

Institut Verkehrstelematik, Professur für Verkehrsleitsysteme und -prozessautomatisierung

Verkehrsmikrosimulationen mit Echtzeitdaten Herausforderungen und Chancen

Dipl.-Ing. Mario Krumnow Technische Universität Dresden Professur für Verkehrsleitsysteme und -prozessautomatisierung

- Echtzeitdaten repräsentieren die Wirklichkeit (weder aggregiert noch geschätzt)
- Einschätzungen von operativer Maßnahmen (z.B. Grüne Wellen, Wechselwegweisung)
- Online Kalibrierung der Simulation mit tatsächlichen Messdaten (Tempo 50)
- Verkehrsaufkommen/-zusammensetzung stets aktuell
- Verkehrsdatenergänzung (Detektoren meist nur an diskreten Stellen)

Der Prozess der Simulation unterteilt sich grundsätzlich in 3 verschiedene Abschnitte:

Preprocessing: Modellierung der Realität

Simulation: Berechnung definierter Szenarien (Einhaltung physikalischer Regeln)

Postprocessing: Interpretation der simulierten Messergebnisse

• Dynamische Änderung der Simulationselemente zur Laufzeit der Simulation

- ▶ Interaktion mit der Simulation mithilfe von Softwareschnittstellen
 - Definition/Änderung von Routen
 - Dynamisches Einfügen von Fahrzeuge
 - Definition/Änderung von LSA Programmen
 - Auswertung von Messgrößen zur Laufzeit
 - Gezielte Veränderung der Fahrzeugparameter
 - •

SUMO – Simulation of Urban Mobility

Entwicklung vom Deutschen Zentrum f
ür Luft- und Raumfahrt DLR

- Entwicklung begann Ende 2000
- Softwareschnittstelle TraCl Traffic Control Interface
 - ca. 250 Funktionen über alle Elemente der Simulation
 - bidirektional
 - Bytedatenstrom

Open Source = Transparenz, Verfügbarkeit, keine Einschränkungen durch Lizenzen

Quelle: http://sumo-sim.org

Erweiterung von TraCl um einen Webservice (TCP/IP, SOAP)

Quelle: http://traas.sf.net (GPL V3)

- Erfassung von Einzelfahrzeugen und Verkehrsflüssen
- Verfügbare Informationen
 - Fahrzeugtyp (8+1)
 - Fahrzeuglänge
 - Geschwindigkeit
 - Aggregierte Größen
 - Verkehrsmenge
 - Zeitlücken
- Besonderheit realer Daten
 - Genauigkeit, Zeitsynchronität
 - Verfügbarkeit

ID	lane	speed	vclass	time
552	3	55	4	21.10.2011 12:42:55
552	3	56	2	21.10.2011 12:42:57
552	3	49	2	21.10.2011 12:43:43
552	1	58	2	21.10.2011 12:43:49

- Signalgeber
- Wechselverkehrszeichen
- Verfügbare Informationen
 - Betriebszustand (An/aus/Störung)
 - Aktuelles Signalprogramm
 - Aktueller Signalzustand
 - ÖV Telegramme (R09.x)

Dresden, Nürnberger Straße

Signalzustände verkehrsabhängiger Lichtsignalanlagen

Einsatz von Echtzeitdaten in der Simulation

Simulation mit unterschiedlichen Datenquellen

- Mehrere Parallele Instanzen von SUMO
- Unterschiedliche Szenarien
- Unterschiedliche Prognoseintervalle

Simulation Referenzstrecke des Forschungsprojektes EFA2014/2

- Länge 10 Km, 17 verkehrsabhängige Lichtsignalanlage
- Nutzung von Dauerzählstellen (Einzelfahrzeugdaten)
- Nutzung der LSA Schaltdaten
- ÖPNV Verkehrslage (15 Sekunden Daten)

Echtzeitsimulation der Trambewegungen zur Darstellung der ÖPNV Priorisierung an LSA

- Nachjustierung der Fahrzeugposition
- Beachtung von Linienänderungen, Sonderlinien

online

- Aktuelle ÖPNV Positionstelegramme korrigieren Fahrzeugposition (Sprünge)
- Aggregierte Werte (LOS) dienen der Plausibilitätsprüfung

offline

- Anhand von Kameradaten
- Verkehrszählungen (Aufteilung am Verkehrsknoten)

Verkehrskamera Fritz-Förster Platz, Dresden

Videomessung Dohnaer Str., Dresden

- Mikrosimulationen mit Echtzeitdaten sind (technisch) möglich
- Unterstützung bei der Entscheidungsfindung
- Parametrierung der Modelle zwingend nötig
 - Fahrzeugfolgemodell
 - Fahrstreifenwechselmodell
 - Fahrermodell (Routenwahl)
- Mikrosimulation als Dienst/Service (24/7)

Simulation einen ganzen Stadt (Dresden)

Vorrausetzung:

- Spurfeines (hochauflösendes) Netz
- Quelle/Ziel Matrizen
- (validierte) Verkehrsmengenkarte
- (synchrone) online Detektordaten

