10/572711

420 REC' O PCTPTO 20 MAR 2006

SEQUENCE LISTING

<110>	O'Ne	eill, Julia ch, Hong Q.					
<120>		vention of I tein	Incorporatio	on of Non-St	andard Amir	no Acids into	
<130>	1191	16.0059.PCUS	301				
		/US 2004/031 1-09-23	1224				
		50/505,807 3-09-25					
<160>	16						
<170>	Pate	entIn versio	on 3.3				
<212>		i nerichia col	li				
<400> atggate	1 caga	catattctct	ggagtcattc	ctcaaccatg	tccaaaagcg	cgacccgaat	60
		tcgcgcaagc					120
		aatatcgcca					180
atccagt	tttc	gcgtggtatg	ggttgatgat	cgcaaccaga	tacaggtcaa	ccgtgcatgg	240
cgtgtg	cagt	tcagctctgc	catcggcccg	tacaaaggcg	gtatgcgctt	ccatccgtca	300
gttaaco	cttt	ccattctcaa	attcctcggc	tttgaacaaa	ccttcaaaaa	tgccctgact	360
actctg	ccga	tgggcggtgg	taaaggcggc	agcgatttcg	atccgaaagg	aaaaagcgaa	420
ggtgaag	gtga	tgcgtttttg	ccaggcgctg	atgactgaac	tgtatcgcca	cctgggcgcg	480
gatacco	gacg	ttccggcagg	tgatatcggg	gttggtggtc	gtgaagtcgg	ctttatggcg	540
gggatga	atga	aaaagctctc	caacaatacc	gcctgcgtct	tcaccggtaa	gggcctttca	600
tttggcg	ggca	gtcttattcg	cccggaagct	accggctacg	gtctggttta	tttcacagaa	660
gcaatgo	ctaa	aacgccacgg	tatgggtttt	gaagggatgc	gcgtttccgt	ttctggctcc	720
ggcaac	gtcg	cccagtacgc	tatcgaaaaa	gcgatggaat	ttggtgctcg	tgtgatcact	780
gcgtcag	gact	ccagcggcac	tgtagttgat	gaaagcggat	tcacgaaaga	gaaactggca	84
catctta	atca	aaatcaaagc	cagecgegat	gatcaaataa	cagattacgc	caaacaattt	900

1

ggtctggtct	atctcgaagg	ccaacagccg	tggtctctac	cggttgatat	cgccctgcct	960
tgcgccaccc	agaatgaact	ggatgttgac	gccgcgcatc	agcttatcgc	taatggcgtt	1020
aaagccgtcg	ccgaaggggc	aaatatgccg	accaccatcg	aagcgactga	actgttccag	1080
caggcaggcg	tactatttgc	accgggtaaa	gcggctaatg	ctggtggcgt	cgctacatcg	1140
ggcctggaaa	tggcacaaaa	cgctgcgcgc	ctgggctgga	aagccgagaa	agttgacgca	1200
cgtttgcatc	acatcatgct	ggatatccac	catgcctgtg	ttgagcatgg	tggtgaaggt	1260
gagcaaacca	actacgtgca	gggcgcgaac	attgccggtt	ttgtgaaggt	tgccgatgcg	1320
atgctggcgc	agggtgtgat	ttaa				1344

<211> 447

<212> PRT

<213> Escherichia coli

<400> 2

Met Asp Gln Thr Tyr Ser Leu Glu Ser Phe Leu Asn His Val Gln Lys 1 5 10 15

Thr Thr Leu Trp Pro Phe Leu Glu Gln Asn Pro Lys Tyr Arg Gln Met 35 40 45

Ser Leu Leu Glu Arg Leu Val Glu Pro Glu Arg Val Ile Gln Phe Arg 50 55 60

Val Val Trp Val Asp Asp Arg Asn Gln Ile Gln Val Asn Arg Ala Trp 65 70 75 80

Arg Val Gln Phe Ser Ser Ala Ile Gly Pro Tyr Lys Gly Gly Met Arg 85 90 95

Phe His Pro Ser Val Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu
100 105 110

Gln Thr Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Lys 115 120 125

Gly	Gly 130	Ser	Asp	Phe	Asp	Pro 135	Lys	Gly	Lys	Ser	Glu 140	Gly	Glu	Val	Met
Arg 145	Phe	Cys	Gln	Ala	Leu 150	Met	Thr	Glu	Leu	Tyr 155	Arg	His	Leu	Gly	Ala 160
Asp	Thr	Asp	Val	Pro 165	Ala	Gly	Asp	Ile	Gly 170	Val	Gly	Gly	Arg	Glu 175	Val
Gly	Phe	Met	Ala 180	Gly	Met	Met	Lys	Lys 185	Leu	Ser	Asn	Asn	Thr 190	Ala	Cys
Val	Phe	Thr 195	Gly	Lys	Gly	Leu	Ser 200	Phe	Gly	Gly	Ser	Leu 205	Ile	Arg	Pro
Glu	Ala 210	Thr	Gly	Tyr	Gly	Leu 215	Val	Tyr	Phe	Thr	Glu 220	Ala	Met	Leu	Lys
Arg 225	His	Gly	Met	Gly	Phe 230	Glu	Gly	Met	Arg	Val 235	Ser	Val	Ser	Gly	Ser 240
Gly	Asn	Val	Ala	Gln 245	Tyr	Ala	Ile	Glu	Lys 250	Ala	Met	Glu	Phe	Gly 255	Ala
Arg	Val	Ile	Thr 260	Ala	Ser	Asp	Ser	Ser 265	Gly	Thr	Val	Val	Asp 270	Glu	Ser
Gly	Phe	Thr 275	Lys	Glu	Lys	Leu	Ala 280	Arg	Leu	Ile	Glu	Ile 285	Lys	Ala	Ser
Arg	Asp 290	Gly	Arg	Val	Ala	Asp 295	Tyr	Ala	Lys	Glu	Phe 300	Gly	Leu	Val	Tyr
Leu 305	Glu	Gly	Gln	Gln	Pro 310	Trp	Ser	Leu	Pro	Val 315	Asp	Ile	Ala	Leu	Pro 320
Cys	Ala	Thr	Gln	Asn 325	Glu	Leu	Asp	Val	Asp 330	Ala	Ala	His	Gln	Leu 335	Ile
Ala	Asn	Gly	Val 340	Lys	Ala	Val	Ala	Glu 345	Gly	Ala	Asn	Met	Pro 350	Thr	Thr

Ile Glu Ala Thr Glu Leu Phe Gln Gln Ala Gly Val Leu Phe Ala Pro 355 360 365

Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met $370 \hspace{1cm} 375 \hspace{1cm} 380$

Ala Gln Asn Ala Ala Arg Leu Gly Trp Lys Ala Glu Lys Val Asp Ala 385 390 395 400

Arg Leu His His Ile Met Leu Asp Ile His His Ala Cys Val Glu His 405 410 415

Gly Glu Glu Gln Thr Asn Tyr Val Gln Gly Ala Asn Ile Ala 420 425 430

Gly Phe Val Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile 435 440 445

<210> 3

<211> 1344

<212> DNA

<213> Escherichia coli

<400> 3

atggatcaga catattetet ggagtcatte etcaaccatg tecaaaageg egaceegaat 60 caaaccgagt tcgcgcaagc cgttcgtgaa gtaatgacca cactctggcc ttttcttgaa 120 caaaatccaa aatatcgcca gatgtcatta ctggagcgtc tggttgaacc ggagcgcgtg 180 atccagtttc gcgtggtatg ggttgatgat cgcaaccaga tacaggtcaa ccgtgcatgg 240 cgtgtgcagt tcagctctgc catcggcccg tacctgggcg gtatgcgctt ccatccgtca 300 gttaaccttt ccattctcaa attcctcggc tttgaacaaa ccttcaaaaa tgccctgact 360 actotgooga tgggoggtgg taaaggoggo agogatttog atoogaaagg aaaaaqogaa ggtgaagtga tgcgtttttg ccaggcgctg atgactgaac tgtatcgcca cctgggcgcg 480 gataccgacg ttccggcagg tgatatcggg gttggtggtc gtgaagtcgg ctttatggcg 540 gggatgatga aaaagctctc caacaatacc gcctgcgtct tcaccggtaa gggcctttca 600 tttggcggca gtcttattcg cccggaagct accggctacg gtctggttta tttcacagaa 660 gcaatgctaa aacgccacgg tatgggtttt gaagggatgc gcgtttccgt ttctggctcc 720 ggcaacgtcg cccagtacgc tatcgaaaaa gcgatggaat ttggtgctcg tgtgatcact 780 gcgtcagact ccagcggcac tgtagttgat gaaagcggat tcacgaaaga gaaactggca 840

cgtcttatcg	aaatcaaagc	cagccgcgat	ggtcgagtgg	cagattacgc	caaagaattt	900
ggtctggtct	atctcgaagg	ccaacagccg	tggtctctac	cggttgatat	cgccctgcct	960
tgcgccaccc	agaatgaact	ggatgttgac	gccgcgcatc	agcttatcgc	taatggcgtt	1020
aaagccgtcg	ccgaaggggc	aaatatgccg	accaccatcg	aagcgactga	actgttccag	1080
caggcaggcg	tactatttgc	accgggtaaa	gcggctaatg	ctggtggcgt	cgctacatcg	1140
ggcctggaaa	tggcacaaaa	cgctgcgcgc	ctgggctgga	aagccgagaa	agttgacgca	1200
cgtttgcatc	acatcatgct	ggatatccac	catgcctgtg	ttgagcatgg	tggtgaaggt	1260
gagcaaacca	actacgtgca	gggcgcgaac	attgccggtt	ttgtgaaggt	tgccgatgcg	1320
atgctggcgc	agggtgtgat	ttaa				1344

<211> 447

<212> PRT

<213> Escherichia coli

<400> 4

Met Asp Gln Thr Tyr Ser Leu Glu Ser Phe Leu Asn His Val Gln Lys
1 5 10 15

Arg Asp Pro Asn Gln Thr Glu Phe Ala Gln Ala Val Arg Glu Val Met 20 25 30

Thr Thr Leu Trp Pro Phe Leu Glu Gln Asn Pro Lys Tyr Arg Gln Met 35 40 45

Ser Leu Leu Glu Arg Leu Val Glu Pro Glu Arg Val Ile Gln Phe Arg 50 55 60

Val Val Trp Val Asp Asp Arg Asn Gln Ile Gln Val Asn Arg Ala Trp 65 70 75 80

Arg Val Gln Phe Ser Ser Ala Ile Gly Pro Tyr Leu Gly Gly Met Arg \$85\$ 90 95

Phe His Pro Ser Val Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu
100 105 110

Gln Thr Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Lys 115 120 125

Gly	Gly 130	Ser	Asp	Phe	Asp	Pro 135	Lys	Gly	Lys	Ser	Glu 140	Gly	Glu	Val	Met
Arg 145	Phe	Cys	Gln	Ala	Leu 150	Met	Thr	Glu	Leu	Tyr 155	Arg	His	Leu	Gly	Ala 160
Asp	Thr	Asp	Val	Pro 165	Ala	Gly	Asp	Ile	Gly 170	Val	Gly	Gly	Arg	Glu 175	Val
Gly	Phe	Met	Ala 180	Gly	Met	Met	Lys	Lys 185	Leu	Ser	Asn	Asn	Thr 190	Ala	Cys
Val	Phe	Thr 195	Gly	Lys	Gly	Leu	Ser 200	Phe	Gly	Gly	Ser	Leu 205	Ile	Arg	Pro
Glu	Ala 210	Thr	Gly	Tyr	Gly	Leu 215	Val	Tyr	Phe	Thr	Glu 220	Ala	Met	Leu	Lys
Arg 225	His	Gly	Met	Gly	Phe 230	Glu	Gly	Met	Arg	Val 235	Ser	Val	Ser	Gly	Ser 240
Gly	Asn	Val	Ala	Gln 245	Tyr	Ala	Ile	Glu	Lys 250	Ala	Met	Glu	Phe	Gly 255	Ala
			260			Asp		265					270		
-		275	-		•	Leu	280	J				285	-		
	290					Asp 295					300				
305					310	Trp				315					320
_				325		Leu			330					335	
Ala	Asn	Gly	Val 340	Lys	Ala	Val	Ala	Glu 345	Gly	Ala	Asn	Met	Pro 350	Thr	Thr

.

