

MO A 0 7 3 3 0 1

DESIGN CRITERIA FOR VACUUM WASTEWATER TRANSFER SYSTEMS IN ADVANCED BASE APPLICATIONS.

SPOUSOF: NAVAL FACILITIES ENGINEERING COMMAND

ROS: YF57.572.001.01.003

127134 1194

CIVIL ENGINEERING LABOR

NAVAL CONSTRUCTION BATTALION CENTER Port Hueneme, California 93043

Approved for public release; distribution unlimited.

79 39 29 025

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
•	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
N-1554	DN244095	
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
DESIGN CRITERIA FOR VACUUM WASTEWATER		Final; Jan 1973 — Jun 1977
TRANSFER SYSTEMS IN ADVANCED BASE		6 PERFORMING ORG. REPORT NUMBER
	APPLICATIONS	
7 AUTH. e)		6 CONTRACT OR GRANT NUMBER(4)
E. P. Skillman		
8. PERFORMING ORGANIZATION NAME AND ADDRESS CIVIL ENGINEERING LABORATORY	,	10. PROGRAM ELEMENT, PROJECT, TASK
Naval Construction Buttalion Center	•	62755N;
Port Hueneme, California 93043		YF57.572.001.01.003
11. CONTROLLING OFFICE NAME AND ADDRESS	\	12 REPORT DATE
Naval Facilities Engineering Command		May 1979
Alexandria, Virginia 22332		13 NUMBER OF PAGES 54
18 MONITORING AGENCY NAME & ADDRESS: I different from Controlling Diffice)		15 SECURITY CLASS. (of this report)
		Unclassified
		15a DECLASSIFICATION DOWNGRADING
		SCHEDULE
Approved for public release; distribution i		
18 SUPPLEMENTARY NOTES		
19 KEY WORDS (Continue on reverse side if necessary and	identify by block number)	
Sewage collection, vacuum collection, adv	anced bases, remot	e bases, wastewater collection.
A search of existing vacuum wastew. A search of existing vacuum wastew. mance data analyzed. An experimental va- built and tested to determine fundamental effectiveness of this technology in various vacuum system has since been configured:	ater transfer techno cuum wastewater o principles, transpo hydraulie configur	collection facility was designed, ort phenomena and conceptual ations. A field prototype

(continued)

DD 1 JAN 73 1473 EDI

EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

79 08 29 025

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

20. Continued

and pressure sewer systems. R&D efforts include development of design criteria for vacuum wastewater collection systems and identification of the benefits and relative merits of vacuum, gravity and pressure sewer systems in Naval applications. Specific findings include identification of a method to suction lift wastewater higher than the classical 34 ft, an energy requirement for pumping air that is higher than that necessary for pumping an equal volume of water, a design head limitation equal to the sum total of the positive slopes of the transport piping, and a resolution of the confusion surrounding the three different types of systems utilized.

This report also considers alternatives to conventional wastewater collection methods currently used by the Navy and focuses on: (a) compatibility with general terrain, (b) reduction of pipe size, (c) equipment and installation costs, and (d) operational manpower requirements.

Library Card

Civil Engineering Laboratory
DESIGN CRITERIA FOR VACUUM WASTEWATER
TRANSFER SYSTEMS IN ADVANCED BASE APPLICATIONS (Final), by E. P. Skillman
TN-1554 54 pp illus May 1979 Unclassified

trains of ppinus may 1979 Oncias

1. Wastewater transfer

2. Sewage collection

I. YF57.572.001.01.003

A search of existing vacuum wastewater transfer technology has been made and performance data analyzed. An experimental vacuum wastewater collection facility was designed, built and tested to determine fundamental principles, transport phenomena and conceptual effectiveness of this technology in various hydraulic configurations. A field prototype vacuum system has since been configured and field-tested at a selected site having the typical adverse conditions that influence the cost effectiveness and system reliability of conventional and pressure sewer systems. R&D efforts include development of design criteria for vacuum wastewater collection systems and identification of the benefits and relative merits of vacuum, gravity and pressure sewer systems in Naval applications. Specific findings include identification of a method to suction lift wastewater higher than the classical 34 ft, an energy requirement for pumping air that is higher than that necessary for pumping an equal volume of water, a design head limitation equal to the sum total of the positive slopes of the transport piping, and a resolution of the confusion surrounding the three different types of systems utilized.

This report also considers alternatives to conventional wastewater collection methods currently used by the Navy and focuses on: (a) compatibility with general terrain, (b) reduction of pipe size, (c) equipment and installation costs, and (d) operational manpower requirements.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE When Date Entered)

CONTENTS

	Page
INTRODUCTION	1
BACKGROUND	3
DISCUSSION	7
EXPERIMENTAL TEST FACILITY	8
Vacuum System Energy Requirements	10 14 15 15 19 21
Air Admissions Effects on Vacuum System Performance	23
Air Admission and Control Criteria	24 29
DESIGN OF A MULTIPURPOSE VACUUM WASTEWATER COLLECTION SYSTEM	32
CONCLUSIONS	37
RECOMMENDATIONS	39
REFERENCES	39

v

INTRODUCTION

The Civil Engineering Laboratory (CEL) has been tasked by the Naval Facilities Engineering Command (NAVFAC) to develop design criteria for vacuum wastewater transfer systems.

The wastewater generated by temporary, remote Naval activities requires effective management to prevent waste accumulation in operational complexes and industrial areas. Operational requirements at remote bases are such that wastewater transport and collection systems must be rapidly installed and operated in a fail-safe, cost-effective manner. Furthermore, it is imperative that this goal be met without subordinating the resources allocated for the primary mission.

Current pollution abatement technology for transporting and collecting liquid wastewaters includes:

- Traditional gravity methods
- Conventional pressure-system approaches
- Newly developed vacuum collection techniques

The most attractive alternative of the three cited candidates in meeting the remote Naval base requirements is that of vacuum-operated sanitation systems for collecting liquid wastes. This approach provides rapid, low-cost installation; is unrestrained, within limitations, by local topography; and allows for assembly of the transport piping without maintaining a standard grade requirement (i.e., minimum 1/4-in. slope/linear ft).

Vacuum systems allow for the collection of wastewaters into a common collection system while servicing a number of wastewater generating sources. This provides a cost-effective solution in applications where

a network of series interconnected lift stations are required since vacuum systems can utilize parallel connected (wagon wheel configured) transport mains that represent independent collection systems/collection stations. When compared to low pressure sewer systems, vacuum applications become attractive because the reduced pretreatment requirements (such as grinding or maceration) decrease overall operation and maintenance (O&M) costs.

The most attractive asset possessed by a vacuum sever system lies in its inherent fail-safe capabilities. Benefits, not encountered in conventional or pressure systems, include:

- 1. Reduced groundwater and potable water supply contamination resulting from leakage since the negative (or vacuum) pressure forces leakage into rather than out of the wastewater transport piping.
- 2. O&M requirements are decreased because vacuum sewer systems are aerobic; gravity and pressure sewer systems are generally anaerobic.*

In the past, design failures with vacuum systems have resulted from the improper assessment of vacuum lift requirements and the failure to provide appropriate capacity vacuum and wastewater discharge pumps.

This report focuses primarily on the development of design criteria for vacuum collection of wastewaters generated from multiple sources (such as toil ts, kitchens, laundries, and showers) and transported in a single, common transport main. Although special purpose vacuum system applications are addressed to a limited extent, further research and development will be required to insure reliable, cost-effective operations of such systems in Navy applications.

^{*}An anaerobic condition typically produces a septic wastewater that is difficult to treat because of the increased production of such sewer gases as methane and hydrogen sulfide.

BACKGROUND

The vacuum sewage transfer concept, based upon the utilization of air as the primary wastewater transport medium, was introduced in Sweden in 1959 (Ref 1). In such systems, air is used to displace the water required in cleaning, flushing, and transport activities. The literature reports the vacuum collection process as the entrapment of waste material in a small quantity of flushing water that is propelled toward the vacuum receiving tank by a differential pressure (i.e., vacuum and atmospheric air) existing across the mixture of solids, liquids, and air. The literature and design manuals further go on to say that during this phase of wastewater transport, this mixture is formed into a small packet (or "slug") of liquid waste that is rapidly propelled down the pipeline, gradually deforming. This results from the unbalanced forces of pipe friction and gravity acting on the slug. As a result, slug deformation allows air to flow around and through the slug, reducing the driving force required for its movement. As slug movement slows, it further deforms, and eventually stops. To minimize the detrimental effects of slug deformation on wastewater transport, slug reformation traps were installed at specified intervals enabling gravity to assist in the slug reformation process. Rebuilding the slug serves to reestablish the differential pressure across the solid-liquid mixture and thus provides a mechanism for transferring the slug to the next trap.

Preliminary testing and subsequent experience have shown that a system design based on these conceptual assumptions is inadequate because of the inability of a liquid to support a shear force and remain intact as a slug, even for very short periods of time. This fundamental discrepancy has historically been compensated for by the use of large quantities of air for the transport of small volumes of wastewater.

The vacuum waste transfer concept has been reported to be a flexible transport process capable of being applied in the following configurations:

- 1. A single-pipe system where only vacuum toilets are connected to a vacuum sewer system (i.e., black-water system)(Ref 1)
- 2. A single-pipe system in parallel with the other where gray water sources (shower, laundry, and kitchen types of wastewaters) are connected to a vacuum sewer system (i.e., dual-pipe black- and gray-water system) (Ref 1)
- 3. A single-pipe system combining black and gray wastewater into a common transfer main, using conventional fixtures along with gravity-fed intermediate holding and storage tanks (Ref 1)

The first two configurations have been in use in the Bahamas and throughout Europe since 1965 (Ref 2) and have been installed in elementary schools, housing developments, and apartment complexes.

After several years of operation and maintenance, engineering efforts conducted by the Ministry of Works in Nassau, Bahamas, to further develop vacuum system technologies were discontinued. The unresolvable problems were: (1) frequent system bog-down or operation failure and (2) solids deposition within the transport mains. Excessive resources were reportedly being consumed by O&M; therefore, no future vacuum collection sewage installations were foreseen. Future efforts were to include reverting back to conventional gravity-type sewer systems until O&M problems with vacuum systems could be resolved.

Most commercial vacuum wastewater collection system installations have been of the first configuration - single-pipe, black-water system. Actually, the use of these systems in these applications, usually small-scale, is not representative of vacuum transport and collection since in most instances the transport mains are very short (less than 500 feet), the amount of water in the pipeline is minimal, and the collection tank is typically at a lower elevation than the wastewater source. In these applications, the pipeline remains open (empty) so vacuum can be available to those parts of the system requiring por smatic energy for vacuum

valve/component operation. In this configuration, wastewater flows in a gravity-assist mode, and the wastes and wastewaters are essentially carried by large volumes of air as discrete particles of mist and solids.

In 1970, the Jered Company, National Homes, Inc., and Colt Industries began commercializing these configurations in the United States. They placed major emphasis on vacuum system hardware and component development. One of their first efforts was a test demonstration of a single-pipe, black-water system in the Marine barracks at Annapolis, Md., in 1972 (Ref 3). This demonstration produced some satisfactory results. Although a number of mechanical problems with valves, piping, etc., were resolved, the effort provided no fundamental design criteria or performance standards that could serve as a basis for design.

Colt Industries distributes prefabricated vacuum wastewater collection systems and miscellaneous vacuum-operated components and valves. Their market consists primarily of small-scale recreational vehicles, railroad cars, 26-foot mobile restrooms, and Marine installations for ferry boat service (Ref 4). Here, too, the primary functions of the vacuum energy are to drive the air that assists in cleaning, provide a mechanism for operating the essential vacuum valves, and maintain a mini-flush water-consumption condition.

The Mobility Equipment Research and Development Center (MERDC), Fort Belvoir, Va., and the Naval Ship Research and Development Center (NSRDC), Annapolis, Md., are primarily concerned with test and evaluation of black-water systems for shipboard installation. These systems represent conservative designs and generally depend on the assistance of gravity for flow between decks. The solids are essentially transported by the flow of large volumes of air.

The Canadian Ministry of Transportation and the Royal Canadian Navy are currently using vacuum systems in mobile trailer parks and aboard their Navy destroyers (Ref 4). These installations are of the Colt Industries type and generally represent duplications of black-water systems found in Sweden and the Bahamas. The standard installation practice with these types of systems is to design the vacuum power

supplies oversized; these assist gravity to attain reliable system operation. The large quantities of power consumed per gallon of waste transported may be of little significance in a water-short area that expends tremendous power reserves to gen: Ite the required quantities of flushing water.

The third configuration (i.e., single-pipe, black and gray water) came to the United States via Vacuum Technology, Inc., in 1970 (Ref 5). A number of large-scale operational installations have been made in housing developments in the eastern portion of the United States; the most significant of these is Lake of the Woods, located in Orange County, Va. The builder of this installation was successful in obtaining a permanent permit from the State Water Control Board in 1970 to operate The remaining developments were held in a temporarily accepted status pending the completion of performance evaluations prior to rendering a permanent acceptance. The Lake of the Woods system is currently undergoing major redevelopment because of its failure to reliably transport and collect wastewater in accordance with its design. Instead, the system became hydraulically overloaded and failed to perform before the housing development was even one-third complete. The remaining developments of this type were found to be in various stages of completion at the end of the last review conducted by CEL.

