Lab 15

Machine Learning 2021-2022 - UMONS Souhaib Ben Taieb

1

You observe a dataset $\mathscr{D} = \{(\mathbf{x}_i, y_i)_{i=1}^n \text{ where } \mathbf{x}_i \in \mathbb{R}^d \text{ and } y \in \mathbb{R}. \text{ Assume that your model for the data is}$

$$y_i \sim \text{Laplace}(\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}, 1),$$

where $\beta \in \mathbb{R}^d$ are the parameters of your model, and Laplace (μ, b) is the Laplace distribution with mean μ and scale b. Its probability density function is given by

$$f(y; \mu, b) = \frac{1}{2b} \exp\left(\frac{-|y - \mu|}{b}\right).$$

Write down the formula for the (conditional) log-likelihood as a function of the observed data and the (unknown) parameters β . Explain your derivations.

$$L(\boldsymbol{\beta}) = f(y_1, y_2, ..., y_n | \boldsymbol{x}_1, ..., \boldsymbol{x}_2; \boldsymbol{\beta})$$

Solution:

By definition, the (conditional) likelihood of the observed data under the model is defined as:

$$L(\boldsymbol{\beta}) = f(y_1, y_2, ..., y_n | \boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n; \boldsymbol{\beta})$$

$$= f(y_1 | \boldsymbol{x}_1; \boldsymbol{\beta}) f(y_2 | \boldsymbol{x}_2; \boldsymbol{\beta}) ... f(y_n | \boldsymbol{x}_n; \boldsymbol{\beta}) \qquad y_i \text{ are i.i.d. and } f(y_i | \boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n; \boldsymbol{\beta}) = f(y_i | \boldsymbol{x}_i; \boldsymbol{\beta})$$

$$= \prod_{i=1}^n f(y_i | \boldsymbol{x}_i; \boldsymbol{\beta}),$$

With $f(y_i|\mathbf{x}_i;\boldsymbol{\beta}) = \frac{1}{2}\exp(-|y_i - \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\beta}|)$. The (conditional) log-likelihood is obtained as:

$$\log L(\boldsymbol{\beta}) = \log \left(\Pi_{i=1}^{n} f(y_{i} | \boldsymbol{x}_{i}; \boldsymbol{\beta}) \right)$$

$$= \sum_{i=1}^{n} \log f(y_{i} | \boldsymbol{x}_{i}; \boldsymbol{\beta})$$

$$= \sum_{i=1}^{n} \log \left(\frac{1}{2} \exp(-|y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}|) \right)$$

$$= n \log \frac{1}{2} + \sum_{i=1}^{n} -|y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{\beta}|$$

2

Consider a three-class classification problem where $X \in [0,1]$ and $Y \in \{0,1,2\}$, with the following data generating process:

$$X \sim U(0,1)$$
 and $Y|X = x \sim \begin{cases} 0, & \text{with probability } 0.2\\ 1, & \text{with probability } 0.5x\\ 2, & \text{with probability } 0.8 - 0.5x \end{cases}$

where U(a,b) is a uniform random variable on the interval [a,b].

- (a) What is the expression of the Bayes optimal classifier?
- (b) What is the misclassification error rate of the Bayes optimal classifier? Your answer should be a scalar.

$$f_{BOC}(x) = \underset{k \in \{0,1,2\}}{\operatorname{argmax}} p(Y = k | X = x)$$

Solution: (a) The Bayes optimal classifier is defined as:

$$f_{BOC}(x) = \underset{k \in \{0,1,2\}}{\operatorname{argmax}} p(Y = k|x),$$

where p(Y = k|x) are the true conditional probabilities that generated the data, i.e.:

$$\begin{cases} p(Y = 0|x) = 0.2\\ p(Y = 1|x) = 0.5x\\ p(Y = 2|x) = 0.8 - 0.5x \end{cases}.$$

We have that:

$$p(Y = 0|x) > p(Y = 1|x) \iff 0.2 > 0.5x$$
$$\iff x < 0.4$$

$$p(Y = 0|x) > p(Y = 2|x) \iff 0.2 > 0.8 - 0.5x$$

 $\iff x > 1.2$

$$p(Y = 1|x) > p(Y = 2|x) \iff 0.5x > 0.8 - 0.5x$$
$$\iff x > 0.8,$$

which leads to:

$$f_{BOC}(x) = \begin{cases} 1 & \text{if } x \in]0.8, 1] \\ 2 & \text{if } x \in [0, 0.8[\end{cases}$$

(b)

The definition of the Bayes Error Rate is:

$$\begin{aligned} \text{BER} &= \mathbb{E}_x \Big[1 - \max_{k \in \{0,1,2\}} p(Y = k | x) \Big] \\ &= 1 - \int_{x \in \mathscr{X}} \max_{k \in \{0,1,2\}} p(Y = k | x) f(x) dx \\ &= 1 - \int_{0}^{1} \max_{k \in \{0,1,2\}} p(Y = k | x) dx \qquad \text{if } X \sim U[0,1], \text{ then } f(x) = 1 \\ &= 1 - \int_{0}^{0.8} (0.8 - 0.5x) dx - \int_{0.8}^{1} 0.5x dx \\ &= 1 - [0.8x - 0.25x^2]_{0}^{0.8} - [0.25x^2]_{0.8}^{1} \\ &= 1 - 0.64 + 0.16 - 0.25 + 0.16 \\ &= 0.43 \end{aligned}$$

