Лабораторная работа №3

Классификация и кластеризация изображений на GPU.

Цель работы. Научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти.

Формат изображений соответствует формату описанному в лабораторной работе 2. Во всех вариантах, в результирующем изображении, на месте альфа-канала должен быть записан номер класса(кластера) к которому был отнесен соответствующий пиксель. Если пиксель можно отнести к нескольким классам, то выбирается класс с наименьшим номером.

В вариантах 1-4, формат входных данных одинаковый. На первой строке задается путь к исходному изображению, на второй, путь к конечному изображению. На следующей строке, число nc -- количество классов. Далее идут nc строчек описывающих каждый класс. В начале j-ой строки задается число np_j -- количество пикселей в выборке, за ним следуют np_j пар чисел -- координаты пикселей выборки. nc ≤ 32 , np_j $\leq 2^{19}$, w*h $\leq 4*10^8$.

Оценка вектора средних и ковариационной матрицы:

$$avg_{j} = \frac{1}{np_{j}} \sum_{i=1}^{np_{j}} ps_{i}^{j}$$

$$cov_{j} = \frac{1}{np_{j}-1} \sum_{i=1}^{np_{j}} (ps_{i}^{j} - avg_{j}) * (ps_{i}^{j} - avg_{j})^{T}$$

где $ps_{i}^{j} = \left(r_{i}^{j} \ g_{i}^{j} \ b_{i}^{j}\right)^{T}$ -- і-ый пиксель из ј-ой выборки.

Вариант 1. Метод максимального правдоподобия.

Для некоторого пикселя p, номер класса jc определяется следующим образом:

$$jc = arg \ max_j \left[-(p - avg_j)^T * cov_j^{-1} * (p - avg_j) - log(|det(cov_j)|) \right]$$

Входной файл	hex: in.data	hex: out.data
in.data out.data 2 4 1 2 1 0 2 2 2 1 4 0 0 0 1 1 1 2 0	A2DF4C00 F7C9FE00 9ED84500 B4E85300 99D14D00 92DD5600	03000000 03000000 A2DF4C01 F7C9FE00 9ED84501 B4E85301 99D14D01 92DD5600 A9E04C01 F7D1FA00 D4D0E900

Входной файл hex: out.data		
	кодной файл	hex: out.data

```
in.data
                               08000000 08000000
out.data
                               D2E27502 CFF65201 D3ED5701 D6E76902
                               C8F35B01 8E168200 CFF45001 AE977604
                               D3DC7102 7D1E7B00 AB9A8004 D9E58602
4 5 0 0 2 6 1 1 1
6 2 0 7 1 1 0 1 2 6 0 4 0
                               AB967E04 AE9D8004 87058200 D0F95B01
4 3 0 3 1 0 1 0 0
                               74148000 D0F55901 86136C00 85077400
4 0 3 6 2 5 2 7 2
                               D6E27702 D3609F03 D1609F03 CC5EA103
9 6 4 5 1 7 0 2 1 2 3 4 1 1 5
                               CC739D03 7C127F00 AA988804 AFA07D04
                               D0E37702 7D117A00 D6EB5901 D6E37C02
                               C9F85701 D655A103 D7EA7402 93127D00
                               D35BA403 D4DD7902 B0A18404 D6DE7502
                               D765A900 AD928404 D0D87C02 D7E97F02
                               CD509E00 CAF85201 CFF75601 CEF45E01
                               D0E86902 D1D17F02 AD928104 AFA18304
                               D4DB5C02 88077D00 C6F75701 7D127D00
                               A99A8E04 C8609E03 D15DA503 AB957E04
                               AE9A8004 79218100 D065A103 A99E9A04
```

Вариант 2. Метод расстояния Махаланобиса.

