

TRABAJO PRACTICO N° 9:

CORTE EN LA FLEXION

EJEMPLO DE APLICACION

Diseño a Flexion y Corte de una seccion de Acero IPN

Datos:

Tension de Fluencia $\sigma_F=24~KN/cm2$

Coeficiente de Seguridad = 1.50

Tension Admisible: $\sigma_{adm} = \frac{24}{1.5} = 15 \ KN/cm2$

Tension Tangencial Admisible: $au_{adm} = 0.55 * 15 rac{KN}{cm2} = 8.25 \ KN/cm2$

100KN q=30KN/m 5 7 7 8 200KNm 20.41KNm

REACCIONES:

$$\sum_{A} M^{A} = 0 = -(100 * 2) + (30 * 5 * 2.50) - By * 5m \Rightarrow By = 35 KN$$

$$\sum_{n} Fy = 0 = -100 - 50 + 35 - (30 * 5) + Ay \Rightarrow Ay = 265 KN$$

ESFUERZO DE CORTE:

$$Q_{Ai} = -100 \ KN$$
 $Q_{Ad} = -100 + 265 - 50 = 115 KN$
 $Q_{Bi} = 35 \ KN$

Coordenada donde el corte es nulo:

$$\frac{115 + 35}{5} = \frac{115}{x} \Rightarrow x = 3.83 m$$

MOMENTO FLECTOR:

$$M_A = -100 * 2m = -200 KNm$$

$$M_{3.83m} = -(100 * 5.83) - (50 * 3.83) + (265 * 3.83) - (30 * 3.83 * 1.915)$$

$$= 20.41 KNm$$

Se verifica la Sección (A) inmediatamente a la Derecha: M=-200 KNm - Q = 115 KN

DISEÑO A FLEXION:

$$W_{nec} = \frac{20000KNcm}{15 \, KN/cm^2} = 1333 \, cm^3$$

IRAM-IAS U 500-511 — Perfil doble T de acero — IPN
IRAM-IAS U 500-215-2 — Perfil doble T de acero — IPB
IRAM-IAS U 500-215-3 — Perfil doble T de acero — IPBI
IRAM-IAS U 500-215-4 — Perfil doble T de acero — IPBV
IRAM-IAS U 500-215-5 — Perfil doble T de acero — IPE
IRAM-IAS U 500-215-6 — Perfil doble T de acero — W
IRAM-IAS U 500-215-7 — Perfil doble T de acero — HP

IRAM-IAS U 500-215-8 – Perfil doble T de acero – M

IRAM-IAS U 500-509-2 - Perfil U de acero - UPN

IRAM-IAS U 500-509-4 - Perfil U de acero - C

IRAM-IAS U 500-509-4 – Perfil U de acero – MC

IRAM-IAS U 500-558 – Perfil ángulo de acero de alas iguales.

IRAM-IAS U 500-561 — Perfil T de acero.

IRAM-IAS U 500-218 / U 500-2592 — Tubos de acero — Sección Circular.

IRAM-IAS U 500-218 / U 500-2592 — Tubos de acero — Sección Cuadrada.

IRAM-IAS U 500-218 / U 500-2592 — Tubos de acero — Sección Rectangular.

IPN según IRAM-IAS U 500-511

Ag = Área bruta de la sección transversal. I = Momento de Inercia de la sección. respecto de los ejes principales.

Radio de giro .

8 = Módulo resistente elástico de la sección.

Q = Momento estático de media sección.

Z = Módulo plástico de la sección.

Distancia

J. - Módulo de torsión.

Cw = Módulo de alabeo.

X₁, X₂ = Factores de pandeo.

Lo - Longitud lateralmente no amostrada limite para desarrollar la capacidad de plastificación total por flexión.

L_c = Longitud lateralmente no arriostrada limite para pandeo lateral torsional inelástico.

Acero F-24

1	000	Dimensiones Relacio							lones	Ag	Peso	X-X				Y-Y						el Ala		agujero al borde			Cw	X,	X ₂ (10)**	Carga Alma		Cargo Ala Su		
9	5	d	н		hw	bwr _i	r _a	25	hw			lx .	Sx	rx.	Qx	Zx	ly	Sy	Ŋ	Qy	1,5.5y	Zy	W.	di	WL	tı					Lp	L,	L,	L,
	å	mm	mm	mm	mm	mm	mm	28	bw	cm ²	Kg/m	cm*	cm ³	cm	cm³	cm ³	cm ⁴	cm ³	cm	cm ²	cm ³	cm ³	шш	m	mm	mm	cm ⁴	cm*	MPa	MPs ^d	cm	cm /	cm c	cm
1	i		•	•		•	1	•		î	i		•		•	i	•	•	•			i	•	i	i		 	İ	i	i	•			
I								1		I	l	l											I		l	1	1	I	l		1			1
	380	380	149	20,5	308	13,7	8,2	3,63	22,3	107	84,0	24010	1260	15,0	741	1482	975	131	3,02	109,8	195,4	219,6	82	23	33,5	15,29	115	318700	24252	2,65	155	672	140	565
	400	400	155	21,6	323	14,4	8,6	3,59	22,4	118	92,4	29210	1480	15,7	867	1714	1160	149	3,13	125,5	223,5	251,0	86	23	34,5	16,18	140	419800	24270	2,65	161	606	145	588
	425	425	163	23,0	343	15,3	9,2	3,54	22,4	132	104	36970	1740	16,7	1020	2040	1440	176	3,30	148,1	284,0	298,2	88	25	37,5	17,30	177	587500	24280	2,63	170	734	153	618

