Question IV: DFAs and NFAs

1. By writing a regular expression or a grammar, describe the language accepted by the DFA

This could also be just ab* aslong as the "sink" state is never reached by taking an "b" from start state S or by taking "a" from state "U" to "T".

2. By writing a regular expression or a grammar, describe the language accepted by the DFA

$$G = \{(S,T,A,B),(a,b,\,\varepsilon),\,(S),\{$$
With Productions,
$$S := bS \mid aT$$

$$T := bS \mid aA$$

$$A := aA \mid bB$$

$$B := a \mid b \mid aB \mid bB \mid \varepsilon$$

The language will only accept the language that contains atleast "aab" as a subword.

- 3. Construct NFAs (possibly with $\epsilon\epsilon$ -moves) to recognise the languages on alphabet {a,b} such that:
 - 1. L={w \in {a,b}* | w contains at most two a's }L={w \in {a,b}* | w contains at most two a's }

There exists three terminal states that can generate any amount of "b" however can contain either no input, all occurrences of "b" or up to two "a"s.

2. L= $\{w \in \{a,b\}_* \mid w \text{ contains an even number of occurrences of ab as a subword } L=\{w \in \{a,b\}_* \mid w \text{ contains an even number of occurrences of ab as a subword } \}$

3. L= $\{w \in \{a,b\}_* \mid \text{ the first and the last letter of } w \text{ are identical } \}$ L= $\{w \in \{a,b\}_* \mid \text{ the first and the last letter of } w \text{ are identical } \}$

4. By writing a regular expression or a grammar, describe the language accepted by the NFA

The language can contain the empty string or an infinite amount of a's or "baa" as a sub word.

5. By writing a regular expression or a grammar, describe the language accepted by the NFA

$$G = \{(S,T,U,R),(a,b), (S),\{$$
With Productions,
$$S ::= aT$$

$$T ::= aU$$

$$U ::= aS \mid aR$$

$$R ::= aS$$

$$\}$$

The language can contain any amount of a's >= 3 with the exception of 4. 5, 8, 9 and 11

7. (Hard) Let L be the language recognised by the NFA

a. Construct a context-free grammar G that generates language L.

$$G = \{(S,T,U),(a,b), (S),\{$$
With Productions,
$$S ::= aT \mid bU$$

$$T ::= bS \mid aU \mid a \mid aT \mid \varepsilon$$

$$U ::= aS$$

$$\}$$

b. State with proof whether G is ambiguous or unambiguous.

The Grammar "G" is ambiguous as you can write the same expressions using different rules of productions. To prove this I am going to use the expression; "aaabbaabbaaa"

Derevation One;

Rule	Application	Result
$Start \rightarrow S$	Start	S
$S \rightarrow aA$	S	aA
$A \rightarrow aA$	aA	aaA
$A \rightarrow aA$	aaA	aaaA
$A \rightarrow bS$	aaaA	aaabS
$S \rightarrow bB$	aaabS	aaabbB
$B \rightarrow aS$	aaabbB	aaabbaS
$S \rightarrow aA$	aaabbaS	aaabbaaA
$A \rightarrow bS$	aaabbaaA	aaabbaabS
$S \rightarrow bB$	aaabbaabS	aaabbaabbB
$B \rightarrow aS$	aaabbaabbB	aaabbaabbaS
$S \rightarrow aA$	aaabbaabbaS	aaabbaabbaaA
$A \rightarrow a$	aaabbaabbaaA	Aaabbaabbaaa

Derevation Two;

Rule	Application	Result
$Start \rightarrow S$	Start	S
$S \rightarrow aA$	S	aA
$A \rightarrow aA$	aA	aaA
$A \rightarrow aA$	aaA	aaaA
$A \rightarrow bS$	aaaA	aaabS
$S \rightarrow bB$	aaabS	aaabbB
$B \rightarrow aS$	aaabbB	aaabbaS
$S \rightarrow aA$	aaabbaS	aaabbaaA
$A \rightarrow bS$	aaabbaaA	aaabbaabS
$S \rightarrow bB$	aaabbaabS	aaabbaabbB
$B \rightarrow aS$	aaabbaabbB	aaabbaabbaS
$S \rightarrow aA$	aaabbaabbaS	aaabbaabbaaA
$A \rightarrow aA$	aaabbaabbaaA	aaabbaabbaaaA
$A \rightarrow \epsilon$	aaabbaabbaaaA	aaabbaabbaaa

Hence the Grammar G is ambiguous.