Instalação e Configuração de Serviços de Internet

Ivo Calado
ivo.calado@ifal.edu.br

Instituto Federal de Educação, Ciência e Tecnologia de Alagoas

28 de abril de 2017

Roteiro

Características I

- A implementação de filtro de pacotes nos kernels 2.4, 2.6, 3.x
 e 4.x é realizado pelo iptables (projeto netfilter)
- O iptables é o programa capaz de gerenciar a configuração do netfilter
- Principais características:
 - Filtragem sem considerar o estado do pacote
 - Filtragem considerando o estado do pacote
 - Suporte a NAT, tanto para endereços de rede ou portas
 - Flexível, com suporte a plugins

3/32 IVO Calado IFAL

Conceitos básicos I

- regras: são instruções dados para o firewall, indicando o que ele deve fazer
- cadeias: locais onde as regras podem ser agrupadas. As regras são processadas em ordem pelo firewall
- Toda cadeia tem uma política padrão, definida pelo usuário
- A cadeia é percorrida até uma regra ser atingida. As seguintes são ignoradas
- Regras com erro são ignoradas
- Se nenhuma regra é atingida, usa-se a regra da política padrão

Nenhuma regra atingida. Usa a política da cadeia

Conceitos básicos II

- tabelas: o iptables organiza o seu fluxo de pacotes em tabelas, cada uma com um conjunto de cadeias pré-definidas:
 - Tabela filter: é a tabela padrão, com três cadeias
 - INPUT
 - OUTPUT
 - FORWARD
 - Tabela nat: tabela usada para NAT (gera outras conexões)
 - PREROUTING
 - OUTPUT
 - POSTROUTING
 - Tabela mangle: permite alterações nos pacotes (TOS, TTL, etc)
 - PREROUTING
 - INPUT
 - FORWARD

Conceitos básicos III

- OUTPUT
- POSTROUTING
- Tabela raw: marca pacotes para rastreio posterior

Organização das tabelas do Iptables I

Tabela filter e suas cadeias

Organização das tabelas do Iptables II

Tabela nat e suas cadeias

Organização das tabelas do Iptables III

• Tabela mangle e suas cadeias

Organização das tabelas do Iptables IV

Tabelas raw e suas cadeias

Organização das tabelas do Iptables V

• Tabelas filter, nat, mangle e raw e suas cadeias

Salvando e restaurando regras no iptables

- Pode ser feito com um arquivo de script ou usando os comandos iptables-save e iptables-restore
- iptables-[save|restore] executam a operação em um só passo, de maneira mais segura (sem brechas temporárias) e rápida.
- Salvando:

sudo iptables-save > arquivo_de_regras

Restaurando:

sudo iptables-restore < arquivo_de_regras

• É possível salvar os contadores com -c

Formato geral das regras do Iptables I

• iptables [-t table] comando [filtro] [-j ação]

Principais comandos de manipulação de cadeias I

- Sempre maiúsculo seguido do nome da cadeia:
 - -P: configura a política padrão da cadeia (DROP ou ACCEPT)

iptables -P OUTPUT ACCEPT

• -N: cria uma nova cadeia

iptables -N internet

-F: apaga as regras da cadeia

iptables -F INPUT

Principais comandos de manipulação de cadeias II

• -X: apaga uma cadeia vazia

iptables -F internet; iptables -X internet

• -Z: zera todos os contadores da cadeia

iptables -Z INPUT

• -A: adicionar uma regra no final da cadeia

iptables -A INPUT - -dport 80 -j DROP

 -L: listar regras da cadeia (adicione -n para não resolver nomes e - -line-numbers para ver o número das regras)

iptables -L -n - - line-number

A. DE A E TECNOLOGIA

Principais comandos de manipulação de cadeias III

• -D: apagar uma regra da cadeia. Pode usar também a linha

• -R: trocar uma regra por outra

• -I: insere uma regra em um ponto específico da cadeia

Principais filtros no iptables I

-p protocolo>: especifica o protocolo. Por exemplo, udp,
tcp ou icmp. Pode ser negado também. Para tudo menos tcp,
faça: com "! -p tcp"

```
iptables -A INPUT -p icmp -j DROP
iptables -A INPUT ! -p tcp -j DROP
```

 -s <endereço>: especifica o endereço de origem. Aceita IPs, redes, IP/máscara, IP/nn (notação CIDR) e também a negação com "!"

```
iptables -A INPUT -s 10.1.1.1 -j ACCEPT iptables -A INPUT! -s 10.1.1.0/24 -j DROP
```

NL DE .IA E TECNOLOG

Principais filtros no iptables II

 -d <endereço>: especifica o endereço de destino (mesmas regras do -s)

iptables -A OUTPUT -d uol.com.br -j ACCEPT

-i <interface>: especifica a interface de entrada do pacote.
 Use "!" para negar e "+" como curinga. "-i eth+" significa todas as interfaces eth. Válida em INPUT, PREROUTING e FORWARD

iptables -A INPUT -i eth0 -j ACCEPT iptables -A INPUT -i ppp+ -j DROP

Principais filtros no iptables III

 -o <interfaces>: especifica a interface de saída. Válida em OUTPUT, POSTROUTING e FORWARD. Usa as mesmas regras de -i

```
iptables -A OUTPUT -o ppp+ -j ACCEPT
```

