Package 'gtsummary'

November 9, 2019

Title Presentation-Ready Data Summary and Analytic Result Tables

Version 1.2.2

Suggests car (>= 3.0.2), covr (>= 3.2.1), curl (>= 4.2),

Description Creates presentation-ready tables summarizing data sets, regression models, and more. The code to create the tables is concise and highly customizable. Data frames can be summarized with any function, e.g. mean(), median(), even user-written functions. Regression models are summarized and include the reference rows for categorical variables. Common regression models, such as logistic regression and Cox proportional hazards regression, are automatically identified and the tables are pre-filled with appropriate column headers. The package is enhanced when the 'gt' package is installed. Use this code to install: 'remotes::install_github(``rstudio/gt")'.

```
License MIT + file LICENSE
URL https://github.com/ddsjoberg/gtsummary, http:
      //www.danieldsjoberg.com/gtsummary/
BugReports https://github.com/ddsjoberg/gtsummary/issues
Depends R (>= 3.5)
Imports broom (>= 0.5.1),
      broom.mixed (>= 0.2.3),
      crayon (>= 1.3.4),
      dplyr (>= 0.7.8),
      glue (>= 1.3.0),
      knitr (>= 1.21),
      lifecycle (>= 0.1.0),
      magrittr (>= 1.5),
      purrr (>= 0.3.0),
      rlang (>= 0.3.1),
      stringr (>= 1.4.0),
      survival,
      tibble (>= 2.0.1),
      tidyr (>= 1.0.0),
      tidyselect (\geq 0.2.5),
      usethis (>= 1.5.1)
```

2 R topics documented:

```
geepack (>= 1.2.1),
     ggplot2 (>= 3.1.0),
     Hmisc (>= 4.2.0),
     lme4 (>= 1.1.18.1),
     remotes (>= 2.1.0),
     rmarkdown (>= 1.11),
     spelling (>= 2.0),
     testthat (>= 2.1.0),
     forcats (>= 0.4.0)
Enhances gt (>= 0.1.0)
VignetteBuilder knitr
RdMacros lifecycle
Encoding UTF-8
Language en-US
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 6.1.1
```

R topics documented:

add_global_p
add_global_p.tbl_regression
add_global_p.tbl_uvregression
$add_n \ \dots \ $
add_nevent
add_nevent.tbl_regression
add_nevent.tbl_uvregression
add_overall
add_p 10
add_p
add_q
add_q.tbl_summary
add_q.tbl_uvregression
add_stat_label
as_gt
as_kable
as_tibble_methods
bold_italicize_labels_levels
bold_p
bold_p.tbl_regression
bold_p.tbl_stack
bold_p.tbl_summary
bold_p.tbl_uvregression
gtsummary_logo
inline_text
inline_text.tbl_regression
inline_text.tbl_summary
inline_text.tbl_survival
inline text.tbl uvregression

add_g		2
auu gi	ı p	J

	modify_header	32
	print_gtsummary	33
	select_helpers	35
	sort_p.tbl_regression	35
	sort_p.tbl_summary	36
	sort_p.tbl_uvregression	37
	style_percent	38
	style_pvalue	39
	style_ratio	39
	style_sigfig	40
;	tbl_merge	41
,	tbl_regression	42
,	tbl_stack	44
	tbl_summary	46
;	tbl_summary	49
;	tbl_survival	5 0
;	tbl_survival.survfit	5 0
;	tbl_uvregression	52
,	trial	55
Index		5 6

add_global_p

Adds the global p-value for a categorical variables

Description

This function uses car::Anova with argument type = "III" to calculate global p-values for categorical variables. Output from tbl_regression and tbl_uvregression objects supported.

Usage

```
add_global_p(x, ...)
```

Arguments

x tbl_regression or tbl_uvregression object

... Further arguments passed to or from other methods.

Note

If a needed class of model is not supported by car::Anova, please create an issue to request support.

Author(s)

Daniel D. Sjoberg

See Also

```
add_global_p.tbl_regression, add_global_p.tbl_uvregression
```

```
add_global_p.tbl_regression
```

Adds the global p-value for categorical variables

Description

This function uses car::Anova with argument type = "III" to calculate global p-values for categorical variables.

Usage

```
## S3 method for class 'tbl_regression'
add_global_p(x, terms = NULL, keep = FALSE,
...)
```

Arguments

X	Object with class tbl_regression from the tbl_regression function
terms	Character vector of terms for which to add global p-values. Default is NULL which will add global p-values for all categorical variables
keep	Logical argument indicating whether to also retain the individual p-values in the table output for each level of the categorical variable. Default is FALSE
	Additional arguments to be passed to car::Anova

Value

A tbl_regression object

Note

If a needed class of model is not supported by car:: Anova, please create an issue to request support.

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_regression tools: add_nevent.tbl_regression, bold_italicize_labels_levels, bold_p.tbl_regression bold_p.tbl_stack, inline_text.tbl_regression, modify_header, sort_p.tbl_regression, tbl_merge, tbl_regression, tbl_stack
```

```
tbl_lm_global_ex1 <-
  lm(marker ~ age + grade, trial) %>%
  tbl_regression() %>%
  add_global_p()
```

```
add\_global\_p.tbl\_uvregression
```

Adds the global p-value for categorical variables

Description

This function uses car::Anova with argument type = "III" to calculate global p-values for categorical variables.

Usage

```
## S3 method for class 'tbl_uvregression'
add_global_p(x, ...)
```

Arguments

- x Object with class tbl_uvregression from the tbl_uvregression function
- ... Additional arguments to be passed to car::Anova.

Value

A tbl_uvregression object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression
```

```
tbl_uv_global_ex2 <-
  trial %>%
  dplyr::select(response, trt, age, grade) %>%
  tbl_uvregression(
   method = glm,
    y = response,
   method.args = list(family = binomial),
    exponentiate = TRUE
) %>%
  add_global_p()
```

6 add_n

add_n

Add column with N

Description

For each variable in a tbl_summary table, the add_n function adds a column with the total number of non-missing (or missing) observations

Usage

```
add_n(x, statistic = "{n}", col_label = "**N**", footnote = FALSE,
    last = FALSE, missing = NULL)
```

Arguments

x

Object with class tbl_summary from the tbl_summary function

statistic

String indicating the statistic to report. Default is the number of non-missing observation for each variable, statistic = "{n}". Other statistics available to report include:

- "{N}" total number of observations,
- "{n}" number of non-missing observations,
- "{n_miss}" number of missing observations,
- "{p}" percent non-missing data,
- "{p_miss}" percent missing data The argument uses glue::glue syntax and multiple statistics may be reported, e.g. statistic = "{n} / {N} ({p}%)"

col_label

String indicating the column label. Default is "**N**"

footnote

Logical argument indicating whether to print a footnote clarifying the statistics

presented. Default is FALSE

last

 $Logical\ indicator\ to\ include\ N\ column\ last\ in\ table.\ Default\ is\ {\tt FALSE},\ which\ will$

display N column first.

missing

DEPRECATED. Logical argument indicating whether to print N (missing =

FALSE), or N missing (missing = TRUE). Default is FALSE

Value

A tbl_summary object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_le bold_p.tbl_summary, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary
```

add_nevent 7

Examples

```
tbl_n_ex <-
  trial %>%
  dplyr::select(trt, age, grade, response) %>%
  tbl_summary(by = trt) %>%
  add_n()
```

add_nevent

Add number of events to a regression table

Description

Adds a column of the number of events to tables created with tbl_regression or tbl_uvregression. Supported model types include GLMs with binomial distribution family (e.g. stats::glm, lme4::glmer, and geepack::geeglm) and Cox Proportion Hazards regression models (survival::coxph).

Usage

```
add_nevent(x, ...)
```

Arguments

```
x tbl_regerssion or tbl_uvregression object
```

... Additional arguments passed to or from other methods.

Author(s)

Daniel D. Sjoberg

See Also

add_nevent.tbl_regression, add_nevent.tbl_uvregression, tbl_regression, tbl_uvregression

```
add_nevent.tbl_regression
```

Add number of events to a regression table

Description

This function adds a column of the number of events to tables created with tbl_regression. Supported model types include GLMs with binomial distribution family (e.g. stats::glm, lme4::glmer, and geepack::geeglm) and Cox Proportion Hazards regression models (survival::coxph).

```
## S3 method for class 'tbl_regression'
add_nevent(x, ...)
```

Arguments

```
x tbl_regression object
... Not used
```

Value

A tbl_regression object

Reporting Event N

The number of events is added to the internal .\$table_body tibble, and not printed in the default output table (similar to N). The number of events is accessible via the inline_text function for printing in a report.

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression, bold_italicize_labels_levels, bold_p.tbl_regression, bold_p.tbl_stack, inline_text.tbl_regression, modify_header, sort_p.tbl_regression, tbl_merge, tbl_regression, tbl_stack
```

Examples

```
tbl_reg_nevent_ex <-
  glm(response ~ trt, trial, family = binomial) %>%
  tbl_regression() %>%
  add_nevent()
```

```
add_nevent.tbl_uvregression
```

Add number of events to a regression table

Description

Adds a column of the number of events to tables created with tbl_uvregression. Supported model types include GLMs with binomial distribution family (e.g. stats::glm, lme4::glmer, and geep-ack::geeglm) and Cox Proportion Hazards regression models (survival::coxph).

```
## S3 method for class 'tbl_uvregression'
add_nevent(x, ...)
```

add_overall 9

Arguments

```
x tbl_uvregerssion object
... Not used
```

Value

A tbl_uvregression object

Reporting Event N

The number of events is added to the internal .\$table_body tibble, and printed to the right of the N column. The number of events is also accessible via the inline_text function for printing in a report.

