APMA 1655 Honors Statistical Inference I

February 26, 2023

Homework 2

Name: Tanish Makadia Due: 11 pm, February 17

Collaborators: N/A

• You are strongly encouraged to work in groups, but solutions must be written independently.

Please feel free to use all the results in the Appendix of HW 2 without proving them.

1 Problem Set

1. (2 points) Suppose (Ω, \mathbb{P}) is a probability space, and B is a event with $\mathbb{P}(B) > 0$. We define a function $\tilde{\mathbb{P}}$ of subsets of Ω by the following

$$\tilde{\mathbb{P}}(A) \stackrel{\text{def}}{=} \mathbb{P}(A \mid B)$$
, for all $A \subset \Omega$.

Please prove that $\tilde{\mathbb{P}}$ is a probability, i.e., $(\Omega, \tilde{\mathbb{P}})$ is a probability space as well.

Proof. We will prove that $(\Omega, \tilde{\mathbb{P}})$ is a probability space by proving the following three axioms:

- $\tilde{\mathbb{P}}(A \subset \Omega) \ge 0$: $\tilde{\mathbb{P}}(A) = \mathbb{P}(A \mid B) \ge 0$
- $\bullet \ \ \underline{\tilde{\mathbb{P}}(\Omega)=1} \colon \ \tilde{\mathbb{P}}(\Omega) = \mathbb{P}(\Omega \,|\, B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$
- \bullet Countable Additivity: Let $A_1,\dots,A_{\mathfrak{m}}\subset\Omega$ be mutually disjoint events.

$$\begin{split} \tilde{\mathbb{P}}(A_1 \cup \dots \cup A_m) &= \mathbb{P}((A_1 \cup \dots \cup A_m) \,|\, B) \\ &= \frac{\mathbb{P}((A_1 \cup \dots \cup A_m) \cap B)}{\mathbb{P}(B)} \\ &= \frac{\mathbb{P}((A_1 \cap B) \cup \dots \cup (A_m \cap B))}{\mathbb{P}(B)} \\ &= \frac{\mathbb{P}(A_1 \cap B) + \dots + \mathbb{P}(A_m \cap B)}{\mathbb{P}(B)} \\ &= \tilde{\mathbb{P}}(A_1) + \dots + \tilde{\mathbb{P}}(A_m) \end{split}$$

- 2. (1 point) Let (Ω, \mathbb{P}) be a probability space and \mathfrak{n} be a positive integer. B_1, B_2, \ldots, B_n are events and provide a partition of Ω , i.e.,
 - $\bigcup_{i=1}^n B_i = \Omega$,
 - B_1, B_2, \ldots, B_n are mutually disjoint.

Let A be any event. Please prove that $A \cap B_1, A \cap B_2, A \cap B_3, ..., A \cap B_n$ are mutually disjoint, i.e.,

$$(A \cap B_i) \cap (A \cap B_i) = \emptyset$$
, if $i \neq j$.

Proof. Let $B_i, B_j \in \{B_k\}_{k=1}^n$ such that $i \neq j$. We have that $B_i \cap B_j = \emptyset$. It follows that $A \cap B_i \subset B_i$ and $A \cap B_j \subset B_j$. Thus, it must be the case that $(A \cap B_i) \cap (A \cap B_j) = \emptyset$.

- 3. (2 points) A box contains w white balls and b black balls. A ball is chosen at random.
 - If the chosen ball is white, we add d white balls to the box, that is, now there are w + d white balls and b black balls.
 - If the chosen ball is black, we add d black balls to the box, that is, now there are w white balls and b+d black balls.

After adding the d balls, another ball is drawn at random from the box. Show that the probability that the second chosen ball is white does not depend on d. Hint: Use the law of total probability (LTP).

Proof. Let W, B denote "white" and "black" respectively.

