

Circuits et Architecture (CA7) TD nº 5 : Circuits séquentiels

Circuits mémorisants

Un circuit mémorisant de type SRAM est une variation du circuit suivant :

Il possède *deux* états stables : un où l'inverseur du haut reçoit 1 et envoie 0, l'autre où c'est l'inverse.

Exercice 1 – Verrou

On considère le verrou représenté ci-dessous.

1. Remplissez la table de vérité suivante, où s_n correspond à la valeur de s au temps n.

e	h	sn	$ t_{n+1} $	s_{n+1}
e	0	sn		
0	1	sn		
1	1	sn		

2. Utilisez cette table pour dessinez le *chronogramme* du **verrou** représenté ci-dessus. On ne représentera dans le chronogramme que les valeurs de h, e et s. On suppose que h varie périodiquement entre 0 et 1 et e de façon quelconque, faites changer e plusieurs fois, pour voir ce qui se passe.

Exercice 2 – Détection de front descendant

Dessinez le chronogramme du circuit M ci-dessous. On suppose que h varie périodiquement entre 0 et 1 et *e* de façon quelconque.

On dit que M est une bascule à front descendant, pouvez-vous expliquer cette appellation?

Exercice 3 – Devinette

Dessinez le chronogramme du circuit D ci-dessous. Quelle fonction réalise D?

Circuits arithmétiques

Exercice 4 – Compteur

Un **compteur** est un circuit qui stocke un nombre dans un registre à n bits et qui va être incrémenté à front montant de Inc. L'entrée Raz servira à (re)mettre le registre à zéro.

Dessinez un tel circuit en supposant que l'on dispose d'un incrémenteur n bits. Vous pouvez utiliser des registres de 1 bit sans avoir à les construire en termes de portes élémentaires.

Exercice 5 – Décaleur

Un **décaleur** est un circuit qui contient un nombre mémorisé dans un registre $\mathfrak n$ bits et possède une seule entrée : Dec. A chaque front descendant de Dec, le bit $\mathfrak b_{i+1}$ prend la valeur de $\mathfrak b_i$, $\mathfrak b_0$ est remplacé par $\mathfrak 0$ et $\mathfrak b_{n-1}$ forme l'unique sortie c.

Exemple: pour 8 bits, on décale $(11000111)_2$ en $(10001110)_2$, c = 1.