> Load Control Module - Switch Model: SS8030

FCC PART 15 SUBPART B and C TEST REPORT

for

LOAD CONTROL MODULE - SWITCH

Model: SS8030

Prepared for

TELKONET, INC. 10200 WEST INNOVATION DRIVE, SUITE 300 MILWAUKEE, WISCONSIN 53226

Prepared by:

KYLE FUJIMOTO

Approved by:

JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: SEPTEMBER 30, 2013

	REPORT		APPENDICES				TOTAL
	BODY	A	В	С	D	E	
PAGES	17	2	2	2	18	29	70

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Section 15.205, 15.207, 15.209, and 15.249 Test Report

Load Control Module - Switch Model: SS8030

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. DESCRIPTION OF TEST CONFIGURATION	8
4.1 Description of Test Configuration – Emissions	8
4.1.1 Cable Construction and Termination	8
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	9
5.1 EUT and Accessory List	9
5.2 Emissions Test Equipment	10
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
6.3 Facility Environmental Characteristics	12
7. TEST PROCEDURES	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions (Spurious and Harmonics) Test	14
7.1.3 Variation of the Input Power	15
7.2 RF Emissions Test Results	16
8. CONCLUSIONS	17

Load Control Module - Switch Model: SS8030

LIST OF APPENDICES

APPENDIX	TITLE				
A	Laboratory Accreditations and Recognitions				
В	Modifications to the EUT				
С	Additional Models				
D	Diagram, Charts, and Photos				
	Test Setup Diagram				
	Antenna and Amplifier Factors				
	Radiated Emissions Photos				
Е	Data Sheets				

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
1	•
2	Plot Map And Layout of Radiated Test Site

LIST OF TABLES

TABLE	TITLE
1.0	Conducted Emission Results
2.0	Radiated Emission Results

Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

Model: SS8030

GENERAL REPORT SUMMARY

Compatible Electronics Inc. generates this electromagnetic emission test report, which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: Load Control Module – Switch

Model: SS8030 S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was not modified in order to meet the specifications.

Manufacturer: Telkonet, Inc.

10200 West Innovation Drive, Suite 300

Milwaukee, Wisconsin 53226

Test Date(s): July 16 and 17, 2013

Test Specifications: Emissions requirements

CFR Title 47, Part 15, Subpart B and Subpart C, Sections 15.205, 15.209, and 15.249

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions 150 kHz to 30 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.207.
2	Radiated RF Emissions 10 kHz to 25000 MHz (Transmitter and Digital Portion)	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249.

Model: SS8030

Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the Load Control Module – Switch, Model: SS8030 (EUT). The Emissions measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.207, 15.209, and 15.249 for the transmitter portion.

Section 15.205, 15.207, 15.209, and 15.249 Test Report

Load Control Module - Switch Model: SS8030

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The Emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Telkonet, Inc.

Clark Stremke Principal Firmware Engineer

Jeff Sobieski CTO

Compatible Electronics Inc.

James Ross Test Engineer Kyle Fujimoto Test Engineer

2.4 Date Test Sample was Received

The test sample was received by Compatible Electonics, Inc. on July 15, 2013.

2.5 Disposition of the Test Sample

The test sample has not been returned to Telkonet, Inc. as of the date of the test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

FCC Federal Communications Commission

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number

ITE Information Technology Equipment
LISN Line Impedance Stabilization Network

NVLAP National Voluntary Laboratory Accreditation Program

CFR Code of Federal Regulations

N/A Not Applicable Ltd. Limited Inc. Incorporated

NCR No Calibration Required

ID Identification Tx Transmit

Section 15.205, 15.207, 15.209, and 15.249 Test Report

Load Control Module - Switch Model: SS8030

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this Emissions Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4: 2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

Model: SS8030

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration – Emissions

The Load Control Module – Switch, Model: SS8030 (EUT) was connected to a lamp. Durng the tests, the EUT was continously transmitting and powering the lamp. The EUT was tested in the X-Axis and Y-Axis.

It was determined that the emissions were at their highest level when the EUT was operating in the above configuration. The final emissions data was taken in this mode of operation and any cables were maximized. All initial investigations were performed with the measurement receiver in manual mode scanning the frequency range continuously. Photographs of the test setup are in Appendix D of this report.

4.1.1 Cable Construction and Termination

<u>Cable 1</u> This is a 2-meter unshielded cable connecting the EUT to the lamp. The cable is hard wired at each end.

Load Control Module - Switch Model: SS8030

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
LOAD CONTROL MODULE – SWITCH (EUT)	TELKONET, INC.	SS8030	N/A	XV6SS8030
LAMP	N/A	N/A	N/A	N/A

Load Control Module - Switch Model: SS8030

5.2 Emissions Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CAL. CYCLE	
GENERAL TEST EQUIPMENT USED IN LAB B						
EMI Receiver	Rohde & Schwarz	ESIB40	100194	November 19, 2012	2 Year	
Computer	Compaq	CQ5210F	CNX9360CF9	N/A	N/A	
Monitor	Hewlett Packard	HPs2031a	3CQ046N3MD	N/A	N/A	
	GENERA	L TEST EQUI	PMENT USED IN	LAB A		
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	2637A03618	May 30, 2013	1 Year	
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	2648A13404	May 30, 2013	1 Year	
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	May 30, 2013	1 Year	
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A	
Computer	Hewlett Packard	4530	US91912319	N/A	N/A	
	RF RADI	ATED EMISSI	ONS TEST EQUI	PMENT		
Radiated Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A	
CombiLog Antenna	Com-Power	AC-220	61060	May 29, 2013	1 Year	
Preamplifier	Com-Power	PA-103	1582	December 28, 2012	1 Year	
Preamplifier	Com-Power	PA-118	181656	December 27, 2012	1 Year	
Preamplifier	Com-Power	PA-840	711013	May 17, 2012	2 Year	
Loop Antenna	Com-Power	AL-130	17089	January 29, 2013	2 Year	
Horn Antenna	Com-Power	AH-118	071175	February 29, 2012	2 Year	
Horn Antenna	Com-Power	AH-826	0071957	N/A	N/A	
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A	
	VARIATION (OF THE INPUT	POWER TEST B	EQUIPMENT		
Variable Auto Transformer	Staco Energy Products	3PN1010	N/A	N/A	N/A	
Multimeter	Wavetek	DM25XT	40209875	May 30, 2012	2 Year	

Load Control Module - Switch Model: SS8030

5.2 Emissions Test Equipment (Continued)

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CAL. CYCLE
	COND	CUTED EMISSI	ONS TEST EQUI	PMENT	
Emissions Program	Compatible	2.3 (SR19)	N/A	N/A	N/A
	Electronics				
LISN	Com Power	LI-215	12082	June 17, 2013	1 Year
LISN	Com Power	LI-215	12090	June 17, 2013	1 Year
Transient Limiter	Seward	252A910	K39-0220	November 7, 2012	1 Year

Model: SS8030

Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

TEST SITE DESCRIPTION

6.1 Test Facility Description

6.

