Examination: M.Tech. Green Energy Technology	
Section 1 - Section 1	
Question No.1 The frequency of damped oscillations as compared to frequency of undamped vibrations with viscous damping, is C Less More Same Zero	4.00 Bookmark □
Question No.2	4.00
Choose the correct meaning of the italicized idiom. Those who work by fits and start seldom show good results. C Rarely Disinterestedly Irregularly Regularly	Bookmark □
Question No.3	4.00
A partial differential equation requires Two or more independent variables Exactly one independent variable Equal number of dependent and independent variables More than one dependent variable	Bookmark □
Question No.4	4.00
The carbon-14 activity of an old wood sample is found to be 14.2 disintegrations min ⁻¹ g ⁻¹ . Calculate age of oldwood sample, if for a fresh wood sample carbon-14 activity is disintegrations min ⁻¹ g ⁻¹ (t _{1/2} carbon-14 is 5730 years), is: © 877 © 5000 © 617 © 4000	Bookmark □
Question No.5	4.00
Which among the following amino acid residue is most likely getting phosphorylated in prokaryotes? C Serine C Tyrosine C Threonine C Histidine	Bookmark □
Cuestion No.6 The following is true for the following partial differential equation used in nonlinear mechanics known as the Korteweg-de Vries equation c linear; 1st order nonlinear; 3rd order nonlinear; 1st order linear; 3rd order	4.00 Bookmark ┌┐
Caustion No.7 In a single-component condensed system, if degree of freedom is zero, maximum number of phases that can co-exist Column 1 Column 2 Column 3 Column 3 Column 4 Column 4 Column 5 Col	4.00 Bookmark □
Question No.8	4.00
Which one of the following gives the force required to accelerate a car of mass 2000 kg from rest to 30 m/s in 12 s, if the frictional force between the tyres and the ground is 0 C 4600 N C 5400 N C 5000 N C 400 N	Bookmark □ .2 N/kg?
Question No.9	4.00
A cantilever of length I is carrying a uniformly distributed load of w per unit run over the whole span. The deflection at the free end is given as $ \frac{wl^3}{4EI} $ $ \frac{wl^4}{8EI} $ $ \frac{wl^4}{16EI} $	Bookmark □

4LI Question No.10 4.00 Bookmark | O 10 0 12 0 11 Question No.11 Bookmark [Choose the best antonym of the italicized word. Many snakes are actually innocuous. ferocious ○ harmful o deadly o poisonous Question No.12 Bookmark ┌ Chelate effect is O due to equal contribution of entropy and enthalpy change o predominantly due to entropy change C predominantly due to enthalpy change O independent of ring size Question No.13 4.00 Bookmark | Which is the most economical section for a beam C I- Section Circular ○ Square Rectangular Question No.14 Bookmark 🗀 The vapour of a pure substance, when cooled under a pressure less than its triple-point pressure C Liquefies first and then solidifies C Solidifies directly Liquefies C Remains unchanged Question No.15 4.00 Bookmark | " A total electric flux through any closed surface surrounding charges is equal to the amount of charge enclosed" The above statement is associated with C Maxwell's second law Coulomb's square law ○ Gauss's law C Maxwell's first law Question No.16 4.00 Bookmark If obtained solution has same number of constants as the order of the differential equation then the solution of the differential equation is Integrating factor C Singular solution C General solution Particular solution Bookmark □ The ratio of reverse resistance and forward resistance of a germanium crystal diode is about 0 1:1 C 1000:1 O 100:1 C 40,000:1 Question No.18 4.00 Bookmark □ In a transformer the energy is conveyed from primary to secondary ○ Through air O By the flux ○ Through cooling coil

C Both air and cooling coil

Question No.19

Bookmark [

As per the kinetic theory of ideal gases, which of the following statements is NOT correct?

- Particles are in a Brownian motion between collisions
- O During the collision, the system does not lose energy
- C Gas molecules have mass but no volume
- O Particles exert same force per unit area on all sides of the container

Question No.20

Bookmark □

Which of the following equations are solutions to the partial differential

equation?

$$\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial y^2}$$

- $0 x^2 + y^2$
- O sin (3x 3y)
- cos (3x y)

$$e^{-3\pi\alpha}\sin(\pi y)$$

Bookmark ┌

Based on the information given answer the following question.

- 1. In a family of six persons, there are people from three generations. Each has separate professions and they like different colours. There are two couples
- 2. Shyam is an Engineer and his wife is not a doctor and she does not like Red colour.
- Chartered Accountant likes green colour and his wife is a teacher.
 Manisha is the mother-in-law of Sunita and she likes orange colour.
- 5. Vimal is the grand father of Tarun and tarun is the Principal and likes black colour.
- 6. Nyna is the grand daughter of Manisha and she likes blue colour. Nyna's Mother likes white colour.

Which of the following is the correct pair of two couples?

- C Shvam-Manisha, Vimal-Sunita
- Cannot be determined
- C Tarun-Nyna, Shyam-Sunita
- C Shyam-Sunita, Vimal-Manisha

Question No.22

Bookmark ┌

The following are the example for mobile elements

- C Fe, Ca
- O Mn. Mo
- O Bo. S
- C Cu, Mg

Question No.23

Bookmark |

In a molecule of chlorine trifluoride, CIF3 bond angle is

- C 107.5°
- C 78.5°
- C 87.5°
- C 109.50

Question No.24 Beta particles are emitted

- O Due to conversion of neutrons into protons in the nucleus
- C Due to conversion of protons into neutrons
- O Due to reversion of the excited nucleus to the ground state.
- O When outermost orbital electron leave the atom.

Question No.25

In a silicon transistor α_{dc} = 100, V_{CC} = 30V, R_C = 1.5 k Ω . The saturation collector current of the transistor is

- C 20mA
- 30mA
- 10mA
- C 100mA

	Bookmark 🖂
In recent times, the number of cases of death by poisoning sharply. © increased	
C have increased	
C had increased C has increased	
Question No.27	4.00 Bookmark
Choose the correct meaning of the italicized idiom.	Bookinark j
You cannot throw dust into my eyes. C Abuse me	
© Terrify me	
C Cheat me	
© Hurt me	
Question No.28	4.00
	Bookmark
Water use efficiency is minimum in C CAM plants	
C All higher plants	
C C4 plants	
C C3 plants	
Question No.29	4.00
The decreasing order of dipole moment of molecules is	Bookmark 🗖
C NH ₃ > NF ₃ > H ₂ 0	
C H ₂ 0 > NH ₃ > NF ₃ >	
C NF ₃ > NH ₃ > H ₂ 0	
C H ₂ 0> NF ₃ > NH ₃	
Question No.30	4.00
In mitochondria, oxidation of one molecule of NADH results in formation of	Bookmark □
© One molecule of ATP	
C Two molecules of ATP	
© Three molecules of ATP © Four Molecules of ATP	
C F Our INDICOLES OF A TI	
Question No.31	4.00 Bookmark
"Silent spring" written by Rachel Carson deals with	Bookinark j
© Excessive use of pesticides	
C. Air nellution	
C Air pollution C Deforestation	
C Deforestation C Water pollution	4.00
C Deforestation C Water pollution Question No.32	4.00 Bookmark <u></u>
C Deforestation C Water pollution Question No.32 If A+B means A is daughter of B,	
C Deforestation C Water pollution Question No.32	
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B	
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P – Q + R × S, how is Q related to S? © Niece	
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P – Q + R × S, how is Q related to S? © Niece © Sister	
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P – Q + R × S, how is Q related to S? © Niece	
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P − Q + R × S, how is Q related to S? © Niece © Sister © Mother © None of these	Bookmark
C Deforestation Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P – Q + R × S, how is Q related to S? C Niece C Sister C Mother C None of these	
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P – Q + R × S, how is Q related to S? © Niece © Sister © Mother © None of these Question No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work?	Bookmark ☐
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P – Q + R × S, how is Q related to S? © Niece © Sister © Mother © Mother © None of these	Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? C Niece C Sister C Mother C None of these Cuestion No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 35 C 32	Bookmark ☐
C Deforestation C Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? C Niece C Sister C Mother C None of these Question No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35	Bookmark ☐
© Deforestation © Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? © Niece © Sister © Mother © Mother © None of these Question No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? © 28 © 35 © 32	Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? C Niece C Sister C Mother C None of these Cuestion No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 35 C 32	Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P – Q + R × S, how is Q related to S? C Niece Sister None of these Cuestion No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 32 C 25	Bookmark ☐ 4.00 Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? C Niece C Sister C Mother C None of these Cuestion No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 35 C 32	Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is brother of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? C Nicce C Sister No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 35 C 32 C 25	Bookmark ☐ 4.00 Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is horther of B From the statement P - Q + R × S, how is Q related to S? C Niece C Sister None of these Cuestion No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 32 C 25	Bookmark ☐ 4.00 Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? C Niece C Sister Mother None of these Question No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 32 C 25	Bookmark ☐ 4.00 Bookmark ☐
C Deforestation C Water pollution Question No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is brother of B From the statement P - Q + R × S, how is Q related to S? C Niece C Sister C Mother C None of these Question No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 2 8 C 35 C 35 C 32 C 25 Question No.34 These boys need some new books,? C is it? C is nit?	Bookmark ☐ 4.00 Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A-B means A is husband of B A × B means A is husband of B From the statement P - Q+R × S, how is Q related to S? C Niece C Sister No.33 If 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? C 28 C 35 C 35 C 32 C 25	Bookmark ☐ 4.00 Bookmark ☐
Cuestion No.32 MARP means A is daughter of B. A × B means A is brushard of B A × B means A is brushard of B A × B means A is brother of B	4.00 Bookmark 4.00 Bookmark
Cuestion No.32 # AAB means A is daughter of B, AAB means A is hasband of B AAB means A is hasband of B From the statement P - Q + R × S, how is Q related to S? C Niece Sister Mother None of these Cuestion No.33 # 5 men or 8 boys can do a work in 84 days. In how many days can 10 men and 5 boys can do the same work? 28 35 35 32 C 25 Question No.34 These boys need some new books,? I is it? C Is it?	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐
Cuestion No.32 If A+B means A is daughter of B, A+B means A is brushard of B A × B means A is brushard of B A × B means A is brother of B	Bookmark ☐ 4.00 Bookmark ☐ 4.00 Bookmark ☐

O 2.4 ×10 ⁻¹	
Question No.36	4.00
Which among the following is a C4 plant? C Sugarcane C Paddy C Wheat C Red gram	Bookmark ┌┐
Question No.37 A semiconductor is known to have an electron concentration of $8x10^{19}$ m ⁻³ and a hole concentration of $5x10^{18}$ m ⁻³ (electron mobility = 2.0 and hole mobility = 0.01). The resistant conductor is $^{\circ} 25.6\Omega m$ $^{\circ} 0.256\Omega m$ $^{\circ} 2.56\Omega m$ $^{\circ} 256\Omega m$	4.00 Bookmark ☐ stivity of the
Cuestion No.38 The classical experiments of variation in plants by Gregor Mendel was performed in C Arabidopsis C Maize C Rice C Pea	4.00 Bookmark ┌┐
Question No.39	4.00 Bookmark □
Let y= a cos4x + b sin 4x is solution of a differential equation then its order must be. © One © Any Positive Number Could Be © Three © Two	
Question No.40	4.00
A solution to a boundary value problem which satisfies boundary condition is a solution to the C logical equation C Differential equation C Maxwell's equation C Integral equation	Bookmark
Question No.41	4.00
Let A be a Hermitian matrix. Then, which of the following statements is false? © If A ² = I, then A = I. © If A ³ = I, then A = I. © The diagonal entries of A are all real. © There exists a unitary U such that U AU is a diagonal matrix.	Bookmark
Question No.42	4.00
All the Eigen value of an orthogonal matrix are of unit modulus. c The Eigen values of an orthogonal matrix may be any real matrix. c true c All are false. c false	Bookmark <u></u>
Question No.43	4.00
The dimensions of capacitance are	Bookmark □

