Natural Computation Methods for Machine Learning - 2022

Convolutional Neural Networks and Deep Learning

Damian Matuszewski

damian.matuszewski@it.uu.se

Centre for Image Analysis
Uppsala University

Image analysis fundamental steps

Applications in Pre-processing

- Denoising,
- Super-resolution, etc.

An example of full size denoised transmission electron microscopy image using deep learning.

Applications in Pre-processing

- Denoising,
- Super-resolution, etc.

SR reconstruction of TEM images

SR reconstruction of generic images

Applications in Segmentation

Applications in Classification

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3128-3137. 2015.

Matuszewski, Damian J., and Ida-Maria Sintorn. "Reducing the u-net size for practical scenarios: Virus recognition in electron microscopy images." *Computer methods and programs in biomedicine* 178 (2019): 31-39.

(Not) only images

Audio

https://medium.com/@keur.plkar/audio-data-augmentation-in-python-a91600613e47

Chemical compounds

Hirohara. M, Saito. Y, Koda. Y, et al. "Convolutional neural network based on SMILES representation of compounds for detecting chemical motif". BMC Bioinformatics 19, 526 (2018). https://doi.org/10.1186/s12859-018-2523-5

Neural Network

Perceptron – the smallest unit (also called a node or a neuron) in a Neural Network

Activation functions

- Normalize layer / node output
- Introduce nonlinearity

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

$$\max(0, x)$$

ELU

Deep Neural Networks

More than 2 hidden layers -> Deep Learning

Layers

- The most common types of layers
 - Trainable:
 - Fully connected
 - Convolutional
 - LSTM
 - ...
 - Auxiliary
 - Pooling
 - Drop out
 - Flattening
 - Normalization
 - ...

Layers – Fully connected

Fully connected – a node in a given layer takes all the output from the previous layer as its input

Convolutional Layers

- Convolutional Neural Networks NNs with convolutional layers
- They use spatial connections resembling those in the sliding window of convolution filters. That's perfect for images!
 - Size of the window / receptive field (typically 3 x 3)
 - Stride speed of sliding over input (typically 1)
 - Padding: valid (none) or same (zeros)
- Nodes in the same feature map of a given layer have the same weights so the pattern is detected regardless of its position in the input
- Many feature maps, each detecting a specific pattern, compose a layer
- Nodes take all input channels (feature maps) in the previous layer under their respective spatial coverage
 - 2D convolutional is in fact 3D, 3D is in fact 4D and so on

Pooling layers

The most common is 2 x 2 max pooling with stride 2

22	2	19	88			
2	8	20	18	2x2 max pooling	22	88
3	10	19	86		12	86
12	12	20	19			

- They take one feature map at a time in contrary to convolutional layers that take all the feature maps in the same time
- They reduce the size of feature maps (but not their number!) in the following layers
- This increases the receptive field (spatial coverage w.r.t. the original input image) which helps detecting larger patterns
- It also reduces the computational complexity of the network (less to compute) and may reduce the number of trainable weights and thus help prevent overfitting

LSTM – for sequential data

- Long Short-Term Memory (LSTM)
 - a type of recurrent neural network
 - A network that has an internal state that can represent context information
 - can process data sequentially and keep its hidden state through time

can learn order dependence in sequence prediction
 problems

Training

- Data preparation
 - Split into train, validation and test sets
- Data preprocessing
 - Normalize the images by subtracting the mean and dividing by the standard deviation (make sure to convert them to floating point first!)
- Architecture design / choice
 - What is the application?
- Weight Initialization
 - Small random numbers centered at o
- Optimization & Backpropagation
 - Forward pass
 - Loss calculation, f(pred, true)
 - Gradient estimation (optimization)
 - Weight update (backpropagation)
- Iterative process
 - Train on training set, evaluate and upgrade on validation set, measure the final performance on the test set

Overfitting and underfitting

- It is very important to monitor the training / learning process of the network
 - Plot the loss functions (for training and validation) during the training
 - You can also plot other metrics (i.e. accuracy)
- Three scenarios are possible:
 - Underfitting
 - Good fit
 - Overfitting

Accuracy plots – train vs validation

Underfitting

- Underfitting the network is struggling with learning the patterns in the data
- Characterized by
 - Better performance on the validation set than on the training set
- Diagnosis
 - The network is too simple to model the patterns or
 - It didn't train for long enough to learn the patterns or
 - The validation set is too small or too simple w.r.t. the training set
- Solution
 - Increase the network complexity
 - Train longer
 - Change learning rate
 - Make sure that all your data sets (training, validation and test) are representative

Overfitting

- Overfitting the network memorizes the training samples instead of learning the patterns
- Characterized by
 - High performance on training set
 - Low performance on validation set
 - Sometimes there is the characteristic decrease of validation performance over epochs / updates
- It is also a **poor generalization** ability to correctly analyze previously unseen samples
- It will always happen in deep learning
 - We can only minimize / reduce this effect
- The worst scenario:
 - Too complex network
 - trained for too long
 - on too little data

Generalization, Overfitting and Performance

- N trainable weights require typically 2N N² training samples
 - That's difficult to satisfy even for shallow Neural Networks
 - DL can easily reach millions of trainable weights
- Improve generalization / reduce overfitting / improve the performance
 - Increase the quality of training data (make it representative)
 - Split the data wisely
 - Preprocess the images
 - Increase the amount of training data
 - Acquire and annotate new samples
 - Use data augmentation
 - Real time / on-the-fly random augmentations
 - Early stopping
 - Use the validation set / cross-validation
 - Stop training when the performance on the validation set drops
 - Reduce or modify the network complexity / size / architecture

