Instituto Superior Técnico - 1^o Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

10^a Ficha de exercícios para as aulas práticas: 4 - 15 Dezembro de 2006

1) Calcule os seguintes integrais:

a)
$$\int_0^1 e^{x+e^x} dx$$
 b) $\int_0^{\pi/3} \frac{\sin 2x}{1+\sin^4 x} dx$ c) $\int_0^{\pi/6} \operatorname{tg} x \sec^2 x dx$ d) $\int_e^{e^2} x \log x dx$

e)
$$\int_0^{\pi} \sin x \sin x dx$$
 f) $\int_1^2 \frac{1}{x\sqrt{x+1}} dx$ g) $\int_1^2 \frac{1}{x^3+x} dx$ h) $\int_2^3 \frac{x}{x^2-25} dx$

2) Seja φ uma função integrável em [0,1] e $\phi(x) = \int_a^x \varphi(t)dt$, com $a \in [0,1]$. Justifique que ϕ é uma função integrável em [0,1] e mostre que existe $b \in [0,1]$ tal que

$$\int_0^1 \phi(t)dt = \int_a^b \varphi(t)dt.$$

3) Sendo f uma função contínua em \mathbb{R} e diferenciável no ponto 0,

$$g(x) = \int_0^x f(t)dt,$$

 $\forall x \in \mathbb{R} \text{ e } h = g \circ g$, calcule h''(0) expresso em f(0) e f'(0).

4) Prove que se f é diferenciável em $\mathbb R$ e verifica a condição:

$$\int_0^x f(u)du = xf(x),$$

 $\forall x \in \mathbb{R}$, então f é constante.

5) Verifique que se tem:

$$e \le \int_1^e e^{x^2} \log x dx \le e^{e^2}.$$

6) Seja $f:[0,a]\longrightarrow \mathbb{R}, (a>0)$, diferenciável tal que f(0)=0. Seja g a função inversa de f e

$$F(x) = \int_0^x f(t)dt + \int_0^{f(x)} g(t)dt - xf(x)$$

1

para $x \in [0, a]$. Verifique que F(x) = 0 para todo o $x \in [0, a]$.

7) Considere a função $\varphi:]0, +\infty[\longrightarrow \mathbb{R},$ definida por

$$\varphi(x) = \int_1^x \frac{t}{(1+t^2)^2} \log t dt.$$

- a) Calcule $\varphi(2)$.
- **b)** Justifique que φ é diferenciável em \mathbb{R}^+ e calcule $\varphi'(x)$, para x>0.
- c) Estude φ quanto à monotonia e verifique que há um e um só ponto c > 0 tal que $\varphi(c) = 0$.
- 8) Seja $F: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por

$$F(x) = \int_0^{x^2} e^{-t^2} dt.$$

- a) Verifique que $F(x) \leq x^2$, para todo o $x \in \mathbb{R}$.
- b) Justifique que F é diferenciável em \mathbb{R} e calcule F'(x).
- 9) Seja $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ a função definida por

$$f(x) = \int_0^{\log x} xe^{t^2} dt - x.$$

Verifique que f tem um mínimo em 1.

10) Seja f uma função contínua em \mathbb{R} e $g:\mathbb{R}\longrightarrow\mathbb{R}$ a função definida por

$$g(x) = \frac{1}{x} \int_0^x f(t)dt, \text{ se } x \neq 0,$$

$$g(0) = f(0).$$

- a) Verifique que g é contínua em \mathbb{R} .
- b) Mostre que g é uma função constante se e só se f o fôr.
- 11) Sendo $f(x) = \int_{x^2}^{K \log x} e^{-t^2} dt$, determine K sabendo que f'(1) = 0.
- 12) Sejam $f:[0,2]\longrightarrow \mathbb{R}$ e $g:[-1,1]\longrightarrow \mathbb{R}$ funções contínuas. Verifique que:

a)
$$\int_0^2 (x-1)f[(x-1)^2]dx = 0$$
 b) $\int_0^{\pi} g(\sin x)\cos x dx = 0$.

