

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ»

ЗАДАНИЕ № 2.

Численные методы решения дифференциальных уравнений

ОТЧЕТ

о выполненном задании

студента 219 учебной группы факультета ВМК МГУ

Ратникова Тимофея Георгиевича

Решение задачи Коши для систем ОДУ первого порядка

Постановка задачи

Рассматривается обыкновенное дифференциальное уравнение первого порядка, разрешенное относительно производной и имеющее вид:

$$\frac{dy}{dx} = f(x, y), \ x_0 < x,\tag{1}$$

с дополнительным начальным условием, заданным в точке $x = x_0$:

$$y(x_0) = y_0. (2)$$

Предполагается, что правая часть уравнения (1) функция f = f(x, y) такова, что гарантирует существование и единственность решения задачи Коши (1)-(2).

В том случае, если рассматривается не одно дифференциальное уравнение вида (1), а система обыкновенных дифференциальных уравнений первого порядка, разрешенных относительно производных неизвестных функций, то соответствующая задача Коши имеет вид (на примере двух дифференциальных уравнений):

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2), \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2), & x > x_0. \end{cases}$$
(3)

Дополнительные (начальные) условия задаются в точке $x = x_0$:

$$y_1(x_0) = y_1^{(0)}, \ y_2(x_0) = y_2^{(0)}.$$
(4)

Также предполагается, что правые части уравнений из (3) заданы так, что это гарантирует существование и единственность решения задачи Коши (3)-(4), но уже для системы обыкновенных дифференциальных уравнений первого порядка в форме, разрешенной относительно производных неизвестных функций.

Цели и задачи практической работы

- Решить задачу Коши (1)-(2) (или (3)-(4)) наиболее известными и широко 1) используемыми на практике методами Рунге-Кутта второго и четвертого точности, аппроксимировав дифференциальную порядка задачу соответствующей разностной схемой (на равномерной сетке); полученное конечно-разностное уравнение (или уравнения в случае представляющее фактически некоторую рекуррентную формулу, просчитать численно;
- 2) Найти численное решение задачи и построить его график;
- 3) Найденное численное решение сравнить с точным решением дифференциального уравнения.

Алгоритмы решения

Метод Рунге-Кутты 2-го порядка

Пусть имеем точку принадлежащую искомому решению. Для того, чтобы найти следующую точку проведем касательную к кривой в точке (χ_m, χ_m) До пересечения с прямой $\chi = \chi_{m+1/2}$ где $\chi_{m+1/2} = \chi_{m+h/2}$. Тогда, получим координату (по формуле Эйлера)

$$y_{m+1/2} = y_m + \frac{h}{2}f(x_m, y_m).$$

Таким образом

$$y_{m+\frac{1}{2}} = y_m + \frac{h}{2} * f(x_m, y_m), x_{m+1/2} = x_m + h/2$$

$$y_{m+1} = y_m + h * f(x_{m+1/2}, y_{m+1/2}), x_{m+1} = x_m + h$$

для системы дифференциальных уравнений

$$y_i' = f_i(x, y_1, y_2, ... y_k), y_i(x_0) = y_1^2, i = 1, 2, ... k;$$

расчетные формулы имеют вид:

$$y_i^{m+\frac{1}{2}} = y_i^m + \frac{h}{2} * f_i(x_m, y_1^m, y_2^m, \dots y_k^m), x_{m+\frac{1}{2}} = x_m + \frac{h}{2};$$

$$y_i^{m+1} = y_i^m + h * f_i(x_{m+1/2}, y_1^{m+1/2}, y_2^{m+1/2}, \dots y_k^{m+1/2})$$

Метод Рунге-Кутты 4-го порядка

Для одиночного дифференциального уравнения $y' = f(x, y), y(x_0) = y_0$ расчетные формулы имеют следующий вид:

$$y_{m+1} = y_m + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4),_{\Gamma \Pi e}$$

$$k_1 = f(x_m, y_m);$$

$$k_2 = f\left(x_{m+h/2}, y_{m+\frac{hk_1}{2}}\right);$$

$$k_3 = f\left(x_{m+h/2}, y_{m+\frac{hk_2}{2}}\right);$$

$$k_4 = f(x_{m+h}, y_{m+hk_2}); x_{m+1} = x_{m+h}$$

Для системы дифференциальных уравнений

$$y_i' = f_i(x, y_1, y_2, ... y_k), y_i(x_0) = y_1^0, i = 1, 2, ... k;$$

Для системы дифференциальных уравнений

расчетные формулы запишутся следующим образам:

