TGCTTGACAC	CCCAGAGAGG GGGTCTCTCC	GCCTCAGCAG	GAGCTTCAAC CTCGAAGTTG	tttcacaaat Aaagtgttta	GCACCATGGC CGTGGTACCG
CCGCCATGGC GGCGGTACCG	GTTGTGGTTT CAACACCAAA	TTGGTTAGGT AACCAATCCA	AGCATGCATC TCGTACGTAG	TAGTCCCGCC	CGAGGCCGCC	GCATTGGAAC	atacataacc tatgtattgg	AGCTAGCTTG TCGATCGAAC	TGACCCAGTC ACTGGGTCAG	acagaaacca Tgtctttggt	ttcactctga aagtgagact	TGGAGATCAA	Taacttctat Attgaagata	AGCACCTACA TCGTGGATGT	CCGTCACAAA GGCAGTGTTT	GCATCACAAA CGTAGTGTTT	ATTCGGCGCA TAAGCCGCGT
GCTTCGATGG	CTGCATTCTA	AAAGAGGAAC TTTCTCCTTG	AAGTATGCAA TTCATACGTT	TCAGCAACCA AGTCGTTGGT	ATGCAGAGGC TACGTCTCCG	CGGGAACGGT GCCCTTGCCA	gctacaatta Cgatgttaat	CGGTTCGCGA GCCAAGCGCT	GATATCCAGA CTATAGGTCT	CCTGGTATCA GGACCATAGT	TGGGACGGAT	GGTACCAAGG CCATGGTTCC	GCCTGCTGAA	CAGCAAGGAC GTCGTTCCTG	CTGAGCTCGC	TAAAGCAATA ATTTCGTTAT	TCGGGAATTA AGCCCTTAAT
ACCTGCAGAA TGGACGTCTT	attttttca Taaaaaagt	ATAACCTCTG TATTGGAGAC	CAGCAGGCAG	TCTCAATTAG	tttttttt Aaaaataaa	CTTATCCGGC GAATAGGCCG	4001 TTAGAACGCG	AACTGCACCT TTGACGTGGA	AGTACATTCA TCATGTAAGT	ATTGGTGTCG TAACCACAGC	GATCCGGTTC	GTTTGGACAG CAAACCTGTC	TCTGTTGTGT AGACAACACA	CAGAGCAGGA GTCTCGTCCT	CCATCAGGGC GGTAGTCCCG	tggttacaaa accaatgttt	5001 CATGTCTGGA GTACAGACCT
3301	3401	3501	3601	3701	3801	3901	4001	4101	4201	4301	4401	4501	4601	4701	4801	4901	5001

igure 7

5 H	5 ₽	ĻΚ	a t	စ္ ပ	២០	4 1-	£ d	ረ) ጠ	ერ	e - :			'mail' 'thail' as			and the	
CGATGTATGA GCTACATACT	T'TTAAATGAA AAATTTAC'FT	TAAAAGACTT ATTTTCTGAA	TCAAAATGTA AGTTTTACAT	ATGAGATGTG TACTCTACAC	TTTTACAATG AAAATGTTAC	CACAAAAAAA GTGTTTTTTT	GAGAAAAATT CTCTTTTTAA	AAGAAAAGTC TTCTTTTCAG	AAAATAAAAC TTTTA1TTTG	ATATACACTA TATATGTGAT	CCCATGGGCT	CAAGGTCATC GTTCCAGTAG	CCCAGAACAG GGGTCTTGTC	TCATTTTCAT	CTGTGCTGTC GACACGACAG	TTTTAAGAGG AAAATTCTCC	SAATGGGTGT
ACACCATAGA TGTGGTATCT	TTAGTGAAGA AATCACTTCT	ATTCATGAAC TAAGTACTTG	CAACCTCATT GTTGGAGTAA	AGAGCAAAGC TCTCGTTTCG	AAATATGGCA TTTATACCGT	ATACCATACA TATGGTATGT	CTTCAGTGTA GAAGTCACAT	AAAAACCATT TTTTTGGTAA	AAATCAGTAA TTTAGTCATT	CTATCATTGC GATAGTAACG	agtactttac Tcatgaaatg	TCAAAACTGT AGTTTTGACA	TGAATGAGAT	CACGGCAAAG	CAGCAGCTAT (AAACTTTATT	ATTGCATCAT GAATGGGTGT
TTTAAAAATG AAATTTTTAC	AAATGAGAGG TTTACTCTCC	GACATACTAT CTGTATGATA	GTTAACTTGT CAATTGAACA	ATCAAGATTT TAGTTCTAAA	CCTATGAAAA GGATACTTTT	CCCATATGTC GGGTATACAG	GCCATCATGA CGGTAGTACT	tttaaaatta Aaattttaat	GAAGTCTTAC CTTCAGAATG	AATCAGAGAA TTAGTCTCTT	TGATGAGAAC ACTACTCTTG	CCAGTACTCC 1 GGTCATGAGG 1	TGTGGCATIC 1	GTAGCATTAÀ C CATCGTAATT G	AACAGAAGTA C TTGTCTTCAT G	TTTAAATGAA A AAATTTACTT T	TTACTGAGAG A
	TACAAATTGT ATGTTTAACA	gaaacggaga Ctttgcctct	AAAGCTGTTT TTTCGACAAA	TCCACTAAAT	ATGTAAGTGA TACATTCACT	TAAAAGGGAA (ATAGAAGCAT (AAGACTTATT TTCTGAATAA	ATTATAAAA (TAATATTTT (CAATCTCAGA A	TGATATGATG 1 ACTATACTAC 2	CTATATCTAA C GATATAGATT G	TTATATGTAA T AATATACATT A	TTAAAAAGA G AATTTTTTCT C	CATTGCCAGA A GTAACGGTCT T	TTGTTTTCTT T	TATTCCTAGT T
AAAAAGGTGA.AAAATTACAT TTTTCCACT TTTTAATGTA	CCAGAAAACT GGTCTTTTGA	AGTTAATGCA TCAATTACGT	TCACCCCAAA AGTGGGGTTT	gaaagaatgt Ctttcttaca	CCATTGATAT GGTAACTATA	ATGTAAAAAA TACATTTTT	AGAAAATAAT	CATGAATATT G	TAATATGCAG	ATGAGAAACT (TATATAACCT 3	AACCATTACC (TTGGTAATGG	GACATGAGAA 1 CTGTACTCTT A	TTAGTTTTT T AATCAAAAAA A	TAGTCTGGAA C ATCAGACCTT G	TCCATGTTTT T AGGTACAAAA A	GTTTTCCTC T
CTTTAGCAAT GAAATCGTTA	AGACTGTTAC TCTGACAATG	TGAATGTCTA ACTTACAGAT	GTCAATATGT CAGTTATACA	AACAAAATGG TTGTTTTACC	agaaacagac Tctttgtctg	atatatttat Tatataaata	TAAATCTTTT	AATTAGATTG TTAATCTAAC	AAGAGAATTG TTCTCTTAAC	ATCATTACAC TAGTAATGTG	ATATTGATGG TATAACTACC	ATACTTTAAA 1 TATGAAATTT 1	AACCCAAGGA (TTGGGTTCCT (AGTTTGAACT 1 TCAAACTTGA A	TTTTTAAATG 1 AAAAATTTAC 2	TCAACGCTCC 1 AGTTGCGAGG A	AAGCTGAGGA AGTTTTCCTC
AGTCATCTCT TCAGTAGAGA	AAGAAGTGCA TTCTTCAGGT	GAGAAATTAA CTCTTTAATT	TAAATTTGTA ATTTAAACAT	attcttgtag Taagaacatc	agtagagete Tcatetegag	aaacaggaa Tttgtccctt	GGCAAAACTT	AAAGATTGTT TTTCTAACAA	CACCCCAGTA	ACTCTAAATA I	ATCTGTGGCA 1	CATGACAAAT 1 GTACTGTTTA 1	AACTAAGAGG 1 TTGATTCTCC 1	ATATAAATAA F TATATTATT 1	ааттаааат 1 Ттаатттта 2	ATGAGATACA I TACTCTATGT A	
attaacaatc taattgitag	AATCTAGGCA TTAGATCCGT	TAAATTGTGA ATTTAACACT	STCTTTTCACA AGAAAAGTGT	Taacaaaaat Attgtttta	gataaaatag Ctattttatc	ttttttagaa Aaaaatctt	aaatggagaa Tttacctctt	ACCACAAAGA TGGTGTTTCT	ATATTTGCAA	TGAAAGAGAA	GCTAAGTAAC	CAGTATAAAT GTCATATTTA	GAACTGTCAA 1 CTTGACAGTT 1	AACTAATGAA 1 TTGATTACTT 1	ACAAGTCTAT I TGTTCAGATA 1	TTGGȚCTAAA A AACCAGATTT I	TCATAGCAAA ATTGAGAGGA AGGTACATTC
CAAGATCAAT GTTCTAGTTA	CTTGGAAATA GAACCTTTAT	aataaactta Ttatttgaat	AGGTATACTT . TCCATATGAA	CCAAAGACAA GGTTTCTGTT	CAGTGAGGCT	gatctttttc Ctagaaaag	ttataagtet Aatatteaga	CAAAGTCCTA	ATGACAGAAA . TACTGTCTTT	TTTGAACAGA	ATATTAAAG TATAATTTTC	ACCCTTACCC (TGGGAATGGG (AAAGTCTGAG (TTTCAGACTC (GTAGCTAAAA 1 CATCGATTTT 1	AACATTAAGT 1 TTGTAATTCA '1	CCATAGCTGA 1 GGTATCGACT A	CATAGCAAA A
TCGCCACGCA AGCGGTGCGT	aaataatcta Tttattagat	TGAAGATCTA ACTTCTAGAT	aatattgega Ttataacact	Tatagaaagc Atatctttcg	TGGGGATAGA ACCCCTATCT	GGAAAATGAT CCTTTTACTA	TTCCAGTGAA	TCTTATGACT	AGGCCATAGA	TAGACAAAAA 3 ATCTGTTTTT 3	AATTAGAGAA 1 TTAATCTCTT	TCCTCCCCAR I	AAAATAAGA 1 TTTTTATTCT 1	AAAAAGAACA C TTTTTCTTGT C	ATTTTCTTG P TAAAAAGAAC 1	GCCTAACTAT C CGGATTGATA G	6801 AGTTTCAGGT T
5101	5201	5301	5401	5501	5601	5701	5801	5901	6001 1	6101 7	6201 7	6301 7	6401 P	6501 A	6601 A	6701 6	6801 A
															٠.		

6801 AGTITCAGGI TCATAGCAAA AITGAGAGGA AGGTACATIC AAGCTGAGGA AGITITCCIC TAITCCIAGI TIACTGAGAG ATTGCATCAT GAATGGGTUT Figure 7-4

