# hhu,



# **Semantic Similarity**

Marco Moresi

Dialog Systems and Machine Learning Group

### Content



- Semantic Similarity
  - What is semantic similarity?
  - Why do we need semantic similarity?
- Knowledge-based methods
- Corpus-based methods
- Deep Neural Network-based methods
- Transformer-based methods
- Conclusion



- Semantic Textual Similarity (STS) is defined as the measure of semantic equivalence between two blocks of text.
- Semantic similarity methods usually give a ranking or percentage of similarity between texts, rather than a binary decision (similar or not).
- The versatility of natural language makes it difficult to define rule-based methods for determining semantic similarity.



#### Where is semantic similarity used?

- Information retrieval
- Text summarization
- Text classification
- Essay evaluation
- Machine translation
- Question answering
- Natural language generation
- Spoken dialog systems



First Approach



#### First Approach

- Bag of Words (BoW)
  - Fixed vocabulary
  - Lose sequence order



#### First Approach

Bag of Words (BoW)

#### Example 1

Sentence 1: "John and David studied Maths and Science."

Sentence 2: "John studied Maths and David studied Science.".



#### First Approach

Bag of Words (BoW)

#### Example 1

Sentence 1: "John and David studied Maths and Science."

Sentence 2: "John studied Maths and David studied Science.".

BoW Sentence1: {John: 1, David: 1, studied: 1, Maths: 1, Science: 1, and :2} [1,1,1,1,2]

BoW Sentence2: {John: 1, David: 1, studied: 2, Maths: 1, Science: 1, and :1} [1,1,2,1,1,1]



#### First Approach

Bag of Words (BoW)

#### Example 1

Sentence 1: "John and David studied Maths and Science."

Sentence 2: "John studied Maths and David studied Science.".

#### Example 2

Sentence 1: "Mary is allergic to dairy products."

BOW Sentence 1: {Mary: 1, is: 1, allergic: 1, to: 1, dairy: 1, products: 1, lactose: 0, intolerant: 0} [1,1,1,1,1,0,0]

Sentence 2: "Mary is lactose intolerant."

BOW Sentence 2: {Mary: 1, is: 1, allergic: 0, to: 0, dairy: 0, products: 0, lactose: 1, intolerant: 1} [1,1,0,0,0,0,1,1]



#### First Approach

- Bag of Words (BoW)
  - Fixed vocabulary
  - Lose sequence order
- Term Frequency Inverse document Frequency (TF-IDF)
  - TF measures how frequently a term occurs in a document.
  - IDF measures how important a term is.



#### First Approach

- Word Overlap
  - Calculated as a number of words that occur in both texts
- BLEU [Papineni et al., 2002]
  - Compare n-grams of the candidate with the n-grams of the reference
- ROUGE-L [Lin and Och, 2004]
  - Identifies longest co-occurring in sequence n-grams



#### Knowledge-based methods

- Calculate semantic similarity between two terms based on the information derived from one or more underlying knowledge sources like ontologies/lexical databases, thesauri, dictionaries, etc
  - WordNet
  - Wiktionary
  - Wikipedia
  - BabelNet



#### Knowledge-based methods

- BabelNet: It is the largest multilingual semantic ontology available with nearly over 13 million synsets and 380 million semantic relations.
- Synset: is a group of data elements that are considered semantically equivalent.



Synset of Beautiful (adj) in BabelNet

http://live.babelnet.org/



#### Knowledge-based methods

- Edge-counting methods
- Feature-based methods
- Information Content-based methods



#### Knowledge-based methods

- Edge-counting methods
  - Consider the underlying ontology as a graph, connecting words taxonomically.
  - The greater the distance between two terms the less similar they are.
- Feature-based methods
- Information Content-based methods



#### Knowledge-based methods

- Edge-counting methods
  - Consider the underlying ontology as a graph, connecting words taxonomically.
  - The greater the distance between two terms the less similar they are.
- Feature-based methods
  - Calculate similarity as a function of properties of the words, like gloss.
    - Gloss, the meaning of a word in a dictionary.
  - Gloss-based semantic similarity
- Information Content-based methods



#### Knowledge-based methods

- Edge-counting methods
  - Consider the underlying ontology as a graph, connecting words taxonomically.
  - The greater the distance between two terms the less similar they are.
- Feature-based methods
  - Calculate similarity as a function of properties of the words, like gloss.
  - Gloss-based semantic similarity
- Information Content-based methods
  - Information Content (IC)
  - Use the IC associated with the concept to evaluate similarity

#### **Information Content**

$$IC(c) = -\log p(c)$$

$$p(c) = rac{\sum_{w \in W(c)} ext{ appearances } (w)}{N}$$

$$\mathrm{sim}_{res}(c_1,c_2) = IC(LCS(c_1,c_2))$$



### Corpus-based methods

Word Embeddings



#### Corpus-based methods

- Word Embeddings
  - word2vec
    - Neural network model
    - The Continuous Bag Of Words (CBOW) model predicts the current word using the previous words
    - The Skip-gram model predicts the neighboring context words given a target word.
  - GloVe
    - Word co-occurrence matrix
  - fastText
    - Skip-gram model
    - Each word is represented as a collection of character n-grams



