

Problemas Tema 2: Parte 1 Espacios Vectoriales

Fundamentos de Matemática Aplicada a la Inteligencia Artificial II

1 Se considera el conjunto $V = \{(x, y, y, -x) / x, y \in \mathbb{R}\}$ en el que se definen las siguientes operaciones:

$$(x, y, y, -x) + (z, t, t, -z) = (x + z, y + t, y + t, -(x + z))$$

 $\alpha(x, y, y, -x) = (\alpha x, \alpha y, \alpha y, -\alpha x)$

Verificar que V es un espacio vectorial.

- 2 Estudiar si los siguientes conjuntos son subespacios vectoriales:
 - a) $U = \{(x, y) \in \mathbb{R}^2 / x \ge 0, y \ge 0\}$
 - **b)** $U = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 1\}$
 - c) $U = \{(x, y, z) \in \mathbb{R}^3 / z = x^2 + y^2\}$
 - **d)** $U = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 0\}$
 - e) $U = \left\{ (a b, 2b + a, a, 0) \in \mathbb{R}^4 / a, b \in \mathbb{R} \right\}$
 - **f)** $U = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2\times 2} / a b + c = 0, c d = 0 \right\}$
 - **g)** $U = \{(\alpha, \beta, \gamma, \delta, \varepsilon) \in \mathbb{R}^5 / \alpha, \beta, \gamma, \delta, \varepsilon \in \mathbb{R} \}$
 - **h)** $U = \{(x, y, z) \in \mathbb{R}^3 / |x| = |y|\}$
- 3 Determinar los valores de $a, b \in \mathbb{R}$ para que el vector $\vec{u} = (1, 2 a, b, 2b)$ sea combinación lineal de los vectores $\vec{v} = (1, 2, 0, 1)$ y $\vec{w} = (2, 1, 1, -1)$ de \mathbb{R}^4 .
- 4 Determinar x e y para que el vector (1, x, 0, y) pertenezca al subespacio generado por (1, 2, 1, 2) y (1, -1, -1, 1).
- 5 Sea $U = \{(x, y, z, t) / x y + z t = 0\}$ un subconjunto del espacio vectorial \mathbb{R}^4 :
 - a) Comprobar que U es un subespacio vectorial de \mathbb{R}^4 .

- **b)** Encontrar en U tres vectores \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} linealmente independientes y verificar que cualquier vector de U se puede poner como combinación lineal de \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} .
- **6** Obtener unas ecuaciones paramétricas e implícitas del subespacio de \mathbb{R}^4 :

$$U = L\{(2, 1, 0, -3), (0, -1, -2, 0), (3, 0, 1, -1)\}$$

- **7** Se considera el espacio vectorial \mathbb{R}^4 . Hallar:
 - a) Una base que contenga al vector (1, 2, 1, 1).
 - **b)** Una base que contenga a los vectores (1, 1, 0, 2) y (1, -1, 2, 0).
- 8 Determinar una base del subespacio U engendrado por:

$$\{(1, 2, 3, 1), (2, 3, 2, 3), (0, 1, 4, -1), (2, -3, 1, 1), (4, 1, 7, 3)\}$$

9 Dado el siguiente subespacio vectorial:

$$W = \{(x, y, z, t) \in \mathbb{R}^4 / x + y + z + t = 0, y - 2z - t = 0\}$$

Hallar una base de W y la dimensión de W.

10 Dado el espacio vectorial \mathbb{R}^4 , consideramos el subespacio:

$$V = \begin{cases} x_1 = \lambda \\ x_2 = \lambda + \mu \\ x_3 = \gamma \\ x_4 = \mu \end{cases} (\lambda, \mu, \gamma \in \mathbb{R})$$

Hallar una base de V y calcular las coordenadas del vector $\vec{v} = (2, 4, 0, 2)$ en la base elegida.

11 Dado el espacio vectorial \mathbb{R}^4 , consideramos los subespacios:

$$U_{1} = L\{(1, 2, 0, 1)\}$$

$$U_{2} = \{(x, y, z, t) / x - y + z + t = 0, y - z = 0\}$$

$$U_{3} = \{(\alpha, \alpha + \beta, \gamma, \beta) / \alpha, \beta, \gamma \in \mathbb{R}\}$$

¿Pertenece el vector $\vec{u}=(2,4,0,2)$ a U_1 , U_2 o U_3 ? En caso afirmativo, calcular sus coordenadas en unas bases elegidas previamente.

