

Prof. Bernd Finkbeiner, Ph.D. Jana Hofmann, M.Sc. Reactive Systems Group

Programmierung 1 (WS 2020/21) Aufgaben für die Übungsgruppe A (Lösungsvorschläge)

Hinweis: Diese Aufgaben wurden von den Tutoren für die Übungsgruppe erstellt. Sie sind für die Klausur weder relevant noch irrelevant.

markiert potentiell schwerere Aufgaben.

Einführung

Aufgabe TA.1 (Grundbegriffe)

Identifizieren Sie Bezeichner, Schlüsselwörter, Operatoren und Konstanten in dem folgenden Programm:

```
fun p (x : int) : bool = x = 0
2 val x = if (p 3) then \sim1 else 3 - 2
```

$L\"{o}sungsvorschlag\ TA.1$

Bezeichner:

р, :

Schlüsselwörter:

 $\text{rter:} \quad \textbf{fun}, =, \, \textbf{val}, \, \textbf{if}, \, \textbf{(,)}, \, \textbf{then}, \, \textbf{else}, \, \textbf{:}, \, \textbf{int}, \, \textbf{bool}$

Operatoren: =, -

Konstanten:

 $0, 3, 1, 2, \sim 1$

Aufgabe TA.2 (Der Schlüssel zu Schlüsselwörtern)

- (a) Diskutieren Sie die Unterschiede zwischen Schlüsselwörtern, Bezeichnern, Operatoren und Konstanten.
- (b) Sammeln Sie so viele Schlüsselwörtern, Bezeichnern und Operatoren wie möglich.

Lösungsvorschlag TA.2

- (a) Bezeichner dienen als Namen, die bei der Ausführung eines Programmes an Werte gebunden werden.
 - Konstanten sind Wörter, die bestimmte Werte bezeichnen. Beispielsweise bezeichnet die Konstante 7 die Zahl 7.
 - Operatoren sind Wörter, die Operationen darstellen. Beispielsweise stellt der Operator + die Additionsoperation für Zahlen dar.
 - Schlüsselwörter dienen dazu, den Aufbau eines Programms darzustellen. Sie sind weder Konstanten, noch dürfen sie als Bezeichner verwendet werden.
- (b) Ein paar Beispiele sind unter anderem:

```
Bezeichner: x, y, z, max, a
```

Operatoren: = (als Vergleichsoperator), *, -, <, >=, \sim

Schlüsselwörter: val, = (als Teil einer Deklaration), fun, int, if, (,)

Aufgabe TA.3 (was ist was?)

Betrachten Sie das folgende Programm:

```
val x = (1337 + 42)

val y = 3 = 5

val z = if y then x else x - 3

val foo = if foo
```

- (a) Welche Bezeichner, Konstanten, Operatoren und Schlüsselwörter kommen in dem Programm vor?
- (b) An welche Werte werden die vorkommenden Bezeichner gebunden?

Lösungsvorschlag TA.3

```
(a) Bezeichner: x, y, z, foo
Konstanten: 1337, 42, 3, 5, \sim7, true, false
Operatoren: = (Z. 2 bei '3 = 5'), +, -, <
Schlüsselwörter: val, =, if, then, else, (, )
```

(b) $x \rightarrow 1379$, $y \rightarrow false$, $z \rightarrow 1376$, foo $\rightarrow false$

Aufgabe TA.4 (noch mehr Bezeichner) Betrachten Sie das folgende Programm:

```
1 fun a (x : int) : int = if x < 0 then \simx else x 2 val b = 17 3 val c = \sim21 4 fun foo (y : int, z : int) : int = y - 3 + a z 5 val c = foo (b, c)
```

- (a) Welche Bezeichner, Konstanten, Operatoren und Schlüsselwörter kommen in dem Programm vor?
- (b) An welchen Wert ist c am Ende gebunden?

Lösungsvorschlag TA.4

```
(a) Bezeichner: a, b, c, foo, x, y, z
Konstanten: 0, 17, ~21, 3
Operatoren: <, ~, -, +
Schlüsselwörter: fun, =, if, then, else, val, (, ), :, int
```

(b) c hat am Ende den Wert 35

Funktionen und Prozeduren

Aufgabe TA.5 (Prozektion? Funktidur?)

- (a) Was verstehen wir unter Prozeduren und Funktionen? Was sind ihre Unterschiede, wie stehen sie in Beziehung zueinander?
- (b) Bei welchen der folgenden Deklarationen handelt es sich um Prozeduren, bei welchen um Funktionen? Diskutieren Sie mit ihrem Banknachbarn!
 - (i) $max : \mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}, max(x,y) = \text{das größte Element der Menge } \{x,y\}$
 - (ii) $fun\ abs(a:int):int=if\ a>=0\ then\ a\ else\ \sim a$
 - (iii) $potenz : \mathbb{Z} \times \mathbb{N} \mapsto \mathbb{N}, potenz(x, y) = x^y$
 - (iv) $fun\ some func(a:int,b:int):int=if\ a>b\ then\ a\ else\ b$
 - (v) $fun \ g(a,b) = (a+b+abs(a-b))div \ 2$
 - (vi) Es sei $f: \mathbb{R} \to \mathbb{R}^+$, wobei $\frac{d}{dx} f(x) = f(x)$ und f(0) = 1.

Lösungsvorschlag TA.5

(a) **Funktionen** sind mathematische Objekte. Sie gibt an, wie ihre Argumente dem Ausgabewert zugeordnet werden. Sie geben keine konkrete Berechnungsvorschrift vor.

Prozeduren wiederum sind direkte, eindeutige Berechnungsvorschriften. Sie **berechnen** eine bestimmte *Funktion* und sind in der Regel in einer Programmiersprache geschrieben.

- (b) Funktionen: i, iii, vi
 - Prozeduren: ii, iv, v

Aufgabe TA.6 (Funktion \rightarrow Prozedur)

Schreiben Sie Prozeduren für folgende Funktionen:

$$f: \mathbb{Z} \to \mathbb{N}$$
 $g: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x^2$ $g(x) = x^5 + 3 * x^3 + x + 7$

Lösungsvorschlag TA.6

Aufgabe TA.7 (hoch hinaus)

Schreiben Sie eine Prozedur hoch 17 : int \rightarrow int, die zu einer Zahl x die Potenz x^{17} berechnet. Dabei sollen möglichst wenig Multiplikationen verwendet werden.

Schreiben Sie die Prozedur auf zwei Arten: mit einer Hilfsprozedur und mit lokalen Deklarationen.

Lösungsvorschlag TA.7 mit Hilfsprozedur:

```
fun quadrat (x : int) : int = x * x
fun hoch17 (x : int) : int = quadrat(quadrat(quadrat(x)))) * x
```

mit lokalen Deklarationen:

```
fun hoch17 (x : int) : int =
let

val a = x * x

val b = a * a

val c = b * b

val d = c * c

in

d * x

end
```

Aufgabe TA.8 (mod)

- (a) Deklarieren Sie eine Prozedur modulo: int * int \rightarrow int, welche für natürliche Zahlen mod berechnet, allerdings ohne mod selbst zu benutzen.
- (b) Deklarieren Sie eine Prozedur modComp: (int * int)*(int * int) → bool, welche ausgibt, ob der Rest der Division von der ersten durch die zweite Zahl gleich dem Rest der Division der dritten durch die vierte Zahl ist.

Lösungsvorschlag TA.8

```
(a) fun modulo(a: int, b: int) : int = x - x div y * y
(b) fun modComp((a:int, b:int), (c:int, d:int)) : bool = modulo(x,y) = modulo(a,b)
```