

SEQUENCE LISTING

<110	0> Koichiro KAKU, et al. 0> GENE CODING FOR ACETOLACTATE SYNTHASE															
<12	0 > G	ENE (CODII	NG F	OR AC	CETO	LACT	ATE S	SYNTI	HASE						
<13	0> 1	254-	0259	PUS1												
			/509 09-28													
			02-99 03-29													
<16	0 > 3	9														
<17)> Pa	aten	tIn '	Ver.	2.0											
<21 <21	210> 1 211> 2301 212> DNA 213> Oryza sativa var. kinmaze															
	l> CI		. (19'	79)												
)> 1 aaac	cca (gaaa	ccct	cg co	egee	gccg	c cg	cege	cacc	acco	cacc	_	gct Ala	_	56
					gcc Ala											104
					cac His 25											152
					gcg Ala											200
					ccg Pro											248
					ggc Gly											296
					gtg Val											344
atc	C 2 C	cac	aca	ata	200		taa	000	ata	ata	200	224	Cac	ata	tta	201

Ile His Gln Ala 100	Leu Thr Arg Ser 105	Pro Val Ile Thr A	Asn His Leu Phe 115
		gcg gcg tcc ggg t Ala Ala Ser Gly T 125	
		gcc acc tcc ggc c Ala Thr Ser Gly P 140	
		gcg ctg ctc gac t Ala Leu Leu Asp S 1	• •
		agc cgc atg atc g Ser Arg Met Ile G 175	
		gtc acc cgc tcc a Val Thr Arg Ser I 190	<u> </u>
-		gac atc ccc cgc g Asp Ile Pro Arg V 205	
		cgt cct ggc ccg g Arg Pro Gly Pro V 220	
		atg gcc gtg ccg g Met Ala Val Pro V 2	
		gca cgc ctg ccc a Ala Arg Leu Pro L 255	
		cgt ctg gtt ggc g Arg Leu Val Gly G 270	
		tgc tct gca tct g Cys Ser Ala Ser G 285	
		atc cca gtt aca a Ile Pro Val Thr T 300	
		gac ccg ttg tcc c Asp Pro Leu Ser L 3	
		aat tat gcc gtg g Asn Tyr Ala Val A	

325 330 335

					ggt Gly 345										1112
					agc Ser										1160
	_				aag Lys		_						_	-	1208
-	_	_		_	tta Leu	_		_		_	_		_	_	1256
		_		_	tct Ser	_		_	_				_	_	1304
_	_	_			ttt Phe 425		_						_		1352
					gcc Ala										1400
					act Thr										1448
					aag Lys						_	_	_		1496
		_	_		ttt Phe		_		_	_	_	 _			1544
					aca Thr 505										1592
				_	gag Glu	_		_		_					1640
					ttg Leu										1688
					tac Tyr										1736

aac ccg gaa tgt gag agc gag ata tat cca gat ttt gtg act att gct Asn Pro Glu Cys Glu Ser Glu Ile Tyr Pro Asp Phe Val Thr Ile Ala 565 570 575	1784
aag ggg ttc aat att cct gca gtc cgt gta aca aag aag agt gaa gtc Lys Gly Phe Asn Ile Pro Ala Val Arg Val Thr Lys Lys Ser Glu Val 580 585 590 595	1832
cgt gcc gcc atc aag aag atg ctc gag act cca ggg cca tac ttg ttg Arg Ala Ala Ile Lys Lys Met Leu Glu Thr Pro Gly Pro Tyr Leu Leu 600 605 610	1880
gat atc atc gtc ccg cac cag gag cat gtg ctg cct atg atc cca agt Asp Ile Ile Val Pro His Gln Glu His Val Leu Pro Met Ile Pro Ser 615 620 625	1928
ggg ggc gca ttc aag gac atg atc ctg gat ggt gat ggc agg act gtg Gly Gly Ala Phe Lys Asp Met Ile Leu Asp Gly Asp Gly Arg Thr Val 630 635 640	1976
tat taatctataa totgtatgtt ggcaaagcac cagcccggcc tatgtttgac Tyr	2029
ctgaatgacc cataaagagt ggtatgccta tgatgtttgt atgtgctcta tcaataacta	2089
aggtgtcaac tatgaaccat atgctcttct gttttacttg tttgatgtgc ttggcatggt	2149
aatcctaatt agcttcctgc tgtctaggtt tgtagtgtgt tgttttctgt aggcatatgc	2209
atcacaagat atcatgtaag tttcttgtcc tacatatcaa taataagaga ataaagtact	2269
tctatgcaaa aaaaaaaaa aaaaaaaaaa aa	2301
<210> 2 <211> 644 <212> PRT <213> Oryza sativa var. kinmaze	
<400> 2 Met Ala Thr Thr Ala Ala Ala Ala Ala Ala Leu Ser Ala Ala Ala 1 5 10 15	
Thr Ala Lys Thr Gly Arg Lys Asn His Gln Arg His His Val Leu Pro 20 25 30	
Ala Arg Gly Arg Val Gly Ala Ala Ala Val Arg Cys Ser Ala Val Ser 35 40 45	
Pro Val Thr Pro Pro Ser Pro Ala Pro Pro Ala Thr Pro Leu Arg Pro 50 55 60	
Trp Gly Pro Ala Glu Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala 65 70 75 80	

Leu Glu Arg Cys Gly Val Ser Asp Val Phe Ala Tyr Pro Gly Gly Ala

Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Pro Val Ile Thr Asn 105 His Leu Phe Arg His Glu Gln Gly Glu Ala Phe Ala Ala Ser Gly Tyr 120 Ala Arg Ala Ser Gly Arg Val Gly Val Cys Val Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu Val Ser Ala Leu Ala Asp Ala Leu Leu Asp Ser 150 155 Val Pro Met Val Ala Ile Thr Gly Gln Val His Ser Arg Met Ile Gly 170 Thr Asp Ala Phe Gln Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile 185 Thr Lys His Asn Tyr Leu Val Leu Asp Val Glu Asp Ile Pro Arg Val Ile Gln Glu Ala Phe Phe Leu Ala Ser Ser Gly Arg Pro Gly Pro Val Leu Val Asp Ile Pro Lys Asp Ile Gln Gln Met Ala Val Pro Val 230 Trp Asp Thr Ser Met Asn Leu Pro Gly Tyr Ile Ala Arg Leu Pro Lys Pro Pro Ala Thr Glu Leu Leu Glu Gln Val Leu Arg Leu Val Gly Glu Ser Arg Arg Pro Ile Leu Tyr Val Gly Gly Cys Ser Ala Ser Gly Asp Glu Leu Arg Trp Phe Val Glu Leu Thr Gly Ile Pro Val Thr Thr 290 295 300 Thr Leu Met Gly Leu Gly Asn Phe Pro Ser Asp Asp Pro Leu Ser Leu 315 Arg Met Leu Gly Met His Gly Thr Val Tyr Ala Asn Tyr Ala Val Asp Lys Ala Asp Leu Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Ile Glu Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile 360 Asp Ile Asp Pro Ala Glu Ile Gly Lys Asn Lys Gln Pro His Val Ser 370 375 380 Ile Cys Ala Asp Val Lys Leu Ala Leu Gln Gly Leu Asn Ala Leu Leu Gln Gln Ser Thr Thr Lys Thr Ser Ser Asp Phe Ser Ala Trp His Asn 405 410 415

