

Άσχηση 1: Αποδείξτε τις παρακάτω ιδιότητες για τις πράξεις στο σύνολο ω των φυσικών αριθμών:

1.1 Επιμεριστική ιδιότητα:

$$(\forall n, m, k \in \omega)[n \cdot (m+k) = n \cdot m + n \cdot k]$$

1.2 Η πράξη του πολλαπλασιασμού στους φυσικούς αριθμούς είναι προσεταιριστική. Δηλαδή:

$$(\forall n, m, k \in \omega)[(n \cdot m) \cdot k = n \cdot (m \cdot k)]$$

1.1 Θεωρούμε N, M, K να είναι 3 σύνολα πληθικότητας n, m και k αντίστοιχα, με την επιπλέον υπόθεση ότι τα M, K είναι ξένα 1 . Ισχυριζόμαστε ότι ισχύει η ισοπληθικότητα μεταξύ των συνόλων $N \times (M \cup K), (N \times M) \cup (N \times K)$. Πράγματι, ισχύει η ισότητα των δύο:

 $\text{Eάν }(a,b) \in N \times (M \cup K), \text{ τότε } a \in N \text{ και } b \in M \cup N, \text{ ή αλλιώς } a \in N \text{ και } [b \in M \text{ ή } b \in N]. \Delta \text{ηλαδή, } [a \in N \text{ και } b \in M] \text{ ή } [a \in N \text{ και } b \in K] \Rightarrow (a,b) \in (N \times M) \cup (N \times K). \text{ Επομένως, } N \times (M \cup K) \subseteq (N \times M) \cup (N \times K).$

Αντίστοιχα, εάν $(a,b) \in (N \times M) \cup (N \times K)$, τότε $a \in N$ και $[b \in M \ \'\eta \ b \in K]$. Δηλαδή $a \in N$ και $b \in M \cup N \Rightarrow (a,b) \in N \times (M \cup K)$. Επομένως, $N \times (M \cup K) \supseteq (N \times M) \cup (N \times K)$.

Τελικά έγουμε την ισότητα $N \times (M \cup K) = (N \times M) \cup (N \times K)$ και συνεπώς το ζητούμενο.

1.2 Θεωρούμε N, M, K να είναι 3 σύνολα πληθικότητας n, m και k αντίστοιχα. Ισχυριζόμαστε ότι ισχύει η ισοπληθικότητα μεταξύ των συνόλων $(N\times M)\times K,\ N\times (M\times K)$. Πράγματι, έστω στοιχεία a,b,c στα N,M,K αντίστοιχα. Θεωρούμε την συνάρτηση f η οποία για κάθε ζεύγος $\big((a,b),c\big)$ αντιστοιχεί το ζεύγος $\big(a,(b,c)\big)$. Αυτή η συνάρτηση είναι αμφιμονοσήμαντη, αφού η αντίστροφή της είναι η g, η οποία αντιστοιχεί κάθε $\big(a,(b,c)\big)$ στο $\big((a,b),c\big)$.

Άσκηση 2: Έστω κ, λ πληθάριθμοι. Αποδείξτε ότι:

$$\kappa \cdot \lambda = 0 \Leftrightarrow \kappa = 0 \ \eta \ \lambda = 0$$

Έστω K, Λ δύο σύνολα με πληθαρίθμους κ και λ αντίστοιχα. Εάν $\kappa \cdot \lambda = 0$, τότε $|K \times \Lambda| = 0$, ή ισοδύναμα $K \times \Lambda = \emptyset$. Ισχυριζόμαστε ότι τουλάχιστον ένα από τα K, Λ είναι το κενό σύνολο. Πράγματι, εάν κανένα από αυτά δεν ήταν κενό, τότε θα υπήρχε $a \in K$ και $b \in \Lambda$. Δηλαδή θα υπήρχε $(a,b) \in K \times \Lambda$, το οποίο είναι άτοπο. Δείξαμε λοιπόν ότι $K = \emptyset$ ή $\Lambda = \emptyset \Rightarrow \kappa = 0$ ή $\lambda = 0$.

'Ασκηση 3: Αποδείξτε ότι $\mathfrak{c}^{\mathfrak{c}} = 2^{\mathfrak{c}}$ (όπου $\mathfrak{c} = 2^{\aleph_0}$ είναι ο πληθάριθμος του συνεχούς).

