TPG4190 Seismic data acquisition and processing Imaging

B. Arntsen

NTNU
Department of Geoscience and petroleum borge.arntsen@ntnu.no

Trondheim fall 2020

Overview

- ► Imaging condition
- ► Simplification
- ► Comparison with classical imaging condition

Imaging condition

For the forward modeling we have in the time domain (Equation (13) in lecture 10).

$$p(\mathbf{x}, \mathbf{x}_s, t) = \int dV(\mathbf{x}')g(\mathbf{x}, \mathbf{x}', t) * s(\mathbf{x}', t)$$
$$+ \int dS(\mathbf{x}') \left[g(\mathbf{x}, \mathbf{x}', t) * \nabla p(\mathbf{x}', \mathbf{x}_s) - p(\mathbf{x}', \mathbf{x}_s, t) * \nabla g(\mathbf{x}, \mathbf{x}') \right] \cdot \mathbf{n}(\mathbf{x}')$$

However, for modelling we can neglect the surface integral

$$p(\mathbf{x}, \mathbf{x}_s, t) = \int dV(\mathbf{x}')g(\mathbf{x}, \mathbf{x}', t) * s(\mathbf{x}', t).$$
 (1)

Imaging condition

For the time reversed focusing we have (Equation (19) in lecture 10), but with reinsertion of volume integral for the s'(x,t) source

$$p(\mathbf{x}, \mathbf{x}_{s}, -t) * h(t) = \int dV \, p(\mathbf{x}, \mathbf{x}_{s}, t) * s'(\mathbf{x}_{s}, -t)$$

$$+ \int dS(\mathbf{x}') \, \left[p(\mathbf{x}', \mathbf{x}_{s}, -t) * \nabla p(\mathbf{x}, \mathbf{x}', t) \right.$$

$$- p(\mathbf{x}, \mathbf{x}', t) * \nabla p(\mathbf{x}', \mathbf{x}_{s}, -t) \right] \cdot \mathbf{n}(\mathbf{x}')$$
(2)

Assume $h(-t) = \delta(-t)$. Then $g(\mathbf{x}, \mathbf{x}', t) = p(\mathbf{x}, \mathbf{x}', t)$ and neglecting the volume term (is actually a sink)

$$p(\mathbf{x}, \mathbf{x}_{s}, -t) = + \int dS(\mathbf{x}') \left[p(\mathbf{x}', \mathbf{x}_{s}, -t) * \nabla g(\mathbf{x}, \mathbf{x}', t) - g(\mathbf{x}, \mathbf{x}', t) * \nabla p(\mathbf{x}', \mathbf{x}_{s}, -t) \right] \cdot \mathbf{n}(\mathbf{x}')$$
(3)

Imaging condition

For the computation of the image we have from lecture 10 (Equation 24) Define $r(\mathbf{x}', \mathbf{x}, t) = p(\mathbf{x}', \mathbf{x}, -t) * h(t) - p(\mathbf{x}', \mathbf{x}, t) * h(-t)$ $r(\mathbf{x}', \mathbf{x}, t = 0) = \int dS(\mathbf{x}_s) \int d\tau \left[p(\mathbf{x}', \mathbf{x}_s, \tau) \nabla p_0(\mathbf{x}, \mathbf{x}_s, \tau) - p_0(\mathbf{x}, \mathbf{x}_s, \tau) \nabla p_0(\mathbf{x}', \mathbf{x}_s, \tau) \right] \cdot \mathbf{n}(\mathbf{x}')$ (4)

p₀: Forward modeled datap: Backpropagated data

Imaging

Migration consists in:

- 1. Compute the forward wavefield $p(x, x_s, t)$ from equation (2)
- 2. Compute the backward wavefield $p(\mathbf{x}', \mathbf{x}_s, t)$ from equation (3).
- 3. Compute the image from equation (4)

Velocity

 $p(x, x_s, t)$ at depth of 1000 m.

