Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

Отчет по проекту по предмету «Введение в интеллектуальный анализ данных» «Обучение модели для предсказания продолжительности поездки на такси по Нью-Йорку»

Выполнили:

студент группы № 932210 Е.Г. Чегодаева студент группы № 932210 Д.А. Королев

Проверил:

д-р техн. наук Замятин А.В.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 Описание проекта	4
2 Цель, задачи и инструменты	4
3 Шаги для достижения результатов	5
3.1 Разбор и загрузка данных	
3.2 Анализ данных	
3.3 Обработка выбросов	10
3.4 Моделирование	12
4 Результаты	
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ.	17

ВВЕДЕНИЕ

обучение Машинное концентрируется разработке на таких компьютерных программ и алгоритмов, которые сами учатся расти и адаптироваться при подаче новых данных. Этот процесс не похож на процесс интеллектуального анализа данных. Обе системы проходят через предоставленные им данные

или собираются в поисках шаблонов. Однако в приложениях для интеллектуального анализа данных, данные извлекаются для понимания человеком, в то время как алгоритмы машинного обучения используют эти данные для поиска шаблонов в данных и соответственно изменения действий программы.

Машинное обучение возникло из-за стремления к искусственному интеллекту. В первые дни искусственного интеллекта уже как интеллектуального поля исследователи были очень заинтересованы в том, чтобы машины учились на данных. Поэтому они пытались подойти к проблеме с помощью различных символических методов, а также из методов, которые в то время назывались нейронными сетями, обычно это были только модели, которые впоследствии были обнаружены для переупаковки общих линейных моделей вероятности и статистики.

Машинное обучение стало отдельным полем и начало расширяться в 1990-х годах. Линия изменила свою цель - достичь ИИ, пытаясь решить разрешимые проблемы более практического характера. Затем поле отодвинуло его внимание от символических методологий, которые оно унаследовало от искусственного интеллекта, и вместо этого перешло к методам и моделям, взятым из вероятности и статистики.

1 Описание проекта

Для повышения эффективности электронных систем диспетчеризации такси важно иметь возможность прогнозировать, как долго водитель будет занят в своем такси. Если бы диспетчер приблизительно знал, когда водитель такси завершит свою текущую поездку, он мог бы лучше определить, какого водителя назначить для каждого запроса на доставку.

2 Цель, задачи и инструменты

Цель этой работы — предсказать продолжительность поездки на такси по Нью-Йорку на основе соответствующих данных.

Задачи:

- 1. Представить историю поездок, а также данные, содержащие погодные условия.
- 2. Провести анализ, удалить выбросы.
- 3. Провести обучение модели LightGBM.
- 4. Сделать выводы.

Инструменты для выполнения работы:

- 1. Язык программирования: python.
- 2. Загрузка данных: pandas.
- 3. Визуализация: seaborn.
- 4. Модель: lightgbm.
- 5. Подбор оптимальных параметров: optuna.

3 Шаги для достижения результатов

3.1 Разбор и загрузка данных

Для начала подготовим данные. Данные включает информацию о времени начала и окончания поездки, географических координатах, количествах пассажиров и др.

```
# Добавим тренировочные данные
train = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/train.zip', compression='zip')
# Добавим тестовые данные
test = pd.read_csv('/kaggle/input/nyc-taxi-trip-duration/test.zip', compression='zip')
# Добавим данные о погоде в 2016 году
weather = pd.read_csv("/kaggle/input/weather-data-in-new-york-city-2016/weather_data_nyc_centralpark_2016(1).csv")
# Добавим данные о маршрутах из OpenStreetMap
routes_1 = pd.read_csv('/kaggle/input/nyfastestroutes/fastest_routes_train_part_1.csv')
routes_2 = pd.read_csv('/kaggle/input/nyfastestroutes/fastest_routes_train_part_2.csv')
```