Glu Leu Asp Gln Gln Lys Arg Glu Phe Pro Leu Gly Tyr Lys Thr Phe
420 425 430

Gly Glu Glu Ile Pro Pro Gln Tyr Ala Ile Gln Val Leu Asp Glu Leu 435 440 445

Thr Lys Gly Glu Ala Ile Ile Ala Thr Gly Val Gly Gln His Gln Met 450 455 460

Trp Ala Ala Gln Tyr Tyr Thr Tyr Lys Arg Pro Arg Gln Trp Leu Ser 465 470 475 480

Ser Ala Gly Leu Gly Ala Met Gly Phe Gly Leu Pro Ala Ala Gly 485 490 495

Ala Ser Val Ala Asn Pro Gly Val Thr Val Val Asp Ile Asp Gly Asp
500 505 510

Gly Ser Phe Leu Met Asn Ile Gln Glu Leu Ala Leu Ile Arg Ile Glu
515 520 525

Asn Leu Pro Val Lys Val Met Val Leu Asn Asn Gln His Leu Gly Met 530 540

Val Val Gln Trp Glu Asp Arg Phe Tyr Lys Ala Asn Arg Ala His Thr 545 550 555 560

Tyr Leu Gly Asn Pro Glu Cys Glu Ser Glu Ile Tyr Pro Asp Phe Val
565 570 575

Thr Ile Ala Lys Gly Phe Asn Ile Pro Ala Val Arg Val Thr Lys Lys 580 585 590

Ser Glu Val Arg Ala Ala Ile Lys Lys Met Leu Glu Thr Pro Gly Pro 595 600 605

Tyr Leu Leu Asp Ile Ile Val Pro His Gln Glu His Val Leu Pro Met 610 620

Ile Pro Ser Gly Gly Ala Phe Lys Asp Met Ile Leu Asp Gly Asp Gly 625 630 635 640

Arg Thr Val Tyr

. <210> 3

<211> 2300

<212> DNA

<213> Oryza sativa var. kinmaze

<220>

<400> 3

	0> 3 aaac	cca (gaaa	ccct	cg c	cgcc	gccg	c cg	ccgc	cacc	acc	cacc	_	gct Ala	_	56
	_		_		_	gcc Ala 10	-	_		_	_		_	_	_	104
						cag Gln										152
						gtc Val										200
						ccg Pro										248
						gcg Ala										296
						ttc Phe 90										344
						cgc Arg										392
						gcg Ala										440
						tgc Cys										488
						gcc Ala										536
						gtc Val 170										584
						gtc Val										632
aat	tac	ctt	gtc	ctt	gat	gtg	gag	gac	atc	ccc	cgc	gtc	ata	cag	gaa	680

Asn	Tyr	Leu	Val	Leu 200	Asp	Val	Glu	Asp	Ile 205	Pro	Arg	Val	Ile	Gln 210	Glu	
	ttc Phe															728
	ccc Pro															776
_	atg Met 245							_	_	_		_				824
	gaa Glu															872
_	att Ile			_				_		_			_	_	_	920
	tgg Trp															968
	ctc Leu					_	_	_	_	_		_	_	_		1016
	atg Met 325															1064
	ttg Leu															1112
	gag Glu															1160
	gca Ala															1208
_	gtt Val			-		_		_		_	_			_	_	1256
	aca Thr 405															1304
	cag Gln															1352

420	425		430	435
			gat gag ctg acg aa Asp Glu Leu Thr Ly 45	s Gly
			cac cag atg tgg go His Gln Met Trp Al 465	
	Thr Tyr Lys Arg		tgg ctg tct tcg gc Trp Leu Ser Ser Al 480	
			gca gct ggt gct to Ala Ala Gly Ala Se 495	
			gat ggg gat ggt ag Asp Gly Asp Gly Se 510	
			cgc att gag aac ct Arg Ile Glu Asn Le 53	u Pro
			ttg ggt atg gtg gt Leu Gly Met Val Va 545	
	Arg Phe Tyr Lys		gcg cat aca tac tt Ala His Thr Tyr Le 560	
			gat ttt gtg act at Asp Phe Val Thr Il 575	
	_		aca aag aag agt ga Thr Lys Lys Ser Gl 590	=
			cca ggg cca tac tt Pro Gly Pro Tyr Le 61	u Leu
			ctg cct atg atc cc Leu Pro Met Ile Pr 625	
	Phe Lys Asp Met		ggt gat ggc agg ac Gly Asp Gly Arg Th 640	
tat taatcta Tyr	taa totgtatgtt g	gcaaagcac cag	gcccggcc tatgtttgac	2029

ctgaatgacc cataaagagt ggtatgccta tgatgtttgt atgtgctcta tcaataacta 2089
aggtgtcaac tatgaaccat atgctcttct gttttacttg tttgatgtgc ttggcatggt 2149
aatcctaatt agcttcctgc tgtctaggtt tgtagtgtgt tgttttctgt aggcatatgc 2209
atcacaagat atcatgtaag tttcttgtcc tacatatcaa taataagaga ataaagtact 2269
tctatgcaaa aaaaaaaaaa aaaaaaaaaa a

<210> 4

<211> 644

<212> PRT

<213> Oryza sativa var. kinmaze

<400> 4

Met Ala Thr Thr Ala Ala Ala Ala Ala Ala Leu Ser Ala Ala Ala 1 5 10 15

Thr Ala Lys Thr Gly Arg Lys Asn His Gln Arg His His Val Leu Pro 20 25 30

Ala Arg Gly Arg Val Gly Ala Ala Ala Val Arg Cys Ser Ala Val Ser
35 40 45

Pro Val Thr Pro Pro Ser Pro Ala Pro Pro Ala Thr Pro Leu Arg Pro 50 55 60

Trp Gly Pro Ala Glu Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala 65 70 75 80

Leu Glu Arg Cys Gly Val Ser Asp Val Phe Ala Tyr Pro Gly Gly Ala 85 90 95

Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Pro Val Ile Thr Asn 100 105 110

His Leu Phe Arg His Glu Gln Gly Glu Ala Phe Ala Ala Ser Gly Tyr 115 120 125

Ala Arg Ala Ser Gly Arg Val Gly Val Cys Val Ala Thr Ser Gly Pro 130 135 140

Gly Ala Thr Asn Leu Val Ser Ala Leu Ala Asp Ala Leu Leu Asp Ser 145 150 155 160

Val Pro Met Val Ala Ile Thr Gly Gln Val His Arg Arg Met Ile Gly
165 170 175

Thr Asp Ala Phe Gln Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile 180 185 190

