Лекція 10. Параметричні статистичні гіпотези для двовимірного статистичного розподілу

10.1. Перевірка правильності нульової гіпотези про рівність двох генеральних середніх (M(X)=M(Y))

Нехай задано дві генеральні сукупності, ознаки яких X і Y мають нормальний закон розподілу і при цьому незалежні одна від одної.

x_i	x_1	x_2	x_3	•••	x_k
n_{x_i}	n_{x_1}	n_{x_2}	n_{x_3}	•••	n_{x_k}

$$\begin{bmatrix} y_j & y_1 & y_2 & y_3 & \cdots & y_m \\ n_{y_j} & n_{y_1} & n_{y_2} & n_{y_3} & \cdots & n_{y_m} \end{bmatrix}$$

де $n_1 = \sum_{i=1}^k n_{x_i}$, $n_2 = \sum_{j=1}^m n_{y_j}$ - обсяги вибірки за ознакою X та за ознакою Y

відповідно.

Середні вибіркові значення за ознакою X та за ознакою Y обчислюються відповідно формул:

$$\overline{x} = \frac{\sum_{i=1}^{k} x_i \cdot n_{x_i}}{n_1}; \quad \overline{y} = \frac{\sum_{j=1}^{m} y_j \cdot n_{y_j}}{n_2}.$$

Загальна дисперсія ознаки X та ознаки Y:

$$D_{x} = \frac{\sum_{i=1}^{k} x_{i}^{2} \cdot n_{x_{i}}}{n_{1}} - \overline{x}^{2}; \quad D_{y} = \frac{\sum_{j=1}^{m} y_{j}^{2} \cdot n_{y_{j}}}{n_{2}} - \overline{y}^{2},$$

або за виправленими вибірковими дисперсіями ознаки X та ознаки Y:

$$S_x^2 = \frac{1}{n_1 - 1} \sum_{i=1}^k (x_i - \overline{x})^2; \quad S_y^2 = \frac{1}{n_2 - 1} \sum_{j=1}^m (y_j - \overline{y})^2$$

Загальне середн ϵ квадратичне відхилення ознаки X та ознаки Y:

$$\sigma_x = \sqrt{D_x} = \sqrt{S_x^2}$$
; $\sigma_y = \sqrt{D_y} = \sqrt{S_y^2}$.

Необхідно перевірити правдивість $H_0: M(X) = M(Y)(\overline{X}_{\Gamma} = \overline{Y}_{\Gamma}).$

Тут можуть спостерігатися два випадки:

Випадок 1. Обсяг вибірки великий (n > 40) і відомі значення дисперсій D(X), D(Y) ознак генеральних сукупностей.

3 кожної генеральної сукупності здійснюють вибірку відповідно з обсягами n_1 та n_2 і будують статистичні розподіли:

За статистичний критерій береться випадкова величина

$$U = \frac{\overline{x} - \overline{y}}{\sigma(\overline{x} - \overline{y})},$$

що має закон розподілу N(0; 1), де M(U) = 0, $\sigma(U) = 1$.

Оскільки $D(\overline{x} - \overline{y}) = \frac{D(X)}{n_1} + \frac{D(Y)}{n_2}$, то статистичний критерій набере

$$U = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{D(X)}{n_1} + \frac{D(Y)}{n_2}}}.$$

Коли $D(X) = D(Y) = D_{\Gamma}$, дістанемо:

такого вигляду:

$$U = \frac{\overline{x} - \overline{y}}{\sigma_{\Gamma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

Залежно від формулювання альтернативної гіпотези H_{α} будуються відповідно правобічна, лівобічна та двобічна критичні області.

Спостережуване значення критерію відповідно обчислюється:

$$U_{cnocm} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{D(X)}{n_1} + \frac{D(Y)}{n_2}}} \text{ afo } U_{cnocm} = \frac{\overline{x} - \overline{y}}{\sigma_{\Gamma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

Виберемо критичну область залежно від виду конкуруючої гіпотези:

- якщо $H_1: M\left(X\right) \neq M\left(Y\right)$, то $u_{\kappa p}$ визначається з умови: $\Phi\left(u_{kp}\right) = \frac{1-\alpha}{2}$, критична область двобічна і, якщо $\left|U_{cnocm}\right| < u_{kp}$, то нульова гіпотеза приймається; якщо $\left|U_{cnocm}\right| > u_{kp}$, то нульова гіпотеза відхиляється.

- якщо $H_1:M\left(X\right)>M\left(Y\right)$, то $u_{\kappa p}$ визначається з умови: $\Phi\left(u_{kp}\right)=\frac{1-2\alpha}{2}$, критична область правобічна, і якщо $U_{cnocm}< u_{kp}$, то нульова гіпотеза приймається; якщо $U_{cnocm}>u_{kp}$, то нульова гіпотеза відхиляється.

- якщо $H_1:M\left(X\right)< M\left(Y\right)$, то $u_{\kappa p}$ визначається з умови: $\Phi\left(u_{kp}\right)=\frac{1-2\alpha}{2}$, критична область лівобічна, і якщо $U_{cnocm}>-u_{kp}$, то нульова гіпотеза приймається; якщо $U_{cnocm}<-u_{kp}$, то нульова гіпотеза відхиляється.

Розглянутий метод побудови критичних областей придатний лише за умови, коли відомі значення середнього квадратичного відхилення σ_{Γ} (дисперсії) двох ознак генеральної сукупності.

<u>Випадок 2</u>. У випадку, коли значення дисперсія D(X), D(Y) генеральної сукупності є невідомим.

