a ponadto każde ze stanowisk ma produkować dokładnie jeden wyrób i każdy z wyrobów ma być produkowany na dokładnie jednym stanowisku. Należy przydzielić wyroby do stanowisk, by łączna wydajność była maksymalizowana.

Problem ten nazywa się problemem przydziału i można zapisać go formalnie w sposób następujący:

$$m \text{ ax } z = \sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij} x_{ij}$$

$$ogr. \qquad \sum_{i=1}^{m} x_{ij} = 1$$

$$\sum_{j=1}^{m} x_{ij} = 1$$

$$gdzie \qquad x_{ij} = \begin{cases} 1 & \text{zadanie j wykonywane przez i - tą osobę} \\ 0 & \text{w przeciwnym razie} \end{cases}$$

Problem przydziału jest szczególnym przypadkiem problemu transportowego

WYRÓB / STANOWISKO	1	2	3	4
A	2	10	9	7
В	15	4	14	8
C	13	14	16	11
D	4	15	13	9

5.4 Problem komiwojażera - Algorytm Little'a

Metoda podziału i ograniczeń może być zastosowana dla rozwiązania problemu komiwojażera. Algorytm został podany przez Little'a.

Zbiór rozwiązań (wierzchołek w drzewie poszukiwań) będziemy rozbijać na dwa podzbiory:

- zawierający wyróżniony łuk <i,j>
- > nie zawierający łuku <i,j>

Podział będzie dokonywany z pewną zasadą heurystyczną, opisaną poniżej. Po wykonaniu podziału liczone są kresy dolne na drodze **redukcji** macierzy kosztów przejść. Podzbiory rozwiązań mające wartości kresów dolnych **większe lub równe** długości najkrótszego dotychczas znalezionego rozwiązania będą pomijane (ograniczamy w ten sposób przestrzeń poszukiwań).

Przykład:

Dana jest macierz kosztów przejść "C" ("∞" oznacza koszt o nieskończonej wartości):

Macierz C	1	2	3	4
1	8	2	7	3
2	7	8	8	5
3	9	4	8	6
4	3	8	5	8

Niech G⁰ oznacza początkowy zbiór rozwiązań. W celu wyznaczenia kresu dolnego dla G⁰ dokonujemy redukcji macierzy C

- > w każdym wierszu znajdujemy element minimalny i odejmujemy go od wszystkich elementów danego wiersza
- ten sam proces wykonujemy dla kolumn.

Po wykonaniu redukcji macierzy, w każdym wierszu i każdej kolumnie powinien znaleźć się element zerowy. Suma wielkości, które odjęliśmy (stopień redukcji macierzy R) **dodawana jest do dotychczasowej wartości dolnego ograniczenia** (wartość początkowa dolnego ograniczenia = 0):

Macierz C ⁰	1	2	3	4	
1	8	0	3	1	-2
2	2	8	1	0	-5
3	5	0	8	2	-4
4	0	5	0	8	-3
			-2.		R=16

Po redukcji: (dolne ograniczenie = 16). Kandydatami do wykonania podziału są następujące odcinki (mające w tej zredukowanej macierzy koszt równy 0): <1,2>,<2,4>,<3,2>,<4,1>,<4,3>. Wybieramy ten z nich, który posiada **najwyższy optymistyczny koszt wyłączenia**. Jeżeli wyłączymy odcinek <i,j>, to z miasta "i" musimy wyruszyć do miasta innego niż "j", a do miasta "j" musimy przybyć z miasta różnego od "i". Rozważmy dla przykładu odcinek <2,4> Jeżeli wyłączymy ten odcinek, to z miasta 2 musimy wyruszyć do miasta różnego od 4, a minimalny koszt z tym związany jest równy 1 (minimalna wartość w wierszu 2 różna od tej na pozycji 2,4). Z kolei do miasta 4 trzeba dotrzeć

z miasta różnego od 2 i minimalny koszt z tym związany jest równy 1 (minimalna wartość w kolumnie 4 różna od tej na pozycji 2,4). **Suma tych wartości** (2) jest **optymistycznym kosztem** który na pewno musimy ponieść wyłączając odcinek <2,4>. Wartości tych kosztów podane są w postaci indeksów przy elementach zerowych:

macierz C ⁰	1	2	3	4	
1	8	0^{1}	3	1	-2
2	2	∞	1	0^{2}	-5
3	5	0^{2}	∞	2	-4
4	0^{2}	5	$0^{\scriptscriptstyle 1}$	8	-3
			-2		R=16

 $G^{0}(16)$

W naszym wypadku aż trzy odcinki mają optymistyczny koszt wyłączenia równy 2. Arbitralnie wybieramy odcinek <2,4> tworząc zbiory marszrut G¹ i G² zawierające lub nie zawierające tego odcinka.