Ala Gln Asn Ala Ala Arg Leu Gly Trp Lys Ala Glu Lys Val Asp Ala 385 390 395 400

Arg Leu His His Ile Met Leu Asp Ile His His Ala Cys Val Glu His
405 410 415

Gly Glu Glu Gln Thr Asn Tyr Val Gln Gly Ala Asn Ile Ala 420 425 430

Gly Phe Val Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile 435 440 445

<210> 5

<211> 1101

<212> DNA

<213> Bacillus cereus

<400> 5

atgacattag aaatcttcga atacttagaa aaatatgatt atgagcaagt agtattttgt 60 caagataaag aatctggttt aaaagcaatt attgcaattc atgatacaac acttggaccg 120 gctcttggtg gaacaagaat gtggacatat gattctgaag aagcggcgat tgaagatgca 180 ttgcgtcttg caaaagggat gacatacaaa aacgcagcag ctggtttaaa cttaggtggt 240 gcgaaaacag taattatcgg tgatcctcgt aaagataaga gcgaagcaat gttccgtgca 300 ctaggacgtt atatccaagg actaaacgga cgttacatta cagctgaaga tgttggtaca 360 acagtagatg atatggatat tatccatgaa gaaactgact ttgtaacagg tatctcacca 420 tcattcggtt cttctggtaa cccatctccg gtaactgcat acggtgttta ccgtggtatg 480 aaagcagctg caaaagaagc tttcggtact gacaatttag aaggaaaagt aattgctgtt 540 caaggcgttg gtaacgtagc atatcaccta tgcaaacatt tacacgctga aggagcaaaa 600 ttaatcgtta cagatattaa taaagaagct gtacaacgtg ctgtagaaga attcggtgca 660 tragragttg aarcaaatga aatttarggt gttgaatgrg atatttargc arcatgtgra 720 ctaggcgcaa cagttaatga tgaaactatt ccacaactta aagcaaaagt aatcgcaggt 780

tctgcaaata	accaattaaa	agaagatcgt	catggtgaca	tcattcatga	aatgggtatt	840
gtatacgcac	cagattatgt	aattaatgca	ggtggcgtaa	ttaacgtagc	agacgaatta	900
tatggataca	atagagaacg	tgcactaaaa	cgtgttgagt	ctatttatga	cacgattgca	960
aaagtaatcg	aaatttcaaa	acgcgatggc	atagcaactt	atgtagcggc	agatcgtcta	1020
gctgaagagc	gcattgcaag	cttgaagaat	tctcgtagca	cttacttacg	caacggtcac	1080
gatattatta	gccgtcgcta	a				1101

<211> 366

<212> PRT

<213> Bacillus cereus

<400> 6

Met Thr Leu Glu Ile Phe Glu Tyr Leu Glu Lys Tyr Asp Tyr Glu Gln 1 5 10 15

Val Val Phe Cys Gln Asp Lys Glu Ser Gly Leu Lys Ala Ile Ile Ala 20 25 30

Ile His Asp Thr Thr Leu Gly Pro Ala Leu Gly Gly Thr Arg Met Trp 35 40 45

Thr Tyr Asp Ser Glu Glu Ala Ala Ile Glu Asp Ala Leu Arg Leu Ala 50 55 60

Lys Gly Met Thr Tyr Lys Asn Ala Ala Ala Gly Leu Asn Leu Gly Gly 65 70 75 80

Ala Lys Thr Val Ile Ile Gly Asp Pro Arg Lys Asp Lys Ser Glu Ala 85 90 95

Met Phe Arg Ala Leu Gly Arg Tyr Ile Gl
n Gly Leu Asn Gly Arg Tyr 100 105 110

Ile Thr Ala Glu Asp Val Gly Thr Thr Val Asp Asp Met Asp Ile Ile 115 120 125

His Glu Glu Thr Asp Phe Val Thr Gly Ile Ser Pro Ser Phe Gly Ser 130 135 140

Ser 145	Gly	Asn	Pro	Ser	Pro 150	Val	Thr	Ala	Tyr	Gly 155	Val	Tyr	Arg	Gly	Met 160
Lys	Ala	Ala	Ala	Lys 165	Glu	Ala	Phe	Gly	Thr 170	Asp	Asn	Leu	Glu	Gly 175	Lys
Val	Ile	Ala	Val 180	Gln	Gly	Val	Gly	Asn 185	Val	Ala	Tyr	His	Leu 190	Cys	Lys
His	Leu	His 195	Ala	Glu	Gly	Ala	Lys 200	Leu	Ile	Val	Thr	Asp 205	Ile	Asn	Lys
Glu	Ala 210	Val	Gln	Arg	Ala	Val 215	Glu	Glu	Phe	Gly	Ala 220	Ser	Ala	Val	Glu
Pro 225	Asn	Glu	Ile	Tyr	Gly 230	Val	Glu	Cys	Asp	Ile 235	Tyr	Ala	Pro	Cys	Ala 240
Leu	Gly	Ala	Thr	Val 245	Asn	Asp	Glu	Thr	Ile 250	Pro	Gln	Leu	Lys	Ala 255	Lys
Val	Ile	Ala	Gly 260	Ser	Ala	Asn	Asn	Gln 265	Leu	Lys	Glu	Asp	Arg 270	His	Gly
Asp	Ile	Ile 275	His	Glu	Met	Gly	Ile 280	Val	Tyr	Ala	Pro	Asp 285	Tyr	Val	Ile
Asn	Ala 290	Gly	Gly	Val	Ile	Asn 295	Val	Ala	Asp	Glu	Leu 300	Tyr	Gly	Tyr	Asn
Arg 305	Glu	Arg	Ala	Leu	Lys 310	Arg	Val	Glu	Ser	Ile 315	Tyr	Asp	Thr	Ile	Ala 320
Lys	Val	Ile	Glu	Ile 325	Ser	Lys	Arg	Asp	Gly 330	Ile	Ala	Thr	Tyr	Val 335	Ala
Ala	Asp	Arg	Leu 340	Ala	Glu	Glu	Arg	Ile 345	Ala	Ser	Leu	Lys	Asn 350	Ser	Arg
Ser	Thr	Tyr 355	Leu	Arg	Asn	Gly	His 360	Asp	Ile	Ile	Ser	Arg 365	Arg		

<211> 1098

<212> DNA

<213> Bacillus subtilis

<400> 7

atggaacttt	ttaaatatat	ggagaaatac	gattatgaac	aattagtatt	ctgccaagat	60
gaacaatcag	gcttaaaagc	gattatcgca	attcatgata	caacgcttgg	tccggcgctt	120
ggcggaacga	gaatgtggac	atatgaaaat	gaagaagcgg	caattgaaga	cgcgctcaga	180
ctggcaagag	gcatgaccta	taaagacgcg	gctgcaggcc	taaaccttgg	cggcggaaaa	240
acagtaataa	tcggcgatcc	acgcaaagac	aaaaatgaag	aaatgttccg	cgcgtttggc	300
cgctatattc	aaggactgaa	cggcagatac	attacagctg	aagatgtggg	tacaacggtt	360
gaggatatgg	acattattca	tgatgaaaca	gactatgtca	cagggatttc	tcctgctttc	420
ggctcttctg	gaaatccatc	tccagttaca	gcgtacgggg	tgtacagagg	aatgaaagca	480
gccgctaaag	ctgctttcgg	aaccgactct	cttgaaggga	aaaccatcgc	tgtacagggt	540
gtagggaatg	tggcctacaa	cctatgccgc	cacctgcatg	aagaaggggc	aaacttaatc	600
gttacggata	tcaacaaaca	gtcagtacag	cgcgcagttg	aagattttgg	cgcccgtgcg	660
gttgatccgg	aagagattta	ttcacaagag	tgcgatattt	atgctccgtg	cgcccttgga	720
gcgacaatca	acgacgacac	cattaaacag	ctgaaggcga	aagtcatcgc	gggtgcggct	780
aataaccaat	taaaagaaac	gcgccatggc	gatcaaattc	acgaaatggg	tatcgtttac	840
gcaccggatt	atgtcattaa	cgcaggcggc	gtgatcaacg	tggcagatga	gctttacggc	900
tataatgcag	aacgtgcatt	gaaaaaagtt	gaaggcattt	acggcaatat	tgagcgtgta	960
cttgagattt	ctcagcgtga	cggcattcca	acatatttag	cagctgaccg	cttggcagag	1020
gaacggattg	aacgcatgcg	ccgctcaaga	agccagtttt	tgcaaaacgg	ccacagtgta	1080
ttaagcagac	gttaatag					1098

<210> 8

<211> 364 <212> PRT

<213> Bacillus subtilis

<400> 8

Met Glu Leu Phe Lys Tyr Met Glu Lys Tyr Asp Tyr Glu Gln Leu Val 10

Phe Cys Gln Asp Glu Gln Ser Gly Leu Lys Ala Ile Ile Ala Ile His 20 25

Asp	Thr	Thr 35	Leu	Gly	Pro	Ala	Leu 40	Gly	Gly	Thr	Arg	Met 45	Trp	Thr	Tyr
Glu	Asn 50	Glu	Glu	Ala	Ala	Ile 55	Glu	Asp	Ala	Leu	Arg 60	Leu	Ala	Arg	Gly
Met 65	Thr	Tyr	Lys	Asp	Ala 70	Ala	Ala	Gly	Leu	Asn 75	Leu	Gly	Gly	Gly	Lys 80
Thr	Val	Ile	Ile	Gly 85	Asp	Pro	Arg	Lys	Asp 90	Lys	Asn	Glu	Glu	Met 95	Phe
Arg	Ala	Phe	Gly 100	Arg	Tyr	Ile	Gln	Gly 105	Leu	Asn	Gly	Arg	Tyr 110	Ile	Thr
Ala	Glu	Asp 115	Val	Gly	Thr	Thr	Val 120	Glu	Asp	Met	Asp	Ile 125	Ile	His	Asp
Glu	Thr 130	Asp	Tyr	Val	Thr	Gly 135	Ile	Ser	Pro	Ala	Phe 140	Gly	Ser	Ser	Gly
Asn 145	Pro	Ser	Pro	Val	Thr 150	Ala	Tyr	Gly	Val	Tyr 155	Arg	Gly	Met	Lys	Ala 160
Ala	Ala	Lys	Ala	Ala 165	Phe	Gly	Thr	Asp	Ser 170	Leu	Glu	Gly	Lys	Thr 175	Ile
Ala	Val	Gln	Gly 180	Val	Gly	Asn	Val	Ala 185	Tyr	Asn	Leu	Cys	Arg 190	His	Leu
His	Glu	Glu 195	Gly	Ala	Asn	Leu	Ile 200	Val	Thr	Asp	Ile	Asn 205	Lys	Gln	Ser
Val	Gln 210	Arg	Ala	Val	Glu	Asp 215	Phe	Gly	Ala	Arg	Ala 220	Val	Asp	Pro	Glu
Glu 225	Ile	Tyr	Ser	Gln	Glu 230	Cys	Asp	Ile	Tyr	Ala 235	Pro	Cys	Ala	Leu	Gly 240
Ala	Thr	Ile	Asn	Asp	Asp	Thr	Ile	Lys	Gln	Leu	Lys	Ala	Lys	Val	Ile

