

INFORMATION SECURITY

Three Pillars of Information Security

Triads of Confidentiality

- Confidentiality means information is not disclosed to unauthorized individuals, entities and process
- Integrity means maintaining accuracy and completeness of data. This means data cannot be edited in an unauthorized way.
- Availability -means information must be available when needed.
- Non repudiation means one party cannot deny receiving a message or a transaction nor can the other party deny sending a message or a transaction. Data Integrity and Authenticity are pre-requisites for Non repudiation.
- Authenticity means verifying that users are who they say they are and that each input arriving at destination is from a trusted source.
- Accountability means that it should be possible to trace actions of an entity uniquely to that entity.

Computer Security? Information Security? IT Security? Cybersecurity?

NUMBERS PERS

NATURAL

WHOLE

INTEGERS

RATIONAL

Real Numbers

The Structure of + and \times on \mathbb{Z}

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$
 $(a,b) \mapsto a+b$

$$\times : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$

$$(a,b) \mapsto a \times b$$

Properties of +:

- (Associativity): $a + (b + c) = (a + b) + c \, \forall a, b, c \in \mathbb{Z}$
- (Existence of additive identity) $a + 0 = 0 + a = a \ \forall a \in \mathbb{Z}$.
- (Existence of additive inverses) $a + (-a) = (-a) + a = 0 \ \forall a \in \mathbb{Z}$
- (Commutativity) $a + b = b + a \ \forall a, b \in \mathbb{Z}$.

The Structure of + and \times on \mathbb{Z}

$$+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$

 $(a,b) \mapsto a+b$

$$\times : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$$

$$(a,b) \mapsto a \times b$$

Properties of x:

- (Associativity): $a \times (b \times c) = (a \times b) \times c \ \forall a, b, c \in \mathbb{Z}$
- (Existence of multiplicative identity) $a \times 1 = 1 \times a = a \ \forall a \in \mathbb{Z}$.
- (Commutativity) $a \times b = b \times a \ \forall a, b \in \mathbb{Z}$.

The operations of + and \times interact by the following law:

• (Distributivity) $a \times (b+c) = (a \times b) + (a \times c) \ \forall a, b, c \in \mathbb{Z}$.

Properties of Q

- All of the above hold for + and \times on Q
- Also non-zero elements have multiplicative inverses:

Given $a \in \mathbb{Q} \setminus \{0\}$, $\exists b \in \mathbb{Q}$ such that ab = ba = 1.

Properties of Z

• a, b \in Z such that ab = 0 \Rightarrow either a = 0 or b = 0 \Rightarrow . Z is an integral domain

Cancellation Law: For $a, b, c \in \mathbb{Z}$, ca = cb and $c \neq 0 \Rightarrow a = b$.

PROPERTIES OF NUMBERS

1.
$$5 \times 0 = 0$$

2.
$$(6 \times 4) + (6 \times 11) = 6 \times (4 + 11)$$

3.
$$4+9=9+4$$

4.
$$(6+2)+8=6+(2+8)$$

5.
$$27 + 0 = 27$$

6.
$$36 \times 1 = 36$$

7.
$$(9 \times 8) \times 15 = 9 \times (8 \times 15)$$

8.
$$17 \times 33 = 33 \times 17$$

9.
$$(2 \times 7) \times 4 = 2 \times (7 \times 4)$$

10.
$$(5+3)+9=5+(3+9)$$

11.
$$2 \times (3 + 7) = (2 \times 3) + (2 \times 7)$$

12.
$$4 + (6 + 3) = 4 + (3 + 6)$$

13.
$$48 \times 0 = 0$$

14.
$$51 \times 30 = 30 \times 51$$

ABSTRACT ALGEBRA

- Branch of mathematics
- Algebraic concepts are generalized by using symbols
- Represent basic arithmetical operations
- Abstract algebra set of advanced topics of algebra that deal with abstract algebraic structures
- Groups, rings, and fields.

