PLASTIC KNEADING EXTRUDER

Patent Number:

JP5177692

Publication date:

1993-07-20

Inventor(s):

FUKUI MASAYUKI

Applicant(s):

PLUS GIKEN:KK

Requested Patent:

JP5177692

Application Number: JP19910333621 19911217

Priority Number(s):

IPC Classification:

B29C47/38; B29B7/42

EC Classification:

Equivalents:

Abstract

PURPOSE:To make pressurizing and pressure reducing possible by means of the same screw and to make it possible to perform kneading and dispersing 1 suitable for the characteristics of various plastic materials by forming the diameters of a cylinder and the screw to be smaller at the upstream side and larger at the downstream side than those of the boundary part between the feeding side and the extrusion side.

CONSTITUTION: A boundary part is provided between a feed opening 4 and an extrusion opening 5 and the diameters of the first cylinder 1, the second cylinder 2 and a screw 6 are formed smaller at the upstream side and larger at the downstream side. In addition, at the boundary part, the inner walls of the first cylinder 1 and the second cylinder 2 and the outer face of the screw 6 are made to have each tapered face and a screw moving means 25 moving the screw 6 in the axial direction and a ring valve 10 controlling the flow rate of a plastic material passing through the facing tapered face in accordance with the amount of movement in the axial direction are provided. It is possible thereby to shorten the whole length of the screw 6 and to set an opening part provided at the extrusion side large.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP) (12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-177692

(43)公開日 平成5年(1993)7月20日

(51)Int.Cl.⁵

識別記号

厅内整理番号

技術表示箇所

B 2 9 C 47/38

B 2 9 B 7/42

7717-4F

7722-4F

審査請求 未請求 請求項の数7(全 8 頁)

(21)出願番号

特願平3-333621

(22)出願日

平成3年(1991)12月17日

(71)出願人 591281644

有限会社プラス技研

埼玉県北本市大字下石戸上字南1551番地

(72)発明者 福井 正行

埼玉県北本市大字下石戸上字南1551番地

有限会社プラス技研内

(74)代理人 弁理士 井出 直孝 (外1名)

(54)【発明の名称】 プラスチック混練押出機

(57)【要約】 (修正有)

【目的】 同一スクリュー6で加圧および減圧をできる ようにするとともに、各種プラスチック材料それぞれの 特性に適合した混練および分散をできるようにする。

【構成】 シリンダ内でプラスチック材料を混練しスク リューの回転により加圧してダイに押し出すプラスチッ ク混練押出機において、シリンダおよびスクリュー6の 径を供給側と押出側との間の所定の位置に設定された境 界部よりも上流側では小さく形成し、下流側では大きく 形成する。

【効果】 スクリュー6の全長を短くすることができる とともに、押出側に設けられた開口部を大きく設定する ことが可能になるためガス抜きが容易となり、また、押 出側の径が大きくなることに伴ってスクリュー6の螺旋 溝を浅くすることができ、これにより焼けの発生をなく し、成形品の歩留りをよくし材料のロスを抑えることが できる。

1

【特許請求の範囲】

【請求項1】 シリンダと、このシリンダの一端に設け られたプラスチック材料の供給口と、このシリンダの他 端に設けられた混練物の押出口と、このシリンダの内部 に軸を一致させて挿通されその表面に螺旋溝が形成され たスクリューと、この螺旋溝と前記シリンダ内壁との間 に形成される空間で前記プラスチック材料を混練しなが ら前記供給□から前記押出□の方向へ搬送するようにと のスクリューを回転させる回転駆動手段とを備えたプラ スチック混練押出機において、

前記供給口と前記押出口との間に設定された境界部につ いて、前記シリンダおよび前記スクリューの径がその上 流側で小さくその下流側で大きく形成されたことを特徴 とするプラスチック混練押出機。

【請求項2】 前記境界部で前記シリンダの内壁および 前記スクリューの外面はそれぞれ対向するテーパ面に形 成された請求項1記載のプラスチック混練押出機。

【請求項3】 前記スクリューをその軸方向に移動させ るスクリュー移動手段と、その軸方向の移動量に応じて 量を調節する弁手段を設けた請求項2記載のプラスチッ ク混練押出機。

