

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

2 CEMECTP

Лектор: Горшунова Татьяна Алексеевна – доцент кафедры ВМ-2

e-mail: gorshunova@mirea.ru

Лекция 5

ЛИНЕЙНЫЕ ОПЕРАТОРЫ И ИХ МАТРИЦЫ

- Определение линейного оператора. Примеры
- Действия над линейными операторами
- Матрица линейного оператора
- Преобразование матрицы линейного оператора при замене базиса

11 марта 2021 г.

Определение линейного оператора

Пусть X и Y — произвольные множества

Определение. Отображением f из множества X в множество Y называется правило, по которому $\forall x \in X$ ставиться в соответствие единственный элемент $y \in Y$ и обозначается:

$$f: X \to Y$$
 или $y = f(x)$,

где y — образ элемента x, x — прообраз y

Пусть теперь L_1 и L_2 — линейные пространства

Определение. Оператором, действующим из L_1 в L_2 называется отображение $\hat{A}: L_1 \to L_2$, сопоставляющее каждому вектору $\vec{x} \in L_1$ единственный вектор $\vec{y} \in L_2$:

$$\vec{y} = \hat{A}\vec{x},$$

где \vec{y} – образ вектора \vec{x} , \vec{x} – прообраз вектора \vec{y}

Центр дистанционного обучения

РТУ МИРЭА Кафедра ВМ-2

Определение. Оператор $\hat{A}: L_1 \to L_2$ называется *линейным оператором*, если:

- 1) $\hat{A}(\vec{x} + \vec{y}) = \hat{A}\vec{x} + \hat{A}\vec{y}$, $\forall \vec{x}, \vec{y} \in L_1$ (свойство аддитивности оператора)
- 2) $\hat{A}(\alpha \vec{x}) = \alpha \hat{A} \vec{x} \ \forall \vec{x} \in L_1$ и $\forall \alpha \in R$ (свойство однородности оператора) **Определение**. Если пространство L_1 совпадает с пространством L_2 , то линейный оператор \hat{A} называется **линейным преобразованием** пространства L_1 .

В дальнейшем будем рассматривать только линейные операторы $\hat{A}: L \to L$, действующие из L в L.

Пусть $\hat{A}: L \to L$ – линейный оператор.

Свойства линейного оператора:

- $\hat{A}(\vec{0}) = \vec{0}$
- 2) $\hat{A}(\alpha \vec{x} \pm \beta \vec{y}) = \alpha \hat{A} \vec{x} \pm \beta \hat{A} \vec{y}, \forall \alpha, \beta \in R$ и $\forall \vec{x}, \vec{y} \in L$
- $\hat{A}(-\vec{x}) = -\hat{A}\vec{x}$
- 4) Линейный оператор \hat{A} переводит линейно зависимые векторы пространства L в линейно зависимые.

Примеры линейных операторов:

1. *Нулевой оператор* \hat{O} : $L \to L$, отображающий любой вектор пространства L в нулевой вектор этого пространства:

$$\hat{O}\vec{x} = \vec{0} \quad \forall \vec{x} \in L$$

является линейным оператором (доказать самостоятельно).

2. *Тождественный оператор* $\hat{I}: L \to L$, отображающий любой вектор пространства L в себя:

$$\hat{I}\vec{x} = \vec{x} \quad \forall \vec{x} \in L$$

является линейным оператором (доказать самостоятельно).

