МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе \mathfrak{N} 2.1.3 "Определение C_p/C_v по скорости звука в газе"

Выполнил: Студент гр. Б01-305 Миннахметов Артур

1 Введение

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор; электонный осциллограф; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом.

1.1 Теоритеческая часть

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{1}$$

где R – газовая постоянная, T – температура газа, а μ – его молярная масса. Преобразуя эту формулу, найдем

$$\gamma = \frac{\mu}{RT}c^2 \tag{2}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = \frac{n\lambda}{2}$$

где λ — длина волны звука в трубе, а n — любое целое число. Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения. Узлы смещения повторяются по всей длине трубы через $\lambda/2$. Между узлами находятся максимумы смещения.

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f \tag{3}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \quad L_{n+1} = (n+1)\frac{\lambda}{2}, \quad \dots, \quad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$
 (4)

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле (3).

2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (5)

Из (3) и (5) имеем:

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n, \quad f_2 = \frac{c}{\lambda_2} = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}, \quad \dots,$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k. \tag{6}$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

1.2 Экспериментальная установка

Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы

Рис. 2: Установка для изучения зависимости скорости звука от температуры

Соответственно двум методам измерения скорости звука в работе имеются две установки (рис. 1 и 2). В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 . Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

2 Ход работы

2.1 Измерения

1. Некоторые данные:

$$L_1=(570\pm 5)$$
 мм – начальная длина трубы, $T=296~{
m K}$ – температура в комнате, $L_2=(800\pm 1)$ мм – длина трубы для 2 измерения.

- 2. Для начала измерена зависимость длины трубы от возникновения резонанса
- 3. Также измерена зависимость резонансной частоты от температуры при постоянной длине трубы.

Частота, Гц	Длина, мм				
2280	45	124	198		
2600	40	109	171		
2900	32	91	149	210	
3200	39	94	146	202	
3500	30	81	130	180	230
2000	43	128	217		

Таблица 1: Измерения для воздуха

Частота, Гц	Длина, мм				
2000	180	113	45		
2300	196	138	80	20	
2600	212	164	110	600	6
2900	185	139	94	45	
3200	200	154	112	70	30

Таблица 2: Измерения для углекислого газа

2.2 Обработка

4. Для воздуха построим график L. Уравнения:

$$\Delta L(k)=76.5k$$
 для $\nu=2280\Gamma$ ц, $\Delta L(k)=65.5k$ для $\nu=2600\Gamma$ ц, $\Delta L(k)=59.2k$ для $\nu=2900\Gamma$ ц, $\Delta L(k)=54.1k$ для $\nu=3200\Gamma$ ц, $\Delta L(k)=49.9k$ для $\nu=3500\Gamma$ ц, $\Delta L(k)=87k$ для $\nu=2000\Gamma$ ц.

5. Для углекислого газа построим графики. Уравнения:

$$\Delta L(k)=67.5k$$
 для $\nu=2000\Gamma$ ц,
$$\Delta L(k)=58.6k$$
 для $\nu=2300\Gamma$ ц,
$$\Delta L(k)=51.6k$$
 для $\nu=2600\Gamma$ ц,
$$\Delta L(k)=46.5k$$
 для $\nu=2900\Gamma$ ц,
$$\Delta L(k)=42.4k$$
 для $\nu=3200\Gamma$ ц.

- 6. Значение скорости звука в воздухе получилось (346 \pm 1) м/с. А для углекислого газа (270 \pm 1) м/с.
- 7. Анализ измерений на второй установке тоже сводится к построению графика. Уравнения:

$$\Delta
u(k) = 220 k$$
 для $T = 27^{\circ} C,$ $\Delta
u(k) = 222.7 k$ для $T = 35^{\circ} C,$

Рис. 3: Зависмость $\Delta L(k)$ для воздуха

Рис. 4: Зависмость $\Delta L(k)$ для углекислого газа

Температура, °С	Частота, Гц	Частота,				
27	203.8	452.5	664.3	879	1095.5	1314
35	205	459	671	890	1110	1330
45	209	464	683	903	1127	1351
55	211	471	693	917	1144	1372

Таблица 3: Измерения зависимости от температуры.

Рис. 5: Зависмость $\Delta \nu(k)$ для воздуха

$$\Delta \nu(k) = 226k$$
 для $T = 45^{\circ}C$,

$$\Delta \nu(k) = 230 k$$
 для $T = 55^{\circ} C$.

Заметим, что при повышении температуры график вращается против часовой стрелки.

- 8. По графику из пункта 7 определены $\frac{c}{2L_2}=(224.7\pm3)\Gamma$ ц. Таким образом $c=360\pm4$ м/с.
- 9. Для воздуха $\gamma = (1.45 \pm 0.05)$, для углекислого газа $\gamma = 1.29 \pm 0.02$.

3 Выводы

Измерена скорость звука в воздухе, а также в углекислом газе. Они оказались равны $(353\pm3)~{\rm M/c}$ и $(270\pm1)~{\rm M/c}$ соотвественно. Также измерено отношение C_p/C_V , которые оказались равны (1.45 ± 0.05) и 1.29 ± 0.02 соответственно. Эти результаты сходятся с табличными данныит, поэтому работу можно считать с хорошей точностью правильной.