a most classy way from Fundamental Physics to Cosmology

Miguel Zumalacárregui

Nordic Institute for Theoretical Physics and UC Berkeley

IFT School on Cosmology Tools

March 2017

DISCLAIMER: Short time!

 $\lesssim 2h$ course \Rightarrow overview and basic usage

Learn further:

- CLASS lecture by Julien Lesgourgues ($\sim 4h$) https://lesgourg.github.io/class-tour/Narbonne.pdf
- CLASS course by J. Lesgourgues and T. Tram ($\sim 13h$) https://lesgourg.github.io/class-tour-Tokyo.html
- Links to extra resources in exercise sheet

Acknowledgements

Extra help from:

Thejs Brinckmann, Carlos Garcia, Deanna Hooper & Vivian Poulin

Fundamental physics and cosmology

Initial conditions, Dark Matter, Neutrinos, Dark Energy, Gravity...

Compute predictions

- Background evolution
- Observables:
 - $\star P(k,z)$
 - \star <u>CMB</u>: TT, $\phi\phi$ lensing pot.
 - \star Galaxy C_l & rel. eff.

- Thermodynamic evolution
- Initial conditions
- Transfer functions
- Perturbation evolution
- Contributions to spectra
- . . .

Compute predictions

- Background evolution
- Observables:
 - $\star P(k,z)$
 - \star CMB: TT, $\phi\phi$ lensing pot.
 - \star Galaxy C_l & rel. eff.

- Thermodynamic evolution
- Initial conditions
- Transfer functions
- Perturbation evolution
- Contributions to spectra
-

Compute predictions

- Background evolution
- Observables:
 - $\star P(k,z)$
 - * CMB: TT, $\phi\phi$ lensing pot.
 - \star Galaxy C_l & rel. eff.

- Thermodynamic evolution
- Initial conditions
- Transfer functions
- Perturbation evolution
- Contributions to spectra
- . . .

Compute predictions

- Background evolution
- Observables:
 - $\star P(k,z)$
 - \star CMB: TT, $\phi\phi$ lensing pot.
 - \star Galaxy C_l & rel. eff.

- Thermodynamic evolution
- Initial conditions
- Transfer functions
- Perturbation evolution
- Contributions to spectra
-

Boltzmann Codes

- 1995: COSMICS (Bertschinger)
- 1996: CMBFAST (Seljak & Zaldarriaga)
- 1999: CAMB (Lewis): Manteined and improved
 - → CAMB Sources, MGCAMB, EFTCAMB...
- 2003: CMBEASY (Doran)
- 2011 CLASS (Lesgourgues & Tram)
 - $\longrightarrow \mathsf{CLASSGal}$, $\mathtt{hi}_{\mathtt{class}}$

CLASS

The purpose of CLASS is to simulate the evolution of linear perturbations in the universe and to compute CMB and LSS observables.

http://class-code.net/

Three goals:

Three goals:

• Friendly and flexible: should be easy to compile, to pass input parameters, to understand the code, and to modify it

Three goals:

- Friendly and flexible: should be easy to compile, to pass input parameters, to understand the code, and to modify it
- Accurate: need more and more precision. Analysing Planck and WMAP data require very different accuracy settings. Before, CAMB precision could only be calibrated w.r.t itself. CLASS played important role in pushing precision to Planck level. Similar efforts in the future (LSS, next CMB satellite, 21cm, etc.)

Three goals:

- Friendly and flexible: should be easy to compile, to pass input parameters, to understand the code, and to modify it
- Accurate: need more and more precision. Analysing Planck and WMAP data require very different accuracy settings. Before, CAMB precision could only be calibrated w.r.t itself. CLASS played important role in pushing precision to Planck level. Similar efforts in the future (LSS, next CMB satellite, 21cm, etc.)
- Fast: for parameter extraction (Metropolis-Hastings, Multinest, Cosmo Hammer, grid-base methods). Typical project: 10'000 to 1'000'000 executions

Three goals:

- Friendly and flexible: should be easy to compile, to pass input parameters, to understand the code, and to modify it
- Accurate: need more and more precision. Analysing Planck and WMAP data require very different accuracy settings. Before, CAMB precision could only be calibrated w.r.t itself. CLASS played important role in pushing precision to Planck level. Similar efforts in the future (LSS, next CMB satellite, 21cm, etc.)
- Fast: for parameter extraction (Metropolis-Hastings, Multinest, Cosmo Hammer, grid-base methods). Typical project: 10'000 to 1'000'000 executions

CLASS vs CAMB:

- More modern (C vs Fortran, Python interfaced,...)
- Easy to modify → less cursing!

