Material Suplementario: Análisis Numérico y Derivaciones Técnicas

Del Espacio de Hilbert a la Cosmología Estocástica

Ernesto Cisneros Cino

Miami, 2025

Resumen

Este documento suplementario proporciona: (1) código Python reproducible para simular trayectorias estocásticas w(z), (2) derivaciones matemáticas completas de los fundamentos teóricos (espacios de Krein, ecuación de Fokker–Planck, parametrización observacional), (3) especificaciones técnicas de condiciones iniciales y unidades, y (4) discusión comparativa con modelos estándar (Λ CDM) y criterios de falsabilidad. Este material complementa el artículo principal y está diseñado para investigadores que deseen reproducir, validar o extender el trabajo.

Índice

1.	Aná	disis Numérico Reproducible	3
	1.1.	Parametrización universal	3
	1.2.	Implementación en Python	3
		1.2.1. Código completo: wz_demo.py	3
		1.2.2. Requisitos del sistema	5
		1.2.3. Ejecución	5
	1.3.	Extensiones avanzadas	5
		1.3.1. Acoplamiento fiel a $H(z)$	5
		1.3.2. Análisis espectral	6
2.	Apé	endice A: Espacio de Krein y Proyección Física	7
	2.1.	Definición formal	7
	2.2.	Operador métrico	7
	2.3.	Construcción del operador C	7
	2.4.	Métrica efectiva positiva	7
	2.5.	Pseudo-Hermitismo	8
	2.6.	Proyección al subespacio físico	8
3.	Apé	endice B: Ecuación de Fokker–Planck Ampliada	9
	3.1.	Sistema estocástico de partida	9
	3.2.	Sistema Markoviano extendido	9
	3.3.	Vector de deriva (drift)	9
	3.4.	Matriz de difusión	9
	3.5.	Ecuación de Fokker–Planck	10
	3.6.	Distribución estacionaria	10
	3.7.	Condiciones de cuasi-estacionariedad	10
	3.8.	Existencia de atractores estocásticos	10

4.	Apé	éndice C: Parametrización Universal y Mapeo a Datos	11
	4.1.	Justificación teórica de la forma funcional	11
		4.1.1. Tiempo conforme	11
		4.1.2. Ecuación del oscilador	11
		4.1.3. Transformación a redshift	11
	4.2.	Relación entre τ, ω y escalas físicas	11
		4.2.1. Memoria adimensional	11
		4.2.2. Frecuencia angular	12
	4.3.	Derivación de $H(z)$ bajo $w(z)$ dinámico	12
	4.4.	Conexión con observables	12
		4.4.1. Módulo de distancia (SNe Ia)	12
		4.4.2. Ángulo acústico (BAO)	13
		4.4.3. Tasa de crecimiento	13
	4.5.	Pipeline de validación observacional	13
		4.5.1. Datasets	13
		4.5.2. Función de verosimilitud	13
		4.5.3. Priors	14
		4.5.4. MCMC y convergencia	14
		4.5.5. Criterios de selección de modelo	15
_	Con	disiones Iniciales y Unidodes	16
э.		adiciones Iniciales y Unidades Tabla de parámetros	16
	5.1.		16
		Priors bayesianos recomendados	16
	5.5.	Condiciones iniciales (Modelo I)	
	F 1	5.3.1. Época de recombinación $(z_i \approx 1100)$	16
	5.4.	Unidades naturales	17
6.	Disc	cusión y Contraste con Modelos Estándar	18
		Recuperación de Λ CDM	18
		6.1.1. Observables invariantes	18
		6.1.2. Desviaciones detectables	18
	6.2.	Contraste con DE oscilante fenomenológica	19
		6.2.1. Modelos existentes en la literatura	19
		0.2.1. Modelos existentes en la interatura	
			19
		6.2.2. Ventajas conceptuales únicas	19 19
	6.3.	6.2.2. Ventajas conceptuales únicas	
	6.3.	6.2.2. Ventajas conceptuales únicas	19
	6.3.	6.2.2. Ventajas conceptuales únicas	19 19
	6.3.	6.2.2. Ventajas conceptuales únicas	19 19 19

1. Análisis Numérico Reproducible

1.1. Parametrización universal

La ecuación de estado efectiva se modela como:

$$w(z) = -1 + A e^{-z/z_{\tau}} \cos\left(\omega \ln(1+z) + \delta\right),\tag{1}$$

donde:

- A: amplitud de oscilación
- ullet ω : frecuencia en escala logarítmica de redshift
- δ : fase inicial
- $z_{\tau} = cH_0\tau$: profundidad de memoria efectiva (adimensional)

1.2. Implementación en Python

El siguiente script genera trayectorias simuladas incorporando ruido de Ornstein-Uhlenbeck autoconsistente.

