2023春季学期课程总结

2023. 6. 5

电离辐射源

氡的健康危害-室内氡

①建筑物下地层;②建筑材料;③地下水和燃料;④环境大气

扩展阅读:

W. Jacobi. The history of Radon problems in mines and homes. Annals of the ICRP, 23(2): 39-45, 1993

天然辐射源的剂量水平

表 5.1 天然辐射源照射的世界平均值

辐射源	年有效剂量/mSv			
	平均	典型范围		
宇宙辐射				
直接电离及光子成分	0.28			
中子成分	0.10			
宇生放射性核素	0.01			
宇宙和宇生总计	0.39	$0.3 \sim 1.2^{\text{T}}$		
陆地辐射外照射		5000 State (MODAL) - 1889		
室外	0.07	1		
室内	0.41			
总计	0.48	$0.3 \sim 0.6^{2}$		
吸入内照射				
铀钍系	0.006			
氡(²²² Rn)	1.15			
钍射气(²²⁰ Rn)	0.1			
总计	1.26	$0.2 \sim 10^{-3}$		
食人内照射	54 37 0 38	35 5555		
⁴⁰ K	0.17			
铀钍系	0.12			
总计	0.29	$0.2 \sim 0.8^{4}$		
共计	2.4	1 ~ 10		

注:①从海平面到高海拔地区的整个范围。

二、人工辐射源

Man-made (technogenic) radiation sources are **any radiation sources produced by humans**. They may being produced for use of their radiation, or for other purposes using the processes taking place in them (e.g., production of electric energy or heat).

利用其产生的辐射、电、热等

密封源的制作

- 1、放射性核素选择(辐射的种类、能量、半衰期、比活度、价格)
- 2、源芯的制备
 - (1) 放射性核素制备

反应堆生产: ⁶⁰Co、¹⁴C、³H;

加速器生产: ⁵⁷Co、¹⁰⁹Cd;

核燃料中提取: 90Sr、137Cs、85Kr、241Am等;

(2) 制作工艺

陶瓷、搪瓷、玻璃制源法;

粉末冶金-滚轧制源法;

电化学制源法;

充气法;

表 9.1 放射源的基本分类

密封源的基本分类

	农 9·1						
分类	放射源 类别	辐射 利用	放射源类型	制源常用核素			
	α源	α粒子	天然 α源 人造 α源	²¹⁰ Po, ²²⁶ Ra, ²²⁸ Th, ²³³ U, ²³⁵ U ²³⁹ Pu, ²⁴¹ Am, ²⁴² Am, ²⁴⁴ Cm			
β	β ⁻ 源	β-粒子	低能 β 源 中能 β 源 高能 β 源	³ H, ⁶³ Ni, ⁵⁵ Fe, ¹²⁵ Sb, ¹³⁴ Cs ¹⁴ C, ⁴⁵ Ca, ⁵⁸ Co, ⁸⁵ Kr, ⁹⁹ Tc, ¹³⁷ Cs, ¹⁶⁹ Er, ²⁰³ Hg, ²⁰⁴ Tl ⁸⁹ Sr, ⁹⁰ Sr/ ⁹⁰ Y, ¹⁰⁶ Ru/ ¹⁰⁶ Rh			
P	β+ 源	β⁺ 粒子	正电子源	²² Na, ⁵⁸ Co			
			超低能 γ(X)源 (<6 keV)	α或β粒子轰击低 Z 靶核(Be-Ti)			
		γ源 γ光子	低能γ源 (6~150 keV)	⁵⁵ Fe, ⁵⁷ Co, ⁷⁵ Se, ¹⁰⁹ Cd, ¹²⁵ I, ¹⁵³ Gd, ¹⁶⁹ Yb, ¹⁷⁰ Tm, ¹⁸¹ W, ²³⁸ Pu, ²⁴¹ Am, ²⁴⁴ Cm			
γ	γ源		高能γ源 (>0.3 MeV)	⁵¹ Cr, ⁶⁰ Co. ¹³³ Ba, ¹²⁴ Sb, ¹²⁵ Sb, ¹³⁴ Cs, ¹³⁷ Cs, ¹⁸² Ta			
÷∓II			高活度γ源 (活度>10 ¹³ Bq)	⁶⁰ Co, ¹³⁷ Cs, ²²⁶ Ra ⁶⁰ CO			
至			穆斯堡尔源	⁵⁷ Fe/ ⁵⁷ Co, ¹¹⁹ Sn/ ¹¹⁹ mSn, ¹²⁵ I/ ¹²⁵ Te, ¹³³ Ba/ ¹³³ Cs, ¹⁹⁵ Au/ ¹⁹⁵ Pt, ¹⁸² Ta/ ¹⁸² W			
			(α,n)中子源	²¹⁰ Po, ²¹⁰ Pb, ²²⁶ Ra, ²²⁷ Ac, ²²⁸ Th, ²³² U, ²³⁸ Pu, ²³⁹ Pu, ²⁴¹ Am, ²⁴² Cm, ²⁴⁴ Cm			
中子	中子源中子	中子	(γ,n)中子源	²⁴ Na, ⁵⁶ Mn, ⁷² Ga, ⁸⁸ Y, ¹¹⁶ In ^m , ¹²⁴ Sb, ¹⁴⁰ La, ²²⁶ Ra			
		自裂变中子源	²³³ U, ²³⁶ Pu, ²³⁸ Pu, ²⁴⁰ Pu, ²⁴² Pu, ²⁴² Cm, ²⁴⁴ Cm, ²⁵² Cf, ²⁵⁴ Cf				
			α热源 210	Po ²²⁷ Ac, ²²⁸ Th, ²³² U. ²³⁸ Pu , ²⁴⁴ Cm			
同位素热源	同位素 热源	衰变热	β热源	⁹⁰ Sr, ¹³⁷ Cs, ¹⁴⁴ Ce, ¹⁴⁷ Pm, ¹⁷⁰ Tm			
202	NIT WAS		γ热源	⁶⁰ Co			

