- 4.1 પ્રસ્તાવના
- 4.2 ઘન પદાર્થી
- 4.3 સ્થિતિસ્થાપકતા
- 4.4 પ્રતિબળ અને વિકૃતિ વચ્ચેનો સંબંધ
- 4.5 હુકનો નિયમ અને સ્થિતિસ્થાપકતા અંક
- 4.6 પોઇસનનો ગુણોત્તર
- 4.7 સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા
- 4.8 દ્રવ્યની સ્થિતિસ્થાપક વર્તણૂકના ઉપયોગ
 - સારાંશ
 - સ્વાધ્યાય

4.1 પ્રસ્તાવના (Introduction)

આ પ્રકરણમાં આપણે, ઘન પદાર્થનું બંધારણ અને તેના યાંત્રિક ગુણધર્મોનો અભ્યાસ કરીશું. આ ગુણધર્મો પૈકી એક સ્થિતિ સ્થાપકતાનો વિસ્તૃત અભ્યાસ આપણે આ પ્રકરણમાં કરીશું. વીસમી સદીના છેલ્લા બે દાયકામાં સોલિડ સ્ટેટ ભૌતિકવિજ્ઞાન અને લિક્વિડ સ્ટેટ ભૌતિકવિજ્ઞાનમાં ઘણી પ્રગતિ સધાઈ છે. હવે ઘણા પદાર્થો માટે સ્થિતિસ્થાપકતાને લગતી ભૌતિક રાશીઓના મૂલ્ય કમ્પ્યૂટરની મદદથી ગણી કાઢવાનું શક્ય બન્યું છે. પ્રસ્તુત પ્રકરણમાં આપણે સ્થિતિસ્થાપકતાને લગતી પ્રાથમિક માહિતીની ચર્ચા કરીશું અને છેલ્લે ઘન પદાર્થની સ્થિતિસ્થાપકતાના વ્યાવહારિક ઉપયોગોની ચર્ચા કરીશું.

4.2 ઘન પદાર્થો (Solids)

ઘન પદાર્થીનો એક અગત્યનો ગુણધર્મ એ છે કે, નિશ્ચિત ભૌતિક પરિસ્થિતિઓમાં ઘટકકણો વચ્ચેનું અંતર અચળ હોય છે. પદાર્થના તાપમાનને અનુરૂપ હોય તેવા કંપવિસ્તારથી આ ઘટક કણો પોતાના મધ્યમાન સ્થાનની આસપાસ દોલનો કરતાં હોય છે. પરંતુ કોઈ પણ બે કણ વચ્ચેનું સરેરાશ અંતર હંમેશાં અચળ રહે છે. સંતુલન સ્થાનમાં રહેલા કણો વચ્ચેના અંતરોમાં વધારો કરવામાં આવે, તો આ કણો વચ્ચે પ્રર્વતતાં આંતરઅશુ બળો એ રીતે બદલાય છે જેથી કણો વચ્ચેના સરેરાશ અંતરો જળવાઈ રહે. આમ, જ્યારે કણોને તેમના મધ્યમાન સ્થાનથી વિચલિત કરવામાં આવે તો તેમને તેમના મૂળ સ્થાન તરફ ખેંચી જતું બળ અસ્તિત્વમાં આવે છે. આવા બળને પુનઃસ્થાપક બળ કહે છે.

ઘન પદાર્થીમાં બંધારણીય કણોની ગોઠવણને આધારે તેમના ત્રણ પ્રકાર પાડવામાં આવે છે. આવુ વર્ગીકરણ અન્ય કોઈ ગુણધર્મને આધારે પણ કરી શકાય. આ પ્રકારો છે : (i) સ્ફટિકમય પદાર્થો (ii) અસ્ફટિકમય પદાર્થો અને (iii) અર્ધસ્ફટિકમય પદાર્થો.

(i) સ્ફટિકમય ઘન પદાર્થો (Crystalline Solids): આ પ્રકારના ઘન પદાર્થોમાં ઘટકકણોની નિયમિત ભૌમિતિક હારબદ્ધ ગોઠવણી હોય છે. આ બાબત સમજવા માટે આકૃતિ 4.1 માં બિન્દુઓની દ્વિપરિમાણમાં અનંત ગોઠવણીનો અંશમાત્ર છે. અહીં કોઈ પણ બિન્દુ 1, 2, કે 3 પર રહીને અવલોકન કરતાં તમને સમાન ભાત જોવા મળશે. ત્રિપરિમાણમાં બિન્દુઓની આવી ગોઠવણીને 'લૅટિસ' કહે છે. લૅટિસ ગાણિતિક ખ્યાલ છે. જો બધી રીતે સમાન અશુઓ, પરમાશુઓ કે આયનો અથવા તેમના સમૂહો (કે જેમને બેસિસ કહેવાય છે.) લૅટિસ બિન્દુઓ પર મૂકતાં સ્ફટિકનું

થાય છે. ઘટકકણો વચ્ચે પ્રર્વતમાન આંતરક્રિયાઓને અનુલક્ષીને જુદા જુદા પ્રકારના સ્ફટિકનું નિર્માણ થાય છે. પરંતુ ઘન પદાર્થ આપેલ પરિસ્થિતિમાં, એવું જ બંધારણ અપનાવે છે, જેથી તેની આંતરિક ઊર્જા લઘુતમ થાય.

આકૃતિ 4.1

સ્ફટિકને એક કરતાં વધુ એકસમાન એકમોનો બનેલો વિચારી શકાય. આવો જ એક કૉપરના ઘટકકણો (આયનો)નો બનેલો 'એકમ' આકૃતિ 4.2માં દર્શાવેલ છે. અહીં આ ગોઠવણીમાં સમઘનના દરેક શિરોબિન્દુ પર અને સમઘનની બાજુઓનાં કેન્દ્રો પર એક-એક આયન ગોઠવાયેલા હોય છે. હવે જો આવા એકમોને ત્રિપરિમાણમાં એકબીજાની પાસેપાસે ગોઠવતા જઈએ તો કૉપરનો સ્ફટિક તૈયાર થાય છે.

કૉપરના સ્ફટિકનો એકમકોષ આકૃતિ 4.2

સ્કટિકના બંધારણનો અભ્યાસ કરતી ભૌતિકવિજ્ઞાનની શાખોને ક્રિસ્ટલોગ્રાફી કહે છે. સ્ફટિક બંધારણનો અભ્યાસ X-કિરણો, ઇલેક્ટ્રૉન-કિરણો (electron beam) અને ન્યુટ્રૉન કિરણો (neutron beam) વડે કરી શકાય છે.

સ્ફટિકમય પદાર્થોમાં લાંબા ગાળાની વ્યવસ્થા (long range order) જોવા મળે છે. પરિણામે સ્ફટિકમય પદાર્થો નિશ્ચિત તાપમાને પીગળે છે.

સ્ફટિકમય પદાર્થીને તેમના બંધારણીય કણોના પ્રકાર અને તેમની વચ્ચેના પ્રવર્તમાન બંધન (bonding)ના આધારે ચાર વર્ગોમાં વહેંચવામાં આવે છે.

આણ્વિક ઘન (Molecular Solids) : આવા ઘન પદાર્થીમાં બંધારણીય કશો તરીકે અશુઓ હોય છે. આવા પદાર્થના અશુઓ ઇલેક્ટ્રૉનની ભાગીદારીને કારણે બનતા સહસંયોજક-બંધને કારણે નિર્માણ પામે છે. અણુઓ ધ્રુવીય કે અધ્ર્વીય હોઈ શકે. (જો અણુઓમાં ધન વીજભાર અને ૠ્રશ વીજભારનાં કેન્દ્ર એકબીજાં સાથે સંપાત થતાં હોય તો અશુ-અધ્રુવીય (non-polar) કહેવાય, નહીં તો ધ્રુવીય (polar) કહેવાય, આયોડિન (I₂), ફૉસ્ફરસ (P₄) અને સલ્ફર (S_g) અને કાર્બન ડાયૉક્સાઇડ (CO₂)ના અશુઓ અધ્રુવીય છે. જ્યારે પાણી (H2O) ના ધ્રુવીય અશુ છે. જો ધન પદાર્થ ધ્રુવીય અણુઓનો બનેલો હોય, તો આવા ધન પદાર્થના નિર્માણ માટે ડાયપોલ-ડાયપોલ આકર્ષણબળ જવાબદાર હોય છે. જ્યારે અન્ય પ્રકારના આણ્વિક ઘન પદાર્થના નિર્માણ માટે વાન-ડર-વાલ બળો જવાબદાર હોય છે. આ આંતર-અણુબળો નબળા હોવાથી આવા ઘન પદાર્થોના ગલનબિન્દુ અને ઉત્કલનબિન્દુ અન્ય ઘન પદાર્થોની સરખામણીમાં નીચા (ઓછા મૂલ્યના) હોય છે. આ પદાર્થો ઉષ્મા અને વિદ્યુતના અવાહક હોય છે.

આયનિક ઘન પદાર્થો (Ionic Solids) : આ પ્રકારના ઘન પદાર્થોમાં બંધારણીય ક્ણો આયન હોય છે. આ આયનો વચ્ચે ઉદ્ભવતા સ્થિતવિદ્યુતીય આકર્ષણ અને જેના મૂળ ક્વૉન્ટમ મિકેનિક્સમાં છે, તેવા અપાકર્ષણના સંયુક્ત પરિજ્ઞામે બંધ રચાતા હોય છે. આ આકર્ષી બળો ઘણાં જ પ્રબળ હોવાથી આવા પદાર્થો સખત (hard) હોય છે. અને તેમનાં ગલનબિન્દુ ઊંચાં હોય છે. આવા ઘન પદાર્થો વિદ્યુતના અવાહક હોય છે. દા.ત., NaCl.

સહસંયોજક ઘન પદાર્થો (Covalent Solids) : આવા પદાર્થીના બંધારણીય કશો તરીકે પરમાણ હોય છે. દરેક પરમાણુ તેના નિકટતમ પડોશી પરમાણુઓ સાથે સહસંયોજક-બંધથી જોડયેલો હોય છે. જો કોઈ પરમાણુને સમયતુષ્કલક (tetrahedron)ના કેન્દ્ર પર રહેલો વિચારીએ તો તેના ચાર નિકટતમ પડોશી પરમાણુઓ સમચતુષ્ફલકના શિરોબિન્દુ પર હોય છે. આવી રચનાનું ત્રિપરિમાણમાં પુનરાવર્તન કરતાં સહસંયોજક ઘન પદાર્થો તૈયાર થાય છે. ડાયમંડ. સિલિકોન. જર્મેનિયમ વગેરે આ પ્રકારના પદાર્થો છે. આવા પદાર્થો પણ ઘણા સખત હોય છે અને તેમનાં ગલનબિન્દુઓ પણ ઊંચાં હોય છે. આવા પદાર્થી અર્ધવાહકો તરીકે વર્તે છે. આવા ઘન પદાર્થો 'નેટવર્ક સોલિડ' તરીકે પણ ઓળખાય છે.

ધાત્ત્વિક ઘન પદાર્થો (Metallic Solids) : જો લૅટિસ બિન્દુઓ પર ઘન આયનો ગોઠવવામાં આવે, તો ધાત્વિક ઘન પદાર્થનું નિર્માણ થાય. ધાત્વિક ઘન પદાર્થીના નિર્માણ સમયે ધાતુના અશુઓ તેમના વેલેન્સ ઇલેક્ટ્રૉન ગુમાવીને ધન આયન બને છે. આ રીતે મળેલાં મુક્ત ઇલેક્ટ્રૉન આયનો વચ્ચેના અવકાશમાં અસ્તવ્યસ્ત ગતિ કરે છે. તેથી આવા ઘન પદાર્થો ઉખ્મા અને વિદ્યુતના સુવાહકો હોય છે.

