МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Отчёт о выполнении лабораторной работы №3.3.4

Эффект Холла в полупроводниках

Автор: Сенокосов Арсений Олегович Б02-012

Долгопрудный 14 ноября 2021 г.

1 Введение

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, амперметр, миллиамперметр, милливеберметр, реостат, цифровой вольтметр, источник питания (1.5 B), образцы легированного германия.

2 Теоретические сведения

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течёт ток I (рис. 1).

Если эту пластину поместить в магнитное поле, направленное по оси y, то между гранями A и Б появляется разность потенциалов. В самом деле, на электрон, движущийся со скоростью $\langle \boldsymbol{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\boldsymbol{F}_{\scriptscriptstyle \mathrm{II}} = -e\boldsymbol{E} - e\left\langle \boldsymbol{v} \right\rangle \times \boldsymbol{B}$$

где e – абсолютная величина заряда электрона, \boldsymbol{E} – напряжённость электрического поля, \boldsymbol{B} – индукция магнитного поля. В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль оси z:

Рис. 1: Образец с током в магнитном поле

Здесь $|\langle v_x \rangle|$ — абсолютная величина дрейфовой скорости электронов вдоль оси x, возникающая под действием внешнего электрического поля.

 $F_B = e |\langle v_r \rangle| B$,

Под действием этой силы электроны отклоняются к грани Б, заряжая её отрицательно (для простоты рассматриваем только один тип носителей). На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$, направленной против силы F_B . В установившемся режиме сила F_E уравновешивает силу F_B , и накопление электрических зарядов на боковых гранях пластины прекращается. Из условия равновесия $F_B = F_E$ найдём

$$E_z = |\langle v_x \rangle| B.$$

Поле E_z даёт вклад в общее поле ${\bf E}$, в котором движутся электроны. С полем E_z связана разность потенциалов $U_{\rm AB}$ между гранями A и Б:

$$U_{AB} = -E_z l = -|\langle v_x \rangle|Bl.$$

В этом и состоит эффект Холла. Замечая, что сила тока

$$I = ne |\langle v_x \rangle| la.$$

получаем ЭДС Холла:

$$\mathcal{E}_x = U_{AB} = -\frac{IB}{nea} = -R_x \cdot \frac{IB}{a},\tag{1}$$

Константа R_x называется *постоянной Холла*. Как видно из (1),

$$R_x = \frac{1}{ne}. (2)$$

3 Экспериментальная установка

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 2. В зазоре электромагнита (рис. 2a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора R_1 источника питания электромагнита. Ток питания электромагнита измеряется амперметром A_1 Разъём K_1 позволяет менять направление тока в обмотках электромагнита. Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе (рис. 26). подключается к источнику питания ($\approx 1.5~\mathrm{B}$).

При замыкании ключа K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

Иногда контакты 3 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом — их разности. В этом случае ЭДС Холла \mathcal{E}_x может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре. Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При

фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$\mathcal{E}_x = U_{34} \pm U_0. \tag{3}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathcal{E} можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле

$$\sigma = \frac{IL_{35}}{U_{35}al},\tag{4}$$

где L_{35} – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

4 Ход работы

4.1 Градуировка электромагнита

При помощи тесламетра установим зависимость величины магнитной индукции между полюсами прибора от тока в катушках электромагнита. Результаты измерений занесём в таблицу 1.

$I_{\scriptscriptstyle \mathrm{M}},\mathrm{A}$	B, м T л	$I_{\scriptscriptstyle \mathrm{M}}, A$	B, м T л
0,10	112,1	0,80	801,1
0,20	202,9	0,90	870,5
0,30	318,2	1,00	914,3
0,40	428,1	1,10	951,8
0,50	525,4	1,20	992,3
0,60	632,3	1,33	1031,6
0,70	719,3	1,40	1048,6

Таблица 1: Градуировка электромагнита

По полученным данным построим график зависимости $B = f(I_{\scriptscriptstyle \rm M}),$

3

4.2 Измерение ЭДС Холла

Для разных значений I через образец снимем зависимость ЭДС Холла от тока $I_{\scriptscriptstyle \rm M}$ через электромагнит. Результаты измерений занесём в таблицу 2.

