Procesarea semnalelor Introducere. Concepte de bază.

Paul Irofti

Universitatea din București
Facultatea de Matematică și Informatică
Departmentul de Informatică
Email: paul.irofti@fmi.unibuc.ro

Ce este un semnal?

Nu există o definiție universală, depinde de domeniul științific în care acționăm.

Definition

Un semnal este informația obținută din analiza unui proces fizic în domeniile timp și spațiu.

Example

Procesele fizice produc semnale de mai multe feluri: video, audio, de vorbire, biologice, electrice, informatice, de tip radar, radio, IEEE 802.11 (Wi-Fi), GSM, CDMA, 1G, 2G,...,5G, 6G etc.

Practic orice informație din lumea reală pe care o putem reprezenta sau aproxima cu ajutorul unei funcții matematice devine un semnal ce trebuie procesat.

Noțiuni

Definition

Presupunem că semnalele cu care lucrăm sunt reprezentate (pe porțiuni) drept funcții periodice. Chiar dacă nu putem reprezenta astfel, în analiză tratăm porțiunile drept o perioadă $\mathcal T$ a unei funcții periodice.

Definition

Amplitudinea A a unui semnal periodic măsoară schimbarea de-a lungul unei perioade într-o anumită dimensiune: timp, spațiu etc.

Definition

Faza φ a unui semnal periodic ne spune în ce punct al periodei se află semnalul la momentul t=0.

$$x(t) = A\sin(2\pi f t + \varphi) \tag{1}$$

Forma de undă

Definition

Forma de undă a unui semnal este evoluția sa în funcție de timp invariant la momentul de timp efectiv, amplitudine sau deplasamente.

https://en.wikipedia.org/wiki/Waveform

Semnale continue sau analogice

Definition

Un semnal analog este o formă de undă continuă în timp ce poate avea amplitudini într-un interval continuu.

Origine: calculatoare analogice până în '80 (Crochiere and Rabiner 1975).

- produc un semnal analog celui real
- cu circuite dedicate pentru rezolvarea ecuațiilor diferențiale
- cuplarea ciruitelor de tip integratoare și derivatoare

Astăzi: Procesarea semnalelor continue (istoric analogice)

- nu mai implică circuite dedicate
- rezistențe, condensatoare, amplificatoare operaționale
- ▶ în literatură: analog signal processing

Exemple: semnale continue

Example

- tensiunea electrică măsurată cu un osciloscop.
- ► televiziunea prin cablu (până în 2010)
- sisteme de frână la motoarele electrice ale maşinilor

https://www.youtube.com/watch?v=KOdGb_J05EQ

Cuantizare

Definition

Semnalele discrete sunt obținute din semnalele continue prin cuantizarea măsurătorilor în timp și amplitudine.

- măsurăm semnalul la momente discrete de timp (ex. din secundă în secundă)
- ▶ amplitudinea obținută o înregistrăm la valori fixe (ex. $A \in \{0, 0.1, 0.2, 0.3, \dots 1.0, 1.1, 1.2, \dots\}$)

Exemplu: Cuantizare

Fie funcția continuă sinusoidală:

$$x(t) = \sin(2\pi f_0 t) \tag{2}$$

unde

- f₀ frecvenţa (Hz) măsoară numărul de oscilaţii într-o secundă
- ▶ t orizontul de timp (s)
- ► f₀t numărul de oscilații măsurat
- $ightharpoonup 2\pi f_0 t$ unghiul măsurat în radiani (vezi note de curs)

Discretizare și eșantionare

Continuu:

$$x(t) = \sin(2\pi f_0 t)$$

Discret:

$$x(n) = \sin(2\pi f_0 n t_s) \tag{3}$$

unde

- $ightharpoonup f_0$ frecvența (Hz) măsoară numărul de oscilații într-o secundă
- ightharpoonup n eșantionul, indexul în șirul de timpi $0, 1, 2 \dots$
- ▶ t_s perioada de eșantionare; constantă (ex. la fiecare secundă)
- nt_s orizontul de timp (s)
- f₀nt_s numărul de oscilații măsurat
- \triangleright $2\pi f_0 nt$ unghiul măsurat în radiani (vezi note de curs)

Eșantionare

Şirul
$$x(n) = \sin(2\pi f_0 n t_s)$$
 este format din termenii
$$x(0) = 0$$
 prima valoare din şir $n = 0$
$$x(1) = 0.14$$
 a doua valoare din şir $n = 1$
$$x(2) = 0.33$$
 a treia valoare din şir $n = 2$
$$x(3) = 0.56$$
 a patra valoare din şir $n = 3$
$$\vdots = \vdots$$

unde variabila x(n) este termenul de rang n al șirului

Domeniul timpului

Ecuațiile (2) și (3) reprezintă semnale în domeniul timpului deoarece variabilele t, respectiv nt_s , măsoară timpul.