ARM Architectuur

Jeroen Doggen jeroen.doggen@ap.be

Versie: 2 maart 2015

ARM Overzicht

ARM Programmeermodel

Classic ARM processors Embedded ARM processors Application ARM processors

ARM Overzicht

ARM Programmeermodel

Classic ARM processors Embedded ARM processors Application ARM processors

ARM Selector Guide

▶ Opgericht in november 1990, spin-off van Acorn Computers ¹

- ▶ Opgericht in november 1990, spin-off van Acorn Computers ¹
- ► ARM verkoopt licenties van de ARM core aan halfgeleider partners die ARM chips fabriceren en verkopen aan hun klanten
 - ARM fabriceert zelf geen chips

- ▶ Opgericht in november 1990, spin-off van Acorn Computers ¹
- ► ARM verkoopt licenties van de ARM core aan halfgeleider partners die ARM chips fabriceren en verkopen aan hun klanten
 - ARM fabriceert zelf geen chips
- ► ARM is de grootste speler op het gebied van 32-bit embedded microprocessoren.

- Opgericht in november 1990, spin-off van Acorn Computers ¹
- ► ARM verkoopt licenties van de ARM core aan halfgeleider partners die ARM chips fabriceren en verkopen aan hun klanten
 - ARM fabriceert zelf geen chips
- ARM is de grootste speler op het gebied van 32-bit embedded microprocessoren.
- ARM biedt een breed scale aan architecturen en modellen aan:
 - ► Hoge performance, lage kostprijs, laag energieverbruik

- Opgericht in november 1990, spin-off van Acorn Computers ¹
- ► ARM verkoopt licenties van de ARM core aan halfgeleider partners die ARM chips fabriceren en verkopen aan hun klanten
 - ARM fabriceert zelf geen chips
- ARM is de grootste speler op het gebied van 32-bit embedded microprocessoren.
- ARM biedt een breed scale aan architecturen en modellen aan:
 - ▶ Hoge performance, lage kostprijs, laag energieverbruik
- ARM biedt samen met zijn partners teven tools en software aan die ontwikkeling van embedded applicaties zo makkelijk en efficiënt mogelijk te maken.

- Opgericht in november 1990, spin-off van Acorn Computers ¹
- ► ARM verkoopt licenties van de ARM core aan halfgeleider partners die ARM chips fabriceren en verkopen aan hun klanten
 - ARM fabriceert zelf geen chips
- ARM is de grootste speler op het gebied van 32-bit embedded microprocessoren.
- ARM biedt een breed scale aan architecturen en modellen aan:
 - ▶ Hoge performance, lage kostprijs, laag energieverbruik
- ARM biedt samen met zijn partners teven tools en software aan die ontwikkeling van embedded applicaties zo makkelijk en efficiënt mogelijk te maken.
- ► Er werden reeds 20 miljard processoren gemaakt en momenteel worden meer dan 10 miljoen processoren per dag afgeleverd.

ARM Partnership model

Elektronica met ARM core

Intellectueel eigendom

▶ De verschillende ARM cores delen een gemeenschappelijke instructieset.

Intellectueel eigendom

- ▶ De verschillende ARM cores delen een gemeenschappelijke instructieset.
- ARM biedt de volledige interne werking aan halfgeleider partners aan.
 - ▶ Hard en soft views (gate level netlist).

Intellectueel eigendom

- De verschillende ARM cores delen een gemeenschappelijke instructieset.
- ARM biedt de volledige interne werking aan halfgeleider partners aan.
 - ▶ Hard en soft views (gate level netlist).
- OEMS krijgen enkel beschikking over de hard view. (ter bescherming van IP).

ARM Overzicht

ARM Programmeermodel

Classic ARM processors Embedded ARM processors Application ARM processors

► ARM is een 32-bit architectuur.

- ARM is een 32-bit architectuur.
- ▶ Wanneer deze termen worden gebruikt in de ARM context:

Byte: 8 bits

Halfword: 16 bits

▶ Word: 32 bits

- ARM is een 32-bit architectuur.
- Wanneer deze termen worden gebruikt in de ARM context:

▶ Byte: 8 bits

► Halfword: 16 bits

▶ Word: 32 bits

- ▶ De meeste ARM's implementeren twee instructiesets:
 - ▶ 32-bit ARM instructieset
 - ▶ 16-bit Thumb instructieset

- ARM is een 32-bit architectuur.
- Wanneer deze termen worden gebruikt in de ARM context:

Byte: 8 bits

► Halfword: 16 bits

▶ Word: 32 bits

- ▶ De meeste ARM's implementeren twee instructiesets:
 - 32-bit ARM instructieset
 - ▶ 16-bit Thumb instructieset
- ▶ Jazelle cores kunnen ook Java bytecode uitvoeren. (native)

ARM Overzicht

ARM Programmeermodel
Classic ARM processors
Embedded ARM processors
Application ARM processors

ARM 1 tot 6

ARMv1 tot ARMv3 architectuur.

