

Aerial Multi-Object Tracking by Detection using Deep Association Networks

Ajit Jadhav*, Prerana Mukherjee*, Vinay Kaushik^, Brejesh Lall^

- * Dept. of Computer Science, IIIT Sri City, India
- ^ Dept. of Electrical Engineering, IIT Delhi, India

Introduction

- Tracking-by-detection paradigm
 - Given an input scene and a predefined set of object categories, the task is to locate all the class-level object instances and track the detected candidate boxes in the subsequent frames.

Applications:

- Drones are generally used for patroling border areas which cannot be monitored by military forces.
- The typical application ranges from tracking criminals in surveillance videos, search and rescue operations, sports analysis and scene understanding.

Dataset

- We use the "Vision meets Drone 2019" i.e. the VisDrone2019 dataset.
- The VisDrone2019 provides a dataset of 10,209 images for this task, with 6,471 images used for training, 548 for validation and 3,190 for testing.
- Contains ten object categories of interest:
 - Pedestrian
 - Person
 - Car
 - Van
 - Bus
 - Truck
 - Motor
 - Bicycle
 - Awning-tricycle
 - Tricycle

Sample images with objects

Key Challenges

Dense object distribution

Large scale variance

High class imbalance for objects

Dense object distribution

Large Scale Variance

High Class Imbalance

RetinaNet

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017.1, 3, 4

Improvements over RetinaNet:

- Dense scales
- SE attention

Detection Network

Dense scales

- The anchor parameters used for the original RetinaNet architecture are suited for object detection on natural images.
- To address this issue,we modify the anchor parameters to cover the range of sizes of objects in the dataset.
- Original scales: { 1, 2^{1/3}, 2^{2/3}}
- New scales: {0.1, 0.25, 0.5, 1, 2^{1/3}, 2.2}
- This leads to better detection of objects across all sizes.

SE attention

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In CVPR, 2018. 1, 2, 3, 4, 7

Tracking Network

Deep Association Network

Method \AP@IoU	0.50:0.95	0.50	0.75
Yolo v3	13.8	30.43	11.18
RetinaNet	14.45	23.74	15.14
RetinaNet (dense scales)	15.39	33.13	13.07
RetinaNet (dense scales +SE attention)	17.19	37.69	13.97
,	TABLE I		

AVERAGE PRECISION AT MAXDETECTIONS=500

Method \AR@maxDets	1	10	100	500	
Yolo v3	0.36	2.63	17.53	19.34	
RetinaNet	0.59	5.91	20.96	21.38	
RetinaNet	0.48	4.78	22.02	30.49	
(dense scales)	0.48	4.70	22.02	30.49	
RetianNet					
(dense scales	0.52	4.69	23.44	31.93	
+SE attention)	ADIE I				

TABLE II
AVERAGE RECALL AT IOU 0.50:0.95

Method	AP[%]	AP50[%]	AP75[%]	AR1[%]	AR10[%]	AR100[%]	AR500[%]
CornerNet [10]	17.41	34.12	15.78	0.39	3.32	24.37	26.11
Light-RCNN [6]	16.53	32.78	15.13	0.35	3.16	23.09	25.07
DetNet [11]	15.26	29.23	14.34	0.26	2.57	20.87	22.28
RefineDet512 [31]	14.9	28.76	14.08	0.24	2.41	18.13	25.69
Retinanet [12]	11.81	21.37	11.62	0.21	1.21	5.31	19.29
FPN [32]	16.51	32.2	14.91	0.33	3.03	20.72	24.93
Cascade-RCNN [7]	16.09	16.09	15.01	0.28	2.79	21.37	28.43
Ours	11.19	25.65	8.78	0.56	4.87	17.19	24.09
TABLE III							

DETECTION RESULTS

Method	AP	AP@0.25	AP@0.50	AP@0.75	AP car	AP bus	AP truck	AP ped	AP van	
cem [35]	5.7	9.22	4.89	2.99	6.51	10.58	8.33	0.7	2.38	
cmot [36]	14.22	22.11	14.58	5.98	27.72	17.95	7.79	9.95	7.71	
gog [37]	6.16	11.03	5.3	2.14	17.05	1.8	5.67	3.7	2.55	
h2t [38]	4.93	8.93	4.73	1.12	12.9	5.99	2.27	2.18	1.29	
ihtls [39]	4.72	8.6	4.34	1.22	12.07	2.38	5.82	1.94	1.4	
Ours	13.88	23.19	12.81	5.64	32.2	8.83	6.61	18.61	3.16	

TABLE IV

TRACKING RESULTS

Conclusion

- Dense anchor scales with large scale variance correctly detect the dense distribution of smaller objects.
- Squeeze-and-Excitation (SE) blocks capture the channel dependencies resulting in better feature representation for the detection task in moving camera constraints.
- Training deep association network on the object hypotheses generated from the detection module and feeding the same to the deep sort algorithm leads to better tracking.
- Large number of average confidence detections are preferable than less number of high confidence detections to build an optimal tracker.
- The tracking can be further improved by better data augmentation methods, collecting more relevant data and incorporating structure similarity losses.

References

- T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017.1, 3, 4
- J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In CVPR, 2018. 1, 2, 3, 4, 7
- P. Zhu, L. Wen, D. Du, X. Bian, H. Ling, Q. Hu, Q. Nie, H. Cheng, C. Liu, X. Liu et al., "Visdrone-det2019: The vision meets drone object detection in image challenge results," in Proceedings of the International Conference on Computer Vision (ICCV), 2019, pp. 0–0.
- N. Wojke and A. Bewley, "Deep cosine metric learning for person re-identification," in 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018, pp. 748–756.
- N. Wojke, A. Bewley, and D. Paulus, "Simple online and realtime tracking with a deep association metric," in 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017, pp. 3645–3649.

Thank you