Министерство высшего образования и науки Российской Федерации Национальный научно-исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №3 по дисциплине «Основы профессиональной деятельности».

Вариант №846.

Работу выполнил: Афанасьев Кирилл Александрович, Студент группы Р3106. Преподаватель: Афанасьев Дмитрий Борисович.

Оглавление

Задание	3
Текст исходной программы	3
Описание программы	5
Таблица трассировки выполнения команд	6
Вывод	7

Задание:

«По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы. Вариант 846:

35E:	0377	I 36C:	F407	1	37A:	0001
JJLi		300	1407	ı	3/Ki	0001
35F:	0200	36D:	0480	1		
360:	4000	36E:	F405	Ī		
361:	0200	36F:	0400			
362: +	AF40	370:	0400			
363:	0680	371:	7EEF			
364:	0500	372:	F801			
365:	EEFB	373:	EEED			
366:	AF04	374:	8360			
367:	EEF8	375:	CEF4			
368:	AEF5	376:	0100			
369:	EEF5	377:	A360			
36A:	AAF4	378:	B36C	1		
36B:	0480	379:	0502	1		»
						"

Текст исходной программы:

Таблица 1: Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий				
		V WORD 0277	Ячейка с адресом первого элемента				
35E	0377	X: WORD 0377	массива.				
			Ячейка хранения текущего элемента				
35F	0200	Y: WORD 0200	массива. По нему будет проходить				
			получение значений массива.				
360	4000	L: WORD 4000	Длина массива (счетчик).				
361	0200	R: WORD 0200	Результат работы программы и				
301	0200	K. WORD 0200	промежуточных вычислений.				
362	AF40	START: LD #0x40	Прямая загрузка в АС значения 0х40.				
302		START. LD #0X40	Программа начинается здесь.				
	0680		Обмен байтами в АС. Так как в АС прямо				
363		SWAB	загружено 40(16), результат всегда будет				
			равен 4000.				
	0500		Сдвиг АС влево. Так как нам известен				
			результат предыдущей операции,				
364		ASL	результат этой всегда будет равен 8000				
304		736	(умножение на 2). Таким образом, мы				
			получаем в аккумуляторе минимально				
			возможное знаковое число.				
365	EEFB	ST R	Прямая относительная адресация: ST 366				
303	LLID	JIK	+ FFB = (1)361 (C=1;V=0). Сохраняет				

			содержимое аккумулятора (8000) в					
			ячейку результата R.					
366	AF04	LD #0x04	Прямая загрузка в АС значения 0х04					
300	A1 04	LD HOXO4	длины массива.					
			Прямая относительная адресация: ST 368					
367	EEF8	ST L	+ FF8 = (1)360 (C=1;V=0). Сохраняет					
			содержимое аккумулятора в ячейку L					
			Прямая относительная адресация: LD					
368	AEF5	LD X	369 + FF5 = (1)35E (C=1;V=0). Загружает из					
300	, ALI 3	LDX	ячейки памяти значение Х в					
			аккумулятор.					
			Прямая относительная адресация: ST					
			36A + FF5 = (1)35F (C=1;V=0). Сохраняет					
369	EEF5	ST Y	содержимое аккумулятора в ячейку					
			памяти Ү. Это нужно, чтобы в					
			дальнейшем работать с этим адресом.					
			Косвенная относительная					
			автоинкрементная адресация: Значение					
			адреса берется из ячейки 35F (метка Y),					
			далее мы получаем по полученному					
			адресу значение другого адреса, в					
36A	AAF4	LP_ST: LD (Y)+	котором хранятся данные для					
			дальнейшей работы программы (эти					
			данные будут загружены в аккумулятор),					
			а значение ячейки увеличиваем на 1.					
			Является фактической точкой начала					
			цикла.					
			Значение АС сдвигается вместе с Carry					
36B	0480	ROR	флагом вправо. Фактически, происходит					
			пробное деление на 2.					
			Если Carry флаг установился (то бишь 0-й					
			бит был 1) перемещаемся на ячейку ІР					
36C	F407	BCS LP_ADDR	+ 7 + 1 (сразу к проверке условия					
			продолжения цикла – далее LP_ADDR).					
			Иначе продолжаем выполнение.					
			Если мы продолжили выполнение, то					
			значение АС снова сдвигается вместе с					
36D	0480	ROR	Carry флагом вправо. Снова пробно					
			поделили на 2 (а в общей сложности,					
			уже на 4).					
			Если Carry флаг установился (то бишь 1-й					
	F405		бит исходного числа был 1)					
36E		BCS LP_ADDR	перемещаемся на ячейку IP + 5 + 1					
			(LP_ADDR). Иначе продолжаем					
			выполнение.					
			Если мы продолжили выполнение,					
36F	0400	ROL	циклически сдвигаем АС и С влево.					
			Возвращаем все к исходному значению.					

