PSTAT 222C Spring 2025 - Asn 2

Note. Hand in all Code used for all computations .

Problem 1: Implicit vs Crank-Nicolson FD PDE Solvers

Consider the **corridor** option from Asn 1 with payoff 1 if $X_t \in [L_1, L_2]$ for all $t \leq T$ and payoff zero otherwise. Thus, the asset price is required to remain between L_1 and L_2 the entire time until maturity. Our goal is to find the option price V(t, x).

We use the CEV model

$$dX_t = rX_t dt + \sigma X_t^{\gamma} dW_t$$

where we select $\gamma = 0.8$ with parameters $X_0 = 20, \sigma = 0.4, r = 0.05, T = 1/2$ and $L_1 = 15, L_2 = 25$.

- (a) Implement the Implicit FD Solver for the above. Be sure to write down the PDE you're solving and all the boundary conditions. Use $\Delta t = 0.01$ (50 time steps), and spatial domain $X_{min} = 15, X_{max} = 25$ with either $\Delta X = 0.1$ or $\Delta X = 0.02$ (101, and 501 spatial grid points). Report the solution at $t = 0, X_0 = 20$ and the plot $X_0 \mapsto V(0, X_0)$.
- (b) Implement the Crank-Nicolson solver for the above with the same Δt and ΔX 's. Compare the option price at $t = 0, X_0 = 20$: does C-N scheme appear to be more accurate than Implicit (you should also compare to the MC solution on Asn 1)?
- (c) Repeat the analysis of parts a-b for a Compound option: the right to buy a Call with maturity $T_2 = 1/2$ and strike K = 20 at time $T_1 = 1/4$ for \$2 (this is the strike of the compound option). Be sure to specify the boundary conditions and the range of your X-grid.

Hint: for debugging purposes, you can set $\gamma=1$ and use a Put payoff to compare to the exact B-S formula.

Problem 2: Explicit scheme for the Heston model

Consider the Heston model from Asn 1: this is a stochastic volatility model with the dynamics

$$dS_t = rS_t dt + S_t \sqrt{V_t} dW_t^1 \tag{1}$$

$$dV_t = \kappa(\theta - V_t) dt + \eta \sqrt{V_t} dW_t^2.$$
 (2)

Above V_t is the volatility process and (S_t) is the asset price; the driving Wiener processes W^1, W^2 have constant correlation ρ . The model parameters are: $r = 0.05; \kappa = 1; \theta = 0.2; \eta = 0.5; \rho = -0.4$ with initial conditions $S_0 = 100, V_0 = 0.25$ and option parameters T = 1, K = 100.

- (a) Implement an explicit FD solver (as a function that can be called) for the above problem and the Put payoff $\Phi(S_T) = e^{-rT}(K S_T)_+$. Specify your boundary conditions and the PDE being solved.
- (b) Do the above for a range of Δt and ΔS , ΔV values and discuss the observed convergence (make sure your schemes are stable!) of the option value at (S_0, V_0) . Compare to the answer you had on Asn 1.

Problem 3: GP option pricing for the Heston Model

Using the same model as in Problem 2, our goal is to learn the pricing surface as a function of (S_0, V_0) . To this end, select 100 pairs of initial share prices and volatilities (the latter should be in the range [0.05, 0.6]). Use Monte Carlo (with a Milstein scheme for (V_t) as in Asn 1) and $\Delta t = 0.01$ with M = 1000 simulations to obtain approximate Put prices for each of those initial conditions.

- (a) Fit a GP surrogate with a Squared Exponential kernel with pre-specified lengthscales $\ell_S = 10, \ell_V = 0.1$ and process stdev $\eta = 10$. Watch out for the observation noise make sure you're not over- or under-fitting.
- (b) Fit a GP surrogate with a Matern-5/2 kernel and optimized lengthscales (via MLE optimization).
- (c) Compare the predicted option surfaces among themselves, as well as to the (linearly) interpolated surface from the FD solver in Q2. Discuss what you observe.