Please refer to section 2.1 and 7.1.2 of this report for Emissions test location.

EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was grounded via the AC mains safety ground.

6.3 Facility Environmental Characteristics

When applicable refer to the data sheets in Appendix E for the relative humidity, air temperature, and barometric pressure.

Model: SS8030

Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The measurement receiver was used as a measuring meter. The data was collected with the measurement receiver in the peak detect mode with the "Max Hold" feature activated. The quasipeak was used only where indicated in the data sheets. A transient limiter was used for the protection of the measurement receiver's input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the measurement receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.207.

FCC Part 15 Subpart B and C, Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

Model: SS8030

7.1.2 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer, along with the quasi-peak adapter, and EMI Receiver were used as a measuring meter. Amplifiers were used to increase the sensitivity of the instrument. The Com-Power Preamplifier Model: PA-103 was used for frequencies from 30 MHz to 1 GHz, the Com-Power Microwave Preamplifier Model: PA-118 was used for frequencies from 1 GHz to 18 GHz, and the Com-Power Microwave Preamplifier Model: PA-840 were used for frequencies above 18 GHz. The spectrum analyzer and EMI Receiver were used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer and EMI Receiver records the highest measured reading over the sweeps.

The quasi-peak function was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were adjusted by a "duty cycle correction factor", derived from 20 log (dwell time / 100 ms).

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 1000 MHz	120 kHz	CombiLog Antenna
1 GHz to 25 GHz	1 MHz	Horn Antennas

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gun sight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the vertical axis in order to ensure accurate results.

Model: SS8030

Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

Radiated Emissions (Spurious and Harmonics) Test (continued)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3-meter test distance from 30 MHz to 25 GHz and at a 10-meter distance from 10 kHz to 30 MHz to obtain the final test data.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.249.

7.1.3 Variation of the Input Power

The variation of the input power test was performed using the EMI Receiver. The EUT input power was varied between 85% and 115% of the nominal rated supply voltage. The carrier frequency was monitored for any change in amplitude.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.31(e).

Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

Model: SS8030

7.2 RF Emissions Test Results

Table 1.0 CONDUCTED EMISSION RESULTS
Load Control Module – Switch, Model: SS8030

Frequency MHz	Corrected Reading* dBuV	Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
0.300 (BL)	46.98	50.23	-3.25
0.449 (BL)	42.61 (A)	46.89	-4.28
1.800 (BL)	41.6	46.00	-4.37
2.274 (BL)	39.75	46.00	-6.25
0.449 (WL)	40.58 (A)	46.89	-6.31
7.815 (BL)	42.99	50.00	-7.01

* The complete emissions data is given in Appendix E of this report.

(BL) Black Lead (WL) White lead (QP) Quasi-Peak (A) Average

Table 2.0 RADIATED EMISSION RESULTS
Load Control Module – Switch, Model: SS8030

Frequency MHz	Corrected Reading* dBuV	Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
4880 (V) (X-Axis)	33.91 (A)	54.00	-20.09
2405 (H) (X-Axis)	73.90 (A)	94.00	-20.10
2483.5 (V) (X-Axis)	33.82 (A)	54.00	-20.18
2440 (H) (X-Axis)	73.73 (A)	94.00	-20.27
4880 (H) (Y-Axis)	33.31 (A)	54.00	-20.69
2483.5 (H) (Y-Axis)	33.27 (A)	54.00	-20.73

* The complete emissions data is given in Appendix E of this report.

(H) Horizontal(V) Vertical(A) Average(QP) Quasi-Peak

Load Control Module - Switch Model: SS8030

8. CONCLUSIONS

The Load Control Module – Switch, Model: SS8030 (EUT), as tested, meets all of the <u>Class B</u> specification limits defined in CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.209, and 15.249 for the transmitter portion.

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

Report Number: B30717A2 FCC Part 15 Subpart B and C, Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch

Model: SS8030

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025. Please follow the link to the NIST/NVLAP site for each of our facilities' NVLAP certificate and scope of accreditation NVLAP listing links

Agoura Division / Brea Division / Silverado/Lake Forest Division . Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfillment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

ANSI listing CETCB

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

US/EU MRA list NIST MRA site

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). **APEC MRA list** NIST MRA site

We are also listed for IT products by the following country/agency:

VCCI Support member: Please visit http://www.vcci.jp/vcci_e/

FCC Listing, from FCC OET site
FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.249 and/or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

Report Number: B30717A2 FCC Part 15 Subpart B and C, Section 15.205, 15.207, 15.209, and 15.249 Test Report Load Control Module - Switch Model: SS8030

APPENDIX C

ADDITIONAL MODELS

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST Load Control Module – Switch

Model: SS8030 S/N: N/A

ADDITIONAL MODELS COVERED: The following models are considered by the manufacturer to be

similar to the sample tested, however the test results contained in this

report relate only to the sample tested.