【請求項4】 前記弁手段の流量調節範囲は全閉から全 開まで連続的である請求項3記載のプラスチック混練押 出機。

【請求項5】 前記境界部近傍の下流側に、前記空間に 発生する気体を前記シリンダ外に排出するベント口を設 けた請求項1記載のプラスチック混練押出機。

【請求項6】 前記螺旋溝のピッチおよび形状は、前記 境界部の上流側と下流側では異なり、さらに前記境界部。30 の上流側ではその長手方向に沿って複数種類が設定され た請求項1記載のプラスチック混練押出機。

【請求項7】 前記スクリューはその螺旋溝のピッチお よび形状について異なる複数のセグメントが接合された 構造であり、そのセグメントの一部または全部が交換可 能な構造に構成された請求項6記載のプラスチック混練 押出機。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はプラスチックの成形工程 40 に利用する。本発明はプラスチック材料を連続的に供給 し混練可塑化しながら連続的に押出しを行う装置の改良 に関する。

[0002]

【従来の技術】従来、熱可塑性プラスチック材料は、シ リンダと、このシリンダの一端に設けられたプラスチッ ク材料の供給口と、シリンダの他端に設けられた混練物 の押出口と、シリンダ内部に軸を一致させて挿通され表 面に螺旋溝が形成されたスクリューと、螺旋溝とシリン ダ内壁との間に形成された空間でプラスチック材料を混 50

練しながら供給口から押出口の方向にスクリューを回転 させ搬送する回転駆動手段とを備えたプラスチック混練 押出機により、シリンダ内で加熱溶融された後、スクリ ューの回転によって混練され、連続的にダイに押出され て所定の断面形状に成形されていた。

[0003]

【発明が解決しようとする課題】近年、プラスチック製 品の用途範囲の拡大に伴い機能性樹脂の複合化が要求さ れるようになり、この要求に応えるためにスクリューを 二基備えた二軸型のプラスチック混練押出機が開発され 10 ている。この種の押出機は、スクリューエレメントを適 宜組み合わせることにより、可塑化能力を高めるととも に、材質を変えた場合でも樹脂特性に適合した混練およ び分散を継続的に行うことができる利点はあるが、反 面、設備費がかさむ問題を有している。

【0004】一方、一軸型の押出機を用いてそれぞれの 樹脂特性に合せた成形を行うには、各々の特性に適合し た形状のスクリューを個別に数多く準備しなければなら ない問題がある。この問題は円筒型のシリンダの断面形 前記対向するテーパ面を通過するプラスチック材料の流 20 状を六角形、サインカーブ、あるいはクサビ形にしてス クリューとの相互作用により混練および分散機能を増大 させることによって解決することはできるものの、吐出 量(押出量)もあわせて増加させようとすると、スクリ ューの長さをL、外径をDとしたときのL/Dの値を大 きくしなければならず、そのためにスクリューが長大化 してしまう問題がある。

> 【0005】例えば、脱気機構を有するベント式の押出 機を用いた混練の場合には、標準となるL/Dの値28 に対して32あるいは36のように大きな値となり、長 いものでは45になるものもある。このようにL/Dの 値が大きくなると、プラスチック材料の種類や色を替え るときの段取り替えに多くの時間を要し、焼けこげや前 回混練時の材料残りなどのために掃除に手間どり、さら にはスクリューの長大化に伴ってシリンダの曲り、ある いはスクリューとシリンダとのがじりを生じる可能性が ある。

【0006】本発明はこのような問題を解決するもの で、全長を短くした同一のスクリューで加圧および減圧 をできるようにし、各種プラスチック材料それぞれの特 性に適合した混練および分散を容易に行うことができる 混練押出機を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明は、シリンダと、 とのシリンダの一端に設けられたプラスチック材料の供 給口と、このシリンダの他端に設けられた混練物の押出 口と、このシリンダの内部に軸を一致させて挿通されそ の表面に螺旋溝が形成されたスクリューと、この螺旋溝 と前記シリンダ内壁との間に形成される空間で前記プラ スチック材料を混練しながら前記供給口から前記押出口 の方向へ搬送するようにとのスクリューを回転させる回

