第4章 微型计算机的内存储器

- 4.1 概述
- 微型计算机存储系统采用层次结构: 高速缓存技术、虚拟存储技术。
- 从连接角度:靠近CPU的存储体速度快、成本高、存储容量小。
- 从CPU角度:访问速度接近最靠近的存储体,访问空间接近最远的存储体空间范围。

存储器分类

4.2 存储器器件

- 4.2.1 随机存储器(RAM)
- 1. 静态随机存储器(SRAM)
- SRAM特点:用触发器存储信息,电源掉电时信息丢失,属易失性半导体存储器,不需要刷新,速度快,功耗大。
- Intel 6264: SRAM,容量8K×8位,28条引线,包括13根地址线、8根数据线、4根控制信号线。

NC	1	28	+5V
A12 —	2	27	W E
A7 —	3	26	- CS ₂
A ₆	4	25	A8
A5	5	24	— A9
A4 —	6	23	— A11
A3 —	7	22	— OE
A ₂	8	21	— A ₁₀
A ₁	9	20	$$ cs_1
A ₀	10	19	— D7
D ₀ —	1	18	— D ₆
D ₁ —	12	17	D ₅
D ₂ —	13	16	— D ₄
GND—	14	15	- D ₃
			_

图4.3 SRAM 6264外部引脚

WE	$\overline{\text{CS}}_1$	CS ₂	ŌĒ	$D_0 \sim D_7$
0	0	1	×	写入
1	0	1	0	读出
× × ×	0 1 1	0 1 0	× × ×	三态(高阻)

2. 动态随机存储器DRAM

- 2. 动态随机存储器(DRAM)
- **DRAM特点**:用电容存储电荷来保存信息,电源掉电时信息丢失,属易失性半导体存储器,由于电容漏电,所以要进行刷新,存储容量高。
- 刷新:将存储单元的内容重新按原值设置一遍。读/写操作实际上也进行 了刷新,但由于读/写操作本身是随机的,所以必须采用定时刷新的方法, 定时的时间叫做刷新周期。
- Intel 2164: DRAM,容量64K×l位, 16脚封装,16条地址线分为行地址与列地址两部分。刷新周期2ms,每次刷新512个存储单元,2ms内需有128个刷新周期。

4.2.2 只读存储器

- 只读存储器ROM: 非易失性半导体存储器,掉电后信息不丢失。
- 1. 掩膜ROM
- 掩膜ROM: 在ROM的制作阶段,通过"掩膜"工序将信息做到芯片里。
- 2. 可编程的只读存储器(PROM)
- · PROM: 一次可编程的只读存储器。
- 3. 可擦除、可编程的只读存储器(EPROM)
- EPROM: 可由用户进行编程、并可用紫外光擦除的ROM芯片。
- · 典型的EPROM芯片:27系列。

2716	2K×8位	27512	64K×8位
2732	4K×8位	27010	128K×8位
2764	8K×8位	27020	256K×8位
27128	16K×8位	27040	512K×8位
27256	32K×8位	27080	1M×8位

EPROM 2764

- 2764的容量为8K×8位,采用NMOS工艺制造,读出时间200~450ns, 13根地址线A12~A0,8条数据线D7~D0,电源Vcc,编程电源Vpp,一个编程控制端。
- 编程时,引脚需加50ms宽的负脉冲;正常读出时,该引脚应无效。另外, 它还有一个片选端和一个输出允许控制端。
- 8种工作方式:读出、读出禁止、待用、读Intel标识符、标准编程、 Intel编程、编程校验、编程禁止。

v —	1	28 Vcc (+5V)
A12 —	2	27 — <u>PGM</u>
A7 —	3	26 - NC
A6 —	4	25 — A8
A5 —	5	24 — A9
A4 —	6	23
A3 —	7	$22 \longrightarrow \overline{OE}$
A2 —	8	21 A ₁₀
A1 —	9	20
A0 —	10	19 D ₇
D0 —	11	18 D ₆
D1 —	12	17 Ds
D2 —	13	16 D4
地 —	14	15 D3

4.电可擦除的可编程只读存储器(EEPROM)

- EEPROM:可用加电的方法在线擦除和编程,擦写次数大于1万次,数据可保存10年以上。
- EEPROM芯片提供不同的擦写手段:字节擦除、整片擦除、状态查询、 页擦写等。
- 典型EEPROM芯片: 28系列,如2816、2817、2864。

