De la Ecuación (8), se deduce que $x^2+y^2+\lambda=0$. Sea $t=-1/\lambda=1/(x^2+y^2)$ [el caso de $\lambda=0$ es imposible, porque (0, 0) no está sobre la curva $\phi(x,y)=0$]. Así, las ecuaciones (6) y (7) se pueden escribir como sigue:

$$2(A-t)x + 2By = 0 2Bx + 2(C-t)y = 0.$$
(9)

Si estas dos ecuaciones tienen una solución no trivial [recuérdese que (x, y) = (0, 0) no está sobre la curva y, por tanto, no es una solución], se sigue de un teorema de álgebra lineal que su determinante se anula:¹²

$$\begin{vmatrix} A - t & B \\ B & C - t \end{vmatrix} = 0.$$

Dado que esta ecuación es cuadrática en t, tiene dos soluciones, que denominaremos t_1 y t_2 . Como $-\lambda = x^2 + y^2$, tenemos $\sqrt{x^2 + y^2} = \sqrt{-\lambda}$. Sabemos que $\sqrt{x^2 + y^2}$ es la distancia desde el punto (x,y) al origen. Por tanto, si (x_1,y_1) y (x_2,y_2) denotan las soluciones no triviales de la Ecuación (9) correspondientes a t_1 y t_2 , y si t_1 y t_2 son positivas, obtenemos $\sqrt{x_2^2 + y_2^2} = 1/\sqrt{t_2}$ y $\sqrt{x_1^2 + y_1^2} = 1/\sqrt{t_1}$. En consecuencia, si $t_1 > t_2$, las longitudes de los semiejes mayor y menor son $1/\sqrt{t_1}$ y $1/\sqrt{t_2}$, respectivamente. Si la curva es una elipse, tanto t_1 como t_2 son, de hecho, reales y positivas. ¿Qué sucede con una hipérbola o una parábola?

Por último, vamos a ver una aplicación a la economía.

Ejemplo 10

Supongamos que la producción de una fábrica es una cantidad Q de un determinado producto, donde Q es una función f(K,L), siendo K el capital invertido en equipos (o inversión) y L es la mano de obra utilizada. Si el precio de la mano de obra es p, el precio de los equipos es q y la fábrica no puede gastar más de B euros, ¿cómo podemos determinar el capital y la mano de obra que maximizan la producción Q?

Solución

Es de esperar que si el capital o la mano de obra aumentan, entonces la producción Q también debería aumentar; es decir,

$$\frac{\partial Q}{\partial K} \ge 0$$
 y $\frac{\partial Q}{\partial L} \ge 0$.

También es de esperar que a medida que se incremente la mano de obra a una inversión en equipos dada, la producción adicional obtenida será menor; es decir,

$$\frac{\partial^2 Q}{\partial L^2} < 0.$$

De manera análoga,

 $^{^{12}\}mathrm{La}$ matriz de coeficientes de las ecuaciones no puede tener inversa, porque esto implicaría que la solución es cero. Recuérdese que una matriz que no tiene inversa tiene determinante cero.