There were no additional models covered under this test report.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF THE RADIATED TEST SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: JANUARY 29, 2013

FREQUENCY (MHz)	MAGNETIC (dB/m) -42.5	ELECTRIC (dB/m)
0.009	-42.5	9
0.01	-42.3	9.2
0.02	-42.1	9.4
0.03	-41.4	10.1
0.04	-41.8	9.7
0.05	-42.4	9.1
0.06	-42.3	9.2
0.07	-42.5 -42.4	9
0.08	-42.4	9.1
0.09	-42.5	9
0.1	-42.5	9
0.2	-42.7	8.8
0.3	-42.6	8.9
0.4	-42.5	9
0.5	-42.7	8.8
0.6	-42.7	8.8
0.7	-42.5	9
0.8	-42.3	9.2
0.9	-42.2	9.3
1	-42.2	9.3
2	-41.8	9.7
3	-41.7	9.8
4	-41.7	9.8
5	-41.5	10
6	-41.6	9.9
7	-41.4	10.1
8	-41	10.5
9	-40.8	10.7
10	-41.3	10.2
15	-41.4	10.1
20	-41.2	10.3
25	-42.6	8.9
30	-41.7	9.8

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61060

CALIBRATION DATE: MAY 29, 2013

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	19.40	200	9.10
35	19.10	250	11.40
40	19.70	300	11.90
45	18.00	350	14.20
50	16.80	400	15.20
60	12.50	450	16.50
70	7.30	500	17.10
80	4.40	550	16.20
90	8.00	600	17.70
100	8.80	650	19.10
120	10.50	700	20.00
125	10.60	750	21.50
140	8.60	800	21.50
150	11.20	850	21.70
160	8.90	900	22.70
175	9.60	950	22.10
180	8.50	1000	22.90

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: FEBRUARY 29, 2012

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	23.6	10.0	37.7
1.5	22.0	10.5	38.4
2.0	28.7	11.0	38.0
2.5	29.3	11.5	38.2
3.0	30.6	12.0	39.0
3.5	30.4	12.5	42.4
4.0	31.1	13.0	40.8
4.5	33.4	13.5	40.0
5.0	35.3	14.0	39.7
5.5	35.1	14.5	43.5
6.0	36.9	15.0	42.7
6.5	37.4	15.5	39.7
7.0	37.6	16.0	39.2
7.5	36.2	16.5	39.7
8.0	38.4	17.0	42.2
8.5	39.3	17.5	47.6
9.0	37.4	18.0	51.2
9.5	38.0		

COM-POWER AH826

HORN ANTENNA

S/N: 71957

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
18.0	33.5	22.5	35.5
18.5	33.5	23.0	35.9
19.0	34.0	23.5	35.7
19.5	34.0	24.0	35.6
20.0	34.3	24.5	36.0
20.5	34.9	25.0	36.2
21.0	34.7	25.5	36.1
21.5	35.0	26.0	36.2
22.0	35.0	26.5	35.7

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: DECEMBER 28, 2012

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	32.80	300	32.26
40	33.10	350	32.23
50	33.10	400	32.17
60	33.10	450	32.16
70	33.00	500	32.11
80	33.00	550	32.07
90	33.10	600	32.02
100	33.00	650	31.97
125	33.00	700	31.87
150	33.00	750	31.81
175	32.90	800	31.73
200	32.80	850	31.57
225	32.34	900	31.43
250	32.32	950	31.29
275	32.28	1000	31.14

COM-POWER PA-118

PREAMPLIFIER

S/N: 181656

CALIBRATION DATE: DECEMBER 27, 2012

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
0.50	25.29	6.00	25.75
0.60	25.26	6.50	25.28
0.70	25.23	7.00	24.83
0.80	25.13	7.50	24.49
0.90	24.91	8.00	24.38
1.00	24.68	8.50	25.06
1.25	25.85	9.00	25.55
1.50	26.23	9.50	25.32
1.75	26.42	10.0	25.25
2.00	26.48	10.5	25.31
2.25	26.55	11.0	24.99
2.50	26.59	11.5	24.84
2.75	26.64	12.0	25.08
3.00	26.67	12.5	24.64
3.25	26.67	13.0	24.44
3.50	26.66	13.5	24.85
3.75	26.58	14.0	25.02
4.00	26.82	14.5	25.41
4.25	26.60	15.0	26.12
4.50	26.46	15.5	26.74
4.75	26.36	16.0	25.67
5.00	26.22	16.5	24.48
5.25	26.11	17.0	24.33
5.50	25.98	17.5	25.19
5.75	25.90	18.0	26.75

COM-POWER PA-840

MICROWAVE PREAMPLIFIER

S/N: 711013

CALIBRATION DATE: MAY 17, 2012

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
18.0	25.81	31.0	25.77
19.0	24.57	31.5	25.36
20.0	23.46	32.0	25.15
21.0	22.51	32.5	25.13
22.0	23.85	33.0	25.52
23.0	23.31	33.5	25.24
24.0	24.44	34.0	25.08
25.0	25.42	34.5	25.27
26.0	25.71	35.0	23.99
26.5	25.66	35.5	24.67
27.0	25.84	36.5	24.80
27.5	25.29	37.0	26.27
28.0	25.46	37.5	24.86
28.5	25.58	38.0	24.64
29.0	26.16	38.5	23.46
29.5	26.14	39.0	21.29
30.0	26.01	39.5	20.83
30.5	25.67	40.0	19.96

FRONT VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – RADIATED EMISSIONS – 10 kHz to 30 MHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – RADIATED EMISSIONS – 10 kHz to 30 MHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – RADIATED EMISSIONS – 30 MHz to 1 GHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – RADIATED EMISSIONS – 30 MHz to 1 GHz

FRONT VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – RADIATED EMISSIONS – 1 GHz to 25 GHz

REAR VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – RADIATED EMISSIONS – 1 GHz to 25 GHz

FRONT VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – CONDUCTED EMISSIONS

