$$G-party = C \times RZ \qquad RZ = e^{i J_2 T} \quad \text{volation} \quad \text{in itappu} \quad \text{Space}.$$

$$C_{T}^{\circ} = +1 \text{ Ind} \quad R^{\circ} \rightarrow T \quad \text{Space}.$$

$$C_{T}^{\circ} = (C_{T})^{2} = (-1)^{2} + 1$$

$$C_{T}^{\dagger} = 2$$

$$C_{$$

$$\begin{pmatrix} A \\ A \end{pmatrix} = \begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$$
 Isospin. S: I=0.

Flovor space
$$u_s(\frac{1}{3})$$
 $d_s(\frac{10}{3})$ $s_s(\frac{10}{3})$

$$d \rightarrow I_3$$

$$\frac{d\overline{s}}{d\overline{u}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\frac{d\overline{s}}{d\overline{u}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Also:
$$u\bar{u}_1 d\bar{d}_1 S\bar{S}$$
 $I_{3=01} S=0$
singlet $f_0 = \frac{1}{\sqrt{3}} \left[u\bar{u} + d\bar{a} + S\bar{s} \right]$

$$T_{avor}$$
) $+8,1 = \frac{1}{\sqrt{2}} \left(u\bar{u} - d\bar{d} \right)$ $T_{3=0} T = 1$.
octet $\left(+8,0 = \frac{1}{\sqrt{2}} \left(u\bar{u} + d\bar{d} - 2S\bar{s} \right) \right)$ $T_{3=0} T = 0$.

Here
$$f_{A,D} = f_Z \left(u\bar{u} + d\bar{d} + S\bar{S} \right)$$
 $I_3 = 0$ I_{50} .

Flovors: u(d, s Stefic querk model with 3 flavors. SV(3)= 5ymm.

$$q_i$$
: $SP^{in} 1/2$
 $S=1$
 $S=0$
 $S=1$
 $S=0$
 S

L=0.
S=1 PP

$$P = P; P; (-1)^{L} = -1$$
. Vector Mesons.

Ops: pseudo-scolor meron mixing cycle Ou: vector meson - mixing conste.

mesous. preudo - Scalon

vector mesous.

K° = d5 => sd = K° not all neutral perticles can be a eigenstetes

-	<u> </u>					
	$n^{2s+1}\ell_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0
			$uar{d},~ar{u}d,$	$uar{s},dar{s};$	f'	f
			$rac{1}{\sqrt{2}}(dar{d}-uar{u})$	$\bar{d}s,\bar{u}s$		
	$1^{1}S_{0}$	0-+	π	K	η	$\eta'(958)$
	$1^{3}S_{1}$	1	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$
	$1^{1}P_{1}$	1^{+-}	$b_1(1235)$	$oldsymbol{K_{1B}}^{\mathrm{a}}$	$h_1(1415)$	$h_1(1170)$
	$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^st(1430)$	$f_0(1710)$	$f_0(1370)$
	$1^{3}P_{1}$	1^{++}	$a_1(1260)$	$oldsymbol{K_{1A}}^{\mathrm{a}}$	$f_1(1420)$	$f_1(1285)$
	$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^st(1430)$	$f_2^\prime(1525)$	$f_2(1270)$
	$1^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$ar{K_2}(1770)^{ m a}$	$\eta_2(1870)$	$\eta_2(1645)$
	$1^{3}D_{1}$	1	ho(1700)	$oldsymbol{K^*(1680)^{\mathrm{b}}}$	$\phi(2170)^{ m d}$	$\omega(1650)$
	$1^{3}D_{2}$	$2^{}$		$K_2(1820)^{\mathrm{a}}$		
	$1^{3}D_{3}$	3	$ ho_3(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$
	$1^{3}F_{4}$	4^{++}	$a_4(1970)$	$K_4^st(2045)$	$f_4(2300)$	$f_4(2050)$
	1^3G_5	$5^{}$	$ ho_{5}(2350)$	$K_{5}^{*}(2380)$		
	2^1S_0	0^{-+}	$\pi(1300)$	K(1460)	$\eta(1475)^{ m c}$	$\eta(1295)$
	2^3S_1	1	ho(1450)	$K^*(1410)^{\mathrm{b}}$	$\phi(1680)$	$\omega(1420)$
	$2^{3}P_{1}$	1^{++}	$a_1(1640)$			
	$2^{3}P_{2}$	2++	$a_2(1700)$	$K_2^*(1980)$	$f_2(1950)$	$f_2(1640)$