Figuur: Een Conexant ARM processor, voornamelijk gebruikt in routers rtesis

ARM 1 tot 6

- ARMv1 tot ARMv3 architectuur.
- ► Tussen 1985 en +/- 1995 werden vele modellen van ARM processoren ontwikkeld.

Figuur: Een Conexant ARM processor, voornamelijk gebruikt in routers rtesis

ARM 1 tot 6

- ARMv1 tot ARMv3 architectuur.
- ► Tussen 1985 en +/- 1995 werden vele modellen van ARM processoren ontwikkeld.
- De meeste van deze processoren worden nu niet vaak meer gebruikt in nieuwe producten.

Figuur: Een Conexant ARM processor, voornamelijk gebruikt in routers
rtesis

► De meest gebruikte ARM7 designs implementeren de ARMv4T architectuur. (Von Neumann)

²http://www.jtag.com/en/Learn/Standards/IEEE_1149,19 > (2) > (3) > (4)

- De meest gebruikte ARM7 designs implementeren de ARMv4T architectuur. (Von Neumann)
- ▶ Deze generatie introduceerde de Thumb 16-bit instructieset: verbeterde code densiteit t.o.v. voorgaande designs.

- ▶ De meest gebruikte ARM7 designs implementeren de ARMv4T architectuur. (Von Neumann)
- ▶ Deze generatie introduceerde de Thumb 16-bit instructieset: verbeterde code densiteit t.o.v. voorgaande designs.
- ► Eén historisch belangrijk model is de "ARM7DI": deze introduceerde JTAG debugging. ²
 - JTAG wordt veel gebruikt voor het testen van PCB's
 - ▶ Biedt de mogelijkheid om stap per stap code uit te laten voeren: single stepping & breakpointing

- ▶ De meest gebruikte ARM7 designs implementeren de ARMv4T architectuur. (Von Neumann)
- ▶ Deze generatie introduceerde de Thumb 16-bit instructieset: verbeterde code densiteit t.o.v. voorgaande designs.
- ► Eén historisch belangrijk model is de "ARM7DI": deze introduceerde JTAG debugging. ²
 - JTAG wordt veel gebruikt voor het testen van PCB's
 - Biedt de mogelijkheid om stap per stap code uit te laten voeren: single stepping & breakpointing
- ▶ Bekende elektronica waarin deze chip gebruikt wordt:
 - ▶ iPod, Nintendo DS, Game Boy Advance, routers,...

► Een analoog signaal wordt gesampled en gekwantiseerd

³Meer info: cursus embedded systems 5

- ► Een analoog signaal wordt gesampled en gekwantiseerd
- ► Het digitaal wordt digitaal bewerkt (filter, echo, ...)

³Meer info: cursus embedded systems 5

- ► Een analoog signaal wordt gesampled en gekwantiseerd
- ► Het digitaal wordt digitaal bewerkt (filter, echo, ...)
 - ► MAC instructie: Multiply, Add & Accumulate ³

³Meer info: cursus embedded systems 5

- ► Een analoog signaal wordt gesampled en gekwantiseerd
- ► Het digitaal wordt digitaal bewerkt (filter, echo, ...)
 - ▶ MAC instructie: Multiply, Add & Accumulate ³
- ▶ Het bewerkt signaal wordt terug in analoge vorm omgezet

³Meer info: cursus embedded systems 5

► ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)

- ▶ ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)
- Bij deze generatie verandere ARM van de Von Neuman naar de Harvard architectuur met een aparte data en instructiebus waardoor de snelheid significant kan toenemen.

- ▶ ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)
- Bij deze generatie verandere ARM van de Von Neuman naar de Harvard architectuur met een aparte data en instructiebus waardoor de snelheid significant kan toenemen.
- Verbeteringen t.o.v. ARM7

- ▶ ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)
- Bij deze generatie verandere ARM van de Von Neuman naar de Harvard architectuur met een aparte data en instructiebus waardoor de snelheid significant kan toenemen.
- Verbeteringen t.o.v. ARM7
 - ► Lagere warmteproductie en minder risico op oververhitting.

- ▶ ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)
- Bij deze generatie verandere ARM van de Von Neuman naar de Harvard architectuur met een aparte data en instructiebus waardoor de snelheid significant kan toenemen.
- Verbeteringen t.o.v. ARM7
 - Lagere warmteproductie en minder risico op oververhitting.
 - ► Hogere kloksnelheden en langere pipeline.