$$\begin{split} y_i^{n+1} &= y_i^m + h/6(k_{1i} + 2k_{2i} + 2k_{3i} + k_{4i}), i = 1, 2, \dots k; \\ k_{1i} &= f_i(x_m, y_1^m, y_2^m, \dots y_k^m); \\ k_{2i} &= f_i\left(x_m + \frac{h}{2}, y_1^m + \frac{h}{2} * k_{i1}, y_2^m + \frac{h}{2} * k_{12}, \dots y_k^m + \frac{h}{2} * k_{1k}\right); \\ k_{3i} &= f_i\left(x_m + \frac{h}{2}, y_1^m + \frac{h}{2} * k_{11}, y_2^m + \frac{h}{2} * k_{22}, \dots y_k^m + \frac{h}{2} * k_{2k}\right); \\ k_{4i} &= f_i\left(x_m + h, y_1^m + \frac{h}{2} * k_{21}, y_2^m + h * k_{32}, \dots y_k^m + h * k_{3k}\right); \end{split}$$

Текст программы

```
from math import exp, sqrt, tan, atan, cos, sin, log
import matplotlib.pyplot as plt
import numpy as np
# Функции для тестирования метода Рунге
def f1(x, y): # тестовая функция 1
    return sin(x)-y
def f2(x, y): # тестовая функция 2
    return y*cos(x)+sin(2*x)
def f31(x, u, v): # тестовая функция 3 1
    return cos(x+1.1*v)+u
def f32(x, u, v): # тестовая функция 3_2
    return -v**2+2.1*u+1.1
def f41(x, u, v): # тестовая функция 4 1
    return -v+sin(x)
def f42(x, u, v): # тестовая функция 4 2
    return u+cos(x)
def ans1(x): # точное решение для функции 1
    return -0.5*\cos(x)+0.5*\sin(x)+21/2*\exp(-x)
def ans2(x): # точное решение для функции 2
    return -2*\sin(x)+2*\exp(\sin(x))-2
def ans4 1(x): # точное решение и для системы 4
    return sin(x) + cos(x)
def ans 4 2(x): # точное решение v для системы 4
    return 2*\sin(x)-\cos(x)
# Функции для тестирования решения краевой задачи
# Функции для теста 1
def p1(x):
    return 2*x**2
def q1(x):
    return 1
def f1(x):
    return x
# Функции для теста 2
def p2(x):
    return 0
def q2(x):
    return 1
def f2(x):
    return x+2*exp(x)
def ans22(x):
    return -\sin(x) + \cos(x) + \exp(x) + x
```

```
# Функции для теста 3
def p3(x):
    return -3
def q3(x):
    return 2
def f3(x):
    return sin(x)
def ans23(x):
    return \sin(x)/10+3*\cos(x)/10+\exp(x)+\exp(2*x)
# Функции для теста 3
def p4(x):
    return 1/x
def q4(x):
    return 0
def f4(x):
    return 0
def ans24(x):
    return 6*log(x)+5
# Основные функции, осуществляющие вычисления
def arange(start, stop, n):
    step = (stop - start) / n
    return [round(x*step, 10) for x in range(int(start/step),
int(stop/step))]
def make graphic(xmas, ymas, marker='', cl = None, lw = 1): #строит график
    return plt.plot(xmas, ymas, marker, color=cl, linewidth = lw)
def runge2(f, a, b, y0, n, xmas, ymas): # метод Рунге 2-го порядка для ОДУ
    xmas.clear()
    ymas.clear()
    d = (b-a)/n
    xmas.append(a)
    ymas.append(y0)
    for i in range(n):
        res = f(a, y0)
        y0 += d/2*(res+f(a+d, y0+res*d))
        a += d
        xmas.append(a)
        ymas.append(y0)
def runge4(f, a, b, y0, n, xmas, ymas): # метод Рунге 4-го порядка для ОДУ
    xmas.clear()
    ymas.clear()
    d = (b-a)/n
    xmas.append(a)
