1 FIXED FIELDS II 1

1 Fixed Fields II

Definition 1 (Fixed field). Let L: K be a field extension and $G \leq \operatorname{Aut}(L)$. Then the fixed field of G is

$$Fix_L(G) = L^G = \{ \alpha \in L : g\alpha = \alpha \ \forall g \in G \}$$

Definition 2 (Galois Extension). Let L: K be a field extension. Then L: K is a <u>Galois extension</u> if it is normal and separable.

Lemma 1.1. Let $K, M \subseteq L$ be fields and $G, H \leq \operatorname{Aut}(L)$. Then

- 1) if $K \subseteq M$, then $Gal(L:K) \geqslant Gal(L:M)$;
- 2) if $G \leq H$, then $\operatorname{Fix}_L(G) \supseteq \operatorname{Fix}_L(H)$;
- 3) $K \subseteq \operatorname{Fix}_L(\operatorname{Gal}(L:K));$
- 4) $G \leq \operatorname{Gal}(L : \operatorname{Fix}_L(G));$
- 5) $Gal(L:K) = Gal(L:Fix_L(Gal(L:K)));$
- 6) $\operatorname{Fix}_L(G) = \operatorname{Fix}_L(\operatorname{Gal}(L : \operatorname{Fix}_L(G))).$

Theorem 1.2. Let L: K be algebraic. Then L: K is $Galois \iff K = Fix_L(Gal_K(L))$

Theorem 1.3. Suppose that L is a field, $G \leq \operatorname{Aut}(L)$ such that $|G| < \infty$, and put $K = \operatorname{Fix}_L(G)$. Then L : K is a finite Galois extension with $[L : K] = |\operatorname{Gal}(L : K)|$, and furthermore $G = \operatorname{Gal}_K(L)$.

Theorem 1.4. Let L: K be finite.

- 1. If L: K is a Galois extension, then |Gal(L:K)| = [L:K] and $K = Fix_L(Gal(L:K))$.
- 2. If L: K is not Galois, then |Gal(L:K)| < [L:K] and K is a proper subfield of $Fix_L(Gal(L:K))$.

Corollary 1. Let L: M: K be a tower such that L: K is Galois. Then L: M is Galois.

Proposition 1. Let $f \in K[t] \setminus K$ be separable. Then $Gal_K(f) \leq A_n \iff \sqrt{D} \in K$