GROUPS (G.*).

Let G be a set. A binary operation is a map of sets:

$$*: G \times G \to G$$
.

$$*(a,b) = a * b \ \forall a,b \in G.$$

Fundamental Definition. A group is a set G, together with a binary operation *, such that the following hold:

- 1. (Associativity): $(a*b)*c = a*(b*c) \forall a,b,c \in G$.
- 2. (Existence of identity): $\exists e \in G \text{ such that } a * e = e * a = a \ \forall a \in G.$
- 3. (Existence of inverses): Given $a \in G$, $\exists b \in G$ such that a * b = b * a = e.
- Examples: $(Z, +), (Q, +), (Q \setminus \{0\}, \times), (Z/mZ, +), and (Z/mZ \setminus \{[0]\}, \times) if m is prime.$
- (Z, \times) is not a group.

PERMUTATION GROUP

• A permutation of a set X is a function $\sigma : X \to X$ that is one-to-one and onto.

Example Consider a set X containing 3 objects, say a triangle, a circle and a square. A permutation of $X = \{\triangle, \circ, \Box\}$ might send for example

$$\triangle \mapsto \triangle$$
, $\circ \mapsto \Box$, $\Box \mapsto \circ$,

and we observe that what just did is exactly to define a bijection on the set X, namely a map $\sigma: X \to X$ defined as

$$\sigma(\triangle) = \triangle$$
, $\sigma(\circ) = \square$, $\sigma(\square) = \circ$.

Example can then be rewritten as $\sigma: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ such that

$$\sigma(1) = 1$$
, $\sigma(2) = 3$, $\sigma(3) = 2$, or $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.

PERMUTATION GROUP

$$\alpha_1 = \begin{pmatrix} a & b & c \\ a & b & c \end{pmatrix}, \alpha_2 = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}, \alpha_3 = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix},$$

$$\alpha_1 0 \alpha_2 = \alpha_2, \alpha_1 0 \alpha_3 = \alpha_3,$$

The complete table:

- Closure holds
- ⊕ is associative
- α₁ is the identity element
- each element has its inverse like. $\alpha_1^{-1} = \alpha_1, \alpha_2^{-1} = \alpha_3, \alpha_3^{-1} = \alpha_2$,
 - ∴ (S, ⊕) forms a finite abelian group of order 3

$$\alpha_2 = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}, \alpha_3 = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$$

Commutativity property

ABELIAN GROUPS (G,*).

Definition. A group (G, *) is called **Abelian** if it also satisfies

$$a * b = b * a \forall a, b \in G.$$

This is also called the commutative property.

The fundamental Abelian group is $(\mathbb{Z}, +)$.

Closure -
$$a,b \in Z \Rightarrow a+b \in Z$$

Associative $\Rightarrow a+(b+c) = (a+b)+c$, $a_1b_1c \in Z$

Shortly element $\Rightarrow a+0 = 0+a=a$, $a,o \in Z$

Exists

Onverse Element $\Rightarrow a+(-a) = (-a+a=0 \ a,-a,EZ)$

exists

Commutativity $\Rightarrow a+b=b+a$, $a_1b \in Z$.

Hence $(Z,+)$ is abelian.

Prove that x*y = x+y+k is an abelian group on set R of real numbers, where k is a fixed constant. Closure:

x* y=x+y+k (k is a fixed constant), on the set RR of the real numbers.

x*/y=x+y+k=y+x+k=y* x. Commutativity holds.

(x* y)* z=(x+y+k)* z=(x+y+k)+z+k=(z+y+k)+x+k=x* (y* z). Associativity holds.

/x* e=x+e+k=x, so e=-k.

Further, e* x=-k+x+k=x. Thus e is an identity.

x* x'=x+x'+k=e, so x'=e-x-k.

Further, x'* x=e-x-k+x+k=e. Thus, x' is an inverse element.