転駆動手段とを備えたプラスチック混練押出機におい て、前記供給口と前記押出口との間に設定された境界部 について、前記シリンダおよび前記スクリューの径がそ の上流側で小さくその下流側で大きく形成されたことを 特徴とする。

【0008】前記境界部で前記シリンダの内壁および前 記スクリューの外面はそれぞれ対向するテーパ面に形成 され、前記スクリューをその軸方向に移動させるスクリ ュー移動手段と、その軸方向の移動量に応じて前記対向 するテーパ面を通過するプラスチック材料の流量を調節 する弁手段を設け、前記弁手段の流量調節範囲は全閉か ら全開まで連続的であり、前記境界部近傍の下流側に、 前記空間に発生する気体を前記シリンダ外に排出するべ ント口を設け、前記螺旋溝のピッチおよび形状は、前記 境界部の上流側と下流側では異なり、さらに前記境界部 の上流側ではその長手方向に沿って複数種類が設定さ れ、前記スクリューはその螺旋溝のビッチおよび形状に ついて異なる複数のセグメントが接合された構造であ り、そのセグメントの一部または全部が交換可能な構造 に構成されることが望ましい。

[0009]

【作用】スクリューの上流側を基本径として下流側の径 を大きくし、その境界部をテーバ面で接続することによ り、径をDとし長さをLとしたときに同じ容積を維持す るのに必要なL/Dの値を小さくすることができ、した がって長さ(L)を短く設定することができる。

【0010】また、スクリューの上流側と下流側との境 界部に設けたテーパ部とこのテーパ部に対応する弁調節 手段のテーパ部との間隔をスクリューの位置を移動させ て調節することにより容積変化が生じ、その変化量に応 30 じて軟化したプラスチック材料の押出し量がコントロー ルされる。これにより同一のスクリューで加圧、または 滅圧を無段階に行うことができ、混練および分散をプラ スチック材料固有の特性に適合させて行うことができ る。

【0011】さらに、下流側の径が大きくなると、空間 に発生する気体をシリンダ外に排出するベント口の径を 大きくすることができるために脱気効果を高めることが できるとともに、外周面積の増加に伴って容積が増加す るためにスクリューに設けられた各種溝の深さを浅くす ることが可能となり、溝内に生じる焼付きをなくし、こ れにより材料替えに伴う掃除が容易となり、作業効率の 向上および材料ロスを最小限に抑えることができる。

[0012]

【実施例】次に、本発明実施例を図面に基づいて説明す る。図1は本発明実施例の構成を示す図、図2は本発明 実施例の図1に示すA部拡大図、図3は本発明実施例に おけるスクリューの形状例を示す図、図4は本発明実施 例におけるスクリュー移動手段の構成を示す図である。

ニシリンダ2と、ホッパ3が設けられ第一シリンダ1の 一端に設けられたプラスチック材料の供給口4と、第二 シリンダ2の他端に設けられた混練物の押出口5と、第 ーシリンダ1および第二シリンダ2の内部に軸を一致さ せて挿通されその表面に螺旋溝が形成されたスクリュー 6と、螺旋溝と第一シリンダ1および第二シリンダ2の 内壁との間に形成される空間でプラスチック材料を混練 しながら供給口4から押出口5の方向へ搬送するように スクリュー6を回転させる回転駆動手段7とを備え、さ らに本発明の特徴として、供給口4と押出口5との間に 設定された境界部について、第一シリンダ1、第二シリ ンダ2およびスクリュー6の径がその上流側で小さくそ の下流側で大きく形成され、境界部では第一シリンダ1 と第二シリンダ2との内壁およびスクリュー6の外面は それぞれ対向するテーバ面に形成され、スクリュー6を その軸方向に移動させるスクリュー移動手段25と、そ の軸方向の移動量に応じて対向するテーバ面を通過する プラスチック材料の流量を調節する弁手段としてリング バルブ10が設けられる。とのリングバルブ10の流量 20 調節範囲は全閉から全開まで連続的である。

