

Data Science from Scratch

First Principles with Python

Joel Grus

Data Science from Scratch

First Principles with Python

Joel Grus

Beijing • Boston • Farnham • Sebastopol • Tokyo

SHROFF PURI ISHERS & DISTRIBUTORS PVT. LTD.

Mumbai

Bangalore

Kolkata

New Delhi

Data Science from Scratch

by Joel Grus

Copyright © 2019 Joel Grus. All rights reserved. ISBN: 978-1-492-04113-9 Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Michele Cronin
Production Editor: Deborah Baker
Copyeditor: Rachel Monaghan
Proofreader: Rachel Head

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

Printing History:

April 2015: First Edition May 2019: Second Edition

Revision History for the Second Edition 2019-04-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492041139 for release details.

First Indian Reprint: May 2019

ISBN: 978-93-5213-832-6

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. *Data Science from Scratch*, Second Edition, the cover image of a rock ptarmigan, and related trade dress are trademarks of O'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

For sale in the Indian Subcontinent (India, Pakistan, Bangladesh, Sri Lanka, Nepal, Bhutan, Maldives) and African Continent (excluding Morocco, Algeria, Tunisia, Libya, Egypt, and the Republic of South Africa) only. Illegal for sale outside of these countries.

Authorized reprint of the original work published by O'Reilly Media, Inc. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, nor exported to any countries other than ones mentioned above without the written permission of the copyright owner.

Published by **Shroff Publishers & Distributors Pvt. Ltd.** B-103, Railway Commercial Complex, Sector 3, Sanpada (E), Navi Mumbai 400705 • TEL: (91 22) 4158 4158 • FAX: (91 22) 4158 4141 E-mail:spdorders@shroffpublishers.com•Web:www.shroffpublishers.com Printed at Jasmine Art Printers Pvt. Ltd., Navi Mumbai.

Table of Contents

Pre	reface to the Second Edition xi	
Pro	eface to the First Edition	χV
1.	Introduction	. 1
	The Ascendance of Data	1
	What Is Data Science?	1
	Motivating Hypothetical: DataSciencester	2
	Finding Key Connectors	3
	Data Scientists You May Know	6
	Salaries and Experience	8
	Paid Accounts	11
	Topics of Interest	11
	Onward	13
2.	A Crash Course in Python	15
	The Zen of Python	15
	Getting Python	16
	Virtual Environments	16
	Whitespace Formatting	17
	Modules	19
	Functions	20
	Strings	21
	Exceptions	21
	Lists	22
	Tuples	23
	Dictionaries	24
	defaultdict	25

	Counters	26
	Sets	26
	Control Flow	27
	Truthiness	28
	Sorting	29
	List Comprehensions	30
	Automated Testing and assert	30
	Object-Oriented Programming	31
	Iterables and Generators	33
	Randomness	35
	Regular Expressions	36
	Functional Programming	36
	zip and Argument Unpacking	36
	args and kwargs	37
	Type Annotations	38
	How to Write Type Annotations	41
	Welcome to DataSciencester!	42
	For Further Exploration	42
3.	Visualizing Data	43
	matplotlib	43
	Bar Charts	45
	Line Charts	49
	Scatterplots	50
	For Further Exploration	52
4.	Linear Algebra	55
	Vectors	55
	Matrices	59
	For Further Exploration	62
5.	Statistics	63
	Describing a Single Set of Data	63
	Central Tendencies	65
	Dispersion	67
	Correlation	68
	Simpson's Paradox	71
	Some Other Correlational Caveats	72
	Correlation and Causation	73
	For Further Exploration	73

