

Homework 3

Directions: Answer the following questions. You are encouraged to work together, join the discussion sessions, use discord, and ask me questions!

- 1. If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) , and $a_1, \ldots, a_n \in [0, \infty)$, then $\sum_{j=1}^n a_j \mu_j$ is a measure on (X, \mathcal{M}) .
- 2. Suppose (X, \mathcal{M}, μ) is a measure space and that $E, F \in \mathcal{M}$. Show that $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.
- 3. Let X be an uncountable set and let \mathcal{A} be the collection of subsets A of X such that either A or A^c is countable. Define $\mu(A) = 0$ if A is countable and $\mu(A) = 1$ is A is uncountable. Prove that μ is a measure.
- 4. Let X be a set with σ -algebra \mathcal{M} . We say μ is a **finitely additive measure** if $\mu: \mathcal{M} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and given any finite collection of disjoint sets $E_1, \ldots, E_n \in \mathcal{M}$, $\mu(\bigcup_{j=1}^n E_j) = \sum_{j=1}^n \mu(E_j)$. Note that every measure is finitely additive.
 - a) Suppose that μ is a finitely additive measure on (X, \mathcal{M}) and μ is continuous from below. Prove that μ is a measure.
 - b) Suppose that μ is a finitely additive measure on (X, \mathcal{M}) , $\mu(X) < \infty$ and μ is continuous from above. Prove that μ is a measure.