Для некоторого пикселя p, номер класса jc определяется следующим образом:

$$jc = arg \ max_j \left[-(p - avg_j)^T * cov_j^{-1} * (p - avg_j) \right]$$

Входной файл	hex: in.data	hex: out.data
out.data 2	A2DF4C00 F7C9FE00 9ED84500 B4E85300 99D14D00 92DD5600	03000000 03000000 A2DF4C01 F7C9FE00 9ED84501 B4E85301 99D14D01 92DD5600 A9E04C01 F7D1FA00 D4D0E900

Входной файл	hex: out.data
<pre>in.data out.data 5 4 5 0 0 2 6 1 1 1 6 2 0 7 1 1 0 1 2 6 0 4 0 4 3 0 3 1 0 1 0 0 4 0 3 6 2 5 2 7 2 9 6 4 5 1 7 0 2 1 2 3 4 1 1 5 3 3 2 6</pre>	08000000 080000000 D2E27502 CFF65201 D3ED5701 D6E76902 C8F35B01 8E168200 CFF45001 AE977604 D3DC7102 7D1E7B00 AB9A8004 D9E58602 AB967E04 AE9D8004 87058200 D0F95B01 74148000 D0F55901 86136C00 85077400 D6E27702 D3609F03 D1609F03 CC5EA103 CC739D03 7C127F00 AA988804 AFA07D04 D0E37702 7D117A00 D6EB5901 D6E37C02 C9F85701 D655A103 D7EA7402 93127D00 D35BA403 D4DD7902 B0A18404 D6DE7502 D765A900 AD928404 D0D87C02 D7E97F02 CD509E00 CAF85201 CFF75601 CEF45E01

D0E86902	D1D17F02	AD928104	AFA18304
D4DB5C02	88077D00	C6F75701	7D127D00
A99A8E04	C8609E03	D15DA503	AB957E04
AE9A8004	79218100	D065A103	A99E9A04

Вариант 3. Метод минимального расстояния.

Для некоторого пикселя $\it p$, номер класса $\it jc$ определяется следующим образом:

$$jc = arg \ max_j \left[-(p - avg_j)^T * (p - avg_j) \right]$$

Пример:

Входной файл	hex: in.data	hex: out.data
2	B4E85300 99D14D00 92DD5600	03000000 03000000 A2DF4C01 F7C9FE00 9ED84501 B4E85301 99D14D01 92DD5601 A9E04C01 F7D1FA00 D4D0E900

Входной файл	hex: out.data
<pre>in.data out.data 5 4 5 0 0 2 6 1 1 1 1 6 2 0 7 1 1 0 1 2 6 0 4 0 4 3 0 3 1 0 1 0 0 4 0 3 6 2 5 2 7 2 9 6 4 5 1 7 0 2 1 2 3 4 1 1 5 3 3 2 6</pre>	08000000 08000000 D2E27502 CFF65201 D3ED5701 D6E76902 C8F35B01 8E168200 CFF45001 AE977604 D3DC7102 7D1E7B00 AB9A8004 D9E58602 AB967E04 AE9D8004 87058200 D0F95B01 74148000 D0F55901 86136C00 85077400 D6E27702 D3609F03 D1609F03 CC5EA103 CC739D03 7C127F00 AA988804 AFA07D04 D0E37702 7D117A00 D6EB5901 D6E37C02 C9F85701 D655A103 D7EA7402 93127D00 D35BA403 D4DD7902 B0A18404 D6DE7502 D765A903 AD928404 D0D87C02 D7E97F02 CD509E03 CAF85201 CFF75601 CEF45E01 D0E86902 D1D17F02 AD928104 AFA18304 D4DB5C01 88077D00 C6F75701 7D127D00 A99A8E04 C8609E03 D15DA503 AB957E04 AE9A8004 79218100 D065A103 A99E9A04

Вариант 4. Метод спектрального угла.

