Worked Examples from Introductory Physics Vol. II: Rotation, Vibrations and Waves

David Murdock Tenn. Tech. Univ.

December 27, 2008

Contents

To	To the Student. Yeah, You.							
1	Rot	ation o	of an Object About a Fixed Axis	1				
	1.1		nportant Stuff	1				
		1.1.1	Rigid Bodies; Rotation	1				
		1.1.2	Angular Displacement	2				
		1.1.3	Angular Velocity	2				
		1.1.4	Angular Acceleration; Constant Angular Acceleration	3				
		1.1.5	Relationship Between Angular and Linear Quantities	3				
		1.1.6	Rotational Kinetic Energy	4				
		1.1.7	The Moment of Inertia; The Parallel Axis Theorem	5				
		1.1.8	Torque	5				
		1.1.9	Torque and Angular Acceleration (Newton's Second Law for Rotations)	8				
		1.1.10	Work, Energy and Power in Rotational Motion	9				
		1.1.11	The New Equations Look Like the Old Equations	9				
	1.2	Worke	d Examples	10				
		1.2.1	Angular Displacement	10				
		1.2.2	Angular Velocity	11				
		1.2.3	Angular Acceleration; Constant Angular Acceleration	11				
		1.2.4	Relationship Between Angular and Linear Quantities	15				
		1.2.5	Rotational Kinetic Energy	16				
		1.2.6	The Moment of Inertia (and More Rotational Kinetic Energy)	17				
		1.2.7	Torque	19				
		1.2.8	Torque and Angular Acceleration (Newton's Second Law for Rotations)	21				
		1.2.9	Work, Energy and Power in Rotational Motion	27				
2	Rol	ling M	otion; Angular Momentum	35				
-	2.1	_	nportant Stuff	35				
	2.1	2.1.1	Rolling Without Slipping	35				
		2.1.2	Torque as a Vector (A Cross Product)	36				
		2.1.3	Angular Momentum of a Particle and of Systems of Particles	36				
		2.1.4	Angular Momentum for Rotation About a Fixed Axis	37				
		2.1.5	The Conservation of Angular Momentum	37				
	2.2		d Examples	38				
			1					

4 CONTENTS

		2.2.1	Rolling Without Slipping						
		2.2.2	Torque as a Vector (A Cross Product)						
			Angular Momentum of a Particle and of Systems of Particles 4						
			Angular Momentum for Rotation About a Fixed Axis						
		2.2.5	The Conservation of Angular Momentum						
3	Sta	tatic Equilibrium 5							
	3.1	_	portant Stuff						
			Conditions for Equilibrium of a Rigid Object						
			Two Important Facts for Working Statics Problems						
			Examples of Rigid Objects in Static Equilibrium						
	3.2		l Examples						
			Examples of Rigid Objects in Static Equilibrium						
4	Osc	illatory	Motion 6						
	4.1	•	portant Stuff						
			Simple Harmonic Motion						
			Mass Attached to a Spring						
			Energy and the Simple Harmonic Oscillator						
			Relation to Uniform Circular Motion						
			The Pendulum						
	4.2		l Examples						
			Simple Harmonic Motion						
		4.2.2	Mass Attached to a Spring						
		4.2.3	Energy and the Simple Harmonic Oscillator						
		4.2.4	The Simple Pendulum						
		4.2.5	Physical Pendulums						
5	Wa	ves I: G	deneralities, Superposition & Standing Waves 8						
	5.1	The Im	portant Stuff						
		5.1.1	Wave Motion						
		5.1.2	Types of Waves						
			Mathematical Description of a Wave; Wavelength, Frequency and Wave						
			Speed						
		5.1.4	Waves on a Stretched String						
			The Principle of Superposition						
		5.1.6	Interference of Waves						
		5.1.7	Standing Waves						
			Standing Waves on Strings Under Tension						
	5.2		l Examples						
			Wavelength, Frequency and Speed						
			Waves on a Stretched String						
			Superposition; Interference of Waves						
		5.2.4	Standing Waves on a Stretched String						

CONTENTS 5

6	Waves II: Sound Waves							
	6.1	The In	nportant Stuff	97				
		6.1.1	Sound Waves; The Speed of Sound	97				
		6.1.2	Interference of Sound Waves	97				
		6.1.3	Intensity and Sound Level	97				
		6.1.4	Standing Waves in Pipes	97				
		6.1.5	Beats	97				
		6.1.6	The Doppler Effect	98				
	6.2	Worke	d Examples	98				
		6.2.1	Sound Waves; The Speed of Sound	98				
		6.2.2	Intensity and Sound Level	100				
Aı	open	dix A:	Conversion Factors	103				

6 CONTENTS

To the Student. Yeah, You.

Hi. It's me again. Since you have obviously read all the stuffy pronouncements about the purpose of this problem–solving guide in Volume 1 (The Green Book), I won't make them again here.

I will point out that I've got *lots* more work to do on Volume 2, and I'm just making it available so that these chapters (such as they are) may be of some help to you. In fact, the whole set of books is a perpetual work in progress.

However....

Reactions, please!

Please help me with this project: Give me your reaction to this work: Tell me what you liked, what was particularly effective, what was particularly confusing, what you'd like to see more of or less of. I can be reached at murdock@tntech.edu or even at x-3044. If this effort is helping you to learn physics, I'll do more of it!

DPM