As a result of a growing public interest and requirements for engineering development, the Environmental Protection Agency (EPA) began investigating existing vacuum systems in the United States to identify the operational and design problems encountered in large-scale (pipeline lengths > 1,000 feet) and rolling-terrain applications. It has requested that CEL provide research and development reports as technology transfer support material in this evaluation.

Recause of EPA's involvement and a general growing interest in vacuum sewer system application, operation, and maintenance, the AirVac Division of National Homes recently expanded its major marketing objective of hardware development. It increased its engineering staff with major

proponents of vacuum syst from the Bahamas and placed a substantial portion of its engineering efforts on design criteria development of vacuum sewage transfer systems.

Problems nistorically associated with poor performance of vacuum wastewater collection systems are derived from the lack of design criteria. These problems can be represented as:

- A failure to identify the fundamental principles surrounding the hydraulic/pneumatic characteristics of vacuum wastewater collection
- 2. The aura of complexity accompanying three-phase flow (liquid, solids, and air)

The most frequent failures associated with vacuum system performance have resulted from:

- 1. Inadequate power allocations for fully-loaded system operation
- 2. Lack of understanding of the terrain and system elements that form the basis for assessing lift requirements
- Quantification of the relationships of vacuum reserve tank capacity to that of system lift requirements
- 4. Sizing the vacuum discharge pumps without recognizing their functions
- 5. High potential for solids and grease deposition in the transport line

DISCUSSION

The purpose of this report is to present the results of recent research and testing of vacuum wastewater transfer systems conducted by CEL to facilitate the development of design criteria.

Vacuum transport and collection of wastewater begins when liquid waste enters a transport pipe through an admittance valve. The wastewater is rapidly propelled by atmospheric air toward a vacuum storage/wastewater collection tank. This dual-purpose tank is both level-controlled and vacuum-pressure controlled to insure that it will not become filled with either air or wastewater. A wastewater discharge pump connected to the bottom of this tank completes the vacuum transfer cycle when it is actuated by a level control switch that transfers the collected wastewater to a treatment or disposal site. The wastewater transfer pump essentially performs the functions of collecting and transporting the wastewater. The vacuum pump serves only to remove the low pressure air from the system so that the suction side of the wastewater collection/transport pump remains primed and does not become air-locked.

The interrelationships of these concepts have been evaluated and analyzed with the assistance of an experimental test facility and are developed in the body of this report.

EXPERIMENTAL TEST FACILITY

An experimental vacuum wastewater transfer/collection system was designed by CEL and installed at the Naval Air Station, Point Mugu, Calif. This test site was to allow testing of the performance of system configurations and developing design criteria to support reliable wastewater transport and collection. As a result, this facility has undergone testing, evaluation, and extensive modifications since 1973. The original test facility consisted of three independent transport mains of 2-, 3-, and 4-in.-diam plastic pipe, each of which was about 1,100 feet in length and accommodated a net lift of 10.5 feet.

Each vacuum main could be supplied from three independent or combined sources:

- One thousand-gallon tank representing shower, laundry, and kitchen wastes as derived from Point Mugu's sewer
- 2. Three vacuum toilets connecting directly to the vacuum main
- Three mini-flush gravity toilets discharging into a levelcontrolled interface/storage tank

Test and analysis identified the need to modify the system from time-to-time to enable development of standard practices for predicting (1) transport phenomena (air/water/solids ratios) and (2) the relative impact of various hydraulic configurations on wastewater transport efficiencies. Since the initial system installation, the test facility has been modified to include methods for evaluating the following configurations and capabilities:

- 1. Two-in.-diam transport main with vacuum toilets loading into clear plastic pipe undergoing repeating elevation changes. The total cumulative lift is 32 feet over a horizontal distance of 100 feet, while the total net lift is only 12 feet over the same horizontal distance.
- 2. Three-in.-diam transport main more than 2,100 feet long with multiple source loading (i.e., nine tanks) attached to the transport piping at 100-foot intervals. The net system lift is 15 feet.
- 3. Four-in.-diam transport main 1,100 feet long that incorporates 300 feet of clear plastic sections. The slug reformation traps in this entire run have been removed. Net system lift requirements in this transport main are approximately 10.5 feet.

This report presents the results obtained from test and evaluation of the basic and modified system configurations and identifies essential design criteria to be considered for reliable vacuum system operation.

Vacuum System Energy Requirements

The practical action of the vacuum pump is to discharge the low-pressure air admitted to the system while a preset vacuum is maintained. The wastewater discharge pump must be designed to transport all the wastewater while working against the preset suction head in the vacuum reserve tank. The interrelationships between these two pumps have been examined to illustrate their independent and combined effects on the vacuum transport and collection process.

When the vacuum pump in steady-state condition removes 1 cu ft of low-pressure air from the vacuum reserve tank, an equivalent volume of low-pressure air or liquid is drawn into the vacuum reserve tank from the transport/collection system. When the wastewater discharge pump removes 1 cu ft of water from the tank, an equivalent volume of air and water mixture is drawn into the tank.

This description is presented to show that the "suction energy" expended by the vacuum pump in discharging 1 cu ft of low-pressure air is more than the suction energy expended by the discharge pump in discharging 1 cu ft of wastewater since the vacuum pump essentially gathers low-pressure air, compresses it to atmospheric pressure, and discharges it from the system. In other words, under steady-state conditions, equal amounts of air or water mixtures are transported equal distances along the pipeline by the discharge of either (1) a cubic foot of water or (2) a cubic foot of low-pressure air. It is concluded, therefore, that the relative quantity of energy required to operate the vacuum pump (as compared to the wasterater discharge pump) is independent of the pipeline's configuration. The absolute value of this energy, however, does change if either the pipeline's configuration or the relative proportions of air and wastewater in the transported mixture are changed.

The air-to-water ratio is the quantity most likely to vary in a fixed installation. Furthermore, it represents a major influence in the amount of energy required to transport the wastewater. The air-to-water ratio of the flowing mixture varies over a large range (both with time and throughout the system).

The theoretical significance of the air-to-water ratio in the transported mixture, measured in terms of energy, can be illustrated by the relationships that follow.

With the assumpton that the energy required to maintain a working vacuum while transporting and collecting liquid waste is proportional to the amount of air and wastewater collected,

$$E = k\bar{A}$$

where E = energy in watt-hours

k = proportionality constant

 $\bar{A} = A + W$

A = cubic feet of low-pressure air entering the collection tank

W = cubic feet of wastewater entering the collection tank

Since the primary objective of a vacuum transport/collection system is to transport and collect wastewater (transporting air being incidental to the process), it is more appropriate to express this relationship in terms of the energy required to transport a unit of wastewater; i.e.,

$$\frac{E}{V} = \frac{k\bar{A}}{V}$$

but

$$\bar{A} = A + W$$

Therefore,

$$\frac{E}{V} = \frac{k(A + W)}{W}$$

and

$$\frac{E}{U} = k + k \frac{A}{U}$$

setting

$$y = \frac{E}{W}$$
 and $x = \frac{A}{W}$

 $y = k + kx \tag{1}$

This implies that the energy required to transport and collect a unit of wastewater is directly proportional to the air-to-water ratio plus a constant. Equation 1 further implies that the relationship of the energy required to transport or collect wastewater is linear with respect to the air-to-water ratio. Figure 1 illustrates the experimental confirmation of the relationship between energy and air-to-water ratios.

In the experiment, 50 gallons of liquid waste were injected into a 4-in.-diam transport main, and the air and energy necessary to collect the wastewater 1,114 feet downstream in the vacuum collection tank were measured.

Prior to each test injection of wastewater, the system's vacuum level was stabilized at 18 inches of mercury. Each 50 gallons of waste admitted to the 4-inch system was followed by approximately 30 seconds of air.

Vacuum pump energy was measured with a watt-hour meter, and the number of gallons of wastewater entering the collection tank were obtained by measuring level changes in the calibrated wastewater collection tank. The volume of air required to transport the wastewater was monitored at the vacuum pump's exhaust port. These two measurements were used to establish the energy per gallon of waste required to transport and collect various quantities of air and water mixtures over a distance of 1,100 feet while undergoing a net lift of 10.5 feet.

The experiment was repeated with 50-gallon loadings into a 3-in.-diam transport main under the same test conditions of system vacuum level and amounts of air. The results of this test showed that more energy per gallon of wastewater transported 1,114 feet was required than was previously required in the 4-in.-diam system test.

Decreasing the 50-gallon loadings to the 3-in.-diam transport main with each injection to 20 gallons produced (1) a corresponding decrease in the resulting friction losses and (2) a transport efficiency (energy consumed per gallon transported) consistent with the 4-in.-diam transport main's performance.

The 3-in.-diam system experiment was repeated with 20-gallon loadings and compared with the results of the 50-gallon, 4-in.-diam test. The results of this testing are shown in the experimental results of Figure 1 and summarized in Tables 1 and 2.

A regression analysis of the experimental data provides the following comparable empirical relationship between the energy required to transport wastewater and the air-to-water ratios required to support this process.

$$\frac{E}{W} = 0.07 \frac{A}{W} + 0.07 \tag{2}$$

One standard deviation (σ) of E/W as determined from the experimental data was:

$$\sigma = \pm 0.07$$

The relative effect of changing the diameter size of the transfer lines from 3 inches to 4 inches and the manner of introducing air at the wastewater generation point were observed to be insignificant when compared to the effect of changing the air-to-water ratio.

Figure 1 indicates that the most efficient vacuum wastewater transfer/collection system results from keeping as much air out of the system as possible. Operation of a system with no air (full bore) is difficult to attain operationally. It has been found that sewage transportation and collection utilizing a negative pressure (vacuum) is very susceptible to gas and air accumulation within the transport main because of air leakage into the system and because of dissolved air in the wastewater. For example, at atmospheric pressure the amount of air that may be dissolved in water is about 2.9% by volume at 32°F and about 1.9% by volume at 77°F. The solubility of air in water is inversely proportional to temperature and directly proportional to pressure; thus, the solubility of air in water is doubled at a pressure of 15 psig and halved at -7 psig (i.e., 15 inches of mercury vacuum) (Ref 6,7,8).

Another factor to be considered is that, under certain terrain conditions, injection of controlled amounts of atmospheric air into the system's vacuum transport piping may become desi: "le to blow accumulated wastewater from the line. This may be considered the equivalent of going beyond the theoretical 34-foot vertical lift limitation associated with a solid column of water.

Hydraulic Failures

In practice, leakage or other uncontrolled additions of air or gases into a vacuum system results in a reduced vacuum. Although a reduced vacuum can support liquid waste movement, liquid transport often results at a very low flow rate (i.e., inches per minute instead of feet per second). Low flow rate conditions tend to reduce system transport capacity, causing wastewater overflows at the source and solids deposition or grease buildups within the pipeline. The occurrence of wastewater transport at very low flow rates (e.g., < 2 ft/sec) is commonly referred to as "bog-down."

As wastewater transport rates decrease because of insufficient pressure differentials, the vacuum transport main approaches a bog-down condition; small quantities of air, but not enough to move the liquid, flow through the wastewater toward the vacuum reserve tank. This is shown in Figure 2. This air, depending on pipe configuration and geometry, may migrate toward the vacuum reserve tank very slowly. During this time, usually on the order of hours, the accumulated wastewater remains untransported, blocking the pipeline by isolating or preventing the transfer of sufficient vacuum reserves to upstream areas for the operation of flush valves and initiation of wastewater transport when the system is opened to the atmosphere.

Maintaining System Vacuum

To support effective vacuum wastewater collection, the system's primary mover - the vacuum - must be maintained at a level sufficient to offset the total lift requirements and to support wastewater transfer.

Because of maintenance obligations and power costs, the vacuum level is generally maintained over a range. This practice eliminates numerous pump cycles resulting from an oversized pump trying to maintain a specific vacuum and avoids long-running cycles associated with a smaller or undersized pump trying to "catch-up."

Because of power demands and other factors, maximum vacuum pump capacity should be no more than twice the system demand (Ref 9). For example, in a 75-cfm system (i.e., 13 vacuum toilet flushes per minute) this criterion calls for a 150-cfm vacuum pump. This pump size would require a 10-hp power source that would draw approximately 35 amperes of current in a 220-volt circuit. Increasing the vacuum pump size to 250 cfm (more than three times the system's demand) would require 50 amperes of current during system operation. In addition to high steady-state current requirements, starting current surges of up to 600% can be expected each time the vacuum pump cycles (Kef 9). Because of the motor's inability to dissipate the heat associated with large current surges, numerous pump cycles may result in serious motor damage. Therefore, maximizing vacuum pump performance in terms of vacuum pump off-time is an important factor to consider. Pump motor sizes less than 30 hp are limited to a duty cycle of approximately 20 starts per hour; larger pump motors have a maximum frequency limitation of around five starts per hour.

