TRIGONOMETRIA

Ripasso veloce

Definizioni principali

Sia \mathbf{u} un segmento con un estremo nell'origine e l'altro sulla circonferenza di centro l'origine e raggio 1 (circonferenza goniometrica) che formi un angolo θ con l'asse x.

Si chiama coseno dell'angolo θ , e si indica con $\cos \theta$, la lunghezza u_x .

Si chiama seno dell'angolo θ , e si indica con sen θ , la lunghezza u_y .

Si chiama tangente dell'angolo θ , e si indica con tg θ , il rapporto

 $\frac{\text{sen}\theta}{\cos\theta}$

Altre funzioni trigonometriche

Risulta:

$$sen\theta = \frac{cateto\ opposto\ a\ \theta}{ipotenusa}$$

$$cos\theta = \frac{cateto\ adiacente\ a\ \theta}{ipotenusa}$$

Si possono definire anche altre funzioni trigonometriche, di minore uso, che sono le reciproche di sen θ , cos θ e tg θ :

Cosecante di
$$\theta$$
: $\csc\theta = \frac{1}{\sec \theta} = \frac{ipotenusa}{cateto opposto a \theta}$

Secante di
$$\theta$$
: $\sec \theta = \frac{1}{\cos \theta} = \frac{\text{ipotenusa}}{\text{cateto adiacente a } \theta}$

Cotangente di
$$\theta$$
: $\cot g\theta = \frac{1}{tg\theta} = \frac{\cos \theta}{\sec \theta} = \frac{\cot \theta}{\cot \theta}$

Proprietà

Il segmento **u** ha lunghezza 1, qualsiasi sia la posizione del suo punto finale U sulla circonferenza goniometrica, quindi:

•
$$\cos^2\theta + \sin^2\theta = 1$$

- -1≤cosθ ≤1
- -1≤senθ ≤1

Poiché
$$tg\theta = \frac{sen\theta}{cos\theta}$$
 risulta

•
$$-\infty \le tg\theta \le +\infty$$

Graficamente

- cosθ e senθ sono l'ascissa e l'ordinata di U
- tgθ è la lunghezza del segmento di tangente alla circonferenza goniometrica tra l'asse x e la semiretta di u.

Valori negli angoli elementari

Consideriamo i due triangoli rettangoli delle figure seguenti:

Il primo è mezzo quadrato, il secondo mezzo triangolo equilatero.

Poiché l'ipotenusa, in entrambi i casi, vale 1, si ricava:

•
$$\cos(45^\circ) = \sin(45^\circ) = \frac{\sqrt{2}}{2}$$

•
$$\cos (60^\circ) = \sin(30^\circ) = \frac{1}{2}$$
 $\cos (30^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2}$;

Altri angoli elementari

Gli angoli di 60°, 45° e 30° corrispondono ai triangoli OAB, OA'B', OA"B" della figura a fianco e abbiamo visto i valori delle funzioni trigonometriche per tali valori.

Per calcolare gli altri angoli elementari osserviamo la seconda figura, che presenta i P_2 4 quadranti.

I 4 punti P_k hanno ascisse e ordinate uguali in valore assoluto, dunque i triangoli rettangoli 1, 2, 3, 4 sono congruenti, quindi per calcolare i valori delle funzioni negli altri angoli elementari ci riferiamo al primo quadrante e cambiamo opportunamente i segni.

Curiosità

Il seno e il coseno degli angoli notevoli si possono ricordare facilmente con la regola mnemonica:

senθ	θ	cosθ		
$\frac{\sqrt{0}}{2}$	0°	$\frac{\sqrt{4}}{2}$		
$\frac{\sqrt{1}}{2}$	30°	$\frac{\sqrt{3}}{2}$		
$\frac{\sqrt{2}}{2}$	45°	$\frac{\sqrt{2}}{2}$		
$\frac{\sqrt{3}}{2}$	60°	$\frac{\sqrt{1}}{2}$		
$\frac{\sqrt{4}}{2}$	90°	$\frac{\sqrt{0}}{2}$		

Periodicità

Sia θ un angolo acuto in un triangolo rettangolo.

