(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication 30.07.1997 Bulletin 1997/31

- (51) Int CI 6: C12N 15/00
- (21) Application number: 97100117.7
- (22) Date of filing 07.01.1997
- (84) Designated Contracting States.
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
 Designated Extension States.
 AL LT LV RO SI
- (30) Priority. 05.01.1996 US 9861
- (71) Applicant HUMAN GENOME SCIENCES, INC. Rockville, MD 20850-3338 (US)
- (72) Inventors:
 - Kunsch, Charles A.
 Gaithersburg, Maryland 20882 (US)

- Choi, Gil H.
 Rockville, Maryland 20850 (US)
- Barash, Steven C.
 Rockville, Maryland 20850 (US)
- Dillon, Patrick J.
 Gaithersburg, Maryland 20879 (US)
- Fannon, Michael R.
 Silver Spring, Maryland 20906 (US)
- Rosen, Craig A. Laytonsville, Maryland 20882 (US)
- (74) Representative VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

(54) Staphylococcus aureus polynucleotides and sequences

(57) The present invention provides polynucleotide sequences of the genome of *Staphylococcus aureus*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides vectors and hosts comprising the polynu-

cleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

Description

The present invention relates to the field of molecular biology. In particular, it relates to among other things, nucleotide sequences of *Staphylococcus aureus*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others

The genus *Staphylococcus* includes at least 20 distinct species. (For a review see Novick, R. P., The *Staphylococcus* as a Molecular Genetic System. Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below

Human Health and S. Aureus

15

20

25

Staphylococcus aureus is a ubiquitous pathogen. (See, for instance, Mims et al., MEDICAL MICROBIOLOGY. Mosby-Year Book Europe Limited, London, UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by *S. aureus* infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below

Burns

Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicaemia. *S. aureus* is among the most important pathogens typically found in burn wound infections. It can destroy granulation tissue and produce severe septicaemia.

Cellulitis

Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by *S. aureus* in conjunction with *S. pyrogenes*. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of *S. aureus* and microaerophilic *streptococci*. It causes necrosis and treatment is limited to excision of the necrotic tissue. The condition often is fatal.

Eyelid infections

S. aureus is the cause of styes and of sticky eye* in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

45 Food poisoning

Some strains of *S. aureus* produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhoea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.

Joint infections

S aureus infects bone joints causing diseases such osteomyelitis

Osteomyelitis

55

S aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in

children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the end of long, growing bones.

Skin infections

S aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the hasal passages plague hasal carriers of *S* aureus.

Surgical Wound Infections

Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds: sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicaemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome

20

30

35

40

45

S aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis. Ritter's disease and Lyell's disease) This diseases occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation(also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome

Toxic shock syndrome is caused by strains of *S. aureus* that produce the so-called toxic shock syndrome toxin. The disease can be caused by *S. aureus* infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicaemia, and can be fatal.

Necosomial Infections

In the 1984 National Nocosomial Infection Surveillance Study (*NNIS*) S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns

Resistance to drugs of S. aureus strains

Prior to the introduction of penicillin the prognosis for patients seriously infected with S aureus was unfavorable. Following the introduction of penicillin in the early 1940s even the worst S aureus infections generally could be treated successfully. The emergence of penicillin-resistant strains of S aureus did not take long, however. Most strains of S aureus encountered in hospital infections today do not respond to penicillin, although, fortunately, this is not the case for S aureus encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confermultidrug resistance.

Methicillins, introduced in the 1960s largely overcame the problem of penicillin resistance in *S. aureus*. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in *S. aureus*, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

The molecular genetics of most types of drug resistance in *S. aureus* has been elucidated (See Lyon *et al., Microbiology Reviews* <u>51</u> 88-134 (1987)). Generally, resistance is mediated by plasmids, as noted above regarding penicillin resistance, however, several stable forms of drug resistance have been observed that apparently involve integration of a resistance element into the *S. aureus* genome itself.

Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of *S. aureus* infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed

Molecular Genetics of Staphylococcus Aureus

10

Despite its importance in among other things, human disease, relatively little is known about the genome of this organism

Most genetic studies of *S. aureus* have been carried out using the the strain NCTC8325, which contains prophages psi11 psi12 and psi13, and the UV-cured derivative of this strain. 8325-4 (also referred to as RN450), which is free of the prophages

These studies revealed that the *S. aureus* genome, like that of other *staphylococci*, consists of one circular covalently closed double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.

Physical characterization of the genome has not been carried out in any detail. Pattee *et al.* published a low resolution and incomplete genetic and physical map of the chromosome of *S. aureus* strain NCTC 8325. (Pattee *et al.* Genetic and Physical Mapping of Chromosome of *Staphylococcus aureus* NCTC 8325. Chapter 11. pgs. 163-169 in. MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R.P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of Smal-digested DNA by Pulsed Field Gel Electrophoresis ("PFGE").

The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest Small chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a Small recognition sequence.

In sum, most physical characteristics and almost all of the genes of *Staphylococcus aureus* are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thornsberry, J., *Antimicrobial Chemotherapy* 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. aureus* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by *S. aureus* infection involves the programmed expression of *S. aureus* genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of *S. aureus* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *S. aureus* would provide reagents for, among other things, detecting, characterizing and controlling *S. aureus* infections. There is a need therefore to characterize the genome of *S. aureus* and for polynucleotides and sequences of this organism.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5.191

The present invention provides the nucleotide sequence of several thousand contigs of the *Staphylococcus aureus* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS 1-5,191.

The present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99%, identical to the nucleotide sequences of SEQ ID NOS:1-5 191

The nucleotide sequence of SEQ ID NOS 1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95%, preferably 99% and most preferably 99%, identical to the nucleotide sequence of SEQ ID NOS 1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape, optical storage media such as CD-ROM, electrical storage media such as RAM and ROM, and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence

information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Staphylococcus aureus* genome.

Another embodiment of the present invention is directed to fragments, preferably isolated fragments, of the *Sta-phylococcus* aureus genome having particular structural or functional attributes. Such fragments of the *Staphylococcus* aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs," fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs," and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter referred to as diagnostic fragments or "DFs"

Each of the ORFs in fragments of the *Staphylococcus aureus* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity

10

20

30

The present invention further includes recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* has been inserted

The present invention further provides host cells containing any of the isolated fragments of the *Staphylococcus* aureus genome of the present invention. The host cells can be a higher eukaryotic host cell-such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to polypeptides and proteins, preferably isolated polypeptides and proteins, encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention can from cells which have been altered to express them

The invention further provides polypeptides, preferably isolated polypeptides, comprising *Staphylococcus aureus* epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vacciniating an individual against *Staphylococcus aureus* infection.

The invention further provides methods of obtaining homologs of the fragments of the *Staphylococcus aureus* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention, and (b) one or more other containers comprising one or more of the following wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Staphylococcus aureus* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Staphylococcus aureus* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Staphylococcus aureus* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes

has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files. largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press. Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR*) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215, 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS.1-5,191. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

25

40

45

In addition to the aforementioned *Staphylococcus aureus* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-5,191, or representative fragments thereof in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-5,191" refers to any portion of the SEQ ID NOS:1-5,191 which is not presently represented within a publicly available database Preferred representative fragments of the present invention are *Staphylococcus aureus* open reading frames (ORFs"), expression modulating fragment (EMFs") and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in sample ("DFs"). A non-limiting identification of preferred representative fragments is provided in Tables 1-3.

As discussed in detail below, the information provided in SEQ ID NOS.1-5.191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Staphylococcus aureus* proteins.

While the presently disclosed sequences of SEQ ID NOS.1-5,191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS.1-5,191. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS.1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS.1-5.191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-5.191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS 1-5.191.

As discussed elsewhere hererin, polynucleotides of the present invention readily may be obtained by routine application of well-known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining

libraries and for sequencing are provided below, for instance. A wide variety of *Staphylococcus aureus* strains that can be used to prepare *S aureus* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC")

The nucleotide sequences of the genomes from different strains of *Staphylococcus aureus* differ somewhat. However, the nucleotide sequences of the genomes of all *Staphylococcus aureus* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-5.191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99 9% identical to the nucleotide sequences of SEQ ID NOS 1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan

Methods for determining whether a nucleotide sequence is at least 95% at least 99% or at least 99.9% identical to the nucleotide sequences of SEQID NOS:1-5,191 are routine and readily available to the skilled artisan. For example, the well-known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* <u>85</u>, 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

50

55

The nucleotide sequences provided in SEQ ID NOS 1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS 1-5.191 may be "provided" in a variety of mediums to facilitate use thereof. As used herein Oprovided" refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention. *i.e.*, a nucleotide sequence provided in SEQ ID NOS.1-5.191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-5,191. Such a manufacture provides a large portion of the *Staphylococcus aureus* genome and parts thereof (e.g., a *Staphylococcus aureus* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Staphylococcus aureus* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM, and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2. Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS 1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99 % identical to a sequence of SEQ ID NOS:1-5,191 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes

The examples which follow demonstrate how software which implements the BLAST (Altschul *et al.*, J. Mol. Biol 215.403410 (1990)) and BLAZE (Brutlag *et al.*, Comp. Chem. 17.203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the *Staphylococcus aureus* genome which contain homology to ORFs or proteins from both *Staphylococcus aureus* and from other organisms. Among the ORFs discussed

herein are protein encoding fragments of the *Staphylococcus* aureus genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Staphylococcus aureus* genome.

5

30

35

As used herein. "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention

As used herein. "search means" refers to one or more programs which are implemented on the computer- based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL). BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to promoter sequences, hairpin structures and inducible expression elements (protein binding sequences)

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Staphylococcus aureus* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Staphylococcus aureus* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990), was used to identify open reading frames within the *Staphylococcus aureus* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory. RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive a CD-ROM drive, a magnetic tape drive etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 103 any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for

accessing and processing the genomic sequence (such as search tools comparing tools *etc*) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

30

Other embodiments of the present invention are directed to fragments of the *Staphylococcus aureus* genome, preferably to isolated fragments. The fragments of the *Staphylococcus aureus* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter diagnostic fragments (DFs)

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Staphylococcus aureus* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS.1-5,191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above

A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size

In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS:1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded BNA

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2 and 3 list ORFs in the *Staphylococcus aureus* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists

Table 1 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an *S aureus* nucleotide sequence available through Genbank in November 1996.

Table 2 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996

Table 3 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the reading frame, taking the first 5' nucleotide of the contig as the start of the +1 frame; the fourth column indicates the first nucleotide of the ORF, counting from the 5' end of the contig strand and the fifth column indicates the length of each ORF in nucleotides

In Tables 1 and 2, column six, lists the Reference" for the closest matching sequence available through Genbank These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the numericlature are available from the National Center for Biotechnology Information. Column seven in Tables 1 and 2 provides the gene name" of the matching sequence; column eight provides the BLAST identity" score from the comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair" identified by the BLAST identity analysis.

In Table 3, the last column, column six, indicates the length of each ORF in amino acid residues

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions

1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (*i.e.*, possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list per cent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the per cent identity" of the highest scoring segment pair" in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Staphylococcus aureus* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention

As used herein, an "expression modulating fragment." EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF

15

20

40

45

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF, EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Staphylococcus aureus* genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in lerigth, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Staphylococcus aureus* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Staphylococcus aureus* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Staphylococcus aureus* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQID NOS.1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably 99% and most preferably 99.9% identical to SEQID NOS.1-5.191, with a sequence from another isolate of the same species

Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the nucleic acid sequences mentioned above. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Staphylococcus aureus* origin isolated by using part or all of the fragments in question as a probe or primer

Each of the ORFs of the Staphylococcus aureus genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular Staphylococcus aureus. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Staphylococcus aureus. Also particularly preferred are ORFs that can be used to distinguish between strains of Sta-

phylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example. Lee et al., Nucl. Acids Res. 6: 3073 (1979). Cooney et al., Science 241, 456 (1988), and Dervan et al., Science 251, 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56: 560 (1991), and OLIGODEOXYNUCLE-OTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION. CRC Press. Boca Raton, FL (1988).

The present invention further provides recombinant constructs comprising one or more fragments of the *Staphy-lococcus aureus* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript. PsiX174, pBluescript SK and KS (+ and -), pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRiT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia)

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI. lacZ, T3, T7, gpt, lambda PR, and tro. Eukaryotic promoters include CMV immediate early. HSV thyrnidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

30

35

40

45

The present invention further provides host cells containing any one of the isolated fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, E. *et al.*, BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (eg, an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence

Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography. HPLC, size-exclusion chromatography, ion-exchange chromatography, and immu-

no-affinity chromatography.

25

40

45

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include but are not limited to eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e g, microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e g, yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E coli, will be free of glycosylation modifications, polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Staphylococcus aureus* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector. for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokary-otic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, eg, the ampicillin resistance gene of E coli and S cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of Staphylococcus aureus, E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Others

may, also be employed as a matter of choice

40

45

50

As a representative but non-limiting example useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e g), temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO. HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively "immunologically useful polypeptides". Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides.

As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outermembrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.

Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A.S)-(G.A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C. Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22, 451-471; 1990).

It well known that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than tifty such proteins from organisms such as *S. pyogenes*. *S. mutans*, *E. faecalis*, *S. pneumoniae*, and others have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62, 405410; 1996). The conserved region is comprised of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins ex-

amined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid

Amino acid sequence similarities to proteins of known function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include "lipoprotein", "periplasmic", or "antigen".

An algorithm for selecting antigenic and immunogenic *Staphylococcus aureus* polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful *Staphylococcus aureus* polypeptides resulted in the selection of several ORFs which are predicted to be outermembrane-associated proteins. These proteins are identified in Table 4, below, and shown in the Sequence Listing as SEQ ID NOS 5 192 to 5 255. Thus the amino acid sequence of each of several antigenic *Staphylococcus aureus* polypeptides listed in Table 4 can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing

As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found *in vivo*, it is not always technically practical to express a complete ORF *in vitro*. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS 5.192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for example the mature forms of the polypeptides expected to exist in nature.

Those of ordinary skill in the art can identify soluble portions the polypeptide identified in Table 4, and in the case of truncated polypeptides sequences shown as SEQ ID NOS:5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.

25

35

Accordingly, polypeptides comprising the complete amino acid of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs identified in Table 4, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS 5,191-5 255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably at least 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the present invention.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in Table 4. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Learner, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219 660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S. aureus specific antibodies include: a polypeptide comprising peptides shown in Table 4 below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S. aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in Figure 3.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides.

specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82:5131-5135, this "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4.631.211 to Houghten et al. (1986). Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra, Wilson et al., supra; Chow. M. et al., Proc. Natl. Acad. Sci. USA 82 910-914, and Bittle, F. J. et al., J. Gen. Virol. 66.2347-2354 (1985).

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance. Geysen et al., supra. Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

Table 4 lists immunologically useful polypeptides identified by an algorithm which locates novel *Staphylococcus aureus* outermembrane proteins as is described above. Also listed are epitopes or "antigenic regions" of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO 5,192, as is described in Table 4. The inventors have identified several epitopes for each of the antigenic polypeptides identified in Table 4. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified in Table 4. The invention further provides polynucleotides encoding such polypeptides

20

15

55

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of *Staphylococcus aureus*, of the fragments of the *Staphylococcus aureus* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of *Staphylococcus aureus* is defined as a homolog of a fragment of the *Staphylococcus aureus* fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the *Staphylococcus aureus* genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which prossess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS 1-5.191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99 % identical to a sequence of SEQ ID NOS 1-5.191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, PCR PROTOCOLS, Academic Press. San Diego, CA (1990))

When using primers derived from SEQ ID NOS:1-5.191 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5.191, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50°s formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75°s homologous to the primer will be amplified. By employing lower stringency

conditions (eg, hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified

When using DNA probes derived from SEQ ID NOS.1-5,191, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS.1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to *Staphylococcus aureus*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Staphylococcus aureus* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES. Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

10

15

30

35

40

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Staphylococcus aureus* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS.1-5.191.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds. American Chemical Society Symposium Series 389: 93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Staphylococcus aureus*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA), KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>. Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance. Hartmeir et al., Biotechnology Letters 1 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI, Benett et al., Eds. Academic Press. New York (1985). In addition to industrial applications, GOD has found applications in medicine for

quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu *et al.*, *Biochem et Biophysica. Acta.* 872, 83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger *et al.*, Biotechnology. The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose-produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40.307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang. J. ed. Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers. Surrey. UK (1983) and Hepner et al., Report Industrial Enzymes by 1990. Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by for instance. Macrae *et al.*, Philosophical Transactions of the Chiral Society of London 310 227 (1985) and Poserke. Journal of the American Oil Chemist Society 61.1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of *Staphylococcus aureus*. These include Sau3A and Sau96I.

2. Generation of Antibodies

20

25

35

45

50

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., MONOCLONAL ANTIBODY TECHNOLOGY LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, Eisevier Science Publishers, Amsterdam. The Netherlands (1984). St. Groth et al., J. Immunol. Methods 35, 1-21 (1980). Kohler and Milstein, Nature 256, 495-497 (1975)), the trioma technique, the human B- cell hybridoma technique (Kozbor et al., Immunology Today).

 $\underline{4}$ 72 (1983), pgs. 77-96 of Cole *et al.*, in MONOCLONAL ANTIBODIES AND CANCER THERAPY. Alan R. Liss. Inc (1985)).

Any animal (mouse, rabbit. etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell. A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers. Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labelling are well-known in the art. for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972), Goding, J. W. J. Immunol. Meth. 13:215 (1976))

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Staphylococcus aureus* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press. N. Y (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

30

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs,antigens or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.

Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982). Vol. 2 (1983), Vol. 3 (1985); Tijssen, P. Practice and Theory of Enzyme Immunoassays; Laboratory Techniques in Biochemistry; PCT publication WO95/32291, and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985), all of which are hereby incorporated herein by reference.

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based

on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive in close confinement, one or more containers which comprises (a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following wash reagents reagents capable of detecting presence of a bound DF, antigen or antibody

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies or in the alternative if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

20

30

35

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Staphylococcus aureus* fragment and contigs herein described

In general, such methods comprise steps of

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and
- (b) determining whether the agent binds to said protein or said fragment

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby *et al.*, Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak *et al.*, Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6 3073 (1979); Cooney et al., Science 241:456 (1988), and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano J. Neurochem. 56 560 (1991). Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press. Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated

to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

5

30

45

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Staphylococcus aureus*, or another related organism. *In vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth or pathogenicity of *Staphylococcus aureus* or a related organism. *In vivo* or *in vitro*," when the agent reduces the rate of growth rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized in Table 4, below.

As used herein, a "related organism" is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule. etc. Moieties capable of mediating such effects are disclosed in among other sources. REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age-weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can

be measured at the same time. The composition of the present invention can be administered concurrently with prior to or following the administration of the other agent

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins *e. g.*, human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980)

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

55

50

40

45

25

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2, 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L. in nucleotides, is not sequenced after a certain amount, in, in nucleotides, of random sequence has been determined can be calculated by the equation $P_0 = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1, when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P_0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivilent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%, 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17.000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{rm}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman. Genomics 2. 231 (1988)

2. Random Library Construction

20

25

•

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end *Staphylococcus aureus* DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate. 10 mM Tris-HCl. 1 mM Na-EDTA, 30% glycerol was sonicated for 1 min. at 0°C in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer.

To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.

A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14°C for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i), vector (v), v+i, v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture was stored at -20°C

This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%)

Since deviation from randomness can arise from propagation the DNA in the host. *E coli* host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1) 5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells

Plating was carried out as follows: A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-

mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2°o). 1 ml MgCl₂ (1 M), and 1 ml MgSO₄/100 ml SOB agar. The 15 ml top layer was poured just prior to plating Our titler was approximately 100 colonies/10 ul aliquot of transformation.

All colonies were picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

15

20

30

35

55

High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime \rightarrow 3Prime Inc. (Boulder, CO). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.

Templates were also prepared from a *Staphylococcus aureus* lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). *Staphylococcus aureus* DNA (> 100 kb) was partially digested in a reaction mixture (200 ul) containing 50 ug DNA, 1X Sau3Al buffer. 20 units Sau3Al for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10- 40% sucroce gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ul of fragments was used with 1 ul of DASHII vector (Stratagene) in the recommended ligation reaction. One ul of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ul of recommended SM buffer and chloroform treatment). Yield was about 2.5x109 pfu/ul.

An amplified library was prepared from the primary packaging mixture according to the manufactureer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Mini-liquid lysates (0.1ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplitude using modified T3 and T7 primers, and Elongase Supermix (LTI).

Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2X 9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences. 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

4. Protocol for Automated Cycle Sequencing

The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e., one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols were used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer was labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-

calling. ABI currently supplies premixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2 1/2 hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection: the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.

INFORMATICS

5

15

20

30

50

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance. Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press. Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow whereever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was enployed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library)

3. Identifying Genes

The predicted coding regions of the *Staphylococcus aureus* genome were initially defined with the program zorf, which finds ORFs of a minimum length. The predicted coding region sequences were used in searches against a database of all *Staphylococcus aureus* nucleotide sequences from GenBank (release 92.0), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and and compared to a non-redundant database of known proteins generated by combining the Swiss-prot. PIR and GenPept databases. ORFs of at least 80 amino acids that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases.

ORFs of at least 120 amino acids that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

5

15

30

55

1. Production of an Antibody to a Staphylococcus aureus Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli.* or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler. G. and Milstein, C.. Nature 256 495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall. E.. Meth. Enzymol. 70.419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use Detailed procedures for monoclonal antibody production are described in Davis. L. et al. Basic Methods in Molecular Biology Elsevier. New York. Section 21-2 (1989)

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigenadministered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33 988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in:Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0, 1 to 0, 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in:Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent.

3. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Staphylococcus aureus* genome, such as those of Tables 1-3 and SEQ ID NOS.1-5.191 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately.

mately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow

4. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Staphylococcus aureus* genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California). Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hattield *et al.*, U.S. Patent No. 5,082,767, incorporated herein by this reference

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the *Staphylococcus aureus* genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems, pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The *Staphylococcus aureus* DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the *Staphylococcus aureus* DNA and containing restriction endonuclease sequences for Pstl incorporated into the 5' primer and Bglll at the 5' end of the corresponding *Staphylococcus aureus* DNA 3' primer, taking care to ensure that the *Staphylococcus aureus* DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A addition sequence and digested Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Staphylococcus aureus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Staphylococcus aureus* DNA.

Alternativly and if antibody production is not possible, the *Staphylococcus aureus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Staphylococcus aureus* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene. Life Technologies, Inc., or Promega, Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention

All patents, patent applications and publications referred to above are hereby incorporated by reference

55

20

25

40

45

50

sureus - Coding regions containing known sequences

Cont.19		÷	Stop	match	Tabich gane name	percent	HSP ot	ORF nt
91	a :	1 140	(90)	- CCESSION			Tender.	1176117
-	<u>-</u>	1413	121	-mp X17301 SAHD	-mp X17301 SAII) S.aureum DNA for hid gong and for part of agr gene	100	663	663
1 1	-	1 3273	2452	emb X52543 SAAG	S. aureus agrk, agrk and hid genes	66	808	822
-	-	6418	1 5651	db D14711 STAH	dbj D14711 STAH Staphylococcus auxeus HSP10 and HSP60 genes	96	223	768
5	-	1 807	63	emb x72700 SAPV	S.aureus genes for S and P components of Panton-Valentine leucocidins	180	216	369
	-	1 5031	1786	emb x72700 SAPV S.aureus genes	S. aureus ganes for S and F components of Panton-Valentine leucocidins	95	434 ,	1461
01		9 9 9	306	gb t25288	Stabhylococcus acreus gyrass-like protein siphs and beta subunit (grlA and grlB) genes, complete cds	86	715	819
9.		5302	6246		Stabbylococcus aureus prolipoprotain discylglyceryl transferase (lgt) gene, complete cds	5	251	945
9.		6249	7091		Stankylococcus aureus prolipoprotein diacylqlyceryl transferase (iqt) gene, complete cds	6	843	843
		7084	7584		Staphylococus aureus prolipoprotein discyiglyceryl transferase (igt) gens, complete cds	6	342	501
50		995	549	1906(11)49)	Staphylococcus aureus DAA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5' flank	100	443	L 9
20		110:	2	1900	Staphylococcus aureus DAA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5: flank	91	137	171
02		2010	1798		Staphylococcus aureus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, 5. flank	100	110	213
- 20	-	1 \$300	1 3825	8p H'6714	Staphylococcus aureus peptidoglycan hydrolase gene, complete cds	100	946	1476
70	-	47.88	4282	abt=><-14	Staphylococcus aureus peptidoglycan hydrolase gane, complete cds	100	309	507
1 26	-	7	148	gb u41072	Staphylococcus sursus isoleucyl-tRNA synthetese (ileS) gene, partial cds	100	126	164
26	- 7	84	557	gb U41072	Staphylococcur aureus isoleucyl-tRNA synthetase (iles) gene, partial cds	66	430	474
1 26	-	1 763	13531	emb X74219 SAIL	S. aureus gene for tsoleucyl-tRNA synthetese	66	2769	2769
29	-	1261	4392	s9999n q5	Staphylococcus aureus DNA fragment with class II promoter activity	100	117	3132
116	=	114977	13463	emb x73889 SAP1	S. aureus genes Pl and P2	66	1351	1515
ī -	-115	114241	13855	emb 473889 SAPI	S aureus genes P1 and P2	9.6	258	387
38	117	114284	13112	, [9b]M12715	S. aureus geh gene encoding lipsee (glycerol ester hydrolase)	100	372	1173
38	57	13434	155:8	dp +,2715	S aureus geh gene encoding lipase (glycerol ester hydrolase)	100	2085	2085

TARIE

aureus - Coding regions containing known sequences

Contig	ORF	Stert (nt)	Stop (nt)	match acession	math gene name	percent	HSP nt	ORF nt Length
4		<u>-</u>	1227		istably lucuccus answer type 8 capsulo genes, cap8A, cap8B, cup8C, cap8D, cap8B, cap8B, cap8B, cap8B, cap8B, cap8B, cap8B, cap8C, cap8B, cap8B	ec 05	1209	1709
•	: 	1720	2235	gb U73374	Staphylococus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, c	9	576	376
9		1 2259	3182	qb U73374{	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	9.	926	924
9	~	8718	4 9 8	gb (U7) 374	Staphylococcus mureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	80	1283	1326
9	•	4536	5720	gb U73374	Stabily Ococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F	8 8	1185	1185
9		6455	6120	gb U73374	Staphylococus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, c	6	278	336
æ	-	~	955	[gb[125893]	Staphylococcus aureus rech gene, complete cds	66	954	954
0\$	_	1 4465	2924	emb x85029 SAAH	S. aureus AhpC gene	100	88	1542
05	-	4108	3515	emb x85029 SAAH	S.aureus AhpC gene	30.5	240	594
- 54	-	5074	3392	emb X62992 SAFN S.aureus fnbB	S.aureus fnbb gene for fibronectin binding protein B	001	1668	1683
54	-	4865	4122	amb x62992 SAFN	S aureus (nbB gene for fibronectin binding protein B	66	720	744
- 24	~	5056	4562	emb K62992 SAFN	S. aureus fabb gene for fibronectin binding protein B	100	463	495
~	و _	111386	6300	96 304151	S sursus fibronectin-binding protein (fnbA) mRNA, complete cds	100	3087	3087
5.8	<u> </u>	1743	2819	ent XA7104 SADN	S.aureus mdr. pUp4 and taqD genes (SG511-55 isolate)	1 68	86.0	1017
88	-	2858	3280	emb X91786 SAPB S. aureus abcA.	S. aureus abcA, pbp4, and tagD genes	1 66	423	423
88	\$	\$009	1 4701	emb x91786 SAPB	S.aureus abcA. pbp4. and tag0 genes	66	1305	1305
6	• 	1 5677	5378	gb J29478	Staphyclococcus aureus ABC (:ansporter-like protein AbcA (abcA) gene, partial cds	196	300	100
5.8	,	5086	6840,	emb x91786 SAPB	S. sursus abch, pbp4. and tagD genes	66	1755	1755
27		80 80 80	445	gb '121854	S.aureus agr gene encoding an accessory gene regulator protein, complete cds	100	7 7	-
72	~	2457	1453	emb X52543 SAAG	[emb X52543]SAAG (S aureus agrA, agr8 and bld genes	- 55	67.9	1005

secretary and secretary and part sectors a secretary

Contig	ORF.	Starr (nt)	Stop (nt)	match	matth Gene name	percent	HSP nc length	ORF III
2 2		157	1917	emb x64172 SARP	S.aureus rplL, or(202, rpoBkrif) and rpoC genes for rlbosomal protein L7/Ll2, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta' chains		2396	3561
9.5	~	4027	7677	emb X89233 SARP	S.aureus DNA for rpoC gene	66	1716	3651
88.7		7745	8906	ap \050869	Stephylococcus aureus ribosomal protein S12 (rpst) gene, complete cds, ribosomal protein S7 (rpsG) and ONF 1 genes, partial cds	100	320	324
		8103	8579	gb U20869	Staphylococcus aureus ribosomal protein S12 (rps.) gene, complete cds, ribosomal protein S7 (rpsG) and ORF 1 genes, partial cds	001	477	477
83	<u> </u>	8618	1 2 8 8 2 1	gb U20869	Staphylococcus aureus ribosomal protein S12 (rps.) gene, complete cds. ribosomal protein S7 (rps.) and ORF 1 genes, partial cds	100	154	204
ž		6 0	161	Qb U73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8B, cap8D, cap8E, cap8F, cap8F, cap8H, cap8H, cap8H, cap8H, cap8C, cap8F, complete cds	8	164	174
.	~	189	883	96[073374]	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8B, cap8F,	ø.	305	\$07
			1000	db U/3374	Staphylococcus aureus tymn R capsule genes, cap8A, cap8B,	66	766	774
		1584	3503	4cE(U)3374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8E, cap8C, cap8D, cap8E, cap8F,	æ	1920	1920
ž		3394	4521	96,0733741	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H, cap8I, cap8H, cap8H, cap8H, cap8H, cap8H, cap8H, cap8H, cap8O, cap8F, complete cds	6	1128	11.18
ž	• •	4519	5643	gb;u73374	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8C, cap8C, cap8C, cap8F,		1125	1125
96	~	1245	3896	emb 218852 SACF	S.aureus gene for clumping factor	63	099	2652
76	~	625	882	[gb:041072]	Staphylococcus aureus isoleucyi-thMA synthetase (iles) gens, partial cds	6	89	258
=			452	gb.L41499 	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	100	450	450
:: 	~	526	1041	gk L41499 	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin [atl] genes,	66	516	516
117	~	1278	1958	gb M83994	Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete cds	100	19	681

TARIE

5. aureus - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nc length	ORF nt length
911	- -	3787	4254	db] u30690 sTAN	Stabilylococcus aureus genes for ONF37; HSP2C, HSP10, HSP40, ORF35, complete	66	467	468
001	-	1 2597	3640	emb X13290 SATN	Stabbylococcus aureus multi-resistance plasmid pski DMA containing transposon Th4003	28	956	1044
000	~	1 3813	4265	omb 216422 SADI	S. aureus dfrB gene for diliydrofolate zeductase	96	416	(\$)
130	-	4309	5172	emb 216422 SADI	S.aureus dirB gene for dihydrofolate zeductase	86	607	864
136	-	1 5296	6207	emb X71437 SAGY	[S.aureus genes gyrB. gyrA and recF (partial)	re	838	912
1.06	- 2	111680	8987	dbj p10489 STAG	db][D10489 STAC Staphylococcus aureus genes for DNA gyrase A and B. complete cds	100	2694	2694
136	9	112686	10940	db3 J10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	66	1947	1947
136		112592	11765	gb 577055	FecF cluster: dnahrreplisome assembly protein . gyrb:DNA gyrase heta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 ntl	55	82.2	828
143	-	1 4171	1 2867	[96[036379]	Staphylococcus sureus S-adenosylmethionine synthetase gene, complete cds	66	1305	1305
1		3100	4281	gb L42943	Staphylococcus aureus (Clone Kin50) phosphoenolpyruvate carboxykinase (pckA) gene, complete cds	100	1170	1182
7		4254	4718	de U51133	Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	100	617	465
7		6977	7261	96 051132	Staphylococcus aureus orsuccinylbenzoic acid CoA ligase (mene), and o-	100	25	285
3	97	7976	9361	95 (151132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthetase (menc) genes; complete cds	100	1104	1104
71	=_	111232	9748	96 051132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic acid synthetase (menc) genes, complete cds	100	1485	1485
143	===	110739	110320	ge US1132	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (Mane), and o-succinylbenzoic acid synthetase (menc) genes, complete cds	100	332	420
152		2454	3437	emb X58434 SAPD	S auceus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransfersee and dihydroliposmide dehydrogenese	66	305	984
152		1513	4820	emb X58434 SAPD	S aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrollpoaride acetyltransferate and dihydrollpoaride dehydrogenese	85	8061	1308
152		4818	6230	emb X58434 SAPD	S aureus pdhB, pdhC and pdhD genes for pyruvate docarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	66	E -	1413
153		387	1526	35/7/55 dg	reck cluster: dnak-replisome assembly proteingyrB-DNA gyrsse beta subunit [Staphylococcus aureus, YB886, Genomic, S genes, 3573 nt]	66	1140	1140
153		1877	2152	550772 46	reck cluster: dnak-replisome assembly proteingyrB-DNA gyrssa beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 1573 nt)	001	276	276

S. aureus - Coding regions containing known sequences

Contig	108F	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt tength	
153		2143	2283		reck cluster, diadareplisome assembly proteingyrBsDNA gyrase beta subunit (Staphylococcus aureus, YB686, Genomic, 5 genes, 3573 ntl	66	1:0	14.7	
154	01	110792	9314	95 106451	Staphylococcus aureus proline permease homolog (putP) gene, completa cds	16	154	1479	
154	=	9935	5196	gb U06451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	66	229	32:	. — .
154	112	9943	110167	461006451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	*	123	225	
154	=	110089	111501	gb U06451	Staphylococcus aureus proline permease homolog (put?) gene, complete cds	66	1326	1413	• —
159	~	2195	1212	dbj b28879 STAP Staphylococcus	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	1001	1,1	984	
161		72596	2270	dp H83994	Stabhylococcus aureus prolippoprotein signal peptidase (lsp) gene, complete	92	203	327	•
1 162	-	1406	1 70\$	gb u21221	Staphylococcus aureus hyaluronate lyase (hysA) gene. complete cds	001	100	702	• - •
163		1263	27.71	1000610146	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	96	127	510	
164	1 7	4774	1 9117	db3 D86727 D867	Staphylococcus sursus DNA for UNA polymerase III, complete cds	56	3470	4344	
168		7448	6447	gb U21636 	Staphylococcus aureus cmp-binding-(actor 1 (cbf1) and OHF X genes, complete cds	100	1002	1005	
168	6	9838	7961	96 021636	Stabhylococcus aureus cmp-binding-factor 1 (cbf1) and ORF X genes, comp.ete	66	1158	1578	
173		9240	7801	195 3034791	S.aureus entyme III-lac (lacF), entyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	100	Q	7 + 0	•
671		111252	9522	gb J03479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galectosidese (lacG) genes, complete cds	66	1571	1671	•
671	*	8285	1 A704	1917031391	G. Autreus enzyme III-lac (lacF), enzyme II-lac (lacE), end pilospho-beta- golectosidese (lacG) genes, complete cds	001	4 20	420	
15.1		10168	9839	db J03479	S.sureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genus, complete cds	001	330	330	
671	01	111815	10829	emt x14827 SALA	Staphylococcus aureus lacC and lacD genes	1001	987	987	
1 173	===	12721	111774	emb X14827 SALA	Staphylococcus aureus lacC and lacD genes	100	876	948	
173	112	12838	112305	gb H64724	S.aureus tagatose 6-phosphate isomerase gene, complete cds	100	534	\$34	
671	3_	13243	112773,	95111321031	Staphylococcus arreus lac repressor (lacR) gene, complete cds end lacA repressor (lacA) partial cds	001	1.6	15.	
173	-	14 14633	13866	gb[H32103	Stabbylococcus arreus lac repressor (lack) gene, complete cds and lack repressor (lack); partial cds	100	768	768	

S. aureus - Coding regions contaminy known sequences

percent MSP nt OMF nt ident length length	100 115 654	100 720 720	100 453 453	100 303 303	592 592 66	99 270 270	99 499 525	98 772 98	97 1332 1623	99 119 1611	90 132 822	99 1920 1920	7.1 7.1 66	99 250 1203	0.00	99 324	90 300 300	99 1143 1143	94 444 873	99 1552 1557	99 684 708	96 157 342
match gene name	Stephylococcus aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	Staphylococcus aurous holin-like protein LrgA (lrgA) and LrgB (lrgB) genes, complete cds	Stephylococcus aureus holin-like protein LrgA (IrgA) and LrgB (IrgB) genes, complete cds	Stephylococcus aureus holin-like protein LrgA (IrgA) and LrgB (IrgB) genes, complete cds	(Stabily)ococcus aureus lytS and lytR genes, complete cds	Staphylococcus aureus lytS and lytR genes, complete cds	S.aureus aigna factor (plac) gene, complete cds	Staphylococcus aureus spa gene for protein A	S aureus spe gene coding for protein A, complete cad	Staphylococcus auraus spa gene for protein A	Staphylococcus aureus chorismate synthase (arcc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydrosulnate synthase (aroB) and geranylgaranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	emb/x17679 SACO Staphylococcus auraus coa gene for coagulase	Staphylococcus aureus gene for staphylocoagulase	Staphylococcus aureus gene for staphylocosgulasa	Staphylococcus aureus lysyl-tRNA sythetase gene, complete cds, transfer RNA (RNA) genes, 55 ribosomal RNA (155 rRNA) gene, 155 ribosomal RNA (155 rRNA) gene, 235 ribosomal RNA (235 rRNA) gene	S.aureus ptaH and ptal genes	S.aureus ptell and ptel gonea	S.aureus orfs 1, 2, 3 & 4	S.aureus genes P1 and P2	Staphylococcus aureus atl yene for autolysin, complete cds and other ORFs	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (a:1) genes, complete cds	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB,
match	96/052961	gb U52961	gb U52961	gb U52961	95[1:42945]	96 142945	95 146)177	emb x61307 SASP	ap 101186	emb X61307 SASP Staphylococcus	gb U31979	emb X17679 SACO	emb/K16457 SAST Staphylococcus	emb X16457 SAST	95 136472	emb X93205 SAPT	cmb X93205 SAPT	emb x97985 SA12	emb X73889 SAP1	dbj p17366 STAA	gb[L41499]	dbj D86240 D862
Stop	655	1482	1909	1853	2777	3025	290	17.	2312	4251	83.4	2760	016	995	872	2011	2310	1305	75	1558	2232	07.77
Start (nt)	~	7,201	2361	1551	3541	3294	- VIC		069	5861		1	2967	5768	1741	16AK	2002	163	1303	3114	2939	7429
DOR!		~		•	: -	4	-	-	-	_		_	-			-	-	-	- 2		7	- =
Cont 19 ID	178	96.1	178	471	17*	178	181	182	192	182	1.85	161	191	191	196	194	86.	202	202	210	210	7.7

10	
15	
20	
25	
30	
35	
40	
45	
50	

55

S. Auceus - Colling regions containing known sequences

Concig OHF	OHE	Start	Stop (nt)	match	, natch gene name	percent	HSP nt length	ORF nt length
1 216	-	398	1318	emb x727c0 SAPV	S. aureus genes for S and F components of Panton-Valentine laucocidins	988	265	921
219		1810	1073	dbj D30690 STAN	Staphylococcus aureus genes for ORF37, HSP20, HSP70; HSP40, ORF35, complete	200	2	- 8.0
219		2979	2035	db) b30690 srA1	Stubhylococcus aureus gomes for OHF37; HSP20; HSP40; ORF33, Complete	66	365	945
219		4159	3196	db3 D30690 STAN	Stanhylococcus aureus genes for ORF37, HSP20, HSP70, HSP40, ORF35, complete cds	66	1164	191:
·		7044	9,15,	db. fb30690 sTAN	Stativiococcus auricus genos for ONF37, HSC20, HSC70, HSP40, ORF35, complete cds	æ 50	1869	1969
219	9	6557	5883	db; D10690 STAN	Staphylococcus auraus genes for OHF37. HSP20, HSP70, NSP40, ORF35, complete cds	66	419	675
219		6401	6334	dbj n30690 STAN	Stabbylococcus auraus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete cds	8.6	468	6.63
221		110816	10034	gb 1.19298		6	69	183
22		2855	1506	 gL U73374	Staphylococcus aureus type B capsule genes, cap8A, cap8B, cap8C, cap8E,	66	102	1350
***	-	~ -	1 1357	emb x97985 SA12	S.aureus orfs 1.2,3 & 4	CO1	176	1356
234	~	1694	2485	emb(x97985 SA12	S. aureus orfs 1,2,3 & 4	1000	192	192
234	-	1 2648	3148	emb x97985 SA12	S.auraus orfs 1,2,3 6 4	66	501	105 1
234	-	1 3120	4604	emb x97985 SA12	S. sureus orfs 1,2,3 t 4	66	1305	1485
236	-	1 3826	5322	gb U48826	Staphylococcus aureus elastin binding protein (abpS) gene, complete cds	96	648	1497
248	-	- 2	1 603	emb x62288 SAPE	emb X62288 SAPE S. aureus DNA for penicillin-binding protein 2	COL	103	402
7 4 8		e = -	892	qu 1,25426	Staphylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete cds	6	465	465
1 253	~	1539	1 1093	gb U46541	Staphylococcus aureus sark gene, complete cds	96	1 447	1 447
254	~	1 150	1835	ab U57063	Staphylococcus aureus scdA gene, complete cds	76	142	1686
254	-	1973	1 2728	gb US70631	Staphylococcus aureus scdA gene, complete cds	66	156	756
560	-	~ -	1 1900	[DE-]M906431	Staphylococcus Aureus glycerol ester hydrolass (11t) gene. complete cds	66	1213	1699
265			345	db< p21131 5TAS	Staphylococus aureus gune for a participant in homogeneous expression of high-level methicillin resistance, complete cds	2	176	942

Aureus - Coding regions containing known sequences

Contig	ORF C:	Start	Stop	metch acession	match gene name	percent	ils? nt Length	ORF ut Length
1 265	- 5	6.88	476	dbj 021131 STAS	Staphylococcus aureus gane for a participant in homogeneous expression of high-level methicillin resistance, complete cds	66	213	213
265		2418	1765	db] 021131 STAS	Staphylococcus aureus gene for a participant in homogeneous expression of high-level methicilin resistance, complete cds	e 6	6.9	654
7 7 99	-	7 -	1018	db; p14711 stAH	Staphylococcus aureus HSP10 and HSP60 genes	86	743	1017
282			1 525	90/672488	hemB-porphobilinogen synthase (Staphylococcus aureus, SA1959, Genomic, 1087)	100	110	\$25
282	7	516	1502	90 572488,	hemB-porphobilinogen synthase (Staphylococcus aureus, SA1959, Genomic, 1087 nt)	001	952	786
284			170	gb H63176	Staphylococcus aureus helicase required for TIR1 replication (pcrA) gene, complete cds	86	50°	168
284		282	1034	gb H63176;	Staphylococcus aureus helicase required for T181 replication (pcrA) gene.	100	112	637
787		1028	2026	gb M63176	Staphylococcus aureus helicase raquired for Ti81 replication (pcrA) gene.	66	979	666
744		0661	2007	gb M63176	Scriphylococcus aureus helicase required for T181 replication (perA) gene.	8.6	187	21.7
289		1536	1661	gb H32470	S. aureus SaulAl-restriction-enzyme and SaulAl-modification-enzyme genes,	50	338	456
100		7	868	dp r01025	Staphylococcus aureus gamma-hemolysin components A. B and C (higA, higB, hgC) ganus, complute cds	66	867	967
101	~	1409	2383	3010.1 49	Staphylococcus aureus gamma-hemolysin components A B and C (high, high, hgC) genes, complete cds	1001	975	37.8
100	<u></u>	2367	3161	gb L01055	Scaphylococcus aureus ganna-hemolysin components A. B and C (HigA, HigB, hgC) genes, complete eds	66	193	795
305	-	2707	1135	db; D17366 STA	Staphylococcus sureus atl gene for autolysin, complete cds and other ORFs	- 66	1343	1353
311	-	2628	\$1111	[gb 1.42945]	Staphylococcus sureus lyts and lytR genes, complete cds	86	1314	1314
211	<u>-</u>	7019	0.087	de 1,14017	Staphylococcus mureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	4.	351	653
1323		8661	1003	96 U31175 	Staphylococcus sureus D-specific D-2-hydroxyacid dehydrogenase (ddh) gene, complete cds	86	966	986
326	-	~	1 237	 emb Y00356 SASP	Staphylococcus aureus V8 serine protease gene	1001	108	237
338	-	687		emb X64389 SALE	S. aureus leuf-PB3 gene for F component of leucocidin R	9.8	259	300
338	- 2	1.1924	1048	emb 254389 5ALE	Count [7543 H9 5ALE Soureus lenf-183 gene for P component of leucocadas A	1 16	137	741

S. aureus - Coding regions containing known sequences

1	2 519 1754 1 457 230 1 1016 516 1 1582 1046 1 1 1 903 1 1504 1348		Fisz ([132] gene, Complete cds 11 attachment site (att8) ipoprotein signal peptidase (lsp) gene, tpoprotein signal peptidase (lsp) gene, tlass II analog gene, complete cds hatidylinositol-specific phospholipase C	001	1176	176
1 437 230 40 H20315 Statem backetisphere phi-11 attechent site (str8)	2 517 1248 1 1 457 230 1 1016 516 2 1582 1046 1 1 1 903 1 1004 1148		ipoprotein signal peptidase (lap) gene, tpoprotein signal peptidase (lsp) gene, tleas II analog gene, complete cds hatidylinositol-apecific phospholipase (96	732	
100 1912 1914 1	1 1 1016 516 116 516 116 516 116 116 116 116 1			96		732
1812 1918	2 1582 1046 1 1 1 674 2 1103 1567 2 1103 1567				172	228
1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 674 1 1 1 1 903 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			001	187	\$01
1 1 1 1 1 1 1 1 1 1	1 1 1 901 1 1 1 901 2 1103 1507 1 1 1 148		U	66	537	143
1 10 150 [40] Li3298 Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) 98 747 98 747 98 748 98 747 98 748 98 748 98 748 98 748 98 748 98 748 98 748 98 748 98 748 98 748 98 748 98 748	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		U	75	1 129	672
1 1507 QD Lin9236 Standby/lococcus aurea phosphetidylinositol-specific phospholipse C (plc) 97 146 150 146 148 each X2286 SAE Standby-Bocccus aurea 15 1504 148 each X2286 SAE Standby-Bocccus aurea 15 1504 148 each X2286 SAE Standby-Bocccus aurea 15 1504 148 each X2386 SAE Standby-Bocccus aurea 15 1504 148 each X2386 SAE Standby-Bocccus aurea 15 1504 148 each X2386 SAE Standby-Bocccus aurea 15 1504 1605	2 1103 1507 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			96		106
1 1 1166 emp[462289] SATE Statemar Earget site DNA for IS31 Insertion 97 1166 1166 1168 emp[462282] SATE Statemar Earget site DNA for IS31 Insertion 97 149 169 1168 emp[462722] SATE Statemar Earget site DNA for IS31 Insertion 97 149 169	1 1 3 1148	SATS S. aureus DRA	s aures phosphatidylinositel-specific phospholipase C (plc)	. 6	. 80	404
1 1904 1248 amb x2292 SXTS S.aureus hip gens encoding sphinghawylinase 79 199 189 1 1 1 190 amilx2792 SXTS S.aureus hip gens encoding sphinghawylinase 79 189 189 189 181 1810 1049 40 576213 augratus 10 60 60 60 60 60 60 60	1 3 1904 1248	SATS S. aureus Car	for penicillin binding protein 2	1 66	1146	:146
1 1810 1187 emb X13104[SMIL Staphylococcus aureus hib gene for beta-hemolytin 99 178 189 1			et site DNA for IS431 insertion	- 6	349	657
1 1810 1049 90 574213 asp23-altaline shock protein 23 (methicillin resistant) Staphylococcus 99 178 181 1810 1049 90 574213 asp23-altaline shock protein 23 (methicillin resistant) Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, 100 216 complete cds Complete cds 200 200 216 200 216 200 216 200 216 2162 2509 90 L4309 Transporton Trocus aureus ORF1, partial complete cds 100 216 200	1 1 1 540		gene encoding sphingomyelinase	- 66	189	540
1 1810 1049 gb S76213 aarews 912, Genomic, 1360 mil) aurews 9123-aikaline shock procein 23 (methicillin resistant) Staphylococcus aurews 3812, Genomic, 1360 mil) 2 217 ub :44199 Staphylococcus aurews 3819 mil semicons and other ORFs, autolysin (atl) genes, 100 216 2509 ub :441098 Transposon Tistot and insertion sequences 151181 and 151182 (from 99 1248 1248 125 db :421098 Transposon Tistot and insertion sequences 151181 and 151182 (from 99 1248 1248 125 db :228819 STAP Staphylococcus aurews gene for penicillin-binding protein 1, complete cds 100 433 125 db :228819 STAP Staphylococcus aurews gene for unkown function and dit operon ditA, ditB, 100 556 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews gene for unkown function and dit operon ditA, ditB, 100 134 displaysoccus aurews genes coaplete cds displaysoccu	2 1693 1187	SAHL Staphylococc	a aureus hib gene for beta-hemolysin	1 66	178	507
1 2 217	1 1810 1049	asp23=alkalii aureus, 912	(methicillin resistant)	66	163	762
2 1262 2509 db L43098 Transposon Th5404 and insertion sequences IS1181 and IS1182 (from 99 1248 1262 1262 2509 db L43098 Transposon Th5404 and insertion sequences IS1181 and IS1182 (from 99 1248 1262	1 2 217	Staphylococc	s aureus ORFI, partial cds, ORF2, ORF3, autolysin (atl) genes,	100	216	216
2 1262 2209 9D L43098 Transposon Th5404 and insertion sequences [51181 and [51182 (from Staphylococcus aureus) DNA 1 2 122 9D MO2985 S.aureus (strain NN450) transposon Th554 insertion site 96 200 432 1122 434 434 435 MO2985 S.aureus (strain NN450) transposon Th554 insertion site 96 200 432 1122 435 434 435 MO2985 S.aureus gene for penicillin-binding protein 1, complete cds 100 151 1 2 808 435 MO500000000000000000000000000000000000	2 854 639	STAA Staphylococc	s aureus atl gene for autolysin, complete cds and other ORFs	1001	188	216
1 2 125 qb s02885 S.aureus (strain RNA50) transposon Tn554 insertion site 96 200 200 201 201 202	2 1262 2509	Transposon Ti Staphylococ	5404 and insertion sequences [5118] and [51182 (from us aureus) DNA	66	1248	1248
1 865 414 db.)	1 2 325	S.sureus (sc)	rain RN450) transposon Tn554 insertion site	96	200	374
2 1829 1122 db.) C28879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds 100 151 1 2 808 db.) C86240 D862 Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, 100 556 2 A32 999 db.) C86240 D862 Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, 100 134 2 A32 999 db.) C86240 D862 Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, 100 134 1 1141 685 emb X17688 SAFE Staureus factor essential for expression of methicillin resistance (femA) 97 657 1 1141 685 emb X17688 SAFE Staureus factor essential for expression of methicillin resistance (femA) 97 657 1 1141 685 emb X17688 SAFE Staureus factor essential for expression of methicillin resistance (femA) 97 657 1 1141 685 emb X17688 SAFE Staureus factor essential for expression of methicillin resistance (femA) 97 657 1 1141 685 emb X17688 SAFE Staureus factor essential for expression of methicillin resistance (femA) 97 657 1 1141 685 emb X17688 SAFE Staureus factor essential for expression of methicillin resistance (femA) 97 657 1 1141	1 865 434	STAP Staphylococci		1 001	432	432
1 2 ROB db.) ER6240 D862 Stabhylococcus aureus gene for unkown function and dlt operon dith, dltB, 100 556 2 A32 999 db.) ER6240 D862 Stabhylococcus aureus yene for unkown function and dlt operon dlth. dltB. 100 134 1 1341 585 emb x17688 SAFE Saureus factor essential for expression of methicillin resistance (fena) 97 657 1 1341 585 emb x17688 SAFE Saureus factor essential for expression of methicillin resistance (fena) 97 657	2 1829 1122			100	151	10 K
2 A32 999 div. FA6240 D862 Stathylococcus aureus yene for unkown function and dit operon ditA. ditB. 100 134 ditC and ditC and ditD genes.complete cds ditC and ditC and ditC and ditD genes.complete cds ditC and ditC and ditD genes.complete cds ditC and ditD genes.complete cds ditC and ditD and cipA gene, 3 end ditC and ditD and cipA gene, 3 end ditC and ditD and cipA gene, 3 end	808		is aureus gene for unknown function and dit operon ditA, ditB, i D genes.complete cds	700	556	807
1 1341 685 emb X17688 SAFE S. aureus factor essential for expression of methicillin resistance (fem.) 97 657	2 832		is aureus yers for unknown function and dit operon dith, dith.	0001	46.	168
	1 1341 685		or essential for expression of methicillin resistance (fem.) the cds, and trpA yene, 3' end	1.6	559	. 59

auteus - Coding regions containing known sequences

Cont.19 ID	<u> </u>	Start (nt)	Stop (nt)	Tatch	match gene name ()	percent ident	lise of	ORF nt length	
436	e: 	2401	1657	cab X17688 SAFE 	S.aureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, ? and	100	294	2.00	
£ 2	-	347	1100	cmb x72700 SAPV	S.aureus genes for S and F components of Panton-Valentine leucocidins	36	204	954	- •
\$ 7		1906	2178		Staphylocorcus aureus gamma-hemolysin components A. B and C (higA, higB. hglC) genes, complete cds	œ	187	273	
447		167	1078	de U19770	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	100	51.5	912	
5		1176	1784		Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) gene, complete	96	165	609	
454	_	1 7309	1 4319	emb 218852 SACF	S.aureus gene for clumping factor	25	653	2991	•
472		1896	5479	gb L25288	Staphylococcus areaus gyrase-like protein siphs and beta subunit (griA and grib) genes, complete cds	66	2418	2418	
472		A120	1 6792	qb L25288	Staphylococcus aureus gyrase-like protein siphs and beta subunit (grlA and grlB) genes, complete cde	66	1328	1329	
475	-	995	688	emb X52543 SAAG	S. auraus agrk, agrk and hid genes	1001	92	324	
184		1 1922	1260	em.) X64172 SARP	S. Aureus rplL, orf202, rpoBitif, and ipoC yenes for ribosomal protein L7/Li2, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta chains	00	250	363	
14.0		1244	1534	emb x64172 SARP	S. aureus rpll., orf202, rpoBfriff and rpnC genes for ribosomal protein 1.77L12, hypothetical protein ORF202, DNA directed RNA polymerase beta 6 heta. Chains	0001	224	291	
4.8.7		1368	98	gb n83994	Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete cds	86	<i>11</i>	707	
489	1 -	1 2737	1370	gb U21221	Staphylococcus aureus hysluronate lyase (hysk) gene, complete cds	66	1368	1368	
503		2011	+ 6 5 3	gb M83994{	Staphylococcus sureus prolipoprotein signal peptidase (lsp) gene, complete	100	10 80 1	T R P	
115		1613	2242		staphylococcus aureus methicillin-resistance protein (mecRi gene and unknown ORF, complete cds	80	323	050	· •
511		3122	1 2700	gb \$76213	asp23malkaline shock protein 23 (methicillin resistant) Staphylococcus aureus, 912, Gunomic, 1360 nt]	96	423	1.04	
520	- 2	158	1297	emb x72014 SAFI	S. aureus fib gens for fibrinogen-binding protein	66	240	540	
520	_	1436	1081	emi. X72013 5AFI	emb X72013 SAFI Sauraus fib gene for librinogen-binding protein	3	221	106	- •
526	: -	1 2150	1092	db D17366 STAA	(db.j D17166 STAA Staphylococcus aurous atl gene for autolysin, complete cds and other ORFs	66	641	1059	- •

auraus - Coding regions containing known sequences

:	<u></u>		. ~ ~ ~						:	- 7	<u>-</u>	·			-	- 6
ORF nt	906	87.11	432	11.85	1933	795	1161	591	31.6	192	191	? 6	201	315	2814	6761
HSP nt length	260	866	432	1185	1 00	\$1	908	196	336	189	\$	918	122	306	2588	1873
percent	66	66	6	916	65 60	001	66	100	66	100	001	6	96	66	96	- 66
meatch gene trame	Staphylococcus aurous DNA sequence encoding three ORFs. complete cds; prophage phi-11 sequence homology. S. flack	Staphylococcus auteus DNA sequence encoding three ORFs, complete cds; prophage phi-11 sequence homology, S: flank	Stephylococcus aureus chorramate synthase (arcd) and nucleoside diphosphate kinase (ndk) genes, complete cds, dchydroaumate synthase (arcB) and geranylgeranyl pyrophosphate synthatase homolog (gerCC) genes, partial cds	Staphylococcus aureus chorismate synthase (arc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dchydroaunate synthase (arcB) and geranylgeranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (ndk) genes, complete cds, dehydroeunate synthase (aroB) and prinnylgeranyl pyrophosphate synthatase homolog (gerCC) genes, partial cds	Staphylococcus aureus dehydroquinate synthase (arob) gene. 3' end cds: }- phosphoshlkimate-1-carboxyvinyltransfarasa (arob) gene, complete cds: ORF3, complete cds	Stabity occous aureus dehydroquinate synthase (arob) gene, 3' end cds; 3-phosphoshikimate-1-carboxyvinyltransforase (arob) gene, complete cds; OFF3, complete cds	Staphylococcus aureus dehydroquinate synthase (aroB) gene, 3' end cds; 3-phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds; ORF3, complete cds	S.aureus (bb270) glnA and glnR genes	emb X76490 SAGL S.aureus (bb270) glnA and glnR genes	Staphylococcus aurens type 8 capsula genes, cap8A, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F,	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H,	Staphylococcus aureus hyaluronate lyase (hysk) gene, complete cds	SACF 15. aureus gene for clumping factor	dis D2N879:STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds
acession	deressoo	ا 100،614 بالوا	1979	9761(0)46	98/031979	dp ro2004	1905001196	1400507 40	emb x76490 sAGL	emb X76490 SAGL	95(073374)	4 78874 de	 1 1 1 1 1 1 1 1 1 1	[gb:u21221]	emo 218852,SACF	dbj D2HR79:STAP
Stop (nt)	963	2870	434	2395	2801	80	4792	5380	338	527	365	1252	1374	705	4288	1953
Start (nt)	5.8	1098		1211	5109	2690	3482	4790	~	336		2175	1574	1019	1475	3881
ORF 1	~			! !						-	. —— · - -	~		7		-
Contig ORF 1D ID	528	528	230	530	530	530	010	530	5.39	623	554	554	554	584	587	F9.8

Control Ord State Stat	ORF nt	744	613	5 9	1251	1032	666	213	1699	549	295	8 G	969	453	246	654	617	165	₹95	\$25	300
1 10.1	4	338	\$67	689	225,	60.00	066	194	489	549	195	478	456	369	246	653	136	*6	564	195	280
1.0 1.0	percent	86	001	66	1 90	66	66	86	82	66	9.6	66	80	100	100	6	100	9.8	96	100	16
SCART STOP (101) 2 745 2 745 2 745 2 745 2 745 2 745 2 745 2 745 2 746 2 10 0 1 10 5 2 10 0 10 10 5 2 10 0 10 10 5 2 10 0 10 10 10 10 2 10 0 10 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 10 10 2 10 0 10 1	match gene name	Stably lococcus and one for unbown function and dlt operon dlta, ditB, ditC, and dltb genes, complete cds	S. aureus (bb270) glnA and glnR genes	auraus lac repressor (lack) gene, complete cds and cA), pertial cds	Staphylococcus arreus helicase required for T181 replication (pcrA) gene, complete cds	Stannylococcus avraus helicase required (or T181 replication (pcrA) gena, complete cds	Staureus factor essential for expression of methicillin resistance (fenA) gene, complete cds, and trpA gene, 3 end	essential for expression of cds, and trpA gene. 3' end		S.aureus (RN4220) genes for potential ABC transporter and potential membrane apanning protoin	(RN4220) genes for potential ABC transporter spannling protein		Bureus Tomplete	Staphylococcus aureus hib gene for beta-hemolysin	Staphylococcus aureus hib gene for beta-hemolysin	Staphylococcus aureus hib gene for beta-hemolysin	gene,	aureus type-I signa, peptidase SpsA (spsA) gene, and ise SpsB (spsB) gene, complete cds	signal gene.	(plac) gene, complete	factor (plac) gene,
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	match	dbj b86240 p862	KM.) X76490 SAGE	95/932103	gb H63176	QU M63176	emb X17688 SAFE	emb(X17688 SAFE	emb 218852 SACF		emb 230588 SAST	95 L19300	95 114017	emb x13404 SAHL	emb[X13404 SAHL	enb X13404 SAHL	Qb n63177	0005901/16	1000590146	95[863177]	95 463177
	Stop (nt)		816				1001	1195	3228	5\$1	1323	1070			475	_		592		_	-
	Start (nt)	2	1628	1280	2508	3315	6661	1407	\$126	•	529	1909	1800	806	230	346	9\$6	1182	9121	-	185
00 00 00 00 00 00 00 00 00 00 00 00 00	ORF					7			~		~		~		~		_		~	-	~
	Contag	605	609	• 1 • • • • • • • • • • • • • • • • • •	626	626	629	629	169	632	717	651	657	662	663	662	682	6.85	6.85	697	697

o auteus - Codi y regions containing known sequences

Contin ORF	1 OBF	Start	Stop (nc)	natch	match gene name	percent	HSP nt length	ORU: M Length	
710		15	503	dbj D86240 D862	Staphylococcus Aureus gene for unkown function and dit operon ditA, ditB, ditE,	66	217	689	
££7		26	205	 ub H80252 	Staphylococcus aurous norAll99 gane (which mediates active efflux of fluoroquinolones), complete cds	- 6	140	D 8 1	
741		1736	7611	db; D83951 STAL	Staphylococcus aureus DNA for LukM component, LukF-PV like component.		\$22	54C	
1 752	-	-	636	emb Y00356 SASP	Staphylococcus aureus V8 serine protesse gene	66	619	9.99	
1 752	- 2	5.88	986	emb Y00356 SASP	emb Y00156 SASP Staphylococcus aureus V8 serine protesse yene	66	340	369	
756	-	1 1308	1 709	emis x01645 SATO	emi XD1645 SATO Staphylococcus auraus (Wood 46) gene for alpha-toxin	86	195	009 1	_ •
771	-	1 1582	056	emb 249245 5A42	S. sursus partial sod gene for superchide dissutase	- 66	429	633	
780	-	11111	557	gb U20503	Staphylococcus aureus MMC class. Il analog gene, complete cds	98	\$50	555	- •
1 784	-		1 687	gb U63529	Staphylococcus aureus novel entigen gene. complete cds	8.6	568	635	_ •
797	-	1 182	544	(db) D14711 STAH	db. D14711 STAH Staphylococcus aureus HSP10 and HSP60 genes	86	163	163	
R67		532	302	emb x58434 SAPD	S. aureus pdhB. pdhC and pdhD genes for pyruwate decarboxylase. dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	86	961	231	
823			1 467	gb S77055	recF cluster: dmaAareplisome assembly proteingyrBaDNA gyrase beta subunit Staphylococcus aureus, YB886. Genomic, 5 genes, 1513 nt]	66	156	\$9	
£		348	175	gb u25288	Stabitylococcus aureus gyzase-like protein alpha and bata subunit (grlA and grib) gones, complete cus	66	174	174	
		927	33.8	gb L25288	Stabbylococcus sureus gyrese-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	001	101	159	
398		792	1 397	-mb X64172 SARP	S.auraus rplL, orf202, rpoBirifl and rpoC games for ribosomal protein L7/Liz, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta' chains	56	395	396	
689	-	-	1 285	WTS 6110601 (ab)	S. sureus nork gene	66	101	285	- •
***	-	909	334	emb x52543 SAAG	S. aureus agrA, agrB and hld genes	96	265	173	•
	- 5	116	525	emb V52543 SAAG S.aureus agrA.	S.aureus agrA, agrB and hid genes	100	195	195	
912		1 517	6.81	emb 230588 SAST	S. aureus (RN4/20) genes for potential ABC transporter and potential membrane spanning protein	66	163	165	***
216	-	1 2	1 265	gb H64724	S aureus tagatose 6-phosphate isomerase gene, complete cds	66	247	264	- •
216	-	238	396	gb R64724	S. aureus tagatosa 6-phosphate isomerase gene, complete cds	\$6	147	159	+
918	-	2426	1215	emt x93205 SAPT	emt x93205 SAPT S. aureus ptsH and ptsI genes	6	1212	1212	

s, autous - Codest regions contaming known sequences

percent USP nt OMF nt ident length	118 188 18	986 336 936	273	99 234 234	99 224 285	85 205 321	99 180 195	100 131 588	99 228 228	100 267 267	100	4 7 1 1 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99 243 343 3	97 721 79	99 360 360	787 787 001	100 240 240	97 124 162	99 495 528	1017 017 001	99 299 432
הפרכה קפה הפה הפרכה להפה הפרכה הפ	S. aureus nork gene	S. sursus agrA, agrB and hld genes	Staphylococcus aureus methicillin-resistance protein (mech) gene and unknown ORF, complete cds	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cds	Staphylococcus aureus hyaluronate lyase (hysk) gene, complete cds	emb X7270C SAFV S. aureus genes for S and F components of Panton-Valentine laucocidins	S.aureus pohB. pohC and pohD genes for pyruvate decarboxylass.	S.eureus (strein RN450) transposon Tn554 insertion site	Stabbylococcus aureus onne for unkown function and dit operon ditA, ditB,	Stabbylococcus aureus gene for unkown function and dit operon ditA, ditB,	Stanbylocorcus arrens gene for unkown function and dit operon ditA, ditB, ditC and ditU genes, complete cds	S.aureus pdhB. pdhC and pdhD genes for pyruvete decerboxylese. dihydroliposmide acetyltrensferese and dihydroliposmide dehydrogenese	S. aurous blyma factor (plac) gena, completa eds	emb[24803] SADN S.aureus gene for DNA polymerase III	nurA-NorA (ISP796) Staphylococcus aureus, NCTC 8325, Insertion, 1820 nt]	S. aureus agr gene encoding an accessory gene regulator protein, complete	S. aureus agrA, agrB and hld genes	ent X17679 SACO Staphylococcus aureus cos gene for coagulase	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes,complete cds		emb x76430:SAUL S aureus (bb270) glnA and glnR genes
match acession	STAN	emb X52543; SAAG	1210+17 06	dbj D86240 D862	gb U21221	emb x7270C SAPV	[emb X58434 SAPD S.aureus pdhB.	dp K02985	[db] D86240 D862	 db3 D86240 D862		emb X58434 SAPD	[qp]H63177]	emb 248003 SADN	1001574031	gb M21854	only X52543 SAMG S.aureus agrA.	ent: X17679 SACO	dby D86240,D862	95 574031	emb x76430 SAUL
Stop (nt)	117	337	84.5	265	285	330	286	589	230	18,	645	9	243	136	361	283	888	163	625		472
tot)		672	1117	867	_	959	084	1176		218	09.4	289	-	~	7.20	7	1127	~	~	-	‡
10KF					-	-		-		7			-	-	1		~	-		=	-
Cont.19 ORF ID 110	1 696	166	1000	1001	0101	1046	1060	1073	1079	1079	1073	7601	1140	1157	11119	1190	1190	1225	1243	1244	1 1011

TARIE

5. aurous - coding regions containing hugan sequences

		•		• •	• - •				. – .		. — — •	•	•	•	· — — — ·	• •			
ORF nt length	909	174	672	321	192	180	345	4 03	707	402	153	349	381	396	291	369	786	237	171
HSP nt Length	575	139	672	321	192	180	345	403	207	131	153	199	358	272	250	347	98 2.	178	120
percent	**	86	86	66	06	00 t	- 66	001	66	- 66	66	6	100	r e	80	96	F 80		
match gene name 	S. aureus rplu, orf202, rpoBirif) and rpoC genes for ribosomal protein L7/L12. hypothetics: protein ORF202, DNA-directed RNA polymerase beta 6 beta: chains	Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	Stabby accoust auters gene for unknyn function and dit operon ditA, ditB, ditC and ditD genes, complete cds	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8E, cap8E, cap8E, cap8H, cap8L, cap8L, cap8H, cap8N, cap8D, cap8P, cap8H, cap8N, cap8D, cap8P, cap8N, cap8D, cap8D, cap8P, cap8N, cap8D,	Staphylococcus aureus alphe-hemolysin gene, 3' end	S.aureus (accor essential for expression of methicillin resistance (fem.) gene. complete cds. and trpA gene. J. end	Staphylococcus aureus novel antigen gene, complete cds	Staphylococcus aureus gene for unkown function and dit operon dita, dita, ditc. and ditD genes complete cds	S. aureus signs factor (plac) gene, complete cds	Staphylococcus aureus DNA (ragment with class II promoter activity	S nureus (actor nasential for expression of methicillin resistance (fem.); gene, complete cds, and trpA gene, 3' and	Stabhylococcus aureus pentcillin-binding protein 2 (pbp2) gene, complete	Stabhylococcus aureus genes for ONF37; HSP20; HSP10; HSP40, ONF35, Complete cds	Staphylococcus aureus o-succinylbenzoic acid CoA ligase (mme), and o-succinylbenzoic acid synthetase (menc) genes, complete cds	(Staphylococcus aureus chorismate synthase (aroc) and nucleoside diphosphate kinase (nuk) genos, complete cds, dehydroauinate synthase (aroB) and geranyl pyrophosphate synthetase homolog (gerCC) genes, partial cds	Staphylococcus aureus coa gene for coagulase	Stabhylococcus aureus methicillin-resistant ATCC 11952 clone RANV30 165-215 rRNA spacer region	Staphylococcus aureus genes (or ORF37; HSP20; HSP10; HSP40 ORF35, complete	dbj bjo690 STAN :Raphylococcus sursus genes for ORF37; HSP20; HSP40, ORF33, complete
match	emi)	db) [028879 STAP	db.j D86240 D862	PLEELU198	gb H90536	emb X17684 SAFE	1685090 q5	db.) D86240 D862	ob H63177	95 06664	Cath XI7688 SAFE	gb 1,25426	dby D30690 STAN	951132 [96 331979	emb[X17679]5AC0	19061110 06	dbj1030690 stAN	db; b30690 STAN
(ur)	326	175	678	324	192	181	346	4 05	208	402	136	00	398	986	328	164	1784		281
Start (ret)	æ	7	1346	**		7	7		=	-	₩pc	2	86.77		81.9	832	2170	÷.	451
1 D D D D D D D D D D D D D D D D D D D		-		-	-		-		-	-	=-								~
Contig ORF	1315	1519	1663	1971	1857	1921	1957	1988	2100	2199	1533	1662	2950	2971	2978	29RS	3006	3008	3008

S. aureus - Coding regions containing known sequences

•	-:		: - :				;	: :	; - ;	:		;					; ;	;:	:	
ORF DE Length	396	234	153	198	147	258	22.	261	258	396	.62	101	25.	17:	23:	174	210	378	210	
HSP Jengch	12	234	100	135	\$11	183	213	234	229	7.50	215	1.60	142	6 0	192	154	197	91	21	141
percent	63	9.	9.	100	7.6	7.	66	86	66	96	96	66	6	100	86	96	89	96	80	96
match gene bene ' ' i	S aureus fabB gene for fabronectin binding protein B	S.aureus entyme littled (lacf), entyme [1-lac (lacf), and phospho-beta- galactosidese (lacf) genes, complete cds	Staphylococcus aureus proline parmease honolog (putP) gene, complete cds	Staphylococus aureus phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	Staphylococus aurous phosphoenolpyruvate carboxykinase (pcka) gene, complete cds	Staphylococus aureus phosphoenolpyruvate carboxykinase (pcka) gene.	S. aureus rpl.L. orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein OAF202, DNA-directed NNA polymerase beta 6 beta' chains	Staphylococcus aureus genes (or ORF37, HSP20, HSP40, ONF35, complete cds	Staphylococcus aureus proline permesse homolog (putP) gene, complete cds	S. Aurieus rplL. orf202, rpoB(rif! and rpoC gones for ribosomal protein 177L12, hypothetical protein ORF202, Dila-directed Ria polymerase beta is beta 'chains	dbj D86727 D867 Staphylococcus sureus DNA for DWA polymerase III. complete cds	S.auinus gene for Dith polymerase 1:1	S aureus enzyme III-lac (lacf), enzyme II-lac (lacf), and phospho-beta- galactosidase (lacc) genes, complete cds	S.aureus pdhB. pdhC and pdhD genes for pyruvete decarboxylese, dihydroliposmide scatyltransferase and dihydroliposmide dehydrogenase	S. auruus DNA for rpoC gene	S.auruus gene for clumping factor	db) n19489 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	S aureus pdhB, pdhC and pdhB genes for pyruvate decarboxylase. dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	S auraus entyme III-lac (lacf), entyme II-lac (lacf), and phospho beta- qalactosidase (lacG) genes, complete cds	(Staphylococcus aureus peptidoglycan hydrolase gene, complete cds
match acession	emb x62992 SAFN	64 F (07] 4 6	[gb] U06451	 0 0 0 0 0 0 0 0 0	96(051133)	95[051133]	emb x64172 sarp	db] 030690 stAN	[65]006451	emb x64172 sARP	dbj D86727 D867	cmb 218003 5ABB	6000000 100	emb X58434 SAPD	cmb x89233 SARP	emb 218852 SACF	db3 010489 STAG	emb >58434 SAPO	ub 303479	[gbl:176714]
Stop (nt)	398	235	233	287	164	127	215	261	284	397	239	344	155	398	233	271	211	378	211	160
Start (nt.)	193		18	06	88	02			7.7	7			307	368	163	3	420		430	-
ONF	-		-		-	~	:		-			-			; –	<u> </u>	_			-
Contag C	1000	9100	3023	3029	9000	3639	3056	3059	3073	3074	3088	1000	1102	1 1216	3125	3133	3160	3176	3192	1210

300000000	
4000	
3 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
500,000	
Contract	
910	
C	

Contig	101	Start (nt)	Stop (nt)	natch acession	match gene natu	percent	Ast of Jength	OKF nt length
3232	2	30tz	1282	1010+17 016	Stephylococcus aurous methicillin-resistance protein (mecR) gene and unknown OHF, complete cds	7	257	872
3534	: — : _	;	134	cmb x89233 SARP	S aureus DNA for 1 poc gene	66	3.56	191
3543	_	392	5	gb Lt1530		66	102	243
3555	-	637	320	emb 218852 5ACF	S. aureus gene for clumping factor	66	307	916
3559			182	emt X17679 SACO	Staphylococcus aureus coa gene for coagulase	100	141	180
1559	2	35	13.0	ent: X17679 SACO	Staphylococcus animis cos gene for cosgulase	96	174	2:9
1563		2.78	-		Stablyfococus aureus proli; Protein diacylglyceryl transferase (igt) gene, complete cds	001	66	=
3563	~	527	1 363	196 18573	Stabbylococus aureus prolipoprotein disc, jlyceryl transferase (igt) gene, complete cds	96	195	165
3566	-		422	emb X16457 SAST	Staphylococcus sureus gene for staphylocosquisse	86	175	420
3588			262	8p L43098	Transposon Institute and insertion sequences (S)181 and (S)182 (from Staby)ococcus aureus) DNA	66	253	261
1651	<u>-</u>		150		S annous outyme [If-lac (lace), outyme [I-lac (lace), and phospho-beta- galactosidase (lace) genes, complete cds	- 66	145	164
3600	_	758	381	emb 218852 SACF	S aureus gene for clumping factor	127	346	178
3602	-	788	1 396	emb 218852 5ACF	S. aureus gene for clumping factor	86	319	161
7656	-	1013	528	emb 218852 SACF	S.aureus gene for clumping factor	ec	603	9 T
36.82	-	^ 	236	O.ab X64172 SARP	S. soreus rplL. orf202, rpo8(rif) and rpoC genes (or ribosomal protein L7/L12, hypothetical protein ORP202, DNA-directed RNA polymerase beta & beta' chains	00	231	534
36A2	~	224	53	emb x64172 SARP	S. aureus rplL, orf202, rpoBfrif) and rpoC genes for ribosomal protein [17/Ll2, hypothetical protein OFF202, DMA-directed RNA polymerase bata a lortar chains	100	112	192
1691	-	158	423	amb x62992 SAFN	S. aureus fnbB gone for fibronectin binding protein B	1 001	229	336
2016	-	593	354	94 111530	Staphylococcus sureus transfer RHA sequence with two rRMAs	- :	æ	2.40
17.25	-	924	463	emb; 218852 SACF	S. aureus gans for clumping factor	7.1	367	462
3761	- -	609	450	ap r14017	Staphylococcus aureus methicillin-resistance protein (meck) gone and unknown ORF, complete cds	S .	1,1	360
3767		-	402	emt x64172 SARP	S.aureus rplL, orf202, rpob(rif) and rpoC genes (or ribosomal protein L7/L12, hypothetical protein ORF202, CMA-directed RMA polymerase beta 6 beta' chains	B.	787	402
					TABLE 1			

aureus - Cading regions containing known sequences

Contig FORF	10KF	Start (nt.)	Stop (nt)	match	natch gene name	percent	HSF nt length	ORF at Tength
27.6		7	7 2 8 6	emb x64172 SARP	S. arreus rplL, orf202, rpuB(rif) and rpoC gensa for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta it beta' chains	100	227	285
3786	-	957	622	dbj 010489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	001	204	228
1786	-	512	366	dbj D10489 STAG	Staphylococcus aursus genes for DRA gyrass A and B, complete cds	36	123	7.71
A671	-		251	emb X17679 SACO	emb X17679 SACO Staphylococcus aureus coa gene for coagulase	66	249 ,	249
1 181 1	-	193	1 398	[9b[304151]	S.aureus fibronectin-binding protein (InbA) mRNA, complete cds	86	196	396
3819	-	184	1 402	[emb X68425 SA23	S.aureus gene for 2)5 rRMA	66	191	513
3844	-	518	897	9b U48826	Staphylococcus auraus elastin binding protein (ebp5) gene, complete cds	30	704	465
3845			381	emb x58434 SAPD	S.aureus pulls, puhC and puhD genes for hyrquate decailoxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dohydrogenase	***	356	=======================================
3856		798	000	qb 1.14017 	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	76	192	394
3.859	-	1049	1 573	emb 218852 SACF	S.aureus gene for clumping factor	\$8	347	127
14.71	: - -	0',9	1,22	dp H76734	Staphylococcus aureus peptidoglycan hydrolase gene, complete cus	001 1	299	324
9686	-	7	253	(db) D10489 STAG	Staphylococcus aureus genes for DNA gyrase A and B, complete cds	100	7112	252
7686		572	288	qb J03479	S. aureus enzyme III-lac (lacr), enzyme II-lac (lacr), and phospho-beta- galactosidase (lacG) genes, complete cds	6	209	285
1878	- 	-	237	Girls X5A434 SAPU	is aureus poths, pubc and point genes for pyruvate decarboxylsse, diliydrollpoamide actylicansferase and ulbydrollpoamide debydrogenase	96	155	à
3686	-	<u> </u>	1.73	emli x16457 SAST	Staphylococcus aureus gene for staphylocoagulase	86	171	171
3893	-	-	183	emb x89233 SARP	emb X69233 SARP S.aureus DNA for rpoC gene	001	170	18)
3.893	-	181	758	emb[x89233 SARF	emb[X89233]SARP [S.aureus DMA for rpoC gene	86	66	171
3894			485	amb X64172 SARP	Is aureus rplu, orf202, rpoB(rif) and rpoC genes for ribosomal protein U7/u12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 4 beta' chains	6	\$\$0	C#+
3,895	- -	и 16	420	11511-00-1161	S. aureus (ibronectin-binding protein ((nbA) mRNA, complete eds	66	411	417
3905		e	239	95 105 004	Staphylococcus aurous dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphoshikimate-1-carboxyvinyltransferase (aroA) gene, complete cds: ORF1, complete cds	001	159	192
1905	~	90	400	95/1.05004	Stabbylococcus aureus dehydroquinate synthase (arob) gene, 3' end cds; 3- phosphosnikhmate-1-carboxyvinyltransferase (aroA) gene, complete cds; ORF), complete cds	6	80	213

S. aureus - Coding regions containing known sequences

Contig TORE 10 TD	0. E.D.	Start (nt)	Stop	match	match gene name	percent ident	HSP nt length	ORF nt length
3910		n 	359	emb[X58434 SAPD	S acress pdhB, pdhC and pdhD genes for pyruvere decarboxylase. dihydrolipoamide acetyltransfersse and dihydrolipoamide delydrogensse	66	278	157
1915	: 		330	95 14017	Staphylococcus aureus mathicillin-resistance protein imecR) gene and unknown QRF, complete cds	1.5	175	011
1964		169	347	emb[248003 SADN	emb[24800] SALM S.aureus gene for DNA polymerase 111	100	295	345
4007	_	199	060	emb!X16457 SAST Staphylococcus	Staphylococcus aureus gene for staphylocoaquiase	8.6	163.	192
4036	_	_	176	db] D10489 STAG	dbj U10489 STAG Staphylococcus aureus genes for DNA gyrase A and B, complete cds	1 66	1 966	369
4046	-	693	348	emb 218852 SACF S.aureus gene	S.aureus gene for clumping factor	67	221	345
1 4060	-	-	375	emb 218852 SACF	S.aureus gene for clumping factor	96	271	375
1901		1 860	432	emp 248003 SADN	S. aureus gene (or DNA polymerase III	66	624	677
4062	- 	909	304	100 11 00 1	Stabily lococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	75		303
40#5		8	402	96 10 10 10	Stabby ococcus aureus methicillin-resistant ATCC 33952 clone HMJV42 165-235 TNHA spacer region	35	127	345
A 0.0		~	1001	qb 1.43098	Transposon Th5404 and institution sequences [5118] and [51182 (from Stabhylococrus avreus) [31.4	66	227	300
4093	-	~	77.	cml) X58434 SAPD	S. Aureus pdhb. pdhC and hall genes for pyruvate decarboxylass. dilydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	66	276	276
1 4097	-	-	402	emb 218852 SACF	S.aureus gene for clumping factor	74	100	405
- - - -		22	402	9041.05004[Staphy lococcus aureus delydroquinate synthase (aroli) gene, 3 and cds; 3- phiosphoshikimate-1-carboxyvinyltransferase (arok) gene, complete cds; ORF), complete cds	- BC	157	
4135		240	107	gb U73374	Strinbylococcus aurous type 8 capsule genes, cap8A, cap8C, cap8D, cap8E, cap8F,	100	9	162
6717	-	35	247	96 304151	S.aureus fibronectin-binding protein (InbA) mRMA, complete cds	66	200	213
4151		679	766	95 114017	Staphylococcus aureus methicillin-resistance protein (meck) gene and urknown ORF, complete cds	82	150	564
415		75 4	866	emb x64172 SARP	S.auraus rpil, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta' chains	66	297	155
4179			294	emb x64172 SARP	S.aureus rpll, orf202, rpoBirif) and rpoC genes for ribosomal protein LJ/LJ2, hypothetical protein ORF202, DNA-directed RNA polymerase beta is beta' chains	96	 0 7	294

s a manan s
known
CONTAINING
regions
- Sedang
- 2001.10
. 1

contig c	10 PF	Start (nt.)	Stop (n)	natch veession	חשוכן לפטפ ויששפ	percent ident	use no Tergith	ORF nt length
4203	-		S S S	emt (389233 SARP	ent;N99133[SARP S. aureus DNA for spoC gene	66	239	255
4206	-		303	emb 218852 SACF	S.aureus gene for clumping factor	100	236	103
4306	7	195	**	erb 218852 SACF	S. aureus gene for clumping factor	1 66 1	99	150
4208		801	***	emb () 58434 SAPD	S.aureus pdhB. pdhC and philo genes for pyruvate decarboxylase, dibydroliposmide acetyltransferase and dibydroliposmide debydrogenase	6	9,0	207
4216		959	330	emb[X58434[SAPD	S. sucreus pdhB. pdhC and pdhD yenes for pyruvere decarboxylase. dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	86	126	327
4226		165	298	abju11530	Staphylococcus aureus transfer RNA sequence with two rRNAs	1 66 1	132	767
7 092+		216	<u> </u>	45 10 10 10 10 10 10 10 1	Scaphylococcus aureus methicillin-resistant ATCC 11852 clone RRW40 165-215 rRNA specer region	83	7	168
4272	-	355	6.11	emt. 248003 SAUN	S.eureus gene (or DNA polymerase III	1 100 1	164	111
4276	-	-	771	emin X16457 SAST	Staphylococcus aureus gene for staphylocoagulase	1 66 1	150	174
77.24			270	G#1 (X64172 SARP	S.aureus rplu, orizoz, rpoBirif) and rpoC genes for ribosomal procesin L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 Deta: chains	66	5 9 2	270
4.2 H.2		169	11.	emb X64172 SARP	S.aureus rplL, or1232, rpb8(rit) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta i beta chains	6	282	316
4291		379	191	emb X64172 SARP	S.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal procesin L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta chains	66	183	189
4295	-	_	329	eml. X16457 SAST	emi. X16457 [SAST Staphylococcus aureus gene for staplylocoagulase	16	144	327
=		4.15	280	195[111530]	Staphylococcus aureus transfer FNA sequence with two rRNAs	1001	76	156
-215			1.85	62+60C 9E	S aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- qalactosidasa (lacG) genes, complete eds	001	158	E .
4315	~	101	910	gb J03479	S.aureus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	86	2.5	210
1327			294	gb 1.43098 	Transposon 115404 and insertion sequences 151181 and 151182 (from	æ	294	76.2
091	-	103	617	016700196	Staphylococcus aureus ATCC 15923 165 rRNA gene, partial sequence	1 00 1	116	2.85
79 (*		~	146	emb X64172 SARP	S aureus rplL, orf202, rpoBfrif) and rpoC genes for ribosomal protein 1.7/Ll2, hypothetical protein OKF202, DMA-directed RMA polymerase beta 6 beta 'chains	£	140	-
43 AR	_	167	310	emb x62992 SAFN	S Aureus InbB gene for fabronectin binding protein B	- (7	611	•

S. aurous - Coding regions containing known sequences

Contig	01	Start (nt)	Stop (nt)	match	Talch gene name	percent	NSP nt length	ORF nt Length	
10+	-	~ -	CT	emb X62992 SAFN	S. aureus InbB gene for fibronectin binding protein B	9.7	243	312	
1 4421	-	36	1 281	dbj D12572 STA2	Staphylococcus sureus rrnA gene for 215 ribosomal NIA	100	112	246	- •
4626	-		. 62	emb 218852 SACF	S.aureus gene for clumping factor	8.85	185	291	
60		493	248	emb x64172 SARP	S. aureus rplL. or(202. rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta chains	100	57	246	
4462		2	271	emb X64172 SARP	S. aureus rpll. orf202, rpoB(rif) and rpoC genes for ribosomel protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 6 beta chains	66	270	270	
4466	-	1 -	1 240	emb Z:8852 SACF	S aureus gene for clumping factor	66	233	2.10	
4469			312	gb J03479	Statems enzyme III-lec (lacf), enzyme II-lac (lacf), and phospho-beta- galactosidase (lacG) genes, complete cds	66	265	511	
4485			1 263	qb L43098	Transposon Thistot and insertion sequences ISI181 and ISI182 (from Staphylococcus aureus) DNA	\$0	259	361	
4492			400	gb MB6227	Staphylococcus aureus DNA gyrase B subunit (gyrB) RecF homologue (recF) and DNA gyrase A subunit (gyrA) gene, complete cds	Sa Sa	701	751	
1 4497	: <u>-</u>	1 515	269	emb Elms2 SACF	S. Jureus gune for clumping factor	66	213	267	
4529		~	172	emb x64172 SARP	S aureus rplL, orf202, rpo8(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 4 beta' chains	001	151	171	
4547	-	-	1 300	cmb x62992 SAFN	S. aureus tobs gene for fibronectan binding protein B	100	157	300	
1 4554	-	916	160	emb 218852 SACF	S. aureus gene for clumping factor	9	126	159	
4565	-	6 7	1 227	ent. 218852 SACF	S auraus gene for clumping factor	T	213	219	
4569	-	62	223	emb 218852 SACF	S aureus gene for clumping factor	86	127	144	
4608		22	216	emb X58434 SAPD	[5] au eus pahs, pahs and pahs genes for pyruvate decarboxylase, dinydrollipoamide acetyltransferase and dlhydrollipoamide dehydrogenase	9.5	168	195	
194	-	191	1 234	emb 218852 SACF	S. aureus gene for clumping factor	98	169	231	
1 4623	-	1 105	1 302	gb J04151	S aureus (ibronectin-binding protein (fubA) mRNA, complete cds	66	152	198	
4632		81	206	gh,303479	Staureus entyme III-lac (lace), enzyme II-lac (lace), and phospho-beta- galectosidase (lacc) genes, complete cds	89 6	. B.	183	
1 4646	-	-	1 222	emb 218852 SACF	S aureus gane for clumping factor	80	001	222	
4687	-	- 2	166	gb J04151	S aureus fibronectin-binding protein (fnbA) mANA, complete cds	86	156	\$91	

ednonce
ð
ontainin
eg ton
Coding
auteus -

	percent HSP nt OHF nt ident length	end 75 254 564	98 :03 153
5. aureus - Coding regions containing known sequences	match gene hane	gt [Li4017] Stabbylococcus aureus methicillin-resistance protein (mecR) gene and 75 155 156 unknown ORF, complete cds	cmb X584.34 SAPD S.eureus pdhB, pdhC and pdhD genes for pyruvete decerboxylsse. 98 :03 dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase
" <u>:</u>	match acession		
	Stop	158	153
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contig ORF Start Stop ID Int) (nt)	6695 1313 158	4703 1 1 153
	ORF		
	Cont 19 1D	4695	4703 1 1

S aureus - Putative coding regions of novel proteins similar to known proteins

14 10 10 10 10 10 10 10	Cont 19	104F	Start (nt)	Stop (nt)	match	מסורכון קורות וופאם	E I S	• 1 dent	(nt)
3 2012 1577 pir [84703] [8477 int gene activator Rink - Exteriophage pht 11 2 556 409 gil [86159 integrass (int) Staphylococcus becteriophage pht 31 3 202 1912 gil [86159 integrass (int) Staphylococcus becteriophage pht 31 4 1914 1744 gil [56159 integrass (int) Staphylococcus becteriophage pht 31 4 1914 1744 gil [204912 in intlumnas predicted coding region Hi0660 [Hesenoph 1 5 763 gil [137002 polymoresis intlumnas predicted coding region Hi0660 [Hesenoph 1 6 777 140 gil [137002 polymoresis intlumnas predicted coding region Hi0660 [Hesenoph 1 7 7 7 7 7 7 7 7 7	20	-	6805	4679	91(511839		100	100	-
5 2109 1912 91.166161 111	1 6	-	1	1577	pir B49703 B497		100	100	456
2 558 409 99 166159 Integrate (int) Staphylococcus bacteriophage phi ill 1922 703 99 166159 Integrate (int) Staphylococcus bacteriophage phi ill 1922 703 99 455128 excisionate (iii) Staphylococcus bacteriophage phi ill 2 262 99 160129 Protein P	6 7		2109	1912	191,166161	lacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi	100	100	198
1 1172 707 99 106159 Integrase (tis Staphylococcus bacterlophage phi .1] 1 2 783 1001 91 455128 excrsionase (tis Staphylococcus bacterlophage phi .1] 2 242 94 1273002 Polyprotain Bean common momaic vitus 1 2 242 94 1273002 Polyprotain Bean common momaic vitus 1 2 242 94 1273002 Protein Kinse C Inhibitor Homo sapleme) 1 27 140 94 1254211 Protein Kinse C Inhibitor Homo sapleme) 1 27 140 94 1254211 Protein Kinse C Inhibitor Homo sapleme) 1 27 140 94 1254211 Protein Kinse C Inhibitor Homo sapleme) 1 27 247 94 94 1254211 Protein Kinse C Inhibitor Homo sapleme) 2 277 1463 94 125421 Protein Kinse C Inhibitor Homo sapleme) 2 277 1463 94 125421 Protein Kinse C Inhibitor Hacilius subtilis 2 247 94 46259 Enolase Bactilius subtilis 2 247 94 46259 Enolase Bactilius subtilis 1 3 3 215 94 426473 InuaG gene product Staphylococcus cernosus 1 3 3 215 94 426473 InuaG gene product Staphylococcus cernosus 1 3 3 4 4 94 413950 Large submitt of Nabir-thymelect oluthomate synthase 1 3 4 4 4 94 413950 Large submitt of Nabir-thymelect oluthomate synthase 1 3 4 4 4 94 413950 Large submitt of Nabir-thymelect oluthomate synthase 3 4 4 4 94 413431 Protein Staphylococcus haemolyticus 3 4 4 4 94 4134431 Protein Staphylococcus haemolyticus 3 4 4 4 4 94 4134431 Protein Staphylococcus haemolyticus 4 4 4 4 94 413443 Protein Staphylococcus haemolyticus 4 4 4 4 94 413443 Protein Staphylococcus haemolyticus 4 4 4 94 413443 Protein Staphylococcus haemolyticus 4 4 4 94 413443 Protein Staphylococcus haemolyticus 4 4 4 4 94 413443 Protein		-	558	409	191;166159	integrase (int) [Staphylococcus bacterlophage phi 11]	100	001	150
1 1914 1944 91 1204912	39.8	-	1 1372	107	91 166159	integrase (int) Staphylococcus bacteriophage phi 11)	001	66	999
4 1914 1744 94 1204912 H. Influennas predicted coding region Hi0660 [Heamoph 1 2 262 94 1273002 polyprotein [Been common monato virus] 1 2 262 94 1273002 polyprotein [Been common monato virus] 1 2 140 94 143359 protein winders initiation factor 2 (infB) [Becilis 1 2 2 2 2 2 2 2 2 2	398	-	7.8.3	1001	01 455128	excisionase (xis) [Stephylococcus bacteriophage pht 1:]	100	100	219
1 2 262 94 1373002 Polyprocein [Bean common moment vitue] 1 277 140	\$02	-	1914	1744	91 1204912	H. influentae predicted coding region H10660 (Haemophilus influentae)	100	1,	101
1 277 140 dd 143359 protein synthesis initiation factor 2 (infB) [Bacillia 1 21 308 dd 143359 protein kinss C inhibitor-1 (Homo sapiena) 1 21 308 dd 154211 PET112-1ike protein [Bacillus subtilis] 2 247 gd 1254211 PET112-1ike protein [Bacillus subtilis] 2 247 gd 1254211 PET112-1ike protein [Bacillus subtilis] 2 247 gd 125473 PET112-1ike protein [Bacillus subtilis] 2 247 gd 125473 PET112-1ike protein [Bacillus subtilis] 2 1272 1463 gd 126473 PET112-1ike protein [Staphylococcus carnosus] 3 215 gd 66161 Bacterlophage phi 11 int gene activator [Staphylococcus carnosus] 1 114 gd 13950 Large submit of Nabit-dependent oluthante synthase 1 114 gd 1302776 Unknown (Staphylococcus haemolyticus) 1 48 401 gd 1302776 Unknown (Staphylococcus haemolyticus) 1 48 401 gd 1302776 Unknown (Staphylococcus haemolyticus) 1 1 1 1 1 1 1 1 1	6	-	7 -	262	191 1373002	polyprotein (Bean common mossic virus)	100	9	192
1 21 108 91 862913	1349	!	7.2	071	91 143359	protein synthesis initiation factor 2 (infB) [Bacillus subtilis] 91[49319 172 gene product (Bacillus subtilis)	100	982	138
1 2 247 216 91 1334211 PETTIZ-11ke protein (Bacillus subtilis) 2 247 91 460259 InuaG gene product (Staphylococcus carnosus) 3 1272 1463 91 460259 enolase (Bacillus subtilis) 4 146 916 91 460259 enolase (Bacillus subtilis) 5 1975 1463 91 460259 enolase (Bacillus subtilis) 6 1 198 245 91 460259 enolase (Bacillus subtilis) 7 198 936 91 426473 InuaG gene product (Staphylococcus carnosus) 8 1 148 91 426473 InuaG gene product (Staphylococcus carnosus) 9 1 148 91 426473 InuaG gene product (Staphylococcus carnosus) 9 1 148 91 426473 InuaG gene product (Staphylococcus carnosus) 9 1 148 91 426473 InuaG gene product (Staphylococcus namolyticus) 9 1 48 401 91 426502 S10 (Bacillus subtilis) 9 1 48 401 91 426502 S10 (Bacillus subtilis) 9 1 108 1355 91 4354211 PETII2-11ke protein (Bacillus subtilis) 9 1 108 1355 91 4354211 PETII2-11ke protein (Bacillus subtilis) 9 1 112 157 91 602031 eimilar to triesthylamine ON (Mycoplasam capticolus) 9 1 112 157 91 602031 eimilar to triesthylamine dehydrogenase (EC 5.99.7)	2880	: -	1 21	308	91 (862933	protein kinase C inhibitor-I (Homo sapiene)	100	86	2 18
1 2 247 198 91 134211 PETI12-1ike protein (Macillus subtilis) 1 2 247 91 426473 InuaG gene product (Stabhylococcus carnosus) 2 1272 1463 91 466163 Encision subtilis) 3 145 141 46161 Encision subtilis Encision subtilis 4 1 144 144 91 4139350 Large submit of NAMH dependent oluthmate synthase 5 151 518 916 91 416473 InuaG gene product (Staphylococcus carnosus) 6 1 174 144 91 1193950 Large submit of NAMH dependent oluthmate synthase 7 17 18 91 91 4165302 S10 (Encillus subtilis) 8 1 1708 155 91 1354211 EFTI12-1ife protein (Encillus subtilis) 9 1 171 171 91 40202 S10 (Encillus subtilis) 1 170 155 91 40202 S10 (Encillus subtilis) 1 170 155 91 40202 S10 40000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40202 S10 4000 Staphylococcus haemolyticus 1 170 155 91 40000 S10	3085	:-	42R	216	[91]1354211	PET112-like protein (Bacillus subtilis)	100	100	213
1 2 247 91 426473 NusG gene product (Staphylococcus cernoaus) 2 247 91 460259 enolase (Bocillus subtilis) 2 247 91 460259 enolase (Bocillus subtilis) 2 247 91 460259 enolase (Bocillus subtilis) 2 248 91 460103 111 protein (Staphylococcus cernosus) 2 248 91 401001 111 118 91 401001 111 118 91 401001 111 118 91 40101 111 118 91 401001 111 118 91 401001 111 111 91 401001 111 91 401001 111 91 401001 111 91 401001 111 91 401001 111 91 4010001 91 4010000000000000000000000000000000000	416A	: -	:	398	91 1354211	PET112-11ke protein (Macillus subtilis	100	100	174
2 1272 1463 91 460259 enolase Bactillus subtilis 3 345 1450 91 56161 Bacterlophage Filal protection Carnound 115 11	152		1 2	1 247	91 426473	(Staphylococcus	- 98	66	746
1 19 215 [41] [65] [6] Bacterlophage phi-11 int gene activator [Staphylococ 11] 19 215 [41] [65] [6] Bacterlophage phi-11 int gene activator [Staphylococ 11] 118 936 [91] [426473 Inusd gene product [Staphylococcus carnosus] 118 144 [91] [4195950 Large submitt of MAMIN-Arphylococcus carnosus] 119 144 [91] [4195302 Large submitt of MAMIN-Arphylococcus appropriate 119 1514 [91] [4195302 [91] [41] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [91] [41] [41] [41] [91] [41] [41] [41] [91] [41] [41] [41] [41] [41] [41] [41] [4	202	7	1 1272	+ 1463	191 460259	enolase (Bacilius subtilis)	76	96	192
1 39 215 g1 '66161 Bacteriophage phi-11 int game activator [Staphylucoccoccos carnagus] 1 118 916 g1 426473 nusG game product [Staphylococcus carnagus] 1 144 g1 [1119950 Large subunit of NADH dependent oluthmate synthase 1 121 518 g1 1102726 unknown (Staphylococcus hamsolyticus) 1 48 401 g1 1102726 unknown (Staphylococcus hamsolyticus) 1 48 401 g1 1102726 unknown (Staphylococcus hamsolyticus) 1 300 417 g1 1102726 unknown (Staphylococcus hamsolyticus) 8 1 708 1555 g1' 11354211 PET112-1ike protein (Bacillus subtilis) 1 112 [157 g1 (50203)] aimilar to trimethylamine OH (Hycoplasam capticolus) 1 112 [157 g1 (50203)] probable trimethylamine dehydrogenase (EC 5.99.7)	1.	-	295	H50	1911581638	1111 protein (Staphylacucous cornesia)	16	5	950
1 118 916	166			215	d1 66161	Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi 11	76	- 95	771
1 114 114 91 1119950 Large submitt of NAMH-H-prontent oluthante synthase 1 131 151 91 91 102726 Unknown (Staphylococcus hasmolyticus) 1 148 401 91 971784 Clp-like ATP-decendent protesse binding submitt (Bos 1 148 401 91 97786 Unknown (Staphylococcus hasmolyticus) 1 1 108 155 91 1354211 PET112-like protein (Bacillus subtilis) 1 112 157 91 602031 Similar to trissthylamine OH (Hycoplasam cepticolus) 1 112 157 91 602031 Similar to trissthylamine dehydrogenase (EC 5.99.7)	089	-	1 718	936	91 426473	nusG gene product [Staphylococcus carnosus	- 97	97	219
1 111 518 gi 1022726 Unknown (Staphylococcus hamsolyticus) 15470 16147 gi 1165302 S10 (Bacillus subtilis) 16470 16147 gi 1165302 S10 (Bacillus subtilis) 1 48 401 gi 1022726 Unknown (Staphylococcus hamsolyticus) 1 810 417 gi 1022726 Unknown (Staphylococcus hamsolyticus) 8 1 708 155 gi 134211 PET112-114e procein Bacillus subtilis 1 1 1 1 1 1 1 1 1	157.4	; -	784	144	19111119950	large submit of NADH-Al-proudent glutamate synthese (Plectonesa Boryanus)	رو	5.	1
1) 16470 16447 91 1165302 SIO (Bacillus subtilis) 1 48 401 91 931784 Cip-like ATP-dependent protesse binding subunit [Bos 1 1 1 1 1 1 1 1 1	157	-	1321	518	gi 1022726	unknown Staphylococcus hemolyticus	96	88	198
1 4R 401 91'971784 CLP-11Xe ATP-dependent processe binding subunit [Bos 1 1 1 1 1 1 1 1 1	502	120	116470	116147	[gi 1165302	(SIO [Bacillus subtilis]	96		124
1 810 417 91 1022726 UNKNOWN (Staphylococcus haemolyticus) 1 708 355 91 1354211 PET112-11ke protein (Bacillus subtilis) 1 112 157 91 (602031 Similar to trimethylamine DH (Mycoplasma capricolus) 1 112 157 91 (602031 probable trimethylamine dehydrogenase (EC 5.99.7)	3919	: -	48	104	1911971784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	9.6	. F	354
1 708 355 91'1354212 PET112-11ke procein (Bacillus subtilis).	100	<u>:</u> –	0(#	1 417	gi 1022726	unknown (Staphylococcus haemolyticus)	96	80	=
1 312 157 gil602031 similar to trimethylamine DH (Mycoplasma capticolus) probable trimethylamine dehydrogenase (EC 5.99.7)	1168	:-	1 708	355	91,1354211	PET112-1ike protein (Bacillus subtilis).	96	98	154
[[(SQC3) (fragment)	4207	:	312	157	91 (602031		.	•• •	156

