Voici comment je vais organiser les ressources pour répondre à ta demande :

- 1. Un cours théorique sur l'analyse exploratoire des données (EDA), couvrant :
 - Statistiques descriptives
 - Analyse univariée et bivariée
 - Data visualisation (types de graphiques selon les besoins)
 - Tests de corrélation et interprétation
 - Quelques bonnes pratiques pour préparer les données à la modélisation.
- 2. **Un Notebook (TP 2)** pour accompagner la théorie avec des exercices pratiques sur un jeu de données fictif ou réel. Ce TP permettra aux étudiants de :
 - Appliquer les statistiques descriptives
 - Visualiser des distributions univariées et bivariées
 - Effectuer des tests de corrélation (Pearson et Spearman)
 - Manipuler les données pour préparer des visualisations pertinentes.

1. Statistiques descriptives / Introduction à l'EDA

Question interactive : « Pourquoi explorer les données avant toute modélisation ? »

Réponse :

Explorer les données est une étape cruciale avant toute modélisation, car cela permet :

- De comprendre les données : leur structure, les variables présentes, et leurs distributions.
- D'identifier les anomalies : valeurs aberrantes (outliers), données manquantes, doublons.
- D'orienter le choix du modèle : certaines distributions peuvent nécessiter des transformations (par exemple, log-transformation pour les données asymétriques).
- D'éviter les erreurs : travailler sur des données mal préparées peut fausser les résultats du modèle (par exemple, si des outliers ou des erreurs de saisie ne sont pas traités).
- De mieux visualiser les relations entre les variables pour optimiser les choix d'analyse.
- Types de distributions :
 - Normale, asymétrique, bimodale : les étudiants peuvent apprendre à les identifier via des graphiques.
- Objectif: Résumer les caractéristiques principales d'une variable ou d'un jeu de données.
- Exemples d'indicateurs (métriques principales) :
 - Moyenne, médiane, mode
 - Écart-type, variance
 - Min, Max, quartiles (pour identifier les valeurs aberrantes)
 - Distribution des données (histogrammes)

2. Analyse univariée

- **Objectif**: Étudier chaque variable individuellement.
- Outils :
 - Histogrammes
 - Boxplots (pour visualiser les valeurs aberrantes)
 - Countplots (pour les variables catégorielles)
- Recherche des outliers :
 - Outil: *Z-score* ou *IQR* (Interquartile Range).

Question interactive : « Quelle est la meilleure façon de détecter des outliers dans une variable quantitative ? »

Réponse :

La détection des outliers peut se faire de plusieurs façons :

- Visualisation :
 - Boxplot : Les points en dehors des "whiskers" sont considérés comme des outliers
 - Histogramme ou scatterplot pour observer les valeurs extrêmes.
- Méthodes statistiques :
 - IQR (Interquartile Range): Calculer l'écart interquartile: Q3 Q1.Les outliers sont définis comme des valeurs en dehors de [Q1 - 1.5*IQR, Q3 + 1.5*IQR].
 - Z-score : On standardise les données. Les observations ayant un Z-score supérieur à 3 (ou inférieur à -3) sont considérées comme des outliers.

Question interactive : Quelle est la différence entre le Z-score et l'IQR ?

Réponse :

- Z-score:
 - Définition : Il mesure la distance d'une valeur à la moyenne en termes d'écart-types.
 - Avantage : Fonctionne bien pour les données normalement distribuées.
 - o Inconvénient : Sensible aux outliers, car la moyenne et l'écart-type peuvent être biaisés par ces derniers.
- IQR (Interquartile Range):
 - Définition : Il est basé sur les percentiles (Q1 et Q3) et représente la dispersion des données centrales.
 - Formule = IQR=Q3-Q1.
 - Avantage : Robuste face aux outliers. Il n'utilise pas la moyenne, donc il n'est pas influencé par les valeurs extrêmes.
 - o Inconvénient : Moins précis pour les petites tailles d'échantillons.

Question interactive : Montre des graphiques (scatterplots, heatmaps) et demande aux étudiants d'interpréter ce qu'ils voient : "Que remarquez-vous ? Quelle conclusion tirez-vous ?"

3. Analyse bivariée

- Objectif: Étudier les relations entre deux variables.
- Exemples d'outils :
 - Scatterplots (pour les variables continues)
 - Boxplots (Boxplots pour une variable catégorielle vs quantitative)
 - Heatmaps pour visualiser des corrélations

4. Tests de corrélation

- Objectif: Identifier les relations linéaires ou monotones entre variables.
 - Corrélation de Pearson : Relations linéaires
 - o Corrélation de Spearman : Relations monotones
- Visualisation : Matrice de corrélation avec des heatmaps.

