Universite de M'sila Département math et informatique Master 2 IA Modèle d'apprentissage automatique

Gherabi Amira

November 20, 2021

exercice n01:

a) Les sources du probl'eme d'apprentissage

- 1. nombre de cycles durant lesquels la performance de l'agent reste sousoptimale pour la tâche de décision donnée.
- 2. Les ressources de calcul nécessaires durant chaque cycle à l'agent pour réviser sa stratégie et choisir une action.

b) Le modèle d'apprentissage:

modèle d'apprentissage est un cadre formel donnant une mesure des deux sources de complexitè mentionné prècèdament .

c) L'influence des observations, les actions et le feedback sur la difficulté de l'apprentissage

1. L'observation:

- * la dimension peut etre immense, voire infini
- * les valeurs de certains attributs peuvent être imprécises, erronées, ou encore absentes.
- * environnements partiellement observables alors 'une situation incertain
- 2. L'action: les actions sont des decision soit simple ou complex,
 - * l'espace des décisions possède une structure combinatoire; les décisions peuvent prendre la forme d'arbres, de graphes, ou encore d'hypergraphes

- * Les actions simples peuvent avoir un impact sur la difficulté de l'apprentissage selon la manière dont elles influent l'environnement (épisodique/séquentiel)
- 3. Feedback:Le type de feedback définit le mode d'apprentissage

exercice n02

les composants du problème l'apprentissage de porte logique XOR

la fonction Xor envoi une valeur vraie si les deux entrées ne sont pas egaux et fausse si elles sont egaux

```
* l'espace des entrées est le couple (a,b)/ (a,b) \in X={(0,0),(0,1),(1,0),(1,1)}
```

```
* l'espace des sorties est Y = \{true, false\}.
```

```
* programme Xor en python
def xor(x,y):
return bool((x and not y) or (not x and y))

print(xor(0,0))
print(xor(0,1))
print(xor(1,0))
print(xor(1,1))
```

exercice n03:

 $\mathbf{x}_1 \lor x_2 \land x_3 \lor x_4$

Liste de décision:

exercice n04:

- 1. la différence entre une requète d'appartenance et une requète d'equivalence est:
 - * Une requète d'appartenance (MQ) associe à une instance x posée par l'apprenant la réponse oui si h(x) = 1, et non sinon.
 - * Une requète d' equivalence (EQ) associe à une hypothèse h posée par l'apprenant la réponse oui si $h=h^*$, et non sinon
- 2. Si on a h1(x1,x2,x3)=x1 , h2(x1,x2,x3)=x1 x2 alors l'hypothèse la plus spécifique est h2
- 3. pour toute instance (x1,x2,x3)
 - * Si $h(x_1,x_2,x_3) = 0$ le type de cette requête est requête d'appartenance (MQ)
 - * si $h^*(x_1,x_2,x_3) = 1$ requète d'equivalence (EQ)