DSO 560 Group Project Part I

Due 11:59pm PST, April 30th

All available data will be uploaded to the threadtogether PostgreSQL database, available at

Host: threadtogether.ychennay.com

User: dso560_student Password: (in class)

Port: **5432**

If your group would like to use the database to create temporary tables, please message me and I will create a group-specific user/password for your team to log in as.

Deliverables:

- The same full_data table, with one column for each of the N categories your group selected, indicating if the product matches a tag.
- **Github repository** (with instructor ychennay added as collaborator containing your group's product attribution tool/app code base).

Database Tables:

- **full_data**: contains all possible inventory items that **ThreadTogether** would potentially offer as products
- tagged_product_attributes: manually labelled attributes of the products by SME (subject matter experts) can be joined to full data via product id
- women's clothing reviews: aggregated open source dataset of women's clothing reviews
- categories (available in S3 bucket)

Objectives:

- 1. **Attribution of web data** TT will provide a dataset previously extracted from various retail websites, we would like to organize and extract meaningful product information from the web data.
- 2. **Attribution tool/app** As a supplement to extracting features from current datasets, we propose the development of a text parsing app that would provide a repeatable solution and will require minimal human intervention for future datasets from retailers. The input to this app would be product descriptions, tags, and other metadata.

Recommended steps:

• Decide which N – 2 categories your group would like to focus on. You are required to focus on the proprietary attributes – style and occasion. Beyond that, your group should pick N - 2 other groups to analyze.

Examples of categories:

- Embellishments
- Category
- o Prints
- o Material
- Join the **tagged_product_attributes** table with **full_data** and investigate the details, descriptions, and tags used for each category your goal is to get a sense for the business logic and rules used in tagging a certain product category.
- Build a model that will takes as input:
 - o product description (if any)
 - o product name
 - o product details (if any)
 - o brand

And outputs the predicted attributes of this product. For example, if the category you are using is fit,

INPUT:

- description: Blush linen Button fastenings along front 100% linen; lining: 100% cotton Dry clean Designer color: Shell Imported
- brand: **Zimmermann**
- brand_category: Clothing / Jumpsuits / Full Length

The actual clothing's product URL is here.

OUTPUT:

• predicted fit: RELAXED

Scoring Rubric	Points Available			
	1pt	2pts	3pts	4pts
The model passes 3	No results	1-2 of the 4 tests	3 of the 4 tests	4 of the 4 tests
of the 4 test	return any	return an	return an	return an
products by	appropriate	appropriate match	appropriate match	appropriate
successfully	matches			match
returning the				
appropriate				
category attribute				
Model shows some	No	Basic	Some basic	Business
evidence of	evidence of	cleaning/preproce	business domain	domain logic
incorporating	anything	ssing evident, but	logic is encoded	is encoded
domain context	beyond a	the model itself	either via a word	either via a
(women's retail) –	full string	relies entirely on	embedding	word
either via SME	match	simple	scheme, or via	embedding
rules, or via		regex/string	preprocessing	scheme, or via
embeddings. For		match	rules (ie.	preprocessing
example, a product			groupings)	rules (ie.
in the pumps				groupings)
category will likely				
co-occur with open-				
toed / close-toed,				
pointed-toe.				
Code is documented	No (0 pts)		Yes (2 pts)	
with thought				
process easily visible				
to instructor/client				
to review				
Code is published to	No (0 pt)		Yes (1 pt)	
a Github repository				
with team members				
added as				
collaborators				
All group members	No (0 pt)		Yes (1 pt)	
have submitted 360				
feedback reviews by				
deadline				