This set is an Abelian Group.

Prove that x*y = x+y+k is an abelian group on set R of real numbers, where k is a fixed constant.

Prove that $x*y=\frac{xy}{2}$, on the set $\{x\in\mathbb{R}:x\neq0\}$ is an abelian group

 $x * y = \frac{xy}{2} = \frac{yx}{2} = y * x$. Commutativity holds.

 $(x*y)*z=(\frac{xy}{2})*z=\frac{(xy)z}{2}=\frac{x(yz)}{2}=x*(y*z)$. Associativity holds.

 $x * e = \frac{xe}{2} = x$, so e = 2. Further, $e * x = \frac{2x}{2} = x$. Also, e = 0, but this identity doesn't hold for the elements in the domain. Thus, e is an identity.

 $x*x' = \frac{xx'}{2} = e$, so $x' = \frac{2e}{x}$. Further, $x'*x = \frac{\frac{2e}{x}x}{2} = e$. Inverse exists.

This set is an Abelian Group.

CYCLIC GROUPS (G, *).

Definition. A group (G, *) is said to be cyclic if $\exists x \in G$ such that $gp(\{x\}) = G$, i.e. G can be generated by a single element. In concrete terms this means that $G = \{x^n | n \in \mathbb{Z}\}$.

Example: ({1,-1,i,-i},x)

Each element can be written as a power of *a* in multiplicative notation, or as a multiple of *a* in additive notation. This element *a* is called the *generator* of the group.

- Closure
- Associativity
- Identity
- Inverse
- Generator

*	A	В	С	D
A	A	С	В	D
В	D	A	В	С
С	С	D	A	A
D	D	В	A	С

Commutative

Associative

RINGS

Definition. A ring is a set R with two binary operations, +, called addition, and \times , called multiplication, such that:

- 1. R is an Abelian group under addition.
- 2. R is a monoid under multiplication (inverses do not necessarily exist).
- 3. + and \times are related by the distributive law:

$$(x+y) \times z = x \times z + y \times z \text{ and } x \times (y+z) = x \times y + x \times z \ \forall x,y,z \in R$$

The identity for + is "zero", denoted 0_R (often just written as 0), and the identity for \times is "one", denoted 1_R (often just written as 1).

Example: The integers under the usual addition and multiplication (Z, x, +).

Set of n-square matrices over Real numbers

Commutative Ring: $a \cdot b = b \cdot a$ for all a, b in R, Eg: Z_n , arithmetic operations Modulo n

INTEGRAL DOMAIN

An integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero.

A commutative Ring that follows the axioms:

- Multiplicative identity: There is an element 1 in R such that a1 = 1a = a for all a in
 R.
- No zero divisors: If a h in R and ah = 0, then either a = 0 or h = 0. The commutative ring $Z_5 = \{0,1,2,3,4\}$ is an integral domain.

For every x, y in Z_5 , $x \otimes_5 y$ is not equal to zero. This implies that $x \neq 0$ and $y \neq 0$. That is,

Example:
$$2 \otimes_5 3 = 1$$

 $4 \otimes_5 2 = 3$

$$3 \otimes_{\varsigma} 0 = 0$$

FIELDS

Definition A field is a nonempty set F of elements with two operations "+" and "x" satisfying the following axioms.

$$\forall a, b, c \in F$$

- (i) F is closed under + and x i.e., a+b and a x b are in F.
 - (ii) Commutative laws: a+b=b+a, a x b=b x a
 - (iii) Associative laws: (a+b)+c=a+(b+c), $(a \times b) \times c=a \times (b \times c)$
 - (iv) Distributive law: $a \times (b+c) = a \times b + a \times c$
 - (v) (vi) Identity: a+0=a, $a \times 1=a$ for all $a \in F$. $0 \times a=0$.
 - (vii) Additive inverse: for all $a \in F$, there exists an additive inverse
 - (-a) such that a+(-a)=0
 - (viii) Multiplicative inverse: for all a F, $a\neq 0$, there exists a multiplicative inverse a^{-1} such that $a \times a^{-1}=1$

Group, Ring, and Field

INTRODUCTION TO NUMBER THEORY

DIVISIBILITY:

Definition: Let $a, b \in \mathbb{Z}$, with $a \neq 0$. We say "a divides b" if there exists $m \in \mathbb{Z}$ such that b = ma.

