Chương 5

Bộ xử lý trung tâm CPU (Central Processing Unit)

Nội dung

- Tổ chức của CPU
- Hoạt động của chu trình lệnh
- Đơn vị điều khiến
- Kỹ thuật đường ống lệnh
- Cấu trúc bộ xử lý tiên tiến

• Cấu trúc cơ bản của CPU

- Cấu trúc cơ bản của CPU (tiếp)
 - Đơn vị điều khiển (Control Unit CU): điều khiển hoạt động của máy tính theo chương trình đã định sẵn.
 - Đơn vị số học và logic (Arithmetic and Logic Unit ALU):
 thực hiện các phép toán số học và phép toán logic.
 - Tập thanh ghi (Register File RF): lưu giữ các thông tin tạm thời phục vụ cho hoạt động của CPU.
 - Đơn vị nối ghép bus (Bus Interface Unit BIU): kết nối và trao đổi thông tin giữa bus bên trong (internal bus) và bus bên ngoài (external bus).

- Đơn vị số học và luận lý ALU
 - Thực hiện các phép toán số học và phép toán luận lý:
 - Số học: Cộng, trừ, nhân, chia, tăng, giảm, đảo dấu,...
 - Luận lý: AND, OR, XOR, NOT, phép dịch bit,...

- Đơn vị điều khiển CU
 - Điều khiển nhận lệnh từ bộ nhớ đưa vào thanh ghi lệnh
 - Tăng nội dung của PC để trỏ sang lệnh kế tiếp
 - Giải mã lệnh đã được nhận để xác định thao tác mà lệnh yêu cầu
 - Phát ra các tín hiệu điều khiển thực hiện lệnh
 - Nhận các tín hiệu yêu cầu từ bus hệ thống và đáp ứng với các yêu cầu đó.

- Các tín hiệu đưa đến đơn vị điều khiển
 - Clock: tín hiệu xung nhịp từ mạch tạo dao động bên ngoài.
 - Mã lệnh từ thanh ghi lệnh đưa đến để giải mã.
 - Các cờ từ thanh ghi cờ cho biết trạng thái của CPU.
 - Các tín hiệu yêu cầu từ bus điều khiển
- Các tín hiệu phát ra từ đơn vị điều khiển
 - Các tín hiệu điều khiển bên trong CPU:
 - Điều khiển các thanh ghi
 - Điều khiển ALU
 - Các tín hiệu điều khiển bên ngoài CPU:
 - Điều khiển bộ nhớ
 - Điều khiển các mô-đun nhập xuất

- Chu trình lệnh
 - Nhận lệnh (Fetch Instruction FI)
 - Giải mã lệnh (Decode Instruction DI)
 - Nhận toán hạng (Fetch Operands FO)
 - Thực hiện lệnh (Execute Instruction EI)
 - Cất toán hạng (Write Operands WO)
 - Ngắt (Interrupt Instruction II)

• Chu trình lệnh (tiếp)

- Nhận lệnh (Fetch)
 - CPU đưa địa chỉ của lệnh cần nhận từ bộ đếm chương trình PC ra bus địa chỉ
 - CPU phát tín hiệu điều khiển đọc bộ nhớ
 - Lệnh từ bộ nhớ được đặt lên bus dữ liệu và được CPU chép vào thanh ghi lệnh IR
 - CPU tăng nội dung PC để trỏ sang lệnh kế tiếp

- Giải mã lệnh (Decode)
 - Lệnh từ thanh ghi lệnh IR được đưa đến đơn vị điều khiển
 - Đơn vị điều khiển tiến hành giải mã lệnh để xác định thao tác phải thực hiện
 - Giải mã lệnh xảy ra bên trong CPU
- Nhận dữ liệu (Fetch Operand)
 - CPU đưa địa chỉ của toán hạng ra bus địa chỉ
 - CPU phát tín hiệu điều khiển đọc
 - Toán hạng được đọc vào CPU
 - Tương tự như nhận lệnh

