AP CALCULUS AB/BC MULTIPLE CHOICE QUESTIONS

1.

If $f(x) = \frac{x^2 - 9}{x + 3}$ is continuous at x = -3, then f(-3) =

- A. -3
- B. 3
- **C.** 0
- D. 6
- Е. -6

2.

If f(x) = 2 + |x-4|, then f'(4) =

- A. 2
- B. 1
- C. -1
- D. 4
- E. Nonexistent

3.

For what values of x is the graph of $f(x) = \frac{3}{2-x}$ concave downward?

- A. No values of x.
- B. x < 2
- C. x > 2
- D. x < -2
- E. x > -2

The shortest distance from the curve $y = \frac{4}{x}$ to the origin is:

- A. 2
- B. 4
- C. $\sqrt{2}$
- D. $2\sqrt{2}$
- E. $\sqrt{2}/2$

5.

If $f(x) = (1+2x)^5$, then the fourth derivative of f(x) is:

- A. $5*2^5$
- B. 0
- C. $5!*2^4(1+2x)$
- D. 5!(2)
- E. 5!(1+2x)

6.

If x + y = xy, then $\frac{dy}{dx} =$

- A. $\frac{1}{x-1}$
- $B. \ \frac{1-y}{x-1}$
- C. $\frac{2-x}{y}$
- D. x + y 1
- $E. \frac{y-1}{x-1}$

The average value of $f(x) = \cos x$ on $[0, \frac{\pi}{2}]$ is:

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{2}$
- C. 1
- D. $\frac{3\pi}{2}$
- E. $\frac{2}{\pi}$

8.

What is the 50^{th} derivative of $\cos x$?

- A. $-\cos x$
- B. $\cos x$
- C. $\sin x$
- D. $-\sin x$
- E. 0

9.

 $\lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$ at the point x = 2 is:

- A. 64
- B. 32
- C. 16
- D. 4
- E. 0

What is the domain of $f(x) = \ln \sqrt{\frac{x+3}{x-5}}$?

- A. x < -3
- B. $x \neq 4$
- C. x > 5
- D. -3 < x < 5
- E. x < -3 or x > 5

11.

 $\lim_{x\to 3} \frac{x-3}{3-x}$ is:

- A. -1
- B. 0
- C. 1
- D. 3
- E. Nonexistent

12.

A function whose derivative is a constant multiple of itself must be:

- A. Quadratic
- B. Linear
- C. Logarithmic
- D. Exponential
- E. Periodic

If f'(x) > 0 and f''(x) > 0 for all x, which statement is true about g, the inverse function of f?

- A. g is not a function
- B. g is increasing and concave up everywhere
- C. g is decreasing and concave down everywhere
- D. g is increasing and concave down everywhere
- E. g is decreasing and concave up everywhere

14.

If x+7y=29 is the equation of the line normal to the graph of f at the point (1,4), then f'(1) =

- A. 7
- B. $\frac{1}{7}$
- C. $\frac{-1}{7}$
- D. $\frac{-7}{29}$
- E. –7

15.

A particle travels in a straight line with a constant acceleration of $3m/s^2$. If the velocity of the particle is 10 m/s at time 2 seconds, how far does the particle travel during the time interval when its velocity increases from 4 m/s to 10 m/s?

- A. 20 m
- B. 14 m
- C. 7 m
- D. 6 m
- E. 3 m

A polynomial p(x) has a relative maximum at (-2, 4), a relative minimum at (1, 4)1), a relative maximum at (5, 7), and no other critical points. How many real zeros does p(x) have?

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

17.

The average value of $\frac{1}{r}$ on [1,3] is:

- A. $\frac{1}{2}$
- B. $\frac{2}{3}$
- C. $\frac{\ln 2}{2}$
- D. $\frac{\ln 3}{2}$
- E. ln 3

18.

If c is the number that satisfies the Mean Value Theorem for $f(x) = x^3 - 2x^2$ on [0, 2], then c =

- A. 0
- B. $\frac{1}{2}$
- C. 1
- D. $\frac{4}{3}$
- E. 2

The base of a solid is the region in the first quadrant enclosed by the parabola $y = 4x^2$, the line x = 1, and the x - axis. Each plane section of the solid perpendicular to the x-axis is a square. The volume of the solid is:

- A. $\frac{4\pi}{3}$
- B. $\frac{16\pi}{5}$
- C. $\frac{4}{3}$
- D. $\frac{16}{5}$
- E. $\frac{64}{5}$

20.

If the graph of $y = x^3 + ax^2 + bx - 4$ has a point of inflection at (1,-6), what is the value of b?

- A. -3
- B. 0
- C. 1
- D. 3
- E. It cannot be determined.

The region R in the first quadrant is enclosed by the lines x = 0, y = 5, and the graph of $y = x^2 + 1$. The volume of the solid generated when R is revolved about the y-axis is:

- A. 6π
- B. 8π
- C. $\frac{32\pi}{3}$
- D. 16π
- E. $\frac{544\pi}{15}$

22.