放射性同位素源

(2) 非密封源(非密封放射性物质)

- 通常没有密封,或使用时需要打开密封的放射性物质。
- ▶ 用途: 放射性药物、农业、生物、地质、科研用示踪剂;
- ▶ 种类: ¹²⁵I、¹³¹I、^{99m}Tc、³H、¹⁴C、¹⁸F等。

GB18871:不满足密封源定义中所列条件的源。

总结: 天然及人工源年均剂量

Average annual human exposure to ionizing radiation (millisievert)

Radiation source	World ^[1]	USA ^[2]	Japan ^[3]	Remark
Inhalation of air	1.26	2.28	0.40	mainly from radon, depends on indoor accumulation
Ingestion of food & water	0.29	0.28	0.40	(K-40, C-14, etc.)
Terrestrial radiation from ground	0.48	0.21	0.40	depends on soil and building material
Cosmic radiation from space	0.39	0.33	0.30	depends on altitude
sub total (natural)	2.40	3.10	1.50	sizeable population groups receive 10-20 mSv
Medical	0.60	3.00	2.30	world-wide figure excludes radiotherapy; US figure is mostly CT scans and nuclear medicine.
Consumer items	-	0.13		cigarettes, air travel, building materials, etc.
Atmospheric nuclear testing	0.005	-	0.01	peak of 0.11 mSv in 1963 and declining since; higher near sites
Occupational exposure	0.005	0.005	0.01	world-wide average to all workers is 0.7 mSv, mostly due to radon in mines; ^[1] US is mostly due to medical and aviation workers. ^[2]
Chernobyl accident	0.002	-	0.01	peak of 0.04 mSv in 1986 and declining since; higher near site
Nuclear fuel cycle	0.0002		0.001	up to 0.02 mSv near sites; excludes occupational exposure
Other	-	0.003		Industrial, security, medical, educational, and research
sub total (artificial)	0.61	3.14	2.33	
Total	3.01	6.24	3.83	millisievert per year

四、照射类型

• 外照射: 体外源的照射

• 内照射: 体内源的照射

四、照射类型

• 公众照射

- 核试验、核电站及燃料循环、核技术应用和人为活动引起的天然辐射增强;
- 不包括职业照射、医疗照射、天然本底照射;

• 职业照射

- 工作人员在其工作过程中所受的所有照射;
- 机组人员所受天然照射列入职业照射;

• 医疗照射

- 患者所受医学诊断或治疗的照射
- 知情但自愿帮助患者的人员(不包括医师和医技人员)
- 生物医学研究计划中的志愿者

辐射防护相关量的框架

1) 粒子注量Φ (particle fluence)

