Dr. D. Sinden

CA-MATH-804: Numerical Analysis

Assignment Sheet 2. Due: February 23, 2022

Exercise 1 [5 Points]: Assuming $p,q=1,2,\infty,F$ recover the following table of equivalence constants c_{pq} such that $\forall A \in \mathbb{R}^{n \times n}$ we have $\|A\|_p \leq c_{pq} \|A\|_q$

c_{pq}	q = 1	q=2	$q = \infty$	q = F
p = 1	1	\sqrt{n}	n	\sqrt{n}
p = 2	\sqrt{n}	1	\sqrt{n}	1
$p = \infty$	n	\sqrt{n}	1	\sqrt{n}
p = F	\sqrt{n}	\sqrt{n}	\sqrt{n}	1

Exercise 2 [5 Points]: For any square matrix $A \in \mathbb{R}^{n \times n}$, prove the following relations

a)
$$\frac{1}{n}K_2(A) \le K_1(A) \le nK_2(A)$$
,

$$\mathbf{b}) \ \frac{1}{n} K_{\infty}(A) \le K_2(A) \le n K_{\infty}(A),$$

c)
$$\frac{1}{n^2}K_1(A) \le K_{\infty}(A) \le n^2K_1(A)$$
,

where $K_p(A) = \|A\|_p \|A^{-1}\|_p$. These relations show that if a matrix is ill-conditioned in a certain norm, it remains so even in another norm, up to a scaling factor.

Exercise 3 [5 Points]: Prove the following claims:

- **a)** If $A \in \mathbb{R}^{n \times n}$ fulfils one of the following criteria:
 - 1. strict row-sum criterion (strict diagonal dominance) $\sum_{\substack{i=1\\i\neq j}}^n |a_{ij}| < |a_{jj}|$ for all j with $1 \leq j \leq n$.
 - 2. strict column-sum criterion $\sum_{\substack{i=1\\i\neq j}}^n |a_{ji}| < |a_{jj}|$ for all j with $1 \leq j \leq n$

then the Jacobi method converges for any initial guess $x^{(0)}$.

b) Let $A \in \mathbb{C}^{n \times n}$, then every eigenvalue λ of A fulfils one of the following inequalities

$$|\lambda - a_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}|.$$

Exercise 4 [5 Points]: A matrix in which the sum of the absolute values of the entries of a row is equal for every row, is called *row equilibrated*.

- a) Show that every regular matrix A can be transformed into a row equilibrated matrix by multiplication with a regular diagonal matrix D.
- **b**) Let A and D be as in a). Show that all non-singular diagonal matrices \tilde{D} have

$$K_{\infty}(DA) \leq K_{\infty}(\tilde{D}A)$$
.

Hint: Let C = DA and find a lower estimate for the condition number of $\tilde{D}D^{-1}C$ in terms of the condition number of C.

Exercise 5 [5 Points]: Prove Theorem 10 from class, which is repeated below.

Theorem 10 For A, $\delta A \in \mathbb{R}^{n \times n}$ and b, $\delta b \in \mathbb{R}^n$, consider perturbations of the problem Ax = b. Assume there exists $\gamma > 0$ such that

$$\|\delta A\| < \gamma \|A\|$$
 and $\|\delta b\| < \gamma \|b\|$

in suitable norms. Also let $\gamma K(A) < 1$ where K(A) is the condition number of A in the norm used above. Then the perturbation δx of the solution fulfils

$$\frac{\|x\delta x\|}{\|x\|} \le \frac{1+\gamma K(A)}{1-\gamma K(A)} \quad and \quad \frac{\|\delta x\|}{\|x\|} \le \frac{2\gamma K(A)}{1-\gamma K(A)}.$$

Hints: Remember that $(A + \delta A)(x + \delta x) = b + \delta b$. Use compatibility and submultiplicativity of the norms. Use Theorem 7 from class which says something about the invertibility of $\mathrm{Id} + B$ for matrices B.

Exercise 6 [4 Points]: Verify that the matrix $B \in \mathbb{R}^{n \times n}$ defined by

$$b_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 1 & \text{if } i < j, \\ 1 & \text{if } i > j, \end{cases}$$

has determinant det (B) = 1 and that $K_{\infty}(B) = n2^{n-1}$.

Exercise 7 [2 Points]: Prove that $K(AB) \leq K(A)K(B)$ for any two matrices $A, B \in \mathbb{R}^{n \times n}$.