MSc Research Skills

Lecture: Research methods

D G Rossiter

University of Twente.
Faculty of Geo-information Science & Earth Observation (ITC)

April 5, 2013

Copyright © 2007–2013 University of Twente, Faculty ITC.

All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly prohibited. To adapt or translate please contact the author (http://www.itc.nl/personal/rossiter).

Topic: Selecting research methods

Recall: At this point the research has been structured as:

- 1. Social, contextual problems
- 2. Research problems
- 3. Research objectives
- 4. Research questions, several per objective
- 5. Research hypotheses for each question
- 6. Research assumptions, not to be tested

The next step is to select research methods to answer the questions.

Research methods

Choose methods to answer the research questions; for each method state:

1. Either:

- (a) the **name** of the method that was chosen, with a **reference** to the literature that describes it; *or*
- (b) a **detailed description** of the method, if it is being developed as part of this project;

In both cases the method must be described in sufficient detail (either here or in the references) for someone else to be able to apply it.

- 2. The materials necessary to apply the method;
 - Field equipment, lab. supplies, computer programs . . .

(continued ...)

Research methods (2/2)

- 3. Why this method was chosen:
 - (a) Why is it **applicable** in this study?
 - (b) Why is it **preferred** to other methods that could have been applied?
 - (c) What are the **assumptions** for applying this method, and how are they met in this study?

Sequence of methods: 1 (with fieldwork)

The order in which methods are described should be logical; often they follow the time sequence of the research.

In the case of a project with fieldwork, a typical breakdown is:

- 1. pre-fieldwork;
- 2. fieldwork;
- 3. post-fieldwork.

These are broken down further by activity.

Example of field methods

Adapted from Fekerte MSc (2006)

- 1. Field data collection
 - (a) Sampling scheme
 - (b) Site description procedure
 - (c) Soil sampling procedure
- 2. Laboratory analysis
 - (a) Atterberg limits
 - (b) Free swell tests
 - (c) Cation exchange capacity determination
 - (d) Spectral measurements
 - i. The ASD field spectrometer
 - ii. The PIMA field spectrometer
 - iii. Measurement of soil reflectance

Sequence of methods: 2 (no fieldwork)

In the case of a project without fieldwork, the sequence is typically one of **dependence**: which steps must be performed before others.

For system design, this might be:

- 1. System **specification** methods;
- 2. System **design** methods;
- 3. System **implementation** methods;
- 4. System evaluation methods.

Topic: Examples

These examples follow the example research problems, objectives, questions of the previous lecture.

Example of methods (Naivasha SFAP)

Research question "Can blow-outs and dunes caused by wind erosion be seen on SFAP, and if so, of what dimensions?"

First we visualize the setting, then list the methods that must be specified.

Naivasha wind erosion - SFAP products

Stereogram showing blowouts and dunes

Naivasha wind erosion – field photos

Sequence of methods

- 1. Make a legend of wind erosion features;
 - e.g. blowouts, dunes (by type?) . . .
- 2. Specify how they are to be identified in the field;
- 3. List the characteristics of each feature to be measured in the field;
 - · e.g. for blowouts: length, width, maximum depth
- 4. Specify how the characteristics are to be measured in the field;
 - e.g. meter stick? total station?; replicate measurements? if so, average or take maximum/minimum?

5. Make a sampling plan (transect? block? stratified by land use?)

- What to do if a planned location is inaccessible?
- 6. Identify test features in the field and geo-reference them;
- 7. Produce the SFAP;
 - flight planning, equipment . . .
 - capture and save digital photos
- 8. Geo-reference the SFAP;
- 9. Interpret the SFAP at the locations of test features according to the legend;
- 10. Compare the interpreted features with the known features;
- 11. Quantify the degree of agreement.

Example of methods (animation)

- 1. Task analysis
- 2. Development of conceptual framework
- 3. Creation of animated representations
- 4. Evaluation
- 5. Synthesis and recommendations

These are then broken down into specific methods, e.g.

What method(s) to create animations?

Must also specify the computer programs and design tools to be used.

