- 1. Analyze and Preprocess data Check if the dataset has missing values or has any other problem.
- 2. Feature Engineering
- 3. Divide the dataset into 2 training and test sets
- 4. Use logistic model Regression. Try to apply different *solver* and *penalty* to find the best one.
- 5. Perform model on training set and test set
- 6. Measure performance of the model.
- 7. Which metric is your main metric and why? Which solver and penalty have you chosen? (<= 100 words)

How can I measure your point:

- 1. Your function is callable and runs correctly
- 2. The performance of your model (in full pipeline) is acceptable. The final error based on my train and test set is low enough.
- 3. The data preprocessing is correct or make sense
- 4. The Feature engineering is correct or make sense
- 5. Any other additional process will be considered a small plus point.

Submission Link: https://forms.gle/M2CxqVGrKLTzqR7g9 (Submit your .ipynb file)

- Age: This is the attribute that describes the age of the patient. There is data type int64, the highest value is 29, and the lowest is 77.
- Sex: This is the attribute indicating the gender of the patient, where 0 indicates male patient, 1 female patient.
- ChestPainType: This is the attribute that indicates the patient's chest pain level. With levels 0, 1, 2, and 3.
- RestingBP: This is the attribute that indicates the patient's blood pressure with data type int64, the value is in the range [94, 200]
- Cholesterol: This attribute indicates the patient's cholesterol level as measured in the hospital. Has the data type int64, where the value is in [126, 564]
- FastingBS: This is an attribute that describes the patient's fasting blood sugar. In which, if the patient has more than 120mg/dl sugar = 1, otherwise = 0.
- RestingECG: This property displays the results of the ECG from 0 to 2 (0, 1, 2). Where each value indicates the severity of the pain.
- thalach: Patient's highest heart rate
- ExerciseAngina: Whether or not you have angina during exercise. Yes denotes 1, no denotes 0.
- Oldpeak: Attribute expressing the stress level of the patient. Has a value of type float64, the value is in [0, 6.2]

- ST_Slope: Patient's condition during exercise. Includes [Upsloping, Flat, Down sloping] states that are sequentially digitized to [0, 1, 2].
- ca: number of major vessels (0-3) colored by flourosopy given
- thal: 0 = normal; 1 = fixed defect; 2 = reversable defect
- HeartDisease: Results of the patient's condition. 1 is for signs of heart disease, 0 is for no signs of heart disease.

Load Dataset

```
# mount data from google drive to colab
from google.colab import drive
drive.mount('/content/drive')
#import library
import pandas as pd # pandas
import numpy as np # numpy
import time
import seaborn as sns
import matplotlib.pyplot as plt
→ Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
def read_dataset(path): # dùng 'path' làm tên tham số đầu vào
    df = pd.read_csv(path)
    display(df.head())
    display(df.describe())
    return df
import pandas as pd
PATH = "/content/drive/MyDrive/Dataset/Term_Deposit1.csv"
df = read_dataset(PATH)
#ToDo: Show histogram of dataframe
```

• V

	age	job	marital	educ	ation	default	balance	housing	loan	contact	da _!
0	47.0	management	married	t	ertiary	no	2351.0	no	no	cellular	:
1	26.0	admin.	single	seco	ondary	no	255.0	no	no	cellular	1،
2	26.0	admin.	single	seco	ondary	no	256.0	no	no	cellular	1،
3	26.0	admin.	single	seco	ondary	no	257.0	no	no	cellular	1،
4	26.0	admin.	single	seco	ondary	no	258.0	no	no	cellular	1،
		age	bal	ance		day	durat	ion	campaig	gn	pd
СО	unt 6	66024.000000	66024.00	0000	66024	1.000000	66024.000	000 6602	4.00000	00 66024	.000
me	ean	41.293893	1528.49	9137	15	5.697186	408.975	221	2.50480)1 56	.840
s	td	12.431010	3201.68	3875	8	3.536963	418.539	701	2.70680)4 105	.404
m	iin	-1.000000	-8019.00	0000	1	.000000	0.000	000	1.00000	00 -1	.000
2	5%	32.000000	123.00	0000	8	3.000000	133.000	000	1.00000	00 -1	.000
50)%	39.000000	551.00	0000	16	5.000000	252.000	000	2.00000	00 -1	.000
7	5%	49.000000	1676.00	0000	22	2.000000	525.000	000	3.00000	00 92	.000
m	ах	999.000000	102127.00	0000	31	.000000	4918.000	000 6	3.00000	00 871	.000

from google.colab import drive drive.mount('/content/drive')

