MTP2 Praktikumsbericht
Karolina Bernat, Olliver Steenbuck

1.1 Erdumkreisung, Fluchtgeschwindigkeit und geostationäre Bahn

Im Folgenmden wird beschrieben, wie eine antribslose Phase eines Satelliten, der mit einer Trägerrakete in eine Startposition x_0 gebracht wird und dann antrieblos weiter fliegt. Dabei ist der Einfluss des Satelliten auf die Erde zu vernachlässigen.

Im Modell folgende Konstanten sind bekannt:

Erdradius: $r_E = 6378km$

Erdmasse: $m_E = 5.9736 \cdot 10^{24} kg$

Gravitationskonstante: $G = 66.743 \cdot 10^{-12} \frac{m^3}{kg \cdot s^2}$

Startpositionsvektor

Zur Errechnung der Startposition des Satellitens nutzen wir:

$$\overrightarrow{x_0} = [\cos(\delta \cdot (r + h_0)), \sin(\delta \cdot (r + h_0))]$$

Die Funktion "Startposition" sieht folgendermaßen aus:

```
1 function x0 = Startposition(deltaDegree, h0)
2
3 r = 6378000; % Erdradius [m]
4 h = r + h0; % Hypothenuse
5 x0 = [cosd(deltaDegree) * h ; sind(deltaDegree) * h ];

1 function x0 = Startposition(deltaDegree, h0)
2
3 r = 6378000; % Erdradius [m]
4 h = r + h0; % Hypothenuse
5 x0 = [cosd(deltaDegree) * h ; sind(deltaDegree) * h ];
```

Startgeschwindigkeitsvektor

Im nächsten Schritt wird der Startgeschwindigkeitswektor $\overrightarrow{v_{0,Welt}}$ berechnet. Hierfür werden zunächst die Einheitsvektoren in Tangential- sowie Normalrichtung konstruiert. Danach werden die Tangential- und Normalkomponente der Startgeschwindigkeit berechnet, wobei daraus die Startgeschwindigkeit zusammengebaust wird. Die Funktion "vStart", die diese Schritte durchführt, sieht folgendermaßen aus:

```
1 function v0welt = vStart(v0, thetaDegree, x0)
2
3 % v0 - Startgeschwindigkeit
4 % thetaDegree Winket theta in Grad
5 % x0 STartposition
6
7 nE = x0 / norm(x0); % Einheitsvektor in Normalrichtung fuer x0
8 tE = [nE(2); -nE(1)]; % Einheitvektor in Tangentialrichtung fuer x0
9
10 vt = cosd(thetaDegree) * v0; % Tangentialkomponente fuer v0
11 vn = sind(thetaDegree) * v0; % Normalkomponente fuer v0
12
13 v0welt = tE * vt + nE * vn; % Geschwindigkeitsvektor
```

Beschleunigung

Zur Berechnung der Beschleunigung des Satellitens wird die stets aktuelle Position des Satellitens benötigt. Durch die Summierung der Kräfte:

$$\sum F = m \cdot a$$

ergibt sich:

$$a = \frac{\sum F}{m}$$

Dabei ist m die Masse des Satellitens, die hier vernachlässigt werden kann. Somit ergibt sich:

$$a = F_{SE}$$

und folglich:

$$a = G \cdot \frac{m_E \cdot m_S}{r_{SE}^2} \cdot \overrightarrow{e_{SE}}$$

wobei F_{SE} die Kraft die vom Satelliten zu Erde wirkt, r_{SE} der Abstand von der Erdmitte zum Satelliten und $\overrightarrow{e_{SE}}$ der Einheitsvektor vom Satelliten zur Erde ist und m_S (Masse des Satellitens) vernachlässigt wird.

Die Funktion "Beschleunigung" sieht folgendermaßen aus:

Kontakt

Sobald der Satellit die Erde berührt soll die Simulation beendet werden. Hierfür wurde die Funktion "Kontakt" geschrieben, die dies kontrolliert und wie folgt ausschaut:

```
1 function endBedingung = Kontakt(xAktuell)
2
3 rErde = 6378000;
4 xAbstand = norm(xAktuell);
5
6 if (xAbstand > rErde)
7          endBedingung = 0;
8 else
9         endBedingung = 1;
10 end
```

Gesamtmodell

Das vollständige Modell wurde in Simulink modelliert und kann der folgenden Abbildung entnommen werden:

Abbildung 1.1: Gesamtmodell in Matlab/Simulink

Versuchsdurchführung

• Eine Kreisbahn in gleicher Höhe

Folgende Voreinstellungen wurden für die Simulation gewählt:

$$\delta = 30^{\circ}, h_0 = 400 km, \theta = 0^{\circ}$$

Bei einer Startgeschwindigkeit $v_0=7.65\frac{km}{s}$ und der Simulationszeit von 1.542h umkreist der Satellit die Erde bei einer konstanten Höhe genau ein Mal wie in der folgenden Abbildung zu sehen ist:

Abbildung 1.2: Eine Kreisbahn in gleicher Höhe

• Entfliehen der Erde

Folgende Voreinstellungen wurden für die Simulation gewählt:

$$\delta = 30^{\circ}$$
, $h_0 = 400km$, $\theta = 0^{\circ}$

Bei einer Startgeschwindigkeit $v_0=10$, $85\frac{km}{s}$ und der Simulationszeit von 1.000.000s entflieht der Satellit der Erde, wie in der nachfolgenden Grafik zu sehen ist:

Abbildung 1.3: Entfliehen der Erde

• Eine Kreisbahn innerhalb eines Tages

$$\delta=30^{\circ}$$
 , $\theta=0^{\circ}$

Bei einer Starthöhe von $h_0=37.000km$ und der Startgeschwindigkeit von $v_0=2,995\frac{km}{s}$ umkreist der Satellit die Erde ein Mal bei der Simulationszeit von 24h, wie in der nachfolgenden Grafik zu sehen ist:

Abbildung 1.4: Eine Kreisbahn innerhalb eines Tages

1.2 Mondumkreisung

In diesem Abschnitt wird die Simulation eines Satelliten, der von der Erde zum Mond fliegt, vorgestellt. Hierfür wird angenommen, dass sich der Mond nicht bewegt.

Folgende Kennzehalen sind bekannt:

Mondposition (fest): $x_M = (0, -380.000)^T km$ Mondmasse: $m_M = 7,3480 \cdot 10^{22} kg$

Beschleunigung

Für das Matlab-Modell wird die Funktion "Beschleunigung" ergänzt, dass die vom Mond auf den Satelliten wirkende Kraft F_M berücksichtigt wird. Diese wird wie folgt berechnet:

$$F_{SE} = G \cdot \frac{m_E}{r_{SE}^2} \cdot \overrightarrow{e_{SE}}$$

$$F_{SM} = G \cdot \frac{m_M}{r_{SM}^2} \cdot \overrightarrow{e_{SM}}$$

wobei m_M die Mondmasse, r_{SM} die Entfernung vom Satelliten zu Mond und $\overrightarrow{e_{SM}}$ der Einheitsvektor vom Satelliten zu Mond ist.

Um die BEschleunigung des Satelliten zu errechnen nutzen wir:

$$\sum F = m \cdot a$$

wobei m die Masse des Satelliten ist und im Modell vernachlässigt wird. Daraus folgt:

$$a = F_{SE} + F_{SM}$$

Die angepasste Matlab-Funktion sieht wie folgt aus:

```
1 function a = Beschleunigung(xAktuell)
3 xE = xAktuell / norm(xAktuell); % Einheiitsvektor fuer xAktuell
4 \text{ eSE} = xE * (-1);
                      % Einheitsvektor vom Satelliten zu Erde -
      umgekehrte Richtung zu xE
6 \text{ xM} = [0; -380000000]; % Mondposition
7 \text{ vSM} = xM - xAktuell}; % Vektor vom Satelliten zum Mond
8 \text{ rSM} = \text{norm(vSM)};
9 eSM = vSM / norm(vSM); % Einheitsvektor vom Sat. zu Mond
                            % Abstand von Erdmitte zum Satellit
11 r = norm(xAktuell);
13 mE = 5.9736 \times 10^24;
                            % Erdmasse in [kg]
14 mM = 7.3480 * 10^22; % Mondmasse in [kg]
15 G = 66.743 * 10^{-12}; % Gravitationskonstante in [m^3/kg*s^2]
17 F_SE = G * mE / r^2 * eSE; % Kraft auf Sat. von der Erde
18 F_SM = G * mM / rSM^2 * eSM; % Kraft auf Sat. vom Mond
20 a = F_SE + F_SM;
                            % Beschleunigung
```

Das Gesamtmodell kann man der folgenden Abbildung entnehmen:

Abbildung 1.5: Gesamtmodell in Matlab/Simulink

Versuchsdurchführung

Für die Durchführung der Simulation wurden folgende Einstellungen verwendet:

$$\delta_0 = 30^{\circ}$$
, $h_0 = 150 km$

Bei einer Startgeschwindigkeit $v_0=10,95\frac{km}{s}$ und einer Neigung $\theta=26^\circ$ fliegt der Satellit von der Erde um den Mond in einer 8-förmigen Schleife. Dabei dauert die Mission 9,491 Tage:

Abbildung 1.6: Mondmission