南京航空航天大学

第1页 (共5页)

二〇二一~二〇二二学年第1学期《数学分析 I》考试试题

考试日期: 年 月 日 试卷类型: 试卷代号:

班		号 学号		姓名	
题号 一		=	三	四	总分
得分					

本题分数	40
得 分	

- 、基础题 (每题 4 分, 共 40 分)
- 1、叙述关于极限 $\lim_{x\to-\infty} f(x)$ 存在的柯西准则.

- 2、用 "ε-δ语言"解释函数f(x)在区间I上不一致连续.
- 3、求极限 $\lim_{n\to\infty} \sqrt{n+2} 2\sqrt{n+1} + \sqrt{n}$).
- 4、指出函数 $f(x) = [/\cos x]$ 的间断点及其类型.
- 5、设f'(1) = 2, 求 $\lim_{x \to 1} \frac{f(x) f(1)}{\sqrt[3]{x} 1}$.

6、设
$$x = 2t - t^2$$
, $y = 3t - t^3$,求 $\frac{d^2y}{dx^2}$.

7、设
$$y = x^{\sin x}, x > 0$$
,求 $\frac{dy}{dx}$.

8、设
$$f(x)$$
二阶可导, $y = e^{f(x)}$,求 d^2y .

本资源免费共享 收集网站 nuaa.store

9、设
$$f(x) = x \sin x$$
,求 $f^{(20)}(0)$.

10、写出函数 $f(x) = (x - 1) \ln x$,在x = 1处的 Peano 型余项的 n 阶 Taylor 公式.

本题分数	12	
得 分		

二、求下列极限 (每题 6 分, 共 12 分)

1.
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^4+1}} + \frac{3}{\sqrt{n^4+3}} + \dots + \frac{2n-1}{\sqrt{n^4+2n-1}} \right)$$

$$2 \cdot \lim_{x \to 0^+} \left(\ln \frac{1}{x} \right)^{\sin x}$$

本资源免费共享 收集网站 nuaa.store

本题分数	36		
得 分			

三、证明题

1、 (7分) 用极限的ε – δ定义证明
$$\lim_{x\to 1} \frac{x^2-1}{2x^2-x-1} = \frac{2}{3}$$

2、(7分) 证明: $f(x) = \sin \sqrt[4]{x}$ 在[0, +∞) 上一致连续.

3、(6 分) 证明不等式 $\frac{2}{\pi}x < \sin x, x \in (0, \frac{\pi}{2})$.

本资源免费共享 收集网站 nuaa.store

4、(6分) 设f(x)在[a,b]上可导(a > 0) ,求证: 存在ξ,η \in (a,b) 使得

$$f'(\xi) = \frac{a+b}{2\eta} f'(\eta)$$

5、(10分) 叙述并证明"Heine-Borel 有限覆盖定理".

本题分数	12
得 分	

四、设 $f(x) = x \cdot arctanx$,讨论f(x)的单调性,凸性,极值,拐点与渐近线,并绘制图形.

	第 6页	(共5页)
本资源免费共享 收集网站 nuaa.store		

2021-2022 学年第一学期《数学分析 I》考试试题参考答案 (本试卷由学支教员董家华整理, 答案仅供参考。如遇答案有误, 请和学 支教员部成员联系, 学支会及时进行订正, 感谢您的使用)

一,基础题

1. 设函数f在U(-∞)上有定义.

 $\lim_{x \to -\infty} f(x)$ 存在 $\Leftrightarrow \forall \varepsilon > 0$, $\exists M > 0, s.t \ \forall \ x', x'' \leftarrow M$,有 $|f(x') - f(x'')| < \varepsilon$.

|2,设 函数f在区间 I上有定义.

f(x)在区间 I上不一致连续 $\Leftrightarrow \exists \epsilon_0 > 0, \forall \delta > 0, s.t \forall x', x'' \in I,$ 虽然 $|x'-x''| < \delta$,但 $|f(x')-f(x'')| \geq \varepsilon_0$.

