

Introduction

- Artificial Neural Networks (ANN)
 - ☐ Information processing paradigm inspired by biological nervous systems
 - □ANN is composed of a system of neurons connected by synapses
 - □ ANN learn by example
 - Adjust synaptic connections between neurons

2

History

- 1943: McCulloch and Pitts model neural networks based on their understanding of neurology.
 - □ Neurons embed simple logic functions:
 - a or b
 - a and b
- 1950s:
 - □ Farley and Clark
 - IBM group that tries to model biological behavior
 - Consult neuro-scientists at McGill, whenever stuck
 - □ Rochester, Holland, Haibit and Duda

History

- Perceptron (Rosenblatt 1958)
 - ☐ Three layer system:
 - Input nodes
 - Output node
 - Association layer
 - Can learn to connect or associate a given input to a random output unit
- Minsky and Papert
 - □ Showed that a single layer perceptron cannot learn the XOR of two binary inputs
 - □ Lead to loss of interest (and funding) in the field

3

4

History

- Perceptron (Rosenblatt 1958)
 - Association units A₁, A₂, ... extract features from user input
 - □ Output is weighted and associated
 - ☐ Function fires if weighted sum of input exceeds a threshold.

History

- Back-propagation learning method (Werbos 1974)
 - □ Three layers of neurons
 - Input, Output, Hidden
 - ☐ Better learning rule for generic three layer networks
 - □ Regenerates interest in the 1980s
- Successful applications in medicine, marketing, risk management, ... (1990)
- In need for another breakthrough.

5

Promises

□ Combine speed of silicon with proven success of carbon → artificial brains

Natural neurons

7

8

- Neuron collects signals from dendrites
- Sends out spikes of electrical activity through an axon, which splits into thousands of branches.
- At end of each brand, a synapses converts activity into either exciting or inhibiting activity of a dendrite at another neuron.
- Neuron fires when exciting activity surpasses inhibitory activity
- Learning changes the effectiveness of the synapses

Neuron Model

Natural neurons

9

10

Neuron Model

Abstract neuron model:

ANN Forward Propagation

ANN Forward Propagation

- Bias Nodes
 - □ Add one node to each layer that has constant output
- Forward propagation
 - □ Calculate from input layer to output layer
 - □ For each neuron:
 - Calculate weighted average of input
 - Calculate activation function

13

Neuron Model

- Firing Rules: Sigmoid functions:
 - □ Hyperbolic tangent function

$$\varphi(\nu) = \tanh(\nu/2) = \frac{1 - \exp(-\nu)}{1 + \exp(-\nu)}$$

□ Logistic activation function

$$\varphi(\nu) = \frac{1}{1 + \exp(-\nu)}$$

15

ANN Forward Propagation

- Apply input vector **X** to layer of neurons.
- Calculate

$$V_j(n) = \sum_{i=1}^p (W_{ji}X_i + Threshold)$$

- where X_i is the activation of previous layer neuron i
- □ W_{ii} is the weight of going from node i to node j
- p is the number of neurons in the previous layer
- Calculate output activation

$$Y_{j}(n) = \frac{1}{1 + \exp(-V_{j}(n))}$$

Neuron Model

- Firing Rules:
 - □ Threshold rules:
 - Calculate weighted average of input
 - Fire if larger than threshold
 - □ Perceptron rule
 - Calculate weighted average of input input
 - Output activation level is

$$\phi(v) = \begin{cases} 1 & v \ge \frac{1}{2} \\ v & 0 \le v \le \frac{1}{2} \\ 0 & v \le 0 \end{cases}$$

14

ANN Forward Propagation

16

ANN Forward Propagation

- Example: ADALINE Neural Network
 - □ Calculates and of inputs

Bias Node

18

ANN Forward Propagation

Example: Three layer networkCalculates xor of inputs

19

ANN Forward Propagation

■ Input (0,0)

20

1

ANN Forward Propagation

■ Input (0,0) $V_j(n) = \sum_{i=1}^p (W_{ji}X_i + Threshold)$ □ Node 2 activation is $\varphi(-4.8 \cdot 0 + 4.6 \cdot 0 - 2.6) = 0.0691$

