Verification and Robust Reinforcement Learning

CPSC680: Trustworthy Deep Learning

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Readings:
 - Adversarial Robustness of Deep Neural Networks: A Survey from a Formal Verification Perspective
- Credit for helping with this lecture: <u>Huan Zhang</u> (faculty at UIUC)

Content

Introduction to Formal Verification in Machine Learning

Verification for Deep Neural Networks

Adversarial Robustness for Reinforcement Learning

Content

• Introduction to Formal Verification in Machine Learning

Verification for Deep Neural Networks

Adversarial Robustness for Reinforcement Learning

How did we build trustworthy mission critical systems?

Translating to Trustworthy Deep Learning

Enabling trustworthy AI via formal verification and adversarial testing

Approach: efficient and **specialized** verification and testing methods for AI

How to formally prove the trustworthiness of AI?

We have talked about this without rigorous proofs

cases and bugs of AI?

Formal Verification of AI

How to formally prove the trustworthiness of AI?

How to find edge cases and bugs of AI?

Goal of formal verification of AI: an Example

Goal: **prove** that adversarial examples do *not* exist!

A simplified example of the verification problem

Score for each label

What's this perturbation constraint?

 $f(x) > 0 \Rightarrow$ No adversarial examples

The Canonical Form of Verification Problem

Score for each label S =all possible pixel perturbations

$$x_1 \in \mathcal{S}$$

$$x_2\in \mathcal{S}$$

$$x_3\in \mathcal{S}$$

The Canonical Form of Verification Problem

Score for each label

S = all possible pixel perturbations

$$x_1 \in \mathcal{S}$$

$$x_2\in \mathcal{S}$$

$$x_3 \in \mathcal{S}$$

The Canonical Form of Verification is General

Prove:

 $orall x \in \mathcal{S}, \ f(x) > 0$

Application

Specification f(x)

Sets of inputs S

Attack cannot succeed

Perturbed pixel values

What is the general approach to prove this?

Drone starting at different angles

Robot does not reach a obstacle (reachability)

Rex Ying, CPSC 471/571: Trustworthy Deep Learning

Different starting points

Content

Introduction to Formal Verification in Machine Learning

Verification for Deep Neural Networks

Adversarial Robustness for Reinforcement Learning

How Hard is the Problem?

Prove: $\forall x \in \mathcal{S}, \ f(x) > 0$

NP-hard for general neural networks (Katz et al., 2017) (non-convex optimization)

Traditional Approach: Using Optimization Solvers

Prove: $\forall x \in \mathcal{S}, \ f(x) > 0$

Linear programming (LP), semidefinite programming (SDP), mixed integer programming (MIP), or Satisfiability modulo theories (SMT)

CROWN: a Linear Bound Propagation Algorithm

- Find a provable linear lower bound for neural networks
- Bound by efficiently propagating linear inequalities (GPU accelerated)

Prove the verification problem with CROWN

Prove: $\forall x \in \mathcal{S}, \ f(x) > 0$

$$x_1 \in \mathcal{S}$$

$$x_2\in \mathcal{S}$$

$$x_3\in \mathcal{S}$$

Lower bound > 0 $\implies f(x) > 0 \implies$ verified (always a stop sign)

How to Propagate the Linear Bounds?

$$z_2 = \mathrm{ReLU}(z_1)$$

Steps:

- Propagate bounds through linear layers
- Propagate bounds through non-linear layers

What Linear Inequalities to Propagate?

A linear lower bound for an intermediate layer

$$f(x) \geq a^ op z_3 + b$$

Propagating Bounds through Linear Layers

Propagate it to one layer before, while keeping the lower bound valid

Propagating Bounds through Linear Layers

Propagating Bounds through Linear Layers

Inequality updated after propagation

Propagating Bounds through non-Linear Layers

Propagating Bounds through non-Linear Layers

Propagating Bounds through non-Linear Layers

Theorem (informal): we can efficiently find D, b' such that:

$$f(x) \geq oxedom{a^ op W_2 D} z_1 + b' \longleftarrow f(x) \geq oxedom{a^ op W_2} z_2 + b \quad orall x \in \mathcal{S}$$

Proof for non-Linear Propagation

Proof sketch: conservatively use linear bounds to replace a non-linear function.

