RELACIÓN DE PROBLEMAS - Tema5

- 1.- Realizar ejercicio 1 del Tema 5 del libro de Marc Baldo.
- **2.-** Considere el hilo (Quantum Wire) de la siguiente figura: Este hilo presenta sólo dos modos energéticos localizados en E_{c1} =-4.7eV y en E_{c2} =-4.6eV. Desarrolle una expresión analítica de la curva I_{DS} - V_{DS} en función de V_{GS} a T^a =0K. Represente la solución para 0< V_{DS} <0.5 en los casos V_{GS} =0.3V, 0.35V, 0.4V, 0.45V y 0.5V.

Suponer $C_S = C_D = 0$ y $C_G = 50$ aF.

Datos: $m=m_0=9.1x10^{-31}kg$.

Hasta aquí el ejercicio coincide con el número 2 del tema 5 del libro de M. Baldo. A continuación se pide repetir el cálculo para T=300K. En este caso será necesario hacer un estudio numérico.

Considere dos situaciones en los cálculos:

- a.- $C_G=50aF$ y $q^2/C_{ES}=0eV$; no hay autoconsistencia.
- b.- $C_G = 50aF y q^2/C_{ES} \neq 0eV$; cálculo autoconsistente.

Compare y explique los resultados obtenidos. Para el caso (a) suponga inicialmente T^a→0K y comparar los resultados numéricos y analíticos. Después compare con el cálculo numérico para T^o superiores.

La solución obtenida debe ser similar a la Fig. 5.25 del libro.

3.- Deducir las siguientes expresiones

$$I_{DS} = \frac{qW}{\pi^2 \hbar^2} \sqrt{\frac{8m}{9}} (\eta q)^{3/2} \left[(V_{GS} - V_T)^{3/2} - (V_{GS} - V_T - V_{DS}/\eta)^{3/2} \right]$$

$$I_{DS} = \frac{qW}{\pi^2 \hbar^2} \sqrt{\frac{8m}{9}} (\eta q)^{3/2} (V_{GS} - V_T)^{3/2}$$

correspondientes al Ballistic Quantum Well siguiendo los pasos del libro de M. Baldo.

- **4.-** Calcule numéricamente la característica I-V de un FET-2D balístico con un único modo y solución auto consistente para el potencial U.
- **a.-** Represente los resultados obtenidos para la siguiente situación: T=1K y T=298K en el rango de tensiones 0< V_{DS} <0.5, y V_{GS} = 0.3V, 0.35V, 0.4V, 0.45V y 0.5V. En el equilibrio E_C =-4.7eV, y E_F =-5.0eV, L=40nm, W=3×L, y C_G =0.1fF, C_D = C_S =0. Suponga la masa efectiva M_{eff} =0.5× M_0 =0.5×9.1×10⁻³¹kg.

La solución se encuentra representada en la Fig. 5.26 del libro.

- **b.-** Compare sus resultados numéricos con las soluciones analíticas para la región lineal y de saturación (Eqns (5.60) and (5.61)). Explique las discrepancias.
- **c.-** Determine numéricamente I_{DS} vs V_{GS} cuando V_{DS} =0.5V y T=298K. Representa la corriente en escala logarítmica y demuestre que la pendiente subumbral es de 60mV/década.
- d.- Utilice el apartado anterior para estimar un nuevo valor de VT de manera que la solución analítica para la región de saturación (Eq. (5.61)) proporcione un mayor ajuste a T=300K. Comente su elección.
- **5.-** Calcule la característica I-V de un transistor MOSFET utilizando dos descripciones diferentes: a.- Pozo cuántico 2D en el régimen balístico (Utilice los resultados del ejercicio anterior) y transporte semiclásico. Represente la solución para $0 < V_{DS} < 0.5$ en el caso $V_{GS} = 0.5V$.

Datos: $T^a = 0K$, $m_{eff} = 0.5 \times m_0 = 0.5 \times 9.1 \times 10^{-31} \text{kg}$.

L=40nm, W=120nm, $C_S=C_D=0$ y $C_G=0.1fF$.

 $\mu_n = 300 \text{cm}^2/\text{Vs}$, L=40nm, W=3×L, V_T=0.3V, y C_G=0.1fF.

Suponga ahora que para el transistor balístico $C_{\mathbb{Q}} \to \infty$. Calcule y represente en una misma figura la característica I-V para T=0K y 298K. Explique los resultados obtenidos.

Nota: El uso de un modelo semiclásicos para un transistor tan corto es inadecuado.