

Exercice 1 - Parallélépipède*

B2-10

La matrice d'inertie d'un cylindre d'axe (G, k) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède de cotés a, b et c et de masse m est donnée en son centre d'iner-

tie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\substack{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}} \text{avec } A = m \frac{b^2 + c^2}{12},$$

Soit la pièce suivante

On pose
$$\overrightarrow{OA} = \frac{a}{2} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir 1.

Exercice 2 - Barrière Sympact **

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$, $\overrightarrow{CB} =$ \overrightarrow{R}_{11} et $\overrightarrow{AB} = \lambda \overrightarrow{i_2}$. De plus, H = 120 mm et R = 40 mm.

On néglige la pesanteur sur la pièce 1.

On note $\{\mathscr{F}(\text{Moteur} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array}\right\}_{\forall P}$

mécanique du moteur sur la pièce 1.

On note $\{\mathscr{F}(\operatorname{Ressort} \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_r \overrightarrow{k_0} \end{array}\right\}_{\forall P}$ l'action mécanique d'un ressort couple sur la pièce

On note
$$\{\mathscr{F}(\operatorname{Pes} \to 2)\} = \left\{\begin{array}{c} -Mg\overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_{\forall G} \operatorname{avec} \overrightarrow{AG} = L\overrightarrow{i_2}.$$

Question 1 Réaliser un graphe d'analyse.

Question 2 Proposer une méthode permettant d'exprimer le couple moteur en fonction des autres actions mécaniques.

Question 3 Mettre en œuvre une méthode permettant d'exprimer le couple moteur en fonction des autres actions mécaniques.

Question 4 Tracer, en utilisant Python, l'évolution du couple moteur en fonction de l'angle de la manivelle. On prendra M = 1 kg et L = 0.1 m

Corrigé voir 2.

Exercice 3 – Parallélépipède percé* B2-10

La matrice d'inertie d'un cylindre d'axe (G, \overline{k}') de rayon R et de hauteur H et de masse m est donnée en $\begin{pmatrix} A & 0 & 0 \end{pmatrix}$

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec
$$\begin{pmatrix} R^2 & H^2 \end{pmatrix}$$

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

de cotés
$$a$$
, b et c et de masse m est donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$ avec
$$h^2 + c^2 \qquad a^2 + b^2$$

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$.
Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G.

Corrigé voir 3.

Exercice 4 – Suspension automobile ** C2-07

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 Réaliser le graphe des liaisons en faisant apparaître les actions mécaniques. Exprimer les torseurs des actions mécaniques de chacune des liaisons.

Question 2 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 3 Résoudre littéralement le système.

Corrigé voir 4.

Exercice 5 - Cylindre percé *

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overline{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = -\frac{R}{2}\overrightarrow{x}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir 5.

Exercice 6 – Robot avion ** C2-07

Objectif L'objectif est de déterminer le couple articulaire C_{12} à appliquer sur le bras 2 afin de garantir l'effort de perçage et l'effort presseur.

Hypothèses:

- l'étude est réalisée pour une demi couture orbitale (couture supérieure);
- le repère $\mathcal{R}_0(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ sera supposé galiléen;
- $\overrightarrow{y_0}$ est l'axe vertical ascendant et $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$;
- toutes les liaisons sont supposées parfaites.

Repérage et paramétrage

Le repère associé à l'embase fixe (0) est le repère $\mathcal{R}_0(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{y_0}$ étant l'axe vertical ascendant.

L'embase de rotation (1), en liaison pivot d'axe $(O_1, \overrightarrow{y_1})$, par rapport au bâti (0), a pour repère associé le repère $\mathcal{R}_1(O_1; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ tel que $O_0 = O_1$, $\overrightarrow{x_0} = \overrightarrow{x_1}$, $\overrightarrow{y_0} = \overrightarrow{y_1}$, $\overrightarrow{z_0} = \overrightarrow{z_1}$.

Le bras (2), en liaison pivot d'axe $(O_2, \overline{z_2})$ par rapport à l'embase de rotation (1), a pour repère associé le repère $\mathcal{R}_2(O_2; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ tel que $\overrightarrow{O_1O_2} = L_1 \overrightarrow{x_1} + L_2 \overrightarrow{y_1}, \overrightarrow{z_1} = \overrightarrow{z_2}$ et $(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2}) = \theta_{12}$.

Le bras (3), en liaison pivot d'axe $(O_3, \overrightarrow{z_3})$ par rapport au bras (2), a pour repère associé le repère $\mathcal{R}_3(O_3; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ tel que $\overrightarrow{O_2O_3} = L_3\overrightarrow{x_2}, \overrightarrow{z_1} = \overrightarrow{z_3}$ et $(\overrightarrow{x_1}, \overrightarrow{x_3}) = (\overrightarrow{y_1}, \overrightarrow{y_3}) = \theta_{13}$.

