(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-89471 (P2001-89471A)

子 存成など乗り重節であり は水素原子 ハケ 原子 低気ブルキル基 水経基 カルボキ ル基

/ ノ基等である 効果] 凝 別 合物 は水類 子 八▼

★別と 阻害する

(43)公開日 平成13年4月3日(2001.4.3)

FΙ テーマコード(参考) 識別記号 (51) Int.Cl.7 C 0 7 D 401/04 4C063 C 0 7 D 401/04 A61K 31/4704 (要予) A61K 31/4704 4C086 31/496 **港**報 】 及式 31/506 91/537b 31/5375 審査請求 未請求 請求項の数10 OL (全 65 頁) 最終頁に続く 特願2000-214857(P2000-214857) (71)出願人 000004569 (21)出願番号 日本たばこ産業株式会社 東京都港区虎ノ門二丁目2番1号 (22)出願日 平成12年7月14日(2000.7.14) (72)発明者 加藤 晋 大阪府高槻市紫町1番1号 日本たばこ産 (31)優先権主張番号 特願平11-206924 業株式会社医薬総合研究所内 (32)優先日 平成11年7月21日(1999.7.21) は同には珠 (72)発明者 立藤澤 明隆 日本 (JP) (33)優先檔主張国 業株式会社医療報告研究によりルーキ 基等 ひり (74)代理人 160160217子 は7年 7 原子 あり は水類

カルポスチリル化合物及びその医薬用途 (54) 【発明の名称】

(57)1 1 (1) \mathbb{R}^3 R² R 1

R 7 R 6 R^{8}

Ų 治療

は はノリ ル基 ノ ノ基 低製テル ことで ニルノノ基 低気ノルデルノ 8番4カルボニル 基 は低気ノルーニュカルボル基 あり はノルカ イル はノルケ イルである であり は (2)1 ここで は 水瀬原子 は 1 1 は低気ノルキル基 若しは ح が「移接する窒 1 2 類子と 食になって (化) 3 (1) (CH₂}_¶ こここで なり は乃 . は 10 至かり数なり は水素原子 低なノルキル 基 ノリ ル基 はノラルキル基である き形成しても \mathbb{R}^{2} R^3 R 5 R 1 ある - 中 N-RII氏教ノルキル基 低教ノル ケル CO A R ル場は該ノリール基は 乃至 の ハモケ 原子 低気 $A \ l \ k - R^{10}$ $\vec{R}^{(i)a}$ 20 Alk R¹⁵ Alk R 乃至の**夢**数あり Α R 11 $N\,R^{^{\,2\,3}}$ 0 は船間と同じなるを形成しても。 低製パーキルカルボル基 フリールカルボル基 カルボキ R 11 R^9 ル基 低数/ルーキ カルボ ル基 2 (CH₂)_R 又は 30 $\begin{array}{c} C H_{\frac{z}{2}} \\ R^{\frac{1}{1}-\frac{z}{2}} \end{array}$ 0 m = 1NR R 17 3 $R^{\iota \epsilon}$ R 17 R 16 R 17 R 1 3 В R 13 5 1 2 (CH₂) n 又は R 19 W R R 18 n 1 2 R 18 6 R 19 C O N R 18 50

m

啦定」

は水素原子 低 繋 ノルキル基 ノリール基

. (

原子

する

化

は

圧 キな

ØŁ

ŧ

リル リル

[,

てか

基

軽者

ある

扯

[#

سراز

ルオ

(#

ΙŢ

ある

上群

(_p)

:式 ある

子

合 ある)、

「式中 は水瀬原子」は低火/ルキル基 若 しは と かと 1885 第28 第4子と 1 4 になって 4

ZIT V N - RIT

W R 12 m

SO2 (R 26)

(3)

20

30

50

2

2 R R R R R R

3 R³

1

40

---N

N R 21 D R 22 R 21 D R 22

 SO_2

 $(CH_2)_n$

n R²²

1 2

Alk R¹⁵

Alk R¹⁵

D CO COO CO NR²¹

R²¹
R²¹
R²²

} 発表の属する技術分野 】 発表は 业小梅 雜 医子 阻害 作用を有する新角カルボスをリノ化合物 2013年の 医薬用 公場する。10 等人は 平時時間 2013年作用 再狭 窄海 2013年作用 2013年 2013年作用 2013年 (4) 5 物及の医期許認的。 6 1 5 [) は血 小板中 に存在 し 主と して 【従来の技術】 予葉 半配 同対 1遊 走場 頭側 偽活性を有する因子と し 7 1 5 000年製 ざたりのよりは外 き形成し 分子量 の一数の進み合わるから の、重動リイソーオーム PDGF 5 は血小椒の傷 が存在する。居在 平時年的 内皮能 新海芽配から分泌 ざい 10 る こか知られであり 生物の発生野程や 1傷冷薬器程 9 5 1 と った生態的 居象のなか 動脈性 症をは めとする 郵 の病態の発症や進展は重要な気をを果たしてるこ とが知られて る。焼 名は p動 脈乳化 を病医の背早とする ア北冠動 脈狭窄 疾事は 高血 圧 高月血 症等の危険医 1.0 5 1 子にもり内膜が関係した意果、関係部位は血小板が要像 000年球や好中球を賃貸部位 引 約け、血管 空筋(腹) 等の機能であるが、とれにもり 0001 中康 望郷 節 作的 や 象 海 芽 化 配 か 下利 日間 足 する ひ PDGF Platel にもり特起する でか知られてよる。また の動脈す 20 et-derived growth factor のみならず 化病 药严位 (3) ては する方々5の増加が見られる。ことにより 郵脈化における血管 学術 能階間 限分として が大き 暑 13年してる むかがずれてる。 CHOCKS ** 斯拉 强称 0002 ・信息 に進展 した統法で 康血性 CH₂CH₃ PDGF 数月の 『冠 瀬 脈の再 あるが 原因の つとして 内膜 狭窄が 1 2kDa A 18kDa B H₃C PDGF AA BB AB 30

8 8 1 4 6 7

発力の学生なもり】

Q N R

PDGF

8 92248

1.5

PDGF

0 0 0 3 PTCA

PDGF

PDGF

PDGF

40

PDGF

WO96 1512

10

20

30

0006

$$\begin{array}{c} 1 \ 6 \\ \\ R_1 \\ \\ R_2 \end{array}$$

WO97 17329

$$\begin{array}{c} 1.7 \\ \\ R_10 \\ \\ R_20 \end{array}$$

PDGF

8

188619

18
$$R_{1}0$$

$$+Bu$$

$$R_{3}$$

$$R_{4}$$

$$R_{6}$$

WO98/14431

19

PDGF

ĐΑ 508466

63 230687

PDGF

40 PDGF

GF

50

PTCA

3

0007

PD

1

PDGF 1 $P\;D\;G\;F$

ノルキル基・流転基で音換された低をノルキル基・・ト

は水素原子 低気ノルキル基 フリール基 中本 は 2001 89471

10 はノリ ル基 ノ ノ基 キルノ ノ基、 低なノルキルノ ノ基 カルボキ ル基 は低なノルーキ カルボ ル基であり はノ イル はノルケ イル ある であり は は ここで は水類 子 は水類原子。

2は低象ノルキル基 若しは بح が『接する窒 類子と 化はって

23 %

(6)

20

(1)

ここで W m は 至 の **学数で**あり なり は は力 は水素原子 低気/ルキル ノリ ル基 はノラルキル基 ある を形成して 啦 玉なノルキル基 低数ノル R 14

9

1

CO A R⁹

A 1 k R 10 R 10

10

0.008

2 1

1

A l kR^{‡t} $N\,R^{\,1\,3}$ 0

R

22 30 (CH₂)_{Ell} 又は

 $\begin{array}{c} C \; H_{\frac{2}{3}} \\ R^{\frac{1}{3}-2} \end{array}$ 0 m 1 3

Alk R¹⁵ たこで は 乃至 の 参数であり Alk は能能と同じである を形成しても 8. キルカルボ ル基 2 パリ ルカルボ ル基 カルボキル基 低 g ハー キ カルボ ル基

Ċ

原子

する

NR 16 R 17 R 16

> R 17 R 16

O B
$$R^{13}$$

A0 25

V(CH₂) n

N $-R^{12}$

R 18

[

Æ

成しても & で な前輩と同じである。 合である - ・

は と は水類原子の は低 を おまり事 若 し は と 12が 常接する窒 類原子と 4 にな 3 0 では N 一 R¹² 又は

W R 1 2 m

SOz (K²⁶) R²⁶

R ここで は水類原子 低水人ルウル基 ノラル され基 低 な ノルーギ カルボ ル基 は ノリ ル スル ホ ル基 該 ノリ ル スルホ ル基の ノリ ルは ハ 3 2 ケ 原子 は低 欠 ノルニル基 で 資換 ざいでも ま で あ で (CH₂と) は終記 と同 じである で あ

り は な水類子 は低気ノルキル基 若 し が 体験する窒素原子と を になって

30

40

50

(7)