If $f(x) = e^x$, then $\ln[f'(2)] =$

- A. 2
- B. 0
- C. $\frac{1}{e^2}$
- D. 2*e*
- E. e^2

23.

If $y^2 - 2xy = 16$, then $\frac{dy}{dx} =$

- A. $\frac{x}{y-x}$
- B. $\frac{y}{x-y}$
- C. $\frac{y}{y-x}$
- D. $\frac{y}{2y-x}$
- E. $\frac{2y}{x-y}$

$$\lim_{h\to 0}\frac{\sin(x+h)-\sin x}{h}=$$

- A. 1
- B. $\sin x$
- $C. \cos x$
- D. 0
- E. Nonexistent

25.

Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles in three hours, in how many hours will the number of bacteria triple?

- A. $\frac{3\ln 3}{\ln 2}$
- B. $\frac{2\ln 3}{}$
- C. $\frac{\ln 3}{\ln 2}$
- D. $\ln\left(\frac{27}{2}\right)$
- E. $ln\left(\frac{9}{2}\right)$

The area of the region in the first quadrant enclosed by the graph of y = x(1-x)and the x-axis is:

- B. $\frac{2}{3}$
- D. $\frac{5}{6}$
- E. 1

27.

A person 2 meters tall walks directly away from a streetlight that is 8 meters above the ground. If the person is walking at a constant rate and the person's shadow is lengthening at a rate of $\frac{4}{9}$ meters per second, at what rate, in meters per second, is the person walking?

- A. $\frac{4}{27}$

- D. $\frac{4}{3}$
- E. $\frac{16}{9}$

If
$$\frac{dy}{dx} = y \sec^2 x$$
 and $y = 5$ when $x = 0$, then $y =$

- A. $e^{\tan x} + 4$
- B. $e^{\tan x} + 5$
- C. $\tan x + 5$
- D. $\tan x + 5e^x$
- E. $5e^{\tan x}$

29.

Let f and g be differentiable functions. If g is the inverse function of f, and if

$$g(-2) = 5$$
 and $f'(5) = -\frac{1}{2}$, then $g'(-2) =$

- A. 2
- B. $\frac{1}{2}$
- C. $\frac{1}{5}$
- D. $-\frac{1}{5}$
- E. –2

If
$$\int_{1}^{4} f(x) dx = 6$$
, then $\int_{1}^{4} f(5-x) dx =$

- A. 6
- B. 3
- C. 0
- D. -1
- E. -6

$$\int_{0}^{1} x(x^2+2)^2 dx =$$

- A. $\frac{19}{2}$
- B. $\frac{19}{3}$
- C. $\frac{9}{2}$
- D. $\frac{19}{6}$
- E. $\frac{1}{6}$

32.

If
$$F(x) = \int_{1}^{x^{2}} \sqrt{1+t^{3}} dt$$
, then $F'(x) =$

- A. $2x\sqrt{1+x^3}$
- B. $2x\sqrt{1+x^6}$
- C. $\sqrt{1+x^6}$
- D. $\sqrt{1+x^3}$
- E. $\int_{1}^{x^2} \frac{3t^2}{2\sqrt{1+t^3}} dt$

If
$$f(x) = \ln(\sqrt{x})$$
, then $f''(x) =$

- A. $-\frac{2}{r^2}$
- B. $-\frac{1}{2x^2}$
- C. $-\frac{1}{2x}$
- D. $-\frac{1}{2x^{\frac{3}{2}}}$
- E. $\frac{2}{x^2}$

Let
$$f(x) = \begin{cases} \sin x & x < 0 \\ x^2 & 0 \le x < 1 \\ 2 - x & 1 \le x < 2 \end{cases}$$
.

For what values of x is f(x) discontinuous?

$$\left| \frac{d}{dx} \ln \left| \cos \left(\frac{\pi}{x} \right) \right| =$$

A.
$$\frac{-\pi}{x^2 \cos\left(\frac{\pi}{x}\right)}$$

B.
$$-\tan\left(\frac{\pi}{x}\right)$$

C.
$$\frac{\pi}{x} \tan \left(\frac{\pi}{x} \right)$$

D.
$$\frac{\pi}{x^2} \tan\left(\frac{\pi}{x}\right)$$

$$E. \frac{1}{\cos\left(\frac{\pi}{x}\right)}$$

Let R be the region between the graphs of y = 1 and $y = \sin x$ from x = 0 to $x = \frac{\pi}{2}$. The volume of the solid obtained by revolving R about the x-axis is given by:

given by:

A.
$$2\pi \int_{0}^{\frac{\pi}{2}} x \sin x \, dx$$

$$B. \ 2\pi \int_{0}^{\frac{\pi}{2}} x \cos x \, dx$$

C.
$$\pi \int_{0}^{\frac{\pi}{2}} (1 - \sin x)^{2} dx$$
D. $\pi \int_{0}^{\frac{\pi}{2}} \sin^{2} x dx$

$$D. \ \pi \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx$$

$$E. \quad \pi \int_{0}^{\frac{\pi}{2}} \left(1 - \sin^2 x\right) dx$$

37.

What is the 30^{th} derivative of $y = \cos(3x)$?

