MAT 2125 Lecture Notes

Last Updated:

February 16, 2023

Contents

1	The Real Numbers $\mathbb R$	2
2	Completeness of \mathbb{R} , Absolute Value, Sequences	3
3	Convergence of Sequences	4
4	Properties of Convergence, Squeeze Theorem, Monotone Sequences	5
5	Subsequences, Cauchy Sequences	6
6	Limsup and Liminf	7
7		8
8		9
9	\mathbb{R}^d 9.1 Convergence	10 10
10	Open and Closed Sets in \mathbb{R}^d	13
11	Compactness	18
f 12	Limits of a Function of Continous Variables	19

The Real Numbers \mathbb{R}

Completeness of \mathbb{R} , Absolute Value, Sequences

Convergence of Sequences

Properties of Convergence, Squeeze Theorem, Monotone Sequences

Subsequences, Cauchy Sequences

Limsup and Liminf

\mathbb{R}^d

Recall:
$$||(x_1, ..., x_d)|| := \sqrt{x_1^2 + \dots + x_d^2}$$
. This is a norm. i.e. $||a + b|| \le ||a||_2 + ||b||_2 \ \forall a, b \in \mathbb{R}^d$ $||ca|| = |c| \cdot ||a||_2, \ c \in \mathbb{R}, \ a \in \mathbb{R}^d$ $||a||_2 > 0, \ \forall a \in \mathbb{R}^d \setminus \{(0, ..., 0)\}$ $||(0, ..., 0)||_2 = 0$

Other examples of norms:

- $||(x_1, \ldots, x_d)||_1 := |x_1| + \cdots + |x_d|$
- $||(x_1,\ldots,x_d)||_{\infty} := max\{|x_1|,\ldots,|x_d|\}$

Exercise: For $a \in \mathbb{R}^d$,

$$||a||_{\infty} \le ||a||_2 \le ||a||_1 \le d||a||_{\infty} (\le d||a||_2)$$

Interesting Fact: There are other norms. but they are all equivalent in the sense that if $||\cdot||, ||\cdot||'$ are norms on \mathbb{R}^d , then $\exists v, R > 0$ such that

$$r||a|| \le ||a||' \le R||a||$$

9.1 Convergence

Definition 9.1.1. Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d and let $L \in \mathbb{R}^d$, we say $(a_n)_{n=1}^{\infty}$ converges to L, and write $\lim_{n\to\infty} = L$ or $a_n \to \infty$, if

$$\lim_{n \to \infty} ||a_n - L||_2 = 0$$

Note: We could define convergence instead using some other norm, say $||\cdot||_1$.

If $||a_n - L||_2 \to 0$, then $||a_n - L||_1 \le d||a_n - L||_2 \to 0$ If $||a_n - L||_1 \to 0$, then $||a_n - L||_2 \le d||a_n - L||_1 \to 0$

in general, if $||\cdot||$ is any norm, then since $||\cdot||$ and $||\cdot||_2$ are equivalent.

$$||a_n - L||_2 \to 0 \iff ||a_n - L|| \to 0$$

Example: Say $a_n = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$, then

$$||a_n - L||_2 = \sqrt{1/n^2, +\dots + 1/n^2} = \sqrt{\frac{d}{n^2}} = \frac{\sqrt{d}}{n} \to 0$$

$$\therefore a_n \to L$$

Given a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^d , we write $a_1 = (a_1^{(1)}, a_1^{(2)}, \dots, a_1^{(d)})$ where $a_1^{(1)}, a_1^{(2)}, \dots, a_1^{(d)} \in \mathbb{R}$. Similarly,

$$a_1 = (a_1^{(1)}, a_1^{(2)}, \dots, a_1^{(d)})$$

$$a_2 = (a_2^{(1)}, a_2^{(2)}, \dots, a_2^{(d)})$$

$$a_3 = (a_3^{(1)}, a_3^{(2)}, \dots, a_3^{(d)})$$

$$\vdots$$

$$L = (L^{(1)}, L^{(2)}, \dots, L^{(d)}) \in \mathbb{R}^d$$

We get d sequences in \mathbb{R} , and d possible limit points $L^{(1)}, \dots, L^{(d)} \in \mathbb{R}$

Proposition 9.1.1. Given $(a_n)_{n=1}^{\infty}$ and L as above, $a_n \to L$ as $d \to \infty \iff a_n^{(i)} \to L^{(i)}$ in \mathbb{R} as $n \to \infty$, for $i = 1, \ldots, d$.

