The Inverse of a Function (TB P532)

The functions f and g are said to be *inverses* of each other. More generally, we have the following definition.

DEFINITION Inverse Functions

A function g is the inverse of the function f if

$$f[g(x)] = x$$
 for every x in the domain of g

and

$$g[f(x)] = x$$
 for every x in the domain of f

Equivalently, g is the inverse of f if the following condition is satisfied:

$$y = f(x)$$
 if and only if $x = g(y)$

for every x in the domain of f and for every y in its range.

The inverse of f is normally denoted by f^{-1} .

Do not confuse
$$f^{-1}(x)$$
 with $[f(x)]^{-1} = \frac{1}{f(x)}$

Example 1 [TB P534]

Show that the function $f(x) = x^{1/3}$ and $g(x) = x^3$ are inverses of each other.

$$f \circ g(x) = f(g(x)) = f(x^3) = (x^3)^{1/3} = x.$$

$$g \circ f(x) = g(f(x)) = g(x^{1/3}) = (x^{1/3})^3 = x$$

Therefore f and g are inverses of each other.

The Graphs of Inverse Function

Suppose that (a, b) is any point on the graph of a function f.

Then b = f(a), and we have

$$f^{-1}(b) = f^{-1}[f(a)] = a$$

This shows that (b, a) is on the graph of f^{-1} .

The Graphs of Inverse Functions

The graph of f^{-1} is the reflection of the graph of f with respect to the line y = x and vice versa.

Example 2 [TB P534]

Sketch the graph of $f(x) = \sqrt{x-1}$. Then reflect the graph of f with respect to the line y=x to obtain the graph of f^{-1} .

Solution:

The graph of f^{-1} is obtained by reflecting the graph of f with respect to the line y = x.

Which Functions Have Inverses

Does every function have an inverse?

Consider for exmaple, the function f defined by $y = x^2$ with

$$D_f = (-\infty, \infty)$$
 and $R_f = [0, \infty)$.

From the graph of f, each y > 0 is associated with exactly two values of x in D_f .

Any horizontal line y = c, where c > 0, cuts the graph of f more than once.

Figure 6

Each value of *y* is associated with two values of *x*.

This is called many-to-one.

This implies that f does not have an inverse, since the uniqueness requirement of a function cannot be satisfied in this case.

Which Functions Have Inverses

Next, consider the function g defined by the same rule as that of f, namely, $y=x^2$, but with domain restricted to $[0,\infty)$.

From the graph of g (Figure 7), each value of y in $R_g = [0, \infty)$ is the image of exactly *one* number $x = \sqrt{y}$ in D_g .

Any horizontal line y = c, cuts the graph of g at most once.

This is called <u>one-to-one</u>.

Which Functions Have Inverses

DEFINITION One-to-One Function

A function f with domain D is **one-to-one** if no two numbers in D have the same image; that is,

$$f(x_1) \neq f(x_2)$$
 whenever $x_1 \neq x_2$

Geometrically, a function is <u>one-to-one</u> if every horizontal line intersects its graph at no more than one point. This is called the *horizontal line test*.

We have the following important theorem concerning the existence of an inverse function.

THEOREM 1 The Existence of an Inverse Function

A function has an inverse if and only if it is one-to-one.

Determine whether the function has an inverse.

a.
$$f(x) = x^{1/3}$$

b.
$$f(x) = x^3 - 3x + 1$$

Solution:

a. Refer to Figure 3.

Using the horizontal line test, we see that f is one-to-one on $(-\infty,\infty)$.

Therefore, f has an inverse on $(-\infty,\infty)$.

$$y = x^{\frac{1}{3}}$$

$$x^{\frac{1}{3}} = y$$

$$x = y^{3}$$

$$f^{-1}(x) = x^{3}$$

Figure 3

The functions $y = x^{1/3}$ and $y = x^3$ are inverses of each other.

Alternative method of proving one-to-one when no graph is given

Start wtih $f(x_1) = f(x_2)$, then use algebra to get $x_1 = x_2$. Then f is one-to-one.

$$f(x_1) = f(x_2)$$

$$x_1^{\frac{1}{3}} = x_2^{\frac{1}{3}}$$

$$\left(x_1^{\frac{1}{3}}\right)^3 = \left(x_2^{\frac{1}{3}}\right)^3$$

$$x_1 = x_2$$

 \therefore f is one-to-one and has an inverse

b. The graph of f is shown in Figure 8.

