An analysis of flow-based market coupling from a long-term perspective

EURO2021 Athens

Quentin Lété Joint work with Yves Smeers and Anthony Papavasiliou Louvain Institute of Data Analysis and Modeling in economics and statistics

July 12, 2021

Outline

Introduction and context

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Results and conclusion

Introduction and context

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Results and conclusion

Flow-based market coupling (FBMC)

Methodology for building the network constraints in the European day-ahead market.

- ► Replaces ATCMC: limit on the bilateral exchanges between each pair of zones.
- FBMC adds more advanced polyhedral constraints on the zonal net positions.
- Mimics the nodal constraints but at the zonal level.

Research questions

What are the impacts of FBMC on investment?

- ightharpoonup Zonal distorts the price ightharpoonup cash flows to producers ightharpoonup investment
- In the energy transition era, this may be important

How to model capacity expansion with FBMC?

- Nodal and well-defined zonal: single optimization problem
- ► FBMC: no equivalence between centralized and decentralized
- ► Generalized Nash equilibrium

Introduction and context

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Results and conclusion

Methodology for evaluating a market design

"The goal of a well functioning market should be to reproduce the ideal central planning results" 1

Steps:

- 1. Formulate the optimal long-term solution
- 2. Answer the following question: do there exist prices that allow to recover the centralized solution in a decentralized setting?

¹Paul Joskow, "The new energy paradigm", 2007.

Nodal pricing: optimal long term solution

Transmission constraints

Assume that the central planner considers all transmission constraints via the DC approximation

Feasible set of nodal net injections:

$$\mathcal{R} = \left\{ r \in \mathbb{R}^{|N|} \mid \exists f \in \mathbb{R}^{|K|} : \right.$$

$$f_k = \sum_{n \in N} PTDF_{kn} \cdot r_n, k \in K$$

$$\sum_{n \in N} r_n = 0, -TC_k \le f_k \le TC_k, k \in K \right\}$$

This set completely defines the network constraints.

Nodal pricing: optimal long term solution (2)

Capacity expansion

Minimize the cost of production

s.t. generators operational constraints transmission constraints the market clears

$$\min_{x,y,s,r} \sum_{i \in I, n \in N} IC_i \cdot x_{in} + \sum_{i \in I, n \in N, t \in T} MC_i \cdot y_{int} + \sum_{n \in N, t \in T} VOLL \cdot s_{nt}$$

$$(\mu_{int}) : y_{int} \le x_{in} + X_{in}, i \in I, n \in N, t \in T$$

$$(\rho_{nt}) : r_{nt} = \sum_{i \in I} y_{int} + s_{nt} - D_{nt}, n \in N, t \in T$$

$$r_{:t} \in \mathcal{R}, t \in T$$

$$x > 0, y > 0, s > 0$$

Nodal pricing: Equivalence to decentralized solution

Producers:

$$\max_{x_{in}} \sum_{t \in T} \left((\rho_{nt} - MC_i) y_{int} \right)$$
$$- IC_i x_{in}$$
s.t.
$$X_{in} + x_{in} - y_{int} \ge 0$$
$$x_{in} \ge 0, y_{int} \ge 0$$

TSO:

$$\max_{r_{nt}} - \sum_{n \in N, t \in T} r_{nt} \rho_{nt}$$
s.t. $r_{t} \in \mathcal{R}, t \in T$

Consumers:

$$\max_{s_{nt}} \sum_{t \in T} VOLL(D_{nt} - s_{nt}) - \rho_{nt}(D_{nt} - s_{nt})$$
s.t. $D_{nt} - s_{nt} \ge 0, t \in T$
 $s_{nt} \ge 0$

Auctioneer:

$$\max_{\rho_{nt}} \rho_{nt}(r_{nt} + D_{nt} - \sum_{i} y_{int} - s_{zt})$$

Zonal pricing: optimal long term solution

Transmission constraints?

- ► Unique price per zone
- lacktriangledown nodal dual $\xrightarrow{\mathsf{prices}}$ zonal dual o zonal primal

Feasible set of zonal net injections:

$$\mathcal{P}^{PA} = \left\{ p \in \mathbb{R}^{|Z|} \mid \exists r \in \mathbb{R}^{|N|} : p_z = \sum_{n \in N(z)} r_n \ \forall z \in Z, \right.$$
$$r \in \mathcal{R} \right\}$$

Zonal pricing: Equivalence to decentralized solution

Producers:

$$\max_{x_{iz}} \sum_{t \in T} \left((\rho_{zt} - MC_i) y_{izt} \right)$$
$$- IC_i x_{iz}$$
$$\text{s.t. } X_{iz} + x_{iz} - y_{izt} \ge 0$$
$$x_{iz} > 0, y_{izt} > 0$$

TSO:

$$\max_{p_{zt}} - \sum_{z \in Z, t \in T} p_{zt} \rho_{zt}$$
s.t. $p_{t} \in \mathcal{P}^{PA}, t \in T$

Consumers:

$$\max_{s_{zt}} \sum_{t \in T} VOLL(D_{zt} - s_{zt})$$
$$- \rho_{zt}(D_{zt} - s_{zt})$$
$$s.t. \ D_{zt} - s_{zt} \ge 0, t \in T$$
$$s_{zt} \ge 0$$

Auctioneer:

$$\max_{\rho_{zt}} \rho_{zt} (p_{zt} + D_{zt} - \sum_{i} y_{izt} - s_{zt})$$

Introduction and context

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Results and conclusion

FBMC: set of feasible net injections?

