Speedup Techniques for Hyperparameter Optimization

Overview of Multi-Fidelity Optimization

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Motivating Example

- One possible cheap approximation of an expensive function: use a data subset
 - ▶ Many cheap evaluations on small subsets
 - ▶ Few expensive evaluations on the full data

Motivating Example

- One possible cheap approximation of an expensive function: use a data subset
 - ▶ Many cheap evaluations on small subsets
 - ▶ Few expensive evaluations on the full data

ullet E.g.: Support Vector Machines (SVM) on MNIST dataset (hyperparameters: C, γ)

Motivating Example

- One possible cheap approximation of an expensive function: use a data subset
 - Many cheap evaluations on small subsets
 - Few expensive evaluations on the full data

ullet E.g.: Support Vector Machines (SVM) on MNIST dataset (hyperparameters: C, γ)

 \rightarrow up to 1000x speedups over blackbox optimization on full data [Klein et al, AISTATS 2017]

Motivating Example 2: Shorter Runs of Anytime Algorithms

• Performance with shorter runs of an anytime algorithm (such as SGD):

Exploit cheap approximations of an expensive blackbox function ightarrow afford more configurations

 Idea: eliminate poor configurations early, allocate more resources to promising ones.

Exploit cheap approximations of an expensive blackbox function ightarrow afford more configurations

- Idea: eliminate poor configurations early, allocate more resources to promising ones.
- Possible Resources:
 - Data subset size
 - ► Runtime / # epochs / # iterations

Exploit cheap approximations of an expensive blackbox function \rightarrow afford more configurations

- Idea: eliminate poor configurations early, allocate more resources to promising ones.
- Possible Resources:
 - Data subset size
 - ► Runtime / # epochs / # iterations
 - Downsampled size of images in object recognition
 - Depth / width of neural networks

Exploit cheap approximations of an expensive blackbox function ightarrow afford more configurations

- Idea: eliminate poor configurations early, allocate more resources to promising ones.
- Possible Resources:
 - Data subset size
 - ▶ Runtime / # epochs / # iterations
 - Downsampled size of images in object recognition
 - Depth / width of neural networks
 - Number of trees
 - Number of features
 - Number of cross validation folds

Exploit cheap approximations of an expensive blackbox function ightarrow afford more configurations

- Idea: eliminate poor configurations early, allocate more resources to promising ones.
- Possible Resources:
 - ▶ Data subset size
 - ▶ Runtime / # epochs / # iterations
 - Downsampled size of images in object recognition
 - Depth / width of neural networks
 - Number of trees
 - Number of features
 - Number of cross validation folds
 - ► General concept, applicable even in fields outside ML, e.g., fluid simulation:
 - ★ Number of particles
 - ★ Time scale of simulation

General Remarks on Multi-Fidelity Optimization

• Often, we have a choice which resources we use as budget

General Remarks on Multi-Fidelity Optimization

- Often, we have a choice which resources we use as budget
- For multi-fidelity optimization to be helpful, performance with low budgets should be informative about performance with high budgets

General Remarks on Multi-Fidelity Optimization

- Often, we have a choice which resources we use as budget
- For multi-fidelity optimization to be helpful, performance with low budgets should be informative about performance with high budgets
- In the simplest case: good with low resources \leftrightarrow good with high resources.
 - ▶ In practice, this is of course not always true

How Useful is the Cheap Approximation? The Rank Correlation

Given:

- ullet A set of configurations $oldsymbol{\Lambda} = \{oldsymbol{\lambda}_1,...,oldsymbol{\lambda}_n\}$
- ullet The performances $f(oldsymbol{\lambda}_1),...,f(oldsymbol{\lambda}_n)$ on the expensive black box
- ullet The performances $g(oldsymbol{\lambda}_1),...,g(oldsymbol{\lambda}_n)$ on a cheap approximation of the black box

How Useful is the Cheap Approximation? The Rank Correlation

Given:

- A set of configurations $\mathbf{\Lambda} = \{ \boldsymbol{\lambda}_1, ..., \boldsymbol{\lambda}_n \}$
- ullet The performances $f(oldsymbol{\lambda}_1),...,f(oldsymbol{\lambda}_n)$ on the expensive black box
- ullet The performances $g(oldsymbol{\lambda}_1),...,g(oldsymbol{\lambda}_n)$ on a cheap approximation of the black box

We compute the Spearman rank correlation between $[f(\lambda_1),...,f(\lambda_n)]$ and $[g(\lambda_1),...,g(\lambda_n)]$

- ullet If this is high (in the extreme: 1), the relative ranking of the configurations is the same on f and g
 - lacktriangle In that case, we can optimize cheaply on g and also obtain an optimum for f
- ullet If it is low (pprox 0), optimizing g does not tell us anything about f

How Useful is the Cheap Approximation? The Rank Correlation

Given:

- A set of configurations $\mathbf{\Lambda} = \{ \boldsymbol{\lambda}_1, ..., \boldsymbol{\lambda}_n \}$
- ullet The performances $f(oldsymbol{\lambda}_1),...,f(oldsymbol{\lambda}_n)$ on the expensive black box
- ullet The performances $g(oldsymbol{\lambda}_1),...,g(oldsymbol{\lambda}_n)$ on a cheap approximation of the black box

We compute the Spearman rank correlation between $[f(\lambda_1),...,f(\lambda_n)]$ and $[g(\lambda_1),...,g(\lambda_n)]$

- ullet If this is high (in the extreme: 1), the relative ranking of the configurations is the same on f and g
 - lacktriangle In that case, we can optimize cheaply on g and also obtain an optimum for f
- If it is low (≈ 0), optimizing g does not tell us anything about f

Goal: find approximations g that are very cheap but have high rank correlations with f

Questions to Answer for Yourself / Discuss with Friends

- Repetition. Which cheap approximation is better in this hypothetical case?
 - Downscaling images (5x cheaper, rank correlation of 0.8)
 - ▶ Less epoch of SGD (4x cheaper, rank correlation of 0.75)
- Discussion. Can you think of an application of your interest where you would likely have a good multi-fidelity approximation?