Data Analysis

#các thông tin của từng feature df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 66024 entries, 0 to 66023 Data columns (total 17 columns):

Ducu	CO _ C.	,	CO_U	•
#	Column	Non-Nu	ıll Count	Dtype
0	age	66024	non-null	float64
1	job	66024	non-null	object
2	marital	66024	non-null	object
3	education	66024	non-null	object
4	default	66024	non-null	object
5	balance	66024	non-null	float64
6	housing	66024	non-null	object
7	loan	66024	non-null	object
8	contact	66024	non-null	object
9	day	66024	non-null	int64
10	month	66024	non-null	object
11	duration	66024	non-null	int64
12	campaign	66024	non-null	int64

```
13 pdays 66024 non-null int64
14 previous 66024 non-null int64
15 poutcome 66024 non-null object
16 y 66024 non-null object
dtypes: float64(2), int64(5), object(10)
memory usage: 8.6+ MB
```

```
print("Quantitative columns \n")
print(df.describe())
print()
print("Qualitative and Quantitative columns \n")
print(df.describe(include=[object, float]))
```

→ Quantitative columns

25%

NaN

NaN

NaN

NaN

NaN

NaN

	age	balance	day	duration	campaign	\
count	66024.000000	66024.000000	66024.000000	66024.000000	66024.000000	
mean	41.293893	1528.499137	15.697186	408.975221	2.504801	
std	12.431010	3201.683875	8.536963	418.539701	2.706804	
min	-1.000000	-8019.000000	1.000000	0.000000	1.000000	
25%	32.000000	123.000000	8.000000	133.000000	1.000000	
50%	39.000000	551.000000	16.000000	252.000000	2.000000	
75%	49.000000	1676.000000	22.000000	525.000000	3.000000	
max	999.000000	102127.000000	31.000000	4918.000000	63.000000	
	pdays	previous				
count	66024.000000	66024.000000				
mean	56.840679	0.960272				
std	105.404425	2.439411				
min	-1.000000	0.000000				
25%	-1.000000	0.000000				
50%	-1.000000	0.000000				
75%	92.000000	1.000000				
max	871.000000	275.000000				

Qualitative and Quantitative columns

		age	job	marit	al educa	ation	default	balance	\
count	66024.0	00000	66024	660	24 6	56024	66024	66024.000000	
unique		NaN	12		3	4	2	NaN	
top		NaN	management	marri	ed secor	ndary	no	NaN	
freq		NaN	14663	370	52 3	32395	65134	NaN	
mean	41.2	93893	NaN	N	laN	NaN	NaN	1528.499137	
std	12.4	31010	NaN	N	laN	NaN	NaN	3201.683875	
min	-1.0	00000	NaN	N	laN	NaN	NaN	-8019.000000	
25%	32.0	00000	NaN	N	laN	NaN	NaN	123.000000	
50%	39.0	00000	NaN	N	laN	NaN	NaN	551.000000	
75%	49.0	00000	NaN	N	laN	NaN	NaN	1676.000000	
max	999.0	00000	NaN	N	laN	NaN	NaN	102127.000000	
	housing	loan	contact	month	poutcome		У		
count	66024	66024	66024	66024	66024	6602	.4		
unique	2	2	3	12	4		2		
top	no	no	cellular	may	unknown	n	10		
freq	35128	57452	47373	16757	46068	3991	.1		
mean	NaN	NaN	NaN	NaN	NaN	Na	N.		
std	NaN	NaN	NaN	NaN	NaN	Na	ιN		
min	NaN	NaN	NaN	NaN	NaN	Na	N		

```
NaN
50%
           NaN
                  NaN
                                              NaN
                                                      NaN
                             NaN
75%
           NaN
                   NaN
                             NaN
                                     NaN
                                              NaN
                                                      NaN
max
           NaN
                   NaN
                             NaN
                                     NaN
                                              NaN
                                                      NaN
```

Exploratory Data Analysis

```
print("Continous Columns")
continous_columns = df.describe().columns
print(continous_columns)

print("Categorical Columns")
categorical_columns = df.describe(include=[object]).columns
print(categorical_columns)

→ Continous Columns
Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype='Categorical Columns
Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y'],
dtype='object')

◆

df.hist(column=continous_columns, figsize=(10, 10))
# column chính là các feature mà ta muốn vẽ, figsize là kích thước của hình vẽ với giá tr
```