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labe bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression
```

Examples

```
tbl_uv_nevent_ex <-
   trial %>%
   dplyr::select(response, trt, age, grade) %>%
   tbl_uvregression(
   method = glm,
    y = response,
   method.args = list(family = binomial)
) %>%
   add_nevent()
```

add_overall

Add column with overall summary statistics

Description

Adds a column with overall summary statistics to tables created by tbl_summary.

```
add_overall(x, last = FALSE)
```

10 add_p

Arguments

x Object with class tbl_summary from the tbl_summary function

last Logical indicator to display overall column last in table. Default is FALSE, which

will display overall column first.

Value

A tbl_summary object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_levels, bold_p.tbl_summary, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary
```

Examples

```
tbl_overall_ex <-
  trial %>%
  dplyr::select(age, response, grade, trt) %>%
  tbl_summary(by = trt) %>%
  add_overall()
```

add_p

Adds p-values to summary tables

Description

Adds p-values to tables created by tbl_summary by comparing values across groups.

Usage

```
add_p(x, test = NULL, pvalue_fun = NULL, group = NULL,
include = NULL, exclude = NULL)
```

Arguments

- "t.test" for a t-test,
- "wilcox.test" for a Wilcoxon rank-sum test,
- "kruskal.test" for a Kruskal-Wallis rank-sum test,

 add_p

- "chisq. test" for a Chi-squared test of independence,
- "fisher.test" for a Fisher's exact test,
- "lme4" for a random intercept logistic regression model to account for clustered data, lme4::glmer(by ~ variable + (1 | group), family = binomial). The by argument must be binary for this option.

Tests default to "kruskal.test" for continuous variables, "chisq.test" for categorical variables with all expected cell counts >= 5, and "fisher.test" for categorical variables with any expected cell count < 5. A custom test function can be added for all or some variables. See below for an example.

pvalue_fun

Function to round and format p-values. Default is style_pvalue. The function must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits = 2)).

group

Column name of an ID or grouping variable. The column can be used calculate p-values with correlated data (e.g. when the test argument is "lme4"). Default is NULL. If specified, the row associated with this variable is omitted from the summary table.

include Character vector of variable names to include from output.

exclude Character vector of variable names to exclude from output.

Value

A tbl_summary object

Setting Defaults

If you like to consistently use a different function to format p-values or estimates, you can set options in the script or in the user- or project-level startup file, '.Rprofile'. The default confidence level can also be set. Please note the default option for the estimate is the same as it is for tbl_regression().

• options(gtsummary.pvalue_fun = new_function)

Example Output

Author(s)

Emily C. Zabor, Daniel D. Sjoberg

See Also

See tbl summary vignette for detailed examples

 $\label{lem:continuous} O the r tbl_summary tools: add_n, add_overall, add_q.tbl_summary, add_stat_label, bold_italicize_labels_lebold_p.tbl_summary, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary$

12 add_p_

Examples

```
add_p_ex1 <-
  trial %>%
  dplyr::select(age, grade, response, trt) %>%
  tbl_summary(by = trt) %>%
  add_p()
# Conduct a custom McNemar test for response,
# Function must return a named list of the p-value and the
# test name: list(p = 0.123, test = "McNemar's test")
# The '...' must be included as input
# This feature is experimental, and the API may change in the future
my_mcnemar <- function(data, variable, by, ...) {</pre>
  result <- list()
  result$p <- stats::mcnemar.test(data[[variable]], data[[by]])$p.value</pre>
  result$test <- "McNemar\\'s test"</pre>
  result
}
add_p_ex2 <-
  trial[c("response", "trt")] %>%
  tbl_summary(by = trt) %>%
  add_p(test = vars(response) ~ "my_mcnemar")
```

add_p_

Standard evaluation version of add_p()

Description

The 'group =' argument can be passed as a string, rather than with non-standard evaluation as in add_p. Review the help file for add_p fully documented options and arguments.

Usage

```
add_p_(x, test = NULL, pvalue_fun = NULL, group = NULL,
include = NULL, exclude = NULL)
```

Arguments

x test Object with class tbl_summary from the tbl_summary function

List of formulas specifying statistical tests to perform, e.g. list(all_continuous() ~ "t.test", all_categorical() ~ "fisher.test"). Options include

- "t.test" for a t-test,
- "wilcox.test" for a Wilcoxon rank-sum test.
- "kruskal.test" for a Kruskal-Wallis rank-sum test,
- "chisq.test" for a Chi-squared test of independence,
- "fisher.test" for a Fisher's exact test,
- "lme4" for a random intercept logistic regression model to account for clustered data, lme4::glmer(by ~ variable + (1 | group), family = binomial). The by argument must be binary for this option.

add_q 13

> Tests default to "kruskal.test" for continuous variables, "chisq.test" for categorical variables with all expected cell counts >= 5, and "fisher.test" for categorical variables with any expected cell count <5. A custom test function

can be added for all or some variables. See below for an example.

pvalue_fun Function to round and format p-values. Default is style_pvalue. The function

> must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x)

style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits

= 2)).

Column name of an ID or grouping variable. The column can be used calculate group

> p-values with correlated data (e.g. when the test argument is "lme4"). Default is NULL. If specified, the row associated with this variable is omitted from the

summary table.

include Character vector of variable names to include from output.

exclude Character vector of variable names to exclude from output.

add_q

Add a column of q values to account for multiple comparisons

Description

Add a column of q values to account for multiple comparisons

Usage

```
add_q(x, ...)
```

Arguments

tbl_summary or tbl_uvregression object Χ

Additional arguments passed to other methods.

Author(s)

Esther Drill, Daniel D. Sjoberg

See Also

```
add_q.tbl_summary, add_q.tbl_uvregression, tbl_summary, tbl_uvregression
```

14 add_q.tbl_summary

add_q.tbl_summary

Add a column of q-values to account for multiple comparisons

Description

Adjustments to are p-values are performed with stats::p.adjust.

Usage

```
## S3 method for class 'tbl_summary'
add_q(x, method = "fdr",
    pvalue_fun = x$pvalue_fun, ...)
```

Arguments

x tbl_summary object

method String indicating method to be used for p-value adjustment. Methods from

stats::p.adjust are accepted. Default is method = 'fdr'.

pvalue_fun Function to round and format p-values. Default is style_pvalue. The function

must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x)

style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits

= 2)).

... Additional arguments passed to or from other methods

Value

A tbl_summary object

Example Output

Author(s)

Esther Drill, Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n, add_overall, add_p, add_stat_label, bold_italicize_labels_levels, bold_p.tbl_summary, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary
```

```
tbl_sum_q_ex <-
  trial %>%
  dplyr::select(trt, age, grade, response) %>%
  tbl_summary(by = trt) %>%
  add_p() %>%
  add_q()
```

add_q.tbl_uvregression

15

```
add_q.tbl_uvregression
```

Add a column of q-values to account for multiple comparisons

Description

Adjustments to are p-values are performed with stats::p.adjust.

Usage

```
## S3 method for class 'tbl_uvregression'
add_q(x, method = "fdr",
   pvalue_fun = x$inputs$pvalue_fun, ...)
```

Arguments

x tbl_uvregression object

method String indicating method to be used for p-value adjustment. Methods from

stats::p.adjust are accepted. Default is method = 'fdr'.

pvalue_fun Function to round and format p-values. Default is style_pvalue. The function

must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x)

style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits

= 2)).

... Additional arguments passed to or from other methods

Value

A tbl_uvregression object

Example Output

Author(s)

Esther Drill, Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression
```

```
tbl_uvr_q_ex <-
  trial %>%
  dplyr::select(age, marker, grade, response) %>%
  tbl_uvregression(
   method = lm,
```

16 add_stat_label

```
y = age
) %>%
add_global_p() %>%
add_q()
```

add_stat_label

Add statistic labels column

Description

Adds a column with labels describing the summary statistics presented for each variable in the tbl_summary table.

Usage

```
add_stat_label(x)
```

Arguments

Χ

Object with class tbl_summary from the tbl_summary function

Value

A tbl_summary object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, bold_italicize_labels_levels, bold_p.tbl_summary, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary
```

```
tbl_stat_ex <-
  trial %>%
  dplyr::select(trt, age, grade, response) %>%
  tbl_summary() %>%
  add_stat_label()
```

 as_gt

as_gt

Convert gtsummary object to a gt_tbl object

Description

Function converts gtsummary objects to a gt_tbl objects. Function is used in the background when the results are printed or knit. A user can use this function if they wish to add customized formatting available via the gt package. Review the tbl_summary vignette or tbl_regression vignette for detailed examples in the 'Advanced Customization' section.

Usage

```
as_gt(x, include = NULL, exclude = NULL, omit = NULL)
```

Arguments

X	Object created by a function from the gtsummary package (e.g. tbl_summary or tbl_regression)
include	Character vector naming gt commands to include in printing. Default is NULL, which utilizes all commands in x\$gt_calls.
exclude	Character vector naming gt commands to exclude in printing. Default is NULL.
omit	DEPRECATED. Argument is synonymous with exclude vector of named gt commands to omit. Default is NULL

Value

A gt_tbl object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

tbl_summary tbl_regression tbl_uvregression tbl_survival

```
as_gt_ex <-
  trial[c("trt", "age", "response", "grade")] %>%
  tbl_summary(by = trt) %>%
  as_gt()
```

18 as_kable

|--|

Description

Function converts gtsummary objects to a knitr_kable objects. This function is used in the background when the results are printed or knit. A user can use this function if they wish to add customized formatting available via knitr::kable.

Usage

