#### Computer Graphics (COMP0027) 2022/23

## Path tracing

**Tobias Ritschel** 



## **Today**

- Solving integrals (approximately)
  - What did ray-tracing do?
  - Analytic vs. Numeric
  - Monte Carlo method
- Solving the RE using Monte Carlo
- Variance reduction
  - Good Sampling patterns
  - Importance sampling



## Why is this hard to solve?

- It involves an integral with no analytic solution
- It is an integral equation, so the RHS contains the LHS in an integrand



Computer Graphics (COMP0027), Tobias Ritschel



## How ray-tracing solves the RE

- Many got suspicious about ray-tracing
- Example: Does metal have finite gloss?
  - Yes, cause otherwise I cant see highlight!
  - No, reflections are not blurry in steel balls!
- Contradiction!





rendering

## How ray-tracing solves the RE

- The integral is split into a sum of two:
  - A Dirac-paths, solved by binary recusing
  - A path connecting to a point light, can evaluate without recursion

•



## **Solving integrals**

- Analytic (accurate)
  - Given the function f, try to find F by symbolic manipulation
- Numeric (approximate)
  - Cubature
  - The Monte Carlo method
  - Both are approximate

# Classfication 那里你为 Integration Analytic Numeric **Monte Carlo** Cubature **Quasi-Monte Carlo**

## **Analytic**

- Examples
  - f(x) = x,  $F(x) = \frac{1}{2}x^2$
  - $f(x) = \sin(x), F(x) = -\cos(x)$
- Difficult for a function such as we have
  - Impossible, as: The input is not even analytic (what is f for a bunny in the sun?)
  - Difficult, as: Recursion
  - Also difficult: Spherical domain

## Some analytic things work



$$f(\mathbf{\omega}) = f(\theta, \phi) = c \text{ if } 2 < \theta < 3 \text{ and } -1 < \phi < 1$$
  
0 otherwise



## Forget about spheres for now

Integrand

$$f(\omega)$$

Dark = low value Bright = high value





Domain  $\Omega$  (Here 2D rectangle)









You should recall from high school analysis course.



















# Cubature: A bit more formal

$$F(\mathbf{\omega}) \text{ on } \Omega = \int f(\mathbf{\omega}) = \sum f(\mathbf{\omega}_i) / N$$

To find the integral F of a function f, decompose  $\Omega$  it into N as-small-aspossible cubes, evaluate f on each (**sample**) and average

Is this it?

- Very simple method!
  - To get  $L(\mathbf{x}, \boldsymbol{\omega}_{o})$
  - Subdivide hemisphere  $\Omega$  above  $\mathbf{x}$  into N strata  $\boldsymbol{\omega}_i$
  - Evaluate integrand, i.e., send a ray  $f = L(\mathbf{y}, -\mathbf{\omega}_i) f_{\mathbf{r}}(\mathbf{x}, \mathbf{\omega}_i, \mathbf{\omega}_o) \cos(\theta)$ 
    - Triple product of light, svBRDF and geometric term
  - Average
  - Done!

shout books



## **Problem: Course of dimensionality**

- L appears on both sides
  - For  $L(\mathbf{y}, -\mathbf{\omega}_i)$  need to solve another integral
  - OK, lets go to y and also compute  $L(y, -\omega_i)$ 
    - For  $L(\mathbf{z}, -\boldsymbol{\omega}_i)$  need to solve another integral
    - OK, lets go to z and also compute  $L(z, -\omega_i)$ 
      - For  $L(\mathbf{z}_2, -\boldsymbol{\omega}_i)$  need to solve another integral
      - OK, lets go to  $\mathbf{z}_2$  and also compute  $L(\mathbf{z}_2, -\boldsymbol{\omega}_i)$ 
        - » For  $L(\mathbf{z}_3, -\boldsymbol{\omega}_i)$  need to solve another integral
        - » OK, lets go to  $\mathbf{z}_3$  and also compute  $L(\mathbf{z}_3, -\boldsymbol{\omega}_i)$ 
          - For  $L(\mathbf{z}_2, -\omega_i)$  need to solve another integral
          - OK, lets go to  $\mathbf{z}_2$  and also compute  $L(\mathbf{z}_2, -\omega_i)$



