Введение в глубокое обучение. Часть 1

Богданов Александр

ИСП РАН

15 мая 2025

Богданов Александр

Лекция 12

Чат-боты

Пример: https://chatgpt.com

2/29

Генерация изображений

Figure: Бегемот в пальто

Пример: https://shedevrum.ai

 Богданов Александр
 Лекция 12
 15 мая 2025
 3 / 29

Наложение стиля

Пример: https://junyanz.github.io/CycleGAN/

Богданов Александр Лекция 12 15 мая 2025 4 / 29

15 мая 2025

5 / 29

Детекция объектов

Богданов Александр

Пример: https://viso.ai/deep-learning/object-detection/

Лекция 12

6 / 29

Обработка звука

Пример: https://fjiang9.github.io/NKF-AEC/

4 L P 4 B P 4 E P 4 E P 2 E *) Y (*)

Игры

Пример: https://www.youtube.com/watch?v=sMHr0H15Ubg https://ale.farama.org/environments/

 Богданов Александр
 Лекция 12
 15 мая 2025
 7 / 29

Самоуправляемые автомобили

Пример: https://www.youtube.com/shorts/Q0r5YJJTj8w

Нейронная сеть — это сложная дифференцируемая функция, задающая отображение из исходного признакового пространства в пространство ответов.

Нейросети были придуманы еще в 1970 годах, но их развитие началось примерно с 2012 года.

9 / 29

Причины возникновения нейронных сетей

Введение 000

Причины возникновения нейронных сетей

 Стремление к переходу от построения сложных пайплайнов, каждая компонента которых тренируется сама по себе решать кусочек задачи, к end-to-end обучению всей системы, как одного целого.

10 / 29

Причины возникновения нейронных сетей

- Стремление к переходу от построения сложных пайплайнов, каждая компонента которых тренируется сама по себе решать кусочек задачи, к end-to-end обучению всей системы, как одного целого.
- Автоматизация процесса отбора признаков.

10 / 29

Различие пайплайнов

Классический

Нейросетевой

Богданов Александр Лекция 12 15 мая 2025 11/29

Математическая модель нейрона

$$a(x, w) = \sigma(\langle x, w \rangle) = \sigma\left(\sum_{i=1}^{n} w_i f_i(x) - w_0\right)$$

- $\sigma(z)$ функция активации (нелинейная);
- w_i весовые коэффициенты синаптических связей;
- w₀ порог активации;
- $f_i(x) \equiv x_i$ обобщение.

Богданов Александр Лекция 12 15 мая 2025 12 / 29

Модель логистической регрессия

$$a(x, w) = \sigma(\langle x, w \rangle) = \frac{1}{1 + e^{-\langle x, w \rangle}}$$

Богданов Александр Лекция 12 <u>15 мая 2025</u> 13/29

Линейный слой

Линейный слой — линейное преобразование над входящими данными. Его обучаемые параметры — это матрица W и вектор b:

$$x \to Wx + b$$
, $W \in \mathbb{R}^{k \times d}$, $x \in \mathbb{R}^d$, $b \in \mathbb{R}^k$.

Полносвязанная нейронная сеть

Богданов Александр Лекция 12

Функции активации

Функция активации — нелинейное преобразование, поэлементно применяющееся к пришедшим на вход данным. Благодаря функциям активации нейронные сети способны порождать более информативные признаковые описания, преобразуя данные нелинейным образом.

Функции активации

 Богданов Александр
 Лекция 12
 15 мая 2025
 17/29

15 мая 2025

18 / 29

Теорема Цыбенко

Богданов Александр

Теорема

Если $\sigma(z)$ — сигмоида, тогда для любой непрерывной на $[0,1]^n$ функции f(x) существуют такие значения параметров H, $\alpha_h \in \mathbb{R}$, $w_h \in \mathbb{R}^n$, $w_0 \in \mathbb{R}$, что двухслойная сеть

$$a(x) = \sum_{h=1}^{H} \alpha_h \sigma(\langle x, w_h \rangle - w_0)$$

равномерно приближает f(x) с любой точностью ε :

$$|a(x) - f(x)| < \varepsilon$$
, для всех $x \in [0, 1]^n$.