O M-1L-2T2Q1

© M²L·2¬2Q² © M²L·2¬2Q²	
Question No.44 A small loudspeaker radiates 5W of power and the intensity is 1 Wm ⁻² at a distance of 2m from the speaker. If the power of the speakers is doubled, the intensity in Wm ⁻² at 4m from the speaker is C 1 C 4 C 2	4.00 Bookmark ☐ a distance of
Question No.45 Choose the missing term : AZ, GT, MN, ?, YB C KE C SH	4.00 Bookmark □
C TS C SX Question No.46	4.00 Bookmark □
The knee voltage of a crystal diode is approximately equal to © Barrier Potential © Breakdown Voltage © Forward Voltage © Applied Voltage	
Question No.47 lodinevalue of lipids is a measure of Degree of polysaturation of lipids Degree of monosaturation of lipids Degree of saturation of lipids Degree of saturation of lipids Degree of unsaturation of lipids	4.00 Bookmark □
Question No.48 A two digit number is three times the sum of its digits. If 45 is added to it, the digits are reversed. The number is C 35 C 27 C 32 C 31	4.00 Bookmark ☐
Cuestion No.49 Two weights are suspended from a string thrown over a light frictionless pulley. The mass of one weight is 0,200 kg. If a heavy weight is attached to its other end, the tension is C 0.200 kgf C Zero C 0.600 kgf C 0.400 kgf	4.00 Bookmark ☐ in the string
Question No.50	4.00 Bookmark
A B C D (1) (2) (3) (4) C 1 C 3 C 4 C 2	
Question No.51 In a transistor C E = C + B C B = C + E	4.00 Bookmark ☐

O IC = IE + IB

○ IE = IC - IB	
Question No.52	4.00
In Simpson's (1/3) rd rule the number of intervals is © multiple of 3	Bookmark 🗀
© Even	
C multiple of 6	
Question No.53	4.00
For a face centered cubic lattice, the Miller indices for the first Bragg's peak (smallest Bragg angle) are	Bookmark □
C 111	
O 002	
○ 110 ○ 001	
Question No.54	4.00
The geometries of Ni(CO) ₄ and [NiCl ₄] ²⁻ , respectively, are	Bookmark 🗖
© Square planar and square planar	
© Tetrahedral and tetrahedral	
© Tetrahedral and square planar	
© Square planar and tetrahedral	
Question No.55	4.00 Bookmark □
In allene, hybridization of the central and terminal carbons, respectively, are	
C sp and sp ²	
$^{\circ}$ sp 2 and sp 3 $^{\circ}$ sp and sp 3	
C sp ² and sp ²	
SP ditu SP	
Question No. EG	
Question No.56	4.00
The efficiency of a Carnot engine working between 0°C and 100°C	4.00 Bookmark ☐
The efficiency of a Carnot engine working between 0°C and 100°C C 1	
The efficiency of a Camot engine working between 0°C and 100°C © 1 © 100/273	
The efficiency of a Carnot engine working between 0°C and 100°C C 1	
The efficiency of a Carnot engine working between 0°C and 100°C © 1 © 100/273 © 100/373	
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57	Bookmark ∏
The efficiency of a Carnot engine working between 0°C and 100°C 1 100/273 100/373 0.5	Bookmark □
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids	Bookmark □
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids Proteins	Bookmark □
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids	Bookmark □
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids Proteins	Bookmark 4.00 Bookmark 4.00
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates Nucleic acids Proteins Lipids Cuestion No.58	Bookmark 4.00 Bookmark
The efficiency of a Camot engine working between 0°C and 100°C © 1 © 100/273 © 100/373 © 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? © Carbohydrates © Nucleic acids © Proteins © Lipids	Bookmark 4.00 Bookmark 4.00
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates Nucleic acids Proteins Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance Decreases First increases and then decreases	Bookmark 4.00 Bookmark 4.00
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates Nucleic acids Proteins Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases Remains Same	Bookmark 4.00 Bookmark 4.00
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates Nucleic acids Proteins Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance Decreases First increases and then decreases	Bookmark 4.00 Bookmark 4.00
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates Nucleic acids Proteins Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases Remains Same	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates Nucleic acids Proteins Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases Remains Same Increases	Bookmark
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids P roteins Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases Remains Same Increases Question No.59 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids C Proteins C Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases C First increases and then decreases C Remains Same C Increases Question No.59 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Question No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids P roteins Lipids Question No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases Remains Same Increases Question No.59 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Carnot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids Proteins Lipids Cuestion No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases First increases and then decreases Remains Same Increases Cuestion No.59 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23 C 25 C 25	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark Bookmark
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids C Proteins C Lipids Cuestion No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases Remains Same Increases C Increases C Memains Same C Increases C Memains Same C Increases A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23 C 25	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C C arbohydrates C Nucleic acids Proteins Lipids Cuestion No.58 As the temperature of transistor goes up, the base-emitter resistance C Perceases First increases and then decreases Remains Same Increases C Increases A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23 C 25 C 24 Cuestion No.60 A dielectric material must be	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carborhydrates Nucleic acids Proteins Lipids Cuestion No.58 As the temperature of transistor goes up, the base-emitter resistance C Decreases First increases and then decreases Remains Same C Increases C Remains Same C horceases A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23 C 25 C 24 Cuestion No.60 A dielectric material must be C Resistor	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 100/373 C 100/373 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C C arbohydrates C Nucleic acids Proteins Lipids Cuestion No.58 As the temperature of transistor goes up, the base-emitter resistance C Perceases First increases and then decreases Remains Same Increases C Increases A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23 C 25 C 24 Cuestion No.60 A dielectric material must be	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 1000273 C 1000273 C 0.5 Cuestion No.57 Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids Proteins Upids Cuestion No.58 As the temperature of transistor goes up, the base-emitter resistance Decreases First increases and then decreases Remains Same Increases C Increases Cuestion No.59 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23 C 25 C 24 Cuestion No.50 A dielectric material must be Resistor C Good Conductor	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00
The efficiency of a Camot engine working between 0°C and 100°C C 1 C 100/273 C 2arbohydrates Which of the following biological macromolecules are structurally diverse in living world? C Carbohydrates C Nucleic acids P rotains Upids Cuestion No.58 As the temperature of transistor goes up, the base-emitter resistance F irst increases and then decreases F irst increases and then decreases F Remains Same P Increases C Remains Same P Increases Cuestion No.59 A metal crystallizes in fcc structure with a unit cell side of 500 pm. If the density of the crystal is 1.33 g/cc, the molar mass of the metal is C 26 C 23 C 25 C 24 Cuestion No.60 A dielectric material must be Resistor Resistor G Good Conductor G Sent conductor	4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00 Bookmark 4.00

Oversition No Cd	1.00
Question No.61 The species ¹⁹ Ne and ¹⁴ C emit a positron and β- particle respectively. The resulting species formed are respectively-	4.00 Bookmark ☐
^C ¹⁹ Na and ¹⁴ B ^C ¹⁹ Na and ¹⁴ N	
C ¹⁹ F and ¹⁴ B	
^C ¹⁹ F and ¹⁴ N	
Question No.62	4.00
How many atoms are there in an element packed in a FCC structure	Bookmark □
C 4	
© 1 © 83	
C 2	
Question No.63	4.00 Bookmark
If in a certain language, GRASP is coded as BMVNK, which word would be coded as CRANE?	
C FUDQH	
© BQZMD © HWFSJ	
Question No.64	4.00
During tensile test, what does percentage elongation indicate	Bookmark [
C Creep C Malleability	
© Ductility	
© Fatigue Strength	
Question No.65	4.00 Bookmark
If three 18μF capacitors are connected in series, the net capacitance is C 18μF	
C 6µF	
C 54μF C 0μF	
Question No.66	4.00
A field line and an equipotential surface are	Bookmark
C Inclined at 30°	
C Inclined at 210° C Always parallel	
C Always at 90°	
Question No.67	4.00 Bookmark
Among the halides NCl ₃ (A), PCl ₃ (B) and AsCl ₃ , those which produce two different acids C A,B and C	Dookilark
C B and C	
C A and B C A and C	
Question No.68	4.00
Correct sequence flow of reaction in bioethanol production	Bookmark 🗖
C Enzyme hydrolysis- Fermentation-distillation- bioethanol	
© Distillation- Enzyme hydrolysis- Fermentation bioethanol © Enzyme hydrolysis- distillation- Fermentation- bioethanol	
© Fermentation- Enzyme hydrolysis- distillation- bioethanol	
Question No.69	4.00
Moment of inertia of an object does not depend upon	Bookmark [
C Angular velocity C Mass of object	
C Mass of distribution	
C Axis of rotation	
Question No.70	4.00 Bookmark
Which of the following is an "even" function of to	
Which of the following is an "even" function of t ?	

0 Sin (zt) + 3t	
င _t 2–4t င _t 2	
C t ³ +6	
Question No.71	4.00
Which is an intensive property?	Bookmark □
C Refractive index	
© Weight © Mass	
© Volume	
Question No.72	4.00 Bookmark
The reverse current in a diode is of the order of	BOOKINAIK J
С KA С µ A	
C Amps C mA	
О при	
Question No.73	4.00
Which of the following amino acid is likely to destabilise an alpha helix?	Bookmark
C Leucine	
C Histidine C Proline	
C Glycine	
Question No.74	4.00
The excess of pressure inside a bubble in a liquid is	Bookmark □
C 3T/r C T/r	
C 4T/r	
○ 2T/r	
Question No.75	4.00 Bookmark
If value of x for normal distribution is 35, mean of normal distribution is 65 and standard deviation is 25 then standardized random variable is C −1.5	
c -1.2	
C −1.7 C −4	
Question No.76	4.00
Statement: "A Car is required on rent"-An Advertisement	Bookmark
Assumptions:	
I. All types of Vehicles are available on Rent II. People will respond to the advertisements	
© If neither I nor II is implicit © If both I and II are implicit	
C If only assumption I is implicit C If only assumption II is implicit	
Question No.77	4.00 Bookmark
A differential equation is considered to be ordinary if it has	
A differential equation is considered to be ordinary if it has © More than one independent variable	
© One dependent variable	
© One independent variable © More than one dependent variable	
Question No.78	4.00
If A is the amplitude of a wave from a point source at a distance R from the source,	Bookmark
C A is independent of R	
° A α 1/VR	

 $^{\circ}$ A α 1/R $^{\circ}$ A α 1/R²

Question No.79

Bookmark |

Analysis of boundary value problem involves functions of a differential operator. These functions are

- logical function
- algebraic function
- c symmetric function
- C Eigen function

Question No.80

- alemante 🗆

Bookmark I A battery supplies 150W and 196W power to two resistors of 6Ω and 4Ω when they are connected separately to it.

The internal resistance of the battery is

- $^{\circ}$ 2 Ω
- ° 2.5Ω
- ° 1Ω
- ° 0.5Ω

Question No.8

4.00

Bookmark [

Study the following information carefully and answer the guestion below it:

Aasha, Bhuvnesh, Charan, Danesh, Ekta, Farhan, Ganesh and Himesh are sitting around a circle, facing the centre. Aasha sits fourth to the right of Himesh while second to the left of Farhan. Charan is not the neighbour of Farhan and Bhuvnesh. Danesh sits third to the right of Charan. Himesh never sits next to Ganesh.

