ES-S1

2017-2018

Correction - Algèbre -

Exercice 1

 $\chi_A = (X-3)(X-2)$ est scindé sur $\mathbb R$ donc A est trigonalisable (au moins) sur $\mathbb R$.

On a
$$E_3(A) = \text{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right)$$
 et $E_2(A) = \text{Vect}\left(\begin{pmatrix} 4\\3\\4 \end{pmatrix}\right)$; ce qui fait que A n'est pas diagonalisable.

On cherche alors $P = \begin{pmatrix} 1 & 4 & a \\ 1 & 3 & b \\ 1 & 4 & c \end{pmatrix}$ telle que AP = PT. Cette dernière égalité nous donne un système d'inconnue (a, b, c) dont le triplet (-2, 0, -1) est solution.

$$(a, b, c) \text{ dont le triplet } (-2, 0, -1) \text{ est solution.}$$

$$Donc A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix} \text{ est semblable à la matrice } T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \text{ avec } P = \begin{pmatrix} 1 & 4 & -2 \\ 1 & 3 & 0 \\ 1 & 4 & -1 \end{pmatrix} \text{ puis }$$

$$P^{-1} = \begin{pmatrix} 3 & 4 & -6 \\ -1 & -1 & 2 \\ -1 & 0 & 1 \end{pmatrix}.$$

Exercice 2

- 1. Il suffit de poser $\varphi: t\mapsto \mathrm{e}^{-t}\in C([0,1],\mathbb{R})$ et F l'ensemble des fonctions affines, sous-espace vectoriel de
- 2. On peut orthonormaliser $(t\mapsto 1,t\mapsto t)$, base de F, en (f,g) puis, le projeté orthogonal de φ sur F est donné par $p_F(\varphi) = (\varphi|f)f + (\varphi|g)g$.

On a alors
$$f: t \mapsto 1$$
, $g: t \mapsto \sqrt{12}\left(t - \frac{1}{2}\right)$, puis $(\varphi|f) = 1 - \frac{1}{e}$, $(\varphi|g) = \sqrt{3}\left(1 - \frac{3}{e}\right)$, et enfin $p_F(\varphi): t \mapsto \left(6 - \frac{18}{e}\right)t + \frac{8}{e} - 2$.

3. On en déduit
$$I = d(\varphi, F)^2 = \|\varphi - p_F(\varphi)\|^2 = \|\varphi\|^2 - \|p_F(\varphi)\|^2$$
. (théorème de Pythagore)
Puis $I = (\varphi|\varphi) - (\varphi|f)^2 - (\varphi|g)^2 = \left(\frac{1}{2}\left(1 - \frac{1}{e^2}\right)\right)^2 - \left(1 - \frac{1}{e}\right)^2 - \left(\sqrt{3}\left(1 - \frac{3}{e}\right)\right)^2$, soit encore
$$I = \frac{1 - 114e^2 + 80e^3 - 15e^4}{4e^4}$$

Spé PT Page 1 sur 3

Exercice 3

Partie 1

1. En résolvant le système d'inconnues U et V formé par les deux premières équations, on trouve

$$V = \frac{\lambda A - A^2}{\mu(\lambda - \mu)}$$
 et $U = \frac{\mu A - A^2}{\lambda(\mu - \lambda)}$.

On substitue V et U dans la troisième relation et on a bien $A^3 = (\lambda + \mu)A^2 - \lambda \mu A$.

2. Démonstration par récurrence double.

L'initialisation est donnée par les deux premières relations.

Soit $p \ge 2$. Supposons la propriété vraie aux rangs p-1 et p.

On sait que $A^3 = (\lambda + \mu)A^2 - \lambda \mu A$, donc en multipliant par A^{p-2} , on obtient :

$$A^{p+1} = (\lambda + \mu)A^p - \lambda \mu A^{p-1}.$$

Puis, $A^{p+1} = (\lambda + \mu)(\lambda^p U + \mu^p V) - \lambda \mu(\lambda^{p-1} U + \mu^{p-1} V) = \lambda^{p+1} U + \mu^{p+1} V$ ce qui établit l'hérédité.

3. a. Puisque f est linéaire,

$$x \in \operatorname{Ker}(f) \iff f(x) = 0$$

 $\implies f^{p-1} \circ f(x) = 0$
 $\iff f^{p}(x) = 0$
 $\iff x \in \operatorname{Ker}(f^{p})$

- **b.** On sait que $A^{p+1} = (\lambda + \mu)A^p \lambda \mu A^{p-1}$, et que f est canoniquement associé à A donc $f^{p+1} = (\lambda + \mu)f^p \lambda \mu f^{p-1}$, ce qui donne $\forall x \in \mathbb{R}^n$, $\lambda \mu f^{p-1}(x) = (\lambda + \mu)f^p(x) f^{p+1}(x)$.
- c. Démonstration par récurrence.

Pour p=2, la relation précédente donne $\forall x \in \mathbb{R}^n, \ \lambda \mu f(x) = (\lambda + \mu) f^2(x) - f^3(x)$.

Ainsi, si $x \in \text{Ker}(f^2)$, $f^2(x) = 0$ puis $f^3(x) = 0$ et donc, comme $\lambda \mu \neq 0$, f(x) = 0; c'est à dire $x \in \text{Ker}(f)$. On a donc bien $\text{Ker}(f^2) \subset \text{Ker}(f)$.