辐射场中某一点的注量,是进入以该点为球心,截面积为da的小球体内的粒子数dN除以da的商,即

$$\Phi = \frac{\mathrm{d}N}{\mathrm{d}a}$$

式中: dN为进入小球体的粒子数。 da为小球体截面积,单位 m^2 。 Φ 为粒子注量,单位 m^{-2} 。

对于带电粒子的阻止本领

- 阻止本领

- 射程 (经验公式)
- 比电离 $S_{p,i} = \frac{(dE/dl)_{col}}{\overline{W}}$
- 传能线密度(LET)

$$L_{\Delta} = \left(\frac{dE}{dl}\right)_{\Delta} \quad \vec{\mathbb{Z}} \quad L_{\Delta} = S_{\text{col,e}} - \frac{dE_{k,\Delta}}{dl}$$

光子等相互作用系数

物理量	符号	物理含义		
质量衰减系数	$\frac{\mu}{ ho}$	描述单位质量厚度上,入射线减 弱的特性。		
质能转移系数	$\frac{\mu_{\it tr}}{ ho}$	描述单位质量厚度上,入射线 <mark>转</mark> 移给次级带电粒子的能量份额。		
质能 <mark>吸收</mark> 系数	$\frac{\mu_{\it en}}{ ho}$	描述单位质量厚度上,次级带电 粒子就地沉积的能量份额。		

比释动能、吸收剂量和照射量的比较

> 概念比较

辐射量	吸收剂量 D	比释动能 K	照射量 X
适用 范围	适用于任何带电粒子及 不带电粒子; 任何物质	适用于不带电粒子如 X, γ 光子、中子等; 任何物质	仅适用于 X 或 γ 射线; 仅限于空气介质
剂量学 含意	表征辐射所关心的体积V 内 <mark>沉积</mark> 的能量,这些能 量可来自于V内或V外	表征不带电粒子在所关 心的体积V内 <mark>交给</mark> 带电粒 子的能量,不必注意这 些能量在何处,以何种 方式损失的	表征X或 y 射线在所关心的空气体积V内 <mark>交给</mark> 次级电子用于电离、激发的那部分能量

防护量

• 吸收剂量:针对某一点,是点值;

<u>当量剂量</u>:针对某个器官或组织,是平均值;

有效剂量:针对全身而言,取平均值。

• <u>辐射权重因子</u>: 描述了辐射类型、能量的不同对生物效应的影响;

<u>组织权重因子</u>:描述了不同器官、组织对全身总 危害的贡献。

运行实用量

(2) 剂量当量H (dose equivalent)

组织中某点处吸收剂量和品质因子的乘积。

$$H = Q \cdot D$$

单位是J kg-1,特定名称是Sv。

剂量当量H与当量剂量 H_T 的区别?

剂量当量H(Dose equivalent)	当量剂量H _T (Equivalent dose)
$H=Q\cdot D$	$H_{\mathrm{T}} = \sum_{\mathrm{R}} \omega_{\mathrm{R}} D_{\mathrm{T,R}}$
组织中的某点处	组织或器官(平均)
可测量	可计算,不可测量
用于监测	用于防护评价
实用量	防护量

用于场所监测的实用量

(3) 周围剂量当量*H**(*d*) (Ambient dose equivalent)

由<mark>该点</mark>相应的齐向扩展场在ICRU球体内、对着齐向场的 半径上、深度d处产生的剂量当量。

通常监测强贯穿辐射,此时 推荐d=10mm,记为 $H^*(10)$ 。

*H**(10) 常作为仪器所在位置上 人体有效剂量的合理估计值。

用于场所监测的实用量

(4) 定向剂量当量 $H'(d,\alpha)$ (Directional dose equivalent)

辐射场中<mark>某点</mark>处的定向剂量当量 $H'(d,\alpha)$ 是相应的扩展场在ICRU 球内、沿指定方向 α 的半径上、深度d处产生的剂量当量。