Who among the following sits between Ganesh and Danesh?

- C Bhuvnesh
- © Ekta
- C Charan
- Aasha

Question No.82

4.00 Bookmark

Transplastomics

Question No.83

- C Provides exceptionally low yields of protein products
- C Targets genes in the mitochondria
- C Produces genes that are released in pollen
- Targets genes in the chloroplast

4.00 Bookmark □

- According to MO theory, for the atomic species 'C2'

 © bond order is zero and it is paramagnetic
 - O bond order is two and it is diamagnetic
 - C bond order is two and it is paramagnetic
 - O bond order is zero and it is diamagnetic

Question No.84

Bookmark

Proteins specific to sugars are called

- Myoglobin
- C Chitin
- C Pectin

Question No.85

4.00 Bookmark

Which of the following is NOT true about condensin protein complex?

- C binds two sister chromatids together
- C twists the chromatin into coils and loops
- C binds a single chromatid at multiple spots
- O it is an elongated complex of several proteins that binds and encircles DNA

Question No.86

4.00

Bookmark [

The differential equation $2\frac{dy}{dx} + x^2y = 2x + 3$, y(0) = 5 is

C Linear with fixed constants	
C Undeterminable to be linear or nonlinear	
© Nonlinear	
C Linear	
Question No.87	4.00
	Bookmark □
Which among the following is NOT an omega-3 fatty acid?	
ℂ Linoleic acid	
○ Alpha-linolenic acid	
© Eicosapentaenoic acid	
○ Docosahexaenoic acid	
Question No.88	4.00
	Bookmark □
The path of a magnetic flux in a transformer should have	
○ High reluctance	
© Low resistance	
○ High resistance	
C Low reluctance	
Question No.89	4.00
	Bookmark □
A cquare matrix [A] is lower triangular if	
A square matrix [A] is lower triangular if	
$a_{ij} \neq 0, i > j$	
$a_{ij} = 0, j > i$	
$c_{ij} = 0, i > j$	
$a_{ij} = 0, i \geq j$	
$a_{ij} \neq 0, j > i$	
	4.00
Question No.90	4.00
Which is NOT required for "DNA replication?"	Bookmark 🗖
© Polymerase	
C Helicase	
© Kinase	
O Miliado	
C Drimono	
C Primase	
	4.00
C Primase Question No.91	4.00
Question No.91	4.00 Bookmark □
Question No.91 The angular momentum of the electron in the hydrogen atom can be	
Question No.91 The angular momentum of the electron in the hydrogen atom can be	
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$	
Question No.91 The angular momentum of the electron in the hydrogen atom can be	
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$ $^{\circ}\ 2h$	
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$	
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$ $^{\circ}\ 2h$ $^{\circ}\ 3h$	
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$ $^{\circ}\ 2h$	
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$ $^{\circ}\ 2h$ $^{\circ}\ 3h$	
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$ $^{\circ}\ 2h$ $^{\circ}\ 3h$	
The angular momentum of the electron in the hydrogen atom can be $^{\circ}\ h/4\pi$ $^{\circ}\ 2h$ $^{\circ}\ 3h$ $^{\circ}\ h/\pi$	Bookmark
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ} \ h/4\pi$ $^{\circ} \ 2h$ $^{\circ} \ 3h$ $^{\circ} \ h/\pi$ Question No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes of the company of the second second water comes of the company of the second second water comes of the company of the second	Bookmark □ 4.00 Bookmark □
Question No.91 The angular momentum of the electron in the hydrogen atom can be $^{\circ} h/4\pi$ $^{\circ} 2h$ $^{\circ} 3h$ $^{\circ} h/\pi$ Question No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes of process goes on. What is the process taking place?	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be	Bookmark □ 4.00 Bookmark □
Question No.91 The angular momentum of the electron in the hydrogen atom can be h/4π 2h 3h h/π Question No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? Convection Purification	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
Question No.91 The angular momentum of the electron in the hydrogen atom can be h/4π 2h 3h h/π Question No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? Convection Purification	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? choruscition Purification Conduction	Bookmark □ 4.00 Bookmark □
The angular momentum of the electron in the hydrogen atom can be ' h/4π ' 2h ' 3h ' h/π Question No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? Convection Purification Conduction Radiation	Bookmark ☐ 4.00 Bookmark ☐ down and the
Question No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π 2h 3h h/π Question No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? Convection Purification Conduction	Bookmark 4.00 Bookmark down and the
The angular momentum of the electron in the hydrogen atom can be ' h/4π ' 2h ' 3h ' h/π Question No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? Convection Purification Conduction Radiation	Bookmark ☐ 4.00 Bookmark ☐ down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ' h/4π ' 2h ' 3h ' h/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes of process goes on. What is the process taking place? Convection Purification Radiation Cuestion No.93	Bookmark 4.00 Bookmark down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be	Bookmark 4.00 Bookmark down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? Convection Purification Radiation Cuestion No.93 Since the of the motor car, road accidents have increased dramatically.	Bookmark 4.00 Bookmark down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be	Bookmark 4.00 Bookmark down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? chorection chorect	Bookmark 4.00 Bookmark down and the
Cuestion No.93 The angular momentum of the electron in the hydrogen atom can be c h/4π c 2h c 3h c h/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes of process goes on. What is the process taking place? Convection C Punification Radiation Cuestion No.93 Since the of the motor car, road accidents have increased dramatically. C inception C advent C incupration C inauguration C institution	Bookmark 4.00 Bookmark down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be ch/4π ch/4π ch/π Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? chorection chorect	Bookmark 4.00 Bookmark down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be	Bookmark ☐ 4.00 Bookmark ☐ down and the
Cuestion No.93 Cuestion No.92 When potassium is added to water, it is seen that the lower region becomes warm first and becomes less dense. It then moves up and the more dense cold water comes or process goes on. What is the process taking place? Convection Purification Conduction Radiation Cuestion No.93 Since the of the motor car, road accidents have increased dramatically. Inauguration in insuguration in insignion No.94 Set of (x,y) ordered pair that can satisfy equation is called variable set	Bookmark ☐ 4.00 Bookmark ☐ down and the
Cuestion No.91 The angular momentum of the electron in the hydrogen atom can be	Bookmark ☐ 4.00 Bookmark ☐ down and the

Admis	sion Agl
© solution set	
Cuestion No.95 The unit of capacitance is C Henry / Wb C Volts/ Coulomb C Coulombs / Volt Ohms	4.00 Bookmark
Question No.96 Choose the best antonym of the italicized word. There are four chapters that are extraneous to the structure of the book. C needful	4.00 Bookmark □
© important © integral © relevant	
Cuestion No.97 The latent heat of vaporisation of water is 2,240 J. If the work done in the process of vaporisation of 1g is 168 J, then the increase in internal energy is 1904 J 2408 J 2072 J 2240 J	4.00 Bookmark <u></u>
Question No.98 Choose the best synonym of the italicized word. The prisoners of war signed the document under coercion. c supervision c confusion security c compulsion	4.00 Bookmark ☐
Study the following information carefully and answer the question below it (i) There is a group of five persons- A, B, C, D and E (ii) One of them is manual scavenger, one is sweeper, one is watchman, one is human scarecrow and one is grave-digger (iii) Three of them – A, C and grave-digger prefer tea to coffee and two of them – B and the watchman prefer coffee to tea (iv) The human scarecrow and D and A are friends to one another but two of these prefer coffee to tea. (v) The manual scavenger is C's brother Who is a manual scavenger? C B C C C A C D	4.00 Bookmark ፫
Question No.100 Statements: All tools are books, Some books are pens. Conclusion: I. Some tools are pen II. Some pens are books If either I or II follows If neither I nor II follows If only conclusion I follows If only conclusion II follows	4.00 Bookmark ፫

Sr No.	MTech Green Energy Technology
1	Find the missing term in the following series:
	3,15,?,63,99,143?
Alt1	27
Alt2	
Alt3	
Alt4	56
2	
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears: Horse: Jockey:: Car:?
Alt1	Mechanic
Alt2	Chauffeur
Alt3	Steering
Alt4	Brake
	Food is to Fad as Religion is to?
	Crucification
	Notion
	Superstition
Alt4	Mythology
4	Calcat the lettered rein that has the come relationship at the principal rain of words.
4	Select the lettered pair that has the same relationship as the original pair of words: Fond: Doting
Δl+1	Solicitous: Concern
	Verbose: Wordiness
	Flurry: Blizzard
	Magnificent: Grandiose
5	Which of the following is the same as Emancipate, Free, Release?
Alt1	Liberate
Alt2	Quit
	Pardon
Alt4	Ignore
	Spot the defective segment from the following:
	I met one of the mountaineers that have returned
	to their base camp
	the last week
AIL4	and made week
7	Choose the meaning of the idiom/phrase from among the options given:
	To call names
Alt1	to abuse
Alt2	to recall something
Alt3	to count the prisoners
Alt4	to take attendance

8	Our tour programme fell because of inclement weather.
Alt1	through
Alt2	off
Alt3	out
Alt4	down
9	Choose the option closest in meaning to the given word:
	POIGNANT
Alt1	unbearable
Alt2	maximal
Alt3	pathetic
Alt4	sharp
10	Choose the antonymous option you consider the best:
	WANTON
Alt1	rational
Alt2	abstemious
Alt3	dearth
Alt4	deliberate
11	Six people K, L, M, N, O and P are sitting around a table as per the following conditions. i. N
	and O are opposite each other
	ii. K is to the right of M
	iii. L and K are opposite each other
	iv. N is to the left of P
	Who is to the left of L?
Alt1	
Alt2	
Alt3	
Alt4	
7	
12	Study the following table carefully to answer the questions that follow (15 to 17) :Total number of employees
12	in different departments in an organisation and (of these) percentage of females and males
	Department Total number of employees Percentage of female employees Percentage of male employees
	IT 840 45 55
	Accounts 220 35 65
	Production 900 23 77
	HR 360 65 35
	Marketing 450 44 56
	Customer Service 540 40 60
	What is the total number of male employees in the IT and Customer Service departments put together?
	what is the total number of male employees in the H and Customer service departments put together!
Alt1	115
Alt2	700

Alt3	
Alt4	85
13	Study the following table carefully to answer the questions that follow (15 to 17): Total number of employees in different departments in an organisation and (of these) percentage of females and males Department Total number of employees Percentage of female employees Percentage of male employees IT 840 45 55 Accounts 220 35 65 Production 900 23 77 HR 360 65 35 Marketing 450 44 56 Customer Service 540 40 60 What is the total number of employees in all departments put together?
	3260
	3310
	3140
Alt4	3020
14	Select the alternative that logically follows from the two given statements, but not from one statement alone: All Cats are dogs No dogs are rats
Alt1	All cats are rats
Alt2	Some cats are rats
Alt3	No cat is rat
Alt4	None of the above
15	In a certain code language, "When did you come" is written as 'ti na ki ja'. "Will you come again" is written as 'na pa sa ja' and "She will go" is written as 'pa da ra'. How is "again" written in that code language?
Alt1	
Alt2	
Alt3	ja
Alt4	da
16	statements carefully and then decide which of the conclsions follow beyond a reasonable doubt. Mark your answer as Statement: The aspirants should apply through a proper channel for permission Conclusions: (i) Those who apply through proper channel will get permission (ii) Those who do not apply through proper channel will not get permission
Alt1	If only conclusion (i) follows

