

QUALITY MONITORING

SELEZNEV ARTEM
DS TEAM LEADER @ SBER

НА СЕГОДНЯ

Model Quality

НА СЕГОДНЯ

Model Quality

• Основные метрики

НА СЕГОДНЯ

Model Quality

• Основные метрики

Мониторинг + Streamlit

MODEL / DATA QUALITY

3A4EM?

Качество	Описание			
Данные	Данные полезные и качественные?			
Стойкость модели	Готова модель к изменения? На сколько большим?			
Предикт модели	Правильно модель делает предсказания?			
Сравнение моделей	Новая модель лучше, чем старая или альтернативная? На сколько?			

???

		True cor				
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma \text{ Total population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positiv	acy (ACC) = e + Σ True negative al population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True $\frac{\text{negative rate (TNR)}}{\sum \text{True negative}} = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	= LR+ LR-	2 · Precision · Recall Precision + Recall

НАЧНЕМ С ДАННЫХ

MODEL QUALITY

MQ - ЧУВСТВИТЕЛЬНОСТЬ

MQ - ЧУВСТВИТЕЛЬНОСТЬ

Ваши данные

coef

*

'Ваши данные

MQ - ЧУВСТВИТЕЛЬНОСТЬ

Ваши данные * coef = 'Ваши данные

- Рандом
- Осмысленное искажение

MODEL QUALITY - ПРИМЕР

Normal Quantiles

Normal Quantiles

Normal Quantiles

Normal Quantiles

Normal Quantiles

MQ – БОЛЬШЕ ДЛЯ РЕГРЕССИИ

SUMMARY OUTPUT

Regression Statistics			
Multiple R	0.987226765		
R Square	0.974616686		
Adjusted R Square	0.954310036		
Standard Error	4.541359081		
Observations	10		

Sum of Squares Mean Sum of Squares F statistic

ANOVA

	df	SS	MS	F	Significance F
Regression	4	3959.4	989.8450721	47.99494964	0.000352771
Residual	5	103.1197115	3033744300		
Total	9	4062.5		g.	1

Coefficients	Standard Error	t Stat	P-value	Interval	Lower 95%	Upper 95%
1.945880922	7.18396365	0.270864528	0.797321326	18.46696647	-16.52108554	20.41284739
8.039875895	3.545856848	2.267400022	0.072674984	9.114915204	-1.075039309	17.1547911
0.068115307	0.182217191	0.373813838	0.723869688	0.4684042	-0.400288893	0.536519507
0.816434539	0.096317968	8.476450995	0.000375456	0.24759322	0.568841319	1.06402776
8.683514224	3.505401878	2.477180799	0.056034438	9.010922394	-0.32740817	17.69443662

G/B DEPLOY

users

users model Box result

switch

users

switch

model

users

switch

model

result

users

switch

model

result

users

switch

model

result

ГИПОТЕЗЫ – АВ ТЕСТЫ

СИНЕ-ЗЕЛЕНЫЙ ДЕПЛОЙ

users

switch

model

result + True

СИНЕ-ЗЕЛЕНЫЙ ДЕПЛОЙ

users

switch

model

result + True

МЕТРИКИ – ЭТО ПРОКСИ НА БИЗНЕС

	AUC	Z	d	$r_{pb} \\ p = .50$	r_{pb} $p = .3 \& q = .7$	$\begin{array}{c} r_{pb} \\ p=.2 \& q=.8 \end{array}$	r_{pb} p = .1 & q = .9
ĺ	0.566	0.166	0.235	0.117	0.107	0.093	0.070
	0.567	0.168	0.238	0.118	0.109	0.095	0.071
	0.568	0.171	0.242	0.120	0.110	0.096	0.072
	0.569	0.174	0.245	0.122	0.112	0.098	0.073
	0.570	0.176	0.249	0.124	0.113	0.099	0.074
	0.571	0.179	0.253	0.125	0.115	0.101	0.076
	0.572	0.181	0.256	0.127	0.117	0.102	0.077
	0.573	0.184	0.260	0.129	0.118	0.103	0.078
	0.574	0.186	0.263	0.131	0.120	0.105	0.079
	0.575	0.189	0.267	0.132	0.121	0.106	0.080
	0.576	0.191	0.271	0.134	0.123	0.108	0.081
	0.577	0.194	0.274	0.136	0.125	0.109	0.082
	0.578	0.196	0.278	0.138	0.126	0.110	0.083
	0.579	0.199	0.281	0.139	0.128	0.112	0.084
	0.580	0.202	0.285	0.141	0.130	0.113	0.085
	0.581	0.204	0.289	0.143	0.131	0.115	0.086
	0.582	0.207	0.292	0.145	0.133	0.116	0.087
	0.583	0.209	0.296	0.146	0.134	0.118	0.088
	0.584	0.212	0.300	0.148	0.136	0.119	0.090
	0.585	0.214	0.303	0.150	0.138	0.120	0.091
	0.586	0.217	0.307	0.152	0.139	0.122	0.092
	0.587	0.219	0.310	0.153	0.141	0.123	0.093
	0.588	0.222	0.314	0.155	0.142	0.125	0.094
	0.589	0.225	0.318	0.157	0.144	0.126	0.095
	0.590	0.227	0.321	0.159	0.146	0.127	0.096
	0.591	0.230	0.325	0.160	0.147	0.129	0.097

