15 kwietnia 2016

1	2	3	4	KR1	KR2

- Proszę podpisać wszystkie kartki.
- 1 zadanie \equiv 1 kartka.
- 1. **15p.** Rozpatrujemy losowanie 6 spośród 49 liczb (Toto-Lotek). Każdy układ (zbiór 6 liczb) jest losowany z tym samym prawdopodobieństwem.
 - (a) Niech X będzie zmienną losową zdefiniowaną jako średnia arytmetyczna wylosowanych liczb. Obliczyć wartość oczekiwaną $\mathrm{E}(X)$.
 - (b) Niech Y będzie zmienną losową zdefiniowaną jako maksimum z wylosowanych liczb. Podać gęstość zmiennej Y.

[Do zadań 2–3] Zmienna losowa (X,Y) podlega rozkładowi o gęstości określonej wzorem: $f(x,y)=\frac{3}{2}\exp(-(x+y))$, gdzie $0 < y < 2x < \infty$.

- 2. **15p.** Obliczyć gęstość zmiennej (Z, W), gdzie $Z = \frac{X + Y}{2}$, $W = \frac{X Y}{2}$.
- 3. 15p. Wyznaczyć gęstość brzegową zmiennej Z.
- 4. **15p.** Dana jest ustalona liczba a oraz dwie niezależne zmienne losowe X i Y przyjmujące wartości z przedziału (0,1). Rozkład zmiennej X ma gęstość daną wzorem postaci c-ax. Zmienna Y ma rozkład jednostajny. Parę wartości (X,Y) tych zmiennych interpretujemy jako współrzędne losowego punktu na płaszczyźnie.
 - (a) Podać warunki, jakie muszą byc spełnione, aby funkcja c-ax mogła byc gęstością zmiennej X.
 - (b) Znaleźć prawdopodobieństwo zdarzenia polegającego na tym, że wylosowany punkt (X,Y) jest odległy od początku układu współrzędnych o mniej niż 1.
- 5. **Zadanie KR1 8p.** (X,Y) jest ciągłą zmienną losową o gęstości f(x,y). Podać szkic dowodu twierdzenia: E(X+Y)=E(X)+E(Y).
- 6. **Zadanie KR2** 8p. Wykazać, że wariancja różnicy dwóch niezależnych zmiennych losowych X,Y jest równa sumie wariancji tych zmiennych, a więc

$$V(X-Y) = V(X) + V(Y).$$

Czemu jest równa wariancja sumy dwóch takich zmiennych?

20 kwietnia 2017

1	2	3	4	KR1	KR2
Imię i					
nazwisko					

- Proszę podpisać wszystkie kartki.
- 1 zadanie \equiv 1 kartka.
- Rozwiązujemy 4 zadania z 6.
- 1. **15p.** Niezależne zmienne X_1, \ldots, X_n mają ten sam rozkład o wartościach dodatnich. Obliczyć

$$E\left(\sum_{i=1}^k X_i / \sum_{m=1}^n X_m\right)$$
, dla $k \le n$.

[Zadania 2–3] Rozważamy określony pierwiastek promieniotwórczy. Atomy takiego pierwiastka ulegają samorzutnemu rozpadowi w losowym momencie. Możemy obserwować atom tego pierwiastka (od pewnego momentu) i rozważać zmienną losową X, której wartością jest czas, jaki upłynął od rozpoczęcia obserwacji do rozpadu atomu. Zmienna ta ma rozkład wykładniczy z parametrem λ . Parametr rozkładu zależy od badanego pierwiastka, jest taki sam dla różnych atomów tego pierwiastka i nie zależy od momentu rozpoczęcia obserwacji. Różne atomy rozpadają się w zasadzie niezależnie od siebie.

2. **15p.**

- (a) Oblicz prawdopodobieństwo tego, że rozpad atomu nastąpił w n-tej godzinie obserwacji. (czyli oblicz prawdopodobieństwo tego, że zmienna X o rozkładzie wykładniczym z parametrem λ przyjmuje wartość z przedziału [n-1,n).)
- (b) Niech Y będzie zmienną losową przyjmującą dodatnie wartości naturalne, taką że Y=n wtedy i tylko wtedy, gdy rozpad obserwowanego atomu nastąpił w n-tej godzinie obserwacji (gdy $X \in [n-1,n)$, X taka, jak wyżej). Pokaż, że Y ma rozkład geometryczny z pewnym parametrem p. Jaki jest ten parametr?

3. **15p.**

(a) Przypuśćmy, że obserwujemy 100 atomów naszego pierwiastka. Z jakim prawdopodobieństwem w czasie t od momentu rozpoczęcia obserwacji rozpadnie się dokładnie 50 atomów? (czyli rozpatrujemy 100 niezależnych zmiennych losowych o rozkładach wykładniczych z tym samym parametrem λ . Z jakim prawdopodobieństwem dokładnie 50 tych zmiennych przyjmuje wartość < t.)

