Math 250, Fall 2019 Groups, Rings and Fields, Fall 2019 Richard E. Borcherds, 219 Dwinelle, 9:30-11AM

Contents

1	Groups	1
	I.1 Groups	1

1 Groups

1.1 Groups

There are two definitions to define a group.

Definition 1.1 (Concrete definition)

A group is a symmetries of something 1:1 map preserving "structure".

Example 1.2

Consider the rotation of a rectangle, we have a group of order 4.

Example 1.3

Consider the rotation of a icosahedron, we are able to obtain a group of order 60.

Image of a Icosahedron

Example 1.4

Let V be a n-dimensional over \mathbb{R} . The general linear group $GL_n(\mathbb{R})$, all matrices with det $\neq 0$ from a group.

Definition 1.5 (Abstract Definition, Cayley)

A group is a set G with a binary operation a+b or $a\times b$ or $a\circ b$ or ab (notation sucks) such that

- 1. Identity element 0, 1, or e, i,e a1 = 1a = a.
- 2. Each element has inverse a^{-1} , i,e $aa^{-1} = a^{-1}a = 1$.
- 3. Associative (ab)c = a(bc) for all $a, b, c \in G$

Definition 1.6

A group G acts on S means given operation

$$G\times S\to S$$

such that 1s = s and a(bs) = ab(s).

Example 1.7

Let G be the icosahedron group and let S be the icosahedron.

Question 1.8

How does G acts on G?

Definition 1.9

There are 8 different types of actions

- 1. g(s) = s, left action (trivial)
- $2. \ g(s) = gs$
- 3. $g(s) = sg^{-1}$
- 4. $g(s) = gsg^{-1}$, adjoint action

Note that all of these are left actions of the group, then similarly there are also 4 right group actions. $S \times G \to S$

- $1. \ sg = s$
- $2. \ sg = sg$
- 3. $sg = g^{-1}s$
- $4. \ sg = g^{-1}sg$

Remark 1.10

 $g(s)=gs, g(s)=sg^{-1}, sg=sg, sg=g^{-1}s$ does not preserve group operation of S.

We let G act on S(=G) by g(s)=gs. This means G into subset of all permutations of S(=G). Now we want to add extra "structure" to S so G is exactly symmetries of S with this structure.

Extra structure is **right** action of G on S. We now have 3 copies of G

- 1. Set S (= G).
- 2. G acting on **right** on $S \leftarrow$ part of structure
- 3. G acting on **left** on $S \leftarrow$ symmetry group

We get colored (directed) graph arrow gives **right** action of G, which is not the same as the **left** action.

Remark 1.12

Goals of group theory

- 1. Classify all groups
- 2. Given a group G, find all ways G acts on something.

Example 1.13

Linear representation = actions of G over vector space.

Permutation = actions of G over on a set.

Definition 1.14

A homomorphism $f: G \to H$ map preserving group structure. i.e. f(gh) = f(g)f(h).

A isomorphism is a homomorphism that is a bijection.

The kernel of f is the set of elements such that it maps to the trivial element of H

Example 1.15

Consider the function

$$\exp: \langle \mathbb{R}, + \rangle \to \langle \mathbb{R}^*, \cdot \rangle$$

exp is a isomorphism from \mathbb{R} to $R_{>0}$

Example 1.16

Consider the function

$$\exp: \langle \mathbb{C}, + \rangle \to \langle \mathbb{C}^*, \cdot \rangle$$

kernel = elements $2\pi i n, n \in \mathbb{Z}$.

Example 1.17 (Number Theory)

Consider $\mathbb{Z}/4\mathbb{Z}$ integers mod 4. and $(\mathbb{Z}/5\mathbb{Z})^*$ nonzero integers mod 5 under multiplication.

Example 1.18

Consider the function:

$$\det: GL_n(R) = \mathbb{R}^*$$

is a homomorphism.

 $kernel = SL_n(\mathbb{R}) = special linear group.$

Theorem 1.19 (Lagrange's Theorem)

If H is a subgroup of G, order of H divides order of G. (G is finite)

Lemma 1.20

2 cosets either are the same or disjoint.

Proof. If $aH \cap bH = \emptyset$, then the proof is done.

Now we suppose $aH \cap bH \neq \emptyset$, then we know that $ah_1 = bh_2$ for some element in aH and bH. We compute $ah_1 = bh_2 \implies h_1 = a^{-1}bh_2 \implies a^{-1}b = h_1h_2^{-1} \implies a^{-1}b \in H$. By proposition 1 we know that aH = bH.

We can use a similar argument to show that this works for the right cosets as well. This is left as an exercises to the reader.

Lemma 1.21

Any cosets have the same size.

Proof. We can simply prove that $\phi: h \mapsto bh$ is bijective, therefore |H| = |bH|.

This proof is trivial and is left as an exercise to the reader. (Hint: prove that ϕ is injective and say it's surjective by construction)

Proof. Suppose G acts on S. Pick $s \in S$, put H =set of elements fixing s such that hs = s, then H is a subgroup of G.

Given a subgroup H of G, we can find set S acted on by G, $s \in S$. H = things fixed in S. Given $g, h(H \subseteq G)$. S = left cosets of H.

we get action of G on set of cosets by putting g(aH) = (ga)H. (well-defined left as an exercise)

Therefore $|G| = |H| \times$ number of cosets. Therefore the order of H divides the order of H.

Theorem 1.22

If $g \in G$, then the order of g divides divides order of G.

Corollary 1.23

If G is prime order, it is cyclic

Proof. Pick any element $g \neq 1$. Order divided p, so p is primes. so G = powers of g

Example 1.24

List of all groups

1. Order 1 : Trivial group

2. Order 2: 1 group $\mathbb{Z}/2\mathbb{Z}$, 0, 1.

3. Order prime p: Integer mod p.

4. Order 4: Cyclic group $\mathbb{Z}/4\mathbb{Z}$ and symmetry of a rectangle. These are not isomorphic as the symmetry group of rectangle does not have a element of order 4.

5. Classify all groups with $g^2 = 1$ for all g. We want to show that group is abelian, or gh = hg for all $g, h \in G$. This follows because $ghgh = (gh)^2 = 1 = h^2g^2 = hhgg \implies hg = gh$. Since G is abelian, we can write group operation as +. Notice that G is a vector space over field of order 2, namely $\mathbb{Z}/2\mathbb{Z}$. so h has a basis, and is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^n(n$ -dimensional vector space) to some n. So there is only 1 other group of order 4.

Definition 1.25

Suppose G, H are groups, then the product(sum) of the group is defined as follows

$$G \times H = \text{set of pairs}(q, h)$$

and the operation is defined as

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$$

Example 1.26

symmetry of rectangle is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Example 1.27

 $\mathbb{C}^* = S \times \mathbb{R}_{>0}$, where S is the circle group. Notice that this is the polar decomposition of complex numbers.

Definition 1.28

The product(sum) of groups are elements $(g_1, g_2, ...)$ such that all but finite number of g_i are trivial.

Example 1.29

 $\mathbb{Q}^* = \text{infinite sum of groups } \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \dots$ This follows by fundamental theorem of arithmetic.