```
as_kable(x, include = NULL, exclude = NULL, ...)
```

Arguments

x	Object created by a function from the gtsummary package (e.g. tbl_summary or tbl_regression)
include	Character vector naming kable commands to include in printing. Default is NULL, which utilizes all commands in x\$kable_calls.
exclude	Character vector naming kable commands to exclude in printing. Default is NULL.
	Additional arguments passed to knitr::kable

Value

```
A knitr_kable object
```

Author(s)

Daniel D. Sjoberg

See Also

```
tbl_summary tbl_regression tbl_uvregression tbl_survival
```

```
trial %>%
  tbl_summary(by = trt) %>%
  as_kable()
```

as_tibble_methods 19

Description

Function converts gtsummary objects tibbles. The formatting stored in x\$kable_calls is applied.

Usage

```
## S3 method for class 'tbl_summary'
as_tibble(x, include = NULL, exclude = NULL,
 col_labels = TRUE, ...)
## S3 method for class 'tbl_regression'
as_tibble(x, include = NULL, exclude = NULL,
 col_labels = TRUE, ...)
## S3 method for class 'tbl_uvregression'
as_tibble(x, include = NULL, exclude = NULL,
 col_labels = TRUE, ...)
## S3 method for class 'tbl_merge'
as_tibble(x, include = NULL, exclude = NULL,
  col_labels = TRUE, ...)
## S3 method for class 'tbl_stack'
as_tibble(x, include = NULL, exclude = NULL,
 col_labels = TRUE, ...)
## S3 method for class 'tbl_survival'
as_tibble(x, include = NULL, exclude = NULL,
 col_labels = TRUE, ...)
```

Arguments

X	Object created by a function from the gtsummary package (e.g. tbl_summary or tbl_regression)
include	Character vector naming kable commands to include in printing. Default is NULL, which utilizes all commands in x -kable_calls.
exclude	Character vector naming kable commands to exclude in printing. Default is NULL.
col_labels	Logical argument adding column labels to output tibble. Default is TRUE.
	Not used

Value

a tibble

Author(s)

Daniel D. Sjoberg

See Also

tbl_summary tbl_regression tbl_uvregression tbl_survival

Examples

```
tbl <-
   trial %>%
   tbl_summary(by = trt)

as_tibble(tbl)

# without column labels
as_tibble(tbl, col_names = FALSE)
```

bold_italicize_labels_levels

Bold or Italicize labels or levels in gtsummary tables

Description

Bold or Italicize labels or levels in gtsummary tables

Usage

```
bold_labels(x)
bold_levels(x)
italicize_labels(x)
italicize_levels(x)
```

Arguments

Х

Object created using gtsummary functions

Value

Functions return the same class of gtsummary object supplied

Functions

- bold_labels: Bold labels in gtsummary tables
- bold_levels: Bold levels in gtsummary tables
- italicize_labels: Italicize labels in gtsummary tables
- italicize_levels: Italicize levels in gtsummary tables

Example Output

bold_p 21

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_p.tbl_summary, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary

Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_p.tbl_regression, bold_p.tbl_regression, tbl_merge, tbl_regression, tbl_merge, tbl_regression, tbl_stack

Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression
```

Examples

```
tbl_bold_ital_ex <-
  trial %>%
  dplyr::select(trt, age, grade) %>%
  tbl_summary() %>%
  bold_labels() %>%
  bold_levels() %>%
  italicize_labels() %>%
  italicize_levels()
```

bold_p

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in gtsummary tables.

Usage

```
bold_p(x, ...)
```

Arguments

x Object created using gtsummary functions... Additional arguments passed to other methods.

Author(s)

Daniel D. Sjoberg, Esther Drill

See Also

```
bold_p.tbl_summary, bold_p.tbl_regression, bold_p.tbl_uvregression
```

bold_p.tbl_regression

bold_p.tbl_regression Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_regression tables.

Usage

```
## S3 method for class 'tbl_regression' bold_p(x, t = 0.05, ...)
```

Arguments

x Object created using tbl_regression function

t Threshold below which values will be bold. Default is 0.05.

... Not used

Value

A tbl_regression object

Example Output

Author(s)

Daniel D. Sjoberg, Esther Drill

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label bold_p.tbl_stack, inline_text.tbl_regression, modify_header, sort_p.tbl_regression, tbl_merge, tbl_regression, tbl_stack
```

```
tbl_lm_bold_p_ex <-
glm(response ~ trt + grade, trial, family = binomial(link = "logit")) %>%
tbl_regression(exponentiate = TRUE) %>%
bold_p()
```

bold_p.tbl_stack 23

bold_p.tbl_stack

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_stack tables.

Usage

```
## S3 method for class 'tbl_stack'
bold_p(x, ...)
```

Arguments

```
x Object created using tbl_stack function
```

arguments passed to bold_p.*() method that matches the first object in the tbl_stack

Value

A tbl_stack object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_uvregression, inline_text.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression
```

```
Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label bold_p.tbl_regression, inline_text.tbl_regression, modify_header, sort_p.tbl_regression, tbl_merge, tbl_regression, tbl_stack
```

```
t1 <- tbl_regression(lm(age ~ response, trial))
t2 <- tbl_regression(lm(age ~ grade, trial))

bold_p_stack_ex <-
  tbl_stack(list(t1, t2)) %>%
  bold_p(t = 0.10)
```

24 bold_p.tbl_summary

bold_p.tbl_summary

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_summary tables.

Usage

```
## S3 method for class 'tbl_summary'
bold_p(x, t = 0.05, q = FALSE, ...)
```

Arguments

- x Object created using tbl_summary function
- t Threshold below which values will be bold. Default is 0.05.
- q Logical argument. When TRUE will bold the q-value column rather than the
 - p-values. Default is FALSE.
- ... Not used

Value

A tbl_summary object

Example Output

Author(s)

Daniel D. Sjoberg, Esther Drill

See Also

```
Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_levels, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary
```

```
tbl_sum_bold_p_ex <-
   trial %>%
   dplyr::select(age, grade, response, trt) %>%
   tbl_summary(by = trt) %>%
   add_p() %>%
   bold_p()
```

```
bold_p.tbl_uvregression
```

Bold significant p-values or q-values

Description

Bold values below a chosen threshold (e.g. <0.05) in tbl_uvregression tables.

Usage

```
## S3 method for class 'tbl_uvregression' bold_p(x, t = 0.05, q = FALSE, ...)
```

Arguments

- x Object created using tbl_uvregression function
 t Threshold below which values will be bold. Default is 0.05.
 q Logical argument. When TRUE will bold the q-value column rather than the p-values. Default is FALSE.
- ... Not used

Value

A tbl_uvregression object

Example Output

Author(s)

Daniel D. Sjoberg, Esther Drill

See Also

```
Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, inline_text.tbl_uvregression modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression
```

```
tbl_uvglm_bold_p_ex <-
    trial %>%
    dplyr::select(age, marker, response, grade) %>%
    tbl_uvregression(
    method = glm,
        y = response,
        method.args = list(family = binomial),
        exponentiate = TRUE
) %>%
    bold_p(t = 0.25)
```

26 inline_text

gtsummary_logo

The gtsummary logo, using ASCII or Unicode characters

Description

```
Use crayon::strip_style() to get rid of the colors.
```

Usage

```
gtsummary_logo(unicode = 110n_info()$`UTF-8`)
```

Arguments

unicode

Whether to use Unicode symbols. Default is TRUE on UTF-8 platforms.

Examples

```
gtsummary_logo()
```

inline_text

Report statistics from gtsummary tables inline

Description

Report statistics from gtsummary tables inline

Usage

```
inline_text(x, ...)
```

Arguments

x Object created from a gtsummary function

... Additional arguments passed to other methods.

Value

A string reporting results from a gtsummary table

Author(s)

Daniel D. Sjoberg

See Also

inline_text.tbl_summary, inline_text.tbl_regression, inline_text.tbl_uvregression, inline_text.tbl_survival

```
inline_text.tbl_regression
```

Report statistics from regression summary tables inline

Description

Takes an object with class tbl_regression, and the location of the statistic to report and returns statistics for reporting inline in an R markdown document. Detailed examples in the tbl_regression vignette

Usage

```
## S3 method for class 'tbl_regression'
inline_text(x, variable, level = NULL,
   pattern = "{estimate} ({conf.level*100}% CI {conf.low}, {conf.high}; {p.value})",
   estimate_fun = x$inputs$estimate_fun, pvalue_fun = function(x)
   style_pvalue(x, prepend_p = TRUE), ...)
```

Arguments

X	Object created from tbl_regression
variable	Variable name of statistics to present
level	Level of the variable to display for categorical variables. Default is NULL, returning the top row in the table for the variable.
pattern	String indicating the statistics to return. Uses glue::glue formatting. Default is "{estimate} ({conf.level }% CI {conf.low}, {conf.high}; {p.value})". All columns from x\$table_body are available to print as well as the confidence level (conf.level). See below for details.
estimate_fun	function to style model coefficient estimates. Columns 'estimate', 'conf.low', and 'conf.high' are formatted. Default is x\$inputs\$estimate_fun
pvalue_fun	function to style p-values and/or q-values. Default is function(x) $style_pvalue(x,prepend_p = TRUE)$
	Not used

Value

A string reporting results from a gtsummary table

pattern argument

The following items are available to print. Use print(x\$table_body) to print the table the estimates are extracted from.

