Programming for Data Analytics

5. ggplot2

Prof. Jim Duggan,
School of Computer Science
National University of Ireland Galway.

https://github.com/JimDuggan/CT5102

Lecture Overview

- Data Exploration
- Aesthetic Mappings
- Common Problems
- Facets
- Geometric Objects
- Statistical Transformations
- Layered Grammar of Graphics
- Case Study

Advanced R

Closures – S3 – S4 – RC Classes – R Packages – RShiny

Data Science

ggplot2 – dplyr – tidyr – stringr – lubridate – Case Studies

Base R

Vectors – Functions – Lists – Matrices – Data Frames – Apply Functions

(1) Data Exploration

"Data exploration is the art of looking at your data, rapidly generating hypotheses, quickly testing them, then repeating again and again and again." (Wickham and Grolemund 2017).

ggplot2 – Grammar of Graphics

Lecture 5 - ggplot 2

https://www.rstudio.com/resources/cheatsheets/

Data Visualisation with ggplot2

"The simple graph has brought more information to the data analyst's mind that any other device." – John Tukey

```
> library(gqplot2)
> mpq
# A tibble: 234 x 11
   manufacturer model
                                                                          hwy fl
                             displ year
                                           cyl trans
                                                                                     class
   <chr>>
                 <chr>>
                             <dbl> <int> <int> <chr>
                                                            <chr> <int> <int> <chr> <chr>
                              1.8
                                    <u>1</u>999
                                              4 auto(15)
                                                                     18
                                                                           29 p
 1 audi
                 a4
                                                                                     compact
 2 audi
                              1.8 1999
                                             4 manual(m5) f
                                                                     21
                                                                           29 p
                 a4
                                                                                     compact
                                    2008
                                              4 manual(m6) f
 3 audi
                                                                     20
                                                                           31 p
                 a4
                                                                                     compact
                                    2008
                                              4 auto(av)
                                                                     21
                                                                           30 p
 4 audi
                 a4
                                                                                     compact
                               2.8 1999
                                              6 auto(15)
 5 audi
                                                                     16
                                                                           26 p
                 a4
                                                                                     compact
                                    <u>1</u>999
                                              6 manual(m5) f
 6 audi
                 a4
                                                                     18
                                                                           26 p
                                                                                     compact
                                    2008
 7 audi
                 a4
                                              6 auto(av)
                                                                     18
                                                                           27 p
                               3.1
                                                                                     compact
                                    1999
                                              4 manual(m5) 4
 8 audi
                 a4 quattro
                                                                     18
                                                                           26 p
                                                                                     compact
                                    <u>1</u>999
                                              4 auto(15) 4
                                                                           25 p
 9 audi
                 a4 quattro
                                                                     16
                                                                                     compact
                 a4 quattro
                                    2008
                                              4 manual(m6) 4
                                                                     20
                                                                           28 p
10 audi
                                                                                     compact
# ... with 224 more rows
# i Use `print(n = ...)` to see more rows
```

Fuel Economy Data Set (ggplot2::mpg)

This dataset contains a subset of the fuel economy data that the EPA makes available on http://fueleconomy.gov. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

manufacturer	manufacturer	drv	f = front-wheel drive, r = rear wheel drive, 4 = 4wd
model	model name	cty	city miles per gallon
displ	engine displacement, in litres	hwy	highway miles per gallon
year	year of manufacture	fl	fuel type
cyl	number of cylinders	class	"type" of car
trans	type of transmission		

First Steps

- Generate a first graph to help answer the following question:
 - Do cars with big engines use more fuel than cars with small engines
- What might the relationship between engine size and fuel efficiency look like?
 - Positive or negative?
 - Linear or non-linear?

Lecture 5 - ggplot 2

Selecting data

```
> mpg
# A tibble: 234 x 11
                             displ
   manufacturer model
                                    year
                                            cyl trans
                                                                     cty
                                                                            hwy fl
                                                                                       class
                                    <int> <int> <chr>
                                                             <chr> <int>
   <chr>>
                 <chr>>
                                                                            nt>
                                                                                 ∢chr>
                                                                                       <chr>>
 1 audi
                 a4
                               1.8
                                    <u>1</u>999
                                              4 auto(15)
                                                                      18
                                                                             29
                                                                                       compact
                                              4 manual(m5) f
 2 audi
                               1.8
                                    <u>1</u>999
                                                                      21
                                                                             29
                 a4
                                                                                       compact
                               2
                                     2008
                                              4 manual(m6) f
                                                                      20
 3 audi
                 a4
                                                                             31 p
                                                                                       compact
                                     2008
                                              4 auto(av)
                                                                      21
                                                                             30
 4 audi
                 a4
                                                                                       compact
                               2.8
                                              6 auto(15)
                                    1999
                                                                      16
                                                                             26
 5 audi
                 a4
                                                                                       compact
                                              6 manual(m5) f
 6 audi
                 a4
                               2.8
                                    1999
                                                                      18
                                                                             26
                                                                                       compact
                                              6 auto(av)
 7 audi
                               3.1
                                    <u>2</u>008
                                                                      18
                                                                             27
                                                                                       compact
 8 audi
                 a4 quattro
                               1.8
                                    1999
                                              4 manual(m5) 4
                                                                      18
                                                                             26
                                                                                       compact
 9 audi
                               1.8
                                    1999
                                              4 auto(15) 4
                                                                      16
                                                                             25 p
                 a4 quattro
                                                                                       compact
                                              4 manual(m6) 4
                                                                      20
10 audi
                 a4 auattro
                                     2008
                                                                             28 p
                                                                                       compact
# ... with 224 more rows
# i Use `print(n = ...)` to see more rows
```

