

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

MAT1620 - Sección 1 Profesor: Héctor Pastén

Ayudante: Vicente Castro Solar (vvcastro@uc.cl)

Primer Semestre 2019

Ayudantía 2

Sucesiones

1. Límite de Sucesiones.

Calcule el límite de las siguientes sucesiones:

(a)
$$a_n = \frac{3+5n^2}{n+n^2}$$

(b)
$$a_n = \frac{(-1)^n n}{n^3 + 4}$$

(c)
$$a_n = \frac{\cos^2 n}{3^n}$$

(d)
$$a_n = \ln(n+1) - \ln(n)$$

(e)
$$a_n = \sqrt[n]{2^{1+3n}}$$

(f)
$$a_n = \sqrt[n]{e^n + \pi^n}$$

2. Convergencia de Sucesiones.

(a) Considere la sucesión cuyo termino general a_n está dado por:

$$a_1 = \sqrt{2}, \quad a_{n+1} = \sqrt{2 + a_n}$$

Demuestre que esta sucesión es convergente, para ello demuestre que es creciente y está acotada por 3.

(b) Considere la sucesión cuyo término general a_n satisface,

$$a_1 = 1, \qquad a_{n+1} = 3 - \frac{1}{a_n}$$

Demuestre que $\lim_{n\to\infty} a_n$ existe y calcule su valor.

- (c) Sea a_n la sucesión definida por $a_n = \sqrt{n}(\sqrt{n+1} \sqrt{n})$. Demuestre que la sucesión se creciente, que está acotada y calcule a_n cuando $n \to \infty$.
- (d) Si $a_1 = 4$ y $a_{n+1} = \frac{6a_n + 6}{a_n + 11}$, demostrar que la sucesión a_n es convergente y calcular el límite.