

信用评分

李志勇/秘兴敏

西南财经大學

Southwestern University of Finance and Economics

租兴敏 21/4/2 1

第三章 特征工程

- Measurement scales: Nominal/Ordinal/Interval/Ratio
- 连续变量:可直接使用,也可转换为分类变量
- 分类变量:需要进行转换后使用
- 细分类:原始分类,提供最多的细节
- 粗分类/分箱/分组:把细分类合并成数量 更少的粗分类组合,考虑将风险相似的组 归合并在一起。
- 粗分类(Coarse classification)、 分箱(Binning)

Provides:	Nominal	Ordinal	Interval	Ratio
The "order" of values is known		~	•	•
"Counts," aka "Frequency of Distribution"	•	V	•	•
Mode	✓	~	v	~
Median		v	v	V
Mean			V	V
Can quantify the difference between each value			•	•
Can add or subtract values			V	V
Can multiple and divide values				•
Has "true zero"				•

粗细分类

- 在细分类时, "年龄"或许是每年一组; 但在粗分类时, 可以把它们分为有意义且数量更少的组合, 如18~30, 31~40, 41~55, 55+。粗分类取决于特征类型。
- 连续/顺序变量——暗含排序,数据间的风险关系通常应该是单调的。不考虑特殊编码组,把临近的组合并在一起。
- 离散/类别变量——不暗含排序。分组只能在经验或可用数据的基础上进行。 在有必要分组且数量少的地方,需要人的经验判断。
- 当一个分类变量有太多的类别(属性)时,我们可以考虑粗分类,使模型更 稳健,消除极端值影响,同时也能处理风险与该特征间的非单调关系。

表 工作时间细分类

•	如	分	米
•	细	汀	关

时间	好人数量	p(x G)	坏人数量	p(x B)	好坏比率	证据权重	信息比率
001	136	0.0026	5	0.0016	27.2000	0.4735	1.6056
002	582	0.0112	62	0.0203	9.3871	-0.5904	0.5541
to 003	686	0.0132	60	0.0196	11.4333	-0.3932	0.6749
to 006	1113	0.0215	120	0.0392	9.2750	-0.6024	0.5475
to100	2778	0.0536	218	0.0713	12.7431	-0.2847	0.7522
to 106	1810	0.0349	161	0.0526	11.2422	-0.4100	0.6636
to 200	2856	0.0551	246	0.0804	11.6098	-0.3779	0.6853
to 206	1265	0.0244	89	0.0291	14.2135	-0.1755	0.8390
to 300	3974	0.0767	328	0.1072	12.1159	-0.3352	0.7152
to 400	4217	0.0814	271	0.0886	15.5609	-0.0849	0.9186
to 500	3883	0.0749	249	0.0814	15.5944	-0.0828	0.9205
to 700	5132	0.0990	287	0.0938	17.8815	0.0541	1.0555
to 1,000	6323	0.1220	282	0.0922	22.4220	0.2803	1.3236
to 1,500	6912	0.1334	277	0.0906	24.9531	0.3873	1.4730
to 2,000	4281	0.0826	142	0.0464	30.1479	0.5764	1.7796
to High	5873	0.1133	262	0.0856	22.4160	0.2801	1.3232
total	51821		3059		16.9405		

• 细分类

	好	坏	不定	好坏比率	WoE	信息值
缺失	12878	698	1252	18.5	0.09	0.113
自有房产	13856	703	1401	19.7	0.16	0.158
租房	9461	777	1262	12.2	-0.33	0.000
父母同住	7234	527	919	13.7	-0.21	0.005
配偶房产	1595	73	138	21.8	0.26	0.026
公司房产	599	45	119	13.3	-0.24	0.000
共同所有	6173	245	493	25.2	0.40	0.146
合计	51797	3069	5584	16.9		0.448

粗分类

- 合适数量:分类不宜太多或太少,太多使得模型复杂,太少导致信息损失, 一般不超过10个。
- 足够样本: 每类里面尽量包含5%以上样本
- 合理分组: 1. 风险相似; 2.逻辑合理; 3.合理断点
- 合理关系:组间的风险差异直观
- 按照常识归类和根据好坏比率归类同样重要
- 粗分类既是一门技术,又是一门艺术

连续特征的粗分类(连续特征离散化)