(ii) અસ્ફટિકમય પદાર્થો (Non-crystalline substances) : અમુક ઘન પદાર્થોના બંધારણીય ક્શોની ગોઠવણી વ્યવસ્થિત હોતી નથી. આવા ઘન પદાર્થોને અસ્ફટિકમય ઘન પદાર્થો કહે છે. ઉદાહરણ તરીકે લાકડું.

અમુક ઘન પદાર્થો એવા પણ હોય છે જે કે સ્ફટિકમય રૂપ ધારણ કરી શકે તેમ છે. પરંતુ આવા પદાર્થને પીગળેલ અવસ્થામાં તેના ઘનીકરણ તાપમાન કરતો ઊંચા તાપમાને રાખી જો એકાએક તેનું તાપમાન ખૂબ નીચું લાવી દેવામાં આવે, તો તેના ઘટકક્ષોને યોગ્ય રીતે ગોઠવાઈને સ્ફટિકરચના કરવાની તક મળે તે પહેલાં જ તેઓ ફક્ત ટૂંકા ગાળાની વ્યવસ્થા (short range order) સાથે ગોઠવાઈને જે ઘન પદાર્થ રચે છે, તેને ગ્લાસી અથવા એમોરફસ પદાર્થ કહે છે. અહીં short range order નો અર્થ એ છે કે કોઈ ક્યા તેની નજીકના અમુક (ચાર-પાંચ) ક્યો સાથે બંધ બનાવી તેમની વચ્ચે ચોક્ક્સ ભૌમિતિક ગોઠવણને ગ્લાસી પદાર્થની રચના કહે છે.

એ નોંધો કે ગ્લાસી પદાર્થોને જો પૂરતી તક આપવામાં આવી હોત, તો તેઓ સ્ફટિકમય પદાર્થ તરીકે પોતાની હાજરી જરૂર નોંધાવી શક્યા હોત. જયારે અમુક પદાર્થો તો એવા છે કે જેમને ગમે તેટલી તક પૂરી પાડવામાં આવી હોત તોપણ તેઓ અસ્ફટિકમય જ રહ્યા હોત.

અહીં પ્રશ્ન એ ઉપસ્થિત થાય કે જે રીતે ગ્લાસી પદાર્થોમાં long range order હોતો નથી, તે જ રીતે પ્રવાહીમાં પણ long range order હોતો નથી, તો પછી તે પદાર્થો પ્રવાહીની જેમ વહન પામતા કેમ નથી ? ઉત્તર એ છે કે પ્રવાહી કરતાં ગ્લાસી પદાર્થોમાં આંતર-અણુબળો વધુ પ્રબળ હોય છે. આથી જ તો પ્રવાહીની માફક ગ્લાસી પદાર્થ સામાન્ય સંજોગોમાં વહી શકતો નથી. હવે તમને પાકી ખાતરી થશે કે દ્રવ્યની અવસ્થા નક્કી કરવામાં આંતરઅણુ (કે પરમાણ) બળો જ અગત્યનો ભાગ ભજવે છે.

ગ્લાસી પદાર્થમાં જુદા-જુદા બંધોની મજબૂતી જુદી જુદી હોવાના કારણે તેનું તાપમાન વધારતાં નબળા બંધો પહેલાં તૂટે છે અને મજબૂત બંધો પછી તૂટે છે. આથી તાપમાન વધારતાં પ્રથમ તે ઢીલો પડે છે, પછી તેનો જાડો રગડો થાય છે અને છેવટે સંપૂર્ણ પીગળી જાય છે.

(iii) અર્ધસ્કૃટિકમય પદાર્થો (Semi-crystalline substances) : રોજબરોજના વપરાશમાં આવતા પોલિઇથિલિનના અશુને રાસાયણિક સૂત્ર $(-CH_2-)_n$, વડે દર્શાવાય છે. અહીં CH_2 જેવો ઘટકો n વખત પુનરાવર્તન પામી લાંબી ચેઇન જેવા અશુની રચના કરે છે. આવા અશુને મેક્રોઅશુ કહે છે. પ્રોટીનના અશુઓ પણ આ વર્ગમાં આવે છે. જયારે આવા અશુથી બનેલા પદાર્થને

તેના પ્રવાહી સ્વરૂપ કે પીગળેલ સ્વરૂપમાંથી ઠંડા પાડવામાં આવે છે, ત્યારે તેમના અશુઓ એવી રીતે ગોઠવાય છે કે ઘનીકરણ પામેલા પદાર્થના અમુક ભાગમાં અશુઓની ચેઇનની ગોઠવણી વ્યવસ્થિત હોય છે અને બીજા ભાગોમાં આવી વ્યવસ્થિત ગોઠવણી હોતી નથી. આવા પદાર્થોને અર્ધસ્કટિકમય પદાર્થો કહે છે. આ પદાર્થો જેને વ્યાપક રીતે પોલિમર કહે છે. તેની આધુનિક મટીરીયલ સાયન્સમાં ઘણી અગત્ય છે.

4.3 સ્થિતિસ્થાપકતા (Elasticity)

મિકેનિક્સમાં આપશે જોયું કે બળ પદાર્થની ગતિની અવસ્થા તેમજ તેનો આકાર બદલી શકે છે. પરંતુ આ બે પૈકી બળની બીજી અસરનો અભ્યાસ હજી સુધી આપણે કર્યો નથી. વાસ્તવમાં આદર્શ દઢ પદાર્થ એક કલ્પના માત્ર છે. વાસ્તવમાં દરેક ઘન પદાર્થમાં બાહ્ય વિરૂપક બળ દ્વારા વિરૂપણ ઉત્પન્ન કરી શકાય છે. પદાર્થમાં કેટલી માત્રામાં વિરૂપણ ઉત્પન્ન થશે. તેના આધાર પદાર્થની આ ફેરફારનો વિરોધ કરવાની ક્ષમતા પર રહેલો છે. દરેક પદાર્થ આવા ફેરફારનો વિરોધ એકસરખી માત્રામાં નથી કરી શકતા. બાહ્ય બળ દ્વારા વિરૂપણ પામેલા કેટલાંક વિરૂપક બળ દ્ર થતાં પોતાનો મૂળ આકાર પ્રાપ્ત કરે છે. કેટલી માત્રામાં વિરૂપક પામેલો પદાર્થ, વિરૂપક બળ દૂર થતાં, પોતાના આકાર પુનઃપ્રાપ્ત કરશે તેનો આધાર પદાર્થ પર રહેલો છે. જે ગુણધર્મને કારણે પદાર્થ તેના પર લાગતા વિરૂપક બળનો પ્રતિકાર કરે છે અથવા તેની મૂળ સ્થિતિ પ્રાપ્ત કરવાનો પ્રયત્ન કરે છે, તેને સ્થિતિસ્થાપકતા કહે છે.

વિરૂપક બળ દૂર કરતાં જો પદાર્થ પોતાની મૂળ સ્થિતિ સંપૂર્ણપણે પ્રાપ્ત કરી શકે તો તેવા પદાર્થને સંપૂર્ણ સ્થિતિ સ્થાપક પદાર્થ કહે છે. જો પદાર્થ, વિરૂપક બળ દૂર કર્યા બાદ, પોતાની મૂળ સ્થિતિ અંશતઃ પણ પ્રાપ્ત ન કરી શકે તો તેવા પદાર્થને સંપૂર્ણ અસ્થિતિસ્થાપક પદાર્થ કે પ્લાસ્ટિક કહે છે. જો પદાર્થ પોતાની મૂળ-સ્થિતિ અંશતઃ પુનઃપ્રાપ્ત કરી શકતો હોય, તો તે પદાર્થને અંશતઃ સ્થિતિસ્થાપક પદાર્થો કહે છે. મોટા ભાગના પદાર્થો અંશતઃ સ્થિતિસ્થાપક પદાર્થો હોય છે.

સ્થિતિસ્થાપકતાના અભ્યાસ માટે આપણે પ્રતિબળ (stress) અને વિકૃતિ (strain) નામની બે ભૌતિક રાશીઓ વ્યાખ્યાયિત કરવી પડશે. શરૂઆત વિકૃતિથી કરીએ.

4.3.1 વિકૃતિ (Strain) :

પદાર્થ પર બાહ્ય બળ લગાડતાં તેની લંબાઈ કદ કે આકાર બદલાય છે. આ દરેક ફેરફારને અનુરૂપ ત્રણ પ્રકારની વિકૃતિ(દ)ની વ્યાખ્યા આપવામાં આવે છે.

(i) પ્રતાન(સંગત)-વિકૃતિ (Logitudinal Strain) : પદાર્થ પર બાહ્ય બળ લગાડતાં તેની લંબાઈમાં થતાં ફેરફાર અને મૂળ લંબાઈના ગુણોત્તરને (લંબાઈમાં થતાં આંશિક ફેરફારને) પ્રતાન-વિકૃતિ કહે છે.

આમ, પ્રતાન-વિકૃતિ
$$\varepsilon_l = \frac{\Delta l}{l}$$
 (4.3.1)

જો બાહ્ય બળને કારણે સિળયાની લંબાઈમાં વધારો થતો હોય, તો પ્રતાન-વિકૃતિને તણાવ-વિકૃતિ (tensile strain) કહે છે. જો બાહ્ય બળને કારણે લંબાઈમાં ઘટાડો થતો હોય, તો અનુરૂપ વિકૃતિને દાબીય વિકૃતિ (compressive strain) કહે છે.

(ii) કદ વિકૃતિ (Volume Strain) : કોઈ પદાર્થની સપાટી પર બધે જ, સપાટીને લંબરૂપ બળ લગાડવામાં આવે તો તેના કદમાં ફેરફાર થાય છે. પદાર્થના કદમાં થતા આંશિક ફેરફારને કદ-વિકૃતિ કહે છે. જો પદાર્થનું મૂળ કદ V હોય અને તેના કદમાં થતો ફેરફાર △V હોય, તો કદ-વિકૃતિ

$$\varepsilon_{V} = \frac{\Delta V}{V} \tag{4.3.2}$$

(iii) આકાર-વિકૃતિ (Shearing Strain) : કોઈ પદાર્થ પર તેના કોઈ આડછેદ પર આડછેદને સ્પર્શીય બળ લગાડવામાં આવે, તો તેના આકારમાં ફેરફાર થાય છે. લંબાઈ અને કદની જેમ આકારને માપી શકાતો ન હોઈ આકાર-વિકૃતિ સમજવા માટે આકૃતિ 4.4a ધ્યાનમાં લો. અત્રે કોઈ સમઘન આકારનો પદાર્થ પર તેના સમતલો AHGB, BGFC, DEFC અને DAHE પર સ્પર્શક રૂપે સમાન મૂલ્યનાં બળો લગાડેલ છે. આ સ્થિતિમાં પદાર્થ પરનું કુલ બળ અને કુલ ટૉર્ક શૂન્ય હોવાથી પદાર્થ રેખીય તેમજ ચાકગતીય એમ બંને પ્રકારના સંતુલનમાં છે. પરંતુ આ પદાર્થ પર પરસ્પર વિરોધી દિશામાંના બળયુગમો લાગતાં હોવાથી તેમાં આકારનું વિરૂપણ ઉદ્ભવે છે. અહીં આકારના વિરૂપણને કારણે સમતલ ABCD કેવો આકાર ધારણ કરશે તે આકૃતિ 4.4(b)માં દર્શાવ્યું છે. સરળતા ખાતર આકૃતિમાં વિરૂપણ વિવર્ષિત કરીને દર્શાવ્યું છે.

વિરૂપણના કારણે AB અને BC વચ્ચેનો ખૂણો $\frac{\pi}{2}$ ન રહેતાં $\frac{\pi}{2}$ – θ થાય છે. આ વિરૂપણ માપવા માટે ત્રુટક રેખાથી દર્શાવેલ વિરૂપિત આકાર A'B'C'D' (તેના સમતલને લંબ હોય તેવી અક્ષની આસપાસ) ભ્રમણ આપી તેને એવી રીતે ગોઠવીએ કે જેથી તેની ધાર D'C' અવિરૂપિત અવસ્થામાંની ધાર DC સાથે સંપાત થાય. આ હકીકત આકૃતિ 4.4(c)માં દર્શાવેલ છે. અહીં $\tan\theta$ ને આકારની અથવા દઢતાની વિકૃતિ કહે છે. જો θ નું મૂલ્ય (રેડિયનમાં) નાનું હોય તો $\tan\theta \simeq \theta$ અને આ સ્થિતિમાં θ ને આકાર-વિકૃતિ કહે છે. θ ($\varepsilon_{\rm S}$).

