Higher Order Categorical Semantics Lasse Letager Hansen, 201912345

Master's Thesis, Computer Science

February 26, 2020

Advisor: Bas Spitters

Abstract

in English...

Resumé

in Danish...

${\bf Acknowledgments}$

Lasse Letager Hansen, Aarhus, February 26, 2020.

Contents

Abstract Resumé Acknowledgments			ii
			v
			vii
1	Intr	roduction	1
2		types	3
	2.1	, 6	3
	2.2	<i>J</i> 1	4
		2.2.1 Delay Monad	4
		2.2.2 Tree	5
		2.2.3 ITrees	6
	2.3	Coinduction priciple of M-types	6
		2.3.1 Bisimulation of ITrees	6
	2.4		7
	2.5	Quotiented M-types	7
3	Con	nclusion	9
Bi	bliog	graphy 1	.1
\mathbf{A}	The	e Technical Details	.3

Chapter 1

Introduction

motivate and explain the problem to be addressed

example of a citation: [1]

get your bibtex entries from https://dblp.org/

Chapter 2

M-types

2.1 Containers / Signatures

A Container (or Signature) is a pair S = (A, B) of types $\vdash A : \mathcal{U}$ and $a : A \vdash B(a) : \mathcal{U}$. From a container we can define a polynomial functor, defined for objects (types) as

$$P_{S}: \mathcal{U} \to \mathcal{U}$$

$$P(X) := P_{S}(X) = \sum_{a:A} B(a) \to X$$
(2.1)

and for a function $f: X \to Y$ as

$$Pf: PX \to PY$$

$$Pf(a,q) = (a, f \circ q)$$
(2.2)

As an example lets look at type for streams over the type A, defined using the container S = (A, 1), applying the polynomial functor we get

$$P_{\mathbf{S}}(X) = \sum_{a:A} \mathbf{1} \to X \tag{2.3}$$

since we are working in a Category with exponentials we get $1 \to X \equiv X^1 \equiv X$, furthermore 1 and X does not depend on A here, so this will be equivalent to the definition

$$P_{\mathbf{S}}(X) = A \times X \tag{2.4}$$

Now we define the coalgebra for this functor with type

$$\mathsf{Coalg}_{S} = \sum_{C:\mathcal{U}} C \to PC \tag{2.5}$$

and morphisms

$$_\Rightarrow_: \mathtt{Coalg}_S \to \mathtt{Coalg}_S$$

$$(C,\gamma) \Rightarrow (D,\delta) = \sum_{f:C\to D} \delta \circ f = Pf \circ \gamma$$

$$(2.6)$$

M-types can now be defined from a container S as the type M such that $(M, out : M \to P_SM)$ fulfills the property

$$\mathtt{Final}_{\mathbf{S}} := \sum_{(X,\rho): \mathtt{Coalg}_{\mathbf{S}}} \prod_{(C,\gamma): \mathtt{Coalg}_{\mathbf{S}}} \mathtt{isContr}((C,\gamma) \Rightarrow (X,\rho)) \tag{2.7}$$

that is $\prod_{(C,\gamma): \mathtt{Coalg}_S} \mathtt{isContr}((C,\gamma) \Rightarrow (\mathtt{M},\mathtt{out}))$. We denote this construction of the type \mathtt{M} , as $\mathtt{M}(A,B)$ or \mathtt{M}_S .

If we continue our example for streams this will give us the M-type, we can see that $P_S(M) = A \times M$, meaning we have the following diagram, where **out** is an isomorphism (because of the finality of

Figure 2.1: M-types of streams

the coalgebra), with inverse in: $P_SM \to M$. We now have a semantic for the rules we would expect for streams, if we let cons = in and Stream A = M(A, 1),

$$\frac{A: \mathcal{U} \quad s: \text{Stream } A}{\text{hd } s: A} \text{ E}_{\text{hd}}$$
(2.8)

$$\frac{A: \mathcal{U} \quad s: \text{Stream } A}{\text{tl } s: \text{Stream } A} \text{ E}_{\text{tl}}$$
(2.9)

$$\frac{A: \mathcal{U} \quad x: A \quad xs: \text{Stream } A}{\text{cons } x \ xs: \text{Stream } A} \text{ I}_{\text{cons}}$$
(2.10)

