Week 1

- 1. In Ordinary Least Squares we are trying to minimize:
 - a. The Median Absolute Error
 - b. The Mean Absolute Error
 - c. The Sum of Squared Error
 - d. The Root Mean Squared Error
- 2. The following formula is which of the following:

$$\sum_{i}(\bar{y}-\widehat{y_i})^2$$

- a. Sum of Squared Total
- b. Sum of Squared Errors
- c. Sum of Squared Regression
- d. Total Sum of Squares

Week 2

- 1. An indicator variable is sometimes referred to as a:
 - a. Hyperparameter
 - b. Dummy variable
 - c. Interaction variable
 - d. Continuous predictor variable
- 2. Which of the following is an example of an Interaction Term?
 - a. Height*Gender
 - b. Height²
 - c. Height Gender
 - d. Height + Gender
- 3. If your dataset has a column that contained one of three states for each observation ('New York', 'California', 'Hawaii'), what would be the best way to code them for a regression model with one-hot encoding (not using a factor variable in R)?

a.

Obs	States	
1	'New York'	
2	'California'	
3	'Hawaii'	

b.

Obs	States
1	1
2	2
3	3

c.

Obs	'New York'	'California'
1	1	0
2	0	1
3	0	0

d.

Obs	'New York'	'California'	'Hawaii'
1	1	0	0
2	0	1	0
3	0	0	1

4. If our regression model is as follows:

Nursing_Home_Cost_Per_Day = B0 +B1*Age + B2*'New York'+ B3*'California'

And the base case is 'Hawaii'

After training the model the coefficients are as follows

B0 = 200

B1 = 1.5

B2 = -15

B3= -5

How much more would a person in California expect to pay per day vs a person in New York of the same age?

- a. \$5
- b. \$-5
- c. \$10
- d. \$-15
- 5. From the above scenario, what would a 70-year-old that lives in Hawaii expect to pay per week?
 - a. \$290
 - b. \$300
 - c. \$305
 - d. \$2,135
- 6. In a linear regression model with one qualitative (categorical) predicting variable with 4 values, we need to include 4 dummy variables.
 - a. True
 - b. False

	Estimate	S.E.	t Value	Pr> t
Intercept	-6.12	4.72	-1.30	0.20
Salary	.002	.00009	25	<.001
AgeMid	-4.81	6.39	-0.75	0.45
AgeOld	23.28	6.72	3.46	<.001

AmountSpent = b₀ + b₁*Salary + b₂*AgeMid + b₃*AgeOld

Based on the following regression model summary (Note: the base case is Age = Young), what is the Amount Spent by a Middle-aged customer if his/her salary is 10000?

- a. 20 6.12
- b. 20 6.12 4.81
- c. 20 6.12 + 23.28
- d. 20
- 8. An interaction term is used to model how the synergies between multiple variables impact the response variable.
 - a. True
 - b. False

Answers

7.

Week1

Question 1: c The Sum of Squared Error (page 18 slide 1)

Question 2: c Sum of Squared Regression (page 18 slide 2)

Week2

Question 1: b. Dummy variable (page 9 slide 2)

Question 2: a. Height*Weight (page 18 slide 1)

Question 3: c (page 24 slide 2)

Question 4: c (Page 27 slide 2)

Question 5: d (Page 27 slide 2) \$305*7

Question 6: b (page 20 slide 2)

Question 7: b (Lesson 2 / Video 4 / Slides 1 – 4)

Question 8: a (Lesson 2 / Video 4 / Slides 6 – 9)