Thr Lys His Asn Tyr Leu Val Leu Asp Val Glu Asp Ile Pro Arg Val
195 200 205

Ile Gln Glu Ala Phe Phe Leu Ala Ser Ser Gly Arg Pro Gly Pro Val

210 215 220

Leu Val Asp Ile Pro Lys Asp Ile Gln Gln Met Ala Val Pro Val 225 230 235 240

Trp Asp Thr Ser Met Asn Leu Pro Gly Tyr Ile Ala Arg Leu Pro Lys
245 250 255

Pro Pro Ala Thr Glu Leu Leu Glu Gln Val Leu Arg Leu Val Gly Glu 260 265 270

Ser Arg Arg Pro Ile Leu Tyr Val Gly Gly Gly Cys Ser Ala Ser Gly 275 280 285

Asp Glu Leu Arg Trp Phe Val Glu Leu Thr Gly Ile Pro Val Thr Thr 290 295 300

Thr Leu Met Gly Leu Gly Asn Phe Pro Ser Asp Asp Pro Leu Ser Leu 305 310 315 320

Arg Met Leu Gly Met His Gly Thr Val Tyr Ala Asn Tyr Ala Val Asp 325 330 335

Lys Ala Asp Leu Leu Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val 340 345 350

Thr Gly Lys Ile Glu Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile 355 360 365

Asp Ile Asp Pro Ala Glu Ile Gly Lys Asn Lys Gln Pro His Val Ser 370 375 380

Ile Cys Ala Asp Val Lys Leu Ala Leu Gln Gly Leu Asn Ala Leu Leu 385 390 395 400

Gln Gln Ser Thr Thr Lys Thr Ser Ser Asp Phe Ser Ala Trp His Asn 405 410 415

Glu Leu Asp Gln Gln Lys Arg Glu Phe Pro Leu Gly Tyr Lys Thr Phe
420 425 430

Gly Glu Glu Ile Pro Pro Gln Tyr Ala Ile Gln Val Leu Asp Glu Leu 435 440 445

Thr Lys Gly Glu Ala Ile Ile Ala Thr Gly Val Gly Gln His Gln Met 450 455 460

Trp Ala Ala Gln Tyr Tyr Thr Tyr Lys Arg Pro Arg Gln Trp Leu Ser 465 470 475 480

Ser Ala Gly Leu Gly Ala Met Gly Phe Gly Leu Pro Ala Ala Ala Gly
485 490 495

Ala Ser Val Ala Asn Pro Gly Val Thr Val Val Asp Ile Asp Gly Asp 500 505 510

Gly Ser Phe Leu Met Asn Ile Gln Glu Leu Ala Leu Ile Arg Ile Glu

515 520 525

Asn	Leu 530	Pro	Val	Lys	Val	Met 535	Val	Leu	Asn	Asn	Gln 540	His	Leu	Gly	Met	
Val 545	Val	Gln	Leu	Glu	Asp 550	Arg	Phe	Tyr	Lys	Ala 555	Asn	Arg	Ala	His	Thr 560	
Tyr	Leu	Gly	Asn	Pro 565	Glu	Cys	Glu	Ser	Glu 570	Ile	Tyr	Pro	Asp	Phe 575	Val	
Thr	Ile	Ala	Lys 580	Gly	Phe	Asn	Ile	Pro 585	Ala	Val	Arg	Val	Thr 590	Lys	Lys	
Ser	Glu	Val 595	Arg	Ala	Ala	Ile	Lys 600	Lys	Met	Leu	Glu	Thr 605	Pro	Gly	Pro	
Tyr	Leu 610	Leu	Asp	Ile	Ile	Val 615	Pro	His	Gln	Glu	His 620	Val	Leu	Pro	Met	
Ile 625	Pro	Ser	Gly	Gly	Ala 630	Phe	Lys	Asp	Met	Ile 635	Leu	Asp	Gly	Asp	Gly 640	
Arg	Thr	Val	Tyr													
<213 <213 <213 <223 <223 <223	0> 1> CI 2> (4	IA cyza			ar.	kinr	naze									
<400		cca g	gaaad	eccto	eg co	egec	gccgo	c cg	ccgc	cacc	acco	cacc		gct Ala		56
	_		_		_	_	gcc Ala	_		_	_	_	_	_	_	104
							cga Arg									152
							agg Arg									200
							gcc Ala									248

				aag Lys												296
				gac Asp												344
		-	-	ctg Leu	_	_		_	_							392
				ggc Gly 120										_		440
				Gly 999			_							_		488
				gcg Ala												536
_	_			ggc Gly	_	_		_	_	_				_	_	584
				ccc Pro												632
				ctt Leu 200												680
				gcg Ala												728
				atc Ile												776
_	_			cca Pro				_	_	_		_				824
				gag Glu												872
_				gtc Val 280				_		_			_	_	_	920
cgc	tgg	ttt	gtt	gag	ctg	act	ggt	atc	cca	gtt	aca	acc	act	ctg	atg	968

Arg	Trp	Phe	Val 295	Glu	Leu	Thr	Gly	Ile 300	Pro	Val	Thr	Thr	Thr 305	Leu	Met	
	ctc Leu															1016
	atg Met 325			_			-			_		_	_	_	-	1064
	ttg Leu															1112
	gag Glu															1160
	gca Ala				_		_							_	_	1208
_	gtt Val			_				_		_	_			_	_	1256
	aca Thr 405															1304
	cag Gln															1352
	cca Pro															1400
	gca Ala															1448
	tat Tyr															1496
	ggc Gly 485															1544
	aac Asn															1592
	atg Met															1640

	520	525	530
		ac caa cat ttg ggt sn Gln His Leu Gly 540	
	Phe Tyr Lys Al	cg aat agg gcg cat la Asn Arg Ala His	
		ta tat cca gat ttt le Tyr Pro Asp Phe 575	
		tc cgt gta aca aag al Arg Val Thr Lys 590	
		etc gag act cca ggg eu Glu Thr Pro Gly 605	3 3
	Pro His Gln G	ag cat gtg ctg cct lu His Val Leu Pro 620	
	Lys Asp Met I	tc ctg gat ggt gat le Leu Asp Gly Asp 35	
tat taatctataa Tyr	tctgtatgtt ggca	aaagcac cagcccggcc	tatgtttgac 2029
ctgaatgacc cata	aagagt ggtatgco	cta tgatgtttgt atgt	gctcta tcaataacta 2089
aggtgtcaac tatg	aaccat atgctctt	tot gttttacttg tttg	atgtgc ttggcatggt 2149
aatcctaatt agct	teetge tgtetage	gtt tgtagtgtgt tgtt	ttctgt aggcatatgc 2209
atcacaagat atca	tgtaag tttcttgt	tcc tacatatcaa taat	aagaga ataaagtact 2269