- **3.** В пространстве геометрических векторов V_2 оператор \hat{A} поворот на угол φ против часовой стрелки является линейным оператором.
- $\hat{A}: V_2 \to V_2$ и при повороте плоскости не меняются длины отрезков и углы между ними:

4. В пространстве геометрических векторов V_3 оператор \hat{A} – гомотетия с коэффициентом k (растяжение / сжатие) в k раз:

$$\hat{A}\vec{x} = k\vec{x}$$

является линейным оператором.

$$\hat{A}: V_3 \rightarrow V_3$$
 и $\hat{A}\vec{x} = k\vec{x} \Rightarrow$ $\hat{A}(\vec{x} + \vec{y}) = k(\vec{x} + \vec{y}) = k\vec{x} + k\vec{y} = \hat{A}\vec{x} + \hat{A}\vec{y}$, $\forall \vec{x}, \vec{y} \in V_3$ $\hat{A}(\alpha \vec{x}) = k(\alpha \vec{x}) = \alpha k\vec{x} = \alpha \hat{A}\vec{x}$, $\forall \vec{x} \in V_3$ и $\forall \alpha \in R \blacktriangleleft$

5. В линейном пространстве многочленов P_n степени не выше n \hat{A} – оператор дифференцирования:

$$\hat{A}p(t) = p'(t)$$

является линейным оператором.

ightharpoonup При дифференцировании многочлена степени не выше n получаем также многочлен степени не выше n:

$$\hat{A}: P_n \to P_n$$
 и $\hat{A}p(t) = p'(t) \Rightarrow \forall p_1(t), p_2(t) \in P_n$

$$\hat{A}(p_1(t) + p_2(t)) = (p_1(t) + p_2(t))' = (p_1(t))' + (p_2(t))' = \hat{A}p_1(t) + \hat{A}p_2(t),$$

 $\forall p(t) \in P_n$ и $\forall \alpha \in R$: $\hat{A}(\alpha p(t)) = (\alpha p(t))' = \alpha(p(t))' = \alpha \hat{A}(p(t)) \blacktriangleleft$

6. В линейном пространстве всех квадратных матриц второго порядка $M_{2\times 2}$ оператор \hat{A} — умножение слева любой матрицы этого пространства на матрицу $\begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix}$:

$$\hat{A}X = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} X$$

является линейным оператором.

> Произведение матриц второго порядка является матрицей второго порядка.

Таким образом,
$$\hat{A}$$
: $M_{2\times 2}\to M_{2\times 2}\Rightarrow \forall X_1, X_2\in M_{2\times 2}$
$$\hat{A}(X_1+X_2)=\begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix}(X_1+X_2)=\begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix}X_1+\begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix}X_2=$$

$$=\hat{A}X_1+\hat{A}X_2$$

$$\hat{A}(\alpha X) = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} (\alpha X) = \alpha \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} X = \alpha \hat{A}X, \ \forall \, X \in M_{2 \times 2} \ \text{if} \ \forall \alpha \in R \quad \blacktriangleleft$$

Действия над линейными операторами

Пусть L - линейное пространство

 $\hat{A}:L \to L$ и $\hat{B}:L \to L$ – линейные операторы в L

Определение. Суммой операторов называется оператор $\hat{A} + \hat{B}$, действующий по правилу:

$$(\hat{A} + \hat{B})\vec{x} = \hat{A}\vec{x} + \hat{B}\vec{x}$$

Определение. Произведением линейного оператора \hat{A} **на число** α называется оператор $\widehat{\alpha A}$, действующий по правилу:

$$\widehat{\alpha A}\vec{x} = \alpha(\hat{A}\vec{x})$$

Определение. Оператором **противоположным** оператору \hat{A} называется оператор $\widehat{-A}$, действующий по правилу:

$$\widehat{-A}\vec{x} = -(\hat{A}\vec{x})$$

Определение. Произведением (композицией) операторов \hat{A} и \hat{B} называется оператор $\hat{A}\hat{B}$, действующий по правилу:

$$(\hat{A}\hat{B})\vec{x} = \hat{A}(\hat{B}\vec{x}).$$

Замечание. Свойство коммутативности в общем случае не выполняется:

$$\hat{A}\hat{B} \neq \hat{B}\hat{A}$$

Определение. n -ой степенью \hat{A}^n оператора \hat{A} называется произведение n операторов \hat{A} : $\hat{A}^n = \hat{A}\hat{A} \dots \hat{A}$.

