Slides of Discrete Mathematics based on Susanna Epp's Textbook

Moses A. Boudourides¹

Visiting Associate Professor of Computer Science Haverford College

1 Moses.Boudourides@cs.haverford.edu

Chapter 8

Relations

November 8, 10, 12, 15 & 17, 2021

8.1 Relations on Sets

Definition

- ▶ If A and B are two sets, a **relation** R from A to B is defined as a subset of the Cartesian product $A \times B$. Moreover, given an ordered pair $(x,y) \in A \times B$, we say that x **is related to** y **by** R, written x R y, if and only if $(x,y) \in R$.
- ▶ Given a relation R from A to B, the **inverse** relation R^{-1} is defined as the following relation from B to A:

$$R^{-1} = \{ (y, x) \in B \times A \, | \, (x, y) \in R \}.$$

► In other words,

$$x R^{-1} y \iff y R x.$$

8.1 Relations on Sets: Exercises

Exercise 8.1.11

Let $A = \{3, 4, 5\}$ and $B = \{4, 5, 6\}$ and let S be the "divides" relation. This is, for all $(x, y) \in A \times B, x S y \iff x \mid y$. Find explicitly which ordered pairs belong to S and S^{-1} .

Exercise 8.1.17

Let $A = \{2, 3, 4, 5, 6, 7, 8\}$ and define a relation T on A as: for all $x, y \in A, x T y \iff 3 \mid (x - y)$. Find the direct graph of T.

Exercise 8.1.20

Let $A = \{-1, 1, 2, 4\}$ and $B = \{1, 2\}$ and define relations R and S as: for all $(x, y) \in A \times B, xRy \iff |x| = |y|$ and $xSy \iff x-y$ is even. Find explicitly which ordered pairs belong to $A \times B, R, S, R \cup S$ and $R \cap S$.

8.2 Reflexivity, Symmetry and Transitivity

Definition

Let R be a relation on a set A.

- 1. R is **reflexive** if and only if, for all $x \in A$, x R x.
- 2. R is **symmetric** if and only if, for all $x, y \in A$, if x R y, then y R x.
- 3. R is **transitive** if and only if, for all $x, y, z \in A$, if x R y and y R z, then x R z.

8.2 Reflexivity, Symmetry and Transitivity: Exercises (a)

Exercise 8.2.17

A relation P is defined on \mathbb{Z} as follows: For all $m, n \in \mathbb{Z}$, $m P n \iff \exists$ a prime number p such that $p \mid m$ and $p \mid n$. Is P reflexive, symmetric, transitive?

P is not reflexive: Otherwise, there would exist a prime divisor of any integer. Counterexample: there is no prime dividing 1.

P is symmetric: Trivial. Why?

P is not transitive: Counterexample: find three integers m, n, k such that both pairs m, n and n, k have a common prime divisor, but the pair m, k does not.

8.2 Reflexivity, Symmetry and Transitivity: Exercises (b)

Exercise 8.2.19

Define a relation I on \mathbb{R} as follows: For all real numbers x and $y, xI, y \iff x-y$ is irrational. Is I reflexive, symmetric, transitive?

I is not reflexive: For all $x \in \mathbb{R}, x - x = 0$, which is not irrational.

I is symmetric: Trivial. Why?

I is not transitive: Counterexample: find three $x,y,z\in\mathbb{R}$ such that $x-y\not\in\mathbb{Q},y-z\not\in\mathbb{Q},$ but $x-z\in\mathbb{Q}.$

8.2 Reflexivity, Symmetry and Transitivity: Exercises (c)

Exercise 8.2.22

Let $X = \{a, b, c\}$ and $\mathscr{P}(X)$ be the power set of X. A relation N is defined on $\mathscr{P}(X)$ as follows: For all $A, B \in \mathscr{P}(X)$, $A N B \iff$ the number of elements in A is not equal to the number of elements in B. Is N reflexive, symmetric, transitive?

N is not reflexive: Denoting by |S| the number of elements of set S, for all $A \in \mathcal{P}(X)$, it is false to say that $|A| \neq |A|$.

N is symmetric: Trivial. Why?

N is not transitive: Counterexample: find three sets such that A,B,C such that $|A| \neq |B|, |B| \neq |C|$, but |A| = |C|.