<210> 6 <211> 644 <212> PRT <213> Oryza sativa var. kinmaze

tctatgtaaa aaaaaaaaa aaaaa

<400> 6

Met Ala Thr Thr Ala Ala Ala Ala Ala Ala Leu Ser Ala Ala Ala 1 5 10 15

2294

Thr Ala Lys Thr Gly Arg Lys Asn His Gln Arg His His Val Leu Pro 20 25 30

Ala Arg Gly Arg Val Gly Ala Ala Val Arg Cys Ser Ala Val Ser

Pro Val Thr Pro Pro Ser Pro Ala Pro Pro Ala Thr Pro Leu Arg Pro 55 Trp Gly Pro Ala Glu Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala 70 Leu Glu Arg Cys Gly Val Ser Asp Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Pro Val Ile Thr Asn 105 His Leu Phe Arg His Glu Gln Gly Glu Ala Phe Ala Ala Ser Gly Tyr 115 120 Ala Arg Ala Ser Gly Arg Val Gly Val Cys Val Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu Val Ser Ala Leu Ala Asp Ala Leu Leu Asp Ser 145 150 Val Pro Met Val Ala Ile Thr Gly Gln Val His Arg Arg Met Ile Gly Thr Asp Ala Phe Gln Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile 185 Thr Lys His Asn Tyr Leu Val Leu Asp Val Glu Asp Ile Pro Arg Val 195 200 Ile Gln Glu Ala Phe Phe Leu Ala Ser Ser Gly Arg Pro Gly Pro Val 215 Leu Val Asp Ile Pro Lys Asp Ile Gln Gln Met Ala Val Pro Val 230 Trp Asp Thr Ser Met Asn Leu Pro Gly Tyr Ile Ala Arg Leu Pro Lys 245 250 Pro Pro Ala Thr Glu Leu Leu Glu Gln Val Leu Arg Leu Val Gly Glu Ser Arg Arg Pro Ile Leu Tyr Val Gly Gly Cys Ser Ala Ser Gly 275 Asp Glu Leu Arg Trp Phe Val Glu Leu Thr Gly Ile Pro Val Thr Thr 295 Thr Leu Met Gly Leu Gly Asn Phe Pro Ser Asp Asp Pro Leu Ser Leu 310 315 Arg Met Leu Gly Met His Gly Thr Val Tyr Ala Asn Tyr Ala Val Asp 325 330 335 Lys Ala Asp Leu Leu Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val

Thr Gly Lys Ile Glu Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Pro Ala Glu Ile Gly Lys Asn Lys Gln Pro His Val Ser Ile Cys Ala Asp Val Lys Leu Ala Leu Gln Gly Leu Asn Ala Leu Leu Gln Gln Ser Thr Thr Lys Thr Ser Ser Asp Phe Ser Ala Trp His Asn Glu Leu Asp Gln Gln Lys Arg Glu Phe Pro Leu Gly Tyr Lys Thr Phe Gly Glu Glu Ile Pro Pro Gln Tyr Ala Ile Gln Val Leu Asp Glu Leu Thr Lys Gly Glu Ala Ile Ile Ala Thr Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Tyr Tyr Thr Tyr Lys Arg Pro Arg Gln Trp Leu Ser Ser Ala Gly Leu Gly Ala Met Gly Phe Gly Leu Pro Ala Ala Ala Gly Ala Ser Val Ala Asn Pro Gly Val Thr Val Val Asp Ile Asp Gly Asp Gly Ser Phe Leu Met Asn Ile Gln Glu Leu Ala Leu Ile Arg Ile Glu Asn Leu Pro Val Lys Val Met Val Leu Asn Asn Gln His Leu Gly Met Val Val Gln Trp Glu Asp Arg Phe Tyr Lys Ala Asn Arg Ala His Thr Tyr Leu Gly Asn Pro Glu Cys Glu Ser Glu Ile Tyr Pro Asp Phe Val Thr Ile Ala Lys Gly Phe Asn Ile Pro Ala Val Arg Val Thr Lys Lys Ser Glu Val Arg Ala Ala Ile Lys Lys Met Leu Glu Thr Pro Gly Pro Tyr Leu Leu Asp Ile Ile Val Pro His Gln Glu His Val Leu Pro Met Ile Pro Ile Gly Gly Ala Phe Lys Asp Met Ile Leu Asp Gly Asp Gly

Arg Thr Val Tyr

<210> 7 <211> 2294 <212> DNA <213> Oryza sativa var. kinmaze <220> <221> CDS <222> (48)..(1979) <400> 7 cccaaaccca qaaaccctcq ccqccqccqc cqccqccacc acccacc atq qct acq 56 Met Ala Thr 1 104 Thr Ala Ala Ala Ala Ala Ala Leu Ser Ala Ala Thr Ala Lys 5 10 acc ggc cgt aag aac cac cag cga cac cac gtc ctt ccc gct cga ggc 152 Thr Gly Arg Lys Asn His Gln Arg His His Val Leu Pro Ala Arg Gly cgg gtg gcg gcg gcg gtc agg tgc tcg gcg gtg tcc ccg gtc acc 200 Arg Val Gly Ala Ala Ala Val Arg Cys Ser Ala Val Ser Pro Val Thr ccq ccq tcc ccq qcq ccq qcc acq ccq ctc cqq ccq tqq qqq ccq 248 Pro Pro Ser Pro Ala Pro Pro Ala Thr Pro Leu Arg Pro Trp Gly Pro 55 gcc gag ccc cgc aag ggc gcg gac atc ctc gtg gag gcg ctg gag cgg 296 Ala Glu Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg 70 75 tgc ggc gtc agc gac gtg ttc gcc tac ccg ggc ggc gcg tcc atg gag 344 Cys Gly Val Ser Asp Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu 85 90 atc cac cag gcg ctg acg cgc tcc ccg gtc atc acc aac cac ctc ttc 392 Ile His Gln Ala Leu Thr Arg Ser Pro Val Ile Thr Asn His Leu Phe 100 105 ege cae gag cag gge gag geg tte geg geg tee ggg tae geg ege geg 440 Arg His Glu Gln Gly Glu Ala Phe Ala Ala Ser Gly Tyr Ala Arg Ala 120 tee gge ege gte ggg gte tge gte gee ace tee gge eee ggg gea ace 488 Ser Gly Arg Val Gly Val Cys Val Ala Thr Ser Gly Pro Gly Ala Thr 140 aac etc gtg tec geg etc gec gac geg etg etc gac tec gte eeg atg 536 Asn Leu Val Ser Ala Leu Ala Asp Ala Leu Leu Asp Ser Val Pro Met 150 155

								cgc Arg								584
	_		_					gtc Val		_				_		632
								gac Asp								680
								cgt Arg 220								728
								atg Met								776
_	_							gca Ala	_	_		_				824
	_	_			_	_	_	cgt Arg	_	_					_	872
_				_				tgc Cys		_			-	_	_	920
			-		_			atc Ile 300		_				_	_	968
						_	_	gac Asp	_	_		_	_	_		1016
	_			_			_	aat Asn		_		_	_	_	_	1064
								ttt Phe								1112
		-		_			_	aag Lys					-		_	1160
								caa Gln 380								1208
gat	gtt	aag	ctt	gct	tta	cag	ggc	ttg	aat	gct	ctg	cta	caa	cag	agc	1256