В цьому випадку використовують їх точкові незміщені статистичні оцінки S_x^2 і S_y^2 .

$$T = \frac{\overline{x} - \overline{y}}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \cdot \frac{(n_1 - 1)S_x^2 + (n_2 - 1)S_y^2}{n_1 + n_2 - 2}}},$$

Така випадкова величина має розподіл Стьюдента з $k = n_1 + n_2 - 2$ ступенями свободи. Розглянемо ті ж, що і у попередньому випадку, конкуруючі гіпотези і критичні області, що відповідають їм. Заздалегідь вичислимо спостережуване значення критерію T_{cnocm} :

- якщо $H_1: M(X) \neq M(Y)$, то $t_{\partial Bo \delta i \cdot l}$ знаходиться по таблиці критичних точок розподілу Стьюдента по відомих рівні значущості (α) та ступені свободи (k), де $k=n_1+n_2-2$.

Якщо $|T_{cnocm}| < t_{\partial so \delta i \cdot u. \ \kappa p}$, то нульова гіпотеза приймається.

Якщо $\left|T_{cnocm}\right| > t_{\partial sobiu.\ \kappa p}$, то нульова гіпотеза відхиляється.

- якщо $H_1: M(X) > M(Y)$, то $t_{\kappa p}(\alpha, k)$ критична область правобічна. Нульова гіпотеза приймається, якщо $T_{cnocm} < t_{kp}$, інакше відхиляється.
- якщо $H_1:M(X)< M(Y)$, то $t_{\kappa p}(\alpha,k)$ критична область лівобічна, і нульова гіпотеза приймається, якщо $T_{cnocm}>-t_{kp}$, інакше відхиляється.

Якщо обсяг вибірки великий (n>40), але невідомі значення генеральних дисперсій D(X), D(Y) то у цьому випадку застосовують їх точкові незміщені статистичні оцінки, а статистичний критерій

$$T = U = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{(n_1 - 1)S_x^2 + (n_2 - 1)S_y^2}{n_1 + n_2 - 2} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}},$$

який асимптотично наближається до закону розподілу N(0; 1). Тому для визначення критичних точок застосовується функція Лапласа (випадок 1).

При малих обсягах вибірок ($n_1 < 40$, $n_2 < 40$) і невідомі значення дисперсій генеральної сукупності статистичний критерій

$$T = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{(n_1 - 1)S_x^2 + (n_2 - 1)S_y^2}{n_1 + n_2 - 2} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$$

матиме розподіл Стьюдента з $k = n_1 + n_2 - 2$ ступенями свободи. У цьому разі для побудови критичних областей критичні точки знаходять за таблицею (додаток 6) (випадок 2).

Приклад 10.5. За заданими статистичними розподілами двох вибірок, реалізованих із двох генеральних сукупностей, ознаки яких мають нормальний закон розподілу зі значенням дисперсій генеральних сукупностей $D_X = 10$, $D_Y = 15$,

x_i	12,2	13,2	14,2	15,2	16,2
n'_i	5	15	40	30	10

Уj	8,4	12,4	16,4	20,4	24,4
$n_j^{\prime\prime}$	10	15	35	20	20

при рівні значущості $\alpha = 0.01$ перевірити правдивість нульової гіпотези

$$H_0: M(X) = M(Y)$$
, якщо альтернативна гіпотеза $H_a: M(X) > M(Y)$.

Pозв'язання. Оскільки $n' = \sum n_i' = 100$, $n'' = \sum n_j'' = 100$, обчислимо \bar{x} та \bar{y} :

$$\bar{x} = \frac{\sum_{i=1}^{m} x_i n_i'}{n'} = \frac{12,2 \cdot 5 + 13,2 \cdot 15 + 14,2 \cdot 40 + 15,2 \cdot 30 + 16,2 \cdot 10}{100} = \frac{100}{100} = \frac{62,5 + 198 + 568 + 456 + 162}{100} = \frac{1446,5}{100} = 14,465;$$

$$\bar{y} = \frac{\sum_{j=1}^{m} y_j n_j''}{n''} = \frac{8,4 \cdot 10 + 12,4 \cdot 15 + 16,4 \cdot 35 + 20,4 \cdot 20 + 24,4 \cdot 20}{100} = \frac{84 + 186 + 574 + 408 + 488}{100} = \frac{1740}{100} = 17,4.$$

Для альтернативної гіпотези H_a : M(X) > M(Y) будується правобічна критична область. Критичну точку $u_{\rm kp}$ знаходимо з рівності

$$\Phi(u_{\kappa p}) = \frac{1-2\alpha}{2} = \frac{1-2\cdot 0.01}{2} = \frac{0.98}{2} = 0.49.$$

За таблицею визначимо критичну точку:

$$u_{\rm kp} \approx 2,34.$$

Обчислимо спостережуване значення критерію

$$U_{\text{choct}} = \frac{(\bar{x} - \bar{y})}{\sqrt{\frac{D_X}{n'} + \frac{D_Y}{n''}}} = \frac{14,465 - 17,4}{\sqrt{\frac{10}{100} + \frac{15}{100}}} = -\frac{2,935}{\sqrt{0,1 + 0.15}} = -\frac{2,935}{0,5} = -5,87.$$

Оскільки $U_{\text{спост}} < u_{\text{кр}}$, то H_0 : M(X) = M(Y) не відхиляється.

Правобічна критична область зображена на рис.

Приклад. Для дослідження розтягування певного типу гуми після хімічного оброблення було відібрано шість її мотків, кожний з яких було розділено навпіл і одна його половина була піддана хімічній обробці, а друга — ні.

Потім за допомогою приладу, що вимірює розтягування матеріалу, мотки гуми були виміряні і результати вимірювання наведені у вигляді двох статистичних розподілів ознак X і Y, які мають нормальний закон розподілу з відомими значеннями генеральних дисперсій $D_x = 10$; $D_y = 16$.

y_i	16,7	17,2	17,3	18,1	18,4	19,1
n'_i	1	1	1	1	1	1

x_j	16,2	16,3	17	17,6	18,4
n_j''	1	1	2	1	1

При рівні значущості α = 0,001 перевірити правдивість нульової гіпотези

 $H_0: M(X) = M(Y)$, якщо альтернативна гіпотеза

 $H_0: M(X) \neq M(Y)$.

