IMPORTING LIBRARIES

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

#load the data
df = pd.read_csv('/content/drive/My Drive/Machine Learning/abalone.csv')

df

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

df.head()

	Sex	Length	Diameter	Height	Whole weight		Viscera weight		Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000
4						•

```
df['age'] = df['Rings']+1.5
df = df.drop('Rings', axis = 1)

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.metrics import r2_score, mean_squared_error
import warnings
```

warnings.filterwarnings("ignore", category=DeprecationWarning)

warmings. Tillerwarmings(ignore , category=beprecationwarmi

→ UNIVARIATE ANALYSIS

sns.heatmap(df.isnull())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	age	4177 non-null	float64

dtypes: float64(8), object(1)

memory usage: 293.8+ KB

sns.countplot(x = 'Sex', data = df, palette = 'Set3')

sns.histplot(df.age,kde=True)

BIVARIATE ANALYSIS

<AxesSubplot:>

MULTI VARIATE ANALYSIS

[] Ļ1 cell hidden

•	MISSING VALUES
	[] Ļ3 cells hidden
>	OUTLIERS
	[] Ļ 18 cells hidden
•	CATEGORICAL COLUMNS
	[] Ļ 6 cells hidden
•	INDEPENDENT AND DEPENDENT VARIABLE
	[] Ļ 4 cells hidden
•	SCALING THE INDEPENDENT VARIABLE
	[] Ļ 2 cells hidden
•	SPLITING THE DATA
	[] L, 2 cells hidden
•	BUILDING MODEL
	[] L, 4 cells hidden
•	TRAINING THE MODEL
	[] Ļ3 cells hidden
•	TESTING THE MODEL

[] L, 5 cells hidden

Colab paid products - Cancel contracts here