21

ANN Forward Propagation

■ Input (0,0) $V_j(n) = \sum_{i=1}^p (W_{ji}X_i + Threshold)$ □ Node 3 activation is $\varphi(5.1 \cdot 0 - 5.2 \cdot 0 - 3.2) = 0.0392$

22

ANN Forward Propagation

■ Input (0,0) $V_j(n) = \sum_{i=1}^p (W_{ji}X_i + Threshold)$ □ Node 4 activation is $\varphi(5.9 \cdot 0.069 + 5.2 \cdot 0.0392 - 2.7) = 0.110227$

10.0

ANN Forward Propagation

■ Input (0,1) $V_j(n) = \sum_{i=1}^p (W_{ji}X_i + Threshold)$ □ Node 2 activation is $\varphi(4.6 - 2.6) = 0.153269$

23

ANN Forward Propagation

■ Input (0,1) $V_j(n) = \sum_{i=1}^p (W_{ji}X_i + Threshold)$ □ Node 3 activation is $\varphi(-5.2 - 3.2) = 0.000224817$

25

ANN Forward Propagation

■ Input (0,1) $V_j(n) = \sum_{i=1}^p (W_{ji}X_i + Threshold)$ □ Node 4 activation is $\varphi(5.9 \cdot 0.153269 + 5.2 \cdot 0.000224817 \cdot 2.7) = 0.923992$

26

ANN Forward Propagation

Density Plot of Output

27

ANN Forward Propagation

28

ANN Forward Propagation

- Network can learn a non-linearly separated set of outputs.
- Need to map output (real value) into binary values.

ANN Training

- Weights are determined by training
 - □ Back-propagation:
 - On given input, compare actual output to desired output.
 - Adjust weights to output nodes.
 - Work backwards through the various layers
 - □ Start out with initial random weights
 - Best to keep weights close to zero (<<10)

29

ANN Training

- Weights are determined by training
 - ■Need a training set
 - Should be representative of the problem
 - □ During each training epoch:
 - Submit training set element as input
 - Calculate the error for the output neurons
 - Calculate average error during epoch
 - Adjust weights

ANN Training

 Error is the mean square of differences in output layer

$$E(\vec{x}) = \frac{1}{2} \sum_{k=1}^{K} (y_k(\vec{x}) - t_k(\vec{x}))^2$$

- y observed output
- t target output

31

ANN Training

 Error of training epoch is the average of all errors.

ANN Training

Update weights and thresholds using

$$\Box \text{ Weights } \qquad w_{j,k} = w_{j,k} + (-\eta) \frac{\partial E(\vec{x})}{\partial w_{jk}}$$

$$\Box \operatorname{Bias} \qquad \quad \theta_{\scriptscriptstyle k} = \theta_{\scriptscriptstyle k} + (-\eta) \frac{\partial E(\vec{x})}{\partial \theta_{\scriptscriptstyle k}}$$

 $\hfill \eta$ is a possibly time-dependent factor that should prevent overcorrection

33

ANN Training

Using a sigmoid function, we get

$$\frac{\partial E(\vec{x})}{\partial w_{jk}} = -y_j \delta_j$$

$$\delta_j = f'(\text{net}_j)(t_j - y_j)$$

 \Box Logistics function ϕ has derivative $\phi'(t) = \phi(t)(1 - \phi(t))$

ANN Training Example

Start out with random, small weights

x1	x2	у
0	0	0.687349
0	1	0.667459
1	0	0.698070
1	1	0.676727

	x1	x2	у	Error
	0	0	0.69	0.472448
	0	1	0.67	0.110583
	1	0	0.70	0.0911618
	1	1	0.68	0.457959
-	-	_	0.00	

Average Error is 0.283038

ANN Training Example

x1	x2	у	Error
0	0	0.69	0.472448
0	1	0.67	0.110583
1	0	0.70	0.0911618
1	1	0.68	0.457959