Le bras (4), en liaison pivot d'axe $(O_4, \overrightarrow{x_4})$ par rapport au bras (3), a pour repère associé le repère $\mathcal{R}_4(O_4; \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$ tel que $\overrightarrow{O_3O_4} = L_4\overrightarrow{x_3} + l_5\overrightarrow{y_3}, \overrightarrow{x_3} = \overrightarrow{x_4}$ et $(\overrightarrow{y_3}, \overrightarrow{y_4}) = (\overrightarrow{z_3}, \overrightarrow{z_4}) = \theta_{34}$.

L'ensemble (E1) composé du bras (5), du poignet et de l'outil, en liaison pivot d'axe $(O_5, \overrightarrow{z_5})$ par rapport au bras (4), a pour repère associé le repère $\mathcal{R}_5(O_5; \overrightarrow{x_5}, \overrightarrow{y_5}, \overrightarrow{z_5})$ tel que $\overrightarrow{O_4O_5} = L_5\overrightarrow{x_3}, \overrightarrow{z_1} = \overrightarrow{z_5}$ et $(\overrightarrow{x_1}, \overrightarrow{x_5}) = (\overrightarrow{y_1}, \overrightarrow{y_5}) = \theta_{15}$.

tel que $\overrightarrow{O_4O_5} = L_5 \overrightarrow{x_3}$, $\overrightarrow{z_1} = \overrightarrow{z_5}$ et $(\overrightarrow{x_1}, \overrightarrow{x_5}) = (\overrightarrow{y_1}, \overrightarrow{y_5}) = \theta_{15}$. La masse du bras (2) est notée M_2 et la position du centre de gravité est définie par $\overrightarrow{O_2G_2} = \frac{1}{2}L_3\overrightarrow{x_2}$.

La masse du bras (3) et du bras (4) est notée M_{34} et la position du centre de gravité est définie par $O_3G_3=\frac{1}{3}L_4\overrightarrow{x_3}+L_5\overrightarrow{y_3}$.

La masse de l'ensemble (E1) est notée M_{E1} et la position du centre de gravité est définie par $\overrightarrow{O_5G_5} = L_7\overrightarrow{x_5}$.

L'extrémité de l'outil est définie par le point P définie par $\overrightarrow{O_5P} = L_8 \overrightarrow{x_5}$.

Le torseur d'action mécanique lié au perçage sera

noté:
$$\{\mathcal{T}(\text{Tronçon (perçage}) \to E_1)\} = \left\{ \begin{array}{cc} -F & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right\}$$

Un effort presseur est de plus nécessaire pour le perçage optimal des deux tronçons. Le torseur d'action mécanique associé sera noté : $\{\mathcal{T}(\text{Tronçon (presseur)} \rightarrow E_1)\}$

$$\left\{ egin{array}{ccc} -P & 0 \ 0 & 0 \ 0 & 0 \end{array}
ight\}_{P,\mathscr{R}_{5}}$$

Le torseur couple modélisant l'action du moteur sur

Le torseur couple modelisant I action du F
$$\text{la pièce 1 sur 2}: \{\mathcal{T}(1_m \to 2)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_{12} \overrightarrow{z_0} \end{array}\right\}_{\forall P}.$$

La rotation entre les solides (0) et (1) est supposée bloquée dans la suite du sujet.

Question 1 Réaliser le graphe de structure de l'ensemble en précisant les liaisons et les actions mécaniques extérieures.

Question 2 Quel est l'ensemble Σ à isoler afin de déterminer le couple C_{12} .

Question 3 Réaliser un bilan des actions méca-

niques extérieures appliquées à Σ et écrire les éléments de réduction de chaque torseur d'actions mécaniques.

Question 4 *Quel théorème doit-être appliqué et sur quel axe de projection, pour déterminer le couple* C_{12} ?

La configuration correspondant à la position extrême supérieure de la couture orbitale correspond aux angles suivants : $\theta_{12}=60^\circ$, $\theta_{13}=-4^\circ$, $\theta_{15}=-90^\circ$.

Dans la suite de l'étude, l'angle θ_{13} sera considéré nul.

Question 5 Déterminer l'équation littérale du couple C_{12} en fonction de g, F, P, M_2 , M_{34} , M_{E1} , L_3 , L_4 , L_5 , L_6 , L_7 , θ_{12} , θ_{15} .

Les valeurs du robot considéré sont :

- $M_2 = 264 \,\mathrm{kg}$, $M_{34} = 430 \,\mathrm{kg}$, $M_{E1} = 150 \,\mathrm{kg}$, $P = 150 \,\mathrm{N}$, $F = 1000 \,\mathrm{N}$;
- $L_1 = 0.405 \,\mathrm{m}, \ L_2 = 0.433 \,\mathrm{m}, \ L_3 = 1.075 \,\mathrm{m}, \ L_4 = 1.762 \,\mathrm{m}, \ L_5 = 0.165 \,\mathrm{m}, \ L_6 = 0.250 \,\mathrm{m}, \ L_7 = 0.550 \,\mathrm{m}, \ L_8 = 0.750 \,\mathrm{m}.$

Question 6 Déterminer alors la valeur du couple C_{12} .