Ala Gly Ala Ala Asn Asn Gln Leu Lys Glu Thr Arg His Gly Asp Gln 260 265 270

Ile His Glu Met Gly Ile Val Tyr Ala Pro Asp Tyr Val Ile Asn Ala 275 280 285

Gly Gly Val Ile Asn Val Ala Asp Glu Leu Tyr Gly Tyr Asn Ala Glu 290 295 300

Arg Ala Leu Lys Lys Val Glu Gly Ile Tyr Gly Asn Ile Glu Arg Val 305 310 315 320

Leu Glu Ile Ser Gln Arg Asp Gly Ile Pro Thr Tyr Leu Ala Ala Asp 325 330 335

Arg Leu Ala Glu Glu Arg Ile Glu Arg Met Arg Arg Ser Arg Ser Gln 340 345 350

Phe Leu Gln Asn Gly His Ser Val Leu Ser Arg Arg 355 360

<210> 9

<211> 1062

<212> DNA

<213> Nostoc sp.

<400> 9

atgcagctat ttgaaactgt tagagaaatg ggacatgagc aagtactcta ctgtcatgga 60 aaaaatccag atattagagc aataattgcc atccatgaca ccacattagg cccagcaatg 120 ggagccacaa ggctttatcc ttatatcaat gaagaagccg ccttaagaga tgctttgcgt 180 ttgagtcggg ggatgactta taaagcagct tgcgctaaca ttcccgcagg cggaggcaaa 240 qccqttatta ttqccaatcc cqaaqataaa acaqatqaaa tqttqaqaqc ttatqqacqc 300 tttgtggaaa gtctcaaagg tagatttatt accgggcaag atgtgaatat cactccacaa 360 gatgtccgca caattaaaca agaaaccaat tatgtagttg gtgtggaaga aaaatctggt 420 gggcctgctc ctatcacagc tttaggcgta tttttaggta ttaaagctgc tgtagaattt 480 cgctggcaaa ctaaaaatat tgaagggatg acagttgccg ttcaaggttt aggaaatgtt 540 ggtcagaatc tctgccgaca cttacatgaa aatggtataa agcttatagt tgctgatttt 600 agttctgaaa aaacagcaga aataaaacac ctttttggtg ctacagtagt agagccagat 660

gaa	aatttact	cacaaaatgt	agacatattt	tctccctgtg	ctatgggagg	aattattaac	720
agt	caaacaa	ttccccaact	acaagccaaa	attattgctg	gtgctgccaa	taaccagtta	780
gat	taatgagc	gtctgcatgg	tcaaagatta	gtagaaaaag	atatcctcta	ctgtcctgat	840
tat	gtaatca	atgctggtgg	tatcatcaac	gtttataacg	aaatgattgg	ctatgaagaa	900
gat	taaggcct	tcaagcaagt	taataatatt	tacgacacat	tattagcaat	tttcaatatt	960
gct	caacaac	aaagcattac	tactaatgat	gcttcaaaac	ggcttgcaga	tgaaaggatt	1020
ate	gaaggcga	gaatcaataa	aaatcaacta	attgctgcct	aa		1062

<211> 353

<212> PRT

<213> Nostoc sp.

<400> 10

Met Gln Leu Phe Glu Thr Val Arg Glu Met Gly His Glu Gln Val Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Tyr Cys His Gly Lys Asn Pro Asp Ile Arg Ala Ile Ile Ala Ile His 20 25 30

Asp Thr Thr Leu Gly Pro Ala Met Gly Ala Thr Arg Leu Tyr Pro Tyr 35 40 45

Ile Asn Glu Glu Ala Ala Leu Arg Asp Ala Leu Arg Leu Ser Arg Gly 50 55 60

Met Thr Tyr Lys Ala Ala Cys Ala Asn Ile Pro Ala Gly Gly Lys 65 70 75 80

Ala Val Ile Ile Ala Asn Pro Glu Asp Lys Thr Asp Glu Met Leu Arg 85 90 95

Ala Tyr Gly Arg Phe Val Glu Ser Leu Lys Gly Arg Phe Ile Thr Gly
100 105 110

Gln Asp Val Asn Ile Thr Pro Gln Asp Val Arg Thr Ile Lys Gln Glu 115 120 125

Thr Asn Tyr Val Val Gly Val Glu Glu Lys Ser Gly Gly Pro Ala Pro 130 135 140 Ile Thr Ala Leu Gly Val Phe Leu Gly Ile Lys Ala Ala Val Glu Phe Arg Trp Gln Thr Lys Asn Ile Glu Gly Met Thr Val Ala Val Gln Gly Leu Gly Asn Val Gly Gln Asn Leu Cys Arg His Leu His Glu Asn Gly Ile Lys Leu Ile Val Ala Asp Phe Ser Ser Glu Lys Thr Ala Glu Ile Lys His Leu Phe Gly Ala Thr Val Val Glu Pro Asp Glu Ile Tyr Ser Gln Asn Val Asp Ile Phe Ser Pro Cys Ala Met Gly Gly Ile Ile Asn Ser Gln Thr Ile Pro Gln Leu Gln Ala Lys Ile Ile Ala Gly Ala Ala Asn Asn Gln Leu Asp Asn Glu Arg Leu His Gly Gln Arg Leu Val Glu Lys Asp Ile Leu Tyr Cys Pro Asp Tyr Val Ile Asn Ala Gly Gly Ile Ile Asn Val Tyr Asn Glu Met Ile Gly Tyr Glu Glu Asp Lys Ala Phe Lys Gln Val Asn Asn Ile Tyr Asp Thr Leu Leu Ala Ile Phe Asn Ile Ala Gln Gln Ser Ile Thr Thr Asn Asp Ala Ser Lys Arg Leu Ala Asp Glu Arg Ile Met Lys Ala Arg Ile Asn Lys Asn Gln Leu Ile Ala

Ala

- <210> 11 <211> 1044 <212> DNA <213> Shewanella oneidensis
- <400> 11 atggctgtat ttaatcatgt atcctttgat gagcatgaac aggtcgtatt ctgtcatgat 60 aaaqaaaqtq qcttaaaaqc cattattgcc atccataata ccaatttaqq ccctgctqtg 120 ggtggatgcc ggatgtggaa ctaccaatcc gatgacgaag ccctgacaga cgtattacgc 180 ctctcccgtg gtatgactta caaaaacgcg ctcgctggtt taaccatggg cggtggtaaa 240 tcagtgatta ttgccgatcc taagcgccct gaccgcgaag ccctcttccg tgcttttggc 300 cgttttatca atagtctcgg tggacgttac tattccgcag aagacgttgg caccacgaca 360 gctgatatta tgatcgccca tcaagaaacg ccctatatgg cggggcttga aggcaagagt 420 ggcgatcctt ctccgtttac ggcactaggt acttatttag gtatcaaggc cgcggttaaa 480 cataageteg atttagacag cttaaaggge cttaagateg cegtteaagg tgttggecat 540 gtgggttatt atctgtgtaa acatctacat gaagaaggtg cacagctaat tgttaccgat 600 attcatcagg cgtcacttga taaagtggct accgactttg gtgctaccgt tgttgcacca 660 caggatatet aegeccaaga egtegatgtg taegececat gegeactagg tgegacetta 720 aacgatgtta ccctgccact actcaaagct aagattgttg caggttgtgc caacaaccaa 780 ttagccgaag tacgccatgg cgagcagtta aaagaaatgg gcattcttta tgcgccagat 840 tatgtgatta acgcgggcgg cattattaac gtatcattcg aaaaagacta tgatgcggcg 900 aaatcagaag ctaaggtcag agaaatctac aacacgctgc tgaagatttt tgctaaagcc 960 gatgctgaga accgcacgac aggtgcagta gctgacgaaa tggcccgtgc aatttaccaa 1020 gcgccaaagc ctaatagggc ttag 1044
- <210> 12 <211> 347
- <212> PRT
- <213> Shewanella oneidensis

<400> 12

Met Ala Val Phe Asn His Val Ser Phe Asp Glu His Glu Gln Val Val 1 5 10 15

Phe Cys His Asp Lys Glu Ser Gly Leu Lys Ala Ile Ile Ala Ile His
20 25 30

Asn Thr Asn Leu Gly Pro Ala Val Gly Gly Cys Arg Met Trp Asn Tyr Gln Ser Asp Asp Glu Ala Leu Thr Asp Val Leu Arg Leu Ser Arg Gly Met Thr Tyr Lys Asn Ala Leu Ala Gly Leu Thr Met Gly Gly Gly Lys Ser Val Ile Ile Ala Asp Pro Lys Arg Pro Asp Arg Glu Ala Leu Phe Arg Ala Phe Gly Arg Phe Ile Asn Ser Leu Gly Gly Arg Tyr Tyr Ser Ala Glu Asp Val Gly Thr Thr Thr Ala Asp Ile Met Ile Ala His Gln Glu Thr Pro Tyr Met Ala Gly Leu Glu Gly Lys Ser Gly Asp Pro Ser Pro Phe Thr Ala Leu Gly Thr Tyr Leu Gly Ile Lys Ala Ala Val Lys His Lys Leu Asp Leu Asp Ser Leu Lys Gly Leu Lys Ile Ala Val Gln Gly Val Gly His Val Gly Tyr Tyr Leu Cys Lys His Leu His Glu Glu Gly Ala Gln Leu Ile Val Thr Asp Ile His Gln Ala Ser Leu Asp Lys Val Ala Thr Asp Phe Gly Ala Thr Val Val Ala Pro Gln Asp Ile Tyr Ala Gln Asp Val Asp Val Tyr Ala Pro Cys Ala Leu Gly Ala Thr Leu Asn Asp Val Thr Leu Pro Leu Leu Lys Ala Lys Ile Val Ala Gly Cys