    ymas.append(y0)
    for i in range(n):
        res1 = f(a, y0)
        res2 = f(a+d/2, y0+d/2*res1)
        res3 = f(a+d/2, y0+d/2*res2)
        res4 = f(a+d, y0+d*res3)
```

```
v0 += d/6* (res1+2*res2+2*res3+res4)
        a += d
       xmas.append(a)
        ymas.append(y0)
def runge2 sys(f1, f2, a, b, y01, y02, n, xmas, ymas1, ymas2): # метод
Рунге 2-го порядка для системы ОДУ
   xmas.clear()
   ymas1.clear()
   ymas2.clear()
   d = (b-a)/n
   xmas.append(a)
   ymas1.append(y01)
   ymas2.append(y02)
   n = 1
    for i in range(n):
        res1 = f1(a, y01, y02)
        res2 = f2(a, y01, y02)
        y01 += d/2*(res1+f1(a+d, y01+res1*d, y02+res2*d))
       y02 += d/2*(res2+f2(a+d, y01+res1*d, y02+res2*d))
       a += d
       xmas.append(a)
        ymas1.append(y01)
       ymas2.append(y02)
def runge4 sys(f1, f2, a, b, y01, y02, n, xmas, ymas1, ymas2): # метод
Рунге 4-го порядка для системы ОДУ
   xmas.clear()
   ymas1.clear()
   ymas2.clear()
   d = (b-a)/n
   xmas.append(a)
   ymas1.append(y01)
   ymas2.append(y02)
   n = 1
   for i in range(n):
       res11 = f1(a, y01, y02)
        res21 = f2(a, y01, y02)
       res12 = f1(a+d/2, y01+d/2*res11, y02+d/2*res21)
       res22 = f2(a+d/2, y01+d/2*res11, y02+d/2*res21)
       res13 = f1(a+d/2, y01+d/2*res12, y02+d/2*res22)
       res23 = f2(a+d/2, y01+d/2*res12, y02+d/2*res22)
       res14 = f1(a+d, y01+d*res13, y02+d*res23)
       res24 = f2(a+d, y01+d*res13, y02+d*res23)
       y01 += d/6* (res11+2*res12+2*res13+res14)
       y02 += d/6* (res21+2*res22+2*res23+res24)
       a += d
       xmas.append(a)
        ymas1.append(y01)
       ymas2.append(y02)
def run through method(a, b, p, q, f, n, sigma, gamma, delta): # Метод
прогонки решения краевой задачи
   d = (b-a)/n
   n+=1
   amas = []
   bmas = []
    cmas = []
   fmas = []
   alpha = np.zeros(n-1)
   beta = np.zeros(n-1)
```

```
result = np.zeros(n)
    def coef a(m):
        return 1 - p(m)*d/2
    def coef b(m):
        return 1 + p(m)*d/2
    def coef c(m):
        return -2 + q(m) * (d**2)
    def coef f(m):
        return f(m) *d**2
    for i in range (0, n):
        amas.append(coef a(a+i*d))
        bmas.append(coef b(a+i*d))
        cmas.append(coef_c(a+i*d))
fmas.append(coef_f(a+i*d))
    amas[n-1] = -gamma[1]/d
    bmas[0] = gamma[0]/d
    cmas[0] = sigma[0]-gamma[0]/d
    cmas[n-1] = sigma[1]+gamma[1]/d
    fmas[0] = delta[0]
    fmas[n-1] = delta[1]
    alpha[0] = -bmas[0]/cmas[0]
    beta[0] = fmas[0]/cmas[0]
    for i in range(1, n-1):
        alpha[i] = -bmas[i]/(amas[i]*alpha[i-1]+cmas[i])
        beta[i] = (fmas[i] - amas[i] * beta[i-1])/(amas[i]*alpha[i-
1]+cmas[i])
    result[n-1] = (fmas[n-1] - amas[n-1] * beta[n-2])/(amas[n-1]*alpha[n-1])
2]+cmas[n-1])
    for i in range (n-2, -1, -1):
        result[i] = alpha[i]*result[i+1]+beta[i]
    return result
```