10

0010 3 R³

В

0 0 1 1 4 R 4 O B R 1.1

3

R 1 3

l

0 0 1 2 5 R 4 NR 21 D R 22 D 1

2 6

W m

W m

N R 21 D R 22 R 22 R 21 D R 22

2 8 (CH₂)_n

-N 10¹⁰2¹n

n R²²

1 2

2 9 N-R²³

Alk R¹⁵

Alk R¹⁵

D CO COO CO NR²¹

R²⁴ R²²

		13			(8)	【 】 本別作事である。 で使用する名質検基の定義は次の隔りである。「ハッケ 原子」とは 監護原子 臭類子子 である。 でかる で好ましは ツ類原子であり の で好ましな と
0013	6	1	5			136 で好ましは臭類子であり 136 で好 002ましは耐素原子である。 2 0 1 1 低象ノルキル基 とは 炭素数 乃至
0014	7	i	5			. 個の直覆には万枝してもま、ノルキル基であり 例えば
PE 0015	_	1	5		10	1 チル場 ユチル場 ブ 『ピルル』 2 ソプ 『ピル場 イソ 『チル場 イソ 』 チル場 イソベ 基 2 ネッペ チル 場 ス ネッペ チル 場 な ア 女 個の直覚には 「 チル場 であり」 好まし は チルキル は 「 チル場 であり」 は チルキル は 「 チル場 で カリー は チャル は チャル は カルキル は チャル は チャル は チャル は カル まで は チャル は カー は チャル まで かまし は チャル まで カー は カー カー カー カー カー カー カー カー カー・カー カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カ
0016	9	1	5		••	・・・・・ル最・サイル最・イブノロビール集・「オル最」の名
0017	10	1	5			2 3 【 】 「ハモノルキル集 とは 上部 低 欠 ハルキ R ²² ル基が 上記 バモケー原子 で 選抜 され もの であり 仮え ほ クロロ チル基 ローモ チー基 ルオロ チル
0018			2			002巻 トリ ルオ チル基 ト ク 1 チル基 トリ ロ モ チル基 トリクリ エール ペ タ ルオ 1 プ ビ ル基 は ク 1 日 チル基 で り 好まし は ク
	R° R°	R³	R² R¹		20	■■ チル基 ■ 〒 チル基 ト ナル基 ちょう サルオ チル基 ちょう サルオ まんま ちょう カイ カイ カイ まんま ちょう サル ちょう サル ちょう サル ちょう サルター サルター サルター サルター サルター サルター サルター マルター カルター カイ・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・
R [®]				X X		【)「加隆基で構造」な作象(ルキル基)とは 上部低象(ルキル基が 加隆基で構造したもの あり 使えばヒド軍キ チル基 ヒド軍キニール
0019				1 6		002 基 ヒドゴキ プチル基 ヒドゴキ プ *** ヒドゴキ プ *** ピル基 ヒドゴキ プ *** ピップ *** ピッ *** ピップ
3		sec		tert	30	ter t 1
3		tert	1 R ⁵	4		ert R ¹⁰ R
0020		R 7				R ¹⁴ R ²³
0020						0025
					40	
						0026 1 5
0021						R 10
1 2			2 3 1			R 15 R 26
4			5		50	0027

```
はべり事はこりチル場である。
                                                            びましは ベブル
                                          基である。
                                        ルボ ル基 | とは ノベ
                                                                    /軍イル基
                                 (9)
                15
                 1 5
                                                              ル基▮とし
                                                             好ま
                                        基である。
                                                  リナオ214年7人
                                                              ル基
                                                              ル基等
                                          スルホ ル基
                                      2
                                     5
                                                            スルホ
                                                                    とは チ
                                          ルスルホ ルよ 3 ニチルス・ホ ル基 ル場 チレスサホ ル集等のノル
                                                                   ■ピルスルホ
                                     2
 0028
                                                                 応防防炭素数
                                  10
                                           催の テルキル スルボ 2
・ル スルボーン基 はご子 2
【 】 ク■ テルギ
                                                            ぎ表す
                                        3チルスルボ
 0029
                                                            凖▮と∤
                                                                 炭
                                         個の ク重 2
                         1 6
                                                   ノキル基を實「
                                                    チル基
                                          え
ル基
                                                    クチル基
                           R^{12}
                                                   ノルキル暴
                                          至個の
まれ基
ル基
R 11 R 16
                                    R 12
                                                                    」は ク重
                                                   プチル基で
                                  20
 0030
                                                  源 拟外隆
                                                            源
                                                                    子 硝黄原
                                      003 から透ばれる 乃至 個の社 素
                                                                    、乃至 員
でが省合
 0031
                                          の芳香族複素等 は は150 存
                                                            素
                                          した作合複素がき軍映し
                                                           的
                                           イル集 チオ ニ
。 ラ ・ イ
 0032
                                                                    ル基 ピ『
                                                    イル基し
                                          tert
                                  30
 0033
                                Ĺ
                            3
                               8
 0034
      1
                              5
                                  40
 7
                  ĺ
 0035
                              6
                          5
         1
             3
                                2
                            2
              3
                                  50
                       ĺ
        3
```


製法1-1

19

製法1-2

製法1-3

製法1-4

 R^{1} 0049 R 7 R

0050 1 1 1 1 2 te 40

r t tert

1 4 N N 子 低数ノルギ

]製法 カルボ アリルル 合物 は 化合物 を ルニタノルは物見ルノルール 等の ノル・キー ド存在下側

着し、は上記有象は 関的に範囲の各媒の ある。また用るよ

> N 50 1

> > J.Heterocy

2

R 28

00511 2

clic Chem., 1976, 13,61. i

> 3 6

方法 とが

(13)23

tert 10

00592 3 2 1 10

20 0062 0060 1.0 工保3-2 工程3-1 (6)

3 0066 3 2 0065 1 3 5 1 1 5 Org. Synth. 1,327, 1941 J.Org.Chem., 1977,4 50

	25 tert		(14)	
0 0 6 7 R ²⁸ 1 3	3 3	8	10	tert () 工程 化合物 は化合物 を予当な選元者で選元す る ことにまり知る ことか できる な具似的な選元者として は 鉄 亜鉛 スズ 跳れ スペ等の 金属 は金属 よか 挙 げられ タノ ル ニタノ ル イソプラビルノルー ル タノ ル等の ノルー ル系 各媒中 下量の 顕彰 前頭の 存在下岩 し は非存在下に はよ
0068 R ^{2*} 11 R ^{2*}		1 1	20	日本の一体性音楽中で深いを行う。深い声度は特に の007間定されなが、のでで、ので、一である場合 では、また化合物 15 元 ドップ フェーマルを音楽を添加すると好まし、は果が信られる場合もある。 「1理で、12を かい、表演子である化合物である。 「2を できる。 では、1を できる。 では、1を できる。 できる。 できる。 できる。 できる。 できる。 できる。 できる。
0069 8 Lert	R ²⁸ -COC 3 5 15	1	30	0072 3 8 14 N N N N 0073 3 9
	50 100		40	3 15 1
0 0 7 0 3 5	3 6 R ²⁸ 1 4	1 V	1 I	0 0 7 4 4 4 1 2 7 2 1 2 0 0 7 5 3 6

3013.

1.8

R

СO

NΗ

R

5 R 5

```
とにもり 化合物
                                      8°
                                       (
                                             】工程
                                                  2001 89471
                              (18)
                                      化合物
               33
    2 2
                                                等。部等の方法はされて執いした方
                                      法により 中野体であるイソ フネ 北合物を加水分
                                       身する ことにより 化合物 p から直接製
                                      造ずるこかでお。
                                             ] 」程
                                       [
 0091
        5 4
                                     t e化合物
                                                   一は 化合物
        5 5
    1
                                             (弱嘴の方法 にもり)遠元 するか は 半当な
                                      鯵媒の存在下 水素3種気下は て接続 垣元 原が日
             5 2
                         Helv, Ch
                                       im. Acta., 1982, 65, 1837; Synthesis, 1974, 290.
                                       等が 巻げられる。 各媒と しては チルホルム ノート等の 極性非プロト 佐名媒 ニタノ ル イソプ
                                       ■ビルノルー ル等のノルー ルを放っテトラと
 0092
        5 5
                                       ラ オキサ 等のエ テル系を媒・育塚エチル
     1
        5 5
                                       育成 チル等のエステル系を媒、育成等の種性を媒・若
               5 6
           1
                                       しははいらの国合系族を用るでかで語。原
       Z^{1}
                                       は零門到底下常田り到田龍拌下で行うでかで
         4
                                       おか 乃至 気圧下で行った場合 「良好な証果が<sup>毎</sup>
           1
               5 6
                                       られる ごかある。
                               20
                                       [ ] ]程
                                    6
        5 6
 0093
                                        化合物
                                                      中
                                                              - が低裂/ル
              Synthesis, 1985, 2
        5 6
                                       キル基 は ノラルキル基である化合物の合成 二程
20.; J. Org. Chem., 1962, 27, 3965.; Org. Reaction
s, 1946, 3, 307.
                                                            が低製ノルキル
                                       化合物
                                                   中
                                   009巻 はノラルキル基である化食物は化食物は化食物は 化食物 スメント 対応するカルボ 川北食物とま ベメント サード サードの ベイン をは はテトラン
                   5 2
                1
 0094
         5 7
                                                         R 2
                                       1 5 8
                                                   NΗ
                        5 7
     1
         5 6
                               30
  3 5
                                  5 6
                                                       2 1
                                    0097 3
                                                1 5 8
                                                             NΗ
                 N N
                                     R 2
                                      5 8
                                      1
                                           5 8
                                                   NΗ
                                                          R 2
                                                           1 5
                                                             2 1
                                  6
                                40
     3
         4
                                                             NΗ
                                    0098 4
                                                 1
                                                     5 8
                                     R 2
 0095
          5 8
                                                          5
                                                                5
                    R 2
       1
         5 8
                            5
                                    9
                                                   NH
                                                          R 2
                                       1
                                           5 8
     1
         5 8
                 R 2
                                                           (3)
                                                     1
                             5
 6
```