REAR VIEW

TELKONET, INC.
LOAD CONTROL MODULE – SWITCH
MODEL: SS8030
FCC SUBPART B AND C – CONDUCTED EMISSIONS

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Low Channel X-Axis

Freq. Level Pol (MHz) (dBuV) (v/h) Limit Margin Avg (m) (deg) Comments						Peak /	Ant.	lable	
2405 90.35 V 114 -23.65 Peak 1.25 180 2405 70.35 V 94 -23.65 Avg 1.25 180 4810 51.24 V 74 -22.76 Peak 1.25 135 4810 31.24 V 54 -22.76 Avg 1.25 135 7215 47.06 V 74 -26.94 Peak 1.25 135 7215 27.06 V 54 -26.94 Avg 1.25 135 9620 9620 Detected Detected No Emission Detected 12025 No Emission Detected No Emission Detected 14430 No Emission Detected No Emission 19240 No Emission Detected 24050 No Emission Detected	Freq.	Level	Pol			QP/	Height	Angle	4
2405 70.35 V 94 -23.65 Avg 1.25 180 4810 51.24 V 74 -22.76 Peak 1.25 135 4810 31.24 V 54 -22.76 Avg 1.25 135 7215 47.06 V 74 -26.94 Peak 1.25 135 7215 27.06 V 54 -26.94 Avg 1.25 135 9620 Detected Detected No Emission Detected 12025 Detected No Emission Detected 14430 Detected No Emission Detected 19240 No Emission Detected 21645 Detected No Emission 24050 No Emission Detected	A STATE OF THE STA			100000000000000000000000000000000000000			Principal Control		Comments
A810 51.24 V 74 -22.76 Peak 1.25 135	2405	90.35		114	-23.65	Peak		180	
A810 31.24 V 54 -22.76 Avg 1.25 135	2405	70.35	V	94	-23.65	Avg	1.25	180	
A810 31.24 V 54 -22.76 Avg 1.25 135									
7215 47.06 V 74 -26.94 Peak 1.25 135 7215 27.06 V 54 -26.94 Avg 1.25 135 9620 Detected Detected 12025 No Emission 12025 Detected 14430 No Emission 14430 Detected 16835 No Emission 16836 Detected 19240 No Emission 19240 Detected 21645 Detected 24050 No Emission									
7215 27.06 V 54 -26.94 Avg 1.25 135 9620 Detected Detected 12025 No Emission Detected 14430 No Emission Detected 16835 No Emission Detected 19240 No Emission Detected 21645 No Emission Detected 24050 No Emission Detected	4810	31.24	V	54	-22.76	Avg	1.25	135	
7215 27.06 V 54 -26.94 Avg 1.25 135 9620 Detected Detected 12025 No Emission Detected 14430 No Emission Detected 16835 No Emission Detected 19240 No Emission Detected 21645 No Emission Detected 24050 No Emission Detected									
9620								2 23	
Detected	7215	27.06	V	54	-26.94	Avg	1.25	135	
Detected							3	2	
12025 No Emission 12025 Detected 14430 No Emission 14430 Detected 16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 Detected 24050 No Emission 24050 No Emission			S. S.				ē	S - S	
12025 Detected	9620	2					>		Detected
12025 Detected	40005						5	·	No Emiliant
14430 No Emission 14430 Detected 16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 24050 No Emission									
14430 Detected 16835 No Emission 19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	12025						2		Detected
14430 Detected 16835 No Emission 19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	14420	8 -					8 -		No Emission
16835 No Emission 16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission		4							
16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	14430		8				-		Detected
16835 Detected 19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	16835	7 33		5					No Emission
19240 No Emission 19240 Detected 21645 No Emission 21645 Detected 24050 No Emission	Committee of the control of the cont	-						÷	And the control of th
19240 Detected	10055							\$ - X	Detected
19240 Detected	19240	9		5					No Emission
21645 No Emission 21645 Detected 24050 No Emission	A TABLE STATE OF THE PARTY.						-		The state of the s
21645 Detected 24050 No Emission	10210	ř.	2						Botootou
21645 Detected 24050 No Emission	21645		12	6			S	10	No Emission
24050 No Emission	A 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								A Marchael Committee of Committ
24050 Detected	24050								No Emission
	24050					-			Detected

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Low Channel X-Axis

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	93.9	Н	114	-20.1	Peak	1.25	225	
2405	73.9	Н	94	-20.1	Avg	1.25	225	
4810	51.9	Н	74	-22.1	Peak	1.25	135	
4810	31.9	Н	54	-22.1	Avg	1.25	135	
7215	46.54	Н	74	-27.46	Peak	1.25	135	
7215	26.54	Н	54	-27.46	Avg	1.25	135	
9620								No Emission
9620								Detected
12025								No Emission
12025								Detected
14430								No Emission
14430								Detected
16835								No Emission
16835								Detected
19240								No Emission
19240								Detected
21645								No Emission
21645								Detected
24050								No Emission
24050								Detected

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Low Channel Y-Axis

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	91.88	V	114	-22.12	Peak	1.25	225	
2405	71.88	V	94	-22.12	Avg	1.25	225	
2100	7 1.00				7119	1.20		
4810	50.55	V	74	-23.45	Peak	1.25	225	
4810	30.55	V	54	-23.45	Avg	1.25	225	
			10000					
7215	44.07	V	74	-29.93	Peak	1.25	225	
7215	24.07	V	54	-29.93	Avg	1.25	225	
1383								
9620								No Emission
9620				3				Detected
								190
12025								No Emission
12025								Detected
14430								No Emission
14430								Detected
16835								No Emission
16835								Detected
		5						
19240								No Emission
19240								Detected
21645	4				8			No Emission
21645				,				Detected
0.4050						÷		<u> </u>
24050	2 4				S	9		No Emission
24050		>					,	Detected

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Low Channel Y-Axis

	<i>y</i>		3		Peak /	Ant.	lable	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2405	91.87	Н	114	-22.13	Peak	1.25	135	
2405	71.87	Н	94	-22.13	Avg	1.25	135	
4810	52.32	Н	74	-21.68	Peak	1.25	225	
4810	32.32	Н	54	-21.68	Avg	1.25	225	
7215	44.72	H	74	-29.28	Peak	1.25	45	
7215	24.72	Н	54	-29.28	Avg	1.25	45	
9620	i.		-		-	-		No Emission
9620	2					8. 31): /a	Detected
9020	5		-			÷		Detected
12025								No Emission
12025								Detected
14430								No Emission
14430								Detected
16835								No Emission
16835			5			2 3		Detected
10010								
19240	i.						-	No Emission
19240								Detected
21645				-				No Emission
21645							-	Detected
21040	<u> </u>	3					3	Detected
24050	3.	3	5	7	,			No Emission
24050								Detected

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Middle Channel

X-Axis

					Peak /	Ant.	lable	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2440	91.48	V	114	-22.52	Peak	1.25	45	
2440	71.48	V	94	-22.52	Avg	1.25	45	
4880	53.91	V	74	-20.09	Peak	1.25	225	
4880	33.91	V	54	-20.09	Avg	1.25	225	
7320	45.91	V	74	-28.09	Peak	1.25	45	
7320	25.91	V	54	-28.09	Avg	1.25	45	
9760								No Emission
9760					.ii.	<u> </u>		
9/60			-		-			Detected
12200						-		No Emission
12200								Detected
3		3	7		3		3	
14640								No Emission
14640								Detected
17080								No Emission
17080								Detected
19520		2					_	No Emission
19520								Detected
21060					-			No Emissies
21960 21960					-	-		No Emission Detected
21900								Detected
24400								No Emission
24400								Detected