Розв'язання. Обчислимо значення $\overline{x}_{\text{в}}$, $\overline{y}_{\text{в}}$.

Оскільки n' = n'' = 6, то маємо:

$$\begin{split} \overline{y}_{\mathrm{B}} &= \frac{\sum y_i}{n'} = \frac{16,7 + 17,2 + 17,3 + 18,1 + 18,4 + 19,1}{6} = \frac{106,8}{6} = 17,8 \,. \\ \overline{x}_{\mathrm{B}} &= \frac{\sum x_j n''_j}{n''} = \frac{16,2 \cdot 1 + 16,3 \cdot 1 + 17 \cdot 2 + 17,6 \cdot 1 + 18,4 \cdot 1}{6} = \\ &= \frac{16,2 + 16,3 + 34 + 17,6 + 18,4}{6} = \frac{102,5}{6} = 17,08 \,. \end{split}$$

При альтернативній гіпотезі $H_{\alpha}: M(X) \neq M(Y)$ будується двобічна критична область.

Оскільки $z'_{\text{кр}} = -z''_{\text{кр}}$, то $z''_{\text{кр}}$ обчислюємо, використовуючи рівність

$$\Phi(z_{\rm kp}'') = \frac{1-\alpha}{2} = \frac{1-0,001}{2} = \frac{0,999}{2} = 0,4995 \rightarrow z_{\rm kp}'' = 3,4 \rightarrow z_{\rm kp}' = -3,4$$
.

Критична область зображена на рис.

Обчислимо спостережуване значення критерію

$$Z^* = \frac{\overline{x}_B - \overline{y}_B}{\sqrt{\frac{D_x}{n''} + \frac{D_y}{n'}}} = \frac{17,08 - 17,8}{\sqrt{\frac{10}{6} + \frac{16}{6}}} = -\frac{0,72}{\sqrt{1,67 + 2,67}} =$$
$$= -\frac{0,72}{\sqrt{4.34}} = -\frac{0,72}{2,08} = -0,346.$$

Висновок. Оскільки $Z^* \in [-3,2; 3,2]$, то немає підстав відхиляти $H_0: M(X) = M(Y)$.

Приклад. З допомогою двох радіовимірних приладів вимірювалась відстань до певного об'єкта. Результати вимірювання наведені у вигляді двох статистичних розподілів ознак: Y — відстань, виміряна першим радіоприладом, та X — другим. При цьому Y і X є незалежними між собою і підпорядковані нормальному закону розподілу. Статистичні розподіли мають такий вигляд:

yi, KM	195	198	201	204	207	210
n_i'	10	20	30	20	15	5
x_j , km	184	188	192	196	200	204
n",	5	15	30	40	6	4

При рівні значущості α = 0,01 перевірити правильність нульової гіпотези

$$H_0: M(X) = M(Y)$$
, якщо альтернативна гіпотеза $H_a: M(Y) > M(X)$.

Розв'язання. Значення дисперсій генеральних сукупностей невідомі. Необхідно обчислити \overline{x}_{B} , \overline{y}_{B} , S_{x}^{2} , S_{y}^{2} .

Оскільки
$$n' = \sum n'_i = n'' = \sum n''_j = 100$$
, то
$$\overline{x}_{\mathrm{B}} = \frac{\sum x_j \, n''_j}{n''} = \frac{184 \cdot 5 + 188 \cdot 15 + 192 \cdot 30 + 196 \cdot 40 + 200 \cdot 6 + 204 \cdot 4}{100} = \frac{920 + 2820 + 5760 + 7840 + 1200 + 816}{100} = \frac{19356}{100} = 193,56 \,\,\mathrm{km}.$$

$$\frac{\sum x_j^2 \, n''_j}{n''} = \frac{184^2 \cdot 5 + 188^2 \cdot 15 + 192^2 \cdot 30 + 196^2 \cdot 40 + 200^2 \cdot 6 + 204^2 \cdot 4}{100} = \frac{3748464}{100} = 37484,64.$$

$$D_{\mathrm{B}} = \frac{\sum x_j^2 \, n'_j}{n'} - (\overline{x}_{\mathrm{B}})^2 = 37484,64 - (193,56)^2 = \\ = 37484,64 - 37465,47 = 19,17;$$

$$S_x^2 = \frac{n''}{n''-1} D_{\mathrm{B}} = \frac{100}{100-1} \cdot 19,17 = 19,36;$$

$$S_x = \sqrt{19,36} \approx 4,4.$$

$$\overline{y}_{\mathrm{B}} = \frac{\sum y_i \, n'_i}{n'} = \frac{195 \cdot 10 + 198 \cdot 20 + 201 \cdot 30 + 204 \cdot 20 + 207 \cdot 15 + 210 \cdot 5}{100} = \\ = \frac{1950 + 3960 + 6030 + 4080 + 3105 + 1050}{100} = \frac{20175}{100} = 201,75 \,\,\mathrm{km}.$$

$$\frac{\sum y_i^2 n_i'}{n'} = \frac{195^2 \cdot 10 + 198^2 \cdot 20 + 201^2 \cdot 30 + 204^2 \cdot 20 + 207^2 \cdot 15 + 210^2 \cdot 5}{100} =$$

$$= \frac{4071915}{100} = 40719,15;$$

$$D_B = \frac{\sum y_i^2 n_i'}{n'} - (\overline{y}_B)^2 = 40719,15 - (201,75)^2 =$$

$$= 40719,15 - 40703,0625 = 16,0875;$$

$$S_y^2 = \frac{n'}{n'-1} D_B = \frac{100}{100-1} 16,0875 = 16,25;$$

$$S_y = \sqrt{16,25} \approx 4,03.$$

При альтернативній гіпотезі $H_{\alpha}: M(X) > M(Y)$ будуємо правобічну критичну область, критична точка якої, ураховуючи те, що обсяг вибірки великий, знаходиться з рівності

$$\Phi(z_{\kappa p}) = \frac{1 - 2\alpha}{2} = \frac{1 - 2 \cdot 0.01}{2} = \frac{0.98}{2} = 0.49 \rightarrow z_{\kappa p} = 2.34$$
.