Per quanto detto valgono le relazioni:

- $sen\theta = cos(90^{\circ} \theta)$
- $\cos\theta = \sin(90^{\circ} \theta)$
- $sen\theta = -sen(-\theta)$
- $\cos\theta = \cos(-\theta)$
- $sen\theta = sen(180^{\circ} \theta)$
- $\cos\theta = -\cos(180^{\circ} \theta)$
- $sen(90^{\circ}+\theta)=sen(180^{\circ}-(90^{\circ}+\theta))=sen(90^{\circ}-\theta)=cos\theta$
- $cos(90^{\circ}+\theta)=-cos(180^{\circ}-(90^{\circ}+\theta))=-cos(90^{\circ}-\theta)=-sen\theta$

Gradi e radianti

Quando il punto finale U del segmento u si muove sulla circonferenza goniometrica in verso antiorario, aumenta l'angolo α (tra 0 e 360°) e aumenta di conseguenza anche la lunghezza dell'arco di circonferenza tra l'asse x e la retta di u, da 0 a 2π =lunghezza circonferenza.

La misura dell'arco corrisponde a quella dell'angolo: gli angoli sono quindi misurabili anche in radianti (rapporto tra la lunghezza dell'arco e quella del raggio della circonferenza).

La corrispondenza tra angoli e radianti e il valore delle funzioni trigonometriche negli angoli elementari è data dalla tabella della pagina seguente.

Angoli principali

L'angolo θ della prima figura è di 30°, infatti il triangolo giallo è equilatero; tutti gli altri angoli sono uguali al primo; dalla figura è evidente che misura $\pi/6$

L'angolo θ della seconda figura è di 45°, e tutti gli altri angoli sono uguali al primo, che misura, in radianti, $\pi/4$.

Conversione gradi-radianti

Tabella dei valori

gradi	Rad.	senα	cosα	tgα	gradi	Rad.	senα	cosα	$tg \alpha$
0°	0	0	1	0	180°	π	0	-1	0
30°	π/6	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	210°	7π/6	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	π/4	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	225°	5π/4	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
60°	π/3	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	240°	4π/3	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$
90°	π/2	1	0	N.D.	270°	3π/4	-1	0	N.D.
120°	2π/3	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	300°	5π/3	$-\frac{\sqrt{3}}{2}$	1/2	$-\sqrt{3}$
135°	3π/4	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	315°	7π/4	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1
150°	5π/6	1/2	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	330°	11π/6	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$

Sui triangoli rettangoli

Consideriamo un triangolo rettangolo e sia a l'ipotenusa, b e c i cateti. Risulta: b $sen\theta = b/a$, $cos\theta = c/a$ $\Rightarrow tg\theta = b/c$ θ Per cui C b=a sen θ , c=a cos θ , c=b tg θ .

"Risolvere" un triangolo rettangolo significa, dati alcuni elementi, ricavare gli altri elementi non conosciuti.

Poiché si parla di triangoli rettangoli, l'angolo retto è dato, poi, per conoscere tutto basta avere in più:

- Ipotenusa e un angolo
 un cateto e un angolo
- L'ipotenusa e un cateto
 i due cateti

I due angoli invece non caratterizzano il triangolo, ma solo tutti i triangoli simili.

Teoremi sui triangoli

Dato un triangolo qualsiasi, di lati a, b, c, e angoli opposti α , β , γ rispettivamente, valgono i seguenti teoremi:

Teorema dei seni:

$$\frac{a}{\text{sen}\alpha} = \frac{b}{\text{sen}\beta} = \frac{c}{\text{sen}\gamma}$$

Teorema del coseno (o di Carnot):

$$a^2=b^2+c^2-2bc \cos \alpha$$

 $b^2=a^2+c^2-2ac \cos \beta$
 $c^2=b^2+a^2-2ba \cos \gamma$

È chiaramente una generalizzazione del teorema di Pitagora.