1.2.1. Código completo: wz_demo.py

```
import numpy as np
   import matplotlib.pyplot as plt
   from dataclasses import dataclass
   # ----- Parametros base -----
   @dataclass
   class Params:
       A: float = 0.07
                               # amplitud oscilacion
       omega: float = 2.3
                              # frecuencia en ln(1+z)
9
       delta: float = 0.0
                              # fase
       H0: float = 70.0
                              # km/s/Mpc (no esencial aqui)
11
                              # tau*HO (memoria adimensional)
       tauH0: float = 1.2
       c: float = 1.0
                               # factor en z_tau = c*H0*tau
13
14
15
   def w_det(z, p: Params):
       """Ecuacion de estado determinista"""
16
       z_{tau} = p.c * p.tauH0
17
       return -1.0 + p.A*np.exp(-z/z_tau)*np.cos(
18
           p.omega*np.log1p(z) + p.delta)
19
20
   # ----- Ruido OU autoconsistente -----
21
   def ornstein_uhlenbeck(n, dt, theta, sigma, x0=0.0):
22
23
       Proceso de Ornstein-Uhlenbeck:
24
       dX = -theta*X dt + sigma dW
25
26
       Discretizacion de Euler-Maruyama
27
       x = np.zeros(n)
28
       x[0] = x0
       for k in range(n-1):
30
           x[k+1] = x[k] + (-theta*x[k])*dt + 
31
                    sigma*np.sqrt(dt)*np.random.randn()
32
       return x
```

```
34
   # ----- Configuracion de simulacion -----
  np.random.seed(42) # Reproducibilidad
36
  z_max, npts = 2.0, 600
37
  z = np.linspace(0.0, z_max, npts)
39
  # ----- Trayectoria determinista -----
40
  p = Params()
41
  w0 = w_det(z, p)
42
43
  # ----- Ventilador de trayectorias -----
44
  n_realizaciones = 30
45
  dt = z[1] - z[0]
47
   theta = 1.0/p.tauH0
                                # inverso de memoria
  sigma_base = 0.02
                                # nivel de ruido
48
  W = []
49
   for r in range(n_realizaciones):
51
       ou = ornstein_uhlenbeck(npts, dt, theta=theta,
52
                               sigma=sigma_base, x0=0.0)
53
       W.append(w0 + ou)
54
55
  W = np.array(W)
56
57
  # ----- Estadisticas -----
58
   w_mean = W.mean(axis=0)
59
  w_std = W.std(axis=0)
60
61
   print(f"Estadisticas de las trayectorias:")
62
  print(f" Media w(z=0): {W[:, 0].mean():.3f}
63
         f"{W[:, 0].std():.3f}")
64
   print(f" Media w(z=2): {W[:, -1].mean():.3f}
65
         f"{W[:, -1].std():.3f}")
66
  print(f" Rango: [{W.min():.3f}, {W.max():.3f}]")
67
68
  # ----- Guardar datos -----
69
  np.savez('wz_trajectories.npz',
70
            z=z, w_det=w0, w_stoch=W, params=vars(p))
71
   print("Datos guardados en wz_trajectories.npz")
72
73
  # ----- Grafico -----
74
  plt.figure(figsize=(8,6))
75
76
   # Trayectorias individuales
77
   for r in range(n_realizaciones):
78
       plt.plot(z, W[r], alpha=0.25, linewidth=1,
79
                color='steelblue')
80
81
  # Banda de confianza
82
  plt.fill_between(z, w_mean - 2*w_std, w_mean + 2*w_std,
83
                    alpha=0.3, color='lightblue',
84
                    label='Banda 2$\sigma$')
85
86
  # Curvas principales
87
  plt.plot(z, w_mean, 'b--', linewidth=2,
89
            label='Media estoc stica')
  plt.plot(z, w0, 'r-', linewidth=2.5,
90
           label='$w(z)$ determinista')
91
```

```
plt.axhline(-1.0, color='k', linestyle='--',
                linewidth=1, label='$\Lambda$CDM ($w=-1$)')
93
94
   plt.xlabel('Redshift $z$', fontsize=12)
95
   plt.ylabel('Ecuaci n de estado $w(z)$', fontsize=12)
   plt.title('Trayectorias simuladas con ruido OU'
97
              '(memoria $\\sim \\tau H_0$)', fontsize=13)
98
   plt.legend(loc='best', fontsize=10)
99
   plt.grid(alpha=0.3)
100
   plt.tight_layout()
101
   plt.savefig('wz_trajectories.png', dpi=300)
102
   plt.show()
103
```

1.2.2. Requisitos del sistema

Crear archivo requirements.txt:

```
numpy>=1.21.0
matplotlib>=3.4.0
scipy>=1.7.0
    Instalación:
pip install -r requirements.txt
```

1.2.3. Ejecución

python wz_demo.py

Salida esperada:

- Gráfico con 30 trayectorias estocásticas
- Archivo wz_trajectories.npz con datos
- Estadísticas impresas en consola

1.3. Extensiones avanzadas

1.3.1. Acoplamiento fiel a H(z)

Para mayor fidelidad física, el nivel de ruido puede acoplarse directamente al parámetro de Hubble:

```
def H_squared(z, Omega_m=0.3, w_func=None):
       """H^2(z) bajo FRW plano con DE dinamica"""
       if w_func is None:
3
           w_func = lambda z: -1.0
4
5
6
       Omega_Lambda = 1 - Omega_m
       # Aproximacion para integral de Friedmann
       z_{array} = np.linspace(0, z, 50)
8
       w_array = np.array([w_func(zp) for zp in z_array])
9
       integral = np.trapz(1 + w_array, z_array)
10
11
       factor_DE = np.exp(3*integral)
12
       return Omega_m*(1+z)**3 + Omega_Lambda*factor_DE
13
14
```

1.3.2. Análisis espectral

Para identificar frecuencias dominantes:

```
from scipy import signal
2
  # Transformada de Fourier
3
  freqs = np.fft.fftfreq(len(z), d=dt)
4
  fft_w = np.fft.fft(w0 - w0.mean())
  power = np.abs(fft_w)**2
  # Periodograma
8
  f, Pxx = signal.periodogram(w0, fs=1/dt)
9
10
  plt.figure(figsize=(8,5))
11
  plt.semilogy(f[1:len(f)//2], Pxx[1:len(f)//2])
12
  plt.xlabel('Frecuencia [1/z]')
  |plt.ylabel('Densidad espectral de potencia')
plt.title('Espectro de oscilaciones en $w(z)$')
  plt.grid(alpha=0.3)
16
plt.show()
```

2. Apéndice A: Espacio de Krein y Proyección Física

2.1. Definición formal

Definición 1 (Espacio de Krein). Un espacio de Krein $(K, [\cdot, \cdot])$ es un espacio vectorial complejo equipado con una forma sesquilineal $[\cdot, \cdot]$ (el producto indefinido) que admite una descomposición fundamental:

$$\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_-,\tag{2}$$

donde \mathcal{K}_{\pm} son subespacios de Hilbert mutuamente ortogonales respecto a $[\cdot,\cdot]$, con $[\cdot,\cdot]$ positivo definido en \mathcal{K}_{+} y negativo definido en \mathcal{K}_{-} .