Vacuum Reserve Tank

One method of minimizing the pump cycling requirement is to incorporate an appropriately sized vacuum reserve tank to act as a buffer to resist system vacuum level fluctuations. This would provide for longer

periods of system operation between vacuum pump start-ups. One method for determining the appropriate capacity of this reserve is to apply control volume concepts and the principles of continuity to the air or vacuum portion of the system's collection station in the following manner.

Let Q_i represent the average volumetric flow rate of air entering the collection tank as a result of leakage and system usage and Q_0 the volumetric flow rate of air leaving the system when the vacuum pump is operating. Therefore, for a vacuum system to maintain a given vacuum level under steady-state conditions, the amount of air being evacuated from the system must be equal to the amount of air entering the system. Mathematically, this is expressed as:

$$Q_{i} = K Q_{0}$$
 (3)

where K is the ratio of the time the pump is on to the total time (the time the pump is on, T_1 , plus the time the pump is off, T_2). The total time is represented by the quantity $T_1 + T_2$. Therefore,

$$K = \frac{T_1}{T_1 + T_2}$$

Because the number of times a vacuum pump motor may be started per hour is dependent upon its size, the frequency of system cycling becomes an operational limiting factor. Since frequency, f, is defined as the reciprocal of time, the K term becomes:

$$K = T_1 \frac{1}{T_1 + T_2} = T_1 f$$

and from Equation 3

$$Q_{i} = T_{1}f Q_{0}$$
 (4)

This relationship provides a method of evaluating system operation in terms of mass (air and water) flow rates, pump sizing requirements, and system cycling limitations. For example, in the 75-cfm $Q_{\bf i}$ system, the vacuum pump discharge capacity, $Q_{\bf o}$, and the pump cycling requirements can be determined by using Equation 4, after pump running time criteria has been identified. Using a pump running time of 3 minutes out of every 12 (the pump is off three times longer than it is on) produces:

$$T_1 = 3 \min$$

$$f = \frac{1}{12} = 0.0833 \, min^{-1}$$

and

$$Q_0 = \frac{Q_i}{T_1 f} = 300 \text{ cfm}$$

Evaluating these results in terms of allowable starts per hour yields a frequency of 5 starts per hour which is the maximum limit for ratings above 30 hp.

The primary purpose of a vacuum reserve tank is to buffer fluctuations in available system vacuum and minimize the impact of pump cycling by providing longer periods of system operation before a pump turn-on is required. This relationship can be described by a state equation, PV = NRT, that characterizes the interrelationships of system pressure, vacuum reserve tank capacity, and pump cycling.

In this equation:

P = system pressure in atmospheres

V = volume of vacuum reserve tank in liters

N = vacuum reserve capacity in moles

R = universal gas constant (1-atmopshere/ K-moles)

T = absolute temperature

Since the vacuum system reserve capacity is dependent upon operational vacuum requirements, this capacity can also be expressed as the volumetric flow entering the control volume during the vacuum pump's off-time.

$$N = T_2 Q_i$$
 (5)

This expression also represents the total amount of air or wastewater that enters the system when the operational pressure varies from its low point, P_1 , to its high value, P_2 .

At standard temperature and pressure conditions there are 22.4 l/mole and 28.31 l/cu ft. These conversion factors allow the units of the variables in Equation 5 to be adjusted consistently with the requirements of the basic equation of state. Rearranging and substituting this expression into the basic equation of state produces Equation 6.

$$V = \frac{T_2 (Q_i) RT}{P_1 - P_2}$$
 (6)

Equating the vacuum reserve tank to a control volume and evaluating this relationship in terms of the principles of continuity, the interrelationship of the various parameters of interest can be identified.

In applications where the vacuum pump capacity, $\mathbf{Q_0}$, is larger than the rate at which the air and wastewater enter the system, $\mathbf{Q_i}$, $\mathbf{Q_i}$ will be evacuated from a given vacuum reserve volume, \mathbf{V} , at a rate that will maintain a given operational vacuum. Conversely, when a desired operational pressure has been identified, the appropriate reserve capacity that will enable the maintenance of this criteria in terms of system loading and minimum pump cycling can be determined.

Evaluating the criteria affecting the parameters of this derived expression will be necessary in determining the limitations associated with reliable vacuum system operation and identifying the potential marginal performance conditions encountered in existing operational vacuum systems.

The pressure term, P, in the derived expression is primarily dependent upon the system head requirements. The pump running time and input flow rate depend upon the pump's size and wastewater generation sources, which are also dependent on flow rate requirements.

Maintaining the initial assumptions of system flow rate under steady-state conditions determines the minimum vacuum pump capacity and, hence, the horsepower requirements to drive the vacuum pump. This criteria establishes the maximum number of pump cycles the system can tolerate per hour. The combination of the pump's capacity and its associated duty cycle provide the basis for determining the "pump-off" time.

System Head Requirements

In experimental testing, the air and water in the transport main separated as a result of the general system configuration and local terrain conditions. The positive sloping portions of the pipeline have been observed to consistently fill with wastewater; the negative sloping portions become filled with air. This hydraulic behavior requires that the total system design head include the cumulative elevation changes as derived from the positive sloping segments of the transport piping. This is opposed to the net elevation change utilized in full pipe flow system design. Thus, the lower design limit of the vacuum range (i.e., lowest vacuum or largest absolute pressure) must be larger than the maximum cumulative static head as measured in feet of water plus the required energy to provide sufficient wastewater transport while overcoming the pipe friction losses resulting from dynamic flow conditions.

Since the flow of wastewater in a vacuum transfer system also includes the management of entrained air, the transfer of this resulting air and water mixture is often referred to as two-phase flow. Although actual applications of a vacuum wastewater transfer system deal with three-phase mixtures of solids, liquids, and air, the solids portion of the wastestream has been historically neglected. This neglect has often

resulted in many system failures because the wastewater flow rates were low enough, resulting from too many friction losses, to allow solids to deposit, thus plugging the pipeline.

It has been shown by the inventor, A. B. Electroiux Corp., and others, that the friction factors associated with two-phase flow systems are higher than those associated with a network flowing in a full pipe condition (Ref 11). The values of the resulting two-phase friction factor have been identified as a function of the air-to-water ratio of the transported two-phase mixture. It has been further shown that the friction factor is also a function of the transport piping's slope (Ref 12). Low friction factors have been identified with horizontal and vertical pipe runs while higher loss values have been identified with a pipe sloped at an angle of 45 degrees. Research conducted by others has shown the friction factor associated with a horizontal pipe was nearly the same as those tested vertically. It is concluded, therefore, that a vacuum system designed to lift must also include the appropriate friction loss factor's association with the characteristics of the lift.

The upper limit of a system's operational vacuum range is generally determined by the power costs and operational efficiencies associated with cost-effective vacuum pump operation.

Vacuum pumps in general display a performance curve similar to centrifugal wastewater pumps. They operate more efficiently at lower vacuums than they do at higher vacuums. As a result, it may require the same amount of energy to build a vacuum level from 18 inches to 24 inches of mercury as was required to bring a particular system from a 0-inch to an 18-in.-of-mercury vacuum level. Also, in applications where high vacuums are required (i.e., > 20 inches of mercury), the effects of excessive (i.e., > 24 feet of water) suction heads present substantial cavitation problems to the impellers of centrifugal wastewater-handling pumps (Ref 13). These pumps are used in conjunction with the dual-purpose, vacuum-reserve, wastewater-collection tank. The suction lift requirements that must be adhered to by any type of pump suitable for handling sewerage or wastewater are generally defined by the cavitation coefficient, δ .

The term δ is defined as the net positive suction head available (NPSHA) divided by the total pump head, H, per stage (Ref 14).

$$\delta = \frac{NPSHA}{H}$$

This term is specified by the manufacturer, or it can be easily determined in the field by following guidelines set forth by the Hydraulic Institute Procedures.

Vacuum Pump and Reservoir Sizing

With a minimum amount of system leakage, the volumetric flow rate of air entering the system is a predetermined quantity since it is directly proportional to the number and type of wastewater sources serviced (i.e., showers, kitchens, Laundry, water closets). In order to support steady-state vacuum system performances, the net result of this term should not be larger than the vacuum pump's capacity.

The vacuum reserve tank volume, V, and vacuum pump's off time, T_2 , are the remaining quantities to be evaluated in the previously derived Equation 6:

$$V = \frac{T_2 Q_i RT}{P_1 - P_2}$$

Since T_2 is a function of pump size and cycle frequency, Q_i is proportional to the type and number of wastewater sources serviced, RT is treated as a constant, and P_1 - P_2 is determined by total system head requirements. The vacuum reserve tank capacity, V, can be determined, based on the system's application.

After the initial values of T_2 and V have been established, a cost-effective determination of these parameters can be made, based upon economic considerations. A procedure for performing this analysis can be conducted as follows.

With the capital costs associated with a specified range of vacuum pump capacities and vacuum reserve tanks as determined initially, these costs are plotted as a function of capacity. This is illustrated in Figure 3. Curve A represents the costs associated with various sized vacuum tanks. The point all illustrates a tank capacity sufficiently low enough to yield a negligible impact on vacuum system transport/collection performance (continuous vacuum pump operation); all represents the point at which the tank becomes large enough to require internal structural supports for higher operational vacuums. Although structural supports will assist in preventing a tank collapse, solids/debris fouling precludes using structural members in sewage or wastewater applications.

Curve B demonstrates the capital cost investments required for different sizes of vacuum pump capacities.

Term b_2 corresponds to a system configured to operate without a vacuum reserve tank representing a vacuum pump operating in a nearly continuous run mode. This point corresponds to the volumetric flow rate out of the system - Q_0 being equal to Q_i , the volumetric flow rate into the system while b_i illustrates an operational condition that utilizes an oversized vacuum pump. This corresponds to a condition where a large capacity vacuum pump is used to meet system requirements in short-run cycles, producing the previously discussed cycling restrictions associated with high starting currents and excessive steady-state electrical circuit requirements.

The graphical summation of curves A and B produces curve C. This resulting curve represents the total combined capacity requirements of the vacuum pump and the vacuum reserve tank. The minimal point of curve C (C_1) illustrates the minimum cost required to accommodate the two parameters simultaneously. Therefore, for a given appliction, where Q_1 , R, T, and the mean vacuum level are defined, an optimum vacuum pump and reserve tank size can be selected that supports the specified operational requirements for the application.

Although the criteria associated with management of vacuum and air in the vacuum collection station have been identified, critical considerations must be given to these parameters in terms of how they support their assigned function and the management of the vacuum-collected wastewaters.

Figure 1 suggests that one of the most important factors associated with vacuum system operation and performance is that of $Q_{\hat{1}}$, the volumetric flow rate of atmospheric air entering the system. Therefore, mechanisms that control the admission of air into vacuum system operation should be investigated and understood before operational system designs are attempted.

Air Admission Effects on Vacuum System Performance

The concept of liquid slug flow frequently considered in the design of a system requires that each quantity of wastewater entering the transport main must be followed by a deliberate quantity of atmospheric air. This sequence is designed to maintain a pressure difference across the liquid slug until it has been disintegrated. To evaluate this transport process, extensive analysis with video tape and clear plastic pipe have been conducted.

Experimental test and evaluations have shown that a liquid "slug" rapidly changes in shape and flow pattern. This primarily results from the fact that fluids cannot support a shear. The observed progressive states of two-phase flow (liquid and gas) are illustrated in Figure 4. These observed flow patterns have also been identified by others (Ref 11, 12, and 15 through 18).

The following describes the sequence of the flow pattern changes. Liquid waste was injected into the pipeline in the form of a slug (a volume of waste followed by atmospheric air). Since fluids cannot support a shear, however, the driving force of the atmospheric air began to accelerate the slug's deformation. Distortion was continuous, rapidly

progressing to the annular and misty flows shown in Figure 4. After the slug had broken up, the air began rushing across the surface and through the mist of the deforming slug, neutralizing the driving differential pressure. As the slug's deformation neared completion, the liquid began to collect in the lower portion of the conduit, gravity draining to the system's hydraulic low points; thus, initiating the stratified flows shown in Figure 4.

Subsequent slug loading produced the same class of flow patterns, resulting in gradual wastewater accumulation throughout the transport main. This buildup continued with each additional slug injection until approximately 35% of the transport main volume was occupied by liquid waste.

At this point a steady-state hydraulic transport configuration was established. The air-to-water ratio reached an equilibrium within the total pipeline and the gallons of wastewater injected gradually became equal to the quantity of wastewater collected in the vacuum reserve tank. The mechanism for wastewater transport in this configuration was maintained by controlling the volume of air, $\mathbf{Q_i}$, admitted to the system with each additional slug injection. The air rushed across the surface of the liquid creating the wavy stratified regime shown in Figure 4. This regime occupied approximately a 3-foot section of pipe (so-called slug flow) that moved along the pipe as a wave to transporting about 2 gallons of wastewater per wave to the vacuum reserve/wastewater collection tank.

These observations indicate that admission of air to the system causes varying flow patterns and multiple friction factors that lead to an energy-intensive wastewater transport operation.

Air Admission and Control Criteria

A variety of methods exist for introducing wastewater into vacuum wastewater collection systems. In combined systems, the most popular method is to level-control a wastewater holding tank in conjunction with

an admittance valve near the tank's bottom for admitting wastewater followed by atmospheric air to the vacuum-operated pipeline.