The CLASS Commandments

 Notation from Ma & Bertschinger (astro-ph/9506072)

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

- Notation from Ma & Bertschinger (astro-ph/9506072)
- Distinct modules with separate physical tasks.

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

- Notation from Ma & Bertschinger (astro-ph/9506072)
- Distinct modules with separate physical tasks.
- Documentation + Version history github.com/lesgourg/class_public

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

- Notation from Ma & Bertschinger (astro-ph/9506072)
- Distinct modules with separate physical tasks.
- Documentation + Version history github.com/lesgourg/class_public
- Structure for approximations, always chosen in terms of dimensionless ratios

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

- Notation from Ma & Bertschinger (astro-ph/9506072)
- Distinct modules with separate physical tasks.
- Documentation + Version history github.com/lesgourg/class_public
- Structure for approximations, always chosen in terms of dimensionless ratios
- All precision variables grouped in one single place (input.c)

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

The CLASS Commandments

No duplicate equations

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

- No duplicate equations
- No hard-coding: dynamical indexing

```
ho_b 
ightarrow 	ext{vec[index_bg_rho_b]}
```

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

The CLASS Commandments

- No duplicate equations
- No hard-coding: dynamical indexing

```
\rho_b \rightarrow \text{vec[index\_bg\_rho\_b]}
```

Component-specific blocks

```
if (has_xxx) { (xxx physics) }
```

- input.c
- background.c
- thermodynamics.c
- perturbations.c
- primordial.c
- nonlinear.c
- transfer.c
- spectra.c
- lensing.c
- output.c

The CLASS Commandments

- No duplicate equations
- No hard-coding: dynamical indexing

```
\rho_b \rightarrow \text{vec[index\_bg\_rho\_b]}
```

Component-specific blocks

```
if (has_xxx) { (xxx physics) }
```

- Easy to add new components:
 - Search for inspirational ingredient
 - Copy, paste & adapt to:
 - interpret parameters (input.c)
 - implement equations

(background.c, perturbations.c)

CLASS flexibility (see explanatory.ini)

Coding principles greatly simplify implementation of new models:

Dark Matter

- Ultra relativistic (ur)
- [Warm (ncdm)]
- Cold (cdm)
- Decaying into dark radiation (dcdm)

Neutrinos (ncdm)

- Masses (Ω_{ν}, m_{ν})
- Chemical potential
- Phase space distribution
- Flavor mixing ...

Initial condtitions

- Analytic P(k)
- Isocurvature perturbations
- Inflationary potential $V(\phi)$
- Correlated, Axion, Curvaton
- External ...

Dark Energy and Gravity

- Perfect fluid (fld)
- Quintessence (scf)
- ullet (MG-class (by P. Bull)
- (Horndeski Gravity (smg)

Plus curvature, relativistic effects, Newt/Synchr. Gauges...

Modified Gravity with CLASS

with

E. Bellini, J. Lesgourgues, I. Sawicki

PLANCK

The case for modified gravity

• Alternatives to Λ ? Inflation again? $n_s \neq 1$

Interesting field-theoretical questions
 proxy for inflation/quantum gravity?
 viable massive spin-2 particles?
 cosmological constant problems?