- {estimate} coefficient estimate formatted with 'estimate_fun'
- {conf.low} lower limit of confidence interval formatted with 'estimate_fun'
- {conf.high} upper limit of confidence interval formatted with 'estimate_fun'
- {ci} confidence interval formatted with x\$estimate_fun
- {p.value} p-value formatted with 'pvalue_fun'
- {N} number of observations in model
- {label} variable/variable level label

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label_bold_p.tbl_regression, bold_p.tbl_stack, modify_header, sort_p.tbl_regression, tbl_merge, tbl_regression, tbl_stack
```

Examples

```
inline_text_ex1 <-
   glm(response ~ age + grade, trial, family = binomial(link = "logit")) %>%
   tbl_regression(exponentiate = TRUE)

inline_text(inline_text_ex1, variable = "age")
inline_text(inline_text_ex1, variable = "grade", level = "III")
```

inline_text.tbl_summary

Report statistics from summary tables inline

Description

Extracts and returns statistics from a tbl_summary object for inline reporting in an R markdown document. Detailed examples in the tbl_summary vignette

Usage

```
## S3 method for class 'tbl_summary'
inline_text(x, variable, level = NULL,
   column = ifelse(is.null(x$by), "stat_0", stop("Must specify column")),
   pvalue_fun = function(x) style_pvalue(x, prepend_p = TRUE), ...)
```

Arguments

X	Object created from tbl_summary
variable	Variable name of statistic to present
level	Level of the variable to display for categorical variables. Can also specify the 'Unknown' row. Default is NULL
column	Column name to return from x\$table_body. Can also pass the level of a by variable.
pvalue_fun	Function to round and format p-values. Default is style_pvalue . The function must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits = 2)).
	Not used

inline_text.tbl_survival

Value

A string reporting results from a gtsummary table

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_levels, bold_p.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge, tbl_summary
```

Examples

```
t1 <- tbl_summary(trial)
t2 <- tbl_summary(trial, by = trt) %>% add_p()
inline_text(t1, variable = "age")
inline_text(t2, variable = "grade", level = "I", column = "Drug")
inline_text(t2, variable = "grade", column = "p.value")
```

inline_text.tbl_survival

Report statistics from survival summary tables inline

Description

for inline reporting in an R markdown document.

Usage

```
## S3 method for class 'tbl_survival'
inline_text(x, strata = NULL, time = NULL,
    prob = NULL, pattern = "{estimate} ({conf.level*100}% CI {ci})",
    estimate_fun = x$estimate_fun, ...)
```

Arguments

X	Object created from tbl_survival
strata	If tbl_survival estimates are stratified, level of the stratum to report. Default is NULL when tbl_survival have no specified strata.
time	Time for which to return survival probability
prob	Probability for which to return survival time. For median survival use prob = 0.50
pattern	String indicating the statistics to return. Uses <code>glue::glue</code> formatting. Default is '{estimate} ({conf.level*100}% {ci})'. All columns from x\$table_long are available to print as well as the confidence level (conf.level). See below for details.
estimate_fun	function to round/style estimate and lower/upper confidence interval estimates. Note, this does not style the 'ci' column, which is a string. Default is x\$estimate_fun
	Not used

Value

A string reporting results from a gtsummary table

pattern argument

The following items are available to print. Use print(x\$table_long) to print the table the estimates are extracted from.

- {label} 'time' or 'prob' label
- {estimate} survival or survival time estimate formatted with 'estimate_fun'
- {conf.low} lower limit of confidence interval formatted with 'estimate_fun'
- {conf.high} upper limit of confidence interval formatted with 'estimate_fun'
- {ci} confidence interval formatted with x\$estimate_fun (pre-formatted)
- {time}/{prob} time or survival quantile (numeric)
- {n.risk} number at risk at 'time' (within stratum if applicable)
- {n.event} number of observed events at 'time' (within stratum if applicable)
- {n} number of observations (within stratum if applicable)
- {variable} stratum variable (if applicable)
- {level} stratum level (if applicable)
- {groupname} label_level from original tbl_survival() call

Author(s)

Karissa Whiting

See Also

Other tbl_survival tools: modify_header, tbl_survival.survfit

```
library(survival)
surv_table <-
    survfit(Surv(ttdeath, death) ~ trt, trial) %>%
    tbl_survival(times = c(12, 24))

inline_text(surv_table,
    strata = "Drug",
    time = 12
)
```

```
inline_text.tbl_uvregression
```

Report statistics from regression summary tables inline

Description

Extracts and returns statistics from a table created by the tbl_uvregression function for inline reporting in an R markdown document. Detailed examples in the tbl_regression vignette

Usage

```
## S3 method for class 'tbl_uvregression'
inline_text(x, variable, level = NULL,
   pattern = "{estimate} ({conf.level*100}% CI {conf.low}, {conf.high}; {p.value})",
   estimate_fun = x$inputs$estimate_fun, pvalue_fun = function(x)
   style_pvalue(x, prepend_p = TRUE), ...)
```

Arguments

X	Object created from tbl_uvregression
variable	Variable name of statistics to present
level	Level of the variable to display for categorical variables. Default is NULL, returning the top row in the table for the variable.
pattern	String indicating the statistics to return. Uses glue::glue formatting. Default is "{estimate} ({conf.level }% CI {conf.low}, {conf.high}; {p.value})". All columns from x\$table_body are available to print as well as the confidence level (conf.level). See below for details.
estimate_fun	function to style model coefficient estimates. Columns 'estimate', 'conf.low', and 'conf.high' are formatted. Default is x\$inputs\$estimate_fun
pvalue_fun	function to style p-values and/or q-values. Default is $function(x)$ $style_pvalue(x,prepend_p = TRUE)$
	Not used

Value

A string reporting results from a gtsummary table

pattern argument

The following items are available to print. Use print(x\$table_body) to print the table the estimates are extracted from.

- {estimate} coefficient estimate formatted with 'estimate_fun'
- {conf.low} lower limit of confidence interval formatted with 'estimate_fun'
- {conf.high} upper limit of confidence interval formatted with 'estimate_fun'
- {ci} confidence interval formatted with x\$estimate_fun
- {p.value} p-value formatted with 'pvalue_fun'
- {N} number of observations in model
- {label} variable/variable level label

32 modify_header

See Also

Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, bold_p.tbl_uvregression, modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression

Examples

```
inline_text_ex1 <-</pre>
  trial %>%
  dplyr::select(response, age, grade) %>%
  tbl_uvregression(
    method = glm,
    method.args = list(family = binomial),
    y = response,
    exponentiate = TRUE
inline_text(inline_text_ex1, variable = "age")
inline_text(inline_text_ex1, variable = "grade", level = "III")
```

modify_header

Modify column headers in gtsummary tables

Description

Column labels can be modified to include calculated statistics; e.g. the N can be dynamically included by wrapping it in curly brackets (following glue::glue syntax).

Usage

```
modify_header(x, stat_by = NULL, ..., text_interpret = c("md", "html"))
```

Arguments

stat_by

gtsummary object, e.g. tbl_summary or tbl_regression

String specifying text to include above the summary statistics stratified by a variable. Only use with stratified tbl_summary objects. The following fields are available for use in the headers:

- {n} number of observations in each group,
- {N} total number of observations,
- {p} percentage in each group,
- {level} the 'by' variable level,
- "fisher.test" for a Fisher's exact test,

Syntax follows glue::glue, e.g. stat_by = "**{level}**, N = {n} ({style_percent(p)\%})". The by argument from the parent tbl_summary() cannot be NULL.

Specifies column label of any other column in .\$table_body. Argument is the column name, and the value is the new column header (e.g. p.value = "Model P-values"). Use print(x\$table_body) to see columns available.

text_interpret indicates whether text will be interpreted as markdown ("md") or HTML ("html"). The text is interpreted with the gt package's md() or html() functions. The default is "md", and is ignored when the print engine is not gt.

print_gtsummary 33

Value

Function return the same class of gtsummary object supplied

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_levels, bold_p.tbl_summary, inline_text.tbl_summary, sort_p.tbl_summary, tbl_merge, tbl_summary

Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label.bold_p.tbl_regression, bold_p.tbl_stack, inline_text.tbl_regression, sort_p.tbl_regression, tbl_merge, tbl_regression, tbl_stack

Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, sort_p.tbl_uvregression, tbl_merge, tbl_stack, tbl_uvregression

Other tbl_survival tools: inline_text.tbl_survival, tbl_survival.survfit
```

Examples

```
tbl_col_ex1 <-
    trial[c("age", "grade", "response")] %>%
    tbl_summary() %>%
    modify_header(stat_0 = "**All Patients**, N = {N}")

tbl_col_ex2 <-
    trial[c("age", "grade", "response", "trt")] %>%
    tbl_summary(by = trt) %>%
    modify_header(
    stat_by = "**{level}**, N = {n} ({style_percent(p, symbol = TRUE)})"
)
```

print_gtsummary

print and knit_print methods for gtsummary objects

Description

print and knit_print methods for gtsummary objects

34 print_gtsummary

Usage

```
## S3 method for class 'tbl_summary'
print(x, ...)
## S3 method for class 'tbl_summary'
knit_print(x, ...)
## S3 method for class 'tbl_regression'
print(x, ...)
## S3 method for class 'tbl_regression'
knit_print(x, ...)
## S3 method for class 'tbl_uvregression'
print(x, ...)
## S3 method for class 'tbl_uvregression'
knit_print(x, ...)
## S3 method for class 'tbl_survival'
print(x, ...)
## S3 method for class 'tbl_survival'
knit_print(x, ...)
## S3 method for class 'tbl_merge'
print(x, ...)
## S3 method for class 'tbl_merge'
knit_print(x, ...)
## S3 method for class 'tbl_stack'
print(x, ...)
## S3 method for class 'tbl_stack'
knit_print(x, ...)
```

Arguments

An object created using gtsummary functions

... Not used

Author(s)

Daniel D. Sjoberg

See Also

tbl_summary tbl_regression tbl_uvregression

select_helpers 35

select_helpers

Select helper functions

Description

Set of functions to supplement the tidyselect set of functions for selecting columns of data frames. all_continuous(), all_categorical(), and all_dichotomous() may only be used with tbl_summary(), where each variable has been classified into one of these three groups. All other helpers are available throughout the package.

Usage

