第36届全国青少年信息学奥林匹克竞赛

C.C.F NOI 2019

第一试

时间: 2018年7月2日 07:40~12:40

题目名称	数数	集合	不进位加法
题目类型	传统型	传统型	传统型
目录	count	set	xor
可执行文件名	count	set	xor
输入文件名	count.in	set.in	xor.in
输出文件名	count.out	set.out	xor.out
每个测试点时限	3S	3S	2S
内存限制	20MB	512MB	512MB
测试包数目	5	10	21
每个测试点分值	15-35	10	2-8

提交源程序文件名

对于 C++ 语言	count.cpp	set.cpp	xor.cpp
对于 C 语言	count.c	set.c	xor.c
对于 Pascal 语言	count.pas	set.pas	xor.pas

额外编译选项

对于 C++ 语言	-02 -1m	-02 -1m	-02 -1m
对于 C 语言	-02 -1m	-02 -1m	-02 -1m
对于 Pascal 语言	-02	-02	-02

数数(count)

【题目背景】

YSGH 是一个热爱出 NOIP 算法数数题的毒瘤。

今天他又给隔壁 NOIP 出了一道题。

你是去隔壁机房炸鱼的选手, 但是被这道题难住了。

【题目描述】

给以一个长度为 2^k 的数组 a,下标为[0,2^k-1]。

现在 YSGH 想要知道,二进制下的下标可以和给定长度为 k 的仅包含 01? 的串匹配的的数组位置的和。

【输入格式】

第一行两个数字 k,Q.

接下来一行一个长度为 2^k 的仅包含 0-9 的字符串 S。

字符串 S 的第 i 个位置的字符表示了 a[i-1]的值。

接下来 0 行, 一行一个长度为 k 的仅包含 01?的字符串, 表示一次询问。

【输出格式】

Q行,一行一个数表示答案。

【样例1输入】

3 5

12345678

000

0??

1?0

?11

???

【样例1输出】

1

10

12

12

36

【数据范围】

测试包编号	k<=	Q<=	分值
1	10	1000	15
2	10	100W	15
3	13	100W	15
4	20	5W	35
5	20	100W	20

请注意本题特殊的内存限制。

集合(set)

【题目背景】

YSGH 是一个热爱出 NOIP 算法不可做题的毒瘤。

YSGH 觉得上次的那道题太简单了,于是他又给隔壁 NOIP 出了一道题。你是去隔壁机房颓废的选手,但是被这道题难住了。

【题目描述】

YSGH 有一棵 n 个点的带边权的树,每个节点有重量 w[i]和价值 v[i]。

现在 YSGH 要从中选出若干个节点形成一个集合 S,满足这些节点重量之和 <=M 并且构成一个连通块。YSGH 是一个毒瘤,因此他只会选择节点价值之和最大的那些 S。YSGH 称这样的集合 S 为毒瘤的集合。

现在 YSGH 要从所有毒瘤的集合中选出 K 个,并对这 K 个毒瘤的集合分别进行测试。在这 K 次测试开始前,YSGH 首先需要一个点 x 来放置他的测试装置,这个测试装置的最大功率为 Max。

接下来的每次测试,YSGH 会对测试对象 S 中的所有点进行一次能量传输,对一个点 y 进行能量传输需要的功率为 dist(x,y)*v[y],其中 dist(x,y)表示点 x,y 在树上的最短路长度。如果 S 中存在一个点,满足传输所需功率>Max,测试就会失败。同时,为了保证能量传输的稳定性,测试装置所在的点 x 需要在集合 S 中,否则测试也会失败。

