

Model Optimization and Tuning Phase

Date	5 July 2024
Team ID	SWTID1720080161
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values			
	HP1: Baseline Parameters				
SUPPORT VECTOR MACHINE	<pre>model = svm.SVC() model.fit(X_resampled, y_resampled) y_pred = model.predict(X_test) print("Test Accuracy:", accuracy_score(y_test, y_pred))</pre>	Value1: Test Accuracy: 0.902834008097166			
	HP2: C=0.1, kernel=rbf	Value2: Test Accuracy:			
	<pre>model = svm.SVC(C=0.1,kernel="rbf") model.fit(X_resampled, y_resampled) y_pred = model.predict(X_test) print("Test Accuracy:", accuracy_score(y_test, y_pred))</pre>	0.8663967611336032 Test Accuracy: 0.8663967611336032			

LOGISTIC REGRESSION	HP1: max_iter=1000, penalty="12", solver="lbfgs", C=0.001 from sklearn.metrics import confusion_matrix, classification_report model = LogisticRegression(max_iter=1000,penalty="12",solver="lbfgs",C=0.001) model.fit(X_resampled, y_resampled) y_pred = model.predict(X_test) HP2: penalty="11" C=0.01 solver="liblinear" model = LogisticRegression(penalty="11",C=0.01,solver="liblinear") model.fit(X_resampled, y_resampled) y_pred = model.predict(X_test)	Value1: Test Accuracy: 0.9190283400809717 Test Accuracy: 0.9190283400809717 Value 2: Test Accuracy: 0.951417004048583 Test Accuracy: 0.951417004048583
DECISION TREE	<pre>HP1: Baseline Parameter from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() model.fit(X_resampled, y_resampled) y_pred = model.predict(X_test)</pre>	INEFFICIENT MODEL Value1: Test Accuracy: 1.0
CLASSIFIER	<pre>HP2: from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(criterion="entropy", max_depth=3, min_samples_leaf=30 model.fit(X_resampled, y_resampled) y_pred = model.predict(X_test)</pre>	Value2: Test Accuracy: 0.9757085020242915

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric				Optimized Metric					
SUPPORT VECTOR MACHINE	Test Accuracy: Confusion Matr [[56 2] [22 167]] Classification 0 1 accuracy macro avg	ix:		f1-score 0.82 0.93 0.90 0.88	support 58 189 247 247	Test Accuracy: Confusion Matri [[46 12] [21 168]] Classification	x:		f1-score 0.74 0.91 0.87 0.82 0.87	support 58 189 247 247 247
LOGISTIC REGRESSION	Test Accuracy: 1 Confusion Matrix [[58 0] [0 189]] Classification Reproduction	eport:	0.90 ecall f1- 1.00 1.00	0.91 score sur 1.00 1.00 1.00	247 port 58 189 247 247 247	Test Accuracy: Confusion Matri [[56	x:		f1-score 0.90 0.97 0.95 0.94 0.95	support 58 189 247 247 247

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Logistic Regression with L1 Hyperparameterization	Better Performance: It has a high test accuracy, indicating better performance on unseen data. The precision is well balanced for both the classes. Feature Selection: L1 regularization helps in automatic feature selection, which can simplify the model and reduce the risk of overfitting, especially in imbalanced datasets. Efficiency: Logistic regression models are generally faster and less computationally intensive compared to SVMs, making them suitable for large datasets.