370	0400	ROL	Циклически сдвигаем AC и C влево. В AC				
		NOE	теперь исходное значение из массива.				
			Прямая относительная адресация: СМР				
			372 + FEF = (1)361 (C=1; V=0). Производит				
371	7EEF	CMP R	вычитание значения ячейки R из				
371	, , , ,	CIVIF IX	аккумулятора, результат операции				
			установка флагов, соответствующие				
			флагам результата операции.				
			Если не произошло переполнение, но				
			15-й разряд обратился в 1, или наоборот,				
372	F801	BLT LP ADDR	это означает, что значение АС больше				
372	1001	BLI LF_ADDK	значения из ячейки, мы перейдем на				
			ячейку IP + 1 + 1 (LP_ADDR). Иначе				
			продолжим выполнение.				
			Прямая относительная адресация: ST 374				
		ST R	+ FED = (1)361. Если мы продолжили				
	EEED		выполнение, обновляем значение				
373			ячейки R новым результатом. Учитывая,				
3/3			что мы находимся в цикле, фактически				
			это сохранение максимального				
			элемента, который прошел предыдущие				
			проверки.				
			По абсолютному адресу 0х360				
374	8360	LP ADDR: LOOP 0x360	уменьшаем счетчик на 1. Если он				
374		LI _ADDIN. LOOF 0X300	оказался <= 0 -> перейдем на IP + 1 + 1,				
			иначе продолжим выполнение.				
	CEF4	JUMP LP ST	Прямая относительная адресация: JUMP				
375			376 + FF4 = (1)36A. Если цикл не				
3,3		JOIVII LI _JI	закончился, мы безусловно перейдем в				
			ячейку IP-C (LP_ST – в начало цикла).				
			Если оказалось, что цикл завершил				
376	0100	HLT	работу, мы останавливаем работу ЭВМ и				
			возвращаем управление оператору.				
377	A360	WORD 0xA360	Элемент массива.				
378	B36C	WORD 0xB36C	Элемент массива.				
379	0502	WORD 0x0502	Элемент массива.				
37A	0001	WORD 0x0001	Элемент массива.				

Окончание таблицы

Описание программы:

- Назначение программы: находит в массиве максимальное число, кратное 4. Если таких чисел в массиве нет, результатом работы программы будет минимальное знаковое число.
- Описание исходных данных:
 - о X Адрес 1-го элемента массива.
 - \circ X_i Элементы массива. Массив состоит из 4-х элементов
 - R Результат работы программы
 - о ОПИ:
 - R знаковое 16-разрядное число.