આમ, આકાર-વિકૃતિ,
$$\varepsilon_{\mathrm{S}}=\frac{x}{h}=\tan\theta$$
 (4.3.3)

તથા θ ના નાના મૂલ્ય માટે $\epsilon_{\rm S}=\theta$ બધા પ્રકારની વિકૃતિ પરિમાણરહિત ભૌતિક રાશિઓ છે.

4.3.2 પ્રતિબળ (Stress) :

સ્થિતિસ્થાપક પદાર્થ પર લાગેલું વિરૂપક બળ દૂર કરતાં તે પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે. આ ત્યારે જ શક્ય બને જ્યારે, વિરૂપણનો વિરોધ કરનારું પુનઃસ્થાપક બળ તેમાં ઉત્પન્ન થાય. પદાર્થમાં આડછેદના એકમ ક્ષેત્રફળ દીઠ ઉદ્ભવતું પુનઃસ્થાપક બળ પ્રતિબળ કહેવાય છે. જો પદાર્થ પોતે સંતુલનમાં હોય, તો બાહ્ય બળનું મૂલ્ય પુનઃસ્થાપક બળના મૂલ્ય જેટલું થાય. જો પુનઃસ્થાપક બળ F અને આડછેદનું ક્ષેત્રફળ A હોય, તો પ્રતિબળ (σ) નીચેના સૂત્ર પરથી મળે.

પ્રતિબળ
$$\sigma = \frac{40}{8000} = \frac{F}{A}$$
 (4.3.4)

પ્રતિબળનો SI એકમ N m^{-2} અથવા પાસ્કલ (Pa) છે. તેનું પરિમાણિક સૂત્ર $\mathbf{M}^{\mathrm{I}}\mathbf{L}^{-1}\mathbf{T}^{-2}$ છે.

(i) પ્રતાન-પ્રતિબળ (Longitudinal Stress)

આકૃતિ 4.5(a)માં દર્શાવ્યા મુજબ એક સળિયો અને આડછેદ (તેનો ત્રુટક રેખાથી) દર્શાવેલ છે.

સળિયો બે સરખા અને પરસ્પર વિરુદ્ધ દિશામાં લાગતાં બાહ્ય બળોની અસર હેઠળ સંતુલનમાં છે. આ સંજોગોમાં આડછેદની ડાબી અને જમણી બાજુએ રહેલા સળિયાના ભાગ આ આડછેદને સમાન મૂલ્યના બળથી પરસ્પર વિરુદ્ધ દિશામાં ખેંચે છે.

જો આડછેદ સળિયાના છેડા પાસે ન હોય તો તેવા બધા આડછેદો પાસે આવાં ખેંચાશબળો સમગ્ર આડછેદ પર સમાન રીતે વહેંચાયેલાં હોય છે. આવાં વહેંચાયેલાં બળો આકૃતિ 4.5(b)માં દર્શાવ્યાં છે. અહીં સુગમતાખાતર આડછેદ પાસેના બંને વિભાગો જુદા-જુદા દર્શાવ્યા છે.

જ્યારે સળિયા પર બાહ્ય બળ લગાડવામાં આવે છે ત્યારે આંતર-અણુ અંતરોમાં ફેરફાર થાય છે. આથી અશુઓ વચ્ચે એવી રીતે બળો ઉદ્દ્ભવે છે કે જેના કારણે તેઓ ફરીથી પોતાની સમતોલન સ્થિતિમાં આવવાનો પ્રયત્ન કરે છે. આ બળોને પુનઃસ્થાપક બળો કહે છે. આકૃતિ 4.5(b)માં પુનઃસ્થાપક બળો નાના તીર વડે આડછેદ પર દર્શાવ્યાં છે. પુનઃસ્થાપક બળો દરેક જોડકાનાં અશુઓ વચ્ચે ઉદ્દભવતાં હોવાથી તે સમગ્ર આડછેદ પર સમાન રીતે વહેંચાયેલ હોય છે. બાહ્ય બળની અસર હેઠળ પદાર્થમાં પેદા થતા વિરૂપણને કારણે ઉદ્દભવતું પુનઃસ્થાપક બળ જુદા-જુદા આડછેદ માટે સમાન જ હોય છે, પરંતુ આવા આડછેદનાં ક્ષેત્રફળ જુદા હોવાથી આડછેદનો ઉલ્લેખ અનિવાર્ય છે.

આપણી ચર્ચામાં આપણે અત્યાર સુધી એવાં બાહ્ય બળ ધ્યાનમાં લીધાં છે, જેના કારણે સળિયાની લંબાઈમાં વધારો જ થાય છે. પરિણામે ઉદ્દભવતા પ્રતિબળને તણાવ-પ્રતિબળ કહે છે.

જો પદાર્થ પર બાહ્ય બળ લગાડતાં પદાર્થની લંબાઈમાં ઘટાડો થાય, તો પરિણામે ઉદ્ભવતા પ્રતિબળને દાબીય પ્રતિબળ કહે છે. (આકૃતિ 4.6)

(ii) કંદ-પ્રતિભળ (Volume Hydraulic Stress): ધારો કે પદાર્થ પર લાગતું બળ પદાર્થની સમગ્ર સપાટી પર લાગે છે. સ્થાનીક રીતે આ બળો સપાટીને લંબ છે અને ક્ષેત્રફળ-ખંડના સમપ્રમાણમાં છે. પદાર્થ પર આવાં બળો લાગતાં પદાર્થના કદમાં ફેરફાર થાય છે અને પરિણામે કદ-પ્રતિબળ ઉદ્ભવે છે. જયારે પદાર્થને કોઈ તરલમાં ડુબાડવામાં આવે, ત્યારે આવી પરિસ્થિતિનું નિમાર્શ થાય છે.

જો તરલમાં રહેલા પદાર્થ પર લાગતું દબાણ P હોય તો, ક્ષેત્રફળ A પર લંબ રૂપે લાગતું બળ PA હોય. સંતુલન-અવસ્થામાં એકમક્ષેત્રફળ દીઠ લાગતું બળ કદ-પ્રતિબળ છે. આમ,

કદ-પ્રતિબળ
$$\sigma_{\nu} = \frac{F}{A} = \frac{PA}{A} = P$$
 (4.3.5)

આમ, દાબીય પ્રતિબળ અને દબાણ સમાન છે. તેથી કહી શકાય કે અહીં દબાણ એક વિશિષ્ટ પ્રકારનું પ્રતિબળ છે. જેને કારણે પદાર્થનું માત્ર કદ બદલાય છે.

(iii) આકાર-પ્રતિબળ (Shearing Stress Tangential Stress) : આકૃતિ 4.4માં દર્શાવ્યા મુજબ જો બળ પદાર્થની સપાટીને સમાંતર લાગતું હોય, તો પદાર્થમાં આકાર વિકૃતિ ઉત્પન્ન થાય છે અને ઉત્પન્ન થતું અનુરૂપ પ્રતિબળ આકાર-પ્રતિબળ કહેવાય છે. આમ,

આકાર-પ્રતિબળ =
$$\frac{\text{સ્પર્શીય બળ }(\mathbf{F}_t)}{\text{ક્ષેત્રફળ }(\mathbf{A})}$$
 (4.3.6)

એવું પણ શક્ય છે કે પદાર્થ પર લાગતું બળ પદાર્થની સપાટીને લંબ કે સમાંતર ન હોય. આ કિસ્સામાં આકૃતિ 4.7માં દર્શાવ્યા મુજબ બળનો સપાટીને લંબદિશામાં અને સમાંતર ઘટકો વિચારી શકાય.

આકૃતિ 4.7

અહીં આકૃતિમાં સળિયા પર લાગતું બળ દર્શાવેલ છે. બળ ક્ષેત્રફળ સદિશ (ક્ષેત્રફળ જેટલું મૃલ્ય ધરાવતો ક્ષેત્રફળને લંબ બહારની તરફનો સદિશ) સાથે θ ખૂશો બનાવે છે. આકૃતિમાં દર્શાવ્યા મુજબ Fcosθ સપાટીને લંબ ઘટક છે અને F $sin\theta$ સપાટીને સ્પર્શીય ઘટક છે, તેથી $F\cos\theta$ ને કારણે પદાર્થમાં તણાવની અસર પેદા થશે, જ્યારે F $sin\theta$ ને કારણે પદાર્થના આકારમાં ફેરફાર થશે. આ કિસ્સામાં પદાર્થમાં તણાવ-પ્રતિબળ અને આકાર-પ્રતિબળ (અને આકાર-વિકૃતિ અને તણાવ-વિકૃતિ પણ) બન્ને પેદા થશે.

દબાણ અને પ્રતિબળ વચ્ચેનો તફાવત (Difference between pressure and stress) : દબાણ એટલે એકમક્ષેત્રફળ દીઠ લાગતું બળ. આમ, દબાણ અને પ્રતિબળ બન્નેનાં પરિમાણ સમાન હોવા છતાં તેઓ એક જ ભૌતિક રાશિ નથી.

જ્યારે પદાર્થની સમગ્ર સપાટીને લંબરૂપે બળ લગાડવામાં આવે છે, ત્યારે એકમ ક્ષેત્રફળ દીઠ લાગતા બળને દબાશ કહે છે. (જુઓ આકૃતિ 4.8)

આકૃતિ 4.8

આકૃતિ 4.9

પ્રતિબળ પણ એકમક્ષેત્રફળ દીઠ બળ હોવા છતાં પદાર્થના જુદાં-જુદાં પૃષ્ઠો પર તે જુદું-જુદું હોઈ શકે. વળી અહીં બળ એ પૃષ્ઠને લંબ હોવું પણ જરૂરી નથી. એવું પણ શક્ય છે કે એક સપાટી પર પ્રતિબળ હોય બીજી સપાટી પર ન પણ હોય. (આકૃતિ 4.9).

ઉદાહરણ 1 : આકૃતિ 4.9માં દર્શાવ્યા મુજબ 10 N બળ સળિયાના બે છેડા પર લગાડવામાં આવે છે, તો આડછેદ PR પર તણાવ-પ્રતિબળ અને સ્પર્શીય પ્રતિબળ શોધો. PQ આડછેદનું ક્ષેત્રફળ 10 cm² છે.

આકૃતિ 4.10

ઉકેલ :

આકૃતિ 4.11

અહીં આડછેદ PQ અને PR વચ્ચેનો ખુશો 30° છે. તેથી.

$$\frac{\text{PQ} \text{ આડછેદનું ક્ષેત્રફળ}}{\text{PR} \text{ આડછેદનું ક્ષેત્રફળ}} = cos30 = \frac{\sqrt{3}}{2}.$$

PR આડછેદનું ક્ષેત્રફળ

$$=$$
 $\frac{\text{આડછેદ PQનું ક્ષેત્રફળ}}{\frac{\sqrt{3}}{2}}$

78 ભૌતિકવિજ્ઞાન

$$= \frac{2 \times 10 \times 10^{-4}}{\sqrt{3}}$$

$$=\frac{2}{\sqrt{3}}\times 10^{-3}m^2$$

વળી, બળ F અને PR છેદના ક્ષેત્રફળ સદિશ વચ્ચેનો ખૂશો પણ 30° છે. (કેવી રીતે ? વિચારો.)