Критична область зображена на рис.

Рис. 134

Спостережуване значення критерію обчислюється так:

$$Z^{\bullet} = \frac{\overline{x}_{B} - \overline{y}_{B}}{\sqrt{\frac{(n'-1)S_{x}^{2} + (n''-1)S_{y}^{2}}{n' + n'' - 2}} \cdot \sqrt{\frac{1}{n'} + \frac{1}{n''}}} = \frac{193,56 - 201,75}{\sqrt{\frac{99 \cdot 19,36 + 99 \cdot 16,25}{100 + 100 - 2}} \cdot \sqrt{\frac{1}{100} + \frac{1}{100}}} = -\frac{8,19}{\sqrt{4,215 \cdot 0,02}} = -\frac{8,19}{0,29} = -28,24.$$

Висновок. Оскільки $Z^* \in]-\infty; 2,34]$, то відсутні підстави для відхилення $H_0: M(X) = M(Y)$.

Приклад. Протягом доби двома приладами вимірювали напругу в електромережі. Результати вимірювання наведено у вигляді статистичних розподілів

<i>y</i> _i	223	227	229	230	235
n_i'	1	2	6	2	1
x_j	216	217	219	228	236
n_j''	2	3	5	1	1

Припускаючи, що випадкові величини X і Y (напруга у вольтах) є незалежними і мають нормальний закон розподілу ймовірностей, за рівня значущості $\alpha = 0,001$ перевірити правильність нульової гіпотези

 $H_0: M(X) = M(Y)$ при альтернативних гіпотезах:

1)
$$H_a: M(X) > M(Y)$$
;

2)
$$H_{\alpha}: M(X) \neq M(Y)$$
.

Розв'язання. Обсяги вибірок відповідно дорівнюють $n' = \sum n_i' = 12$, $n'' = \sum n_i'' = 12$.

Обчислимо значення \overline{x}_{B} , \overline{y}_{B} , S_{x}^{2} , S_{y}^{2} :

$$\begin{split} \overline{y}_{\mathrm{B}} &= \frac{\sum y_{i} \, n_{i}'}{n'} = \frac{223 \cdot 1 + 227 \cdot 2 + 229 \cdot 6 + 230 \cdot 2 + 235 \cdot 1}{12} = \\ &= \frac{223 + 454 + 1374 + 460 + 235}{12} = \frac{2746}{12} = 228,83; \\ &\frac{\sum y_{i}^{2} \, n_{i}'}{n'} = \frac{223^{2} \cdot 1 + 227^{2} \cdot 2 + 229^{2} \cdot 6 + 230^{2} \cdot 2 + 235^{2} \cdot 1}{12} = \\ &= \frac{628458}{12} \approx 52371,5; \\ D_{\mathrm{B}} &= \frac{\sum y_{i}^{2} \, n_{i}'}{n'} - (\overline{y}_{B})^{2} = 52371,5 - (228,8)^{2} = \\ &= 52371,5 - 52349,44 = 22,06; \\ S_{y}^{2} &= \frac{n'}{n'-1} D_{\mathrm{B}} = \frac{12}{12-1} \cdot 22,06 \approx 24,1; \\ \overline{x}_{\mathrm{B}} &= \frac{\sum x_{j} \, n_{j}''}{n''} = \frac{216 \cdot 2 + 217 \cdot 3 + 219 \cdot 5 + 228 \cdot 1 + 236 \cdot 1}{12} = \\ &= \frac{432 + 651 + 1095 + 228 + 236}{12} = \frac{2642}{12} \approx 220,17; \\ \frac{\sum x_{j}^{2} \, n_{j}''}{n''} &= \frac{216^{2} \cdot 2 + 217^{2} \cdot 3 + 219^{2} \cdot 5 + 228^{2} \cdot 1 + 236^{2} \cdot 1}{12} = \\ &= \frac{582064}{12} \approx 48505,3; \end{split}$$

$$D_{\rm B} = \frac{\sum x_j^2 n_j''}{n''} - (\overline{x}_{\rm B})^2 = 48505, 3 - (220,17)^2 =$$

$$= 48505, 3 - 48474, 83 \approx 30,47 ;$$

$$S_x^2 = \frac{n''}{n'' - 1} D_{\rm B} = \frac{12}{12 - 1} \cdot 30,47 \approx 33,24 .$$

1) Для перевірки правильності нульової гіпотези $H_0: M(X) = M(Y)$ при альтернативній гіпотезі

 $H_{\alpha}: M(X) > M(Y)$ будуємо правобічну критичну область. Ураховуючи, що статистичний критерій має розподіл Стьюдента з k = n' + n'' - 2 = 12 + 12 - 2 = 22 та рівнем значущості $\alpha = 0,001$, за таблицею (додаток 6) знаходимо критичну точку $Z_{\rm KP}(\alpha = 0,001; k = 22) = 3,79$.

Правобічна критична область зображена на рис.

