#### PageRank: The Complete Algorithm

- Input: Graph G and parameter β
  - Directed graph G with spider traps and dead ends
  - Parameter  $\beta$
- Output: PageRank vector r
  - Set:  $r_j^{(0)} = \frac{1}{N}$ , t = 1
  - do:
    - $\forall j: \ r_j^{\prime(t)} = \sum_{i \to j} \beta \ \frac{r_i^{(t-1)}}{d_i}$   $r_j^{\prime(t)} = \mathbf{0} \ \text{if in-deg. of } j \text{ is } \mathbf{0}$
    - Now re-insert the leaked PageRank:

$$\forall j: r_j^{(t)} = r'_j^{(t)} + \frac{1-S}{N}$$
 where:  $S = \sum_j r'_j^{(t)}$ 

- t = t + 1
- while  $\sum_{j} \left| r_{j. \, \text{Leskovec, A. Rajaraman, J. Ullman}}^{(t)} \right| > \varepsilon$ (Stanford University) Mining of Massive Dar

### **Sparse Matrix Encoding**

- Encode sparse matrix using only nonzero entries
  - Space proportional roughly to number of links
  - Say 10N, or 4\*10\*1 billion = 40GB
  - Still won't fit in memory, but will fit on disk

| node node | degree | destination nodes     |
|-----------|--------|-----------------------|
| 0         | 3      | 1, 5, 7               |
| 1         | 5      | 17, 64, 113, 117, 245 |
| 2         | 2      | 13, 23                |

# Basic Algorithm: Update Step

- Assume enough RAM to fit r<sup>new</sup> into memory
  - Store rold and matrix M on disk
- Then 1 step of power-iteration is:

Initialize all entries of  $r^{\text{new}}$  to  $(1-\beta)/N$ For each page p (of out-degree n):

Read into memory: p, n,  $dest_1$ ,..., $dest_n$ ,  $r^{old}(p)$  for j = 1...n:  $r^{new}(dest_i) += \beta r^{old}(p) / n$ 



| src | degree | destination      |
|-----|--------|------------------|
| 0   | 3      | 1, 5, 6          |
| 1   | 4      | 17, 64, 113, 117 |
| 2   | 2      | 13, 23           |

## **Analysis**

- Assume enough RAM to fit r<sup>new</sup> into memory
  - Store rold and matrix M on disk
- In each iteration, we have to:
  - Read rold and M
  - Write r<sup>new</sup> back to disk
  - Input/Output cost = 2|r| + |M|
- Question:
  - What if we could not even fit r<sup>new</sup> in memory?

# **Block-based Update Algorithm**



| 2        |  |
|----------|--|
| <b>ว</b> |  |



| src | degree | destination |
|-----|--------|-------------|
| 0   | 4      | 0, 1, 3, 5  |
| 1   | 2      | 0, 5        |
| 2   | 2      | 3, 4        |



### **Analysis of Block Update**

#### Similar to nested-loop join in databases

- Break r<sup>new</sup> into k blocks that fit in memory
- Scan M and rold once for each block
- k scans of M and rold
  - -k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- Can we do better?
  - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

# **Block-Stripe Update Algorithm**



| src | degree | destination |
|-----|--------|-------------|
| 0   | 4      | 0, 1        |
| 1   | 3      | 0           |
| 2   | 2      | 1           |



| 0 | 4 | 3 |
|---|---|---|
| 2 | 2 | 3 |



| 0 | 4 | 5 |
|---|---|---|
| 1 | 3 | 5 |
| 2 | 2 | 4 |



## **Block-Stripe Analysis**

- Break M into stripes
  - Each stripe contains only destination nodes in the corresponding block of r<sup>new</sup>
- Some additional overhead per stripe
  - But it is usually worth it
- Input/Output cost per iteration
  - $|M|(1+\varepsilon) + (k+1)|r|$

## Some Problems with Page Rank

- Measures generic popularity of a page
  - Biased against topic-specific authorities
  - Solution: Topic-Specific PageRank
- Uses a single measure of importance
  - Other models e.g., hubs-and-authorities
  - Solution: Hubs-and-Authorities
- Susceptible to Link spam
  - Artificial link topographies created in order to boost page rank
  - Solution: TrustRank