【0014】さらに、境界部近傍の下流側には前記空間 に発生する気体を第二シリンダ2外に排出するベント口 11が設けられ、スクリュー6の螺旋溝のピッチおよび 形状は、境界部の上流側と下流側では異なり、境界部の 上流側ではその長手方向に沿って複数種類が設定され、 スクリュー6はその螺旋溝のピッチおよび形状について 異なる複数のセグメントが接合された構造であり、その セグメントの一部または全部が交換可能な構造に構成さ れる。

【0015】前述の回転駆動手段7には、主電動機21 と、Vベルト22と、このVベルト22により主電動機 21からの駆動力を受けるVプーリ23と、このVプー リ23に直結されスクリュー6を回転駆動する主軸24 と、スクリュー6を軸方向に移動させるスクリュー移動 手段25とが含まれる。

【0016】また、スクリュー移動手段25は、移動用 電動機26と、この移動用電動機26に直結されたウオ ーム27と、このウオーム27に噛合し内径の一部に雌 ねじ28 aが形成されたウオームホイール28と、外周 の一部に雄ねじ29 aが形成されウオームホイール28 と螺合する移動軸29と、この移動軸29と主軸24と を回転自在に結合するスラスト軸受30およびラジアル 軸受31により構成される。

【0017】次に、このように構成された本発明実施例 の動作について説明する。

【0018】回転駆動手段7の主電動機21を起動する と、Vベルト22を介してその駆動力がVプーリ23に 伝達され、このVプーリ23に直結された主軸24が回 転し、スクリュー6に回転力を与える。このような状態 【0013】本発明実施例は、第一シリンダ1および第 50 でホッパ3からのブラスチック材料が供給口4を介して

10

. ,

供給されると、回転しているスクリュー6によってプラ スチック材料は第一シリンダ1内を第二シリンダ2側に 移動する。

【0019】 この移動の過程でプラスチック材料は、第 一シリンダ1の外周部に複数配置されたヒータ12によ り加熱されて軟化し、溶融状態となってリングバルブ1 0に送り出される。リングバルブ10のテーパ面とスク リュー6のテーパ面との間隔はプラスチック材料に適し た流量になるようにスクリュー6の位置を移動すること によって調節されている。

【0020】流量が調節されたプラスチック材料は、第 ニシリンダ2内に送り出され、ベント口11からとれま でに発生した気体を排出し、さらにヒータ12の加熱を 受けながらスクリュー6によって移動し、押出口5から ダイ13に押出される。

【0021】本発明は、このようなプラスチック材料の 混練押出し動作を行うスクリュー6の供給口4と押出口: 5との間に境界部を設け、この境界部よりも下流側の第 ーシリンダ1の径を小さくし、上流側の第二シリンダ2 の径を大きくして、この第一シリンダ1および第二シリ ンダ2に対応してスクリュー6の径を設定し、境界部を テーパ面で形成したことを特徴とする。

【0022】このように形成されたスクリュー6は、図 2に示すようにそのテーパ面が第一シリンダ1および第 二シリンダ2の接合部に設けられたリングバルブ10の テーパ面に対応するように配置されている。軸方向の移 動によってスクリュー6の樹脂通過溝となる深さがこの テーパ面で0からHまで変化することにより、全閉から 全開までの流量調節を連続的に行うことができる。

【0023】このように構成された弁調節手段は、図4 に示すようにスクリュー6の下流端部に連結した主軸2 4を矢印方向に移動させることによってプラスチック材 料の流量の調節が行われる。このスクリュー6の移動 は、移動用電動機26を回転させることによってウオー ム27に回転力を伝え、このウオーム27の回転に伴っ てウオームホイール28を回転させ、螺合している主軸 24を移動させることにより行われる。移動用電動機2 6の回転を正または逆に切替えれば移動方向を変えると