Proof. \Longrightarrow : Suppose $a_n \to L$, i.e.

$$||a_n - L||_2 \to 0$$

For $x = (x_1, \dots, x_d) \in \mathbb{R}^d$

$$||x||_2^2 = x_1^2 + \dots + x_d^2 \ge x_i^2 = |x_i|^2 : |x_i \le ||x||_2$$

Applying this to (*), we get

$$0 \le |a_n^i - L^{(i)}| \le ||a_n - L||_2 \to 0$$

So by the squeeze theorem,

$$|a_n^{(i)} - L^{(i)}| \to 0$$

 \implies : Suppose $a_n^{(i)} \to L^{(i)}$ for $i = 1, \dots, d$.

$$||a_n - L||_2^2 = (a_n^{(i)} - L^i)^2 + \dots + (a_n^d - L^d) \to 0$$

By algebra of limits,

$$\therefore ||a_n - L||_2 \to 0$$

Example: $a^n = ((-1)^n, \frac{1}{n}) \in \mathbb{R}^2$. Does (a_n) converge? No, since $(-1)^n$ does not converge.

Definition 9.1.2. A sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^d is **Cauchy** if $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}_{\geq 1}$ such that

$$||a_n - a_m||_2 < \epsilon \ \forall m, n \ge n_0$$

Theorem 9.1.1 (Cauchy Convergence Criterion for \mathbb{R}^d). Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R}^d . It converges \iff it is Cauchy.

Proof. \Longrightarrow : Suppose $a_n \to L \in \mathbb{R}^d$. To show it is Cauchy, let $\epsilon > 0$. $||a_n - L||_2 \to 0$, so $\exists n_0 \in \mathbb{N}_{\geq 1}$ such that

$$||a_n - L||_2 < \frac{\epsilon}{2} \ \forall n \ge n_0$$

Then if $m, n \geq n_0$,

$$||a_m - a_n||_2 = ||a_m - L + L - a_n||_2$$

 $\leq ||a_m - L||_2 + ||L - a_n||_2$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

 $(a_n)_{n=1}^{\infty}$ is Cauchy. \Longrightarrow : Suppose $(a_n)_{n=1}^{\infty}$ is Cauchy, write

$$a_n = (a_n^{(1)}, \dots, a_n^{(d)})$$

For any $m, n \in \mathbb{N}_{\geq 1}$,

$$|a_n^{(i)} - a_m^{(i)} \le ||a_n - a_m||_2$$

 $(a_n^{(i)})_{n=1}^{\infty}$ is Cauchy in \mathbb{R} . So by the Cauchy Convergence Criterion, $\exists L^{(i)} \in \mathbb{R}$, such that $a_n^{(i)} \to L^{(i)}$. By the previous proposition,

$$a_n \to (L^{(1)}, \dots, L^{(d)})$$

Definition 9.1.3. $S \subseteq \mathbb{R}^d$ is **bounded** if $\exists M > 0$ such that

$$||x|| < M \quad \forall x \in S$$

A sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^d is bound if $\{a_n : n \in \mathbb{N}_{\geq 1}\}$ is a bounded set.

Theorem 9.1.2 (Bolzano-Weierstrass for \mathbb{R}^d). If $(a_n)_{n=1}^{\infty}$ is a bounded sequence in \mathbb{R}^d , then it has a subsequence $(a_{n_k})_{n=1}^{\infty}$ that converges.

Proof. Write $a_n = (a_n^{(1)}, \dots, a_n^{(d)}).$

Naive Attempt: TBC.

Open and Closed Sets in \mathbb{R}^d

Roughly, an open set is one that we draw with dotted lines. The line represents a "boundary" that is the not in the set. This is not a rigorous definition.

Definition 10.0.1 (Open Ball). Let $a \in \mathbb{R}^d$, r > 0. The **open ball** of radius r centered at a is

$$B(a;r) \coloneqq \{x \in \mathbb{R}^d : ||x - a||_2 < r\}$$

Relation to Convergence: If $a_n \to L$, then this means that $||a_n - L||_2 < \epsilon$ for all n large. So, $a_n \in B(L; \epsilon)$

Definition 10.0.2 (Open Sets). A set $U \subseteq \mathbb{R}^d$ is open if $\forall a \in U, \exists r > 0$, such that $B(a;r) \subseteq U$

Idea: If $a \in U$, then a is not on the boundary but it is truly "inside" the set, so we can fit a ball containing a in the set.