4	O O	⊑ ar	i c	i a	in a	() (5	·/h /)	(3.0)	d u	ďЬ	0 KT	·			· juni		20.
CCAC	CAAA	PAAA	TGAA	AACT	CGAA	TAAG	GTTC	GATG	CAAC	ລວລວ.	ACAU	CGTC	ACTT! TGAA	AATA TTAT'	AACGC 1"TGCG	12959 12959	TACAC
CTTACCCACA	attttcaaac taaaagtttg	tgttgaaaat acaactttta	Ctagttgaat Gatcaactta	taccgaącit Atgggtigaa	aatggcgaat' ttaccgct'fa	CGCATTAAGC GCGTAATTCG	GCCACGTTCG CGGTGCAAGC	TGGGTGATGG ACCCACTACC	TGGAACAACA ACCTTGTTGT	tttaacgega Aaattgeget	cgccaacacc gcggttgtggg	Trcaccgrca	GTGGCACTTT# CACCGTGAAA#	GCTTCAATAA	CCAGAAACGC	TTCGCCCCGA	CCCCATACAC GCCTATGTG
									AAAC FTTG				CAG (TTA			
TAACGTAGTA	ACGTTAATTG TGCAATTAAC	GCTAATATTT CGATTATAAA	TAATGCTGGC ATTACGACCG	ACCCTGGCGT TGGGACCGCA	gcecagoorg cecercegac	CCTGTAGCGG GGACATCGCC	ttcctttctc aaggaaagag	AAACTTGATT TTTGAACTAA	tgttccaaac acaaggtttg	ttaacaaaaa Aattgititt	CCCCGACACC	GTCAGAGGTT CAGTCTCCAA	TAGACGTCAG ATCTGCAGTC	CCTGATAAAT GGACTATTTA	TTTTGCTCAC AAAACGAGTG	CTTGAGAGTT GAACTCTCAA	AACTCGGTCG TTGAGCCAGC
															GT TJ		
AATGACTCTC	GGGACAAATT CCCTGTTTAA	gattctttt Ctaagaaaa	ggtattaagg ccataattcc	gactgggaaa Ctgacccttt	CCCAACAGTT GGGTTGTCAA	TAGTACGCGC ATCATGCGCG	CTTTCTTCCC GAAAGAAGGG	CGACCCCAAA GCTGGGGTTT	agtggactct Tcacctgaga	ATGAGCTGAT TACTCGACTA	GTTAAGCCAG CAATTCGGTC	agctgcatgt rcgacgtaca	AATGGTTTCT TTACCAAAGA	agacaataac tctgttattg	GCCTTCCTGT	CGGTAAGATC GCCATTCTAG	GGGCAAGAGC CCCGTTCTCG
A AAT																	
ATAAGGATCA	acctgttgat Tggacaacta	tacattettg atgtaagaae	ttctagttcc Aagatcaagg	acaacgtcgt tgttgcagca	GATCGCCCTT CTAGCGGGAA	aaagcaacca tttcgttggf	GCTCCTTTCG CGAGGAAAGC	TACGGCACCT ATGCCGTGGA	GTTCTTTAAT CAAGAAATTA	tggttaaaaa accaattttt	ATGCCGCATA TACGCCGTAT	CGTCTCCGGG	TCATGATAAT AGTACTATTA	TCCGCTCATG AGGCGAGTAC	GCGCCATTT	ATCTCAACAG TAGAGTTGTC	TATTGACGCC ATAACTGCGG
ATAA(ACCT(TACA	TTCT! AAGA	ACAA(TGTT	GATC	AAAGO	GCTC	TACG	GTTC	TGGT	ATGC(TACG(CGTC	TCATO AGTAO	TCCGC	GCGCCATTT	ATCTC	TATTC
GGAG	TTTA	TTGA	CATT	TTTT	CACC	CGTC	9990	GCTT	CCAC	CTAT	TCTG	TGAC	AATG	TGTA		CTGG	0000 0000
TCAAAAGGAG	CCATGTGATT TTCTTCTTTA GGTACACTAA AAGAAGAAAT	taptttttga Ataaaaaact	taatgecatt Attacagtaa	CCGTCGTTTT GGCAGCAAAA	GGCCGCACC	CGCATACGTC GCGTATGCAG	CCTAGCGCCC GGATCGCGGG	tttagtgctt Aaatcacgaa	TGGAGTCCAC ACCTCAGGTG	TTCGGCCTAT AAGCCGGATA	ATCTGCTCTG TAGACGAGAC	aagctgtgac Ttcgacactg	TAGGTTAATG ATCCAATTAC	CAAATATGTA GTTTATACAT	TCCCTTTTTT AGGGAAAAAA	ATCGAACTGG TAGCTTGACC	tattatcccg ataatagggc
	ATT T																
TTCGACTCCT	CCATGTGATT GGTACACTAA	ttgtggtgta Aacaccacat	tcttttcttg agaraagaac	ອວອອວວອວອອ ວອວວອອອອວອວວ	atagcgaaga Tatcgcttct	TATTTCACAC ATAAAGTGTG	TTGCCAGCGC AACGGTCGCG	aggettccga Tcccaaggct	CCTTTGACGT GGAAACTGCA	TTTTGCCGAT AAAACGGCTA	TCTCAGTACA AGAGTCATGT	GCTTACAGAC	CCTATTTTA GGATAAAAT	TAAATACATT ATTTATGTAA	TCGCCCTTAT AGCGGGAATA	AGTGGGTTAC TCACCCAATG	TGTGGCGCGG ACACCGCGCC
TCCATGTAAG	ATCAATATGA TAGTTAFACT	'TTCTACTTGG AAGATGAACC	tctgttgttt Agacaacaa	ttctgaggta Aagactccat	agctggggta Tcgaccgcat	ATCTGTGCGG TAGACACGCC	accectacac Tegcgatgte	ggctcccttt ccgagggaaa	GGTTTTTCGC CCAAAAAGCG	ttataaggga Aatattccct	TATGGTGCAC	CCCGGCATCC	TCGTGATACG AGCACTATGC	TTTATTTTC AAATAAAAG	CATTTCCGTG GTAAAGGCAC	TGGGTGCACG ACCCACGTGC	agttctgcta Tcaagacgat
						ATC						2000					
CTCCI	ttctgtgtct Aagacacaga	CTGGAATAAA GACCTTATTT	gagatattgg Ctctataacc	CTGTC	CCCTTTCGCC	TACGC	GCGCAGCGTG	AGCCC	TAGAC	TTGAT	AATTI	CTGCT	CGAAAGGGCC	ATTTG	TTCAR	TCAGT	TTTAA AAATT
TAACTCTCCT	TTCTG AAGAC	CTGGA	gagatattgg Ctctataacc	TGCTTCTGTC	CCCTTTCGCC	CTCCTTACGC GAGGAATGCG	GCGCAGCGTG	CTAAATCGGG GATTTAGCCC	CCTGATAGAC GGACTATCTG	ttcttttgat Aagaaaacta	tttacaattt Aaatgttaaa	CTTGTCTGCT GAACAGACGA	CGAAAGGGCC GCTTTCCCGG	CCCCTATTTG GGGGATAAAC	gagtattcaa Ctcataagtt	GAAGATCAGT CTTCTAGTCA	gcacttttaa Cgtgaaaatt
	CTTT	ATAT	ATGA	CCTC	ATCC		TTAC	AGCT	TCGC		AACG	2228 2882	GAGA	GGAA	GTAT		
AGTATCGTTT	CAAATGCTTT GTTTACGAAA	CCTTACATAT GGAATGTATA	ttgttcatga Aacaagtact	GTATTCCCTC CATAAGGGAG	CAGCACATCC GTCGTGTAGG	GCGGTATTTT CGCCATAAAA	TGGTGGTTAC ACCACCAATG	CCGTCAAGCT GGCAGTTCGA	GGGCCATCGC	TCTCGGGCTA AGAGCCCGAT	AATATTAACG TTATAATTGC	CCCTGACGGG	GCGCGAGAGA CGCGCTCTCT	GTGCGCGGAA CACGCGCCTT	ggaagagtat Ccttctcata	aaagatget ttttctacga	CCAATGATGA GGTTACTACT
					-	_	•	-									
TCAAAGTCCA	taaattttgt atttaaaaca	GTTGAACCAC	GTTTGTATCT CAAACATAGA	GATTTAGGAA CTAAATCCTT	AATCGCCTTG TTAGCGGAAC	GGCGCCTGAT	GCGGCGGGTG	CCGGCTTTCC	TTCACGTAGT AAGTGCATCA	CTCAACCCTA GAGTTGGGAT	ATTTTAACAA TAAAATTGTT	CGCTGACGCG	TCACCGAAAC AGTGGCTTTG	TCGGGGAAAT AGCCCCTTTA	TATTGAAAAA ATAACTTTTT	TGGTGAAAGT ACCACTTTCA	agaacgtttt Tcttgcaaaa
TC			_	1 GAT CTA	7301 AATCGCCTTG TTAGCGGAAC						1 ATT		1 TCF AGT		TAT ATA		
	6901	7001	7101	7201	730	7401	7501	7601	1701	7801	7901	8001	8101	8201	8301	8401	8501

Figure 7-5

ataaccatga tattggtact	CTCGCCTTGA	ATTAACTGGC TAATTGACCG	GCTGGCTGGT CGACCGACCA	TTATCTACAC AATAGATGTG	agtttactca tcaaatgagt	taacgtgagt attgcactca	carararacc gttttttgg	tactgitcit Atgacaagaa	GCCAGTGGCG CGGTCACCGC	CCAGC1TGGA GGTCGAACCT	GGTAAGCGGC CCATTCGCCG	GAGCGTCGATS. CTCGCAGCTAR	CTCACATGTT	CAGCGAGTCA!	GTGAAAAATT ¹⁵ , CACTTTTTAA _{[[]}	AACTTACAAA	TGCAGAAACG ACGTCTTTGC
										- •							TGCA
CAGTGCTGCC GTCACGACGG	GATCATGTAA	TGCGCAAACT	GGCCCTTCCG CCGGGAAGGC	CGTATCGTAG GCATAGCATC	TGTCAGACCA ACAGTCTGGT	CAAAATCCCT GTTTTAGGGA	tgcttgcaaa acgaacgttt	AGATACCAAA TCTATGGTTT	AGTGGCTGCT TCACCGACGA	TGCACACAGC ACGTGTGTCG	ACAGGTATCĊ TGTCCATAGG	CCTCTGACTT GGAGACTGAA	TGGCCTTTTG ACCGGAAAAC	ccacccacce ccreecrcec	Caataaaag Gitatttic	TTACCCAGAA AATGGGTCTT	tctaagttaa Agattcaatt
GAGAATTATG CTCTTAATAC	Caacategeg Gttgtaccc	GCAACAACGT CGTTGTTGCA	TTCTGCGCTC AAGACGCGAG	TAAGCCCTCC	CATTGGTAAC	ATCTCATGAC TAGAGTACTG	CGTAATCTCC GCATTAGACG	AGCAGAGCGC TCGTCTCGCG	TCCTGTTACC AGGACAATGG	GGGGGGTTCG CCCCCCAAGC	AGAAAGGCGG TCTTTCCGCC	GGTTTCGCCA CCAAAGCGGT	GGCCTTTTGC CCGGAAAACG	CGCAGCCGAA GCGTCGGCTT	CTCTCTTTAG GAGAGAAATC	TGCAAGACTG ACGTTCTGAC	ttaatgaatg Aattacttac
atgacagtaa Tactgtcatt	CTTTTTGCA GAAAAAACGT	TGTAGCAATG ACATCGTTAC	GCAGGACCAC	GGCCAGATGG CCGGTCTACC	actigattaag tgactaattc	CTTTTTGATA GAAAAACTAT	TTTTTCTGCG AAAAAGACGC	AACTGGCTTC TTGACCGAAG	GCTCTGCTAA CGAGACGATT	CGGGCTGAAC GCCCGACTTG	TCCCGAAGGG AGGGCTTCCC	agtectgteg Teaggaeage	tacggttcct atgccaagga	TACCGCTCGC ATGGCGAGCG	aatcagtcat Ttagtcagta	GGCAAAGAAG CCGTTTCTTC	GTGAGAGAAA CACTCTCTTT
TACGGATGGC	GAGCTAACCG CTCGATTGGC	CCACGATGCC	GGATAAAGTT CCTATTTCAA	GCAGCACTGG	TAGGTGCCTC ATCCACGGAG	GGTGAAGAÌC CCACTTCTAG	TGAGATCCTT ACTCTAGGAA	TTCCGAAGGT AAGGCTTCCA	TACATACCTÖ ATGTATGGAG	GCGCAGCGGT	GCGCCACGCT	GTATCTTTAT CATAGAAATA	GCGGCCTTTT CGCCGGAAAA	AGTGAGCTGA TCACTCGACT	CAATATTAAC GTTATAATTG	AATAAATCTA TTATTTAGAT	CTTATAAATT GAATATTTAA
AAAAGCATCT TTTTCGTAGA	AGGACCGAAG TCCTGGCTTC	GAGCGTGACA	GGATGGAGGC	CGGTATCATT GCCATAGTAA	atcgctgaga Tagcgactct	AAAGGATCTA TTTCCTAGAT	aggatettet Tectagaaga	CCAACTCTTT GGTTGAGAAA	TAGCACCGCC ATCGTGGCGG	accegataag Tegcctattc	Ctatgagaaa Gatactcttț	Grarcecete Ctttgcggre	CGCCAGCAAC GCGGTCGTTG	ACCGCCTTTG TGGCGGAAAC	CGCACAAGAT	TCTACTTGGA	TCTAAATAAA AGATTTATTT
ccagtcacag ggtcagtgtc	Caacgatogg Gttgctagoo	ACCAAACGAC TGGTTTGCTG	ttaatagact Aattatctga	GTGGGTCTCG	aaatagacag Tttatcegec	ttttaattta Aaaattaaat	aaaagatcaa Tittciagit	TCAAGAGCTA AGTTCTCGAT	aagaactctg ttcttgagac	GACGATAGIT CIGCIAICAA	ACNGCGTGAG TGTCGCACTC	CTTCCAGGGG GAAGGTCCCC	Tatggaraa Ataccttttt	TAACCGTATT ATTGGCATAA	AAGGTCGCCA TTCCACCGGT	atgaaaataa Tacttttatt	TGAATGAAGA ACTTACTTCT
TGAGTACTCA	ttacttctga Aatgaagact	ATGAAGCCAT TACTTCGGTA	CCGGCAACAA	GOCGGTGAGC	tggatgaacg acctacttgc	aaaacttcat Ttttgaagta	GACCCCGTAG CTGGGGCATC	GTTTGCCGGA CAAACGGCCT	CCACCACTTC GGTGGTGAAG	ttggactcaa aacctgagtt	TGAGATACCT ACTCTATGGA	CACGAGGGAG GTGCTCCCTC	GGGCGGAGCC	ATTCTGTGGA TAAGACACCT	ಕುರುತಿರುತ್ತು ನಿರಾಧಿಕೆ ಕೆಲ್ಲಿಗಳು	tagacgatgt Atctgctaca	aagatttaaa Ttctaaattt
atgactiggt tactgaacca	TGCGGCCAAC ACGCCGGTTG	CCGGAGCTGA GGCCTCGACT	CTCTAGCTTC GAGATCGAAG	Taratctgga Atttagacct	CAGGCAACTA GTCCGTTGAT	agattgattt Tctaactaaa	CTGAGCGTCA GACTCGCAGT	GCGGTGGTTT	cgtagttagg gcatcaatcc	TCTTACCGGG AGAATGGCCC	TACACCGAAC ATGTGGCTTG	CAGGAGAGCG GTCCTCTCGC	CTCGTCAGGG GAGCAGTCCC	TTATCCCCTG AATAGGGGAC	AAGCGGAAGA TTCGCCTTCT	AATGACACCA TTACTGTGGT	GAGGTTAGTG CTCCAATCAC
8601 TATTCTCAGA ATAAGAGTCT	gtgataacac Cactattgtg	TCGTTGGGAA AGCAACCCTT	Gaactactta Cttgatgaat	ttattgctga artaacgact	GACGGGGAGT CTGCCCCTCA	tatatacttt Atatatgaaa	TTTCGTTCCA AAAGCAAGGT	ACCGCTACCA TGGCGATGGT	CTAGTGTAGC GATCACATCG	9601 ATAAGTCGTG TATTCAGCAC	GCGAACGACC CGCTTGCTGG	AGGGTCGGAA TCCCAGCCTT	ttttgtgatg aàaacactac	CTTTCCTGCG	GTGAGCGAGG	10201 ACATTTTAAA TGTAAAATTT	10301 TTGTAAATGA AACATTTACT
8601	8701	8801	8901	9001	9101	9201	9301	9401	9501	1096	9701	9801	9901	10001	10101	10201	10301
																	;