单向辐射场中的定向剂量当量 $H'(d,\alpha)$ 示意图

通常用于监测弱贯穿辐射; d=0.07mm,相当于皮肤基底层的深度; d=3mm,相当于眼晶体。

 $H'(0.07, \alpha)$ 或 $H'(3, \alpha)$ 相当于人体皮肤或眼晶体的当量剂量的合理估计值。

用于个人监测的实用量

(5) 个人剂量当量 $H_p(d)$ (Personal dose equivalent)

指人体表面某一指定点下、深度为d的软组织内的剂量当量。

强贯穿辐射: d=10mm, 记为 $H_p(10)$;

弱贯穿辐射: d=0.07mm, 记为 $H_p(0.07)$ 。

- ✓ $H_p(10)$ 可以作为有效剂量的估计值;
- ✓ $H_p(0.07)$ 作为局部皮肤当量剂量估计值;
- ✓ 实际标定仪器时用体模。

本章小结

$$K = \Phi \cdot \left(\frac{\mu_{tr}}{\rho}\right) \cdot E \qquad D = \Phi \cdot \left(\frac{\mu_{en}}{\rho}\right) \cdot E \qquad X = \Psi \frac{\mu_{en}}{\rho} \frac{e}{\overline{W}}$$

剂量学的量 = 辐射场的量 X 相互作用系数

一、辐射的健康效应特点

辐射效应的分类

按效应发生的个体

按效应表现情况

按剂量-效应关系

辐射的健康效应特点

(1) 低吸收能量引起高生物效应 以6Gy剂量的急性照射为例:它可以致人死亡, 但是此时吸收的能量如果全部转换为热能,却只能 使组织的温度升高0.0014℃。

(2) 短暂作用引起长期效应

极短时间内沉积能量;辐射的确定性效应、随 机性效应都体现为一种长期的、持续性的效应。

打断DNA链~10-8s

1、剂量一效应关系

健康效应按剂量-效应关系可分为:

确定性效应(Deterministic effect): 是指辐射效应的严重程度 取决于所受剂量的大小。这种效应有一个明确的剂量阈值, 在阈值以下不会见到有害效应,如放射性皮肤损伤、生育 障碍。[也称为组织反应]

随机性效应(Stochastic effect): 是指辐射效应的发生概率 (而非其严重程度!)与剂量相关的效应,不存在剂量的阈值。主要指致癌效应和遗传效应。

(1) 确定性效应(有害的组织反应)

- 辐射损伤细胞,可使关键细胞群的辐射损伤超过一定数量 并持续一段时间
- 当器官和组织丧失的细胞数目足够多,产生可观察的损害, 并可能导致死亡,出现临床可见的病理改变
- 具有阈值剂量特征的<u>细胞群损伤</u>,且严重程度随剂量超过 阈值的幅度增大而加剧

(2) 随机性效应

- > 电离辐射的能量沉积是随机过程
- ▶ 非常低剂量也有可能在细胞关键位点沉积足够能量诱发细胞 改变或死亡(遗传变化或导致恶性突变的细胞转化)
- 》源于单个细胞损伤的辐射效应,发生概率和剂量呈正比
- > 致癌效应和遗传效应

辐射剂量与健康效应之间的关系

1、外照射防护的基本原则

内、外照射的特点

照射方式	辐射源类型	危害方式	常见致电离粒子	照射 特点
内照射	多见开放源	电离 化学毒性	α, β	持续
外照射	多见密封源	电离	高能β、质子、γ、 X、n	间断

▶基本原则:

尽量减少或避免射线从外部对人体的照射,使之所受照射不超过国家规定的剂量限值。

2、外照射防护的三要素

▶外照射防护三要素:

时间、距离、屏蔽

三、带电粒子的剂量计算与防护

- (一) 带电粒子的剂量计算
 - 1、电子或β射线的剂量计算
 - 2、重带电粒子的剂量计算
- (二) 带电粒子的防护
 - 1、电子或β射线的射程
 - 2、重带电粒子的射程
 - 3、轫致辐射问题

(二) 带电粒子的防护(时间、距离、屏蔽)

带电粒子的屏蔽:

- 屏蔽材料的厚度一般应等于带电粒子在物质中的最大射程;
- 》电子或β射线的屏蔽,存在轫致辐射问题, 要分两层,先轻Z,后重Z。

X、γ射线在物质中的减弱规律

>线衰减系数:
$$\mu = \frac{dN/N}{dx}$$

即厚度等于一个平均自由程,X或γ 射线被减弱到原来的e⁻¹。

》积累因子:
$$B = \frac{N}{N_{\text{non-col}}} \qquad B_{x} = \frac{X}{X_{\text{narrow}}}$$

