Лекция по математическому анализу

Александр Титилин

18 октября 2022 г.

Содержание

Содориши			
1	Еще про пределы. 1.1	1	
1	Еще про пределы.		
Э:	Эти фразы эквивалентны		
	1. Неравенство $f(x) > 0$ выполняется вблизи точки a .		
	2. \exists окрестность точки а, такая что для всех x из нее выполняется $f(x)$ 0	>	

1.1

$$\lim_{x \to a} f(x) = A.$$

3. $\exists \delta > 0 \forall x$ такой что $|x-a| < \delta$ выполняется неравенство f(x) > 0.

- 1. $\forall \epsilon$ неравенство $|f(x)-A|<\epsilon$ выполняется вблизи а для всех $x\neq a$
- 2. $\forall \epsilon>0$ \exists окрестность Uточки а, такая что $\forall x\in U, x\neq a$ Выволняется $|f(x)-A|<\epsilon$
- 3. $\forall \epsilon > 0 \exists \delta > 0 \forall x \ 0 < |x a| < \delta \implies |f(x) A| < \epsilon$

Теорема 1 Определения предела равносильны.

1. От противного. Пусть $\exists \epsilon > 0 \forall \delta > 0 \exists x$ такой что

$$\begin{cases} 0 < |x - a| < \delta \\ |f(x) - A| \ge \epsilon \end{cases}.$$

Пусть $\delta = 1 \exists x_1$

$$\begin{cases} 0 < |x_1 - a| < 1 \\ |f(x_1) - A| \ge \epsilon \end{cases}.$$

$$\delta = \frac{1}{2} \exists x_2$$

$$\begin{cases} 0 < |x_2 - a| < \frac{1}{2} \\ |f(x_2) - A| \ge \epsilon \end{cases}.$$

Мы построили последовательность со свойсвтами

$$\begin{cases} 0 < |x_n - a| < \frac{1}{n} \\ |f(x_n) - A| > \epsilon \end{cases}.$$

2. Возьмем любую последовательность с такими свойствами

$$\begin{cases} x_n \in D \\ x_n \neq a \\ x_n \to a \end{cases}.$$

И докажем, что $f(x_n) \to A$

$$\forall \epsilon \exists n_0 \forall n > n_0 | f(x_n) - A | < \epsilon.$$

$$\forall \delta > 0 \exists n_0 \forall n \ge n_0 |x_n - a| < \delta.$$