Definition 10.0.3 (Closed Sets). A set $k \in \mathbb{R}^d$ is **closed** if its complement $\mathbb{R}^d \setminus k$ is open.

Example: $U \subseteq (0,1)$. Is this open? Yes.

Proof. Let $a \in U$. We let $r := \min\{|a-0|, |a-1|\}$ (We do this so that r is at most the distance to the closest bound, i.e. if a is closer to 0, then the radius r cannot be |a-1|)then

$$B(a;r) = (a-r, a+r) \subset (0,1) = U$$

Example: U := [0, 1]. Is this open? No.

Proof. Let $a := 0 \in U$. The for any r > 0, $\exists z \in B(a; r) = (-r, r)$ s.t z < 0, so $z \notin U$. Therefore $B(a; r) \subseteq U$

Is U closed? This is the same as asking if $\mathbb{R} \setminus U = (-\infty, 0) \cup (1, \infty)$ is open. This is open.

Proof. Let $a \in (-\infty, 0) \cup (1, \infty)$.

• Case 1: $a \in (-\infty, 0)$. Set r := |a|, so

$$B(a;r) = (a-r, a+r) = (2a, 0) \subseteq U$$

• Case 2: $a \in (1, \infty)$ similar.

Therefore U = [0, 1] is closed.

Example: Is U := (0,1] open? No, for any r > 0

$$B(1;r) \not\subseteq U$$

Therefore, it is not open.

Note: Sets are not always open or closed. Most sets are neither open nor closed.

This set U is one such example U is not closed since $\mathbb{R} \setminus U = (-\infty, 0] \cup (1\infty)$ $0 \in \mathbb{R} \ U$ but $\forall r > 0, \ B(0; r) \not\subseteq R \setminus U$

Example: For any $a \in \mathbb{R}^d$, r > 0 B(a; r) is an open set.

Proof. Let $x \in B(a; r)$, so $||x - a||_2 < r$. Set

$$r_0 := r - ||x - a||_2 > 0$$

Claim: $B(x; r_0) \subseteq B(a; r)$ To see this, let $y \in B(x; r_0)$ so $|y - x||_2 < r_0$. So,

$$||y - a||_2 \le ||y - x||_2 + ||x - a||_2$$
 (\triangle -inequality)
 $< r_0 + ||x - a||_2$
 $= r$

Proposition 10.0.1. (i) \emptyset , \mathbb{R}^d are both open in \mathbb{R}^d

- (ii) If $U_1, U_2, \ldots, U_n \subseteq \mathbb{R}^d$ are all open, then so is $U_1 \cap U_2 \cap \cdots \cap U_n$.
- (iii) If $U_a \subseteq \mathbb{R}^d$ is an open set for all $\alpha \in I$, (I is some index set) then

$$\bigcup_{a\in I} U_a$$

is open.

Proof. (i), (ii) are exercises.

(iii): Set

$$V \coloneqq \bigcup_{\alpha \in I} U_a$$

Let $a \in V$. This means $\exists \alpha \in I$ such that $a \in U_{\alpha}$. U_{α} is open so $\exists r > 0$ s.t $B(a;r) \subseteq U_{\alpha}$. $U_{\alpha} \le \bigcup_{\alpha \in I} U_{\alpha} = V$ So $B(a;r) \subseteq V$ as required.

Example: For any $n \in \mathbb{N}_{\geq 1}$.

$$\left(\frac{-1}{n}, \frac{1}{n}\right) = B(0; \frac{1}{n})$$

is open in \mathbb{R} . The intersection of these open sets is

$$\bigcap_{n=1}^{\infty} \left(\frac{1}{n}, \frac{-1}{n} \right) = \{0\}$$

which is not open. This shows that openess is not preserved by infinite intersections.

Example: Let

$$U := \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$$

U is open but not closed.

$$U = V \cap W$$

where

$$V := \{(x, y) : x > 0\} \qquad \qquad W := \{(x, y) : y > 0\}$$

To show V is open, let $a=(x,y)\in V$. Set $r\coloneqq x>0$. Then if $(w,z)\in B(a;r)$. Then

$$|w - z| \le ||(w, z) - a||_2 < r = x$$

 $\therefore w > x - x = 0$

So $(w, z) \in U$. Similarly, W is open. Therefore U is open.

Not Closed: Exercise.

