Máquinas térmicas e de fluxo Aula 08: Análises de Energia em Sistemas fechados

DSc. Eng. Samuel Moreira Duarte Santos Engenheiro Mecânico CREA MG 106478D

Rio de Janeiro, 31 de maio 2023

Samuel Moreira Duarte Santos

Agenda

- Equação de estado do gás ideal;
- Primeira lei da termodinâmica para sistemas fechados; e
- Aplicação prática cotidiana.

- Tabelas de propriedades fornecem informações bastante exatas sobre as propriedades, mas elas são volumosas e sujeitas a erros de digitação;
- Uma abordagem mais prática e desejável seria ter algumas relações entre as propriedades que fossem simples e suficientemente gerais e precisas;
- Qualquer equação que relacione pressão, temperatura e volume específico de
- uma substância é chamada de equação de estado;
- A equação de estado para substâncias na fase gasosa mais simples e mais conhecida é a equação de estado do gás ideal;
- Essa equação prevê o **comportamento P-v-T** de um gás com bastante precisão dentro de uma determinada região.

- Gás e vapor são frequentemente usados como sinônimos;
- A fase vapor de uma substância é normalmente chamada de gás quando está acima da temperatura crítica;
- Em geral, entende-se por vapor um gás que não está longe do estado da condensação;

• Em 1802, os franceses J. Charles e J. Gay-Lussac, determinaram experimentalmente que a baixas pressões o volume de um gás é proporcional à sua temperatura;

Pv = RT

- Onde a constante de proporcionalidade R é chamada de constante do gás;
- A equação é chamada de equação de estado do gás ideal, ou simplesmente relação do gás ideal, e um gás que obedece a essa relação é chamado de gás ideal.

• A constante R do gás é diferente para cada gás e é determinada a partir de

$$R = \frac{R_u}{M} \left[\frac{kJ}{kg \ K} \right]$$

• Onde R_{u} é chamada de **constante universal dos gases**;

$$R_{u} = \begin{cases} 8,31447 \text{ kJ/kmol} \cdot \text{K} \\ 8,31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0,0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1,98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10,7316 \text{ psia} \cdot \text{pé}^{3}/\text{lbmol} \cdot \text{R} \\ 1.545,37 \text{ pé} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$

• *M* é a massa molar (também chamada de peso molecular);

A massa de um sistema é igual ao produto de sua massa molar M e o número de mols N:

m = MN[kg]

Substância	Fórmula	Massa molar, M kg/kmol	Constante do gás, R kJ/kg-K*
Ar	5.5	28,97	0,2870
Amônia	NH ₃	17,03	0,4882
Argônio	Ar	39,948	0,2081
Benzeno	C ₆ H ₆	78,115	0,1064
Bromo	Br ₂	159,808	0,0520
n-Butano	C4H10	58,124	0,1430
Dióxido de carbono	CO ₂	44,01	0,1889
Monóxido de carbono	CO	28,011	0,2968
Tetracloreto de carbono	CCI ₄	153,82	0,05405
Cloro	Cl ₂	70,906	0,1173
Clorofórmio	CHCI ₃	119,38	0,06964
Diclorodifluorometano (R-12)	CCI ₂ F ₂	120,91	0,06876
Diclorofluorometano (R-21)	CHCI ₂ F	102,92	0,08078
Etano	C ₂ H ₆	30,070	0,2765
Alcool etilico	C ₂ H ₅ OH	46,07	0,1805
Etileno	C ₂ H ₄	28,054	0,2964
Hélio	He	4,003	2,0769
n-Hexano	C ₆ H ₁₄	86,179	0,09647
Hidrogênio	H ₂	2,016	4,1240
Kriptônio	Kr	83,80	0,09921
Metano	CH ₄	16,043	0,5182
Alcool metilico	CH ₃ OH	32,042	0,2595
Clorometano	CH ₃ CI	50,488	0,1647
Neônio	Ne	20,183	0,4119
Nitrogênio	N ₂	28,013	0,2968
Óxido nitroso	N ₂ O	44,013	0,1889
Oxigênio	02	31,999	0,2598
Propano	C ₃ H ₈	44,097	0,1885
Propileno	C ₃ H ₆	42,081	0,1976
Dióxido de enxofre	SO ₂	64,063	0,1298
Tetrafluoroetano (R-134a)	CF ₃ CH ₂ F	102,03	0,08149
Triclorofluorometano (R-11)	CCI ₃ F	137,37	0,06052
Agua	H ₂ O	18,015	0,4615
Xenônio	Xe	131,30	0,06332

