House Price Regression

Mark Herrmann – Team Leader, Algorithm Design

Joseph Hooser – Feature and Label Analysis, Preprocessing

Jason Powell – Implementation

Johntae Leary – Documentation

Project Overview

Objective: Predict housing prices based on property features

Significance: To help buyers, sellers, and realtors make data-driven decisions

Approach:

- Train multiple regression models trained on cleaned housing dataset
- ❖ Tune Hyperparameters for each regression model using GridSearchCV
- ❖ Identify top performer and analyze results

Literature Review

Paper: Ni Chuhan's "House price prediction based on different models of machine learning" (March 2024)

Significance:

The study compares the performance of these 4 common regression algorithms on a house price prediction task using a Kaggle dataset.

Table 4. Results of models.

Model	MAE	MSE	RMSE	R ² score
Linear Regression	23567.89	1414931404.63	37615.57	0.8155
Support Vector Machines	17843.16	1132136370.34	33647.23	0.8524
Random Forest Regressor	18040.67	950844232.54	30835.76	0.8760
XGBoost	19411.23	900813561.35	30013.56	0.8826

Contribution: This paper allows us to identify regressors that performed well on housing datasets(i.e, XGBoost, Random Forest), and what error metrics we can shoot for.

Dataset Overview

- Source: Kaggle "House Prices: Advanced Regression Techniques"
- **Training Set:** 1,460 Rows, 81 Features
- Validation Set: 20% of Training Set
- Target Variable: SalePrice

- Notable Features
 - Numerical: LotArea, GrLivArea, TotalBsmtSF
 - Categorical: Neighborhood, HouseStyle, GarageType

Feature Engineering

We added some Features to better capture the data movements

Total Square Feet

'TotalSF' = 'GrLivArea'+ 'TotalBsmtSF'

Age of House

'HouseAge' = 'YearBuilt' - 'YrSold'

Age of a Remodel

'RemodelAge' = 'YearRemodAdd' - 'YrSold'

*GrLivArea' is the total square Feet above ground

Handling Missing Values and Feature Encoding

Numerical Fixes:

- LotFrontage: filled using neighborhood median
- GarageYrBlt: Values were missing so we assumed it was built the same year the house was

Categorical Values:

- Electrical: One house was missing this so we filled it with the most common value
- Other features like fences that were left null were filled with none

• Encoding:

 One-Hot Encoding expanded the feature list from 81 to over 150, and allowed us to use categorical variables.

Scaling:

StandardScaler was applied to numerical features

Data Split:

- 80% of the Data was used for training
- 20% was used for validation

Model Evaluation and Comparison

Model	RMSE	R-Squared	MAE	Time
SVR	25644	0.914	14830	1.0
XGBoost	26753	0.907	16587	15.06
Ensemble Regressor	27376	0.902	15844	178.57
Random Forest	30089	0.882	17928	9.09
Ridge Regression	30604	0.878	18957	0.39
Lasso Regression	31256	0.873	18770	0.41
Neural Network	32851	0.859	20205	152.63
Linear	83215	0.097	23965	1.2

Results:

- SVR performed the best and also had a very fast training time compared to the other top performers (XGBoost and Random Forest)
- Each Model had its hyperparameters tuned using GridSearchCV
- The Ensemble Method:
 - The average of our top 6 regressors also performed very well, however models need to be trained - computationally intensive

Root Mean Squared Error Comparison

Model's R-Squared Comparison

Mean Absolute Error Comparison

Training Time Comparison

Model's Training Time Visualized

Cross Validation Results for SVR

• **Objective:** Get a more reliable estimate of SVR's performance and variability across different subsets of the training data

Folds	Mean RMSE	Mean R-Squared	Mean Absolute Error	Runtime (seconds)
20	26,749	0.823	15,688	13
50	24,362	0.774	15,510	34
200	20,788	0.665	15,167	157

• Conclusion: As you can see, the more folds that the dataset is trained on, the Mean RMSE and MAE improve, however the R-Squared value gets worse - meaning less of the variance is getting captured by the model. This could mean a model with more bias may perform better

Model Limitations and Considerations

Assumptions:

- The Regressor assumes future data follows similar patterns
- The housing market can be volatile
- Our model doesn't account for macroeconomic shifts or interest rate changes

Dataset:

• The houses are all from Ames, Iowa, and would likely only perform well on other houses within this area

Outliers:

- May underperform on rare or unusual house types
- Overfitting risk with unbalanced categories, may need to introduce more bias

Contributions to Existing Studies

- Improved upon Studies results: We were able to find a better performing model for predicting house prices Support Vector Regression.
- Better tuned Parameters:
 - We were also able to better tune SVR's hyperparameters in order to deliver better results than the study was
 - Hyperparameters:
 - 'kernel': ['poly'],
 - 'C': [1000],
 - 'epsilon': [1000],
 - 'gamma': ['scale'],
 - 'degree': [3],
 - 'coef0': [3]
- The Literature's lowest RMSE was 30,013 and we achieved an RMSE of 25,644

Future Development

Further Hyperparameter Tuning: More extensive tuning of the best models (SVR, XGBoost, Random Forest) with more exact hyperparameters.

Advanced Feature Engineering: Explore interactions between more features and explore external data sources (e.g., economic indicators, local development plans).

Outlier Analysis: Further analysis and handling of potential outliers in features or target variable.

Deployment: Develop a system to deploy the trained model for making predictions on new

Conclusion

• **Summary:** Successfully implemented, tuned and evaluated multiple regression models for house price prediction

• Key Findings:

- Data preprocessing and feature engineering were critical steps.
- Ensemble methods (XGBoost, Random Forest) significantly outperformed the linear regressor, but they had longer training times
- SVR achieved the best performance based on validation and cross-validation metrics (lowest RMSE, highest R2).
- **Project Success:** Delivered a predictive model capable of estimating house prices with high accuracy within ~ \$20,688 (as measured by RMSE/R2).

Questions?