The holding tank can be configured with either a vertical bottom discharge or a horizontal bottom tank discharge. In each configuration the wastewater's level activates a valve admitting liquid waste into the transport main followed by a volume of atmospheric air.

In a holding tank configuration with a vertical bottom tank discharge, vortexing began as the wastewater level neared the tank's bottom. This reduced the tank's liquid discharge rate by about 40%. This reduced flow rate resulted from the simultaneous introduction of atmospheric air and wastewater.

System operation with measurable amounts of vortexing have reduced system transport capacity, lowered net system flow rates, and required shorter horizontal transport distances for a given air-to-water ratio. As a result, a testing program was initiated to assess the characteristics of vortexing as it relates to cylindrical holding tanks.

Tests were run with a 1,000-gallon, 5-ft-diam tank connected to a 4-inch vacuum main under a 20-inches-of-mercury vacuum. The tank was evacuated, and vortexing occurred as the liquid level dropped to within about 1 foot of the tank's bottom. This occurred at a ratio of liquid depth to the tank diameter of 0.2.

With use of the same initial conditions (20-inches-of-mercury vacuum and 4-in.-diam transport main), tests were run on a 55-gallon, 2-ft-diam tank. As this tank was evacuated, vortexing again occurred as the water level dropped to a ratio of liquid depth to tank diameter of 0.2. The wastewater discharge configuration utilizing horizontal bottom discharge was also tested for vortexing; no measurable vortexing was observed. As a result, this configuration was selected for use in determining the hydraulic transport capacity of transport mains with different diameters.

The test procedure used to evaluate the holding tank with a horizontal bottom discharge configuration consisted of measuring the time needed to discharge 50 galions of liquid waste from a 55-gallon tank into 2-, 3-, and 4-in.-diam transport mains.

In the 4-in.-diam transport main tests, the wastewater inlet valve remained open for approximately 30 seconds after the introduction of 50 gallons of liquid waste. In this mode of operation, a steady-state condition (i.e., gallons of wastewater introduced being equal to gallons of wastewater collected at the vacuum reserve tank) did not occur until about 350 gallons of wastewater had accumulated in the 4-in.-diam transport main. After a steady-state condition was achieved, the vacuum transfer process moved the liquid waste over the 1,100-foot pipeline at an average rate of approximately 12 ft/sec.

Identical testing was conducted with the 2- and 3-in.-diam transport mains utilizing 50-gallon loadings, followed by approximately 30 seconds of atmospheric air. The initial results of these tests are summarized below:

Slug Size (gal)	Transport Main Diameter (in.)	Local Vacuum (in. of Hg)	Time for Liquid Entry (sec)
50	2	18	30
50	3	18	9
50	4	18	4

In steady-state system operations, 50 gallons of injected wastewater produced 50 gallons of output from the transport piping. The transfer rates were substantially reduced by changing the size of the transport piping as shown. The 3-inch transport main achieved an approximate 5-ft/sec velocity for 50-gallon injections over the 1,100-foot length of pipeline while the 2-inch transport main produced a steady-state transfer rate of about 0.6 ft/sec over the 1,100-foot distance.

The data further show that doubling the transport main diameter significantly alters wastewater injection time. Although wastewater input times depend, to a large extent, upon the input air-to-water ratios (and subsequent wastewater accumulations in the transport line), the data have been empirically found to obey the following mathematical relationship for wastewater injections of 50-gallon slugs into 2-, 3-, and 4-in.-diam transport mains.

$$T = 225 d^{-2.907}$$

where T = time of entry of 50 gallons into a vacuum-operated transport main in seconds

d = diameter of the transport main in inches

This expression demonstrates the polantial for predicting wastewater input times for transport mains of different diameters. Such a predictive tool will be useful in calculating system size limitations in terms of the number and size of separate, wastewater sources (holding tanks) that can be incorporated into a system design. This allows some degree of assurance that the system can perform without bog-down and sewar overflow conditions.

Because of the measurable differences in the wastewater transport performance of the 2-, 3-, and 4-inch lines, the pressure drop across their discharge openings - orifice discharge coefficients, C - was estimated. The 2-, 3-, and 4-in.-diam orifices were time-volume tested as above with the transport line disconnected and the tank discharging freely to the atmosphere.

The C values obtained from these test results compared to theoretical hydraulics as follows (Ref 19):

Diameter (in.)	C Experimental	C Theoretical
2	0.539	0.596
3	0.529	0.596
4	0.512	0.596

These coefficients were then used to compute the head loss across the orifice while discharging into the transport main:

$$h = \frac{v^2}{(c^2)(2g)}$$

where C = discharge coefficients

v = average velocity entering the line in ft/sec

g = 32.17 ft/sec² h = head loss in feet of water

For example, 50 gallons discharging into a 4-inch line in 4 seconds (19-ft/sec velocity) shows a head loss at the point of discharge of:

$$h = \frac{19^2}{0.512^2(64.34)} = 21.4 \text{ feet}$$

The initial head in the drum was an average of 2.5 feet, providing a net waterhead requirement of 18.9 feet to be supplied by the vacuum in order to attain the measured velocity of 19 ft/sec. This is equivalent to 16.6-inches-of-mercury vacuum, indicating that very little vacuum was required for overcoming the friction loss that results from flowing wastewater through the system at this rate. As the data indicate, there are considerable differences in the transport velocities and head losses associated with the 2-, 3-, and 4-inch pipelines.

As a result of experimental testing, it was determined that the 50-gallon slug loading of a 3-in.-diam line had to be reduced to about 20 gallons in order to obtain the same steady-state transport velocity exhibited by the 50-gallon loading of the 4-inch transport main. The loading on the 2-inch transport main had to be reduced to about 6 gallons in order to obtain the same transport velocity as the 50-gallon, 4-inch line loading.

The impact of transport main diameter on steady-state wastewater transport velocity is nominally attributed to the friction head loss resulting from the wetted pipe area. For example, 50 gallons of liquid waste occupies about 76 linear feet in a 4-inch line, wetcing an equivalent area of about 69 sq ft; 50 gallons occupies more than 307 linear feet of 2-inch line and wets an equivalent area of about 160 sq ft of pipe. An analysis of this data further demonstrates that the injected air required to transport the wastewater is consuming a significant proportion of the vacuum available to operate the system.

Vacuum Systems in Network Applications

Preliminary testing and experimentation have been conducted to explore vacuum system transport technology in network applications where multiple wastewater sources are serviced by a single common transport main. In this application, multiple source integration often results in the transfer mains instead of unidirectional transport of liquid wastes to the collection tank. In addition, as the wastewater and atmospheric air passes or enters a lateral transport junction, local vacuum pressure approaches zero (i.e., atmospheric pressure) at that point. This results from the liquid waste movement changing a static head into a dynamic velocity head. Since the local working pressure is reduced, nearby vacuum components are forced into an intermittent mode of operation. As the liquid slug deforms and leaves the junction, vacuum is restored, and the service lateral again becomes operational.

For conventional black-water systems utilizing more than one adjacent vacuum fixture, this intermittent period (system dead time) is approximately 2 seconds and is attributed to small loading volumes and rapid slug deformation.

Conventional vacuum system dead time is variable since the delay is a function of component location, loading size, and slug deformation time, which in turn is largely dependent on transport main diameter. For a constant slug loading of 2 quarts per injection, slug deformation time will decrease as the transport main diameter is increased.

A 2-quart slug in a 2-in.-diam transport main occupies 3 linear feet while the same size slug in a 3- or 4-in.-diam line occupies 1.25 or 0.75 foot, respectively. Doubling the transport main diameter with identical load conditions reduces the effective slug size by 75%.

This slug length reduction will allow more rapid deformation and will therefore proportionally reduce system dead time. Conversely, keeping the pipe diameter constant while increasing the system loading lengthers the slug and its deformation time. While this provides greater

transport effectiveness, this method of operation causes a longer system dead time in multiple source applications and implies a need for intermediate storage and sequencing if continuous system operation is desired.

Another factor to be considered when minimizing system dead time with small slug loading is that of water hammer, the vibratory effects of which are imparted to the vacuum transport main.

When injecting liquid waste into an evacuated transport main across a pressure gradient of 15 inches of mercury, high stresses are subjected to the transport main in local areas of direction change. Under identical small loading conditions from vacuum toilets, peak accelerations of 6, 17, and 29 g at a frequency of 40 cps in the vertical, lateral, and transverse directions, respectively, have been observed at a 45-degree sanitary elbow approximately 15 feet from the point of slug injection. Large slug loading of 50 gallons and slow-acting, electrically operated, ball valves have reduced vibration and water hammer effects: static head has been converted to velocity head over longer time frames, resulting in lower total external forces.

An alternative to the conventional method of vacuum wastewater transfer is the use of large slugs to reduce transport line losses, thereby increasing liquid waste transport capabilities. Careful consideration of multiple source implementation of conventional vacuum transfer systems is necessary, however, because these differential pressure devices typically operate on principles of first-come, first-served. Operation of collection stations under these conditions gives priority to the tanks closest to the vacuum source. Such a multiple source collection mode presents a special class of problems. Loading rates throughout the network will vary, thus requiring intermediate storage for wastewater sufficiently removed from the primary collection station.

In this regard, the intermediate collection tank size must, in part, be based upon detention and transportation time criteria that does not allow discharge of septic, vacuum-collected sewage to the treatment plant facility.

Additionally, if the transport main length compared to slug size is large, deformation characteristics of the waste packets nearly always result in partially filled "acuum transport mains. Unless these lines are horizontal, waste will collect at the system's low points, and air will collect at the high points of the main. This configuration often results in intermediate pressure gradients within the vacuum main that cause a buffering action to occur between the vacuum pump and the local vacuum-operated fixture. Since the internal piping volumes are fixed and the entrapped liquid is easily moved, the generalized gas law equations (PV = NRT) apply to the resulting volumes when varying pressures are applied. Under steady-state conditions such a configuration results in oscillating liquids and varying pressures until the internal pressure gradients are equalized.

CEL has developed an approach to utilizing a vacuum as the primary driving potential. In this concept, which varies from standard vacuum applications, atmospheric air is kept from entering the system's piping, and the differential working pressure is continuously maintained outside the transport main.* This mode of operation allows predictable events to occur with time because there are no intermediate flow regimes under varying loading conditions. Steady-state conditions are nearly idealized and lend themselves to accurate modeling and analysis by Hardy-Cross pipe network methods (Ref 20). These methods are based on iteration processes and convergence techniques and are highly suitable for digital computer investigations.

CEL has successfully used this tool to assist in evaluating an experimental, vacuum, waste transfer system with full pipe flow that

In this configuration the transport piping is maintained in a full pipe flow condition. When a wastewater source is emptied, the admittance valve is opened to allow atmospheric pressure to force the wastewater into the collection piping and is closed just prior to complete tank evacuation and the subsequent admission of air to the transport piping. This practice supports full pipe flow conditions, predictable system head losses, and much lower friction factors than those encountered with two-phase mixtures of air and wastewater.

accommodates loading by 500 men. The general system layout is based on Bureau of Yards and Docks Drawing no. 816511 contained in Reference 21.

The experimental model tasically operates according to principles associated with a continuous pressurized medium. This method keeps the pressure gradient external to the transfer main, alleviates intermediate flow regimes caused by air-deforming liquid slug packets, and establishes a flow pattern with a predictable single-phase friction factor.

DESIGN OF A MULTIPURPOSE VACUUM WASTEWATER COLLECTION SYSTEM

In design of a sewage transport/collection system, the number of people the system will serve must be assessed early; the maximum projected population is required. After the population and the types of communities are determined, a base or camp layout such as that in Reference 21 will assist in identifying the types, locations, and sources of wastewater to be handled.

Characterization of these sources can then be conducted in terms of the quantities and qualities of wastewater expected. Based on operational requirements and routine activities, the wastewater generation rate (50 gal/capita/day) can be projected and a diurnal curve constructed. Reference 22 states, "Domestic water use can be attributed to six major functions or areas"; these include: (1) toilet/sanitary wastes, (2) sink, (3) garbage disposal, (4) bath/shower, (5) dishwasher, and (6) washing machine.

In a multipurpose vacuum collection system, the wastewater is transported in a single common transport main. Generally, gravity is used to collect the wastewater in an intermediate storage tank from the generation point. This tank should be level-controlled, feeding the vacuum transport main directly when the intermediate wastewater level reaches a predetermined point.

Because of septicity and solids handling constraints, the intermediate storage tank size should allow an average detention time of about! hour. This tank should incorporate a conical or tapered bottom with horizontal

discharge to support effective solids removal with minimal vortexing for transport to the vacuum collection station where the effluent can be discharged to the appropriate treatment or disposal areas.

In the functional design of a sanitary sewer system, the hydraulics associated with wastewater transport generally present standard or conventional types of problems. The solids and entrapped air associated with vacuum collection systems, however, present a different class of problems. Standard sewage design practices dictate a liquid velocity of at least 2 ft/sec to prevent solids from depositing in the transport main.

