VGP337 - Neural Network & Machine Learning

Instructor: Peter Chan

Neuroevolution

- Neuroevolution is the idea of using evolutionary algorithms to generate artificial neural networks (ANN)
- This can be applied to choosing the number of hidden neurons, the connections, and the weights
- One of the biggest advantages with this method is that neuroevolution can be applied to more problems than supervised learning algorithms, which requires a large, labeled, dataset
- It is also found to be less likely to be stuck in local minima

NEAT

 NEAT is short for NeuroEvolution of Augmenting Topologies and has been developed by Kenneth O. Stanley and Risto Miikkulainen at the University of Texas in 2002

• It applies genetic algorithm to alter both the neuron weights and the structure of a

neural network

<u>Little Miss</u> Neat

Before NEAT

- Previous neuroevolution attempts mostly only focused on optimizing weights in a chosen fixed network
- The motivation was to remove the dependency on a differentiable model needed for backpropagation (and the need of having labeled data)
- Also, it is non-trivial to apply GA on topologies as it can lead to invalid offspring during crossover

The Competing Convention Problem

• Here are two networks which compute the exact same output

• Since the hidden neurons appear in different order, they will be represented by different chromosomes that are incompatible for crossover

Problems that NEAT Solves

- How can we represent networks with different topologies such that we can apply crossover in a meaningful way?
- How can we protect new topological innovations so that they have a chance to evolve before being eliminated entirely?
- How can we favor minimal topologies so we don't have explosions on large, complex networks (only pay for necessary complexity)

NEAT Ideas

- Genetic Encoding
- Historical Marking Crossover
- Speciation
- Explicit Fitness Sharing
- Minimal Structure of Initialization

NEAT Encoding

• NEAT encodes a network by using two different genes: a node gene and a connection gene

Innovation Number and Crossover

• The use of innovation number allows us to track genes from different network that represent the same structure

Innovation Number and Crossover

• During crossover, we match up genes from different parent using the innovation numbers

Innovation Number and Crossover

• Matching genes are inherited randomly, whereas disjoint and excess genes are inherited from the more fit parent

Mutations

- NEAT applies four types of mutations
 - Weight mutation (adjust or randomly pick a new weight)
 - Randomly enable/disable a connection
 - Adding a connection
 - Adding a node

Mutations - Structural

Protecting Innovation with Speciation

- Networks with new nodes may take longer to optimize
- They will initially have lower fitness and therefore die off during selection
- To protect these innovations, speciation is applied to group compatible genomes so they only compete within their own group
- NEAT applies this formula to measure genome compatibility where:

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}.$$

• E is the number of excess genes, D is the number of disjoint genes, W is the average weight differences of matching genes, and c_1 , c_2 , c_3 , are tuning values

Explicit Fitness Sharing

- To ensure species with organisms that perform well are not overpowering other species, NEAT uses fitness sharing to essentially normalize the fitness across all species
- Here is the formula:

$$f_i' = \frac{f_i}{\sum_{j=1}^n \operatorname{sh}(\delta(i,j))}.$$

• The sharing function sh is set to 0 when distance $\delta(i, j)$ is above a threshold, otherwise, sh($\delta(i, j)$) is set to 1

Minimal Structure of Initialization

- NEAT biases the search towards minimal-dimensional spaces by starting out with a uniform population of networks with zero hidden nodes
- New structure is introduced incrementally as structural mutations occur, and only those structures survive that are found to be useful through fitness evaluations
- In other words, the structural elaborations that occur in NEAT are always justified

References

<u>Neuroevolution</u>

Evolving Neural Networks Through Augmenting Topologies

Neuroevolution: A different kind of deep learning

MarI/O

Chapter 11 in Ai Techniques for Game Programming by Mat Buckland