13) Seja $f:[a,b]\longrightarrow \mathbb{R}$ integrável tal que f(a+b-x)=f(x) para todo o $x\in [a,b].$ Verifique que:

$$\int_{a}^{b} x f(x) dx = \frac{a+b}{2} \int_{a}^{b} f(x) dx.$$

14) Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ periódica de período T (com $T \in \mathbb{R}^+$), isto é,

$$f(x) = f(x+T), \quad \forall x \in \mathbb{R}.$$

- a) Verifique que $\int_0^a f(x)dx = \int_T^{a+T} f(x)dx$, com $a \in \mathbb{R}$.
- **b)** Mostre que, se f é impar, $\int_0^T f(x)dx = 0$.
- 15) Seja f uma função contínua em \mathbb{R} e $a \in \mathbb{R}$. Verifique que:
- a) Se f é par então $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$. b) Se f é impar então $\int_{-a}^{a} f(x)dx = 0$.
- **16)** Seja $F(x) = \int_{1}^{x} \frac{e^{\frac{t^{2}+1}{t}}}{t} dt$, com x > 0. Verifique que F(1/x) = -F(x).
- 17) Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função com derivada integrável e seja m=(a+b)/2. Verifique que

$$\frac{f(a) + f(b)}{2} = \frac{1}{b - a} \int_{a}^{b} [f(x) + (x - m)f'(x)] dx.$$

18) Sejam $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ duas funções contínuas tais que, para todo $x\in\mathbb{R},$

$$\int_{-x}^{x} f(t)dt = 2 \int_{0}^{x} f(t)dt \quad \text{e} \quad \int_{-x}^{x} g(t)dt = 0.$$

Mostre que f é uma função par e g é uma função ímpar.

19) Verifique que, para qualquer x > 0,

$$\int_{1}^{x} \frac{1}{1+t^2} dt = \int_{1/x}^{1} \frac{1}{1+t^2} dt.$$

20) Seja f a função definida em \mathbb{R} por

$$f(x) = \frac{1}{2} \int_0^x (x - t)^2 g(t) dt.$$

Verifique que $f'''(x) = g(x), \forall x \in \mathbb{R}$.

21) Mostre que, sendo f uma função contínua em \mathbb{R} , tem-se:

$$\int_{c-b}^{c-a} f(c-x)dx = \int_a^b f(x)dx,$$

 $com \ a, b, c \in \mathbb{R}.$

22) Mostre que, sendo f uma função contínua em \mathbb{R} , tem-se:

$$\int_{a}^{b} f(x)dx = c \int_{\frac{a}{c}}^{\frac{b}{c}} f(cx)dx,$$

com $a, b, c \in \mathbb{R}$ e $c \neq 0$.

23) Justifique a diferenciabilidade de cada uma das seguintes funções e calcule as respectivas derivadas.

a)
$$\int_{x}^{2\pi} \sin 2t \cos t^{2} dt$$
 b) $\int_{x}^{x^{2}} \log(1+t^{2}) dt$ c) $\int_{x}^{3} x^{2} e^{\sin t} dt$

b)
$$\int_{x}^{x^2} \log(1+t^2)dt$$

$$\mathbf{c}) \int_{x}^{3} x^{2} e^{\sin t} dt$$

$$\mathbf{d)} \int_{\cos x}^{x^3+1} e^{-t^2+x} dt$$

$$e) \int_{1}^{x} \frac{\arctan x}{1+t^2} dt$$

e)
$$\int_1^x \frac{\arctan x}{1+t^2} dt$$
 f)
$$\int_{2x^2}^{x^4} x e^{t^2} \cot t \ dt$$

24) Sejam $u \in v$ duas funções contínuas em \mathbb{R} tais que, para cada $x \in \mathbb{R}$,

$$\int_{a}^{x} u(t)dt = \int_{b}^{x} v(t)dt,$$

onde $a, b \in \mathbb{R}$. Verifique que u = v e $\int_{-b}^{b} u(x)dx = 0$.

25) Sendo f uma função contínua em \mathbb{R} , verifique que: $\lim_{x\to +\infty} \left(1+\int_0^{1/x} f(t)dt\right)^x=e^{f(0)}$.

26) Calcule, em função de x, os integrais:

a)
$$\int_0^x tdt$$

a)
$$\int_0^x t dt$$
 b) $\int_x^{x+1} (3 \sin t + 2t^5) dt$.

27) Verifique que se tem: $\int_0^1 x^m (1-x)^n dx = \int_0^1 x^n (1-x)^m dx, \text{ para quaisquer } m, n \text{ inteiros}$ positivos.

