Reading Quiz Section 7.2

- 1. What does it mean for a *relation* $\mathcal{R} \subseteq A \times B$ to be a *function*? Select all that apply.
 - (a) $dom(\mathcal{R}) = A$
 - (b) range(\mathcal{R}) = B
 - (c) For any $a \in A$, if (a, b_1) , $(a, b_2) \in \mathcal{R}$, then $b_1 = b_2$
 - (d) For any $b \in \text{range}(\mathcal{R})$, if (a_1, b) , $(a_2, b) \in \mathcal{R}$, then $a_1 = a_2$
- 2. Let $f:A\to B$ be a function. If $f^{-1}:B\to A$ is a function, this means in particular that $dom(f^{-1})=B$. This is equivalent to what property of f?
 - (a) Injectivity
 - (b) Surjectivity
 - (c) dom(f) = A
 - (d) That *f* is a symmetric relation.
- 3. True or False: a relation \mathcal{R} has a domain and range if and only if it is a function.

Practice Problems Section 7.2

- 1. Let $f: A \to A$ be a function. Viewed as a relation, if f is symmetric, what can be said about f?
- 2. (a) Express the function $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^2$ as a relation.
 - (b) What is the inverse relation f^{-1} ?
 - (c) Use Definition 7.6 to prove that the relation f^{-1} is *not* a function.
 - (d) Prove directly from Definition 4.18 that *f* is not injective and not surjective. Compare your arguments with your answer to part (c).