#### Recursion

- Recursion in CS is not evil
- Worked well in ray-tracing:



For depth d and reflection/refraction the number of rays is

 $2^d$ 

So three-bounce is  $2^3 = 8$  rays / pixel

#### Recursion

- Recursion in CS is not evil
- Impractical for the real RE
- Typical *N* is maybe 100 to 1000



For depth d and N strata the number of rays is

 $N^d$ 

So three-bounce is  $1000^3 = 1B \text{ rays / pixel}$ 

## Another way to imagine it



Academic Year 2022/23

Computer Graphics (COMP0027), Tobias Ritschall 3 to 2000. 668



## **Alternative: Random samples**







## **Alternative: Random samples**





## What do we get from random?





## Another way to imagine it



As we just need an approximate value, we can proceed with any point without looking at all ohers



#### Monte Carlo: A bit more formal

$$F(\mathbf{\omega}) \text{ on } \Omega = \int f(\mathbf{\omega}) = \sum f(\mathbf{\omega}_i) / N$$

To find the integral F of a function f, place as many samples N onto  $\Omega$ , evaluate f on each and average.

#### This is it

- Still very simple method!
  - To get  $L(\mathbf{x}, \boldsymbol{\omega}_{o})$
  - N times
    - random directions  $\omega_{i,0}$  above  $\mathbf{x}, \omega_{i,1}$  above  $\mathbf{y},$  etc.
    - Evaluate integrand, i.e. send a ray  $f = L(\mathbf{y}, -\mathbf{\omega}_i) f_{\mathbf{r}}(\mathbf{x}, \mathbf{\omega}_i, \mathbf{\omega}_o) \cos(\theta)$ 
      - Triple product of light, svBRDF and geometric term
  - Done!



## How to pick random directions?

- How to pick a random ray in 3D?
- normalize(vec3(frand(), frand()), frand()))?
- Clumps on axis and diagonals
- Bias in result!





## When to stop?

- Multiple options
- Popular:
  - After a fixed depth
  - When contribution falls below a threshold



## **Progressiveness**



1 Sample

**Progressiveness** 



2 Samples





10 Samples

## **Progressiveness**



1000 Samples



## **Progressivenes**

- After N samples we get an image
- After 2N samples, we get an even better one
- This is called progressive
- Very useful for previews



#### Random has another reason

- Aliasing is the second reason for random
- Consider this integrand, not even recursive:



Ground truth = 0.5



## Random has another reasons



- Aliasing is the second reason for random
- Consider this integrand, not even recursive:



Ground truth = 0.5



#### Estimator/Variance/Bias

- We get a new value for every random seed
- We map these into an estimate
- This is the value of the integral
- If there is a deviation, we call it bias
- Around this exists a distribution of values
- This distribution has a variance



#### Variance of an estimator





#### Bias of an estimator





#### **Desiderata variance**

- Also it has no bias, i.e., the expected value is really the solution of the integrand
- OpenGL and CW1 ray-tracing: All biased
- A good estimator has a low variance
- Whenever we render, we will get a value close to the true value
- To this end, we do variance reduction



#### Variance reduction

- Next-event estimation
- Good sample patterns
  - Jittered
  - Quasi-Monte Carlo
  - Blue noise
- Importance Sampling



# Path tracing - High hopes



We hope for this ...



# Path tracing – High hopes



We hope for this ...