Average Error is 0.283038

37

_

ANN Training Example

 Calculate the derivative of the error with respect to the weights and bias into the output layer neurons 38

ANN Training Example

New weights going into node 4 We do this for all training inputs, then average out the changes

 net_4 is the weighted sum of input going into neuron 4:

net₄(0,0)= 0.787754 net₄(0,1)= 0.696717 net₄(1,0)= 0.838124 net₄(1,1)= 0.73877

39

r de

ANN Training Example

New weights going into node 4

We calculate the derivative of the activation function at the point given by the net-input. Recall our cool formula

 $\varphi'(t) = \varphi(t)(1 - \varphi(t))$

 $\phi'(\text{ net}_4(0,0)) = \phi'(\text{ 0.787754}) = 0.214900$ $\phi'(\text{ net}_4(0,1)) = \phi'(\text{ 0.696717}) = 0.221957$ $\phi'(\text{ net}_4(1,0)) = \phi'(\text{ 0.838124}) = 0.210768$ $\phi'(\text{ net}_4(1,1)) = \phi'(\text{ 0.738770}) = 0.218768$ 40

ANN Training Example

 $\frac{\partial E(\vec{x})}{\partial w_{jk}} = -y_j \delta_j$ $\delta_i = f'(\text{net}_j)(t_j - y_j)$

New weights going into node 4

We now obtain $\,\delta$ values for each input separately:

Input 0,0:

 $\delta_4 \text{= } \phi' \text{(} \mathsf{net_4}(0,0) \text{) } ^\star \text{(0-y_4}(0,0) \text{)} = \text{-0.152928}$ Input 0,1:

 $\delta_4 = \phi'(\text{ net4}(0,1)) \ ^*(1\text{-y}_4(0,1)) = 0.0682324$ Input 1,0:

 $\delta_4 \text{= } \phi' \text{(net}_4 (1,0) \text{) } \text{^*(1-y}_4 (1,0) \text{)} = 0.0593889}$ Input 1,1:

 δ_4 = ϕ' (net₄(1,1)) *(0-y₄(1,1)) = -0.153776 Average: δ_4 = -0.0447706

41

$$\frac{\partial E(\vec{x})}{\partial w_{jk}} = -y_j \delta_j$$

$$\delta_j = f'(\text{net}_j)(t_j - y_j)$$

New weights going into node 4 Average: $\delta_4 = -0.0447706$ We can now update the weights going into

Let's call: Eii the derivative of the error function with respect to the weight going from neuron i into neuron j.

We do this for every possible input:

 $E_{42} = - \text{ output(neuron(2)* } \delta_4$ For (0,0): E_{4,2} = 0.0577366

For (0,1): $E_{4,2} = -0.0424719$ For(1,0): E_{4,2} = -0.0159721 For(1,1): E_{4,2} = 0.0768878

Average is 0.0190451

ANN Training Example

New weight from 2 to 4 is now going to be 0.1190451.

$$\frac{\partial E(\vec{x})}{\partial w_{jk}} = -y_j \delta_j$$
$$\delta_j = f'(\text{net}_j)(t_j - y_j)$$

43

ANN Training Example

 $\delta_i = f'(\text{net}_j)(t_j - y_j)$

New weights going into node 4 For (0,0): E_{4,3} = 0.0411287 For (0,1): E_{4,3} = -0.0341162 For(1,0): $E_{4,3} = -0.0108341$ For(1,1): E_{4,3} = 0.0580565 Average is 0.0135588

New weight is -0.486441

45

ANN Training Example

 $\delta_{i} = f'(\text{net}_{i})(t_{i} - y_{i})$

New weights going into node 4:

We also need to change the bias node

For (0,0): E_{4,B} = 0.0411287 For (0,1): E_{4,B} = -0.0341162 For(1,0): E_{4,B} = -0.0108341 For(1,1): E_{4,B} = 0.0580565

