

WHY? should we build a model that predicts the diagnosis of gout?

- 10 out of 100 patients were mislabeled by ER physicians
- Studies show a cause of misdiagnosis result from vocabulary differences between patient and physician. due to vocabulary
- Vocabulary patterns can be recognized by ML models and aid in predicting 'Gout' based on the patients' complaint, bridging the gap that causes these errors.

DATA SOURCE

 Data was obtained from the MIMIC III database, Beth Israel Deaconess Medical Center:

https://physionet.org/content/emer-complaint-gout/1.

NLP DATA PRE-PROCESSING

Pre-processed Data

	corpus	target
0	"been feeling bad" last 2 weeks & switched BP	N
1	"can't walk", reports onset at 0830 am. orient	Υ
2	"dehydration" Chest hurts, hips hurt, cramps P	Υ

WORD CLOUD

IMBALANCED DATA

TERM COMPARISON FOR GOUT VS NON-GOUT NOTICE DIFFERENCES BETWEEN CHIEF COMPLAINTS

ROC AUC SCORES berfore and after hyperparameter tuning

model	tuned score	untuned score
Logistic Regression	93.897341	93.794682
Naive Bayes	92.226345	92.226345
SVM	93.209647	91.996289
KNNeighbors	86.552257	84.988868
Gradient Boosting	91.137910	91.289425
Random Forest	91.288806	90.529375

Top 3: Logistic Regression 93.90% Naive Bayes 92.23% SVM 93.21%

CONFUSION MATRIX RESULTS

NOTE THE BALANCE BETWEEN FALSE NEGATIVES AND OVERALL ERRORS

ROC AUC BERT PRE-TRAINED ACCURACY RETUSLTS PREDICTION ACCURACY = 98.67%

Epoch: 0% | 0/2 [00:00<?, ?it/s]

Train loss: 0.026148697721712938

Epoch: 50% | | 1/2 [1:05:15<1:05:15, 3915.78s/it]

Validation Accuracy: 0.9867788461538461

Train loss: 0.026181237024088717

Epoch: 100%| 2/2 [5:36:35<00:00, 10097.72s/it]

Validation Accuracy: 0.9867788461538461

CONSLUSION

FIRST CHOICE: BERT PRE-TRAINED

SECOND CHOICE: SVC

- BERT Pre-Trained is based on large data sets and is preferable. The nature of BERT however requires API connectivity, opening potential security concerns.
- For In-House modeling sci-kit learn's SVC model reduced the false negatives without compromising overall error rate.

FURTHER RESEARCH

1

Explore clinical BERT pretrained models 2

Improve model with additional labeled training data 3

Include a statistical probability in results