

CS 6820 – Machine Learning

Lecture 4 (Info only – not given in class)

Instructor: Eric S. Gayles, PhD.

Jan 16, 2018

ML Tools

- Matlab
- GNU Octave
- SciPy, Numpy, SciKits
 - Recommend installing Jupyter from <u>www.anaconda.com</u> (evolved from iPython)
 - Good Read–Eval–Print Loop (REPL) environment
 - https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
- Basic Linear Algebra Subprograms (BLAS)
- LAPACK Linear Algebra PACKage
- Shogun-toolbox
- MLlib Apache
- Deeplearn.js
- ConvnetJS
- MLPack
- TensorFlow

NumPy and SciPy

- NumPy and SciPy are open-source add-on modules to Python that provide common mathematical and numerical routines in pre-compiled, fast functions. These are growing into highly mature packages that provide functionality that meets, or perhaps exceeds, that associated with common commercial software like MatLab.
- The NumPy (Numeric Python) package provides basic routines for manipulating large arrays and matrices of numeric data.
- The SciPy (Scientific Python) package extends the functionality of NumPy with a substantial collection of useful algorithms, like minimization, Fourier transformation, regression, and other applied mathematical techniques.
- https://docs.scipy.org/doc/scipy/reference/tutorial/

 Machine learning algorithms execute numerical solutions from Optimization Theory (Calculus), Statistics, Linear Algebra, and Discrete Math.

- Linear Algebra
 - Useful for compact representation of linear transformations on data
 - Dimensionality reduction techniques
 - Solving systems of equations

 To have maximum effectiveness developing Machine Learning solutions, you will need good mathematical intuitions about certain general machine learning principles and algorithms.

- Choose the best algorithm for the problem
- Set parameter and initial conditions
- Estimate runtime for solutions
- Drive validation strategies and troubleshooting
- Recognize/avoid over- or underfitting
- Set confidence boundaries on solutions
- Choose the best coding approach, framework, language, etc.

```
    a ∈ A set membership: a is member of set A
```

| B | cardinality: number of items in set B

• || **v** || norm: length of vector v

• ∫ integral

R the set of real numbers

\mathbb{R}^n real number space of dimension n

n = 2 : plane or 2-space

n = 3 : 3- (dimensional) space

n > 3 : *n*-space or *hyperspace*

- x, y, z, vector (bold, lower case)u, v
- A, B, X matrix (bold, upper case)
- y = f(x) function (map): assigns unique value in range of y to each value in domain of x
- dy / dx derivative of y with respect to single variable x
- y = f(x) function on multiple variables, i.e. a
 vector of variables; function in n-space
- $\partial y / \partial x_i$ partial derivative of y with respect to element i of vector **x**

A probability space is a random process or experiment with three components:

- $-\Omega$, the set of possible *outcomes* O
 - number of possible outcomes = | Ω | = N
- F, the set of possible events E
 - an event comprises 0 to N outcomes
 - number of possible events = | F | = 2^N
- P, the probability distribution
 - function mapping each outcome and event to real number between 0 and 1 (the probability of O or E)
 - probability of an event is sum of probabilities of possible outcomes in event

Given:

- A discrete random variable X, with possible values $x = x_1, x_2, \dots x_n$
- Probabilities $p(X = x_i)$ that X takes on the various values of x_i
- A function $y_i = f(x_i)$ defined on X

The expected value of f is the probability-weighted "average" value of $f(x_i)$:

$$\mathsf{E}(f) = \sum_{i} p(x_i) \cdot f(x_i)$$

- Addition of two matrices
 - matrices must be same size
 - add corresponding elements:

$$c_{ij} = a_{ij} + b_{ij}$$

result is a matrix of same size

$$\mathbf{C} = \mathbf{A} + \mathbf{B} =$$

$$\begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

- Scalar multiplication of a matrix
 - multiply each element by scalar:

$$b_{ij} = d \cdot a_{ij}$$

result is a matrix of same size

$$\begin{pmatrix} d \cdot a_{11} & \cdots & d \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ d \cdot a_{m1} & \cdots & d \cdot a_{mn} \end{pmatrix}$$

 $\mathbf{B} = d \cdot \mathbf{A} =$

The probability a discrete variable A takes value a is: $0 \le P(A=a) \le 1$

Alternatives

Probability

Probabilities of alternative outcomes add: $P(A \in \{a, a'\}) = P(A = a) + P(A = a')$

Normalization

 $\sum P(A=a)=1$ The probabilities of all outcomes must sum to one: all possible a

Joint Probability

P(A=a,B=b) is the joint probability that both A=a and B=b occur.

