CLAIMS

What is claimed is:

1. An isolated, unnatural polypeptide compound selected from the group consisting of:

$$A - X_a - Y - Z_c - A_d$$

wherein:

each X and each Z is independently variable and is selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, provided that at least one X or Z comprises an α -amino acid residue and at least another two of X or Z comprise two cyclically-constrained γ -amino acid residues; and

wherein each cyclically-constrained γ -amino acid residue is independently selected from the group consisting of:

wherein R, together with the carbons to which it is attached, and further together with the β -position carbon in the γ -amino acid backbone where appropriate, independently defines a substituted or unsubstituted, monocyclic or bicyclic C_4 to C_{10} cycloalkyl, cycloalkenyl, or heterocycle moiety, the heterocycle moiety having 1, 2, or 3 heteroatoms selected from the group consisting of N, S, and O; and

each "Y" is independently variable and is a single bond or a reverse-turn moiety; and

each "A" is independently selected from the group consisting of hydrogen, hydroxy, an amino-terminus protecting group, and a carboxyterminus protecting group; and

each "a," "c," and "d" is an independently variable positive integer, and wherein "a" + "c" > 3; and salts thereof.

2. The compound of Claim 1, wherein each R, together with the carbons to which it is attached and together with a β -position carbon in the γ -amino acid backbone when the β -position carbon is present, independently defines a substituted C_5 to C_6 cycloalkyl, cycloalkenyl, or heterocycle moiety having a single nitrogen heteroatom; and

substituents on the cycloalkyl, cycloalkenyl, or heterocycle moieties are independently selected from the group consisting of linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N. O. and S: mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, - $(CH_2)_{n+1}$ - OR^2 , - $(CH_2)_{n+1}$ - SR^2 , - $(CH_2)_{n+1}$ -S(=O)- CH_2-R^2 , $-(CH_2)_{n+1}-S(=O)_2-CH_2-R^2$, $-(CH_2)_{n+1}-NR^2R^2$, $-(CH_2)_{n+1}-NR^2R^2$ $NHC(=O)R^2$, $-(CH_2)_{n+1}$ - $NHS(=O)_2$ - CH_2 - R^2 , $-(CH_2)_{n+1}$ -O- $(CH_2)_m$ - R^1 , $-(CH_2)_{n+1}-S-(CH_2)_m-R^1$, $-(CH_2)_{n+1}-S(=O)-(CH_2)_m-R^1$, $-(CH_2)_{n+1}-S(=O)_2 (CH_2)_m - R^1$, $-(CH_2)_{n+1} - NH - (CH_2)_m - R^1$, $-(CH_2)_{n+1} - N - \{(CH_2)_m - R^1\}_2$, $-(CH_2)_{n+1}-NHC(=O)-(CH_2)_{n+1}-R^1$, $-(CH_2)_{n+1}-NHS(=O)_2-(CH_2)_m-R^1$; $-(CH_2)_n - OR, -(CH_2)_n - SR^2, -(CH_2)_n - S(=O) - CH_2 - R^2, -(CH_2)_n - S(=O)_2 - CH_2$ R^2 , $-(CH_2)_n - NR^2R^2$, $-(CH_2)_n - NHC(=O)R^2$, $-(CH_2)_n - NHS(=O)_2 - CH_2 - R^2$, $-(CH_2)_n - O - (CH_2)_m - R^1$, $-(CH_2)_n - S - (CH_2)_m - R^1$, $-(CH_2)_n - S(=O) - (CH_2)_m - R^1$, $-(CH_2)_n - S(=O)_2 - (CH_2)_m - R^1$, $-(CH_2)_n - NH_2$ $(CH_2)_m - R^1$, $-(CH_2)_n - N - \{(CH_2)_m - R^1\}_2 - (CH_2)_n - NHC = O - (CH_2)_m - R^1$, and - $(CH_2)_n$ -NHS(=O)₂- $(CH_2)_m$ -R¹;

wherein m is an integer of from 2-6 and n is an integer of

from 0-6;

wherein R^2 is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

wherein R¹ is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C1-C6-alkylamino, monoor diarylamino, mono- or diheteroarylamino, N-alkyl-Narylamino, N-alkyl-N-heteroarylamino, N-aryl-Nheteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, C1-C6-alkyl ester, aryl ester, heteroaryl ester, sulfonic acid, sulfonamide, mono- or di-C1-C6alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the subsitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane.