તેથી, છેદ PR માટે તણાવબળ

$$F_l = F \cos 30^\circ = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3} N$$

તથા સ્પર્શીય બળ

$$F_t = Fsin30^\circ = 10 \times \frac{1}{2} = 5N$$

∴ છેદ PR માટે

તણાવ-પ્રતિબળ (
$$\sigma^l$$
) = $\frac{\text{dight off}}{\text{PR BET fixed}}$ = $\frac{5\sqrt{3}}{\frac{2}{\sqrt{3}}\times 10^{-3}}$ = $7.5\times 10^3 \text{ N/m}^2$

$$= \frac{5\sqrt{3}}{2} \times 10^3 = 4.33 \text{N/}m^2$$

સ્પર્શીય બળ

4.4 પ્રતાન-પ્રતિબળ અને પ્રતાન-વિકૃતિ વચ્ચેનો સંબંધ (Relation Between Longitudinal Stress and Longitudinal Strain)

પ્રતાન-વિકૃતિ અને પ્રતાન-પ્રતિબળ વચ્ચેના સંબંધનો અભ્યાસ કરવા માટે તારને બાહ્ય બળની મદદથી ખેંચવામાં આવે છે. જુદા-જુદા પ્રતિબળ માટે વિકૃતિનું મૂલ્ય (અથવા તેનું પ્રતિશત મૂલ્ય) મેળવવામાં આવે છે. પ્રતિબળ અને વિકૃતિ વચ્ચેના સંબંધનો અભ્યાસ પ્રતિબળ-વિકૃતિ(%) આલેખ દોરીને કરી કાય છે. આવો એક આલેખ આકૃતિ 4.12માં દર્શાવેલ છે.

આલેખના શરૂઆતના ભાગમાં (0 થી a સુધી) વિકૃતિ 1% થી ઓછી છે. પ્રતિબળ અને વિકૃતિ એકબીજાના સમપ્રમાણમાં છે. અહીં બિંદુ aને સપ્રમાણતાની હદ કહે છે.

આલેખ પરના a થી b બિન્દુ સુધી પ્રતિબળ એ વિકૃતિના સમપ્રમાણમાં નથી. આમ છતાં 0થી b વચ્ચે ગમે તે બિન્દુ પાસે વિરૂપક બળ દૂર કરતાં પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે. આ અર્થમાં પદાર્થ છેક બિન્દુ b સુધી સ્થિતિસ્થાપક વર્તણૂક ધરાવે છે. બિન્દુ b ને સ્થિતિસ્થાપકતાની હદ (elastic limit) અથવા આધીન બિન્દુ (yield point) કહે છે.

બિન્દુ b અને c વચ્ચે વિકૃતિમાં ઝડપથી વધારો થાય છે. b અને c વચ્ચેના કોઈ પણ બિન્દુ પાસેથી વિરૂપક બળ હટાવી લેતાં પદાર્થ, આકૃતિમાં ઝુટક રેખાથી દર્શાવેલ માર્ગે એવી સ્થિતિ પ્રાપ્ત કરે છે કે જેથી તેમાં કંઈક કાયમી ઝુટી રહી જાય છે. આ સ્થિતિમાં પદાર્થ કાયમી સ્થાપન (permanent set) સ્થિતિમાં હોવાનું કહેવાય છે.

બિન્દુ c આગળથી વધારે વિરૂપક બળ લગાડતાં વિકૃતિમાં ઝડપથી વધારો થાય છે. આ સ્થિતિમાં પદાર્થમાં મહત્તમ આકાર વિકૃતિ ધરાવતા સમતલો એકબીજા પર સરકતાં હોય છે. આ ઘટનાને પ્લાસ્ટિક વિરૂપણ કહે છે.

d બિન્દુ પાસે પદાર્થ તૂટી જાય છે. બિન્દુ d ને ફ્રેક્ચર બિન્દુ કહે છે. આ બિન્દુને અનુરૂપ પ્રતિબળને બ્રેકિંગ પ્રતિબળ કહે છે. સ્થિતિસ્થાપક હદ b અને બિન્દુ d વચ્ચે જો ખૂબ જ મોટું પ્લાસ્ટિક વિરૂપણ થતું હોય, તો ધાતુને તન્ય (ductile) કહે છે. જો પદાર્થ સ્થિતિસ્થાપકતાની હદ પછી તરત જ ભાંગી જતો હોય, તો તેવા પદાર્થને બટકશો (brittle) કહે છે.

જોકે કેટલાક પદાર્થો (જેવા કે રબર), અત્યાર સુધી કરેલા વર્જ્યન કરતાં જુદી-જુદી વર્તજ્ઞૂક ધરાવે છે, આપજ્ઞે જાજ્ઞીએ છીએ કે રબરની લંબાઈમાં અનેક ગજ્ઞો વધારો કરવાં છતાં તે મૂળ અવસ્થા પ્રાપ્ત કરે છે. આકૃતિ 4.13 એક પ્રકારના વલ્કેનાઇઝ્ડ રબર માટે પ્રતિબળ-વિકૃતિનો આલેખ દર્શાવ્યો છે. અહીં દર્શાવેલ 700% વિકૃતિ આશ્ચર્યજનક છે. જે પદાર્થમાં ખૂબ મોટા પ્રમાજ્ઞમાં વિકૃતિ પેદા કરી શકાય છે તેવા પદાર્થને ઇલાસ્ટોમર (elastomers) કહે છે. આપજ્ઞા શરીરમાં મહાધમની (હૃદયમાંથી શરીરના જુદા-જુદા ભાગમાં રૂપિર લઈ જતી ધમની)ની પેશીઓ એ ઇલાસ્ટોમરનું ઉદાહરજ્ઞ છે.

વલ્કેનાઇઝ્ડ રબર માટે હિસ્ટરિસીસ આકૃતિ 4.13

આ આલેખની બે બાબતો નોંધપાત્ર છે :
(i) આલેખના કોઈ પણ ભાગમાં પ્રતિબળ વિકૃતિના સમપ્રમાણમાં નથી. (ii) વિરૂપક બળ દૂર કરતાં પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે પણ મૂળ માર્ગે નહીં. મૂળ સ્થિતિમાં પાછા ફરતી વખતે પદાર્થ વડે થતું કાર્ય, તેમાં વિરૂપણ ઉત્પન્ન કરતી વખતે વિરૂપક બળ વડે થયેલા કાર્યથી ઓછું હોય છે. આનો અર્થ એ થાય છે કે પદાર્થમાં અમુક ઊર્જા શોષાય છે. આ ઊર્જા ઉષ્મા-ઊર્જા સ્વરૂપે વિખેરણ પામે છે. આ ઘટનાને સ્થિતિસ્થાપક હિસ્ટેરિસીસ કહે છે. સ્થિતિસ્થાપક હિસ્ટેરિસીસનો ઉપયોગ શોક-એબ્સોબરમાં થાય છે. જો વલ્કેનાઇઝ્ડ રબરનું સ્તર (પેડ) કંપન પામતા તંત્ર અને આધાર વચ્ચે મૂકવામાં આવે, તો દરેક કંપન દરમિયાન રબરનું સ્તર સંકોચન પામે છે અને વિસ્તરે છે અને કંપન-ઊર્જાનો થોડો જ ભાગ આધાર સુધી પહોંચે છે, તેથી કંપનની અસર ઘટી જાય છે.

4.5 હુકનો નિયમ અને સ્થિતિસ્થાપકતા અંકો

(Hooke's Law and Elastic Moduli)

ઈ.સ. 1678માં રૉબર્ટ હુકે પ્રાયોગિક રીતે દર્શાવ્યું કે ''નાના વિરૂપણ માટે પ્રતિબળ અને વિકૃતિ એકબીજાના સમપ્રમાણમાં હોય છે'' આ વિધાન હુકના નિયમ તરીકે ઓળખાય છે. આમ. प्रति ७० वि इति

$$\therefore \ \sigma = k\varepsilon \tag{4.5.1}$$

સમીકરણ 4.5.1 માં સ્થિતિસ્થાપકતા-અંક તરીકે ઓળખાય છે. તેનો એકમ Nm^{-2} અથવા Pa છે.

હુકનો નિયમ આનુભવિક નિયમ છે અને મોટાં ભાગનાં દ્રવ્યો માટે (આકૃતિ 4.12માં દર્શાવ્યા મુજબ) લગભગ 1% વિકૃતિ માટે સાચો છે. રબર જેવા પદાર્થો માટે આવો રેખીય સંબંધ મળતો નથી.

4.5.1 યંગ મોડચુલસ (Young's Modulus) :

આપણે જોયું કે નાની વિકૃતિ માટે પ્રતિબળ અને વિકૃતિ એકબીજાના સમપ્રમાણમાં હોય છે. જો પ્રતિબળ અને વિકૃતિ તરીકે પ્રતાન-પ્રતિબળ અને પ્રતાન વિકૃતિ લેવામાં આવે, તો સમીકરણ 4.5.1 નીચે મુજબ લખી શકાય :

$$\sigma_l = Y \varepsilon_l \tag{4.5.2}$$

અહીં સ્થિતિસ્થાપકતા-અંક યંગ મૉડ્યુલસ (Y) તરીકે ઓળખાય છે.

યંગ મૉડચુલસના માપન માટેની પ્રાયોગિક ગોઠવણ આકૃતિ 4.14 માં દર્શાવી છે.

તાર A સંદર્ભતાર અને તાર B પરીક્ષણ તાર કહેવાય છે. તાર Aના છેડે લગાવેલ હુક સાથે નિયત દળ લટકાવવામાં આવે છે. જ્યારે પરીક્ષણ તાર (B)ના છેડે રહેલા હુક સાથે જુદાં-જુદાં દળ (m) લટકાવીને પરિણામે મળતા જુદા-જુદા તણાવબળ (mg)ને અનુરૂપ લંબાઈમાં થતો વધારો (Δl) તેની સાથે રહેલા વર્નિયર સ્કેલની મદદથી માપવામાં આવે છે.

અહીં
$$\sigma_l = \frac{\text{delign}(F_l)}{\text{elasm (A)}} = \frac{mg}{\pi r^2}$$
 (4.5.3)

જ્યાં r પરીક્ષણ તારની ત્રિજ્યા છે.

અને પ્રતાન વિકૃતિ
$$\varepsilon_l = \frac{\Delta l}{l}$$
 (4.5.4)

જ્યાં *l* પરીક્ષણ તારની મૂળ લંબાઈ છે. સમીકરણો (4.5.2) (4.5.3) અને (4.5.4) પરથી

$$\frac{mg}{\pi r^2} = Y \frac{\Delta l}{l}$$

$$\therefore Y = \frac{mgl}{\pi r^2 \Lambda l} \tag{4.5.5}$$

યંગ મૉડ્યુલસ પદાર્થના દ્રવ્યનો ગુણધર્મ છે. મોટા ભાગના પદાર્થોમાં પ્રતાન-પ્રતિબળ અને દાબીય પ્રતિબળ માટે યંગ મૉડ્યુલસનાં મૂલ્યો સમાન મળે છે. જ્યારે હાડકા તથા કોંક્રીટ જેવા પદાર્થો માટે આમ હોતું નથી.

ઉદાહરણ 2:2 m લંબાઈના અને 5 mm વ્યાસવાળા તાંબાના તારના છેડે 5 kg વજન લટકાવ્યું છે, તો તારની લંબાઈમાં થતો વધારો શોધો. તારનો લઘુતમ વ્યાસ કેટલો રાખવો જોઈએ કે જેથી સ્થિતિસ્થાપક હદ વટાવી ન જવાય ? કૉપર માટે સ્થિતિસ્થાપક હદ = 1.5×10^9 dyne/cm², યંગનો મૉડયુલસ $(Y) = 1.1 \times 10^{12}$ dyne/cm²

G} a :

 $Y = 1.1 \times 10^{12} \text{ dyne/cm}$

L = 2 m = 200 cm

d = 5 mm = 0.5 cm

 $\therefore r = 0.25 \text{ cm}$

 $F = mg = 5 \times 10^3 \times 980$ dyne

l = લંબાઈમાં થતો વધારો

$$Y = \frac{FL}{\pi r^2 l}$$

$$l = \frac{FL}{\pi r^2 Y}$$

$$= \frac{5.0 \times 10^3 \times 980 \times 200}{3.14 \times (0.25)^2 \times 1.1 \times 10^{12}}$$

 $= 4.99 \times 10^{-3} \text{ cm}$

તાંબા માટે સ્થિતિસ્થાપક હદ = 1.5×10^9 dyne/cm² આપેલ છે.

