Airline Flight Delays and Airport Performance

A look into flight delay reasons across USA

Contents

- Understanding the data
- Data pre-processing
- Star schema Dimensional model
- Dashboards Airline Flight Delays & Airport Performance
- Skills demonstrated
- Future scope
- References
- Questions

Understanding the data

Data Source

United States Department of Transportation:
Bureau of Transportation Statistics –
https://www.transtats.bts.gov/ot_delay/OT_DelayCause1.asp?20=E

Snapshot of the CSV file

A	В	C	D E	F	G	Н			K	L	M	N	0	Р	Q	R	S	Ť	U	٧
1 year	month	carrier	carrier_na airpo	rt airport_na	arr_flights ar	r_del15	carrier_ct	weather_cr	nas_ct	security_c l	ate_aircra a	rr_cance	arr_divert	arr_delay	carrier_de	weather_	cnas_delay	security_dl	ate_aircraft	t_delay
2 202	23	8 9E	Endeavor ABE	Allentown	89	13	2.25	1.6	3.16	0	5.99	2	1	1375	71	761	118	0	425	
3 20:	23	8 9E	Endeavor ABY	Albany, G/	62	10	1.97	0.04	0.57	0	7.42	0	1	799	218	1	. 62	0	518	
4 202	23	8 9E	Endeavor AEX	Alexandria	62	10	2.73	1.18	1.8	0	4.28	1	0	766	56	188	78	0	444	
5 20:	23	8 9E	Endeavor AGS	Augusta, (66	12	3.69	2.27	4.47	0	1.57	1	1	1397	471	320	388	0	218	
6 20	23	8 9E	Endeavor ALB	Albany, N	92	22	7.76	0	2.96	0	11.28	2	0	1530	628	0	134	0	768	
7 20:	23	8 9E	Endeavor ATL	Atlanta, G.	1636	256	55.98	27.81	63.64	0	108.57	32	11	29768	9339	4557	4676	0	11196	
8 20	23	8 9E	Endeavor AUS	Austin, TX	75	12	5.62	0.97	4.41	0	1	0	0	843	535	170	111	0	27	
9 20:	23	8 9E	Endeavor AVL	Asheville,	59	7	3.32	0	0.42	0	3.26	2	0	324	117	0	25	0	182	
10 20	23	8 9E	Endeavor AZO	Kalamazoo	62	13	6.53	0.94	3.54	0	1.99	0	0	707	470	77	87	0	73	
11 20	23	8 9E	Endeavor BDL	Hartford,	30	4	0	0.82	0	0	3.18	1	0	1421	0	532	. 0	0	889	
12 203	23	8 9E	Endeavor BGM	Binghamto	58	10	2.78	0	3.18	0	4.03	1	0	1604	207	0	1049	0	348	
13 202	23	8 9E	Endeavor BGR	Bangor, M	124	13	8.42	1	0.5	0	3.08	3	0	1207	282	650	18	0	257	
14 20	23	8 9E	Endeavor BHM	Birmingha	84	17	4.11	0	4.24	0	8.65	2	2	1124	208	0	164	0	752	
15 203	23	8 9E	Endeavor BNA	Nashville,	166	25	6.02	2.91	11.4	0	4.68	2	0	1465	362	308	523	0	272	
16 203	23	8 9E	Endeavor BQK	Brunswick	62	14	7.46	0.2	3.1	0	3.24	2	2	2641	1238	184	771	0	448	
17 20	23	8 9E	Endeavor BTV	Burlington	147	30	11.85	0	11	0	7.16	3	0	1628	714	0	324	0	590	
18 203	23	8 9E	Endeavor BUF	Buffalo, N'	154	25	7.96	0	10.66	0	6.38	2	0	1065	289	0	448	0	328	
19 203	23	8 9E	Endeavor BWI	Baltimore,	62	13	1.92	0	3.82	0.2	7.05	2	0	900	89	0	203	28	580	
20 20	23	8 9E	Endeavor CAE	Columbia,	92	20	3.74	0	9.41	0	6.85	1	0	1375	398	0	448	0	529	
21 20:	23	8 9E	Endeavor CHA	Chattanoo	119	17	5.23	3.1	1.96	0	6.71	1	0	1108	341	174	82	0	511	
22 203	23	8 9E	Endeavor CHO	Charlottes	139	17	4.17	2.6	6.67	0	3.55	2	1	891	226	118	348	0	199	
23 202	23	8 9E	Endeavor CHS	Charlestor	137	16	4.88	0.41	5.35	0	5.35	4	0	935	322	12	330	0	271	
24 202	23	8 9E	Endeavor CLE	Cleveland,	323	62	24.42	3.4	8.65	0	25.53	6	3	4601	1792	851	304	0	1654	
25 202	23	8 9E	Endeavor CLT	Charlotte,	232	38	9.94	1	13.46	0	13.6	9	1	2617	752	49	753	0	1063	