- Among the variables are:
 - displ, a car's engine size in litres
 - hwy, a car's fuel efficiency on the highway in miles per gallon

Creating a ggplot

Interpreting the plot

- The plot shows a negative relationship between engine size (displ) and fuel efficiency (hwy)
- Cars with big engines use more fuel
- Does this confirm or refute your hypothesis about fuel efficiency and engine size?

Lecture 5 - ggplot 2

Challenge 5.1

 What might the relationship between engine size and fuel efficiency (city mpg) look like?

(2) Aesthetic Mappings

"The greatest value of a picture is when it forces us to notice what we never expected to see" – John Tukey

```
> unique(mpg$class)
[1] "compact" "midsize" "suv" "2seater" "minivan" "pickup"
[7] "subcompact"
```

- A third variable can be added to a 2-D plot by mapping it to an aesthetic.
- An aesthetic is a visual property of the plot's objects.
- An aesthetic's *level* could be colour, size or shape.

Challenge 5.2

• Generate the following graph from aimsir17 (January)

(3) Common Problems

- R can be "extremely picky, and a misplaced character can make all the difference"
- Make sure every (is matched with a)
- For ggplot calls, the + must come at the end of the line, not at the start (see below)
- You can get help about any function by running ?function_name

```
> ggplot(data=d)
> +geom_point(aes(x=displ,y=hwy),colour="blue")
Error in +geom_point(aes(x = displ, y = hwy), colour = "blue") :
  invalid argument to unary operator
```

(4) Facets

- Another way to add categorical variables is to split a plot into facets, subplots that display one subset of the data.
- To facet your plot by a single variable, use facet_wrap(), with ~ followed by the variable name
- To facet on the combination of two variables, used facet_grid()

ggplot(data = dt) + geom_point(mapping = aes(x=displ,y=hwy)) + facet_wrap(~class)


```
ggplot(data=mpg) +
  geom_point(mapping = aes(x=displ, y = hwy)) +
  facet_grid(drv ~ cyl)
```



```
ggplot(data=mpg) +
  geom_point(mapping = aes(x=displ, y = hwy)) +
  facet_grid(. ~ cyl)
```



```
ggplot(data=mpg) +
  geom_point(mapping = aes(x=displ, y = hwy)) +
  facet_grid(cyl ~ .)
```


Challenge 5.3

Generate the following graph from aimsir17.

(5) Geometric Objects

- Both of these plots contain the same x and y variable, and describe the same data
- The plots are not identical, they use a different visual object to represent the data
- In ggplot2 syntax, we say the use different *geoms*

Lecture 5 - ggplot 2

geom

- A geom is a geometrical object that a plot uses to represent data
- Bar charts use bar geoms, line charts use line geoms, and scatter plots use the point geom.
- To change the geom in your plot, simply change the geom function that is added to the ggplot call.

Sample plot geoms

Geom	Purpose
geom_smooth()	Fits a smoother to data and displays the smooth and its standard error
geom_boxplot()	Produces a box-and-whisker plot to summarise the distribution of a set of points
<pre>geom_histogram() geom_freqpoly()</pre>	Shows the distribution of continuous variables
geom_bar()	Shows the distribution of categorical variables
geom_path() geom_line()	Draws lines between data points
geom_area()	Draws an area plot, which is a line plot filled to the y-axis. Multiple groups will be stacked upon each other
<pre>geom_rect() geom_tile() geom_raster()</pre>	Draw rectangles
geom_polygon()	Draws polygons, which are filled paths.

Examples of using different geoms

ggplot(data=mpg)+
 geom_smooth(mapping=aes(x=displ,y=hwy))

ggplot(data=mpg)+
 geom_point(mapping=aes(x=displ,y=hwy))

Challenge 5.3

Combine both these onto a single plot

diamonds data set (ggplot2)

A dataset containing the prices and other attributes of almost 54,000 diamonds.

carat [‡]	cut [‡]	color [‡]	clarity [‡]	depth [‡]	table [‡]	price [‡]	x =	у =	z [‡]
0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
0.24	Very Good	I	VVS1	62.3	57.0	336	3.95	3.98	2.47
0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39