8.3 Equivalence Relations I

Definition

- ightharpoonup A partition of a set A is a collection of nonempty, mutually disjoint subsets of A, whose union is A.
- ▶ Given a partition of A, the **relation induced by the partition**, R, is defined on A as follows: For all $x, y \in A, x R y \iff$ there is a subset A_i of the partition suth that both x and y are in A_i .
- ► A relation on a set that satisfies the three properties of reflexivity, symmetry and transitivity is called an equivalence relation.

Theorem

Any relation on a set induced by a partition is an equivalence relation.

8.3 Equivalence Relations II, (a)

Definition

Let R be an equivalence relation on a set A. Then, for each $a \in A$, the **equivalence class of** a, denoted [a] and called the **class of** a for short, is defined as the set of $x \in A$ such that x R a.

Theorem

Let R be an equivalence relation on a set A. Then the following are true:

- For any $a, b \in A$, if a R b, then [a] = [b].
- For any $a, b \in A$, either $[a] \cap [b] = \emptyset$ or [a] = [b].
- lacktriangleright The distinct equivalence classes of R form a partition of A.
- ▶ A representative of a class S of R is any $a \in A$ such that [a] = S.

8.3 Equivalence Relations II, (b)

Definition

Let m and n be integers and let d be a positive integer. We say that m is congruent to n modulo d and write $m \equiv n \pmod{d}$ if and only if $d \mid (m - n)$.

Exercise 8.3.2 (b) and (c)

In $A = \{0, 1, 2, 3, 4\}$, find the relation R for the partitions (b) $\{0\}, \{1, 3, 4\}, \{2\}$ and (c) $\{0\}, \{1, 2, 3, 4\}$.

Exercise 8.3.4

Let $A = \{a, b, c, d\}$ be a set and $R = \{(a, a), (b, b), (b, d), (c, c), (d, b), (d, d)\}$ be an equivalence relation on A. Find the distinct equivalence classes of R.

Use the definition $[a] = \{x \in A \mid x R a\}$ for all $a \in A$.

8.3 Equivalence Relations: Exercises (a)

Exercise 8.3.10

Let $A = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$ and the equivalence relation R is defined on A as follows: For all $m, n \in \mathbb{Z}, \ mRn \iff 3 \mid (m^2 - n^2)$. Find the distinct equivalence classes of R.

Use the definition $[a] = \{x \in A \mid x R a\}$ for all $a \in A$.

8.3 Equivalence Relations: Exercises (b)

Exercise 8.3.15 (b)

Prove that, for all integers m and n and any positive integer d, $m \equiv n \pmod{d}$ if and only if $m \mod d = n \mod d$.

First, suppose that $m \equiv n \pmod{d}$. By definition of congruence, $d \mid (m-n)$ and, thus, m-n=dk, for some integer k. Furthermore, assume that $m \pmod{d} = r$ or m=dl+r, for some integer l. Therefore, after a simple substitution n=d(lik)+r (why exactly?), i.e., $n \mod d = r = m \mod d$.

Next, suppose that $m \mod d = n \mod d$ and set $r = m \mod d = n \mod d$. Then, by definition of mod, m = dp + r and n = dq + r, for some integers p and q. Then compute m - n and why would this imply that $d \mid (m - n)$, which is the definition of congruence?

8.3 Equivalence Relations: Exercises (c)

Exercise 8.3.22

Let the relation D be defined on \mathbb{Z} as follows: For all $m, n \in \mathbb{Z}$, $m D n \iff 3 \mid (m^2 - n^2)$. Prove that D is an equivalence relation and find its distinct equivalence classes.

Reflexivity: Trivial. Why?

Symmetry: Notice that $3 \mid (m^2 - n^2)$ means that $m^2 - n^2 = 3k$, for some integer k. Then, what about $n^2 - m^2$?

Transitvity: Let mDn and nDp. Then use the definition of divisibility and some simple manipulation in order to find that $3 \mid (m^2 - p^2)$. Fill in the details!

To find the equivalence classes of D, first, notice that $m^2 - n^2 = (m - n)(m + n)$, which would imply that $m D n \iff$ which two divisibility conditions should occur? Subsequently, using the definition of divisibility, express m in terms of n in two ways, which are going to generate two equivalence classes. Which ones?