Ala Asn Asn Gln Leu Ala Glu Val Arg His Gly Glu Gln Leu Lys Glu 260 265 270

Met Gly Ile Leu Tyr Ala Pro Asp Tyr Val Ile Asn Ala Gly Gly Ile 275 280 285

Ile Asn Val Ser Phe Glu Lys Asp Tyr Asp Ala Ala Lys Ser Glu Ala 290 295 300

Lys Val Arg Glu Ile Tyr Asn Thr Leu Leu Lys Ile Phe Ala Lys Ala 305 310 315 320

Asp Ala Glu Asn Arg Thr Thr Gly Ala Val Ala Asp Glu Met Ala Arg 325 330 335

Ala Ile Tyr Gln Ala Pro Lys Pro Asn Arg Ala 340 345

<210> 13

<211> 1086

<212> DNA

<213> Streptomyces avermitilis

<400> 13

gtgaccgatg tatccgacgg cgtcctgcac accctgttcc gctcggacca gggggggcat 60 gagcaagteg tgetetgeca ggacegggec actggtetea aggeegteat egecateeae 120 tecacegeee tgggeeeege ceteggeggt aegegettet aeeegtaege gagegaggag 180 gaggccgtcg ccgacgcgct gaacctcgcg cgcgggatgt cgtacaagaa cgccatggcc 240 ggcctcgacc acggcggcgg caaggccgtc atcatcggtg accccgagcg gatcaagacc 300 gaggagetge tgetggeeta eggeeggtte gtggeetege teggegggeg gtaegteace 360 qcqtqcqacq tcqqtacqta cqtcqccqac atqqacqtcq tqqcqcqcqa qtqccqctqq 420 acgaccgggc gctccccgga gaacggcggc gcgggcgact cctccgtgct gaccgccttc 480 ggtgtcttcc agggcatgcg ggcctccgcc cagcacctgt ggggcgaccc gacgctgcgc 540 ggccgcaagg tgggcatcgc gggcgtcggc aaggtcggcc gccacctggt gcggcacctg 600 ctggacgacg gcgcggaggt cgtgatcacg gacgtgcgga ccgactccgt acagcggatc 660 ctegaceage accegacggg cgtcacggcc gtcgcggaca ccgacgcgct gatccgggtg 720 gacgggctcg acatctacgc cccgtgcgcg ctcggcgggg ccctgaacga cgactccgtc 780 acggtgctca ccgcgaagat cgtgtgcggc gcggccaaca accagctcgc ccacacgggc 840

gtcgagaagg	acctcgccga	ccgcgggatc	ctctacgcgc	cggactacgt	ggtgaacgcg	900
ggcggggtca	tccaggtcgc	cgacgagctg	cacggcttcg	acttcgaccg	gtgcaaggcg	960
aaggccgcga	agatcttcga	caccacgctg	gccatattcg	cacgtgcgaa	ggaagacggc	1020
attccgccgg	ccgccgcggc	cgaccggatt	gccgagcagc	gcatggcgga	ggcccgccgg	1080
ggctga						1086

<211> 361

<212> PRT

<213> Streptomyces avermitilis

<400> 14

Met Thr Asp Val Ser Asp Gly Val Leu His Thr Leu Phe Arg Ser Asp 1 5 10 15

Gln Gly Gly His Glu Gln Val Val Leu Cys Gln Asp Arg Ala Thr Gly 20 25 30

Leu Lys Ala Val Ile Ala Ile His Ser Thr Ala Leu Gly Pro Ala Leu 35 40 45

Gly Gly Thr Arg Phe Tyr Pro Tyr Ala Ser Glu Glu Glu Ala Val Ala 50 55 60

Asp Ala Leu Asn Leu Ala Arg Gly Met Ser Tyr Lys Asn Ala Met Ala 65 70 75 80

Gly Leu Asp His Gly Gly Gly Lys Ala Val Ile Ile Gly Asp Pro Glu 85 90 95

Arg Ile Lys Thr Glu Glu Leu Leu Leu Ala Tyr Gly Arg Phe Val Ala 100 105 110

Ser Leu Gly Gly Arg Tyr Val Thr Ala Cys Asp Val Gly Thr Tyr Val 115 120 125

Ala Asp Met Asp Val Val Ala Arg Glu Cys Arg Trp Thr Thr Gly Arg 130 135 140

Ser Pro Glu Asn Gly Gly Ala Gly Asp Ser Ser Val Leu Thr Ala Phe 145 150 155 160

Gly Val Phe Gln Gly Met Arg Ala Ser Ala Gln His Leu Trp Gly Asp 165 170 175 Pro Thr Leu Arg Gly Arg Lys Val Gly Ile Ala Gly Val Gly Lys Val 180 Gly Arg His Leu Val Arg His Leu Leu Asp Asp Gly Ala Glu Val Val Ile Thr Asp Val Arg Thr Asp Ser Val Gln Arg Ile Leu Asp Gln His 215 Pro Thr Gly Val Thr Ala Val Ala Asp Thr Asp Ala Leu Ile Arg Val 230 235 Asp Gly Leu Asp Ile Tyr Ala Pro Cys Ala Leu Gly Gly Ala Leu Asn 245 250 255 Asp Asp Ser Val Thr Val Leu Thr Ala Lys Ile Val Cys Gly Ala Ala 260 265 270 Asn Asn Gln Leu Ala His Thr Gly Val Glu Lys Asp Leu Ala Asp Arg 275 280 Gly Ile Leu Tyr Ala Pro Asp Tyr Val Val Asn Ala Gly Gly Val Ile 295 Gln Val Ala Asp Glu Leu His Gly Phe Asp Phe Asp Arg Cys Lys Ala Lys Ala Ala Lys Ile Phe Asp Thr Thr Leu Ala Ile Phe Ala Arg Ala 325 330 335 Lys Glu Asp Gly Ile Pro Pro Ala Ala Ala Asp Arg Ile Ala Glu 340 345

360

Gln Arg Met Ala Glu Ala Arg Arg Gly

355

<210> 15 <211> 1347 <212> DNA

19

<213> Nitrosomonas europaea

<400> 15 atgaaataca acagtatcga ggaattcaag aattatgttt ccgaaaggaa tccagggcaa 60 cccgaattcc tgcaggccgt ttcagaagtc attgaaagct tgtggccttt tatcgtcgat 120 cattctcgtt acgctgagca ggggttgctg gatcggctga tcgagccgga gcgcatgatc 180 atattccggg tggcgtgggt ggatgatcgg ggtgaagtca aggtcaatcg ggggtaccgc 240 300 atteaatata atteggegat eggeecatae aaggggggta egegetteea teegteagte aacctttcca ttctcaaatt ccttgcattt gagcagactt tcaagaatgc actgacaaca 360 ttgccgatgg gaggaggcaa gggtggatcg gattttgatc ccaagggtaa aagtcccggt 420 gaaatcatgc gcttctgcca agcgtatgcg gccgaactgt tccggcatgt cggtgcggat 480 acggatgtac ctgccggaga catcggtgtg ggcggacggg aagtcggcta catggctggt 540 atggtcaaga agctgaccaa ccgttcggac tgtgtattta ccggcaaagg attgaccttc 600 gggggatege tgetgeggee ggaagetace gggtaeggte tggtetattt tgeegaagag 660 atgctgaatc actccggttg ttcattgaaa ggcatgcggg tatccgtatc cggttccggg 720 aacgtggcac agtttgccat tgacaaggcc atgtcgctgg gtgccaaagt agtcacggtt 780 tcagattcga gtggtacggt ggtggatgaa gccggtttta caccagaaaa actggcaatt 840 ctggccgaag tcaagaatcg tctctacggg cgtgtcaatg aatttgctga acgggtggaa 900 gcacagttcc ttccgggtga aaaaccgtgg catgtgccgg tggatgtcgc tttgccctgt 960 gcgacccaga atgaactgaa cgaaaacgac gccgcaatac tgatcaggaa tggtgcgaat 1020 1080 tgtgtggccg agggtgccaa tatgccatgc actgcaggtg ccgtggaacg attccatcat 1140 gcgaaagtac tgtttgcacc tggcaaggcg agcaacgcag gcggagtggc tacctcgggt 1200 ctggaaatga gccagcaggc catgcgactt tcctggacga gcggagaagt cgatatgcgg ttacaggaaa tcatgcgtgc cattcatcat tcctgcaccg aatacggcaa gaagcctgac 1260 ggtacggtca actatgtgga tggtgccaat gttgccggat ttgtgaaagt ggccgaggca 1320 1347 atgctggcgc aaggggtgat ctgataa

<210> 16

<211> 447

<212> PRT

<213> Nitrosomonas europaea

<400> 16

Met 1	Lys	Tyr	Asn	Ser 5	Ile	Glu	Glu	Phe	Lys 10	Asn	Tyr	Val	Ser	Glu 15	Arg
Asn	Pro	Gly	Gln 20	Pro	Glu	Phe	Leu	Gln 25	Ala	Val	Ser	Glu	Val 30	Ile	Glu
Ser	Leu	Trp 35	Pro	Phe	Ile	Val	Asp 40	His	Ser	Arg	Tyr	Ala 45	Glu	Gln	Gly
Leu	Leu 50	Asp	Arg	Leu	Ile	Glu 55	Pro	Glu	Arg	Met	Ile 60	Ile	Phe	Arg	Val
Ala 65	Trp	Val	Asp	Asp	Arg 70	Gly	Glu	Val	Lys	Val 75	Asn	Arg	Gly	Tyr	Arg 80
Ile	Gln	Tyr	Asn	Ser 85	Ala	Ile	Gly	Pro	Tyr 90	Lys	Gly	Gly	Thr	Arg 95	Phe
His	Pro	Ser	Val 100	Asn	Leu	Ser	Ile	Leu 105	Lys	Phe	Leu	Ala	Phe 110	Glu	Gln
Thr	Phe	Lys 115	Asn	Ala	Leu	Thr	Thr 120	Leu	Pro	Met	Gly	Gly 125	Gly	Lys	Gly
Gly	Ser 130	Asp	Phe	Asp	Pro	Lys 135	Gly	Lys	Ser	Pro	Gly 140	Glu	Ile	Met	Arg
Phe 145	Cys	Gln	Ala	Tyr	Ala 150	Ala	Glu	Leu	Phe	Arg 155	His	Val	Gly	Ala	Asp 160
Thr	Asp	Val	Pro	Ala 165	Gly	Asp	Ile	Gly	Val 170	Gly	Gly	Arg	Glu	Val 175	Gly
Tyr	Met	Ala	Gly 180	Met	Val	Lys	Lys	Leu 185	Thr	Asn	Arg	Ser	Asp 190	Cys	Val
Phe	Thr	Gly 195	Lys	Gly	Leu	Thr	Phe 200	Gly	Gly	Ser	Leu	Leu 205	Arg	Pro	Glu
Ala	Thr 210	Gly	Tyr	Gly	Leu	Val 215	Tyr	Phe	Ala	Glu	Glu 220	Met	Leu	Asn	His

Ser Gly	Cys Ser	-	's Gly 80	Met	Arg	Val	Ser 235	Val	Ser	Gly	Ser	Gly 240
Asn Val	Ala Gln	Phe A. 245	a Ile	Asp	Lys	Ala 250	Met	Ser	Leu	Gly	Ala 255	Lys
Val Val	Thr Val 260	Ser As	sp Ser	Ser	Gly 265	Thr	Val	Val	Asp	Glu 270	Ala	Gly
Phe Thr	Pro Glu 275	Lys Le	eu Ala	Ile 280	Leu	Ala	Glu	Val	Lys 285	Asn	Arg	Leu
Tyr Gly 290	Arg Val	Asn G	u Phe. 295	Ala	Glu	Arg	Val	Glu 300	Ala	Gln	Phe	Leu
Pro Gly 6	Glu Lys		p His	Val	Pro	Val	Asp 315	Val	Ala	Leu	Pro	Cys 320
Ala Thr	Gln Asn	Glu Le 325	eu Asn	Glu	Asn	Asp 330	Ala	Ala	Ile	Leu	Ile 335	Arg
Asn Gly	Ala Asn 340	Cys Va	al Ala	Glu	Gly 345	Ala	Asn	Met	Pro	Cys 350	Thr	Ala
Gly Ala	Val Glu 355	Arg Pl	ne His	His 360	Ala	Lys	Val	Leu	Phe 365	Ala	Pro	Gly
Lys Ala 370	Ser Asn	Ala G	y Gly 375		Ala	Thr	Ser	Gly 380	Leu	Glu	Met	Ser
Gln Gln . 385	Ala Met		eu Ser 90	Trp	Thr	Ser	Gly 395	Glu	Val	Asp	Met	Arg 400
Leu Gln	Glu Ile	Met A: 405	g Ala	Ile	His	His 410	Ser	Cys	Thr	Glu	Tyr 415	Gly
Lys Lys	Pro Asp 420	Gly T	nr Val	Asn	Tyr 425	Val	Asp	Gly	Ala	Asn 430	Val	Ala
Gly Phe	Val Lys 435	Val A	la Glu	Ala 440	Met	Leu	Ala	Gln	Gly 445	Val	Ile	