Average is 0.0447706 New weight is 1.0447706

46

ANN Training Example

- We now have adjusted all the weights into the output layer.
- Next, we adjust the hidden layer
- The target output is given by the delta values of the output layer
- More formally:
 - ☐ Assume that j is a hidden neuron
 - \square Assume that δ_k is the delta-value for an output neuron k.
 - While the example has only one output neuron, most ANN have more. When we sum over *k*, this means summing over all output neurons.
 w_{kj} is the weight from neuron *j* into neuron *k*

$$\delta_j = \varphi'(\mathsf{net}_j) \cdot \sum_k (\delta_k w_{kj})$$

$$\frac{\partial E}{\partial w_{ii}} = -y_i \delta_j$$

ANN Training Example

 $\delta_j = \varphi'(\text{net}_j) \cdot \sum_i (\delta_k w_{kj})$

$$\frac{\partial E}{\partial w} = -y_i \delta$$

We now calculate the updates to the weights of neuron 2.

First, we calculate the net-input into 2. This is really simple because it is just a linear functions of the arguments x1 and x2

 $net_2 = -0.5 x_1 + x2 - 0.5$

We obtain

 $\delta_2(0,0) = -0.00359387$

 $\delta_2(0,1) = 0.00160349$ $\delta_2(1,0) = 0.00116766$

 $\delta_2(1,1) = -0.00384439$

47

Call E_{20} the derivative of E with respect to w_{20} . We use the output activation for the neurons in the previous layer (which happens to be the input layer)

 $E_{20}(0,0) = - \phi(0) \cdot \delta_2(0,0) = 0.00179694$

 $E_{20}(0,1) = 0.00179694$

 $E_{20}(1,0) = -0.000853626$

 $E_{20}(1,1) = 0.00281047$

 $\delta_{j} = \varphi'(\text{net}_{j}) \cdot \sum_{k} (\delta_{k} w_{kj})$ $\frac{\partial E}{\partial w_{kj}} = -y_{i} \delta_{j}$

The average is 0.00073801 and the new weight is -0.499262

49

ANN Training Example

 $\delta_{j} = \varphi'(\text{net}_{j}) \cdot \sum_{i} (\delta_{k} w_{kj})$

Call E_{21} the derivative of E with respect to w_{21} . We use the output activation for the neurons in the previous layer (which happens to be the input layer)

 $E_{21}(0,0) = -\phi(1)\cdot\delta_2(0,0) = 0.00179694$

 $E_{21}(0,1) = -0.00117224$

 $E_{21}(1,0) = -0.000583829$

 $E_{21}(1,1) = 0.00281047$

The average is 0.000712835 and the new weight is 1.00071

50

ANN Training Example

 $\delta_{j} = \varphi'(\text{net}_{j}) \cdot \sum_{i} (\delta_{k} w_{kj})$

Call E_{2B} the derivative of E with respect to w_{2B} . Bias output is always -0.5

 $E_{2B}(0,0) = -0.5 \cdot \delta_2(0,0) = 0.00179694$

 $E_{2B}(0,1) = -0.00117224$ $E_{2B}(1,0) = -0.000583829$

 $E_{2B}(1,1) = 0.00281047$

The average is 0.00058339 and the new weight is -0.499417

 $\frac{\partial E}{\partial w} = -y_i \delta_j$

51

ANN Training Example

 $\delta_{j} = \varphi'(\mathsf{net}_{j}) \cdot \sum_{k} (\delta_{k} w_{kj})$

 $\frac{\partial E}{\partial w_{ii}} = -y_{i}\delta_{i}$

52

ANN Training

ANN Back-propagation is an empirical algorithm

ANN Training

- XOR is too simple an example, since quality of ANN is measured on a finite sets of inputs.
- More relevant are ANN that are trained on a training set and unleashed on real data

ANN Training

- Need to measure effectiveness of training
 - □ Need training sets
 - □ Need test sets.
- There can be no interaction between test sets and training sets.
 - □ Example of a Mistake:
 - Train ANN on training set. Test ANN on test set.

 - Results are poor.
 - Go back to training ANN.
 - After this, there is no assurance that ANN will work well in practice.
 - In a subtle way, the test set has become part of the training set.

