The group G is isomorphic to the group labelled by [24, 6] in the Small Groups library. Ordinary character table of $G \cong D24$:

	1a	12a	6a	4a	3a	12b	2a	2b	2c
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1
χ_3	1	-1	1	-1	1	-1	1	1	-1
χ_4	1	-1	1	-1	1	-1	1	-1	1
χ_5	2	$-E(12)^7 + E(12)^{11}$	1	0	-1	$E(12)^7 - E(12)^{11}$	-2	0	0
χ_6	2	1	-1	-2	-1	1	2	0	0
χ_7	2	0	-2	0	2	0	-2	0	0
χ_8	2	-1	-1	2	-1	-1	2	0	0
χ_9	2	$E(12)^7 - E(12)^{11}$	1	0	-1	$-E(12)^7 + E(12)^{11}$	-2	0	0

Trivial source character table of $G \cong D24$ at p = 3:

Normalisers N_i			N_1					N_2				
p-subgroups of G up to conjugacy in G			P_1					P_2				
Representatives $n_j \in N_i$		2b	4a	2a	2c	1a	4a	2a	2c	2b		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	3	1	3	3	1	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	3	3	-1	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	1	-3	3	-1	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	-3	3	1	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	6	0	0	-6	0	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	1	1	-1	1	1	-1	-1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	-1	1	-1	1	-1	1	-1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	-1	1	1	1	-1	-1	1	1		
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 $	2	0	0	-2	0	2	0	0	0	-2		

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 12, 5)(2, 16, 8)(3, 18, 10)(4, 19, 11)(6, 21, 14)(7, 22, 15)(9, 23, 17)(13, 24, 20)]) \cong C3$

 $N_1 = Group([(1,2)(3,13)(4,7)(5,16)(6,9)(8,12)(10,24)(11,22)(14,23)(15,19)(17,21)(18,20), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong D24$