MATH 220A: Homework #7

Due on Nov 15, 2024 at 23:59pm

 $Professor\ Ebenfelt$

Ray Tsai

A16848188

Problem 1

If $Tz = \frac{az+b}{cz+d}$, find z_2, z_3, z_4 (in terms of a, b, c, d) such that $Tz = (z, z_2, z_3, z_4)$.

Proof. Solving

$$Tz_2 = \frac{az_2 + b}{cz_2 + d} = 1$$
, $Tz_3 = \frac{az_3 + b}{cz_3 + d} = 0$, $Tz_4 = \frac{az_4 + b}{cz_4 + d} = \infty$,

we get
$$z_2 = \frac{d-b}{a-c}$$
, $z_3 = \frac{-b}{a}$, and $z_4 = -\frac{d}{c}$.

Problem 2

If $Tz = \frac{az+b}{cz+d}$, find necessary and sufficient conditions that $T(\Gamma) = \Gamma$ where Γ is the unit circle $\{z : |z| = 1\}$.

Proof. Note that $T(\Gamma) = \Gamma$ if and only if $T^{-1}(\Gamma) = \Gamma$, and thus T^{-1} perseves the symmetry between 0 and ∞ . Let $k = T^{-1}(0) \notin \Gamma$. By the calculation in the textbook, k is symmetric to $\frac{1}{k}$. That is, $T(\frac{1}{k}) = \infty$. Solving

$$\begin{cases} \frac{ak+b}{ck+d} = 0, \\ \frac{\frac{a}{\bar{k}}+b}{\frac{c}{\bar{k}}+d} = \infty \end{cases},$$

we have $b=-ak, d=-\frac{c}{k}.$ Put $m=\frac{a}{c}$ and T is of the form

$$Tz = \frac{m(z-k)}{z - \frac{1}{\overline{L}}}.$$

If k=0 or ∞ , then Tz=mz or $Tz=\frac{m}{z}$, so $T(\Gamma)=\Gamma$ if and only if $m\in\Gamma$. Suppose otherwise. Notice

$$|Tz|^{2} = |m\bar{k}|^{2} \left(\frac{z-k}{\bar{k}z-1}\right) \left(\frac{\bar{z}-\bar{k}}{k\bar{z}-1}\right)$$
$$= |m\bar{k}|^{2} \left(\frac{|z|^{2}+|k|^{2}-2Re(z\bar{k})}{|k|^{2}|z|^{2}+1-2Re(z\bar{k})}\right).$$

But then when $z \in \Gamma$, $|Tz|^2 = |m\bar{k}|^2$. Thus in this case, $T(\Gamma) = \Gamma$ if and only if $k \notin \Gamma$ and $m\bar{k} \in \Gamma$.

Cominbing the two cases, we have $T(\Gamma) = \Gamma$ if and only if

$$Tz = \frac{m(z-k)}{z - \frac{1}{k}},$$

where $k \notin \Gamma$, $m \in \Gamma$ if $k = 0, \infty$ and $m\bar{k} \in \Gamma$ otherwise.

Problem 3

Let $D = \{z : |z| < 1\}$ and find all Möbius transformations T such that T(D) = D.

Proof. We show that T(D)=D if and only if $T^{-1}(0)\in D$. Obviously if T(D)=D we have $T^{-1}(0)\in D$. Now suppose $k=T^{-1}(0)\in D$. Since T is continuous, $T(\partial D)=\partial D$, where $\partial D=\Gamma$ is the unit circle. By the previous problem, T is of the form

$$Tz = \frac{m(z-k)}{z - \frac{1}{k}}.$$

Suppose $z \in D$. It suffices to show that |Tz| < 1. If k = 0 then Tz = mz and |Tz| = |mz| < 1. Suppose $k \neq 0$. By the previous problem,

$$|Tz|^2 = |m\bar{k}|^2 \left(\frac{|z|^2 + |k|^2 - 2Re(z\bar{k})}{|k|^2|z|^2 + 1 - 2Re(z\bar{k})} \right).$$

Since $|k|^2(1-|z|^2) < 1-|z|^2$ for $k, z \in D$,

$$|z|^2 + |k|^2 < |k|^2 |z|^2 + 1,$$

and so $|Tz|^2 < 1$.

Problem 4

Let G be a region and suppose that $f: G \to \mathbb{C}$ is analytic such that f(G) is a subset of a circle. Show that f is constant.

Proof. Let $z_2, z_3, z_4 \in G$ such that $f(z_2), f(z_3), f(z_4)$ are distinct. Let T be a Möbius transformation such that $Tz = \frac{az+b}{cz+d} = (z, f(z_2), f(z_3), f(z_4))$. Since T is analytic and $T(f(z)) \in \mathbb{R}_{\infty}$ for all $z \in G$, T(f(z)) is constant by exercise 3.2.14. Thus,

$$(T(f(z)))' = T'(f(z))f'(z) = \frac{ad - bc}{(cf(z) + d)^2}f'(z) = 0.$$

Since $ad - bc \neq 0$, f'(z) = 0 for all $z \in G$ with $z \neq z_4$. But then G is connected and f' is continuous, so $\lim_{z \to z_4} f'(z) = f'(z_4) = 0$. Hence, f' = 0 and the result now follows.

Problem 5

Show that a Möbius transformation T satisfies $T(0) = \infty$ and $T(\infty) = 0$ iff $Tz = kz^{-1}$ for some k in \mathbb{C} .

Proof. Let $Tz = \frac{az+b}{cz+d}$. The converse is trivial. Suppose $T(0) = \infty$, and $T(\infty) = 0$. Then $Tz = (z, z_2, \infty, 0)$ for some k. By the first problem of this homework,

$$\frac{-b}{a} = \infty, \quad \frac{-d}{c} = 0,$$

which implies a = d = 0. Hence, $T = \frac{b}{c}z^{-1}$.