ø a | b => a divides b

Examples: We have $1 \mid 6, 2 \mid 6, -2 \mid 6, 6 \mid 6, 6 \nmid 3, 6 \mid 0$. However, neither $0 \mid 6$ nor $0 \nmid 6$ make sense since divisibility by 0 is not defined.

Properties:

- Transitivity: If $a \mid b$ and $b \mid c$, then $a \mid c$.
- Sums/differences: If $d \mid a$ and $d \mid b$, then $d \mid a + b$ and $d \mid a b$.
- Linear combinations: If $d \mid a$ and $d \mid b$, then, for any $x, y \in \mathbb{Z}$, $d \mid ax + by$.

DIVISORS

- say a non-zero number b divides a if for some m have a=mb (a,b,m all integers)
- that is b divides into a with no remainder
- denote this b|a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

DIVISION & LGORITHM

Given any positive integer n and any integer a, if we divide a by n, we get an integer quotient, q and integer remainder r that obey the following relationship:

$$a = qn + r, 0 < r < n; q = a/n$$

Example:

$$a=11, n=7 => 11=1x7 + 4 i.e. q=1, r=4$$

 $a=-11, n=7 => -11 = (-2) 7 + 3 i. e q= -2, r=3$

MODULAR ARITHMETIC

- Modulo is the operation of finding the Remainder when you divide two numbers.
- define modulo operator "a mod n" to be remainder when a is divided by n
- r is called a **residue** of a mod n
 - \diamond since with integers can always write: $a = qn + r => a = qn + (a \mod n)$
 - usually chose smallest positive remainder as residue
 - \bullet ie. 0 <= r <= n-1
 - \clubsuit Eg: 11mod 7 = 4 & -11 mod 7 = 3
- Two integers are said to be *congruent modulo n*,
- \Leftrightarrow if $(a \mod n) = (b \mod n) = > a \equiv b \pmod n$
 - when divided by *n*, a & b have same remainder
 - eg. $100 \equiv 34 \mod 11$
- modulo reduction

GREATEST COMMON DIVISOR (GCD)

- ♦ GCD (a,b) of a and b is the largest number that divides evenly into both a and b
 - $ext{ eg GCD(60,24)} = 12$
- When we have no common factors (except 1), the numbers are relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

EUCLIDEAN ALGORITHM

- an efficient way to find the GCD(a,b)
- uses theorem that:
 - \bigcirc GCD(a,b) = GCD(b, a mod b)
- Euclidean Algorithm to compute GCD(a,b) is:

1.
$$A = a; B = b$$

2. if
$$B = 0$$
 return $A = gcd(a, b)$

$$3/R = A \mod B$$

$$A.A = B$$

$$5. B = R$$

6. goto 2

Example GCD(1970,1066)

```
gcd(1066, 904)
1970 = 1 \times 1066 + 904
1066 = 1 \times 904 + 162 \gcd(904, 162)
                       gcd(162, 94)
904 = 5 \times 162 + 94
                                 gcd(94, 68)
162 = 1 \times 94 + 68
                                 gcd(68, 26)
94 = 1 \times 68 + 26
                                 gcd(26, 16)
68 = 2 \times 26 + 16
26 = 1 \times 16 + 10
                                 gcd(16, 10)
                        gcd(10, 6)
16 = 1 \times 10 + 6
                                 gcd(6,4)
10 = 1 \times 6 + 4
                                 gcd(4, 2)
6 = 1 \times 4 + 2
                                 gcd(2,0)
4 = 2 \times 2 + 0
        Hence gcd(1970,1066) = 2
```

