

数值分析

作者: 邹文杰

组织: 无

时间:August 30, 2025

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第1章	数值分析与科学计算引论	1
1.1	数值计算的误差	1
1.2	误差定性分析与避免误差危害	4
第2章	· 插值法	5
2.1	多项式插值	5
2.2	Lagrange 插值定理	6
2.3	牛顿插值多项式	11
	2.3.1 牛顿均差插值多项式	11
	2.3.2 差分形式的牛顿插值多项式	14
2.4	Hermite(埃尔米特) 插值	16
	2.4.1 重节点均差与 Taylor(泰勒) 插值	16
	2.4.2 两个典型的 Hermite 插值	18
2.5	分段低次插值	21
	2.5.1 高次插值的病态性质	21
	2.5.2 分段低次插值	22
2.6	三次样条插值	23
第3章	函数逼近与快速傅里叶变换	29
3.1	函数逼近的基本概念	29
3.2	正交多项式	33
	3.2.1 正交函数族与正交多项式	
	3.2.2 Legendre(勒让德) 多项式	35
	3.2.3 Chebeshev(切比雪夫) 多项式	
	3.2.4 Chebeshev 多项式零点插值	40
	3.2.5 其他常用的正交多项式	
3.3	最佳平方逼近	

第1章 数值分析与科学计算引论

1.1 数值计算的误差

用计算机解决科学计算问题首先要建立数学模型,它是对被描述的实际问题进行抽象、简化而得到的,因而是近似的.我们把数学模型与实际问题之间出现的这种误差称为模型误差.只有实际问题提法正确,建立数学模型时又抽象、简化得合理,才能得到好的结果.

由于这种误差难于用数量表示,通常都假定数学模型是合理的,这种误差可忽略不计,在"数值分析"中不予讨论.在数学模型中往往还有一些根据观测得到的物理量,如温度、长度、电压等,这些参量显然也包含误差.这种由观测产生的误差称为观测误差,在"数值分析"中也不讨论这种误差.数值分析只研究用数值方法求解数学模型产生的误差.

当数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解与精确解之间的误差称为**截断误 差或方法误差**.

定义 1.1 (误差和误差限)

设x 为准确值, x^* 为x 的一个近似值, 称 $e^* = x^* - x$ 为近似值的**绝对误差**, 简称**误差**. 误差 e^* 绝对值的一个上界. e^* 叫做近似值的**绝对误差限**或**误差限**, 它总是正数.

对于一般情形, $|x^* - x| \leq \varepsilon^*$,即

$$x^* - \varepsilon^* \leqslant x \leqslant x^* + \varepsilon^*$$

这个不等式有时也表示为 $x = x^* \pm \varepsilon^*$.

定义 1.2 (相对误差和相对误差限)

x 本身的大小. 我们把近似值的误差 e^* 与准确值 x 的比值

$$\frac{e^*}{x} = \frac{x^* - x}{x}$$

称为近似值 x^* 的相对误差,记作 e_r^* .在实际计算中,通常取

$$e_r^* = \frac{e^*}{x^*} = \frac{x^* - x}{x^*}.$$

相对误差也可正可负, 它的绝对值上界叫做**相对误差限**, 记作 ε_r^* , 即 $\varepsilon_r^* = \frac{\varepsilon^*}{|x^*|}$.

注 相对误差与相对误差限是无量纲的, 而绝对误差与误差限是有量纲的.

注 相对误差 e_r^* 取 $\frac{e^*}{r^*}$ 的原因: 在实际计算中, 由于真值 x 总是不知道的, 通常取

$$e_r^* = \frac{e^*}{r^*} = \frac{x^* - x}{r^*}$$

作为 x^* 的相对误差, 条件是 $e_r^* = \frac{e^*}{r^*}$ 较小, 此时

$$\frac{e^*}{x} - \frac{e^*}{x^*} = \frac{e^*(x^* - x)}{x^*x} = \frac{(e^*)^2}{x^*(x^* - e^*)} = \frac{(e^*/x^*)^2}{1 - (e^*/x^*)}$$

是 e_r^* 的平方项级, 故可忽略不计.

例题 1.1 当准确值 x 有多位数时,常常按四舍五入的原则得到 x 的前几位近似值 x^* ,例如

$$x = \pi = 3.14159265 \cdots$$

取 3 位 $x_3^* = 3.14, \varepsilon_3^* \leq 0.002$,

取 5 位 $x_5^* = 3.1416, \varepsilon_5^* \leq 0.000008$,

定义 1.3 (有效数字)

若近似值 x^* 的误差限是某一位的半个单位, 该位到 x^* 的第一位非零数字共有 n 位, 就说 x^* 有 n 位**有效数 字**. 它可表示为

$$x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a_n \times 10^{-(n-1)}), \tag{1.1}$$

其中 $a_i(i=1,2,\dots,n)$ 是 0 到 9 中的一个数字, $a_1 \neq 0,m$ 为整数,且

$$|x - x^*| \le \frac{1}{2} \times 10^{m-n+1}$$
. (1.2)

例题 1.2 按四舍五入原则写出下列各数的具有 5 位有效数字的近似数:187.9325,0.03785551,8.000033,2.7182818. 解 按定义,上述各数的具有 5 位有效数字的近似数分别是

187.93, 0.037856, 8.0000, 2.7183

注意 x=8.000033 的 5 位有效数字近似数是 8.0000 而不是 8,因为 8 只有 1 位有效数字. \Box 例题 1.3 如果以 m/s^2 为单位,重力常数 $g\approx 9.80$ m/s^2 ; 若以 km/s^2 为单位, $g\approx 0.00980$ km/s^2 ,它们都具有 3 位有效数字,因为按第一种写法

$$|g - 9.80| \leqslant \frac{1}{2} \times 10^{-2}$$

根据 (1.1) 式, 这里 m = 0, n = 3; 按第二种写法

$$|g - 0.00980| \leq \frac{1}{2} \times 10^{-5}$$

这里 m=-3,n=3. 它们虽然写法不同,但都具有 3 位有效数字. 至于绝对误差限,由于单位不同结果也不同, $\varepsilon_1^*=\frac{1}{2}\times 10^{-2}~\text{m/s}^2, \varepsilon_2^*=\frac{1}{2}\times 10^{-5}~\text{km/s}^2$. 而相对误差相同,因为

$$\varepsilon_r^* = 0.005/9.80 = 0.000005/0.00980.$$

🔮 笔记 这个例题说明有效位数与小数点后有多少位数无关.

定理 1.1

设近似数 x* 表示为

$$x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a_l \times 10^{-(l-1)})$$
(1.3)

其中 $a_i(i=1,2,\cdots,l)$ 是 0 到 9 中的一个数字, $a_1\neq 0$,m 为整数. 若 x^* 具有 n 位有效数字,则其绝对误差限 $\varepsilon^*=\frac{1}{2}\times 10^{m-n+1}.$

反之, 若 x^* 的绝对误差限 $\varepsilon^* = \frac{1}{2} \times 10^{m-n+1}$, 则 x^* 具有 n 位有效数字.

Ŷ 笔记 这个定理说明, 在 m 相同的情况下,n 越大则 10^{m-n+1} 越小, 故有效位数越多, 绝对误差限越小.

证明 从(1.2) 式可得到具有n 位有效数字的近似数 x^* , 其绝对误差限为

$$\varepsilon^* = \frac{1}{2} \times 10^{m-n+1}.$$

反之, 若 x^* 的绝对误差限 $\varepsilon^* = \frac{1}{2} \times 10^{m-n+1}$, 则

$$|x - x^*| = \varepsilon^* = \frac{1}{2} \times 10^{m - n + 1}.$$

故 x^* 具有n位有效数字.

定理 1.2

设近似数 x* 表示为

$$x^* = \pm 10^m \times (a_1 + a_2 \times 10^{-1} + \dots + a_l \times 10^{-(l-1)}),$$

其中 $a_i(i=1,2,\cdots,l)$ 是 0 到 9 中的一个数字, $a_1 \neq 0$,m 为整数. 若 x^* 具有 n 位有效数字,则其相对误差限 $\varepsilon_r^* \leqslant \frac{1}{2a_1} \times 10^{-(n-1)}.$

反之, 若 x^* 的相对误差限 $\varepsilon_r^* \leqslant \frac{1}{2(a_1+1)} \times 10^{-(n-1)}$, 则 x^* 至少具有 n 位有效数字.

 \sim

Ŷ 笔记 这个定理说明,有效位数越多,相对误差限越小.

证明 由 (1.3) 式可得

$$a_1 \times 10^m \le |x^*| < (a_1 + 1) \times 10^m$$

当 x^* 具有n 位有效数字时

$$\varepsilon_r^* = \frac{|x - x^*|}{|x^*|} \le \frac{0.5 \times 10^{m - n + 1}}{a_1 \times 10^m} = \frac{1}{2a_1} \times 10^{-n + 1}$$

反之,由

$$|x - x^*| = |x^*| \varepsilon_r^* < (a_1 + 1) \times 10^m \times \frac{1}{2(a_1 + 1)} \times 10^{-n+1} = 0.5 \times 10^{m-n+1}$$

故 x^* 至少具有n位有效数字.证毕.

定理 1.3

设两个近似数 x_1^* 与 x_2^* 的误差限分别为 $\varepsilon(x_1^*)$ 及 $\varepsilon(x_2^*)$,则它们进行加、减、乘、除运算得到的误差限分别满足不等式

$$\varepsilon(x_1^* \pm x_2^*) \leqslant \varepsilon(x_1^*) + \varepsilon(x_2^*),$$

$$\varepsilon(x_1^*x_2^*) \leqslant |x_1^*|\varepsilon(x_2^*) + |x_2^*|\varepsilon(x_1^*),$$

$$\varepsilon(x_1^*/x_2^*) \leqslant \frac{|x_1^*|\varepsilon(x_2^*) + |x_2^*|\varepsilon(x_1^*)}{|x_2^*|^2}, \quad x_2^* \neq 0.$$

 \circ

证明

空珊 1

- 1. 设 f(x) 是一元可微函数,x 的近似值为 x^* , 以 $f(x^*)$ 近似 f(x), 其误差界记作 $\varepsilon(f(x^*))$, 则函数的误差限 $\varepsilon(f(x^*)) \approx |f'(x^*)| \varepsilon(x^*).$
- 2. 设 f 为多元函数时,令 $A = f(x_1, x_2, \cdots, x_n)$. 如果 x_1, x_2, \cdots, x_n 的近似值为 $x_1^*, x_2^*, \cdots, x_n^*$,记 A 的近似值为 $A^* = f(x_1^*, x_2^*, \cdots, x_n^*)$,则 A^* 的误差 $e(A^*)$ 为

$$e(A^*) = \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k}\right)^* e_k^*.$$

A* 的误差限

$$\varepsilon(A^*) \approx \sum_{k=1}^n \left| \left(\frac{\partial f}{\partial x_k} \right)^* \right| \varepsilon(x_k^*).$$
 (1.4)

而 A* 的相对误差限为

$$\varepsilon_r^* = \varepsilon_r(A^*) = \frac{\varepsilon(A^*)}{|A^*|} \approx \sum_{k=1}^n \left| \left(\frac{\partial f}{\partial x_k} \right)^* \right| \frac{\varepsilon(x_k^*)}{|A^*|}.$$

 \Diamond

证明

1. 由泰勒展开

$$f(x) - f(x^*) = f'(x^*)(x - x^*) + \frac{f''(\xi)}{2}(x - x^*)^2, \quad \xi \, \, \text{for } \exists x, x^* \, \, \text{in},$$

取绝对值得

$$|f(x) - f(x^*)| \leqslant |f'(x^*)|\varepsilon(x^*) + \frac{|f''(\xi)|}{2}\varepsilon^2(x^*).$$

假定 $f'(x^*)$ 与 $f''(x^*)$ 的比值不太大, 可忽略 $\varepsilon(x^*)$ 的高阶项, 于是可得计算函数的误差限

$$\varepsilon(f(x^*)) \approx |f'(x^*)|\varepsilon(x^*).$$

2. 由泰勒展开得函数值 A^* 的误差 $e(A^*)$ 为

$$e(A^*) = A^* - A = f(x_1^*, x_2^*, \dots, x_n^*) - f(x_1, x_2, \dots, x_n)$$

$$\approx \sum_{k=1}^n \left(\frac{\partial f(x_1^*, x_2^*, \dots, x_n^*)}{\partial x_k} \right) (x_k^* - x_k) = \sum_{k=1}^n \left(\frac{\partial f}{\partial x_k} \right)^* e_k^*,$$

于是误差限

$$\varepsilon(A^*) \approx \sum_{k=1}^n \left| \left(\frac{\partial f}{\partial x_k} \right)^* \right| \varepsilon(x_k^*),$$

而 A* 的相对误差限为

$$\varepsilon_r^* = \varepsilon_r(A^*) = \frac{\varepsilon(A^*)}{|A^*|} \approx \sum_{k=1}^n \left| \left(\frac{\partial f}{\partial x_k} \right)^* \right| \frac{\varepsilon(x_k^*)}{|A^*|}.$$

例题 1.4 已测得某场地长 l 的值为 $l^* = 110$ m, 宽 d 的值为 $d^* = 80$ m, 已知 $|l - l^*| \le 0.2$ m, $|d - d^*| \le 0.1$ m. 试求面积 s = ld 的绝对误差限与相对误差限.

面积 s = ld 的绝对误差限与相对误差限. 解 因 s = ld, $\frac{\partial s}{\partial l} = d$, $\frac{\partial s}{\partial d} = l$, 由 (1.4) 式知

$$\varepsilon(s^*) \approx \left| \left(\frac{\partial s}{\partial l} \right)^* \right| \varepsilon(l^*) + \left| \left(\frac{\partial s}{\partial d} \right)^* \right| \varepsilon(d^*),$$

其中

$$\left(\frac{\partial s}{\partial l}\right)^* = d^* = 80 \text{ m}, \quad \left(\frac{\partial s}{\partial d}\right)^* = l^* = 110 \text{ m}.$$

而 $\varepsilon(l^*) = 0.2 \,\mathrm{m}, \varepsilon(d^*) = 0.1 \,\mathrm{m}$, 于是绝对误差限

$$\varepsilon(s^*) \approx 80 \times (0.2) + 110 \times (0.1) = 27 \text{ (m}^2),$$

相对误差限

$$\varepsilon_r(s^*) = \frac{\varepsilon(s^*)}{|s^*|} = \frac{\varepsilon(s^*)}{l^*d^*} \approx \frac{27}{8800} = 0.31\%.$$

1.2 误差定性分析与避免误差危害

定义 1.4

一个算法如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是**数值稳定**的;否则称此算法 为**不稳定的**.

例题 1.5

解

第2章 插值法

2.1 多项式插值

定义 2.1

设函数 y = f(x) 在区间 [a,b] 上有定义, 且已知在点 $a \le x_0 < x_1 < \cdots < x_n \le b$ 上的值 y_0, y_1, \cdots, y_n , 若存在一简单函数 P(x), 使

$$P(x_i) = y_i, \quad i = 0, 1, \dots, n.$$

成立, 就称 P(x) 为 f(x) 的**插值函数**, 点 x_0, x_1, \dots, x_n 称为**插值节点**, 包含插值节点的区间 [a, b] 称为**插值 区间**, 求插值函数 P(x) 的方法称为**插值法**. 若 P(x) 是次数不超过 n 的代数多项式, 即

$$P(x) = a_0 + a_1 x + \dots + a_n x^n.$$

其中 a_i 为实数, 就称 P(x) 为插值多项式, 相应的插值法称为多项式插值. 若 P(x) 为分段的多项式, 就称为**分段插值**. 若 P(x) 为三角多项式, 就称为**三角插值**.

定理 2.1

设在区间 [a,b] 上给定 n+1 个点

$$a \leqslant x_0 < x_1 < \cdots < x_n \leqslant b$$

上的函数值 $y_i = f(x_i)(i = 0, 1, \dots, n)$, 求次数不超过 n 的多项式 P(x), 使

$$P(x_i) = y_i, \quad i = 0, 1, \dots, n.$$
 (2.1)

证明: 满足上述条件的插值多项式 P(x) 是存在唯一的.

 $\dot{\mathbf{L}}$ 显然直接求解方程组(2.2)就可以得到插值多项式 P(x), 但这是求插值多项式最繁杂的方法, 一般是不用的. 证明 由(2.1)式可得到关于系数 a_0, a_1, \cdots, a_n 的 n+1 元线性方程组

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0, \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1, \\ \vdots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n \end{cases}$$
(2.2)

此方程组的系数矩阵为

$$A = \begin{pmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^n \end{pmatrix}$$

称为范德蒙德 (Vandermonde) 矩阵, 由于 $x_i(i=0,1,\cdots,n)$ 互异, 故

$$\det A = \prod_{0 \leqslant j < i \leqslant n} (x_i - x_j) \neq 0$$

因此, 线性方程组 (2.2) 的解 a_0, a_1, \cdots, a_n 存在且唯一, 于是定理得证.