Understanding the columns

- Year and month (June 2003 August 2023)
- Carrier code and Carrier name
- Airport code and Airport name
- Count of flights arrived
- Count of flights delayed; flights arriving late 15 minutes or more are counted as official delays
- Breakdown of count of flights delayed due to various reasons
- Count of flights cancelled
- Count of flights diverted
- Aggregated time (in minutes) by which the flights were delayed
- Breakdown of aggregated time (in minutes) by which the flights were delayed due to various reasons

Understanding the delay reasons

How are these categories defined?

- **Air Carrier:** The cause of the cancellation or delay was due to circumstances within the airline's control (e.g. maintenance or crew problems, aircraft cleaning, baggage loading, fueling, etc.).
- Extreme Weather: Significant meteorological conditions (actual or forecasted) that, in the judgment of the carrier, delays or prevents the operation of a flight such as tornado, blizzard or hurricane.
- **National Aviation System (NAS):** Delays and cancellations attributable to the national aviation system that refer to a broad set of conditions, such as non-extreme weather conditions, airport operations, heavy traffic volume, and air traffic control.
- Late-arriving aircraft: A previous flight with same aircraft arrived late, causing the present flight to depart late.
- **Security:** Delays or cancellations caused by evacuation of a terminal or concourse, re-boarding of aircraft because of security breach, inoperative screening equipment and/or long lines in excess of 29 minutes at screening areas.

Understanding the delay reasons

- Carrier delay (maintenance or crew problems, aircraft cleaning, baggage loading, fueling, etc.) within Airline's control
- Security delay (evacuation of a terminal or concourse, re-boarding of aircraft because of security breach, inoperative screening equipment, etc.) – within Airport's control OR not Airline's fault
- NAS delay (non-extreme weather conditions, airport operations, heavy traffic volume, and air traffic control) partially Airline and Airport's fault
- Late aircraft delay (previous flight with same aircraft arrived late, causing the present flight to depart late) – partially Airline and Airport's fault
- Weather delay (tornado, blizzard, hurricane) neither Airline nor Airport's fault

Data pre-processing

Checking for data quality

What are we looking for?

- Appropriate data types
- Missing data
- Redundant data
- Duplicated data
- Anything else that stands out

Checking for data quality (2)

Column distribution – count of distinct and unique values in every column

Column quality - 'valid', 'erroneous', or 'empty' entries in every column

Column profile - column statistics (count, min, max, average, standard deviation, etc.)

Checking for data quality (3)

- 21 years (2003 2023) and 12 months. Data type: Whole Number, instead of Date. We will create a calculated column using DAX later.
- 29 Carrier codes and 33 Carrier names. Some Airlines changed their names or got acquired. Example: ExpressJet Airlines LLC (not ExpressJet Airlines Inc. or Atlantic Southeast Airlines). The two columns were fixed to reflect that.
- 420 Airport codes however, 444 Airport names. The 24 Airport codes have both official and unofficial airport names. Example: Cape Cod Gateway and Barnstable Municipal-Boardman/Polando Field in Hyannis, MA.

Checking for data quality (4)

- For the remaining columns, there's less than 1% empty rows there are 509 empty rows which can be removed.
- There are still 238 null values in the arr_del15 (count of flights delayed)
 column. Those flights were either cancelled or diverted (as reflected in their
 respective columns) hence, that doesn't need to be fixed.
- The 5 columns reflecting the Delay reasons (carrier, security, NAS, late aircraft, weather) count are decimal numbers, instead of whole numbers. This is because a flight could be delayed for multiple reasons. Bureau of Transportation & Statistics accordingly divides those delays into the different categories/reasons hence, the decimal number. If you add all the 5 columns, it gives you a whole number equal to arr_del15 column.