PROPERTIES OF CONGRUENT MODULO

The Congruent modulo operator has the following properties:

- 1. $a \equiv b \mod n \text{ if } n | (a-b)$.
- 2. $a \equiv b \mod n \text{ implies } b \equiv a \mod n$. Symmetric Property
- 3. $a \equiv b \mod n$ and $b \equiv c \mod n$ imply $a \equiv c \mod n$. Transitive Property
- 4. $a \equiv a \pmod{n}$. Reflexive Property

```
23 \equiv 8 \pmod{5} because 23 - 8 = 15 = 5 \times 3

-11 \equiv 5 \pmod{8} because -11 - 5 = -16 = 8 \times (-2)

81 \equiv 0 \pmod{27} because 81 - 0 = 81 = 27 \times 3
```

PROPERTIES OF MODULAR ARITHMETIC

- 1. Addition property: $(a+b) \mod n = [a \mod n + b \mod n] \mod n$
- 2. Subtraction property: $(a-b) \mod n = [a \mod n b \mod n] \mod n$
- 3. Multiplication property: $(a \times b) \mod n = [a \mod n \times b \mod n] \mod n$
- 4. Division property: $\frac{a}{k} \equiv \frac{b}{k} \left(\text{mod} \frac{n}{\gcd(n,k)} \right)$
- 5. Exponent property: $p^k \equiv q^k \pmod{n}$

$$a^{k}(modn)=(a(modn))^{k}$$

To find $11^7 \mod 13$, we can proceed as follows: $11^2 = 121 \implies 4 \pmod{13}$ $11^4 = (11^2)^2 \implies 4^2 \implies 3 \pmod{13}$ $11^7 \implies 11 \times 4 \times 3 \implies 132 \implies 2 \pmod{13}$ $Z_8 = \{0,1,2,3,4,5,6,7\}$ is a set of residues or residue classes (mod 8)

Addition Modulo 8

Multiplication Modulo 8

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1.

PV	VV	W
0	0	
1	7	1
2	6	_
3	5	3
4	4	_
5	3	5
6	2	_
7	1	7

Additive and multiplicative inverses modulo 8

Properties of Modular Arithmetic for Integers in Zn

Property	Expression				
Commutative laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x \times w) \bmod n$				
Associative laws	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$ $[(w\times x)\times y] \bmod n = [w\times (x\times y)] \bmod n$				
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$				
Identities	$(0+w) \bmod n = w \bmod n$ $(1 \times w) \bmod n = w \bmod n$				
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$				

if
$$(a + b) \equiv (a + c) \pmod{n}$$
 then $b \equiv c \pmod{n}$
 $(5 + 23) \equiv (5 + 7) \pmod{8}$; $23 \equiv 7 \pmod{8}$

If (axb)=(axc)(mod n) then $b=c \pmod n$, if a is relatively prime to n.

With
$$a=6$$
 and $n=8$,
$$Z_8 \qquad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

$$Multiply by 6 \quad 0 \quad 6 \quad 12 \quad 18 \quad 24 \quad 30 \quad 36 \quad 42$$

$$Residues \qquad 0 \quad 6 \quad 4 \quad 2 \quad 0 \quad 6 \quad 4 \quad 2$$

if we take a = 5 and n = 8, whose only common factor is 1, Z_8 0 1 2 3 4 5 6 7 Multiply by 5 0 5 10 15 20 25 30 35 Residues 0 5 2 7 4 1 6 3

$$6 \times 3 = 18 \equiv 2 \pmod{8}$$
 $6 \times 7 = 42 \equiv 2 \pmod{8}$

Yet $3 \not\equiv 7 \pmod{8}$.

