10 класс. РЕШЕНИЕ задач

1. Доказать, что при абсолютно упругом столкновении двух шариков одинаковой массы, если это столкновение не является лобовым, угол между направлениями скоростей шариков после столкновения составляет 90° .

Решение:

Закон сохранения импульса: $m\vec{v} = m\vec{v}_1' + m\vec{v}_2';$ $mv^2 = mv_1'^2 + mv_2'^2;$ $mv^2 = mv_1'^2 + mv_2'^2;$ Возведём в квадрат: $v^2 = v_1'^2 + v_2'^2.$ (2)

 $v^{2} = v_{1}^{\prime 2} + 2\vec{v}_{1}^{\prime} \vec{v}_{2}^{\prime} + v_{2}^{\prime 2}. \quad (1)$

Из (1) и (2) следует, что $\vec{v}_1'\vec{v}_2' = 0$. Скалярное произведение двух (ненулевых) векторов равно нулю в том случае, когда угол между этими векторами равен 90°.

2. Какую минимальную скорость на горизонтальном участке дороги должен иметь полноприводный автомобиль с равным распределением нагрузки по осям, чтобы преодолеть подъём длиной l=50 метров? Угол наклона дороги на подъёме относительно горизонта составляет $\alpha=15^{\circ}$, нагрузка на колесо m=300 кг, крутящий момент на нём $M=90~{\rm H\cdot M}$, коэффициент трения шин о дорогу $\mu=0,2$.

Решение:

Так как все колеса автомобиля ведущие и распределение нагрузки на них равное, то можем рассмотреть задачу для одного колеса.

Сумма кинетической энергии перед въездом на подъём и работы силы трения при движении на подъёме равна приросту потенциальной энергии поднятия на высоту подъёма.

$$\begin{split} \frac{mv_0^2}{2} + F_{TP}l &= mgh; \\ \frac{mv_0^2}{2} &= mgl\sin\alpha - \mu mgl\cos\alpha; \\ v_0^2 &= 2gl(\sin\alpha - \mu\cos\alpha); \\ v_0 &= \sqrt{2 \cdot 9.8 \cdot 50 \cdot 0.0656} \approx \sqrt{64.288} \approx 8.01 \, (\text{M/c}) \end{split}$$
 (sin $\alpha - \mu\cos\alpha$) ≈ 0.0656 ;

3. В теплоизолированном сосуде при температуре T находятся N молекул одноатомного газа A и n молекул двухатомного газа B_2 (N>n/2). Между веществами происходит химическая экзотермическая реакция $A+2B_2 \rightarrow AB_4+q$ (q - выделяемая в единичном акте реакции теплота). Когда химическая реакция закончилась, давление в сосуде оказалось равным начальному. Определите q.

Решение:

Давление смеси идеальных газов определяется суммой парциальных давлений входящих в смесь газов. Энергия смеси идеальных газов определяется суммой энергий составляющих смеси.

Давление смеси вначале равно $P_0 = \frac{(N+n)kT}{V}$, где V - объём сосуда, $\frac{(N+n)}{V}$ - суммарная концентрация всех газов вначале.

По окончании реакции в системе осталось $N-\frac{n}{2}$ молекул газа A, а все n молекул газа B_2 прореагировали и образовалось $\frac{n}{2}$ молекул газа AB_4 . Суммарная концентрация всех газов стала равна $\frac{N}{V}$, а давление смеси $P^* = \frac{NkT^*}{V}$, где T^* - установившаяся температура.

Приравнивая давления вначале и в конце, получим $T^* = \frac{N+n}{N}T$.

Теперь рассмотрим баланс энергий. Вначале энергия одноатомного газа A была равна $\frac{3}{2}NkT$, а энергия двухатомного газа B_2 была равна $\frac{5}{2}nkT$. По окончании реакции энергия газа A_1 уменьшилась и стала равна $\frac{3}{2}\bigg(N-\frac{n}{2}\bigg)kT^*$, а энергия многоатомного газа AB_4 стала равна $3\bigg(\frac{n}{2}\bigg)kT^*$. Дополнительно в системе выделилось тепло $q\frac{n}{2}$, так как имело место $\frac{n}{2}$ актов реакции. Итого, баланс тепла имеет вид:

$$\frac{3}{2}NkT + \frac{5}{2}nkT + q\frac{n}{2} = \frac{3}{2}\left(N - \frac{n}{2}\right)kT^* + \frac{3}{2}nkT^*.$$

Подставляя сюда T^* и выражая q, получим ответ:

$$q = kT \frac{3n - N}{2N}.$$

4. Ящик в форме куба перемещают на некоторое расстояние L один раз волоком, а другой – кантованием (т. е. опрокидыванием через ребро). Коэффициент трения ящика о пол при скольжении равен μ ; трением при кантовании можно пренебречь. При каком значении μ работы при перемещении волоком и кантованием одинаковы?

Решение:

При волочении работа равна $A_1=mg\mu L$, где m - масса ящика. При кантовании ящик приходится опрокидывать $n=\frac{L}{a}$ раз (a - ребро ящика). Работа при одном опрокидывании равна разности потенциальных энергий ящика в положении неустойчивого равновесия (на ребре) и исходном положении: $mga\bigg(\frac{1}{\sqrt{2}}-\frac{1}{2}\bigg)=0,207mga$. При n опрокидываниях работа равна $A_2=0,207mgL$. Тогда, $A_1=A_2$ при $\mu=0,207$.

5. Два точечных тела составляют замкнутую систему, центр масс которой покоится. Отношение масс тел $\frac{m_1}{m_2}=2$. На рисунке показаны положения обоих тел в некоторый момент времени и траектория тела массой m_1 , являющаяся плоской кривой. Постройте по точкам траекторию тела массой m_2 .

Решение:

Графически находим центр масс. Проводим отрезок, соединяющий m_1 и m_2 . Делим его в соотношении 2:1, короткая часть со стороны тела с большей массой (m_1).

После этого проводим прямую, проходящую через точку центра масс и пересекающую траекторию тела массой m_1 . Находим длину отрезка между точкой пересечения прямой с траекторией и точкой центра масс. Вдоль прямой от точки центра масс, в другую сторону откладываем отрезок удвоенной длины. Таким образом, получаем точку, принадлежащую траектории тела массой m_2 . Повторяем процедуру и находим ещё насколько точек искомой траектории.