表4.2 2864的功能表				
工作方式	CE	ŌĒ	WE	D7~D0
维持	1	X	X	高阻
读出	0	0	1	输出
写入	0	1	负脉冲	输入
数据查询	0	0	1	输出

v —	1	$28 \longrightarrow V^{cc}(+5V)$
A12 —	2	27 — WE
A 7 —	3	26 - NC
A6 —	4	25 — A8
A5	5	24 — A9
A4 —	6	23
A3 —	7	$22 \longrightarrow \overline{OE}$
A2 —	8	21 A ₁₀
A1	9	$20 \longrightarrow \overline{\text{CE}}$
A0	10	19 D ₇
D 0 —	11	18 D ₆
D1 —	12	17 Ds
D2 —	13	16 D4
地 —	14	15 D ₃

5. 快速擦写存储器 (Flash Memory)

- · Flash Memory: 简称Flash,快速擦写存储器,又叫闪速存储器、快擦型存储器。
- 特点: Flash兼顾EPROM和EEPROM的特点,沿用了EPROM的简单结构和编程写入方式,兼备了EEPROM的电擦除特性,既有EPROM的价格便宜、集成度高的优点,又有EEPROM在线擦除、改写的特性,是一种新型的非易失性存储器,具有更好的性价比,可靠性高,整片擦除,擦除、重写速度快。
- 应用场合:高密度、非易失性、长期反复使用的大容量数据采集和存储,如IC卡、便携式计算机、工控系统、单片机系统和其他电子设备中。大容量的Flash也可以"固态盘"的形式代替软盘或硬盘作为海量存储器用。

4.3 CPU与存储器的连接

- 4.3.1 存储器芯片与CPU连接时应处理的问题
- 1. 总线驱动能力
- CPU的总线驱动能力是指可以直接驱动的标准门电路器件数量,通常 CPU的直流负载是一个TTL器件,现在多为MOS器件,为容性负载,直 流分量较小,可带20个。但若系统较大,需要驱动AB、DB、CB。
- 2. 时序配合
- CPU时序与存储器存取速度配合,可插入等待状态Tw。
- 3. 数据线的连接
- 字节编址,存储体为8位,CPU数据线宽度不同,连接的存储体的个数 也不同。

4.3.1 存储器芯片与CPU连接时应处理的问题

- 4. 地址线的连接
- 问题: 多个芯片连接,需要选择。
- CPU地址信号与存储器连接的选择有三种:
- (1) 高位地址信号
- CPU高位地址选择存储器芯片,即片选,有三种方法,即全译码、部分 译码、线选。
 - 1) 全译码法: 高位地址线全部参加译码, 地址连续。
 - 2) 部分译码法: 高位地址线部分参加译码, 地址不连续。
 - 3) 线选法: 高位地址线单根地址线进行片选, 地址不连续。
- (2) 低位地址信号
- CPU低位地址用于片内译码,即字选。
- (3) 最低位地址信号
- CPU最低位地址选择存储器体,即体选。每个存储体数据宽度一个字节, 8位CPU连1个存储体,依次, $16位\rightarrow 2$ 个体, $32位\rightarrow 4$ 个体, $64位\rightarrow 8$ 个 体。

存储器芯片与CPU连接时应处理的问题

- 5. 读写控制线的连接
- 读写控制信号用于控制对存储器的读/写操作。当存储芯片的工作速度与 CPU不匹配时,存储器芯片的接口电路就必须具有向CPU发等待命令的 控制信号,以使CPU根据需要插入1个或几个等待周期。
- 6. ROM与RAM在存储器中的地址分配
- RAM存放临时数据和当前的应用软件,非易失的ROM存放核心系统软件。80X86微处理机复位后从物理地址高端开始运行,所以总是在物理地址空间的高地址位置使用只读存储器ROM。
- 7. 对多种宽度数据访问的支持
- 存储器编址的最小单元称为编址基本单元,80x86微处理器的编制基本单元为字节。64位外部数据线的Pentium访问存储器时,要求可以一次读写一个字节、或任何地址开始的连续两个字节(字)、或任何地址开始的连续四字节(双字)、或任何地址开始的连续八字节(四倍字),即支持多种数据宽度。存储系统设计时必须支持CPU的这种访问方式。

4.3.2 地址译码器

- 1. 3/8译码器(74LSI38)
- 在微型计算机系统中, CPU与存储器连接时一 般采用译码器芯片作为高 位地址产生片选信号的地 址译码器。
- 常用的译码器之一是 74LS138,这是一个3/8译 码器芯片,有三个选择输 入端,三个控制端,八个 输出端。

2. 74LSI38译码器的应用

4.3.3 16位微型计算机系统中的主存储器接口

接口关键:

