COMP 9602: Convex Optimization

Methods for Nonconvex Optimization

Dr. C Wu

Department of Computer Science The University of Hong Kong

Methods for nonconvex optimization problems

- Convex optimization algorithms are in general
 - global (find global minimum)
 - fast (run in polynomial-time)

- ☐ For general nonconvex problems, we have to give up one
 - local optimization methods are fast, but may not find global minimum (and even when they do, cannot certify it)
 - global optimization methods find global minimum (and certify it), but are often slow

Branch and bound

- Methods for global optimization for nonconvex problems
- Basic idea
 - partition feasible set into convex sets, and find lower/upper bounds for each
 - maintain global lower and upper bounds; quit if they are close enough to each other
 - else, refine partition and repeat
- Often slow; exponential worst-case performance
- but (with luck) can (sometimes) work well

Branch and bound algorithm for unconstrained optimization

- \square Problem: find global minimum of function $f: {\bf R}^m \to {\bf R}$, over a m-dimensional rectangle $\mathcal{Q}_{\rm init},$ to within some preset accuracy ϵ
- Algorithm sketch:
 - 1. compute lower and upper bounds on f^{\star}
 - set $L_1 = \Phi_{\rm lb}(\mathcal{Q}_{\rm init})$ and $U_1 = \Phi_{\rm ub}(\mathcal{Q}_{\rm init})$
 - terminate if $U_1 L_1 \le \epsilon$
 - 2. partition (split) Q_{init} into two rectangles $Q_{init} = Q_1 \cup Q_2$
 - 3. compute $\Phi_{\mathrm{lb}}(\mathcal{Q}_i)$ and $\Phi_{\mathrm{ub}}(\mathcal{Q}_i)$, i=1,2
 - 4. update lower and upper bounds on f^*
 - update lower bound: $L_2 = \min\{\Phi_{lb}(\mathcal{Q}_1), \Phi_{lb}(\mathcal{Q}_2)\}$
 - update upper bound: $U_2 = \min\{\Phi_{ub}(\mathcal{Q}_1), \Phi_{ub}(\mathcal{Q}_2)\}$
 - terminate if $U_2 L_2 \le \epsilon$
 - 5. refine partition, by splitting Q_1 or Q_2 , and repeat steps 3 and 4

Local search

- A heuristic method to solve computationally hard problems
 - moves from solution to solution in the space of candidate solutions (i.e., search space) by applying local changes, until a solution deemed optimal is found or a bound on the number of steps/time taken is reached
- Problems that local search has been applied for
 - minimum vertex cover problem
 - travelling salesman problem
 - boolean satisfiability problem

Local search

- A neighborhood of a solution needs to be defined in the search space
 - minimum vertex cover problem neighborhood of a vertex cover c: contains all vertex covers differing from c only by one node
 - travelling salesman problem k-change neighbourhood for a tour f: contains all tours that can be obtained from f by removing k edges and replacing them with k edges

Key elements in a local search algorithm

- How to choose a good neighbourhood for the problem
 - guided by intuition
 - very little theory available as a guide
- Which solution in the neighborhood to move to
 - decided using only information in the neighborhood
 - can get stuck in a local optimal point tackled by starting local search at different initial points or using more complex approaches, e.g., iterate local search, simulated annealing
- ☐ How to obtain the starting feasible solution(s)
 - how many starting points to try and how to distribute them

Sequential convex programming (SCP)

- A local optimization method for nonconvex problems based on solving a sequence of convex problems
- SCP is a heuristic
 - may fail to find optimal (even feasible) point
 - results often depend on the starting point(s)
- □ SCP often works well, i.e., finds a feasible point with good, if not optimal, objective value

Problem

we consider nonconvex problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad j=1,\ldots,p$

with variable $x \in \mathbf{R}^n$

- f_0 and f_i (possibly) nonconvex
- h_i (possibly) non-affine

Basic idea of SCP

- maintain estimate of solution $x^{(k)}$, and convex **trust region** $\mathcal{T}^{(k)} \subset \mathbf{R}^n$
- ullet form convex approximation \hat{f}_i of f_i over trust region $\mathcal{T}^{(k)}$
- ullet form affine approximation \hat{h}_i of h_i over trust region $\mathcal{T}^{(k)}$
- $x^{(k+1)}$ is optimal point for approximate convex problem

minimize
$$\hat{f}_0(x)$$
 subject to $\hat{f}_i(x) \leq 0, \quad i=1,\ldots,m$ $\hat{h}_i(x)=0, \quad i=1,\ldots,p$ $x \in \mathcal{T}^{(k)}$

Trust region

• typical trust region is box around current point:

$$\mathcal{T}^{(k)} = \{ x \mid |x_i - x_i^{(k)}| \le \rho_i, \ i = 1, \dots, n \}$$

• if x_i appears only in convex inequalities and affine equalities, can take $\rho_i = \infty$

Affine and convex approximation

For differentiable functions

Use first-order Taylor expansion for the affine approximation

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)})$$

Use (convex part of) second-order Taylor expansion for the convex approximation

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + (1/2)(x - x^{(k)})^T P(x - x^{(k)})$$

$$P = (\nabla^2 f(x^{(k)}))_+$$
, PSD part of Hessian

Affine and convex approximation

- For nondifferentiable and differentiable functions
 - particle method
 - choose points $z_1, \ldots, z_K \in \mathcal{T}^{(k)}$ (e.g., all vertices, some vertices, grid, random, . . .)
 - evaluate $y_i = f(z_i)$
 - fit data (z_i, y_i) with convex (affine) function (using convex optimization)

Reference

- branchbound_notes.pdf, scp_notes.pdf (reference 9 on Moodle)
- Chapter 18, 19, C. Papadimitriou, K. Steiglitz, Combinational Optimization: Algorithms and Complexity

Acknowledgement

Some materials are extracted from the slides created by Prof. Stephen Boyd for his course EE364b in Stanford University