Свойства:

$$1) \quad \alpha(\hat{A}\hat{B}) = (\widehat{\alpha}\hat{A})\hat{B}$$

$$(\hat{A} + \hat{B})\hat{C} = \hat{A}\hat{C} + \hat{B}\hat{C}$$

3)
$$\hat{A}(\hat{B} + \hat{C}) = \hat{A}\hat{B} + \hat{A}\hat{C}$$

$$(\hat{A}\hat{B})\hat{C} = \hat{A}(\hat{B}\hat{C})$$

✓ Доказать самостоятельно

Теорема 1. Если $\hat{A}: L \to L$ и $\hat{B}: L \to L$ – линейные операторы в L, то операторы $\hat{A}+\hat{B}, \widehat{\alpha A}, \hat{A}\hat{B}$ являются линейными операторами.

✓ Доказать самостоятельно.

Теорема 2. Множество всех линейных операторов, действующих в линейном пространстве L, с операциями сложения операторов и умножения оператора на число, нулевым оператором и противоположным оператором образуют линейное пространство.

✓ Доказать самостоятельно

Матрица линейного оператора

Пусть L - конечномерное линейное пространство с базисом

$$S = {\vec{e}_1, \vec{e}_2, ..., \vec{e}_n} \Rightarrow \dim L = n$$

 $\hat{A}:L \to L$ - линейный оператор в L

Найдем образ произвольного вектора $\vec{x} = (x_1, x_2, ..., x_n) \in L$, заданного своими координатами в базисе $S = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$:

$$\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n \Rightarrow$$

$$\vec{y} = \hat{A}\vec{x} = \hat{A}(x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n) = x_1 \hat{A}\vec{e}_1 + x_2 \hat{A}\vec{e}_2 + \dots + x_n \hat{A}\vec{e}_n$$

Таким образом, действие линейного оператора полностью определено, если известны образы векторов базиса.

Подействуем оператором \hat{A} на векторы базиса $S = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$:

$$\hat{A}\vec{e}_1 = a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \dots + a_{n1}\vec{e}_n$$

$$\hat{A}\vec{e}_2 = a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \dots + a_{n2}\vec{e}_n$$

. . .

$$\hat{A} \vec{e}_n = a_{1n} \vec{e}_1 + a_{2n} \vec{e}_2 + \cdots + a_{nn} \vec{e}_n$$
 Получим матрицу $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$, столбцами которой являются

координаты образов базисных векторов.

Матрицу A, полученную таким образом, называют матрицей линейного оператора \hat{A} в базисе $S = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$.

Определение. Матрицей линейного оператора $\hat{A}: L \to L$, действующего в n-мерном линейном пространстве L с базисом $S = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ называется матрица, составленная из координат образов базисных векторов, записанных по столбцам.

Замечание. Матрица линейного оператора $\hat{A}: L \to L$ является квадратной и ее порядок совпадает с размерностью линейного пространства L.

Примеры:

1. Нулевой оператор $\hat{O}: \mathbb{R}^n \to \mathbb{R}^n$, dim $\mathbb{R}^n = n \Rightarrow$

$$\hat{O}\vec{e}_1 = \vec{0} = (0; 0; ...; 0)$$

$$\hat{0}\vec{e}_2 = \vec{0} = (0; 0; ...; 0)$$

. . .

$$\widehat{O}\vec{e}_n = \overrightarrow{0} = (0; 0; \dots; 0) \qquad \Rightarrow \qquad$$

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
 - матрица нулевого оператора \widehat{O} в каноническом

базисе пространства \mathbb{R}^n .

2. Тождественный оператор $\hat{I}: \mathbb{R}^n \to \mathbb{R}^n$, dim $\mathbb{R}^n = n \Rightarrow$

$$\hat{I}\vec{e}_1 = \vec{e}_1 = (1; 0; ...; 0)$$

$$\hat{I}\vec{e}_2 = \vec{e}_2 = (0; 1; ...; 0)$$

. . .

$$\hat{I}\vec{e}_n = \vec{e}_n = (0;0;...;1) \Rightarrow$$
 $A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = E$ - матрица тождественного оператора \hat{I} в

каноническом базисе пространства \mathbb{R}^n .