ANN Training

- Convergence
 - □ ANN back propagation uses gradient decent.
 - □ Naïve implementations can
 - overcorrect weights
 - undercorrect weights
 - □ In either case, convergence can be poor
- Stuck in the wrong place
 - □ ANN starts with random weights and improves them
 - ☐ If improvement stops, we stop algorithm
 - □ No guarantee that we found the best set of weights
 - $\hfill\square$ Could be stuck in a local minimum

55

56

ANN Training

- Overtraining
 - □ An ANN can be made to work too well on a training set
 - ☐ But loose performance on test sets

57

ANN Training

- Overtraining
 - Assume we want to separate the red from the green dots.
 - □ Eventually, the network will learn to do well in the training case
 - $\hfill\square$ But have learnt only the particularities of our training set

58

ANN Training

Overtraining

ANN Training

- Improving Convergence
 - Many Operations Research Tools apply
 - Simulated annealing
 - Sophisticated gradient descent

59

ANN Design

- ANN is a largely empirical study
 - □ "Seems to work in almost all cases that we know about"
- Known to be statistical pattern analysis

ANN Design

- Number of layers
 - □ Apparently, three layers is almost always good enough and better than four layers.
 - □ Also: fewer layers are faster in execution and training
- How many hidden nodes?
 - □ Many hidden nodes allow to learn more complicated
 - □ Because of overtraining, almost always best to set the number of hidden nodes too low and then increase their numbers.

61

ANN Design

- Interpreting Output
 - □ ANN's output neurons do not give binary values.
 - Good or bad
 - Need to define what is an accept.
 - □ Can indicate *n* degrees of certainty with *n*-1 output neurons.
 - Number of firing output neurons is degree of certainty

ANN Applications

- Pattern recognition
 - □ Network attacks
 - □ Breast cancer

 - □ handwriting recognition
- Pattern completion
- Auto-association
 - □ ANN trained to reproduce input as output
 - Noise reduction
 - Compression Finding anomalies
- Time Series Completion

63

64

ANN Future

- ANNs can do some things really well
- They lack in structure found in most natural neural networks

Pseudo-Code

- phi activation function
- phid derivative of activation function

65

Pseudo-Code

- Forward Propagation:
 - □ Input nodes i, given input x_i: foreach inputnode i output_i = x_i
 - □ Hidden layer nodes j foreach hiddenneuron j output_i = ∑_i phi(w_{ij}·output_i)

67

Pseudo-Code

Output Error

Error() {

 $\label{eq:continuous_potential} \text{Foreinput} \text{ in InputSet} \\ \text{Error}_{\textbf{input}} = \sum_{\textbf{k} \text{ output neuron}} (\texttt{target}_{\textbf{k}} - \texttt{output}_{\textbf{k}})^2 \\ \text{return Average}(\texttt{Error}_{\textbf{input}}, \texttt{InputSet})$

69

Pseudo-Code

For each output neuron *k* calculate:

$$\delta_{k} = \varphi'(\text{net}_{k}) \cdot (\text{target}_{k} - \text{output}_{k})$$

For each output neuron *k* calculate and hidden layer neuron *j* calculate:

$$\frac{\partial E}{\partial W_{kj}} = -\text{output}_{j} \cdot \delta_{k}$$

Pseudo-Code

ActivateLayer(input,output)

foreach i inputneuron
 calculate output;
foreach j hiddenneuron
 calculate output;
foreach k hiddenneuron
 calculate outputk
output = {outputk}

68

Pseudo-Code

- Gradient Calculation
 - \square We calculate the gradient of the error with respect to a given weight w_{ki} .
 - ☐ The gradient is the average of the gradients for all inputs.
 - □ Calculation proceeds from the output layer to the hidden layer

70

Pseudo-Code

For each hidden neuron *j* calculate:

$$\delta_{j} = \varphi'(\text{net}_{j}) \cdot \sum_{k} \left(\delta_{k} W_{kj} \right)$$

For each hidden neuron j and each input neuron i calculate:

$$\frac{\partial E}{\partial W_{ii}} = -\text{output}_{i} \cdot \delta_{j}$$

71

Pseudo-Code

- These calculations were done for a single input.
- Now calculate the average gradient over all inputs (and for all weights).
- You also need to calculate the gradients for the bias weights and average them.