Topic: Finding methods

There are many resources for **finding** methods:

- their description
- their applicability (which situations they fit)

These can be found in:

- handbooks
- review articles in journals, or review book chapters
- technical manuals
- texts (n.b. often not described in enough detail)

Finding methods - handbooks

All fields have "methods" handbooks, e.g.

- Miles & Huberman (1994): methods for qualitative data analysis, e.g. in social sciences research
- Ryerson (ed.) (1998): methods in remote sensing
- Maidment (ed.) (1993): methods in hydrology
- Knuth (1997): computational algorithms
- · de Gruijter et al. (2006), Cochran (1977): sampling designs
- FAO (2002): methods for describing soil profiles in the field
- · van Reeuwijk (ed.) (2002): laboratory methods for soil analysis

You should know the main methods handbooks in your field.

Finding methods - review articles

There are also review articles or book chapters that describe and compare methods; these are excellent resources to help you choose among methods. For example:

• Foody (2002): review of methods for accuracy assessment of land cover maps

Finding methods – texts

Advanced texts often explain and compare methods. This is common in statistics:

- · Legendre & Legendre (1998) on statistical methods in ecology
- · Bishop et al. (1975) on discrete multivariate statistics
- Davis (1998) on statistics and data analysis in geology

Finding methods - online

This can be a useful **starting point**, but very rarely provides a definitive method.

Use it to find reliable references (handbooks, review articles, texts).

Some handbooks may have been placed on-line as a convenience.

There are some complete handbooks on-line; if from a reputable source they can be used and cited, for example:

NIST (2003) on statistical methods for quality control.

References

Bishop, Y.; Fienberg, S.; & Holland, P. 1975. *Discrete multivariate analysis: theory and practice*. Cambridge, MA: MIT Press

Cochran, W. 1977. Sampling Techniques. New York: John Wiley, 3rd edition

Davis, J. C. 1986. Statistics and data analysis in geology. New York: Wiley

FAO. 2002. Guidelines for soil profile description. Rome: Food and Agriculture Organization of the United Nations, 4th edition

Foody, G. M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment **80**(1):185–201

de Gruijter, J.; Brus, D.; Bierkens, M.; & Knotters, M. 2006. Sampling for Natural Resource Monitoring. Springer

Knuth, D. E. 1997. The art of computer programming. Reading, Mass.: Addison-Wesley, 3rd edition

Legendre, P. & Legendre, L. 1998. *Numerical ecology*. Oxford: Elsevier Science, 2nd english edition (continued . . .)

Maidment, D. R. (ed.). 1993. Handbook of hydrology. New York: McGraw-Hill

Miles, M. B. & Huberman, A. M. 1994. *Qualitative data analysis: an expanded sourcebook*. Thousand Oaks, CA: Sage Publications, 2nd edition

National Institute of Standards and Technology. 2003. *NIST/SEMATECH e-Handbook of Statistical Methods*. http://www.itl.nist.gov/div898/handbook/

van Reeuwijk, L. P. (ed.). 2002. Procedures for soil analysis. ISRIC Technical Paper 9. Wageningen: ISRIC, 6th edition

Ryerson, R. A. & American Society for Photogrammetry and Remote Sensing. 1998. *Manual of remote sensing*. New York: Wiley, 3rd edition

Topic: Applicability of methods

There are many methods but some may not be **applicable** to your situation.

Example: Laboratory tests for the cation exchange capacity of the soil; methods developed for young soils in temperate climates give very misleading results for most tropical soils.

Example: Some image processing methods may only be feasible for small images.

You must argue that the selected methods fit the research context.

Topic: Study area or case study

If the research is carried out in a specific geographic area, the **study area** must be described.

This is true for **fieldwork**, but also for desk studies with **secondary data** from a specific area (e.g. imagery).

These both may be called **case studies**.

Justifying a study area

Three aspects:

- 1. **Scientific**: the area should be suitable to answer the research questions;
- 2. **Practical**: there should be sufficient secondary data; primary data collection should be feasible
 - · access, permissions, transport, language, security.
- 3. Social/contextual: the area should be important to the social problem
 - e.g. transport planning in a city with known acute mobility problems

Describing a study area

Where is the study area located? Almost always a location map is presented.

