In [2]:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm
import scipy.stats as st
```

Settembre 2018

Esercizio 0

```
1) X \sim Bern(p) con p \in (0,1)
```

2) Var(X) = p(1-p) quindi $dvstd = \sqrt{p(1-p)}$

3)
$$k \in N, Y \sim Bin(k,p)$$

$$P(X=n)=inom{k}{n}p^n(1-p)^{k-n}$$

4) k = 50, p = 0.5

In [3]:

```
Y=st.binom(50,0.5)
x=np.arange(0,50)
plt.vlines(x,0,Y.pmf(x))
plt.plot(x,Y.pmf(x),'o')
plt.show()
```


5) Definizione Stimatore

6)
$$E(X)=p,\,T_n=\overline{X}$$

$$E(T_n) = E(\sum \frac{X_i}{n}) = \frac{1}{n} E(\sum X_i) = \frac{1}{n} \sum E(X_i) = \frac{n}{n} E(X) = p$$

7) $n \geq 1$

Dimostrare che $P(-\epsilon < T_n - p < \epsilon) pprox 2\Phi(\epsilon rac{\sqrt{n}}{\sigma}) - 1$

Standardizzo: $P(|T_n-p|<\epsilon)$ lo divido per la deviazione standard di T_n cioè $\sqrt{rac{1}{n}\sigma^2}$ e ottengo

$$P(|Z|<rac{\epsilon\sqrt{n}}{\sigma})$$

Applico il teorema del limite centrale:

$$P(|Z|<rac{\epsilon\sqrt{n}}{\sigma})pprox \Phi(rac{\epsilon\sqrt{n}}{\sigma})-\Phi(-rac{\epsilon\sqrt{n}}{\sigma})=\Phi(rac{\epsilon\sqrt{n}}{\sigma})-(1-\Phi(rac{\epsilon\sqrt{n}}{\sigma}))=2\Phi(rac{\epsilon\sqrt{n}}{\sigma})-1$$

Esercizio 1

In [4]:

```
fin = pd.read_csv("finanziamenti.csv",delimiter=";",decimal=",")
fin.columns
```

Out[4]:

In [5]:

```
#1
fin['CodiceCategoria']
print("Valore nominale in quanto indica un codice")
```

Valore nominale in quanto indica un codice

In [6]:

```
#2
finu = pd.crosstab(index=fin['UNITA'],columns=['Abs. Freq.'],colnames=[''])
finu
```

Out[6]:

	Abs. Freq.
UNITA	
ASSISI	243
CASCIA	13
CASTIGLIONE DEL L	75
CHIUSI	30
CITTA DI CASTELLO	288
CORTONA	1
FOLIGNO	449
GUALDO TADINO	75
GUBBIO	76
NORCIA	28
ORVIETO	60
PERUGIA	1005
SLL MULTIPLO	5
SLL NON ATTRIBUIBILE	255
SPOLETO	186
TERNI	638
TODI	117
UMBERTIDE	124

In [10]:

```
#3
finu.plot.bar()
plt.show()
```


In [25]:

```
#4 vedi foglio
```

In [27]:

```
#5
progetti_a=fin[fin['FinProvincia']<(fin['FinRegione'])]
progetti_b=fin[fin['FinProvincia']>=(fin['FinRegione'])]
```

In [34]:

```
print("A: {}".format(len(progetti_a)))
print("B: {}".format(len(progetti_b)))
```

A: 368 B: 3284

In [36]:

```
#6.1
mask = progetti_a['FinProvincia'] >= 200
mask1 = progetti_a['FinProvincia'] < 1000
selezione_progetti_a = progetti_a[mask & mask1]</pre>
```

In [39]:

```
#6.2
bins=np.arange(0,1001,100)
selezione_progetti_a['FinProvincia'].hist(bins = bins)
plt.show()
```


In [40]:

#6.3
selezione_progetti_a['FinProvincia'].plot.box()
plt.show()

In [41]:

#6.4

print("Tra i due grafici ritengo che l'istogramma sia più informativo in quanto, nonost ante nel box plot possiamo trarre un sacco di informazioni non rileviamo la più importa nte : il carattere è suddiviso in due gruppi che sembrerebbero seguire una distribuzion e normale 'BIMODALE'")

Tra i due grafici ritengo che l'istogramma sia più informativo in quanto, nonostante nel box plot possiamo trarre un sacco di informazioni non rilev iamo la più importante : il carattere è suddiviso in due gruppi che sembre rebbero seguire una distribuzione normale 'BIMODALE'

```
In [42]:
```

```
#6.5
selezione_progetti_a['FinProvincia'].mean()
```

Out[42]:

636.9052631578948

In [43]:

```
selezione_progetti_a['FinProvincia'].std()
```

Out[43]:

264.80233322588253

In [47]:

```
#6.6
print("Nessuno vedi grafico")
```

Nessuno vedi grafico

In [52]:

```
#6.7
print(selezione_progetti_a['FinProvincia'].corr(selezione_progetti_a['TotSpese']))
selezione_progetti_a.plot.scatter('FinProvincia','TotSpese')
plt.show()
```

0.6964011723762348


```
In [53]:
```

```
#6.8
selezione_progetti_a_noutliers=selezione_progetti_a[selezione_progetti_a['TotSpese']>20
00]
selezione_progetti_a_noutliers.plot.scatter('FinProvincia','TotSpese')
plt.show()
```


Esercizio 2

```
In [54]:
#1
len(fin)-len(fin.dropna(axis=0,subset=['TotSpese']))
Out[54]:
1134
In [56]:
#2
Z=st.norm()
dev=fin['TotSpese'].std()
(Z.ppf(1.95/2)*(len(fin))**0.5)/dev,(Z.ppf(1.95/2)*dev)/len(fin)**0.5
Out[56]:
(0.0005678277621445123, 6765.183171365392)
In [57]:
#3
```

#4 print("Normale") Normale In [59]: #5 In [60]: #6
In [59]: #5 In [60]:
#5 In [60]:
In [60]:
#6
In [61]:
#7
In [62]:
#8