2.2 Lagrange 插值定理

定义 2.2 (插值基函数)

若 n 次多项式 $l_i(x)(j=0,1,\cdots,n)$ 在 n+1 个节点 $x_0 < x_1 < \cdots < x_n$ 上满足条件

$$l_j(x_k) = \begin{cases} 1, & k = j, \\ 0, & k \neq j \end{cases}$$
 $j, k = 0, 1, \dots, n.$

就称这n+1个n次多项式 $l_0(x), l_1(x), \cdots, l_n(x)$ 为节点 x_0, x_1, \cdots, x_n 上的n次插值基函数.

定理 2.2

证明: 节点
$$x_0, x_1, \dots, x_n$$
 上的 n 次插值基函数为
$$l_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}, \quad k = 0, 1, \dots, n.$$
 (2.3)

证明 下面先讨论 n=1 的简单情形, 此时假定给定区间 $[x_k, x_{k+1}]$ 及端点函数值 $y_k = f(x_k), y_{k+1} = f(x_{k+1})$, 要求线 性插值多项式 $L_1(x)$, 使它满足

$$L_1(x_k) = y_k, \quad L_1(x_{k+1}) = y_{k+1}$$

 $y = L_1(x)$ 的几何意义就是通过两点 (x_k, y_k) 与 (x_{k+1}, y_{k+1}) 的直线, 如图 2.1所示, $L_1(x)$ 的表达式可由几何意义直接 给出

$$\begin{cases} L_1(x) = y_k + \frac{y_{k+1} - y_k}{x_{k+1} - x_k} (x - x_k) & (\texttt{点} \, \texttt{斜} \, \texttt{式}), \\ L_1(x) = \frac{x_{k+1} - x}{x_{k+1} - x_k} y_k + \frac{x - x_k}{x_{k+1} - x_k} y_{k+1} & (\texttt{两} \, \texttt{点} \, \texttt{式}) \end{cases}$$

由两点式看出,L₁(x) 是由两个线性函数

$$l_k(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}}, \quad l_{k+1}(x) = \frac{x - x_k}{x_{k+1} - x_k}.$$

线性组合得到的,其系数分别为 y_k 及 y_{k+1} ,即

$$L_1(x) = y_k l_k(x) + y_{k+1} l_{k+1}(x).$$

显然, $l_k(x)$ 及 $l_{k+1}(x)$ 也是线性插值多项式, 在节点 x_k 及 x_{k+1} 上分别满足条件

$$l_k(x_k) = 1, \quad l_k(x_{k+1}) = 0;$$

$$l_{k+1}(x_k) = 0, \quad l_{k+1}(x_{k+1}) = 1$$

我们称函数 $l_k(x)$ 及 $l_{k+1}(x)$ 为**线性插值基函数**, 它们的图形见图 2.1.

图 2.1

下面讨论 n=2 的情况. 此时假定插值节点为 x_{k-1}, x_k, x_{k+1} , 要求二次插值多项式 $L_2(x)$, 使它满足

$$L_2(x_i) = y_i, \quad j = k - 1, k, k + 1$$

我们知道 $y = L_2(x)$ 在几何上就是通过三点 $(x_{k-1}, y_{k-1}), (x_k, y_k), (x_{k+1}, y_{k+1})$ 的抛物线. 为了求出 $L_2(x)$ 的表达式, 可 采用基函数方法, 此时基函数 $l_{k-1}(x)$, $l_k(x)$ 及 $l_{k+1}(x)$ 是二次函数, 且在节点上分别满足条件

$$\begin{cases} l_{k-1}(x_{k-1}) = 1, l_{k-1}(x_j) = 0, & j = k, k+1; \\ l_k(x_k) = 1, l_k(x_j) = 0, & j = k-1, k+1; \\ l_{k+1}(x_{k+1}) = 1, l_{k+1}(x_j) = 0, & j = k-1, k \end{cases}$$

满足上述条件的插值基函数是很容易求出的,例如求 $l_{k-1}(x)$,因它有两个零点 x_k 及 x_{k+1} ,故可表示为

$$l_{k-1}(x) = A(x - x_k)(x - x_{k+1})$$

其中 A 为待定系数, 可由条件 $l_{k-1}(x_{k-1}) = 1$ 定出

$$A = \frac{1}{(x_{k-1} - x_k)(x_{k-1} - x_{k+1})}.$$

于是

$$l_{k-1}(x) = \frac{(x-x_k)(x-x_{k+1})}{(x_{k-1}-x_k)(x_{k-1}-x_{k+1})}.$$

同理可得

$$l_k(x) = \frac{(x - x_{k-1})(x - x_{k+1})}{(x_k - x_{k-1})(x_k - x_{k+1})},$$

$$l_{k+1}(x) = \frac{(x - x_{k-1})(x - x_k)}{(x_{k+1} - x_{k-1})(x_{k+1} - x_k)}.$$

二次插值基函数 $l_{k-1}(x)$, $l_k(x)$, $l_{k+1}(x)$ 在区间 $[x_{k-1}, x_{k+1}]$ 上的图形见图 2.2

对
$$n=1$$
 及 $n=2$ 时的情况上述已经讨论. 用类似的推导方法, 可得到 n 次插值基函数为
$$l_k(x)=\frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)},\quad k=0,1,\cdots,n.$$

记通过n+1个节点 $x_0 < x_1 < \cdots < x_n$ 的n次插值多项式为 $L_n(x)$,且满足条件

$$L_n(x_i) = y_i, \quad j = 0, 1, \dots, n.$$
 (2.4)

则插值多项式 $L_n(x)$ 可表示为

$$L_n(x) = \sum_{k=0}^{n} y_k l_k(x).$$
 (2.5)

其中 $l_k(x)$, $k=0,1,\cdots,n$ 是节点 x_0,x_1,\cdots,x_n 上的 n 次插值基函数. 由 $l_k(x)$ 的定义, 知

$$L_n(x_j) = \sum_{k=0}^n y_k l_k(x_j) = y_j, \quad j = 0, 1, \dots, n.$$
 (2.6)

形如 (2.5) 式的插值多项式 $L_n(x)$ 称为 **Lagrange**(拉格朗日) 插值多项式. 若引入记号

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n), \tag{2.7}$$

容易求得

$$\omega'_{n+1}(x_k) = (x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n),$$

于是再结合定理 2.2可将公式 (2.5)改写成

$$L_n(x) = \sum_{k=0}^n y_k \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)}.$$

注 当 n=1 时, $L_1(x)$ 也称为**线性插值多项式**. 假定给定区间 $[x_k, x_{k+1}]$ 及端点函数值 $y_k=f(x_k), y_{k+1}=f(x_{k+1}), L_1(x)$ 的表达式可由几何意义直接给出

$$\begin{cases} L_{1}(x) = y_{k} + \frac{y_{k+1} - y_{k}}{x_{k+1} - x_{k}}(x - x_{k}) & (\texttt{点} \, \texttt{A} \, \texttt{式}), \\ L_{1}(x) = \frac{x_{k+1} - x}{x_{k+1} - x_{k}} y_{k} + \frac{x - x_{k}}{x_{k+1} - x_{k}} y_{k+1} & (\texttt{两} \, \texttt{L} \, \texttt{式}) \end{cases}$$
 (2.8)

当 n=2 时, $L_1(x)$ 也称为**抛物线插值多项式**. 假定插值节点为 x_{k-1},x_k,x_{k+1} , 及端点函数值 $y_{k-1}=f(x_{k-1}),y_k=f(x_k),y_{k+1}=f(x_{k+1}),L_2(x)$ 的表达式可由(2.6)直接给出

$$L_2(x) = y_{k-1}l_{k-1}(x) + y_k l_k(x) + y_{k+1}l_{k+1}(x),$$
(2.9)

其中 $l_i(x)$, i = k - 1, k, k + 1 是节点 x_{k-1} , x_k , x_{k+1} 上的插值基函数.

 \mathbf{i} n 次插值多项式 $L_n(x)$ 通常是次数为 n 的多项式, 特殊情况下次数可能小于 n. 例如, 对于通过三点 (x_0, y_0) , (x_1, y_1) , (x_2, y_2) 的二次插值多项式 $L_2(x)$, 如果三点共线, 则 $y = L_2(x)$ 就是一直线, 而不是抛物线, 这时 $L_2(x)$ 是一次多项式.

证明 由插值基函数的定义易知
$$L_n(x) = \sum_{k=0}^n y_k l_k(x)$$
 满足条件(2.4).

定义 2.3

若在 [a,b] 上用 $L_n(x)$ 近似 f(x), 则其截断误差为 $R_n(x) = f(x) - L_n(x)$, 也称为**插值多项式的余项**.

定理 2.4

设 $f^{(n)}(x)$ 在 [a,b] 上连续, $f^{(n+1)}(x)$ 在 (a,b) 内存在, 节点 $a \le x_0 < x_1 < \cdots < x_n \le b, L_n(x)$ 是满足条件

$$L_n(x_i) = y_i, \quad j = 0, 1, \dots, n.$$

的插值多项式,则对任何 $x \in [a,b]$,插值余项

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x). \tag{2.10}$$

这里 $\xi \in (a,b)$ 且依赖于 x, $\omega_{n+1}(x)$ 由 (2.7) 式所定义.

注 应当指出, 余项表达式只有在 f(x) 的高阶导数存在时才能应用 \mathcal{E} 在 (a,b) 内的具体位置通常不可能给出, 如果我们可以求出 $\max_{a \le x \le b} |f^{(n+1)}(x)| = M_{n+1}$, 那么插值多项式 $L_n(x)$ 逼近 f(x) 的截断误差限是

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|.$$
 (2.11)

当 n=1 时, 线性插值余项为

$$R_1(x) = \frac{1}{2}f''(\xi)\omega_2(x) = \frac{1}{2}f''(\xi)(x - x_0)(x - x_1), \quad \xi \in [x_0, x_1]. \tag{2.12}$$

当 n=2 时, 抛物线插值的余项为

$$R_2(x) = \frac{1}{6}f'''(\xi)(x - x_0)(x - x_1)(x - x_2), \quad \xi \in [x_0, x_2].$$
(2.13)

证明 由给定条件知 $R_n(x)$ 在节点 $x_k(k=0,1,\cdots,n)$ 上为零, 即 $R_n(x_k)=0$ $(k=0,1,\cdots,n)$, 于是

$$R_n(x) = K(x)(x - x_0)(x - x_1) \cdots (x - x_n) = K(x)\omega_{n+1}(x), \tag{2.14}$$

其中 K(x) 是与 x 有关的待定函数.

现把x看成[a,b]上的一个固定点,作函数

$$\varphi(t) = f(t) - L_n(t) - K(x)(t - x_0)(t - x_1) \cdots (t - x_n)$$

根据 f 的假设可知 $\varphi^{(n)}(t)$ 在 [a,b] 上连续, $\varphi^{(n+1)}(t)$ 在 (a,b) 内存在. 根据插值条件及余项定义,可知 $\varphi(t)$ 在点 x_0,x_1,\cdots,x_n 及 x 处均为零,故 $\varphi(t)$ 在 [a,b] 上有 n+2 个零点,根据 Rolle(罗尔) 定理, $\varphi'(t)$ 在 $\varphi(t)$ 的两个零点间至少有一个零点,故 $\varphi'(t)$ 在 [a,b] 内至少有 n+1 个零点.对 $\varphi'(t)$ 再应用 Rolle 定理,可知 $\varphi''(t)$ 在 [a,b] 内至少有 n 个零点.依此类推, $\varphi^{(n+1)}(t)$ 在 (a,b) 内至少有一个零点,记为 $\xi \in (a,b)$,使

$$\varphi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - (n+1)!K(x) = 0.$$

于是

$$K(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}, \quad \xi \in (a,b), \, \mathbb{L} \, \hat{\kappa} \, \hat{m} \, \mathcal{T} x.$$

将它代入 (2.14) 式, 就得到余项表达式 (2.10). 证毕.

命题 2.1

(1) 设 $l_k(x)$, $k = 0, 1, \dots, n$ 是节点 x_0, x_1, \dots, x_n 上的 n 次插值基函数,则

$$\sum_{i=0}^{n} x_i^k l_i(x) = x^k, \ k = 0, 1, \dots, n.$$

特别当 k = 0 时, 有 $\sum_{i=0}^{n} l_i(x) = 1$.

(2) 若被插值函数 $f(x) \in H_n(H_n$ 代表次数小于等于 n 的多项式集合), 记 $L_n(x)$ 是 $L_n(x)$ 的 Lagrange 插值 多项式, $R_n(x)$ 为其插值余项, 则 $R_n(x) = f(x) - L_n(x) = 0$, 即它的插值多项式 $L_n(x) = f(x)$.

笔记 上述命题中的(1)也是插值基函数的性质,利用它们还可求一些和式的值. 证明

(1) 利用余项表达式(2.10), 当 $f(x) = x^k (k \le n)$ 时, 由于 $f^{(n+1)}(x) = 0$, 于是有

$$R_n(x) = x^k - \sum_{i=0}^n x_i^k l_i(x) = 0$$

由此得

$$\sum_{i=0}^{n} x_i^k l_i(x) = x^k, \quad k = 0, 1, \dots, n.$$

特别当 k=0 时,有

$$\sum_{i=0}^{n} l_i(x) = 1.$$

(2) 利用余项表达式(2.10), 由于 $f^{(n+1)}(x) = 0$, 故 $R_n(x) = f(x) - L_n(x) = 0$, 即它的插值多项式 $L_n(x) = f(x)$.

例题 2.1 证明 $\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = 0$, 其中 $l_i(x)$ 是关于点 x_0, x_1, \dots, x_5 的插值基函数.

i=0 解 利用公式命题 2.1(1)可得

$$\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = \sum_{i=0}^{5} (x_i^2 - 2x_i x + x^2) l_i(x)$$

$$= \sum_{i=0}^{5} x_i^2 l_i(x) - 2x \sum_{i=0}^{5} x_i l_i(x) + x^2 \sum_{i=0}^{5} l_i(x)$$

$$= x^2 - 2x^2 + x^2 = 0.$$

例题 2.2 已给 $\sin 0.32 = 0.314567$, $\sin 0.34 = 0.333487$, $\sin 0.36 = 0.352274$,用线性插值及抛物插值计算 $\sin 0.3367$ 的值并估计截断误差.

解 由题意取 $x_0 = 0.32, y_0 = 0.314567, x_1 = 0.34, y_1 = 0.333487, x_2 = 0.36, y_2 = 0.352274$.

用线性插值计算,由于0.3367介于 x_0,x_1 之间,故取 x_0,x_1 进行计算,由公式(2.8)得

$$\sin 0.3367 \approx L_1(0.3367) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(0.3367 - x_0)$$
$$= 0.314567 + \frac{0.01892}{0.02} \times 0.0167 = 0.330365.$$

由 (2.12) 式得其截断误差

$$|R_1(x)| \leq \frac{M_2}{2} |(x - x_0)(x - x_1)|,$$

其中 $M_2 = \max_{x_0 \le x \le x_1} |f''(x)|$. 因 $f(x) = \sin x$, $f''(x) = -\sin x$, 可取 $M_2 = \max_{x_0 \le x \le x_1} |\sin x| = \sin x_1 \le 0.3335$, 于是

$$|R_1(0.3367)| = |\sin 0.3367 - L_1(0.3367)|$$

$$\leq \frac{1}{2} \times 0.3335 \times 0.0167 \times 0.0033 \leq 0.92 \times 10^{-5}.$$

用抛物线插值计算 sin 0.3367 时, 由公式 (2.9) 得

$$\sin 0.3367 \approx y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$= L_2(0.3367) = 0.314567 \times \frac{0.7689 \times 10^{-4}}{0.0008} + 0.333487$$

$$\times \frac{3.89 \times 10^{-4}}{0.0004} + 0.352274 \times \frac{-0.5511 \times 10^{-4}}{0.0008} = 0.330374.$$

这个结果与 6 位有效数字的正弦函数表完全一样, 这说明查表时用二次插值精度已相当高了. 由 (2.11) 式得其截断误差限

$$|R_2(x)| \le \frac{M_3}{6} |(x - x_0)(x - x_1)(x - x_2)|,$$

其中

$$M_3 = \max_{x_0 \le x \le x_2} |f'''(x)| = \cos x_0 < 0.9493.$$

于是

$$\begin{aligned} |R_2(0.3367)| &= |\sin 0.3367 - L_2(0.3367)| \\ &\leq \frac{1}{6} \times 0.9493 \times 0.0167 \times 0.033 \times 0.0233 < 2.0132 \times 10^{-6}. \end{aligned}$$

例题 2.3 设 $f \in C^2[a,b]$, 试证:

$$\max_{a \leqslant x \leqslant b} \left| f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] \right| \leqslant \frac{1}{8} (b - a)^2 M_2,$$

其中 $M_2 = \max_{a \leq x \leq b} |f''(x)|$. 记号 $C^2[a,b]$ 表示在区间 [a,b] 上二阶导数连续的函数空间.