Samuel Moreira

$$V = mv \rightarrow PV = mRT$$

$$mR = (MN)R = NR_u \rightarrow PV = NR_uT$$

$$V = N\bar{v} \rightarrow P\bar{v} = R_u T$$

 $ar{v}$ É o volume específico molar, ou seja, o volume por unidade de mol (em m/kmol)

Substância	Fórmula	Massa molar, M kg/kmol	Constante do gás, R kJ/kg-K*
Ar	5 . 5	28,97	0,2870
Amônia	NH ₃	17,03	0,4882
Argônio	Ar	39,948	0,2081
Benzeno	C ₆ H ₆	78,115	0,1064
Bromo	Br ₂	159,808	0,0520
n-Butano	C4H10	58,124	0,1430
Dióxido de carbono	CO ₂	44,01	0,1889
Monóxido de carbono	CO	28,011	0,2968
Tetracloreto de carbono	CCI ₄	153,82	0,05405
Cloro	Cl ₂	70,906	0,1173
Clorofórmio	CHCI ₃	119,38	0,06964
Diclorodifluorometano (R-12)	CCI ₂ F ₂	120,91	0,06876
Diclorofluorometano (R-21)	CHCI ₂ F	102,92	0,08078
Etano	C ₂ H ₆	30,070	0,2765
Álcool etílico	C ₂ H ₅ OH	46,07	0,1805
Etileno	C ₂ H ₄	28,054	0,2964
Hélio	He	4,003	2,0769
n-Hexano	C ₆ H ₁₄	86,179	0,09647
Hidrogênio	H ₂	2,016	4,1240
Kriptônio	Kr	83,80	0,09921
Metano	CH ₄	16,043	0,5182
Alcool metílico	CH ₃ OH	32,042	0,2595
Clorometano	CH ₃ CI	50,488	0,1647
Neonio	Ne	20,183	0,4119
Nitrogēnio	N ₂	28,013	0,2968
Óxido nitroso	N ₂ O	44,013	0,1889
Oxigênio	02	31,999	0,2598
Propano	C ₃ H ₈	44,097	0,1885
Propileno	C ₃ H ₆	42,081	0,1976
Dióxido de enxofre	SO ₂	64,063	0,1298
Tetrafluoroetano (R-134a)	CF ₃ CH ₂ F	102,03	0,08149
Triclorofluorometano (R-11)	CCI ₃ F	137,37	0,06052
Água	H ₂ 0	18,015	0,4615
Xenônio	Xe	131,30	0,06332

Samuel More

• Um gás ideal é uma substância imaginária que obedece à relação:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} = R$$

- Foi observado experimentalmente que a relação do gás ideal se aproxima bastante do comportamento P-v-T dos gases reais a baixas densidades;
- A baixas pressões e altas temperaturas, a densidade de um gás diminui, e,
 nessas condições, ele se comporta como um gás ideal.

- Por questões práticas, muitos gases, como o ar, nitrogênio, oxigênio, hidrogênio, hélio, argônio, neônio, kriptônio e até mesmo gases mais pesados, como o dióxido de carbono, podem ser tratados como gases ideais com uma margem de erro desprezível (frequentemente com erros menores que 1%);
- Gases densos, como o vapor de água das usinas de potência a vapor e o vapor de refrigerante dos refrigeradores, porém, não devem ser tratados como gases ideais; e
- Para essas substâncias devem ser usadas as tabelas de propriedades.

