ENEE 459-C Computer Security

Introduction

Organization

- Class webpage
 - http://enee459c.github.io
 - Two lectures per week
 - Tuesday & Thursday 12.30 pm 1.45 pm
 - PHY 1219
 - Attendance and participation is important
- My information
 - cpap at umd.edu
 - Office hours: Tuesday, 2pm-3pm, AVW 3409
- Teaching assistant
 - Sailunsi Chen
 - sailunsi at umd.edu
 - Office hours: TBA

Homeworks and lectures

- Final grade
 - 5 homeworks (40%)
 - Midterm (20%)
 - Final (30%)
 - Class attendance (10%)
- Lectures will be published on the webpage after class
- Homework and programming assignments will be published on the class webpage, but should be submitted through <u>Canvas</u>.
- No late homework submissions will be accepted
- Discussions will be managed at <u>Canvas</u>.

Prerequisites

- ENEE150 or CMSC132
- The course will have a significant programming component
- Knowledge of algorithms and data structures is desirable

What is this course about?

- Introduction to Computer Security
 - Goals of Computer Security
 - Attacks
 - Defenses
- Fundamental concepts in Computer Security
 - Encryption
 - Integrity
 - Authentication
 - Access control
- Practical Computer Security
 - Web security
 - Cloud security
 - Network security
 - Systems and software security

Readings

Most of the class is based on the following textbook (GT):

- Thanks to Michael Goodrich and Roberto Tamassia for making the content available
- We are going to be using the board too, so it is advisable you keep notes as well
- The library has copies of the book

Other readings

Other recommended readings are (KL) and (WS)

What is Computer Security?

Computer Security

is the prevention of, or protection against

- access to information by unauthorized recipients
- intentional but unauthorized destruction or alteration of that information

Computer Security Goals

- Confidentiality
- Integrity
- Availability
- Authenticity
- Anonymity

Confidentiality

- It is the avoidance of the unauthorized disclosure of information
- It involves the protection of data, providing access for those who are allowed to see it while disallowing others from learning anything about its content
- E.g., nobody should be able to read the emails I am sending to my friends, except for my friends

Tools for confidentiality

 Encryption: the transformation of information using a secret, called an encryption key, so that the transformed information can only be read using another secret, called

Does this reveal the content of the message? Is this good enough?

Tools for confidentiality

- Access control: rules and policies that limit access to confidential information to those people and/or systems with a "need to know"
 - This need to know may be determined by identity, such as a person's name or a computer's serial number, or by a role that a person has, such as being a manager or a computer security specialist

Tools for confidentiality

- Authentication: the determination of the identity or role that someone has. This determination can be done in a number of different ways, but it is usually based on a combination of
 - something the person has (like a smart card or a radio key fob storing secret keys)
 - something the person knows (like a password)
 - something the person is (like a human with a fingerprint)

Integrity

The property that information has not be altered in an unauthorized way

Tools:

- Checksums: the computation of a function that maps the contents of a file to a numerical value. A checksum function depends on the entire contents of a file and is designed in a way that even a small change to the input file (such as flipping a single bit) is highly likely to result in a different output value.
- Discussion: Can we use the checksum f(x) = x mod M?

Availability

 Availability: the property that information is accessible and modifiable in a timely fashion by those authorized to do so

Tools:

- Physical protections: infrastructure meant to keep information available even in the event of physical challenges.
- Computational redundancies: computers and storage devices that serve as back-ups in the case of failures

Other important Security goals

Authenticity

Anonymity

Authenticity

- Authenticity is the ability to determine that statements, policies, and permissions issued by persons or systems are genuine
- Primary tool:
 - Digital signatures. These are cryptographic computations that allow a person or system to commit to the authenticity of their documents in a unique way that achieves nonrepudiation, which is the property that authentic statements issued by some person or system cannot be denied