6.	Probability	75
	Dependence and Independence	75
	Conditional Probability	76
	Bayes's Theorem	78
	Random Variables	79
	Continuous Distributions	80
	The Normal Distribution	81
	The Central Limit Theorem	84
	For Further Exploration	86
7.	Hypothesis and Inference	. 87
	Statistical Hypothesis Testing	87
	Example: Flipping a Coin	87
	p-Values	90
	Confidence Intervals	92
	p-Hacking	93
	Example: Running an A/B Test	94
	Bayesian Inference	95
	For Further Exploration	99
8.	Gradient Descent	101
	The Idea Behind Gradient Descent	101
	Estimating the Gradient	102
	Using the Gradient	105
	Choosing the Right Step Size	106
	Using Gradient Descent to Fit Models	106
	Minibatch and Stochastic Gradient Descent	108
	For Further Exploration	109
9.	Getting Data	111
	stdin and stdout	111
		113
		113
	Delimited Files	115
	Scraping the Web	116
	· · · · · · · · · · · · · · · · · · ·	117
	Example: Keeping Tabs on Congress	118
	Using APIs	121
		121
	\mathcal{C}	122
		123
	Example: Using the Twitter APIs	124

	Getting Credentials	124
	For Further Exploration	128
10.	Working with Data	129
	Exploring Your Data	129
	Exploring One-Dimensional Data	129
	Two Dimensions	131
	Many Dimensions	133
	Using NamedTuples	135
	Dataclasses	137
	Cleaning and Munging	138
	Manipulating Data	140
	Rescaling	142
	An Aside: tqdm	144
	Dimensionality Reduction	146
	For Further Exploration	151
	•	
11.	Machine Learning	153
	Modeling	153
	What Is Machine Learning?	154
	Overfitting and Underfitting	155
	Correctness	157
	The Bias-Variance Tradeoff	160
	Feature Extraction and Selection	161
	For Further Exploration	163
12.	k-Nearest Neighbors	165
,	The Model	165
	Example: The Iris Dataset	167
	The Curse of Dimensionality	170
	For Further Exploration	174
12	Naive Bayes	175
13.	A Really Dumb Spam Filter	175
	A More Sophisticated Spam Filter	176
	Implementation	178
	Testing Our Model	180
	Using Our Model	181
	For Further Exploration	183
14.	Simple Linear Regression	185
	The Model	185

	Using Gradient Descent	189
	Maximum Likelihood Estimation	190
	For Further Exploration	190
15.	Multiple Regression	191
	The Model	191
	Further Assumptions of the Least Squares Model	192
	Fitting the Model	193
	Interpreting the Model	195
	Goodness of Fit	196
	Digression: The Bootstrap	196
	Standard Errors of Regression Coefficients	198
	Regularization	200
	For Further Exploration	202
16.	Logistic Regression	203
	The Problem	203
	The Logistic Function	206
	Applying the Model	208
	Goodness of Fit	209
	Support Vector Machines	210
	For Further Investigation	214
17.	Decision Trees	215
	What Is a Decision Tree?	215
	Entropy	217
	The Entropy of a Partition	219
	Creating a Decision Tree	220
	Putting It All Together	223
	Random Forests	225
	For Further Exploration	226
18.	Neural Networks	227
	Perceptrons	227
	Feed-Forward Neural Networks	230
	Backpropagation	233
	Example: Fizz Buzz	235
	For Further Exploration	238
19.	Deep Learning	239
	The Tensor	239
	The Layer Abstraction	242

	The Linear Layer	243
	Neural Networks as a Sequence of Layers	246
	Loss and Optimization	247
	Example: XOR Revisited	250
	Other Activation Functions	251
	Example: FizzBuzz Revisited	252
	Softmaxes and Cross-Entropy	253
	Dropout	256
	Example: MNIST	257
	Saving and Loading Models	261
	For Further Exploration	262
20.	Clustering	263
	The Idea	263
	The Model	264
	Example: Meetups	266
	Choosing k	268
	Example: Clustering Colors	269
	Bottom-Up Hierarchical Clustering	271
	For Further Exploration	277
21.	Natural Language Processing	279
	Word Clouds	279
	n-Gram Language Models	281
	Grammars	284
	An Aside: Gibbs Sampling	286
	Topic Modeling	288
	Word Vectors	293
	Recurrent Neural Networks	301
	Example: Using a Character-Level RNN	304
	For Further Exploration	308
22.	Network Analysis	309
	Betweenness Centrality	309
	Eigenvector Centrality	314
	Matrix Multiplication	314
	Centrality	316
	Directed Graphs and PageRank	318
	For Further Exploration	320
23.	Recommender Systems	321
	Manual Curation	322

