1 Problem 1

Let x and y be any two elements of a group G. Assume that each of the elements x, y and xy has order 2. Prove that the set $H = \{1, x, y, xy\}$ is a subgroup of G, and it has order 4. [Artin Exercise 4.7]

Proof. First, note that since each element has order 2, each is its own inverse, so

$$xy = (xy)^{-1} = y^{-1}x^{-1} = yx.$$

Using this, it's easy to fill out the following multiplication table. For example, $(xy)x = (yx)x = yx^2 = y1 = y$.

×	1	x	y	xy
1	1	x	y	xy
x	x	1	xy	$\mid y \mid$
$\mid y \mid$	y	xy	1	x
xy	xy	y	x	1

Reading the table, we see that the set H is closed under inverses and closed under multiplication, so it is a subgroup of G.

2 Problem 2

Let G be a group and let $a \in G$ have order k. If p is a prime divisor of k, and if there is $x \in G$ with $x^p = a$, prove that x has order pk. [Rotman, Advanced Modern Algebra Exercise 2.24]

Proof. Notes: (1) I'll be using Lagrange's Theorem, which we haven't gotten to in Artin yet.

- (2) Let's let o(x) denote the order of x.
- (3) Since p divides k, k = pn for some $n \ge 1$.

Since $x^{pk}=a^k=1$, we see that $o(x) \leq pk$. Also, since < a > is a subgroup of < x >, Lagrange's Theorem tells us that k=o(a) divides o(x). Therefore, o(x)=mk for some $1 \leq m \leq p$. So $a^{mn}=x^{mpn}=x^{mk}=1$. Since $mn \geq 1$, mn must be a multiple of o(a)=pn, so $m \geq p$. $\implies m=p$ and o(x)=pk.

3 Problem 3

If G is a group in which $x^2 = 1$ for every $x \in G$, prove that G must be abelian. [Rotman, Advanced Modern Algebra Exercise 2.26]

Proof. Let a and b be any two elements of G. Since $a^2 = b^2 = (ab)^2 = 1$,

$$ab = a1b = a(ab)^2b = a(abab)b = a^2(ba)b^2 = 1ba1 = ba.$$

Problem 4

If G be a group with an even number of elements, prove that the number of elements in G of order 2 is odd. [Rotman, Advanced Modern Algebra Exercise 2.27]

Proof. Notice that an element $x \neq 1$ has order 2 if and only if $x^{-1} = x$. With this in mind, let's go through the elements in G, placing them in two sets. If $x^{-1} = x$, we place x in set A, and if $x^{-1} \neq x$, we place both x and x^{-1} in set B. Since $y = x^{-1} \iff x = y^{-1}$, the elements of set B can be grouped as non-overlapping pairs, showing that B contains an even number of elements. Since we are given that the order of G is even, this means that set A also has an even number of elements, and in this set all but the identity element will be of order 2.

Problem 5 5

Let H be a subgroup of G and

$$C(H) = \{g \in G : gh = hg \quad \forall h \in H\}.$$

Prove that C(H) is a subgroup of G. This is known as the centralizer of H in G. [Judson, Exercise 3.4.53]

Proof. First, note that $1 \in C(H)$, since 1h = h1 for all $h \in H$. Next, if $a, b \in C(H)$, then for all $h \in H$,

$$(ab)h = abh = ahb = hab = h(ab),$$

so C(H) is closed under multiplication.

Finally, if $a \in C(H), h \in H$,

$$ha = ah$$

 $a^{-1}(ha)a^{-1} = a^{-1}(ah)a^{-1}$
 $a^{-1}h = ha^{-1}$,

 $\implies a^{-1} \in H$, hence C(H) is closed under taking inverses.

6 Problem 6

Let G be a group, let X be a set, and let $f: G \to X$ be a bijection. Show that there is a unique operation on X so that X is a group and f is an isomorphism. [Rotman, Intro to Theory of Groups Exercise 1.44]

Proof. Notice that there is only one possible way to define a product in X such that f is an isomorphism, namely,

$$x \cdot y := f(f^{-1}(x)f^{-1}(y)),$$

where the product $f^{-1}(x)f^{-1}(y)$ is taken in G.

Since f is a bijection, and the product above is equivalent to the requirement for f to be a homomorphism, we need only check that with this product *X* is indeed a group.

Suppose $x, y, z \in X$, and set $a = f^{-1}(x)$, $b = f^{-1}(y)$, $c = f^{-1}(z)$. With this notation, our product is defined as $x \cdot y := f(ab)$.

The product is associative, since $(x \cdot y) \cdot z = f((ab)c) = f(a(bc)) = x \cdot (y \cdot z)$. (The second equality comes from associativity in G.)

The identity element in X will be $1_X = f(1_G)$. Note that $1_X \cdot x = f(1_G a) = f(a) = x$, and similarly $x \cdot 1_X = x$. Finally, note that the inverse of x will be $f(a^{-1})$, for $x \cdot f(a^{-1}) = f(aa^{-1}) = f(1_G) = 1_X$, and similarly, $f(a^{-1}) \cdot x = 1_X$.