给定辐射源和屏蔽介质的话,B只与光子能量 E_{ν} 和介质厚度有关,即 $B(E_{\nu}, \mu d)$ 。

平均自由程数

X、γ射线在物质中的减弱规律

- (3) 半值层和十分之一值层(HVL&TVL) Half Value Layer (HVL) Tenth Value Layer (TVL)
 - ▶半值层厚度△_{1/2}: Half Value Thickness (HVT) 将入射光子数(注量率或照射量率等)减弱一半所需的屏 蔽层厚度。
 - ▶十分之一值层厚度 $\triangle_{1/10}$: Tenth Value Thickness (TVT) 将入射光子数(注量率或照射量率等)减弱到十分之一所需的屏蔽层厚度。

$$\Delta_{1/10} = 3.32 \times \Delta_{1/2}$$

 $\triangle_{1/2}$ 、 $\triangle_{1/10}$ 并不是绝对的常数

X、 γ 射线的屏蔽计算

(4) 确定屏蔽厚度

五、中子的剂量计算与防护

1、中子剂量计算

基本思路与光子相同

(1)解析法(比释动能)

$$K = f_K \cdot \Phi$$

附表 3 中子在某些物质中的比释动能因子 f_v/(Gy·cm²)

E_n/MeV	$\Delta E_n / \mathrm{MeV}$	近似组织	骨(股骨)	肌肉 (ICRU)	标准人	干燥空气	水	尼龙(6 或 6/6 型)	有机玻璃
0.110 - 04	0.600 - 05	0.145 - 11	0.127 -11	0.147 - 11	0.129 - 11	0.287 - 10	0.146 - 12	0.484 - 11	0.108 - 12
0.200 - 04	0.120 -04	0.120 - 11	0.106 - 11	0.122 - 11	0.109 - 11	0.214 - 10	0.241 - 12	0.371 -11	0. 178 - 12
0.360 - 04	0.200 -04	0.111 - 11	0.969 - 12	0.112 -11	0.103 - 11	0.159 - 10	0.415 - 12	0.298 - 11	0.308 - 12
0.630 - 04	0.340 - 04	0. 120 – 11	0. 101 - 11	0. 122 – 11	0.114 - 11	0. 120 - 10	0.714 - 12	0. 261 - 11	0. 529 - 12
0.110 -03	0.600 - 04	0.154 - 11	0.121 - 11	0.156 - 11	0. 150 – 11	0.916 - 11	0. 124 - 11	0. 260 - 11	0.917 - 12
0.200 - 03	0.120 - 03	0.233 - 11	0.171 - 11	0.237 - 11	0.230 - 11	0.689 - 11	0.224 - 11	0.312 - 11	0.166 - 11
0.360 - 03	0.200 - 03	0.386 - 11	0.269 - 11	0.393 - 11	0.387 - 11	0.526 - 11	0.402 - 11	0.444 - 11	0.298 - 11
0.630 -03	0.340 - 03	0.651 - 11	0.440 - 11	0.662 - 11	0.650 - 11	0.421 - 11	0.701 - 11	0.694 - 11	0.520 - 11

式中 $f_K = (\mu_{tr}/\rho) \cdot E$ 为中子比释动能因子。

对不同组织:
$$K_T = \frac{\left(\mu_{tr}/\rho\right)_T}{\left(\mu_{tr}/\rho\right)_m}K_m$$

一、内照射的简单模型

1、时间特性:生物动力学模型

▶滯留分数/函数(R, Retention fraction)

$$R(t) = A(t)/A(0) = e^{-\lambda_b t}$$
 生物衰减常数/廓清速率

▶有效廓清速率($λ_{eff}$, Effective clearance rate) $λ_{eff} = λ_b + λ_r$ ◆ 物理衰变常数

 \blacktriangleright 有效半減期($T_{\rm eff}$, Effective half clearance time)

$$T_{\rm eff} = 0.693/\lambda_{\rm eff} = T_{\rm b} \cdot T_{\rm r}/(T_{\rm b} + T_{\rm r})$$

ightharpoons 有效滞留分数/函数 (r, Effective retention fraction)

$$r(t) = R(t) \cdot e^{-\lambda_{r}t} = e^{-\lambda_{b}t} \cdot e^{-\lambda_{r}t} = e^{-\lambda_{eff}t}$$