Question interactive : "Qu'est-ce que la corrélation de Spearman ? En quoi est-elle différente de Pearson ?"

Réponse :

- Corrélation de Spearman :
 - Elle mesure la corrélation monotone entre deux variables.
 - Elle s'appuie sur les rangs des observations plutôt que sur leurs valeurs brutes.
 - Utilisation : Elle est robuste aux outliers et adaptée aux variables non linéaires.
- Corrélation de Pearson :
 - Elle mesure la corrélation linéaire entre deux variables.
 - Elle suppose une distribution normale et est sensible aux valeurs extrêmes.
- Différence clé :
 - Pearson : relation linéaire entre les variables.
 - Spearman : relation monotone (croissante ou décroissante, pas nécessairement linéaire).

Question interactive : Dans quel cas je peux avoir une corrélation de Spearman plus élevée que de Pearson ?

Réponse :

Exemple : Une relation en **forme de courbe croissante** ou de **logarithme**.

Question interactive / Exercice rapide : « Si deux variables ont une corrélation proche de zéro, cela signifie-t-il qu'elles ne sont pas liées ? Pourquoi ? »

Réponse :

Non, une corrélation proche de zéro ne signifie pas que les variables ne sont pas liées. Cela indique seulement qu'il **n'y a pas de relation linéaire** entre elles.

• Une **relation non linéaire** peut exister même si le coefficient de corrélation est proche de zéro.

• Exemple : Une relation en forme de **U** ou de **parabole** ne sera pas captée par la corrélation de Pearson.

Question interactive : "Quelles variables semblent être les plus liées ? Pourquoi ?"

• Concept de multicolinéarité :

 Expliquer pourquoi des variables trop corrélées peuvent poser problème (pratique pour la modélisation).

Question interactive : "Qu'est-ce que la multicolinéarité ?"

Réponse :

La multicolinéarité désigne une situation dans laquelle deux variables explicatives (ou plus) d'un modèle de régression linéaire sont fortement corrélées entre elles. Cela signifie qu'elles véhiculent une information redondante.

- Lorsque les variables explicatives sont fortement corrélées, il devient difficile pour l'algorithme de déterminer quel poids (ou coefficient) attribuer à chaque variable.
- Les coefficients de régression peuvent changer considérablement avec de petites variations dans les données.
- Concrètement : Si X1 et X2 sont fortement corrélées, l'algorithme ne sait pas s'il doit accorder un poids plus élevé à X1 ou à X2, car leurs effets sont similaires.
- La variance des coefficients augmente avec la multicolinéarité.
 - XTX est la matrice de corrélation ou covariance entre les variables explicatives.
 - Si deux variables sont fortement corrélées, X^T. X quasi-singulière (non inversible ou proche de l'être).
 - Cela rend l'inversion de XⁿT X numériquement instable, ce qui fait exploser la variance des coefficients.
- Solutions pour traiter la multicolinéarité :
 - Supprimer une des variables corrélées : Si deux variables véhiculent la même information, supprimez l'une d'entre elles.
 - Combiner les variables : Créez une nouvelle variable (par exemple, la moyenne ou la somme des variables corrélées).
 - Utiliser des méthodes de régularisation : Les modèles comme Ridge Regression (L2) et Lasso Regression (L1) permettent de réduire l'effet de la multicolinéarité en pénalisant les coefficients.

5. Data visualisation

Quelques règles pour choisir les graphiques adaptés :

Objectif	Type de graphique
Distribution d'une variable	Histogramme, Boxplot
Comparaison de catégories	Barplot, Countplot
Relation entre deux variables	Scatterplot, Regression
Corrélation entre variables	Heatmap

Question interactive : "Quel graphique choisiriez-vous pour analyser deux variables quantitatives ?"

6. Bonnes pratiques

- Nettoyer les données avant d'analyser (valeurs manquantes, doublons).
- Toujours explorer les données avant de modéliser.
- Utiliser des visualisations adaptées pour comprendre les relations.
 - Réflexion sur l'interprétabilité des résultats (un graphique doit parler !)

7. Traitement des valeurs manquantes

Impact des données manquantes :

- 1. Visualisation : La dispersion semble différente avec des données manquantes.
- 2. Corrélation :
 - La suppression des données biaisera les résultats, car les données manquantes peuvent ne pas être aléatoires.
 - Cela peut réduire la puissance de l'analyse (moins de points disponibles).
- 3. Présenter des techniques de remplissage (imputation) simples.