- id уникальный идентификатор для каждой поездки;
- vendor_id код, указывающий поставщика, связанного с записью о поездке;
- pickup_datetime дата и время включения счетчика;
- dropoff_datetime дата и время отключения счетчика;
- passenger_count количество пассажиров в транспортном средстве (значение, введенное водителем);
- pickup_longitude долгота, где был задействован счетчик;
- pickup_latitude широта, на которой был задействован счетчик;
- dropoff_longitude долгота, где счетчик был отключен;
- dropoff_latitude широта, на которой счетчик был отключен;
- store_and_fwd_flag этот флаг указывает, хранилась ли запись о поездке
 в памяти транспортного средства перед отправкой продавцу, потому что у
 транспортного средства не было соединения с сервером Y = сохранить
 и переслать; N = не промежуточная поездка
- trip_duration продолжительность поездки в секундах;

Для наглядности представлены первые строки данных:

				weathe	r[:3]											
				date	maximum	temperature	minimum tem	perature	average	temperature	precipitation	snow fall	snow depth			
			0	1-1-2016		42		34		38.000	0.00	0.0	0			
			1	2-1-2016		40		32		36.000	0.00	0.0	0			
			2	3-1-2016		45		35		40.000	0.00	0.0	0			
														L		
D		test[:3]													
[12			id	vendor id	l nickun	datatima na	cronger count	nickup k	naitudo	nickun latitu	do dronoff lo	ngitudo d	dropoff_latitude	store	and fued flac	
[12	_	id3004			2016-06-3		1	ріскир_к	-73.988	40.7		-73.990	40.757	Store_	and_rwd_nag	
	1	id3505	355	1	I 2016-06-3	0 23:59:53	1		-73.964	40.6	80	-73.960	40.655		N	
	2	id1217	141		I 2016-06-3	30 23:59:47	1		-73.997	40.7	38	-73.986	40.730		N	
Þ	t	rain[:3	3]													
[12		id	vend	dor_id pi	ckup_datetime	dropoff_dateti	ime passenger_cou	ınt pickup	longitude	pickup_latitude	dropoff_longitude	dropoff_la	titude store_and_fw	rd_flag	trip_duration	
	0 i	d2875421		2 2016	-03-14 17:24:55	2016-03-14 17:32	2:30	1	-73.982	40.768	-73.965	i 4	40.766	N	455	
	1 i	d2377394		1 2016	-06-12 00:43:35	2016-06-12 00:54	4:38		-73.980	40.739	-73.999	1 4	40.731	N	663	

3.2 Анализ данных

Анализ маршрутов:

```
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 10))

# Γραφиκ Τρεниροβοчных данных
sns.scatterplot(train['pickup_longitude'], train['pickup_latitude'], s=4, ax=ax[0], color='red')
ax[0].set_xlim([-74.2, -73.6])
ax[0].set_ylim([40.4, 41.0])

# Γραφиκ Τεςτοβώχ данных
sns.scatterplot(test['pickup_longitude'], test['pickup_latitude'], s=4, ax=ax[1], color='green')
ax[1].set_xlim([-74.2, -73.6])
ax[1].set_ylim([40.4, 41.0])
```