1

0099 4

50

る ' 依えば か べ ルオキ カルホ ル基である 場合では 正程 「電響の加水素が非効応を行うこ

*★*値る ひか でき

1.9

福勢の文献に従 はされに戦した方 て 目的化合物 を値る ひか できる。) 化^合物 中 (と がウレグをおりい8ダイフトを形成する化合物の合成 飛 (19)35 化合物 ع 0 レバ チオウレバ グバー ぎ形成ずる化合物は 以 1の方法により製造することがで 2 6 O *§ ° 3 5 2 í 5 6 0100 4 化合物 と各勇力 酸ク■リド チオカルバ 酸ク■リ 器等体 を用 工程 「電気の酸 クトリ の場合と同様の方法 により N目的物 である ウレバ化 合物 1 チョウレバ化 合物 ませる ことが できる。 化合物 } . 10 「職気の方法 に 1.9カルバ だっぽり ドチ オカルバ 「経ク■リ」密導体を調 撃後 対応するノー 0108化合物を冷却乃到底機投下に戻ってることにより目的物であるウレル化合物・チオウレル化合物を値 ることができる。の場合にも、一部域の有象は、基を存在され場合に、良好な業果が包られる場合があ N 0101 1 5 2 5 0102 5 NΗ 20 R 5 8 5 るイソ ノネ ト イソチオ ノネ 北 食物を 室門 乃 到職提投下に 城 ざる ひ にもり 目的物 である NΗ R 5 8 010日レル食物1千オウレル合物を作るとかで語。 0 5 1 1 5 6 0103 5 2 5 12 30 0110 0 R 3 0 5 11 R 3 0 5 6 0104 5 1 2 1 0 5 1 0 0 R 3 40 8 5 1 5 6 0105 5 0 R 3 0 ĺ 1 1 5 R 3 1 5 10 R 0 3 1 5 4 5 2 1 5 1 I 0106 ĺ 25 10 5 4

(

】 化学物 を用

低從

白す

合物

ボ

泛真

ルて

オ

```
(化 )
                                                  2001 89471
                             (20)
                                                38
               37
                                        N N
                                            は前部 である化合物は 化合物
                                        から以下に示す工程 5 双工程により製造するでともできる。
                                           ) 珲
                                          と化合物 き用 エ
ほでの化合物 と化合物
                                     化合物
                      50
                           1
                                          の。風を同様の方法により 化合物
20
                        0
                              10
                                          きなることができる。
                                  7 6 g
0 1 1 g b
化合物
       R 3
                                          N } 項
                                                   は化合物ランナニ
                      5 11
          5 10
                      26
                                    J. Chem. Soc., Perkin Trans 1,1975,46
1.
                       5 11
   R 3
                                     造するでかできる。尚っとノノ化合物の催み合わせによっては、修当量のヨウ化カリウムを添加した時に良好なを果が得られる場合がある
  39
                              20
                                  6
                                 0.0 \, \text{m} \, 1
 W m
        A\ 1\ k - N\ R^{16}
                       Alk R
                                                                チルノ
                          1
5 10
                           5
                  5 13
1 4
        5 13
 0111
        5 10
                              30
 1
                   2 7
                                      1 i
                                                        18 7
                 5 10
               1
 5 12
                            5
 2.5
                                  0116 c N
                                              2
 12
                                      2
                                         1 H
        5 14
 0112
                         5 1
 1 5 1 1
                                                   2
                                     1 b
                                                            3
                                               2
                                                 1 H
                         1 3
       N N
                                    )
                                              18 7g
      2
                                   400ml
                                                        56g
                                   12
                              40
              X
                                                          1 3
                                  0117 d 3 (1H
 0 1 1 3
                                 8 1 H
                                                       6
                                              N
                           1 H
                                     1 c
                  ) 8
3 (1H
              3
                                           2 1 H
                                                         3
       2
                                         13 5 g
                                                        150m
                       6
 0114 a 2
                                                       2 5 g
                                 1
                                   4
                   10g
                              50
```

3

中 の構造が 1 ノ基 低 気 / ルキル 1 ノ

基 低気/ルキル/ ノ基 若し は

39 40 9 6 8 11 00 1H s 11 44 1H g 1 8 9 6 0118 1 2 1 13

II m 8 30 1H s 8 31 1H

表一1					
	HN	O H R5 R	(3	】	* b
			・ ソール	チル <u>イル</u> チル	ヒ海オキサイドル
実施例	R ⁿ	R ⁴		イ ド R 5 イル	
1	Н	H	レ	Me液に	リノ チガ
1-2	Н	H	<u>- €7₹-/</u> -	か後のHive	
1 - 3	Н	Н	<u>した。</u> _//■	以下で焼か液を中でした。 トグラップ・Free ホル	遊 を リカケルカラ [☆]
1 – 4	Н	Н		で動しの配合物・	タノ ル を <mark>値</mark> た。 ト ベ ^プ ズルデ
1 – 5	Н	H	[) OMey∎∎	ト ベ ^ン ズシルデ
1-6	I-I	ŀI	とド	OEt	1
1 - 7	H	Н		OPrhahu-	7 0
1 – 8	Н	Н		VAN CI	お液に
1-9	Ме	H		British	メタル (1) 14 0 000 後にかかま
1-10	Н	OM e	€1.	ルス で下移機を H	した。脱後嫁液を
1 1 1	H	ОН		Н	
1-12	Н	CI		Н	
1-13	OMe	ОМе		Н	

水素類類気下的競拌した。原液をデディが降し 神液を及圧燃着した。残査にクリリホルを加えを15 れだ諸晶を課 取し クラマネーベル を加え 四られた諸晶を課 取し クラマネー 数字 4年 日 表写化合物 変化 表 取 12 (22)41 0 1H s 11 24 1H s 11 44 m l 1 H s . . . 4 180 6 220 5 . 3 N 3 1 H () 2 400 m g 2 1 2 7 ¹ H NMR DMSO d₆ 300MHz δ ppm 7 16 7 30 2H m 7 47 3 7 3 1H
7 60 1H m 8 00 1H d J 3 1H 2 50m
8 7Hz 8 09 8 25 3H m g 1ml
8 49 2H s 11 67 1H s 1 10 52mg 2 30 1H s (0 1 2 3 3 7 3 1 H H 2 3 5 m g 2 3) 1 1) 3 2 8 0 ¹ H NMR DMSO d₅ 300MHz δ 3 1 H 2 ppm 4 54 2H s 6 95 7 04 7 1 H-1H m 7 08 7 24 2H m g N N 5 5 0 m l 7 25 7 43 6H m 7 45 7 52 2 4 g 1.0 1H m 7 77 1H d J 8 6H 20 z 7 98 8 07 1H m 8 21 8 30 2H m 10 18 1H s 1 1 40 lH s 11 84 lH s 7 2 g 2

 'H NMR DMSO dε 300MHz δ
 0125
 4 2 4 22

 ppm 5 71 2H s 6 31 6 55
 4
 4 2

 4 2 4 22 2 2H m 7 00 7 25 2H m 7 32 7 57 2H m 7 93 1H 0126 d J 7 9Hz 8 05 1H s 8 1

装-2

:	
)	
ж К	
F - [イードルヒドキノリ
~~	y y y 1 y 5
y 対 え 室『ト	* Ya ku
ノ 計タノール プ	حربه

	5			
実施例	. R4	実施例	R ⁴	
2	NO ₂	411	`µ°©	
3	NH ₃	4-12	T, PO	
4	, H _E , CO	4-13	`µ ^û 1'.}	i
4-2	, ll , cr,	4-14		
4-3	`µ [©] so⁵w∘	4-15	[] 翔像・ ■ そは之類ル [イル オキノ	イッドル ヒド軍キノリ
4 – 4	_Ду~соон	4-16	イル]カルバザト 実施例 で関らする フ・ノ ル イル ニキノリー	y y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y
4 5	,# ₆ ~Q	4-17	対抗 で関られる フノル キノリー のテトランド (アン・カー・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・	お液にトリホー 時間提择した。次 を加
4-6	,I _y O	4-18		<i>Ел</i> ј.
4-7	- Hora Come	4-19	.Hy. Sign	
4 - 8	Ara;	4-20	Carg ^a ,	
4 – 9	.I _y	4-21	, H _m o	
4-10	.N _y ©	4-22	, H _E , C	

0 1 2 7 5 4 3 i H 2 1 2 50 12 3 7 3 1H
3) 1H 2 10g
600ml 1 11 2g 3 3
5 4g 6 7 ml 50 ppm 2 96 2H t J 6 6Hz 11 2g 3 'H NMR DMSO d₆ 300MHz δ 5 4 g

Ž. 炭酸 たり後

45 4 33 2H t J 6 7Hz 7 08 H s 7 23 3H m 7 30 2H d J 8 0128 5 2 5 61 0128 5 5 2 5 6 1 3 4 4 H z 7 4 3 7 5 7 3 H m 7 6 4 7 73 2H m 7 96 8 05 1H 0129 m 8 18 8 27 2H m 9 91 1 H s 11 37 1H s 11 82 1 3

_ 表一3	,		
	HN	R4	
実施例	R 4	実施例	R 4
5	, Ngo O _{Br}	5-15	-H _d o√Ct _{cl}
5 – 2	O°g ⁿ ,	5-16	Ngo~Ocf.
5 — 3	N _g o_Q	5-17	, N y O NMe,
5 – 4	, ng ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5-18	`# [£] °~\Q
5 – 5	,Ngo,Qa	5-19	-µ ^k o~Ç
5-6	Ho Down	5-20	"An Ot
5 — 7	`ll ^h o ~ Owe	5-21	-µLo~Q
5 – 8	Mo Oom	5-22	-pho-Co
5 – 9	"N" O OW	5 – 2 3	`µ ^k •∕•Ç
5-10	¥°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	5 – 2 4	, Hro~CD
5-11	`µ ² 0~©o\	5 – 2 5	. Não Mil
5-12	`µ ¹ 0~O*	5-26	`µ ^k o√C'
5~13		5 - 2 7	`# ² 0~ C\$
5-14	"Ho~©Br	5-28	"Ho~CO

