CProp

Generated by Doxygen 1.8.11

Contents

1	CPro	op			1
2	Clas	s Index			3
	2.1	Class I	_ist		3
3	File	Index			5
	3.1	File Lis	st		5
4	Clas	s Docu	mentatior	1	7
	4.1	propinf	o Struct R	eference	7
		4.1.1	Detailed	Description	7
		4.1.2	Member	Data Documentation	7
			4.1.2.1	angvelocity	7
			4.1.2.2	blades	8
			4.1.2.3	cruisespeed	8
			4.1.2.4	HUB_FLAG	8
			4.1.2.5	hubradius	8
			4.1.2.6	panels	8
			4.1.2.7	radius	8
			4.1.2.8	thrust	8
			4.1.2.9	waterdensity	8
	4.2	threetu	ple Struct	Reference	8
	4.3	XfoilInt	erface Cla	ss Reference	9
		4.3.1	Detailed	Description	9
		4.3.2	Member	Function Documentation	9
			4.3.2.1	angleOfAttack(double angle)	9
			4.3.2.2	loadFoilFile(char fpath[], char foilname[])	9
			4.3.2.3	NACA(int code)	10
			4.3.2.4	setViscosity(int Re)	10
			4.3.2.5	start()	10

iv CONTENTS

5	File	Docum	entation		11
	5.1	/mnt/c/	/Users/Jes	se/Dropbox/Git/CProp/libs/headers/inducedvelocities.h File Reference	11
		5.1.1	Detailed	Description	11
		5.1.2	Function	Documentation	12
			5.1.2.1	asympf(double y, double y0, double U, int a, int Z)	12
			5.1.2.2	asympF1(double rc, double rv, double beta, int Z)	12
			5.1.2.3	asympF2(double rc, double rv, double beta, int Z)	12
			5.1.2.4	axialVelocity(double rc, double rv, double beta, int Z)	13
			5.1.2.5	axialVelocityStar(int m, int p, double *rc, double *rv, double *beta, int Z, double rh, int HUB_FLAG)	13
			5.1.2.6	tangentialVelocity(double rc, double rv, double beta, int Z)	13
			5.1.2.7	tangentialVelocityStar(int m, int p, double *rc, double *rv, double *beta, int Z, double rh, int HUB_FLAG)	14
			5.1.2.8	transformVars(double rc, double rv, double beta, int Z)	14
	5.2	/mnt/c/	'Users/Jes	se/Dropbox/Git/CProp/libs/headers/matrixsolver.h File Reference	14
	5.3	/mnt/c/	'Users/Jes	se/Dropbox/Git/CProp/libs/headers/xfoilinterface.h File Reference	15
		5.3.1	Detailed	Description	15
Inc	lex				17

CProp

Lifting line propeller optimization routine using C.

For a long time now, mathematical procedures to optimize the efficiency of marine propellers operating in nonuniform ship wakes have been known. Several implementations of these procudures exist, notably OpenProp (written in M← ATLAB) and JavaProp. However, OpenProp limits itself to single-stage propulsors, and JavaProp is mainly used for plane propellers.

This project aims to implement Coney's (1989) optimization procedure for multi-stage propulsors, contra-rotating propellers in particular, in a single program. The eventual goal is to provide the complete propeller geometry, starting with a lifting line optimization program, and including 2.5D viscous flow analysis with XFOIL, strenght/vibration analysis, and cavitation analysis.

Most of the routines will be written in the C and C++ programming languages, with exceptions made for graphical applications.

2 CProp

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

propinfo	
	Struct containing constant propeller info blades: const uint8_t: number of propeller blades radius: const double: radius of propeller, [m] angvelocity: const double: angular velocity of propeller, [rad/s] cruisespeed: const double: cruise speed of ship, [m/s] hubradius: const double: radius of propeller hub, [m] thrust: const double: required thrust of propeller, [N] panels: const uint8_t: number of lifting line panels waterdensity: const double: density of water, [kg/m^3] HUB_FLAG: const int: sets whether to simulate a hub
threetup	e
XfoilInter	face
	Class that interface with XFoil

4 Class Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/inducedvelocities.h	
Functions for calculating induced velocities on lifting line	11
/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/matrixsolver.h	
Functions for solving the linear system that arises when optimizing the single propeller circulation	
distribution	14
/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/xfoilinterface.h	
Library for calling XFoil from a C++ program	15

6 File Index

Class Documentation

4.1 propinfo Struct Reference

struct containing constant propeller info blades: const uint8_t: number of propeller blades radius: const double: radius of propeller, [m] angvelocity: const double: angular velocity of propeller, [rad/s] cruisespeed: const double: cruise speed of ship, [m/s] hubradius: const double: radius of propeller hub, [m] thrust: const double: required thrust of propeller, [N] panels: const uint8_t: number of lifting line panels waterdensity: const double: density of water, [kg/m 3] HUB_FLAG: const int: sets whether to simulate a hub

#include <matrixsolver.h>

Public Attributes

- · const uint8_t blades
- · const double radius
- const double angvelocity
- const double cruisespeed
- · const double hubradius
- · const double thrust
- const uint8_t panels
- · const double waterdensity
- · const int HUB_FLAG