S. aureus · Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Starc (nt)	Stop (nt)	match	שבר כח מפה השה ב	E .	1 ident	length (nt)
4227	~	152	1331	91 871784	[CIp-like ATP-dependent protesse binding subunit [Bos taurus]	96	91	180
9144	-	570	286	191 1022726	unknown (Staphylococcus haemolyticus)	96	- -	285
22	-	858	430	Jgi 511070	UreG (Staphylococcus xylosus)	Š	•	429
2	-	4362	4036	101 581787	urease gamma subunit (Staphylococcus xylosus)	3.6	79	327
82		8794	9116	pir JG0008 JG00	ribosomal protein S7 - Bacillus stearothermophilus	\$6	93,	321
154		9280	7838	91 1354211	PET112-like protein (Bacillus subtilis)	\$6	85	743
186	_	1 2798	2055	91, 1514656	serine O-acetyltramsferase (Staphylococcus xylosus)	36	87	744
\$07	-	404	•	91/162462	ribosoms1 protein 511 [Bacillus subtilis]	\$	\$	19.
205	_	\$017	6793	91/142459	initiation factor 1 (Bacillus subtilis)	36	*	225
1 205	121	11365	16601	91 1044974	ribosomel protein Lid (Bacillus subtilis)	9.6		375
259	\$	7288	999	sp P47995 YSEA_	HYPOTHETICAL PROTEIN IN SECA 5 REGION (ORFI) (FRAGMENT).	9.8	88	645
302		295	7601	40186	homologous to E.coli ribosomal protein L27 [Bacillus subtilis] i[143592 L27 ribosomal protein [Bacillus subtilis] ir[C21895[C21895 ribosomal protein L27 - Bacillus subtilis p[Pu5657[RL27_BACSU 50S RibosoMAL PROTEIN L27 (8L30) [BL24], i[40175 L24 gene prod	3.6		303
310	-	678	1523	gi 1177684	chorignate mutase (Staphylococcus xylosus)	9.8	92	945
7	- -	7	163	pir C48396 C483	pir (48196 (483 ribosomal protein L34 - Bacillus stearothermophilus	9.8	06	162
1 4185	~	125	77.2	91 1276841	glutamate synthase (GOGAT) [Porphyra purpurea]	98	9.8	153
22	- 5	1028	723	911511069	[UreF [Staphylococcus xylosus]	ž	-	306
2.2	~	5046	3310	1911 410516	urease alpha subunit (Staphylococcus xylosus)	*	9.5	1.671
0,	-	818	1372	91 666116	glucose kinase (Staphylococcus xylosus)	*	.60	8 55
1 20\$	=	110012	9536	91 1044978	ribosomal protein 58 (Secillus subtilis	*	7.	477
326	-	1378	2542	91 557492	dihydroxymapthoic acid (DHNA) synthetase (Bacillus subtilis) gl ldlle6 dihydroxymapthoic acid (DHNA) synthetase (Bacillus ubtilis)	*	8	637
	-	767	955	91/467386	thiophen and furan oxidation (Bacillus subtalis)	Z	1 11	219
426	-	1 2260	1623	gi-1263908	putative (Staphylococcus epidermidis	*	- 6	4.0
534	- -	~	355	1911633650	entyme II(mannitol) (Staphylococcus carnosus)	7	8	354
1017	-	2	229	01 149435	[putative [Lactococcus lactis]	-		228
1098	-	330	48	g: 413952	ipe-28d gene product (Becillus subtilis	2	50	147

proteine	
o known	
in lar	
answer - butarive coding regions of novel proteins similar to known proteins	
nove1	
io suoleen	
patpas	
4	
4	
(1	•

Contig	OR	Start	Stop (nt)	match	match gene name	E	1 ident	length (
3232	-	009	316	91 1022725	unknown (Staphylococcus haemolyticus)	76	78	315
3	5	2089	2259	pir B48396 B483	ribosomal protein L33 - Bacillus stearothermophilus	- 26	18	171
101	~	1745	1383	1911155345	arsenic efflux pump protein [Plasmid pSX267]	66	8 3	163
205	~	12227	111865	Ep P14577 RL16_	508 RIBOSONAL PROTEIN LIE.	9.3	8	363
259	-	8291	5673	1911499335	sech protein (Staphylococcus carnosus)	9.3	ac ac	2619
275	-	12226	1114	1911633650	enzyme II (mannitol) Staphylococcus carnosus	93	9	1113
=	9	6207	1 5773	gi 1022726	unknown (Staphylococcue haemolyticus)	93	160	435
167	-	152	622	191 46912	ribosomal protein Lil (Staphylococcus carnosus)	93		1.43
109	•	1 1674	2033	191 1022726	unknowm (Stephylococcus haemolyticus)	9.3	83	360
1 653	-	1 973	1.68	qi 580890	[translation initiation factor 173 (AA 1-172) [Bacillus tearothermophilus]	\$	1.1	90
1864	-		194	[91]306553	ribosmal protein small subunit [Homo sapiens]	93	93	192
2997	-	28	300	91 143390	carbamyl phosphate synthetase (Bacillus subtills)	6	82.7	273
3232	7	1 907	965	gi 1022725	unknown [Staphylococcus hassolyticus]	93	70	312
1 3761	2	1 794	621	gi 1022725	unknown Staphylococcus haemolyticus	6	10	174
91			374	01/142781		9.5	8	372
17	-	\$165	6124	191 1136430	KIAA0185 protein Homo septens]	92	9	210
\$6	611	26483	127391	94 467401	unknown (Becilius subtilis)	9.5	90	606
69	9	5882	6130	1911530200	[trophoblestin [ovis sries]	9.3	53	548
165	_	2568	2036	91 1022725	unknown (Staphylococcus heemolyticus)	26	90	531
171	-	2760	2362	qi 517475	D-amino acid transaminase (Staphylococcus heamolyticus)	92	98	660
205	112	7495	7969	91 49189	secY gene product (Staphylococcus carnosus)	92	85	534
205	61	10812	110255	gi 1044976	ribosomal protein L5 (Bacillus subtilis)	9.5	83	55A
219	-	07.6	750	[91 1303812	YqeV (Bacillus subtilis)	92	88	354
344	-	1 1575	\$081	91 1405474	(cspC protein (Bacillus cereus)	26	88	231
669	-	1 20	1361	[u1] 413939	ipa-75d gene product (Bacillus subtilis)	9.5	18	342
1343	-	2	160	pir A45434 A454	pir [A45414 A454 ribosomal protein L19 - Bacillus stearothermophilus	92	¥8	159

TARIF

e i	
0	
ď	
E	
ĕ	
7	
ç	
L.	
3	
**	
C	
3	
010	
Δ.	
3	
ŏ	
ų	
5	
Ď	
×	
Č	
ᇴ	
č	
9	
7	
1	
2	
*	
37.6	
4	

5

Cont lg	08 C	Start (nt)	Stop	match	Patch gene name		. ident	length int)
1958	-	524	264	[gi, 407908	Ellacr (Staphylococcus xylosus)	9.2	1 08	26;
3578	7	718	986	91 1339950	large subunit of NADH-dependent glutemate synthase [Plectonema boryanum]	9.5	78	333
3585	-	1 644	324	94/1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	9.5	10	321
3640	-	-	402	91/1022726	[unknown [Staphy]ococcus hasmolyticus]	9.5	6	199
1362			178	191-450686	hadw gene of Ecopril gene product (Escherichia coli) pir 538437 538437 hadw protein - Eacherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (5UB 40-520)	26	9	165
9777	-	358	182	191 1022725	unknown (Staphy)ococcus heemolyticus	~ ~	82	177
4549	-	1 462	232	91 1022726	unknown (Staphylococcus hasmolyticus)	9.5	0	231
4626	-		1 224	01 1022725	[unknown Stephylococcus heemolyticus]	9.5	80	222
~	-	1 1980	4531	191 535349	Codw Becilius subcilis	1.6	*	552
28	-	2	11126	191 1001376	(hypothetical protein (Synechocyatis ap.)	9.1	7.8	1125
09	-	1354	1701	[91]1226043	orf2 downstream of glucose kinsse (Staphylococcus xylosus)	9.1	90	348
101	-	1989	1036	(01)150728	ersenic efflux pump protein (Plasmid p1258)	9.1	80	954
187	~	1 412	1 1194	191 1142559	ATP synthese alpha subunit (Bacillus megaterium)	9.1	7.9	783
205	77	111579	111296	191140149	S17 protein (AA 1-87) (Dacillus subtilis]	9.1	63	282
306	-	818	110262	91 {1072418	glcA gene product (Staphylococcus carnosus)	9.1	89	2079
1 306	- 5	3885	13326	91 143012	GMP synthecase (Bacillus subtilis)	16	78	1560
306	-	5319	3826	91 467399	IMP dehydrogenese [Bacillus subtilis]	16	66	1494
310	-	2194	13207	91 1177685	[ccpA gene product [Staphylococcus xylosus]	16	-1 80	1014
- F	-	2974	1 3150	gi 949974	sucrose repressor (Staphylococcus xylosus)	1	6.2	177
480	-	9091	1 3042	91 433991	ATP synthase subunit beta (Bacillus subtilis)	91	58	1437
\$		2026	1290	91/143366	ademylosuccinete lyase (PUR-B) [Bacillus subtilis] pir C29126 WZBSDS ademylosuccinete lyase (EC 4.3.2.2) - Bacillus ubtilis	16	61	747
\$2		**************************************	615	91297874	fructoss-bisphosphate aldolase Staphylococcus carnoaus pir A49943 A49943 fructoss-bisphosphate aldolase (EC 4.1.2.13) - taphylococcus carnoaus (strain TH300)	16	66	\$30
63,7	-	-	1536	0.1143597	CTP synthetase [Bacillus subtilis]	16	61	1536
989	-	12	359	191 385178	unknown (Recillus subtilis)	16	99	600

S. aureus . Putative coding regions of novel proteins similar to known proteins

Cont 10	ORF	Start	Stop (at)	acesson .	match gene name	E 78	10001	int)
1327	-	907	530	91 496558	ortx (Becilius subtilis)	5	- 1,	76.1
2515	: <u>-</u>	466	275	91 511070	Ured (Staphylococcus xylosus)	ī.	- 58	192
2594	-	7	202	91 146824	beta-cystathionase [Escherichia coli]	16	1 27	102
3764	-	847	425	191 11022725	unknown [Staphylococcus heemolyticus]	91	78	423
4011	-	127	495	gi 1022726	unknown (Staphylococcus haemolyticus)	16	- 61	369
1227	1-	-	177	91 296464	ATPase (Lactodoccus lactis)	16	99	177
7		1 815	1033	gi 520401	cetalese [Heesophics influence]	06	98	219
	· •	11/1	4607	191 580899	OppF gene product (Bacillus subtilis)	90	, ,	891
129	-	1 5317	1000	91 1146206	glutamate delydrogenase (Bacillus subtilis	1 06	76	1317
164	= 1	1662#	[169]]	sp[P05766 RS15_	10S RIBOSONAL PROTEIN SIS (BS18).	06	7	306
171	2	2983	1 2819	1911517475	D-amino acid transaminase [Staphylococcus haemolyticus]	06	78	165
205	-	4497	1 3550	91 142463	NNA polymerase alpha-core-subunit (Bacillus subtilis)	0.6	1,0	948
205	9	1 4748	4410	91 1044989	ribosomal protein S13 (Bacillus subtilis]	06	1.6	600
205	110	7.65	9099	gi 49189	sect gene product (Staphylococcus cernosus)	0.6	30	762
205	==	6645	•	91 49189	sect gene product (Staphylococcus carnosus)	06	98	174
205	12.7	1:3692	13345	gt 7#6157	Ribosomal Protein S19 (Bacillus subtilis)	06	79	**
205	17	15858	115496	191 1165303	[L] (Bacillus aubtilis)	06	79	363
5.60	-	1 7023	1 5773	Oi 1161380	IcaA (Staphylococcus epidermidis)	06	7.8	1251
588	•	3378	1 3947	191 467440	'phosphoribosylpyrophosphate synthetese (Bacillus subtills) gl 40218 PRPP synthetese (AA 1-317) (Bacillus subtills)	06	78	570
320	- 2	1025	1 1717	91 312 443	carbamoyi-phosphate synthase (glutamins-hydrolysing) (Bacillus aldolyticus)	06	75	693
330	-	1581	1 1769	1911986963	beta-tubulin Sporidiobolus pararoseus]	06 1	0.6	189
369	-	1 954	523	par 534762 5347	L-sering dehydratase beta chain - Clostridium sp.	06	66	432
557	-		188	91 1511589	[M. Jannaschii predicted coding region MJ1624 (Methanococcus Jannaschii)	06	• •	186
663	~	667	1200	91 143786	tryptophanyl-tRNA synthetase (EC 6.1.1.2) [Bacillus subtilis] pir[JTG48][YWDS tryptophan-tRNA ligase (EC 6.1.1.2) - Bacillus ubtills	0,6		51.4
71,7	-	-	1981	gi 143065	hubst (Bacillus stearothermophilus)	06	19	261
376					Calling to the control of the contro	6	-	

S. aureus - Putative coding regions of novel professes somblar to bette provesses

Contig ONF	IOH F	Start	Stop (nt)	match acession	match gene name	E 18	1 ident	length (nt)
1001		981	565	91/143366	adenylosuccinate lysse (PUN-B) (Bacillus subtilis) pir[C29126[WZB5DS adenylosuccinate lysse (EC 4.3.2.2) - Bacillus ubtilis	0	7.2	0 6 1
1054	-	67.5	1331	91(1033122	ORF_[729 [Escherichia coll]	0.6	0.5	249
1156	-	1117	1 707	91/1477776	Cipe (Becillus subtilis)	06	6	591
1180	-	408	1 205	91 1377831	unknown (Bacillus subtilis)	90	*	204
1253			5	91 40046	phosphogucose isomerase A (AA 1-449) [Bacillus stearothermophilus] ir[515936 NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	06	ζ.	~ 9
2951			269	911144816	formylestranydrofolate synthetass (FTMFS) (ttg start codon) (EC .3.4.3) [Hoorells thermoscetics]	06	76	267
3140	-	1327	7997	91 1070014	protein-dependent Decillus subtilis	0	52	162
1594	-		(12)	91 871784	Clp-like ATP-dependent protesse binding subunit (Bos teurus)	0.6	9.	231
	-	1028	1750	191 467327	unknown (Becillus subtilis)	68	75	(2,
112	-	7	505	(91/153741	ATP-bluding protein (Streptococcus mutans)	6.0	۲۲	504
11.8	-	120	398	gi 1303804	YqeQ [Bacillus subtilis]	68	25	279
128	-	3545	13757	911460257	triose phosphate isomerase (Bacillus subtilis)	60	7	211
164	112	11667	112755	191139954	IF2 (am 1-741) [Bacillus stearothermophilus]	68	10	1089
205	Ξ	7.875	1 7405	101 216338	ORF for L15 ribosomel protein (Bacillus subtilis)	68	92	471
1 205	<u>~</u>	116152	115823	91 1165303	[L3 [Becillus subtilis]	6.0	080	066
072	-	2407	1 2207	ptr C41902 C419	arsenate reductase (EC 1) - Staphylococcus xylosus plasmid p5X267	688	ē	201
1 395	~	1 157	672	191 520574	glutamate racemase (Staphylococcus haemolyticus)	69	80	916
6	-	_	839	191 396259	protesse (Staphylococcus epidermidis)	689	77	R37
510				91 40046	phosphoglucose isomerase A (AA 1-449) [Bacillus stearothermophilus] ir S15916 NUBSSA glucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus stearothermophilus	6	24	3
615	-	2124	1210	1911303812	YgeV (Bacillus subtilis)	6	74	516
198	-		341	91 (1165303	[13] (Bacillus subtalis)	89	80	324
1111	-	152	613	91/47146	thermonuclesse (Staphylococcus intermedius)	68	70	162
1875	-	2	256	91/1205108	ATP-dependent protesse binding subunit (Haemophilus influenzee)	68	82	255
1 2963	-	=	796	41 467458	cell division protein (Becilius subtilis	6.8	C#	157

S. aureus .. Putative coding regions of novel proteins similar to known proteins

5

Contag 10	ORF	Start (nt)	Stop (nt)	match	match gene name	E 13	l ident	Jengub (nc)
3020	-	06 1	362	911139988	hypothetical protein [Bacillus subtilis]	6.0	99	273
3565	-	~ _	00+	91 1256635	dihydroxy-scid dehydratass (Bacillus subtilis)	- 68	7.5	399
3586	-	105	314	91 580832	ATP synthese subunit gamma (Bacillus subtilis)	68	8.2	210
3629	-	79.4	1 399	9986001176	Respiratory nitrate reductase (Bacillus subtilis)	5.80	91	396
3688	-	1 2	007	91 1146206	glutamate dehydrogenase (Bacilius subtilis)	68	7.5	399
3699	-	164	1 399	1339950	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	60	2.5	396
1016	-	42 A	216	191 1009366	Respiratory nitrate reductase (Bacillus subtills)	6.60	1.7	213
1177	-	473	1001	101 1149426	putative (Lactococcus lactis)	68	9,	171
4436	-	109	302	1022728	unknown Staphylococcus haemolyticus	68	o ¢	300
4635	-	320	162	191 1022725	unknown (Staphylococcus haemolycicus)	1 89		159
7	7	1330	2676	191 520754	putative (Bacillus subtills)	# # # # # # # # # # # # # # # # # # #	76	1347
7	· ~	368	878	sp P42321 cATA_	CATALASE (EC 1.6	9.8	ا 9ر	381
3		1 6389	1 4722	93 474177	alpha-D-1,4-glucosidase (Staphylococcus xylosus)	88	0.80	1669
5.6	911	18018	118617	91 4674:1	recombination protein [Bacillus subtilis]	98	רר	009
09	: -	1 376	843	91 666116	glucose kinase (Staphylococcus xylosus)	6	7.6	46.8
7.0	~ _	1 1583	1245	91 44095	replication initiator protein (Listeria monocytogenes)	88	٦,	• 6.0
2	= -	111514	12719	pir A60663 A606	translation elongation factor Tu - Bacillus subtilis	e e	62	1206
103		4179	1614	1911167181	serine/threonine kinase receptor (Brassica napus)	80	۲۲	213
=	-	1732	8232	191 1022726	unknown Staphylococcus heamolyticus	60 60	72	501
118	- 2	1 308	1 2011	91 1303804	YqeQ Bacillus subtilis	BB BD	11	1,704
=	-	657	1136	91 1405446	transketclase Bacillus subtilis	- so	7.2	480
148	-	1 5871	6116	[91]1118002	dihydropteroate synthase (Staphylococcus haemolyticus)	888	7.8	246
165		1428	2231	191140053	phenylaianyl-cRM synthetass alpha aubunit (Bacillus subtilis) iriSililio yrposa phenylaianinstRM ligass (EC 6 1.1.20) aloha ain - Bacillus subtilis	æ æ	0	¥0¢
205	128	13027	-	191 1165306	L2 (Bacillus subtilis)	80	8.2	843
225	-	1569	1 898	10:11:303840	YqfS (Bectlius subtilis)	88	9.2	672
300	-		1 1 1 1 1 1 1) :			3.6	1074

Contin ORF	ORF	Start	Stop	metch	match gene name	E S	1 ident	length (nt.)
339	-	2060	1566	a1 11 8002	dihydropteroate synthase (Staphylococcus haemolyticus)	88	23	495
Ç	-	4325	1 2928	q1 558559	pyrimidine nucleoside phosphorylese (Bacillus subtilis)	80	13	1398
532	<u>-</u> _	·	617	91,143797	yajyi-trna symthetase (Beclilus Keekochermophilus) spipli931 SVV_BACST VALYL-TRNA SYMTHETASE (EC 6.1.1.9) VALINETRNA LIGASE) (VALRS).	60 60	7.8	417
534		2504	2968	91, 153049	mannicol-specific enzyme-III (Staphy) ococcus carnoscal pir 170008 [10008 phosphorters/states system enzyme-IIC (T. 1.69), mannicol-specific, phosphorters/states system enzyme-IIC (T. 1.69), mannicol-specific, according carnoscal split1874 [PITA_STACA PIS SYSTEM, HARNITOL-SPECIFIC 11A COMPONENT EIIA-HILD (60 60	6,	\$9♦
705	7	584	399	51 710018	Initrite reductese (nirB) (Bacillus subtilis)	30	70	186
1000	-	1.824	1309	9:11022726	[unknown [Staphylococcus haemolyticus]	89	9.4	516
1299	-	587	324	1911401786	[pliosphomennomutase (Hycoplasma pirum]	80	\$\$	264
2		170	00+	191139963	ribosomal procein (20 (AA 1-119) Bacillus stemrothersophilus ir 50534@ R58520 ribosomal protein U20 - Bacillus esrothermophilus	60 6 0	89.7	233
1 1386	-	7	214	pir B47154 B471	pir 847154 8471 signal recognition particle 54K chain homolog Fth - Bacillus subtills	œ	7.1	174
1386 2	-	183	533	pir 047154 6471	signal recognition particle 54% chain homolog Ffh - Bacillus subtilis	6	(ر ا	150
2949	-	1 704	199	1911535150	Codx Bactilius subtalts)	•	در	30.6
2984	-		169	19:1218277	[O-scatylserine(throl) lysse [Spinscis oleraces]	90	0,	165
1 3035	-	-	1.138	91 493083	dihydroxyacetone kinase (Citrobacter freundii)	α •	67	134
1 3089	-	-	152	qi 606055	ORF_1746 [Escherichia coli]	E 60	88	150
1.917		2.1B	4 10	91 143378	pyruvace decarboxylase (E-1) beta subunit (Bacillus subtilis) gi 1377836 pyruvace decarboxylase E-1 beta subunit Bacillus ubtilis)	80 69	77	# C.B
4149	-	680		91 1405454	aconitase (Bacillus subtilis)	99	8.5	666
4201	-	734	369	91 515938	gureamere synthese (ferredoxin) (Symechocystis sp. pir S46957 S46957 glucamete synthese (ferredoxin) (EC 1.4.7.1) - ymechocystis sp.	6	86	166
4274			336	g1 515938 	gutamate synthsse (ferredoxin) (Synechocystis sp.) pir S46957 846957 glutamate synthsse (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.	æ	* *	336
4308	-	1 794	661	91/1146206	glutamate dehydrogenase (Bacillus subtilis)	4.	12	961
7	-	1.4570	0009	141 535350	[Codx [Bacillus subtilis]	60	7.0	1431
1 \$2		6781	6482	ar 1064791	[function umknown (Bacillus subtilis]		99	300
					~ 1			

3	
(
- 5	
8	
4	
3	
•	
7	
à	
,	
_	
9	
9	
•	
- 1	
3	
-	
-	
- 7	
- 1	
:	

13 13 13 13 13 13 13 13	Contra JORF	LORF	Start	Stop (nt)	match	setth gene name	E .	John	length int)
12 88.11 9100 61 169433	2	2	4 8 5 1	2480	91 142992	(EC 2.7.130) 7.1.30) - Bact 7.1.30) (ATP:GI	5	2	¢ 5.30
4 4285 2288 91 55888 serine hydroxymethyltransferase Bacillus aubtilia 5 1441 4559 91 55883 Unknown (Bacillus aubtilia) 5 1741 4559 91 647400 Unknown (Bacillus aubtilia) 7 17210 13810 91 3954 1F2 (aa 1-741) [Bacillus aubtilia) 8 1741 2235 91 44327 Iron-aultur protein (Bacillus aubtilia) 9 1771 2333 91 14327 Iron-aultur protein (Bacillus aubtilia) 1 1982 1158 91 14327 Iron-aultur protein (Bacillus aubtilia) 1 1203 1107 91 117239 150 (Bacillus aubtilia) 1 1203 1107 91 117239 150 (Bacillus aubtilia) 1 1203 1107 91 117239 (erc20)3 gane product (Bacillus aubtilia) 1 1203 1107 91 117239 (erc20)3 gane product (Bacillus aubtilia) 1 1203 1422 91 14350 170 (Bacillus aubtilia) 2 148 1422 91 14350 170 (Bacillus aubtilia) 3 1656 2391 91 114350 170 (Bacillus aubtilia) 4 165 1393 91 14350 170 (Bacillus aubtilia) 5 165 170 91 46516 91 11 repressor (Bycoplasma gentralium) 6 170 170 91 46516 91 11 repressor (Bycoplasma gentralium) 7 120 120 91 46519 170 (Bacillus aubtilia) 8 120 120 91 46519 170 (Bacillus aubtilia) 9 120 120 91 46519 170 (Bacillus aubtilia) 1 120 120 120 91 46519 170 (Bacillus aubtilia) 1 120 1	86	112	8188	9100	101 (467433	unknown (Becilius subtilis]	87	6.2	288
6 4457 4002 91/556833	124		4265	2988	91 556886	serine hydroxymethyltransferase (Becillus subtilis) pir s49363 S49363 serine hydroxymethyltransferase - Becillus ubtilis	87	۲۰	1278
5 1741 4559 91 467440 Uniknoom (Bacillus subtilis) 12710 11810 91 9954 [F2 (4s 1-741) Bacillus steerothermophilus 2 1104 2126 91 467365 Uniknoom (Bacillus subtilis) 3 4717 2933 PITTA2776 1200-cutac dehydrogenese (EC 1.3.99.1) (Eavoprocein 1.3. 11772 11543 91 1044972 (100somal protein 1.29 Bacillus subtilis) 4 1177 11543 91 11046193 (100somal protein 1.29 Bacillus subtilis) 5 1275 1275 12607 91 1107249 (100somal protein 1.29 Bacillus subtilis) 6 1275 1275 1270 91 1107249 (100somal protein 1.29 Bacillus subtilis) 7 1275 1270 91 1107249 (100somal protein 1.29 Bacillus subtilis) 8 1275 1272 91 1161182 (100somal protein 1.29 Bacillus subtilis) 9 1107 91 91 112770 ATP synthase c subunit (Bacillus subtilis) 1 1275 122 91 91 1146186 (1111 repressor (Mycoplasma genitallus) 1 1275 122 91 91 1146186 (1111 repressor (Mycoplasma genitallus) 1 1275 122 91 91 1146186 (1111 repressor (Mycoplasma genitallus) 1 1275 122 91 91 1146186 (1111 repressor (Mycoplasma genitallus) 1 1275 122 91 91 91 91 91 91 9	124	9	1 4457	1 4032	91 556883	Unknown (Beculius subtilis)	67	99	9:+
13 12710 13810 91 19954 IFP (am 1-741) Bacillus stearothermophilus 2 1104 2126 91 46336	148	-	13741	4559	91 467460	unknown (Becilius subtilis)	8)	٥٢	819
2 1104 2126 91 (67365	164	===	112710	13810	91 39954	[152 (am 1-741) [Bacillus stearothermophilus]	1 6	72	1101
1 1982 1158 91 14352 1170n-unitur protein (Bacillus subtilis) 1 1201 11543 91 1044972 Fibosomal protein L29 Bacillus subtilis) 12 11575 12607 91 1165209 53 Bacillus subtilis) 1 1 2013 1107 91 1145249 Fec233 game product (Bacillus subtilis) 1 1 2013 1107 91 1145199 Fec233 game product (Bacillus subtilis) 1 1 2013 1107 91 1146199 Feredoxin (Bacillus subtilis) 1 1 2013 1103 91 1146199 Feredoxin (Bacillus subtilis) 1 1 1 1 1 1 1 1 1	771	- 5	1104	1 2126	gi 467385	(unknown (Bacillus subtilis)	6	7.8	1023
2 4717 2933 pir[A27763[A277 succinate dehydrogenase (EC 1.3.99.1) flavoprotein 13 11343 git[1044972 fibosomal protein 1.29 Bacillus subtilis 12607 git[1165109 free213 gene product (Bacillus subtilis 1 2013 1107 git[1177249 free213 gene product (Bacillus subtilis 1 2013 1107 git[1177249 free213 gene product (Bacillus subtilis 1 2 2585 2292 git[1161382 freeC (Staphylococcus epidermidis 1 2 2585 2292 git[1161382 freeC (Staphylococcus epidermidis 2 2585 2292 git[1161382 freeC (Staphylococcus epidermidis 2 2585 2291 git[116250 A7P synthase c subunit (Bacillus subtilis 2 2585 1183 git[142570 A7P synthase c subunit (Bacillus subtilis 2 2585 git[465136 pillin repressor (Mycoplasma genitalium) 2 2585 git[465136 pillin repressor (Mycoplasma genitalium) 2 2585 git[465131 Recetate kinase (Bacillus subtilis) 2 2585 git[465911 Recetate kinase kinase (Bacillus subtilis) 2 2 2 2 2 2 2 2 2	199	-	1 1982	1158	191 143527	iron-sulfur protein (Bacillus subtilis)	87	7.1	825
13 11742 11543 91 1044972 110050mal protein 1.29 Bacillus subtilis 1203 1107 91 117249 18-23 Bacillus subtilis 1 203 1107 91 117249 18-23 Bacillus subtilis 1 103 1107 91 117249 18-23 Bacillus subtilis 1 103 1432 91 1146198 18-24 18-24 91 1146198 18-24 18-24 91 1146198 18-24 18-24 91 1146198 18-24 18-24 91 1146198 18-24 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 18-24 91 1146198 91 1146198 91 1146198 91 1146198 91 1146198 91 1146198 91 1146198 91 1146198 91 1146198 91 1146247 91 1146194	199	~	1 4717	1 2933	pir A27763 A277			0.0	1785
15 11215 112607 91 1165109 53 (Bactillus subtilis) 1 1 2013 1107 91 1177249	1 205	=	: -	111543	-	ribosomal protein 1.29 [Bacillus subtilis]	67	18	240
1 2003 1107 91 1177249	1 205	125		112607	î .	Sa (Bactilus subtilis)	- 187	7.5	699
5 2585 2292 g1, 107373 fribosomal protein SIB (Bacillus subtilia) 5 2585 2292 g2, 107373 fribosomal protein SIB (Bacillus subtilia) 6 1185 1183 g1 142570 ATP synthase c subunit (Bacillus filmus) 7 700 1073 g1 467186 pillin repressor (Mycoplasma gamitalium) 8 725 g1 1467186 pillin repressor (Mycoplasma gamitalium) 8 725 g1 1465186 pillin repressor (Mycoplasma gamitalium) 9 1 1255 722 g1 1465189 ATP synthase alpha subunit (Bacillus subtilia) 1 1 2 725 g1 146519 ATP synthase alpha subunit (Bacillus subtilia) 1 2 725 g1 146591 Riva synthase alpha subunit (Bacillus subtilia) 1 2 725 g1 146591 Rivatose-bisphosphate aldolase (Bacillus subtilia) 1 1 2 745 g1 146591 Rivatose-bisphosphate aldolase (Bacillus subtilia) 1 1 1 1 1 1 1 1 1	1 222	-	1 2033	1 1107	91 1177249	rec2)) gene product (Bacillus subtilis	. 8	70	927
5 2365 2292 91, 0.7373 Fribosomal protein SIB [Bacillus subtills] 1636 2391 91 1161382 IcaC [Staphylococcus epidermidia] 1636 2391 91 1161382 IcaC [Staphylococcus epidermidia] 1636 1381 91 116270 ATP synthase C subunit [Bacillus Citemas] 1 1000 1073 91 1046166 pillin repressor [Mycoplasma ganitalium] 1 1255 722 91 405314 accete kinase [Bacillus subtilla] 1 1 1 1 1 1 1 1 1	236	-	1635	1333		(erredoxin (Bacillus subtilis)	6,	90	303
2 4189 3422 gi 1161382 Icac (Staphylococcus epideraidas) 1656 2391 gi 31243 Carbamoyl-phosphate synthase (glutamine-hydrolysing) 4 1165 1383 at 142520 ATP synthase c subonit (Bacillus Sirmus) 4 900 1073 gi 46536 Ehiophen and Guran oxidation (Bacillus subtilis) 1 1255 722 gi 405134 Scetate Kinase (Bacillus subtilis) 1 1 2 372 si 006797 ML] 8 1058 RIBOSOHAL PROTFIN LI (BLI). 1 2 372 si 405131 Eructose-bisphosphate aldolase (Bacillus subtilis) 1 1 1 1 1 1 1 1 1	246	-	2585	1 2292		ribosomal protein SIB (Bacillus subtilis)	-81	77	294
3 1696 2191 91 112443 Carbamoyl-phosphate synthase (Glutamine-hydrolysing) 4 1165 1183 91 142520 ATP synthase c subunit (Bacillus tirmus) 4 900 1073 91 467386 thiophen and furan oxidation (Bacillus subtlifis) 1 1255 722 91 405134 Ecetate Kinase (Bacillus subtlifis) 1 1 1 1 1 1 1 1 1	7 560	- 2	4189	3422	1	IcaC Staphylococcus epidermidis	69.	72	768
4 1165 1383 911 142370 2 1003 794 91 1463386 1 1 255 722 91 405334 1 1 711 91 142539 1 2 352 5; Q06797 RLL_B 2 359 555 91 460911 3 934 1284 91 460911	320	-	1696	1 2391	gi 312443	carbamoy1-phosphate synthase (glutamine-hydrolysing) (Racillus aldolyticus)	1 87	80	969
4 900 1073 911467186 12 1003 794 911046166 11 1255 722 911405134 11 1 1 1 1 1 1 1 1	380	-	11165	1 1383	91 162570	ATP synthase c subunit (Bacillus firmus)	97	90	219
1 1255 722 91 1046166 1 1255 722 91 405334 1 1 1 2 352	7	-	1 200	1 1073	· –	thiophen and furan oxidation (Bacillus subtiifs)		77	174
1 1255 722 91 405134 1 1 711 [91 142559 1 2 352 [\$\sqrt{9} \Q66797 \RL_B 2 359 555 91 460911 3 934 1284 91 1460911 1 3 452 93 1146247	425	- 5	1 1003	1 794	91 1046166		30	69	210
1 1 7.11 gi 142759	677	-	1 1255	1 722	91 405134	scetate kinase [Bacillus subtilis]	99.4	27	534
1 2 352 SEJ QO 6797 NEL_B	084	-	1 -	1 711	[gi[142559	ATP synthage alpha subunit (Bacillus megaterium)	£ 60	66	71:
2 359 955 pi 460911 3 934 1284 pi 460911 1 3 452 pi 1146249	187	-	2	1 352	8_114 1'67600 qs	508 RIBOSOMAL PROTFIN LI IBLI).	œ.	7.2	151
1 3 452 452 4460911	677	- 7	; –	1 955	01 460911	[fructose-bisphosphate aldolase (Bacillus subtilis)	-88	78	165
1 1 3 452 (92) 1146247	1 677	-	1 934	1 1284	91 460911	[fructose-bisphosphate aldolase (Bacillus subtilis)	69	86	150
	978	-	- 3	452	91 1146247	[asparaginyl-tRNA synthetese [bacillus subtilis]	1897	67	450

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

1.00 1.00	Contig ORF	CRF	Start (nt)	Stop (nt)	match	match gene name		T J dent	length (nt)	
1 1 1 1 1 1 1 1 1 1	1376	; -	426	214	-	product [Caenorhabditis	- 6	75	213	
1 1 1 1 1 1 1 1 1 1	1 2206			374	91 215098	excisionase (Bacteriophage 154a)	20	12	372	
1 1 1 1 1 1 1 1 1 1	2938	-		290	191 508979	GTP-binding protein (Becillus subtilis)	63	69	887	- •
1 5 401 911405354 Accontexe (Bactillus aubtilis) 67 1 547 273 501405754 Nextly protein, unceases (Bactillus aubtilis) 68 2 2460 1572 91140515 Underly protein, unceases (Bactillus aubtilis) 66 3 2346 1572 91140525 Underly protein sylvanish 66 4 15 15 15 15 15 15 15	1800	7	1 126	308	01 467399	InP dehydrogenese (Becillus subtilis)	-	72	183	- +
1 547 275 51160779	5151	-		100	91 1405454	aconitase (Bacillus subcilis)	6.3	98	399	
8 10427 8736 101602789 Hatty process, victorial subtilial 86 6 4190 7736 [01140215 Unesambles submit [Staphylococcus wylosus] 86 7 2460 1572 [01149287 Unit-city phosphorotylase [Bacillus subtilia] 86 8 2336 1572 [01149287 Unit-city phosphorotylase [Bacillus subtilia] 86 9 2336 1572 [01149287 Unit-city phosphorotylase [Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [01137885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [0113885 Unit-city process Bacillus subtilia] 86 1 1140 2086 [0113885 Unit-city product Bacillus subtilia] 86 1 1140 2086 [0113885 Unit-city product Bacillus subtilia] 86 1 1487 2076 [01148740 Unit-city product Bacillus subtilia] 86 1 1488 2086 [0113885 Unit-city product Bacillus subtilia] 86 1 1 109 [01148740 Unit-city product Bacillus subtilia] 86 1 1 1 1 1 1 1 1 1	4238	<u>-</u> -	547	275	191 603769		6.7	7.3	273	- •
6 1190 1778 Gil (180515) Urracil phosphorylace Bacillus abbillish 864 864 865 866	-		110427	1 8736	142 603 769	Hutu protein, urocenese (Bacillus subtilis)	96	72	1692	
1 13.16 13.17 91 280837 Uuracii phosphorylasa (Bacillus aubtilia) 1845 1	22	9	4190	1 3738	91 410515	uressa beta subunit (Staphylococcus xylosus)	96	13	453	- •
1 1316 1711 191556837 Uracii phosphoribosyltraniferase [Bacillus ubbillis] 186	24	7	1 2480	1572	91 289287	UDP-glucose pyrophosphorylase (Bacillus subtilis)	98	0,0	606	
4 36.8 38.9 gil (47766) unknown [Bacillus subtilis] 86 86 86 86 86 86 86 8	124		2336	1713	h; 556887	uracil phosphoribosyltransferase Bacillus subtilis pir 549164 549364 uracil phosphoribosyltransferase - Becillus ubtilis	98	•	62	+
4 1818 1839 Griffeldo Unknown [Bacillus aubtilis] 86 1 1140 2086 Juli37835 Pyruvate decatobaylase E-1 alpha aubtilis 86 1 1140 2086 Juli37835 Pyruvate decatobaylase E-1 alpha aubtilis 86 2 554 1159 Griffeldo Probanomal protein 13 [Bacillus aubtilis] 86 3 2966 2952 Griffeldo Probanomal protein 13 [Bacillus aubtilis] 86 4 2960 2952 Griffeldo Probanomal protein 12 [Bacillus aubtilis] 86 5 1159 Griffeldo Probanomal protein 12 [Bacillus acrothemophilus] Filosomal protein 12 Bacillus acrothemophilus Filosomal protein 12 Bacillus aubtilis 7 1966 1966 Griffeldo Prophoribosylprophosphate synthetase [Bacillus aubtilis 8 2006 2008 Griffeldo Protein 25 Prophoribosylprophosphate synthetase Protein 25 8 2006 2008 Griffeldo Protein 25 Protein 25 Protein 25 Protein 25 Protein 25 9 1109 Griffeldo Protein 25 Protein 25		-	1349	3448	ui 467458	cell division protein Bacillus subtilis	98	25	2100	- •
1 1140 2086 91 1184689 polymeclecide phosphorylase E-1 alpha aubmit [Bacillus subtilis] 86 2 554 1159 91 1184689 polymeclecide phosphorylase [Bacillus aubtilis] 86 3 254 1159 91 1184689 polymeclecide phosphorylase [Bacillus subtilis] 86 4 2554 1159 91 1184689 polymeclecide phosphorylase [Bacillus subtilis] 86 5 2554 1159 91 11461737 Tibosomal protein L22 - Bacillus secretemophilus ESSIGNITION 86 6 1366 1360 91 1467375 Tibosomal protein L22 - Bacillus secretemophilus ESSIGNITION 86 7 1364 1315 91 467440 Tibosomal protein L22 - Bacillus subtilis 86 8 1365 1366 1366 91 1177664 Esphorylococcus synthetase Bacillus subtilis 86 9 1467 1467 146740 Tibosomal protein 86 9 1467 1467 1467 1467 Tibosomal protein 86 1 186 1368 1368 1368 1368 1368 1368 1368 1368 1369 1368 1369 1368 1369 136	148	-	1 3638		91 467460	unknown (Becillus subtilis)	2	1.3	222	- •
11 17147 19447 19446	152	-	1 1 1 40	2086	01 1377835	pyruvata decarboxylase E-1 alpha subunit (Bacillus subtilis)	9.8	75	747	- +
2 554 1159 91 141467 Fribosomal protein 54 [Bacillus subtilis] 86 1 2966 2592 91 401464 Fribosomal protein 117 [Bacillus stearObhemophilus] ir 510612 510612 86 2 1364 12990 91 40107 Fribosomal protein 122 - Bacillus stearObhemophilus Fistolofi2 510612 86 3 1364 1340 91 467440 Fribosomal protein 122 - Bacillus stearObhemophilus Fistolofi2 510612 86 3 1364 4345 91 467440 Fribosomal protein 122 - Bacillus statilis 91 40218 PRPP 86 4 4 4 4 4 4 4 4 4	1 164	118	117347	119467	91 1184680	polymucleotide phosphorylase (Bacillus subtilis	98	2,7	1212	- •
1 12966 12392 91 142464	180	1 2	554		gi 143467	ribosomal protein S4 [Bacillus subtilis]	9.6	980	909	- •
126 11399	105	-	1 2966	1 2592	91 142464	ribosomal protein 517 [Bacillus subtilis]	9.6	77	275	
7 1463 1140 41 467175	205	- 136	113364	112990	194 40107	ribosomal protein L22 (Bacillus stearothermophilus) ir S10612 S10612 ribosomal protein L22 - Bacillus earothermophilus	9 9	۶۶	375	•
7 1196 1440 G. 13656 Spowd gene product Becillus megaterium 86 86 870	246		1 3463	3140	91 167375	ribosomal protein S6 (Bacullus subtilis)	98	0١ ا	324	- •
7 1484 4145 91 467440 Phosphoribosylpyrophosphate synthetase [Bacillus subtilis] 91 40218 PRPP 86 5 2170 2223 93 666983 Purative ATP binding submit (Bacillus subtilis) 86 5 2170 2223 91 666983 Purative ATP binding submit (Bacillus subtilis) 86 5 2086 3109 91 1118003 Highlytonacopterin aldolase (Staphylococcus heemolyticus) 86 7 1489 1109 91 1118003 Highlytonacopterin aldolase (Staphylococcus heemolyticus) 86 8 2124 3140 91 1118003 Highlytonacopterin aldolase (Staphylococcus heemolyticus) 86 7 2124 3140 91 1146219 28 23 of identity to the Escherichia coll GTP-binding protein Era, Putative 86 8 8 91 92 92 92 92 92 92 92	1 299		1 1196	1540	[cx 39656	spowG gene product (Bacillus megaterium)	99	0,4	345	- •
5 2170 2223 94:666993 Purative ATP binding submit (Bacillus suhfills) 86 86 86 87 278 94 1177684 Charismate mutase (Staphylococcus xylosus) 86 86 86 87 88 88 88 88	539	7	3884	4345	91 467440	phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gil40218 PRPP synthetase (AA 1-317) (Bacillus subtilis)	9.8	84.	462	
2 1487 1676	304		1 2170	2523	191:666983	[putative ATP binding subunit (Bactilus subtilis]	98	65	354	- :
5 2086 3405 Gl 487434 Isocitrate dehydrogense (Bacillus subtilis) 86 2 1489 1109 94 1118003 dihydroneopterin aldolase (Staphylococcus haemolyticus) 86 2 2 2 2 2 2 2 2 2	1 110	1 2	1487	1678	91 1177684	charismate mutass Staphylococcus xylosus	98	1,1	192	- :
2 1489 1109 G1 1118003 dihydroneopterin aldolase (Staphylococcus haemolyticus) 86 2 2 2 2 2 2 2 2 2	766	-	2086	3405	151 487434	isocitrate dehydrogenase (Bacillus subtilis]	986	7.8	1320	-:
2 2124 3140 [91]1146219 [28.21 of identity to the Escherichia coli GTP-binding protein Era; putative 86	339	- 2	1489	11109	{8x 1118003	dihydroneopterin aldolase (Staphylococcus heemolyticus)	99	11	186	:
	358	- 3	2124	3440	96 1146219	[28.21 of identity to the Escherichia coll GTP-binding protein Era; putative [Becillus subtilis]	980	23	1317	

TARLE

S aureus - Putetive coding regions of novel proteins similar to known proteins

Contig	0 0 E	Start (nt)	Stop	metch acession	match gene name	E .	1 1 den	length (nt)	
* 0	~ -	1 1015	2058	191 1303817	YqfA (uacurlus subtilus)	98	78	1064	
581	1 2	661	452		phop gene product (Bacillus subtills)	196	- 12	210	
642	- 3	338	1075	01 1176199	Epir (Staphylococcus spidermidis)	98	72	738	
07.	-	622	347	91 143328	phoP protwin (put.); putative (Bacillus subtilis)	99	69	276	
865	-	1777	H 90	91 1146247	asparaginyl-tRMA synthetase (Bacillus subtilis)	98	z	E E	
898	-	963	611	1002911	transmembrane protein Saccharomyces cerevisies	9 9	69	121	
404	-	-	1 162	41 1303912	Yqhw (Bacıllus subtilis)	9	7.2	162	
686	-	38	433	191 (1303993	YqkL (Bacillus subtilis)	98	76	199	
1 1212	==	296	150	91 41 4014	ipa-90d gene product [Bacillus subtilis]	¢	7.0	147	
1323			8	140041	pyruvate dehydrogenase (liposmide) (Bacillus stearcthermophilus) Ir S10798 DEBSPP pyruvate dehydrogenase (liposmide) (EC 1.2.4.1) pha chain - Bacillus stearcthermophilus	9	25	1	
3085	7	540	310	91 1154211	PET112-like protein (Bacillus subtilis)	98	96	231	
1841		-	1 22H	1711296464	ATPase [Lacrococous lactis]	9 %	6)	A	
4187	. –	476	240	01 1022726	unknown Staphylococcus hasmolyticus	98		237	
4583	-	37.8	187	91 (1022725	unknown (Staphylococcus haemolyticus)	9 8	7.4	186	
52	- 2	4287	5039	9111502421	Ketoecy	88	94	753	
95	21	110627	29395	0. 1408507	[pyrimidine nucleoside transport protein [Bacillus sub:11is]	ž	69	=======================================	
99	7	332	1192	91 467376	unknown [Bacillus subtilis]	9	7.	198	
	~	088	1707	gi 142992	glycerol kinase (glpk) (EC 2.7.1.30) [Bacillus subtilis] pir B45868 B45868 glycerol kinase (EC 2.7.1.30) - Bacillus subtilis sp Pi8157 GLPK_BACSU GLYCEROL KINASE (EC 2.7.1.30) (ATP:GLYCEROL -PHOSPHOTRANSFERASE) (GLYCEROKINASE) (GK).	88	22	828	
106	· -	1505	3490	9. 143766	(thrsv) (EC 6.1.1.3) [Bacilius subtilis]	88	1 1/4	1986	
129		51	2202	01 311924	glycerladehydo-l-phosphate dehydrogenase (Clostridium pasteurianum) pir Sl4154 Sl4254 glyceraldehyde-l-phosphate dehydrogenase (EC .2.1.12) - Clostridium pasteurianum	Ş	5	1050	
129	-	9919	5252	91 1064807	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	88		1215	
138	9 -	3475	6795	91 1072419	gleB gene product (Staphylococcus carnosus)	85	1 12	2199	
189	-	2	169	Q1 467385	unknown [Bacillus subtilis]	8 5	95	168	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	0 ORF	St # r t {n t }	Stop (nt)	match acession	- March gene name	# 1 # 1	1 Ident	length (nr)
1 205	115	R624	9016	91 1044981	ribosoma protein S5 (Bacillus subtilis)	5.60	1.57	6.5
1 205	120	1:0928	110596	pir A02819 R585	pir A02819 R565 (ribosomal protein L24 - Bacillus stearothermophilus	80 S	2.	111
220		06+9	1 6101	91 48980	secA gene product (Becillus subtilis)	- S8	99	390
1 231	-	1 4877	3159	01 1002520	MUCS [Bacilius subtilis]	982	1 0,	6171
243	-	1 8013	8783	91 414011	ipa-87r gene product (Bacillus subtilis)	- S	7.5	11.1
249		\$885	3186	01 1405454	sconttase Bacillus subtilis	£	ξ.	2709
305		•	475	gi 40173	homolog of E coli ribosomal protein U21 (Becillus subtilis) ir S18439 S18439 Ribosomal protein U21 - Bacillus subtilis p P26908 RU21_BACSU 50S RIBOSOMAL FROTEIN L21 (8U20).	£	7.2	336
666	-	5445	1 2968	91/442360	CipC adenosine triphosphatase (Bacillus subtilis)	98	69	2478
1 364	9 -	6082	1 8196	gi R71784	[Clp-like ATP-dependent protesse binding subunit [Bos taurus]	95	89	2112
448	-	7661	1339	91 405134	accetate kinase (Bacillus subtilis)	98	89	654
747		1251	853		orf-X; hypotherical protein. Method: conceptual translation supplied by author (Bacillus subtilis)	\$	٤	1 660
984		1 159	1 467	191 541768	hemin permease (Yersinia enterocolitica)	88	5.5	309
6801	-	1208	909	pir 847154 8471	signal recognition particle 54K chain homolog Ffh - Becillus subtilis	88	7.1	603
1163			409	91(301155	(itaminopimalate decarboxylase (Becillus methanolicus) sp[P4102] DCDA_BACHT DIAMINOPIMELATE DECARBOXYLASE)	\$	62	4 80
1924	-	- 487	251	91/215098	excisionase (Dacterlophage 154a)	88	7.3	237
1 2932	-	1116	065	911041099	Pyruvate Kinasa (Bacillus licheniformis)	58	1,2	787
0101			275	91 42370	pyruvate formate-lyase (AA 1-760) [Escherichia coll] ir SC1788 S01786 formate C-acetyltransferase (EC 2.3.1.34) - cherichia coll	Ş.	*	273
1116	-	565	1 299	91163568	linb deformity protein (Gallus geilus)	85	\$\$	297
3778	-	630) 116	91,391840	bata-subunit of HDT (Pseudomonas fragi)	9	67	315
1 3435	-	-	1.87	191 1204472	Lype I restriction enzyme ECOR124/3 I M protein (Heemophilus influenzae)	RS .	>\$	387
4042	-		396	91 18178	formate acetyltransferase (Chiamydomonas reinhardtii) 1r 524997 524997 formate C-acetyltransferase (EC 2.3.1.54) - lamydomonas reinhardtii		0,	384
1 4053	-	35	340	91 1204672	type I restriction enzyme ECOR124/3 I M protein (Meemophilus influenzae)	82	\$	306
#10B	-	7	191	vi 1072418	glcA gens product [Staphylococcus carnosus]	98	6.1	180
4300	-	5 / 5	330	9+1151932	[fructose enzyme II (Rhodobacter capsulatus)	88	65	246
	1 1 2 4 1 2							

S. aureus - Pututive codiny regions of novel proteins similar to known proteins

Cont 19 10	10 OH F	Start (nt)	Stop	match acession	match gene name	 E13	1 ident	lengtl.
1 4392	-	1 627	1 355	191 1022725	unknown (Staphy)ococcus haemolyticus	95 –	74	(7.5
4409	-	1 2	235	01/821784	(Cly-like ATP-dependent protesse binding subunit (Bos taurus)	1 58	62	1 162
4430	-	578	1 291	91 1009366	Nespiratory nitrate reductase (Bacilius subtilis)	85	89	268
4555			253	450688	high gene of Ecopril game product (Escharichia coli) pir 558477 538477 hadm protein - Escharichia coli pir 509629 509629 hypothetical protein A - Escharichia coli (508 (0-520)	\$6	25	252
4611	-	1 481	242	91 1256635	[dihydroxy-acid dehydratase (Bacillus subtilis]	- 58	59	240
•		190011 011	10291	qt 469H2	foat gens product (Staphylococcus epideraidis)	78	. 49	1165
2	~	1348	1172	191 142450	ahrC protein (Bacillus subtilis	-	95	177
91	-	1 1803	4652	91 1277198	DNA repair protein Deinococcus radiodurans	*	63	285C
1 22		1 1535	1128	191 511069	UreF Staphylococcus xylosus	.	_ ET	404
2	-	\$505	5306	91/603320	[YerO81p Saccharomyces cerevisiae]	3	19	797
3	=	111597	111145	91 1303948	Yqiw (Bacillus subtilis)	*	899	6 53
	<u></u>	114059	0 2 3 -	q+ 142613 	Dranched chain alpha-kero acid debydrogenase E2 (hacillus subtilis) gr[1303944 Bimms Bacillus subtilis)	Z	11.	1230
07	-	21(1	286	91/46647	ORF (rept) [Staphylococcus aureus]	3	99	351
2	-	2513	100	01/14293	glycerol-J-phosphate dehydrogenase (glpD) (EC 1.1.99 5) (Bacillus ubtilis	æ	4	180
K (6			9609	91 467427	methionyl-thma synthetase (Bacillus subtilis)	œ.	99	17.3
100		9501	9680	91/1340126	ORF1 (Staphylococcus aureus)	•	7.8	822
	_	1934	3208	191 1237019	Srb [Bacillus subtilis	- ·	6.9	1275
14.8	9	4720	5670	gi 467462	cysteine synthetase A [Bacillus subtliss]	ec T	69	156
152	-	2064	2456	[4. [143377	pyruvate decarboxylass (E-1) alpha subunit [Bacillus subtilis] pir Bl6718 meBSPA pyruvate dehydrogenase (lipoamido) (EC 1.2.4.1) lpha chain = Bacillus subtilis	~	10	191
69:	_	3634	3861	qi 1001342	hypothetical protein (Symechocystis sp.)	9	99	228
1.61	-	2992	1 2657	191 517475	D-amino acid transaminase (Staphylococcus haemolyticus)	Œ	7.1	336
186	9	6941	6216	91 467475	unknown [Dacillus subtilis]	3	0,	726
205	6	6261	5695	94 216340	ORF for adenylate kinase (bacillus subtilis)	-	1,	5.5
324	~	915	1391	91 288269	beta-fructofuranosidese Staphylocorcus xylosus	2	01.	6.4

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contro ORF	108F	Stars (nt)	i stop	match	metch gene name 1	E	1 Idant	length (nt)
152	-	3	388	94 1303790	Yqel (Bacillus subtilis)	4	- 59	297
282		1526	2836	91 143040		6 0	۲,	1161
1 307	- 2	8000	2959	91 1070014	protein-dependent Bacillus subtilis]	- •	62	081
320	-	1 2343	4229	91 143390		88	70	1987
372	-	-	296	oi 1022725	unknown (Staphylococcus haemolyticus)	œ.	7.0	294
413	- 7	1 2201	1361	19111256146	YbbQ [Bacillus subtilis]	80	6.5	100
1 439	-		192	19111046173	osmotically inducible protein (Mycoplasma genitalium)		53	390
<u>-</u>		1 1362	2270		Chreonine synthase (thrC) (AA 1-352) (Bacillus aubtilis) ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Becillus biilis	æ	2	605
1 487	-	-	562	91 1144531	integrin-like protein alpha Intip (Candida albicana)	98	9	297
164	-	624	\$06	pir S08564 R38S	pir SOBS64 R3BS [ribosomal protein S9 - Bacillus stearothermophlius		69	282
167	-	1 8.6	((0)	pir S08564 R3RS	ribosomal protein S9 - Bacillus stearothermophilus	\$	رد ا	198
* * 75	. <u>-</u>	: - -	141	[m]431211	[vracil permeane [Baczilus caldulyticus]	*	74	911
1 726	-	1 2701	1748	91 912445	DNA polymerace [Bacillus caldotenax]	84	89	954
692	-		1 257	91 1510953	cobalamin blosynthesis protein N [Methanococcus jannaschii]	*	*	255
1 954	-	1 308	156	9+ 1405454	aconitaso (Bacillus subtilis)	- R4	75	183
957			395	G 143402	recombination protein (tig start codon) [Bacillus subtilis] gi 1303923 RecN [Bacillus subtilis]	2	3	191
516	-		452	19: 885934	(ClpB (Synechococcus sp.)	•	0,	450
1585	-		1 257	1-11-510140	liquendopeptidase F [Lactococcus lactis]		5.6	255
2954	-	7	1 323	91 603769	HutU protein, urocanase [Bacillus subtilis]	8	7.3	176
2996		650	348	91 18178	formate acetyltransferase (Chlamydomonas reinhardtii) 1r 524997 524997 formate C-acetyltransferase (EC 2 3.1.54) - lamydomonas reinhardtii	88	\$	303
1 3766	-	1.137	57.	3' 517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	7	72	163
4022	-	2	169	51 1146206	glutamate dehydrogenase (Bacillus subtilis	£	24	168
4054	-	029	1 312	141 151932	[fructose enzyme II [Rhodobecter capsulatus]	**		109
4108	~	901	1381	911072418	gick gene roduct Staphylococcus carnoaus	¥ 88 -	77	246

aureus - Putative coding regions of novel proteins similar to known proteins

1.0.2 1.0.	Cont.lq ORI	0.KI	St. 61.	Stop (nt)	match accession	match gene name	E .	1 1 dent	length (nt)
1 55 214 91 146208 Oldinates profites to product to 11 13 14 15 15 15 15 15 15 15	1 4183	-		308	91 603769		98	72	306
14 2613 1776 161737377 International Chain Alpha-Seco acid dehydrogenae El-bata (Bacillua ubtilla) 19 16 11177 11272 10 (41112) Internated Chain Alpha-Seco acid dehydrogenae El-bata (Bacillua ubtilla) 19 16 11177 11272 10 (41112) Internated Chain Alpha-Seco acid dehydrogenae (EC 11 1 27) Bacillua ubtilla) 10 17 17 17 17 17 17 17	4726		\$\$	234	91 146208		æ	۲2	C # 1
1.1.1. 1	22	-	1 2043	1576	19. 393297	urease accessory protein (Bacilius sp.)	693	99	£ 6.8
1313 12872 91 143132 144142124 144444 144444 144444 14313 14844 14314 14844 144444 14444	53		114722	13745	[91]142612	branched chain alpha-keto acid dehydrogenase El-beta [Bacillus ubtilis]	F 80	6 9	978
1 1319 2224 pril 100884 Traplication initiator protein [Listeria monocytoperes] 61 1 144 1523 pril 155271 pril cation initiator protein [Listeria monocytoperes] 63 1 144 1523 pril 155271 pril 155271 pril cation initiator protein [Listeria monocytoperes] 63 1 145 1429 pril 155271 pril		9	13357	112872	911143132	lactate debydrogensse (AC 1: 1.27) [Bacillus caldolyticus] pir[B29704]bi/3/3 L-lactate debydrogensse (EC 1.1 1.27) - Bacillus aldolyticus	2	9	486
1 1377 1423 [0111212.130 Ythink [Bacillus subtrilis] 1844 1523 [011440955 Iraplication initiator protein [Listeria monocytogenes] 83 1 1864 1523 [01140955 Iraplication initiator protein [Listeria monocytogenes] 83 1 1864 1523 [01155231 [airchoi derydrogenase Isahal IRC 1.1.11 I.2ymonomas mobilis 83 1 1864 1523 [011522376 Initiation protein of replication Bacillus subtilis] 83 1 1864 1824 [011522376 Inmassive synthase (D-subonit) [Bacillus abbtilis] 83 1 1864 1824 [011522376 Inmassive synthase (D-subonit) [Bacillus abbtilis] 83 1 1844 1844 1845 [011526373 [01879 gamp product [Bacillus subtilis] 84 1 1841 1844 1845 [01158374 [0187902 [01870 call Isahallus subtilis] 84 1 1845 [01158374 [0116804 [0116804 Indasoral protein [Bacillus subtilis] 84 1 1845 [0116804 [0116804 [0116804 Indasoral protein [Bacillus subtilis] 84 1 1845 [0116804 [0116804 [0116804 Indasoral protein [Bacillus subtilis] 84 1 1845 [0116804 [0116804 [0116804 Indasoral protein [Bacillus subtilis] 84 1 1845 [0116804 [0116804 [0116804 Indasoral protein [Bacillus subtilis] 84 1 1845 [0116804 [0116804 [0116804 Indasoral protein [Bacillus subtilis] 84 1 1845 [0116804 [016804 [016	99	-	1 3119	1 2274	19111303894	Yqhm (Bacillus subcills)	6)	6)	80
1 177 1429 GIT 155573 Alicohol derydrogenese 1 1640 1621 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	99	- 5	6118	4643	91 1212730	Yqhk (Bacillus subtilis)	83	89	1476
1 377 1429 gil155573 alcohol dehydrogenase F (ach) EC 11.1.1.1 Exponense mobilis N	0,4	-	1864	1523	01 44095	replication initiator protein (Listeria monocytogenes)	63	6.7	342
2 104 2102 711[106381 [pilospho-betr-glucosidase [Bacillus subtilis] 83 83 83 84 91465791 [initiation protein of replication [Bacillus subtilis] 83 83 84 91465791 [initiation protein of replication [Bacillus subtilis] 83 83 84 91465791 91402107 [identifies spinithase (b-subunit) [Bacillus amyloliquefaciens] 83 83 84 91402107 [identifies spinithase (b-subunit) [Bacillus amyloliquefaciens] 83 83 84 91402107 [identifies subtilis] 84 91402107 [identifies subtilis] 91400 914000000000000000000000000000000000000	06		1,11	1429	gi 155571	sone s	£	0,	1053
1 64 654 91 467391 Innitiation protein of replication Bacillus subtilis 83 83 4 1209 2742 91 613102	9.6	- 2	1 708	1 2162	1911506381	[phospho-beta-glucosidase (Bacillus subtilis]	83	07.	1455
4 1209 2742 91 65410) kapb (Escherichia coli) 83 83 84 85 94 1212776 Ummaine synthase (b-subunit) (Recilius amyloliquefacions) 83 83 84 85 94 85 94 85 95 85 85 85 85 85 85	13.	-	89	694	91 467391	initiation protein of replicaton [Bacillus subtilis]	83	۲۲	627
J J468 2989 94 1212776	140	-	1 3209	2742	91 634107	kdp8 [Escherichia coli]	83	65	84
12 5749 6696 91 903307 10RF75 Bacillus subtilis 83 84 85 85 85 85 85 85 85	142	-	1 3468	1 2989	191 1212776		6	69	081
9 9480 11070 91 491.6 10872 gane product (Bacillus subtilie) 83 83 83 84 14546 91 520844 0rf4 (Bacillus subtilie) 80 80 80 80 80 80 80 8	191	==	1 5749	9699	91/903307	ORF75 (Bacillus subtilis)	63	3	****
14	164	-	9880	111070	91(49316	ORF2 gane product (Bacillus subtilis	83	99	1191
2 3144 2467 91/520844 Orf4 [Bacillus subtilis] 83 2 2029 L170 91/289284 Cysteinyi-tRMA synthetase [Bacillus subtilis] 83 14 7822 7607 91/216337 ORF for L30 ribosomal protein [Bacillus subtilis] 83 6 3693 44540 Ori 1510488 Imidazolegilycerol-phosphate synthase (cyclase) (Methanococcus jonneschill 83 1 985 638 Gyl 465419 Unknown (Bacillus subtilis) 81 4 1421 2743 91/30849 CTP-binding protein (Bacillus subtilis) 83 5 352 91/1039479 CMP-binding protein (Bacillus subtilis) 83 6 16 17 17 17 17 17 17	164	=	114148	114546	191 580902	ORF6 gene product (Bacillus subtilis)	83	0.9	399
2 2029 1370 91328284 Cytteiny-teMa synthetase Bacillus subtiliar 14 1822 7607 913216337 10RF for U3O ribosomal protein Bacillus subtiliar 6 3643 4540 0.1350488 Imidacolegiycerol-phosphate synthase (cyclase) Methanococcus jannaschili 83 1 985 638 Gyil467419 Iunknown Bacillus subtiliar 4 1421 2744 (91 508979 GTP-binding protein Bacillus subtiliar 4 3933 3571 91 39444	170	-	1 3144	1 2467	g	orf4 (Bacillus subtilis)	83	7,	674
14 1822 7607 91 216337 10RF for U30 ribbasomal protein Bacillus subtilis 83	186	- 5	1 2029	07.61	Q1 289284	cysteinyl-tRMA synthetase [Bacillus subtilis]	63	2,	099
6 1643 4540 n. 1510488	507	=	1 1822	1 7607	[01]216337	ORF for L30 ribosomal protein (Bacillus subtilis)	6	24	216
1 985 636 (51466419 Unknown (Bacillus subtilis) 83	237	9 -	1 3643	4540	(α1)1510488	[imidazolegiycerol-phosphate synthase (cyclase) [Methanococcus jonnaschii]	83	09	ASA
4 1421 2744' (q. 306979 GTP-binding procein [Bacillus subtilis] 83 4 3933 3571 (j. 139844 [fumarese [citG] (as 1-462) [Bacillus subtilis] 83	100		586	638	151 467419	unknown (Bacilius subtilis)	83	99	348
4 3933 3571 01 39844	305	-	1421	2743		CTP-binding protein [Bacillus subtilis]	83	80	1323
1 2 352 31 1019479 ORFU Lactococcus lactis	1221	-	1 3933	1.758	191 39844	[fumarese [citG] (so 1-462) [Sacillus subtilis]	983	89	363
	1 367	-	2	1352	17111039479	ORFU Lactococcus lactis		25	351

5. aureus - Putative coding regions of novel proceins similar to known proteins

Sim Ident Length	00	78	Applium) 83 66 Becilium	29326 WZ8SDS 67	00	as (a)	92.	93	ilas) Bacillus ubtilis	80	- 9 - 80 -	p.r 548578 548578 83 59 (fragment)	- 14		83 24	83	82 67	90 20	3.00	00	82	82 60	
match gene nome	UNA polymerase I (Bacillus scenrothermophilus)	protesse Staphylococcus epidermidis	alanine dehydrogenase (EC 1.4.1.1) Bacillus stearothermophilus pir 834261 834261 alanine dehydrogenase (EC 1.4.1.1) - Bacillus tearothermophilus	ademylosuccinate lysse (POR-B) [Bacillus subtilis] , i C29336 WZBSDS ademylosuccinate lysse (EC 4.3.2.2) - Bacillus ubtilis	DNA topoleomerase [(Bacillus subtilis)	M. jannaschil predicted coding region NJECL28 (Methanococcus jannaschil)	ORTHININE AMINOTRANSFERASE (Bactillus subtills)	[lexA (Bacillus subtilis]	tryptophany1-tRNA synthetage (EC 6.1.1.2) [Bactlius subtlins pir[JT048] YWBS tryptophantRNA ligase (EC 6.1.1.2) - Bact	Proz Becillus subtilis	JORF_0294 (Eschetichia coll)	hypothetical yeast protein 1 (Mycopiasma capticolum) pir hypothetical protein - Mycopiasma capticolum SGC3) (fra	[thioredoxin reductase [Eubacterium acidaminophilum]	(clumping factor (Staphylococcus aureus)	[unknown [Staphylococcus hasmolyticus]	9]cB gene product (Staphylococcus carnosus)	uvs402 protein Streptococcus pneumonise)	uvs402 protein Streptococcus pneumonise)	N-acetylneuraminate lyase (Haemophilus influenzae)	catalase [Bacteroides fragilis]	sporulation protein Bacillus subtilis	oligo-1, 6-glucosidase (Bacillus ceraus)	5 1 1 5 5 5 7 7 5 5 5 5 5
match	91 806281	91 396259	9. 142455	9.1143366	[61 520753	91 1522665	gi 1064807	91 289288	91 143786	19111109687	1-11 (4825.3.2)	191 950062	191111531197	191 197526	91 1322726	191 1072419	191 153854	191 153854	st 1204400	191 841192	[91,143637	91 39431	
Stop (nt)	662	1566	179	BC 7 1	859	361	236	169	1 150	326	166	305	1 303	172	223	•	1611	1798	8724	2019	3489	113925	
Start (nc)		916	355	1617	2	200	120		296	649	17.1	\$	- 5	540	444	- 16	295	1193	9644	988	2590	01221	
Contig ORF ID ID	-	~			-	~				-	-	. ~ ~		-	-	-	-		- 2	-	•	=	
9	387	527	533	536	652	174	R97	1213	2529	2973	6.001	3035	3364	1154	4570	1694	97	16		42	- 15	5.6	

to known proteins
2
similar
e coding regions of novel proteins similar to
1000
ō
regions
coding
- Putative
509104
Ŋ

Centrg	0.1	Stert (nt)	Stop (nt)	PACCH	match gene name	E i	1 Ident	length (nt)
~		9162	11318	7: -48240	elongation factor G (AA 1-93) (Thermus aquaticus thermophilus) it S15928 EFTWG translation elongation factor G - Thermus aquaticus p p1353 EFG_THETH ELONGATION FACTOR G (EF-G).	8	46	2157
92	~	5470	3260	91 143369	phosphoribosylformyl glycinamidine synthetese II (PUR-Q) (Bacillus ubtilis)	82	99	2211
102	9	3662	1 5380	91 (1256635	dihydroxy-scid dehydratase (Bacillus subtilis)	92	6.5	19161
111	: -	3242	3493	pir A47154 A471	lorfi 5' of Fin - Batillus subtilis	82	. ć	252
128	9	1 4377	5933	9i 460258	phosphoglycerate mutase (Bacillus subtilis)	82	99	1557
671	·	1229	2182	191 (40)373	91ycerophosphoryl diester phosphodissterass [Bacillus aubtilis] pir[5]7251 537251 glycerophosphoryl diester phosphodiesterass - acillus subtilis	<u>~</u>	2	556
170	-	7	-	19111377831	unknown [Bacillus subtilis]	82	67	1 040
			1094	91 467386	thiophen and furan oxidation (Bacillus subtilis)	82	65	1092
\$ e -	-	1 3572 4	4039	61 153566	ORF (19K protein) (Enterococcus faecalis)	8.2	5.9	9
	-	4455	4455 4225	oi 1001878	Capt protein (Listeria monocytogenes)	82		231
306		121.166	1.00021	1911473916	lipoteptida antibiotics iturin A (Bacilius subtrilis) sp[P39144]LP14_BACSU LIPOPETIDE AITIBIOTICS ITURIN A AND SURFACTIN IOSYNTHESIS PROTEIN.	28	05	099
221	-	808	1722	91 517205	67 kDs Hyosin-crossreactive streptococcel antigen (Streptococcus yogenes)	8.2	63	916
1 223	- -	3,866	1651	qi 439619	Salmonella typhimurium S200 insertion sequence from SARA17, artisl. , gone product Salmonella typhimurium	82	69	716
1 260		5207	1 4296	oi 1161381	lcam (Staphylococcus epidermidis)	24	19	912
- 315	-	1864	2855	1911143397	quinol oxidese (Becillus subtilis)	28	67	2010
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8520	7945	9.4142981	ORFS; This ORF includes a region (as23-103) containing a potential ronsulphur centra homologous to a region of Rhodospirillum ruhrum nd Chromatium vinosum; putative [Racillum stearothermophilum] pir [PQ0299] PQ0299 hypothetical protain 5 (gldA 3: region) -	87	3	9 6
:	-	1055	1342	91 436574	ribosomal protein L1 (Bacillus subtilis)	8.2	11,	288
1 370	- 5	1 262	618	a: 1303793	YgeL (Bacillus subtilis	8.2	59	157
+0+	-	1 3053	1 4024	911101821	YqfE (Bacillus subtilis	9.5	6.8	972
1 405	-	077	1 3073	(cr 1303913	Yohx [Bacillus subtilis]	82	67	1168
436		4096	7 98 2	91 149521	cryptophan synthase beta aubunit [Lactococcus lactis] pfr[535129 535129 tryptophan synthase (EC 4.2.1.20) beta chain - actococcus lactis subap. lactis	8 8 2		1231

S. Aureus - Putative coding regions of novel proteins similar to known proteins

Contig		Start Int)	Stop (at)	match	match gene name	E i	* ident	length
-	-	3394	2573	191 142952	glyceraldeh/de-l-phosphate dehydrogenase (Bacilius tearothermophilus)	82	67	622
3	= =	10415	111227	91/1204354	spore germination and vegetative growth protein (Haemophlius influenzae)	9.2	67	813
446	1		161	91 143387	aspartate transcarbamylese [Becillus subtilis]	82	99	189
462		1007	1210	91 142521	decxyribodipyrimidine_photolysse Bacillus_subtilis pir AJ7192 AJ7192 uvrs protein - Bacillus_subtilis_sp P14951 UVRC_BACSU_EXCINUCLEASE_ABC_SUBUNIT C.	8 2	* .	• 0 N
53	-	1 1560	184	qi 853767	[UDP-N-acetylqlucosamins 1-carboxyvinyltransfersse (Sacillus ubtilis)	8.2	- 9	1,17
680	~	101	1 700	91 426472	secE game product (Staphylococcus carnosus)	8.2	69	294
724	~_	565	386	qi 143373 	phosphoribosyl aminoimidazole carboxy formyl ormyltransferase/inosine monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis!	B2	99	180
763	-	1 422	213	91 467458	cell division protein (Becillus subtilis)	82	35	210
81.8	-	564	283	qi 1064787	[function unknown [Bacillus subtilis]	82	6.9	282
# S #		27.	1176	191 143043	uroporphyrinogen decarboxylase (Becillus subtilis) pir 847045 847045 uroporphyrinogen decarboxylase (EC 4.1.1.77) - acillus subtilis	~ æ	1.7	1002
A95		-	665	19111027507	ATP binding protein (Borrelia burgdorferi)	8.5	7.2	1 265
606	-	07	1 399	911143795	transfer RNA-Tyr cynthetase (Bacillus subtilis)	82	90	1 060
196	-	-	306	[91]577647	gamma-hamolysin Staphylococcus sursus	82	69	106
1192	-	1 307	1 155	1911146974	NKJ-dependent NAD synthetase [Escher:chia coll]	9 2	17	151
1 1317	-	6+	571	1911407908	Ellacr (Staphylococrus xylosus)	82	72	122
1341			150	191 39962	ribosomal protein L35 (AA 1-66) [Bacillus stearothermophilus] ir 505347 R5B535 ribosomal protein L35 - Bacillus earothermophilus	95	89	1 051
2990	7	267		91/534855	ATPRAGE SUBURIT UPSTION (BACALING STEEFOTH-STROPHIUS) SD F42009 ATPE_BACST ATP SYMTHASE EPSTLON CHAIN (EC 3.6.1.34)	95	Ç	219
3024	-	\$	224	91 467402	unknown (Bacillus subtilis)	9.5	79	1 081
3045	-	1 276	139	91 467335	ribosome1 protein L9 (Bacillus subtilis]	28	0.9	138
1 3045	- 2	1 554	400	[51]467335	ribosomal protein 1.9 (Bacillus subtilis)	115	#2	- 651
1 3091	-	1 474	238	ut 499335	secA protein (Staphylococcus carnosus)	9.2	78	237
1016		4 16	210	01 546918	orivi 3: of comk [Bacillus subtilis, E26, Peptide Partial, 140 as] ptr[543612[543612 hypothetical protesh Y - Bacillus subtilis sp[#0398]WHXD_BACSU HYPOTHETICAL PROTEIN IN COMK 3'RECION (ORFY) FRAGHENT).	2	3	207

TABLE 2

auraus - Putative coding regions of novel proteins similar to known proteins

sim ident length	82 75 318	64 702	1 81 59 4 318	1 81 62 300	1 81 55 1002	81 67 1331	01 66 1449	91 62 636	64 1575	81 74 618	81 54 492	372	180	81 67 1 1494	81 64 718	68 1029	A1 61 618	81 65 783	81 54 225	81 63 678	99 81 69 933	81 65 981
match gene name	ALTERE FEDUCEASE ELPA SUBUNIT (Excharichia coll) p/P09152 HARG_ECOLI RESPIRATORY NITRATE REDUCTASE I ALPHA CHAIN (EC 7.99.4). (SUB 2-1247)	spaß (Sphingomones sp.)	lysine specific permesse (Escherichia coli)	H. genitalium predicted coding region NG246 [Mycoplasme genitalium]	pir Si6649 Si66 dciAC protein - Bacillus subrilis	YqjJ (Becillus subtilis)	6-phosphogluconste dehydrogename (Escherichia coli)	permesse [Bacıllus subtilis]	gluconate kinese (Bacillus subtills)	pit n25805 n258 L-Lactate dehydrogenase (EC 1.1.1.27) - Bacillus subtilis	NifU-related protein [Haemophlus influenzee]	ipa-93d gene product (Bacillus subtilis)	nitrate reductase beta subunit (Bacillus subtilis sp[P42176 NAMH_BACSU NITRATE REDUCTASE BETA CHAIN (EC 1.7.99.4).	GbsA (Becilium subtilim)	triose phosphate isomerase (Bacillus megaterium)	alanine dehydrogenase (Becillus subtilis)	Salaonalla typhimutium Is200 insertion sequence (rom SARA17, artial.), gene product (Salaonalla typhimutium)	30S ribosomal procein (Pediococcus scidilactici) sp P49668 RS2_PEDAC 30S RIBOSOMAL PROTEIN S2.	short region of week similarity to tyrosine-protein kinase receptors in fibromectin type III-like domain (Ceenorhabditis elegans)	unknown (Bacillus subtilis)	succinateCoA ligase (GDP-forming) (Arabidopais challana) (r[S]0379 S30379 succinateCoA ligase (GDP-forming) (EC 6.2.1.4) pha chain - Arabidopais thallana (fragment)	nit 509411 5094 spoiliE protein - Bacillus subtilis
metch	91 42086	61 1199573	91 466778	19111045937	pir S16649 S166	196[1303961	91 146930	61 143016	911143015	pir \\\25805 \\\258	91/1222302	191 414017	91971342	91 1524392	[9.[143319	0 (29916)	9: 439619	91 697795	91 1125826	911467404	91 16510	pic S09411 S094
Stop	319	2574	126	1 4350	6782	1494	1767	61101	11786	1:3366	7122	374	4861	12338	4413	9280	5471	825	226	2677	2149	1961
Start (nt)	2	3275	6.38	150+	1578	354	9419	75101	113360	13983	2708	745	6438	10845	97.91	10108	60AR	Ç	\$ \$	2000	3081	_
10 P. F.			- -	5	-	~	-	6	00.	17.	7	-	9	115	· -					- 5	7	
Cont 19 10	4332	23	7	8	2	: 53	2	×	24	\$7	18	9	103	120	128	=	143	169	230	233	147	256

 aureus - Putative coding regions of movel proteins similar to known proteins
know
ន
similar
proteins
novel
J o
r eg tous
coding
Putative
- 50021
4
1

Contig	08F 15	Start (nt)	Stop	match acession 1	match gene name	E	John	tength (at)
275		1728	1 3581	101/726480	[L-glutamine-D-fructose-6-phosphate amidotransferase (Bacillus ubtills]	-	9	1854
285		1466	235	qi 1204844	H. influenzae predicted coding region HI0594 (Haemophilus influenzae)	<u>-</u>	5	132
296		66	1406	gi 467328	adenylosuccinate synthetese (Bacillus subtilis)	18	6.7	1308
102		5590	5889	91 147485	queh (Bacherichia coli)	18	₹	300
317	7	1137	1376	igi 154961	resolvase (Transposon In917)		ż	240
	2	1034	1342	191 405955	yeap [Escherichia coli]	 	0.9	109
360	7	1404	2471	19111204570	asparty1-tRNA synthetase (Haemophilus influenzae)	- 10	6.3	1068
164	5	16251	\$706	191 1204652	methylated-DNAprotein-cysteine methyltransferase (Haemophilus influenteel		63	546
372	~	1 1707	2011	1911467416	nuknown (Bacillus subtilis)	18	\$ 9	573
392	-	3	603	pir 509411 5094	spoiling protein Bacillus subtilis	18	99	561
101	6	5252	6154	1911606745	Dex (Bacillus subtilis)	181	6.5	903
426	. 	1727	1119	91 (3945)	Hangenese superoxide dismutase (Bacillus caldotenax) Ir[522053][522053] superoxide dismutase (EC 1.15 1.1) (Mn) - Bacillus idotenax	i e	99	609
0 W T		1.5653	5 H R 9		liypothetical protein II (cmpli 3' region) - Salmonella typhimurium (fragment)	ē	57	237
625	1	1105	1 2070	191 1262360	protein kinase PxnB (Hycobacterium leprae)	91	9.6	996
754	1 2	\$0\$	1064	[91 1303902	YqhU [Bacillus subtilis]	18	7.1	\$61
8.42	-	9.8	430	91 1405446	transketolase (Bacillus subtilis)	ī.	£9	345
953	-	198	007	gi 1205429	dipeptide transport ATP-binding protein (Heemophilus influentee)	18	5.7	399
961		1 252	107	91 487686	symergohymenotropic toxin [Staphylococcus intermedius] pir S44944 S44944 s4944 symergohymenotropic toxin - Staphylococcus ntermedius		72	150
1035	-	-	189	gi 1046138	M. genitalium predicted coding region MG423 (Mycoplasma genitalium)	- 120	£3	189
1280		670	649	91 559164	helicass Aucographs californics nuclear polyhedrosis virus sp p24307 V143_NPVAC HELICASE.	2	7	222
3371	-	6.8	241	gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	18	62	174
3715	-	1 (75	1 239	193 537137	ORF_1388 (Escherichia coli)	18	5.8	71.
390R		7	325	gi 439619 	[[Salmonella typhimutium [S200 insertion sequence (from SARA17, artis].), gene product [Salmonella typhimutium]		68	324
1940	-	-	-				69	199

proteins
known
3
sımi lar
proteins
f nove:
٥
regions
coding r
Put at 1ve
•
aur eus
15

	Start (nt)	Stop (nt)		ingich gene name	E	1 dent	(nt)	
-	_	318	gi,1224069	emidese (Morexella catarrhelis)	91	1 89	318	
13	77.	170	91 603768	HurI protein, imidazolone-5-propionate hydrolase (Bacillus subtilis) gi 603768 Huti protein, imidazolone-5-propionate hydrolase Bacillus subtilis)		E .		
1		324	1911403373	dycorophosphoryl disecer phosphodisecerse (Becillus subtilis) pir 537251 537251 glycerophosphoryl disecer phosphodisecerse - acillus subtilis	e0	g, ,	324	
	627	322	01216677	indolepyruvate decarboxylase (Enterobecter cloacee) pir [516013][516013] Indolepyruvate decarboxylase (EC 4.1.1) - nterobacter cloacee	5	2	306	
	19	228	193 460689	TVG [Thermoactinomyces vulgaris]	18	59	210	
1	5R1	306	[gi 1524193	unknown [Mycohacterium tuberculosis]	ď	61	276	
		7	1911143015	gluconate kinase (Bacillus subtilis)	 	99	139	
1	:593	R47	91 1064786	function unknown (Bacillus subtilis)	0	62	747	
,	544	116	91 559164	helicase [Autographa californica nuclear polyhedrosis virus) sp[p24307 v143_NevAc HELICASE.	0	0	234	
1_	1159	2448	gi 1109684	Prov [Becillus subtilis]	90	63	1290	
	4032	4733	91 1109687	Prof [Bacillus subtilis]	90	\$\$	202	
	110266	1 9502	191 563952	gluconate parmesse (Bacillus licheniformis)	0.0	6.2	365	
:	8852	7545	91 854655	Na/H antiporter system [Bacillus alcalophilus]	080	62	1308	
	A0A7	8683	(17658 19	OKF (Nomo septens)	08	6.8	1.65	
	116 13781	14122	01 305002	ORF_f356 (Escherichie coll)	90	65	343	
:=	13 11495	10296	01 1303995	YQKN [Bacillus subtills]	0.0	99	1200	
-	6136	1 7130	U1 46742B	unknown (Bacillus subtilis)	0.00	69	795	
<u>:</u> —	7294	1 7833	91 467430	[unknown [Becillus subtilis]	0.80	*	240	
-	7820	78.1	gi 467431	nigh level kasqamycin resistance (Bacillus subtills)	0.68	19	816	
: =	114154	14813	gi 580875	ipa-57d gene product (Bacillus subtilis)	0	6.	099	
: =	114294	16636	91 1072361	pyruvate-formate-lyase (Clostridium pasteurianum)	0	9	2343	
:	1448	1 726	1411506699	Cape (Staphylococcus aureus)	0#	88	(27	
•	2179	144	94 506698	Cap8 (Staphylococcus aureus)	0	65	732	
	1726	2870	19111146242	aspartets 1-decemboxyless (Bacillus subtilis)	0	ī.	403	
1				· · · · · · · · · · · · · · · · · · ·				

Putative coding regions of novel proteins similar to known proteins
known
3
Bimiles
proteins
novel.
ั้
regions
coding
Putative
aurens - 1

Contig	ORF 115	Start (nt)	Stop (nt)	match , acession	march gene name	e sin	1 ident	length (at)
11.1	-	2102	2842	91 467385	unknown (Bacillus subtilis)	80	70	741
787	9	6124	2813	91 [161953	85-kDa surface antigen (Trypanosoma cruzi)	1 08	9.0	213
186	-	5368	2186	91 289282	glutamyl-tRNA synthetase [Bacillus subtilis]	0.0	59	1494
205	000	96(\$1	15140	01 40103	ribosomal protein L4 [Bacillus stearothermophilus	0	99	657
1 207	-	140	11315	91 (460259	enolase (Bacillus subtilis)	0 8	6.3	1176
717	-	1078	1590	(41013)	ONTX7 Eacillus subtilis)	0	-	\$13
235	~	1962	2255	91,1143797	VALYL-TRNA syntherase (Becillus stearothermophilus) sp[P11931 SYV_BACST VALYL-TRNA SYNTHETASE (EC 6.1.1.9) VALINETRNA LIGASE! (VALNS).	0	ŝ	787
239			1263	9. 1143000	proton glutamate symport protein (Bacillus stearothermophilus) pir S26247 S26247 glutamate/aspartate transport protein - Bacillus tearothermophilus	O ec	59	1263
272	- 5	1 2724	1 2461	191 709993	hypothatical protein [Bacillus subtills]	0.60	24	264
100	-	1446	11111	91 467418	unknown {Bacillus subtills	90	58	336
016	-	1 5697	4501	01 1177686	acuC gene product (Staphylococcus xylosus)	08	67	1197
310	-	1 5258	1006	[g1 348053	acatyl-CoA synthetasa [Bacillus subtilis]	90	-67	1749
010	-	1 7410	9113	91 1103865	formyl-tetrahydrofolate synthetass Streptococcus mutans	90	67	1704
1 325		1114	1389	91 310325	outer capsid protein (Rotavirus sp.)	980	40	276
7.00	-	1 1268	6.16	91 537049	ORF_o470 (Escherichia coli)	0 6	55	633
174	~	626	1228	91 1405448	YneF Bacillus subtilis	980	7.0	300
375	-	1 3062	166	91 467448	unknown {8acilius subtilis}	980	6.9	270
	-	1 267	58)	91 1064791	function umknown (Bacillus subtilis)	90	65	321
766			6\$9	91 304976	matches P500017: APP_GTP_A and P500101: EFACTOR_GTP; similar to longation factor G, fetH/TetO tetracycline-resistance proteins Escherichia colii	06	65	651
456	_	1 625	1263	ci 1146183	putative [Bacillus subtilis]	90	65	619
475	-	-	1 654	Ui 288269	beta-fructofuranosidase (Staphylococcus xylosus)	O at	q)	£.5
244	~	1449	2240	pi 529754	spec (Streptococcus pyogenes)	90	05	192
622	-	1623	1671	[01]1483545	unknown (Mycobacterium tuberculosis	80	65	249
719	; 	-	1257	19(1064791	[function umknown (Bacillus subtilis]	380	89	1257
667	-	101	638	qi 666983	[putative ATP binding subunit (Bacillus subtilis)	80	6.1	132

S. aureus - Putative coding regions of novel proteins similar to known proteins

Conting ORF	OH C	Scart (nt)	Stop	metch	match gene name	- 11 ·	1 ident	length (nt)	:
1 745	- 2	200	414	19111511600	coentyme PQQ synthesis protein III [Methanococcus jannaschii]	0.80	79	168	+
822	-	1 17	6.9	91 410141	ORFX17 [Bacillus subtulis]	0.80	99	(99)	- •
A27	~	991	836	1, 1205301	leukotoxin secretion ATP-binding protein (Neemophilus influenzae)	080	24	156	_ •
1044	-		149	di 60632	[vp2 Narburg virus]	08	55	147	
1 1220	- 7	1.57	1 413	pir A61072 EPSG	gallidermin precursor - Staphylococcus gallinarum	0.0	2	159	
6152	-	2,	275	191 147556	dp] (Escherichia coli)	04	\$	201	_ •
1 2947	-	503	279	19111184680	[polymucleoride phosphorylase (Bacillus subtilis)	108	7.9	225	
1120	-	2	226	911517205	67 kDa Myosin-crossreactive straptococcal antigen (Streptococcus yogenes)	80	99	225	
3191	<u>-</u> -	767	=	91(151259	HMG-CoA reductase (EC 1.1.1 88) Pseudomonas mevalonii) pir A44756 A44756 hydroxymathylgiutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	0 80	6	-	
1560	-	1 285	434	1911217130	photosystem 1 core protein B (Symechococcus vulcanus)	90	7.0	051	
3655	-	1 47	346	91 415855	deoxyribose aldolase [Mycopleama hominis]	5 €	96	000	_ :
1 3658	7	1 324	584	g\	[2-nitropropane dioxygenase [Williopsis saturnus]	0	- -	261	
1 3769	-	1 79A	00+	191 1339950	large subunit of NAUH-dependent glutamate synthase [Plectonema boryanum]	o e	6.9	999	
3781	-	695	348	gi 166412	NADH-glutamete synthese (Medicago sativa)	080	62	345	
3988	-		1 287	gi 1204696	[fructose-permesse 118C component (Heemophilus influentae]	080	69	240	
4030	-	1.2	287	191 1009366	Respiratory nitrate reductase [Bacillus subtilis]	Q B	09	285	
4092	==	- 25	275	91 1370207	orf6 (Lectobecillus sake)	0	69	273	
4103	<u>-</u>	089	1 342	101139956		0	99	918	
4231	-	692	348	41 289287	UDP-qlucome pyrophosphorylase (Bacillus subtilis)	0	65	345	
4265		595	299	91 603768	HutI protein, imidazolone-5-propionate hydrolase (Bacillus subtilis) gi 603768 HutI protein, imidazolone-5-propionate hydrolase Bacillus subtilis)	08		297	
4504	-	498	1 250	01 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	0#		249	
2	-	5998	6798	a 535351	Cody (Bacillus cubtilis)	61	69	108	
		8295	7051	91 603768	Hutf protein, unidezolone-5-propionate hydrolase (Bacillus subtilis) gi[603768 Hutf protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	٤	\$	1245	
25	9	1 5273	5515	pir A36728 A367	5515 pir A36728 A367 acyl carrier protein - Rhizobium meliloti	6.	6.5	243	. 4

	n proteins
	imilar to known
	s of novel proteins similar to known
	ive coding regions of n
	meus - Putative codir
	5. am eus -

Contig	086	Start (nt)	Stop	match	. march gene name	eis.	1 sdent	length.
65	7	6711	1424	gi 147923	threonine dehydratase 2 (EC 4 2.1.16) [Escherichia coli!	61	25	252
09		-	204		orfl upstream of glucose kinase [Staphylococous xylosus] pir[552351 552351 hypothetical protein 1 - Staphylococous xylosus	67	09	204
	-	3002	1590	91 466802		79	•	141
. 88	- 2	1 7023	6505	[gi 143364	phosphoribosyl eminoimidarole cerboxylase I (PUR.E) (Secillus ubtills)	66	0 4	519
	9	2660	4554	0, 1144906	product homologous to E coli thioredoxin reductase: J.Biol.Chem. 1988) 261:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading frame A [Clostridium pasteurianum]	66	35	1107
102	=	7489	8571	91 143093	ketol-acid reduccoisomerame (Bacillus subtilia) sp P37253 ILVC_BACSU KETOL- ACID REDUCTOISOMERASE (EC 1.1.1.86) ACETOHYDROXY-ACID ISOHEROREDUCTASE) (ALPHA-KETO-BETA-HYDROXYLACIL EDUCTOISOMERASE).	66	3	1083
102	=	06111	112563	91 149428	putative [Lactococrus lactis]	66	\$9	1374
127	- 6	1 7792	9372	911458688	PrfC/RF3 [Diche]obacter nodosus]	66	85	1581
67	-	1 2540	1983	gi 506697	CapA Staphylococcus aureus	66	\$\$	558
-	-	1644	1156	gi 1498296	[peptide methionine sulfoxide reductase [Streptococcus pnaumoniae]	64	4.7	687
=	~	529	1098	91 467457	hypoxanthine-guanine phosphoribosyltransferase [Bacillus subtilis] gi 467457 hypoxanthine-guanine phosphoribosyltransferase [Bacillus ubtilis]	6	\$	530
150	-	596	591	91 755602	unknown [Bacillus subtilis]	79	61	375
176		6001	587	91 297874	[tructose-bisphosphate aldolass [Stephylococcus carnosus] pir[A49943] A49943 fructose-bisphosphate aldolass (EC 4.1.2.13) - taphylococcus carnosus (strain TH300)	29	65	\$
9		7584	6874	19111314298	ORFS: putative Sma protein; similar to Sma proteins from Haemophilus influentse and Escherichia coli [Listeria monocytogenes]	62	•	1117
1 205	116	HAR7	8498	41 1044980	ribosomal protein LIR (Bacillus subtilis)	29	0,0	390
211	=	-	615	01 1303994	YqkH [Becillus subtilis]	79	62	519
1 223	~	4183	1 2801	191 488430	alcohol dehydrogenase 2 (Entamoeba histolytica)	79	09	1961
1 243	=	1 8915	7896	91 580883	[tps-88d gene product [Sacillus subtilis]	79	09	1020
279	-	13721	4329	91 413930	spa-6d gene product (Bacillus subtills)	62	59	609
1 300	-	1	1393	91 403372	[glycarol 3-phosphate permease (Bacillus subtilis]	7.9	62	1363
100		2930	1935		hypothetical year protein 1 (Mycoplasma capricolum) pir[\$48578[848578] hypothetical protein - Mycoplasme capricolum SGC3) (fragment)	23	0.9	966

