EE210: HW-8Z Solution

Date: 05/03/2019

Q1. Consider the BJT circuit show in the Fig. 1. Determine the values of R_C and R_B that would make the transistor Q operate at the bias point of $I_C = 0.5$ mA and $V_{CE} = 3$ V. Assume $V_{CC} = V_B = 5$ V, and $\beta = 100$. Keeping the value of R_B unchanged, determine the new value of R_C that would make the transistor operate at the onset of saturation. Now, assume that this value of R_C is further doubled. What is the new mode of operation of Q, and what is its degree of saturation (DoS) under this condition?

Solution:

$$R_C = \frac{V_{CC} - V_{CE}}{I_C} = \frac{5 - 3}{0.5 \, mA} = 4 \, \text{k}\Omega$$

$$I_B = \frac{I_C}{\beta} = \frac{0.5 \, mA}{100} = 5 \, \mu A$$

$$R_B = \frac{V_B - V_{BE}}{I_B} = \frac{5 - 0.7}{5 \, \mu A} = 860 \, \text{k}\Omega$$

At onset of saturation, $V_{CE} = 0.7 \text{ V}$

With I_B unchanged, I_C will remain unchanged, then

$$R_C = \frac{V_{CC} - V_{CE}}{I_C} = \frac{5 - 0.7}{0.5 \, mA} = 8.6 \, \text{k}\Omega$$

With R_C further doubled to 17.2 k Ω , the potential drop across it will drive of into hard saturation, with V_{CE} (sat) = 0.2 V (assumed).

$$I_{C,sat} = \frac{5 - 0.2}{17.2 \, k\Omega} = 279 \, \mu A$$

(Note the reduction in I_C).

V_{BE} will adjust itself to 0.8 V in hard saturation (Why? – Because of increase in base current as discussed in the class.).

Therefore,

$$I_{B,sat} = \frac{5 - 0.8}{860 \ k\Omega} = 4.88 \ \mu A$$

$$\beta_{sat} = \frac{I_{C,sat}}{I_{B,sat}} = \frac{279}{4.88} = 57$$

Degree of saturation (DoS),

$$DoS = \frac{\beta}{\beta_{sat}} = \frac{100}{57} = 1.75$$

Q2. The total emitter-base capacitance C_{π} for an npn transistor under forward active mode of operation is measured to be 6 pF and 8 pF at dc bias current I_C of 1 mA and 2mA respectively. Determine the zero-bias emitter-base junction capacitance C_{je0} (using the thumb rule given in class for forward biased junctions), and the base transit time τ_F , assuming that both of these are constants.

Solution:

$$C_{\pi} = C_{ie} + g_m \tau_F$$

 $: (C_{je1} = C_{je2})$, we have

$$C_{\pi 2} - C_{\pi 1} = \tau_F (g_{m2} - g_{m1})$$

 $8pF - 6pF = \tau_F \left(\frac{2mA}{26mV} - \frac{1mA}{26mV}\right)$

We get,

$$au_F = 52 \ pSec$$

$$C_{je} = 6 \ pf - 52 \ pSec imes rac{1}{26} = 4 \ pf$$

: EB junction is forward biased, apply thumb rule (empircal),

$$C_{je} = 2C_{je0}$$

Which, gives C_{je0} =2 pf.

Q3. An integrated-circuit npn transistor has $\beta_0 = 100$, and $r_0 = 50 \text{ k}\Omega$ at $I_C = 1 \text{ mA}$. With V_{CB} held constant at 10 V, $C_{\mu} = 0.15 \text{ pF}$, and $f_T = 600 \text{ MHz}$ and 1 GHz for $I_C = 1 \text{ mA}$ and 10 mA respectively. Assume $V_{bi} = 0.55 \text{ V}$ for all junctions, and C_{je} is constant in the forward-bias region. Use $r_{\mu} = 5 \beta_0 r_0$. Form the complete small-signal equivalent circuits for this transistor at $I_C = 0.1 \text{ mA}$, 1 mA and 5 mA, all with V_{CB} held constant at 2 V.

Solution:

For both $I_C = 1 \text{ mA} \& 10 \text{ mA}$, V_{CB} is held constant at $10 \text{ V.} \implies C_{\mu}$ remains constant,

$$f_T = \frac{g_m}{2\pi(C_\pi + C_\mu)} = \frac{1}{2\pi\tau}$$

Where, τ is an effective time constant = $\frac{C_{\pi} + C_{\mu}}{g_m}$.

For $I_C = 1$ mA,

$$\tau_1 = \frac{1}{2\pi f_{\tau 1}} = \frac{1}{2\pi * 600MHz} = 0.265 \, nSec$$

For $I_C = 10 \text{ mA}$,

$$\tau_2 = \frac{1}{2\pi f_{\tau 2}} = 0.159 \text{ nSec.}$$

Thus,

$$0.265 \ nsec = \frac{C_{\pi} + C_{\mu}}{g_{m1}} = \tau_f + \frac{C_{je} + C_{\mu}}{g_{m1}}$$

: τ_F, Cje & C_μ are constants, with $g_{m1} = \frac{1}{26}$ ℧.

$$0.159 \, nsec = \tau_f + \frac{C_{je} + C_{\mu}}{g_{m2}}$$

With $g_{m2} = \frac{1}{2.6} \text{ U}$, $C_{\mu} = 0.15 \ pf$ is given. Solving, we get

$$C_{ie} = 4.38 \, pf$$

$$\tau_f = 147.22 \, pSec$$

Assuming that the junction is abrupt, $C_{\mu} = \frac{c_{\mu 0}}{\left(1 - \frac{V_{BC}}{V_{bi}}\right)^{0.5}}$

With V_{BC} = -10 V, C_{μ} = 0.15 pf, & V_{bi} = 0.55 V (given), we get $C_{\mu0}$ = 0.657 pf So, with V_{BC} = -2 V,

$$C_{\mu} = \frac{0.657 \,\text{pf}}{\left(1 - \frac{2}{0.55}\right)^{0.5}} = 0.305 pF$$
, $r_0 = 50 \,\text{K}\Omega$ at $I_C = 1 \,\text{mA}$ then $V_A = I_C \,r_0 = 50 \,\text{V}$.