A.
$$-3^{30}\cos(3x)$$

B.
$$3^{30}\cos(3x)$$

C.
$$-3^{29}\sin(3x)$$

D.
$$2^{30} \sin(3x)$$

E.
$$2^{31} \sin(3x)$$

If
$$y = (3x^3 + 2)^4$$
, then $\frac{dy}{dx} =$

- A. $81x^4$
- B. $4(3x^3+2)^3$
- C. $4x^2(3x^3+2)^3$
- D. $36x(3x^3+2)^3$
- E. $36x^2(3x^3+2)^3$

39.

If f'(x) = (x-1)(x+2)(3-x), which of the following is **not** true about f(x)?

- A. f(x) has a horizontal tangent at x=1
- B. f(x) is a polynomial of degree 4
- C. f(x) has a relative maximum at x = 3
- D. f(x) is decreasing on the interval (-2,1)
- E. f(x) is concave up on the interval (-2,1)

40.

At the point of intersection of $y = \sin\left(x + \frac{\pi}{2}\right)$ and $y = 1 - \frac{x^2}{2}$, the tangent lines

are:

- A. Identical
- B. Parallel
- C. Perpendicular
- D. Intersecting, but not perpendicular
- E. None of the above.

The graph of an even function passing through (3,-2) must also contain:

- A. (-3, -2)
- B. (-3,2)
- C. (3,2)
- D. (2,3)
- E. (0,0)

42.

$$\lim_{x \to 0} \frac{\cos\left(\frac{\pi}{2} + x\right) - \cos\left(\frac{\pi}{2} - x\right)}{x} =$$

- A. 1
- B. –2
- C. -1
- D. 0
- E. 2

$$\int 5^{2x} dx =$$

A.
$$\frac{5^{2x}}{\ln 5} + C$$

$$B. \ \frac{5^{2x}}{2\ln 5} + C$$

C.
$$\frac{5^{2x+1}}{2x+1} + C$$

D.
$$\frac{5^{2x}}{2} + C$$

E.
$$(\ln 5)5^{2x} + C$$

Let
$$f(x) = \begin{cases} \frac{25 - x^2}{5 - x} & x \neq 5 \\ 5 & x = 5 \end{cases}$$
. Which of the following is correct?

- A. f(x) is continuous at 5, since f(x) is defined at x = 5
- B. f(x) is continuous at 5, since $\lim_{x\to 5} f(x)$ exists
- C. f(x) is discontinuous at 5, since f(5) does not exist
- D. f(x) is discontinuous at 5, since $\lim_{x\to 5} f(x)$ does not exist
- E. f(x) is discontinuous at 5, since $\lim_{x\to 5} f(x) \neq f(5)$

45.

If
$$y = \ln(2x+3)$$
, then $\frac{d^2y}{dx^2} =$

A.
$$\frac{2}{2x+3}$$

B.
$$\frac{2}{(2x+3)^2}$$

C.
$$\frac{4}{(2x+3)^2}$$

D.
$$\frac{-4}{(2x+3)^2}$$

E.
$$\frac{-2}{(2x+3)^2}$$

$$\lim_{h \to 0} \frac{5^{2+h} - 25}{h} =$$

- A. 0
- B. 1
- C. 25
- D. 25ln5
- E. $25e^5$

Which of the following is symmetric with respect to the origin?

- A. $f(x) = \cos x$
- B. $f(x) = \sin x$
- C. $f(x) = x^3 2$
- D. f(x) = |x|
- E. $f(x) = 2^x$

48.

If $f(x) = \frac{\cos^2 x}{1-\sin x}$, then f'(x) =

- A. $\cos x$
- B. $\sin x$
- C. $-\sin x$
- D. $2\sin x$
- E. $-\cos x$

49.

If f is continuous on [a,b], which of the following is **not** necessarily true?

- f has a maximum on [a,b]I.
- II. f has a minimum on [a,b]
- f'(c) = 0 for some c between a and b III.
- A. I only
- B. II only
- C. III only
- D. I and II only
- E. I, II, and III

If $f(x) = 10^{2x}$ and g(x) is the inverse function of f, then $f(g(\log 2)) =$

- A. 0.5 log 2
- B. log 2
- C. 2
- D. 4
- E. 0.25

51.

The slope of the tangent to the curve $y^3x + y^2x^2 = 6$ at (2, 1) is:

- A. $\frac{-3}{2}$
- B. -1
- C. $\frac{-5}{14}$
- D. $\frac{-3}{14}$
- E. 0

52.