4

[∄

	HN	N P4		
実施例	R*	実施例	R 4	
5-29	w. r	5-46	,#g~o~o	
5-30	H _e ∘√Q°*	5 – 4 7	, h _g o	
5 3 1	, Hg o D om	5-48	.#go~&	
5-32	Ngo Qoe	5-49	Ng Chew	
5-33	,How Com	5 - 5 0	, N o Chinako	
5 3 4	Hyono Oon Hyono Oon	5-51		
5-35	N _y ow ()	.5 - 5 2 3	ソ 800 キノリ	カーイル オーカルボキ レー・カルボキ レー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5-36	, Ngo , Oct,	5 – 5 3	チル Ago D チ	T ルナフピール
5-37	,ll _g o, Çî	5 – 5 4	チル #go~N チ	チル
5-38	.µ80~~O	5 - 5 5	チルパラダッル	を加え C下
5-39	."yo~o~O	5-56	で提择しな。成立を成立を を加え 不物を取取した。)	軟着し 残査に タノ 衝験を タノ ルマ
5-40	"N ^A Owe	5 - 5 7	"II HE"	
5 - 4 1	` _n ²,C	5-58	, Ng No oMe	
5 – 4 2	, Ny 0, 000er	5 - 5 9	n _s co	
5-43	`# ^A o^∞0H	5-60	, ng ~O	
5 - 4 4	"Д°~°СН "Д°~°СН	5 - 6 1	"12" Com	
5-45	`µ ² 0^⊶	-		
6 1 H	3 2 7	40	30 lg b 4	3
2		6		2 3 0 1
4 2 28 9 g	3 4 3	g	3 300m1 77 2g 3	

013

a

```
イル 酢酸 の
                                           感有液にオギザリルク■リド
                                             チルホルムノ
                               (26)
           49
                              6 g チル
                    2 1
          26 6g
                                      ないた、水製気等下の時間推择した。
では、これでは、まままでは、これで、残査を
になりし、これでもある。
                               が保
原液を とうごう
0133 c
          4
                              を加え 先「弱製 しがくクェリド
5 首波を降下した。 室下 時間提择 第一液を飽和炭
6 Ъ
                      3
         26 6 g
                      30
               200ml
0 \, \text{m} \, 1
     08ml
               32 0g
7 3)
                              0 1 3 4 d 4
2 1 H
                      3
            3
1 H
                8 3 g
   8 5 m 1
                           3
 4 6 m l N N
                         20 7
                      1
                           m1
    6 c
               10 1g
                           7 5
    150ml
  1 0 g
    150ml
  16 6ml
                            1H d J 6 9Hz 7 71 1H d
         1
                                   7 87 8 00 2H m
                         30 J 8 1 H z
                            11 1H
                                    d J 6 9Hz
                           8 45 2H m
                                      11 55 1H s
                           2 09 1H s
                  1 1
                                      13 08 1H s
        8 0 g
                            0138 8
0135 e 4
                                            2 N
                    2
                           3 111
                                      3
1 H
        3
                                 1 2
                             7 3
                                      1 H
  6 d
       1 H
                                   1 2
          8 0 g
                        40
                                40 m g
                                      N N
                                            0 0 2 m 1
  50ml 2N
                   20 m l
                           2 m l
    1
                           1
                                              0 02
                           g 1 3
                                                3
                                      0 03g
  4 5 g
          3 1 H
0136 f
                       3
          1 2
                                        10 1
```

33 mg

		51	7)	2 0 0 1 52	89471
p p m 3 6 0 m 7 0 1 H s 7 4 8 1	2 80 2 2H m 50 1H d d J 8 2 90 1H d 5 1H m	d 6 300MHz 8 94 2H m 3 40 7 11 7 39 7H J 7 0Hz 7 6 Hz 7 80 1H	1 1 H 0 1 3 9 6 0 1 4 0 5	s 12 05 1H s 8 2 8 11 8 2 7 8 3 8 11 5	
		HN	R4		
	実施例	R 4	実施例 ,	1 SHOW	1
	6	COOM e	8-6	ノノ・クロー	イッドル オップ クララ 、 イ
	7	соон	8 — 7 実 ル	能例で10分) ノノ イル キノリ	オーオーオーオーオーオーオーオーオー
	8	\$ _N ~©	8-8 p	の チルベル) クリート イ ド 一下移職権した。 添液を展	
	8-2	сн₃он		た『■ る ぎ加え 液を設圧やりでの呼吸 リカ	
	8 – 3	گ _ە د	8-10	Яд~соон	
	8-4	۶,© ۶,√	8-11	An~NMe2	
	8-5	y. C	_	4.4	
7	8 1 H 8	3 1 H 3 4 2 3 2 1 H H 2 3 1 H	(0 3 g 3	7 8 3	
3 g N		2 05 15ml	7	8 3 1 H 1 H 2	3
g N N	14	0 267g			Η z δ
		~	ррm	6 01 2H s 6 7	1 1 H
	5 m. l	r.	d J 8	6Hz 7 06 7 2	

50 m 7 46 1H d J 7 3Hz 7 5

		(28)		2001	8 9 4 7 1
Ë	3			54	
0 1H d J 8 6H:	7 96 1H		9 7	8	3 1
d J 7 7H2 8	0 8 18 2H	Н	3	1 H	2
m 10 41 1H s	11 32 1H			4	
S		9	2 9 28	9	7
7 8 3	2 1 H		8	3 1 H	3
3 1 H	2		1 H	2	
'H NMR DMSO de	300MHz δ	5	i	9 29 9	4 8
ppm 6 15 2H :	6 71 111		9		1 10
* *	16 7 07 1H			9 49	
m 7 08 7 20	H m 7 28	10	6 7		
7 44 3H m 7	81 1H s 10	0 1	4 3		
53 1H s 11 93	l 1H s	ϵ	i		
0142 9 2	4 9				

表-6			. ()		
		Ro 02	P ⁴ CI R ⁴		
	Н	\sum_{n}			
実施例	· R4	R "	実施例	R ⁴	R ⁶
9	NH,	H C l	9-1-4	.N _g ~C	н
9 – 2	- Ng	Н	9-15	,µ, , , , , , , , , , , , , , , , , , ,	Н
9 – 3	`µ So`we	Н	9-16	, p	Н
9 – 4	`µ^.	Н	9-17	, H C CF.	Н
9 5	`µ^.o`	Н	9-18	, NO NO	н
9 – 6	, Hy	Н	9-19	, NO Ow	Н
9 – 7	, 10~8 °	Н	9-20	· II CO	н
9 – 8	-µg~~~	Н	9-21	Oyl.	Н
9 – 9	`∦ Cowe	[-]	9-22	,# _C C	Н
9 – 1 0	Çn,	Н	9-23	.Hg Co.	Н
9-11	,ngO	1.1	9-24	, N COME	H
9-12	, p , m	Н	9-25	· Hro. O	Н
9-13	, N	Н	9-26	, H _S ^CF ₃	Н

[書

(30)

表-7	0.							1	
	·	R) HN		R5 R4					
実施例	R ⁴	R ⁵	R"	実施例	R⁴	R ⁵	R ⁶		
9 – 2 7	, H ₈ (C)	C 1	H	9-39	, NEL,	Cl	Н		
9-28	, L _s O	C I	н	9 4 0-	Me ~ome	C1	Н		
9-29	, ll , ome	Ç1	H	9-41	, ii , C	C 1	Н		
9-30	`µ ^Q o~\owe	СI	Н	9-42	Chyt.	C 1	н		
9 – 3 1	`µ\$°^µ`	C I	Н	9 - 4 3		例 Cl	Н	アドル イル	スN に 水浴
9 – 3 2	A NOW A	CI	Н	9 – 4 4	チルンニュ	デ (新年 シ <u>タ</u>		1年ル1.1	特
9-33	, h _o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CI	Н	9-45	がいる OMe	ノルデ (G対象	- 2. 水 し 尉醛	和物 を水 ナトリウ チル ニ ル タ	聴 た。 【
9-34	C.ogt.	Cl	Н	9-46	, H, H, C	cι	Н	,,,,,,,	•
9-35	H _o , C)	Cl	Н	9-47	Complex.	СІ	H		
9-36	`µ\$o^\O	СI	H	9-48	a _n a.co	СІ	Н		
9 – 3 7	, \$ 0 ~ Q s.	СІ	H	9-49	OMe	Н	C I		
9-38	'plo~(n)	C I	Н	-	-		-		

0145 10 7 3 1H 3 2N 540ml 8 1H 2 22 a 3 2 2 6 g 1000ml 75 2 1 9 g 194g 1 3 0 0 m 1 282 50 0146 b 7 2 3 2 g 3 2

```
商権ニチルで出出した。有意原正館和食品水飲多後
無源確ナトリウ、乾素した。硫酸ナトリウムを薬別
                                後 波波を反圧率 し 表配合物
                                           2001
                         (31)
                                   チルニルタスルホネ
3 1 H
                                変数の ではられた 13/
ルボ ルオキ。 、チル安息番
                                ルホールオキ。
実施例 の
                                                       き用
 70 m l
            6 g
                                         と同様の方法をよりg素配合物
10 a
             2
          3
                                         1万福丰
                               300ml 1
46ml 1
サルトール
突縮係 の では
  13 6 g
             60 1
                                          N 1人ル 1 ケルノ.ノ]
タ スルホネ ト
    300g
                                        であれた ラノ ヒ キチャル・ネト
              11 8 g
                                       で与われた
 0147 c 2
                          10
   3
                                を出発原料と し 実施仮 の と同様の方
                   2 3
   10 b
            7
                                法により表眺合物

を値た。
                     6
                                     *ルルル [ 14
イルノギルリ2 /9 g チル
           1 H
                       30
           207g
                                ドル イルノチル2 19g
0.0 \, \mathrm{m} \, 1
           2 4 0 0 m 1
                   1 N
                             660ml 30
        70 8
 8 2 m l
                   p H 3
                             121g
 0148 d 3
2
             2
                  4
  10 c
                  121g
        3
 l a
                                          ヒ澤青川
 103g
                                 Pog イル
                                                9 0 赤イリ
 0149 e 4
                               2 N
                                               90ml 1
                        2
          3
                                           28 6ml
                          30
                                          2 8 1 2 g 6
  10 f
             3
                              70 5 5
  2
                            N 30ml 90ml
 1 0 g
             1 b
          10 3g
                  2
                     1 H
 0150 f 4
  3
        )
                  2
                             H NMR DMSO d<sub>6</sub> 300MHz
                             ppm 2 34 3H s 3 94 4 06
  10 e
                                    4 30 4 41 2H m
  2 1 H
                             2 H m
                          40 98 1H d J 8 8Hz
                                              7 09 7 2
  2
                            3 2H m 7 48 1H d J 7 1H
              7 m 1
 0 54ml
                               7 68 1H d J 8 7Hz
                            1 1H d J 7 2Hz 8 22 1H
 0 54g
                            d J 2 6Hz 8 25 1H s
                            85 1H s 11 37 1H s
                                      11 2 11 8
                             0153
                                            11 2 11 8
                 0 86g
                              1.1
                             0154
                                      1.2
 0151 g 7
                3
                   1 H
                                     3 8
                                                 7
               1 H
                       2
                          50 3 1 H
```

