Political Science 209 - Fall 2018

Probability II

Florian Hollenbach

31st October 2018

THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Sometimes information about one event can help inform us about likelihood of another event

Examples?

Sometimes information about one event can help inform us about likelihood of another event

Examples?

- What is the probability of rolling a 5 and then a 6?
- What is the probability of rolling a 5 and then a 6 given that we rolled a 5 first?

If it is cloudy outside, gives us additional information about likelihood of rain

If we know that one party will win the House, makes it more likely that party will win certain Senate races

If the occurrence of one event (A) gives us information about likelihood of another event, then the two events are not independent.

If the occurrence of one event (A) gives us information about likelihood of another event, then the two events are not independent.

Independence of two events implies that information about one event does not help us in knowing whether the second event will occur.

For many real world examples, independence does not hold

Knowledge about other events allows us to improve guesses/probability calculations

When two events are independence, the probability of both happening is equal to the individual probabilities multiplied together

P(A | B)

Probability of A given/conditional that B has happened

$$P(A \mid B) = \frac{P(AandB)}{P(B)}$$

Probability of A and B happening (joint) divided by probability of B happening (marginal)

Definitions:

P(A and B) - joint probability

P(A) - marginal probability

$$P(\text{rolled 5 then 6}) = ?$$

```
P(rolled 5 then 6) = ?

P(rolled 5 then 6) = \frac{1}{36}

P(rolled 5 then 6 | 5 first) = \frac{P(5then6)}{P(5)}
```

```
P(rolled 5 then 6) = ?

P(rolled 5 then 6) = \frac{1}{36}

P(rolled 5 then 6 | 5 first) = \frac{P(5then6)}{P(5)}

\frac{1}{36} = \frac{1}{6}
```

The probability that it is Friday and that a student is absent is 0.03. What is the probability that student is absent, given that it is Friday?

P(absent | Friday) = ?

The probability that it is Friday and that a student is absent is 0.03. What is the probability that student is absent, given that it is Friday?

$$P(absent | Friday) = ?$$

$$P(absent | Friday) = \frac{0.03}{0.2} = 0.15$$

$$P(A \mid B) = \frac{P(AandB)}{P(B)}$$

Also means:

$$P(A \text{ and } B) = P(A \mid B) P(B)$$

If A and B are independent, then

- $P(A \mid B) = P(A) \& P(B \mid A) = P(B)$
- $P(A \text{ and } B) = P(A) \times P(B)$

If A|C and B|C are independent, then

• $P(A \text{ and } B \mid C) = P(A \mid C) \times P(B \mid C)$

What is the probability of drawing any card between 2 and 10, or jack, queen, king in any color?

What is the probability of drawing two kings from a full deck of cards?

What is the probability of drawing two kings from a full deck of cards?

$$P(2 \text{ kings}) = \frac{4}{52} \times ?$$

What is the probability of drawing two kings from a full deck of cards?

P(2 kings) =
$$\frac{4}{52} \times$$
?
P(2 kings) = $\frac{4}{52} \times \frac{3}{51} = \frac{12}{2652} = \frac{1}{221}$

Annual income	Took 209	Took 309	TOTAL
Under \$50,000	36	24	60
\$50,000 to \$100,000	109	56	165
over \$100,000	35	40	75
Total	180	120	300

Is the probability of making over \$100,000 and the probability of having taken 309 independent?

Annual income	Took 209	Took 309	TOTAL
Under \$50,000	36	24	60
\$50,000 to \$100,000	109	56	165
over \$100,000	35	40	75
Total	180	120	300

Is the probability of making over \$100,000 and the probability of having taken 309 independent?

 $P(\text{over } 100k \& 309) = P(\text{over } 100k) \times P(309)$?

Annual income	Took 209	Took 309	TOTAL
Under \$50,000	36	24	60
\$50,000 to \$100,000	109	56	165
over \$100,000	35	40	75
Total	180	120	300

What is the probability of any student making over \$100,000?

Annual income	Took 209	Took 309	TOTAL
Under \$50,000	36	24	60
\$50,000 to \$100,000	109	56	165
over \$100,000	35	40	75
Total	180	120	300

What is the probability of a student making over \$100,000, conditional that he took 309?

Annual income	Took 209	Took 309	TOTAL
Under \$50,000	36	24	60
\$50,000 to \$100,000	109	56	165
over \$100,000	35	40	75
Total	180	120	300

What is the probability of a having taken 309, conditional on making over \$100,000?