Altre proprietà

Abbiamo visto che:
$$\frac{a}{\text{sen}\alpha} = \frac{b}{\text{sen}\beta} = \frac{c}{\text{sen}\gamma}$$

Questa relazione ha un significato geometrico: i tre rapporti rappresentano la lunghezza del diametro del cerchio circoscritto al triangolo.

Teorema della corda: ogni corda di una circonferenza ha una lunghezza pari al prodotto della misura del diametro per il seno di qualunque angolo alla circonferenza che insista su tale corda.

Teorema dell'area: L'area di un triangolo qualsiasi di lati a, b, c vale

 $\frac{1}{2}$ bc sen $\alpha = \frac{1}{2}$ ac sen $\beta = \frac{1}{2}$ ab sen γ

Identità trigonometriche

Per ogni angolo θ vale la identità fondamentale:

$$sen^2\theta + cos^2\theta = 1$$

e da questa si ricava che:

$$\cos\theta = \pm\sqrt{1-\sin^2\theta}$$
 e $\sin\theta = \pm\sqrt{1-\cos^2\theta}$

Nelle slide seguenti presenteremo svariate formule che legano tra loro le funzioni trigonometriche.

La loro dimostrazione è abbastanza semplice ed è riportata su ogni libro di matematica delle superiori che preveda la trigonometria.

Formule 1

Dati due angoli qualsiasi θ e ϕ valgono le seguenti relazioni:

Formule di addizione e sottrazione:

- $sen(\theta \pm \phi) = sen\theta \cdot cos\phi \pm cos\theta \cdot sen\phi$
- $\cos(\theta \pm \phi) = \cos\theta \cdot \cos\phi \pm \sin\theta \cdot \sin\phi$

•
$$tg(\theta+\phi) = \frac{tg\theta+tg\phi}{1-tg\theta\cdot tg\phi}$$
 $tg(\theta-\phi) = \frac{tg\theta-tg\phi}{1+tg\theta\cdot tg\phi}$

Formule di duplicazione:

- $sen2\theta = 2sen\theta cos\theta$
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 1 2\sin^2 \theta = 2\cos^2 \theta 1$

•
$$tg(2\theta) = \frac{2tg\theta}{1-tg^2\theta}$$

Formule 2

Altre formule interessanti:

Formule di bisezione:

$$sen\frac{\theta}{2} = \pm \sqrt{\frac{1-\cos\theta}{2}} \qquad cos\frac{\theta}{2} = \pm \sqrt{\frac{1+\cos\theta}{2}} \qquad tg\frac{\theta}{2} = \pm \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$tg\frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$$

Formule parametriche:

chiamata t la tangente di $\theta/2$, è

sen(t) =
$$\frac{2t}{1+t^2}$$
 cos(t) = $\frac{1-t^2}{1+t^2}$ tg(t) = $\frac{2t}{1-t^2}$

$$\cos(t) = \frac{1-t^2}{1+t^2}$$

$$tg(t) = \frac{2t}{1-t^2}$$

Formule 3

Queste formule legano somme di funzioni trigonometriche con prodotti delle medesime e viceversa:

Formule di prostaferesi:

$$sen\theta + sen\phi = 2sen\left(\frac{\theta + \phi}{2}\right) \cdot cos\left(\frac{\theta - \phi}{2}\right)$$

$$\cos\theta + \cos\phi = 2\cos\left(\frac{\theta + \phi}{2}\right) \cdot \cos\left(\frac{\theta - \phi}{2}\right)$$

Formule di Werner (o del prodotto):

$$cos\theta \cdot cos\phi = \frac{1}{2} [cos(\theta + \phi) + cos(\theta - \phi)]$$

$$sen\theta \cdot sen\phi = \frac{1}{2} [cos(\theta - \phi) - cos(\theta + \phi)]$$

$$sen\theta \cdot cos\phi = \frac{1}{2}[sen(\theta + \phi) + sen(\theta - \phi)]$$