# **Car Price Prediction**

Dhainik Suthar

## **Car Price Prediction**

Predict car price using 12 predictors Column names:

| Column name   | <b>Column Description</b>   |  |  |
|---------------|-----------------------------|--|--|
| name          | Car name                    |  |  |
| year          | Car model year              |  |  |
| Selling_price | Car Price (output variable) |  |  |
| Km_driven     | Car driven distance in km   |  |  |
| fuel          | Petrol/diesel/LPG           |  |  |
| Seller_type   | Individual/Dealer           |  |  |
| transmission  | Manual/Automatic            |  |  |
| owner         | First/second                |  |  |
| mileage       | Mileage In kmpl             |  |  |
| engine        | Engine in CC                |  |  |
| Max_power     | Power in bhp                |  |  |
| torque        | torque                      |  |  |
| seats         | seats                       |  |  |

Predict selling\_price using 12 predictors

Dataset size: 8128\*13

7 continuous variables, 5 character variable

# Data Modelling approach

- > Check for missing values:
- > Feel missing value
- > Data type conversions (String to Integer)
- > Remove outlier using graphs
- > Convert into normal distribution
- > Built machine learning models on the data
- > Important predictors

## Distribution of target variable



# Correlation among predictors

-1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0



### **Model Performance Metrics**

### Mean squared error:

a measure of how close a fitted line is to data points

### adjusted r2 score:

Adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the model.

#### Mean absolute error:

Adjusted R-squared is a modified version of R-squared that has been adjusted for the number of predictors in the model.

## **Model 1: Linear Regression**

Linear Regression show linear relationship between input and output variables.

Mean squared error: 0.0947

Adjusted r2 score: 0.7498

Mean absolute error: 0.2281

## **Model - 2: Decision Tree Regressor**

A decision tree is a graphical representation of all possible solutions to a decision based on certain conditions.

mean squared error: 0.089

Adjusted r2 score: 0.7537

Mean absolute error: 0.188

## **Model - 3: Random Forest Regressor**

- -Random forest fits multiple decision trees and averages them
- -This reduces the tendency to overfit but also adds complexity

mean squared error: 0.050

Adjusted r2 score: 0.8569

Mean absolute error: 0.151

Feature Importance in random forest



For random forest year and max\_power is most important features.

## Model - 4: AdaBoostRegressor

mean squared error: 0.108

Adjusted r2 score: 0.706

Mean absolute error: 0.2589



## **Model – 5 : GradientBoostingRegressor**

mean squared error: 0.057165754522063766

Adjusted r2 score: 0.8384259103542547

Mean absolute error: 0.17473602468416563

### **XGBRegressor**

mean squared error: 0.050311619579111844

Adjusted r2 score: 0.8570559384763965

Mean absolute error: 0.14975477934081596

### **Results**

| Model             | MSE    | Ad. R2 score | MAE    |
|-------------------|--------|--------------|--------|
| Linear Reg.       | 0.0919 | 0.7469       | 0.2281 |
| Decision Tree     | 0.0893 | 0.7537       | 0.1884 |
| Random Forest     | 0.0503 | 0.8569       | 0.1510 |
| Ada Boost         | 0.1082 | 0.7060       | 0.2589 |
| Gradient Boosting | 0.0571 | 0.8384       | 0.1747 |
| XGB Regressor     | 0.0503 | 0.8570       | 0.1497 |

Overall, XGB regressor is the best performing model with:

MSE: 0.0503

Ad. R2 score: 0.8570