Тестирование

1. Таблица 1-2

f(x,y)	(x_0, y_0)	Точное решение $y = y(x)$
$\sin(x) - y$	(0,10)	$-0.5\cos(x) + 0.5\sin(x) + \frac{21}{2}e^{-x}$

Метод Рунге-Кутты 4 порядка, n = 30

2. Собственный тест (не из таблицы)

f(x,y)	(x_0, y_0)	Точное решение $y = y(x)$
$y\cos(x) + \sin(2x)$	(0, 0)	$-2\sin(x) + 2e^{\sin(x)}-2$

Метод Рунге-Кутты 2 порядка, n=30

Метод Рунге-Кутты 4 порядка, n=30

3. Таблица 2-8

$f_1(x,u,v)$	$f_2(x,u,v)$	\mathcal{X}_0	$y_1^{(0)}$	$y_2^{(0)}$
$\cos(x+1.1\cdot v)+u$	$-v^2 + 2.1 \cdot u + 1.1$	0	0.25	1

Точное решение не удалось найти в элементарных функциях (Онлайн сервис https://www.wolframalpha.com/ не может найти решение данной задачи)

4. Собственный тест (не из таблицы)

$f_1(x,u,v)$	$f_2(x,u,v)$	x_0	$y_1^{(0)}$	$y_2^{(0)}$
-v+sin(x)	u+cos(x)	0	1	-1

Точное решение: $u = \sin(x) + \cos(x)$ $v = 2\sin(x) - \cos(x)$

Метод Рунге-Кутты 4 порядка, n=200

РЕШЕНИЕ КРАЕВОЙ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА, РАЗРЕШЕННОГО ОТНОСИТЕЛЬНО СТАРШЕЙ ПРОИЗВОДНОЙ

Постановка задачи:

Рассматривается линейное дифференциальное уравнение второго порядка вида

$$y'' + p(x) \cdot y' + q(x) \cdot y = -f(x), \ 1 < x < 0, \tag{1}$$

с дополнительными условиями в граничных точках

$$\begin{cases}
\sigma_1 y(0) + \gamma_1 y'(0) = \delta_1, \\
\sigma_2 y(1) + \gamma_2 y'(1) = \delta_2.
\end{cases}$$
(2)

Цели и задачи практической работы

- 1) Решить краевую задачу (1)-(2) методом конечных разностей, аппроксимировав ее разностной схемой второго порядка точности (на равномерной сетке); полученную систему конечно-разностных уравнений решить методом прогонки;
- 2) Найти разностное решение задачи и построить его график;
- 3) Найденное разностное решение сравнить с точным решением дифференциального уравнения.

Алгоритмы решения

Для решения задачи (1)-(2) применим разностный метод, получаемый путем аппроксимации первой и второй производной разностными соотношениями:

$$\frac{y_{i+1} - y_{i-1}}{2h}$$

И

$$\frac{y_{i-1} - 2y_i + y_{i+1}}{h^2}$$

В итоге получаем систему соотношений:

$$\frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + p(x_i) \frac{y_{i+1} - y_{i-1}}{2h} + q(x_i)y_i = f(x_i)$$

Которую можно преобразовать как:

$$y_{i-1}\left(\frac{1}{h^2} - \frac{p(x_i)}{2h}\right) + y_i\left(-\frac{2}{h^2} + q(x_i)\right) + y_{i+1}\left(\frac{1}{h^2} + \frac{p(x_i)}{2h}\right) = f(x_i)i = 1 \dots n$$

Если записать данную систему, получим трехдиагональную матрицу. Аппроксимируя первую производную в краевых условиях с помощью приведенных выше разностных отношений можем получить следующее:

$$\begin{cases} y(x_0)(\sigma_1 - \frac{\gamma_1}{h}) + y(x_1) \frac{\gamma_1}{h} = \delta_1 \\ y(x_n)(\sigma_2 + \frac{\gamma_2}{h}) - y(x_{n-1}) \frac{\gamma_2}{h} = \delta_2 \end{cases}$$

Полученную систему будем решать методом прогонки. В этом методе предполагается, что искомые неизвестные связаны рекуррентным соотношением. Сначала нужно найти пригоночные коэффициенты:

$$\begin{cases} \alpha_{i+1} = \frac{-B_i}{A_i \alpha_i + C_i} \\ \beta_{i+1} = \frac{F_i - A_i \beta_i}{A_i \alpha_i + C_i} \end{cases}$$

где

$$A_{i}y_{i-1} + C_{i}y + B_{i}y_{i+1} = F_{i}$$

После вычисления прогоночных коэффициентов необходимо решить следующую систему:

$$\begin{cases} y_{n} = \frac{F_{n} - A_{n}\beta_{n-1}}{A_{n}\alpha_{n-1} + C_{n}} \\ y_{i} = \alpha_{i}y_{i+1} + \beta_{i}, i = 0 \dots n-1 \end{cases}$$

Текст программы:

Текст программы был представлен выше на страницах 6 - 9

Тестирование

1.

Краевая задача 14.
$$y'' + 2 x^2 y' + y = x$$
; $2 y(0.5) - y'(0.5) = 1$; $y(0.8) = 3$.

Точное решение не удалось найти в элементарных функциях (Онлайн сервис https://www.wolframalpha.com/ не может найти решение данной задачи)

2. Краевая задача (Не из таблицы). y" + $y = x + 2e^x$; y'(0) = 1 ; y(1) = 3.4171131 Точное решение: $-\sin(x) + \cos(x) + e^x + x$

3.

Краевая задача (Не из таблицы). $y'' - 3y' + 2y = \sin(x); y(0) = 2.3; y'(\pi/2) = 27.65117$

Точное решение: $\sin(x)/10 + 3\cos(x)/10 + e^x + e^{2x}$

4. Краевая задача (Не из таблицы). y" +y"/x=0; y"(1) =6; y(e) =11 Точное решение: $6\ln(x)+5$