DM_US\8325694.v1 11916.0059.PCUS01 Sequence List vers. 3.3

SEQUENCE LISTING

<110>	Bogosian, Grego O'Neill, Julia Smith, Hong Q.					
<120>	Prevention of Protein	Incorporatio	on of Non-St	andard Amin	no Acids into	
<130>	11916.0059.PCU	S01				
<150> <151>	,,	1224				
<150> <151>	US 60/505,807 2003-09-25					
<160>	16					
<170>	PatentIn versi	on 3.3				
<210><211><212><212><213>	1 1344 DNA Escherichia co	li				
<400>	1 caga catattctct	qqaqtcattc	ctcaaccatq	tccaaaagcg	cqacccqaat	60
	gagt tegegeaage					120
	ccaa aatatcgcca				_	180
	tttc gcgtggtatg					240
	cagt tcagctctgc					300
	cttt ccattctcaa					360
	ccga tgggcggtgg					420
ggtgaa	gtga tgcgtttttg	ccaggcgctg	atgactgaac	tgtatcgcca	cctgggcgcg	480
	gacg ttccggcagg					540
gggatg	atga aaaagctctc	caacaatacc	gcctgcgtct	tcaccggtaa	gggcctttca	600
tttggc	ggca gtcttattcg	cccggaagct	accggctacg	gtctggttta	tttcacagaa	660
gcaatg	ctaa aacgccacgg	tatgggtttt	gaagggatgc	gcgtttccgt	ttctggctcc	720
ggcaac	gtcg cccagtacgc	tatcgaaaaa	gcgatggaat	ttggtgctcg	tgtgatcact	780
gcgtca	gact ccagcggcac	tgtagttgat	gaaagcggat	tcacgaaaga	gaaactggca	840
cgtctt	atcg aaatcaaagc	cagccgcgat	ggtcgagtgg	cagattacgc	caaagaattt	900

ggtctggtct atctcgaagg ccaacagccg tggtctctac cggttgatat cgccctgcct 960 tgcgccaccc agaatgaact ggatgttgac gccgcgcatc agcttatcgc taatggcgtt 1020 aaagccgtcg ccgaaggggc aaatatgccg accaccatcg aagcgactga actgttccag 1080 caggcaggcg tactatttgc accgggtaaa gcggctaatg ctggtggcgt cgctacatcg 1140 ggcctggaaa tggcacaaaa cgctgcgcgc ctgggctgga aagccgagaa agttgacgca 1200 cgtttgcatc acatcatgct ggatatccac catgcctgtg ttgagcatgg tggtgaaggt 1260 gagcaaacca actacgtgca gggcgcgaac attgccggtt ttgtgaaggt tgccgatgcg 1320 atgctggcgc agggtgtgat ttaa 1344

<210> 2

<211> 447

<212> PRT

<213> Escherichia coli

<400> 2

Met Asp Gln Thr Tyr Ser Leu Glu Ser Phe Leu Asn His Val Gln Lys
1 5 10 15

Arg Asp Pro Asn Gln Thr Glu Phe Ala Gln Ala Val Arg Glu Val Met 20 25 30

Thr Thr Leu Trp Pro Phe Leu Glu Gln Asn Pro Lys Tyr Arg Gln Met 35 40 45

Ser Leu Leu Glu Arg Leu Val Glu Pro Glu Arg Val Ile Gln Phe Arg 50 55 60

Val Val Trp Val Asp Asp Arg Asn Gln Ile Gln Val Asn Arg Ala Trp 65 70 75 80

Arg Val Gln Phe Ser Ser Ala Ile Gly Pro Tyr Lys Gly Gly Met Arg 85 90 95

Phe His Pro Ser Val Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu 100 105 110

Gln Thr Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Lys 115 120 125

Gly Gly Ser 130	Asp Phe	Asp Pro	_	Gly I	Lys	Ser	Glu 140	Gly	Glu	Val	Met
Arg Phe Cys 145	Gln Ala	Leu Met 150	Thr	Glu I		Tyr 155	Arg	His	Leu	Gly	Ala 160
Asp Thr Asp	Val Pro 165	Ala Gly	Asp		Gly 170	Val	Gly	Gly	Arg	Glu 175	Val
Gly Phe Met	Ala Gly 180	Met Met	_	Lys I 185	Leu	Ser	Asn	Asn	Thr 190	Ala	Cys
Val Phe Thr 195	Gly Lys	Gly Leu	Ser :	Phe (Gly	Gly	Ser	Leu 205	Ile	Arg	Pro
Glu Ala Thr 210	Gly Tyr	Gly Leu 215	Val'	Tyr I	Phe	Thr	Glu 220	Ala	Met	Leu	Lys
Arg His Gly 225	Met Gly	Phe Glu 230	Gly 1	Met <i>I</i>	_	Val 235	Ser	Val	Ser	Gly	Ser 240
Gly Asn Val	Ala Gln 245	Tyr Ala	Ile		Lуs 250	Ala	Met	Glu	Phe	Gly 255	Ala
Arg Val Ile	Thr Ala 260	Ser Asp		Ser (265	Gly	Thr	Val	Val	Asp 270	Glu	Ser
Gly Phe Thr 275	Lys Glu	Lys Leu	Ala 2 280	Arg I	Leu	Ile	Glu	Ile 285	Lys	Ala	Ser
Arg Asp Gly 290	Arg Val	Ala Asp 295	Tyr i	Ala I	Lys	Glu	Phe 300	Gly	Leu	Val	Tyr
Leu Glu Gly 305	Gln Gln	Pro Trp 310	Ser :	Leu I		Val 315	Asp	Ile	Ala	Leu	Pro 320
Cys Ala Thr	Gln Asn 325	Glu Leu	Asp '		Asp 330	Ala	Ala	His	Gln	Leu 335	Ile
Ala Asn Gly	Val Lys 340	Ala Val		Glu (345	Gly	Ala	Asn	Met	Pro 350	Thr	Thr

Ile Glu Ala Thr Glu Leu Phe Gln Gln Ala Gly Val Leu Phe Ala Pro 355 360 365

Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met $370 \hspace{1cm} 375 \hspace{1cm} 380$

Ala Gln Asn Ala Ala Arg Leu Gly Trp Lys Ala Glu Lys Val Asp Ala 385 390 395 400

Arg Leu His His Ile Met Leu Asp Ile His His Ala Cys Val Glu His
405 410 415

Gly Glu Glu Glu Gln Thr Asn Tyr Val Gln Gly Ala Asn Ile Ala 420 425 430

Gly Phe Val Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile 435 440 445

<210> 3

<211> 1344

<212> DNA

<213> Escherichia coli

<400> 3

atggatcaga catattetet ggagtcatte etcaaccatg tecaaaageg egaceeqaat 60 caaaccgagt tcgcgcaagc cgttcgtgaa gtaatgacca cactctggcc ttttcttgaa 120 caaaatccaa aatatcgcca gatgtcatta ctggagcgtc tggttgaacc ggagcgcgtg 180 atccagtttc gcgtggtatg ggttgatgat cgcaaccaga tacaggtcaa ccgtgcatgg 240 cgtgtgcagt tcagctctgc catcggcccg tacctgggcg gtatgcgctt ccatccgtca 300 gttaaccttt ccattctcaa attcctcggc tttgaacaaa ccttcaaaaa tgccctgact 360 actotgooga tgggcggtgg taaaggcggc agcgatttcg atccgaaagg aaaaagcgaa 420 ggtgaagtga tgcgtttttg ccaggcgctg atgactgaac tgtatcgcca cctgggcgcq 480 gataccgacg ttccggcagg tgatatcggg gttggtggtc gtgaagtcgg ctttatggcg 540 gggatgatga aaaagctctc caacaatacc gcctgcgtct tcaccggtaa gggcctttca 600 tttggcggca gtcttattcg cccggaagct accggctacg gtctggttta tttcacagaa 660 gcaatgctaa aacgccacgg tatgggtttt gaagggatgc gcgtttccgt ttctggctcc 720 ggcaacgtcg cccagtacgc tatcgaaaaa gcgatggaat ttggtgctcg tgtgatcact 780 gcgtcagact ccagcggcac tgtagttgat gaaagcggat tcacgaaaga gaaactggca 840

cgtcttatcg	aaatcaaagc	cagccgcgat	ggtcgagtgg	cagattacgc	caaagaattt	900
ggtctggtct	atctcgaagg	ccaacagccg	tggtctctac	cggttgatat	cgccctgcct	960
tgcgccaccc	agaatgaact	ggatgttgac	gccgcgcatc	agcttatcgc	taatggcgtt	1020
aaagccgtcg	ccgaaggggc	aaatatgccg	accaccatcg	aagcgactga	actgttccag	1080
caggcaggcg	tactatttgc	accgggtaaa	gcggctaatg	ctggtggcgt	cgctacatcg	1140
ggcctggaaa	tggcacaaaa	cgctgcgcgc	ctgggctgga	aagccgagaa	agttgacgca	1200
cgtttgcatc	acatcatgct	ggatatccac	catgcctgtg	ttgagcatgg	tggtgaaggt	1260
gagcaaacca	actacgtgca	gggcgcgaac	attgccggtt	ttgtgaaggt	tgccgatgcg	1320
atgctggcgc	agggtgtgat	ttaa				1344

<211> 447

<212> PRT

<213> Escherichia coli

<400> 4

Met Asp Gln Thr Tyr Ser Leu Glu Ser Phe Leu Asn His Val Gln Lys 1 5 10 15

Thr Thr Leu Trp Pro Phe Leu Glu Gln Asn Pro Lys Tyr Arg Gln Met 35 40 45

Ser Leu Leu Glu Arg Leu Val Glu Pro Glu Arg Val Ile Gln Phe Arg 50 55 60

Val Val Trp Val Asp Asp Arg Asn Gln Ile Gln Val Asn Arg Ala Trp 65 70 75 80

Arg Val Gln Phe Ser Ser Ala Ile Gly Pro Tyr Leu Gly Gly Met Arg 85 90 95

Phe His Pro Ser Val Asn Leu Ser Ile Leu Lys Phe Leu Gly Phe Glu 100 105 110

Gln Thr Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Lys 115 120 125

Gly	Gly 130	Ser	Asp	Phe	Asp	Pro 135	Lys	Gly	Lys	Ser	Glu 140	Gly	Glu	Val	Met
Arg 145	Phe	Cys	Gln	Ala	Leu 150	Met	Thr	Glu	Leu	Tyr 155	Arg	His	Leu	Gly	Ala 160
Asp	Thr	Asp	Val	Pro 165	Ala	Gly	Asp	Ile	Gly 170	Val	Gly	Gly	Arg	Glu 175	Val
Gly	Phe	Met	Ala 180	Gly	Met	Met	Lys	Lys 185	Leu	Ser	Asn	Asn	Thr 190	Ala	Cys
		195		_			200					Leu 205			
	210			-		215		_			220	Ala			-
225					230					235		Val		_	240
				245					250			Glu		255	
			260					265				Val	270		
		275					280					11e 285			
	290					295					300	Gly			
305					310					315					320
				325					330			His		335	
AId	MOII	GIY	340	пур	MIG	val	MIG	345	дту	uta	MOII	Met	350	TIIT	IIIT

