整数规划

分享人: 王德民

总结人: 从坤

定义

对于限制全部或部分决策变量取离散非负整数值的线性规划,我们称之为整数线性规划,简称为整数规划。

详细分类

类别	定义					
纯整数规划	整数规划中,所有决策变量都限制为整数					
混合整数规划	整数规划中,一部分决策变量都限制为整数					
0-1 整数规划	整数规划中,决策变量仅限制为 0 或 1					

求解方法

方法	求解问题
分枝定界法	可求纯或混合整数线性规划
割平面法	可求纯或混合整数线性规划
隐枚举法	用于求解 0 — 1 整数规划,有过滤隐枚举法和分枝隐枚举法
匈牙利法	解决指派问题 (0-1整数规划特殊情形)
蒙特卡罗法	求解各种类型规划

指派问题

1.标准指派模型

标准指派问题的一般提法是:拟分派 n 个人 A_1,A_2,\cdots,A_n 去完成 n 项工作 B_1,B_2,\cdots,B_n ,要求 每项工作需且仅需一个人去完成,每个人需完成且仅需完成一项工作。已知人 A_i 完成工作 B_j 的时间或 费用等成本型指标值为 c_{ij} ,则应如何指派才能使总的工作效率最高?

引入0-1决策变量

$$x_{ij} = egin{cases} 1, ext{ 指派 } A_i ext{ 去完成工作 } B_j, \ 0, ext{ 否则}, \end{cases}$$
 $i,j=1,2,\cdots,n.$

则标准指派问题的数学模型为

$$egin{aligned} \min z &= \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}, \ & ext{s.t.} egin{aligned} \sum_{j=1}^n x_{ij} &= 1, & i = 1, 2, \cdots, n, \ \sum_{i=1}^n x_{ij} &= 1, & j = 1, 2, \cdots, n, \ x_{ij} &= 0 & ext{id} & i, & i, j = 1, 2, \cdots, n, \end{aligned}$$

这是一个纯 0-1 整数规划模型,可以通过上面通用算法解决,为了提高求解效率,下面介绍匈牙利算法。

匈牙利算法基与以下两个定理:

定理 6.1 设效率矩阵 $C=(c_{ij})_{n\times n}$ 中任何一行 (列) 的各元素都减去一个 常数 k (可正可负) 后得到的新矩阵为 $B=(b_{ij})_{n\times n}$, 则以 $B=(b_{ij})_{n\times n}$ 为效率矩阵的指派问题与原问题有相同的最优解,但其最优值比原问题的最优值小 k 。

定理 6.2 (独立零元素定理) 若一方阵中的一部分元素为 0 , 一部分 元素为非 0 , 则覆盖方阵内所有 0 元素的最少直线数恰好等于那些位于不同 行、不同列的 0 元素的最多个数。

定理6.1告诉我们如何将效率矩阵中的元素转换为每行每列都有零元素,而定理6.2告诉我们效率矩阵中有多少个独立的零元素。

下面结合具体实例,分析匈牙利算法如何解决任务分配问题。

以 N=4 为实例,下图为 cost 列表和 cost 矩阵。

	Work1	Work2	Work3	Work4	[90	75	75	
Person1	90	75	75	80		35	85	55	
Person2	35	85	55	65					
Person3	125	95	90	105		125	95	90	1
Person4	45	110	95	115		_ 45	110	95	1