- Regularization
- Batch normalization
- Pretrain / transfer learning

Transfer Learning

- Train a network on a similar task (simpler or with more annotated data available) and then fine tune the network for your target application
 - You can also train an autoencoder on your target data
- You can also use already existing networks trained on millions of images
- Typical fine tuning in transfer learning
 - Take or train the base network
 - Remove the last (often fully connected) layers
 - Replace them with new ones, designed for your application
 - Train only the newly added layers on your target data
 - Sometimes you can also train a couple of the last layers from the base network

Autoencoders

- Unsupervised feature learning
- Used in dimensionality reduction, feature extraction and transfer learning / pretraining
- Try to recreate input after mapping to lower dimension (or latent space)
- You can stack multiple autoencoders to create a deeper network

Hyperparameters

- Parameters
 - Architecture:
 - Number of layers
 - Connections between layers
 - Feed forward / skip connections
 - Types of layers (neural connections or auxiliary layers)
 - Number of nodes / feature maps
 - Convolutional
 - » Size
 - » Stride
 - » Padding
 - Initialization method
 - Regularization
 - Activation functions
 - **–** ...
 - ...
 - Training:
 - Number of epochs / updates / stopping condition
 - Batch size
 - Learning rate
 - Optimizer
 - Loss function
 - ...

Types of machine learning tasks possible with DL

Typical loss functions and output layer activation functions

Classification type	Labels	Activation function	Loss function	
Binary	1) [0,1] or [1,0] 2) [0 or 1]	 Softmax Sigmoid 	Binary cross-entropy	
Multiclass (MC)	• [0, 1, 0, 0,, 0] • 0-N integer	Softmax	Categorical cross-entropy	
Multilabel (ML)	[1, 1, 0, 0,, 1]	Sigmoid	Binary cross-entropy	
Segmentation	Binary image for each possible label including background	Softmax	 Categorical cross-entropy (MC) Binary cross-entropy (ML) Log Dice loss (MC / ML) 	
Regression	 Raw value(s) Normalized to 0-1 	 None Sigmoid 	Mean / Sum of Absolute ErrorsMean / Sum of Square Errors	
Autoencoders	Input image normalized to 0-1	NoneSigmoid	Mean / Sum of Absolute ErrorsMean / Sum of Square Errors	
•••				

- You can always design your own loss functions!
 - Make sure they minimize on positive values (required for convergence)
 i.e. the better the performance the smaller the value but never smaller than zero.
 - Add logarithm for smoothing

Softmax

- In a multiclass classifier, each node in the output layer is dedicated to one class
- The labels are one-hot coded (one 1, rest o)
- Then most of the time, the activation function in the last layer is a global softmax

$$\sigma(\mathbf{x})_i = \frac{e^{x_i}}{\sum_{k=1}^N e^{x_k}}$$

- It normalizes the output so it sums up to 1
- The highest raw value is still the highest softmax output and is often interpreted as the "class probability"

Notable Networks: AlexNet

Notable Networks: VGG

Notable Networks: ResNet

- Residual (skip) connection combines the input of one layer with at least one skipped layer
- It helps against vanishing gradient and often improves the performance

Notable Networks: U-Net

Some of the other network types

- Graph Neural Networks
 - Data represented in graphs
- Transformers (attention models)
 - Sequential data (e.g., natural Language Processing)
 - Data represented in graphs
 - Also applied to images
- Bayesian Neural Networks
 - Improving the results transparency by adding confidence score
- Recurrent Neural Networks
 - Sequential data

DL limitations

- They require large amounts of annotated data
- They are often tricky to get started with
 - They require some programming knowledge
 - They need fine tuning that may be hard to do in the beginning
 - The number of hyperparameters and their combinations can be overwhelming
- They can easily overfit
 - Which results in poor generalization
- They "hide" the logic behind the decisions
 - We don't have good visualization / inspection tools for DL yet
 - It's difficult to trust their results
 - They can spot subtle clues (image acquisition artifacts) that should not be taken into the account
- They don't adapt well to new applications
 - They strongly rely on the training set samples and their quality
 - New applications require retraining, fine tuning or even architecture redesigning
- They are stochastic
 - There are no guaranties on convergence, good performance or repeatability
- Training may take hours and tuning the parameters days, weeks or months
- They often require relatively expensive hardware
- The amount of DL variations and novelties may be overwhelming

Tools for DL development

- TensorFlow
 - Keras
- PyTorch
 - fast.ai
- MATLAB
- Theano
- Caffe
- Neon
- Chainer
- •

Quick start:

- Get Python (Anaconda)
- Install TensorFlow or PyTorch
- Try "hello world" code
- You can code in Spyder (included in Anaconda)
- In TensorFlow, you can investigate your network training and performance in TensorBoard
- Google for DL tutorials for more info
- You can use Google colabs (plugin allowing you to run Python notebooks in the cloud)

Extra (easy) reading

- Convolutional Neural Networks
 - A good introduction blog (read all 3 parts)

https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

- A good practical introduction to Keras
- https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos-of-dogs-and-cats/
- A bunch of great ideas on improving your CNN's performance https://machinelearningmastery.com/improve-deep-learning-performance/
- Keras plug-in for deep learning image segmentation https://github.com/qubvel/segmentation_models
- LSTM explained (blogs)

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Damian's thesis (read section 2.2)

https://www.diva-portal.org/smash/get/diva2:1359483/FULLTEXT01.pdf