解 通过两点 (a, f(a)) 及 (b, f(b)) 的线性插值为

$$L_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

于是由(2.12)式可得

$$\begin{aligned} \max_{a \leqslant x \leqslant b} \left| f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] \right| \\ &= \max_{a \leqslant x \leqslant b} \left| f(x) - L_1(x) \right| = \max_{a \leqslant x \leqslant b} \left| \frac{f''(\xi)}{2} (x - a)(x - b) \right| \\ &\leqslant \frac{M_2}{2} \max_{a \leqslant x \leqslant b} \left| (x - a)(x - b) \right| = \frac{1}{8} (b - a)^2 M_2. \end{aligned}$$

2.3 牛顿插值多项式

2.3.1 牛顿均差插值多项式

定义 2.4 (均差)

称 $f[x_0,x_k]=\frac{f(x_k)-f(x_0)}{x_k-x_0}$ 为函数 f(x) 关于点 x_0,x_k 的**一阶均差**. $f[x_0,x_1,x_k]=\frac{f[x_0,x_k]-f[x_0,x_1]}{x_k-x_1}$ 称为 f(x) 的**二阶均差**. 一般地,称

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_0, \cdots, x_{k-2}, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_{k-1}}$$
(2.15)

为 f(x) 的 k 阶均差 (均差也称为差商).

定理 2.5 (均差的基本性质)

(1) k 阶均差可表示为函数值 $f(x_0), f(x_1), \dots, f(x_k)$ 的线性组合, 即

$$f[x_0, x_1, \cdots, x_k] = \sum_{i=0}^k \frac{f(x_i)}{(x_i - x_0) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_k)}.$$
 (2.16)

这个性质也表明均差与节点的排列次序无关, 称为均差的对称性, 即

$$f[x_0, x_1, \dots, x_k] = f[x_1, x_0, x_2, \dots, x_k] = \dots = f[x_1, \dots, x_k, x_0]$$

(2)

$$f[x_0, x_1, \cdots, x_k] = \frac{f[x_1, x_2, \cdots, x_k] - f[x_0, x_1, \cdots, x_{k-1}]}{x_k - x_0}.$$
 (2.17)

(3) 若 f(x) 在 [a,b] 上存在 n 阶导数, 且节点 $x_0,x_1,\cdots,x_n\in[a,b]$, 则 n 阶均差与导数的关系为

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in [a, b].$$
 (2.18)

证明

- (1) 利用数学归纳法证明即可.
- (2) 由性质(1)及(2.15)式立得.
- (3) 反复使用 Rolle 定理证明即可.

表 2.1: 均差表

x_k	$f(x_k)$	一阶均差	二阶均差	三阶均差	四阶均差
x_0	$f(x_0)$				
x_1	$f(x_1)$	$f[x_0,x_1]$			
x_2	$f(x_2)$	$f[x_1,x_2]$	$\underline{f[x_0,x_1,x_2]}$		
<i>x</i> ₃	$f(x_3)$	$f[x_2,x_3]$	$f[x_1, x_2, x_3]$	$\underline{f[x_0,x_1,x_2,x_3]}$	
x_4	$f(x_4)$	$f[x_3,x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0, x_1, x_2, x_3, x_4]$
:	:	:	:	:	:

定理 2.6 (牛顿均差插值多项式)

若已知 f 在插值点 x_i $(i=0,1,\cdots,n)$ 上的值为 $f(x_i)$ $(i=0,1,\cdots,n)$, 记 f 的 n 次插值多项式为 $P_n(x)$, 且满足条件

$$P_n(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$
 (2.19)

则一次插值多项式可表示为

$$P_1(x) = f(x_0) + f[x_0, x_1](x - x_0),$$

二次插值多项式可表示为

$$P_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1).$$

将x看成[a,b]上一点,可得

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, x_1, \cdots, x_n](x - x_0) \cdots (x - x_{n-1})$$

$$+ f[x, x_0, \cdots, x_n]\omega_{n+1}(x) = P_n(x) + R_n(x),$$

其中n次插值多项式和余项分别为

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$
$$+ f[x_0, x_1, \dots, x_n](x - x_0) + \cdots + (x_0, x_1, \dots, x_n)(x -$$

$$R_n(x) = f(x) - P_n(x) = f[x, x_0, \dots, x_n]\omega_{n+1}(x),$$
 (2.21)

其中 $ω_{n+1}(x)$ 由(2.7) 式定义, 我们称 $P_n(x)$ 为牛顿均差插值多项式. 系数就是均差表中加横线的各阶均差.

 $\dot{\mathbf{z}}$ (2.21) 式为插值余项, 由插值多项式唯一性知, 它与(2.10)式是等价的, 事实上, 利用均差与导数关系式 (2.18) 可由 (2.21) 式推出(2.10)式. 但 (2.21) 式更有一般性, 它对 f 是由离散点给出的情形或 f 导数不存在时均适用.

注 牛顿插值比拉格朗日插值计算量省, 且便于程序设计.

证明 借助均差的定义,一次插值多项式可表示为

$$P_1(x) = P_0(x) + f[x_0, x_1](x - x_0) = f(x_0) + f[x_0, x_1](x - x_0),$$

而二次插值多项式可表示为

$$\begin{split} P_2(x) &= P_1(x) + f[x_0, x_1, x_2](x - x_0)(x - x_1) \\ &= f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1). \end{split}$$

实际上,根据均差定义,将x看成 [a,b]上一点,可得

$$f(x) = f(x_0) + f[x, x_0](x - x_0),$$

$$f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1),$$

:

$$f[x, x_0, \dots, x_{n-1}] = f[x_0, x_1, \dots, x_n] + f[x, x_0, \dots, x_n](x - x_n).$$

只要把后一式依次代入前一式,就得到

$$f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$
$$+ f[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$
$$+ f[x, x_0, \dots, x_n]\omega_{n+1}(x) = P_n(x) + R_n(x),$$

其中

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, x_1, \dots, x_n](x - x_0) + \cdots + (x_0, x_{n-1}),$$

$$R_n(x) = f(x) - P_n(x) = f[x, x_0, \dots, x_n]\omega_{n+1}(x),$$
(2.22)

其中 $\omega_{n+1}(x)$ 由(2.7) 式定义.

由 (2.22) 式确定的多项式 $P_n(x)$ 显然满足插值条件 (2.19), 且次数不超过 n, 若记

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) + \dots + a_{n-1}(x - x_{n-1}),$$

则其系数为

$$a_k = f[x_0, x_1, \dots, x_k], \quad k = 0, 1, \dots, n.$$

例题 2.4 给出 f(x) 的函数表 (见表 2-2), 求 4 次牛顿插值多项式, 并由此计算 f(0.596) 的近似值. 解 首先根据给定函数表造出均差表.

表 2.2: 函数及均差表

0.40	0.410 75					
0.55	0.578 15	<u>1.116 00</u>				
0.65	0.696 75	1.186 00	0.280 00			
0.80	0.888 11	1.275 73	0.358 93	0.197 33		
0.90	1.026 52	1.384 10	0.433 48	0.213 00	0.031 34	
1.05	1.253 82	1.515 33	0.524 93	0.228 63	0.031 26	-0.00012

从均差表看到 4 阶均差近似常数, 故取 4 次插值多项式 $P_4(x)$ 做近似即可.

$$P_4(x) = 0.41075 + 1.116(x - 0.4) + 0.28(x - 0.4)(x - 0.55)$$
$$+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65)$$
$$+ 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8),$$

于是

$$f(0.596) \approx P_4(0.596) = 0.63192,$$

截断误差

$$|R_4(x)| \approx |f[x_0, x_1, \cdots, x_5]\omega_5(0.596)| \leq 3.63 \times 10^{-9}.$$

这说明截断误差很小, 可忽略不计.

此例的截断误差估计中,5 阶均差 $f[x,x_0,\cdots,x_4]$ 用 $f[x_0,x_1,\cdots,x_5]=-0.00012$ 近似. 另一种方法是取 x=0.596, 由 $f(0.596)\approx 0.63192$, 可求得 $f[x,x_0,\cdots,x_4]$ 的近似值, 再根据均差的定义, 可求得 $[R_4(x)]$ 的近似.

2.3.2 差分形式的牛顿插值多项式

定义 2.5

n 个节点 x_0, x_1, \dots, x_n 称为**等距节点**, 即 $x_k = x_0 + kh$ ($k = 0, 1, \dots, n$), 这里的 h 称为**步长**.

设 x_k 点的函数值为 $f_k = f(x_k)$ $(k = 0, 1, \dots, n)$, 称 $\Delta f_k = f_{k+1} - f_k$ 为 x_k 处以 h 为步长的**一阶 (向前) 差分**. 类似地称 $\Delta^2 f_k = \Delta f_{k+1} - \Delta f_k$ 为 x_k 处的**二阶差分**. 一般地, 称

$$\Delta^{n} f_{k} = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_{k}$$
(2.23)

为 x_k 处的n**阶差分**. 为了表示方便,再引入两个常用算子符号:

$$\mathbf{I}f_k = f_k, \quad \mathbf{E}f_k = f_{k+1},$$

I 称为不变算子, E 称为步长为 h 的位移算子.

由给定函数表计算各阶差分可由以下形式差分表给出.

定理 2.7

设n个节点 x_0, x_1, \cdots, x_n , 步长为 h, x_k 点的函数值为 $f_k = f(x_k) \ (k = 0, 1, \cdots, n)$, 则

$$\Delta f_k = f_{k+1} - f_k = \mathbf{E} f_k - \mathbf{I} f_k = (\mathbf{E} - \mathbf{I}) f_k,$$

$$\Delta^{n} f_{k} = (E - I)^{n} f_{k} = \sum_{i=0}^{n} (-1)^{j} \binom{n}{j} E^{n-j} f_{k} = \sum_{i=0}^{n} (-1)^{j} \binom{n}{j} f_{n+k-j}, \tag{2.24}$$

(2.24) 式表示各阶差分均可用函数值给出.

反之也可用各阶差分表示函数值如下

$$f_{n+k} = \sum_{j=0}^{n} \binom{n}{j} \Delta^j f_k. \tag{2.25}$$

还可导出均差与差分的关系:

$$f[x_k, \dots, x_{k+m}] = \frac{1}{m!} \frac{1}{h^m} \Delta^m f_k, \quad m = 1, 2, \dots, n.$$
 (2.26)

还可得到差分与导数的关系:

$$\Delta^n f_k = h^n f^{(n)}(\xi), \quad \sharp \, \psi \xi \in (x_k, x_{k+n}).$$
(2.27)

证明 由定义 2.5可推出:

$$\Delta f_k = f_{k+1} - f_k = \mathbf{E} f_k - \mathbf{I} f_k = (\mathbf{E} - \mathbf{I}) f_k,$$

$$\Delta^n f_k = (\mathbf{E} - \mathbf{I})^n f_k = \sum_{i=0}^n (-1)^j \binom{n}{j} \mathbf{E}^{n-j} f_k = \sum_{i=0}^n (-1)^j \binom{n}{j} f_{n+k-j},$$

其中 $\binom{n}{j} = \frac{n(n-1)\cdots(n-j+1)}{j!}$ 为二项式展开系数. 由定义 2.5可推出:

$$\Delta f_k = f_{k+1} - f_k = f_{k+1} - \mathbf{I} f_k \Longrightarrow f_{k+1} = \mathbf{E} f_k = (\mathbf{I} + \Delta) f_k,$$
$$f_{n+k} = \mathbf{E}^n f_k = (\mathbf{I} + \Delta)^n f_k = \left[\sum_{j=0}^n \binom{n}{j} \Delta^j \right] f_k,$$

于是

$$f_{n+k} = \sum_{j=0}^{n} \binom{n}{j} \Delta^{j} f_{k}.$$

根据均差的定义就可导出均差与差分的关系:

$$\begin{split} f[x_k,x_{k+1}] &= \frac{f_{k+1} - f_k}{x_{k+1} - x_k} = \frac{\Delta f_k}{h}, \\ f[x_k,x_{k+1},x_{k+2}] &= \frac{f[x_{k+1},x_{k+2}] - f[x_k,x_{k+1}]}{x_{k+2} - x_k} = \frac{1}{2h^2} \Delta^2 f_k. \end{split}$$

一般地,有

$$f[x_k, \dots, x_{k+m}] = \frac{1}{m!} \frac{1}{h^m} \Delta^m f_k, \quad m = 1, 2, \dots, n.$$

由 (2.26) 式及(2.18)式就可得到差分与导数的关系:

定理 2.8

若已知 n+1 阶可导函数 f 在步长为 h 的等距插值点 x_i $(i=0,1,\cdots,n)$ 上的值为 $f(x_i)$ $(i=0,1,\cdots,n)$,记 n 次插值多项式 $P_n(x)$ 满足条件

$$P_n(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$

令 $x = x_0 + th$,则插值多项式可表示为

$$P_n(x_0 + th) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!} \Delta^n f_0, \tag{2.28}$$

(2.28) 式称为牛顿前插公式. 其余项为

$$R_n(x) = \frac{t(t-1)\cdots(t-n)}{(n+1)!}h^{n+1}f^{(n+1)}(\xi), \quad \xi \in (x_0, x_n).$$
 (2.29)

证明 在牛顿插值公式 (2.20) 中, 用 (2.26) 式的差分代替均差, 并令 $x = x_0 + th$, 则得

$$P_n(x_0 + th) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!} \Delta^2 f_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!} \Delta^n f_0,$$

由 (2.21) 式和(2.18)式得其余项为

$$R_n(x) = \frac{t(t-1)\cdots(t-n)}{(n+1)!}h^{n+1}f^{(n+1)}(\xi), \quad \xi \in (x_0, x_n).$$

例题 2.5 给出 $f(x) = \cos x$ 在 $x_k = kh$, $k = 0, 1, \dots, 5$, h = 0.1 处的函数值, 试用 4 次牛顿前插公式计算 f(0.048) 的近似值并估计误差.

解 先构造差分表 (见表 2.3) 并用牛顿前插公式 (2.28) 求 f(0.048) 的近似值.

表 2.4: 差分表

x_k	$f(x_k)$	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^5 f$
0.00	1.00000					
		-0.00500				
0.10	0.99500		-0.00993			
		-0.01493		0.00013		
0.20	0.98007		-0.00980		0.00012	
		-0.02473		0.00025		-0.00002
0.30	0.95534		-0.00955		0.00010	
		-0.03428		0.00035		
0.40	0.92106		-0.00920			
		-0.04348				
0.50	0.87758					

聚
$$x = 0.048, h = 0.1, t = \frac{x - 0}{h} = 0.48,$$
 得
$$P_4(0.048) = 1.00000 + 0.48 \times (-0.00500) + \frac{(0.48)(0.48 - 1)}{2}(-0.00993) + \frac{1}{3!}(0.48)(0.48 - 1)(0.48 - 2)(0.00013) + \frac{1}{4!}(0.48)(0.48 - 1)(0.48 - 2)(0.48 - 3)(0.00012) = 0.99885 \approx \cos 0.048,$$

由 (2.29) 式可得误差估计为

$$|R_4(0.048)| \leqslant \frac{M_5}{5!} |t(t-1)(t-2)(t-3)(t-4)| h^5 \leqslant 1.5845 \times 10^{-7},$$

其中 $M_5 = |\sin 0.6| \le 0.565$.

2.4 Hermite(埃尔米特) 插值

2.4.1 重节点均差与 Taylor(泰勒) 插值

定理 2.9

设 $f \in C^n[a,b], x_0, x_1, \dots, x_n$ 为 [a,b] 上的相异节点, 则 $f[x_0, x_1, \dots, x_n]$ 是其变量的连续函数.

定义 2.6 (重节点均差)

如果 [a,b] 上的节点 x_0,x_1,\cdots,x_n 互异, 根据均差定义, 若 $f\in C^1[a,b]$, 则有

$$\lim_{x \to x_0} f[x_0, x] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

由此定义重节点均差

$$f[x_0, x_0] = \lim_{x \to x_0} f[x_0, x] = f'(x_0).$$

类似地可定义**重节点的二阶均差**, 当 $x_1 \neq x_0$ 时, 有

$$f[x_0, x_0, x_1] = \frac{f[x_0, x_1] - f[x_0, x_0]}{x_1 - x_0}.$$

当 $x_1 \rightarrow x_0$ 时,有

$$f[x_0, x_0, x_0] = \lim_{\substack{x_1 \to x_0 \\ x_2 \to x_0}} f[x_0, x_1, x_2] = \frac{1}{2} f''(x_0).$$

一般地,可定义 n 阶重节点的均差,由(2.18)式则得

$$f[x_0, x_0, \cdots, x_0] = \lim_{\substack{x_1 \to x_0 \\ \vdots \\ x_n \to x_0}} f[x_0, x_1, \cdots, x_n] = \frac{1}{n!} f^{(n)}(x_0).$$
(2.30)

定理 2.10

设 f(x) 在 [a,b] 上存在 n 阶连续导数, 且 (a,b) 上存在 n+1 阶导数, x_0 为 [a,b] 内一定点,则对于任意的 $x \in [a,b]$,在 x,x_0 之间存在一个数 ξ 使得

$$f(x) = P_n(x) + R_n(x),$$

其中

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n,$$
(2.31)

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \quad \xi \in (a,b).$$
 (2.32)

称 (2.31) 式为 Taylor(泰勒) 插值多项式, 它就是一个 Hermite(埃尔米特) 插值多项式.

