MATH 1336: Calculus III

Section 5.4, Part 1: Comparison Tests

Integral & Comparison Tests - Tests for Series with POSITIVE Terms:

These tests can only be applied to series with POSITIVE terms: $a_n>0$

 \Rightarrow verifying and stating that $a_n > 0$ is an important part of the argument when using these tests!

Comparison Test:

- (i) If $\sum b_n$ is convergent and $0 \le a_n \le b_n$ for all $n \ge N$, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $0 \le b_n \le a_n$ for all $n \ge N$, then $\sum a_n$ is also divergent.

Limit Comparison Test:

Let $a_n, b_n \geq 0$ for all $n \geq 1$.

- (i) If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, and $0 < c < \infty$, then $\sum a_n$ and $\sum b_n$ have the same convergence behavior.
- (ii) If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, and $\sum b_n$ converges, then $\sum a_n$ also converges.
- (iii) If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$, and $\sum b_n$ diverges, then $\sum a_n$ also diverges.

Note 1 - What to compare with?

Both tests rely on comparison with series for which we already know the convergence behavior:

- Geometric Series
- Harmonic Series
- p-Series
- Series we can test another way...

Note 2 - $n \geq N$

We don't always have to start with n=1. Convergence is really about the tails, or end behavior, of the terms. If we can find a comparison that only holds for $n \ge 500$, for example, the tests still work!

Motivating Example (pre-class video):

ntuition:
$$\sum_{n=1}^{\infty} \frac{1}{3^n+1}$$
 and $\sum_{n=1}^{\infty} \frac{1}{3^n}$ should have the same convergence behavior

We proved it by observing that:
$$0<\frac{1}{3^n+1}<\frac{1}{3^n}$$
 for $n\geq 1$. Then we used the n^{th} partial sum formula for Geometric Series to show that $0<\lim_{n\to\infty}s_n<\frac{1}{2}$, so the sequence of partial sums $\{s_n\}$ is bounded.

We also know that
$$\{s_n\}$$
 is increasing, since $\frac{1}{3^n+1}>0$, so the series must converge by the MCT.

The Comparison Tests provide a faster way to use the same intuition that can also be applied to more situations!

Examples:

We will work through the following examples together.

Do the series listed below converge, diverge, or are we unable to determine the convergence behavior given the tools that we have?

Example 1:
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 1}$$

Example 2:
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$$

Example 3:
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

Example 4:
$$\sum_{n=1}^{\infty} \frac{1}{3^n - 1}$$

Problems for Group Work:

Be sure to fully justify your reasoning as a part of your solutions.

The answers are upside-down on the bottom of this page.

For Problems 1-4, use either the Comparison Test or the Limit Comparison Test to determine whether the series is convergent or divergent. If neither of the tests can be used, explain why.

Problem 1:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \ 3^n}$$

Problem 2:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}+1}$$

Problem 3:
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

Problem 4:
$$\sum_{n=1}^{\infty} \frac{1}{5^n + 300}$$

Answers: Problem 1: Converge, Problem 2: Diverge, Problem 3: Cannot Determine, Problem 4: Converge