En nuestro contexto cosmológico, identificamos:

- \mathcal{K}_+ : subespacio del campo estable χ (norma positiva)
- \mathcal{K}_{-} : subespacio del campo taquiónico ϕ (norma negativa)

2.2. Operador métrico

La métrica indefinida se representa mediante:

$$\eta = \begin{pmatrix} -1 & 0\\ 0 & +1 \end{pmatrix},
\tag{3}$$

que actúa sobre el espacio de estados (ϕ, χ) .

Propiedades:

$$\eta = \eta^{\dagger} \quad \text{(Hermitismo)},$$
(4)

$$\eta^2 = \mathbb{I} \quad \text{(Involución)}.$$
(5)

2.3. Construcción del operador C

Definición 2 (Operador fundamental). Definimos la involución fundamental:

$$C: \mathcal{K} \to \mathcal{K}, \quad C = \mathbb{I}_+ \oplus (-\mathbb{I}_-),$$
 (6)

donde \mathbb{I}_{\pm} son las identidades en \mathcal{K}_{\pm} .

Propiedades del operador C:

- 1. Involución: $C^2 = \mathbb{I}$
- 2. Auto-adjunto: $C^{\dagger} = C$
- 3. Conmutación con Hamiltoniano: $[C, H_{tot}] = 0$

2.4. Métrica efectiva positiva

Introducimos la métrica efectiva:

$$\eta_C \equiv C\eta,\tag{7}$$

que satisface $\eta_C > 0$ en el subespacio físico $\mathcal{H}_{\text{phys}}$.

2.5. Pseudo-Hermitismo

Teorema 1 (Espectro real). Sea H un operador η -pseudo-Hermítico, es decir:

$$H^{\dagger} = \eta H \eta^{-1},\tag{8}$$

con $\eta = \eta_C > 0$ en \mathcal{H}_{phys} . Entonces H tiene espectro real y la evolución es unitaria en el subespacio físico.

Demostración. Sea $|\psi\rangle \in \mathcal{H}_{phys}$ un estado físico y λ un autovalor de H:

$$H|\psi\rangle = \lambda|\psi\rangle. \tag{9}$$

Tomando el adjunto:

$$\langle \psi | H^{\dagger} = \lambda^* \langle \psi |. \tag{10}$$

Por pseudo-Hermitismo:

$$\langle \psi | \eta H \eta^{-1} = \lambda^* \langle \psi |. \tag{11}$$

Multiplicando por η^{-1} a la derecha:

$$\langle \psi | \eta H = \lambda^* \langle \psi | \eta. \tag{12}$$

Tomando el producto interno con $|\psi\rangle$:

$$\langle \psi | \eta H | \psi \rangle = \lambda^* \langle \psi | \eta | \psi \rangle, \tag{13}$$

$$\lambda \langle \psi | \eta | \psi \rangle = \lambda^* \langle \psi | \eta | \psi \rangle. \tag{14}$$

Como $\langle \psi | \eta | \psi \rangle > 0$ en \mathcal{H}_{phys} , se sigue que $\lambda = \lambda^*$, es decir, $\lambda \in \mathbb{R}$.

2.6. Proyección al subespacio físico

El operador de proyección se define como:

$$P_{\text{phys}} = \frac{1}{2}(\mathbb{I} + C), \tag{15}$$

que satisface:

$$P_{\rm phys}^2 = P_{\rm phys},\tag{16}$$

$$P_{\rm phys}^{\dagger} = P_{\rm phys}.\tag{17}$$

Los estados físicos son aquellos en la imagen de $P_{\rm phys}$:

$$\mathcal{H}_{\text{phys}} = \text{Im}(P_{\text{phys}}).$$
 (18)

3. Apéndice B: Ecuación de Fokker-Planck Ampliada

3.1. Sistema estocástico de partida

Consideramos el Modelo I con dos campos escalares acoplados y ruido de Ornstein-Uhlenbeck:

$$\ddot{\phi} = -3H\dot{\phi} - \frac{\partial V}{\partial \phi} + \zeta_{\phi},\tag{19}$$

$$\ddot{\chi} = -3H\dot{\chi} - \frac{\partial V}{\partial \chi} + \zeta_{\chi},\tag{20}$$

donde los procesos de ruido evolucionan como:

$$\dot{\zeta}_{\phi} = -\frac{\zeta_{\phi}}{\tau_{\phi}} + \sqrt{\frac{2\Gamma_{\phi}T_{GH}}{\tau_{\phi}^2}} \,\xi_{\phi}(t),\tag{21}$$

$$\dot{\zeta}_{\chi} = -\frac{\zeta_{\chi}}{\tau_{\chi}} + \sqrt{\frac{2\Gamma_{\chi}T_{GH}}{\tau_{\chi}^{2}}} \,\xi_{\chi}(t),\tag{22}$$

con $\xi_i(t)$ ruido blanco gaussiano: $\langle \xi_i(t)\xi_j(t')\rangle = \delta_{ij}\delta(t-t')$.