Alt2	If only conclusion (ii) follows
Alt3	If neither conclusion (i) nor (ii) follows
Alt4	If both the conclusions follow
17	The average height of 3 children is 115 cms. If the heights of 2 children are 117 cms. And 112 cms.
	Respectively, the height of the third child is
Alt1	112 cms.
Alt2	113 cms.
Alt3	115 cms.
Alt4	116 cms.
18	What is the 30% of 40% of 2/5th of 5000?
Alt1	
Alt2	800
Alt3	240
Alt4	
19	There are n persons in a room. Each one is shaking hand with the other. Ultimately there are 66 hand-shakes.
	Then n=
Alt1	
Alt2	
Alt3	
Alt4	
20	A problem is given to students
	10 students choose option A ;
	6 students choose option B;
	2 students choose option C;
	Gopal choose option D;
	5 students did not answer.
	which option is correct if the teacher tells that One-Twelth of the class gave the correct answer.
Alt1	
Alt1	
Alt3 Alt4	
AIL4	D
21	Applications of the standard forms and advantage for many and an application of the standard forms and advantage for many and an application of the standard forms and advantage for many and an application of the standard forms and advantage for many and an application of the standard forms and advantage for many and advantage for the standard forms and advantage for the standard for the standard forms and advantage for the standard forms and advantage for the standard forms and advantage for the standard for the standard forms and advantage for the standard for the standard forms and advantage fo
	Which one is used in industrial fermentation to produce beverages?
	Bacteria Venet
	Yeast
	Microalgae
Alt4	Vitamins
22	The state of the s
22	Number of hydrogen and phosphodiester bonds found in this hypothetical DNA 5' AGCTCGTAGCTACGTGAC 3'
	strand?
<u> </u>	
	24 and 18
Alt2	46 and 34

Alt3	23 and 17
Alt4	48 and 36
23	Allergens are?
	Interferons
Alt2	Lectin compounds
	Non-parasitic antigens
	Fungal antigens
7	
24	Cellobiose is
	Monosaccharide Samuel S
	Disaccharide
	Polysaccharide
	Polymer of glucose and mannose
AIL4	Polymer of glucose and mannose
	Glycolis is the process
	Fermentive
	Aerobic
	Anaerobic
Alt4	Both A and B
26	Chlorophyll molecule contains ion in its structure
Alt1	Mg3+
Alt2	Mg2+
Alt3	Ca2+
Alt4	Fe2+
27	Water use efficiency is minimum in
	CAM plants
	C3 plants
	C4 plants
	All higher plants
AIL4	THE THE PRINTED
20	All amino acid except are specified by more than one codon
	Arginine and Tryptophan
	Tryptophan and Methionine
	Methionone and Arginine
Alt4	Methionine and Threonine
	The independent process of plant microbe interaction in Agrobacterium infection is
	Induction of Vir genes
	T-DNA integration
	Produc on of phenolics
Alt4	All the above
30	The molecule which has the highest percentage of ionic character among the following is
Alt1	HI

Alt2 I	HF
Alt3 I	HCI
Alt4 I	HBr
31	Dimerisation of cyclopentadiene is an example of
	Friedel–Crafts reaction
Alt2	Chain reaction
Alt3	Condensation Polymerisation
\vdash	Diels Alder reaction
L	
32	Density of water is
	1 g/cm3
	10 g/cm3
	100 /cm3
	1000 g/cm3
7.10.1	2000 g/ cms
33	Zeta potential is related to
	Galvanic corrosion
	Surface charge
	Electrophoretic effect
	Bio molecular reaction
Alta	BIO MOICEART TEACTOR
3/1	Indicator used in redox titration is
	Eriochrome black T
	Methyl orange
	Phenolphthalein
	Methylene blue
Alt4	Metriyierie bide
25/	Water is a good solvent of ionic salts because
	It has a high specific heat
-	It has no colour
	It has a high dipole moment
	It has a high boiling point
AIT4	it has a night boiling point
26	The heat energy produced when the human hady metabolises 1 gram of fet is
Alt1	The heat energy produced when the human body metabolises 1 gram of fat is
Alt1	
Alt2	
Alt4	
AIL4	ZJ NJ
27	What are the number of moles of CO2 which contains 16 g of owngon?
	What are the number of moles of CO2 which contains 16 g of oxygen? 0.5 mole
	0.2 mole
	0.4 mole
	0.25 mole
AIL4	U.23 HIUIC
201-	The iron are magnetite consists of
38	The iron ore magnetite consists of

Alt1	Fe2O3
Alt2	Fe3OH4
Alt3	FeCO3
Alt4	3Fe2O3 & 3H2O
39	Steel is more elastic than Rubber because
Alt1	Its density is high
Alt2	It is a metal
Alt3	Ratio of stress to strain is more
Alt4	Ratio of stress to strain is less
40	Plants that grow in saline water are called
-	Halophytes
-	Hydrophytes
-	Mesophytes
Alt4	Thallophytes
	The inherited traits of an organism are controlled by
	RNA molecules
	Nucleotides
	DNA molecules
Alt4	Enzymes
_	If $x + y = k$, $x > 0$, $y > 0$, then xy is maximum when
	x = ky
	kx = y
	x = y
Alt4	None of these
12	The angle between any two diagonals of a cube is
	$\cos \theta = \sqrt{3/2}$
-	$\cos \theta = 1/\sqrt{2}$
	$\cos \theta = 1/3$
	$\cos \theta = 1/\sqrt{6}$
71104	
44	Find the equation of the circle with centre (2, 0) and radius 10 units
	x2+y2-4x-96=0
	x2+y2-x-96=0
	x2+y2+4x-96=0
	x2+y2+4x+96=0
45	Radiocarbon dating technique is used to estimate the age of
	Rocks
Alt2	Monuments
Alt3	Soil
Alt4	Fossils

Alt1	Lower than atmospheric pressure
Alt2	Higher than atmospheric pressure
Alt3	Equal to atmospheric pressure
Alt4	Could be anything
-	
53	The number of d-electrons in Fe2+ (Z = 26) is not equal to that of
Alt1	p-electrons in Ne (Z = 10)
Alt2	s-electrons in Mg (Z = 12)
_	d-electrons in Fe (Z = 26)
Alt4	p-electrons in CI (Z = 17)
54	Nowadays many novel chemicals are being synthesized termed as xenobiotics. The unique feature of these is
	what they are
	I. Biodegradable
	II. Non-biodegradable
	III. Pose on environmental threat
	IV. They are environment friendly
A11.4	
Alt1	
	II, III
	I, III, IV
Alt4	II, III, IV
55	The main buffer system of the human blood is
	H2CO3 - HCO3
	H2CO3 - CO32-
	CH3COOH - CH3COO-
-	NH2CONH2 - NH2CONH+
56	Serum has essentially the same composition as plasma EXCEPT that it lacks
Alt1	Albumin
Alt2	Stuart-Power factor
Alt3	Antihemophilic factor
Alt4	Hageman factor
-	
	Consider the operator $a = x + d/dx$ acting on smooth functions of x. The commutator $[a, \cos x]$ is
	- sin x
Alt2	
	COS X
Alt4	0
_	The dynamics of a particle governed by the Lagrangian L= ½ mx2 – ½ kx2 – kxxt describes
	an undamped simple harmonic oscillator
	a damped harmonic oscillator with a time varying damping factor
	an undamped harmonic oscillator with a time dependent frequency
Ait4	a free particle

59	The 2 x 2 identity matrix I and the Pauli matrices σx, σy, σz do not form a group under matrix multiplication. The
	minimum numbers of 2 x 2 matrices, which includes these four matrices, and form a group (under matrix
	multiplication) is
Alt1	20
Alt2	8
Alt3	12
Alt4	16
60	The first ionization potential of K is 4.34 eV, the electron affinity of Cl is 3.82 eV and the equilibrium separation
	of KCl is 0.3 nm. The energy required to dissociate a KCl molecule into a K and a Cl atom is
Alt1	8.62 eV
Alt2	8.16 eV
Alt3	4.28 eV
Alt4	4.14 eV
61	The period of 2 sin x cos x is
	4π 2
Alt2	
Alt3	
Alt4	
7.110.1	
62	Let A $(2, -3)$ and B $(-2, 1)$ be vertices of a triangle ABC. If the centroid of this triangle moves on the line $2x + 3y =$
02	1, then the locus of the vertex C is the line
Δl+1	2x + 3y = 9
	2x - 3y = 7
	3x + 2y = 5
	3x - 2y = 3
7.110.1	SA 21 3
63	If x dy/dx = y (log y - log x + 1), then the solution of the equation is
	$y \log(x/y) = cx$
	$x \log(y/x) = cy$
	$\log(y/x) - cy$ $\log(y/x) = cx$
	log(y/x) - cx $log(x/y) = cy$
AIL4	$\log(x/y) = cy$
6.1	Loosy
	∫ cosx
	tanx
	secx
	sinx
AIt4	-sinx
CE	A single to only on the constitution of all a to observe the single with contrast (0, 2) and and in 2. The large of the contrast
65	A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre
	of the circle is
	an ellipse
	a circle
	a hyperbola
Alt4	a parabola

66 What is the value of factorial Zero (0!) Alt 10 Alt 2 0 Alt 3 1 Alt 4 -1 67 Young's Modulus of material of a wire is defined as Alt 1 Ratio of linear strain to normal stress Alt 2 Ratio of normal stress to linear strain Alt 3 Product of linear strain to normal stress Alt 4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt 1 0 Alt 2 π/2 Alt 3 π Alt 4 2π 69 According to Charles Law Alt PV = Constant Alt 2 P/V = (-) K Alt 3 VT = Constant Alt VT = K0 70 The resistance of a wire is R ohm: If the wire is stretched to double its length, its resistance will become?
Alt2 0 Alt3 1 Alt4 -1 67 Young's Modulus of material of a wire is defined as Alt1 Ratio of linear strain to normal stress Alt2 Ratio of normal stress to linear strain Alt3 Product of linear strain to normal stress Alt4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alta 1 Alta -1 67 Young's Modulus of material of a wire is defined as Alta Ratio of linear strain to normal stress Alta Ratio of normal stress to linear strain Alta Product of linear strain to normal stress Alta Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alta 0 Alta 0 Alta 7/2 Alta 7/2 Alta 7/2 Alta 7/2 Alta 2π 69 According to Charles Law Alta PV = Constant Alta P/V = {-} K Alta V/T = KO 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 Ratio of linear strain to normal stress Alt2 Ratio of linear strain to normal stress Alt3 Ratio of linear strain to normal stress Alt4 Ratio of linear strain to normal stress Alt5 Ratio of normal stress to linear strain Alt6 Product of linear strain to normal stress Alt7 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
67 Young's Modulus of material of a wire is defined as Alt1 Ratio of linear strain to normal stress Alt2 Ratio of normal stress to linear strain Alt3 Product of linear strain to normal stress Alt4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 Ratio of linear strain to normal stress Alt2 Ratio of normal stress to linear strain Alt3 Product of linear strain to normal stress Alt4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 Ratio of linear strain to normal stress Alt2 Ratio of normal stress to linear strain Alt3 Product of linear strain to normal stress Alt4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 Ratio of linear strain to normal stress Alt2 Ratio of normal stress to linear strain Alt3 Product of linear strain to normal stress Alt4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt3 Product of linear strain to normal stress Alt4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt4 Square root of the ratio between normal stress and linear strain 68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
68 When light wave suffers reflection at the interface between air and glass, the change of phase of the reflected wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
wave is equal to Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 0 Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt2 π/2 Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt3 π Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt4 2π 69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
69 According to Charles Law Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 PV = Constant Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt2 P/V = (-) K Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt3 V/T = Constant Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt4 VT = K0 70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
70 The resistance of a wire is R ohm. If the wire is stretched to double its length, its resistance will become?
Alt1 2R
Alt2 R/2
Alt3 R/4
Alt4 4R
71 Optical fiber works on the
Alt1 principle of refraction
Alt2 total internal reflection
Alt3 scattering
Alt4 interference
72 Heat transfer takes place according to
Alt1 Zeroth law of thermodynamics
Alt2 First law of thermodynamics
Alt3 Second law of thermodynamics
Alt4 Kirchoff's law
73 The 'Greenhouse effect' in atmosphere is mainly due to increase in atomospheric
7.5 Fine Oreenhouse check in almosphere is mainly due to increase in aloniospheric

Alt2	Nitrogen
Alt3	Carbon dioxide
Alt4	Carbon monoxide
74	Algal bloom results in
Alt1	Global warming
Alt2	Salination
Alt3	Eutrophication
Alt4	Biomagnification
75	A high biological oxygen demand (BOD) indicates that
Alt1	water is pure
Alt2	absence of microbial action
Alt3	low level of microbial pollution
Alt4	high level of microbial pollution
76	What is the maximum number of phases that can be at equilibrium with each other in a three-component
	mixture?
Alt1	2
Alt2	
Alt3	4
Alt4	
77	Which of the following is always true of a spontaneous process?
	The process is exothermic
Alt2	The process does not involve any work
Alt3	The entropy of the system increases
Alt4	The total entropy of the system plus surroundings increases
78	Infrared (IR) spectroscopy is useful for determining the certain aspects of the structure of organic molecules
	because
Alt1	all molecular bonds absorb IR radiation
Alt2	IR peak intensities are related to molecular mass
Alt3	most organic functional groups absorb in a characteristic region of the IR spectrum
Alt4	each element absorbs at a characteristic wavelength
79	Assuming complete dissociation, of the following solutions which will have the highest ionic strength?
Δlt1	0.050 M AICI3
	0.100 M NaCl
	0.050 M CaCl2
	0.100 M HCl
AIL4	0.250 m no.
80	Cobalt – 60 is used in a radiation therapy of cancer and can be produced by bombardment of Cobalt – 59 with
	which of the following?
Δlt1	Neutrons
	Alpha particles
AILZ	rupna particies

Alt3	Beta particles
Alt4	X – rays
81	Which of the following observations were explained by Planck's quantum theory?
Alt1	Blackbody radiation
Alt2	Emission spectra of diatomic molecules
	Electron diffraction patterns
	Temperature dependence of reaction rates
82	Which of the following is an n-type semiconductor?
	Silicon
	Diamond
	Silicon carbide
	Arsenic-doped silicon
7110-1	Auseine doped sincon
02	Of the following compounds, which is LEAST likely to behave as a Lewis acid?
	BeCl2
	MgCl2
	ZnCl2
Alt4	SCI2
	The strongest base in liquid ammonia is
	NH3
	NH2-
	NH4+
Alt4	N2H4
	Which of the following is required for both paramagnetism and ferromagnetism?
	Strong oxidizing conditions
Alt2	Low-spin electron configuration
Alt3	Metallic physical properties
Alt4	Unpaired electrons
86	Of the following atoms, which has the lowest electron affinity?
Alt1	F
Alt2	Si
Alt3	0
Alt4	
87	Which of the following is a primary standard for use in standardizing bases?
	Ammonium hydroxide
	Potassium hydrogen phthalate
	Acetic acid
	Sulfuric acid
AILH	- Surface a Cia
00	Formation of ozone is
AIT1	oxidation reaction

Alt2	reduction reaction
Alt3	photochemical reaction
Alt4	electrochemical reaction
89	Nutrients are recycled in ecosystem by
Alt1	Biogeochemical cycle
Alt2	Energy flow
Alt3	Producers
Alt4	Consumers
90	Driving force in an ecosystem is
Alt1	Plants
Alt2	Producers
Alt3	Solar energy
Alt4	Biomass energy
91	Two coils in differential connection have self inductance of 2mH and 4mH and a mutual inductance of 0.15mH.
	The equivalent inductance of the combination is
	5.7 mH
Alt2	5.85 mH
	6 mH
Alt4	6.15 mH
	If an intrinsic semiconductor is doped with a very small amount of Boron, then the extrinsic semiconductor so
	formed, the number of electrons and holes will
-	Decrease
Alt2	Increase and decrease respectively
	Increase
Alt4	Decrease and increase respectively
—	Photovoltaic emf of silicon solar cell is of the order of
—	0.1 Volts
—	0.5 Volts
	1.1 Volts
Alt4	1.72 Volts
	The MOSFET switch in its On-state may be considered equivalent to
	Resistor
	Inductor
	Capacitor
Alt4	Battery
0.5	A construction by the Late of Construction of the Construction of Advances and Advances of the Construction of the
95	A memory system has total of 8 memory chips, each with 12 address lines and 4 data lines. The total size of the
A 1± 4	memory system is
	6 kbytes
	32 kbytes 48 kbytes
A 1. ~	

Alt4	64 kbytes
96	The rank of the following matrix is
	[123
	142
	Service Code (Service)
	2 6 5]
Alt1	0
Alt2	1
Alt3	2
Alt4	3
97	Process of generating electric power and useful heat in a single installation is known as
Alt1	Regeneration
	Cogeneration
	Total generation
Alt4	Integral production
	For a reversible adiabatic process, the change in entropy is
	Zero
	Minimum
	Infinite
Alt4	Unity
00	In a Cornet engine, when the working fluid gives heat to sink
	In a Carnot engine, when the working fluid gives heat to sink, The temperature of sink increase
	The temperature of the source decrease
	The temperature of both source and sink decrease
	The temperature of sink remains same
AILT	The temperature of sincremans sume
100	Regenerative cycle thermal efficiency of a Rankine cycle
	Is same as that of simple Rankine cycle
	Is always less than that of simple Rankine cycle
	Is always greater than that of simple Rankine cycle
Alt4	None

307 PU M Tech Green Energy Technology

1 of 100

129 PU_2016_307

The maximum slope of the curve x^2+6x^2+2x+1 is:-

- [©] 16
- [©] 19
- -13
- O 14

2 of 100

119 PU_2016_307

The triangle of maximum area inscribed in a circle of radius r is:-

- An isosceles triangle of height r
- An equilateral triangle
- A right angled triangle with hypotenuse measuring 2r
- None of these

3 of 100

136 PU_2016_307

The coefficient of $(z-\pi)^2$ in the Taylor expansion of f(z) $\begin{cases} \frac{\sin(z)}{z-\pi} & \text{if } z \neq \pi \\ -1 & \text{if } z = \pi \end{cases}$

arround π is:-

- 1/6
- -1/6
- 1/2
- -1/2

4 of 100

115 PU 2016 307

If $A\begin{bmatrix} -2 & 1 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 7 \\ -1 & 20 \end{bmatrix}$ then the matrix A is equal to:-

- $\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$
- 0 [1 2]
- $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$

$$\begin{bmatrix} -2 & 1 \\ 3 & 5 \end{bmatrix}$$

5 of 100

121 PU_2016_307

The area bounded by the curves $y = \sqrt{x}$, $2y+3\pi x$ and x axis in the first quadrant is:-

- Ο π/2
- Ο π/4
- О,
- O 18

6 of 100

137 PU_2016_307

Let
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$$
 then:-

- $\lim_{x\to 0} f(x) = 0$
- $\bigcirc \lim_{x\to 0} f(x) = \pi^6/2$
- $\bigcap_{x\to 0} \lim_{x\to 0} f(x)$ does not exist
- $\lim_{x\to 0} f(x) = 1$

7 of 100

103 PU_2016_307

Solution of the differential equation $\frac{d^2x}{dy^2} + x = 0$, x = 0 at y = 0 and x = 1 at $y = \pi/2$:

- sin⁻¹(y)
- $x = \sin(y) + \cos(y)$
- $x = \sin(y)$
- x = cos(y)

8 of 100

111 PU_2016_307

If a transformation y=uv transforms the given differential equation

f(x)y'' - 4f'(x)y' + g(x)y = 0 into the equation of the form v'' + h(x)v = 0 then u must be:-

- 0 1/f2
- O xf

9 of 100

125 PU 2016 307

If a function f(z)=u(x,y)+iv(x,y) of the complex variable z=x+iy, where x, y, u and v are real, is analytic in a domain D of Z then which of the following is true:-

$$\bigcap_{x} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{ and } \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} \text{ and } \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

10 of 100

107 PU_2016_307

A field F is irrotational if:-

$$^{\circ}$$
 grad F = 0

11 of 100

123 PU_2016_307

If g is a function defined on the open interval (a, b) such that a < g(x) < x for all $x \in (a, b)$ then g is:-

- a non-negative function
- a non-constant function
- An unbounded function
- a strictly increasing function

12 of 100

131 PU_2016_307

Which of the following is a linear differential equation:-

$$(1+y)\frac{dy}{dx} + +\sin(x) = 0$$

$$0 \frac{dy}{dx} + y(y+x) = x^2$$

$$\frac{dy}{dx} + x^2 y = \sin(y)$$

$$\int_{C}^{\infty} \frac{dy}{dx} - x^2 y = \sin(x)$$

13 of 100 127 PU_2016_307 If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and a+d=1 and ad-bc=1 then A³ equals:none of these 14 of 100 138 PU_2016_307 Let C be the contour |z| = 2 oriented the anti-clockwise direction. The value of the integral $\oint_C ze^{3/z} dz$ is:-5πi 9πi Зπі 15 of 100 117 PU_2016_307 The matrix $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ is:-Orthogonal Unitary hermitian skew hermitian 16 of 100 113 PU_2016_307 The possible set of eigen values of a 4x4 skew-symmestric orthogonal real matrix is:- $\{\pm i \; ; \; \pm 1\}$ {±1} {0,±i}

17 of 100

{±i}

105 PU_2016_307

For XOR operator ⊕ which one is not correct?

0 1⊕0 = 1
0⊕0 = 1
0⊕1 = 1
1⊕1 = 0
18 of 100 133 PU_2016_307 y=x ⁻ⁿ where n is a positive integer represents:- straight line
enipse
рагарога
hyperbola
19 of 100 109 PU_2016_307
The volume of the parallelepiped whose edges are represented by
$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k} \vec{b} = \hat{i} + 2\hat{j} - \hat{k} \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k} \text{ is:-}$ 28 7 6 15
20 of 100 101 PU_2016_307 A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. The number of ways he can choose the question is:-
196 C ₂₈₀
C 140
C 346
21 of 100 161 PU_2016_307 The point group symmetry of the staggered form of ethane molecule is:- D_{3d} D_{3h} D_{3} C_{3v}

22 (of 100
	PU_2016_307 ch among the following will be paramagnetic?
0	V(CO) ₆
0	Cr(CO) ₆
0	Fe(CO) ₅
0	Fe2(CO) ₉
145	of 100 PU_2016_307 substance which completely destroys or reduces the activity of the catalyst is called:- Catalyst Inhibitor
0	Catalyst poison
0	
	Promoter
153	of 100 PU_2016_307 coxidation state of Cr in CrO₅ is:- +2
0	+10
0	+4
0	+6
25	
169 IUP	of 100 PU_2016_307 AC name of [Pt(NH ₃) ₃ (Br)(NO ₂)Cl]Cl is:-
0	Triamminenitrochlorobromo platinum (IV) chloride
0	Bromochloro nitrotriammine platinum (IV) chloride
	Triamminebromo chloronitro platinum (IV) chloride
0	Triamminechloro bromonitro platinum (IV) chloride
143 The	of 100 PU_2016_307 compound YBa ₂ Cu ₃ O ₇ is used as:-
0	Superconductor
0	Super-cooled material
0	Semiconductor
0	Dielectric

	Of 100 PU_2016_307
In s	econd order reaction $A \to B$, if the concentration of A is doubled, the half-life of the reaction will be:-
0	Halved
0	Unchanged
0	Quadrupled
0	Doubled
147	of 100 PU_2016_307 Bragg condition is:- $sin\theta = n\lambda$ $dsin\theta = 2\lambda$ $sin\theta = \lambda/d$
	$2d\sin\theta = n\lambda$
179	of 100 PU_2016_307 ich of the following statement is true for electrochemical cells? H ₂ is anode and Cu is electrode
0	Reduction occurs at H ₂ electrode
0	H ₂ is cathode and Cu is anode
0	
	oxidation occurs at Cu electrode
141	of 100 PU_2016_307 water will boil at a temperature
0	Same as that of pure water
0	Higher than pure water
0	Lower than pure water
	Cannot be predicted
31 of 100 177 PU_2016_307 How many NMR signals are formed in cis-dimethyl cyclopropane and transdimethyl cyclopropane:-	
0	1,2
0	3,4
0	8,10
0	2,3

32 of 100 175 PU_2016_307 In the Boat conformation of cyclohexane the most destabilizing interaction is:-		
0	Eclipsing	
0	Flagpole-Flangpole	
0	1,3 - diequatorial	
0	1,3 - diaxial	
155 The	of 100 PU_2016_307 complexes [Co(H ₂ O) ₄ Cl ₂]NO ₂ and [Co(H ₂ O) ₄ Cl(NO ₂)]Cl are:-	
0	optical isomers	
0	linkage isomers	
0	ionization isomers	
0	positional isomers	
34 of 100 157 PU_2016_307 Atoms of different elements containing the same number of neutrons but different nurnucleons is known as:-		
0	Isodiaphers	
0	Isotones	
0	Isotopes	
0	Isosterism	
173	of 100 PU_2016_307 is used as a catalyst in several industrial processes due to:-	
0	Weak Lewis acid character	
0	Strong reducing nature	
0	Strong Lewis acid nature	
0	Weak reducing action	
163 PF3	of 100 PU_2016_307 B belongs to the point group:-	
0	D_2d	
0	C_{3v}	
0	D_{3h}	
0	D_{2h}	

149	of 100 PU_2016_307 ax is used in preparing:-
0	Portland cement
0	Soda glass
0	Pyrex glass
0	Opal glass
151	PU_2016_307 sbauer effect is also related with resonance fluorescence of:-
0	Beta rays
0	Alpha rays
0	Gamma rays
	X-rays
165	of 100 PU_2016_307 the reaction $KIO_3 + 5KI + 6HC1 \longrightarrow 3I_2 + 6KC1 + 3H_2O$:-
0	KI is reduced to I ₂
0	KIO ₃ is reduced to I ₂
0	KIO ₃ is oxidised to I ₂
0	None of the above
159	PU_2016_307 ch among the following is not true for electrochemical cell? It consists of a battery Anode acquires negative charge It consists of generally two electrolytes It needs a porous partition
203	of 100 PU_2016_307 ASER, at threshold condition:-
0	Stimulated emission is dominant over illumination
0	Stimulated emission is dominant over resistance
0	Stimulated emission is dominant over absorption
0	Stimulated emission is dominant over spontaneous emission

183	of 100 PU_2016_307 mic bonding is established due to:-
	gravitational force
0	electrostatic force
0	magnetic force
0	nuclear force
215	PU_2016_307 Young's modulus is obtained from the ratio between:-
0	Strain and the length
0	Strain and elongation
0	Strain and the stress
~	Strain and the diameter
197	of 100 PU_2016_307 na decay of an atom/isotope results the loss of:-
	Two neutrons
0	Two protons and two neutrons
0	Two Electrons
0	Two photons
191	of 100 PU_2016_307 potential barrier at P-N junction arises due to:-
	minority carriers
0	majority carriers
0	both majority and minority carriers
0	Fixed donor and acceptor concentration
205	of 100 PU_2016_307 nnel diode is fabricated using:-
0	Intrinsic semiconductor
\circ	Shallow doped pn junction
\circ	Heavily doped pn junction
0	A high resistive pn junction
	· ,

217	of 100 PU_2016_307 value of solar constant is:-
0	$1.36 \text{ J/m}^2\text{-s}$
0	1.36 KW/m ² -s
0	1.36 W/ m ² -s
0	$1.46 \text{ KW/m}^2\text{-s}$
219 The O	PU_2016_307 ratio of the charge sensitivity and the current sensitivity of a ballistic galvanometer is:- $T/2\pi$ $2\pi/T$ $\frac{1}{2}\pi$
187 The	PU_2016_307 magnetization of a superconductor is:H 0 -1
181	PU_2016_307 effective mass of an electron in a semiconductor can be:- negative near the bottom of the band zero at the centre of the band A scalar quantity with a small magnitude negative near the top of the band
185 The	PU_2016_307 decrease in free energy during recrystallization originates mainly from:- lower energy of the new crystal structure grain boundaries
0	excess dislocations
0	excess point defects

189 The	of 100 PU_2016_307 temperature of the antiferromagnetic-to-paramagnetic transition is called:-
0	Debye temperature
0	Curie-Weiss temperature
0	Neel temperature
0	antiferromagnetic Curie temperature
209	PU_2016_307 ice isolation in an integrating Circuit fabrication is achieved using:- SiO ₂ deposition Etching Metalization Photomasking
211 Imp	of 100 PU_2016_307 roper biasing to the Transistor circuit leads to:-
0	Heavy loading of the emitter terminal
0	Distortion in the output signal
0	Faulty location of the load line
0	Excess heat production at the collector terminal
213	PU_2016_307 en a body is thrown, the horizontal range of projectile 'R" can be defined as:- R = (u. Sin20)/g R = (2u. Sin20)/g R = (2g. Sin20)/g R = (uv. Sin20)/g
195 NAN	of 100 PU_2016_307 ND gate does the function of:-
0	Subtraction
0	Addition
0	Inversion
0	Multiplication

57 of 100 199 PU_2016_307 Acceleration "f" of a charge "q" caused by an applied electric field "E" is defined as:-		
	f = μm* E/q	
	$f = \mu E/q$	
	$f = q E/m^*$	
0	$f = m^* E/q$	
193 Elec	of 100 PU_2016_307 ctric motor works under the:-	
0	Fleming's Right hand rule	
0	Faraday's rule	
0	Fleming's left hand rule	
0	Einstein's rule	
207 The O	of 100 PU_2016_307 etrans-conductance "g" of JFET is equal to:-	
201 The	of 100 PU_2016_307 angular frequency of rotation (ω_c) upon interaction between electron and magnetic field without ision is:- $\omega_c = \sigma e B/m^*$ $\omega_c = e B/m^*$ $\omega_c = B/m^*e$	
0	$\omega_{\rm c}$ = σ m*/B	
253 Elec	of 100 PU_2016_307 ctron acceptor in Photosystem II is:-	
0	Ferredoxin	
O	Quinone	
0	Plastoquinone	
0	Cytochrome	

of 100 PU_2016_307 ases carry out:-
Removal of phosphates
Phosphorylation
Transfer of galactose
Hydrolysis
PU_2016_307 ch of the following is a termination codon in a polypeptide synthesis? AUG UAA GUG UGG
PU_2016_307 ch one of the following amino acid is represented by single codon? Valine Lysine Proline Methionine
PU_2016_307 following is a plant growth regulator used for quick ripening of fruit:- Ethylene Butylene Auxin Insulin
of 100 PU_2016_307 ne absence of molecular oxygen as in the skeletal muscles, pyruvate is converted into:- Acetic Acid Formic Acid Lactic Acid CO ₂

227	of 100 PU_2016_307 nt Mutations are due to:-
0	Changes in normal arrangement of gene in a chromosome
0	Changes in number of chromosomes
0	Gross changes in chromosomes
0	Changes in nucleotide sequence of a gene
249	of 100 PU_2016_307 ymes that catalyses the linkage of molecule by splitting a phosphate bond is:- Isomerase Ligase Lysase Transferase
259	PU_2016_307 wing plants from its parts such as leaf, stem, root is termed as:- Vegetative propagation Cloning Seedless culture Non-vegetative propagation
233	PU_2016_307 centage of light energy utilized in photosynthesis is generally around:- 90% 50% 10%
235 Aux	of 100 PU_2016_307 ins inhibits the growth of:- Parthinocarpic development of fruits Roots
0	Lateral axillary buds
	Apical buds

245	of 100 PU_2016_307 FC is an eco-friendly gas and it differs from CFC by:-
0	The deletion of CO from CFC
0	Nitrous oxide
0	By the addition of chlorine to CFC
0	The loss of chlorine and bromine
229 Wha	of 100 PU_2016_307 at can happen when wheat field is inoculated with Rhizobium?
0	Increase in production/ nitrogen content of the soil
0	Fertility of the soil decreases
0	No increase in production/ nitrogen content of the soil
0	Fertility of the soil increases
255 Whi	of 100 PU_2016_307 ch of the following is correct for B-DNA?
0	It has no helical sense
0	It has no phosphate backbone
0	It has right-handed helical sense
0	It has left-handed helical sense
243	of 100 PU_2016_307 ch of the following is not a vitamin?
0	Riboflavin
0	Folic Acid
0	Formic Acid
0	Ascorbic Acid
225	PU_2016_307 correct sequence of mitosis in an animal cell is:-
0	Interphase, Metaphase, Prophase, Anaphase, Telophase
0	Metaphase, Anaphase, Prophase, Interphase, Telophase
0	Prophase, Interphase, Anaphase, Metaphase, Telophase

Interphase, Prophase, Metaphase, Anaphase, Telophase

77 of 100 239 PU_2016_307 Which of the following protein acts as an energy transduer?		
0	Hemoglobin	
0	Bacteriorhodopsin	
0	Heat shock protein	
0	G-protein	
247 Inte	of 100 PU_2016_307 rnal phosphodiester bond in a nucleic acid molecule is hydrolysed by:-	
0	DNA polymerase	
0	Endonuclease	
0	deoxyribonuclease	
0	Exonuclease	
79 of 100 221 PU_2016_307 Which side of t-RNA molecule hydrogen bonds to mRNA molecule?		
0	3' end of t-RNA molecule	
\circ	5' end of t-RNA molecule	
0	Anticodon	
0	Codon	
80 of 100 223 PU_2016_307 Okazaki fragment relate to:-		
0	Partially synthesized mRNA	
0	DNA Primers for leading strand synthesis	
0	SiRNA fragments	
0	DNA fragment that help synthesis of lagging strand	
263	of 100 PU_2016_307 mean temperature difference in case of counter flow compared to parallel flow heat exchanger will	
0	less	
0	same	
0	more	

ı	0	depends on other factors
2° T 5° °(275 The 5x1	of 100 PU_2016_307 rate of conductive heat transfer across 1m ² of a mild steel plate that has a constant thickness of 0 ⁻³ m and a thermal conductivity of 45 W/mK, when the temperature of hot and cold surfaces are 100 and 99.9 °C, is:-
	0	90 W
1	0	900 W
1	0	0.007 W
2 A te	271 An	of 100 PU_2016_307 engine working on carnot cycle rejects 40% of absorbed heat from the source, while the sink perature is maintained at 27°C, then what is the source temperature? 477°C
1	0	
1	0	67.5°C
1	0	750°C
		203°C
28	289	of 100 PU_2016_307 In axial flow impulse turbine, energy transfer takes place due to:-
1	0	change in absolute kinetic energy
1	0	change in pressure energy
1	0	change in relative kinetic energy
ı	0	change in energy balance because of centrifugal force
28 TH he C C C C C C C C C C C C In	281 The hea	of 100 PU_2016_307 thermal efficiency of a carnot heat engine is 30%. If the engine is reversed in operation to work as a t pump with operating conditions unchanged, then what will be the COP for heat pump?
	0	0.33
	0	0.30
	0	2.33
	0	cannot be calculated
	273	of 100 PU_2016_307 throttling process, which one of the following parameters remains constant?
		entropy

0	enthalpy
0	temperature
0	pressure
283 In a O O	PU_2016_307 psychrometric chart, what does a vertical downward line represent? dehumidification process sensible cooling process humidification process adiabatic saturation process
269 The	of 100 PU_2016_307 refrigerant for a refrigerator should have:-
0	high latent heat
0	high total heat
0	low latent heat
0	high sensible heat
298 A m Wha	PU_2016_307 etal plate has a surface area of 2 m², thickness 10 mm and a thermal conductivity of 200 W/m K at is the thermal resistance of the plate? 2.5 x 10 ⁻³ K/W 2.5 x 10 ⁻⁵ K/W 4 x 10 ⁴ K/W 1.5 x 10 ⁻⁵ K/W
299	PU_2016_307 m wide rectangular channel carries 15 m³/sec of water. Its critical depth is equal to:- 2m 1.6m 1m 1.5m
01	of 100

287 PU_2016_307
Which one of the following metal forming processes is not a high energy rate forming process?

0	Electro-magnetic forming
0	Roll-forming
\circ	Electro-hydraulic forming
0	Explosive forming
261	of 100 PU_2016_307 rmal conductivity of solid metals with rise in temperature normally:-
\circ	increases
0	remains constant
0	
	unpredictable
279 The	of 100 PU_2016_307 vanes of a centrifugal pump are generally:-
0	Curved backward
0	Twisted
0	Radial
0	Curved forward
291	of 100 PU_2016_307 power absorbed by hydraulic pump is directly proportional to which one of the following? N
\circ	N^4
\circ	N^3
0	N^2
265 The	of 100 PU_2016_307 vapour pressure of refrigerant should be:-
0	equal to atmospheric pressure
0	lower than atmospheric pressure
0	higher than atmospheric pressure
0	could be anything
	of 100 PU_2016_307

	ich thermodynamic property is evaluated with the help of Maxwell equations from the data of other asurable properties of steam?
0	Entropy
0	Enthalpy
0	Specific heat
0	Latent heat
267 Air	of 100 PU_2016_307 can be best heated by steam in a heat exchanger of:-
0	plate type
0	shell and tube type
0	double pipe type with fins on steam side
0	double pipe type with fins on air side
296 A th	of 100 5 PU_2016_307 hree phase 6 pole 50 HZ induction motor is running at 5% slip. What is the speed of the motor?
0	850 rpm
0	1000 rpm
0	900 rpm
0	950 rpm
294 A g	of 100 PU_2016_307 as turbine plant working on Joule cycle produces 4000 kW of power. If its work ratio is 40%, what is power consumed by compressor?
0	8000 KW
0	2000 KW
0	6000 KW
0	4000 KW
277 The	O of 100 PU_2016_307 e value of solar constant is:-
0	1637 W/m ²
0	1763 W/m ²
0	1000 W/m ²
0	1367 W/m ²

PU M Tech Green Energy Technology

196	f 100 PU_2015_307 Tyme that is involved in the interconversion of relaxed and supercoil DNA is: Exonuleases RNA Polymerases Topoisomerases DNA Polymerases
133 A ur C C	f 100 PU_2015_307 nit matrix of order n is of rank:- n 1 2n 0
168	f 100 PU_2015_307 minum is obtained from alumina by:- Reduction with zinc Reduction with carbon Electrolytic reduction None
181	F 100 PU_2015_307 v many number bacteria are there in 0.1μl of 106 cells/ml of culture? 100 10 1000
166 The	f 100 PU_2015_307 transition metal present in vitamin B-12 is:- Fe Cu Co None

177 PU_2015_307

Which of the following molecules show EPR resonance?

□ _{H₂O}

□ H₂O₂

 \square_{O_2}

□ _{CO₂}

7 of 100

120 PU 2015 307

The quadratic equation $4kx^2-8x+k=0$ has equal roots. Then the value of k is:-

 \mathbb{C}_{2}

 \square_4

 \square_1

□ _{0.5}

8 of 100

144 PU_2015_307

Oxidation number of Fe in Fe₃O₄ is:-

L _{4/3}

8/3

C _{5/3}

□ _{2/3}

9 of 100

118 PU_2015_307

Solution of the differential equation

$$\frac{d^2x}{dv^2} + x = 0$$
, $x = 0$ at $y = 0$ and $x = 1$ at $y = \frac{\pi}{2}$

 $x = \sin(y)$

 Γ $x = \sin(y) + \cos(y)$

x = cos(y)

10 of 100

215 PU_2015_307

A true breeding tall plant is crossed with a true breeding short plant and the F_1 generation produced is self-pollinated to produce F_2 generation. Ratio of true breeding tall and true breeding short plant in F_2 generation will be:-

□ _{1:1}

L 1.2

```
□ 2:1
11 of 100
145 PU_2015_307
Which of the following is paramagnetic?
C [Cr(CO)<sub>6</sub>]
C [Fe(CO)<sub>6</sub>]
[Ni(CO)<sub>6</sub>]
[V(CO)<sub>6</sub>]<sup>+</sup>
12 of 100
180 PU_2015_307
Thermophile bacteria that grow in the temperature range of:-
\square 30 °C to 75 °C;
15 °C to 45 °C;
\Box -10 °C to 20 °C;
C Above 100 °C.
13 of 100
162 PU 2015 307
Which of the following molecules will have a permanent dipole moment?
C XeF4
\square BF3
C <sub>SiF4</sub>
□ <sub>SF4</sub>
14 of 100
210 PU_2015_307
Enzyme that are used to hydrolyse fats into diglycerides, monoglycerides, fatty acids and glycerol is:-
C Protease
Zymase
Cellulase
   Lipase
15 of 100
127 PU_2015_307
The function f(z) = is differentiable at:-
\square_{i}
□ <sub>-1</sub>
```

114	PU_2015_307
For	all real numbers x, y the expression $\frac{x+y+ x-y }{2}$ is equal to (*)
	x+y
C	The average of $ x $ and $ y $
C	the maximum of x and y
C	the minimum of x and y
176 If Δ	of 100 PU_2015_307 G° is zero for a reaction, then:-
	$\Delta H = 0$
	k = 1
	$\Delta S = 0$
	k (equilibrium constant) = 0
208	of 100 PU_2015_307 absorption maxima of chlorophyll in PhotoSystemII is:-
	700nm
	600nm
	680nm
	780nm
169 Der	of 100 PU_2015_307 sity Of States (DOS) is maximum for:-
	Quantum rod
	Quantum well
	Quantum dot
	Quantum wire
206 Whi	of 100 PU_2015_307 ich of the following is not a restriction endonuclease?
	Eco R1
	DNA Ligase
	Bam H1
	Hind III

13	m=n and the coefficient matrix is non-singular m≠nand the coefficient matrix is non-singular
17 A s	e of 100 9 PU_2015_307 silver cube having edge size 1 mµ was subdivided into 10 nm silver cubes. The surface to volume ratio expected to:- Decrease
\Box	Decrease
	Increase
\Box	
13 A s L L	1 PU_2015_307 skew symmetric matrix cannot be of rank:- 1 greater than 1 0 -1
12	of 100 4 PU_2015_307 f g is a function defined on the open interval (a,b) such that $a < g(x) < x$ for all $x \in (a,b)$ then An unbounded function a strictly increasing function a non-negative function a non-constant function
18	8 PU_2015_307 ta sheets in a protein are formed due to:- Due to Sulpher bridge between two residues Covalent bonding between amino acids in a polypeptide lonic bond between the residues
L	Hydrogen bonding between polypeptide chain

173 PU_2015_307

The structure of O₃ and N₃- are:-

bent and linear, respectively

Linear and bent, respectively

both bent

both linear

27 of 100

139 PU_2015_307

For joint probability $P(A \cap B)$ for two events A and B:-

$$P(A \cap B) = P(A)P(B) - P(A \cup B)$$

$$P(A \cap B) = P(A) + P(B)$$

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

$$P(A \cap B) = P(A) + P(B) + P(A \cup B)$$

28 of 100

102 PU_2015_307

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 then A^{50} is

$$\begin{bmatrix} 1 & 0 & 0 \\ 48 & 1 & 0 \\ 48 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 24 & 1 & 0 \\ 24 & 0 & 1 \end{bmatrix}$$

29 of 100

189 PU_2015_307

Waxes are:-

- Saturated long chain hydrocarbons
- Lipids with long chain carbohydrates
- Ether link of long chain fatty acid with long chain alcohol
- Lipids with a polypeptide linkage

178	of 100 PU_2015_307 at among following is used to produce artificial rain?
	carbon monoxide
C	copper oxide
	silver iodide
	silver nitrate
130	PU_2015_307 ere exist a non-zero minor of order r, then rank of A is:- greater than or equal to r Equal to r less than r less than or equal to r
152 The C C	PU_2015_307 point group symmetry of H_2S molecule is:- D_{3h} C_{2v} C_{1v}
182	PU_2015_307 ch of the following is the perfect ligand for avidin? streptavidin; IP3 nicotine; biotin;
175 Osn C C	PU_2015_307 nimum tetroxide is a reagent used for:- Hydroylation of acetylene Hydroxylation of olefins to give trans diols Hydroxylation of carbonyl compounds
	Hydroxylation of olefins to give cis diols

137 PU_2015_307

The equation of a straight line that passes through point A(1,-1) and has a slope equa to -1 is:-

- V=X+
- ☐ _{y=1/x}

36 of 100

143 PU_2015_307

In the exothermic reaction, the enthalpy of a reaction is always:-

- Positive
- C Zero
- C Negative
- C All

37 of 100

129 PU_2015_307

Let
$$X = \begin{bmatrix} 2 & 0 & -3 \\ 3 & -1 & -3 \\ 0 & 0 & -1 \end{bmatrix}$$
. A matrix P such that P-1XP is a diagonal matrix is

- $\begin{bmatrix}
 -1 & 1 & 1 \\
 0 & 1 & 1 \\
 1 & 1 & 0
 \end{bmatrix}$
- $\square \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
- $\begin{array}{cccc}
 \begin{bmatrix}
 1 & -1 & 1 \\
 0 & 1 & 1 \\
 1 & 1 & 0
 \end{array}$
- $\begin{bmatrix}
 -1 & -1 & 1 \\
 0 & -1 & 1 \\
 1 & 1 & 0
 \end{bmatrix}$

38 of 100

138 PU_2015_307

Root of the equation $x^2+ix+2=0$, where $i=\sqrt{-1}$ is:-

- C (-1, 1)
- C (i, 1)
- no root exist

172 PU_2015_307

The structure of NaCl is:-

Cubic

Trigonal

C Monoclinic

C _{Triclinic}

40 of 100

135 PU_2015_307

Derivative of y=2^x is:-

$$\Box \frac{dy}{dx} = -x2^{x-1}$$

$$\frac{dy}{dx} = \frac{2^{x-1}}{x}$$

$$\frac{dy}{dx} = 2.3\log 2.2^{x}$$

$$\frac{dy}{dx} = x \, 2^{x-1}$$

41 of 100

123 PU 2015 307

A drawn contains 2 blue, 4 red, and 2 yellow socks. If 2 socks are to be randomly selected from the drawer, what is the probability that they will be same color?