GALOIS FIELDS

- Examples of field: R, C, Q;
- * Z is not a field coz no inverse for all elements.
- ❖ Fields => Finite / Infinite
- ❖ A finite field is a field that contains a finite number of elements
- Finite fields play a key role in cryptography
- The number of elements in a finite field **must** be a power of a prime **p**ⁿ
- known as Galois fields
- denoted GF(pn)
- ❖ in particular often use the fields: GF(p), GF(2ⁿ)

GALOIS FIELDS

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+	0	1	×	0	1	w	-w	w^{-1}
0	0	1	0	0	0	0	0	
1	1	0	1	0	1	1	-w 0 1	1

Addition

Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and multiplication is equivalent to the logical AND operation.

- ❖ **GF(p)** is the set of integers {0,1, ..., p-1} with arithmetic operations **modulo prime p**
- These form a finite field since have multiplicative inverses
- Hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) MULTIPLICATION EXAMPLE

This is a field of order 7 using modular arithmetic modulo 7.

	Property	
)	Commutative laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x \times w) \bmod n$
		$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$
•	Associative laws	$[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$
	Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$
)	Identities	$(0+w) \bmod n = w \bmod n$ $(1 \times w) \bmod n = w \bmod n$
	Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$

Z8 using modular arithmetic modulo 8, is not a field

EXTENDED EUCLIDEAN ALGORITHM

The Extended Euclidean Algorithm computes the gcd(a,b) and also the values of integers x and y that satisfies the relation

FINDING INVERSES

EXTENDED EUCLID (m, b)

- 1. (A1, A2, A3) = (1, 0, m);(B1, B2, B3) = (0, 1, b)
- 2. if B3 = 0
 return A3 = gcd(m, b); no inverse
- 3. if B3 = 1 return B3 = gcd(m, b); B2 = b⁻¹ mod m
- **4.** Q = A/3 div B3
- 5. (T1, T2, T3) = (A1-QB1, A2-QB2, A3-QB3)
- 6. (A1, A2, A3) = (B1, B2, B3)
- 7. /B1, B2, B3) = (T1, T2, T3)
- 8./goto 2

Inverse of 550 in GF(1759)

Q	A1	A2	A3	B 1	B2	В3
	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	5	16	5	106	339	4
1	106	-339	4	-111	355	1

The Euclidean algorithm can be extended so that, in addition to finding gcd(m, b), if the gcd is 1, the algorithm returns the multiplicative inverse of b.

POLYNOMIAL ARITHMETIC

use polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum a_i x^i$$

- not interested in any specific value of x
- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coefficients mod p (coeff in GF(p))
 - ♠ poly arithmetic with coeffs mod p (coeff in GF(p)) and polynomials mod polynomial m(x) whose highest power is some integer n

1. ORDINARY POLYNOMIAL ARITHMETIC

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg

let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$
 $f(x) / g(x) = (x+2), r = x$

2. POLÝNOMI&L &RITHMETIC WITH MODULO COEFFICIENTS

- Polynomials where coefficients are elements of some field F
- when computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are 0 or 1

•eg. let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$
 $f(x) + g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + x^2$

POLYNOMIAL DIVISION

- can write any polynomial in the form:
 - f(x) = q(x) g(x) + r(x)
 - \diamond can interpret r(x) as being a remainder
 - $r(x) = f(x) \bmod g(x)$
- * if have no remainder say g(x) divides f(x)
- \bullet if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- arithmetic modulo of an irreducible polynomial forms a field

The polynomial $f(x) = x^4 + 1$ over GF(2) is reducible, because $x^4 + 1 = (x + 1)(x^3 + x^2 + x + 1)$

POLYNOMIAL GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it:

$$EUCLID[a(x), b(x)]$$

1.
$$A(x) = a(x)$$
; $B(x) = b(x)$

$$2/if B(x) = 0 return A(x) = gcd[a(x), b(x)]$$

$$^{\prime}$$
3. R(x) = A(x) mod B(x)