- ▶ ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)
- Bij deze generatie verandere ARM van de Von Neuman naar de Harvard architectuur met een aparte data en instructiebus waardoor de snelheid significant kan toenemen.
- Verbeteringen t.o.v. ARM7
 - ► Lagere warmteproductie en minder risico op oververhitting.
 - ► Hogere kloksnelheden en langere pipeline.
 - Klokcycli verbeteringen: vele instructies worden nu in één cyclus voltooid.

- ▶ ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)
- Bij deze generatie verandere ARM van de Von Neuman naar de Harvard architectuur met een aparte data en instructiebus waardoor de snelheid significant kan toenemen.
- Verbeteringen t.o.v. ARM7
 - Lagere warmteproductie en minder risico op oververhitting.
 - ► Hogere kloksnelheden en langere pipeline.
 - Klokcycli verbeteringen: vele instructies worden nu in één cyclus voltooid.
 - Sommige ARM9 cores beschikken over "Enhanced DSP" instructies (bijv. MAC) voor digitale signaalverwerking algoritmes.

- ▶ ARM9 is een 32-bit RISC architectuur. (ARMv4T en ARMv5TE)
- Bij deze generatie verandere ARM van de Von Neuman naar de Harvard architectuur met een aparte data en instructiebus waardoor de snelheid significant kan toenemen.
- Verbeteringen t.o.v. ARM7
 - Lagere warmteproductie en minder risico op oververhitting.
 - ► Hogere kloksnelheden en langere pipeline.
 - Klokcycli verbeteringen: vele instructies worden nu in één cyclus voltooid.
 - Sommige ARM9 cores beschikken over "Enhanced DSP" instructies (bijv. MAC) voor digitale signaalverwerking algoritmes.
- ▶ Bekende elektronica waarin deze chip gebruikt wordt:
 - ▶ Nintendo DSi, eReaders, NAS, routers, GSM's ...

▶ De ARM11 introduceerde de ARMv6 architectuur.

- ▶ De ARM11 introduceerde de ARMv6 architectuur.
- Verbeteringen t.o.v. ARM9

- ▶ De ARM11 introduceerde de ARMv6 architectuur.
- Verbeteringen t.o.v. ARM9
 - ▶ SIMD instructies voor betere multimedia toepassingen.

- ▶ De ARM11 introduceerde de ARMv6 architectuur.
- Verbeteringen t.o.v. ARM9
 - ▶ SIMD instructies voor betere multimedia toepassingen.
 - Lagere warmteproductie en minder risico op oververhitting.

- ▶ De ARM11 introduceerde de ARMv6 architectuur.
- Verbeteringen t.o.v. ARM9
 - ▶ SIMD instructies voor betere multimedia toepassingen.
 - ► Lagere warmteproductie en minder risico op oververhitting.
 - ► Hogere kloksnelheden en langere pipeline.

- ▶ De ARM11 introduceerde de ARMv6 architectuur.
- Verbeteringen t.o.v. ARM9
 - ▶ SIMD instructies voor betere multimedia toepassingen.
 - ► Lagere warmteproductie en minder risico op oververhitting.
 - ► Hogere kloksnelheden en langere pipeline.
 - Sommige ARM9 cores beschikken over "Enhanced DSP" instructies (bijv. MAC) voor digitale signaalverwerking algoritmes.

- ▶ De ARM11 introduceerde de ARMv6 architectuur.
- Verbeteringen t.o.v. ARM9
 - ▶ SIMD instructies voor betere multimedia toepassingen.
 - ► Lagere warmteproductie en minder risico op oververhitting.
 - Hogere kloksnelheden en langere pipeline.
 - Sommige ARM9 cores beschikken over "Enhanced DSP" instructies (bijv. MAC) voor digitale signaalverwerking algoritmes.
- ▶ Bekende elektronica waarin deze chip gebruikt wordt:
 - ► HTC, Nokia, Samsung smartphones, Apple iPhone, iPod Touch, Amazon Kindle,...

Overzicht

ARM Overzicht

ARM Programmeermodel

Classic ARM processors

Embedded ARM processors

Application ARM processors

▶ De ARM Cortex-M0 processor is de kleinste, meest energie zuinige ARM processor.

- De ARM Cortex-M0 processor is de kleinste, meest energie zuinige ARM processor.
- ▶ Door het zeer kleine silicon oppervlak en minimale code footpint levert deze processor 32-bit performance bij een 8-bit verkoopsprijs.

- De ARM Cortex-M0 processor is de kleinste, meest energie zuinige ARM processor.
- Door het zeer kleine silicon oppervlak en minimale code footpint levert deze processor 32-bit performance bij een 8-bit verkoopsprijs.
- Key features: (NXP LPC1100 Series)
 - ▶ 50 MHz, 32-bit, tto 32 kB Flash, 8 kB SRAM
 - ▶ UART, SPI, I²C, 8-channel 10 bit AD-converter, 42 GPIO
 - Active power: 150μA/MHz
 - Drie laag vermogen standen: sleep, deep-sleep en deep power-down
 - Wakup door timer, interrupt
 - ▶ Pin to pin compatible met LPC1300 (Cortex M3)

De ARM Cortex-M1 processor is specifiek gericht op FPGA implementaties.

