Tema 4: Protocolos de nivel de aplicación II

DNS: Introducción

Domain Name System Nosotros utilizamos nombres para las maquinas, pero TCP/IP se comunican utilizando direcciones IP. DNS es el sistema que se encarga de hacer la correspondencia entre nombres de máquinas y direcciones IP, también proporciona información de los servidores de correo. Modelo cliente-servidor: Se implementa sobre UDP, aunque también puede utilizar TCP. Antes del DNS, se usaba un fichero de hosts.

Cliente DNS

DNS también es el protocolo que permite a los clientes y servidores comunicarse. **Cliente DNS**: cada máquina tiene un cliente DNS, cada vez que cualquier aplicación necesita averiguar una dirección IP, le pasa la pregunta al cliente DNS, el cliente DNS le envía la conuslta a su servidor DNS, cuando obtiene la respuesta, se la pasa a la aplicación.

Servidor DNS

Cada red tiene un servidor DNS. El servidor recibe consultas DNS de clientes, averigua la dirección IP y la envía a los clientes. ¿Cómo averigua mi servidor DNS una dirección IP? El DNS es una base de datos distribuida, no hay un servidor que conozca todos los nombres y sus IPS, Hay múltiples servidores DNS organizados jerárquicamente.

Espacio de nombres DNS

- Estructura de nombres jerárquica en forma de arbol: Top-Level Domains, TLDs. .com, .net, .es, .uk Second-Level Domains, SLDs .ibm, .google, .udc, .usc Third-Level Domains .tic, .fic
- · Nombre de dominio: www.fic.udc.es
 - No se distinguen mayúsculas y minusculas.
- FQDNs (fully qualified domain names): nombre de dominio completo, formalmente acabado en ".", si está imcompleto se "rellena" con nuestro dominio.

Servidores de nombres

Hay servidores DNS en cada nivel de la jerarquía de los nombres de dominio:

- Distribuir la carga entre los servidores de nombres.
- Delegación de la administración de los servidores de nombres. Servidores raíz
- Existen 13 servidores raíz (A-M), replicados por seguridad y fiabilidad.
- Conocen a todos los TLDs y delegan en ellos. Servidores TLD
- Cada dominio de primer nivel tiene su servidor TLD asociado.
- Delegan en servidores de 2º nivel la gestión de sub-dominios. Servidores DNS inferiores:
- Conocen a todos los equipos de su dominio.
- · Conocen a los servidores DNS raíz.
- Ante una consulta, si no conoce una IP, le pregunta a un servidor raíz.

Consultas recursivas: El servidor DNS hará todo el trabajo necesario para devolver la respuesta completa a la petición. Puede implicar múltiples transacciones del servidor con otros servidores DNS. No es obligatorio que los servidores DNS soporten este tipo de consultas. Consultas iterativas: Si el servidor DNS tiene la respuesta, entonces la devulve. En caso contrario, devolverá la información útil, pero no hará peticiones adicionales a otros servidores DNS. Los servidores raíz y TLD son no recursivos.

Caché DNS

Para reducir los mensajes DNS se utilizan cachés, cada par dirección IP - nombre que se resuelve se almacena en la caché, esta tiene un tiempo de vida, TTL, de varios días. También se almacenan las peticiones incorrectas. **Respuesta autoritativa**: responde directamnte el servidor DNS que "conoce" la información.

Servidor DNS de Forwarding

Servidores DNS de Forwarding: No es responsable de ninguna zona, no almacena información en disco. Sólo reenvía las consultas a otros servidores DNS. Almacena las respuestas en caché, implica una respuesta rápida para consultas frecuentes. Un router inalámbrico, lo normal es que incorpore un servidor DNS de forwarding:

- Reenvía las consultas al servidor DNS de mi ISP.
- Las consultas en caché se resulven en mi LAN, evito accesios a la red de ISP.

P₂P

Los protocolos anteriores se basaban en el modelo cliente-servidor: el servidor proporciona un servicio y el cliente cosnumeese servicio. El modelo P2P, peer to peer, está compuesto por pares (peers) que realizan ambas funciones: consumir y proporcionar un servicio. Se basa en equipos de usuarios

- No son propiedad de un proveedor de servicio.
- · Conectados intermitentemente
- Proporcionan acceso a una parte de sus recursos. Ventajas:
- · Compartición de recursos.
- Gran tolerancia a fallos. Inconvenientes:
- Seguridad: acceso a los recursos de un equipo, aumento de las medidas de seguridad en los últimos años.
- Gran uso de ancho de banda, a veces restringidos por los ISPs