Model: SS8030

Tested By: Kyle Fujimoto

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Middle Channel X-Axis

Model: SS8030

					Peak /	Ant.	lable	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2440	93.73	Н	114	-20.27	Peak	1.25	155	
2440	73.73	Н	94	-20.27	Avg	1.25	155	
2110	70.70			20.21	7119	1.20	100	
4880	51.28	Н	74	-22.72	Peak	1.25	180	
4880	31.28	Н	54	-22.72	Avg	1.25	180	
7320	47.12	Н	74	-26.88	Peak	1.35	185	
7320	27.12	Н	54	-26.88	Avg	1.35	185	
9760								No Emission
9760								Detected
12200								No Emission
12200								Detected
14640								No Emission
14640								Detected
17080								No Emission
17080								Detected
40500								No Francisco
19520								No Emission
19520								Detected
21960								No Emission
21960								Detected
21300								Detected
24400								No Emission
24400								Detected
								2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Middle Channel

Y-Axis

					Peak /	Ant.	Table	
From	Level	Pol			QP /			
Freq.						Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2440	93.26	V	114	-20.74	Peak	1.25	155	
2440	73.26	V	94	-20.74	Avg	1.25	155	
4880	51.41	V	74	-22.59	Peak	1.25	155	
4880	31.41	V	54	-22.59	Avg	1.25	155	
7320	45.58	V	74	-28.42	Peak	1.25	165	
7320	25.58	V	54	-28.42	Avg	1.25	165	
9760								No Emission
9760								Detected
12200								No Emission
12200								Detected
14640								No Emission
14640								Detected
17080								No Emission
17080								Detected
19520								No Emission
19520								Detected
21960								No Emission
21960								Detected
24400								No Emission
24400								Detected

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Middle Channel

Y-Axis

				_	Peak /	Ant.	Table	
Freq.	Level	Pol			QP /	Height	Angle	
			Limit	Morgin		_	_	Comments
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2440	91.29	Н	114	-22.71	Peak	1.25	270	
2440	71.29	Н	94	-22.71	Avg	1.25	270	
4880	53.31	Н	74	-20.69	Peak	1.25	155	
4880	33.31	Н	54	-20.69	Avg	1.25	155	
7320	47.08	Н	74	-26.92	Peak	1.35	165	
7320	27.08	Η	54	-26.92	Avg	1.35	165	
9760								No Emission
9760								Detected
12200								No Emission
12200								Detected
14640								No Emission
14640								Detected
17080								No Emission
17080								Detected
19520								No Emission
19520								Detected
21960								No Emission
21960								Detected
24400								No Emission
24400								Detected

Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

High Channel

X-Axis

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP /	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
, ,		, ,			_	-		Comments
2480	91.13	V	114	-22.87	Peak	1.25	155	
2480	71.13	V	94	-22.87	Avg	1.25	155	
4000	50.40	1.7	7.4	04.57	<u> </u>	4.05	455	
4960	52.43	V	74	-21.57	Peak	1.25	155	
4960	32.43	V	54	-21.57	Avg	1.25	155	
7440	40.00	1/	7.4	25.04	Daala	4.55	405	
7440	48.06	V	74	-25.94	Peak	1.55	135	
7440	28.06	V	54	-25.94	Avg	1.55	135	
0000								No Emission
9920								No Emission
9920								Detected
12400								No Posicolos
12400								No Emission
12400								Detected
44000								No Posicolos
14880 14880								No Emission
14880								Detected
17360								No Emission
17360								No Emission
17360								Detected
19840								No Emission
19840								
19040								Detected
22320								No Emission
22320								
22320								Detected
24800								No Emission
24800								
24000								Detected

Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch

Model: SS8030

Lab: B

Tested By: Kyle Fujimoto

High Channel X-Axis

_			_		Peak /	Ant.	Table	
F		D. I						
Freq.	Level	Pol		l	QP /	Height	Angle	_
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	89.89	Н	114	-24.11	Peak	1.25	90	
2480	69.89	Н	94	-24.11	Avg	1.25	90	
4960	50.41	Н	74	-23.59	Peak	1.25	135	
4960	30.41	Н	54	-23.59	Avg	1.25	135	
7440	46.68	Н	74	-27.32	Peak	1.25	155	
7440	26.68	Н	54	-27.32	Avg	1.25	155	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
								233333
24800								No Emission
24800								Detected
								25.55.55

Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

High Channel Y-Axis

			Ī		Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	92.37	V	114	-21.63	Peak	1.25	135	
2480	72.37	V	94	-21.63	Avg	1.25	135	
4960	48.51	V	74	-25.49	Peak	1.25	145	
4960	28.51	V	54	-25.49	Avg	1.25	145	
		880					7. Jul	
7440	46.71	V	74	-27.29	Peak	1.25	145	
7440	26.71	V	54	-27.29	Avg	1.25	145	
0000				2				No Emission
9920								No Emission
9920				-	-			Detected
12400			×		9			No Emission
12400								Detected
12100				+				Detected
14880								No Emission
14880			7.	3				Detected
17360								No Emission
17360								Detected
			-					
19840								No Emission
19840								Detected
22320				28				No Emission
22320								Detected
24800	2							No Emission
24800								Detected

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

High Channel Y-Axis

					Peak /	Ant.	Table	
Freq.	Level	Pol			QP/	Height	Angle	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
2480	91.74	Н	114	-22.26	Peak	1.25	225	
2480	71.74	Н	94	-22.26	Avg	1.25	225	
4960	51.67	Н	74	-22.33	Peak	1.25	155	
4960	31.67	Н	54	-22.33	Avg	1.25	155	
7440	48.76	Н	74	-25.24	Peak	1.25	165	
7440	28.76	Н	54	-25.24	Avg	1.25	165	
0000								
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
12400								Detected
14880								No Emission
14880								Detected
11000								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
			_			_		
24800								No Emission
24800								Detected

Load Control Module - Switch Model: SS8030

FCC 15.249 and FCC Class B

Telkonet, Inc.