- De ARM Cortex-M1 processor is specifiek gericht op FPGA implementaties.
- ▶ De key features zijn vergelijkbaar met de Cortex-M0

→ pin- and software compatible options

Cortex-M4 +150MHz	LPC4300	MCU with powerful DSP extensions
Cortex-M3 Up to 150MHz	LPC1800	Memory options up to 1MB flash, 200k SRAM
	LPC1700	High-performance with USB, Ethernet, LCD, and more
	LPC1300	USB solution, incl. on-chip USB drivers
Cortex-M0	LBOLOOO	
Up to 50MHz	LPC1200	Memory options up to 128k flash
	LPC1100	Best-in-class dynamic power consumption

rtesis

LPC1100 Cortex-M0

Re-defining 32-bit migration

- ▶ 2-10x higher performance than 8/16-bit MCUs
- ▶ 40-50% smaller code size than 8/16-bit MCUs
- ▶ Active power 130uA/MHz, Standby power 2µA
- 32 kB Flash, 8 kB SRAM, 16 / 32 / 48 Pin, SPI, I2C, UART, ADC
- ▶ Starting @ \$0.65

Cortex-M0 energy efficience

Lower energy for an identical task:

Low Power ARM Roadmap

Overzicht

ARM Overzicht

ARM Programmeermodel

Classic ARM processors Embedded ARM processors

Application ARM processors

▶ De ARM Cortex-A8 processor is de huidige mainstream smarthone processor.

- ▶ De ARM Cortex-A8 processor is de huidige mainstream smarthone processor.
- ▶ De key features:
 - ▶ Frequentie van 600 MHz tot 1.5 GHz.
 - Superscalar dual-issue microarchitecture.
 - NEON SIMD instruction set extension (optional).
 - VFPv3 Floating Point Unit (optional).
 - Thumb-2 instruction set encoding.
 - Jazelle RCT.
 - ▶ Advanced branch prediction unit with >95 % accuracy.
 - Integrated Level 2 Cache (0-4 MB).
 - 2.0 DMIPS / MHz

- Bekendste implementaties:
 - Apple A4, PoP design door Apple, geproduceerd door Samsung.
 - Qualcomm Snapdragon: SoC design gebruikt in zeer veel smarthones (en netbooks ^{4 5 6})

⁴http://www.goodgearguide.com.au/article/305316/qualcomm_shows_eee_pc_running_android_os

⁵http://blogs.computerworld.com/microsoft_strikes_back_at_ linux_netbook_push

⁶http://www.semiaccurate.com/2009/06/12/ms-steps-snapdragon/

Dualcore A8

- Momenteel volop gebruikt in tablets. (bijv. NVIDIA Tegra 2, Freescale i.MX6, Qualcomm Snapdragon S4, TI Omap 4)
- ▶ NVIDIA Kal-El: quad core variant

ARM A15

- ▶ Nieuw design: high performance
- Zal de komende maanden worden geïntroduceerd in tablet en smarthones.

▶ Beagle Board Description: http://www.youtube.com/watch?v=fEL0sW71PFs

- Beagle Board Description: http://www.youtube.com/watch?v=fEL0sW71PFs
- ▶ Beagle Board xM: http://www.youtube.com/watch?v=9E31p3_eE28

- Beagle Board Description: http://www.youtube.com/watch?v=fEL0sW71PFs
- Beagle Board xM: http://www.youtube.com/watch?v=9E31p3_eE28
- ► ARM 20 Years of partnership and innovation: http://www.youtube.com/watch?v=JSmbS6GziS0

- Beagle Board Description: http://www.youtube.com/watch?v=fELOsW71PFs
- Beagle Board xM: http://www.youtube.com/watch?v=9E31p3_eE28
- ► ARM 20 Years of partnership and innovation: http://www.youtube.com/watch?v=JSmbS6GziS0
- NVIDIA unveils Tegra 2: http://www.youtube.com/watch?v=m10Tcs-effU

- Beagle Board Description: http://www.youtube.com/watch?v=fELOsW71PFs
- ▶ Beagle Board xM: http://www.youtube.com/watch?v=9E31p3_eE28
- ARM 20 Years of partnership and innovation: http://www.youtube.com/watch?v=JSmbS6GziS0
- NVIDIA unveils Tegra 2: http://www.youtube.com/watch?v=ml0Tcs-effU
- ► ARM Cortex-A15 MPcore processor: http://www.youtube.com/watch?v=vF0ALmcCiLA