```
all_numeric()
all_character()
all_integer()
all_double()
all_logical()
all_factor()
all_continuous()
all_categorical(dichotomous = TRUE)
all_dichotomous()
```

Arguments

dichotomous Logical indicating whether to include dichotomous variables. Default is TRUE

Value

A character vector of column names selected

```
sort_p.tbl_regression Sort variables in table by ascending p-values
```

Description

Sort variables in tables created by tbl_regression by ascending p-values

```
## S3 method for class 'tbl_regression'
sort_p(x, ...)
```

36 sort_p.tbl_summary

Arguments

x An object created using tbl_regression function

... Not used

Value

A tbl_regression object

Example Output

Author(s)

Karissa Whiting

See Also

```
Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label_bold_p.tbl_regression, bold_p.tbl_stack, inline_text.tbl_regression, modify_header, tbl_merge, tbl_regression, tbl_stack
```

Examples

```
tbl_lm_sort_p_ex <-
  glm(response ~ trt + grade, trial, family = binomial(link = "logit")) %>%
  tbl_regression(exponentiate = TRUE) %>%
  sort_p()
```

sort_p.tbl_summary

Sort variables in table by ascending p-values

Description

Sort variables in tables created by tbl_summary by ascending p-values

Usage

```
## S3 method for class 'tbl_summary'
sort_p(x, q = FALSE, ...)
```

Arguments

x An object created using tbl_summary function

q Logical argument. When TRUE will sort by the q-value column rather than the

p-values

... Not used

Value

A tbl_summary object

Example Output

Author(s)

Karissa Whiting

See Also

```
Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_levels, bold_p.tbl_summary, inline_text.tbl_summary, modify_header, tbl_merge, tbl_summary
```

Examples

```
tbl_sum_sort_p_ex <-
   trial %>%
   dplyr::select(age, grade, response, trt) %>%
   tbl_summary(by = trt) %>%
   add_p() %>%
   sort_p()
```

```
sort_p.tbl_uvregression
```

Sort variables in table by ascending p-values

Description

Sort variables in tables created by tbl_uvregression by ascending p-values

Usage

```
## S3 method for class 'tbl_uvregression'
sort_p(x, q = FALSE, ...)
```

Arguments

х	an object created using tbl_uvregression function	
q	logical argument. When TRUE will sort by the q-value column rather than the p -values	
	Not used	

Value

A tbl_uvregression object

Example Output

38 style_percent

Author(s)

Karissa Whiting

See Also

Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, modify_header, tbl_merge, tbl_stack, tbl_uvregression

Examples

```
tbl_uvglm_sort_p_ex <-
   trial %>%
   dplyr::select(age, marker, response, grade) %>%
   tbl_uvregression(
    method = glm,
    y = response,
    method.args = list(family = binomial),
    exponentiate = TRUE
) %>%
   sort_p()
```

style_percent

Style percentages to be displayed in tables or text

Description

Style percentages to be displayed in tables or text

Usage

```
style_percent(x, symbol = FALSE)
```

Arguments

x numeric vector of percentages

symbol Logical indicator to include percent symbol in output. Default is FALSE.

Value

A character vector of styled percentages

Author(s)

Daniel D. Sjoberg

Examples

```
percent_vals <- c(-1, 0, 0.0001, 0.005, 0.01, 0.10, 0.45356, 0.99, 1.45)

style\_percent(percent\_vals)

style\_percent(percent\_vals, symbol = TRUE)
```

style_pvalue 39

style_pvalue

Style p-values to be displayed in tables or text

Description

Style p-values to be displayed in tables or text

Usage

```
style_pvalue(x, digits = 1, prepend_p = FALSE)
```

Arguments

x Numeric vector of p-values.

digits Number of digits large p-values are rounded. Must be 1 or 2. Default is 1. prepend_p Logical. Should 'p=' be prepended to formatted p-value. Default is FALSE

Value

A character vector of styled p-values

Author(s)

Daniel D. Sjoberg

Examples

```
pvals <- c(
    1.5, 1, 0.999, 0.5, 0.25, 0.2, 0.197, 0.12, 0.10, 0.0999, 0.06,
    0.03, 0.002, 0.001, 0.00099, 0.0002, 0.00002, -1
)
style_pvalue(pvals)
style_pvalue(pvals, digits = 2, prepend_p = TRUE)</pre>
```

style_ratio

Implement significant figure-like rounding for ratios

Description

When reporting ratios, such as relative risk or an odds ratio, we'll often want the rounding to be similar on each side of the number 1. For example, if we report an odds ratio of 0.95 with a confidence interval of 0.70 to 1.24, we would want to round to two decimal places for all values. In other words, 2 significant figures for numbers less than 1 and 3 significant figures 1 and larger. style_ratio() performs significant figure-like rounding in this manner.

Usage

```
style_ratio(x, digits = 2)
```

40 style_sigfig

Arguments

x Numeric vector

digits Integer specifying the number of significant digits to display for numbers below

1. Numbers larger than 1 will be be digits + 1. Default is digits = 2.

Value

A character vector of styled ratios

Author(s)

Daniel D. Sjoberg

See Also

```
style_sigfig
```

Examples

```
c(
0.123, 0.9, 1.1234, 12.345, 101.234, -0.123,
-0.9, -1.1234, -12.345, -101.234
) %>%
style_ratio()
```

style_sigfig

Implement significant figure-like rounding

Description

Converts a numeric argument into a string that has been rounded to a significant figure-like number. Scientific notation output is avoided, however, and additional significant figures may be displayed for large numbers. For example, if the number of significant digits requested is 2, 123 will be displayed (rather than 120 or 1.2x10^2).

Usage

```
style_sigfig(x, digits = 2)
```

Arguments

x Numeric vector

digits Integer specifying the minimum number of significant digits to display

Details

If 2 sig figs are input, the number is rounded to 2 decimal places when abs(x) < 1, 1 decimal place when abs(x) >= 1 & abs(x) < 10, and to the nearest integer when abs(x) >= 10.

Value

A character vector of styled numbers

tbl_merge 41

Author(s)

Daniel D. Sjoberg

Examples

```
c(0.123, 0.9, 1.1234, 12.345, -0.123, -0.9, -1.1234, -12.345, NA, -0.001) %>% style_sigfig()
```

tbl_merge

Merge two or more gtsummary objects

Description

Merges two or more tbl_regression, tbl_uvregression, tbl_stack, or tbl_summary objects and adds appropriate spanning headers.

Usage

```
tbl_merge(tbls, tab_spanner = NULL)
```

Arguments

tbls List of gtsummary objects to merge

tab_spanner Character vector specifying the spanning headers. Must be the same length as

tbls. The strings are interpreted with gt::md. Must be same length as tbls

argument

Value

A tbl_merge object

Example Output

Author(s)

Daniel D. Sjoberg

sort_p.tbl_summary, tbl_summary

See Also

```
tbl_stack
```

```
Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label_bold_p.tbl_regression, bold_p.tbl_stack, inline_text.tbl_regression, modify_header, sort_p.tbl_regression, tbl_regression, tbl_stack

Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, modify_header, sort_p.tbl_uvregression, tbl_stack, tbl_uvregression

Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_levels, bold_p.tbl_summary, inline_text.tbl_summary, modify_header,
```

42 tbl_regression

Examples

```
# Side-by-side Regression Models
library(survival)
t1 <-
  glm(response ~ trt + grade + age, trial, family = binomial) %>%
  tbl_regression(exponentiate = TRUE)
  coxph(Surv(ttdeath, death) ~ trt + grade + age, trial) %>%
  tbl_regression(exponentiate = TRUE)
tbl_merge_ex1 <-
  tbl_merge(
    tbls = list(t1, t2),
    tab_spanner = c("**Tumor Response**", "**Time to Death**")
# Descriptive statistics alongside univariate regression, with no spanning header
t3 <-
  trial %>%
  dplyr::select(age, grade, response) %>%
  tbl_summary(missing = "no") %>%
  add_n()
t4 <-
  tbl_uvregression(
   trial %>% dplyr::select(ttdeath, death, age, grade, response),
    method = coxph,
   y = Surv(ttdeath, death),
    exponentiate = TRUE,
   hide_n = TRUE
  )
tbl_merge_ex2 <-
  tbl_merge(tbls = list(t3, t4)) %>%
  as_gt(exclude = "tab_spanner") %>%
  gt::cols_label(stat_0_1 = gt::md("**Summary Statistics**"))
```

tbl_regression

Display regression model results in table

Description

This function takes a regression model object and returns a formatted table that is publication-ready. The function is highly customizable allowing the user to obtain a bespoke summary table of the regression model results. Review the tbl_regression vignette for detailed examples.

Usage