Load Control Module - Switch

Model: SS8030

Dates: 07/15/2013 & 07/17/2013

Lab: B

Tested By: Kyle Fujimoto

Radiated Emissions 10 kHz to 25 GHz Digital Portion and Non-Harmonic Emissions of the Transmitter

	170.00	11111111111				Peak /	Table	
Axis of	Freq.	Level				QP/	Angle	
EUT	(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(deg)	Comments
								No Emissions Detected
								from 10 kHz to 25 GHz
								for the Non-Harmonic
							. 8	Emissions from the
							. 8	EUT for both the Vertical and
								Horizontal Polarizations.
		,				8		
								No Emissions Detected
								from 10 kHz to 25 GHz
							2	for the Digital Portion
				2	3			of the EUT for both the
				2	3			Vertical and Horizontal
				7				Polarizations.
S				2.	3		3	101
					8			Tested in both the X-Axis
								and Y-Axis
								1000 0000
							. 2	
		5						
						Ì		-
						Ì		-

Model: SS8030

BAND EDGES

DATA SHEETS

FCC 15.249

Telkonet, Inc. Date: 07/15/2013

Load Control Module - Switch Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Band Edges - Vertical Polarization

Worst Case Axis of EUT	Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
Y-Axis	2405	91.88	V	114	-22.12	Peak	1.25	225	Fundamental of
Y-Axis	2405	71.88	V	94	-22.12	Avg	1.25	225	Low Channel @ 3 Meters
Y-Axis	2400	42.96	V	74	-31.04	Peak	1.25	225	Dand Edge of
Y-Axis	2400	22.96	V	54	-31.04		1.25	225	Band Edge of
T-AXIS	2400	22.90	V	34	-31.04	Avg	1.23	223	Low Channel @ 3 Meters
X-Axis	2480	91.13	V	114	-22.87	Peak	1.25	155	Fundamental of
X-Axis	2480	71.13	V	94	-22.87	Avg	1.25	155	High Channel @ 3 Meters
X-Axis	2483.5	53.82	V	74	-20.18	Peak	1.25	135	Band Edge of
X-Axis	2483.5	33.82	V	54	-20.18	Avg	1.25	135	High Channel @ 3 Meters
	ş							7.	
	35			,		7			
								-	

Load Control Module - Switch Model: SS8030

FCC 15.249

Telkonet, Inc.

Date: 07/15/2013

Load Control Module - Switch

Lab: B

Model: SS8030 Tested By: Kyle Fujimoto

Band Edges - Horizontal Polarization

Worst									-
Worst Case Axis of EUT	Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
X-Axis	2405	93.9	Н	114	-20.1	Peak	1.25	225	Fundamental of
X-Axis	2405	73.9	Н	94	-20.1	Avg	1.25	225	Low Channel @ 3 Meters
X-Axis	2400	45.71	Н	74	-28.29	Peak	1.25	225	Band Edge of
X-Axis	2400	25.71	Н	54	-28.29	Avg	1.25	225	Low Channel @ 3 Meters
Y-Axis	2480	91.74	Н	114	-22.26	Peak	1.25	155	Fundamental of
Y-Axis	2480	71.74	Н	94	-22.26	Avg	1.25	155	High Channel @ 3 Meters
Y-Axis	2483.5	53.27	Н	74	-20.73	Peak	1.25	225	Band Edge of
Y-Axis	2483.5	33.27	Н	54	-20.73	Avg	1.25	225	High Channel @ 3 Meters
								8	
	<u></u>			2 3					
	<u> </u>								
	8								
			- 53						
				y			3	3	
	í								
				2					

FCC Part 15 Subpart B and C, Section 15.205, 15.207, 15.209, and 15.249 Test Report

Load Control Module - Switch Model: SS8030

Date: 15.JUL.2013 09:18:35

Band Edge - Low Channel - Vertical Polarization - Y-Axis Worst Case

Load Control Module - Switch Model: SS8030

Date: 15.JUL.2013 15:14:43

Band Edge - High Channel - Vertical Polarization - X-Axis Worst Case

FCC Part 15 Subpart B and C, Section 15.205, 15.207, 15.209, and 15.249 Test Report

Load Control Module - Switch Model: SS8030

Date: 15.JUL.2013 09:51:07

Band Edge – Low Channel – Horizontal Polarization – X-Axis Worst Case

Model: SS8030

Date: 15.JUL.2013 15:27:22

Band Edge - High Channel - Horizontal Polarization - Y-Axis Worst Case

Model: SS8030

CONDUCTED EMISSIONS

DATA SHEETS

Model: SS8030

page 1/1

07/17/13 15:15:49

FCC Class B - Black Lead

Telkonet, Inc.

Load Control Module - Switch

M/N: SS8030 FCC Class B - Black Lead BL LI-215 12090 - Due 6-17-14 Test Engineer: Kyle Fujimoto

