Desafío: Explorar la Capacitancia con Simulación Interactiva

Objetivos

- ullet Cuantificar cómo la capacitancia C depende del área A y la separación d entre placas.
- Validar experimentalmente la relación $C = \varepsilon \frac{A}{d}$.
- ullet Encontrar la dependecia de la energía U con el voltaje de la pila V.
- Relacionar los conceptos físicos con aplicaciones tecnológicas e ingenieriles reales.

Número de sesiones: Dos (cada una de 1.5 h)

Recursos

- Computador o tablet con conexión a internet.
- Simulación Capacitor Lab Basics de PhET .
- Hoja de cálculo (Excel o similar).

Procedimiento

1. Exploración inicial

Acceda al simulador interactivo de PhET. Familiarícese con los controles para modificar:

- \blacksquare El área de las placas A.
- La distancia entre placas d.
- \blacksquare El voltaje aplicado V.

2. Dependencia de C con el área A

- Mantenga fija la separación $d = 5 \,\mathrm{mm}$.
- Varíe el área $A: 2, 4, 6, 8 \text{ cm}^2$.
- Registre los valores de capacitancia C en cada caso.
- ullet Genere una gráfica C vs A. Analice si la relación es lineal.

3. Dependencia de C con la separación d

- Fije el área $A = 4 \,\mathrm{cm}^2$.
- Varíe la distancia entre placas: 2, 5, 10, 15 mm.
- lacktriangle Registre C para cada caso.
- Grafique C vs 1/d. Evalúe si hay relación lineal.

4. Cálculo de la permitividad

- A partir de la pendiente de las gráficas anteriores, calcule el valor experimental de ε .
- Compare con $\varepsilon_0 \approx 8.85 \times 10^{-12} \, \mathrm{F/m}$.

5. Energía almacenada y su relación con el voltaje

- Seleccione una configuración inicial (por ejemplo: $A = 4 \,\mathrm{cm}^2, d = 5 \,\mathrm{mm}$).
- Varíe el voltaje V entre 0 y 1.5 V en pasos de 0.1 V, manteniendo constante C.
- Si se asune que $U = aV^{\alpha}$, determine el valor de α . ¿Cuál es el significado de a?, ¿qué unidades tiene ?
- Interprete los resultados obtenidos: ¿Qué implica que la energía almacenada crezca con el cuadrado del voltaje?
- Reflexione y responda: ¿Cómo se puede saber —más allá del cálculo— que un condensador realmente almacena energía? ¿Qué evidencia directa o indirecta lo demuestra en el simulador o en la práctica?

Conexiones

- Ciencia: comprensión de los campos eléctricos, almacenamiento de carga y energía.
- Tecnología: uso de simulaciones interactivas.
- Ingeniería: diseño y análisis de dispositivos de almacenamiento eléctrico.
- Matemáticas: análisis de datos experimentales, gráficas, regresiones y constantes.

Producto final

Cada grupo debe entregar:

- 1. Un informe escrito con análisis de datos, gráficas, cálculos y conclusiones (entrega en 8 días).
- 2. Una mini exposición oral de máximo 10 minutos en la siguiente sesión.

Rúbrica de evaluación

Nota final: Suma de informe (2.0) + sustentación (3.0) = 5.0 puntos

Rúbrica para el Informe Escrito (2 puntos)

Criterio	Descripción	Puntaje Máximo
Presentación general y estructura	Presentación general y estruc- Portada, introducción, desarrollo por secciones, contura clusiones y referencias bien organizadas.	0.4
Registro y análisis de datos	Tablas completas, gráficas claras, análisis coherente de resultados.	9.0
Aplicación del modelo teórico	Aplicación del modelo teórico Uso correcto de fórmulas, interpretación de pendientes, cálculo de ε .	0.5
Reflexión e interpretación	Discusión crítica, comparación con teoría, posibles fuentes de error, conexiones con aplicaciones.	0.5
Total		2.0

Rúbrica para la Mini Exposición (3 puntos)

Criterio	Descripción	Puntaje Máximo
Claridad conceptual	Explicación correcta de los conceptos clave de capacitancia, energía y dieléctricos.	1.0
Interpretación de resultados	Discusión y análisis de los resultados experimentales obtenidos.	0.8
Comunicación oral y trabajo en equipo	Comunicación oral y trabajo Expresión clara, participación equilibrada, uso adeen equipo cuado del tiempo.	0.7
Creatividad y conexión STEM	conexión Relación con problemas reales, aplicaciones tecnológicas, apoyos visuales.	0.5
Total		3.0