3. Оператор $\hat{A}: V_3 \to V_3$ - гомотетия с коэффициентом λ , dim $V_3 = 3 \Rightarrow$

$$\hat{A}\vec{e}_1 = \lambda \vec{i} = (\lambda; 0; 0)$$

$$\hat{A}\vec{e}_2 = \lambda \vec{j} = (0; \lambda; 0)$$

$$\hat{A}\vec{e}_3 = \lambda \vec{k} = (0; 0; \lambda) \Rightarrow$$

$$A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$
 - матрица оператора в каноническом базисе пространства V_3 .

4. Оператор $\hat{A}: P_2 \to P_2$ - оператор дифференцирования, dim $P_2 = 3 \Rightarrow$

$$\hat{A}\vec{e}_1 = \hat{A}(1) = (1)' = 0 = (0; 0; 0)$$

$$\hat{A}\vec{e}_2 = \hat{A}(t) = (t)' = 1 = (1; 0; 0)$$

$$\hat{A}\vec{e}_3 = \hat{A}(t^2) = (t^2)' = 2t = (0; 2; 0) \Rightarrow$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
 - матрица оператора в каноническом базисе $\{1, t, t^2\}$

пространства P_2 .

5. Оператор $\hat{A}: M_{2\times 2} \to M_{2\times 2}$, dim $M_{2\times 2} = 4$, действующий по правилу:

$$\hat{A}X = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} X$$

$$\hat{A}\vec{e}_1 = \hat{A}E_1 = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 3 & 0 \end{pmatrix}$$

$$\hat{A}\vec{e}_2 = \hat{A}E_2 = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 3 \end{pmatrix}$$

$$\hat{A}\vec{e}_3 = \hat{A}E_3 = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix}$$

$$\hat{A}\vec{e}_4 = \hat{A}E_4 = \begin{pmatrix} 4 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} \Rightarrow$$

$$A = \begin{pmatrix} 4 & 0 & 2 & 0 \\ 0 & 4 & 0 & 2 \\ 3 & 0 & -1 & 0 \\ 0 & 3 & 0 & -1 \end{pmatrix}$$
 – матрица оператора в каноническом базисе

пространства $M_{2\times 2}$.

Теорема 3. Пусть линейный оператор $\hat{A}: L \to L$, dim L = n, имеет в базисе

$$S=\{ec{e}_1,ec{e}_2\,,\dots,ec{e}_n\,\}$$
 матрицу $A=egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \cdots & \cdots & \cdots & \cdots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$. Тогда координаты

образа $\vec{y} = \hat{A}\vec{x}$ произвольного вектора $\vec{x} \in L$ находятся по формуле:

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

ИЛИ

$$Y = AX$$

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$
, $X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$ - координаты векторов \vec{y} и \vec{x} в базисе $S = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$

Центр дистанционного обучения

РТУ МИРЭА Кафедра ВМ-2

Таким образом, действие линейного оператора \hat{A} на вектор \vec{x} сводиться к

умножению матрицы
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 на вектор-столбец $X = \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{pmatrix}$

координат вектора \vec{x} .

Так как $S = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ - базис в L, то любой вектор ∈ L разложим по базису.

