Minimizzazione Automi

Ricordate l'esercizio...

Un circuito ha un ingresso (X) e un'uscita Z. Il circuito produce un'uscita Z=1 in corrispondenza delle sequenze 0101 o 1001

Dopo aver ricevuto 4 input, il circuito si resetta

Esempio:

$$X = 0101 \mid 0010 \mid 1001 \mid 0100$$

 $Z = 0001 \mid 0000 \mid 0001 \mid 0000$

Discussione

La soluzione precedente è stata <u>ottenuta</u> ragionando sull'eventuale presenza di stati ridondanti, cercando quindi di <u>minimizzare il</u> numero di stati da creare....

Alternativa

- Proviamo a costruire un automa in maniera "stupida"
- Ovvero, tanti stati quante le sequenze di lunghezza da 0 (reset), 1 (due sequenze), 2 (4 sequenze) 3 (otto sequenze)

Tabella degli stati

Sequenza	Stato	Stato	succ.	Outpu	ıt (Z)
di input	Corrente	X = 0	X = 1	X = 0	<i>X</i> = 1
reset	Α	В	С	0	0
0	В	D	Ε	0	0
1	C	F	G	0	0
00	D	Н	1	0	0
01	E	J	K	0	0
10	F	L	Μ	0	0
11	G	N	P	0	0
000	Н	Α	Α	0	0
001	1	A	Α	0	0
010	J	A	Α	0	1
011	K	A	Α	0	0
100	L	A	Α	0	1
101	М	A	Α	0	0
110	N	A	Α	0	0
111	Р	Α	Α	0	0

0101 1001

Sono tutti utili?

Esempio

Per ogni ingresso, S_A e S_B <u>conducono allo stesso stato</u> <u>e producono la stessa uscita</u>

Stati equivalenti

- Intuitivamente, due stati sono equivalenti se per ogni ingresso producono la stessa transizione allo stato successivo (o a stati equivalenti) E la stessa uscita.
- In altri termini, hanno *le stesse funzioni di transizione* **f** *e di caratterizzazione* **g**

Iniziamo con la rimozione...

Sequenza	Stato	Stato	succ.	Outpu	ıt (Z)
di input	Corrente	X = 0	<i>X</i> = 1	X = 0	$X = \frac{1}{2}$
reset	Α	В	С	0	0
0	В	D	Ε	0	0
1	С	F	G	0	0
00	D	Н	1	0	0
01	Ε	J	K	0	0
10	F	L	Μ	0	0
11	G	N	P	0	0
000	Н	Α	Α	0	0
001	+	A	A	0	0
010	J	Α	Α	0	1
011	K	A	Α	0	0
100	L	Α	Α	0	1
101	M	A	A	0	0
110	N	A	A	0	0
111	-	A	A	0	0

H≡I≡K≡M≡N≡P

Iniziamo con la rimozione...

Sequenza	Stato	Stato	succ.	Outpu	ıt (Z)
di input	Corrente	X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1
reset	Α	В	С	0	0
0	В	D	Ε	0	0
1	C	F	G	0	0
00	D	Н	1	0	0
01	Ε	J	K	0	0
10	F	L	Μ	0	0
11	G	N	P	0	0
000	Н	Α	Α	0	0
001	- /	A	A	0	0
010	J	A	Α	0	1
011	K		.4	0	0
100	- L	A	A	0	1
101	M	A	Α	0	0
110	- N	A	A	0	0
111	-	A	A	0	0

H≡I≡K≡M≡N≡P, **J≡L**

Passo successivo

- · Sostituiamo I, K, M, N, P con H ovunque
- · Sostituiamo, L con J ovunque

Pas	so s	suc	ce	ssi	VO
Sequenza	Stato	Stato	succ.	Outpu	ıt (Z)
di input	Corrente	X = 0	<i>X</i> = 1	X = 0	X = 1
reset	Α	В	С	0	0
0	В	D	Ε	0	0
1	С	F	G	0	0
00	D	Н	Н	0	0
01	E	J	Н	0	0
10	F	J	н	0	0
11	G	н	Н	0	0
000	Н	Α	Α	0	0
001	-	A	A	0	0
010	J	Α	Α	0	1
011	K	Α	Α	0	0
100	- L	Α	Α	0	1
101	M	A	A	0	0
110	-N	A	A	0	0
111	-	A	A	0	0
	H≡I≡K	=M=N	=P, J≡	L	

A questo punto possiamo fare ulteriori riduzioni...