Weźmy pod uwagę zbiór G^1 . Tworzymy macierz C^1 usuwając z macierzy C^0 wiersz 2 i kolumnę 4 oraz przyjmując $c_{42}=\infty$ (blokujemy drogę przeciwną). Zmodyfikowana i zredukowana macierz C^1 znajduje się poniżej:

Macierz C ^l	1	2	3
1	8	0^{3}	3
3	5	05	∞
4	0^{5}	8	0^3

R=0

Weźmy pod uwagę zbiór G^2 . Tworzymy macierz C^2 z macierzy C^0 przyjmując $c_{24}=\infty$. Zmodyfikowana i zredukowana macierz C^2 znajduje się poniżej:

Do dalszego podziału wybieramy wierzchołek o najmniejszej wartości kresu dolnego G^1 . Z tablicy C^1 wynika, że tylko odcinki <3,2> oraz <4,1> mogą być rozpatrywane (zerowy koszt, maksymalna optymistyczna wartość kosztu wyłączenia 5). Arbitralnie wybieramy <3,2> tworząc zbiory G^3 i G^4 .

Weźmy pod uwagę zbiór G^3 . Tworzymy macierz C^3 usuwając z macierzy C^1 wiersz 3 i kolumnę 2. Nie dokonujemy podstawienia $c_{32}=\infty$, gdyż ten element został już wyeliminowany. Zmodyfikowana i zredukowana macierz C^3 znajduje się poniżej:

Weźmy pod uwagę zbiór G^4 . Tworzymy macierz C^4 z macierzy C^1 przyjmując $c_{32}=\infty$. Zmodyfikowana i zredukowana macierz C^4 znajduje się poniżej:

Macierz C⁴	1	2	3	
1	8	0_{∞}	3	
3	0∞	8	8	-5
4	0_0	~	0^{3}	
				R=5

Do dalszego podziału wybieramy wierzchołek o najmniejszej wartości kresu dolnego G^2 . Z tablicy C^2 wynika, że tylko odcinki <1,4><2,3> oraz <3,2> mogą być rozpatrywane (zerowy koszt, maksymalna optymistyczna wartość kosztu wyłączenia 1). Arbitralnie wybieramy <1,4> tworząc zbiory G^5 i G^6 .

Weźmy pod uwagę zbiór G^5 . Tworzymy macierz C^5 usuwając z macierzy C^2 wiersz 1 i kolumnę 4. Ponadto dokonujemy podstawienia $c_{41}=\infty$. Zmodyfikowana i zredukowana macierz C^5 znajduje się poniżej:

macierz C^{δ}	1	2	3
2	0^{4}	8	0_0
3	4	0_{δ}	∞
4	∞	5	02
	-1		

R=1

Weźmy pod uwagę zbiór G^6 . Tworzymy macierz C^6 z macierzy C^2 przyjmując $c_{14}=\infty$. Zmodyfikowana i zredukowana macierz C^6 znajduje się poniżej:

macierz C ²	1	2	3	4
1	8	0^3	3	8
2	1	8	$0^{\scriptscriptstyle 1}$	8
3	5	0_0	8	0_{∞}
4	0^1	5	0_0	8
				1

R=1

Do dalszego podziału wybieramy wierzchołek o najmniejszej wartości kresu dolnego G^3 . Z tablicy C^3 wynika, że tylko odcinki <1,3> oraz <4,1> mogą być rozpatrywane (zerowy koszt, maksymalna optymistyczna wartość kosztu wyłączenia ∞). Arbitralnie wybieramy <1,3> tworząc zbiory G^7 i G^8 .

Weźmy pod uwagę zbiór G^7 . Tworzymy macierz C^7 usuwając z macierzy C^3 wiersz 1 i kolumnę 3. Macierz redukuje się do jednego elementu. Zmodyfikowana i zredukowana macierz C^7 znajduje się poniżej:

Macierz
$$C^7$$
 1
4 0 R=0

UWAGA – z tej macierzy wynika, że dołączając do wierzchołka G⁷ jedyną możliwą marszrutę <4,1> otrzymujemy rozwiązanie końcowe, dla którego wartość funkcji kosztu równa się kresowi dolnemu równemu 19. Oznaczmy to rozwiązanie przez wierzchołek G⁹.

Weźmy pod uwagę zbiór G^8 . Tworzymy macierz C^8 z macierzy C^3 . Podstawiamy za c_{13} = ∞ . Zmodyfikowana macierz C^8 znajduje się poniżej: UWAGA – koszt redukcji wynosi ∞ (patrz wiersz 1). Kres dolny byłby równy także ∞ . Oznacza to, że wierzchołek ten nie będzie dalej dzielony – można dowieść, że nie odpowiada mu żadna marszruta. Pomijamy więc w dalszych rozważaniach ten wierzchołek.

Macierz
$$C^8$$
 1 3
1 ∞ ∞ ∞
4 0^{∞} 0^{0}

$$R = \infty$$
(!)

Podział pozostałych zbiorów nie może dać rozwiązania lepszego. Otrzymane rozwiązanie jest optymalne, choć niekoniecznie jedyne. W celu stwierdzenia czy istnieją inne rozwiązania, należałoby dokonać podziału zbiorów G^5 i G^6 .