Pseudo-Code

- Naïve back-propagation code:
 - □ Initialize weights to a small random value (between -1 and 1)
 - □ For a maximum number of iterations do
 - Calculate average error for all input. If error is smaller than tolerance, exit.
 - For each input, calculate the gradients for all weights, including bias weights and average them.
 - If length of gradient vector is smaller than a small value, then
 - Otherwise:
 - Modify all weights by adding a negative multiple of the gradient to the weights.

73

Pseudo-Code

■ This naïve algorithm has problems with convergence and should only be used for toy problems.

ANN Training Example 2

Start out with random, small weights

75

76

ANN Training Example 2

Calculate outputs

x1	x2	y=0 ₄
0	0	0.7160
0	1	0.7155
1	0	0.7308
1	1	0.7273

ANN Training Example 2

■ Calculate average error to be E = 0.14939

\mathbf{x}_0	X ₁	у	t	E=(y-t) ² /2
0	0		0	0.2564
		0.7160		
0	1	0.7155	1	0.0405
1	0	0.7308	1	0.0362
1	1	0.7273	0	0.264487

77

Calculate the change for node 4

Need to calculate net4, the weighted input of all input into node 4

 $\mathsf{net}_4(\mathsf{x}_0,\!\mathsf{x}_1) = 0.3 \ \mathsf{o}_2(\mathsf{x}_0,\!\mathsf{x}_1) - 0.7 \ \mathsf{o}_3(\mathsf{x}0,\!\mathsf{x}1) + 1$

 $net_4 = (net_4(0,0) + net_4(0,1) + net_4(1,0) + net_4(1,1))/4$

This gives 0.956734

79

ANN Training Example 2

■ Calculate the change for node 4

$$\frac{\partial E(\vec{x})}{\partial w_{jk}} = -y_j \delta_j$$
$$\delta_j = f'(\text{net}_j)(t_j - y_j)$$

We can now update the weights for node 4

 $\mathsf{E}_{4,2}(0,0) = -\mathsf{o}_2(0,0)^* \; \delta_4 = 0.01689$

 $\mathsf{E}_{4,2}(0,1) = \mathsf{-o}_2(0,1)^* \; \delta_4 = 0.02785$

 $\mathsf{E}_{4,2}(1,0) = \mathsf{-o}_2(1,0)^\star \; \delta_4 = 0.02785$

 $E_{4,2}(0,0) = -o_2(0,0)^* \delta_4 = 0.03658$

with average 0.00708

81

ANN Training Example 2

Calculate the change for node 4

$$\frac{\partial E(\vec{x})}{\partial w_{jk}} = -y_{j} \delta_{j}$$
$$\delta_{j} = f'(\text{net}_{j})(t_{j} - y_{j})$$

We now calculate

 $\delta_4(0,0) = \phi'(\text{net}_4(0,0)(0 - o_4(0,0)) = -0.14588$

 $\begin{array}{lll} \delta_{\rm d}(0,1) = \phi'(\text{net4}(0,1)(1 - \text{o4}(0,1)) = \ 0.05790 \\ \delta_{\rm d}(1,1) = \phi'(\text{net4}(1,0)(0 - \text{o4}(1,0)) = \ 0.05297 \\ \delta_{\rm d}(1,1) = \phi'(\text{net4}(1,1)(0 - \text{o4}(1,1)) = \ -0.14425 \end{array}$

On average δ_{4} = -0.044741

80

ANN Training Example 2

Calculate the change for node 4

$$\frac{\partial E(\vec{x})}{\partial w_{jk}} = -y_j \delta_j$$
$$\delta_j = f'(\text{net}_j)(t_j - y_j)$$

 $E_{4,2} = 0.00708$

Therefore, new weight w_{42} is 0.2993