Step1.从第1行减去75,第2行减去35,第3行减去90,第4行减去45。

Step2.从第1列减去0,第2列减去0,第3列减去0,第4列减去5。

Step3.利用最少的水平线或垂直线覆盖所有的0。

Step4.由于水平线和垂直线的总数是3,少于4,进入Step5。

Step5.没有被覆盖的最小值是5,没有被覆盖的每行减去最小值5,被覆盖的每列加上最小值5,然后跳转到步骤3。

Step3.利用最少的水平线或垂直线覆盖所有的0。

Step4.由于水平线和垂直线的总数是3,少于4,进入Step5。

Step5.没有被覆盖的最小值是20,没有被覆盖的每行减去最小值20,被覆盖的每列加上最小值20,然后跳转到步骤3。

$$\begin{bmatrix} 20 & 0 & 5 & 0 \\ 0 & 45 & 20 & 20 \\ 35 & 0 & 0 & 5 \\ 0 & 60 & 50 & 60 \end{bmatrix} \begin{bmatrix} 20 & 0 & 5 & 0 \\ -20 & 25 & 0 & 0 \\ 35 & 0 & 0 & 5 \\ -20 & 40 & 30 & 40 \end{bmatrix} \begin{bmatrix} 40 & 0 & 5 & 0 \\ 0 & 25 & 0 & 0 \\ 55 & 0 & 0 & 5 \\ 0 & 40 & 30 & 40 \end{bmatrix}$$

Step3.利用最少的水平线或垂直线覆盖所有的0。

Step4.由于水平线和垂直线的总数是4,算法结束,分配结果如下图所示。

其中, 黄色框表示分配结果, 左边矩阵的最优分配等价于左边矩阵的最优分配。

2.广义指派模型

在实际应用中,常会遇到各种非标准形式的指派问题一广义指派问题。 通常的处理方法是先将它们转化为标准形式, 然后用匈牙利算法求解。

类型	方法
最大化指派问题	用效率矩阵中最大数分别与效率矩阵中每个数作差即化为 标准模型
人数和任务数不等的指派问题	添加虚拟人或者虚拟任务
一个人可完成多项任务的指派问题	一人看作多人,只需保证他们完成同一项任务的效率一样
某项任务一定不能由某人完成的指 派问题	对应效率取无穷大(足够大)

例子

例 6.1 求解下列整数线性规划问题:

$$egin{aligned} \min z &= 40x_1 + 90x_2, \ \mathrm{s.t.} & \begin{cases} 9x_1 + 7x_2 \leq 56, \ 7x_1 + 20x_2 \geq 70, \ x_1, x_2 \geq 0 \ \mathrm{\% \ psymbole \ psymbo$$

解 利用 cvxpy 库, 求得的最优解为 $x_1=2, x_2=3$; 标函数的最优值为 z=350 。

```
import cvxpy as cp
from numpy import array
c=array([40,90]) #定义目标向量
a=array([[9,7],[-7,-20]]) #定义约束矩阵
b=array([56,-70]) #定义约束条件的右边向量
x=cp.Variable(2,integer=True) #定义两个整数决策变量
obj=cp.Minimize(c*x) #构造目标函数
cons=[a*x<=b, x>=0] #构造约束条件
prob=cp.Problem(obj, cons) #构建问题模型
prob.solve(solver='GLPK_MI',verbose =True) #求解问题
print("最优值为:",prob.value)
print("最优解为: \n",x.value)
```

例 6.2 某商业公可计划开办 5 家新商店, 决定由 5 家建筑公可分别承建。已知建筑公可 $A_i(i=1,2,\cdots,5)$ 对新商店 $B_j(j=1,2,\cdots,5)$ 的建造费用报价 (万元) 为 $c_{ij}(i,j=1,2,\cdots,5)$, 见表 6.1。为节省费用, 商业公可应当对 5 家建筑公可怎样分配建造任务, 才能使总的建造费用最少?

