Continuity (Lecture 13 & 14)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Continuous functions

Definition

A real valued function f(x) is said to be continuous at x = c if

- (i) $c \in domain(f)$,
- (ii) $\lim_{x \to c} f(x)$ exists,
- (iii) the limit in (ii) is equal to f(c).

Definition

Let $D(\neq \emptyset) \subseteq \mathbb{R}$ and let $f: D \to \mathbb{R}$. We say that f is continuous at $c \in D$ if for each $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(c)| < \epsilon$ for all $x \in D$ satisfying $|x - c| < \delta$.

We say that $f: D \to \mathbb{R}$ is continuous if f is continuous at each $c \in D$.

Example

Show that
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is continuous at 0.

Solution: Let $\epsilon > 0$. Then $|f(x) - f(0)| \le |x^2|$. So it is enough to choose $\delta = \sqrt{\epsilon}$.

Continuous functions

Theorem (Sequential criteria of continuity)

A function f is continuous at c if and only if for every sequence $x_n \to c$, we must have $f(x_n) \to f(c)$ as $n \to \infty$.

Example

Show that
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is continuous at 0.

Solution: We note that $|f(x)| \le |x^2|$. Therefore, $f(x_n) \to f(0)$ whenever $x_n \to 0$. This proves that f is continuous at x = 0.

Example

Show that
$$f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is not continuous at 0.

Solution: Choose $\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$. Then $\lim_{n \to \infty} x_n = 0$ and $f(x_n) = \frac{1}{x_n} \to \infty$.

Continuous functions

Theorem

Suppose f and g are continuous at c. Then

- $f \pm g$ is also continuous at c.
- \bigcirc fg is continuous at c.
- |f| is also continuous at c and $\lim_{x\to c} |f(x)| = |f(c)|$.

Result

- (a) Composition of continuous functions is also continuous i.e., if f is continuous at c and g is continuous at f(c) then g(f(x)) is continuous at c.
- (b) If f(x) is continuous at c, then |f| is also continuous at c.
- (c) If f, g are continuous at c, then $\max(f,g)$ and $\min(f,g)$ are continuous at c. Also $\lim_{x\to c} \max(f,g) = \max\{f(c),g(c)\}$ and $\lim_{x\to c} \min(f,g) = \min\{f(c),g(c)\}$.

Proof: (c) Proof follows from the relation

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g| \qquad \min(f,g) = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|.$$

Discontinuous Function

• A function which is not continuous is called discontinuous function.

Types of discontinuities:

Removable discontinuity

f(x) is defined every where in an interval containing a except at x = a and limit exists at x = a OR f(x) is defined also at x = a and limit is NOT equal to function value at x = a. Then we say that f(x) has removable discontinuity at x = a. These functions can be extended as continuous functions by defining the value of f to be the limit value at x = a.

Example

$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
. Here limit as $x \to 0$ is 1. But $f(0)$ is defined to be 0.

Jump discontinuity

The left and right limits of f(x) exists but not equal. This type of discontinuities are also called discontinuities of first kind.

Discontinuous Function

Example

$$f(x) = \begin{cases} 1 & x \le 0 \\ -1 & x > 0 \end{cases}$$
. Easy to see that left and right limits at 0 are different.

Infinite discontinuity

Left or right limit of f(x) is ∞ or $-\infty$.

Example

$$f(x) = \frac{1}{x}$$
 has infinite discontinuity at $x = 0$.

Discontinuity of second kind

If either $\lim_{x\to c^-} f(x)$ or $\lim_{x\to c^+} f(x)$ does not exist, then c is called discontinuity of second kind.

Discontinuous Function

Example

Consider the function $f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \notin \mathbb{Q} \end{cases}$ does not have left or right limit at any point c.

Indeed, $f(c + \frac{1}{n})$ and $f(c + \frac{\pi}{n})$ converges to different values.

Theorem

Continuous functions on closed, bounded interval is bounded.

Proof: Let f(x) be continuous on [a,b] and let $\{x_n\} \subset [a,b]$ be a sequence such that $|f(x_n)| > n$. Then $\{x_n\}$ is a bounded sequence and hence there exists a subsequence $\{x_{n_k}\}$ which converges to c. Then $f(x_{n_k}) \to f(c)$, a contradiction to $|f(x_{n_k})| > n_k$.

Properties of continuous functions

Theorem

Let f(x) be a continuous function on closed, bounded interval [a, b]. Then maximum and minimum of functions are achieved in [a, b].

Proof: Let $\{x_n\} \subset [a,b]$ be a sequence such that $f(x_n) \to \max f$. Then $\{x_n\}$ is bounded and hence by Bolzano-Weierstrass theorem, there exists a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to c$ for some c. $a \le x_n \le b$ implies $c \in [a,b]$. Since f is continuous, $f(x_{n_k}) \to f(c)$. Hence $f(c) = \max f$. The attainment of minimum can be proved by noting that -f is also continuous and $\min f = -\max(-f)$.

Remark

Closed and boundedness of the interval is important in the above theorem. Consider the examples (i) $f(x) = \frac{1}{x}$ on (0,1) (ii) f(x) = x on \mathbb{R} .

Properties of continuous functions

Theorem

Let f(x) be a continuous function on [a,b] and let f(c)>0 for some $c\in(a,b)$, Then there exists $\delta>0$ such that f(x)>0 in $(c-\delta,c+\delta)$.

Proof: Let $\epsilon = \frac{1}{2}f(c) > 0$. Since f(x) is continuous at c, there exists $\delta > 0$ such that

$$|x-c| < \delta \implies |f(x)-f(c)| < \frac{1}{2}f(c)$$

i.e.,
$$-\frac{1}{2}f(c) < f(x) - f(c) < \frac{1}{2}f(c)$$
. Hence $f(x) > \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$.