જો માંગેલ લઘુતમ વ્યાસ d'હોય તો, તારમાં ઉત્પન્ન થતું મહત્તમ પ્રતિબળ

$$= \frac{F}{\pi \left(\frac{d'}{2}\right)^2} = \frac{4F}{\pi d'^2} = 1.5 \times 10^9$$

$$∴ d^{12} = \frac{4 \times 5 \times 10^{3} \times 980}{3.14 \times 1.5 \times 10^{9}}$$

$$= 41.6 \times 10^{-4}$$

$$∴ d' = 6.45 \times 10^{-2} \text{ cm}$$
4.5.2 કદ સ્થિતિસ્થાપકતા-અંક

(Bulk Modulus)

સમીકરણ 4.5.1માંના પ્રતિબળ અને વિકૃતિના ગુણોત્તરને કદ સ્થિતિસ્થાપકતા-અંક કહે છે. તેથી,

કદ સ્થિતિસ્થાપકતા-અંક (બલ્ક મૉડ્યુલસ) (B)

$$= \frac{s\varepsilon - y \ln \omega}{s\varepsilon \log h}$$

$$\therefore$$
 બલ્ક મોડ્યુલસ $B = -\frac{P}{\left(\frac{\Delta V}{V}\right)}$ (4.5.6)

અહીં સમીકરણમાં આવતી ૠણ નિશાની કદવિકૃતિ ૠણ અને બલ્ક મોંડ્યુલસ ધન હોવાને કારણે આવે છે. બલ્ક મોંડ્યુલસના વ્યસ્તને દબનીયતા compressibility કહે છે. જેનો સંકેત (K) છે.

4.5.3 આકાર સ્થિતિસ્થાપકતા-અંક (Modulus of Rigidity (shear modulus))

સ્પર્શીય પ્રતિબળ અને આકાર-વિકૃતિના ગુણોત્તરને આકાર સ્થિતિસ્થાપકતા-અંક (modulus of rigidity) (η) કહે છે.

આમ, સમીકરણ (4.3.3) અને (4.3.6) પરથી,

4.6. પોઇસનનો ગુણોત્તર (Poisson's Ratio)

જ્યારે પદાર્થ પર તણાવબળ (અક્ષીય બળ) લગાડવામાં આવે, ત્યારે તેની લંબાઈમાં વધારો થાય છે. પરંતુ લંબાઈને લંબ એવાં પરિમાણો (પાર્શ્વિક પરિમાણો અથવા

lateral dimension)નાં મૂલ્યોમાં ઘટાડો થાય છે. તે જ રીતે જ્યારે પદાર્થ પર દાબીય બળ લગાડવામાં આવે, ત્યારે તેની લંબાઈમાં ઘટાડો થાય પણ પાર્સિક પરિમાણોનાં મૂલ્યોમાં વધારો થાય છે. પાર્સિક પરિમાણમાં થતો ફેરફાર અને પાર્સિક પરિમાણના મૂળ મૂલ્યના ગુણોત્તરને પાર્સિક વિકૃતિ-lateral strain કહે છે.

પાર્શ્વિક વિકૃતિ અને પ્રતાન (કેદાબીય) વિકૃતિનો ગુણોત્તર પોઇસનનો ગુણોત્તર કહેવાય છે. તેનો સંકેત μ છે. તે બે વિકૃતિનો ગુણોત્તર હોવાથી પોઇસનનો ગુણોત્તર પરિમાણરહિત છે.

લંબાઈમાં ફેરફારને કારણે પાર્શ્વિક પરિમાણોમાં ફેરફાર આકૃતિ 4.15

આકૃતિ 4.15 માં દર્શાવ્યા મુજબ નળાકાર સળિયાના કિસ્સામાં પ્રતાન બળની અસર હેઠળ,

પ્રતાન-વિકૃતિ =
$$\frac{\Delta l}{l}$$
 અને પાર્શિક વિકૃતિ = $\frac{\Delta d}{d}$, જ્યાં d સળિયાનો વ્યાસ છે. વ્યાખ્યા અનુસાર

$$\mu = rac{ ext{પાર્શિક વિકૃતિ $\left(rac{\Delta d}{d}
ight)}}{ ext{પ્રતાન-વિકૃતિ $\left(rac{\Delta l}{l}
ight)}}$$$$

$$\therefore \frac{\Delta d}{d} = -\mu \frac{\Delta l}{l}$$
 અથવા $\frac{\Delta r}{r} = -\mu \frac{\Delta l}{l}$ (4.6.1)

અહીં પાર્શ્વિક પરિમાણ અને અક્ષીય પરિમાણમાં થતા ફેરફાર વિરુદ્ધ પ્રકારના હોવાથી સમીકરણ (4.6.1)માં ૠણ નિશાની આવે છે. જો સળિયાનો આડછેદ લંબચોરસ હોય અને તે પ્રતાનબળની અસર હેઠળ હોય, તો તેની લંબાઈમાં વધારો થશે અને પહોળાઈ અને જાડાઈમાં ઘટાડો થશે. જો પહોળાઈ bમાં થતો ફેરફાર Δb અને જાડાઈ bમાં થતો ફેરફાર Δb અને જાડાઈ bમાં થતો ફેરફાર Δb હોય, તો અનુસંગત પાર્શિક વિકૃતિનાં મૂલ્યો $\frac{\Delta b}{b}$ અને $\frac{\Delta h}{b}$ થાય.

તેથી,
$$\frac{\Delta b}{b} = -\mu \frac{\Delta l}{l}$$
 અને $\frac{\Delta h}{h} = -\mu \frac{\Delta l}{l}$ (4.6.2)

પ્રતાનબળોને કારણે કદમાં ફેરફાર :

પદાર્થ પર પ્રતાનબળો લાગતાં તેની લંબાઈમાં વધારો થાય છે અને પાર્શ્વિક પરિમાણોમાં ઘટાડો થાય છે, તેથી તેના કદમાં ફેરફાર થાય છે. (સામાન્ય રીતે કદમાં વધારો થાય છે.)

નળાકાર સિળયાનો કિસ્સો ધ્યાનમાં લેતાં તેની લંબાઈ l અને ત્રિજ્યા r હોય તો, કદ $\mathbf{V}=\pi r^2 l$ હોવાથી

$$\therefore \frac{\Delta V}{V} = 2\frac{\Delta r}{r} + \frac{\Delta l}{l}$$
 (નાના ફેરફારો માટે)

સમીકરણ 4.6.1 પરથી

$$\therefore \quad \frac{\Delta V}{V} = -2\mu \frac{\Delta l}{l} + \frac{\Delta l}{l}$$
 (4.6.3)

$$\therefore \quad \frac{\Delta V}{V} = \frac{\Delta l}{l} (1 - 2\mu)$$

$$\therefore \frac{\Delta V}{V} = \varepsilon_l (1 - 2\mu) \tag{4.6.4}$$

સમીકરણ 4.6.4 સૂચવે છે કે $\Delta V > 0$ હોવાથી μ નું મૂલ્ય 0.5થી વધી શકે નહીં.

અહીં આપણે નળાકાર સળિયાનો કિસ્સો ધ્યાનમાં લીધો છે. જોકે સમીકરણ કોઈ પણ આડછેદ ધરાવતા સળીયા માટે સાચું છે.

ઉદાહરણ 3 : એક સળિયા પર પ્રતાન-બળ લગાડવામાં આવે છે, તો નાના ફેરફારો માટે કદમાં થતા ફેરફારનો લંબાઈ સાપેક્ષ દર

$$\frac{\Delta V}{\Delta l} = A(1 - 2\mu)$$
 છે, તેમ દર્શાવો. અહીં A આડછેદનું ક્ષેત્રફળ છે.

ઉકેલ : સમીકરણ 4.6.3 પરથી,

$$\frac{\Delta V}{V} = \varepsilon_l (1 - 2\mu)$$

કદ V= આડછેદનું ક્ષેત્રફળ (A) imes લંબાઈ (l)હોવાથી

$$\therefore \frac{\Delta V}{\Delta l} = \frac{\Delta l}{l} (1 - 2\mu)$$

82

$$\therefore \frac{\Delta V}{\Delta l} = A (1 - 2\mu)$$

અહીં ટેબલ 4.1માં કેલાક દ્રવ્યો માટે સ્થિતિસ્થાપકતા-અંકનાં મુલ્યો આપેલ છે.

ટેબલ 4.1 સ્થિતિસ્થાપકતા-અંક (માત્ર જાણકારી માટે)

દ્રવ્ય		દેઢતા મૉડ્યુલ્સ ×10 ¹¹ Pa	બલ્ક મૉડ્યુલ્સ ×10 ¹¹ Pa	પોઇસનનો ગુણોત્તર
ઍલ્યુમિનિયમ	0.7	0.3	0.7	0.16
પિત્તળ	0.91	0.36	0.61	0.26
તાંબું	1.1	0.42	1.4	0.32
લોખંડ	1.9	0.70	1.0	0.27
સ્ટીલ	2.0	0.84	1.6	0.19
ટંગસ્ટન	3.6	1.5	2.0	0.20

4.7 સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જા

પદાર્થ પર બાહ્ય બળ લાગે ત્યારે પદાર્થમાં વિરૂપણ ઉત્પન્ન થાય અને પુનઃસ્થાપક બળ પણ પેદા થાય. આમ, વિરૂપણ પુનઃસ્થાપક બળની વિરુદ્ધ થાય છે. તેથી વિરૂપણ ઉત્પન્ન કરવા માટે પુનઃસ્થાપક બળની વિરુદ્ધ કાર્ય કરવું પડે. આ કાર્ય પદાર્થમાં સ્થિતિ-ઊર્જાના સ્વરૂપમાં સંગૃહીત થાય છે. યાદ રાખો, કે સ્થિતિ-ઊર્જા પદાર્થને પ્રાપ્ત થતી નવી સંરચનાને કારણે છે.

આપણે પદાર્થ પર પ્રતાનબળ કાર્ય કરે ત્યારે પદાર્થને મળતી સ્થિતિ-ઊર્જા માટે સમીકરણ મેળવીશું.

L જેટલી લંબાઈનો અને A જેટલા આડછેદવાળો એક સળિયો ધ્યાનમાં લો. ધારો કે પ્રતાનબળને કારણે તેની લંબાઈમાં x જેટલો વધારો થાય છે. જો દ્રવ્યનો યંગ મૉડ્યુલસ Y હોય તો,

$$Y = \frac{F_A}{x_L}$$

તેથી પુનઃસ્થાપક બળ

$$F = \frac{YA}{L}x$$

હવે પુનઃસ્થાપક બળ વિરુદ્ધ લંબાઈમાં ∆L જેટલો વધારો કરવા માટે કરવું પડતું કાર્ય

$$w = \int_{0}^{\Delta L} \left(\frac{YA}{L}\right) x dx$$
$$= \frac{AY}{L} \int_{0}^{\Delta L} x dx$$
$$= \frac{AY}{L} \left[\frac{x^{2}}{2}\right]_{0}^{\Delta L}$$

આ કાર્યનું મૂલ્ય સળિયામાં સંગૃહીત થતી સ્થિતિ-સ્થાપકીય સ્થિતિ-ઊર્જાનું મલ્ય છે.

$$\therefore U = \frac{AY}{2L} (\Delta L)^2 \tag{4.7.1}$$

થોડું વધું વિચારતાં,

સમીકરણ 4.7.1 નીચે મુજબ પણ લખી શકાય.