3. The compound of Claim 1, wherein each Y is a single bond or a reverse turn moiety independently selected from group consisting of a prolyl-glycolic acid residue, a di-nipecotic acid residue, or a compound of the following formula:

where each R^3 is independently variable and is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, and mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

where each R⁴ is selected from the group consisting of hydroxy, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl; mono- or bicyclic heteroaryl-C₁-C₆-alkyl; C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, N-alkyl-N-

arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane.

4. An isolated, unnatural polypeptide compound selected from the group consisting of:

$$A - \begin{bmatrix} X_a - Y - Z_c \end{bmatrix} A$$

wherein:

each X and each Z is independently variable and is selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, provided that at least one X or Z comprises an α -amino acid residue and at least another two of X or Z comprise two cyclically-constrained β -amino acid residues; and

wherein each cyclically-constrained β -amino acid residue is independently selected from the group consisting of:

wherein V and W are combined, together with the carbon atoms to which they are bonded, and independently define a substituted or unsubstituted,

125

monocyclic or bicyclic C_3 - C_{10} cycloalkyl, cycloalkenyl or heterocyclic ring having one or more N, O or S atom(s) as the heteroatom(s);

the substituents on carbon atoms of the rings being independently selected from the group consisting of linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, and the substituents listed above for V and W when V and W are not combined;

the substituents on nitrogen heteroatoms of the rings being independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -S(=O)₂- R^{17} , -C(=O)- R^{17} , -S(=O)₂- C_{10} - C_{10} -C

wherein R^{17} is independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

wherein R^{18} is independently selected from the group consisting of hydroxy, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl; mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl, heteroarylthio, heteroarylsulfinyl,

heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N- arylamino, N-alkyl-N-heteroarylamino, N-aryl-N- heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the subsitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein each cyclically-constrained β -amino acid residue is further selected from the group consisting of:

wherein R^5 and R^6 are independently selected from the group consisting of hydrogen, hydroxy, linear, branched, or cyclic C_1 - C_{16} -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_{16} alkylamino; mono- or bicyclic aryl; mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_{16} -alkyl; mono- or bicyclic heteroaryl- C_1 - C_{16} -alkyl; - $(CH_2)_{0.6}$ - OR^7 , - $(CH_2)_{0.6}$ - SR^7 , - $(CH_2)_{0.6}$ -S(=O)-

 $CH_{2}-R^{7}, -(CH_{2})_{0.6}-S(=O)_{2}-CH_{2}-R^{7}, -(CH_{2})_{0.6}-NR^{7}R^{7}, -(CH_{2})_{0.6}-NHC(=O)R^{7}, -(CH_{2})_{0.6}-NHS(=O)_{2}-CH_{2}-R^{7},$ $-(CH_{2})_{0.6}-C(=O)-OH, -(CH_{2})_{0.6}-C(=O)-OR^{7}, -(CH_{2})_{0.6}-C(=O)-NH_{2}, -(CH_{2})_{0.6}-C(=O)-NHR^{7}, -(CH_{2})_{0.6}-C(=O)-N(R^{7})_{2}, -(CH_{2})_{0.6}-O-(CH_{2})_{2.6}-R^{8},$ $-(CH_{2})_{0.6}-S-(CH_{2})_{2.6}-R^{8}, -(CH_{2})_{0.6}-S(=O)-(CH_{2})_{2.6}-R^{8}, -(CH_{2})_{0.6}-S(=O)_{2}-(CH_{2})_{2.6}-R^{8}, -(CH_{2})_{0.6}-NH-(CH_{2})_{2.6}-R^{8}, -(CH_{2})_{0.6}-N-\{(CH_{2})_{2.6}-R^{8}\}_{2},$ $-(CH_{2})_{0.6}-NHC(=O)-(CH_{2})_{2.6}-R^{8}, \text{ and } -(CH_{2})_{0.6}-NHS(=O)_{2}-(CH_{2})_{2.6}-R^{8};$

wherein

 R^7 is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

 R^8 is selected from the group consisting of hydroxy, C_1 - C_6 alkyloxy, aryloxy, heteroaryloxy, thio, C1-C6-alkylthio, C1-C6alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, monoor diarylamino, mono- or diheteroarylamino, N-alkyl-Narylamino, N-alkyl-N-heteroarylamino, N-aryl-Nheteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl,

heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein each cyclically-constrained β -amino acid residues is further selected from the group consisting of:

wherein R^9 , R^{10} , and R^{13} are independently selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl, mono-or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -(CH_2)₁₋₆- OR^{11} , -(CH_2)₁₋₆- SR^{11} , -(CH_2)₁₋₆-S(=O)- CH_2 - R^{11} , -(CH_2)₁₋₆- $NR^{11}R^{11}$, -(CH_2)₁₋₆- $NHC(=O)R^{11}$, -(CH_2)₁₋₆- $NHS(=O)_2$ - CH_2 - R^{11} , -(CH_2)₀₋₆-C(=O)-OH, -(CH_2)₀₋₆-C(=O)- OR^{11} , -(CH_2)₀₋₆-C(=O)- OR^{11} , -(CH_2)₁₋₆-O-(CH_2)₂₋₆-C(=O)- OR^{11} , -(CH_2)₁₋₆-O-(CH_2)₂₋₆-C(=O)- OR^{11} , -(CH_2)₁₋₆-O-(CH_2)₂₋₆-O-(CH_2)₂₋₆-O-(CH_2)₂₋₆-O-(CH_2)₂₋₆-O-(OR^{12})₂₋₆-O-(OR^{12})₂₋₆-O-(OR^{12})₂₋₆- OR^{12} , -($OR^$

 R^{11} is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

R¹² is selected from the group consisting of hydroxy, C₁-C₆alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, monoor diarylamino, mono- or diheteroarylamino, N-alkyl-Narylamino, N-alkyl-N-heteroarylamino, N-aryl-Nheteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and Oheteroarylurethane;

 R^{14} is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, - $S(=O)_2$ -(CH_2)₁₋₆- R^{11} , - $C(=O)R^{11}$, - $S(=O)_2$ -(CH_2)₂₋₆ R^{12} , and -C(=O)-(CH_2)₁₋₆- R^{12} ; wherein R^{11} and R^{12} are as defined above;

 R^{15} and R^{16} are selected from the group listed above for R^9 , R^{10} , and R^{13} , and are further selected from the group consisting of hydroxy, C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl,

arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- dior tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

each "Y" is independently variable and is a single bond or a reverse-turn moiety; and

each "A" is independently selected from the group consisting of hydrogen, hydroxy, an amino-terminus protecting group, and a carboxyterminus protecting group; and

each "a," "c," and "d" is an independently variable positive integer, and wherein "a" + "c" > 3; and salts thereof.

5. The compound of Claim 4, wherein each Y is a single bond or a reverse turn moiety independently selected from group consisting of a prolyl-glycolic acid residue, a di-nipecotic acid residue, or a compound of the following formula:

where each R^3 is independently variable and is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, and mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

where each R⁴ is selected from the group consisting of hydroxy, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl; mono- or bicyclic heteroaryl-C₁-C₆alkyl; C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C1-C6alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-Narylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-Narylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane.

6. An isolated, unnatural polypeptide compound selected from the group consisting of:

$$A - \left[X_a - Y - Z_c - \right]_d A$$

wherein:

each X and each Z is independently variable and is selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, provided that at least one X or Z is an α -amino acid residue and at least another two of X or Z comprise two cyclically-constrained residues, the two cyclically-constrained residues comprising cyclically-constrained β -amino acid residues or cyclically-constrained γ -amino acid residues, or one cyclically-constrained β -amino acid residue; and

wherein the cyclically-constrained β -amino acid residues are selected from the group consisting of:

wherein V and W are combined, together with the carbon atoms to which they are bonded, and independently define a substituted or unsubstituted, monocyclic or bicyclic C_3 - C_{10} cycloalkyl, cycloalkenyl or heterocyclic ring having one or more N, O or S atom(s) as the heteroatom(s);

133

the substituents on carbon atoms of the rings being independently selected from the group consisting of linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl-C₁-C₆-alkyl, and the substituents listed above for V and W when V and W are not combined;

the substituents on nitrogen heteroatoms of the rings being independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, - $S(=O)_2$ - R^{17} , -C(=O)- R^{17} , - $S(=O)_2$ - $(CH_2)_{n+1}$ - R^{18} , and -C(=O)- $(CH_2)_n$ - R^{18} , where n = 1 to 6;

wherein R^{17} is independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

wherein R^{18} is independently selected from the group consisting of hydroxy, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl; mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, arylthio, arylsulfinyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-

arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the subsitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein the cyclically-constrained β -amino acid residues are further selected from the group consisting of:

wherein R^5 and R^6 are independently selected from the group consisting of hydrogen, hydroxy, linear, branched, or cyclic C_1 - C_{16} -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_{16} alkylamino; mono- or bicyclic aryl; mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_{16} -alkyl; mono- or bicyclic heteroaryl- C_1 - C_{16} -alkyl; - $(CH_2)_{0.6}$ - OR^7 , - $(CH_2)_{0.6}$ - SR^7 , - $(CH_2)_{0.6}$ -S(=O)- CH_2 - R^7 , - $(CH_2)_{0.6}$ - NR^7R^7 , - $(CH_2)_{0.6}$ - $NHC(=O)R^7$, - $(CH_2)_{0.6}$ - $NHS(=O)_2$ - CH_2 - R^7 , - $(CH_2)_{0.6}$ -C(=O)- CH_2 -C(=O)-C(=O)-C(=O)-C(=O)- CH_2 -C(=O)-C(=