We consider Discriminant Analysis for a one-dimensional two-class classification problem. Let $X \in \mathbb{R}$ be the input variable and $Y \in N, E$, the output. We have the following:

- The prior probabilities are given by $\pi_N = P(Y = N) = \frac{\sqrt{2\pi}}{1+\sqrt{2\pi}}$ and $\pi_E = P(Y = E) = \frac{1}{1+\sqrt{2\pi}}$.
- The distribution of X given Y = N is Gaussian (Normal) with zero mean and variance σ^2 , i.e. $X|Y = N \sim \mathcal{N}(0, \sigma^2)$.
- The distribution of X given Y = E is given by:

$$P(X = x | Y = E) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

Starting from the posterior probabilities P(Y = N | X = x) and P(Y = E | X = x), derive the decision boundary, i.e. an equation in x. Note that only the positive solutions of your equation will be relevant; ignore all x < 0.

If
$$X \sim \mathcal{N}(\mu, \sigma)$$
, then $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

Solution:

The posterior probabilities are expressed as

$$P(Y = E | X = x) = \frac{P(Y = E, X = x)}{f(x)}$$

$$= \frac{P(X = x | Y = E)P(Y = E)}{f(x)}$$

$$= \frac{\lambda e^{-\lambda x} \frac{1}{1 + \sqrt{2\pi}}}{f(x)}$$
 Only positive values of x are considered.

and

$$P(Y = N | X = x) = \frac{P(Y = N, X = x)}{f(x)}$$

$$= \frac{P(X = x | Y = N)P(Y = N)}{f(x)}$$

$$= \frac{\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}\frac{\sqrt{2\pi}}{1+\sqrt{2\pi}}}{f(x)}$$

The decision boundary of Discrimant Analysis verifies:

$$P(Y = N | X = x) = P(Y = E | X = x)$$

$$\iff \frac{\lambda e^{-\lambda x} \frac{1}{1 + \sqrt{2\pi}}}{f(x)} = \frac{\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \frac{\sqrt{2\pi}}{1 + \sqrt{2\pi}}}{f(x)}$$

$$\iff \lambda e^{-\lambda x} \frac{1}{1 + \sqrt{2\pi}} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} \frac{\sqrt{2\pi}}{1 + \sqrt{2\pi}}$$

$$\iff \lambda e^{-\lambda x} = \frac{1}{\sigma} e^{-\frac{x}{2\sigma^2}}$$

Taking the log of the right-hand and left-hand sides of the equation leads to:

$$\log \lambda + \log \sigma - \lambda x + \frac{x^2}{2\sigma^2} = 0$$

4

Below is a Principal Component Analysis (PCA) of a dataset after centering and scaling each column:

	PC1		PC2	PC:	3]	PC4
X1	-0.5628749	0.2	2324633	-0.5286	5078	0.59	913599
X2	-0.4214823	-0.	6750169	0.5126	131	0.32	223859
X3	0.5730054	0.2	2201464	0.3024	299	0.72	292026
X4	-0.4209386	0.0	6647170	0.6052	584	-0.1	209310
			PC1	PC2	PC	C3	PC4
Standard deviation			1.6165	0.9985	0.50804		0.36313
Cumulative Proportion		0.6533	?	6	?	?	

- (a) What is the total variance?
- (b) What proportion of the total variance does the second principal component explain?
- (c) Complete the missing values for the cumulative proportions of total variance explained.
- (d) How many principal component directions would we need to explain at least 95% of the variance?
- (e) Let $\phi_1 \in \mathbb{R}^4$ and $\phi_2 \in \mathbb{R}^4$ be the first two loading vectors. What is the value of $\phi_1^{\mathsf{T}} \phi_2$? Briefly explain your answer.

Solution:

(a) The total variance is the sum of the variance of the individual variables, which is equal to the sum of the variance of each individual principal components.

$$TV = \sum_{i=1}^{k} Var(PC_k)$$
= $(1.6165)^2 + (0.9985)^2 + (0.50804)^2 + (0.36313)^2$
= 4

$$PVE_2 = \frac{Var(PC2)}{TV} = \frac{(0.9985)^2}{4} = 0.25$$

(c)

$$PVE_3 = \frac{Var(PC3)}{TV} = \frac{(0.50804)^2}{4} = 0.064$$

	PC1	PC2	PC3	PC4
Standard deviation	1.6165	0.9985	0.50804	0.36313
Cumulative Proportion	0.6533	0.9033	0.9673	1

(d)

As the cumulative proportion of variance explained by the 3 first principal components amounts to 96.73%, we would only need the three first components.

(e)

The loading vectors $\phi_k \in \mathbb{R}^4$ form an orthonormal basis in \mathbb{R}^4 . Consequently, $\phi_1^{\mathsf{T}}\phi_2 = 0$ as those vectors are orthogonal to one another. Furthermore, we have $\phi_1^{\mathsf{T}}\phi_1 = \phi_2^{\mathsf{T}}\phi_2 = 1$ as the loading vectors are of norm 1.