Last time
$$Cl_X(A) = X - Int_X(X - A)$$

...wrt the box topology? [draw]

Q what is the closure of R^{∞} in R^{ω} in the box top? in the product top?

no: x in $(0, 2) \times (0, 1) \times (0, 2/3) \times ...$

a useful formula:

...wrt the product topology?

pick basis elt B s.t. x in B sub V

so B contains elts of R^{^∞}

CI_X(A)

 $= X - \{x \mid \text{have V open in X s.t. x in V sub X} - A\}$ $= \{x \mid \text{no V open in X s.t. x in V and V sub X} - A\}$ $= \{x \mid \text{if V is open in X and contains x and x$

B = prod_i B_i, where B_i ≠ R for only fin many i

yes: suppose V open in R^{ω} and x in V

= $\{x \mid \text{if V is open in X and contains x,}$ then $V \text{ cap } A \neq \emptyset \}$

so V cap R[^]∞ ≠ Ø

Q let x = (1, 1/2, 1/3, 1/4, ...) is x in Cl $\{R^{\infty}\}(R^{\infty})$...

[other ways to describe Cl_X(A)?] [limits and convergence?]

 \underline{Df} a sequence x_1, x_2, ... of points in X $\underline{converges}$ to x

iff, for all open V containing x have N s.t. x_N , $x_{N + 1}$, ... in V

thus: if some seq in A converges to x in X

then x in Cl_X(A)

[Munkres Lem 21.2: if the topology on X comes from a metric then the converse holds]

Q can a seq converge to multiple pts?

<u>Ex</u> give X the indiscrete topology: every seq converges to every pt at once!

Df X is Hausdorff iff, for all $x \neq y$ in X, there are disjoint open U and V s.t. x in U and y in V

Thm if X is Hausdorff then any sequence in X converges to at most one pt

 \underline{Pf} suppose $(x_n)_n$ converges to x and y

suppose $x \neq y$: then have disj open U, V s.t. x in U and y in V if x_N, x_{N + 1}, ... in U, then notin V contradiction

Separation Conditions

 $T_2 = Hausdorff$ for all $x \neq y$, disjoint open U, V

s.t. x in U and y in V

T_1 for all $x \neq y$, have open U

s.t. x in U and y notin U

T_0 for all $x \neq y$, have open U

s.t. either x in U and y notin U,

or vice versa

Ex T_0 but not T_1:

{b} is open

a notin {b} and b in {b}

but no open U s.t. a in U and b notin U

(Munkres §22)

subset of X = set A with

injective map A to X

 $\underline{\text{quotient set}}$ of X = set Y with

surjective map X to Y

given a topology on X:

Df the quotient topology on Y is
{V sub Y | f^{-1}(V) is open in X}

subspace top on A		coarsest top s.t. A to X is cts	Q	give [0, 1] the analytic top, i.e., the subsp. top inherited from R_{an}
quotient top on Y		finest top s.t. X to Y is cts		what is the quotient top on S^1?
			suppose	e {B_i}_i is a basis for the top of X
i.e.:	i.e.: if T is a top on Y s.t. X to Y is cts			
then T contains the quotient top on Y		[recall:]		
[if V in T, then $f^{-1}(V)$ is open in X so V is also open in the quotient top on Y] $Ex X = [0, 1] \text{ and } Y = S^1 := \{x^2 + y^2 = 1\}$			<u>Thm</u>	if A is a subset of X then {A cap B_i}_i is a basis for the subspace top on A
<u>Ex</u>	Λ – [0, 1] and 1 –	3 I {X Z + y Z - I}	<u>Thm</u>	if Y is a quotient set of X

then $\{C \mid f^{-1}\}(C) = B_i \text{ for some } i\}$ is

a basis for the quotient top on Y

define f : [0, 1] to S^1 by $f(t) = (\cos(2\pi t), \sin(2\pi t))$