작업자 안전 위험 빅데이터 /AI 분석 웹 서비스 : 스마트 밴드, 헬멧, 벨트 센서 기반의 위험 행동 인식

1. 프로젝트 개요

• 배경

건설 현장에서의 낙상 등 안전 사고를 미연에 방지하기 위해 이미 일어난 사고 데이터를 수집하여 사고가 발생할 가능성이 높은 상황을 예측하여 조치를 취할 수 있도록 AI 프로그램을 개발하고자 합니다.

• 목표

- 스마트 밴드 또는 스마트 헬멧으로 데이터를 수집.
- 수집된 생체 데이터를 통한 작업자 상태 관리.
- 근로자의 Gyro sensor 데이터, 맥박, 체온을 통한 사고 특성 분석 및 예측.
- 위험 예측을 활용해서 안전관리자에게 위험관리자 위치 및 상태 알림.

· 팀: WorkerSafety

구민지 (팀장)	Front-end(React)
김단우	Data Analysis(+Flask)
양철민	Back-end(SpringBoot)

Project Structure

프로젝트 구현 환경

	언어 및 프레임워크	개발 환경	라이브러리, API
<u>DA</u>	Python: 3.10.10	PyCharm	scikit-learn
	Flask : 2.3.2		Matplotlib
			Pandas
			NumPy
<u>BE</u>	Springboot : 3.0.6	Eclipse	јра
	Java : 17		
<u>FE</u>	Node.js : 18.13.0	VSCode	React : 18.2.0
	JavaScript		react-router-dom : 6.11.0
			axios : 1.4.0

2. 요구 사항 명세

서비스	ID	요구사항명	요구사항 내용	날짜	버전
Data	ws-001	작업자 상태 분	작업자의 이상 맥박 감지	05.18	v0.5
Analysis ws-002 석		석 및 예측	작업자의 이상 체온 분석	05.18	v0.5
	ws-003		작업자의 이상 Gyro sensor 분석	05.18	v0.5
	ws-004		작업자 종합 데이터를 통한 사고 예측	05.18	v0.5
로그인	ws-005	로그인	ID, Password Form 제공	05.18	v0.5
지도창	ws-006	작업자 위치	GPS 데이터로 실시간 작업자 위치 표출	05.18	v0.5
	ws-007	작업자 상태	아이콘을 통해 위험상태 표출	05.18	v0.5
	ws-008	작업자 데이터	아이콘 선택 시 지도 아래에 상세 정보	05.18	v0.5
			五 출		
상세창	ws-009	작업자 데이터	아이콘 선택 후 상세 보기 클릭		v0.5
목록창	ws-010	작업자 관리	작업자 목록 표출		v0.5
	ws-011		작업자 추가	05.18	v0.5
	ws-012		작업자 삭제	05.18	v0.5
	ws-013		작업자 검색	05.18	v0.5
	ws-014		작업자 정렬	05.18	v0.5
생체 데	ws-015	생체 데이터 표	작업자 맥박 그래프 표출	05.18	v0.5
이터	ws-016	· 출	맥박 데이터 위험 범위 시 알림	05.18	v0.5
	ws-017		작업자 체온 그래프 표출	05.18	v0.5
	ws-018		체온 데이터 위험 범위 시 알림	05.18	v0.5
활동 데	ws-019	활동 데이터 표	Gyro sensor 데이터 그래프로 표출	05.18	v0.5
이터	ws-020	- 출	Gyro sensor 데이터 위험 범위 시 알림	05.18	v0.5

3. 화면설계 및 기능명세서

화면코드	화면명	화면 내용	url	버전
KM-00	Home	홈화면: 로그인 화면	localhost:3000/	v0.5
KM-10	AdminRegister	관리자 등록 화면	localhost:3000/adminregister	v0.5
KM-20	Dashboard	관리자 화면	localhost:3000/dashboard	v0.5
KM-21	Dashboard	관리자 화면 - 아이콘 클릭 시	localhost:3000/dashboard	v0.5
KM-30	WorkerDetail	작업자 상세 화면	localhost:3000/workerdetail	v0.5

화면코드: KM-21 화면명: Dashboard

화면 내용: 관리자 화면 - 아이콘 클릭 시 url: localhost:3000/dashboard

1번: Data 컴포넌트 ⇒ 작업자 생체 데이터, 활동 데이터 표출 2번: WorkerDetail 컴포넌트

⇒ 작업자 데이터 상세보기

상세보기

화면코드: KM-30 화면명: WorkerDetail 화면 내용: 작업자 상세 화면 url: localhost:3000/workerdetail

1번: 작업자 상세 데이터 (체온) 2번: 작업자 상세 데이터 (위험도) 3번: 작업자 상세 데이터 4번: 작업자 상세 데이터 (맥박)

4. RestAPI 설계

/login

Ind	lex	Method	URI	Description	Response(JSON)
1	Р	OST	/login	로그인	로그인결과

/login

Index	Method	URI	Description	Response(JSON)
1	PUT	/logout	로그아웃	로그아웃 결과

/user

Index	Method	URI	Description	Response(JSON)
1	POST	/join	회원가입	회원가입 결과
2	DELETE	/delete	회원탈퇴	회원탈퇴 결과
3	PUT	/update	회원정보수정	회원정보수정 결과

/worker

Index	Method	URI	Description	Response(JSON)
1	GET	/List	작업자 조회	작업자 세부정보 결과
2	POST	/add	작업자 추가	작업자 추가결과 결과
3	DELETE	/delete	작업자 삭제	작업자 삭제결과 결과