Asp	Val	Lys 390	Leu	Ala	Leu	Gln	Gly 395	Leu	Asn	Ala	Leu	Leu 400	Gln	Gln	Ser	
							ttt Phe									1304
							ctg Leu									1352
		_			_		cag Gln	_	_	_		_	_			1400
							gtt Val									1448
							cca Pro 475									1496
_		_	_				ctg Leu		_	_	_		_			1544
_				_		_	gtt Val	_		_		_		_		1592
	_			_		_	gca Ala	_		_						1640
							aac Asn									1688
							gcg Ala 555									1736
							ata Ile									1784
							gtc Val									1832
_	_	_		_	_	_	ctc Leu							_	_	1880
							gag Glu									1928

ggg ggc gca ttc aag gac atg atc ctg gat ggt gat ggc agg act gtg 1976 Gly Gly Ala Phe Lys Asp Met Ile Leu Asp Gly Asp Gly Arg Thr Val 630 640

tat taatctataa tctgtatgtt ggcaaagcac cagcccggcc tatgtttgac 2029 Tyr

ctgaatgacc cataaagagt ggtatgccta tgatgtttgt atgtgctcta tcaataacta 2089
aggtgtcaac tatgaaccat atgctcttct gttttacttg tttgatgtgc ttggcatggt 2149
aatcctaatt agcttcctgc tgtctaggtt tgtagtgtgt tgttttctgt aggcatatgc 2209
atcacaagat atcatgtaag tttcttgtcc tacatatcaa taataagaga ataaagtact 2269
tctatgtaaa aaaaaaaaa aaaaa

<210> 8

<211> 644

<212> PRT

<213> Oryza sativa var. kinmaze

<400> 8

Met Ala Thr Thr Ala Ala Ala Ala Ala Ala Leu Ser Ala Ala Ala 1 5 10 15

Thr Ala Lys Thr Gly Arg Lys Asn His Gln Arg His His Val Leu Pro 20 25 30

Ala Arg Gly Arg Val Gly Ala Ala Ala Val Arg Cys Ser Ala Val Ser 35 40 45

Pro Val Thr Pro Pro Ser Pro Ala Pro Pro Ala Thr Pro Leu Arg Pro 50 55 60

Trp Gly Pro Ala Glu Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala 65 70 75 80

Leu Glu Arg Cys Gly Val Ser Asp Val Phe Ala Tyr Pro Gly Gly Ala 85 90 95

Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Pro Val Ile Thr Asn 100 105 110

His Leu Phe Arg His Glu Gln Gly Glu Ala Phe Ala Ala Ser Gly Tyr 115 120 125

Ala Arg Ala Ser Gly Arg Val Gly Val Cys Val Ala Thr Ser Gly Pro 130 135 140

Gly Ala Thr Asn Leu Val Ser Ala Leu Ala Asp Ala Leu Leu Asp Ser 145 150 155 160

Val Pro Met Val Ala Ile Thr Gly Gln Val His Arg Arg Met Ile Gly

Thr Asp Ala Phe Gln Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile 180 185 Thr Lys His Asn Tyr Leu Val Leu Asp Val Glu Asp Ile Pro Arg Val 200 Ile Gln Glu Ala Phe Phe Leu Ala Ser Ser Gly Arg Pro Gly Pro Val 215 Leu Val Asp Ile Pro Lys Asp Ile Gln Gln Met Ala Val Pro Val 230 235 Trp Asp Thr Ser Met Asn Leu Pro Gly Tyr Ile Ala Arg Leu Pro Lys 250 Pro Pro Ala Thr Glu Leu Leu Glu Gln Val Leu Arg Leu Val Gly Glu 265 Ser Arg Arg Pro Ile Leu Tyr Val Gly Gly Cys Ser Ala Ser Gly Asp Glu Leu Arg Trp Phe Val Glu Leu Thr Gly Ile Pro Val Thr Thr Thr Leu Met Gly Leu Gly Asn Phe Pro Ser Asp Pro Leu Ser Leu Arg Met Leu Gly Met His Gly Thr Val Tyr Ala Asn Tyr Ala Val Asp Lys Ala Asp Leu Leu Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Ile Glu Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile 360 Asp Ile Asp Pro Ala Glu Ile Gly Lys Asn Lys Gln Pro His Val Ser 370 375 380 Ile Cys Ala Asp Val Lys Leu Ala Leu Gln Gly Leu Asn Ala Leu Leu 390 395 Gln Gln Ser Thr Thr Lys Thr Ser Ser Asp Phe Ser Ala Trp His Asn Glu Leu Asp Gln Gln Lys Arg Glu Phe Pro Leu Gly Tyr Lys Thr Phe Gly Glu Glu Ile Pro Pro Gln Tyr Ala Ile Gln Val Leu Asp Glu Leu 440 Thr Lys Gly Glu Ala Ile Ile Ala Thr Gly Val Gly Gln His Gln Met 450 455