Problem 7

Determine the center of $GL_n(\mathbb{R})$ [Artin, Exercise 5.6]

Solution. We'll show that the center of $GL_n(\mathbb{R})$ is the isomorphic image of \mathbb{R}^\times under the mapping $a\mapsto aI$. First, notice that for $a \neq 0$, the matrix $aI \in Z(GL_n(\mathbb{R}))$. We will now show that every matrix in the center is of this form. We'll do this in two steps. First, we'll show that every matrix in Z is diagonal, and then we'll show that all the diagonal entries must be equal.

Suppose $A=(a_{ij})\in Z(GL_n(\mathbb{R}))$. Consider the diagonal matrix B in which $b_{ii}=i$ (and all off-diagonal entries are zero). Since A is in the center, AB = BA, but notice that $[AB]_{ij} = ja_{ij}$, while $[BA]_{ij} = ia_{ij}$. For $i \neq j$, this shows that $a_{ij} = 0$, so A is a diagonal matrix.

Now, for $p \neq q$, let D be the matrix with 1 in the pq-position and zeros elsewhere. $(d_{ij} = \delta_{ip}\delta_{jq})$. Since $I+D\in GL_n(\mathbb{R})$, we must have A(I+D)=(I+D)A, hence AD=DA. Notice, though, that $[AD]_{pq}=a_{pp}$, while $[DA]_{pq} = a_{qq}$. Thus all the diagonal entries of A must be equal, and $A = a_{11}I$.

8 **Problem 8**

[Optional] Suppose given on E an (associative and commutative) addition under which all the elements of E are invertible and a multiplication which is non-associative, but commutative and doubly distributive wih respect to addition. Suppose further that $n \in \mathbb{Z}$, $n \neq 0$, and nx = 0 imply x = 0 in E. Show that if, writing [x, y, z] = (xy)z - x(yz), the identity

$$[uz, y, x] + [zx, y, u] + [xu, y, z] = 0$$

holds, then $x^{m+n} = x^m x^n$ for all x (show, by induction on p, that the identity $x^q, y, x^{(p-q)} = 0$ holds for $1 \le q < p$). [Bourbaki, Algèbre, Vol. I Exercise 9, §3]

Proof. Part I We'll begin by proving that $[x^m, y, x] = 0$ for all $m \ge 1$. Note that commutativity of multiplication guarantees that the statement is true for m=1.

Also, notice that commutativity shows (*)[a, b, c] = -[c, b, a].

To make the notation less cumbersome, for fixed p, let's set $c_i = [x^{p-j}, y, x^i]$. Note that substituting $z = x^{p-i-1}, u = x^i$ into the identity above, we obtain

$$[x^{p-1},y,x] + [x^{p-i},y,x^i] + [x^{i+1},y,x^{p-i-1}] = 0$$

That is, $c_1 + c_i - c_{i+1} = 0$. Let's call this equation E_i .

Now we'll consider separately the cases when m is even and when m is odd.

Part I, Case I: m odd

Suppose m = 2N + 1. Set p = 2N. Then we have the equations

$$E_1: 2c_1 - c_2 = 0$$

$$E_2: c_1 + c_2 - c_3 = 0$$

$$E_3: c_1 + c_3 - c_4 = 0$$

$$E_{N-1}: c_1 + c_{N-1} - c_N = 0$$

In addition, using (*), we have $[x^N, y, x^N] = -[x^N, y, x^N]$, whence

 $E_N:c_N=0.$

Adding these N equations together, we see $Nc_1 = 0$, so $c_1 = 0$, that is,

$$0 = [x^{p-1}, y, x] = [x^m, y, x].$$

Part I, Case II: m even

Suppose m = 2N. Set p = 2N + 1. Then we have the equations

$$E_1: 2c_1 - c_2 = 0$$

$$E_2: c_1 + c_2 - c_3 = 0$$

$$E_3: c_1 + c_3 - c_4 = 0$$

 $E_{N-1}: c_1+c_{N-1}-c_N=0$ $E_N: c_1+c_N-c_{N+1}=0$ In addition, using (*), we have $[x^{N+1},y,x^N]=-[x^N,y,x^{N+1}]$, whence $E_N: c_N+c_{N+1}=0$.

This time, consider the sum $(2E_1 + ... 2E_{N-1}) + (E_N + E_{N+1})$. this gives us $0 = (2Nc_1 - 2c_N) + (c_1 + 2c_N) = (2N+1)c_1$, and again $Nc_1 = 0$, so $c_1 = 0$, and

$$0 = [x^{p-1}, y, x] = [x^m, y, x].$$

Part II We'll now use the fact that $[x^m,y,x]=0$ for all $m\geq 1$ to prove that $x^mx^n=x^{m+n}\ \forall m,n\geq 1$. Fix m. By definition, when n=1, we have $x^mx^1=x^{m+1}$. Now suppose we have shown that the statement above is true for k=n-1, that is, $x^mx^{n-1}=x^{m+n-1}$. Substituting $y=x^{n-1}$ into $[x^m,y,x]=0$, we find

$$(x^m x^{n-1})x = x^m (x^{n-1}x)$$
$$(x^{m+n-1}x = x^m x^n$$
$$x^{m+n} = x^m x^n,$$

and by induction, this holds for all $n \geq 1$.