La valeur limite supérieure du couple C_{12} est fixée par le constructeur à 9000 Nm.

Question 7 Le choix du robot permettra-t-il de garantir les conditions d'assemblage dans cette position? Justifier la réponse.

Corrigé voir 6.

Exercice 7 - Cylindre percé *

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Soit la pièce suivante constituée d'un grand cylindre noté ${\bf 1}$ de rayon R. ${\bf 1}$ est percé d'un cylindre de diamètre de rayon r. On colnsidère que ${\bf 1}$ est constitué d'un matériau homgène de masse volumique ρ .

On note
$$\overrightarrow{OA} = -\frac{R}{2}\overrightarrow{x}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir 7.

Exercice 8 - Pèse camion **

C2-07 Pas de corrigé pour cet exercice.

On considère un bâti $\mathbf{0}$ auquel est attaché le repère $\Re = (O; \overrightarrow{x_0}; \overrightarrow{y_0}; \overrightarrow{z_0})$. Le champ de pesanteur est $g = -g \overrightarrow{y_0}$. La barre $\mathbf{1}$ est liée au bâti $\mathbf{0}$ par une liaison pivot parfaite d'axe $(A, \overrightarrow{z_0})$. Le plateau porte camion $\mathbf{2}$ est lié à la barre $\mathbf{1}$ par une liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$. Le levier $\mathbf{3}$ est lié au bâti $\mathbf{0}$ par une liaison pivot parfaite d'axe $(B, \overrightarrow{z_0})$. Ce levier est également lié au plateau $\mathbf{2}$ par une liaison pivot parfaite d'axe $(D, \overrightarrow{z_0})$. Le camion $\mathbf{4}$, de centre de masse G et de masse G inconnue, repose sur le plateau $\mathbf{2}$. L'action mécanique connue est caractérisée par :

$$\{\text{ext} \to 3\} = \left\{ \begin{array}{c} -F \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_E.$$

Question 1 Déterminer la relation entre F et M. Que dire de la position du camion sur la plate-forme?

Question 2 Déterminer les actions mécaniques dans toutes les liaisons.

Corrigé voir 8.

Exercice 9 - Disque **

B2-10 Pas de corrigé pour cet exercice.

Soit un secteur de disque de rayon R, d'épaisseur négligeable et de masse surfacique μ .

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en O.

Corrigé voir 9.

Exercice 10 - Système EPAS **

C2-07 Pas de corrigé pour cet exercice.

Le véhicule porteur de l'E.P.A.S. doit être équipé de stabilisateurs. Une fois en place, les stabilisateurs le soulèvent, afin qu'il ne repose plus sur les roues (les roues touchent le sol mais ne supportent aucun poids) : le mouvement des suspensions du véhicule mettrait en danger sa stabilité.

L'objet de cette partie est de déterminer la longueur de déploiement maximale que le système de sécurité pourra autoriser.

Le véhicule est dans la configuration de la figure pré-

- parc échelle horizontale;
- stabilisateurs sortis au maximum;
- charge maximale dans la plate-forme.

Le problème sera traité en statique plane dans le plan $(O, \overrightarrow{x}, \overrightarrow{y})$ de la figure précédente.

Les efforts pris en compte sont :

- les actions de pesanteur sur chaque élément :
 - véhicule et charge utile, centre d'inertie G_V , masse m_V , $\overrightarrow{OG_V} = a\overrightarrow{y}$,
 - parc échelle, centre d'inertie G_E , masse m_E , $\overrightarrow{OG_E} = \frac{L}{2}\overrightarrow{x} + h\overrightarrow{y},$ - plate-forme et charge utile, centre d'inertie
 - G_P , masse m_P , $\overrightarrow{OG_P} = L\overrightarrow{x} + H\overrightarrow{y}$;
- · les actions de contact de la route sur les stabilisateurs.

Ces actions sont modélisées par des glisseurs passant l'un par M, tel que $\overrightarrow{OM} = -b \overrightarrow{x}$ et l'autre par N tel que $\overrightarrow{ON} = \overrightarrow{bx}$. Les résultantes de ces glisseurs seront notées respectivement : $\overrightarrow{R}_M = X_M \overrightarrow{x} + Y_M \overrightarrow{y}$ et $\overrightarrow{R}_N = X_N \overrightarrow{x} + Y_N \overrightarrow{y}$.

Question 1 Exprimer la condition de non basculement de l'ensemble.

Question 2 Calculer la longueur L_{max} de déploiement au-delà de laquelle il y aura basculement.

Corrigé voir 10.