- Test gravity on all regimes by
 - confirming standard predictions √
 - ruling out competing theories

* First-generation: $f(\phi)R + K(X,\phi)$ $X \equiv -(\partial\phi)^2/2$ \supset quintessence, f(R), Brans-Dicke (Jordan '59, Brans & Dicke '61)

Miguel Zumalacárregui

- * First-generation: $f(\phi)R + K(X,\phi)$ $X \equiv -(\partial\phi)^2/2$ \supset quintessence, f(R), Brans-Dicke (Jordan '59, Brans & Dicke '61)
- * Horndeski's Theory (1974)

$$g_{\mu\nu}+ \boxed{\phi} + \mathsf{Local} + \mathsf{4-D} + \mathsf{Lorentz}$$
 theory with $\boxed{2^{nd} \text{ order Eqs.}}$

$$G_{2}(X,\phi) - G_{3}(X,\phi)\Box\phi + G_{4}(\phi,X)R + G_{4,X}\left[(\Box\phi)^{2} - \phi_{;\mu\nu}\phi^{;\mu\nu}\right] + G_{5}G_{\mu\nu}\phi^{;\mu\nu} - \frac{G_{5,X}}{6}\left[(\Box\phi)^{3} - 3(\Box\phi)\phi_{;\mu\nu}\phi^{;\mu\nu} + 2\phi_{;\mu}^{\;\;;\nu}\phi_{;\nu}^{\;\;;\lambda}\phi_{;\lambda}^{\;\;;\mu}\right]$$

⇒ all Old-school,

- * First-generation: $f(\phi)R + K(X,\phi)$ $X \equiv -(\partial\phi)^2/2$ \supset quintessence, f(R), Brans-Dicke (Jordan '59, Brans & Dicke '61)
- * Horndeski's Theory (1974)

$$g_{\mu\nu}+ \boxed{\phi} + \mathsf{Local} + \mathsf{4-D} + \mathsf{Lorentz}$$
 theory with $\boxed{2^{nd} \text{ order Eqs.}}$

$$G_{2}(X,\phi) - G_{3}(X,\phi)\Box\phi + G_{4}(\phi,X)R + G_{4,X}\left[(\Box\phi)^{2} - \phi_{;\mu\nu}\phi^{;\mu\nu}\right] + G_{5}G_{\mu\nu}\phi^{;\mu\nu} - \frac{G_{5,X}}{6}\left[(\Box\phi)^{3} - 3(\Box\phi)\phi_{;\mu\nu}\phi^{;\mu\nu} + 2\phi_{;\mu}{}^{;\nu}\phi_{;\nu}{}^{;\lambda}\phi_{;\lambda}{}^{;\mu}\right]$$

⊃ all Old-school, kin. grav. braiding,

- \star First-generation: $f(\phi)R+K(X,\phi)$ $X\equiv -(\partial\phi)^2/2$
 - \supset quintessence, f(R), Brans-Dicke (Jordan '59, Brans & Dicke '61)

* Horndeski's Theory (1974)

$$g_{\mu\nu}+ \boxed{\phi} + {\sf Local} + {\sf 4-D} + {\sf Lorentz}$$
 theory with $\boxed{2^{nd} \ {\sf order} \ {\sf Eqs.}}$

$$G_2(X,\phi) - G_3(X,\phi)\Box\phi + G_4(\phi,X)R + G_{4,X}\left[(\Box\phi)^2 - \phi_{;\mu\nu}\phi^{;\mu\nu}\right]$$

$$+ G_5 G_{\mu\nu} \phi^{;\mu\nu} - \frac{G_{5,X}}{6} \left[(\Box \phi)^3 - 3(\Box \phi) \phi_{;\mu\nu} \phi^{;\mu\nu} + 2\phi_{;\mu}^{;\nu} \phi_{;\nu}^{;\lambda} \phi_{;\lambda}^{;\mu} \right]$$

- ⊃ all Old-school, kin. grav. braiding, covariant Galileon
- ⊃ proxy for DGP & massive grav. (de Rham & Heisenberg '11)

- \star First-generation: $f(\phi)R+K(X,\phi)$ $X\equiv -(\partial\phi)^2/2$
 - \supset quintessence, f(R), Brans-Dicke (Jordan '59, Brans & Dicke '61)

