JUN 0 6 2002 W

In re Application of)	
ARNOLD E. GOLDMAN, K. JUERGEN FLAMM,)	
JOHN G. MARK & IKE SONG)	
Serial No. 09/917,578)	Art Unit 2873
Filed: 28 July 2001)	
For: SLEEVE FOR PIG-TAILING OPTICAL FIBER)	Examiner Omar Z. Hindi
	***	************

CLEAN COPY VERSION OF CLAIMS

(Per Response to Office Action dated 28 February 2002)

RECEIVEU JUN 14 2002 TC 2800 MAIL ROOM

COPY OF PAPERS ORIGINALLY FILED

1. A vehicle for enabling attachment of an optic fiber to a multi-integrated optic chip in optical communication therewith, and for maintaining alignment of the fiber at 2 its end adjacent the chip, domprising: 3 4 a sleeve having a symmetrically-shaped cavity bounded by termini which respectively interface with the chip and the fiber; and 5 an adhesive disposed within the cavity and symmetrically bonding the 6 7 fiber to the chip. 2. A vehicle for enabling attachment of an optic fiber to a multi-integrated optic 1 2 chip in optical communication therewith, and for maintaining alignment of the fiber at 3 its end adjacent the chip, comprising: 4 a sleeve which has a symmetrically-shaped cavity bounded by termini that respectively interface with the chip and the fiber, and in which 5 6 said cavity has an axis and is internally bounded by a wall which is 7 substantially centered on the axis and which extends from said chip-interfacing terminus to said fiber-interfacing terminus, 8 9 said termini are centered on the axis, and a line, lying within any plane intersecting the axis at right angles 10 thereto and terminating in said cavity wall, is bisected into two equal segments; and 11 12 an adhesive disposed within the cavity and symmetrically bonding the 13 fiber to the chip.

	,
1	3. A vehicle for enabling attachment of an optic fiber to a multi-integrated optic
2	chip in optical communication therewith, and for maintaining alignment of the fiber at
3	its end adjacent the chip, comprising:
4	a sleeve which has a symmetrically-shaped cavity bounded by termini that
5	respectively interface with the chip and the fiber, and which is configured to fit onto the
6	chip and is disposed to accept the fiber; and
7	an adhesive disposed within the cavity and symmetrically bonding the
8	fiber to the chip.
1	4. A vehicle according to claim 3 wherein:
2	said cavity has an axis and is internally bounded by a wall which is
3	substantially centered on the axis and which extends from said chip-fitting terminus to
4	said fiber-accepting terminus;
5	said termini are centered on the axis; and
6	a line lying within any plane intersecting the axis at right angles thereto
7	and terminating in said cavity wall is bisected into two equal segments.
1	5. A vehicle according to claim 4 wherein said cavity wall slopes from said
2	chip-fitting terminus to said fiber-accepting terminus.
1	6. A vehicle according to claim 4 in which said sleeve so controls said
2	adhesive as to provide and preserve a symmetrical bonding of the fiber with respect to
3	the chip over gravitational and wicking effects.

A vehicle according to claim 6 in which said cavity wall is shaped as a 1 7. 2 truncated right circular cone.

1 8. A vehicle according to claim 6 in which said cavity wall is shaped as a 2 truncated pyramid.

- A vehicle according to claim 4 in which said sleeve is temporarily attached 1 9. to said adhesive and the chip.
- 1 10. A vehicle according to claim 4 in which said sleeve is permanently 2 attached to said adhesive and the chip.
- 11. A method for attaching an optic fiber to an optic chip and for maintaining 1 alignment of the fiber at its end adjacent the chip, comprising the steps of: 2 positioning a sleeve having a symmetrically shaped cavity on the chip; 3 placing an adhesive into the sleeve cavity; 4 inserting the fiber into the cavity; 5 securing the fiber to the chip; and
- 7 curing the adhesive.

6

1	12. A method according to claim 11 further comprising the step of aligning the
2	fiber within the cavity and positioning the fiber end adjacent the chip.

6

1 13. A method according to claim 11 further comprising the step of removing

2 the sleeve from the chip after the adhesive has cured.

1 14. A method according to claim 11 further comprising the step of leaving the

2 sleeve securely on the chip after the adhesive has cured.

1 15. A method according to claim 11 further comprising the step of providing

2 the sleeve cavity with a truncated pyramid configuration.

1 16. A method according to claim 11 further comprising the step of providing

2 the sleeve cavity with a truncated right circular cone configuration.

1 17. A method for attaching an optic fiber to an optic chip and for maintaining

2 alignment of the fiber at its end adjacent the chip, comprising the steps of:

3 utilizing a sleeve having a symmetrically shaped cavity;

4 placing an adhesive into the sleeve cavity;

5 positioning the sleeve onto the chip;

6	inserting the fiber into the cavity;
7	aligning the fiber within the cavity and positioning the fiber end adjacent
· 8	the chip;
9	securing the fiber to the chip; and
10	curing the adhesive.
1	18. A method according to claim 17 further comprising the step of removing
$\bigcup_{n} \bigcup_{i=1}^{n} 2^{n}$	the sleeve from the chip after the adhesive has cured.
Const	
1	19. A method according to claim 17 further comprising the step of leaving the
2	sleeve securely on the chip after the adhesive has cured.
1	20. A method according to claim 17 further comprising the step of providing
2	the sleeve cavity with a truncated pyramid configuration.
1	21. A method according to claim 1/7 further comprising the step of providing
2	the sleeve cavity with a truncated right circular cone configuration.