- Nhận dữ liệu gián tiếp
 - CPU đưa địa chỉ ra bus địa chỉ
 - CPU phát tín hiệu điều khiển đọc
 - Nội dung ngăn nhớ được đọc vào CPU, đó chính là địa chỉ của toán hạng
 - Địa chỉ này được CPU phát ra bus địa chỉ để tìm ra toán hạng
 - CPU phát tín hiệu điều khiển đọc
 - Toán hạng được đọc vào CPU

- Thực hiện lệnh (Execute)
 - Có nhiều dạng tuỳ thuộc vào lệnh
 - Có thể là:
 - Đọc/Ghi bộ nhớ
 - Nhập/ xuất
 - Chuyển dữ liệu giữa các thanh ghi với nhau
 - Chuyển dữ liệu giữa thanh ghi và bộ nhớ
 - Thao tác số học/logic
 - Chuyển điều khiển (rẽ nhánh)
 - Ngắt
 - ...

- Ghi toán hạng (Write)
 - CPU đưa địa chỉ ra bus
 địa chỉ
 - CPU đưa dữ liệu cần ghi ra bus dữ liệu
 - CPU phát tín hiệu điều khiển ghi
 - Dữ liệu trên bus dữ liệu được chép đến vị trí xác định

- Ngắt (Interrupt)
 - Nội dung của bộ đếm chương trình PC (địa chỉ trở về sau khi ngắt) được đưa ra bus dữ liệu
 - CPU đưa địa chỉ (thường được lấy từ con trỏ ngăn xếp SP) ra bus địa chỉ
 - CPU phát tín hiệu điều khiển ghi bộ nhớ
 - Địa chỉ trở về trên bus dữ liệu được ghi ra vị trí xác định (ở ngăn xếp)
 - Địa chỉ lệnh đầu tiên của chương trình con điều khiển ngắt được nạp vào PC

• Ngắt (tiếp)

Đơn vị điều khiển

- Gồm 2 loại:
 - Đơn vị điều khiển vi chương trình
 (Microprogrammed Control Unit)
 - Đơn vị điều khiển phần cứng
 (Hardwired Control Unit)

Đơn vị điều khiển

• Đơn vị điều khiển vi chương trình

Bộ nhớ vi chương trình
 (ROM) lưu trữ các vi chương trình (microprogram)

 Một vi chương trình bao gồm các vi lệnh (microinstruction)

- Mỗi vi lệnh mã hoá cho một vi thao tác (microoperation)
- Để hoàn thành một lệnh cần thực hiện một hoặc một vài vi chương trình
- Tốc độ chậm

Đơn vị điều khiển

 Đơn vị điều khiển phần cứng

> Sử dụng vi mạch phần cứng để giải mã và tạo các tín hiệu điều khiển thực hiên lênh

Tốc độ nhanh

 Đơn vị điều khiển phức tạp

- Khái niệm
 - Mỗi chu trình lệnh cần thực hiện bằng nhiều thao tác
 - Kỹ thuật đơn hướng (Scalar): Thực hiện tuần tự từng thao tác cho mỗi lệnh → chậm
 - Kỹ thuật đường ống (Pipeline): Thực hiện song song các thao tác cho nhiều lệnh đồng thời → nhanh hơn
 - Ví dụ chu trình 1 lệnh gồm 5 bước:
 - Nhận lệnh (I)
 - Giải mã lệnh (D)
 - Nhận toán hạng (F)
 - Thực hiện lệnh (E)
 - Cất toán hạng (W)

- So sánh scalar và pipeline
 - Scalar
 - Nhiều chukỳ máy cho1 lệnh
 - Pipeline
 - Mỗi chu kỳ
 máy thực
 hiện xong 1
 lệnh

Chu kỳ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Lệnh 1	Ι	D	F	E	W										
Lệnh 2						I	D	F	E	W					
Lệnh 3											I	D	F	E	W