Ulteriori riduzioni... Sequenza Stato Stato succ. Output (Z) di input Corrente X = 0 X = 1X=0 X=1reset 0 В D 0 0 C 0 00 D 01 10 11 000 0 001 010 011 100 101 110 111 HEIEKEMENEP, JEL, DEG, EEF

Tabella e grafo ridotti

Riduzione di stati equivalenti mediante tabella delle implicazioni (implication chart)

Esempio

Consideriamo la seguente tabella delle transizioni:

Stato Corrente	Stato so $X = 0$	ucc. 1	Output
а	d	С	0
b	f	h	0
с	е	d	1
d	a	e	0
e	С	a	1
f	f	b	1
g	b	h	0
h	С	g	1

Implication chart

- · Costruiamo l'implication chart
- Matrice (triangolare bassa) con una cella per ogni possibile coppia di stati

Implication chart

Stato Corrente	Stato su	icc.	Output
a	d	с	0
b	f	h	0
С	e	d	1
d	a	e	0
e	с	a	1
f	f	b	1
g	b	h	0
h	с	g	1

Stati sicuramente diversi

- Se hanno output diversi, due stati sono sicuramente NON equivalenti
- Inseriamo una X nella cella corrispondente della tabella se due stati sono sicuramente NON equivalenti per uscite diverse

Implication chart

Stato Corrente	Stato su $X=0$	cc.	Output
a	d	с	0
ь	f	h	0
с	е	d	1
d	а	e	0
e	С	a	1
f	f	b	1
g	b	h	0
h	С	g	1

Come proseguiamo

Stato Corrente	Stato se	ucc.	Output
a	d	с	0
b	f	h	0
С	е	d	1
d	а	e	0
e	С	a	1
f	f	b	1
g	b	h	0
h	С	g	1

- Per gli stati con lo stesso output, definiamo la condizione che si deve verificare affinché gli stati coincidano
- In <u>termini di stato</u> <u>successivo</u>
- · Ad esempio:

a≡b ↔ d≡f and c≡h

Aggiungiamo le coppie di implicazioni tra stati...

Stato	Stato si	JCC.	
Corrente	X = 0	1	Output
a	d	С	0
b	f	h	0
с	е	d	1
d	a	e	0
e	С	а	1
f	f	b	1
g	b	h	0
h	с	a	1

Eliminiamo le auto-implicazioni

ato ente	Stato s	ucc.	Output	b	d-f c-h	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	d	с	0	- с	X	X						
	f e a	h d e	0 1 0	d	a d c-e	a-f e-h	X					
	c f	a b	1	е	X	Χ	e e a-d	Χ				
	b c	h g	0 1	_ f	Χ	Χ	e-f b-d	X	c-f a-b			
				g	b-d c-h	b-f	Χ	a-b e-h	Χ	X		
				h	Χ	Χ	c-e d-g	Χ	a-g	c-f b-g	Χ	
					а	b	С	d	е	f	g	

Passo successivo

- A questo punto ogni cella è stata riempita con una
 X o con una o più coppie di implicazioni
- Analizziamo ciascuna coppia, e se fa riferimento a una cella in cui c'è già una X, allora l'implicazione non può essere vera, quindi la annulliamo

Eliminiamo le implicazioni non vere

Stato	Stato s		
Corrente	X = 0	1	Output
a	d	С	0
b	f	h	0
с	е	d	1
d	а	e	0
e	С	а	1
f	f	b	1
g	b	h	0
h	С	g	1

Iterazione successiva

Effettuiamo un'iterazione successiva, effettuando ulteriori eliminazioni in base alle X inserite in precedenza

Iteriamo il procedimento finché non riusciamo più a effettuare eliminazioni

Eliminiamo le ulteriori implicazioni non vere

Stato Corrente	Stato s $X = 0$	ucc.	Output
а	d	С	0
b	f	h	0
с	е	d	1
d	а	e	0
e	С	a	1
f	f	b	1
g	b	h	0
h	С	g	1

Iterazione successiva...

Stato Corrente	Stato s	ucc.	Output
a	d	с	0
ь	f	h	0
с	е	d	1
d	а	e	0
e	С	a	1
f	f	b	1
g	b	h	0
h	С	g	1

Non posso eliminare più nulla...

Stati equivalenti

Dal chart ottenuto, deduco che:

- a≡d
- c≡e

Creo una nuova tabella...

Stato Corrente	Stato succ. $X = 0$ 1		Output
а	d	с	0
b	f	h	0
с	е	d	1
d	a	е	0
e	€	3	1
f	f	b	1
g	b	h	0
h	С	g	1

Stato Corrente	Stato succ. $X = 0$ 1	Output
а	ас	0
b	f h	0
С	са	1
f	f b	1
g	b h	0
h	c a	1

Esercizio

Risolvere un esercizio svolto in precendenza creando tutti i possibili stati che catturano le sequenze fino alla lunghezza necessaria da memorizzare, e poi effettuare l'eliminazione degli stati ridondanti utilizzando uno dei metodi studiati

Esercizio

Z vale uno se le sequenza di ingresso termina per 010 oppure per 1001, zero altrimenti

Esempio:

Stato	Sequenza termina pe		
S ₀ S ₁	Reset		
	0 (ma non 10)		
S ₂ S ₃ S ₄ S ₅	01		
S_3	10		
S_4	1 (ma non 01)		
S ₅	100		