	Recommending What's Popular	322
	User-Based Collaborative Filtering	323
	Item-Based Collaborative Filtering	326
	Matrix Factorization	328
	For Further Exploration	333
24.	Databases and SQL	335
	CREATE TABLE and INSERT	335
	UPDATE	338
	DELETE	339
	SELECT	340
	GROUP BY	342
	ORDER BY	345
	JOIN	346
	Subqueries	348
	Indexes	349
	Query Optimization	349
	NoSQL	350
	For Further Exploration	350
25.	MapReduce	351
	Example: Word Count	352
	Why MapReduce?	353
	MapReduce More Generally	354
	Example: Analyzing Status Updates	355
	Example: Matrix Multiplication	357
	An Aside: Combiners	359
	For Further Exploration	359
26.	Data Ethics	361
	What Is Data Ethics?	361
	No, Really, What Is Data Ethics?	362
	Should I Care About Data Ethics?	362
	Building Bad Data Products	363
	Trading Off Accuracy and Fairness	364
	Collaboration	365
	Interpretability	365
	Recommendations	366
	Biased Data	367
	Data Protection	368
	In Summary	368
	For Further Exploration	369

27.	Go Forth and Do Data Science	371
	IPython	371
	Mathematics	372
	Not from Scratch	372
	NumPy	372
	pandas	372
	scikit-learn	373
	Visualization	373
	R	373
	Deep Learning	374
	Find Data	374
	Do Data Science	375
	Hacker News	375
	Fire Trucks	375
	T-Shirts	375
	Tweets on a Globe	376
	And You?	376
Inc	lex	377

Preface to the Second Edition

I am exceptionally proud of the first edition of *Data Science from Scratch*. It turned out very much the book I wanted it to be. But several years of developments in data science, of progress in the Python ecosystem, and of personal growth as a developer and educator have *changed* what I think a first book in data science should look like.

In life, there are no do-overs. In writing, however, there are second editions.

Accordingly, I've rewritten all the code and examples using Python 3.6 (and many of its newly introduced features, like type annotations). I've woven into the book an emphasis on writing clean code. I've replaced some of the first edition's toy examples with more realistic ones using "real" datasets. I've added new material on topics such as deep learning, statistics, and natural language processing, corresponding to things that today's data scientists are likely to be working with. (I've also removed some material that seems less relevant.) And I've gone over the book with a fine-toothed comb, fixing bugs, rewriting explanations that are less clear than they could be, and freshening up some of the jokes.

The first edition was a great book, and this edition is even better. Enjoy!

Joel Grus Seattle, WA 2019

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/joelgrus/data-science-from-scratch.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: "Data Science from Scratch, Second Edition, by Joel Grus (O'Reilly). Copyright 2019 Joel Grus, 978-1-492-04113-9."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at *permissions@oreilly.com*.

O'Reilly Online Learning

O'REILLY For almost 40 years, O'Reilly Media has provided technology and business training leaves 1. nies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O'Reilly's online learning platform gives you on-demand access to live training courses, indepth learning paths, interactive coding environments, and a vast collection of text and video from O'Reilly and 200+ other publishers. For more information, please visit *http://oreilly.com*.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc. 1005 Gravenstein Highway North Sebastopol, CA 95472 800-998-9938 (in the United States or Canada) 707-829-0515 (international or local) 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/data-science-from-scratch-2e.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

First, I would like to thank Mike Loukides for accepting my proposal for this book (and for insisting that I pare it down to a reasonable size). It would have been very easy for him to say, "Who's this person who keeps emailing me sample chapters, and how do I get him to go away?" I'm grateful he didn't. I'd also like to thank my editors, Michele Cronin and Marie Beaugureau, for guiding me through the publishing process and getting the book in a much better state than I ever would have gotten it on my own.