Chu kỳ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Lệnh 1	Ι	D	F	E	W										
Lệnh 2		I	D	F	E	\mathbf{W}									
Lệnh 3			I	D	F	E	W								
Lệnh 4				I	D	F	E	\mathbf{W}							
Lệnh 5					I	D	F	E	W						
Lệnh 6						I	D	F	E	W					
Lệnh 7							I	D	F	E	W				
Lệnh 8								Ι	D	F	E	W			
Lệnh 9									Ι	D	F	E	W		
Lệnh 10										Ι	D	F	E	W	_
Lệnh 11											Ι	D	F	E	W

- Các trở ngại của đường ống lệnh
 - Thực tế không thể luôn đạt 1 chu kỳ máy/lệnh do các trở ngại dẫn đến sự gián đoạn của ống lệnh
 - Trở ngại cấu trúc: do nhiều công đoạn dùng chung một tài nguyên
 - Trở ngại dữ liệu: lệnh sau sử dụng dữ liệu kết quả của lệnh trước
 - Trở ngại điều khiển: do các lệnh rẽ nhánh gây ra

- Trở ngại về cấu trúc
 - Nguyên nhân: Dùng chung tài nguyên
 - Khắc phục:
 - Nhân tài nguyên để tránh xung đột
 - Làm trễ
 - Ví dụ 1: Bus dữ liệu truyền lệnh và dữ liệu → Bus lệnh riêng, bus dữ liệu riêng (cache lệnh và cache dữ liệu)
 - Ví dụ 2: Lệnh nhân cần nhiều chu kỳ thực thi (E)

23

- Trở ngại về dữ liệu
 - Nguyên nhân: lệnh sau sử dụng dữ liệu kết quả của lệnh trước
 - Các dạng:

RAW	ADD A,B,C	Write-A must be earlier than
	ADD E, <mark>A</mark> ,D	Read-A
WAR	ADD A,B,C	Read-B must be earlier than
	ADD B,D,E	Write-B
WAW	ADD A,B,C	First Write-A must be earlier
V V / (V V	ADD A,D,E	Than second Write-A
	700 7 ,0,L	

Trở ngại về dữ liệu (tiếp)

no conflict at in-order pipeline conflict at out-of-order pipeline

- Trở ngại về dữ liệu (tiếp)
 - RAW

ADD A,B,C

ADD E,A,D

Write-A must be earlier

Than Read-A

- Trở ngại về điều khiển
 - Do lệnh rẽ nhánh gây ra
 - Đây là dạng trở ngại gây thiệt hại nhiều nhất cho ống lệnh: toàn bộ các lệnh đang thực thi trong ống phải huỷ

Chu kỳ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Lệnh 1	Ι	D	F	E	W										
Lệnh 2		I	D	F	E					BR	RA 2	25 I	F Z	ero	
Lệnh 3			Ι	D	F										
Lệnh 4				Ι	D										
Lệnh 5					Ι										
Lệnh 25						Ι	D	F	E	W					
Lệnh 26							I	D	F	E	W		·		
Lệnh 27								I	D	F	E	W	·		

IT-FIT 2021 27

- Các đơn vị xử lý dữ liệu chuyên dụng
 - Các đơn vị số nguyên (ALU)
 - Các đơn vị số dấu chấm động (FPU)
 - Các đơn vị chức năng đặc biệt (SFU)
 - Đơn vị xử lý dữ liệu âm thanh
 - Đơn vị xử lý dữ liệu hình ảnh
 - Đơn vị xử lý dữ liệu vector
- Mục đích: Tăng khả năng xử lý các chức năng chuyên biệt

- Bộ nhớ cache
 - Được tích hợp trên chip vi xử lý
 - Bao gồm hai đến ba mức cache
 - Cache L1 gồm hai phần tách rời:
 - Cache lệnh (Instruction cache)
 - Cache dữ liệu (Data cache)
 - → Giải quyết xung đột khi nhận lệnh và dữ liệu
 - Cache L2 và L3: chung cho lệnh và dữ liệu
- Mục đích: Tăng hiệu suất truy cập bộ nhớ