```
tbl_regression(x, label = NULL, exponentiate = FALSE, include = NULL,
  exclude = NULL, show_single_row = NULL, conf.level = NULL,
  intercept = FALSE, estimate_fun = NULL, pvalue_fun = NULL,
  show_yesno = NULL)
```

tbl_regression 43

Arguments

Regression model object х label List of formulas specifying variables labels, e.g. list("age" ~ "Age, yrs", "ptstage" ~ "Path T Stage") Logical indicating whether to exponentiate the coefficient estimates. Default is exponentiate FALSE. include Character vector of variable names to include from output. exclude Character vector of variable names to exclude from output. show_single_row By default categorical variables are printed on multiple rows. If a variable is binary (e.g. Yes/No) and you wish to print the regression coefficient on a single row, include the variable name here, e.g. show_single_row = c("var1", "var2") conf.level Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval. intercept Logical argument indicating whether to include the intercept in the output. Default is FALSE Function to round and format coefficient estimates. Default is style_sigfig when estimate_fun the coefficients are not transformed, and style_ratio when the coefficients have been exponentiated. pvalue_fun Function to round and format p-values. Default is style_pvalue. The function must have a numeric vector input (the numeric, exact p-value), and return a string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits

Value

A tbl_regression object

= 2)). deprecated

Setting Defaults

show_yesno

If you prefer to consistently use a different function to format p-values or estimates, you can set options in the script or in the user- or project-level startup file, '.Rprofile'. The default confidence level can also be set.

- options(gtsummary.pvalue_fun = new_function)
- options(gtsummary.tbl_regression.estimate_fun = new_function)
- options(gtsummary.conf.level = 0.90)

Note

The N reported in the output is the number of observations in the data frame model.frame(x). Depending on the model input, this N may represent different quantities. In most cases, it is the number of people or units in your model. Here are some common exceptions.

- 1. Survival regression models including time dependent covariates.
- 2. Random- or mixed-effects regression models with clustered data.
- 3. GEE regression models with clustered data.

This list is not exhaustive, and care should be taken for each number reported.

44 tbl_stack

Example Output

Author(s)

Daniel D. Sjoberg

See Also

See tbl_regression vignette for detailed examples

```
Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label_bold_p.tbl_regression, bold_p.tbl_stack, inline_text.tbl_regression, modify_header, sort_p.tbl_regression, tbl_merge, tbl_stack
```

Examples

```
library(survival)
tbl_regression_ex1 <-
    coxph(Surv(ttdeath, death) ~ age + marker, trial) %>%
    tbl_regression(exponentiate = TRUE)

tbl_regression_ex2 <-
    glm(response ~ age + grade, trial, family = binomial(link = "logit")) %>%
    tbl_regression(exponentiate = TRUE)

library(lme4)
tbl_regression_ex3 <-
    glmer(am ~ hp + (1 | gear), mtcars, family = binomial) %>%
    tbl_regression(exponentiate = TRUE)

# for convenience, you can also pass named lists to any arguments
# that accept formulas (e.g label, etc.)
glm(response ~ age + grade, trial, family = binomial(link = "logit")) %>%
    tbl_regression(exponentiate = TRUE, label = list(age = "Patient Age"))
```

tbl_stack

Stacks two or more gtsummary regression objects

Description

Assists in patching together more complex tables. tbl_stack() appends two or more tbl_regression or tbl_merge objects. gt attributes from the first regression object are utilized for output table (read: don't stack a tbl_regression object on top of a tbl_summary object).

Usage

```
tbl_stack(tbls)
```

Arguments

tbls

List of gtsummary regression objects

tbl_stack 45

Value

A tbl_stack object

Example Output

Author(s)

Daniel D. Sjoberg

See Also

```
tbl_merge
```

```
Other tbl_regression tools: add_global_p.tbl_regression, add_nevent.tbl_regression, bold_italicize_label_bold_p.tbl_regression, bold_p.tbl_stack, inline_text.tbl_regression, modify_header, sort_p.tbl_regression, tbl_merge, tbl_regression

Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_uvregression
```

Examples

```
# Example 1 - stacking two tbl_regression objects
  glm(response ~ trt, trial, family = binomial) %>%
  tbl_regression(
    exponentiate = TRUE,
    label = list(vars(trt) ~ "Treatment (unadjusted)")
  )
  glm(response ~ trt + grade + stage + marker, trial, family = binomial) %>%
  tbl_regression(
   include = "trt",
    exponentiate = TRUE,
    label = list(vars(trt) ~ "Treatment (adjusted)")
  )
tbl_stack_ex1 <- tbl_stack(list(t1, t2))</pre>
# Example 2 - stacking two tbl_merge objects
library(survival)
t3 <-
  coxph(Surv(ttdeath, death) ~ trt, trial) %>%
  tbl_regression(
    exponentiate = TRUE,
    label = list(vars(trt) ~ "Treatment (unadjusted)")
  )
t4 <-
  coxph(Surv(ttdeath, death) ~ trt + grade + stage + marker, trial) %>%
  tbl_regression(
    include = "trt",
    exponentiate = TRUE,
```

46 tbl_summary

```
label = list(vars(trt) ~ "Treatment (adjusted)")
)

# first merging, then stacking
row1 <- tbl_merge(list(t1, t3), tab_spanner = c("Tumor Response", "Death"))
row2 <- tbl_merge(list(t2, t4))
tbl_stack_ex2 <-
tbl_stack(list(row1, row2))</pre>
```

tbl_summary

Create a table of summary statistics

Description

The tbl_summary function calculates descriptive statistics for continuous, categorical, and dichotomous variables. Review the tbl_summary vignette for detailed examples.

Usage

```
tbl_summary(data, by = NULL, label = NULL, statistic = NULL,
  digits = NULL, type = NULL, value = NULL, missing = c("ifany",
  "always", "no"), missing_text = "Unknown", sort = NULL,
  percent = c("column", "row", "cell"), group = NULL)
```

Arguments

value

below for details.

data	A data frame
by	A column name in data. Summary statistics will be calculated separately for each level of the by variable (e.g. by = trt). If NULL, summary statistics are calculated using all observations.
label	List of formulas specifying variables labels, e.g. list(vars(age) ~ "Age,yrs",vars(ptstage) ~ "Path T Stage"). If a variable's label is not specified here, the function will take the label attribute (attr(data\$age,"label")). If attribute label is NULL, the variable name will be used.
statistic	List of formulas specifying types of summary statistics to display for each variable. The default is list(all_continuous() ~ "{median} ({p25},{p75})",all_categorical() ~ "{n} ({p}%)"). See below for details.
digits	List of formulas specifying the number of decimal places to round continuous summary statistics. If not specified, tbl_summary guesses an appropriate number of decimals to round statistics. When multiple statistics are displayed for a single variable, supply a vector rather than an integer. For example, if the statistic being calculated is "{mean} ({sd})" and you want the mean rounded to 1 decimal place, and the SD to 2 use digits = list("age" ~ c(1,2)).
type	List of formulas specifying variable types. Accepted values are c("continuous", "categorical", "e.g. type = list(starts_with(age) ~ "continuous", "female" ~ "dichotomous"). If type not specified for a variable, the function will default to an appropriate summary type. See below for details.

List of formulas specifying the value to display for dichotomous variables. See

tbl_summary 47

missing Indicates whether to include counts of NA values in the table. Allowed values are "no" (never display NA values), "ifany" (only display if any NA values), and "always" (includes NA count row for all variables). Default is "ifany". String to display for count of missing observations. Default is "Unknown". missing_text List of formulas specifying the type of sorting to perform for categorical data. sort Options are frequency where results are sorted in descending order of frequency and alphanumeric, e.g. sort = list(everything() ~ "frequency") percent

Indicates the type of percentage to return. Must be one of "column", "row", or

"cell". Default is "column".

DEPRECATED. Migrated to add_p group

Value

A tbl_summary object

select helpers

Select helpers from the {tidyselect} package and {gtsummary} package are available to modify default behavior for groups of variables. For example, by default continuous variables are reported with the median and IQR. To change all continuous variables to mean and standard deviation use statistic = list(all_continuous() ~ "{mean} ({sd})").

All columns with class logical are displayed as dichotomous variables showing the proportion of events that are TRUE on a single row. To show both rows (i.e. a row for TRUE and a row for FALSE) use type = list(all_logical() ~ "categorical").

The select helpers are available for use in any argument that accepts a list of formulas (e.g. statistic, type, digits, value, sort, etc.)

statistic argument

The statistic argument specifies the statistics presented in the table. The input is a list of formulas that specify the statistics to report. For example, statistic = list("age" ~ "{mean} ({sd})") would report the mean and standard deviation for age; statistic = list(all_continuous() ~ "{mean} ({sd})") would report the mean and standard deviation for all continuous variables. A statistic name that appears between curly brackets will be replaced with the numeric statistic (see glue::glue).

For categorical variables the following statistics are available to display.

- {n} frequency
- {N} denominator, or cohort size
- {p} formatted percentage

For continuous variables the following statistics are available to display.

- {median} median
- {mean} mean
- {sd} standard deviation
- {var} variance
- {min} minimum
- {max} maximum
- {p##} any integer percentile, where ## is an integer from 0 to 100
- {foo} any function of the form foo(x) is accepted where x is a numeric vector

48 tbl_summary

type argument

tbl_summary displays summary statistics for three types of data: continuous, categorical, and dichotomous. If the type is not specified, tbl_summary will do its best to guess the type. Dichotomous variables are categorical variables that are displayed on a single row in the output table, rather than one row per level of the variable. Variables coded as TRUE/FALSE, 0/1, or yes/no are assumed to be dichotomous, and the TRUE, 1, and yes rows will be displayed. Otherwise, the value to display must be specified in the value argument, e.g. value = list("varname" ~ "level to show")

Example Output

Author(s)

Daniel D. Sjoberg

See Also

See tbl_summary vignette for detailed examples

```
Other tbl_summary tools: add_n, add_overall, add_p, add_q.tbl_summary, add_stat_label, bold_italicize_labels_levels, bold_p.tbl_summary, inline_text.tbl_summary, modify_header, sort_p.tbl_summary, tbl_merge
```

Examples

```
tbl_summary_ex1 <-
  trial %>%
  dplyr::select(age, grade, response) %>%
  tbl_summary()
tbl_summary_ex2 <-
  trial %>%
  dplyr::select(age, grade, response, trt) %>%
  tbl_summary(
    by = trt,
    label = list(vars(age) ~ "Patient Age"),
    statistic = list(all_continuous() ~ "{mean} ({sd})"),
    digits = list(vars(age) \sim c(0, 1))
  )
# for convenience, you can also pass named lists to any arguments
# that accept formulas (e.g label, digits, etc.)
trial %>%
   dplyr::select(age, grade, response, trt) %>%
   tbl_summary(
    by = trt,
    label = list(age = "Patient Age"),
    statistic = list(all_continuous() ~ "{mean} ({sd})"),
    digits = list(vars(age) \sim c(0, 1))
```

tbl_summary_ 49

tbl_summary_	Standard evaluation version of tbl_summary()	
--------------	--	--

Description

The 'by =' argument can be passed as a string, rather than with non-standard evaluation as in tbl_summary. Review the help file for tbl_summary fully documented options and arguments.

Usage

```
tbl_summary_(data, by = NULL, label = NULL, statistic = NULL,
  digits = NULL, type = NULL, value = NULL, missing = c("ifany",
  "always", "no"), missing_text = "Unknown", sort = NULL,
  percent = c("column", "row", "cell"), group = NULL)
```

Arguments

sort

guments	
data	A data frame
by	A column name in data. Summary statistics will be calculated separately for each level of the by variable (e.g. by = trt). If NULL, summary statistics are calculated using all observations.
label	List of formulas specifying variables labels, e.g. list(vars(age) ~ "Age,yrs",vars(ptstage) ~ "Path T Stage"). If a variable's label is not specified here, the function will take the label attribute (attr(data\$age,"label")). If attribute label is NULL, the variable name will be used.
statistic	List of formulas specifying types of summary statistics to display for each variable. The default is list(all_continuous() ~ "{median} ({p25},{p75})",all_categorical() ~ "{n} ({p} $)$ "). See below for details.
digits	List of formulas specifying the number of decimal places to round continuous summary statistics. If not specified, tbl_summary guesses an appropriate number of decimals to round statistics. When multiple statistics are displayed for a single variable, supply a vector rather than an integer. For example, if the statistic being calculated is "{mean} ({sd})" and you want the mean rounded to 1 decimal place, and the SD to 2 use digits = list("age" ~ c(1,2)).
type	List of formulas specifying variable types. Accepted values are c("continuous", "categorical", "e.g. type = list(starts_with(age) ~ "continuous", "female" ~ "dichotomous"). If type not specified for a variable, the function will default to an appropriate summary type. See below for details.
value	List of formulas specifying the value to display for dichotomous variables. See below for details.
missing	Indicates whether to include counts of NA values in the table. Allowed values are "no" (never display NA values), "ifany" (only display if any NA values), and "always" (includes NA count row for all variables). Default is "ifany".
missing_text	String to display for count of missing observations. Default is "Unknown".

List of formulas specifying the type of sorting to perform for categorical data.

Options are frequency where results are sorted in descending order of frequency and alphanumeric, e.g. sort = list(everything() ~ "frequency")

50 tbl_survival.survfit

percent Indicates the type of percentage to return. Must be one of "column", "row", or

"cell". Default is "column".

group DEPRECATED. Migrated to add_p

tbl_survival Creates table of univariate summary statistics for time-to-event end-

oints

Description

Creates table of univariate summary statistics for time-to-event endpoints

Usage

```
tbl_survival(x, ...)
```

Arguments

x A survfit object

... Additional arguments passed to other methods

See Also

tbl_survival.survfit

tbl_survival.survfit Creates table of survival probabilities

Description

Experimental Function takes a survfit object as an argument, and provides a formatted summary of the results

Usage

```
## S3 method for class 'survfit'
tbl_survival(x, times = NULL, probs = NULL,
  label = ifelse(is.null(probs), "{time}", "{prob*100}%"),
  level_label = "{level}, N = {n}", header_label = NULL,
  header_estimate = NULL, failure = FALSE, missing = "-",
  estimate_fun = NULL, ...)
```

tbl_survival.survfit 51

Arguments

A survfit object with a no stratification (e.g. survfit(Surv(ttdeath, death) ~ Х 1, trial)), or a single stratifying variable (e.g. survfit(Surv(ttdeath, death) ~ trt, trial)) times Numeric vector of times for which to return survival probabilities. probs Numeric vector of probabilities with values in (0,1) specifying the survival quantiles to return label String defining the label shown for the time or prob column. Default is "{time}" or "{prob*100}%". The input uses glue::glue notation to convert the string into a label. A common label may be "{time} Months", which would resolve to "6 Months" or "12 Months" depending on specified times. level_label Used when survival results are stratified. It is a string defining the label shown. The input uses glue::glue notation to convert the string into a label. The default is " $\{level\}, N = \{n\}$ ". Other information available to call are ' $\{n\}$ ', ' $\{level\}$ ', '{n.event.tot}', '{n.event.strata}', and '{strata}'. See below for deheader_label String to be displayed as column header. Default is '**Time**' when time is specified, and '**Quantile**' when probs is specified. header_estimate String to be displayed as column header of the Kaplan-Meier estimate. Default is '**Probability**' when time is specified, and '**Time**' when probs is specified. failure Calculate failure probabilities rather than survival probabilities. Default is FALSE. Does NOT apply to survival quantile requests String indicating what to replace missing confidence limits with in output. Demissing fault is missing = "-" estimate_fun Function used to format the estimate and confidence limits. The default is style_percent(x,symbol = TRUE) for survival probabilities, and style_sigfig(x,digits = 3) for time estimates.

Value

A tbl_survival object

level_label argument

The level_label is used to modify the stratum labels. The default is level_label = "{level}, N = {n}". The quantities in the curly brackets evaluate to stratum-specific values. For example, in the trial data set, there is a column called trt with levels 'Drug' and 'Placebo'. In this example, {level} would evaluate to either 'Drug' or 'Placebo' depending on the stratum. Other quantities available to print are:

• {level} level of the stratification variable

Not used

- {level_label} label of level for the stratification variable
- {n} number of observations, or number within stratum
- {n.event.tot} total number of events (total across stratum, if applicable)
- {n.event.strata} total number of events within stratum, if applicable
- {strata} raw stratum specification from survfit object

52 tbl_uvregression

Example Output

Author(s)

Daniel D. Sjoberg

See Also

Other tbl_survival tools: inline_text.tbl_survival, modify_header

Examples

```
library(survival)
fit1 <- survfit(Surv(ttdeath, death) ~ trt, trial)
tbl_strata_ex1 <-
    tbl_survival(fit1,
        times = c(12, 24),
        label = "{time} Months"
)

fit2 <- survfit(Surv(ttdeath, death) ~ 1, trial)
tbl_nostrata_ex2 <-
    tbl_survival(fit2,
        probs = c(0.1, 0.2),
        header_estimate = "**Months**"
)</pre>
```

tbl_uvregression

Display univariate regression model results in table

Description

This function estimates univariate regression models and returns them in a publication-ready table. The function takes as arguments a data frame, the type of regression model, and the outcome variable. Each column in the data frame is regressed on the specified outcome. The tbl_uvregression function arguments are similar to the tbl_regression arguments. Review the tbl_uvregression vignette for detailed examples.

Usage

```
tbl_uvregression(data, method, y, method.args = NULL,
  formula = "{y} ~ {x}", exponentiate = FALSE, label = NULL,
  include = NULL, exclude = NULL, hide_n = FALSE,
  show_single_row = NULL, conf.level = NULL, estimate_fun = NULL,
  pvalue_fun = NULL, show_yesno = NULL)
```

tbl_uvregression 53

Arguments

Data frame to be used in univariate regression modeling. Data frame includes data the outcome variable(s) and the independent variables. Regression method (e.g. lm, glm, survival::coxph, and more). method Model outcome (e.g. y = recurrence or y = Surv(time, recur)) ٧ method.args List of additional arguments passed on to the regression function defined by method. formula String of the model formula. Uses glue::glue syntax. Default is " $\{y\} \sim \{x\}$ ", where {y} is the dependent variable, and {x} represents a single covariate. For a random intercept model, the formula may be formula = " $\{y\} \sim \{x\} + (1 \mid$ gear)". exponentiate Logical indicating whether to exponentiate the coefficient estimates. Default is FALSE. label List of formulas specifying variables labels, e.g. list("age" ~ "Age, yrs", "ptstage" ~ "Path T Stage") include Character vector of variable names to include from output. exclude Character vector of variable names to exclude from output. hide_n Hide N column. Default is FALSE show_single_row By default categorical variables are printed on multiple rows. If a variable is binary (e.g. Yes/No) and you wish to print the regression coefficient on a single row, include the variable name here, e.g. show_single_row = c("var1", "var2") conf.level Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval. estimate_fun Function to round and format coefficient estimates. Default is style sigfig when the coefficients are not transformed, and style ratio when the coefficients have been exponentiated. pvalue_fun Function to round and format p-values. Default is style_pvalue. The function must have a numeric vector input (the numeric, exact p-value), and return a

string that is the rounded/formatted p-value (e.g. pvalue_fun = function(x) style_pvalue(x,digits = 2) or equivalently, purrr::partial(style_pvalue,digits

= 2)).

deprecated show_yesno

Value

A tbl_uvregression object

Example Output

Setting Defaults

If you prefer to consistently use a different function to format p-values or estimates, you can set options in the script or in the user- or project-level startup file, '.Rprofile'. The default confidence level can also be set.

- options(gtsummary.pvalue_fun = new_function)
- options(gtsummary.tbl_regression.estimate_fun = new_function)
- options(gtsummary.conf.level = 0.90)

54 tbl_uvregression

Note

The N reported in the output is the number of observations in the data frame model.frame(x). Depending on the model input, this N may represent different quantities. In most cases, it is the number of people or units in your model. Here are some common exceptions.

- 1. Survival regression models including time dependent covariates.
- 2. Random- or mixed-effects regression models with clustered data.
- 3. GEE regression models with clustered data.

This list is not exhaustive, and care should be taken for each number reported.

Author(s)

Daniel D. Sjoberg

See Also

See tbl regression vignette for detailed examples

Other tbl_uvregression tools: add_global_p.tbl_uvregression, add_nevent.tbl_uvregression, add_q.tbl_uvregression, bold_italicize_labels_levels, bold_p.tbl_stack, bold_p.tbl_uvregression, inline_text.tbl_uvregression, modify_header, sort_p.tbl_uvregression, tbl_merge, tbl_stack

Examples

```
tbl_uv_ex1 <-
  tbl_uvregression(
    trial %>% dplyr::select(response, age, grade),
    method = glm,
   y = response,
   method.args = list(family = binomial),
    exponentiate = TRUE
  )
# rounding pvalues to 2 decimal places
library(survival)
tbl_uv_ex2 <-
  tbl_uvregression(
    trial %>% dplyr::select(ttdeath, death, age, grade, response),
    method = coxph,
    y = Surv(ttdeath, death),
    label = list(vars(grade) ~ "Grade"),
    exponentiate = TRUE,
    pvalue_fun = function(x) style_pvalue(x, digits = 2)
# for convenience, you can also pass named lists to any arguments
# that accept formulas (e.g label, etc.)
library(survival)
trial %>%
   dplyr::select(ttdeath, death, age, grade, response) %>%
   tbl_uvregression(
    method = coxph,
     y = Surv(ttdeath, death),
     label = list(grade = "Grade"),
     exponentiate = TRUE)
```

trial 55

trial

Results from a simulated trial of Placebo vs Drug

Description

A dataset containing the baseline characteristics of 200 patients randomized to Placebo or Drug. Dataset also contains the trial outcome: tumor response to the treatment.

Usage

trial

Format

A data frame with 200 rows-one row per patient

trt Treatment Randomization

age Age, yrs

marker Marker Level, ng/mL

stage T Stage

grade Grade

response Tumor Response

death Patient Died

ttdeath Months to Death/Censor

Index

*Topic datasets	ac tibble the cummany
<u>*</u>	as_tibble.tbl_summary
trial, 55	(as_tibble_methods), 19
add_global_p, 3	as_tibble.tbl_survival
add_global_p.tbl_regression, 3, 4, 8,	(as_tibble_methods), 19
21–23, 28, 33, 36, 41, 44, 45	as_tibble.tbl_uvregression
add_global_p.tbl_uvregression, 3, 5, 9,	(as_tibble_methods), 19
15, 21, 23, 25, 32, 33, 38, 41, 45, 54	as_tibble_methods, 19
add_n, 6, 10, 11, 14, 16, 21, 24, 29, 33, 37, 41,	
48	bold_italicize_labels_levels, 4-6, 8-11,
add_nevent, 7	14–16, 20, 22–25, 28, 29, 32, 33,
add_nevent.tbl_regression, 4, 7, 7, 21–23,	36–38, 41, 44, 45, 48, 54
28, 33, 36, 41, 44, 45	bold_labels
	<pre>(bold_italicize_labels_levels),</pre>
add_nevent.tbl_uvregression, 5, 7, 8, 15, 21, 23, 25, 32, 33, 38, 41, 45, 54	20
	bold_levels
add_overall, 6, 9, 11, 14, 16, 21, 24, 29, 33,	<pre>(bold_italicize_labels_levels),</pre>
37, 41, 48	20
add_p, 6, 10, 10, 12, 14, 16, 21, 24, 29, 33, 37, 41, 47, 48, 50	bold_p, 21
	bold_p.tbl_regression, 4, 8, 21, 22, 23, 28,
add_p_, 12	33, 36, 41, 44, 45
add_q, 13 add_q.tbl_summary, 6, 10, 11, 13, 14, 16, 21,	bold_p.tbl_stack, 4, 5, 8, 9, 15, 21, 22, 23,
24, 29, 33, 37, 41, 48	25, 28, 32, 33, 36, 38, 41, 44, 45, 54
	bold_p.tbl_summary, 6, 10, 11, 14, 16, 21,
add_q.tbl_uvregression, 5, 9, 13, 15, 21, 23, 25, 32, 33, 38, 41, 45, 54	24, 29, 33, 37, 41, 48
	bold_p.tbl_uvregression, 5, 9, 15, 21, 23,
add_stat_label, 6, 10, 11, 14, 16, 21, 24, 29, 33, 37, 41, 48	25, 32, 33, 38, 41, 45, 54
<pre>all_categorical (select_helpers), 35 all_character (select_helpers), 35</pre>	car::Anova, <i>3</i> – <i>5</i>
all_continuous (select_helpers), 35	<pre>crayon::strip_style(), 26</pre>
all_dichotomous (select_helpers), 35	
all_double (select_helpers), 35	<pre>geepack::geeglm, 7, 8</pre>
all_factor (select_helpers), 35	glm, 53
	glue::glue, 6, 27, 29, 31, 32, 47, 51, 53
<pre>all_integer (select_helpers), 35 all_logical (select_helpers), 35</pre>	gtsummary_logo, 26
all_numeric(select_helpers), 35	g 55 dillinar y _ 10g0, 20
• /	inline text 8 0 26
as_gt, 17	inline_text, 8, 9, 26 inline_text.tbl_regression, 4, 8, 21-23,
as_kable, 18 as_tibble.tbl_merge	26, 27, 33, 36, 41, 44, 45
(as_tibble_methods), 19	inline_text.tbl_summary, 6, 10, 11, 14, 16,
as_tibble.tbl_regression	21, 24, 26, 28, 33, 37, 41, 48
(as_tibble_methods), 19	inline_text.tbl_survival, 26, 29, 33, 52
as_tibble.tbl_stack	inline_text.tbl_uvregression, 5, 9, 15,
(as_tibble_methods), 19	21, 23, 25, 26, 31, 33, 38, 41, 45, 54
(as_tibble_methods), 19	21, 23, 23, 20, 31, 33, 30, 41, 43, 34

INDEX 57

italicize_labels
<pre>(bold_italicize_labels_levels),</pre>
20
italicize_levels
<pre>(bold_italicize_labels_levels),</pre>
20
<pre>knit_print.tbl_merge(print_gtsummary),</pre>
33
knit_print.tbl_regression
(print_gtsummary), 33
knit_print.tbl_stack(print_gtsummary),
33
knit_print.tbl_summary
(print_gtsummary), 33
knit_print.tbl_survival
(print_gtsummary), 33
knit_print.tbl_uvregression
(print_gtsummary), 33
knitr::kable, <i>18</i>
1 52
lm, 53
lme4::glmer, 7, 8
modify_header, 4-6, 8-11, 14-16, 21-25,
28–30, 32, 32, 36–38, 41, 44, 45, 48,
52, 54
<pre>print.tbl_merge(print_gtsummary), 33</pre>
<pre>print.tbl_regression(print_gtsummary),</pre>
33
<pre>print.tbl_stack(print_gtsummary), 33</pre>
<pre>print.tbl_summary(print_gtsummary), 33</pre>
<pre>print.tbl_survival(print_gtsummary), 33</pre>
print.tbl_uvregression
(print_gtsummary), 33
print_gtsummary, 33
select_helpers,35
sort_p.tbl_regression, 4, 8, 21-23, 28, 33,
35, 41, 44, 45
sort_p.tbl_summary, 6, 10, 11, 14, 16, 21,
24, 29, 33, 36, 41, 48
sort_p.tbl_uvregression, 5, 9, 15, 21, 23,
25, 32, 33, 37, 41, 45, 54
stats::glm, 7, 8
stats::p.adjust, <i>14</i> , <i>15</i>
style_percent, 38
style_pvalue, 11, 13–15, 28, 39, 43, 53
style_ratio, 39, 43, 53
style_sigfig, 40, 40, 43, 53
J
survival::coxph, 7, 8, 53

 $\begin{array}{c} {\rm tbl_merge,} \ 4-6, \ 8-11, \ 14-16, \ 21-25, \ 28, \ 29, \\ 32, \ 33, \ 36-38, \ 41, \ 44, \ 45, \ 48, \ 54 \\ {\rm tbl_regression,} \ 4, \ 7, \ 8, \ 17-23, \ 27, \ 28, \\ 33-36, \ 41, \ 42, \ 45, \ 52 \\ {\rm tbl_stack,} \ 4, \ 5, \ 8, \ 9, \ 15, \ 21-23, \ 25, \ 28, \ 32, \\ 33, \ 36, \ 38, \ 41, \ 44, \ 44, \ 54 \\ {\rm tbl_summary,} \ 6, \ 10-14, \ 16-21, \ 24, \ 28, \ 29, \ 33, \\ 34, \ 36, \ 37, \ 41, \ 46, \ 49 \\ {\rm tbl_summary_,} \ 49 \\ {\rm tbl_survival.survfit,} \ 30, \ 33, \ 50, \ 50 \\ {\rm tbl_survival.survfit,} \ 30, \ 33, \ 50, \ 50 \\ {\rm tbl_uvregression,} \ 5, \ 7-9, \ 13, \ 15, \ 17, \ 18, \ 20, \\ 21, \ 23, \ 25, \ 31-34, \ 37, \ 38, \ 41, \ 45, \ 52 \\ {\rm tibble,} \ 19 \\ {\rm trial,} \ 55 \\ \end{array}$