Решение матричных игр с нулевой суммой аналитическим (матричным) и численным (Брауна—Робинсона) методами

Цель работы

Изучить аналитический (метод обратной матрицы) и численный (метод Брауна—Робинсона) подходы [1] к нахождению смешанных стратегий в антагонистической игре двух лиц в нормальной форме.

Сведения из теории

<u>Аналитический метод.</u> Пусть задана $(m \times n)$ -игра Γ двух игроков, A и B, с матрицей стратегий ${\bf C}$.

Пусть $\mathbf{x}=(x_1,x_2,...,x_m)\in S_m$, $\mathbf{y}=(y_1,y_2,...,y_n)\in S_n$ — смешанные стратегии игроков A и B соответственно. Тогда множества индексов $A_{\mathbf{x}}=\{i\ |\ i\in A,\,x_i>0\}$, $B_{\mathbf{y}}=\{j\ |\ j\in B,\,y_j>0\}$, где $A=\{1,2,...,m\}$, $B=\{1,2,...,n\}$, называются спектрами стратегий \mathbf{x} и \mathbf{y} соответственно. Таким образом, в спектр включаются только стратегии, реализуемые с ненулевыми вероятностями.

Чистая стратегия $i \in A \ (j \in B)$ игрока $A \ (B)$ называется *существенной*, если существует оптимальная стратегия $\mathbf{x}^* = (x_1^*, x_2^*, ..., x_m^*) \in S_m \ (\mathbf{y}^* = (y_1^*, y_2^*, ..., y_n^*) \in S_n)$ этого игрока, для которой $x_i^* > 0 \ (y_i^* > 0)$.

Спектр A^* (B^*) любой оптимальной стратегии \mathbf{x}^* (\mathbf{y}^*) может состоять лишь из существенных стратегий.

Стратегия **х** (**y**) игрока A (B) называется *вполне смешанной*, если ее спектр состоит из множества всех чистых стратегий игрока, т.е. $A_{\mathbf{x}} = A \ (B_{\mathbf{y}} = B)$.

Ситуация равновесия в игре $(\mathbf{x}^*, \mathbf{y}^*)$ называется вполне смешанной, если стратегии $\mathbf{x}^*, \mathbf{y}^*$ – вполне смешанные.

Игра Γ называется вполне смешанной, если каждая ситуация равновесия в ней является вполне смешанной.

Теорема 1. Вполне смешанная игра $(m \times n)$ -игра Γ имеет единственную ситуацию равновесия $(\mathbf{x}^*, \mathbf{y}^*)$ и квадратную матрицу (m = n); если цена игры $\upsilon \neq 0$, то матрица \mathbf{C} невырожденная и

$$\mathbf{x}^* = \frac{\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}, \ \mathbf{y}^* = \frac{\mathbf{u}\mathbf{C}^{-1}}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}}, \ \upsilon = \frac{1}{\mathbf{u}\mathbf{C}^{-1}\mathbf{u}^{\mathrm{T}}},$$
(1)

где вектор $\mathbf{u} = (1, 1, ..., 1) \in \mathbb{R}^m$.

<u>Итерационный метод Брауна – Робинсона.</u> В общем случае, для решения произвольной $(m \times n)$ -игры Γ можно применить приближенные методы, простейшим из которых является метод Брауна—Робинсона.

Пусть в первой партии оба игрока произвольно выбирают некоторые чистые стратегии. Тогда в партии с номером k каждый игрок должен выбирать чистую стратегию, максимизирующую его ожидаемый выигрыш относительно наблюдаемой эмпирической смешанной стратегии противника, рассчитанную за предыдущие (k-1) партий.