39 highest peaks above -50.00 dB of FCC - Class B - Average limit line

Peak criteria: 2.00 dB, Curve: Peak

1 0.459 53.93 46.71 7.22*** 2 0.885 51.56 46.00 5.56*** 3 0.953 50.45 46.00 4.45*** 4 0.479 50.74 46.36 4.38*** 5 0.831 49.57 46.00 3.57*** 6 1.060 49.53 46.00 3.53*** 7 0.939 49.35 46.00 3.23*** 8 1.118 49.23 46.00 3.23*** 9 1.197 49.13 46.00 3.13*** 10 0.586 49.11 46.00 3.11*** 11 0.775 48.58 46.00 2.20*** 13 0.550 47.62 46.00 1.62*** 14 0.538 47.22 46.00 1.22*** 15 1.528 45.54 46.00 -0.46*** 16 0.377 46.60 48.34 -1.73*** 17 1.620	Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
2 0.885 51.56 46.00 5.56** 3 0.953 50.45 46.00 4.45** 4 0.479 50.74 46.36 4.38** 5 0.831 49.57 46.00 3.57*** 6 1.060 49.53 46.00 3.53*** 7 0.939 49.35 46.00 3.23*** 8 1.118 49.23 46.00 3.13*** 10 0.586 49.11 46.00 3.11*** 11 0.775 48.58 46.00 2.58*** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.62** 14 0.538 47.22 46.00 1.22*** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98			53 93		
3 0.953 50.45 46.00 4.45** 4 0.479 50.74 46.36 4.38** 5 0.831 49.57 46.00 3.57** 6 1.060 49.53 46.00 3.23** 7 0.939 49.35 46.00 3.23** 9 1.118 49.23 46.00 3.23** 9 1.197 49.13 46.00 3.13*** 10 0.586 49.11 46.00 3.11*** 11 0.775 48.58 46.00 2.58** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46					5.56**
4 0.479 50.74 46.36 4.38** 5 0.831 49.57 46.00 3.57** 6 1.060 49.53 46.00 3.53** 7 0.939 49.35 46.00 3.23** 8 1.118 49.23 46.00 3.23** 9 1.197 49.13 46.00 3.13** 10 0.586 49.11 46.00 3.11** 11 0.775 48.58 46.00 2.58** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -0.46** 18 0.300 46.98 50.23 -3.25* 20 0.338 45.	3				4.45**
5 0.831 49.57 46.00 3.57** 6 1.060 49.53 46.00 3.53** 7 0.939 49.35 46.00 3.23** 8 1.118 49.23 46.00 3.13** 9 1.197 49.13 46.00 3.13** 10 0.586 49.11 46.00 3.11** 11 0.775 48.58 46.00 2.20** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.62** 14 0.538 47.22 46.00 1.62** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26					4.38**
6 1.060 49.53 46.00 3.53** 7 0.939 49.35 46.00 3.35** 8 1.118 49.23 46.00 3.23** 9 1.197 49.13 46.00 3.13** 10 0.586 49.11 46.00 3.11** 11 0.775 48.58 46.00 2.58** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.26 -4.07*** 21 1.800	5				3.57**
7 0.939 49.35 46.00 3.35** 8 1.118 49.23 46.00 3.23** 9 1.197 49.13 46.00 3.13** 10 0.586 49.11 46.00 3.11** 11 0.775 48.58 46.00 2.58** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 <td< td=""><td></td><td></td><td></td><td></td><td>3.53**</td></td<>					3.53**
8 1.118 49.23 46.00 3.23** 9 1.197 49.13 46.00 3.13** 10 0.586 49.11 46.00 3.11** 11 0.775 48.58 46.00 2.58** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50	7				3.35**
9					3.23**
10 0.586 49.11 46.00 3.11** 11 0.775 48.58 46.00 2.58** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.12 26 2.568 <t< td=""><td></td><td></td><td></td><td></td><td>3.13**</td></t<>					3.13**
11 0.775 48.58 46.00 2.58** 12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.644 42.08 50.					3.11**
12 0.634 48.20 46.00 2.20** 13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.72 28 6.64 42.08 50.00 -7.72 29 3.226 37.99 46.00					2.58**
13 0.550 47.62 46.00 1.62** 14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.12 28 6.664 42.08 50.00 -7.72 28 6.664 4					2.20**
14 0.538 47.22 46.00 1.22** 15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.12 28 6.664 42.08 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.11 31 4.227 37.81 46.00<					1.62**
15 1.528 45.54 46.00 -0.46** 16 0.377 46.60 48.34 -1.73** 17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.12 28 6.664 42.08 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 </td <td></td> <td></td> <td></td> <td></td> <td>1.22**</td>					1.22**
16 0.377 46.60 48.34 -1.73*** 17 1.620 43.54 46.00 -2.46*** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69*** 20 0.338 45.19 49.26 -4.07*** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85*** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.12 26 2.568 38.87 46.00 -7.72 28 6.664 42.08 50.00 -7.72 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.80 33 0.237 43.37 52.2	15	1.528	45.54	46.00	-0.46**
17 1.620 43.54 46.00 -2.46** 18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69*** 20 0.338 45.19 49.26 -4.07*** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85*** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 <td>16</td> <td></td> <td>46.60</td> <td>48.34</td> <td>-1.73**</td>	16		46.60	48.34	-1.73**
18 0.300 46.98 50.23 -3.25 19 0.345 45.40 49.09 -3.69** 20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00	17	1.620	43.54	46.00	-2.46**
20 0.338 45.19 49.26 -4.07** 21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00	18	0.300	46.98	50.23	-3.25
21 1.800 41.63 46.00 -4.37 22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69	19	0.345	45.40	49.09	-3.69**
22 0.331 44.59 49.44 -4.85** 23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00	20	0.338	45.19	49.26	-4.07**
23 2.274 39.75 46.00 -6.25 24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30			41.63	46.00	
24 7.815 42.99 50.00 -7.01 25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30		0.331	44.59	49.44	-4.85**
25 2.870 38.88 46.00 -7.12 26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
26 2.568 38.87 46.00 -7.13 27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30		7.815	42.99	50.00	-7.01
27 6.991 42.28 50.00 -7.72 28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
28 6.664 42.08 50.00 -7.92 29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
29 3.226 37.99 46.00 -8.01 30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
30 0.229 44.37 52.48 -8.11 31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
31 4.227 37.81 46.00 -8.19 32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
32 3.800 37.20 46.00 -8.80 33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
33 0.237 43.37 52.21 -8.84 34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
34 6.390 40.97 50.00 -9.03 35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
35 0.251 42.67 51.73 -9.06 36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
36 6.123 40.87 50.00 -9.13 37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
37 0.156 45.89 55.69 -9.80 38 9.256 39.70 50.00 -10.30					
38 9.256 39.70 50.00 -10.30					
39 5.656 39.25 50.00 -10.75					
	39	5.656	39.25	50.00	-10.75

^{**}Please See the Average Readings on the Next Page and on the Plot

page 1/1

07/17/13 15:15:49

FCC Class B - Black Lead

Telkonet, Inc.

