Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 11 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

Aufgabe 1

(i)

$$\varphi_{1} = \forall x \neg E(x, x) \land \forall x \forall y \ (x \neq y \Rightarrow E(x, y) \lor E(y, x)) \land \forall x \forall y \forall z (E(x, y) \land E(y, z) \Rightarrow E(x, z))$$

(ii) Widerspruchsannahme:

Es existiert ein φ_2 mit Quantorenrang m, sodass für jede endliche lineare Ordnung $\mathcal{A} = (A, E^{\mathcal{A}})$

 $A \vDash \varphi_2$ genau dann, wenn |A| ungerade ist.

gilt.

Nehmen wir nun die lineare endliche Ordnung $\mathcal{B}_1=(B_1,E^{\mathcal{B}_1})$ mit $|B_1|=2^{m+1}>2^m$ und $\mathcal{B}_1=(B_2,E^{\mathcal{B}_1})$ mit $|B_2|=2^m+1>2^m$. Es gilt nach dem Satz der Vorlesung, dass die Duplikatorin das EF-Spiel gewinnen würde, woraus folgt, dass φ_2 die beiden Ordnungen nicht unterscheiden könnte. Da aber $|B_1|$ gerade ist und $|B_2|$ ungerade, ist das ein Widerspruch zur Annahme, woraus folgt, dass die Annahme falsch sein muss. Somit kann kein solcher $FO[\sigma]$ -Satz φ_2 existieren.

(iii)

(iv) Widerspruchsannahme: Es existiert ein solcher $FO[\sigma]$ -Satz φ_4 .

Nach der Teilaufgabe (iii) existiert ein Satz φ_3 , sodass für jeden endlichen Graph G = (A,E) gilt:

Der Graph $(A, \varphi_3(A))$ ist zusammenhängend genau dann, wenn |A| ungerade ist.

Nun gilt nach φ_4 auch:

$$G' = (A, \varphi_3(A)) \models \varphi_4$$
 genau dann, wenn $|A|$ ungerade ist.
 $\Leftrightarrow G' = (A, \varphi_3(A)) \nvDash \varphi_4$ genau dann, wenn $|A|$ gerade ist.

Das ist ein Widerspruch zur Teilaufgabe (ii), woraus folgt, dass die Annahme falsch sein muss, sodass es keinen solchen $FO[\sigma]$ -Satz φ_4 geben kann.

Aufgabe 3

- (i) Der Herausforderer spielt in der Struktur \mathcal{B} und wählt ∞ . Gibt die Duplikatorin das Element a als Antwort, dann gilt, dass ein Element i in \mathcal{A} existiert, sodass a < b. Daraus folgt aber, dass es ebenfalls ein $P_i^{\mathcal{A}}$ gibt, sodass $a \notin P_i^{\mathcal{A}}$, was jedoch ein Widerspruch ist, da ∞ in allen einstelligen Relationen aus \mathcal{B} vorkommt.
- (ii) Sei $\varphi \in FO[\sigma]$ beliebig. Für jedes $P_i(x)$ mit $x \in \mathbb{N}$ gilt (*):

i > 0:

1. wurde x durch einen Existenzquantor quantifiziert, ist $P_i(x) = 1$ Für jedes P_i existiert eine Zahl x, sodass x > i und damit $P_i(x) = 1$.

2. wenn x durch einen Allquantor quantifiziert wurde, ist $P_i(x) = 0$ Für jedes P_i existiert eine Zahl x, sodass x < i und damit $P_i(x) = 0$. i = 0:

1. wurde x durch einen Existenzquantor quantifiziert, ist $P_0(x)=1$ Für P_0 existiert eine Zahl x, sodass x>0 und damit $P_0(x)=1$.

2. wenn x durch einen Allquantor quantifiziert wurde, ist $P_0(x)=1$ Für P_0 existiert keine Zahl x, sodass x<0 und damit $P_0(x)=1$.

Die Aussagen (*) gelten in beiden Strukturen, woraus folgt, dass alle Relationen gleich auswerten und somit auch der Satz φ in beiden Strukturen immer gleich auswertet. Da keine Einschränkung bei φ getroffen wurde, folgt, dass es keinen $FO[\sigma]$ -Satz gibt, der beide Strukturen unterscheidet, sodass sie elementar äquivalent sind.