- X -адрес: беззнаковое 11-разрядное целое число.
- Элемент массива знаковое 16-разрядное число.
- о ОДЗ:
 - $R:-2^{15} \le R \le 2^{15}-1$
 - $\bullet \quad X: \begin{bmatrix} 0 \le X \le 0x35A \\ 0x377 \le X \le 0x7FC \end{bmatrix}$
 - Элемент массива: $-2^{15} \le 3$ лемент массива $\le 2^{15} 1$
- О Исходные данные должны располагаться в ячейках памяти: X − 35E, массив − последовательно, начиная с X до X+3.
- Для хранения служебных данных используются ячейки памяти Y
 − 35F; L − 360.
- о Результат работы программы будет находиться в ячейке 361.
- Вся программа располагается в памяти в ячейках между адресами 35E и 376 включительно (без учета массива он может располагаться в памяти динамически).
- Первая команда располагается по адресу 362. Последняя 376.

Таблица трассировки выполнения команд:

Таблица 2: Трассировка выполнения команд

1 аолица 2: 1 рассировка выполнения комано											
	Выполняемая команда		Содержимое регистров процессора после выполнения команды						содер кот	ейка, жимое орой нилось	
Адрес	Код команды	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
362	AF40	363	AF40	362	0040	000	0040	0040	0000		
363	0680	364	0680	363	0680	000	0363	4000	0000		
364	0500	365	0500	364	4000	000	0364	8000	1010		
365	EEFB	366	EEFB	361	8000	000	FFFB	8000	1010	361	8000
366	AF04	367	AF04	366	0004	000	0004	0004	0000		
367	EEF8	368	EEF8	360	0004	000	FFF8	0004	0000	360	0004
368	AEF5	369	AEF5	35E	01FF	000	FFF5	01FF	0000		
369	EEF5	36A	EEF5	35F	01FF	000	FFF5	01FF	0000	35F	01FF
36A	AAF4	36B	AAF4	1FF	COCA	000	FFF4	COCA	1000	35F	0200
36B	0480	36C	0480	36B	0480	000	036B	6065	0000		
36C	F407	36D	F407	36C	F407	000	036C	6065	0000		
36D	0480	36E	0480	36D	0480	000	036D	3032	0011		
36E	F405	374	F405	36E	F405	000	0005	3032	0011		
374	8360	375	8360	360	0003	000	0002	3032	0011	360	0003
375	CEF4	36A	CEF4	375	036A	000	FFF4	3032	0011		
36A	AAF4	36B	AAF4	200	4A4A	000	FFF4	4A4A	0001	35F	0201
36B	0480	36C	0480	36B	0480	000	036B	A525	1010		
36C	F407	36D	F407	36C	F407	000	036C	A525	1010		
36D	0480	36E	0480	36D	0480	000	036D	5292	0011		

36E	F405	374	F405	36E	F405	000	0005	5292	0011		
374	8360	375	8360	360	0002	000	0001	5292	0011	360	0002
375	CEF4	36A	CEF4	375	036A	000	FFF4	5292	0011		
36A	AAF4	36B	AAF4	201	СОВА	000	FFF4	COBA	1001	35F	0202
36B	0480	36C	0480	36B	0480	000	036B	E05D	1010		
36C	F407	36D	F407	36C	F407	000	036C	E05D	1010		
36D	0480	36E	0480	36D	0480	000	036D	702E	0011		
36E	F405	374	F405	36E	F405	000	0005	702E	0011		
374	8360	375	8360	360	0001	000	0000	702E	0011	360	0001
375	CEF4	36A	CEF4	375	036A	000	FFF4	702E	0011		
36A	AAF4	36B	AAF4	202	DEED	000	FFF4	DEED	1001	35F	0203
36B	0480	36C	0480	36B	0480	000	036B	EF76	1001		
36C	F407	374	F407	36C	F407	000	0007	EF76	1001		
374	8360	376	8360	360	0000	000	FFFF	EF76	1001	360	0000
376	0100	377	0100	376	0100	000	0376	EF76	1001		

Окончание таблицы

Вывод:

Во время выполнения данной лабораторной работы я ознакомился с нелинейным управлением вычислительным процессом в БЭВМ, режимами адресации, управлением элементами одномерного массива и работой циклических программ.