- 像年龄、收入这样的连续特征,首先把特征值分出10-20个分位点,建立群体数量大致相等的子类
- 计算每个子类好坏比率
- 尝试将好坏比率相近又相邻的子类合并

分类特征进行粗分类后,仍无法直接使用,还需要进行转换

- 单变量方法:对数、指数、归一化、正态标准化(Z统计量)、多项式展开或这些方法的组合
- 单变量方法缺点:可能丢失数据中的某些关键信息;不被信息系统支持
- 多变量方法
- 虚拟变量——将分类特征转换为一些列的二元变量,能够完全充分表示该特征携带的信息
- 风险变量——为每个特征建立和目标变量的线性关系变量(证据权重、好人概率)

虚拟变量

- 虚拟变量又称哑变量(dummy variable or proxy),是属性的一个人工变量,是量化了的自变量,通常取值为0或1。
- 当一个分类变量有k个类别的时候,只需引入k-1个虚拟变量来充分表示这个特征包含的信息, 否则容易出现虚拟变量陷阱问题。
- 粗分类后至少包含一个缺省组(null group);为非缺省组设置二元虚拟变量。缺省组应为: (1)最接近平均风险的组;(2)观测数最多的组;(3)空白值组或缺失值组;或(4)数据不足或无法合并到其他属性的组。
- 缺点:类别很多时会引入过多自变量,自由度降低,容易过度拟合,模型复杂,计算时间更长。
- 优点:能针对每个类别给出统计结果

	虚拟变量示例				
粗分类	数量	违约率			
是	30000	5.00%			
否	3000	12.00%			
缺失	2000	10.00%			
合计	35000	5.90%			

• 虚拟变量设置

序号	学历	X1(本科)	X2(硕士)	X3(博士)
1	本科	1	0	0
2	硕士	0	1	0
3	本科	1	0	0
4	本科	1	0	0
5	高中	0	0	0
6	硕士	0	1	0
7	博士	0	0	1

3个虚拟变量

one-hot encoding (独热编码) vs. dummy encoding

风险变量——证据权重weights of evidence

• 证据权重(WOE)用在某一分类特征变量X的每个类别上x

$$w(\mathbf{x}) = \ln(I(\mathbf{x})) = \ln\left(\frac{p(G \mid \mathbf{x}) / p(B \mid \mathbf{x})}{p_G / p_B}\right) = \ln\left(\frac{g_i / b_i}{n_G / n_B}\right) = \ln\left(\frac{g_i n_B}{b_i n_G}\right)$$

其中,

 b_i 和 g_i 是该特征落在某类别 i 中坏人和好人的数量 n_B 和 n_G 是坏人和好人的总数量

• 证据权重将某个分类特征转换成数值量化的变量,可以直接放入模型

计算WOE

收入	好人数量	坏人数量	好坏比率	好人比例	坏人比例
低	5000	2000	2.5	14.3	33.3
中等	10000	2000	5.0	28.6	33.3
高	20000	2000	10.0	57.1	33.3
合计	35000	6000	5.8	100.0	100.0

证据权重

- 步骤: (1)考虑不同粗分类方式; (2)看WOE符号是否与直觉相符,选择符号正确的那种; (3)建模查看预测效果; (4)选择较好且符合逻辑的粗分类方式。
- 证据权重关注具体属性相对较少,但优点有:
 - (1) 一对一转换,自由度更大,模型更稳健;
 - (2) 属性间的关系确定、可比;
 - (3) 正负号指示与风险的关系,直观便于理解;
 - (4) 与逻辑回归评分卡自然契合
 - (5) 变量显著性较好

信息值Information Value (IV)

• FICO公司采用信息值来度量某个特征的预测能力,信息值IV又叫Kullback散度。

$$IV = \sum_{i=1}^{n} \left[\left(\frac{g_i}{n_G} - \frac{b_i}{n_B} \right) \times WoE_i \right]$$

• 某特征的IV值小于0.1效果不太好,大于0.5存疑。

收入	好人数量	坏人数量	好坏比率	好人比例	坏人比例	证据权重
低	5000	2000	2.5	14.3	33.3	-0.847
中等	10000	2000	5.0	28.6	33.3	-0.154
高	20000	2000	10.0	57.1	33.3	0.539
合计	35000	6000	5.8	100.0	100.0	信息值

左 4人4日	实际好人	期望好人	好人%	ln (好人%)
年龄组	数量	数量	- 坏人%	ln(<u>好人 %</u>) 坏人 %
30 岁以下	175	26	-0.066	-0.291
30 岁以上	725	74	0.066	0. 085
40 岁以下	350	56	-0.171	-0.365
40 岁以上	550	44	0. 171	0. 329
50 岁以下	525	71	-0.127	-0.197
50 岁以上	375	29	0. 127	0. 362