- Đơn vị quản lý bộ nhớ
 - Thường gọi là đơn vị MMU (Memory
 Management Unit) dùng để quản lý bộ nhớ ảo
 - Chuyển đối địa chỉ ảo (trong chương trình) thành địa chỉ vật lý (trong bộ nhớ)
 - Cung cấp cơ chế phân trang/phân đoạn
 - Cung cấp chế độ bảo vệ bộ nhớ
- Mục đích: Tăng dung lượng bộ nhớ chính bằng cách sử dụng bộ nhớ phụ

- Các kiến trúc máy tính song song
 - Nhu cầu giải các bài toán lớn ngày càng nhiều, cần những máy tính cực mạnh có khả năng xử lý tốc độ cao
 - Kiến trúc máy tính tuần tự (Von-Neumann) tiến đến giới hạn tốc độ, một bộ xử lý duy nhất khó nâng cao hơn nữa khả năng xử lý
 - Các kiến trúc máy tính song song giúp tăng hiệu suất tính toán cho máy tính:
 - Kiến trúc song song mức lệnh IPL (Instruction-level parallelism):
 Tăng số lượng lệnh thi hành được trên cùng 1 đơn vị thời gian
 - Kiến trúc song song mức xử lý (Machine parallelism): Tăng số lượng đơn vị xử lý phần cứng
 - Cần kết hợp cả 2 kiến trúc song song để tạo ra các máy tính có hiệu suất cao

- Kiến trúc song song mức lệnh
 - Siêu đường ống (Superpipeline)
 - Chia mỗi thao tác trong chu trình lệnh ra n bước nhỏ → ống lệnh dài hơn
 - Cần 1/n chu kỳ máy cho mỗi thao tác
 - Siêu hướng (Superscalar)
 - Sử dụng nhiều ống lệnh → CPU gồm nhiều đơn vị chức năng, cho phép thi hành nhiều lệnh đồng thời
 - Mỗi chu kỳ máy thực hiện được nhiều lệnh
 - VLIW (Very Long Instruction Word)
 - Ghép nhiều lệnh đơn vào 1 từ máy để thực hiện đồng thời
 - Ví dụ: CPU Itanium họ IA-64 của Intel cho phép ghép 3 lệnh/từ máy gọi là bundle gồm 128 bit

• Superpipeline

Chu kỳ	1		2		3		4		5		6		7	7
Lệnh 1	I 1	I2	D1	D2	F1	F2	E1	E2	W1	W2				
Lệnh 2		I1	I2	D1	D2	F1	F2	E1	E2	W1	$\mathbf{W2}$			
Lệnh 3			I1	I2	D1	D2	F1	F2	E 1	E2	W1	W2		
Lệnh 4				I1	I2	D1	D2	F1	F2	E1	E2	W1	W2	
Lệnh 5					I 1	I2	D1	D2	F 1	F2	E 1	E2	W1	W2

Superscalar

Chu kỳ	1	2	3	4	5	6	7	8	9
Lệnh 1	Ι	D	F	E	\mathbf{W}				
Lệnh 2	I	D	F	E	\mathbf{W}				
Lệnh 3		Ι	D	F	E	W			
Lệnh 4		I	D	F	E	W			
Lệnh 5			I	D	F	E	W		
Lệnh 6			I	D	F	E	W		
Lệnh 7				I	D	F	E	\mathbf{W}	
Lệnh 8				I	D	F	E	\mathbf{W}	
Lệnh 9					I	D	F	E	W
Lệnh 10					I	D	F	E	W

VLIW

• Ví dụ: Khuôn dạng lệnh của CPU Intel Itanium

- Kiến trúc song song mức xử lý
 - Tích hợp nhiều bộ xử lý đồng thời để tăng khả năng thi hành chương trình
 - Các xu hướng phát triển:
 - Đa chương (multi-programming)
 - Đa luồng (multi-threading)
 - Đa nhân (multi-core)
 - Đa xử lý (multi-processing)
 - Đa máy tính (multi-computer)

Kiến trúc song song mức xử lý (tiếp)

(a) On-chip parallelism (b) Coprocessor (c) Multiprocessor (d) Multicomputer (e) Grid