Proposition 10.0.2. Let $K \subseteq \mathbb{R}^d$. K is closed \iff for any subsequence $(a_n)_{n=1}^{\infty}$ in K, If it converges, then

$$\lim_{n\to\infty} a_n \in K$$

Proof. (\Longrightarrow) Suppose K is closed. Let $(a_n)_{n=1}^{\infty}$ be a sequence in K s.t

$$L := \lim_{n \to \infty} a_n$$

exists. Suppose for a contradction $L \notin K$. This means $L \in \mathbb{R}^d \setminus K$, which is open. So $\exists r > 0$ such that

$$B(L;r) \subseteq \mathbb{R}^d \setminus K$$

Since $a_n \to L$, we must have $a_n \in B(L; a)$ for some n (in fact, for all n sufficiently large. So $a_n \in B(L; r) \subseteq \mathbb{R}^d \setminus K$. Therefore $a_n \notin K$, which is a contradiction.

(\iff) Suppose K is not closed, and we'll prove $\exists (a_n)_{n=1}^{\infty}$ in K such that $a_n \to L \notin K$. Since K is not closed, $\mathbb{R}^d \setminus K$ is not open. So $\exists L \in \mathbb{R}^d \setminus K$ such that $\forall r > 0$

$$B(L;r) \not\subseteq \mathbb{R}^d \setminus K$$

For each $n \in \mathbb{N}_{\geq 1}$, we can fine $a_n \in B(L; \frac{1}{n})$ such that $a_n \notin \mathbb{R}^d \setminus K$. So $a_n \in K$. This gives a sequence $(a_n)_{n=1}^{\infty}$ in K and

$$||a_n - L||_2 < \frac{1}{n} \to 0$$

Therefore by the Squeeze Theorem,

$$||a_n - L||_2 \to 0 \implies a_n \to L$$

$$L \in \mathbb{R}^d \setminus K$$
, so $L \notin K$.

Definition 10.0.4. Let $A \subseteq \mathbb{R}^d$ and let $a \in \mathbb{R}^d$, a is:

- (i) an interior point if $\exists r > 0$ s.t $B(a; r) \subseteq A$
- (ii) an accumulation point if \exists a sequence $(a_n)_{n=1}^{\infty}$ in A s.t $a_n \to a$
- (iii) a **boundary point** if it is an accumulation point and it is not an interior point.

$$A^{\circ} := \{All \ interior \ points\}$$

 $\bar{A} := \{All\ accumulation\ points\}$

$$\partial A := \{All\ boundary\ points\} = \bar{A} \setminus A^{\circ}$$

Note: The set of interior points, accumulation points, and boundary points are referred to as the **interior** of A, the **closure** of A, and the **boundary** of A respectively

Example: $A := (0,1] \cup \{2\}$

$$A^{\circ} = (0, 1)$$

$$\bar{A} = [0,1] \cup \{2\}$$

$$\partial A = \{0,1,2\}$$

Example: $A \coloneqq \mathbb{Q}$

Since any open interval contains irrational numbers, we have

$$A^{\circ} = set$$

Proposition from chapter 2,

$$\bar{A}=\mathbb{R}$$

$$\partial A = \mathbb{R}$$

Compactness

Definition 11.0.1. A set $A \subseteq \mathbb{R}^d$ is (sequentially) compact if every sequence $(a_n)_{n=1}^{\infty}$ in A has a subsequence $(a_{n_k})_{k=1}^{\infty}$ that converges to a point in A.

Example TBC

Limits of a Function of Continous Variables

A sequence is a function $\mathbb{N} \to \mathbb{R}$. Here, we'll consider function that are going from $\mathbb{R} \to \mathbb{R}$ (or $\mathbb{R}^d \to \mathbb{R}^m$).

Definition 12.0.1. Let $X \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^d$ a limit point of X. $f: X \to \mathbb{R}^m$, $L \in \mathbb{R}^m$. We say the limit of f as X approaches a is L if

$$\forall \epsilon > 0, \exists \delta > 0 \ s.t \ \forall x \in X$$

$$x \in B(a; \delta) \land x \neq a \implies ||f(x) - L||_2 < \epsilon$$

The idea is like the definition of convergence of a sequence, except we replace $n \ge n_0$ (which captures "n is sufficiently large") with $x \in B(a; \delta)$, $x \ne a$ (which captures "x is close to, but not equal to a). In other words, the definition says that if x is close to (but not equal to) a then f(x) is close to L.

Why "not equal to"?: Often we consider the limit as x approaches a when f(a) is not defined. Other times we compare the limit to f(a). So we do not want to use f(a) in the definition of the limit.