Для некоторого пикселя $\it p$, номер класса $\it jc$ определяется следующим образом:

$$jc = arg \ max_j \left[p^T * \frac{avg_j}{|avg_j|} \right]$$

Входной файл	hex: in.data	hex: out.data
--------------	--------------	---------------

in.data	03000000 03000000	03000000 03000000
out.data	A2DF4C00 F7C9FE00 9ED84500	A2DF4C01 F7C9FE00 9ED84501
2	B4E85300 99D14D00 92DD5600	B4E85301 99D14D01 92DD5601
4 1 2 1 0 2 2 2 1	A9E04C00 F7D1FA00 D4D0E900	A9E04C01 F7D1FA00 D4D0E900
4 0 0 0 1 1 1 2 0		

Входной файл	hex: out.data
Входной файл in.data out.data 5 4 5 0 0 2 6 1 1 1 1 6 2 0 7 1 1 0 1 2 6 0 4 0 4 3 0 3 1 0 1 0 0 4 0 3 6 2 5 2 7 2 9 6 4 5 1 7 0 2 1 2 3 4 1 1 5 3 3 2 6	08000000 08000000 D2E27502 CFF65201 D3ED5701 D6E76902 C8F35B01 8E168200 CFF45001 AE977604 D3DC7102 7D1E7B00 AB9A8004 D9E58602 AB967E04 AE9D8004 87058200 D0F95B01 74148000 D0F55901 86136C00 85077400 D6E27702 D3609F03 D1609F03 CC5EA103 CC739D03 7C127F00 AA988804 AFA07D04 D0E37702 7D117A00 D6EB5901 D6E37C02 C9F85701 D655A103 D7EA7402 93127D00 D35BA403 D4DD7902 B0A18404 D6DE7502 D765A903 AD928404 D0D87C02 D7E97F02 CD509E03 CAF85201 CFF75601 CEF45E01 D0E86902 D1D17F02 AD928104 AFA18304
	D4DB5C02 88077D00 C6F75701 7D127D00 A99A8E04 C8609E03 D15DA503 AB957E04 AE9A8004 79218100 D065A103 A99E9A04

Вариант 5. Метод k-средних.

Входные данные. На первой строке задается путь к исходному изображению, на второй, путь к конечному изображению. На следующей строке, число nc -- кол-во кластеров. Далее идут nc строчек описывающих начальные центры кластеров. Каждая i-ая строчка содержит пару чисел -- координаты пикселя который является центром. nc ≤ 32 .

Входной файл	hex: in.data	hex: out.data
in.data out.data 2 2 2 1 1	03000000 03000000 A2DF4C00 F7C9FE00 9ED84500 B4E85300 99D14D00 92DD5600 A9E04C00 F7D1FA00 D4D0E900	B4E85301 99D14D01 92DD5601

hex: out.data

in.data	08000000	08000000		
out.data	D2E27502	CFF65201	D3ED5701	D6E76902
5	C8F35B01	8E168200	CFF45001	AE977604
5 0	D3DC7102	7D1E7B00	AB9A8004	D9E58602
2 0	AB967E04	AE9D8004	87058200	D0F95B01
2 4	74148000	D0F55901	86136C00	85077400
6 2	D6E27702	D3609F03	D1609F03	CC5EA103
5 1	CC739D03	7C127F00	AA988804	AFA07D04
	D0E37702	7D117A00	D6EB5901	D6E37C02
	C9F85701	D655A103	D7EA7402	93127D00
	D35BA403	D4DD7902	B0A18404	D6DE7502
	D765A903	AD928404	D0D87C02	D7E97F02
	CD509E03	CAF85201	CFF75601	CEF45E01
	D0E86902	D1D17F02	AD928104	AFA18304
	D4DB5C01	88077D00	C6F75701	7D127D00
	A99A8E04	C8609E03	D15DA503	AB957E04
	AE9A8004	79218100	D065A103	A99E9A04

Вариант на "два". Трех-цветовой классификатор.

Необходимо реализовать вариант №3 при фиксированных параметрах:

$$nc = 3$$

 $avg_0 = (255, 0, 0)^T$
 $avg_1 = (0, 255, 0)^T$
 $avg_2 = (0, 0, 255)^T$

Входные данные. На первой строке задается путь к исходному изображению, на второй, путь к конечному изображению.

Входной файл	hex: in.data	hex: out.data
in.data out.data	02000000 02000000 0A141E00 280A1900 32463C00 5A641900	02000000 02000000 0A141E02 280A1900 32463C01 5A641901