#Dể vẽ hist cho từng feature mà ta muốn, ta có thể làm như sau:
sns.histplot(x="age", data=df) #Nếu ta dùng x thì sẽ vẽ được hình trên trục hoành, còn dù
#x hoặc y là feature mà mình muốn vẽ, data chính là dataframe mà mình muốn đứa vào

#Để vẽ countplot cho các biến categorical ta làm như sau sns.countplot(y="job", data=df)

#Ngoài ra ta có thể dùng thêm một số features khác bằng cách sử dụng catplot
sns.catplot(y="job", data=df, hue="y", col="marital", kind="count")
#Ở đây ta sẽ vẽ countplot cho feature job, dùng hue theo các giá trị y, chia thêm các giá

sns.countplot(x="y", data=df, palette="bwr") # Thống kê cột 'y'
plt.show()

<ipython-input-32-653f7793fe78>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14. sns.countplot(x="y", data=df, palette="bwr") # Thống kê cột 'y'

numerical_df = df.select_dtypes(include=['number'])
sns.countplot(data=df, x='y', hue='education')

<Axes: xlabel='y', ylabel='count'>

Vẽ heatmap ma trận tương quan giữa các biến số (chỉ các cột dạng số)
sns.heatmap(df.select_dtypes(include='number').corr(), cmap='magma', annot=False)
plt.show()

Model Training

```
def apply_feature_engineering(df):
    Apply all feature engineering to transform your data into number
    :param df: pandas DataFrame
    :return: pandas DataFrame
    .....
    # Chỉ chuẩn hóa các cột dạng số
    numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns
    # Áp dụng Min-Max Scaling
    scaler = MinMaxScaler()
    df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
    # **Thêm đoạn mã này vào đây**
    from sklearn.preprocessing import PolynomialFeatures
    # Tạo biến tương tác
    df['age_balance'] = df['age'] * df['balance']
    # Tạo biến đa thức
    poly = PolynomialFeatures(degree=2)
    poly_features = poly.fit_transform(df[['age', 'balance']])
    poly_df = pd.DataFrame(poly_features, columns=['poly_feature_' + str(i) for i in rang
    df = pd.concat([df, poly_df], axis=1)
```

```
processed_df = apply_feature_engineering(df.copy())
processed_df.head()
```

→		age	balance	day	duration	campaign	pdays	previous	у	job_admin.	job_blue- collar
	0	47.0	2351.0	2	163	2	84	1	yes	False	False
	1	26.0	255.0	14	209	2	106	2	yes	True	False
	2	26.0	256.0	14	210	2	106	2	yes	True	False
	3	26.0	257.0	14	211	2	106	2	yes	True	False
	4	26.0	258.0	14	212	2	106	2	yes	True	False
	5 ro	ws × 5	2 columns								

```
def prepare_X_y(df):
    Feature engineering and create X and y
    :param df: pandas dataframe
    :return: (X, y) output feature matrix (dataframe), target (series)
   X = df.drop('y', axis=1, inplace=False).values
   y = df['y']
   y = np.array([0 if i=="no" else 1 for i in y ])
   y = y.reshape((-1, 1))
   return X, y
X, y = prepare_X_y(processed_df)
def build_model(X, y):
    .....
   Design your model and train it (including your best params)
    :param X: feature matrix
    :param y: target
    :return: a model
    # Create a pipeline with StandardScaler and LogisticRegression
    model = make_pipeline(StandardScaler(), LogisticRegression())
    # **Thêm đoạn mã này vào đây**
    from sklearn.model_selection import GridSearchCV
    param_grid = {'logisticregression__C': [0.001, 0.01, 0.1, 1, 10, 100]}
    grid = GridSearchCV(model, param_grid, cv=5)
```

```
grid.fit(X, y)
    model = grid.best estimator
    # Fit the model
    model.fit(X, y)
    return model
# Trong hàm build model
from sklearn.ensemble import RandomForestClassifier
model = make_pipeline(StandardScaler(), RandomForestClassifier())
model.fit(X, y)
                   Pipeline
                                  (i) (?)
              StandardScaler
          RandomForestClassifier 🕐
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101
log model = build_model(X_train, y_train)
display(log model)
# Get score
log_model.score(X_test, y_test)
/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:1408: DataConvers
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: Conver
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       n_iter_i = _check_optimize_result(
      ▼ LogisticRegression ① ??
     LogisticRegression()
     0.9044325525040388
```

from sklearn.preprocessing import StandardScaler #Goi thư viện để scale data về phân phối scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train) #fit_transform có tác dụng vừa fit data, v X_test_scaled = scaler.transform(X_test) #transform data từ hàm scaler đã train từ X_trai