Лекция 12

4 □ > 4 ② > 4 ③ > 4 ③ > 4 ③ > 4 ② > 6 ②

• Подготовить данные;

- Подготовить данные;
- Загрузить данные в Dataloader;

- Подготовить данные;
- Загрузить данные в Dataloader;
- Подготовить модель;

- Подготовить данные;
- Загрузить данные в Dataloader;
- Подготовить модель;
- Выбрать подходящий loss;

- Подготовить данные;
- Загрузить данные в Dataloader;
- Подготовить модель;
- Выбрать подходящий loss;
- На каждой итерации делается backpropogation;

- Подготовить данные;
- Загрузить данные в Dataloader;
- Подготовить модель;
- Выбрать подходящий loss;
- На каждой итерации делается backpropogation;
- На каждом шаге делается шаг оптимизатора;

С помощью нейронных сетей мы решили проблему с выделением признаков. Но осталась проблема, которая мешает ускорению развития нейронных сетей, какая?

lанные

С помощью нейронных сетей мы решили проблему с выделением признаков. Но осталась проблема, которая мешает ускорению развития нейронных сетей, какая?

Очень скромное количество размеченных данных. При этом большинство больших датасетов закрытые, а владеют ими большие компании.

Как размечают данные большие компании?

Как размечают данные большие компании? Капчи

ПОДТВЕРДИТЬ

Как можно искуственно увеличивать количество данных?

Как можно искуственно увеличивать количество данных? Аугментации.

Лекция 12 Богданов Александр 15 мая 2025 22 / 29

Dataloader — компонент, подающий данные в модель во время обучения. Что он позволяет?

23 / 29

Dataloader — компонент, подающий данные в модель во время обучения. Что он позволяет?

- Перемешивать данные;
- Указывать число потоков;
- Изменять размер батча;

Dataloader — компонент, подающий данные в модель во время обучения. Что он позволяет?

- Перемешивать данные;
- Указывать число потоков;
- Изменять размер батча;

Для чего нужно разбиение данных на батчи?

Dataloader — компонент, подающий данные в модель во время обучения. Что он позволяет?

- Перемешивать данные;
- Указывать число потоков;
- Изменять размер батча;

Для чего нужно разбиение данных на батчи?

- Ускоряет обучение за счет векторизации;
- Стабилизирует обновление градиентов.

Модель

Модель — конструктор, который собирается из слоев. Например, AlexNet:

Богданов Александр Лекция 12 15 мая 2025 24 / 29

Loss

Классификация (Cross-entropy):

$$\mathcal{L}_{ce}(y, \hat{y}) = -\sum_{i=1}^{n} y_i \log \hat{y}_i.$$

Регрессия (MSE):

$$\mathcal{L}_{\mathsf{mse}}(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

Backpropogation

Оптимизатор

Алгоритм 1 Adam

Вход: шаг $D_i>0$, параметры сглаживания $\beta_1=0.9$ и $\beta_2=0.99$, стартовая точка $x^0\in\mathbb{R}^d$, сглаженная сумма квадратов градиентов $G_i^{-1}=0$, сглаженная сумма градиентов $v^{-1}=0$, параметр сглаживания $\varepsilon=1$ e-8, количество итераций K

- 1: for $k = 0, 1, \dots, K 1$ do
- 2: Вычислить $g^k \in \partial f(x^k)$
- 3: Вычислить $v^k = \beta_1 v^{k-1} + (1 \beta_1) g^k$
- 4: Вычислить $\hat{v}^k = v^k / (1 \beta_1^{k+1})$
- 5: Для каждой координаты: $G_i^k = \beta_2 G_i^{k-1} + (1-\beta_2)(g_i^k)^2$
- 6: Вычислить $\hat{G}^k = G^k / (1 \beta_2^{k+1})$
- 7: Для каждой координаты: $x_i^{k+1} = x_i^k \frac{D_i}{\sqrt{\hat{G}^k + \varepsilon}} \hat{v}_i^k$
- 8: end for

Выход:
$$\frac{1}{K} \sum_{k=0}^{K} x^k$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Инференс

Есть ли отличие между состоянием модели во время обучения и во время инференса?

Есть ли отличие между состоянием модели во время обучения и во время инференса?

Да, есть. Мы хотим, чтобы некоторые слои работали по-разному в разных режимах. Но об этом уже в следующей лекции . . .

Спасибо за внимание!