Load Control Module - Switch

M/N: SS8030

FCC Class B - Black Lead BL LI-215 12090 - Due 6-17-14 Test Engineer: Kyle Fujimoto

39 highest peaks above -50.00 dB of FCC - Class B - Average limit line

Peak cr	iteria: 0.00 dB, C			
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	0.449	42.61	46.89	-4.28
2	0.637	38.61	46.00	-7.39
3	0.895	38.09	46.00	-7.91
4	0.826	38.01	46.00	-7.99
5	0.598	37.54	46.00	-8.46
6	0.963	36.99	46.00	-9.01
7	0.948	36.45	46.00	-9.55
8	0.867	35.98	46.00	-10.02
9	0.672	35.90	46.00	-10.10
10	1.043	35.83	46.00	-10.17
11	1.197	35.53	46.00	-10.47
12	0.934	35.43	46.00	-10.57
13	0.497	35.43	46.05	-10.62
14	0.492	35.43	46.14	-10.71
15	0.484	35.54	46.27	-10.74
16	1.276	35.14	46.00	-10.86
17	0.577	35.10	46.00	-10.90
18	0.505	35.00	46.00	-11.00
19	0.747	34.87	46.00	-11.13
20	1.118	34.85	46.00	-11.15
21	0.624	34.77	46.00	-11.23
22	1.230	34.76	46.00	-11.24
23	0.570	34.61	46.00	-11.39
24	1.130	34.60	46.00	-11.40
25	0.564	34.57	46.00	-11.43
26	1.338	34.53	46.00	-11.47
27	0.648	34.47	46.00	-11.53
28	1.011	34.34	46.00	-11.66
29	1.311	34.25	46.00	-11.75
30	0.513	33.89	46.00	-12.11
31	1.089	33.73	46.00	-12.27
32	1.154	33.02	46.00	-12.98
33	0.783	32.76	46.00	-13.24
34	0.775	32.49	46.00	-13.51
35	0.419	33.69	47.46	-13.77
36	1.496	32.03	46.00	-13.97
37	1.419	31.87	46.00	-14.13
38	0.538	31.81	46.00	-14.19
39	1.536	31.79	46.00	-14.21

Load Control Module - Switch Model: SS8030

07/17/13 15:45:12

FREQUENCY [MHz]

page 1/1

07/17/13 15:45:12

FCC Class B - White Lead Telkonet, Inc.

Load Control Module - Switch

M/N: SS8030

FCC Class B - White Lead WL LI-215 12090 - Due 6-17-14 Test Engineer: Kyle Fujimoto

39 highest peaks above -50.00 dB of FCC - Class B - Average limit line

		50.00 dB of FCC -	· Class B - Av	erage limit line
	eria : 2.00 dB, Cı	urve : Peak		
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	1.038	48.53	46.00	2.53**
2	0.899	48.16	46.00	2.16**
3	1.055	47.93	46.00	1.93**
4	0.763	47.79	46.00	1.79**
5	0.919	47.76	46.00	1.76**
6	1.066	47.63	46.00	1.63**
7	0.747	47.59	46.00	1.59**
8	1.118	47.53	46.00	1.53**
9	1.077	47.23	46.00	1.23**
10	0.944	47.15	46.00	1.15**
11	0.452	47.93	46.85	1.09**
12	1.204	47.03	46.00	1.03**
13	0.963	46.95	46.00	0.95**
14	0.929	46.85	46.00	0.85**
15	1.304	46.84	46.00	0.84**
16	1.236	46.74	46.00	0.74**
17	1.283	46.64	46.00	0.64**
18	1.011	46.63	46.00	0.63**
19	1.338	46.54	46.00	0.54**
20	0.995	46.44	46.00	0.44**
21	0.474	46.83	46.45	0.39**
22	0.775	46.28	46.00	0.28**
23	0.709	45.59	46.00	-0.41**
24	0.788	45.58	46.00	-0.42**
25	1.256	45.44	46.00	-0.56**
26	0.672	45.29	46.00	-0.71**
27	0.484	45.34	46.27	-0.94**
28	0.435	45.93	47.15	-1.22**
29	0.608	44.61	46.00	-1.39**
30	0.492	44.74	46.14	-1.40**
31	1.441	44.54	46.00	-1.46**
32	0.524	44.53	46.00	-1.47**
33	0.583	44.51	46.00	-1.49**
34	1.397	44.34	46.00	-1.66**
35	0.627	44.30	46.00	-1.70**
36	0.801	44.28	46.00	-1.72**
37	0.826	44.07	46.00	-1.93**
38	1.754	43.93	46.00	-2.07**
39	0.634	43.90	46.00	-2.10**

^{**}Please See the Average Readings on the Next Page and on the Plot

page 1/1

07/17/13 15:45:12

FCC Class B - White Lead

Telkonet, Inc.

Load Control Module - Switch

M/N: SS8030

FCC Class B - White Lead WL LI-215 12090 - Due 6-17-14 Test Engineer: Kyle Fujimoto

39 highest peaks above -50.00 dB of FCC - Class B - Average limit line						
	iteria: 0.00 dB, C		1 : 27/ 150	D II (ID)		
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)		
1	0.449	40.58	46.89	-6.31		
2	0.637	36.93	46.00	-9.07		
3	0.895	36.46	46.00	-9.54		
4	0.826	36.11	46.00	-9.89		
5	0.969	35.35	46.00	-10.65		
6	1.338	35.03	46.00	-10.97		
7	1.197	34.76	46.00	-11.24		
8	0.595	34.66	46.00	-11.34		
9	1.043	34.50	46.00	-11.50		
10	1.256	34.08	46.00	-11.92		
11	0.371	36.48	48.47	-11.99		
12	0.747	33.94	46.00	-12.06		
13	0.513	33.91	46.00	-12.09		
14	1.637	33.89	46.00	-12.11		
15	0.739	33.85	46.00	-12.15		
16	1.230	33.73	46.00	-12.27		
17	0.481	34.03	46.32	-12.29		
18	0.669	33.63	46.00	-12.37		
19	0.929	33.62	46.00	-12.38		
20	0.476	34.03	46.40	-12.38		
21	1.106	33.55	46.00	-12.45		
22	1.297	33.47	46.00	-12.53		
23	0.862	33.46	46.00	-12.54		
24	0.662	33.43	46.00	-12.57		
25	1.118	33.39	46.00	-12.61		
26	0.492	33.44	46.14	-12.70		
27	0.497	33.20	46.05	-12.85		
28	0.502	33.13	46.00	-12.87		
29	1.016	32.93	46.00	-13.07		
30	0.363	35.53	48.65	-13.12		
31	1.000	32.78	46.00	-13.22		
32	1.066	32.64	46.00	-13.36		
33	1.560	32.29	46.00	-13.71		
34	1.412	32.24	46.00	-13.76		
35	1.699	32.08	46.00	-13.92		
36	1.717	32.05	46.00	-13.95		
37	2.002	31.88	46.00	-14.12		
38	1.960	31.66	46.00	-14.34		
39	2.023	31.63	46.00	-14.37		