Рис. 135

За формулою (459) обчислюємо спостережуване значення критерію

$$z^* = \frac{\overline{x}_B - \overline{y}_B}{\sqrt{\frac{(n'-1)S_x^2 + (n''-1)S_y^2}{n'+n''-2}}} = \frac{\sqrt{\frac{1}{n'} + \frac{1}{n''}}}{\sqrt{\frac{1}{n'} + \frac{1}{n''}}} = \frac{220,17 - 228,8}{\sqrt{\frac{11 \cdot 33,24 + 11 \cdot 24,1}{12 + 12 - 2}}} = \frac{8,63}{\sqrt{\frac{1}{12} + \frac{1}{12}}} = \frac{8,63}{\sqrt{\frac{365,64 + 265,1}{22}}} = \frac{-8,63}{\sqrt{28,67 \cdot 0,17}} = -\frac{8,63}{\sqrt{4,8739}} = -\frac{8,63}{2,21} \approx -3,91.$$

Висновок. Оскільки $z^* \in [-\infty, 3,79]$, то $H_0: M(X) = M(Y)$ приймається.

2) Для альтернативної гіпотези $H_{\alpha}: M(X) \neq M(Y)$ будується двобічна критична область. Беручи до уваги, що $z'_{\kappa p} = -z''_{\kappa p}$, а $z''_{\kappa p} = 3,79$, тоді $z'_{\kappa p} = -3,79$. Двобічна критична область зображена на рис.

3 попередніх обчислень маємо $z^* = -3.91$.

Висновок. Оскільки $z^* \in]-3,79;3,79]$, то в цьому разі немає підстав для прийняття $H_0: M(X) = M(Y)$.

Висновок. Оскільки $z^* \in [-3,67; \infty[$, то $H_0: M(X) = M(Y)$ приймається.

10.2. Критерій для перевірки гіпотези про рівність двох дисперсій

Одним із важливих завдань математичної статистики є порівняння двох або кількох вибіркових дисперсій. Таке порівняння дає можливість визначити, чи можна вважати вибіркові дисперсії статистичними оцінками однієї і тієї самої дисперсії генеральної сукупності. Воно застосовується передусім при обчисленні дисперсій за результатами технологічних вимірювань.

Порівняння дисперсій D(X), D(Y) здійснюється зіставленням виправлених дисперсій S_x^2 , S_y^2 , які відповідно мають закон розподілу χ^2 із $k_1 = n_1 - 1$, $k_2 = n_2 - 1$ ступенями свободи, де n_1 є обсяг першої вибірки із більшою з виправлених дисперсій та і n_2 обсяг другої вибірки із меншою з виправлених дисперсій.

Нехай перша вибірка здійснена з генеральної сукупності з ознакою Y, дисперсія якої дорівнює D(Y), друга — з генеральної сукупності з ознакою X, дисперсія якої дорівнює D(X). Необхідно перевірити правильність нульової гіпотези $H_0: D(X) = D(Y)$.

За статистичний критерій береться випадкова величина $F = \frac{S_{\delta}^2}{S_{_M}^2}$, яка має розподіл Фішера—Снедекора із k_1 і k_2 ступенями свободи, де S_{δ}^2 є більшою з виправлених дисперсій, одержаною внаслідок обробки результатів вибірок, $S_{_M}^2$ є меншою з виправлених дисперсій.

Щільність імовірностей розподілу Фішера—Снедекора визначена лише на додатній півосі, тобто $0 \le F < \infty$.

Розглянемо два види конкуруючи гіпотез:

- Нехай $H_1:D(X)>D(Y)$. Спостережуваним значенням критерію буде відношення більшої з виправлених дисперсій до меншої: $F_{cnocm}=\frac{S_{\delta}^2}{S_{\scriptscriptstyle M}^2}$. По таблиці критичних точок розподілу Фішера-Снедекора можна знайти критичну точку $F_{\kappa p}\left(\alpha;k_1;k_2\right)$.

Якщо $F_{cnocm} < F_{\kappa p}$, то нульова гіпотеза приймається, якщо $F_{cnocm} > F_{\kappa p}$, то нульова гіпотеза відхиляється.

- Нехай $H_1:D(X)\neq D(Y)$, то критична область є двобічна і визначається з умов $F< F_1,\ F>F_2$, де $P(F< F_1)=P(F>F_2)=\frac{\alpha}{2}$ При цьому досить знайти праву критичну точку $F_2=F_{\kappa p}\Big(\frac{\alpha}{2};k_1;k_2\Big)$. Тоді за умови $F_{cnocm}< F_{\kappa p}$, то нульова гіпотеза приймається, якщо $F_{cnocm}> F_{\kappa p}$, то нульова гіпотеза відхиляється.

Приклад 10.6. Під час дослідження стабільності температури в термостаті дістали такі результати: 21,2; 21,8; 21,3; 21,0; 21,4; 21,3.

3 метою стабілізації температури було використано удосконалений пристрій, після цього заміри температури показали такі результати: 37,7; 37,6; 37,6; 37,4. Чи можна за рівня значущості $\alpha = 0,01$ вважати використання удосконаленого пристрою до стабілізатора температури ефективним?

Розв'язання. Очевидно, що ефективність стабілізаторів без удосконаленого пристрою і з ним залежить від дисперсій вимірюваних ними температур. Отже, задача звелась до порівняння двох дисперсій.

Обчислимо виправлені вибіркові дисперсії:

$$\bar{y} = \frac{\sum_{j=1}^{m} y_{j} n_{j}^{"}}{n^{"}} = \frac{21,2+21,8+21,3+21,0+21,4+21,3}{6} = 21,333;$$

$$D_{B}(Y) = \frac{1}{n^{"}} \sum_{j=1}^{m} n_{j}^{"} y_{j}^{2} - \left(\frac{1}{n^{"}} \sum_{j=1}^{m} n_{j}^{"} y_{j}\right)^{2} =$$

$$= \frac{21,2^{2}+21,8^{2}+21,3^{2}+21,0^{2}+21,4^{2}+21,3^{2}}{6} - 21,333^{2} =$$

$$= \frac{2731,02}{6} - 455,097 = 455,17-455,097 = 0,073;$$

$$S_{y}^{2} = \frac{n^{"}}{n^{"}-1} D_{B}(Y) = \frac{6}{6-1} \cdot 0,073 = 0,0876;$$