2.2 ITrees as M-types

2.2.1 Delay Monad

We want the following rules for ITrees

$$\frac{r:R}{\text{Ret }r: \text{itree }E\ R}\ \text{I}_{\text{Ret}} \tag{2.11}$$

$$\frac{A: \mathcal{U} \quad a: E \quad A \quad f: A \rightarrow \mathtt{itree} \quad E \quad R}{\mathtt{Vis} \quad a \quad f: \mathtt{itree} \quad E \quad R} \quad \mathtt{I}_{\mathtt{Vis}}. \tag{2.12}$$

Elimination rules

$$\frac{t: \text{itree } \underline{E} \ R}{\text{Tau } t: \text{itree } \underline{E} \ R} \ \mathbf{E}_{\text{Tau}}. \tag{2.13}$$

We start by looking at **itree**s without the **Vis** constructor, this type is also know as the delay <u>monad</u>. We say this type is given by $S = (1 + R, \lambda \{ inl _ \to 1 ; inr _ \to 0 \})$ equal to MS, we then get the polynomial functor

$$P_{S}(X) = \sum_{x:1+R} \lambda \{ \text{inl } _ \to 1; \text{inr } _ \to 0 \} \ x \to X$$
 (2.14)

This type is equal to the type:

$$P_{\mathbf{S}}(X) = X + R \times (\mathbf{0} \to X) \tag{2.15}$$

we know that $0 \to X \equiv 1$, so we can further reduce to

$$P_{\mathbf{S}}(X) = X + R \tag{2.16}$$

meaning we get the following diagram. What this diagram says is that we can define the operations

Figure 2.2: Delay monad

now and later using $in = out^{-1}$ together with the injections in and in.

(Later = Tau, Ret = Now)

2.2.2 Tree

Now lets look at the example where we remove the Tau constructor. We let

$$S = \left(R + \sum_{A:\mathcal{U}} E A, \lambda \{ \text{inl } _ \to \mathbf{0} ; \text{ inr } (A, e) \to A \} \right). \tag{2.17}$$

This will give us the polynomial functor:

$$P_{\mathbf{S}}(X) = \sum_{x:R+\sum_{A:U}E} \lambda \{ \text{inl } _ \to \mathbf{0} ; \text{ inr } (A,e) \to A \} x \to X$$
 (2.18)

which simplifies to

$$P_{\mathbf{S}}(X) = (R \times (\mathbf{0} \to X)) + (\sum_{A \neq A} E \ A \times (A \to X)) \tag{2.19}$$

and further

$$P_{\mathbf{S}}(X) = R + \sum_{A:\mathcal{U}} E \ A \times (A \to X) \tag{2.20}$$

Figure 2.3: TODO: ???

Again we can define **Ret** and **Vis** using the **in** functor.

2.2.3 ITrees

Now we should have all the knowledge needed to make ITrees using M-types. We define ITrees by the container:

$$S = \left(\mathbf{1} + R + \sum_{A:\mathcal{U}} (E\ A) \ , \ \lambda \left\{ \text{inl (inl } _) \to \mathbf{1} \ ; \ \text{inl (inr } _) \to \mathbf{0} \ ; \ \text{inr}(A,_) \to A \right\} \right) \quad (2.21)$$

Then the (reduced) polynomial functor becomes

$$P_{\mathbf{S}}(X) = X + R + \sum_{A:\mathcal{U}} ((E \ A) \times (A \to X)) \tag{2.22}$$

Giving us the diagram

Figure 2.4: TODO: ???

