Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

1	Mason's Gain Formula		1	2 Bode Plot
			1	2.1 Introduction
2	Bode Plot		1	2.2 Example
	2.1 2.2	Introduction Example	1 1	3 Second order System
3	Second	order System	1	3.1 Damping
	3.1 3.2	Damping	1	3.2 Example 4 Routh Hurwitz Criterion 4.1 Routh Array
4	Routh 3	Hurwitz Criterion Routh Array	1 1	4.2 Marginal Stability
	4.2 4.3	Marginal Stability Stability	1 1	4.3 Stability 5 State-Space Model
5	State-S ₁ 5.1 5.2	pace Model Controllability and Observability Second Order System	1 1 1	5.1 Controllability and Observability5.2 Second Order System6 NYQUIST PLOT
6	Nyquist	t Plot	1	7 Phase Margin 8 Gain Margin
7	Phase I	Margin	1	9 Compensators
8	Gain Margin		1	9.1 Phase Lead 10 Oscillator
9	Compe 9.1	nsators Phase Lead	1 1	10.1. A unity feedback control system is characterised by the open-loop transfer function
10	Oscillat	tor	1	$G(S) = \frac{2(s+1)}{s^3 + ks^2 + 2s + 1} $ (10.1.1)

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

the value of the k for which the system oscillates at 2 rad/s

Solution: Modelling Closed loop system G(s) into a Open loop system Gm(s)

$$E(s) = R(S) - H(s)Y(s)$$
 (10.1.2)

$$G(S) = \frac{Y(s)}{E(s)}$$
 (10.1.3)

$$G(S) = \frac{Y(s)}{R(s) - H(s)Y(s)}$$
(10.1.4)

$$Gm(S) = \frac{Y(S)}{R(s)} = \frac{G(s)}{1 + H(s)G(s)}$$
 (10.1.5)

Characteristic equation:

$$1 + G(s)H(s) = 0 (10.1.6)$$

For a unity feedback system, H(s) = 1

$$1 + G(s) = 0 (10.1.7)$$

$$1 + \frac{2(s+1)}{s^3 + ks^2 + 2s + 1} = 0$$
 (10.1.8)

$$s^3 + ks^2 + 4s + 3 = 0 ag{10.1.9}$$

For the system to oscillate poles should lie on imaginary axis. Constructing the routh array for the characteristic equation (10.1.9).

$$\begin{pmatrix}
s^3 \\
s^2 \\
s^1 \\
s^0
\end{pmatrix}
\begin{pmatrix}
1 & 4 \\
k & 3 \\
\frac{3-4k}{k} & 0 \\
3 & 0
\end{pmatrix}$$
(10.1.10)

For the system to have poles on imaginary axis, any one of the entire row in a Routh's matrix should be all zeros.

$$\frac{3-4k}{k} = 0 \text{ or } k = \frac{3}{4}$$
 (10.1.11)

substituting value of k in (10.1.9).

$$s^3 + \frac{3}{4}s^2 + 4s + 3 = 0 (10.1.12)$$

$$s = \frac{-3}{4}, +2j, -2j \tag{10.1.13}$$

This show that at k = 3/4, system oscillates at frequency 2 rad/s.

10.2. Finding the system response gm(t) in time domain

Solution: From equation (10.1.5)

$$Gm(S) = \frac{2(s+1)}{s^3 + \frac{3}{4}s^2 + 4s + 3}$$
 (10.2.1)

Partial Fractions

$$Gm(S) = \frac{8}{73(s + \frac{3}{4})} + \frac{-8s + 152}{73(s^2 + 4)}$$
 (10.2.2)

Apply inverse Laplace transform

$$gm(t) = \frac{8}{73}e^{\frac{-3t}{4}}u(t) + (\frac{-8}{73})\sin(2t) + (\frac{-152}{73})\cos(2t)$$
(10.2.3)

10.3. Plotting gm(t) in time domain.

https://github.com/varunsankarmoparthi/ EE2227-CONTROLSYSTEMS/blob/ master/codes/sysresponseplot.py

This shows that system oscillates at 2 rad/sec. 10.4. Verifying Gm(s) using Rouths array

https://github.com/varunsankarmoparthi/ EE2227-CONTROLSYSTEMS/blob/ master/codes/routharrayverification.py

This shows that system is oscillating and stable.