Soit $p \geq 2$. Supposons $Ker(f^p) \subset Ker(f)$.

Soit alors $x \in \text{Ker}(f^{p+1})$ alors $f^{p+1}(x) = 0$ puis $f^{p+2}(x) = 0$, et comme

 $\lambda \mu f^p(x) = (\lambda + \mu) f^{p+1}(x) - f^{p+2}(x)$ et que $\lambda \mu \neq 0$, on a $f^p(x) = 0$ et donc $x \in \text{Ker}(f^p) \subset \text{Ker}(f)$. On a donc bien $\text{Ker}(f^{p+1}) \subset \text{Ker}(f)$ et on a l'hérédité.

d. Des questions précédentes, on sort $Ker(f^p) = Ker(f)$ et ensuite, on en déduit par le théorème du rang que $\dim(Im(f^p)) = \dim(Im(f))$, c'est à dire $rg(A^p) = rg(A)$.

Partie 2

1.
$${}^tV\ U = \sum_{i=1}^n u_i v_i \in \mathbb{R}.$$

2. $(U\ ^tV)^2=(U\ ^tV)(U\ ^tV)=U\ (^tV\ U)\ ^tV=k(U\ ^tV)$ où l'on a posé $k={}^tV\ U.$

$$(U \ ^tV)^2 = k(U \ ^tV) \iff \qquad (A - aI_n)^2 = k(A - aI_n)$$

$$\iff \qquad A^2 + a^2I_n - 2aA = kA - kaI_n$$

$$\iff \qquad A^2 = (2a + k)A - a(a + k)I_n$$

On a donc $\alpha = 2a + k$ et $\beta = -a(a + k)$.

3. On a clairement $a_{ij} = \begin{cases} a + u_i v_i & \text{si} & i = j \\ u_i v_j & \text{si} & i \neq j \end{cases}$

$$Tr(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} (a + u_i v_i) = \sum_{i=1}^{n} a + \sum_{i=1}^{n} u_i v_i = na + {}^{t}V U.$$

 $\mathsf{SPE}\;\mathsf{PT}$

- **4.** On a alors $\alpha = 2a + k = 2a + \text{Tr}(A) na = (2 n)a + \text{Tr}(A)$ et $\beta = -a(a + \text{Tr}(A) - na) = (n-1)a^2 - a\text{Tr}(A)$.
- 5. λ valeur propre de A donc $\exists X \in \mathbb{R}^n \setminus \{0\}$, $AX = \lambda X$. Ainsi $A^2X = A(AX) = A(\lambda X) = \lambda(AX) = \lambda^2 X$ et, comme $X \neq 0$, λ^2 est valeur propre de A^2 . Soit X un vecteur propre associé à la valeur propre λ . On a

 $A^2 = \alpha A + \beta I_n$ donc $A^2 X = \alpha A X + \beta I_n X$, c'est-à-dire $\lambda^2 X = \alpha \lambda X + \beta X$, ou encore $(\lambda^2 - \alpha \lambda - \beta) X = 0$; on conclut que $\lambda^2 - \alpha \lambda - \beta = 0$, puisque $X \neq 0$.

6. On cherche λ_1 et λ_2 tels que $\begin{cases} \lambda_1 + \lambda_2 &= \alpha = (2 - n)a + \text{Tr}(A) \\ \lambda_1 \lambda_2 &= -\beta = -(n - 1)a^2 + a\text{Tr}(A) \end{cases}$ et clairement $\lambda_1 = a \text{ et } \lambda_2 = \text{Tr}(A) - (n - 1)a \text{ convienment et sont les seules possibles.}$

7. a. E_1 et E_2 sont les sous-espaces propres de A associés aux valeurs propres λ_1 et λ_2 . Ils sont en somme directe si $\lambda_1 \neq \lambda_2$. Or

$$\lambda_1 = \lambda_2 \iff \operatorname{Tr}(1) - na = 0$$
 $\iff {}^t V \ U = 0$

ce qui est impossible puisque tV $U = \operatorname{Tr}({}^tV$ $U) = \operatorname{Tr}(U {}^tV) \neq 0$. On conclut que $E_1 \cap E_2 = \{0\}$.

ce qui est impossible puisque
tV
 $U=\operatorname{Tr}({}^tV$ $U)=\operatorname{Tr}(U$ ${}^tV)\neq 0$. On conclut que $E_1\cap E_2$ b. On cherche X_1 et X_2 tels que
$$\begin{cases} X=X_1+X_2\\ AX_1=\lambda_1X_1\\ AX_2=\lambda_2X_2 \end{cases}$$
 On obtient
$$\begin{cases} X=X_1+X_2\\ AX=\lambda_1X_1+\lambda_2X_2 \end{cases}$$
 puis
$$\begin{cases} X_1=\frac{\lambda_2X-AX}{\lambda_2-\lambda_1}\\ X_2=\frac{\lambda_1X-AX}{\lambda_1-\lambda_2} \end{cases}$$
. Ce qui achève l'analyse. Enfin, on vérifie que ces deux valeurs répondent à la question et donne la synthèse.

c. Les deux questions précédentes nous permettent de conclure que $M_{n,1}(\mathbb{R}) = E_1 \oplus E_2$ qui est une condition nécessaire et suffisante de diagonalisabilité de A.

Spé PT Page 3 sur 3