Figure 7-6

CAAAAAAGCT GTTTTTCGA	atgitccact tacaaggiga	ATATATGTAA TATATACATT	aaaataaag ttttatttc	taatatagaa Attatatctt	tattaagact At aa ttctga	GCAGATTATA CGTCTAATAT	AACTCAATCT TTGAGTTAGA	ACCTTGATAT TGGAACTATA	TACCCTATAT ATGGGATATA	AGAATTATAT TCTTAATATA	TTTTTTAAAA!!' AAAAATTTT!	GGAACATTGC', CCTTGTAACG	TTTTTGTTT AAAAACAAA	CCTCTATTCC ^{3,} GGAGATAAGG	TTTAACCTGT	្រុ TTGATACATT ្រុ AACTATGTAA
ATGITCACCC CA	ATGGGAAAGA AT	AGACCCATIG AI TCTGGGTAAC TA	TTATATGTAA AI AATATACATT TI	ttttagaaaa ti Aaaatctttt ai	ATTGCATGAA TI TAACGTACTT AI	ATTGTAATAT GO TAACATTATA CO	ACACATGAGA AJ TGTGTACTCT TJ	ATGGTATATA AC TACCATATAT TG	TAAAAACCAT TA ATTTTGGTA AT	AGGAGACATG AG TCCTCTGTAC TC	AACTTTAGTT TT TTGAAATCAA AA	AATGTAGTCT GG TTACATCAGA CC	CTCCTCCATG TT GAGGAGGTAC AA	aggagetete cc Tcctecaaa gg	GATTTTCTTC TT CTAAAAGAAG AA	ТСТАТАТТТ ТТ АСАТАТАВАЯ АВ
TGTAGTCAAT A	GTAGAACAAA A CATCTTGTTT T	GCTCAGAAAC A CGAGTCTTTG T	GGAAATATAT T CCTTTATATA A	ACTTTAAATC T TGAAATTTAG A	TGTTAATTAG A ACAATTAATC T	AGTAAAGAGA A TCAITTCTCT I	AATAATCATT A TTATTAGTAA T	GGCAATATTG A	AAATATACTT TI TTTATATGAA A	GAGGAACCCA A	ATAAAGTTTG A TATTTCAAAC T	AAATTTTTA A T''TAAAAAAT T'	TACATCAACG C' ATGTAGTTGC G	ATTCAAGCTG AC TAAGTTCGAC TC	ATGACCATGT GA TACTGGTACA C1	TTGGTTGTGG TG AACCAACACC AC
CACATAAATT GTGTATTTAA	AAATATTCTT TTTATAAGAA	ATAGAGTAGA	AGAAAAACAG	AGAAGGCAAA TCTTCCGTTT	AAGAAAAGAT TTCTTTTCTA	GCAACACCCC	AGAAACTCTA J	TAACATCTGT (AAATCATGAC 1 TTTAGTACTG 1	TCAAAACTAA (AGTTTTGATT (TGAAATATAA 1 ACTTTATATT 1	CTATAATTAA 1 GATATTAATT 1	TAAAATGAGA 1 ATTTTACTCT A	AGGAAGGTAC A TCCTTCCATG I	GTCTATCAAT A CAGATAGTTA T	TAAATTCTAC I ATTTAAGATG A
ACTTTCTTT .TGAAAGAAAA	acaataacaa Tgttattgtt	GGCTGATAAA CCGACTATTT	TTTCTTTTT AAAGAAAAAA	GTCTAAATGG CAGATTTACC	CCTAACCACA GGATTGGTGT	gaaaatattt C tt ttataaa	Cagatgaaag Gtctactttc	AAAGGCTAAG TTTCCGATTC	ACCCCAGTAT TGGGGTCATA	TCAGGAACTG ACTCCTTGAC	aaaaaactaa Tittitgatt	AAGTACAAGT TTCATGTTCA	CTGATTGGTC	CARARTTGAG GETTTARACTC	CTTTTTCTGT (GAAAAAGACA (ATATCTGGAA '
GTGAAGGTAT	AAGCCCAAAG TTCGGGTTTC	TAGACAGTGA ATCTGTCACT	TGATGATCTT	tgaattataa Acttaatatt	GACTCAAAGT CTGAGTTTCA	TAGAATGACA ATCTTACTGT	aaaattigaa Tittaaactt	agaaatatta Tctttataat	CCAAACCCTT GGTTTGGGAA	aagaaaagtc ttcttttcag	AACAGTAGCT TTGTCATCGA	CTTGAACATT GAACTTGTAA	CTATCCATAG GATAGGTATC	aggttcatag Tccaagtatc	TTGTCAAATG AACAGTTTAC	CCACCCTTAC
ACTTAATATT TGAATTATAA	TGTATATAGA ACATATATCT	TGTGTGGGGA	AATGGGAAAA TTACCCTTTT	aaaattccag ttttaaggtc	aatttcttat Ttaaagaata	AGTCAGGCCA TCAGTCCGGT	aaactagaca Tttgatctgt	actarattag Tgatttaatc	GGCTTCCTCC	Catcaaaat Gtagttttta	acagaaaag tgtctttttc	TCATATTTT AGTATAAAAA	TGTCGCCTAA ACAGCGGATT	GAGGAGTTTC	GTGTTAAATT CACAATTTAA	aaacgttgaa Tttgcaactt
GAACTAAAAG CTTGATTTTC	CATTTCAAAA GTAAAGTTTT	AAGCATGAGA TTCGTACTCT	GGCATTTTAC CCGTAAAATG	Tacacacaaa Atgtgtgtt	TGTAGAGAAA ACATCTCTTT	Cattaagaaa Gtaattett	GTAAAAATA CATTTTTAT	TTGCATATAC AACGTATATG	TTACCCCATG AATGGGGTAC	CTGTCAAGGT GACAGTTCCA	agatcccaga Tctagggtct	aaagtcattt Tttcagtaaa	CTATCTGTGC GATAGACACG	tattttttaa Ataaaaaatt	TCATGAATGG AGTACTTACC	attgattttc taactaaaag
CTATATTCAT GATATAAGTA	TTGTCAACCT AACAGTTGGA	atttagagca Taaatctcgt	aaaaaaatat Ttttttata	TGTCATACCA ACAGTATGGT	atgacttcag tactgaagtc	attaaaaac taatttttg	TTACAAATCA AATGTTTAGT	AGAACTATCA TCTTGATAGT	gracagtact Cttgtcatga	CTCCTCAAAA GAGGAGTTTT	attctgaatg taagacttac	TTAACACGGC AATTGTGCCĞ	agtacagcag Tcatgtcgtc	TGAAAAACTT ACTTTTGAA	agagattgca Tctctaacgt	aattacgtta Ttaatgcaat
gagagacata Ctctctgtat	GTTTGTTAAC CAAACAATTG	aratatcaag Titatagttc	GTGACCTATG CACTGGATAC	GGAACCCATA CCTTGGGTAT	GCATGCCATC CGTACGGTAG	Tatttttaa Ataaaatte	AAAAGAAGTC TTTTCTTCAG	Cagaaatcag Gtctttagtc	GATGTGATGA	CTAACCAGTA GATTGGTCAT	GTAATGTGGC	AAGAGTAGCA TTCTCATCGT	CAGARACAGA GTCTTTGTCT	tctttttaaa Aganaaattt	TAGTTTACTG ATCAAATGAC	12001 TGATGGGACA ACTACCCTGT
10401	10501	10601	10701	10801	10901	11001	11101	11201	11301	11401	11501	11601	11701	11801	11901	12001

Figure 7-7

12101 CTIGGAITCT TITIGCTAAT AITTIGTIGA AAAIGTITGT AICTITGTIC AIGAGAGATA TIGGICTGIT GITITCTITI CTIGTAATGT CATTITCTAG

STAAAAGATC	SCAAACCGCC CGTTTGGCGG	SAGTTAGCTC	AGCTATGACA FCGATACTGT
GANCCIAAGA AAAAGGAITA TAAAACAACI TITACAAACA TAGAAACAAG TACTCTCIAT AACCAGACAA GAAAAAAA GAACAITACA GIAAAAGAIC	12201 TICCGGTATT AAGGTAATGC TGGCCTAGTT GAATGATTTA GGAAGTATTC CCTCTGCTTC TGTCTTCTGA AGGGGAAGAG GGGCGAATAC GCAAACGGCC	12301 TCTCCCCGCG CGTTGGCCGA TTCATTAATG CAGCTGGCAC GACAGGTTTC CCGACTGGAA AGCGGGCAGT GAGCGCAACG CAATTAATGT GAGTTAGCTC	12401 ACTCATTAGG CACCCCAGGC ITTACACTTT ATGCTTCCGG CTCGTAFGTT CTGTGGAATT GTGAGCGGAT AACAATTTCA CACAGGAAAC AGCTATGACA
	AAGGCCATAA TICCATTAGG ACGGATGAA CTTAGTAAAT CCTTCATAAG GGAGACGAAG ACAGAAGACT TGGCGTTCTC GGGGGTTATG GGTTTGGGGG	AGAGGGGCGC GCAACCGGCT AAGTAATTAC GTCGACCGTG CTGTCCAAAG GGCTGACCTT TCGCCCGTCA CTCGCGTTGC GTTAATTACA CTCAATCGAG	TGAGTAATCC GTGGGGTCCG AAATGTGAAA TACGAAGGCC GAGCATACAA CACACCTTAA CACTCGCCTA ITGTTAAAGT GTGTCCTTTG TCGATACTGT
CANAAGNAAA	AGCGGAAGAG	GAGCGCAACG	AACAATTTCA
	TCGCCTTCTC	CTCGCGTTGC	TTGTTAAAGT
AACCAGACAA	TGTCTTCTGA	AGCGGGCAGT	GTGAGCGGAT
	ACAGAAGACT	TCGCCCGTCA	CACTCGCCTA
TACTCTCTAT	cctctgcttc	CCGACTGGAA	GTGTGGAATT
	ggagacgaag	GGCTGACCTT	CACACCTTAA
TAGAAACAAG	GGAAGTATTC	GACAGGTTTC CTGTCCAAAG	CTCGTATGTT GAGCATACAA
TTTACAAACA	GAATGATTTA	CAGCTGGCAC GTCGACCGTG	atecttcces taceaagec
TAAAACAACT	TGGCCTAGTT	TTCATTAATG	tttacacttt
	ACCGGATCAA	AAGTAATTAC	Aaatgtgaaa
AAAACGATTA	AAGGTAATGC TTCCATTACG	CGTTGGCCGA GCAACCGGCT	CACCCCAGGC
GAACCTAAGA	TTCCGGTATT	TCTCCCCGCG	actcattagg
	AAGGCCATAA	AGAGGGGCGC	tgagtaatcc
	12201	12301	12401

12501 TGATTACGAA TTAA ACTAATGCTT AATT

>length: 12514

Figure 7-8

Figure 8. FACS analysis of transiently transfected CHO cells with a GFP plasmid in 250 ml spinner transfection.

Figure 9. Expression level of clones from traditional 10 nM MTX selection.

Figure 10-1

Figure 10-2

Figures 10.1 and 10.2. Expression level of clones from 25 and 50 nM MTX direct selections of SV40-based constructs derived from spinner transfection, respectively.

Figure 11. Expression level of clones from 25 nM MTX direct selection of CMV construct derived from spinner transfection.

Figure 12. Titer Evaluation in Miniferm.

Figure 13. Plasmid pCMV.IPD. Heterologous Polypeptide

<400>

09	TTCGAGCTCG	TTCGAGCTCG CCCGACATTG ATTATTGACT AGAGTCGATC ACCGGTAGTA ATCAATTACG	ATTATTGACT	AGAGTCGATC	ACCGGTAGTA	ATCAATTACG	
120	GGGTCATTAG	GGGTCATTAG ITCATAGCCC ATATATGGAG ITCCGCGTTA CATAACTTAC GGTAAATGGC	ATATATGGAG	TICCGCGITA	CATAACTTAC	GGTAAATGGC	
180	CCGCCTGGCT	CCGCCTGGCT GACCGCCCAA CGACCCCCGC CCATTGACGT CAATAATGAC GTATGTTCCC	CGACCCCCGC	CCATTGACGT	CAATAATGAC	GTATGTTCCC	
240	ATAGTAACGC	ATAGTAACGC CAATAGGGAC TTTCCATTGA CGTCAATGGG TGGAGTATTT ACGGTAAACT	TTTCCATTGA	cercaarggg	TGGAGTATTT	ACGGTAAACT	
300	GCCCACTIGG	GCCCACTTGG CAGTACATCA AGTGTATCAT ATGCCAAGTA CGCCCCCTAT TGACGTCAAT	AGTGTATCAT	ATGCCAAGTA	CGCCCCCTAT	TGACGTCAAT	
360	GACGGTAAAT	GACGGTAAAT GGCCCGCCTG GCATTATGCC CAGTACATGA CCTTATGGGA CTTTCCTACT	GCATTATGCC	CAGTACATGA	CCTTATGGGA	CTTTCCTACT	
420	TGGCAGTACA	TGGCAGTACA TCTACGTATT AGTCATCGCT ATTACCATGG TGATGCGGTT	AGTCATCGCT	ATTACCATGG	TGATGCGGTT	TIGGCAGTAC	
480	ATCAATGGGC	ATCAATGGGC GTGGATAGCG GTTTGACTCA CGGGGATTTC CAAGTCTCCA CCCCATTGAC	GITIGACICA	CGGGGATTIC	CAAGTCTCCA	CCCCATIGAC	
540	GTCAATGGGA	GTCAATGGGA GTTTGTTTG GCACCAAAAT CAACGGGACT TTCCAAAATG TCGTAACAAC	GCACCAAAAT	CAACGGGACT	TTCCAAAATG	TCGTAACAAC	
009	TCCGCCCCAT	TCCGCCCCAT TGACGCAAAT GGGCGGTAGG CGTGTACGGT GGGAGGTCTA TATAAGCAGA	GGGCGGTAGG	CGTGTACGGT	GGGAGGTCTA	TAŤAAGCAGA	
099	GCTCGTTTAG	GCTCGTTTAG TGAACCGTCA GATCGCCTGG AGACGCCATC CACGCTGTTT TGACCTGGGC	GATCGCCTGG	AGACGCCATC	CACGCIGTIT	TGACCTGGGC	
720	CCGGCCGAGG	CCGGCCGAGG CCGCCTCGGC CTCTGAGCTA TTCCAGAAGT AGTGAGGAGG CTTTTTGGA	CTCTGAGCTA	TTCCAGAAGT	AGTGAGGAGG	CTTTTTGGA	
780	GGCCTAGGCT	GGCCTAGGCT TTTGCAAAA GCTAGCTTAT CCGGCCGGGA ACGGTGCATT GGAACGCGGA	GCTAGCTTAT	CCGGCCGGGA	ACGGTGCATT	GGAACGCGGA	
840	TTCCCCGTGC	TICCCCGIGC CAAGAGIGAC GIAAGIACCG CCIAIAGAGC GACIAGICCA CCAIGACCGA	GTAAGTACCG	CCTATAGAGC	GACTAGTCCA	CCATGACCGA	
006	GTACAAGCCC	GTACAAGCCC ACGGIGCGCC TCGCCACCCG CGACGACGIC CCGCGGGCCG IACGCACCCI	TCGCCACCCG	CGACGACGTC	5009550500	TACGCACCCT	

														•			
CGCCGCCGCG TICGCCGACT ACCCCGCCAC GCGCCACACC GTAGACCCGG ACCGCCACAI	CGAGCGGGTC ACCGAGCTGC AAGAACTCTT CCTCACGCGC GTCGGGCTCG ACATCGGCAA	GGTGTGGGTC GCGGAGGACG GCGCCGGGT GGCGGTCTGG ACCACGCCGG AGAGCGTCGA	GTTCCCGGCT	GGCCGCGCAG CAACAGATGG AAGGCCTCCT GGCGCCGCAAC CGGCCCAAGG AGCCCGCGTG	GCAGCGCCGT	TGGAGACCTC	CGCGCCCCGC AACCICCCCI ICTACGAGCG GCICGGCIIC ACCGICACCG CCGACGICGA	GGTGCCCGAA GGACCGCGCA CCTGGTGCAT GACCCGCAAG CCCGGTGCCA ACATGGTTCG	ACGGAGACCT	CAACCTCTTC	CCATICCIGA	TCAAAGAACC	TTATTGAACA	CTGTTTACCA	TGCAGGAATT	TCCCAGAATA	TTGAAGTCTA
GTAGACCCGG	GTCGGGCTCG	ACCACGCCGG	GAGTTGAGCG	CGGCCCAAGG	AAGGGTCTGG	CCCGCCTTCC	ACCGTCACCG	ccceerecca	ATTGGCAAGA	AGAATGACCA	ACCTGGTTCT	TATAGTICTC AGTAGAGAAC	GCCTTAAGAC	GGAGGCAGTT	ACAAGGATCA	TATAAACCTC	AAGTATAAGT
GCGCCACACC	ccrcacecec	GGCGGTCTGG	GCGCATGGCC	GGCGCCGCAC	CCACCAGGGC	cecceeeere	GCTCGGCTTC	GACCCGCAAG	AAATATGGGG	GTACTTCCAA	GGGTAGGAAA	TATAGTTCTC	TTTGGATGAT	TTGGATAGTC	ACTCTTTGTG	TTTGGGGAAA	AAAAGGCATC
ACCCCGCCAC	AAGAACTCTT	GCGCCGCGGT	AGATCGGCCC	AAGGCCTCCT	TCTCGCCCGA	CGGCCGAGCG	TCTACGAGCG	CCTGGTGCAT	CCGTGTCCCA	ACGCGTTCAA	TGGTGATTAT	ACAGAATTAA	TTGCCAAAAG	TAGACATGGT	GCCACCTCAG	CAGAAATTGA	TCCAGGAGGA
TTCGCCGACT	ACCGAGCTGC	GCGGACGACG	AGCGGGGGC GTGTTCGCCG AGAICGGCCC GCGCAIGGCC GAGTIGAGCG	CAACAGATGG	GIICCIGGCC ACCGICGGCG ICICGCCCGA CCACCAGGGC AAGGGICIGG GCAGCGCCGI	CGTGCTCCCC GGAGTGGAGG CGGCCGAGCG CGCCGGGGTG CCCGCCTTCC	AACCICCCCI	GGACCGCGCA	ACCATTGAAC IGCATCGICG CCGIGTCCCA AAATAIGGGG ATTGGCAAGA ACGGAGACCT	ACCCIGGCCI CCGCICAGGA ACGCGIICAA GIACTICCAA AGAAIGACCA CAACCICTIC	AGTGGAAGGT AAACAGAATC TGGTGATTAT GGGTAGGAAA ACCTGGTTCT CCAITCCTGA	GAAGAATCGA CCTTTAAAGG ACAGAATTAA	ACCACGAGGA GCTCATTTC TTGCCAAAAG TTTGGATGAT	GCAAGTAAAG TAGACATGGT	AATCAACCAG	TGAAAGTGAC ACGTTTTTCC CAGAAATTGA	CTCTCTGAGG
9090090090	CGAGCGGGTC	GGTGTGGGTC	AGCGGGGGCG	GGCCGCGCAG	Grrccreecc	cerecreece	ວອວວວວອວອວ	GGTGCCCGAA	ACCATTGAAC	ACCCTGGCCT	AGTGGAAGGT	GAAGAATCGA	ACCACGAGGA	ACCGGAATTG	GGAAGCCATG AATCAACCAG	TGAAAGTGAC	CCCAGGCGTC CTCTCTGAGG TCCAGGAGGA AAAAGGCATC AAGTATAAGT TTGAAGTCTA
096	1020	1080	1140	1200	1260	1320	1380	1440	1500	1560	1620	1680	1740	1800	1860	1920	1980