Print dataframe of scaled data
display(pd.DataFrame(X_train_scaled))

→		0	1	2	3	4	5	6	
	0	0.134841	0.168923	0.735593	0.325399	0.192122	-0.550104	-0.436967	-0.35625
	1	3.374412	1.006072	-0.787916	2.404948	-0.565094	0.330261	0.928228	-0.35625
	2	1.083008	-0.177558	-1.256688	-0.703557	0.570730	-0.550104	-0.436967	-0.35625
	3	0.529911	-0.264256	0.266821	-0.177059	-0.565094	4.769952	0.473163	2.80698
	4	-0.260228	-0.466241	1.321558	-0.833379	0.570730	-0.550104	-0.436967	-0.35625
	•••								
	46211	-0.892340	-0.260217	1.438751	0.310974	-0.186486	1.172761	3.203553	-0.35625
	46212	-0.892340	-0.466862	1.673137	-0.876653	-0.565094	-0.550104	-0.436967	-0.35625
	46213	-1.129381	-0.469038	1.555944	-0.725194	0.192122	-0.550104	-0.436967	-0.35625
	46214	-1.366423	-0.401606	-0.787916	-0.746831	-0.565094	0.330261	0.018098	-0.35625
	46215	1.162022	-0.400984	0.149628	-0.701153	0.192122	0.699447	1.383293	-0.35625

46216 rows × 51 columns

```
log_model = build_model(X_train_scaled, y_train)
display(log_model)
```

Get score

log_model.score(X_test_scaled, y_test)

/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:1408: DataConvers
y = column_or_1d(y, warn=True)

LogisticRegression ()

0.9330068659127625

```
# Thiết lập bảng kết quả dự đoán
y_pred = log_model.predict(X_test_scaled)
y_pred = pd.DataFrame({'target': y_pred})
y_pred
```

```
\rightarrow
             target
        0
                  1
        1
                  0
        2
                  0
        3
                  0
                  0
      19803
                  0
      19804
                  0
      19805
                  0
      19806
                  0
      19807
                  0
     19808 rows × 1 columns
#9 Sử dụng một số metrics cho imbalanced data
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, conf
print("Precision: ", precision_score(y_test , y_pred))
print("Recall: ", recall_score(y_test , y_pred))
print("F1: ", f1_score(y_test , y_pred))
print("Confusion matrix: \n", confusion_matrix(y_test , y_pred))
print("Classification report: \n", classification_report(y_test , y_pred))
→ Precision: 0.9187086736678335
     Recall: 0.9100950423837657
     F1: 0.91438157300471
     Confusion matrix:
      [[11395
              627]
      [ 700 7086]]
     Classification report:
                    precision recall f1-score
                                                     support
                0
                        0.94
                                  0.95
                                            0.94
                                                      12022
                1
                        0.92
                                  0.91
                                            0.91
                                                      7786
                                            0.93
                                                      19808
         accuracy
                                            0.93
        macro avg
                        0.93
                                  0.93
                                                      19808
     weighted avg
                        0.93
                                  0.93
                                            0.93
                                                      19808
def calculate_performance(y_true, y_pred):
    .....
```

:param y_true: ground truth values

:param y_pred: predictions

:return:

```
.....
```

```
print("Accuracy: ", accuracy_score(y_test, y_pred))
print("Precision: ", precision_score(y_test , y_pred))
print("Recall: ", recall_score(y_test , y_pred ))
print("F1: ", f1_score(y_test , y_pred))
print("Confusion matrix: \n", confusion_matrix(y_test , y_pred ))
print("classification_report: ", classification_report(y_true, y_pred))
return f1_score(y_test , y_pred )
```