注 实际上, 上述 Taylor 插值多项式和余项之和就是 f 在 x_0 点带 Lagrange 余项的 Taylor 展开式.

$$P_n^{(k)}(x_0) = f^{(k)}(x_0), \quad k = 0, 1, \dots, n.$$
 (2.33)

实际上 Taylor(泰勒) 插值是牛顿插值的极限形式, 是只在一点 x_0 处给出 n+1 个插值条件 (2.33) 得到的 n 次埃尔米特插值多项式.

一般地只要给出m+1个插值条件(含函数值和导数值)就可造出次数不超过m次的埃尔米特插值多项式,由于导数条件各不相同,这里就不给出一般的埃尔米特插值公式.

证明 任取 x_0 邻域中 n+1 个互异点 x_0, x_1, \cdots, x_n 作为插值点, 根据定理 2.6可得到相应的牛顿均差插值多项式

$$P_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, x_1, \cdots, x_n](x - x_0) \cdots (x - x_{n-1}),$$

$$R_n(x) = f(x) - P_n(x) = f[x, x_0, \cdots, x_n]\omega_{n+1}(x),$$

在上述牛顿均差插值多项式中, 若令 $x_i \rightarrow x_0$ ($i=1,2,\cdots,n$), 则由 (2.30) 式可得 Taylor(泰勒) 多项式

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n,$$

其余项为

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \quad \xi \in (a,b).$$

П

2.4.2 两个典型的 Hermite 插值

定理 2.11

若已知四阶可导函数 f 在插值点 x_i (i=0,1,2) 上的值为 $f(x_i)$ (i=0,1,2) 及一个导数值 $f'(x_1)$, 记 f 的三次插值多项式为 P(x), 且满足条件

$$P(x_i) = f(x_i), \quad i = 0, 1, 2 \mathcal{R} P'(x_1) = f'(x_1).$$

则插值多项式可表示为

$$P(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + A(x - x_0)(x - x_1)(x - x_2),$$

其中

$$A = \frac{f'(x_1) - f[x_0, x_1] - (x_1 - x_0)f[x_0, x_1, x_2]}{(x_1 - x_0)(x_1 - x_2)}.$$

余项表达式为

$$R(x) = \frac{1}{4!} f^{(4)}(\xi)(x - x_0)(x - x_1)^2 (x - x_2), \tag{2.34}$$

式中 ξ 位于 x_0, x_1, x_2 和x所界定的范围内.

 $\dot{\mathbf{L}}$ 一般上述插值多项式的系数 A 都是用待定系数法求解,并不直接套用上述 A 的公式. 即先待定 A,得到插值多项式 P(x),再代入 $P'(x_1) = f'(x_1)$ 中解出 A.

证明 由给定条件及牛顿均差插值多项式,可确定次数不超过 3 的插值多项式. 由于此多项式通过点 $(x_0, f(x_0))$, $(x_1, f(x_1))$ 及 $(x_2, f(x_2))$, 故其形式为

$$P(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + A(x - x_0)(x - x_1)(x - x_2),$$

其中 A 为待定常数,可由条件 $P'(x_1) = f'(x_1)$ 确定, 通过计算可得

$$A = \frac{f'(x_1) - f[x_0, x_1] - (x_1 - x_0)f[x_0, x_1, x_2]}{(x_1 - x_0)(x_1 - x_2)}.$$

为了求出余项 R(x) = f(x) - P(x) 的表达式, 可设

$$R(x) = f(x) - P(x) = k(x)(x - x_0)(x - x_1)^2(x - x_2),$$

其中 k(x) 为待定函数. 构造

$$\varphi(t) = f(t) - P(t) - k(x)(t - x_0)(t - x_1)^2(t - x_2),$$

显然 $\varphi(x_j) = 0$ (j = 0, 1, 2), 且 $\varphi'(x_1) = 0$, $\varphi(x) = 0$. 故 $\varphi(t)$ 在 (a, b) 内有 5 个零点 (二重根算两个). 假设 f 具有较好的可微性, 反复应用罗尔定理, 得 $\varphi^{(4)}(t)$ 在 (a, b) 内至少有一个零点 ξ , 故

$$\varphi^{(4)}(\xi) = f^{(4)}(\xi) - 4!k(x) = 0,$$

于是

$$k(x) = \frac{1}{4!} f^{(4)}(\xi),$$

余项表达式为

$$R(x) = \frac{1}{4!} f^{(4)}(\xi)(x - x_0)(x - x_1)^2 (x - x_2),$$

式中 ξ 位于 x_0, x_1, x_2 和x所界定的范围内.

例题 2.6 给定 $f(x) = x^{3/2}$, $x_0 = \frac{1}{4}$, $x_1 = 1$, $x_2 = \frac{9}{4}$, 试求 f(x) 在 $\left[\frac{1}{4}, \frac{9}{4}\right]$ 上的三次埃尔米特插值多项式 P(x), 使它满足 $P(x_i) = f(x_i)$ (i = 0, 1, 2), $P'(x_1) = f'(x_1)$, 并写出余项表达式.

解 由所给节点可求出

$$f_0 = f\left(\frac{1}{4}\right) = \frac{1}{8}, \quad f_1 = f(1) = 1, \quad f_2 = f\left(\frac{9}{4}\right) = \frac{27}{8},$$

$$f'(x) = \frac{3}{2}x^{1/2}, \quad f'(1) = \frac{3}{2}.$$

利用牛顿均差插值, 先求均差表如表 2.5.

表 2.5: 均差表

x_i	f_i		
1	1		
$\overline{4}$	$\overline{8}$	7	1.1
1	1	$\frac{7}{2}$	$\frac{11}{30}$
9	27	$\frac{-6}{19}$	30
$\overline{4}$	8	10	

于是有
$$f[x_0, x_1] = \frac{7}{6}$$
, $f[x_0, x_1, x_2] = \frac{11}{30}$. 故可令
$$P(x) = \frac{1}{8} + \frac{7}{6} \left(x - \frac{1}{4} \right) + \frac{11}{30} \left(x - \frac{1}{4} \right) (x - 1) + A \left(x - \frac{1}{4} \right) (x - 1) \left(x - \frac{9}{4} \right).$$

再由条件 $P'(1) = f'(1) = \frac{3}{2}$ 可得

$$P'(1) = \frac{7}{6} + \frac{11}{30} \cdot \frac{3}{4} + A \cdot \frac{3}{4} \left(-\frac{5}{4} \right) = \frac{3}{2},$$

解出

$$A = -\frac{16}{15} \left(\frac{3}{2} - \frac{7}{6} - \frac{11}{40} \right) = -\frac{14}{225}.$$

于是所求的三次埃尔米特多项式为

$$\begin{split} P(x) &= \frac{1}{8} + \frac{7}{6} \left(x - \frac{1}{4} \right) + \frac{11}{30} \left(x - \frac{1}{4} \right) (x - 1) - \frac{14}{225} \left(x - \frac{1}{4} \right) (x - 1) \left(x - \frac{9}{4} \right) \\ &= -\frac{14}{225} x^3 + \frac{263}{450} x^2 + \frac{233}{450} x - \frac{1}{25}, \end{split}$$

余项为

$$\begin{split} R(x) &= f(x) - P(x) = \frac{f^{(4)}(\xi)}{4!} \left(x - \frac{1}{4} \right) (x - 1)^2 \left(x - \frac{9}{4} \right) \\ &= \frac{1}{4!} \cdot \frac{9}{16} \xi^{-5/2} \left(x - \frac{1}{4} \right) (x - 1)^2 \left(x - \frac{9}{4} \right), \quad \xi \in \left(\frac{1}{4}, \frac{9}{4} \right). \end{split}$$

定理 2.12 (两点三次插值多项式)

若已知四阶可导函数 f 在插值点 x_k, x_{k+1} 上的值为 $y_k = f(x_k)$, $y_{k+1} = f(x_{k+1})$ 及导数值为 $m_k = f'(x_k)$, $m_{k+1} = f'(x_{k+1})$, 记 f 的三次插值多项式为 $H_3(x)$, 且满足条件

$$H_3(x_k) = y_k, \quad H_3(x_{k+1}) = y_{k+1},$$

 $H'_3(x_k) = m_k, \quad H'_3(x_{k+1}) = m_{k+1}.$ (2.35)

则插值多项式可表示为

$$H_{3}(x) = \left(1 + 2\frac{x - x_{k}}{x_{k+1} - x_{k}}\right) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right)^{2} y_{k} + \left(1 + 2\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}}\right)^{2} y_{k+1} + (x - x_{k}) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}}\right)^{2} m_{k} + (x - x_{k+1}) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}}\right)^{2} m_{k+1},$$

$$(2.36)$$

其余项 $R_3(x) = f(x) - H_3(x)$ 可表示为

$$R_3(x) = \frac{1}{4!} f^{(4)}(\xi)(x - x_k)^2 (x - x_{k+1})^2, \quad \xi \in (x_k, x_{k+1}).$$
 (2.37)

19

证明 令

$$H_3(x) = \alpha_k(x)y_k + \alpha_{k+1}(x)y_{k+1} + \beta_k(x)m_k + \beta_{k+1}(x)m_{k+1}, \tag{2.38}$$

其中 $\alpha_k(x)$, $\alpha_{k+1}(x)$, $\beta_k(x)$, $\beta_{k+1}(x)$ 是关于节点 x_k 及 x_{k+1} 的三次埃尔米特插值基函数, 它们应分别满足条件

$$\alpha_k(x_k) = 1, \quad \alpha_k(x_{k+1}) = 0, \quad \alpha'_k(x_k) = \alpha'_k(x_{k+1}) = 0;$$

$$\alpha_{k+1}(x_k) = 0, \quad \alpha_{k+1}(x_{k+1}) = 1, \quad \alpha'_{k+1}(x_k) = \alpha'_{k+1}(x_{k+1}) = 0;$$

$$\beta_k(x_k) = \beta_k(x_{k+1}) = 0, \quad \beta'_k(x_k) = 1, \quad \beta'_k(x_{k+1}) = 0;$$

$$\beta_{k+1}(x_k) = \beta_{k+1}(x_{k+1}) = 0, \quad \beta'_{k+1}(x_k) = 0, \quad \beta'_{k+1}(x_{k+1}) = 1.$$

根据给定条件可令

$$\alpha_k(x) = (ax+b) \left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2,$$

显然

$$\alpha_k(x_{k+1}) = \alpha'_k(x_{k+1}) = 0.$$

再利用

$$\alpha_k(x_k) = ax_k + b = 1,$$

及

$$\alpha'_k(x_k) = 2\frac{ax_k + b}{x_k - x_{k+1}} + a = 0,$$

解得

$$a = -\frac{2}{x_k - x_{k+1}}, \quad b = 1 + \frac{2x_k}{x_k - x_{k+1}},$$

于是求得

$$\alpha_k(x) = \left(1 + 2\frac{x - x_k}{x_{k+1} - x_k}\right) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}}\right)^2. \tag{2.39}$$

同理可求得

$$\alpha_{k+1}(x) = \left(1 + 2\frac{x - x_{k+1}}{x_k - x_{k+1}}\right) \left(\frac{x - x_k}{x_{k+1} - x_k}\right)^2. \tag{2.40}$$

为求 $\beta_k(x)$, 由给定条件可令

$$\beta_k(x) = a(x - x_k) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}} \right)^2,$$

直接由 $\beta'_k(x_k) = a = 1$ 得到

$$\beta_k(x) = (x - x_k) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}} \right)^2. \tag{2.41}$$

同理有

$$\beta_{k+1}(x) = (x - x_{k+1}) \left(\frac{x - x_k}{x_{k+1} - x_k} \right)^2. \tag{2.42}$$

将 (2.39) 式 (2.42) 式的结果代入 (2.38) 式得

$$\begin{split} H_3(x) &= \left(1 + 2\frac{x - x_k}{x_{k+1} - x_k}\right) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}}\right)^2 y_k + \left(1 + 2\frac{x - x_{k+1}}{x_k - x_{k+1}}\right) \left(\frac{x - x_k}{x_{k+1} - x_k}\right)^2 y_{k+1} \\ &+ (x - x_k) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}}\right)^2 m_k + (x - x_{k+1}) \left(\frac{x - x_k}{x_{k+1} - x_k}\right)^2 m_{k+1}, \end{split}$$

其余项 $R_3(x) = f(x) - H_3(x)$. 类似 (2.34) 式可得

$$R_3(x) = \frac{1}{4!} f^{(4)}(\xi) (x - x_k)^2 (x - x_{k+1})^2, \quad \xi \in (x_k, x_{k+1}).$$

2.5 分段低次插值

2.5.1 高次插值的病态性质

上面我们根据区间 [a,b] 上给出的节点做插值多项式 $L_n(x)$ 近似 f(x), 一般总认为 $L_n(x)$ 的次数 n 越高逼近 f(x) 的精度越好, 但实际上并非如此. 这是因为对任意的插值节点, 当 $n \to \infty$ 时, $L_n(x)$ 不一定收敛于 f(x). 20 世纪 初龙格 (Runge) 就给出了一个等距节点插值多项式 $L_n(x)$ 不收敛于 f(x) 的例子. 他给出的函数为 $f(x) = 1/(1+x^2)$, 它在 [-5,5] 上各阶导数均存在. 在 [-5,5] 上取 n+1 个等距节点 $x_k = -5 + 10 \frac{k}{n}$ $(k=0,1,\cdots,n)$ 所构造的拉格朗日插值多项式为

$$L_n(x) = \sum_{j=0}^n \frac{1}{1 + x_j^2} \frac{\omega_{n+1}(x)}{(x - x_j)\omega'_{n+1}(x_j)}.$$

令 $x_{n-1/2} = \frac{1}{2}(x_{n-1} + x_n)$,则 $x_{n-1/2} = 5 - \frac{5}{n}$,表 2-5 列出了当 $n = 2, 4, \cdots$,20 时的 $L_n(x_{n-1/2})$ 的计算结果及在 $x_{n-1/2}$ 上的误差 $R(x_{n-1/2})$. 可以看出,随着 n 的增加, $R(x_{n-1/2})$ 的绝对值几乎成倍地增加。这说明当 $n \to \infty$ 时, L_n 在 [-5,5] 上不收敛。龙格证明了,存在一个常数 $c \approx 3.63$,使得当 $|x| \leqslant c$ 时, $\lim_{n \to \infty} L_n(x) = f(x)$,而当 |x| > c 时 { $L_n(x)$ } 发散。

n	$f(x_{n-1/2})$	$L_n(x_{n-1/2})$	$R(x_{n-1/2})$				
2	0.137931	0.759615	-0.621684				
4	0.066390	-0.356826	0.423216				
6	0.054463	0.607879	-0.553416				
8	0.049651	-0.831017	0.880668				
10	0.047059	1.578721	-1.531662				
12	0.045440	-2.755000	2.800440				
14	0.044334	5.332743	-5.288409				
16	0.043530	-10.173867	10.217397				
18	0.042920	20.123671	-20.080751				
20	0.042440	-39.952449	39.994889				

表 2.6: 计算结果及误差

下面取 n = 10, 根据计算画出 $y = L_{10}(x)$ 及 $y = 1/(1 + x^2)$ 在 [-5, 5] 上的图形, 见图 2.3.

从图 2.3看到, 在 $x = \pm 5$ 附近 $L_{10}(x)$ 与 $f(x) = 1/(1 + x^2)$ 偏离很远, 例如 $L_{10}(4.8) = 1.80438$, f(4.8) = 0.04160. 这说明用高次插值多项式 $L_n(x)$ 近似 f(x) 效果并不好, 因而通常不用高次插值, 而用分段低次插值. 从本例看到,

如果我们把 $y = 1/(1+x^2)$ 在节点 $x = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ 处用折线连起来显然比 $L_{10}(x)$ 逼近 f(x) 好得多. 这正是我们下面要讨论的分段低次插值的出发点.

2.5.2 分段低次插值

定理 2.13 (分段线性插值)

若已知函数 $f \in D^2[a,b]$ 在节点 $a=x_0 < x_1 < \cdots < x_n = b$ 上的函数值 f_0, f_1, \cdots, f_n , 记 $h_k = x_{k+1} - x_k$, $h = \max_{k} h_k$, 则存在一折线函数 $I_h(x)$ 满足:

- (1) $I_h(x) \in C[a, b]$;
- (2) $I_h(x_k) = f_k \ (k = 0, 1, \dots, n);$
- (3) $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上是线性函数.

并且 $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上可表示为

$$I_h(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k + \frac{x - x_k}{x_{k+1} - x_k} f_{k+1}, \quad x_k \leqslant x \leqslant x_{k+1}, \quad k = 0, 1, \dots, n-1.$$
 (2.43)

称 $I_h(x)$ 为分段线性插值函数. 我们有误差估计

$$\max_{\alpha \leqslant x \leqslant b} |f(x) - I_h(x)| \leqslant \frac{M_2}{8} h^2, \tag{2.44}$$

其中 $M_2 = \max_{a \leqslant x \leqslant b} |f''(x)|$. 进而 $I_h(x)$ 在 [a,b] 上一致收敛到 f(x).

 \Diamond

笔记 分段线性插值就是通过插值点用折线段连接起来逼近 f(x).