28) Verifique que se tem: $\int_{t}^{x} \frac{e^{t}}{t} dt = \int_{-\infty}^{e^{x}} \frac{1}{\log s} ds, \text{ para qualquer } x > 0.$

29) Calcule a área dos seguintes subconjuntos de \mathbb{R}^2 :

a) $\{(x,y) \in \mathbb{R}^2 : y < 5, y > -5x + 5 \text{ e } y > \log x\},\$

b) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 10 \text{ e } |x| + |y| > 4\},$ **c)** $\{(x,y) \in \mathbb{R}^2 : x^2 < y < |x|\},$

d) $\{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge x, y \ge x^3 \text{ e } y \le 4x\}.$

30) Calcule a área da região do plano limitada pelas linhas de equação:

a) $y = 0, y = \frac{\log x}{\sqrt{x}}, x = e$

b)
$$x = |y|, y = \frac{3}{x^2 + 2}, y = \frac{x}{2} - \frac{1}{2}$$

c) $y = 5 - (2x+1)^2$, $y = \frac{4}{(2x+1)^2}$, com $x \in [0, 10]$

- **31)** Calcule o comprimento
- a) do arco de parábola $x = y^2, x \le 1$
- **b)** da curva $y = \operatorname{ch} x$, $-1 \le x \le 2$
- c) da curva $y = \log(\cos x), \ 0 \le x \le \frac{\pi}{3}$.
- 32) Determine o volume da parte do espaço gerada por uma rotação completa (de um ângulo de 2π) em torno do eixo dos xx da região do plano limitada pelas linhas de equação:

 - **a)** $y = x, y = \frac{x}{4}, y = x^3$ **b)** $y = 0, y = \frac{x}{e}, y = \log x$ **c)** $y = \frac{1}{x^2 + 1}, y = \frac{1}{2}$
- - **d)** $y = \frac{1}{x}, y = 0, x = 0, x = 1$ **e)** $y = x^2, y^2 = x$ **f)** $x = -y^2 + 3, y^2 = x$;

- **g)** $y = 3^x$, $y = 1 x^2$, x = 1, x = 0.
- 33) Calcule, em intervalos apropriados, a soma de cada uma das seguintes séries de funções:

- a) $\sum_{n=0}^{\infty} \frac{x^2}{\frac{n}{2}+1}$ b) $\sum_{n=0}^{\infty} \frac{1}{n+1} e^{-nx}$ c) $\sum_{n=0}^{\infty} \frac{n+2}{2^{n+1}} x^n$ d) $\sum_{n=0}^{\infty} (-1)^{n+1} (n+1) x^n$
- e) $\sum_{n=0}^{\infty} (n+1)x^{n-1}$ f) $\sum_{n=0}^{\infty} ne^{-\frac{nx}{2}}$ g) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$ h) $\sum_{n=0}^{\infty} nx^{2n}$

- 34) Desenvolva em série de potências, as funções que se seguem em relação aos pontos indicados e determine em cada caso o maior intervalo aberto onde o respectivo desenvolvimento é válido.
- a) $\log(1+x)$, $x_0=0$ b) $\frac{1}{x-2}$, $x_0=0$ c) $\frac{1}{x^2-3x+2}$, $x_0=0$ d) $\int_{-x}^{x} e^{-t^2} dt$, $x_0=0$

- e) $x^3 + \sqrt{x}$, $x_0 = 1$ f) $\frac{\cos x 1}{x^2}$, $x_0 = 0$ g) $(x+1) \arctan(x^2 + 2x + 1)$, $x_0 = -1$

- **h)** $\frac{4}{3x}$, $x_0 = 2$ **i)** $\frac{x}{2x+1}$, $x_0 = 0$ **j)** $\frac{3x}{2x-1}$, $x_0 = 1$ **k)** $x^2(1+x)^{3/2}$, $x_0 = 0$

- 1) $\sqrt{1-2x}$, $x_0=0$ m) $\sin^2 x$, $x_0=0$ n) $\log(1+x)$, $x_0=1$ o) $\frac{1}{(1+x)^2}$, $x_0=0$

- **p)** $\frac{1}{(2-x)^2}$, $x_0 = 1$ **q)** $\frac{1}{x(x-2)}$, $x_0 = 0$ **r)** $\frac{1}{(1-x)^3}$, $x_0 = 0$ **s)** e^{1-x} , $x_0 = 0$

- **t**) $\log \sqrt{\frac{1-x}{1+x}}$, $x_0 = 0$ **u**) $\frac{e^x 1}{e^x}$, $x_0 = -1$ **v**) $\frac{x}{x+1}$, $x_0 = 1$ **w**) $\frac{x-1}{2x+1-x^2}$, $x_0 = 1$

- **x**) $\log x$, $x_0 = \frac{1}{2}$ **y**) $x^2 \log(3 + 2x^2)$, $x_0 = 0$ **z**) $\frac{1}{1 + x^2} + \arctan 2x$, $x_0 = 0$