$$\bar{x} = \frac{\sum_{i=1}^{m} x_{i} n_{i}^{'}}{n^{'}} = \frac{37,7+37,6+37,6+37,4}{4} = \frac{150,3}{4} = 37,575;$$

$$\begin{split} D_{\rm B}(X) &= \frac{1}{n'} \sum_{i=1}^m n_i' x_i^2 - \left(\frac{1}{n'} \sum_{i=1}^m n_i' x_i\right)^2 = \\ &= \frac{37,7^2 + 37,6^2 + 37,6^2 + 37,4^2}{4} - 37,575^2 = \\ &= \frac{5647,57}{4} - 1411,880625 = 1411,8925 - 1411,880625 = 0,011875; \\ S_y^2 &= \frac{n'}{n'-1} D_{\rm B}(X) = \frac{4}{4-1} \cdot 0,011875 = 0,01583. \end{split}$$

Обчислимо спостережуване значення критерію:

$$F^* = \frac{S_\delta^2}{S_m^2} = \frac{0,0876}{0,01583} = 5,534.$$

Число ступенів свободи:

для більшої виправленої дисперсії $S^2_\delta=S^2_y,\ k_1=n''-1=6-1=5,$ для меншої $S^2_m=S^2_x,\ k_2=n'-1=4-1=3.$

Оскільки удосконалення стабілізатора температур може тільки зменшити дисперсію, то будуємо правобічну критичну область. Отже,

Критичну точку знаходимо за таблицею відповідно до заданого рівня значущості $\alpha=0.01$ і числа ступенів свободи $k_1=5, k_2=3,$

$$F_{\text{kp}}(\alpha; k_1, k_2) = F_{\text{kp}}(0.01; 5, 3) = 28.2.$$

Оскільки $F^* < F_{\text{кр}}$, то дані спостережень не дають підстав відхилити нульову гіпотезу, тобто вдосконалення термостабілізатора ϵ ефективним.

Схематично правобічна критична область зображена на рис.

Висновок. Оскільки $F^* \in]0; 28,5]$, дані спостережень не дають підстав відхилити нульову гіпотезу, тобто вдосконалення термостабілізатора ϵ ефективним.

Приклад. За заданими статистичними розподілами вибірок, які реалізовано з генеральних сукупностей, ознаки яких X і Y ϵ незалежними і мають нормальний закон розподілу,

y_i	1,2	2,2	3,2	4,2	5,2
n_i'	1	2	4	2	3
x_j	0,8	1,6	2,4	3,2	4
n_j''	2	6	1	1	2

при рівні значущості α = 0,01 перевірити правильність нульової гіпотези

 \boldsymbol{H}_{0} : $\boldsymbol{D}_{x} = \boldsymbol{D}_{y}$, якщо альтернативна гіпотеза

$$H_{\alpha}: D_{\nu} > D_{\nu}$$
.

Розв'язання. Обчислимо значення S_x^2 , S_y^2 :

$$\begin{split} \overline{y} &= \frac{\sum y_i \, n_i'}{n'} = \frac{1,2 \cdot 1 + 2,2 \cdot 2 + 3,2 \cdot 4 + 4,2 \cdot 2 + 5,2 \cdot 3}{12} = \\ &= \frac{1,2 + 4,4 + 12,8 + 8,4 + 15,6}{12} = \frac{42,4}{12} \approx 3,53 \,; \\ \frac{\sum y_i^2 \, n_i'}{n'} &= \frac{1,2^2 \cdot 1 + 2,2^2 \cdot 2 + 3,2^2 \cdot 4 + 4,2^2 \cdot 2 + 5,2^2 \cdot 3}{12} = \frac{168,48}{12} = 14,04 \,; \end{split}$$

$$D_{\rm B} = \frac{\sum y_i^2 \, n_i'}{n'} - (\overline{y})^2 = 14,04 - (3,53)^2 = 14,04 - 12,4609 = 1,5791;$$

$$S_y^2 = \frac{n'}{n'-1} D_{\rm B} = \frac{12}{12-1} \cdot 1,5191 = 1,723;$$

$$\overline{x} = \frac{\sum x_j \, n_j''}{n''} = \frac{0,8 \cdot 2 + 1,6 \cdot 6 + 2,4 \cdot 1 + 3,2 \cdot 1 + 4 \cdot 2}{12} = \frac{1,6 + 9,6 + 2,4 + 3,2 + 8}{12} = \frac{24,8}{12} = 2,067;$$

$$\frac{\sum x_j^2 \, n_j''}{n''} = \frac{0,8^2 \cdot 2 + 1,6^2 \cdot 6 + 2,4^2 \cdot 1 + 3,2^2 \cdot 1 + 4^2 \cdot 2}{12} = \frac{64,64}{12} = 5,39.$$

$$D_{\rm B} = \frac{\sum x_j^2 \, n_j''}{n''} - (\overline{x})^2 = 5,39 - (2,067)^2 = 5,39 - 4,272489 = 1,1175;$$

$$S_y^2 = \frac{n''}{n''} D_y = \frac{12}{12} \cdot 11175 \approx 1.22$$

$$S_x^2 = \frac{n''}{n''-1}D_B = \frac{12}{12-1} \cdot 1,1175 \approx 1,22$$
.

Обчислимо спостережуване значення критерію

$$F^{\bullet} = \frac{S_{\delta}^2}{S_m^2} = \frac{1,723}{1,22} = 1,41.$$

Для альтернативної гіпотези $H_{\alpha}: D_{x} > D_{y}$ будуємо правобічну критичну область. Знайдемо за таблицею (додаток 7) критичну точку

$$F_{\kappa p}(\alpha = 0.01, k_1 = 12 - 1 = 11, k_2 = 12 - 1 = 11) = F_{\kappa p}(0.01; k_1 = 11; k_2 = 11) = 4.4.$$

Критична область зображена на рис.

