

Database Storage

File Organization

- The database is stored as a collection of *files*. Each file is a sequence of *records*. A record is a sequence of fields.
- Each file is also logically partitioned into fixed-length storage units called **blocks**
 - units of both storage allocation and data transfer. Most
 - databases use block sizes of 4 to 8 kilobytes by default
 - normally assume that no record is larger than a block
- One approach:
 - assume record size is fixed
 - each file has records of one particular type only
 - different files are used for different relations

Fixed-Length Records

Simple approach:

- Store record i starting from byte n * (i − 1), where n is the size of each record.
- Record access is simple but records may cross blocks
 - Modification: do not allow records to cross block boundaries

Deletion of record i:

- A1: move records i + 1, . . . , n
 to i, . . . , n 1
- A2: move record n to i
- A3: do not move records, but link all free records on a free list

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

Deleting record 3 and compacting

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

Deleting record 3 and moving last record

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 11	98345	Kim	Elec. Eng.	80000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000

Free Lists

- Store the address of the first deleted record in the file header.
- Use this first record to store the address of the second deleted record, and so on
- Can think of these stored addresses as pointers since they "point" to the location of a record.
- More space efficient representation: reuse space for normal attributes of free records to store pointers. (No pointers stored in in-use records.)

header				_	
record 0	10101	Srinivasan	Comp. Sci.	65000	
record 1				Ą	
record 2	15151	Mozart	Music	40000	
record 3	22222	Einstein	Physics	95000	
record 4					
record 5	33456	Gold	Physics	87000	
record 6				4	
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	always start from header when adding a new record. record 1, 4,
record 9	76766	Crick	Biology	72000	6 will be inserted in sequence
record 10	83821	Brandt	Comp. Sci.	92000	'
record 11	98345	Kim	Elec. Eng.	80000	

Organization of Records in Files

- Heap a record can be placed anywhere in the file where there is space. There is no ordering of records
- Sequential store records in sequential order, based on the value of the search key of each record
- Hashing a hash function computed on some attribute of each record; the result specifies in which block of the file the record should be placed
- Records of each relation may be stored in a separate file. In a multitable clustering file organization, records of several different relations can be stored in the same file
 - Motivation: store related records on the same block to minimize I/O

Sequential File Organization

- Suitable for applications that require sequential processing of the entire file
- The records in the file are ordered by a search-key
- A search key is any attribute or set of attributes; it need not be the primary key, or even a superkey.

10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Sequential File Organization (Cont.)

- Difficult to maintain physical sequential order as records are inserted and deleted
- Deletion use pointer chains
- Insertion –locate the position where the record is to be inserted
 - if there is free space insert there
 - if no free space, insert the record in an overflow block
 - In either case, pointer chain must be updated
- Need to reorganize the file from time to time to restore sequential order

notice that the pointer points Einstein, Verdi, then Gold. But the previous pointer does Einstein then Gold

-	J J J. J	J. J. C. C. J.			
	10101	Srinivasan	Comp. Sci.	65000	
	12121	Wu	Finance	90000	
	15151	Mozart	Music	40000	
	22222	Einstein	Physics	95000	
	32343	El Said	History	60000	
	33456	Gold	Physics	87000	
	45565	Katz	Comp. Sci.	75000	
	58583	Califieri	History	62000	
	76543	Singh	Finance	80000	
	76766	Crick	Biology	72000	
	83821	Brandt	Comp. Sci.	92000	
	98345	Kim	Elec. Eng.	80000	
	32222	Verdi	Music	48000	
	11	veiui			Korth and Sudarsh
				DEISCHAIZ.	NOTHER AND SUBSISH

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering file organization

department

dept_name	building	budget
Comp. Sci.	Taylor	100000
Physics	Watson	70000

instructor

ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
83821	Brandt	Comp. Sci.	92000

multitable clustering of department and instructor

Comp. Sci.	Taylor	100000
45564	Katz	75000
10101	Srinivasan	65000
83821	Brandt	92000
Physics	Watson	70000
33456	Gold	87000

Multitable Clustering File Organization (cont.)

- good for queries involving department ⋈ instructor, and for queries involving one single department and its instructors
- bad for queries involving only department
- results in variable size records
- Can add pointer chains to link records of a particular relation

pointer will look through department

	Comp. Sci.	Taylor	100000	
4	15564	Katz	75000	
1	10101	Srinivasan	65000	
8	33821	Brandt	92000	
I	Physics	Watson	70000	
3	33456	Gold	87000	_

Data Dictionary Storage

- The Data dictionary (also called system catalog) stores metadata; that is, data about data, such as
- Information about relations
 - names of relations
 - names, types and lengths of attributes of each relation
 - names and definitions of views
 - integrity constraints
- User and accounting information, including passwords
- Statistical and descriptive data
 - number of tuples in each relation
- Physical file organization information
 - How relation is stored (sequential/hash/...)
 - Physical location of relation
- Information about indices (Chapter 11)

Relational Representation of System Metadata

- Relational representation on disk
- Specialized data structures designed for efficient access, in memory

Relation_metadata

<u>relation_name</u>

number_of_attributes

storage_organization
location

Index_metadata

<u>index_name</u> <u>relation_name</u> index_type index_attributes

View_metadata

<u>view_name</u> definition Attribute_metadata relation name

attribute_name domain_type position length

User_metadata

<u>user_name</u> encrypted_password group

Discussion

- Show the structure of the file of the following Figure after each of the following steps:
 - Insert (24556, Turnamian, Finance, 98000)
 - Delete record 2
 - Insert (34556, Thompson, Music, 67000)

header				_	K
record 0	10101	Srinivasan	Comp. Sci.	65000	
record 1				*	record 1 -> 24556
record 2	15151	Mozart	Music	40000	record 2 -> 34556
record 3	22222	Einstein	Physics	95000	from list maintain
record 4					free list pointer starts at record4
record 5	33456	Gold	Physics	87000	Starts at record+
record 6				<u>*</u>	
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	
record 9	76766	Crick	Biology	72000	for sequential, pointer starts
record 10	83821	Brandt	Comp. Sci.	92000	at 0 -> 3->
record 11	98345	Kim	Elec. Eng.	80000	-1> 5->

Discussion

Consider the advisor and student tables. Give a file structure of these relations that uses multitable clustering.

advisor table				studen	t table		
AID	Nam	ne	Office	SID	Name	Major	Advisor
001	Laur	a	N332	10011	Sam	Econ	001
002	Mich	nelle	S112	10221	Mike	Acct	002
				11023	Mary	CS	001
001 10011	Laura Sam	N332 Econ		11132	Kathy	BBA	002
11023 002 10221	Mary Michelle Mke	CS S112 Acct	The pointer	starts at N332	-> S112		
11132	Kathy	BBA					