Informe del algoritmo MLFQ

Parcial 1

Pontificia Universidad Javeriana

Sistemas Operativos

Profesor: Jefferson Peña Torres

Estudiante: Daniel Felipe Moncada Tello

19 de Septiembre 2025

Funcionamiento del algoritmo MLFQ

El *Multi-Level Feedback Queue* (MLFQ) es un algoritmo de planificación de CPU que utiliza varias colas con diferente prioridad. Cada cola puede aplicar un algoritmo distinto (ejemplo: Round Robin, SJF o STCF) y con *quantums* de tiempo variables. Su característica principal es que los procesos cambian de cola dinámicamente dependiendo de su comportamiento de ejecución.

Reglas básicas de funcionamiento

Inicio del algoritmo

Todos los procesos entran en la cola de mayor prioridad (cola 1). Esta cola normalmente usa Round Robin con *quantum* pequeño, favoreciendo a procesos cortos o interactivos. La CPU siempre selecciona procesos de la cola de mayor prioridad que no esté vacía. Es decir, mientras haya procesos en una cola superior, no se atienden las colas inferiores.

Manejo de los Quantum

Si un proceso agota su *quantum* sin terminar, se mueve a la siguiente cola (menor prioridad). Ejemplo: un proceso en la cola 1 con *quantum* = 2 que no termina, baja a la cola 2. Si un proceso termina dentro de su *quantum*, se libera sin bajar de cola. Las colas inferiores tienen *quantums* más largos o algoritmos diferentes. Así los procesos largos generan menos cambios de contexto.

Colas distintas a RR

En colas con SJF (*Shortest Job First*) se ejecuta el proceso con la ráfaga más corta entre los disponibles. Con STCF (*Shortest Time to Completion First*) se ejecuta el proceso con la

ráfaga restante más corta, y si llega otro con menor tiempo restante, se interrumpe el actual (expropiativo).

Comportamiento esperado del algoritmo

Para los procesos cortos, estos probablemente terminan en las primeras colas, obteniendo buena respuesta. Para los procesos largos, estos descienden progresivamente a colas con *quantums* más amplios o con algoritmos más eficientes para trabajos pesados.

Cómo ejecutar el algoritmo implementado

La implementación del algoritmo MLFQ fue desarrollada en C++. El programa se compila normalmente con el compilador g++:

```
g++ main.cpp Process.cpp MLFQ.cpp
```

Para ejecutar el programa, los datos de entrada deben ser redirigidos desde un archivo de texto con el formato definido (ejemplo: PID;BT;AT;...). La salida también se redirige a un archivo de texto.

Ejemplo de uso:

```
a.exe < entrada.txt > salida.txt
```

Donde:

- entrada.txt contiene los procesos a simular.
- salida.txt recibirá los resultados de la ejecución, incluyendo tiempos de espera
 (WT), retorno (TAT), respuesta (RT) y finalización (CT).

Ventajas y conclusión del algoritmo MLFQ

- Flexible: combina varios algoritmos en uno.
- Justo: los procesos cortos son atendidos rápido, los largos siguen teniendo CPU en colas inferiores.
- Adaptativo: ajusta la prioridad de los procesos según cómo se comportan.

El MLFQ combina lo mejor de varios algoritmos de planificación y se adapta en tiempo real, lo que lo convierte en una estrategia potente para sistemas operativos multitarea, aunque a costa de mayor complejidad en su implementación y configuración.