3.2. Sistema Markoviano extendido

Para elevar el sistema a Markoviano, definimos el vector de estado extendido:

$$\mathbf{X} = (\phi, \dot{\phi}, \chi, \dot{\chi}, \zeta_{\phi}, \zeta_{\chi})^T \in \mathbb{R}^6.$$
(23)

El sistema se expresa entonces como:

$$d\mathbf{X} = \mathbf{F}(\mathbf{X}) dt + \mathbf{G} d\mathbf{W}(t), \tag{24}$$

donde $\mathbf{W}(t) = (\xi_{\phi}, \xi_{\chi})^T$ es un proceso de Wiener bidimensional.

3.3. Vector de deriva (drift)

El término de deriva es:

$$\mathbf{F}(\mathbf{X}) = \begin{pmatrix} \dot{\phi} \\ -3H\dot{\phi} - \partial_{\phi}V + \zeta_{\phi} \\ \dot{\chi} \\ -3H\dot{\chi} - \partial_{\chi}V + \zeta_{\chi} \\ -\zeta_{\phi}/\tau_{\phi} \\ -\zeta_{\gamma}/\tau_{\chi} \end{pmatrix}. \tag{25}$$

3.4. Matriz de difusión

La matriz de difusión es:

$$\mathbf{G} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sqrt{2\Gamma_{\phi}T_{GH}/\tau_{\phi}^{2}} & 0 \\ 0 & \sqrt{2\Gamma_{\chi}T_{GH}/\tau_{\chi}^{2}} \end{pmatrix}.$$
 (26)

La matriz de difusión efectiva es:

$$D_{ij} = (\mathbf{G}\mathbf{G}^T)_{ij} = \operatorname{diag}\left(0, 0, 0, 0, \frac{2\Gamma_{\phi}T_{GH}}{\tau_{\phi}}, \frac{2\Gamma_{\chi}T_{GH}}{\tau_{\chi}}\right). \tag{27}$$

3.5. Ecuación de Fokker–Planck

La densidad de probabilidad $P(\mathbf{X}, t)$ satisface:

$$\frac{\partial P}{\partial t} = -\sum_{i=1}^{6} \frac{\partial}{\partial X_i} (F_i P) + \frac{1}{2} \sum_{i,i=1}^{6} \frac{\partial^2}{\partial X_i \partial X_j} (D_{ij} P). \tag{28}$$

Expandiendo explícitamente:

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial \phi} (\dot{\phi}P) - \frac{\partial}{\partial \dot{\phi}} \left[(-3H\dot{\phi} - \partial_{\phi}V + \zeta_{\phi})P \right]
- \frac{\partial}{\partial \chi} (\dot{\chi}P) - \frac{\partial}{\partial \dot{\chi}} \left[(-3H\dot{\chi} - \partial_{\chi}V + \zeta_{\chi})P \right]
+ \frac{\partial}{\partial \zeta_{\phi}} \left(\frac{\zeta_{\phi}}{\tau_{\phi}}P \right) + \frac{\Gamma_{\phi}T_{GH}}{\tau_{\phi}} \frac{\partial^{2}P}{\partial \zeta_{\phi}^{2}}
+ \frac{\partial}{\partial \zeta_{\chi}} \left(\frac{\zeta_{\chi}}{\tau_{\chi}}P \right) + \frac{\Gamma_{\chi}T_{GH}}{\tau_{\chi}} \frac{\partial^{2}P}{\partial \zeta_{\chi}^{2}}.$$
(29)

3.6. Distribución estacionaria

Para el estado cuasi-estacionario ($\partial_t P = 0$), buscamos soluciones que satisfagan balance detallado:

$$F_i P - \frac{1}{2} \sum_j \frac{\partial}{\partial X_j} (D_{ij} P) = 0, \quad \forall i.$$
 (30)

Para los grados de libertad del ruido (componentes 5 y 6), la distribución estacionaria es gaussiana:

$$P_{\rm eq}(\zeta_{\phi}, \zeta_{\chi}) \propto \exp\left(-\frac{\tau_{\phi}\zeta_{\phi}^2}{2\Gamma_{\phi}T_{GH}} - \frac{\tau_{\chi}\zeta_{\chi}^2}{2\Gamma_{\chi}T_{GH}}\right).$$
 (31)

3.7. Condiciones de cuasi-estacionariedad

1. Separación de escalas temporales: El tiempo de relajación del ruido OU ($\sim \tau$) debe ser mucho menor que el tiempo de Hubble ($\sim H^{-1}$):

$$\tau H \ll 1. \tag{32}$$

2. Balance entre deriva y difusión: Para la existencia de atractores estocásticos, se requiere:

$$\frac{\Gamma T_{GH}}{\tau} \sim \left| \frac{\partial V}{\partial \phi} \right|^2. \tag{33}$$

3. Criterio de Lyapunov: Existe una función de Lyapunov $L(\mathbf{X}) \geq 0$ tal que:

$$\frac{dL}{dt} = \sum_{i} F_{i} \frac{\partial L}{\partial X_{i}} + \frac{1}{2} \sum_{ij} D_{ij} \frac{\partial^{2} L}{\partial X_{i} \partial X_{j}} < 0.$$
 (34)

3.8. Existencia de atractores estocásticos

Proposición 2. Bajo las condiciones de cuasi-estacionariedad, el sistema admite un atractor estocástico (ciclo límite estocástico) en el espacio de fases (w, \dot{w}) .

La demostración completa requiere análisis de estabilidad lineal alrededor del punto fijo w = -1, que puede consultarse en las referencias especializadas sobre sistemas dinámicos estocásticos.

Apéndice C: Parametrización Universal y Mapeo a Datos 4.

4.1. Justificación teórica de la forma funcional

La parametrización de la ecuación (1):

$$w(z) = -1 + A e^{-z/z_{\tau}} \cos\left(\omega \ln(1+z) + \delta\right),\tag{35}$$

surge naturalmente de considerar un oscilador amortiguado en tiempo conforme η .

