

- If there is self loop I give the 1

- If there is no edge I give the "O"

- If there is no self loop I give the "O" (it only applies to its connection)

Problem 2: Hamilton Circuits?

a) The graph Gi

- we have 2 important items for a circuit to provide the Hamilton circuit.

1- A graph with a vertex of edge one cannot have a Hamilton circuit.

2. Moreover, if a vortex in the graph has degree two, then both edges that are incident with this vertex must be part of any Hamilton circuit 3-A Hamilton circuit cannot contain a smaller circuit within it.

a) This graph has not a Hamilton circuit because A Hamilton circuit cannot contain a smaller circuit within it.

Shope b has not Hamilton circuit because A graph with a vertex of edge one cannot have a Hamilton circuit.

The letters enford 9 do not follow this

rule.

→ Yes, this shape has a Hamilton circuit.

And the Hamilton path is: a-d-g-h-i-f-c-e-b-a

								/	
PROBLEM 3; APPLICATION ON GRAPHS? If student can take both of these course I give the "+" otherwise I give the "-".									
-	COURTE	CSE 101	CSE 102	CSE273	CSE 211	CSE 333,	SEL	MATH TO!	MATH 243
	CSE 101		t is	1	+	+	_	1	1-
	CSE 102	1+		1 that	+	+	-	+	+
	(SE 211	1	er -	T CQ	+	+	+	+	+
	()E 211	1	+	+		+	+	_	1100
	CSE 333	(6)	+	+ 1			,		-
	CSE 346	, 3/16							+
				+	+	-		+	+
	MATH 101	+	+	+ 1	- 1	_	+1		-
	MATH 243								
A		7	+ 1	+	-	+ 1.	+1	_	
1		159					,		