5. DB 설계

- ERD

- DB 상세

Table	Туре	Field	Remarks
manager	varchar	manager_id	Primary Key
	varchar	password	
	varchar	name	
	varchar	role	
worker	integer	UserCode	Primary Key
	varchar	name	
	varchar	gender	
	integer	age	
	varchar	role	
worker_Details	integer	no	Primary Key
	integer	UserCode	Foreign Key(worker)
	integer	Heartbeat	심장박도
	double	Temperature	체온
	integer	Spo2	산포도

double GyroX 자이로센서x축데이터

double GyroY 자이로센서x축데이터

double GyroZ 자이로센서z축데이터

double Latitude 위도

double Longitude 경도

datatime VitalDate 시간

6. 데이터 분석

• 데이터 특징 : 시계열 데이터

• 데이터 출처

A. 강남앤인코누스 현장 수집 데이터

B. Github data

i. https://github.com/laxmimerit/Human-Activity-Recognition-Using-

Accelerometer-Data-and-CNN

• 데이터 형태 : csv

• 데이터 내용 : 작업자별 Gyro sensor 데이터, 맥박, 체온, 위치, 시간

• 데이터 수집 및 전처리

A. 건설 현장에서 근로자의 Gyro sensor 데이터, 맥박 등의 데이터를 수집합니다.

B. 수집된 데이터를 전처리하여 이상치나 결측치 등을 제거하고, 필요한 경우 데이터를 정규화하는 등의 과정을 수행하여 데이터를 가공합니다.

• 가설설정

- A. 건설 현장에서는 근로자가 반복되는 작업을 하게 되는데, 이 과정에서 근로자의 자세나 움직임이 불규칙해지면 사고 발생 가능성이 높아질 것으로 가설을 설정합니다.
- B. 따라서, 근로자의 움직임 데이터와 맥박 변화를 사용하여 이상 감지 알고리즘을 구현하고, 일정 이상의 불규칙한 패턴이 발견될 경우 사고가 발생할 가능성이 높다는 가설을 설정합니다.
- 데이터 분석 및 모델링

본 프로젝트에서는 작업자 사고 예측을 위해 CNN(Convolutional Neural Network)과 LSTM(Long Short-Term Memory)을 활용한 분류모델을 구축합니다. 데이터 분석 과정은 다음과 같이 진행됩니다:

- 데이터 수집: 작업자 활동, 사고와 관련된 데이터를 수집합니다. 이 데이터에는 작업자의 맥박과 체온 등 생체신호 데이터와 작업자의 Gyro sensor 데이터가 포 함됩니다.
- 2. CNN(Conv1D) 모델 생성: 맥박과 체온 데이터를 입력으로 사용하여 CNN(Conv1D) 모델을 생성합니다. 이 모델을 사용하여 예측 결과를 확인합니다. 그러나 이 모델은 학습 편향과 입력 데이터에 대한 일반화가 심하므로, 편향이 심한 후행 지표를 예측하는 결과를 얻게 될 것입니다.
- 3. LSTM 조합 모델 생성: 성능 향상을 위해 LSTM 조합 모델을 생성합니다. CNN(Conv1D) 모델과 LSTM을 조합하여 더 정확한 예측 결과를 얻을 수 있습니다.

위의 분석 내용을 바탕으로 작업자 안전 예측 프로그램의 데이터 분석 결과를 작성할수 있습니다. 이 결과에는 사용된 모델과 알고리즘, 예측 결과의 성능에 대한 정보가 포함됩니다.

• 모델 평가 및 보완

모델의 성능을 평가하기 위해 근로자의 실제 사고 데이터, 활동정보와 모델이 예측한 사고 데이터, 활동 정보를 비교하여 모델의 정확도를 평가하고, 모델의 성능을 향상시키기 위해 추가적인 데이터나 특성을 수집하여 모델을 보완합니다.

7. 일정 계획

	1주	2주	3주	4주	5주	6주	7주	8주	9주	10주	
DA	D1	D	2	D)3	D4	D5	D6		D7	
BE	B1	В	2	В	3	B4	B5	В6	В	37	
FE	F1	F	2	F	3	F4	F5	F6	F	7	

DA

- D1: 계획

- D2: 데이터 전처리 & 머신러닝 기반 이상 감지 알고리즘 구현

- D3 : 모델 개선

- D4: 플라스크를 활용한 API 작성

- D5: 신경망 기반 이상 감지 알고리즘 구현 (딥러닝, 텐서플로)

- D6: 모델 및 주요 서비스 개선

- D7: 테스트, 보완 및 발표

• <u>BE</u>

- B1: 계획

- B2 : 모델 호출해서 REST API 생성

- B3 : 스키마 기타 API 확정

- B4:1차 구현, 개발 환경 구축, 로그인 시큐리티, 관리자 테이블, 각 서버 데이터 연결

- B5: 테스트 및 피드백

- B6: 2차 구현- 작업자 테이블, 각 서버의 요구·요청에 따른 API 작성, 데이터 저장

- B7: 테스트, 보완 및 발표

• <u>FE</u>

- F1 : 계획

- F2 : UI/UX 설계 및 시각화

- F3 : UI/UX 확정

- F4:1차 구현 - 컴포넌트별 구현, 디자인 레이아웃 구현

- F5: 테스트 및 피드백

- F6: 2차 구현 - BE와 연결, 페이지 구현 및 완성

- F7: 테스트, 보완 및 발표