Now, we have all the required parameters to obtain the small-signal model.

$$\begin{split} \mathbf{I_C} = \mathbf{0.1} \ \mathbf{mA:} \quad g_m = 3.846 \ m\mho, \ r_\pi = 26 \ K\Omega, \ r_0 = 500 \ K\Omega, \ r_\mu = 250 \ M\Omega, \\ C_b = \tau_{f\cdot} g_m = 0.566 \ pf, \ C_\pi = C_{je} + C_b = 4.946 \ pf, \ C_\mu = 0.305 \ pf. \\ \mathbf{I_C} = \mathbf{1} \ \mathbf{mA:} \quad g_m = 38.46 \ m\mho, \ r_\pi = 2.6 \ K\Omega, \ r_0 = 50 \ K\Omega, \ r_\mu = 25 \ M\Omega, \end{split}$$

$$C_b = \tau_f \cdot g_m = 5.66 \text{ pf}, C_{\pi} = C_{je} + C_b = 10.04 \text{ pf}, C_{\mu} = 0.305 \text{ pf}.$$

I_C = 5 mA:
$$g_m = 192.3$$
 m \overline{U} , $r_\pi = 520$ Ω , $r_0 = 10$ K Ω , $r_\mu = 5$ M Ω , $C_b = \tau_f \cdot g_m = 28.31$ pf, $C_\pi = C_{je} + C_b = 32.69$ pf, $C_\mu = 0.305$ pf.

Check all these numbers for their correctness

The small signal model will be identical to that given in class.

Q4. An integrated-circuit npn transistor has the following parameters: $\tau_F = 0.25$ nsec, small-signal short-circuit common-emitter current gain is 9 with $I_C = 1$ mA at frequency f = 50 MHz, $V_A = 40$ V, $\beta_0 = 100$, and $C_\mu = 0.6$ pF at the bias voltage used. Determine all elements in the small-signal equivalent circuit at $I_C = 2$ mA, assuming that V_{CB} is held constant (as that for $I_C = 1$ mA), and τ_F remains constant.

Solution:

$$\beta = \frac{\beta_0}{1 + j\frac{f}{f_\beta}}$$

Now, with $\beta_0 = 100 \& \beta$ of only 9 at f = 50 MHz, let's assume that f >> f_{β} .

$$|\beta| = \frac{\beta_0 \cdot f_{\beta}}{f} = \frac{f_T}{f} \implies f_T = f|\beta| = 50MHz * 9 = 450 MHz$$

Now,

$$f_T = \frac{g_m}{2\pi(C_\pi + C_\mu)} \implies C_{je} + \tau_f g_m + C_\mu = \frac{g_m}{2\pi f_T}$$

It is given that $I_C = 1$ mA. Thus

$$g_m = \frac{1}{26} \text{ U, } \tau_f = 0.25 \text{ nSec \& } C_\mu = 0.6 \text{ pf}$$

$$C_{je} = \frac{1}{26 \times 2\pi \times 450 \times 10^6} - 0.25 \text{ nS} \times \frac{1}{26} - 0.6 \text{ pf} = 3.4 \text{ pf}$$

Small-signal model parameters for $I_C = 2$ mA:

$$g_m = \frac{I_C}{V_T} = \frac{2 mA}{26 mV} = 76.923 mV$$

$$r_\pi = \frac{\beta_0}{g_m} = 1.3 K\Omega$$

$$r_0 = \frac{V_A}{I_C} = 20 K\Omega$$

$$C_{je} = 3.4 pf$$

$$C_b = \tau_f g_m = 19.23 pf$$

$$C_\pi = C_{je} + \tau_F g_m = 22.63 pf$$

$$C_u = 0.6 pf$$

Check all these numbers for their correctness

Q5. An npn transistor has the following specifications: $\beta_0 = 100$, $\tau_F = 26$ psec, $C_{je} = 5$ pF, and $C_{\mu} = 0.5$ pF at a particular bias point with $I_C = 2$ mA. Determine the three important characteristic frequencies f_T (unity-gain cutoff frequency), f_{β} (beta-cutoff frequency), and f_{α} (alpha-cutoff frequency) of the transistor at this bias point. Also, estimate f_{max} (absolute maximum operable frequency) of the transistor.

Solution:

$$C_{\pi} = C_{je} + \tau_{F}g_{m} = 5 pf + 26 ps \times \frac{2}{26} = 7 pf$$

$$C_{\mu} = 0.5 pf (given)$$

$$f_{T} = \frac{g_{m}}{2\pi(C_{\pi} + C_{\mu})} = \frac{2}{26} \times \frac{1}{2\pi(7 pf + 0.5 pf)} = 1.63 GHz$$

$$f_{\beta} = \frac{f_{T}}{\beta_{0}} = 16.32 MHz$$

(Note: how small f_{β} is as compared to f_{T} , of course, the difference depends on β_{0})

$$f_{\alpha} = (\beta_0 + 1)f_{\beta} = 1.65 GHz$$

(Note: that f_{α} is so very slightly larger than f_T)

$$f_{max} = \frac{1}{2\pi\tau_f} = 6.12 \, GHz$$

(way higher than f_{β} , and almost 4 times that of f_{T} and f_{α})

The transistor cannot be operated for any frequency higher than f_{max} .