

Data Analytics Stiftung Universität Hildesheim Marienburger Platz 22 31141 Hildesheim Prof. Dr. Dr. Lars Schmidt-Thieme

Thesis Unsupervised Real-Time Time-Series Anomaly Detection

Abdul Rehman Liaqat 271336, Liaqat@uni-hidesheim.de

Abstract

Anomaly detection is a crucial task for machine learning due to wide-spread usage and type. In particular, it is worth noting that most data arising in industrial setups are of a streaming nature, thus restricting the range of standard anomaly detection tools. This thesis will identify the potential approaches to learn the identification of abnormal behavior from large-scale streaming data. An empirical comparison of state-of-the-art methods will to be extended by a novel technical contribution. In this thesis, the focus is particularly on streaming time-series Anomaly Detection which changes in nature with time and novel contribution will especially try to target this dynamic nature of time-series.

Contents

1	Introduction 1.1 Motivation	4 5 6
2	Related Work	7
3	Unsupervised Anomaly detection with recency	8
4	Experiments 4.1 Data	9 10 10
5	Execution and Results	11
6	Discussion	12
7	Experiment Infrastructure 7.1 Experiment Management using MLflow	13 14 15
8	Best practices	16
9	Reference Usage	17
10	References	18

1 Introduction

1.1 Motivation

1.2 Objective

2 Related Work

3 Unsupervised Anomaly detection with recency

4 Experiments

- 4.1 Data
- 4.1.1 Numenta Anomaly Benchmark (NAb)

5 Execution and Results

6 Discussion

7 Experiment Infrastructure

7.1 Experiment Management using MLflow

7.2 Parallel execution using Docker

8 Best practices

Following steps were taken to maximize the efficiency and speed of research:

- 1. Use version control to track the code and share between different devices.
- 2. Separate code from data. This will keep the code base small and easy to debug.
- 3. Separate input data, working data and output data.
 - Input Data: Input data-set that never change. For my case it is NAB and other external datasets.
 - Working Data: nothing for now.
 - Output Data: Results and threshold profiles in my case.
- 4. Separate options from parameter. This is important:
 - Options specify how your algorithm should run. For example data path, working directory and result directory path, epochs, learning rate and so on.
 - parameters are the result of training data. it includes the score and hyper-parameters.

9 Reference Usage

10 References