I couldn't have written this book if I'd never learned data science, and I probably wouldn't have learned data science if not for the influence of Dave Hsu, Igor Tatarinov, John Rauser, and the rest of the Farecast gang. (So long ago that it wasn't even called data science at the time!) The good folks at Coursera and DataTau deserve a lot of credit, too.

I am also grateful to my beta readers and reviewers. Jay Fundling found a ton of mistakes and pointed out many unclear explanations, and the book is much better (and much more correct) thanks to him. Debashis Ghosh is a hero for sanity-checking all of my statistics. Andrew Musselman suggested toning down the "people who prefer R to Python are moral reprobates" aspect of the book, which I think ended up being pretty good advice. Trey Causey, Ryan Matthew Balfanz, Loris Mularoni, Núria Pujol, Rob Jefferson, Mary Pat Campbell, Zach Geary, Denise Mauldin, Jimmy O'Donnell, and Wendy Grus also provided invaluable feedback. Thanks to everyone who read the first edition and helped make this a better book. Any errors remaining are of course my responsibility.

I owe a lot to the Twitter #datascience community, for exposing me to a ton of new concepts, introducing me to a lot of great people, and making me feel like enough of an underachiever that I went out and wrote a book to compensate. Special thanks to Trey Causey (again), for (inadvertently) reminding me to include a chapter on linear algebra, and to Sean J. Taylor, for (inadvertently) pointing out a couple of huge gaps in the "Working with Data" chapter.

Above all, I owe immense thanks to Ganga and Madeline. The only thing harder than writing a book is living with someone who's writing a book, and I couldn't have pulled it off without their support.

Data Science from Scratch

To really learn data science, you should not only master the tools—data science libraries, frameworks, modules, and toolkits—but also understand the ideas and principles underlying them. Updated for Python 3.6, this second edition of *Data Science from Scratch* shows you how these tools and algorithms work by implementing them from scratch.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with the hacking skills you need to get started as a data scientist. Packed with new material on deep learning, statistics, and natural language processing, this updated book shows you how to find the gems in today's messy glut of data.

- · Get a crash course in Python
- Learn the basics of linear algebra, statistics, and probability and how and when they're used in data science
- Collect, explore, clean, munge, and manipulate data
- · Dive into the fundamentals of machine learning
- Implement models such as k-nearest neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
- Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Joel Grus is a research engineer at the Allen Institute for Artificial Intelligence. Previously he worked as a software engineer at Google and as a data scientist at several startups. He lives in Seattle, where he regularly attends data science happy hours. He blogs infrequently at *joelgrus.com* and tweets all day long at @joelgrus.

"Joel takes you on a journey from being datacurious to getting a thorough understanding of the bread-and-butter algorithms that every data scientist should know."

-Rohit Sivaprasad Engineer, Facebook

"I've recommended Data Science from Scratch to analysts and engineers wanting to make the jump into machine learning. It's the best tool for understanding the fundamentals of the discipline."

—Tom Marthaler

Engineering Manager, Amazon

"Translating data science concepts into code is hard. Joel's book makes it much easier."

-William Cox

Machine Learning Engineer, Grubhub

DATA / DATA SCIENCE

For sale in the Indian Subcontinent (India, Pakistan, Bangladesh, Nepal, Sri Lanka, Bhutan, Maldives) and African Continent (excluding Morocco, Algeria, Tunisia, Libya, Egypt, and the Republic of South Africa) only. Illegal for sale outside of these countries.

MRP: ₹ 1,000.00

Twitter: @oreillymedia facebook.com/oreilly

SHROFF PUBLISHERS & DISTRIBUTORS PVT. LTD.

ISBN: 978-93-5213-832-6

Second Edition/2019/Paperback/English