き 帯骨 し 残査 に 一 調査 水名液を加え

```
2001 89471
                      (32)
           61
                 1 H
                           11.
  2
        1
                                             1 H
  2
                         47ml 姚例
  1 1
                     3
        3 8
                   1 11
         26 5g 1 3
                          H NMR DMSO
        186ml
                                      £300MĤz .
          3 2 m l
  115 7
  5 3 0 m l 2
                  25 3 10
                         'H NMR DMSO dε 300MH2 δ
                         7 Hz 8 01 1 H d J 7 5 Hz
 ppm 1 58 1 82 4H m 2 6
                         8 21 1H d J 2 6Hz 8 24 1.
4H 2 85 2H t J 5 8Hz
                         H s 10 82 1H s 11 36 1
4 17 2H t J 5 8Hz 6 97 1
H d J 8 7Hz 7 05 7 25 2
                         H s
H m 7 48 1H d J 7 3Hz
                         0157 12 4
                         3 1 H
                                3
7 66 1H d J 8 6Hz 8 01 1
                                 4 .
                           2
H d J 7 6Hz 8 12 8 30 2
                                       1 H
                          2
                           2
12 3 3 1H 3
8 7 2 4
1H 2 19 0
H m 10 82 1H s 11 37 1
Нs
0155
       122
3 1 H
        3
  2
        1
               1 H
                         2
        3 IH 3
7 2 1
  12
                          ppm^{1/2} 35^{\frac{1}{3}} 3H s 3 12 3 38
        2
7 2 0 ı
  1 H
-
                         2H m 3 44 3 68 4H m 3
                3 g 1 5
                         73 4 08 4H m 4 44 4 62 2
           7 2 0 m 1
                       30 H m 7 O 1 1 H d J 8 4 H z
  4 N
           23 3ml
                         7 08 7 23 2H m 7 44 7 53
  1
                         1H m 7 72 1H d J 8 8H
 300ml
        1
                         z 8 02 1H d J 7 0Hz 8 2
 29 g
                         3 1H d J 2 6Hz 8 27 1H
H NMR DMSO ds 300MHz
                         s 10 88 1H s 11 24 11 5
                         0 2 H m
ppm 1 82 2 16 4H m 2 36
3 H s 3 0 5 3 2 6 2 H m 3
                         0158 12 5 12 51
56 3 74 4H m 4 36 4 53 2
                         1 0
                         H m 7 01 1H d J 8 8Hz
7 08 7 25 2H m 7 48 1H
d J 7 3Hz 7 72 1H d J 8
8Hz 8 02 1H d J 7 0Hz
                                   12 43 12 46
8 23 1H d J 2 6Hz 8 27 1
H s 10 64 1H s 10 88 1
                                  1 1 1
                                  12 12 2
H s 11 40 1H s
                            1 1
0156 12 3
                                  12 47 12 51
      3
                                   8 10
3 1 H
               1 H
       4
                          0159
 2
```

表-8										
HN Me R4										
実施例	R ⁴	実施例	R 4	実施例	R⁴					
10	он	12-3	,0 \\	12-14	,O,NEt ₂					
11	,0~ca	12-4	, o Y C	12-15	,o,,,,NEI,HCI					
11-2	,0.√Br	12-5	`o^√NWe³	12-16	·0~~\\					
11-3	,oC1	12-6	^0√NEt₂ (12-17	,o HCI					
11-4	,VY	1 2 - 7	`o∼vei³-Hci	12-1,8	,o					
11-5	`o, C) ^{cH}	1 2 - 8	°,	12-19	,o√ HCI					
11-6	·°C	12-9	OHC CZ	12-20	·~~\\					
11-7	,0 (N	12-10	0,50	12-21	, O, NO HOI					
11-8	O CHIOI	12-11	°~20	12-22	الكرم					
1 2	`o~\v}	12-12	O~12~0	12-23	, , , ,					
1 2 - 2	CA CO,	12-13	_ON#/6 ₂	12-24	,o~, j					

(茅

0 1 6 0 40 9

65		_	_
表-9		[1
	Lt We		

HN								
実施例	R⁴	実施例	R⁴	実施例	R ⁴			
12-25	,o ∕ N HCI EI	12-30	~o~~h?	12-35	CO CHAMBI			
12-26	,°✓✓ NEt₂	12-31	-0N	12-36	.O. H. M.			
12-27	,°✓✓ NE¹-HCI	12-32	,o√NMe	12-37	CHYMYO.			
12-28	~~~°	12-33	, o \ m	12-38	-0-H-1			
12-29	CH~~°	12-34	O HOI NH,	_				

0161

1 0

表一10					·
		HNT	H	[}%[统
実施例	R 4	R 5	実施例	R 4	R*
12-39	NNN	14	12-46	~0~~N	OMe
12-40	N N N N N N N N N N N N N N N N N N N	Н	12-47	~°~";	Н
12-41	-N-H- N	Н	12-48	HOI VO	Н
12-42	ОН	OM e	12-49	~°~\!\	Н
12-43	O N O O	OM e	12-50	~°~\\	Н
12-44	.o⊄n~nH,	ОМе	12-51	,0/N/H/	Н
12-45	OLNAH	ОМе	_		-

0162

1 3

50 3 1 H

3

8

				(35)						2	0 0 1	8 9	471
	67								1	68			
2		1 H	2		z	8				10	7 9	1 H	Į.
					S	1 1	36	1 H	S				
10	7	3	1 H		0 1	63		1.3	2	13	3 5		
3	8	1 II				10		7			3	1	Н
	0 7 g		2 m				3		8		1 H		
1	0	0	1 4 g		2						1.3		
•	0 0	6 m l	· ·				13	2 1	3 3	3 0			1
		1 m l			0		7			3	ΙH		
1					3		8			1 H		2	<u>}</u>
•		0 045	ŗ	10					4				
1 1			,		13	3 1	1 3	3 3				1	1 1
	DMSO de	3 0 0 M F	łz δ			7			3	i	Н		3
ppm 2							1 H			2			
ι J 6 5							13					1 3	3 4
	97 1H d		3 H z		1.3	3.5					1	i	12
				1									
•	27 3H m			,	n.	164							
• • • • • • • • • • • • • • • • • • • •			m 7				1						
65 1 H d	J 8 7 H	z 7 9	4 8 (}		1 1							
4 1 H m	8 20 i	H d J	2 5 H										

,

表-11

69

<u>3X — 1 1</u>								
HN He R4								
実施例	R ⁴	実施例	R 4	実施例	R ⁴			
1 3	,°\\	13-12	,° CN CO	13-23	,0~~			
1 3 - 2	OM e	13-13	,0,_GOOEI	13-24	.٥٠٠٤			
13-3	OE t	13-14	`o^cooн	13-25	رگره			
1 3 – 4	,°\	13-15	ONEI2 [13-26	,° \\			
13-5	~°~	13-16	,o∕~oH	13-27	,o~o.			
13-6	^o CNH-HCI	13-17	,º∽ome	13-28	ب سبب م			
1 3 - 7	ONMO	13-18	~~~~	13-29	,o\(\frac{\lambda}{\lambda}\)			
13-8	ONE	13-19	~°~~	13-30	`0~\ ^N }			
13-9	, O Net-Hol	13-20	,°~~	13-31	~ N ~ 0			
13-10	,O CN800	13-21	۵۰۰۰	13-32	,0. ₈ Me			
13-11	٥٥٥	13-22	,0,~CI	13-33	,o. _§ ,			

【茗

2001 13 第版 と同様な方法で 第版

の化合物を

合物

表

[(書

の化合物を作た。また 実施医

4

用 実施例 と同様な 原がを行うでとにより 実施例 の化合物を他た。更に実施例 の化

0174 表-13 R4 実施例 R4 R^4 実施例 実施例 14 - 714 - 4 NO_2 14 14 - 8 NH_2 14 - 514 - 214 - 614-3

14 9 14 28 0175 18 14 28 14 9 14 1 1 4 14 16 1 4 6 0176 1 4 14 17 14 17

表-14	10		···		10	,
		HN	22			
実施例	R²	R 5	実施例	R ²	R ⁶	
14-9	OM e	Ме	14-19	-	Мe	
14-10	SO ₂ Me	Мe	14-20		, りら 込 はれるカ の化合物	 法 <i>を</i> 用 て 実施版 達 ^を た ^{。を} られたと合物
14-11	SO2NE t2	Мe	14-21	,# _C O	Me	2 70 310 746 130
14-12	F	Ме	14-22	, H ₂ CO	Мe	
14-13	CF ₃	Ме	14-23	`# ^{COC}	Ме	
14-14	CF3	C 1	14-24	,# \$ \\$	Ме	
14-15	CF ₃	OMe	14-25	Orgin.	Me	
14-18	NO ₂	Мe	14-26	\$	Ме	
14-17	NH ₂	Мө	14-27	o, `#' ² m°	Ме	
14-18	× ×	Ме	14-28	,ll _g ⇔ Me	Мe	

