Example 2.3: Consider the set of empirical measurements of  $P_r/P_t$  given in the table below for an indoor system at 2 GHz. Find the path loss exponent  $\gamma$  that minimizes the MSE between the simplified model (2.29) and the empirical dB power measurements, assuming that  $d_0 = 1$  m and K is determined from the free space path loss formula at this  $d_0$ . Find the received power at 150 m for the simplified path loss model with this path loss exponent and a transmit power of 1 mW (0 dBm).

| Distance from Transmitter | $M = P_r/P_t$ |
|---------------------------|---------------|
| 10 m                      | -70 dB        |
| 20 m                      | -75 dB        |
| 50 m                      | -90 dB        |
| 100 m                     | -110 dB       |
| 300 m                     | -125 dB       |

Table 2.2: Path Loss Measurements

Solution: We first set up the MMSE error equation for the dB power measurements as

$$F(\gamma) = \sum_{i=1}^{5} [M_{\text{measured}}(d_i) - M_{\text{model}}(d_i)]^2,$$

where  $M_{\text{measured}}(d_i)$  is the path loss measurement in Table 2.2 at distance  $d_i$  and  $M_{\text{model}}(d_i) = K - 10\gamma \log_{10}(d)$  is the path loss based on (2.29) at  $d_i$ . Using the free space path loss formula,  $K = -20 \log_{10}(4\pi)/.3333 = -31.54$  dB. Thus

$$F(\gamma) = (-70 + 31.54 + 10\gamma)^{2} + (-75 + 31.54 + 13.01\gamma)^{2} + (-90 + 31.54 + 16.99\gamma)^{2}$$

$$+ (-110 + 31.54 + 20\gamma)^{2} + (-125 + 31.54 + 24.77\gamma)^{2}$$

$$= 21676.3 - 11654.9\gamma + 1571.47\gamma^{2}.$$
(2.31)

Differentiating  $F(\gamma)$  relative to  $\gamma$  and setting it to zero yields

$$\frac{\partial F(\gamma)}{\partial \gamma} = -11654.9 + 3142.94 \\ \gamma = 0 \rightarrow \gamma = 3.71.$$

To find the received power at 150 m under the simplified path loss model with K = -31.54,  $\gamma = 3.71$ , and  $P_t = 0$  dBm, we have  $P_r(dBm) = P_t(dBm) + K(dB) - 10\gamma \log_{10}(d/d_0) = 0 - 31.54 - 10*3.71 \log_{10}(150) = -112.27$  dBm. Clearly the measurements deviate from the simplified path loss model: this variation can be attributed to shadow fading, described in Section 2.7