- (1) 16位/B=2个存储 体,偶体和奇体。
- (2) 偶体**D7-D0**,由 A0=0选择。
- (3) 奇体D15-D8,由 BHE=0选择。

表4.5 存储体选择编码表			
BHE	A0	传送的字节	所用的数据引脚
0	0	从偶地址开始两个字节读/写	D15~D0
0	1	奇地址的一个字节读/写	D15~D8
1	0	偶地址的一个字节读/写	D7~D0
1	1	不传送	

4.3.4 32位微型计算机系统中的主存储器接口

接口关键: (1) 4个体, 每体1G

- (2) 每体分别连相应的8位数据线
- (3) 每个体用BE2-0对应选通

4.3.5 64位微型计算机系统中的主存储器接口

接口关键: (1) 8个体, 每体512M

- (2) 每体分别连相应的8位数据线
- (3)每个体用BE7-0对应选通,独立写选通

Pentium与存储器的接口逻辑

18

4.4 高速缓冲存储器Cache

- 1. Cache: 弥补主存速度,在CPU与主存之间设置的高速、小容量的存 储器,构成Cache-主存存储层次,速度是Cache的,容量是主存的。
- 2. 解决CPU与主存速度的问题, 3种方法:
 - (1) 在CPU中增设寄存器。
 - (2) 采用多体交叉并行存储器。
 - (3) 采用Cache存储器。
- 主存速度不够→引出Cache,主存容量不够→引出虚拟存储器。
- 3. 程序具有局部性(各存储层次构成的主要依据)
 - (1) 时间上的局部性: 最近的未来要用到的信息可能是现在正在使用的 信息,因为程序存在循环。
 - (2) 空间上的局部性: 最近的未来要用到的信息可能与现在使用的信息 在程序空间上是邻近的,因为指令按顺序存放。
- 4. 命中率:

H=命中次数/总访问次数

4.4.1 Cache的工作原理简介

- 1. Cache及主存地址的组成
- Cache和主存等分成容量相同的块,每块由4、16、32等字节组成,并且 把块有序地编号。
- 2. Cache的基本结构
- Cache基本结构: Cache存储体、地址映象变换机构、替换机构。
- · Cache存储体: Cache存储信息的主体。
- 地址映像:将每个主存块按什么规则装入Cache中。
- 地址变换:将主存地址变换成Cache地址。
- 块冲突:主存块要进入Cache中的位置已被其他主存块占用,要用替换 算法。
- 替换机构:发生块冲突时,根据替换算法完成Cache块替换。
- Cache操作由硬件完成,对用户透明。
- 在进行地址变换、替换时,都是以块为单位进行调度。

nmb 主存块号 nmr 块内地址		nm 主存地址	nmr = ncr
ncb Cache块号	ncr 块内地址	nc Cache地址	mm – ner

3. Cache的工作过程

4. 地址映像 - 全相联映像

- 地址映像:主存中任意一块都可映像装入到Cache中任意一块位置。
- 优点: 灵活,块冲突率低,只有在Cache中的块全部装满后才会出现冲 突,Cache利用率高。

全相联映像地址变换

- 地址变换:硬件实现。目录表,相联比较。
- 缺点: 地址变换机构复杂,成本高。

全相联映像示意图

4. 地址映像 - 直接映像

主存空间按Cache大小等分成区,每 区内的各块与Cache的块一一对应。

- · 地址映像:一个主存块只能映像到 Cache中唯一指定的块中,即主存第 i块只能唯一映像到Cache中第i mod 2ncb块位置上。
- · 缺点:不灵活,块冲突率较高, Cache空间得不到充分利用。

2nmb_1

主存

块0

2ncb -1

埃2^{ncb}+0 2^{ncb}+1

 $\frac{2 2^{\text{ncb}}-1}{2 2^{\text{ncb}}+0}$

3 2ncb_1

 $2^{n_{mb}-n_{cb}}$ 1 \overline{X}

0X

1区

2区

直接映像地址变换

- 地址变换:硬件实现。主存地址中直接产生Cache地址,标志表中比较区号,标志表存储器按地址访问。
- 优点:地址变换简单、速度快,节省硬件。

直接映像示意图

27

4. 地址映像 - N路组相联映像

地址映像:路内直接映像,路间全相联映像

地址变换:主存地址中 直接产生Cache地址(2 路对应地址相同),同 时比较各路对应块标记

特点:是直接映像与全相联映像的折中方案,若路数为1,则为直接映像,若路内块为1,则为全相联映像

每一路容量:

$$2^{13} \times 2^2 = 2^{15} = 32K$$

2路容量为64K字节

第4章 结束