$$\begin{split} & \text{C(=O)-NHR}^7, \text{-(CH}_2)_{0.6}\text{-C(=O)-N(R}^7)_2, \text{-(CH}_2)_{0.6}\text{-O-(CH}_2)_{2.6}\text{-R}^8, \text{-(CH}_2)_{0.6}\text{-S-}\\ & \text{(CH}_2)_{2.6}\text{-R}^8, \text{-(CH}_2)_{0.6}\text{-S(=O)-(CH}_2)_{2.6}\text{-R}^8, \text{-(CH}_2)_{0.6}\text{-S(=O)}_2\text{-(CH}_2)_{2.6}\text{-R}^8, \\ & \text{-(CH}_2)_{0.6}\text{-NH-(CH}_2)_{2.6}\text{-R}^8, \text{-(CH}_2)_{0.6}\text{-N-{(CH}_2)}_{2.6}\text{-R}^8}\}_2, \text{-(CH}_2)_{0.6}\text{-NHC(=O)-}\\ & \text{(CH}_2)_{2.6}\text{-R}^8, \text{ and -(CH}_2)_{0.6}\text{-NHS(=O)}_2\text{-(CH}_2)_{2.6}\text{-R}^8; \text{ wherein} \end{split}$$

R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl-C₁-C₆-alkyl; and

R⁸ is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, Nalkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C1-C6-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-Narylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and Oheteroarylurethane;

and wherein the cyclically-constrained β -amino acid residues are further selected from the group consisting of:

wherein R^9 , R^{10} , and R^{13} are independently selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -(CH₂)₁₋₆-OR¹¹, -(CH₂)₁₋₆-SR¹¹, -(CH₂)₁₋₆-S(=O)-CH₂-R¹¹, -(CH₂)₁₋₆-S(=O)₂-CH₂-R¹¹, -(CH₂)₁₋₆-NR¹¹R¹¹, -(CH₂)₁₋₆-NHC(=O)R¹¹, -(CH₂)₁₋₆-NHS(=O)₂-CH₂-R¹¹, -(CH₂)₀₋₆-C(=O)-OH, -(CH₂)₀₋₆-C(=O)-OR¹¹, -(CH₂)₀₋₆-C(=O)-NH₂, -(CH₂)₀₋₆-C(=O)-NHR¹¹, -(CH₂)₀₋₆-C(=O)-N(R¹¹)₂, -(CH₂)₁₋₆-O-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-S(=O)₂-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-S(=O)₂-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-NH-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-N-{(CH₂)₂₋₆-R¹²}₂, -(CH₂)₁₋₆-NH-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-N-{(CH₂)₂₋₆-R¹²}₂, -(CH₂)₁₋₆-NH-(CH₂)₂₋₆-R¹², and -(CH₂)₁₋₆-NHS(=O)₂-(CH₂)₂₋₆-R¹²; wherein

R¹¹ is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl-C₁-C₆-alkyl; and

R¹² is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-aryl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-alkyl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or diheteroarylsulfonamide, mono- or diarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-

heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane;

 R^{14} is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono-or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, - $S(=O)_2$ -(CH_2)₁₋₆- R^{12} , - $C(=O)R^{11}$, - $C(=O)R^{11}$, - $C(=O)_2$ -(CH_2)₂₋₆ R^{12} , and -C(=O)-(CH_2)₁₋₆- R^{12} ; wherein R^{11} and R^{12} are as defined above;

R¹⁵ and R¹⁶ are selected from the group listed above for R⁹, R¹⁰, and R¹³, and are further selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, Nalkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-Narylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and Oheteroarylurethane; and

wherein the cyclically-constrained γ -amino acid residues are selected from the group consisting of:

$$\begin{array}{c|c} & & & \\ \hline & & \\$$

wherein R, together with the carbons to which it is attached, and further together with the β -position carbon in the γ -amino acid backbone where appropriate, independently defines a substituted or unsubstituted, monocyclic or bicyclic C_3 to C_{10} cycloalkyl, cycloalkenyl, or heterocycle moiety, the heterocycle moiety having 1, 2, or 3 heteroatoms selected from the group consisting of N, S, and O; and

each "Y" is independently variable and is a single bond or a reverse-turn moiety; and

each "A" is independently selected from the group consisting of hydrogen, hydroxy, an amino-terminus protecting group, and a carboxy-terminus protecting group; and

each "a," "c," and "d" is an independently variable positive integer, and wherein "a" + "c" > 3; and

salts thereof.