4.1.1. Tiempo conforme

En el universo FRW plano, el tiempo conforme se relaciona con el tiempo cósmico t mediante:

$$d\eta = \frac{dt}{a(t)},\tag{36}$$

donde a(t) es el factor de escala. En términos de redshift:

$$\eta(z) = \int_{z}^{\infty} \frac{dz'}{H(z')(1+z')}.$$
(37)

4.1.2. Ecuación del oscilador

Si modelamos las perturbaciones en la energía oscura como un oscilador armónico amortiguado en tiempo conforme:

$$\frac{d^2\delta w}{d\eta^2} + \frac{2}{\eta_\tau} \frac{d\delta w}{d\eta} + \omega_0^2 \delta w = 0, \tag{38}$$

donde η_{τ} es una escala característica de amortiguamiento.

La solución general es:

$$\delta w(\eta) = A e^{-\eta/\eta_{\tau}} \cos(\omega \eta + \delta). \tag{39}$$

4.1.3. Transformación a redshift

Para redshifts bajos $(z \lesssim 2)$, la aproximación $\eta(z) \approx \ln(1+z)/H_0$ es razonable. Sustituyendo:

$$\delta w(z) \approx A e^{-\ln(1+z)/z_{\tau}} \cos(\omega \ln(1+z) + \delta), \tag{40}$$

donde $z_{\tau}=H_0\eta_{\tau}$ es la profundidad de memoria efectiva en unidades de redshift. Usando $e^{-\ln(1+z)/z_{\tau}}=(1+z)^{-1/z_{\tau}}\approx e^{-z/z_{\tau}}$ para $z\ll z_{\tau}$, recuperamos la ecuación (1).

Relación entre τ , ω y escalas físicas

4.2.1. Memoria adimensional

Definimos:

$$\tau H_0 = \frac{\tau}{t_H}, \quad t_H \equiv H_0^{-1},$$
(41)

donde t_H es el tiempo de Hubble actual.

Rango físico esperado: Para que el sistema exhiba resiliencia sin divergencias:

$$0.5 \lesssim \tau H_0 \lesssim 5. \tag{42}$$

Valores fuera de este rango implican:

- $\tau H_0 < 0.5$: memoria insuficiente, ruido dominante
- $\tau H_0 > 5$: sobre-amortiguamiento, pérdida de oscilaciones

4.2.2. Frecuencia angular

La frecuencia ω se relaciona con el número de oscilaciones en el intervalo de redshift observado:

$$N_{\rm osc} = \frac{\omega \ln(1 + z_{\rm máx})}{2\pi}.$$
 (43)

Para $z_{\text{máx}}=2$ y $\omega=2,3$:

$$N_{\rm osc} \approx \frac{2.3 \times 1.1}{2\pi} \approx 0.4$$
 (menos de una oscilación completa). (44)

Rango esperado: $1\lesssim\omega\lesssim5$ para que las oscilaciones sean:

- Detectables con datos actuales (SNe Ia + BAO)
- No tan rápidas que se promedien y sean indetectables

4.3. Derivación de H(z) bajo w(z) dinámico

La ecuación de Friedmann para universo plano con materia y energía oscura es:

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{m} (1+z)^{3} + \Omega_{\Lambda}(z) \right], \tag{45}$$

donde la densidad de energía oscura evoluciona según:

$$\frac{d\Omega_{\Lambda}}{dz} = -\frac{3(1+w(z))}{1+z}\Omega_{\Lambda}(z). \tag{46}$$

Integrando:

$$\Omega_{\Lambda}(z) = \Omega_{\Lambda,0} \exp\left(-3 \int_0^z \frac{1 + w(z')}{1 + z'} dz'\right). \tag{47}$$

Para la parametrización (1):

$$\int_0^z \frac{1 + w(z')}{1 + z'} dz' = \int_0^z \frac{A e^{-z'/z_\tau} \cos(\omega \ln(1 + z') + \delta)}{1 + z'} dz'. \tag{48}$$

Esta integral generalmente requiere evaluación numérica. Una aproximación analítica para $A\ll 1$ es:

$$H^{2}(z) \approx H_{0}^{2} \left[\Omega_{m}(1+z)^{3} + (1-\Omega_{m}) \left(1 + 3A \int_{0}^{z} \frac{e^{-z'/z_{\tau}} \cos(\omega \ln(1+z') + \delta)}{1+z'} dz' \right) \right]. \tag{49}$$

4.4. Conexión con observables

4.4.1. Módulo de distancia (SNe Ia)

El módulo de distancia teórico es:

$$\mu(z) = 5\log_{10}\left[\frac{d_L(z)}{\text{Mpc}}\right] + 25,$$
(50)

donde la distancia luminosidad es:

$$d_L(z) = c(1+z) \int_0^z \frac{dz'}{H(z')}.$$
 (51)

4.4.2. Ángulo acústico (BAO)

La escala de las oscilaciones acústicas bariónicas se observa como:

$$\theta(z) = \frac{r_s(z_d)}{D_A(z)},\tag{52}$$

donde $r_s(z_d)$ es el radio sonoro en el desacoplamiento y:

$$D_A(z) = \frac{c}{1+z} \int_0^z \frac{dz'}{H(z')}.$$
 (53)

4.4.3. Tasa de crecimiento

La tasa de crecimiento de estructura se parametriza como:

$$f(z) = \Omega_m^{\gamma}(z), \tag{54}$$

donde el índice de crecimiento depende de w(z):

$$\gamma(z) \approx 0.55 + 0.05[1 + w(z)]. \tag{55}$$

4.5. Pipeline de validación observacional

4.5.1. Datasets

Cuadro 1: Datasets observacionales relevantes Observable Dataset Δz $N_{\bf datos}$ SNe Ia Pantheon+ 1701 0.01 < z < 2.3BAO BOSS DR12 11 0.2 < z < 0.75BAO eBOSS DR16 8 0.7 < z < 1.5BAO DESI Y1 0.4 < z < 2.36 $f\sigma_8$ KiDS-1000 5 0.1 < z < 1.2