Ile Glu Ala Thr Glu Leu Phe Gln Gln Ala Gly Val Leu Phe Ala Pro 355 360 365

Gly Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Gly Leu Glu Met 370 375 380

Ala Gln Asn Ala Ala Arg Leu Gly Trp Lys Ala Glu Lys Val Asp Ala 385 390 395 400

Arg Leu His His Ile Met Leu Asp Ile His His Ala Cys Val Glu His
405 410 415

Gly Glu Gly Glu Gln Thr Asn Tyr Val Gln Gly Ala Asn Ile Ala 420 425 430

Gly Phe Val Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile 435 440 445

<210> 5

<211> 1101

<212> DNA

<213> Bacillus cereus

<400> 5

atgacattag aaatcttcga atacttagaa aaatatgatt atgagcaagt agtattttgt 60 caagataaag aatctggttt aaaagcaatt attgcaattc atgatacaac acttggaccg 120 gctcttggtg gaacaagaat gtggacatat gattctgaag aagcggcgat tgaagatgca 180 ttgcgtcttg caaaagggat gacatacaaa aacgcagcag ctggtttaaa cttaggtggt 240 gcgaaaacag taattatcgg tgatcctcgt aaagataaga gcgaagcaat gttccgtgca 300 ctaggacgtt atatccaagg actaaacgga cgttacatta cagctgaaga tgttggtaca 360 acagtagatg atatggatat tatccatgaa gaaactgact ttgtaacagg tatctcacca 420 tcattcggtt cttctggtaa cccatctccg gtaactgcat acggtgttta ccgtggtatg 480 aaagcagctg caaaagaagc tttcggtact gacaatttag aaggaaaagt aattgctgtt 540 caaggcgttg gtaacgtagc atatcaccta tgcaaacatt tacacgctga aggagcaaaa 600 ttaatcgtta cagatattaa taaagaagct gtacaacgtg ctgtagaaga attcggtgca 660 tcagcagttg aaccaaatga aatttacggt gttgaatgcg atatttacgc accatgtgca 720 ctaggcgcaa cagttaatga tgaaactatt ccacaactta aagcaaaagt aatcgcaggt 780

tc	tgcaaata	accaattaaa	agaagatcgt	catggtgaca	tcattcatga	aatgggtatt	840
gt	atacgcac	cagattatgt	aattaatgca	ggtggcgtaa	ttaacgtagc	agacgaatta	900
ta	tggataca	atagagaacg	tgcactaaaa	cgtgttgagt	ctatttatga	cacgattgca	960
aa	agtaatcg	aaatttcaaa	acgcgatggc	atagcaactt	atgtagcggc	agatcgtcta	1020
gc	tgaagagc	gcattgcaag	cttgaagaat	tctcgtagca	cttacttacg	caacggtcac	1080
ga	tattatta	gccgtcgcta	a				1101

<211> 366

<212> PRT

<213> Bacillus cereus

<400> 6

Met Thr Leu Glu Ile Phe Glu Tyr Leu Glu Lys Tyr Asp Tyr Glu Gln 1 5 10 15

Val Val Phe Cys Gln Asp Lys Glu Ser Gly Leu Lys Ala Ile Ile Ala 20 25 30

Ile His Asp Thr Thr Leu Gly Pro Ala Leu Gly Gly Thr Arg Met Trp 35 40 45

Thr Tyr Asp Ser Glu Glu Ala Ala Ile Glu Asp Ala Leu Arg Leu Ala 50 55 60

Lys Gly Met Thr Tyr Lys Asn Ala Ala Ala Gly Leu Asn Leu Gly Gly 65 70 75 80

Ala Lys Thr Val Ile Ile Gly Asp Pro Arg Lys Asp Lys Ser Glu Ala 85 90 95

Met Phe Arg Ala Leu Gly Arg Tyr Ile Gl
n Gly Leu Asn Gly Arg Tyr 100 105 110

Ile Thr Ala Glu Asp Val Gly Thr Thr Val Asp Asp Met Asp Ile Ile
115 120 125

His Glu Glu Thr Asp Phe Val Thr Gly Ile Ser Pro Ser Phe Gly Ser 130 135 140

Ser 145	Gly	Asn	Pro	Ser	Pro 150	Val	Thr	Ala	Tyr	Gly 155	Val	Tyr	Arg	Gly	Met 160
Lys	Ala	Ala	Ala	Lys 165	Glu	Ala	Phe	Gly	Thr 170	Asp	Asn	Leu	Glu	Gly 175	Lys
Val	Ile	Ala	Val 180	Gln	Gly	Val	Gly	Asn 185	Val	Ala	Tyr	His	Leu 190	Cys	Lys
His	Leu	His 195	Ala	Glu	Gly	Ala	Lys 200	Leu	Ile	Val	Thr	Asp 205	Ile	Asn	Lys
Glu	Ala 210	Val	Gln	Arg	Ala	Val 215	Glu	Glu	Phe	Gly	Ala 220	Ser	Ala	Val	Glu
Pro 225	Asn	Glu	Ile	Tyr	Gly 230	Val	Glu	Cys	Asp	Ile 235	Tyr	Ala	Pro	Cys	Ala 240
Leu	Gly	Ala	Thr	Val 245	Asn	Asp	Glu	Thr	Ile 250	Pro	Gln	Leu	Lys	Ala 255	Lys
Val	Ile	Ala	Gly 260	Ser	Ala	Asn	Asn	Gln 265	Leu	Lys	Glu	Asp	Arg 270	His	Gly
Asp	Ile	Ile 275	His	Glu	Met	Gly	Ile 280	Val	Tyr	Ala	Pro	Asp 285	Tyr	Val	Ile
Asn	Ala 290	Gly	Gly	Val	Ile	Asn 295	Val	Ala	Asp	Glu	Leu 300	Tyr	Gly	Tyr	Asn
Arg 305	Glu	Arg	Ala	Leu	Lys 310	Arg	Val	Glu	Ser	Ile 315	Tyr	Asp	Thr	Ile	Ala 320
Lys	Val	Ile	Glu	Ile 325	Ser	Lys	Arg	Asp	Gly 330	Ile	Ala	Thr	Tyr	Val 335	Ala
Ala	Asp	Arg	Leu 340	Ala	Glu	Glu	Arg	Ile 345	Ala	Ser	Leu	Lys	Asn 350	Ser	Arg
Ser	Thr	Tyr 355	Leu	Arg	Asn	Gly	His 360	Asp	Ile	Ile	Ser	Arg 365	Arg		

<211> 1098

<212> DNA

<213> Bacillus subtilis

<400> 7

atggaacttt	ttaaatatat	ggagaaatac	gattatgaac	aattagtatt	ctgccaagat	60
gaacaatcag	gcttaaaagc	gattatcgca	attcatgata	caacgcttgg	tccggcgctt	120
ggcggaacga	gaatgtggac	atatgaaaat	gaagaagcgg	caattgaaga	cgcgctcaga	180
ctggcaagag	gcatgaccta	taaagacgcg	gctgcaggcc	taaaccttgg	cggcggaaaa	240
acagtaataa	teggegatee	acgcaaagac	aaaaatgaag	aaatgttccg	cgcgtttggc	300
cgctatattc	aaggactgaa	cggcagatac	attacagctg	aagatgtggg	tacaacggtt	360
gaggatatgg	acattattca	tgatgaaaca	gactatgtca	cagggatttc	tcctgctttc	420
ggctcttctg	gaaatccatc	tccagttaca	gcgtacgggg	tgtacagagg	aatgaaagca	480
gccgctaaag	ctgctttcgg	aaccgactct	cttgaaggga	aaaccatcgc	tgtacagggt	540
gtagggaatg	tggcctacaa	cctatgccgc	cacctgcatg	aagaaggggc	aaacttaatc	600
gttacggata	tcaacaaaca	gtcagtacag	cgcgcagttg	aagattttgg	cgcccgtgcg	660
gttgatccgg	aagagattta	ttcacaagag	tgcgatattt	atgctccgtg	cgcccttgga	720
gcgacaatca	acgacgacac	cattaaacag	ctgaaggcga	aagtcatcgc	gggtgcggct	780
aataaccaat	taaaagaaac	gcgccatggc	gatcaaattc	acgaaatggg	tatcgtttac	840
gcaccggatt	atgtcattaa	cgcaggcggc	gtgatcaacg	tggcagatga	gctttacggc	900
tataatgcag	aacgtgcatt	gaaaaaagtt	gaaggcattt	acggcaatat	tgagcgtgta	960
cttgagattt	ctcagcgtga	cggcattcca	acatatttag	cagctgaccg	cttggcagag	1020
gaacggattg	aacgcatgcg	ccgctcaaga	agccagtttt	tgcaaaacgg	ccacagtgta	. 1080
ttaagcagac	gttaatag					1098

<210> 8

<211> 364 <212> PRT

<213> Bacillus subtilis

<400> 8

Met Glu Leu Phe Lys Tyr Met Glu Lys Tyr Asp Tyr Glu Gln Leu Val 5 10

Phe Cys Gln Asp Glu Gln Ser Gly Leu Lys Ala Ile Ile Ala Ile His 20 25

Asp Thr Thr Leu Gly Pro Ala Leu Gly Gly Thr Arg Met Trp Thr Tyr Glu Asn Glu Glu Ala Ala Ile Glu Asp Ala Leu Arg Leu Ala Arg Gly Met Thr Tyr Lys Asp Ala Ala Ala Gly Leu Asn Leu Gly Gly Gly Lys Thr Val Ile Ile Gly Asp Pro Arg Lys Asp Lys Asn Glu Glu Met Phe Arg Ala Phe Gly Arg Tyr Ile Gln Gly Leu Asn Gly Arg Tyr Ile Thr Ala Glu Asp Val Gly Thr Thr Val Glu Asp Met Asp Ile Ile His Asp Glu Thr Asp Tyr Val Thr Gly Ile Ser Pro Ala Phe Gly Ser Ser Gly Asn Pro Ser Pro Val Thr Ala Tyr Gly Val Tyr Arg Gly Met Lys Ala Ala Ala Lys Ala Ala Phe Gly Thr Asp Ser Leu Glu Gly Lys Thr Ile Ala Val Gln Gly Val Gly Asn Val Ala Tyr Asn Leu Cys Arg His Leu His Glu Glu Gly Ala Asn Leu Ile Val Thr Asp Ile Asn Lys Gln Ser Val Gln Arg Ala Val Glu Asp Phe Gly Ala Arg Ala Val Asp Pro Glu Glu Ile Tyr Ser Gln Glu Cys Asp Ile Tyr Ala Pro Cys Ala Leu Gly Ala Thr Ile Asn Asp Asp Thr Ile Lys Gln Leu Lys Ala Lys Val Ile

Ala Gly Ala Ala Asn Asn Gln Leu Lys Glu Thr Arg His Gly Asp Gln 260 265 270

Ile His Glu Met Gly Ile Val Tyr Ala Pro Asp Tyr Val Ile Asn Ala 275 280 285

Gly Gly Val Ile Asn Val Ala Asp Glu Leu Tyr Gly Tyr Asn Ala Glu 290 295 300

Arg Ala Leu Lys Lys Val Glu Gly Ile Tyr Gly Asn Ile Glu Arg Val 305 310 315 320

Leu Glu Ile Ser Gln Arg Asp Gly Ile Pro Thr Tyr Leu Ala Ala Asp 325 330 335

Arg Leu Ala Glu Glu Arg Ile Glu Arg Met Arg Arg Ser Arg Ser Gln 340 345 350

Phe Leu Gln Asn Gly His Ser Val Leu Ser Arg Arg 355 360

<210> 9

<211> 1062

<212> DNA

<213> Nostoc sp.