2.3 Coinduction priciple of M-types

We can now construct a bisimulation: for all coalgebras $C - \gamma : \mathtt{Coalg}_S$, if we have a relation $\mathcal{R} : C \to C \to C \to C$, and a type $\overline{\mathcal{R}} = \sum_{a:C} \sum_{b:C} \mathcal{R}$ a b, such that $\overline{\mathcal{R}}$ and $\alpha_{\overline{\mathcal{R}}} : \overline{\mathcal{R}} \to P(\overline{\mathcal{R}})$ makes a P-coalgebra $\overline{\mathcal{R}} - \alpha_{\overline{\mathcal{R}}} : \mathtt{Coalg}_S$, such that the following diagram commutes (where \Rightarrow are P-coalgebra morphisms).

$$C - \gamma \xleftarrow{\pi_1^{\overline{\mathcal{R}}}} \overline{\mathcal{R}} - \alpha_{\overline{\mathcal{R}}} \xrightarrow{\pi_2^{\overline{\mathcal{R}}}} C - \gamma$$

Furthermore for any bisimulation over a final P-coalgebra $\mathtt{M-out}: \mathtt{Coalg}_S$ we have the following diagram,

$$\operatorname{M-out} \overset{\pi_1^{\overline{\mathcal{R}}}}{\longleftarrow} \overline{\mathcal{R}} - \alpha_{\overline{\mathcal{R}}} \overset{\pi_2^{\overline{\mathcal{R}}}}{\longrightarrow} \operatorname{M-out}$$

where $\pi_1^{\overline{\mathcal{R}}} = ! = \pi_2^{\overline{\mathcal{R}}}$, which means given $r : \mathcal{R}(m, m')$ we get $m = \pi_1^{\overline{\mathcal{R}}}(m, m', r) = \pi_2^{\overline{\mathcal{R}}}(m, m', r) = m'$.

2.3.1 Bisimulation of ITrees

We define our bisimulation coalgebra from the strong bisimulation relation \mathcal{R} , defined by the following rules.

$$\frac{a, b : R \quad a \equiv_R b}{\text{Ret } a \cong \text{Ret } b} \text{ EqRet}$$
 (2.23)

$$\frac{t, u : \text{itree } E R \quad t \cong u}{\text{Tau } t \cong \text{Tau } u} \text{ EqTau}$$
 (2.24)

$$\frac{A: \mathcal{U} \quad e: E \quad A \quad k_1, k_2: A \to \text{itree } E \quad R \quad t \cong u}{\text{Vis } e \quad k_1 \cong \text{Tau } e \quad k_2} \quad \text{EqVis}$$
(2.25)

Now we just need to define $\alpha_{\overline{R}}$. Now we have a bisimulation relation, which is equivalent to equality, using what we showed in the previous section.

define the $\alpha_{\overline{R}}$ function

2.4 Examples of fixed points

We want to define spin, as being the fixed point spin = later spin, so that is again a final coalgebra, but of a M-type (which is a final coalgebra)

Since it is final, it also must be unique, meaning that there is just one program that spins forever, without returning a value, meaning every other program must return a value. If we just

2.5 Quotiented M-types

We can define a quotient of the polynomial functor P as a functor F, such that the following diagram commutes

for all $f: \alpha \to \beta$ and α, β . This is a naturallity condition for abs. As an example lets look at the quotient of the delay monad by the equality $\forall a: \mathbb{M}, \mathtt{later}\ a \equiv a$. We get the diagram Such that the (co?)limit for F \mathbb{M} is 1+R, meaning

$$F \ later \circ abs_M \circ out \equiv abs_M \circ out \circ later \tag{2.26}$$

$$F \ later \equiv later^{-1} \tag{2.27}$$

$$later = in \circ inr \tag{2.28}$$

$$out \circ later = inr$$
 (2.29)

$$= P \ later \circ out \tag{2.30}$$

$$abs_M \circ out \circ later = abs_M \circ inr$$
 (2.31)

$$= abs_M \circ P \ later \circ out \tag{2.32}$$

$$= F \ later \circ abs_M \circ out \tag{2.33}$$

(2.34)

Given the container of the final P-coalgebra for some container S, we can construct the diagram:

Such that $\sim_x \equiv \sim_y \circ \mathsf{Tau}$, where $\stackrel{P}{\text{M}} \sim \equiv F \stackrel{\text{M}}{\sim} = F$

Chapter 3

Conclusion

conclude on the problem statement from the introduction

Bibliography

[1] Amin Timany and Matthieu Sozeau. Cumulative inductive types in coq. LIPIcs: Leibniz International Proceedings in Informatics, 2018.

Appendix A

The Technical Details