Planck 2018

4.5.2. Función de verosimilitud

CMB

La log-verosimilitud total es:

$$\ln \mathcal{L}(\theta) = -\frac{1}{2} \left[\chi_{\text{SNe}}^2 + \chi_{\text{BAO}}^2 + \chi_{f\sigma_8}^2 + \chi_{\text{CMB}}^2 \right], \tag{56}$$

 ~ 2500

donde $\theta = (A, \omega, \delta, \tau H_0, \Omega_m, H_0)$ son los parámetros del modelo.

Para SNe Ia:

$$\chi_{\text{SNe}}^2 = \sum_{i=1}^{N_{\text{SNe}}} \frac{[\mu_{\text{obs}}(z_i) - \mu_{\text{teo}}(z_i; \theta)]^2}{\sigma_{\mu,i}^2}.$$
 (57)

Para BAO:

$$\chi_{\rm BAO}^2 = \Delta \mathbf{x}^T \mathbf{C}^{-1} \Delta \mathbf{x},\tag{58}$$

 $z \sim 1100$

donde $\Delta x_i = D_V^{\rm obs}(z_i) - D_V^{\rm teo}(z_i;\theta)$ y D_V es el volumen de dilatación.

Cuadro 2: Distribuciones a priori

Parámetro	Prior	Justificación
\overline{A}	$\mathcal{U}(0,0,2)$	Uniforme, amplitud física
ω	$\mathcal{U}(1,5)$	Uniforme, rango detectable
δ	$\mathcal{U}(0,2\pi)$	Uniforme, fase arbitraria
$ au H_0$	Jeffreys(0,5,5)	Escala logarítmica
Ω_m	$\mathcal{N}(0,315,0,007)$	Prior de Planck
H_0	$\mathcal{N}(70,3)$	Compromiso SH0ES/Planck

4.5.3. **Priors**

4.5.4. MCMC y convergencia

Algoritmo recomendado: emcee (Affine Invariant MCMC Ensemble Sampler)

```
import emcee
   import numpy as np
3
   # Definir log-posterior
   def log_posterior(theta, data):
       A, omega, delta, tauHO, Omega_m, HO = theta
6
       # Priors
8
       if not (0 < A < 0.2 \text{ and } 1 < \text{omega} < 5 \text{ and}
9
                0 < delta < 2*np.pi and 0.5 < tauH0 < 5):
10
            return -np.inf
11
       log_prior = (-0.5*((Omega_m - 0.315)/0.007)**2 +
13
                      -0.5*((H0 - 70)/3)**2)
14
       # Likelihood (implementar chi^2 completo)
16
       log_like = compute_likelihood(theta, data)
17
18
       return log_prior + log_like
19
20
   # Configuracion MCMC
21
   ndim = 6
22
   nwalkers = 32
23
   nsteps = 10000
24
   # Inicializacion
26
   p0 = [initial_guess + 1e-3*np.random.randn(ndim)
27
         for _ in range(nwalkers)]
28
29
   # Sampler
30
   sampler = emcee.EnsembleSampler(nwalkers, ndim,
31
                                       log_posterior,
32
33
                                       args=[data])
   sampler.run_mcmc(p0, nsteps, progress=True)
34
35
   # Analisis de convergencia (Gelman-Rubin)
36
   samples = sampler.get_chain(discard=3000, flat=True)
```

4.5.5. Criterios de selección de modelo

Criterio de Información de Akaike (AIC):

$$AIC = -2 \ln \mathcal{L}_{\text{máx}} + 2k, \tag{59}$$

donde k es el número de parámetros.

Criterio Bayesiano (BIC):

$$BIC = -2 \ln \mathcal{L}_{m\acute{a}x} + k \ln n, \tag{60}$$

donde n es el número de datos.

Factor de Bayes:

$$\mathcal{B}_{12} = \frac{\mathcal{Z}_1}{\mathcal{Z}_2} = \frac{\int \mathcal{L}_1(\theta_1) P(\theta_1) d\theta_1}{\int \mathcal{L}_2(\theta_2) P(\theta_2) d\theta_2},\tag{61}$$

calculado mediante nested sampling (e.g., dynesty).

Criterio de rechazo:

- \bullet $\Delta {\rm BIC} > 10$: evidencia fuerte contra el modelo
- $\ln \mathcal{B} < -5$: evidencia decisiva contra el modelo

5. Condiciones Iniciales y Unidades

5.1. Tabla de parámetros

Cuadro 3: Parámetros del modelo y especificaciones técnicas

Símbolo	Significado	Unidad	Valor/Distribución
m_{ϕ}	Masa taquiónica efecti-	H_0	-0.5 a -0.1
	va		
m_χ	Masa campo estable	H_0	0,1 a 1,0
λ_{ϕ}	Autointeracción ϕ	adimensional	$10^{-3} \text{ a } 10^{-1}$
$\lambda_\chi^{'}$	Autointeracción χ	adimensional	$10^{-3} \text{ a } 10^{-1}$
g	Acoplamiento cruzado	adimensional	0,01 a 0,5
$\alpha_{\phi}, \alpha_{\chi}$	Coef. fricción/ruido	adimensional	0.5 a 2.0
$ au H_0$	Memoria OU adimen-	adimensional	0.5 a 5.0
	sional		
A	Amplitud oscilación	adimensional	0.01 a 0.2
ω	Frecuencia log-redshift	adimensional	1 a 5
δ	Fase inicial	radianes	$0 \text{ a } 2\pi$
V_0	Energía de vacío	$(H_0M_{\rm Pl})^2$	$\sim 10^{-120}$