4.1.1 Detailed Description

struct containing constant propeller info blades: const uint8_t: number of propeller blades radius: const double: radius of propeller, [m] angvelocity: const double: angular velocity of propeller, [rad/s] cruisespeed: const double: cruise speed of ship, [m/s] hubradius: const double: radius of propeller hub, [m] thrust: const double: required thrust of propeller, [N] panels: const uint8_t: number of lifting line panels waterdensity: const double: density of water, [kg/m 3] HUB_FLAG: const int: sets whether to simulate a hub

4.1.2 Member Data Documentation

4.1.2.1 const double propinfo::angvelocity

angular velocity of propeller, [rad/s]

8 Class Documentation

4.1.2.2 const uint8_t propinfo::blades
number of propeller blades
4.1.2.3 const double propinfo::cruisespeed
cruise speed of ship, [m/s]
4.1.2.4 const int propinfo::HUB_FLAG
*sets whether to simulate a hub

4.1.2.5 const double propinfo::hubradius

radius of propeller hub, [m]

4.1.2.6 const uint8_t propinfo::panels

number of lifting line panels

4.1.2.7 const double propinfo::radius

*radius of propeller, [m]

4.1.2.8 const double propinfo::thrust

required thrust of propeller, [N]

4.1.2.9 const double propinfo::waterdensity

density of water, [kg/m³]

The documentation for this struct was generated from the following file:

/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/matrixsolver.h

4.2 threetuple Struct Reference

Public Attributes

- double x
- double y
- double z

The documentation for this struct was generated from the following file:

/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/inducedvelocities.c

4.3 XfoilInterface Class Reference

Class that interface with XFoil.

#include <xfoilinterface.h>

Public Member Functions

• XfoilInterface (bool _plot, string _paccfile="")

Constructor for XfoilInterface class.

• bool start ()

Starts xfoil interface.

• void configure ()

Configures xfoil with constructor parameters.

• void quit ()

Quits xfoil.

• void loadFoilFile (char fpath[], char foilname[])

Loads airfoil coordinates from file.

• void NACA (int code)

Selects a NACA airfoil to input to xfoil.

void setViscosity (int Re)

Enables viscous mode.

void angleOfAttack (double angle)

Starts Xfoil analysis of single angle of attack.

4.3.1 Detailed Description

Class that interface with XFoil.

4.3.2 Member Function Documentation

4.3.2.1 void XfoilInterface::angleOfAttack (double angle)

Starts Xfoil analysis of single angle of attack.

Parameters

angle angle of attack to analyze

4.3.2.2 void XfoilInterface::loadFoilFile (char fpath[], char foilname[])

Loads airfoil coordinates from file.

Parameters

l	fpath	File to load coordinates from	
E	f-:!	A !ufa!l us a usa a	
ſ	ioiiname	Airfoil name	
7	Separated by Dovugen		

Generated by Doxygen

10 Class Documentation

4.3.2.3 void XfoilInterface::NACA (int code)

Selects a NACA airfoil to input to xfoil.

Parameters

input	4-digit naca airfoil code
-------	---------------------------

4.3.2.4 void XfoilInterface::setViscosity (int Re)

Enables viscous mode.

Parameters

Re	Reynolds number of flow
----	-------------------------

4.3.2.5 bool XfoilInterface::start ()

Starts xfoil interface.

Returns

Whether XFoil was initialized succesfully

The documentation for this class was generated from the following files:

- /mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/xfoilinterface.h
- /mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/xfoilinterface.cpp

File Documentation

5.1 /mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/inducedvelocities.h File Reference

Functions for calculating induced velocities on lifting line.

Macros

#define PI 3.14159265359

Functions

- double asympf (double y, double y0, double U, int a, int Z)
 asymptotic formulae F1 and F2, encoded in single formula with parameter +/- 1
- struct threetuple transformVars (double rc, double rv, double beta, int Z)

transforms variables rc, rv, beta to y, y0, U

- double asympF1 (double rc, double rv, double beta, int Z)
 - asymptotic F1
- double asympF2 (double rc, double rv, double beta, int Z)
 asymptotic F2
- double axialVelocity (double rc, double rv, double beta, int Z)

calculates axial velocity as per Coney

- double tangential Velocity (double rc, double rv, double beta, int ${\sf Z}$)
 - calculates tangential velocity as per Coney
- double axialVelocityStar (int m, int p, double *rc, double *rv, double *beta, int Z, double rh, int HUB_FLAG)
 axial velocity induced at point m by vortex at p, including hub effects
- double tangentialVelocityStar (int m, int p, double *rc, double *rv, double *beta, int Z, double rh, int HUB_←
 FLAG)

tangential velocity induced at point m by vortex at p, including hub effects

5.1.1 Detailed Description

Functions for calculating induced velocities on lifting line.

