Supplement: Lagrange Multipliers

Monday, February 15, 2021 1:55 PM

We'll do a general (powerful duality theory which includes Lagrange Multipliers Here, let's connect we what you saw in culc (Ref: \$11.8 Stewart's "Essential Palculus")

To solve:

idea is that the optimal pt (x*,y*) will be where f, g have Same tangent line, Vf(x4,y+) = > Vg(x+,y+)

Thm fige C'(R2), then if a min or max of f (subject to g(x,y)=0) occurs at a point $\vec{p} = (x^*, y^*)$ where $\nabla g(\vec{p}) \neq 0$, then $\exists \lambda \in \mathbb{R}$ s.t. Note: we'll use Lagrange multiple $\nabla f(\vec{p}) = \lambda \nabla g(\vec{p})$ """ for such, Saving ">" for

Proof

Since $Vg(\vec{p}) \neq 0$, use implicit function theorem to inequality constraints represent 9 (x,y) = 0 locally by a parametric curve r(t) w/ tangent vector r'. So I to sit. r(to)= p since p is feasible, and wlog let to =0 so r(0) = p, and fobtains its min/max at p

Then, locally, we have unconstrained problem, f(r(t)), and it obtains its min/max at t=0.

For unconstrained problem, at min/max, derivative must vanish.

So
$$\frac{\partial}{\partial t} f(r(t)) \Big|_{t=0} = 0$$

$$= \nabla f(\vec{p}) \cdot \vec{r}'(0)$$

$$\stackrel{?}{r(0)} = \vec{p}$$

1.2.

$$\nabla f(\vec{p}) \perp \vec{r}'(0)$$

and $\nabla g(\vec{p}) \perp \vec{r}'(0)$
 $\neq 0$ by assumption

Also, g(r(es) =0 by design i.e., it's constant, ie., de g(r(t)) = 0 (Vt)

at t=0. Vg(F) · F'(0) =0

in \mathbb{R}^2 , the set of vectors orthogonal to $\overrightarrow{\Gamma}'(\mathfrak{d})(\neq \overrightarrow{\mathfrak{d}})$ is one-dimensional (i.e., $\nabla f(\overrightarrow{p})$, $\nabla g(\overrightarrow{p})$ in same 1D subspace (linearly dependent)

i.e., \overrightarrow{J} λ s.t. $\nabla f(\overrightarrow{p}) = \lambda \nabla g(\overrightarrow{p})$ (specifically, assumid $\nabla g(\overrightarrow{p}) \neq 0$, but $\nabla f(\overrightarrow{p}) = 0$ is 0×10^{-4} and 0×10^{-4}