vendor_id passenger_count pickup_longitude pickup_latitude dropoff_longitude dropoff_longitude trip_dura count 1458644.000 10036 5237 10033 0.071 0.036 5237 10036 5237 10036 15237 10036 5237 10036 397 10036 10036 10036 10036 10036 10036 10036 10036 10036 10036 10036 10036 10036 <td< th=""></td<>
mean 1.535 1.665 -73.973 40.751 -73.973 40.752 959 std 0.499 1.314 0.071 0.033 0.071 0.036 5237 min 1.000 0.000 -121.933 34.360 -121.933 32.181 1 25% 1.000 1.000 -73.992 40.737 -73.991 40.736 397 50% 2.000 1.000 -73.982 40.754 -73.980 40.755 662 75% 2.000 2.000 -73.967 40.768 -73.963 40.770 1075
std 0.499 1.314 0.071 0.033 0.071 0.036 5237 min 1.000 0.000 -121.933 34.360 -121.933 32.181 1 25% 1.000 1.000 -73.992 40.737 -73.991 40.736 397 50% 2.000 1.000 -73.982 40.754 -73.980 40.755 662 75% 2.000 2.000 -73.967 40.768 -73.963 40.770 1075
min 1.000 0.000 -121.933 34.360 -121.933 32.181 1 25% 1.000 1.000 -73.992 40.737 -73.991 40.736 397 50% 2.000 1.000 -73.982 40.754 -73.980 40.755 662 75% 2.000 2.000 -73.967 40.768 -73.963 40.770 1075
25% 1.000 1.000 -73.992 40.737 -73.991 40.736 397 50% 2.000 1.000 -73.982 40.754 -73.980 40.755 662 75% 2.000 2.000 -73.967 40.768 -73.963 40.770 1075
50% 2.000 1.000 -73.982 40.754 -73.980 40.755 662 75% 2.000 2.000 -73.967 40.768 -73.963 40.770 1075
75% 2.000 2.000 -73.967 40.768 -73.963 40.770 1075
may 2,000 0,000 -61,336 51,891 -61,336 43,021 2526282
HRA 2.000 5.000 -01.350 31.001 -01.350 43.521 3220202
test.describe()
[13 vendor_id passenger_count pickup_longitude pickup_latitude dropoff_longitude dropoff_latit
count 625134.000 625134.000 625134.000 625134.000 625134.000 625134.000
mean 1.535 1.662 -73.974 40.751 -73.973 40
mean 1.535 1.662 -73.974 40.751 -73.973 40 std 0.499 1.311 0.073 0.030 0.073 0
std 0.499 1.311 0.073 0.030 0.073 0
std 0.499 1.311 0.073 0.030 0.073 0 min 1.000 0.000 -121.933 37.390 -121.933 36
std 0.499 1.311 0.073 0.030 0.073 0 min 1.000 0.000 -121.933 37.390 -121.933 36 25% 1.000 1.000 -73.992 40.737 -73.991 40

Очевидные выбросы в кол-ве пассажиров (0 и 9 человек) и продолжительности поездки (1 секунда). Также обратим внимание на долготу и широту, так как нам необходим только город Нью-Йорк, то тогда нужно ограничить пределы географических координат.

Теперь посмотрим на распределение времени поездки:

Видим, что есть выбросы, которые обсуждали ранее, прологорифмируем целевую переменную и добавим значение в датасет:

Также замечаем, что есть выбросы в скорости (12428 км/ч) и в кол-ве пассажиров (0, 6, 7, 8, 9):

```
[39]:
         train_all['speed_km_h'].describe()
              1458351.000
[39...
      mean
                   19.475
      std
                   25.220
                    0.000
      25%
                   12.410
      50%
                   17.108
      75%
                   23.501
                12428.383
      max
      Name: speed_km_h, dtype: float64
       train_all['passenger_count'].unique()
     array([1, 6, 4, 2, 3, 5, 0, 7, 9, 8])
```

3.3 Обработка выбросов

После логарифмизации остальных числовых признаков получаем графики плотностей:

Далее проанализируем, в какие часы, какой процент людей был в выходные и в не выходные дни. На графике видно, что в не выходные дни, (синий) с утра процент пассажиров увеличивается, что говорит о том, что люди спешат на работу, и также процент увеличивается после рабочего дня. В выходные дни люди более активны в ночное время.

3.4 Моделирование

Optuna — фреймворк подбора оптимальных гиперпараметров, который использует байесовский подход для автоматизации пространства поиска гиперпараметров.

