Ezgamin poprawkowy Analiza numeryczna (M)

20 lutego 2017

Zadanie 1. (6 punktów)

Podać wzory, za pomocą których realizowany jest uogólniony schemat Hornera. Podać postać wielomianu p(x), dla którego zastosowanie tego algorytmu jest efektywne.

Zadanie 2. (7 punktów)

Rozważmy problem znalezienia miejsca zerowego funkcji $f(x) = 7 + (x - 4)^3$ w przedziale [1,3]. Zastosować metodę regula-falsi do znalezienia czterech początkowych przybliżeń wartości α . Początkowe przybliżenia należy obrać tak, aby uzyskany wynik był różny od tego, gdyby zastosowano metodę siecznych. Uzasadnić wybór tych przybliżeń.

Zadanie 3. (6 punktów)

Rozważmy metodę iteracyjną określoną wzorem

$$x_{n+1} = x_n - f(x_n) \frac{x_n - a}{f(x_n) - f(a)}$$

gdzie a jest pewnym parametrem. Udowodnić, że jest to metoda zbieżna liniowo, o ile a jest dostatecznie blisko pojedynczego miejsca zerowego α funkcji f.

Zadanie 4. (6 punktów)

Znaleźć wielomian stopnia co najwyżej piątego, który w punktach 1,2,3 ma wartość 1, zaś pochodną – wartość 2. Wielomian zapisać w postaci Newtona.

Zadanie 5. (7 punktów)

Rozważmy następującą metodę obliczania przybliżonej wartości całki $\int_a^b f(x) dx$:

- a) Przedział [a, b] dzielimy na m podprzedziałów jednakowej długości.
- b) W każdym z podprzedziałów stosujemy kwadraturę interpolacyjną z czterema równoodległymi węzłami (wliczając końce podprzedziału).
- c) Wynik jest sumą wyników uzyskanych dla wszystkich podprzedziałów.

Rozważyć poniższe zadania:

- Uzasadnić, że mamy do czynienia z kwadraturą liniową.
- Przy założeniu, że $f \in C^4[a,b]$, wyprowadzić wzór na resztę tej kwadratury.

Wskazówka: $\int_{0}^{3h} x(x-h)(x-2h)(x-3h) dx = -\frac{9}{10}h^{5}$.

Zadanie 6. (6 punktów)

Rozważmy obliczanie całki

$$\int_{-1}^{1} f(x) \, dx$$

za pomocą kwadratury

$$Q(f) := A_0 f(0) + A_1 f(a),$$

tj. 2-punktowej kwadratury z ustalonym jednym węzłem x_0 . O niezerowej liczbie $a \in [-1, 1]$ wiadomo tyle, że kwadratura ma maksymalnie wysoki rząd.

- Uzasadnić, że współczynniki A_0, A_1 można wyznaczyć wzorami w zależności od a. Podać te wzory.
- Przy dodatkowym założeniu, że funkcja f jest nieskończenie wiele razy różniczkowalna oraz jej wszystkie pochodne (w przedziale [-1,1]) można oszacować, co do modułu, przez stałą M, podać oszacowanie górne dla reszty tej kwadratury.
- Jaki jest rząd tej kwadratury? Odpowiedź uzasadnić.

Zadanie 7. (6 punktów)

Opisać iteracyjną metodę Jacobiego rozwiązywania układu Ax=b. Wykazać, że jeśli macierz $A=[a_{ij}]\in\mathbb{R}^{n\times n}$ spełnia warunek

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \quad (i = 1, 2, \dots, n),$$

to metoda ta jest zbieżna.

Zadanie 8. (6 punktów)

Opisać wybraną metodę ortogonalizacji macierzy $A \in \mathbb{R}^{m \times n}$. W jaki sposób wykorzystać wynik tej metody do rozwiązania układu równań Ax = b?