笔记 分段线性插值函数 $I_h(x)$ 的导数是间断的, 若在节点 x_k $(k=0,1,\cdots,n)$ 上除已知函数值 f_k 外还给出导数值 $f_k'=m_k$ $(k=0,1,\cdots,n)$, 这样就可构造一个导数连续的分段插值函数, 即分段三次 Hermite(埃尔米特) 插值.

证明 取 $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上的表示为

$$I_h(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k + \frac{x - x_k}{x_{k+1} - x_k} f_{k+1}, \quad x_k \leq x \leq x_{k+1}, \quad k = 0, 1, \dots, n-1.$$

显然这样的 $I_h(x)$ 满足插值条件 (1)(2)(3).

分段线性插值的误差估计可利用插值余项 (2.12)得到

$$\max_{x_k \leqslant x \leqslant x_{k+1}} |f(x) - I_h(x)| \leqslant \frac{M_2}{2} \max_{x_k \leqslant x \leqslant x_{k+1}} |(x - x_k)(x - x_{k+1})|$$

或

$$\max_{a \leqslant x \leqslant b} |f(x) - I_h(x)| \leqslant \frac{M_2}{8} h^2,$$

其中 $M_2 = \max_{a \leqslant x \leqslant b} |f''(x)|$. 由此还可得到

$$\lim_{h \to 0} I_h(x) = f(x)$$

在 [a,b] 上一致成立, 故 $I_h(x)$ 在 [a,b] 上一致收敛到 f(x).

定理 2.14 (分段三次 Hermite(埃尔米特) 插值)

若已知函数 $f \in C^4[a,b]$ 在节点 $a = x_0 < x_1 < \cdots < x_n = b$ 上的函数值 f_0, f_1, \cdots, f_n , 记 $h_k = x_{k+1} - x_k$, $h = \max_k h_k$, 则存在一个导数连续的分段插值函数 $I_h(x)$ 满足条件:

- (1) $I_h(x) \in C^1[a,b]$;
- (2) $I_h(x_k) = f_k, I'_h(x_k) = f'_k (k = 0, 1, \dots, n);$
- (3) $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上是三次多项式.

并且 $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上的表达式为

$$I_h(x) = \left(\frac{x - x_{k+1}}{x_k - x_{k+1}}\right)^2 \left(1 + 2\frac{x - x_k}{x_{k+1} - x_k}\right) f_k + \left(\frac{x - x_k}{x_{k+1} - x_k}\right)^2 \left(1 + 2\frac{x - x_{k+1}}{x_k - x_{k+1}}\right) f_{k+1}$$

$$+\left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2(x-x_k)f_k' + \left(\frac{x-x_k}{x_{k+1}-x_k}\right)^2(x-x_{k+1})f_{k+1}'. \tag{2.45}$$

上式对于 $k=0,1,\cdots,n-1$ 成立. 称 $I_h(x)$ 为分段三次 Hermite(埃尔米特) 插值函数. 我们有误差估计

$$\max_{a \le x \le b} |f(x) - I_h(x)| \le \frac{h^4}{384} \max_{a \le x \le b} |f^{(4)}(x)|,$$

其中 $h = \max_{0 \le k \le n-1} (x_{k+1} - x_k).$

 \Diamond

笔记 这个定理表明分段三次埃尔米特插值比分段线性插值效果明显改善. 但这种插值要求给出节点上的导数值, 所要提供的信息太多, 其光滑度也不高 (只有一阶导数连续), 改进这种插值以克服其缺点就导致三次样条插值的提出.

证明 根据两点三次插值多项式 (2.36), 可取 $I_h(x)$ 在区间 $[x_k, x_{k+1}]$ 上的表达式为

$$\begin{split} I_h(x) &= \left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2 \left(1+2\frac{x-x_k}{x_{k+1}-x_k}\right) f_k + \left(\frac{x-x_k}{x_{k+1}-x_k}\right)^2 \left(1+2\frac{x-x_{k+1}}{x_k-x_{k+1}}\right) f_{k+1} \\ &+ \left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2 (x-x_k) f_k' + \left(\frac{x-x_k}{x_{k+1}-x_k}\right)^2 (x-x_{k+1}) f_{k+1}'. \end{split}$$

上式对于 $k = 0, 1, \dots, n-1$ 成立. 上式显然满足插值条件 (1)(2)(3).

利用三次埃尔米特插值多项式的余项 (2.37), 又注意到 $\max_{x_k \leqslant x \leqslant x_{k+1}} \left\{ (x - x_k)^2 (x - x_{k+1})^2 \right\} = \frac{h_k^4}{16}$ (求导易证), 其中 $h_k = x_{k+1} - x_k$, 故可得误差估计

$$|f(x) - I_h(x)| \leq \frac{1}{4!} \max_{x_k \leq x \leq x_{k+1}} |f^{(4)}(x)| (x - x_k)^2 (x - x_{k+1})^2 \leq \frac{1}{24} \max_{x_k \leq x \leq x_{k+1}} |f^{(4)}(x)| \cdot \frac{h_k^4}{16}$$

$$= \frac{1}{384} h_k^4 \max_{x_k \leq x \leq x_{k+1}} |f^{(4)}(x)|, \quad x \in [x_k, x_{k+1}],$$

其中 $h_k = x_{k+1} - x_k$. 进而

$$\max_{a \le x \le b} |f(x) - I_h(x)| \le \frac{h^4}{384} \max_{a \le x \le b} |f^{(4)}(x)|,$$

其中 $h = \max_{0 \le k \le n-1} (x_{k+1} - x_k).$

2.6 三次样条插值

定义 2.7 (三次样条函数)

若函数 $S(x) \in C^2[a,b]$, 且在每个小区间 $[x_j,x_{j+1}]$ 上是三次多项式, 其中 $a=x_0 < x_1 < \cdots < x_n = b$ 是给定节点, 则称 S(x) 是节点 x_0,x_1,\cdots,x_n 上的**三次样条函数**. 若在节点 x_j 上给定函数值 $y_j=f(x_j)$ $(j=0,1,\cdots,n)$, 并成立

$$S(x_j) = y_j, \quad j = 0, 1, \dots, n,$$
 (2.46)

则称 S(x) 为三次样条插值函数.

•

注 从定义知要求出 S(x), 在每个小区间 $[x_j, x_{j+1}]$ 上要确定 4 个待定系数, 而共有 n 个小区间, 故应确定 4n 个参数. 根据 S(x) 在 [a,b] 上二阶导数连续, 在节点 x_j ($j=1,2,\cdots,n-1$) 处应满足连续性条件

$$S(x_i - 0) = S(x_i + 0), \quad S'(x_i - 0) = S'(x_i + 0), \quad S''(x_i - 0) = S''(x_i + 0). \tag{2.47}$$

这里共有 3n-3 个条件, 再加上 S(x) 满足插值条件 (2.46), 共有 4n-2 个条件, 因此还需要加上 2 个条件才能确定 S(x). 通常可在区间 [a,b] 的端点 $a=x_0,b=x_n$ 上各加一个条件 (称为边界条件), 可根据实际问题的要求给定. 常见的有以下 3 种:

(1) 已知两端的一阶导数值, 即

$$S'(x_0) = f'_0, \quad S'(x_n) = f'_n.$$
 (2.48)

(2) 两端的二阶导数已知, 即

$$S''(x_0) = f_0'', \quad S''(x_n) = f_n'', \tag{2.49}$$

其特殊情况为

$$S''(x_0) = S''(x_n) = 0. (2.50)$$

(2.50) 式称为自然边界条件.

(3) 当 f(x) 是以 $x_n - x_0$ 为周期的周期函数时,则要求 S(x) 也是周期函数. 这时边界条件应满足

$$\begin{cases} S(x_0 + 0) = S(x_n - 0), \ S'(x_0 + 0) = S'(x_n - 0), \\ S''(x_0 + 0) = S''(x_n - 0), \end{cases}$$
(2.51)

而此时 (2.46) 式中 $y_0 = y_n$. 这样确定的样条函数 S(x) 称为周期样条函数.

构造满足插值条件 (2.46) 及相应边界条件的三次样条插值函数 S(x) 的表达式可以有多种方法. 例如, 可以直接利用分段三次埃尔米特插值, 只要假定 $S'(x_i) = m_i$ ($i = 0, 1, \dots, n$), 再由插值条件 (2.46) 可得

$$S(x) = \sum_{j=0}^{n} [y_j \alpha_j(x) + m_j \beta_j(x)], \qquad (2.52)$$

其中 $\alpha_j(x)$, $\beta_j(x)$ 是由 (2.39) 式 (2.42) 式表示的插值基函数, 利用条件 (2.47) 式及相应边界条件 (2.48) 式 (2.51) 式, 则可得到关于 m_i ($j=0,1,\cdots,n$) 的三对角方程组, 求出 m_i 则得到所求的三次样条函数 S(x).

定理 2.15

若已知函数 $f \in C^4[a,b]$ 在节点 $a = x_0 < x_1 < \cdots < x_n = b$ 上的函数值 y_0, y_1, \cdots, y_n , 记 $h_j = x_{j+1} - x_j$, $h = \max_j h_j$. 记 S(x) 为 f(x) 的三次样条插值函数,且满足三种边界条件之一,即满足(2.48)式或(2.49)式或(2.51)式,则三次样条表达式为

$$S(x) = M_{j} \frac{(x_{j+1} - x)^{3}}{6h_{j}} + M_{j+1} \frac{(x - x_{j})^{3}}{6h_{j}} + \left(y_{j} - \frac{M_{j}h_{j}^{2}}{6}\right) \frac{x_{j+1} - x}{h_{j}} + \left(y_{j+1} - \frac{M_{j+1}h_{j}^{2}}{6}\right) \frac{x - x_{j}}{h_{j}}, \quad j = 0, 1, \dots, n-1.$$

$$(2.53)$$

其中 $M_i(j=0,1,\cdots,n)$ 满足三对角方程组(2.54)或(2.55).

(1) 对第一种边界条件,即

$$S'(x_0) = f'_0, \quad S'(x_n) = f'_n.$$

令 $\lambda_0=1, d_0=\frac{6}{h_0}(f[x_0,x_1]-f_0'), \mu_n=1, d_n=\frac{6}{h_{n-1}}(f_n'-f[x_{n-1},x_n]), 则 M_j(j=0,1,\cdots,n)$ 满足三对角方程组

$$\begin{pmatrix} 2 & \lambda_{0} & & & & \\ \mu_{1} & 2 & \lambda_{1} & & & \\ & \ddots & \ddots & \ddots & \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \\ & & & \mu_{n} & 2 \end{pmatrix} \begin{pmatrix} M_{0} \\ M_{1} \\ \vdots \\ M_{n-1} \\ M_{n} \end{pmatrix} = \begin{pmatrix} d_{0} \\ d_{1} \\ \vdots \\ d_{n-1} \\ d_{n} \end{pmatrix}. \tag{2.54}$$

(2) 对第二种边界条件,即

$$S''(x_0) = f_0'', \quad S''(x_n) = f_n'',$$

令 $\lambda_0 = \mu_n = 0, d_0 = 2f_0'', d_n = 2f_n'', 则 M_j(j = 0, 1, \dots, n)$ 也满足三对角方程组(2.54).

(3) 对第三种边界条件,即

$$\begin{cases} S(x_0 + 0) = S(x_n - 0), \ S'(x_0 + 0) = S'(x_n - 0), \\ S''(x_0 + 0) = S''(x_n - 0), \end{cases}$$

令

$$\begin{split} \lambda_n &= \frac{h_0}{h_{n-1} + h_0}, \quad \mu_n = 1 - \lambda_n = \frac{h_{n-1}}{h_{n-1} + h_0}, \\ d_n &= 6 \frac{f[x_0, x_1] - f[x_{n-1}, x_n]}{h_0 + h_{n-1}}. \end{split}$$

则 $M_i(j=0,1,\cdots,n)$ 满足三对角方程组

$$\begin{pmatrix} 2 & \lambda_{1} & & & \mu_{1} \\ \mu_{2} & 2 & \lambda_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \\ \lambda_{n} & & & \mu_{n} & 2 \end{pmatrix} \begin{pmatrix} M_{1} \\ M_{2} \\ \vdots \\ M_{n-1} \\ M_{n} \end{pmatrix} = \begin{pmatrix} d_{1} \\ d_{2} \\ \vdots \\ d_{n-1} \\ d_{n} \end{pmatrix}.$$
 (2.55)

证明 假定 S(x) 的二阶导数值 $S''(x_j) = M_j$ $(j = 0, 1, \dots, n)$ 表达 S(x). 由于 S(x) 在区间 $[x_j, x_{j+1}]$ 上是三次多项式,故 S''(x) 在 $[x_j, x_{j+1}]$ 上是线性函数,可表示为

$$S''(x) = M_j \frac{x_{j+1} - x}{h_i} + M_{j+1} \frac{x - x_j}{h_i}.$$
 (2.56)

对 S''(x) 积分两次并利用 $S(x_i) = y_i$ 及 $S(x_{i+1}) = y_{i+1}$,可定出积分常数,于是得三次样条表达式

$$S(x) = M_j \frac{(x_{j+1} - x)^3}{6h_j} + M_{j+1} \frac{(x - x_j)^3}{6h_j} + \left(y_j - \frac{M_j h_j^2}{6}\right) \frac{x_{j+1} - x}{h_j} + \left(y_{j+1} - \frac{M_{j+1} h_j^2}{6}\right) \frac{x - x_j}{h_j}, \quad j = 0, 1, \dots, n-1.$$

$$(2.57)$$

这里 $h_j=x_{j+1}-x_j, M_j$ $(j=0,1,\cdots,n)$ 是未知的. 为了确定 M_j $(j=0,1,\cdots,n)$, 对 S(x) 求导得

$$S'(x) = -M_j \frac{(x_{j+1} - x)^2}{2h_j} + M_{j+1} \frac{(x - x_j)^2}{2h_j} + \frac{y_{j+1} - y_j}{h_j} - \frac{M_{j+1} - M_j}{6} h_j;$$
 (2.58)

由此可求得

$$S'(x_j+0) = -\frac{h_j}{3}M_j - \frac{h_j}{6}M_{j+1} + \frac{y_{j+1}-y_j}{h_i}.$$

类似地可求出 S(x) 在区间 $[x_{i-1},x_i]$ 上的表达式, 进而得

$$S'(x_j - 0) = \frac{h_{j-1}}{6} M_{j-1} + \frac{h_{j-1}}{3} M_j + \frac{y_j - y_{j-1}}{h_{j-1}}.$$

利用 $S'(x_i + 0) = S'(x_i - 0)$ 可得

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = d_i, \quad j = 1, 2, \dots, n-1,$$
 (2.59)

其中

$$\mu_j = \frac{h_{j-1}}{h_{j-1} + h_j}, \quad \lambda_j = \frac{h_j}{h_{j-1} + h_j},$$

$$d_{j} = 6 \frac{f[x_{j}, x_{j+1}] - f[x_{j-1}, x_{j}]}{h_{j-1} + h_{j}} = 6f[x_{j-1}, x_{j}, x_{j+1}], \quad j = 1, 2, \dots, n-1.$$
(2.60)

(1) 对第一种边界条件 (2.48), 可导出两个方程

$$\begin{cases}
2M_0 + M_1 = \frac{6}{h_0} (f[x_0, x_1] - f'_0), \\
M_{n-1} + 2M_n = \frac{6}{h_{n-1}} (f'_n - f[x_{n-1}, x_n]).
\end{cases}$$
(2.61)

如果令 $\lambda_0 = 1, d_0 = \frac{6}{h_0} (f[x_0, x_1] - f'_0), \mu_n = 1, d_n = \frac{6}{h_{n-1}} (f'_n - f[x_{n-1}, x_n]),$ 那么 (2.59) 式及 (2.61) 式可写成矩阵形式

$$\begin{pmatrix} 2 & \lambda_{0} & & & \\ \mu_{1} & 2 & \lambda_{1} & & \\ & \ddots & \ddots & \ddots & \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \\ & & & \mu_{n} & 2 \end{pmatrix} \begin{pmatrix} M_{0} \\ M_{1} \\ \vdots \\ M_{n-1} \\ M_{n} \end{pmatrix} = \begin{pmatrix} d_{0} \\ d_{1} \\ \vdots \\ d_{n-1} \\ d_{n} \end{pmatrix}.$$
(2.62)

(2) 对第二种边界条件 (2.49), 直接得端点方程

$$M_0 = f_0^{"}, \quad M_n = f_n^{"}.$$
 (2.63)

如果令 $\lambda_0 = \mu_n = 0, d_0 = 2f_0'', d_n = 2f_n'',$ 则 (2.59) 式和 (2.63) 式也可以写成 (2.62) 式的形式.