Для начала создаём целевую функцию:

```
# целевая функция
def objective(trial, X, y):
    param_grid = {
        "n_estimators": trial.suggest_categorical("n_estimators", [1000]),
        "learning_rate": trial.suggest_float("learning_rate", 0.01, 0.3),
        "num_leaves": trial.suggest_int("num_leaves", 20, 300, step=10),
        "max_depth": trial.suggest_int("max_depth", 3, 10, step=2),
        "min_child_samples": trial.suggest_int("min_child_samples", 5, 200, step=10),
    }
    cv = KFold(n_splits=N_FOLDS, shuffle=True, random_state=RANDOM_STATE)
    cv_predicts = np.empty(5)
    for idx, (train_idx, test_idx) in enumerate(cv.split(X, y)):
        X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
        y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
        pruning_callback = optuna.integration.LightGBMPruningCallback(
            trial, "12")
        model = lg.LGBMRegressor(objective="regression", **param_grid)
        model.fit(X_train,
                  y_train,
                  eval_set=[(X_test, y_test)],
                  eval_metric="rmsle",
                  early_stopping_rounds=100,
                  callbacks=[pruning_callback],
                  verbose=-1)
        preds = model.predict(X_test)
        cv_predicts[idx] = rmsle(y_test, preds)
    return np.mean(cv_predicts)
```

Далее, с помощью Optuna минимизируем эту функцию:

```
study = optuna.create_study(direction="minimize", study_name="LGB")
func = lambda trial: objective(trial, X_train, y_train)
# n_trials - кол-во итераций
study.optimize(func, n_trials=2, show_progress_bar=True)
```

Значения наилучших гиперпараметров:

Визуализация важности гиперпараметров:

Обучаем модель, воспользовавшись наилучшими параметрами:

```
cv = KFold(n_splits=N_FOLDS, shuffle=True, random_state=RANDOM_STATE)
finish_test_preds = []
cv_predicts = np.empty(5)
for idx, (train_idx, test_idx) in enumerate(cv.split(X_train, y_train)):
    X_train_, X_val = X_train.iloc[train_idx], X_train.iloc[test_idx]
    y_train_, y_val = y_train.iloc[train_idx], y_train.iloc[test_idx]
    model = lg.LGBMRegressor(objective="regression", **study.best_params)
    model.fit(X_train_,
             y_train_,
              eval_set=[(X_val, y_val)],
              eval_metric="rmsle",
              early_stopping_rounds=100,
             verbose=-1)
    preds = model.predict(X_val)
    preds_exp = np.exp(preds) - 1
   y_val_exp = np.exp(y_val) - 1
    cv_predicts[idx] = rmsle(y_val_exp, preds_exp)
    preds_test = model.predict(X_test)
    finish_test_preds.append(preds_test)
    print(f"id = {idx}", cv_predicts[idx], '\n')
print(np.mean(cv_predicts))
```

OOF score: 0.3393698957254096 HOLDOUT score: 0.3389720108397663

4 Результаты

При участии в соревновании на Kaggle был получен Score: 0.33:

Были использованы следующие датасеты:

- Годовая история погодных условий за 2016 год (New York City Taxi Trip Duration)
- Годовая история поездок на такси по Нью-Йорку (Weather data in New York City 2016)
- Данные о протяжённости Нью-Йоркских дорог (NY Fastest Routes)

ЗАКЛЮЧЕНИЕ

Данная работа посвящена изучению методов интеллектуального анализа данных. В рамках этой работы был использован метод градиентного бустинга, а именно, модель LightGBM.

В результате проделанной работы были осуществлены следующие задачи:

- Проведена предварительная обработка данных
- Осуществлено конструирование новых признаков, на основе имеющихся (Feature Engineering)
- Создана модель на основе градиентного бустинга (LightGBM)
- Подобраны оптимальные гиперпараметры модели с помощью фреймворка Optuna
- Предсказана длительность поездки на такси в Нью-Йорке
- Вычислена ошибка предсказания

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. https://towardsdatascience.com/kagglers-guide-to-lightgbm-hyperparameter-tuning-with-optuna-in-2021-ed048d9838b5?gi=32a22ea8680d
- 2. https://optuna.org
- 3. https://matplotlib.org/stable/index.html
- 4. https://lightgbm.readthedocs.io/en/latest