5.2. Priors bayesianos recomendados

- Masas: Prior log-uniforme para capturar órdenes de magnitud
- Acoplamientos: Prior uniforme en rango físico
- Memoria τH_0 : Prior de Jeffreys (escala logarítmica)
- Amplitud A: Prior gaussiano centrado en 0.05
- Frecuencia ω: Prior uniforme 1–5

5.3. Condiciones iniciales (Modelo I)

Para el sistema homogéneo (sin perturbaciones espaciales):

5.3.1. Época de recombinación $(z_i \approx 1100)$

Campos escalares:

$$\phi(z_i) \approx 0, \tag{62}$$

$$\dot{\phi}(z_i) \approx 0,\tag{63}$$

$$\chi(z_i) \approx \chi_{\text{vac}},$$
(64)

$$\dot{\chi}(z_i) \approx 0, \tag{65}$$

donde $\chi_{\rm vac}$ es el valor del campo estable en el mínimo del potencial:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\chi = \chi_{\text{vac}}} = 0. \tag{66}$$

Ruido OU:

$$\zeta_{\phi}(z_i), \zeta_{\chi}(z_i) \sim \mathcal{N}\left(0, \sqrt{\frac{\Gamma T_{GH}(z_i)}{\tau}}\right),$$
(67)

donde la distribución inicial es la del equilibrio estacionario OU.

Parámetro de Hubble inicial:

$$H(z_i) = H_0 \sqrt{\Omega_m (1 + z_i)^3 + \Omega_{\Lambda,0}},$$
 (68)

con valores estándar:

$$\Omega_m \approx 0.315,\tag{69}$$

$$\Omega_{\Lambda,0} \approx 0.685,\tag{70}$$

$$H_0 \approx 70 \,\mathrm{km/s/Mpc}.$$
 (71)

5.4. Unidades naturales

En unidades donde $c = \hbar = k_B = 1$:

- Energía: [E] = eV
- Tiempo: $[t] = eV^{-1}$
- Masa: [m] = eV
- Temperatura: [T] = eV

Escala de Planck reducida:

$$M_{\rm Pl} = \frac{1}{\sqrt{8\pi G}} \approx 2.4 \times 10^{18} \,\text{GeV}.$$
 (72)

Tiempo de Hubble actual:

$$t_H = H_0^{-1} \approx 4.4 \times 10^{17} \,\text{s} \approx 14 \,\text{Gyr}.$$
 (73)

Temperatura de Gibbons-Hawking actual:

$$T_{GH,0} = \frac{H_0}{2\pi} \approx 10^{-30} \,\text{eV} \approx 10^{-4} \,\text{K}.$$
 (74)

6. Discusión y Contraste con Modelos Estándar

6.1. Recuperación de ΛCDM

El modelo propuesto recupera Λ CDM en el límite:

$$A \to 0 \quad \text{o} \quad \tau \to 0,$$
 (75)

en cuyo caso:

$$w(z) \to -1 \quad \forall z.$$
 (76)

6.1.1. Observables invariantes

Los siguientes observables permanecen inalterados respecto a Λ CDM:

- 1. Espectro CMB primario ($\ell < 100$): La física de recombinación y las oscilaciones acústicas tempranas no se ven afectadas.
- 2. **Distancia angular al LSS**: La posición del último plano de dispersión está fijada por la integral:

$$r_s(z_{\rm LSS}) = \int_0^{z_{\rm LSS}} \frac{c_s(z)}{H(z)} dz, \tag{77}$$

que es insensible a pequeñas variaciones en w(z) para z < 1100.

6.1.2. Desviaciones detectables

Las siguientes observaciones podrían mostrar desviaciones:

1. **ISW tardío** (z < 2): El efecto Sachs-Wolfe integrado depende de la variación temporal del potencial gravitacional:

$$\Delta T_{\rm ISW} \propto \int_0^{z_{\rm LSS}} \frac{d\Phi}{dt} dz.$$
 (78)

Oscilaciones en w(z) modulan H(z) y, por ende, la evolución del potencial.

Predicción: Correlación cruzada CMB-LSS con estructura oscilatoria a frecuencia $\omega \sim 2-3$ en escala logarítmica de redshift.

- 2. BAO de ultra-precisión: DESI Year-5 (2029+) alcanzará precisión $\Delta H/H \sim 0.5\,\%$ a $z\sim 1$. Oscilaciones con amplitud $A\gtrsim 0.03$ serían detectables como modulación sistemática en la escala BAO.
- 3. Crecimiento de estructura $(f\sigma_8)$: La tasa de crecimiento depende de w(z) via:

$$\frac{d^2\delta}{dt^2} + 2H\frac{d\delta}{dt} = 4\pi G\bar{\rho}_m \delta \left[1 + \frac{\Omega_{\Lambda}(1+w)}{Omega_m} \right]. \tag{79}$$

Predicción: Desviación $\sim 2-5\,\%$ en $f\sigma_8(z)$ respecto a Λ CDM en el rango 0.5 < z < 1.5, con patrón oscilatorio.

