1878 AUTOMATON

5.294 nvisible_from_start

DESCRIPTION LINKS AUTOMATON

Origin Derived from a puzzle called skyscraper

Constraint nvisible_from_start(N, VARIABLES)

Synonyms nvisible, nvisible_from_left.

Arguments N : dvar

VARIABLES : collection(var-dvar)

 ${\bf Restrictions} \qquad \qquad {\tt required}({\tt VARIABLES}, {\tt var})$

 $N \ge \min(1, |VARIABLES|)$

 $N \leq |VARIABLES|$

Purpose

The i^{th} $(1 \leq i \leq |{\tt VARIABLES}|)$ variable of the sequence ${\tt VARIABLES}$ is visible if and only if all variables before the i^{th} variable are strictly smaller than the i^{th} variable itself. N is the total number of visible variables of the sequence of variables ${\tt VARIABLES}$.

Example

```
 \begin{array}{c} (3, \langle 1, 6, 2, 1, 4, 8, 2 \rangle) \\ (1, \langle 8, 6, 2, 1, 4, 8, 2 \rangle) \\ (7, \langle 0, 2, 3, 5, 6, 7, 9 \rangle) \end{array}
```

The first nvisible_from_start constraint holds since the sequence $1\ 6\ 2\ 1\ 4\ 8\ 2$ contains three visible items that respectively correspond to the first, second and sixth items.

Typical

```
\begin{array}{l} |\mathtt{VARIABLES}| > 2 \\ \mathtt{range}(\mathtt{VARIABLES.var}) > 2 \end{array}
```

Symmetry

One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

Functional dependency: N determined by VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721

Number of solutions for nvisible_from_start: domains 0..n

 $Solution\ density\ for\ {\tt nvisible_from_start}$

1880 AUTOMATON

Length (n)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	1	6	30	225	2275	29008	446964	8080425
	2	3	30	305	3675	52794	889056	17238570
	3	-	4	90	1610	29400	583548	12780180
	4	-	-	5	210	6020	158760	4238367
	5	-	-	-	6	420	18060	661500
	6	-	-	-	-	7	756	46410
	7	-	-	-	-	-	8	1260
	8	-	-	-	-	-	-	9

Solution count for nvisible_from_start: domains 0..n

Parameter value as fraction of length

20111227 1881

$Solution\ density\ for\ {\tt nvisible_from_start}$

Parameter value as fraction of length

See also implied by: increasing_nvalue.

implies: atleast_nvalue.

related: nvisible_from_end(count from the end of the sequence rather than from the

start).

Keywords combinatorial object: sequence.

constraint arguments: pure functional dependency.

modelling: functional dependency.

1882 AUTOMATON

Automaton

Figure 5.628 depicts the automaton associated with the nvisible_from_start constraint.

Figure 5.628: Automaton of the nvisible_from_start constraint with two counters M and C, where M records the largest value encountered so far, and C the number of visible values from the left hand side of the sequence VAR₁, VAR₂, ..., VAR_n

Figure 5.629: Hypergraph of the reformulation corresponding to the automaton (with two counters) of the nvisible_from_start constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_n)

20111227 1883