

Software Engineering

Landscape depending parameter tuning for search-based software testing

Overview

- 1. Introduction
- 2. Fundamentals
- 3. Experimental
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

- 1. Introduction
- 2. Fundamentals
- 3. Experimental
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Introduction

- Unit tests
- maximize coverage (line, branch, exception)
- lack of sufficient tests
- costly and time-consuming
- => use search-based software testing

Motivation

- Tools... => EvoSuite state-of-the-art
- may not terminate => search budget
- optimal only with optimal configuration
- No Free Lunch theorem
 - impossible to find optimal configuration for all problems
- EvoSuite's default configuration is fairly good, but not perfect

Research goal

- wide variety of problem-cases
- concept landscape depending
- adaptive parameter control
- increase coverage of EvoSuite

State-of-the-art

Challenges

Delimitation

- 1. Introduction
- 2. Fundamentals
- 3. Experimental
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Search-based software testing

- tests for object oriented languages
- sequence of method calls

Fitness function

- function for e.g. coverage
- guidance for search algorithms

Fitness landscape

-

_

Genetic algorithm

Heading

- start with random population
- iterate till termination condition
 - mutate and crossover
- return last generation

Heading

DynaMOSA

Heading

- start with random population
- multiple target
- keep track of target covering individuals

Heading

- iterate till termination condition
 - breed offspring
 - update targets
 - update archive
 - select by rank
- return archive as last generation

Parameter tuning and control

- 1. Introduction
- 2. Fundamentals
- 3. Experimental
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Corpus

SF110

- 110 open-source Java projects
- 23,894 Java Classes

Panichella et al.

- 117 open-source Java projects
- 346 Java Classes
- non-trivial and complex
- often used

Prediction sample

- S₁
- 709 Java Classes
- randomly selected
- SF110

- 9.8 days on three machines

Evaluation sample

- S_2
- 346 Java Classes
- the whole Panichella corpus

- 4.8 days on tree machines

Sensitive sample

- S₃
- 20 Java Classes
- extracted from S₁
- high Standard Deviation

- 6.6 hours on tree machines

Comparisons

- 30 repeats for every Java Class
- Mann-Whitney U-test
- Vargha-Delaney effect size Â₁₂

- 1. Introduction
- 2. Fundamentals
- 3. Experimental
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Concept

- use the beginning of the search to explore the search space
- classify the current search ("adjust" or "default")
- use configuration depending on class

Configuration selection

Components

Landscape features

Landscape approximation

- random walk is time-consuming
- instead: using the first generations
- "long jump" instead a step [Kauffman and Levin, 1987]
- approximation of the landscape

Landscape features

- Fitness and gradient
- Neutrality
- Neutrality Volume
- Information Content

Classification target

Target approximation

Targets

- Low end coverage *endcov*. < 0.8
- High standard deviation *stdev* > 0.1
- Relative low coverage *cov*. < *max*(*cov*.) * 0.8

Targets

target	n in class	description
cov. < max(cov.) * 0.8	447	End coverage less than 80% of the best execution
endcov. < 0.8	6687	End coverage less than 80%
<i>stdev</i> > 0.1	541	Standard deviation greater than 0.1
stdev > 0	6046	Standard deviation greater than 0.0
		The median coverage with a population
p = 125	1735	of 125 is greater than the median
		coverage with default settings
stdev > 0.1 & cov. < max(cov.) * 0.8	256	The boolean "and" of the two targets
stdev > 0 & cov. < max(cov.) * 0.8	447	The boolean "and" of the two targets
<i>stdev</i> > 0.1 & <i>endcov</i> . < 0.8	391	The boolean "and" of the two targets
pop = 125 & cov. < max(cov.) * 0.8	254	The boolean "and" of the two targets

Classification

Classification

Heading

Heading

Length of Exploration Phase

- compare landscape features ever 10%
- using Euclidean distance
- trade-off between
 - time for exploration
 - time for adjusted configuration
- between 20 and 40% from search (percentage of classification)

Machine learning algorithm

Heading

- supervised learning
- fast classification
- few features
- decision tree

Heading

Hyper-parameter search

- only apply on as many as possible
 - TPR > 80%
- only apply if positive effect
 - FPR < 5%
- percentage of classification (POC)
- construction criteria (Gini Impurity, Entropy or Log-Loss)
- depth of decision tree

Component selection

Decision tree

■ *stdev* > 0.1&*cov.max*(*cov.*) * 0.8

■ depth of decision tree: 2

■ Gini Impurity

■ POC: 30%

Parameter selection

Parameter selection

- many EvoSuite parameter
- nearly infinite possible combinations
- small-scale experiments
- using small sample S₃

Influence on runtime

Event probability

- runtime in relation to event probability
 - insert
 - mutate
 - crossover
- trade-off
 - fitness evaluation
 - event occurrence

$$P_{adj}(e) = \frac{n_1 P_1(e) + n_2 P_2(e)}{n_1 + n_2}$$
 (1)

$$\hat{P}(e) = \sum_{i=k}^{n} \frac{n!}{i!(n-i)!} P_{adj}(e)^{i} (1 - P_{adj}(e))^{n-i}$$
 (2)

Component selection

			P_{adj}			\hat{P} for $k=5$				
configuration	gen.	n	mut.	cross.	ins.	mut.	cross.	ins.	<i>n</i> _+	<i>n</i>
default	853	9	0.95	0.68	0.05	1.0	0.87	0.0		
p = 25	1,263	13	0.96	0.69	0.04	1.0	1.0 /	0.0	0	0
p = 125	572	6	0.95	0.68	0.04	0.77	0.15	0.0	3	0
cr = 0.0	841	8	0.95	0.0	0.05	1.0	0.0	0.0	1	0
cr = 1.0	849	8	0.95	0.95	0.05	1.0	1.0 /	0.0	0	0
bias = 2.0	912	9	0.95	0.68	0.05	1.0	0.88 /	0.0	1	0
bias = 1.01	824	8	0.95	0.68	0.05	1.0	0.77	0.0	0	0
pti = 0.0	1,154	12	1.0	0.75	0.0	1.0	1.0 /	0.0	0	4
pti = 0.2	770	8	0.92	0.63	0.08	1.0	0.66	0.0	0	0
p = 10, $pti = 5.0$	912	9	0.58	0.13	0.42	0.69	0.0	0.31 /	3	0
p = 25, pti = 1.0	777	8	0.75	0.38	0.25	0.89	0.14	0.03 /	4	0

- 1. Introduction
- 2. Fundamentals
- Experimental
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Classification

Known sample S₁

- \blacksquare trained on S_1
- test on S_1
- TPR of 86%
- FPR of 8%
- acceptable reliability

Unknown sample S₂

- trained on S₁
- \blacksquare test on S_2
- TPR of 21%
- FPR of 7%
- not reliability

Adaptive parameter control

Known sample S_1

Unknown sample S_2

Selected configuration

Discussion

- 1. Introduction
- 2. Fundamentals
- 3. Experimental
- 4. Adaptive parameter control
- 5. Evaluation
- 6. Conclusion

Conclusion

- concept of APC-DynaMOSA
- pre-selected configuration
- pre-trained classification model
- mixed results improved and degraded Java classes

Future work

- long jump approach
- landscape feature
- real world use
- Fitness function for guidance

Bibliography

Kauffman, S. and Levin, S. (1987).

Towards a general theory of adaptive walks on rugged landscapes, volume 128.

