Fondamenti dell'Informatica

1 semestre

Prova scritta di esame del 21-2-2018

Prof. Giorgio Gambosi

a.a. 2017-2018

Ad ogni quesito proposto è associato il numero di punti ottenuti in caso di risposta corretta ed esaustiva. Risposte parziali possono portare all'attribuzione di una frazione di tale punteggio. Spiegare in modo chiaro ed esauriente i passaggi effettuati.

Il punteggio finale della prova risulta come somma dei punteggi acquisiti per i vari quesiti.

Quesito 1 (8 punti): Sia dato il linguaggio $L = \{\sigma \in \{a,b,c\}^* \mid \#a(\sigma) = \#b(\sigma) = \#c(\sigma)\}$, dove $\#x(\sigma)$ indica il numero di occorrenze del carattere x nella stringa σ . Il linguaggio L è context free? Dimostrare la risposta data.

Soluzione: Il linguaggio non è context free. Per dimostrarlo, utilizziamo il pumping lemma nel modo seguente. Fissato n>0, consideriamo la stringa $\sigma=a^nb^nc^n$. Qualsiasi decomposizione $\sigma=uvwxy$ con $|vwx|\leq n$ e $|vx|\geq 1$ avrà necessariamente che o che vwx è una stringa con tutti simboli uguali (tutti a, tutti b o tutti c), o che vwx è una stringa comprendente due soli tipi di caratteri (del tipo a^pb^q o b^rc^s). In entrambi i casi c'è almeno un carattere dell'alfabeto $\{a,b,b\}$ che non compare in vwx, e quindi in v e x. Ne deriva che, considerando la stringa uv^2wx^2y il numero di occorrenze aumentano per almeno uno e al più due caratteri dell'alfabeto, per cui uv^2wx^2y non presenta lo stesso numero di occorrenze di a,b,c.

Quesito 2 (6 punti): Definire un ASFD minimo che riconosca il linguaggio $L \subset \{a,b\}^*$ comprendente tutte le stringhe che non contengono sequenze di più di tre a al loro interno.

Soluzione: Definiamo un ASFND che accetta \overline{L} .

e da questo un ASFD che riconosce lo stesso linguaggio

L'ASFD che riconosce L deriva immediatamente

Quesito 3 (5 punti): Si definisca una grammatica context free che generi il linguaggio $L = \{a^r b^s c^t a^n c^n | s = r + t, r, t, n \ge 0\}.$

Soluzione: Una possibile soluzione è la grammatica

$$\begin{array}{ccc} S & \rightarrow & ABC \\ A & \rightarrow & aAb \mid \varepsilon \\ B & \rightarrow & bBc \mid \varepsilon \\ C & \rightarrow & aCc \mid \varepsilon \end{array}$$

Quesito 4 (7 punti): Si definisca un automa a pila (eventualmente non deterministico) che accetti il linguaggio $L=\{a^rb^sc^ta^nc^n|s=r+t,r,t,n\geq 0\}.$

Soluzione: L'automa si può derivare dalla grammatica dell'esercizio precedente, portandola prima in forma ridotta

quindi in CNF

e in GNF (i non terminali T, U, V, W risultano inutili nella grammatica in GNF in quanto non raggiungibili)

$$\begin{array}{lll} S & \to & aAYBC \mid aYBC \mid bBZC \mid bZC \mid aAYB \mid aYB \mid aAYC \mid aYC \mid \varepsilon \\ A & \to & aAY \mid aY \\ B & \to & bBZ \mid bZ \\ X & \to & a \\ Y & \to & b \\ Z & \to & c \end{array}$$

La funzione dei transizione del PDA non deterministico risulta allora:

$$\begin{split} &\delta(q_0,\varepsilon,S)\{(q_0,\varepsilon)\}\\ &\delta(q_0,a,S) = \{(q_0,AYBC),(q_0,YBC),(q_0,AYB),(q_0,YB),(q_0,AYC),(q_0,YC)\}\\ &\delta(q_0,b,S) = \{(q_0,BZC),(q_0,ZC)\}\\ &\delta(q_0,a,A) = \{(q_0,AY),(q_0,Y)\}\\ &\delta(q_0,b,B) = \{(q_0,BZ),(q_0,Z)\}\\ &\delta(q_0,a,C) = \{(q_0,CZ),(q_0,Z)\}\\ &\delta(q_0,a,X) = \{(q_0,\varepsilon)\}\\ &\delta(q_0,b,Y) = \{(q_0,\varepsilon)\}\\ &\delta(q_0,c,Z) = \{(q_0,\varepsilon)\} \end{split}$$

Quesito 5 (7 punti): Si definisca una grammatica di tipo 3 che generi il seguente linguaggio

$$L = \{a^n b^m c^k | n + m + k \text{ divisibile per } 3\}$$

Soluzione: Definiamo un ASFD che riconosce il linguaggio

da cui deriva immediatamente la grammatica di tipo $3\,$

 $A_0 \rightarrow aA_1 \mid bA_3 \mid cA_8$

 $A_1 \rightarrow aA_2 \mid bA_4 \mid cA_6$

 $A_2 \quad \rightarrow \quad aA_0 \mid bA_5 \mid cA_7 \mid a$

 $A_3 \rightarrow bA_4 \mid cA_6$

 $A_4 \quad \rightarrow \quad bA_5 \mid cA_7 \mid b \mid c$

 $A_5 \rightarrow bA_3 \mid cA_8$

 $A_6 \rightarrow cA_7 \mid c$

 $A_7 \rightarrow cA_8$

 $A_8 \rightarrow cA_6$