C	177	7	14	29	14	4 5		15
	1	12					1	0178
Λ	2.9	1 4	4.5					1.5

を 表 【 【 表

(

_	n
- 1	х
	u

表-15	77			78
		HN	H R3	Total (G)
				イ ドル イル オギノ
実施例	R⁴	実施例	R ⁴	実施的 I T R ⁴ / フ ル ル オフ
14-29	OMe	14-35	NO ₂	14-4 と解答 カン・ドル イル 育成 で下 時間を捏した。 歴 彼 に育成 を加え 一般
14-30	ОН	14-36	NH ₂	新和炭酸ナトリウムの大きがた。酸電ニチルで出 大分では金酸を加えて酸性とし、酸電ニチルで出出 有電解を無効質電子といった。 ・ 乾燥した。質酸エチルで出出
14-31	CI	14-37	3.⊅ ½	ウ ^ム を練別 ^後 神 液胃原圧 ^{映像} し ^独 られ た 体を ユ レ ¹ 分 が サ して表 を
14-32	COOMe	14-38	8000	
14-33	соон	14-39	`h ² °~	14-4'5 ONNO
14-34	CH ₂ OH	14-40	`# ² ~	「チル インドル イル オ チル ヒ ド キノリ カルボキ レ

0179	15					
3 1 H	3	S		15	3	1 11
1 2	4		30	2	1 2	
2 3	1 H	2 3		0	0 3 g	
0 5 g	1 H	3		0	1 m Ī	
1 0 g		0 07g		0 3 m	1	
210 1						
					91)	
			0.2	2 g	16	
				H NMR	DMSO c	la 300
			Ţ	ppm 3	66 3H	s 6
						-

' H NMR DMSO d₆ 300MHz δ 7 11 1H t J 7 0Hz 7 24 1 $H \quad t \quad J \quad 7 \quad 0 \, H \, z \qquad 7 \quad 3 \, 3 \quad 7 \quad 6 \, 0 \quad 6$ H m 11 30 1H s 12 02 1 H s 13 60 1H s 0180 15 2 3 1 H 2 4 1 2

0 $0 \, \text{MHz}$ δ 93 7 05 0 13g 1H m 7 07 7 17 1H m 7 40 19 7 29 1H m 7 31 7 49 5 H m 7 50 7 62 1H m 11 3 3 1 H s 12 10 1 H s 0 1 8 1 1 5 3 1 5 4 1 5 15 3 15 4 1.6 0182 16

2001 89471 (42)81 s 13 02 1H s 1 d 0189 0 52g 17 1 6 'H NMR DMSO ds 300MHz ppm 5 14 2H s 7 14 7 28 16 2 17 3H m 7 33 1H d J 8 0H チル 0190 z 7 41 7 51 2H m 7 85 1 17節 H d J 7 8Hz 8 06 8 14 1 イプド,ルーイル 育修 の 8 36 2H s 11 95 1H 者液 に水素化 ナト 表-17 室下下 分費投した。次 を加え 蜜 下終 ■ モ タ 破れした。原液を資圧率後後 残なテトルド が北ナリウム 仁智管 し き加え 寄下 時間投化した。有 ないまたが変えが楽し 水やを ニャルニ テル 弥革 とした。 育成ニチル で出来を使れる ない でまた いっと を 異した。 でで ナトリ R7 R^7 実施例 実施例 き被別 事被を及圧変し 表乳合物 CH,COOPh 15 F 15° CH, COOH 16 - 316 チル と手 安息香酸 を原料と CH₂COOBn CH₂COOMe 16 - 4ナーノ と同様の方法により 表味合物 鄉便 []_] 1 9g ナル 2イル 1 9g ビデザキ ニ ル バインド の できられた 0 1 9 1 1 7 3 i n 1 H 3 7 1 H 2 93 g チル a 1 n 1 H 3 0194 d 2 1 n 1H 3 N 2 5 3 3 N 2 1 H 3 g N N 30 7 5 m 1 17 c 2 1 n 1 N 2 3 0 1 5 g 4 7 m 1 Н 5 3 g 10 h 2 3 g 0 1 9 5 e 3 1 n 1 H 3 g 2 N 7 5 m 1 5 7 5 m l 3 7 1 H 1 N p H 1 17 d 2 l n 1 8 40 Н 3 N S 2 3 g 0192 b 2 5 1 d 18g 1 7 2 4 1 a 75g H NMR DMSO de 300MHz ppm 0 91 3H t J 7 3Hz 59g 1 21 1 40 2H m 1 70 1 87 0193 c 2 1 n 1H

5

1 11

3 N 2

17 a 1 n

2H m 4 29 2H t J 7 0H

z 7 19 7 34 2H m 7 61 1 50 H d J 7 4Hz 7 96 8 04 1

表-18

85

表-18										
	RLN R ⁵									
実施例	R ⁴	R ⁶	R ⁷	実施例	R ⁴	R ⁶	R 7			
1 7	NO ₂	Н	n-Bu	17-14		CI	i-Pr			
17-2	NH2	Н	n-Bu	17-15	Н	Н	Ме			
17-3	N _C o ^X ll,	Н	n-Bu	17-16	Н	Мe	Мe			
17-4	~µχ°~νχ	Н	n-Bu	17-17	OM s	Мө	Ме			
17-5	Chy#.	Н	n•Bu	17-18	(он }	Мe	Мe			
17-6	NH ₂	СІ	n∙Bu	17-19	~o~\nZ,	Мe	Мe			
1 7 - 7	`µ ² 0~µ`>	СІ	n-Bu	17-20	CA ~°	Мe	Мe			
17-8	Chy#.	CI	n-Bu	17 21	,O CANA	Мe	Мe			
17-9	NO ₂	Н	i-Pr	17-22	10H-eMin	Мe	Мe			
17-10	NH ₂	Н	i-Pr	17-23	NO 2	Ιđ	Мe			
17-11	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	i-Pr	17-24	NH ₂	H	Мe			
17-12	NH ₂	C I	i.Pr	17-25	`µ ^k o~ \	Н	Мe			
17-13	\gamma_0X _{β1} \	C I	i-Pr	17-26	Н	Me	Εt			

(∄

表-19

87

<u> 34</u> —18			N R ⁴						
		Me-N	7						
state (Sel	R ⁴	実施例	R ⁴	実施例	R 4				
実施例		天旭四							
17-27	`# ~~	17-40	, H	17-53	`# ³ °√C				
17-28	,¤ , ~C	17-41	`µ ⁶ o ∕ o a,	17-54	.H ₀				
17-29	`# ` ~~	17-42	`µ^o~^^ _E *	17-55	`N^o^				
17-30	, H , CN	17-43	`∦ ² °~\O'³'	17-56	**************************************				
17-31	A CH	17-44	,H, o √ C1	17-57	`µ^*°~~\				
17-32	`# ` \` \	17-45	المحريد ال	17-58	`µ ² °~~°~				
17-33	,N _p Ch	17-48	`µ\$0~~~	17-59	`# ^{\$} °~~ `				
17-34	,# , ©	17-47	, H ₂₀ ~ C	17-60	`# ^{\$} °~\ 7 \$				
17-35	`#\ <u>`</u>	17-48	-HX0~~Q*	17-61	**************************************				
17-36	"H	17~49	N c N N N N N N N N N N N N N N N N N N	17-62	`µ ^k °~~				
17-37	# *	17-50	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	17-63	# * 0~				
17-38	, N, ~ C	17-51	\$°~\\$	1764	, 161 € N				
17-39	-11	17-52	`# ^{\$} °~°	17-85	LIOH S				

(∄

20

0	^
u	11
u	v

表-20			89
	表-2	0	

		Me-N				
実施例	R⁴	実施例	R⁴	実施例	R 4	
17-66	`µ [^] ¢°~\Ç	17-80	-H~o~	17-94	,°Y	
17-67	`µ ^k °~ C "	17-81	`µ ² #~\C	17-95	OHN	
17-68	.H _₹ °	17-82	`µ ^k ‡⇔	17-96	,°\0	
17-69	~h ₇ °~~Q	17-83	OM e	17-97	My OFF	
17-70	.# _{ 0~~.Q	17-84		177-198	F T T UN	チル イ ド ド ド 類 土 ノ
17-71	~µ\$.0~~*•	17-85	ال ال	17-99)	~QQ.	セ 輝 キノ チルゲノ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
17-72	`µÅ.~~~£\$#	17-86	^ <u>`</u> ``	1実格例100		のテトシ だ チル を
17-73	-H*0~~01	17-87	~ 🖒 加	え 海内0F チ	音被に まう化 時 P能 Pa turb 。 5 ルノグトノード	が液を解析後 残さ
17-74	`µ ² µ°.	17-88	/0, 2 0 0	テルオム 102 カルカン	大き	に対象し ラ お液 下移爆弾した。原
17-75		17-89	-^° ``` ℃ 液	E1号上103 9		ラ ・ に
17-76	الريابية الد	17-90	O H V KH,	1 7 104	, k 1, *** O	
17-77		17-91	,0,	1 7 105	C ION HI	
17-78	'H ² K'	17-92	٠,٠٠٥	1 7 106	H, CM	
17-79	-Hyowyte	17-93	OS F		-	