If $f(x) = \sin^2(3-x)$, then f'(0) =

- A. $-2\cos 3$
- B. -2sin3cos3
- C. 6cos 3
- D. 2sin3cos3
- E. 6sin3cos3

The solution to the differential equation $\frac{dy}{dx} = \frac{x^3}{y^2}$, where y(2) = 3, is:

A.
$$y = \sqrt[3]{\frac{3}{4}x^4}$$

B.
$$y = \sqrt[3]{\frac{3}{4}x^4} + \sqrt[3]{15}$$

C.
$$y = \sqrt[3]{\frac{3}{4}x^4} + 15$$

D.
$$y = \sqrt[3]{\frac{3}{4}x^4 + 5}$$

E.
$$y = \sqrt[3]{\frac{3}{4}x^4 + 15}$$

$$\int (x-1)\sqrt{x} \ dx =$$

A.
$$\frac{3}{2}\sqrt{x} - \frac{1}{\sqrt{x}} + C$$

B.
$$\frac{2}{3}x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{1}{2}} + C$$

C.
$$\frac{2}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} + C$$

D.
$$\frac{1}{2}x^2 + 2x^{\frac{3}{2}} - x + C$$

E.
$$\frac{1}{2}x^2 - x + C$$

What is
$$\lim_{x\to\infty} \frac{x^2-4}{2+x-4x^2}$$
?

- A. –2
- В. -0.25
- C. 0.5
- D. 1
- E. DNE (Does Not Exist)

56.

If r is positive and increasing, for what value of r is the rate of increase of r^3 twelve times that of r?

- A. $\sqrt[3]{4}$
- B. 2
- C. 6
- D. $2\sqrt{3}$
- E. ³√12

57.

The average value of the function $f(x) = e^{-x^2}$ on the interval [-1,1]is:

- A. 0
- B. 0.368
- C. 0.747
- D. 1
- E. 1.494

The area of the region in the first quadrant between the graph of $y = x\sqrt{4-x^2}$ and the x-axis is:

- A. $\frac{2}{3}\sqrt{2}$
- B. $\frac{8}{3}$
- C. $2\sqrt{2}$
- D. $2\sqrt{3}$
- E. $\frac{16}{3}$

59.

If $\frac{dy}{dx} = y \cos x$ and y = 3 when x = 0, then y =

- A. $e^{\sin x} + 2$
- B. $e^{\sin x} + 3$
- C. $3e^{\sin x}$
- D. $\sin x + 3$
- E. $\sin x + 3e^x$

60.

The third-degree Taylor polynomial about x = 0 of $\ln(1-x)$ is:

- A. $-x \frac{x^2}{2} \frac{x^3}{3}$
- B. $1-x+\frac{x^2}{2}$
- C. $x \frac{x^2}{2} + \frac{x^3}{3}$
- D. $-1+x-\frac{x^2}{2}$
- E. $-x + \frac{x^2}{2} \frac{x^3}{3}$

The line perpendicular to the tangent of the curve represented by the equation $y = x^2 + 6x + 4$ at the point (-2, -4) also intersects the curve at x =

- A. -6
- B. $\frac{-9}{2}$
- C. $\frac{-7}{2}$
- D. –3
- E. $\frac{-1}{2}$

62.

If
$$y = x + \sin(xy)$$
, then $\frac{dy}{dx} =$

- A. $1+\cos(xy)$
- B. $1 + y \cos(xy)$
- C. $\frac{1}{1-\cos(xy)}$
- D. $\frac{1}{1-x\cos(xy)}$
- E. $\frac{1+y\cos(xy)}{1-x\cos(xy)}$

$$\lim_{h\to 0}\frac{\cos\left(\frac{\pi}{2}+h\right)-\cos\left(\frac{\pi}{2}\right)}{h}=$$

- A. -1
- B. 0
- C. 1
- D. DNE
- E. $\frac{-\sqrt{2}}{2}$

Which of the following is true about $f(x) = x^4 - 2x^3$?

- A. No relative extrema
- B. 1 point of inflection, 2 relative extrema
- C. 2 points of inflection, 1 relative extremum
- D. 2 points of inflection, 2 relative extrema
- E. 2 points of inflection, 3 relative extrema

65.

Which of the following are anti-derivatives of $\frac{\ln^2 x}{x}$?

I.
$$\frac{\ln^3 x}{3}$$

II.
$$\frac{\ln^3 x}{3} + 6$$

III.
$$\frac{2\ln x - \ln^2 x}{x^2}$$

- A. I only
- B. III only
- C. I and II only
- D. I and III only
- E. II, and III

66.

A particle moves along the x-axis so that at any time t, its velocity is given by $v(t) = \ln(t+1) - 2t + 1$. The total distance traveled by the particle from t = 0 to

$$t = 2is$$
:

- A. 0.6667
- B. 0.704
- C. 1.540
- D. 2.667
- E. 2.901

If f is differentiable at x = a, which of the following could be false?

- A. f is continuous at x = a
- B. $\lim f(x) DNE$
- C. $\lim_{x \to a} \frac{f(x) f(a)}{x a}$ exists
- D. f'(a) is defined
- E. f''(a) is defined

68.

If f is defined by $f(x) = \sqrt{x^3 + 2}$ and g is an anti-derivative of f such that g(3) = 5, then g(1) =

- A. -3.268
- B. -1.585
- C. 1.732
- D. 6.585
- E. 11.585

69.

