Module Interface Specification for Stoichiometry Mass-Mass Program

Deemah Alomair

November 22, 2019

1 Revision History

Date	Version	Notes
Date 1	1.0	First version of document

2 Symbols, Abbreviations and Acronyms

See SRS Documentation here

Contents

1	Rev	vision History							
2	Symbols, Abbreviations and Acronyms								
3	Introduction								
4	Not	cation	1						
5	Mo	dule Decomposition	2						
6	MIS	MIS of Input Module							
	6.1	Module	•						
	6.2	Uses	;						
	6.3	Syntax	;						
		6.3.1 Exported Constants	;						
		6.3.2 Exported Types	,						
		6.3.3 Exported Access Programs							
	6.4	Semantics	;						
7	MIS of Atomic Mass Module								
	7.1	Module	4						
	7.2	Uses	4						
	7.3	Syntax	4						
		7.3.1 Exported Constants	4						
		7.3.2 Exported Types	4						
		7.3.3 Exported Access Programs	4						
	7.4	Semantics	4						
		7.4.1 State Variables	4						
		7.4.2 Environment Variables	4						
		7.4.3 Assumptions	4						
		7.4.4 Access Routine Semantics							
		7.4.5 Local Functions	į						
8	MIS	S of Chemical Reaction Balancing Module	(
J	8.1	Template Module	(
	8.2	Uses	,						
	8.3	Syntax	Ì						
	0.0	8.3.1 Exported Constants	(
		1	(
		1							
	0 1	8.3.3 Exported Access Programs	,						
	8.4	Semantics	,						
		8.4.1 State Variables	,						

		8.4.2	Environment Variables	8
		8.4.3	Assumptions	8
		8.4.4	Access Routine Semantics	8
		8.4.5	Local Functions	9
9	MIS	of Ma	ass Calculation Module	11
	9.1	Module	e	11
	9.2	Uses .		11
	9.3	Syntax	<u> </u>	11
		9.3.1	Exported Constants	11
		9.3.2	Exported Access Programs	11
	9.4	Semant	tics	11
		9.4.1	State Variables	11
		9.4.2	Environment Variables	11
		9.4.3	Assumptions	11
		9.4.4	Access Routine Semantics	12
		9.4.5	Local Functions	13
10	MIS	of GU	JI Module	14
	10.1	Module	e	14
				14
			[14
		•	Exported Constants	14
			Exported Types	14
			Exported Access Programs	14
	10.4		tics^{-}	14
		10.4.1	State Variables	14
		10.4.2	Environment Variables	14
		10.4.3	Assumptions	14
			Access Routine Semantics	15
		10.4.5	Local Functions	15

3 Introduction

The following document details the Module Interface Specifications for Stoichiometry Mass-Mass Program

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found here

4 Notation

The structure of the MIS for modules comes from ?, with the addition that template modules have been adapted from ?. The mathematical notation comes from Chapter 3 of ?. For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by SMMP.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of SMMP uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, SMMP uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification. Since chemical reaction is central to SMMP, the following notation is introduced in an attempt to simplify the presentation of the MIS.

Chemical reaction:

$$c_1R[0]_1 + c_2R[0]_2 = cc_1R[1]_1 + cc_2R[1]_2$$

where $R[0]_1$ is reactant with known mass, c_1 is the coefficient number associated to this reactant, $R[0]_2$ is reactant with unknown mass, c_2 is the coefficient number associated to this reactant, $R[1]_i$ is a product and cc_i is he coefficient number associated to this product.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding	
Behaviour-Hiding	Input Module Atomic Mass Module Chemical Reaction Balancing Module Mass Calculation Module
Software Decision	GUI Module

Table 1: Module Hierarchy

6 MIS of Input Module

6.1 Module

Input

6.2 Uses

Not Applicable.

6.3 Syntax

6.3.1 Exported Constants

None.

6.3.2 Exported Types

ReactionT = ?

6.3.3 Exported Access Programs

Name	In	Out	Exceptions
$\overline{input_1}$	chemical reaction:	-	-
	ReactionT		
$input_2$	Mass: \mathbb{R}	-	

6.4 Semantics

Not Applicable.

7 MIS of Atomic Mass Module

7.1 Module

Atomic Mass

7.2 Uses

Balancing (Section 8)

7.3 Syntax

7.3.1 Exported Constants

None.

7.3.2 Exported Types

ElementT = ?

7.3.3 Exported Access Programs

Name	In	Out	Exceptions
Atomic-	element: ElementT	Atomic-Mass: \mathbb{R}	element ∉
Mass			ElementT

7.4 Semantics

7.4.1 State Variables

1. e: ElementT

2. Atomic-Mass: \mathbb{R}

7.4.2 Environment Variables

Atomic Mass library file.

