Regression Analysis
Multiple Linear Regression

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Basics of Multiple Regression

Multiple Linear Regression: Model

```
Data: \{(x_{1,1}, ..., x_{1,p}), y_1\}, ..., \{(x_{n,1}, ..., x_{n,p}), y_n\}

Model: Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_p x_{i,p} + \varepsilon_i, i = 1, ..., n
```

Assumptions:

- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption: $\{\varepsilon_1,...,\varepsilon_n\}$ are independent random variables
- $\varepsilon_i \sim$ Normally distributed for confidence/prediction intervals, hypothesis testing

Multiple Linear Regression: Model

```
Data: \{(x_{1,1},...,x_{1,p}), y_1\},...,\{(x_{n,1},...,x_{n,p}), y_n\}

Model: Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_p x_{i,p} + \varepsilon_i, i = 1,...,n
```

Assumptions:

- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption: $\{\varepsilon_1,...,\varepsilon_n\}$ are independent random variables
- $\varepsilon_i \sim$ Normally distributed for confidence/prediction intervals, hypothesis testing

The model parameters are: β_0 , β_1 , ..., β_p , σ^2

- Unknown regardless how much data are observed
- Estimated given the model assumptions
- · Estimated based on data

Multiple Linear Regression: Model

Data: $\{(x_{1,1}, ..., x_{1,p}), y_1\}, ..., \{(x_{n,1}, ..., x_{n,p}), y_n\}$ **Model**: $Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_p x_{i,p} + \varepsilon_i, i = 1, ..., n$

Model in Matrix Form: $Y = X\beta + \varepsilon$

Model Flexibility: Main Effects & Interactions

For k = 2 predicting variables, four useful regressions:

1st Order Model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

• 2nd Order Model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \varepsilon$$

• 1st Order Interaction Model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

• 2nd Order Interaction Model:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon$$

Quantitative and Qualitative Variables

Simple Linear Regression: Linear regression with one quantitative predicting variable

ANOVA: Linear regression with one or more qualitative predicting variables

Multiple Linear Regression: Multiple quantitative and qualitative predicting variables

Quantitative and Qualitative Variables

Multiple Linear Regression: Multiple quantitative/qualitative predicting variables

x₁ quantitative

 x_2 qualitative with three levels: D_1 , D_2 , and D_3 dummy variables

Model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 d_1 + \beta_3 d_2 + \varepsilon$$
 Intercept varies

If
$$d_1=0$$
, $d_2=0$: $\beta_0+\beta_1x_1$
If $d_1=1$, $d_2=0$: $(\beta_0+\beta_2)+\beta_1x_1$
If $d_1=0$, $d_2=1$: $(\beta_0+\beta_3)+\beta_1x_1$ Parallel regression lines

If x_1 x_2 interaction: Nonparallel regression lines

Quantitative Predicting Variables:

 X_1 = The amount (in hundreds of dollars) spent on advertising in 1999

 X_2 = The total amount of bonuses paid in 1999

 X_3 = The market share in each territory

 X_4 = The largest competitor's sales

Qualitative Predicting Variable:

 X_5 = Indicates the region of the office (1 = south, 2 = west, 3 = midwest)

Bike sharing systems are of great interest due to their important role in traffic management.

Dataset: Historical data for years 2011-2012 for the bike sharing system in Washington D.C.

Qualitative predicting variables:

```
X_1 = Day of the week
```

 X_2 = Month of the year

 X_3 = Hour of the day (ranging 0-23)

 X_4 = Year (2011, 2012)

 X_5 = Holiday Indicator

X₆ = Weather condition (with four levels from good weather for level 1 to severe condition for level 4)

Quantitative predicting variables:

 X_7 = Normalized temperature

 X_8 = Normalized humidity

 X_9 = Wind speed

Qualitative predicting variables:

 X_1 = Day of the week

 X_2 = Month of the year

 X_3 = Hour of the day (ranging 0-23)

 X_4 = Year (2011, 2012)

 X_5 = Holiday Indicator

X₆ = Weather condition (with four levels from good weather for level 1 to severe condition for level 4)

Quantitative predicting variables:

 X_7 = Normalized temperature

 X_8 = Normalized humidity

 X_9 = Wind speed

Year: A quantitative or a qualitative predicting variable?

- If observations are made over many years, then consider it to be quantitative
- If observations are made over only a few years, then consider it to be qualitative

Summary