Let $g(t) = 100 + 20\sin\left(\frac{\pi t}{2}\right) + 10\cos\left(\frac{\pi t}{6}\right)$. For $0 \le t \le 8$, g is decreasing most rapidly

at:

- A. 0.949
- B. 2.017
- C. 3.103
- D. 5.965
- E. 8.000

$$\int_{0}^{\infty} e^{-2t} dt \text{ is:}$$

- A. –1
- В. -0.5
- C. 0.5
- D. 1
- E. Divergent

71.

If F' is continuous for all x, then $\lim_{h\to 0} \frac{1}{h} \int_a^{a+h} F'(x) dx =$

- A. 0
- B. F(0)
- C. *F*(*a*)
- D. F'(0)
- E. F'(a)

72.

The closed area bounded by the curve $y = e^{2x}$ and the lines x = 1 and y = 1 is:

- A. $\frac{2-e^2}{2}$
- B. $\frac{e^2 3}{2}$
- C. $\frac{3-e^2}{2}$
- D. $\frac{e^2-2}{2}$
- E. $\frac{e^2-1}{2}$

If
$$\frac{d}{dx} f(x) = g(x)$$
 and if $h(x) = x^2$, then $\frac{d}{dx} f(h(x)) =$

- A. $g(x^2)$
- B. 2xg(x)
- C. g'(x)
- D. $2xg(x^2)$
- E. $x^2g(x^2)$

74.

Which integral gives the length of the graph of $y = \sqrt{x}$ between x = a and x = b, where $a \le x \le b$?

A.
$$\int_{a}^{b} \sqrt{x^2 + x} \ dx$$

B.
$$\int_{a}^{b} \sqrt{x + \sqrt{x}} \ dx$$

$$C. \int_{a}^{b} \sqrt{x + \frac{1}{2\sqrt{x}}} dx$$

D.
$$\int_{a}^{b} \sqrt{1 + \frac{1}{4x}} dx$$

$$E. \int_{a}^{b} \sqrt{1 + \frac{1}{2\sqrt{x}}} dx$$

Which of the following are true about $g(x) = \int_{1}^{x} 100(t^2 - 3t + 2)e^{-t^2}dt$?

- I. g is increasing on (1, 2)
- II. g is decreasing on (2, 3)
- III.g(3) < 0
- A. I only
- B. II only
- C. III only
- D. II and III only
- E. I, II, and III

76.

The area of one loop of the graph of the polar equation $r = 2\sin(3\theta)$ is given by which of the following?

A.
$$4\int_{0}^{\frac{\pi}{3}}\sin^{2}(3\theta)d\theta$$

B.
$$2\int_{0}^{\frac{\pi}{3}}\sin(3\theta)d\theta$$

$$C. 2\int_{0}^{\frac{\pi}{3}} \sin^2(3\theta) d\theta$$

D.
$$2\int_{0}^{\frac{2\pi}{3}}\sin^{2}(3\theta)d\theta$$
E.
$$2\int_{0}^{\frac{2\pi}{3}}\sin(3\theta)d\theta$$

E.
$$2\int_{0}^{\frac{2\pi}{3}}\sin(3\theta)d\theta$$

A point (x, y) is moving along a curve y = f(x). At the instant when the slope of the curve is $\frac{-1}{3}$, the x-coordinate of the point is increasing at the rate of 5 units per second. The rate of change, in units per second, of the y-coordinate of the point is:

- A. $-\frac{5}{4}$
- B. $-\frac{1}{3}$
- C. $\frac{1}{3}$
- D. $\frac{3}{5}$
- E. $\frac{-5}{3}$

78.

Which of the following series converges to 2?

- $I. \qquad \sum_{n=1}^{\infty} \frac{2n}{n+1}$
- $\sum_{n=1}^{\infty} \frac{-8}{\left(-3\right)^n}$ II.
- $\sum_{n=0}^{\infty} \frac{1}{2^n}$ III.
- A. I only
- B. II only
- C. III only
- D. I and III only
- E. II and III only

What are the values of x for which the series $\sum_{n=1}^{\infty} \frac{n3^n}{x^n}$ converges?

- A. All x except x = 0
- B. |x| = 3
- C. $-3 \le x \le 3$
- D. |x| > 3
- E. The series diverges for all x.

80.

Let y = f(x) be the solution to the differential equation $\frac{dy}{dx} = \arcsin(xy)$ with the initial condition f(0) = 2. What is the approximation for f(1) if Euler's method is used, starting at x = 0 with a step size of 0.5?

- A. 2
- B. $2 + \frac{\pi}{6}$
- C. $2 + \frac{\pi}{4}$
- D. $2 + \frac{\pi}{2}$
- E. 3

81.

If the function g is defined by $g(x) = \int_{0}^{x} \sin(t^2) dt$ on the closed interval [-1,3],

then g has a local minimum at x =

- A. 0
- B. 1.084
- C. 1.772
- D. 2.171
- E. 2.507

The volume generated by revolving about the x-axis the region enclosed by the graphs of y = 2x and $y = 2x^2$, for $0 \le x \le 1$, is:

A.
$$\pi \int_{0}^{1} (2x - x^{2})^{2} dx$$

B.
$$\pi \int_{0}^{1} (4x^2 - 4x^4) dx$$

C.
$$2\pi \int_{0}^{1} x(2x-x^{2})dx$$

D.
$$\pi \int_{0}^{2} \left(\sqrt{\frac{y}{2}} - \frac{y}{2} \right)^{2} dy$$

E.
$$\pi \int_{0}^{2} \left(\frac{y}{2} - \frac{y^{2}}{2} \right)^{2} dy$$

83.