EP 0 786 519 A2

S agreus - Putative coding regions of novel proteins similar to known proteins

Contrg ORF :D ID	108F	Start (nt:	Stop (at)	match ,	, match gene name	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	1 dent	lengch (a.c.)
352	9	110106	8896	1911216854	P47X (Pseudomonas chlororaphis)	- 61	65	1221
412	-	1153	578	qi 143177	putative (Bacillus subtilis)	61	5.1	576
481	 - <u>-</u>	621	1124	191 786163	Ribosomal Protein LIO (Bacillus subtills)	1 62	99	204
516	-	702	352	191 805090	Nisf [Lactococcus Lactis]	- 6t -	8.	351
\$15	7	2457	1426	 qi 143371	(phosphorthosy) aninolaidatole synthetase (PUR-M) [Bacillus aubtilis] pir H19316 A1BSCL phosphorthosylformylglycinamidine cyclo-ligase EC 6.3.3.1) - Becillus subtilis	96	13	1032
538	-	3448	2825	911370207	orf6 Lantobacillus sake	1 62	67	6.24
5.70	-	~ _	421	(91 476160	arginine permease substrate-binding subunit (Listeria monocytogenes)	62	19	420
645	ec	1 2663	13241	gi 153898	transport protein (Salmonella typhimurium)	62	62	678
6.8.3	-	3.5	374	gi 1064795	[innetion unknown [Bacillus subtilis]	61	6.2	300
¥16	-	4100	3987	Qi 1407784	or[-1; novel antigen (Staphylococcus sureus)	61	62	114
2929	-		707	191 11524397	glycine betaine transporter OpuD (Bacillus aubtilis)	1 67 1	9	199
29.37	-	1357	202	[pir 552915 5529	initrate reductase alpha chain - Bacillus subtilis (fragment)	1 64 1	58	156
2940		768	385	1.11149429	putstive Lactecoccus lactis	- 67	2,	384
2946	-	015	286	91 143267	[2-oxogluterate dehydrogenase (odhA; EC 1.2.4.2) (Bacillus subtills)	- 62	61	285
2999	-		212	91/710020	(nitrite reductase (nira) (Bacillus subtilis)	64	65	210
3022	-	514	1 332	450686	3-phosphoglycerate kinase (Thermotoga maritima)	- 62	61	183
3064	-	-	717	91 1204436	pyruvate formate-lyase (Heemophilus influenzae)	62	09	716
1083	-	1 2	1 220	91 1149662	hypD gene product (Clostridium perfringens)	66	\$6	219
3126	-	101	411	19. [1339950	large subunit of NADH-dependent glutamate synthase (Piectonema boryanum)	1 64	55	291
33.81	-	1 607	1 326	19111339950	Large subunit of NADH-dependent glutamate synthase [Plectonesa boryanum]	1 62	59	282
3345	-	-	1476	191 871784	Cip-like ATP-dependent protease binding subunit (Bos taurus)	66	63	474
37.18	-	536	1 270	rir C36889 C368	leuB protein, inactive - Lactococcus lactis subsp. lactis (strain IL1403)	62	1,4	267
3724		159	107	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	1 64	9	243
3836	-	609	1 312	21 1524193	unknown (Mycobacterium tuberculosis)	1 66	\$ 9	297
3941	-	7 -	234	91 415855	decxyribose sidolase (Mycoplasma hominis)	66	\$	
						96	69	33.9

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig	ORF	Stert (nt)		match acession	match gene name	E	• Ident	length (nt.)
105	-	90+	1 209	91 1022726	unknown (Staphylococcus haemolyticus)	66	99	198
4612	-	7	1 238	91 460689	TVG Thermosctinomyces volgaris	61	89 V7	237
7 +	-	-	1217	91 520753	DNA topoisomerase [[Bacillus subtilis]	6	9	1212
		2266	1220	94 216151	DNA polymerase (gene L; tig start codon) (Bacceriophage SP02) gil579197 SP02 DNA polymerase (as 1.648) (Bacceriophage SP02) pir A21498 DNBPS2 DNA directed DNA polymerase (EC 2.7.7.7) - phage P02	200	۶,	1067
6	-	1 1340	1089	91 1064787	[function unknown (Racillus subtilis)	7.8	5.7	252
32	-	6803	2011	91 146974	NH3-dependent NAD synthetase [Escherichia coll]	7.8	63	006
36	-	1 2941	3138	1911290503	glutamete permease (Escherichia coli)	78	\$3	198
3	115	117684	116221	91 1103941		7.8	5.8	7371
1 57	=======================================	110520	12067	91 1072418	glcA gene product Staphylococcus carnosus	7.8	9	1548
99	-	R679	5812	91 1212729		98	.9	987
67	-	670+	43.6	91 466612	nika (Escherichia coli)	78	1,	348
7.6	6	110058	10942	91 467380	stage 0 aporultion (Bacillus subtills)	7.8	05	8.85
102	177	R574	011011	1911149426	putative (Lactocorcus lactis)	7.8	61	1557
112	9 -	3540	1 4463	91 854234	cymC gene product (Klebsiella oxytoca]	7.8	95	924
124	7	1898	1 1061	91 405622	unknown (Bacillus subtilis)	7.8	09	828
007	-	1 1805	1 2260	01 1256636	[putative [Becillus subtilis]	7.8	1.7	45.
<u> </u>	-	152	1 377	91 168060	lamb [Emericella nidulans]	7.8	88	375
166	-	1 7125	6163	[91 451216	Hannosephosphate Isomerase (Streptococcus mutans)	7.8	(9)	696
186	-	1 1586	264	91 289284	cysteinyl-tRNA synthetase [Bacillus subtills]	7.8	63	792
\$61	-	2749	2315	19111353874	unknown (Rhodobacter capsulatus)	78	58	435
661		4279	3623	91 143525	succinate dehydrogenase cycochrome b-558 acbunit (Bacillus subtills) pir A19841 DEBSSC succinate dehydrogenase (EC 1.3.99.1) cytochrome 558 - Bacillus subtills	9 (۲۶	39
199		7209	\$557	91 142521	decxyribodipyrimidine photolysse Bacillus subtilis pir Al192 Al7192 uvrs protein - Bacillus subtilis sp Pi4951 UNRC_BACSU EXCINUCLEASE ABC SUBUNIT C.	98	3	1653
22		3831	3523	1211139596	[Escherichia coli 19300 insertion sequence from ECORG), partial.], ene product [Escherichia coli]	7.8	-	309

TABLE 2

EP 0 786 519 A2

S aureus - Putative coding regions of novel proteins similar to known proteins

Cont 19 15	108 F	Start (nt)	Stop (nt.)	match acession	Jacob Came Came		1 ident	length (nt)
299	-	1865	2149	191,467439	temperature sensitive cell division [Bacillus subtills]	90	79	2 8 5
321		7734	7315	91 142979	ORF) is homologous to an ORF downstream of the sport gene of E.coll; RF3 (Bacillus stearothermophilus)	18	\$5	420
352	-	3714	7 6 5	191 349050	actin 1 [Pneumocystis cetinii]	78	42	1 231
352	<u></u>	7592	609	91 903587	NADH Gehydrogenase subunit 5 [Becilius subtilis] ap[P19755]NDHF_BACSU NADH DEHYDROGENASE SUBUNIT 5 (EC 1.6.5.1) NADH-UBIQUINONE OXIDONEDUCTASE CHAIN 5).	60 C	9 `	1500
376	-	7	58)	[91[55]49]	dethiobiotin synthese (Becilius sphaericus)	9,	·	582
424	~	1595	1768	191 1524117	alpha-acetolactate decarboxylase [Lactococcus lactis]	92	89	174
05	=	1,914	988	1030068	NADIPIH oxidorniuctase, isoflavone reductase homologue (Solanum tuberosum)	7.8	63	927
5.5.R		1 762	1 562	91 1511588	bifunctional protein (Methanococcus Jannaschil)	7.8	09	107
01.9	-	1 1152	1589	94 1122759	unknown (Becillus subtills)	9,6	**	6 .3
714	-	- 64	1 732	191 143460	17 kd minor signa factor (rpof, sigB; ttg start codon) (Bacillus ubtills)	96	1 57	649
¥14	-	-) 36A	1377833	unknown [Bac1]lus subtliis]	1 78	65	306
981	-	1381	692	911143802	GerC2 [Bacillus subtilis]	86	9	069
348	- 5	978	1727	1011296947	uridine Kinese (Escherichia coli)	92	70	252
1045	-	_	10 .	91 1407784	orf-1; novel antigen (Staphylococcus aureus)	18	19	199
1163	2	E9:	1 1 116		diaminopimulate decaiboxylase (Bacillus subtilis)	18	**	183
2191	-	794	399	151 215098	exclusionage [Bacteriophage 154a]	1 78	6.5	966
2933	=	~ _	181	91 1204436	pyruvate formate-lyase (Haemophilus influenzae)	187	33	081
1041	-	6:1	715	191 624612	Oltt. (Escherichta coli)	7.8	53	661
3581	-	105	10+	91/763186	3-ketoacy1-coA thiolase [Saccharomyces cerevisies]	78	\$5	197
3709	-		230		TVG [Thermometinomyces vulgaris]	96.	85	228
3974	-	528	1 265	9: 558839	unknown (Becillus subtilis)	18	65	264
3980	-	-	10+	gi 39956	[110]c (Bacillus subtilis)	1 78	62	199
4056	-	1 647	354	gi 1256635	dihydroxy-acid dehydratase (Bacillus subtilis)	- 28	- 55	1 294
=	-	630	316	[pir 509372 5093	pir 509372 5093 hypothetical protein - Trypanosome brucei	186	. 62	3115
			1				:	

S. aureus - Putative coding regions of novel proteins similar to known pruteins

Contig	IORF 11D	Start	Stop (nt)	march acession	matrich geme name	E	1 1 dent	length (nt)
4235	-	\$59	627	91 558839	unknown (Bacillus subtilis)	7 89	0.9	327
4352			302	91 603768	Hut! procein, imidatolone-5-propionate hydrolese (Bacillus subtilis) gi 603768 Hut procein, imidazolone-5-propionate hydrolese Bacillus subtilis		3	240
4368	-	612	1 307	91 1353678	heavy-metal transporting P-type Affess [Proteus mirebilis]	7.8	5.9	306
194	-	1 428	1 216	91 1276841	glutamate synthase (GOGAT) (Porphyra purpures)	91.	96	213
4530	-	1 474	238	19956		7.8	99	737
	~	2969	2073	1109684	Prov (Bacillus subtilis)	7.7	\$6	697
1 12		1 2426	1965	gi 467335	ribosomal protein L9 (Bacillus subtilis)	7.7	5.5	162
1 27	-	- 5	388	gi 1212728	Yqhi (Becillus subtilis)	11 ا	6	367
60	~	065	1252	191 40054	phenylalanyl-tRNA synthetese beta subunit (AA 1-804) [Bacillus btilis)	7.	0.9	663
:	- -	2704	1 2931	91 606241	10S ribosoma: subunit protein S14 (Escherichia coli) sp/P02370(RS14_ECOLI 10S RIBOSOMAL PROTEIN S14. (SUB 2-101)	۲۲	65	22B
	=	65	116622	91 297798	Infochandria (formate dehydrogenase precursor (Solanum tuberosum) pir J0227/2 J022.72 formate dehydrogenase (EC 1.2.1.2) procursor, itochandrial - potato	۲,	\$\$	1164
100	-	4562	1 4002	1911340128	ORF1 (Staphylococcus aureus)	רר	75	261
102	•	1 5378	1 5713	91 1311482	acetolectate synthase (Thermus aquaticus)	77	رs ا	336
601	-	1 4742	5383	191/710637	Unknown (Bacillus subtills)	۲۲	9.5	642
117	-	2 -	1228	91 1237015	ORF4 (Bacillus subtilis)	77	رد ا	1227
124	- 10	6261	7688	91 405819	thymiding kinese (Becilius subtilis)	۲۲	1 63	636
3	1	1146	965	91 849027	hypothetical 15.9-kDa protein (Bacillus subtilis)	77	۰۲۲	162
152	=-	1354	1953	91,1205583	spermidins/putrescine transport ATP-binding protein [Heemophilus]	,	25	009
169	~	1004	1282	gi 473625	alongstion factor EP-Ts' (Escherichia coli)	۲۲	5.8	279
-	- 2	380	1147	91 216314	esterase [Bacillus stearothermophilus]	77	09	168
681	-	3296	3868	01 853809	ORF3 (Clostridium pertringens)	۲۲	9	573
193	-	1 132	1 290	qi 110378B	Yaek (Bacillus subtilis)	۲۲	54	159
195	-	1 8740	8414	91 1499620	H. jannaschii predicted coding region MJ0798 [Methanococcus jannaschii]	7.7	-	127
502	-	8428	\$204	91 216340	loge for adenylate kinese (Bacillus subtilis)	1.1	19	1 225

TABLE 2

Contig	23 62	Scart S (nt) (nt)	Stop (nt) 14502	actch acession [91/786155	match gene name () Ribosomal Protein L23 (Bacillum aubtilim) (ARXA (Bacillum subtilim)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* ident 62 67	length (nt) 294
217	·	3478	6416	91496254	[thronectin/fibrinogen-binding protein (Streptococcus pyogenes]	7.6	\$4	939
1 232	-	267	966	911407784	or(-1, novel antigen (Staphylococcus aureus)	17.	57	73.2
233	~	1819	1346	91 467408	unknown (Becillus subtilis)	77	61 .	474
243		2661	1 2299	91 516155	unconventional myosin Sus scrofe	1 11	32	363
299	-	89	1 769	91 467436	unknown (Bacillus subtilis)	1 11	75	702
301		14 68	1283	161 950071	Afterbind. pyrimidine kiname (Mycoplasma capricolum) pir/s48605/s48605 hypothetical protein - Mycoplasma capricolum SCC) (fragment)	77	9	186
302	- 2	2741	1120	911508980	pheß (Bacillus soutalis)	7.7	57	471
302		3635	1 4863	[g1]147783	ruve protein (Escherichie coli)	1,66	09	1029
, or 1	-	5402	4197	91 1070015	protein-dependent (Becillus subtilis)	1,1	09	909
22		66	1391	91/143165		7.	62	1293
313	7 -	1541	1 2443	101 1399855	carboxyltransferase beta subunit [Symechococcus PCC7942]	۲۲	58	608
121	- :	9995	965)	01 3984	funariss (citc) (as 1-462) [Bacillus subtills]	17	65	1071
3	-	41	898	19111154634	YmaB (Dacillus aubtilis)	- 2-	15	
365		7	1021	19374	(chosphoribosyl glycinamide synthetase (PUR-D: grg start codon) Bacillus	, t	62	1020
374	-	-	1 708	91 1405446	transketolese (Becillus subtilis	17	19	904
3.85	-	11128	1 565	91 533099	endonuclease III [Bacillus subtilis]	77	63	\$64
392	~	294	0761	91 556014	UDP-N-aceryl muranare-alaning ligame (Becillus subtilis) sp pt0778 MURC_BACSU UDP-N-ACETYLMURAMATEALANING LIGASE (EC .).2.8) (UDP-N- ACETYLMURANOYL-L-ALANING SYNTHETASE) (FRAGMENT).	۲۲	\$9	1347
405	- 5	4019	0726	91 1303912	Yqhw (Bacillus subtilis]	77	3	510
487	-	1302	1 1472	1911432427	ORF1 gene product (Acinetobacter calcoaceticus)	" "		171
522	-	2 -	1 562	pir A01179 crns	pir A01179 SYNS (tyrosine than 11gase (EC 6.1.1.1) - Bacillus stearothermophilus	1.1	3	198

proteins
d umoray o
2
3 FT CU14
proteins similar to
nove
stative coding regions
coding
Putative
aureus

		Luci	(ut)	match Acession	יישרכה קפה הפואפ		- 1 tdent	(nt)
536		154	1351	9111387979	44% identity over 302 residues with hypotherical protein from Symechocystis sp. accession D64006_CD, expression induced by environmental strass, some similarity to glycosyl transferases, two potential membrane spanning helicas [Bacillus subtil	۲۲	œ	237
548	~	963	612	91/143366	adenylosuccinata lyasa (PUR-B) (Bacillus subtilis) pir[C29126 h285D5	- 66	19	3.2
	- 2	333	872	01 143387	aspertate transcarbamylese (Bacillus subtilis)		7, 95	\$15
597	-		181	91 904198	hypothetical protein [Bacillus subtilis]	11		384
633	7 -	1747	6161	gi 387577	ORFIA [Bacillus subtilis]	۲۲	3	405
773	-	56	360	gi 46971	epiP gene product (Staphylococcus epidermidis)	۲۲ .		276
659	· -	1125	1219	gi 1072381	glutamy1-aminopeptidase [Lactococcus lectis]	7,	62	1095
0.9	-	1 1587	1820	91 1122760	unknown (Bacillus subtilis	7,	85	2.14
1 389	-	- 2	391	01/1377623	[aminopeptidase [Bacillus subtilis]	۲۱,	\$	390
H 115	-	1 10	573	91/1303861	YqqN (Bacillus subtilis)	۲۲ ,	- 64	564
. -	-	: : _	5	gi C01H44	II. Influenzas predicted coding region IIIO594 (Hacmaphilus influenzae)	۲.	1 55 1	7.55
1043			188	91 460828	B969 Saccharomyces ceravisiee	1.1	9,9	186
1942		415	109	1911:60047	pior/acidic basic repeat antigen (Plasmodium faltiparum) pir/A29212 A29212	ני	81	207
2559	-	-	17.1	191111499034	H	רנ	- 1.9	171
2933	7	7.	ē	91 42370	pyruvate formate lyase (AA 1-760) [Escherichia coli] ir S01788 S01788 formate C-acetyltransferase (EC 2.3.1.54) - charichia coli	<i>L1</i>	7	159
5366	-	95	767	gi 1524397	glycine betaine transporter OpuD (Bacillus subtilis)	7.7	- \$	237
2976		614	308	91 (40003	oxoglutatate dehydrogenase (NADP+) Bacillus subtilis p P23123 opol_BACSU	7.7	09	306
1 2979	; ; 71	678	00	91 1204 154	spore germination and vegetative growth protein [Haemophilus influenzae]	77	61	279
8 62		109	, (()	9: 438465	Probble operon with orff Possible alternative initiation codon, ases [2151-2155. Homology with acetyltransferass; putative Bacillus aubtills]	1,	\$5	225
0667	- -	33:	167	ds 142562	ATE synthase epsilon aubunit (Bacillus megaterium) pir(920599)PWBSEM He transporting ATE synthase (EC 3.6.1.34) psilon chain - Bacillus megaterium	7.7	63	165
1 3032	-	-	389	91 488430	alcohol dehydrogenase 2 (Entamoeba histolytica	7.2	95	387
1057	-	-	195	91 468764	mack game product (Rhizobium melliati)	77	05	195

proteins
Known
ç
SIMILAL
proteins
ncvel
ŏ
regions
coding
ö
Putative
1
aureus
S

5

Contig	ORF	Start	Stop (nt)	Fatch	metch gene nome	E .	* ident	length (nt)
8000	=	726	000	91 603768	Hutt protein, imidazolone-5-propionate hydrolase [Becillus subtilis] gli603768 Huti protein, imidazolone-5-propionate hydrolase Bacillus subtilis	۲۲	52	32.2
4048	-	1 103	1 386	491/216278	gramicidin S synthetase 1 (Bacillus brevis)	7.7	25	318
4110	-		368	pir 552915 S529	nitrate reductase alphe chain Backlius subtilis (fragment)	11	61	366
4115	-	1	348	91 517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	77	6.5	348
4225	-	590	1 297	[91]1322245	nevalonate pyrophosphate decarboxylase (Rattus norvegicus)	7,	09	294
4613	~	464	756	[91 508979	GTP-binding protein [Bactilus subtilis]	77	5.	1 891
4668	-	1 361	1 182	pir 552915 5529	nitrate reductase alpha chain - Bacillus subcilis (fragment)	77	61	1 081
\$2	-	1 2	1627	gi 1150620	limsA [Streptococcus pneumoniae]	76	5.8	1626
3.8		1488	7537	p1r A43577 A435	regulatory protein ptoR - Clostridium perfringens	76	57	1050
52	-	1 2962	404	191111101061	dioxygeness (Hethylobacterium extorquens)	76	62	1080
95 1	120	127389	27955	1911467402	unknown [Bacıllus subtilis]	7.6	56	567
52	1.5	115 12046	112219	91 1206040	weak similarity to keratin [Caenorhabditis elegans]	9'	0.	124
16		1 1062	1 2261	91 475715	acetyl cocuryme A acetyltransferase (thiolase) (Clostridium cetobutylicum)	16	57	1200
86	1 2	818	1624	91 467422	unknown (Becillus subtilis)	76	62	104
9.6	-	2965	3228	101 897793	y98 gene product (Padiococcus acidilactici)	9,	1 52	264
46	80	5922	1 6326	191 467 427	methionyl-tRNA synthetese (Bacillus subtills)	76	3	405
0		1022	1885	91 216151	INM. polymerase (gene L; ttg start codon) [Becteriophage SP02] g1 579197 SP02 CMA polymerase (as 1-648) [Bacteriophage SP02) pir A21498 DuBPS2 DMAdirected DMA polymerase (EC 2 7.7.7) - phage P02	76		564
124		8134	2007	191 853776	peptide chain release factor 1 Bacillus subtilis pir 555437 555437 peptide chain release factor 1 - Bacillus ubtilis	92		1080
164	-	2832	13311	19111204976	prolyl-tRNA synthetase (Hazmophilus influenzae)	36	1 83	480
168	- 2	2617	1861	gi 1177253	puterive ATP-binding protein of ABC-type [Bacillus subtills]	76	1 58	777
1 189	7	1 163	888	Q1 467384	unknown [Bacillus subcilis]	76	3	726
235	-	1 2253	1 3518	191 142936		96	2	1266
236	-	1 335	925	[91:1146197	[putative [Bacillus subtilis]	92	7	165
1 237	-	5323	5541	91 1279261	[F13G3.6 [Csenorhabditis elegans]	1 76	47	219

S aureus - Futative coding regions of novel proteins similar to known proteins

5

Contag	ORF	Start (nt)	Stop (nt)	match	ratich gene name	£	Juani	(nt)
263	5	1 5490	4585	19111510348	dihydrodipicolinele synthese (Methenocu cue jenneschil)	1 94	•	906
104		1001	1794	91 666982	putative membrane spanning subunit (Bacillus subtilis) pir 552382 552382 probable membrane spanning protein - Bacillus ubtilis	92	09	***
312		3611	4624	01 143312	6.phospho-1-fructokinase (gtg start codon; EC 2.7.1.11) Bacillus tearothermophilus)	96	56	1014
3	-	~ _	1 1036	gi 405956	yeeE [Escherichia coli]	1 9/	29,	1035
347		607	1071	91 396304	acetylornithine descetylese [Escherichia colii]	1 26	7.2	1293
35A		579	1907	9111146215	19.0% identity to the Eacherichia coli Si ribosomal protein; putative (Bacilius subtilis)	9	98	3236
11.6		-	222	01 537084	alternate gene name mgt; CG Site No. 497 [Escherichia coli] pir S56468 S56468 mgtA protein - Escherichia coli	90	61	222
379	-	4333	4858	91 143268	dihydroliposmide transsuccinylase (odhB; EC 2.3.1.61) [Bacillus ubtilis]	1 76	61	528
404	-	4022	1 4492	1911303823	[YqfG (Becillus subtilis]	1 94	90	471
411	-	7	307	gi 186025	ORF YKL027w Sarcheromydes cerevisiee	1 94	\$5	306
: 22	: _	1 4356	2854	191 1405464	AlsT Decilius subtilis	1 96	57	1503
516		273	995	g1 153A21	straptococcal pyrogenic exotoxin type C (speC) precursor Straptococcus pyrogenes)	92	36	723
5.88	=	1054	1 557	91 1002520		9,	19	498
591	-	1 16	1 735	gi 885934	Cipb Isynachococcus sp]	9,	7	720
602	7	271	862	Q1 1486422	OppD homologue Rhizobium sp.	1 96 1	5.2	624
619	~ -	547	062]	[91]330613	major capsid protein (Numan cytomegalovirus)	1 1/6	47	256
099	-	2568	13302	gi 904199	hypothetical protain (Bacilius subtilis)	1 96	55	212
677	-	452	1 228		spoof gene product (Bacillus subtilis	1 76	8.8	225
962		24	306	91 142443	admnylosuccinate synthetase [Becillus subtilis] sp P29726 PURA_BACSU ADENYLOSUCCIUATE SYNTHETASE (EC 6.3.4.4) IMPASPARTATE LIGASE).	76	67	183
978	-	1158	SRO	91(1511333	H. jannaschii predicted coding region HJ1322 (Nethanococcus jannaschii)	1 26	9.5	579
166	-	486	244		[No definition line found [Mycobacterium leprae]	1 9/	38	243
1563	-	529	366	91 1303984	YqkG (Becillus subtilis)	1 76	5.2	264
2184	-	1 361	182	191 506706	Capu (Staphylococcus aureus)	76	80	180
							;	;

EP 0 786 519 A2

S aureus - Putative coding regions of novel proteins similar to known proteins

5

5

Contig ORF	ORF	Start	Stop (nt)	a atch	wasch gene name	E	, ident	length (nt)
1 2942	-	1 29	000	191 710020	initrite reductass (nir8) (Bacillus subtilis)	1.6	6,	172
1 2957	-	1 377	917	91/1511251	hypothetical protein (SP:P42404) (Methanococcus januaschii)	96	-	162
2980	-	554	279	91 1405464	AlsT (Bacillus subtilis)	9,	53	276
3015	-	649	326	91 408115	ornithine acetyltransferese [Bacillus subtilis]	96	19	324
3124	-	= -	174	lg1 882705	ORF_0401 [Escherichia coli]	16	, 69	162
6718			161	u 168477	ferredoxin-dependent glutamate synthsse (Zea mays) pir [AlBS96 [AlBS96] glutamate synthase (ferredoxin) (EC 1.4.7.1) - aire	76	53	159
3789	-	2	676	91 39956		7.6	55	378
3892			314	 ai 1510398	terripyochelin binding protein Methanococcus jannaschii	1 96	5.5	315
3928	-	1 798	00+	91(143016	perseese Becilius subtilis	9,6	\$6	194
4159	-	1 757	386	sp P80544 MRSP_	HETHICILLIN-RESISTANT SURFACE PROTEIN (FRAGHENTS)	96	99	372
4504	-	1 13	100	91 296464	ATPRIG (Lactorogrus lartis)	96	9.6	315
1994	-	767	7 69	91 987255	Menkes disease gene (Homo saptems)	9,0	87	246
4506	<u>-</u>	7 -	517	91 216746	D-lactate dehydrogenase (Lactobacillus plantarum)	9,	.	312
4546 1		1 4 17	1 247	91 1339950	large subunit of NADH-dependent glutamate synthase (Plectonems boryanum)	16	13	231
4596	: -	1 379	161	gi 560027	cellulose synthase [Acetobacter xyllnus]	9,	7.0	681
-	-	1 5257	-637	01 082532	ORF_0294 [Escherichia coli]	\$4	65	921
9	-	1 164	952	gi 40960	Officese [Escherichia coli]	25	95	789
17	-	5888	1344	91 467336	unknown [Becilius subtilis]	25	۲۷ ا	1992
1 23	#1 #1	118272 17310	17310	qi 1296433	O.acetylserine sulfhydrylase B (Alcaliganes eutrophus)	7.	\$\$	963
1 25	-	1 2356	1393	[91 1502419	Plax (Bacillus subtilis)	75	35	1038
36	-	1 5765	1 6037	91 1256517	unknown [Schitosecchetomyces pombe]	75	45	11.1
9	12	111186 11	12058	01 48972	nitrate transporter (Symechococcus sp.]	7.5	46	673
		3474	1 3677	91 113607	sporulation protein (Bacillus subtilis)	75	61	\$00
	91	16850 16590	16590		recombination protein (ttg start codon) (Bacillus subtilis) gi 1303923 RecN Bacillus subtilis	۶۲	5.1	192
1	-	3572	1 2568	911204847	ornithing carbamoyltransferss semophlius influenzes	25	61	1005

9	2112011
3	
-	?
, s	
us - Putative coding regions of novel professe cientar to known provides	
(NO.	
-	;
2010	200.65
. poo	•
Pur at 1 ve	
Strains.	
-	

Contig	OHE	Stert (nt)	Stop (nt)	march acession	match gene name	E 18	1 tdent	length (nt)
 3	<u> </u>	4628	3930	91 143368	phosphoribosylformy glycinamidine synthetase (PUR-1; gtg start odon) [Bacillus subtilis]	2	69	669
£	<u>~-</u>	5588	4878	91/163367	phosphoribosyl aminoidazole succinocarboxamide synthetase (PUR-C; to start codon) [secilius subtilis]	25.	\$	1112
88.	-	6625	7530	1911303916	Yqia (Bacillus subtilis]	1 25	l cs	906
F 8.7	_	3 2340	3590	91 1064813	homologous to sp:PHOR_BACSU (Bacillus subtilis)	35	3 -95	1251
69	•	1 60P4	9689	91 1064810	[function unknown (Bacillus subtilis)	1 25	61	813
807	7	1644	1503	9111001824	hypothetical protein (Synechocyatia ap.)	1 54 1	- 78	795
110	-	1748	1272	91,1147593	putative ppGpp synthotase Streptomyces coelicolor	15	\$\$	0861
110	-	4151	5252	191/11/1251	ciwD gena product bacillus subtilis	1 5 1	1 52 1	006
120	-	114 11266	10649	91 1524394	ORF-2 upstream of gbsAB operon [Bacillus subtilis]	1 52	35	61.8
121	~	2050	4221	01 1154632	NrdE [Bacillus subtilis]	1 25	75	2112
124	-	283	<u>-</u>	91 405622	(unknown (Becillus subtilis)	25	95	=
æ: -	-		1139	101/143316	[ignp] gane products [Racillus megaterium]	25	£	6501
000	æ 	0915	1 5903	91 1256654	S4.81 identity with Nelsseria generinese regulatory protein FilB; putative	3,2	3	74.
1.0	~	4480	3185	01 467403	[sery]-tRNA synthetase (Bacillus subtilis)	1.87		1296
191	01	5439	5798	\$611001 16	hypothetical protein (Synechocystis sp.)	35	- 5	1 098
27.1	-	3819	1 2995	1911755153	ATP-binding protein (Baciliue subtilis)	75.	52	B25
961	-	2024	1107	1911143037	porphobilinogen desminase (Bacillus subtills)	1 52	- 88	916
561	01	1 9529	9374	84 P25745 YCFn_	(HYPOTHETICAL PROTEIN IN PURB 5'REGION (ORF-15) (FRACHENT).	36	00	1 951
200	-	1 2605	4596	91 14240	ATP-dependent nuclease (Bacillus subtilis)	1.56	95	1992
506	_	0069	2620	19,11256135	YbbF (Becilius subtilis)		1 53 1	1281
216	- 5	1 159	3.89	91 1052800	unknown [Schizosaccharomyces pombe]	1.51	58 -	162
229	-	53	847	91 1205958	branched chain as transport system II cerrier protein (Maemophilus Influenzes)	. 2	64	819
230	7	1 518	1714	91 971337	Intrite extrusion protein (Bacillus subtilis)	1.50	5	1 1611
231	-	1 2240	1122	q: 1002521	Mutt (Becilius subtilis)	75	24	1 6111
233	-	1314	1859	91/467405	unknown (Bacillus subtilis)	75	59	546

nureus - Putative coding regions of novel proteins similar to known proteins
similar t
proteins
novel
٥ţ
regions
cading
Putative
S
an car
C,

Contig	1 ORF	Start (nt)	Stop	match acession	audych gene name	m I s	1 ident	length (nr.)
1 269	-	325	164	91 1511246	methyl coenzyme M reductase system, component A2 [Methanococcus janneschii]	75	05	162
1 292	-	1 1389	1 7.12	9111511604	M. Jannaschii predicted coding region MJI651 (Methanococcus Jannaschii)	3.5	9	410
304	-	6771	1 2261	91,1205328	surfactin (Hasmophilus influentes)	- 61	55	5
312	-	2437	13387	91 285621	undefined open reading frame (Bacillus steerothermophilus)	7.5	62	951
312	- 5	1 4622	6403	19111041097	Pyruvate Kinase (Bacillus psychrophilus)	- 27	\$7,	1782
1 319	-	353	1 877	91 1212728		7.5	2	525
120	-	4321	1 5031	19111070361	OMP decarboxylase [Lactucoccus lactis]	7.5	36	711
320		5010	5642	91 143394	OMP-PRPP transferase (Bacillus subtilia)	۶۲	0.9	(,
711	-	1 1519	1 20AR	(91,48743)	citrate synthase Il (Bacillus subtilis)	32	95	570
394	~_	699	1271	gi 304976	imatches PS00017: APP_CTP_A and PS00101: EFACTOR_CTP. similar to longstion factor G, Teth/Teto tetracycline-resistance proteins Escherichia co.il	\$1	3	(0)
423	-	721	678	10111183839	unknown Peeudomonas seruginose	2.5	59	777
Q	~	1 1603	1929	gi 149211	acatolactate synthase (Kiebsiella pneumoniae)	۶۲	63	127
* 16		176	11540	gi 312441	dihydroorotase Baciilus caldolyticus	25	62	1365
486	-	767	549	10111149682	potF gene product (Clostridium perfringens)	7.5	\$\$	246
196	-		794	gi 143582	spoiliEA protein [Bacil]us subtilis]	7.5	65	192
42R	-	1 R24	1504	q1 14332R	[pliop protein (put.); putative [Bacillus subtilis]	52		6.8.L
66		1061	162	10111387979	44% identity over 302 residues with hypothetical protain from Symachocystis sp, accession D64006_CD; expression induced by environmental atress; some similarity to glycosyl transferases; two potential membrane-spanning helicas (Becilius subtil	25	25	264
895		 	4 83	ptr JC4110 JC41	[triary/glycetol lipsse (EC 3.1.1.3) 2 - Mycoplasma mycoides subsp. mycoides [cGC3]	25	80	189
613	~	430	1 233	1911330993	tequaent protein (Saimiriine herpesvirus 2)	25	\$1	198
621	-	-	1 525	gi 529754	spec (Streptococcus pyogenes)	۶۲ ا	45	\$28
1 642	-	1 1809	2474	91 1176401	EpiG (Staphylococcus epidermidia)	25	2.1	909
949	~	1 454	(59)	1911172442	ribonuclease P (Saccharomyces cerevisies)	75	17	504
r 657	-		347	91 882541	ONF_0236 (Emchorichia coll)	25	47	345
750	-	1662	832	91,46971	epiP gane product Staphylococcus epidermidis	25	52	631
1111111	121011							

Contig ORF		Start	Stop (nt)	match &cession	השפר ששפר ששפר ששפר ששפר ששפר ששפר ששפר	E 7 2	1 sdont	lengt), (nt.)	- -
754	-	~	481	ui 1303901	YohT Becillue subtilia	7.5	52	087	·
763	7	563	393	19111205145	nultidrug resistance protein (Naemophilus influenzae)	75	\$1	171	•
1 5/7	<u>:</u> - :	961	482	pir B3689 B368	leuk protein, inactive - Lactococcus lactis subsp. lactis (strain IL1403)	7.5	63	089	
79.3	-	-	180	91 143316	[gap] gene products [Bacillus megatarium]	75	57	180	•
R00	-	318	160	91 509411	NFRA protein (Azorhizobium caulinodans)	27	. 76	159	• —
- 12		1117	260	911143434	Rio Factor (Bacillus subtilis	35	99	558	•
: -	-	-	329	91 1276985	arginasa (Bacillus caldovalox)	75	20	165	
11.6	~	37	252	[61]1001373	[hypothetical protein (Symechocystis sp.]	7.5	88	216	•
1059 1 1	: -	384	232	911726480	L-glutamine-D-fructose-6-phosphate amidotransferese (Bacillus ubtilis)	27. 1	1 69	153	• —
1109		219	374	91 143331	alkaline phosphatasa regulatory protein (Bacillus aubtilis) pir [A27650]A27650 regulatory protein phoR ~ Bacillus aubtilis sp[P21545]PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC 2.7.31).	75	5.3	951	•
1268		271	137	91 304135	ornithing acetyltransferase (Bacilius stearchermophilus) sp 007908 arG2_BACST GLUTAMATE N-ACETYLTRANSFERASE (EC 2 3.1.35) ORNITHINE ACETYLTRANSFERASE) (ORNITHINE TRANSACETYLASE) (OATASE) / HINO-ACID ACETYLTRANSFERASE (EC 2.3.1.1) (N-ACETYLGLUTAMATE TATHA	25	ę,	135	•
; –	-	324	163	91 1205488	excinuclease ABC subunit B [Maemophilus influenzae]	7.5	57	162	
1,529	_	198 L	00.7	gi 1002521	Muth. [Bacillus subtilis]	25	5.4	661	• -
-	_	07.0	387	91/1204435	pyruvate formate-lysse activating enzyme (Haenophilus influenzae)	35	3	¥#5	• -
3105	_ :	_	180	91 1041097	Pyruvate Kinase (Bacillus psychrophilus)	7.5	57	180	
		\$	212	1 699317	peptide synthetase module (Microcystis aeruginosa) pir 549111 549111 probable amino acid activating domain - icrocystis aeruginosa (fragment) (SUB 144-528)	25	3	168	
98.18		661	345	gi*145294	adenine phosphoribosyl-transferase (Escherichia coli)	35	99	207	•
3660		819	310	91 [1009366	Respiratory nitrate reductase (Bacillus subtilis)	35	8.5	309	• —
1160	_	*	107	91 433991	ATP synthase subunit heta (Bacillus subtilis)	25	899	354	•
1957			6/1	pt. p. 6, 4, 2, 2, 6, 4	pit [D168H9][D16H 3-1sopropylmalate dolydratase (EC 4.2.1.33) chain leuC - Jactudoccus lectis aubsp. lectis latrain 161403)	۶۲	65	378	
1005	_ -	·	259	1911216746	D-lectate dehydrogenase (Lactobaci)lum planterum)	25	œ.	585	
4080	-		133	21415655	The second control of				• -

10	
15	oteins
20	aurous - l'utative roding regions of nove; proteins similar to known proteins
25	el proteins simi
30	regions of nov
35	Suibon evitator
40	S. aurous
45	

55

Cont.1g ORF	IORF 1.0	Start	Stop	matc):	watch gene name	E E	1 rdent	length (nt)
	-	. : -	339	qi (49435	putetive (Lectococcus lectis	25		66
4136		602	303		InstW gene of Ecopral gene product (Escherichia coll) pir(534431 538437 hadm) protein - Escherichia coll pir(509529 509529 hypothetical protein A - Escherichia coll (508 40-520)	<u>ڊ</u>	95	007
4146	-	668	336	191148972	nicrete transporter Symechococcus sp.	7.5	6	533
4237	-	199	374	19111339950	large subunit of NADH dependent glutamate synthase (Plectonema boryanum)	75	55,	162
4306	~		318	gi 294260	major surface glycoprotein (Pneumocystis carinii)	7.5	6.9	246
4343		7.115	950	91 1204652	methylated-DNA - protein-cystains methyltransferase (Hasmophilus influenzas)	27	3	357
1 4552	-	620	1 312	gi 296464	ATPase [Lactoroccus lactis]	75	55	109
86	-	9215	6126	[91]443793	NupC Escherichia colu	14	20	351
05		0169	6221	g1 1239988	hypothetical protein [Bacillus subtilis]	14	55	069
95	6-	07701	12221	19111000451	Trep [Bacillus subtilis]	**	57	1452
	- 7	2266	1622	191 41015	Appartate-tRMA ligase (Escherichia coli!	7.4	57	645
99	•	5063	4848	191 1212729	YqhJ Becilius subtilis	7.		216
69	118	118 14334	14897	91 1510631	endoglucanase (Methanococcus (annaschit)	74	52	564
102	=======================================	115 12561	111136	1911149429	[putative [Lactococcus lactis]	7.4	67	5.76
102	=======================================	1:3121	114419	191 149435	putative [Lactodoccus lactis]	7.4	7	1299
		4873	3902	91 39478	ATP binding protein of transport APPases (Becillus (Irmus) 11 515486 515486 ATP-binding protein - Bacillus (Irmus p P26946 YATR_BACFI HYPOTHETICAL ATP-binding THAMSPURT PROTEIN.	7.	65	912
116	-	1 8574	1 7091	gi 1205430	dipeptide transport system permease protein (Maemophilus influentee)	7.4	6	1482
120		4342	4803	gi 146970 	ribonucleoside triphosphate reductase (Escherichia coli) pir a47331 A47331 anaerobic ribonucleotide reductase - Escherichia oli	74	888	462
121		1365	1859	gi 1107528	ttg start Campylobacter coli]	7	15	621
128	-	2320	1881	91 143318	phosphoglycerate kinase (Bactlius megatertum)	7.4	57	1212
130	-	1 5237	1672	[91]1256653	DRA-binding protein (Bacillus subtilis)	7.4	09	\$55
1136	-	6745	5:50	5:50 - 91 143076	histidese (Secillus subtilis)	**	1 58	1596
145	-	- 664	1368	[01 40733	devA gene product Anabaena sp.	7.	\$	201
152	-	1 552	1 277	191 1377833	unknown Bacillus subtilis	72	7	276
		111111	111111	***************				

 ${\sf TABLE}$ 2

S. aureus Putative coding regions of novel proteins similar to known proteins

12 10 10 10 10 10 10 10	Cont 19 10	0 <u>%</u>	Start	Stop (nt)	match acession	שושר שששל שששל שששה שששה שששה שששה שששה שש	E .	- Ideat	length (nt)	•
1 100 101	164	110	111064	111375	911580900	ORF3 gene product [Bacillus subtills]	74	52	312	- •
1 1144 1013 0 150465	175	7	9016	1 2624	91 642656	unknown (Rhizoblum meliloti)	٦٠ ا	-	486	- •
	175	-	1909	5612	91 854656	Na/H antiporter system ORF2 [Bacilius alcalophilus]	1 *	97	453	
17 5524 670 [11164697] [Industrial Bacillus aubitlis] 74 65 75 75 75 75 75 75 75	195	==	11346	110339	19111204433	hypothetical protein (SP:P25745) [Haemophilus influenzae]	7.	55	1008	-:
7 537 731 732 730 91/146707 patentive (Beclinus subtilis)	205	117	9619	9059	[91:1044979	ribosomal protein L6 (Bacillus subtilis)	74	. 79	561	-:
1 132 1313 1911	236		5574	1 6710	Qi,1146207	putative (Becillus subtilis)	74	63	1137	
6 1303 2379	=	- 3.	1 4521	1334	01 694121	malate thiokinase (Methylobacterium extorquens)	**	5.2	1188	- :
4 6.51 5313 Galistator Gardene transporcer Opus Bacillus aubtilis 74 62 62 63 64	346	9	3305	2799	gi 467374	(single strend DNA binding protein (Bacillus subtilis)	74	79	705	
1 1220 666 guillo3579 IMPochasical Internals chrysanchemil 74 54 14 1520 666 guillo3579 IMPochasical Internal (Casulto03) 2021 Hammophilus influenced 74 54 14 1520 666 guillo3579 IMPochasical Indefilus subtilis 74 57 74 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 75	249	-	6551	1 5313	19111524397	glycine betaine transporter Opud (Bacillus subtills)	74	55	6001	
6 5714 6665 6011204872 ATP-Dinding procein (Revulton) JO31 Hammophilus influenzed 74 53 74 7220 666 6011205579 Hypothetical procein (Revulton) JO31 Hammophilus influenzed 74 53 74 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 75	261		4389	1804	911809542	CbrB protein Erwinia chrysanthemi]	74	45	336	ı
1 1220 666 g 1205579 Impothetical protein (GB.U14003_JO21 [Namophlus influenzae] 74 57 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 74 75 75	2.78	9	5714	5991	191,1204872	ATP-binding protein (Haemophilus influenzee)	1,4	*5	1050	- 1
1 1 1065 9i 141398 Squtemainase of carbamy] phosphase synthese (Bacillus subtilis) 74 60 1 1 1065 9i 141389 Squtemainase of carbamy] phosphase synthese (Bacillus subtilis) 74 60 1 1 1 1 1 1 1 1 1	109	-	1 1220	: –	91 1205579	hypothetical protein (GB:U14003_302) [Maemophilus influentee]	7.	5.3	\$555	,
1 1065 01[143]89 Qlutaminase of cerbanyl phosphase synthetase [Bacillus subtilis] 1 1065 01[143]89 Qlutaminase of cerbanyl phosphase synthase glutamine hydrolysing) (EC 15.5), pytrimiding-repressible, meal thin - Bacillus subtilis 74 56 15.5), pytrimiding-repressible, meal thin - Bacillus subtilis 74 55 742 1111 Q[11003]5 YqhZ [Bacillus subtilis] 74 55 742 1111 Q[11003]5 YqhZ [Bacillus subtilis] 74 55 742 1111 Q[11003]5 YqhZ [Bacillus subtilis] 74 55 742 Q[1413]82 Ipa-58; gens product [Bacillus subtilis] 74 55 743 Q[1413]82 Ipa-58; gens product [Bacillus subtilis] 74 55 744 Q[1413]82 Ipa-58; gens product [Bacillus subtilis] 74 55 744 Q[1412]20 [thiconine synthase (thr() (AA 1-32) [Bacillus subtilis] 74 55 744 Q[1412]20 [thiconine synthase (thr() (AA 1-32) [Bacillus subtilis] 74 55 744 Q[1412]20 Q[142]20 Q[142]20	25	-	1473	862	gi 143398	quinol oxidasa (bacillus subtilis)	74	57	612	
2 1128 91 514657 ATPage gubunit = [Bacillus stearchbermophillus] 74 56 74 56 74 74 55 75 75 75 75 75	320			1065	911343389	yatay)	,	Ç	1065	
2 1742 1111 gi[130915 YqhZ [Bacillus subtilis] 74 65 55 55 55 55 55 55 5	140	- 7	3.82	11128	gi 534857	Affece subunit a (Decilius stearothermophilue)	*	\$	141	
5 2503 1270 04 473902 41pha-scettolactate synthase [Lactioncoccus lactis] 74 56 74 74 75 74 75 75 75 75	405	~	1742	1161	91 1303915	YqhZ Bacillus subtilis	٠,	6.5	432	
1 1 94.2 91 413882		- 5	1 2503	726	<u> </u>	alpha-acetolactate synthese (bectococcus lactis)	74	\$6	168	
1 3 1193 91 558494 homomerine dehydrogename Bacilius aubtilis 1 1 1 1 1 1 1 1 1	452	-	-	1 942	91,413982	ipa-58r gene product (Bacillus subtilis)	74	52	942	,
2 1174 1407 91 40211 Chreenine synthase (EC 4.2.99.2) - Bacillus bublilis] ir A25364 A25364 74 56 56 A25364 A253	197	-	-	11193	1	[homoserine dehydrogenase [Bacilius subtilis]	74	22	11911	,
2 402 734 gi[142520 thioredoxin [Bacillus subtilis] 74 62 734 320 gi[1499005 gi]ycyl-RNA synthetase [Mechanococcus Jannaschil] 74 52 739 7340 gillalide	19+		1174	1407	6 1 40211	threonine synthase (thrc) (AA 1-352) [Becilius subcilis] ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacilius brills	*	26	234	
1 574 320 9' 1499005 9'ycVI-RMA Bynthetase (Methanococcus Jannaschill) 74 52 73 12740 10 217040 acid glycoprotein (Streptococcus pyogenes) 74 58 1 2 4083 2791 91 141040 91r[042728]042728 91camese-1-semialdehyde 2.1-aminotransferase [Bacrlius subtilis] 74 58 1 2 4083 2791 91 141040 91\text{partialdehyde 2.1-aminotransferase (EC 4.3.8) 8 91 8 91 14104	462	1 2	1 403	1 734	191 142520	thioredoxin [Bacillus subtilis]	74	62	666	
2 739 1740	478	-	574	1 320	10, (1099005	[glycyl-tRWA synthetase (Methanococcus)annsschii)	14	52	255	. '
2 4083 2791 gril43040 glutamate-1-semialdehyde 2,1-aminottansferase [Bacilius subtilis] 74 51 prijet2728 jo42728 glutamate-1-semialdehyde 2,1-aminomutese (EC .4.3.8) - Bacillus subtilis	\$01	2	96.7		1911217040	acid glycoprotein (Streptococcus pyogenes)	7.	88	1002	·
	551		4083	2791	91,143040	_ ;	7	2	1293	_

, auteus - Putative coding regions of novel proteins similar to known proteins

553 :	1780	1 477	*				
	1780		19111006605	hypothatical protein (Symechocystis sp. 1	74	- 5	477
::-:-:-:-:-	2924	1298	91/1303853	YqqF [Bacillus subtilis]	74	55	483
	111111	1758	gi (1146237	[21.41.0] identity to trans-acting transcription fector of Secharomyces cerevisiae; 25% of identity to sucrose synthese of Zee mays; putative [Becillus subtilies]	•	\$	1167
	1269	1595	gi 1072380	ORF3 (Lactococcus lactis)	74	62	121
<u> - </u>	1.1	188	UE 143374	phosphoribosyl glycinamide synthetase (PUR-D; gcg start codon) Bacillus subtlisi	47	85	186
- 	109	1209	191 (153833	ORF1; putative (Streptococcus parasanguis)	74	80	909
- : -	2	1 259	191 143458	ORF V (Bacillus suutilis)	46	-	# C U
: -	453	124	91 (1303994	Уqкн (Bacillus subtilis)	7	9	282
	-	1 492	gi 16970	apiD gene product (Staphylococcus apidermidis)	7	75	492
1135 2	373	1 528	91 413948	ipa-24d gene product (Bacillus subtilis)	7.	-	156
1 1234 1	#13	452	gi 495245	rocJ gene product (Frwinia chrysanthemi)	74	36	360
2586 1	7	238	19111149701	sbcC gene product (Clostridium perfringens	74	62	237
2959 1	798	00	91 1405454	sconitase [Bacillus subtilis]	7.	09	399
1 2962 1	0.50	1 363	01/450686]-phosphoglycerate kinasa [Thermotogs maritima]	74	e	288
2983 1		161	gi 1303893	Yaht (Bacillus subtilis)	74	26	189
3018	2	223	91,143940		7	95	222
1 3038 1 1	510	256	pir \$\$2915 \$529	initrate reductase alpha chain - Bacillus subtilis (fragment)	74	1.5	255
3062 1	374	189	911107528	[ttg start [Campylobacter col1]	1 74	\$1	186
1 4035 1	184	360	91 1022725	unknown (Staphylococcus haemulyticus)	74	79	177
1 4045 1	603	1 305	gi 1510977	[M. jannaschii predicted coding region MJ0938 [Methanococcus jannaschii]	74	7	303
4283 1	471	304	gi 520844	orf4 (Bacillus subtilis)	74	5.8	168
6777		1221	91 580910	peptide-synthetase ORF1 [Bacillus subtilis]	1. 1.	54	219
4587 1	458	231	91 1370207	orf6 (Lactobacillus sake)	74	5.9	228

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	ORF	Start (nt)	Stop (nt)	match acession	match gene name	F 18 1	1 loont	length
4603		29	214	911146208	glutemate synthese large subunit (EC 2 6.1.53) (Eacherichie coli) pir/a29617[A29617 glutemate synthase (NADPH) (EC 1.4.1.13) large hain - Escherichie coli	36	09	186
019	-	1 366	184	gi.,256135	Yobf (Bacillus subtilis)	7.4	5	183
- 2	100	1 7953	7162	94:143727		7.3	4.2	767
-	7	2454	2761	91.166338	[dihydroorotata dehydrogenase [Agrocyba aegerita]	7.3	3,	1 6801
<u>-</u>		2024	1020	91 1143373	phosphoribosyl aminoinidazole carboxy formyl ormyltransferss/inosine monophosphate cyclohydrolase (PUR-H(J)) Becillus subtilis]	٤٦	\$5	5007
23	<u></u>	5426	4635	01/1468939	maso-2,3-butanadiol dehydrogenase ID-acetoin forming) (Klebsiella pneumoniae	٤٦	99	792
23	117	(17379	16360	94 297060	ornithine cyclodesminase (Phizobium mellioti)	(ر	1 6	10701
1 29	-	692	6721	91 467 442	stage V sporulation (Bacillus subtilis)	7.3	> > > > > > > > > > > > > > > > > > > >	282
16		1 6467	4614	Si 414000	1ps-76d gene product (Bacillus subtilis)	נר	55	1554
, r	.	8658	7402	91 .429259	papt gane product [Bacillus subtilis]	נר	65	1257
1 37	-	17738	7562	91,168367	alpha-isopropylmalate isomerase (put.); putative [Rhizomucor ircinelloides]	ر <i>د</i>	25	177
*0	-	1 3931	9681	91 405885	yeiN [Escherichia coli	٤٢	85	996
7	• -	5041	4238	191 540895	unknown (Bacillus subtilis)	7.3	5.5	H04
1	=	17.67	B306	191/42009	moulb gune product Escherichia coli)	7.3	0.5	240
\$	_	2439	0801	91 1109685	ProW Bacillus subtilis	٤٢ ا		- 7 F 9
- 25	=	114036	113794	191 413931	1pa-7d gene product (Bacillus subtills)	3،	19	74.3
88	-	1430	1 2248	91 147923	threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coli]	(د	- 83	A19
59	-	1458	067	191 677944	AppF (Becilius subcilis)	٤٢	95	729
0.0	~	21115	1.860	gi 580932	murD genm product (Bacillus subtilis)	7.3	1 53 1	516
102	2	10124	11179	91 580891	3-isopropylmalate dehydrogenase (AA 1 - 365) [Bacillus subtilis] pir[A26522]A26522 3-isopropylmalate dehydrogenase (EC 1 1.1.85) - acillus subtilis	נר	25	1056
109	~	3493	2600	191 1510849	M. jannaschii predicted coding region MJ0775 (Methanccoccus jannaschii)	13	0.0	₩ 68
120		4782	9578	91 146970	ribonucleoside triphosphate reductase (Escherichia coli) pir a47331 a47331 anaerobic ribonucleotide reductase - Escherichia oli	٤٢	9,	27.8
120	-	5726	6223	19111204333	anserobic ribonucleoside-triphosphate reductase (Hasmophilus influenzae)	2,3	62	498

TABLE

aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop	match	' 'matr' dene name	E to	• Ident	length (nt)
21: 1		4151	4363	191 87 1048	[HPSN2 - heavy chain potential motor protein (Gierdie intestinalis)	7.3	‡	213
071	9	5952	4324	1911634107	kdpB [Escherichia coli]	(۲	65	1629
142	 - -	1 2000	61.65	191 410125	rib; gene product (Macillus subtilis)	در	57	1122
6		9981	1717	 q1 460892	heparin binding protein-44, HBP-44 (mice, Peptide, 360 ms) pir JX0281 JX0281 heparin-binding protein-44 precursor - mouse g1 220434 ONF Mus musculus) (SUB 2-360)	<u>د</u> ر	53	150
158	-		1431	441 882504	ORF_[550 (Escherichia coli]	7.3	5.7	1631
174	9 -	5352	4525	93 1146240	ketopentoste hydroxymethyltransferase (Bacillus subtilis	13	\$\$	A 28
175	±	1 5537	5178	91 854657	Na/H antiporter system ORP3 [Bac:llus alcalophilus]	7.3	36	360
186	- 5	1 6593	5493	01 467477	unknown (Bacillus subtilis)	7.3	48	1101
249	9	6283	6272	[91 1524397	glycine betaine transporter OpuD (Bactilus subtilis)	7.3	9.6	555
1 265	-	1873	2280	191 39848	[U3 (Bacillus subtilis]	13	7	404
270	-	328	582	q1 780461	[220 kDs polyprotein (African swine fever virus)	7.3	5.3	255
2 /#	-	4283	3618	ді 120н965	hypothetical 23.3 kd protein (Escherichia coli)	ני	6.6	999
279		4984	3593	[g1 1185288	[1sochorismate synthase (Bacillus subtilis]	31	5.8	1392
291	-	1207	1575	gi 1511440	glutaminafructose-6-phosphate transaminase (Methanococcus jannaschii)	7.3	ę3	369
229	- 2	735	1166	1911167437	unknown (Bacillus subtilis)	7.3	8.8	432
1 299	- 5	2050	3234	91 467439	[temperature sensitive cell division [Bacillus subtills]	13	53	11.85
334	-	1237	728	1911536655	ORF YBR244w [Saccharomyces cerevisiae]	13	\$	210
336	~	1827	1036	191 790943	ures amidolysse [Bacillus subtilis]	7.3	5:	792
374	-	1 1389	1874	91 1405451	YneJ (Bacillus subtilis]	6.7	\$\$	984
433	-	1916	2554	1911473902	alpha-acetolactate synthase (Lactococcus lactis)	٤٢	\$	663
605	~	1795	1028	Q1 467483	unknown (Bacillus subtilis)	7.3	98	168
613	-	1709	816	91 1146220	NAD+ dependent glycerol-3-phosphate dehydrogenase (Bacillus subtilis)	1.1	9.6	792
533	~	239	617	, gi 1510605	hypothetical protein (SP-P42297) (Methanococcus jannaschii)	7.3	7	467
546	7	1148	2815	195 41748	hsdM protein (AA 1-520) Escherichia coli]	7.3	52	1668
549	-	762	382	191 1314847	CinA [Bacillus subtilis]	٤٦	5.7	181
567	-	1346	678	[91,410137	ORFX13 (Bacillus subtilis]	13	85	672

EP 0 786 519 A2

proteins
know
٥
Similar
proteins
nove
Ċ
regions
coding
40.14
3
-
5 117 3114
U

					·			
Cont.19	ј јон F Т.D	Start (nt)	Stop (nt)	match	i match gene name	٤ •	- squar	(1)(1)
316	1 2	654	11112	91 1256623	exodeoxyribonuclease (Bacillus subtilis)	٤٢	1 95	459
77.	-		677	Q1 142010	Shows 70.2% similarity and 48.6% identity to the EnvH protein of almonalia typhimurium {Anabaens sp.}	ζ.	57	675
17.4	-	-	209	91 409286	[barg (Bacillus subtilis)	7.3	25	207
182	-		403	gi :43320	[gap] gene products [Bacillus megaterium]	6.7	56	403
7.89	~	1451	1 762	91 1063246	low homology to P14 procein of Hemoophilus influenzar and 14.2 kDa procein of Escherichia coli (Bacillus subtilis)	3 در	96	312
296	-		116	1911853754	ABC transporter (Becilius subtilis)	33	88	606
908		1209	646	91 143786	tryptophany -tRNA synthetase (EC 6 1 1.2) [Becillus subtilis] pir[JT0481 YWBS tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	در ا	2.	261
816	~ -	4839	1 3097	gi 4174B	hady protein (AA 1-520) [Eacherichia coli]	7.3	52	1743
639		1 798	00+	906988 15	argininosuccinate syntheses [Streptomyces clavuligerus] pir(537639 537639 srgininosuccinate synthese (EC 6 3.4 5) - treptomyces clavuligerus		65	998
857	-	-	1 290	91 348052	(acetoin utilization protein (Becillus subtilis)	13	- 05	388
6001		190	398	91 40100	rodC (teg1) polypeptide (AA)-146) [Bacillus subtlis] if S06049 S06049 rodC protein - Bacillus subtliis p Pl3485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	2	3	193
101			- 513	qi 529357	No definition line found (Genochabditis elegans) sp P46975 STT]_CAEEL OLIGOSACCHARYL TRANSFERASE STT) SUBUNIT OHOLOG.	52	3	213
101	-	-	1 491	1911142706	com61 gond product bacillus subtiliu	13	-	CHT
1174	-	1 395	204	gi 11149513	[alphala subunit of laminin 5 (Homo septens)	23	09	192
1175	-	1 655	1 329	1911473817	ORF' [Escherichia coli]	13	57	127
1187	-		1 209	191(580870	ipa-17d qoxA gene product [Bacillus subtilis]	73	52	201
1206		7.2	245	911144816	formy:cerranydrofolate synthatese (FTHFS) (ttg start codon) (EC .3.4.3) (Hoore)!a thermoscetics)	2	Ç	174
1454	-	£	745	91 1213253	unknown Schizosaccharomyces pombe	67	53	183
1469	-	517	760	787[0[1]19]	YqeG [Bacillus subtilis]	در ا	\$\$	258
1761	-	374	189	\$619 19}	Hst26As gene product Drosophile simulans	رد	34	186
1849	-	1 467	1 263	91/162307	DNA topolsomerase II (Trypenosome cruzi)	رر	09	225
2055	-	- 2	007	191 (059381	P47K protein [Rhodococcus erythropolis]	در ا	34	199
2556	-	~	1 244	91 145925	[fecB [Escherichia coli]	در 1	1 62	263

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

5

	2500 400 400 1375 1375 1376 1376 1376 1376 1377 1378 1377 1378 1377 1378 13	Start Step (nt) (nt) (549 400 (55 129 136 134 136 134 136 139 (475 139 (475 139 (475 139 (475 139 (475 139 (475 139 (475 139 (475 139 (475 139 (477 139 (477 139 (478 139	Step 1975 1976 1977 1977 1975 1977	match gene name	polymucleotide phosphorylase (Becilius subtilis)	quinol oxidase [Bacillus subtilis]	acetolactate synthase (Dacillus subtilis)	overlapping out-of-phase procein [Eggplant moseic virus] 13 53 54 59 50129 V70x_EPNV 70 KD PROTEIN.	gluteryl-CoA dehydrogenase precursor [Mus musculus]	hadH gene of Ecopiri gene product (Bacherichia coli) pir S98437 S98437 hadH 73 54 protein - Eacherichia coli pir S09629 S09629 hypothetical protein A - Escherichia coli (SUB 40-520)	unknown Mycobacterium tuberculosis 33 59	[D-lactate dehydrogenase [Lactobacillus plantarum] 73 68	S134 [Hydroxymethylglutary]-CoA synthase (EC 4.1.3.5) - Chicken (fragment) 73 73 53	unknowm Becilius subtilis]	oxoglutarate dehydrogenase (NADF+) Bacilius subtilisi p P231129 ODOL_BACSU 73 55 2-0xoglutarate behydrogenase El COHPONENT (EC 2.4.2) (ALPHA- RETUGUUTARATE DEHYDROGENASE).	glutaryl-CoA dehydrogenase precursor Mus musculus	decxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subtils decxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	unknown [Bacillus subtilis]	N-acyl-L-amino acid amidohydrolase Dacillus stearothermophilus 73 47 pp pp7112 Ama baCST N-acyL-L-AMINO ACID AMIDOHYDROLASE (EC .5 1.14) (AMINOACYLASE).	ORF2 Bacillus megaterium	phosphoglycerate dehydrogenase [Bacillus subtilis]	similar to trimethylamine DH (Mycoplasma capticolum; pir[S49950 S49950 72 54 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capticolum (SGC3) (fragment)	ipa-44d gene product Bacillus subtilis	unknown (Bacillus subtills)	
250 (inc.) 13.59 13.59 13.59 13.59 13.59 13.59 13.50 1		Seart St. Start St.	Start St. St	BATCH	91 1184680	01 :43397	160[11]16]	91 (323866	101 14.9521	9i 450688	gi 1524193	91 216746	pir S13490 S134	1911528991	01140003	91 1439521	191 409660	191 528991	911436797	91 216267	91 11146196	t 662031	191 413968	191 516272	
		Start (nt) 146 549 1855 1805 1905 115 115 116 116 116 116 116 116 116 11	549 549 549 549 549 549 540 700 700 700 700 700 700 700 7	Stop (nc)	007	375		194	527	00+	359	191	239	3.0	316	365	111	378	193	1 263	1973	17877	19162	12953	

S aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop	- acession	match gene name	E .	/ ident	length (nt)
53	6 -	10521	9259	gi 1303956	YOJE (Bacillus subtilis)	72	3.2	1263
95	[2]	29549	29995	1911467471	unknown (Becilius subtilis)	72		447
69	-	5298	1 4123	19411354775	pfoS/R (Treponema pallidum)	72	9	1176
69	- 5	1 4377	1 4982	gi 904198	hypothetical protein (Bacillus subtilis)	7.2	5	909
	-	7	956	gi 142997	glycerol uptake facilitator (Bacillus subtilis)	72	59,	855
86	Ξ	1716	10258	[gi 467435	unknown Bacillus subtilis	72	20	988
123			1593	01(217144	alanine carrier protein (thermophilic becterium PSI) pir A45111 A4511	7.2	99	1593
===		1 5197	7,000	91 153952	polymerase III polymorase subunit (dnaE) (Salmonella typhimurium) pir A45915 A45915 DNA-directed DNA polymerase (EC 2.2.7.7) III lpha chain - Salmonella typhimurium	72	2	2598
101	-	1040	1978	91 1405446	transkatolasa (Bacillus subtilis)	7.2	24	616
149	-	2619	1 2535	191 606234	secY (Escherichia coli)	72	*	285
641	117	5472	5245	g1 1304472	DNA polymerase [Unidentified phycodnavirus clone OTU4]	72	\$\$	228
154	-	-	210	91 1205620	ferritin like protein [Maemophllus influentae]	73	0.7	210
155		2207	1320	191610	farnasyl diphosphace synthase (Becilius stearchermophilus) pir[JX0257]3X0257 geranyltranstransferase (EC 2.5.1.10) - Decilius tearcthermophilus	72	5	E
180	-	- 2	328	[91] 133630	A180 (Saccharomyces cerevisiae)	7.2	62	725
184	-	11165	3553	91 1205110	virulence associated protein homolog [Haemophilus influentee]	27	67	2409
195	~	1 1923	1 1279	91 :001730	hypothetical protein (Synechocystie sp.)	72	4.5	645
206	=	114646	115869	91 1064807	ORTHININE ANINOTAANSFERASE (Bacillus subtilis)	7.2	80	1224
209	~	7	932	91 1204666	hypothetical protein (GB:X73124_53) [Haemophilus influenzee]	2,2	09	471
215	~	296	523	91 (88151)	inmulin receptor homolog (Dromophila melanogaster) pir(557245 557245 inmulin receptor homolog - fruit fly (Dromophila elanogaster) (5UB 46- 2146)	22	9	243
224	-	7	190	46666118	sucrose repressor (Staphylococcus xylosus)	27	54	789
(53)	-	1526	765	91 1408493	homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)	7.2	1 32	162
240	-	1 220	1485	91 537049	ORF_0470 [Escherichia coli]	72	52	1266
245	-	_	1340	91,1204578	hypothetical protein (GB:U06949_1) [Haemophilus influenzae]	72	9	1336

TABLE 2

S aureus - Putative coding regions of novel proteins similar to known proteins

Cont 19	08. CT	Start (nt)	Stop (nt)	SECT. Socialization	Tradich gene name	E 19	1 Ident	length (nt.)
259	~	2108	1245	gi 1340128	ORF1 (Staphylococcus aureus)	2.2	- 65	8 64
304	7 -	587	1094	191(1205330	glutemine-binding periplesmic protein [Heemophilus influenzae]	2.2	52	018
101	011	5326	5039	191 1070015	protein_dependent (Bacillus subtilis	7.2	53	288
315	-	517	1 260	91 143399	quinol oxidase (Bacillus subtilis)	12	\$5	258
316	=======================================	9612	9308	ui 1204445	hypothetical protein (SP:P27857) [Haemophilus influenzae]	127	36.	315
711	-	926	1609	Q1 467433	[citrate synthese II [Bacillus subtilis]	27	55	4 6 9
364	-	12538	10493	[gi 1510643	ferrous iron transport protein 8 [Methanococcus jannaschil]	7.2	53	2046
604	- 7	340	1263	91 1402944	orfRM1 gene product (Bacillus subtilis)	72	63	924
441		7217	1590	91 312379	highly conserved among subscients (Clostridius scetoburylicus) pir[534312]534312 hypothetical protein V - Clostridius catobutylicus	2.2	3	58 K
453	9	2654	1 2505	pir 500601 BXSA	antibacterial protein 3 - Staphylococcus haemolyticus	7.2	0.0	150
097	-	1 2	625	91 1016162	ABC transporter subunit (Cyanophora paradoxa)	7.2	3	779
\$		3253	1628	91 666014	The polymorphysm (RFLP) of this gene is associated with usceptibility to essential hypertension. The SA gene product has light homology to acetyl-CoA synthetase [Homo saplens]	21	0.0	1626
4.80	-	1 3047	3466	91 433992	ATP synthase subunit epsilon (Becilius subtilis)	72	5)	420
505	-	1 1086	985	91 310859	OBF2 (Synechococcus ap.1	7.6	05	105
1 519	-	- 81	1184	191 1303704	YFKE [Bacillus subtilis	11	24	1104
655	-	n -	746	19111107530	ceub gene product (Campylobacter coli!	21.	3.6	744
575	-	1142	573	91 1303866	Yqgs (Becillus subtilis)	12	\$6	570
179	-	~ -	- 592	19.11204497	protein-export membrane protein (Naemophilus influentee)	2,7	7	165
6.9	- 5	295	1251	g. 563258	virulence-associated protein 2 (Dichelobacter nodosus)	7.2	52	1 85.
687		295	1 957	91 1116216	44% identical amino acids with the Escherichia coll smba supress; putative [Bacillus subtilis]	21	2	663
(837	-	-	1 635	91 1146183	[putative Bacillus subtulis]	7.2	• • • • • • • • • • • • • • • • • • • •	435
868	-	150	788	91 1377842	unknown (Becilius subtilis	21	\$\$	619
922	-	130	1 432	gi 1088269	unknown protein (Azotobacter vinelandii)	7.2	5.8	303
176	-	7	238	91 153929	[NADPH-sulfite reducatase flavoprotein component [Salmonella yphimurium]	72	6	237
086	-	940	1421	91 853767	UDP-N-acatylglucosamine 1-carboxyvinyltransferase (Bacillus ubtilis)	22	65	420

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

S. auraus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	108F	Start (nc)	Stop (nt)	match	match gene name	E	• ident	length (nt)
1209		1383	213	ai 144735	neurotoxin type B (Clostridium botulinum)	22	7	17:
1469	-	179	474	gi 1205458	hypothetical protein (GB:D26562_47) (Haemophilus influenzae)	72	63	198
9561		727	365	91 154409	haxosephosphate transport protein (Seleonella typhimurium) pir[84]853 841853 haxosa phosphata transport system regulatory rotein uhpB - Seleonella typhimurium	22	3	161
2101	-	~	107	4911303950	Yq1Y Becillus subtilis	7.2	50	399
2503		569	1 399	[01 149713	[formate dehydrogenase [Methanobecterium formicicum] pir[A42712]A42713 [formate dehydrogenase [EC 1.2.1.2] - ethanobecterium formicicum	5.	56	171
2967	-	_	155	191 (1212729	YqhJ (Bacillus subtilis)	72	9	153
3004	-	1 367	185	91 665999	hypothetical protein (Bacillus subtilis)	7.2	\$5	[81
1109	-	278	141	g1 413968	[pa-44d gene product [Bacillus subtilis]	72	45	138
1716			1 287	di 515938	glutamate synthase (ferredoxin) [Synachocystis sp.) pir 546957 glutamate synthase (ferredoxin) [EC 1.4.7.1] - ynschocystis sp.	7.2	7.5	285
1771		26	367	91,1408501	homologous to N-acyl-L-amino soid amidohydrolass of Bacillus stearothermophilus [Sacillus subtilis]	12	3	342
1361	-	1 -	222	91 1500409	M. jannaschii predicted coding region MJ1519 (Methanococcus jannaschii)	7.2	38	222
4190	-	1 721	1 362	91 39956		7.2	52	360
**	-	2	1 347	91 1009366	Respiratory nitrate reductase Bacillus subtilis	7.2	\$	345
9 -	-	1.11	1 1200	1911537095	ornithing carbamoyltransfurage (Eschorichia coll)	=	3 :	017
===	115	111350	10859	1911532309	[25 kDa protein (Escherichia coli)	7.1	4.7	767
61	7	1248	1 2435	gi 1244574	(D-alanine: D-alanine ligase (Enterococcus hirae)	7.1	52	1188
12 -		868	1468	91 149629	anthranilate synthase component 2 [Leptospire biflexe] pir C32840 C32840 anthranilate synthase (EC 4.1.3.27) component II Leptospire biflexe	1,4	\$	591
3.4	; -		1 567	011303983	YqkF (Bacillus subtilis)	7.1	65	1967
1 37	-	3192	2806	qi 1209681	[glutamate-rich protein [Bacillus firmus]	7.1	0.5	780
38	=======================================	112250 124	112462	91 927645	erginyl endopeptidase (Porphyromones gingivalis)	71	50	213
66	-	1 1246	4431	pir S09411 S094	pir 509411 5094 apolilE protein - Bacilius subtilis	12	6+	3186
5.1	=	01.511	14760	91 142611	brenched chain alpha-kato acid dehydrogenase El-alpha [Bacillus ubtills]	17	5.8	11011
24	=	113461	112625	91 143014	gnt_repressor [bacillus subtilis]	17	9	637

5. aureus - Putative coding regions of novel proteins similar to known proteins

Contag DRF	108F	Start (nt.)	Stop	match acession	march gene name	E 7	* 1 dent	length (nc)
52		7152	2860	91 508175	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia colii	7.1	5	1293
57	e	13897	114334	91 1063247	high homology to flavohemoprotein (Haamoglobin-like protein) of Alcaligenes autrophus and Saccharomyces cerevisiee [Becillus aubtilla]	1,	9,0	8.7
62	911	9831	10955	91 1303926	YqiG (Becillus subtilis	11.	2	1125
10	113	8505	9968		phnE protein (Escherichia coll)	1.	80	794
9.8	5	2394	2089	01 904205	hypothetical protein (Becilius subtilis)	1,7	-	306
96	-	7601	8269	191 709991	hypothetical protein (Sacillus subtilis)	7.1	\$	6.9
001	9 -	4 4 4 2 2	11.65	01 1060848	Opine dehydrogenese [Arthrobacter ep.]	11,	•	11:0
101		1 1062	532	911143089	lep protein (Bacillus subtilis)	11,	17	531
109	118	115312	15695	191,413985	ipa-61d gene product (Becillus subtilis	1,7	5.7	384
113	-	630	316	gi 663254	probable protein kinese (Saccharomyces cerevisiae)	1,	57	315
111	-	6598	5603	91/143156	membrane bound protein (Bacillus subtilis)	112	0.	966
	- 7	3087	1723	jai 1303913	YqhX (Bacillus subtilis)	11,	S	1365
149	119	6335	1 5895	g1 529650	G40P Bacteriophage SPP1	1.1	5.1	461
154	-	3635	1 3087	91 425488	repressor protein (Streptococcus sobrinus)	1.7	4)	549
154	===	111354	111649	191149318	CAR's gene product (Nacillus subtilis)	7.1	73	36
169	-	1936	2745	91 1403403	unknown (Mycobacterium tuberculosis	7.5	95	810
193	- 7	1 272	1334	91 1303788		7:	6)	(96)
1 205	-	1743	895	91/1215694	Ging (Mycoplasma pneumoniae)	7;	46	849
1 233	-	1849	2022	91 633732	[ORFI (Campylobacter jejuni)	7.1	05	174
237	- 1	1 4501	1 5169	911149384	HisiE (Lactococcus lactis)	7.1	*	699
272	-	1 2048	2273	191/709993	hypothetical protein [Bacillus subtalis]	1,7	88	9/5
274		618	1496	gi 143035	NAD(P)H.glutamyl-transfer RNA reductase [Bacillus subtilis] pir[A35252[A35252 5-aminolevulinate synthese (EC 2.3.1.37) - ecillus subtilis	7.1	\$	679
276	-	1 3349	2720	91 303562	ORF210 (Escherichia coli)	7.1	80	630
1 287	-	136	099	01 310634	20 kDe protein (Streptococcus gordonii)	7.1	53	525
288	9	1 3322	1772	91 1256625	putative (Bacillus subtilis)	7.1	47	552

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig ORF	IORE	Start (nt)	Stop (nt)	match acession	and the generates	E 1	1 Ident	length (nt)
301	9	3492	2461	191 467417	similar to lysine decarboxylese (Sacillus subtilis)	1.1	5.7	1032
306	-	6607	5222	19111256618	transport protein (Bacillus subtills)	1.1	> 6	1386
307	~	1536	928	gi 632683	orfC (Mycoplasma capricolum)	יי	Ş	612
310	2	5793	5146	gi 348052	acetoin utilization protein (Bacillus subcilis)	1.1	51	648
322	-	2	1303	(01(1001819	hypothetical protein (Symechocystis sp.)	7.1	, , 9 7	1302
333	-	14171	3886	91 +67473	unknown (Becillus subtilis	7.1	5.7	111
350	5	548	923	1911551879	ORF 1 [Lactococcus lactis]	7.1	5.5	375
175	-	1860	1700	91 467447	unknown (Becillus subtilis	1 1 1	5.3	1212
340	- 2	1560	1 2102	191 142557	ATP synthase b subunit (Secullus megaterium)	1 12	Ç	543
	2	1 251	1 637	21 580904	homologous to E coli rnpA (Bacillus subtilis)	11.	69	387
424	-	335	1354	91 581305	[L-lactata dehydrogenase [Lactobacillus plentarum]	7.1	57	1020
957		1076	3270	pir PNOSO1 PNOS	(phosphoribosylanthranilate isomerase (EC 5.3.1.24) - Bacillus subtilits (fragment)	1,	3 0	۲ ° +
482	-	7	1280	91 410142	OFFX18 (Becillus subtilis)	1,1	6.7	1278
525	2-	2272	3	191 143370	phosphoribosylpyrophosphace amidotranaferase (PUR-F: EC 2.4.2.14) Bacillus subtilis	1	96	429
523	-	66.72	1 2047	191 606150	ORF_[109 [Escherichia coli]	17	7	169
563		1 22	696	91 1237015	ORF4 (Bacillus subtilis)	1.7	13	948
785	-	905	1 255	19111301730	725G3.2 (Ceenorhabditis elegans)	17.	-	252
612	- 7	1068	913	97 153968	(fimbrise Z [Salmonella typhimurium)	7.1	\$\$	156
613	-	1 -	1 654	91 466778	lysine specific permesse [Escharichia coli]	17	80	959
618		1243	1 623	91 1166238	poly(A) polymerese (Becillus subtilis	71	5.2	621
630	-	1170	1 586	gi 1486243	unknown (Bacillus subtilis)	7.1	53	505
691	-	1126	1 641	g1 289260	comE ORF1 (Bacillus subtilis]	7.1	51	486
694		149	427	91 12971	NADH dehydrogenase subunit V (AA 1-605) (Gallus gallus) ir S10197 S10197 NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain - chicken mitochondrion [SGC1)	71	1.1	279
315	7	169	777	191 1.103830	YqfL (Bacillus subtilis	11.	5.3	609
746	-					7.1	5.3	70%

TABLE 2

 aureus - Putative coding regions of novel protesus similar to known proteins

Cont 19	ORF	Stert (nt)	Stop (nt)	match	match gene name	e i e) ident	length (nt)	
748	-	1437	1 802	91 1405459	Ynes (Becillus subtilis)	7.1	6.7	9(3	
753	-	1018	524	gi 1510389	H. jannaschii predicted coding region MJ0296 [Methanococcus jannaschii]	1,	2	495	
761	-		215	0 4 7 5 9 7 2	pentatunctional ensyme (Pneumocyatia carinii)	ני	4.1	213	
783	-	1 1203	1 703	-	ORF YBR244w (Saccharomyces cerevisiae)	7.7	5.2	105	
004		1292	1 987	1204326	[ERNA delta(2)-isopentenylpyrophosphate transferese (Heemophilus Influentee)	1,1	•	306	
908	-	1116	1 286		cbiM gane product (Mathanobacterium thermomutotrophicum)	7.1	05	171	
931	-	973	488	qi 893358	PgsA (Bacilius subtilia)	11	26	486	
1041	-	7	1 262	gi 1408507	pyrimidine nucleoside transport protein [Bacillus subtilis]	1,	45	261	
0.01	-	2	271		hypothetical protein (Bacillus subtilis)	7.1	97	171	- •
1176		52	365	91 151259	HHG-CoA reductase (EC 1.1.1.88) [Pasudomonas mevalonii] pir[A44756 A44756] hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	1,1	65	309	
1181	-	366	184	91 46971	epiP gene product (Stephylococcus epidermidis)	7.1	05	183	
1281	-		1 290	94 153016	lose 419 protein (Staphylococcus aureus)	1,	80	288	•
1148	-	456	1 229	91 602683	orfc Hycoplasma capricolum]	1,	89	1 226	
1 2002	-	1 756	976	91 1008177	ORF YJLO46w (Saccharomyces cerevisiee)	7	9	378	+
2119	-	2	1 217	01 1046088	arginyl-thus synthetase (Mycoplases genitalium)	17	05	216	
2418	-	-	320	191 1499771	M jannaschil predicted coding region MJ0936 (Methanococcus jannaschil)	7.7	1 57	318	
2961	-	- 2	187	gi 312443	carbamoy, -phosphate synthase (glutamine-hydrolysing) (Bacillus aldolyticus)	1,2	57	186	- •
2999	~	. 67	306	gi 710020	nitrite reductase (nirB) [Bacillus subtilis]	1,7		240	- •
3033	-	- 2	787	[91]1262335	Ymax Bactilus subtilis	נר	57	183	- •
3584	-	- 1	1 338	(91 401716	beta- sopropylas ata dehydrogenase (Neurospora crassa)	71	55	336	- •
3715	- 2	743	1 399	gi 563952	gluconate permease (Bacillus lichenliormis)	15	65	345	- •
3785	-	1 770	1 387	gi 47382	acy -CoA-dehydrogenase Streptomyces purpurascens	17	5.7	364	- •
3875	-	1541	272	qi 1001541	hypothetical protein (Synechocystis sp.	12	1 38	270	•
4135		1 637	320	93 142695	S-adenosyl-L-methioning.uroporphyrinogen methyltransferese Bacillus megaterium	17	52		•
4249	-	69	239	91 1205363	decxyribose aldolase [Heamophilus influentee]	1,5	63	7,11	- •
4508	-	530	267	911197667	vitellogenin (Anolis pulchellus)	17	99	264	- •
					1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、				

S. aureus - Putalive coding regions of novel proteins similar to known proteins

Contig	Cont.19 ORF	Start (nt)	Stop (nt)	match	metch gene name	E18 .	* ident	length (nt)
9	-	1 1237	12721	91 1321788	arginine ornithine antiporter (Clostridium perfringens)	70	75	1485
-	Ξ	6573	7486	91 (216854	P47K [Pseudomonas chlororaphis]	70	7	1 516
12	-	2890	1491	U1 467330	replicative DNA helicese (Bacillus subtilis)	70	6	1410
15	-	1 1756	893	[91 451216	Mannomephomphate Impresse (Streptococcum mutana)	01	9	998
15	~	1 1277	1050	gi 476092	unknown (Bacillus subtilis)	20	\$0,	228
117	- 2	2132	1350	[gi 145402	choline dehydrogenese [Zecherichia coli]	70	52	187
7			925	gi 149516	anthramilate synthese alpha subunit (Lectococcus lectis) pir S35124 S35124 anthramilate upnthaue (EC 4.1.3.27) alpha chain - actococcus lactis subsp. lactis	0,	20	926
1 25	-	5580	6251	01 1389549	ONF3 (Bacillus subtilis)	90	75	612
23	-	6071	7423	19111303875	Yqhm [mecilius subtilis]	0,	21	1353
36	~	656	1594	[91]50075	methyl purine glycosylase (Mus musculus)	0,	4.1	919
38		1 4901	1 5860	gi 1408507	pyrimidine nucleoside transport protein (Bacillus subtilis)	70	*	096
3	- E	1 5312	5969	91 1006620	hypothetical protein (Symachocystis sp.)	0,2	69	6.2k
9	01-	0569	110020	01 1403126	czcD gene product Alcaligenes autrophus	7.0	45	101
22	7 -	1272	1900	91 1486247	unknown (Bacillus subtilis)	70	53	828
22		8707	1 4656	91 244501	esterase II-carboxylesterase (EC 3.1.1.1) (Pseudomonas fluorescens, eptido, 218 as)	07	50	609
95		8460	1 9962	Q1(1339951	small subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	70	51	1503
79	-	8+	1 290	91 142702	A competence protein 2 (Bacillum subtilis)	70	47	243
9	-	1080	1 541	191 1204377	molybdopterin blosynthesis protein [Heemophilus influenzae]	7.0	47	240
0, 1	-	5139	3595	gi 1204834	2',3'-cyclic-nucleotide 2'-phosphodisstersse (Haemophilus influenzee)	70	41	1545
16	-	1.677	5466	91 886471	mathionine synthese [Catharanthus roseus]	0.0	\$6	2328
96	5	8754	1 7255	pir B39096 B390	atkaline phosphatase (EC 3.1.3.1) III precursor - Bacillus subtilis	0,	25	1500
110	~	767	1300	91 145294	edenine phosphoribosyl-transferase [Escherichia coll]	70	51	\$34
116	-	1 7026	9161	(91)143607	sporulation protein (Sacillus subtilis)	7.0	05	156
121	-	6401	8969	91 1107528	ttg start (Campylobacter coli)	0,0	45	588
131	6	6842	7936	91 1150454	prolidase PepQ (Lactobacillus delbrueckii)	0.7	87	1095

S. Aureus - Purarive coding regions of novel proteins similar to known proteins

Contro	08F	Start (nt)	Stop	ratch ression	י השוללה קפחפ הפחפ	E	1 tdem	length (nt)
135		5	7 4 8 6	91 (311309	putative mentrane-bound protein with four times replittion of ro-Ser-Ale at the N-terminus; function unknown (Alcaliganes utropius)	0,	6.	1488
138	-	418	1 214	1911504181	hypothetical protein (Bacullus subtilis)	0,0	9	297
164	-	9344	1 9874	91149315	CRF1 gene product (Bacillus subtilis)	70	۲,	531
164	91	115626	116618	91 1205212	hypothetical protein (GB:D1048) 18) (Haemophilus influenzas)	70	50,	66
205		2735	1803		[espiide transport system protein Sapf homolog; Sapf homolog (Mycoplasma pneumoniae)	70	-	613
209	-	016	1386	gi 1204665	hypothetical protein (CB:X73124_26) [Hacmophilus influenzas]	0.0	9	61.
246	-	340	756	gi 215098	[excistonase (Bacteriophage 154a]	70	9	417
263	-	7876	6749	91 142540	aspartokinase II Bacillus sp.	0,0	5.1	1128
268	-	3212	1 4117	91 1340128	ORF1 (Staphylococcus aureus)	0 ر	0.5	906
1 302	9-	1 3201	1 3827	91 147782	ruvA protein (gtg start) (Escherichia coli)	7.0	9	627
1 302	110	1 SR79	1051	pir c38530 c385	pir C18530 C185 queuine tRMA-ribosyltransferase (EC 2.4.2.29) - Escharichia coll	7.0	55	1173
313	-	2520	1414	91 1205934	[aminopeptidase a/i [Haemophilus influentae]	01	\$	1107
355	-	978	699	01 1070013	protein-dependent (Bacillus subtilis)	7.0	8	291
401	-	1255	629	19.1733147	GunF [Xanthonones campestrie]	70	67	/79
444	011	06/14	(126	1204752	high effinity ribose transport protein (Hacmophilus influenzae)	7.0	25	50.1
449	-	~	134	01 619724	HytE (Bacillus firmus)	01.	3	7771
672		637	320	91/727145	open reading frame; putative (Bacillus amyloliquefacions) pir B29091 B29091 hypothetical protein (bglA region) - Bacillus myloliquefacions (fragment)	0,	-	33.8
480	~	727	1608	91 142560	ATP synthase games subunit (Bacillus megaterium)	7.0	7	882
524	-	~ -	, 100 L	91 602292	(RCH2 protein (Brassice napus)	7.0	65	306
525	-	1 623	413	191 143372	phosphoribosyl glycinamide formyltransferase (PUR-N) (Bacillus ubtills)	7.0	52	1.7
1 565	_	1 3625	1 2552	01/881434	ORFP (Bacillus subtilis)	7.0	21	1074
1 607	-	629	1284	d1 1511524	hypothetical protein (SP:P37002) [Hethanococcus jannaschil]	0,	20	456
633	-	1 1383	103	[91,431231	uracil permesse (Bacillus caldolyticus)	7.0	5	681
646		1 1683	1309	911467340	unknown (Becilius subtilis)	0,	6	375
1 663	-	- 830	- 417	19111303873	y y Bacillus subtilis	70	0.	7.7

TARLE

aureus - Putative codiny regions of novel proteins similar to known proteins
o known
similar to
proteins
novel
ö
regions
coding
Putative
•
SUPPLE
.,

Contag	340	Start	Stop	netch	match gene name	E	• ident	(101)
6.81	-	1488	187	91 1001678	hypothetical protein (Symechocystis sp.)	7.0	53	708
708	-	2	877	Ep P33940 YOJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERCENIC REGION.	20	2.1	447
725	-	15	227	gi 1001644	hypothetical fritain (Symechocystis sp.)	70		672
97.6	-	13/1	1 787	91 145165	putative [Escherichia coli]	70		585
834 134		250	783	91 552971	NADH dehydrogenase (ndhF) [Vicia faba]	70	43,	↑ Γς
865	- 2	1585	1 1379	19111204636	ATP-dependent helicaso (Hasmophilus intluentae)	٥٢	45	207
894	-	535	1 269	91 467364	Dut binding protein (probale) (Bacillus subtilis)	7.0	7	267
916	-		1317	01 1314847	CinA [Bacillus subtilis]	70	0	315
944	-		572	1 109991	hypothetical protein (Bacillus subtilis)	0,	7	C72
986		277	509	[91.142441	ORF 3; putative [bacillus subtills]	70	\$0	168
1055	-		1335	gi 529755	spec (Streptococcus pyogenes)	70	37	133
1093	-	2	904	91 853754	ABC transporter (Becillus subtilis)	0,	69	606
1109	-	2	310	91 1001827	hypothetical protein (Synechocystis sp.)	0د ا	42	309
1220	-	897	1 235	pir S23416 S234	epin protein - Staphylococcus epidermidis	0, 1	0	234
97:1	-		348	91 153015	FemA protein (Staphylococcus aureus)	0,	47	276
1336	-	195	542	sp #31776 #BPA_	PENICILLIN-BINDING PROTEIN IA (PBP-IA) (PENICILLIN-BINDING PROTEIN A).	06	0.	344
1537	- 2	232	405	91 1146181	putative [Becillus subtilis]	0, 1	06	171
1574	-	451	1 272	91 219630	endothelin-A receptor [Nomo sapiens]	06	-	180
1640	-	069	346	91 1146243	22.4% identity with Escherichia coli DHA-damage inducible protein; putative Bacillus subtilis	10	99	345
2504	-	7 -	1 286	Q1 495179	[transmembrane protein [Lactococcus lactis]	10	51	285
3061		295	100	91 508175	EIIC domain of PTS-dependent Get transport and phosphorylation Eacherichia	7.0	=	264
3128	-	~ -	199	91 1340096	unknown Mycobacterium tuberculosis	1 70	51	198
3218			46	01 515938	glutamate synthase (ferredoxin) [Symechocystis sp.] pir S46957 S46957 glutamate synthase (ferredoxin) [EC 1.4.7.1] - ymechocystis sp.	70	20	
3333	-	194	1 399	[01 1154891	ATP binding protein (Phormidium lemanosum)	0,	52	396
3679	-	599	1 399	141 529385	chromosone condensation protein (Caenorhabditis elegans)	1 30	1 30	201

Cont 19	ONF	Start (nt)	Stop (nt)	match	match gene name	E 1	, tdwnt	length (nt)
3841	-	706	398	9211208965	hypothetical 23.3 kd protean [Escherichia cola]	100	+	309
1929	-		100	91 149435	putative [Lectococcus lactis]	100	69	399
***		595	374	91 602031	similar to trimethylamine DH (Hycoplasma capricolum) pir[549950 549950 probble trimethylamine dehydrogenase (EC .5.99.7) - Hycoplasma capricolum (5GC3) (fragment)	0,	ĝ	222
4329	-	558	280	911339951	small subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	0,	.61	279
4422	-	576	289	1911 296464	ATPass [Lactococcus lactis]	0,0	57	288
4647	-	1961	007	91 166412	NADH-glutamate synthase [Hedicago sativa]	70	59	162
91		17571	1 8031	[91]1499620	H. jannaschii predicted coding region MJ0798 (Methanococcus jannaschii)	69	7	1461
16	. 6	0806	110033	gi 1353197	thloredoxin reductasa (Eubacterium acideminophilum)	69	2.	954
30		1452	727	91 1204910	hypothetical protein (GB:U14003_302) [Haemophilus influentee]	69	52	126
38	-	1023	1298	191 407773	deva gene product Anabaena sp.	69	7	276
3		5987	\$659	91 1205920	nolybdate uptake system hydrophilic membrans-bound protein (Heemophilus	69	\$	609
62	2	9104	9475	91 385178	unknown (Becilius subtilis)	69	=	57.6
9.9	-	1 2402	2803	91 1303893	Yqht Bacillus subtilis	69	15	403
7.3	115	114124	13627	91 149647	ONFZ [Listeria monocytogenes]	69	7.5	#6#
	12:	14053	14382	1911305002	OFF_1356 [Escherichie coli)	69	4.9	330
6.7	67	115130	15807	91 1109684	Prov (Dacillus subtills)	69	45	67.A
7.8	-	1467	2124	qi 1256633	putative (Wactillus subtills)	69	22	678
7.8	-	1 4513	257.6	0111303958	[Yq]G [Becilius subtilis]	69	22	606
95	-	1 4521	4213	pir E29326 E293	pir E29326 E293 hypothetical protein (pur operon) - Bacillus subtills	69	32	600
9.6	9	1 3253	2654	gi 473332	[orfc Bacillus subtilis]	69	05	009
9.6		96	710	191 786468	4.1.1 antigen, sperm tail membrane antigensputative sucrose-specific hosphotransferase enzyme II homolog (nice, testis, Peptide Partial, 72 as)	6.9	•	\$119
001		6023	1 7426	1911205355	Na*/II+ antiporter [Haemophitus influentaw]	69	66	1404
102	7	2678	1650	gi 561690	[sisloglycoprotesse [Pasteure]]s heemolytics]	69	~	6201
103		112241	7628 I	191 1009366	Respiratory nitrate reductase (Sacillus subtills)	69	3.4	3705
	1 1 1 1 1							

8708 16644 1537 1537 1537 1209 1210	Contin ORF	ORF	Start	Stop	Batch	ina(ch gene name	E	- ident	length (nt)
15 1557 1558 Dictional State Dictional	112	111	8708	10168	94 154 111		6.9	22	1461
1 13 13 13 13 13 13 13	112		1	17414	91 1204435	[pyruvate formate-lyase activating enzyme [Hammophilus influenzae]	69	0.5	771
1 131 1038 PLICHARTYTIANZY TRICCOLOGY-E-binding procein I - Planedium Vitas 69 53 53 53 53 53 53 53 5	113	7	1 33	953	gi1290509		69	7	921
1,557 1,557 1,511,131	114	~	1 1537	1058			69	1,66	087
15.67 615.4 615.11.25.20.00 https://dozene product (Bacillius subtilia) 619 61	121	9	4309	5310	91 1154633	Neds (Bacillus subcilis)	6,9	- 23	1001
10566 10100	125	- 1	1 267	1 854	gi 413931	ipa-7d gene product (Bacilius subtilis)	69	3	588
1320 1761 1911205538 Phypothetical protein (GR:Ult001_J03) (Neamophilus influenced) 69 69 69 69 61 61 61 61	149	,	10666		pir 528089 5280	protein A	6.9	60	267
1212 1751 1911 1912 1911 1912	161	= -	1 1598	1 813	qi 1205538	hypothetical protein (GB:UI4003_302) [Hammophilus influenzae]	6.9	47	786
1310 1754 gil1236011 gloogation factor 78 [Spirulina platemaia] 69 45 48 48 48 48 48 48 48	165	-	1 2222		191140054	phenylalanyl-tRNA synthetese beta subunit (AA 1-804) (Sacillus btilis!	69	52	24.2
1686 8339	169	-	1 1210	1 1761	1911296031	elongation factor Ts (Spiruline platenais)	69	\$	552
2 484 1671 3pt 17731 HISS PHOSPHATE TANNSALINASE (EC 2 6.1.9) HIEDADOLE ACETOL 69 48 48 48 49 49 49 49 4	175	112	1 8686	8339	1911732682	Fing protein (Escherichia coli)	6.	69	348
1 5551 2777 91 4125635 While (Bacillus subtilis) 659 69 69 60 60 60 60 60 6	061	~_	484	1671	sp(P17731 HIS8_	HISTIDINOL-PHOSPHATE ANINOTRANSFERASE (EC 2.6.1.9) (INIDAZOLE ACETOL-PHOSPHATE TRANSAMINASE).	69	æ:	1188
4 6034 5796 91 1256135 YuhF Bacillus subtilis 1 636 J17 91 1405456 YhuF Bacillus subtilis 2 7384 3893 91 1256198 Pyruvate carboxylase Rhitobium etli) 69 69 69 3 2098 1808 91 1491664 TodHI 4 Gemorhabatis eligans 69 60 70 4 8 779 91 155611 Phrosphoglyceromutae (Zymomonas mobilis) 69 69 69 5 739 744 91 152612 Purine synthasis repressor [Haemophilus influences] 69 69 69 6 7 779 91 122782 Purine synthasis repressor [Haemophilus influences] 69 57 7 8 8713 7741 91 122782 Purine synthasis repressor [Haemophilus influences] 69 57 8 8713 7741 91 145822 Purine synthasis repressor [Haemophilus influences] 69 69 69 8 8713 7741 91 145822 Purine synthasis repressor [Haemophilus influences] 69 69 69 9 9 9 9 9 9 9 9 9	206	-	1 5551	רווג	91 41750	Escherichia	69	6.7	2775
1 6.16 119 91 1400456 Yhu! [Bacillins :ubitilis]	206	-	1 6038	9625	91 11256135	Ybhr Bacillus subtilis	69	##	243
8 4820 5776 91 1001768 hypothetical protein (Symethocyetis ap.) 69 48 48 18 18 18 18 18 18	243	<u>:</u> -	1 636	01	91 1405456	Ynel (bacillins subtilla)	6.9	9	=
2 7344 3893 91 1256796 Pyruvate carboxylase Rhizobium etlij 69 50 10 10 10 10 10 10 10	302		4820		gi 1001768	[hypothetical protein (Symechocystis ap.]	69	4.4	15.
3 2098 1808 91 1491664 TOMH1.4 Commonhabditis elegans 69 10 10 1 1 10 1 1 10 1 1	324	-	1 7384	1 3893	911256798	pyruvate carboxylase [Rhitobium etli]	69	23	3492
3 1999 2424 GI 356015 ORPI Bacillus subtilis 69 61	351	-	1 2098	1808	91 1491664	TO4H1.4 Ceenorhabditis elegans	69	30	162
3 1999 2424 gi 556015 ORFI Bacillus subtilis 1 87 779 [01 155611 [phosphoglyceromutese (2ymomones mobilis) 69 58 1 2085 1129 gi 1220782 arginase Bacillus caldovelox 8 6713 7741 gi 1221782 [purine synthesis repressor [Hecmophilus influenzae] 69 40 1 828 415 [gi 1122758 [unknown Bacillus subtilis] 69 57 2 3286 2246 [gi 1458226 [mutY homologi Itomo sepiens] 69 44	369	- :	1 2075	2305	1011336458	ORF [Balaenopters acutorostrata]	69	19	162
1 87 779 91 155611 prosphodlyceromutase (Zymomonas mobilis) 69 58 61 120 1129 91 1227885 arginase (Bacillus caldovelox) 69 54 67 67 67 67 67 67 67 6	392	-	1999	2424	191 556015	ORF (Becilius subtilis)	69	5	426
1 2085 1129 gi 12176985 arginase Bacillus caldovelox 69 54 40 8 6713 7741 gi 1221782 purine synthesis repressor (Hemophilus influentse) 69 40 1 828 415 gi 1122758 unknown (Bacillus subtilis) 69 57 2 3286 2246 gi 1458228 mutx homologi (Homo sepiens) 69 44	610	-	1 87	911	1911155611	phosphoglyceromutase (2)momonas mobilis	69	88	693
8 6713 7741 gi 1221782 purine synthesis repressor (Haemophilus influentae) 69 40 1 828 415 gi 1122758 unknown (Bacillus subtilis) 69 57 2 3286 2246	421	-	1 2085	11129	gi 1276985	arginase (Bacillus caldovelox)	69		756
1 828 415 Gi 1122758 Unknown (Bacillus subtilis) 2 3286 2246 Gi 1458228 mutY homolog (Homo septens)	*	- e	6713	1 7741	91 1221782	purine synthesis repressor (Haemophilus influentse)	69	-	1029
2 3286 2246	453	: -	1 828	- 415	gi 1122758	unknown (Bacillus subtilis)	69	57	414
	469	- 1	3286	2246	1	muty homolog [Nomo septems]	69	7	1041