Pre-activation bounds

(can be pre-computed using CROWN)

Theorem (informal): we can efficiently find D, b' such that:

$$f(x) \geq oldsymbol{a}^ op W_2 D z_1 + b' \longleftarrow f(x) \geq oldsymbol{a}^ op W_2 z_2 + b \quad orall x \in \mathcal{S}$$

CROWN Algorithm

Bounds propagated through simple matrix multiplations! Fast and GPU-friendly

Always keep valid lower bounds

 a_{CROWN} has the form $W_3D_2W_2D_1W_1$

CROWN main theorem (simplified): $f(x) \geq a_{ ext{CROWN}}^{ op} x + b_{ ext{CROWN}} \quad orall x \in \mathcal{S}$

What if the Bounds are too Loose?

Prove: $\forall x \in \mathcal{S}, \ f(x) > 0$

Tighten Bounds with Branch and Bound

• One approach is to reduce the number of ReLU (non-linear) functions!

ReLU function:
Bounded by conservative
linear bounds

Linear function: Bounds are tight

Tighten Bounds with Branch and Bound

Choose a ReLU neuron, and split it into two subproblems:

Tighten Bounds with Branch and Bound

 $\forall x \in \mathcal{S}, z \geq 0, f(x) > 0$? Verification problem: $\forall x \in \mathcal{S}, \ f(x) > 0 \ ?$ lower bound = -3.0 $\forall x \in \mathcal{S}, z \leq 0, f(x) > 0$?

Beta-CROWN: Efficient Bound Propagation with Per-neuron Split

Constraints for Neural Network Robustness Verification (NeurIPS 2021)

lower bound = $\mathbf{0.5}$

Subproblem Verified

lower bound = -2.0

Benchmarks: CROWN Verification

Model size: ~5k

Integer programming and semidefinite programming **not plotted** (~1 day)

neurons

1000x faster (1-day ⇒ 1-min), enabling practical verification!

Practical Tool: α,β -CROWN

Theoretical framework

Practical verifier: α,β -CROWN

Winner of VNN-COMP 2021, 2022, 2023

https://abcrown.org

Content

Introduction to Formal Verification in Machine Learning

Verification for Deep Neural Networks

Adversarial Robustness for Reinforcement Learning

Adversarial Testing

How to formally prove the trustworthiness of AI?

How to find edge cases and bugs of AI?

Disprove by Finding Examples (1)

Set of inputs \mathcal{S}

Verification: **prove** $\forall x \in \mathcal{S}, \ f(x) > 0$

Adversarial attack: **disprove** by showing

$$\exists x \in \mathcal{S}, ext{s.t.} \ f(x) \leq 0$$

$$x_1 \in \mathcal{S} \qquad \quad x_2 \in \mathcal{S}$$

$$f(x_1) > 0$$

$$egin{aligned} x_2 \in \mathcal{S} \ f(x_2) > 0 \end{aligned}$$

$$x_3 \in \mathcal{S} \ f(x_3) \leq 0$$

Rex Ying, CPSC 471/571: Trustworthy Deep Learning

Disprove by Finding Examples (2)

- This is just another name for adversarial attacks
 - We talked about FGSM, PGD, C-W, DeepFool, GEA, BPDA ...
- There are even more sophisticated attacks

Case study 1: **No gradients**

ZOO, Obfuscated Gradients

Case study 2: complex objective

Deep reinforcement learning!

SA-MDP, GoAttack

Deep Reinforcement Learning (DRL)

Agent's goal: maximize reward

Attack Observations in DRL

Adversary's goal: minimize reward while keeping attack stealthy

Attack Observations in DRL

Such Attack can be Realistic

GPS spoofing Zeng et al., USENIX 2018

Optimal Adversarial Attack

Theorem (informal): The optimal (strongest) adversarial attack on RL is another RL problem, defined as a Markov decision process (MDP).

Solve the RL attack problem by learning an adversary using RL

Robust Reinforcement Learning on State Observations With Learned Optimal Adversary, ICLR 2021

Optimal Attack is a Strong Adversary!

• Agents don't just fail; they move to the *opposite* direction!

HalfCheetah

Episode rewards: +7094

+85

-743

Ant

No attack

MAD attack

Optimal attack

Rex Ying, CPSC 471/571: Trustworthy Deep Learning

Train robust deep reinforcement learning agents

Robust Deep Reinforcement Learning Agents

HalfCheetah

Episode rewards:

-743

-1141

+5250

+3835

Ant

Optimal attack on vanilla RL agents

Optimal attack on robust RL agents