表6.1 建造费用报价数据

	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	\mathbf{B}_5
\mathbf{A}_1	4	8	7	15	12
\mathbf{A}_2	7	9	17	14	10
\mathbf{A}_3	6	9	12	8	7
${f A}_4$	6	7	14	6	10
\mathbf{A}_5	6	9	12	10	6

解这是一个标准的指派问题。引进0-1变量

$$x_{ij} = egin{cases} 1, \; egin{cases} \mathbf{A}_i \; \mathbb{A} \not \in \mathbf{B}_j \; \mathbf{f H} \ 0, \; egin{cases} \mathbf{A}_i \; ar{\wedge} \mathbb{A} \not \in \mathbf{B}_j \; \mathbf{f H} \end{cases}, i,j = 1, 2, \cdots, 5.$$

则问题的数学模型为

$$egin{aligned} \min z &= \sum_{i=1}^5 \sum_{j=1}^5 c_{ij} x_{ij}, \ & ext{s.t.} egin{aligned} \sum_{j=1}^5 x_{ij} &= 1, & i = 1, 2, \cdots, 5, \ \sum_{i=1}^5 x_{ij} &= 1, & j = 1, 2, \cdots, 5, \ x_{ij} &= 0
ot \exists 1, & i, j = 1, 2, \cdots, 5. \end{aligned}$$

利用 cvxpy 库, 求得的最优解为

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{bmatrix}$$

也就是说,最优指派方案是,让 A_1 承建 B_3 , A_2 承建 B_2 , A_3 承建 B_1 , A_4 承建 B_4 , A_5 承建 B_5 。 这样安排能使总的建造费用最少,最小费用为 34 万元。

例 6.3 (装箱问题) 有 7 种规格的包装箱要装到两辆铁路平板车上去。 包装箱的宽和高是一样的, 但厚度 $l(\mathrm{cm})$ 及重量 $w(\mathrm{kg})$ 是不同的, 表 6.2 给出了每种包装箱的厚度、重量以及数量, 每辆平板车有 $10.2~\mathrm{m}$ 长的地方来装包装箱, 载重量为 $40\mathrm{t}$, 由于当地货运的限制, 对 C_5, C_6, C_7 类的包装箱的总数有一个特别的限制: 这类箱子所占的空间 (厚度) 不能超过 $302.7~\mathrm{cm}$ 。要 求给出最好的装运方式。

表 6.2 各类包装箱数据

	C_1	C_2	C_3	C_4	C_5	C_6	C_7
$l/{ m cm}$	48.7	52.0	61.3	72.0	48.7	52.0	64.0
$w/{ m kg}$	2000	3000	1000	500	4000	2000	1000
l/cm w/kg 件数	8	7	9	6	6	4	8

解 1.装箱总厚度最大的模型

$$egin{aligned} \max z_1 &= \sum_{j=1}^7 l_j \, (x_{1j} + x_{2j}), \ &\sum_{i=1}^2 x_{ij} \leq a_j, \quad j = 1, 2, \cdots, 7, \ \sum_{j=1}^7 l_j x_{ij} \leq 1020, \quad i = 1, 2, \ \sum_{j=1}^7 w_j x_{ij} \leq 40000, \quad i = 1, 2, \ \sum_{j=5}^7 l_j \, (x_{1j} + x_{2j}) \leq 302.7, \ x_{ij} \geq 0 \; ext{B} 为整数, \ i = 1, 2; \ j = 1, 2, \cdots, 7. \end{aligned}$$

利用 cvxpy 库,可得到问题付最优解:

$$x^* = (x_{ij})_{2 imes 7} = egin{bmatrix} 4 & 1 & 5 & 3 & 3 & 2 & 0 \ 4 & 6 & 4 & 3 & 0 & 1 & 0 \end{bmatrix}, \quad z_1 = 2039.4.$$

2.装箱总重量最大的模型

要使两辆平板车的装箱总重量之和最大,目标函数为 $\max z_2 = \sum_{j=1}^7 w_j (x_{1j} + x_{2j})$, 约束条件与前述模型相同。利用 cvxpy 库,可得到问题的最优解:

$$x^* = (x_{ij})_{2 imes 7} = egin{bmatrix} 6 & 0 & 0 & 6 & 6 & 0 & 0 \ 2 & 7 & 9 & 0 & 0 & 0 & 0 \end{bmatrix}\!, \quad z_2 = 73000.$$