3,
$$\lim (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$

$$=\lim_{n\to\infty} [\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

 $= \lim_{N \to \infty} \left[\frac{\sqrt{n+2} - \sqrt{n+1})\sqrt{n+2} + \sqrt{n+1})\sqrt{n+1} + \sqrt{n}}{\sqrt{n+2} + \sqrt{n+1}} \sqrt{n+1} + \sqrt{n}} \sqrt{n+1} + \sqrt{n} \sqrt{n+1} + \sqrt{n}}{\sqrt{n+2} + \sqrt{n+1}} \right]$

$$= \lim_{n \to \infty} \frac{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+2} + \sqrt{n}) - (\sqrt{n+2} + \sqrt{n+1})} I$$

$$= \lim_{n \to \infty} \frac{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})} I$$

$$= \lim_{n \to \infty} \frac{1}{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})} I$$

$$= \lim_{n \to \infty} \left[\frac{1}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n}} \right]$$

另解:

$$\lim_{n \to \infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$$

$$= \lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{x+2} - \sqrt{x+1}) - (\sqrt{x+1} - \sqrt{x})]$$

$$\lim_{n \to \infty} [(\sqrt{x+2} - \sqrt{x+1}) - (\sqrt{x+1} - \sqrt{x})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+1} - \sqrt{n})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+2} - \sqrt{n+1})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+2} - \sqrt{n+1})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+2} - \sqrt{n+1})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+2} - \sqrt{n+1})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+2} - \sqrt{n+1})]$$

$$\lim_{n \to \infty} [(\sqrt{n+2} - \sqrt{n+1}) - (\sqrt{n+2} - \sqrt{n$$

4, 当 x = nπ时, $f(x) = [/\cos x] = 1$.

当 x ≠ nπ时,由于| cos nπ | < 1,故 $f(x) = [/\cos x/] = 0$,

 \mathbb{H} $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} [(\cos x)] = 0 \neq f(n\pi),$

故 $x = n\pi$, n = 0, ± 1 , ± 2 ····,为f(x)的第一类可去间断点.

$$\begin{array}{l} 5, \lim_{x \to 1} \frac{f(x) - f(1)}{\sqrt{x} - 1} \\ L \ H \ \partial pit al \ \exists p \\ \lim_{x \to 1} \frac{3f'(x)}{7} \\ = 6 \\ 6.\frac{d^3y}{6dx^2} = \frac{d(\frac{dy}{dx})}{dx} = \frac{\frac{3}{2}d(t+1)}{dx} \\ \frac{3}{2}d(t+1) \\ \frac{3}{2$$

由于
$$\lim_{n\to\infty} \frac{n^2}{\sqrt{n^4+2n-1}} = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{2}{n^3-n^4}}} = 1$$

由迫敛性得: $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^4}} + \frac{3}{\sqrt{n^4+1}} + \dots + \frac{2n-1}{\sqrt{n^4+2n-1}}\right) = 1$

$$\lim_{x \to 0^+} (\ln \frac{1}{x}) \sin x$$

$$LH \hat{o}pital$$
法则
$$\Rightarrow = \lim_{x \to 0^+} \frac{(\sin x)^2}{x \cos x}$$
$$= \lim_{x \to 0^+} \tan x$$
$$= 0$$

三、证明题

1. $\forall \varepsilon > 0$, $\exists \delta > 0$, $\mathbf{p}\delta = \min\{1,3\varepsilon\}$, $\mathbf{g} \in \{1,3\varepsilon\}$, $\mathbf{g} \in \{1,$

$$|\frac{x^2-1}{2x^2-x-1}-\frac{2}{3}|=|\frac{x-1}{(2x-1)}|<\frac{|x-1|}{3}<\varepsilon$$

证毕

2. f(x)在[0,1]内为连续函数,由一致连续性定理得

f(x)在[0,1]上一致连续 免费共享 收集网站 manustore

$$\forall \ \varepsilon > 0, \exists \ \delta > 0, \ \Re \delta = 4\varepsilon, \ \text{s. t. } \ \forall x', x' \in (1, \infty)$$