Star schema Dimensional Model

Dimensional Modeling

Problem

The four columns (carrier, carrier_name, airport, airport_name) have duplicated/redundant rows.

Resolution

Separate tables – "Carrier" and "Airport" such that each entry/row is unique (only happens once).

Dimensional Modeling (2)

What other columns might have similar problems in the future?

Year and month also have repeated entries.

What can we do today to avoid that?

Separate table – "Date" such that each entry/row is unique (only happens once).

Surrogate keys

A surrogate key is defined as a unique identifier for the records in a table. It does not have any business value or semantic meaning – it is only used for data analysis. It is not part of the application, and is invisible to the user.

Characteristics

- It holds a unique value for all records.
- It is generated automatically.
- It can't be modified by the user or the application.

Surrogate keys (2)

Advantages

- Makes queries run faster a.k.a improves Power BI performance
- Especially useful for Type 2 SCD (Slowly Changing Dimension)

Type 1 SCD (Slowly Changing Dimension)

Since, our dataset has Type 1 SCD (old airline/airport names changing to new airline/airport names), we can just overwrite the old data.

We still introduce surrogate keys though, as it is a good database design practice.

Original data

Original Data

Sarthak Girdhar | November 5, 202

Flights							
year	int						
month	int						
carrier	char(2)						
carrier_name	varchar(50)						
airport	char(3)						
airport_name	varchar(300)						
arr_flights	int						
arr_del15	int						
carrier_ct	float						
weather_ct	float						
nas_ct	float						
security_ct	float						
late_aircraft_ct	float						
arr_cancelled	int						
arr_diverted	int						
arr_delay	int						
carrier_delay	int						
weather_delay	int						
nas_delay	int						
security_delay	int						
late_aircraft_delay	int						

Star schema Dimensional Model

Final Transformations & Managing Relationships

- 4 tables (Flights, Carrier, Airport, Date) with surrogate keys and redundant columns deleted from the *Flights* table.
- Extract city and state names from the airport_name column and add additional columns.

Relationships

- Date to Flights One to Many
- Carrier to Flights One to Many
- Airport to Flights One to Many

Dashboards (Airline Flight Delays & Airport

Performance)

Airline Flight Delay

- Carrier Delay is the only delay reason that is completely within an Airline/Carrier's control.
- Scope of data: Jan 2013 Aug 2023 (last 10 years).
- This is because not a lot of data exists for the first 10 years. Also, a lot of airlines that operated flights from 2003 to 2012 are no longer operational.

Airline Flight Delays (2)

- Taking into account i] operating carriers from Jan 2013 Aug 2023, and ii]
 whether they report data, there are only 8 carriers:-
 - American Airlines Inc. (AA)
 - Delta Air Lines Inc. (DL)
 - Frontier Airlines Inc. (F9)
 - Hawaiian Airlines Inc. (HA)
 - JetBlue Airways (B6)
 - Southwest Airlines Co. (WN)
 - Spirit Air Lines (NK)
 - United Air Lines Inc. (UA)
- We create a new table in Power Query called Carrier_Reporting with columns 'carrier_id', 'carrier' and 'carrier_name'. Finally, we also manage the relationship with the "Flights" table in the MODEL view.

Airline Flight Delays (3)

Metrics displayed

- Average carrier delay in minutes from 2013 to 2023.
- YoY % change for the 8 airlines.
- Count of delayed flights due to carrier VS other reasons (late aircraft, weather, NAS, security).

Airline Flight Delays (4)

Questions answered

- What is the average carrier delay for major US airlines in the past 10 years?
- What is the proportion of flights delayed due to airlines when compared to other reasons?

Questions raised

 When the number of flights operated in an year has remained approximately similar in the last 5 years (since 2018), why is the carrier delay (both in time and count) still increasing?

Airport Performance

- Scope of data: Jan 2013 Aug 2023 (last 10 years).
- Less than 5% of the delays are attributed to weather and security (within Airport's control) delay.

Airport Performance (2)

Metrics displayed

- Average arrival delay (in minutes) for the selected airport from 2013 to 2023.
- Percentage of delayed flights from 2013 to 2023 for the selected airport.
- Breakdown of flight delay reasons.
- Count of Total Flights, Delayed Flights and Delayed Flights % (till date as well as separately for each individual year).
- 2022 Average delay (in minutes).
- 2022 Airport Ranking (out of 373 airports).