Cuadro 4: Comparación con modelos de energía oscura dinámica

Modelo	Memoria	Atractores	Ref.
$CPL(w_0, w_a)$	No	No	Chevallier & Polarski (2001)
Oscilante simple	No	No	Zhao et al. (2017)
Slow-roll DE	No	Sí	Peebles & Ratra (2003)
Quintessence	No	Sí	Caldwell et al. (1998)
Este trabajo (Krein+OU)	Sí	Sí	<u>—</u>

6.2. Contraste con DE oscilante fenomenológica

6.2.1. Modelos existentes en la literatura

6.2.2. Ventajas conceptuales únicas

- 1. Resiliencia por memoria: La existencia del "valle de resiliencia" ($\tau H_0 \sim 2-3$) proporciona una predicción específica: sistemas con memoria fuera de este rango son inestables o sobre-amortiguados.
- 2. Origen geométrico del ruido: El acoplamiento $T_{GH} = H/(2\pi)$ relaciona directamente la estocasticidad con la geometría del horizonte, evitando parámetros de ruido ad hoc.
- 3. Legitimación del taquión: El formalismo de Krein proporciona una justificación matemática rigurosa para incluir modos inestables sin romper unitariedad, algo que los modelos fenomenológicos eluden.
- 4. Atractores estocásticos: La convergencia hacia ciclos límite en el espacio de fases (w, \dot{w}) garantiza comportamiento asintótico robusto, independiente de condiciones iniciales específicas.

6.2.3. Comparación con parametrizaciones CPL

El modelo CPL parametriza:

$$w_{\rm CPL}(z) = w_0 + w_a \frac{z}{1+z}. (80)$$

Diferencias clave:

- CPL es monotónico; nuestro modelo permite oscilaciones.
- CPL tiene 2 parámetros; nuestro modelo tiene 4 $(A, \omega, \delta, \tau H_0)$, pero con mayor poder predictivo.
- CPL no tiene escala de memoria; nuestro modelo predice $\tau H_0 \sim 2-3$ como óptimo.

6.3. Tests observacionales y falsabilidad

6.3.1. Datasets actuales (2025)

6.3.2. Predicciones falsables

1. **Amplitud mínima detectable**: Con datos combinados Pantheon+ + DESI + KiDS, la amplitud:

$$A \gtrsim 0.03 \tag{81}$$

es detectable a $> 3\sigma$.

Falsabilidad: Si el análisis combinado arroja A < 0.01 con alta confianza, el modelo queda excluido.

Cuadro 5: Sensibilidad de datasets actuales a oscilaciones en w(z)

Observable	Sensibilidad a A	Disponibilidad
Pantheon+ SNe Ia	$\Delta A \sim 0.05$	Público
DESI BAO Y1	$\Delta A \sim 0.03$	2024
KiDS-1000 $f\sigma_8$	$\Delta A \sim 0.07$	Público
Planck CMB (ISW)	$\Delta A \sim 0.10$	Público

2. Frecuencia observable: Para que las oscilaciones sean resolubles:

$$1 < \omega < 5. \tag{82}$$

Falsabilidad: Si el mejor ajuste cae fuera de este rango, el modelo requiere revisión.

3. Memoria óptima: La banda de resiliencia predice:

$$1 < \tau H_0 < 3.$$
 (83)

Falsabilidad: Si el análisis bayesiano excluye este rango a $> 2\sigma$, la hipótesis de "valle de resiliencia" queda refutada.

4. Modulación en $f\sigma_8$: El modelo predice:

$$\left| \frac{f\sigma_8^{\text{modelo}} - f\sigma_8^{\Lambda\text{CDM}}}{f\sigma_8^{\Lambda\text{CDM}}} \right| \sim 2 - 5\% \quad \text{para } 0.5 < z < 1.5.$$
 (84)

Falsabilidad: Datos de Euclid (2027+) resolverán esto con $\sim 1\%$ de precisión.

6.3.3. Pipeline mínimo de validación

Fase 1: Análisis preliminar (2025)

- 1. Ajuste MCMC con Pantheon+ + BOSS BAO
- 2. Comparación AIC/BIC vs. ΛCDM
- 3. Identificación de región permitida en espacio $(A, \omega, \tau H_0)$

Fase 2: Análisis completo (2026–2027)

- 1. Incorporar DESI DR2 (6M galaxias)
- 2. Añadir KiDS/DES $f\sigma_8$
- 3. Cross-check con ISW de Planck
- 4. Cálculo de evidencia bayesiana (nested sampling)

Fase 3: Test definitivo (2028+)

- 1. Datos de Euclid Y1 ($\sim 10^9$ galaxias)
- 2. Análisis conjunto Euclid + Rubin LSST
- 3. Veredicto: confirmación/exclusión a $> 5\sigma$

6.3.4. Criterio de éxito

El modelo se considerará **viable** si:

- \bullet $\Delta {\rm BIC}_{\Lambda {\rm CDM}} < -6$ (preferencia fuerte)
- Posteriors compatibles con valle de resiliencia
- \bullet Predicciones de $f\sigma_8$ confirmadas por Euclid

El modelo se considerará **excluido** si:

Cualquier dataset individual excluye A>0,01a $>3\sigma$

 τH_0 cae consistentemente fuera de $[0,\!5,\!5]$

Tensión $> 5\sigma$ con CMB primario (improbable pero posible)

Referencias

- Chevallier, M., & Polarski, D. (2001). Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10(02), 213–223.
- Zhao, G. B., et al. (2017). Dynamical dark energy in light of the latest observations. Nature Astronomy, 1, 627–632.
- Peebles, P. J. E., & Ratra, B. (2003). *The cosmological constant and dark energy*. Reviews of Modern Physics, 75(2), 559–606.
- Caldwell, R. R., Dave, R., & Steinhardt, P. J. (1998). Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80(8), 1582–1585.
- Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6.
- DESI Collaboration (2024). DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. arXiv:2404.03002.
- Brout, D., et al. (Pantheon+ Collaboration) (2022). The Pantheon+ Analysis: Cosmological Constraints. The Astrophysical Journal, 938(2), 110.
- Heymans, C., et al. (KiDS Collaboration) (2021). KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astronomy & Astrophysics, 646, A140.