5

Contrg	100	Start (nt)	Stop (nt)	Batch	datch geno name	E .	* 1 chent	length (nt)
605		1730	1711	91 49224	URP 4 (Synechococcus sp.)	69	196	160
520	5	3023	2823	91 726427	similar to D. melanogaster HST101-2 protein (P.R SJal54) Ceenorhabditis elegans!	69	39	201
531	-	2.6	1 760	gi 509672	repressor protein (Becteriophage Tuc2009)	6.9	- 67	567
589	-	107	253	169101	[17.9 kDm heat shock protein (hspl7.9) [Pisum sativum]	69	52	147
594	7	765	1391	[gi]:42783	DNA photolyase [Bacillus firmus]	6.9	99	795
604	-	2476	2114			69	\$	161
1 607	-	2	313	191 1236103	WOBD2.3 (Caenorhabditis elegans)	6.9	-	312
1 607	- 7	590	1 312		ONF YBR275c [Saccharomyces cersvisiae]	69	96	972
734		864	1 433	91 467327	unknown Bacillus subtilis	69	7	432
759	-		338	191 1009367	Respiratory nitrate reductase (Bacillus subtilis)	69	90	336
761	2	1 392	985	q1 3508	Leucyl-CRMA synthetase (cytoplasmic) [Saccheromyces cerevisiae] 1370340 ORF YPL160w [Saccheromyces cerevisiae]	6.9	9	\$61
602	-	1 72	1011	911143044	[ferrochelatase (Bacillus subtilis]	69	55	942
816	-	1 2573	1368	[91 1510268	restriction modification system S subunit (Methanococcus Sanneschil)	69	45	1206
A3#		201	78.	91 1255371	coded for by C. elegans CDNA yk34a9.5; coded for by C. elegans CDNA yk34a9.3; Similar to guanylate kinase [Camorhalelitis elegans]	69	9	255
15.0	7	745	1005	194 284998	secA gene product (Antuthamnion Sp.)	6.9	61	7
867	-	\$5.5	1 269	di 1070014	protein-dependent (Becillus subtilis	69	-	267
\$66	-	954	478	1941:205569	[transcription elongation factor [Heemophilus influenzae]	69	53	477
666	-	1009	905	Q1 899254	predicted trithorax protein (Drosophila virilis)	69	12	\$04
1127	-	1315	659	gi 1205434	H. influenzae predicted coding region Hill91 (Haemophilus influenzae)	69	95	657
1138	-	248	091	gi 1510646	[N. jannaschil predicted coding region MJ0568 (Mathenococcus jannaschil)	69	8	213
292R			100	1911220503	glutamate permesse [Escherichia coli]	69	41	399
1 3090	-	444	1 223	gi 1204987	[DNA polymerese III, alpha chain [Heemophilus influenzee]	69	36	222
1 3617	-	- 2	000	Qi 1483199	[peptide-aynthetase [Amycolatopsis mediterranei]	69	\$	199
1 3833	-	1 667	335	101 1524193	unknown (Mycobacterium tuberculosis)	69	946	111111111111111111111111111111111111111

FABLE 2

Contig	I DAF	Start (nt)	Stop	match	ratch gene name	e i a	1 ident	length (nt.)	
4079		747	000	g1 546918	orfy 3' of comk (Bacillus subtilis, E26, Peptide Pertial, 140 as) pir[543612[543612 hypothecical protein Y - Bacillus subtilis ap p40398 y4x0_BacSU HYPOTHETICAL PROTEIN IN COHK 1'REGION (ORFY) FRAGHENT).	69	79	T	
4115	- 2	215	001	01 517205	67 kDa Myosin crossreactive streptococcs] entigen Streptococcus yogenes	6.9	55	981	
4139	-	-	1333	91 1208451	hypothetical protein (Synechocystis sp.)	69	36	333	
4258		457	230	91 496158	restriction-modification enzyme abbunit N1 [Mycoplasma pulmonis] pir 549395 549395 HadN1 protein - Mycoplasma pulmonia (5003)	\$		228	
4117	;	0.6	374	QL 413967		5	; ;	285	
4465		-	293	967)36736	similar to phosphortansferage system ensyme II [Escherichia coli] mp p12672 PTWC_ECOLI PTS SYSTEM, FRUCTOSE-LIKE-2 IIC COMPONENT PHOSPHOTRANSFERASE ENZYME II, C COMPONENT).	6 ,	Ç	291	
	: _	2302	11193	q1 1109685	Prow [Bacillus subtilis]	6.8	9	1110	
1.5	-	2832	1 2074	91 807973	unknown Saccharomyces cerevisiae	6.9	\$	\$19	
. =		6328	8772	91 290642	ATPase Enterococcus hirae	6.8	8.	2445	
0	~	1115	750	q1 606342	OFF.0522; reading frame open far upstream of start; possible rameshift.	2	<u>*</u>	9 0 0	
46		6886	8415	gi 155276	aldehyde dahydrogenase (Vibrio cholerae)	69	:	1530	
÷	2	1643	3404	91 285608	241k polyprotein (Apple stem grooving virus)	89	5	240	
=	-	1 3536	4132	91 1045937	H. genitalium predicted coding region MG246 (Mycoplasma genitalium)	8	66	165	
5.3	0.	111671	110685	91/1303952	YqjA (Bacillus subtilis)	99	4.5	48	
37	6	7346	1 8155	91 147198	phnE protein (Escherichia coli)	89	Ç	R10	
98	-	1899	1 2966	91 145173	135 kDa protein (Escherichia coli)	49	\$	1068	
108		2187	1150	91 38722	precursor (as -20 to 381) (Acinetobacter calcoccettos) ir A29277 (A29277 alduse 1-epimerase (EC 5.1.3.3) - Acinetobacter Icosceticus	2	\$	1038	
117	· •	2666	1 1622	91 153724	MalC (Streptococcus pneumoniae)	89	\$5	95,	
116	- 1	7865	8638	91 143608	sporulation protein (Bacillus subtills)	89	8	174	
11.8		2484	3698	91 1303805	YqeR (Bacillus subtilis)	8.9	9	1215	
120	~	1424	1594	sp P38036 CYSJ_	SULETTE REDUCTASE (NADPH) FLAVOPROTEIN ALPHA COMPONENT (EC 1.8.1.2) (SIR	99	\$	17.1	
129	- 1		1011	91 396307	argininosuccinate lysse (Escherichis coll)	6.8	20	1011	

TABLE 2

EP 0 786 519 A2

1752 1026 564 180 1251 583 243 1464 1794 606 162 621 750 0/ H 570 | * stw | * adent - bength 45 | 42 3.9 43 6.5 9 6 \$ 5 8 ¥ 20 Ç 89 8.9 8.9 10 |sp.p33940|YOJH_ HYPOTHETICAL S4.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION. 15 mevalonate pyrophosphate decarboxylase (Saccharomyces cerevisiae) Putative coding regions of novel proteins similar to known proteins (adenine phosphoribosyltransferase (Bacillus subtilis) 20 DNA binding protein (probable) (Bacillus subtilis) [4-exalecrotonate tautomerase [Pseudomonas putida] pyruvate decarboxylase [Saccharomyces cerevisiae] [3-ketoacyl-ACP synthase II (Vibrio harveyi) sti (stress inducible protein) (Glycine max) [hsp70 protein (dnaK gene) (Escherichia coli) [DAPA aminotransferase (Bacillus subtilis] phaA gene product [Rhizobium meliloti] 467 | ORF YOR196c [Saccharomyces cerevisiae] 25 unknown (Mycobacterium tuberculosis) |c1 gene product [Bacteriophage B1] |sp|P30750|ABC_E |ATP-BINDING PROTEIN ABC (FRAGHENT). DNA recombinase [Escherichia coli] [T2283.3 [Caenorhabditis elegans] |unknown (Bacillus subtilis) ORF2 (Bacillus megaterium) HisH (Lectococcus lactis) PSR [Enterococcus hirse] [YqiB [Bacillus subtilis] [Ybbi [Bacillus subtilis] |ORF1 (Escherichie coli) 30 march gene name 35 aureus adic: 191 1256617 |gi | 1130643 91 1072395 |gi|1173843 9111256138 101 | 1369941 101 | 1420467 91 1235684 |Di||1147744 191 1277026 1303917 91:1403402 40 191 150974 191 467473 191 1: 6267 191 216583 01 452687 91 149381 191 1147545 911248|118 191 | 145774 91 | 467383 1012 3289 1867 | 2739 12176 4542 1665 5725 4838 6 | 2749 | 3318 7 | 4184 | 5434 6009 6482 3088 1114 3139 1534 3648 164 3850 1 7365 45 5017 2507 1 2 | 1984 6345 5540 1 1776 1836 8 (10425 | R | 5457 1 6 | 3702 4599 1.74 5 | 7683 | R | 3421 110 | 2158 549 2 | 848 1 1 907 1 1 3 332 --1 _ ~ ~ ~ 50 262 2:2 175 189 206 206 2 3 4 237 243 262 33 365 405 16.8

5

55

TABLE 2

Initrogenese reductes: [Escherichie coli]

Gltb [Escherichia coli]

19111511191

907

ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ONF 10	Start (nt)	Stop (nt)	Merch Langers	match gene name	E I	* ident	Jength (nt.)
140	12	1 476	240	gi 535810	hippuricase (Campylobacter jejuni)	6.8	3	237
3	- 7	518	1015	91/1204742	H. influenzee predicted coding region HI0491 (Heemophilus influenzee)	99	9	498
		***	9666	91 604 660	deoxyribose-phosphate aldolase (Beclilus subtilis) pir[54943549435 deoxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	9	55	699
9.4	~	240	1184	91(571345	unknown, similar to E.coli cardiolipin synthass (Bacillus subtilis) sp[P45860] YMIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA NTERGENIC REGION.	80	.,	5+6
486	7	1 1876	1046	91 1.47328	transport protein (Eacherichia coli)	89	=	168
1 517	-	1764	2084	91 523809	orf2 [Bacterlophage A2]	6.8	99	321
512	-	7	1 571	sp(P19237 Y05L_	HYPOTHETICAL 6.8 KD PROTEIN IN NRDC-TK INTERGENIC REGION.	89	4.7	910
646	- -	914	1 459	01 413982	ipa-58r gene product (Bacillus subtilis)	89	52	957
659	-	1668	1901	195/17107561	C31D9.8 [Caenorhabditis elegans]	8.9	36	234
H64	-	1 1510	1716	191 145774	hsp70 protein (dneX gane) (Escherichia culi)	9.9	=	1 107
920	-	1 R60	432	191 1510416	hypothetical protein (SP.P31466) [Methanococcus jannaschii]	89	\$5	629
756	-	9601	1 611	1911 (23456	reductase (Leishmania major)	6.8	46	486
970	-	16	405	191 1354775	pfoS/R [Treponema pallidum]	89	97	312
10:4	-	1064	534	191 10117	diaminopimelate decarboxyluse (Bacillus subtilis)	199	47	1173
6201		428	216	19.1135714	Plasmodium faiciparum mRNA for asparayinu-rich antigun (clone 1701) [Plasmodium faiciparum]	9	= ;	- 12
1058	-	692	348	g1 181649	epic gene product (Staphylococcus epidermidis)	99	91	345
1096	- 5	999	1 465	91/143434	Rho Factor (Bacillus subtilis)	6.8	0	201
1308	-	- 5	169	01 1 69939	group B oligopeptidase. PapB (Streptococcus agalactiae)	69	90	693
1679	-	- 5	238	91111205	67 kDs Hyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	68	s l	237
1 2039	-		1 383	g1 153898	[transport protein [Salmonelle typhimurium]	89	- 51	381
7.02	-	-	326	pir c33496 c334	hisc hemolog - Bacillus subtilis	99	47	324
1 2112	-	613	374	gi 64884	Lemin LII (Xenopus laevis	6.9	\$00	240
1 2273	-	1 793	398	91/581648	epiß gene product (Staphylococcus epidermidis)	89	65	396
2948			385	91 216869	Uranched-chain amino acid transjort carrier Pasudomonam aminomal pir A38534 A	50	\$	384

5

Cont.19	ONF	Start (nt)	Stop (nc)	match	match gene name	E : 6	1 Ident	length inti
2955	-	768	00.	1011904179	hypothetical protein [Bacıllus subtilis]	. eg	49	369
1 2981	-	572	288	91 508979	GTP-binding protein (Bacillus subtilis)	8.9	89	285
3014		584	294	19111524394	ORF-2 upstream of gbeAB operon (Bacillus subtilis)	6.8	45	291
3082	-	336	691	91 1204696	fructoss-permeass 118C compunent (Haemophilus influentee)	8.9	3	168
3108	-	1 103	258		heat-shock protein (Arabidopsis thaliana)	69	.83	156
3639	-	919	199	91 1510490	nitrate transport permease protein [Hethanococcus jannaschil]	89	47	659
1 3657	-		330	la. 155369	PTS enzyme-11 fructose (Xanthomonas campestris)	89	**	330
3.823		780	391	91 603768	Hut! procesin, imidazolone-5-propionate hydrolasu (Bacillus subtills) gi 603768 Hut piotein, imidazolone-5-propionate hydrolasu Bacillus subtilis	£ 9	25	390
1982		2	775		putative (Lectococcus lactis)	99	47	276
4051		-		91/450688	hadu gene of Ecopril gene product (Escherichia coli) piris)8437 S18437 hadu protain - Escherichia coli pir S09629 S09629 hypothetical protain A - Escherichia coli (SUB 40-520)	9	\$	24.
4089	-	1 12	1 209	91 1353678	heavy-metal transporting P-type ATPase (Proteus mirabilis)	80	47	861
141	-	47	187	91 603769	HutU protein, urocanase (Bacillus subtilis)	6.9	55	141
4		2	1352	91 450688	hadw gene of Ecopril gene product (Escherichie coli) pir (5)8437 (5)8437 hadw protein - Encherichie coli pir (509629 (509629 hypothetical protein A - Escherichia coli (508 40-520)	£ 9	15	151
4173			382	gi 1041097	Pyruvate Kinase (Bacillus psychrophilus)	89	E0	381
4182	-	1 498	250	91 413968	ipa-44d gene product (Bacillus subtilis]	89	,00	249
4362		8+1	318	450688	hadw gene of Ecopril gene product (Eacherichia coli) pir S38437 S38437 hadw protein - Eacherichia coli pir S09629 S09629 hypothetical protein A - Eacherichia coli (SUB 40-520)	90	7	7.7
·	111	9493	8300	[gi [143727	putative (Bacillus subtilis)	67	97	1194
31	=======================================	110318	9833	gi 216746	[D-lactate dehydrogenase (Lectobecillus plantarum)	67	17	987
32	-	1560	1155	i i i i i i i i i	renal addium/dicarboxylate cotransporter (Homo sapiens)	67	94	1596
32		4945	4145	gi is10720	prephenate dehydratase (Methanococcus jannaschii)	6.3	51	108
36	<u></u>	5350	4268	gi ,'46216	45% identity with the product of the ORP6 gene from the Erwinsa herbicola carotemoid biosynthessa cluster; putative [Bacillus subtilis]	6.9	85	1083
*	- 1	7675	5304	101 1006621	hypothetical protein (Synachocyatis sp.)	6.3	3	913

5

Contag ORF	100	ORF SCARE	Stop	match eression	match gene name	E .	1 Ident	length (nt.)	
>\$		3943	1978	101906101	glutamate synthase large subunit precursor (Azospirillum brasilense) pir 846602 846602 94602 94602 94602 94602 94602 94602 94602 94602 94602 94602 94602 9400	Ç.	25	4539	
3.6	112	13923	14678	191 1000453	Trek [Becillus subcilis]	6.7	9	756	
62	ec	5092	4757		orf3 [Bacillus, C-125, alkali-sansitive mutant 18224, Peptide Mutant, 112 as)	6	\$	116	
62	110	0727	6338	911654655	Na/H antiporter system (Bacilius alcalophilus)	67	\$	1233	
66	-	6112	1321	gi 1204349	hypothetical protein (GE:CB:D90212_3) [Hmemophilum influenzae]	69	05	1203	
102	6	5695	9717	91 149432	putetive [Lactococcus lactis]	6.3	15	1482	
103	==	14549 14049	14049	gi 1408497	[LP9D gene product (Bacillus subtilis]	1 67	# T	105	
109	115	14821 13982	113982	91 413976	ipa-52r gene product [Bacillus subtilis]	67	6.	0 7 8	
109	117	114811	15194	91 413983	Ipa-59d gene product [Bacillus subtilis]	1 67	62	384	
121	-	1713	1 2153	01 1262335	(Ymak [Bacillus subtilis]	67	\$4		
122	-	-	1149	gi 143047	OFFB (Becillus subtilis)	79	3.5	1149	
124	-	0907	1 3518	01 556885	Unknown (Bacillus subtilis)	67	47	543	
131	-	4584	1 3589	[91]1046081	hypothetical protein (GB:D26185_10) (Hycopleame genitalium)	62	30	955	
140	-	2499	1 2297	1911146549	kdpC Escherichia coli		\$.	603	
142	-	5409	4198	191 (1212175	GPP cyclohydrolase II (Bacillus amylolique (actens)	67	52	7171	
147	2	2913	1 2374	19111303709	YrkJ [Bacillus subtalis]	63	3	540	
152		6341	1 6673	(0: 1377841	unknown [Bacillus subtilis]	67	Œ		
161	-	2720	1 3763	gi 496319	Sphx {Symechococcus sp.}	62	67	1044	
163	9 -	1989	3428	gi 595681	2-oxoglutarate/malate translocator (Spinacia oleracea)	1 67	47	1440	
193	-	1351	1626	19111511101	shikimate 5-dehydrogenase [Methanococcus jannaschli]	67	53	276	
200	~	917	9712	gi 142439	ATP-dependent nuclease [Bacillus subtilis]	67	67	1263	
206	110	112445	112801	sp P37347(YECO_	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION.	67	47	357	
206	Ξ	111 13047	11402	91 732813	branched-chain amino acid carrier [Lactobacillus delbrueckii]	1 67	9.4	1386	
208	- 2	1321	608	91 1033037	[100 kDs heat shock protein (Hsp100) [Leishmanla major]	67	3.6	513	
238	-	1 1039	202	qi 809542	[CbrB protein [Erwinia chrysanthemi]	67	42	1014	

S. aureus - Putative coding regions of novel proteins similar to known proteins

Cont 19 10	ORF	Start (nt.)	Stop (nt)	match	ן אשונלה שפחפ חפשפ	E 7 8	1 ident	Jength (nt.)
246	1 2	176	367	1 21 5 0 9 B	excisionase (Bacteriophage 154a	67	37	192
276	1 2	1 2260	1412	91 303560	ORF271 (Escherichia coli)	67	20	849
297	9	1 2223	3056	91 142784	Ctak protein Becillus firmus	67	9	934
307	- 2	5220	4186	91 1070013	protein-dependent [Secillus subtilie]	67	3	\$101
316	-	36	1028	91/1161061	dioxygenase (Methylobacterium extorquens)	67	25	166
324	-	2650	0.000	91.1469784	putative cell division protein (tsM Enterococcus hirse)	67	6	621
336	-	524	1 264	[91.13122	urea amidolyase (Saccharomyces'cereviatee)	67	\$	197
31.0	-	100	1394	STHAS[rsuoralida]	MISTIDML-THEA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGAGE) (HISKS).	6.7	-	/ H = 1
364		1 4890	1 3592	1151259	HHG-CoA reductase (EC 1.1 1 88) [Pseudomonas mevalonii] pir[A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	62	9	1299
365	-	1 2940	2113	01 1296823	ori2 gane product (Lactobacillus helvetícus)		4.7	879
367		1 325	916	19111039479	ORFU [Lactococcus lactis]	5		766
395	-	999	1221	gi 1204516	hypothetical protein (GB.U00014_4) [Haemophilus influenzae]	6	\$\$	909
415	-	1 1800	106	ai a82579	[CG Site No. 29739 [Escherichia coli]	67	9,0	900
419	-	1 1799	1 \$03	[gi [520752	[putative [Bacillus subtilis]	67	4.8	R97
474			964	gi A#6906	argininosuccinate synthetase Streptomyces clavuligarus pir 557659 557659 argininosuccinata synthese (kC 6 3 4 5) - treptomyces clavuligarus	ه ۔	5	40.6
\$8	~ -	1921	1 2226	91 143434	Pho Factor [Racillus subtilis]	67	3	306
596	-	1 1728	865	11 12 13 15 15 15 15 15 15 15	YqgF [Bacillus subtilis]	67	47	798
700	-	1 433	1 218	91 1204628	hypothetical protein (SP-P21498) [Haemophilus influenzae]	67	4.1	216
806	2	249	1 647	191 677947	Appc [Bacillus subtilis]	67	22	399
B28	~ -	1 340	006	191 777761	lrth (Symechococcus sp.)	67	7ر ا	561
833	-	1407	916	gx 142996	regulatory protein (Bacillus subtilis)	67	7	492
A56	-	1 1555	664	g1 780224	2K970.2 (Ceenorhabditis elegans)	67	38	777
	-	1614	850	91 (37315	TTG start codon [Bacillus licheniformis]	67	0.7	765
1034	-	1130	765	191 1205113	hypothetical protein (GB:L19201_15) (Haemophilus influenzee)	67	\$	\$65
1062	-	1 636	319	91 1303850	YqgC (Bacillus subtilis)	. 69	3	316
1067	-	918	097	pir A32950 A329	pir A32950 A329 probable reductase protein - Leishmania major	67	24	459

S. auraus - Putalive coding regions of novel proteins similar to known proteins

Contig	ORF	Stert (nt)	Stop (nt)	Batch	match gene name	E	l vident	Jength fot)
1358	-		293	19111001369	hypothetical protein (Symechocystis sp.	67	;	291
2181	-	-	302	10111510416	hypothetical protein (SP:P31466) [Methanococcus jannaschil]	67	87	300
2000	-	-	507	91 517205	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)	6.3	95	507
1066	-	191	*** -	91 30861	GTG start codon (Lactococcus lactis)	3	99	231
1087	- -	\$5	251	19111205366	oligopaptide transport ATP-binding protein (Masmophilus influenzas)	٤,	**	204
3101	-	~	1256	[01]1531541	uroporphyrinogen III methyltransferase (Zea mays)	6.3	55	255
3598		728	193	91 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44754 hydroxymethylglutary]-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	۲,	9	336
3765	7	S.84	166	1911557489	menD (Bacillus subtilis]	67	\$	219
3788	-	1 658	398	pir \$52915 \$529	pir 552915 5529 nitrate raductase alpha chain - Bacillus subtilis (fragment)	67	\$\$	261
3883	<u>-</u>	~	1 265	[gi[704397	cystathionins beta-lyses (Arabidopsis thalians)	67	9	264
3926	<u>-</u>	2	340	(gx (1463199	[peptide-synthetese (Asycolatopsis mediterranel]	67	.	339
4417		982	396	191 1205337	ribonucleotide transport ATP-binding protein [Haemophilus influenzae]	67	•	315
2	-	1 3075	3989	q1 535348	Codv (Bacillus subtilis)	99	4 2	\$1.6
- 15	9	1 2273	2542	191146491	SmtB (Symechococcus PCC7942)	99		270
= _	-	NO59	17826	10:1292046	[מתכנת (זומשם המוזיבת)	99	77	234
ī.	0.	9034	9258	9111204545	mercury scavenger protein [Haemophilus influenzae]	999	•	323
32	•	6347	5253	[91 998342	inducible nitric oxide synthese [Gallus gallus]	99	•	1095
-	=	8856	10124	19111510751	molybdenum cofactor blosynthesis mosh protein Methanococcus jannaschil]	99	9	1269
*	~	1276	2868	[gi[150209	ORF I (Mycuplesma mycoides)	99	0	1593
88		1 7178	8428	191 665999	hypothetical protein (Bacilius subtilis]	99	- t	1251
62	-	5143	4370	gi 1072398	phaD gane product (Rhirobium maliloti)	99	0,	174
0,	<u>:</u> _	111693	10998	193 809660	decxyribose-phosphate aidolase (Becillus subtilis) pir S49455 S49455 decxyribose-phosphate aidolase (EC 4.1.2 4) - acillus subtilis	99	\$5	969
9/	<u>-</u>		1305	gi 142440	ATP-dependent nuclease (Bacillus subtills)	99	42	1305
16		9236	8205	gi 704397	cystathionine beta-lyase (Arabidopsis theliana)	4	Ç	1032
1 102	^	3810	3265	[91]1204323	hypothetical protein (SP:P31805) (Haemophilus influentee)	99		546

aureus - Putative codiny regions of novel proteins similar to known proteins

Control ONE	<u>\$</u> =	Start (nt)	Stop (nt)	match	#app ch gene mane	# 1 S 1 W	, ident	Lemith (art.)
103		3416	2732	91 971344	Initrate reductase game subunit [Bacillus subtilis] ap[94217] MARI_BACSU MITRATE REDUCTAGE GAMMA CHAIN (EC 1.7.99.41, g1 1009369 Respiratory nitrate reductase (Bacillus subtilis) (SUB -160)	\$	30 T	683
601	·	4243	4674	qi 170886	glucosamine-6-phosphate deaminase (Candida albicans) pir A46633 A46622 glucosamine-6-phosphate isomerawe (EC 5.3 1.10) - eset (Candida albicans)	99	\$	ទុ
112	12	117491	117712	9i 1323179	ORF YGRIILM [Seccharosyces cerevisiae]	99	0.0	222
116	~	14667	2637	91 1491813	gamma-glutamyltranspeptidase [Bacillus subtilis]	99	Ç	2031
150	- 5	1 3189	1 2989	91 1146224	[putative (Bacillus subtilis)	99	30	201
172		3264	3662	01 755152	highly hydrophobic integral membrane protein (Bacillus subtilis) spip4295) TAGC_BACSU TEICHOIC ACID THANSLOCATION PERMEASE PROTEIN ACG.	99	7	399
174	- 5	4592	1 3723	91 1146241	pantothenate synthetase [Bacillus subtills]	99	3	8 70
175	-	1 3209	1 2880		unknown (Rhizobium meliloti)	99	29	330
175	===	8743	1662	91 854655	Na/H antiporter system [Bacillus alcalophilus]	9	+ 3	7\$0
190	- 5	6707	1572	91 451072	di-tripeptide transporter [Lactococrus lactis]	99	0	1353
195	- 51	(13919	113713	191 1322411	unknown (Mycobacterium tuberculosis	9	42	207
217	-	2822	1 2595	91 1143542	alternative stop codon (Mattus norvegicus)	9	36	228
233	6	CC17	6135	191 1458327	F08F3.4 gene product [Caenorhabditis elegans]	99		666
¥ .	-	=	104	196 909541	[ChrA protein [Erwinio chrysanthemi]	99	-	7-1-1-
241	-	1 2102	1 1053	191 153067	peptidoglycen hydrolese (Stephylococcus aureus)	ا و	2.	1050
261	-	1178	1 648	gi 1510859	[H. jannaschil predicted coding region MJ0790 [Methanococcus jannaschii]	99	00	1115
363	-	1333	£765	91 1205865	[tetrahydrodipicolinate N-succinyltransferase [Haemophilus influenzas]	9	-	956
272	60	6548	5484	91 882101	high effinity nickel transporter laicaliganes autrophus! ap P23516 HOXM_ALCEU HIGH-APFINITY NICKEL TRANSPORT PROTEIN.	9		1065
276	-	2805	2104	gi 1208965	hypothetical 23.3 kd protein [Escherichia coli]	99	47	202
278	- 5	1 2830	1784	91 1488662	[phosphatese-associated protein (Bacillus subtilis]	9	48	1047
278	-	1 3830	2952	 gi 303560	ORF271 Escherichia coli]	99	\$	879
279		3894	2218	91 1185289	2-succiny1-6-hydroxy-2.4-cyclohexadiene-1- cerboxylate synthase [Bacillus subtilis]	99	#	167
208	-	2535	2275	 gi 1256625	[putative (Bacillus subtilis]	99	42	261
292	~		9 62	[u1 1511604	M. jannaschli predicted coding ragion MJ1651 (Methanococcus jannaschii)	99	30	192

EP 0 786 519 A2

S. auraus - Putative coding regions of novel protesus similar to known protesus

Contrig 1D	10 <u>0</u> 1	Start (nt)	Stop (nt)	match acession	Metrich genu name	E	/ Ident	length (nc)
294	-	1 1116	688	191 216314	esterase (Bacillus steerothermophilus)	99	\$	858
297		2913	1978	91 994794	Cytochrome a stsembly facto (Bacillus subtilis; sp. P24009 COXX_BACSU PROBABLE CYTOCHRONE C OX:DASE ASSEMBLY FACTOR.	99	\$	916
316	-	2053	2682	91 (1107839	alginate lysee Preudomonas seruginoss	99	0+	6 30
338	-	2460	2302	1911520750	biotin synthetase (Bacillus sphaericus)	99	Š,	159
339	-	1214	235	191 467468	7. 8-dihydro-6-hydroxymethylpterin-pyrophosphokinese [Becillus ubtilis]	99	52	089
363	-		863		epiC gane product (Staphylococcus epidermidis)	99	47	198
366	1 2	232	£83	gi 1103505	unknown (Schizosaccheromyces pombe)	99	53	252
36.7		2468	1845	sp P20692 TYRA_	PREPHENATE DEHYDROGENASE (EC 1.3.1.12) (PDH).	99	\$0	624
372	-	2150	1599	91 467416	unknown (Bacillus subtilis)	99	98	552
378	-	212	1009	91 147309	purine nucleoside phosphorylass [Escherichia coli]	•	0 \$	86/
101	- -		1 462	91 388263	p-sainobenzoic acid synthase (Streptomyces griseus) pir[JN0531]JN0531 p- aninobenzoic acid synthase - Streptomyces riseus	9	•	÷
707		1 4826	5254	91 606744	cycidine deaminase (Bacillus subtilis)	99	5.1	624
1	7	1738	1103	91 1460081	unknown (Mycobacterium tuberculosis)	99	3	919
420	<u>-</u>	~	- 24	91 1046024	Na+ ATPase subunit J [Mycoplasma genitalium]	99	64	040
1	: -	-	888		 M. jannaschil prodicted coding region MJ1154 (Muthanucuccus jannaschili) 	3	0.	HCH
3	1 7	6295	5299	1911852076	MrgA (Bacilius subtilis)	9	9	186
3		3408	343	91/153047	Jysostaphin (ttg start coom) Staphylococcus simulans pir A2968 A5568 Jysostaphin precursor - Staphylococcus simulans ap P10547 LSTP_STAS1 LYSOSTAPIIN PRECURSOR (EC 3.5.1).	9	15	993
561	-	956	0 9 7	91 1204905	DMA-1-methyladenine glycosidese I (Haemophilus influenzae)	99	\$	477
\$62	-	1066	11383	91 1046082	N. genitalium predicted coding region MG372 [Mycopleams genitalium]	99	5.2	918
576	-	-	124	gi 305014	ORF_0234 (Escherichia coli)	99	9	714
577	-	0611	1 903	19111001353	hypothetical protein (Symechocyatis sp.)	99	52	289
584	-	- 5	1111	ep P24204 YEBA_	INYPOTHETICAL 46.7 KD PROTEIN IN MSBB-RUVB INTERCENIC REGION (ORFU).	99	3	010
592	-	0171	1 706	91 928839	ORF266; putative (Lactococcus lactis phage BK5-T)	99	51	705
601	-				court and confer (Stanby) occurrant aurants	99	\$5	714

S. aureus - Putative coding regions of novel proteins similar to known proteins

S aureus - Putative coding regions of novel proteins similar to known proteins

e name V site Length Cnt)	NAN helicase II (Mycoplasma genitalium)	precursor for the major merozoite surface antigens [Plasmodium alciparum] 66 46	exodeoxyribonuclesse (Bacillus subtilis)	unknown (Schizoseccheromyces pombel	putative transcriptional regulator (Methanococcus jannaschii) 66 39	cytotoxin L (Clostridium sordellii)	autolysin (Staphylococcus auraus)	heterocyst maturation protein (Maemophilus influenzae) 66 66 66	YqeW (Bacılius subtilis) 66 42	protein-dependent (Bacillus subtilis)	unknown (Schizosaccharomyces pombe) 66 44	DNA polymerase III, alpha chain (Haemophilus influenzae) 66 48	Respiratory nitrate reductaso (Bacillus subcilis) 66 69	Prov [Bacillus subtilis]	acyl-CoA dehydrogenese (Becillus subtilis)	gluconate permease (Bacillus licheniformis)	IMG-COA reductass (EC 1.1.1.88) [Pseudomonas mevalonix] pir[A44/56] 444/56 66 51 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	-	cym8 [Escherichie coll]	ORF_0310 [Escherichia coli] 65 47	secondination process (tog start codon) [Bacslius subtilis] os [1303923 RecN 65 44 [Becilius subtilis]	cacD gene product (Alcaligenes eutrophus)	acyltransferase [Saccharomyces cerevisiae]	《《明》《《《明》》《《明》《明》《《明》《《明》《《明》《《明》《《明》《《
match match gene name acession		_		_	_	_		_	_	_			_	_	_			pic A26713 BHHC hemocyanin		_		-	-	
390	[gi] 1045935	gi 929798	[31[1256623	41 1019410	19111510394	19111000695	1911765073		[91]1303813	191 107001	91 984212	[91 1204987	91 1009 366	gi 1109684	91 853760	1411563952	92121146	pic A26	91 145646	91 887824	91113402	91 1403126	gi 349187	8.56711.01
Stop	251	00+	188	164	235	1 280	275	305	1277	189	225	386	187	000	202		350	234	05/6	1 3565	866	1524	1 1372	1 2492
Start	664	176	123	1328	468	558		114	0.9	-	707	>80	~	198	1 402	Ş.,	: - - :	-	9845	2708	1993	7 549	1 1908	1467
Contig JORE ID JID	-	7	-	-	_		- -	-	-	-	- -	1 2	-	-	- ;	_		-	-	- 2		-	-	1
Cont 19 ID	1987	2103	2341	2458	2505	2525	2935	3005	3048	3071	1081	3090	331H	1739	9611	5	01:40	4604	-	۰	2	1.5	9.	ri Ci

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contra	10KI	Start	Stop (nt)	match	match gene name	i n	* sdem	length (nt)	
27	~	1 390	626	Q1 1212729		\$9	45	237	
10	112	0,011	110387	gi 509245	[D-hydroxyisoceproste dahydrogensms [Lactobacillus delbrueckii]	65	7	654	
96	134	22161	19520		H-protein [Flaveria cronquistii]	\$9	1	357	_
-	7 1	064	1746	1 405882	yelk Escherichia coil]	9	9	156	
;	71	9366	8832	19111205905	molybdenum cofactor biosynthesis protein [Hewmophilus influenzee]	65	50	525	
1 45		5635	7588	91 493074	AppA protein (Salmonella typhimurium)	65	9	954	
22	- 2	1 580	1503	91 580897	OppB gane product [Bacillus subtilis]	65	45	126	
52	-	225	953	gi 1205518	NAD(P) II- [levin oxidoreductase (Haemophlius influenzas)	6.5	\$	729	- •
55	-	1339	1058	pir A44459 A444	pir A44459 A444 Lroponin T beta InT-5 - rabbit	65	7	282	•
67	6	1 7421	8272	91 143607	aporulation protein (Bacillus subtilis)	6.5	42	852	
	-	1 4466	5375	qi 1204896	[lysophospholipese L2 [Neemophilus Influenzee]	6.5	37	930	
1 74	-	1 954	5	gi 1204844	H. Influenzae predicted coding region HIO594 (Haemophilus influenzae)	59	\$0	477	
	-	2	757	91 104 6082	H. ganitalium predicted coding region M0372 (Mycopissma genitalium)	59	94	156	- •
17	- 2	1 795	1433	91 1222116	[permesse [Heemophilus influentee]	6.5	37	609	
18	-	1 4728	3454	91 1001708	hypothetical protein (Symechocystis ap.)	69	64	1775	
16	-	8548	1 8357	91 1399263	cystathionina beta-lyase (Emericella nidulans)	65	40	192	- •
86	-	1 1608	1988	gi 467423	unknown (Bacillus subtilis)	65	3.8	181	- •
96	-	4 - 1 2250	2987	gi 467424	unknown (Bacillus subtilis)	6.5	\$	738	- •
102		1 2598	2119	91 1511532	N-terminal acetyltransferase complex, subunit ARDI Nethanococcus jenneschii	65	60	C# 7	
1 102	-	1 3647	2862	91 1204637	H. influenzas predicted coding region H10368 (Reemophilus Influenzae)	65	32	786	- •
101		110851	9841	91 142695	S.adanosylmathionina:uroporphytinogen I methyltransferass Bacillus segaterium	\$		1011	
101	97	110439	110119	191 710021	nitrike reductase (nirD) (Bacillus subtilis	65	93	121	- •
106		1 262	1140	qi 39881	ORF 311 (AA 1-311) {Bacillus subtilis	65	7	679	•
109	- 5	1 3909	4268	g1 1204399	qlucosamine-6-phosphate desminase protein [Haemophilus influenzae]	\$9	-	160	- :
109	110	11165	8595	01 536955	CG Site No. 361 (Escherichie coli)	65	7	1431	- •

Contrig lore	0H.	Start	Stop	match	match gene name	F .	l tdent	length (nt)
110	•	3688	1915	Q1 407881	stringent response-like protein Streptococcus equistmilis pre 519975 519975 stringent response-like protein - Streptococcus quisimilia	6	\$	Ca a
110	-	3882	4295	91:407680	ORFI (Streptococrus equisimilis)	9	50	414
116	9	4231	4)80	01 1139574	Orf2 Streptomyces griseus	9	95	150
1112	1001	9218	8640	91 1204571	influenzae predicted coding region H10318 (Hacmophilus intluenzae)	65	. 25	573
1112		112049	111288	91/710496	transcriptional activator protein (Bacillus brevis)	6.5	32	762
125	=======================================	2	1 202	91 1151158	repeat organallar protein (Plasmodium chabaudi)	65	39	107
136	-	-	422	91 37589	precursor (Homo sapiens)	69	46	4.20
127		10.01	12658	gi 1064809	homologous to spilITRA_ECOLI (Decillus subtilis	65	7	9767
143	-	7543	1 7004	91,121,6513	mutator mutT (AT-CC transversion) [Escherichia colf]		95	540
145	- 5	1 3587	3838	91 1209768	D02_orf569 [Hycoplesme pneumoniee]	. 65	27	252
150	-	3442	2841	gi 1146225		69	-	770
991	<u>:</u>	3858	1948	9: 1148304	Ingra-1 4-N-acetylmusmoyllydrolass Enterococcus hira+ pir a42296 a42296 lysolyme 2 EC 3.2 1) precursor - Enterococcus irae (ATCC 9790)	6.5	20	1161
188	9	3195	4178	lgi 151943	ORF3; putative (Rhodobacter capsulatus)	65	9 7	786
	6 -	4282	47.85	{qi158812	OMF IV IAA 1-4ADI (Figment mosaic virus)	<u>.</u>	÷ 	
561	. -	0066	5.17.2	1911115220	alunyl-CRNA synthetesa (Escherichia culti	59	* ·	
\$61		66501	1 8104	191 882711	exonuclesse V alpha-subunit (Escherichia coli)	65	- :	2496
206	116	96891	18191	9:1408115	ornithing acetyltransferase (Bacullus subtilis)	65	53	1296
1 217	-	3844	3215	gi 1205974	[5'quanylate kinase (Haemophilus influenzae)	- 65	41	1 630
220		5265	1375	9 580920	rodn (grea) polyperide (Am 1-673) [Bacillus subtilis] pir 506048 506048 rodn (grea) probable rodn protein - bacillus subtilis sp P13484 TACE:BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLHCCSYLTRANSFERASE (EC 2.4 1.52) [TECHO!C ACID BIOSYNTHESIS HOTTIN E).		•	5151
1 236	-	1212	1 3709	193 1146200	ONA or MNA helicase, DNA-dependent ATPASE (Becillus subtilis)	9	4	13.83
752	-	1 1902	1 2513		Hisbd {Lactococcus lactis	65	9	612
1 241	7	4968	4195	19111205308	ribonuclease HII (EC 31264) (RNASE HII) (Haamophilus influentae)	65		11.6
252	-	1278	076	[01 (12049#9	hypothetical protein (GB.U00022_9) (Haemophilus influenzael	9 -	⊋ : - :	611
197	-	4780	3794	1941145927	fecD [Escherichia coli]	59	-	186

5 aureus - Putative coding regions of novel proteins similar to known proteins

Contig JORE	I JORF	Start	Stop	match	match gene nume	E 78	1 tdent	length (nt)	
274	_		1 27H	911496558	orfX [Bacillus subtills]	6.5	4 5	276	•
301	~	9.82	\$18	1911-57418	unknown (Bacillus subtilis)	; ;	:	16.8	
101	-	3586	2864	10107014	[protein-dependent [Bacillus subtilis]	\$9	0	723	
500		1 2286	1399	gi 146913	N-acetylglucosemine transport protein (Escherichia coli) pir(B29895 MgEC2N phosphotianifecase system enzyme [1 [EC 7 1.69], N-acetylglucosemine- specific - Escherichia coli sp P0332 PTAA_ECOLI PTS SYSTEM, N- ACETYLGLUCOSAMINE-SPECIFIC 1[ABC OHPONENT [E1]A	59	0\$	8 8	•
138	· ~	1 4320	1 3170	19111277029	biotin synthese (Recillus subtilis	65	6.	156	
676		1490	2800	91/143264	membrane-associated protein (Bacillus subtilis		\$	100	
3:14	-	1 2761	12531	19111050540	[tRNA-glutamine synthetase [lupinus luteus]	\$9	7.	233	
1 358	-	3421	3621	91/1146220	[NAD: dependent glycerol-1-phosphate dehydrogenase (Bacillus subtilis)	\$3		201	
1 364	_	1 238	669	[91]1340128	[ONF] [Staphylococcus aureus]	6.5	5.1	297	• -
5			5 76	 g (1433) 1	alkaline phospharase regulatory protein [Berillus subtilis] pre[A27650 A27650 regulatory protein phoR - Bacillus subtilis ap P21545 PHOR_BACSU ALKALINE PHOSPHATASE SYMIHESIS SENSOR PROTEIN HOR (EC 2.7.3).	\$	9		
926	_	3666	4346	91 143268	dihydrolipoamide transsuccinylase (odh8; EC 2.3.1.61) (Bacillus ubtllis)	\$9	1 50	681	• -
428	-	1 187	483	91/1420465	ORF YOR195w (Saccharomyces cerevisine)	\$9	\$	297	 .
¥. ¥.	-	272	H.38	[es 143498	degS protein (Daci) us sublifis)	59		195	. —
44	=======================================	1 9280	110215	ui 1204756	[ribokinase [Heemophilus influentae]	59	47	936	-
6	-	1241	1531	191/599848	[Ma/H antiporter humolog [Lactococcus lactis]	\$9	-	291	
478	2 -	1 1452	865	191 1045942	glycyl-tRMA synthetese (Mycoplesea genitalium)	59	66	588	: :
667		1032	517	91 1498192	[putetive [Pseudomonas aeruginosa]	59	9	916	
		4312	5637	91/415662	UDP-N-ccetylglucosamine i-carboxyvinyl transferase (Acinetobacter	59	÷	1326	· ·
7 4 4	-	-	430	1911 246551	transmembrane protein (kdpD) (Escherichia coli)	59	7	429	· - ·
499	-	5.4	932	191 (60) 456	reductabe (Lois!mania major)	\$9	1.53	474	· - ·
505	-	914	650	191 1518853	OafA Salmonella typhimurium	6.5	66	2 \$	
172	~	6051	683	191149399	open reading frame upstream ginE Escherichia coli ir S37754 S37754 hypothetical protein XE (glnE 5' region) - cherichia coli	\$9	?	627	
119	~	906	1 270	191110961	[RAP-2 [Plasmodium falciparum]	59	0,	7.02	-

TABLE 2

s aureus . Putative coding regions of nevel proteins similar to known proteins

1	Cunting ORF	0 M F	Start	Stop (nt)	match	math gene name	E : 0	1 Ident	Jength
1 1 1 1 1 1 1 1 1 1	705	-	564	283	191 710020	nitrite reductase inirB) (Bacillus subtilis)	- \$	5.2	287
1 2 611 [41101931] APP Binding process Gardiniss 65 2 733 773 [41101931] APP Binding process Gardiniss 65 3 73 73 [41101931] APP Binding process Gardiniss 65 4 7 7 7 [41101934] APP Binding process Gardiniss 65 5 7 7 7 [41101934] Application Gardiniss Gardiniss 65 6 7 7 7 [41101934] Application Gardiniss 65 7 7 7 7 [41101934] Application Gardiniss Gardiniss 65 7 7 7 7 [41101934] Application Gardiniss Gardiniss 65 7 7 7 7 [41101934] Application Gardiniss G	712	-		1177	gi 289272	ferrichrone-binding protein (Bacillus subtilis)	6	37	177
1 2 611	71.2	2	196	1 354	di 289272	ferrichrome-binding protein (Bacillus subtilis)	9		- 651
1 199	743	-	2	631	169011 11691	ATP binding protein (Streptococcus gordonii)	£	\$	019
1 16.98 850 Gilli005664 Universe process Security Se	1 149	~ -	1.193	617	191 167374	single strand DNA binding protein [Bacillus subtilis]	6.5	, S.	187
1 1 40 113 91113996 Unidenom process Section 5 11 41 41 41 41 41 41	1 162	-	1698	850		multidrug resistance protein (Plasmodium falciparum)	9 1	æ	649
	788	-	**************************************	3115	911129096	(Bacillus	65	3.5	231
1 1 144 991 1336653 [IRAA-binding protein Bacillas sobtilis] 65 1 1 144 931 236653 [IRAA-binding protein Bacillas sobtilis] 65 1 1 144 931 236653 [IRAA-binding protein Bacillas sobtilis] 65 1 1 222 90 1491833 [Special Contemporation Philodina medicini 1 1 1 1 1 1 1 1 1	1 850	-	1	408	9111006604		59	١٠.	404
1 174 991 236653 [MA-Ennding protein Bacillus subtilis] 65 1 26 212 991 491813 Approcyontrome dividue subunit i homolog (Escherichia coli, Ni2, 65 1 114 222 991 491813 Gama-glucawy(Irranspeptidase Bacillus subtilis] 65 1 114 125 991 41823 Gardan utilization protein (Hamomphilia influenzae) 65 1 114 125 991 41823 Cartan utilization protein (Hamomphilia influenzae) 65 1 114 125 991 41823 Cartan utilization protein (Hamomphilia influenzae) 65 1 115 116 991 41833 Cartan utilization protein (Hamomphilia influenzae) 65 1 117 118 991 41833 Cartan utilization protein (Gardaco See IR (EC 2.1.1-) - Streptorococus 65 1 118 118 991 41834 Cartan anterior (Cartan anterior Coli Cartan anterior (Cartan anterior	1 908	-	-	444	91 1199546	2362 Saccharomyces cerevisiae	59	9	=
1 26 232 991228637 AppCreycochrome d oxidase subunit in nomblog (Escherichia culi, K12, 65) 4612655 Lactam utilization protein (Homosphilus) 65 1 1 1 1 1 262 191162380 Erbuloses-Sphosphate J-ppmerase (Spinacia ieracca) 65 1 1 1 1 1 1 1 1 1	928	-	-	1.174	9111256653	[IXIA-binding protein (Bacillus subtilis]	ς,	- -	174
			3.6	232	91 (238657	Apprecytochrome d oxidase, subunit i homolog (Escherichia culi, Kl2, eptide, 514 as)	\$	÷	602
1 139 722 gilli02990 [ribulose-5-phosphate J-epimerase [Spinacia lieracea] 65 65 65 65 65 65 65 6	1 1037	==	77	1 262	01 1491813	gamma-glutamyltranspeptidase (Bacillus subtilis)	s 9	9	153
1 139 752 [9] 1162380 [Tribulose-5-phosphate J-spineciae (Spineciae (Aracea) 65 65 65 65 65 65 65 6	1053	. <u>-</u>	Ptf	57.1	91 642655	unknown Rhizobium melijoii	\$9	7.	7/
	1149	- -	6657	1.52	191 1162980	[ribulosa-5-phosphate J-epimerase [Spinacia Jeracea]	\$9	•	949
1 476 276 pir[335493 5354 atte specific DNA-methyltraneforase Stel (EC 2.1.1-) - Sticptoroccus 65 2 900 577 gg 473794 ORF Eacherichia colii 65 1 272 138 gg 633699 TrsH (Versinia enterocolitica) 14 15 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 16 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 19	1214	-	188	1 495	91 1205959	lactam utilization protein (Haemophilus influenzae)	\$	\$	387
1 1772 138 9 [437594 TrsH [Versinia antacoclitica] 65 1 1 1 1 1 1 1 1 1	9271		9/1	236		·	59	£	301
1 272 136 9 633699	1 1276	7	900	1 577	91 473794	ORF' [Escherichia coll]	6.5	34	324
1 336 169	1 2057	! —	272	138	91 633699	TrsH (Yersinia enterocolitica)	6.5	21	\$11
1 590 297 91 152052 Grantionerase selective amidase (Rhodococcus sp.) 65 150 154 151 150 154 155	1 2521	-	1 336	169	91 1045789	hypothetical protein (GB:U1400)_76) [Mycoplasma genitalium]	69	7	168
1 100 154	1 2974	-	290	1 297	31 152052	enantiomerase selective amidase (Rhodococcus ap.)	59	45	294
1 1 2.78 91[144906 Product homologius to E.cola thioredoxin reductase: J Biol.Chem. 1988) 65 263-9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S typhymurum J.Biol.Chem. (1990) 265:10515-10540, pan reading frame A [Clostridium pasteurianum] 1 2.82 142 91[49315 ORFI gene product (Racillus subtilis] 65 141 91[1507711 Indolepyruvate decemboxylase [Erwinia herbicola] 67 67 67 67 67 67 67 6	1000		306	154			۲۹ .	<u>-</u>	151
1 282 142 91(19915 ORF) gene product (Bacillus subtilis) 65	3069	-		2.38	906791 16	product humologius to E.coli thioredoxin reductase: J Biol.Chem. 1988) 261-9015-9019, and to P52a protein of alkyl hydroperoxide eductase from S typhImurium: J.Biol Chem. (1990) 265:10515-10540, pan reading frame A [Clostridium pasteurlanum]	9	9	276
1 679 341 gi 1507711 indolepyruvate decarboxylase [Erwinia herbicola]	3146	-	2.82	1142	91 49315	ORF gene product (Bacillus subtalis)	99	47	141
	3170	: —	619	- - -	1177021119	indolepyruvate decarboxylase (Erwinia herbicola)	65	*	339

TABLE 2

aureus - Putative coding regions of novel proteins similar to known proteins

	103					
		U1 450688	hadd gene of Ecopril gene product (Escherichia coli) pir(338437 538437 hauld protean - Escherichia coli pir(509629 509629 hypothetical protein A - Escherichia coli (508-40-520)	65	7. T	30.
	328	91 166412	NADH-glutamate synthase (Medicago sativa)	Ş	7	327
- N T 0 C 7 T	189	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	\$9	S	186
	1 308	19111323127	ORP YGROB7c [Saccharomycas cerevisiae]	\$	20	306
4 0 0 0 4	1 364	191 1197667	vitellogenin (Anolis pulchellus)	59	+	163
9 6 5	9 5518	91 145727	deab [Escherichia coli]	3	\$\$	1260
6 2 4	9 6926	91 1016232	ycf27 gene product (Cyanophora paradoxa)	•	9	716
2 4	0 6454	gi 765073	autolyain (Staphylococcus aureus)	3	4.3	009
7	6 11537	91 414009	ipa-85d gane product (Bacillus subtilis)	9	5.	1170
	8 4364	91 1204696	[fructose-permease IIBC component [Haemophilus influenzae]	7	47	1977
1/81 6 96	1 3013	gi 290503	glutamate permease (Escherichia coli)	\$	0	911
37 6 4065	5 4409	qi 39815	orf 2 gene product (Bacillus subtilis)	99	90	345
1 45 9 7852	2 8760	91 1230585	Inucleotide sugar epimerase [Vibrio cholerae 0139]	64	5.3	606
51 3 1540	0 1899	gi 1303961	Yqjj (Bacıllus subtilis)	9	20	360
56 6 4793	3 3855	91 457514	gitC (Bucillus subtilis)	64	5	616
56 24 3000	30002 30247	91/470331	similar to zinc fingers (Caenorhabditis elegans)	\$	9	246
62 4 2759	9 2421	[91] 642655	unknown (Rhizobiwa meliloti)	9	2.8	339
85 6 7178	8 6027	[gi 457702	5-aminojmidazole ribonucleotide-carboxilase [Pichia methanolica] prr 539112 539112 phosphoribosylaminoimidazole caiboxylase (EC .1.1.21) -	4	4	1152
96 9 9251	110030	gi 1511513	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschil)	3	4.2	091
100 1 1	009	[91]:65073	autolysin (Staphylococcus aureus)	4	44	000
106 5 3868	8 4854	gi 466778	lysine specific permesse [Eschurichia coli]	64	46	1 987
1 123 2 838	554	91 467484	unknown (Bacillus subtilis)	64	4,	285
127 8 7514	4 7810	91,210061	Serotype-specific antigen African horse sickness virus pir 527#91 527891 capsid protein VP2 - African horse sickness virus	49	20 1	762
131 7 7134	6721	91/1511160	H.)annaschiı predicted coding region MJ1163 (Methanococcus jannaschii)	30	9	414

EP 0 786 519 A2

10	
15	
20	
25	
30	
35	
40	
45	

50

55

aureus - Putative coding regions of novel proteins similar to known proteins

5

Contag	ORF	Start	Stop (nt)	marken acession	match gene name	E 7	• 1 dent	Leugth (nt.)
1 142	5	5445	4817	191/11/3517	riboflavin synthase alpha submnit (Actinobacillus pleuropmeumoniae)	64	4	639
: +3	-	709	356	pir A32950 A329	probable reductase protein - Leishmanna major	9	52	354
67:	110	3555	3295	91 398151	major surface antigen MSG2 (Pneumocystis carinii)	• 9		261
154		1 3134	2307	91 964 587	Dinp Escherichia colii	9	0.5	B 7 80
1 161		1 3855	4880	91 903 304	ORF72 (Bacillus subtilis)	3	رر	1026
165	-	6.	167	91,467483	unknown (Bacillus subtilis)	7,0	3.8	159
57:	9	6355	9:29	gi 1072398	phaD gene product (Rhizobium mellloti)	3	42	1512
881	-	2042	1 2500	91 1001961	HHC class II analog (Staphylococcus aureus)	49	\$	654
195	1.4	13667	13446	gi 396380	No definition line found (Escherichia coll)	30	7.9	222
506	13	116429	16938	gi 304134	argC (Bacillus stearothermophilus)	79	69	\$10
215	-	260	282	gi 142359	ORF 6 (Azotobacter vinelandii)	9	39	279
1 243		7818	6928	91 414014	ipa-90d gane product (Bacillus subtilia)	79	69	168
1 258	- 7	1330	845	N 664754	Pl7 [Listeria monocytogenes]	49	38	486
652	-	462	232	qi 1499663	M. jannaschii predicted coding region MJ0837 (Methanococcus jannaschii)	4	52	231
263		6565	5567	1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	aspartate semialdebyde debydrogenase (Bacillus subtilis) sp Q04797 PHAS_BACSU ASPARTATE-SEHIALDEHYDE DEHYDROGENASE (EC. 2.1.11) (ASA DEHYDROGENASE).	•	ac ac	666
1 271			1163	gi 467091	hflX; B2235_C2_202 (Mycobacterium leprae)	•	44	1161
280	-	173	1450	191 1301839	YqfR (Bacillus subtilis)	4	43	1278
1 293	-	2532	1267	1911147345	primosomal protein n' [Escherichia coli]	9	45	7.266
295		742	1488	91 459266	Potential membrane spanning protein (Staphylococcus hominis) pir S42932 S42932 potential membrane spanning protein - taphylococcus hominis	\$	66	747
1 301	- 5	1625	1446	gi 580835	lysine decarboxylase [Bacillus subtilis]	64	35	186
\$11	4	2064	3949	91111336	quinol oxidese (Bacillus subtilis)	64	45	1116
126	-	1264	635	91/710496	transcriptional activator protein (Bacillus bravis)	9	7	969
133	-	4520	4239	91 1314295	ORF2; putative 19 kDa protein [Listeria monocytogenes]	9	43	282
1 342	-		549	91 142940	[ftsA (Bacillus subtilis)	7	H.C	549
1 353	-	2878	1324	91(537049	ORF_0470 Escherichia coli	70	7	555

10	
15	
20	
25	
30	
35	
40	
45	

55

5. aureus - Putacive coding regions of novel proteins similar to known proteins

i Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	E15 1	1 v adent	Length (nt)
676	- 2	1 827	3658	pit 525295 A328	pir 525295 A328 oxoglutarate dehydrogenase (liposmide) (EC 1.2.4.2) - Bacillus subtilis	64	47	2432
40		4429	4839	pir A36933 A369	pir [A36913] A369 diacylglycerol kinase homolog - Streptococcus mutans	9	35	411
1 407	-	1 2020	6611	191 969026	orfX [Bacillus subtilis]	79	7	66
1 425	-	1 1109	1 591	gi 1146177	phosphotransferase system glucose-specific enzyme II (Bacillus subtilis)	99	77	519
3		1082	4798	gi 147309	purine nucleoside phosphorylase [Escherichia coli]	9	\$17	717
1 450		1 1035	1604	gi c06376	ORF_ol62 (Escharichia coli)	6.4	38	570
470	- 2	1680	6107	91 2369948	host interacting protein (Bacteriophage B1)	79	45	4428
4.86		1161	1471	gi 1205582 	spermiding/putrascing transport system permease protein Haemophilus	3	33	4
1 497	1	2217	1159	sp 936929 FNU_E FNU PROTEIN	FHU PROTEIN.	79	38	6501
1 501	-		410	91/142450	entC protein (Bacillus subtilis)	19	3.8	404
514	-		290	91/1204496	H. influenzae predicted coding region H10238 (Maemophilus influenzae)	•	34	288
551	-	11162	3323	91/1204511	bacturioferzitin comignatory protein (Haemophilus influenzae)	3	÷	162
1 603	-	159	986	911755823	HADH dehydrogenase F (Streptogyna americana)	3	35	198
(5)	~	076	746	911.213234	dicerboxylic amino acids Dip5p permease [Saccharomyces cerevisiee]	3	=	195
1 660	-	3801	1 2257	sp P46133 YDAIL_	HYPOTHETICAL PROTEIN IN OGT 5'REGION (FRAGMENT).	3	ς <u>α</u>	. 6.
569	-	: -	205	191 1001383	hypothetical protein (Symechocystis sp.)	•		492
1 702	7		752	gi 142865	DNA primase (Bacillus subtilis)	99	9	750
826	-	-	939	911971336	arginyl tRNA synthetase (Bacillus subtilis)	3	05	339
6.39	-	1831	517	91 1354775	pfos/R (Treponeme pellidum)	79	Ŧ	915
99		675	4.	91 39833	cyclomalcodextrin glucanotransferase Bacillus etesrothermophilus 1 39835 cyclomalcodextrin glucanotransferase Bacillus esrothermophilus	3	4.	270
887	: 		677	qi 153002	enterotoxin type E precursor (Staphylococcus auraus) pir [A28179] A.8179 enterotoxin E precursor - Staphylococcus auraus sp[P12993] ETXE_STAAU ENTEROTOXIN TYPE E PRECURSOR (SEE).	Ş	9	675
R26	~	11.72		911311976	[ibrinogen-binding protein [Staphylococcus aureus] pir 534270 534270 fibrinogen-binding protein - Staphylococcus ureus	3	7	210
1049	- 5	008	909	[gi 1049115	Pap60 (Bacilius subcilis)	•	42	195
1 1067	~	666	748	gi 1151072	HhdA precursor (Reemophilus ducreyi)	3	05	252
	, , ,							

S aureus - Putative coding regions of novel proteins similar to known proteins

Contag ORF	Start Start	Stop	matex acession	match gene name	E IS	• ident	length (nc)
1120 1	05	1 202	qi 142439	ATP-dependent nuclease (Bacillus subtilis)	3	30	153
1125 1	12.	776	gi 581648	epiß gene product (Staphylococcus epidermidis)	9	*	375
1688 1	1 402	214	pir A01365 TVMS	(transforming protein K-tas - mouse	99	47	169
2472 1	2	358	91 487282		79	36	151
2989 1	520	356	91 304134	ergC [Bacillus stearothermophilus]	64	\$00	165
3013	630	:	1011551699	Cytochrome oxidase subunit [Bacillus firmus	73	5.1	2 19
3034 1	546	274	91 1204349	hypothetical protein (GB:GB D90212_3) [Haemophilus influentae]	79	\$0	273
3197 1	613	308	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	39	46	106
3303 1	06	362	Qi 1107839	alginate lyase (Pseudomonas aeruginosa)	70	43	2.13
3852 2	82	288	91 216746	D-lactate dehydrogenase (Lectobacillus plantarum)	79	42	207
3868 1		1 312	91 149435	putativa [Lactococcus lactis]	79	86	312
3918 1	099	133	91 5532	acetyl-CoA acyltransferase [Yarrowia lipolytica]	1 99	96	330
1000	1112	378	91,944688	unknown (Saccharomyces cerevisiae)	49	44	367
4009	1 81	368	gi 39372	graß gene product (Bacillus brevia)	79	4	288
4166 1	7	349	91 149435	[putative [Lactococcus lactis]	79	1 94	348
4366 1	~	1 307	91 216267	ORF2 [Dacillus megaterium]	3	¥	306
4457 1	7	007	gi 1197667	vitellogenin (Anolis pulchellus)	3	40	399
	1539	2438	01 436228	OAP C [Staphylococcus aureus]	69	32	004
7 - 42	1 5611	5423	Qi (1369943	al gene product (Bactericphage Bl)	و	7	7.E.
6.7		061	Q1 170 /441	expressed at the end of exponential growyh under conditions in which he enzymes of the TCA cycle are repressed (Bacillus subtilis) gi[46744] expressed at the end of exponential growyh under ondtions in which the enzymes of the TCA cycle are repressed Bacil		7	061
31 6	6329	5712	[01]496943	ORF (Saccharonyces cerevisiae)	G	47	618
44 [23	14669	15019	pir A04446 QQEC	pir A04446 QQEC hypotheticel protein F-92 - Escherichie coli	63	36	351
48 6	4403	6250	gi 43498	pyruvate synthase (Halobacterium halobium)	63	42	1848
50 5	3869	4738	91 413967	ipa-43d gene product (Bacillus subtilis]	63	£.	0.8
53 6	6764	1 5742	191474176	regulator protein (Staphylococcus xylosus)	63	6.6	1023
				◆ E E			

adiados modes of refer antended (wood to subject editor exists the - section

Cent 19 1D	08F	Start	Stop	ratch	match gene name		t tdent	tength (nt)
9,	- 1	15880	117607	[91] 467409	DNA polymerase Subunit	63		172H
57	=	1 7945	1376	191 237036	ORF_0158 [Escherichia coli]	63	1 66	573
6.2		2479	2314	[91] :42656	unknown (Rhizobium meliloti)		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	396
7.0	8	6562	1353	91 1399821	PhoC (Rhizobium meliloti)		90	792
75	~	223	1 927	91 149376	HisG (Lactococcus lactis)	63	1 50	705
¥.	5	4912	4403	191 413950	lipa-26d gene product (Bacillus subtilis)	6.3	7	510
9.1	2	9006	1720	91 466997	metH2; B2126_CL_157 (Mycobacterium leprae)	63		1857
91	20	10566	9448	91 1204344	(cystathionine gamma-synthese [Haemophilus influenzae]	63	45	6111
120	-	21	1508	91 842657	[sulfite reductate (NADPH) flavoprotein beta subunit (Escherichia oli)	63	1 96	14#4
120	4	2722	4125	91 665994	[hypothetical protein [Bacillus subtilis]	69	34	1404
127		7909	7566	91 (40162	[murE gene product [Bacillus subtilis]	63	7	1503
149	•	2321	2106	91 148503	dnaK (Erysipelothrix rhusiopathiae)		- 07 -	216
4	56	10445	10170	91 4870	OMF 2, has similarity to DNA polymerase (Saccharomyces Kluyveri) r[515961 815961 hyputhetical protein 2 - yeast (Saccharomyces yveri) plasmid pSKL	63	4	276
164	~	507	1298	gi 145476	CDP-diglyceride synthetase [Escherichia coli]	63	7	7.67
16.6		600.1	# 16 F	[41, [451932	[Huctose enzyme 11 [Rhedebacter capabatus]	3	-	4761
169	4	1704	1886	91 152886	elongation factor Ts (tsf) (Spiroplasma citta)	63	88	183
168	2	3145	2951	91 1334547	GIY COI 114 grp 18 protein (Podospora anserina)	69	2	195
195		11767	112804	191,606100	ORF_0335 (Escherichia coli	69	0.0	1014
201	~	607	2283	9: (433534	arginyl-RMA synthecase Corynabacterium glutamicum pir A49916 A49936		9	1677
206	1 4	15893	16489	gi 580826	N-acetyl-glutamate-gamma-semialdehyde dehydrogenase Racillus ubtills	69	57	765
220	\$	1769	5766	91/216334	sech protein (Becillus subtilis)	63	42	2004
221	-	7.4	1 907	191/677945	AppA (Bacillus subtilis)	63	4	83.
722	<u> </u>	944	1708	19111510558	cobyric acid synthase (Methanococcus jannaschii)	(9	46	765
261	7	8 04	1070	191 486511	ORF YKROS4c (Saccharomyces cerevisiae)	63	4.5	267
269	7	1606	1960	01 148221	[DNA-dependent ATPase, DUA helicase [Escherichia coli] pir JS0137 BVECRQ		7	1647

S aureus - Putative coding regions of novel proteins similar to known proteins

1	Contig ORF 10 110	10KF 110	Start	Stop (nt)	match acession	match gune name	E S	I sdent	length (at)	
1 2 348 3134 91 (43332 Ferriar process 48 - 1371 (Ferriar process Ferriar process Ferriar process Ferriar process (Ferriar process Ferriar proces	278	c	7417	6176	91 099273	cystathionine gamma-synthase Hycobacterium legiae sp R46807 HETB.MYCLE CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9) O-SUCCINYLHOMOSERINE (THIOL)- LYASE).	63	=	1242	
1.14 11.4	1 287	- 7	738	1733	gi 405133	[putative [Bacillus subtilis]	3	86	986	
1 126 1134 911 (45132 Partier process and cald it process benchmans servolinoss servolinoss servolinos servolin	295	-	- 2	748	gi 1239983	hypothetical protein (Bacillus subtilis)	63	7	747	
1 176 1051	328		2148	3134	g1 45302	- 437) (Pseudomonas aerugino acid ti. aport protein brab	3	790	9.87	
1 176 1051 921 103816 1942-188411115 1941 1951 103816 1942-188411115 1941	1 362	7	1 1526	1216	sp +35136 SERA_	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1 1.95) (PGDH).	63	**	411	
1 451 227 911109914 1947 Bacillus subtilis 1 451 227 91110352 Sulfate parmase (959 start codon) Isymethococcus PCC6001 2 1048 2218 91110350 Icramsport ATP-binding protein Namoophilus influentae 4 5575 2679 91100360 Icramsport ATP-binding protein Namoophilus influentae 3 1047 2195 911103999 Orff (Laccoborillus subtilis E26 Peptide, 192 as 4 5575 2674 91140399 Orff (Laccoborillus subtilis E26 Peptide, 192 as 5 1048 Orff (Laccoborillus subtilis E26 Peptide, 192 as 6 104 91100999 Orff (Laccoborillus subtilis E26 Peptide, 192 as 7 104 1044 9113995 Orff (Laccoborillus subtilis E26 Peptide, 192 as 8 104 1044 9113995 Orff (Laccoborillus subtilis E26 Peptide, 192 as 9 104 1044 9113094 Lesina minotratificase Nacional Carama (Laccoborillus subtilis E26 Peptide, 192 as 9 104 1044 94 94 94 94 94 94 94	\$0	-	1326	1051	91 1303816	(YqeZ (Bacıllus subtilis)	63		726	
	405	-	1 2101	1715	01 1303914	YqnY (Bacillus subtilis	٩	42	181	
1 1375 2679 gil 1303662 Fransport ATP binding protein Hammophilus influented 1 15 2679 gil 139266 HEBRANE PROTEIN IN PSAA 5 REGION ORFIL.	1 406		451	1 227	91 142152 	d.	69	7	£	
4 3575 2679 94 393268 19-KiloDalton protein (Straptococcus pneumonies) sp[P42362 P29K_STRPH 19 KD 1 2 574 94 446917	415	7	1048	2718	gx 1205402	[transport ATP-binding protein [Haemophilus influentae]	69	3	1671	
3 1347 2195 94 1418999 Orf4 [Laccobacillus sake] 1 2 574 94 46917 [Comk [Bacillus subtills. E26, Peptide, 192 aa] 1 427 215 94 51956 Initrate reductase [Methanococcus jannaachii] 1 3 230 94 517356 Initrate reductase (MADH) [Lotus japonicus] 1 3 392 94 392 94 394 94 395 94 395 94 396 94 47166 94 47166 94 47166 94 47166 94 47166 94 47166 94 47166 94 47166 94 47166 94 47166 94 9	426		3575	2679	qi 393268	29-Kilobalton protein (Streptococus pneumonise) spip42362 P29K_STRPN 29 KD HEMBRANE PROTEIN IN PSAS S REGION ORFI).	6	66	697	
1 2 574 91 146917	\$0\$	- 3	1347	2195	191 1418999	orf4 [Lactobacillus sake]	63	0.7	678	
1 1 1 1 1 1 1 1 1 1	\$07	-		574	91/546917	•	•	35	\$7.3	
1 427 215 91 510994 Setine aminotransferase [Nethanococcus jannachii] 1 3 230 91 81346 Intrate reductase (NADH) [Lotus japonicus] 1 3 392 91 81346 NOTO protein [Paracoccus denitrificans] 1 2 400 91 47168 Open reading frame [Streptomyces lividans] 1 22 420 91 726932 Unknown [Mycobacterium tuberculosis] 1 22 321 91 79445 Unkri [Lactococcus lactis] 1 794 399 91 511235 W. Jannaschii predicted coding region HJ1332 [Methanococcus Jannaschiii] 1 1154 618 91 1204277 Nypothetical protein (GB:U00019_14) [Neamophilus influonzae] 1 3 542 91 79043 Urea amidolyase [Bacillus subtilis] 1 482 91 54992 5498 regulation protein - Bacillus subtilis 1 1 1 1 1 1 1 1 1	795	-	1:16	1084	91/41985	inifs-like gene (Lactobacillus delbrueckii)	63	45	er.	
1 3 230 91 51756 Intrace reductave (MADH) [Lotus Japonicus] 1 2 400 91 9183940 NorO protein [Paracoccus denitrificans] 1 2 400 91 9188946 Open reading (Tame [Streptomyces lividans] 1 24 1287 91 1289 91 131235 W. Jannaschii predicterium tuberculosis] 1 794 1999 91 1511235 W. Jannaschii predicted coding region MJ1232 (Methanococcus Jannaschiii 1 1154 618 91 1204277 Mypothetical protein (GB:U00019_14) [Hasmophilus influonzus] 1 3 542 91 70943 Urea amidolyase [Bacillus subtilis] 1 3 482 91 549892 5498 regulation protein - Bacillus subtilis 1 1 1 1 1 1 1 1 1	579	-	427	215	gi 1510994	serine aminotransferase [Methanococcus jannaschii]	63	5.5	77	
1 3 392 91 881940	686	-		230	91/517356	Intrate reductave (NADH) [Lotus japonicus]	9	5.2	228	
1 2 400	107	-		1 392	91 881940	NorO protein [Paracoccus denitrificans]	9	6	060	
1 571 287 01 261932 Unknown (Mycobaccerium tuberculosis)	720	-	7	1 400	Qi 47168	open reading frame (Streptomyces lividans)	63	3.5	194	
1 24 321 91 149445 JORFI [Lactococcus Jactis]	611	-	125	1.87	1011261932	unknown (Mycobacterium tuberculosis	63	41	285	
1 194 199 91 151235 W. Jannaschii predicted coding region HJ1232 (Methanococcus Jannaschiii 1 154 618 91 1204277 hypothetical protein (CB.U00019_14) [Haemophilus influonzue] 1 3 542 91 170943 uree amidolyase (Bacillus subtilis) 1 482 91 170943 regulation protein - Bacillus subtilis 1 1 1 1 1 1 1 1 1	106	_	77	1321	gi 349445	ORF1 (Lactococcus lactis)	63	27	300	
1 1154 618 gi_100427 hypothetical protein (GB.000019_14) [Naamophilus influenzae] 1 3 542 gi_70943 uree amidolyase [Bacillus subtilis] 1 3 482 pir[549892[5498 regulation protein - Bacillus subtilis 1 1 1 1 1 1 1 1 1	276	-	794	1 399	91 1511235		9	3.7	396	
1 3 542 gil7/0943 urea amidolyase [Bacillus subtilis] 1 3 482 pir 549892 5498 regulation protein - Bacillus subtilis 1 1231 617 uii493017 endocarditis specific antigen [Enterococcus faecalis]	1085	-	1154	618	19i + 204277	[hypothetice] protein (GB:U00019_14) [Neemophilus influenzue]	63	38	5.17	
1 3 482 pir/549892 5498 regulation protein - Bacallus subtilis 1 1211 617 yii 493017 endocarditis specific antigen Enterococcus faecalis	1094	-		245	gil750943	ures amidolyase (Bacillus subtilis)	6.3	39	540	
1 1231 617 Uli 493017 endocarditia specific antigen [Enterococcus faecalis]	1108	-	-	4 85	pic 549892 5498	regulation protein -	63	9	480	
	1113	-	1233	617	1911493017	endocarditis specific antigen [Enterococcus faecalis]	3	45	615	

•
otei
ı bı
nom
20
4
E
\$ 5
t e i
pro
eus - Putative coding regions of novel proteins similar to known protein
٥٤
\$10
egi
5
codi
20
tat
2
\$0.5
יוחני
Ġ

Contig ORF 1D 1D	ORF 1D	Start (nt)	Stop (nt)	match acession	madd gene name	E : s	4 sdent	length (nt)
1300	-	-	695	sp P33940 YoJH_	HYPOTHETICAL S4.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	63	94	(69)
1325	-	-	204	91 928989	pl00 protein [Borrelia burgdorferi]	63	0.0	707
1814	-		245	(0) (1303914	YqhY (Bacillus subtilis)	63	-	243
2021	-	867	1 250	pxr C33496 C334	hisC homolog - Bacillus subtilis	63	9	249
2325		2	193	 9 i 436132	product is similar to TopA of transposon Tn554 from Staphylococcus ursus (Clostridium butyricum)	3	9	192
2335	-	-	195	[g1 1184298	[flagellar HS-ring protein [Borrelia burgdorferi]	63	-	195
2406	-	1631	1 227	g1 1041785	rhoptry protein [Plasmodium yoelii]	63	33	225
2961	- 3	136	360	101 312463	carbamoyl-phosphate synthese (glutemine-hydrolysing) [Bacillus eldolyticus]	63	- 52	225
2965	-	-	1 402	gi 1407784	orf-1; novel antigen (Staphylococcus aureus)	63	05	402
2987	-	1 583	1 293	91 1224069	amidase (Horaxe) a catarrha) s	(9	36	291
2994	-	1 266	57.	91 83 6646	[phosphoribosy]formimino-praid ketdisomerase [Rhodobacter pheeroides]	63		132
1043	-	440	1 252	01 1480237	[phenylacetaldehyde dehydrogenase [Escherichia coli]	63	0	169
3678	-	609	007	91 1487982	intrinsic membrane protein (Nycoplasma hominis)	63	36	210
3139			712	g1 439126	glucamere aymchass (NADPH) Acospirillum brasilense pir A49916 A49916 glucamere synthese (NADPH) (EC 1.4.1.13) - rospirillum brasilense	63	5	216
1625	-	18.	198	40.1623071	OffF160, paractive Dactor lephane U.S. t	3		761
3658	: -	-	199	9111303697	YYKA (Bacillus suotulis)	6.1	7	399
3659	-	-	1395	9111256135	YbbF (Bacillus suutilis)	63	80	39)
1763		720	361	91 1256902	Pyruvate decarboxylase isoryme 2 (Swiss Prot. accession number P16467) (Saccharomyces cerevisiae)	63	~	360
1900	-	338	171	sp 210537 A4YB_	BETA-AMYLASE (EC 3.2.1.2) (1,4-ALPHA-D-GLUCAN MALTOHYDROLASE).	6.3	•	168
4309	-	-	9.11	pir A37967 A379	neural call adhesion molecule Ng-CAM precursor - chicken	63	1 52	174
4367	-	-	561	91/1/21932	Perép gene product (Pichia pastoris)	63	30	195
4432	- 		315	92 151259	HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethyiglutaryl-CoA reductase (EC.1.1.1.88) Pseudomonas 5:>	63	2	33.2
4.46.8	-	9	308	91 22 64 64	ATPase (Lactococcus lactis	63	96	101
=		1411	5 4 00	gi1153675	[tagatose 6-P kinase [Streptococcus mutans]	62	*	065
3 6	6	5985	6218	91 1490521	HINSH) (Homo saptens)	62		234
					。 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、 1、			

J	
10	
15	
20	
25	
30	
35	
40	
45	

55

5. aureus - Putative coding regions of novel proteins similar to known proteins

5top (nt)	:-;	Acession gi 1107531	match gene name 	62	# 1dent	Interesting the Interesting in Interestina Interest	
120329	-:-	91 1222058 91 695280		62	18 41	6.18	
1780	; -	91 171234	ort! (Haemophilus influenzae)	62	, , ,	7.0	•
6350	;	91 508174	Elib domain of PTS-dependent Gat transport and phosphorylation Escherichia	3	35,	665	•
559	!	91 755 152	highly hydrophobic integral memorane protein [Bacillus subt::x] sp P42953 TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERHEASE PROTEIN AGG.	62	34	858	
9014		gi 4706A3	Shows similarity with ATP-binding proteins from other AUC-transport porons, Swiss Prot Accession Numbers P24137, P08007, P04285, P24136 Escherichia coli)	<u> </u>		5.9.	
7494	; -	gi 46816	actVA 4 gene product [Streptomyces coelicolor]	62	7	822	
1320		qi 39993	[UDP-N-acetylmuramoylalaningD-glutamete ligase [Bacillus subtilis]	1 62	Ç	474	
9205		161/12/16	S'-nucleotidase precursor (Vibrio parahaemolyticus)	62	1.8	2172	
3089		91 1511047	phosphoglycerate dehydrogenase (Nethanococcus jannaschii)	62	4.5	963	
\$20		9) 153655	mismatch repair protein (Streptoroccus pneumoniae) pir (C28667) (C28667 DXA mismatch repair protein hexA - Streptococcus neumoniae	62	7	\$15	
1068		91 [453741	ATP-binding protein (Streptococcus mutans)	3	1.	609	
7562	; —	91 1204866	L-fucose operon activator [Haemophilus influentae	62	Ξ.	HOL	
5633	_	91 677947	AppC (Bacillus subtilis)	62	1,	1611	
6009		gi (85377	product similar to E.coli PRFA2 protein [Becillus subrills] pir 555438 555448 ywkE protein - Becillus subrilis sp[P45873]HEHK_BACSU POSSIBLE PROTOPORPHYRINGEN OXIDASE (EC. 3.3.+).	62	4	852	
55		91 467456	unknown [Bacillus subtilis	62	0;	531	
6773	:	91 1205807	replicative DNA helicase (Haemophilus influenzae)	62	7	867	
1153		191140067	X gene product (bacillus sphaericus)	62	42	151	
11563	~	91 42219	P35 gene product (AA 1 - 314) (Eschorichia coli)	62	3.8	960	
4		91 403936	phenylalanyl-tRMA synthetase alpha subunit (Gly294 variant) unidentified cloning vector	62	æ	282	
5089	!	91 308861	GTG start codon (Lactococcus lactis	62	7	3000	
614		91 1046053	hypothetical protein (SP.P12049) [Bycoplesma genitalium]	62	-	6.12	
	,						

5, auteus - Putative coding regions of novel proteins similar to known proteins

* sis * ident length (nt)	62 45 1212	62 32 954	62 44 1032	-	62 47 243	62 43 1200	62 30 261	62 39 939	62 36 264	62 32 369	62 54 177	62 42 1119	62 37	62 35 468	1 62 40 789	62 37 656	m 62 44 1119	62 43 1167	171 12 29	62 37 180	62 39 690	62 35 2154	62 17 450	
mattil gene name	hemY (Bacillus subtilis)	ATP-dependent nuclease (Bacillus subtilis)	hisC protein (Escherichia coli)	ORF A: putative [Bacillus firmus]	expressed at the end of exponential growyh under conttions in which he enzymes of the TCA cycle are repressed [Bacillus subtilis] gl[46744] expressed at the end of exponential growyh under ondtions in which the enzymes of the TCA cycle are repressed Bacil	FemA pratein (Staphylococcus aureus)	cycochrams as3 controlling protein (Bacillus subtliis) pir A33960[A33960] cta protein - Bacillus subtliis sp[P12946]CTAA_BACSU CYTOCHROHE AA3 CONTROLLING PROTEIN.	methionyl-tRiA formyltransferase (Escherichia coli)	uridine 5'-monophosphate synthase [Hethanococcus jannaschii]	fecB (Escherichia coli)	ipa-19d gene product (Bacillus subtilis)	regulatory protein pfoR - Clostridium perfringens	Dota-ylucosidese (Cloutistium thermotelium)	transport ATP-banding protein (Naemophalus influenzae)	Na+ ATPasa subunit J (Mycoplasma genicalium)	nodulation gene; integral membrane protein; homology to Rhizobium equminosarum nodi (Rhizobium loti)	ring-infected erythiocyte surface antigen 2, RESA-2 - Plasmodium falciparum	betains aldehyd dehydrogenass (Beta vulgaris)	ORF1 [Lactococcus lactis]	ribulose bispliosphate carboxylase/oxygenase activase (Arabidopala haliana)	O-methyltransferase (Streptomyces glaucescens)	putative transcriptional regulator (Bacillus stearothermophilus)	ferric uptake regulation protein (Campylobacter jejuni)	onestrates and services are services and services and services and services and services and services are services and services are services and services are services and services and services are services are services are services and services are services are services are services are services and services are ser
BACCA	91/143045	gi 142439	gi 41695	91 143121	91 467431	1911153015	91 142717	911581088	191 1499960	[91]145925	91 413943	pir A43577 A435	91 40665	91 1205401	911:046024	91 581510	pir A18440 A484	91 17934	91 149445	911166835	Kgi 153491	[01 1480429	91,511113	***************************************
Stop (nt)	1310	956	1966	2605	4719	1819	262	1203	4631	3.70	6804	1626	264	31.16	790	1369	1869	1707	1311	1313	982	2522	4820	
Start	1521	_	935	8000	, , , , , , , , , , , , , , , , , , ,	5018	~	269	4894	2	6628	2744	7	500.7	1578	704	151	241	141	1134	193	369	17.0	
10 P	-	_	~	-		9		- 2	•		=	~	-		-	~			_	- ~	-	~	9	
Contig ORF	183	300	762	261	299	304	324	325	332	155	365	369	0,1	415	429	÷	۲۲.	88.5	4 R.)	494	518	534	551	

aurous Putakive coding regions of novel proteins similar to known proteins

Contig CRF	CAF	Start (nt)	Stop (nt)	match	ישברף מספר משפה אוני שיברף (ישברף מספר משפה משפה וישברף (ישברף משפה משפה משפה משפה משפה משפה משפה משפה	E : 5	1 1 dent	Length (nt)
065	·	77.	1711	91140367	ORFC Clostridium scetobutylicum	63	37	E .
655	- -	1 396	, A30	91 147195	[phnB protein [Escherichia coli]	62	4	435
959	-	7	478	191 1205451	cell division inhibitor (Heemophilus influentae)	29	36	477
9/9	- -	1 692		91 1511613	methyl coensyme H reductase system, component A2 (Methanococcus jannaschis)	62	36	345
68 7	-	493	248	91 49272	Asparaginase (Bacillus licheniformis)	62	99	917
001	~	1 267	944	91 1205822	hypothetical protein (GB:X75627_4) [Haemophilus influenzae]	62	0	BC9
840	~	1715	1041	91 1045865	M. genitalium predicted coding region MGIRI (Mycoplasma genitalium)	62	36	678
1 464	; -	868	1491	gi 1144332	deoxyuridine nucleotidohydrolase [Homo sapiens]	62	38	\$65
916	-	35	007	91 413931	lipa-7d gene product (Decillus subtills)	62	45	366
1 101 1	-	-	177	9111510649	aspartokinase I (Methanococcus jannaschii)	62	0.7	17.5
1084	-	61	609	191 688011	Agx-1 antigen (human, infertile patient, testis, Peptide, 505 as)	62	1 66	165
		~ 	1 203	91 581261	OMF homologous to E.coli metB (Herpetosiphon aurantiscus) pir \$14030 \$14030 Hypothetical protein - Herpetosiphon aurantiscus (rayment)	2	2	201
1217	: -	1 463	233	911460025	OMF2, putative [Streptococcus pneumoniae]	6		211
1533	-	644	-	gi[413968	ipa-44d gene product (Bacillus subtilis)	6.2	4,	233
1537	-	٥ -	1 257	91 1510641	elany}-tRNA synthetase Methanococcus jannaschii	62	2 - 62	255
C#C.	- -	_	161	191 485956	MING Grine product [Protous mirabilis]	62	42	1.53
2386	-	^ _	- 245	oi 285708	nontoxic component (Clostridium botulinum)	62	=	243
2484	-	1331	167	91 142092	[DNA-repair protein (reck) [Anabaena variabilis]	6.2	35	165
2490	- -	867	004	gi 581648	epiB gene product Staphylococcus epidermidis	6.2	4 2	660
1016	-	9,6	001	1011/10022	uroparphyrinagen 111 [Nacillus subtilis]	62	\$1	29.1
1116	-	-	213	Qi 466BB3	nifS; B1496_C2_193 [Mycobacterium leprae]	6.2	7	213
1 3297	-	1 823	3	191 475715	acetyl coenzyme A acetyltransferase (thiolase) (Clostridium cetobutylicum)	6.2	42	77
1609	-	ī.	276	gi 1408561 e	homologous to N-acyl-L-amino acid amidohydrolass of Bacillus stearothermophilus [Bacillus subtilis]	62		246
1665		584	402	gi 151259 	HWG-CoA reductase (EC 1.1.1 88) [Pseudomonas mevalonii] pir[A44756]A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	3	0	8 7
נגרנ ן	-	_	374	191 (1353197	[thioredoxin reductase [Eubacterium acideminophilum]	62	42	372
					·*************************************			

S aureus - Putative coding regions of novel proteins similar to known proteins

Contrg	ORF	Start (nt)	Stop	match	Hourty Gene name		ident	length (nc)	
3898	-	-	1337	91 153675	tagatosa 6-P kinase (Streptococcus mutans)	62	\$	233	
4027	-	263	163	1911330705	homologue to gene 30 (ea 1-59), putative [Bovine herpsevirus 4]	62		141	
4109	-	127	365	91 41748	hsdw protein (AA 1-520) (Escherichia coli)	62	45	363	-
(303)	-	-	1 303	gi 1303813	Yqew (Bacillus subtills)	62	\$	303	
4380	-	1 536	1 267	91 1235684	nevalonate pyrophosphate decarboxylase [Saccharomyces cerevisiae]	62	55,	264	
7677	-	2 1	1 256	di 510692	enteratoxin M (Stephylococcus aureus)	62	-	255	
4598	-	411	223	[91]763513	ORF4: putative (Streptomyces violaceoruber)	6.2	\$	189	
1 4624	-		222	91 41748	hedy protein (AA 1-520) (Escherichia coli)	62	5.	222	4
	2	K 677	2160	g 928831	ORF95; putative [Lactococcus lactis phage BK5-T]	61	36	157	
	-	320	162	pir C11356 C133	prothymosin alpha homolog (clone 32) - human (fragment)	61	- C	63.	
16	=	10001	11938	01 1205391	hypothetical protein (SP:P31995) (Haemophilus influenzae)	2	7	948	
32	; ; _	183	. RO1	[41]:066504	rxo-bata 1,3 glucanase (Cachliobolus carbonum)	19	20	\$19	
		616	1107	91 1510864	glutamine transport ATP-binding protein Q [Mothanococcus jannaschil]	19	41	492	
45	-	3082	1 1038	91 1109686	Prox [Bacillus subtilis]	19	45	957	
- C		7118	7504	91 498839	ONE2 [Clostridium perfringens]	6.1	33	187	- •
7	- 3	4605	5570	191 384269	traC [Plesmid pAD1]	9	42	996	
9	9	1689	2243	91 (1205893	(hypothetical protein (GB:U00011_3) [Haemophilus influenzae]	19	32	\$55	
	-	6555	5122	91/854656	Na/H entiporter system ONF2 [Bacillus alcalophilus]	6.1	86	438	
5	-	1 1330	5646	gi 466612	nikA (Escherichia coli)	19	3.6	1317	- •
7	~	1 2400	1504	91 1204846	carbamate kinase Huemophilus influenzee	61	9	191	•
	-	2198	1011	Qi 1498756	amidophosphoribosyltransferase PurF (Rhitobium etil)	10	7	1098	- •
N6	-	5661	1582	91 1499931	 Jannaschli predicted coding region MJ1083 (Methanococcus jannaschiil 	19	7	414	
	_	74	649	9111518679	orf Bacillus subtilis	6.1	•	\$76	
66	7	2454	0661	, 9: 413958	[ipa-lad gene product [Bacillus subtilis]	61	61	465	
124		6223	5123	91/556881	Similar to Saccharomyces cerevisiae SUAS protein (Becillus subtilis) pir S49358 S49358 DC-29d protein - Bacillus subtilis ap P39153 YMLC_BACSU HYPOTHETICAL 37.0 KD PROTEIN IN SPOIIR-GLYC NTERCENIC RECION.		9	1101	
125	-	1668	1 2531	01 1491643	ORFA gene product (Chloroflaxus aurantiacus)	9	6	198	

S. aureus - Putative coding regions of novel proteins similar to known proteins

t19	10 CK	Start (nt)	Stop (nt)	aatch acession	fratch gene name	# F	1 adent	(nc)
132		1250	627	pir P00259 P002	hypothetical protein 1 - Enterococcus faecalis plasmid pAM-beta-1 [fragment]	19	43	624
671	· -	1 3617	3075	91 (1144)32	deoxyuridine nucleotidohydrolase [Homu saplens]	19	0	\$
571	===	0698	6984	91 160047	pi01/seidic besic repest antigen [Plasmodium faltiparum] pir/A292321A29232 101K malaria antigen precursor - Plasmodium alciparum (strain Camp)	19	35	822
168	-	1915	2361	01 1499694	HIT protein, member of the HIT-family (Methanococcus januaschii)	19	1	(7)
121	-	9675	1 7948	19: 1467416	similar to SpoVB Bacillus subtilis	1.9	e 7	1728
74.7		1 1042	2340	91 216374	Glutery 7-ACA acyless precursor (Sacillus laterosporus)	61	6.7	1299
061	-	1 \$034	1117	91 409286	berU (Bacillus subtilis)	19	"	926
1 216	-	2	190	91 415861	eukaryotic initiation factor 2 beta (elf-2 beta) (Oryctologus uniculus)	19	2.9	6 8 7
1 227	7	4161	5048	91 216341	ORF for methionine amino peptidase (Bacillus subtilis)	61	7	888
238	-	1 1959	1 1047	[91]909543	[CDrC protein [Erwinia chrysanthemi]	61	3.8	1089
242	-	7	•69	1911537233	ORF_(579 (Escherichia coli)	19	38	(69)
1 247	2 -	678	1034	191 142226	clivD protein (Agrobacterium tumefaciens)	19	0,	151
1 257		13523	1 2627	gi 699379	glvr-1 protein (Mycobacterium leprae)	61	0.	697
1 268	~	3419	1308	91 40364	ORFA1 Clostridium scetobutylicum	61		691
275	-	1 4621	4827	91 1204848	hypothetical protein (GP: M87049_57) [Heemophilus influenzae]	61	36	207
2.2	-		\$	g+ TH4897	hota-N-acetylexosamınidase (Stroptococcus proumoniae) pir ASS(39) ASS(39) mannosyl-glycoprocein ndo-beta-N-acetylglucosaminidase (EC 3 2 1.96) precursor - treptococcus pneumoniae	19	\$	4
278	-	1 8003	2607	91 467462	cysteine synthetase A (Bacillus subtilis)	61	•	57.6
278	0	9878	8535	91 1205919	Ne. and Cl- dependent gamma-aminobutryic acid transporter [Heemophilus influenzes]	61	80	1344
283	-	-	996	941755607	polyA polymerase (Bacillus subtilis)	19	36	366
288	~	1918	1496	91 368108	[cel] wall enzymenterococcus faecalis]	6.1	Ş	£.
291	-	. A6	334	191 454265	FBP3 (Petunia hybrida)	61	36	549
e		1104	* 69	91 290531	similar to beta-glucoside transport protein [Escherichia coli] sp P31451 PTIB_ECOLI PTS SYSTEM, ARBUTIN-LIKE IIB COMPONENT PHOSPHOTRANSFERASE ENZYME II, B COMPONENT) (EC 2.7.1.69)	61	;	‡
330	~	1 1912	1190	9111001805	hypothetical protein (Symechocystis sp.)	9	4	127

. Aureus - Putative coding regions of novel protesins similar to known proteins

Cont 19 10	0.0	Start (nt.)	Stop (nt)	match	match gene name	E	1 ident	length (nt.)
385	7	1513	1 1025	91,533098	DoaD protein (Bacillus subtilis	61	42	684
426		194	399	u1;1303853	[YqgF Bacillus subtilis]	19	3	9.60
438	_	810	1421	ui 1293660	AbaA2 (Streptomyces coelicolor)	190	36	612
\$		1580	792	941733522	[phosphatidylinositol-4, 5-diphosphate 3-kinase [Dictyostellum iscoideum]	19	00	189
464	7	784	095	91/1123120	[CS]B7.5 gene product [Caenorhabditis elegans]	61	39,	225
470		7,09	7357	44 623073	ORF360; putative (Bacteriophage LL-H]	19	6	1281
\$03		554	67.2	91 467484	unknown (Bacillus subtilis)	19	59	276
555		1916	1296	911141800	anthenilate synthase glutamine amidotransferase (Acinetobacter alcoacaticus)	19	~	621
\$69	-	1171	857	91 467090	R2235_C2_195 [Mycobacterium leprae]	19		955
\$85	~	1 961	1 803	sp P36686 SURE_	SURVIVAL PROTEIN SURE HOMOLOG (FRAGMENT).	19	2	159
592	-	1694	1422	14111221602	inmunity repressor protein (Heemophilus influences)	19	32	27.3
603	-	2	1357	191/50738	Imp (Vibrio parahaemolyticus)	19	66	\$10
699	-	2467	1235	91 1146243	[22.4% identity with Escherichia coli DNA-damage inducible protein; putative [Becillus subtilis]	19	رر	1233
675		805	1101	Q1 +03373	gycercphosphoryl dietter phosphodietersse (Bacillus subtilis) pir S37251 S37251 glycerophosphoryl dietter phosphodietersse - acillus subtilis	19	36	297
103	-	9591	1 829	91 537181	ORF_f470 (Escherichia colil	19	32	A2A
728	-	1628	918	91 806281	DNA polymerase I (Bacillus stearothermophilus)	19	39	813
R21	-	19	318	91 709992	hypothetical protein (Bacillus subtilis)		98	258
856	~	2313	1567	91,609310	portal protein gpJ [Bacterlophage HK97]	6.1	0	~
923	_	1901	>4.2	91 143213	purative (Bacillus subtitis)	•	38	240
1124	-	\$	074	gi 1107541	CllD9.8 (Caenorhabditis elegans)	61	36	312
1492	- -	8 7 8	276	94 406397	unknown (Mycoplasma genitalium)	61	32	273
1602	-	9	318	911733522	phosphatidylinositol-4.5-diphosphate l-kinase (Dictyostelium iscoideum)	19	34	273
2500	-	77.5	067	911045964	hypothetical protein (GB:U1400]_297) [Mycoplasma genitalium]	19	. T	288
2968	- -	7	808	91 397526	clumping factor Staphylococcus aureus	19	\$\$	1 867
3076	-	_	248	[91(109373	ORF 1 [Lactococcus lactis]	19	₹	746
	1111				· · · · · · · · · · · · · · · · · · ·	*********	1111111111	

Contig	ORF 10	Start (nt)	Stop (nt)	match	natch gene name	E	1 Ident	length (nt)
1 3609		20.1	401	91 1408501	homologous to N-ecyl-L-amino acid amidohydrolase of Bacillus stearothermophilus (Bacillus subtilis)	59	39	105
1662	-	1477	1 740	91 1303813	Yqew Bacıl'us subtilis	61	42	867
1672		2	7	100	here-N-acetylhexosaminidase (Streptococcus pneumonise) ptr A56390 A56390 mannosyl-glycoprotein nda-bata-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	9	20	1 7 7
3724	-	7	1 220	191 1009366	Respiratory nitrate reductage (Bacillus subtilis)	61	Ţ	219
3728	-	-	398	91 677943	AppD (Bacillus subtilim)		9	396
4			6	011784897	beta-N-acetylherosaminidase [Streptococcus pneumonias] pir [A56390]A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase [EC 3.2.1.96) precursor - traptococcus pneumoniae	9	Ç	389
3971			282	01 784897	beta-N-acetylhanosaminidase (Streptococcus pneumoniae) pir [A56390]A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	61	\$	381
4038	-	199	159	191113399711	of NADM-dependent glutamate		7.7	100
4041	 : -	246	2.14	[91]413953	ipa-29d gene product (Bacillus subtilis!	19	œ	273
1047	<u>-</u>	-	402	ui 528991	unknown (Becilius subtills)	19	42	405
4102	- -	-	1 345	191 976025	[HrsA [Escherichia col:]	19	46	345
1.55		: <u>-</u>	336	411784897	hera-N-meety)herosaminidase Streptococcus pneumoniae) pff AA5390 AA5390 mannosyl-glycoprotein ndo-beta-N-acetyiglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	5	ç	336
* * * * * * * * * * * * * * * * * * *		163	233	009054 15	hadh yene of Ecopril gene product [Eschetichia coli] pir[\$3847] \$3847 hadh protein - Escherichia coli pir \$09629 \$09629 hypothetical protein A - Escherichia coli (SUB 40-520)		38	231
4374		542	273	011784897	beta-N-acetylhexosaminidass [Streptococcus pneumonias] pir [A56390]AS6390 namnosyl-glycoprotein ndo-beta-N-acetyiglucosaminidass (EC 3.2.1.96) precursor - treptococcus pneumonias	19	0.5	270
4389	-	7	172	91 147516	ribokinase (Escherichia coli	19	35	17.
4621	-	~	268	91 784897	beta-N-acetylhexosaminidase Streptococcus pneumoniae pir A56390 A56390 mainnesyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	19	\$	197
1 4663	<u>-</u>	72	1 227	1911976025	HisA (Escherichia coli)	19	0.5	201
	9	6663	\$516	qi 1408501		09	\$	1128
	-							

EP 0 786 519 A2

(c.nt.19 OFF 10 110	10FF	Start (nt)	Stop (nt)	match acession	Track Open mane	e e) ident	length
=		3426	3725	1014 410748	ting-infested erythiocyte surface antigen (Plasmodium falcipacum) pir A2526 A2526 ting-infected erythiocyte aurface antigen recursor Plasmodium falciparum (strain FC27/Papua New Guinea) sp Pij830 RESA_PLAFF RING-INFECTED ERYTHROCYTE SURFACE ANTIGEN RE	9	: 	coc
=	124	111035	1011	10. [1217651	carbonyl reductase (NADPII) (Rattus norvegicus)	0,9	28	723
91	112	111917	12930	q1 1001453	hypothetical protein Synechocystis sp.	0	, ,	101
2	<u>-</u>	3.6	694	91 388109	regulatory protein [Enterococcus (aecalis]	0,	-	3
	1 =	1001	9834	19111336656	O. (1 (Nacillus subtilis	0,9	40	9.81
	-	4364	1 4522	19114872	ORF 4 [Saccharomyces kluyveri]	0,9	47	159
3	-	1 2047	1 1025	1911142822	D-alanine racemase cds (Bacillus subtilis)	0,9	61	1023
3	-	2474	1 3607	911468046	para-nitrobenzy] esterase (Bacillus subtilis)	09	27	1134
3	10	6756	6924	gi 414234	thif Escherichia coli	09	52	7101
\$	110	8874	1 9074	19: 343949	(var1(40 0) (Saccharomyces cerculaise)	0.9	7	201
95	=	127842	26430	gi 468764	mocR gens product (Rhizobium meliloti)	0.9	1 35	1413
09	7	27.1	1 388	96 1303864	YqqQ (Bacillus subtilis	09		216
(9	- 2	157	1619	91 467124	ureD, B229_C3_234 [Mycohacterium leprae]	09	7	1263
59	-	1 787	195	oi 1518853	OafA (Salmonella typhimurium]	03	96	193
ž.	-	-	1188	91 1480429	putative transcriptional regulator (Bacillus stearothermophilus)	09	000	1188
92	•	14735	13881	Qi 349227	transmembrane protein [Escherichia coli]	09	rc	855
92		9665	1 4923	•	nikB [Escherichia coli]	0.9	96	1074
16	<u>-</u>	949	9.0	91 1510925	coentyme F420-reducing hydrogenase, beta subunit (Methanocorcus jannaschii)	90	27	474
96	-	7,166	11.11	91/2/2/16	Jacoessony prototo (Carmobocterium piscirola)	940	0.0	213
86	9	2176	6907	91 467425	unxnown (Bacillus subtilis)	90	\$	858
201	<u>°</u>	7158	7430	QL 143092	descolectate synthass small subunit (Bacillus subtilis) sp p37252 iLUN_BACSU ACETOLACTATE SYNTHASE SMALL SUBUNIT (EC. 1.3.18) (Alias) (ACETOHYDROXY-ACID SYNTHASE SHALL SUBUNIT) (ALS).	09	£ £	273
601	Ξ.	1 9127	110515	19:11255259	o-succinylbenzoic acid (OSB) CoA ilgase (Staphylococcus aureus)	09	2.8	1389
601	77	10499	111656	91/141954	beta-ketothiolase Alcaligenes eutrophus	0,0	7	1158
61:	- 7	1 4630	1114	9111524280	unknown (Mycobacterium tuberculosis	0.9	1 \$\$	1497

5

anreus - Putative coding regions of novel proteins similar to known proteins

Contrg OKF	0 kF	Start (nt)	Stop	Batch	avich gene name	E , s	, ident	length (nt)
121		1 6957	7646	191-1107529	ceuC gene product Campylobacter coli	0 9	15	069
140	-	1 7704	6013	91/146547	kdpA (Eacherichia coli)	0.9	45	1692
145	; -		1,00	191 1460077	unknown (Mycobacterium tuberculosis)	09	23	102
150	-	1 2809	2216	911146230	putative (Becillus subtilis	0	40	394
157	~	1389	1961	911303975	YqjX (Bacillus subtilis)	0,	30,	429
158	- 5	5125	1 4769	91 1449288	unknown Hyrobacterium tuberculosis	0,9	36	157
159	-	1 811	1 257	91 580932	murD gene product (Bacillus subtilis)	9	\$	255
1 160	-	1 1 59	11187	91 1204532	hypothetical protein (GB:L19201_29) (Maemophilus influenzae)	0.9	7	1029
161	=	A249	7866	91 1496003	[ORF], Papy; putative oligoendopeptidams based on homology with Lactococcus Lactis Papy (Genbank Accession Number 232522) [Caldicellulosiruptor saccharolyticus]	0.9	~	
172	-	1331	2110	[91]485280	28.2 kDa protein (Streptococcus pneumoniae)	0.9		180
1 173	7	4042	1 2460	9111524397	[glycine betaine transporter OpuD [Bacillus subtilis]	09	‡	162)
173	-	5463	4953	[91]1100737	NADP depandent louketreine bf 12-hydroxydehydrogenase (Sus scroin)	09	:	1011
198	-		1 995	[41] 413943	Ipa-19d gene product (Bacillus subtilis)	09	3	663
231	-	1641	[457.3	sp P37028 YADT_	HYPOTHETICAL 29 4 KD PROTEIN IN HEML-PFS INTERGENIC REGION PRECURSOR.	09	3.7	616
92	-	, 3269	1 2415	191 257 28	[09719.34p; CAI: 0.14 [Saccharomyces cerevisiae]	0,	:	87.5
206	-	112234	112515	sp 937347 YECD_	HYPOTHETICAL 21. A KD PROTEIN IN ASPS 5. REGION	0,0	-	2.82
212	-	1213	1410	101 332711	hemagglutinin-neuraminidase fusion protein Human parainfluenza irus 3)	09	9.0	861
214	-	- 65	1 1153	ui 1204366	hypothetical protein (GB U14003_130) [Haemophilus influenzae]	09	36	1089
1 237	-	7 -	1 937	91 149377	H(sD (Lactococcus lactis)	99	0	936
243	9	9695	4998	9111046160	hypothetical protein (GB U00021_5) [Mycopleama genitalium]	99	1,	669
1 260	-	5919	6485	QI 431950	similar to a B. subtilis gene (GB. BACHEHEHY_S) (Clostridium asteurisnum)	09	15	567
1 264	-	1 2432	1218	91 397526	clumping factor (Staphylococcus aureus	9	53	1215
1 267	-	-	1409	gi 148316	NaH-antiporter protein (Enterococcus hiras)	9	72	1407
275		3804	4595	pir F36889 F368	lauD 3 region hypothetical protein - Lactoroccus lactis subsp. lactis (strain :Li40)	09	<u>^</u>	266
1 291		098	1198	911208889	coded for by C. elegans CDNA ykl30el2.5; contains C2H2-type zinc fingers [Caanorhabditis elegans]	0,	a 	\$15
					·	1 1 1 1 1 1 1	1	

TABLE 2

S. aureus - futative coding regions of novel proteins similar to known proteins

Cortig	ORF	Start	Stop (nt)	match	match gene name	E .	• ident	length (nr)
1 307	9	3421	3176	91 1070014	protein-dependent (Bacillus subtilis)	9	36	246
316		1 4957	5823	91 (13952	ips-28d gene product (Bacillus subtilis)	0.9	-	- 98 - 98
328		2996	7 8 7 6	91 1204484	membrans-sessociated component, branched amino acid transport system	9	э. *.	489
1 332	- 2	1 4887	4363	91 1205449	colicin V production protein (pur regulon) (Mesmophilus influenzee)	9	1,	\$25
1 357	-	1 1062	532	91 PR7842	single-stranded DNA-specific exonuclesse [Escherichia coll]	0.9	7	53.
375		90	362	91 11057	adenylyl cyclase gene product [Saccharomyces kluyveri] r[JQ1145 ovBVK adenylste cyclase [EC 4 6 1.1] - yeast ccharomyces kluyveri]	9	47	267
197	-	9	914	191 709999	Glucarate dehydratase (Bacillus subtills)	0.9	7.6	151
60+	-	7	163	91,499700	[glycogen phosphorylase (Saccharomyces cerevisiae)	9	3.5	162
1 453	-	116	1237	91 1196899	unknown protein (Stephylococcus sureus)	09	36	324
1 453	-	3838	3620	8p P12222 YCF1_	HYPOTHETICAL 226 KD PROTEIN IORF 19011.	9	31	219
470	-	622	945	pir 530782 5307	pir S30782 S307 integrin homolog - yeast (Saccharomyces cerevisiae)	0.9	1.0	324
005	-	118	909	91 467407	unknown Becillus subtilis	0.9	36	689
503	_	1 752	982	91 167835	myosin heavy chain [Dictyostelium discoideum]	9	75	162
505	_	1 2238	1563	191 1510732	NADH oxidase (Methanococcus jannaschil]	9	36	1326
523			1043	91 143333	atkatine phosphatase regulatory protein (Becillus subtilis) pir [A27650 A27650 regulatory protein phoR - Bacillus subtilis ap P23545 PHOR_BACGU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PHOTEIN HOR [EC 2.7.3,-).	9	Ţ	1001
543	-	-	465	(91/1511103	cobalt transport ATP-binding protein 0 [Methanococcus januschii]	09	0	\$9\$
1 545	-	1	726	pi 1498192	[putative [Pseudomonas aeruginosa]	60	0	726
556	_	7	1054	91/1477402	tex gene product [Bordetella pertussis]	0.9	2	1053
578	_	\$26	489	91 1205129	H. Influentae predicted coding region M10882 (Haemophilus influentee)	0.9	4 2	486
594	_		624	91 1212755	[adenyly] cyclase (Aeromonas hydrophila)	09	£	624
009	_		530	91 145925	[fecB (Escherichia coli)	60	3	528
620	_	926	465	191 1205483	bicyclomycin resistance protein [Haemophilus influentee]	9	2	462
630	P4	1 69 1	1122	gi 1486242	unknowm (Bacillus subtilis)	09	7	252
645	-	1 574	425	41 1205136	serine hydroxymethyltrensferese (serine methylase) Heemophilus influentee	9	87	150
	1111						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

TABLE 2

EP 0 786 519 A2

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig		Start	Stop	aetch	match gene name	E19	1 Ident	Jengt !:
<u> </u>	2 :	(at)	() ()	- SCRESTON			-	
6.P.	<u>-</u>	1082	843	(gi 120553B	hypothetical protein (GB.U14003_302) (Haemophilus influenzae)	09	6.	740
986	-	1967	485	9111402944	orfRM1 gene product (Bacillus subtilis)	09	9.	483
*	-	588	346	91 790943	urea amidolyase (Bacillus subtilis)	0.9	0	243
851	1 1	-	326	91 159661	GMP reductable [Ascaris lumbricoides]	09	7	726
178	-	1746	974	91 1001493	hypothetical protein (Symechocystis sp.)	09	39.	(79
964	<u>-</u> -	1558	839	91 604926	NADH dehydrogenase, subunit 5 (Schitophy) lum commune) ep P50168 NUSH_SCHCO NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC. 6.5.3).	9	85	071
RO6	~	*	1.53	91 662880	novel hemolytic factor (Bacillus cereus)	09	,11	306
979	-	1 2	595	g1 1429255	[putative; orf] [Bacillus subtilis]	09	30	294
1001		699	203	91/561055	Inner membrane copper tolerance protein [Scherichia coli] 9 81029 diaulphida isomerasa like protein [Escherichia coli] pir 647295 547295 inner membrane copper tolerance protein - scherichia coli	09	•	16.8
1112	-	1150	620	01 407885	ORF3 [Streptomyres griseus]	9	~	531
\$111	-	484	275	91/11/1407	Vpshp Saccharomyces cerevisiae	9	36	2:0
1146	-	17	562	Qi 1239981	hypothetical protein (Bacillus subtilis)	09	9	546
1291	-	1 716	360	pir 557530 5575	carboxyl esterase - Acinetobacter calcoaceticus	60	30	357
1332	-	336	169	91 1222056	aminotransferase [Hasmophilus influentas]	0.9	-	168
1429	-	-	146	gi 1205619	[ferritin like protein [Haemophilus influenzae]	09	39	**
1722		5.70	286	qi/240052	dihydroflavonol-4-reductase, DFR [Hordeum vilgare:barley, cv. Gula, eptide. 354 aal	9	96	285
2350	-	385	1 200	91/497626	ORF 1 [Plasmid pAQ1]	09	50	186
1 2936	-	519	310	191 508981	prephenate dehydratase (Bacillus subtilis)	0.9	ec -	210
1 3027	-	1 568	102	1146199	putative {Bacilius subtilis	0.9	37	267
2084	-	1 20	1 208	ui 1407784	orf-1, novel antiqen (Staphylococcus sureus)	0.9		2.89
3155	-	7	226	91 1046097	cytadherence-accessory protein [Mycoplasma genitalium]	09	34	225
3603		368	186	qi 510108	Initochondrial long-chain enoyl-CoA hydratase/3-hydroxycyl-CoA ehydrogenase alpha-subunit (Rattus norvegicus)	°	7	60.
1665		486	244	91 151259	HHG-CoA reductase (EC 1.1.1.88) (Pesudomonas mavalonii) pir A44756 A44756 hydroxymathylglutaryl-CoA reductase (EC 1.1.1.88) Paeudomonas ap	o ,	4 5	243
1 3747	-		146	474192	lucC gene product [Escherichie coli]	0.9	91	4

EP 0 786 519 A2

10	
15	
20	
25	
30	
35	
40	
45	

50

55

S aureus - Putative coding regions of novel proteins similar to known proteins

5

Contig JORF	108F	Start (nt)	Stop	match	match gene name	ei.	1 ident	length (nt)
1 3912	-		335	Qx :488695	novel antigen; orf-2 (Staphylococcus aureus)	0.9	-	יננ
1 4072	-		272	911405879	yeil (Escherichia coli)	9	- -	270
134		510	352	1011 '80656	chemoraceptor protein [Rhizobium leguminosarum bv. viciae] gl 780656 chemoraceptor protein [Rhizobium leguminosarum bv. iciae]	9	28	159
4207	~	677	† † † † † † † † † † † † † † † † † † †	911602031	similar to trimethylamine DH (Hycoplasma capricolum) ptr [54950 54950 probable trimethylamine dehydrogenase (EC 5.99.7) - Mycoplasma capricolum (5GC3) (fragment)	9	7	276
4243		123	324	gi 899317	peptide synthetese module (Hicrorysis seruginoss) pir[54911] [54911] probable amino acid activating domain - icrocystis seruginoss (fragment) (SUB 144-528)	0,	7	20.0
4110	- - -	1 624	313	191 308980	pheB Pacilius subtilis	9	28	312
4145		343	173	91 510108	mitochondrial long-chain enoyl-CoA hydrateae/l-hydroxycyl-CoA ehydrogenase alpha-subunit [Rattus norvegicus]	9	~	171
4382	-	964	280	91 47382	ecyl-CoA-dehydrogenese (Streptomyces purpurascens)	9	8	219
+23		3	223	91 510108	nitochondrial long-chain encyl-CoA hydratass/3-hydroxycyl-CoA shydrogenase alpha-subunit (Rattus norvegicus)	\$	\$	171
77	-	1 4518	1352	91 426446	Vip8 procein (Salmonella typhi)	65	39	966
3	7	100	3	pix \$48604 \$486	hypothetical protein - Mycoplasma capricolum (SGC3) (fragment)	65		17.
1 33	- \$	14651	5853	191 6721	F5982.3 (Ceenorhabditis elegans)	- 59	133	1203
t 1	-	1228	6620	101 (14283)	ORF2 [Dacillus subtilis]	65	-1	916
	121	16784	16593	9112576	Bie (Phaeodactylum tricornutum]	65	0	761
52		3 2648	2349	91 536972	ORF_090a (Escherichia colii	65	*	300
2	112	12 14181	13402	121 483940	transcription requistor (Bacillus subtilis)	65	7.6	780
1 57	-	1 4397	3339	91(508176	Cat-1-P-DM, NAD dependent Escherichia coli	89	0.9	1059
99	-	986	495	19111303901		88	*	492
1.67	- 1	1 6552	2460	91 912461	nikC (Escherichia coli)	65	7.6	606
0,0		5383	6366	qi 1399822	PhoD precursor (Rhizoblum meliloti)	59	9	984
			14	[g1 971345	Unknown, similar to E.coli cardiolipin synthase (Bacillus subtilis) sp P41860 YMIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA NTERGENIC REGION.	65	9.6	657
3	110	10 14329	115534	qi 490328	[LORF P [unidentified]	65	7	1206
1 4 4 4 4 4 4								

S. aureus - Putative coding regions of novel proteins similar to known proteins

1 100	Contig ONF 1D 1D	OKF 110	Start (nt)	Stop (nt)	match	. הפוקון מפחפ חפשפ	E	1 ident	length (nt.)
1 2 620	89		1602	958	91 642801	unknown (Saccharomyces cerevisiae	53	32	645
1 156 1577 1517	9,6	-	4940		91 1333802	protein of unknown function (Rhodobacter capsulatus)	5.9	33	534
1. 14.4 19.5 [c] [c]	9.8	=	~	1 820	911467421	similar to B. subtilis DnaH (Bacillus subtilis)	6.5	7.	613
10 1514 1915 1911 1915 1911 1915 19	119	-	166	1 1557	91/143122	ORF B; putative (Bacillus (iraus)	9.0	36	1392
13 134 135 131 132 141 132 132 142 132 142 132	120	110	6214	95.09	91 15354	ORF 55.9 (Bacteriophage T4	5.9	39	541
1 196 195 6419 64124034 124 a suith the Symenococcus sp. Mpay protein; putative 59 11 1 1 10 645 9411250434 124 a suith the Symenococcus sp. Mpay protein; putative 59 10 11 11 12 12 12 12 12	120	!			q1 1086575	BotA (Rhizobium meliloti)	83	3	1035
1 170 645 [61 1236634 [25 64 Identity Over 120 as with the Symmococcus Symmochie] 1 1 1 1 1 1 1 1 1	123	1	386	195	g1 994737	catalase (Campylobacter jajuni)	\$	*	26:
4 5278 5712 G1 15100555 Improthecical process 1578 1778 G1 15101442 Improthecical process 1578 1778 G1 1501142 Improthecical process 1578 1778 G1 1701142 Improthecical process 1578 1778 G1 1701142 Improthecical process 1578 1778 G1 1701142 Improthecical process 1578 1778 G1 1779 G1	130		370	5+9	1256634	[25.81 identity over 120 as with the Synenococcus sp. MpeV protein; putative [Bacillus subtilis]	\$	-	276
1 1 1 1 1 1 1 1 1 1	=======================================	-	\$278	5712	91 1510655	hypothetical protein (SP:P42297) [Methanccoccus fannaschii]	89	96	435
4 1229 2221 Gil 1203165 Phypothetical procein SP 1745 14440 1229 2221 Gil 120316 Gil 1001341 Phypothetical procein SP 1745 1717 Gil 114421 Euclin-Induced Procein Symechacystis sp. 19 19 19 19 19 19 19 1	164	-		506	gi 1001342	hypothetical protein (Symechocystim sp.)	\$9	=	507
17 1764.3 21176 94 1001181 Invaiohnetical protein (Nymerhacyptis sp.) 14 17 17 17 17 17 17 17	164	-	1529	2821	91 1205165	hypothetical protein (SP: P37764) (Haamophilus influenzae)	\$	3.5	1293
1 4727 1717 9 114421	164	119	•	121376	i -	hypothetical protein (Symechocystis sp.)	65	7	1734
2 1216 1688 gi 143036 Unidentified gene product Bacillus wubfills 59 50 50 50 50 50 50 5	173	-	(272)	1171		auxin-induced protein (Vigne radiate)	59	05	1011
12 12669	179	- 5	1 2218	1688	91 143036	unidentified gene product Becillus subtilis	53	33	165
5 4702 5670 gill510240 Nemin permease (Methanococcus Jannaschiil) 59 32 34 319 6115 gill510456 Nrpothetical protein (GB:X73124.53) (Maemophilus influenzeel 59 34 31 32 32 34 32 32 34 34 32 32	195	173	•	111503		Nifs gene product (Anabaena azoliae)	53	7	1167
7 5719 6315 94151456 N. Jannaschii predicted coding region HJ1437 [Methanococcus Jannaschii] 59 34 1 102 461 941151451 12 14 14 14 14 14 14 1	201	- 5	4702		91 1510240	head permesse (Methanococcus jannaschil)	65	32	696
1 102 461 gill204666 hypothetical protein (GB:X73124_53) [Haemophilua influenzae] 59 42 3 1050 2234 gil[55153] 2-nitropropana dioxygenase (Williopsis seturnus) 59 36 36 5 3291 4135 gil[101709] YrkJ [Bacillus subtilis] 59 32 32 6 3141 2167 gil[20489 dfp (GG Site No. 18430) [Escherichia coli!] 59 34 7 3785 gil[49382 HisA [Lactococcus lects] 59 34 8 3786 gil[140581] YqvJ [Bacillus subtilis] 59 31 9 1621 812 gil[40587] YqvH (Escherichia coli!] 59 31 9 1621 8180 gil[40587] YqvH (Escherichia coli!] 59 32 34 9 10 1003879 YqvH (Bacillus subtilis] 59 35 9 10 10 10 10 10 10 10	201	- 7	1 5719	6315	1	[N. jannaschii predicted coding region MJ1437 [Methanococcus jannaschii]	59	ř	597
3 1050 2234 911531531 2-nitropropane doxygenase (Williopais acturnus) 59 36 31 32 32 32 32 32 32 32	209	-	102	194	gi 1204666	hypothetical protein (GB:X73124_53) (Haemophilus influenzae)	59	4.2	360
5 3291 4135 911307709 YrkJ (Bacillus subtilis) 59 32 32 33 34 34 34 34 34	214	-	1050	1 2234	191 (55153)	2-nitropropana dioxygenase (Williopsis seturnus)	88	36	1185
2 1374 2167 91[270489 dfp (CG Site No. 18430) Escherichia coli! 59 44 1 1 1 1 1 1 1 1	7.7	- 2	13293	4135	1	YrkJ (Bacillus subtilis]	53)2	843
5 307R 3785 gil 49982	21.7	-	13381	1 2167	91 200489	dfp (CG Site No. 18430) [Escherichia coli]	59	-	1215
2 376 960 961 962 963 964 965 964 965 964 965	237	-	1 307R	37.85	Qi 149382	IIISA [Lactococcus lactis]	59	3.	104
1 1621 812 912 91 140551 transmembrane protein (kdpD) (Escherichia colii) 59 31 1 5 4978 3860 91 405879 yeih (Escherichia colii) 59 32 3 1 1 1 1 1 1 1 1 1	251	-	376	096	191 1303791	אַקּיִל (Bacillus subtilis)	59	*	585
5 4978 3860 gr 405879 yeil (Escherichia coll) 59 32	2.R6	-	1621	813	(91 146551	transmembrane protein (kdpD) [Escherichia coli]	\$	31	810
3 600 761 gi 3303794 YqeM (Bacillus subtilis)	316	- 2	4978	3860	i	yeiH (Escherichie coli)	59	32	1119
	370	-	009	1 761	19111303794	YqeM (Bacillus subcilis)	59	35	162

EP 0 786 519 A2

-	
10	
15	
20	
25	
30	
35	
40	
45	

	aniens - Intative coning regions of mover processes similar to smooth processes
١	2
2	3
1	
-	1300
•	5
-	regions
-	Section :
	- 1.01.01.00
	actoria
	ı.

		•					1 1dunt	1 ength
Contro OAF	ğ a	(ut)	Stop (nc)	acession	March Gene name			(ut)
1 382	-	6001	206	[91[547513	orf) [Haemophilus influentae]	65	7.	504
166	-	1620	[1273	91 152901	ORF 3 (Spirochasta aurantia)	59	37	348
901		2805	1705	gi 709992	hypothetical protein (Bacillus subtilis)	59	34	1101
426		3802	3245	91/1204610	iron(III) dicitrate transport ATP-binding protein FECE [Heemophilus	5.5	36	85.58
429	~	1 1513	11168	g1 1064809	homologous to sp:HTRA_ECOL1 (Racillus subtills)	- 65	42	366
094	- 2	1 708	1011	[91]466882	pps : B1496_C2_189 [Mycobacterium lepree]	59	3.7	594
199	-	2212	3135	91 1498295	homomerine kinase homolog [Streptococcus pneumonise]	59	3)	924
673	-	2929	1607	gi 147989	trigger factor (Escherichia coll)	59	0	1323
0 4 7	ac	\$862	6110	gi 1205311	()88-hydroxymycistol acyl carrier protein dehydrase [Neemophilus influenzae]	\$	Q	249
125	-	*	1354	pir A25620 A256	staphylocoagulase - Staphylococcus aureus (fragment)	59	32	1341
534		2994	4073	01 153746	mannitol-phosphate dehydrogenase [Streptococcus mutans] pir C44798 C44798 mannitol-phosphate dehydrogenase Mt]D - treptococcus mutans	65	36	1080
515	-	-	954	01/1469939	group B oligopeptidase PepB (Straptococcus agaiactiae)	59	2	954
1 551	-	2836	3186	01/1204511	bacterioferritin comigratory protein (Haemophilus influenzae)	89	\$	151
(72	7	1 449	340	91 386681	ORF YALO22 (Saccharomyces cerevisiae)	29	36	492
059			748	196400	similar to eukaryotic Ne-/H+ exchangers [Escharichia coli] sp P12703 YJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR-ACS NTERGENIC REGION (0549).	59	DC .	**
664	-	995	582	91 1262748	LukF-PV like component Stephylococcus aureus	- 89	66	282
670	-	-	455	91/1122758	unknown [Bacillus subtilis]	- 8	5	(53
674	-	55	929	gi 293033	integrase [Bacteriophage phi-LC3]	65	97	187
758	-	946	176	gi+1500472	M Sannaschii predicted coding region MJ1577 (Methanococcus Sannaschii)	65	۲۷ ا	174
166	~	2270	1461	qi.522150	bromoperoxidase BPO-A1 Streptomyces aureofactens sp P13912 sPA1_STRAU NON-HAEM BROMOPEROXIDASE BPO-A1 (EC 1.11.1) BROMIDE PEROXIDASE) (8P01). (SUB 2-275)	65	4	B10
825	-	1 2191	1 1097	941397526	clumping factor (Staphylococcus aureus) ,	88	47	1095
1052	-	1094	1 723	91 289262	comE ORF5 (Bacillus subtilis)	65	36	372
1152	-	1373	188	19111276668	ORF138 gene product (Porphyra purpurea)	65		186

	0			
	5			
,	0			
,	5			
	0			
	5			
	0			
•	5			
,	0			

S. aureus - Putative coding regions of novel proteins similar to known proteins

ATP-dependent nuclease	uclease (Bacillus subtilis)	65		92
glycyl-trnA sy	glycyl-tRNA synthetase (Mycoplasma genitalium)	65		-
triacylglycero	triacylglycerol lipase (Galactomyces geotrichum)	5.9	33	_
YqeM (Bacillus subtilis	subcilis!	59	38	_;
insulin-like growth fact (rats, liver, Peptide,	insulin-like growth factor binding protein complex acid-labile ubunit (rets. liver. Peptide. 603 as)	59	4 8	
YqhK (Bacillus subtilis]	<pre>eubt411s]</pre>	59	3	_
neurofilament	neurofilament protein NFTO (Helix asperse)	59	2	_ :
crotonase (Clo	crotonase (Clostridium acetobutylicum)	5.9	• 5	
crotonase (Clo	crotonase (Clostridium acetobutylicum)	59	42	
crotonase [Clo	crotonass (Clostridium acetobutylicum)	\$3	42	
homologous to	homologous to penicillin acylase [Bacillus subtilis]	59	36	_
crotonase [Clo	crotonasa (Clostridium acetobutylicum)	59	7	_ ;
unknown (Mycob	unknown (Mycobacterium tuberculosis)	88	96	_ :
N -acetylglucos phosphotrans specific - Es ACETYLGLUCOSA	N-acetydglucosamine transport protein (Escherichia coli) pir 829895 MQECIN phosphotransferase system enzyme Il (EC 7.1.69). N-acetylglucosamine-specific - Escherichia coli sp P09123 PTAA_ECOLI PTS SYSTEM, N-ACETYLGLUCOSAHINE-SPECIFIC ITAEC OMPONENT (EITA	88		
collagen alpha	collagen alpha chair precursor (AA -27 to 1127) (Mus musculus)	8.8	05	
phosphor toosy	phosphoribosyl anthiantlate isomerase (Thermotoga maritima)	58	32	
EpsG (Strepto	EpsG (Streptococcus thermophilus)	89.	29	
pir A31133 A311 diaminopimela	diaminopimelate decarboxylass (EC 4.1.1.20) - Pseudomonas aeruginosa	98		
vestitone redu	vestitone reductasa [Medicago sativa]	88	37	
terrichrome-b	ferrichrome-binding protein (Bacillus subtilis)	5.8	33	
embryonic myosin beta	embryonic myosin heavy chain (1085 AA) (Homo sapiens) ir Si2460 Si2460 myosin beta heavy chain - human	S 8	ττ	
glucose regula	glucose regulated protein (Echinococcus multilocularis)	89.	3.2	~
X 100se-seco	kinase-associated protein B (Bacillus subtilia)	20	35	_
Arabidopsis product Arab	Arabidopsis thallans unidentified mANA sequence, complete cds.], ene product [Arabidopsis thallans]	5.8		

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contin	Contig loaf	Start (nt.)	(ur)	match	. ושטרכים מפוום נוסטים	E is	1 ident	length	
19		12017	(11229	gi 1228083	[NADH dehydrogenase subunit 2 (Chorthippus parallelus)	58	=	789	
96 -	-	1 8208	9167	91 709992	hypothetical protein (Bacillus subtilis)	58	42	C96	
101		2065	1364	91 806327	Escherichia coli hipa gene for A protein similar to yeast PRF16 and RF22 (Escherichia coli)	80 %	3,7	702	
112		4519	5613	gi 155588	glucose-fructose oxidoreductase [2ymomonas mobilis] pir A42289 442289 qlucose-fructose oxidoreductase (EC 1.1) recursor - 2ymomonas mobilis	88	, er	1095	
• 11	9	17114	6503	91 1377843	unknown (Decillus subtilis)	5.8	38	916	
: = -		1 2261	1395	pir A45605 A456	nature-parabite-infected erythrocyte surface antigen HESA - Plasmodium	£ 5		.986	
15.	-	717	950	9111370261	unknown (Mycobacterium tuburculosis)	95	16	77	
154	9		1 4627	191 1209277	pCTHom1 gene product [Chlamydia trachometia]	88	4	1389	
154	126	114281	113541	91 146613	DNA ligase (EC 6.5.1.2) [Escherichia coli]	\$8	60	741	
155	-	1 2269	1892	19111103917	YqiB (Bacillus subtilis]	85	7	378	
-	-	1056	633	[q1]90419R	hypothetical protein (Bacillus subtilis)	58	26	528	
681	-	1533	69/1	1911467383	DWA binding protein (probable) (Bacillus subtilis)	88	52	23.7	
201	-	1 2669	1 3307	gi 1511453	endonuclesse III (Methanococcus jannaschii]	88	35	639	
208	-	- 2	238	91 1276729	phycobilisome linker polypeptide Porphyra purpureal	85	29	237	
220	Ξ	114575	13058	91 197526	clumping factor (Staphylococcus aureus)	88	16	1518	
231	-	1 1629	1474	si 1002520	HutS (Bactillus subtilis)	85	45	156	
1 233	. 9	1027	3497	gi 1463023	No definition line found [Caenorhabditis elegans]	. 28	39	105	
243	110	1 9303	110082	94 537207	ONF. (277 Escherichia coli]	25	32	180	•
1 257	_	-	611	gi 1340128	ORF1 (Staphylococcus aureus)	88	7	618	
302	-	097	100	191146174	ONF X (Bacilius subtilis)		7	342	•
1 307	=	1 69A4	6127	91 1303842	YqfU (Bacillus subtills)	1 58	30	R 5 8	
321	2	1914	1 2747	9111239996	hypothetical protein (Bacillus subtilis)	98	=	834	- •
342	-	2724	1 3497	[91 454838	ORF 6; putative (Pseudoronas aeruginosa)	88	7	774	
348	_	-	663	1911467478	unknown [Bacillus subcilis]	5.8	36	(99)	- •
401	~	384	1 605	gi 143407	para-aminobentoic acid synthase, component I (pab) [Bacillus ubtilis]	88	53	222	4
					· · · · · · · · · · · · · · · · · · ·				

3 oureus - Putative coding regions of novel proteins similar to known proteins

YqgS Bactilus subtitis protein A (Staphylococcu unknown (Schizosaccheron yjjG gene product (Esche			·	
protein A (Sta unknown (Schiz		- 85	2 1	1230
unknown (Schiz	protein A (Staphylococcus aureus)	2.0	2	1338
)G gene prod	unknown (9chizoseccheromyces pombe) 58	8	Ä	571
	yj)G gene product (Escherichia coli)	8 6	Ç	1 702
6.7% of ident protein 6; pu	26.7% of identity in 165 as to a Thermophilic bacterium hypothetical 58 protein 6; putative (Bacillus subtilis)	8 5	36	714
do (gtaA) po robable rodo OLY(GLYCERCL CID BIOSYNTH	rodD (greA) polypeptide (AA 1-613) (Bacillus subtilis) pir S06048 S06048 S8 probable rodD protein - Bacillus subtilis sp P13484 TAGE_BACSU PROBABLE POLYIGLYCERGL-PHOSPHATE) LPHA-GLUCGSYL13ANSFERASE (EC 2 4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).		9	696
POTHETICAL H	HYPOTHETICAL HELICASE MGOIR.	28	30	1164
rf268 gene pr	orfile gane product (Hycoplasma hominis)	85	29	363
striction mo	restriction modification system S subunit (Spiroplesme citri) g1 886052 S8 restriction modification system S subunit (Spiroplesme ltri)	2	3.7	1218
S protein	nifS protein (AM 1-400) (Klebsielle pneumonise)	5.8	7.	111
unknown (Pseudoronas	aeruyinosa)	80	87	192
hypothetical p	protein (Synechocystis sp.)	8	\$	231
integral membr	membrane protein [Homo sepiens]	8	9	\$00
othetical p	hypothetical protein [Symechocystis sp.]	*	Ş	16)
nseldolese	transsidolase (Methanococcus jannaschil)	5.8	3	738
iles! sodium-d iles! sodium-	iseal sodium-dependent bile acid transporter [Rattus norvegicus] gi 677882 58	8	c	9 * 8
othetical p	hypothetical protein (Bacillus subtilis)	88	Ç	159
hypothetical protein	(GB:L10328_61) [Maemophilus influenzae]	85	3.9	240
8; homologo	ORFS; homologous to small subunit of phaga terminases [Bacillus ubtilis] SR	es.	96	109
C gane prod	osmC gane product (Escherichia coli)	e2	28	507
zyme PQQ s	coentyme PQO synthesis protein III (pqqIII) (Haemophilus influentee)	88	32	109
lagenase (H	collagenase (Haemophilus influenzae)	88	36	606
A isopenten P07864 HOD PHOSPHATE:	thna isopertenyl transferske (Seccharomyces cerevisiae) sp[p07884 MOD5_YEAST TRNA ISOPENTENYLTRANSFERASE (EC 2.5.1.8) ISOPENTENYL- DIPHOSPHATE: TRNA ISOPENTENYLTRANSFERASE) (IPP RANSFERASE) (IPPT)	es	7.	

S aureus - Putarive coding regions of novel proteins similar to known proteins

Cont.19 OHF	OKE.	Start (nt)	Stop (nt)	match	match gene name	E 1 8 .	• ident	length (nt)
854	-	11108	509	91 466778	lyaine specific permesse (Escherichia coli)	85	7	504
RRS	=	1 481	1 242	91 861 199	protoporphyrin IX Mg-chelatase subunit precursor [Nordeum vulgare]	58	33	240
169	[-		527	91 129 3 660	AbsA2 Streptomycem coelicolor	88	31	525
942	-	1 931	1 467	91 405567		88	30	465
1002	-	952	521	gi 577649	prelUKM [Staphylococcus aureus]	85	34.	432
£ 5.			261	91 581558	1.50] eucyl trna synthetase (Stadhylococcus auteus) sp[P41368]SYIP_STAAU 150LEUCYL-TRNA SYNTHETASE, HUPIROCIN RESISTANT EC 6.1.1.5) (150LEUCINE THAN LIGASE) (1LERS) (HUPIROCIN RESISTANCE ROTEIN).	5.8	<u>.</u>	561
1462	-	~	463	91 971394	similar to Acc No. 026185 (Escherichia coli)	88	•	462
1.873	-	1 480	1 2 4 1	fgi 1339951	small subunit of NADM dependent glutamate synthese [Plectonema Doryanum]	5	# F	240
1876			158	91 529216	No definition line found [Genothabditis elegan] sp[4650] YLX7_CAEEL HYPOTHETICAL 7.3 KD PROTEIN F23F12.7 IN HROMOSOME !!!.	88	2	156
19.89	-	108	‡ 07	Q1 140545B	YneR [Beclilus subtilis]	88	58	294
2109	-		10 0	gi 1001801	hypothetical protein Synechocystis sp. }	8.8	16	666
2473	-	288	145	91 510140	ligoendopeptidase F [Lactococcus lactis]	58	88	144
2523	-	452	228	91 644873	catabolic dahydroquinate deliydratase (Acinetobacter calcoaceticus)	85	71	225
1041	-	7	211	91 1205367	oligopeptide transport ATP-binding protein [Haemophilus influenzae]	5.8	39	012
3094	-		263	19111185288	isochorismete synthese (Bacillus subtilis)	5.8		1 261
3706	-		383	91 456614	mevalonate kinase Arabidopsis thaliana	88	4	3.81
3454	-	-	1 402	gi 808869	human gcp372 [Homo sepiens]	88	1 32	1 402
4042		1 2 1	224	91 508551	[ribuloss-1.5 bisphosphate carboxylass large subunit -methyltransferase [Pisus setivus]	80	2,	174
4278			206	91 180189	cerebellar-degeneration-related antigen (CDR14) (Nomo sapiens) gl 182737 cerebellar-degeneration-associated protein [Homo sapiens] pir A29770 A29770 cerebellar degeneration-related protein - human	80 4 0	7	204
19	1 7	1 7818	(367)	gi 1001516	hypothetical protein (Symechocyetis sp.	5.7	11	456
23	=	1 9663	8872	990909116	ORF_f256 [Escherich]a coli)	52	29	792
11	-	4801	2402	q1 153146	ORF3 (Streptomyces coelicolor)	- 57	33	2400
3.0	=		10796	191 144859	ORF B [Clostridium perfringens]	57	31	816
9	=	112063 1304	13046	91 1001319	[hypothetical protein (Symechocystis sp.)	57	3.5	186
	111111							

5 agreus - Putative coding regions of novel proteins similar to known proteins

Cont.ig	ONF 110	Start (nt)	Stop	aatch acession	natch gene name	E 1	1 ident	length inti
5.1	-	11411	1187	pir B33856 B338	pir B33856 B338 hypothetical 80K protein - Bacillus aphaericus	57	3.8	725
5.4	-	7	453	191 684950	ktaphylococcal accassory regulator A (Staphylococcus aureus)	57	31	(\$)
25	-	-	239	19111000470	[C2787.7 [Caenorhabditis elegans]	57	~	717
76	- \$	3855	3061	91 143607	'sporulation protain (Bacillus subtilis)	57	35	295
96		9000	1 4773	91 144297	scetyl esterase (XynC) [Caldocellum saccharolyticum] pir 377202 337202 acetylesterase (EC 1.1.1.6) (XynC) - Celdocellum accharolyticum	52	,	994
1 107	1	1480	2076	191 460955	TagE (Vibrio cnolerae)	57	5	597
109	-	1 5340	1 5933	qi 1438846	[Unknown [Bacillus subtilis]	5.7	7	594
112	-	6679	1077	191 1486250	unknowm [Bactllus subtllis]	57	2	1023
		6384	410A	01 871456	putelive alpha solumit of (ormete dehydrogenesse Methanobacterium hermoautotrophicum)	ç	دو	7227
126	~	430	1053	gi z88301	ORF2 gene product [Dacillus megaterium]	5.	`f	624
<u> </u>	<u>^</u>	1653	1 6277	9111511160	N. Jannaschii predicted coding region MJ163 (Methanococcus jannaschii)	57	36	1 26:
	-	266A	1 2201	91 1303912	Yohr Becillus subtilis	5.	90	468
<u> </u>	-	1 3383	2784	91 1221884	(urea?) amidolyage (Maemophilus influentes)	57	37	009
- 1	-	1 2164	1694	91 467469	unknown [Bacilius subtilis]	57	1,1	12.
091	! -, -	1 1293	1060	91 558604	Chitin synthase 2 (Neurospore crassa)	57	88	234
163		1 5687	14764	gx 145580	rarD gane product [Escherichia coli]	57	38	776
168	9	4336	5325	91 39782	()3kDa lipoprotein (Bacillus subtilis)	1 57	32	066
1 170	-	1 3297	3655	1911603404	Yer164p (Saccharomyces cerevistae)	1 57	37	159
1 221	-	9708	6089	gi 1136221	carboxypeptidase (Sulfolobus solfatericus)	52	32	1218
22 H		1348	1791	91 288969	fibronecin binding protein (Streptococcus dysgalactiae) pir 533850 533850 fibronecin-binding protein - Streptococcus ysgalactiae	52	32	:
1 263	-	4411	3686	9111185002	dibydrodipicolinate reductase (Pseudomonas syringae pv. tabaci)	57	4.2	726
1 276	-	767	1 255	91 396380	No definition line found (Escherichia coli)	57	0	243
1 283	~	335	1324	[gi[773349	BitA protein (Becillus subtilis)	5.7	32	0.66
1 297	-	691	236	91 1334820	reading frame V [Cauliflower mosaic virus]	57	9	234
1 142	-	1993	2805	oi 1204431	hypotheticel cotein (SP: Pll644) Heemophilus influenzee	5.	35	813

Cout to OHI	0HI.	57.9.1	Stop (nt)	match	march gene name	nia *	* ident	length (nt)
375	9	3340	3741	91 385177	cell division protein (Bacillus subtilis)	2.	76	403
433	9	3286	1107	19111524117	(alpha-scatolectate decarboxylase (Lactococcus lactis)	5.7	0,	376
470	-	606	1145		protein serine/threonine kinase (Toxoplasma gondill	57	30	243
187	- 5	1861	(271		ONFI (Bacillus stearothermophilus)	1.5	28	333
498		274	852	[gi]1334549	HADH-ubiquinone oxidoreductase subunit 4L (Podospora anserina)	57	34.	\$79
503	1	3.5	173	91 1502283	organic cation transporter OCT2 [Rattus norvegicus]	53	30	171
\$05	. ~	1 1619	1284	91 466884	B1496_C2_194 (Mycobacterium leprae)	5.7	00	336
\$15	- ~ -	1 1182	2549	19111303707	VrkH Bacillus subtilis]	57	74	1368
522	~	3234	1945	19111064809	homelogous to sp:NTRA_ECOLI [Bacillus subtilis]	S	96	1290
538		606	1415	qi 153179	phosphorinothyrcin n-acetyltransferase [Streptomycas coelicolor] pir/JM0246 JM0246 phosphinothricin N-acetyltransferase (EC 2 3.1 -) Streptomycas coelicolor	52	• •	~ 0 \$
547	-	968	486	91 467340	unknown [Bacillus subtilis]	۲۶	05	£#3
599	-	1 1062	532	sp P20692 TYRA_	PHEDIENATE DENYDROCENASE (EC 1.3.1.12) (PDH).	57	7	531
620		751	512	19111107894	unknown (Schizosaccharomyces pomba)	5.	4.	186
622	- 2	1 1600	1130	911173028	[thioredoxin II (Saccharomyces cerevisiae]	57	1 96	4.1
1 625	-	1 362	- = = -	91 1262366	hypothetical protein (Mycobacterium leprae)	57	7	75.3
6.80			204	91 143544	RNA polymerass signs-10 factor (Becillus abblilis) pirla28623[A28625] transcription iniciation factor signs H - acillus subtilis	۲۵	000	204
069	-		629	191 466520	[pock Salmonella cyphimurium]	57	5.9	627
969	-	1 2	=	91 413972	ipa-48r gene product [Bacillus subtilis]	53		432
704	-	1 36	638	41 1499931	H. jannaschil predicted coding region HJ1083 (Methanococcus jannaschill	57	36	609
132	-	1 2316	1621	4x 1418999	orf4 [Lactobacillus sake]	57	7.5	969
746	-	154	1 227	[93 392973	Rab) (Apiysia californica)	5.7	42	527
187		20	99	91 43979	[L curvetus small cryptic plasmid gene for rep protein [Lactobacillus rvatus]	۲۶	\$	*
962	-	- 2	1 295	gi 1303827	Yqf1 Bacillus subtilis	57	12	294
1049	-	106	1 455	g1 1510108	ORF-1 Agrobacterium tume[eciens]	57	35	453
1117	-	1387	1 695	91 896286	NH2 terminus uncertain [Leishmania terentolas]	57	28	693
		******	11.00000					

Contig	ORF ID	Start (nt)	Stop (nt)	match	apton gene name	E 18	1 tdent	1engt (nt)
1136		2	322	91/1303853	YqqF (Bacillus subtilis)	57	900	321
1164	~	1 103.1	1 611	qi 310083	voltage-activated calcium channel alpha-1 subunit (Rattus orvegicus)	5.7	40	423
1 1172		1 1472	1 738	91 1511166	H. jannaachii predicted coding region MJ1143 [Methanococcus jannaachii]	5.7	2.8	735
1500	-	1746	558	91.142780	putative membrane protein; putative (Bacillus subtilis)	57	3.5	189
1676	-	659	1399	191 31377	uracil permesse (Escherichia coli)	5.7	31,	26:
2481	-	7	400	41 1237015	ONF4 [Bacillus subtills]	5.7	2.3	399
1 3099	-		05.5	qi 1204540	isochorismate synthuse [Haemophilus influentse]	5.7	٥	22.8
3122	-	360	181	91 882472	ORF_0464 Escherichta coll	۲\$	0,	180
1 3560	-	2	1 361	191,153490	tetracenomycin C resistance and export protein Streptomyces laucescens	52	37	360
3.850	·	H 56	4 3 4	gi1155588	glucose-fructose oxidoreductase [Zymomonas mobilis] pir.A42289[A42289] glucose-fructose oxidoreductase [EC 1.1) recursor - Zymomonas mobilis	52	9	623
1660		704	354	01 413953	type-29d gene product (Bacillus subtilis)	5.7	36	35;
1993			364	qi 151259	HING-COA reductase (EC 1.1.1.88) Pseudomonas mevalonii pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	5.7	61	# #
4365	-	193	398	pir JV0037 RUEC	pir [JV0037]RUEC nitrate reductase (EC i.7.99.4) alpha chain - Escherichia coli	5.	1	396
4100	-	296	300	1911086633	106C10.5 gene product (Caenorhabditis elegans)	5.7	+2	257
4163	-	152	1 287	191121312	potatin (Solanum tuborosum)	ā	0.5	785
1 4267	~ _	631	335	9111000165	Spoiling [Bacillus subtilis]	52	38	297
4358	-	-	302	91/298032	[EF Streptococcus suis]	5.7	32	300
4349		108	1 290	91 405894	1-phosphofructokinase (Escherichia coli)	57	1 37	183
1 4399	-	7	232	191 1483603	Pristinamycin I synthase I (Streptomyces pristinaespiralis)	57	35	23:
1877	-	572	268	91 405879	yeiH Escherichia coli	57	*	285
44A6		513		gi 515938 	glutamate synthase (forredoxin) Synochocystls sp. pir 546957 546957 glutamate synthase (forredoxin) (EC 1.4.7.1) - ynechocystls sp.	5.7	₹	255
4510	-	481	242	91,1205301	leukotoxin secretion ATP-binding protein (Haemophilus influenzae)	5.5	e	240
199	-	4 68	1 256	[91,1511222	[restriction modification enzyme, subunit MI (Methanococcus jannaschii]	57	3.5	2:3
	=	112201	11524	91 149204	[histidine utilization repressor G [Klebsiella aerogenas] pir[AJ6730] AJ6730 hutG protein - Klebsiella pneumoniae (fragmunt) sp[P19452]NUTG KLEAE FORHIMINOGLUTAMASE (EC 3.5.3.8) FORHIMINOGLUTAMATE HYDROLASE) (HISTIDINE UTILIZATION PROTEIN G) FRAGHENT).	\$	16	678

TABLE 2

	Start Otl	Stop (nt)	match	Hatch gene name	e is	1 ident	length (nt)	
	4248	ררוג	[01] 1322222	RACHI [Nomo septens]	2.6	1 66	930	• -
128	61112	122264	191 1480705	liposte-protein ligase (Mycoplasma capricolum)) 9¢	-	1086	
-	1981	2421	91 490320	(Y gene product (unidentified)	2.0		261	
12	110103	10606	[01]1205099	hypothetical protein (GB.L19101_1) (Hamnophilus influenzae)	36	160	¥0\$	
9	4820	5161	[91, 209931	[liber protein (Muman adenovirus type 5]	36	1,87	342	•
	2076	2972	91 623476	[transcriptional activator (Providencia atuartii) sp P43463 [AARP_PROST TRANSCRIPTIONAL ACTIVATOR AARP.	96	• 0¢	. 689	•
-	5656	6594	91 466613	nikB Escherichia coli	5.6	32	616	• -
3_	2364	1810	91 482922	process with homology to pass repressor of B. subtills [Lactobacillus elbruckii]	9.0	66	555	•
-	203	616	91/145594	CMMP receptor protein (crp) [Escherichia coli	56	35	111	•
121	:	17846	gx 1204367	hypothetical protein (GB:U14003_278) [Haemophilus influences]	26	7.2	405	• -
e	1195	6678	91 155588	glucose-fructose oxidoreductase [Zymomonas mobilis] pir[A42289]A42289 glucose-fructose oxidoreductase (LC 1.1) recursor - Zymomonas mobilis	9.0	9	1068	•
- -	6404	0015	91 619724	HgtE (Bacillus firmus)	9.5	cr	1305	
~	. 65	212	91 413940	[lps-24d gene product [Dacillus subtills]	26	111	168	
-	823	1521	91 580868	[Ipa-22r gene product (Bacillus subtilis]	3.6		669	
~	740	(4)	q1 1046009	M. genitalium predicted coding ragion HG309 (Mycoplasma genitalium)	36		767	• -
~	1639	1067	91 945380	terminase small subunit (Bacteriophage LL-II)	9.5	35	573	
<u>-</u>	2	(22)	91 143947	[glutamine synthetese [Bacteroides tragilis]	995	07	222	•
	6745	6449	91,405792	ORFIS4 Pseudomones putide	9.5	26	297	
-	7.	. 66	191 311237	H(+)-transporting ATP synthase [Zea mays]	9.6	00	363	
-	~	173	ai 1109686	Prox (Bacillus subtilis	96	35	37.2	•
.	11538	9943	191 581070	acyl coentyme A synthetase [Escherichia coli]	95	35	1596	
-	1291	647	91 1510242	collagenase [Methanococcus jannaschil]	95	7 76	645	• -
	2323	202	491140363	heat shock protein (Clostridium acetobutylicum)	2,0	39	252	•
~	3383	27.E	191,1477533	iserA (Staphylococcus aureus)	95	1 17	19.1	•
~	1 813	1712	[gi 765073	autolysin (Scaphylococcus aureus)	> 95	1	006	-
Corrigation 1		100 Start Start	100 100	ORF Start Stop ORF Start Stop ORF Start ORF OR	OFF Start Stop match match match match off Start Stop match off Start Stop match off Start Start Stop match off Start Start Start Off Start Start Off Off Start Off Of	10 10.11 10.12	1	

TABLE 2

5. sureus - Putative coding regions of novel proteins similar to known proteins

Contro ORF	1086	Start	Stop (nt)	satch acession	macch gene name	E	1 1der.t	Jength (nt)
230	-	1226	1632	91 547513	or() [Neemophilus influenzae]	96	34	1590
297		1140	E781	91 (1511556	W. jannaschil predicted coding region Mil561 [Methanococcus jannaschil]	56	0	234
121	~ -	2947	1799	191 : 1001801	hypothetical protein (Synechocyatia ap.)	9	1	1149
159	2	1279	1+9	191 16336	noli gene product (Rhisobium meliloti)	96	9.6	619
37.0	- 5 -	360	1 1823	91 145304	L-ribulokinasa (Escherichia coli)	5.6	. 61	1464
191	-	1762	2409	19111061634	hypothetical protein (Synachocystia sp)	\$	ž	873
403	-	380	761	91 1438904	5-HT4L receptor (Homo sapiens)	\$6	5	189
416	-	2480	2109	91 1408486	HS74A gene product [Bacillus subtilis]	5 b	7.	372
7.7		1756	2334	1911142471	ncetolactate decarboxylase (Bacillus subtilis)	3.6	3.2	519
1 457	-	1907	1017	gi 1205194	[formamidopyrimidine-DWA glycosylase [Haemophilus influenzae]	3.6	36	16.8
45A	7	2423	1812	91/15466	cerainase Sacteriophage SPP1	56	1,1	612
204	7 -	1 2152	1283	91 1142681	Lpp38 (Pasteurella haemolytice)	26	28	870
Ē	-	-	1284	qi 217049	brnQ protein (Salmonella Lyphimerium)	56	3.1	1244
: 109 		1094	10/1	911467109	[rim, 105 Ribosomal protein S18 alanine acetylttansfetase: 229_C1_170 [Hycobacterium lepres]	\$6	3	603
099	: -	13547	3774	91 1229:06	2X930.1 (Caenorhabditis elegans)	\$	0.0	228
707	-	35	400	1911153929	NADPII-sulfite reducatase flavoprotein component (Salmonella yphimurium)	26	*.	364
601	~	1185	1095	ui 1510801	hydrogenase accessory protein (Methanocorcus Jannaschii)	9 9) a	167
8 11.	-	-	495	91 413948	lipa-24d gene product (Bacillus subtilis)	56	35	495
74.5	-	- R3	(1.9)	gi 928836	repressor protein [Lactococcus lactis phage BK5-T]	\$6	35	165
064	-	917	1 399	91 1511513	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschil]	26		378
795	-		407	91 1205382	cell division protein [Haemophilus influenzae]	56	34	40\$
8 13	-	61	930	91 1222161	permease (Haemorhilus influentae)	26	28	912
A55			515	91 1256621	[26.74 of identity in 165 as to a Thermophilic bacterium hypothetical protein 6; putative (Bacillus subtilis)	26	٤	513
896	-	~	99	91 547513	orf3 (Maemophilus influenzam)	95	37	\$99
676	~	1049	28.	191 886022	HexR [Pseudomonas seruginosa]	95	1.	318
1203	-	~	223	[91 184251	HHG-1 (Momo sapiens)	95	3.4	719

S Aureus - Putative coding regions of novel proteins similar to known proteins

01 Cont 19	ORF	Start (nt)	Scop	match acession	match gene name	E 14	1 Ident	length int)	
1 1976		\$	237	91 9406	ysine-rich aspartic acid-rich protein [Plasmodium chabaudi] r[S22183][S22183 ysine/aspartic acid-rich protein - Plasmodium baudi		2	216	
2161	-	~ -	8¢ -	91 1237015	ORF4 (Bacillus subtills)	95	27	399	
2958	-	362	687	g1 466685	No definition line found (Escherichia coli)	26	3.6	180	
2979	-	157	1 212	g1 1204354	spore germination and vegetative growth protein (Haemophilus influenzee)	\$6	0,	210	
7667	-	52.6	9:1	91 836646	phosphoribosylformining praid ketdisomerasa [Rhodobacter phaseoides]	\$6	29	201	-
3026	-	(11)	1 328	gi 143306	penicilin V amidase (Bacillus sphaericus)	56	0.0	150	- •
3149	-	289	146	gi 1166604	Similar to aldehyda dehydrogenase [Caenorhabditis elegans]	26	1,	7	
07.1	-		100	91/1129145	aretyl-CoA C-acyltransferase Mangifera indica]	\$6	\$	611	
4024	7	1 720	196	91/1205355	Na+/H+ antiporter (Haemophilus Influentae)	\$6	7.	360	
4145		-	324	91 72 6095	long-chain acyl-CoA dehydrogenasa [Nus musculus]	36	91	324	•
4200		\$0\$	254	91 155588	glucose-fructose oxidoreductase (zymomonas mobilis) pir A42289 (A42289 alucose-fructose oxidoreductase (EC 1.1) recursor - Zymomonas mobilis	95	0	252	
1 4273	-	1 675	1355	gi 308861	GTG start codon [Lactococcus lactis]	26	6	321	. – .
-		4095	3436	91 5341	Putazive orf YCLM8c. len. 32 (Seccharomycas cerevisiae) r[553591[55359] hypothetical protein - yeast (Seccharomycas evisiae)	\$\$	52	099	
	= 2	1 9377	14505	94 216773	[haloscetate dehalogenase H-1 [Moraxella sp.]	\$5	3.2	R73	
2 -	-	- 613	4534	gi 467337	unknown (Becillus subtilis]	55	56	009	•
61	5	5404	5844	oi 1001719	hypothetical protein (Synechocystis sp.)	\$	2.5	441	- •
	=	114087	96651	191 474190	[luck gene product (Escherichia coli)	\$5	30	1749	- •
1 32	-	1 5368	6AR6	19111340096	unknown [Mycobacterium tuberculosis]	55	,,	1521	- •
* -	-	1 2569	1808	191 1303968	YqjQ (Bacillus subtilis)	\$	96	762	
ž	5 -	3960	3412	gi 1303962	YqyK (Bacillus subtills)	\$\$	33	645	- •
90	-	1241	647	pi 606045	[ORF_oll8 [Escherichia coli]	\$		645	- •
36	9	6220	5243	[g1]1001341	hypothetical protein (Symechocystis sp.)	55),	978	- •
5	-	3054	13821	fg1 1001819	hypothetical protein (Synechocystie sp.)	5.5	21	168	- •
\$		2065	1127	91 403373	glycerophosphoryl diester phosphodiesterase [Bacillus subtilis] pir 5]7251 5]7251 glycerophosphoryl diester phosphodiesterase - acllius aubtilis	\$\$	<u> </u>	636	:

1	Contig	ORF 110	Start	Stop (nt)	march scession	match gene name	E .	1 ident	Length (nt)	
1 1512 1615 171 1611-1612 Cartbouypeptidae (Sulfoldba soleration) 1 1512 1615 1617 1617 1617-1612 Cartbouypeptidae (Sulfoldba soleration) 1 1517 1618 1617-1612 Cartbouypeptidae (Sulfoldba soleration) 2 1112 1666 1617-1612 Cartbouypeptidae (Sulfoldba soleration) 3 1112 1666 1617-1612 Cartbouypeptidae (Sulfoldba soleration) 4 1517 1616 1617-1713 Cartbouypeptidae (Sulfoldba soleration) 5 1517 1616 1617-1713 Cartbouypeptidae (Sulfoldba soleration) 6 1517 1616 1617-1713 Cartbouypeptidae (Sulfoldba soleration) 7 1618 1617-1713 Cartbouypeptidae (Cartbouypeptidae soleration) 8 1517 1618 1617-1713 Cartbouypeptidae (Cartbouypeptidae soleration) 9 1617 1617 1617-1713 Cartbouypeptidae (Cartbouypeptidae soleration) 1 1617 1617 1617-1713 Cartbouypeptidae (Cartbouypeptidae soleration) 1 1617 1617 1617-1713 Cartbouypeptidae (Cartbouypeptidae (Cartb		=======================================	9968	9565	[91(15305)	norAll99 protein Staphylococcus aureus	\$5	23	009	. — •
1 127 1517 1617 1617 161700222 161700224	.51	-	881	6721	gi :1698	(88 1-434)	\$	<u> </u>	193	- •
4 1517 1617 1611 1618 161	A2	-	1	114194	41 (136221	carboxypeptidase Sulfolobus solfataricus	256	35	1194	
1 177 516 91 1977937 Indicam (Becilius abbillis) 2 896 2005 91 1977937 Indicam (Becilius abbillis) 3 817 658 91 1977937 Indicam (Becilius abbillis) 4 817 658 91 1977937 Indicam Open reading (Came (Beciner a phiddicola) 5 5177 668 91 1977937 Indicam Open reading (Came (Beciner a phiddicola) 6 918 658 91 1977937 Indicam Open reading (Came (Beciner a phiddicola) 7 766 766 91 1977937 Indicam Open reading (Came (Beciner a phiddicola) 8 9116 6687 91 1977937 Indicam (Beciner a carwislas) 9 1205 1276 91 197766 Indicam (Beciner a carwislas) 9 1206 1206 91 197766 Indicam (Beciner a carwislas) 9 1206 1207 91 19776 Indicam (Beciner a carwislas) 9 1206 1207 91 19776 Indicam (Beciner a carwislas) 9 1207 1207 91 19776 Indicam (Beciner a carwislas) 9 1208 1208 91 19776 Indicam (Beciner a carwislas) 9 1208 1208 91 19776 Indicam (Beciner a carwislas) 1 120 1208 91 19776 Indicam (Beciner a carwislas) 1 120 1208 91 19776 Indicam (Beciner a carwislas) 1 120 1208 91 19776 Indicam (Beciner a carwislas) 1 120 1208 91 19776 Indicam (Beciner a Carrislas) 1 120 1208 91 19776 Indicam (Beciner a Carrislas) 1 120 1208 91 19776 Indicam (Beciner a Carrislas) 1 120 1208 91 19776 Indicam (Beciner a Carrislas) 1 120 1208 91 19776 Indicam (Beciner a Carrislas) 1 120 1208 91 19776 Indicam (Beciner a Carrislas) 1 121 122 910 91 19776 Indicam (Beciner a Carrislas) 1 122 122 91 19776 Indicam (Beciner a Carrislas) 1 122 122 91 19776 Indicam (Beciner a Carrislas) 1 122 122 91 19776 Indicam (Beciner a Carrislas) 1 122 122 91 19776 Indicam (Beciner a Carrislas) 1 122 122 91 19776 Indicam (Beciner a Carrislas) 1 122 122 91 19776 Indicam (Beciner a Carrislas) 1 122 122 91 19776 I	8.7	-	1 3517	4917	1911064812	[function unknown [Bacillus subtilis]	55	76	1401	
1 177 516 91 1177932 Unknoom (Becillus sobtilis) 2 896 2005 91 1177932 Unknoom (Becillus sobtilis) 3 5137 4658 91 117074 Esexanthin epoxidase (Miccinas pluchagin/folis) 4 5266 2766 91 117074 Esexanthin epoxidase (Miccinas pluchagin/folis) 5 5137 4658 91 117074 Esexanthin epoxidase (Miccinas pluchagin/folis) 6 9126 926 91 117076 Michigan open reading (Came (Bechina open reading (Bechina open Parisatio) 7 726 726 91 117076 Microsoft (Bechina open reading (Bechina open Parisatio) 8 912 6657 91 505431 90272 3 (Cemerkaddita observation) 9 120 756 91 11575 Mir open open (Bechina open Parisation) 9 120 756 91 11575 Mir open open (Bechina open Parisation) 1 120 910 91 11570 Microsoft (Bechina open Parisation) 1 121 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11570 Microsoft (Bechina open Parisation) 1 122 914 91 11580 Microsoft (Bechina open Parisation) 1 122 914 91 11580 Microsoft (Bechina open Parisation) 1 123 914 91 11580 Microsoft (Bechina open Parisation) 1 123 914 91 11580 Microsoft (Bechina open Parisation) 1 123 914 91 11580 Microsoft (Bechina open Parisation) 2 134 91		~	1172	1636	91 982463	protein-Nipi)-phosphoh:stidine-sugar phosphotrans(erase Escherichia oli)	55	35 '	\$9\$	
2 806 2005 4011702344 Iseasanthia eposidase (Nacotrana plumbaghin folia) 1 4264 2366 (101103866 10110386 101103884 101138844 101138848 101138848 101138884 1011388884 101138848 101138848 101138848 101138848 101138848	92.	-	1 127	516	gi 1377832	unknown [Bacilius subtilis]	\$\$	36	061	
5 5117 4526 7146 9111479566 Winknown Open Teading Trama Butchmera aphildicola 1 4266 7246 9111479566 Winknown Open Teading Teglon Mil024 (Methanococcus Januaschii) 2 2616 1814 9111511167 Torance dehydrogerate: Alpha subunit (Methanococcus Januaschii) 3 2612 5508 91100067 Unknown Jacchharomyces Genevisiae 4 1215 5508 91100067 Unknown Jacchharomyces Genevisiae 5 6212 5508 91100067 Unknown Jacchharomyces Genevisiae 6 9116 6657 911559411 190277 3 Torance dehydrogerate: Alpha subunit (Macchine) 7 1240 1145 911114768 KT Annashilla product (Schilosaccharomyces pumbe) 8 115 1167 1147 9111001793 Unknown Mycobacterium Cherculosis 9 1147 91127043 Unknown Mycobacterium Cherculosis 1 126 134 91116199 Putetion Bactilius subtilis 1 126 134 91116199 Putetion Bactilius subtilis 1 126 134 91116199 Putetion Bactilius subtilis 1 126 134 91116199 Putetion Putetion Bactilius subtilis 1 126 134 91116199 Putetion Bactilius subtilis 1 126 134 91116199 Putetion Pu	100	1 2	1 836	2035	gi 1370274	[seaxanthin epoxidase (Nicotiana plumbaginifolia)	\$2	36	1200	
1 4266 1984 Galiloones H. Jannaschill predicted coding region Mildol (Methanococcus Jannaschill) 1 1865 1174 Galiloones Internated dehydrogenase, alpha subunit (Methanococcus Jannaschill) 2 6212 5508 Galiloones Unkoam Isaccharomyces cerevisiae 3 6212 5508 Galiloones Unkoam Isaccharomyces cerevisiae 4 1335 5215 5216 Galiloones Unkoam Isaccharomyces cerevisiae 5 6212 5508 Galiloones Unkoam Isaccharomyces cerevisiae 6 9156 655 Galiloones Unkoam Isaccharomyces cerevisiae 7 1241 125 1259 Galiloones Unkoam Isaccharomyces cerevisiae 8 135 136 Galiloones Unkoam Isaccharomyces cerevisiae 9 136 655 Galiloones Unkoam Isaccharomyces cerevisiae 1 136 656 Galiloones Unkoamologue (Metaline Educatorical Calina Isaccharomyces cerevisiae 1 136 656 Galiloones Unkoamologue (Metaline Educatorical Internationes Unkoamologue (Metaline Isaccharomyces cerevisiae 1 136 656 657	100	- 5	1 5137	4658	1911396660	unknown open reading frame [Buchnera aphidicola]	\$\$	5.5	680	
3 2616 1834 gill130167 formate dehydrogenase, slphs subunit (Machandeoceus Santachii) 3 6212 5508 gill100167 unknown (Saccharonyces crewisiae) 4 122 5504 gill104586 [H. gentlallus predicted coding region MG199 (Mycoplasma gentlallus) 5 6212 5508 gill259411 Mycoplasma gentlallus (Irmus) 6 9116 6557 gill59411 [B0272 3] (Ceanochabditia elagans) 7 1144 5418 gill1010 [Myky (Bacillus aubtilia) 8 132 1616 [Gill1010 Mypothetical protein (Dictyostallum discoldeus) 9 144 5418 [Gill1010 [Myky (Bacillus aubtilia) 1 144 5411 [Gill1010 [Myky (Bacillus aubtilia) 1 144 5411 [Gill1010 [Myky (Bacillus aubtilia) 1 176 918 [Gill1010 [Myky (Bacillus aubtilia) 1 177 [Gill1010 [Myky (Bacillus aubtilia) 1 178 918 [Gill1010 [Myky (Bacillus aubtilia) 1 170 910 [Myky (Bacillus aubtilia) 1 170	104	-	4266	2986	0111499866	H. jannaschti predicted coding region MJIG24 (Methanococcus jannaschii)	55	31	1821	
3 1805 1476 91 1000787 Unikonn isaccharonyces cerevisiae 5 6212 5508 91 1005884	116		2616	1834	191 1311367	(Methanococcus	55	52	78.3	
5 6212 5508 91 1045884 H. genitalium predicted coding region MG199 [Mycoplasma genitalium] 6 9136 6857 91 12569 ATP synthose a subunit [Bacillus firmus] 7 135 1676 91 12568	7		1 1805	1476	191 1100787		55	35	330	
5 2205 2516 91 142269 ATP synthase a subunit (Becillus firmus) 6 9116 6857 91 559411 B0272 3 (Ceanorhabditis elegans) 7 164 616 91 142768 R7 kinesin-like protein [Dictyostellum discoideum] 8 1115 1616 91 140130 OMFKé (Bacillus subtilis) 9 144 5481 91 140130 OMFKé (Bacillus subtilis) 1 144 5481 91 1001793 Phypothetical protein (Symechocystis sp.) 1 144 5481 91 123063 Phypothetical protein (Symechocystis sp.) 1 144 5481 91 146199 Physicial protein (Symechocystis sp.) 1 176 194 91 146199 Physicial scholarse (Plasmid pi258) 1 176 194 91 146199 Physicial scholarse (Plasmid pi258) 1 176 194 91 146649 Physicial scholarse (Plasmid pi258) 1 176 194 91 146644 Physicial scholarse (Ascillus belvetical) 1 176 194 91 146644 Physicial scholarse (Lactobacillus belveticus) 1 177 174 174 91 146644 Physicial scholarse (Lactobacillus belveticus)	165	-	+ 6212	8208	91 1045884	[H. genitalium predicted coding region Mo199 [Hycoplasms genitalium]	55	27	205	
6 9116 6857 921559411 B0272.3 (Ceenorhabditis elegans) 2 1564 616 9211519411 B0272.3 (Ceenorhabditis elegans) 4 1115 1616 921111115 Linis gene product 15chizosaccharomyces pumbel 5 1693 1145 921410130 OMFX6 Bacillus subtilis] 644 1172 921410130 OMFX6 Bacillus electrocystis sp. 7 1444 5481 9211210193 hypochetical protein Synechocystis sp. 8 5908 4817 9211227063 poch (Salmonella typhimurium) 9 1975 2340 9211217063 unknown Mycobacterium tuberculosis 1 1786 1944 9211468420 neccuric reductase Plasmid p1288] 1 126 918 9211408433 homologous to Swissprot:YiDA_Ecoli hypothetical protein Gacillus subtilis 1 126 918 9211468447 LuxA homologue Rhitoblum sp. 1 127 2102 921148844 proline iminopeptidase Lactobacillus helveticus	6 K T	-	1 2305	12576	91 142569	ATP synthese a subunit (Bacillus firmus)	\$\$	35	37.2	
2 164 616 Gal 1145768 K7 kinesin-like protein [Dictyostellum discoldeum] 4 1315 1616 Gal 1145768 K7 kinesin-like protein [Oschizosaccharomyces pumbs] 2 1693 1145 Gal 410130 Oschideralia enterocolitical 3 444 5481 Gal 410130 Oschideralia enterocolitical 3 4881 Gal 41001793 Dypothetical protein (Symechocystis sp.) 3 4881 Gal 46520 poch [Galmonella typhimurlum] 4 1375 2340 Gal 416199 Dutative [Bacillus subtilis] 4 1375 2340 Gal 416199 Dutative [Bacillus subtilis] 5 1366 1385 Gal 416890 Orfe (Rhodococus fascians) 5 1366 Gal 408493 Domoiogous to Swissfrot: YIDA_ECOLI hypothetical protein [Gacillus subtilis] 5 1326 Gal 41296824 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2744 Gal 1296824 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2744 Gal 41296824 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2744 Gal 41296824 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2374 Gal 41296824 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2374 Gal 41296824 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2374 Gal 4146447 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2374 Gal 4146447 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2374 Gal 4146447 Proline iminopeptidase [Lactobacillus helveticus] 5 2368 2374 Gal 4146447 Proline iminopeptidase [Lactobacillus helveticus] 2 2374 2	191	-	9136	6857	91 559411	[B0272.3 (Ceenorhabditim elegans)	55	39	2260	
4 1335 1636 Gr 473357 Chit4 gene product Schizosaccharomyces pombes 2 1693 1145 Gr 410130 ORFX6 Bacillus subtilis 3 644 1372 Gr 46520 TrsA Vereinia enterocolitica 7 4444 5481 Gr 1001793 hypothetical protein (Symechocystis sp 8 5508 4817 Gr 46520 pocR Calimonella typhimurium 9 197 Gr 46520 pocR Calimonella typhimurium 1 135 2340 Gr 1146199 putative Dacillus subtilis 1 136 1394 Gr 145096 orf6 Rhodococcus (sacians 1 126 938 Gr 146843 homologous to Suissprot: YIDA_ECOLI hypothetical protein (Becillus subtilis 1 126 1274 Gr 1146647 LuxA homologue Chitobacillus helveticus 5 2368 2744 Gr 1225624 proline iminopeptidase Lactobacillus helveticus	194	- 5	1 364	969	qi 1145768	K7 kinesin-like protein [Dictyostellum discoideum]	55	7.	273	
2 1693 1145 Gg[410130 ORFK6 [Baccillus subtilis]	507	-	1 1335		191 473357	this gene product (Schitosaccharomyces pombe)	\$\$	35	342	
2 644 1372 Gil633692 TrsA Verenia enterocolitical 7 4144 5481 Gil1001793 Importhetical protein (Symechocystis sp.) 8 5908 4817 Gil1146199 Protein Galmonella typhimurium 9 1375 2340 Gil1146199 Protein Recullus subtilis 9 185 Gil1146199 Protein Cadillus subtilis 1 126 938 Gil1408493 Inmojogous to Swissfrot: YIDA_ECOLI hypothetical protein (Becillus subtilis 1 126 938 Gil1466447 LuxA homologue (Bhitobium sp.) 1 123 2344 Gil1295624 Proline iminopeptidase (Lactobacillus helveticus)	211	2	1693	1145	gi 410130	ORFX6 [Bacillus subtilis]	55	37	549	
7 4144 5481 gal 1001793 hypothetical protein (Synachocyetis sp) 8 5908 4817 gal 466520 poor (Salmonalla typhimurium) 9 1375 2340 gal 45907 marcuric reductase (Plasmid pl258) 1 126 938 gal 45506 orfe (Rhodococus fascians) 1 126 938 gal 45506 lower organisms to Swisstrop (YiOA, ECOL) hypothetical protein (Becillus subtillis) 1 127 122 gal 455624 lower homologue (Rhizoblum sp) 1 128 2744 gal 425624 proline iminopeptidase (Lactobacillus helveticus)	213	- 2	1 644	1372	gi 633692	TrsA [Yersinia enterocolitica]	\$5	28	729	
7	214	-	4144	5481	gi 1001793	hypothetical protein (Symechocystis sp)	\$5	30	1338	
a 1375 2340 gi 1146139 putative (Bacillus subtilis) 2 380 1885 gi 459907 mercuric reductace (Plasmid pi258) 3 386 394 gi 459006 orfe Rhodococcus (ascians) 4 1376 394 gi 459006 orfe Rhodococcus (ascians) 5 126 938 gi 1468493 homologous to SwissProt:YIDA_ECOLI hypothetical protein (Gacillus subtilis) 5 2368 2744 gi 1295824 proline iminopeptidace (Lactobacillus helveticus)	221	1 1	[11473	1 9197	91;466520	pocR (Selmonelle typhimurium)	\$5	12	72277	
4 1375 2340 gi[1146199 putative [Bacillus subtilis] 2 380 1885 gi[455907 Baccuric reductace [Plasmid p1258] 1 786 394 [gi[455006 orfe Rhodococcus fascians] 1 126 938 [gi[1468493 homologous to SwissProt YIOA_ECOLT hypothetical protein [Bacillus aubtilis] 3 1323 2302 gi[1486447	233	-	1 5908	1 4817	gi 1237063	unknown (Mycobacterium tuberculosis)	\$5	38	7601	
2 180 1885 gi 455907	236	-	2761		gi[1146199	putetive (Bacillus subtilis)	\$\$	132	796	
1 786 394 491 455006 Orf6 Rhodococcus (sectans)	243		1 380	1885	91 459907	mercuric reductare (Plasmid p1258)	\$5	29	1506	
1 126 938 gill468493	258	-	1 786	394	Lgi 455006		\$5	1 36	193	
3 1323 2102 gi 1486447 LuxA homologue (Rhizobium sp)	281	-	1 126	938	91 1408493	homologous to SwissProt: YIDA_ECOLI hypothetical protein feacillus subtills	\$\$	35	813	
5 2968 2744 gi 1296824 proline iminopeptidase [Lactobaciilus helveticus]	316	-	1323	1 2102	91 1486447	LuxA homologue (Rhizoblum sp.)	\$5	30	180	
	326	-	1 2968	1 2744	191 1296824	proline iminopeptidase [Lactobaci:lus helveticus]	\$5	36	225	

S aureus - Putative coding regions of novel proteins similar to known proteins

Cont 19	Cont.19 ORF 1D 1D	Start (nt)	Stop	match	match, one name	£ ;	1 Ident	length (nt)	
1 351	7	1 2322	1429	g1 1204B20	hydrogen peroxide-inducible activator (Haemophilus influenzae)	\$\$	2.8	894	
1 353	-	1 2197	2412	91 1272475	chitin synthase (Emericella nidulans)	55	05	216	
380	-	7	379	91 142554	ATP synthese i subunit (Bacillus megaterium)	\$\$	17	366	
343	-	1 462	232	gi ?89272	[ferrichrome-binding protein [Bacillus subtilis]	\$\$	36	231	
386	-		938	qi 11510251	DAM helicase, putative [Nethanococcus jannaschii]	23	, 01	936	
014	- 2	1208	1881	91 1205144	multidrug resistance protein (Haemophilus influenzae)	5.5	2.7	184	
48	~	17	833	gi 413934	ipa-10r gene product (Bacillus subtilis)	5.5	5.6	423	
529	-	1 1777	1 1433	91 406150	ORF_[1309 [Escherichia coli]	55	C.	345	
1 555	-	1088	1 585	91 (143407	para-aminobenzoic acid synthase, component [[pab) [Bacilius ubtills]	\$\$	2.8	\$04	
598	-	402	202	91 1223961	[CDP-tyvelosa epimerase [Yersinia pseudotuberculosis]	SS	‡	102	
5 A 2		751	452	gi :256643	(20.3% identity with NADH dehydrogeness of the Leishmania major mitochondrion; putative (Bacillus subtilis)	\$\$	36	000	
		2260	2057	91 10824	fusion protein F (Bovine respiratory syncytla) virus) pir J01481 (VGM28A (usion glycoprotein procursor - bovine espiratory syncytla) virus (strein A51908)	\$\$	5.5 2.5	• • •	
672	7	957	1 2216	[61]1511333	N. jannaschii predicted coding region MJ1322 [Methanococcus jannaschii]	55	36	1260	
0(,	-	955	479	1911537007	OWF_(179 (Escherichia coli)	\$\$	00	1,1,1	
τι.	<u>-</u>	1859	945	19(1536963	UG Site No. 18166 [Eschorichia coli]	*	30	915	
742	7	1 228	1 572	91304160	product unknown (Bacillus subtilis)	55	38	345	
1 813	~	1771	1 903	94 1136289	histidine kinase A (Dictyostelium discoldeum)	\$5	29	309	
419	-	585	1 355	91 558073	[polymorphic antigen (Plasmodium falciparum]	55	22	228	
932	~	1152	124	191 40367	ORFC (Clostridium acetobutylicum)	55	32	429	
0	-	769	386	191 1205875	[pseudouridylate synthase I [Haemophilus influenzae]	55	60	384	
1021	-	23	(529	91 48563	beta-lactomase (Yersinia enterocolitica)	55	38	20%	_
1026	-	09 –	1335	91 47804	Opp C (AA1-101) (Salmonelle typhimurium)	\$	97	9.7	_
1525		-	2.82	[91]1477533	[sark Staphylococcus aureus]	\$5	67	787	_
1814	7	1 224	985	91 1046078	H. genitalium predicted coding region MG369 (Mycoplasma genitalium)	2	38	1 292	_
3254	_	427	1 254	91 413968	Lpa-44d gene product (Bacillus subtilis)	5.5	30	174	

s. aureus - Putative coding regions of novel proteins similar to known proteins

Contra	ORF	Start (nt)	Stop (nt)	match acession	יוקרבעל לפטש נוששה	E i	1 dent	length (nt)
5690	-	989	345		haloacetate dehalogenase H-1 (Moraxella sp.)	55	32	342
1721	-	1	312	q1 42029	ORF1 gene product [Escherichia coli]	\$\$	31	312
1799	-		272	9i 42029	ORF1 gene product Escherichia coli	55	3.8	270
3883	-		- 63	gi 1129145	acetyl-CoA C-acyltransferase (Mangifera indica)	5.5	\$	402
3916	-	~ 1	1 385	1911529754	spec Streptococcue pyogenes	55	38,	384
1945	-	•	198	qi 476252	phase I (lagellin (Salmonella enterica)	\$\$	36	195
4014	-	488	346	gi 42029	ORF1 gene product [Escherichia coli		38	243
4184	-	7	1 343	91 1524267	unknown Wycobacterium tuberculosis	. 55	882	342
4284	1	1 14	1 208	91 1100774	[terredoxin-dependent glutamate synthese Symechocystis sp.]	- 88	36	195
4657		644	378	91 180189	cereballar-degeneration-related antigen (CDB34) (Homo sapisms) gi 182737 cereballar degeneration-associated protein (Homo sapisms) pir a29770 A29770 cereballar degeneration-associated protein - homan	\$	8 6	26.7
14514	-	2	1 244	1911216773	haloacetate dehalogenase H-1 [Moraxella sp.]	\$\$	76	763
4539	-	432	1.217	91 1129145	acetyl-CoA C-acyltransferase [Mangifers indics]	55	7	216
9094		917	210	[g1[386120	myosin alpha heavy chain (S2 subfragment) (rabbits, masseter, eptide portial, 234 as)	\$\$	27	20,
\$	-	5348	1 4932	191536069	ORF YBL047c (Saccharomyces cerevisiae)	7.5	1 27	417
- 1		7166	6165	9111205504	homoserine acetyltransferase (Haemophilus influenzae)	\$	96	1003
22	911	117086	115326	qi 474192	lucC gene product [Escherichia coli]	24	31	1761
		3	979	91 48054	small subunit of soluble hydrogenase (AA 1-184) [Synechococcus sp. ir So6919 HQYCSS soluble hydrogenase (EC 1.12) small chain - inchococcus sp. (EC 6716)	\$	95	6.6
r	=	9437	1 8667	1911537207	ORF_£277 Escherichia coli	54	38	177
7.	112	8165	8332	19111160967	[palmitoy]-protein thioesterase [Homo sapiens]	- 5	37	168
*	===	113025	113804	gi 438473	procein is hydrophobic, with homology to E. coli ProM, putative Bacillus subtilis	3	23	780
95	- 2	1 203	1 736	Jgi 1256139	Ybb. Becilius subtilis	24	34	534
1 57	=	11111	110179	95 1151248	inosine-uridine preferring nucleoside hydrolese (Crithidia fesciculata)	*	32	676
99	-	915	1133	191 (133578)	Cap [Drosophila melanugaster	25	29	819
06	01	8116	8646	94 1399823	PhoE (Rhizobium meliloti)	54	31	168 1

10
15
20
25
30
35
40
45

55

S aureus - Putative coding regions of novel proteans similar to known proteins

Contig	108F	Start (nt)	Stop	match	יהלכון ספרם הבחם "יהלכון ספרם "יהלכון ספרם"	E 1 B	1 Ident	length (nt)
0,4	\$1	(12556	111801	sp P02981 TCR_S	TETTACYCLINE RESISTANCE PROTEIN.	\$	29	756
63	- 5	1 4915	5706	gi 1064811	[function unknown (Bacillus subtilis]	3.4	7 72	192
9.5	4	3008	2289	91,1205366	oligopeptide transport ATP-binding protein (Hasmophilus influenzae)	\$	100	111
103	-	1 2596	1556	91/710495	protein kinase (Bacillus bravis)	54		1041
105	7	3585	2095	91 143727		\$, 00	1491
112	-	1 2137	1 2732	[91 [153724	HalC [Stroptococcus pneumonise]	54	7	1960
127		1720	2493	91 114297	acetyl esterase (Xyrc) (Caldocellum saccharolyticum) pir 837202 837202 acetylesterase (EC 3.1.1.6) (Xyrc) - Caldocellum accharolyticum	3	7	174
13.8	-	0091	3306	91 42473	pyruvate oxidase (Escherichia coli)	\$2	96	1307
152	7	525	2711	91 1377834	unknown (Bacillus subtulis)	×.	23	6.4.9
191	-	1 4831	5469	1911903305	ORF73 Bacillus subcilis	24	26	619
1 161	=	1 6694	1257	191 1511039	phosphate transport system regulatory protein [Methanococcus januaschil]	54	32	558
164	-	1 1263	450	191 1204976	[proly1-tRNA synthetaso [Haemophilus influenzae]	54	_ *	1281
164	120	21602	122243	gi 143582	apoliiEA protein (Becilius subtilis)	\$4	32	642
	<u>-</u>	56.83	4250	91 436965	main gene products (Bacillus stearothermophlus) pir s43914 s43914 hypothetical protein 1 - Bacillus tearothermophilus	3	£ .	163
306	. . .	119208	119720	91 1240016	R09E10.3 (Caenorhabditis elegans)	>5	96	513
1 218	~	0601	1905	gi 467378	unknown [Bacillus subtilis]	24	36	816
1 220	_	1322	99	[91 1353761	myosin II heavy chain (Maegleria Cowleri)	24	22	099
1 220	=	112655	13059	pir S00485 S004	gene 11-1 protein precursor - Plashodium falciparum (fragments)	24	35	405
122	_	1 2030	1 3709	191 1303813	Yqew [Bacillus subtil:s]	24	*	1680
272		5005	4219	gi 62964 	arylamine N-acetyltransferase (AA 1-290) (Gallus gallus ir 506652 XVCHY3 arylamine N-acetyltransferase (EC 2.3.3.5) (clone NAT-3) - chicken	\$	2	637
1 316	_	1 4141	1074	91 682769	(#ccE gene product (Escherichia coli)	24	-	196
1 116	01	6994	8742	q1 413951	[Ipa-27d gene product (Bacillus subtills]	\$4	2.8	1749
338	-	1 3377	2214	191 490328	LORF F [unidentified]	\$	87	1161
7.	-	3201	3614	101/171959	myosin-like protein (Saccharomyces cerevisies)	24	25	414

TABLE 2

S aureus. Putative coding regions of novel proteins similar to known proteins

Contig ORF	ORF	Start	Stop (nt)	match acession	natch gene name	E . 0	1 tdent	Length (nt.)	
346		1820	1 912	91 396400	similar to eukaryotic Na./ii- exchangers [Escherichia coli] sp p12703 Yuce_ecoli hypothetical 60.5 kd protein in soxe-acs ntergenic Region (0549).	7	2	101	
348	~ -	1 623	1381	191 537 109	ONF_f1434 (Escherichia coli)	3.6	34	627	-:
1 378	7	1 1007	1942	ap P02983 TCP_S	TETRACYCLINE RESISTANCE PHOTEIN.	- •	3.	936	_ :
¥07	9 -	1 4351	1 5301	91 474190	iuch gene product [Escherichia coli]	3	29.	188	_ :
3	-	7934	8884	91 216267	ONF2 [Bacillus segaterium]	3	33	921	_ :
1 463	1 2	1 2717	2229	91 104160	product unknown (Bacilius subtilis	*	os.	683	_ :
205	~	1 1696	1133	91/1205015	hypothetical protein (SP: P10120) [Haemophilus influenzae]	3	38	564	-
505	9 -	6262	5357	9111500558	[2-hydroxyhapta-2,4-diene-1,7-dioate isomerase [Methanococcus jannaschii]	\$	7	906	
1 550		2736	1522	91 40100	rodc (tag3) polypeptide (AM 1-146) Bacillus subtilis] ir 506049 506049 rodc protein - Bacillus subtilis p Pl3485 TACF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	š	35	1215	
155	- 5	socr	4279	191/250197	unknown Corynebacterium glutamicum	*	34	978	
55A	- 2	1 1356	958	91 485090	No definition line found (Caenothabditis elegans)	25	32	199	_ :
580	-	91	1 936.	911331906	[used envelope glycoprotein precursor [Friend spleen focus-forming irus]	\$	£ }	846	
(0)		554	1757	gi 1323423	ORF YGR334w Saccharomyces cerevistae	24	96	504	
1 617	-	- 25	249	91/219959	ornithine transcarbamylase (Homo saplens)	*	0.	225	- 7
632	-	1 1097	1480	[51]1303873	YggZ [Bacillus subrilis]	54	25	384	;
623			0	91,1063250	low homology to P20 protein of Bacillus lichiniformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subtilis)	35	\$	407	,
		1547	11011	91/552446	NADH dehydrogensse subunit 4 [Apls mellifera ligustica] pir 552968 552968 NADH dehydrogensse clain 4 - honeybea itochondrion (5004)	\$	30	537	
125	7	646	145	1911987096	sensory protein kinase (Streptomyces hygroscopicus)	3.4	26	755	
956	-	-	249	[pxr 530782 5307	pir[S]0782 S]07 intagrin homolog - yeast (Saccharomyces cerevisiae)	\$4	24	249	
87.6	~	11137	A 59	oi 1101994	ORF YML091w Seccharomyces cerevisiae	54	33	279	
1314	-		1 281	10111001108	hypothetical protein (Symechocystis sp.)	\$\$	13	279	
7450	-	-	1 228	19111045057	ch-ToG (Homo sapiens)	*	76	1 228	
2934	-	-	1 387	191580870	ips-17d goxA gene product (Bacillus subtilis)	•	91	1 387	
2970	-	664	1 2 5 1	sp P1734# VECE_	HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	24	42	249	

Contig 1D	108F	Start (nt)	Stop (nt)	match acession	ששלכף ספים שששש	m 1 e .	• ident	length (nt)
3002	-	-	1 309	91/4627	The protein [Lactococcus lactis]	\$4	7.00	309
1981		6	797	91 151259	HHO-COA reductase (EC 1.1.1.88) [Pseudosonas mevalonii] pir[A44756] A44756 hydroxymathylulutaiyl-CoA reductase (EC 1.1.1.88) Pseudomonas ap.	\$	15	9 5
3572		72	10+	991 450698	hadm gene of Ecopril gene product (Escherichie coli) pir 518417 518417 hadm protein - Escherichia coli pir 509629 509629 hypothetical protein A - Escherichia coli (SUB 40-520)	<u>*</u>	36	330
3829	1	864	000	gi 1322245	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)	3	29	399
1909	-	-	1 273	gi 29865	CENP-E (Homo sapiena)	24	30	172
1921			209	pir s24325 s243	glucan 1.4-beta-glucosidose (EC 3.2.1.74) - Paeudomonas fluorescens subsp. celluloss	54	9	207
4438	-	995	1 285	gi 1196657	unknown protein (Mycoplasma pneumoniae)	vo —	00	282
4459	-		272	91 1046081	hypothetical protein (GB:D26185_10) (Mycoplasma genitalium)	3.4	36	270
4564	-	· -	1 221	91 216267	ONF2 [Bacillus megaterium]	\$ \$	38	219
23	=======================================	112538	10685	91 474192		5.3	35	1854
23	1	14841	113579	91 42029	ORF1 gene product (Escherichia coli)	,	32	1263
24	_	0777	3940	19111369947	c2 gene product (Bacterlophage Bl)	53	36	\$01
26	-	1 3818	4618	91 1486247	unknown (Wactillus subtilis)	53	37	108
*	9	1 2856	1 399A	91/405880	yell (Escherichia coll)	5.	40	1143
38	100	9380	9084	91/1399954	thyroid sodium/iodide symporter NIS (Rattus norvegicus)	5.3	59	1575
5.6	0.7	112324	112100	pir A54592 A545	110k actin film: associated protein - chicken	53	32	225
5.7		5047	4583	pre A00341 DEZP	alcohol dehydrogenase (EC 1 1 1.1) - fission yeast (Schizosaccharomyces pombs)	2	66	\$ 9 7
57	7.	110515	1 8932	91 480429	putative transcriptional regulator (Bacillus stearothermophilus)	5	00	1584
23	112	9676	110218	gi 1511555	quinolone resistance norA protein protein [Methanococcus jamaschii]	53	31	723
6.9		1 3125	2382		erabinogalactan-protein, AGP (Nicotiana alata, cell-suspension cultura filtrate, Peptide, 461 ea)	53	30	744
79	-	-	1 1031	91 1523802	glucal ise (Anabaena variabilis)	53	32	6701
80	-	+ 673	338	91 52428	ATPase 3 (Plasmodium falciparum)	2.	3.6	338
80	-	1910	2524	[91] 137034	ORF_0488 (Eacherichia coli)	53	25	615
e e	-	2467	3262	gi 537034	ORF 0488 (Eacherichia coll)	1 53	29	816
1 1 1 1 1	1			****************				

5	
10	
15	
2 0	
25	
30	
35	
10	
1 5	
50	

teins
n pro
know
ç
similar
Putative coding regions of novel proteins similar to known proteins
novel
ō
regions
coding
Putative
*ne.ne
Ŋ

Cont 19	Contig OFF	Start (nt.)	Stop	netch cression	ן makin gener name	• • • • • • • • • • • • • • • • • • •	i i ident	length (nt)	_
92	-	1 5870	5055	91 399598	amphotropic murine retrovirus receptor (Rettus norvegácus)	53	1 66	366	
* 6	: <u>s</u>	4417	3239	91 173036	tropomyosin (TPM1) (Saccharomyces cerevisiae)	53	7.5	9611	
66	-	1 4207	5433	sp P28246 BCR_E	SP P28246 BCR_E BICYCLOMYCIN RESISTANCE PROTEIN (SULFONAMIDE RESISTANCE PROTEIN).	62	0.5	1221	
120	-	1639	2362	91 576655	ONF1 (Vibrio anguillarum)	53	35	624	• •
120	=	1 7257	1 8897	91 1524397	glycine betaine transporter OpuD (Bacillus subtilis)	3		1641	
127	•	6893	5885	(91)1256630	putative (Bacillus subtilis)	3	32	1203	
147	~	1 255	557	91 581648	epis gene product (Staphylococcus epidermidis)	53	*	303	
		4705	4256	91 151004	muccidy regulatory protein AlgR [Pseudomonas aeruginosa] pir[A33802 A32802 regulatory protein algR - Pseudomonas aeruginosa sp P26275 ALGR_PSEAE PoSITIVE ALGINATE BIOSYNTHESIS REGULATORY ROTEIN.	53	32	450	
171	7	1 5717	5421	oi 1510669	hypothetical protein (GP:D64044_18) (Methanococcus jannaschii)	53	7	297	
161		113087		91 298085	Accessetate decarboxylase [Clostridium acetobutylicum] pir 849346[849346] butyates—secsocatete CoA-transferam [EC. 8.3.9] amall chain— Clostridium acetobutylicum apply52[CTFA_CLOAB_BUTYRATE_ACETOACETATE_COA- TRANSFERASE_SUBUNIT_(EC.2.8.3.9) [COAT_A]	53	ā 	1605	
1 203	-	1 3763	4326	91 143456	rpoE protein (ttg start codon) (Bacillus subtills)	2	67	564	
506		18204	18971	q1 304136	acerylglucemate kinase [Bacillus stearchermophilus] sp[007905]ARGB_BACST ACETYLGLUTAMATE KINASE (EC 2.7.2.8) (NAG INASE) (AGK) (N-ACETYL-L-CLUTAMATE 5-PHOSPHOTRANSFERASE).	2	36	ر 8	
717	- 10	14021	4221	141 9878	protein kinase (Plasmodium falciparum)	5	28	201	
231	- 5	1 1580	1350	gi 537506	paramyosin (Dirofilaria immitts	S	*	102	
272	-	1 2719	3249	pic A33141 A331	hypothetical protein (grfD)' region) - Streptococcus mutans	53	34	531	
308		1 927	3252	191/606292	ORF_0696 (Escherichia coll)	3	<u>~</u>	0591	
320		5643	200	q1 160596 	RNA polymerase	\$ 		740	
1 327	-	1 218	106	91 854601	unknown (Schirosaccharomyces pombe)	53	31	684	
170	7	1 212	1 2500	911633732	ORF1 (Campylobacter jejuni)	53	3.1	2289	
1381	_	1 763	1 383	sp(P31675 YABH_	HYPOTHETICAL 42 7 KD PROTEIN IN THPA-LEUD INTERGENIC REGION (ORFID4).	53	32	381	- •
Ē.	-	1 5087	4731	gi 1001961	MMC class II analog (Staphylococcus auraus)	53	30	357	
\$	~	1240	086	pir A60328 A603	idik cell wall protein precursor (sr 5: region) - Streptocorcus mutana (strain OHZ175; serotype f)		27	261	