Preprocessing

```
def preprocessing_data(df):
    Preprocess your data (eg. Drop null datapoints or fill missing data)
    :param df: pandas DataFrame
    :return: pandas DataFrame
    # Xoá các dòng có giá trị bị thiếu (nếu bạn muốn giữ lại, có thể dùng fillna)
    df = df.dropna()
    # Reset index sau khi drop
    df = df.reset index(drop=True)
    # **Thêm đoạn mã này vào đây**
    for col in df.select_dtypes(include=['number']).columns:
        df[col] = df[col].fillna(df[col].mean()) # Hoặc df[col].median()
    # Mã hoá các biến phân loại dạng object (label encoding hoặc one-hot nếu cần)
    for col in df.select dtypes(include='object').columns:
        df[col] = df[col].astype('category').cat.codes
    return df
df = preprocessing_data(df.copy())
```

→ Feature Engineering

```
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler

def apply_feature_engineering(df):
    """
    Apply all feature engineering to transform your data into number
    :param df: pandas DataFrame
    :return: pandas DataFrame
    """
    # Chỉ chuẩn hóa các cột dạng số
    numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns
```

```
# Ap dung Min-Max Scaling
    scaler = MinMaxScaler()
    df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
    return df
# Giả sử df đã được tiền xử lý (preprocessed) trước đó
df = apply_feature_engineering(df)
# Hiển thị heatmap sau khi dữ liệu được chuẩn hóa
sns.heatmap(df.corr(), cmap='coolwarm', annot=True)
1.0
              age - 1-0.03.4-0-0.0062.20.108.0B.106.10-003660.10392.600.80.107030600.6043
               job -0.03 1 0.10.16.00.9020.105.052094930506994300608099902.010.1
                                                                                         0.8
          marital 0.4 0.1 1 0.1 40.03.0 0000 530 690 550 0.4 001070 0.90 0.90 2020 3040 590 91
        education -0.10.15.14 10.00.4056.10.068-02061.401.6035006629903803813
                                                                                        - 0.6
          default0-0905.09 1:09.903.01 41 00.0060 1050 7020 307001.00 96 20 20 30 202 0 40 50 8:40 46 . 0 6
          balance -0.102.0-2010 00-90 5-06.0 1 -0.-10.0-90 10 10-00 20 0-00 5060 20 20 20 60 301.0 49 90 8 7
                                                                                       - 0.4
          housing -0.1-8.105.0503.10301-50.1 1 0.1 10.2-0.0 306-1060 004-0.3040-101-04-60-70428
             - 0.2
          contact 9.0301.04940505.10203070307.203.02 710.010526.046068.280.20.240.28
              day0.00363590.4900.091010302903.6902.6151-0.905.0205149.0-8301250-708029
                                                                                       - 0.0
           month-0:0901.3069901.7001650502020.165.0255260.0510.03-10.03-05063065063024
         duration0-002.64.B-01.993.8023900.564.D-010-460-2503 1 0.905.0-410 2.9049.55
                                                                                        - -0.2
        campaign-9.601.8905.801.90069-2020 2.00 3040 3060 68.140.10.0 6110.1-30.0 70.1-30.16
                                                                                         -0.4
            pdays 0.00.7009.9720320309045020603010601.208.0830603040.13 1 0.480.80.24
         previous 9.036.02.039403080B40301.04605-70.-70.0250-6050299.070.48 1 -0.50.23
                                                                                          -0.6
       poutcome-9.0-D60-D10-3990 B30-455034.99 0 7040 50.299.0 708 0 6.10 499.1 3 0.8 0.5
                 y 9.0430.10.090.130.006080<mark>7.248.1-50.20</mark>8.0129020<mark>4.55</mark>0.16.249.230.10
                                  default
                                             loan
                                          nousing
                                                 contact
                                                        month
from sklearn.model_selection import train_test_split
def prepare X y(df):
    .....
    Feature engineering and create X and y
    :param df: pandas dataframe
    :return: (X, y) output feature matrix (dataframe), target (series)
    # Giả sử cột mục tiêu (label) là 'y' (bạn có thể thay bằng tên cột thực tế)
    X = df.drop('y', axis=1) # X là toàn bộ dataframe trừ cột 'y'
    y = df['y']
                                   # y là cột mục tiêu
    return X, y
```

```
# Gọi hàm để tạo ra X và y
X, y = prepare_X_y(df)
```

Apply machine learning model

Train-test split

```
from sklearn.model_selection import train_test_split

RANDOM_STATE = 0
TRAIN_SIZE = 0.8

# Chia dữ liệu thành tập train và test
trainX, testX, trainY, testY = train_test_split(X, y, train_size=TRAIN_SIZE, random_state)
```