Висновок. Оскільки $F^* \in [0; 4,4]$, нульова гіпотеза $H_0: D_x = D_y \in$ правильною.

10.3. Перевірка гіпотези про незалежність системи двох випадкових величин

Гіпотезу про незалежність двох випадкових величин X та Y можна перевірити за критерієм χ^2 . У цьому випадку величина χ^2 визначається формулою

$$\chi^2 = \sum_{i=1}^l \sum_{j=1}^m \frac{\left(n_{ij} - m_{ij}\right)^2}{m_{ij}},$$
(10.1)

де n_{ij} — кількість випадків, коли одночасно спостерігались значення

$$X = x_i, Y = y_j, m_{ij} = \frac{n_{i0}n_{0j}}{n}$$

 n_{i0}, n_{0j} — загальна кількість випадків, коли спостерігались відповідно значення $X = x_i, Y = y_j, l, m$ — кількість значень, що їх набувають відповідно величини X та Y за умови, що обсяг вибірки дорівнює n.

Гіпотеза H_0 про **незалежність** випадкових величин X та Y приймається на рівні значущості α , якщо $\chi^2 \leq \chi^2_{\alpha}$, де значення χ^2_{α} береться з таблиць розподілу χ^2 з k = (n-1)(m-1) ступенями свободи (дод. 8).

Для обчислення вибіркового значення статистики (10.1) критерію зручно використовувати формулу

$$\chi^2 = n \left(\sum_{i=1}^l \frac{1}{n_{i0}} \left(\sum_{j=1}^m \frac{n_{ij}}{n_{0j}} \right) - 1 \right)$$
 (10.2)

Результати перевірки гіпотези можна подати у вигляді таблиці спряженості ознак $l \times m$ (табл. 10.1), яка являє собою сукупний результат послідовності повторень випадкового експерименту (при цьому результати класифікуються за двома змінними ознаками).

Нехай є k різних експериментів, що складаються з $n_1, n_2, ..., n_k$ одиничних спостережень, тобто k різних вибірок обсягу $n_1, n_2, ..., n_k$.

Потрібно перевірити гіпотезу про те, що k вибірок вибрано з однієї і тієї самої сукупності або, інакше кажучи, гіпотезу про те, що ці вибірки однорідні.

Таблиці 10.1.

Y X	y_1	<i>y</i> ₂		\mathcal{Y}_m	$\sum_{i=1}^m n_{ij} = n_{i0}$
x_1	n ₁₁	n ₁₂		n_{1m}	n ₁₀
<i>x</i> ₂	n ₂₁	n ₂₂		n_{2m}	n_{20}
x_l	n_{I1}	n_{l2}	•••	n_{1m}	n_{l0}
$\sum_{i=1}^{l} n_{ij} = n_{0j}$	<i>n</i> ₀₁	<i>n</i> ₀₂		$n_{_{0m}}$	$\sum_{i=1}^{l} \sum_{j=1}^{m} n_{ij} = n$

У кожному екперименті спостерігається деяка змінна ознака і результати кожного зі спостережень розбиваються за значеннями цієї ознаки на l груп. Кількість результатів спостережень в i-й групі j-го ряду позначимо n_{ij} . Тоді всі дані розміщуються в таблиці такого самого вигляду, як і таблиця 3.1, причому суми за стовпцями в ній дорівнюють n_i .

Проте в цьому випадку таблиця ϵ результатом спостережень не однієї послідовності, як у випадку табл. 10.1, а k незалежних спостережень, кожному з яких відповіда ϵ один стовпець. Для перевірки гіпотези про однорідність використовують той самий критерій, що й для перевірки незалежності двох ознак.

Приклад 10.4. У 20 рейсах при різних погодних умовах здійснювались вимірювання максимальної швидкості і висоти польоту. Відхилення від розрахункових (у м/с і відповідно в м) наведено в таблиці:

i	1	2	3	4	5	6	7	8	9	10
X	-10	-2	4	10	-1	-16	-8	-2	6	8
Y	-8	-10	22	55	2	-30	-15	5	10	18
	Продовження табл									я табл.
i	11	12	13	14	15	16	17	18	19	20
X	-1	4	12	20	-11	2	14	6	-12	1
Y	3	-2	28	62	-10	-8	22	3	-32	8

Перевірити гіпотезу про незалежність системи випадкових величин (X,Y) на рівні значущості $\alpha=0,05$.

Розв'язання:

Випишемо різні значення варіант, які потрапили у вибірку, у порядку їх зростання. Дістанемо дискретний варіаційний ряд:

X	-16	-12	-11	-10	-8	-2	-1	1	2	4	6	8	10	12	14	20
n_i	1	1	1	1	1	2	2	1	1	2	2	1	1	1	1	1
Y	-32	-30	-15	-10	-8	-2	2	3	5	8	10	18	22	28	55	62
n_i	1	1	1	2	2	1	1	2	1	1	1	1	2	1	1	1

Визначаємо за обсягом вибірки n=20 орієнтовну кількість m=5 частинних інтервалів в інтервальному статистичному розподілі. За формулами $h_x = (x_{\max} - x_{\min}) / m$ та $h_y = (y_{\max} - y_{\min}) / m$

обчислюємо крок інтервалів: $h_x = (20+16)/5 = 7,2$ та $h_y = (62+32)/5 = 18,8$.

Підсумуємо частоти варіант, які потрапили в кожний із частинних інтервалів, при цьому частоти варіант, які збіглися з межами інтервалів, поділимо порівну між суміжними інтервалами.

