The group G is isomorphic to the group labelled by [40, 8] in the Small Groups library. Ordinary character table of $G \cong (C10 \times C2)$: C2:

	1a	2a	2b	2c	5a	4a	10a	10b	5b	10c	10d	10e	10 <i>f</i>
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	1	1	-1	-1	1	-1
χ_3	1	-1	1	1	1	-1	1	1	1	1	1	1	1
χ_4	1	1	-1	1	1	-1	-1	1	1	-1	-1	1	-1
χ_5	2	0	0	-2	2	0	0	-2	2	0	0	-2	0
χ_6	2	0	-2	2	$E(5)^2 + E(5)^3$	0	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_7	2	0	-2	2	$E(5) + E(5)^4$	0	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_8	2	0	0	-2	$E(5)^2 + E(5)^3$	0	$-E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 - E(5)^3$	$E(5) - E(5)^4$	$-E(5) - E(5)^4$	$-E(5) + E(5)^4$
χ_9	2	0	0	-2	$E(5)^2 + E(5)^3$	0	$E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5)^2 + E(5)^3$	$-E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5) - E(5)^4$
χ_{10}	2	0	0	-2	$E(5) + E(5)^4$	0	$-E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) - E(5)^4$	$-E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5)^2 - E(5)^3$
χ_{11}	2	0	0	-2	$E(5) + E(5)^4$	0	$E(5) - E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5) + E(5)^4$	$E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5)^2 + E(5)^3$
χ_{12}	2	0	2	2	$E(5)^2 + E(5)^3$	0	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$
χ_{13}	2	0	2	2	$E(5) + E(5)^4$	0	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$

Trivial source character table of $G \cong (C10 \times C2)$: C2 at p = 2:

Trivial source character table of $G = (C10 \times C2)$. $C2$ at $p = 2$.																	
Normalisers N_i		N_1			N_2				N_3			N_4	N_5		N_6	N_7	$\overline{N_8}$
p-subgroups of G up to conjugacy in G		P_1			P_2				P_3			P_4	P_5		P_6	P_7	$\overline{P_8}$
Representatives $n_j \in N_i$	1a	5a	5b	1a	5a	5b	1a	5a	5b	5c	5d	$1a \mid 1a$	5a	5b	1a	1a	$\overline{1a}$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$		8	8	0	0	0	0	0	0	0	0	0 0	0	0		0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13}$	8	$4*E(5)^2 + 4*E(5)^3$	$4*E(5) + 4*E(5)^4$	0	0	0	0	0	0	0	0	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13}$	8	$4 * E(5) + 4 * E(5)^4$	$4 * E(5)^2 + 4 * E(5)^3$	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$		4	4	4	4	4	0	0	0	0	0	0 0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} $	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	0	0	0	0	0	0 0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} $	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	0	0	0	0	0 0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	4	4	4	0	0	0	2	2	2	2	2	0 0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} $	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	0	0	2	2 * E(5)	$2 * E(5)^2$	$2 * E(5)^3$	$2 * E(5)^4$	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} $	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	0	0	0	2	$2 * E(5)^2$	$2*E(5)^4$	2 * E(5)	$2 * E(5)^3$	0 0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} $	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$	0	0	0	2	$2 * E(5)^3$	2 * E(5)	$2*E(5)^4$	$2 * E(5)^2$	0 0	0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} $	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	0	0	2	$2 * E(5)^4$	$2 * E(5)^3$	$2 * E(5)^2$	2 * E(5)	0 0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	4	4	4	0	0	0	0	0	0	0	0	2 0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	2	2	2	2	2	2	2	2	2	2	0 2	2	2	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} $	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	$E(5) + E(5)^4$		$E(5)^2 + E(5)^3$			$E(5) + E(5)^4$		3 0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} $	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0 2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^{2}$. 0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	2	2	2	2	2	0	0	0	0	0	2 0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	2	2	2	2	2	2	0	0	0	0	0	0 0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13}$	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1
	•																

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40)]) \cong \mathbf{C2}$

 $P_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,21)(16,22)(19,25)(20,26)(23,29)(24,30)(27,33)(28,34)(31,36)(32,37)(35,39)(38,40)]) \cong \mathbb{C}_2$

 $P_4 = Group([(1,2)(3,13)(4,7)(5,32)(6,9)(8,28)(10,40)(11,38)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(19,31)(21,34)(22,33)(23,27)(25,30)(26,29)]) \cong C2$ $P_5 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,21)(16,22)(19,25)(20,26)(23,29)(24,30)(27,33)(28,34)(31,36)(32,37)(35,39)(38,40)]) \cong C2 \times C2$

 $P_6 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,2)(3,13)(4,7)(5,32)(6,9)(8,28)(10,40)(11,38)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(19,31)(21,34)(22,33)(23,27)(25,30)(26,29)] \cong C2 \times C2$

 $P_7 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), \\ (1,13,4,6)(2,9,7,3)(5,40,11,37)(8,39,15,34)(10,32,17,38)(12,36,19,30)(14,28,21,35)(16,33,23,26)(18,24,25,31)(20,29,27,22)]) \cong C4$

 $N_1 = Group([(1,2)(3,13)(4,7)(5,32)(6,9)(8,28)(10,40)(11,38)(12,24)(14,39)(15,35)(6,24)(21,30)(23,27)(25,30)(26,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,21)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,21)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,21)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(21,19)(24,31)(24,$

 $N_4 = Group([(1,2)(3,13)(4,7)(5,32)(6,9)(8,28)(10,40)(11,38)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(19,31)(21,34)(22,33)(23,27)(25,30)(26,29), (1,7)(2,4)(3,6)(5,38)(8,35)(9,13)(10,37)(11,32)(12,31)(14,34)(15,28)(16,27)(17,40)(18,30)(19,24)(20,23)(21,39)(22,26)(25,36)(29,33)]) \cong C2 \times C2$

 $N_5 = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(5,11)(6,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(5,11)(6,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(5,11)(6,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(5,11)(6,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(5,11)(6,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(31,21,29,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(31,21,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(31,21,29)(24,31)(26,33)(28,35)(30,36)(32,37)(35,39)(38,40), (1,4)(2,7)(3,9)(31,21,29)(31,2$

 $N_7 = Group([(1,13,4,6)(2,9,7,3)(5,40,11,37)(8,39,15,34)(10,32,17,38)(12,36,19,30)(14,28,21,35)(16,33)(28,23)(29,27,22),(1,4)(2,7)(3,9)(5,11)(6,13)(4,29,13)(14,29,1$

 $N_8 = Group([(1,2)(3,13)(4,7)(5,32)(6,9)(8,28)(10,40)(11,38)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(12,24)(14,39)(15,35)(16,20)(17,37)(18,36)(19,31)(12,34)(12$