Observe that the horizontal line y=1 intersects the graph of f at three points, so f does not pass the horizontal line test.

Therefore, f is not one-to-one and does not have an inverse.

Figure 8

f is not one-to-one because it fails the horizontal line test.

Alternative method of proving one-to-one when no graph is given

Start wtih
$$f(x_1) = f(x_2)$$
,
 $f(x_1) = f(x_2)$
 $x_1^3 - 3x_1 + 1 = x_2^3 - 3x_2 + 1$
 $x_1^3 - 3x_1 = x_2^3 - 3x_2$
 $x_1^3 - x_2^3 = 3(x_1 - x_2)$
 $(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = 3(x_1 - x_2)$
 $(x_1^2 + x_1x_2 + x_2^2) = 3$
Choose $x_1 = 0$,
 $(0^2 + 0x_2 + x_2^2) = 3$
 $x_2^2 = 3$
 $x_2 = \pm \sqrt{3}$
 $x_1 \neq x_2, \therefore f \text{ is not one-to-one.}$

Choose
$$x_1 = 0$$
,

$$(0^2 + 0x_2 + x_2^2) = 3$$

$$x_2^2 = 3$$

$$x_2 = \pm \sqrt{3}$$

$$x_3 \neq x_4 + x_5 = 0$$
is not one-to-one

Finding the Inverse of a Function

Let's summarize the steps for finding the inverse of a function, assuming that it exists.

Guidelines for Finding the Inverse of a Function

- 1. Write y = f(x).
- **2.** Solve this equation for x in terms of y (if possible).
- **3.** Interchange x and y to obtain $y = f^{-1}(x)$.

Find the inverse of the function defined by $f(x) = \frac{1}{\sqrt{2x-3}}$.

Solution:

The graph of f shown in Figure 9 shows that f is one-to-one and

so f^{-1} exists.

Figure 9

The graphs of f and f^{-1} . Notice that they are reflections of each other with respect to the line y = x.

Alternatively

$$f(x_1) = f(x_2)$$

$$\frac{1}{\sqrt{2x_1 - 3}} = \frac{1}{\sqrt{2x_2 - 3}}$$

$$\sqrt{2x_2 - 3} = \sqrt{2x_1 - 3}$$

$$x_2 = x_1$$

 \Rightarrow function f is 1-1

To find the rule for this inverse, write

$$y = \frac{1}{\sqrt{2x - 3}}$$

and then solve the equation for *x*:

$$y^2 = \frac{1}{2x - 3}$$

$$2x - 3 = \frac{1}{y^2}$$

$$2x = \frac{1}{y^2} + 3$$

$$= \frac{3y^2 + 1}{y^2}$$

Square both sides.

Take reciprocals.

Finally, interchanging x and y, we obtain

$$y = \frac{3x^2 + 1}{2x^2}$$

giving the rule for f^{-1} as

$$f^{-1}(x) = \frac{3x^2 + 1}{2x^2}$$

Inequalities and Absolute Value (TB PA1)

- interpret and write inequalities using appropriate notation and symbols
- list the properties of inequalities
- use properties of inequalities to solve linear inequalities, combined inequalities and inequalities involving absolute value

Inequalities

Properties of Inequalities

If a, b and c are any real numbers, then

Property 1 If a < b and b < c, then a < c

Property 2 If a < b, then a + c < b + c

Property 3 If a < b and c > 0, then ac < bc

Property 4 If a < b and c < 0, then ac > bc

Example 1 [TB PA3]

Find the set of real numbers that satisfy $-1 \le 2x - 5 < 7$.

$$-1 \le 2x - 5 < 7$$
.

Add 5

$$4 \le 2x < 12$$

Divide by 2

$$2 \le x < 6$$

The solution is the set of all values of x in [2,6).

(Don't leave answer in inequalities if question asked for 'set'.)

Example 2 [TB PA3]

Solve the inequality $x^2 + 2x - 8 < 0$.

$$x^{2} + 2x - 8 < 0$$
$$(x+4)(x-2) < 0$$

$$\Rightarrow \text{ either } (x+4) > 0 \text{ and } (x-2) < 0$$
or $(x+4) < 0$ and $(x-2) > 0$

case 1

$$(x+4) > 0$$
 and $(x-2) < 0$

$$x > -4$$
 and $x < 2$

$$\Rightarrow$$
 $-4 < x < 2$

case 2 (x+4) < 0 and (x-2) > 0x < -4 and x > 2

 \Rightarrow no solution

$$\therefore -4 < x < 2$$

$$\Rightarrow x \in (-4, 2)$$

Example 3 [TB PA4]

