영상처리프로그래밍

수업 계획서

2022년 1학기

한림대학교 박섭형

1

수강 과목

- 교과목번호/분반: 506714/01
- 이수구분: 공통전선
- 시간
 - 화 7, 8
 - 목 7, 8
- 강의실: 1157
- 학점-수업-실습: 3-2-2

담당 교수

• 소속: 소프트웨어융합대학

연구실: 1343교수명: 박섭형

• 전자우편: spark@hallym.ac.kr

• 면담 가능 시간: 사전에 이메일로 연락 후 약속

3

1. 교과목 개요 (1)

- 수업 개요
 - 스마트폰, CCTV, 블랙박스 등으로부터 수집되는 영상 빅데이터로부터 의미있는 정보를 추출하고 내용을 시각적으로 분석하는 방법을 학습한다.
 - 주요 내용은 디지털 영상 샘플링 이론, 주파수 영역의 이해, 화소 단위의 영상 처리 이론 및 프로그래밍 방법, 영상 내의 영역 처리 이론 및 프로그래밍 방법, 영상의 기하학적 처리 이론 및 프로그래밍 방법, 주파수 영역에서 영상 처리 이론 및 프로그래밍 방법, 영상의 형태학적 처리 이론 및 프로그래밍 방법, 고전적 기계학습 이론을 이용한 영상 처리, 딥러닝을 이용한 영상 처리 방법 등이다.
 - 프로그래밍에 사용하는 언어는 Python이며, Pillow, Scikit-image, Imageio, Numpy, Scipy, Opencv-python 등과 같은 영상 처리용 라이브러리를 사용하고, Scikit-learn, tensorflow, keras 등의 기계 학습 및 딥러닝 라이브러리를 함께 다룬다.

1. 교과목 개요 (2)

• 선수 학습 내용: 파이썬 프로그래밍 기초

• 수업방법 및 비중

• 강의식: 50 %

문제 중심 학습: 20%실험/실습: 30%

5

2. 교과 목표

- 지식
 - 디지털 영상 신호의 원리와 표현 방법를 이해한다.
 - 디지털 영상 신호의 공간 영역과 주파수 영역 표현의 차이를 이해하고 두 영역의 신호 변화 워리를 이해한다.
 - 디지털 영상 처리 프로그래밍에 필요한 Python 라이브러리들의 사용 방법을 이해한다.
- 기술
 - Python을 이용하여 디지털 영상 신호를 다루는 방법을 배운다.
 - Python을 이용하여 디지털 영상 신호 처리용 라이브러리를 다루는 방법을 배운다.
 - Python을 이용하여 디지털 영상 신호 처리용 기계학습 및 딥러닝 라이브러리를 다루는 방법을 배운다..
- 태도
 - 디지털 영상 처리 프로그래밍에 대한 전문적인 시야를 갖춘다.
 - 디지털 영상 빅데이터 처리에 관한 전문적인 시야를 갖춘다.

인재상

• 대용량의 디지털 영상/비디오 신호에 대한 기본 지식과 응용력을 갖춘 엔지니어

7

목표 역량 및 평가지표 (지식)

- 디지털 영상 신호의 원리와 표현 방법를 이해한다.
- 디지털 영상 신호의 공간 영역과 주파수 영역 표현의 차이를 이해하고 두 영역의 신호 변환 원리를 이해한다.
- 디지털 영상 처리 프로그래밍에 필요한 Python 라이브러리들의 사용 방법을 이해한다.

목표 역량 및 평가지표 (기술)

- Python을 이용하여 디지털 영상 신호 처리용 라이브러리를 다루는 방법을 배운다.
- Python을 이용하여 디지털 영상 신호 처리용 라이브러리를 다루는 방법을 배운다.
- Python을 이용하여 디지털 영상 신호 처리용 기계학습 및 딥러닝 라이브러리를 다루는 방법을 배운다.

9

목표 역량 및 평가지표(태도)

- 디지털 영상 처리 프로그래밍에 대한 전문적인 시야를 갖춘다.
- 디지털 영상 빅데이터 처리에 관한 전문적인 시야를 갖춘다.

출석미달 기준 사항

- 학칙을 준용함.
- 단, 학칙의 출석 미달 기준을 적용받지 않는 학생들은 출석일수 1/4 이상 결석시 F 학점을 부여함.