# Path tracing - Reality



But what we get is



# **Path Tracing - reality**



But what we get is



## **Next-event estimation**



But what we get is



# **Problem: Double-accounting**



There are now **two ways** to hit the light. Simple solution: Simply only take emission from NEE Computer Graphics (COMP0027), Tobias Ritschel

act area estimator 694

Academic Year 2022/23

#### **Next event estimation**

- Two simple changes
  - Add a random ray in the direction to the light
  - Remove adding in emission  $L_{
    m e}$  on all other paths
- Best for small light sources
- Result:
  - Will never miss direct light at any point
  - Still have all benefits of MC
- Glorified Whitted-style CW 1 ray-tracing



# **Endpoint choice**

Simple for flat area lights





# **Endpoint choice**

• Hard for e.g., spheres





# Uniform random can go bad

16 → 16 / 16 = 1 ~ 0.85 (not so cool)





## The ideal sample pattern

- Two contradicting goals:
  - 1. Maybe not be regular
  - 2. But always cover the domain uniformly, not only in the limit

- Back to the future:
  - Do cubature first
  - Then jitter every sample inside its cell
- Suffers from the curse of dimensionality
- Prevents aliasing
- Applicable if dimensionality is low
  - Example: Area light sampling



# Regular (recap)



#### **Jittered**





ain cell random

OBBB11ell-9







- A way to place samples
  - Somewhat uniform
  - Without structure
  - In high dimensions
- A typical work-horse solution for rendering
- Defined on the unit hypercube





#### Radical inverse base n = 2





#### Radical inverse base n = 3









Academic Year 2022/23

707



### Random vs. Halton







## **Quasi-Monte Carlo sampling**

- To get an n-dimensional Halton pattern
- Build the radical inverse in the co-prime basis  $\pi(0, ..., n-1)$
- Build tuples in the order they occur in each sequence
- Improvement: Hammersley (reguar 1<sup>st</sup> dim.)
- De-correlation: Cranely patterson rotation



## Randomized Quasi-Monte Carlo



Academic Year 2022/23

#### **Structured artefacts**



ca 250 Hammersley samples. No NEE.





### Randomized Quasi-Monte Carlo





## Regularity

- The L2 error of the images is the same or (much) lower than random
- However, quite suspicious visually
- Easy fix:
  - Combine regular and random
  - Shift the regular pattern by a random offset
  - Use torroidal shifting
    i.e., come in left when going out right





#### Poisson disk / Blue noise

- Patterns with a maximal minimal distance between all points is called Poisson disk
- Another way is to see the spectrum of the distribution of distances: It is blue, i.e. no small minimal distances



#### Poisson disk



Note: The smallest circle of all circles around each point is quite large



### **Blue noise**



Receptor distribution on the macaque retina prevents aliasing



# Importance sampling



Put more samples where the integrand is high, as here the errors have the largest effect. Computer Graphics (COMP0027), Tobias Ritschel



## Importance sampling

- Placing the samples non-uniformly will introduce bias
- Fortunately, random uniform is just a special case of a more general estimator formulation we will see next
  - Before we took  $\omega_i$  uniform, so  $p(\omega_i) = 1 / |\Omega|$
  - Any other p will work as well
  - Ideall  $p \sim f$

# MC with importance sampling

$$F(\mathbf{\omega})$$
 on  $\Omega = \int f(\mathbf{\omega}) = 1/N \sum f(\mathbf{\omega}_i) / p(\mathbf{\omega}_i)$ 

To find the integral F of a function f, place as many samples N onto  $\Omega$  according to a distribution p, evaluate f and p on each and divide.



## What can be p?

- Recall the integrand is  $f = L(\mathbf{y}, -\mathbf{\omega}_i) f_{\mathbf{r}}(\mathbf{x}, \mathbf{\omega}_i, \mathbf{\omega}_o) \cos(\theta)$
- We could sample for
- Light L: Hard, integral equation itself.
- BRDF  $f_r$ : Not so hard, done analytically
- Geometric term  $cos(\theta)$ : Even easier analytically
- Products of all of the above: Even harder then any alone, but doable



# **Exampe: IS for direct light**





Same amount of rays ©U Virginia



# **Anti-aliasing**



## Recap

- Rendering is solving an integral equation
- Analytic and some numeric methods no-go
- Monte Carlo is the method of choice
- Suffers from noise (variance)
- Need to use variance reduction methods
  - Next event-estimation
  - Low-discrepancy Sample patterns
  - Importance sampling