Definitions

- 1.) Given a relation \sim on X, it is an equivalence relation if
 - i. For all $a \in X$, $a \sim a$.
 - ii. For all $a, b \in X$, $a \sim b \implies b \sim a$.
 - iii. For all $a, b, c \in X$, $a \sim b \wedge b \sim c \implies a \sim c$.
- 2.) Given an equivalence relation \sim on X and $x \in X$, the equivalence class of x is defined as $[x] = \{y \in X : x \sim y\}$.
- 3.) Given an equivalence relation \sim on $X, X/\sim$ is defined as $X/\sim=\{[x]:x\in X\}$
- 4.) Given an equivalence relation \sim on X, the quotient map p is defined as $p: X \to X/\sim$ where $x \mapsto [x]$.
- 5.) Given a topological space X and an equivalence relation \sim on X, the quotient topology \mathcal{T}_q on X/\sim is defined as $\mathcal{T}_q = \{V \subset X/\sim : p^{-1}(V) \text{ is open in } X\}$

Proofs

- a.) Suppose $e^{i\theta} = 1$, then $\cos \theta + i \sin \theta = 1$, thus $\sin \theta = 0$ and $\cos \theta = 1$, thus $\theta = 0$.
- b.) Suppose $e^{i\theta} = i$, then $\cos \theta + i \sin \theta = i$, thus $\cos \theta = 0$ and $\sin \theta = 1$, thus $\theta = \pi/2$.
- c.) Suppose $e^{i\theta} = 1/2 + i(\sqrt{3}/2)$, then $\cos \theta + i \sin \theta = 1/2 + i(\sqrt{3}/2)$, thus $\cos \theta = 1/2$ and $\sin \theta = (\sqrt{3}/2)$, thus $\theta = \pi/3$.
- d.) Since $e^{i\theta}$ is simply a rotation by θ , we see that $e^{i\theta_1} = e^{i\theta_2}$ if θ_1 and θ_2 are equivalent angles, that is $\theta_1 \theta_2 = 2\pi n$ for some $n \in \mathbb{Z}$.
- e.) The unit circle, i.e. S^1 .

- f.) i.) Let \sim be a relation on $\mathbb R$ where $a \sim b \iff a b = 2\pi n$ for some $n \in \mathbb Z$. Since a - a = 0, we know that $a \sim a$ for all $a \in \mathbb R$. Next, assume $a \sim b$, then $a - b = 2\pi n$, thus $b - a = 2\pi (-n)$, thus $a b \implies b a$. Finally, let $a \sim b$ and $b \sim c$, thus $a - b = 2\pi m$ and $b - c = 2\pi n$ for $m, n \in \mathbb Z$, then $a - c = a - b + b - c = 2\pi m - 2\pi n = 2\pi (m - n)$, thus $a \sim c$, thus \sim is an equivalence relation. \blacksquare
 - ii.) Let $f: \mathbb{R}/\sim \to S^1$ be defined as $f([\theta]) = (\cos \theta, \sin \theta)$. Since $\cos^2 \theta + \sin^2 \theta = 1$ for all $\theta \in \mathbb{R}$, we know that the image of f is S^1 . Let $[\theta_1], [\theta_2] \in \mathbb{R}/\sim$ where $f([\theta_1]) = f([\theta_2])$, then $\sin \theta_1 = \sin \theta_2$, thus $\theta_1 \sim \theta_2$, thus $[\theta_1] = [\theta_2]$, thus f is injective. Next, let $(a,b) \in S^1$. Choose $\theta = \cos^{-1}(a) = \sin^{-1}(b)$. This is possible because $(a,b) \in S^1$. We can see that $f([\theta]) = (\cos(\cos^{-1}(a)), \sin(\sin^{-1}(b))) = (a,b)$, thus f is surjective, and thus bijective. \blacksquare