Пусть в течение первых k шагов первый игрок использовал каждую i-ю стратегию $\tilde{x}_i[k]$ раз, а второй использовал каждую j-ю стратегию $\tilde{y}_j[k]$ раз. Тогда в следующей, (k+1)-й партии игроки будут использовать свои стратегии с номерами i[k] j[k], исходя из оптимизации оценок верхней и нижней цен игры:

$$\overline{\upsilon}[k] = \max_{i \in A} \sum_{j \in B} c_{ij} \tilde{y}_{j}[k] = \sum_{j \in B} c_{i[k+1]j} \tilde{y}_{j}[k],$$

$$\underline{\nu}[k] = \min_{j \in B} \sum_{i \in A} c_{ij} \tilde{x}_i[k] = \sum_{i \in A} c_{ij[k+1]} \tilde{x}_i[k].$$

Усредним эти оценки по k шагам алгоритма:

$$\frac{1}{k}\overline{\upsilon}[k] = \frac{1}{k} \max_{i \in A} \sum_{j \in B} c_{ij} \tilde{y}_j[k] = \frac{1}{k} \sum_{j \in B} c_{i[k+1]j} \tilde{y}_j[k],$$

$$\frac{1}{k}\underline{\nu}[k] = \frac{1}{k}\min_{j\in B}\sum_{i\in A}c_{ij}\tilde{x}_i[k] = \frac{1}{k}\sum_{i\in A}c_{ij[k+1]}\tilde{x}_i[k].$$

Тогда оценки смешанных стратегий игроков A и B определяются соответственно векторами

$$\tilde{\mathbf{x}}[k] = \left(\frac{\tilde{x}_1[k]}{k}, \frac{\tilde{x}_2[k]}{k}, ..., \frac{\tilde{x}_m[k]}{k}\right), \qquad \tilde{\mathbf{y}}[k] = \left(\frac{\tilde{y}_1[k]}{k}, \frac{\tilde{y}_2[k]}{k}, ..., \frac{\tilde{y}_n[k]}{k}\right).$$

Для оценки цены игры имеем

$$\max_{k} \frac{1}{k} \underline{\nu}[k] \le \nu \le \min_{k} \frac{1}{k} \overline{\nu}[k].$$

Величина

$$\varepsilon[k] = \min_{k} \frac{1}{k} \overline{\upsilon}[k] - \max_{k} \frac{1}{k} \underline{\upsilon}[k]$$
 (2)

Может выступать в качестве оценки погрешности итерационного алгоритма. Верна также

Теорема 2.

$$\lim_{k \to \infty} \min_{k} \frac{1}{k} \overline{\upsilon}[k] = \lim_{k \to \infty} \max_{k} \frac{1}{k} \underline{\upsilon}[k] = \upsilon.$$

Пример.

Пусть (3×3) -игра Γ задана матрицей

$$\mathbf{C} = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix}.$$

Расчет по формулам (1) дает следующее аналитическое решение задачи:

$$\mathbf{x}^* = \left(\frac{1}{2}, \frac{1}{2}, 0\right), \ \mathbf{y}^* = \left(\frac{1}{4}, \frac{1}{8}, \frac{5}{8}\right), \ \upsilon = 1, 5.$$

Реализуем теперь алгоритм Брауна–Робинсона. Пусть на первом шаге игроки выбрали стратегии x_1 , y_1 . Учитывая, что игрок А выбрал x_1 , игрок В мог получить один из выигрышей (2,1,3). А если игрок В выбрал y_1 , то возможные выигрыши игрока А были (2,3,1). Следовательно, на втором этапе игрокам следует выбрать стратегии x_2 и y_2 соответственно.

Результаты расчетов для первых 12 шагов приведены в таблице 1.

Таким образом, за 12 шагов получены следующие приближенные смешанные стратегии:

$$\tilde{\mathbf{x}}[12] = \left(\frac{1}{4}, \frac{1}{6}, \frac{7}{12}\right), \quad \tilde{\mathbf{y}}[12] = \left(\frac{1}{12}, \frac{7}{12}, \frac{1}{3}\right),$$