* Horndeski's Theory (1974)

$$g_{\mu\nu}+ \boxed{\phi} + {\sf Local} + {\sf 4-D} + {\sf Lorentz}$$
 theory with $\boxed{2^{nd} \ {\sf order} \ {\sf Eqs.}}$

$$G_2(X,\phi) - G_3(X,\phi)\Box\phi + G_4(\phi,X)R + G_{4,X}\left[(\Box\phi)^2 - \phi_{;\mu\nu}\phi^{;\mu\nu}\right]$$

$$+ \, G_5 G_{\mu\nu} \phi^{;\mu\nu} - \frac{G_{5,X}}{6} \Big[(\Box \phi)^3 - 3 (\Box \phi) \phi_{;\mu\nu} \phi^{;\mu\nu} + 2 \phi_{;\mu}{}^{;\nu} \phi_{;\nu}{}^{;\lambda} \phi_{;\lambda}{}^{;\mu} \Big]$$

- ⊃ all Old-school, kin. grav. braiding, covariant Galileons
- ⊃ proxy for DGP & massive grav. (de Rham & Heisenberg '11)

- * First-generation: $f(\phi)R + K(X,\phi)$ $X \equiv -(\partial\phi)^2/2$
 - \supset quintessence, f(R), Brans-Dicke (Jordan '59, Brans & Dicke '61)

* Horndeski's Theory (1974)

$$g_{\mu\nu}+\left[\phi
ight]+$$
 Local $+$ 4-D $+$ Lorentz theory with $\left[2^{nd} ext{ order Eqs.}
ight]$

$$G_2(X,\phi) - G_3(X,\phi)\Box\phi + G_4(\phi,X)R + G_{4,X}\left[(\Box\phi)^2 - \phi_{;\mu\nu}\phi^{;\mu\nu}\right]$$

$$+ G_5 G_{\mu\nu} \phi^{;\mu\nu} - \frac{G_{5,X}}{6} \left[(\Box \phi)^3 - 3(\Box \phi) \phi_{;\mu\nu} \phi^{;\mu\nu} + 2 \phi_{;\mu}^{\;\;;\nu} \phi_{;\nu}^{\;\;;\lambda} \phi_{;\lambda}^{\;\;;\mu} \right]$$

- ⊃ all Old-school, kin. grav. braiding, covariant Galileons
- \supset proxy for DGP & massive grav. (de Rham & Heisenberg '11)
- ★ Beyond Horndeski → discovered by accident!
 (MZ & Garcia-Bellido '13, Gleyzes et al. '14, Langlois & Noui '15)

Horndeski in the Cosmic Linear Anisotropy Solving System

- Flexibility:
 - * New models trivially added
 - \star Compatible massive ν 's, etc...
- Accuracy:
 - * Full linear dynamics + ICs
 - * <u>Tested</u> against independent codes
- Speed:
 - $\star~2\times$ QS approx. \rightarrow speed up

www.hiclass-code.net (MZ, Bellini, Sawicki, Lesgourgues '16)

Horndeski in four words

(Bellini & Sawicki '14)

$$\underbrace{\ddot{h}_{ij} + 3H(1 + \alpha_M)\dot{h}_{ij}}_{\delta(\sqrt{-g}M_*^2\dot{h}_{ij}^2)} + \underbrace{(1 + \alpha_T)}_{c_T^2, \text{ GW}} k^2h_{ij} = 0 \qquad \text{(tensors)}$$

$$\underbrace{\alpha_K}_{\text{diagonal}} \delta\ddot{\phi} + 3H \underbrace{\alpha_B}_{\text{mixing}} \ddot{\Phi} + \dots = 0 \qquad \text{(scalar field)}$$

Theory specific relations:

$$G_2 - G_3 \Box \phi + G_4 R + G_{4,X} \left[\nabla \nabla \phi \right]^2 + G_5 G_{\mu\nu} \phi^{;\mu\nu} - \frac{G_{5,X}}{6} \left[\nabla \nabla \phi \right]^3$$