Score calibration #7

① Open NameArtem opened this issue now · 0 comments

NameArtem commented now

Калибровка скоринга

- Трансформация ROC_AUC
- Калибровка общая информация
- Калибровка классификатора в вероятность
- Калибровка кредитного скоринга
- Калибровка для рекомендательных систем

MONITORING

• Данные в «песочнице» - не данные на проде

- Данные в «песочнице» не данные на проде
- Ваша модель работает в «контексте», вы его не учитываете в разработке

- Данные в «песочнице» не данные на проде
- Ваша модель работает в «контексте», вы его не учитываете в разработке

- Данные в «песочнице» не данные на проде
- Ваша модель работает в «контексте», вы его не учитываете в разработке
- Изменение данных это не мониторинг (train/live data = 1.56)

- Данные в «песочнице» не данные на проде
- Ваша модель работает в «контексте», вы его не учитываете в разработке
- Изменение данных это не мониторинг (train/live data = 1.56)
- Учитывать метрики от модели до пользователя

Обучили: RMSE – 1.25

Обучили: RMSE – 1.25

Обучили: RMSE – 1.25

- Ошибка в данных РСІ факта больше
- Неправильно сделан ETL для прода (если переписывали код)

Обучили: RMSE – 1.25

- Ошибка в данных РСІ факта больше
- Неправильно сделан ETL для прода (если переписывали код)
- Библиотеки!

Обучили: RMSE – 1.25

```
X_train['Hour_cosine'].std()
0.7206233339256797

np.std(X_train['Hour_cosine'].values)
0.7206224945074595
```

Обучили: RMSE – 1.25

Обучили: RMSE – 1.25

Обучили: RMSE – 1.25

- История данных на выборке не вся история
- Агрегация пользователя в виде группы GroupKFold

Обучили: RMSE – 1.25

- История данных на выборке не вся история
- Агрегация пользователя в виде группы GroupKFold
- Работа не Kaggle!

		True cor				
	Total population	Condition positive	Condition negative	$\frac{\sum Condition\ positive}{\sum Total\ population}$	Σ True positiv	acy (ACC) = νe + Σ True negative al population
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	= <u>LR+</u> LR-	2 · Precision · Recall Precision + Recall

Matthews correlation coefficient

$$\mathrm{MCC} = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Matthews correlation coefficient

$$ext{MCC} = rac{TP imes TN - FP imes FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Matthews correlation coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Predicted 0 1
Actual
0 5 2
1 0 3

MCC - 0.654653

F1 - 0.7499

Matthews correlation coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Predicted 1

Actual

Matthews correlation coefficient

$$ext{MCC} = rac{TP imes TN - FP imes FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Predicted 1

Actual

0 2

1 :

MCC - 0.0

F1 - 0.7499

Matthews correlation coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Predicted 0 1 Actual 0 6 2

Matthews correlation coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Predicted 0 1

Actual

0 6 2

1 1 1

MCC - 0.218217

F1 - 0.4

Matthews correlation coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Matthews correlation coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Predicted 0 1
Actual 0 1 2
1 1 6

MCC - 0.218217

F1 - 0.7499

МОНИТОРИНГ - AUC

МОНИТОРИНГ - AUC

МОНИТОРИНГ - MMWA

Predicted 0 1

Actual

0 1 2

1 1 6

МОНИТОРИНГ - MMWA

Predicted 0 1
Actual 0 1 2

STREAMLIT

ЭТО БЫЛО ОТЛИЧНОЕ ПУТЕШЕСТВИЕ!

1.0.0-beta1

Label

Major | Patch Minor

ЗАДАНИЕ

ОСТАВЬТЕ ОБРАТНУЮ СВЯЗЬ

• Это был первы запуск курса, помогите сделать лучше и интересней. Заполните форму обратной связи:

https://forms.gle/tjVHYVzB258bAj9n6