Report

2023MAS7141 Harshit Joshi 2023EEZ8568 Devendra Nath Tripathi

• We settle with $784 \rightarrow 144 \rightarrow 10$ neural network

NOTATION FOR NODES

input : x hiddenlayer : z output : y

Obs:

- 1. --> relu >> Sigmoid/tanh
- 2. --> softmax >> Sigmoid
- 3. --> 2 choices
- 1. 784 --> 512 --> 256 --> 10, accuracy:97.81, time: 19*10 sec
- 2. 784 --> 128 --> 10, accuracy: 97.58, time: 8*10 sec
- 4. --> 10 epochs
- 5. --> adam, cross entropy,

Note: going with 144 to have better visual representation

Weights 1

for $z_j^{[1]}$ we take the weights $W_j^{[1]}$ as a vector and reshape to 28*28 image, $j\in 1,2,..144$

Observation: Edge detection as evident from dark lines with light surroundings

Weights 2

Similarly for y_k for $k \in 1, 2, 10$

TRYING TO VISUALIZE

For example

Observation: in general, where-ever dark edges and the relatively white part of image overlap and, we get a smaller value and vice versa (11, 6) = white

(9, 2) = cant predict

(1,1) = dark

Misclassified

OBSERVATIONS

Usually misclassified examples have something to do with the following properties: brush stroke width angle orientation writing style extra on screen

MORE WEIGHTAGE TO MISCLASSIFIED

We observe that giving more weightage doesn't help in classifying misclassified examples correctly

PART2

Our Handcraft weights

STRUCTURE

Wts0 (shape (40, 40))

Not visualizing as too big

Wts1(shape (40,20))

Wts2 (shape(20,10))

For Example

Wts overlapped	Input of img	z=relu(input.wts0)	z=relu(z.wts1)	relu(z.wts2)	=
----------------	--------------	--------------------	----------------	--------------	---

