ASSIGNMENT-3

Date 11 October 2022 Name : E.P.SNEHA Project Name : A NOVEL METHOD FOR HANDWRITTEN **DIGIT RECOGNITION SYSTEM** Maximum Marks : 2 Marks #!/usr/bin/env python # coding: utf-8 # In[88]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

import scipy

from scipy import stats

from sklearn.preprocessing import OneHotEncoder
In[11]:
dataset = pd.read_csv('C:\\Users\\Devi\\Downloads\\Churn_Modelling (1) (1).csv')
In[12]:
dataset
In[13]:
dataset.head()
In[14]:
dataset.tail()
Univariate Analysis
In[6]:

```
df_2=dataset.loc[dataset['NumOfProducts']==2]
df_3=dataset.loc[dataset['NumOfProducts']==3]
# In[7]:
plt.plot(df_1['Age'],np.zeros_like(df_1['Age']))
plt.plot(df_2['Age'],np.zeros_like(df_2['Age']))
plt.plot(df_3['Age'],np.zeros_like(df_3['Age']))
plt.xlabel('Age')
plt.show()
## Bivariate Analysis
# In[8]:
sns.FacetGrid(dataset,hue="NumOfProducts",size=5).map(plt.scatter,"Age","Geography").add_legen
d();
## Multivariate Analysis
# In[9]:
sns.pairplot(dataset,hue="NumOfProducts",size=5)
```

df_1=dataset.loc[dataset['NumOfProducts']==1]

Descriptive Statistics
In[16]:
dataset.sum()
In[17]:
dataset.sum(axis=1)
In[18]:
dataset.median()
In[19]:
dataset.mean()
In[20]:

dataset.max()	
# In[21]:	
dataset.std()	
# In[22]:	
dataset.var()	
# In[24]:	
Age=dataset.Age	
Age.value_counts()	
# In[25]:	
dataset.describe()	
## Handle Null Values	
# In[27]:	

dataset.shape	
# In[28]:	
dataset.isnull()	
# In[31]:	
dataset.isnull().sum()	
# In[32]:	
dataset.isnull().sum().sum()	
##Outlier	
# In[58]:	
sns.displot(dataset['Gender'])	


```
## categorial Encoding
# In[70]:
data_tips=pd.get_dummies(dataset)
data_tips
# In[75]:
one_encde=OneHotEncoder(sparse=False)
encoded\_arr = one\_encde.fit\_transform(dataset[['CustomerId','CreditScore','Age','Tenure']])
encoded_arr
## split the data into dependent and independent
# In[85]:
x=dataset.iloc[:,1:4]
y=dataset.iloc[:,4]
Х
У
# In[]:
```

In[]:

In[]: