5.2 분환하 보고 'Se 전 150 사이들에서 경제를 제외되었는 AOO 및 NOT 명칭에서 함께 AOO 및 NOT 명칭에서 함께 AOO 및 NOT 영향에서 함께 AOO 및 NOT 영향에서 함께 AOO 및 NOT 영향에서 함께 AOO 및 NOT 영향에 AOO 및 NOT 영향에 AOO 및 NOT Give AOO & NOT Give	4.5	#4.13
1.5.2 변화 1912 1912 1912 1912 1912 1912 1912 191	.5.I 데이터 메모라는 lw 와 SW 에 사용되므로 25% +10 % = 35% 이다.	
기원	.5. 2 보호 환호 한 호텔 로마 시아를에서 작대를 가지 않는 사이를 받는 사이를 받는 것이 모아 보고 있다. 그 보다 한 호텔 수 있는 것이 되었다면 가지 되었다면 가지 되었다면 보고 있다.	
1		·
### ### #### ########################		
No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
(.8.1 IDRENUL 프로세이 = 390 ***********************************	4.8	
TRINGEROUS X 필요NHH = 25D+32D+15D+32D+15D+32D+12D = 125D. ***********************************		

### 1 10 전에를 필요하는 11280 - 3750 x 5 다음 ANG를 필요하는 11280 - 각각의 오케하 370 / 2 = 111 등 후 主 출에든다. 4.8.3 ***********************************	-	or \$3,85.83
다음 사이를 포함에서 = 128D. - 6시 \$3, 0 (설표) - 10 단세를 나타는 것이 같다. 각각의 단세와 3FD / 2 = 10 F PS 및 출시된다. - 11 10 단세를 나타는 것이 같다. 각각의 단세와 3FD / 2 = 10 F PS 및 출시된다. - 12 10 F H I I I I I I I I I I I I I I I I I I		nop
4.8.3 ID 단계를 나는 것이 할다. 각각의 단계와 340/2 = 105 ks 호 호마트다. 이때, 프로세에의 퀄레시아를 시간은 300 ps 이다. 4.8.4 대이터 미모에는 SW 은 IN 다형이어에 사용된다. 10		nop
이 IIII., 프로페에의 클릭사이를 시간은 9COPS OICh. ALS. 4	단정 Mol를 프로세터 = 1250 .	SW \$3,0(\$t)
이대, 프로테에의 퀄레시아를 시간은 300ps 이다.	D & TO CHIE I HE HOLDER TOTAL TOTAL OF TO THE 2 2 AUGUS	0.00
Liu		
### 1	이때, 프로페이의 중국사이를 시간한 300 ps 이다.	
(W \$3.4(\$F)) 1.8.5. Wine register 포토 ALUP WORNER ASUE. 45 / + 20 / = 65 /. 65 /. 100 100 100 100 100 100 100 1		lω \$2, σ(\$2)
1. 8. 5. Write register 포토 ALUR IN ORTHRE 사용된다. A5 7. + 20 7. = 65 7. A5 7. + 20 7. = 65 7. Nop Nop Nop Nop SN 43. 85 83 Nop Nop SN 43. 0(\$6). UND TOUR HOLE AND		nop
### 1.8.5. Write register 포토 ALUE Wolld® 사용된다. ###################################	∴ 20 ·/o + 15 ·/o = 35 ·/o	lω \$3,4(\$5)
### 45 / + +20 / = 65 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . ### 165 / . #### 165 / . #### 165 / . #### 165 / . #### 165 / . #### 165 / . #### 165 / . #### 165 / . #### 165 / . ##### 165 / . ##################################		пор
(1.65 / 1.65 /	. 8.5. Write register 포트는 ALUCH W에서만 사용된다.	nop
NOP NOP SW \$3,0(\$67),	45·/· +20·/· =65·/·	or \$3, \$9, \$3
4.8.6 SW 설치, D(용되기, 단일 MO를 구호의 퀄티 MO를 시간 = 125D PS 대이프라인 구호의 퀄티 MO를 시간 = 35D PS 나 나 가 도 Cycles 당시, ALU, BEQ 가 4 Cycles SW 설치, D(용되기, 4.15.가 하게도 검을 유것이 없다면 바로 이건을드에 외관하는 방향이 로드 대형 이원이 커피스트가 다시 가 도 Cycles 당시, ALU, BEQ 가 4 Cycles Multi Cycle : 실행시간이 파이프라인 구호의 가.터기바이다. (1250 / 가득으 = 가.탁기) Multi Cycle : 실행시간이 파이프라인 구호의 가.터기바이다.	1. 65y.	nop
단일 사이를 관리 형 시이를 시간 = 1250 ps 대이 프레인 구요리 형 시이를 시간 = 350 ps 대상 사이를 관리 형 시이를 시간 = 350 ps 하게도 '점을 위치이 없다면 비로 이건로에 고려한 명령이 로드 대형 이원이 참시간다' (내 구 5 'Qu'cles' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		пор
파이프라인 구호인 활석 사이를 시간 = 350 PS	1.8,6	SM \$3, D(\$দ ⁾ ,
다음 사이를 구원되 원칙 사이를 시간 = 350 PS	단일 사이클 권도의 클럽 사이클 시간 = 125D ps	
다 가 도 Cycles 가져된 오래된 값을 가지된다. 코드는 정상적으로 실행됨. 6시 , ALU , BEQ → 4 Cycles - Single Cycle : 실행시간이 파이프라인 구호의 3.5기 바이다. (1250 / 350 = 3.5기) Multi Cycle : 실행시간이 파이프라인 구호의 나.2 바이다.	파이프라인 구소의 클럭 사이를 시간 = 가5Ops	<u>ዛ</u> .
のW , ALV , BEQ → 4 Cycles - Single Cycle: 실행시간이 正の正知 구절 3.57 bHOICH. (1250 / 350 = 3.57) Multi Cycle: 실행시간이 立の正知 구절 4.2 bHOICH.	다당 사이를 구소의 클럽 사이를 시간 = 350 ps	하게도 검술 유닛이 없다면 내로 이건되고에 의존해 명령이 로드 명령 이번에 레지스타기
· Single Cycle : 실행시간이 파이프라인 구호의 3.5기비이다. (1250 / 350 = 3.5기) Multi Cycle : 실행시간이 파이프라인 구호의 나고비이다.	LN → 15 cycles	가졌면 오래된 값을 가져온다. 코드는 '정상적으로 일하됨.
Multi Cycle : 실행시간이 파이프라인 구간의 나.2 bHOICT.	SW, ALV, BEQ $ ightarrow$ 4 cycles	
	Single Cycle: 실행시간이 파이프라인 구요의 3.5기비이다. (1250/350 = 2	٥, ५१)
(0.2 x 5 + 0.8 x 4 = 4.2)	Multi Cycle : विंगुरारेश चागच्याचा नेप्रया 4.2 ыногт.	
	(0.2x 5 + 0.8x4 = 4.2)	