91 80m H s 12 08 1H s 0201 17 105 17 106 g 2 0 17 104 17 1H NMR DMSO d6 300MHz 1 105 17 106 11 3H t J 6 5Hz 2 90 2H t J 6 7 Hz 3 14 3 38 2 H 2.0 0202 17 107 17 130 m 3 48 3 67 2H m 3 88 3 H s 6 77 6 88 1H m 7 11 17 107 17 130 1H s 7 16 7 42 7H m 7 54 1H d J 7 9Hz 7 84 1H 2 1 d J 8 5 H z 7 9 0 8 1 4 3 H 10 0 2 0 3 m 8 2 9 8 3 9 2 H m 9 6 6 1 2 1

		R²₋Ŋ		R ⁵						
実施例	R 4	R ⁵	R ⁷	実施例	R ⁴	R ⁶	R 7			
1 7 107	он	OM e	Мв	1 7 - 119	NO 2	н	Εt			
1 7 - 108	رگرەر	OMe	Me	1 7 120	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Et			
1 7 - 109	,0 _}	OMe	Мe	1 7 - 121	NH ₂	Н	Et			
1 7-110	-° ¥Ci ∜	OMe	Мe	1 7 122	`µÅ₀~\Ç' ^{Bt}	н	Et			
1 7 - 111	٠٥٢٢	ОМе	Ме	1 7 123	OM e 【 】	H 死	Εt			÷°
1 7 112	O CH 1HI	ОМе	Me	17-124	%例 OPD化合物		と同盟も	様にして実施例 の化合物を表	に示	【 【茅
1 7-113	ОМе	OMe	Me	17-125	^{, o} ¥Gi <mark>*</mark> Co	Н	Et			
1 7 – 114	~~~	OM e	Me	1 7 – 126	,0 \\ HG	Н	Et			
1 7 – 115	_0	ОМе	Мe	1 7 127	۵.,	OMe	Et			
1 7 -116	·°~~	ОМе	Мe	1 7 - 128	, HGI Ç	OMe	Вt			
17-117	OFF F	QM e	Мe	1 7 129	,o _→	OM e	E t			
17-118	OSOF F	ОМе	Мe	1 7 - 190	OH	OM e	Et			

0204 18 18 6 1 10 18 6 122

0205 18

22

0206	1 9		20	8 6 H z	04 7 20	2 H m
3 1 H	3	7		7 40 7 5	12H m 7	94 1 H
1 H	2			d J 7 5H2	8 06 1H	s 8 1
3	7 3	1 H		0 1H d J	2 6 H z 1 1	24 1H
3 1	H 2	0 15		s 11 40	1 H s	
g 5	0 m l 1	0		0207	19 2 19 4	
0 05	g			19	3 1 H	3
				7	1 H	2
					4	192
		10 1			19	5
0 01	0	0 2 g	30	19 3		143
2 3				6	1 9	
'H NMR DM	SO d ₆ 300	MHz δ		194		2 3
ppm 1 18	6H d J 6	3 H z				
3 45 3 63	1 H m 6	10 1H		0208		
s 6 39 1	H s 6 51	iH d J		2 3		

に残して C 目情熱した。目 物に 計論を「販」除去し または にお青した き含む 被終化戶物 **ም**ፓ を加 え 0) (52) 1 2 SDS 表 最 核 使 102 ls 0 13 SDS 5 10 1 101 0 5 RPMI з Н 0 25 μ C 1 004 0 5 RPMI 24 2 φ μ 1 7 5 5 EDTA 3 (0 m A 1 GF B PV DF polyvinylidene 50μ1 ³ П difluor | de 37V 5 1 5 ³ H 5.0 0 05 Tween 20 TBS Tri ICso sBuffer d Saline 20mM Tri 19 30 s 150mM NaCl pH7 5 10 0218 4 HRP3 TBS Tween2 1 10 5 24 3 0 0 5 0 10 Χ 2 i RPMI 37 2 DMSO DMSO 100 0 01 0 1 1 μM 200 2.5 μ1 0 5 RPMI 37 1 5 500 ng m1 36 PDGF BB 0 5 RPMI 2 0219 0 μ 1 5 0 n g m l 1.5 2.5 60 µ

表25

103

薬理試験(試験例1-4)

表 2 5	杂	里科默(科默约)		
実施例	Kinase 阻害	メサンギウム細胞 増殖阻害 IC60(μM)	th平滑筋 増殖阻害 IC50(μ M)	が酸化 阻害 IC50(μM)
1.	0.03	0. 2	0.3	0.2
1-2	0. 1	2		
1 – 3	0. 4	1		_
1 – 4	0. 1	0, 3	0.6	-
1-5	0.01	0, 1	0. 2	-
1-6	0, 1	0. 5	<u>-</u>	
1-7	0. 2	2	_	
1 - 8	0.02	0. 2		
1 - 9	0.04	0, 4		
1-10	0. 1		1	-
1-12	0. 1	_	0.7	
2	0. 5	_	Ø. 4	
3	0.06	_	1	
4	0.4	0. 9	_	
4-2	0. 3	5	_	
4 - 3	0.05			
4 4	0. 1	_	_	_
4 - 5	0.07	0.4		_
4-6	0. 2	0.4		
4 - 7	0, 1		0. 1	0.01
4 - 8	_		0.4	- -
4 – 9	0. 1	0.4	0. 3	-
4-10	0.07	0.4	0. 2	_
411	0.05	0.4		-
4-12	0.06	0.4	_	

【茅

2 6

105 薬理試験 (試験例1-4) 表26

実施例	Kinase 阻害	/サンギウム細胞 増殖阻害 IC50(μM)	b}平滑筋 増殖阻害 IC50(μM)	炉酸化 阻害 IC50(μM)
4-13	0. 1	3		
4-20	0.08	1		
4-21	0. 1	2		
4-22	0.3	2	_	_
5	0.04	0. 2	0.1	0. 2
5-2	0, 6	-	<i></i>	
5-3	0.03	0, 1	_	_
5 – 4			_	_
5 – 5	0.03	0.3	0.04	-
5 – 6	0,08	0, 2	o(. 2) –
5-7	0, 05		0. 2	0.05
58	0.02	-	0.1	0.2
5 – 9	0.02	_	0, 1	0.2
5-10		_	0. 2	_
5-11	_		0, 2	_
5-12		_	0.09	_
5-13			0.1	_
5 1 4	0.02	-	0, 1	0.02
5-15	0.03		0. 2	0, 5
5-16	group	-	0. 2	0. 2
5-17	0.02	***	0, 1	0.01
5-24	0.05	_	0. 2	0.01
5-25	_	-	0. 2	
5 - 26			0. 2	0, 3

【 砉

108

	107	-makwa /akwa/ula	4)	108
表 2 7 実施例	X. Kinase 阻害	理試験 (試験例 1 · メテンギウム細胞 増殖阻害 IC50(μ M)	t}平滑筋 增殖阻害 IC50(μM)	ル酸化 阻害 IC50(μM)
5 – 2 7	_	_	0.09	0. 2
5-28	0. 1		0.1	0, 2
5-29	- ,	_	0, 2	0.3
5-30			. 0. 2	
5-31	0. 01	_	0.2	
5-32		_	0.07	
5 – 3 3	_	-	0.3	-
5-34			0.09	
5-35		→	0.2	
5-36	_		0.3	-
5-37	0.08	_	0. 2	0. 2
5 – 3 8	<u>+-</u>		Q. 07]	_
5-39	-	_	0,03	0.1
5-40	0.1	0.3		-
5-41		_	0.3	0, 6
5-42	_	E-hart	0.5	
5-43		_	>10	
5 – 4 4	_	-	0.09	0. 2
5-45	_	_	1	
5-46	-	_	0.3	0.5
5-47	0. 1		0.3	0.8
5-48	-	-	0.3	0.9
5-49	0. 1	enne	0.3	0. 3
5-50	_	-	2	_
5-51	AP **		_	

【茅

表28

薬理試験(試験例1-4)

110

実施例	Kinase 阻害	yサンギウム網胞 増殖阻害 IC50(μ M)	th平滑筋 増殖阻害 IC50(μM)	リン酸化 阻害 IC50(μM)
5 – 5 3	0. 1	0.3	0.1	1
5-54	0.07	A	0.5	
5-55	— ,	←	0,06	0.2
5 - 5 7	0, 1	_	_	←
5-58	0, 1		_	_
5-59	0. 1		6	
5-61	0.01	Y) #8	0.5	
6	0. 1	0.8		
7	0. 3		_	-
8	0, 05	dered	0. 5	
8-2	0.08	_	ŧ j	
8 – 3	>10			-
8 – 4	0.6	_		-
8 – 5	0. 3	2	_	-
8 - 6	0.5	3		
8 - 7	0. 2	***	0, 4	_
8 - 8	0.09	0.6	_	<u>.</u> .
8 - 9	0. 1	2		_
8-10	0.06	_		_
8-11	0.04	2		
9	0.02	0.8	_	_
9-2	0.03	0.7	_	_
9 – 3	0.006	0.6	<u> </u>	_
9-4	0.01	5		_

【茅

2 112

表29	111	理試験(試験例1-	-4)	112
実施例	Kinase 阻害	メサンギウム細胞 増殖阻害 IC50(μM)	t ト平滑筋 増殖阻害 IC50(μM)	が酸化 阻害 IC50(μ M)
9-5	0.02	0. 5		-
9 6	0.06	0.8		-
9 – 7	0, 03	0. 7		-
9 – 8	0.05			
9-9	0.01	0.8	_	<u> </u>
9-10	0.02	2	_	_
9-11	0,06	_		_
9-12	0.03	_	_	_
9-13	0.007			_
9-14	0.06	-		t
9-15	0.03	<u></u>	7	<u></u>
9-16	0.01	3	E.v.s	
9-17	0.04	4*108	_	
9-18	0.008	0.4	_	_
9-19	0.02	0. 9		-
9-20	0, 008	0. 5	0. 3	0. 2
9 – 2 1	0.09	6	-	
9-22	0.07	0.3	0. 2	
9-23	0, 1	3		_
9-24	0.04	-	_	
9-25	0.01	2	_	
9 - 2 6	0.01	2		_
9 – 2 7	0.05	2	_	
9-28	0.07	2	-	
9-29	0.02	0, 7	-	

