Parth Jatakia

 $\label{eq:princeton} Princeton \ University $$ \boxtimes pjatakia@princeton.edu, $\boxtimes parth.jatakia@gmail.com $$$

RESEARCH INTEREST

Hybrid quantum systems, Quantum information processing, Experimental condensed matter physics, Quantum Optics, Translation to quantum technology.

CONFERENCE PROCEEDINGS & PUBLICATIONS

1. Characterizing Initial Correlation via Spectroscopy, QFF - RRI, Bangalore

January 2020

2. Characterizing Initial Correlation via Spectroscopy, APS March Meeting, Boston

March 2019

3. Parth Jatakia, Sai Vinjanampathy, Kasturi Saha. **Detecting Initial Correlations via Correlated Spectroscopy** in **Hybrid Quantum Systems.** arXiv:1912.06632 (Accepted by Scientific Reports)

EDUCATION

Princeton University

2020 - 2025

Ph.D. Candidate, GPA - 3.9/4.0,

Advisor : Prof. Andrew Houck, Houck Lab

Indian Institute of Technology Bombay

2015 - 2020

BTech. & M.Tech. (Dual Degree) in **Engineering Physics** with specialization in **Nanoscience**, Minor in **Computer Science**, GPA - 9.15/10

RESEARCH EXPERIENCE

Heavy Fluxonium qubit at zero flux bias

March 2021 - Present

Prof. Andrew Houck, Princeton University

- \circ Engineering heaviness of Fluxonium qubits to optimize the trade-off between T_2 and T_1 .
- Designing Fluxonium qubits with structure property resolved through HFSS simulation such that predicted device parameters are close to SCQubit simulations.
- Fabricating the designs and packaging the qubit. Measuring coherence properties of the qubits at zero and half flux.

Double quantum dot in silicon as a two-qubit spin quantum computing architecture Sept 2018 - May 2020 Prof. Suddhasatta Mahapatra, IIT Bombay

- Nanofabrication of nano-scale devices in semiconductor heterostructure (Si SiGe).
- Optimised all recipes for processes such as lithography of nanoscale gates, ion implantation, metal deposition, etc required for realizing the quantum architecture.
- Fabricated heterostructure based devices to observe quantum hall effect and coulomb blockade.

Spin Squeezing in Nitrogen Vacancy Centre (NV)

January 2019 - May 2020

Prof. Kasturi Saha, IIT Bombay & Prof. Saikat Guha, University of Arizona

- Worked on Hamiltonain engineering for NV ensemble interacting with optical cavity mode to generate spin squeezing.
- Modelled open quantum system dynamics of the NVs interacting with the cavity modes (upto 100 NVs).
- Optimising control sequence to generate maximum spin squeeze to create metrologically superior states.

Detecting Initial Correlations via Correlated Spectroscopy in Quantum Systems

July 2018 - May 2020

Prof. Kasturi Saha, IIT Bombay & Prof. Sai Vinjanampathy, IIT Bombay

- Developed a general method for detecting and characterizing initial correlation present between the system & environment.
- Applied on NV centers placed within a cavity to extract information like pairwise coupling, decay rates, hidden within the initial correlations.

ACADEMIC PROJECTS

Measurement-Induced State Transitions in a Superconducting Qubit Quantum Optics, Princeton: Spring 2021

• Recreated results from Sank et al 2016 using Qiskit and IBM Armonk to investigate the possibility of driving the qubit to higher energy states by populating the cavity with a large number of photons.

Exotic Topological Order in Fractal Spin Liquids Adv Quantum Mech, Princeton:

Spring 2021

 \circ Recreate and understand the calculations presented in Yoshida 2013 paper on exotic topological ordering of 2D and 3D spin liquids

Electrical & Optical nature of reduced graphene oxide, Adv Techniques in Nano, IIT Bombay: Spring 2019

• Measured transmittance and resistivity of multiple hydrazine reduced graphene oxide films with variations in reduction.

Hardware Emulation of Quantum Algorithms, Electronics Lab III, IIT Bombay:

Spring 2017

• Simulated two qubit Fourier transform on Field Programmable Gate Arrays (FPGAs) using parallelism feature.