<400> 9

atgcagctat ttgaaactgt tagagaaatg ggacatgagc aagtactcta ctgtcatgga 60 aaaaatccag atattagagc aataattgcc atccatgaca ccacattagg cccagcaatg 120 ggagccacaa ggctttatcc ttatatcaat gaagaagccg ccttaagaga tgctttgcgt 180 ttgagtcggg ggatgactta taaagcagct tgcgctaaca ttcccgcagg cggaggcaaa 240 gccgttatta ttgccaatcc cgaagataaa acagatgaaa tgttgagagc ttatggacgc 300 tttgtggaaa gtctcaaagg tagatttatt accgggcaag atgtgaatat cactccacaa 360 gatgtccgca caattaaaca agaaaccaat tatgtagttg gtgtggaaga aaaatctggt 420 gggcctgctc ctatcacagc tttaggcgta tttttaggta ttaaagctgc tgtagaattt 480 cgctggcaaa ctaaaaatat tgaagggatg acagttgccg ttcaaggttt aggaaatgtt 540 ggtcagaatc tctgccgaca cttacatgaa aatggtataa agcttatagt tgctgatttt 600 agttctgaaa aaacagcaga aataaaacac ctttttggtg ctacagtagt agagccagat 660

gaa	aatttact	cacaaaatgt	agacatattt	tctccctgtg	ctatgggagg	aattattaac	720
agt	caaacaa	ttccccaact	acaagccaaa	attattgctg	gtgctgccaa	taaccagtta	780
gat	taatgagc	gtctgcatgg	tcaaagatta	gtagaaaaag	atatcctcta	ctgtcctgat	840
tai	gtaatca	atgctggtgg	tatcatcaac	gtttataacg	aaatgattgg	ctatgaagaa	900
gat	taaggcct	tcaagcaagt	taataatatt	tacgacacat	tattagcaat	tttcaatatt	960
gct	caacaac	aaagcattac	tactaatgat	gcttcaaaac	ggcttgcaga	tgaaaggatt	1020
ate	gaaggcga	gaatcaataa	aaatcaacta	attgctgcct	aa		1062

<211> 353

<212> PRT

<213> Nostoc sp.

<400> 10

Met Gln Leu Phe Glu Thr Val Arg Glu Met Gly His Glu Gln Val Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Tyr Cys His Gly Lys Asn Pro Asp Ile Arg Ala Ile Ile Ala Ile His 20 25 30

Asp Thr Thr Leu Gly Pro Ala Met Gly Ala Thr Arg Leu Tyr Pro Tyr 35 40 45

Ile Asn Glu Glu Ala Ala Leu Arg Asp Ala Leu Arg Leu Ser Arg Gly 50 55 60

Met Thr Tyr Lys Ala Ala Cys Ala Asn Ile Pro Ala Gly Gly Lys 70 75 80

Ala Val Ile Ile Ala Asn Pro Glu Asp Lys Thr Asp Glu Met Leu Arg 85 90 95

Ala Tyr Gly Arg Phe Val Glu Ser Leu Lys Gly Arg Phe Ile Thr Gly
100 105 110

Gln Asp Val Asn Ile Thr Pro Gln Asp Val Arg Thr Ile Lys Gln Glu 115 120 125

Thr Asn Tyr Val Val Gly Val Glu Glu Lys Ser Gly Gly Pro Ala Pro 130 135 140 Ile Thr Ala Leu Gly Val Phe Leu Gly Ile Lys Ala Ala Val Glu Phe Arg Trp Gln Thr Lys Asn Ile Glu Gly Met Thr Val Ala Val Gln Gly Leu Gly Asn Val Gly Gln Asn Leu Cys Arg His Leu His Glu Asn Gly Ile Lys Leu Ile Val Ala Asp Phe Ser Ser Glu Lys Thr Ala Glu Ile Lys His Leu Phe Gly Ala Thr Val Val Glu Pro Asp Glu Ile Tyr Ser Gln Asn Val Asp Ile Phe Ser Pro Cys Ala Met Gly Gly Ile Ile Asn Ser Gln Thr Ile Pro Gln Leu Gln Ala Lys Ile Ile Ala Gly Ala Ala Asn Asn Gln Leu Asp Asn Glu Arg Leu His Gly Gln Arg Leu Val Glu Lys Asp Ile Leu Tyr Cys Pro Asp Tyr Val Ile Asn Ala Gly Gly Ile Ile Asn Val Tyr Asn Glu Met Ile Gly Tyr Glu Glu Asp Lys Ala Phe Lys Gln Val Asn Asn Ile Tyr Asp Thr Leu Leu Ala Ile Phe Asn Ile Ala Gln Gln Ser Ile Thr Thr Asn Asp Ala Ser Lys Arg Leu Ala Asp Glu Arg Ile Met Lys Ala Arg Ile Asn Lys Asn Gln Leu Ile Ala

Ala

- <210> 11 <211> 1044 <212> DNA <213> Shewanella oneidensis
- <400> 11 atggctgtat ttaatcatgt atcctttgat gagcatgaac aggtcgtatt ctgtcatgat 60 aaagaaagtg gcttaaaagc cattattgcc atccataata ccaatttagg ccctgctgtg 120 qqtqqatqcc qqatqtqqaa ctaccaatcc qatgacgaag ccctgacaga cgtattacgc 180 ctctcccgtg gtatgactta caaaaacgcg ctcgctggtt taaccatggg cggtggtaaa 240 tcagtgatta ttgccgatcc taagcgccct gaccgcgaag ccctcttccg tgcttttggc 300 cgttttatca atagtctcgg tggacgttac tattccgcag aagacgttgg caccacgaca 360 gctgatatta tgatcgccca tcaagaaacg ccctatatgg cggggcttga aggcaagagt 420 ggcgatcctt ctccgtttac ggcactaggt acttatttag gtatcaaggc cgcggttaaa 480 cataagctcg atttagacag cttaaagggc cttaagatcg ccgttcaagg tgttggccat 540 qtqqqttatt atctqtqtaa acatctacat qaaqaaqqtq cacaqctaat tqttaccqat 600 attcatcagg cgtcacttga taaagtggct accgactttg gtgctaccgt tgttgcacca 660 caggatatet acgeccaaga egtegatgtg tacgecceat gegeactagg tgegacetta 720 aacgatgtta ccctgccact actcaaagct aagattgttg caggttgtgc caacaaccaa 780 ttagccgaag tacgccatgq cgagcagtta aaaqaaatgg gcattcttta tgcgccagat 840 tatgtgatta acgcgggcgg cattattaac gtatcattcg aaaaagacta tgatgcggcg 900 aaatcagaag ctaaggtcag agaaatctac aacacgctgc tgaagatttt tgctaaagcc 960 gatgctgaga accgcacgac aggtgcagta gctgacgaaa tggcccgtgc aatttaccaa 1020 gcgccaaagc ctaatagggc ttag 1044
- <210> 12 <211> 347
- <212> PRT
- <213> Shewanella oneidensis
- <400> 12

Met Ala Val Phe Asn His Val Ser Phe Asp Glu His Glu Gln Val Val 1 5 10 15

Phe Cys His Asp Lys Glu Ser Gly Leu Lys Ala Ile Ile Ala Ile His 20 25 30

ASII	1111	35	ьеu	GIY	PIO	Ala	40	GIY	GIY	Cys	Arg	45	пр	ASII	ıyı
Gln	Ser 50	Asp	Asp	Glu	Ala	Leu 55	Thr	Asp	Val	Leu	Arg 60	Leu	Ser	Arg	Gly
Met 65	Thr	Tyr	Lys	Asn	Ala 70	Leu	Ala	Gly	Leu	Thr 75	Met	Gly	Gly	Gly	Lys 80
Ser	Val	Ile	Ile	Ala 85	Asp	Pro	Lys	Arg	Pro 90	Asp	Arg	Glu	Ala	Leu 95	Phe
Arg	Ala	Phe	Gly 100	Arg	Phe	Ile	Asn	Ser 105	Leu	Gly	Gly	Arg	Tyr 110	Tyr	Ser
Ala	Glu	Asp 115	Val	Gly	Thr	Thr	Thr 120	Ala	Asp	Ile	Met	Ile 125	Ala	His	Gln
Glu	Thr 130	Pro	Tyr	Met	Ala	Gly 135	Leu	Glu	Gly	Lys	Ser 140	Gly	Asp	Pro	Ser
Pro 145	Phe	Thr	Ala	Leu	Gly 150	Thr	Tyr	Leu	Gly	Ile 155	Lys	Ala	Ala	Val	Lys 160
His	Lys	Leu	Asp	Leu 165	Asp	Ser	Leu	Lys	Gly 170	Leu	Lys	Ile	Ala	Val 175	Gln
Gly	Val	Gly	His 180	Val	Gly	Tyr	Tyr	Leu 185	Cys	Lys	His	Leu	His 190	Glu	Glu
Gly	Ala	Gln 195	Leu	Ile	Val	Thr	Asp 200	Ile	His	Gln	Ala	Ser 205	Leu	Asp	Lys
Val	Ala 210	Thr	Asp	Phe	Gly	Ala 215	Thr	Val	Val	Ala	Pro 220	Gln	Asp	Ile	Tyr
Ala 225	Gln	Asp	Val	Asp	Val 230	Tyr	Ala	Pro	Cys	Ala 235	Leu	Gly	Ala	Thr	Leu 240
Asn	Asp	Val	Thr	Leu 245	Pro	Leu	Leu	Lys	Ala 250	Lys	Ile	Val	Ala	Gly 255	Cys