TGAGACTITI GCTGGCTTTA GATCCCCTTG GCTTCGTTAG AACGCAGCTA CAATTAATAC ATAACCITAT GTATCATACA CATACGATTT AGGTGACACT ATAGAATAAC ATCCACTTTG CCITICICIC CACAGGIGIC CACTCCCAGG ICCAACTGCA CCICGGIICI AICGAIIGAA CGAGAAGAAA GACTAACGIT AACIGCICCC CICCTAAAGC IAIGCAITIT IAIAAGACCA --Insert Sequence of Interest--TTCCACC 2160 2220

CGA TGGCCGCCAT GGCCCAACTT GTTTATTGCA GCTTATAATG

GTTACAATA AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTT TCACTGCATT
CTAGTIGIGG TTGICCAAA CTCATCAATG TATCITATCA TGTCTGGATC GGGAATTAAT
TCGGCGCAGC ACCATGGCCT GAAATAACCT CTGAAAGAGG AACTTGGTTA GGTACCTATT
AATAGTAATC AATTACGGGG TCATTAGTTC ATAGCCCATA TATGGAGTTC CGCGTTACAT
AACTTACGGT AAATGGCCCG CCTGGCTGAC CCCCCGCCCCA TTGACGTCAA
TAATGAACTTACG CACTTGGCAA TAGGGACTTT CCATTGACGT CAATGGCTGA
AGTATTAACG GTAAACTGCC CACTTGGCAG TAATGCCCAG TAATGCCCAG
TAATGGGACTT TCCTACTTGG CACTACATCT ACGTATTAGT CATTGCCCAG TACATGGTGA
TGCGGTTTTG GCAGTACATC AATGGGCGTG GATAGCGGTT TGACTCCACG GCATTTCCAA
GTCTCCCACCC CATTGACGTC TATTGGC CCAAAATGGC CCAAAATGTC CAAAAATGTC CAAAAATGTC CAAAAATGTC CACCCATTGA CGCAAAATGGC CAAAAATGTC CAAAAATGTC CAAAAATGTC CAAAAATGTC CAAAAATGTC CACCCATTGA CGCAAAATGGG CGGTAGCGTT GTACCACTTCCAAAAATGTC CAAAAATGTC CACCCATTGA CGCAAAATGGG CGGTAGCGTT GTACGGTGGG

AGGTCTATAT AAGCAGAGCT CGTTTAGTGA ACCGTCAGAT CGCCTGGAGA CGCCATCCAC
GCTGTTTTGA CCTGCTAGCT TATCCGCCG GGAACGGTGC ATTGGAACGC GGATTCCCCG
TGCCAAGAGT CAGGTAAGTA CCGCCTATAG AGTCTATAGG CCCACCCCCT TGGCTTCGTT
AGAACGCGGC TACAATTAAT ACATAACCTT TTGGATCGAT CCTACTGACA CTGACATCCA
CTTTTTCTTT TTCTCCACAG GTGTCCACTC CCAGGTCCAA CTGCACCTCG GTTCGCGAAG
CTCGCTTGGG CTGCATCGAT TGAATTCCAC C --Insert Sequence of Interest--CGATGG CCGCCATGGC CCAACTTGTT TATTGCAGCT TATAAATGGTT

TICACGIAGT GGGCCAICGC CCIGAIAGAC GGIITITCGC CCITIGACGI IGGAGICCAC AGGGTICCGA TITAGIGCIT TACGGCACCI CGACCCCAAA AAACTIGATI IGGGIGAIGG GTTCTITAAT AGTGGACTCT TGTTCCAAAC TGGAACAACA CTCAACCCTA TCTCGGGCTA TTCTTTTGAT TTATAAGGGA TTTTGCCGAT TTCGGCCTAT TGGTTAAAA ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTTTAACAA AATATTAACG TTTACAATTT TATGGTGCAC TCTCAGTACA ATCTGCTCTG ATGCCGCATA GTTAAGCCAG CCCCGACACC GCCCCGACAC CCGCCAACAC CCGCTGACGC GCCTGACGG GCTTGTCTGC TCCCGGCATC CGCTTACAGA CGCGCGAGAG ACGAAAGGGC CTCGTGATAC GCCTATTTT ATAGGTTAAT GTCATGATAA CAAGCTGTGA CCGTCTCCGG GAGCTGCATG TGTCAGAGGT TTTCACCGTC ATCACCGAAA TAATGGTTTC TTAGACGTCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA ACCCCTATTT GTTTATTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA TGCTTCAATA ATATTGAAAA AGGAAGATA TGAGTATTCA ACATTTCCGT GTCGCCCTTA TICCCITITI IGCGGCAITI IGCCITCCIG ITITIGCICA CCCAGAAACG CIGGIGAAAG TAAAAGATGC TGAAGATCAG TTGGGTGCAC GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAI CCTIGAGAGI TTTCGCCCCG AAGAACGITT TCCAATGAIG AGCACTTTIA AAGTICIGCI AIGIGGCGCG GIAITAICCC GTAIIGACGC CGGGCAAGAG CAACICGGIG GCCGCATACA CTATICICAG AATGACITGG TIGAGIACIC ACCAGICACA GAAAAGCAIC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC CATAACCATG AGTGATAACA

GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA CTGTCAGACC TATTAACTGG CGAACTACTT ACTCTAGCTT CCCGGCAACA ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA CITCTGCGCT CGGCCCTTCC GGCTGGCTGG TITATTGCTG GGGCCAGATG GTAAGCCCTC CCGTATCGTA GTTATCTACA CGACGGGAG TCAGGCAACT ATGGATGAAC GCGTAATCTG CTGCTTGCAA ACAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA ATACTGTICT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GICTIACCGG GIIGGACICA AGACGAIAGI IACCGGAIAA GGCGCAGCGG ICGGGCIGAA CGGGGGGTTC GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGIGA GCTATGAGAA AGCGCCACGC TICCCGAAGG GAGAAAGGCG GACAGGTAIC ACAACAIGGG GGATCAIGIA ACICGCCIIG AICGIIGGGA ACCGGAGCIG AAIGAAGCCA IACCAAACGA CGAGCGIGAC ACCACGAIGC CIGIAGCAAI GGCAACAACG IIGCGCAAAC AAGTITACTC ATATATACIT TAGAITGAIT TAAAACITCA TTITTAATIT AAAAGGAICI AGGTGAAGAT CCTTTTTGAT AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA AAGGATCTTC TTGAGATCCT TITITTCTGC CTGCGGCCAA CTTACTTCTG ACAACGATCG GAGGACCGAA GGAGCTAACC GCTTTTTGC ATAAAICTGG AGCCGGTGAG CGTGGGTCTC GCGGTATCAT TGCAGCACTG

ACAGCTATGA CATGATTACG AATTAA

GGTAAGCGG CAGGGTCGGA ACAGGAGAG GCACCAGGGA GCTTCCAGGG GGAAACGCCT
GGTATCTTTA TAGTCCTGT GGGTTTCGCC ACCTCTGACT TGAGCGTCGA TTTTTGTGAT
GCTCGTCAGG GGGGCGGAGC CTATGGAAAA ACGCCAGCAA CGCGGCCTTT TTACGGTTCC
TGGCCTTTTG CTGGCCTTT GCTCACATGT TCTTTCCTGC GTTATCCCCT GATTCTGTGG
ATAACCGTAT TACCGCCTTT GAGTGAGCTG ATACCGCTCG CCGCAGCCGAGC
GCAGCGAGTC AGTGAGCGAG GAAGCGGAAG AGCGCCCAAT ACGCAAACCGGCC
GCGTTGGCC GATTCATTAA TGCAGCTGGC ACGCACAGGTT TCCCGACTGG AAAGCGGGCA
GTGAGCGCAA CGCAATTAAT GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT
TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA

Figure 14. Plasmid SV40.IPD.Heterologous Polypeptide

09	Trcgagcrcg	TICGAGCICG CCCGACAIIG ATTAITGACI AGAGICGAIC GACAGCIGIG GAAIGIGIGI	ATTATTGACT	AGAGTCGATC	GACAGCTGTG	GAATGTGTGT	
120	CAGTTAGGGT	CAGTTAGGGT GIGGAAAGTC CCCAGGTCC CCAGCAGGCA GAAGTATGCA AAGCAIGCAT	CCCAGGCTCC	CCAGCAGGCA	GAAGTATGCA	AAGCATGCAT	
180	CTCAATTAGT	CTCAATTAGT CAGCAACCAG GTGTGGAAAG TCCCCAGGCT CCCCAGCAGG CAGAAGTATG	GTGTGGAAAG	TCCCCAGGCT	ссссявсявв	CAGAAGTATG	
2.40	CAAAGCATGC	CAAAGCATGC ATCTCAATTA GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG	GTCAGCAACC	ATAGTCCCGC	CCCTAACTCC	GCCCATCCCG	
300	CCCCTAACTC	CCCCTAACTC CGCCCAGITC CGCCCATICI CCGCCCCAIG GCTGACTAAI TITITIAIT	CGCCCATTCT	CCGCCCCATG	GCTGACTAAT	TTTTTTTT	
360	TATGCAGAGG	TATGCAGAGG CCGAGGCCGC CTCGGCCTCT GAGCTAITCC AGAAGTAGTG AGGAGGCTIT	CTCGGCCTCT	GAGCTATTCC	AGAAGTAGTG	AGGAGGCTTT	
420	TTTGGAGGCC	TITGGAGGCC TAGGCTITTG CAAAAGCTA GCTTATCCGG CCGGGAACGG TGCATTGGAA	CAAAAAGCTA	GCTTATCCGG	CCGGGAACGG	TGCATTGGAA	
480	CGCGGATTCC	CGCGGATICC CCGIGCCAAG AGTGACGIAA GIACCGCCIA IAGAGCGACI AGICCACCAI	AGTGACGTAA	GTACCGCCTA	TAGAGCGACT	AGTCCACCAT	
540	GACCGAGTAC	GACCGAGTAC AAGCCCACGG TGCGCCTCGC CACCCGCGAC GACGTCCCGC GGGCCGTACG	TGCGCCTCGC	CACCCGCGAC	GACGTCCCGC	GGCCGTACG	
009	CACCCTCGCC	CACCCICGCC GCCGCGITCG CCGACTACCC CGCCACGCGC CACACCGIAG ACCCGGACCG	CCGACTACCC	CGCCACGCGC	CACACCGTAG	ACCCGGACCG	
099	CCACATCGAG	CCACATCGAG CGGGTCACCG AGCTGCAAGA ACTCTTCCTC ACGCGCGTCG GGCTCGACAT	AGCTGCAAGA	ACTCTTCCTC	ACGCGCGTCG	GGCTCGACAT	
720	CGGCAAGGTG	CGGCAAGGTG TGGGTCGCGG ACGACGGCGC CGCGGTGGCG GTCTGGACCA CGCCGGAGAG	ACGACGGCGC	CGCGGTGGCG	GTCTGGACCA	CGCCGGAGAG	
780	CGTCGAAGCG	CGTCGAAGCG GGGGGGTGT TCGCCGAGAT CGGCCGGGC ATGGCCGAGT TGAGCGGTTC	TCGCCGAGAT	ವಿಶಿವಿ ತಿನಿಮಿತು ನಿನಿಮಿತು ನಿಸ	ATGGCCGAGT	TGAGCGGTTC	
840	CCGGCTGGCC	CCGGCTGGCC GCGCAGCAAC AGATGGAAGG CCTCCTGGCG CCGCACCGGC CCAAGGAGCC	AGATGGAAGG	CCTCCTGGCG	ccecacceec	CCAAGGAGCC	
900	CGCGTGGTTC	CGCGTGGTTC CTGGCCACCG TCGGCGTCTC GCCCGACCAC CAGGGCAAAGG ATCTGGCAA	TCGGCGTCTC	GCCCGACCAC	CAGGGCAAGG	247777474747	