Marginalization

Conditional Probability

Product Rule

Bayes Rule

Variables can be "summed out" of joint distributions:

 $P(A=a) = \sum P(A=a,B=b)$ all possible b

 $P\left(A\!=\!a|B\!=\!b\right)$ is the probability $A\!=\!a$ occurs given the knowledge $B\!=\!b.$

$$P\left(A\!=\!a,B\!=\!b\right) = P\left(A\!=\!a\right) P\left(B\!=\!b|A\!=\!a\right) = P\left(B\!=\!b\right) P\left(A\!=\!a|B\!=\!b\right)$$

Bayes rule can be derived from the above:

$$P\left(A=a|B=b,\mathcal{H}\right) = \frac{P\left(B=b|A=a,\mathcal{H}\right)P\left(A=a|\mathcal{H}\right)}{P\left(B=b|\mathcal{H}\right)} \propto P\left(A=a,B=b|\mathcal{H}\right)$$

* Thanks to A Yu

The derivative of $f: R \to R$ is a function $f': R \to R$ st.

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if the limit exists.

13 Gayles

- The gradient is an important concept from calculus in the context of machine learning.
- Gradients generalize derivatives to scalar functions of several variables.

$$abla f = egin{bmatrix} rac{\partial f}{\partial x_1} \\ dots \\ rac{\partial f}{\partial x_n} \end{bmatrix} \quad \text{i.e.} \quad [
abla f]_i = rac{\partial f}{\partial x_i}$$

• <u>Definition</u>: The gradient of f: in $R^2 \rightarrow R$:

It is a function $\nabla f: \mathbb{R}^2 \to \mathbb{R}^2$ given by

15

• <u>Definition</u>: The gradient of $f: R^n \to R$ is a function $\nabla f: R^n \to R^n$ given by

$$\nabla f(x_1, ..., x_n) := \left(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right)^T$$

16

The **Hessian** matrix of $f: \mathbb{R}^d \to \mathbb{R}$ is a matrix of second-order partial derivatives:

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix} \quad \text{i.e.} \quad [\nabla^2 f]_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

Partial derivatives provide the slope to direct the solution toward minimization of the loss function.

- Pick initial solution
- Repeat until optimized {
 - Evaluate slope and minima conditionality
 - Pick dimension(s)
 - Move a small amount in the direction decreasing loss

 $\theta_{1} \coloneqq \theta_{1} - \alpha \frac{\partial J}{\partial \theta_{1}}$ $\theta_{2} \coloneqq \theta_{2} - \alpha \frac{\partial J}{\partial \theta_{2}}$ \vdots $\theta_{k} \coloneqq \theta_{k} - \alpha \frac{\partial J}{\partial \theta_{k}}$

Gayles

^{*} A Beginners Tutorial for Machine Learning Beginners, Hao

20 Gayles

21 Gayles

- Simple concept: follow the gradient downhill
- Process:
 - 1. Pick a starting position: $\mathbf{x}^0 = (x_1, x_2, ..., x_d)$
 - 2. Determine the descent direction: $-\nabla f(\mathbf{x}^t)$
 - 3. Choose a learning rate: η
 - 4. Update your position: $\mathbf{x}^{t+1} = \mathbf{x}^t \eta \cdot \nabla f(\mathbf{x}^t)$
 - 5. Repeat from 2) until stopping criterion is satisfied
- Typical stopping criteria
 - $\qquad \nabla f(\mathbf{x}^{t+1}) \sim 0$
 - some validation metric is optimized

Gradient descent optimization

- Problems:
 - Choosing step size
 - too small → convergence is slow and inefficient
 - too large → may not converge
 - Can get stuck on "flat" areas of function
 - Easily trapped in local minima

