DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH1020 Physics II

Problem Set 1 (Tutorial on 30.1.2024)

17.1.2024

The Electric field and its flux

- 1. Find the electric field above the center of a square sheet (side a), carrying a uniform charge σ . Once you have evaluated this charge density, verify that your result reproduces the limiting cases $a \to \infty$, and $z \gg a$ correctly.
- 2. (a) A sphere of radius R centred at the origin carries a *surface* charge density $\sigma(\mathbf{r}) = (\mathbf{K} \cdot \mathbf{r})$, where \mathbf{K} is a given constant vector of appropriate dimensions. Find the electric field at the centre of the sphere.
 - (b) Repeat the calculation for the case in which the sphere has a *volume* charge density $\rho(\mathbf{r}) = (\mathbf{K} \cdot \mathbf{r})$ ($0 \le |\mathbf{r}| \le R$), rather than a surface charge density. (Again, **K** has the appropriate physical dimensions.)
- 3. Using Gauss' law in the integral form,

$$\oint_{S} \mathbf{E} \cdot \hat{n} dS = \frac{Q_{\text{enclosed}}}{\epsilon_{0}} \ ,$$

where \hat{n} is the outward normal to the Gaussian surface S, obtain the electric field \mathbf{E} due to the following volume charge distributions:

(a)

$$\rho(\varrho,\varphi,z) = \left\{ \begin{array}{ll} \beta \varrho/a & 0 < \varrho \leq a \\ 0 & a < \varrho < \infty \end{array} \right..$$

Here (ϱ, φ, z) denote cylindrical polar coordinates. Using cylindrical symmetry one can show that $\mathbf{E}(\mathbf{r})$ must necessarily be of the form $E(\varrho)\hat{e}_{\varrho}$. So the problem reduces to a choice of Gaussian surface, S.

(b)

$$\rho(r, \theta, \varphi) = \begin{cases} \beta[1 - (r^2/a^2)] & 0 < r \le a \\ 0 & a < r < \infty \end{cases}$$

Here (r, θ, φ) denote spherical polar coordinates. Using spherical symmetry one can show that $\mathbf{E}(\mathbf{r})$ must necessarily be of the form $E(r)\hat{e}_r$.

Note: β is a constant of appropriate dimensions in each case.

- 4. Consider two point charges q that are located at positions $x = \pm \ell$.
 - (a) At points close to the origin on the x axis, find E_x . At points close to the origin on the y axis, find E_y . Make suitable approximations with $x \ll \ell$ and $y \ll \ell$.

- (b) Consider a small infinitesimal cylinder centered at the origin, with its axis along the x axis. The radius is r_0 and the length is $2x_0$. Using your results from part (a), verify that there is zero flux through the cylinder, as required by Gauss's law.
- 5. Two infinite lines of charge, each of uniform charge density λ , are located along the x and y axes respectively. Consider a cubical Gaussian surface with edge length L, centred at the origin of the coordinates O with its faces perpendicular to the coordinate axes. Find the electric flux through each of the six faces of the cube.
- 6. A ring of radius R has a uniform line charge density λ ($\lambda > 0$). The ring is located in the x-y plane with its centre at the origin.
 - (a) What is the electric field at any point along the z-axis?
 - (b) A point charge -Q is initially placed at the origin and is constrained to move along the z axis. If it is displaced a small distance (\ll R) from the origin show that it undergoes simple harmonic motion and determine its period.