Table of Contents

USDataClass: Data class for computation of echo decorrelation	1
Constructor method	2
Scan Conversion Method	3
Display functions	3
compute ensemble average	
compute ensemble average in ROI	
calculate minimum spherical coordinate bounds that encapsulates the cartesian ROI bounds	

USDataClass: Data class for computation of echo decorrelation

```
classdef USDataClass < handle</pre>
    % USDataClass: Data class for computation of echo decorrelation
       each set of data has is an object of type USDataClass
      contains the data parameters, raw spherical data, cartesian
 scan converted data, ibs,
   % and decorrelation
    % Author: Peter Grimm 12/21/2019
   properties
       % data properties
       rawData;
                          % raw spherical volume data for one data
 set export
                         % scan converted cartesian data from
       rawData_cart;
 spherical data
                           % Integrated backscatter for every
       ibs;
 (cartesian) volume
                          % decorr (cartesian) between volume at t
       decorr;
and t+tau
                          % autocorr between volume at t and t+tau
       autocorr01;
                           % average of decorrelation in entire data
       decorrAvg;
set, either ensemble or running
       time:
        % bounds
                           % bounds of region of interest [xMin xMax
       ROIBounds;
yMin yMax zMin zMax]
       ROIBounds_spherical; %TODO, minimum bounds in spherical
 coordinates
       % bounded data properties
       rawData cart ROI;
       ibs ROI;
       decorr ROI;
       autocorr01_ROI;
       decorrAvg ROI;
        % parameters
       The following would ideally be part of InfoFile in the future
                           % Info file provided by siemens SC2000
 scanner
```

```
rmax,rmin,thetamax,thetamin,phimax,phimin; % bounds in cm of
 the spherical data
        xMin,xMax,yMin,yMax,zMin,zMax; % bounds in cm of cartesian
 data
        x_range,y_range,z_range; % range in cartesian plane
        windowSigma;
                           % sigma of gaussian smoothing kernel
        dPhi;
                           % angular difference between successive phi
        dTheta;
                           % angular difference between successive
 theta
                           % distance in cm in the radius
        dr;
direction(cm/pixel)
        dx;
                           % distance in cm in the x direction (cm/
pixel)
                           % distance in cm in the x direction (cm/
        dy;
pixel)
                            % distance in cm in the x direction (cm/
        dz;
pixel)
        interFrameTime; % time between volume recordings (cm/pixel)
        cartScalingFactor; % Factor to scale cartesian distances by
 (dx/dr)
                           % e.g Given dr, to find dx take
                           % dr*cartScalingFactor = dx
                           % reduces resolution by a factor of
                           % cartScalingFactor for faster scan
 conversion
        rawData cart slicemethod;
        ibs_slicemethod;
                                       % Integrated backscatter for
 every (cartesian) volume
        decorr_slicemethod;
                                      % decorr (cartesian) between
 volume at t and t+tau
        autocorr01 slicemethod;
                                      % autocorr between volume at t
 and t+tau
                                       % average of decorrelation in
        decorrAvg_slicemethod;
 entire data set, either ensemble or running
    end
```

methods

Constructor method

```
function obj =
USDataClass(thisRawData,startTime,thisInfoFile,thisrmin,thisrmax,thisthetamin,thi
    obj.rawData = thisRawData;
    obj.InfoFile = thisInfoFile;
    obj.rmax = thisrmax;
    obj.rmin = thisrmin;
    obj.thetamax = thisthetamax;
    obj.thetamin = thisthetamin;
    obj.phimax = thisphimax;
    obj.phimin = thisphimin;
```

obj.cartScalingFactor = thiscartScalingFactor;

```
obj.windowSigma = thiswindowSigma;
obj.interFrameTime = thisinterFrameTime;
obj.time = startTime;
end
```

Scan Conversion Method

Display functions

```
function displayRawData_cart(obj)
   imagesc(squeeze(abs(obj.rawData_cart(:,:,30,1))))
end
function displayDecorr(obj)
   imagesc(squeeze(abs(obj.decorr(:,:,20,1))))
end
```

compute ensemble average

```
function computeDecorrelationAverage(obj,method)
    if strcmp(method,'ensemble') == 1
        obj.decorrAvg = sum(obj.decorr,4)/size(obj.decorr,4);

    elseif strcmp(metod,'running') == 1

    else
        error('please enter proper method name (ensemble or running)');
        end
    end
end
```

compute ensemble average in ROI

calculate minimum spherical coordinate bounds that encapsulates the cartesian ROI bounds

potentially useful for speeding up computation given small enough sigma to make windowing effect irrelevant

```
function computeMinROIBoundsSpherical(obj)
           [minX maxX minY maxY minZ maxZ] = obj.ROIBounds;
           minTheta = arctan(minY/minX);
           maxTheta = arctan(minY/maxX);
           minPhi = arctan(sqrt(minX^2 + minY^2)/minZ);
           %todo
           maxPhi = minPhi;
           %minR not correct TODO
           minR = sgrt(minX^2 + minY^2 + minZ^2);
           maxR = sqrt(maxX^2 + maxY^2 + maxZ^2);
           obj.ROIBounds_spherical = [minR,
maxR,minTheta,maxTheta,minPhi,maxPhi];
       end
       function setROI(obj,thisROIBounds)
           if(isempty(obj.decorr))
              error('execute computedecorr3d before getting
decorrelation within bounds')
           end
           obj.ROIBounds = thisROIBounds;
           % convert cm to pixels
           minX = floor(obj.ROIBounds(1)/obj.dx)+1;
           maxX = floor(obj.ROIBounds(2)/obj.dx)+1;
           minY = floor(obj.ROIBounds(3)/obj.dy)+1;
           maxY = floor(obj.ROIBounds(4)/obj.dy)+1;
           minZ = floor(obj.ROIBounds(5)/obj.dz)+1;
           maxZ = floor(obj.ROIBounds(6)/obj.dz)+1;
           obj.rawData_cart_ROI =
obj.rawData cart(minX:maxX,minY:maxY,minZ:maxZ,:);
           obj.ibs_ROI = obj.ibs(minX:maxX,minY:maxY,minZ:maxZ,:);
           obj.decorr ROI =
obj.decorr(minX:maxX,minY:maxY,minZ:maxZ,:);
           obj.autocorr01_ROI =
obj.autocorr01(minX:maxX,minY:maxY,minZ:maxZ,:);
           obj.decorrAvg ROI =
obj.decorrAvg(minX:maxX,minY:maxY,minZ:maxZ,:);
       end
   end
```

end