Notation: We write

$$\lim_{x \to a} f(x) = L$$

or

$$f(x) \to L \text{ as } x \to d$$

to mean that the limit of f is L as x approaches a.

Example: $f: \mathbb{R} \to \mathbb{R}$. f(x) := 3x - 2. Let $a \in \mathbb{R}$. Claim

$$\lim_{x \to a} f(x) = 3a - 2$$

Proof. Let $\epsilon > 0$. Consider

$$|f(x) - (3a - 2)| = |3x - 2 - 3a + 2|$$

= $3|x - a|$

We want this $<\epsilon,$ set $\delta:=\frac{\epsilon}{3}.$ Then if $x\in B(a;\delta)=(a-\delta,a+\delta)$ (i.e $|x-a|<\delta)$ then

$$|f(x) - (3a - 2)| = 3|x - a| < 3\delta = \frac{3\epsilon}{3} = \epsilon$$

Example: $g: \mathbb{R} \to \mathbb{R}$. $g(x) := x^2$. Claim:

$$\lim_{x \to a} g(x) = a^2$$

Proof. Let $\epsilon > 0$ be given.

$$|g(x) - a^2| = |x^2 - a^2|$$

= $|x - a||x + a|$

What happens if x is close to a? Intuitively, |x+a| is close to |a+a| and |x-a| is small.

$$\begin{aligned} |x+a| &= |x-a+a+a| \leq |x-a| + |a+a| \\ &< 2|a| + \delta & \text{ (if } |x-a| < \delta) \\ &\leq 2|a| + 1 & \text{ } (\delta \leq 1) \end{aligned}$$

Then,

$$|x^{2} - a^{2}| = |x - a||x + a| \le |x - a|(2|a| + 1)$$

$$< \delta(2|a| + 1) \qquad (if |x - a| < \delta)$$

$$\le \epsilon \qquad (if \delta \le \frac{\epsilon}{2|a| + 1})$$

Important: Do not define δ in terms of x or δ ! We can use a here since a is constant

So we set $\delta := \min\{1, \frac{\epsilon}{2|a|+1}\}$ Then $\delta \leq \frac{\epsilon}{2|a|+1}$ and $\delta \leq 1$. So if $|x-a| < \delta$. Then from the work above, $|x^2-a^2| < \epsilon$ as required.

Note: In proofs where we have $\delta - \epsilon$, we often use

$$\delta \coloneqq \min\{\ldots\}$$

In proofs where we have $n_0 - \epsilon$, we often use

$$n_0 := \max\{...\}$$

Proposition 12.0.1 (Uniqueness of Limits). Let $f: X \to \mathbb{R}^m$ $(X \subseteq \mathbb{R}^d)$, $a \in \mathbb{R}^d$ a limit point of X, $L, L' \in \mathbb{R}^m$. If the limit of f as $x \to a$ is L and the limit of f as $x \to a$ is L', then L = L'

Proof. By contradction. Suppose $L \neq L'$. So

$$||L - L'||_2 > 0$$

Set

$$\epsilon\coloneqq\frac{||L-L||_2}{2}>0$$

Since $f(x) \to L$ as $x \to a$, $\exists \delta > 0$ such that if $x \in X \cap B(a; \delta) \setminus \{a\}$, then

$$||f(x) - L||_2 < \epsilon$$

Since $f(x) \to L'$ as $x \to a$, $\exists \delta' > 0$ such that

$$x \in X \cap B(a; \delta') \setminus \{a\} \implies ||f(x) - L'||_2 < \epsilon$$

Let $\delta_0 \neq \min\{\delta, \delta'\}$. Let

$$x \in X \cap B(a; \delta_0) \setminus \{a\}$$

Then

$$x \in X \cap B(a; \delta) \setminus \{a\}$$

So,

$$||f(x) - L||_2 < \epsilon$$
$$||f(x) - L'||_2 < \epsilon$$

So,

$$||L - L'||_2 \le ||L - f(x)||_2 + ||f(x) - L'|| < \epsilon + \epsilon$$

= $||L - L'||_2$

And thus, a contradction.

Proposition 12.0.2 (Sequential Characterization of Limits). Let $X \subseteq \mathbb{R}^d$, $a \in \mathbb{R}^d$, a limit point of X. $f: X \to \mathbb{R}^m$, $L \in \mathbb{R}^m$.

 $\lim_{x\to a} f(x) = L \iff$ for every sequence $(x_n)_{n=1}^{\infty}$ in X such that $x_n \to a$, we have

$$\lim_{n \to \infty} f(x_n) = L$$