

Cumulative Contents

Regular Papers

Hydrolysis of DMPC or DPPC by pancreatic phospholipase A₂ is slowed down when (perfluoroalkyl)alkanes are incorporated into the liposomal membrane

N. Privitera, R. Naon and J.G. Riess (France)

The mechanism of lack of hypocholesterolemic effects of pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, in rats
T. Fujioka, F. Nara, Y. Tsujita, J. Fukushige, M. Fukami and M. Kuroda (Japan)

Plasma factors affecting the in vitro conversion of high-density lipoproteins labeled with a non-transferable marker

T. Pulcini, P. Terru, J.T. Sparrow, H.J. Pownall and G. Ponsin (France, USA)

Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface – a comparative study with two different reporter molecules

J.P. Slotte and P. Mattjus (Finland)

Reduced dimerization of lipoprotein lipase in post-heparin plasma of a patient with hyperchylomicronemia

H. Masuno, H. Nakabayashi, J. Kobayashi, Y. Saito and H. Okuda (Japan)

Evaluation of cultured hamster hepatocytes as an experimental model for the study of very low density lipoprotein secretion

V.-Q. Hoang, N.J. Pearce, K.E. Suckling and K.M. Botham (UK)

Glycosylation, dimerization, and heparin affinity of lipoprotein lipase in 3T3-L1 adipocytes

J.-W. Park, M.-S. Oh, J.-Y. Yang, B.-H. Park, H.-W. Rho, S.-N. Lim, E.-C. Jhee and H.-R. Kim (South Korea)

Cholesterol metabolism in monocyte-derived macrophages from macrophage colony-stimulating factor administered rabbits

I. Ishii, T. Kimura, Y. Saito and S. Hirose (Japan)

Sequential changes in glycolipid expression during human B cell differentiation: enzymatic bases

S. Taga, C. Tétaud, M. Mangeney, T. Tursz and J. Wiels (France)

3,5-Di-*t*-butyl-4-hydroxytoluene (BHT) and probucol stimulate selectively the reaction of mammalian 15-lipoxygenase with biomembranes

K. Schnurr, H. Kühn, S.M. Rapoport and T. Schewe (Germany)

66

Methylation of the β -positions of the furan ring in F-acids

J. Scheinkönig, K. Hannemann and G. Spitteler (Germany)

73

Very fast ultracentrifugation of serum lipoproteins: influence on lipoprotein separation and composition

J. Pietzsch, S. Subat, S. Nitzsche, W. Leonhardt, K.-U. Schentke and M. Hanefeld (Germany)

77

Influence of bile salt molecular species on cholesterol crystallization from supersaturated model biles

C. Juste, I. Catala, R. Henry, C. Chabanet, A.-M. Gueugneau, F. Béguet, B. Lyan and T. Corring (France)

89

Certain properties of isoniazid inhibition of mycolic acid synthesis in cell-free systems of *M. aurum* and *M. avium*

A. Quémard, S. Mazères, A. Sut, G. Lanéelle and C. Lacave (France)

98

Different effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors on sterol synthesis in various human cell types

A.K. Van Vliet, G.C.F. Van Thiel, R.H. Huisman, H. Moshage, S.H. Yap and L.H. Cohen (The Netherlands, Belgium)

105

Rapid Report

Cloning and characterization of a murine macrophage lipoxygenase

J. Freire-Moar, A. Alavi-Nassab, M. Ng, M. Mulkins and E. Sigal (USA)

112

Regular Papers

Modulation of substrate selectivity in plasma lipid transfer protein reaction over structural variation of lipid particle