4.
$$A(X) = B(X)$$

5.
$$B(x) = R(x)$$

6. goto 2

POLYNOMIAL GCD

Find gcd[a(x), b(x)] for $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and $b(x) = x^4 + x^2 + x + 1$. First, we divide a(x) by b(x):

$$x^{4} + x^{2} + x + 1 \sqrt{x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1}$$

$$x^{6} + x^{4} + x^{3} + x^{2}$$

$$x^{5} + x + 1$$

$$x^{5} + x^{3} + x^{2} + x$$

$$x^{3} + x^{2} + 1$$

This yields $r_1(x) = x^3 + x^2 + 1$ and $q_1(x) = x^2 + x$. Then, we divide b(x) by $r_1(x)$.

$$\begin{array}{r}
 x^3 + x^2 + 1 \overline{\smash)x^4 + x^2 + x + 1} \\
 \underline{x^4 + x^3 + x} \\
 x^3 + x^2 + 1 \\
 x^3 + x^2 + 1
 \end{array}$$

This yields $r_2(x) = 0$ and $q_2(x) = x + 1$. Therefore, $gcd[a(x), b(x)] = r_1(x) = x^3 + x^2 + 1$.

3. MODULAR POLYNOMIAL ARITHMETIC

- can compute in field GF(2n)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- form a finite field
- can always find an inverse
 - can extend Euclid's Inverse algorithm to find the inverse

ARITHMETIC IN GF(23)

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1818	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	-4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	- 4
111	7	-0	7	-5	2	1	6	4	- 3

(b) Multiplication

-w	10
0	
1	1
2	5
3	6
4	7
5	2
6	3
7	4
	1 2 3 4 5

(c) Additive and multiplicative inverses

EXAMPLE GF(23)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 x	$\begin{array}{c} 011 \\ x+1 \end{array}$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	$x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	Х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	х	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	χ^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
100	x^2	x2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	O	1	Х	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	O	x+1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	I	x+1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	X	1	0

(a) Addition

	×	000	001	010 x	$011 \\ x + 1$	$\frac{100}{x^2}$	$\frac{101}{x^2 + 1}$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0 [0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	х	0	х	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	χ^2	0	x ²	x + 1	$x^2 + x + 1$	$x^2 + x$	X	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$		x^2	X	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	Х	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	Х		$x^2 + x$	χ^2	x + 1

(b) Multiplication

COMPUTATIONAL CONSIDERATIONS

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

COMPUTATIONAL EXAMPLE

- \bullet in GF(23) have (x2+1) is $101_2 \& (x^2+x+1)$ is 111_2
- so addition is
 - $(x^2+1) + (x^2+x+1) = x$
 - 101 XOR 111 = 010₂
- and multiplication is
 - $(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ = $x^3+x+x^2+1 = x^3+x^2+x+1$
 - •• 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 101 = 1111₂
- \bullet polynomial modulo reduction (get q(x) & r(x)) is
 - $(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - \clubsuit 1111 mod 1011 = 1111 XOR 1011 = 0100₂

USING & GENERATOR

- a generator g is an element whose powers generate all non-zero elements
 - ♠ in F have 0, g⁰, g¹, ..., g^{q-2}
- can create generator from **root** of the irreducible polynomial

Generator for $GF(2^3)$ using $x^3 + x + 1$

The point of the second s

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation	
0	0	000	0	
$g^0(=g^7)$	1	001	1	
g ¹	g	010	2	
g ²	g^2	100	4	
g ³	g + 1	011	3	
g^4	$g^2 + g$	110	6	
g ⁵	$g^2 + g + 1$	111	7	
g ⁶	$g^2 + 1$	101	5	

SUMMARY

- have considered:
 - concept of groups, rings, fields
 - modular arithmetic with integers
 - Euclid's algorithm for GCD
 - finite fields GF(p)
 - ◆polynomial arithmetic in general and in GF(2n)