Data Preprocessing & Augmentation

Overview

Data Preprocessing & Augmentation

같은 이미지 데이터라고 하더라도 이를 잘 고쳐서 넣는 것 만으로도 괜찮은 성능 향상을 이루어 낼 수 있다

Table 3: ConvNet performance at a single test scale.

Table 5. Convitce per formance at a single test scale.					
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)	
	train(S)	test(Q)			
A	256	256	29.6	10.4	
A-LRN	256	256	29.7	10.5	
В	256	256	28.7	9.9	
	256	256	28.1	9.4	
C	384	384	28.1	9.3	
	[256;512]	384	27.3	8.8	
	256	256	27.0	8.8	
D	384	384	26.8	8.7	
	[256;512]	384	25.6	8.1	
	256	256	27.3	9.0	
E	384	384	26.9	8.7	
	[256;512]	384	25.5	8.0	

같은 이미지를 256px로 변환하냐, 512px로 변환하냐에 따라 정확도의 차이가 달라진다

Data Preprocessing & amp; Augmengation. Example

사진을 뒤집기 반대쪽을 바라보고 있는 사물(ex: 거울 반사)에 대한 인식률이 올라간다

Data Preprocessing & amp; Augmengation. Example

사진의 일부분을 자르기 일부분이 누락된 사진을 인식할 확률이 올라간다

Data Preprocessing & amp; Augmengation. Example

사진의 색깔을 어둡게/밝게 하기 어두운/밝은 위치에 있는 물체에 대한 인식률이 올라갈 것

Case Study

가장 기본적인 Data Preprocessing & Augmentation을 제안 사진의 좌우를 반전하거나, 이미지를 랜덤하게 잘라서 사용하는 등의 처리를 했다

Configuration

- 좌우 반전하기
- 학습할 때는 이미지를 크게 변환한 뒤(256 x 256px), 랜덤하게 224 x 224px을 잘라서 사용. 이렇게 해서 데이터를 2048배로 불림
- 테스트 할 때는 이미지를 크게 변환한 뒤(256 x 256px) 이미지에서 좌상/ 우상/좌하/우하/중간을 224 x 224px만큼 자른 뒤, 좌우반전해서 총 10개 의 데이터를 각각 예측하고 그 평균을 구함.
- PCA를 통해 RGB Channel을 조정해주는 방식을 사용했는데, 요즘은 잘 쓰이지 않는다.

가장 심도있는 Data Preprocessing & Augmentation을 시도하였다 시도한 모든 결과를 벤치마킹 후 가장 좋은 설정을 제시함

Configuration

- RGB 값의 평균을 구해서 각각 뺀다. (이러면 loss의 수렴이 빨라진다)
- 이미지 사이즈를 조정할 때, AlexNet과 다르게 256 x 256px만으로 하지 않고, 384 x 384px 512 x 512px로도 한다. (이후 224 x 224px로 랜덤 crop)
- 학습할 때는 모든 이미지마다 랜덤하게 좌우 반전. 테스트때는 좌우 반전 후 두 결과의 평균을 낸다.
- 학습할 때 256px과 512px를 다 넣고, 테스트할 때도 256px, 384px, 512px를 다 넣어서 평균을 내는 것이 가장 낮았다. (7.5%)
- 결과적으로는 아무런 Augmentation을 하지 않았을 때에 비해(10.4%)에 비해 최종적으로는 3% 가까이 에러가 줄어들었다. (7.1%)

ConvNet Configuration						
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
		max	pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
FC-4096						
FC-4096						
FC-1000						
soft-max						

Very Deep Convolutional Networks for Large-Scale Image Recognition Simonyan and Zisserman, 2014. https://goo.gl/mbKWhq

VGGNet

가장 심도있는 Data Preprocessing & Augmentation을 시도하였다 시도한 모든 결과를 벤치마킹 후 가장 좋은 설정을 제시함

Table 3: ConvNet performance at a single test scale.

Table 5. Convinct per formance at a single test scale.					
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)	
	train(S)	test(Q)			
A	256	256	29.6	10.4	
A-LRN	256	256	29.7	10.5	
В	256	256	28.7	9.9	
	256	256	28.1	9.4	
C	384	384	28.1	9.3	
	[256;512]	384	27.3	8.8	
	256	256	27.0	8.8	
D	384	384	26.8	8.7	
	[256;512]	384	25.6	8.1	
	256	256	27.3	9.0	
E	384	384	26.9	8.7	
	[256;512]	384	25.5	8.0	

Single Scale Evaluation 결과

데이터를 크게 넣을수록, 그리고 사이즈를 다양하게 넣을수록 정확도가 더 올라간다.

VGGNet

가장 심도있는 Data Preprocessing & Augmentation을 시도하였다 시도한 모든 결과를 벤치마킹 후 가장 좋은 설정을 제시함

Table 4: ConvNet performance at multiple test scales.

rable 4. Convinct per for mance at multiple test scales.				
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test (Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
Е	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Multi Scale Evaluation 결과

Test를 할 때도 이미지의 사이즈를 다양하게 넣는 것이 더 좋은 결과를 내었다.

VGGNet

가장 심도있는 Data Preprocessing & Augmentation을 시도하였다 시도한 모든 결과를 벤치마킹 후 가장 좋은 설정을 제시함

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was sampled from [256; 512], and three test scales Q were considered: $\{256, 384, 512\}$.

ConvNet config. (Table 1)	Evaluation method	top-1 val. error (%)	top-5 val. error (%)
	dense	24.8	7.5
D	multi-crop	24.6	7.5
	multi-crop & dense	24.4	7.2
	dense	24.8	7.5
E	multi-crop	24.6	7.4
	multi-crop & dense	24.4	7.1

Multi-crop Evaluation 결과. Dense와 multi-crop을 동시에 사용하면 약간의 성능 향상이 있었다.

Others

ResNet은 VGGNet과 거의 동일하므로 패스 그 외에는 rotation을 하거나 rescaling을 하는 등의 Augmentation도 어느정도 효과가 있다

- rotation: 0° 에서 360° 사이로 랜덤하게 돌린다.
- shifting: 랜덤하게 10픽셀씩 상하좌우로 움직인다.
- rescaling: 랜덤하게 1.0 ~ 1.6배로 사진을 키운다.
- flipping: 좌우로(내지는 상하로) 사진을 뒤집는다.
- shearing: -20° 에서 20° 도 사이로 랜덤하게 찌그러뜨린다.
- stretching: 랜덤하게 사진을 1.0 ~ 1.3배로 늘린다.

Summary

이미지를 그대로 넣는 것 보다, 수정을 거치거나 데이터를 강제로 늘린 뒤 넣는 것이 더 좋은 성능을 보장한다.

하지만 성능이 비약적으로 오르지 않는다는 점은 유의할 것. (+3%?) 이 성능 향상이 중요하다고 생각하면 하고, 아니면 안 하는 것이 좋다.

가장 자주 사용하는 것은

- 학습 데이터의 RGB 채널 값의 평균을 빼는 것. (수렴 속도가 빨라진다)
- 좌우 반전
- 이미지를 크게, 다양한 사이즈로 넣기

이 세 가지를 가장 많이 사용한다고 보면 된다.

실습