PD Claves

Conceptos clave:

- Solapamiento de subproblemas: El problema se puede descomponer en subproblemas más pequeños que se resuelven de manera repetitiva. La programación dinámica aprovecha esto almacenando las soluciones a los subproblemas para evitar recalcularlas.
- 2. **Optimalidad de subestructuras**: La solución óptima de un problema se puede construir a partir de las soluciones óptimas de sus subproblemas.
- 3. **Memoización**: Consiste en almacenar los resultados de sub problemas resueltos para no volver a calcularlos. Esto se suele hacer utilizando una estructura de datos como una tabla o matriz.
- 4. **Tabulación**: Se resuelven los subproblemas de manera ascendente, construyendo las soluciones de los subproblemas más pequeños primero y utilizándose para resolver problemas más grandes. Es un enfoque iterativo, en lugar de recursivo.

Guia para armar ecuaciones de recurrencia:

Para armar una ecuación de recurrencia en programación dinámica, el enfoque se centra en descomponer el problema en subproblemas más pequeños y relacionar la solución de cada subproblema con las soluciones de subproblemas previos. A continuación te proporcionaré una guía para formular una ecuación de recurrencia, tomando como base el problema de la mochila.

Guía para formular una ecuación de recurrencia:

Paso 1: Entender el problema y los subproblemas

El **problema de la mochila** consiste en seleccionar elementos, cada uno con un valor y un peso, de manera que se maximice el valor total de los elementos seleccionados sin exceder un peso máximo W.

Cada subproblema es: ¿Cuál es el valor máximo que se puede obtener considerando los primeros i elementos y un peso máximo de w?

Paso 2: Definir el estado y la función de recurrencia

En este caso, podemos definir la función **OPT(i, w)** como el valor máximo que podemos obtener utilizando los primeros i elementos con un peso máximo de www.

La idea es construir la solución para el subproblema i utilizando:

- La solución sin incluir el elemento i (mantenemos el valor obtenido con los i-1 elementos).
- La solución incluyendo el elemento i, si es que el peso del elemento i es menor o igual a w.

Paso 3: Definir la decisión en cada paso

Para cada elemento i tienes dos opciones:

- No incluir el elemento i: En este caso, el valor máximo que podemos obtener es el mismo que si solo consideramos los primeros i-1 elementos y el mismo peso w. OPT(i,w)=OPT(i-1,w)
- 2. **Incluir el elemento i**: Si el peso del elemento i es menor o igual a w, podemos considerar el valor de incluirlo. En este caso, obtenemos el valor del elemento i, más el valor óptimo de los primeros i-1 elementos con el peso restante w-peso[i]

```
OPT(i,w)=max(OPT(i-1,w),valor[i]+OPT(i-1,w-peso[i]))
```

Paso 4: Definir los casos base

Los casos base definen las condiciones más simples del problema:

 Si no consideramos ningún elemento (i=0), el valor máximo es 0 independientemente del peso:

```
OPT(0,w)=0 para cualquier w
```

• Si el peso máximo es 0 (w=0), el valor máximo es 0 independientemente del número de elementos:

```
OPT(i,0)=0 para cualquier i
```

Paso 5: Implementación en el código

Ahora, basándonos en estos principios, la implementación de la ecuación de recurrencia en tu código queda clara.

Recapitulación de la ecuación de recurrencia

La ecuación de recurrencia para el problema de la mochila es:

Esto te permite calcular el valor máximo que se puede obtener con un conjunto de elementos y un peso límite.