Ala Asn Asn Gln Leu Ala Glu Val Arg His Gly Glu Gln Leu Lys Glu 260 265 270

Met Gly Ile Leu Tyr Ala Pro Asp Tyr Val Ile Asn Ala Gly Gly Ile 275 280 285

Ile Asn Val Ser Phe Glu Lys Asp Tyr Asp Ala Ala Lys Ser Glu Ala 290 295 300

Lys Val Arg Glu Ile Tyr Asn Thr Leu Leu Lys Ile Phe Ala Lys Ala 305 310 315 320

Asp Ala Glu Asn Arg Thr Thr Gly Ala Val Ala Asp Glu Met Ala Arg 325 330 335

Ala Ile Tyr Gln Ala Pro Lys Pro Asn Arg Ala 340 345

<210> 13

<211> 1086

<212> DNA

<213> Streptomyces avermitilis

<400> 13

gtgaccgatg tatccgacgg cgtcctgcac accetgttcc gctcggacca gggggggcat 60 gagcaagteg tgetetgeea ggacegggee aetggtetea aggeegteat egeeateeae 120 tecacegeee tgggeeeege ceteggeggt aegegettet accegtaege gagegaggag 180 gaggccgtcg ccgacgcgct gaacctcgcg cgcgggatgt cgtacaagaa cgccatggcc 240 ggcctcgacc acggcggcgg caaggccgtc atcatcggtg accccgagcg gatcaagacc 300 gaggagetge tgetggeeta eggeeggtte gtggeetege teggegggeg gtaegteace 360 gegtgegaeg teggtaegta egtegeegae atggaegteg tggegegega gtgeegetgg 420 acgaccgggc gctccccgga gaacggcggc gcgggcgact cctccgtgct gaccgccttc 480 ggtgtcttcc agggcatgcg ggcctccgcc cagcacctgt ggggcgaccc gacgctgcgc 540 ggccgcaagg tgggcatcgc gggcgtcggc aaggtcggcc gccacctggt gcggcacctg 600 ctggacgacg gcgcggaggt cgtgatcacg gacgtgcgga ccgactccgt acagcggatc 660 etegaceage accegacggg egteacggee gtegeggaca eegacgeget gateegggtg 720 gacgggctcg acatctacgc cccgtgcgcg ctcggcgggg ccctgaacga cgactccgtc 780 acggtgctca ccgcgaagat cgtgtgcggc gcggccaaca accagctcgc ccacacgggc 840

gtcgagaagg acctcgccga	ccgcgggatc	ctctacgcgc	cggactacgt	ggtgaacgcg	900
ggcggggtca tccaggtcgc	cgacgagctg	cacggcttcg	acttcgaccg	gtgcaaggcg	960
aaggccgcga agatcttcga	caccacgctg	gccatattcg	cacgtgcgaa	ggaagacggc	1020
attccgccgg ccgccgcggc	cgaccggatt	gccgagcagc	gcatggcgga	ggcccgccgg	1080
ggctga					1086

<211> 361

<212> PRT

<213> Streptomyces avermitilis

<400> 14

Met Thr Asp Val Ser Asp Gly Val Leu His Thr Leu Phe Arg Ser Asp 1 5 10 15

Gln Gly Gly His Glu Gln Val Val Leu Cys Gln Asp Arg Ala Thr Gly
20 25 30

Leu Lys Ala Val Ile Ala Ile His Ser Thr Ala Leu Gly Pro Ala Leu 35 40 45

Gly Gly Thr Arg Phe Tyr Pro Tyr Ala Ser Glu Glu Glu Ala Val Ala 50 55 60

Asp Ala Leu Asn Leu Ala Arg Gly Met Ser Tyr Lys Asn Ala Met Ala 65 70 75 80

Gly Leu Asp His Gly Gly Gly Lys Ala Val Ile Ile Gly Asp Pro Glu 85 90 95

Arg Ile Lys Thr Glu Glu Leu Leu Leu Ala Tyr Gly Arg Phe Val Ala 100 105 110

Ser Leu Gly Gly Arg Tyr Val Thr Ala Cys Asp Val Gly Thr Tyr Val 115 120 125

Ala Asp Met Asp Val Val Ala Arg Glu Cys Arg Trp Thr Thr Gly Arg 130 135 140

Ser Pro Glu Asn Gly Gly Ala Gly Asp Ser Ser Val Leu Thr Ala Phe 145 150 155 160 Gly Val Phe Gln Gly Met Arg Ala Ser Ala Gln His Leu Trp Gly Asp 165 175 Pro Thr Leu Arg Gly Arg Lys Val Gly Ile Ala Gly Val Gly Lys Val 180 185 Gly Arg His Leu Val Arg His Leu Leu Asp Asp Gly Ala Glu Val Val Ile Thr Asp Val Arg Thr Asp Ser Val Gln Arg Ile Leu Asp Gln His Pro Thr Gly Val Thr Ala Val Ala Asp Thr Asp Ala Leu Ile Arg Val 225 230 235 Asp Gly Leu Asp Ile Tyr Ala Pro Cys Ala Leu Gly Gly Ala Leu Asn 245 250 255 Asp Asp Ser Val Thr Val Leu Thr Ala Lys Ile Val Cys Gly Ala Ala 260 265 270 Asn Asn Gln Leu Ala His Thr Gly Val Glu Lys Asp Leu Ala Asp Arg 275 280 Gly Ile Leu Tyr Ala Pro Asp Tyr Val Val Asn Ala Gly Gly Val Ile 295 Gln Val Ala Asp Glu Leu His Gly Phe Asp Phe Asp Arg Cys Lys Ala 310 Lys Ala Ala Lys Ile Phe Asp Thr Thr Leu Ala Ile Phe Ala Arq Ala 325 Lys Glu Asp Gly Ile Pro Pro Ala Ala Ala Asp Arg Ile Ala Glu

345

360

<210> 15

<211> 1347

340

355

Gln Arg Met Ala Glu Ala Arg Arg Gly

<212> DNA

350

<213> Nitrosomonas europaea

<400> 15 60 atgaaataca acagtatcga ggaattcaag aattatgttt ccgaaaggaa tccagggcaa 120 cccgaattcc tgcaggccgt ttcagaagtc attgaaagct tgtggccttt tatcgtcgat cattctcgtt acgctgagca ggggttgctg gatcggctga tcgagccgga gcgcatgatc 180 atattccggg tggcgtgggt ggatgatcgg ggtgaagtca aggtcaatcg ggggtaccgc 240 300 attcaatata attcggcgat cggcccatac aaggggggta cgcgcttcca tccgtcagtc aacctttcca ttctcaaatt ccttgcattt gagcagactt tcaagaatgc actgacaaca 360 ttgccgatgg gaggaggcaa gggtggatcg gattttgatc ccaagggtaa aagtcccggt 420 gaaatcatgc gcttctgcca agcgtatgcg gccgaactgt tccggcatgt cggtgcggat 480 acggatgtac ctgccggaga catcggtgtg ggcggacggg aagtcggcta catggctggt 540 600 atggtcaaga agctgaccaa ccgttcggac tgtgtattta ccggcaaagg attgaccttc gggggatcgc tgctgcggcc ggaagctacc gggtacggtc tggtctattt tgccgaagag 660 720 atgctgaatc actccggttg ttcattgaaa ggcatgcggg tatccgtatc cggttccggg aacgtggcac agtttgccat tgacaaggcc atgtcgctgg gtgccaaagt agtcacggtt 780 tcagattcga gtggtacggt ggtggatgaa gccggtttta caccagaaaa actggcaatt 840 ctggccgaag tcaagaatcg tctctacggg cgtgtcaatg aatttgctga acgggtggaa 900 gcacagttcc ttccgggtga aaaaccgtgg catgtgccgg tggatgtcgc tttgccctgt 960 gcgacccaga atgaactgaa cgaaaacgac gccgcaatac tgatcaggaa tggtgcgaat 1020 tgtgtggccg agggtgccaa tatgccatgc actgcaggtg ccgtggaacg attccatcat 1080 gcgaaagtac tgtttgcacc tggcaaggcg agcaacgcag gcggagtggc tacctcgggt 1140 ctggaaatga gccagcaggc catgcgactt tcctggacga gcggagaagt cgatatgcgg 1200 ttacaggaaa tcatgcgtgc cattcatcat tcctgcaccg aatacggcaa gaagcctgac 1260 1320 ggtacggtca actatgtgga tggtgccaat gttgccggat ttgtgaaagt ggccgaggca 1347 atgctggcgc aaggggtgat ctgataa

<210> 16

<211> 447

<212> PRT

<213> Nitrosomonas europaea

<400> 16

Met Lys Tyr Asn Ser Ile Glu Glu Phe Lys Asn Tyr Val Ser Glu Arg Asn Pro Gly Gln Pro Glu Phe Leu Gln Ala Val Ser Glu Val Ile Glu Ser Leu Trp Pro Phe Ile Val Asp His Ser Arg Tyr Ala Glu Gln Gly Leu Leu Asp Arg Leu Ile Glu Pro Glu Arg Met Ile Ile Phe Arg Val Ala Trp Val Asp Asp Arg Gly Glu Val Lys Val Asn Arg Gly Tyr Arg Ile Gln Tyr Asn Ser Ala Ile Gly Pro Tyr Lys Gly Gly Thr Arg Phe His Pro Ser Val Asn Leu Ser Ile Leu Lys Phe Leu Ala Phe Glu Gln Thr Phe Lys Asn Ala Leu Thr Thr Leu Pro Met Gly Gly Lys Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Pro Gly Glu Ile Met Arg Phe Cys Gln Ala Tyr Ala Ala Glu Leu Phe Arg His Val Gly Ala Asp Thr Asp Val Pro Ala Gly Asp Ile Gly Val Gly Gly Arg Glu Val Gly Tyr Met Ala Gly Met Val Lys Lys Leu Thr Asn Arg Ser Asp Cys Val Phe Thr Gly Lys Gly Leu Thr Phe Gly Gly Ser Leu Leu Arg Pro Glu Ala Thr Gly Tyr Gly Leu Val Tyr Phe Ala Glu Glu Met Leu Asn His

Ser 225	Gly	Cys	Ser	Leu	Lys 230	Gly	Met	Arg	Val	Ser 235	Val	Ser	Gly	Ser	Gly 240
Asn	Val	Ala	Gln	Phe 245	Ala	Ile	Asp	Lys	Ala 250	Met	Ser	Leu	Gly	Ala 255	Lys
Val	Val	Thr	Val 260	Ser	Asp	Ser	Ser	Gly 265	Thr	Val	Val	Asp	Glu 270	Ala	Gly
Phe	Thr	Pro 275	Glu	Lys	Leu	Ala	Ile 280	Leu	Ala	Glu	Val	Lys 285	Asn	Arg	Leu
Tyr	Gly 290	Arg	Val	Asn	Glu	Phe 295	Ala	Glu	Arg	Val	Glu 300	Ala	Gln	Phe	Leu
Pro 305	Gly	Glu	Lys	Pro	Trp 310	His	Val	Pro	Val	Asp 315	Val	Ala	Leu	Pro	Cys 320
Ala	Thr	Gln	Asn	Glu 325	Leu	Asn	Glu	Asn	Asp 330	Ala	Ala	Ile	Leu	Ile 335	Arg
Asn	Gly	Ala	Asn 340	Cys	Val	Ala	Glu	Gly 345	Ala	Asn	Met	Pro	Cys 350	Thr	Ala
Gly	Ala	Val 355	Glu	Arg	Phe	His	His 360	Ala	Lys	Val	Leu	Phe 365	Ala	Pro	Gly
Lys	Ala 370	Ser	Asn	Ala	Gly	Gly 375	Val	Ala	Thr	Ser	Gly 380	Leu	Glu	Met	Ser
Gln 385	Gln	Ala	Met	Arg	Leu 390	Ser	Trp	Thr	Ser	Gly 395	Glu	Val	Asp	Met	Arg 400
Leu	Gln	Glu	Ile	Met 405	Arg	Ala	Ile	His	His 410	Ser	Cys	Thr	Glu		Gly
Lys	Lys	Pro	Asp 420	Gly	Thr	Val	Asn	Tyr 425	Val	Asp	Gly	Ala	Asn 430	Val	Ala
Gly	Phe	Val 435	Lys	Val	Ala	Glu	Ala 440	Met	Leu	Ala	Gln	Gly 445	Val	Ile	