问题解答

代数结构

2023年6月25日

问题 1 题目 6.14 中的 $\mathbb{Z}[i]$ 是什么意思? 映射 $\pi: \mathbb{Z}[i] \to \mathbb{Z}[i]/(2+i)$ 是什么?

答 $\mathbb{Z}[i]$ 表示的是 \mathbb{C} 的子环(给定一个大的环,决定子环,我们只需要决定集合即可), $\mathbb{Z}[i]$ 作为集合是 $\{a+bi\mid a,b\in\mathbb{Z}\}$. 事实上,这个记号是一般性的: 对一个环 S 与它的子环 R 和任意子集 $A\subseteq S$,我们用 R[A] 表示包含 R 和 A 的 S 的最小子环.

映射 $\pi: \mathbb{Z} \to \mathbb{Z}[i]/(2+i)$ 表示商映射, 把每个元素 x 映射成它所在的等价类中: $\pi(x) = x + (2+i) = \{x + y \mid y \in (2+i)\}.$

问题 2 题目 6.9: 如果群 G 只含有一个某阶子群,则该群是正规子群.

证明 设 $H \le G$ 是 G 的一个子群,且和 H 相同阶数的子群都等于 H. 为了证明 H 是正规子群,即证,对每个 $g \in G$,都有 $gHg^{-1} = H$. 现在,这由条件得到:因为 gHg^{-1} 和 H 的阶相同,并且不难验证 gHg^{-1} 总是子群.

题目 3 2018 年考试题. (1) 设 $\langle G, * \rangle$ 是群, $|G| \geq 2$ 且满足 $\forall a \in G, a^2 = e$,证明 $\exists n \in \mathbb{Z}_+, |G| = 2^n$.

(2) 证明 $\{(12),(134)\}$ 生成了 S_4 .

证明 (1) 对 |G| 作归纳. 任取一个二阶元素 $a \in G$,熟知 G 是 Abel 群(i.e. 交换群)(这是我们的一道作业题,5.3),所以 a 生成的子群 $H := \{e, a\}$ 会是 G 的正规子群,现在考虑商群 G/H,那么它也满足题目的条件,应用归纳假设,所以 |G/H| 是 2 的幂次,然后注意 $|G| = |H| \times |G/H| = 2|G/H|$.

(2) 第一步, 我们证明如下的引理:

引理 设 H 是置换群 S_n 指数为 2 的子群,则 $H = A_n$.

证明 熟知如果 H 是 S_n 指数为 2 的子群,则 $\forall \sigma \in S_n, \sigma^2 \in H$ (这又是我们的一道作业题,6.4). 考虑 $S = \{\sigma^2 \mid \sigma \in S_n\}$,用 $\langle S \rangle$ 表示 S 生成的子群,我们断言 $A_n \subseteq \langle S \rangle \subseteq H$,从而比较元素个数得到所需.

第二个包含是我们刚才已经得到的结论,至于第一个包含:我们指出,任意两个对换的乘积 $\tau=(ij)(kl)$,都可以写成置换的平方:

$$(ij)(kl) = \begin{cases} (ijl)^2 & \text{ if } i = k \\ (ikjl)^2 & \text{ if } i \neq k \end{cases}$$

现在,因为偶置换可以表示成偶数个对换的乘积,所以 $A_n \subseteq \langle S \rangle$.

回到原题 第二步,记 $H = \langle (12), (134) \rangle$,首先 (1234) = (14)(13)(12) = (134)(12),所以由 Lagrange 定理, $4 \mid |H|$ 且 $3 \mid |H|$,于是 $12 \mid |H|$. 从而 |H| = 12 或者 24,但是第一种情形不可能,因为它包含了奇置换 (12),所以 |H| = 24,故 $H = S_4$.

题目 4 ppt 例子 5.16, 生成子群.

"这一步是怎么得到的? K 不是 H 的交吗, 那么 H 不一定属于 K 吧"

答 这里是对每个 $H \in A$ 都断言了 $ab \in H$,从而由 K 的定义 $(K = \bigcap_{H \in A} H)$,得到 $ab \in K$.