Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Prima prova di accertamento - 27/06/2024 - Canale 1 - Prof. Meneghesso

Problema 1

Dato il circuito amplificatore in figura di cui sono noti:

- I parametri dei MOSFET:
 - o M_1 : $k_1 = k_4 = 2mA/V^2$,
 - \circ M₂: $k_2 = k_5 = k_6 = 8mA/V^2$,
 - \circ M₃: k₃ = 0.08mA/V²,
 - V_{TN} = 1.5V per tutti i MOS)
 - \circ M₅ ha λ₅ = 0.01V⁻¹ (trascurare λ per tutti gli altri MOSFET)
- I valori delle resistenze: $R_i = 5k\Omega$, $R_L = 1k\Omega$
- La tensione di alimentazione: V_{DD} = 5V

Dato il circuito in figura, sapendo che la corrente attraverso la resistenza R₆ è 1mA, calcolare:

- 1) La tensione V_{GS} e V_{DS} del MOSEFT M₆ e il valore della resistenza R₆
- 2) Il punto di polarizzazione di tutti gli altri MOSFET del circuito.
- 3) I potenziali dei nodi A, B, C, D, e E in condizioni DC. (Riportare i valori nello spazio sotto la figura)
- 4) Disegnare il modello ai piccoli segnali e calcolare le transconduttanze di M₁ e M₂.
- 5) Calcolare le resistenze di ingresso (R_{IN} e di uscita R_{OUT}) come evidenziate nel circuito.
- 6) Calcolare il guadagno di tensione A_v=v_o/v_i

 $V_{R} =V$ $V_{C} =V$ $V_{D} =V$ $V_{E} =V$

POLARI PRAPIONE NO. HOLE

HP: MOSFETS IN SATURA SCONE

$$V_{GSG} = V_{TNG} + \sqrt{\frac{2 \pm 56}{K_{NLG}}} = 2V$$
 $V_A = -V_{DD} + V_{CNG} = -3V$
 $V_{DD} - V_{A} = 1_{BG}$
 $V_{CSG} = V_{CSG} = 2V$
 $V_{CSG} = V_{CSG} = 2V$
 $V_{CSG} = V_{CSG} = 2V$

IDS = IRc. Kns - 1 mA Vas, = VTN, + (250, - 2V ID: = ID3 = ID4 = 0,25 mA => VUS2 = VTN2 + \[2IO2 = 2V ID2 = ID5 = 1 mA Vas3 = VTN3 + (2703) = 4V $\frac{0.5}{0.00} = \frac{5}{0.8} = \frac{50}{8} =$ VA = - 3V VB = - VGS, = -2V VC= VDO-VGS3=10 VO= Vc- Vas2 = -1V VE = 0 V VGS1 = 2V VDS1 = VC-VB = 3V IOS1 = 0,25 mA Vasz = 2V Vosz = VDO - VD = 6V IDS2 - 1 mA Vas3 = 4V Vos3 = Vas3 = 4U Jos3 = 0,25mA Vasy = 2V, Vosy = VB - (VDD)= 3V IOSY = 0,25m4 Vass = 24, Voss = Vo-(-Voo)=44 Inss = 1 ma Vasa = 24, Vasa = Visa = 20 IDG = 1 mA TUTTI HANNO VOS >VGS-VTN OK SATCRAS. ANALIS AL PICCOW SEGNALE 8m1 = 2 ID1 = 1 m S 8m2 = 2 ID2 = 9mS - VGS2 - VTN2 $8m_3 = \frac{2 \text{ To}3}{\sqrt{453} - \sqrt{4}N_3} = 2 \text{ mS}$ $705 = \frac{1}{705} + \sqrt{855} = 104 \text{ KZ}$ DIRANSISTOR My & CORTOCIRCUITATO A MASSA DA CONDENSATORE

$$= > Av = \sqrt{0} = -6 - 0,798 = -3,882 - 4$$

Problema 2

Dato il circuito in figura, realizzato con un amplificatore operazionale e un diodo zener ($V_{ON}=0V~e~V_Z=8V$). Assumendo l'operazionale ideale e R = $10k\Omega$:

- 1. Tracciare la transcaratteristica di v_0 in funzione di v_s e riportarla nel grafico sulla pagina seguente.
- 2. Calcolare la tensione v_0 , la corrente i_D attraverso il diodo e la tensione v_D ai capi del diodo con $v_S = -8V$.

Assumiamo ora l'operazionale reale con tensione di offset V_{OS} = 20mV, correnti di bias I_{BN} = I_{BP} = 1 μ A e CMRR = 100:

3. Calcolare la tensione di uscita con v_s = 1V

BREAK -4V OFF OV ON
$$\sqrt{S}$$

A) $\sqrt{S} \in [-4v \div 0v] = > 0.000 = 0.77$
 $\sqrt{0} = -2\sqrt{S}$ $\sqrt{0}(0) = 0$; $\sqrt{0}(-4) = 8V$

2) $\sqrt{S} > 0 = > 0.000 = 0.00$
 $\sqrt{S} = \sqrt{S} = 0.000 = 0.00$
 $\sqrt{S} = \sqrt{S} = 0.000 = 0.00$
 $\sqrt{S} = \sqrt{S} = 0.000 = 0.000$
 $\sqrt{S} = \sqrt{S} = 0.000 = 0.000$
 $\sqrt{S} = 0.000 = 0.000 = 0.000$
 $\sqrt{S} = 0.0000 = 0.000 = 0.000$
 $\sqrt{S} = 0.0000 = 0.0000 = 0.000$
 $\sqrt{S} = 0.0000 = 0.0000 = 0.000$
 $\sqrt{S} = 0.0000 = 0.0000 = 0.0000$
 $\sqrt{S} = 0.0000 = 0.00000$
 $\sqrt{S} = 0.0000 = 0.0000 = 0.0000$
 $\sqrt{S} = 0.0000 = 0.0000 = 0.0000$
 $\sqrt{S} = 0.00000 = 0.0000$
 $\sqrt{S} = 0.000000$
 $\sqrt{S} = 0.000000$
 $\sqrt{S} = 0.00000$
 $\sqrt{S} = 0$

3) CON
$$\sqrt{s} = 2V$$
 => DIODO = ON $\sqrt{o} = -\sqrt{s}$

SONRAPROSITIONE ETTENT

 $2R$

2) EFFETTO \sqrt{s} (VEIDI PRITH)

 \sqrt{o} ($\sqrt{s} = 1V$) = $-1V$
 \sqrt{o} ($\sqrt{s} = 1V$) = $-1V$

d) ETTETVO IBP!
$$V_0(I_{BP}) = 0 \quad \text{(in Quanto } V_+ = 0 \Rightarrow V_0 = 0$$

Problema 3

DATI: $R_1 = 2k\Omega$, $C_1 = 5\mu F$, $R_2 = 200k\Omega$, $C_2 = 5nF$ Dato il filtro in figure.

- 4. Calcolare il guadagno per ω = 0.
- 5. Trovare la funzione di trasferimento (riportare l'espressione della funzione di trasferimento nella scheda della quarta pagina)
- 6. Tracciare i diagrammi di bode asintotici di modulo e fase (usando i grafici in quarta pagina).

$$W_{10} = \frac{1}{C_{1}R_{1}} = \frac{10^{2}}{20} \frac{Rd}{gc} \qquad (\frac{R}{R} = \frac{10^{2}}{100} \frac{R}{R} = \frac{10^{2}}{100} = \frac$$