Microwave Plasma CVD of Diamond, Prof. Kantimay Das Gupta, IIT Bombay:

Winter 2016

• Improved and deposited diamond using MPCVD system, and further characterized them using Raman spectroscopy.

Turing Pattern in Reaction Diffusion System Non-Linear Dynamics, IIT Bombay:

Autumn 2016

- Studied non-linear dynamical equations for a reaction diffusion system through linear stability analysis and bifurcation.
- Simulated reactions in 2D for various initial & boundary conditions to obtain striped and spotted Turing patterns

Imaging Algorithms in PET Scan Prof. Pragya Das, IIT Bombay

Summer 2016

• Investigated probabilistic models of detection for PET and implemented expectation-maximisation for image generation.

Computer Player for Othello Computer Programming and Optimisation, IIT Bombay

Autumn 2015

 \circ Used the MiniMax algorithm augmented with $\alpha - \beta$ pruning to calculate winning move efficiently.

ACADEMIC ACHIEVEMENTS

o Awarded Ilian Mihov *96 Graduate Fellowship

2020-21

• Ranked 1028th nationwide among 1.5 lakh students in Joint Entrance Examination for IITs.

2015

• Ranked 1740th nationwide among 13 lakh students in Joint Entrance Exam for all engineering colleges in India.

2015

KEY COURSES

Physics: Quantum Optics, Advance Quantum Mechanics, Quantum Spectroscopy, Implementations of Quantum Information, Physics of Quantum Devices, Physics of Nanostructure & Nanoscale devices, Advanced Lab techniques in Nanoscience, Analytical Techniques, Semiconductor Physics, Introduction to Atomic & Molecular Physics, Quantum Information & Computation, Quantum Mechanics I & II, Photonics, Non Linear Dynamics.

Electrical: Digital Systems, Transistor Lab, Op-Amp Lab, Microprocessor Lab, Digital Electronics Lab

CS: Machine Learning, Design and Analysis of Algorithm, Data Structures & Algorithms, Operating Systems

Math: Group Theory, Calculus, Linear Algebra, Differential Equations I & II, Complex Analysis, Numerical Analysis

SKILLS & EXPERIENCE

 $\begin{array}{l} \textbf{Programming \& Softwares:} \ Python, \ QuTip, \ Solidworks, \ MATLAB, \ Mathematica, \ , \ C/C++, \ QISKIT, \ HTML, \ VHDL, \ AutoCAD, \ TensorFlow, \ NumPy, \ SciPy, \ ScQubits, \ HFSS, \ COMSOL \ Multiphysics \end{array}$

Fabrication Tools: Electron Beam Lithography, Photolithography, Scanning Electron Microscopy, Atomic Force Microscopy, Sputtering, Thermal Evaporator, Reactive Ion Etchning, Plasma Ion Immersed Implantation, Atomic Layer Deposition, Plasma Asher

POSITION OF RESPONSIBILITY

Assistance in Instruction, ECE 511 Quantum Mechanics, Princeton:

Fall 2021

• Teaching and grading graduate level quantum mechanics course to a batch of 15 graduate students.

Department Academic Mentor, IIT Bombay:

2019-2020

• Mentoring weak performing senior students to help them navigate their undergraduate life.

Teaching Assistant, Electronics Transistor lab, IIT Bombay:

Autumn 2019

• Mentored a batch of 15 students through lab and help sessions, and graded their assignments and paper.

Convener, Maths & Physics Club, IIT Bombay:

2016-17

 \circ As part of a team of eight students, organized group discussions, lab visits, competitions and talks

PUBLIC TALK

• Quantum Computing Workshop: Introduced various quantum systems and respective architectures to realize a qubit and further a quantum computer.

2019, 2020

EXTRACURRICULAR

- Quantum Reading Group: Organised 6 seminars by professors, students and alumni in Quantum Technology.
- Academic Volunteer Program: Conducted help session in Quantum Mechanics II & Condensed Matter Physics.
- Mentor for Summer Reading: Mentored students interested in quantum computing during summer for 3 years.
- National Service Scheme: Teaching science and mathematics to underpriviledged students.