- What are its geographic limits?
- · Is the entire geographic area included or are only some sub-areas investigated?
- Why was this area selected? What makes it appropriate for the research problem?
- If **sub-areas** were selected, why these? Are they **representative** of the whole area? If not, what are their **special characteristics**?
- · What are the **characteristics** of the study area that are **relevant** to the problem?
 - Demographics, land-use pattern, geology, geomorphology, soils, data availability, importance of social or environmental problem, target area for larger project . . .

Justifying a study case

• Scientific: Why is this case appropriate to the research question? What advantages does it offer over other

- Practical: The study should be feasible
 - * Data availability, institutional collaboration, language
- · Social/contextual: the case should represent the social problem

Topic: The "design" research proposal

Some research is in the form of a design, e.g.

- a computer program
- a user interface
- · a database structure
- · an algorithm

Key question: when is a design **research**, not just a **project**?

Similar distinction in engineering "research" vs. "development" ("R&D")

What makes a design "research"?

· Clear research objective: results from the proposed project that others can use

- including the audience for the results
- Research questions that make the objective explicit
 - * if these questions can be answered, the objective has been reached.
- A high level of innovation (also called novelty):
 - create something really new
 - * or at least a new synthesis
- It must result in a design that is demonstrably "better" than the alternatives;
- The thesis must both define and demonstrate this superiority.

Statement of innovation

The **hypothesis** of the "research" thesis is replaced with:

- · a statement of the proposed innovation and
- evaluation criteria to asess this.

Superiority is often established by a demonstration that certain design criteria have been met, which were not met in other products.

Example

Proposal: Design a new structure for soil geographic databases.

Definition of "better":

- "allows the representation of real-world objects that can not be represented in any existing design"
- · "supports a class of queries that can not be carried out in any existing design".

Research sequence for this design

- 1. Establish that there is a demand for a design;
- 2. Review existing designs and identify their **shortcomings**;
- 3. Show the proposed design and its **innovations**;
- 4. Show how it is used on some sample data, i.e. a proof-of-concept;
- 5. Show that it can represent concepts that are impossible with existing designs.
- 6. Show that this improved design is useful for answering a richer class of questions

Topic: The "modelling" research proposal

Some thesis research is centred on models of a process.

These are important in **management**. For example:

- models of river basin hydrology
 - * predict floods, droughts, and navigable periods
 - * plan release and storage in reservoirs.
- spatial models of potential or actual soil erosion
 - * identify priority areas ("hot spots") for intervention
 - * plan soil conservation measures
 - * design sediment controls

Evaluating the success of a model

Models should reproduce the behaviour of the natural or social system under known scenarios, so we have some confidence in their usefulness for future scenarios.

As with a design thesis, we expect **improvement** over existing approaches, for example:

- Gives more accurate or precise predictions
- Requires less or less-expensive input data
- Is easier to parameterize
- Is applicable in a wider range of scenarios

So there must be some **method** for evaluating the success.

Topic: The "social" or "organizational" research proposal

Social analysis: the study of humans and human societies or their organizations.

The **hypothesis** takes the same form as a research thesis.

However, the research **method** is different:

- evidence can be subjective and anecdotal, rather than the objective result of a measurement;
- The results takes the form of a reasoned argument from evidence as interpreted by the researcher;
- The evidence is interpreted within a conceptual framework, which must itself be justified.

Difficulties in social analysis

- · "Humans are non-linear"
- Humans (researcher) studying humans (subjects)
- · Formulating and justifying a conceptual framework for interpretation.

Additional elements in a "social" proposal

Concepts must be well-defined, so that they can be consistently identified in the research.

So there is generally a section on **Concepts** and perhaps a **glossary** with **definitions**.

- E.g. what is meant by "sustainability", or "hierarchical organization" or "spatial data infrastructure" (SDI)?
- E.g. what is a "metaphor" applied to SDI?

Summary and next step

- 1. Social, contextual problems
- 2. Research problems
- 3. Research objectives
- 4. Research questions, several per objective
- 5. Research hypotheses or innovation
- 6. Research assumptions, not to be tested
- 7. Methods to answer questions / test hypotheses

All that is left to begin the research is logistics and scheduling.