特勒根定理 互易定理 对偶原理

邹建龙

主要内容

- 特勒根定理1
- ・特勒根定理2
- 互易定理
- 对偶原理(不考试,但很重要)
- 不同定理之比较

特勒根定理1

在关联参考方向下,所有支路上的电压电流乘积的总和为零。

$$\sum_{k=1}^{b} u_k i_k = 0$$

特勒根定理1实际上反映了功率守恒,特勒根定理适用于线性和非线性电路。

思考: 非关联怎么办?

特勒根定理1-证明

设电路共有n个结点,第p、q个结点之间的电压为 u_{pq} ,电流为 i_{pq}

$$\sum_{k=1}^{b} u_k i_k = \frac{1}{2} \sum_{p=1}^{n} \sum_{q=1}^{n} u_{pq} i_{pq} = \frac{1}{2} \sum_{p=1}^{n} \sum_{q=1}^{n} (u_p - u_q) i_{pq}$$

$$= \frac{1}{2} \sum_{p=1}^{n} u_{p} \sum_{q=1}^{n} i_{pq} - \frac{1}{2} \sum_{q=1}^{n} u_{q} \sum_{p=1}^{n} i_{pq}$$

=0

特勒根定理2

若两个电路具有相同的图,且电压电流为 关联参考方向,则有

$$\sum_{k=1}^{b} \hat{u}_k i_k = 0$$

$$\sum_{k=1}^{b} u_k \hat{i}_k = 0$$

思考:如果为非关联参考方向会怎样?

特勒根定理2一个重要推论

两个结构相同的电路中包含相同的纯电阻网络,则有

$$\sum_{k=1}^r \hat{u}_k i_k = \sum_{k=1}^r u_k \hat{i}_k$$

式中,r为除去纯电阻网络外的支路总数

特勒根定理2的应用

N为纯电阻网络,求I

特勒根定理2的应用

左侧电流乘以对应右侧电压=左侧电压乘以对应右侧电流

$$-(2\times2)-(2\times3)+0=0+0+(4\times I)$$

 $I=-2.5A$

注: 短路电压为0; 开路电流为0; 0乘以任何数等于0.

互易定理

如果只含有线性电阻和一个激励源,

那么将激励和响应的位置互换后,

激励与响应的比值保持不变

互易定理的证明

互易定理有三种形式,

用特勒根定理2的推论可以证明

互易定理实际上是特勒根定理2的一个特例

互易定理的应用

N为纯电阻网络,求I

互易定理的应用

$$\frac{1}{8} = \frac{3}{-2I}$$

I = -12A 此题体现了两个技巧: 无中生有; 兼容并包

特勒根定理2和互易定理的应用

N为纯电阻网络,求U

答案: *U=-7.2V*

对偶原理(非考试内容,但很重要!)

如果两个东西通过元素互换既能由此及彼,也能由彼及此,则称二者互为对偶,两者具有完全相同的特性例如

将KCL中的电流换成电压,就变成了KVL;

如果将KVL中的电压变成电流,就变成了KCL;

所以KCL和KVL互为对偶

对偶原理的作用在于减少重复、启发思考

对偶原理——对偶的元素

互换的元素我们称为对偶元素

对偶元素很多:

电压——电流

电阻——电导

电感——电容

串联——并联

回路——结点

.

对偶原理——如何得到对偶电路

将回路变成结点,结点与结点连接,与每一个电路元件交叉,将其变为对偶的电路元件。

细节问题: 电压与电流都取关联参考方向,对偶电路的支路电流方向通过原电路支路顺时针旋转得到。

如何得到对偶电路-例题

各定理之比较

	适用 条件	相互 关系	内容	注意事项
 叠加	线性电路		总=各独立源单 独作用之和	含受控源时保 持不动
齐性	线性电路	叠加的推论	所有独立源变 K 倍 ,响应也变 K 倍	
替代	线性 非线性	一元件	已知支路电压或电流,可用 同值电压源或电流源替代	
戴维宁	线性电路	二元件	含源一端口可用电压 源与电阻串联等效	有的电路 无戴维宁
诺顿	线性电路	→ 二元件	含源一端口可用电流 源与电导并联等效	有的电路 无诺顿
特勒根1	线性 非线性	单电路	所有支路电压电流 乘积之和为零	关联参考
特勒根2	线性 非线性	两电路	两个同拓扑电路,电 压电流乘积之和为零	关联参考
互易	线性电路	特勒根 2 的特例	一激励线性电阻网络 激励响应互换,比值不变	关联参考
对偶	线性电路	两电路	所有元素对偶后,新电路 特性与原电路完全相同	