56

<p><i>T. Ohnishi, K. Oikawa, C.M. Kay and S. Yokoyama (Canada)</i></p> <p>Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist</p> <p><i>N. Ueda, K. Yamamoto, S. Yamamoto, T. Tokunaga, E. Shirakawa, H. Shinkai, M. Ogawa, T. Sato, I. Kudo, K. Inoue, H. Takizawa, T. Nagano, M. Hirobe, N. Matsuki and H. Saito (Japan)</i></p> <p>Fluorescence properties of oxidised human plasma low-density lipoproteins</p> <p><i>S. Singh, R. Suri and C.G. Agrawal (India)</i></p> <p>Effect of transforming growth factor-β on lipoprotein lipase in rat mesenchymal heart cell cultures</p> <p><i>G. Friedman, A. Ben-Yehuda, M. Ben-Naim, D. Matsa, O. Stein and Y. Stein (Israel)</i></p> <p>Distribution and metabolism of arachidonic and docosahexaenoic acids in rat pineal cells. Effect of norepinephrine</p> <p><i>I. Delton, A. Gharib, P. Mollière, M. Lagarde and N. Sarda (France)</i></p> <p>Two new phospholipids, hydroxyarchaetidylglycerol and hydroxyarchaetidylethanolamine, from the Archaea <i>Methanosarcina barkeri</i></p> <p><i>M. Nishihara and Y. Koga (Japan)</i></p> <p>Subcellular distribution of <i>N</i>-ethylmaleimide-sensitive and -insensitive phosphatidic acid phosphohydrolase in rat brain</p> <p><i>I.N. Fleming and S.J. Yeaman (UK)</i></p> <p>Amino acid sequences of three acyl-binding/lipid-transfer proteins from rape seedlings</p> <p><i>J. Østergaard, P. Højrup and J. Knudsen (Denmark)</i></p> <p>Human platelets have cholesteryl ester hydrolytic activity resulting in esterification of [1-14C]oleate to individual phospholipids of platelets</p> <p><i>D.E. Barre (USA)</i></p> <p>The effect of reduction of lipoprotein (a) on cellular cholesterol synthesis in non-diabetic and Type 2 diabetic subjects</p> <p><i>S. Gilligan, D. Owens, J. Stinson, P. Collins, A. Johnson and G.H. Tomkin (Ireland)</i></p> <p>Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity</p> <p><i>K. O, J.S. Hill and P.H. Pritchard (Canada)</i></p> <p>Metabolism and fate of neutral lipids of fetal lung fibroblast origin</p> <p><i>J. Torday, J. Hua and R. Slavin (USA)</i></p> <p>Renal leukotriene C₄ synthase: characterization, partial purification and alterations in experimental glomerulonephritis</p> <p><i>R. Petric, D.W. Nicholson and A.W. Ford-Hutchinson (Canada)</i></p>	<p>117</p> <p>127</p> <p>135</p> <p>140</p> <p>147</p> <p>155</p> <p>161</p> <p>169</p> <p>180</p> <p>187</p> <p>193</p> <p>198</p> <p>207</p>	<p>Rapid Reports</p> <p>Human apo A-I in transgenic mice is more efficient in activating lecithin:cholesterol acyltransferase than mouse apo A-I</p> <p><i>E. Golder-Novoselsky, A.V. Nichols, E.M. Rubin and T.M. Forte (USA)</i></p> <p>Primary structure of a lipoxygenase from barley grain as deduced from its cDNA sequence</p> <p><i>J.R. Van Mechelen, M. Smits, A.C. Douma, J. Rouster, V. Cameron-Mills, F. Heidekamp and B.E. Valk (The Netherlands, Denmark)</i></p> <p>Corrigenda</p> <p>Isolation and characterization of addition products of α-tocopherol with peroxy radicals of dlinoleylphosphatidylcholine in liposomes (<i>Biochimica et Biophysica Acta</i> 1212 (1994) 43-49)</p> <p><i>R. Yamauchi, Y. Yagi and K. Kato (Japan)</i></p> <p>Cyclization of natural allene oxide fatty acids. The anchimeric assistance of β,γ-double bond beside the oxirane and the reaction mechanism (<i>Biochimica et Biophysica Acta</i> 1213 (1994) 199-206)</p> <p><i>A.N. Grechkin (Russia)</i></p> <p>Review</p> <p>Platelet-activating factor and its analogs: metabolic pathways and related intracellular processes</p> <p><i>F. Snyder (USA)</i></p> <p>Regular Papers</p> <p>Oxidation of low-density lipoproteins: effect of antioxidant content, fatty acid composition and intrinsic phospholipase activity on susceptibility to metal ion-induced oxidation</p> <p><i>K.D. Croft, P. Williams, S. Dimmitt, R. Abu-Amsha and L.J. Beilin (Australia)</i></p> <p>Accumulation of isogloboside and ganglio-<i>N</i>-tetraosyl ceramide having blood group B determinant in the hepatomas of female LEC rats</p> <p><i>T. Ariga, N. Kasai, I. Miyoshi, M. Yamawaki, J.N. Scarsdale, R.K. Yu, T. Kasama and T. Taki (USA, Japan)</i></p> <p>Modulation of lipid metabolism at rat hepatic subcellular sites by female sex hormones</p> <p><i>D. Fu and C.A. Hornick (USA)</i></p> <p>Stilbene disulfonic acids inhibit synexin-mediated membrane aggregation and fusion</p> <p><i>L. Liu and A. Chander (USA)</i></p>	<p>217</p> <p>221</p> <p>227</p> <p>229</p> <p>231</p> <p>250</p> <p>257</p> <p>267</p> <p>274</p>
--	--	---	--

