

Machine Learning for Large-Scale Data Analysis and Decision Making (MATH80629A) Fall 2021

Week #10 - Summary

Announcement

- Homework 1: due November 5, 2021
- Homework 2: due November 14, 2021

Today

- Fifth Quiz on Gradescope!
- Summary of Unsupervised Learning
- Q&A
- Hands-on session

Quiz 4

Login to your Gradescope account

Experience (E)

- What data does f experience?
 - (Focus on algorithms that experience whole datasets)
 - Unsupervised. Examples alone $\{x_i\}_{i=0}^n$
 - Supervised. Examples come with labels $\{(x_i,y_i)\}_{i=0}^n$

Unsupervised

$$\{x_i\}_{i=0}^n$$

- Experience examples alone
- Learn "useful properties of the structure of the data"
 - E.g., clustering, density modeling (p(x)), PCA, FA.

Different tasks

- Finding patterns
 - Clustering
 - Dimensionality reduction
 - Density modelling

•

$$f: X \rightarrow \{1, 2, \dots, K\}$$
 (K clusters)

$$f: X^p \rightarrow X^k, k << p$$

$$f: X \rightarrow [0,1]$$

K-means clustering

- A particular clustering model (and accompanying algorithm)
 - There are K clusters. Each point belongs to a cluster. Clusters have centers: |
- Objective: Find cluster centers μ_k that minimize the within cluster distance

Objective :=
$$\sum_{i=1}^{N} \sum_{k=1}^{K} |x_i - \mu_k||^2$$

- Initialize the cluster centers
- Until convergence:
 - 1. Update responsibilities: r
 - 2. Update cluster centers: $\mu_k \forall k$

H**EC** MONTRĒAL

2

2 (e)

Algorithm

- Initialize the cluster centers
- Until convergence:
 - 1. Update responsibilities
 - 2. Update cluster centers

Laurent Charlin & Golnoosh Farnadi — 80-629 [Figure 9.1 from PRML]

2 (g)

K-means and sensitivity to outliers

(A): Undesirable clusters

(B): Ideal clusters

K-means and sensitivity to initial seeds

Random selection of seeds (centroids)

Random selection of seeds (centroids)

Iteration 2

Iteration 1

Iteration 2

A probabilistic approach to k-means clustering

K-means Clustering

Objective :=
$$\sum_{i=1}^{N} \sum_{k=1}^{Responsibility} ||\mathbf{x}_i - \boldsymbol{\mu}_k||^2$$

Soft K-means Clustering

- Responsibilities are continuous [0, 1]
 - Each cluster has a responsibility: π_k
- -Each cluster models data using a Gaussian: $\mathcal{N}(\mathbf{x_i} \mid \mathbf{\mu_k}, \Sigma_\mathbf{k})$

Comparing K-means to GMMs

- GMMs learns covariance matrix
 - Per cluster variance
 - Covariance terms
- GMMs has many more parameters
 - Covariance matrix (MxM)

Laurent Charlin & Golnoosh F

Additional info

Evaluation

- Comparing different clustering algorithms is a difficult task.
 No one knows the correct clusters!
- Internal evaluation and external evaluation
- E.g., internal evaluation: Cohesion and Separation

Additional info

Cluster Cohesion: Measures how closely related are objects in a cluster

Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters

Example: Squared Error

Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - c_i)^2$$

We want this to be small

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} m_i (c - c_i)^2$$

We want this to be large

Additional info

Evaluation

- Comparing different clustering algorithms is a difficult task.
 No one knows the correct clusters!
- Internal evaluation and external evaluation
- E.g., internal evaluation: Cohesion and Separation
- For some data, hierarchical Clustering is more appropriate, e.g., biological taxonomy

Autoencoders

A neural network architecture for unsupervised learning

Objective:

How well the network predicts X?

$$\begin{aligned} \text{Loss} := \sum_{i=1}^{N} (x_i - \hat{x}_i)^2 \\ = \sum_{i=1}^{N} (x_i - f_2(f_1(x)))^2 \end{aligned}$$

Lower dimensional representation