A more limiting factor is associated with the removal of entrained or trapped gases to prevent the equivalence of an air-locked pipeline as is found in pressure-type systems. It has been shown that the minimum wastewater velocity required to remove air or gases is 3.5 ft/sec in a 4-in.-diam transport main undergoing negative slopes of up to 60 degrees (Ref 23). The upper limit on the wastewater transport velocity has been established at 10 ft/sec because of conduit scouring (Ref 10). Since a full bore type of vacuum system incorporates a very low air-to-water ratio within the transport main, a full pipe low configuration is assumed.

With wastewater velocity constraints set at a range of 3.5 to 10 ft/sec, Hazen-Williams hydraulic modeling can be utilized to calculate the head loss characteristics associated with high friction factors experienced with small diameter pipe. The 4-in.-diam limitation is derived from increased capital costs associated with larger diameter pipe. For example, a 6-in.-diam plastic pipe costs about twice as much per linear foot as the 4-in.-diam plastic pipe.

Utilizing the assumptions of full pipe flow, a given pipe size, and a range of wastewater flow velocities, Hazen-Williams-derived criteria can be utilized as a tool to identify the potential head losses and friction factors associated with a particular base or camp layout in terms of flow capacity.

THE REAL PROPERTY OF THE PERSON OF THE PERSO

Recalling that total dynamic head (TPH) in feet is equal to the sum of the head losses (H_L) resulting from friction, static head, and velocity head, the following equation can be written:

$$TDH = VH + SH + FH$$

where VH = velocity head in feet $(V^2/2g)$

SH = static head (cumulative elevation in feet)

FH = friction losses (H_f) in ft/ft

Since a perfect vacuum has a limited theoretical lift capacity of 34 feet, the available vacuum level (i.e., 26 feet for all practical purposes) represents the TDH available to transport and collect wastewater. If the system is designed to lift, this requirement reduces the TDH available to transport the liquid waste (illustrated graphically in Figure 5). As a result, the basic head loss relationship can be rewritten as follows:

$$TDH - SH = VH + FH$$

The VH term, $V^2/2g$, is on the order of 1 foot of head since the velocity is constrained to between 3.5 and 10 ft/sec.

By setting y = TDH - SH, the initial expression can be approximated by the following:

$$H_f = \frac{H_L}{1 \text{ ft}}$$

where the total loss can be found by

$$H_f = \frac{R_L}{1 \text{ ft}} \text{ (length in feet, L)}$$

and

$$y \sim \frac{H_L}{1 \text{ ft}} (L)$$

By use of the initial assumption of low air-to-water ratios or full pipe flow, Hazen-Williams calculations give a good approximation for values of H_f when rigid 6-in.-diam plastic pipe is utilized as a vacuum transport main, flowing full of wastewater (Figure 6). Operation is maintained within the velocity constraints mentioned earlier.

Given a particular application and an accompanying topographical map for determining the cumulative lift requirements, SH, a vacuum range can be determined in terms of transport velocity and line length. For instance, a 4-in.-diam line approximately 1,200 feet long requires a vacuum of about 20 inches of mercury to lift about 10 feet and still guarantee a transport velocity of 3.5 ft/sec. Having established system vacuum range limitations, the previously derived relationship,

$$V = \frac{T(R)(T_2)(Q_i)}{P_1 - P_2}$$

can be utilized to determine the preliminary values of V and T_2 .

Evaluating the economic tradeoff relationships between vacuum reserve tank volume and vacuum pump capacity (consistent with Figure 3) will enable the appropriate class of components to be selected in terms of their intended application.

The vacuum-reserve/wastewater-collection tank is a dual-purpose tank. It is level-controlled, enabling the upper portion to be used as a vacuum reserve tank and the lower portion, as a wastewater storage tank that transfers the collected wastewater to the treatment or disposal site.

Incorporating this type of tank instead of two separate components will reduce capital and O&M costs. Such a tank will provide a mechanism that allows the wastewater discharge pump to simultaneously restore the

system to its maximum vacuum and also discharge the collected wastewater to the appropriate treatment or disposal area. This method of operation allows the vacuum pump to function as a fail-safe device. After the vacuum pump establishes the system's initial maximum vacuum with the collection tank nearly empty (maximum volume), its primary mission becomes that of removing air and vaporized gases that have leaked into or entered the system.

Because the wastewater discharge pump provides a dual function in steady-state system operation, its sizing and control mechanisms are critical. This pump must be able to adequately handle continuous system peak flow rates. For populations up to about 5,000, a peak-to-average wastewater flow rate of 4 to 1 can be utilized (Ref 24). The level controls must be such that the sewage pump is set to initiate pumping when the wastewater level in the vacuum reserve/wastewater collection tank has risen sufficiently to reduce the tank volume and, hence, the vacuum in the reservoir to a predetermined system minimum. At this point (approximately 2-hour detention time) the collected wastewater's level should initiate the wastewater discharge pump at a rate that equals the system's peak flow rate. For design, this capacity should support a peak flow rate while working against a high system suction head. This pumping rate should be maintained until the collected wastewater level reaches a point that produces a volume of evacuated tank that creates the maximum required system vacuum.

When this level is attained, the wastewater pump should stop pumping and allow sufficient wastewater to remain in the collection tank to maintain an effective prime so the wastewater discharge pump does not become air-locked.*

Since the level-control approach requires use of the system's design operational vacuum limits in terms of collection tank volume, the intermediate points between the values corresponding to minimum system vacuum (high water point) and maximum system vacuum (low collected

^{*}Prevention of a wastewater discharge pump air-lock condition also requires a check valve to be installed in this pump's discharge line.

wastewater point) can serve as calibration and check points for the maintenance of this alignment for subsequent reliable system performance. If, for instance, a maintenance check reveals the wastewater level in the collection tank is inconsistent with the required vacuum (e.g., from air leakage producing a lower system vacuum than the waterline should produce), the vacuum pump could be energized until the appropriate vacuum was restored and the system returned to an automatic mode of operation.

CONCLUSIONS

- 1. There are three basic and distinct vacuum collection system configurations, each possessing its own fundamental design requirements.
- (a) A single-pipe system where only vacuum toilets are connected to a vacuum sewer system (i.e., black-water system) (Ref 1).
- (b) A single-pipe system in parallel with item (a) where gray-water sources (shower-, laundry-, and kitchen-type wastewaters) are connected to a vacuum sewer system (i.e., dual-pipe black- and gray-water system) (Ref 1).
- (c) A single-pipe system combining the two types of wastewater into a common transfer main using conventional fixtures along with gravity-fed intermediate holding or storage tanks (Ref 1).
- 2. The variation in the fundamental design requirements depends upon the types and kinds of wastewater sources (e.g., kitchens, showers, urinals) serviced.
- 3. The transport efficiency of a vacuum wastewater collection system is a function of the system's operating air-to-water ratio.

- 4. A critical element in the design of a vacuum wastewater transport system is control of the amount of atmospheric air admitted to drive the wastewater to the collection point.
- 5. The rate of wastewater transport in a vacuum system under steadystate conditions is also a function of the transport main diameter and its piping configuration.
- 6. Vacuum system performance is affected less by changing the transport main diameter or its configuration than it is by altering the operational air-to-wastewater ratio.
- 7. Vortexing can produce about a 40% decrease in vacuum wastewater transfer rate. This effect can be minimized, however, by placing the discharge port on the side of the holding tank.
- 8. The total design head required to support vacuum wastewater transport must include the total head (measured in feet of water) resulting from the cumulative (as opposed to net) positive sloping portions of the transport pipe line.
- 9. In network applications, as the wastewater and atmospheric air enters or passes a lateral transport junction, local vacuum pressure approaches zero or atmospheric pressure at that point.
- 10. The varying hydraulic friction factors resulting from the flow of wastewater and air in a common transport main with measurable air-to-wastewater ratios are not subject to conventional hydraulic analysis.
- ll. Standard hydraulic design data for fluid discharge through an orifice while admitting wastewater (not mixtures of air and water) to a vacuum collection system can be utilized to account for head-loss coefficients across the inlet to the transport line.
- 12. Vacuum wastewater collection systems designed to operate at very low air-to-water ratios (essentially no air) appear to behave as low

pressure, full pipe flow systems; operate more efficiently than those configured with measurable air-to-water ratios; and lend themself to standard hydraulic analysis.

RECOMMENDATIONS

The research efforts reported herein are not considered complete since these findings apply primarily to multipurpose vacuum collection systems that operate with very low air-to-water ratios. Operational problems associated with vacuum systems operating with measurable air-to-water ratios (i.e., 10 to 60) include: (1) varying hydraulic friction factors resulting from mixtures of air and wastewater, (2) limited suction lift capability, and (3) decreased wastewater collection efficiency in network application because of lateral transport mains.

It is recommended, therefore, that research testing and experimentation continue in the area of vacuum system applications where medium or high values of operational air-to-water ratios are required.

REFERENCES

- 1. A. B. Electrolux Corporation. Electrolux Corporation design manual. Stockholm, Sweden, Oct 1971.
- 2. University of Toronto, Department of Civil Engineering. Vacuum sewer system, by D. W. Averill and G. W. Heinke. Toronto, Canada, Jan 1973.
- 3. National Homes Construction Corp., AirVac Division. AirVac vacuum sewage collection system. Rochester, Ind., Jan 1977.
- 4. Colt Industries. Envirovac technical information. Beloit, Wis., 1974.

- 5. Personal correspondence, D. Mitchell, National Bureau of Standards, 1973.
- 6. G. M. Fair and J. C. Geyer. Elements of water supply and wastewater disposal. New York, John Wiley and Sons, Inc., 1958.
- 7. Weil-McLain Co., Inc., Hydromatic Pump Division. Review and considerations for the design of pressure sewer systems utilizing grinder pumps, by L. J. Flanigan and R. A. Cudnik. Columbus, Ohio, 1974.
- 8. The Permutit Company, Inc. 24780-5M-375: Water and Waste Treatment Data Book. Paramus, N.J., 1961.
- 9. Telephone conversation with C. B. DiGiovanni of the Nash Engineering Co., Anaheim, Calif., Jul 1974.
- 10. Naval Facilities Engineering Command. NAVFAC Civil Engineering Design Manual: Pressure piping criteria. Washington, D.C.
- 11. University of Toronto, Department of Civil Engineering. Vacuum Sewer Systems, by D. W. Averill and G. W. Heinke. Toronto, Canada, 1973.
- 12. Villanova University, Civil Engineering Department. Effect of slope on friction of air-water mixtures in pipe flow, by L. J. Mathers.
- 13. H. M. Morris and J. M. Wiggert. Applied hydraulics in engineering, New York, The Ronald Press Co., 1972.
- 14. J. P. Messina, W. H. Fraser, W. C. Krutzsch, and I. J. Karassik. Pump handbook. New York, The McGraw-Hill Book Co., 1976.

- 15. O. Baker. "Some design suggestions for multipurpose flow in pipelines," Gas Age, June 12, 1958.
- 16. S. Calvert and B. Williams. "Upward concurrent annular flow of air and water in smooth tubes," American Institute of Chemical Engineers Journal, vol 1, Mar 1955.
- 17. Tennessee Valley Authority. US ISSN 0071-0369: Research 1971-72.
- 18. G B. Wallis. One-dimensional two-phase flow. New York, N.Y., McGraw-Hill Book Co., 1969.
- 19. H. W. King and E. P. Brater. Handbook of hydraulics, 5th ed. New York, N.Y., McGraw-Hill Look Company, 1963.
- 20. J. W. Clark, W. Viessman, Jr., and M. J. Hammer. Water Supply and Pollution Control, 2nd ed. Scranton, Pa., International Textbook Company, 1971.
- 21. Naval Facilities Engineering Command. P437: Facilities Planning Guide, vol 1. Alexandria, Va.
- 22. Colorado State University, Environmental Resources Center. Design of water and wastewater systems, by J. E. Flack. Fort Collins, Colo., 1976.
- 23. University of California. "The entrainment of air by water flowing in circular conduits with downgrade slopes," by J. C. Kent. Berkeley, Calif., 1952.
- 24. Water Pollution Control Federation. WPCF Manual No. 9: Design and construction of sanitary and storm sewers. Washington, D.C., 1970.

Energy requirements to support vacuum transport and collection 1,100 feet with net elevation changes of 10.5 feet. Figure 1.

Vacuum collection system hydraulic failure (i.e., bog down). Figure 2.

Figure 3. Sizing vacuum pumps and vacuum tanks.

Figure 4. Two-phase flow regimes.

Figure 6. Head required for minimum lift losses versus line length for 4-in.-diam pipe.