Kineticity: α_K

Standard kinetic term $ightarrow c_S^2$

 M_p running: α_M

Variation rate of effective ${\cal M}_p$

Braiding:
$$\alpha_B$$

Kinetic Mixing of $g_{\mu\nu}$ & ϕ

Tensor speed excess: α_T

GW at $c_T^2 = 1 + \alpha_T$

The Cosmic Linear Anisotropy Solving System:

hi_class in practice

$$\begin{cases} G_2, G_3, G_4, G_5 \\ \phi(t_0), \dot{\phi}(t_0) \end{cases} \longrightarrow \begin{cases} \begin{array}{c} \mathsf{Kineticity} \; \alpha_K \\ \mathsf{Braiding} \; \alpha_B \\ M_p \; \mathsf{running} \; \alpha_M \\ \mathsf{Tensor} \; \mathsf{speed} \; \alpha_T \end{array} \end{cases} \longrightarrow \begin{cases} \begin{array}{c} D_A(z) \\ C_\ell \\ P(k) \\ \dots \end{array}$$

Full theory has more info

- ullet Background \longrightarrow often very constraining
- Non-linear effects
- Other regimes: GWs, strong gravity, Solar System, QM, Lab...

Parameterize $w(z), \alpha_i(z)$

b)

^{*} Available soon

Galileons

$$G_2 = -X$$

$$G_3 = c_3 X / M^3$$

$$G_4 = \frac{M_p^2}{2} + c_4 X^2 / M^6$$

$$G_5 = c_5 X^2 / M^9$$

Best fit models (Barreira+ '14)

Tested!

•
$$\delta C_{\ell} \lesssim 0.5\%$$

•
$$\delta P(k) \le 0.1\%$$

•
$$\delta w(z) \le 0.01\%$$

fully independent implementation

Similar agreement with EFTCAMB and Brans-Dicke.

- Public (www.hiclass-code.net)
 - Parameterized H, α_i
 - $\alpha_i \propto \Omega, a$, Planck param...
 - your model here!
 - Iterface with MontePython (parameter estimation)
 - Tested: $\delta C_{\ell} \lesssim 0.5\%$, $\delta P_k \lesssim 0.1\%$

- Public (www.hiclass-code.net)
 - lacksquare Parameterized H, $lpha_i$
 - $\alpha_i \propto \Omega, a$, Planck param...
 - your model here!
 - Iterface with MontePython (parameter estimation)
 - Tested: $\delta C_{\ell} \lesssim 0.5\%$, $\delta P_k \lesssim 0.1\%$

Private (coming soon)

- Theories with $G_2 G_4$:
 - Brans-Dicke, Galileons...
 - your model here!
- Early Modified Gravity

- Public (www.hiclass-code.net)
 - $lue{}$ Parameterized H, $lpha_i$
 - $\alpha_i \propto \Omega, a$, Planck param...
 - your model here!
 - Iterface with MontePython (parameter estimation)
 - Tested: $\delta C_{\ell} \lesssim 0.5\%$, $\delta P_k \lesssim 0.1\%$

hi_class

Development/test

- lacksquare Theories with G_5
- Quasi-static approximation
- MG initial conditions

Private (coming soon)

• Theories with $G_2 - G_4$:

Brans-Dicke, Galileons...

- your model here!
- Early Modified Gravity

- Public (www.hiclass-code.net)
 - $lue{}$ Parameterized H, $lpha_i$

 $\alpha_i \propto \Omega, a$, Planck param...

- your model here!
- Iterface with MontePython (parameter estimation)
- Tested: $\delta C_{\ell} \lesssim 0.5\%$, $\delta P_k \lesssim 0.1\%$

Private (coming soon)

• Theories with $G_2 - G_4$:

Brans-Dicke, Galileons...

- your model here!
- Early Modified Gravity

Development/test

- lacksquare Theories with G_5
- Quasi-static approximation
- MG initial conditions

Prospects

- beyond Horndeski:
 - G^3 , EST, massive gravity
- Non-linear (PT, N-body)
- Curvature, Newt. gauge...

Conclusions

- Flexibility, accuracy and speed
- Many physics already implemented
 - Inflation/primordial: $V(\phi)$ /external, isocurvature...
 - Dark Matter and ν : warm, decaying, chemical pot.
 - Dark Energy: perfect fluid, quintessence
 - Modified Gravity: Horndeski → hi_class
- Very easy to add your own stuff!
- This just scratches the surface, many more options!

(See also J. Lesgourgues and T. Tram's slides)