Tur2spell

Turing Machine Implementation for Spelling Turkish Words

Taalai ALMASOVA Şevval MEHDER

WHAT IS TURING MACHINE?

• A **Turing machine** is a mathematical model of computation that defines an abstract machine which manipulates symbols on a strip of tape according to a table of rules. [1]

Figure 1.1 Schematic of a Turing machine [2]

FORMAL DEFINITION OF TURING MACHINE

A Turing Machine is a 7-tuple, $(Q, \sum, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where Q, \sum, Γ are all finite sets and

- . Q is the set of states,
- 2. \sum is the input alphabet not containing the blank symbol #
- 3. Γ is the tape alphabet, where $\# \in \Gamma$
- 4. $\delta : Q \times \Gamma -> Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. $q_{accept} \in Q$ is the accept state and
- 7. $q_{reject} \in Q$ is the reject state, where $q_{accept} \neq q_{reject}$

HOW TO SPELL TURKISH WORDS?

There are 3 rules according to TDK[3]:

- 1. If there is consonant between two vowels in word, this consonant has a syllable with the next vowel.
 - For example: araba -> a-ra-ba
- 2. If there are two repeated consonant in word, the first one has a syllable with the previous vowel and the second one has a syllable with the next vowel. For example: sevmek -> sev-mek
- 3. If there are three repeated consonant in word, the last one has a syllable with the next vowel.
 - For example: korkmak -> kork-mak

WHAT ARE THE TUPLES OF TUR2SPELL

```
Q: \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}\}
\sum: {'consonants': ['b', 'c', 'd', 'g', 'ğ', 'j', 'l', 'm', 'n', 'r', 'v', 'y', 'y', 'z', 'ç', 'f', 'h', 'k', 'p', 's', 'ş', 't'],
            'vowels': ['a', 'ı', 'o', 'u', 'e', 'i', 'ö', 'ü'] }
Γ: {'consonants': ['b', 'c', 'd', 'g', 'ğ', 'j', 'l', 'm', 'n', 'r', 'v', 'y', 'y', 'z', 'ç', 'f', 'h', 'k', 'p', 's', 'ş', 't'],
            'vowels': ['a', 'ı', 'o', 'u', 'e', 'i', 'ö', 'ü'],
             'other': ['-', '#'] }
\delta: Q \times \Gamma -> Q \times \Gamma \times \{L, R\} (the next page),
q_0 is the start state,
q_9 is accept state and
q_{10} is the reject state.
```


THE TRANSITION TUNCTION

1		c	v	#
2	q0	(q2, c, R)	(q1, v, R)	(reject)
3	q1	(q3, c, R)	(reject)	(accept)
4	q2	(reject)	(q1, v, R)	(reject)
5	q3	(q8, c, R)	(q4, v, L)	(accept)
6	q4	(q5, c, R)	(reject)	(accept)
7	q5	(reject)	(q6, v, R)	(accept)
8	q6	(q7, c, R)	(reject)	(accept)
9	q7	(q5, c, R)	(q8, v, L)	(accept)
10	q8	(q3, -c, R)	(q4, v, L)	(accept)
11	accept			
12	reject		- 100	to to the

THE MACHINE

EXAMPLE

REFERENCES

- [1] https://en.wikipedia.org/wiki/Turing machine
- [2] Introduction to the Theory of Computation, Second Edition. by Michael Sipser.
- [3] http://www.tdk.gov.tr/index.php?id=208:Hece..&option=com_content