I, мА	0,15		0,30		0,40		
U_0 , мВ	-0,023		-0,056		-0,074		
	$I_{\scriptscriptstyle \mathrm{M}}, A$	U, MB	$I_{\scriptscriptstyle \mathrm{M}}, A$	U, mB	$I_{\scriptscriptstyle \mathrm{M}}, A$	U , м \mathbf{B}	
	0,20	-0,051	0,20	-0,116	0,20	-0,158	
	0,40	-0,081	0,40	-0,174	0,40	-0,232	
	0,60	-0,106	0,60	-0,231	0,60	-0,310	
	0,80	-0,130	0,80	-0,277	0,80	-0,371	
	1,00	-0,146	1,00	-0,310	1,00	-0,416	
	1,20	-0,156	1,20	-0,332	1,20	-0,446	
	1,40	-0,164	1,40	-0,350	1,40	-0,471	
I, MA	0,50		0.	,60	0,70		
U_0 , мВ	-0,	094	-0,	114	-0,134		
	$I_{\scriptscriptstyle \mathrm{M}}, A$	U, mB	$I_{\text{\tiny M}}, A$	U, mB	$I_{\scriptscriptstyle \mathrm{M}}, \mathrm{A}$	U, м B	
	0,20	-0,200	0,20	-0,238	0,20	-0,281	
	0,40	-0,295	0,40	-0,354	0,40	-0,419	
	0,60	-0,381	0,60	-0,465	0,60	-0,543	
	0,80	-0,463	0,80	-0,562	0,80	-0,656	
	1,00	-0,520	1,00	-0,629	1,00	-0,736	
	1,20	-0,560	1,20	-0,677	1,20	-0,792	
	1,40	-0,587	1,40	-0,711	1,40	-0,832	
I, MA	0.	,80	1.	,00	1,00 (flip)		
U_0 , мВ	-0,155		-0,	194	-0,194	-0,194 (flip)	
	$I_{\scriptscriptstyle \mathrm{M}}, A$	U, MB	$I_{\scriptscriptstyle \mathrm{M}}, A$	U, mB	$I_{\scriptscriptstyle \mathrm{M}}, A$	U, мВ	
	0,20	-0,317	0,20	-0,401	0,20	0,004	
	0,40	-0,480	0,40	-0,562	0,40	0,210	
	0,60	-0,625	0,60	-0,779	0,60	0,392	
	0,80	-0,751	0,80	-0,938	0,80	0,549	
	1,00	-0,842	1,00	-1,044	1,00	0,663	
	1,20	-0,906	1,20	-1,135	1,20	0,748	
	1,40	-0,953	1,40	-1,191	1,40	0,797	

Таблица 2: Измерение ЭДС Холла

Последнее измерение было произведено при изменённой ориентации образца. Теперь вычислим значение \mathcal{E}_x по разности показаний вольтметра и сопоставим токи в электромагните с соответствующими значениями индукции магнитного поля. Полученные результаты занесём в таблицу 3.

I, мА	0,15		0,30		0,40	
	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ
	202,9	0,028	202,9	0,060	202,9	0,084
	428,1	0,058	428,1	0,118	428,1	0,158
	632,3	0,083	632,3	0,175	632,3	0,236
	801,1	0,107	801,1	0,221	801,1	0,297
	914,3	0,123	914,3	0,254	914,3	0,342
	992,3	0,133	992,3	0,276	992,3	0,372
	1048,6	0,141	1048,6	0,294	1048,6	0,397

