# Chapter 4 Linear and Non-Linear Relations (2)

#### 1. Linear Relations

**Graphically, a LINEAR RELATION** is a relation between two variables which creates a straight line when graphed on a Cartesian plane. Otherwise, it is **NON-LINEAR**.

**Algebraically**, the equation of a linear line is always in the form of "y = mx + b", and has a degree of 1. The equation of a non-linear line has a degree of any number, other than one.

**Example:** Determine the follow as linear or non-linear.

1. y = 5

**2.** 2x + 3y = 10

3.  $v = 7x^2$ 



5

Answer: 1. Linear

2. Linear

3. Non-linear

4. Linear

5. Non-linear

**Consider the following sentence:** The cost (in dollars) of buying pens is equal to ten times the number of pens bought.

If c represents the cost in dollars and p represents the number of pens bought, then this sentence can be expressed mathematically as

c = 10p where  $p \in N$ 

When p = 1,  $c = 10 \times 1 = 10$ 

When p = 2,  $c = 10 \times 2 = 20$ 

When p = 3,  $c = 10 \times 3 = 30$ 

When p = 4,  $c = 10 \times 4 = 40$ 

Thus the mathematical sentence c = 10p relates the values of c to the values of p.

It defines a binary relation on the natural numbers.

The ordered (p,c) pairs (1,10), (2,20), (3,30), (4,40) etc. belong to the relation defined by c=10p.

## This suggests the following definition:

A **relation** is a set of ordered pairs, and is usually defined by a rule.

In the above example,  $\{(1,10), (2,20), (3,30), (4,40), ...\}$  is a relation and it can be described by the rule c = 10p, where  $p \in N$ .

**Domain** - The domain of a relation is the set of all first elements (usually x values) of its ordered pairs. In the example discussed, the domain =  $\{p \mid p = 1, 2, 3, 4, ...\}$  or N – natural numbers.

1

**Range** - The range of a relation is the set of all second elements (usually y values) of its ordered pairs. In the example discussed, the range =  $\{c \mid c = 10, 20, 30, 40, ...\}$ .

**Note:** The graph of c against p is **discrete** because p is an element of the set of natural numbers. The values of c depend upon p. So, we say that p is an **independent variable** and c is a **dependent variable**.

**Example 1:** State the domain and range of the following relations:

### Solution:

a. Domain = 
$$\{1, 2, 3, 4, 5\}$$
  
Range =  $\{1, 4, 9, 16, 25\}$   
b. Domain =  $\{0, 2, 4, 6, 8\}$   
Range =  $\{8, 12, 16, 20, 24\}$ 

**Functions** - A relation is said to be a function if each element of the domain determines exactly one element of the range. i.e. there can only be ONE y-value for each x-value.

For example, the relation c = 10p, where  $p \in N$ , is a function since each element of the domain determines exactly one element of the range.

**Algebraic Test:** If a relation is given as an equation, and the substitution of any value for x results in one and only one value of y, we have a function.

**Geometric Test:** is by using the "**Vertical Line Test**". Given the graph of a relation, if you can draw a vertical line that crosses the graph in more than one place, then the relation is not a function.

**Example 2:** Determine if the follow relation is a function.



a) This is a function. You can tell by tracing from each *x* to each *y*. There is only one *y* for each *x*; there is only one arrow coming from each *x*.



b) This one is not a function: there are *two* arrows coming from the number 1; the number 1 is associated with two *different* range elements. So this is a relation, but it is not a function.



 c) This graph shows a function, because there is no vertical line that will cross this graph twice.



d) This graph does not show a function, because any number of vertical lines will intersect this oval twice. For instance, they-axis intersects (crosses) the line twice.



Since relation #1 has ONLY ONE y value for each x value, this relation is a function.

On the other hand, relation #2 has TWO distinct y values '2' and '4' for the same x value of '1'. Therefore, relation #2 does not satisfy the definition of a function. It is a relation.

#### 2. Direct vs. Partial Variation

**Direct Variation -** A relationship between two variables in which one variable is a constant multiple of the other. When graphing the line DOES pass through the origin. Represented by y = mx form

X and Y values vary directly with each other



In order to help you understand the content of this unit, Val and Sal have kindly volunteered to assist us by providing a simple but direct comparative illustration. **Partial Variation** - A relationship between two variables in which one variable is a constant multiple of the other plus a constant value. Graph DOES NOT pass through the origin. Represented by y = mx + b form

X and Y values don't vary directly with each other

### Characteristics

| Direct Variation                                   | Partial Variation                                    |
|----------------------------------------------------|------------------------------------------------------|
| straight line                                      | straight line                                        |
| constant of variation                              | constant of variation                                |
| no fixed cost                                      | fixed cost                                           |
| x and y values                                     | x and y values                                       |
| starts at origin $(0,0)$                           | starts anywhere but origin                           |
| y=mx                                               | y=mx+b                                               |
| 16 14 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 30 25 20 15 15 0 0 1 2 3 4 5 6 7 8 9 10 Bags of Rice |

**Example 1:** While driving down a highway at a constant speed, the following times and distances were recorded:

| Time (h) | Distance Travelled (km) |
|----------|-------------------------|
| 1        | 110                     |
| 2        | 220                     |
| 3        | 330                     |
| 4        | 440                     |
| 5        | 550                     |

a. The relationship between the time spent driving and the distance traveled can also be expressed as the following function: D = 110t

## Olympiads school grade 9 Math camp class 9 notes

b. Sketch the graph of this function.



**Example 2:** A medium pizza costs \$7 plus \$1.50 per topping.

a) Identify the fixed cost and the variable cost.

The fixed cost is \$7 and the variable cost is \$1.50

b) Determine the equation relating cost, C, in dollars and the number of toppings, n.

$$C = 7 + 1.5n$$

c) Use the equation to determine the cost of a medium pizza with 6 toppings.

$$n = 6$$
  
  $C = 7 + 1.5(6) = $16$ 

d) Graph this partial variation relation.