IT-FIT 2021

• Multi-core

IT-FIT 2021

CPU Core n

L2 cache

CPU Core n

L2 cache

L1-I

• Ví dụ: CPU Intel Core i7 gồm 4 nhân

39

- Multi-processor
 - Sử dụng bus chung hoặc switch
 - Sử dụng bộ nhớ chung hoặc riêng biệt

Sơ đồ UMA (Uniform Memory Access) dùng bus chung và bộ nhớ chung

- Multi-processor (tiếp)
 - Sơ đồ NUMA (Non-Uniform Memory Access)
 dùng bus chung và bộ nhớ riêng

- Multi-processor (tiếp)
 - Sơ đồ UMA (Uniform Memory Access) dùng switch và bộ nhớ riêng
 - Còn gọi là hệ thống đa xử lý đối xứng SMP (Symmetric Multi-Processors)

IT-FIT 2021

- Multi-processor (tiếp)
 - Sơ đồ multi-processor dùng bộ nhớ chung

<u>~</u>,

• Ví dụ: Hệ thống SUN E25K (NUMA multi-processor)

- Multi-computer
 - Phân loại theo Flynn (1966): Căn cứ vào số lượng lệnh và số lượng dữ liệu có thể xử lý là 1 hay nhiều
 - Single instruction, single data stream **SISD**
 - Single instruction, multiple data stream **SIMD**
 - Multiple instruction, single data stream **MISD**
 - Multiple instruction, multiple data stream- MIMD

T-FIT 2021

45

Sơ đồ phân loại Flynn

Ví dụ về SIMD

ADD R3 ← R1, R2								
R1	a7	a6	a5	a4	аЗ	a2	a1	a0
	+	+	+	+	+	+	+	+
R2	b7	b6	b5	b4	b3	b2	b1	b0
	=	=	=	=	=	=	=	=
R3	a7+b7	a6+b6	a5+b5	a4+b4	a3+b3	a2+b2	a1+b1	a0+b0
			NAL II	ADD D	D . D4	DO.		
MULADD R3 ← R1, R2								
R1	a7	a6	a5	a4	a3	a2	a1	a0
	×&+	×&+	×&+	×&+	×&+	×&+	×&+	×&+
R2	b7	b6	b5	b4	b3	b2	b1	
								b0
	=	=	=	=	=	=	=	b0 =

IT-FIT 2021

47

Cluster

- Là 1 dạng máy tính loại MIMD gồm nhiều máy tính độc lập kết nối qua mạng tốc độ cao, mỗi máy có CPU, BN và IO riêng
- Dùng phương pháp truyền thông báo (Message Passing) để trao đổi thông tin (bằng phần mềm)
 - MPI (Message Passing Interface)
 - PVM (Parallel Virtual Machine)
- Gồm 2 loại
 - NOW (Network of Workstations) hoặc COW (Cluster of Workstations): Kết nối qua LAN
 - Grid : Kết nối qua Internet

IT-FIT 2021

48

• Cluster (tiếp)

Message-passing multi-computer

IT-FIT 2021

Ví dụ: Siêu máy tính Bluegen của IBM

• Ví dụ: Siêu máy tính Red Storm của Cray

• So sánh 2 siêu máy tính Bluegen & Red Storm

Item	BlueGene/L	Red Storm
CPU	32-Bit PowerPC	64-Bit Opteron
Clock	700 MHz	2 GHz
Compute CPUs	65,536	10,368
CPUs/board	32	4
CPUs/cabinet	1024	96
Compute cabinets	64	108
Teraflops/sec	71	41
Memory/CPU	512 MB	2–4 GB
Total memory	32 TB	10 TB
Router	PowerPC	Seastar
Number of routers	65,536	10,368
Interconnect	3D torus $64 \times 32 \times 32$	3D torus 27 × 16 × 24
Other networks	Gigabit Ethernet	Fast Ethernet
Partitionable	No	Yes
Compute OS	Custom	Custom
I/O OS	Linux	Linux
Vendor	IBM	Cray Research
_T ⊊хреnsive	Yes	Yes