(3) 对于第三种边界条件 (2.51), 可得

$$M_0 = M_n, \quad \lambda_n M_1 + \mu_n M_{n-1} + 2M_n = d_n,$$
 (2.64)

其中

$$\lambda_n = \frac{h_0}{h_{n-1} + h_0}, \quad \mu_n = 1 - \lambda_n = \frac{h_{n-1}}{h_{n-1} + h_0},$$

$$d_n = 6 \frac{f[x_0, x_1] - f[x_{n-1}, x_n]}{h_0 + h_{n-1}}.$$

(2.59) 式和 (2.64) 式可以写成矩阵形式

$$\begin{pmatrix} 2 & \lambda_{1} & & & \mu_{1} \\ \mu_{2} & 2 & \lambda_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \\ \lambda_{n} & & & \mu_{n} & 2 \end{pmatrix} \begin{pmatrix} M_{1} \\ M_{2} \\ \vdots \\ M_{n-1} \\ M_{n} \end{pmatrix} = \begin{pmatrix} d_{1} \\ d_{2} \\ \vdots \\ d_{n-1} \\ d_{n} \end{pmatrix}.$$
 (2.65)

注 线性方程组 (2.62) 和 (2.65) 是关于 M_j ($j=0,1,\cdots,n$) 的三对角线性方程组, M_j 在力学上解释为细梁在 x_j 截面处的弯矩, 称为 S(x) 的矩, 线性方程组 (2.62) 和 (2.65) 称为三弯矩方程. 方程组 (2.62) 和 (2.65) 的系数矩阵中元素 λ_j,μ_j 已完全确定. 并且满足 $\lambda_j\geqslant 0,\mu_j\geqslant 0,\lambda_j+\mu_j=1$. 因此系数矩阵为严格对角占优阵, 从而方程组 (2.62) 和 (2.65) 有唯一解. 求解方法可见 5.3 节追赶法, 将解得结果代入 (2.53) 式即可.

定理 2.16

设 $f(x) \in C^4[a,b],S(x)$ 为满足第一种或第二种边界条件(2.48)或(2.49)的三次样条函数,令 $h=\max_{0\leqslant i\leqslant n-1}h_i,h_i=x_{i+1}-x_i(i=0,1,\cdots,n-1)$,则有估计式

$$\max_{a \leqslant x \leqslant b} |f^{(k)}(x) - S^{(k)}(x)| \leqslant C_k \max_{a \leqslant x \leqslant b} |f^{(4)}(x)| h^{4-k}, \quad k = 0, 1, 2,$$

$$1 \leq C_k = 3$$
(2.66)

其中
$$C_0 = \frac{5}{384}, C_1 = \frac{1}{24}, C_2 = \frac{3}{8}.$$

笔记 这个定理不但给出了三次样条插值函数 S(x) 的误差估计, 而且说明当 $h \to 0$ 时, S(x) 及其一阶导数 S'(x) 和二阶导数 S''(x) 均分别一致收敛于 f(x), f'(x) 及 f''(x).

证明

例题 **2.7** 设 f(x) 为定义在 [27.7,30] 上的函数, 在节点 $x_i(i = 0, 1, 2, 3)$ 上的值如下:

$$f(x_0) = f(27.7) = 4.1$$
, $f(x_1) = f(28) = 4.3$, $f(x_2) = f(29) = 4.1$, $f(x_3) = f(30) = 3.0$.

试求三次样条函数 S(x), 使它满足边界条件 S'(27.7)=3.0, S'(30)=-4.0. 解 先由 (2.60)式及 (2.61)式计算 $h_0=0.30, h_1=h_2=1, \mu_1=\frac{3}{13}, \mu_2=\frac{1}{2}, \mu_3=1, \lambda_0=1, \lambda_1=\frac{10}{13}, \lambda_2=\frac{1}{2}, d_0=\frac{6}{h_0}(f[x_0,x_1]-f_0')=-46.666, d_1=6f[x_0,x_1,x_2]=-4.00002, d_2=6f[x_1,x_2,x_3]=-2.70000, d_3=\frac{6}{h_2}(f_3'-f[x_2,x_3])=-17.4$. 由此得矩阵形式的线性方程组 (6.13) 为

$$\begin{pmatrix} 2 & 1 & & & \\ \frac{3}{13} & 2 & \frac{10}{13} & & \\ & \frac{1}{2} & 2 & \frac{1}{2} & \\ & & 1 & 2 \end{pmatrix} \begin{pmatrix} M_0 \\ M_1 \\ M_2 \\ M_3 \end{pmatrix} = \begin{pmatrix} -46.6666 \\ -4.00002 \\ -2.7000 \\ -17.4000 \end{pmatrix}.$$

求解此方程组得到

$$M_0 = -23.531, \quad M_1 = 0.396,$$

$$M_2 = 0.830, \quad M_3 = -9.115.$$

将 M₀, M₁, M₂, M₃ 代入表达式 (2.57)得到 (曲线见图 2.4).

$$S(x) = \begin{cases} 13.07278(x-28)^3 - 14.84322(x-28) + 0.22000(x-27.7)^3 + 14.31353(x-27.7), & x \in [27.7,28], \\ 0.06600(29-x)^3 + 4.23400(29-x) + 0.13833(x-28)^3 + 3.96167(x-28), & x \in [28,29], \\ 0.13833(30-x)^3 + 3.96167(30-x) - 1.51917(x-29)^3 + 4.51917(x-29), & x \in [29,30]. \end{cases}$$

通常求三次样条函数可根据上述例题的计算步骤直接编程上机计算,或直接使用数学库中的软件,根据具体要求 算出结果即可.

例题 2.8 给定函数 $f(x) = \frac{1}{1+x^2}$, $-5 \leqslant x \leqslant 5$, 节点 $x_k = -5 + k(k = 0, 1, \dots, 10)$, 求三次样条插值 $S_{10}(x)$.

表 2.7

	1				1		
X	$\frac{1}{1+x^2}$	$S_{10}(x)$	$L_{10}(x)$	X	$\frac{1}{1+x^2}$	$S_{10}(x)$	$L_{10}(x)$
-5.0	0.038 46	0.038 46	0.038 46	-2.3	0.158 98	0.161 15	0.241 45
-4.8	0.041 60	0.037 58	1.804 38	-2.0	0.200 00	0.200 00	0.200 00
-4.5	0.047 06	0.042 48	1.578 72	-1.8	0.235 85	0.231 54	0.188 78
-4.3	0.051 31	0.048 42	0.888 08	-1.5	0.307 69	0.297 44	0.235 35
-4.0	0.058 82	0.058 82	0.058 82	-1.3	0.371 75	0.361 33	0.316 50
-3.8	0.064 77	0.065 56	-0.201 30	-1.0	0.500 00	0.500 00	0.500 00
-3.5	0.075 47	0.076 06	-0.226 20	-0.8	0.609 76	0.624 20	0.643 16
-3.3	0.084 10	0.084 26	-0.108 32	-0.5	0.800 00	0.820 51	0.843 40
-3.0	0.100 00	0.100 00	0.100 00	-0.3	0.917 43	0.927 54	0.940 90
-2.8	0.113 12	0.113 66	0.198 37	0	1.000 00	1.000 00	1.000 00
-2.5	0.137 93	0.139 71	0.253 76				

取 $S_{10}(x_k) = f(x_k)(k=0,1,\cdots,10)$, $S'_{10}(-5) = f'(-5)$, $S'_{10}(5) = f'(5)$. 直接上机计算可求出 $S_{10}(x)$ 在表 2.7 所列各点的值 (利用对称性,这里只列出在负半轴上各点的值). 从表中看到,在所列各点 $S_{10}(x)$ 与 f(x) 误差较小,它可作为 f(x) 在区间 [-5,5] 上的近似,而用拉格朗日插值多项式 $L_{10}(x)$ 计算相应点上的值 $L_{10}(x)$ (也见表 2.7),显然它与 f(x) 相差很大,在图 2.3中已经看到它不能作为 f(x) 的近似.

第3章 函数逼近与快速傅里叶变换

3.1 函数逼近的基本概念

定义 3.1

设集合 S 是数域 P 上的线性空间, 元素 $x_1, x_2, \dots, x_n \in S$, 如果存在不全为零的数 $\alpha_1, \alpha_2, \dots, \alpha_n \in P$, 使得

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0, \tag{3.1}$$

则称 x_1, x_2, \dots, x_n 线性相关. 否则, 若等式 (3.1) 只对 $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$ 成立, 则称 x_1, x_2, \dots, x_n 线性 无关.

若线性空间 S 是由 n 个线性无关元素 x_1, x_2, \dots, x_n 生成的, 即对 $\forall x \in S$ 都有

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n,$$

则 x_1, x_2, \dots, x_n 称为空间 S 的一组基, 记为 $S = \text{span}\{x_1, x_2, \dots, x_n\}$, 并称空间 S 为 n 维空间, 系数 $\alpha_1, \alpha_2, \dots, \alpha_n$ 称为 x 在基 x_1, x_2, \dots, x_n 下的**坐标**, 记作 $(\alpha_1, \alpha_2, \dots, \alpha_n)$, 如果 S 中有无限个线性无关元素 $x_1, x_2, \dots, x_n, \dots$, 则称 S 为无限维线性空间.

定理 3.1

设 $f(x) \in C[a,b]$, 则对任何 $\varepsilon > 0$, 总存在一个代数多项式 p(x), 使

$$\max_{a \leqslant x \leqslant b} |f(x) - p(x)| < \varepsilon$$

在 [a,b] 上一致成立.

证明 见定理??. □

注 这个定理有多种证明方法. 这里需要说明的是在许多证明方法中,Bernstein(伯恩斯坦)1912 年给出的证明是一种构造性证明 (即上述证明). 他根据函数整体逼近的特性构造出 Bernstein 多项式

$$B_n(f,x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) P_k(x),\tag{3.2}$$

其中

$$P_k(x) = \binom{n}{k} x^k (1-x)^{n-k},$$

 $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$ 为二项式展开系数, 并证明了 (见 Bernstein 多项式的性质) $\lim_{n\to\infty} B_n(f,x) = f(x)$ 在 [0,1] 上一致成立; 若 f(x) 在 [0,1] 上 m 阶导数连续, 则

$$\lim_{n \to \infty} B_n^{(m)}(f, x) = f^{(m)}(x).$$

由(3.2)式给出的 $B_n(f,x)$ 也是 f(x) 在 [0,1] 上的一个逼近多项式, 但它收敛太慢, 实际中很少使用.

更一般地, 可用一组在 C[a,b] 上线性无关的函数集合 $\{\varphi_i(x)\}_{i=0}^n$ 来逼近 $f(x) \in C[a,b]$, 元素 $\varphi(x) \in \Phi = \operatorname{span}\{\varphi_0(x), \varphi_1(x), \cdots, \varphi_n(x)\} \subset C[a,b]$, 表示为

$$\varphi(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_n \varphi_n(x). \tag{3.3}$$

函数逼近问题就是对任何 $f \in C[a,b]$, 在子空间 Φ 中找一个元素 $\varphi^*(x) \in \Phi$, 使 $f(x) - \varphi^*(x)$ 在某种意义下最小.

定义 3.2 (范数)

设S为线性空间, $x \in S$, 若存在唯一实数 $\|\cdot\|$, 满足条件:

- (1) $||x|| \ge 0$, 当且仅当 x = 0 时, ||x|| = 0; (正定性)
- $(2) \|\alpha x\| = |\alpha| \|x\|, \alpha \in \mathbb{R}; (齐次性)$
- (3) $||x + y|| \le ||x|| + ||y||, x, y \in S$. (三角不等式)

则称 $\|\cdot\|$ 为线性空间 S 上的**范数**,S 与 $\|\cdot\|$ 一起称为**赋范线性空间**,记为 X.

 $\widehat{\mathbf{Y}}$ 笔记 例如, 对于在 \mathbb{R}^n 上的向量 $x = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$, 有三种常用范数:

 $||x||_{\infty} = \max_{1 \leq i \leq n} |x_i|, \, \text{\hbar β ∞-$ \node n $ \no$

$$||x||_1 = \sum_{i=1}^n |x_i|, \, \text{\hbar 1-$ \bar{n}$ $\frac{1}{2}$,}$$

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}, \, \text{\hbar 5 2-5 5}.$$

类似地对连续函数空间 C[a,b], 若 $f \in C[a,b]$ 可定义三种常用范数如下:

$$||f||_{\infty} = \max_{a \leqslant x \leqslant b} |f(x)|, \, \text{\hbar β ∞-$ $\tilde{\textbf{z}}$ $\underline{\textbf{y}}$},$$

$$||f||_1 = \int_a^b |f(x)| dx$$
, $\%$ **1-范数**,

$$||f||_2 = \left(\int_a^b f^2(x) \, \mathrm{d}x\right)^{\frac{1}{2}}, \, \text{k β $2-$\tilde{n}$$$$\&}.$$

可以验证这样定义的范数均满足定义2中的三个条件.

定义 3.3

设 X 是数域 $K(\mathbb{R}$ 或 \mathbb{C}) 上的线性空间, 对 $\forall u, v \in X$, 有 K 中一个数与之对应, 记为 (u, v), 它满足以下条件:

- (1) $(u, v) = \overline{(v, u)}, \forall u, v \in X$;
- (2) $(\alpha u, v) = \alpha(u, v), \alpha \in K, u, v \in X$;
- (3) $(u + v, w) = (u, w) + (v, w), \forall u, v, w \in X$;
- $(4)(u,u) \ge 0$, 当且仅当 u = 0 时,(u,u) = 0.

则称 (u,v) 为 $X \perp u$ 与 v 的**内积**. 定义了内积的线性空间称为**内积空间**. 定义中条件 (1) 的右端 $\overline{(u,v)}$ 称 为 (u,v) 的**共轭**, 当 K 为实数域 \mathbb{R} 时, 条件 (1) 为 (u,v) = (v,u).

如果 (u, v) = 0, 则称 u = v 正交, 这是向量相互垂直概念的推广.

定理 3.2

设X为一个内积空间,对 $\forall u, v \in X$,有

$$|(u,v)|^2 \le (u,u)(v,v).$$
 (3.4)

称其为柯西-施瓦茨 (Cauchy-Schwarz) 不等式.

证明 当 $\nu = 0$ 时,(3.4)式显然成立. 现设 $\nu \neq 0$,则 $(\nu, \nu) > 0$,且对任何数 λ 有

$$0 \le (u + \lambda v, u + \lambda v) = (u, u) + 2\lambda(u, v) + \lambda^2(v, v).$$

取 $\lambda = -(u, v)/(v, v)$, 代入上式右端, 得

$$(u,u) - 2\frac{|(u,v)|^2}{(v,v)} + \frac{|(u,v)|^2}{(v,v)} \geqslant 0,$$

由此即得 ν≠0 时

$$|(u,v)|^2 \leqslant (u,u)(v,v).$$

证毕.

注 在内积空间 X 上可以由内积导出一种范数, 即对于 $u \in X$, 记

$$||u|| = \sqrt{(u,u)},\tag{3.5}$$

容易验证它满足范数定义的三条性质,其中三角不等式

$$||u + v|| \le ||u|| + ||v|| \tag{3.6}$$

可由定理 3.2直接得出,即

$$(||u|| + ||v||)^{2} = ||u||^{2} + 2||u||||v|| + ||v||^{2}$$

$$\geq (u, u) + 2(u, v) + (v, v)$$

$$= (u + v, u + v) = ||u + v||^{2},$$

两端开方即得(3.6)式.

定理 3.3

设X为一个内积空间, $u_1,u_2,\cdots,u_n\in X$,矩阵

$$G = \begin{pmatrix} (u_{1}, u_{1}) & (u_{2}, u_{1}) & \cdots & (u_{n}, u_{1}) \\ (u_{1}, u_{2}) & (u_{2}, u_{2}) & \cdots & (u_{n}, u_{2}) \\ \vdots & \vdots & & \vdots \\ (u_{1}, u_{n}) & (u_{2}, u_{n}) & \cdots & (u_{n}, u_{n}) \end{pmatrix}$$
(3.7)

称为格拉姆 (Gram) 矩阵. 矩阵 G 非奇异的充分必要条件是 u_1, u_2, \cdots, u_n 线性无关.

证明 G 非奇异等价于 $\det G \neq 0$, 其充分必要条件是关于 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的齐次线性方程组

$$\left(\sum_{j=1}^{n} \alpha_{j} u_{j}, u_{k}\right) = \sum_{j=1}^{n} (u_{j}, u_{k}) \alpha_{j} = 0, \quad k = 1, 2, \dots, n$$
(3.8)

只有零解;而

$$\sum_{j=1}^{n} \alpha_{j} u_{j} = \alpha_{1} u_{1} + \alpha_{2} u_{2} + \dots + \alpha_{n} u_{n} = 0$$

$$\Leftrightarrow \left(\sum_{j=1}^{n} \alpha_{j} u_{j}, \sum_{j=1}^{n} \alpha_{j} u_{j}\right) = 0$$

$$\Leftrightarrow \left(\sum_{j=1}^{n} \alpha_{j} u_{j}, u_{k}\right) = 0, \quad k = 1, 2, \dots, n.$$

$$(3.9)$$

从以上等价关系可知, $\det G \neq 0$ 等价于从方程(3.8)推出 $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$, 而后者等价于从方程 (3.9) 推出 $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$, 即 u_1, u_2, \cdots, u_n 线性无关. 证毕.