Εφόσον $\mathfrak{c}=|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$ και $|\mathbb{N}|=\aleph_0, \ \vartheta$ α πρέπει $\mathfrak{c}\geq\aleph_0.$ Επειδή ακόμη $\aleph_0\geq 2,$ έπεται η ανισοτική σχέση $\mathfrak{c}^\mathfrak{c}\geq 2^\mathfrak{c}.$

Για να δείξουμε τελικά την ισοπληθικότητα, θα πρέπει να δείξουμε και την αντίστροφη ανισότητα. Θεωρούμε λοιπόν την συνάρτηση $M:(\mathbb{R}\to\mathbb{R})\to(\mathbb{R}^2\to\{0,1\})$, οποία σε κάθε $f\in(\mathbb{R}\to\mathbb{R})$ αντιστοιχεί την συνάρτηση $g\in(\mathbb{R}^2\to\{0,1\})$, που ορίζεται ως:

$$g(x,y) = \begin{cases} 0, \ (x,y) \not\in f \\ 1, \ (x,y) \in f \end{cases}$$

και παρατηρούμε ότι αυτή είναι μονομορφισμός. Πράγματι, αν $f_1 \neq f_2 \in (\mathbb{R} \to \mathbb{R})$, αυτές θα διαφέρουν σε ένα τουλάχιστον σημείο, έστω στο a. Επομένως, $(a,f_2(a)) \not\in f_1$ και $(a,f_2(a)) \in f_2$. Από αυτό έπεται ότι $M(f_1)(a,f_2(a))=0$ και $M(f_2)(a,f_2(a))=1$, οπότε κατ΄ επέκταση $M(f_1) \neq M(f_2)$.

Από το Μέρος: 'Μέρος Ι' των ασκήσεων, και συγκεκριμένα στην Άσκηση: 'Άσκηση 2, 2.2', έχουμε δείξει ότι ισχύει η ισοπληθικότητα:

$$(A \rightarrow B) =_c (X \rightarrow Y)$$
, όταν $A =_c X$ και $B =_c Y$

Επειδή επιπλέον από την Άσκηση: ' \mathbf{A} σκηση $\mathbf{5}$ ' του ίδιου μέρους έχουμε βρει ότι $\mathbb{R}^2 =_c \mathbb{R}$, στην περίπτωσή μας ϑ α πρέπει να ισχύει:

$$(\mathbb{R}^2 \to \{0,1\}) =_c (\mathbb{R} \to \{0,1\})$$

 $^{^1}$ Η υπόθεση αυτή είναι δυνατόν να γίνει: παράδειγμα τριών τέτοιων συνόλων είναι τα $n,k imes\{0\},l imes\{1\}$

Επομένως, ο προηγούμενος μονομορφισμός M μας δείχνει ουσιαστικά ότι $(\mathbb{R} \to \mathbb{R}) \leq_c (\mathbb{R} \to \{0,1\})$, ή ισοδύναμα ότι $\mathfrak{c}^{\mathfrak{c}} < 2^{\mathfrak{c}}$.

Αυτό αποδειχνύει το ζητούμενο, ότι δηλαδή $\mathfrak{c}^{\mathfrak{c}} = 2^{\mathfrak{c}}$.

Άσκηση 4: Έστω κ πληθάριθμος τέτοιος ώστε $\kappa>1$ και $\kappa\cdot\kappa=\kappa$. Αποδείξτε ότι $2^\kappa=\kappa^\kappa$.

Έστω σύνολο K το οποίο έχει πληθάριθμο κ . Για να δείξουμε την ισότητα $2^{\kappa}=\kappa$, ισοδύναμα θα δείξουμε την ισοπληθικότητα των συνόλων:

$$(K \to K) =_{c} (K \to \{0, 1\})$$

Για τον σκοπό αυτό θεωρούμε την συνάρτηση $M:(K\to K)\to (K^2\to\{0,1\}),$ η οποία αντιστοιχεί σε κάθε $f\in (K\to K)$ την συνάρτηση $g\in (K^2\to\{0,1\}),$ που ορίζεται ως:

$$g(x,y) = \begin{cases} 0, & (x,y) \notin f \\ 1, & (x,y) \in f \end{cases}$$

Παρατηρούμε ότι αυτή είναι μία αμφιμονοσήμαντη απεικόνιση.

Πράγματι, η συνάρτηση $\tilde{M}:(K^2\to\{0,1\})\to (K\to K)$ η οποία σε κάθε συνάρτηση $g\in (K^2\to\{0,1\})$ αντιστοιχεί την $f\in (K\to K)$, που ορίζεται ως:

$$f(x) = y \Leftarrow g(x, y) = 1$$

είναι η αντίστροφη απεικόνιση της M. Αυτό δείχνει την ισοπληθικότητα:

$$(K^2 \to \{0,1\}) =_c (K \to K)$$

Από το Μέρος: '**Μέρος Ι**' των ασκήσεων, και συγκεκριμένα στην Άσκηση: '**Άσκηση 2**, **2.2**', έχουμε δείξει ότι ισχύει η ισοπληθικότητα:

$$(A \rightarrow B) =_c (X \rightarrow Y)$$
, όταν $A =_c X$ και $B =_c Y$

Επειδή επιπλέον $\kappa \cdot \kappa = \kappa$, θα πρέπει να αληθεύει η ισοπληθικότητα $K \times K =_c K$, και κατ΄ επέκταση ότι:

$$(K \to \{0,1\}) =_c (K \to K)$$

Άσκηση 5: Σε καθεμία από τις παρακάτω περιπτώσεις, βρείτε πληθαρίθμους κ, λ, μ για να αποδείξετε ότι οι παρακάτω συνεπαγωγές $\delta \epsilon \nu$ ισχύουν:

$$5.1 \ \kappa < \lambda \Rightarrow \kappa + \mu < \lambda + \mu$$

$$5.2 \ \kappa < \lambda \Rightarrow \kappa \cdot \mu < \lambda \cdot \mu$$

$$5.3 \ \kappa < \lambda \Rightarrow \kappa^{\mu} < \lambda^{\mu}$$

$$5.4 \ \kappa < \lambda \Rightarrow \mu^{\kappa} < \mu^{\lambda}$$

5.1 Δεν ισχύει για $\kappa = \aleph_0$, $\lambda = \mathfrak{c}$, $\mu = 2^{\mathfrak{c}}$.