∴ એકમકદમાં સંગ્રહિત સ્થિતિસ્થાપકીય-ઊર્જા

$$= \frac{1}{2}$$
 પ્રતિબળ × વિકૃતિ (4.7.2)

એકમકદમાં સંગૃહીત ઊર્જાને ઊર્જાઘનતા પણ કહે છે. 4.8 સ્થિતિસ્થાપક દ્રવ્યોની વ્યાવહારિક ઉપયોગિતા (Applications of Elastic Behaviour of Materials)

(i) દ્રવ્ય જ્યારે વ્યાવહારિક હેતુઓ માટે વપરાશમાં હોય ત્યારે તે કોઈક ને કોઈક રીતે પ્રતિબળની અસર હેઠળ હોય છે. ઉદાહરણ તરીકે, ક્રેઇનમાં ધાતુના 'દોરડા' (કેબલ) દ્વારા જ્યારે કોઈ વસ્તુ ઊંચકાતી હોય છે. ત્યારે આ 'કેબલ'માં તણાવ-પ્રતિબળ હોય છે. આ સ્થિતિમાં આપેલ કેબલ વડે વધારેમાં વધારે એટલો જ ભાર ઊંચકી શકાય અથવા આપેલા ભારને વધારેમાં વધારે એટલો પ્રવેગિત ગતિ કરાવી શકાય કે જેથી સ્થિતિસ્થાપક હદ પર પ્રતિબળનું મૂલ્ય 30 × 10⁷ N m⁻² છે. જો સ્ટીલના કેબલના આડછેદનું ક્ષેત્રફળ A હોય અને તેના વડે ઊંચકવાનો બોજ M હોય, તો

(4.8.1)

પ્રતાન-પ્રતિબળ
$$\sigma_n=rac{F_n}{A}=rac{Mg}{A}$$
 $\therefore A=rac{Mg}{\sigma_n}$

અહીં કેબલનો આડછેદ એટલો લેવો જોઈએ કે તેનું $\frac{Mg}{\sigma_n} \ \ \, \text{scal} \ \, \text{સાડું} \ \, \text{એવું} \ \, \text{વધારે હોય. જો } M = 10^4 \ \, \text{kg}$ હોય, તો $g = 3.1\pi \ \, \text{m s}^{-2}$ લેતાં,

$$A = \pi r^2 = \frac{(10^4)(3.1\pi)}{(30 \times 10^7)}$$

 \therefore કેબલની ત્રિજયા $r \approx 10^{-2} \text{ m} = 1 \text{ cm}$

આથી, આવા કેબલની ત્રિજ્યા 1 cm કરતાં સારી એવી મોટી રાખવી જોઈએ. આટલી ત્રિજ્યાનું કેબલ તો ઘણું જ દઢ બની જાય, માટે ઘણા બધા પાતળા તારને એકબીજાની સાથે ગૂંથીને આવું કેબલ બનાવવામાં આવતું હોય છે.

હવે, કોઈ પુલ(bridge)નું ઉદાહરણ ધ્યાનમાં લો. પુલની ડિઝાઇન એવી રીતે કરવી જોઈએ કે જેથી તે ટ્રાફિકના ભારને લીધે, પોતાના જ ભારને લીધે અને પવનના સપાટાઓને લીધે એટલો બધો ન વળી જાય કે જેથી તે તૂટી જાય. આ જ રીતે સિમેન્ટ-ક્રોંક્રીટનાં મકાનો બાંધતી વખતે બીમ-ક્રોલમનો ઉપયોગ જાણીતો છે. આમાં પણ ભારને લીધે બીમનું થતું વંકન ધ્યાનમાં લેવું જ પડે છે.

આ હકીકત સમજવા માટે આકૃતિ 4.16માં દર્શાવેલું લંબચોરસ આડછેદવાળા સિળયાનું ઉદાહરણ ઉપયોગી થઈ પડશે. અહીં સિળયાની લંબાઈ L, પહોળાઈ b, અને જાડાઈ (ઊંડાઈ) d છે. તેને બે છેડેથી ટેકવીને તેના મધ્યબિંદુ પર W જેટલું વજન લટકાવતાં, ધારો કે તેનું મધ્યબિંદુ δ જેટલું નીચે ઊતરે છે તેને સિળાયનું વંકન કહે છે. તેના વડે સિળયો કેટલો વાંકો વળ્યો તે જાણી શકાય છે. હવે,

$$\delta = \frac{WL^3}{4hd^3Y} \tag{4.8.2}$$

નોંધ : આ સૂત્ર તમારે સાબિતી વિના સ્વીકારવાનું છે.

આકૃતિ 4.17

આ સમીકરણ દર્શાવે છે સળિયાનું વંકન ઘટાડવા માટે યંગના મૉડ્યુલસનું મોટું મૂલ્ય ધરાવતા દ્રવ્યનો સળિયો વાપરવો જોઈએ. ઉપરાંત આપેલા દ્રવ્યના સળિયા માટે છેદમાં d^{-3} આવતો હોવાથી સળિયાની જાડાઈ d વધારે રાખીને δ ને ઘણો જ નાનો બનાવી શકાય છે. પણ, અહીં એક તકલીફ છે. સળિયાની જાડાઈ d વધારે રાખવાથી આકૃતિ 4.17માં દર્શાવ્યા પ્રમાણે સળિયામાં વિરૂપણ ઉત્પન્ન થાય છે. આને બકલિંગ કહે છે. આવું બકલિંગ ન થાય તે માટે સળિયાનો આડછેદ I આકારનો રાખવામાં આવે છે. જુઓ આકૃતિ 4.18. આમ, કરવાથી ભાર વહન કરતી સપાટીનું ક્ષેત્રફળ વધી જાય છે અને સાથોસાથ જરૂરી ઊંડાઈ પણ મળે છે.

આકૃતિ 4.18

(ii) અંતમાં આપણે કુદરતનું એક રસપ્રદ ઉદાહરણ જોઈએ.

h જેટલી ઊંચાઈ અને ρ જેટલી અચળ ઘનતાવાળો પર્વત વિચારો. તેના તળિયે એકમક્ષેત્રફળ દીઠ લાગતું બળ $h\rho g$ થાય. અને તે અધોદિશામાં લાગે. પર્વતની બાજુઓ મુક્ત હોવાથી તેમાં આકાર પ્રતિબળ ઉત્પન્ન થાય છે અને તેનું મૂલ્ય લગભગ $h\rho g$ જેટલું થાય. જો પર્વતના ખડકોની સ્થિતિસ્થાપકતા હદ $3 \times 10^8~\mathrm{N}~\mathrm{m}^{-2}$ અને ઘનતા $\rho = 3 \times 10^3~\mathrm{kg}~\mathrm{m}^{-3}$ લેવામાં આવે, તો

$$h_{max} \rho g = 3 \times 10^8 \text{ N} \text{ m}^{-2}$$

$$h_{max} = \frac{3 \times 10^8}{3 \times 10^3 \times 9.8} \simeq 10^4 \text{ m}$$
= 10 km

આમ, ખડકોની સ્થિતિસ્થાપકતાની હદ (મર્યાદા)ને કારણે પર્વતોની મહત્તમ ઊંચાઈ પર મર્યાદા લદાય છે. માઉન્ટ એવરેસ્ટની ઊંચાઈ 8848 m એટલે કે 8.848 km છે.

ઉદાહરણ $4: F_1$ જેટલા તણાવબળની અસર હેઠળ એક તારની લંબાઈ l_1 અને F_2 બળની અસર હેઠળ તેની લંબાઈ l_2 છે, તો સાબિત કરો કે તેની મૂળ લંબાઈ $l=\frac{F_2l_1-F_1l_2}{F_2-F_1}$ છે.

ઉકેલ :

$$\Delta l = rac{\mathrm{F} l}{\mathrm{A} \mathrm{Y}}$$
 હોવાથી,

$$l_1 = l + \frac{F_l l}{AY} \tag{1}$$

અને
$$l_2 = l + \frac{F_2 l}{AY}$$
 (2)

સમીકરણ (1) ને F_2 અને સમીકરણ (2) ને F_1 વડે ગુશીને સમીકરણ (1)માંથી (2) બાદ કરતાં,

$$F_{2}l_{1} - F_{1}l_{2} = F_{2}l + \frac{F_{1}F_{2}l}{AY} - F_{1}l - \frac{F_{1}F_{2}l}{AY}$$

$$\therefore F_{2}l_{1} - F_{1}l_{2} = (F_{2} - F_{1})l$$

$$\therefore l = \frac{F_{2}l_{1} - F_{1}l_{2}}{F_{2} - F_{1}}$$

ઉદાહરણ 5 : દરિયાની અંદર અમુક ઊંડાઈએ દબાણ 80 atm છે. જો દરિયાની સપાટી પર પાણીની ઘનતા $1.03 \times 10^3 \text{ kg/m}^3$ હોય અને પાણીની દબનીયતા $45.8 \times 10^{-11} \text{ Pa}^{-1}$, હોય, તો ઉપર્યુક્ત ઊંડાઈએ પાણીની ઘનતા શોધો.

$$1 \text{ atm} = 1.013 \times 10^5 \text{ Pa}.$$

ઉકેલ : ધારો કે કથિત ઊંડાઈએ પાણીની ઘનતા ρ' અને સપાટી પર પાણીની ઘનતા ρ છે. પાણીના આપેલા દ્રવ્યમાન M માટે ધારો કે સપાટી પર અને ઊંડાઈએ કદ અનુક્રમે V અને V' છે.

$$\therefore V = \frac{M}{\rho}$$
 અને $V' = \frac{M}{\rho'}$

∴ કદમાં થતો ઘટાડો =
$$\Delta V$$

= $V - V'$
= $M \bigg[\frac{1}{\rho} - \frac{1}{\rho'} \bigg]$
∴ કદ-વિકૃતિ = $\frac{\Delta V}{V} = M \bigg[\frac{1}{\rho} - \frac{1}{\rho'} \bigg] \times \frac{\rho}{M}$
= $1 - \frac{\rho}{\rho'}$
પણ, દબનીયતા $K = \frac{\Delta V}{PV} = \frac{1}{P} \bigg[1 - \frac{\rho}{\rho'} \bigg]$
∴ 45.8 × $10^{-11} = \frac{1}{80 \times 1.013 \times 10^5}$
 $\bigg[1 - \frac{1.03 \times 10^3}{\rho'} \bigg]$

 $\rho' = 1.034 \times 10^3 \text{ kg/m}^3$

ઉદાહરણ 6:0.1 m ત્રિજ્યાવાળો અને $8 \pi \text{ kg}$ દળવાળો સ્ટીલનો એક ગોળો 5 m લાંબા અને 10^{-3} m વ્યાસવાળા શિરોલંબ તારના છેડે લટકાવ્યો છે. આ તારને 5.22 m ઊંચાઈવાળી છત પરથી લટકાવેલ છે. જયારે આ ગોળાને સાદા લોલકની જેમ દોલનો કરાવવામાં આવે છે, ત્યારે તે રૂમના તિળયાને સ્પર્શે છે, તો દોલન દરમિયાન સૌથી નીચેના સ્થાને ગોળાનો વેગ શોધો. સ્ટીલનો યંગ મૉડ્યુલસ = $1.994 \times 10^{11} \text{ Nm}^{-2}$ છે.