Translocation of both lysosomal LDL-derived cholesterol and plasma membrane cholesterol to the endoplasmic reticulum for esterification may require common cellular factors involved in cholesterol egress from the acidic compartments (lysosomes/endosomes)		<i>L.A.J.M. Creuwels, R.A. Demel, L.M.G. Van Golde and H.P. Haagsman (The Netherlands)</i>	326
<i>D.M. Spillane, J.W. Reagan Jr., N.J. Kennedy, D.L. Schneider and T.-Y. Chang (USA)</i>	283	Immunological studies of human constitutive cyclooxygenase (COX-1) using enzyme immuno-metric assay	
The CoA-independent transacylase in PAF biosynthesis: tissue distribution and molecular species selectivity		<i>C. Crémillon, Y. Frobert, A. Habib, J. Maclouf, P. Pradelles and J. Grassi (France)</i>	333
<i>M.L. Blank, Z.L. Smith, V. Fitzgerald and F. Snyder (USA)</i>	295	Differential measurement of constitutive (COX-1) and inducible (COX-2) cyclooxygenase expres-sion in human umbilical vein endothelial cells using specific immunometric enzyme immunoassays	
Regulation of mRNA levels for pulmonary surfac-tant-associated proteins in developing rabbit lung		<i>C. Crémillon, A. Habib, J. Maclouf, P. Pradelles, J. Grassi and Y. Frobert (France)</i>	341
<i>J. Xu, L.-J. Yao and F. Possmayer (Canada)</i>	302	Quantification of the interactions among fatty acid, lysophosphatidylcholine, calcium, dimyristoyl-phosphatidylcholine vesicles, and phospholipase A ₂	
Characterization of a partially purified diacylglycerol lipase from bovine aorta		<i>E.D. Bent and J.D. Bell (USA)</i>	349
<i>M.W. Lee, F.B. Kraemer and D.L. Severson (Canada, USA)</i>	311	Inhibition of phorbol ester-stimulated arachidonic acid release by alkylglycerols	
Incorporation of acetyl-CoA generated from peroxi-somal β-oxidation into ethanolamine plasmalogen of rat liver		<i>M. Robinson, R. Burdine and T.R. Warne (USA)</i>	361
<i>H. Hayashi and M. Oohashi (Japan)</i>	319	<i>Cumulative Contents Vol. 1254</i>	369
Characterization of a dimeric canine form of surfac-tant protein C (SP-C)		<i>Author Index</i>	372