Πράγματι, ισχύει ότι $\aleph_0 < \mathfrak{c}$ και επιπλέον ισχυριζόμαστε ότι $\aleph_0 + 2^{\mathfrak{c}} = \mathfrak{c} + 2^{\mathfrak{c}}$. Αυτό διότι:

$$2^{\mathfrak{c}} \leq \aleph_0 + 2^{\mathfrak{c}} \leq 2^{\mathfrak{c}} + 2^{\mathfrak{c}} = 2^{\mathfrak{c}+1} = 2^{\mathfrak{c}}$$

$$2^{\mathfrak{c}} < \mathfrak{c} + 2^{\mathfrak{c}} < 2^{\mathfrak{c}} + 2^{\mathfrak{c}} = 2^{\mathfrak{c}+1} = 2^{\mathfrak{c}}$$

 $5.2~\Delta$ εν ισχύει για $\kappa=\aleph_0,~\lambda=\mathfrak{c},~\mu=2^{\mathfrak{c}}.$

Πράγματι, ισχύει ότι $\aleph_0 < \mathfrak{c}$ και επιπλέον ισχυριζόμαστε ότι $\aleph_0 \cdot 2^{\mathfrak{c}} = \mathfrak{c} \cdot 2^{\mathfrak{c}}$. Αυτό διότι:

$$2^{\mathfrak{c}} < \aleph_0 \cdot 2^{\mathfrak{c}} < 2^{\mathfrak{c}} \cdot 2^{\mathfrak{c}} = 2^{2\mathfrak{c}} = 2^{\mathfrak{c}}$$

$$2^{\mathfrak{c}} < \mathfrak{c} \cdot 2^{\mathfrak{c}} < 2^{\mathfrak{c}} \cdot 2^{\mathfrak{c}} = 2^{2\mathfrak{c}} = 2^{\mathfrak{c}}$$

5.3 Δεν ισχύει για² $\kappa = \aleph_0$, $\lambda = \mathfrak{c}$, $\mu = \aleph_0$.

 $^{^2}$ Μια ευχολότερη, περισσότερο τετριμμένη περίπτωση είναι αυτή όπου $\kappa,\lambda
eq \mu = 0$

Πράγματι, αυτό έχει δειχθεί στο Μέρος 'Μέρος Ι' των ασκήσεων, και συγκεκριμένα στην Άσκηση: 'Άσκηση 9', αφού το αποτέλεσμα της άσκησης έδειξε ότι $(\mathbb{N} \to \mathbb{R}) =_c \mathbb{R}$ και επιπλέον κατά την διάρκεια της απόδειξης βρέθηκε μονομορφισμός $\Psi: \Psi_6 \circ \Psi_5 \circ \Psi_4 \circ \Psi_3 \circ \Psi_2 \circ \Psi_1$:

$$(\mathbb{N} \to \mathbb{R}) \overset{\Psi_1}{\rightarrowtail} (\mathbb{R} \to [0,1]) \overset{\Psi_2}{\rightarrowtail} (\mathbb{N} \to \mathbb{N}^3) \overset{\Psi_3}{\rightarrowtail} (\mathbb{N} \to \mathbb{N}) \overset{\Psi_4}{\rightarrowtail} \mathcal{P}(\mathbb{N}^2) \overset{\Psi_5}{\rightarrowtail} \mathcal{P}(\mathbb{N}) \overset{\Psi_6}{\rightarrowtail} \mathbb{R}$$

οπότε:

$$(\mathbb{N} \to \mathbb{R}) =_c (\mathbb{N} \to \mathbb{N}) =_c \mathbb{R}$$

5.4 Δεν ισχύει για $\kappa = 1, \ \lambda = 2, \ \mu = 1 \ (1^1 = 1^2).$

Άσκηση 6: Έστω κ μη μηδενικός πληθάριθμος. Αποδείξτε ότι δεν υπάρχει σύνολο που να έχει ως στοιχεία όλα τα σύνολα με πληθάριθμο κ.

