

 \equiv

1

Transformations à l'échelle macroscopique : les différentes molécules organiques

A) Je connais les groupes caractéristiques des composés organiques, leur fonction et leur nomenclature

- Les molécules organiques possédant le même groupe caractéristique ont des propriétés chimiques communes et appartiennent à la même famille.
- Ces propriétés définissent la **fonction chimiques** des molécules.
- On associe un **suffixe** au nom d'une molécule selon son groupe caractéristique.

Def

Alcool	Aldéhyde	Cétone	Acide carboxylique	Ester	Amine	Amide
R- OH	R -COH	R ₂ - CO	R-COOH	R -COO- R	N R ₃	R -CO-N- R ₂
-ol	-al	-one	(acide) - oïque	- oate (d'alkyle)	-amine	-amide

B) Je sais nommer les chaînes carbonées

• Le nombre d'atomes de carbone d'une chaîne carbonée détermine le préfixe associé :

1 C	2 C	3 C	4 C	5 C	6 C	7 C	8 C
Méth-	Éth-	Prop-	But-	Pent-	Hex-	Hept-	Oct-

2

Transformations à l'échelle macroscopique : les différentes catégories de réaction

A) La réaction de substitution

- Une substitution est une réaction chimique au cours de laquelle un groupe d'atomes (sortant) est remplacé par un autre (entrant).
- ex. : $CH_4 + CI_2 \rightarrow CH_3CI + HCI$

B) La réaction d'addition

- Une addition est une réaction chimique au cours de laquelle un groupe d'atomes vient se fixer sur une molécule comportant une liaison double ou triple sans départ d'autres atomes.
- ex. : $C_2H_4 + I_2$ (alcène) $\rightarrow C_2H_4I_2$ (dérivé d'alcane)

C) La réaction d'élimination

- Une élimination est une réaction chimique au cours de laquelle deux groupes d'atomes portés par des atomes voisins se détachent d'une molécule sans arrivée d'autres atomes.
- Une liaison double ou triple est formée au cours de cette réaction.

3

Transformations à l'échelle microscopique

A) Définir la polarisation des liaisons.

- L'électronégativité χ d'un atome correspond à sa capacité à attirer le doublet d'électron de sa liaison.
- Dans une liaison X-Y, si X est **plus électronégatif** que Y :
 - le doublet liant est alors **plus proche** de X
 - X possède alors une charge partielle **négative** δ^-
 - Y a donc une charge partielle **positive** δ^+ .
- lacksquare Dans ce cas, on dit que la liaison X-Y est **polarisée** et on note cette liaison $X^{\delta^-} Y^{\delta^+}$.

B) Comprendre les transferts d'électrons.

- A l'échelle moléculaire, la formation d'une liaison covalente se traduit par l'échange d'un doublet d'électrons.
- L'atome le **plus électronégatif** d'une liaison polarisée est un site **donneur** de doublet d'électrons.
- L'atome le moins électronégatif d'une liaison polarisée est un site accepteur de doublet d'électrons.
- De plus, un atome ou un ion possédant un **doublet non liant** est un site **donneur** de doublet d'électrons.
- Certaines espèces chimiques ne vérifient pas la règle de l'octet.
 - L'atome **déficient** en électrons constitue alors un site **accepteur** de doublet d'électrons.