

Exercise 17B

Question 27:

Area of quad. ABCD = Area of \triangle ABC + Area of \triangle ACD

BC =
$$\sqrt{17^2 - 15^2}$$
 cm = $\sqrt{289 - 225}$ = $\sqrt{64}$ cm
BC = 8 cm

Area of
$$\triangle ABC = \left(\frac{1}{2} \times AC \times BC\right) cm^2$$
$$= \left(\frac{1}{2} \times 15 \times 8\right) cm^2 = 60 cm^2$$

Now, we find area of a Δ ACD

$$s = \frac{a+b+c}{2} = \frac{(15+12+9)}{2} = 18 \text{ cm}$$

$$(s-a) = 3cm, (s-b) = 6cm \text{ and } (s-c) = 9 cm$$

Area of ACD =
$$\sqrt{s \times (s-a)(s-b)(s-c)}$$

= $\sqrt{18 \times 3 \times 6 \times 9}$ cm²
= (18×3) cm² = 54 cm²

Area of quad. ABCD = Area of \triangle ABC + Area of \triangle ACD = (60+54) cm² = 114 cm² Perimeter of quad. ABCD = AB + BC + CD + AD = (17 + 8 + 12 + 9) cm = 46 cm Perimeter of quad. ABCD = 46 cm

Question 28:

ABCD be the given quadrilateral in which AD = 24 cm, BD = 26 cm, DC = 26 cm and BC = 26 cm By Pythagoras theorem

AB =
$$\sqrt{BD^2 - AD^2} = \sqrt{26^2 - 24^2}$$
 cm
= $\sqrt{100}$ cm = 10 cm
Area of $\triangle ADB = \left(\frac{1}{2} \times AB \times AD\right) = \left(\frac{1}{2} \times 10 \times 24\right)$ cm²
= 120 cm²

For area of equilateral Δ DBC, we have a = 26 cm

Area of
$$\triangle DBC = \left[\frac{\sqrt{3}}{4}a^2\right] \text{ sq.units}$$

$$= \left(\frac{\sqrt{3}}{4} \times 26 \times 26\right) \text{ cm}^2 = \left(169\sqrt{3}\right) \text{ cm}^2$$

$$= \left(169 \times 1.73\right) \text{ cm}^2 = 292.73 \text{ cm}^2$$

Area of quad. ABCD = Area of \triangle ABD + Area of \triangle DBC

 $= (120 + 292.37) \text{ cm}^2 = 412.37 \text{ cm}^2$

Perimeter ABCD = AD + AB + BC + CD

= 24 cm + 10 cm + 26 cm + 26 cm

= 86 cm

******* END ******