现在 YSGH 想知道,有多少种从所有毒瘤的集合选出 K 个的方法,使得他能找到一个放置测试装置的点,来完成他的测试。

输出方案数对 11920928955078125(5^23)取模的结果。

【输入格式】

对于每组数据,第一行 4 个数字 n, m, k, Max。

接下来 1 行 n 个正整数, 第 i 个数字表示 w[i]。

接下来1行n个非负整数,第i个数字表示v[i]。

接下来 n-1 行,每行三个数 x,v,z,表示一条连接 x,v,长度为 z 的边。

【输出格式】

一行一个数字,表示答案对 11920928955078125(5^23)取模的结果。

【样例1输入】

7 3 2 4

1 1 2 2 1 2 2

1 1 1 2 1 2 2

1 2 1

1 3 2

1 4 2

2 5 1

2 6 2

4 7 3

【样例1输出】

2

【样例1解释】

毒瘤的集合有{1,2,5},{1,4},{2,6}。 选择 K 个且可以测试的方案为{1,2,5},{1,4}和{1,2,5},{2,6}。

【数据范围】

测试包编号	n<=	m<=	k<=	特殊性质	分值
1		150	1		15
2	17		10	/	15
3	40	1200	1000		15
4			20	w[1]=w[2]==w[n]=1	10
5	60	10000	1		15
6	60	10000	1000	/	15
7			1E		15

不进位加法(xor)

【题目背景】

YSGH 是一个热爱出 NOIP 算法不可做题的毒瘤。 YSGH 觉得上次的那道题太简单了,于是他又给隔壁 NOIP 出了一道题。 你是去隔壁机房颓废的选手,但是被这道题难住了。

【题目描述】

定义一个长度为 n 的数列 a 是 AK 的当且仅当 a[1] or a[2] or … or a[n]= a[1] xor a[2] xor … xor a[n]。

YSGH 给定了一个数列 a。

他想要寻找一组 xor 和最小的 AK 数列 b。使得 b[i]>=a[i]。由于数列 b 可能有多个, YSGH 只想知道 b 的最小的 xor 和。

【输入格式】

对于每组数据,第一行 1 个数字 n。接下来 n 行,每行一个 01 串,表示 a[i]的二进制表示。保证最高位不为 0。

【输出格式】

一行一个数字,表示 b 的最小 xor 和,用二进制输出。 你需要保证最高位不为 0。

【样例1输入】

2

10

10

【样例1输出】

110

【样例1解释】

 $b[1]=4=(100)_2, b[2]=2=(10)_2$

【样例2输入】

2

10010

1001

【样例2输出】

11101

【数据范围】

设输入所有数字最大位数为L。

別試包編号 NC				此水此丘	/\ / : :
2 20 3 2 4 1000 5 30W 6 100 7 1000 8 30W 9 5 10 5 10 5 12 10 13 50 14 100 15 300 16 1000 17 3000 18 1W 19 3W 20 10W	测试包编号	n<=	L	特殊性质	分值
3	1		10		4
1000 30W 2 2 2 2 2 2 2 2 2	2		20		2
5	3	2	100	n=2	2
6 100 7 1000 8 30W 9 5 10 5 10 5 11 1000 12 10 13 50 14 100 15 300 17 3000 18 1W 19 3W 20 10W	4		1000		2
7 1000 対す任意i存住k	5		30W		2
フリー	6	16	90	オエルキ・キケー港	4
8 30W 9 5 10 5 11 1000 12 10 13 50 14 100 15 300 16 1000 17 3000 18 1W 19 3W 20 10W	7	10	00		4
10 5 1000 11 1000 5 12 10 13 50 4 4 14 100 15 300 16 1000 17 3000 18 1W 19 3W 20 10W	8	36	∂W	是 a[1]=2^K	4
11 1000 5 12 10 13 50 14 100 15 300 16 1000 17 3000 18 1W 19 3W 20 10W	9		5		4
12 10 13 50 4 4 14 100 7 7 16 1000 17 3000 18 1W 6 7 20 10W	10	5	1000		4
13 50 14 100 15 300 16 1000 17 3000 18 1W 19 3W 20 10W	11	1000	5		4
14 100 7 15 300 / 7 16 1000 8 17 3000 8 18 1W 6 19 3W 7 20 10W 7	12	10			4
15 300 / 7 16 1000 8 17 3000 8 18 1W 6 19 3W 7 20 10W 7	13	50			4
16 1000 17 3000 18 1W 19 3W 20 10W 8 8 8 8 7 20	14	100			7
17 3000 18 1W 19 3W 20 10W 7 7	15	300		/	7
18 1W 19 3W 20 10W 7	16	1000			8
19 3W 7 20 10W 7	17				8
20 10W 7	18	1 W			6
	19	3W			7
21 30W 6	20	10W			7
	21	30W			6

对于所有数据,满足 n>=1,答案<2^60W.