Figure 14.1

096	ceccercere	CGCCGTCGTG CICCCCGGAG TGGAGGCGGC CGAGCGCGCC GGGGTGCCCG CCTICCTGGA	TGGAGGCGGC	CGAGCGCGCC	GGGGTGCCCG	CCTTCCTGGA
1020	GACCTCCGCG	GACCTCCGCG CCCCGCAACC TCCCCTTCTA CGAGCGGCTC	rcccrrcra	CGAGCGGCTC	GGCTTCACCG	TCACCGCCGA
1080	CGTCGAGTGC	CGTCGAGTGC CCGAAGGACC GCGCGACCTG	GCGCGACCTG	GTGCATGACC	GTGCATGACC CGCAAGCCCG	GTGCCAACAT
1140	GGTTCGACCA	GGTTCGACCA TTGAACTGCA TCGTCGCCGT	rcerceccer	GTCCCAAAAT	ATGGGGATTG	GCAAGAACGG
1200	AGACCTACCC	AGACCIACCC IGCCCICCGC ICAGGAACGC GIICAAGIAC	TCAGGAACGC	GTTCAAGTAC	TTCCAAAGAA	TGACCACAAC
1260	CTCTTCAGTG	CICTICAGIG GAAGGIAAAC AGAAICIGGI GAITAIGGGI AGGAAAACCI GGIICICCAI	AGAATCTGGT	GATTATGGGT	AGGAAAACCT	GGTTCTCCAT
1320	TCCTGAGAAG	AATCGACCTT	TAAAGGACAG	AATCGACCTT TAAAGGACAG AATTAATATA GTTCTCAGTA	GTTCTCAGTA	GAGAACTCAA
1380	AGAACCACCA	AGAACCACCA CGAGGAGCTC ATTTTCTTGC	ATTTTCTTGC	CAAAAGTTTG	GATGATGCCT	TAAGACTTAT
1440	TGAACAACCG	GAATTGGCAA	GTAAAGTAGA	GAATTGGCAA GTAAAGTAGA CATGGTTTGG ATAGTCGGAG	ATAGTCGGAG	GCAGTTCTGT
1500	TTACCAGGAA	TTACCAGGAA GCCATGAATC AACCAGGCCA CCTTAGACTC TTTGTGACAA GGATCATGCA	AACCAGGCCA	CCTTAGACTC	TTTGTGACAA	GGATĆATGCA
1560	GGAATTTGAA	GGAATTTGAA AGTGACACGT		TTTTCCCAGA AATTGATTTG	GGGAAATATA AACCTCTCCC	AACCTCTCCC
1620	AGAATACCCA	AGAATACCCA GGCGTCCTCT	CTGAGGTCCA	GGAGGAAAAA	GGAGGAAAA GGCATCAAGT	ATAAGTTTGA
1680	AGTCTACGAG	AGTCTACGAG AAGAAAGACT AACGTTAACT	AACGTTAACT	GCTCCCCTCC	GCTCCCCTCC TAAAGCTATG	CATTTTATA
1740	AGACCATGGG	AGACCATGGG ACTTTGCTG GCTTTAGATC CCCTTGGCTT CGTTAGAACG CAGCTACAAT	GCTTTAGATC	CCCTIGGCTT	CGTTAGAACG	CAGCTACAAT
1800	TAATACATAA	CCTTATGTAT	CATACACATA	CGATTTAGGT	GACACTATAG	ATAACATCCA
1860	CTTTGCCTTT		GTGTCCACTC	CTCTCCACAG GTGTCCACTC CCAGGTCCAA CTGCACCTCG	CTGCACCTCG	GTTCTATCGA
1920	TIGAATICCA	TIGAATICCA CC -Insert Sequence of Interest-	Sequence of	f Interest-		

CGATGGCC GCCATGGCCC AACTTGTTTA TTGCAGCTTA

CGATGGCCGC CATGGCCCAA CTGTTTATT GCAGCTTATA ATGGTTACAA ATAAAGCAAT
AGCATCACAA ATTTCACAAA TAAAGCATTT TTTTCACTGC ATTCTAGTTG TGGTTTGTCC
AAACTCATCA ATGTATCTTA TCATGTCTGG ATCGGGAATT AATTCGGCGC AGCACCATGG
CCTGAAATAA GTTTAAACCC TCTGAAAGAG GAACTTGGTT AGGTACCGAC TAGTCTTTTG

CAAAAAGCTG TIACCTCGAG CGGCCGCTTA AITAAGGCGC GCCATTTAAA TCCTGCAGGT AACAGCTIGG CACTGGCCGI CGTTTTACAA CGTCGTGACT GGGAAAACCC TGGCGTTACC CAACTTAATC GCCTTGCAGC ACATCCCCCT TTCGCCAGCT GGCGTAATAG CGAAGAGGCC CGCACCGATC GCCCTTCCCA ACAGTTGCGC AGCCTGAATG GCGAATGGCG CCTGATGCGG TATITICICC TIACGCAICI GIGCGGIAIT ICACACCGCA TACGICAAAG CAACCAIAGI ACGCGCCCTG TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT GGTTACGCGC AGCGTGACCG CGTICGCCGG CITICCCCGI CAAGCICIAA AICGGGGGCI CCCITIAGGG TICCGAITIA CATCGCCCTG ATAGACGGIT TITCGCCCTT TGACGIIGGA GICCACGIIC ITIAAIAGIG AAGGGAITIT GCCGAITTCG GCCTAITGGT TAAAAATGA GCTGATTTAA CAAAAAITTA GTGCTTTACG GCACCTCGAC CCCAAAAAC TTGATTTGGG TGATGGTTCA CGTAGTGGGC ACGCGAATIT IAACAAAAIA TIAACGITIA CAATITIAIG GIGCACICIC AGIACAAICI GCATGTGTCA GAGGITTTCA CCGTCATCAC CGAAACGCGC GACGAAAGGG CCTCGTGATA TITCGGGGAA AIGIGCGCGG AACCCCIAIT IGIIIAITIT ICTAAATACA ITCAAAIAIG GACTCTTGTT CCAAACTGGA ACAACACTCA ACCCTATCTC GGGCTATTCT TTTGATTTAT GCTCTGATGC CGCATAGITA AGCCAGCCC GACACCCGCC AACACCCGCI GACGCGCCCI GACGGGCTTG TCTGCTCCCG GCATCCGCTT ACAGACAAGC TGTGACCGTC TCCGGGAGCT CGCCTATITI IATAGGITAA TGTCATGATA ATAATGGITT CTTAGACGIC AGGIGGCACT

GITITIGCIC ACCCAGAAAC GCTGGTGAAA GIAAAAGAIG CTGAAGAICA GIIGGGIGCA CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TITTCGCCCC SAAGAACGIT TICCAAIGAI GAGCACITII AAAGIICIGC IAIGIGGGGC GGIAITAICC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA IGCAGIGCIG CCAIAACCAI GAGIGAIAAC ACIGCGGCCA ACIIACIICI GACAACGAIC GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG ACCAAAAICC CITAACGIGA GITITCGIIC CACIGAGCGI CAGACCCCGI AGAAAAGAIC TAICCGCICA IGAGACAAIA ACCCIGAIAA AIGCIICAAI AAIAIIGAAA AAGGAAGAGI ATGAGTATIC AACAITICCG IGICGCCCIT ATICCCITIT ITGCGGCAII ITGCCTICCI GGAGGACCGA AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT CCTGTAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAG TTGCAGGACC ACTTCTGCGC CGCGGTATCA TIGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTIATCTAC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT CATATATACT TTAGATTGAT TTAAAACTIC AITITTAAIT TAAAAGGAIC TAGGIGAAGA TCCTITITGA TAAICICAIG TCGGCCCTTC CGGCTGGCTG GTTTATTGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC

AAAGGATCTT CTTGAGATCC TTTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTTGCCG GATCAAGAGC TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGIGGCIG CIGCCAGIGG CGAIAAGICG IGICITACCG GGIIGGACIC AAGACGAIAG TIACCGGAIA AGGCGCAGCG GICGGGCTGA ACGGGGGGIT CGIGCACACA GCCCAGCTIG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCCTGT CGGGTTTCGC CACCICTGAC TIGAGCGICG ATTITIGIGA IGCICGICAG GGGGGGGGAG CCIAIGGAAA AACGCCAGCA ACGCGCCTT TTTACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA TICITICCIG CGITAICCCC IGAITCIGIG GAIAACCGIA IIACCGCCII IGAGIGAGCI GAGCGCCCAA TACGCAAACC GCCTCTCCCC GCGCTTGGC CGATTCATTA ATGCAGCTGG CACGACAGGT TICCCGACTG GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCAIT AGGCACCCCA GGCTITACAC ITTAIGCIIC CGGCICGIAI GIIGIGIGGA ATTGTGAGCG GATAACAATT TCACACAGGA AACAGCTATG ACATGATTAC GAATTAA

Figure 15. pCMV.IPD.HP

Timeline and Titer Comparison

Figure 16. Timeline and Titer Comparison.

SEQUENCE LISTING

<110> Krummen, Lynne Shen, Amy Chisum, Venessa

<120> INTRON FUSION CONSTRUCT AND METHOD OF USING FOR SELECTING HIGH-EXPRESSING

PRODUCTION CELL LINES

<130> 22338/00101

<150> US 60/426,095

<151> 2002-11-14

<160> 4

<170> PatentIn version 3.1

<210> 1

<211> 5147

<212> DNA

<213> Artificial

<220>

<223> plasmid pSV.IPUR circular ds-DNA

<400> 1

ttcgagetcg cccgacattg attattgact agagtcgatc gacagetgtg gaatgtgtgt 60 cagttagggt gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat 120 ctcaattagt cagcaaccag gtgtggaaag tccccaggct ccccagcagg cagaagtatg 180 caaagcatgc atctcaatta gtcagcaacc atagtcccgc ccctaactcc gcccatcccg 240 cccctaactc cgcccagttc cgcccattct ccgccccatg gctgactaat ttttttatt 300 tatgcagagg ccgaggccgc ctcggcctct gagctattcc agaagtagtg aggaggcttt 360 tttggaggcc taggcttttg caaaaagcta gcttatccgg ccgggaacgg tgcattggaa 420 cgcggattcc ccgtgccaag agtgacgtaa gtaccgccta tagagcgact agtccaccat 480 gaccgagtac aagcccacgg tgcgcctcgc cacccgcgac gacgtccccc gggccgtacg 540 caccetegee geogetteg ecqaetacce egecaegege cacacegteg acceggaceg 600 ccacategag egggteaceg agetgeaaga actetteete aegegegteg ggetegaeat 660 eggeaaggtg tgggtegegg aegaeggege egeggtggeg gtetggaeea egeeggagag 720 cgtcgaagcg ggggcggtgt tcgccgagat cggcccgcgc atggccgagt tgagcggttc 780 ccggctggcc gcgcagcaac agatggaagg cctcctggcg ccgcaccggc ccaaggagcc 840 egegtggtte etggecaceg teggegtete geeggaceae eagggeaagg gtetgggeag 900

cgccgtcgtg	ctccccggag	tggaggcggc	cgagcgcgcc	ggggtgcccg	ccttcctgga	. 960
gacctccgcg	ccccgcaacc	tccccttcta	cgagcggctc	ggcttcaccg	tcaccgccga	1020
cgtcgagtgc	ccgaaggacc	gcgcgacctg	gtgcatgacc	cgcaagcccg	gtgcctgagt	1080
taactgctcc	cctcctaaag	ctatgcattt	ttataagacc	atgggacttt	tgctggcttt	1140
agatcccctt	ggcttcgtta	gaacgcagct	acaattaata	cataacctta	tgtatcatac	1200
acatacgatt	taggtgacac	tatagataac	atccactttg	cctttctctc	cacaggtgtc	1260
cactcccagg	tccaactgca	cctcggttct	atcgattgaa	ttccccgggg	atcctctaga	1320
gtcgacctgc	agaagcttcg	atggccgcca	tggcccaact	tgtttattgc	agcttataat	1380
ggttacaaat	aaagcaatag	catcacaaat	ttcacaaata	aagcattttt	ttcactgcat	1440
tctagttgtg	gtttgtccaa	actcatcaat	gtatcttatc	atgtctggat	cgatcgggaa	1500
ttaattcggc	gcagcaccat	ggcctgaaat	aacctctgaa	agaggaactt	ggttaggtac	1560
cttctgaggc	ggaaagaacc	agctgtggaa	tgtgtgtcag	ttagggtgtg	gaaagtcccc	1620
aggctcccca	gcaggcagaa	gtatgcaaag	catgcatctc	aattagtcag	caaccaggtg	1680
tggaaagtcc	ccaggctccc	cagcaggcag	aagtatgcaa	agcatgcatc	tcaattagtc	1740
agcaaccata	gtcccgcccc	taactccgcc	catcccgccc	ctaactccgc	ccagttccgc	1800
ccattctccg	ccccatggct	gactaatttt	ttttatttat	gcagaggccg	aggccgcctc	1860
ggcctctgag	ctattccaga	agtagtgagg	aggcttttt	ggaggcctag	gcttttgcaa	1920
aaagctgtta	cctcgagcgg	ccgcttaatt	aaggegegee	atttaaatcc	tgcaggtaac	1980
agcttggcac	tggccgtcgt	tttacaacgt	cgtgactggg	aaaaccctgg	cgttacccaa	2040
cttaatcgcc	ttgcagcaca	tececette	gccagctggc	gtaatagcga	agaggcccgc	2100
accgatcgcc	cttcccaaca	gttgcgtagc	ctgaatggcg	aatggcgcct	gatgcggtat	2160
tttctcctta	cgcatctgtg	cggtatttca	caccgcatac	gtcaaagcaa	ccatagtacg	2220
cgccctgtag	cggcgcatta	agcgcggcgg	gtgtggtggt	tacgcgcagc	gtgaccgcta	2280
cacttgccag	cgccctagcg	cccgctcctt	tegetttett	cccttccttt	ctcgccacgt	2340
tcgccggctt	tccccgtcaa	gctctaaatc	gggggctccc	tttagggttc	cgatttagtg	2400
ctttacggca	cctcgacccc	aaaaaacttg	atttgggtga	tggttcacgt	agtgggccat	2460
cgccctgata	gacggttttt	cgccctttga	cgttggagtc	cacgttcttt	aatagtggac	2520
tettgttcca	aactggaaca	acactcaacc	ctatctcggg	ctattcttt	gatttataag	2580

ggattttgcc gatttcggcc tattggttaa aaaatgagct gatttaacaa aaatttaacg 2640 cgaattttaa caaaatatta acgtttacaa ttttatggtg cactctcagt acaatctgct 2700 etgatgeege atagttaage caacteeget ategetaegt gaetgggtea tggetgegee 2760 ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc 2820 ttacagacaa getgtgaceg teteegggag etgeatgtgt cagaggtttt caccgteate 2880 accgaaacgc gcgaggcagt attcttgaag acgaaagggc ctcgtgatac gcctattttt 2940 ataggttaat gtcatgataa taatggtttc ttagacgtca ggtggcactt ttcggggaaa 3000 tgtgcgcgga acccctattt gtttatttt ctaaatacat tcaaatatgt atccgctcat 3060 gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca 3120 acattleegt gtegeeetta tteeettttt tgeggeattt tgeetteetg tttttgetea 3180 cccagaaacg ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta 3240 categaactg gateteaaca geggtaagat eettgagagt tttegeeceg aagaacgttt 3300 tocaatgatg agcactttta aagttotgot atgtggegeg gtattateee gtgatgaege 3360 cgggcaagag caactcggtc gccgcataca ctattctcag aatgacttgg ttgagtactc 3420 accagtcaca gaaaagcatc ttacggatgg catgacagta agagaattat gcaqtgctqc 3480 cataaccatg agtgataaca ctgcggccaa cttacttctg acaacgatcg gaggaccgaa 3540 ggagctaacc gcttttttgc acaacatggg ggatcatgta actcgccttg atcgttggga 3600 accggagetg aatgaageca taccaaacga egagegtgae accaegatge eageageaat 3660 ggcaacaacg ttgcgcaaac tattaactgg cgaactactt actctagctt cccggcaaca 3720 attaatagac tggatggagg cggataaagt tgcaggacca cttctgcgct cggcccttcc 3780 ggctggctgg tttattgctg ataaatctgg agccggtgag cgtgggtctc gcggtatcat 3840 tgcagcactg gggccagatg gtaagccctc ccgtatcgta gttatctaca cgacgggag 3900 tcaggcaact atggatgaac gaaatagaca gatcgctgag ataggtgcct cactgattaa 3960 gcattggtaa ctgtcagacc aagtttactc atatatactt tagattgatt taaaacttca 4020 tttttaattt aaaaggatct aggtgaagat cetttttgat aateteatga ccaaaateee 4080 ttaacgtgag ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc 4140 ttgagateet ttttttetge gegtaatetg etgettgeaa acaaaaaaae cacegetace 4200 agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt 4260 cagcagagcg cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt 4320

```
caagaactet gtagcaccge ctacatacct cgctctgcta atcctgttac cagtggctgc
                                                                    4380
tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa
                                                                    4440
ggcgcagcgg tcgggctgaa cggggggttc qtqcacacaq cccaqcttgg agcgaacgac
                                                                    4500
ctacaccgaa ctgagatacc tacagcgtga gcattgagaa agcgccacgc ttcccgaagg
                                                                     4560
gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga
                                                                     4620
gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact
                                                                    4680
tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa
                                                                    4740
egeggeettt ttaeggttee tggeettttg etggeetttt geteacatgt tettteetge
                                                                    4800
gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg ataccgctcq
                                                                    4860
ccgcagccga acgaccgagc gcagcgagtc agtgagcgag gaagcggaag agcgcccaat
                                                                    4920
acgcaaaccg cctctccccg cgcgttggcc gattcattaa tccagctggc acgacaggtt
                                                                    4980
tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttacc tcactcatta
                                                                    5040
ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg
                                                                    5100
tattgttaaa gtgtgtcctt tgtcgatact ggtactaatg cttaatt
                                                                    5147
```

```
<210>
      2
      5171
<211>
      DNA
<212>
<213> Artificial
<220>
<223> plasmid pSV.ID circular ds-DNA
<220>
<221> misc feature
<222>
      (444)...(444)
<223>
      splice donor
<220>
<221> misc feature
<222> (1946)..(1946)
<223> start pUC118
<220>
<221> misc feature
<222>
      (1954)..(1954)
<223> linearization linker inserted into Hpal site
```