Contig ID	OR I	Start (nt)	Stop (nt)	match	aner mene heat dispersion of the second control of the second cont	E 7	• Ident	length Intl
4.70	-	1123	1761	91 516826	rat GCP360 Rattus rattus	53) 00	639
4.83	-	432	217	91 1480429	putative transcriptional regulator (Bacillus stearnthermophilus)	53	ŗ,	216
544		\$16	1259	91 4654	ONF 1 (A. 1 - 121) (1 is 2nd base in codon) [Staphylocuccus aureus] ir[515765 515765 hypothetical protein i (hlb 5' region) - aphylococcus aureus (fragment)	S	9	744
558	110	1 3957	13754	[g1]15140	res gene Becteriophage Pl	53	32 ′	204
603	~	936	620	qi 507736	Hmp Vibrio persheemolyticus	53	56	282
(69)		1669	941	91 153123	toxic shock syndrome toxin-1 precursor [Staphylococcus sureus] pir A24606 XUSAS1 toxic shock syndrome toxin-1 precursor - taphylococcus sureus	53	88	729
766	-	7	673	191 687 600	orfal; orfal forms an operon with orfal (Listeria monocytogenes)	53	Ç	672
781	-	1 667	335	gi 1204551	(pilin biogenesis protein (Haemophilus influenzae)	5.3	36	333
901	==	-	545	ui 1279400	SapA protein (Bacherichia coli)	53	25	543
803		2	910	91 695278	Ilpass-like snayse (Alceligenes sutrophus	ŝ	or	606
872	-	11177	065	91 298032	EF (Streptococcus suis)	53	0.	588
910	-	2	701	91 1044936	unknown (Schizosaccheromyces pombe]	53	29	183
943		794	388	911:30508	similar to unidentified ORF near 47 minutes [Escherichia coli) sp p]1436 YICK_ECOLI HYPOTHETICAL 43.5 KD PROTEIN IN SELC-NLPA NTERGENIC REGION.	\$	0 0	396
988	-	1004	204	191 142441	ORF 3; putative (Bacillus subtalis)	\$	28	501
1064	-		\$	91 305080	myosin heavy chain (Entemosbe histolytica)	53	26	432
1366	-		- (52	gi 308852	transmembrane protein (Lactococcus lactis)	53	33	450
1758	-	1 792	197	91 1001774	hypothetical protein (Symechocystis sp.)	53	00	396
1897	-	-	+	91 1303949	Yqix Bacillus subtilis	53	27	447
2381		798	00	 g1 1146243 	[22.4] identity with Escherichia coll DNA-damage inducible protein purative [Bacillus subtilis]	S	```	986
3537			327	450688	hadw gene of Ecopril gene product (Escherichia coli) pir [536437 538437 hadw protein - Escherichia coli pir [509629 509629 hypothetical protein A - Escherichia coli (508 40-520)	53	35	721
1747	~	11)	1 397	91 1477486	transposase (Surkholderia cepacia)	53	53	261
=	-	3040	1 3443		Lo definition line found (Despondability electrons)			

proteins
known
5
similar
proteins
nove
0
regions
coding
S. aureus - Putative coding regions of novel proteins similar to known proteins
1
Pore
SS

5 6 7 6 8 7 8 6 6	5 2205 5 2205 1 6920							
			2369	91 215966	[64] protein (gto start codon) (Bacteriophage 74)	52	-	165
	; <u>;</u>	_	3808	91,1205379	UDP-murnac-pentapeptide synthetase Wasmophilus influenzas	52	- 12	1160
			3462	91 579124	predicted 86.4kd protein; 52Kd observed (Mycobacterlophage 15) predicted 86.4kd protein; 52Kd observed (Mycobacterlum phage L5 spigo5233/WG26_BPHL5 MINOR TAIL PROTEIN GP26. (SUB 2-8)7)		32	3459
	\$ 3015	-	3935	qi 1500543	PIIS protein Methanococcue Janneschii	52	15, 1	921
	113 8795	; -	1 6076	gi 46851	glucose kinase (Streptomyces coelicolor)	~	29	606
	16 10617	:-	99	gi 42012	moaE gene product (Escherichia coli)	52 -	36	450
=		-	521	91 1040957	NACH dehydrogenese subunit 6 (Anopheles trinkee)	- 25	25	5119
	1628 01	-	9	91 388269	trac (Plasmid pADI:	- 23	32	750
-	3 3968		2826	01 13 949	endochalial differentiation protein (edg-1) (Homo sapiens) pir a35300 a35300 G protein-coupled receptor edg-1 - human sp p21453 EDGI_HUMAN PROBABLE G PROTEIN-COUPLED RECEPTOR EDG-1.	25	23	1143
	5 4850	50	4173	gi 304153	sorbitol dehydrogenase (Bacillus subtilis)	52	27	678
62	5 3364	; -	2870	91 (1072399	pheE gene product (Rhizobium meliloti)	- 25	25	567
62	6 4445	; –	3651	qi 46485	[NADH dehydragenase [Symechococcus PCC7942]	52	27	795
67	14 11355	:	112962	191 1311365	glutamate synthase (NADPH), subunit alpha (Methanococcus jannaschii)	52) 00	1008
62	21 16935	35 (18	158	gi 1204393	hypothetical protein (SP.P31122) [Haemophilus influenzae]	\$2	25	1224
0,	4 2185	52	1997	91 7227	cytopleamic dynein heavy chain [Dictyoatellum discoldeum] r. A44157 A44157 dynein heavy chain, cytosolic - slime mold ctyoatellum discoldeum)	52	36	681
96	10 100005	1	10664	19111408485	865G gene product (Bacillus subtilie)	52	26	099
103	5 3986	-	3351	91 1009368	Respiratory nitrate reductase (Bacillus subtilis)	52		636
100	3 41	4102	3350	Qi 699274	labE gene product (Mycobacterium leprael	52	39	75.3
1 601	119 115732	i	00871	91 1526981	amino acid permease Yeef like protein (Salmonella typhimurium)	52	90	1569
121		1412	981	 Qi 732931	unknown (Saccharomyces cerevisiae	5.2	7 7 7	632
125	3 865	-	1680	9111296975	pur gene product [Porphyromonas gingivalis]	5.2	36	916
130	2 659	- -	1807	191 1256634	[25.84 identity over 120 as with the Synehococcus ap. MpeV protein; putative [Recillus subtilis]	22	*	1149
149	1 1	1164	583	94:1225943	Pecx terminare [Bacillus subtilis]	52	1 2	582
149	114 46	4687	4415	91 1510368	ιūι	52	35	273

a i	Cont.1g ORF	Start	Stop (nt)	metch accision	שפול לו קפום המשפ	e i e	* ident	length (nt)
1 167	-	9:7	1001	91146025	cell division protein (Escherichia coli)	52	-	786
0C		120	1256	91 (474915	orf 377; translated orf similarity to 5W: BCR ECOLI bicyclomycin esistence protein of Escherichia coli [Coxiella burnetii] pir[544207[544207] hypothetical protein 337 - Coxiella burnetii [SUB - 338]	52	56	7611
195		9161	8760	19111028	initochondrial outer membrane 72K protein (Neurospora crassa) r[a36682]a36682 72K mitorhondrial outer membrane protein - rospora crassa	\$2	25	•03
1 200	-	2065	2607	91 142439	ATP-dependent nuclease (Bacillus subtilis)	52	3.5	543
1 203	-	2776	3684		BitD [Becillus aubtilis]	52	25	606
1 227		5250	5651	91 305080	myomin heavy chain (Entamomba himtolytica)	52	24	402
1 242	-	21	1424	191 1060877	Enry (Escherichia coll)	52	32	7071
249	5	4526	4753	pir c37222 c372	cytochrome P450 1A1, hepatic - dog (fragment)	\$2	23	228
255	-	1 2107	1055	91/143290	pentcillin-banding protein [8acillus subtilis]	52	788	1001
276	-	1 3963	3664	91 1001610	hypothetical protein (Symechocystis sp)	52	0.	300
276	8	14456	4055	91 416235	orf L3 [Hycoplasma capricolum]	52	26	707
289	7	1 1856	1449	191 150900	GTP phosphohydrolase [Proteus vulgaris]	52	-	80+
325			279	91 1204874	polypeptide deformylase (formylmethionins deformylase) [Haesophilus influenze]	\$2	~	279
140	-	2017	1010	91 :215695	peptide transport system protein SapF homolog. SapF homolog (Mycoplasma preumoniae)	55	2	#00#
27.5	- 3	340	8781	91 467446	similar to SpovB (Bacillus subtilis)	52	2.8	1539
424	-	* 10 *	3262	101 1478239	unknown (Mycobacterium tuberculosis)	52	7.	843
430	-		575	pir A42606 A426	orfA 5' to orf465 - Saccharopolyapora arythraea (fragment)	52	28	573
707		4728	3712	Qi 1408494	homologous to penicillin acylase [Bacillus subtilis]	52	116	1017
4 65	: 	1802	60	43,1143,33	alkaline phosphatese regulatory protein (Bacillus subtilis) pir[A27650[A27650 regulatory protein phoR - Bacillus subtilis sp[P23545]PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC	5.5	90	006
694	<u></u>	4705	4169	91 755152	highly hydrophobic integral membrane protein [Bacillus aubtliis] sp P42953 TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG.	52	32	537
495	-	1262	633	gi 1204607	transcription activator (Haemophilus influenzae)	52	25	630
505	7	9 00 9	5762	191 142440	ATP-dependent nuclease (Bacillus subtilis)	52	28	243

S. aureta - Putative coding regions of novel proteins similar to known proteins

5

Contig	ORF	Stert	Stop	Parton Possibility	match gene name		• ident	length (nt)
515		1162	1614	qi 166162	Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi	52	35	453
543	- 5	444	1295	19111215693	putative orf; GT9_orf434 [Mycoplasma pneumoniae]	52	25	852
985	- 7	-	336	91,581648	epis gene product (Staphylococcus epidermidis)	52	96	336
17.3	-	878	426	91,1279769	FdhC (Methanohacterium thermoformicicum)	52	30	423
1120	-	100	000	91 142439	ATP-dependent nuclease [Bacilius subtilis]	5.2	35	23.
1614	-	169	147	[91]289262	come ORF3 [Bacillus subtilis]	52	28	345
7495		-	324	94 216151	DNA polymerase (gens L; ttg start codon) [Bacteriophage SP02] gi 579197 SP02 DNA polymerase (as 1-648) [Bacteriophage SP02] pir A21498 DJBPS2 DNA- directed DNA polymerase (EC 2.7.7.7) ~ phage P02	52	7.	324
2931	-	995	2.85	91'1256136	YbbG Bacillus subtilis	5.2	30	282
2943	-	115	320	01 41713	hisA ORF (AA 1-245) [Escherichie coli)	5.2	35	258
2993	-	588	295	gi 298032	EF (Streptococcus suis)	5.2	34	294
3667	- - -	612	100	91 849025	hypothetical 64.7-kDa protein (Bacillus subtilis)	52	36	306
3944	-	478	260	01 1218040	BAA (Bacillus licheniformis)	52	36	219
1 3954	~	613	347	91 854064	US7 (Humman herpesvirus 6)	5.2	80	267
3986		06	6	19(11205919	Na. and Cl. dependent gamma-aminobutryic acid transporter [Haemophilus] influenzae]	52		312
4002			389	gi 40003	oxoglutarate dehydrogenses (NADP+) {BACIIIus subtilis] p P23129 ODGI_BACSU	\$2	42	387
4020	-	-	249	oi 159388	ornithine decarboxylase [Leishmania donovani]	52	4.1	249
860+	-	438	1 220	191 409795	No definition line found (Escherichia coli)	52	32	219
4248	1	_	1112	191 965077	Adrép (Saccharomycea cerevisiae)	\$2	07	210
	-	_	575	gi 895747	[putative cel operon regulator (Bacillus subtalis)	51	2.R	573
7	-	1 2479	1 3276	gi 1510962	Indole-1-glycerol phosphate synthese [Methanococcus jannaschii]	51	32	964
22	-	1 5301	9965	91/1303933	YqiN (Bacillus subtilis	51	25	999
7	-	9151	1283	9111519460	Srp1 (Schizosaccharumyces pombel	5.1	7.	234
7		111042	11130\$	9. 42011	moaD gene product [Escherichia coli]	5.1	35	264
15 -	===	6453	6731	91 495471	vacuolating toxin [Helicobacter pylori]	5.1	1 37	279

Contig	08F	Start	Stop (nt)	match	match gene name	# 1 B	1 ident	length (nt)	
\$25		2537	2995		25% identity to the E.coli regulatory protein MprA. putative (Bacillius subtlibs)	15	32	657	
55	02	7331	6843	91 508173	EIIA demain of PTS-dependent Gat transport and phosphorylation Escherichia	15	32	6.89	
65	-	67	1111	01 299163	alaning dehydrogenase (Bacillus aubtilis)	15	33	1 6801	
1 67	120	16791	116576		M. Jannaschii predicted coding region MJ0938 (Mathanococcus Jannaschiil	51	24	986	
69	7	1559	1218	01 467359	unknown Becilius subtilis	15	34	342	
12	-		1196	91 298032	EF Streptococcus suis	51	32	1194	
1,38	- 2	67.	176	01 1161242	iproliferating cell nuclear antigen (Styela clava)		38	174	
66	-	13357	4040	91 642795	TFIID subunit TAFII55 (Homo sapiens)	15	25	989	
601	<u></u>	2852	1428	91 580920	rodb (gram) polypeptide (AA 1-673) [Bacillus subtilis] pir 506048 506048 probable rodb protein - Bacillus subtilis sp P13404 TAGE_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCGSYLTRANSFEHASE (EC 2.4.1.52) (TECHOIC ACID BIOSYNTHESIS ROTEIN E).	25	7.2	1425	
109	6	1 6307	1 6693	91/1204815	hypothetical protein (SP:P12662) [Haemophilus influenzael	51	23	687	
1112	-	1066	2352	pir s05330 s053	malcose-binding protein precursor - Enterobacter aerogenes	51	42	1287	
112	=	114432	112855	g1 405857	[yehU [Escherichia coli]	1 51	29	1578	
114	6	9725	1 8967	gi 435098	orfi (Mycoplesma capricolum)	1 81	0.	159	
≘ 	- -		716	9111431110	ORF YBLORYM (Saccharomycus coroviatao)	· •	ź.	216	
127	110	1 9647	110477	gi 1204314	H influenzae pradicted coding region HI0056 (Haemophilus influenzae)	1 51	37	831	
1 152	6	6814	1 7356	gi 431929	HunI regulatory protein [Hycoplasma sp.]	51	e	543	
154	~	1 575	1153	gi 1237044	unknowm (Mycobacterium tuberculosis)	51	36	828	
154	-	1 6587	\$634	191 409286	DerU (Bacillus subtilis)	2.	2.7	956	
171	-	6943	6236	gi 1205484	hypothetical protein (SP:P3)918) [Haemophilus influenzae]	15	32	104	
187	-	-	1 291	gi 466886	Bi496_C]_206 (Mycobacterium leprae)	15		291	
212		1501	2139	pir A45605 A456	macure-parasite-infected erythrocyte surface antigen MESA - Plasmodium falciparum	3.	23	639	
228	7	100	1378	91 4204	nuclear protein Drosophila melanogaster	18 -	1 27	672	
236	-	1 8137	1 7481	gi 49272	Asparaginase (Bacillus licheniformis)	15 -	7.	657	
2	-	4637	3546	94 1511102	melvalonate kinase [Methanococcus jannaschii]	15 1	29	1092	
	1,1-11								

s aureus - Purative coding regions of novel proteins similar to known proteins

Contra	10 CE	Start	Stop (nt)	match ?cession	אינין איני		1 ident	length (nt)
1.25.1	-	154C	3373	gr 204579	H. influenzae predicted coding region H10326 [Haamophilus influenzae]	18	22	16.8
258		7652	1609	191 160299	glutanic acid-rich protein [Plasmodium falciparum] pir[A56514]A56514 glutanic acid-rich protein precursor - Plasmodium alciparum	51	-	789
265	- \$	2419	3591		FT (Becilius subtilis)	<u>.</u>	32	1173
298	7	518	748	91 136162	SCPB (Streptococcus agalacties)	- 15	7	231
1 316	6	5817	1 7049	191 (113953	ipa-29d gene product (Bacillus subtilis)	15	1 60	1233
	~	37.75	1 205 /	91 1209012	muts (Thermus aquaticus thermuphilus)	51	9.7	1719
164	-	3816	1667	91 528991	unknown (Bacilius subtilis)	1 21	32	1176
440	~	44.8	6 R4	631 2819	transferam (GALIO) (AA 1 - 687) (Kluyveromyces lactia) r[501407 XUVKG UDPglucome 4-epimerame (EC 5 1 3.2) - yeast uyveromyces marxianum var. lactia)	15	27	7.5
495	2	1353	1177	di 297861	protesse G [Erwinia chrysanthemi]	51	7	1.1
569		2287	1718	91 1513317	serine rich protein [Entamoeba histolytica]	15	- · ·	01.4
905		840	421	91 455320	cll protein Bacteriophage P4	5.		420
009		1474	983	191 587532	orf, ien: 20], CAI: 0.16 (Saccharomyces cerevisiae) pir 548818 548818 hypothetical protein - yeast (Saccharomyces erevisiae)	51	0.	492
1 607	-	479	934	91 1511524	hypothetical protein (SP:P37002) (Methanococcus januaschii)	2.5	0	456
1 686	- 2	127	009	91 493017	endocarditis specific antigen (Enterococcus faecalis)	- 51	90	474
1 726	-		230	91 1353851	unknown (Prochlorococcus marinus)	15	3	H61
1 861	-	176	652	91 410145	dehydroquinste dehydratass [Bacillus subtilis]	22	34	(4)
R69		782	393	91 40100	rodc (tag) polypeptide (AA)-746 {Recillus subtilis) ir S06049 S06049 rodc protein - Bacillus subtilis p Pl1485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	22	23	390
(001		642	322	91 1279707	hypothetical phosphoglycerate mutase (Sacchatomyces cerevisiae)	\$1	39	121
1 1046	~	998	624	gi 510257	glycosyltransferaso [Escherichia coll]	51	29	243
1467	-	1 702	352	191 (1511175	H. Jannaschi: predicted coding region MJ1177 (Methanococcus jannaschii)	51	32	151
2558	-	1 457	230	sp P10582 DPOM_	DNA POLYMERASE (EC 2.7.7.7) (S-1 DNA ORF 3).	1 51	26	228
1 3003	-	677	1 399	91 809543	[ChrC protein [Erwinia chrysanthem!]	51	2.7	381
3604	-		1 399	pix JC4210 JC42] - hydroxyacyi - CoA dehydrogenase (EC 1.1.1.35) - mouse	15	37	399
3732	-	2	1 316	91,145906	acyl-CoA synthetase [Escherichia coll]	51	13	315

Putative coding regions of novel proteins similar to known proteins
knovn
2
similar
proteins
novel
ō
regions
coding
Putative
aureus
v

Contig ORF	9.0 1.0 1.0	Start (nt)	Stop (nt)	match	natch gene name	E	1 Ident	Jength (nt.)
1971	=	7	274	91 1061351	semaphorin III (amily homolog [Momo sapiens]	16	37	273
1 3995	-	9+	336	91/216346	surfactin synthetase (Bacillus subtilis)	5.1	38	291
4193		612	1 307	01 42749	ribogomal protein L12 (AA 1-179) [Eacherichia coli) Ir[S0476 XXECFL paptide N-acetyltransferese rimL (EC 2.3.1) - cherichia coli	<u>د</u>	25	306
4539	-	1 367	185	10111408494	homologous to penicillin acylase (Bacillus subtilis)	15	9	183
4562		4 4 5	239	91,1458280	roded for by C. elegans CDNA cm01e7. Similar to hydroxymethylglutaryl-CoA synthase (Cemorhabditis elegans)	5.1	35	204
		3576	4859	91 559160	GARIL score: null; cap site and late promoter motife present petream, putative (Autographa californica nuclear polyhedrosis irus)	0,5	3	1284
= =		4044	5165	g1 1146207		96	3.5	1172
	113	1:0509	9446	gi 1208451	hypothetical protein (Symachocystis sp.)	\$0	60	1014
61		2034	1018	91 413966	ipa-42d gene product (Bacillus subtilis)	20	2.9	1017
1 20	=	1 8586	8407	91 1323159	ONF YGR1034 (Saccheromyces cerevisies)	05	28	780
77	-	5408	4824	91 496280	structural protein (Bacteriophaga Tuc2009)	05	62	585
*	-	1976	65/7	19111303966	Majo (Bacillus subtilis)	05	36	B 34
e	30	22465	23440	 41 1072179		05	32	57¢
47	- 2	1705	1 2976	91/153015	FenA protein (Staphylococcus aureus)	05	29	1272
35	=-	157.90	135841	 gi 606096	OME (167; end overlaps end of 0100 by 14 bases: start overlaps £174, thur aterta possible [Escherichia coli]	20	2	555
52	-	1 2135	1011	gi 640922	xylitol dehydrogenase [unidentified hemisscomycete]	05 -	28	1059
88	7	628	1 1761	91 143725	putative (Bacillus subtilis)	05	29	1134
E	•	4393	3884	91 1072179		20	32	510
89	-	3700	3356	91 1276658	ORF174 gene product (Porphyra purpurea)	05	25	145
141	-	6 -	1 239	01 476024	carbamoy phosphate synthetase [1 [Plasmodium (alciparum)	05	33	762
151	-	981	626	91 1403443	unknown (Mycobacterium tuberculosis)	05	35	441
166	-	11065	9623	1911895747	putative cel operon regulator (Becillus subtilis)	80	32	1443
1 201	9	5284	9605	1 1 6 2 5	circumsporuzuita protein (Plasmodium reichenowi)	20	7	189
206	122	30784	129555	q. 11052754	LarP integral membrane protein [Lactococcus lactis]	50	24	1230

55

5	:	length (nt)	1 50\$	985	9	1326	- : : 4	1 106	1668	459	A67	225	1176	1 165	585	\$19	405	1668	1494	423	627	225	1 6 8 1	750	450
3		Lident	62	3.7	\$	22 ,	8.2	26	2.7	35	29	27	Dr	29	23	7.2	¥ .	ž.	۾	32	29	£ .	7	27	25
10		# 18 P	05	50	20	50	\$0	20	20	20	05	\$0	50	80	05	0\$	0.5	0.5	0.5	05	05	05	0.5	20	80
15	proteins				ptr 535835 535835 (fragment) (6UB 1-					-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		tative (Bacilius	it AC40 of DNA	of oponsomerases	MRSA No. 4, Puptide, 23 asl		ycochrome ol procursor (EC 1.10.2.2) (Paracoccus denitrificans) gl 45465 cytochrome ol AA 1-450) (Paracoccus denitrificans) pir[029413](029413 ubiquinolcytochrome-c teductass (EC 1.10.2.2) ycochrome ol precursor paracoccus denitrificans sp P13627 (V1			enzae)
20	lar to known			HENT)	rus type 1] virus ype 1		<1814e)			eun							iin MprA: pu	mutant of the subunit AC40 Saccharomyces cerevisiae	h a tamily	BUS MRSA NO		scoccus dent trificans] p 0.2.2) ytoch	(de e		philus influ
25	purative coding regions of novel proteins similar to known proteins			HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT	envelope protein (Human immunodefictency virus type 1) envelope protein - human immunodeficiency virus ype 1 77)	subtilis	phosphoglycerate mulase (Saccharomyces Carevistae)	(luenzae)	DNA polymerase family X [Thermus aquatious]	G-box binding factor (Dictyostellum discoldeum)	megaterium]	lehq	ichia coli)	N+ -ATPset subunit J (Enterococcus hirse)			E.coli regulatory protein MprA: putative (Bacillius	sor of a mutant o and III (Sacchar	sequence similarity with a tamily of	seukocidin F component (Staphylococcus aureus		C 1.10.2.2) (Para (Paracoccus denit eductase (EC 1.10 sp[P13627]CY1	heterocyst differentiation protein (Anabaena ap.)	s subrilis	tyrosine-specific transport protein [Heemophilus influenzee]
30	regions of nov	nese.	us subtilis]	PROTEIN IN ASP	ein (Human imm besin - human š	B65G gene product [Bacillus subtilis]	ste mulase (Sa	lipoprotein [Haemophilus influenzae]	e family X (Th	J lactor (Dicty	ORFZ gene product [Bacillus megaterium]	ORF2136 (Marchantia polymorphal	UDP-sugar hydrolese (Escherichia coli)	subunit J (Ente	Bulk (Lactococcus lactis)	CapE (Staphylococcus aureus)	to the E.coli	a weak suppressor of a polymerase I and III	res	component (St.	occus suis	ycochrome of precureor (EC 1.10.2.2) (cytochrome of (AA 1-450) [Patesocres d ubiquinol-cytochrome-c reductase (EC paracoccus dumitrificans sp[e13627]CYI	ifferentiation	B65G gene product [Bacillus subfilis]	cific transpor
35	rative coding	match gene n	OMFX7 [Bacillus subtilis]	HY POTHET ICAL	envelope prot	B65G gene pro	phosphoglycer	lipoprotein	CNA polymera	G-box binding	CRF2 gene pro	ORF2136 (Marc	UDP-sugar hy	Na - ATPase	Bulk Lactor	CapE (Staphy	25% identity to the subtails	selected as a ependant RNA	Tral protein sha	teukocidin F	EF (Streptococcus suis	cytochrome cytochrome ubiquinol	heterocyst d	B65G gene pr	tyrosine-spe
40	S aureus - Pu	metch	[91]410131	8p P37348 YECE_	gi 313580	gi 1408485	Q1)H41H6	191 148896	oi 1526547	91 456562	01 288301	91 11665	911757842	91 487282	qi(551875	gi 567036	91 1256652	911295671	91 405568	91 410007	91 238032	91,150572	91 142020	gi .408485	(91 1004727
45		Stop (nt.)	1927	3295	907	1723	7 86	1605	3802	1931	741	5523	1 1825	1 591	1 864	541	0.	6509	1497	111	1 627	1171	683	752	887
		Start	1523	2411	5068	3048	9191	2507	2469	3473	1478	5299	059	, , , ,	1418	23		7726	2990	1133	7	947	1363		438
50	•	ORF	•	•		2	1 2	7		- 2	-	1 7 1			7	-		· -	:	1	1-	2	-	-	~
50		Cont.ig 15	211	2:4	228	272	273	32B	312	342	352	404	07	194	710	520	529	534	647	664	678	. 255	827	1 892	016

Contrib TORF		Start (nt)	Stop (nt)	match	malth gene name	E	ident	length (mt.)
933 1	÷-	524	760	01 1205451	cell division inhibitor [Haemophilus influenzae]	0.5	12	21)
973	· -	474	336	31 886947	orf3 gane product (Saccharomyces cerevisiae)	0.5	0	581
1 6001	<u> </u>	653	429	191 153727	H protein group G streptococcus]	0,5	2.8	225
1027		511	257	191 4:3934	ips 10r gene product (Bacillus subtilis)	،	25	255
1153	2 5	556	326	96867 191	ncch (Alcaligenes xylosoxydens)	0.5	36.	233
1222	1 - 7	9.60	400	19111408485	1865G gene product (Bacillus subtilis)	ů,	2.1	996
1350		692	668	191 289272	[ferrichrome-binding protein [Bacillus subtilis]	0.5	32	294
2945	-	366	184	191171704	hexapranyl pyrophosphate synthetase (COQ1) [Sacchalumyces erevisiae]	20	7.	183
2968		1604	804	91,197526	clumping factor Staphylococcus aureus]	20		109
2998	2 6	657	761	191 495696	FS4E7.3 gene product (Camorhabditis elegans)	õ	•	797
1046	· —	366	306		lacyl carrier protein - Anahauna variabilis (fragment)	20	32	201
3063	: -	\$47	275		iuch gene product (Escherichia coli)	20	5.6	273
3174		-	146	911151900	alcohol dehydrogenase (Rhudobacter sphaeroides)	80	17	7
3792	9 1	625	314	[gi]1001423	hypothetical protein (Synechocystis sp.)	20	35	312
1400		2	262	911144733	NAD-dependent beta hydroxybutyryl coenzyme A dehydrogenase Clostridium acetobutylicum	\$0	2.8	192
3346		313	. 98	1911576765	cytochrome b [Myrmecia pilosula]	20	* * :	9 # .
3984	1 - 5	5.78	291	SD P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS 5' REGION IFRAGMENT).	20	3.	2 В В
1 (2	110	8250	7885	gi 1204367	hypothetical protein (CB:U14003_278) [Haemophilus influenzae]	8	0.	366
46	116 13	13802 1	14848	51 466860	acd; B1308_F1_34 [Mycobacterium leprae]	6.	24	1047
5.9	5 2	2267	1601	[61 606304	ORF_0462 [Escherichia coll;	6.7	27	1335
112	118 117	117884 18615	18615	91 559502	ND4 protein (AA 1 - 409) [Caemorhabditis elegans]	67	25	132
138	9 6	6973	7902	qi{303953	esterase Acinetobacter calcoaceticus	6.4	29	930
217	- 9	401	5136	g1 496254	[fibronectin/fibrinogen-binding protein (Streptococcus pyogenes]	6	7.	738
220 112		11803 1	12657	191 397526	clumping factor (Staphylococcus aureus)	6.	16	888
2.28	-	1842	2492	pir 523692 5216	pir 523692 5236 hypothetical protein 9 - Plasmodium falciparum	49	24	651
268	1 1 5	5016	2614		ORFW [Macillus subtilis]	\$	26	2403
					· · · · · · · · · · · · · · · · · · ·			

S
119
pro
5
ķ
5
181
E .
5
5
pr
ove
č
0
jior
) i
11 ng
ő
2 0
ıt.
á.
3
aureus - Putative coding regions of novel proteins similar to known proteins
Š

Cont 19 1D	OKF 110	Start (nt)	Stop	match acession	match gene name	 E	1 tdent	Jength (nt)
172	7 -	1164	1 1373	19111001257	hypothetical protein (Symechocystis sp.)	6.7	90	210
300		4340	3180	01 1510796	hyputhetical protein (GP.X91006.2) (Methanococcus jannaschii)	- 67	- 9 7	1911
3.81	· ·	2281	1142	 91(396301 	matches PS00041, Bacterial regulatory proteins, araC family ignature [Escherichia coli]			1140
466	-		1 947	19111303863	YqgP (Bacillus subtilis)	- 64	26	345
999	=	916	161	gi 633112	CRF1 (Streptococcus sobrinus)	6.0	29	189
6.70	7	103	1014	911112758	unknown (Bacillus subtilis)	6.7	32	612
709	-	1433	\$67.	di 143830	xpac (Bacillus subtilis)	- 64	29	623
	-	1 943	1 473	191,401786	phosphomannomutase (Mycoplasma pirum)	÷	29	1.7
1352	-	1 422	1 213	91 1301799	YQEN (8ac111us subtilis)	_ \$	2.1	210
1800		342	172	41 216300	peptidoglycan synthesis enzyme [Becillus subtilis] sp P1)585 MURG_BACSU HURG PROTEIN UPD-N-ACETYLGLUCOSAMINEN-ACETYLMURAMYL- PENTAPEPTIDE: PYROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUCOSAMINE RANSFERASE:	6	**	171
2430	-	7	1 376	sp! P27434 YFGA_	HYPOTHETICAL 36.2 KD PROTEIN IN NDK-GCPE INTERGENIC REGION.	- 67	26	375
3096	-	242	1 273	1911516360	surfactin synthetase (Bacillus subtilis)	69	25	270
32	-	וררנ	1 3100	91 1217963	[hepatocyte nuclear factor 4 gamma [HNF4gamma] [Homo sepiens]	8.	36	672
3.8	-	-	609	1911 205790	H influences predicted coding region HII555 [Haemophilus influences]	9	e C 2	609
45	3 -	1205	6427	9111524267	unknown [Mycobacterium tuberculosis]	4	0 7	7.001
88	=	116346	96011	91,1197336	Lmp3 protein (Mycoplasma hominis)	6	28	14751
6.1	-		809	91 1511555	quinolone resistance norA protein protein (Methanococcus jannaschil)	9	30	909
19		3311	3646	91 1303893	[YqhL [Hacillus subtilis]	8	29	336
* 17		30	415	911671708	suis) homolog; simils to Drosophila melanogaster suppressor of able (su(s)) protein, Swiss-Prot Accession Number P22293 Irrosophila virilis)	89	2	318
121	-	1131	1 610	911314584	unknown Sphingomonas S88	84	29	\$22
136	-	2014	1280	9111205968	H. influenzae predicted coding region H1.738 (Haemophilus influenzae)	# ·	23	735
171	01	8220	1 9557	91 1208454	hypothetical protein (Symachocyatis sp.)	•	14	1338
571		3625	1814	1396400	similar to eukaryotic Na·/H· exchangers [Escherichia cc.i.) sp e12703 vjce_ecoli hypothetical 60.5 kd protein in some-acs ntergenic Region (0549).	&	29	1812
							;	

TARIE 2

EP 0 786 519 A2

5. aureus - Putative coding regions of novel proteins similar to known proteins

.30

(Capt.:9 OHF 10 110	10MF	Start (nt)	Stop (nt)	match acession	שפרלף ספטם ויישה	E is	A jekent	Jengih (nt.)	
197	-	106	4 25	191 1045714	spermidine/putrescine transpoit ATP-binding protein [Mycoplasma genitallum]	30	2.5	450	
203	·		360	91 940288	protein localized in the nucleoli of pea nuclei; ORF; putative Pisum sativum	æ	2.9	396	
204	-	1 1363	869	91 529202	No definition line found (Caenorhabditis elegans)	8	2.5	999	
206	120	134815	27760	91/511490	oranicidin S synthetase 2 [Bacillus brevis]	8	2.7	7056	
212	-	7	166	91 295899	nucleolin Xenopus aevis	8	34	165	
220	110	112652	111426	9114073	Secy protein [Lactococcus lactis]		7.7	1771	
243		6450	1 5491	91 1184118	mevalonate kinase (Methanobacterium thermosucotrophicum)	8	00	096	
797	· -	5434	1 3308	01 1015903	ORF YJR151C (Saccharomyces cerevisiae)		56	2127	
3	· - -	1512	1,68	911142863	replication initiation protein (Bacillus subtilis) pir 826580 826580 replication initiation protein - Bacillus ubtilis		23	\$0.	
414	-	3898	1 5298	191 145836	[putative (Escherichia coli]		24	1401	
484	- 7	388	1110	gi 146551	[transmembrane protein (kdpD) [Escherichia col1]	8,	1.6	723	
542	-	1425	1 2000	pxt 528969 5289	N.carbamoylsarcosine amidohydrolase (EC 3.5 1.59) - Arthrobacter sp.	#	2.7	\$7.6	
995	· -		1019	41 15 14 90	Letracenomyclii C resistance and export protein (Streptomyces laucescens)	‡	7.4	1101	
119	-		057	19111103507	unknown (Schizosaccharomyces pombe)	4	38	739	
624	-	1.255	599	191114859	OMF B (Clostridium perfringens)	a a	2.6	:65	
. 3 .	. -	10:	1 508	91/537506	[paramyosin (Dirofilaria immitis]	Ţ	7.2	105	
1070	-	2	9.50	191 1499476	magnesium and cobalt transport protein (Methanococcus jenneschil)	48	10	244	
1227	-	. -	174	91 (493730	lipoxygenese (Pisum sativum)	4	3.5	174	
1266			405	qi 862452	ORF_221), elegrate name ygok, orf5 of X14436 [Escherichia coli) gi 41425 ORF_5 (AA 1-197) Escherichia coli) (SUB 15-211)	70	74	Ş	
2071	-	100 ا	381	9111408486	HS74A gene product (Macillus subtilis)	8	2.5	127	
2398	-	1 463	233	91,1500401	reverse gyrase [Methanococcus jannaschii]	æ	0.0	231	
24.25		476	907	prc H48563 H485	Gl protein - fowlpox virus (strain HP444) (fragment)	89	90	231	
2432	_	446	1 225	19111353703	Trio (Homo sapiens)	8.4		227	
2453	-	4 6.	1399	91 142850	division initiation protein (Bacillus subtilis)	₽	29	396	
2998	-	469	236	91 577569	PupV [Lactobacillus delbrusckii]	÷	=	234	
				· · · · · · · · · · · · · · · · · · ·					

CCn 119	086	Start	Stop (nt.)	motch aression	match gene name	E 18 1	• ident	Length (nt)
3042	-	•	280	91,945219	mucin (Homo sapiens)	8	35	267
3686	-	-	405	91 145836	[putative [Escherichia coli]	ec	25	40\$
4027	~	492	301	pir S\$1177 S\$11	trans-activator protein - Equine infectious anemia virus	80 •	12	192
-	1 2	3641	2232	g1 1303989	Yuki (Bacillus subtilis)	Ç	7.7	1410
7	-	665	1084	911540383	PC4-1 gene product (Bradysia hygida)	· •	7.80	G X T
	9.	1 7524	6925	19111209223	esterase (Acmetobacter lwoffii)	•	56	009
+3		961	1884	91 1403455	unknown (Mycobacterium tuberculosis)	4.	27	1689
7	. 22	116118	115108	94 1511555	quinolone resistance norA protein protein [Methanococcus janasschil]	47	31	1011
69	: 	7.	6710	91 (438466	Possible operon with orfG Hydrophilic, no homologue in the atabase; putative (Bacillus subtilis)	47	6.7	3
÷	-	5005	4279	191 466882	pusl; 81496_C2_189 Mycobacterium leprae	42	*	7 4 4
120	21	1 9135	8863	gi 927340	D9509.27p; CAI: 0.12 Saccharomyces cerevisiae	47	38	~~~
142	<u>-</u>	2022	1174	191 486143	ORF YKLO94w (Saccharonyces cerevisiae)	5	32	944
168	-	2178	1093	19111117254	hypothetical EcsB protein Bacillus subtilis!	4.7	5.9	1046
7.03	-	1884	943	01/142822	O-alanine racement cde Bacillus subtilis	\$	7	146
279	: -	1109	\$61	91 516608	2 predicted membrane helicas, homology with B. subtills men Ortl Rowland et. al. unpublished Accession number M74183), approximately 1 minutes on updated Rudd map; putative (Escherichia coli) sp/P3755/YFBB_ECOLI HYPUTHETICAL 26 7 KD PROTEIN IN MEND-MENB	÷	15	\$ 4 ¢
145	- 5	2620	1676	91/1204835	hippuricase (Maemophilus influentae)	Ç	2.8	945
149	-	152	00	91 456562	G-box binding factor (Dictyostalium discoideum)	47	32	249
161	-		1 831	91 11420856	myo-inositol transporter [Schirosaccharomyces pombe]	47	19	931
404	-	2072	2773	91 1255425	[CllG8.2 gene product [Caenorhabditis elegans]	•	7.	707
529		2145	3107	411303973	Yqjv (Bacillus subtilis)	C	29	963
595	~	2321	1257	gi 142824	processing protesse (Bacillus subtilis)		2.4	1065
454		962	48)	91 243353	ORF 5 of ECRF) (herpesvilus solmin HVS, host-squirrel monkey, eptide, 407	4.7	5	0 8 9
692	-	115	633	91 150756	40 kDa protein [Plasmid pJM1]	4.7	25	519
165		1634	618	91 1256621	26 7% of identity in 165 as to a Thermophilic bacterium hypothetical protein 6, putative [Bacillus subtilis]	\$	# 7	90 100

Staureus - Putative coding regions of novel proteins similar to known proteins

125 2 211 1023 9115 1025 9115 1026 9115 1025 9115	97.526			-	ĵ
1		clumping factor (Staphylococcus aureus)	47	32	813
1 753 398 1 1 753 1 1 1 1 1 1 1 1 1	91 558073	polymorphic antigen (Plasmodium falciparum)	-	- 67	. 13
1 193 1998 1 1 1 1 1 1 1 1 1	91 1147557	Aspartate aminotransferse Bacillus circulans			15.3
1 1 293 191 19	9+1755153	ATP-binding protein (Bacillus subtilis)	1 4	50	396
1	91 145836	putative [Escherichia coli]	- 5	24.	167
1 1051R 10500 4 502R 4093 4 502R 4093 4 7 9543 8284 7 9543 8284 7 9543 8284 8 8 8 8 8 8 8 8 8 8	91195080	myosin heavy chain [Entamoeba hístolytica]	9	30	343
11 1051R 15300 4 502R 4093 4 4719 3652 7 9543 8584 1 1 196 1 1 1 196 1 1 1 196 1 1 1 1 1 1 1 1 1 1	91,603639	Yel040p (Saccharomyces cerevisiae)	466	28	282
4 1741 7930 14 5528 4093 3652 1 1 1 1 1 1 1 1 1	gi 1246901	ATP-dependent DNA ligase (Candida albicans)	4	28	213
4 5028 4093 1 1 1 1 1 1 1 1 1	911298032	EF (Streptococcus suis)	46	15.	6993
4 (4719 3652 3 (47) 196 3 (47) 773 4 (48) 2.85 1 2 863 1 2 603 1 6	91 1511057	hypotherical protein SP:P45869 (Methanococcus jannaschii)	-	57	976
1 1 196 3 437 973 4 4 8 2 8 5 1 1 1 1 1 1 1 1 1	pir S\$1910 S\$19	G4 protein - Sauroleishmania tarentolae	46	26	1069
1 1 196 196 196 196 1973 197	91 1041334	F\$405.7 [Caenorhabdiris elegans]	9.5	25	0971
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91,1204449	dihydroliposmide acetyltransterase (Maemophilus influenzae)	9.	3.	963
1 485 285 1 3 563 4 1876 2490 1 2663 1455 1 2419 1211 2417 4192 3 1512 1285	91 180189	cerebellar degeneration-related antigen (CDR14) (Homo sapiens) gi[1827]7 cerebellar degeneration-associated protein (Homo sapiens) pir[a29770 [A29770 cerebe]lar degeneration-related protein - human	9	29	511
1 1 563 4 1876 2490 1 2663 1455 1 2419 1211 5 2477 4192 5 1512 1285	191 (607573	envelope glycoprotein C2V3 region (Human immunodeficiency virus type)	9.7	1 50	701
1 1 2 490 1455 1455 1455 1455 1455 1455 1455 145	91 517052	ORF_(286 [Escherichia coli]	46	35	561
4 1876 2490 1 2663 1455 1 2419 1211 5 2477 4132 5 1512 1245	91 1221884		97	31	H61
1 2663 1455 1 2419 1211 5 2477 4192 1 1512 1245	191 1110518	proton antiporter efflux pump (Mycobacterium smegmatis)	99	24	613
1 2419 1211 5 2477 4102 1 1512 1245	91 1197634	orf4; putative transporter; Method conceptual translation supplied by author [Mycobacterium smegnalis]	9	7	6071
5 2477 4192 3 1512 1285	191 15470	portal protein (Bacteriophage SPPI)	9	00	: 200
1 1512 1285	gi 1523#12	orf5 (Bacteriophage A2)	- -	23	917
	91/215635	pack (Bacteriophage Pl)	9	30	22.8
587 2 649 1242 91.5	91,537148	ORF_f181 [Escherichia coli]	9.	29	965
-	91 1205456	single-stranded-DMA-specific exonuclesse (Raemophllus influenzae)	46	30	35.7

TABLE 2

Cont 19 ID	101	Start (nt)	Stop	match	match gene name	E .	* 1denr	length (at)
2 H	 		402	91 450688	hadM gene of Ecopril gene product (Eacherichia coli) pir S38437 S38437 hadM protein - Eacherichia coli pir S09629 S09629 hypothetical protein A - Escherichia coli (SUB 40-520)	*	3	402
4176	-	673	338	91 351460	FIM-C gene product Xenopus laevis	4.6		336
17	;	1 4813	5922	191 606064	ORF_[408 [Escherichia coli]	\$	24	1110
	:	111699	. 0	Qi 452192	[protein tyrosine phosphatase (PTP-BAS, type 2) [Homo sapiens]	\$	24	106
	: ~ : ~	1748	2407	9:11064813	homologous to sp:PHOK_BACSU Bacillus subtilis	. .	5.	- P
;	112	114182	113385	91 (1001307	hypothetical protein (Synechocystis sp.)	45	22	866
:	1.4	14791	11811	(91 (1204389	H influence predicted coding region HIO131 [Haemophilus influences]	5.7	23	186
145	. •	44 83	3461	1911220578	open reading frame (Mus musculus)	\$	20	1023
170	•	6329	4964	u1 238657	AppCacytochtume d oxidase, subunit I homolog (Eacherichia coli, KI2, eptide, 514 aa	\$	27	1365
30.6	; ; %	5230	4346	1911.222056	[aminotransferase [Memophilus influenzae]	\$	27	888
7.78			116	g1 160299	glucamic acid-rich protein [Plasmodium falciparum] pir [854514] A54514 A54514 Glucamic acid-rich protein precursor - Plasmodium alciparum	\$	53	653
2 R.H		7	1015	91 1255425	[C31GR 2 gane product [Caenorhabditis elegans]	\$	23	101
113		4339	3128	911581140	[NADH dehydrogenase [Escherichia coli]	\$	00 1	1212
3.32		914	659	ui a70966	[F47A4.2 [Caenorhabditis elegans]	\$	02	454
344			221	[g1[171225	kinesin-related protein [Saccharomyces cerevisiae]	\$	97	219
77	~ -	1501	1073	911142863	replication initiation protein (Bacillus subtilis) pir 826580 826560 replication initiation protein - Bacillus ubtilis	. .		Ç
672	-	7	1 982	g1 1511334	M jannaschii predicted coding region MJ1323 (Methanococcus jannaschii)	\$	7.7	1 t r
163		1345	158	191/606180	ORF_f110 (Eschwrichia coli)	\$	7	495
386		379	A 4 6	91/726426	similar to protein kinases and C. elegans proteins F37C12.8 and 37C12.5 [Caencrhabditis elegans]	\$	or -	H 9 4
8 4 6			£73	91 156400	yosin heavy chain (isozyme unc-54) (Caenochabditis elegens) pir[A9]958 MWKM myosin heavy chain B - Caenochabditis elegans sp p02566 MYSB_CAEEL MYOSIN HEAVY CHAIN B (MHC B).	\$	52	4.7
1158	7	2	376	911441155	[ransmission-blocking target antigen (Plasmodium falciparum)	\$	35	375
2551	-	•	285	91 1276705	ORF287 gene product (Porphyra purpurem)	\$	2.8	262
1961	-	1 42	374	91 976025	HrsA [Escherichia coli]	\$	1 28	333
:					+ 1 1 5 3 7 7 1 1 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1			

saireus - Putative coding regions of nove, proteins similar to known proteins

(lu)	44 22 1086	44 28 375	44 21 1416	44 30 210	44 26 1173	44 31 1 1440	44 24 519	44 32 951	44 28 612	cus (3 27 609	ns] 43 21 1464	43 22 1992	43 21 666	43 21 2733	43 29 480		42 18 1269	42 31 678	42 21 1242	42 25 480	42 30 573	42 23 1053	1212 1212 1212 1212 1212 1212 1212 14
match gene name	unknown (Becillus subtilis)	thioredoxin II (Seccheromyces cerevisiae)	tetracenomycin C resistance and export protein (Streptomyces laucescens	hypothetical protein (GB.U00022_9) [Naemophilus influenzae]	carboxypeptidase (Sulfolobus solfataricus)	orfl gene product [Lactobacillus helveticus]	low homology to P20 protein of Bacillus lichiniformis and bleomycin acetyltransferase of Streptomyces verticillus (Bacillus subrills)	FIM-C. I gene product [Xenopus laevis]	high molecular weight neurofilament (Rattus norvegicus)	molybdopterin-guanine dinucleotide blosynthesis protein A [Hethenococcus jannaschii]	terracenomycin C resistance and export protein [Streptomyces laucescens]	[lipase [Staphylococcus epidermidis]	unknown (Mycobacterium tuberculosis)	clumping factor (Staphylococcus aureus)	sporozoite surface protein 2 - Plasmodium yoelii (fraqment)	SQUETDE DENIGRACERIASE (FLAVOCYTOCHROHE C) FLAVOPROTEIN CHAIN PHECHASON (EC	selected as a week suppressor of a mutant of the subunit Acad of DNA epumdant RNA polymerase I and III (Saccharomyces cerevisiae)	ONF2 [Trypanosoma bruce!]	ORFI gene product (Escherichia coli)	ORF1; putative Bacillus firmus	ORF 2 (AA 1-203) [Bacillus thuringiensis]	yeef (Escherichia coli)	rodD (graA) polypeptide (AA 1 673) [Bacillus subtilis] pir s06048 s06048 spobable rodD protein - Bacillus subtilis sp F13484 TAGE_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRANSFERASE (EC 2 4.1.52) (TECHOIC
match acession	91 467378	91,173028	gi 153490	91 1204989	911136221	911.296822	gi Ub3250	951460	91 205680	 gi x511614	91153490	91 153022	9111419051	91 397526	pir A60540 A605	pp 006530 DHSU_	 gi 295671 	gi 501027	d1 42029	91 142790	r1 40320	qi 405957	91 580920
Stop	5846	6843	5617	1122	2093	3524	1933	4.892	613	11911	5128	1527	681	112134	2303	3122	13321	1001	4550	1 1036	1 1525	11115	1223
Start	6931	6475	7032	1331	3265	1963	1313	3942	1224	11303	3665	\$536	1346	9402	27.82	2547	12053	1768	5791	1515	1604	1 2167	2434
	- -	-	-	- 1	- ~	-	-	7	-	81	• — •	- 01		- 8	-		12-	- 7	-	1	•		
OHE.		. «	15	1 _	:-	: _			•														

C. aureus - Putative cuding regions of novel proteins similar to known proteins

Cont.g ONF	OKF	Start Int)	Stop	metch	matich gene name	E 7	1 ident	length (nr.)
685		2359	1739	di!1303784	YqeD (Becillus subrilis)	4	19	6.2.1
4132	-	787	395		protein tyrosine phosphatase [Dictyostalium discoideum]	42	25	193
96		2561	884	91,309506	spermidine/spermine N1-acetyltransferase Hus saktoola pir[540430[54040] spermidine/spermine N1-acetyltransferase - spiny ouse (Mus Bakicola)	Ç	30	492
161	112	112 114797 114075	114075	911.124957	orf4 gene product (Methanosarcina barkeri)	=	22	723
212	9	2150	3127	gi 15873	observed 35 2Kd protein (Mycobacteriophage 15)	41	26	978
1 213	-	1263	2000	91 033692	TrsA (Yersinia enterucolitica)	7	8.	2.5 R
404		2625	3386	qi 1197634	orfa, putative transporter: Method conceptual translation supplied by author (Mycobacterium amegmatis)	-	24	762
545	-		1103	91 457146	rhoptry protein (Plasmodium yoelii]	.	21	1011
924	-	2	475	pir JH0148 JH01 nucleolin - re	Inucleolin - ret	-	00.	474
:562	:		1 402	91 552184 	iasparagine-rich antigen Pfas5-2 [Plasmodium falciparum] pir[s27826 S27826 asparagine-rich antigen Pfas5-2 - Plasmodium alciparum (fragment)	Ç	50	707
1 2395	-	518	261	pir S42251 S422	pir S42251 S422 hypothetical protein 5 - fowlpox virus	0	188	258
4077			305	91 1055055	coded for by C. elegans CDNA yk37gl.5; coded for by C. elegans CDNA yk5c9.5; cuded for by C. elegans CDNA yk1a9 5; alternatively spliced form of k52c9.8b Caenothabditis elegans	33	12	103
8 7,0	: -	(001	. 503	g1 1255425	[C33G8.2 gene product [Caenorhabditis elegans]	3.3	255	108
65	112	1 8294	8294 10636	gi 535260	STARP antigen (Plasmodium reichenowi)	1 36	1 24	2343
	-	1 3550	3550 8079	91 298032	[EF Streptococcus suis]	36	- 61	4530
244	-	2507	1098	91 1015903	ONF YURISIC (Saccharomyces cerevisiae)	35	22	\$601
3		1949	13574	91 552195	circumsporozoice protein (Plasmodium falciparum) sp[P0569] CSP_PLAFL CircumsporozoitE PROTEIN (CS) (FRAGMENT)	32	27	1626

5	
_	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

a –	-	-	_	-	_	_	_	~	_	~				4		~			<u>بر</u>		-		_	0		•	١,
Inti	769	2278	1032	12585	1601	1771	455	642	85	198	176	598	5	628	11127	48	98	165	1083	917	91.	823	980	1047	9139	548	3
(ut)	1 0	1712	3703	13073	2539	1532	4741	7939	8711	7359	2	+	8965	6472	954	5352	4596	1895	11263	1093	9125	1.6571	9201	112158	674	9 (19	1 5176
<u>.</u>	-	_	-	Ξ	~	_		<u>~</u>	112	-			- 6	07	9.7			١	2	- 2	2	10	7	12	_	•	
Cont.19		-	-	9	5	2		s	5	•	-	17	17	i		13	1.2	15	16			20		50	~	2	

٤	,	

1	5	

~~	
20	

25	

35	

Comptig	9 01 10	Start (nt)	Stop Inc)
-	- 6 -	7651	1889
•	: =		. 8
Ì	-	4556	185
1	•	5642	7 7 7
25	÷	1824	1 40
11		\$05	i
4	1	11177	1 (2)
1	-	2454	3000
	~	1 765	1388
1 ~	1	1 7952	
32	1=	1 8891	
	:=		9379
32	112	10197	٠.
	~	1315	1049
36	-	5226	. 6
٠	+	1 7575	56
36	77	1424	7621
į	-	-	
=	~	1585	086
	=		8989
	0 -	116982	637
=	136	0	080
	(2)	120722	121264
5	-	-	1 627
9	-	605	404
2	-	964	428
į			

10

1	5		

_	^	

25	

S aureus . Futative coding regions of novel proteins not similar to known proteins

35	

,	. – .	. <u> </u>	. – .			· —		•		•	· – ·	·	· –	· — ·	· —	• – ·	: — ·	· — ·	- :	:	<u>.</u> –	<u>:</u> –	•	: -	• -	•	•
	3263	129	536	13994	6297	6520		-	6,01	. 20	!	1316		: 2:	287	i -	8709	56	1 40	· 50 ·	1228	1560	118712	3521	5822	8553	1509
Start int)	2484	10587		13596	6575	6365		15032	288		1612	: =		2520		6705	•		1052		1551	1970	19092	3694	5436	8885	1366
108F	- 2	=	70	<u>:</u>			112	117	-	6	-	- 2	-	- 2			-	-			_	-		-		6	-
Cont 19	3	:	Ţ	7		9.4	9	9.	47		20	\$	5.1	2	53	53	ž	2	1	2,0		36	5.6	5.7	5.7	88	65

		-
		4
		-
		,
		-
		The second secon
		·

10																													
15	wn proteins																												
20	autris Putakive coding regions of novel proteins not similar to known proteins																												
25	proreins	Stop .	2802	3570	(95)	8378	16403	1521	12157	336	1781	2610	3904	6955	326	5199	8645	1192	1228	1791	4 03	8653	8781	1232	9366	1922	161	878	1 055
	of novel		3026	3770	_	7518	:	2696	2440		006	;	2591	7110	1 84	6761	8935		1 8031	1411		1 8300	6968	1426	916/	1620	_	- :	1 1098
30	suo 16a	10 RF	9			111	12	~	:	-	-	2	2		-		Ξ.	-	7		-	•	0:1	-	so		_	۲	~
	roding re	Contig loss	65	65	\$	65	83	89	29	5	. 67	6.3	67	67	89	0,	0,2	τ,	6.	62	63	8.5	85	98	- 8	68	8.9	50	9.1
35	is - Putative																												
40	ine s																										•		
45																													
50																													

5	
_	

4	α	

0	1	1

OF	
25	

30	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

2	_	
	0	

	÷ —	- -	; —	; -	•	. –	; -	;	; –	; –	;	. –	, –	; –	; –	• -	; -	: -	· -	•	, –	. –	•	• -	;	•	; -
Stop (nt)		2.8		6024	332	1813	2197	: ::	4523	. •	7487	4368	2035	96	1277	693	. ~	221	1355	542	1651	11996	12268	17688	760	9384	: 6
Start (nt)	. =	67	1958		199	2445	258	090	167	20	197		7	5		17		i	1209	1081	4025	11625	11981	17401	. ~	8764	i a
10			-		-	2	-			1 -	-	i r	2	-	~		2	-	5	7	-	=	=	120	-	10	-
Contin	91	92	9.2	9.2	36	16	76	96		66	001	102	103	701	101		105	37.8	106	107	109	109	601	109	011	114	116
•	• -	• –	• —	• —	• –	• -	• —	• –	•	•	•	•	•	• —	• -	•	• -	• -	•	•	•	• –	•	• -	•	•	· -

\$ 50 80 10 14 4 4 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	152 6463 1012 1313 2243	6 6 5 2 2 6 6 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 600 8 1 2 0 600 8 2 2 2 1 3 6 0 5 2 3 1 8 7 5 2 3	7 6830 7 7290 1 1227 1 2 2 1 2 2 1 502
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - -		
			`.

55

5	
_	

1	0	

15	
----	--

20	

2	5	

3	0	

S. Aureus - Putative codung regions of novel proteins not similar to known proteins

3	5	

1	1	7

45

50

	_	-		-		-	- 6	-	-	-		-						-		-	<u> </u>					
Stop (nt)	1 307	_	<u> </u>					, 50		-	: _	1 0	158			. ~	1 0		- 2		1 00	I	7	\$	421	563
Start (nt)		-	3956	4036	4507	4807	5495	95.75	7416	9216	96.81	6190		1795	9859	2704	3531	315	1183	1471	52	876	4653	4.8 03	4.896	5.8.1.7
<u> </u>	- 3	_	. — .	=	=	• —	91	81	121	[2]	7.5	52	• —	- :	8	<u> </u>	•	-	-	7 7		~	•		-	1 3
GI ID	1 16	147	149	4	149	6+1	149	6	691	149	149	149	0.0	15.	154	154	154	! ~	157	: -	159	161	161	. ~		1 -

ı	0	

_	_	

_			
>	,	,	

30	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

_	-	

45

50

					• — ·		•	•			•	• -	• —	. –		•				• –	• –				•		•
Stop (nt)	23.4	264	2	=	4854	2868	2	17	1450	2		1149	708	4	110	2890	333	450	6	5702	1755		3039		153	699	13039
Start (nt)	3796	2952	4905	1338	5213	200	3595	2517	2277	12576		9	583	1001	2	252	20	4342	\$477	3	1210	9		1998	i		11786
2-1	 		-	-	-	<u> </u>	-	-		1111		-	-	-	7	-	-	1 7	-	- \$	-	-	-	-		- 2	01
Contig 'IB	163	163	163	164	166	831	9	170	1.7	1 -	172	172	173	13	374	175	1 -	179		184				190	191	- 6-	191

5	
10	
15	proteins
20	imilar to known
25	protetus not s
30	aureus - futative ceding regions of novel proteins not similar to known proteins
35	ntative ceding
40	S. Auteus - i
45	

(nt)	12363		: 3	-	625		7815	13636		7180	1167	1436	1 5407	105	5.70	8676		7469	596	657	2156	369	2362	1208	! :
	12902	2306	6687	1016	170	78.	8	113947	128208	1 100	! :	=	374		-	4064	0099	7864	11927	17.9	1776	1821	3251	8275	
Ιτο	111		2		-	~	. •	13.	: -	7			6	-	~	9	•	2	_		_	7	-	_	
Contag	191	195			201	203			30	1		~	7.7	213			21	214	1	218	218	220	220	220	

10	
15	
20	
25	
30	
35	

10																													
15	proteins																												
20	S. aureus - Putative coding regions of novel proteins not similar to known proteins																												
25	proteins not	Stop	2613	10757	629	1459	1961	487	975	2121	2345	3768	1909	2877	3526	1 3762	679	1391	905	1334	1363	576	647	1962	1256	215	1733	3712	249
	f novel	Start (nt)		11428 1	-	-	1476	~	09+	_	2052	_	_	2503	2846		608	1975	1417	4495	1677	127	1671	3035	1614	69	738	3906	161
30	tons o	ORF	-	-	-	~	-	-	- 7	-	-	•	-	5	9	-		-	~		~	-	7	~	7	7	-	_	
	oding reg	D	221	221	226	226	226	227	227	227	227	227	227	228	228	233	234	238	239	241	242	243	244	74.	245	246	246	249	
35	00 BAT18	·	: –	: —	• —	•	•	• —·	•	· –	· –	•-	•	•	•	• -	• –	•	• —	• -	•	• —	. –	• —	• –	•	. – •	•	. –
40	S. aureus - Pu																										:		
45																													
50																													

_	
5	
-	

10

1	5	

2	0	

25	

S. auruis - Pulative coding regions of novel proteins not similar to known proteins

30

35	

40	

45

50

(nt)	1 56		1227	1280	9092	96	. 65	523	5107	1.6	100	97	1439	6067	6035	1061	553	3448	127	36	950	276	05.5	932	622	2051	
Start (nt)	-		3760	90	9	=	155	5252		1 6261	5140	162	1200	: =	6469	1746	726	3299	. 5	-	95/1	2055	2107	2234	73.	1565	
01.	-		-			9	-	_		-	-	-	_	: -	0,7	-	-	~	1 6	- - -	_ 	- \$	-	~	- 2	-	-
5 -		CI	157	260	261	i		¥92	264	267	76	272	272	272	27	2	7			285			289			291	

5	

1	0	

		_	
5	2	7	

	>5	
4		

30	

25	
35	

Cont 19 ID	OK :D	Start (nt)	Stop (nt)
295	•	2728	2141
295	- \$	2270	29/2
	1 2	788	465
238	-	2	502
300	5	2380	1928
100			2624
304	-	_	194
106	7	601	654
306	- 2	4016	4257
307	1 -	674	339
107		3645	3995
308	-	-	654
304	7	1120	599
	-	2643	2332
313	7	2314	1919
716	-	01	1 702
316	~	982	1341
316	9	2758	3165
317	-	~	1114
317	_	4570	3458
121	9	\$645	1 5217
321	- 1	6319	6140
321		7450	6794
322	~	827	543
326	~	165	7111
326	-	1117	1467
	1 1 1 4		

5					
10					
15	own proteins				
20	ot similar to kno				
25	S aurens - Putative coding regions of novel proteins not similar to known proteins	rt Stop	3 3452 3276	1 916	1 1212
30	ing regions of r	Contig ORF Start Stop	328 3 3452 3276	1 229 1 1 126	1 329 2 781 1212
35	s - Putative cod				
40	no ine s				
4 5					

2	4 - 2 4 4 4 4 4 4 4 4 4
	2221 2221 2221 2221 2221 2221 2221 222
	135 1 864 433 137 2 95 526 130 2 1538 1356 131 1 3 2476 3192 131 5 3618 3944 1341 6 3929 4558

5	

+	\sim	
,	v	

-	١,	า	

.25	
43	

30	

35	

knewn protesns
3
3131346
101
protesns
nove1
Š
716e z
битроз
Putative

:-	-; -	: ~	; - ·			•	•	; ;		•	;		• ·			; -		-	<u>.</u> – ·		•	• -	;	• -	•	• -
	9 : *	1.0		. •	. •	. 2	! _	!!		!	! ~	. 2	: -	! ~	1 00	: =				. 2		2672		1890	8.87	320
(nt)	2158	1612	989	980	520	906		. ~	1361	-	~	2.7	181	166	1132	34	1,18	999	001	5561	13507	2875	3524	2111	98	607
980	~ [-	7 -	2	_			-	_		-	-	~	~	-	-	-	-		~	**	~	1	~		-	-
	~ • ~	365	365	365	366	367	368	3.5	380	389	060	390	191	395	396	9.60	399		405	0	80	9 0 7	80	410	‡	416

_

α	

1	5	

_	_	

25	

3	0	

3	5

	-			
Contin		9 CT	Start (nt)	Stop Int)
	,	~	878	847
=		i	2115	1590
7		i		
=	_	~	161	-
420		7	788	1 3
423	~	~	357	(19
431	1	~	958	1407
7			446	1084
1		-	-	417
, -			1 2311	033
7		-		515
. •		7		1235
077		_	-	1 450
	i	7	1269	3320
*	43	2	1 1873	1520
1 4	:	-	<u> </u>	969
; ;	-		٠	1 2
÷			076	614
		~	968	919
÷ ÷		-	1 3833	4786
		_	4718	4512
, 🕶	-	2	1 4937	(6.3)
\$	ب		Ť	219
\$	ب	~	63	930
-		_	265	687
•			~	1 247
7				1 907

,	0	
,	U	

t	5	

2	0	

	٦		-	
d	′	c	,	

- • ·		•	•	• -	•	•	•	<u> </u>	• -	• - ·		· - :	:	:	(• •	· — ·	· •	•	· — ·	· —	• •			· ·
-	349	250	928	3372	3706	1 000	369	568	8181	9773	200	0	797	760	8	: 2	. ~ .	- CO 1	-		35	579	~	1242	
(10)	654	2	1		1.3	1	₩60	169	1381	35	. 4	1562	2	~	1764	1066		956	2	179	715	127		9	1149
2 0		1 4	-	-	-	- -	i	7	6	202	-	~	-	-	_	-	\$	7	-	•	-	-	-	- n	_
	(67	1 80	1	. 6				673		470	, 🕶	471	476	1	, 🕶	רר		481	981	÷	-	492	493	493	3

1	88

5							•																						
10																													
15	m proteins																												
20	aureus - Potative coding regions of novel proteins not similar to known proteins																												
25	protesns nat	stop	1232	147	812	2511	2360	1669	867	335	1104	5534	156	136	2880	3121	1171	999	1001	433	432	1272	134	1129	704	1154	1458	1821	• • • • • • • • • • • • • • • • • • • •
	ol novel i			-	-	_ :	_	_ ·	-	-	-		-	-	1 2203	_	_	966	1495	-	-	1048			692	1357	1760	· -	• • • • • • • • • • • • • • • • • • • •
30	g regions	Contra long	7	7	2 - 1	7	•	9	1 4	-	-	10 7	536 1	538 1	S N	538 5	5.18 6	240 1	240 3	541 1	541 2	542 2	545 2	551 1	555 2	558 3	_	-	
35	Putative codin		118	1 512	\$15	115	520	520	527	875	625	0.53	55	2	533		-	-	-	\$		-	-			-	. –	-	
40	5 60105																									•			
45																													
50																													

_	
5	
_	

1	n

1	5

2	o	

00	
∠5	

3	0	
1		

7	5	

4	O

Stop (nt)	2322	2902	3453	921	1485	156	1206	1 661	453	477	1200	966	539	573	1372	1554	334	1141) 577	1122	0.90	1435	169	1469	768	1226
Start	2636	1 1501	3986	475	1706	0		~	163		1784		916	22	1896	1/42	0	1455	2	617	78	1593		1001	322	400
10		6	•	-	_	-	-	-	~		~	-	-	-	~	-	-	~	_	~	-		_	~	_	,
ont 19 15	558	558	558	3.6	5.6		11.5		: :	579	97.c	583	585	587		288	065	592	593	593			209	603	909	503

5	
10	
15	
20	
25	
30	
35	
40	
4 5	

Contin OAF Start Stop Cop Cop
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

5	
_	

7	5	

0	7	
٤.		

		·			•	•	• –		• –	• -			• -			• -		•	· _	• –		• –	•	•		• .	
Stop	2	Š	91	38	8	37	906	35	077	2	32	7.7	449	E 0	67	17	70	83	. 62	112	1.2	7	1 2	*1	8.5	9.6	
	:	-	_	<u>:</u>	-	-	-	-	-	-	: -	-	; –	-	-	-	-	-	٠ –	 	: –	-	-	! – :		! –	: -
Star (nt)	-		7	5	965	-	5.6	. 23	35	-	919	-	=	-	-	. ~	1 3	163	165	1 6	~	268	1 3	, ~			١.
ORF	-	_	7																							_	<u>.</u>
nt 10	_																_		_		_	-	_	5			
8.7																											

10	
15	eins
20	to known prot
20	ns not similar
25	f novel protes
30	ing regions o
35	oureus - Putative coding regions of novel proteins not similar to knum proteins
40	S sureus

-	a -	-	•	_							. ~		. ~	23	-			: -			2	4		. 00		- 25
-	· ·	. . .	1 1		=		<u>.</u> _	9	1	-	-	-	-	_	-	-	-	_	-			_	-	- 32	-	01
	ح ري	1348	282	685	106	1.6	520		1033	-	7	201	1735	1790			1.5	304	-	. ~	i ni	1774		714	487	1529
		_	_	_	-	_	-	-	_	_		_	-	_	_	_						. ~			~	7
-	5	745	748	749	751	755	755	758	764	767	768	171	178	7.85	787	791	199	3 04	805	808	810	810	812	817	818	19
: '	<u> </u>	<u>:</u>	:		1						1		1			;								:	<u>:</u> _	: _

10	
15	4
20	
25	
30	•
35	:

Stop (nt)	255	90	29	53	962	906	157	6.5	646	256	100	715	: Œ	58.8		294	1020	2 4 4	٠.			508	9.68	544	9 0 0
:n			578	594	010		912	100	115	~	18	_	1676	;	-	584	1661	186	1.5	-	1 6	2		852	
ORF	_	-	: -	_	_	-	-		_	-	_	7	9	-	• —	-			7	-	1 -		•	-	
Contig	828	85	: 6	832	835	840	845	980	853	960	864	9 9 9	B64	870	873	878	877		879	188	882	890	305	30	

5	
_	

1	α	

1	5	

2	0

2	5	

30	

5. auraus - Putative coding regions of novel proteins not similar to known proteins

3	5	
-	-	

;	_	<u>.</u> —	<u>.</u> –	. –	-	. –	<u>-</u>	i	<u>.</u> –			<u>.</u> – .			. – ·			<u>.</u> – ·	-	-	; -	-	-	-	-	: -
Stop (nt)	6.1	. 2	. œ	2	1 99	: 2	: 2	8	: 7	919	545	- 2	9 20	270	362	3	00			209	. ~	11		348		
Start (nt)	٠	رت :	3.6	578			7	-	1052	2	220	649	1702	-			733	-	069	2		12	319	1 00	~	1926
ORF 110		i ~•	-	-					-															-		-
Contrg	915	915	921	9.5	, q.	, •	5	934	i	3	. 6	. 4	946	949	951	955	960	696	96	996	96	9.	97.6	976	166	9.82

5	
_	

1	0	

2	1)	

2	5	

3	n	
1	_	

25	
35	

4	0

	•		• •		•	•	• —			•		. — .	. —	• •	,		. — .	• - •	. — 9	· — •			• •	. =		•
Stop (iii.)	:	525	6,95	•	313	63	145	•	\$ 7.	299	. ~		r-	399	269	399	159		733	400	148	33	199	403	438	
Start		; →	920	557	979	7	288	~	6.0	595	376	673	355	794	_	115	-	704	1233	~	~	769	707	7.6	5.8	
1085		! ~	-	_	-	-	-	-	7	-	~	-	-	-	-	~		-	- 2		-	~	-		-	
	786	993	766	1001	101	1015	1016		1022	1024	1024	1030		0	1043	1044	1047	1051	1051		1069	-	1075	1077	1081	

-	
∍	

1	0	

2	4	ኅ	

,	c	-	

1	_	

3	Ć)	

	. — :						• —	-						-			-		-	· _ ·	-			· ·	•
(uc)	572	238	\$08	2.1		15.	. 6	580	422	768	267	75		176	522	240	-	818	330	= -	254	240		976	971
Start (nt.)		474	1	0	1520	103	. 8			~	7.7	0	360	609		556	-	7	-		427	Į.	108	7	355
	-		_	-	~	-	-		-	-	-	-	-	_	-	~	-	- -	-	-	1		7	_	
Contro	1088	-	. 0	0011	110	1101	1102	1107	***	1115	1119	1129	<u> </u>		1144	110	1153	1154	1159	116	1 6 4	1171	12	1183	1195

	_	
٠	٠	
	-	

1	5	

2	0	

_	-	
2	Э	

	7	4	ς	
•	′	٠	•	

1	o	

45

Contig	ORF	Start	Stop
10	9 :	(nt)	(96)
20	~ -	129	464
1222	~	105	104
	-		387
	i	~	175
-	-	520	17.
		412	221
. =	: _	2	595
129			165
1306	-		185
1	7 -	. 2	1
1316			5.0
1359		: _ :	193
~	: _		402
	-	-	345
1374	-	710	1357
1378	-		000
1392	-		3
		202	412
	: -	111	1 4
,	_	~	256
1453	-	295	=
	• •	127	398
1477	. – ·	869	63
	- -		-
1518	-	126	
1534	-	283	=
	:		

5	

h	^	

,	`	,	
è	٠.	_	

7	1)	

S. autaus - Putative coding regions of novel proteins not similar to known proteins

3	0	

2	ς	

	1	٦

45

50

Cut.	\$5	3	3	679	102	5	5.4	000	286	9-6-6	00	2	101	167	263	399	283	00			_			352	1	152	150
:	-	-	_	-	-	-	-	-	-	-		-	<u> </u>	-	-	-	-	-	-	-	-	: :	-	-		-	: -
		. ~ .	~	170			525			~	7.9		25			1	564	218	492	732		330	622	7	6.79	301	296
# G	-	-	_	~	_	-	-	-	~					! _									~	_	-	-	-
Conf. 19 10						1665	09/1	1762	;	1895	1931	9261	2055	2056	2150	2157	2164	2175	2212	2338	2342		2352	2355	2356	2359	2421

-	
Э	

1	0

1	5	

25	

3	0

2	c

4	0	

10 01	25 10 10		Stoj	
. 0	1 -4	. ~	9	-
3049	-	553	27	-
, —	_		. ~	-
			1 253	-
3065	-	~	157	
1070	_	1357	190	-
3075	<u>:</u> _		1 0	-
3080	÷ -		285	: -
	<u>:</u> _	150	162	; –
1043	<u>.</u>	=======================================	1 250	-
	: _	52	752	i
3103	<u> </u>		298	
311.8	-		17	
3123	! —		145	2
1127	<u>:</u> –	-	=	-
	÷ ~-	316	16	-
	<u>:</u> _	388	1 203	-
		999	386	
3151	-	788	170	-
	~	202	384	-
3168	=	7		i
	-	288	=	
	-	!	125	-
3303			-	
11711	-		6	_
3558	_	~	=	
		;		

10	
15	nown protestos
20	or similar to
25	novel profesos n
30	i jo sooroea ooj
35	s aureus - Purarice coding reacons of novel proteins not similar to known proteins
40	, marine

Stop (nt)	185	87.8	716	25.2	157	190	~	285	162	250				145	147	169	1 602	386	170	384	176	- - -	150	000	399
Start (nt)	367		_	\$04	~	157	040	_	320	=	52	-	ž	2	_	336	388	199	337	202	12		-	239	211
ID TO	-		-	-	-	_	-	-	-		-		_	-	-	-	-	-	-	~	-	-	_	~	~
Cont 19	3046	3049	3050	3052	3065	3070	307	3080	3092	3093	10	3103		, -	3127	3138	3142	3144	3151	3155	3168	3205	3282		1771

	_
7	0

15

00	
20	

_		
2	Ć	,

3	()	

3	5	

1	Λ	

Contig ORF	, k		Start	Stop
-;-		;	751	377
-		!	757	380
3618			7	238
-		~	130	402
3622		_	9.	358
1622		~	99	•
- -		_	976	61)
3649	,	_	9	
3651		-		- 5
3664	:	-	4.67	
3674	:		55	402
3677	: — ·	-	619	
3704	-	-	: -	, 0
3726	: _	! _	: 5	569
3765	:	_		256
37.79	:	_	55	· ^
3794	• - •		266	135
3794		7	667	_
3796			638	375
16		_		262
3806			4 53	296
	- :	_		6
3815		-		00+
3827		_		~
3	: —		781	392
3853	- :		671	399

5	
_	

1	0	

1	5	

,	٠.	_	

96	
23	

3	0	

35	

38 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			:	
3861		7	235	•
3897		5.9	197	•
3897	-	695	6	•
3897	-		173	•
	. 7	3	001	•
3898	•	225	107	• —
3921	~	601	342	• —
3927	: -	7.0	271	•
3930	-	9,	234	• —
3946	, ~	651	1 362	• -
3951	, ~	105	775	• -
\$96		946	7	• —
3973		.95	607	• -
39A1	: -		=======================================	
3996	-		356	•
4001	; -	i e	1 296	•
4003	: -	106	335	• -
4018	-	7	259	• —
! -	1 (4	186	100	• —
4021	-	-	345	• -
4043	-	<u> </u>	346	· -
4054	-		3	• —
907		-	051	•
i T	_	-	324	• —
4072	7	187		· -
(404		-	1 285	• –

proteins																											
 aureus - Putatuve coding regions of novel protesus not similar to known proteins 																											
proteins not		1 359	368	297	306	286	139	1 322	230	341	166	415	381	206	254	256	348	356	296	174	323	334		304	163	319	• • • • • • • • • • • • • • • • • • • •
is of novel	Start		1 27	103		1 570	629	1 740	_		7	769	- 6	r -	505	510		602	589	-	568	861	264	-	1 303	1.54	
oding region	Contig ORF	4080 1	•	(101 1	4105 1	4107 1	4119 1	4121 1	4123 1	4127 1	4128 1	4130 1	4146 1	4157 1	4186 1	-	4239 1	4242 1	4252 1	4253 1	4256 1	4258 2	4267 1	4271 1	4287 1	4289 1	
Putatibe of	• —	• —	: _ ·	<u> </u>	: _ ·	i i	_	· _ ·	: _ ·	: — ·		•		· —		_	. —		· — {	_ ;		-		-	· —	•	• -
. snaur																											
Š																											

55

9:
n protet
to know
t similar
steins no
novel pr
sgions of
coding r
Putative
aureus - Putative coding regions of noval proteins not similar to known protein
v

Stop (nt)	7.0	4	2 8 9	80	221	364	399	11.	317	268	326	309	===	249	328	1.1	280	398	364	~	398	215	323	27	289	302	306
2 2	96	~	9,	5	39	528	_	11.	117	~	574	4	-		909		2	1 69	C I	_	601		643	3	50	601	1.2.1.1
			-			~	: - :	_		_	-	-	_	-	-	-	_	~		-		-	_	-		-	-
Contig	4304	4306	81(+	4332	4331	163	6338	4346	4367	4373	4381	1384	4397	4402	4403	4406		4411	4412	4418	i 🕶	443	4471	4478	482	4489	1401
		:					-	-	- 1		ļ.,	:	<u>;</u> —	<u> </u>	١	: _	<u> </u>	-	! _ :			: _ :	:		!		· -

1	5	

0	Λ	

	,	

3	0

S autous - Putative coding regions of novel proteins not similar to known proteins

,,	-
15	J
15	3

4	0

45

50

Start Stop		500 252	130 1 306	1 493 248	1 1 (246	480 241	1 2 163	1 3 239	_	i ñ	-	- 279	1 100	349 176	1 1 246	1 2 157
<u>8</u> 0	1-	=			-	-	-	-	-	-	-	-	-	-	-	-
Cont.ig	7	4496	4800	4511	4518	4526	4527	4532	4542	1567	6573	4578	4619	4620	4662	4669

Table 4

٢	ORF	SEQ ID NO	BLAST	Antigenic	Regions		
5		,	HOMOLOG	Region 1	Region 2	Region 3	Region 4
ļ.	168_6	5192	lipoprotein	36-45	84-103	152-161	176-185
-	238_1	5193	chrA	21-39	48-58	84-95	232-249
-	51_2	5194	OppB gene product (B. sub	20-36	70-79	100-112	121-131
-	278_3	5195	lipoprotein 1	20-29	59-73	85-97	162-171
10	276_2	5196	lipoprotein	21-33	65-74	177-186	211-220
·	45_4	5197	ProX	28-37	59-69	85-100	120-129
-	315_8	5198	hypothetical protein	45-54	88-97	182-192	243-253
i i	154_15		unknown	31-40	48-58	79-88	95-104
į.	228_3	5200	unknown	25-38	40-52	64-74	80-89
15	228_6	5201	unknown	29-41	89-101	128-143	173-184
	50_1	5202	unknown	21-33	52-61	168-182	197-206
}.	112_7	5203	iron-binding periplasmic	21-31	58-67	92-101	111-120
	442_1	5204	unknown	30-39	91-100	122-137	182-192
1	66_2	5205	unknown	50-59	104-116	127-136	167-182
ļ.	304_2		Q-binding periplasmic	19-28	48-57	75-84	103-116
20	44_1	5207	hypothetical protein	27-36	86-95	129-138	192-201
į	161_4	5208	SphX	27-44	149-161	166-175	201-210
i	46_5	5209	cmpC (permease)	21-33	61-70	83-92	100-109
i I	942_1	5210	traH [Plasmid pSK41]	83-92	109-118	127-142	
- 1	5_4	5211	ORF (S. aureus)	12-22	87-96	111-120	151-160
25	20_4	5212	peptidoglycan hydrolase (S.	24-34	129-138	141-150	161-171
}	328_2	5213	lipoprotein (H. flu)	81-90	123-133	290-299	
	520_2	5214	fibronectin binding protein	44-54	63-79	81-90	95-110
ì	771_1	5215	emm1 gene product (S. pyc	30-39	65-82	96-106	112-121
	999_1	5216	predicted trithorax prot. (D	7-16	120-129	157-166	
30	853 <u>-</u> 1	5217	ORF2136 (Marchantia polyr	43-52	88-97	102-111	
	287_1	5218	psaA homolog	13-22	28-44	72-82	114-124
	288_2	5219	cell wall enzyme	14-23	89-98		
	596_2	5220	penicillin binding protein 2b	40-49	59-68	76-87	106-115
	217_5	5221	fibronectin/fibrinogen bindii	28-37	40-49	62-71	93-111
35	217_6	5222	fibronectin/fibrinogen bp	10-19	31-40	54-62	73-92
33	528_3	5223	myosin cross reactive prote	4-13	29-47	60-73	90-99
	171_1		EF	20-31	91-110	!	
	63_4	5225	penicillin binding protein 2b	12-21	59-68	95-104	
	353_2	5226		46-55	62-71		1
	743_1	5227	29 kDa protein in fimA regi-	23-32	68-79	94-103	175-184
40	342_4		Twitching motility	10-19	48-60	83-92	111-121
	69_3	5229	arabinogalactan protein	97-106	132-141	158-167	180-189
	70_6	5230	nodulin	36-45	48-57	137-160	179-188
	129_2		glycerol diester phosphodie	8-17	41-50	55-74	97-106
	58_5	5232	PBP (S. aureus)	26-35	70-79	117-126	152-161
45	188_3		MHC class II analog (S. aure	72-81	94-103	115-124	136-145
	236_6		histidine kinase domain (Dic	24-33	52-67	81-94	106-121
	310_8		clumping factor (S. aureus)	59-71	77-86	93-102	118-127
	601_1	5236	novel antigen/ORF2 (S. aui	45-54	91-104	108-117	186-195
	544_3		ORF YJR151c (S. cerevisae)	76-90	101-111	131-140	154-164
50	662_1		MHC class II analog (S. aure	22-32	71-80	89-98	114-122
	87_7	5239	5' nucleotidase precursor ('	29-45	62-71	105-114	125-137
	120_1		B65G gene product (B. sub	102-111			
	L	7240	2550 deine product (2, 645				

Table 4

ſ	ORF		Antigenic	Regions	(cont)		
5		Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
	168_6	244-272	303-315				
	238_1	260-269	291-301	308-317	· · · · · · · · · · · · · · · · · · ·		
	51_2	140-152	188-208	211-220	256-266	273-283	
	278_3	198-209					
10	276_2	255-268					
	45_4	177-199	221-230	234-243	268-279	284-293	304-313
	316_8				i		
	154_15	148-157	177-187	202-211			
15	228_3	101-119	139-154	166-181			
	228_6						<u>:</u>
	50_1						<u>.</u>
	112_7	136-149	197-211	218-229	253-273		
I	442_1	199-210	247-257	264-277	287-309		
20	66_2			<u> </u>			
	304_2	178-187	250-259				
	44_1						
	161_4	<u> </u>					<u></u>
1	46_5	131-141	162-176	206-215	243-252	264-273	285-294
25	942_1			L			<u> </u>
	5_4	189-205	230-239	246-264	301-318	340-354	378-387
	20_4	202-212	217-234	260-275	314-336	366-373	380-391
	328_2			-			
	520_2	·			 		·
30		145-154		·	<u> </u>		<u>-</u> '
ļ	999_1				 		
	853_1	154164					
	287_1	154-164		!	-		<u> </u>
35	288_2	121 120		1		<u> </u>	:
35	596_2	121-130	259-268	288-297	302-311		
	217_5	244-253 144-158	174-183	188-197	207-216	226-242	
	217_6 528_3	144-130	174-103	100-137	207-210		;
	171_11			1		 	i
40	63_4				·		Ī
	353_2	1					
	743_1	197-207		<u> </u>			
	342_4	75. 20.		<u> </u>	-	:	
	69_3	195-211		<u> </u>	1		
45	70_6	206-215	263-272	291-301	331-340	358-371	390-414
	129_2	117-127	141-157	168-183	202-211	222-231	261-270
1	58_5	184-203	260-269	275-299	330-344	372-381	424-433
	188_3			į.	1		
	236_6	138-147	163-172	187-198	244-261	268-278	308-317
50	310_8	131-140	144-153	177-186	190-199	204-213	216-227
ļ	601_1	208-218					
	544_3	170-179	184-193	224-235	274-287	327-336	352-361
	662_1	<u> </u>					
	87_7						
55	120_1					:	
							-

Table 4

_	ORF			Regions	(cont)		
5		Region 11	Region 12	Region 13	Region 14	Region 15	Region 16
	168_6	<u> </u>		<u> </u>			
	238_1			i	i _i		
	5 2	*					
1.0	278_3	1					
10	276_2						
	45_4	1		ı	:		:
	316_8						
	154_15		· · · · · · · · · · · · · · · · · · ·			1	
15	228_3		:				<u> </u>
15	228_6					1	
	50_1		1		1	1	1
	112_7			0 0-		* * * * * * * * * * * * * * * * * * * *	
	442_1	i		-	-		
	66_2				 		
20	304_2	1			+	:	
	44_1						-
	161_4	 			 	!	
	46_5	206 215					
		306-315		 	 	-	
25	942_1	1	4.6.476	456 465		<u> </u>	
	5_4	393-407	416-426	456-465			
	20_4	396-405	410-419	461-481			
	328_2				ļ <u> </u>	_	
	520_2	<u></u>			<u> </u>	_ `	
30	771_1		!		1		
	999_1						_
	853_1			<u> </u>			
	287_1	<u> </u>		<u> </u>	<u> </u>	·	
	288_2	1			.)	<u> </u>	
35	596_2	i				·	!
	217_5			1			
	217_6	1			i		
	528_3	1					
	171_11						
40	63_4						
	353_2	i ·					
	743_1	1			- !		
	342_4				1		9
	69_3	1					- 1
45		453-471	506-515				
	70 <u>6</u> 129_2	296-315	506-515	<u> </u>			
	58_5	230-313		!			
		1		1	·		
	188_3	250 277	410 422	120 120	112 157	467-476	480-493
50	236_6	358-377	410-423	428-439	442-457	314-333	338-347
	310_8	238-251	256-275	281-290	296-310	314-333	330-34/
	601_1	! 		·			!
	544_3	·			J		<u> </u>
	662_1						
5 5	87_7			•			
	120_1						

Table 4

	ORF		Antigenio	Regions	(cont)	 	
5		Region 17	Region 18	Region 19	Region 20	Region 21	Region 22
	168_6	1		1			
	238_1						
	51_2						
	278_3	:					
10	276_2			:	1	1	<u> </u>
	45_4			i	:		···
į	316_8					1	
	154_15			1			1
15	228_3				1		<u> </u>
,5	228_6					L	
	50_1						. 1
	112_7	1					
	442_1	1			1		
20	66_2	1	1				
20	304_2						
	44_1				1	!	1
	161_4	<u> </u>					i
	46_5	1		1		1	;
25	942_1				1		
23	5_4	 		1			
	20_4					1	1
	328_2			<u> </u>	1		1
	520_2		- i - i		*	1	
30	771_1	<u> </u>		 		-	,
	999_1			<u>i</u>		4	
	853_1	!		1		ļ. ————————————————————————————————————	
	287_1			T -		1	
	288_2	T			*		
35	596_2	;		i		i	
	217_5	· · · · · · · · · · · · · · · · · · ·		 -	:	1	
	217_6	·	-	<u> </u>		9	
	528_3	<u> </u>		1			
	171_11				1	!	
40	63_4	1					
	353_2	!		†	:	1	
	743_1					i	
	342_4	†					
	69_3	· · · · · · · · · · · · · · · · · · ·					
45	70_6						· · -
	129_2				 :		
	58_5						
	188_3						
	236_6						
50	310_8	357-366	370-379	429-438	443-452	478-487	\$\$1-560
			3.0,31,3	. 123 730			
	601_1	- 					
	544_3						
	662_1					- ·	
55	. 87_7						
	120_1			-			

Table 4

5	ORF	1	Antigenic	Regions	(cont)		
3		Region 23	Region 24	Region 25	Region 26	Region 27	Region 28
	168_6	1]-		
	238_1	•					ý
	51_2						
10	278_3						
10	276_2		· · · · · · · · · · · · · · · · · · ·		·— · · · · · ·		;
	45_4	<u> </u>			<u> </u>		1 3
	316_8						
	154_15	1					1
	228_3					i ·	
15	228_6	1			 	i	
		1					
		<u>-</u>				!	
		<u> </u>				,	
	442_1					 	···
20	66_2	<u> </u>			 	İ	
	304_2	<u> </u>	·			!	
	44_1				<u> </u>	·	
	161_4		····		ļ		
	46_5				ļ		
25	942_1	 			 		
	5_ 1		·			1	
	20_4	<u>:</u>				1	
	328_2	<u> </u>	·		 	!	
	520_2	1	·				
30	771_1	<u>i</u>			1		<u> </u>
	999_1					. — — — — — —	<u> </u>
	853_1	 					
	287_1					···	
	288_2						!
35	596_2						·
	217_5						
	217_6						
	528_3				 	1	
	171_11				-		
40	63_4	:	<u> </u>				 -
	353_2				-		
	743_1		· 			<u> </u>	
	342_4						
	69_3	<u></u>					<u></u>
45	70_6						
	129_2		. ,				
	58_5						-
	188_3						
	236_6			· <u></u>			077.006
50	310_8	622-632	670-685	708-718	823-836	858-867	877-886
13	601_1						
	544_3			i	,	·	
	662 <u>1</u>						
	87_7						
55	120_1						

Table 4

ſ	ORF	Antigenic	Regions	(cont)
5		Region 29	Region 30	
	168_6			
ľ	238_1			1
	51_2	······································		
1	278_3			
10	276_2			·
į:	45_4	-		<u> </u>
ļ:	316_8		- 8 · 	
	154_15			
	228_3		- 0	
15	228_6	i		j
· ·	50_1	-	·	·
	112_7			
·				·
	442_1 66_2	·		<u></u>
20				
i.	304_2			
	44_1	-		
	161_4	:		····
	46_5	———- — —		
25	942_1			
	5_4			
	20_4			·
	328_2		(
	520_2			
30	771_1 :	i		:
	999_1			
į	853_1	<u>.</u>		
ļ	287_1			
25	288_2	· - 		
35	596_2			
	217_5			
	217_6			
	528_3			÷
40	171_11			-
⁴⁰	63_4			
}	353_2			
	/431			
	342_4			<u> </u>
45	69_3			
	70_6			
į	129_2			
	58_5			
	188_3			····
50	236_6			<u> </u>
	310_8			5 -0
	601_1			
	544_3			
	662_1			
55	87_7			
į	120_1			

Lable 4

_	ORF	BLAST	Antigenic	Regions	,	
5		HOMOLOG	Region 1	Region 2	Region 3	Region 4
	46_1 5241	aldehyde dehydrogenase	8-17	36-52	83-96	112-121
	63_4 5242	glycerol ester hydrolase (P.	9-26	57-73	93-107	123-133
	174_6 524	43 ketopantoate hydroxymeth	71-80	203-212	242-254	265-274
	206_16 5244	ornithine acetyltransferase	1-10	34-43	54-63	194-210
0	267_1 5245	NaH-antiporter protein (E. I	120-129	332-347	398-408	
	322_1 5246	acriflavin resistance protein	58-75	153-164	203-231	264-284
	415_2 5247	transport ATP-binding prote	108-126	218-227	298-308	315-334
	214_3 5248	2-nitropropane dioxygenase	123-136	216-233	283-292	297-306
	587_3 5249	clumping factor	5-14	43-54	59-68	76-95
5	685_1 5250	signal peptidase	5 9-68	72-81	86-95	99-108
	54_3 -5251	fibronectin binding protein !	23-32	37-46	50-59	89-98
	54_4 5252	fibronectin binding protein I	43-52	66-75	95-104	147-156
	54_5 5253	fibronectin binding protein I	49-60	81-90		
	54_6 5254	fibronectin binding protein I	55-71	82-97	139-158	175-186
2	328 1 5255	lipoprotein (H. flu)	11-20	61-70	96-105	

Table 4

ے	÷	,	

ORF		Antigenic	Regions	(cont)	1	<u> </u>
	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
46_1	215-242	333-352	376-385	416-432	471-487	*
63_4	145-154	191-202	212-223	245-265	274-283	291-300
174_6						İ
206_16	239-259	275-284			<u> </u>	<u>-</u> -
267_1				<u> </u>	-	i
322_1	298-319	350-359		1		
415_2	344-353	371-380	395-404	456-465	486-495	518-527
214_3	318-337	365-375			<u> </u>	1
587_3	106-115	142-151	156-166	173-182	186-198	204-213
685_1	113-122	130-145				
54_3	128-138	185-194	217-226	251-260	1268-277	295-305
54_4	175-188	191-200	203-212	220-229		
54_5						j
54_6	220-230	287-304	317-326	344-353	364-373	378-387
328_1	Ţ		<u> </u>			1

Table 4

ORF Antigenic Regions (cont) 5 Region 13 Region 14 Region 15 Region 17 Region 11 Region 12 46_1 319-328 366-376 395-420 453-462 306-315 63_4 174_6 206_16 10 267_1 322_1_ 539-555 415_2 214_3 351-360 377-386 217-226 587_3 278-287 318-327 332-342 15 685_1 416-425 438-448 316-325 329-345 355-372 387-396 54_3 54_4 5**4_5** 541-550 569-578 612-622 396-407 427-436 514-531 20 54_6 328_1

Table 4

25

30

35

40

45

50

55

ORF	1	Antigenio	Regions	(cont)		
	Region 18	Region 19	Region_20	Region 21	Region 22	Region 23
46_1						
63_4	485-500	513-525		<u> </u>		
174_6				<u> </u>		
206_16				i		
267_1	3	;	al	ļ		
322_1	(
415_2				<u> </u>		
214_3		· · · · · · · · · · · · · · · · · · ·	. !	. <u>L</u>	<u> </u>	
587_3	396-405	426-442	459-470	485-494	505-514	531-562
685_1		İ			J	
54_3	455-462	472-491	517-536			_i
54_4		.1	- İ	<u></u>		-1
54_5			_L			
54_6	639-648	673-681	703-715	723-732	749-760	772-788
328_1						<u> </u>

Table 4

_	ORF		Antigenic	Regions	(cont)		
5		Region 24	Region 25	Region 26	Region 27	Region 28	Region 29
	46_1					-,	
	63_4					· · · · · · · · · · · · · · · · · · ·	T
	174_6			i ————	***		
10	206_16			·			_
10	267_1		<u>.</u>	1	<u> </u>	.1	
	322_1				<u> </u>	<u> </u>	j <u>-</u>
	415_2						
	214_3		i	:			
15	587_3	567-578	584-601	607-840	844-854	858-870	877-886
, 5	685_1_		· - :	i			
	54_3			·			1
	54_4			<u> </u>	- 		
	54_5						.i
20	54_6	793-802	811-826	834-848	866-876	893-903	907-918
	328_1					1	!