- (b) Znajdź t, dla którego prawdopodobieństwo rozpadu w czasie t dokładnie połowy ze 100 atomów jest największe. Jak zmienią się obliczenia, gdy zamiast 100 atomów będziemy rozważać ich 1000 lub innych (parzystą) ich liczbę.
- 4. **15p.** Zmienna losowa (X,Y) podlega rozkładowi o gęstości określonej wzorem: $f(x,y) = \frac{3}{2} \exp(-(x+y)), \text{ gdzie } 0 < x < 2y < \infty.$ Obliczyć gęstość zmiennej (Z,W), gdzie $Z = \frac{X+Y}{2}$, $W = \frac{X-Y}{2}$.
- 5. **Zadanie KR1 12p.** Niezależne zmienne losowe X_1, X_2, \dots, X_N mają rozkład $N(\mu, \sigma^2)$. Wiadomo, że $M_{X_k}(t) = \mathrm{e}^{\mu t + \sigma^2 t^2/2}$. Jaki rozkład ma zmienna Z?

$$Z = \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}\right)^2.$$

6. **Zadanie KR2** – **8p.** Wykazać, że wariancja sumy dwóch niezależnych zmiennych losowych X, Y jest równa sumie wariancji tych zmiennych, a więc

$$V(X + Y) = V(X) + V(Y).$$

Witold Karczewski

RPiS - Kolokwium

Zestaw NC

20 kwietnia 2017

1	2	3	4	KR1	KR2
Imię i					
nazwisko					

- Proszę podpisać wszystkie kartki.
- 1 zadanie \equiv 1 kartka.
- Rozwiązujemy 4 zadania z 6.

1. **15p.** Niezależne zmienne X_1, \dots, X_n mają ten sam rozkład o wartościach dodatnich. Obliczyć

$$E\left(\sum_{i=1}^{k} X_i / \sum_{m=1}^{n} X_m\right)$$
, dla $k \le n$.

2. **15p.** Zmienna losowa (X,Y) podlega rozkładowi o gęstości określonej wzorem:

$$f(x,y) = \frac{3}{2} \exp(-(x+y)), \text{ gdzie } 0 < x < 2y < \infty.$$

Obliczyć gęstość zmiennej
$$(Z, W)$$
, gdzie $Z = \frac{X + Y}{2}$, $W = \frac{X - Y}{2}$.

3. **15p.** Niezależne zmienne losowe X_1,X_2,\ldots,X_N mają rozkład $N(\mu,\sigma^2)$. Wiadomo, że $M_{X_k}(t)=\mathrm{e}^{\mu t+\sigma^2t^2/2}$. Jaki rozkład ma zmienna Z?

$$Z = \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}\right).$$

- 4. **15p.** Zmienna losowa X ma rozkład wykładniczy, tzn. $f(x) = \lambda \exp(-\lambda x)$, dla $x \in (0, \infty)$.
 - (a) Wyznaczyć postać funkcji tworzącej momenty $M_X(t)$.
 - (b) Obliczyć E(X) i V(X).
- 5. **Zadanie KR1 8p.** (X,Y) jest dyskretną zmienną losową o prawdopodobieństwach p_{ij} $(i=1,\ldots,I;\ j=1,\ldots,J)$. Podać szkic dowodu twierdzenia: $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$.

6. **Zadanie KR2** – 8p. Wykazać, że wariancja sumy dwóch niezależnych zmiennych losowych X,Y jest równa sumie wariancji tych zmiennych, a więc

$$V(X + Y) = V(X) + V(Y).$$

Czemu jest równa wariancja różnicy dwóch takich zmiennych?

Witold Karczewski

17 kwietnia 2018

1	2	3	4	KR1	KR2

- Proszę podpisać wszystkie kartki (numerem indeksu lub nazwiskiem czytelnie).
- 1 zadanie \equiv 1 kartka (lub więcej).
- ullet Na zakończenie w powyższej tabelce przekreślić znakiem ${f X}$ zadania "do sprawdzenia".

[Do zadań 1–2] Niezależne zmienne losowe X_1, X_2 mają rozkład o gęstości $f(x) = xe^{-x}$, dla x > 0.

1. 15p. Obliczyć

- (a) $E(X_1)$ i $E(1/X_1)$.
- (b) $P(X_1 > 2X_2)$.
- (c) Niech $Y_1 = X_1 + X_2$, $Y_2 = \frac{X_1}{X_2}$. Obliczyć gęstość $g(y_1, y_2)$.
- 2. **15p.** Załóżmy, że $g(y_1, y_2) = \frac{y_1^3 y_2}{(y_2 + 1)^4} e^{-y_1}$.
 - (a) Wyznaczyć gęstości brzegowe $g_1(y_1), g_2(y_2)$.
 - (b) Czy zmienne Y_1, Y_2 są niezależne?
 - (c) Obliczyć (w możliwie krótki sposób) $E(Y_2)$.
- 3. **15p.** Załóżmy, że niezależne zmienne losowe mają rozkład $X_i \sim N(\mu, \sigma^2), (i = 1, ..., n)$. Obliczamy $S^2 = \frac{1}{n} \sum_{k=1}^{n} (X_k \bar{X})^2$. Jak obliczyć E(X), V(X)?

WSKAZÓWKI: Gamma
$$\left(\frac{1}{2}, \frac{n}{2}\right) \equiv \chi^2(n); \quad M_{\text{Gamma}(b,p)}(t) = \left(1 - \frac{t}{b}\right)^{-p}.$$

- 4. **15p.** Nieprawdopodobne lecz prawdziwe. Grupa n studentów napisała kolokwium i nikt nie podpisał się. Początkowo rozwiązania przydzielono losowo do piszących. Wartością zmiennej losowej X jest liczba piszących ocenionych na podstawie swojej pracy. Obliczyć E(X).
- 5. **Zadanie KR1 8p.** (X,Y) jest ciągłą zmienną losową o gęstości f(x,y). Zmienne X,Y są niezależne. Podać (szkic) dowód twierdzenia: $\mathrm{E}(X\cdot Y)=\mathrm{E}(X)\cdot\mathrm{E}(Y)$.
- 6. **Zadanie KR2 8p.** X jest zmienną losową o rozkładzie dyskretnym. Udowodnić, że $V(X) = E(X^2) (EX)^2$