7. The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained γ -amino acid residue independently selected from the group consisting of:

- 8. The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained β -amino acid residue wherein V and W, and the carbon atoms to which they are bonded, define a substituted or unsubstituted C_4 to C_6 cycloalkyl, cycloalkenyl, or heterocyclic ring having one nitrogen atom as the sole heteratom.
- 9. The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained β -amino acid residue wherein V and W, and the carbon atoms to which they are bonded, define a substituted or unsubstituted cyclopentyl, cyclohexyl, pyrrolidinyl, or piperdinyl ring.
- 10. The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained γ -amino acid residue wherein each R, together with the carbons to which it is attached and together with the β -position carbon in the γ -amino acid backbone where appropriate, independently defines a substituted C_5 to C_6 cycloalkyl, cycloalkenyl, or heterocycle moiety having a single nitrogen heteroatom; and

$$\begin{split} &\mathrm{NHC}(=\mathrm{O})\mathrm{R}^2, -(\mathrm{CH}_2)_{n+1} - \mathrm{NHS}(=\mathrm{O})_2 - \mathrm{CH}_2 - \mathrm{R}^2, \ -(\mathrm{CH}_2)_{n+1} - \mathrm{O} - (\mathrm{CH}_2)_{m} - \mathrm{R}^1, \\ &-(\mathrm{CH}_2)_{n+1} - \mathrm{S} - (\mathrm{CH}_2)_{m} - \mathrm{R}^1, \ -(\mathrm{CH}_2)_{n+1} - \mathrm{S}(=\mathrm{O}) - (\mathrm{CH}_2)_{m} - \mathrm{R}^1, \ -(\mathrm{CH}_2)_{n+1} - \mathrm{NH} - (\mathrm{CH}_2)_{m} - \mathrm{R}^1, \ -(\mathrm{CH}_2)_{n+1} - \mathrm{N} - \{(\mathrm{CH}_2)_{m} - \mathrm{R}^1\}_2, \ -(\mathrm{CH}_2)_{n+1} - \mathrm{NH} - (\mathrm{CH}_2)_{n+1} - \mathrm{N} + \mathrm{NH} - (\mathrm{CH}_2)_{m} - \mathrm{N} + \mathrm{N}$$

wherein m is an integer of from 2-6 and n is an integer of from 0-

6;

wherein R² is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl-C₁-C₆-alkyl; and

wherein R¹ is selected from the group consisting of hydroxy, C₁-C₀-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₀-alkylsulfinyl, C₁-C₀-alkylsulfinyl, arylsulfinyl, arylsulfinyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfinyl, amino, mono- or di-C₁-C₀-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₀-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₀-alkylamino, carboxamide, mono- or diarylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₀-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diarylsulfonamide, mono- or diarylsulfonamide, mono- or

diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane.

11. A method of probing, disrupting, or mimicking binding interactions between two protein molecules or fragments thereof, the method comprising:

in an in vivo, in vitro, or ex vivo reaction between the two proteins,

- (a) introducing to the reaction an unnatural polypeptide compound according to Claim 1; and then
- (b) quantifying any effect of the added compound from step (a) on thermodynamic or kinetic parameters of the binding interaction between the two protein molecules or fragments thereof.
- 12. An isolated, unnatural polypeptide comprising four or more residues, wherein each residue is independently selected from the group consisting of α -amino acid residues, cyclically-constrained β -amino acid residues, and cyclically-constrained γ -amino acid residues, and further wherein at least two of the residues are cyclically-constrained β -amino acid residues or cyclically-constrained γ -amino acid residues or one each of a cyclically-constrained β -amino acid residue and a cyclically-constrained γ -amino acid residue.
- 13. An isolated, unnatural polypeptide comprising four or more residues, wherein each residue is independently selected from the group consisting of cyclically-constrained β -amino acid residues and cyclically-constrained γ -amino acid residues, and further wherein at least one of the

residues is a cyclically-constrained β -amino acid residue and at least one other of the residues is a cyclically-constrained γ -amino acid residue.

14. An isolated, unnatural polypeptide comprising six or more residues, wherein each residue is independently selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, and further wherein at least two of the residues are β -amino acid residues or γ -amino acid residues or one each of a β -amino acid residue and a γ -amino acid residue.