If there exists k>0 such that $U_{-k}\neq 0$ while $U_{-n}=0$ for all n>k the point λ_O is called a pole of R(\cdot,A) of order \underline{k} . In view of (3.2) this is true if $U_{-k}\neq 0$ and $U_{-(k+1)}=0$. In this case one can retrieve U_{-k} as

(3.3)
$$U_{-k} = \lim_{\lambda \to \lambda_{O}} (\lambda - \lambda_{O})^{k} R(\lambda, A)$$
.

The dimension of PE (i.e., the dimension of the spectral subspace corresponding to $\{\lambda_O^{}\}$) is called algebraic multiplicity \mathbf{m}_a of $\lambda_O^{}$, while the geometric multiplicity is $\mathbf{m}_g:=\dim\ker(\lambda_O^{}-A)$. In case $\mathbf{m}_a=1$ we call $\lambda_O^{}$ an algebraically simple pole. If k is the pole order (k = ∞ in case of an essential singularity) we have

(3.4)
$$\max\{m_q,k\} \leq m_a \leq k \cdot m_q$$
,

where $\infty \cdot 0 = \infty$. These inequalities yield the following implications:

- $m_{\alpha} < \infty$ if and only if λ_{Ω} is a pole with $m_{\alpha} < \infty$,
- if λ is a pole with order k , then λ \in $\stackrel{?}{P}\sigma(A)$ and $PE = \ker(\lambda_0 A)^k$.

If A has compact resolvent then every point of $\sigma(A)$ is a pole of finite algebraic multiplicity. This is a consequence of Prop.2.5(iii) and the well-known Riesz-Schauder Theory for compact operators (see [Dunford-Schwartz (1958),VII.4.5]).

3.7. The essential spectrum.

For T \in L(E) the <u>Fredholm domain</u> $\rho_{F}(T)$ is

(3.5)
$$\rho_{F}\left(T\right) \;:=\; \left\{\lambda \;\in\; \mathbb{C} \;:\; \lambda \;-\; T \quad \text{is a Fredholm operator}\right\}$$

$$=\; \left\{\lambda \;\in\; \mathbb{C} \;:\; \ker\left(\lambda \;-\; T\right) \right. \quad \text{and} \quad E/\operatorname{im}\left(\lambda \;-\; T\right)$$

$$\quad \text{are finite dimensional}\right\}\;.$$

An equivalent characterization of $\rho_F(T)$ is obtained through the Calkin algebra L(E)/K(E), where K(E) stands for the closed ideal of all compact operators. In fact, $\rho_F(T)$ coincides with the resolvent set of the canonical image of T in the Calkin algebra. The complement of $\rho_F(T)$ is called <u>essential spectrum</u> of T and denoted by $\sigma_{\text{ess}}(T)$. The corresponding spectral radius, called <u>essential spectrul radius</u>, satisfies

(3.6)
$$r_{ess}(T) := \sup \{ |\lambda| : \lambda \in \sigma_{ess}(T) \} = \lim_{n \to \infty} \|T^n\|_{ess}^{1/n}$$
, where $\|T\|_{ess} = \operatorname{dist}(T, K(E)) := \inf \{ \|T - K\| : K \in K(E) \}$ is the norm of T in $L(E)/K(E)$.

For every compact operator K we have $\|T - K\|_{ess} = \|T\|_{ess}$, hence

(3.7)
$$r_{ess}(T - K) = r_{ess}(T)$$
.