Sci One Physics Final Formula Sheet

Unit 1: Modeling and Measuring Movement

Euler's Forward Method

$$x(t + \Delta t) = x_0 + v_0 \Delta t$$

$$v(t + \Delta t) = v_0 + a_0 \Delta t$$

$$-$$
 Drag (F_D) .

Inertial: $\frac{1}{2}C_D\rho Av^2$ (big and/or fast, $A=\pi a^2$)

Viscous: $-6\pi\eta av$ (small and/or slow)

Orbits

$$\begin{array}{l} r^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 \\ |F| = \frac{Gm_1m_2}{r^2} \\ F_r = -\frac{\mathrm{d}u}{\mathrm{d}r} \; , \; u(r) = \int \frac{Gm_1m_2}{r^2} = \frac{-Gm_1m_2}{r} \end{array}$$

Unit 2: Dynamics and Conservation Laws

— Weighted Averages –

$$\vec{F}_{avg} = \frac{\sum_{n} F_n(t_n)\delta t}{\Delta t} = \frac{1}{\Delta t} \int F(t) dt$$

Above δt is the partial weight, and Δt is the sum of the weights.

—— Collisions and Orbits

$$\vec{F}_{net} = \frac{\mathrm{d}\vec{p}_{sys}}{\mathrm{d}t} = 0 \Longrightarrow \vec{p}(t) = \mathrm{constant}$$

 $K = \frac{1}{2}mv^2$

$$K = \frac{1}{2} m v^2$$

 $W = F_{\parallel}d$ (this is a "dot product", $A \cdot B = AB\cos\theta$)

Unit 3: Thermodynamics

Quantity	Angular	Linear	Units
Position	θ	x	rad
Speed	ω	v	rad/s
Acceleration	α	a	rad/s^2

Arclength: $S = \theta \vec{r}$

 $v_{tangential} = r\vec{\omega}$, $a_{tangential} = r\vec{\alpha}$

Rigid Objects

Conditions: All particles rotate with axis of rotation, and with same $\vec{\omega}$.

 $K_{rot} = \sum_{n} \frac{1}{2} m_n v_n^2 = \frac{1}{2} I \vec{\omega}^2$ $I = \sum_{n} m_n r_n^2$ for every particle $I = \Box mr^2$ for an object

Unit 4: Rotational Motion

Stuff here!

Unit 5: Special Relativity

Stuff here!