Airport Performance (3)

Questions answered

- What is the average arrival delay and % delayed flights for US airports in the past 10 years?
- What is the breakdown of flight delay reasons for US airports?

Questions raised

 When we know (for most airports), over 65% of the delays happen due to carrier and late aircraft, can we increase the check-in time cut-off for the passengers? Another option is to start penalizing airlines for increased taxi time however, there's a possibility that the airlines might transfer that cost to the passengers.

- 1. Date [date] = FORMAT(DATE('Date'[year],'Date'[month],1),"MM-YYYY")
- 2. Flights [Average arr_delay] = DIVIDE (Flights[arr_delay], Flights[arr_del15], 0)
- 3. Flights [Average carrier_delay] = DIVIDE (Flights[carrier_delay], Flights[carrier_ct], 0)
- 4. Flights [Average weather_delay] = DIVIDE (Flights[weather_delay], Flights[weather_ct], 0)
- 5. Flights [Average nas_delay] = DIVIDE (Flights[nas_delay], Flights[nas_ct], 0)
- Flights [Average security_delay] = DIVIDE (Flights[security_delay], Flights[security_ct], 0)
- Flights [Average late_aircraft_delay] = DIVIDE (Flights[late_aircraft_delay], Flights[late_aircraft_ct], 0)
- Flights [on_time flights] = Flights[arr_flights] Flights[arr_del15]

```
9. carrier_delay YoY% = IF(
     ISFILTERED('Date'[date]),
     VAR PREV YEAR =
           CALCULATE(
                 SUM('Flights'[Average carrier delay]),
                 DATEADD('Date'[date], [Date], -1, YEAR)
     RETURN
           DIVIDE(SUM('Flights'[Average carrier_delay]) - __PREV_YEAR, __PREV_YEAR)
```

- 10. Flights [delayed_flights %] = DIVIDE (Flights[arr_del15], Flights[arr_flights], 0) * 100
- 11. Flights [non carrier_ct delayed_flights] = Flights[arr_del15] Flights[carrier_ct]
- 12. Flights [carrier_ct delayed_flights %] = DIVIDE (Flights[carrier_ct], Flights[arr_del15], 0) * 100
- 13. Flights [non carrier_ct delayed_flights %] = DIVIDE (Flights[non carrier_ct delayed_flights], Flights[arr_del15], 0) * 100

```
14. Airport Ranking =
CALCULATETABLE (
  SUMMARIZE (
    Flights,
    'Airport'[airport_id],
    'Airport'[airport_name],
    'Date'[date].[Year],
    "Average Delay", AVERAGE (Flights[Average arr_delay])
  'Date'[date].[Year] IN {2022}
15. Ranking = RANKX('Airport Ranking', Airport Ranking[Average Delay], ,ASC)
```

Skills demonstrated

Skills demonstrated

- Understanding dataset and reading supporting documentation.
- Checking for data quality and transformations in Power Query/M.
- Data Modeling (fact & dimension tables, star schema, surrogate keys, SCD).
- Data analysis answering stakeholder's questions via dashboards.
- DAX calculations to create new measures, tables, and columns.
- Visualizations (line chart, bar chart, donut chart, card visuals, text boxes, conditional sub-headings, action-based buttons, icons as buttons, use of tooltips, accessible theme, etc.)

Future scope

Future scope

- The data provided by Bureau of Transportation & Statistics is a time series.
 Therefore, time series analysis can be used to build forecasting models to predict and eventually, manage air travel delays in the future.
- Incorporating new data sources like, routes and number of passengers flying could reveal some new insights into the delay reasons.

References

- https://www.transtats.bts.gov/ot_delay/OT_DelayCause1.asp?20=E
- https://www.bts.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delay s-and-cancellations
- https://www.bts.dot.gov/explore-topics-and-geography/topics/airline-time-performance-andcauses-flight-delays#q10
- https://www.transtats.bts.gov/airports.asp
- https://learn.microsoft.com/en-us/power-bi/quidance/star-schema
- https://blog.devart.com/surrogate-key-in-sql.html
- https://learn.microsoft.com/en-us/dax/divide-function-dax
- https://hevodata.com/learn/rankx-power-bi/
- https://dax.guide/summarize/
- https://learn.microsoft.com/en-us/dax/summarize-function-dax
- https://www.sqlbi.com/articles/create-static-tables-in-dax-using-the-datatable-function/

Questions?