Two particles start at the origin and move along the x-axis. For $0 \le t \le 10$, their respective position functions are given by $x_1 = \sin t$ and $x_2 = e^{-2t} - 1$. For how many values of t do the particles have the same velocity?

- A. None
- B. One
- C. Two
- D. Three
- E. Four

Find the absolute extrema of $f(x) = 8x^3 + 21x^2 - 12x + 18$ on [-3,1].

- A. Absolute max at $x = \frac{1}{4}$; Absolute min at x = -2
- B. Absolute max at x = -2; Absolute min at $x = \frac{1}{4}$
- C. Absolute min at $x = \frac{-7}{8}$; No absolute max
- D. Absolute max at $x = \frac{-7}{8}$; No absolute min
- E. Absolute max at $x = \frac{1}{4}$; Absolute min at $x = \frac{-7}{8}$

85.

 $\ln(x-5) < 0$ if and only if:

- A. x > 6
- B. x < 6
- C. 0 < x < 6
- D. 5 < x < 6
- E. x > 5

86.

If the function f is defined by $f(x) = x^7 - 2$, then f^{-1} , the inverse of f, is:

- A. $\frac{1}{\sqrt[7]{x}+2}$
- B. $\frac{1}{\sqrt[7]{x+2}}$
- C. $\sqrt[7]{x-2}$
- D. $\sqrt[7]{x} 2$
- E. $\sqrt[7]{x+2}$

$$\lim_{x\to 0}\frac{e^{3x}-1}{\tan x}=$$

- A. -1
- B. 0
- C. 1
- D. 3
- E. It does not exist

88.

A tank is being filled with water at the rate of $300\sqrt{t}$ gallons per hour with t > 0, measured in hours. If the tank is originally empty, how many gallons of water are in the tank after 4 hours?

- A. 600
- B. 900
- C. 1200
- D. 1600
- E. 2400

89.

The region in the first quadrant enclosed by the graphs of y = x and $y = 2\sin x$ is revolved about the y-axis. The volume of the solid generated is:

- A. 1.895
- B. 2.126
- C. 5.245
- D. 6.678
- E. 13.355

If
$$f(x) = x\sqrt[3]{x}$$
, then $f'(x) =$

- A. $4x^3$
- B. $\frac{3}{7}x^{\frac{7}{3}}$
- C. $\frac{4}{3}x^{\frac{1}{3}}$
- D. $\frac{1}{3}x^{\frac{1}{3}}$
- E. $\frac{1}{3}x^{\frac{-2}{3}}$

91.

If
$$k > 0$$
 and $\int_{k}^{6} \frac{1}{x+2} dx = \ln k$, then $k =$

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

92.

The region enclosed by the line x + y = 1 and the coordinate axes is rotated about the line y = -1. The volume of the solid is:

- A. $\frac{17\pi}{2}$
- B. 3π
- C. $\frac{2\pi}{3}$
- D. $\frac{3\pi}{4}$
- E. $\frac{4\pi}{3}$

 $y = \sin x + \cos x$ is a solution of:

$$I. y + \frac{dy}{dx} = 2\sin x$$

II.
$$y + \frac{dy}{dx} = 2\cos x$$

III.
$$\frac{dy}{dx} - y = -2\sin x$$

- A. I only
- B. II only
- C. III only
- D. I and III
- E. II and III

94.

If
$$f(x) = \begin{cases} n + e^{2x} & x \ge 0 \\ 4 + mx & x < 0 \end{cases}$$
 is differentiable at $x = 0$, then $f(n - m) = 0$

- A. 2+e
- B. $3 + e^2$
- C. e^2
- D. 2*e*
- E. e^3

If
$$\frac{dy}{dx} = \sin x^3$$
, then $\frac{d^2y}{dx^2} =$

- A. $3x^2 \cos x^3$
- B. $-3x^2\cos(x^3)$
- C. $x^2 \cos(3^2)$
- D. $-x^2 \cos(3^2)$
- E. $\cos(x^3)$

$$\lim_{x \to -\infty} \frac{\sqrt{1+x^2}}{3x-2} =$$

- A. –1
- B. $\frac{1}{5}$
- C. 1
- D. $\frac{-1}{3}$
- E. $\frac{1}{3}$

97.

Find the value of a if $\int_{0}^{\frac{\pi}{2}} \frac{\cos(ax)}{2 + \sin(ax)} dx = \ln\left(\frac{3}{2}\right)$

- Α. π
- B. 1
- C. $1+\pi$
- D. $\sqrt{2}$
- E. 1+e

What is the anti-derivative of 3^x ?