Тоді інтервальний статистичний розподіл вибірки можна подати у вигляді таблиці:

i	1	2	3	4	5
$\left(x_{i-1},x_i\right)$	[-16;-8,8]	[-8,8;-1,6]	[-1,6;5,6]	[5,6;12,8]	[12,8;20]
n_i	4	3	6	5	2
(y_{i-1}, y_i)	[-32;-13,2]	[-13,2;5,6]	[5,6;24,4]	[24,4;43,2]	[43,2;62]
n_i	3	9	5	1	2

Y	[-32;-13,2]	[-13,2;5,6]	[5,6;24,4]	[24,4;43,2]	[43,2;62]	$\sum_{ij}^{5} n_{ij} = n_{i0}$
X						j=1
[-16;-8,8]	2	2	-	-	-	4
[-8,8;-1,6]	1	2	1	1	•	3
[-1,6;5,6]	-	4	2	1	•	6
[5,6;12,8]	-	1	2	1	1	5
[12,8;20]	-	-	1	-	1	2
$\sum_{j=1}^{5} n_{ij} = n_{0j}$	3	9	5	1	2	$\sum_{i=1}^{5} \sum_{j=1}^{5} n_{ij} = 20$

За формулою
$$\chi^2 = n \left(\sum_{i=1}^l \frac{1}{n_{i0}} \left(\sum_{j=1}^m \frac{n_{ij}^2}{n_{0j}} \right) - 1 \right)$$
, маємо:

$$\chi^2 = 20 \cdot \left[\frac{1}{4} \left(\frac{2^2}{3} + \frac{2^2}{9} \right) + \frac{1}{3} \left(\frac{1^2}{3} + \frac{2^2}{9} \right) + \frac{1}{6} \left(\frac{4^2}{9} + \frac{2^2}{5} \right) + \frac{1}{5} \left(\frac{1^2}{9} + \frac{2^2}{5} + \frac{1^2}{1} + \frac{1^2}{2} \right) + \frac{1}{2} \left(\frac{1^2}{5} + \frac{1^2}{2} \right) - 1 \right] = 39,31.$$

Кількість ступенів свободи k = (l-1)(m-1) = (5-1)(5-1) = 16.

Оскільки за додатком 8 $\chi_{\alpha}^2 = 26,3$ а $\chi^2 > \chi_{\alpha}^2$, то гіпотезу про незалежність випадкових величин X та Y відхиляємо. Тобто задана система величин X та Y є залежною. При цьому залежність між ними близька до лінійної, оскільки $r_B = 0,88$ (майже одиниця)

Приклад 10.5. Реакцію хворих на застосування медичного препарату задано даними, наведеними в таблиці:

Стать	Кількі	Усього		
	поліпшився	не змінився	погіршився	J CBOTO
Чоловіки	18	28	6	52
Жінки	33	40	19	92
Всього	51	68	25	144

Чи можна вважати, що вплив препарату не залежить від статі хворих? Узяти $\alpha = 0.9$

$$P$$
озв'язання: Згідно формули $\chi^2 = n \left(\sum_{i=1}^l \frac{1}{n_{i0}} \left(\sum_{j=1}^m \frac{n_{ij}^2}{n_{0\,j}} \right) - 1 \right)$ отримуємо:

$$\chi^2 = 144 \cdot \left[\frac{1}{52} \left(\frac{18^2}{51} + \frac{28^2}{68} + \frac{6^2}{25} \right) + \frac{1}{92} \left(\frac{33^2}{51} + \frac{40^2}{68} + \frac{19^2}{25} \right) - 1 \right] = 2,53.$$

Кількість ступенів свободи k = (2-1)(3-1) = 2.

Оскільки за додатком 8 $\chi_{\alpha}^2 = 4,6$ а $\chi^2 < \chi_{\alpha}^2$, то гіпотеза приймається, тобто вплив препарату не залежить від статі.

10.4. Критерій для перевірки гіпотези про рівність параметрів p_1 і p_2 двох біноміальних розподілів

Нехай деяка подія A з'являється в результаті n_1 незалежних експериментів m_1 раз, а в результаті n_2 незалежних експериментів - m_2 раз. Необхідно перевірити припущення про те, що ймовірності появи події A в обох серіях експериментів однакові, тобто $H_0: p_1 = p_2$.

Позначимо
$$p_1^* = \frac{m_1}{n_1}; \quad p_2^* = \frac{m_2}{n_2}; \quad h = \frac{m_1 + m_2}{n_1 + n_2}.$$

Якщо n_1 і n_2 - великі числа, то в якості критерію приймемо випадкову величину

$$U = \frac{p_1^* - p_2^*}{\sqrt{h(1-h)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

що має закон розподілу N(0; 1), де M(U) = 0, $\sigma(U) = 1$.

Виберемо критичну область залежно від виду конкуруючої гіпотези :

- якщо H_1 : $p_1 \neq p_2$, то $u_{\kappa p}$ визначається з умови: $\Phi \left(u_{kp} \right) = \frac{1-\alpha}{2}$, критична область двобічна і, якщо $\left| U_{cnocm} \right| < u_{kp}$, то нульова гіпотеза приймається; якщо $\left| U_{cnocm} \right| > u_{kp}$, то нульова гіпотеза відхиляється.
- якщо H_1 : $p_1>p_2$, то $u_{\kappa p}$ визначається з умови: $\Phi \left(u_{kp}\right)=\frac{1-2\alpha}{2}$, критична область правобічна, і якщо $U_{cnocm}< u_{kp}$, то нульова гіпотеза приймається; якщо $U_{cnocm}> u_{kp}$, то нульова гіпотеза відхиляється.
- якщо H_1 : $p_1 < p_2$, то $u_{\kappa p}$ визначається з умови: $\Phi \left(u_{kp} \right) = \frac{1-2\alpha}{2}$, критична область лівобічна, і якщо $U_{cnocm} > -u_{kp}$, то нульова гіпотеза приймається; якщо $U_{cnocm} < -u_{kp}$, то нульова гіпотеза відхиляється.