Εφόσον $\kappa \neq 0$, κάθε σύνολο K με πληθάριθμο κ θα έχει τουλάχιστον 1 στοιχείο. Έστω K ένα σύνολο με πληθάριθμο κ και $a \in K$ ένα στοιχείο του. Υποθέτουμε προς άτοπο ότι η κλάση $[\![A\mid set(A),\mid K\mid =\kappa]\!]$ είναι σύνολο. Επειδή είναι σύνολο, το υποσύνολό της:

$$\llbracket (K - \{a\}) \cup \{b\} \mid b \in \mathcal{W} \rrbracket \subseteq \llbracket A \mid set(A), \mid A \mid = \kappa \rrbracket,$$
όπου \mathcal{W} ο χόσμος των αντιχειμένων

θα είναι επίσης σύνολο. Θεωρούμε τέλος την συνάρτηση f που ορίζεται ως:

$$f(X) = \begin{cases} b, & \text{sán } X = (K - \{a\}) \cup \{b\} \\ a, & \text{sán } X = K \end{cases}$$

και υπό τις υποθέσεις μας θα πρέπει να ισχύει ότι το:

$$f\Big[\llbracket (K - \{a\}) \cup \{b\} \mid b \in \mathcal{W} \rrbracket \Big] = \mathcal{W}$$

είναι σύνολο. Αυτό είναι όμως άτοπο.

Άσκηση 7: Έστω κ πληθάριθμος. Ορίζουμε το κ! ως:

$$κ! = card\{f \mid f \epsilon i vai μετάθεση του K\}$$

όπου K είναι ένα σύνολο με πληθάριθμο κ . Αποδείξτε ότι το κ ! είναι καλά ορισμένο, δηλαδή είναι ανεξάρτητο από την επιλογή του συνόλου K.

Έστω K,L δύο σύνολα με πληθάριθμο κ . Θεωρούμε, εφόσον έχουν τον ίδιο πληθάριθμο, την αμφιμονοσήμαντη απεικόνηση από το ένα στο άλλο: $\hat{f}:K\to L$ και επίσης την απεικόνηση F η οποία στέλνει κάθε συνάρτηση $f\in (K\to K)$ στην συνάρτηση $g\in (L\to L)$. Η g ορίζεται ως:

$$(x, f(x)) \in f \Rightarrow (\hat{f}(x), \hat{f} \circ f(x)) \in g$$

Καταρχάς να δικαιολογηθεί ότι η g είναι συνάρτηση στο $(L \to L)$. Πράγματι, επειδή η \hat{f} είναι επί συνάρτηση, όλες οι τιμές του L ανήκουν στην εικόνα της. Επιπλέον, επειδή η f είναι συνάρτηση και η \hat{f} είναι συνάρτηση του $(L \to L)$, η g θα πρέπει να είναι επίσης συνάρτηση του $(L \to L)$.

Ισχυριζόμαστε ότι η F είναι 1-1. Πράγματι, εάν $f_1, f_2 \in (K \to K)$ είναι 2 συναρτήσεις που διαφέρουν, θα διαφέρουν σε ένα σημείο, έστω στο $a \in K$. Επομένως:

$$(a, f_1(a)) \neq (a, f_2(a)) \xrightarrow{\hat{f}} F(f_1) \ni (\hat{f}(a), \hat{f} \circ f_1(a)) \neq (\hat{f}(a), \hat{f} \circ f_2(a)) \in F(f_2)$$

και από αυτό έπεται ότι $F(f_1) \neq F(f_2) \Rightarrow \eta$ F είναι 1-1. Το 1-1 της F μας δίνει την ανισότητα των πληθικοτήτων:

$$card\{f \mid f$$
 είναι μετάθεση του $K\} \leq card\{f \mid f$ είναι μετάθεση του $K\}$

Εφόσον η κατεύθυνση της \hat{f} δεν έπαιξε ρόλο στην διαδικασία της απόδειξης, τα ίδια επειχειρήματα μπορούν να εφαρμοστούν και στην αντίστροφη κατεύθυνση. Επομένως:

$$card\{f\mid f$$
 είναι μετάθεση του $K\}\geq card\{f\mid f$ είναι μετάθεση του $K\}$

Από το Θεώρημα $Schr\"{o}der - Bernstein$, προκύπτει τελικά η ισοπληθικότητα των 2 συνόλων. Οπότε το $\kappa!$ είναι ανεξάρτητο της επιλογής των συνόλων.

Άσκηση 8: Στο σύνολο ω × ω ορίζουμε την σχέση \Re ως εξής:

$$(a,b)\Re(c,d) \Leftrightarrow (2a+1)2^d \le (2c+1)2^b$$

όπου ' \leq ' είναι η συνήθης διάταξη στους φυσικούς αριθμούς. Αποδείξτε ότι η παραπάνω σχέση είναι ολική διάταξη στο $\omega \times \omega$. Είναι η σχέση ' \Re ' καλή διάταξη;

Καταρχάς δείχνουμε ότι είναι διάταξη:

- i. Είναι ανακλαστική: Ισχύει ότι $(2a+1)2^b = (2a+1)2^b$, άρα ειδικότερα $(2a+1)2^b \le (2a+1)2^b$ και συνεπώς $(a,b)\Re(a,b)$.
- ii. Είναι αντισυμμετρική: Εάν $(2a+1)2^d \le (2c+1)2^b$ και $(2c+1)2^b = (2a+1)2^d$, τότε $(2a+1)2^d = (2c+1)2^b$. Επειδή κάθε άρτιος αριθμός είναι πρώτος προς κάθε περιττό, ειδικότερα θα πρέπει 2a+1=2c+1 και $2^d=2^b\Rightarrow a=c$, $b=d\Rightarrow (a,b)=(c,d)$.
- iii. Είναι μεταβατιχή: Εάν $(2a+1)2^d \le (2c+1)2^b$ και $(2c+1)2^f \le (2e+1)2^d$, τότε:

$$(2a+1)2^d 2^f \le (2c+1)2^b 2^f \le (2e+1)2^b 2^d \Rightarrow (2a+1)2^f \le (2e+1)2^b$$

 Δ ηλαδή εάν $(a,b)\Re(c,d)$ και $(c,d)\Re(e,f)$, τότε $(a,b)\Re(e,f)$.

Εφόσον οι αριθμοί $\alpha a, b, c, d$ είναι φυσικοί, το ίδιο θα συμβαίνει και για τους $(2a+1)2^d, (2c+1)2^b$. Επειδή το σύνολο ω εφοδιασμένο με την διάταξη ' \leq ' είναι ολικά διατεταγμένο, θα ισχύει:

$$(2a+1)2^d \le (2c+1)2^b$$
 $\acute{\eta} (2c+1)2^b \le (2a+1)2^d$

Επομένως η 'Ά' είναι ολική διάταξη.

Εάν η ' \Re ' δεν είναι καλή διάταξη, τότε θα υπάρχει γνησίως φθίνουσα ακολουθία διατεταγμένων ζευγών. Ισοδύναμα, θα υπάρχει γνησίως φθίνουσα ακολουθία αριθμών της μορφής $(2a+1)2^b$, οι οποίοι είναι φυσικοί. Αυτό έρχεται σε αντίθεση με την αρχή της άπειρης καθόδου και συνεπώς θα πρέπει η διάταξη ' \Re ' να είναι καλή διάταξη.

Άσκηση 9: Έστω S ένα πεπερασμένο σύνολο με n στοιχεία και $\mathfrak{R} \subseteq S \times S$ μία ολική διάταξη στο S. Υπολογίστε το πλήθος των στοιχείων του συνόλου \mathfrak{R} .

Κατασχευάζουμε ένα γράφημα G=(V,E) με τον εξής τρόπο:

- Το σύνολο κορυφών (V) ταυτίζεται με το S,
- Το σύνολο αχμών (E) είναι αχριβώς το $\{\{a,b\}\mid (a,b)\in\mathfrak{R}\}.$

Εφόσον η σχέση \Re είναι ολική διάταξη, οποιαδήποτε 2 στοιχεία του S είναι συγκρίσιμα, και άρα το γράφημα G είναι πλήρες. Δεν είναι όμως απλό διότι υπάρχουν (ακριβώς και μόνο) οι θηλιές $\{a,a\}=\{a\}, \forall a\in V.$ Θεωρούμε λοιπόν το παραγόμενο γράφημα: $G'=(V,E-\bigcup_{a\in S}\{\{a\}\})$ και παρατηρούμε ότι είναι απλό και πλήρες. Επειδή είναι απλό και πλήρες, θα έχει ακριβώς $\frac{|V|(|V|-1)}{2}$ ακμές. Άρα το G έχει $\frac{|V|(|V|-1)}{2}+|V|=\frac{|V|(|V|+1)}{2}$ ακμές. Τέλος, επειδή |V|=|S|=n και $|E|=|\Re|=\frac{|V|(|V|+1)}{2}$, έχουμε ότι:

$$|\mathfrak{R}| = \frac{n(n+1)}{2}$$

Σχήμα 1: Ένα μη απλό, πλήρες γράφημα με 7 κορυφές.

'Ασκηση 10: Έστω (P, \leq_p) και (Q, \leq_Q) δύο μερικά διατεταγμένοι χώροι και $f: P \to Q$ μία συνάρτηση τέτοια ώστε:

$$x <_P y \Rightarrow f(x) <_Q f(y)$$

για κάθ $\epsilon x, y \in P$.

10.1 Μπορούμ ϵ να συμπ ϵ ράνουμ ϵ ότι η f ϵ ίναι 1-1;

10.2 Μπορούμε να συμπεράνουμε ότι $x <_P y \Leftrightarrow f(x) <_Q f(y)$;

10.1 Ενδέχεται να μην είναι 1-1. Υποθέτουμε ότι $P=\{A,B,1,2\},\ Q=\{1,2=n\},\ A\leq_P B,\ 1\leq_P 2$ και $1\leq_Q 2$. Η συνάρτηση f για τη οποία ισχύει:

$$f = \begin{bmatrix} A \mapsto 1 \\ B \mapsto 2 \\ 1 \mapsto 1 \\ 2 \mapsto 2 \end{bmatrix}$$

Σχήμα 1: Μια περίπτωση όπου η συνάρτηση δεν είναι έχει την ιδιότητα της εκφώνησης αλλά δεν είναι 1-1. ενεικονική.