Trp Ala Ala Gln Tyr Tyr Thr Tyr Lys Arg Pro Arg Gln Trp Leu Ser

465 470 475 480

Ser Ala Gly Leu Gly Ala Met Gly Phe Gly Leu Pro Ala Ala Ala Gly
485 490 495

Ala Ser Val Ala Asn Pro Gly Val Thr Val Val Asp Ile Asp Gly Asp
500 505 510

Gly Ser Phe Leu Met Asn Ile Gln Glu Leu Ala Leu Ile Arg Ile Glu 515 520 525

Asn Leu Pro Val Lys Val Met Val Leu Asn Asn Gln His Leu Gly Met 530 535 540

Val Val Gln Leu Glu Asp Arg Phe Tyr Lys Ala Asn Arg Ala His Thr 545 550 555 560

Tyr Leu Gly Asn Pro Glu Cys Glu Ser Glu Ile Tyr Pro Asp Phe Val
565 570 575

Thr Ile Ala Lys Gly Phe Asn Ile Pro Ala Val Arg Val Thr Lys Lys 580 585 590

Ser Glu Val Arg Ala Ala Ile Lys Lys Met Leu Glu Thr Pro Gly Pro 595 600 605

Tyr Leu Leu Asp Ile Ile Val Pro His Gln Glu His Val Leu Pro Met 610 620

Ile Pro Ile Gly Gly Ala Phe Lys Asp Met Ile Leu Asp Gly Asp Gly 625 630 635

Arg Thr Val Tyr

<210> 9

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide primer

<400> 9

gctctgctac aacagagcac a

21

<210> 10

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic oligonucleotide primer

<400> 10

```
21
agtectgeca teaccateca g
<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 11
                                                                    19
ctgggacacc tcgatgaat
<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 12
caacaaacca gcgcaattcg tcacc
                                                                    25
<210> 13
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 13
catcaccaac cacctctt
                                                                    18
<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 14
aactgggata ccagtcagct c
                                                                    21
<210> 15
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 15
                                                                    16
tgtgcttggt gatgga
<210> 16
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 16
tcaaggacat gatcctggat gg
                                                                    22
<210> 17
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 17
cagcgacgtg ttcgccta
                                                                    18
<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 18
ccaccgacat agagaatc
                                                                    18
<210> 19
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 19
acacggactg caggaata
                                                                    18
<210> 20
<211> 18
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 20
                                                                    18
ttacaaggcg aatagggc
<210> 21
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 21
gcatcttctt gatggcg
                                                                    17
<210> 22
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 22
atgcatggca cggtgtac
                                                                    18
<210> 23
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 23
gattgcctca cctttcg
                                                                    17
<210> 24
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 24
aggtgtcaca gttgttg
                                                                    17
```

```
<210> 25
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 25
agaggtggtt ggtgatg
                                                                    17
<210> 26
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 26
gctttgccaa catacag
                                                                    17
<210> 27
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 27
                                                                    17
cagcccaaat cccattg
<210> 28
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 28
atgtaccctg gtagattc
                                                                    18
<210> 29
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<220>
```

```
<221> misc_feature
<222> (15)..(15)
<223> n is a, c, g, or t
<400> 29
                                                                       17
gtttygctay ccggngg
<210> 30
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 30
ggaaacagct atgaccatg
                                                                   19
<210> 31
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 31
                                                                   23
ccgggagctg catgtgtcag agg
<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 32
gggctggcaa gccacgtttg gtg
                                                                    23
<210> 33
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic oligonucleotide primer
<400> 33
ccccagccgc atgatcggca ccgacgcctt
                                                                   30
```

<210> 34

<211> 27 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: synthetic oligonucleotide primer 27 cggtgccgat catgcggctg gggacct <210> 35 <211> 1403 <212> DNA <213> Nippon-bare <400> 35 acceacgegt cegatgtgga ggacatecee egegteatae aggaageett etteetegeg 60 120 tectegggee gteetggeee ggtgetggte gacateceea aggacateca geageagatg gccgtgccgg tctgggacac ctcgatgaat ctaccagggt acatcgcacg cctgcccaag 180 ccaccegega cagaattgct tgageaggte ttgegtetgg ttggegagte aeggegeeeg 240 attetetatg teggtggtgg etgetetgea tetggtgaeg aattgegetg gtttgttgag 300 360 ctgactggta teccagttac aaccaetetg atgggeeteg geaattteee cagtgacgae ccgttgtccc tgcgcatgct tgggatgcat ggcacggtgt acgcaaatta tgccgtggat 420 aaggetgace tgttgettge gtttggtgtg eggtttgatg ategtgtgae agggaaaatt 480 gaggettttg caageaggge caagattgtg cacattgaca ttgatecage agagattgga 540 600 aagaacaagc aaccacatgt gtcaatttgc gcagatgtta agcttgcttt acagggcttg aatgctctgc tacaacagag cacaacaaag acaagttctg attttagtgc atggcacaat 660 gagttggacc agcagaagag ggagtttcct ctggggtaca aaacttttgg tgaagagatc 720 780 ccaccgcaat atgccattca ggtgctggat gagctgacga aaggtgaggc aatcatcgct 840 actggtgttg ggcagcacca gatgtgggcg gcacaatatt acacctacaa gcggccacgg cagtggctgt cttcggctgg tctgggcgca atgggatttg ggctgcctgc tgcagctggt 900 gcttctgtgg ctaacccagg tgtcacagtt gttgatattg atggggatgg tagcttcctc 960 atgaacattc aggagctggc attgatccgc attgagaacc tccctgtgaa ggtgatggtg 1020 ttgaacaacc aacatttggg tatggtggtg caatgggagg ataggtttta caaggcgaat 1080 agggcgcata catacttggg caacccggaa tgtgagagcg agatatatcc agattttgtg 1140

acctattgct aaggggttca atattcctgc agtccgtgta acaaagaaga gtgaagtccg

1200

tgccgccatc	aagaagatgc	tcgagactcc	agggccatac	ttgttggata	tcatcgtccc	1260
gcaccaggag	catgtgctgc	ctatgatccc	aagtgggggc	gcattcaagg	acatgatcct	1320
ggatggtgat	ggcaggactg	tgtattaatc	tataatctgt	atgttggcaa	agcaccagcc	1380
cggcctatgt	ttgacctgaa	tga				1403

<210> 36

<211> 1404

<212> DNA

<213> Maize

<400> 36

<400> 36 catcgtcgag	gtcacccgct	ccatcaccaa	gcacaactac	ctggtcctcg	acgtcgacga	60
catcccccgc	gtcgtgcagg	aggccttctt	cctcgcatcc	tctggtcgcc	cggggccggt	120
gcttgttgac	atccccaagg	acatccagca	gcagatggcg	gtgccggcct	gggacacgcc	180
catgagtctg	cctgggtaca	tcgcgcgcct	tcccaagcct	cccgcgactg	aatttcttga	240
gcaggtgctg	cgtcttgttg	gtgaatcacg	gcgccctgtt	ctttatgttg	gcggtggctg	300
tgcagcatca	ggtgaggagt	tgtgccgctt	tgtggagttg	actggaatcc	cagtcacaac	360
tactcttatg	ggccttggca	acttccccag	cgacgaccca	ctgtcactgc	gcatgcttgg	420
tatgcatggc	acagtgtatg	caaattatgc	agtggataag	gccgatctgt	tgcttgcatt	480
tggtgtgcgg	tttgatgatc	gtgtgacagg	gaaaattgag	gcttttgcag	gcagagctaa	540
gattgtgcac	attgatattg	atcctgctga	gattggcaag	aacaagcagc	cacatgtgtc	600
catctgtgca	gatgttaagc	ttgctttgca	gggcatgaat	actcttctgg	aaggaagcac	660
atcaaagaag	agctttgact	tcggctcatg	gcatgatgaa	ttggatcagc	aaaagaggga	720
gtttcccctt	ggatataaaa	tcttcaatga	ggaaatccag	ccacaatatg	ctattcaggt	780
tcttgatgag	ttgacgaagg	gggaggccat	cattgccaca	ggtgttgggc	agcaccagat	840
gtgggcggca	cagtattaca	cttacaagcg	gccaaggcag	tggctgtctt	cagctggtct	900
tggggctatg	ggatttggtt	tgccggctgc	tgctggtgct	gctgtggcca	acccaggtgt	960
cactgttgtt	gacatcgacg	gagatggtag	cttcctcatg	aacattcagg	agctagctat	1020
gatccgtatt	gagaacctcc	cagtcaaggt	ctttgtgcta	aacaaccagc	acctcgggat	1080
ggtggtgcag	tgggaggaca	ggttctataa	ggccaataga	gcacacacat	tcttgggaaa	1140
cccagagaac	gaaagtgaga	tatatccaga	ttttgtggca	attgctaaag	ggttcaacat	1200
tccagcagtc	cgtgtgacaa	agaagagcga	agtccatgca	gcaatcaaga	agatgcttga	1260