Пусть
$$\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n$$
 и $\vec{y} = y_1 \vec{e}_1 + y_2 \vec{e}_2 + \dots + y_n \vec{e}_n \Rightarrow$ $\vec{y} = \hat{A}\vec{x} = \hat{A}(x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n) = x_1 \hat{A}\vec{e}_1 + x_2 \hat{A}\vec{e}_2 + \dots + x_n \hat{A}\vec{e}_n =$ $= x_1(a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \dots + a_{n1}\vec{e}_n) + x_2(a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \dots + a_{n2}\vec{e}_n) +$ $+ x_n(a_{1n}\vec{e}_1 + a_{2n}\vec{e}_2 + \dots + a_{nn}\vec{e}_n) = (x_1a_{11} + x_2a_{12} + \dots + x_na_{1n})\vec{e}_1 +$ $+ (x_1a_{21} + x_2a_{22} + \dots + x_na_{2n})\vec{e}_2 + \dots + (x_1a_{n1} + x_2a_{n2} + \dots + x_na_{nn})\vec{e}_n =$ $= y_1\vec{e}_1 + y_2\vec{e}_2 + \dots + y_n\vec{e}_n \Rightarrow$

$$y_1 = x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n}$$
 $y_2 = x_1 a_{21} + x_2 a_{22} + \dots + x_n a_{2n}$
 \dots
 $y_n = x_1 a_{n1} + x_2 a_{n2} + \dots + x_n a_{nn}$
Следовательно,

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n} \\ x_1 a_{21} + x_2 a_{22} + \dots + x_n a_{2n} \\ \dots \\ x_1 a_{n1} + x_2 a_{n2} + \dots + x_n a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \Rightarrow Y = AX \blacktriangleleft$$

Замечание. Матрица линейного оператора полностью характеризует линейный оператор. Кроме того, любая квадратная матрица порядка n определяет линейный оператор n-мерного линейного пространства L. Таким образом, между линейными операторами, действующими в данном n-мерном линейном пространстве L и квадратными матрицами порядка n существует взаимно однозначное соответствие.

Теорема 4. Пусть линейные операторы $\hat{A}: L \to L$ и $\hat{B}: L \to L$ в конечномерном линейном пространстве L в базисе S имеют матрицы A и B соответственно. Тогда линейные операторы $\hat{A} + \hat{B}, \, \widehat{\alpha A}, \, \hat{A}\hat{B}$ имеют в этом базисе матрицы $A + B, \, \alpha A$ и AB соответственно.

ightharpoonup Докажем данное утверждение для оператора $\hat{A}\hat{B}$.

Пусть
$$\vec{z} = (\hat{A}\hat{B})\vec{x}$$
 и $\vec{y} = \hat{B}\vec{x}$ $\vec{z} = (\hat{A}\hat{B})\vec{x} = \hat{A}(\hat{B}\vec{x}) = \hat{A}\vec{y} \Rightarrow Z = AY$ $\vec{y} = \hat{B}\vec{x} \Rightarrow Y = BX \Rightarrow Z = A(BX) = (AB)X$ Следовательно, AB — матрица оператора $\hat{A}\hat{B}$ в базисе S

Задача 1. Какое из следующих преобразований является линейным оператором в пространстве \mathbb{R}^3 ? Найти матрицу линейного оператора в каноническом базисе \mathbb{R}^3 и образ вектора $\vec{a} = (4; -1; 3)$.

a)
$$\hat{A}\vec{x} = (4x_1 - 2x_2 + 1; 2; 3x_1 - x_3)$$

b)
$$\hat{B}\vec{x} = (x_1 + x_2 - x_3^2; 4x_2; 2x_2 - x_3^3)$$

c)
$$\hat{C}\vec{x} = (2x_1 - x_2 - x_3; 4x_2; -x_1 + 3x_2 - x_3)$$

Решение.

а) $\widehat{A}: \mathbb{R}^3 \to \mathbb{R}^3$, оператор $\widehat{A}\vec{x} = (4x_1 - 2x_2 + 1; 2; 3x_1 - x_3)$ вектор из \mathbb{R}^3 переводит в вектор из \mathbb{R}^3 .