Table 1. Performance of a 4-Inch Vacuum Transport Main

ころ、子 ないのでは、一般のでは、子のでは、日本には、日本のでは、日本

[50-gallon injections, main 1,114 feet long]

Transport Effectiveness (watt-hr/gal) for y-Axis	3.20	13.11	1.16	1.33	0.99	1.17	8.22	1.12	1.57	2.18	2.26
Energy Consumption (watt)	223	12	62	99	100	62	83	93	66	111	66
Air-to- Water Ratio for x-Axis	94	194	91	16	4	17	122	91	23	9	33
Air Volume (cu ft) ²	434	116	117	124	186	117	165	174	161	214	193
Vacuum Pump Running Time (min)	5.35	1.41	1.50	1.58	2.41	1.50	2.0	2.23	2.40	2.66	2.40
Liquid Collected (gal)	69.7	4.5	56.2	49.5	101.2	52.8	10.1	83.2	62.9	54	43.8
Air Time (sec)	o£	37.2	21.8	24.4	8.02	28.3	32	33	33	59	30
(386) Limbut Time Sec)	4	4	4.2	4.6	4.4	4.0	8.0	4.0	4.0	8.4	4.2
Local Vacuum (in. Hg)	18.1	18.5	15	18	14.8	19.2	14.8	17	17.5	18.2	19.0
Vacuum Reserve (in. Hg)	61	19.2	19.5	e ·	20	19.5	91	17	20	<u>\$</u>	19
Test	_	2	•	*	~	¢	^	**	٠	22	
	Vacuum Liquid Air Liquid Air Liquid Air Liquid Pump Air Water Energy Reserve Vacuum Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (sec) (gal) Time (cu ft) ^a for (watt) (in. Hg) (sec) (gal) Time (min) x-Axis	Vacuum Liquid Air Liquid Air Liquid Air Pump Air Water Energy Reserve Vacuum Time Collected Running Volume Ratio Consumption (in. Hg) (sec) (gal) Time (cu ft) ^a for (watt) 19 18.1 4 30 69.7 5.35 434 46 223	Vacuum Luquid Air Llquid Air Llquid Pump Air Water Ratio Energy Reserve Vacuum Time (sec) (gal) Time (cu ft) ^a for (watt) (in. Hg) (in. Hg) (sec) (gal) Time (cu ft) ^a for (watt) 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12	Vacuum Luquid (in. Hg) Air (sec) Liquid (sec) Air (sec) Liquid (sec) Air (min) Vacuum (sec) Air (min) Vacuum (sec) Air (sec) Liquid (sec) Air (min) Vacuum (sec) Ratio (cu ft) ^a for (watt) Ratio (cu ft) ^a for (watt) 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.5 15 4.2 21.8 56.2 1.50 117 16 62	Vacuum Linguid Air Pump Air Water Energy (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time (collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (sec) (gal) Time (cu ft) ^a for (watt) 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.5 15 4.6 24.4 49.5 1.58 124 19 66	Vacuum Lincal (in. Hg) Liquid (in. Hg) Air Air (in. Hg) Air (in. Hg) <td>Vacuum Lincal (in. Hg) Liquid (in. Hg) Air Liquid (in. Hg) Air Liquid (in. Hg) Air Liquid (in. Hg) Air Air (in. Hg) Air (in. H</td> <td>Vacuum Linguid Air Liquid Air Liquid Air Liquid Air Liquid Air Vacuum Air-to-formal Fine Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) Time (sec) (gal) Time Cu ft)⁴ for Consumption 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.2 18.5 4.2 21.8 56.2 1.50 117 16 66 19 18 4.6 24.4 49.5 1.58 124 100 20 14.8 4.6 22.4 49.5 1.59 14 100 20 19.5 4.0 28.3 52.8 1.50 117 17 62 16 14.8 5.0 32</td> <td>Vacuum Linguid Air Liquid Air Liquid Air Liquid Air Liquid Air Water Energy Reserve Vacuum Time (sec) (gal) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) Time (sec) (gal) Time Cu ft)³ for (watt) 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.2 18 4.6 24.4 49.5 1.58 124 10 66 19 18 4.6 24.4 49.5 1.58 124 10 66 20 14.8 5.0 24.4 49.5 1.58 124 10 66 19.5 19.2 4.0 28.3 52.8 1.50 14 <</td> <td>Vacuum Linguid Air Linguid Air Linguid Air Mater Energy (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) Air Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) A 35 A 34 A 46 223 (in. Hg) (in. Hg) (in. Hg) A 4 37.2 A 5 1.41 116 194 12 (in. Hg) 4.6 24.4 49.5 1.50 117 10 10 20 14.8</td> <td>Vacuum Luquid Air Luquid Air Luquid Air Luquid Air Luquid Air Pump Air Water Energy (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.5 18 4.6 24.4 49.5 1.50 117 16 62 19.5 18 4.6 24.4 49.5 1.50 117 16 62 19.5 18 4.6 24.4 49.5 1.50 117 100 19.5 19.2 4.0 28.3 52.8 1.50 117 100 19.5 14.8 5.0 32 10.1 2.0 <</td>	Vacuum Lincal (in. Hg) Liquid (in. Hg) Air Liquid (in. Hg) Air Liquid (in. Hg) Air Liquid (in. Hg) Air Air (in. Hg) Air (in. H	Vacuum Linguid Air Liquid Air Liquid Air Liquid Air Liquid Air Vacuum Air-to-formal Fine Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) Time (sec) (gal) Time Cu ft) ⁴ for Consumption 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.2 18.5 4.2 21.8 56.2 1.50 117 16 66 19 18 4.6 24.4 49.5 1.58 124 100 20 14.8 4.6 22.4 49.5 1.59 14 100 20 19.5 4.0 28.3 52.8 1.50 117 17 62 16 14.8 5.0 32	Vacuum Linguid Air Liquid Air Liquid Air Liquid Air Liquid Air Water Energy Reserve Vacuum Time (sec) (gal) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) Time (sec) (gal) Time Cu ft) ³ for (watt) 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.2 18 4.6 24.4 49.5 1.58 124 10 66 19 18 4.6 24.4 49.5 1.58 124 10 66 20 14.8 5.0 24.4 49.5 1.58 124 10 66 19.5 19.2 4.0 28.3 52.8 1.50 14 <	Vacuum Linguid Air Linguid Air Linguid Air Mater Energy (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) Air Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption (in. Hg) (in. Hg) (in. Hg) (in. Hg) A 35 A 34 A 46 223 (in. Hg) (in. Hg) (in. Hg) A 4 37.2 A 5 1.41 116 194 12 (in. Hg) 4.6 24.4 49.5 1.50 117 10 10 20 14.8	Vacuum Luquid Air Luquid Air Luquid Air Luquid Air Luquid Air Pump Air Water Energy (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) (in. Hg) Time Collected Running Volume Ratio Consumption 19 18.1 4 30 69.7 5.35 434 46 223 19.2 18.5 4 37.2 4.5 1.41 116 194 12 19.5 18 4.6 24.4 49.5 1.50 117 16 62 19.5 18 4.6 24.4 49.5 1.50 117 16 62 19.5 18 4.6 24.4 49.5 1.50 117 100 19.5 19.2 4.0 28.3 52.8 1.50 117 100 19.5 14.8 5.0 32 10.1 2.0 <

* Example 3.1 have figures in last four columns are derived. Sample is taken from test injection no. 1, with following constants:

y = 0.672 x + 0.0564 and
$$\alpha$$
 = +0.0402
Air Volume $\frac{835 \text{ ft}^3}{\text{min}}$ (\$ 15 min) = 69.7 gal $\left(\frac{1 \text{ ft}^3}{7.48 \text{ gal}}\right)$ = 434 ft³

Air/Water Ratio $\frac{\text{Air}}{\text{water}} = \frac{434.0}{9.31} = 46.61$

Finergy Consumption Calculation = 41.6 $\left(\frac{\text{watt-hr}}{\text{min}}\right)$ (\$.35 min) = 222.56 watts

Transport Effectiveness $\frac{222 \text{ watt-hr}}{69.7 \text{ gal}} = 5.19 \frac{\text{watt-hr}}{\text{gal}}$

Table 2. Performance of 3-Inch Vacuum Transport Main

The second secon

[20-gallon injections, main 1,114 feet long]

			<u> </u>					:	
Test Injection	Local Vacuum (in. Hg)	Air Time (sec)	Liquid Collected (gal)	Vacuum Pump Running Time (min)	Air Volume (cu ft)	Air-to- Water Ratio for x-Axis	Energy Consumption (watt)	Transport Effectiveness (watt-hr/gal) for y-Axis	
-	15	30	15.75	1.33	108	51.5	55.3	3.51	
7		30	8.9	1.13	92	78.4	0.74	5.28	
3	12-1/2	30	28.1	1.33	106	28.4	55.3	2.32	_
7		30	18	1.25	101.3	42.2	52	2.89	_
2		30	22.5	1.31	105	35.2	54.49	2.42	_
9		30	20.25	1.18	95.2	35.2	0.67	2.42	
~	13	30	24.75	1.25	100.4	30.4	52	2.10	_
∞	91	30	16.87	7	163.7	72.7	83.2	4.93	_
6	_	30	14.62	1.73	141.6	72.6	71.9	4.92	_
<u>°</u>	16-1/2	30	16.8	1.10	89.06	39.7	45.76	2.72	_
=	15	30	15.75	1.33	108.2	51.5	55.3	3.51	_

*Constants:

 $y = 0.0644 \times 0.2198$ and $\sigma = \pm 0.0945$

DISTRIBUTION LIST

AAP NAVORDSTA IND HD DET PW ENGRNG DIV, McAlester, OK AFB (AFIT/LD), Wright-Putterson OH: AF Tech Office (Mgt & Ops), Tyndall, FL; AFCEC/XR, Tyndall FL; AUL/LSE 63-465, Maxwell AL; CESCH, Wright-Patterson; HQ Tactical Air Cmd (R. E. Fisher), Langley AFB VA; MAC/DET (Col. P. Thompson) Scott, IL; SAMSO/MNNF, Norton AFB CA: Stinfo Library, Offutt NE ARMY BMDSC-RE (H. McClellan) Huntsville AL; DAEN-CWE-M (LT C D Binning), Washington DC; DAEN-FEU. Washington DC; DAEN-FEU-E (J. Ronan), Washington DC; DAEN-MCE-D Washington DC; Engr District (Memphis) Library, Memphis TN: HQ-DAEN-FEB-P (Mr. Price); Teph. Ref. Div., Fort Huachuca, AZ ARMY - CERL Library, Champaign IL ARMY COASTAL ENGR RSCH CEN Fort Belvoir VA; R. Jachowski, Fort Belvoir VA ARMY CORPS OF ENGINEERS MRD-Eng. Div., Omaha NE: Seattle Dist, Library, Seattle WA ARMY CRREL A. Kovacs, Hanover NH ARMY ENG DIV HNDED-CS. Huntsville AL: Hnded-Sr. Huntsville, AL ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS ARMY ENGR DIST. Library, Portland OR ARMY FNVIRON, HYGIENE AGCY. Dir. Environ. Qual. Edgewood Aisenal MD; HSE-RP-HG/Pest Coord. Arberdeen Proving Ground, MD; Water Qual Div (Doner), Aberdeen Prov. Ground, MD ARMY MATERIALS & MECHANICS RESEARCH CENTER Dr. Lenoe, Watertown MA ARMY MOBIL EQUIP R&D COM Mr. Cevasco, Fort Belvoir MD ARMY-PLASTEC Picatinny Arsenal (A.M. Angalone, SMUPA-FR-M-D) Dover NJ ASST SECRETARY OF THE NAVY Spec. Assist Energy (P. Waterman), Washington DC BUMED Code 41-1 (CDR Nichols) Wash, DC BURLAU OF RECLAMATION Code 1512 (C. Selander) Denver CO CINCLANT Civil Engr. Supp. Plans, Ofr Norfolk, VA CINCPAC Fac Engring Div (144) Makalapa, HI CNAVRES Code 13 (Dir. Facilities) New Orleans, LA CNM NMAT 08T246 (Dieterle) Wash, DC CNO Code NOP-964, Washington DC; Code OP-413 Wash, DC; OP987J (J. Boosman), Pentagon COMFLEACT, OKINAWA Commander, Kadena Okinawa: PWO, Kadena, Okinawa COMNAVMARIANAS Code N4, Guam COMOCEANSYSPAC SCE, Pearl Harbor HI DEFENSE DOCUMENTATION CTR Alexandria, VA DEFENSE INTELLIGENCE AGENCY Dir., Washington DC DOE Dr. Cohen; Dr. Vanderryn, Washington, DC; FCM (WE U1T) Washington DC DINSRDC Code 4111 (R. Gierich), Bethesda MD DINSRDC Code 4121 (R. Rivers), Annapolis, MD DINSRDC Code 42, Bethesda MD FLTCOMBATTRACENLANT PWO, Virginia Bch VA EMFLANT CEC Offi. Norfolk VA GSA Fed. Sup. Serv. (FMBP), Washington DC, Office of Const. Mgmt (M. Whitley), Washington DC HEDSUPPACT PWO, Taiper, Taiwan HQ UNC USFK (Crompton), Korea KWAJALEIN MISRAN BMDSC-RKL-C MARINE CORPS BASE Camp Pendleton CA 92055. Code 43-260, Camp Lejeune NC, M & R Division. Camp Lejeune NC. PWO, Camp S. D. Butler, Kawasaki Japan MARINE CORPS DIST 9, Code 043, Overland Park KS MARINE CORPS HQS Code LEE-2, Washington DC MCAS Facil Engr. Dis. Cherry Point NC, CO. Kaneohe Bay HE, Code PWE, Kaneone Bay HL Code S4, Quantico. VA. J. Taylor, Iwakuni Japan, PWD, Dir. Maint. Control Div., Iwakum Japan. PWO (LTJG R. Torrecarion). Yuma AZ, PWO Kancohe Bay HI, PWO Utilities (Paro), Iwakuni, Japan, PWO, Yuma AZ, UTC Dupalo, Iwakoni, MCDEC NSAP REP, Quantico VA, PAS Div Quantico VA MCLSBPAC B320, Barston CA MCRD PWO, San Diego Ca-MILLITARY SEALIFT COMMAND Washington DC NAD Engr. Dir. Hawthorne, NV.