ggctccaggg	ccgtacctct	tggatataat	cgtcccgcac	caggagcatg	tgttgcctat	1320
gatccctagt	ggtggggctt	tcaaggatat	gatcctggat	ggtgatggca	ggactgtgta	1380
ttgatccgtt	gactgcaggt	cgac				1404
<210> 37 <211> 2279 <212> DNA <213> Oryg	9 za sativa					
<400> 37						
ctcgccgccg	ccgccgccgc	caccacccac	catggctacg	accgccgcgg	ccgcggccgc	60
cgccctgtcc	gccgccgcga	cggccaagac	cggccgtaag	aaccaccagc	gacaccacgt	120
ccttcccgct	cgaggccggg	tgggggcggc	ggcggtcagg	tgctcggcgg	tgtccccggt	180
caccccgccg	tccccggcgc	cgccggccac	gccgctccgg	ccgtgggggc	cggccgagcc	240
ccgcaagggc	gcggacatcc	tcgtggaggc	gctggagcgg	tgcggcgtca	gcgacgtgtt	300
cgcctacccg	ggcggcgcgt	ccatggagat	ccaccaggcg	ctgacgcgct	ccccggtcat	360
caccaaccac	ctcttccgcc	acgagcaggg	cgaggcgttc	gcggcgtccg	ggtacgcgcg	420
cgcgtccggc	cgcgtcgggg	tctgcgtcgc	cacctccggc	cccggggcaa	ccaacctcgt	480
gtccgcgctc	gccgacgcgc	tgctcgactc	cgtcccgatg	gtcgccatca	cgggccaggt	540
ccccgccgc	atgatcggca	ccgacgcctt	ccaggagacg	cccatagtcg	aggtcacccg	600
ctccatcacc	aagcacaatt	accttgtcct	tgatgtggag	gacatccccc	gcgtcataca	660
ggaagccttc	ttcctcgcgt	cctcgggccg	tcctggcccg	gtgctggtcg	acatccccaa	720
ggacatccag	cagcagatgg	ccgtgccggt	ctgggacacc	tcgatgaatc	taccagggta	780
catcgcacgc	ctgcccaagc	cacccgcgac	agaattgctt	gagcaggtct	tgcgtctggt	840
tggcgagtca	cggcgcccga	ttctctatgt	cggtggtggc	tgctctgcat	ctggtgacga	900
attgcgctgg	tttgttgagc	tgactggtat	cccagttaca	accactctga	tgggcctcgg	960
caatttcccc	agtgacgacc	cgttgtccct	gcgcatgctt	gggatgcatg	gcacggtgta	1020
cgcaaattat	gccgtggata	aggctgacct	gttgcttgcg	tttggtgtgc	ggtttgatga	1080
tcgtgtgaca	gggaaaattg	aggcttttgc	aagcagggcc	aagattgtgc	acattgacat	1140
tgatccagca	gagattggaa	agaacaagca	accacatgtg	tcaatttgcg	cagatgttaa	1200
gcttgcttta	cagggcttga	atgctctgct	acaacagagc	acaacaaaga	caagttctga	1260

ttttagtgca tggcacaatg agttggacca gcagaagagg gagtttcctc tggggtacaa 1320

1380 aacttttggt gaagagatcc caccgcaata tgccattcag gtgctggatg agctgacgaa aggtgaggca atcatcgcta ctggtgttgg gcagcaccag atgtgggcgg cacaatatta 1440 1500 cacctacaag cggccacggc agtggctgtc ttcggctggt ctgggcgcaa tgggatttgg gctgcctgct gcagctggtg cttctgtggc taacccaggt gtcacagttg ttgatattga 1560 1620 tggggatggt agetteetea tgaacattea ggagetggea ttgateegea ttgagaacet ccctgtgaag gtgatggtgt tgaacaacca acatttgggt atggtggtgc aattggagga 1680 taggttttac aaggcgaata gggcgcatac atacttgggc aacccggaat gtgagagcga 1740 gatatatcca gattttgtga ctattgctaa ggggttcaat attcctgcag tccgtgtaac 1800 1860 aaagaagagt gaagteegtg eegeeateaa gaagatgete gagaeteeag ggeeataett 1920 gttggatate ategteeege accaggagea tgtgetgeet atgateeeaa ttgggggege attcaaggac atgatcctgg atggtgatgg caggactgtg tattaatcta taatctgtat 1980 gttggcaaag caccagcccg gcctatgttt gacctgaatg acccataaag agtggtatgc 2040 ctatgatgtt tgtatgtgct ctatcaataa ctaaggtgtc aactatgaac catatgctct 2100 tctgttttac ttgtttgatg tgcttggcat ggtaatccta attagcttcc tgctgtctag 2160 2220 gtttgtagtg tgttgttttc tgtaggcata tgcatcacaa gatatcatgt aagtttcttg 2279

<400> 38

60 cccaaaccca gaaaccctcg ccgccgccgc cgccgccacc acccaccatg gctacgaccg eegeggeege ggeegeegee etgteegeeg eegegaegge caagaeegge egtaagaaee 120 accagegaca ceaegteett eeegetegag geegggtggg ggeggeggeg gteaggtget 180 eggeggtgte eeeggteace eegeegteee eggegeegee ggeeaegeeg eteeggeegt 240 gggggccggc cgagccccgc aagggcgcgg acatcctcgt ggaggcgctg gagcggtgcg 300 gcgtcagcga cgtgttcgcc tacccgggcg gcgcgtccat ggagatccac caggcgctga 360 egegeteece ggteateace aaceacetet teegeeacga geagggegag gegttegegg 420 egteegggta egegegege teeggeegeg teggggtetg egtegeeace teeggeeeeg 480 gggcaaccaa cetegtgtee gegetegeeg aegegetget egacteegte eegatggteg 540