内照射的简单模型

2、空间特性:能量沉积

(1) 单一器官

射线能量全部沉积在器官内

$$\overset{*}{D}_{0} = \frac{kEA(0)}{m} \quad k = 2.13 \text{(rad/h)(g-dis/MeV-}\mu\text{Ci)}$$

A(0) is the initial activity in the organ, μ Ci; E is the particle energy per disintegration, MeV; m is the organ mass, g.

$$\dot{D}(t) = \dot{D}_0 \exp(-\lambda_{\rm eff} t)$$
 $\lambda_{\rm eff} = \lambda_{\rm p} + \lambda_{\rm b}$

 $\lambda_{\rm p}$ is the physical removal rate, $\lambda_{\rm h}$ is the biological removal rate.

2、空间特性:能量沉积

$$D = \int\limits_0^T rac{k \cdot E \cdot n \cdot A(0)}{m} ext{exp}(-\lambda_{ ext{eff}} \cdot t) ext{d}t$$

$$D = \underbrace{\int\limits_{0}^{T} A(0) \exp(-\lambda_{ ext{eff}} \cdot t) \mathrm{d}t}_{D} \ D = S \cdot \widetilde{A} \qquad T o \infty, \ \widetilde{A} = rac{A(0)}{\lambda_{ ext{off}}}$$

- D 为平均吸收剂量 (rad)
- \tilde{A} 为总累积活度(或总核衰变次数) (μ Ci·h)
- S 为单位累积活度(或一次衰变)产生的平均吸收剂量 (rad/ μ Ci·h)

内照射模型

(2) 多器官:

MIRD模型(The Committee on Medical Internal Radiation Dose of the Society of Nuclear Medicine)

MIRD: 核医学诊断和治疗,摄入情形主要是注射和食入。

吸收分数 (AF): $f_i = \frac{energy \ absorbed \ in \ T \ organ}{energy \ sent \ by \ S \ organ}$

(i) Target=Source

$$f_{\alpha} \approx 1$$
, $f_{\beta} < 1$, $f_{\gamma} << 1$

(ii) Target≠Source

$$f_{\alpha} = 0, f_{\beta} << 1, f_{\gamma} < 1$$

内照射模型

源器官累积活度:

$$\widetilde{A} = \int_{0}^{T} A(t) dt$$
 $A(t) = A(0) \cdot e^{-\lambda_{\text{eff}} t}$

$$\widetilde{A} = \frac{A(0)}{\lambda_{\text{eff}}} = \frac{A(0)}{\ln 2/T_{\text{eff}}} = 1.44T_{\text{eff}}A(0)$$
 $T_{\text{eff}} = \frac{T_{\text{p}}T_{\text{b}}}{T_{\text{p}} + T_{b}}$

$$A(0) = f_2 \cdot q(0)$$

where f_2 is the fraction of the intake activity reaching the organ of interest; q(0) is the intake for the total body.

2、空间特性:能量沉积

靶器官剂量:已知单一器官累积剂量(靶器官释放的全部吸收)

$$D = rac{k \cdot E \cdot n}{m} \int\limits_0^T A(0) \exp(-\lambda_{ ext{eff}} t) \mathrm{d}t = rac{k \cdot E \cdot n}{m} \widetilde{A}$$

• 多器官: 只有份额为的能量会沉积到靶器官

$$D = \frac{k \cdot E \cdot n}{m} \cdot f \cdot \widetilde{A} = \Delta \cdot \frac{f}{m} \cdot \widetilde{A} = \Delta \cdot F \cdot \widetilde{A} = S(T \leftarrow S) \cdot \widetilde{A}$$

 Δ 为每次衰变源器官放出的平均能量; $\Delta \cdot \widetilde{A}$ 为源器官衰变累积放出的能量; F=f/m, 称为比吸收分数(SAF), 即份额/靶器官质量。

• 定义 $S(T \leftarrow S) = \Delta \cdot F$,称为S系数(或S因子),即一次衰变导致的吸收剂量。

1. 内照射剂量计算基本思路

1. 内照射剂量计算基本思路

三、内照射剂量计算的实用方法

剂量转换系数 (Dose Conversion Factor)