 - -sport <porta>: especifica a porta de origem. Pode ser dado em forma de faixa também, como em "- -sport 80:123" ou mesmo "- -sport 1023:" (todas acima de 1023). Precisa ter tcp ou udp especificado como protocolo

```
iptables -A INPUT -p udp - -dport 53 -j ACCEPT iptables -A INPUT -p tcp - -sport 1:1023 -j REJECT iptables -A INPUT -p tcp - -sport 1024: -j ACCEPT
```

L DE LE TECNOLOGI

Principais filtros no iptables IV

 -dport <porta>: especifica a porta de destino. Mesmas regras do - -sport.

iptables -A OUTPUT -p tcp - -dport 23 -j DROP

 - -icmp-type <tipo>: filtra por tipo de pacotes ICMP. Por exemplo, 8 é o ping, mas "echo-request" poderia ser usado

iptables -A INPUT -p icmp - -icmp-type echo-request -j ACCEPT

Principais ações no iptables I

iptables -A INPUT -p tcp - -dport 22 -j ACCEPT

DROP: descarta o pacote

iptables -A INPUT -p tcp - -dport 23 -j DROP

REJECT: rejeita o pacote, informando ao host de origem.
 Válida em INPUT, OUTPUT e FORWARD

iptables -A INPUT -p tcp -dport 23 -j REJECT

Principais ações no iptables II

 LOG: coloca no log informações sobre o pacote. Uma opção interessante é o –log-prefix "mensagem", que permite a adição de um prefixo. O log não interrompe o processamento, fique atento.

```
iptables -A INPUT -p tcp - -dport 23 -j LOG - -log-prefix "Tentativa de telnet" iptables -A INPUT -p tcp - -dport 23 -j DROP
```


SNAT x DNAT I

- SNAT tem como origem uma máquina da rede local destinada a um host da rede externa
 - Trata-se da forma mais comum de NAT
 - Modifica-se o IP de origem do pacote para o IP externo da máquina do servidor
- DNAT tem como origem uma máquina da rede externa e destinada a um host da rede local
 - Serve como uma forma de possibilitar o acesso a servidores locais. Basicamente, configura-se o fluxo com dadas características para uma máquina específica (ex.: redireciona todos os fluxos tcp destinados a porta 80 para o servidor Web)

SNAT x DNAT II

DMZ: zona desmilitarizada (demilitarized zone)

- Também conhecida como rede de perímetro
- Trata-se de uma estratégia para isolar as máquinas internas dos eventuais servidores acessíveis externamente
- O objetivo é isolar as máquinas internas de eventuais comprometimentos da DMZ

SNAT I

- SNAT: realiza o NAT, alterando o endereço de origem do pacote. Válido em POSTROUTING, da tabela nat
- Source NAT é especificado com '-j SNAT', e a opção '-to-source' demonstra um endereço IP, um range de endereços IP, e uma porta opcional ou um range de portas (apenas para os protocolos TCP e UDP).

SNAT II

```
## Mudando o endereço de origem para 1.2.3.4.
# iptables -t nat -A POSTROUTING -o eth0 - i SNAT --
   to 1.2.3.4
## Mudando o endereço de origem para 1.2.3.4,
    1.2.3.5 ou 1.2.3.6
# iptables -t nat -A POSTROUTING -o eth0 - i SNAT --
   to 1.2.3.4 - 1.2.3.6
## Mudando o endereço de origem para 1.2.3.4,
    portas 1-1023
# iptables -t nat -A POSTROUTING -p tcp -o eth0 -j
   SNAT --- to 1.2.3.4:1-1023
```

SNAT III

 Não esqueça de habilitar o forwarding, colocando 1 em /proc/sys/net/ipv4/ip_forward, usando uma das formas abaixo:

```
\ echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward # echo 1 > /proc/sys/net/ipv4/ip_forward
```


Masquerade I

- Representa um caso especial de SNAT, denominado
 Masquerade, a ser utilizado como a interface de saída possuí endereço dinâmico
- MASQUERADE: realiza o NAT, alterando o endereço de origem. Similar ao SNAT, mas sem opções de endereço de saída. Válido em POSTROUTING somente, tabela nat. Muito usado para implementar as regras de NAT do firewall

Masquerade II

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE iptables -t nat -A POSTROUTING -o ppp+ -j MASQUERADE

DNAT I

- DNAT: realiza o NAT, alterando o endereço de destino do pacote. Pode usar a opção –to-destination ¡IPa-IPb¿ para especificar uma faixa de IPs (load balancing). Válido somente em PREROUTE e OUTPUT, tabela nat
- Caso de uso típico para criação de virtual servers, onde é preciso regras para quem vem de fora, para máquina na intranet e para o próprio firewall

DNAT II

```
iptables -t nat -A PREROUTING -p tcp -d 65.10.20.31 - -dport 80 -j DNAT - -to-destination 172.16.0.10 iptables -t nat -A POSTROUTING -p tcp -d 172.16.0.10 - -dport 80 -j SNAT - -to-source 172.16.0.1 iptables -t nat -A OUTPUT -p tcp -d 65.10.20.31 - -dport 80 -j DNAT - -to-destination 172.16.0.10
```

ICSI

Redirecionamento de cadeias

- Caso você tenha criado uma cadeia, pode usar o -j para redirecionar a filtragem para ela
- Ao terminar, caso nenhuma regra tenha sido acionada, o fluxo volta para quem redirecionou e o processamento continua.
 Caso contrário, é interrompido

iptables -N internet iptables -A INPUT -p tcp - -dport 80 -j internet