Το συμπέρασμα θα ίσχυε εάν οι χώροι ήταν ολικά διατεταγμένοι. Επίσης ισχύει εάν η συνάρτηση περιοριστεί στις αλυσίδες του διατεταγμένου χώρου (P, \leq_P) .

 $10.2~{
m K}$ αι πάλι, η αντίστροφη κατεύθυνση είναι κάτι που δεν ισχύει. Στο παράδειγμα που αναφέρθηκε προηγουμένως (στο προηγούμενο ερώτημα), έχουμε ότι $f(A)=1\leq_Q f(2)=2$ αλλά τα A,2 δεν είναι συγκρίσιμα στον P.

'Ασκηση 11: Έστω A ένα σύνολο και $\mathfrak R$ μία σχέση στο A. Ορίζουμε την σχέση $\mathfrak R^{-1}$ ως εξής:

$$\mathfrak{R}^{-1} = \{(u, v) \in A \times A \mid (v, u) \in \mathfrak{R}\}\$$

 $\Delta \epsilon$ ίξτε ότι εάν \Re είναι μερική διάταξη, τότε και η \Re^{-1} είναι επίσης μερική διάταξη.

 Δ είχνουμε ότι:

• Είναι αυτοπαθής: Πράγματι, ισχύει ότι:

$$u\Re u \Rightarrow (u,u) \in \Re \Rightarrow (u,u) \in \Re^{-1} \Rightarrow u\Re^{-1}u$$

- Είναι αντισυμμετρική: Εάν $u\Re^{-1}v$ και $v\Re^{-1}u$, τότε $v\Re u$ και $u\Re v$. Επειδή η \Re είναι μερική διάταξη, u=v.
- Είναι μεταβατική: Εάν $u\Re^{-1}v$ και $v\Re^{-1}w$, τότε $v\Re u$ και $w\Re v$. Επειδή η \Re είναι μερική διάταξη, $w\Re u$. Τελικά, $u\Re^{-1}w$

Άσκηση 12: Για κάθε ακέραιο $n \in \mathbb{N}^*$, συμβολίζουμε με f(n) το πλήθος των διαφορετικών ανά 2 πρώτων παραγόντων του n. Στο σύνολο \mathbb{N}^* ορίζουμε την εξής διμελή σχέση:

$$(\forall m, n \in \mathbb{N}^*) \big[m \Re n : \Leftrightarrow m = n \ \emph{\emph{\eta}} \ [f(m) = f(n) \ \emph{\emph{kai}} \ m < n] \big]$$

Αποδείξτε ότι η παραπάνω διμελής σχέση είναι καλή διάταξη στον \mathbb{N}^* . Σχεδιάστε μία εικόνα για τον καλά διατεταγμένο χώρο \mathbb{N}^* .

Κατ΄ αρχάς δείχνουμε ότι είναι μερική διάταξη:

- Είναι αυτοπαθής: Εξ ορισμού ισχύει $m\Re m$, αφού m=m.
- Είναι αντισυμμετρική: Εάν $m\Re n$ και $n\Re m$, τότε m=n ή [m>n και m< n]. Η δεύτερη περίπτωση δεν γίνεται να ισχύει, οπότε m=n.
- Είναι μεταβατική: Εάν $m\Re n$ και $n\Re p$, τότε f(m)=f(n)=f(p) και $m\leq n\leq p$. Εάν m=n ή n=p, είναι άμεσο ότι $m\Re p$. Διαφορετικά, ισχύει m< p και συνεπώς $m\Re p$.

Η διάταξη αυτή είναι επίσης καλή διάταξη. Δηλαδή δεν υπάρχει άπειρη ακολουθία $(x_i)_{i\in\mathbb{N}}$ του \mathbb{N}^* διαφορετικών ανά 2 στοιχείων για την οποία ισχύει:

$$\cdots \Re x_{i+1} \Re x_i \Re \cdots \Re \cdots \Re x_2 \Re x_1 \Re x_0$$

Πράγματι, εάν τέτοια ακολουθία (συγκρίσιμων ανά 2) στοιχείων υπήρχε, τότε θα ίσχυε:

$$f(x_1) = f(x_2) = \cdots = f(x_i) = f(x_{i+1}) = \cdots$$
 fai $x_0 > x_1 > x_2 > \cdots > x_i > x_{i+1} > \cdots$

το οποίο είναι άτοπο, αφού δεν υπάρχει γνωσίως φθίνουσα ακολουθία φυσικών, από την αρχή της άπειρης καθόδου.

Σχήμα 2: Το διάγραμμα Hasse της καλής διάταξης \mathfrak{R}.

'Ασκηση 13: Aν P, Q είναι μερικά διατεταγμένοι χώροι, αποδείξτε ότι και το άθροισμά τους $P +_o Q$ είναι μερικά διατεταγμένος χώρος.

