

Al기반영상정보처리

프로젝트

일시 2022년 12월 19일

장소 공학관 1300호

주최 계명대학교 컴퓨터공학전공

학 과 : 컴퓨터공학전공

교수명: 남재열

학 번: 5469315

이 름:김건호

개발에 사용한 언어 및 라이브러리

python 3.9.12

numpy 1.21.2

opencv 4.5.5.64

개발에 사용한 프레임워크

PyQt5 GUI 프로그래밍

PyQt5 5.15.6

Visual Studio Code

프로그램 구성

01 이미지 Display

이미지가 출력되는 화면 창을 구현함

03 부가 Function

연산 Function을 제외한 Extra Function

02 연산 Function

주요 연산들을 구현함

- Pixel Calculation Function
- Histogram Function
- Filtering Function
- Edge Detector Function
- Transformation Function
- Morphology Function

PyQt qt designer

메인 화면

이미지 display

→ 이미지가 출력됨

부가 Function

- → 이미지 업로드
- → 이미지 제거
- → 프로그램 종료

연산 Function button

→ 주요 연산을 실행시킴

연산 Function - Pixel Calculation

Pixel Add

Pixel Subtract

Pixel Multiply

Pixel Divide

Pixel AND

Pixel OR

연산 Function - Histogram

Histogram

Thresholding

Global Thresholding

Adaptive Thresholding

Histogram Stretching

Histogram Equalization

연산 Function - Filtering

Mean

Median

Gaussian

Conservative Smoothing

Unsharp_edge

Unsharp

연산 Function - Edge Detector

Robert Cross

Sobel

Prewitt

Canny

Laplacian

Gaussian-Laplacian

연산 Function - Scaling

Nearest Neighbor Interpoliation • Linear Neighbor Interpoliation

Rotation

Flipping

Translation

Affine

연산 Function - Morphology

Dilation

Opening

Erosion

Closing

느낀점

사실 대학교 4년동안 코딩을 하면서도 이러한 분야를 경험해보진 않았었습니다. 그래서 배경지식도 없고 내용도 어려워보여서 딱히 영상처리를 다루는 분야에 관심도 없었고, 알고싶지도 않았었습니다. 그런데 막 상 배우다보니 코딩 실력보다는 영상처리에 대한 이해를 요구하는 것을 보면서 생각보다는 재밌다고 느꼈 습니다. 물론 원리만 적당히 이해하고 API를 쓰면서 구현을 해서 그런것일수도 있지만 적어도 이 분야에 대 한 어느정도의 흥미를 이끌었다는 것에서 큰 만족을 느끼고 있습니다.

그리고 영상처리를 배우면서 약간의 자부심도 느낄수 있었습니다. 사람은 아무래도 시각적인것에 민감합니다. 이러한 시각적인 아름다움을 주는 이런 기술들을 제가 할 수 있게 되다보니 약간의 자랑도 할 수 있을 것이고 스스로 이 과정을 잘 따라갔다는 대견함도 생기게 되었습니다.

교수님의 전체 교육과정에서 가장 만족스러웠던것은 스스로 프로그램을 만들어 구현을 해보는 프로젝트였습니다. 지금 이것을 만들면서 많은 내용을 이해할 수 있었고 유용하게 쓸 수 있을것이라 확신할 수 있게 됐습니다.

#