12 Encontrar una base para el subespacio U de \mathbb{R}^4 cuyas ecuaciones paramétricas son:

$$x_1 = \lambda + \alpha + \beta$$
, $x_2 = \lambda - \alpha + 3\beta$, $x_3 = \lambda + 2\alpha$, $x_4 = 2\lambda + 3\alpha + \beta$

- Determinar una base para la suma y la intersección de los subespacios U_1 y U_2 , engendrados por $\{(1,2,1,0),(-1,1,1,1)\}$ y $\{(2,-1,0,1),(1,-1,3,7)\}$, respectivamente.
- 14 Se consideran los subespacios de \mathbb{R}^4 :

$$U = \begin{cases} x + y - z - t = 0 \\ 2x + 2y - z - t = 0 \end{cases} \qquad W = \begin{cases} x - y = 0 \\ z - t = 0 \end{cases}$$

Calcular:

- a) El subespacio $U \cap W$.
- **b)** El subespacio U + W.
- 15 En el espacio vectorial \mathbb{R}^3 se consideran los subespacios vectoriales:

$$U = \{(x, y, z) / x + y + z = 0\}$$

$$W = \{(t, 2t, 3t) / t \in \mathbb{R}\}$$

Verificar que \mathbb{R}^3 es suma directa de U y W, es decir: $\mathbb{R}^3 = U \oplus W$.

Soluciones

- 1 Como V es subconjunto del espacio vectorial \mathbb{R}^4 , y V cumple las condiciones de subespacio vectorial, concluimos que V es espacio vectorial.
- 2 a) U no es subespacio vectorial de \mathbb{R}^2 .
 - **b)** U no es subespacio vectorial de \mathbb{R}^3 .
 - c) U no es subespacio vectorial de \mathbb{R}^3 .
 - **d)** U es subespacio vectorial (trivial) de \mathbb{R}^3 .
 - e) U es subespacio vectorial de \mathbb{R}^4 .
 - f) U es subespacio vectorial de $\mathcal{M}_{2\times 2}$.
 - g) U es subespacio vectorial (total) de \mathbb{R}^5 .
 - **h)** U no es subespacio vectorial de \mathbb{R}^3 .
- 3 $a = \frac{3}{5}$ y $b = \frac{1}{5}$.
- 4 $x = \frac{1}{2}$ e $y = \frac{3}{2}$.
- **5** a) U es subespacio vectorial de \mathbb{R}^4 .
 - **b)** Por ejemplo: $\vec{u} = (1, 0, 0, 1)$, $\vec{v} = (0, 1, 0, -1)$ y $\vec{w} = (0, 0, 1, 1)$. Como \vec{u} , \vec{v} y \vec{w} son un sistema generador de U, cualquier vector de U se puede escribir como combinación lineal de estos.
- 6 Ecuaciones paramétricas:

$$x=2\alpha+3\gamma$$
, $y=\alpha-\beta$, $z=-2\beta+\gamma$, $t=-3\alpha-\gamma$. Ecuaciones implícitas: $5x+14y-7z+8t=0$.

- 7 a) $B = \{(1, 2, 1, 1), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}.$
 - **b)** $B = \{(1, 1, 0, 2), (1, -1, 2, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}.$
- **8** Una base podría ser: $B_U = \{(1, 2, 3, 1), (0, -1, -4, 1), (0, 0, 23, -8)\}.$
- 9 Una posible base es: $B_W = \{(-3, 2, 1, 0), (-2, 1, 0, 1)\}. \dim(W) = 2.$
- 10 Por ejemplo: $B_V = \{(1, 1, 0, 0), (0, 1, 0, 1), (0, 0, 1, 0)\}.$ $\vec{V} = (2, 4, 0, 2) = (2, 2, 0)_{B_V}.$
- **11** $\vec{u} \in U_1$, ya que $\vec{u} = (2, 4, 0, 2) = 2(1, 2, 0, 1)$. Si elegimos $B_{U_1} = \{(1, 2, 0, 1)\}$, tenemos que $\vec{u} = (2)_{B_{U_1}}$.
 - $\vec{u} \notin U_2$, ya que \vec{u} no satisface la ecuación: $y z = 4 0 \neq 0$.
 - $\overrightarrow{u} \in U_3$, ya que es combinación lineal del sistema generador: $S = \{(1,1,0,0),(0,1,0,1),(0,0,1,0)\}$. Como los 3 vectores de S son L.I, $S = B_{U_3}$ y $\overrightarrow{u} = (2,2,0)_{B_{U_2}}$.

- **12** Una base podría ser: $B_U = \{(1, 1, 1, 2), (0, -2, 1, 1)\}.$
- **13** Ej: $B_{U_1+U_2} = \{(1, 2, 1, 0), (0, 3, 2, 1), (0, 0, 1, 2)\}$ y $B_{U_1 \cap U_2} = \{(-5, 2, 3, 4)\}$.
- **14** a) $U \cap W = \{(0,0,0,0)\}$. b) $U + W = \mathbb{R}^4$.
- **15** $\mathbb{R}^3 = U \oplus W$, ya que: (a) $U \cap W = \{(0,0,0)\}$ y (b) podemos encontrar dos vectores $\overrightarrow{u} \in U$, $\overrightarrow{w} \in W$ tales que cualquier vector $\overrightarrow{v} \in \mathbb{R}^3$ puede expresarse como: $\overrightarrow{v} = \overrightarrow{u} + \overrightarrow{w}$.