- A. $\frac{3^{x}}{\ln 3} + \ln 3$
- B. $\frac{3^{3x}}{\ln 3} + \ln 3$
- C. $\frac{x^3}{\ln 3} + \frac{1}{\ln 3}$
- D. $x + 3 \ln 3$
- E. $3^x + \ln 3$

99.

The base of a solid is the region in the first and second quadrants bounded by the graph of $y = 1 - x^2$ and the x - axis. If the cross-sections of the solid perpendicular to the x-axis are squares, what is the volume of the solid?

- A. 1.333
- B. 1.269
- C. 1.066
- D. 0.933
- E. 1.121

100.

At what value of x are the tangent lines to the graphs of $f(x) = \ln x$ and $g(x) = 6^x$ parallel?

- A. -1
- B. 0.5
- C. 1.2
- D. 0.32
- E. 0.43

The average value of $f(x) = \sin^2(3x) + x$ on $[0, \pi]$ is:

- A. 2.07
- B. 1.05
- C. 3.3
- D. 1.23
- E. 1.9

102.

The base of a solid is the region in the first quadrant bounded by the graph of $y = -x^2 + 5x - 4$ and the x-axis. If cross-sections perpendicular to the x-axis are equilateral triangles, what is the volume of the solid?

- A. 1.871
- B. 2.320
- C. 1.555
- D. 3.507
- E. 2.000

103.

A speedboat travels on a river. Its speed v, in miles per hour, is given below. Using a left Riemann sum, approximate the total distance traveled by the speedboat from t = 0.5 to t = 3.

t	0	0.5	1	1.5	2	2.5	3	
\mathbf{v}	32	30	16	22	20	24	26	

- A. 85
- B. 56
- C. 86
- D. 78
- E. 66

$$\lim_{x \to \infty} \frac{3x^4 + 5x - 3}{-3x^5 - x - 1} =$$

- A. 1
- B. ∞
- C. -1
- D. 0
- E. $\frac{-4}{5}$

105.

$$\int_{0}^{0.25} \frac{32}{1+16x^2} dx =$$

- A. 0
- B. 2π
- C. –2π
- D. 6π
- E. 4π

106.

The derivative of $2\csc x - 5\sec x$ is:

- A. $-5\csc x 2\sec x$
- B. $-5 \sec x \tan x 2 \csc x \cot x$
- C. $-5(\sec x)^2 2(\csc x)^2$
- D. $-5 \sec x \tan x + 2 \csc x \cot x$
- E. $-5(\tan x)^2 3(\cot x)^2$

The derivative of $\frac{x^3-1}{x^3+1}$ is:

A.
$$\frac{3x^2}{4(x^3+1)^2}$$

B.
$$\frac{12x^2 - 1}{8(x^3 + 1)^2}$$

C.
$$\frac{3x^2}{2(x^3+1)^2}$$

D.
$$\frac{6x^2}{(1+x^3)^2}$$

E.
$$\frac{24x^2-1}{8(x^3+1)^2}$$

108.

$$\lim_{x \to 3} \frac{x - 3}{x^2 - 2x - 3} =$$

A. 0

B. 1

C. $\frac{1}{4}$

D. ∞

E. None of the above.

109.

$$\lim_{x\to 0}\frac{|x|}{x}$$
 is:

A. 0

B. Nonexistent

C. 1

D. -1

E. None of the above.

$$\lim_{x \to 7} \frac{x - 7}{\sqrt{x} - 7}$$
 is

- A. $2\sqrt{7}$
- B. $\sqrt{7}$
- **C.** 0
- D. $-2\sqrt{7}$
- E. Nonexistent.

111.

$$\lim_{x\to 1}\frac{x}{\ln x}$$
 is:

- A. 0
- B. $\frac{1}{e}$
- C. 1
- D. e
- E. Does not exist.

112.

If
$$a \ne 0$$
, then $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$ is:

- A. $\frac{1}{a^2}$
- B. $\frac{1}{2a^2}$
- C. $\frac{1}{6a^2}$
- D. 0
- E. Does not exist.

$$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$$

- A. 4
- B. 1
- C. 0.25
- D. 0
- E. -1

114.

Which of the following statements about f, shown in the graph below, is true?

- $\lim f(x) = \lim f(x)$
- $\lim f(x) = 2$
- $\lim f(x) = 2$
- $D. \quad \lim_{x \to b} f(x) = 1$
- $\lim_{x \to a} f(x)$ does not exist.

115.

Let f(x) = 4-3x. Which of the following is equal to f'(-1)?

- A. –7
- B. 7
- C. -3
- D. 3
- E. Does not exist.

Which of the following is true about $f(x) = x^{\frac{2}{5}}$ at x = 0?

- A. It has a corner
- B. It has a cusp
- C. It has a vertical tangent
- D. It is discontinuous
- E. f(0) does not exist

117.

Which of the following is true about f(x) = |x|?

- f is continuous at x = 0I.
- II. f is differentiable at x = 0
- f has an absolute minimum at x = 0. III.
- A. I only
- B. II only
- C. III only
- D. I and III only
- E. II and III only

118.

