## COL778: Principles of Autonomous Systems Semester II, 2023-24

Agent Representation - I

**Rohan Paul** 

## Today's lecture

- Last Class
  - Course Introduction
- This Class
  - Agent Representation I

## **Agent Environment Interaction**

- Embodied AI agent
  - Takes observations from the environment.
  - Goal or objective. Synthesizes goaldirected actions.
- Autonomous
  - You can tell the agent what to do without having to say how to do it.



## From Observations to Physical Actions

- State Estimation
  - What is the state of the agent and the environment.
- Planning
  - (High-level )Sequence of actions to reach the goal.
- Low-level Control
  - Performing each action reliably.







## From Observations to Physical Actions

 For some environments and tasks a clear separation may not be modeled.







Another example: AI Habitat <a href="https://aihabitat.org/">https://aihabitat.org/</a>





## Uncertainty

- Imagine an unmanned vehicle (land, air, manipulation etc.) in operation.
- How does the vehicle make decisions about what to do next?
- Things we might be uncertain about:
  - If the vehicle runs its propulsion system (or motors), what will happen? Is the vehicle working or not?
    - The world is stochastic.
  - Where is the vehicle?
    - Noisy observations.
  - What is around the vehicle?
    - The world is partially unobservable.

Any decision-making model must tackle the uncertainty and complexity as above.

# Physical Interactions: Generating Movement





## **Coordinate Frames**

- Coordinate frame
  - Global
  - On the agent.
- Pose, a particular point on its body, (e.g., x, y, z, heading etc.) with respect to a coordinate frame.
- State changes occur due to actions the agent takes.
- Need a way to determine the pose w.r.t. any coordinate frame.
- Relationship maintained in coordinate transforms.



$$T_{A}^{A} = T_{B}^{A} P_{B}$$

$$T_{B}^{A} = \begin{bmatrix} r_{11} & r_{21} & r_{31} & \Delta x \\ r_{12} & r_{22} & r_{32} & \Delta y \\ r_{13} & r_{23} & r_{33} & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## How does movement occur?

- Simple agents
  - Point-like or disk-like agents
- Linear and angular velocities change the state from current to the next time step.
- Position and heading direction is changed.



## More complex physical agents

- An agent capable of manipulation
  - Simply a number of links connected via joints.



## How is movement generated?

- Joints typically have motors that exert torque.
- Also called actuation Typically, abstracted away for algorithmic purposes.

#### Internal mechanics of joints



#### DC motor



### Stepper motor



## **Composing Transforms**

- An agent capable of manipulation
  - Simply a number of links connected via joints.
- Each link is associated with a. coordinate frame.
- The coordinate frames can be composed.

### **Physical agent**



#### **Kinematic chains**



# Example of coordinate frames





rviz URDF

# Example of coordinate frames





# Planning Motions

- Given
  - Initial state
  - Goal state
- How to generate actions?



## Task Space and Configuration Space

- Task Space
  - Workspace in which the agent operates.
  - May be populated with obstacles.
- Configuration space (C-space)
  - Parameter space of the robot.
  - Space spanned by its allowable degrees of freedom.
- C-space obstacles
  - Non allowable configurations in the Cspace.
  - Includes all configurations where the robot collides with the obstacle.



Task space (left) and configuration space (right) for a translating planar agent (cannot rotate).

## Task Space and Configuration Space

### Task space

- Easier to describe the task.
- Problem: Not all points in the task space may be reachable
- There are physical constraints of the agent's embodiment.

## Configuration space (C-space)

- Each point satisfies the intrinsic physical constraints.
- Each point is attainable as it corresponds to a valid configuration of the agent.



Figure: AIMA Ch 25.4

## Holonomicity

- Robot specified in terms of parameters (degree of freedom).
- Holonomic
  - if the number of local degrees of freedom of movement equals the number of global degrees of freedom.
- Non-holonomic otherwise.



Holonomic (ODIN, University of Hawaii and PPRK (CMU).



Non-holonomic (car cannot turn in place).

## From Configuration Space to Task Space

### Forward kinematics

- From the parameters specifying the agent (theta parameters) determine the position of the end-effector.
- Compose the transformations one by one.





Maps configuration space to work space

$$T = T_1^0(\theta_1) T_2^1(\theta_2) \dots T_{n-1}^{n-2}(\theta_n) T_n^{n-1}(\theta_n)$$

$$= \begin{bmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \\ 0 & 0 & 0 & 1 \end{bmatrix} \Delta x$$

$$x = f(\theta) = f(\theta_1, \theta_2, \dots, \theta_{n-1}, \theta_n)$$

## From Task Space to Configuration Space

- Inverse kinematics
  - Determining the setting of the parameters to yield the required end effector position.
  - Given the final position of the endeffector (end point of the arm), determine the theta parameters for the arm.



## From Task Space to Configuration Space

- Inverse kinematics
  - Solve the inverse problem to obtain theta The function f is often non-linear.



Forward Kinematics

Inverse Kinematics

Solve for  $\theta_d$  in:

$$x_d - f(\theta_d) = 0$$

Typically done using Newton-Raphson method.



Find configuration(s) that map to a given work space point



$$x = f(\theta)$$

Maps configuration space to work space

## Example: Moving the Agent



## **Initial Configuration**

1. Task space to Configuration space







## **Goal Configuration**

1. Task space to Configuration space



# Finding a feasible path

- 1. Task space to Configuration space
- 2. Configuration space trajectory



# Finding a feasible path

1. Task space to Configuration space

2. Configuration space trajectory