THE RESERVE AND ADDRESS.

NAF PWO Sigonella Sicily; PWO, Atsugi Japan

NAS Asst C/S CE Corpus Christi, TX; CO, Guantanamo Bay Cuba; Code 114, Alameda CA; Code 183 (Fac. Plan BR MGR); Code 187, Jacksonville FL; Code 18700, Brunswick ME; Code 18U (ENS P.J. Hickey), Corpus Christi TX; Code 6234 (G. Trask), Point Mugu CA; Code 70, Atlanta, Marietta GA; Code 8E, Patuxent Riv., MD; Dir. Maint. Control Div., Key West FL; Dir. Util. Div., Bermuda; ENS Buchholz, Pensacola, FL; Lakehurst, NJ; PW (J. Maguire), Corpus Christi TX; PWD Maint, Div., New Orleans, Belle Chasse LA; PWD, Maintenance Control Dir., Bermuda; PWD, Willow Grove PA; PWO (M. Elliott), Los Alamitos CA; PWO Belle Chasse, LA; PWO Chase Field Beeville, TX; PWO Key West FL; PWO Whiting Fld, Milton FL; PWO, Dallas TX; PWO, Glenview IL; PWO, Kingsville TX; PWO, Millington TN; PWO, Miramar, San Diego CA; PWO, Moffett Field CA; SCE Lant Fleet Norfolk, VA; SCE, Barbers Point HI

NATL RESEARCH COUNCIL Naval Studies Board, Washington DC

NATNAVMEDCEN PWO Bethesda, MD

NATPARACHUTETESTRAN PW Engr., El Centro CA

NAVACT PWO, London UK

NAVACTDET PWO, Holy Lock UK

NAVAEROSPREGMEDCEN SCE, Pensacola FL

NAVAVIONICFAC PWD Deputy Dir. D/701, Indianapolis, IN

NAVCOASTSYSLAB Code 423 (D. Good), Panama City FL; Code 713 (J. Quirk) Panama City, FL; Code 715 (J. Mittleman) Panama City, FL; Library Panama City, FL

NAVCOMMAREAMSTRSTA Code W-602, Honolulu, Wahirwa HI; PWO, Norfolk VA; PWO, Wahiawa HI; SCE Unit I Naples Italy

NAVCOMMSTA CO (61E) Puerto Rico; CO, San Miguel, R.P.; Code 401 Nea Makri, Greece; PWO, Exmouth, Australia; PWO, Fort Amador Canal Zone

NAVCOMMUNIT Cutler/E. Machias ME (PW Gen. For.)

NAVCONSTRACEN Code 74000 (Bodwell) Port Hueneme, CA

NAVEDTRAPRODEVCEN Tech. Library

NAVEDUTRACEN Engr Dept (Code 42) Newport, RI

NAVEODEAC Code 605, Indian Head MD

NAVFAC PWO, Barbados; PWO, Brawdy Wales UK: PWO, Cape Hatteras, Buxton NC: PWO, Centerville Beh, Ferndale CA: PWO, Guam

NAVEAC PWO, Lewes DE

NAVFACENGCOM Code 043 Alexandria, VA, Code 044 Alexandria, VA; Code 0451 Alexandria, VA; Code 0453 (D. Potter) Alexandria, VA, Code 0454B Alexandria, VA; Code 04B3 Alexandria, VA; Code 04B5 Alexandria, VA; Code 04B5 Alexandria, VA; Code 04B5 Alexandria, VA; Code 101 Alexandria, VA; Code 1023 (M. Carr) Alexandria, VA; Code 1023 (T. Stevens) Alexandria, VA; Code 104 Alexandria, VA; Code 2014 (Mr. Taam), Pearl Harbor HI; LT Parisi, Code PC-2 Alexandria, VA; Morrison Yap, Caroline Is., PW Brewer Alexandria, VA; PL-2 Ponce P.R. Alexandria, VA

NAVFACENGCOM - CHES DIV. Code 101 Wash, DC; Code 403 (H. DeVoe) Wash, DC; Code 405 Wash, DC; Code FPO-1 Wash, DC; Contracts, ROICC, Annapolis MD; FPO-1 (Spencer) Wash, DC

NAVEACENGCOM - LANT DIV., Code 10A, Norfolk VA; Code 111, Norfolk, VA; Eur. BR Deputy Dir, Naples Italy, NAS Norfolk, VA; RDT&ELO 09P2, Norfolk VA

NAVEACENGCOM - NORTH DIV. AROICC, Brooklyn NY; CO; Code (9P (LCDR A.J. Siewart); Code 1028, RDT&ELO. Philadelphia PA; Code 111 (Castranovo) Philadelphia, PA; Code 114 (A. Rhoads), Design Div. (R. Masino). Philadelphia PA; ROICC, Contracts, Crane IN

NAVEACENGCOM - PAC DIV. Code 402, RDT&E, Pearl Harbor HI: Commander, Pearl Harbor, HI: PC-2 Alexandria, NA

NAVEACENGCOM - SOUTH DIV. Code 90, RDT&ELO, Charleston SC: Dir., New Orleans LA

NAVFACENGCOM - WEST DIV. 102: 112; AROICC, Contracts, Twentynine Palms CA; Code 04B; O9P/20; RDT&ELO Code 2011 San Bruno, CA

NAVEACENGEOM CONTRACT AROICE, Point Mugu CA. AROICE, Quantico, VA: Code 05, TRIDENT, Bremerton WA. Dir, Eng. Div., Exmouth, Australia; Eng Div dir, Southwest Pac, Manila, PI; OICE, Southwest Pac, Manila, PI; OICE ROICE, Balboa Canal Zone. ROICE (Ervin) Puget Sound Naval Shipyard, Bremerton, WA; ROICE (LCDR J.G. Leech), Subic Bay, R.P.; ROICE AF Guam; ROICE LANT DIV., Norfolk VA; ROICE Off Point Mugu. CA; ROICE, Diego Garcia Island; ROICE, Keflavik, Iceland; ROICE, Pacific, San Bruno CA

NAVHOSP LT R. Elsbernd, Puerto Rico.

NAVNUPWRU MUSE DET Code NPU-30 Port Hueneme, CA

NAVOCEANO Code 1600 Bay St. Louis, MS; Code 3432 (J. DePalma), Bay St. Louis MS

NAVOCEANSYSCEN Code 52 (H. Talkington) San Diego CA; Code 6565 (Tech. Lib.), San Diego CA; Code 6700, San Diego, CA. Code 7511 (PWO) San Diego, CA; SCE (Code 6600), San Diego CA

NAVORDSTA PWO, Louisville KY

NAVPETOFF Cyde 30, Alexandria VA

NAVPE IRES Director, Washington DC

NAVPGSCOL L. Thornton, Monterey CA

NAVPHIBASE CO, ACB 2 Nortolk, VA. Code SM, Nortolk VA. Harbor Clearance Unit Lwo, Little Creek, VA. OIC, UCT ONE Nortolk, Va.

NAVRADRECEAC PWO, Kami Seya Japan

NAVREGMEDCEN Chief of Police, Camp Pendleton CA, PWO Newport RL, PWO Portsmouth, VA, SCE (D. Kaye), SCE (LCDR B. F. Thurston), San Diego CA, SCE, Camp Pendleton CA, SCE, Guam

NAVREGMEDCLENIC E. Hertlem III. Pearl Harbor HI

NAVSCOLCE COFF C35 Port Hueneme, CA. CO. Code C44A Port Hueneme, CA.

NAVSLASYSCOM Code 9325, Program Mgi. Washington, DC, Code OCC (ETR. MacDougal), Washington DC, Code SEA OOC Washington, DC

NAVSEC Code 6034 (Library). Washington DC

NAVSECGRUACT Facil: Off., Galeta Iv. Canal Zone, PWO, Adak AK: PWO, Edzell Scotland, PWO, Puerto Rico, PWO, Torri Sta, Okinawa

NAVSHIPREPEAC Library, Guam; SCF Subic Bay

NAVSHIPY D. Code 202-4, Long Beach CA. Code 202-5 (Library) Puget Sound, Bremerton WA. Code 380, (Woodroff) Norfolk, Portsmouth, VA. Code 400, Puget Sound, Code 400.03 Long Beach, CA. Code 404 (L.L.) Riccioi, Norfolk, Portsmouth VA. Code 410, Marc Is., Vallejo CA. Code 440 Portsmouth NH. Code 440, Norfolk, Code 440, Puget Sound, Bremerton WA. Code 440-4. Charleston SC. Code 450, Charleston SC. Code 453 (Util. Supr.), Vallejo CA. L.D. Vivian. Library, Portsmouth NH. PWD (Code 400), Philadelphia PA. PWO, Marc Is., PWO, Puget Sound: SCE, Pearl Harbor HI. Tech Library, Vallejo, CA.

NANSTA CO Navat Station, Miorgiois FT., CO Roosevelt Roads P.R. Puerto Rico, Dir Mech Fingr. Gimo, Engr. Dir., Rota Spain, Maint. Cont. Div., Guantanamo Bay Cuba. Maint. Div. Dir. Code 531, Rodman Canal Zone, PWD (ETIG.P.M. Motolenich), Puerto Rico, PWO Midway Island, PWO, Guantanamo Bay Cuba, PWO, Ketlavik Iceland, PWO, Mayport FT., ROICT, Rota Spain, SCF., Guam, SCF., San Diego CA; SCF., Subic Bay, R.P., Utilities Engr. Dif. (ETIG.A.S. Bitabie), Rota Spain.

NAVSTA BISHOPS FOINT Harbor Clear, Unst one Pearl Harbor, HI

NAVSUBASE ENSIS Dove, Groton, CT, FD& DW, Peck, Groton, CT, SCE, Pearl Harbor HI

NAVSUBSCOL L.I.J.A. Nelson Groton, CT

NAVSUPPACT CO, Brooklyk NY, CO, Seattle WA. Code 4, 12 Marine Corps Dist. Treasure Is., San Francisco CA: Code 413, Seattle WA, LTIG McGoscab, Vallejo CA. Plan Engr Div., Naples Italy, Security Offr, San Francisco, CA.

NAVSUREWPNCE S PWO, White Oak, miver Spring, MIS

NAVIECHIRACEN SCE, Pensacola EI

NAVUSEAWAKENGSTA Kerpon, WA

NAN WPNCEN Code 2646 (W. Bonner), China Lake CA. PWO (Code 26), China Lake CA; ROICC (Code 702), China Lake CA.

NAVWPNSTA FARTE (Clebak) Colts Neck, NJ, Code 092, Colts Neck NJ; Code 092A (C. Fredericks) Seal Beach CA, ENS G A, Lowry, Fallbrook CA! Maint, Control Dir., Yorktown VA; PW Office (Code 09CI) Yorktown, VA NAVWPNSUPPCEN Code 09 Crane IN

NCBU 405 OIC, San Diego, CA

NCBC C11 AOIC Port Huesenie CA, Code 10 Dayrsville, R1, Code 155, Port Hueneme CA; Code 156, Port Hueneme, CA; Code 25111 Port Hueneme CA; Code 400, Gulfféat MS; PW Engry, Gulfport MS, PWO (Code 80) Port Hueneme, CA, PWO, Davisville Rt

NCBL 4H OIC, Nortalk VA

NUR 20. Commander

NCSO BAHRAIN Security Offe, Bahrain

SMCB 133 (ENS I W. Sielsen): 5. Operations Dept., Forty, CO., THREE, Operations Off.

SORDA Code 440 (Ocean Rich Offi Boy St. Louis MS

NRI Code 8441 (R. A. Skop), Washington D.

NSC CO. Blomedical Rich Lab. Oakland CA. Code 34.1 (Wynne), Norfolk VA

NSD SCL, Subic Bay, R.P., Security Offic Yokosuka, Japan

STC Code 54 (FNS P. G. Jackel). Orlando FL: Commander Orkindo, FL: OICC, CBU-401, Great Lakes IL.

NUSCICOde 131 New London, CT. Tode FA123 (1LS. Munn), New & ondon CT; Code SB 331 (Brown), Newport RI; Code TA131 (G. De la Cruz), New London CT.