ઉકેલ :

ગોળાની ત્રિજ્યા $r=0.1~\mathrm{m}$ પ્રારંભિક લંબાઈ $L=5~\mathrm{m}$ તારની લંબાઈમાં થતો વધારો $\Delta L=5.22-(L+2r)=5.22-(5+2\times0.1)=0.02~\mathrm{m}$ તારની ત્રિજ્યા $r_{\mathrm{o}}=5\times10^{-4}~\mathrm{m}$ જો દોલન દરમિયાન નીચેના છેડે તારમાં ઉત્પન્ન થતો તણાવ T હોય તો,

$$Y = \frac{T/A}{\Delta L/L}$$

$$\therefore T = \frac{YA\Delta L}{L} = \frac{Y(\pi r_0^2)\Delta L}{L}$$

$$= \frac{1.994 \times 10^{11} \times \pi \times (5 \times 10^{-4})^2 \times 0.02}{5}$$

$$= 199.4\pi \text{ N}$$

પણ, ચોખ્ખું બળ
$$T - Mg = \frac{Mv^2}{R}$$
,

જ્યાં, R = ગોળાના ગતિપથની ત્રિજ્યા = 5.22 - 0.1 = 5.12 m

$$\therefore 199.4\pi - 8\pi \times 9.8 = \frac{8\pi \times v^2}{5.12}$$

$$\therefore 199.4 - 78.4 = \frac{8v^2}{5.12}$$

$$\therefore 121 = \frac{8v^2}{5.12}$$

$$\therefore v = 8.8 \text{ ms}^{-1}$$

ઉદાહરણ 7 : 15 kg દળનો એક પદાર્થ 1 m લંબાઈ ધરાવતા સ્ટીલના તારના છેડે બાંધ્યો છે, અને તેને શિરોલંબ સમતલમાં 1 rad/sના કોણીય વેગથી ભ્રમણ આપવામાં આવે છે. જો તારના આડછેદનું ક્ષેત્રફળ 0.06 cm² હોય, તો પદાર્થના નિમ્નતમ સ્થાન માટે તારની લંબાઈમાં થતો વધારો શોધો.

$$Y_{\text{steel}} = 2 \times 10^{11} \text{ N m}^{-2}$$

ઉકલ :

 $m = 15 \text{ kg}, \ l = 1 \text{m}, \ \omega = 1 \text{ rad/s } A = 0.06$ $cm^2 = 6 \times 10^{-6} m^2$

$$Y_{steel} = 2 \times 10^{11} \text{ N} \text{ m}^{-2}$$

પદાર્થના નિમ્નતમ સ્થાન માટે પદાર્થ પર લાગતું કુલ બળ ગુરુત્વાકર્ષણ બળ અને કેન્દ્રત્યાગી બળનો સરવાળો થાય.

આકૃતિ 4.19

 $F = mg + mv^2/r$ માં $v = l\omega$ અને r = l મૂકતાં, $\therefore F = mg + ml\omega^2$ $= 15(9.8 + 1 \times (1)^2)$ = 15 (10.8) = 162 N

$$\therefore$$
 હવે મતિબળ $\sigma=rac{F}{A}=rac{162}{6 imes 10^{-6}}$ = $27 imes 10^6$ N m $^{-2}$

વળી
$$Y = \frac{\sigma}{\epsilon_l}$$

$$\therefore \frac{\Delta l}{l} Y = \sigma$$

$$\therefore \Delta l = \frac{\sigma l}{Y}$$

$$= \frac{27 \times 10^6 \times 1}{2 \times 10^{11}} = 13.5 \times 10^{-5} \text{ m}$$

$$= 0.135 \times 10^{-3} \text{ m}$$

= 0.135 mm

ઉદાહરણ 8: એક તારની લંબાઈ 5 m અને તેના આડછેદનું ક્ષેત્રફળ 2.5 mm 2 છે. જો તેની લંબાઈમાં 1 mmનો વધારો કરવો હોય તો કરવું પડતું કાર્ય શોધો. $\frac{1}{2}$ ત્રાપ્ત મૉડ્યુલસ $\frac{1}{2}$ × $\frac{10^{11}}{2}$ N m $^{-2}$.

ઉદેલ : $l=5\text{m}, \ \Delta l=1\text{mm}=10^{-3}\text{m}$ $A=2.5 \text{ mm}^2=2.5 \times 10^{-6} \text{ m}^2,$ $Y=2\times 10^{11} \text{ N m}^{-2}$ અહીં થતું કાર્ય,

$$W = \frac{1}{2}$$
 પ્રતિભળ \times વિકૃતિ \times કંદ
$$= \frac{1}{2}(Y \times \varepsilon_l) \times \varepsilon_l \times V$$

$$= \frac{1}{2}Y \times \left(\frac{\Delta l}{l}\right)^2 \times V$$

$$= \frac{1}{2} \times 2 \times 10^{11} \times \left(\frac{10^{-3}}{5}\right)^2 \times 2.5 \times 10^{-6} \times 5 \qquad (\therefore V = Al)$$

$$= 5 \times 10^{-2} \text{ J.}$$

86 ભૌતિકવિજ્ઞાન

સારાંશ

ઘન પદાર્થોનું વર્ગીકર\ નીચે મુજબ ત્રણ સમૂહમાં કરી શકાય : (i) સ્ફિટિકમય પદાર્થો
 (ii) અસ્ફિટિકમય પદાર્થો અને (iii) અર્ધ સ્ફિટિકમય પદાર્થો.

- 2. સ્ફટિકમય પદાર્થોમાં અણુ આયનો કે પરમાણુઓની અવકાશમાં હારબદ્ધ બિંદુઓ પર ગોઠવાયેલાં છે. અવકાશમાં બિંદુઓની આવી હારબદ્ધ ગોઠવણીને લૅટિસ કહે છે.
- સ્ફટિકમય પદાર્થ એક કરતાં વધુ એકસમાન એકમોનો બનેલો હોય છે.
- સ્ફ્રિટિકમય પદાર્થી તેમાં રહેલા લૉંગરેન્જ ઑર્ડરને કારણે નિયત તાપમાને પીગળે છે.
- 5. અસ્કટિકમય પદાર્થોમાં અશુઓની ગોઠવણી હારબદ્ધ હોતી નથી. આવા પદાર્થોના નિર્માણ સમયે આવી ગોઠવણી માટે જરૂરી સમયના અભાવે આમ બને છે.
- અર્ધસ્ફટિકમય પદાર્થોમાં અમુક ભાગમાં ઘટકક્શો નિયમિત હારબદ્ધ ગોઠવશી અને અમુક ભાગમાં અનિયમિત ગોઠવશી ધરાવે છે.
- 7. પદાર્થ પર બાહ્યબળ લાગતાં તેમાં વિરૂપણ થાય છે. પદાર્થના આવા વિરૂપણનો પ્રતિકાર કરવાના ગુણને સ્થિતિસ્થાપકતા કહે છે.
- જે પદાર્થ બાહ્ય વિરૂપણ બળ દૂર કરતાં પોતાની મૂળ સ્થિતિ સંપૂર્ણપણે પરત મેળવી શકે તેવા પદાર્થને સંપૂર્ણ સ્થિતિસ્થાપક પદાર્થ કહે છે.
- જે પદાર્થ બાહ્ય વિરૂપણ બળ દૂર થતાં પોતાની મૂળ સ્થિતિ અંશતઃ પણ પ્રાપ્ત ન કરી શકે તેવા પદાર્થને અસ્થિતિસ્થાપક પદાર્થ કહે છે.
- 10. પદાર્થ પર બાહ્યબળ લગાડતાં તેના પરિમાણમાં ફેરફાર થાય છે. પરિમાણમાં થતા ફેરફાર અને મૂળ પરિમાણનાં મૂલ્યોના ગુણોત્તરને વિકૃતિ કહે છે. વિકૃતિ ત્રણ પ્રકારની હોય છે. વિકૃતિ પરિમાણરહિત છે.
- **11.** પ્રતાન અથવા દાબીય વિકૃતિ (ε_l) પદાર્થની લંબાઈમાં થતો ફેરફાર અને મૂળ લંબાઈનો ગુણોત્તર છે.
- 12. પદાર્થના કદમાં થતા ફેરફાર અને મૂળ કદના ગુણોત્તરને કદ-વિકૃતિ કહે છે.
- 13. પદાર્થની સપાટી પર સ્પર્શીય બળ લાગતાં તેમાં આવતી વિકૃતિને આકાર-વિકૃતિ કહે છે.
- 14. પદાર્થ પર બાહ્ય વિરૂપક બળ લાગતાં તેમાં ઉત્પન્ન થતાં એકમક્ષેત્રફળ દીઠ પુનઃસ્થાપક બળને પ્રતિબળ કહે છે. તેનો એકમ Nm⁻² છે.
- 15. લંબાઈ, આકાર અને કદની વિકૃતિને અનુરૂપ ઉદ્દ્ભવતાં પ્રતિબળને અનુક્રમે પ્રતાન-પ્રતિબળ, આકાર-પ્રતિબળ અને કદ પ્રતિબળ કહે છે.
- 16. પદાર્થ પર બાહ્ય બળ લાગતાં તેમાં ઉત્પન્ન થતાં પુનઃસ્થાપક બળ માટે આંતરઅશુ બળો જવાબદાર છે.
- 17. પદાર્થની સપાટી પર લાગતું બળ જો લંબરૂપે ન લાગતું હોય તો બળનો સપાટીને લંબ ઘટક પ્રતાન-વિકૃતિ ઉત્પન્ન કરે છે. જ્યારે સપાટીને સમાંતર ઘટક આકાર-વિકૃતિ ઉત્પન્ન કરે છે.
- 18. પ્રતિબળ અને દબાણ બંને એકમ ક્ષેત્રફળ પર લંબરૂપે લાગતું બળ હોવા છતાં બંને ભિન્ન ભૌતિકરાશી છે.
- 19. પ્રતાન વિકૃતિ જો 1 %થી ઓછી હોય, તો પ્રતિબળ વિકૃતિના સમપ્રમાણમાં હોય છે. જે પ્રતિબળના જે મહત્તમ મૂલ્ય સુધી પદાર્થ બાહ્ય બળ દૂર થયા બાદ પોતાની મૂળ સ્થિતિ મૂળ માર્ગે પ્રાપ્ત કરે તેના મૂલ્યને સપ્રમાણતાની હદ કહે છે. જે પ્રતિબળના મૂલ્ય માટે પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરી શકે તે મૂલ્યને સ્થિતિસ્થાપકતાની હદ કહે છે.
- 20. જો પદાર્થમાં પ્લાસ્ટિક વિરૂપણ મોટા પ્રમાણમાં પેદા કરી શકાય તો પદાર્થ તન્ય પદાર્થ કહેવાય. જયારે સ્થિતિસ્થાપકતા હદથી પ્રતિબળ વધતાં જો પદાર્થ તૂટી જાય, તો પદાર્થ બટકણો કહેવાય.

 રબર જેવા પદાર્થમાં 700 % વિકૃતિ પેદા કરી શકાય છે. આવા પદાર્થોને ઇલાસ્ટોમર કહે છે.

- 22. રબર જેવા પદાર્થને બાહ્ય બળ આપી મોટા પ્રમાણ વિરૂપણ પેદા કર્યા બાદ, વિરૂપક બળ દૂર કરતાં પદાર્થ પોતાની મૂળ સ્થિતિ પ્રાપ્ત કરે છે, પણ મૂળ માર્ગ નહીં. અહીં વિરૂપણ આપવા માટે કરવું પડતું કાર્ય પદાર્થ મૂળ સ્થિતિ પ્રાપ્ત કરે તે દરમિયાન મુક્ત થતી ઊર્જાથી વધુ હોય છે, આ ઘટનાને ઇલાસ્ટિક હિસ્ટેરીસીસ કહે છે. આ હકીકતનો ઉપયોગ શોક એબ્સોર્બરમાં થાય છે.
- 23. હુકનો નિયમ : નાના વિરૂપણ માટે પ્રતિબળ વિકૃતિના સમપ્રમાણમાં હોય છે.
- 24. નાના વિરૂપણ માટે પ્રતિબળ અને વિકૃતિનો ગુણોત્તર સ્થિતિસ્થાપકતા-અંક કહેવાય છે. પ્રતાન-વિકૃતિ, કદ-વિકૃતિ અને આકાર-વિકૃતિને અનુરૂપ સ્થિતિસ્થાપકતા-અંક અનુક્રમે યંગ મૉડ્યુલસ (Y) બલ્ક મૉડ્યુલસ (B) અને આકાર-સ્થિતિસ્થાપકતા-અંક અથવા દઢતાઅંક (η) કહેવાય છે. સ્થિતિસ્થાપકતા-અંકનો એકમ N m⁻² છે.
- 25. પદાર્થ પર અક્ષીયબળ (તણાવબળ કે દાબીય બળ) લગાડતાં તેની લંબાઈમાં તથા પાર્સિક પરિમાણોમાં ફેરફાર થાય છે. પાર્સિક પરિમાણોમાં આંશિક ફેરફાર અને અક્ષીય પરિમાણમાં થતાં આંશિક ફેરફારનો ગુણોત્તર પોઇસનના ગુણોત્તર તરીકે ઓળખાય છે. તેનો સંકેત μ છે. તે એકમરહિત છે. μનું મૂલ્ય 0.5 ઓછું હોય છે.
- 26. પદાર્થ પર બાહ્ય બળ લાગતાં પદાર્થ વિરૂપણને કારણે નવી સંરચના મેળવે છે, તેને કારણે તે સ્થિતિ-ઊર્જા ધરાવે છે. આ સ્થિતિ-ઊર્જા કહેવાય છે.