7.4.3 Assumptions

None.

7.4.4 Access Routine Semantics

(Atomic Mass):

• transition: None.

• output: AtomicMass $:= \mathbb{R}$

• exception: if (e \notin ElementT) \rightarrow no-Atomic-Mass

7.4.5 Local Functions

Atomic Mass: Element
T $\rightarrow \mathbb{R}$

AtomicMass(e) \equiv (e= H \rightarrow 1.0079 | e= He \rightarrow 4.002 |...)

8 MIS of Chemical Reaction Balancing Module

8.1 Template Module

Balancing

8.2 Uses

Input (Section 6)

8.3 Syntax

8.3.1 Exported Constants

None.

8.3.2 Exported Types

$$\begin{split} & ElementT = \forall \ e \in set\ of\ chemical\ element = \{\ H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn, Fr, Ra, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Cn, Nh, Fl, Mc, Lv, Ts, Og \} \end{split}$$

Molecule $T = \text{tuple of (number : } \mathbb{N} \text{ , element : Element T)}.$

CompoundT = set of MoleculeT.

StoichiometricT = tuple of (coefficient : N, Compound : CompoundT)

ChemicalEqT = set of StoichiometricT

Reaction T = sequence [2] of Chemical Eq.

8.3.3 Exported Access Programs

Name	In	Out	Exceptions
Molecule's	Molecule:	Number-of-Atoms: \mathbb{N}	-
atoms	MoleculeT		
compound's	Compound:	Number-of-Atoms: ℕ	_
atoms	CompoundT		
Elements	Compound:	set of Element: Ele-	_
of a com-	CompoundT	mentT	
pound			
number	Compound:	Number-of-Atoms: N	_
of atoms	CompoundT		
in Chemi-	$coefficient: \mathbb{N}$		
calEq			
Elements	ChemicalEq:	set of Element: Ele-	-
of a Chem-	ChemicalEqT	mentT	
icalEq			
Balanced	Reaction:	B: Boolean	number of
reaction	ReactionT		atoms in
for an	Element: ElementT		each side
element			for one
			element is
			not equal
Balanced	Reaction:	B: Boolean	number
reaction	ReactionT		of atoms
			in each
			side for all
			element is
			not equal
balanced	Reaction:	Reaction*: ReactionT	number
chemical	ReactionT		of atoms
reaction			in each
			side for all
			element is
			not equal

8.4 Semantics

8.4.1 State Variables

e: ElementTm : MoleculeTC: CompoundTS: StoichiometricT

Ce: ChemicalEq R: ReactionT

8.4.2 Environment Variables

None.

8.4.3 Assumptions

None.

8.4.4 Access Routine Semantics

(Number-of-Atoms-in-Molecule):

- transition: None.
- output: Number-of-Atoms-in-Molecule $:= \mathbb{N}$
- exception: None

(Number-of-Atoms-in-Compound):

- transition: None.
- output: Number-of-Atoms-in-Compound $:= \mathbb{N}$
- exception: None

(Number-of-Atoms-in-Stoichiometric):

- transition: None.
- \bullet output: Number-of-Atoms-in-Stoichiometric := \mathbb{N}
- exception: None

(Number-of-Atoms-in-ChemicalEq):

- transition: None.
- output: Number-of-Atoms-in-ChemicalEq $:= \mathbb{N}$
- exception: None

(ElementsInCompoundT):

- transition: None.
- output: set of ElementT

• exception: None

(Elements of a ChemicalEq):

• transition: None.

• output: set of ElementT

• exception: None

(Balanced reaction for an element):

• transition: None

- output: if (Number-of-Atoms-in-Chemical Eq(R[0],e) = Number-of-Atoms-in-Chemical Eq (R[1] ,e)) then True if (Number-of-Atoms-in-Chemical Eq(R[0],e) \neq Number-of-Atoms-in-Chemical Eq (R[1] ,e)) then False
- exception: None

(Balanced reaction):

- transition: None.
- output: if \forall (Number-of-Atoms-in-ChemicalEq(R[0],e) = Number-of-Atoms-in-ChemicalEq (R[1],e)) then True if \exists (Number-of-Atoms-in-ChemicalEq(R[0],e) \neq Number-of-Atoms-in-ChemicalEq (R[1],e)) then False
- exception: None

