

Target 3D: Strengthen the capacity of all countries, in particular developing countries, for early warning, risk reduction and management of national and global health risks

Measles outbreaks are preventable but they keep happening

Cases of measles reported per year in the US

- More travel & trade
- Urbanization
- Pervasive poverty
- A warming climate

Number of doctors per 100,000 population

LIBERIA: 1.4

SIERRA LEONE: 2.2

22_

GUINEA: 10

Vox

SOURCE: WHO

UNITED STATES: 245.2

BACKGROUND

What do people tweet when they are sick? A preliminary comparison of symptom reports and twitter timelines.

Ashlynn R.Daughton, Michael J Paul, Romi Chunara

Towards real time measurement of public epidemic awareness: Monitoring influenza awareness through twitter

Michael C Smith, David Broniatowski

- The increased use of social networking platforms entails more widely shared personal and immediate information.
- Twitter provides easy access to data. Since each tweet is 280 characters only, text processing is simplified.

METHOD

- Twitter data for the year 2018 for USA obtained by tweepy.
- Patient intake data for hospitals across Texas. Includes columns for probable diagnosis.
- Health data corpus consists of text from medical articles. We use this to perform 'Topic modeling' to filter out health related tweets.
- Disease to symptom data is used to link symptoms to disease

METHOD

tweet 1, tweet 2

- Topic modelling is a type of statistical modelling for discovering the abstract topics that are occurs in text
- LDA is a technique for topic modelling that builds a topic per document model and words per topic model, modeled as dirichlet distributions

METHOD

National Institute of health

WedMD

Mayo Clinic

American Diabetis Association

Health Corpus

RESULT

Construct symptom count matrix from health filtered tweets by aggregating tweets into week buckets. Then, count the occurrence of symptoms, associated, with current disease.

influenza_count_matrix							
state	week	dehydration	cough	chest pain	runny nose	cold sweat	
TX	1	14	23	37	37	16	
TX	2	16	15	50	37	3	
TX	3	0	16	10	25	11	
TX	4	21	30	58	11	7	
TX	5	5	19	22	3	8	
TX	6	17	16	49	21	13	

- Use Linear Regression, with count matrix as input to predict weekly hospital intake data.
- For example, for influenza, we can see that "Runny Nose" has the highest correlation and hence, best signifies, the probable sick cases.

	Coefficient	P-value	
Running Nose	291.65	1.17e ⁻⁶	
Cough	116.82	0.018	
Cold sweat	93.67	0.045	
Dehydration	-21.07	0.65	
Chest Pain	-37.2	0.75	

RESULT