Imaging condition III

p: Scattered wavefieldx_s: Source positionx, t: Position, time

Imaging condition IV

Imaging condition V

Imaging condition VI

x - x': Horizontal offset z - z': Vertical offset

Reflectivity p(x - x', t = 0) at all depths using new imaging condition

Full section p(x - x' = 0, t) at all depths using new imaging condition

Simplification

$$r(\mathbf{x}', \mathbf{x}, t = 0) =$$

$$\int dS(\mathbf{x}_s) \int d\tau \left[p(\mathbf{x}', \mathbf{x}_s, \tau) \nabla p_0(\mathbf{x}, \mathbf{x}_s, \tau) - p_0(\mathbf{x}, \mathbf{x}_s, \tau) \nabla p(\mathbf{x}', \mathbf{x}_s, \tau) \right] \cdot \mathbf{n}(\mathbf{x}')$$
(5)

Horizontal receiver implies

$$r(\mathbf{x}', \mathbf{x}, t = 0) =$$

$$\int dS(\mathbf{x}_s) \int d\tau \left[p(\mathbf{x}', \mathbf{x}_s, \tau) \partial_z p_0(\mathbf{x}, \mathbf{x}_s, \tau) - p_0(\mathbf{x}, \mathbf{x}_s, \tau) \partial_z' p(\mathbf{x}', \mathbf{x}_s, \tau) \right]$$
(6)

Simplification

$$\partial_z p(\mathbf{x}', \mathbf{x}_s.t) = 0$$
 (No recorded pressure gradient)
$$r(\mathbf{x}', \mathbf{x}, t = 0) = \int dS(\mathbf{x}_s) \int d au \left[p(\mathbf{x}', \mathbf{x}_s, au) \partial_z p_0(\mathbf{x}, \mathbf{x}_s, au) \right]$$

(7)

Classical Imaging condition

For $\mathbf{x}' = \mathbf{x}$ and by ignoring ∂_z this is the classical imaging condition (Claerbout, 1971)

$$r_c(\mathbf{x}) = \sum_{\mathbf{x}_s} \sum_{\tau} p_0(\mathbf{x}, \mathbf{x}_s, \tau) p(\mathbf{x}, \mathbf{x}_s, \tau)$$

Ignoring ∂_z implies an unfocused image with less than optimal resolution and incorrect amplitudes.

Common image point gather (CIP) in the center of the model Classical imaging condition:

Horizontal profile through reflector at 1000m depth

Common image point gather (CIP) in the center of the model. New imaging condition:

Horizontal profile through reflector at 1000m depth

Conventional imaging condition:

New imaging condition:

Conventional imaging condition:

New imaging condition:

From reflectivity to plane wave reflection coefficient

$$\partial_z r(\mathbf{x}, \mathbf{x}', t) = 2 \sum_{\mathbf{x}_s} \sum_{\tau} \partial_{z_s}^2 p_0(\mathbf{x}, \mathbf{x}_s, \tau + t) p_{sc}(\mathbf{x}', \mathbf{x}_s, \tau)$$
(8)

Plane wave reflection coefficient by mapping to $p-\tau$ (deBruin 1991?)

Conventional approach:

$$r(\boldsymbol{x}, \boldsymbol{x}', t) = 2 \sum_{\boldsymbol{x}_s} \sum_{\tau} p_0(\boldsymbol{x}, \boldsymbol{x}_s, \tau + t) p_{sc}(\boldsymbol{x}', \boldsymbol{x}_s, \tau)$$
 (9)

Plane wave reflection coefficient by mapping to $p-\tau$ (deBruin 1991?)

p-gather at the center of the model

Amplitude picks along p-gather

Conventional approach:

Amplitude picks along p-gather

Conclusions

Simple (trivial) modification of the classical imaging condition for Reverse-time migration gives

- ► Better resolution
- Reflectivity with correct angle behavior