$$\begin{split} \pi^{0}(140) &\approx \; \psi^{ps}_{8,1} = (u\,\overline{u} - d\,\overline{d})/\sqrt{2} \\ \eta(550) &= \psi^{ps}_{8,0}\cos\theta_{ps} - \psi^{ps}_{1}\sin\theta_{ps} \\ \eta'(960) &= \psi^{ps}_{8,0}\sin\theta_{ps} + \psi^{ps}_{1}\cos\theta_{ps} \end{split} \right\} \; \; \theta_{ps} \approx -25^{\circ},$$

pseudu-Scoler Mesons.

$$\rho^{0}(770) \approx \psi_{8,1}^{v} = (u\overline{u} - d\overline{d})/\sqrt{2}$$

$$\phi(1020) \neq \psi_{8,0}^{v} \cos \theta_{v} - \psi_{1}^{v} \sin \theta_{v} \approx s\overline{s}$$

$$\omega(780) = \psi_{8,0}^{v} \sin \theta_{v} + \psi_{1}^{v} \cos \theta_{v} \approx \theta_{v}$$

$$\approx (u\overline{u} + d\overline{d})/\sqrt{2}$$

$$\int^{p} = 1^{-},$$

$$\theta_{vect} \approx 36^{\circ}$$

$$\psi_8 = rac{1}{\sqrt{6}}(uar{u} + dar{d} - 2sar{s})$$

$$\psi_1 = rac{1}{\sqrt{3}}(uar{u} + dar{d} + sar{s})$$

property of the state of the st

Scattering/delay process: $Q_1B_1L_1S_1I_3$ $P^3(770)$ vector meson: $P^3(770)$ vector meson:

1)
$$C perity: C p^{\circ} = -1$$
 $C \pi^{\circ} = +1$
 $C perty -1 +1 +1$
 $C = (-1)^{L+S} = (-1)^{O+1} = -1$
 $C = (-1)^{C} = (-1)^{O+1} = -1$
 $C = (-1)^{O$

e)
$$ISOSPMO$$
 $(P^{\circ}) = |T=1, T_{3} = 0$
 $(T^{\circ}) = |T=1, T_{3} = 0$
 $T^{\circ}T^{\circ} = |T=1, T_{3} = 0$

∠7°7°1H3|0°> -= (<<0,0)+ B<2,0) +5 (3,0). =0 of HS Conserves isospin 3) spin stetistics? po: boson. = 4po = 4symm. in po rest frame J_{In+} = +1 L=0 C° find Stefe JF = L=+ S= 10 2 0 FO. 11~--0--> 11。 J=1=> L=+1. no no stete. Ziclentical borous. Find = Typice 4 spin. Fired = (Symm. But LF - autisymm. Space were function. co - nomo 700

autiborrous: 9,9293 Bayous & 9,9293 SU(3) = gymnety. (h) 8 (h) 110 B=38383 = 10 8 octet Mes deceptet. ocket M12 Flow singet **(** if symm under 91 - 92 => M12. φS 9,9293 ddd auu ddu udu dd du ud uu U كله uus dds ds US uss SZN 28 \$55 0 + 3/2 +1

1st Combination

ground Stefe: 25.

=>
$$J = \frac{3}{2}$$

 $P = P_1 P_2 P_3 (-1)^{L}$
= +1

2nd combination.

thousand = tspece tsp. Thevor.

Boryous are termions. => antisymm. were function Leo ground state => 4 spin 4 flev = t oute symm