Конечные поля и алгебраические числа

Определение 1. Xарактеристикой поля <math>F называется наименьшее число n такое, что $1+1+\ldots+1=0$ (всего n слагаемых). Если такого числа нет, то говорят, что характеристика поля равно 0.

Упражнение 1. Докажите, что характеристика поля либо 0 либо простое число p.

Упражнение 2. Докажите, что если характеристика поля F равна p, то F содержит \mathbb{Z}_p как подполе.

- 1. Докажите, что количество элементов конечного поля делится на характеристику поля.
- **2.** Докажите, что если количество элементов конечного поля равно p^k , где p характеристика поля.

Упражнение 3. Напомним малую теорему Ферма: для любого $a \in \mathbb{Z}_p$, $a \neq 0$, $a^{p-1} = 1$. Сформулируйте и докажите ее аналог для любого конечного поля.

Упражнение 4. Является ли полем множество остатков многочленов $\mathbb{R}[x]$ с действительными коэффициентами по модулю многочлена а) x^2-1 ; б) x^2+1 ?

Определение 2. Число называется *алгебраическим*, если оно является корнем некоторого многочлена с рациональными коэффициентами. Говорят, что алгебраическое число имеет *степень* d, если оно является корнем nenpusodumoro многочлена с рациональными коэффициентами степени d.

Упражнение 5. Является ли число $\sqrt[3]{2} + \sqrt{3}$ алгебраическим?

Упражнение 6. Число α является алгебраическим тогда и только тогда, когда числа $1,\alpha,\alpha^2,\ldots$ являются линейно зависимыми над $\mathbb Q$.

Определение 3. Если α — алгебраическое число, то существует многочлен P с рациональными коэффициентами такой, что $\alpha^{-1} = P(\alpha)$.

Упражнение 7. Докажите, что числа вида $a+b\sqrt[3]{2}+c\sqrt[3]{4},\ a,b,c\in\mathbb{Q}$ образуют поле.

Определение 4. Пусть $\alpha \in \mathbb{C}$. Через $\mathbb{Q}(\alpha)$ обозначается минимальное подполе комплексных чисел, содержащее α .

Определение 5. Если α — алгебраическое число степени d. Докажите, что выражения вида $a_0+a_1\alpha+\ldots+a_{d-1}\alpha^{d-1}$

- **3.** Если α алгебраическое число степени d. Докажите, что выражения вида $a_0 + a_1 \alpha + \ldots + a_{d-1} \alpha^{d-1}$ образуют поле (т.е. степень расширения $\mathbb{Q}(\alpha)$ над \mathbb{Q} равна d).
- **4.** а) Докажите, что сумма алгебраических чисел алгебраическое число. б) Докажите, что алгебраические числа образуют поле.