• Top 10 siêu máy tính 06/2010 trên trang top500.org

Rank	x Site	Computer
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz Cray Inc.
2	National Supercomputing Centre in Shenzhen China (Thâm Quyến)	Nebulae (Tinh Vân) - Dawning TC3600 Blade, Intel X5650 Dawning
3	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM
4	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz Cray Inc.
5	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution IBM
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0 Ghz SGI
7	National SuperComputer Center in Tianjin/NUDT China (Thiên Tân)	Tianhe-1 (Tinh Hà) - NUDT TH-1 Cluster, Xeon E5540/E5450 NUDT
8	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution IBM
9	Argonne National Laboratory United States	Intrepid - Blue Gene/P Solution IBM
10	National Renewable Energy Laboratory United States T-FIT 2021	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband Sun

• Top 10 siêu máy tính 06/2011 trên trang top500.org

Rank	Site	Computer
1	RIKEN Advanced Institute for Computational Science - Japan	K computer, SPARC64 VIIIfx 2.0GHz Fujitsu
2	National Supercomputing Center in Tianjin (Thiên Tân) – China	Tianhe-1A (Tinh Hà) X5670 2.93Ghz 6C, NVIDIA GPU NUDT
3	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.
4	National Supercomputing Centre in Shenzhen (Thâm Quyến) – China	Nebulae (Tinh Vân) Intel X5650, NVidia Tesla C2050 GPU Dawning
5	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 G7 Xeon 6C X5670, Nvidia GPU, NEC/HP
6	DOE/NNSA/LANL/SNL United States	Cielo - Cray XE6 8-core 2.4 GHz Cray Inc.
7	NASA/Ames Research Center/NAS United States	Pleiades Xeon HT QC 3.0/Xeon 5570/5670 2.93 Ghz SGI
8	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12-core 2.1 GHz Cray Inc.
9	Commissariat a l'Energie Atomique (CEA) France	Tera-100 - Bull bullx super-node S6010/S6030 Bull SA
10	DOE/NNSA/LANL United States 2021	Roadrunner - PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz IBM

• Top 10 siêu máy tính 06/2012 trên trang top500.org

Ranl	Site	Computer
1	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM
2	RIKEN Advanced Institute for Computational Science Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu
3	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM
4	Leibniz Rechenzentrum Germany	SuperMUC - <u>iDataPlex DX360M4, Xeon E5-2680 8C</u> 2.70GHz, Infiniband FDR IBM
5	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 NUDT
6	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - <u>Cray XK6, Opteron 6274 16C 2.200GHz, Cray</u> <u>Gemini interconnect, NVIDIA 2090</u> Cray Inc.
7	CINECA Italy	Fermi - <u>BlueGene/Q, Power BQC 16C 1.60GHz, Custom</u> IBM
8	Forschungszentrum Juelich (FZJ) Germany	JuQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM
9	CEA/TGCC-GENCI France	Curie thin nodes - <u>Bullx B510, Xeon E5-2680 8C 2.700GHz,</u> <u>Infiniband QDR</u> Bull
10	National Supercomputing Centre in Shenzhen (NSCS) China ^{IT-FIT 2021}	Nebulae - <u>Dawning TC3600 Blade System, Xeon X5650 6C</u> 2.66GHz, Infiniband QDR, NVIDIA 2050 Dawning 56

• Top 10 siêu máy tính 11/2012 trên trang top500.org

	J		
Rank	Site Site	System	Cores
1	DOE/SC/Oak Ridge National Laboratory United States	<u>Titan - Cray XK7 , Opteron 6274 16C 2.200GHz,</u> Cray Inc.	560.640
2	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 Hz, IBM	1.572.864
3	RIKEN Advanced Institute for Computational Science Japan	K computer, SPARC64 VIIIfx 2.0GHz, Fujitsu	705.024
4	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, IBM	786.432
5	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, IBM	393.216
6	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, IBM	147.456
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Intel Xeon Phi Dell	204.900
8	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 NUDT	186.368
9	CINECA Italy	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, IBM	163.840
10	IBM Development Engineering United States	DARPA Trial Subset - Power 775, POWER7 8C 3.836GHz IBM	57 63.360

Câu hỏi

IT-FIT 2021 58