I, мА	0,50		0,60		0,70	
	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ
	202,9	0,106	202,9	0,124	202,9	0,147
	428,1	0,201	428,1	0,240	428,1	0,285
	632,3	0,287	632,3	0,351	632,3	0,409
	801,1	0,369	801,1	0,448	801,1	0,522
	914,3	0,426	914,3	0,515	914,3	0,602
	992,3	0,466	992,3	0,563	992,3	0,658
	1048,6	0,493	1048,6	0,597	1048,6	0,698
I, мА	0,80		1,00		1,00 (flipped)	
	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ	В, мТл	\mathcal{E}_x , мВ
	202,9	0,162	202,9	0,207	202,9	0,198
	428,1	0,325	428,1	0,368	428,1	0,404
	632,3	0,470	632,3	0,585	632,3	0,586
	801,1	0,596	801,1	0,744	801,1	0,743
	914,3	0,687	914,3	0,850	914,3	0,857
	992,3	0,751	992,3	0,941	992,3	0,942
	1048,6	0,798	1048,6	0,997	1048,6	0,991

Таблица 3: Результаты вычислений

По полученным данным построим графики зависимости $\mathcal{E}_x(B)$ для различных значений I.

Аппроксимируем полученные данные зависимостями вида $\mathcal{E}_x = K(I)B + c$ при помощи программы OriginPro2021 методом минимизации хи-квадрат. Результаты аппроксимации заносим в таблицу 4.

I, мА	$K(I) \cdot 10^{-3}, \mathrm{B/T\pi}$	$\sigma_{K(I)} \cdot 10^{-3}, \mathrm{B/T}$ л
0,15	0,134	0,001
0,30	0,277	0,003
0,40	0,371	0,005
0,50	0,460	0,008
0,60	0,561	0,008
0,70	0,652	0,010
0,80	0,750	0,009
1,00	0,950	0,024
1,00	0,939	0,011

Таблица 4: Результаты аппроксимации

По этим данным построим график зависимости K(I) от I.

График 3 — График зависимости K(I)

Аппроксимируем зависимость прямой вида K=pI. В итоге получаем

$$p = (947 \pm 2) \cdot 10^{-3} \frac{B}{T_{\text{II}} \cdot A}.$$
 (5)

Тогда, согласно (1), $R_x=pa$, где a=1 мм – толщина исследуемого образца. После вычислений получаем

$$R_x = (947 \pm 9) \cdot 10^{-6} \frac{B \cdot M}{T_{\pi} \cdot A}$$
 (6)

Отсюда найдём концентрацию носителей заряда согласно (2):

$$n = (659 \pm 7) \cdot 10^{19} \text{ m}^{-3}. \tag{7}$$

4.3 Расчёт удельной проводимости и подвижности

По формуле (4) рассчитаем удельную проводимость нашего образца. По результатам измерений $U_{35}=4{,}02~\mathrm{mB},\,L_{35}=5~\mathrm{mm}$ и $l=4~\mathrm{mm}.$ В итоге получаем

$$\sigma = (311.6 \pm 1.6) (\text{Om} \cdot \text{M})^{-1}$$
(8)

Теперь, зная эти характеристики, можно рассчитать подвижность носителей заряда по следующей формуле:

$$b = \frac{\sigma}{en}. (9)$$

В итоге получаем

$$b = (2952 \pm 31) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$
 (10)

5 Обсуждение результатов и выводы

В ходе выполнения данной лабораторной работы был исследован эффект Холла в полупроводнике, а именно в легированном германии. Была определена постоянная Холла для исследуемого образца $R_x = (947 \pm 9) \cdot 10^{-6} \text{ см}^{-3}/\text{Кл}$. Также была вычислена концентрация носителей заряда $n = (659 \pm 7) \cdot 10^{19} \text{ м}^{-3}$.

По полярности вольтметра, полярности подключения источника тока и направлению тока в катушках была определён тип проводимости. Тип проводимости оказался электронным.

Также была вычислена подвижность электронов в германии $b=(2952\pm31)~{\rm cm^2/B\cdot c}$. Однако полученный результат отличается от табличной подвижности электронов в германии $b_0=3900~{\rm cm^2/B\cdot c}$. Это может свидетельствовать о наличие примесей исследуемом образце.

Также ощутимый вклад в ошибку полученных данных может внести зависимость характеристик исследуемого образца от температуры, которая могла значительно изменяться в силу прохождения через образец электрического тока.