Two main principles

- 1. No feasible transactions should be rejected
- 2. Cleared zonal net positions should be feasible

Important fact: TSOs use the knowledge of existing nodal capacity:

$$\mathcal{PX}^{\mathsf{FBMC}}(\mathbf{x}_{in}) = \left\{ p \in \mathbb{R}^{|\mathcal{Z}|} \middle| \exists (r, \tilde{y}) : p_z = \sum_{n \in \mathcal{N}(z)} r_n \ \forall z \in \mathcal{Z}, \right.$$

$$r \in \mathcal{R},$$

$$r_n = \tilde{y}_{int} - D_{nt} \ \forall n \in \mathcal{N},$$

$$0 \leq \tilde{y}_{int} \leq \mathbf{x}_{in} + X_{in} \ \forall i \in I, n \in \mathcal{N} \right\}$$

Equivalence to decentralized solution is broken

Producers:

$$\max_{x_{iz}} \sum_{t \in T} \left((\rho_{zt} - MC_i) y_{izt} \right)$$
$$- IC_i x_{iz}$$
s.t.
$$X_{iz} + x_{iz} - y_{izt} \ge 0$$
$$x_{iz} \ge 0, y_{izt} \ge 0$$

TSO:

$$\begin{aligned} & \max_{p_{zt}} - \sum_{z \in \mathcal{Z}, t \in \mathcal{T}} p_{zt} \rho_{zt} \\ & \text{s.t. } p_{:t} \in \mathcal{PX}^{\mathsf{FBMC}}(\mathbf{x_{in}}), t \in \mathcal{T} \end{aligned}$$

Consumers:

$$\max_{s_{zt}} \sum_{t \in T} VOLL(D_{zt} - s_{zt})$$
$$- \rho_{zt}(D_{zt} - s_{zt})$$
$$s.t. \ D_{zt} - s_{zt} \ge 0, t \in T$$
$$s_{zt} \ge 0$$

Auctioneer:

$$\max_{\rho_{zt}} \rho_{zt} (p_{zt} + D_{zt} - \sum_{i} y_{izt} - s_{zt})$$

Investment conditions

Nodal:

$$0 \le x_{in} \perp IC_i - \sum_{t \in T} \mu_{int} \ge 0 \ \forall i \in I, n \in N$$

Zonal PA:

$$0 \le x_{iz} \perp IC_i - \sum_{t \in T} \mu_{izt} \ge 0 \ \forall i \in I, z \in Z$$

FBMC-C:

$$0 \le x_{iz} \perp IC_i - \sum_{t \in T} \mu_{izt} - \sum_{m \in \{1, \dots, M\}} U_{miz} \gamma_m \ge 0 \ \forall i \in I, z \in Z$$

FBMC-D:

$$0 \le x_{iz} \perp IC_i - \sum_{i \in \mathcal{I}} \mu_{izt} \ge 0 \ \forall i \in I, z \in Z$$

Introduction and context

Capacity expansion in transmission-constrained markets

Capacity expansion with FBMC

Results and conclusion

Illustrative example

Figure 1: Three-node two-zone network used in the illustrative example.

Illustrative example (2)

Technology	MC [€/MWh]	IC [€/MWh]
Coal	25	16
Gas	80	5
Nuclear	6.5	32
Oil	160	2

D_1 [MW]	D_2 [MW]	Duration [h]
0	7086	1760
0	9004	5500
300	10869	1500

 $VOLL = 3000 {\small \in /MWh}$

Results: investment nodal

Results: investment FBMC-C

Investors do not recover their cost.

Gas in node B: profit in the peak period: $97.52-80=17.52 {\in}/\text{MWh}$, which gives $\frac{17.52\cdot1500}{8760}=3 {\in}/\text{MWh}$. Net profit is below the investment cost of $5 {\in}/\text{MWh}$.

Results: investment FBMC-D

Results: investment zonal PA

Results: costs comparison

Results: case study on the Central Western European network

- ► 100 nodes and 20 time periods
- Based on realistic data of CWE
- Splitting based algorithm to solve the FBMC-D

Observations

- ► Same ranking than illustrative example
- Large efficiency gaps between the four designs
- Reallocation of technologies in different locations of the same zone cannot occur in decentralized FBMC and PA

Conclusion

Equivalence between central planner and decentralized solution is broken in FBMC.

Consequences:

- ▶ Multiple equilibria: not clear what the output will be.
- ▶ Intervention from the TSO is necessary (network reserve).
- Market efficiency is degraded: Nodal > FBMC-C > FBMC-D > Zonal-PA

Thank you

Contact:

Quentin Lété, quentin.lete@uclouvain.be

https://qlete.github.io