Table 4

5		ı	Ξ		
٠	٠		,		

1_0	RF	Antigenic	Regions	(cont)
		Region 30	Region 31	
46	5_1			
63	3_4			
17	74_6			
20	06_16			
26	57_1			
32	22_1_			
41	15_2			
21	4_3			
58	37_3	889-911	927-936	
68	35_1			
54	1_3			
54	1_4			1
54	1_5		1	
54	1_6	925-944	951-997	
32	28_1			

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: Human Genome Sciences, Inc. (B) STREET: 9410 Key West Avenue (C) CITY: Rockville (D) STATE: Maryland (E) COUNTRY: US
15	(F) POSTAL CODE: 20850
20	(ii) TITLE OF INVENTION: Staphylococcus aureus Poly- nucleotides and Sequences
	(iii) NUMBER OF SEQUENCES: 5255
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4 Mb storage (B) COMPUTER: HP Vectra 486/33 (C) OPERATING SYSTEM: MSDOS version 6.2
30	(D) SOFTWARE: ASCII Text
	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/009,861 (B) FILING DATE: 05-JAN-1996</pre>
40	
	(2) INFORMATION FOR SEQ ID NO:1:
4 5	
50	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5895 base pairs

- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

10		_		-			
70	TCCATTATGA	AGTCACAAGT	ACTATAAGCT	GCGATGTTAC	CAATGTTTTT	TAAAATCCCA	60
	GTAATAAAAT	САААААТАА	GTTAAATAAT	GTATTCATTT	TAAGTCCTCC	TTAATAAAGa	120
15	aaataGGTAA	TAATGTAATA	GCTTCTATTA	TGATGCCTAA	TTGAATGAAT	TGGGCAAATG	180
	GCTCTTTGAT	GATAAGTGTG	ATAATGAAAA	GGGTTAAACT	AACAATAATC	GCATAATATT	240
	TTTTTCGTTT	AATAAGTCGC	ACAGGAATGG	GCTTCTTTTT	AGTTGCTGCA	GGAGCATATA	300
20	CTGAGATTAC	ACCTAAAGAA	ATAACTGTTA	AAATAATCAT	AATTAAAAAG	TTAATATGAA	360
	AATTTACTAT	TACTAAAGGT	AAAAGTATAA	ATAGTATAAT	ACTTTCTACA	TAACACCAAA	420
25	AAGAAGAAGG	TGCATGTGCa	CCATGTGCAT	GECTTCTTAT	TAAATAAAAT	GTTAAATTCG	480
25	TAATTAACGT	AAACAGAAAA	ATGTTTAAAA	TATAGGCAAT	AGTATACATA	ACAATTAATT	540
	TACCTATATT	TTTAGCTAAG	ACCTGCATCC	CTAATCGTAC	TTGCAAAAAT	TGAATATGAT	600
30	CTAAGTTATT	TCTCTTTTGA	AGATACGTGG	CAAACTGGTC	AATTTTATTA	TCAAAATAAT	660
	TCAATTTTAC	ACCACTCTCC	TCACTGTCAT	TATACGATTT	AGTACAATCT	TTTATCATTA	720
	TATTGCCTAA	CTGTAGGAAA	TAAATACTTA	ACTGTTAAAT	GTAATTTGTA	TTTAATATTT	780
35	TAACATAAAA	AAATTTACAG	TTAAGAATAA	AAAACGACTA	GTTAAGAAAA	ATTGGAAAAT	840
	AAATGCTTTT	AGCATGTTTT	AATATAACTA	GATCACAGAG	ATGTGATGGA	AAATAGTTGA	900
	TGAGTTGTTT	AATTTTAAGA	ATTTTTATCT	TAATTAAGGA	AGGAGTGATT	TCAATGGCAC	960
40	AAGATATCAT	TTCAACAATC	CGTGACTTAG	TAAAATGGAT	TATCGACACA	GTGAACAAAT	1020
	TCACTAAAAA	ATAAGATGAA	TAATTAATTA	CTTTCATTGT	AAATTTGTTA	TCTTCGTATA	1080
45	GTACTAAAAG	TATGAGTTAT	TAAGCCATCC	CAACTTAATA	ACCATGTAAA	ATTAGCAAGT	1140
	GAGTAACATT	TGCTAGTAGA	GTTAGTTTCC	TTGGACTCAG	TGCTATGTAT	TTTTCTTAAT	1200
	TATCATTACA	GATAATTATT	TCTAGCATGT	AAGCTATCGT	AAACAACATC	GATTTATCAT	1260
50	TATTTGATAA	ATAAAATTT	TTTCATAATT	AATAACATCC	CCAAAAATAG	ATTGAAAAAA	1320
	TAACTGTAAA	ACATTCCCTT	AATAATAAGT	ATGGTCGTGA	GCCCTCCCA	AGCTCGCGGC	1380
	CTTTTTTGTA	ATGAAGAAGG	GATGAGTTAA	TCATCATTAT	GAGACCCGCC	GTTAAAATAT	1440

	TCATTTGCAA	AGGGCGAAAT	GGGTTCTTAC	TGAGTTATCT	ATTATAAAAA	AATAAACATA	1560
	GACTTATGAA	AAATCTCTCA	TAAATCTATG	TTTAGTCATG	aCATGTGTTA	AATATTATTT	1620
5	CGGGCGCTTC	TTATTTATAC	AAATCTAATT	TAATACTTTT	AAATACAGGT	ATATTTTCgC	1680
	GTTGCTGTTC	TACTTCATTT	AAGTTTAAAT	CTACAGTCAA	AATATCTGCG	GATTCATTTA	1740
10	ATTCTCCAAC	TAAATCTCCA	TTTGGGTTTA	TAACTATCGA	ATGACCAGCA	TATTCTGTGT	1800
	TACCATCGAA	TCCAGTGCTA	TTAGTTCCAA	TGACAAACAT	ATTATTTTCA	ATTGCACGTG	1860
	CCTTTAGTAA	TGAATGCCAA	TGTTGAAGAC	GTGACATAGG	CCATTGCGCC	ACATAAAATG	1920
15	CAATTTTAGC	ACCACTACGA	GCAGGATATC	TTAATAATTC	TGGAAAACGT	AAATCATAAC	1980
	AGATAAGTTG	GGTCACATAA	GTACCGTCAG	ACAATTGAAA	GGGTTCAGCT	ACGTATTCGC	2040
	CAGCGGTTAA	AAATTCATGC	TCTCTTAACA	TAGGAACTAA	ATGAACTTTG	TCGTATTCaT	2100
20	TAATCAGCTG	GCCACTTTTA	TTCACACTAA	AAGCTGTATT	AAATATTTGA	TTGTTTCTAA	2160
	TGTTAGAAAC	TGACCCAGCT	ACGATATCGA	CTTTATATTT	TTCAGCTAAA	TGTTTAATAA	2220
25	ATGAAAAACT	TTGTCCTAGA	TTATTATCTG	CTTTTTCATT	TAAATGCTCT	AAATCATAGC	2280
2.5	CATTATTCCA	CATTTCAGGT	AAAACGACTA	CATCTACTTC	AGCATTCATA	TTTTTTCGA	2340
	ACCATTGCGT	TATTTGAGTT	TCATTTTTAG	AACTATCTCC	AAAAACAATC	GGTAATTGAT	2400
30	AAATTTGGAC	TTTCATAACA	TCACATCCTT	GATAGATCTT	ATATATAACT	TACTAAAAGT	2460
	TATGTTGAAA	CGCAAAAAAC	GAGCACAAGA	CATAAAATCA	AAGTCCTAGG	CTCTACAAAG	2520
	TTATATTGAC	AGTAGTTGAT	GGGGCCCCAA	CATAGAGAAA	TTGGAACACC	AATTTCTACA	2580
35	GACAATGCAA	GTTGGGGTGG	GCTCTAACAT	AAAGAAATAC	TTTTTCTTTA	GAAATTAGTA	2640
	TTTCTTATAC	ATGAGTTTTA	CTCATGTATT	CCTATTCTTA	AGTGCACATT	AGCAGCGGCT	2700
40	AATGTGTAAG	AACTACTACA	TAATGAATAA	CTAATGATTC	TTTATCATTT	CTGTCCCATT	2760
40	CCTAACAATA	TATTGATTAT	TTTTTTATTA	CGAAACGATC	TTCCACTGGA	TTAAATGTTT	2820
	TTTCGCCAGC	AGCTTCACGA	ATATCACCAA	ATGGCATTTG	AGCAATAAGT	TTCCAACTTT	2880
45	TAGGAATATT	AAATTCATTT	GAAGTCATCT	CATCAACAAG	TGGATTATAG	TGTTGTAATG	2940
	AAGCACCTAT	GCCTTTAGTA	GCTAATGCAG	TCCAAATTGC	AAATTGATGC	ATGGCATTTG	3000
	TTTGAGTTGA	CCATATTGCA	AAATTATCAT	AGTAGTTTGG	CATTTGTTCT	TGTAAACCAC	3060
50	TTACAACATC	TTGATCTTCA	TAAAACAAAA	TTGTACCGTA	TGAATGTTTG	AAGTTATCAA	3120
	TTTTTTGTTC	AGTTGGCTCG	AAATCACGAT	TCTCTCCCAT	GACTTCTTTT	AAAATTGCTT	3180
55	TTGTGTTATC	CCAAAATTTA	TTATTGTTGT	CATTTAACAA	GAGAACAATT	CTAGTTGATT	3240
J.J.							

	CATCGCTAAT	TGATATCGAA	TCTTTCAAAT	TATATATIGA	ACGTCTTTCT	TCCATTGCAT	3360
	TGTCAAAAGT	CATTGCTTTT	TTATCTTTTT	TAAATAAGCC	CATAATTATT	GCTCCTTCTT	3420
5	TAGTAAAGAA	TACTTAATAG	ACTAAGTATA	AAATTTATAC	TCGTACTTGT	AAAGCAATAT	3480
	TTACGAAAAT	TTCAAGAATA	TTAATATTCA	TTTTCAAATT	ССАААТАТАА	ATGCATTTTC	3540
10	AACGCATATT	TATTATACTT	AGATTAATAC	TTACATGAAA	AAGGGAGGTG	TCTCGTGAAA	3500
	TGTCATATCA	TTGGTTTAAG	AAAATGTTAC	TTTCAACAAG	TATTTTAATT	TTAAGTAGTA	3660
	GTAGTTTAGG	GCTTGCAACG	CACACAGTTG	AAGCAAAGGA	TAACTTAAAT	GGAGAAAAAC	3720
15	CAACTACTAA	TTTGAATCAT	AATATAACTT	CACCATCAGT	AAATAGTGAA	ATGAATAATA	3780
	ATGAGACTGG	GACACCTCAC	GAATCAAATC	AAACGGGTAA	TGAAGGAACA	GGTTCGAATA	3840
	GTCGTGATGC	TAATCCTGAT	TCGAATAATG	TGAAGCCAGA	CTCAAACAAC	CAAAACCCAA	3900
20	GTACAGATTC	AAAACCAGAC	CCAAATAACC	AAAACTCAAG	TCCGAATCCT	AAACCAGATC	3960
	CAGATAACCC	GAAACCAAAA	CCGGATCCAA	AACCAGACCC	AGATAAACCA	AAGCCAAATC	4020
25	CGGATCCAAA	ACCAGATCCA	GATAACCCGA	AACCAAATCC	AGATCCAAAA	CCAGACCCAG	4080
23	ATAAACCAAA	GCCAAATCCG	GATCCAAAAC	CAGATCCAGA	TAAACCAAAG	CCAAATCCGA	4140
	ATCCAAAACC	AGACCCTAAT	AAGCCAAATC	CTAACCCGTC	ACCAGATCCC	GATCAACCTG	4200
30	GGGATTCCAA	TCATTCTGGT	GGCTCGAAAA	ATGGGGGGAC	ATGGAACCCA	AATGCTTCAG	4260
	ATGGATCTAA	TCAAGGTCAA	TGGCAACCAA	ATGGGAATCA	AGGAAACTCA	CAAAATCCTA	4320
	CTGGTAATGA	TTTTGTATCC	CAACGATTTT	TAGCCTTGGC	AAATGGGGCT	TACAAGTATA	4380
35	ATCCGTATAT	TTTAAATCAA	ATTAATAAGT	TGGGCAAAGA	TTATGGAGAA	GTTACTGATG	4440
	AAGACATTTA	TAATATTATT	CGAAAACAAa	ATTTCAGCGG	AAATGCATAT	TTAAATGGAT	4500
	TACAÁCAGCA	ATCGAATTAC	TTTAGATTCC	aATATTTCAA	TCCATTGAAA	TCAGAAAGGT	4560
40	ACTATCGTAA	TTTAGATGAA	CAAGTACTCG	CATTAATTAC	TGGTGAAATT	GGATCAATGC	4620
	CAGATTTGAA	AAAGCCCGAA	GATAAGCCGG	ATTCAAAACA	ACGCTCATTT	GAACCGCATG	4680
45	AAAAAGACGA	TTTTACAGTA	GTTAAAAAAC	AAGAAGATAA	TAAGAAAAGT	GCGTCAACTG	4740
	CATATAGTAA	AAGTTGGCTA	GCAATTGTAT	GTTCTATGAT	GGTGGTATTT	TCAATCATGC	4800
	TATTCTTATT	TGTAAAGCGA	AATAAAAAGA	AAAATAAAAA	CGAATCACAG	CGACGATAAT	4860
50	CCGTGTGTGA	TTCGTTTTTT	TTATTATGGA	ATAAAAATGT	GATATATAAA	ATTCGCTTGT	4920
	TCCGTGGCTT	TTTTCAAAGC	CTCAGGATTA	AGTAATTGGA	ATATAACGAC	AAATCCGTTT	4980
	TGTAACATAT	GGATAATAAT	TGGAACAGCA	AGCCGTTTTG	TCCAAACATA	TGCTAATGAA	5040
55							

AATATTAATG	AACTTACTGT	TGTAGCAATA	ATAAATGCCA	CGATACGATT	ACCTTTAATC	5160
GCATTAAATA	ATTCTCCAAA	GATTACTTTT	CTGAATACAT	ATTCTTCTAA	TAAAGGACCA	5220
ATAATAGATA	CAAAGAAGAT	AAATATAGGT	ATTTTTCGAG	CAATAATAAT	TAGCTTTTCT	5280
GTATTAGGAC	TTACTTGTTG	TCCACCATAA	ATTTGCGTTA	ATACAATGCT	CACTACCATT	5340
TGATAAATCA	TTACCAATGC	AAATCCAAGC	AATGCCCATG	GAATGATATA	TTTTTTAGGT	5400
TCTTTAACTT	CTAATTCTAA	TTTTGTTGGA	TTTTTAATTT	TTAAATTAAT	TAAAATAATC	5460
GTCGTGGCGG	CGATTAAAAA	TAGAACAAGT	TGTATGTAAA	TGACTGCTTT	AGTCAGTTCT	5520
ATGCCACTAT	ATTGTACAAA	TGGTAATTTT	TTTACAATGA	GAAGCGGTAA	AAATTGAGAC	5580
AATATATAAA	TAATAACAGT	TAGCAATGAT	GCCCATAATC	tTGTCATAAT	TTTCCTCCAA	5640
ATATTTGTTT	ATAATTTATT	TTATCGTAAA	TAACTTGAAG	TTACAAAACT	TAATTAAAAG	5700
GTTATGACTT	GAAATTTTGA	CCAAATTTGA	TTATTATAAA	TGTATGTTAG	CACTCTTTAA	5760
TGTTAAGTGC	TAAACTTTAG	GTTTTTTAAG	GAGGAACAAT	CATGCTAAAA	CCAATTGGAA	5820
ATCGTGTGAT	TATTGAGAAA	AAAGAACAAG	AACAAACAAC	TAAAAGTGGn	ATTGTTTAAC	5880
TGATAGTGCT	AAAGA					5895

(2) INFORMATION FOR SEQ ID NO: 2:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

TTTGAAAAAA CAAGGTACGA TTGGTTTAAT AACATATATG AGAACCGATT CTACACGTAT 60 TTCaGATACT GCCAAAGTTG AAGCAAAACA GTATATAACT GATAAATACG GTGAATCTTA 120 CACTTCTAAA CGTAAAGCAT CAGGGAAACA AGGTGACCAA GATGCCCATG AGGCTATTAG 180 ACCTTCAAGT ACTATGCGTA CGCCAGATGA TATGAAGTCA TTTTTGACGA AAGACCAATA 240 CCGATTATAC AAATTAATTT GGGAACGATT TGTTGCTAGT CAAATGGCTC CAGCAATACT 300 TGATACAGTC TCATTAGACA TAACACAAGG TGACATTAAA TTTAGAGCGA ATGGTCAAAC 360 AATCAAGTTT AAAGGATTTA TGACACTTTA TGTAGAAACT AAAGATGATA GTGATAGCGA 420 AAAGGAAAAT AAACTGCCTA AATTAGAGCA AGGTGATAAA GTCACAGCAA CTCAAATTGA 480 ACCAGCTCAA CACTATACAC AACCACCTCC AAGATATACT GAGGCGAGAT TAGTAAAAAC 540

	AAAGCGTAAC	TATGTCAAAT	TAGAAAGTAA	GCGTTTTGTT	CCTACTGAGT	TGGGAGAAAT	650
_	AGTTCATGAA	CAAGTGAAAG	AATACTTCCC	AGAGATTATT	GATGTGGAAT	TCACAGTGAA	720
5	TATGGAAACG	TTACTTGATA	AGATTGCAGA	AGGCGACATT	ACATGGAGGA	AAGTAATCGA	780
	CGGTTTCTTT	AGTAGCTTTA	AACAAGATGT	TGAACGTGCT	GAAGAAGAGA	TGGAAAAGAT	840
10	TGAAATCAAA	GATGAGCCAG	CCGGTGAAGA	CTGTGAAATT	TGTGGTTCTC	CTATGGTTAT	900
	AAAAATGGGA	CGCTATGGTA	AGTTCATGGC	TTGCTCAAAC	TTCCCGGATT	GTCGTAATAC	960
	AAAAGCGATA	GTTAAGTCTA	TTGGTGTTAA	ATGTCCAAAA	TGTAATGaTG	GTGACGTCGT	1020
15	AGAAAGAAAA	TCTAAAAAGA	ATCGTGTCTT	TTATGGATGT	TCGAAATATC	CTGAATGCGA	1080
	CTTTATCTCT	TGGGATAAGC	CGATTGGAAG	AGATTGTCCA	AAATGTAACC	AATATCTTGT	1140
	TGAAAATAAA	AAAGGCAAGA	CAACACAAGT	AATATGTTCA	AATTGCGATT	ATAAAGAGGC	1200
20	AGCGCAGAAA	TAATATTTTT	ATTTCCTAGA	TACATTTTAA	GATTGTTAAA	TAGAATCATT	1260
	AGTGAATCTT	ATTTTAAAGA	TAGTAAAGGA	ттаатстааа	TAAGTGCGGA	TAATATAAAC	1320
25	ATAACAACAT	AATTAAmAGA	CATAAATGAC	aATAAAAGGA	GTATAGAAAT	GACTCAAACT	1380
	GTAAATGTAA	TAGGTGCTGG	TCTTGCCGGT	TCAGAAGCGG	CATATCAATT	AGCTGAAAGA	1440
	GGAATTAAAG	TTAATCTAAT	AGAGATGAGA	CCTGTTAAAC	AAACACCAGC	GCACCATACT	1500
30	GATAAATTTG	CGGAACTTGT	ATGTTCCAAT	TCATTACGCG	GAAATGCTTT	AACTAATGGT	1560
	GTGGGTGTTT	TAAAAGAAGA	AATGAGAAGA	TTGAATTCTA	TAATTATTGA	AGCGGCTGAT	1620
	AAGGCACGAG	TTCCAGCTGG	TGGTGCATTA	GCAGTTGATA	GACACGATTT	TTCAGGTTAT	1680
35	ATTACTGAAA	CACTTAAAAA	TCATGAAAAT	ATCACAGTTA	TTAATGAAGA	AATTAATGCC	1740
	ATTCCAGATG	GATACACAAT	TATCGCAACA	GGACCACTTA	CTACAGAAAC	CCTTGCGCAA	1800
40	GAAATAGTGG	ACATTACTGG	TAAAGATCAA	CTTTATTTCT	ATGATGCGGC	TGCTCCAATT	1860
	ATTGAAAAAG	AATCTATTGA	TATGGATAAA	GTTTACTTAA	AGTCCCGTTA	TGATAAAGGT	1920
	GAAGCTGCAT	ATTTAAACTG	TCCTATGACT	GAGGATGAAT	TTAATCGCTT	TTATGATGCA	1980
45	GTATTAGAAG	CTGAAGTTGC	GCCTGTAAAT	TCATTTGAAA	AAGAAAAATA	TTTCGAGGGT	2040
	TGTATGCCTT	TTGAAGTAAT	GGCAGAACGC	GGACGCAAGA	CATTACTATT	TGGACCAATG	2100
	AAACCAGTAG	GATTAGAAGA	TCCAAAGACT	GGGAAACGTC	CTTATGCGGT	GGTTCAATTA	2160
50	AGACAAGATG	ACGCTGCTGG	TACACTCTAC	AATATTGTTG	GCTTCCAAAC	GCATTTAAAA	2220
	TGGGGAGCTC	AAAAAGAAGT	CATTAAATTA	ATTCCAGGCT	TAGAAAATGT	TGATATTGTT	2280
55	AGATATGGTG	TGATGCATAG	AAATACCTTC	ATTAATTCAC	CGGACGTATT	AAACGAGAAA	2340

	TAIGTAGAAA	GCGCAGCTAG	CGGCTTAGTT	GCAGGTATCA	ATCTTGCGCA	TAAAATATTA	2460
-	GGCAAGGGTG	AGGTAGTATT	TCCGAGAGAA	ACAATGATTG	GAAGTATGGC	TTACTATATT	2520
5	TCTCATGCTA	AAAACAATAA	GAATTTCCAA	CCTATGAATG	CTAACTTCGG	GTTATTACCA	2580
	TCTTTAGAAA	CTAGAATTAA	AGATAAAAAA	GAACGCTATG	AAGCACAAGC	TAATAGAGCT	2640
10	TTGGATTACT	TAGAAAATTT	САААААААСТ	ттаталалта	GTTAGAAAGA	CTAGATATGC	2700
	TATTCATTCT	TAAGTCATCA	ACGAGTAAGT	AATGACTTTC	TAAATGGAAA	ATACTTATCC	2760
	TAGTCTTTTT	AATTTTGGAA	TTGTTACGTA	TTTCTGACAA	TTTAGAATTC	GCATTCAAAA	2820
15	AATATCTAAA	TAAATAACAC	GCAATAAGTT	GATTGATGTA	ACATGTAAGA	GAATGTTTTA	2880
	AATAAACTTT	ATTTAAAAGG	CAATGAAATA	ATAAATGGCA	AGGCTATTAA	TAAAGACTTT	2940
	TAGTAATTAA	TTTAAAAAAG	AGGTATTCTA	ATTAACAGGT	TTTCCGATTA	GTTACAATTA	3000
20	TTTAATTCTC	AAAAGATTTA	GAATTGATTA	TCAAATTACT	GTAAGCCCTT	TGCTGTATAT	3060
	GCTACAATTC	TTATTGATGG	AGGGTAAATG	TATTGAATCA	TATTCAAGAT	GCGTTTTTAA	3120
25	ATACATTGAA	AGTTGAACGG	AATTTTTCGG	AACACACATT	GAAATCATAT	CAAGATGACT	3180
	TAATTCAGTT	TAATCAATTT	TTAGAACAAG	AACATTTAGA	GTTGAATACT	TTTGAATACA	3240
	GAGATGCTAG	AAATTATTTG	AGCTATTTAT	ATTCAAATCA	TTTGAAAAGA	ACATCTGTTT	3300
30	CTCGTAAAAT	CTCAACGTTA	AGAACTTTCT	ATGAATATTG	GATGACGCTT	GATGAGAACA	3360
	TTATTAATCC	ATTTGTTCAA	TTAGTACATC	CGAAAAAAGA	AAAATATCTT	CCGCAATTCT	3420
	TTTACGAAGA	AGAAATGGAA	GCGTTATTCA	AAACTGTAGA	AGAGGACACT	TCAAAAAATT	3480
35	TACGGGATCG	AGTTATTCTT	GAATTGTTGT	ATGCTACAGG	CATCCGTGTT	TCGGAATTAG	3540
	TAAATATTAA	AAAACAAGAT	ATAGATTTTT	ACGCGAATGG	TGTTACCGTA	TTAGGAAAAG	3600
40	GGAGČAAAGA	GCGCTTTGTA	CCGTTTGGTG	CTTATTGTAG	ACAAAGCATC	GAAAATTATT	3660
	TAGAACATTT	CAAACCAATT	CAGTCATGCA	ATCATGATTT	TCTTATTGTA	AATATGAAGG	3720
	GTGAAGCAAT	CACTGAACGC	GGTGTACGAT	ATGTTTTAAA	TGATATTGTT	AAACGAACAG	3780
45	CAGGCGTAAG	TGaGATTCAT	CCCCACAAGC	TCAGACATAC	ATTTGCAACG	CATTTATTGA	3840
	ATCAAGGTGC	AGACCTAAGA	ACAGTACAAT	CGTTATTAGG	TCATGTTAAT	TTGTCAACAA	3900
	CTGGTAAATA	TACACACGTA	TCTAACCAAC	AATTAAGAAA	AGTGTATCTA	AATGCACATC	3960
50	CTCGAGCGAA	AAAGGAGAAT	GAAACATGAG	TAATACAACA	TTACATGCAA	CAACAATTTA	4020
	TGCTGTAAGA	CATAATGGGA	AAGCAGCTAT	GGCTGGAGAT	GGGCAAGTAA	CGCTTGGTCA	4080
55	ACAAGTCATC	ATGAAACAAA	CGGCAAGAAA	AGTGCGACGT	TTATATGAAG	GTAAAGTGTT	4140

	ATTACAACAG	TTTAGTGGTA	ACTTAGAAAG	AGCTGCTGTT	GAATTGGCAC	AAGAATGGCG	4260
5	AGGCGATAAA	CAATTACGTC	AATTAGAAGC	TATGCTAATT	GTAATGGATA	AAGATGCTAT	4320
3	TTTAGTTGTC	AGTGGAACTG	GCGAAGTTAT	TGCTCCAGAT	GATGACCTTA	TCGCTATTGG	4380
	ATCAGGAGGC	AACTACGCAT	TAAGCGCAGG	ACGTGCATTG	AAACGCCATG	CATCGCATTT	4440
10	GTCTGCTGAA	GAAATGGCAT	ATGAGAGCTT	GAAAGTAGCG	GCTGATATTT	GTGTCTTTAC	4500
	CAACGATAAT	ATTGTTGTCG	AAACACTATA	ATAATCAGAG	CACGATAAAT	AATTACGAGC	4 560
	AATTAATTTT	AGTTAAAAGA	CGGAGGAATG	AAATTAATGG	ATACAGCTGG	AATAAGATTA	4620
15	ACTCCAAAAG	AAATCGTATC	TAAATTAAAT	GAATACATCG	TTGGACAAAA	TGATGCTAAA	4680
	CGTAAAGTGG	CAATTGCCCT	ACGTAATCGA	TACAGAAGAA	GTTTATTAGA	TGAGGAATCA	4740
	AAGCAAGAAA	TTTCACCTAA	AAATATTTTG	ATGATTGGAC	CAACCGGCGT	TGGTAAAACT	4800
20	GAAATTGCAA	GAAGAATGGC	CAAAGTTGTC	GGCGCGCCAT	TTATAAAAGT	AGAAGCTACT	4860
	AAATTTACTG	AGGTAGGTTA	TGTAGGACGA	GATGTTGAAA	GTATGGTTAG	AGATCTTGTT	4920
25	GATGTTTCAG	TAAGATTAGT	CAAGGCGCAG	AAAAAATCAT	TGGTACAAGA	TGAAGCAACA	4980
	GCTAAGGCCA	ATGAAAAACT	TGTTAAGTTA	TTAGTTCCAA	GTATGAAAAA	GAAAGCGTCT	5040
	CAAACGAATA	ATCCTTTAGA	GTCACTTTTC	GGAGGTGCAA	TTCCAAATTT	CGGACAAAAT	5100
30	AACGAAGATG	AAGAAGAACC	ACCTACTGAG	GAAATTAAAA	CAAAACGTTC	TGAAATTAAG	5160
	AGACAGCTAG	AAGAAGGCAA	ACTTGAAAAA	GAAAAGGTAA	GAATTAAAGT	CGAACAAGAT	5220
	CCTGGTGCTT	TAGGTATGCT	AGGTACAAAT	CAAAATCAGC	AAATGCAAGA	GATGATGAAT	5280
35	CAATTAATGC	CTAAAAAGAA	AGTTGAGCGA	GAAGTTGCTG	TTGAGACGGC	AAGGAAAATC	5340
	TTAGCTGATA	GTTATGCGGA	TGAACTAATT	GATCAAGAAA	GCGCTAACCA	AGAAGCGCTT	5400
40	GAATTAGCAG	AACAAATGGG	TATCATCTTT	ATAGATGAAA	TCGACAAAGT	TGCGACGAAT	5460
	AATCATAATA	GTGGTCAAGA	TGTCTCAAGA	CAAGGTGTTC	AAAGAGATAT	TTTACCTATA	5520
	CTTGAAGGTA	GCGTTATTCA	AACCAAATAT	GGTACTGTGA	ATACTGAACA	TATGCTGTTT	5580
45	ATAGGTGCTG	GAGCTTTCCA	TGTATCTAAG	CCGAGTGACT	TGATACCAGA	ATTGCAAGGT	5640
	CGTTTTCCGA	TTAGAGTTGA	ACTTGATAGT	TTATCGGTAG	AAGATTTTGT	AAGAATTTTG	5700
	ACAGAACCAA	AATTGTCATT	AATTAAACAA	TATGAAGCAT	TGCTTCAAAC	AGAAGAAGTT	5760
50	ACTGTAAACT	TTACCGATGA	AGCAATTACT	CGCTTAGCTG	AGATTGCTTA	TCAAGTAAAT	5820
	CAAGATACAG	ACAACATTGG	TGCACGTCGA	CTTCATACAA	TTTTAGAAAA	GATGCTAGAA	5880
55	GATTTATCAT	TCGAAGCACC	AAGTATGCCG	AATGCAGTTG	TAGATATTAC	CCCACAATAT	5940

	AAATATACAA AAGGAGAAAA ATTCATGAGC TTATTATCTA AAACGAGAGA GTTAAACACG	6060
	TTACTTCAAA AACACAAAGG TATTGCGGTT GATTTTAAAG ATGTAGCACA AACGATTAGT	6120
5	AGCGTAACTG TAACAAATGT ATTTATTGTA TCGCGTCGAG GTAAAATTTT AGGATCGAGT	6180
	CTAAATGAAT TATTAAAAAG TCAAAGAATT ATTCAAATGT TGGAAGAAAG ACATATTCCA	6240
10	AGTGAATATA CAGAACGATT AATGGAAGTT AAACAAACAG AATCAAATAT TGATATCGAC	6300
	AATGTATTAA CAGTATTCCC ACCTGAAAAC AGAGAATTAT TCATAGATAG TCGTACAACT	6360
	ATCTTCCCAA TTTTAGGTGG AGGGGAAAGA TTAGGTACAT TAGTACTTGG TCNAGTACAT	6420
15	GATGATTTTA ATGAAAATGA TTTGGTACTA GGTGAATATG CTGCTACAGT TATTGGTATG	6480
	GAAATCTTAC GTGAGAAGCA TAGTGAAGTA GAAANAGAAG CGCGCGATAA AGCTGCTATT	6540
	ACAATGGCAA TTAATTCATT ATCTTATTCT GAAAAAGAAG CGATTGAACA TATCTTTGAA	6600
20	GAACTTGGCG GTACGGAAGG CCTATTAATC GCATCAAAAG TTGCAGATAG AGTTGGTATT	6660
	ACTAGATCTG TAATTGTAAA TGCACTACGT AAATTAGAAA GTGCTGGTGT AATTGAATCA	6720
25	CGTTCTTTAG GAATGAAAGG TACTTTCATT AAAGTTAAAA AAGAAAAATT CTTAGATGAA	6780
	TTAGAAAAA GTAAAT	6796
	(2) INFORMATION FOR SEQ ID NO: 3:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2073 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	ATCCTAAAAT ThAAAATTAT CACGCCTTTT GAACAGCTTT GTAACCATCt GGACGATCAT	60
40	KAAATTCCAA TGTAAATCCT GGTTTAAAGT TGATCTTTAA CCTTATTTAA AYCACCAATT	120
	GTACGTATAT TATGTTGTTT AGCAAAATCA CGTTTTACAG CTAAAGCATA CGTATTGTTA	180
4 5	TACTTCATTG GTTTTAACAT AGTCATTTGA TATTTCTTTT CAAGACTTTG CTTAGCTTGT	240
	TCATAAACTT TTTTCTCTTC TTTTGACTTC AATGGTTCTT TTGTTAATTC ACCTAAAACT	300
	GTTCCAGTAA ATTCTAAATA CCCATCTATA TCGTCAGATT TTAAAGCATT AAATAAAAAT	360
50	GCTGTTTTGC CCATACCATC TTTCACTTCT ACAGTATTTT TGGTCTCTTC TTCTATTAAA	420
	ATTITIATACA TATTTGTAAT AATCGATGGC TCGGAGCCAA GCTTTCCAGC TAACGTAATT	480
55	TTATCACCTT TTTGTGCAAA CATAGGAATA GCGATAGCCA GTATAATAAT CATCACTATA	540

	TCAAATATAA	TTGCCAATAA	GGCTGCTGGA	ATTGCACCTA	ATAATATCAA	CGATGCATTG	660
	TTACGGTCTA	TACCTAATAA	AATTAAATCT	CCTAGTCCGC	CTGCACCAAT	TAATGCTGCT	720
5	AGTGTTGCTG	TACCTATAAT	TAATACCATA	GCCGTTCTTA	CACCAGCCAT	TATAACAGGC	780
	ATTGCTATCG	GAAGTTCGAC	TTTAGTTAAA	CGTCTAAATG	GTTTCATACC	TATACCTTTA	840
	GCCGCTTCAA	TGAGTGATGG	ATCAACTTCT	TTAATTCCAG	TATACGTATT	CCTTAAAATT	900
0	GGTAACAACG	CATACACTAC	AAGTGCAATA	ATTGCTGGCA	CACGACCGAT	ACCAAATAAA	960
	GGAATCATTA	AACCTAATAA	TGCCAACGAT	GGTATGGTTT	GAAGAATTGC	CGCAATATTC	1020
5	ATTACGATTT	CAGATATCGT	TTTAGTCTTC	GTTAATAAAA	TACCTAATGG	TACCGCAATA	1080
	GCAGTTGCAA	TCAATAATGC	GATAAATGAT	ATTTGAATAT	GTTCTATCAT	TGTCGAAAAG	1140
	AGTTGCCCCT	TACGTTCACT	CAATATGTCg	AAAAAGTTAG	TCATGTTGAG	CTACCTCCTT	1200
20	TTTCTGGGAC	AAATATTTGA	AGATATCTTT	CCTATCAATA	ACATATTGAC	CTACGCTATC	1260
	TTCTTGCATG	ACAATGACAC	GCTCGCTCTC	TGATAAAAGT	TGATACAATA	CTTCAATTGG	1320
	TTGATTGTCA	TAAACAATTG	GATAAGCGCT	CATAGATGTA	ACCTCATCGA	TTGGTTTCAT	1380
?5	AATATCCAAG	TCACGGATAA	TTGCGTTCTC	TTCAACACAT	GGCGCATCAT	CTTCTAAATG	1440
	ACTACCCATA	AATTGTTTAA	CAAATTCACT	TTGAGGATTA	TTTTTAAATC	CTTCTGGTGT	1500
30	GTCAATTTGT	TCAATATGCC	CTTCATTCAA	AAGACAAATC	TTATCACCAA	GTTTCATCGC	1560
	CTCTTGAATA	TCATGTGTAA	CAAATATGAT	TGTCTTCTTA	ATTTTAGTTT	GTAATTCAAT	1620
	TAAATCATCT	TGAAGTTTTT	CTCGGCTGAT	TGGGTCTAAT	GCACTAAACG	GTTCATCCAT	1680
35	TAAAATAACT	GGTGGATCAG	CTGCTAACGC	ACGTATAACT	CCTACACGTT	GTCGTTGCCC	1740
	CCCTGACAAT	TCATCAGGTT	TTCTGTTTTT	ATATTTTCA	GGTTCTAATC	CAACCATTTC	1800
	AAGTAATTCA	TCTACTCTTT	TATCTATATC	TTTTTCTTTC	CACTITTTCA	TTTGTGGCAC	1860
10	TTGTGCAALA	TTTTCTTTGa	wTGTCaTATG	TGGGAATAAT	GCAATCTGCT	GCAATACGTA	1920
	TCCAATATCC	CAACkCATTT	CGTATACTGG	ATAATCACTT	ATTGGTTTAT	CTTTAAAATA	1980
15	AATATAACCT	TCACTTAAGT	GAATGAGTCG	ATTAATCATT	TTTAATGTCG	TAGTTTTTCC	2040
	ACAACCTGAA	GGTCCAATTA	GCACAAAAAA	TTC			2073

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13321 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	ACTATTCTAG	CTTCATCAGT	TATCATATAT	TCTTTGAAAC	ACTTGTAAGA	AAATATAATG	60
5	AGTATTTACT	ACATAATGAT	ATTTCAAATT	AGAAAAAAGG	AAGTTATGAT	TTAATGGCCT	120
	TGAGCCTATC	ATAACTTCCT	TTTATCATTT	TATTGTTGTG	TTGATGTTTC	GATAACGTGG	180
10	TACATCTTAT	CAAACATCAA	TTCGAAACCA	TGCACCATGG	CATCATGATA	TTCTTTTTTC	240
10	TTTTGCTTGT	ATTCTAAATT	AGTAAATCGT	CTTTCTTTT	CAACTAATGA	ACGATAATAA	300
	AATAGCATTT	GGGTGCCACC	TGTTTCACGT	TCAAAAAATT	CTACCTCAAT	GACATCTTGC	360
15	GTTTCACTTA	GTCCAGGCAT	ACCGATAGTC	ATCTTAACGT	ATTCATCCAT	AACTAAAGAT	420
	TCATAAATGC	CTTCAATCAC	ATTTACTTTG	CCATTACGTT	GTTGATCTAC	AATACGATAT	480
	TTACCGCCTT	CTTTAACGTC	CGCTTCAATC	TCTTTATTCG	TTCTGGCTGA	TGTCATAAAC	540
20	CATTGTTTCA	ACAAATCTTT	CTTTGTCCAA	GCTTCGTATA	CTAACTCTGG	AGAAAATTTA	600
	TAAAGCTTTT	CAATTTCAAC	TTCGACATGT	TCATTCTCTA	CATTAAATTT	TGCCACTGTT	660
	GTCCACCCAC	TTTCGCTCTT	ACTTTTATTT	TAACGTATTT	TTGCTCAGTT	CCAAACATAG	720
25	ATGATCATCA	TTTTTAAAAG	ATTAGCGTTA	TACGGTGAGT	ACAACATGAT	CTGTTAATAT	780
	AACAAGCCAC	CTTACTTGGC	TACATCGATA	TATTGTTAAG	CATTAATGTT	TCATTTCTTG	840
30	ACTAGTGTTC	TTTTTTAGCT	TTGGAAAATT	AAATAAAATC	GCAATAAGTC	CGCATACACC	900
	TAATAATATA	GGATAAATGC	TGTATGGGAA	TAACATTAAC	GGTGAAATAC	CAGCTACACC	960
	AGCCGCTGaA	ATGACTTGCG	GGCTATATGG	TAATAAACCT	TGGAAGCAGC	СТССАААТАТ	1020
35	ATCAAGAATA	CTTGCTGATT	TCCTTGAATC	TACATCATAT	TCATCTGCAA	TATTTTTAGC	1030
	TAAAGGACCT	GACATAATAA	TAGAGATGGT	GTTGTTTGCC	GTGGCAATAT	CTGCGACACT	1140
	TACCAAACTA	GCAATTCCTA	ATTCTGCGCC	ACGCTTTGAT	TTCACTTTAG	AGCGAACAAA	1200
40	TTGCAACAAC	CATTCAATAC	CACCATTGTG	TTGAATAATA	CCGACTAAAC	CACCAATTAG	1260
	CAACGCAATC	ATAGCAATAT	CTTCCATGCT	TATAATACCT	TTGGACACTG	CATCTAGTAG	1320
45	CCCCATCCAA	CCGAATGAAC	CATCTATGAG	ACCAATGATT	CCGGCTAATA	ATGTTCCGCC	1380
	AATCAATACG	ATAATGACAT	TTACACCTAA	TAATGCTAAT	ACCAATACTA	AGATATACGG	1440
	TACAACTTTA	ATTAGATTAT	AATCATAGTE	TTTAGCATGA	TTTAAAGAAA	TGCCATTCGT	1500
50	TAAGAAATAC	AGAATAATAA	TCGTTAAAAT	AGCACCTGGC	AATACAATTT	TAAAGTTTAC	1560
	TCTGAATTTA	TCTTTCATTT	TCGTATGTTG	TGTTCTAACC	GCAGCAATTG	TTGTATCTGA	1620
	AATCATTGAT	AGATTATCGC	CGAACATTGC	ACCTCCAACA	ACTGTAGCCa	tTGctAGCGC	1680

	TCCTACAGAC	GTCCCCATAG	ATATAGAAAC	AAACATACAA	ATCACAAACA	ATCCTACAAT	1800
	AATTAAATTT	TCTGGGATTA	ATGATAGTCC	TAAATTAACT	GTCGACTTTA	CGCCACCCAT	1860
5	TTTTTCAGCT	GTATTTGAAA	ATGCACCTGC	ТААААТАААА	ATCAACATCA	TTAAAACAAT	1920
	GTTTGAATGG	CCTGCACCTT	TCGTGAAGAC	CTCAACTTTT	TTAGCAAATG	ATTCTTTTCG	1980
10	ATTCATTAAT	AACGCCACAA	TTACCGTTAT	CGTAATTGCA	ACATTTAATG	GCATTGAAGT	2040
	AAAATCACCT	GTGATAATAC	CTACGCCTAA	AAACAACGCC	ACAAATAATA	ACAAGGGGAA	2100
	TAATGCCCAA	GCATTGCTCT	TTTTATGTAC	TICCATCCTT	TTTACCTGCT	TTCCAATTAA	2160
15	AAATACCTCT	TTCTCACAAA	CGATGAAGAA	AGAGGTTTTC	ATGTGCTTTA	CCTGCTTATC	2220
	TTCAAACCAT	TACGGTTACT	GGAATTGGCA	CATTCGAGAT	GTTGCCGAGG	CTTCATAGGG	2280
	CCAGTCCCTC	CACCTCTCTA	GATAAGTGAT	GCTTATTTAC	GTTTACGTTA	CAAGATAATC	2340
20	CTTAGTACGT	CAATCATAAA	TTAATCAGGA	GTCGTATAAT	ATTTTTCATA	AACAATCATT	2400
	GCTACTGTAA	TAATAATCAA	AACAATAATG	CTAATAACAA	GTAAAAGCCA	CCATTTAAGC	2460
25	ATTAATGCAA	TAAAAATGAA	CACGATAGAC	ACACTTACTA	ATATTAATGA	TATGACTTTA	2520
	AATTGCTGAA	CACGTTGCTT	GGAGATGACT	TTCAACTGTT	TGTTTGATAG	ACGCGTATTT	2580
	TTTATACTGA	TTCCCAGTAT	ATTTTCTAAT	ATTTGAACCA	ATACGATACT	TATTGCAAAT	2640
30	ATAATAATTG	GTAAAACATC	ATAGCTCCCT	ATAGTTAATG	TATAAATTAC	AAATCCAATG	2700
	TAAAGTAACC	CTGAGACAAA	GGATAAAAAG	TATGCGACGT	ATTTGTTAAA	CTTAATGATA	2760
	TGCTTTTTAA	CGTTTTGATG	TGTAAACCAT	ACATTCGAAA	CGATCGCAAC	TGCTACAAAT	2820
35	AATGTGAATA	СТАТАТАТАА	TGGTAATTTT	TGTTCAGGAA	AAACAGTCGC	TATTCCAAAA	2880
	GCTAATGCTA	AAATCAAAAA	TAATATAGCT	CTAGATACTA	TTAATGCCAT	AATAACAACC	2940
40	CCTTŢGTTTA	ATATCGAGTT	TGCAAATTTA	CGTTTATCAG	CGTTTCTATG	ATCAGTACTT	3000
, ,	CTACGGGTAG	CGTTTCTATG	TAATTTACAT	CATCTTAACA	TATAAATACT	TCGCTATTTA	3060
	ATTGAAAACA	TATCCTATTA	TTCTTTGTCC	GTTCTGACGT	TTAATATCTA	GCCTTAGGCA	3120
45	TTTCACTTGT	TAATGAATTT	AACTTTCTTC	CACTAACCGT	CCCTAAACCC	AATCCCGCAA	3180
	CAGTTTTTAA	CTTTTTCGTT	GTTGTCCTGA	CATCCTCATT	AAGAAAGTTT	ATTCTGCTTA	3240
	AAACTTATAA	TCCACACCCT	GAGCAAACGC	TCCTTATGAC	AGAGTATTAA	AATAAGCCGA	3300
50	TAAAGATACA	CACCTTTACC	GACTATTTAA	AATACACTTC	ACCAATTCAT	TTTAATTTAA	3360
	TGGATTGAAG	TAACTAAATT	AATATTATGT	TGTTCAATTA	AAAGCTTCAT	ACAAACCTAA	3420
55	TCTATTTGCA	CTCCACCGCT	AACACCGAAC	ACTTGTCCGG	TTGTATAACT	TGATTCTTCT	3480

	GTTTTTTGAC	CAAATGTTGG	GATTTTACTT	TGAGGTTGTC	CACCAGAAAT	TTGTAATGGT	360 0
	GACCAGAATG	GACCAGGCGC	TACACAGTTC	ACTCTAATTC	CTTTTGGTCC	TAATTCTTCT	3660
5	GAAAAACTTT	TAGTTAATGA	AATAATTGCT	GCTTTTGAAG	CGGCATAATC	ATGAAGAATA	3720
	GGACTAGGAT	TATAACCTTG	TACAGATGAT	GTCGTTGTAA	TTGACGCACC	CGGTTTTAAA	3780
10	TATTCCAATG	CTTTTTGAAC	TGTCCAAAAT	AGCGGATAGA	CATTCGTTTC	AAATGTTTCT	3840
10	GTAAATGCCT	CAGTTGTAAA	TCCATGAATA	TCATCATGAT	ACTGTTGATG	TCCAGCAACT	3900
	AAAGTAACAT	TATCTAAGCC	ACCTAATTGT	TGATATGCTT	GTTCAACAAG	GTCATAGTTG	3960
15	AACTGTTCAT	CTCTTATATC	ACCAGGAATT	AACACTGCCT	TTTGACCACT	TTCTTCAATC	4020
	ACTTGGCGTA	CTTCTTGTGC	ATCTTGTTCT	TCACTCGGAA	GATAGTTAAT	CGCTACATCT	4080
	GCACCTTCTT	TAGCATACGC	AATTGCTGCT	GCACGCCCTA	TTGCTGAGTC	ACCACCTGTG	4140
20	ACTAATATTT	TATAGCCTTG	TAAGCGTTGA	TGACCTTGGT	AAGACGTTTC	GCCACAATCG	4200
	GGTGCTGGCG	TCATTTCAGA	TTGTAAACCC	GGTACCTCTT	GTTCTTGTTT	TTCATAATCC	4260
	GTTGTTTTAA	ATTTTGTTCT	AGGATCTTGA	GCTGCCATTT	TTTTACATCT	CCTTATTCGC	4320
25	TTAATGGTTA	TTATTTACCC	AATCTTCCTA	GGAACTTAAT	CATGATTACA	СТАААААТТА	4380
	CTTTCTTCTT	TATAAAAACA	AGCTCGAATT	ATTCATGCAA	TAGTCTCTTT	ACAAATTCAA	4440
30	CAAAATACTC	AGGTACTTTT	TCCAGAATCC	TTTCATCCGG	TTTATATTGA	GGATGATGTA	4500
	AATCATATTC	ACTATGAGAA	CCAATTAACG	CAAATACACT	TGGAAAATGT	TGACTATAAC	4560
	CTGAAAAATC	TTCTCCAATC	GTAAGCGGCT	GTTCCATCAT	TCCCACCTTA	TATCCAACAT	4620
35	GTTGGGCTAC	TGCAATTGCT	TTATGCGTCA	ATGCCTCATC	ATTCATCACA	GCGCCAGGTA	4680
	AATGCGTATA	ATTTAAATTA	ATTTTCATAT	TATATGCTTG	AGCCAATCCG	TCCGCAATAT	4740
	CTTGTAATCG	TGTTTCTACA	AGCTTTCGTA	CCACAGGATC	AAAACTACGC	ACTGTGCCTT	4800
40	GTACATACGC	ATGATCAGCA	ATGACATTCC	AAGTATTACC	ACATGATATT	TGTCCAATTG	4860
	TTACTACCGC	TTCATCAAAC	GCAGATAGAT	TTCTACTAAC	TATGGATTGA	АТАСТАТТАА	4920
45	TCAATTGCGC	CAACACAATA	ACTGGATCGT	TGCATTGTTC	TGGCTTTGCA	GCATGACCAC	4980
	CCACGCCTTT	AATATGAAAC	TCAAAACGAT	CTACTGCTGA	TGTAATTGCC	CCTGTTTTGA	5040
	TTGCAAATGT	ACCTACCGAA	CGCGATGGGT	CATTATGAAA	ACCCAATACT	GCTTGTACAT	5100
50	CTTTTAATGC	ATGTGTTTCA	ATAATTTTAA	AAGCGCCATG	TCCTAGTTCT	TCTGCTGATT	5160
	GAAAAATGAA	TTTAACACGC	CCAGTAAGAG	TGCCCTCAAT	TTCTTTTAAT	TTTACAGCTG	5220
	TAGCCAAAAT	ACTAGCCATG	TGAATATCAT	GACCACACGC	ATGCATAACA	CCTTCATTTT	5280

	CAGCTATACA	ACTCAGACCT	TGTCCCACTT	CAGCAACAAG	CCCAGTCGCA	AGTGGTAAGT	5400
_	CTAATATTCT	AATATGATGT	TCTGTTAAAA	TATCTTTAAT	TTTTTGTGTA	GTCTTAAATT	5460
5	CTTTATCGGA	TAGTTCTGGA	AATTGATGAA	AATACCTTCT	CCAGGTAACA	GCTTGATCTT	5520
	TTAATCCCAT	CGGTCATTCC	CCTTCCTTAA	GTCAATGATA	TGTTGTCTAC	CCTACGATGA	5580
10	TCATCTTTGA	CTATTAAACG	ATGATTTCAC	AACAATGTAC	TCTTGTTAAT	TGCTTTCGTT	5640
	AATGATAGAC	AGTTGTTTAA	TAATATCGTA	ACACTGTTGT	CAAACTATTC	TAACTTTTAT	5700
	AATTGAGACT	CTATACAAAA	ACGTGTTCTC	GAATATACTT	GTTTTTACAA	ACCACAAAAA	5760
15	GCTCTAAACA	TTAGTTTAAA	CCAATGCTTA	GAGCTTTCTA	ATTATTTTAT	GCTTTAAAAG	5820
	ATACTGTGTT	ATCTACGATG	ACCTTACCGT	CTTTAATAAC	TTTTTCTGCG	TGATTGATAC	5880
	CAAAATGATA	TGGAATATAT	TCATGATTTG	GTGCATCCCA	AATTACTAAA	TTAGCCTTAT	5940
20	CACCTGTGTT	AATTGTACCC	GCGTTAATGT	CTATTGCTTT	AGCAGCATTG	ACCGTAACAG	6000
	CATTCCAAAC	TTCATTAGGT	GATAGCTTTA	ATTTCAAGGC	TGCAATCGCC	ATAACAAGTT	6060
25	GTAAGTTGTT	TGTGACACTA	CTACCAGGGT	TATAATCAGT	TGCTAATGCA	ATCGCACCGT	6120
	TATTGTCAAG	CATGCCTCTT	GCATCTGCAT	AATCTTCTTT	ACCTAAATAG	AACGTCGTTG	6180
	CAGGTAAGAG	GACAGCTACA	GTATCACTAT	TTCGCAACTT	TTCTTTTCCT	TTATCACTAG	6240
30	AAGCTACTAA	GTGGTCTGCT	GATATTGCTT	GTTCATCAAT	TGCTAATTCC	AGTCCGCCTA	6300
	ACGGATCAAT	TTCATCCGCA	TGTATTTTCA	CTTTAAAACC	TGCTTCTTTG	GCTTTTTGCA	6360
	TATAATGTTG	CGATTGTTCT	ATTGTAAATA	CACCTGTTTC	ACAGAAAATA	TCCGCAAAGT	6420
35	CTGCATATTG	TTTTACTTCC	GGAAGTAACG	CAATCATTTC	TTCTAAAAAT	GCCTCATTTG	6480
	AACTTGCCTC	TTTAGGTACA	GCATGAGGCC	CTAGGAAAGT	ATGTTTCATG	TCTAAATCAT	6540
40	ATTTCTCAGC	TAAACGATTA	GACACTTTCA	ATTGCTTCAG	TTCATTTTCT	CTATCTAATC	6600
40	CATAACCACT	CTTACTTTCA	ACTGCAAGCA	CGCCGTGTTT	AATCATAGTA	AGCAAATCAT	6660
	GCTCTGCTTT	TTTAAACAAG	TCATCTTCGG	ATGTTTCTCT	AGTAGCATTA	ACGGTAGATA	6720
45	ATATGCCACC	ACCCATTTCT	AATATTTCAA	GGTAAGACTT	ACCTTGACGT	TTTAATGACA	6780
	TCTCATGTTC	TCGAGATCCA	CCAAATGTTA	AATGGGTATG	TGCATCTACT	AATGCTGGGG	6840
	ACACTACCTT	CCCACTAGCA	TCAATCGTCT	CAGTCGCATC	GTAGTCATCT	GTATGTGTTC	6900
50	CAGCATATAC	AATTTTGCCA	TCTTTAATGA	CAACTGTACC	ATTTTTCACA	ACATTTAATT	6960
	CATCTAATTC	CTTACCCTTC	AAAGGTTTAT	CTGTTGATCT	CGGTAAAATT	AATTCTGCTA	7020
55	TATGATTAAT	TATTAAATCA	TTCATTACTT	ATCACCTGCT	TTATCAATCA	TTGGAATATG	7080

	AACACCCATA	CCTGGGTCAG	TCGTCAATAC	ACGTTCCAAT	CTTCTTTCAG	CACGCTCTGA	7200
	TCCATCTGCT	ACAACAACCA	TACCCGCATG	AAGTGAATAT	CCCATGCCAA	CACCGCCACC	7260
5	GTGATGGAAT	GAAATCCATG	AACCACCTGC	AGCTGTGTTA	ATGAGTGCAT	TCAATACAGC	7320
	CCAATCACCA	ACCGCGTCAC	TACCATCTTT	CATACTTTCT	GTTTCACGGT	TAGGACTAGC	7380
10	AACTGAACCA	GCATCTAAAT	GGTCTCGTCC	AATAACAATT	GGTGCTGAAA	TTTCACCGTC	7440
	ACGTACAAGA	CGATTTAAAG	CTAAGCCCAT	TTTCGCTCTT	TCTCCATAGC	CTAACCAAGC	7500
	AATACGTGAT	GGTAGTCCTT	GATATGAAAT	TTTTTCTTCA	GCTAAATCAA	GCCATCTTAA	7560
15	TAACTTTTCA	TTTTCTGGGA	AAAGTTTGCG	CATTTCTTCA	TCCGCACGCT	CGATATCTTT	7620
	TGGATCACCA	CTCAACGCAG	CAAAGCGGAA	TGGCCCTTTA	CCTTCACAGA	ATAATGGTCT	7680
	AATGTAAGCT	GGTACAAAGC	CTGGGAAGTC	AAAAGCATTT	TTCACTCCGT	TATTGAAGGC	7740
20	TACTTGACGA	ATATTGTTAC	CATAATCAAA	TGCTACAGCG	CCACGTTTTT	GGAATTCAAG	7800
	CATTAATTCA	ACATGCTTTG	CCATTGAAGC	TTGTGACAGT	TCAACATATT	TTTTCGGATC	7860
25	TTTTTCACGC	AATACTTTCG	CTTCTTCTAC	AGAGTATCCT	TGTGGCACAT	ATCCATTTAG	7920
23	CGGATCATGT	GCACTTGTTT	GGTCAGTAAT	AATGTCAATT	TTAAATCCTT	TTTCTAGAAT	7980
	CGCTTGATGG	ATGTCTACAG	CATTTCCAAC	TAACCCGATT	GATAATCCTT	CTCCACGTTC	8040
30	TTTCGCCTCT	TCTGCTAATT	TTAATGCTTC	ATCTAAATCA	GCTGTTTTAA	CATCACAGTA	8100
	TTTCGTATCA	ATTCGCTTAT	CAACACGTGT	TTCATCAACA	TCCACGCAAA	TTGCTACCCC	8160
	ATGATTCATA	GTAATTGCTA	ACGGTTGCGC	ACCACCCATA	CCACCTAAAC	CTGCTGTCAG	8220
35	TGTAACAGTG	CCTGCTAAAT	CTCCATTAAA	GTGTTGATTA	CCTAGCTCGG	CAAATGTCTC	8280
	ATAAGTACCT	TGCACAATAC	CTTGAGAACC	AATATATATC	CAACTACCGG	CTGTCATCTG	8340
40	TCCATACATG	ATTAAACCTT	TTTTATCTAA	TTCATTAAAA	TGATCCCAGT	TTGCCCATTC	8400
40	AGGCACTAAT	ACTGAATTTG	AAATTAATAC	ACGTGGCGCT	TCTTCATGTG	TTTTAAATAC	8460
	AGCAACTGGC	TTTCCTGATT	GTACTAACAT	TGTCTCATCT	GATTCTAATT	CTCGTAACGT	8520
45	TTTCTCTATT	GCTTCAAAAG	CTTCCCAATT	ACGTGCTGCT	TTTCCAATAC	CACCATAAAC	8580
	AACTAAATCT	TCTGGTCTTT	CAGCAACTTC	TGGGTCTAAA	TTGTTGTATA	ACATTCTAAG	8640
	TACTGCTTCT	TGTTCCCAAC	CTTTACACTC	AATACTCAAA	CCTTTTTTTG	CTTGAATTTT	8700
50	TCTCATAAAA	TTCGCTCCTG	TTCTTTTAAG	AAGTTAATTC	CACTAAATTT	AAAACGCTTA	8760
	CATTATTATC	TTCAATATTC	ATTATAGTAT	GTTAAAATAT	AGCCAACAAA	TATAAATAAA	8820
	CTAATTATCC	ATAGCTTGAA	TCTATAAATA	AAAGGAGCAA	AACACATGAA	AATTATTCAG	0888

	CATATTAGCC	AGCCATCTTT	AACTGCTACG	ATTAAAAAAA	TGGAAGCAGA	TTTAGGTTAT	9000
5	GACTTATTTA	CACGTTCAAC	AAAAGACATC	AAGATTACCG	AAAAAGGAAT	ACAGTTTTAT	9060
3	CGTTATGCGA	GCGAATTAGT	TCAACAATAT	CGATCCACGA	TGGAAAAAAT	GTATGATTTA	9120
	AGCGTTACAT	CAGAACCAAG	GATAAAAATT	GGGACTCTTG	AATCTACGAA	TCAATGGATT	9180
10	GCGAATTTAA	TTCGAAAGCA	CCATTCCGAC	TACCCTGAAC	AGCAATATCG	TTTATATGAA	9240
	ATACATGATA	AACATCAATC	TATAGAGCAA	TTACTGAATT	TTAATATTCA	TTTAGCTATA	9300
	ACAAATGAAA	AAATAACCCA	CGAAGATATA	AGATCCATTC	CTTTATATGA	GGAATCTTAC	9360
15	ATTTTATTAG	CACCCAAGGA	AACATTTAAA	AATCAAAATT	GGGTAGATGT	TGAAAATTTG	9420
	CCACTCATAT	TACCAAACAA	AAATTCTCAA	GTGCGCAAAC	ACTTAGATGA	CTATTTTAAT	9480
20	AGAAGAAATA	TTCGTCCAAA	TGTCGTTGTA	GAAACAGATC	GATTCGAATC	AGCAGTTGGA	9540
20	TTTGTTCATC	TCGGCTTAGG	TTACGCTATC	ATTCCGAGAT	TTTATTACCA	ATCATTTCAC	9600
	ACGTCTAATT	TAGAATATAA	AAAAATTCGT	CCAAACTTAG	GCCGAAAAAT	TTATATCAAT	9660
25	TACCATAAAA	AACGCAAACA	CTCCGAACAA	GTACATACAT	TCGTACAACA	ATGCCAAGAT	9720
	TATTTATATG	GACTTTTAGA	GGCTCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9780
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9840
30	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9900
	CTCAGTCAAC	TGTATACCTT	TTTCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9960
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGTGCCTCT	TATGTAGTTG	10020
35	CGTAGTCAaC	TGTaTACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	10080
	CGCAGATCAT	CGTATAAAAA	TTAATGACGT	CATTTCAAAA	ATCGATACAA	AAATAATTTA	10140
40	TTATÀAAAAT	TCTAAGAAAG	AAGTGAAGCA	GATGTTAAAA	TCTATTAATC	ATATATGCTT	10200
	TTCAGTCAGA	AATTTAAACG	ATTCAATACA	TTTTTATAGA	GATATTTTAC	TTGGGAAATT	10260
	GCTATTGACT	GGTAAAAAA	CTGCTTATTT	TGAGCTTGCA	GGCCTATGGA	TTGCTTTAAA	10320
45	TGAAGAAAAA	GATATACCAC	GTAATGAAAT	TCACTTTTCA	TATACACATA	TAGCTTTCAC	10380
	TATAGATGAC	AGCGAATTTA	AATATTGGCA	TCAGAGGTTA	AAAGATAATA	ACGTGAATAT	10440
	TTTAGAAGGA	AGAGTTAGAG	ATATTAGAGA	TAGACAATCA	ATTTACTTTA	CCGACCCTGA	10500
50	TGGTCATAAG	CTAGAATTAC	ATACTGGCAC	ACTTGAGAAC	AGATTAAATT	ATTATAAAGA	10560
	GGCTAAACCA	CATATGACAT	TTTACAAATA	AGGTGTCATT	ATAAAAAGGC	CTCTTGAACT	10620
55	CCGTTAAAAT	TTTAATTAAT	TATTATATAA	TAAGAGAACT	TTTCAAACAA	TACAGTTGTT	10680

	TTACTGCAAT	TATTTTCAA	ATATATCAAC	GTTAATATAA	CTTCTATTAA	GAAATACTCA	10800
	CATTCTGCCC	TGCAATGCAA	ATCTCGTCAC	ATATAAATAT	TTTTAATTAT	TAAAAAATT	10860
5	GATGCACTAA	ATTAGCAACG	AGCTTAGCAG	TTCTATTGTC	AGCGTCATAT	GTTGGATTCA	10920
	TCTCAGCAAT	ACTAACTGAA	GACACCTTAT	CACTTGGAAT	AATACGTTTT	GCTAATTCAA	10980
10	GAACAGTATG	TGGATACAAA	CCTAACACTG	CCGGCGCACT	TACCCCAGGC	GCAAACGCAC	11040
	TATCAATGAC	ATCCATACAA	ATCGTAAACA	TAATGACATC	ATGTTCATGT	ACAAAACGTT	11100
	CAATCATATC	TTTAATTGTT	GGTGATACGT	GACTCAATAA	TTCATCIGCA	AAGACATAAT	11160
15	CAATCTTTTT	CTCTTTAGCA	таатсааата	AACTTTGCGT	ATTACCACCT	TGAGCAATAC	11220
	CAAGCACTAA	ATAATCTGTG	TTTTCATCTT	CTTCTAAAAT	TTGTCTAAAG	CTCGTTCCAG	11280
	ATGTAGATTG	TTGTTCAGCA	CGTGTATCAA	AATGCGCATC	AATATTTATC	ACACCAATAG	11340
20	ATTGTGTTGG	ATAGACTTTA	CGTGTTGCTA	AATATTGAGC	ATACGCAATA	TCATGTCCAC	11400
	CACCTAATAA	AAATGTTTGT	CTATGATTAG	CAATTGACTT	CGCTGCAAGC	ATAGCAAATT	11460
25	CTTTTTGAGT	ATCAATTAAT	TCCTCATGAT	CATGATAAAC	ATTTCCGTAA	TCGACTAAAG	11520
25	TTCACATTGA	TTCAAATCCG	GCAAACCTGC	AAATGCTTGT	TTAATCGCAT	CTGGTCCTTC	11580
	TTTTGCACCA	ATGCGCCCCT	TGTTTAAAGC	AACACCTTTG	TCAACAGCAT	AGCCTAATAT	11640
30	ACCGACCCCT	GATGGCATAC	TACTCTTTTC	CAGCTTAGAC	AAATCTTCAA	ATGTTACTGT	11700
	TTGAAAATGT	CTAAATTTTT	TCGGGTCTGT	TTCACTATCT	AACCTTCCAG	TCCATAAATT	11760
	TGGTTCACCT	TGCTTGTACA	CAGCATTTCC	CCCTCTTATT	TATGTGGCTT	ATTAACAATT	11820
35	AAAGTATAAC	GTATAGGAAA	TTTTGAATTC	AATTCATAGT	TAAATCCGTA	TCTTAAAAAT	11880
	ACTTATCTAC	ATTACTTTTA	CCCCTATTTT	CTATGTAATA	ACGAATACTT	AGCTGATTTA	11940
10	TGTTAATAAA	ATACGTCAAG	ACTATTACAT	TTTCATTAAT	ATTGACATAG	ACAATTTATC	12000
40	TCTCGGCTTG	TAATATGTAT	AATTGTTACT	AAAAGATATT	TTGCTTGTTA	CCTAATGGAG	12060
	GTTACATATA	ATGAAGAACA	ATAAAATTTC	TGGTTTTCAA	TGGGCAATGA	CGATTTTCGT	12120
45	CTTCTTTGTC	ATTACAATGG	CGTTATCCAT	TATGCTCAGA	GATTTCCAGT	CTATAATTGG	12180
	TGTCAAACAC	TTTATATTTG	AAGTTACAGA	TCTAGCACCA	TTAATTGCTG	CAATCATTTG	12240
	TATACTCGTT	TTCAAATATA	AAAAGGTCCA	ACTTGCAGGT	TTAAAATTCT	CAATCAGCCT	12300
50	GAAAGTAATT	GAACGTCTAT	TGCTAGCTTT	AATTTTACCT	TTAATTATTC	TAATTATTGG	12360
	TATGTACAGC	TTTAATACAT	TTGCAGATAG	CTTTATTTTA	TTACAATCAA	CAGGCTTATC	12420
	AGTACCTATT	ACACACATTC	TGATTGGACA	TATTCTGATG	GCGTTCGTAG	TAGAATTCGG	12480
55							

	TGTTGTTGGT	TTGATGTATT	CAGTTTTCTC	AGCAAATACA	ACTTATGGTA	CAGAATTTGC	12600
	TGCTTATAAC	TTCCTTTATA	CATTCTCATT	CTCTATGATT	CTTGGTGAAT	TAATTAGAGC	12660
5	GACTAAAGGA	CGTACAATTT	ATATTGCAAC	GACATTCCAT	GCTTCAATGA	CATTCGGACT	12720
	TATTTTCTTG	TTTAGCGAAG	AAATCGGCGA	TCTATTTTCA	ATCAAAGTCA	TCGCCATTTC	12780
10	AACAGCAATC	GTTGCAGTAG	GATACATTGG	TTTAAGCTTA	ATTATCCGAG	GTATTGCATA	12840
	TTTAACAACA	AGACGAAACC	TTGAAGAACT	TGAGCCTAAT	AATTATTTAG	ACCATGTCAA	12900
	TGACGATGAA	GAAACTAATC	ATACTGAGGC	TGAAAAATCT	TCTTCAAATA	TTAAAGATGC	12960
15	TGAAAAAACA	GGTGTAGCTA	CTGCATCAAC	GGTTGGTGTT	GCTAAAAATG	ATACTGAAAA	13020
	TACAGTGGCT	GACGAACCAA	GCATTCATGA	AGGTACTGAA	AAAACAGAAC	CTCAACATCA	13080
	CATAGGTAAT	CAAACTGAAT	CTAATCATGA	TGAAGATCAt	GACATCACTT	CGGAGTCAGT	13140
20	AGAATCAGCm	GaATCAGTTA	AACAAGCACC	ACmAAGTGAC	gATTTaACAA	ACGATTCAAA	13200
	TGAAGATGAA	ATAGAGCAAT	CATTANAAGA	ACCTGCGACT	TATAAAGAAG	ACAGACGTnC	13260
25	ATCAGTTGTA	ATTGATGCAG	AAAAACATAT	CGAAAAAGCT	GAAGAnCAAT	CTTCAGATAA	13320
	A						13321

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8549 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGTGTTGTA AACTTTTATG TTGAAAAAGC TACTTATCTC AATGAAAACA AGTAGCATTT 60 AATAAATTAA TTAGTATACA GCTAGTTTTT CTAATTGTTC TTTAACTTGA ATTAAGTTTG 120 ACCGTATTAG AGAGGCAGAT TGATCCATCG TTTGAATTGC TTGTCCTTCA TTTTCGTTCA 180 AGCCATTACA AACAACTTCA AACTGTTGTG CCATTTGATC AAGACGCGCA TGAGCTTGTG 240 TGTTTAAAAT AAACATATCG TCATAATGTG ATGGCGAATA GATAATTCGT CGTTGTATAC 300 AAACGTATAA AAACCTTGTC ATATCAACGG TTTTGGCATT TTTAAACCTC TGTGTTTTCC 360 ACGCATGTTT GCCCTTATTT AAATAATTTG CCCTTTTTTC GCCCCGAAAA AAAAACACAA 420 AAAAATAACC ACACTCCTAA ATTAATAGGT GGTGTGGTTT TGTTGATTGT AGGGGTATAA 480 AAATAACCGC ATTATTAAAG ATACGGTTAC TCTGTTATCT GTAAATATAA TAGTAGTTTA 540

	AAACAGGACT	CCACATAAAA	ATCAACTCCT	TTATATACCA	TAATGATACT	ATATTTTCTA	660
_	GTTTATTTCA	ATTTTTCAGT	TTTTAAAAAT	GAGTTTCTGT	TTTTATTTAT	ACGCTTTTCT	720
5	GTTTTCTTTT	TAAATTTTAT	CTTTTTGTTA	TTCCATTCAT	TGTAAAATTC	ATTAAATTA	780
	ACATAAAATT	TTTCATGCCC	TATTTTATTT	GTTGATGAGA	TATCAATGTA	AAGACTCAAT	840
10	ATTGTTTTTA	AATAGATTTG	ATGCAACGAC	TGATAAACCG	TATTACTATC	TGCTATGTTA	900
	TTGGTAAAAT	GCATAGAAAA	ATATTCTAAT	TTATTCATGC	AATATATATG	GGTTTCATTA	960
	TACTTCTTAA	TGAGTGTATT	TATACCTTGC	AATACGTCAT	TACTTTTAAT	AACAATTTCT	1020
15	TTTTCACCTG	TCGAAAAAGT	CCACTGTTTA	TCTCCTATAT	TTTCTTTAAT	TGTTTTCT T G	1080
	TTGTCAAATT	CTAAAATTAT	AGCCCGTAAA	CACTCTTCTT	TATAATTCTC	GTTCTTGAAA	1140
	GTACGAAGCA	AAATTTTTAT	AAATTCGGTA	TTGGTGACTT	TTTTATAAGT	GTGATATTTT	1200
20	GCAATCTCTT	TATCAGTAAA	GACTGTTCTT	AGTTCGTGAT	TATCAAAACT	TAAATTCATC	1260
	TTATTCTCTA	ATTCATTAAT	TTTATCTTGC	AAACCAACAT	TTTCTAAAAT	TTTCTTGTTT	1320
25	ATCTCCCCTA	TATCAAAACT	CCTTTTCGAA	ATTAATTTTG	AAAACTCGTC	TGCCATTTCA	1380
	ACAGCCTTTT	CTTTCCTTTT	ATACCTTTTG	TTAAATTTAT	GAACCACCGT	TGCAGCATAA	1440
	TACGATATCC	CACCAGATAA	AATAGATGaT	ATTATCGGTA	TGTATATATC	ACCTTTCATA	1500
30	TTTCCACCTC	TTTTAACACA	ATTAAGTATT	ATGATACACA	ACTTGCGCAA	AAAGATGTAG	1560
	ACAGAACATA	ATGGCGAACA	AAAACAACCA	CCCAGTAACT	AGTATGGGTG	GCGTAGACTA	1620
	TAACAACTCT	ATGTTATCAA	GATATATGTA	TCGAGTGATG	GCAAGGAAGA	AGTCTCCTGC	1680
35	GGGACCAACA	GTCAGATATA	TGGCCTCTGC	CGGGCTATAT	AGTTCACTCC	TACTATATAA	1740
	AAGTAAGTAT	AACATAAAAA	GCACCCCGTA	AACTGTTATA	CGGGAATGCT	AAAGTCATAT	1800
40	ATACTACGGG	GAGTAGTATG	AAAACTATGC	TCTCTATCGT	AAGAAAAAC	ACCCAGTGAC	1860
	ATGCTTGGGT	GAACAAGGAT	AGATGTAAAT	AGTTGATGCA	TGTGTAcACA	TCATAACAAA	1920
	AAACTAGCCC	GAAGCTAGCT	ATAACATAAA	AAAATAGGCA	AGTACCGAAG	TACCTGCCAG	1980
45	TTACGCACAT	TTAAATCTTG	AGAGTAATGT	TAAAAAGTGT	ATAGGAATAT	TAACATCCAT	2040
	CCAAATAGTT	ATTTAATAAC	TGTAAGATTC	CCTATAATTA	ATGTAGCaAA	ATTTTTATTC	2100
	TAAGTAAATA	CTAAATCGTG	CTAAACTTAC	CAAAACTACT	TATTCTATTA	CCTGCCTTGT	2160
50	CTACCTCTCC	TGTCGCTATA	TAACGACGTT	GTCCACTATT	AGCAATATAA	GTAATCCATC	2220
	TATAGCCATT	GATGCAATAT	GCGCCGTCAT	ATTTAATTGT	TGCGTTATTA	GGTAATACAC	2280
55	CTGTAATTCT	TGAATTAGTT	GAATAGCCGT	CCCTTACGTT	ATTACCTTTA	ACATTGGCAA	2340
-							

	CTGGCACTGG	TGGATTTTTT	TGGTTTTTAG	CTGATGTTTT	AACATTACCA	GCTACCAAAC	2460
	CACCTATAGG	CTTACCATGA	ATCGCACCGG	CTATTAATTT	AGAATACAAG	TCATAGTTTT	2520
5	TCTTAATCCA	ATCCATATCA	TTTTTATTAG	TAATAAAACC	TAATTCAGAT	AAACGATAGT	2580
	TTATATTTAT	TTCTGCTGAT	ACATTAACGT	TTAGTAAATC	ATTACGAGGT	GTTACACCTC	2640
10	TTATTTGTCC	TAAGTTATTT	TTAATAACAT	CTTGTATACT	TTTATCAATA	GTATCTGCAT	2700
	TGAATTGACT	TGAAATAATA	ACATGCCCAC	CACTTGCACT	TTCTCCTGCT	GCGTCTAAAT	2760
	GAATCTCTAG	AACAATGTCA	TACCCATGTG	ATTTAACCCA	ATATAAGCCA	TAATCTTTAT	2820
15	TATTTCCTAC	ATTAACACCG	TAAGCAGTAT	CTTGATACAT	ATCTTGTGAT	TGACTTGAGC	2880
	CACCATATAA	TGCAACTTCG	TGACCTGCAT	GTCTTAAATA	CTTAGCGATA	TTTGGTGTTA	2940
	TATATTTACG	GATAAAATCA	CGTTCATTTG	TTCCGTTTCC	GACTGCTCCA	GGATCGTTAT	3000
20	AACCATGACC	GGCTACAAGC	ATAATTTTTT	TAGGTTTAAT	TACTGCTTGC	TTTTTGGCAG	3060
	TTGCTTGCTT	AATAACGCTT	TTAGCTTTAT	CTCCAACACT	TACTTTATCT	GGGAAATTTA	3120
25	ATCTAATAAA	ATACATTGGG	TCATCGTAAT	AATGAACATG	TCTTGTAACG	GTTTCGGGAC	3180
	CCCAACCAGG	TTGCGCAACG	CCATTTGTCC	AACCTTTACC	ATTCCAATTT	TGGCCAAACG	3240
	ATGTGAAAGT	GTTTAGATTA	GCGCTCTCAA	CAATTTCAAC	ATGTCCaGct	CCGCCACCAT	3300
30	ACTTTGACGG	GAAAACGACA	ATGTCCAACT	TTTGCGGTAA	AAAGCTATCA	TAGTTTTTAA	3360
	TTATTTGCCC	GTATTTTTCA	ATCCTTGCTT	TATTATCAAA	TGGAATATTA	TAAGCGTATA	3420
	AACCTTGTAA	CcTTTCGCCT	GTTGCTATCA	TAAAAAACAT	ATTTGCGTAA	TCGTAACACT	3480
35	GAAATCCATA	AAACAAATCA	GGATTGAACT	GCTTCCCTAA	TGAATTATCA	AACCATTTTT	3540
	CTGCTTGGTT	TTTTGTTATC	AACATTGGTC	AACACCTACC	CTAAATCATT	TGTGTCGTTC	3600
40	ATATTCGTAG	GTGTCATTAC	TTCTTTAATT	GGCGCTTGCC	CTGTTGCTTT	TCTATACTTG	3660
40	TTTTCAGCTT	TATATTTCTT	TAGCTTTTGA	TTTGCCCATT	TACCTTCTTG	AGATGTTGGA	3720
	TTATCTTTAT	ATGTAGTATA	TAAAGCAACA	ACTGTTAAGA	TAATCGATGA	AACACTTTCT	3780
45	TCATCTACTG	GTATCGGACT	TATACCTTTA	TTCGCTAAAA	ACTGATTGAC	TAATGCTAAG	3840
	ATCAATACGA	TGTATCTTGT	TATTACTTTT	GCATCCATTT	GTTTGCTCCT	TTTATCCAAA	3900
	ATAAAAAGCC	AGTGCCGAAG	CACTGACTCT	TAACTATTAC	TTACACTTAC	TAAACCAGAA	3960
50	ACACGACCAA	AAGCTATATC	CTAAAATTCC	CTTAAGCATG	GTAATCACCT	CCTTTAAATG	4020
	CCAAAAATAG	TTTTTAACAA	GGCTATAACA	AATGTACTTA	GAATCGTCCC	TATTAATCCT	4080
55	AGAATCCACA	TCTTGATGTC	TCTAATATTT	TTAGCATTTT	TCTCTTTATT	TTTTTCATCT	4140
55							

	TGCGTTCTCA	GACTGTCTTC	TATTCTGTCG	AATTITTCAA	ACATAGTCTT	ATCATTTTCT	4260
	TCTAATCGCG	TTAAACGCCA	ATCTTGTTCG	TGTCGTTTGG	TAAATCCAAA	CATTACACCA	4320
5	CCCACTTTAT	TCAAATTAAA	AAGCCATAAG	ATTATAACCT	ATGACTCTAG	ATTTTCTGGA	4380
	TACTTTTCTC	CTGTAATAAT	TGCATATTCC	TCTTTATCTA	TAACTTCCAT	ATCTACATAC	4440
10	CACGCTATAT	CTTCTTTACT	ATATTCTTTC	AATTGATACC	ATGTTTTAAT	ATCTTCGAAT	4500
	GTTGGTGAAA	TTAATTTAAG	CATTTTCAGT	CTCTCCTTTA	ACCTCTTCTA	ATTTTTTATT	4560
	AAGTGTCACA	AGTTGTTTTG	CCATTAGTGC	ATTTTGCTTA	TTAACTTGCA	TCGATAACTT	4620
15	TGTACTTTGA	ACAACTTGTT	TCTGCATACT	AGCAACCATT	TTTCGTAAGA	TGTCATCAGA	4680
	AGCGACTGTG	TTTTGTTCTT	CACTGTCAAT	CTGTTGATGC	AAGTCATCTT	TTTCTTCTGA	4740
	ATAATCTTCG	ттаааааста	TTTCCCCATT	TGAATATTTA	AAGGCTTTAG	GTCTAAAAAC	4800
20	TTGAGAGAAA	TTTTCTGGTA	AATTTTCAAT	ATCAATACCT	TCTTCAAAGC	CACCAATGAT	4860
	AGCGTATGAA	ATTATCTCAT	TACGCTTGTT	AACTAATATT	TGCATTATTT	TCTCACTCCT	4920
25	ATAATTTTGT	TAATTGTCCC	TCTATTTGCG	TTCGCACCAG	AGCCTCTTTG	ACTTCCTAAG	4980
20	TCGAAATAGA	CATCGTTTGA	TATAGTTAAA	GATGTACGAC	TAGATTTAGT	TAATCCAAAC	5040
	TCATAAACAC	CTCCACCATT	TCCATCACCA	TCTGGAAGAT	TTGAGGGATT	CAATGAAATC	5100
30	TTTCCTCCTC	CAAAAGGACT	GCCAAACTCT	GTAAAGTCAC	CACCTGGAAA	AGTCCCATAA	5160
	AAAATTAATA	AAATAAATTG	GTCTAAACTC	TCATTTAAGT	ACAATGTAGA	GCCCACACCA	5220
	TTTGCTGTTC	CATCAAAAAT	AACCGAATAC	CTTTTATTAA	ACTTGTCATC	TGCGTATAAT	5280
35	TTAGCGTTAC	TTTCGGCCAT	ATTAGCTTTT	GATTGGGCAC	TTTGAACAGT	TTCAAAAGGT	5340
	GTATTGTAAT	CATTAATAGC	TAATTCTGAC	CACTCAGACC	ATGAACCCGC	TTCTTTTCTT	5400
10	TTAACAAATA	CTTTATTTGT	ACCGTTCGGT	CGATAAGTCA	TACGCTTGTA	ATCTGAAGTT	5460
40	ACTACTAAAT	ATTCGACAGT	ACCGTTAGTA	CTAACACCTC	TTGGATAATT	TATAGCTTGC	5520
	GAAACATAAA	TAAATTGGGT	TGAATCACCT	ATTCTTTGTT	CTGGATTATT	AAAATCAAAT	5580
45	CCAGTAATCT	GCATTATCTT	ACCATCATCT	TTAGTAATCT	TAGCTTTTTG	CCAATTTGAA	56 4 0
	GTAGAACCAC	TTGTGACTAA	ACCACCACTA	TTCACTGACT	GCTTGAAGGC	TTCATGTTTC	5700
	TCATCCATAT	ATCGCTTTTG	CTCATCGAAT	GTTCTTGAAT	ATGCTTGCGC	TTTATTTTCC	5760
50	AAATCAGATA	TATGGCTATT	AGCAAGTTGC	TTTAATTCAT	CTATACTTGA	AGATTTTGCT	5820
	ATTTGAATAT	CTGATAGACC	TTTTTCTTTA	GCTTTTTCAA	TCAGACTCGC	ATAATCTTCA	5880
55	CCATTTTTTA	TAGCCTCGTC	CATTGCTTTC	GCACGATCCA	TAATAGTTTT	TTCTAATTCC	5940
پ							

	TCAACGTTAA	ATGTGATAGT	TCTCTCGACA	ACTACCACGT	CTGAATTACC	TAATTCTGCA	6060
	ACCGAAACTT	GAGCTTGATA	ACTTCCATCT	CGTTTAATTA	CATCATTAGG	TAATTGAAAT	6120
5	TTTAAAATAC	CTTTAAATGG	ATCTAATATT	TCTAGTGGAG	CAACTACCAT	GACTCCTTTA	6180
	CCTCGAATCG	CTATTCGTGC	kTTGATATTT	tCTTCACTCA	ATAATAACGG	TTGATTATTT	6240
10	TTAGTGATAT	TAAAAAGAAG	AACAGAAGAA	TCACTCTCTC	CTGTTCTAAA	AGTTATATCT	6300
	AGATTTGAAA	TATTTCCATA	ATGCGCTGTG	TTTTCTAAAT	TTATAGCTAC	AGATTTCTCT	6360
	AAATTACTCA	TTAACTTATA	ATTCTCCCTT	CGTGTAAAGT	CCATGGCCCT	GAACTIGTTT	6420
15	TACTATCATA	ATTTTTCAAT	AGTATCTCAG	CAGATGCTGT	AACACTATTA	CGAACTAGCC	6480
	TATGAACAAA	GCCACCTGTG	TTTGAAGCTT	CTACATATAA	GTTCCAACCA	GCTACCCCTT	6540
	TACGTTCAGT	TGGAAAATCT	GTAAAACGTT	TTGTATCATC	CGTAGTTAAA	TAAAACGACA	6600
20	TGCCTACTAT	GTTAATATCT	GACATTTTTG	TGATGAATGA	AGGTACTCTC	TCCCATTTAC	6660
	CACTATTTTT	AGGCACATAA	TTCCAGTCCG	AAATGTCTCC	AGTTCTTCCA	GAAAGCACCC	6720
25	TTTCAAAAGT	CATCATATTC	CTTGCATAAC	TATTACGCGT	CAATATCTGA	ATTACATCAC	6780
	CGCCAGTTTG	TGGTGGCTTA	ACTTCCAAGA	ACCAACCTGC	ATCACGCCAT	TCTCTTGGTA	6840
	ATGGGAAATC	ATCGATTTGA	ACTGTATGAT	CAGTGTATAA	ATAGTAAAGA	CCTGGCTCTG	6900
30	TTAACATCCC	AAGATTCTTA	AGTTTATCAG	GCCTCATTGG	TAAAGGTTTA	ACTCTACCAC	6960
	CTGTGTCACT	Catgataaaa	GGAACGCCTC	TTGAGTGAAG	TATTTCTAAA	ATACCTCTTT	7020
	GCCCAATCAT	GAAAATACGA	TGTGTTCTAT	TTCCaTCACC	ACCGACAGTA	ACACCTAGCA	7080
35	TCAAAGCTTT	TTTACCACTA	TCTTTGTCAT	AGTATATTTG	CAAACCTTtC	TgCTTCCGCA	7140
	AATTCGCCAG	GAAATGAATC	tAgTGTTCCA	CCATAGTCAG	CATTAACCTG	ATACGCTTCT	7200
10	TCTÇETGTTT	CTAAATCGAA	AGCCGTTAAA	TAGTTTCTAT	TATTTGGATT	ACTGTCTCCT	7260
40	GTATACCAAT	ACAAGTATTT	TTCATCAAAA	GTCACACCCT	GCATTGGTTG	GGTTTCGTTT	7320
	GTTAGTCTCA	TAGGGATACT	GATTTTATGC	AAAACTTTAT	CAATATTTTT	ATCAACATCG	7380
45	TCTAAACTTC	TTATCTCTAT	ATAAnTCATT	GAGTTTTCAA	GTTCCCACTG	ACTTCTAGGT	7440
	CTCTCaATTC	TGTATAGAAT	TTTATTTTCT	TTTTCATTTA	TGACAGGGGT	GATGTAGGGT	7500
	TTTTCTGGGT	GTCCTGTAAA	TACATCTTGC	ATACCATACT	TGCCATAGCT	AATTTCCACA	7560
50	TTAGGCGTAT	ACTTGAAACG	AACTAATGTA	TTCTCATTAT	TACCATTTAA	GATAAAACTA	7620
	TAAATCCATA	ACTCATCATC	AATATATCTA	TAACCGTTAT	GTGTACCATG	ACCCCCACCT	7680
	ACAATCAATG	AGCTGTCTAT	AAATTGACCA	TTAGGTCTTA	GACGACTTAG	CATATAGCCA	7740

	ATTACTGCAT	TTGTAAgAGG	TGCAAGTTCT	GTCACAAATA	AAAATTCTTG	CTTATCAGGT	7860
	TCAAAACGAT	ACTCGATATC	AAGAATTTCT	TGTTTGGTCT	TATTTAATTC	TCTTATAGTT	7920
5	TCCTCTTTAT	TAATTTGAGT	TTTGGTTTCC	CAATCGTCTA	AATGTTCTTT	TAATGTGTCA	7980
	AAGGTTTCGC	CGTTTACATT	AACTCGAGCT	TGAACAATCT	CATTAGCACT	GTTATTACGT	8040
10	GGTGCCACAA	CAAGTGCGTT	AATTTGACTT	TGTAAAGATT	TGTTTACTGC	TGCTTGCGAT	8100
	CTACCATTAT	AATAAATTTG	CTCAGCGAAG	TGTTGAATTG	TTTTAGCTYT	CTGATGCAAC	8160
	TTAAACTCTG	TTGTCAAGCC	AAGCGCAAAT	TGCTCTATTC	TTTGTAAGTT	TTGTATTTCC	8220
15	TTAGCTCTAT	AATCTCGACC	TGCTAAAGCT	CCCAAATCCT	TTATTAAATA	CAAATTTTCC	8280
	ATAATGCACC	TTCCTTTCTA	ATAAAATAGC	ACTGTACCAA	GTTTCCCACT	ATCGTCAACT	8340
	GTTATTTTCC	ACAATTTACC	GTTTGGGGAT	TTCTGTACAA	TGCTATTTTG	AATAATTgcC	8400
20	TGctTCGCCT	ATTTTTAAAT	TATCTAATTT	ATTTKTATCA	TTTACCGAAA	TGATACCGTC	8460
	TTGAGGCAAT	CCATCAATAn	CACTACTGCC	TGCATAAGGT	ATCCCATTTA	TAGCTTTCCA	8520
25	ATGTGTAGCT	GGAAAGTACT	GTTTATCGT				8549
	(2) INFORMA	ATION FOR SE	EO ID NO: 6:				

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3601 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

60	GAGACCAAAA	ATGATTTATT	ATGTATCCGA	nTAGGAAACT	TGACTTACGG	AGGCGTGTAG
120	GGGGCCCTA	ACgTGGACGT	GCGmGTTGGT	ATATCnGGTA	GTCCATTGAA	AGGCATTAAA
180	TAGAMACGAG	TAATAAATTA	ACATTTAACG	TTCAGAGAGG	TCAACCATTA	GATGTATGAG
240	CATTATTAAA	AAAGGCAGAT	GTATGATTTA	TTCAAAAACC	ATGACAGAAA	GGTGAAAATA
300	TTACATTAAA	GATTTTGCAA	AGGACTTATT	CAGAATTCGA	TTTACCAAAG	AGAAAGTGAT
360	TTGCACTACT	GGAAAAAATA	CTACTTATCT	TTAAGCATCA	AAAAACGGTA	AGAGTATAAG
420	TTGATTTAGG	GTTGCGTCTA	TGCGTTTACA	GAACGCGTGC	AATTCGACGA	ATTCGAAAAG
480	AATCTGTAGA	GGCAAAAAAG	TATTCAATTA	GAAAAAATGA	GAATTTTTAG	TGCGCATCCA
540	GTTTTTCACA	GAATTCCGTG	CGATGGTATT	GTAGAATGTT	AAAGTATTAG	GGATACTGCG
600	GATTAACAGA	GTGTGGAATG	TGGTGTACCG	CGAAGTTCTC	GAAGATTTAG	ACAAGCTGTT

	TCTAGAAGGA	ΑΤΑΛΑСΤΤΑΑ	CTTACGTTGG	AGATGGACGT	AATAATATTG	CGCATTCATT	720
	AATGGTAGCA	GGTGCTATGT	TAGGTGTTAA	TGTAAGAATT	TGTACACCTA	AATCATTAAA	780
5	TCCAAAAGAG	GCATATGTTG	ATATTGCAAA	rGAAAAaGCG	AGTCAaTATG	GTGGTYCAGT	840
	CATGATTACG	GATAATATTG	CAGATCCAGT	TGAAAaTwCm	GATGCTATAT	ATmCAGATGT	900
10	TTGGGTATCG	ATGGGTGAAG	AAAGTGAATT	TGAACAcGTA	TTAATTTATT	AAAAGACTAT	960
	CAAGTGAATC	AACAGATGTT	TGATTTAACA	GGTAAAGATT	CAACGATATT	CTTACATTGT	1020
	TTACCAGCAT	TCCATGATAC	AAATACACTT	TATGGACAAG	AAATTTATGA	AAAATATGGA	1080
15	TTAGCTGAAA	TGGAAGTTAC	AGACCAAATC	TTTAGAAGTG	AACATTCAAA	AGTGTTTGAT	1140
	CAAGCTGAAA	ATAGAATGCA	TACAATTAAG	GCAGTAATGG	CAGCAACATT	GGGGAGTTAA	1200
	TCACTAAATG	GAACGATATG	AATATGATGT	GTCTGATGAT	ATAAGTGTCA	TGTACAGACA	1260
20	CCTCATATTG	GTATTAAAGG	AGAAATGAAT	ATGAACGAAT	CAGGAGATAA	CAAACTCAGT	1320
	AAATCTTCTT	TAATTGGACT	AGTTATAGGA	TCCATGATTG	GTGGCGGTGC	GTTCAATATA	1380
25	ATGTCTGATA	TGGGCGGTAA	AGCCGGTGGA	TTAGCCATTA	TTATTGGTTG	GATTATTACA	1440
20	GCTATAGGAA	TGATTTCATT	AGCGTTCGTA	TTTCAAAATT	TAACCAATGA	ACGGCCGGAG	1500
	CTAGACGGTG	GTATTTATAG	TTATGmTCAA	GCAGGATTTG	GCGATTTTGT	AGGATTTATC	1560
30	AGTGmTTGGG	GATATTGGTT	CTCAGCGTTT	TTAGGCAATG	TTGCCTATGC	AACACTATTG	1620
	ATGTCAGCAG	TAGGTAACTT	TTTCCCGATT	TTTAAAGGAG	GCAACACATT	ACCAAGTGTT	1680
	ATTGTCGCCT	CGTTACTACT	CTGGGGTGTC	CATTTCTTGA	TTTTAAAAGG	CGTTGAAACA	1740
35	GCAGCATTTA	TCAATAGTAT	TGTTACTGTT	GCAAAGTTAA	TACCGATTTT	ACTTGTAATC	1800
	ATATGCATGA	TAATTGCATT	CAATTTTGAC	ACTTTTAAAA	CAGGCTTTTT	CAGTATGACG	1860
40	TCAGAGGGTG	TATTGCCATT	TAGTTGGGCG	AGCACAATGA	GCCaaGTtAA	AAGTACGrTG	1920
40	CTAGTGACAG	TTTGGGTGTT	TATCGGTATC	GAAGGTGCAG	TAATTTTTTC	TAGTAGAGCT	1980
	naaaatgaga	AAGATGTAGG	TAGTGCCACG	GTTATAGGAC	TTATATCAGT	TTTAATTATC	2040
4 5	TATYTCTTAT	TAACTGTATT	AGCTCAAGGC	GTGATTTTGC	AAAATCATAT	TTCGCAATTA	2100
	GATTCGCCAA	GTATGGCACA	GGTGCTTGCA	ACTATTGTAG	GTGGTTGGGG	ATCTACACTT	2160
	GTAAATATTG	GTTTAATTAT	TTCGGTACTA	GGTGCATGGT	TAGGATGGAC	ACTGCTTGCT	2220
50	GGTGAATTAC	CTTTCATTGT	TGCAAAAGAT	GGATTATTTC	CAAAATGGTT	TGCTAAAGAA	2280
	AATAAAAATG	GAGCACCTGT	AAATGCACTG	CTTATTACCA	ATATATTAGT	ACAATTATTT	2340
55	TTAATAAGTA	TGCTATTTAC	ACAGAGTGCG	TATCAATTTG	CATTTTCACT	AGCATCAAGT	2400

	CGACAGCAAG	CAACTACTAA	ACAATGGACG	ATTGGTATCA	TAGCCTCAAT	TTATGCTATA	2520
5	TGGCTTATAT	ATGCAGCAGG	TATCAATTAC	TTATTATTGA	CGATGTTACT	TTATATTCCA	2580
5	GCTCTTCTTG	TTTATACaAT	CGkTCmAAAG	rATwATCAGa	CACGTTTGAT	TAAATCAGrC	2640
	TATATTCtTT	TTATGATTAT	tATCGTACTT	GCAGTTATCG	GGTTAATTAA	GTTATTGATG	2700
10	GGAACGATAA	ATGTTTTTTA	AAAGGAGCGA	CAAAAATATG	AAAGAGAAAA	TTGTCATTGC	2760
	ATTAGGCGGT	AATGCGATAC	AGACAACAGA	AGCAACAGCT	GAAGCACAAC	AAACAGCTAT	2820
	TAGATGTGCG	ATGCAAAACC	TTAAACCTTT	ATTTGATTCA	CCAGCGCGTA	TTGTCATTTC	2883
15	ACATGGTAAT	GGTCCACAAA	TTGGAAGTTT	ATTAATCCAA	CAAGCTAAAT	CGAACAGTGA	2940
	CACAACGCCG	GCAATGCCAT	TGGATACTTG	TGGTGCAATG	TCACAGGGTA	TGATAGGCTA	3000
	TTGGTTGGAA	ACTGAAATCA	ATCGCATTTT	AACTGAAATG	AATAGTGATA	GAACTGTAGG	3060
20	CACAATCGTT	ACACGTGTGG	AAGTAGATAA	AGATGATCCA	CGATTTGATa	ACCCAACTAA	3120
	Accaattggt	CCTTTTTATA	CGAAAGAAGA	AGTTGAAGAA	TTACAAAAAG	AACAGCCAGA	3180
25	CTCAGTCTTT	aAAGAAGATG	CAGGACGTGG	TTATAGAAAA	GTAGTTGcGT	CACCACTACC	3240
	TCAATCTATA	CTAGAACACC	AGTTAATTCG	AACTTTAGCA	GACGGTAAAA	ATATTGTCAT	3300
	TGCATGCGGT	GGTGGCGGTA	TTCCAGTTAT	AAAAAAAGAA	AATACCTATG	AAGGTGTTGA	3360
30	AGCGGTTATA	GATAAAGATT	TTGCTAGTGA	GAAATTAGCA	ACGCTGATTG	AAGCAGATAC	3420
	CTTAATGATT	CTTACGAATG	TAGAAAATGT	ATTTATTAAC	TTTAATGAAC	CTAATCAACA	3480
	ACAAATCGAT	GATATTGATG	TAGCAACACT	GAAAAAAtAC	GCGGCACAAG	GTAAGTTTGT	3540
35	GGAAGGATCG	tGTTGCCAAA	AATAGAAGCT	GCGtACgtTT	GTTGAaAGtG	GGGaAACCAA	3600
	A						3601
10	(2) INFORM	ATION FOR SE	EQ ID NO: 7	:			
15		EQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEI (D) TOPOLOGY	573 base pa cleic acid NESS: doub	airs			
	(xi) \$	SEQUENCE DES	SCRIPTION: S	SEQ ID NO:	7 :		
50	CGACACTATT	AAATGAATTA	GAGCACAATC	TAACAAATCA	AATTCATTTT	TCAAAAGATG	60

AACGACTCAC ACATATCGCT TTAAAGTTAT TCGAAACAAC CGATCCTGTT TCAACAAAGC

AACTTGCGCA AGATGTTAAT GTTTCGCGTC GGACAATTGC AGATGATATT AAAATGATTC

55

120

	TTATTGGTGA GGAAGATCAT TATCGTAAAG CGTATGCACA CTTTATACAT CAATATATGA	300
	AACAAGCTGC ACCTTTTATA GAGGCGGATA TCTTTAATTC AGAATCAATC GCATTGGTTC	360
5	GCCGTGCCAT TATTAAGACA TTAAATAGTG AAAATTATCA TTTAGTTCAG TCGGCTATCG	420
	ATGGCTTAAT CTATCATATA CTCATTGCCA TTCAGCGTTT AAATGAAAAT TTTTCGTTCG	480
	ATATACCTAT CAATGAAATT GATAAATGGC GACATACTAA TCAGTATGCN ATTGCTTCAA	540
10	AAATGATAGA AAACTTAGAA CGCAGTGTAA TGT	573
	(2) INFORMATION FOR SEQ ID NO: 8:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1221 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TTGATATTTA TAACGTTATA TTTTAATAGT TCACCTGGAT TATTAAATAA ATAGTCCGCC	60
25	AAATTTTCTT TTTCTTTATC AATCTGATKG TAATTAACAC TTTCGACTTC TGTAGGAATT	120
	CTAATGTCAA CAGAAGCATT GATATAAGCT TGATGTTGCA TGCAATCACA CTCCTAATCC	180
30	TTCATmTmAA ACGGAGAAGT AAACCCGTCA CTATTCAAAT TCAATCCTTT TGCCCAATCA	240
, o	ACAGGCTTAT TCATGATAGT TTCGATTTCC TTAAGTCCAT TTGAACCTCT AGGTATTTCT	300
	ACAATTACTT CATCATGGAC ATGGCCAACT ATTTTAAAAC CTAATGCTTC AAGCCTTGCT	360
35	ATAGAAATCG CAAGTAAATC CCTTGCAGTT GCTTGAACAA TATTCTCGAC TAACTTCCCA	420
	CCATACGTTT TTAACTTTGA CCATTTACGG TTAAGATCTA ACCCCATAAA TTCAACAACT	480
	TGACTACCCC AACTATTTC ACCAACTAAA GCTTTTGGAT AAGCTAAAGC TCTTCCACTA	540
10	GGCAGTTCAA TCATTAGAAA ACCTTTTTTC ATATAAAATC TAAGTCCATG TGTATGATGC	600
	GTCTTTCGGG ATTTTACAGT ATTAATTGCA GCCTCTTGGC AAGCCTTCCA AAAATTAACT	660
1 5	ATGTTAGGAT TTGCGTTACG CCAACTATCA ACTAAACCTT GTAACTCGTT TTCTTCAATG	720
	CCCATTTCCA ATGCACCCAT TGCTTTTAAA GCTCCAGCGC CACCTTGATA GCCTAAAGCT	780
	AATTCGGACA CTTTTCCTTT TTGTCTGAGA GGGTCGCCTT TAGTTATGCT TTCTACCGGT	840
50	ACATTAAACA TTTGAGAAGC CGATGCTTCA TATATCTTTC CGTGTGTGTT GAATACATCT	900
	AAACGCCATT GTTCTTTTGC ATACCATGCT ATGACTCTTG CCTCTATTGC AGAAAAATCA	960
	CTTACTGCTA GTTCATTACC TTCTTCAGCA GTAAATGTCG TCCTAACTAA TTGACTTAAT	1020

