Full 3: Problema 1

La funció és:

$$f(x,y) = \frac{x^2(x+y)}{x^2+y^2}, \qquad (x,y) \neq (0,0).$$
 (1)

Continuïtat a (0,0)

Hem de fer el límit de f(x,y) al punt on no està definida, $\vec{x_0} = (0,0)$. Avaluant la funció a $\vec{x_0}$,

$$\lim_{\vec{x} \to \vec{0}} f(x, y) = \frac{0}{0}, \quad \text{indeterminat.}$$
 (2)

Llavors el que fem per trobar el límit és acotar f(x,y) per altres funcions de les quals si sabem el límit quan $\vec{x} \to \vec{0}$.

$$|f(x,y)| = \frac{|x^2||x+y|}{|x^2+y^2|} \le \frac{|x^2+y^2||x+y|}{|x^2+y^2|} = |x+y|, \tag{3}$$

i llavors,

$$\lim_{\vec{x} \to \vec{0}} (-|x,y)|) \le \lim_{\vec{x} \to \vec{0}} f(x,y) \le \lim_{\vec{x} \to \vec{0}} |x+y|$$

$$0 \le \lim_{\vec{x} \to \vec{0}} f(x,y) \le 0$$

$$\lim_{\vec{x} \to \vec{0}} f(x,y) = 0$$
(4)

Així doncs, veiem que per a que f(x, y) sigui contínua a $\vec{x} = \vec{0}$,

$$f(0,0) = 0. (5)$$

També podríem haver fet el lmit cap a (x, y) = (0, 0) per cert camins senzills, com ara y = ax. Però això no ens asseguraria la continuïtat de la funció. O també podem fer el límit transformant la funció a coordenades polars,

$$\lim_{\vec{x} \to \vec{0}} f(x, y) = \lim_{\rho \to 0, \theta} f(\rho, \theta) = \lim_{\rho \to 0, \theta} \frac{\rho^2 \cos^2 \theta (\rho \cos \theta + \rho \sin \theta)}{\rho^2} = \lim_{\rho \to 0, \theta} \rho \cos^2 \theta (\cos \theta + \sin \theta).$$
 (6)

Si agafem un valor de θ constant, obtenim

$$\lim_{\rho \to 0, \, \theta = ct} f(\rho, \theta) = 0,\tag{7}$$

però això no és prou general (és el mateix que fer el límit per una recta). El que hem de fer és un altre cop acotar la funció. Ara ho fem veient que,

$$\cos^2 \theta(\cos \theta + \sin \theta) \in (-1, 1) \Rightarrow -\rho \le f(\rho, \theta) \le \rho, \tag{8}$$

i llavors és clar que,

$$\lim_{\rho \to 0, \theta} f(\rho, \theta) = 0. \tag{9}$$

Diferenciabilitat

Si obtenim que les derivades parcials existeixen i són contínues, sabrem que la funció és diferenciable. Les derivades parcials són,

$$\frac{\partial f}{\partial x} = \frac{(3x^2 + 2xy)(x^2 + y^2) - x^2(x+y)2x}{(x^2 + y^2)^2},
\frac{\partial f}{\partial y} = \frac{x^2(x^2 + y^2) - x^2(x+y)2y}{(x^2 + y^2)^2}, \qquad \forall (x,y) \neq (0,0). \tag{10}$$

Però aquestes estan definides a tots els punts excepte a $\vec{x} = \vec{0}$. Per calcular les derivades parcials a aquest punt, hem de d'emprar la definició,

$$\frac{\partial f}{\partial x}(\vec{0}) = \lim_{h \to 0} \frac{f(\vec{0} + h\vec{e_1}) - f(\vec{0})}{h} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3}{h^2}}{h} = 1.$$

$$\frac{\partial f}{\partial y}(\vec{0}) = \lim_{h \to 0} \frac{f(\vec{0} + h\vec{e_2}) - f(\vec{0})}{h} = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0.$$
(11)

Com els límits convergeixen, les derivades parcials existeixen $\forall (x,y)$. Però per a poder afirmar que f(x,y) és diferenciable, cal que aquestes derivades siguin contínues.

$$\lim_{\vec{x}\to\vec{0}} \frac{\partial f}{\partial x} = \lim_{\rho\to 0} \frac{(3\rho^2 c^2\theta + 2\rho^2 c\theta s\theta)\rho^2 - \rho^2 c^2\theta \rho (s\theta + c\theta) 2\rho c\theta}{\rho^4} =$$

$$= \lim_{\rho\to 0} 3c^2\theta + 2s\theta c\theta - 2c^3\theta (s\theta + c\theta), \quad \text{depèn de } \theta.$$

$$\lim_{\vec{x}\to\vec{0}} \frac{\partial f}{\partial y} = \lim_{\rho\to 0} c^2\theta - 2s\theta c^2\theta (s\theta + c\theta), \quad \text{depèn de } \theta.$$
(12)

Veiem doncs que les parcials no són contínues. Per tant, no podem afirmar que f(x,y) sigui diferenciable. Anem a esbrinar-ho mitjançant la definició de diferenciabilitat. Una funció és diferenciable al punt $\vec{x} = \vec{a}$ si

$$f(\vec{a} + \vec{v}) - f(\vec{a}) = \vec{v} \cdot \nabla f(\vec{a}) + ||\vec{v}|| E(\vec{a}, \vec{v})$$
 on $\lim_{\|\vec{v}\| \to 0} E(\vec{a}, \vec{v}) = 0$

D'aquí podem treure que

$$\lim_{\|\vec{v}\| \to 0} E(\vec{a}, \vec{v}) = \lim_{\|\vec{v}\| \to 0} \frac{f(\vec{a} + \vec{v}) - f(\vec{a}) - \vec{v} \cdot \nabla f(\vec{a})}{\|\vec{v}\|}.$$
 (13)

En aquest cas,

$$\vec{a} = \vec{0} \qquad f(\vec{v}) = \frac{v_1^2(v_1 + v_2)}{v_1^2 + v_2^2} \text{ on } \vec{v} = (v_1, v_2) \qquad f(\vec{0}) = 0 \qquad \vec{v} \cdot \nabla f(\vec{0}) = v_1$$

$$\lim_{\|\vec{v}\| \to 0} E(\vec{0}, \vec{v}) = \lim_{\|\vec{v}\| \to 0} \frac{\frac{v_1^2(v_1 + v_2)}{v_1^2 + v_2^2} - 0 - v_1}{\sqrt{v_1^2 + v_2^2}} = \lim_{\|\vec{v}\| \to 0} \frac{v_1^2 v_2 - v_1 v_2^2}{(v_1^2 + v_2^2)^{\frac{3}{2}}}.$$
(14)

Anem a fer aquest límit per una recta, $v_2 = av_1$,

$$\lim_{v_1 \to 0} \frac{v_1^2 a v_1 - v_1 a^2 v_1^2}{(v_1^2 + a^2 v_2^2)^{\frac{3}{2}}} = \lim_{v_1 \to 0} \frac{a(1-a)}{(1+a^2)^{\frac{3}{2}}}.$$
 (15)

El límit depèn del valor de a que agafem, per tant no existeix. En concret, el límit no ens dona 0,

$$\lim_{\|\vec{v}\| \to 0} E(\vec{a}, \vec{v}) \neq 0,\tag{16}$$

que és la condició per a que f(x,y) sigui diferenciable. Llavors f(x,y) no és diferenciable a $\vec{x} = \vec{0}$.