Calculus 2021 Final Exam ALL MATERIAL

— Do not turn this page before the official start of the exam! —

First Name, Surname:
Student ID:
Program: Bachelor's DKE)
Course code: KEN1440
Examiner: Alexia Briassouli and Otti D'Huys
Date/time: Monday, March 29 th , 2021, 8.30-10.30h

Format: Closed book exam

Allowed aides: Pens. Calculators are not allowed, and are not needed.

Instructions to students:

- The exam consists of 8 questions on 15 pages (excluding the 1 cover page(s)).
- Fill in your name and student ID number on each page, including the cover page.
- Answer every question at the reserved space below the questions. If you run out of space, continue on the back side, and if needed, use the extra blank page.
- Ensure that you properly motivate your answers.
- Do not use red pens, and write in a readable way. Answers that cannot be read easily cannot be graded and may therefore lower your grade.
- You are not allowed to have a communication device within your reach, nor to wear or use a watch.
- You have to return all pages of the exam. You are not allowed to take any sheets, even blank, home.
- If you think a question is ambiguous, or even erroneous, and you cannot ask during the exam to clarify this, explain this in detail in the space reserved for the answer to the question.
- If you have not registered for the exam, your answers will not be graded, and thus handled as invalid.
- For all the questions below, the lecture notes and your own critical judgement are sufficient. Good luck!

The following table will be filled by the examiner:

Question:	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total
Points:	11	11	20	12	12	13	11	10	100
Score:									

Question 1 (Q1) (11 points) Limits

((a.)) (5	points	Evaluate	the	following	limit o	r exr	olain	why i	it does	not	exist:
١		, ,	O	POIII 05	varaacc	ULIC	TOHOWING	min o	1 022	min	vv 11.y	i docs	1100	CALDO.

	$\lim_{x \to 0^+} \frac{\ln(x)}{x}$
(b)	(6 points) Evaluate the following limit or explain why it does not exist:
(b)	(6 points) Evaluate the following limit or explain why it does not exist: $\lim_{x\to -\infty} \frac{1}{\sqrt{x^2+2x}-x}$
(b)	
(b)	$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$
(b)	$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$
(b)	$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$
(b)	$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$
(b)	$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$
(b)	$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$
(b)	$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$

(b)

Question 2 (Q2) (11 points) Derivatives

(a) (5 points) Find the derivative of f(x):

$$f(x) = \frac{\sin(x)}{\sqrt{x}}$$

(6 points) Let:			
	$f(x) = e^x - 1 \text{ if } x \ge$	<u>≥</u> 0	(1)
	= ax + b if x < a	< 0	(2)
Can you give values to the redifferentiable at $x = 0$. Explain		h that $f(x)$ is continu	ous, but NOT

••••	
••••	
••••	
••••	
	Q3) (20 points) g the graph of a function oints) Let:
(a) (20 p	
	$f(x) = \tan x = \frac{\sin(x)}{\cos(x)}$
1. Γ	Determine the domain of f . Is f continuous on its domain? Why?
2. C	Compute the first derivative of f . Determine from this derivative for what values of x he function f is increasing or decreasing. Does it have local minimum(s), maximum(s)? If yes, at which values of x ?
t	Compute the second derivative of f . Determine from this derivative for what values of x he function f is convex (concave up) or concave (concave down). Does it have inflection oints? If yes, at which values of x ?
	Find if f has vertical, horizontal or oblique asymptotes.
	s f even? Is f odd? Why?
	ketch the graph of f based on your previous answers, and show the properties found in our previous answers in the graph.

(b)	(7 points) Evaluate the integral of the following piecewise defined function:
	$\int_{1}^{4} x^2 - 5x + 6 dx$
	J_1 '
	on 5 (Q5) (12 points) uences, Series
(a)	(5 points) Find the sum of the following series or show it diverges to infinity:
	$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$
	~

(b)

(7 points) Determine if the given series converges or diverges using an appropriate test.
X
$\sum_{n=1}^{\infty} \left \sin \frac{1}{n^2} \right $
$\sum_{n=1}^{\infty} \left \sin \frac{1}{n^2} \right $ You can use the p-series or geometric series for comparison.
<i>10</i> —1
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.
You can use the p-series or geometric series for comparison.

Question 6 (Q6) (13 points)

Differe	ntial	$\mathbf{E}\mathbf{a}$	uati	ons

(y(-1)=0)	the solution valid?	$\begin{cases} y' = x^{-2} - x^{-3} \\ y(-1) = 0 \end{cases}$	
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$		(y(-1) = 0	
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
the solution valid? $\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$			
$\begin{cases} y'' = \cos x \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$		ution $y = y(x)$ to the given initial value	e problem. On what interva
	the solution valid:	$y'' = \cos x$	
		$\begin{cases} y(0) = 0 \end{cases}$	
		y'(0) = 1	
		(- (<i>y</i>	

(b)	(6 points) If $z = f(x, y)$ where $x = 2s + 3t$, $y = 3s - 2t$, find
` ′	$\partial^2 z$
	$\dfrac{\partial^2 \widetilde{\partial s}}{\partial s \partial t}$
	••••••••••••••••••••••••••••••••

Question 8 (Q8) (10 points) Double Integrals

(a)	(5 1)	points)	Evaluate	the	double	integral	by	iteration:
-----	-------	---------	----------	-----	--------	----------	----	------------

$\int \int_{R} (x^2 + y^2) dA,$	where R is the rectangle $0 \le x \le a, 0 \le y \le b$

 	 		 	-																													
 ٠.	 ٠.	 •	 	•	 ٠.	•	 	 ٠.	 	 •		 •	•	•				•	 •		•			 •	 •	 •	 •	 •	 	 	•	 	 •
 	 ٠.	•	 	•	 		 	 	 	 •			•			•	 	•	 •	 •	•			 •		 •		 •	 •	 	•	 	 •
 	 ٠.	 •	 		 		 	 	 								 		 •	 •								 •		 		 	
 	 		 		 		 	 		 •							 				•							 •		 		 	
 	 	 •	 ٠.		 			 	 								 											 •		 ٠.		 	
 	 		 		 		 	 				 					 											 •		 		 	
 	 		 		 		 	 	 								 											 •		 		 	
 	 		 		 		 	 									 											 •		 		 	
 	 		 		 		 	 									 											 •		 		 	

(b) (5 points) Evaluate the double integral by iteration:

$$\int_0^2 \int_0^y y^2 e^{xy} dx dy$$

Student	name:		
Student	ID:	Page 12 of 15	Final Exam Calculus 2021 - all materia
		• • • • • • • • • • • • • • • • • • • •	

Page 13 of 15Final Exam Calculus 2021 - all material

Student name: Student ID:

Final Exam Calculus 2021 - all material

Student name: Student ID:

Page 14 of 15

Page 15 of 15 Final Exam Calculus 2021 - all material

Student name: Student ID: