Aufgabe: Fibonacci-Zahlen

Die Fibonacci-Zahlen sind definiert durch $f_0 = f_1 = 1$ und rekursiv weiter mit $f_{n+1} = f_n + f_{n-1}$. Zeige induktiv für alle $n \in \mathbb{N}$:

- 1. $\sum_{i=0}^{n} f_i = f_{n+2} 1$
- 2. f_{2n} ist teilbar durch f_n
- 3. f_n und f_{n+1} sind relativ prim, das heißt es gibt keine Zahl $a \in \mathbb{N}$ mit a > 1, die sowohl f_n als auch f_{n+1} teilt

Lösung

Teil (a): Wir zeigen durch vollständige Induktion, dass $\sum_{i=0}^{n} f_i = f_{n+2} - 1$ für alle $n \in \mathbb{N}_0$ gilt.

Induktionsanfang: Für n = 0 haben wir:

$$\sum_{i=0}^{0} f_i = f_0 = 1 = 2 - 1 = f_2 - 1$$

Da $f_2 = f_1 + f_0 = 1 + 1 = 2$, stimmt die Formel.

Für n = 1 haben wir:

$$\sum_{i=0}^{1} f_i = f_0 + f_1 = 1 + 1 = 2 = 3 - 1 = f_3 - 1$$

Da $f_3 = f_2 + f_1 = 2 + 1 = 3$, stimmt die Formel auch hier.

Induktionsschritt: Sei $n \in \mathbb{N}_0$ beliebig und die Aussage gelte für n, d.h.,

$$\sum_{i=0}^{n} f_i = f_{n+2} - 1$$

Wir müssen zeigen, dass die Aussage auch für n+1 gilt:

$$\sum_{i=0}^{n+1} f_i = \sum_{i=0}^{n} f_i + f_{n+1} \tag{1}$$

$$=(f_{n+2}-1)+f_{n+1}$$
 (nach Induktionsvoraussetzung) (2)

$$= f_{n+2} + f_{n+1} - 1 \tag{3}$$

$$= f_{n+3} - 1$$
 (nach Definition der Fibonacci-Zahlen) (4)

Damit ist die Aussage für alle $n \in \mathbb{N}_0$ bewiesen.

Teil (b): Die Aussage, dass f_{2n} durch f_n teilbar ist, ist für die gegebene Fibonacci-Folge mit $f_0 = f_1 = 1$ im Allgemeinen falsch.

Gegenbeispiel: Für n=2 haben wir $f_2=2$ und $f_4=5$. Es gilt $5=2\cdot 2+1$, also teilt $f_2=2$ nicht $f_4=5$.

Anmerkung: Die korrekte Aussage für Fibonacci-Zahlen lautet: f_n teilt f_{kn} genau dann, wenn n ein Teiler von k ist. Insbesondere gilt $f_n|f_{kn}$ für alle $k \in \mathbb{N}$. Die spezielle Aussage $f_n|f_{2n}$ gilt nur für n=1.

Teil (c): Wir zeigen, dass $gcd(f_n, f_{n+1}) = 1$ für alle $n \in \mathbb{N}_0$. Beweis: Sei $d = gcd(f_n, f_{n+1})$. Dann gilt $d|f_n$ und $d|f_{n+1}$. Aus der Rekursionsformel $f_{n+1} = f_n + f_{n-1}$ folgt:

$$f_{n-1} = f_{n+1} - f_n$$

Da d sowohl f_n als auch f_{n+1} teilt, muss d auch deren Differenz teilen:

$$d|(f_{n+1} - f_n) = f_{n-1}$$

Also teilt d auch f_{n-1} . Aus $f_n = f_{n-1} + f_{n-2}$ folgt analog:

$$d|(f_n - f_{n-1}) = f_{n-2}$$

Durch wiederholte Anwendung dieses Arguments erhalten wir, dass d alle Fibonacci-Zahlen f_k für $k \leq n$ teilt.

Insbesondere muss d auch $f_1 = 1$ teilen. Da die einzige natürliche Zahl, die 1 teilt, die 1 selbst ist, folgt d = 1.

Somit gilt $gcd(f_n, f_{n+1}) = 1$ für alle $n \in \mathbb{N}_0$.