Thesis Title

A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY

Andy Jarod Julin

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Prof. Ron Poling

March, 2017

© Andy Jarod Julin 2017

The text of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International license.

Acknowledgements

This is where the Acknowledgements go!

Dedication

This is where the Dedications go!

Abstract

This is where the Abstract goes!

Contents

A	ckno	wledge	ements	i
D	edica	tion		ii
\mathbf{A}	bstra	ıct		iii
Li	st of	Tables	S	vi
Li	st of	Figure	es	vii
1	Intr	oducti	ion	1
2	The	eoretica	al Background	2
	2.1	Standa	ard Model	 2
	2.2	Charn	nonium	 2
	2.3	OZI S	uppression	 2
3	Det	ector a	and Related Systems	3
	3.1	BEPC	CII Accelerator	 3
	3.2	BESII	I Detector	 3
		3.2.1	Multi-Layer Drift Chamber	 3
		3.2.2	Time-of-Flight System	 3
		3.2.3	Electromagnetic Calorimeter	 3
		3.2.4	Muon Identifier	 3
	3.3	Trigge	ering Systems	 3

4	Ana	alysis Software	4
	4.1	Simulation	4
	4.2	Monte Carlo Generators	4
	4.3	Reconstruction	4
		4.3.1 Multi-Layer Drift Chamber	4
		4.3.2 Time-of-Flight System	4
		4.3.3 Electromagnetic Calorimeter	4
		4.3.4 Muon Identifier	4
	4.4	Database	4
5	Con	nclusion	5
\mathbf{R}_{0}	efere	nces	6
A	.pper	ndix A. Glossary and Acronyms	7
	A.1	Glossary	7
	A.2	Acronyms	7

List of Tables

A.1 Acronyms		
--------------	--	--

List of Figures

Introduction

- Chapter 2 briefly presents the history of, and science behind, the subjects presented in this thesis.
- In Chapter 3 the experiment is outlined.
- Chapter 4 describes the simulation process used in the analysis.
- Chapter 5 follows the chain of reconstruction software used to obtain meaningful results from data.
- Chapter 6 hashes out the strategy for analysis and presents the data and simulated sets that will be used in the analysis.
- Chapter 7 demonstrates the implementation of the event selection processes.
- In Chapter 8 those events selected in Chapter 7 are analyzed.
- Chapter 9 presents a final discussion of the analyses presented in the thesis.

Theoretical Background

- 2.1 Standard Model
- 2.2 Charmonium
- 2.3 OZI Suppression

Detector and Related Systems

- 3.1 BEPCII Accelerator
- 3.2 BESIII Detector
- 3.2.1 Multi-Layer Drift Chamber
- 3.2.2 Time-of-Flight System
- 3.2.3 Electromagnetic Calorimeter
- 3.2.4 Muon Identifier
- 3.3 Triggering Systems

Analysis Software

- 4.1 Simulation
- 4.2 Monte Carlo Generators
- 4.3 Reconstruction
- 4.3.1 Multi-Layer Drift Chamber
- 4.3.2 Time-of-Flight System
- 4.3.3 Electromagnetic Calorimeter
- 4.3.4 Muon Identifier
- 4.4 Database

Conclusion

This is where the Conclusions go!

References

Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but this cannot always be achieved. This appendix defines jargon terms in a glossary, and contains a table of acronyms and their meaning.

A.1 Glossary

• Cosmic-Ray Muon (CR μ) – A muon coming from the abundant energetic particles originating outside of the Earth's atmosphere.

A.2 Acronyms

Table A.1: Acronyms

Acronym	Meaning
$CR\mu$	Cosmic-Ray Muon