Проверим линейность оператора А:

$$\widehat{A}(\vec{x} + \vec{y}) = (4(x_1 + y_1) - 2(x_2 + y_2) + 1; 2; 3(x_1 + y_1) - (x_3 + y_3))$$

С другой стороны:

$$\widehat{A}\vec{x} + \widehat{A}\vec{y} = (4x_1 - 2x_2 + 1; 2; 3x_1 - x_3) + (4y_1 - 2y_2 + 1; 2; 3y_1 - y_3)$$

$$= (4(x_1 + y_1) - 2(x_2 + y_2) + 2; 4; 3(x_1 + y_1) - (x_3 + y_3)) \Rightarrow$$

$$\widehat{A}(\vec{x} + \vec{y}) \neq \widehat{A}(\vec{x} + \vec{y})$$

Свойство аддитивности оператора не выполняется, следовательно, \widehat{A} не является линейным оператором.

Центр дистанционного обучения

РТУ МИРЭА Кафедра ВМ-2

Можно проверить линейность оператора другим способом.

Используем свойство линейного оператора — линейный оператор переводит нулевой вектор в нулевой: $\widehat{A0} = \widehat{0}$, тогда

$$\hat{A}\vec{0} = (0 - 0 + 1; 2; 0 - 0) = (1; 2; 0) \neq (0; 0; 0)$$

Оператор \widehat{A} не переводит нулевой вектор в нулевой, следовательно, он не является линейным.

b) $\hat{B}: \mathbb{R}^3 \to \mathbb{R}^3$, оператор $\hat{B}\vec{x} = (x_1 + x_2 - x_3^2; 4x_2; 2x_2 - x_3^3)$ вектор из \mathbb{R}^3 переводит в вектор из \mathbb{R}^3 .

Проверим линейность оператора \hat{B} :

$$\hat{B}(\vec{x} + \vec{y}) = ((x_1 + y_1) + (x_2 + y_2) - (x_3 + y_3)^2; 4(x_2 + y_2); 2(x_2 + y_2) - (x_3 + y_3)^3) = (x_1 + y_1 + x_2 + y_2 - x_3^2 - 2x_3y_3 - y_3^2; 4x_2 + 4y_2; 2x_2 + 2y_2 - x_3^3 - 3x_3^2y_3 - 3x_3y_3^2 - y_3^3)$$

С другой стороны:

$$\hat{B}\vec{x} + \hat{B}\vec{y} = (x_1 + x_2 - x_3^2; 4x_2; 2x_2 - x_3^3) + (y_1 + y_2 - y_3^2; 4y_2; 2y_2 - y_3^3) = (x_1 + y_1 + x_2 + y_2 - x_3^2 - y_3^2; 4x_2 + 4y_2; 2x_2 + 2y_2 - x_3^3 - y_3^3) \Rightarrow$$

$$\hat{B}(\vec{x} + \vec{y}) \neq \hat{B}(\vec{x} + \vec{y})$$

Условие линейности оператора не выполняется, следовательно, \hat{B} не является линейным оператором.

c) $\hat{C}: \mathbb{R}^3 \to \mathbb{R}^3$, $\hat{C}\vec{x} = (2x_1 - x_2 - x_3; 4x_2; -x_1 + 3x_2 - x_3)$ вектор из \mathbb{R}^3 переводит в вектор из \mathbb{R}^3 .

Проверим линейность оператора

$$\hat{C}(\vec{x} + \vec{y}) = (2(x_1 + y_1) - (x_2 + y_2) - (x_3 + y_3); \ 4(x_2 + y_2); -(x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3)) = (2x_1 - x_2 - x_3; \ 4x_2; -x_1 + 3x_2 + x_3) + (2y_1 - y_2 - y_3; \ 4y_2; -y_1 + 3y_2 + y_3) = \hat{C}\vec{x} + \hat{C}\vec{y}$$

$$\hat{C}(\alpha \vec{x}) = (2\alpha x_1 - \alpha x_2 - \alpha x_3; \ 4\alpha x_2; -\alpha x_1 + 3\alpha x_2 - \alpha x_3) = \alpha(2x_1 - x_2 - x_3; \ 4x_2; -x_1 + 3x_2 - x_3) = \alpha \hat{C}\vec{x}$$

Свойства аддитивности и однородности выполняются, следовательно оператор \hat{C} является линейным.

