ALGORITMOS PARA LA LOCALIZACIÓN DE ABEJAS ROBÓTICAS Y EVITAR COLISIÓN

Juliana Henao Arroyave Gerónimo Zuluaga Londoño Medellín, 6 de noviembre

Estructuras de Datos Diseñada

Abeja abeja4 x = -75.5800940226y = 6.31136326493z = 1707.90Abeja abeja3 x = -75.5469857796y = 6.33346840308z = 1395.71Abeja abeja2 x = -75.5497332207y = 6.34568295321z = 1703.38Abeja abeja1 x = -75.5499363497y = 6.31612928218z = 1683.77

Tope de la pila

Gráfico 1: Una pila o Stack de clase *Abeja. Abeja* es una clase con atributos de doubles *x*, *y* y *z*

Operaciones de la Estructura de Datos

Gráfico 2: *Pop* es un método que pone una Abeja al tope de la pila y *push* añade una en el tope. El método *collisionDetector* utiliza *pop*

Tabla 1: Complejidad de las operaciones de la estructura de datos (pop y push) y del método para detector colisiones

Criterios de Diseño de la Estructura de Datos

- En la solución del problema se requiere usar el método pop para comparar la abeja que se retorna.
- La operación de pop en la estructura de datos Stack tiene complejidad O(1) en cualquier caso
- La operación quitar un elemento y retornarlo tiene complejidad en memoria de O(n)
- La complejidad de la operación para saber y borrar el elemento del tope de la pila es eficiente para el problema.

Consumo de Tiempo y Memoria

Tiempo vs. Número de Abejas

Gráfico 3: Gráfico del tiempo que demora en arrojar todas las respuestas. Es polinómica de grado 2 y se evidencia en la imagen.

Número de abejas	Tiempo Con Stack	Tiempo con LinkedList
10	0 ms	1 ms
100	1 ms	4 ms
1.000	14 ms	28 ms
10.000	944 ms	904 ms
100.000	91.628 ms	

Tabla 2: Tiempo en milisegundos para cada número de abejas a evaluar

Software Desarrollado

Gráfico 4: Mapa con 1000 abejas robóticas funcionando en Bello