只要/
$$x' - x''$$
/ $< \delta$,则

$$|\sin \sqrt[4]{x'} - \sin \sqrt[4]{x''}|$$

Lagrange定理
$$= \left| \frac{\cos \sqrt[4]{\xi}}{4\xi^{\frac{3}{4}}} (x' - x'') \right|$$

$$(x' < \xi < x'')$$

$$< \frac{1}{4} / x' - x'' / < \varepsilon$$

故 f(x)在(1,∞)上一致连续

综上: f(x)在[0,∞)上连续一致, 证毕。

3. 设
$$f(x) = \sin x - \frac{2}{\pi}x$$

$$f'(x) = \cos x - \frac{2}{\pi}$$

$$f''(x) = -\sin x < 0$$

因此f(x)为 $(0,\frac{\pi}{2})$ 上得连续凹函数

故
$$f(x) \ge \min \{f(0), f(\frac{\pi}{2})\} = 0$$

进而
$$\sin x > \frac{2}{\pi}x$$

证毕。

4. *f (x)*在[a,b]上可导,由*Lagrange*中值定理

$$f(a) - f(b) = f'(\xi)(b - a)$$

设 $g(x) = x^2$,显然g(x)在[a,b]上可导,由 Cauchy 中值定理

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(y)}{2y}$$

故
$$f'(\xi)(b-a) = \frac{(b^2-a^2)}{2y} f'(y)$$

进而
$$f(\xi) = \frac{(b-a)}{2y} f'(y)$$

5. (海涅—博雷尔(Heine-Borel)有限覆盖定理)设 H 为闭区间[a, b]的一个(无限)开覆盖则从 H 中可选出有限个开区间来覆盖[a, b]

证:

用反证法 假设定理的结论不成立,即不能用 H 中有限个开区间来覆盖[a,b].

将[a, b]等分为两个子区间,则其中至少有一个子区间不能用 H 中有限个开区间来覆盖.记这个子区间为[a₁, b₁],则[a₁, b₁]C[a,b],且b₁ - a₁ = $\frac{1}{2}$ (b - a).再将[a₁, b₁]等分为两个子区间,同样,其中至少有一个子区间不能用 H 中有限个开区间来覆盖.记这个子区间为[a₂,b₂],则[a₂,b₂]C[a,b],且b₂ - a₂ = $\frac{1}{2^2}$ (b - a)重复上述步骤并不断地进行下去,则得到一个闭区间列{[a_n,b_n]},它满足 [a_n,b_n] \supset [a_{n+1},b_{n+1}],n=1,2,…,

$$b_n - a_n = \frac{1}{2^n}(b - a) \to 0(n \to \infty)$$

即{ $[a_n,b_n]$ }是区间套,且其中每一个闭区间都不能用 H 中有限个开区间来覆盖.由区间套定理,存在唯一的一点 $\xi \in [a_n,b_n], n=1,2,\cdots$.由于 H 是[a,b]的一个开覆盖,故存在开区间 $(\alpha,\beta) \in H$,使 $\xi \in (\alpha,B)$.于是,由定理 7.1 推论,当 n 充分大时,有 $[a_n,b_n]$ C (α,β) .

这表明[a,b。]只需用 H 中的一个开区间(α,β)就能覆盖,与挑选[a_n,b_n]时的假设 "不能用 H 中有限个开区间来覆盖"相矛盾.从而证得必存在属于 H 的有限个开区间 能覆盖[a,b].

四,

$$f(x) = x \cdot arctanx$$

$$f'(x) = arctanx + \frac{x}{x^2 + 1}$$

$$f'(0) = 0$$

$$f''(x) = (\frac{x - 1}{x^2 + 1})^2 \ge 0$$

设渐近线 y = kx + b

$$k_1 = \lim_{X \to +\infty} \frac{f(X)}{X} = \frac{\pi}{2}$$

$$k_2 = \lim_{X \to -\infty} \frac{f(X)}{X} = -\frac{\pi}{2}$$

本资源免费共享 收集网站 nuaa.store

$$b_{1} = \lim_{x \to +\infty} (x \cdot arctanx - \frac{\pi}{2}x) = \lim_{x \to +\infty} (-\frac{x^{2}}{x^{2} + 1}) = -1$$

$$b_{2} = \lim_{x \to +\infty} (x \cdot arctanx + \frac{\pi}{2}x) = \lim_{x \to -\infty} (-\frac{x^{2}}{x^{2} + 1}) = -1$$

因此,两条渐近线为 $y = \frac{\pi}{2}x - 1$ 和 $y = -\frac{\pi}{2}x - 1$

X	(− ∞, 0)	0	(0,1)	1	(1, +∞)	
f '(x)	_	0	+	+	+	
f "(x)	+	+	+	0	+	
f (x)	凸减↓	极小值0	凸増↑	拐点(1,arctan1)	凸増↑	

本资源免费共享 收集网站 nuaa.store