ADCs for Direct RF Sampling

Tadipatri Uday Kiran Reddy - EE19BTECH11038

IIT Hyderabad

May 19, 2022

• ADC architecture for sampling at RF with low power and area.

- ADC architecture for sampling at RF with low power and area.
- High sampling rate with relatively slow circuits, Time-Interleaved ADC.

- ADC architecture for sampling at RF with low power and area.
- High sampling rate with relatively slow circuits, Time-Interleaved ADC.
- Minimize quantisation and noise error.

Motivation for RF sampling

 Simpler hardware design due to elimination of analog frequency conversion.

Motivation for RF sampling

- Simpler hardware design due to elimination of analog frequency conversion.
- Exploit the computing power of DSPs.

• Sample the input signal at reconstructable rate and then Quantize.

• Sample the input signal at reconstructable rate and then Quantize.

Types of converters,

• Sample the input signal at reconstructable rate and then Quantize.

Types of converters,

• Sample the input signal at reconstructable rate and then Quantize.

Types of converters,

Nyquist-rate Converters, double the input bandwidth.

$$SQNR = 6.02ENOB + 1.76dB$$

• Sample the input signal at reconstructable rate and then Quantize.

Types of converters,

Nyquist-rate Converters, double the input bandwidth.

$$SQNR = 6.02ENOB + 1.76dB$$

Noise spectral density is constant!

• Sample the input signal at reconstructable rate and then Quantize.

Types of converters,

Nyquist-rate Converters, double the input bandwidth.

$$SQNR = 6.02ENOB + 1.76dB$$

Noise spectral density is constant!

 \bullet Oversampled Converters, very high sampling rate, $\textit{OSR} = \frac{f_{\text{s}}}{2f_{\text{B}}}$

$$SQNR = 6.02ENOB + 1.76 + 10log(OSR)dB$$

Sample the input signal at reconstructable rate and then Quantize.

Types of converters,

• Nyquist-rate Converters, double the input bandwidth.

$$SQNR = 6.02ENOB + 1.76dB$$

Noise spectral density is constant!

 \bullet Oversampled Converters, very high sampling rate, $\textit{OSR} = \frac{\textit{f}_{\textit{s}}}{2\textit{f}_{\textit{B}}}$

$$SQNR = 6.02ENOB + 1.76 + 10log(OSR)dB$$

Noise spectral density at ROI is less!!

• Difficult to construct S/H circuit with very high tracking BW.

- Difficult to construct S/H circuit with very high tracking BW.
- Due to Low pass nature RF signal will attenuate.

Time-Interleaved ADC

Time-Interleaved ADC

• Required clock, $f_{clk} = f_s/M$

Time-Interleaved ADC

- Required clock, $f_{clk} = f_s/M$
- Phase difference, $\phi_i = \frac{2\pi(i-1)}{M}$

7/19

VCO translates the input voltage to phase.

- VCO translates the input voltage to phase.
- Counter, counts the number of rasing/falling edges.

$$\phi[n] = \int_{nT_s}^{(n+1)T_s} K_v x[n] dt + p_i[n] = G_v x[n] + e[n-1]$$

• First order high-pass filter.

$$NTF(z) = \frac{1}{2\pi}(z^{-N} - 1)$$

$$NTF(z) = \frac{1}{2\pi}(z^{-N} - 1)$$

• Zeros will occur when $z = 1^{1/N} \implies \omega_k = \frac{2\pi(k-1)}{N}$.

$$NTF(z) = \frac{1}{2\pi}(z^{-N} - 1)$$

- Zeros will occur when $z = 1^{1/N} \implies \omega_k = \frac{2\pi(k-1)}{N}$.
- We will try to center our signal frequency at these zeros.

$$NTF(z) = \frac{1}{2\pi}(z^{-N} - 1)$$

- Zeros will occur when $z = 1^{1/N} \implies \omega_k = \frac{2\pi(k-1)}{N}$.
- We will try to center our signal frequency at these zeros.

Which Zero to center at?

• At $\omega = 0$ or π .

$$SQNR = 6.02ENOB - 3.41 + 30log(OSR)dB$$

At intermediate zeroes,

$$SQNR = 6.02ENOB - 3.41 + 6.02 + 30log(OSR)dB$$

Increase of 6.02dB is equivalent to increase in 1-bit precision of ADCU

Non-idealities

- DC offset
- Gain mismatch
- Clock Jitter/Skew
- Bandwidth mismatch
- Non-linearity in VCO

DC offset

DC offset

DC offset

ullet We can see that dc offset periodicity \Longrightarrow peaks at $rac{k}{M}f_{\mathcal{S}}$

Gain mismatch

Gain mismatch

Gain mismatch

- Gain mismatch can be looked as A.M \implies peaks at $\pm f_{in} + \frac{k}{M} f_s$
- Error at higher amplitude is more.

Clock jitter

Clock jitter

Clock jitter

- Clock skew behaves like P.M \implies peaks at $\pm f_{in} + \frac{k}{M}f_s$.
- Error is high at places where slew rate is more.

SNR comparisions

Thank You