તેનું મૂલ્ય $U = \frac{1}{2}$ પ્રતિબળ \times વિકૃતિ \times કદ જેટલું થાય છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- એક તારને ખેંચીને તેની લંબાઈ બમણી કરવામાં આવે છે. નીચેનાં પૈકી કયું વિધાન આ સંદર્ભમાં ખોટું છે ?
 - (A) તેનું કદ વધે છે.

- (B) પ્રતાન-વિકૃતિ 1 થાય છે.
- (C) પ્રતિબળ = યંગ મૉડચુલસ
- (D) પ્રતિબળ = 2 (યંગ મૉડચુલસ)
- 🔼 દઢતાઅંક (આકાર-સ્થિતિસ્થાપકતા-અંક)નું પારિમાણિક સૂત્ર કયું છે ?
 - (A) $M^{1}L^{1}T^{-2}$
- (B) $M^1L^{-1}T^{-2}$
- (C) $M^1L^{-2}T^{-1}$ (D) $M^1L^{-2}T^{-2}$
- એક તાર પર 20 kgથી વધુ દળ લટકાવતાં તે તૂટી જાય છે. આ જ દ્રવ્યના બનેલા બીજા અડધી ત્રિજ્યાવાળા તાર પર લટકાવી શકાતું મહત્તમ દળ કેટલું હશે ?
 - (A) 20 kg
- (B) 5 kg
- (C) 80 kg
- (D) 160 kg
- 4. એક ધાતુના બનેલ L લંબાઈના અને m જેટલા દળના સિળયાના આડછેદનું ક્ષેત્રફળ A છે. આ સિળયા નીચેના છેડે M દળ લટકાવવામાં આવે છે, તો સિળયાના ઉપરના છેડેથી $\frac{3L}{4}$ અંતરે આવેલા આડછેદ પર પ્રતિબળ કેટલું હશે ?
 - (A) Mg/A

(B) (M + m/4) g/A

(C) $(M + \frac{3}{4}m)g/A$

(D) M + m) g/A

ભૌતિકવિજ્ઞાન

88

5.			•	છે. દરેકના છેડે સમાન
	દળ લટકાવતાં કયા તાર			
	(A) $l = 0.5$ m, $d =$			
	(C) $l = 2m, d = 2n$			
6.	10 ^{–6} m² જેટલું આડછેલ	_		
	લંબાઈમાં 1 % વધારો ધ	યાય છે, તો દ્રવ્યનો ય	ાંગ મૉડ્યુલસ	છે.
	(A) $10^{12} \text{ P}a$	(B) $10^{11} \text{ P}a$	(C) $10^{10} \text{ P}a$	(D) 10^2 Pa
7.	સમાન પરિમાણના કૉપર	અને સ્ટીલના તારના	છેડા જોડીને સંયુક્ત	તાર બનાવ્યો છે. આ
	સંયુક્ત તારના છેડે વજન	ન લટકાવતાં તેમની લં	<mark>ાં</mark> બાઈમાં થતાં વર્ષારા	નો ગુજાોત્તર છે.
	20			
	$Y_{\text{effe}} = \frac{20}{7} Y_{\text{sins}}$			
	(A) 20 : 7	(B) 10:7	(C) 7:20	(D) 1 : 7
8.	100 m ઊંડા તળાવના	તળિયે એક રબરબૉલને	ો લઈ જતા <mark>ં તેના</mark> ક	દમાં 1 % ઘટાડો થાય
	છે, તો રબરનો બલ્ક મૅ	ાડ્યુલસ છે. (g	$= 10 \text{ m s}^{-2}$	
	(A) $10^6 \text{ P}a$	(B) 10^8 Pa	(C) $10^7 \text{ P}a$	(D) $10^9 \text{ P}a$
9.	દઢ પદાર્થનો યંગ મૉડ્યુલ			
	(A) 0			
10.	એક પદાર્થ પરનું દબાણ			
	તાપમાને 10% જેટલું ઘ		_	
	(A) $1.55 \times 10^5 \text{ Pa}$ (C) $102.4 \times 10^5 \text{ Pa}$		(B) 51.2×10^5	Pa
11.	એક તારના છેડે 200 N		_	
	ફેરફારને કારણે તેમાં સં	=		
10	(A) 0.2 J			
14.	જડ આધાર સાથે બાંધેલા વધારો કરવા માટે કરવું			તના લબાઇમા <i>ા</i> જટલા
	વવારા કરવા માટ કરવુ	યડલું કાવ વ		
	(A) $\frac{F}{2L}$	(B) Fl	(C) 2Fl	(D) $\frac{1}{2}$ F l
13.	સંપૂર્ણ પ્લાસ્ટિક પદાર્થ મ	ાટે યંગ મૉડ્યુલસની	કિંમત છે.	
	(A) <i>l</i>	(B) શૂન્ય	(C) ∞	(D) 2
14.	સ્થિતિસ્થાપકતા–અંક પારિ	માણિક દષ્ટિએ	.ને સમતુલ્ય છે.	
	(A) બળ	(B) પ્રતિબળ	(C) વિકૃતિ	(D) એક પણ નહીં.
15.	L લંબાઈના એક મેટલ-વ	ાયરના આડછેદનું ક્ષેત્રક	ફળ A છે અને તેના	દ્રવ્યનો યંગ મૉડ્યુલસ
	Y છે. આ તાર સ્પ્રિંગ	તરીકે વર્તતો હોય, તે	ો તેનો બળ-અચળાંક	કેટલો થાય ?
	YA	T YA	2YA	m. YL
	(A) $\frac{YA}{L}$	(B) $\frac{YA}{2L}$	(C) $\frac{\Gamma}{\Gamma}$	(D) $\frac{\Delta \Delta}{A}$
16.	જ્યારે મેટલ વાયરમાં 10) Nનો તજ્ઞાવ પેદા .	કરવામાં આવે છે, ત	યારે તેની કુલ લંબાઈ
	5.001 m અને 20 N d			
	m છે.			
	(A) 5.001	(B) 4.009	(C) 5.0	(D) 4.008

ઘન પદાર્થોના યાંત્રિક ગુલધર્મો ⁸⁹

જવાબો

1. (D)	2. (B)	3. (B)	4. (B)	5. (A)	6. (C)
7. (A)	8. (B)	9. (C)	10. (A)	11. (D)	12. (D)
13. (B)	14. (B)	15. (A)	16. (C)		

નીચે આપેલ પ્રશ્નોનો જવાબ ટુંકમાં આપો :

- 🚺 આણ્વિક સ્ફટિકોના નિર્માણ માટે કયાં બળો જવાબદાર છે ?
- સંપૂર્ણ સ્થિતિસ્થાપક પદાર્થની વ્યાખ્યા આપો.
- વિકૃતિનું પારિમાણિક સૂત્ર લખો.
- પદાર્થ પર બાહ્ય બળ લાગતાં તેમાં પુનઃસ્થાપક બળો ઉત્પન્ન થવાનું કારણ સમજાવો.
- દબનીયતાની વ્યાખ્યા અને પારિમાણિક સૂત્ર આપો.
- 6 કયો પદાર્થ વધુ સ્થિતિસ્થાપક છે, રબર કે સ્ટીલ ?
- કારણ આપો : સ્પ્રિંગ સ્ટીલમાંથી બનાવવામાં આવે છે, કૉપરમાંથી નહીં.
- સ્થિતિસ્થાપક પદાર્થના પરિમાણમાં ફેરફાર કરવા માટે ખર્ચાતી ઊર્જાનું શું થાય છે ?
- 9. એક સિળયાને ખેંચીને લંબાઈમાં ΔI વધારો કરતાં તેની સ્થિતિ-ઊર્જામાં U જેટલો વધારો થાય છે. જો તેના પર દાબીય બળ લગાડીને તેની ΔI જેટલો ઘટાડો કરતાં સ્થિતિ-ઊર્જામાં શું કેરકાર થાય ?
- 10. એક તાર માટે બ્રેકિંગ ફોર્સ F છે. જો તારની જાડાઈ બમણી કરવામાં આવે, તો બ્રેકિંગ ફોર્સનું મૂલ્ય કેટલું થાય ?

નીચેના પ્રશ્નોના જવાબ આપો :

- આયનીક સ્ફટિકમય પદાર્થો પર ટુંક નોંધ લખો.
- વિકૃતિ એટલે શું ? યોગ્ય ઉદાહરણની મદદથી આકાર વિકૃતિ સમજાવો.
- પદાર્થની સપાટીને દોરેલો લંબ સાથે θ ખૂર્કો બનાવતા બળને કારકો પદાર્થ પર થતી અસર ચર્ચો.
- 4. યંગ મૉડ્યુલસનું મૂલ્ય મેળવવાની પ્રાયોગિક રીત સમજાવો.
- 5. પ્રતિબળ અને દબાણ વચ્ચેનો ભેદ સ્પષ્ટ કરો.
- પોઇસનના ગુણોત્તરની વ્યાખ્યા આપો અને દર્શાવો કે તેનું મૂલ્ય 0.5થી ઓછું હોય છે.
- સ્થિતિસ્થાપકીય સ્થિતિ-ઊર્જાનું સૂત્ર મેળવો.

નીચેના દાખલા ગણો :

- 1. એક સ્ટીલનો તાર શિરોલંબ દિશામાં લટકાવેલ છે. આ તાર પોતાના વજનથી જ તૂટી જાય તેના માટે તેની મહત્તમ લંબાઈ કેટલી હોવી જોઈએ ? સ્ટીલની ઘનતા = $7.8 \times 10^3 \text{ kg m}^{-3}$ સ્ટીલ માટે બ્રેકિંગ પ્રતિબળ $Y_{\text{સીલ}} = 7.8 \times 10^9 \text{ dyne/cm}^2$ છે. [જવાબ: $L = 1.02 \times 10^4 \text{ m}$]
- 2. આકૃતિમાં 10^{-4} m² જેટલો એકસરખો આડછેદ ધરાવતો AB, BC અને CDનો બનેલો સંયુક્ત સિળયો દર્શાવ્યો છે અને છેડે $10~{\rm kg}$ નું દળ લટકાવેલ છે. જો ${\rm L}_{\rm AB}=0.1~{\rm m}$, ${\rm L}_{\rm BC}=0.2~{\rm m}$ અને ${\rm L}_{\rm CD}=0.15~{\rm m}$ તથા ${\rm Y}_{\rm AB}=2.5~{\rm \times}~10^{10}~{\rm Pa}$, ${\rm Y}_{\rm BC}=4~{\rm \times}~10^{10}~{\rm Pa}$ અને ${\rm Y}_{\rm CD}=1~{\rm \times}~10^{10}~{\rm Pa}$ તો બિંદુ B, C અને Dના સ્થાનાંતર ગણો. [જવાબ: Bનું સ્થાનાંતર = $3.9~{\rm \times}~10^{-6}~{\rm m}$, Cનું સ્થાનાંતર = $8.8~{\rm \times}~10^{-6}~{\rm m}$ અને Dનું સ્થાનાંતર = $2.3~{\rm \times}~10^{-5}~{\rm m}$]

આકૃતિ 4.20