<220>

<221> misc feature <222> (529)..(1090) <223> DHFR coding region <220>

<400> 2

<221> misc feature <222> (1522)..(1522) <223> sv40 origin

ttcgagctcg cccgacattg attattgact agagtcgatc gacagctgtg gaatgtgtgt 60 cagttagggt gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat 120 ctcaattagt cagcaaccag gtgtggaaag tccccaggct ccccagcagg cagaagtatg 180 caaagcatgc atctcaatta gtcagcaacc atagtcccqc ccctaactcc qcccatcccq 240 cocctaactc cgcccagttc cgcccattct ccgccccatg gctgactaat tttttttatt 300 tatgcagagg ccgaggccgc ctcggcctct gagctattcc agaagtagtg aggaggcttt 360 tttggaggcc taggcttttg caaaaagcta gcttatccgg ccgggaacgg tgcattggaa 420 egeggattee cegtgeeaag agtgaegtaa gtacegeeta tagaqtetat aggeeeacee 480 cttggctcta gagagatata agcctaggat tttatccccg gtgccatcat ggttcgacca 540 ttgaactgca tegtegeegt gteecaaaat atggggattg geaagaacgg agacetaece 600 tgccctccgc tcaggaacgc gttcaagtac ttccaaagaa tgaccacaac ctcttcagtg 660 gaaggtaaac agaatctggt gattatgggt aggaaaacct ggttctccat tcctqaqaaq 720 aatcgacctt taaaggacag aattaatata gttctcagta gagaactcaa agaaccacca 780 cgaggagete attitetige caaaagtitg gatgatgeet taagactiat tgaacaaceg 840 gaattggcaa gtaaagtaga catggtttgg atagtcggag gcagttctgt ttaccaggaa 900 gecatgaate aaccaggeca cettagacte tttgtgacaa ggatcatgca ggaatttgaa 960 agtgacacgt ttttcccaga aattgatttg gggaaatata aacctctccc aqaataccca 1020 ggcgtcctct ctgaggtcca ggaggaaaaa ggcatcaagt ataagtttga agtctacgag 1080 aagaaagact aacaggaaga tgctttcaag ttctctgctc ccctcctaaa gctatgcatt 1140 tttataagac catgggactt ttgctggctt tagaccccct tggcttcgtt agaacgcggc 1200 tacaattaat acataacctt atgtatcata cacatagatt taggtgacac tatagaataa 1260 catecacttt geetttetet ceacaggtgt caetecaggt caactgeace teggttetat 1320 cgattgaatt ccccggggat cctctagagt cgacctgcag aagcttggcc gccatggccc 1380

aacttgttta	ttgcagctta	taatggttac	aaataaagca	atagcatcac	aaatttcaca	1440
aataaagcat	ttttttcact	gcattctagt	tgtggtttgt	ccaaactcat	caatgtatct	1500
tatcatgtct	ggatcgatcg	ggaattaatt	cggcgcagca	ccatggcctg	aaataacctc	1560
tgaaagagga	acttggttag	gtaccttctg	aggcggaaag	aaccagctgt	ggaatgtgtg	1620
tcagttaggg	tgtggaaagt	ccccaggctc	cccagcaggc	agaagtatgc	aaagcatgca	1680
tctcaattag	tcagcaacca	ggtgtggaaa	gtccccaggc	tececageag	gcagaagtat	1740
gcaaagcatg	catctcaatt	agtcagcaac	catagtcccg	cccctaactc	cgcccatccc	1800
gcccctaact	ccgcccagtt	ccgcccattc	tccgccccat	ggctgactaa	ttttttttat	1860
ttatgcagag	gccgaggccg	cctcggcctc	tgagctattc	cagaagtagt	gaggaggctt	1920
ttttggaggc	ctaggctttt	gcaaaaagct	gttacctcga	gcggccgctt	aattaaggcg	1980
cgccatttaa	atcctgcagg	taacagcttg	gcactggccg	tcgttttaca	acgtcgtgac	2040
tgggaaaacc	ctggcgttac	ccaacttaat	cgccttgcag	cacatccccc	cttcgccagc	2100
tggcgtaata	gcgaagaggc	ccgcaccgat	cgcccttccc	aacagttgcg	tagcctgaat	2160
ggcgaatggc	gcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	ttcacaccgc	2220
atacgtcaaa	gcaaccatag	tacgcgccct	gtagcggcgc	attaagcgcg	gcgggtgtgg	2280
tggttacgcg	cagcgtgacc	gctacacttg	ccagcgccct	agcgcccgct	cctttcgctt	2340
tcttcccttc	ctttctcgcc	acgttcgccg	gctttccccg	tcaagctcta	aatcgggggc	2400
tccctttagg	gttccgattt	agtgctttac	ggcacctcga	ccccaaaaaa	cttgatttgg	2460
gtgatggttc	acgtagtggg	ccatcgccct	gatagacggt	ttttcgccct	ttgacgttgg	2520
agtccacgtt	ctttaatagt	ggactcttgt	tccaaactgg	aacaacactc	aaccctatct	2580
cgggctattc	ttttgattta	taagggattt	tgccgatttc	ggcctattgg	ttaaaaaaatg	2640
agctgattta	acaaaaattt	aacgcgaatt	ttaacaaaat	attaacgttt	acaattttat	2700
ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	aagccaactc	cgctatcgct	2760
acgtgactgg	gtcatggctg	cgccccgaca	cccgccaaca	cccgctgacg	cgccctgacg	2820
ggcttgtctg	ctcccggcat	ccgcttacag	acaagctgtg	accgtctccg	ggagctgcat	2880
gtgtcagagg	ttttcaccgt	catcaccgaa	acgcgcgagg	cagtattctt	gaagacgaaa	2940
gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	ataataatgg	tttcttagac	3000
gtcaggtggc	acttttcggg	gaaatgtgcg	cggaacccct	atttgtttat	ttttctaaat	3060

acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatattg 3120 aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct tttttqcqqc 3180 attttgcctt cctgtttttg ctcacccaga aacqctggtg aaagtaaaaq atqctgaaga 3240 tcagttgggt gcacgagtgg gttacatcga actqqatctc aacagcggta agatccttga 3300 gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc tgctatgtgg 3360 cgcggtatta tcccgtgatg acgccgggca agagcaactc ggtcgccgca tacactattc 3420 tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg atggcatqac 3480 agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg ccaacttact 3540 tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca tgggggatca 3600 tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa acgacgagcg 3660 tgacaccacg atgccagcag caatggcaac aacgttgcgc aaactattaa ctggcgaact 3720 acttactcta gcttcccggc aacaattaat agactggatg gaggcggata aagttgcagg 3780 accacttetg egeteggeee tteeggetgg etggtttatt getgataaat etggageegg 3840 tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat 3900 cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc 3960 tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat 4020 actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt 4080 tgataatete atgaccaaaa teeettaaeg tgagtttteg tteeaetgag eqteagaeee 4140 cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctqctt 4200 gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac 4260 tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt 4320 gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct 4380 gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga 4440 ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac 4500 acageceage ttggagegaa egacetacae egaactgaga tacetacage gtgageattg 4560 agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt 4620 cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc 4680 tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg 4740 gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc 4800

tttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc	4860
etttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag	4920
egaggaageg gaagagegee caataegeaa acegeetete eeegegegtt ggeegattea	4980
taatccago tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat	5040
taatgtgagt tacctcactc attaggcacc ccaggettta cactttatge tteeggeteg	5100
tatgttgtgt ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga	5160
ttacgaatta a	5171
<210> 3 <211> 5712 <212> DNA <213> Artificial	
<220> <223> plasmid pSV.IPD circular ds-DNA	
<220> <221> misc_feature <222> (444)(444) <223> splice donor	
<220> <221> misc_feature <222> (479)(479) <223> start PUR coding	
<220> <221> misc_feature <222> (1079)(1643) <223> DHFR coding region	
<400> 3 ttcgagctcg cccgacattg attattgact agagtcgatc gacagctgtg gaatgtgtgt	60
cagttagggt gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat	120
ctcaattagt cagcaaccag gtgtggaaag tccccaggct ccccagcagg cagaagtatg	180
caaagcatgc atctcaatta gtcagcaacc atagtcccgc ccctaactcc gcccatcccg	240
cccctaactc cgcccagttc cgcccattct ccgccccatg gctgactaat ttttttatt	300
tatgcagagg ccgaggccgc ctcggcctct gagctattcc agaagtagtg aggaggcttt	360
tttggaggcc taggcttttg caaaaagcta gcttatccgg ccgggaacgg tgcattggaa	420

cgcggattcc ccgtgccaag agtgacgtaa gtaccgccta tagagcgact agtccaccat 480 gaccgagtac aagcccacgg tgcgcctcgc cacccgcgac gacgtcccgc gggccgtacg 540 caccetegee geogegtteg cegactacee egecacgege cacacegtag acceggaceg 600 ccacatcgag cgggtcaccg agctgcaaga actcttcctc acgcgcgtcg ggctcgacat .660 cggcaaggtg tgggtcgcgg acgacggcgc cgcggtggcg gtctggacca cgccggagag 720 cgtcgaagcg ggggcggtgt tcgccgagat cggcccgcgc atggccgagt tgagcggttc 780 ccggctggcc gcgcagcaac agatggaagg cctcctggcg ccgcaccggc ccaaggagcc 840 cgcgtggttc ctggccaccg tcggcgtctc gcccgaccac cagggcaagg gtctgggcag 900 cgccgtcgtg ctccccggag tggaggcggc cgagcgccc ggggtgcccg ccttcctgga 960 gaceteegeg eccegeaace teccetteta egageggete ggetteaceg teacegeega 1020 cgtcgagtgc ccgaaggacc gcgcgacctg gtgcatgacc cgcaagcccg gtgccaacat 1080 ggttcgacca ttgaactgca tcgtcgccgt gtcccaaaat atggggattg gcaagaacgg 1140 agacetacce tgeceteege teaggaacge gttcaagtac ttecaaagaa tgaceacaac 1200 ctcttcagtg gaaggtaaac agaatctggt gattatgggt aggaaaacct ggttctccat 1260 teetgagaag aategaeett taaaggacag aattaatata gtteteagta gagaaeteaa 1320 agaaccacca cgaggagctc attttcttgc caaaagtttg gatgatgcct taagacttat 1380 tgaacaaccg gaattggcaa gtaaagtaga catggtttgg atagtcggag gcagttctgt 1440 ttaccaggaa gccatgaatc aaccaggcca ccttagactc tttgtgacaa ggatcatgca 1500 ggaatttgaa agtgacacgt ttttcccaga aattgatttg gggaaatata aacctctccc 1560 agaataccca ggcgtcctct ctgaggtcca ggaggaaaaa ggcatcaagt ataagtttga 1620 agtotacgag aagaaagact aacgttaact gctcccctcc taaagctatg catttttata 1680 agaccatggg acttttgctg gctttagatc cccttggctt cgttagaacg cagctacaat 1740 taatacataa cottatgtat catacacata cgatttaggt gacactatag ataacatcca 1800 ctttgccttt ctctccacag gtgtccactc ccaggtccaa ctgcacctcg gttctatcga 1860 ttgaatteee eggggateet etagagtega eetgeagaag ettegatgge egeeatggee 1920 caacttgttt attgcagctt ataatggtta caaataaagc aatagcatca caaatttcac 1980 aaataaagca tttttttcac tgcattctag ttgtggtttg tccaaactca tcaatgtatc 2040 ttatcatgtc tggatcgatc gggaattaat tcggcgcagc accatggcct gaaataacct 2100 ctgaaagagg aacttggtta ggtaccttct gaggcggaaa gaaccagctg tggaatgtgt 2160

gtcagttagg	gtgtggaaag	tccccaggct	ccccagcagg	cagaagtatg	caaagcatgc	2220
atctcaatta	gtcagcaacc	aggtgtggaa	agtccccagg	ctccccagca	ggcagaagta	2280
tgcaaagcat	gcatctcaat	tagtcagcaa	ccatagtccc	gcccctaact	ccgcccatcc	2340
cgcccctaac	tccgcccagt	tccgcccatt	ctccgcccca	tggctgacta	atttttttta	2400
tttatgcaga	ggccgaggcc	geeteggeet	ctgagctatt	ccagaagtag	tgaggaggct	2460
tttttggagg	cctaggcttt	tgcaaaaagc	tgttacctcg	agcggccgct	taattaaggc	2520
gcgccattta	aatcctgcag	gtaacagctt	ggcactggcc	gtcgttttac	aacgtcgtga	2580
ctgggaaaac	cctggcgtta	cccaacttaa	tegeettgea	gcacatcccc	ccttcgccag	2640
ctggcgtaat	agcgaagagg	cccgcaccga	tegecettee	caacagttgc	gtagcctgaa	2700
tggcgaatgg	cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	tttcacaccg	2760
catacgtcaa	agcaaccata	gtacgcgccc	tgtagcggcg	cattaagcgc	ggcgggtgtg	2820
gtggttacgc	gcagcgtgac	cgctacactt	gccagcgccc	tagcgcccgc	teettteget	2880
ttcttccctt	cctttctcgc	cacgttcgcc	ggctttcccc	gtcaagctct	aaatcggggg	2940
ctccctttag	ggttccgatt	tagtgcttta	cggcacctcg	accccaaaaa	acttgatttg	3000
ggtgatggtt	cacgtagtgg	gccatcgccc	tgatagacgg	tttttcgccc	tttgacgttg	3060
gagtccacgt	tctttaatag	tggactcttg	ttccaaactg	gaacaacact	caaccctatc	3120
tegggetatt	cttttgattt	ataagggatt	ttgccgattt	cggcctattg	gttaaaaaaat	3180
gagctgattt	aacaaaaatt	taacgcgaat	tttaacaaaa	tattaacgtt	tacaatttta	3240
tggtgcactc	tcagtacaat	ctgctctgat	gccgcatagt	taagccaact	ccgctatcgc	3300
tacgtgactg	ggtcatggct	gcgccccgac	accegecaac	accegetgac	gcgccctgac	3360
gggcttgtct	gctcccggca	tccgcttaca	gacaagctgt	gaccgtctcc	gggagctgca	3420
tgtgtcagag	gttttcaccg	tcatcaccga	aacgcgcgag	gcagtattct	tgaagacgaa	3480
agggcctcgt	gatacgccta	ttttatagg	ttaatgtcat	gataataatg	gtttcttaga	3540
cgtcaggtgg	cacttttcgg	ggaaatgtgc	geggaaceee	tatttgttta	tttttctaaa	3600
tacattcaaa	tatgtatccg	g ctcatgagad	aataaccctg	ataaatgctt	caataatatt	3660
gaaaaaggaa	gagtatgagt	attcaacatt	teegtgtege	ccttattccc	ttttttgcgg	3720
cattttgcct	: tcctgtttt	gctcacccag	g aaacgctggt	gaaagtaaaa	gatgctgaag	3780
atcagttggg	, tgcacgagto	g ggttacatco	g aactggatct	caacagcggt	: aagatccttg	3840