2/7

3/5

□ _{3/7}

C _{2/5}

42 of 100

117 PU_2015_307

When two vectors A(i) and B(j) are orthonormal then:-

 \Box A(i).B(j) = 0

 \square A(i).B(j) = 1

 \Box A(i).B(j) = δ ij

none of the above

43 of 100

186 PU_2015_307

RNA Polymerase is an enzyme that:-

Translate RNA

C Transcribe DNA

Replicate DNA Replicate RNA	
44 of 100 148 PU_2015_307 The bond order of C_2 molecule is:- C_2 molecule is:- C_3 molecule is:- C_4 molecule is:- C_4 molecule is:-	
45 of 100 142 PU_2015_307 For a spontaneous reaction:- $ \Box \Delta G = -ve $ $ \Box \Delta G = +ve $ $ \Box \Delta G = 0 $ None	
46 of 100 174 PU_2015_307 The number of orbitals present in the n = 4 atomic shell is:-	
47 of 100 126 PU_2015_307 If y=5x²+3, then the tangent at x=0, y=3:- L has a slope -1 L Passes through x=0, y=0 L has a slope +1 L is parallel to the x-axis 48 of 100 147 PU_2015_307 The 'd' orbital which has the maximum electronic probability electron density lying along two axis is known as:- L dx L dx L dx L dx	wn

$\begin{array}{ccc} \square & dx^2 \\ \square & dxy \end{array}$	
49 of 100 141 PU_2015_307 The planar geometry is exhibited by:- CO_3^{2-} NI_3 PF_5 CIO_4	
50 of 100 146 PU_2015_307 Which one of the following high-spin complexes has the highest CFSE?	
51 of 100 153 PU_2015_307 A Carnot engine operates between 600 and 800K, and observes 2000 calories heat from the source. The work done (in cal) is:- Li 2000 Li 666 Li 1000 Li 500	ne
52 of 100 192 PU_2015_307 End-to-end length of a bacteriophage DNA having 48kbp is:- 150μm 15.4μm; 1.54μm; 1.50μm;	
53 of 100 184 PU_2015_307 Autotrophic microbes:- Releases CO ₂ ; Fixes O ₂	

```
C Fixes CO<sub>2</sub>;
\Gamma Releases O_2;
54 of 100
121 PU_2015_307
The remainder when 2x^3+x^2-1 is divided by (x-2) is:-
\square_9
□ 5
\Box 19
□ -13
55 of 100
170 PU_2015_307
The metal used in storage battery is:-
\square<sub>Pt</sub>
□ <sub>Pb</sub>
□ <sub>Ag</sub>
□ <sub>Au</sub>
56 of 100
132 PU 2015 307
If A = \begin{bmatrix} 5 & 0 & 2 \\ 0 & 1 & 0 \\ -4 & 0 & -1 \end{bmatrix} and I be 3x3 unit matrix, If M=I-A, then rank of I-A is
\square_3
\square_2
\square_0
57 of 100
219 PU 2015 307
Which of the following is a green house gas?
□ <sub>SO₂</sub>
□ <sub>NO₂</sub>
\Gamma co
C CO2
58 of 100
100 PU_2015_307
If Dx and Dy represents the partial derivative operators, then the expression
\frac{1}{D_x^2 - D_y^2} \sin(x - y) is \text{ equal to}
-\frac{x}{2}\cos(x-y)
```

- $-\frac{x}{2}\sin(x-y)\cos(x-y)$

195 PU 2015 307

Chloroflorocarbon in the atmosphere causes depletion of:-

- Carbondioxide
- Nitrogen
- Oxygen
- C Ozone

60 of 100

163 PU_2015_307

One of the following molecules used as food preservatives is:-

- Ethylene glycol
- C Sodium alkyl benzene sulphonate
- Sodium benzoate
- C None

61 of 100

238 PU_2015_307

In a refrigerator the heat exhausted to the outer atmosphere is:-

- Same as that absorbed from the contents
- More than that absorbed from the contents
- Less than that absorbed from the contents of the refrigerator
- Any of the above depending upon the working substance

62 of 100

239 PU 2015 307

In a heat engine the maximum heat that can be converted into mechanical work:-

- Depends upon working temperatures
- Depends upon friction
- Depends upon the working
- □ Is 100%

63 of 100

248 PU_2015_307

The area of the Carnot cycle on a T-S diagram represents:-

Heat rejected to the sink

	Efficiency of the engine
	Work done in a cycle
U	Heat absorbed from the source
258 Who	of 100 PU_2015_307 en a voltmeter is placed across a forward biased diode, it will read a voltage approximately equal to: The diode barrier potential 0V The bias battery voltage The total circuit voltage
246	of 100 5 PU_2015_307 0 K fluids are assumed to have:- Minimum entropy Zero entropy
\Box	Fixed value of entropy
\Box	Maximum entropy
255	of 100 5 PU_2015_307 6 depletion region is created by:- Diffusion Recombination Ionization All of these
242	PU_2015_307 ical temperature is defined as the:- Highest temperature at which the gas can be liquefied at constant pressure Lowest temperature at which the gas can be liquefied at constant pressure Lowest temperature at which the gas can be liquefied by increase of pressure alone Highest temperature at which the gas can be liquefied by increase of pressure alone
232	of 100 PU_2015_307 path of the particles for a motion in a uniform electric field is:- Parallel Circular

	Parabola
Li	Perpendicular
69	of 100

225 PU_2015_307

The Poisson's equation in CGS Gaussian system is:-

$$\nabla^2 \mathbf{V} = \frac{-\rho}{\epsilon_o}$$

$$\nabla^2 V = -4\pi\sigma$$

$$\nabla^2 V = -4\pi\rho$$

$$\nabla^2 V = 0$$

70 of 100

224 PU_2015_307

The electrical field intensity on the surface of a charged conductor is:-

C Directed tangentially to the surface

C Zero

Directed along 45° to the surface

Directed normally to the surface

71 of 100

259 PU_2015_307 Load regulation is determined by:-

Changes in load resistance and input voltage

Changes in load current and input voltage

Changes in load current and output voltage

Changes in zener current and load current

72 of 100

254 PU_2015_307
A better power supply should possess:-

Lower output impedance

Higher input impedance

Total voltage regulation

Lower input impedance

73 of 100

230 PU_2015_307

The electric and magnetic fields share the energy of electromagnetic wave in the ratio:-

□ _{1:1}

	1:2
	1:4
237	of 100 PU_2015_307 device which converts heat into mechanical work is:- Motor Genertaor Heat Engine Energy converter
223	of 100 PU_2015_307 antum dot is referred as:- One dimensional structure Zero dimensional structure Z-dimensional structure Two dimensional structure
234 A qı	of 100 PU_2015_307 warter-wave transformer matching a 75 Ω source with a 300 Ω load should have a characteristic edance of :- 150 Ω 50 Ω 100 Ω 200 Ω
235	of 100 PU_2015_307 avity resonator can be represented by:- A lossy capacitor A lossy inductor An LC circuit An LCR circuit
221	of 100 PU_2015_307 e refractive index of material is the ratio:- Speed of light in vacuum/ speed of light in material Speed of sound/ Speed of light

	Speed of light in vacuum/ speed of light in air
	Speed of light in water/ speed of light in air
251	of 100 PU_2015_307 temperature at which a gas liquefies is called:-
	Critical temperature
	Boiling point
\Box	Melting point
	Boyle's temperature
222 Opt	of 100 PU_2015_307 ical cavity in LASERS used to obtain:-
	Radiated emission
	Stimulated emission
	Spontaneous emission
	Excited emission
275 The unit	of 100 PU_2015_307 maximum demand of a consumer is 2 KW and the corresponding daily energy consumption is 30 s. What is the corresponding load factor? 50% 62.5% 75%
82 292 The	of 100 PPU_2015_307 e parameters used by American Society of Mechanical Engineers (ASME) to define fans, blowers and appressors is specific ratio twist factor blade ratio fan ratio
288	of 100 5 PU_2015_307 ich one of the following is correct for a selective surface for solar thermal applications? High absorptivity and high emissivity Low absorptivity and low emissivity High absorptivity and low emissivity
	U 1 · 9 · · · · · · · · · · · ·

	Low absorptivity and high emissivity	
84 of 100 262 PU_2015_307 Which of the following does not represent the important quality of CI engine		
	Viscosity	
	Anti-knock quality	
	Ignition quality	
	Volatility	
291 Cros	PU_2015_307 ss flow heat exchangers are popularly used for heat transfer:- gas and gas or liquid and gas liquid and evaporating fluid liquid and liquid	
	condensing fluid and liquid	
86 of 100 267 PU_2015_307 When heat is transferred by molecular collision, it is referred to as heat transferred.		
	Convection	
	Radiation	
	Scattering	
	Conduction	
87 of 100 260 PU_2015_307 Bernoulli's equation describes:-		
	Kinetic energy balance in turbulent flow	
	Mechanical energy balance in boundary	
	Kinetic energy balance in laminar flow	
	Mechanical energy balance in potential flow	
294 Late	PU_2015_307 ent heat of steam with increase of pressure:- increases	
	remains same	
	decreases	
	behaves unpredictably	

of 100 5 PU_2015_307 ich one of the following materials is a sensible heat storage material?
Servotherm
Lauric acid
Acetamide
Capric acid
of 100 9 PU_2015_307 he temperature of a solid surface changes from 27°C to 627°C, then its emissive power changes at ch ratio?
6:1
27:1
9:1
81:1
of 100 PU_2015_307 ich one of the following is not a ceramic?
Whisker
Alumina
Pyrosil
Porcelai
of 100 5 PU_2015_307 5 vapour compression refrigeration plant, the refrigerant leaves the evaporator at 195 kJ/kg and the denser at 65 kJ/kg. For 1 kg/s of refrigerant, what is the refrigeration effect? 100 KW 70 KW 160 KW
of 100 PU_2015_307 e ton refrigeration is equal to:-
3402 Kcal/hr
4302 Kcal/hr
3204 Kcal/hr
3024 Kcal/hr

280	of 100 PU_2015_307 e ratio of inertia force and surface tension force is referred to as:- Froude number Mach number
	Weber number Pressure coefficient
95 261	of 100 PU_2015_307 is best heated with steam in a heat exchanger of:- Shell and tube type Double pipe type with fins on steam side Plate type Double pipe type with fins on air side
278	of 100 8 PU_2015_307 perty of a fluid by which its own molecules are attracted is called:- Adhesion Compressibility Viscosity Cohesion
268	of 100 8 PU_2015_307 ree convection heat transfer, Nusselt number is function of:- Grashoff no. and Reynol d no. Grashoff no., Prandtl no. and Reynol d no Prandtl no. and Reynol d no. Grashoff no. and Prandtl no.
279	of 100 PU_2015_307 Imean temperature difference in case of counter flow compared to parallel flow heat exchanger will more less same depends on other factors
	appoints on sinoi nation

	PU_2015_307
	ich of the following is not the property of the system?
	Internal energy
	Entropy
	Specific heat
	Heat
100	of 100
	3 PU_2015_307
Reheating in a multi-stage expansion gas turbine	
	Improves thermal efficiency
	Improves work ratio
\Box	Avoids pollution