If the normal line to f at (1, 2) passes through (-1, 1), then f'(1) =

- A. –2
- B. 2
- C. -0.5
- D. 0.5
- E. 3

Find
$$\frac{dy}{dx}$$
 if $y = \frac{4x-3}{2x+1}$

A.
$$\frac{10}{(4x-3)^2}$$

B.
$$-\frac{10}{(4x-3)^2}$$

C.
$$\frac{10}{(2x+1)^2}$$

D.
$$-\frac{10}{(2x+1)^2}$$

120.

Let $f(x) = 1 - 3x^2$. Which of the following equals f'(1)?

121.

The 7th derivative of $y = -\sin x$ is:

B.
$$\frac{dy}{dx}$$

C.
$$\frac{d^2y}{dx^2}$$

D.
$$\frac{d^3y}{dx^3}$$

Find
$$\frac{dy}{dx}$$
 if $y = \frac{4}{x^3}$.

- A. $-4x^2$
- B. $\frac{-12}{x^2}$
- C. $\frac{12}{x^2}$
- D. $\frac{12}{x^4}$
- E. $\frac{-12}{x^4}$

123.

Find (fg)' at x = 3 if

	f(x)	g(x)	f'(x)	g '(x)
x = 1	4	2	5	0.5
x = 3	7	-4	1.5	-1

- A. $\frac{5}{2}$
- B. $\frac{-3}{2}$
- C. –13
- D. 12
- E. $\frac{21}{2}$

$$\lim_{x\to 1} \frac{\ln(x+1) - \ln 2}{x-1} =$$

A. 0

B.
$$\frac{d}{dx} \left[\ln \left(x+1 \right) \right]$$

C.
$$f'(1)$$
 if $f(x) = \ln(x+1)$

D. 1

E. The limit does not exist.

125.

Find
$$\frac{d^2y}{dx^2}$$
 if $f(x) = (2x+3)^4$

A.
$$4(2x+3)^3$$

B.
$$8(2x+3)^3$$

C.
$$12(2x+3)^3$$

D.
$$24(2x+3)^2$$

E.
$$48(2x+3)^2$$

126.

Find
$$\frac{dy}{dx}$$
 if $y = 4\sin^2(3x)$

A.
$$8\sin(3x)$$

B.
$$24\sin(3x)$$

C.
$$8\sin(3x)\cos(3x)$$

D.
$$12\sin(3x)\cos(3x)$$

E.
$$24\sin(3x)\cos(3x)$$

If $x^2 + y^2 = 25$, what is the value of $\frac{d^2y}{dx^2}$ at (4, 3)?

- A. $-\frac{25}{27}$
- B. $-\frac{7}{27}$
- C. $\frac{7}{27}$
- D. $\frac{3}{4}$
- Ε.

128.

The instantaneous rate of change of $f(x) = \frac{x^2 - 2}{x - 1}$ at x = 2 is:

- A. –2
- B. $\frac{1}{6}$
- C. $\frac{1}{2}$
- D. 2
- E. 6

129.

Find $\frac{dy}{dx}$ if $3xy = 4x + y^2$

- $A. \ \frac{4-3y}{2y-3x}$
- B. $\frac{3x-4}{2x}$
- $C. \frac{3y-x}{2}$
- D. $\frac{3y-4}{2y-3x}$
- E. $\frac{4+3y}{2y+3x}$

Suppose f(x) is continuous on [0,2] and f(0) = 1, f(1) = k, f(2) = 2. The equation $f(x) = \frac{1}{2}$ has at least two solutions in (0,2) if k =

- A. 0
- B. 0.5
- C. 1
- D. 2
- E. 3

Math Quest: AP CALCULUS AB/BC denis.network

ANSWER KEY – last updated 03-20-2011

ID											
001	Е	026	С	051	С	076	С	101	Α	126	Е
002	Е	027	D	052	В	077	Е	102	D	127	A
003	С	028	Е	053	Е	078	С	103	В	128	D
004	D	029	Е	054	С	079	D	104	D	129	D
005	С	030	Α	055	В	080	С	105	В	130	A
006	В	031	D	056	В	081	Е	106	В		
007	Е	032	В	057	С	082	В	107	D		
008	Α	033	В	058	В	083	D	108	С		
009	В	034	С	059	С	084	В	109	В		
010	Е	035	D	060	Α	085	D	110	С		
011	Α	036	Е	061	В	086	Е	111	Е		
012	D	037	Α	062	Е	087	D	112	В		
013	D	038	Е	063	Α	088	D	113	С		
014	Α	039	Е	064	С	089	С	114	В		
015	В	040	Α	065	С	090	С	115	С		
016	В	041	Α	066	С	091	В	116	В		
017	D	042	В	067	Е	092	Е	117	D		
018	D	043	В	068	В	093	Е	118	Α		
019	D	044	Е	069	В	094	В	119	С		
020	В	045	Е	070	С	095	Α	120	Α		
021	С	046	D	071	Е	096	D	121	D		
022	Α	047	В	072	В	097	В	122	Е		
023	С	048	Α	073	D	098	A	123	С		
024	С	049	С	074	D	099	С	124	С		
025	Α	050	В	075	С	100	D	125	Е		