agagttttcg	ccccgaagaa	cgttttccaa	tgatgagcac	ttttaaagtt	ctgctatgtg	3900
	atcccgtgat					3960
	cttggttgag					4020
	attatgcagt					4080
	gatcggagga					4140
atgtaactcg	ccttgatcgt	tgggaaccgg	agctgaatga	agccatacca	aacgacgagc	4200
gtgacaccac	gatgccagca	gcaatggcaa	caacgttgcg	caaactatta	actggcgaac	4260
tacttactct	agcttcccgg	caacaattaa	tagactggat	ggaggcggat	aaagttgcag	4320
gaccacttct	gcgctcggcc	cttccggctg	gctggtttat	tgctgataaa	tctggagccg	4380
gtgagcgtgg	gtctcgcggt	atcattgcag	cactggggcc	agatggtaag	ccctcccgta	4440
tcgtagttat	ctacacgacg	gggagtcagg	caactatgga	tgaacgaaat	agacagatcg	4500
ctgagatagg	tgcctcactg	attaagcatt	ggtaactgtc	agaccaagtt	tactcatata	4560
tactttagat	tgatttaaaa	cttcattttt	aatttaaaag	gatctaggtg	aagatccttt	4620
ttgataatct	catgaccaaa	atcccttaac	gtgagttttc	gttccactga	gcgtcagacc	4680
ccgtagaaaa	gatcaaagga	tcttcttgag	atccttttt	tctgcgcgta	atctgctgct	4740
tgcaaacaaa	aaaaccaccg	ctaccagcgg	tggtttgttt	gccggatcaa	gagetaccaa	4800
ctcttttcc	gaaggtaact	ggcttcagca	gagcgcagat	accaaatact	gtccttctag	4860
tgtagccgta	gttaggccac	cacttcaaga	actctgtagc	accgcctaca	tacctcgctc	4920
tgctaatcct	gttaccagtg	gctgctgcca	gtggcgataa	gtcgtgtctt	accgggttgg	4980
actcaagacg	atagttaccg	gataaggcgc	agcggtcggg	ctgaacgggg	ggttcgtgca	5040
cacageceag	cttggagcga	acgacctaca	ccgaactgag	atacctacag	cgtgagcatt	5100
gagaaagcgc	cacgcttccc	gaagggagaa	aggcggacag	gtatccggta	agcggcaggg	5160
tcggaacagg	agagcgcacg	agggagcttc	cagggggaaa	cgcctggtat	ctttatagtc	5220
					tcaggggggc	5280
					ttttgctggc	5340
					cgtattaccg	5400
•					gagtcagtga	5460
•						5520
					tggccgattc	
attaatccag	ctggcacgac	aggtttcccg	actggaaagc	gggcagtgag	cgcaacgcaa	5580

ttaatgtgag ttacctcact cattaggcac cccaggcttt acactttatg cttccggctc 5640

gtatgt	tgtg tggaattgtg agcggataac aatttcacac aggaaacagc tatgaccatg	5700
attacg	aatt aa	5712
<210> <211> <212> <213>	4 12514 DNA Artificial	
<220> <223>	plasmid pSV.IPD.2C4 circular ds-DNA	
<220> <221> <222> <223>	misc_feature (444)(444) splice donor	
<220> <221> <222> <223>	misc_feature (479)(479) start PUR coding	•
<220> <221> <222> <223>	misc_feature (1079)(1643) DHFR coding region	
<220> <221> <222> <223>	misc_feature (1883)(1883) start 2C4 HC coding	
<220> <221> <222> <223>	misc_feature (4154)(4154) start LC coding	
<400> ttcgago	4 ctcg cccgacattg attattgact agagtcgatc gacagctgtg gaatgtgtgt	60
	gggt gtggaaagtc cccaggetcc ccagcaggca gaagtatgca aagcatgcat	120
	tagt cagcaaccag gtgtggaaag teeccagget eeccageagg cagaagtatg	180
	atgc atctcaatta gtcagcaacc atagtcccgc ccctaactcc gcccatcccg	240
	acto ogoccagtto ogoccattot cogocccatg gotgactaat ttttttatt	300

tatgcagagg	ccgaggccgc	ctcggcctct	gagctattcc	agaagtagtg	aggaggcttt	360
tttggaggcc	taggcttttg	caaaaagcta	gcttatccgg	ccgggaacgg	tgcattggaa	420
cgcggattcc	ccgtgccaag	agtgacgtaa	gtaccgccta	tagagcgact	agtccaccat	480
gaccgagtac	aagcccacgg	tgcgcctcgc	cacccgcgac	gacgtcccgc	gggccgtacg	540
caccctcgcc	gccgcgttcg	ccgactaccc	cgccacgcgc	cacaccgtag	acccggaccg	600
ccacatcgag	cgggtcaccg	agctgcaaga	actcttcctc	acgcgcgtcg	ggctcgacat	660
cggcaaggtg	tgggtcgcgg	acgacggcgc	cgcggtggcg	gtctggacca	cgccggagag	720
cgtcgaagcg	ggggcggtgt	tcgccgagat	cggcccgcgc	atggccgagt	tgagcggttc	780
ccggctggcc	gcgcagcaac	agatggaagg	.cctcctggcg	ccgcaccggc	ccaaggagcc	840
cgcgtggttc	ctggccaccg	teggegtete	gcccgaccac	cagggcaagg	gtctgggcag	900
cgccgtcgtg	ctccccggag	tggaggcggc	cgagcgcgcc	ggggtgcccg	ccttcctgga	960
gacctccgcg	ccccgcaacc	teceetteta	cgagcggctc	ggcttcaccg	tcaccgccga	1020
cgtcgagtgc	ccgaaggacc	gegegaeetg	gtgcatgacc	cgcaagcccg	gtgccaacat	1080
ggttcgacca	ttgaactgca	tegtegeegt	gtcccaaaat	atggggattg	gcaagaacgg	1140
agacctaccc	tgccctccgc	tcaggaacgc	gttcaagtac	ttccaaagaa	tgaccacaac	1200
ctcttcagtg	gaaggtaaac	agaatctggt	gattatgggt	aggaaaacct	ggttctccat	1260
tcctgagaag	aatcgacctt	taaaggacag	aattaatata	gttctcagta	gagaactcaa	1320
agaaccacca	cgaggagctc	attttcttgc	caaaagtttg	gatgatgcct	taagacttat	1380
tgaacaaccg	gaattggcaa	gtaaagtaga	catggtttgg	atagtcggag	gcagttctgt	1440
ttaccaggaa	gccatgaatc	aaccaggcca	ccttagactc	tttgtgacaa	ggatcatgca	1500
ggaatttgaa	agtgacacgt	ttttcccaga	aattgatttg	gggaaatata	aacctctccc	1560
agaataccca	ggcgtcctct	ctgaggtcca	ggaggaaaaa	ggcatcaagt	ataagtttga	1620
agtctacgag	aagaaagact	aacgttaact	gctcccctcc	taaagctatg	catttttata	1680
agaccatggg	acttttgctg	gctttagatc	cccttggctt	cgttagaacg	cagctacaat	1740
taatacataa	ccttatgtat	catacacata	cgatttaggt	gacactatag	aataacatcc	1800
actttgcctt	tetetecaca	ggtgtccact	cccaggtcca	actgcacctc	ggttctatcg	1860
attgaattco	: accatgggat	ggtcatgtat	catcctttt	ctagtagcaa	ctgcaactgg	1920
agtacattca	gaagttcago	tggtggagtc	: tggcggtggc	ctggtgcagc	cagggggctc	1980

actccgtttg	tcctgtgcag	cttctggctt	caccttcacc	gactatacca	tggactgggt	2040
ccgtcaggcc	ccgggtaagg	gcctggaatg	ggttgcagat	gttaatccta	acagtggcgg	2100
ctctatctat	aaccagcgct	tcaagggccg	tttcactctg	agtgttgaca	gatctaaaaa	2160
cacattatac	ctgcagatga	acageetgeg	tgctgaggac	actgccgtct	attattgtgc	2220
tcgtaacctg	ggaccctctt	tctactttga	ctactggggt	caaggaaccc	tggtcaccgt	2280
ctcctcggcc	tccaccaagg	gcccatcggt	cttccccctg	gcaccctcct	ccaagagcac	2340
ctctgggggc	acageggeee	tgggctgcct	ggtcaaggac	tacttccccg	aaccggtgac	2400
ggtgtcgtgg	aactcaggcg	ccctgaccag	cggcgtgcac	accttcccgg	ctgtcctaca	2460
gtcctcagga	ctctactccc	tcagcagcgt	ggtgactgtg	ccctctagca	gcttgggcac	。2520
ccagacctac	atctgcaacg	tgaatcacaa	gcccagcaac	accaaggtgg	acaagaaagt	2580
tgagcccaaa	tcttgtgaca	aaactcacac	atgcccaccg	tgcccagcac	ctgaactcct	2640
ggggggaccg	tcagtcttcc	tettececce	aaaacccaag	gacaccctca	tgatctcccg	2700
gacccctgag	gtcacatgcg	tggtggtgga	cgtgagccac	gaagaccctġ	aggtcaagtt	2760
caactggtac	gtggacggcg	tggaggtgca	taatgccaag	acaaagccgc	gggaggagca	2820
gtacaacagc	acgtaccggg	tggtcagcgt	cctcaccgtc	ctgcaccagg	actggctgaa	2880
tggcaaggag	tacaagtgca	aggtctccaa	caaagccctc	ccagccccca	tcgagaaaac	2940
catctccaaa	gccaaagggc	agccccgaga	accacaggtg	tacaccctgc	ccccatcccg	3000
ggaagagatg	accaagaacc	aggtcagcct	gacctgcctg	gtcaaaggct	tctatcccag	3060
cgacatcgcc	gtggagtggg	agagcaatgg	gcagccggag	aacaactaca	agaccacgcc	3120
tcccgtgctg	gactccgacg	gctccttctt	cctctacagc	aagctcaccg	tggacaagag	3180
caggtggcag	caggggaacg	tcttctcatg	ctccgtgatg	catgaggctc	tgcacaacca	3240
ctacacgcag	aagagcctct	ccctgtctcc	gggtaaatga	gtgcgacggc	cctagagtcg	3300
acctgcagaa	gcttcgatgg	ccgccatggc	ccaacttgtt	tattgcagct	tataatggtt	3360
acaaataaag	caatagcatc	acaaatttca	caaataaagc	attttttca	ctgcattcta	3420
gttgtggttt	gtccaaactc	atcaatgtat	cttatcatgt	ctggatcggg	aattaattcg	3480
gcgcagcacc	atggcctgaa	ataacctctg	aaagaggaac	ttggttaggt	accttctgag	3540
gcggaaagaa	ccagctgtgg	aatgtgtgtc	agttagggtg	tggaaagtcc	ccaggetece	3600
cagcaggcag	aagtatgcaa	agcatgcatc	tcaattagtc	agcaaccagg	tgtggaaagt	3660
ccccaggctc	cccagcaggc	agaagtatgc	aaagcatgca	tctcaattag	tcagcaacca	3720

	tagtcccgcc	cctaactccg	cccatcccgc	ccctaactcc	gcccagttcc	gcccattctc	3780
	cgccccatgg	ctgactaatt	ttttttattt	atgcagaggc	cgaggccgcc	teggeetetg	3840
	agctattcca	gaagtagtga	ggaggctttt	ttggaggact	aggcttttgc	aaaaagctag	3900
	cttatccggc	cgggaacggt	gcattggaac	gcggattccc	cgtgccaaga	gtcaggtaag	3960
	taccgcctat	agagtctata	ggcccacccc	cttggcttcg	ttagaacgcg	gctacaatta	4020
	atacataacc	ttttggatcg	atcctactga	cactgacatc	cactttttct	ttttctccac	4080
	aggtgtccac	tcccaggtcc	aactgcacct	cggttcgcga	agctagcttg	ggctgcatcg	4140
	attgaattcc	accatgggat	ggtcatgtat	catccttttt	ctagtagcaa	ctgcaactgg	4200
	agtacattca	gatatccaga	tgacccagtc	cccgagctcc	ctgtccgcct	ctgtgggcga	4260
	tagggtcacc	atcacctgca	aggccagtca	ggatgtgtct	attggtgtcg	cctggtatca	4320
	acagaaacca	ggaaaagctc	cgaaactact	gatttactcg	gcttcctacc	gatacactgg	4380
	agtcccttct	cgcttctctg	gatccggttc	tgggacggat	ttcactctga	ccatcagcag	4440
	tctgcagcca	gaagacttcg	caacttatta	ctgtcaacaa	tattatattt	atccttacac	4500
	gtttggacag	ggtaccaagg	tggagatcaa	acgaactgtg	gctgcaccat	ctgtcttcat	4560
	cttcccgcca	tctgatgagc	agttgaaatc	tggaactgct	tctgttgtgt	gcctgctgaa	4620
	taacttctat	cccagagagg	ccaaagtaca	gtggaaggtg	gataacgccc	tccaatcggg	4680
	taactcccag	gagagtgtca	cagagcagga	cagcaaggac	agcacctaca	gcctcagcag	4740
	caccctgacg	ctgagcaaag	cagactacga	gaaacacaaa	gtctacgcct	gcgaagtcac	4800
	ccatcagggc	ctgagctcgc	ccgtcacaaa	gagcttcaac	aggggagagt	gttaagcttc	4860
	gatggccgcc	atggcccaac	ttgtttattg	cagcttataa	tggttacaaa	taaagcaata	4920
	gcatcacaaa	tttcacaaat	aaagcatttt	tttcactgca	ttctagttgt	ggtttgtcca	4980
	aactcatcaa	tgtatcttat	catgtctgga	tcgggaatta	attcggcgca	gcaccatggc	5040
	ctgaaataag	tttaaaccct	ctgaaagagg	aacttggtta	ggtaccgact	agtagcaagg	5100
	tegecaegea	caagatcaat	attaacaatc	agtcatctct	ctttagcaat	aaaaaggtga	5160
	aaaattacat	tttaaaaatg	acaccataga	cgatgtatga	aaataatcta	cttggaaata	5220
	aatctaggca	aagaagtgca	agactgttac	ccagaaaact	tacaaattgt	aaatgagagg	5280
	ttagtgaaga	tttaaatgaa	tgaagatcta	aataaactta	taaattgtga	gagaaattaa	5340
1	tgaatgtcta	agttaatgca	gaaacggaga	gacatactat	attcatgaac	taaaagactt	5400