Theorem

Suppose a continuous functions f(x) satisfies $\int_a^b f(x)\phi(x)dx = 0$ for all continuous functions $\phi(x)$ on [a,b]. Then $f(x) \equiv 0$ on [a,b].

Proof: Suppose f(c)>0. Then by above theorem f(x)>0 in $(c-\delta,c+\delta)$. Choose $\phi(x)$ so that $\phi(x)>0$ in $(c-\delta/2,c+\delta/2)$ and is 0 otherwise. Then $\int_a^b f(x)\phi(x)>0$, which is a contradiction.

Properties of continuous functions

Theorem

Let f(x) be a continuous function on \mathbb{R} and let f(a)f(b) < 0 for some a, b. Then there exits $c \in (a,b)$ such that f(c) = 0.

Proof: Assume that f(a) < 0 < f(b). Let $S = \{x \in [a,b] : f(x) < 0\}$. Then $[a,a+\delta) \subset S$ for some $\delta > 0$ and S is bounded. Let $c = \sup S$. We claim that f(c) = 0. Take $x_n = c + \frac{1}{n}$, then $x_n \notin S$, $x_n \to c$. Therefore, $f(c) = \lim f(x_n) \ge 0$. On the other hand, taking $y_n = c - \frac{1}{n}$, we see that $y_n \in S$ for n large and $y_n \to c$, $f(c) = \lim f(y_n) \le 0$. Hence f(c) = 0.

Intermediate Value Theorem

Let f(x) be a continuous function on [a,b] and let f(a) < y < f(b). Then there exists $c \in (a,b)$ such that f(c) = y.

Proof: Consider g(x) = y - f(x) and use above Theorem.

Remark

From the IVT, we can conclude that A continuous function assumes all values between its maximum and minimum.

Fixed point theorem

Let f(x) be a continuous function from [0, 1] into [0, 1]. Then show that there is a point $c \in [0, 1]$ such that f(c) = c.

Proof: Define the function g(x) = f(x) - x. Then $g(0) \ge 0$ and $g(1) \le 0$. Now apply Intermediate Value Theorem, to get the result.

Example

Show that $f(x) = x^2 - 2$ has at least one root in (1, 2).

Definition (Uniformly Continuous Functions)

A function f(x) is said to be uniformly continuous on a set S, if for given $\epsilon > 0$, there exists $\delta > 0$ such that

$$x, y \in S, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Here δ depends only on ϵ , not on x or y.

Uniformly continuity

Theorem

If f(x) is uniformly continuous function \iff for ANY two sequences $\{x_n\}$, $\{y_n\}$ such that $|x_n - y_n| \to 0$, we have $|f(x_n) - f(y_n)| \to 0$ as $n \to \infty$.

Example

(a) $f(x) = x^2$ is uniformly continuous on bounded interval [a, b].

Solution: Note that $|x^2 - y^2| \le |x + y| |x - y| \le 2b|x - y|$. So one can choose $\delta < \frac{\epsilon}{2b}$.

(b) $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1).

Solution: Take $x_n = \frac{1}{n+1}$, $y_n = \frac{1}{n}$, then for n large $|x_n - y_n| \to 0$ but $|f(x_n) - f(y_n)| = 1$.

(c) $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

Solution: Take $x_n = n + \frac{1}{n}$ and $y_n = n$. Then $|x_n - y_n| = \frac{1}{n} \to 0$, but $|f(x_n) - f(y_n)| = 2 + \frac{1}{2^2} > 2$.

Remarks

- (a) If f, g are uniformly continuous, then $f \pm g$ is also uniformly continuous.
- (b) If f, g are uniformly continuous, then fg need not be uniformly continuous. This can be seen by noting that f(x) = x is uniformly continuous on \mathbb{R} but x^2 is not uniformly continuous on \mathbb{R} .

Uniformly continuity

Theorem

A continuous function f(x) on a closed, bounded interval [a,b] is uniformly continuous.

Proof: Suppose not. Then there exists $\epsilon > 0$ and sequences $\{x_n\}$ and $\{y_n\}$ in [a,b] such that $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| > \epsilon$. But then by Bolzano-Weierstrass theorem, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that converges to c. Also $y_{n_k} \to c$. Now since f is continuous, we have $f(c) = \lim f(x_{n_k}) = \lim f(y_{n_k})$. Hence $|f(x_{n_k}) - f(y_{n_k})| \to 0$, a contradiction.

Result

Suppose f(x) has only removable discontinuities in [a,b]. Then \tilde{f} , the extension of f, is uniformly continuous.

Example

Show that $f(x) = \frac{\sin x}{x}$ is uniformly continuous on [0, 1].

Solution: f has a removable discontinuity at x = 0. We define $\tilde{f} : [0, 1] \to \mathbb{R}$ as

$$\tilde{f}(x) = \begin{cases} \frac{\sin x}{x} & \text{for } x \neq 0\\ 1 & \text{for } x = 0. \end{cases}$$

Uniformly continuity

Theorem

Let f be a uniformly continuous function and let $\{x_n\}$ be a cauchy sequence. Then $\{f(x_n)\}$ is also a Cauchy sequence.

Proof: Let $\epsilon > 0$. As f is uniformly continuous, there exists $\delta > 0$ such that

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Since $\{x_n\}$ is a Cauchy sequence, there exists N such that

$$m, n > N \implies |x_n - x_m| < \delta.$$

Therefore $|f(x_n) - f(x_m)| < \epsilon$.

Example

 $f(x) = \frac{1}{x^2}$ is not uniformly continuous on (0, 1).

Solution: The sequence $x_n = \frac{1}{n}$ is Cauchy but $f(x_n) = n^2$ is not. Hence f cannot be uniformly continuous.