8.4.5 Local Functions

- 1. Number-of-Atoms-in-Molecule: Molecule T X Element
T $\to \mathbb{N}$ Number-of-Atoms-in-Molecule(m,e) \equiv (m.
element = e \to m.number | m.element \neq e
 \to 0)
- 2. Number-of-Atoms-in-Compound: Compound T X Element $T\to \mathbb{N}$ Number-of-Atoms-in-Compound (C,e) $\equiv +$ (m : Molecule T| m \in C \cdot Number-of-Atoms-in-Molecule (m,e))
- 3. Number-of-Atoms-in-Stoichiometric: Stoichiometric
T \times Element $T\to\mathbb{N}$ Number-of-Atoms-in-Stoichiometric
(S,e) \equiv (S.coefficient \cdot Number-of-Atoms-in-Compound (S.Compound,e))
- 4. Number-of-Atoms-in-ChemicalEg: ChemicalEgT X ElementT $\rightarrow \mathbb{N}$

Number-of-Atoms-in-Chemical Eq (Ce,e) \equiv + (S : Stoichiometric T | S \in Ce \cdot Number-of-Atoms-in-Stoichiometric (S,e))

- 5. ElementsInCompoundT : CompoundT \rightarrow set of ElementT. ElementsInCompound(C) $\equiv \cup \{ m : MoleculeT \mid m \in C \cdot m.element \}$
- 6. ElementsInChemicalEq: ChemicalEqT \rightarrow set of ElementT. ElementsInChemicalEq(Ce) $\equiv \cup \{ C : CompoundT \mid C \in Ce \cdot ElementsInCompound(C) \}$
- 7. IsBalancedReactionForElement : ReactionT x ElementT \rightarrow B IsBalancedReactionForElement (R, e) \equiv Number-of-Atoms-in-ChemicalEq(R[0],e) = Number-of-Atoms-in-ChemicalEq (R[1],e)
- 8. IsBalancedReaction : Reaction $T \to B$ IsBalancedReaction(R) $\equiv \forall$ (e : ElementT | e \in ElementsInChemicalEq(R[0]) · IsBalancedReactionForElement(R, e))

9 MIS of Mass Calculation Module

9.1 Module

Mass

9.2 Uses

Balancing (Section 8), Atomic Mass (Section 7)

9.3 Syntax

9.3.1 Exported Constants

None.

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
Molecular	Atomic-Mass: R	$Molecular-weight:\mathbb{R}$	_
weight	Number-of-Atoms-in-		
	Compound: \mathbb{N}		
mole-ratio	$coefficient1: \mathbb{N}$	mole-ratio: N	_
	coefficient $2: \mathbb{N}$		
$mole_1$	$\mathrm{mass}: \mathbb{R}$	mole: \mathbb{R}	_
	Molecular-weight: \mathbb{R}		
$mole_2$	mole1: \mathbb{R}	mole2: \mathbb{R}	_
	mole-ratio: \mathbb{R}		
mass	mole2: \mathbb{R}	$ ext{mass:} \mathbb{R}$	
	Molecular-weight: \mathbb{R}		

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Environment Variables

None

9.4.3 Assumptions

None

9.4.4 Access Routine Semantics

(Molecular-weight):

- transition: None
- ullet output: Molecular-weight := \mathbb{R}
- exception: None

(Mass-to-Mole):

- transition: None
- output: Mole := \mathbb{R}
- exception: None

(mole ratio):

- transition: None
- output: mole-ratio := \mathbb{N}
- exception: None

(Mole-ratio-to-Mole):

- transition: None
- output: Mole2 := \mathbb{R}
- exception: None

(Mole-to-Mass):

- transition: None
- output: Mass := \mathbb{R}
- exception: None

9.4.5**Local Functions**

- 1. Molecular-weight : Compound T $\rightarrow \mathbb{R}$ $\label{eq:Molecular-weight} \mbox{Molecular-weight} := \mbox{Atomic-Mass} \times \mbox{Number-of-Atoms-in-Compound}$
- 2. Mole := $\frac{Mass}{Molecular_weight}$
- 3. Mole-ratio: CompoundT $\rightarrow \mathbb{N}$ Mole-ratio := $\frac{coefficient2}{coefficient1}$
- 4. Mole2 := $\frac{Mole1}{mole-ratio}$
- 5. Mass := $\frac{Mole}{Molecular-weight}$

10 MIS of GUI Module

10.1 Module

GUI

10.2 Uses

Balancing (Section 8), Mass (Section 9)

10.3 Syntax

10.3.1 Exported Constants

None.

10.3.2 Exported Types

ReactionT = ?

10.3.3 Exported Access Programs

Name	In	Out	Exceptions
GUI	-	Mass: \mathbb{R}	-
		balanced-reaction:	
		ReactionT	

10.4 Semantics

10.4.1 State Variables

None

10.4.2 Environment Variables

screen interface

10.4.3 Assumptions

None

10.4.4 Access Routine Semantics

(display):

• transition: None

 \bullet output: Mass:
 $\mathbb R$, balanced reaction: ReactionT

• exception: None

10.4.5 Local Functions

None