Fator de compressibilidade

• O fator de compressibilidade é uma correção da equação de gás ideal para

gases reais;

$$Z = \frac{Pv}{RT} \to Pv = ZRT$$

• Onde:

$$Z = \frac{v_{real}}{v_{ideal}} \rightarrow v_{ideal} = \frac{RT}{P}$$

Z é o fator de compressibilidade e pode ser obtido da Figura

Fator de compressibilidade

Fator de compressibilidade

• Casos onde pode ser considerado gás ideal (Z≈1):

Caso 1	Caso 2
$p_r < 0, 1$	$p_r < 2$
Qualquer T_r	$T_r \geq 2$

• Onde:

$$p_r = \frac{p}{p_c}$$

$$T_r = \frac{T}{T_c}$$

- pr e Tr são a pressão e temperatura reduzidas; e
- pc e Tc são a pressão e temperatura críticas.

Primeira lei da termodinâmica para sistemas

• Fechado: não há fluxo de massa em suas fronteiras;

• Aberto: há fluxo de massa em suas fronteiras

 Q_{12} = calor <u>fornecido para</u> o sistema (>0)

 W_{12} = trabalho <u>executado pelo</u> sistema (>0)

$$\delta W = Fdx$$

$$\delta W = (PA)dx$$

$$\delta W = P(Adx) = PV$$

$$\delta W = PV$$

$${}_{1}^{2}W = \int_{1}^{2} p \, d\mathbb{V}$$

Primeira lei da termodinâmica

- A única maneira de variar a energia de um sistema fechado é por meio de calor ou trabalho;
- Porém, a energia deve ser conservar, isto é, a energia não pode ser criada ou destruída, apenas transformada;
- Em um sistema fechado, a energia pode ser transferida de três maneiras:
 - 1. Calor (Q) promove o aumento ou diminuição da energia das moléculas, e consequentemente a energia interna do sistema.
 - 2. Trabalho (W) é uma forma de energia que não seja proveniente de uma diferença de temperatura. A realização de trabalho sobre o sistema aumenta a energia do sistema, enquanto que a realização de trabalho pelo sistema diminui a energia dele.

A variação liquida da energia total de um sistema durante um processo é igual à diferença entre a energia total que entra e a energia total que sai do sistema durante esse processo.

Primeira lei da termodinâmica

A 1ª Lei da Termodinâmica afirma que "**energia não se cria nem se destrói**", e sua equação geral permite efetuar o balanço energético em qualquer sistema:

$$(E_2 - E_1) = (KE_2 - KE_1) + (PE_2 - PE_1) + (U_2 - U_1)$$
 ou
$$\Delta E = \Delta KE + \Delta PE + \Delta U$$

*KE é a energia cinética, EP é a potencial gravitacional e U representa a energia interna.

Primeira lei da termodinâmica

$$\int_{1}^{2} \delta Q - \int_{1}^{2} \delta W = \int_{1}^{2} dE$$

$${}_{1}Q_{2}-{}_{1}W_{2}=E_{2}-E_{1}$$

ou ainda na forma por unidade de massa:

$$_{1}q_{2}-_{1}w_{2}=e_{2}-e_{1}$$

$$dU = \delta Q - \delta W$$

$$\int_{1}^{2} dU = \int_{1}^{2} \delta Q - \int_{1}^{2} \delta W$$

$$\Delta U = {}_1^2 Q - {}_1^2 W$$

Aplicação lei da termodinâmica

Aplicação lei da termodinâmica

DSc. Eng. Samuel Moreira Duarte Santos CREA 106478D

samuelmoreira@id.uff.br

(21) 980031100

https://www.linkedin.com/in/samuel-moreira-a3669824/

http://lattes.cnpq.br/8103816816128546