待积有效剂量=摄入量×剂量转换系数

四、内照射的防护

• 内照射途径

• 吸入: 放射性气体或气溶胶;

• 食入: "病从口入";

• 皮肤:完整皮肤或伤口;

- 防护基本思路
 - 阻断进入人体的门户;
 - 中断放射性的传播;

1.1 照射量测量-自由空气电离室

1.2 空腔电离理论(布拉格-戈瑞理论)

- 假设:空腔尺寸<<次级电子的最大射程
 - 空腔中次级电子注量、能谱分布和室壁(介质)材料中相同:
 - 伽马射线在空腔中引起的次级电子可忽略;
 - 空腔周围的临近物质中, 伽马射线的照射是均匀的;

4. β剂量测量

- 外推电离室
 - 组织等效(或其他)材料表面或深度剂量
 - β粒子相当于空腔电离室中γ从室壁打出的次级电子
- 假设
 - 入射界面β均匀照射
 - 电离室深度<<β最大射程
 - 满足布拉格-格雷关系

→可通过测量空腔中的电离量 来测量室壁中的剂量。

4.1 中子吸收剂量测量

- 快中子主要, 热中子次要;
- 空腔电离室

- 由于中子与物质相互作用所产生的次级带电粒子(质子)射程非常短,要使电离室空腔的线度比这些次级带电粒子射程小很多,实际上很难做到。
- 均质电离室(室壁与空腔气体具有相同原子组成)
- 组织等效均质电离室
- 双电离室法
 - 不含氢电离室
 - 含氢电离室

 $D_{T} = q_{g} \cdot \left(\frac{W_{g}}{e}\right)$

空腔单位质量组织等效气体中产生的电离电荷, C/kg

n、γ吸收剂量

课外阅读

1982年原子能农业应用No. 3第8期APPLICATION OF ATOMIC ENERGY IN AGRICULTURE1982

生物组织快中子吸收剂量的测定

4.1 中子吸收剂量测量

- ❖快中子主要,热中子次要;
- ❖空腔电离室
 - →均质电离室(室壁与空腔气体具有相同原子组成)
 - **7**组织等效均质电离室

$$D_{T} = q_{g} \cdot \left(\frac{W_{g}}{e}\right)$$

7双电离室法

空腔单位质量组织等效气体中产生的电离电荷, C/kg

7不含氢电离室

7含氢电离室 「

n、γ吸收剂量

由于中子与物质相互作用所产生的次级带电粒子(质子)射程非常短,要使电离室空腔的线度比这些次级带电粒子射程小很多,实际上很难做到。

4.2 中子剂量当量测量

品质因子随能量变化,仅测量吸收剂量是不够的

图 4.29 中子的平均品质因数与中子能量的关系

剂量当量转换因子d(E)

(剂量当量—注量率)

剂量当量换算因子 d(E)和中子能量 E 的关系

借鉴脉冲式X/y射线剂量测量思路

4.2 中子剂量当量测量

❖中子周围剂量当量仪

- ↗ 外包聚乙烯慢化层 (调节能量响应)
- → 中心为³He或BF₃等中子探测器

Dose Equivalent Rate Measurements Andersson-Braun Rem Meter

也称为"中子雷姆仪"

The LB 6411 Neutron Dose Rate Probe was designed for the measurement of the ambient equivalent dose of neutrons. It consists of a polyethylene (PE) moderator sphere with a composite ³He recoil proton counter tube at its center. It is calibrated to the ambient equivalent dose H*(10) for neutrons recommended by the ICRP 60 and ICRU 39.

