

ARJUNA NEET BATCH

LAWS OF MOTION

LECTURE (02)

Todays goal

```
# Force
    Type and Nature
# Free body diagram.

# Newtons 1st Law s
H questions on equilibrium
```

(fundamental) forces in nature

Gravitational Force

Electro-Magnetic force

Strong Nuclear force

Weak - Nuclea force

tension, Normal reaction, friction Spring force all are derived force they all are serifed from electromagnetic force

fundamental # fundamental Particile # electrons Proton and neutron 15 not a

Weight - gravitational force (N)

W= mg

Rambal

#[NEET-2019]

Sworth Sworth 1-u2=2as + vo2=2(+gsim)s. # 29sino 0 Fingsino (Scty

NORMAL REACTION

- Contact force
- Always in pair
- Perpendicular to contact Surface

N- High -> Strong Contact.

N-) Low -> Weak Contact

N=0 (No Contact)

Normal active on block Inclined plane Normal reaction acting on Indined planed suc to block.

No. of Confact force ??

A NI

アニノフ

Weight

D mais Normal realtion

Spring (ost) = K

#Spring force

#Spring force

always acts towards

the mean Position

NEWTON'S 1ST LAW OF MOTION

- Law of Inertia/Law of equilibrium

If
$$\sum F_{\text{net}} = 0$$
 then $\sum a_{\text{sys}} = 0$

If $\sum F_{\text{net}} = 0$ then $\sum a_{\text{sys}} = 0$ hen $\left(\sum a_{\text{sys}} = 0\right)$ here $\left(\sum a_{\text{sys}} = 0\right)$

"If net force acting on body is zero then it will continuous its state"

9x Fext to then body Will Change it state.

T.

Free body diagram (F.B.D)

Seperate the body from System, & refrsent it with Point

Identify all the forces acting on it.

Draw all fooles in vector form /

take component in x-axis and y-axis

APPly newton's Laws of motion.

1 -

A block is stationary on a rough inclined plane. How many forces are acting on the block?

PW

(a) 2

(c) 4

b) 3

(d) 5

A book of mass 5 kg is placed on a table and it is pressed by 10 N force then normal force exerted by the table on the book is

10 N

70 N

50 N

Three blocks with masses m, 2m and 3m are connected by strings, as shown in the figure. After an upward force F is applied on block m, the masses move upward at constant speed v. What is the net force on the block of mass 2m? (g is the acceleration due to gravity) [NEET-2013]

- 2 mg
- 6 mg

(b) 3 mg

find net force on

(m2)

[Fnot] = 0

(Fret) = C

ARJUNA

Find T, 8 T2 ??

ARJUNA

$$T_2 = T_1 + mg$$

$$= 20 + 4 \times 10$$

$$= 60 N$$

The value of T_3/T_1 is

- (a) 1
- (c) 3

ARJUNA

- (b) 2
- (d) 3/2

find My SML is at rest then
find M1 = 77 # along the Inclined plane T = M2 g/sinbu - m, g/sin30 Mig simso L

Find m so that system is in equilibrium?

The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be

(a) 0°

60 45°

- (b) 30°
- d) 60°

(2001, 2M

$$T(0.50 + T(0.50) = \int_{\Sigma} m_{g}^{2}$$

$$2 \left(\frac{1}{2} (0.50) - \int_{\Sigma} m_{g}^{2} \right)$$

$$2 m_{g}^{2} (0.50) = \int_{\Sigma} m_{g}^{2}$$

$$Cos\theta = \int_{\Sigma} \frac{1}{\theta = 45}$$

In the given arrangement, the normal force applied by block on the ground is

- (a) *mg*
- (c) $mg + F \cos \theta$

- (b) $mg F \cos \theta$
- (d) $F\cos\theta$

Three blocks are placed as shown in figure. Mass of A, B and C are m_1 , m_2 and m_3 respectively. The force exerted by block 'C' on 'B' is

(a)
$$m_1g$$

(b)
$$(m_1 + m_2) g$$

(c)
$$m_2g$$

(d)
$$(m_1 + m_2 + m_3) g$$

Force between 2nd and 3rd block; if all blocks is idential

(a)
$$Mg \frac{L}{L+I}$$

(b)
$$\frac{Mg}{L}(L-I)$$
(d)
$$\frac{I}{L}Mg$$

(d)
$$\frac{I}{L}Mg$$

THANK YOU