EL CASO QUE TRATA EL EJERCICIO PRODUCE UNA CURVATURA INVERSA A LA QUE INDICA LA FIGURA POR LO TANTO, LAS FIBRAS SUPERIRORES SE ALARGAN Y LAS INFERIORES SE ACORTAN

IPN 400 =>

Ix = 29210 cm4 (Momento de Inercia con respecto al eje X)

Wx = 1460 cm 3 > 1333 cm 3 (Modulo Resistente Elástico)

Q = 857 (Momento Estático de mediana sección)

VARIACION DE LAS TENSIONES NORMALES DEBIDAS A FLEXION A LO LARGO DE LA ALTURA DE LA SECCION:

$$\sigma_I = \frac{M}{In} y$$

<u>Tensiones en la Fibra (1)</u> => y = 200 mm = 20 cm (Para momentos negativos la Fibra 1, se alarga)

$$\sigma_1 = -\frac{20000 \ KNcm}{29210 \ cm4} * 20 \ cm = 13.69 \ \frac{KN}{cm2}$$

Tensiones en la Fibra $(2) \Rightarrow y = (200-21.6) = 178.40 \text{ mm} = 17.84 \text{ cm}$ (Para momentos negativos la Fibra 2, se alarga)

$$\sigma_2 = -\frac{20000 \ KNcm}{29210 \ cm4} * 17.84 \ cm = 12.22 \ \frac{KN}{cm2}$$

<u>Tensiones en la Fibra (3)</u> => y = 0 cm (Eje neutro de la sección => las fibras no se alargan ni se acortan)

$$\sigma_3 = 0$$

<u>Tensiones en la Fibra (4)</u> => y = (200-21.6) = 178.40 mm = 17.84 cm (Para momentos negativos la Fibra 4, se comprime)

$$\sigma_4 = \frac{20000 \ KNcm}{29210 \ cm4} * 17.84 \ cm = -12.22 \ \frac{KN}{cm2}$$

<u>Tensiones en la Fibra (5)</u> => y = 200 mm = 20 cm (Para momentos positivos la Fibra 5, se comprime)

$$\sigma_5 = \frac{20000 \ KNcm}{29210 \ cm4} * 20 \ cm = 13.69 \ \frac{KN}{cm2}$$

VARIACION DE LAS TENSIONES TANGENCIALES DEBIDAS A CORTE A LO LARGO DE LA ALTURA DE LA SECCION:

$$\tau_{x} = \frac{Q Sn}{In b}$$

Tensiones Tangenciales en la Fibra (1) y (5) => $\tau_1 = \tau_5 = 0$

Tensiones Tangenciales en la Fibra (2), pero perteneciente al ala:

Momento Estático de la sección por encima de la Fibra (2) con respecto el eje neutro:

$$S_n = (15.5cm * 2.16cm) * \left(20 - \frac{2.16}{2}\right) = 633.44 cm3$$

$$\tau_{2(ala)} = \frac{115KN * 633.34 cm3}{29210cm4 * 15.5cm} = 0.16 KN/cm2$$

Tensiones Tangenciales en la Fibra (2), pero perteneciente al alma:

$$\tau_{2(alma)} = \frac{115KN * 633.34 cm3}{29210cm4 * 1.44cm} = 1.73 KN/cm2$$

Tensiones Tangenciales en la Fibra (3):

$$\tau_{3(alma)} = \frac{115KN * 857 cm3}{29210cm4 * 1.44cm} = 2.34 KN/cm2$$

VARIACION DE LAS TENSIONES NORMALES DEBIDAS A FLEXION Y DE LAS TENSIONES TANGENCIALES A LO LARGO DE LA ALTURA DE LA SECCION:

VARIACION DE LAS TENSIONES NORMALES DEBIDAS A FLEXION Y DE LAS TENSIONES TANGENCIALES A LO LARGO DE LA ALTURA DE LA SECCION:

VERIFICACION DE LAS TENSIONES EN LA FIBRA (4): =>

$$\sigma_4 = -12.22 \frac{KN}{cm^2} - \tau_4 = 1.73 \ KN/cm^2$$

$$\sigma_{min}^{m\acute{a}x} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tau_{m\acute{a}x} = \pm \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

$$\sigma_{max-min} = \frac{-12.22}{2} \pm \sqrt{\left(\frac{12.22}{2}\right)^2 + 1.73^2} = -6.11 \pm 6.35 \Rightarrow \sigma_{max} = -12.46 \frac{KN}{cm2} < 15 \frac{KN}{cm2}$$

$$\sigma_{min} = 0.24 \ KN/cm2$$

$$\tau_{max-min} = \pm \sqrt{\left(\frac{12.22}{2}\right)^2 + 1.73^2 = \pm 6.35} \Rightarrow \tau_{max} = 6.35 \frac{KN}{cm2} - \sigma_{min} = -6.35 \frac{KN}{cm2} < 8.25 KN/cm2$$

VARIACION DE LAS TENSIONES NORMALES DEBIDAS A FLEXION Y DE LAS TENSIONES TANGENCIALES A LO LARGO DE LA ALTURA DE LA SECCION:

Estado de tensiones en el cubo elemental a la altura de la Fibra (4) y Circulo de Mohr:

Estado de tensiones principales en el cubo elemental a la altura de la Fibra (4) y Circulo de Mohr:

EL GRUPO DE TRABAJO DEBERA COMPLETAR LOS EJERCICIOS DEL TP9