Solve the inequality $\frac{x+1}{x-1} \ge 0$.

$$\Rightarrow$$
 either $(x+1) \ge 0$ and $(x-1) > 0$
or $(x+1) \le 0$ and $(x-1) < 0$

case 1

$$(x+1) \ge 0$$
 and $(x-1) > 0$
 $x \ge -1$ and $x > 1$

$$\Rightarrow x > 1$$

case 2

$$(x+1) \le 0$$
 and $(x-1) < 0$
 $x \le -1$ and $x < 1$
 $\Rightarrow x \le -1$

$$\therefore x \le -1, x > 1$$

$$\Rightarrow x \in (-\infty, -1] \cup (1, \infty)$$

Extra example

Solve the inequality $\frac{1+x}{1-x} \le 1$.

Bring over to LHS so as to make RHS zero

$$\frac{1+x}{1-x} - 1 \le 0$$

$$\frac{1+x}{1-x} - \frac{1-x}{1-x} \le 0$$

$$\frac{2x}{1-x} \le 0$$

$$\Rightarrow$$
 either $2x \le 0$ and $(1-x) > 0$
or $2x \ge 0$ and $(1-x) < 0$

Extra example

Solve the inequality $\frac{1+x}{1-x} \le 1$.

case 1
$$2x \le 0 \text{ and } (1-x) > 0$$

$$x \le 0 \text{ and } x < 1$$

$$\Rightarrow x \le 0$$

case 2
$$2x \ge 0 \text{ and } (1-x) < 0$$

$$x \ge 0 \text{ and } x > 1$$

$$\Rightarrow x > 1$$

$$\therefore x \le 0, x > 1$$

$$\Rightarrow x \in (-\infty, 0] \cup (1, \infty)$$

Absolute Value (TB PA4)

The absolute value of a number a is denoted by |a| and is defined by

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

Absolute Value Properties

If a and b are any real numbers, then

Property 5
$$|-a| = |a|$$

Property 6
$$|ab| = |a||b|$$

Property 7
$$|\frac{a}{b}| = \frac{|a|}{|b|}$$

Property 8
$$|a+b| \le |a|+|b|$$

Inequalities Involve Absolute Value

Inequality involving modulus

The modulus of a number is the magnitude of the number regardless of its sign. Vertical lines enclosing the number denote a modulus.

For examples, |5| = 5 and |-5| = 5

The inequality |t| < 2 means that all numbers numerically (can be positive or negative) are less than 2, that is, any numbers between -2 and 2.

Thus |t| < 2 means -2 < t < 2

In general
$$|x| < a \Rightarrow -a < x < a$$

Inequalities Involve Absolute Value

Similarly, the inequality |t| > 2 means that all numbers numerically (can be positive or negative) are greater than 2, that is, any numbers less than -2 or more than 2.

In general $|x| > a \Rightarrow x < -a \text{ or } x > a$

Evaluate
$$a. |\pi - 5| + 3$$
 $b. |\sqrt{3} - 2| + |2 - \sqrt{3}|$.

a.
$$|\pi - 5| + 3 = -(\pi - 5) + 3 = -\pi + 8$$

b.
$$\left| \sqrt{3} - 2 \right| + \left| 2 - \sqrt{3} \right| = -(\sqrt{3} - 2) + 2 - \sqrt{3} = 4 - 2\sqrt{3}$$

Example 6 [TB PA5]

Solve the inequalities $|2x-3| \le 1$.

$$|2x-3| \le 1$$

$$-1 \le 2x-3 \le 1$$

$$2 \le 2x \le 4$$

$$1 \le x \le 2$$

Example 7 [TB PA5]

Solve
$$|2x+3| \ge 5$$

$$2x+3 \ge 5$$
 or $2x+3 \le -5$

$$x \ge 1$$
 or $x \le -4$

so the solution is $\{x \mid x \le -4 \text{ or } x \ge 1\} = (-\infty, -4] \cup [1, \infty)$

Example 8 [TB PA6]

If |x-2| < 0.1 and |y-3| < 0.2, find an upper bound for |x+y-5|.

$$|x+y-5| = |(x-2)+(y-3)|$$

 $|(x-2)+(y-3)| \le |x-2|+|y-3|$ Property 8 $|a+b| \le |a|+|b|$
 $< 0.1+0.2$
 < 0.3

$$\therefore |x + y - 5| < 0.3$$