定义 3.4 (\mathbb{R}^n 与 \mathbb{C}^n 的内积)

设 $x, y \in \mathbb{R}^n, x = (x_1, x_2, \dots, x_n)^T, y = (y_1, y_2, \dots, y_n)^T$, 则其内积定义为

$$(x, y) = \sum_{i=1}^{n} x_i y_i.$$
 (3.10)

由此导出的向量 2-范数为

$$||x||_2 = (x,x)^{\frac{1}{2}} = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}.$$

若给定实数 $\omega_i > 0 (i = 1, 2, \dots, n)$, 称 $\{\omega_i\}$ 为**权系数**, 则在 \mathbb{R}^n 上可定义**加权内积**为

$$(x, y) = \sum_{i=1}^{n} \omega_i x_i y_i, \tag{3.11}$$

相应的范数为

$$||x||_2 = \left(\sum_{i=1}^n \omega_i x_i^2\right)^{\frac{1}{2}}.$$

如果 $x, y \in \mathbb{C}^n$, 带权内积定义为

$$(x, y) = \sum_{i=1}^{n} \omega_i x_i \overline{y}_i, \tag{3.12}$$

这里 $\{\omega_i\}$ 仍为正实数序列, \overline{y}_i 为 y_i 的共轭复数.

注 不难验证 (3.11) 式给出的 (x,y) 满足内积定义的四条性质. 当 $\omega_i = 1$ $(i = 1,2,\cdots,n)$ 时,(3.11) 式就是 (3.10) 式.

设 [a,b] 是有限或无限区间, 在 [a,b] 上的非负函数 $\rho(x)$ 满足条件: (1) $\int_a^b x^k \rho(x) \, dx$ 存在且为有限值 $(k=0,1,\cdots)$;

(2) 对 [a,b] 上的非负连续函数 g(x), 如果 $\int_a^b g(x)\rho(x)\,\mathrm{d}x=0$, 则 $g(x)\equiv0$. 则称 $\rho(x)$ 为 [a,b] 上的一个**权函数**.

定义 3.6 (C[a, b] 上的内积)

设 $f(x), g(x) \in C[a,b], \rho(x)$ 是 [a,b] 上给定的权函数,则可定义内积

$$(f(x), g(x)) = \int_{a}^{b} \rho(x)f(x)g(x) dx.$$
 (3.13)

由此内积导出的范数为

$$||f(x)||_2 = (f(x), f(x))^{\frac{1}{2}} = \left[\int_a^b \rho(x) f^2(x) \, \mathrm{d}x \right]^{\frac{1}{2}}.$$
 (3.14)

称 (3.13) 式和 (3.14) 式分别为**带权 ρ(x) 的内积和范数**, 特别常用的是 ρ(x) ≡ 1 的情形, 即

$$(f(x), g(x)) = \int_{a}^{b} f(x)g(x) dx,$$
$$||f(x)||_{2} = \left(\int_{a}^{b} f^{2}(x) dx\right)^{\frac{1}{2}}.$$

注 容易验证(3.13)式满足内积定义的四条性质

例题 3.1

若 $\varphi_0, \varphi_1, \cdots, \varphi_n$ 是 C[a, b] 中的线性无关函数族, 记 $\varphi = \text{span}\{\varphi_0, \varphi_1, \cdots, \varphi_n\}$, 它的格拉姆矩阵为

$$G = G(\varphi_0, \varphi_1, \cdots, \varphi_n) = \begin{pmatrix} (\varphi_0, \varphi_0) & (\varphi_0, \varphi_1) & \cdots & (\varphi_0, \varphi_n) \\ (\varphi_1, \varphi_0) & (\varphi_1, \varphi_1) & \cdots & (\varphi_1, \varphi_n) \\ \vdots & \vdots & & \vdots \\ (\varphi_n, \varphi_0) & (\varphi_n, \varphi_1) & \cdots & (\varphi_n, \varphi_n) \end{pmatrix},$$
(3.15)

则 $\varphi_0, \varphi_1, \dots, \varphi_n$ 线性无关的充要条件是 det $G(\varphi_0, \varphi_1, \dots, \varphi_n) \neq 0$.

定义 3.7

若 $P^*(x) \in H_n$ 使误差

$$||f(x) - P^*(x)|| = \min_{P \in H_n} ||f(x) - P(x)||,$$

则称 $P^*(x)$ 是 f(x) 在 [a,b] 上的**最佳逼近多项式**. 如果 $P(x) \in \Phi = \operatorname{span}\{\varphi_0, \varphi_1, \cdots, \varphi_n\}$, 则称相应的 $P^*(x)$ 为**最佳逼近函数**. 通常范数 $\|\cdot\|$ 取为 $\|\cdot\|_{\infty}$ 或 $\|\cdot\|_{\infty}$. 若取 $\|\cdot\|_{\infty}$, 即

$$||f(x) - P^*(x)||_{\infty} = \min_{P \in H_n} ||f(x) - P(x)||_{\infty} = \min_{P \in H_n} \max_{a \le x \le b} |f(x) - P(x)|, \tag{3.16}$$

则称 $P^*(x)$ 为 f(x) 在 [a,b] 上的最优 (最佳) 一致逼近多项式. 这时求 $P^*(x)$ 就是求 [a,b] 上使最大误差 $\max_{a\leqslant x\leqslant b}|f(x)-P(x)|$ 最小的多项式.

如果范数 ||·|| 取为 ||·||2, 即

$$||f(x) - P^*(x)||_2^2 = \min_{P \in H_n} ||f(x) - P(x)||_2^2 = \min_{P \in H_n} \int_a^b [f(x) - P(x)]^2 dx,$$
(3.17)

则称 $P^*(x)$ 为 f(x) 在 [a,b] 上的最佳平方逼近多项式.

若 f(x) 是 [a,b] 上的一个列表函数, 在 $a \leq x_0 < x_1 < \cdots < x_m \leq b$ 上给出 $f(x_i)(i=0,1,\cdots,m)$, 要求 $P^* \in \Phi$ 使

$$||f - P^*||_2 = \min_{P \in \Phi} ||f - P||_2 = \min_{P \in \Phi} \sum_{i=0}^m [f(x_i) - P(x_i)]^2,$$
(3.18)

则称 $P^*(x)$ 为 f(x) 的最小二乘拟合.

3.2 正交多项式

3.2.1 正交函数族与正交多项式

定义 3.8

若 $f(x), g(x) \in C[a, b], \rho(x)$ 为 [a, b] 上的权函数且满足

$$(f(x), g(x)) = \int_{a}^{b} \rho(x)f(x)g(x) dx = 0,$$
(3.19)

则称 f(x) 与 g(x) 在 [a,b] 上带权 $\rho(x)$ 正交. 若函数族 $\varphi_0(x), \varphi_1(x), \cdots, \varphi_n(x), \cdots$ 满足关系

$$(\varphi_j, \varphi_k) = \int_a^b \rho(x)\varphi_j(x)\varphi_k(x) dx = \begin{cases} 0, & j \neq k, \\ A_k > 0, & j = k. \end{cases}$$
 (3.20)

则称 $\{\varphi_k(x)\}\$ 是 [a,b] 上带权 $\rho(x)$ 的正交函数族; 若 $A_k \equiv 1$, 则称为标准正交函数族.

例题 3.2 三角函数族

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \cdots$

就是在区间 $[-\pi,\pi]$ 上的正交函数族.

证明 对 $k=1,2,\cdots$ 有

$$(1,1) = 2\pi, \quad (\sin kx, \sin kx) = (\cos kx, \cos kx) = \pi,$$

与 $k = 1, 2, \dots$ 时,

$$(\cos kx, \sin kx) = (1, \cos kx) = (1, \sin kx) = 0;$$

而对 $k, j = 1, 2, \dots,$ 当 $k \neq j$ 时有

$$(\cos kx, \cos jx) = (\sin kx, \sin jx) = (\cos kx, \sin jx) = 0.$$

定义 3.9

设 $\varphi_n(x)$ 是 [a,b] 上首项系数 $a_n \neq 0$ 的 n 次多项式, $\rho(x)$ 为 [a,b] 上的权函数. 如果多项式序列 $\{\varphi_n(x)\}_0^\infty$ 满足关系式

$$(\varphi_j, \varphi_k) = \int_a^b \rho(x)\varphi_j(x)\varphi_k(x) \, \mathrm{d}x = \left\{ \begin{array}{ll} 0, & j \neq k, \\ A_k > 0, & j = k. \end{array} \right.$$

则称多项式序列 $\{\varphi_n(x)\}_0^\infty$ 为在 [a,b] 上带权 $\rho(x)$ 正交, 称 $\varphi_n(x)$ 为 [a,b] 上带权 $\rho(x)$ 的 n 次正交多项式.

定理 3.4

若给定区间 [a,b] 及权函数 $\rho(x)$, 则可由一族线性无关的幂函数 $\{1,x,\cdots,x^n,\cdots\}$, 利用逐个正交化手续构造出正交多项式序列 $\{\varphi_n(x)\}_0^\infty$:

$$\varphi_0(x) = 1$$
,

$$\varphi_n(x) = x^n - \sum_{i=0}^{n-1} \frac{(x^n, \varphi_j(x))}{(\varphi_j(x), \varphi_j(x))} \varphi_j(x), \quad n = 1, 2, \cdots.$$
 (3.21)

这样得到的正交多项式 $\varphi_n(x)$, 其最高项系数为 1.

反之, 若 $\{\varphi_n(n)\}_0^\infty$ 是正交多项式, 则 $\varphi_0(x), \varphi_1(x), \cdots, \varphi_n(x)$ 在 [a,b] 上是线性无关的.

证明 容易验证逐个正交化得到的多项式序列 $\{\varphi_n(x)\}_0^\infty$ 在 [a,b] 上带权 $\rho(x)$ 正交, 且其最高项系数为 1. 反之, 若

$$c_0\varphi_0(x) + c_1\varphi_1(x) + \dots + c_n\varphi_n(x) = 0,$$

用 $\rho(x)\varphi_i(x)(j=0,1,\cdots,n)$ 乘上式并积分得

$$c_0 \int_a^b \rho(x)\varphi_0(x)\varphi_j(x)dx + c_1 \int_a^b \rho(x)\varphi_1(x)\varphi_j(x)dx + \cdots$$
$$+ c_j \int_a^b \rho(x)\varphi_j(x)\varphi_j(x)dx + \cdots + c_n \int_a^b \rho(x)\varphi_n(x)\varphi_j(x)dx = 0.$$

利用正交性有

$$c_j \int_a^b \rho(x) \varphi_j(x) \varphi_j(x) \mathrm{d}x = 0.$$

由于 $(\varphi_j, \varphi_j) = \int_a^b \rho(x) \varphi_j^2(x) dx > 0$,故 $c_j = 0$ 对 $j = 0, 1, \cdots, n$ 成立. 由此得出 $\varphi_0(x), \varphi_1(x), \cdots, \varphi_n(x)$ 线性无关.

定理 3.5

设 $\{\varphi_n(x)\}_0^\infty$ 是 [a,b] 上带权 $\rho(x)$ 的正交多项式,则

1. 对任何 $P(x) \in H_n$ 均可表示为 $\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x)$ 的线性组合, 即

$$P(x) = \sum_{j=0}^{n} c_j \varphi_j(x).$$

其中 c_0, c_1, \cdots, c_n 不全为 0.

2. $\varphi_n(x)$ 与任何次数小于 n 的多项式 $P(x) \in H_{n-1}$ 正交, 即

$$(\varphi_n, P) = \int_a^b \rho(x)\varphi_n(x)P(x)\mathrm{d}x = 0.$$

证明

定理 3.6

设 $\{\varphi_n(x)\}_0^\infty$ 是 [a,b] 上带权 $\rho(x)$ 的正交多项式, 对 $n \ge 0$ 成立递推关系

$$\varphi_{n+1}(x) = (x - \alpha_n)\varphi_n(x) - \beta_n\varphi_{n-1}(x), \quad n = 0, 1, \dots,$$
 (3.22)

其中

$$\varphi_0(x) = 1, \quad \varphi_{-1}(x) = 0,$$

$$\alpha_n = (x\varphi_n(x), \varphi_n(x))/(\varphi_n(x), \varphi_n(x)),$$

$$\beta_n = (\varphi_n(x), \varphi_n(x))/(\varphi_{n-1}(x), \varphi_{n-1}(x)), \quad n = 1, 2, \dots,$$

这里 $(x\varphi_n(x), \varphi_n(x)) = \int_a^b x\varphi_n^2(x)\rho(x)dx.$

证明

定理 3.7

设 $\{\varphi_n(x)\}_0^\infty$ 是 [a,b] 上带权 $\rho(x)$ 的正交多项式, 则 $\varphi_n(x)(n \ge 1)$ 在区间 (a,b) 内有 n 个不同的零点.

证明 假定 $\varphi_n(x)$ 在 (a,b) 内的零点都是偶数重的,则 $\varphi_n(x)$ 在 [a,b] 上符号保持不变. 这与

$$(\varphi_n, \varphi_0) = \int_a^b \rho(x)\varphi_n(x)\varphi_0(x)dx = 0$$

矛盾. 故 $\varphi_n(x)$ 在 (a,b) 内的零点不可能全是偶重的, 现设 $x_i(i=1,2,\cdots,l)$ 为 $\varphi_n(x)$ 在 (a,b) 内的奇数重零点, 不妨设

$$a < x_1 < x_2 < \cdots < x_l < b$$
,

则 $\varphi_n(x)$ 在 $x_i(i=1,2,\cdots,l)$ 处变号. 令

$$q(x) = (x - x_1)(x - x_2) \cdot \cdot \cdot (x - x_l),$$

于是 $\varphi_n(x)q(x)$ 在 [a,b] 上不变号, 则得

$$(\varphi_n,q)=\int_a^b \rho(x)\varphi_n(x)q(x)\mathrm{d}x\neq 0.$$

若 l < n, 由 $\{\varphi_n(x)\}_0^\infty$ 的正交性可知

$$(\varphi_n, q) = \int_a^b \rho(x)\varphi_n(x)q(x)\mathrm{d}x = 0,$$

与 $(\varphi_n,q) \neq 0$ 矛盾, 故 $l \geq n$. 而 $\varphi_n(x)$ 只有 n 个零点, 故 l=n, 即 n 个零点都是单重的. 证毕.

3.2.2 Legendre(勒让德) 多项式

定义 3.10 (Legendre(勒让德) 多项式)

当区间为 [-1, 1], 权函数 $\rho(x) \equiv 1$ 时, 由 $\{1, x, \cdots, x^n, \cdots\}$ 正交化得到的多项式称为**勒让德 (Legendre) 多项式**, 并用 $P_0(x)$, $P_1(x)$, \cdots , $P_n(x)$, \cdots 表示. 这是勒让德于 1785 年引进的. 1814 年**罗德利克 (Rodrigul)** 给出了勒让德多项式的简单表达式

$$P_0(x) = 1, \quad P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, \quad n = 1, 2, \cdots.$$
 (3.23)

由于 $(x^2-1)^n$ 是2n次多项式,求n阶导数后得

$$P_n(x) = \frac{1}{2^n n!} (2n)(2n-1) \cdots (n+1)x^n + a_{n-1}x^{n-1} + \cdots + a_0,$$

于是得首项 x^n 的系数 $a_n = \frac{(2n)!}{2^n(n!)^2}$. 显然最高项系数为 1 的勒让德多项式为

$$\widetilde{P}_0(x) = 1, \quad \widetilde{P}_n(x) = \frac{n!}{(2n)!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n, \quad n = 1, 2, \cdots.$$
 (3.24)

定理 3.8 (Legendre 多项式的性质)

设 $\{P_n(x)\}_0^\infty$ 是 Legendre 多项式, 它可表示为

$$P_0(x) = 1$$
, $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$, $n = 1, 2, \dots$

则有

1. (正交性)

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0, & m \neq n; \\ \frac{2}{2n+1}, & m = n. \end{cases}$$
 (3.25)

2. (奇偶性)

$$P_n(-x) = (-1)^n P_n(x). (3.26)$$

3. (递推关系)

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \quad n = 1, 2, \cdots$$
 (3.27)

4. $P_n(x)$ 在区间 [-1,1] 内有 n 个不同的实零点.

证明

1. $\diamondsuit \varphi(x) = (x^2 - 1)^n$, \mathbb{N}

$$\varphi^{(k)}(\pm 1) = 0, \quad k = 0, 1, \dots, n-1.$$

设Q(x)是在区间[-1,1]上有n阶连续可微的函数,由分部积分法知

$$\int_{-1}^{1} P_n(x)Q(x)dx = \frac{1}{2^n n!} \int_{-1}^{1} Q(x)\varphi^{(n)}(x)dx = -\frac{1}{2^n n!} \int_{-1}^{1} Q'(x)\varphi^{(n-1)}(x)dx$$
$$= \dots = \frac{(-1)^n}{2^n n!} \int_{-1}^{1} Q^{(n)}(x)\varphi(x)dx.$$

下面分两种情况讨论,

(1) 若 Q(x) 是次数小于 n 的多项式, 则 $Q^{(n)}(x) \equiv 0$, 故得

$$\int_{-1}^{1} P_n(x) P_m(x) \mathrm{d}x = 0, \quad \stackrel{\text{def}}{=} n \neq m.$$

(2) 若

$$Q(x) = P_n(x) = \frac{1}{2^n n!} \varphi^{(n)}(x) = \frac{(2n)!}{2^n (n!)^2} x^n + \cdots,$$

则

$$Q^{(n)}(x) = P_n^{(n)}(x) = \frac{(2n)!}{2^n n!},$$

于是

$$\int_{-1}^{1} P_n^2(x) dx = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \int_{-1}^{1} (x^2 - 1)^n dx = \frac{(2n)!}{2^{2n} (n!)^2} \int_{-1}^{1} (1 - x^2)^n dx.$$

由于

$$\int_0^1 (1 - x^2)^n dx = \int_0^{\frac{\pi}{2}} \cos^{2n+1} t dt = \frac{2 \cdot 4 \cdot \dots \cdot (2n)}{1 \cdot 3 \cdot \dots \cdot (2n+1)},$$

故

$$\int_{-1}^{1} P_n^2(x) \mathrm{d}x = \frac{2}{2n+1},$$

于是(3.25)式得证.