Author

Jesse van Rhijn

12 File Documentation

5.1.2 Function Documentation

5.1.2.1 double asympf (double y, double y0, double U, int a, int Z)

asymptotic formulae F1 and F2, encoded in single formula with parameter +/- 1

Parameters

У	see Coney
y0	see Coney
U	see Coney
Z	blade number
а	1 for F1, -1 for F2

Returns

value of asymptotic Bessel function formulae

5.1.2.2 double asympF1 (double rc, double rv, double beta, int Z)

asymptotic F1

Parameters

rc	control point radius
rv	vortex point radius
beta	pitch angle of trailing vortex
Z	blade number

Returns

result of asymptotic F1

5.1.2.3 double asympF2 (double rc, double rv, double beta, int Z)

asymptotic F2

Parameters

rc	control point radius
rv	vortex point radius
beta	pitch angle of trailing vortex
Z	blade number

Returns

result of asymptotic F2

5.1.2.4 double axial Velocity (double rc, double rv, double beta, int Z)

calculates axial velocity as per Coney

Parameters

rc	control point radius
rv	vortex point radius
beta	pitch angle of trailing vortex
Z	blade number

Returns

value of axial velocity at r = rc due to helical vortex line at radius r = rv

5.1.2.5 double axialVelocityStar (int m, int p, double * rc, double * rv, double * beta, int Z, double rh, int HUB_FLAG)

axial velocity induced at point m by vortex at p, including hub effects

Parameters

m	index of control point
р	index of vortex point
rc	array of control point radii
rv	array of vortex point radii
beta	array of vortex pitch angles
Z	blade number
rh	hub radius
HUB_FLAG	sets whether to include hub effects

Returns

axial induced velocitiy at m due to helical horseshoe vortex at p

5.1.2.6 double tangential Velocity (double rc, double rv, double beta, int Z)

calculates tangential velocity as per Coney

Parameters

rc	control point radius
rv	vortex point radius
beta	pitch angle
7	blade number

Generated by Doxygen

14 File Documentation

Returns

value of tangential velocity at r = rc due to helical vortex line at radius r = rv

5.1.2.7 double tangential Velocity Star (int m, int p, double * rc, double * rv, double * beta, int Z, double rh, int HUB_FLAG)

tangential velocity induced at point m by vortex at p, including hub effects

Parameters

m	index of control point
р	index of vortex point
rc	array of control point radii
rv	array of vortex point radii
beta	array of vortex pitch angles
Z	blade number
rh	hub radius
HUB_FLAG	sets whether to include hub effects

Returns

tangential induced velocitiy at m due to helical horseshoe vortex at p

5.1.2.8 struct threetuple transformVars (double rc, double rv, double beta, int Z)

transforms variables rc, rv, beta to y, y0, U

Parameters

rc	control point radius
rv	vortex point radius
beta	pitch angle of trailing vortex
Ζ	blade number

Returns

three-tuple of transformed variables

5.2 /mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/matrixsolver.h File Reference

Functions for solving the linear system that arises when optimizing the single propeller circulation distribution.

```
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_matrix.h>
Include dependency graph for matrixsolver.h:
```

5.3 /mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/xfoilinterface.h File Reference

Library for calling XFoil from a C++ program.

```
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cstring>
#include <string>
#include <thread>
Include dependency graph for xfoilinterface.h:
```

Classes

· class XfoilInterface

Class that interface with XFoil.

5.3.1 Detailed Description

Library for calling XFoil from a C++ program.

Author

Jesse van Rhijn

16 File Documentation

Index

/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/induc	c epatoreliondit ije š .⇔
h, 11	angvelocity, 7
/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/matr	
h, 14	cruisespeed, 8
/mnt/c/Users/Jesse/Dropbox/Git/CProp/libs/headers/xfoili	
h, 15	hubradius, 8
	panels, 8
angleOfAttack	radius, 8
XfoilInterface, 9	thrust, 8
angvelocity	waterdensity, 8
propinfo, 7	
asympF1	radius
inducedvelocities.h, 12	propinfo, 8
asympF2	
inducedvelocities.h, 12	setViscosity
asympf	XfoilInterface, 10
inducedvelocities.h, 12	start
axialVelocity	XfoilInterface, 10
inducedvelocities.h, 13	tangentialVelocity
axialVelocityStar	•
inducedvelocities.h, 13	inducedvelocities.h, 13 tangentialVelocityStar
	inducedvelocities.h, 14
blades	
propinfo, 7	threetuple, 8 thrust
cruisespeed	propinfo, 8
propinfo, 8	transformVars
LILIP EL AC	inducedvelocities.h, 14
HUB_FLAG	waterdensity
propinfo, 8 hubradius	propinfo, 8
	propinio, o
propinfo, 8	XfoilInterface, 9
inducedvelocities.h	angleOfAttack, 9
asympF1, 12	loadFoilFile, 9
	NACA, 10
asympF2, 12	setViscosity, 10
asympf, 12	start, 10
axialVelocity, 13	Start, 10
axialVelocityStar, 13	
tangential/elocity, 13	
tangentialVelocityStar, 14	
transformVars, 14	
loadFoilFile	
XfoilInterface, 9	
Alomintoriaco, o	
NACA	
XfoilInterface, 10	
panels	
propinfo, 8	