Explanation of variables

Feature	Explanation
price	price in US dollars \$326-\$18,823
carat	weight of the diamond (0.2–5.01)
cut	quality of the cut (Fair, Good, Very Good, Premium, Ideal)
color	diamond colour, from J (worst) to D (best)
clarity	a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best))
X	length in mm (0-10.74)
У	width in mm (0–58.9)
Z	depth in mm (0–31.8)
depth	total depth percentage = z / mean(x , y) = 2 * z / (x + y) (43–79)
table	width of top of diamond relative to widest point (43–95)

Summary of dataset

> summary(diamonds)

```
carat
                                   color
                                                clarity
                                                                  depth
                        cut
Min.
       :0.2000
                 Fair
                          : 1610
                                   D: 6775
                                                     :13065
                                                                     :43.00
                                             SI1
                                                             Min.
1st Qu.:0.4000
                 Good
                          : 4906
                                   E: 9797
                                             VS2
                                                     :12258
                                                             1st Qu.:61.00
                                   F: 9542
Median :0.7000
                 Very Good:12082
                                             SI2
                                                     : 9194
                                                             Median :61.80
                 Premium :13791
                                   G:11292
                                             VS1
                                                     : 8171
Mean
       :0.7979
                                                             Mean
                                                                     :61.75
                          :21551
                                   H: 8304
                                             VVS2
                                                     : 5066
3rd Qu.:1.0400
                                                              3rd Qu.:62.50
                 Ideal
Max.
      :5.0100
                                   I: 5422
                                             VVS1
                                                     : 3655
                                                                     :79.00
                                                             Max.
                                   J: 2808
                                             (Other): 2531
    table
                    price
                                      Χ
                                                                         Z
Min. :43.00
                Min. :
                          326
                                Min.
                                       : 0.000
                                                 Min. : 0.000
                                                                   Min.
                                                                          : 0.000
                          950
1st Qu.:56.00
                1st Qu.:
                                1st Qu.: 4.710
                                                 1st Qu.: 4.720
                                                                   1st Qu.: 2.910
Median :57.00
                Median: 2401
                                Median : 5.700
                                                 Median : 5.710
                                                                   Median : 3.530
       :57.46
                      : 3933
                                       : 5.731
                                                        : 5.735
                                                                         : 3.539
                Mean
                                Mean
                                                 Mean
Mean
                                                                   Mean
                                3rd Qu.: 6.540
                                                 3rd Qu.: 6.540
3rd Qu.:59.00
                3rd Qu.: 5324
                                                                   3rd Qu.: 4.040
       :95.00
                       :18823
                                       :10.740
                                                 Max.
                                                         :58.900
                                                                          :31.800
Max.
                Max.
                                Max.
                                                                   Max.
```


(6) Statistical Transformations

- Let's explore the *bar chart*: appears simple, yet reveals a subtle feature of plots
- The bar chart geom_bar() shows the total number of diamonds, grouped by cut
- But where does the count come from?

Explanation

- Many graphs, like scatterplots, plot the raw values of the dataset
- However, other graphs (e.g. bar charts) calculate new values to plot
 - Bar charts, histograms and frequency polygons bin your data and plot bin counts, the number of points that fall in each bin
 - Smoothers fit a model to your data and the plot predictions from the model
 - Boxplots compute a robust summary of the distribution and display a specially formatted box

fill aesthetic for bar charts

Bar charts can be coloured using the fill aesthetic

ggplot(data=diamonds) +
 geom_bar(mapping=aes(x=cut,fill=cut))

 When a different variable is used, the graph has further detail

```
ggplot(data=diamonds) +
  geom_bar(mapping=aes(x=cut,fill=clarity))
```


Stacking options

- Stacking is performed automatically by the position adjustment specified by the position argument
- Examples include "identity", "fill" and "dodge"

- "fill"
 - Works like stacking, but each stacked bar is the same height
 - Makes it easier to compare proportions
- "dodge"
 - Places objects directly beside one another
 - Makes it easier to compare individual values

Additional adjustment

- Recall our first scatterplot
- 126 points displayed, yet there are 234 observations
- Many points can overlap, so it makes it hard to see where the mass of data is
- Are all points spread equally, or is there one special combination that contains 129 values?
- "jitter" adds random noise to each point.

Histogram

ggplot(data=diamonds,mapping=aes(x=price)) +
 geom_histogram(binwidth = 500)

Boxplot

- Display the distribution of a continuous variable broken down by a categorical variable
- Box that stretches from the 25th to 75th percentile a distance known as the interquartile range (IRQ)
- Median in the middle of box
- Points outside more that 1.5 times the IQR from either edge of the box are displayed (outliers)
- Whisker extends to the farthest non-outlier point in the distribution

ggplot(data=mpg,mapping=aes(x=class,y=hwy)) + geom_boxplot()

(7) The Layered Grammar of Graphics

- The ggplot2 approach can be summarised by a template
- It can take seven parameters, but usually not all need to be applied (defaults used)
- These seven parameters compose the grammar of graphics

aimsir17 Exploration

- Use the data set in aimsir17 to generate:
 - Time series data
 - Scatter plot
 - Bar charts
 - Box plots
 - Histograms
- Enhance the graphs using aesthetics such as colour, fill, size
- Break out the graphs using the facet_ functions