30 nSv/h - 100 mSv/hthermal to 20 MeV

环境辐射监测

- 1. 环境贯穿电离辐射测量 剂量(率)
- 2. 表面污染 活度
- 3. 总放射性测量 α/β活度
- 4. 核素分析 α/γ核素的活度(浓度)
- 5. 氡浓度测量 方法多: 母体/子体
- 6. 数据处理与报告(不确定度, L_C, L_D, MDA)

二、辐射安全管理的依据和机构

管理机构

根据《中华人民共和国放射性污染防治法》规定

环保部门: 县级以上人民政府应当将放射性污染防治工作纳入 环境保护规划。国务院环境保护行政主管部门对全 国放射性污染防治工作依法实施统一监督管理。

卫生部门: 县以上卫生行政部门负责本辖区内放射性同位素与 射线装置的<mark>职业病</mark>的监督、管理。

公安部门: 县以上公安部门对放射性同位素应用中的安全保卫实施监督管理。

1、辐射防护的基本原则

辐射防护的目的:

防止有害的确定性效应,并限制随机性效应的发生率,使之达到被认为可以接受的水平。

- (1) 辐射实践的正当化
- (2) 辐射防护的最优化
- (3) 剂量限值

辐射防护体系是辐射防护工作的基本原则。由于利益和代价在群体中的分布往往不相一致,付出代价的一方并不一定就是直接获得利益的一方。所以,必须综合考虑各方付出的代价与得到的利益。

它是一个<mark>完整的体系</mark>,需要全面贯彻执行,决不能片面强调其中一个方面。

(3) 剂量限值

剂量限值							
应用	职业人员	公众					
士法定之	20 mSv·a ⁻¹ 连续5年内平均	1 mSv·a ⁻¹					
有效剂量	50 mSv·a ⁻¹ 在任一年	5mSv·a ⁻¹ 在任一年					
年当量剂量							
眼睛	150mSv	15mSv					
皮肤	500mSv	50mSv					
四肢	500mSv						

问题:是否只要在剂量限值内,就是安全的?

2、放射源分类

□依 据

✓ IAEA安全导则第RS-G-1.9号"放射源分类", 2006年。

□分类原则

- ✓以风险为基础,将放射源和实践分5类;
- ✔分类标准是潜在危害(确定性健康效应的潜在危险);
- ✓以分类为基础,确定监管措施、保安措施、源的国家注册、进出口控制、标记高活度源、应急准备和响应、优先考虑获得对孤儿源(无人看管源)的控制、与公众沟通等。

3、射线装置分类

- ◆国际上未对射线装置进行分类。
- ❖根据射线装置对人体健康和环境的潜在危害程度, 从高到低将射线装置分为I类、II类、III类。
 - **→**I类射线装置:事故时短时间照射可以使受到照射的人员产生严重放射损伤,其安全与防护要求高;
 - →Ⅱ类射线装置:事故时可以使受到照射的人员产生较严重放射损伤,其安全与防护要求较高;
 - →Ⅲ类射线装置:事故时一般不会使受到照射的人员产生放射损伤,其安全与防护要求相对简单。

环境保护部、国家卫生和计划生育委员会,2017年第66号 关于发布《射线装置分类》的公告

4、非密封源工作场所的分级

- ▶非密封源工作场所按<u>放射性核素日等效最大操作量</u> 分为<u>甲、乙、丙三级</u>,具体分级标准见《电离辐射 防护与辐射源安全标准》(GB 18871-2002)。
- > 甲级非密封源工作场所的安全管理参照I类放射源。
- ▶乙级和丙级非密封源工作场所的安全管理参照II、 III类放射源。

5、干预水平与行动水平

任何情况下预期均应进行干预的剂量水平

表 E1.1 急性照射的剂量行动水平

器官或组织	2天内器官或组织的预期吸收剂量/Gy
全身(骨髓)	1
肺	6
皮肤	3
甲状腺	5
眼晶体	2
性腺	3

注: 在考虑紧急防护的实际行动水平的正当性和最优化时,应考虑当胎儿在2天时间内受到大于约0.1Gy的剂量时产生确定性效应的可能性

表 E1.2 持续照射的剂量率行动水平

器官或组织	吸收剂量率/ (Gy/a)
性腺	0. 2
眼晶体	0.1
骨髓 2023春《辐射图	护及保健物理》 0.4

期末考试

- 1. 时间地点: 6月16日 9:00-11:00, 明理楼214
- 2. 考试说明
 - 闭卷,可使用计算器
 - 考试范围: 教材、课件(PPT)
 - 考试题型(往年): 填空、单选、简答、计算
- 3. 成绩组成
 - 期末考试50%+课程参与10%+平时作业20%+大作业20%
 - 其它加分项

感谢同学们一学期的支持和鼓励! 祝大家考试顺利、生活愉快! 课程结束,友谊继续