<210> 38

<211> 2301

<212> DNA

<213> Oryza sativa

600 ccatcacggg ccaggtcccc cgccgcatga tcggcaccga cgccttccag gagacgccca 660 tagtcgaggt cacccgctcc atcaccaagc acaattacct tgtccttgat gtggaggaca tecceegegt catacaggaa geettettee tegegteete gggeegteet ggeeeggtge 720 tggtcgacat ccccaaggac atccagcagc agatggccgt gccggtctgg gacacctcga 780 tgaatctacc agggtacatc gcacgcctgc ccaagccacc cgcgacagaa ttgcttgagc 840 aggtettgeg tetggttgge gagteaegge geeegattet etatgteggt ggtggetget 900 ctgcatctgg tgacgaattg cgctggtttg ttgagctgac tggtatccca gttacaacca 960 ctctgatggg cctcggcaat ttccccagtg acgacccgtt gtccctgcgc atgcttggga 1020 tgcatggcac ggtgtacgca aattatgccg tggataaggc tgacctgttg cttgcgtttg 1080 gtgtgcggtt tgatgatcgt gtgacaggga aaattgaggc ttttgcaagc agggccaaga 1140 ttgtgcacat tgacattgat ccagcagaga ttggaaagaa caagcaacca catgtgtcaa 1200 1260 tttgcgcaga tgttaagctt gctttacagg gcttgaatgc tctgctacaa cagagcacaa 1320 caaagacaag ttctgatttt agtgcatggc acaatgagtt ggaccagcag aagagggagt ttcctctggg gtacaaaact tttggtgaag agatcccacc gcaatatgcc attcaggtgc 1380 tggatgaget gacgaaaggt gaggcaatca tegetaetgg tgttgggcag caccagatgt 1440 gggcggcaca atattacacc tacaagcggc cacggcagtg gctgtcttcg gctggtctgg 1500 gegeaatggg atttgggetg cetgetgeag etggtgette tgtggetaac eeaggtgtea 1560 cagttgttga tattgatggg gatggtagct tcctcatgaa cattcaggag ctggcattga 1620 1680 tccgcattga gaacctccct gtgaaggtga tggtgttgaa caaccaacat ttgggtatgg 1740 tggtgcaatg ggaggatagg ttttacaagg cgaatagggc gcatacatac ttgggcaacc cggaatgtga gagcgagata tatccagatt ttgtgactat tgctaagggg ttcaatattc 1800 ctgcagtccg tgtaacaaag aagagtgaag tccgtgccgc catcaagaag atgctcgaga 1860 1920 ctccagggcc atacttgttg gatatcatcg tcccgcacca ggagcatgtg ctgcctatga tcccaagtgg gggcgcattc aaggacatga tcctggatgg tgatggcagg actgtgtatt 1980 aatctataat ctgtatgttg gcaaagcacc agcccggcct atgtttgacc tgaatgaccc 2040 2100 ataaagagtg gtatgcctat gatgtttgta tgtgctctat caataactaa ggtgtcaact atgaaccata tgctcttctg ttttacttgt ttgatgtgct tggcatggta atcctaatta 2160 gcttcctgct gtctaggttt gtagtgtgtt gttttctgta ggcatatgca tcacaagata 2220 tcatgtaagt ttcttgtcct acatatcaat aataagagaa taaagtactt ctatgcaaaa 2280 aaaaaaaaaa aaaaaaaaa a 2301

<210>	39		
<211>	644		
<212>	PRT		
<213>	Oryza	sati	iva
<400>	39		
Met Al	la Thr	Thr	Δ1:

Met Ala Thr Thr Ala Ala Ala Ala Ala Ala Ala Leu Ser Ala Ala Ala 1 5 10 15

Thr Ala Lys Thr Gly Arg Lys Asn His Gln Arg His His Val Leu Pro 20 25 30

Ala Arg Gly Arg Val Gly Ala Ala Ala Val Arg Cys Ser Ala Val Ser 35 40 45

Pro Val Thr Pro Pro Ser Pro Ala Pro Pro Ala Thr Pro Leu Arg Pro 50 55 60

Trp Gly Pro Ala Glu Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala 65 70 75 80

Leu Glu Arg Cys Gly Val Ser Asp Val Phe Ala Tyr Pro Gly Gly Ala 85 90 95

Ser Met Glu Ile His Gln Ala Leu Thr Arg Ser Pro Val Ile Thr Asn 100 105 110

His Leu Phe Arg His Glu Gln Gly Glu Ala Phe Ala Ala Ser Gly Tyr 115 120 125

Ala Arg Ala Ser Gly Arg Val Gly Val Cys Val Ala Thr Ser Gly Pro 130 135 140

Gly Ala Thr Asn Leu Val Ser Ala Leu Ala Asp Ala Leu Leu Asp Ser 145 150 155 160

Val Pro Met Val Ala Ile Thr Gly Gln Val Pro Arg Arg Met Ile Gly
165 170 175

Thr Asp Ala Phe Gln Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile 180 185 190

Thr Lys His Asn Tyr Leu Val Leu Asp Val Glu Asp Ile Pro Arg Val 195 200 205

Ile Gln Glu Ala Phe Phe Leu Ala Ser Ser Gly Arg Pro Gly Pro Val 210 215 220

Leu Val Asp Ile Pro Lys Asp Ile Gln Gln Met Ala Val Pro Val 225 230 235 240

Trp Asp Thr Ser Met Asn Leu Pro Gly Tyr Ile Ala Arg Leu Pro Lys 245 250 255 Pro Pro Ala Thr Glu Leu Leu Glu Gln Val Leu Arg Leu Val Gly Glu Ser Arg Arg Pro Ile Leu Tyr Val Gly Gly Cys Ser Ala Ser Gly Asp Glu Leu Arg Trp Phe Val Glu Leu Thr Gly Ile Pro Val Thr Thr Thr Leu Met Gly Leu Gly Asn Phe Pro Ser Asp Asp Pro Leu Ser Leu Arg Met Leu Gly Met His Gly Thr Val Tyr Ala Asn Tyr Ala Val Asp Lys Ala Asp Leu Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Ile Glu Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Pro Ala Glu Ile Gly Lys Asn Lys Gln Pro His Val Ser Ile Cys Ala Asp Val Lys Leu Ala Leu Gln Gly Leu Asn Ala Leu Leu Gln Gln Ser Thr Thr Lys Thr Ser Ser Asp Phe Ser Ala Trp His Asn Glu Leu Asp Gln Gln Lys Arg Glu Phe Pro Leu Gly Tyr Lys Thr Phe Gly Glu Glu Ile Pro Pro Gln Tyr Ala Ile Gln Val Leu Asp Glu Leu Thr Lys Gly Glu Ala Ile Ile Ala Thr Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Tyr Tyr Thr Tyr Lys Arg Pro Arg Gln Trp Leu Ser Ser Ala Gly Leu Gly Ala Met Gly Phe Gly Leu Pro Ala Ala Ala Gly Ala Ser Val Ala Asn Pro Gly Val Thr Val Val Asp Ile Asp Gly Asp Gly Ser Phe Leu Met Asn Ile Gln Glu Leu Ala Leu Ile Arg Ile Glu Asn Leu Pro Val Lys Val Met Val Leu Asn Asn Gln His Leu Gly Met

Val Val Gln Trp Glu Asp Arg Phe Tyr Lys Ala Asn Arg Ala His Thr

Tyr Leu Gly Asn Pro Glu Cys Glu Ser Glu Ile Tyr Pro Asp Phe Val 565 570 575

Thr Ile Ala Lys Gly Phe Asn Ile Pro Ala Val Arg Val Thr Lys Lys
580 585 590

Ser Glu Val Arg Ala Ala Ile Lys Lys Met Leu Glu Thr Pro Gly Pro 595 600 605

Tyr Leu Leu Asp Ile Ile Val Pro His Gln Glu His Val Leu Pro Met 610 615 620

Ile Pro Ser Gly Gly Ala Phe Lys Asp Met Ile Leu Asp Gly Asp Gly 625 635 640

Arg Thr Val Tyr