Activité : Introduction aux fonctions de densité.

Dans une région, on a constaté que tout habitant résidait à moins de six kilomètres d'un éco-point (site pour déposer bouteille de verre, papier recyclable, etc.).

- 1. Un relevé statistique a permis d'établir l'histogramme des fréquences représenté sur la figure 1. Ainsi, la fréquence de la population habitant entre 0 et 1 km d'un éco-point est de 0,51 ou, dit autrement, 51 % de la population habite entre 0 et 1 km d'un éco-point.
 - a. Quel est le pourcentage d'habitants résidant à moins de 3 km d'un éco-point ?
 - b. Que vaut la somme des aires des rectangles de l'histogramme?
- 2. On suppose que la population est très grande et on choisit un habitant au hasard.

 On crée la variable aléatoire X qui à chacun des événements élémentaires de cette expérience aléatoire, donc à chaque personne, associe la distance séparant la résidence de cette personne de l'éco-point le plus proche.

 X prend donc ses valeurs dans l'intervalle [0; 6[, et on peut considérer qu'il y a une infinité de possibilités.

 On dit alors que la variable aléatoire X est continue (par opposition à discrète). On veut définir certaines caractéristiques de la loi de probabilité de X. Compléter :
 - $P(1 \le X \le 2) = \dots$
- $P(X \le 4) = \dots$
- $P(X \ge 5) = \dots$
- **3.** Une étude plus précise a permis de relever les distances à 0,1 km près et de construire l'histogramme de la figure 2, où chacun des 60 rectangles a pour base 0,1 et pour **aire** la fréquence de la classe correspondante.
 - a. Le 1er rectangle a une hauteur de 0,71. Quel pourcentage de la population réside à moins de 0,1 km de l'éco-point ?
 - b. Que vaut la somme des aires de tous les rectangles?
 - c. On donne dans le tableau ci-dessous un extrait des relevés ayant permis d'élaborer cet histogramme. À l'aide de cet extrait, déterminer $P(0,5 \le X \le 0.8)$

Distance	[0; 0, 1[[0,1;0,2[[0,2; 0,3[[0,3; 0,4[[0,4;0,5[[0,5; 0,6[[0,6; 0,7[[0,7;0,8[[0,8;0,9[[0,9; 1,0[
Fréquence (en %)	7,1	6,5	6,4	5,3	4,8	4,5	4,2	4,2	4,1	3,9

- d. Comment pourrait-on obtenir ces mêmes résultats uniquement à partir de l'histogramme?
- 4. Si on extrapole à partir des relevés, on voit apparaître une courbe comme sur la figure 3. Cette courbe représente une fonction f définie sur [0;6[et est appelée densité de probabilité de la loi de X.
 - a. Soit a et b deux nombres réels de l'intervalle [0;6[avec a < b. En vous inspirant de ce qui a été fait précédemment, comment pourrait-on obtenir la probabilité suivante $: P(a \le X \le b)$.

- b. Que peut-on dire de l'aire sous la courbe de f entre 0 et 6 ?
- c. On suppose qu'ici que $f(x) \approx 0.75e^{-0.75x}$.
 - i. Calculer : $P(1, 23 \le X \le 3, 67)$.
 - ii. Vérifier que : $P(0 \le X \le 6)$ est proche de 1.
 - iii. Conjecturer la valeur de P(X=3), et plus généralement, la valeur de P(X=t) pour tout nombre $t \in [0; 6[$.

Figures de l'activité : Introduction de la fonction de densité.

Figure 1

Figure 2

Figure 3