Πράγματι, θα δείξουμε ότι η διάταξη:

$$\leq_o: (i,j) \leq_o (k,l) \Leftrightarrow i \leq j$$
 if $[i=j=0$ kal $j \leq_P k]$ if $[i=j=1$ kal $j \leq_Q k]$

είναι μεριχή διάταξη.

- Είναι αυτοπαθής: Πράγματι, ισχύει $j \leq_P j$ και $j \leq_Q j \Rightarrow (i,j) \leq_o (i,j)$, για $i \in \{0,1\}$.
- Είναι αντισυμμετρική: Εάν $(i,j) \leq_o (k,l)$ και $(k,l) \leq_o (i,j)$, τότε θα πρέπει οπωσδήποτε i=k.
 - \diamond Αν i=k=0, τότε $j\leq_P l$ και $l\leq_P j\Rightarrow i=k,\ j=l\Rightarrow (i,j)=(k,l).$
 - \diamond Αν i=k=1, τότε $j\leq_Q l$ και $l\leq_Q j\Rightarrow i=k,\ j=l\Rightarrow (i,j)=(k,l).$
- Είναι μεταβατική: Έστω $(i,j) \leq_o (k,l)$ και $(k,l) \leq_o (m,n)$.
 - \diamond Αν i = k = m = 0, τότε $j \leq_P l \leq_P n \Rightarrow j \leq n \Rightarrow (i, j) \leq_o (m, n)$.
 - \diamond Αν i=k=m=1, τότε $j\leq_Q l\leq_Q n\Rightarrow j\leq n\Rightarrow (i,j)\leq_o (m,n).$
 - \diamond Αν i=k=m-1=0, τότε εξ ορισμού $(i,j)\leq_o (m,n).$
 - $Aν i = k 1 = m 1 = 0, τότε εξ ορισμού <math>(i, j) \le_o (m, n).$

'Ασκηση 14:
$$A\nu P =_o P'$$
 και $Q =_o Q'$, δείξτε ότι $P +_o Q =_o P' +_o Q'$.

Εφόσον οι χώροι P,P' είναι όμοιοι, θα υπάρχει αμφιμονοσήμαντη $\pi:P\rightarrowtail P'$ η οποία διατηρεί τις διατάξεις. Ανάλογα, επειδή Q,Q' είναι όμοιοι, θα υπάρχει αμφιμονοσήμαντη $\sigma:Q\rightarrowtail Q'$ η οποία διατηρεί τις διατάξεις. Θεωρούμε την απειχόνιση $\psi:P+_oQ\to P'+_oQ'$ η οποία ορίζεται ως:

$$\psi(a,x) = \begin{cases} (a,\pi(x)), & \text{sán } a = 0 \\ (a,\sigma(x)), & \text{sán } a = 1 \end{cases}$$

και ισχυριζόμαστε ότι πρώτον είναι αμφιμονοσήμαντη και κατά δεύτερον ότι διατηρεί τις διατάξεις (δηλ. είναι ομοιότητα).

Είναι αμφιμονοσήμαντη, αφού η απεικόνιση:

$$\bar{\psi}(a,x) = \begin{cases} (a,\pi^{-1}(x)), \text{ ean } a=0\\ (a,\sigma^{-1}(x)), \text{ ean } a=1 \end{cases}$$

είναι η αντίστροφή της.

Πράγματι:

$$\psi\circ\bar{\psi}(a,x)=\left. \begin{cases} (a,\pi\circ\pi^{-1}(x)), \text{ sán } a=0\\ (a,\sigma\circ\sigma^{-1}(x)), \text{ sán } a=1 \end{cases} = (a,x)$$

χαι:

$$\bar{\psi}\circ\psi(a,x)=\left\{ \begin{matrix} (a,\pi^{-1}\circ\pi(x)), \text{ ean } a=0\\ (a,\sigma^{-1}\circ\sigma(x)), \text{ ean } a=1 \end{matrix} \right\}=(a,x)$$

Επιπλέον διατηρεί τις διατάξεις, καθώς:

- Aν $(a,x) \leq_o (b,y)$, τότε:
 - $\diamond \text{ Av } a = b = 0, \ x \leq_P y \Rightarrow \pi(x) \leq_P' \pi(y) \Rightarrow (a, \pi(x)) \leq_o' (b, \pi(y)) \Rightarrow \psi(a, x) \leq_o' \psi(b, y).$
 - $\diamond \ \ \mathrm{Av} \ a = b = 1, \ x \leq_Q y \Rightarrow \sigma(x) \leq_Q' \sigma(y) \Rightarrow (a, \sigma(x)) \leq_o' (b, \sigma(y)) \Rightarrow \psi(a, x) \leq_o' \psi(b, y).$
 - \diamond Aν a=b-1=0, τότε εξ ορισμού $(a,\pi(x))\leq_o (b,\sigma(x))\Rightarrow \psi(a,x)\leq'_o \psi(b,y).$

Αυτά τα δύο, το ότι είναι αμφιμονοσήμαντη και διατηρεί τις διατάξεις, δείχνουν ότι η ψ είναι ομοιότητα και κατ΄ επέκταση ότι $P+_oQ=_oP'+_oQ'$.