OCEANAV Mangret Isfo Div., Arlington VA

And the state of t

OCEANSYSLANT LT A.R. Grancola, Novietk VA OFFICE SECRETARY OF DEFENSE OASD (MRA&L) Pentagon (T. Casberg), Washington, DC ONR (Dr. E. A. Silvar Arlington, VA, BROFF, CO Boston MA, Code 481, Arlington VA, Code 481, Bay St. Louis, MS, Code 700f Arlington VA, Dr. A. Laufer, Pasadena CA PHINCR I PAE, Coronado, CA PMTC Pat. Counsel, Point Mugu CA PAC ACL Office (LTIG St. German) Sociolic VA, CO Norfolic, VA, CO Great Lakes H., CO, Oakland CA, Code 420, Cakland CA, Code 120C (Library) San Diego, CA, Code 128, Guam - Code 200, Great Lakes 11 - Code 200, Giram, Code 200, Olikland CA, Code 220 Olikland, CA, Code 220 f. Norton SA, Code 40 (C. Kolla) Pensacola, - 6A-H. Wheelerr, Code 600, San 11. Code 400, Pearl Harbor, Ht. Code 420 (R. Pascuci, Pearl Harbor Ht.) Diego CA, Library Subic Bay R.P.; ORC CBL 405; San Diego CA, Unities Officer Guam AO Gakland CA SPCC Code 122B, Mechanicsburg, PA - PWO (Code 120) Mechanicsburg PA CCLIWOORC Port Hoeneme CA U.S. MERCHANT MARINE ACADEMY. Kings Point, NY (Reprint Custodian) US DEPT OF AGRIC Forest Products EarlieR, DeGroots, Madison W.L. US DEPT OF COMMERCE NOAA, Pacific Marine Center, Seattle WA USDEPT OF HEALTHED A WELLARE LONG & Drug Admin (A. Store). Daughin Is. Al-US GEOLOGICAL SURVEY Off, Marine Geology, Pitcleki, Reston VA UNNATIONAL MARINE FISHERIEN SERVICE Highlands NY (Nandy Hook Land theary) USCC (CrECN) Washington D., (CrECN 63) (Buckhart) Washington, DC (CO Occanographic Unit, Washington DC, GEOR-461 (T. Dawd) Washington D. USCO ACADEMY LTN Stramandi New London CT UNCO R&D CENTER CO Groton, C.L. D. Motherway, Groton C.L. ELIGIR, Data, Groton C.L., Tech. Dir. Groton, C.T. USNA Ch. Mech. Lings. Dept. Annapolis MD. Lineigy Filsmon Study Grip. Annapolis, MD. Ocean Sys. Eng Dept. (Dr. Monney i Annapolis, MD, PWD Figir Div. (C. Bradford) Annapolis MD, PWO Annapolis MD. CALIF DEPLOYEISH & GAME Long Beach CA (Matine Tech Into City) CALLE DEPT OF NAVIGATION & OCT AN DEV. Sacramento. CA (C. Armstrong) CALIF MARITIME ACADEMY Valleyo, CA (Library) CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena CA (Keck Ref. Res) CORNELL UNIVERSITY Ithaca NY (Seculs Dept. Engr Lib) DAMES & MOORE LIBRARY LOS ANGELES, CA DUKE UNIV MEDICAL CENTER B. Muga, Ducham NO FLORIDA ATLANTIC UNIVERSITY BOCA RATON 33 (MC ALLINTER), Boca Raton 51 (Ocean Engr Dept. C FLORIDA ATLANTIC UNIVERSITY Boxa Ration FLOW Tessini FLORIDA TECHNOLOGICS, UNIVERSITY ORLANDO, EL (HARLMAN) ILLINOIS STATE GLO. SURVEY & (bana II INDIANALNI ROA OFFICE Energy Group, Indianapolis, IN INSTITUTE OF MARINE SCH NOT'S Morehead City No (Director) TEHIGH UNIVERSITY, BETHITCHEM, PA (MARINE GEOTECHNICAL LAB), RICHARDS), Bethichem PA chritz Engl. Lab No. 13, Beedler, Bethlehem PAG indom in Lib. No. 30. Elecksteiner i LIBRARY OF CONGRESS WASHINGTON, DC (SCIENCES & 11) HIDBY: MAINE MARITIME ACADEMY (Wyman) Castine ME - CASTINE, ME (LIBRARY) MAINE OFFICE OF ENERGY RESOURCES Augusta, ME MICHIGAN SECHNOLOGICAL UNIVERSITY Houghton ME(Haas) MTTC.anbridge MA: Cambridge MA: Rm: (0.500-Tech. Reports: Engr. 136%; Cambridge, MA: (Harleman) NATE ACADEMY OF ENG. ALEXANDRIA NA (SEARLE JR.) NEW MEXICO SOLAR ENERGY INST. Dr. Zwibel Las Craces NM NY CITY COMMUNITY COLLEGE BROOKLYN NY (LIBRARY) NYSENERGY OFFICE Library, Albany NY ORFGON STATE UNIVERSITY (CF Dept Grace) Corvalls, OR: Corvalis OR (School of Occasiography) PRINCETON UNIVERSITY W.F. Shmid Princeton, NJ PURDUE UNIVERSITY Latayette, IN (Altschaeffl), Latavette, IN (CE Engr. Lib) CONNECTICE I Hartford Ci (Dept of Plan. & Energy Policy) SEATTLE U Prof Schwaegler Seattle WA SOUTHWEST RSCH INST R. DeHact, San Antonio TX STANFORD UNIVERSITY STANFORD, CA (DOUGLAS) STATE HOUSE, AUGUSTA, ME (MAINE STATE FUEL ALLOCA CONNERV, OFF.)

STATE UNIVERSITY OF NEW YORK Buttale NY If NANAAM CNIVERSITY College Station IN (CE Dept. Herbick), W. B. Leabetter College Station, IN UNIVERSITY OF ALASKA Manne Science Inst. College. AK UNIVERSITY OF CALIFORNIA BERKELEY, CARCLE BET GERMICK: Berkeley CARD Brester, Berkeley CA (Dept of Nasa) Archa, Herheles CA, E. Pearson, Cadolina A. Acq, Dept. Lab. C. 475 A.; M. Dancan, Berheles UNIVERSITY OF CONNECTICAL Common Claims, Marine Sci. Library C UNIVERSITY OF DELAWARE NEWS DE OPER OF CIVIL Engineering Objection INTERNITY OF HAWAII HONOLETT, HENCH NOT AND 115H, DN 7 UNIVERSITY OF SULLINOIS MAD RELIGIOUS OF COMMENT OF CRIMANA SULDANIASIAN CRIMANA SULLIBRANA. URBANA IL INEWARK: UNIVERSITY OF KANNAN Kannan Geological Survey of Incidence KN UNIVERSITY OF MINNS ACHIEVE TEN (Heronomus), Amberst MAICE There UNINERSITY OF MICHICAN Ann Arms Mickighate UNIVERSITY OF NEBRASK ATTNOOR NEEDS OF BOOK SEC. Shell Prop. . UNIVERSITY OF PENNSYLV AND CHILL ADELERATE FROM PENSONS OF ENGREA APPLIED NAME NO. 1. ROOF UNIVERSITY OF RHODE IN UND KINGSTON, KENT SIMMAN. UNINTRAFFY OF TEXAS Test Marine Scott duals of Port Askansas TX UNIVERSITY OF TEXAS AT AUSTIN AUSTIN TWENTY OF A GOOD TO BULLO. ENIX EXCITE OF MANIFOLD FOR A SHOULD FOR A CONTRACTOR OF A CONTRACTOR AND A SERVER AND A SERVER AND A NEW PROPERTY AND A SERVER AND A S GRANE SEATTLE WASPACIED MARKET ENVIRON LAR HALPERS SEARCE WALL Empore I NIVERSITY OF WINCONNIN Manuscry Wise to of Court Lakes Names of ERNRENEARCH COLLIBRARY NAN MAILO CA MIRCHNIA INNI OF MARINE SCI Global ester Porto VA. Labraix. ALLKED A SEE & ASSEK Homotopi HE AME II & I MISSIONE RES A Fings Die ARXIDGRANT OF VMPIA, WAS ATTANDO RICHHILL DOO DALLAN IN MITH At SIKALIA Dept. 196 (A. Higas) McItsouthe AWWARMON FOR NOATION & He ton Denver CO BLOGGEL CORP. NANTICANCINCO. CA AMILETYS BLIGHTMENTON NV GOS BE 1441 FARE MINISTER CAR Engineer. By the charge the HOLM KIMPING HOLKOCK BELLING WHANN See A Tech Dept of M. Suice. Westington D. HICTAN A CALIMITTE M. Santales Warner of each CA HIGHANA KIRAL House IN D. Word CANADA Edition Coupain Advan. Mem Co. Newtoundroad (Chair) N. Johns, Newton Newtoninger Archemiseet Inc. Montrea. Warner Described Sector C. Sa. Quebe. CHEMITS CHRES on Zurich H. Deathors Chem. the Lin-CHIENDON OIL THE DEEN ARCH CO. LARLANGA CA MRCHINE. COLUMNIA CALLE TRANSMISSION CO. HOUSEN TO ENG. 1 18 CROWLEN LANDROW SERV CORP Anchoruse Ak-DILLINGHAM PROCEST F. M. Hor. Honoras HI. DIXII DIVING CLNIER Decisio GA DRAVO CORP P. sough PAcKingh. THE RELACTE OF NEAR HEARING A ANNIH COMMING NE NORWAY DET NORSKE VERLEAS LIBRARY CORE TABLE ATION ASSOCIAC KING OF PRESCRIPT TEDETTS FORD RACOS & DAVINGS INC. NEW YORK CONDUCTOR FRANCE De Dutertie Bourogne E. Phiskin Paris GENERAL DYNAMICS Life, Bost Die Toerion Lige (H. Waltman), Groton CT CHAPTERING ALL NOINERN INC. Which stee Ma Pavidime GUDDEN CO NIKONONVILLE ORGANIELIE GREMMAN AFRONDALE CORP Bethpop NV (Tech Into City) HALLY & ALDRICH INC. Cambridge MA. Aldrich Jos. HALY M. Caron, Mitan, Sergio Lattoni Milano, Tormo il Tessi MAKALOREAN ENGRACING Kaille HE

ROSE & Rice Bullion Shop & the milk their Sains I AND IN I THINK REY CITED CHARLES AT CHARLES MALLIAGE NO INCIDENT is at \$100 per selected and a new control that it stage has a rath & Mar Engineers about A human sale 4. A Remain Commission & Astronomics EAR MITERIAL AND AND ARRIVED AND THEFE CALL SUPPLIES MAKATHER COLLINS CONTRACTOR IN C. M. . . MARINE CONCRETE STREET CHESTING MEESTED IN CHARACTER. MCTRONNER ARRESTATE COLUMN MODER IS Examine Notions Mod MEDIALL A ANNIE INC. LE GATTEN HINANIA ANNIE CA MORNE PAPER INC. CO. DALL AND EN MOREMENT ENGINEENESS. SHERWIR BUILDING WESTWERTH AND RHINGED NEW YORK BUILDINGS NEW 71-11-1007 New 70 months one excitoes with Arms of Strategy. Place with NAMES OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE Names and a forum from the own from their above foreign has been again for his month and from from the CHEAN ENGINEERS NAUNALIED CAURYNICHE THE EXALOR BUT INC. INC. HER STON IN ANSWERS PROCEED MARKENE SECURING SECURING BOOK DE A WONDOW PRINCE AND LEMENT AND REPORT TO CORPLY SHOULD IT RESPECT NAME IN BURNESS START 1.0 Make the Mile of Process Real - Burnel and - Make Suppose P. R. KERT WEIGHT BETTER BETT MINERAL CEMENT CONTRACTOR & N. N. CO. NANGER - Appendix a final first to the second of the WHITE COME OF SORBALK OF WHITE CA MARCHARIA AMERICAN MORRETTE ARCHITY NO A PARAMY WATERCOURF MIANE II PERINE MANERAL CORE CONTRACTOR MERCAL TALLANDAR MENAGENERS CONTRACTOR OF MERCAL MERCAL CONTRACTOR OF THE CONT WHI SEC CHEEKE CN. November 1 was a finder of WITH A LAW I MAN . A CALLER THE AM MATERIAL AND A STATE OF THE MARKET CONSTRUCTION OF STREET AND A STREET 18 No 28 ED BLODGE ADMINISTRATION AND A COMMENTAL AND AND A MALE WAS A CONTROL OF THE PROPERTY OF A CONTROL OF THE PROPERTY AND A CONTROL OF THE PROPERTY AN Allow is the control of the control Mariana and Mariana and American and American and American and American American American American and American Come Conta Maderies Charles in the behavior with a Mingrey of the first become with the first MARIENTAN AND INC. IL. MINN SANNER ESNENER & ANDER NORMAN IS IS NOT THE MACCO APPLICATE MATTERIAL TO AND AND A TRANSPORT AND AND A TRANSPORT ADMIN CAPT HET Frame CA AS AMERICA - ANGLES - A AND IN THE WALL BOOK OF N HRANIZA JANEARA SEEL AND BOTH LAME - LANG CONTRACTOR MITTER KILLIAM KREZE TE When My My MD I APP MERPHS SUMMED AND S.A. R. F. Markett Committee Co FOR THE MERKAGE HE MARGER CONTRACT MEN 1 W MORENER C. W. Laboring on Ch.