а погрешность согласно (2) равна

$$\varepsilon[12] = \frac{1}{3}.$$

Таблица 1. Первые шаги алгоритма Брауна-Робинсона

),	Выбор А	Выбор В	Выигрыш А			Проигрыш В			1	1
№пп			x_1	x_2	x_3	\mathcal{Y}_1	\mathcal{Y}_2	\mathcal{Y}_3	$\frac{1}{k}\nu[k]$	$\frac{1}{k}\underline{v}[k]$
1	x_1	y_1	2	3	1	2	1	3	3	1
2	x_2	\mathcal{Y}_2	3	3	3	5	1	4	3/2	1/2
3	x_2	y_2	4	3	5	8	1	5	5/3	1/3

4	x_3	\mathcal{Y}_2	5	3	7	9	3	6	7/4	3/4
5	x_3	\mathcal{Y}_2	6	3	9	10	5	7	9/5	5/5
6	x_3	\mathcal{Y}_2	7	3	11	11	7	8	11/6	7/6
7	x_3	\mathcal{Y}_2	8	3	13	12	9	9	13/7	9/7
8	x_3	\mathcal{Y}_3	11	4	14	13	11	10	14/8	10/8
9	x_3	y_3	14	5	15	14	13	11	15/9	11/9
10	x_3	\mathcal{Y}_3	17	6	16	15	15	12	17/10	12/10
11	x_1	y_3	20	7	17	17	16	15	20/11	15/11
12	x_1	\mathcal{Y}_2	21	7	19	19	17	18	21/12	17/12

Варианты работы

В нижеприведенных вариантах (таблица 2) строки соответствуют стратегиям игрока A, столбцы — стратегиям игрока B. Необходимо выполнить N итераций численного метода.

Таблица 2. Матрицы стратегий игры (3×3)

No	Матрица Л		матрица	№	матрица	№	матрица	
	стратегий		стратегий		стратегий		стратегий	
1	(1 11 11)	5	(8 12 10)	9	(19 7 3)	13	(9 10 13)	
	7 5 8		1 6 19		6 9 9		1 18 11	
	$\begin{pmatrix} 16 & 6 & 2 \end{pmatrix}$		(17 11 11)		8 2 11)		$\begin{pmatrix} 17 & 4 & 0 \end{pmatrix}$	
2	(1 17 18)	6	(6 18 6)	10	(0 16 19)	14	(12 9 18)	
	14 6 16		17 8 18		5 19 12		15 22 5	
	(14 14 13)		16 10 10		$\begin{pmatrix} 16 & 12 & 7 \end{pmatrix}$		$\begin{pmatrix} 16 & 3 & 12 \end{pmatrix}$	
3	(6 15 16)	7	(6 18 5)	11	(13 3 14)	15	(18 13 15)	
	15 10 0		17 13 15		15 5 0		0 13 16	
	(10 7 10)		9 13 19		7 19 13		$\begin{pmatrix} 1 & 17 & 9 \end{pmatrix}$	
4	(17 4 9)	8	(12 5 4)	12	(11 10 15)	16	(13 2 4)	
	0 16 9		12 0 12		16 5 13		7 6 10	
	$\begin{pmatrix} 12 & 2 & 19 \end{pmatrix}$		$\begin{bmatrix} 5 & 13 & 6 \end{bmatrix}$		$\begin{pmatrix} 15 & 20 & 10 \end{pmatrix}$		$\left(\begin{array}{ccc} 8 & 14 & 6 \end{array}\right)$	

Требования к отчету

Отчет должен содержать: титульный лист; цель работы; постановку задачи; решение матричной игры аналитически; этапы решения матричной игры в смешанных стратегиях численным методом Брауна—Робинсона за обоих игроков (в виде таблицы и

графиков) до уровня погрешности $\varepsilon \le 0,1$; оценить погрешность между аналитическим и приближенным решениями.

Контрольные вопросы

- 1. Дайте определение смешанной стратегии.
- 2. Что такое существенная матричная игра?
- 3. В каком случае применим аналитический метод нахождения смешанных стратегий?
- 4. Какая основная идея итерационного метода нахождения смешанных стратегий?

Литература

1. Петросян Л.А., Зенкевич Н.А., Шевкопляс Е.В. Теория игр: учебник. - СПб.: БХВ-Петербург, 2012. - 432 с.