#### Corpus-based methods

- Word Embeddings
  - word2vec
  - GloVe
  - fastText

#### Meaning Conflation Problem

Bat X = [ 0.50451 , 0.68607, ..., -0.51042 ]



#### Corpus-based methods

- Word Embeddings
  - word2vec
  - GloVe
  - fastText

#### Meaning Conflation Problem

Bat X = [ 0.50451 , 0.68607, ..., -0.51042 ]





#### Corpus-based methods

- Word Embeddings
  - word2vec
  - GloVe
  - fastText

#### **Meaning Conflation Problem**







#### Corpus-based methods

- Word Embeddings
  - word2vec
  - GloVe
  - fastText

#### Cosine Similarity

similarity = 
$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

- Latent Semantic Analysis
  - Co-occurrence matrix, rows represent words and columns paragraphs
  - Singular Value Decomposition (SVD)
  - Each word is represented as a vector using the values in its row
  - Semantic Similarity is calculated using cosine similarity between these vectors



#### Corpus-based methods

- Word Embeddings
  - word2vec
  - GloVe
  - fastText
- Latent Semantic Analy
  - Co-occurrence matrix columns paragraphs
  - Singular Value Decor



- Each word is represented as a vector using the values in its row
- Semantic Similarity is calculated using cosine similarity between these vectors



#### Deep Neural Network-based methods

- Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement
  - Context Modeling
    - BiLSTM to model the context
  - Pairwise Word Interaction Modeling
    - Establish semantic correspondence
  - Similarity Focus Layer
    - FocusCube
  - Deep ConvNet
    - FocusCube as an "image"
    - Pattern Recognition problem



### How good is the proposed metric?



#### How can we evaluate how good is the metric?

- Correlation with human annotation
  - We need humans to rank pair of sentences according how similar they are
  - Calculate the correlation between the proposed metric and the human annotations
  - Pearson Correlation



#### Deep Neural Network-based methods

Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement

| STS2014    | 3rd    | 2nd    | 1st    | This work |
|------------|--------|--------|--------|-----------|
| deft-forum | 0.5305 | 0.4711 | 0.4828 | 0.5684    |
| deft-news  | 0.7813 | 0.7628 | 0.7657 | 0.7079    |
| headlines  | 0.7837 | 0.7597 | 0.7646 | 0.7551    |
| image      | 0.8343 | 0.8013 | 0.8214 | 0.8221    |
| OnWN       | 0.8502 | 0.8745 | 0.8589 | 0.8847    |
| tweetnews  | 0.6755 | 0.7793 | 0.7639 | 0.7469    |
| Wt. Mean   | 0.7549 | 0.7605 | 0.761  | 0.7666    |

Test results on all six test sets in STS2014. Pearson's r scores calculated based on the number of sentence pairs in each test set



#### Transformer-based methods

■ BERTScore: Evaluating text generation with Bert [Zhang et al. 2020]



#### Transformer-based methods

BertScore





#### Transformer-based methods

BertScore



 $\operatorname{idf}(w) = -\log rac{1}{M} \sum_{i=1}^{M} \mathbb{I}\Big[w \in x^{(i)}\Big]$ 



hhu.de

#### Transformer-based methods

BertScore

31



 $R_{ ext{BERT}} = rac{\sum_{x_i \in x} \operatorname{idf}(x_i) \max_{\hat{x}_j \in \hat{x}} \mathbf{x}_i^{ op} \hat{\mathbf{x}}_j}{\sum_{x_i \in x} \operatorname{idf}(x_i)}$ 



#### Transformer-based methods

BertScore





#### Transformer-based methods

BertScore

| METRIC                 | en⇔cs     | en⇔de     | en⇔fi     | en⇔zh     |
|------------------------|-----------|-----------|-----------|-----------|
| BLEU                   | .956/.983 | .969/.977 | .962/.958 | .968/.941 |
| P <sub>BERT</sub>      | .965/.989 | .995/.983 | .976/.951 | .975/.950 |
| R <sub>BERT</sub>      | .989/.995 | .997/.991 | .989/.977 | .981/.980 |
| F <sub>BERT</sub>      | .978/.993 | .989/.978 | .984/.969 | .981/.969 |
| F <sub>BERT(idf)</sub> | .982/.995 | .988/.979 | .989/.969 | .980/.963 |

Pearson correlation. WMT18 dataset, translation pairs, English(en) to Chinese(cs), German(de), Finish(fi) and Czech(zh). the left number is the to-English correlation, and the right is the from-English.

### Conclusion



- Measuring semantic similarity between two snippets of text is one of the most challenging tasks in Natural Language Processing.
- Knowledge-based models: consider the meaning of the text but are not adaptable across different domains and languages.
- Corpus-based models: have a statistical background and can be implemented across languages Do not consider the meaning of the text.
- Deep Neural Network based models: show better performance but require high computational resources.
- Transformer based models: take advantage of the pre-training, contextual embedding, are of the state of the art.





### Questions?

35



# Thank you!

### References



- BERTScore: Evaluating text generation with Bert [Zhang et al. 2020]
- Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement [He. et al 2014]
- ROUGE: A Package for Automatic Evaluation of Summaries [Lin, 2004]
- BLEU: a Method for Automatic Evaluation of MachineTranslation [Papineni et al. 2002]
- Introduction to WordNet: An On-line Lexical Database [Miller et al. 1993]
- BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network [Navigli et al 2012]