[表

月13 表30

薬理試験(試験例1-4)

114

# 3 U	I	ノサンキ・ウム細胞	とト平滑筋	り酸化
実施例	Kinase 阻害	增殖阻害	增殖阻害	阻害
7,1,1,1	, , , , , , , , , , , , , , , , , , , ,	IC50(μ M)	IC50(μM)	IC60(μ M)
9-30	0.03	2		-
9-31	0.03	0, 3	0. 2	0. 1
9-32	0,006	0.3		
9-33	0.03	7	_	_
9-94	0.06	1	_	No.
9-35	0.01	0. 4		_
9-36	0.03	0, 6		-
9-38	0.02	0. 4	-	
9-39	0.02	0.4	0. 2	_
9-40	0,03	0. 4	0. 3	
9-41	0, 01	0. 7	_	0.2
9-42	0.006	0, 5	6. 3	brest I
9 - 4 3	0.009	0.3	0. 2	_
9-44	0.004	2		· _
9 – 4 5	0.04	0.3	0, 3	_
9 - 4 6	0.04	0. 3	0.4	_
9-47	0.01	0.4	0. 5	
10	0.003	0.8		_
1 1	_		-	-
1 2	0.003		0.05	0, 04
12-2	g		0.05	0.07
1 2 - 3	0.01	_	0. 2	0.06
12-4	_	_	0. 1	1
12-5	0,01	_	0, 09	0. 1
12-6	_	-	0.06	0, 2

【表

116

de 0 1	115	理試験 (試験例1・	43	116
表 3 1 実施例	Kinase 阻害	理試験 (試験的 1 ・ 対サンキ・ウム網胞 増殖阻害 IC50(μ M)	t h 平滑筋 増殖阻害 IC50(μ M)	りン酸化 阻害 IC50(μM)
12-7				_
12-8	0.01		0. 2	0.02
12-9	<u> </u>		0.1	0.06
12-13	0, 01		0.2	0. 2
12-14	_		0.1	0.4
12-15	_		0, 2	
12-16	_	_	_	
12-17	_	_	0.09	0,09
12-18		-		_
12-19	7-7		0, 1	
1 2 - 2 0			_	-
1 2 2 1	-		б. ₁	
1 2 2 4	_	-	_	
12-25	_	_	0.3	
12-26	****	_		_
12-27	199	_	0.08	_
12-28	Pilla			_
12-29		-	0.3	
12-30	_	_	_	-
12-31	_		0. 1	
12-32	0.03		1	_
12-33	0, 01		0.5	<u> </u>
13	0.04		2	_
13-2			> 1 0	_
13-3	0, 1	-	-	-

【 孝

表32

117

薬理試験(試験例1-4)

実施例	Kinase 阻害	/サンギウム細胞 増殖阻害 IC50(μM)	th平滑筋 増殖阻害 IC50(μM)	リン酸化 阻害 IC50(μM)
13-4	_	-	0.5	boot-v
135	_	-	0.4	_
1 3 6	-	-	0.07	-
13-7	0.01	-	0.08	0, 08
13-8			0,04	0. 2
13-9	_	_	0.1	0. 2
13-10	-		0, 3	_
13-11	-		0.4	_
13-12		_	0. 3	
13-13	_	_	8	
13-14	_		3,	
13-15	-		0.3	0, 2
13-16	_		0. 2	- ·
13-17	0.01	_	0.3	0. 1
13-18	_		>10	-
13-19	-	<u></u>	> 1 0	
13-20	0.04			
13-21	_	_	> 1 0	-
13-22	-		>10	
13-23	0.04			
13-24	0.02	_	0.5	-
13-25	0, 02			
13-26	0.02		0.4	0. 1
13-27	0.03	_	2	
13-28	0.02	_		

【老

120

表33	119 ※ 3	理試験(試験例1-	-4)	120
実施例	Kinase 阻害	メサンギウム細胞 増殖阻害 IC50(μM)	t}平滑筋 増殖阻害 IC50(μM)	リン酸化 阻害 IC50(μM)
13-29	0. 01	-	2	-
13-30	0.01		0.1	0.05
13-31	0.04		2	-
13-32	0.02	_	0.3	0. 1
13-33	0, 1	_	0.5	44
14	0.02		_	_
1 4 2	0.009	0. 9		_
14-3	0.01	0. 2		0.3
14-4	0.009	0. 3	_	0. 2
14-5	0.05	0. 3	-	0. 2
14-6	0.02	0. 4	_	0. 7
14-7	0.008	0. 3	+)	0. 2
14-8	0.03	0. 3	-	0. 2
149		_	0.3	_
14-10	0.03	_	0.04	_
14-11	_	_	0. 1	
14-12	0.02	0.5	_	0. 2
14-13	0.01	5		9
1414	0.3		_	_
14-15	0.02	0, 6	<u></u>	_
1416	0.008		_	
14-17	0.05	_	_	
14-18	_	Б	_	-
14-19	_	10		
14-20		4		

【表

表34

薬理試験(試験例1-4)

122

実施例	Kinase 阻害	パナンキ・ウム細胞 増殖阻害	比平滑筋 增殖阻害	リン酸化 阻害 IC50(*; MO
14-21	> 1	IC50(μM)	IC50(μM) —	IC50(μ M)
				
14-22	> 1	,	_	
14-23		8		-
14-24	1		_	
14-25	_	1 0		_
14-26		10		
14-27	0. 1	3		-
14-28	-	0.6	_	_
14-29	0. 2		3	
14-31	0.1		2	
14-32	0.6	_	_	_
14~33	1	<u> </u>	7	_
14-34	0. 1	-	-	-
14-36	> 1 0		_	
14-36	0.08		0.7	
14-37	-		1	
14-38	2		-	_
14-39	0.4	-	0.5	-
14-40	0.3		0, 3	
14-41	0.09	-	1	_
14-42	0.06		9	_
14-43	0.3	_	0.6	-
14-44	0.5	_	1	
15	> 1 0	<u> </u>		
15-2	> 1 0	-	_	_

[∄

124

表35	123 薬	理試験(試験例1	-4)	124
実施例	Kinase 阻害	パンキ・ウム細胞 増殖阻害 IC50(μM)	t\平滑筋 増殖阻害 IC50(μM)	沙酸化 阻害 IC50(μM)
15-3	>10	-		_
15-4	>10	-	_	-
1 6	6			_
16-2	5	-	1	-
16-3	_	-	1	
16-4	_	-	0.4	
16-6	_	_	2	
17	_	_	2	
17-2	E11-19	-	2	
17-3	0,06		3	-
17-4	_		o _r . 8	
17-5	_	-	0.03	_
17-6	1		0.6	
17-7	_	_	1	_
17-8	> 1	-		
17-9			0.6	-
17-10		_	3	
1711			0.9	–
17-12		_	0, 8	-
17-13	_		1	
17-14			2	_
17-15	0. 2		2	-
17-16	0, 1			****
17-17		_	> 1 0	_
17-18	<u> </u>	_	2	_

【 孝

表36

:t	40-

薬理試験(試験例1-4)

実施例	Kinase 阻害	メサンギウム網胞 増殖阻害	th平滑筋 増殖阻害	リン酸化 阻害	
<i></i>	171111100E FIT ES	IC50(μ M)	IC50(μM)	IC50(μ M)	
17-19	_	_	0, 3		
17-20	_	_	0. 2		
17-21	_	_	> 1		
17-22	_	_	> 15	ラントエンド・	Y モデルを用 た部 ・ きペートバルビ
17-23		_	9. 身饰	し、歯でを研り	山口 到門 店廳 肠
17-24		_	有求管 計出し	た。「難」脈を「か	『麗で 仮所 相
17-25	_	_	式クリップ O・of 注射 針	挟み - 聖者を停止し 	た。血栓停止配分に 水を注入し血管内部
17-26	0. 1		<i>連</i> 洗浄 した。	注射針ドニノボ ゲ	を接触し空気を 分
18	3	_	事事すでは	まり血管内部を乾燥 み後は40×44×1	さず 血管内皮配的を 刺入時に生じた穴を
18-2	0.6	_	を棒で圧迫し	て止り クリップ	をはず しつばれを再門
18-3	0. 5	_	上た ° 切門部	分を、倉丘し 予称翌	日より被検物量の投与
19	0.06	0.8	1	_	
19-2	> 1 0		_	_	
19-3	****	0. 4	-		
19-4	0. 1		0.3	1	
20	_	4	_	-	
2 1	>1	_	-	-	
21-2		4	_	-	

0231 5 SD 350 450g

1 c m 2

3

5

0 G

Elastica van Gieson

3 7 40 0 2 3 2 3 7

吲脂号

(65)

2001 89471

128

表37

ラットエアドライモデル試験

	新生内膜/中膜 %	阻害率 %	
Vehicle	32.8	発見 <u>者</u> 七山 壁 大阪疫苗	市学町 番号 日本たば ごん
10mg/kg	5. 5	業株式 8 3	生医桌塞台亚统所内

0233

PDGF

(51)Int.Cl.' A 6 1 P 9/10		F I (
	1 0 1	A 6 1 P 9/10 1 O 1
13/12		13/12
43/00	1 1 1	43/00 1 1 1
C O 7 D 401/14		C O 7 D 401/14
405/14		405/14
409/14		409/14
(72)		F (4CO63 AAO1 AAO3 BBO1 BBO8 CC14
	1 1	CC29 CC75 CC92 DD06 DD14
		EEO1
		4C086 AAD1 AAO2 AAO3 BC28 BC42
		BC50 BC73 GA02 GA04 GA07
		GA08 GA09 MA01 WA04 NA14
		ZA45 ZA54 ZA81 ZC03