We have that $\Omega = \{(W, W), (W, B), (B, W), (B, B)\}$. Let $A = \{(W, W), (B, W)\}$ represent the event that the second ball picked is white. We will now create a partition of Ω using the following elements:

$$B_1 = \{(W, W)\}$$
 $B_2 = \{(W, B)\}$ $B_3 = \{(B, W)\}$ $B_4 = \{(B, B)\}$

Since B_1, \ldots, B_4 are mutually disjoint and $B_1 \cup \cdots \cup B_4 = \Omega$, we have that $\{B_i\}_{i=1}^4$ forms a partition of Ω .

By the law of total probability,

$$\begin{split} \mathbb{P}(A) &= \sum_{i=1}^{4} \mathbb{P}(A \mid B_{i}) \cdot \mathbb{P}(B_{i}) \\ &= \sum_{i=1}^{4} \mathbb{P}(A \cap B_{i}) \\ &= \mathbb{P}(W, W) + \mathbb{P}(B, B) + \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) \\ &= \frac{w}{w+b} \cdot \frac{w+d}{w+b+d} + \frac{b}{w+b} \cdot \frac{w}{w+b+d} \\ &= \frac{w^{2} + dw + bw}{(w+b)(w+b+d)} \\ &= \frac{w(w+b+d)}{(w+b)(w+b+d)} \\ &= \frac{w}{(w+b)(w+b+d)} \\ &= \frac{w}{w+b} \end{split}$$

Therefore, we have proven that $\mathbb{P}(A)$ does not depend on d.

- 4. (1 point) Suppose the underlying probability space is (Ω, \mathbb{P}) . Let G and H be events such that $0 < \mathbb{P}(G) < 1$ and $0 < \mathbb{P}(H) < 1$. Give a formula for $\mathbb{P}(G|H^c)$ in terms of $\mathbb{P}(G)$, $\mathbb{P}(H)$ and $\mathbb{P}(G \cap H)$ only.
- 5. (1 point) Suppose we have the following

```
 \mathbb{P}(\text{"snow today"}) = 30\%,   \mathbb{P}(\text{"snow tomorrow"}) = 60\%,   \mathbb{P}(\text{"snow today and tomorrow"}) = 25\%.
```

Given that it snows today, what is the probability that it will snow tomorrow?

- 6. (3 points) Let (Ω, \mathbb{P}) be a probability space. Suppose we have two events A and B such that $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$. Please prove that the following three equations are equivalent.
 - (a) $\mathbb{P}(A \mid B) = \mathbb{P}(A)$,
 - (b) $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$,
 - (c) $\mathbb{P}(B|A) = \mathbb{P}(B)$.

2 Appendix

Please feel free to use all the results in the appendix without proving them.

2.1 Appendix 1

Let A, B, and C be events. Then, we have

- (Commutative Law) $A \cup B = B \cup A$,
- (Commutative Law) $A \cap B = B \cap A$,
- (Associative Law) $(A \cup B) \cup B = A \cup (B \cup C)$,
- (Associative Law) $(A \cap B) \cap C = A \cap (B \cap C)$,
- (Distributive law) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$,
- (Distributive law) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$,
- $(A \cup B)^c = A^c \cap B^c$,
- $(A \cap B)^c = A^c \cup B^c$.

2.2 Appendix 2

Let A_1, A_2, \ldots be any sequence of events and B be an event. We have the following

$$\begin{split} \left(\bigcup_{n=1}^{\infty}A_{n}\right)^{c} &= \bigcap_{n=1}^{\infty}A_{n}^{c}, \\ \left(\bigcap_{n=1}^{\infty}A_{n}\right)^{c} &= \bigcup_{n=1}^{\infty}A_{n}^{c}, \\ B \cap \left(\bigcup_{n=1}^{\infty}A_{n}\right) &= \bigcup_{n=1}^{\infty}(B \cap A_{n}), \\ B \cup \left(\bigcap_{n=1}^{\infty}A_{n}\right) &= \bigcap_{n=1}^{\infty}(B \cup A_{n}). \end{split}$$