三种年龄分组方式得到的IV值

0.019 + 0.006 = 0.025

0.062 + 0.056 = 0.119

0.025 + 0.046 = 0.071

风控模型开发流程

- 数据获取:从各数据源获取原始数据
- > 数据处理:对原始数据进行整理变换
- ▶ 特征工程:确定有预测能力、符合逻辑、稳定可得、合规、有关、相关性低的特征作为备选变量
- 样本细分:根据市场、渠道、客户、数据、流程等因素对样本进行分层,分别建立评分卡
- 训练模型:用历史样本建立模型
- 拒绝推断: 开发申请评分卡时对被拒绝的申请者的表现进行推断。
- ▶ 模型校准:确保分数在不同评分卡中有相同的含义,反映相应的违约概率。
- 验证交付:用保留样本和近期样本检验模型是否过度拟合或不稳定,然后准备投入使用。

数据准备

数据来源:客户、内部、外部

- •申请表格——采集并编译,现多为电子表格,或不需表格。
- 征信机构——查询、回溯检索。
- 内部系统——从内部系统获取行为数据。
- 表现数据——每个样本的好坏结果。
- 匹配合并——将所有数据表整合到一起。匹配键key?

数据准备

数据校验data validation: 对数据的有效性进行查验

- 例如,没有150岁的人,没有21岁就已持有银行账户超过30年的人。
- 发现有特殊情况的,不应被简单理解和处理,而应用特殊代码如9999标记。如果存在缺失数据,最规范做法是把它们作为缺失值进行编码,而不是试图估算填入一个实值。
- 实际操作中, 缺失数量不太多时, 也可以替代为某个实值(平均值)
- 真实数据包含大量的缺失值、极端值、异常值

好坏定义

坏账户:default/charged off, 90天/连续三期逾期(M3)——巴塞尔协议

好账户: Fully paid (prepayment)

正常还款账户: Current; up-to-date

不确定的账户:M1 or M2

违约成熟

账龄分析vintage analysis

Month on Book

- 训练样本training sample——用来开发预测模型的样本,这是最关键的部分,需要大量的观测。
- 保留样本(测试样本) hold-out or test sample——历史样本中单独保留的样本,用来验证模型,模型可能过度拟合,在训练样本表现很好但在其他样本上没用。

时间窗口Observation window

近期样本: 建模前三个月左右的样本, 确保特征分布和评分卡稳定

- 样本分层segmentation决定是否要细分总体并为每部分单独 建模。
- 例如,为25岁以下和25岁及以上的人各建立一个评分卡,或者为那些高收入的人建立一个评分卡,也为低收入的人建立 另一个。
- 建立多个评分卡会带来大量额外的工作,所以只在理由充分并且改进预测效果时使用。
- 样本分层的理由有如下几个:数据可得性、特征相关性、经营策略
- 通用评分卡generic model和分层评分卡segmented model: 一般通用模型普适性好,专用模型预测性好。

特征工程

- 变量剔除: 稳健的模型通常有10到20个特征变量, 而可用的特征远远多于这个数量, 需要剔除变量。
- •剔除的特征:区分好坏的能力偏小;与其他确定要使用的变量高度相关甚至存在共线性;在时间上不稳定。
- 多重共线性(multicollinearity): 严重危害模型! 变量不显著;符号不确定;显著性不稳定;过度拟合
- 多重共线性解决办法:相关性分析、变量剔除、逐步回归、主成分分析

特征工程

	Own phone	No phone	
Owner	95%	50%	90%
Tenant	75%	65%	70%
	91%	60%	

- 自有房产的人比租房的人的好人比例更好(90% vs 70%),有电话的人 比没电话的人的好人比例更高(91% vs 60%),
- 在线性模型里,有电话有房产的人的得分最高,得分最低的是没有电话的租房者。事实上,有房产但没有电话的人实际上更坏(50%)。
- 如果事先不知道这个现象,这种非线性关系很难被线性模型捕捉到。
- 决策树、神经网络、支持向量机、贝叶斯网络都能很好的应对这种非线性关系。建模人员可以先用决策树发现重要的相互作用,然后依次进行样本分层建模。
- 在这个例子里就是为自有房产和租房的人单独建模。一般年龄是主要的分层变量。