aatattgtga	aggtatactt	tcttttcaca	taaatttgta	gtcaatatgt	tcaccccaaa	5460
aaagctgttt	gttaacttgt	caacctcatt	tcaaaatgta	tatagaaagc	ccaaagacaa	5520
taacaaaaat	attcttgtag	aacaaaatgg	gaaagaatgt	tccactaaat	atcaagattt	5580
agagcaaagc	atgagatgtg	tggggataga	cagtgaggct	gataaaatag	agtagagctc	5640
agaaacagac	ccattgatat	atgtaagtga	cctatgaaaa	aaatatggca	ttttacaatg	5700
ggaaaatg <u>a</u> t	gatcttttc	ttttttagaa	aaacagggaa	atatatttat	atgtaaaaaa	5760
taaaagggaa	cccatatgtc	ataccataca	cacaaaaaaa	ttccagtgaa	ttataagtct	5820
aaatggagaa	ggcaaaactt	taaatctttt	agaaaataat	atagaagcat	gccatcatga	5880
cttcagtgta	gagaaaaatt	tcttatgact	caaagtccta	accacaaaga	aaagattgtt	5940
aattagattg	catgaatatt	aagacttatt	tttaaaatta	aaaaaccatt	aagaaaagtc	6000
aggccataga	atgacagaaa	atatttgcaa	caccccagta	aagagaattg	taatatgcag	6060
attataaaaa	gaagtcttac	aaatcagtaa	aaaataaaac	tagacaaaaa	tttgaacaga	6120
tgaaagagaa	actctaaata	atcattacac	atgagaaact	caatctcaga	aatcagagaa	6180
ctatcattgc	atatacacta	aattagagaa	atattaaaag	gctaagtaac	atctgtggca	6240
atattgatgg	tatataacct	tgatatgatg	tgatgagaac	agtactttac	cccatgggct	6300
tcctccccaa	acccttaccc	cagtataaat	catgacaaat	atactttaaa	aaccattacc	6360
ctatatctaa	ccagtactcc	tcaaaactgt	caaggtcatc	aaaaataaga	aaagtctgag	6420
ġaactgtcaa	aactaagagg	aacccaagga	gacatgagaa	ttatatgtaa	tgtggcattc	6480
tgaatgagat	cccagaacag	aaaaagaaca	gtagctaaaa	aactaatgaa	atataaataa	6540
agtttgaact	ttagttttt	ttaaaaaaga	gtagcattaa	cacggcaaag	tcattttcat	6600
atttttcttg	aacattaagt	acaagtctat	aattaaaaat	tttttaaatg	tagtctggaa	6660
cattgccaga	aacagaagta	cagcagctat	ctgtgctgtc	gcctaactat	ccatagctga	6720
ttggtctaaa	atgagataca	tcaacgctcc	tccatgtttt	ttgttttctt	tttaaatgaa	6780
aaactttatt	ttttaagagg	agtttcaggt	tcatagcaaa	attgagagga	aggtacattc	6840
aagctgagga	agttttcctc	tattcctagt	ttactgagag	attgcatcat	gaatgggtgt	6900
taaattttgt	caaatgcttt	ttctgtgtct	atcaatatga	ccatgtgatt	ttcttcttta	6960
acctgttgat	gggacaaatt	acgttaattg	attttcaaac	gttgaaccac	ccttacatat	7020
ctggaataaa	ttctacttgg	ttgtggtgta	tattttttga	tacattcttg	gattcttttt	7080
rctaatattt	tattannat	atttatatat			L _ L L L L	7140

tcttttcttg	taatgtcatt	ttctagttcc	ggtattaagg	taatgctggc	ctagttgaat	7200
gatttaggaa	gtattccctc	tgcttctgtc	ttctgaggta	ccgcggccgc	ccgtcgtttt	7260
acaacgtcgt	gactgggaaa	accctggcgt	tacccaactt	aatcgccttg	cagcacatcc	7320
ccctttcgcc	agctggcgta	atagcgaaga	ggcccgcacc	gatcgccctt	cccaacagtt	7380
gcgcagcctg	aatggcgaat	ggcgcctgat	gcggtatttt	ctccttacgc	atctgtgcgg	7440
tatttcacac	cgcatacgtc	aaagcaacca	tagtacgcgc	cctgtagcgg	cgcattaagc	7500
gcggcgggtg	tggtggttac	gcgcagcgtg	accgctacac	ttgccagcgc	cctagcgccc	7560
gctcctttcg	ctttcttccc	ttcctttctc	gccacgttcg	ccggctttcc	ccgtcaagct	7620
ctaaatcggg	ggctcccttt	agggttccga	tttagtgctt	tacggcacct	cgaccccaaa	7680
aaacttgatt	tgggtgatgg	ttcacgtagt	gggccatcgc	cctgatagac	ggtttttcgc	7740
cctttgacgt	tggagtccac	gttctttaat	agtggactct	tgttccaaac	tggaacaaca	7800
ctcaacccta	tctcgggcta	ttcttttgat	ttataaggga	ttttgccgat	ttcggcctat	7860
tggttaaaaa	atgagctgat	ttaacaaaaa	tttaacgcga	attttaacaa	aatattaacg	7920
tttacaattt	tatggtgcac	tctcagtaca	atctgctctg	atgccgcata	gttaagccag	7980
ccccgacacc	cgccaacacc	cgctgacgcg	ccctgacggg	cttgtctgct	cccggcatcc	8040
gcttacagac	aagctgtgac	cgtctccggg	agctgcatgt	gtcagaggtt	ttcaccgtca	8100
tcaccgaaac	gcgcgagaga	cgaaagggcc	tcgtgatacg	cctattttta	taggttaatg	8160
tcatgataat	aatggtttct	tagacgtcag	gtggcacttt	tcggggaaat	gtgcgcggaa	8220
cccctatttg	tttattttc	taaatacatt	caaatatgta	tccgctcatg	agacaataac	8280
cctgataaat	gcttcaataa	tattgaaaaa	ggaagagtat	gagtattcaa	catttccgtg	8340
tcgcccttat	tcccttttt	gcggcatttt	gccttcctgt	ttttgctcac	ccagaaacgc	8400
tggtgaaagt	aaaagatgct	gaagatcagt	tgggtgcacg	agtgggttac	atcgaactgg	8460
atctcaacag	cggtaagatc	cttgagagtt	ttcgccccga	agaacgtttt	ccaatgatga	8520
gcacttttaa	agttctgcta	tgtggcgcgg	tattatcccg	tattgacgcc	gggcaagagc	.8580
aactcggtcg	ccgcatacac	tattctcaga	atgacttggt	tgagtactca	ccagtcacag	8640
aaaagcatct	tacggatggc	atgacagtaa	gagaattatg	cagtgctgcc	ataaccatga	8700
gtgataacac	tgcggccaac	ttacttctga	caacgatcgg	aggaccgaag	gagctaaccg	8760
cttttttgca	caacatgggg	gatcatgtaa	ctcgccttga	tcgttgggaa	ccggagctga	8820

atgaagccat	accaaacgac	gagcgtgaca	ccacgatgcc	tgtagcaatg	gcaacaacgt	8880
tgcgcaaact	attaactggc	gaactactta	ctctagcttc	ccggcaacaa	ttaatagact	8940
ggatggaggc	ggataaagtt	gcaggaccac	ttctgcgctc	ggcccttccg	gctggctggt	9000
ttattgctga	taaatctgga	gccggtgagc	gtgggtctcg	cggtatcatt	gcagcactgg	9060
ggccagatgg	taagccctcc	cgtatcgtag	ttatctacac	gacggggagt	caggcaacta	9120
tggatgaacg	aaatagacag	atcgctgaga	taggtgcctc	actgattaag	cattggtaac	9180
tgtcagacca	agtttactca	tatatacttt	agattgattt	aaaacttcat	ttttaattta	9240
aaaggatcta	ggtgaagatc	ctttttgata	atctcatgac	caaaatccct	taacgtgagt	9300
tttcgttcca	ctgagcgtca	gaccccgtag	aaaagatcaa	aggatcttct	tgagatcctt	9360
tttttctgcg	cgtaatctgc	tgcttgcaaa	caaaaaaacc	accgctacca	gcggtggttt	9420
gtttgccgga	tcaagagcta	ccaactcttt	ttccgaaggt	aactggcttc	agcagagcgc	9480
agataccaaa	tactgttctt	ctagtgtagc	cgtagttagg	ccaccacttc	aagaactctg	9540
tagcaccgcc	tacatacctc	gctctgctaa	tcctgttacc	agtggctgct	gccagtggcg	9600
ataagtcgtg	tcttaccggg	ttggactcaa	gacgatagtt	accggataag	gcgcagcggt	9660
cgggctgaac	ggggggttcg	tgcacacagc	ccagcttgga	gcgaacgacc	tacaccgaac	9720
tgagatacct	acagcgtgag	ctatgagaaa	gcgccacgct	tcccgaaggg	agaaaggcgg	9780
acaggtatcc	ggtaagcggc	agggtcggaa	caggagagcg	cacgagggag	cttccagggg	9840
gaaacgcctg	gtatctttat	agtcctgtcg	ggtttcgcca	cctctgactt	gagcgtcgat	9900
ttttgtgatg	ctcgtcaggg	gggcggagcc	tatggaaaaa	cgccagcaac	gcggcctttt	9960
tacggttcct	ggccttttgc	tggccttttg	ctcacatgtt	ctttcctgcg	ttatcccctg	10020
attctgtgga	taaccgtatt	accgcctttg	agtgagctga	taccgctcgc	cgcagccgaa	10080
cgaccgagcg	cagcgagtca	gtgagcgagg	aagcggaaga	gcccgcgggc	aaggtcgcca	10140
cgcacaagat	caatattaac	aatcagtcat	ctctcttag	caataaaaag	gtgaaaaatt	10200
acattttaaa	aatgacacca	tagacgatgt	atgaaaataa	tctacttgga	aataaatcta	10260
ggcaaagaag	tgcaagactg	ttacccagaa	aacttacaaa	ttgtďaatga	gaggttagtg	10320
aagatttaaa	tgaatgaaga	tctaaataaa	cttataaatt	gtgagagaaa	ttaatgaatg	10380
tctaagttaa	tgcagaaacg	gagagacata	ctatattcat	gaactaaaag	acttaatatt	10440
gtgaaggtat	actttctttt	cacataaatt	tgtagtcaat	atgttcaccc	caaaaaagct	10500
gtttgttaac	ttgtcaacct	catttcaaaa	tgtatataga	aagcccaaag	acaataacaa	10560

aaatattctt gtagaacaaa	atgggaaaga	atgttccact	aaatatcaag	atttagagca	10620
aagcatgaga tgtgtgggga	tagacagtga	ggctgataaa	atagagtaga	gctcagaaac	10680
agacccattg atatatgtaa	gtgacctatg	aaaaaaatat	ggcattttac	aatgggaaaa	10740
tgatgatctt tttcttttt	agaaaaacag	ggaaatatat	ttatatgtaa	aaaataaaag	10800
ggaacccata tgtcatacca	tacacacaaa	aaaattccag	tgaattataa	gtctaaatgg	10860
agaaggcaaa actttaaatc	ttttagaaaa	taatatagaa	gcatgccatc	atgacttcag	10920
tgtagagaaa aatttcttat	gactcaaagt	cctaaccaca	aagaaaagat	tgttaattag	10980
attgcatgaa tattaagact	tatttttaaa	attaaaaaac	cattaagaaa	agtcaggcca	11040
tagaatgaca gaaaatattt	gcaacacccc	agtaaagaga	attgtaatat	gcagattata	11100
aaaagaagtc ttacaaatca	gtaaaaaata	aaactagaca	aaaatttgaa	cagatgaaag	11160
agaaactcta aataatcatt	acacatgaga	aactcaatct	cagaaatcag	agaactatca	11220
ttgcatatac actaaattag	agaaatatta	aaaggctaag	taacatctgt	ggcaatattg	11280
atggtatata accttgatat	gatgtgatga	gaacagtact	ttaccccatg	ggcttcctcc	11340
ccaaaccctt accccagtat	aaatcatgac	aaatatactt	taaaaaccat	taccctatat	11400
ctaaccagta ctcctcaaaa	ctgtcaaggt	catcaaaaat	aagaaaagtc	tgaggaactg	11460
tcaaaactaa gaggaaccca	aggagacatg	agaattatat	gtaatgtggc	attctgaatg	11520
agatcccaga acagaaaaag	aacagtagct	aaaaaactaa	tgaaatataa	ataaagtttg	11580
aactttagtt ttttttaaaa	aagagtagca	ttaacacggc	aaagtcattt	tcatatttt	11640
cttgaacatt aagtacaagt	ctataattaa	aaattttta	aatgtagtct	ggaacattgc	11700
cagaaacaga agtacagcag	ctatctgtgc	tgtcgcctaa	ctatccatag	ctgattggtc	11760
taaaatgaga tacatcaacg	ctcctccatg	ttttttgttt	tcttttaaa	tgaaaaactt	11820
tatttttaa gaggagtttc	aggttcatag	caaaattgag	aggaaggtac	attcaagctg	11880
aggaagtttt cctctattcc	tagtttactg	agagattgca	tcatgaatgg	gtgttaaatt	11940
ttgtcaaatg ctttttctgt	gtctatcaat	atgaccatgt	gattttcttc	tttaacctgt	12000
tgatgggaca aattacgtta	attgattttc	aaacgttgaa	ccacccttac	atatctggaa	12060
taaattctac ttggttgtgg	tgtatatttt	ttgatacatt	cttggattct	ttttgctaat	12120
attttgttga aaatgtttgt	atctttgttc	atgagagata	ttggtctgtt	gttttctttt	12180
cttgtaatgt cattttctag	ttccggtatt	aaggtaatgc	tggcctagtt	gaatgattta	12240

ggaagtattc	cctctgcttc	tgtcttctga	agcggaagag	cgcccaatac	gcaaaccgcc	12300
teteceegeg	cgttggccga	ttcattaatg	cagctggcac	gacaggtttc	ccgactggaa	12360
agcgggcagt	gagcgcaacg	caattaatgt	gagttagctc	actcattagg	caccccaggc	12420
tttacacttt	atgcttccgg	ctcgtatgtt	gtgtggaatt	gtgagcggat	aacaatttca	12480
cacaggaaac	agctatgaca	tgattacgaa	ttaa :			12514

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
□ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.