11

3. 수업 운영 방법 (1)

- 이 수업은 매주 2 시간의 강의와 2 시간의 실습으로 구성됨.
- 2 시간의 강의는 한림스마트캠퍼스를 통해서 녹화 동영상으로 대체함.
- 학생들은 매주 실습 시간 전에 해당 동영상을 시청하면서 스스로 학습을 진행함.
- 매주 강의를 통해서 주요 개념을 설명하고 실습 내용을 안내함.
- 학생들이 문제 해결 과정에서 어려움이 있는 경우에 교수 또는 조교에게 문의할 수 있음.

3. 수업 운영 방법 (2)

- 실습 시간에는 주차별 수업 내용에 따라서 Python을 기반으로 프로그래밍 실습을 진행함.
- 이 과목의 실습은 주로 Python, NumPy, Matplotlib, Scikit-image, Imageio, Pillow, Opencv-python, Scikit-learn, Tensorflow, Keras 등을 이용한 프로그래밍 실습으로 진행함.
- Anaconda와 Jupyter Notebook 등의 활용 방법을 사전에 학습하면 과목 이수에 매우 큰 도움이 됨.

13

4. 수업 규정

- 실습 전에 강의 동영상을 시청하여 수업 내용을 충분히 이해한고 실습에 임한다.
- 실습 시간에 지각하지 않는다.
- 교수/조교와 학생간, 학생 상호간 기본 예의를 준수한다.
- 과제 작성시 다른 친구들과 상의할 수 있으나, 표절과 부정 행위를 금지한다.
- 실습 시간 중의 질문과 토론에 적극적으로 참여한다.

5. 교재 및 참고도서

- 주교재
 - OpenCV-Python으로 배우는 영상처리 및 응용, 정성환,배종욱 지음, 생능출판 사, 2020. 11. 24.
- 부교재
 - 파이썬으로 배우는 영상처리 Sandipan Dey 지음, 정성환, 조보호, 배종욱 옮김, 도서출판 홍릉(홍릉과학출판사), 2020. 1. 20.

15

6. 평가 (1)

- 평가항목 및 반영 비율
 - 중간고사(25%)
 - 기말고사(25%)
 - 실습 (40%)
 - 출석(10%)

4. 평가 (2)

- 평가항목별 평가기준
 - 중간고사 및 기말고사 : 각 1회, 전후반기에 배운 내용을 종합적으로 평가할 수 있는 시험을 실시함.
 - 출석점수: 결석 시간별 점수 차등
 0~10시간 결석: 10 결석시간
 10 시간 이상 결석: 0점

17

수업 일정

주차	일자		일자	
1	3/1	삼일절 (6/7 보충)	3/3	강의 소개 (Anaconda / Jupyter Lab 실습)
2	3/8	영상 처리 개요	3/10	Python 기초 실습
3	3/15	영상 입출력, 기본 조작	3/17	영상 입출력, 기본 조작 실습
4	3/22	OpenCV GUI	3/24	OpenCV GUI 실습
5	3/29	NumPy 자료 구조	3/31	NumPy 자료 구조 실습
6	4/5	영상의 샘플링, 확대 축소 이론	4/7	영상의 샘플링, 확대 축소 실습
7	4/12	영상 품질 향상	4/14	영상 품질 향상 실습
8	4/19	중간고사	4/21	중간고사

18

수업 일정

주차	일자			일자	
9	4/26	2차원 필터링		5/28	2차원 필터링 실습
10	5/3	영상 평활화		5/5	어린이날 (6/9 보충)
11	5/10	비봉 축전 (6/10 금 보충)		5/12	비봉 축전 (6/14 화 보충)
12	5/17	영상 평활화 실습		5/19	영상의 기하학적 처리
13	5/24	영상의 기하학적 처리 실습		5/26	영상 분류 (1)
14	5/31	영상 분류 실습		6/2	영상 분류 (2)
보충	6/7	Tensforflow/Keras 실습 <mark>(3/1 보충)</mark>		6/9	얼굴 검출 (5/5 보충)
보충	6/10(금)	얼굴 검출 실습 (5/10 보충)	6,	/14(화)	총정리 (5/12 보충)
15			6/	'16 (목)	기말고사

19