FONCTION INVERSE

L'année dernière, la théorie de la dérivation a été présentée ainsi que l'étude de fonctions polynomiales. Ce chapitre va consister en l'étude de la fonction inverse à partir de la théorie de la dérivation afin d'élargir notre catalogue de fonctions usuelles.

1 Dérivation

Propriétés

Soit *f* une fonction affine d'expression f(x) = ax + b.

- ► Sa courbe représentative dans un repère est une droite. Dans ce cas, *a* est appelé le **coefficient directeur** de la droite et *b* son **ordonnée à l'origine**.
- \blacktriangleright b = f(0)
- ▶ Pour tout x_A , $x_B \in \mathbf{R}$ tels que $x_A \neq x_B$:

$$a = \frac{f(x_B) - f(x_A)}{x_B - x_A}.$$

Définition

Si la courbe \mathscr{C}_f d'une fonction f est bien "lisse" au voisinage d'un point A(a; f(a)), on appelle **tangente** à \mathscr{C}_f en A la droite qui épouse localement la direction de cette courbe.

Autrement dit, en se rapprochant du point A, la courbe va finir par se confondre avec sa tangente en ce point.

Définition | **Dérivabilité** de f en a

Soient f une fonction définie sur I et $a \in I$.

On dit que f est dérivable en a s'il existe une tangente à \mathcal{C}_f au point d'abscisse a.

On note f'(a), et on appelle **nombre dérivé de** f **en** a, le coefficient directeur de cette tangente.

Propriété | Fonction dérivée

f' est appelée la **fonction dérivée** de f.

On a quelques dérivées usuelles :

f(x)	f'(x)
c	0
x	1
x^2	2x
x^3	$3x^2$
x^n	nx^{n-1}

Propriété

Soient u et v deux fonctions définies et dérivables sur I.

On a: (u + v)' = u' + v'.

Exemples On peut calculer des dérivées de fonctions construites à partir des fonctions usuelles.

► Soit f définie sur \mathbf{R}^* par $f(x) = x^2 + x$. f est dérivable sur \mathbf{R}^* et pour tout $x \in \mathbf{R}^*$:

$$f'(x) = 2x + 1.$$

► Soit f définie sur $]0; +\infty[$ par $f(x) = 7 + x^2 + x^3$. f est dérivable sur $]0; +\infty[$ et pour

tout $x \in]0; +\infty[$:

$$f'(x) = 0 + 2x + 3x^2.$$

Propriété | Produit par un réel

Soient u une fonction définie et dérivable sur I, et $k \in \mathbf{R}$ une **constante** réelle. On a (ku)' = ku'.

Exemple Soit f définie sur \mathbf{R} par $f(x) = 7x^3$. f est sous la forme ku avec k = 7 et $u(x) = x^3$ donc pour tout $x \in \mathbf{R}$:

$$f'(x) = ku'(x) = 7 \times 3x^2 = 21x^2.$$

Propriétés | Lien dérivée/variations

- ▶ $f' \ge 0$ sur $I \Leftrightarrow f$ est croissante sur I.
- ► f' = 0 sur $I \Leftrightarrow f$ est constante sur I.
- ▶ $f' \leq 0$ sur $I \Leftrightarrow f$ est décroissante sur I.

Propriété | Équation de la tangente

f'(a) est le **coefficient directeur** de $T_a(f)$, la tangente à \mathscr{C}_f au point d'abscisse a

Cette tangente admet pour **équation** :

$$y = f'(a) \times (x - a) + f(a).$$

Exemple Soit $f(x) = 4x^2 - 10x + 2$.

Déterminons l'équation réduite de la tangente $T_2(f)$.

Tout d'abord, $f'(x) = 4 \times 2x - 10 \times 1 + 0 = 8x - 10$ donc $f'(2) = 8 \times 2 - 10 = 6$.

Enfin, $f(2) = 4 \times 2^2 - 10 \times 2 = 2 = -2$.

L'équation attendue est

$$y = f'(2)(x-2) + f(2)$$

$$y = 6(x-2) - 2$$

$$y = 6x - 14$$
.

Exercice

Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = 2x + 5$$

2.
$$f(x) = -x^2 + 4x - 3$$

3.
$$f(x) = 0.5x^3 - 2x^2 + x - 1$$

4.
$$f(x) = 3x^2 - 7$$

5.
$$f(x) = -x^3 + 6x$$

2 Fonction inverse

Définition

La **fonction inverse** est la fonction f définie sur \mathbf{R}^* par $f(x) = \frac{1}{x}$. Sa courbe représentative s'appelle une **hyperbole**.

Propriété | Dérivée de la fonction inverse

Pour tout $x \neq 0$, $f'(x) = -\frac{1}{x^2}$.

Exercice

Donner la dérivée des expressions suivantes.

1.
$$f(x) = 3x - \frac{1}{x}$$

3.
$$h(x) = \frac{12}{x}$$

1.
$$f(x) = 3x - \frac{1}{x}$$

2. $g(x) = x^3 - 2x^2 + 12x + \frac{1}{x}$
3. $h(x) = \frac{12}{x}$
4. $k(x) = (5x + 2x^3) \times \frac{1}{x^2}$

4.
$$k(x) = (5x + 2x^3) \times \frac{1}{x^2}$$

Cela nous permet donc d'énoncer le résultat suivant.

Propriétés | Variations de la fonction inverse

▶ La fonction inverse est **décroissante** sur] $-\infty$; 0[:

Pour tout $x \le y < 0$, on a $\frac{1}{x} \ge \frac{1}{y}$.

▶ La fonction inverse est **décroissante** sur $]0; +\infty[$:

Pour tout $0 < x \le y$, on a $\frac{1}{x} \ge \frac{1}{y}$.

Le tableau de variations de la fonction inverse est le suivant :

A Attention

Si
$$x < 0 < y$$
, alors $\frac{1}{y} \geqslant \frac{1}{x}$.

Tale STMG - 2025 / 2026

Exercice

Construire le tableau de variations des fonctions suivantes. Donner aussi l'équation de la tangente au point d'abscisse 1.

$$f: x \mapsto -\frac{1}{x}$$

$$g: x \mapsto \frac{12}{x} - 4$$

Théorème | Asymptotes et limites

▶ La droite horizontale d'équation y = 0 est une *asymptote horizontale* à \mathscr{C}_f .

On a: $\lim_{x \to -\infty} \frac{1}{x} = 0$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$.

▶ La droite verticale d'équation x = 0 est une asymptote verticale à \mathcal{C}_f .

On a: $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ et $\lim_{x\to 0^+} \frac{1}{x} = +\infty$.

