Clase nº39

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

6 de Diciembre 2021

Objetivo de la clase

Determinar la serie de Taylor de una función.

Ejemplo 51

La serie geométrica.

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad |x| < 1.$$

Ejemplo 52

Muestre que

$$\ln(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}x^n}{n}, \quad -1 < x < 1.$$

La serie de seno

$$\sin x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}.$$

La serie binomial

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} x^n, \quad |x| < 1.$$

Ejemplo 53

Muestre que

$$\sin x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}$$

Ejemplo 54

Sea
$$f(x) = \frac{e^x + e^{-x}}{2}$$
. Encuentre la serie de Maclaurin de f .

Ejemplo 55

Sea $f(x) = e^{-3x}$.

- a) Determina de forma explícita el polinomio de Tayor y la serie formal de Taylor de f centrada en a=3.
- b) Encuentre el radio de convergencia de la serie formal de Taylor.

Ejemplo 56

Determine la serie de $f(x) = \cos(3x)$ usando una sustitución apropiada.

Ejemplo 57

Determine la serie de $f(x) = \ln(1+2x)$ usando una sustitución apropiada.

Ejercicios propuestos

- 1. Muestre que
 - a)

b)

$$\int_0^{+\infty} e^{-x} x^n d = n!.$$

 $\int_{0}^{1} \ln^{n} x \, d = (-1)^{n} n!.$

$$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} x^n}{n}, \quad -1 < x \le 1,$$

utilizando el polinomio de Taylor, y comprobando que $R_n(x,a) \to 0$, cuando $n \to 0$.

Ejercicios propuestos

3. Determine si la siguiente series es o no convergente

$$\int_2^{+\infty} \frac{1 - \cos x}{x^2} \, dx.$$

4. Determine el radio e intervalo de convergencia de

$$\sum_{n=0}^{+\infty} \frac{n^2(x+2)^n}{n+1}.$$

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
		trascendentes tempranas	Learning	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	Juan de	de una variable	Hill	
3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
		con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.