东南大学考试卷(A卷)

果 程 名 称 线性代数 A 考试学期 17-18-3 得

适 用 专 业 非电类专业 考试形式 闭 卷 考试时间长度 120分钟

题号	 	=	四	五	六	七
得分						

一. (30%) 填空题

- 1. 设方阵 A 满足 $A^2 + 2A + 2E = O$, 则 A + 3E 的逆矩阵 $(A + 3E)^{-1} = \frac{\bot}{5} (F A)$.
- 2. 设 3 阶方阵 A 的特征值为 2, 1, -1, A^* 是 A 的伴随矩阵,则矩阵 $A^* A^{-1}$ 的行列式 $\left|A^* A^{-1}\right| = \underbrace{2/2}_{-}$.
- 3. 设向量空间 R^2 中两组基 $\alpha_1 = (3, 4)^T, \alpha_2 = (2, 3)^T; \beta_1 = (1, 1)^T, \beta_2 = (0, 1)^T$,已 知 R^2 中向量 α 在基 α_1, α_2 下坐标是 $(1, 1)^T$,则 α 在基 β_1, β_2 下坐标是 $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$.

5. 设矩阵
$$\begin{pmatrix} 2 & x & 0 \\ x & 1 & x \\ 0 & x & 0 \end{pmatrix}$$
 与 $\begin{pmatrix} y & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ 相似,则 $(x, y) = \frac{(\stackrel{+}{} \stackrel{+}{} 2 , 4)}{(\stackrel{+}{} 2 , 2)}$.

6. 设 3 阶可逆矩阵
$$A = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
, $B = \begin{pmatrix} 2\alpha + \beta + 3\gamma \\ -\alpha + \beta + 2\gamma \\ \alpha - \beta - 3\gamma \end{pmatrix}$, 则行列式 $|AB^{-1}| = \frac{1}{3}$.

- 7. 如果向量 (k, 1, 4) 可由向量组 (1, 2, -1), (3, -1, 1) 线性表示,则参数 k 满足条件 (2-32).
- 8. 如果实二次型 $f(x_1,x_2,x_3) = \lambda x_1^2 + (\lambda + 1)x_2^2 + x_3^2 + 2\lambda x_1 x_3$ 是正定二次型,则参数 λ 满足条件 $0 < \lambda < 1$
- 9. 设 $a(\neq 0)$ 是 3 阶实对称矩阵 A 的二重特征值, $\alpha_1 = (1, 1, 1)^T$ 与 $\alpha_2 = (1, 0, -1)^T$ 是 A 的对应特征值 a 的特征向量。如果 A 不可逆,则 A 的另一个特征值是 O ,相应的特征向量为 $R(-\frac{1}{2})$, $|z\neq 0|$
- 10. 设 α 是 3 维列向量, $\alpha^{T}\alpha = k$, $k \in (1, +\infty)$,则 二次型 $f(x_1, x_2, x_3) = X^{T}(E - \alpha\alpha^{T})X$ 的规范形为 $y_1^2 + y_2^2 - y_3^2$

符化

網

事

共 4 页

第1 而

二. (12%) 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ p \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ q \end{pmatrix}$ 的秩为 2,

- 1. 求参数 p, q 的值;
- 2. 求该向量组的一个极大线性无关组,并且将向量组中的其余向量用极大线性无关组表示

解: 1.
$$(d_1, d_2, d_3, d_4)$$
 (d_1, d_2, d_3, d_4) (d_1, d_2, d_3, d_4)

$$\Xi$$
 (12%) 线性方程组
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + 5x_2 + px_3 = 5 \\ 3x_1 + px_2 + 3x_3 = 2 \end{cases}$$

讨论参数 p 取何值时,线性方程组 (1)有唯一解; (2)无解; (3)有无穷多解,在有无穷多解时,求其通解。

共 4 页 第 2 页

四 (12%) 设矩阵
$$A = \begin{pmatrix} 3 & -5 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $A^* \in A$ 的伴随矩阵,

- 1. 求参数 x, y 的值;
- 2. 问:矩阵 A. 是否相似于对角矩阵?说明理由。

六 (14%) 设 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ 写出 $f(x_1, x_2, x_3)$ 的矩阵;

2. 求正交变换 X = QY, 将二次型 $f(x_1, x_2, x_3)$ 化为标准形。

$$\widehat{\mathbb{R}}_{1}^{2} \cdot A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

2、 | λΕ-A|= $\Lambda()^{-3}$)2. にA的特征值为 $\Lambda^{(-0)}$, $\Lambda_{2}=3$. 解.(A, E-A) X=O 得基础解系(T!) 单位代学的一(学) (AzE-A)X=O 得基础解析1=(5), 1=(1) 标准正346(5) 金、Q=(的加加)则正交变格X=Q广净=欢望fmnn3)

的每个解向量都可由 η_1,η_2 线性表示,证明 η_1,η_2 是AX=0的一个基础解系。 心下: $\sqrt{2}$ $\sqrt{=$ $L\{I_1,I_2\}$. $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

· 号、,号2可由小儿线性标 · 2= 吟乳的子台外们,个了=2 小乳对2为V的一组基二小小与小小学价二小小位也是AK-D

(A) A(E-A)=の、、A的最小多项式元重因式 (A)+r(EA) <n スペーア(A)+r(EA)2-n. リー

~ r(A)+r(I-A)=A. (13102). A~ N=(ERO), k70

、目前阵、かか。A=BMBT=BBBTAMBT 2 D=BBMBT