Άσκηση 15: Αν U και V είναι καλά διατεταγμένοι χώροι, δείξτε ότι και το άθροισμά τους $U+_oV$ είναι καλά διατεταγμένος χώρος.

Από την Άσκηση: "Ασκηση 13", ο χώρος $U +_o V$ είναι μερικά διατεταγμένος. Οπότε, αρκεί να δείξουμε ότι δεν υπάρχει γνησίως φθίνουσα ακολουθία της μορφής:

$$\cdots \leq_o (a_{i+1}, x_{i+1}) \leq_o (a_i, x_i) \leq_o \cdots \leq_o (a_1, x_1) \leq_o (a_0, x_0)$$

Προς άτοπο υποθέτουμε ότι τέτοια αχολουθία υπάρχει και διαχρύνουμε τις εξής 3 περιπτώσεις:

Εάν $\forall n \in \mathbb{N}, \ a_n = 0$, τότε ισοδύναμα έχουμε ότι $\cdots \leq_U x_{i+1} \leq_U x_i \leq_U \cdots \leq_U x_1 \leq_U x_0$. Αυτό δεν είναι δυνατόν να συμβαίνει, αφού ο U είναι καλά διατεταγμένος.

Εάν $\forall n \in \mathbb{N}, \ a_n = 1$, τότε ισοδύναμα έχουμε ότι $\cdots \leq_V x_{i+1} \leq_V x_i \leq_V \cdots \leq_V x_1 \leq_V x_0$. Αυτό δεν είναι δυνατόν να συμβαίνει, αφού ο V είναι καλά διατεταγμένος.

Εάν υπάρχει δείκτης $k\in\mathbb{N}$ για τον οποίο ισχύει $a_k\neq a_{k-1}$, υποθέτουμε χωρίς βλάβη της γενικότητας ότι $a_{k-1}=1$ και παρατηρούμε ότι $\forall n\geq k$ ισχύει $a_n=0$. Αυτό διότι αν το αντίθετο συνέβαινε, θα είχαμε έναν n για τον οποίον $(a_n=1,x_n)\leq_o(a_k=0,x_k)$ (άτοπο στον ορισμό της διάταξης ' \leq_o '). Κατασκευάζουμε λοιπόν μία νέα ακολουθία $(b_n,y_n)=(a_{k+n},x_{k+n})$ και αναγόμαστε στην πρώτη περίπτωση.

Σε κάθε περίπτωση, καταλήγουμε σε άτοπο, και συνεπώς θα πρέπει ο χώρος $U+_oV$ να είναι καλά διατεταγμένος.

Άσκηση 16: Δείξτε ότι:

$$\{0\} +_o \mathbb{N} =_o \mathbb{N} \neq_o \mathbb{N} +_o \{0\}$$

Συνεπώς, το άθροισμα 2 καλά διατεταγμένων χώρων δεν έχει (απαραίτητα) την αντιμεταθετική ιδιότητα.

Δείχνουμε ότι $\{0\} +_o \mathbb{N} =_o \mathbb{N}$.

Πράγματι, η απεικόνιση $\pi:\{0\}+_o\mathbb{N}\to\mathbb{N}$ που ορίζεται ως:

$$\pi(a,x) = \begin{cases} 0, \text{ ean } a = 0 \\ x+1, \text{ ean } a = 1 \end{cases}$$

είναι ομοιότητα. Είναι αμφιμονοσήμαντη αφού η:

$$\sigma(x) = \begin{cases} (0,0), & \text{sán } x = 0\\ (1,x-1), & \text{sán } x \neq 0 \end{cases}$$

είναι η αντίστροφή της. Επιπλέον, διατηρούνται οι διατάξεις, αφού:

- Av $(a, x) \leq_o (b, y)$:
 - \diamond Αν a=b=0, τότε $\pi(a,x)=\pi(b,y)=0 \Rightarrow 0 \leq 0.$
 - \diamond Αν a=b-1=0, τότε $\pi(a,x)=0\leq \pi(b,y)=y+1\Rightarrow 0\leq y$.
 - \diamond Αν a=b=1, τότε $\pi(a,x)=x+1\leq \pi(b,y)=y+1\Rightarrow x\leq y.$

Δείχνουμε ότι $\mathbb{N} +_o \{0\} \neq_o \mathbb{N}$.

Εάν υπήρχε ομοιότητα μεταξύ αυτών των 2 συνόλων, έστω $\pi: \mathbb{N} +_o \{0\} \rightarrowtail \mathbb{N}$, το διατεταγμένο ζεύγος (1,0) θα απεικονίζοταν σε έναν φυσικό αριθμό ο οποίος θα ήταν το μέγιστο όλων των φυσικών. Αυτό διότι:

$$(a,x) \leq (1,0) \Rightarrow \pi(a,x) \leq \pi(1,0),$$
 όπου $a \in \{0,1\}$ και η π είναι επί

Κάτι τέτοιο είναι όμως άτοπο, αφού το σύνολο των φυσικών δεν είναι άνω φραγμένο.