- 2. 由于 $\varphi(x) = (x^2 1)^n$ 是偶次多项式,经过偶次求导仍为偶次多项式,经过奇次求导仍为奇次多项式,故 n 为 偶数时 $P_n(x)$ 为偶函数,n 为奇数时 $P_n(x)$ 为奇函数,于是(3.26)式成立.
- 3. 考虑n+1次多项式 $xP_n(x)$,它可表示为

$$xP_n(x) = a_0P_0(x) + a_1P_1(x) + \dots + a_{n+1}P_{n+1}(x).$$

两边乘 $P_k(x)$, 并从 -1 到 1 积分, 并利用正交性得

$$\int_{-1}^{1} x P_n(x) P_k(x) dx = a_k \int_{-1}^{1} P_k^2(x) dx.$$

当 $k \le n-2$ 时, $xP_k(x)$ 次数小于等于 n-1, 上式左端积分为 0, 故得 $a_0=0$. 当 k=n 时, $xP_n^2(x)$ 为奇函数, 左端积分仍为 0, 故 $a_n=0$. 于是

$$xP_n(x) = a_{n-1}P_{n-1}(x) + a_{n+1}P_{n+1}(x),$$

其中

$$a_{n-1} = \frac{2n-1}{2} \int_{-1}^{1} x P_n(x) P_{n-1}(x) dx$$
$$= \frac{2n-1}{2} \cdot \frac{2n}{4n^2 - 1} = \frac{n}{2n+1},$$

$$a_{n+1} = \frac{2n+3}{2} \int_{-1}^{1} x P_n(x) P_{n+1}(x) dx$$

= $\frac{2n+3}{2} \cdot \frac{2(n+1)}{(2n+1)(2n+3)} = \frac{n+1}{2n+1}$,

从而得到以下的递推公式

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \quad n = 1, 2, \cdots.$$
(3.28)

由 $P_0(x) = 1, P_1(x) = x$, 利用(3.28)式就可推出

$$P_2(x) = (3x^2 - 1)/2,$$

$$P_3(x) = (5x^3 - 3x)/2,$$

$$P_4(x) = (35x^4 - 30x^2 + 3)/8,$$

$$P_5(x) = (63x^5 - 70x^3 + 15x)/8,$$

$$P_6(x) = (231x^6 - 315x^4 + 105x^2 - 5)/16,$$
:

图 3.1给出了 $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$ 的图形.

4.

3.2.3 Chebeshev(切比雪夫) 多项式

定义 3.11 (Chebeshev(切比雪夫) 多项式)

当权函数 $\rho(x) = \frac{1}{\sqrt{1-x^2}}$,区间为 [-1,1] 时,由序列 $\{1,x,\cdots,x^n,\cdots\}$ 正交化得到的正交多项式就是 **Chebeshev**(**切比雪夫**) **多项式**,它可表示为

$$T_n(x) = \cos(n\arccos x), \quad |x| \le 1. \tag{3.29}$$

若令 $x = \cos \theta$, 则 $T_n(x) = \cos n\theta$, $0 \le \theta \le \pi$.

注 由于切比雪夫多项式是在区间 [-1,1] 上定义的,对于一般区间 [a,b],要通过变量替换变换到 [-1,1],可令 $x = \frac{1}{2}[(b-a)t + a + b], \tag{3.30}$

则可将 $x \in [a, b]$ 变换到 $t \in [-1, 1]$.

定理 3.9 (Chebeshev 多项式的性质)

设 $\{T_n(x)\}$ 是 Chebeshev 多项式, 它可表示为

 $T_n(x) = \cos(n \arccos x), \quad |x| \le 1, \quad n = 1, 2, \cdots.$

则有

1. (递推关系)

$$\begin{cases} T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), & n = 1, 2, \dots, \\ T_0(x) = 1, & T_1(x) = x. \end{cases}$$
 (3.31)

2. $T_n(x)$ 的首项 x^n 的系数为 $2^{n-1}(n=1,2,\cdots)$, 进而若令

$$\widetilde{T}_0(x) = 1, \widetilde{T}_n(x) = \frac{1}{2^{n-1}} T_n(x), n = 1, 2, \cdots,$$

则 $\widetilde{T}_n(x)$ 是首项系数为 1 的 Chebeshev 多项式.

3. $T_{2k}(x)$ 只含 x 的偶次幂, $T_{2k+1}(x)$ 只含 x 的奇次幂.

4. Chebeshev 多项式 $\{T_k(x)\}$ 在区间 [-1,1] 上带权 $\rho(x)=\frac{1}{\sqrt{1-x^2}}$ 正交, 且

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0, & n \neq m; \\ \frac{\pi}{2}, & n = m \neq 0; \\ \pi, & n = m = 0. \end{cases}$$
 (3.32)

5. T_n(x) 在区间 [-1,1] 上有 n 个零点

$$x_k = \cos \frac{2k-1}{2n}\pi, \quad k = 1, 2, \dots, n.$$

和n+1个极值点(包括端点)

$$x_k = \cos\frac{k\pi}{n}, \quad k = 0, 1, \dots, n.$$

这两组点称为 Chebeshev(切比雪夫) 点.

证明

1. 这只要由三角恒等式

$$cos(n+1)\theta = 2cos\theta cos n\theta - cos(n-1)\theta, \quad n = 1, 2, \cdots,$$

 $令 x = \cos \theta$ 即得. 由(3.31)式就可推出

$$T_2(x) = 2x^2 - 1,$$

$$T_3(x) = 4x^3 - 3x,$$

$$T_4(x) = 8x^4 - 8x^2 + 1,$$

$$T_5(x) = 16x^5 - 20x^3 + 5x,$$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1,$$

$$\vdots$$

函数 $T_0(x)$, $T_1(x)$, $T_2(x)$, $T_3(x)$ 的图形见图 3.2.

- 2. 此性质可由递推关系(3.31)归纳得到.
- 3. 此性质也可由递推关系(3.31)归纳得到.

4. 事实上, 令 $x = \cos \theta$, 则 $dx = -\sin \theta d\theta$, 于是

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = \int_{0}^{\pi} \cos n\theta \cos m\theta d\theta = \begin{cases} 0, & n \neq m; \\ \frac{\pi}{2}, & n = m \neq 0; \\ \pi, & n = m = 0. \end{cases}$$

5.

定理 3.10

设 $\widetilde{T}_n(x)$ 是首项系数为1的切比雪夫多项式,记 \widetilde{H}_n 为所有次数小于等于n的首项系数为1的多项式集合,则

$$\max_{-1 \leqslant x \leqslant 1} |\widetilde{T}_n(x)| \leqslant \max_{-1 \leqslant x \leqslant 1} |P(x)|, \quad \forall P(x) \in \widetilde{H}_n,$$

且

$$\max_{-1 \leqslant x \leqslant 1} |\widetilde{T}_n(x)| = \frac{1}{2^{n-1}}.$$

 $\stackrel{ ext{ iny 2}}{ ext{ iny 2}}$ 笔记 这个定理表明在所有首项系数为 1 的 n 次多项式集合 $\stackrel{ ext{ iny 2}}{ ext{ iny 1}}$ 中

$$\|\widetilde{T}_n\|_{\infty} = \min_{P \in \widetilde{H}_n} \|P(x)\|_{\infty},$$

所以 $\widetilde{T}_n(x)$ 是 \widetilde{H}_n 中最大值最小的多项式,即

$$\max_{-1 \le x \le 1} |\widetilde{T}_n(x)| = \min_{P \in \widetilde{H}_n} \max_{-1 \le x \le 1} |P(x)| = \frac{1}{2^{n-1}}.$$
 (3.33)

利用这一结论, 可求 $P(x) \in H_n$ 在 H_{n-1} 中的最佳 (一致) 逼近多项式.

证明

例题 3.3 求 $f(x) = 2x^3 + x^2 + 2x - 1$ 在 [-1,1] 上的最佳二次逼近多项式. 解 由题意, 所求最佳逼近多项式 $P_2^*(x)$ 应满足

$$\max_{-1 \le x \le 1} |f(x) - P_2^*(x)| = \min.$$

由定理3.10可知,当

$$f(x) - P_2^*(x) = \frac{1}{2}T_3(x) = 2x^3 - \frac{3}{2}x$$

时,多项式 $f(x) - P_2^*(x)$ 与零偏差最小,故

$$P_2^*(x) = f(x) - \frac{1}{2}T_3(x) = x^2 + \frac{7}{2}x - 1$$

就是 f(x) 在 [-1,1] 上的最佳二次逼近多项式.

3.2.4 Chebeshev 多项式零点插值

Chebeshev(切比雪夫) 点在插值中有重要作用. 从图 3.3可以看到切比雪夫点恰好是单位圆周上等距分布点的横坐标, 这些点的横坐标在接近区间 [-1,1] 的端点处是密集的.

定理 3.11

设插值节点 x_0, x_1, \dots, x_n 为切比雪夫多项式 $T_{n+1}(x)$ 的零点, 被插函数 $f \in C^{n+1}[-1, 1], L_n(x)$ 为相应的插值多项式, 则

$$\max_{-1 \le x \le 1} |f(x) - L_n(x)| \le \frac{1}{2^n (n+1)!} ||f^{(n+1)}(x)||_{\infty}.$$
(3.34)

对于一般区间 [a,b] 上的插值只要利用变换(3.30)式则可得到相应结果

$$\max_{a \le x \le b} |f(x) - L_n(x)| \le \frac{1}{2^n (n+1)!} \|f^{(n+1)}(x)\|_{\infty}.$$

此时插值节点为

$$x_k = \frac{b-a}{2}\cos\frac{2k+1}{2(n+1)}\pi + \frac{a+b}{2}, \quad k = 0, 1, \dots, n.$$

・ 筆记 对(3.34)式令 n→∞则误差趋于 0. 因此这个定理表明: 利用切比雪夫点做插值, 可使插值区间最大误差最小化.

证明 由定理 2.4知插值余项

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x),$$

这里 $\xi \in (a,b)$ 且依赖于x, $\omega_{n+1}(x)$ 由(2.7)式所定义.于是

$$\max_{-1 \le x \le 1} |f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} \max_{-1 \le x \le 1} |(x - x_0)(x - x_1) \cdots (x - x_n)|,$$

其中

$$M_{n+1} = ||f^{(n+1)}(x)||_{\infty} = \max_{-1 \le r \le 1} |f^{(n+1)}(x)|$$

是由被插函数确定的. 因为插值节点为 $T_{n+1}(x)$ 的零点

$$x_k = \cos\frac{2k+1}{2(n+1)}\pi, \quad k = 0, 1, \dots, n,$$

所以 $\omega_{n+1}(x)$ 就是首先系数为 1 的 Chebeshev 多项式. 由(3.33)式可得

$$\max_{-1 \le x \le 1} |\omega_{n+1}(x)| = \max_{-1 \le x \le 1} |\widetilde{T}_{n+1}(x)| = \frac{1}{2^n}.$$

由此可得(3.34).

例题 3.4 求 $f(x) = e^x$ 在 [0, 1] 上的四次拉格朗日插值多项式 $L_4(x)$, 插值节点用 $T_5(x)$ 的零点, 并估计误差 $\max_{0 \le x \le 1} |e^x - L_4(x)|$.

解 利用 T5(x) 的零点和区间变换可知节点

$$x_k = \frac{1}{2} \left(1 + \cos \frac{2k+1}{10} \pi \right), \quad k = 0, 1, 2, 3, 4,$$

即

$$x_0 = 0.97553$$
, $x_1 = 0.79390$, $x_2 = 0.5$,

$$x_3 = 0.20611$$
, $x_4 = 0.02447$.

对应的拉格朗日插值多项式为

 $L_4(x) = 1.00002274 + 0.99886233x + 0.50902251x^2 + 0.14184105x^3 + 0.06849435x^4.$

利用(3.34)式可得误差估计

$$\max_{0 \le x \le 1} |\mathbf{e}^x - L_4(x)| \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}}, \quad n = 4,$$

而

$$M_{n+1} = ||f^{(5)}(x)||_{\infty} \le ||e^x||_{\infty} \le e^1 \le 2.72,$$

于是有

$$\max_{0 \le x \le 1} |\mathbf{e}^x - L_4(x)| \le \frac{\mathbf{e}}{5!} \frac{1}{2^9} < \frac{2.72}{6} \frac{1}{10240} < 4.4 \times 10^{-5}.$$

在第2章中已经知道,由于高次插值出现龙格现象,一般 $L_n(x)$ 不收敛于 f(x),因此它并不适用.但若用切比 雪夫多项式零点插值却可避免龙格现象,可保证整个区间上收敛.

例题 3.5 设 $f(x) = \frac{1}{1+x^2}$,在 [-5,5] 上利用 $T_{11}(x)$ 的零点作插值点,构造 10 次拉格朗日插值多项式 $\widetilde{L}_{10}(x)$. 与第 2 章得到的等距节点造出的 $L_{10}(x)$ 近似 f(x) 作比较.

解 在 [-1,1] 上的 11 次切比雪夫多项式 $T_{11}(x)$ 的零点为

$$t_k = \cos \frac{21 - 2k}{22} \pi$$
, $k = 0, 1, \dots, 10$.

作变换 $x_k = 5t_k$, $k = 0, 1, \dots, 10$. 它们是 (-5, 5) 内的插值点, 由此得到 y = f(x) 在 [-5, 5] 上的拉格朗日插值多项式 $\widetilde{L}_{10}(x)$, f(x), $L_{10}(x)$, $\widetilde{L}_{10}(x)$ 的图形见图 3.4, 从图中看到 $\widetilde{L}_{10}(x)$ 没有出现龙格现象.

3.2.5 其他常用的正交多项式

定义 3.12 (第二类切比雪夫多项式)

在区间 [-1,1] 上带权 $\rho(x) = \sqrt{1-x^2}$ 的正交多项式称为**第二类切比雪夫多项式**, 其表达式为

$$U_n(x) = \frac{\sin[(n+1)\arccos x]}{\sqrt{1-x^2}}.$$
 (3.35)

定理 3.12

 $\{U_n(x)\}$ 是 [-1,1] 上带权 $\sqrt{1-x^2}$ 的正交多项式族. 并且还有递推关系式

$$U_0(x) = 1$$
, $U_1(x) = 2x$,

$$U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x), \quad n = 1, 2, \cdots$$

$$\int_{-1}^{1} U_n(x) U_m(x) \sqrt{1 - x^2} dx = \int_{0}^{\pi} \sin(n+1)\theta \sin(m+1)\theta d\theta = \begin{cases} 0, & m \neq n, \\ \frac{\pi}{2}, & m = n, \end{cases}$$

故 $\{U_n(x)\}$ 是 [-1,1] 上带权 $\sqrt{1-x^2}$ 的正交多项式族.

定义 3.13 (Laguerre(拉盖尔) 多项式)

在区间 $[0,+\infty)$ 上带权 e^{-x} 的正交多项式称为 Laguerre(拉盖尔) 多项式, 其表达式为

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x}).$$
 (3.36)

定理 3.13

Laguerre(拉盖尔) 多项式也具有正交性质

$$\int_0^\infty e^{-x} L_n(x) L_m(x) dx = \begin{cases} 0, & m \neq n, \\ (n!)^2, & m = n, \end{cases}$$

和递推关系

$$L_0(x) = 1$$
, $L_1(x) = 1 - x$,

$$L_{n+1}(x) = (1 + 2n - x)L_n(x) - n^2L_{n-1}(x), \quad n = 1, 2, \cdots$$

证明

定义 3.14 (Hermite(埃尔米特) 多项式)

在区间 $(-\infty, +\infty)$ 上带权 e^{-x^2} 的正交多项式称为 **Hermite(埃尔米特) 多项式**, 其表达式为

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}).$$
 (3.37)

定理 3.14

Hermite(埃尔米特) 多项式满足正交关系

$$\int_{-\infty}^{+\infty} e^{-x^2} H_m(x) H_n(x) dx = \begin{cases} 0, & m \neq n, \\ 2^n n! \sqrt{\pi}, & m = n, \end{cases}$$

并有递推关系

$$H_0(x) = 1$$
, $H_1(x) = 2x$,

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x), \quad n = 1, 2, \cdots$$

证明

3.3 最佳平方逼近

定义 3.15