Anonymity

- Anonymity: the property that certain records or transactions not to be attributable to any individual
- Tools:
 - Aggregation: the combining of data from many individuals so that disclosed sums or averages cannot be tied to any individual
 - Proxies: trusted agents that are willing to engage in actions for an individual in a way that cannot be traced back to that person
 - Pseudonyms: fictional identities that can fill in for real identities in communications and transactions, but are otherwise known only to a trusted entity

Examples: HTTPS protocol

- Confidentiality
- Integrity
- Availability
- Authenticity
- Anonymity

Examples: TOR protocol

- Confidentiality
- Integrity
- Availability
- Authenticity
- Anonymity

Examples: RAID technology

- Confidentiality
- Integrity
- Availability
- Authenticity
- Anonymity

 Eavesdropping: the interception of information intended for someone else during its transmission over a communication channel

- Alteration: unauthorized modification of information
 - Example: the man-in-the-middle attack, where a network stream is intercepted, modified, and retransmitted

- Software bugs: Code is not doing what is supposed to be doing
 - Example: Some application code is mistakenly using an algorithm for encryption that has been broken

 Denial-of-service: the interruption or degradation of a data service or information access

Example: email spam, to the degree that it is meant to simply fill up a mail queue and slow

down an email server

- Masquerading: the fabrication of information that is purported to be from someone who is not actually the author
- Repudiation: the denial of a commitment or data receipt.
 - This involves an attempt to back out of a contract or a protocol that requires the different parties to provide receipts acknowledging that data has been received

 Correlation and traceback: the integration of multiple data sources and information flows to determine the source of a particular data stream or piece of information

Attacks every day

« <u>Security Recommendat...</u> | <u>Main</u> | <u>Solaris Security</u>

Amazon S3 Silent Data Corruption

By user12606733 on Jan 28, 2009

While catching up on my reading, I came across an interesting article focused on ti

Amazon struggles to restore lost data to European

Developers vent frustration on Amazon support forum

By Jon Brodkin, Network World August 09, 2011 11:17 AM ET

Gmail Corrupting Attachments

I recently received a report that attachments sent to Gmail from some servers

01 August 2012, 12:39

Dropbox confirms data leak

Cloud storage service provider <u>Dropbox</u> has <u>acknowledged</u> that a file

BPOS: a data leak in Microsoft's cloud December 28th, 2010 - 09:10 am ET by J. G.

A configuration error in Microsoft's Business Productivity

ILOVEYOU worm

- Computer worm that affected million of users on May 5th 2000
- It was an email that contained a "text file" as an attachment
- Opening the attachment would activate a script, which would overwrite image files, and would send a copy of itself to the first 50 addresses in the address book
- http://en.wikipedia.org/wiki/ILOVEYOU
- Problem: Human factor

T-Mobile data loss

- In 2009, T-Mobile and Danger, the Microsoft-owned subsidiary that makes the Sidekick, announced that they lost all user data that was being stored on Microsoft's servers due to a server failure
- http://techcrunch.com/2009/10/10/tmobile-sidekick-disaster-microsoftsservers-crashed-and-they-dont-have-abackup/
- Problem: Not sufficient back-ups

Factoring RSA keys

- Researchers recently showed that a bunch of cryptographic keys used in hardware devices are insecure
- Companies shipped new updates after notified
- https://factorable.net/
- Problem: Same randomness used across devices to generate the keys

Heartbleed

- April 2014
- Bug in the openssl library
- Affected all hosts running TLS protocol
- At the time of the disclosure, around half a million of the Internet's secure web servers certified were believed to be vulnerable to the attack
- Bug in the heartbeat feature http://tools.ietf.org/pdf/rfc6520.pdf
- There was no bound check in the bytearray that the sender would send to the receiver
- So the receiver would send the payload back along with some contents of its memory

LinkedIn passwords leaked

- In June 2012, it was announced that almost 6.5 million LinkedIn passwords were leaked and posted on a hacker site
- http://www.huffingtonpost.com/2012/06 /07/linkedin-password-hackcheck n 1577184.html
- Problem: Linkedin did not use salt when hashing the passwords!
 - http://www.stormpath.com/blog/how-linkedincould-have-secured-hacked-passwords