Záverečný projekt z predmetu PB170 Masarykova univerzita Fakulta informatiky

Tomáš Jaroš a Martin Zimka

February 18, 2021

Syntéza sekvenčného obvodu

Zadanie

Našou úlohou bolo navrhnúť obvod, ktorý strieda farby blikaním niekoľkých farebných LED. Tlačítkom change môže užívateľ vyberať medzi niekoľkými rôznymi sekvenciami blikania.

Priebeh návrhu

Najprv sa bolo potrebné rozhodnúť z koľkých LEDiek bude náš obvod tvorený, ďalej bolo potrebné rozhodnúť o počte druhov blikania týchto lediek. Rozhodli sme sa, že náš obvod bude schopný riadiť blikanie 5 LEDiek štyrmi druhmi blikania.

Druhy blikania boli zvolené následovne: (Tieto desiatkové číslice predstavujú päťbitové binárne čísla-jednotlivé LEDky)

Ďalej sme vytvorili graf prechodov pre automat typu MEALY pre jednotlivé stavy tohto sekvenčného obvodu. Vyzeral približne takto:

Na kódovanie vnútorných stavov $Q_0...Q_4$ sme použili kód 1zN a na ich uchovávanie klopné obvody D. Vďaka použitému kódovaniu môžme budiace funkcie tohto sekvenčného obvodu odvodiť priamo z grafu prechodov.

$$\begin{split} &D_0^{n+1} = Q_4 \\ &D_1^{n+1} = Q_0 \\ &D_2^{n+1} = Q_1 \\ &D_3^{n+1} = Q_2 \\ &D_4^{n+1} = Q_3 \\ &LA = Q_0(\overline{I_1}\overline{I_0} + \overline{I_1}I_0 + I_1\overline{I_0}) + Q_2(I_1I_0) + Q_3(I_1\overline{I_0}) + Q_4(I_1\overline{I_0}) \\ &= Q_0\overline{I_1I_0} + Q_2I_1I_0 + +(Q_3 + Q_4)I_1\overline{I_0} \\ &LB = Q_1(\overline{I_1}\overline{I_0} + I_1\overline{I_0} + I_1I_0) + Q_2(\overline{I_1}I_0) + Q_3(I_1I_0) \\ &= Q_1\overline{\overline{I_1}I_0} + Q_2\overline{I_1}I_0 + Q_3I_1I_0 \\ &LC = Q_0(I_1I_0) + Q_2(\overline{I_1}\overline{I_0} + I_1\overline{I_0}) + Q_3(I_1\overline{I_0}) + Q_4(\overline{I_1}I_0 + I_1\overline{I_0} + I_1I_0) \\ &= Q_0I_1I_0 + Q_2\overline{I_0} + Q_3I_1\overline{I_0} + Q_4\overline{\overline{I_1}\overline{I_0}} \\ &LD = Q_1(I_1\overline{I_0} + I_1I_0) + Q_3(\overline{I_1}\overline{I_0} + \overline{I_1}I_0 + I_1I_0) \\ &= Q_0I_1 + Q_3\overline{I_1}\overline{I_0} \\ &LE = Q_0(I_1\overline{I_0}) + Q_1(\overline{I_1}I_0) + Q_2(I_1I_0) + Q_4(\overline{I_1}\overline{I_0} + I_1\overline{I_0}) \\ &= Q_0I_1\overline{I_0} + Q_1\overline{I_1}I_0 + Q_2I_1I_0 + Q_4\overline{I_0} \end{split}$$

Obvod

Vstupy nášho obvodu sú generované čítačom: a,Takto približne vyzeral čítač v simulátore Digital

b,Pri návrhu PCB boli potrebné aj negácie a preto sme ich začali využívať.

Dve tlačítka ovládajúce tento obvod:

a, tlačítko slúžiace na nastavenie prvého stavu sekvenčného obvodu:

b, tlačítko slúžiace na manipulovanie vstupov sekvenčného obvodu:

Samotný sekvenčný obvod v simulátore Digital a veľmi zjednodušená schéma celého obvodu:

Schéma celého obvodu

Schéma napájania, časovača, čítača a tlačítok.

Časť s klopnými obvodmi a LEDkami.

Logická časť obvodu.

Prikladáme model výslednej PCB dosky.