Найдем матрицу линейного оператора в каноническом базисе:

$$S = {\vec{e}_1 = (1; 0; 0), \vec{e}_2 = (0; 1; 0), \vec{e}_3 = (0; 0; 1)}$$

Матрица линейного оператора составлена из столбцов образов базисных векторов.

Применим оператор \hat{C} к базисным векторам:

$$\hat{C}\vec{e}_1 = (2; 0; -1), \hat{C}\vec{e}_2 = (-1; 4; 3), \hat{C}\vec{e}_3 = (-1; 0; -1)$$

Выпишем матрицу линейного оператора \hat{C} в каноническом базисе пространства \mathbb{R}^3 :

$$C = \begin{pmatrix} 2 & -1 & -1 \\ 0 & 4 & 0 \\ -1 & 3 & -1 \end{pmatrix}$$

Найдем образ вектора $\vec{a} = (4; -1; 3)$:

$$\hat{C}\vec{a} = \vec{y} \Rightarrow Y = \begin{pmatrix} 2 & -1 & -1 \\ 0 & 4 & 0 \\ -1 & 3 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \\ -10 \end{pmatrix} \Rightarrow$$

$$\vec{y} = (6; -4; -10)$$
 – образ вектора $\vec{a} = (4; -1; 3)$

Задача 2. Найти матрицу оператора $\hat{A}: V_2 \to V_2 -$ поворот на угол φ против часовой стрелки и образ вектора $\vec{x} = (0; -2)$ при повороте на угол $\varphi = \frac{\pi}{3}$.

Решение. Подействуем линейным оператором на базисные векторы $\{\vec{i}, \vec{j}\}$:

$$\hat{A}\vec{i} = \cos\varphi\,\vec{i} + \sin\varphi\,\vec{j}$$

$$\hat{A}\vec{j} = -\sin\varphi \vec{i} + \cos\varphi \vec{j}$$

Тогда
$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
 — матрица поворота на угол φ против часовой стрелки

Центр дистанционного обучения

образование в стиле hi tech

РТУ МИРЭА Кафедра ВМ-2

При повороте на угол $\varphi = \frac{\pi}{3}$ вектор $\vec{x} = (0; -2)$ перейдёт в вектор $\vec{y} = \hat{A}\vec{x}$, координаты которого найдем по формуле: Y = AX

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} \sqrt{3} \\ -1 \end{pmatrix} \Rightarrow$$

$$\vec{y} = (\sqrt{3}; -1)$$

Задачи для самостоятельного решения

- 1. В каноническом базисе пространства \mathbb{R}^3 операторы \hat{A} и \hat{B} действуют по правилу: $\hat{A}(x) = (2x_1 x_2 + x_3, \ x_1 + 4x_2 x_3, \ 3x_1 x_2 + 2x_3),$ $\hat{B}(x) = (x_1 + 4x_2 + 3x_3, \ 2x_1 + x_3, \ 3x_2 x_3).$ Показать линейность операторов \hat{A} и \hat{B} . Описать действие оператора $\hat{C} = \hat{B}\hat{A} 2\hat{A}^2$. Найти матрицы операторов \hat{A} , \hat{B} и \hat{C} в каноническом базисе пространства \mathbb{R}^3 .
- **2.** Оператор \hat{A} действует на квадратные матрицы второго порядка по правилу: $\hat{A}(X) = BX^T + B^TX$, где $B = \begin{pmatrix} -1 & 4 \\ 3 & -3 \end{pmatrix}$. Показать, что \hat{A} линейное оператор. Составить его матрицу в каноническом базисе.

образование в стиле hi tech

РТУ МИРЭА Кафедра ВМ-2

Спасибо за внимание!