【0024】したがって、図5(a)に示すようにスク 40 効果がある。 リュー6を上流側に移動させればテーパ面はリングバル ブ10のテーパ面に内設して全閉状態となり、また、逆 にスクリュー6を下流側に移動させれば同図(b)に示 すようにスクリュー6のテーパ面がリングパルブのテー パ面から離れ空間aを生じ全開状態となる。この全閉か ら全開までの流量調節範囲は前述したように連続的に行 うことができる。このように流量を任意に設定すること ができるために、プラスチック材料の特性に応じて最も 適した流量になるように容易に調節することができる。 流量が調節されたプラスチック材料が下流側のスクリュ 50

ー6に送り出されダイ13に押出される。

【0025】本発明ではスクリュー6の径を大きく設定 した下流側の第二シリンダ2上にベント口11が設けら れたために、熱バランスを失わない範囲でその開口部を 大きくとることができ、これまでの可塑化の過程で発生 した水分、残留モノマ(Monomer)などを含む気 体が排出され気泡のない高品質の成形品を得ることがで きる。さらに、熱バランスによって生じる第一シリンダ 1および第二シリンダ2の曲り、スクリュー6と第一シ リンダ1 および第二シリンダ2 とのかじりの発生も防止 される。

【0026】また、スクリュー6には、長手方向に沿っ て図3に示すようなピッチおよび形状の異なる螺旋溢が 設けられ、かつ、第二シリンダ2内に挿通する上流側の 螺旋溝の深さはその径が大きく形成されているために浅 く設定されることから、プラスチック材料の混練および 押出しが有効に行われ、螺旋溝底部の焼付きが防止され

【0027】さらに、スクリュー6は、螺旋溝のピッチ および形状についてそれぞれ異なるセグメントとして分 離できるように接合された構造となっているために、プ ラスチック材料の材質に応じてセグメントの一部または 全部を交換し組み合わせることが可能であり、これまで のように一体形成されたスクリュー6を数多く準備して おく必要はなくなる。また、スクリュー6をこのように 構成することは、プラスチック材料の変更、あるいは色 の変更時における清掃作業や段取作業を容易にすること ができる。

[0028]

【発明の効果】以上説明したように本発明によれば、全 長を短くした同一スクリューで加圧および減圧の程度を 任意に設定することができ、したがって特性の異なるプ ラスチック材料それぞれに最も適合した混練および押出 しを行うことができる。

【0029】また、下流側の径を大きくすることができ るために、押出し側に開口部を大きくとることが可能と なり、ガス抜きを効果的に行えるとともに、スクリュー の螺旋溝の深さを浅く設定でき、これによって焼き付き を防ぎ段取り変えに要する時間を短縮することができる

【図面の簡単な説明】

- 【図1】本発明実施例の構成を示す図。
- 【図2】本発明実施例の図1に示すA部拡大図。
- 【図3】本発明実施例におけるスクリューの形状例を示 す図。

【図4】本発明実施例におけるスクリュー移動手段の構 成を示す図。

【図5】(a)は本発明実施例におけるスクリューによ る全閉状態を示す図、(b)は全開状態を示す図。

【符号の説明】

7

- 1 第一シリンダ
- 2 第二シリンダ
- 3 ホッパ
- 4 供給口
- 5 押出口
- 6 スクリュー
- 7 回転駆動手段
- 10 リングバルブ (弁手段)
- 11 ベントロ
- ・12 ヒータ
 - 13 ダイ
 - 21 主電動機

- *22 Vベルト
 - 23 Vプーリ
 - 24 主軸
 - 25 スクリュー移動手段
 - 26 移動用電動機
 - 27 ウオーム
 - 28 ウオームホイール
 - 28a 雌ねじ
 - 29 移動軸
- 10 29a 雄ねじ
 - 30 スラスト軸受
- * 31 ラジアル軸受

【図3:】

【図4】

【図1】

【図5】