	AGAICICITG CTATTICIAA TICAGTATCI GAAATATAAT GCT.TGTTAA ATTCTGAAGT	1140
	TGTACACCTC TACCTGCCCA TCTTCCAGTA CCGGCACCGT AAAATTGAAA CAGACCTCTT	1200
5	ACCCGTTCAT CACTGCACAT C	1221
	(2) INFORMATION FOR SEQ ID NO: 9:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1090 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	TTTTGTTTGG TATGAGGTAG CAATGACGAC GTGTCATTGG TGGAGATTGT AAAAAATACAT	60
20	AATAAAAAGA AGCGGCAATG TATACCGCTC CTTTTTTATA CTACATACCG ATTTTCAACC	120
	ATCTCTTTCT ACTTAGTAAT AAGACAATAG TATTAACTAT AAATAGAAGA ACGAAGAATG	180
25	ATACTATATT TATAATTTCA GTAGGACACA TAAATGTTGA CTCGTTATTC AATATTTTTT	240
	CTACGGCACG ATACATCGTA TTGCTCGCCT CAAATGGAGC AACGATACCA AATATATTTT	300
	TATTAATGGC AACTAAGATG ACTGAACCAA TCCAATATAC AATGCTGATA CCTAAGCTGA	360
30	TTAAAATGTT AGGTGAAACC ATACTAATCG TTCCAACAAC TAAGATATAT TGTAAGATAA	420
	CGAGTGAAAA TAAGATTATT AATAGTAAGT AATGTGAGAA ATCCGAATAT ATAATTGAAA	480
	TAATAGTGAT ACTTAGAATT ATGAACACTA AACATTCAAA AAATAACACT GCTACCTTTT	540
35	TATAGAAGAA GGTAAAGATA TTATCGCCAA TCAATTTATA AAACAGGATA TTTTTATTCG	600
	AATACTCTTT ATTAATAAAA TATGCAATAA CAAATGAAAA TAGTAAGAAC CCTAATTGCG	660
	TTGCAACAGT ATATGAACTG AAGAAAAACT GGCTATAGCT TAAACTTTTA ACTTTGTCTA	720
40	TACCTATTGG TAAAAAATAC CCAAGTAAGA AAAGGAATGT GAATAGCACA ACAAGCGTGT	780
	AAATAATTTT ATTGGAAATA CTTTTTTTAA ATTCTAATTT CAAAGTGGAC ACCTCAATTA	840
4 5	TAAATTAATG TAATCATTTA TGACTTCTTC TTTTGATTGG TACTCTTCTA TTTGAAGGTC	900
	TTTAAAAATA AAGTATTTAC CCGGCAAAGC ACTTAAATCG GATAAATTAT GTGTAATATT	960
	GATAATAGTT TTAGTTTGAT GGCTTTGAAT AAAATCATTT AAAAATTCAT AAAATTCATT	1020
50	AACTGTTTTC TTGTCTAAAG CGTTTGTAAC TTCATCTAAT ATGATTAAAT CATGATCTTC	1080
	CAATAAGAAA	1090

242

(2) INFORMATION FOR SEQ ID NO: 10:

5	(A) LENGTH: 904 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
10	TTAGGACTAT TTTATCATAT TCATTTAAAT TACGGCTAAA AATTTTAAAA ACGGGGATTA	60
	ATATATGGAA TTAAGCTATG AAAGTTAATT GATACTTGCA TTTTACGCTG ATTTATATAA	120
	GAATAACTAT TGTATAGTTT TAAAAACGAA CGTACGTTTG CAGGAGGCGA AATCATTGGC	180
15	AATGAATAAA CAAAATAATT ATTCAGATGA TTCAATACAG GTTTTAGAGG GGTTAGAAGC	240
	AGTTCGTAAA AGACCTGGTA TGTATATTGG ATCAACTGAT AAACGGGGAT TACATCATCT	300
20	AGTATATGAA ATTGTCGATA ACTCCGTCGA TGAAGTATTG AATGGTTACG GTAACGAAAT	360
	AGATGTAACA ATTAATAAAG ATGGTAGTAT TTCTATAGAA GATAATGGAC GTGGTATGCC	420
	AACAGGTATA CATAAATCAG GTAAACCGAC AGTCGAAGTT ATCTTTACTG TTTTACATGC	480
25	AGGAGGTAAA TTTGGACAAG GCGGCTATAA AACTTCAGGT GGTCTTCACG GTGTTGGTGC	540
	TTCAGTTGTA AATGCATTGA GTGAATGGCT TGAAGTTGAA ATCCATCGAG ATGGTAATAT	600
	ATATCATCAA AGTTTTAAAA ACGGTGGTTC GCCATCTTCT GGTTTAGTGA AAAAAGGTAA	660
30	AACTAAGAAA ACAGGTACCA AAGTAACATT TAAACCTGAT GACACAATTT TTAAAGCATC	720
	TACATCATTT AATTTTGATG TTTTAAGTGA ACGACTACAA GAGTCTGCGT TCTTATTGAA	780
35	AAATTTAAAA ATAACGCTTA ATGATTTACG CnwGGGTAAA GAGCGTCAAG AGCATTACCA	840
55	TTATGAAGAA GGGAtCaAAG rGTTgTTAGT atGTCCAaTG ArGGAAAAGA AGTTTTGCCT	900
	GACG	904
40	(2) INFORMATION FOR SEQ ID NO: 11:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GATTTCTAAA TCAAGATCTG TTTTACGATA ACCATTCAAA CCTTGACGTT CATCTTCTTC	60
	AGGTTGATTT TGTTGCTGTG TGTCTTTGTT GTCAGAAGTC GCTACTGTTT TTTTATTATC	120
55	TGTTTCTTTA GTCATAACAA ACGCCTCCGT TATAAAACGC TATATTTAAT GATATGTGAT	180

	TTAATAAGAC	GATTCAGCAA	GTTTTAAAGT	ATTATTTGAC	TATGTTGGAT	TAGGCATCTA	300
	GTCCTATAAT	ATCACTGACA	TTGTCAAAAT	GATGATCTTT	TAAGTAACGT	GCGATGCCTT	360
5	TGTTCATTTT	CTTAGTTAAA	CCTGGGCCTT	CAATAACAAG	TGATGAATAA	ATTTGAATAA	420
	GTGACGCACC	GTGACGCATC	ATTTTGATTG	CATCTTCAGT	ACTGAATACG	CCGCCTGTAC	480
10	СТАТААТТАА	AAATTCACCA	TTTGTTTGCT	GATAAgCATa	CTTAATCAAT	TTTAAATTAC	540
	GTTCAAATAA	TGGACGACCA	CTCAAACCGC	CTTCTTCGAC	TTTATTAGCA	GAAGTTAAAC	600
	CATCTCGTTG	TCGCGTTGTG	TTTGCTAAGA	TGATACCGTC	AAATGTCTCA	GTAATCGCTG	660
15	GTAATAGTGC	TTTTAAGCCA	TCGAAATCCA	TATCAGACGT	TAGTTTTAAA	TAAATTGGCA	720
	CTGTTACATC	ATGTTGTTTT	TTAAATGCTG	TTAAAGCTTG	GCATAACATT	GAAAATTCAT	780
	CTTTATCATG	GAAGTTTTGA	AGATTTTCAG	TATTTGGAGA	ACTGATGTTG	ACTGTGAAAA	840
20	ATGAAACGTC	GTGTTTAAAC	GTATCAATAA	CCTTTATATA	ATCTTGATAA	CGCGCTTCAT	900
	AAGGTGTCAT	TTTATTCACA	CCAACATTGA	TACCAACAGG	TACTTGATAA	GCATTTTTAC	960
	GCAAATGACT	TAGTGCTTTG	TTCATACCAA	TATTATTGAA	GCCCATTCGA	TTTATCAAGG	1020
25	CGTCATCTTC	TAATAATCTA	AACATGCGTG	GTTGAGGGTT	ACCCGGTTGA	GGTTTAGGTG	1080
	TGATACCACC	TAATTCTAAA	GCACCGAATC	CAAGGTGTTC	CAATGCTTTT	GGTACTTCGC	1140
30	AAGATTTGTC	GAAACCAGCT	GCTAAgCCAA	TTGGATTGTC	GTACGTATTA	CCTTGTATCG	1200
	TTTGTGATAA	CGTTGGATTC	TTATAAGTAA	ATAGTTTATC	GACGACTGGG	AATAAAACCG	1260
	GaAACTTTTG	TaACGTTTTT	AATGCATCGA	TAGTTAGTCC	GTGTGCTTTT	TCGGGTTCGA	1320
35	TTTTGAATAA	GAAAGGTTTA	ATTAATTTGT	ACATGAGTAT	GCTCCTATTT	CATTATATTT	1380
	GAGGCTTACT	ATCCTCAACT	TAATATATGT	GAAATATATT	CTTTTAATAG	ACTAGCATTT	1440
	CCATĂCATAA	TTTCCTAGTT	AAAACTAAAA	AGTTTTGAAA	ATTGACGCAA	gtttgaataa	1500
10	CGTTTTTAAG	ATTAAATCAT	CCTAATTAGG	CAATATTATA	GTATAAAGTA	AGTAGATTGG	1560
	AAGGTGTTTG	TATGAATGAA	CAATGGTTAG	AGCATTTACC	TTTAAAAGAT	ATTAAAGAGA	1620
1 <i>E</i>	TTTCACCAGT	GAGTGGTGGT	GATGTAAACG	AAGCATATCG	AGTCGAAACA	GATACGGATA	1680
15	CATTTTTCTT	ACTTGTCCAA	CGTGGACGTA	AAGAATCATT	TTATGCTGCA	GAAATTGCAG	1740
	GTTTAAATGA	ATTTGAACGT	GCAGGTATCA	CGGCACCTAG	AGTAATTGCA	AGTGGCGAGG	1800
50	TTAACGGTGA	TGCGTATTTA	GTGATGACGT	ATTTAGAAGA	AGGGGCTTCA	GGGAGTCAAC	1860
	GCCAATTAGG	GCAACTCGTA	GCTCAATTAC	ACAGTCAGCA	ACAAGAAGAA	GGCAAATTTG	1920
	GCTTCTCATT	ACCTTATGAA	GGTGGCGATA	TTTCTTTTGA	TAATCATTGG	CAAGACGATT	1980

	GGCTATGGGA	TGCCAACGAT	ATCAAAGTAT	ATGACAAAGT	GCGACGTCAA	ATTGTGGCGG	2100
	AATTAGAAAA	GCATCAAAGT	AAACCGTCTT	TATTACATGG	TGACCTATGG	GGTGGTAATT	2160
5	ATATGTTCTT	ACAAGATGGT	CGTCCGGCGT	TATTTGATCC	AGCGCCATTA	TATGGTGACA	2220
	GAGAATTCGA	TATCGGTATT	ACAACGGTAT	TTGGTGGTTT	TACGAGCGAA	TTTTATGATG	2280
10	CGTATAATAA	ACATTATCCA	CTCGCAAAAG	GTGCATCCTA	TAGACTTGAA	TTTTATCGTT	2340
	TATATTTATT	GATGGTCCAT	TTATTGAAAT	TTGGTGAGAT	GTACCGTGAT	AGTGTTGCGC	2400
	ATTCTATGGA	TAAGATTTTA	CAAGATACAA	CAAGTTAGTT	AAGACGTTAG	ATTGAGATAA	2460
15	ATAGATAATA	TGCACAGATA	TTTTTACAAT	GAGAAGCGAT	ACAGCTGCCT	CAATAAAAAT	2520
	ATTTGTGCGT	TTTTATTGTT	GGAAAATAAA	ATTTTAATCG	CTATTGTTAA	TTTCTGTAAT	2580
	GTAAAACAAG	GTTGAGTTAC	AATAAAAGTG	ATTTTATAAC	TTTTTGTTCA	ATAAAATTCT	2640
20	AGGAATGATA	CATATTTATT	GATACAATAA	TTTTGAATAT	AATCATAAAA	CAATATTTAA	2700
	GTATAATTGA	ATGTTTGAAT	ATCATATATT	GATACAGTTT	CTAATAATTT	TAAAATAATT	2760
or.	TAAATGGAGA	GAGGTGTAAA	TGATGAGTAC	AGTTCAAAGT	GATATTTTTA	AGACCAATAG	2820
25	TGCATCATCA	TCTATTAAAA	GCGCTGTTGA	AACATGTAAT	AATGTGTCGA	AACCGGATAA	2880
	AGATGAAAGT	ACAACAGTAA	GTGGAAATAA	TAATGCTCAT	AGTGTGATAG	ATGATTTGAT	2940
30	GAGTAAGAAT	CAATCTGTTG	CTGAAGCAAT	ACGAACTGCG	AGCGATAATA	TACAAAAAGT	3000
	TGGTGAGGCT	TTTGACCAAA	CTGACGTAAT	GATTGGTAAT	GAAATTGGTA	AAAATTAAAA	3060
	CGTGGTGAAA	TGATGTCGAA	TAAACTGGAT	GAAATCAATA	AAATAATCAC	AGCGAAACAT	3120
35	GAGCAAATGG	ATGACTTATA	TGATGAAAAG	CGAGAGGTTA	AAGCATTGAT	AGATGAAAGT	3180
	GATGCGCTTA	ATCATTCGAT	AGATCAATTA	TATCAACATT	TAGGTGAGCG	TTATTATAGT	3240
	AGCAÁTATGG	CTAGTCGTAT	GGAACAGTTC	CGCGATGAAT	TTCATTTTGC	GAAACGACGT	3300
40	TCAACGGAAG	CGTTATACGA	GCAGCAACAG	CAAATTCAAC	ATGGCATTCG	TAAAGTGGAA	3360
	GAAGAGATGA	TTGACTTGGA	AATGCGAAGG	AATGTTGAAA	TTGAGACGGT	GACAAAGGAG	3420
45	GAAAATAAAT	GGAAACAATA	GGAAGCATTA	TTTATTTAAA	AGAAGGTTCG	CAAAAGTTAA	3480
	TGATTATTAA	TAGAGGmCCA	aTTGTAGAAA	TTGAAAATCA	AAAGTATATG	TTTGACTATT	3540
	CTGCATGTAA	ATATCCGATT	GGTGTTGTAG	AAGATGAAAT	TTATTATTTT	AACGAGGAAA	3600
50	ATATAGATTC	AGTTATTTTT	AAAGGTTATT	CTGATCAAGA	TGAGGTTAGA	TTTCAAGAGT	3660
	TGTTTGAAAA	TATGAAACAA	AATTTGGATA	GTGAAATACA	ACGTGGAGAA	GTTACACAAC	3720
	AATAAAGAAA	TACTTTTTCT	TTATTGGGGT	GGGACGACGA	AATAAATTTT	GTAAAAATAT	3780

	ATGTCATTCA	TAATCATTTG	AACTAAACGT	AGCAGCCTTA	AATTTTAAAA	AAAGACACAT	3900
	ACCAACTTCC	GAAATGTAGA	TGAATTCTCT	ACAATAACGG	AAGTTTTTCT	TTTAATATTG	3960
5	AAATTTCTCA	AGGATAGGTC	TATACTTTAT	AAATCGTAAT	TATTACGATT	TATAATCAAA	4020
	AACAATAACT	TGAAATAGAT	CATTGAGGGA	GTGTTAATAT	GCAACATCAT	AAAGTGGCTA	4080
10	TTATCGGTGC	CGGTGCTGCA	GGTATAGGTA	TGGCCATTAC	CTTAAAAGAT	TTCGGTATAA	4140
	CAGATGTCAT	TATTTTAGAA	AAAGGAACAG	TAGGACATTC	ATTTAAACAT	TGGCCGAAAT	4200
	CGACCCGTAC	GATCACGCCA	TCATTTACGT	CTAATGGATT	TGGCATGCCT	GATATGAATG	4260
15	CAATTTCCAT	GGATACTTCA	CCAGCATTTA	CATTTAATGA	AGAACATATT	TCCGGAGAAA	4320
	CATATGCTGA	ATATTTACAA	GTGGTTGCCA	ACCATTACGA	GCTGAATATC	TTTGAAAATA	4380
	CAGTTGTCAC	AAATATATCT	GTAGATGATG	CATATTATAC	GATTGCAACG	ACAACAGAGA	4440
20	TATATCACGC	GGATTATATC	TTTGTCGCAA	CAGGTGATTA	TAATTTCCCT	AAAAAgCCAT	4500
	TTAAATATGG	TATTCATTAT	AGTGAAATTG	AAGACTTTGA	TAACTTTAAT	AAGGGGCaAT	4560
25	ATGTGGTTAT	CGGAGGTAAT	GAAAGTGGCT	TTGATGCTGC	ATATCAACTT	GCAAAAATG	4620
25	GCTCTGACAT	CGCACTTTAT	ACTAGCACAA	CCGGTTTAAA	TGATCCGGAT	GCTGATCCTA	4680
	GTGTTAGATT	GTCACCTTAT	ACACGTCAGC	GACTAGGTAA	TGTCATTAAG	CAAGGTGCTC	4740
30	GCATCGAAAT	GAATGTACAT	TATACAGTTA	AAGATATTGA	TTTTAACAAT	GGACAGTATC	4800
	ATATCAGTTT	TGATAGCGGA	CAAAGTGTGC	TTACACCTCA	TGAACCAATA	CTAGCAACTG	4860
	GCTTTGATGC	AACAAAAAT	CCAATCGTTC	AACAATTATT	TGTGACAACA	AATCAAGATA	4920
35	TTAAATTAAC	AACACATGAT	GAATCGACAC	GTTATCCGAA	TATTTTTATG	ATTGGTGCAA	4980
	CAGTTGAAAA	TGATAATGCC	AAATTATGCT	ATATCTATAA	ATTTAGAGCG	CGATTTGCAG	5040
	TACTTGCACA	TCTTTTAACA	CAGCGGGAAG	GCTTACCAGC	TAAACAAGAT	GTCATTGAAA	5100
40	ATTATCAAAA	AAATCAAATG	TATTTAGATG	ATTATTCATG	TTGTGAAGTG	TCATGCACAT	5160
	GTTAGAAGTG	AAATATGATA	TGAGAACTGG	GCATTATACG	CCCATACCTA	ATGAACCTCA	5220
45	TTATTTGGTT	ATTAGTCATG	CGGATAAACT	TACCGCAACA	GAAAAAGCGA	AATTAAGATT	5280
	ATTAATCATA	AAACAGAAAT	TAGATATTTC	ATTGGCAGAA	AGTGTAGTTT	CTTcGCCTAT	5340
	AGCGAGTGAA	CATGTGATAG	AACAATTGAC	ACTATTTCAA	CATGAGCGAC	GACATTTAAG	5400
50	ACCTAAAATA	AGTGCGACAT	TTTTAGCCTG	GTTGTTGATA	TTTTTAATGT	TTGCATTGCC	5460
	AATCGGTATC	GCTTATCAAT	TTTCAGATTG	GTTTCAAAAT	CAGTATGTGT	CAGCATGGAT	5520
	AGAATATTTA	ACTCAAACAA	CATTGCTCAA	TCACGATATA	TTACAGCATA	TATTATTTGG	5580

	ATTGATTAGT	TTATCAACTG	CTATAATTGA	TCAAACAGGA	CTCAAATCAT	GGATGATATG	5700
	GGCAATTGAA	CCGTCAATGT	TATGGATAGG	ATTACAAGGT	AATGATATCG	TGCCACTATT	5760
5	AGAAGGGTTT	GGATGTAATG	CAGCAGCTAT	TTCACAAGCA	GCACACCAAT	GCCATACCTG	5820
	CACGAAGACA	CAGTGTATGA	GTTTAATAAG	CTTTGGTAGT	TCTTGTAGTT	ATCAAATAGG	5880
10	TGCGACATTA	TCTATTTTTA	GTGTAGCTGG	AAAGTCATGG	CTATTTATGC	CGTACTTAAT	5940
	ATTAGTACTT	TTAGGTGGCA	TCTTACATAA	AGGATATGGT	TGAAAAAGAA	TGATCAACAA	6000
	CTTAGCGTTC	CGCTACCTTA	TGATAGGCAA	TTACATATGC	CAAATATACG	TCAAATGTTG	6060
15	CTACAAATGT	GGCAAAATAT	ACAAATGTTT	ATCGTTCAAG	CGCTACCTAT	TTTTATCACA	6120
	ATCTGTCTTA	TTGTTAGTAT	TTTATCACTA	ACGCCAATTT	TGAATGTTTT	ATCACAAATA	6180
	TTTACACCTA	TATTATCGTT	ATTAGGCATC	TCGTCAGAAT	TGTCACCAGG	GATTTTATTT	6240
20	TCAATGATTC	GAAAAGACGG	CATGCTCTTG	TTTAATTTGC	ATCAGGGCGC	CTTATTACAA	6300
	GGAATGACAG	CAACACAGTT	ACTACTACTT	GTGTTTTTTA	GTTCAACATT	TACAGCGTGC	6360
	TCGGTCACAA	TGACGATGCT	TTTGAAACAT	TTAGGTGGTC	AGTCAGCACT	TTAATTAAAA	6420
25	GGAAAGCAAA	TGGTGACATC	ATTGTCTTTA	GTTATTGGTG	TAGGCATCAT	TGTTAAAATA	6480
	GTAATGCTGA	TTATTTAAAA	AAAATGAACT	ATAACTGAAT	ATAGAGTCAT	GTCAGTCAAT	6540
30	AGGAGATCTA	TCTTGGAATA	TGCTATTCAT	ATGAAGTATA	AGAGGAGAGT	CGCAGATGAA	6600
	AATAGTTATT	ATAGGTGGGT	TTTTAGGTGG	CGGTAAAACG	ACTGTCTTAA	ATCATTTGCT	6660
	CGCTGAATCA	TTAAAGGAAT	CGCTGAAACC	AGCAGTCATC	ATGAATGAAT	TTGGGAAAAT	6720
35	GAGTGTTGAT	GGTGCCTTAG	TATCTGAAGA	CATACCTTTA	AGTGAACTGA	CAGAGGGGTG	6780
	TATCTGTTGT	GCAATGAAAG	CAGATGTATC	AGAACAGTTA	CATCAATTAT	ATTTAAAAGA	6840
	GCAACCAGAC	ATTGTATTTA	TTGAATGTAG	TGGGATTGCA	GAACCGGTCT	CTGTCTTAGA	6900
40	TGCTTGTTTA	ACGCCTATTT	TAGCTCCGTT	TACAACAATT	ACACATATGA	TTGGTGTAAT	6960
	AGACGCAAGC	ATGTATAAAC	ACATTAAATC	ATTCCCTAAA	GACATCCAAG	GCTTATTTTA	7020
4 5	TGAGCAATTA	GCATATTGTT	CTGTCTTATT	TGTTAATAAA	ATAGATTCAG	CAGATGTTGA	7080
,,,	AACAACGAGC	AAACTATTGA	AAGATTTAGA	AGTTATTAAC	CCAGAGGCCG	ATATACAAGT	7140
	CGGTATGCAT	GGCAGCGTCA	CTTTGCCAAT	ATCAGTTAGA	CAAATGACAG	CAACTTCTGA	7200
50	CAATAAACAT	AAGTCTTTAC	ATCAAATGAT	TAATCATCAA	TTTGTGCAAT	CACCAGTCAA	7260
	ATGTACTAAA	GCAGAGTTTA	TAAAACGTTT	AGCATGCCTT	CCGTCTCATA	TTTATAGGTT	7320
	GAAAGGGTTT	ATGACATTTG	AAGACACCGC	ACATACGTAT	CTCATTCAAT	TTACACAAGG	7380

	CGGAAAGGGT	ATTTCAAAAG	AAGACTATCA	ATGTTTGGAA	CAGTAGTGTT	TTCAGTGGAA	7500
	GAGAATGGTT	AACATGCCTT	CATGTATAAT	AACGAGTTGA	TTTGAACGTT	TAAGCGTAAA	7560
5	TAAAAATAAG	CTTGGTCAGC	CATCAAATAT	AATTTGAAAA	CTGTCCAAGC	TGTTTTATTA	7620
	GAGAACAATC	AATTAACCCC	ACATATTTAA	TAATACATCA	GCAAAGCCTT	CAGGTTTTTG	7680
10	AATATAACCT	AAGTGACCGC	CTGGAATATC	TACAATAGGT	ATGCCAGTTT	CTTTATTTAT	7740
	ATAAAAGTTA	ACATCTTGTG	GGAAGGAGCC	TCTAGAATCT	GTCCCATTTA	GTAGGGTGAT	7800
	TTTATCGCTG	TATTTTGTGA	AATCATCCAA	AGTAATATCT	GAATGCGTAT	ATTGTCTAAT	7860
15	TTCAAATTCT	GACCAGAACA	TCGTACGTTT	GTACTGTTCT	ATACGTCCTT	CTTCAGTATC	7920
	AGCAGGTTGA	GACATCATTT	TTGCATCAAT	TGGTGCGATA	TTTAATGTTT	CGCCAAATGT	7980
	TTTCATGCCT	TTTTCTAAGC	CTTCTGTTAA	AATTTGATGC	ACAATGTCAT	CATTTTTATC	8040
2 0	TTTCCAATAA	GTACTGTCTG	GTAAAAATGT	ATTAATTGGT	GGTTCGTGAA	ATGCAATCTT	8100
	TTTAACGACT	TCAGGGTAAT	CTTTTAACAC	ATGCATCGCA	ACGATTGAAC	CTGAACTTGA	8160
	ACCTAATATA	TAGACAGGTT	CATCACTTAA	TGACTTTGCA	AGTTCGGCAA	TGTCCTGTGC	8220
25	GTCGCGTTTG	ACACGATAAT	CACTGTCAGG	GTTTGAAGCG	GAATCAGGGA	GTGGTTCAGT	8280
	TAACTCGCTT	TCTCCATAAT	CACGACGATC	AACGGCTACA	ACAGTAAAAT	GGTCTTTTAA	8340
30	CTGTTCTGCA	AGAGGCAGAA	AAATGTCTCC	GGTACCGTTT	GCACCAGGAA	TAAAGATGAG	8400
	CACGGGTCCT	TGTCCGACTT	GGTGGTATCG	TAATTTAGCG	CCTTGTAATT	CTAAAGTTTC	8460
	CATATTCAAT	GACCTCCATT	TGTTAATTGT	TAGGTGATAA	ACCTAATAAT	TTAGCACCAT	8520
35	TTGTATAACT	TATTTTCTCT	TTTTCTTCAT	CTGTTAAACC	CAGTTCATCT	AAAAATACAC	8580
	CTAATTTTTC	AGGCTCAATA	TATGGATAAT	CAGCAGCATA	AAGAATTCTA	TCAATACCTA	8640
	CTTCTTTCTT	GACTAAATCA	AACTGTGGCT	TCGTTAACAT	GCCACTCGGT	GTGATATAAA	8700
10	AATTATTTTT	AAAGTAATAG	CTTACAGGGT	GGTTCAAATG	TTCAGCGAAT	AAAGCTTCAT	8760
	CCATACGTTC	TAAGAAGAAT	GGGATAAACT	CACCCCAATG	TCCAATAATC	ATATTTAACT	8820
4 5	TTGGATAACG	АТСАААААТА	CCAGATAATA	CTAGATGTAT	TGTATGAATG	CCGACATCAA	8880
•5	TGTGCCAACC	ATAACCAAAA	CAAGCAAATG	TTGCCGCAGT	TACTTCAGGA	TAATTTCCTT	8940
	TATAGTATGA	TTGATAAATG	TCACTGTTAA	CTGGCGCGGG	ATGTAGATAA	ATCGGTACGT	9000
50	CTAAATTITC	AGCTGTTTTG	AAAATAATGT	CATATTTGTC	TTGATCAAGA	AAACCATCTT	9060
	GTGCACGTCC	CATAATGAGC	GCACCTTTGA	ATCCTAAATC	ATTGATGCAA	CGTTCGAATT	9120
	CTCGCGCTGC	GGCTTCAGGC	TCATTGATAG	GTAAAGTTGC	AAAGCCTACA	AAGCGATTGG	9180

	TCTGACCAAC	CAAATTTGAA	GGAGAACCAT	TTCCATAAGA	TAAGACTTGA	ATTTGAACGT	9300
	CTTGATTATT	CATAAATTGG	ATACGTTCAT	CATGATGTGA	TAATTCGTCG	GCATTTGTAA	9360
5	AACCTGTCTT	TTTTTCAAGG	CCTTCTAACA	TTACTTTCAT	CGGTACACCT	TTAGGATCTG	9420
	CTGATATCGC	ATTCATCGTT	TCTTTTTGAA	TATCTTCAAT	GACATAATGT	TCTTCAAACG	9480
10	TAATACTTTT	CATTTACTTC	GCCTCCATAT	TGTATTGCAT	GTTTATTGCA	TCTATTGCAG	9540
	AAGCATTTTT	TATATACCTC	TAATTTCAAT	GTTTGTAACA	TAAAATTGAT	CTACCAAGGC	9600
	ATCTCTCCAT	CGCCATTAAT	AAATGTACCT	GTTGGGCCAT	CTGCACCAAT	CGTTGCTAAT	9660
15	TGAATGATTG	GCTTGATTCC	TTCAGAAACG	TGTTTGGAAT	TATTACTAAA	ATCACCAACT	9720
	AAATCAGTAT	TTGTAGCGCC	TGGATCAGCA	GCATTGATTT	GCATGTTAGG	TAATCCTTTA	9780
	GCGTATTGTA	GCGTTAGCAT	TGTTACTGCC	GATTTAGACG	AACAATAAGC	TAATGAATTC	9840
20	ACTTTAGATT	CAGCTGTTTC	GGGGTTTGTA	ACCATTCCAA	ATGAACCTAA	ACCACTTGAT	9900
	ACGTTGACGA	CAACAGGTTG	TTCAGATTTT	TCTAAGAGAG	GGACGAATGT	ATTCATCATT	9960
25	CGTACGATAC	CGAATACATT	CGTTTGATAT	ACTTCTTCAA	CGTCACGAGG	TGTCAATTTG	10020
23	GAAGGTGCTG	AAAATTGACC	AGATATACCT	GCATTGTTAA	TGAGGATATC	AAGACGGCCT	10080
	TCTTTTTCAG	CAATCATGTT	ATAAGCATTT	TTGACTGAGT	AGTCACTTGT	AACATCTAAT	10140
30	TGTACATAAT	GAACACCTAA	TTTTTGTGAT	GCTTGTTGTC	CTCTTACATC	ATTCCGAGAA	10200
	CCTATATAAA	CTTTGTAACC	CAATGCTTTA	AGTGCCTCTG	CACTTGCATA	GCCTAACCCT	10260
	TTATTGCCTC	CTGTGATTAA	CACAATTTTA	GTCATTACGT	CCCACCTCAT	СТАААТАААТ	10320
35	GTTTAATAAA	TAATTTCTGT	ACGCTTCAAT	TGAAATATGG	CGATGCTCTA	TTTGGAAGGC	10380
	AAATACACTA	GTTGATAATG	ATTGCAACAG	CATATCTGTT	TTGAAtTCGT	GTAAGTGTCG	10440
	TCATÉGCTTT	TAAATAAGTC	АТААТАААА	TCAAATAATT	CTTGATAAAA	TGCGCTTTGG	10500
40	TAAAAACGTA	ATTTATTGTT	GCCTGCTTCA	ATACATTGCA	GTAGTGCCTT	ATTATCGATT	10560
	TTAAATTGTA	AAAGATAATC	TAACGACACT	TGCATAACCT	CATAATTAGA	ATGATAGTCA	10620
45	TCTTTAATTT	GCTTAAAATG	AGTGATAAAA	ATATCAAGGT	CTCTTTGTAT	GACGTAGTAG	10680
	CATAAATCGC	TTTTATCTTT	GAAATGTCGA	TACAATGTCC	CCATACCGAT	ACCTAGTTCT	10740
	TTAGCAATAC	GATTCATACT	AATGTTTTCA	ACGCCTTCTT	CATCAAAAAG	TTTGTGCGCT	10800
50	ATTTCTTCAA	TTCGTTGCCT	ATTCTCTTTT	GCATCTTTTC	GCATGATTAC	ACCTACTTAA	10860
	AATTCTCTAA	AATTGACAAA	CGGATAACTC	TCCGTTTATT	ATAAAACGTG	TTAAGAAAGT	10920
	TAGCAATGAA	TTTGCAATAA	СТАТТАААТА	TCATAAAAGA	AAAGAGTGTT	GATAATGTCT	10980

ACCTTATCGG	TTCAAATGAT	TGCTGAAAAA	CTGAATGTCA	CTACAGAAGA	TGTGGAAAAA	11100
GTATTAGCTA	TGACAGCGCC	ACTAGGCATT	TTTAGTCATC	AATTACAACG	ATTTATTCAT	11160
TTAGTATGGG	ATGTCAGAGA	TGTAATAAAC	GACAATATTA	AAGGAAATGG	ACAAACACCA	11220
GAACCATATA	CGTATTTAAA	AGGTGAAAAA	GAGGACTATT	GGTTTTTAAG	A	11271
(2) INFORMA	ATION FOR SE	EQ ID NO: 12	2 :			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6261 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

60	TTATTGTACG	ATCTTAATGA	CAATTTTATC	AAAAACCGTA	AGAACAAAAT	CAACCCGTTC
120	TTTATTATAT	TATCGGTAAA	GCATAATCGA	ATCTGCATGT	TTTACATCAT	GAAAAACTTT
180	AGCAATGATA	TACGTTGCTT	GTTGGACCGT	AACTGTGCCT	AATGTAACTT	TGTTTCATAA
240	ATCGTCATCA	AACCACCATC	TGTGGCTCGA	ATCATTCGTT	CACCGTTTTC	ATTTCAATTT
300	GATATCGGCA	AGAATGCAAC	TCACGGTATA	ATAGTAATCA	CGCCACGGTT	TCTTCATCGC
360	ATCTTGTCGT	TTGGACGTTT	TCACTCATCA	TTCACGAATA	TCGAACCAGA	TCTTGCTCAA
420	TTCACGGGCT	GACATTTTAA	GCGATAACTG	CTGACTTAAT	CACGAGATAA	TGTTCAACAC
480	GGACGCACGT	GTCTGTTATC	ACTTCCTGTT	GATTTCAGAA	ATGTACGAGA	AATGCTTTTA
540	GCCATGTTCT	TCATGTCTAA	TCAATCACAA	CTGTAAGTAG	CTTGAATCAA	GAACCACTAC
600	TGTATCATCA	GAATACCCGG	TCATTAATTC	AGAACGTAAA	GACGACATTT	TGCTTTAATC
660	CCAATCTTCC	TAAAACGACT	ACCGCTATAG	TAATTTACCT	TCGTACGTGA	ATAAÂAATCT
720	ACAAATCATA	TTCCAGAACT	GAGTCAACAT	TAAGCGGTTT	TACCCGTTCT	TCAGTCATAG
780	ATACATATCT	TACCAACTGT	AGCGAGAAAA	ACCCATCTCT	ACTGATCAGC	CGTGTGGCTA
840	TACAGATGGA	CAGTCTTACC	AGTGCGAACG	TGCAATATTA	CAACTTTTTG	TCATGCGTTG
900	GTCTAAATCT	CTGTCATTTG	TTGAACCCTG	ATCATTTCGG	GGATAATTAA	CGCGCTGCAA
960	TTCAGCTGTT	GATCAAGCTC	CCACTATTTT	TGGTGTTTGA	TAGGTATACC	CGATATCCTG
1320	ACGAGAAGAT	CATCGCTTTC	TCTTTAAAGC	GTCTCGAATG	GTCCTAAGAC	TCATACACTT
1080	AAGTTCATCA	CATCTAGTTC	CTTAAAATCG	TTCTGCATCA	AAATTCGACG	GATAGCTCTA
1140	TAATGCATGC	ATCTACGTTT	GTTTGAATCA	ACTATCTGCA	CATTGGCAAT	TTATATCCAT

	TCTGCAAGAT	ATTGCGGGCC	ACCCGCTTCA	TTCAACGTAC	CTTCCGTCGA	TAATTGATCC	1260
5	ATCAATGTTA	CAACATCAAT	TTCTTTATTA	TCTTCATTTA	AGTGCATCAT	TGCACGGAAA	1320
	ATATGTTGAT	GGGCACCCCT	ATAAAACGAC	TCAGGAAGCA	AAACTTCCTG	AGTAGTATTA	1380
	ATCAATTCTG	GATCTATAAT	AATTGAACCT	AAGACAGACT	GTTCAGCTTC	ATTGTTATGC	1440
10	GGCATTTGAT	TTTGCTCATA	CATTCTATCC	ATGAATGGTT	ACACCTCTTA	TTTCAATCCA	1500
	ACTTTATTGT	TCAACTGTGT	GTACGCGAAT	TGTACCTTCA	ACTTCTTTAT	CTAATTTAAC	1560
	AGGTACATTC	GTATATCCTA	GGGAATGAAT	TCCATTTGGT	AAATCCATTT	TACGTTTATC	1620
15	AATTTTAATA	TCATGTTGTG	CTTTTAGTGC	TTCGGCAATT	TGTTTTGTAC	TTACTGACCC	1680
	AAACAATTTA	CCACCTTCAC	CAGTTTTTGC	TGaTACTTCA	ACTTCAATGT	TTGATAACGT	1740
	TTCTTTTAAT	GCTTTAgCAT	CTTCAATTTC	TTGTTGGCGT	TCTTGTTTTG	CACGTTTTTT	1800
20	CTGTAACTCT	AATTGTTTAA	GGTTACCTGG	TGTTGCTTCT	ACAGCATAAT	TCTTTTCAA	1860
	TAAGAAGTTA	TTTGCATAAC	CTACTGGTAC	TTCTTTAACT	TCACCTTTTT	TACCTTTACC	1920
25	TTTACCTTTA	ACATCTTGTG	TAAAAATTAC	TTTCATGCAT	CTTCACTCCT	ACTTAATTGT	1980
25	TCTGTAATTG	CTTGTTGTAA	TTGTGCTATC	GCCTCTTCGA	CTGTCACACC	TTTAAGTTGT	2040
	GTTGCCGCAT	TGGTTAAATG	TCCACCGCCA	CCAAGTGCTT	CCATTGTTAA	CTGGACATTT	2100
30	ACTGAACCGA	GTGAACGCGC	AGATATACCA	ATCAGATTAT	CTTCACGTCT	CGCAACAACA	2160
	TATGATGCTT	CAATACCTTC	TAAACTTAAC	AGTTCATCTG	CTGCTTGTGC	AACTGTTACT	2220
	GGATGATAAA	TTTTATCGTC	TGAACCATGC	GCAATGGCTA	TGCCATTATC	TTCAACTTTT	2280
35	ACAGTTCGAA	TTAATTCAGA	TCGATTAATG	TAAGTATCCA	CATCATCTTT	TAAGAAATGT	2340
	TGCGTTAAAA	TCGTATCTGC	ACCATGTGCA	CGTAAATAAC	TCGCTGCATC	GAATGTTCTT	2400
	GATCCTGTTC	GTAATGTAAA	GTTTCTTGTA	TCTACAATAA	TACCTGCATA	CATCACTGTT	2460
10	GATTCAAGAC	GTGTTAAACG	TTGTTCTGTT	GGTTGATATT	CCAGTAACTC	TGTTACCAAT	2520
	TCAGCTGTCG	AACTTGCGTA	TGGTTCCATA	TATATCAACA	ATGGATTAGA	GATGAAGCTT	2580
1 5	TCACCACGTC	TATGATGATC	GATAACAACT	TTACGGTTTG	CTTTATTTAA	GACATTTTCA	2640
	TCTAAAACCA	GTTCCGGTTT	ATGCGTATCA	ACAATCACTA	CGGTTGTCTT	AGATGTCATC	2700
	ATATCCCAAG	CATCATCTGA	TGTAATAAAT	CGCTCTCTTA	ACTCTGGCTT	TTTATCTATT	2760
50	TCGTTCATCA	CGCGTCGTAA	TGTTGGATCA	ATGTCAGTCT	CATTTAATAC	GATGTATGCT	2820
	TCTAAATTAT	TCATCATTGC	AAATCTAGAC	ACACCGATTG	CTGCACCAAT	TGCATCTAAG	2880
	TCAGGACGTT	TATGTCCCAT	GATAATGACT	TTGTCACCCT	CTGCAAGGAT	ATCTTTTAAC	2940

	CCATAGAAAC	GCACATTACC	ATTAATACTT	TTAATTGCAA	CTTGGTCGCC	ACCGCGTCCT	3060
5	AATGCTAAGT	CTAGGCCTGA	TTGTGATAAT	TCACCTAAGT	CGATTAAATT	TTCAGTACCT	3120
	TCACCAACAC	CGATACTTAA	TGTTAATTGG	GCACGATAAC	CAACACTTTT	TTCACGTAAT	3180
	TGACTCAAGA	TATCAAATTT	AGATTCTTCT	AAGTCAGCTA	ATATTTTTTG	ATTTAAATAG	3240
10	GCTACGAATT	GATCGGAACT	GTATCTTTTG	AAAAATATAT	TATACTCAGT	TGCCCATCGA	3300
	CTAATGACAC	GCGTTACCAT	TGAGTTGATT	TCCGAACGCT	GCGTATCATT	CATATTTTGC	3360
15	GTAATCTCAT	CGTAGTTATC	TAAAAATAAT	GTCGCAATGA	TTGGTTTAGA	ATTTTCATAT	3420
	AGTTCATTTG	TTTGTACTTG	TTCAGTTATA	TCAAAGAAAT	AGAGGCAGTG	ATCATTCTCA	3480
	GAATAACGTA	CTTGGAAATG	ATACTGATTA	TATTCTATTT	CAACGGATTT	CACTCTATCT	3540
20	AATTGCTTTA	AAATGTTTGG	AAATACTTCA	TTTACAGATT	CAGAAATGAC	ATTCGCTTCC	3600
	ATATGATCTG	TCATAAATTG	GTTAACCCAT	TCGATGTGAT	CATTTTCATC	TAAAACAATG	3660
	ATACCAATTG	GTAAATGTTT	GATTGCTTTA	TTATTTGTTG	TTGAAATTTG	AGCACTCAAA	3720
	CCATCTACAT	AACTATCCAT	TTTCATTAAA	GCTTGTCTGA	ATAAAATGAT	GCTAACAATA	3780
2 5	ATCATCACGA	CAAGAACGAT	AGATGCAATT	AGTGCTATAA	GACTATTAAA	GATAAACCAT	3840
	ACACCCATTA	AAACAATTGC	TGTGATGATC	ATGATGACAA	ATGGTATTAG	TAAAGCTTTC	3900
3 0	TTAGTGGACT	GCCGATTCAT	TATTCCACCT	CTATTCACTT	TTTAGAATTA	TTTTTCATGA	3960
	TTCGCTTCAA	ATTCAAACTT	AAATCGATAA	CACCAAGTAG	TCCTACAATA	TGTGTCGTAG	4020
35	GTGTCAGTAT	TGTACCGATA	ACCAATAGTA	AAATCGTTAC	TGCATTCGGC	AAACCTTTCG	4080
	CTTTACCAAA	GAAATGAATA	ACACTTAAAC	CTTGAATATA	CATTACTAAT	GATAACACAA	4140
	GTTGGAAGTT	TAAAAGAATG	CTCTGGAACA	CACTCGGTTG	ACCTGTAAAT	AATAAACATA	4200
40	TGAŢAACAAT	AATGTATATC	CATAATAAAA	TACCGCTCAT	TTGCCACGCG	AAAAGTGGCT	4260
	TAAATACAGG	TGTAGCGATT	TTAAATTTTC	GTAAAATCGG	AAATGTAACG	ATTAAGTTAA	4320
	TTAAGACGAT	TAAAAATGTA	ATGATAATGA	TGAAACCTGG	TAATTGAACG	GTCGCTTGTC	4380
45	TAAACCCTTC	TTCTAATATT	TGGGTCATAT	TCGCATCGGC	ACCGCTCATC	GTAATCGCTT	4440
	CATGTAATGT	TTGCTTGAAA	GGTTTTACTA	TGCTCGCTGA	TGGTGGAATC	CTTCCGAATG	4500
	TTTGTAGTAA	CATAAAAGCG	ATTAATGAAA	TTnArCTCAT	CGCTACTGTT	GTTACGTATA	4560
50	ATATTCTTTC	TTTAGACGTT	CTTTCTTTGA	GCAATTGACC	AATAATTAAA	CTTGCAATTA	4620
	AGACTAATAT	GATGGCACTT	AAAACGAAAG	TATTACCTAA	AACAGTTGTT	ATAATTACTG	4680
	TAATAAGTGC	ACTAATCCCG	AAAGATTGTA	TTGATTTATT	CCATAAAACG	ATACCTGGTA	4740

	CAAATACCAA	CGCAATCGTT	GCAATTATTG	TTGCTTTAGG	TTGTATTT	GAAAACACAT	4860
	AAGCCACTCC	CATATTTTTA	ACTATAGCTA	TTATTTTAAC	CTCTTTAATG	AAAATTAACA	4920
5	ATTTATAGAT	TGTATGCTTC	TATTTCATTT	AATTGAATAA	TAACTTTCAT	GTTTTATAAG	4980
	TAATTAACAT	ACTCATTTGA	ATCGCTTTTG	TGTGCTTTCA	TTTTCAACAT	GATTATTTAA	5040
10	TCCCACTACA	TAGCAATCAA	GCTTGATTTA	GATTTACAAT	ACATTTCCAC	TCTCATGTAC	5100
40	TCTAGATGTT	TTTGAATATG	ATAACTGTGA	TTTAGTGGCT	TCATTCTTTG	AAAATATATA	5160
	TTATTACTTA	CGCTTAAAAT	GCTTTAAATT	TAAGAAATGA	TATAAGTTAG	GTGCCCAGGT	5220
15	ACTAAAGTTT	AGTAGGAATC	CATCATGCCC	AACATTATCA	GGCACGAAGA	AATGACGATG	5280
	ATATTTAAAA	CGTTCACCTA	ATGCACGAAC	TTGATCATCC	GGATATAGCA	AATCATCTAT	5340
	GAACCCCATC	GTTAACACTT	TTGTTTCTAA	ATTTTTAAAA	ACATGCGTTA	CGTCTGTGCG	5400
20	ACCTCGGTCA	ATGTTGTGAC	TATCCAATAC	ATCTAGCAGT	GTCAGATAAC	AATTCAAATC	5460
	AAAATGTTCT	TTAAATTTAT	TACCTTGATG	TTGTTGGTAT	GCGACTACTT	CATCCGGCGT	5520
	AAAACGTTCA	TCATAACTTT	TTGATGATCG	ATATGTCAAA	AAACCTAATT	GGCGTGCAAT	5580
25	ACTTAGACCT	TCCTTACCAC	CAAGATGAAT	GGCTTGCCTT	GCAATTTCAT	TGAAAGCTCT	5640
	ACTATAAGAT	GATGTTCGAC	TTGTTGCAGC	AAGGATAATG	GCTTTATCTA	CTTCAAACTG	5700
30	TTGATTGTAG	AGTAGTTCCA	TTGCTTGCAT	ACCTCCAAGA	CTTCCCCCTA	TTAAAATATT	5760
	AATCTTATCA	TAACCAAGGG	CTTGTATACC	TCGTTCATTC	GCTCTGACTA	TATCTCTTAA	5820
	TGTTAATTTT	TTAGGAAAAT	GAGGGTCGTT	TAAAGGTGAA	CTTGAACCGA	AAGGACTACC	5880
35	AATAACATCA	AATGTTAAAA	ATTGATAATC	GTGAATGGGT	ATATATCCCC	CATCAATAAT	5940
	TTCTCGCCAC	CAACCCGGAT	AATCATCTGT	TCCATATGTT	AAATGATTGC	CAGTTAATGC	6000
	ATGAÇAAACT	ACAACTAATG	GTTGTCCATG	ATAACCGACA	TGCTCATATC	TCAAACGCAA	6060
40	GTnATCTATG	ACTTCCCCAG	ATTCTGTAAT	AAATTCCCCT	AAATTTAAAG	TATCTACTGT	6120
	GTAATTTGTC	ATTGTTCTTT	CCTCCTTAAA	CAAAAAAACT	TCTCACCCTA	TTGAAAAGTA	6180
	AGAAGTCTTT	ATACTTATCA	TTCGAGTAAC	TCGTTGGTTT	TAGCACCGTG	CTATAAAGTC	6240
4 5	GGTTGCTGAA	GTATCACAGG	G				6261

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1222 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

60

ATGCGATTAA CTCTGGAAAT ATCTTTTCCA TATTTACGTm TTAAATTATT CAGCAAATTC

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

5	ATACGAGATT	CATACTCGTT	YAACACTTGT	TCGTCGAATT	CTGTATTAGC	CATTTCATCA	120
	TATAACTCAT	GTTTTGCATC	TTCTAAAATG	TAGTAAAATT	GATCAATATC	TTCTTTTAAT	180
	TTGTCATATT	TGTTTGGAAC	TATATCGTTT	ATTGTTAACA	AATGGTTGCT	TAGTTCATAT	240
10	AAACGATCAG	TGATAGCATT	TTCATCCGTT	AATGTCATAT	ATGCGTTATT	AAGCGCTAAG	300
	CTTAATTTTT	CAGAGTTTTG	AATGCGTTTA	ATATCTATTT	CAAGTTGCTC	TATTTCGCCT	360
5	TCTTTTAGAT	GTGCTTCAGA	CAATTCTTCT	AATTGGAATT	TCATTAAATC	TAAACGCTGT	420
	AGCAATGCTT	GGTCTGCTGA	TTCTAAATCT	TCTAACTCTT	GCTTTTTGGC	TTTATAATTT	480
	TGAAAAGTTT	GGTGATATTT	ATCCAACAAA	TCTTGATAAC	GTGATTCTGC	GTAATTATCC	540
20	AATAATGTTA	AATGGTATTT	TTGTTTCAAC	AAAGACTGCG	TTTCATGTTG	GCCATGAATA	600
	TCTAATAATT	CTTGCATAAC	TTTTCGTAAA	TCTTGTAAAG	TAACTGTTTG	ATTATTAATT	660
	TTACAAAGAC	TTTTACCAGA	GCTGAAAATT	TCCCGTTTAA	СТААТААААА	ATCTTCATCT	720
?5	ACATCAATAT	CCATATTTTT	CAATATATGT	ATAGCATCTT	TACTCTCGTC	AATATCAAAT	780
	ATACCTTCGA	TGACAGCCTT	TTTTTCACCA	TGTCTTACAA	AATCAGATGA	AGCTCTCATT	840
10	CCAATTAATT	GTCCAATTGC	ATCTATAATA	ATTGACTTAC	CTGAACCCGT	TTCACCACTT	900
30	AAAACAGTTA	AACCATCAGA	AAATTGAATT	TCTAATTCTT	CAATAATAGC	AAATTGCTTG	960
	ATTGATAAGG	TTTGTAACAT	AAACTCATCG	CATCCTTATA	ACAAATTGAA	AATTCTTGAC	1020
35	TTGATTTCAT	CACTTGCCTC	TTTGCTTCGA	CAAATAATTA	AACAAGTATC	ATCACCACAA	1080
	ATTGTGCCTA	GTACTTCTTC	CCAATTGATT	TGGTCTAATA	TAGCTCCAAT	AGATTGTGCA	1140
	TTACCAGGTA	TGTTTTTAGA	ACAAGTAAAT	TATCAGTACC	ATCTATATTA	ACAAAGGAAT	1200
10	CCATTAAATA	ACGTCCCAAT	TT				1222
	(2) INFORM	ATION FOR SE	EQ ID NO: 1	4:			
15		EQUENCE CHAP (A) LENGTH: (B) TYPE: no (C) STRANDER (D) TOPOLOGY	1021 base pacleic acid ONESS: doub	pairs			
50	(:)	CECUENCE DE	COTOTION :	SEO ID NO	14.		
	(X1)	SEQUENCE DES	OCKIPITON: 3	SEQ ID NO: .	14:		

254

TTTGTTATTA TTACNTNAAA TAATTGCATT ACTTTTTACT GATGGTACAA CTTTCCATCC 60

	TTCTTTTGGC ACGACATAAT TGTCTTTATC TTGAACTAAA TATCCGCCAG ATACTGAAAC	180
	AAACTCTTCT TCGTTACTGT CTATAGTCAT ATCAATTTCT AATAATCTTA CATTCTTCTT	240
5	TTGTTTTAAA ATATCTAATG CTTCATCTGT AAATTTTGGT GCAATAATGA CTTCCAAAAA	300
	GATACTATGC AATTGCTCTG CTAACTCAGG TGTTACAGCT CGGTTTAATG CAACAATTCC	360
10	ACCAAATATT GATTGACTAT CCGCTTCATA CGCATGTTGA AATGCTTGTT CTATCGTGTC	420
10	ACCGATACCA ACACCACATG GATTCATGTG TTTAACCGCA ACTGTAGCAG GTGTATCAAA	480
	CTTTTTAACT AAAGCTAGTG TAGCATCTGC ATCTTTAATA TTGTTATAGC TTAATTGTTT	540
15	CCCATGTAAT TGTTTAGCGC CTGCAATCGT GTGCTTAGCA TTCGAAGTTC TCACAAAATA	600
	CGCTGATTGT TGTGGATTTT CTCCATATCT TAAAGTTTCT TTATCCCCTT TAAAGAAACG	660
	TACAATCGCT TCATCATATT CTGCAGTATG CTCAAAAACT TTAATCATTA ATGATTGTCT	720
20	ATATGACTCA TCTAACGAAT CGTTTCTTAA TCGCGTCAAT ACTTCTTGAT AATCTGCCGG	780
	ATGTACAATT GTTGTTACAT GTTTATAGTT TTTAGCTGCA GCACGTAACA TTGTTGGACC	840
	ACCAATATCA ATATTTTCAA TTGCTTCGTC CATCGTCACA TCAGGGTTTG CAACAGTTTG	900
25	TTGGAATGGA TATAAATTAA CTACTACCAT ATCAATTAAA TCTATATGTT GTTCTGATAA	960
	TTCATTTAAA TGCTGCGGTT TATTTCGATC AGCTAAAATG CCACCATGAA CAGCCGGATG	1020
20	T	1021
30	(2) INFORMATION FOR SEQ ID NO: 15:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3759 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	TCATTCACTC CTAAATTGTT ATTACACTAT TACACATAGC TAATCATCAA TGTGAAATCA	60
45	CCTTCAAAGA CACTATCCAA ATCTTCAGAA GTCAAAATAA AGTTTGTACC AGTAGTCAGT	120
	TTGAAAATTT CACCATCGAC AATCATTTGC CCTTCGCCTT CCAACACTGT AACTAAACAG	180

255

AACTCTCTAG GCTTCATATA ATTTAACGTG CCAGAAATTT CCCATTTAAC CAATGTAAAG

AAATCATTCG ATACAATGTG TGTACACTTA TGGTTTTCAA TAATTTCGCT TTCAGGCAAA

ATATTAGGTA ATGGTGCATT GTACTGAATA ACGTCTAAAG CTTTTTCAAT ATTTAACGGT

CTATCATTAT ATTGATTATC TTGACGATTG AAATCATAAA GTCTATATGT AATGTCTGAC

50

55

240

300

360

	ATAAAAtAGa	ATTCYCCAGG	kTTTACtTTA	AtatATCyAA	gTAtCGaCtC	tATCGTTCCG	540
	TGTTGAACAT	GATTCGCAAC	TTCTTCTCTA	GACTCTGCTA	ATGTCCCLAT	AACTATTTCT	600
5	GCATCTTCTT	CTGCATCTAT	AATATACCAA	CATTCAGATT	TGCCATATTG	CCCgTTTTCA	660
	TGCTCATAAG	CATAAGAATT	ATCAGGGTGC	ACATGAATAG	AAAGTGATTC	TCTTGCATCC	720
10	ACTATTTTAG	TTAGAAGCGG	AAAATCTTTG	CTTGGGAAAT	CACCAAACAA	TTCACGATGT	780
10	TCTGACCAAA	TACGGTCTAA	TGTTTGACCT	TGATATGGTC	CATTAATAAT	CTCGCTCGTA	840
	CCATTTGGAT	GTGCTGACAC	ACACCAACAT	TCCCCCAGTT	GTATCATTGT	CTAATTGATA	900
15	TCCAAACTCA	CTTAGACGTT	GACCGCCCCA	TAATTTTGTT	TTTAAAATTG	GTTGTAAAAA	960
	TAATGGCATT	GTTGCACCTC	CATTGTGATT	AAGTAAGCAA	TAGAACTCTG	ATGTTGTTGT	1020
	TCCATTATAT	TTTGATTTTG	TTCTCATTTA	CATCGTATTA	TTAACTTCCA	CATTTCAAAT	1080
20	TAACTATTAG	TGATTGTACC	ATATTTACTA	ACATTGCAGT	ACTGCCAATT	AAAAGnGCTT	1140
	CACTTAAATT	TACAGTACTT	TAACATTTTC	AAAAATTTAT	AGCATAGAGA	TTATATCTCT	1200
	CTTACATTTG	TACATATTTC	CCTTTAAATT	TACTCGCCCA	TTATACCAAT	TAATAaACAA	1260
25	CTTTAATAGT	TGTGCCATAC	ATTGTTCAAA	TTCTTTGTAA	AACGCATAGA	CAATACGTAC	1320
	TTATTCATAC	TTATAATTCA	TCATTTTCAA	AAAATAACGA	GTTACGAAAA	AGTAACCCGC	1380
20	TTCAAATCAT	ATTTACTATC	CTTATTAATC	CGTTTCATTT	TCAAATTGAG	TTAAAGCATC	1440
30	TTTAATGTCC	TGATCACCAC	TAATAATTTG	AAACTCTTGG	TGATTAAAAT	GATTGGATGT	1500
	GACAATTTCT	TTTAATACTG	TCGCAACATC	TTCTCTAGGA	ATTTCACCTT	TACCATCAAA	1560
35	ATATTGTGCA	GCTTCTATCT	TTCCAGATCC	TGCTGCATTT	GTAAGTGCCC	CTGGATGTAA	1620
	AATTGTATAA	TTCAAACCTG	nAACGTCTTA	AATAGTCATC	AGCGTAATGT	TTAGCTATTG	1680
	TATATGGCTT	TAAATCACCG	CTATCATCAA	AAGCCTGACG	TCTCGAATCA	TATGTTGAAA	1740
40	CCATGACATA	GTGTTTAATA	TTGGCCTCTT	TACTCGCAAT	CATTGATTTA	ACAGCACCAT	1800
	CTAAATCGAC	AATAATTGTT	TTATCTGCAC	CCGTGTTCCC	TCCAGAACCT	ACTGAAAAGA	1860
	TAACTTTATC	GAATGGTTTA	AACGTCTCAG	TTAAAGTCTC	TATTGAATCA	TTTTCAACAT	1920
45	CAACAAGAAT	TGCTTTCATA	CCTTGTGATT	TTAACGCATT	AAGTTGATCT	GATTGCCTAA	1980
	CACCAGCAGT	AAATGGTACA	TTTTCTTTTG	CTAATTGTTG	CACTAGTAAC	GAACCTACAC	2040
50	CGCCATTAGC	ACCTATAACC	AAAATATTCA	TTTACAACAC	TCTCCTATKT	ATTATTCTCT	2100
JU	ATGCCATACC	ACTTTATGAG	ATATGTAAAA	CTTGTTACAA	CTATAAAAAT	CAATTGACAT	2160
	ACTACTGGGA	ACGTATTAAA	TTAATATATG	AACAAATATT	CATATGAAAG	GATTGTCATA	2220

	tCaAGGCATT	AGCGATTACA	ATCGAATACG	TATCATGGAA	TIGTIATCAG	TCAGCGAAgC	2340
	AAGTGTTGGT	CACATTECAC	ATCAATTGAA	TTTATCTCAA	TCAAATGTCT	CGCACCAATT	2400
5	AAAATTACTT	AAAAGTGTGC	ATCTTGTGAA	AGCAAAACGA	CAAGGCCAAT	CAATGATTTA	2460
	TTCATTAGAT	GACATCCACG	TAGCAACTAT	GTTAAAGCAA	GCCATACATC	ACGCGAATCA	2520
10	TCCTAAAGAA	AGTGGGTTAT	AATATGTCTC	ATTCACATCA	TCATCATGAC	CATATGCATA	2580
	GTCATGTAAC	TACAAATAAT	AAGAAAGTAT	TGTTTATATC	GTTTTTAATA	ATCGGTCTAT	2640
	ATATGTTTAT	CGAAATCATC	GGCGGTCTCC	TTGCTAACAG	CTTGGCATTA	CTATCTGACG	2700
15	GTATCCATAT	GTTTAGCGAC	ACATTCTCAT	TAGGTGTTGC	ACTTGTCGCA	TTTATTTATG	2760
	CTGAAAAGAA	TGCCACAACT	ACAAAAACAT	TTGGTTATAA	ACGTTTCGAA	GTACTCGCAG	2820
	CGTTATTTAA	CGGTGTAACG	CTTTTTGTAA	TAAGTATTTT	GATTGTTTTT	GAAGCGATTA	2880
20	AACGTTTCTT	TGTTCCTTCT	GAAGTTCAAT	CAAAAGAAAT	GTTAATCATT	AGTATTATCG	2940
	GTTTAATTGT	CAATATCGTT	GTTGCATTCT	TTATGTTTAA	AGGCGGCGAC	ACTTCACACA	3000
	ATTTAAATAT	GCGTGGTGCT	TTTCTACATG	TTATCGGAGA	CTTATTAGGT	TCAGTTGGCG	3060
25	CCATTACTGC	AGCTARTTTA	ATTTGGGCAT	TTGGATGGAC	AATCGCCGAT	CCTATCGCAA	3120
	GTATTTTAGT	TTCCGTTATT	AAAAATTTTA	GTGCTTGGGG	TATCACAAAA	TCTTCAATTA	3180
30	ACATTTTAAT	GGaAGGCACA	CCAAGTGATG	TTGATATAGA	TGAAGTTATA	ACTACTATTA	3240
	AAAAGGATTC	ACGAATACAA	AGTGTGCATG	ATTGCCATGT	TTGGACAATT	TCAAATGATA	3300
	TGAATGCATT	GAGTTGTCAT	GTTGTTGTAG	ACCATACATT	GACAATGAAA	GAATGTGAAT	3360
35	TATTATTAGA	AAaCATTGAG	CATGATTTAT	TACATTTAAA	TATTCACCAT	ATGACTATTC	3420
	AATTAGAAAC	GCCTAATCAC	AAACATGATG	AATCGATTAT	ATGTTCAGGA	ACACATAGTC	3480
	ATTCĀCATAA	CCATCATGCT	CATCATCACG	CGCATGTACA	TTAATAATTT	TAACCTACTG	3540
40	CCATTGCATC	GATTAAACTT	TTCAATGGCA	GTAGGTTTTT	TATGTCTTTA	TGGCGACTTG	3600
	TTTGGTCTTT	GATGATGCAA	TGTTTATTAA	CAAATTTTCA	ACTATTATTT	CTTACATTAG	3660
	TCATATTTTT	GACAATTTAC	TATTATAATT	CTCTAACTTT	AGTCACTTTA	ATTAATTTT	3720
45	ATTAGATATT	AATATGAAAA	TAACGTGTTT	TTTGTTATT			3759

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13086 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	TAATTATCGC	GCATAACAAA	ACATTAGCAG	GACAATTATA	TAGTGAGTTT	AAAGAATTTT	50
5	TTCCTGAAAA	CAGGGTGGAA	TACTTTGTAA	GTtACTATGA	TTATTATCAn	CCAGAGGCAT	120
	ACGTACCGTC	TACTGACACT	TTTATTGAAA	nAGATGCCTC	AATCAnTGAT	GAAATTGATC	180
	AACTACGACA	TTCTGCTACA	AGTGCATTAT	TTGAACGCGA	TGATGTAATT	ATTATTGCTA	240
10	GTGTAAGTTG	TATATATGGT	TTAGGTAATC	CTGAAGAATA	TAAAGATTTA	GTAGTAAGTG	300
	TTCGAGTTGG	TATGGAAATG	GATAGAAGTG	AATTACTTAG	AAAACTTGTC	AGATGTGCAA	360
15	TATACACGAA	ATGACATCGA	TTTcCAACGA	GGAACGTTTC	GAGTGCGTGG	TGATGTAGTG	420
, 0	GAAATATTCC	CAGCCTCTAA	AGAAGAACTT	TGTATAAGGG	TTGAGTTTTT	CGGCGATGAG	480
	ATTGACCGTA	TCCGAGAAGT	TAACTACCTA	ACAGGTGAAG	TGTTGAAAGA	AAGAGAACAT	540
20	TTTGCGATAT	TCCCAGCTTC	TCACTTCGTA	ACACGTGAAG	AAAAGTTGAA	AGTTGCGATT	600
	GAACGTATTG	AAAAAGAATT	GGAAGAACGA	TTGAAAGAAT	TACGAGATGA	GAATAAATTA	660
	CTAGAAGCGC	AAAGGTTAGA	ACAGCGTACC	AACTATGATT	TAGAAATGAT	GCGAGAGATG	720
2 5	GGATTCTGTT	CAGGAATTGA	AAACTATTCC	GTACATTTAA	CTTTGCGACC	ACTGGGTTCG	780
	ACACCATATA	CTTTATTGGA	TTACTTTGGC	GATGATTGGT	TAGTAATGAT	TGATGAATCA	840
	CATGTGACAT	TACCGCAAGT	TCGAGGCATG	TATAACGGAG	ACAGAGCGCG	TAAACAAGTT	900
30	TTGGTGGATC	ATGGGTTTAG	ATTACCGAGT	GCATTAGATA	ACCGTCCACT	TAAATTTGAA	960
	GAATTTGAAG	mAAAGACAAA	ACAACTTGTG	TATGTATCTG	CAACGCCTGG	ACCATACGAA	1020
	ATTGAACATA	CGGATAAGAT	GGTTGAACAA	ATTATTCGTC	CTACTGGTTT	ACTGGATCCT	1080
35	AAGATTGAGG	TTAGACCTAC	TGAAAATCAA	ATTGACGATT	TATTAAGTGA	AATTCAAACA	1140
	AGAGTgAGCG	TAATGAACGC	GTACTTGTTA	CAACGCTCAC	TAAAAAGATG	AGTGAAGATT	1200
40	aACCACATAC	ATGAAAGAaG	CGGGTATTAA	aGTtAATTAT	CTGCATTCAG	AAATCAAGAC	1260
	ATTAGAACGA	ATTGAAATAA	TTAGAGACTT	ACGAATGGGT	ACATATGATG	TTATCGTAGG	1320
	TATTAATTTA	TTAAGAGAGG	GTATTGATAT	ACCAGAAGTT	TCTCTAGTTG	TCATATTAGA	1380
45	TGCAGATAAA	GAAGGGTTTT	TACGTTCTAA	CCGCTCATTA	ATTCAAaCAA	TAGGTAGAgC	1440
	TGCGCGTAAC	GATAAaGGTG	AAGTCATTAT	GTATGCCGAT	AAAATGACTG	ATTCGATGAA	1500
	GTATGCAATT	GATGAGACAC	AACGTCGTCG	AGAAATACAG	ATGAAACATA	ATGAAAAACA	1560
50	TGGTATTACA	CCTAAAACAA	ТТААТАААА	AATACATGAT	TTAATTAGTG	CTACTGTTGA	1620
	AAATGACGAA	AATAATGACA	AAGCACAAAC	TGTGATACCT	AAGAAGATGA	CCDADADACA	1680

	TTTCGAGAAA	GCTACAGAAT	TAAGAGATAT	GTTATTTGAA	TTAAAAGCAG	AAGGGTGACA	1800
	AGTAAATGAA	AGAACCATCC	ATAGTAGTAA	AAGGTGCTCG	TGCGCATAAC	TTGAAAGATA	1860
5	TTGATATCGA	ACTACCTAAA	Aataaattaa	TTGTTATGAC	AGGTTTATCT	GGGTCAGGTA	1920
	AATCGTCATT	AGCATTCGAT	ACTATATATG	CTGAAGGACA	ACGACGTTAT	GTTGAATCAT	1980
	TAAGTGCCTA	TGCGCGTCAA	TTTTTAGGCC	AAATGGACAA	ACCAGATGTT	GATACAATTG	2040
10	AAGGATTATC	GCCAGCAATT	TCAATAGATC	AAAAAACAAC	AAGTAAAAAT	CCAAGATCAA	2100
	CTGTAGCAAC	AGTAACAGAA	ATATATGATT	ATATACGTTT	GTTATATGCA	CGTGTTGGTA	2160
15	AACCTTACTG	TCCAAATCAC	AATATAGAAA	TTGAATCGCA	AACAGTACAA	CAAATGGTTG	2220
, ,	ACCGCATTAT	GGAATTAGAG	GCACGTACAA	AGATTCAATT	ATTAGCACCT	GTCATCGCTC	2280
	ATCGTAAAGG	TAGTCATGAA	AAGCTAATCG	AAGATATTGG	TAAAAAAGGT	TATGTACGTT	2340
20	TAAGAATCGA	TGGCGAAATT	GTTGATGTAA	ATGATGTACC	TACTTTAGAT	AAGAACAAGA	2400
	ATCATACAAT	AGAAGTTGTT	GTAGACCGAT	TAGTTGTTAA	AGATGGAATT	GAAACACGAC	2460
	TAGCTGACTC	TATAGAAACT	GCCTTAGAGC	TTTCAGAAGG	ACAATTAACA	GTCGATGTCA	2520
25	TTGACGGGGA	AGACCTTAAG	TTTTCAGAAA	GCCATGCTTG	TCCTATATGT	GGATTTTCAA	2580
	TCGGAGAGTT	AGAACCAAGA	ATGTTTAGCT	TTAACAGTCC	TTTTGGTGCT	TGTCCGACAT	2640
	GTGATGGCTT	AGGCCAAAAG	TTAACAGTCG	ATGTAGACTT	GGTTGTTCCC	GACAAAGATA	2700
30	AGACGCTAAA	CGAAGGTGCA	ATAGAACCTT	GGATACCGAC	GAGTTCTGAT	TTTTATCCAA	2760
	CATTGTTAAA	ACGTGTTTGT	GAAGTTTATA	AAATCAATAT	GGATAAACCT	TTTAAAAAGT	2820
26	TAACAGAACG	TCAACGTGAT	ATTTTATTGT	ATGGTTCTGG	TGACAAAGAA	ATTGAATTTA	2880
35	CATTTACACA	ACGTCAAGGT	GGTACTAGAA	AACGAACAAT	GGTTTTCGAG	GGTGTAGTTC	2940
	CTAATATAAG	TAGACGATTC	CATGAATCTC	CTTCAGAATA	TACACGTGAA	ATGATGAGTA	3000
10	AATATATGAC	TGAACTACCT	TGCGAAACTT	GTCATGGAAA	GCGATTGAGT	CGTGAAGCkT	3060
	TATCTGTTTA	TGTAGGTGGT	TTAAATATTG	GTGAAGTAGT	CGAATATTCA	ATCAGTCAAG	3120
	CGCTGAACTA	TTATAAAAAC	ATTGATTTGT	CAGAACAAGA	TCAAGCGATT	GCAAATCAAA	3180
1 5	TATTGAAAGA	AATTATTTCC	CGACTCACTT	TTTTAAATAA	TGTGGGACTT	GAATATTTAA	3240
	CGTTAAACAG	AGCTTCAGGT	ACACTTTCAG	GTGGTGAAGC	ACAACGTATT	CGATTAGCAA	3300
	CGCAAATTGG	GTCGCGTTTG	ACTGGTGTCT	TATATGTATT	AGATGAGCCA	TCAATTGGAC	3360
50	TGCATCAAAG	AGATAATGAT	CGATTAATTA	ATACACTTAA	AGAAATGAGA	GATTTAGGAA	3420
	A.T. A. OWWELL A. T.	mama amma a a	01.001.ma1.ma	1 m 1 a 1 m a a a	maaaaaaa		

	AGGTAATGAA	AGATAAAAAA	TCATTAACAG	GACAATACTT	GAGTGGTAAG	AAACGTATTG	3600
	AAGTACCTGA	ATATCGCAGA	CCGGCTTCAG	ATCGTAAAAT	TTCTATACGT	GGAGCTAGAA	3660
5	GCAACAATCT	TAAAGGGGTT	GATGTGGACA	TACCACTATC	AATCATGACG	GTTGTTACAG	3720
	GTGTATCAGG	TTCTGGTAAA	AGCTCATTAG	TAAATGAAGT	ATTATACAAA	TCATTAGCTC	3780
	AAAAAATTAA	TAAATCTAAA	GTAAAGCCAG	GATTGTACGA	TAAGATTGAA	GGTATTGATC	3840
10	AACTTGATAA	AATTATTGAT	ATTGATCAAT	CACCAATAGG	TAGAACGCCA	CGCTCTAATC	3900
	CAGCAACATA	TACTGGTGTG	TTTGATGATA	TACGTGATGT	GTTTGCGCAA	ACAAATGAAG	3960
15	CTAAAATTCG	AGGATATCAA	AAAGGCCGTT	TTAGTTTTAA	TGTAAAAGGT	GGACGCTGTG	4020
-	AAgcTTGTAA	AGGTGACGGT	AAAATTATTA	TTGAAATGCA	TTTTTTACCT	GATGTTTATG	4080
	TTCCTTGTGA	AGTGTGTGAT	GGTAAACGAT	ATAATCGTGA	GACACTAGAG	GTTACTTACA	4140
20	AAGGTAAAAA	TATTGCTGAC	ATTTTAGAAA	TGACTGTTGA	AGAAGCAACA	CAATTITTTG	4200
	AAAATATTCC	TAAGATTAAG	CGCAAGTTAC	AAACACTAGT	TGATGTTGGT	CTTGGATACG	4260
	TCACATTAGG	TCAACAAGCT	ACAACGTTAT	CAGGTGGTGA	GGCTCAACGT	GTGAaACTTG	4320
25	CATCTGAACT	TCATAAACGT	TCAACTGGTA	AATCTATTTA	TATCCTAGAT	GAACCGACAA	4380
	CAGGGTTACA	TGTTGACGAT	ATTAGTAGAT	TATTAAAAGT	ATTAAACCGA	TTAGTTGAAA	4440
	ATGGTGATAC	TGTTGTAATT	ATTGAACATA	ACCTAGATGT	TATCAAAACA	GCAGACTATA	4500
30	TTATAGACTT	AGGTCCTGAA	GGTGGTAGTG	GCGGTGGTAC	TATTGTTGCG	ACTGGCACAC	4560
	CCGAAGATAT	TGCTCAGACA	AAGTCATCAT	ATACAGGAAA	GTATTTAAAA	GAAGTACTTG	4620
	AACGAGATAA	ACAAAATACT	GAAGATAAAT	AAGATTAAAA	GAAGTGAAGG	ATGTTATAAA	4680
35	TTTATCCTTC	GCTTCTTTTT	ATTAATTTAG	TAATGAATAG	TAGAAAGAAA	AGATGCGTAA	4740
	AAAGÃATTAT	GTTAAGATAG	GGTCAATCTA	GAGTAGTTAA	ACATAAATCG	AACTGGGAGT	4800
10	GGGACAGAAA	TGATAAAGAA	TCACTAATGA	TTTATTATGT	AGTGGTTCTT	TGTCATTAGC	4860
	CACAGCTATT	GTGTACTTAA	AAATAGGaat	GCaTgAGTGC	AACTCATGCA	TAAGaAATAC	4920
	TAATTTCTAA	AGAAAAAGTA	TTTCTTTATG	TTGGGGCCCC	GCCAACTTGC	ATTGTTTGTA	4980
1 5	GAATTTCTTT	TCGAAATTCT	TTATGTTGGG	GCCCCGCCAA	CTTGCATTGT	TTGTAGAATT	5040
	TCTTTTCGAA	ATTCTTTATG	TTGGGGCCCC	GCCAACTAAT	TCCAATATAT	CATTGTAGAG	5100
	CTTAGGTCAT	TGATTTTTGG	CTCGGACTTT	TATGGCGATA	TGAACCATGT	AAATTAAGCA	5160
50	AGCAATAAAT	TAATGATTGA	TATTGACTTG	ТААААТААТА	ACAATAATGA	ACAATTAATA	5220
	TTTATTTTAG	CTTTTCAATG	TAGATTGGTG	TTATATTTTT	GATATGATAA	GAAGAGATGT	5280

	ACATTAAAGT	TAGATTTAAT	CGCTGGTGAA	GAAGGACTAT	CGAAGCCAAT	TAAAAATGCT	5400
	GATATATCAA	GACCGGGCTT	AGAGATGGCA	GGTTATTTTT	CACATTATGC	GTCAGATAGA	5460
5	ATACAACTAT	TAGGAACAAC	GGAACTATCG	TTTTACAATT	TATTACCAGA	TAAGGATCGC	5520
	GCAGGTCGTA	TGCGTAAACT	ATGCAGACCA	GAAACGCCTG	CAATTATTGT	GACACGTGGA	5580
	TTGCAGCCAC	CAGAAGAATT	AGTTGAAGCT	GCAAAAGAAT	TAAATACCCC	ACTTATAGTT	5640
10	GCTAAAGATG	CGACTACAAG	TTTAATGAGT	CGCTTAACAA	CGTTTTTAGA	GCATGCACTT	5700
	GCAAAGACGA	CATCTTTACA	TGGTGTTTTA	GTAGATGTTT	ACGGTGTTGG	TGTACTAATT	5760
15	ACCGGTGATT	CAGGAATAGG	TAAAAGTGAG	ACTGCGTTGG	AATTAGTTAA	ACGTGGGCAT	5820
, ,	AGATTAGTAG	CAGATGATAA	TGTAGAAATA	CGTCAAATTA	ATAAAGATGA	ACTAATAGGG	5880
	AAACCACCAA	AGTTAATAGA	ACATCTATTA	GAAATACGTG	GACTAGGTAT	TATCAATGTT	5940
20	ATGACTTTAT	TTGGCGCGGG	TTCAATATTA	ACTGAAAAAC	GAATTAGATT	AAATATTAAT	6000
	TTGGAAAACT	GGAACAAGCA	AAAGTTATAT	GACCGCGTAG	GTCTTAATGA	AGAGACGCTA	6060
	AGTATTTTAG	ATACTGAAAT	CACTAAAAAA	ACAATACCTG	TAAGACCTGG	TAGAAATGTT	6120
25	GCGGTAATTA	TTGAGGTCGC	TGCAATGAAC	TATCGATTAA	ATATCATGGG	CATTAACACG	6180
	GCCGAAGAAT	TTAGTGAAAG	ATTAAATGAA	GAAATTATCA	AGAACAGTCA	TAAGAGTGAG	6240
	GAGTAGGTTG	AATGGGTATT	GTATTTAACT	ATATAGATCC	TGTGGCATTT	AACTTAGGAC	6300
30	CACTGAGTGT	ACGATGGTAT	GGAATTATCA	TTGCTGTCGG	AATATTACTT	GGTTACTTTG	6360
	TTgCACAACG	TGCACTAGTT	AAAGCAGGAT	TACATAAAGA	TACTTTAGTA	GATATTATTT	6420
	TTTATAGTGC	ACTATTTGGA	TTTATCGCGG	CACGAATCTA	TTTTGTGATT	TTCCAATGGC	6480
35	CATATTACGC	GGAAAATCCA	AGTGAAATTA	TTAAAATATG	GCATGGTGGA	ATAGCAATAC	6540
	ATGGTGGTTT	AATAGGTGGC	TTTATTGCTG	GTGTTATTGT	ATGTAAAGTG	AATTTAA	6600
10	ACCCATTTCA	AATTGGTGAT	ATCGTTGCGC	CAAGTATAAT	TTTAGCGCAA	GGAATTGGAC	6660
	GCTGGGGTAA	CTTTATGAAT	CACGAGGCAC	ATGGTGGATC	GGTGTCACGC	GCTTTTTTAG	6720
	AACAATTACA	TTTGCCTAAT	TTTATAATAG	AAAATATGTA	TATTAACGGC	CAATATTATC	6780
15	ATCCAACATT	CTTATATGAA	TCCATTTGGG	ATGTCGCTGG	ATTTATTATC	TTAGTTAATA	6840
	TTCGTAAACA	TTTAAAATTA	GGAGAAACAT	TCTTTTTATA	TTTAACTTGG	TATTCAATTG	6900
	GTCGATTCTT	TATAGAAGGA	TTACGTACAG	ATAGCTTAAT	GCTCACAAGT	AATATTAGAG	6960
50	TTGCACAATT	AGTATCAATT	CTTTTAATTT	TAATAAGTAT	AAGTTTAATT	GTATATAGAA	7020
	GGATTAAGTA	TAATCCACCG	TTGTATAGCA	AAGTTGGGGC	GCTTCCATGG	CCAACAAAAA	7080

	TTATGGCGTG	TATACCGTCT	TGTTAAATTT	TCGAAAGTTT	TTAAGAATGT	AATTATCATT	7200
	GAATTTTCGA	AATTTATTCC	AAGTATGGTA	CTGAAAAGAC	АТАТАТАТАА	ACAACTTTTA	7260
5	AATATTAATA	TCGGTAATCA	ATCGTCGATA	GCTTATAAAG	TAATGTTAGA	TATTTTTAC	7320
	CCAGAACTGA	TTACGATTGG	TAGTAACAGT	GTTATTGGTT	ACAATGTAAC	AATTTTGACG	7380
	CATGAAGCAT	TAGTTGATGA	ATTTCGTTAT	GGACCAGTGA	CGATAGGATC	TAACACTTTG	7440
10	ATTGGTGCAA	ATGCTACCAT	TTTACCCGGT	ATAACGATTG	GTGACAATGT	AAAAGTTGCA	7500
	GCTGGTACGG	TTGTTTCAAA	AGATATACCG	GATAATGGAT	TTGCATATGG	CAACCCTATG	7560
15	TATATAAAAA	TGATTAGGAG	GTGACAATTT	TATGGCGCAA	AAGAATAATA	ATGTAATTCC	7620
. •	AATGACTTTT	GATGATGCAT	TTTATCGTAA	AATGGCTAAA	CAGAAGTTTA	AACAAAGAGA	7680
	ATATAAACGA	GCTGCTGAAT	ACTTTGAAAA	AGTGTTAGAA	TTGTCACCTG	ATGATCTGGA	7740
20	AATTCAAATT	GATTATGCAC	AATGTCTAGT	GCAACTTGGT	ATTGCTAAAA	AAGCAGAACA	7800
	TTTATTTTAT	GACAATATTA	TTTATAATAG	GCATCTAGAA	GATAGCTTTT	ATGAATTGAG	7860
	TCAGCTCAAC	ATTGAAGTTA	ACGAACCAAA	CAAGGCATTC	TTGTTTGGTA	TTAATTATGT	7920
25	TATTGTTAGC	GACGACCAAG	ATTATAGAGA	TGAATTAGAT	CAAATGTTTG	ATGTGAAATA	7980
	TCAAAGTGAA	GAACAAATTG	AACTTGAAGC	TCAATTGTTT	GTAGTTCAAA	TACTATTCCA	8040
	ATATCTTTTT	TCTCAAGGTC	GATTAAAAGA	TGCAAAGAAT	TATGTCTTAC	ATCAACCACA	8100
30	AGAAGTTCAA	GATCATCGTG	TAGTACGTAA	TTTATTGGCA	ATGTGTTATT	TATATCTCGG	8160
	TGAATATGAT	ACgGCTAAAG	CATTGTACGA	aGCACtATTA	CAAGAGGATA	GTACaGATAT	8220
	ATATGCATTA	TGCCATTATA	CTTTGCTACT	TTATAACACT	AAGGAAAATG	AACAATATCA	8280
35	AAAATATTTA	AAAATATTAA	ACAAAGTTGT	ACCTATGAAT	GACGATGAAA	GTTTTAAATT	8340
	AGGTATTGTA	TTAAGTTATT	TAAAGCAGTA	TCGTGCATCA	CAACAATTGT	TGTACCCTTT	8400
10	ATATAAAAA	GGGAAATTTT	TATCAATTCA	AATGTACAAT	GCTTTAGCAT	ATAATTATTA	8460
	TTATTTAGGT	GAAGAAGACG	AAAGTCATTA	CTACTGGGAT	AAATTGAAGC	AAATTTCTAA	8520
	AGTGGAAATT	GGACATGCGC	CTTGGGTAAT	TGAAAATAGC	AAAGAAGTTT	TTGACCAACA	8580
4 5	TATTTTGCCA	TTACTTCAAA	GTGATGACAG	TCATTATCGT	TTATATGGTA	TTTTTTTATT	8640
	GGATCAATTA	AATGGTAAAG	AAATTGTGAT	GACGGAAAGT	ATTTGGCAGG	TTTTGGAAAA	8700
	TCTAAATAAT	TATGAGAAAT	TGTATTTAAC	GTATTTAGTT	CAAGGTTTAA	CGCTCAATAA	8760
50	ATTAGACTTC	ATTCATCGCG	GCTTATTAAC	GCTTTACCAT	AATGAATTAT	TTGTAAGTGA	8820
	AAATCATCTA	ATGGTTGCAT	GGATTAATCA	ACCTCAACTC	7 T 7 7 TTC CTC	33333CT3C3	2020

	TCGAAACGTT	ACAAAGAAGC	AAATTACAAC	ATGGTTAGGC	ATAACACAAT	ATAAACTGAA	9000
	CAAAATGATT	GAATTTCTCT	TGAGCATATA	GATTTATGAA	AAGTTAGATT	TATTATATAA	9060
5	TGCGCATAAT	GATTAATAAT	GAGGAGGCGT	TAATAAAATG	ACTGAAATAG	ATTTTGATAT	9120
	AGCAATTATC	GGTGCAGGTC	CAGCTGGTAT	GACTGCTGCA	GTATACGCAT	CACGTGCTAA	918
	TTTAAAAACA	GTTATGATTG	AAAGAGGTAT	TCCAGGCGGT	CAAATGGCTA	ATACAGAAGA	9240
0	AGTAGAGAAC	TTCCCTGGTT	TCGAAATGAT	TACAGGTCCA	GATTTATCTA	CAAAAATGTT	9300
	TGAACACGCT	AAAAAGTTTG	GTGCAGTTTA	TCAATATGGA	GATATTAAAT	CTGTAGAAGA	9360
5	TAAAGGCGAA	TATAAAGTGA	TTAACTTTGG	TAATAAAGAA	TTAACAGCGA	AAGCGGTTAT	9420
5	TATTGCTACA	GGTGCAGAAT	ACAAGAAAAT	TGGTGTTCCG	GGTGAACAAG	AACTTGGTGG	9480
	ACGCGGTGTA	AGTTATTGTG	CAGTATGTGA	TGGTGCATTC	TTTAAAAATA	AACGCCTATT	9540
20	CGTTATCGGT	GGTGGTGATT	CAGCAGTAGA	AGAGGGAACA	TTCTTAACTA	AATTTGCTGA	9600
	CAAAGTAACA	ATCGTTCACC	GTCGTGATGA	GTTACGTGCA	CAGCGTATTT	TACAAGATAG	9660
	AGCATTCAAA	AATGATAAAA	TCGACTTTAT	TTGGAGTCAT	ACTTTGAAAT	CAATTAATGA	9720
25	AAAAGACGGC	AAAGTGGGTT	CTGTGACATT	AACGTCTACA	AAAGATGGTT	CAGAAGAAAC	9780
	ACACGAGGCT	GATGGTGTAT	TCATCTATAT	TGGTATGAAA	CCATTAACAG	CGCCATTTAA	9840
	AGACTTAGGT	ATTACAAATG	ATGTTGGTTA	TATTGTAACA	AAAGATGATA	TGACAACATC	9900
80	AGTACCAGGT	ATTTTTGCAG	CAGGAGATGT	TCGCGACAAA	GGTTTACGCC	AAATTGTCAC	9960
	TGCTACTGGC	GATGGTAGTA	TTGCAGCGCA	AAGTGCAGCG	GAATATATTG	AACATTTAAA	10020
	CGATCAAGCT	TAATTCGAAG	TCGAATTAAG	ATGTTGAGCT	GTAAATTATT	TGGATATTTA	10080
35	TTTTAATAGT	GTCATCACAG	CGTTAAAATA	ATGTCTTACT	TTTAAATTAA	AGCAAATTAT	10140
	ATAGAAACT	AGAACTTAGT	ACGTATCATT	TGTGCGTTTC	AATGAGTTCT	AGTTTTTTTA	10200
10	TATGTTATAT	TAAACTTATA	ACTTTATGGG	AGTGGGACAG	AAATGATAAA	GAGCCACTAA	10260
	TGATTTATTA	TGTAGTGGTT	CTTAAACATT	AGCCACAGCT	AATGTGTACT	TAAAAATAGG	10320
	AATACATGAG	TAAAACTCAT	GCATAAGAAA	TACTAATTTC	TATAGAAAAA	GTATTACTTT	10380
15	ATCGTTGTCC	CACCCCAACT	TGCACATTAT	TGTAAGCTGA	CTTTCCGCCA	GCTTCTGTGT	10440
	TGGGGCCCCG	CCAACTTGCA	CATTATTGTA	AGCTGACTTT	TCGTCAgCTT	CTGTGTTGGG	10500
	GCCCCGCCAA	CTTGCACATT	ATTGTAAGCT	GACTTTTCGT	CAGCTTCTGT	GTTGGGGCCC	10560
0	CGCCAACTTG	CATTGTCTGT	AGAAATTGGG	AATCCAATTT	CTCTATGTTG	GGGCCCACAC	10620
	CCCNNCCCC	איייייייא	CAATTCTT	TOO A A A TITOT	CTCTCTTCCC	CCCCACACCC	10690

	ACTCGCATTG	CCTGTAGAAT	TTCTTTTCGA	AATTCTCTGT	GTTGGGGCCC	CTGACTAGAG	10800
	TTGAAAAAAG	CTTGTTGCAA	GCGCATTTTC	ATTCAGTCAA	CTACTAGCAA	TATAATATTA	10860
5	TAGACCCTAG	GACATTGATT	TATGTCCCAA	GCTCCTTTTA	AATGATGTAT	ATTTTTAGAA	10920
	ATTTAATCTA	GACATAGTTG	GAAATAAATA	TAAAACATCG	TTGCTTAATT	TTGTCATAGA	10930
	ACATTTAAAT	TAACATCATG	AAATTCGTTT	TGGCGGTGAA	AAAATAATGG	ATAATAATGA	11040
10	AAAAGAAAAA	AGTAAAAGTG	AACTATTAGT	TGTAACAGGT	TTATCTGGCG	CAGGTAAATC	11100
	TTTGGTTATT	CAATGTTTAG	AAGACATGGG	ATATTTTTGT	GTAGATAATC	TACCACCAGT	11160
15	GTTATTGCCT	AAATTTGTAG	AGTTGATGGA	ACAAGGAAAT	CCATCCTTAA	GAAAAGTGGC	11220
	AATTGCAATT	GATTTAAGAG	GTAAGGAACT	ATTTAATTCA	TTAGTTGCAG	TAGTGGATAA	11280
	AGTCAAAAGT	GAAAGTGACG	TCATCATTGA	TGTTATGTTT	TTAGAAGCAA	GTACTGAAAA	11340
20	ATTAATTTCA	AGATATAAGG	AAACGCGTCG	TGCACATCCT	TTGATGGAAC	AAGGTAAAAG	11400
	ATCGTTAATC	AATGCAATTA	ATGATGAGCG	AGAGCATTTG	TCTCAAATTA	GAAGTATAGC	11460
	TAATTTTGTT	ATAGATACTA	CAAAGTTATC	ACCTAAAGAA	TTAAAAGAAC	GCATTCGTCG	11520
25	ATACTATGAA	GATGAAGAGT	TTGAAACTTT	TACAATTAAT	GTCACAAGTT	TCGGTTTTAA	11580
	ACATGGGATT	CAGATGGATG	CAGATTTAGT	ATTTGATGTA	CGATTTTTAC	CAAATCCATA	11640
	TTATGTAGTA	GATTTAAGAC	CTTTAACAGG	ATTAGATAAA	GACGTTTATA	ATTATGTTAT	11700
30	GAAATGGAAA	GAGACGGAGA	TTTTCTTTGA	AAAATTAACT	GATTTGTTAG	ATTTTATGAT	11760
	ACCCGGGTAT	AAAAAAGAAG	GGAAATCTCA	ATTAGTAATT	GCCATCGGTT	GTACGGGTGG	11820
25	ACAACATCGA	TCTGTAGCAT	TAGCAGAACG	ACTAGGTAAT	TATCTAAATG	AAGTATTTGA	11880
35	ATATAATGTT	TATGTGCATC	ATAGGGACGC	ACATATTGAA	AGTGGCGAGA	AAAAATGAGA	11940
	CAAATAAAAG	TTGTACTTAT	CGGTGGTGGC	ACTGGCTTAT	CAGTTATGGC	TAGGGGATTA	12000
40	AGAGAATTCC	CAATTGATAT	TACGGCGATT	GTAACAGTTG	CTGATAATGG	TGGGAGTACA	12060
	GGGAAAATCa	GAGATGAAAT	GGATATACCA	GCACCAGGAG	ACATCAGAAA	TGTGATTGCA	12120
	GCTTTAAGTG	ATTCTGAGTC	AGTTTTAAGC	CAACTTTTTC	AGTATCGCTT	TGAAGAAAAT	12180
1 5	CAAATTAGCG	GTCACTCATT	AGGTAATTTA	TTAATCGCAG	GTATGACTAA	TATTACGAAT	12240
	GATTTCGGAC	ATGCCATTAA	AGCATTAAGT	AAAATTTTAA	ATATTAAAGG	TAGAGTCATT	12300
	CCATCTACAA	ATACAAGTGT	GCAATTAAAT	GCTGTTATGG	AAGATGGAGA	AATTGTTTTT	12360
50	GGAGAAACAA	ATATTCCTAA	AAAACATAAA	AAAATTGATC	GTGTGTTTTT	AGAACCTAAC	12420
	GATGTGCAAC	CAATGGAAGA	AGCAATCGAT	GCTTTAAGGG	AAGCAGATTT	AATCGTTCTT	12480

	GCGTTAATTC	ATTCTGATGC	GCCTAAGCTA	TATGTTTCTA	ATGTGATGAC	GCAACCTGGG	12600
	GAAACAGATG	GTTATAGCGT	GAAAGATYAT	ATCGATGCGA	TTCATAGACA	AGCTGGACAA	12660
5	CCGTTTATTG	ATTATGTCAT	TTGTAGTACA	CAAACTTTCA	ATGCTCAAGT	TTTGAAAAAA	12720
	TATGAAGAAA	AACATTCTAA	ACCAGTTGAA	GTTAATAAGG	CTGAACTTGA	AAAAGAAAGC	12780
	ATAAATGTAA	AAACATCTTC	AAATTTAGTT	GAAATTTCTG	AAAATCATTT	AGTAAGACAT	12840
10	AATACTAAAG	TGTTATCGAC	AATGATTTAT	GACATAGCTT	TAGAATTAAT	TAGTACTATT	12900
	CCTTTCGTAC	CAAGTGATAA	ACGTHAATAA	TATAGAACGT	AATCATATTA	TGATATGATA	12960
15	ATAGAGCTGT	GAAAAAAATG	AAnATAGACA	GTGGTTCTAA	GGTGAATCAT	GTTTTAAATA	13020
	AGAAAGGAAT	GACTGTACGA	TGAGCTTTGC	ATCAGAAATG	AAAAATGAAT	TAACTAGAAT	13080
	AGACGT						13086
20	(2) INFORMA	ATION FOR SE	EQ ID NO: 17	7:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1350 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

CATTAGTCAT	GAAAATAGCC	GACAACTTCA	TCTGTGAAAT	CACCGGCCTT	TTATTTTAGC	60
TAACTTTATT	TCTGATTTTA	CGATTTTAAT	TGATCATACA	GAGAAAGTGA	TCTTTTTACA	120
ATTTCTAAAA	ACTCATGATC	TATATTGGAC	ATTTGATGAA	AATAAGACAA	AATGTTTTCT	180
GTTAGCTTCT	CTTGTTTTGG	GAATGAATCA	TCTTCTTTAA	TCCAAATCGC	TAATTCGCCT	240
AATGGTGTTT	TATCATCTTT	AAATGTTTGT	ATATATTCGT	AAAAGCTCAT	AGTATTCCTT	300
CTCTCAATTT	ACTTATATAA	ATCCTACCAC	GAAAGCTTTC	AAGAAAACAC	AATTAAATGT	360
CTATTTAGTG	AACTTTTTAA	GGTTGTGCAC	TCTTTTAATG	TCTGCCAATT	AGGTCAATTA	420
ATCATCACAA	TGTACAATTA	ACTCTATTTT	CAGTTCATAT	ACTCACACAC	CGTTTTTGAA	480
CAACACATTA	ACTTCTCATT	TAGATAAAAC	GCAAAAAAGC	CTGGCACCAA	TACAATAGAT	540
GCCAGACTAA	GAGTCTACTA	TATAAATTTA	TTTAGCGTAT	GGTTTTACTT	CGATTGCACC	600
TTCATTTTCA	TCATGAACAC	CATGCTTATA	ATAATCAATA	TATTGTGGCT	CTAAAGGCTT	660
TCTGCCACGT	ATAATGTCTG	CTGCTTTTTC	AGCTAACATT	AAAACAGGTG	CGTGTATATT	720
GCCATTTGTC	GTACGTGGCA	TAGCTGATGC	ATCAACTACA	CGTAAATTTT	CCATACCGTG	780

55

30

35

40

45

	ACTACAAGAT GGGTGTAATG CTGTTTCACC ATCTCTACGA ACCCAATCAA GAATTTCTTC	900
	GTCTGTTTGC ACTTCTGGTC CTGGTGAAAT TTCTCCACCA TTGAATGGAT CCATTGCTTT	960
5	TTGAGATAAG ATATTTCTTG CTACACGAAT TGCTTCTACC CATTCTTTTT TATCTTCTTC	1020
	TGTTGATAAA TAATTAAAGC GGATACTTGG TTTTTCGAAT GGATCTTTAG ATTTGATTTT	1080
10	CAAGCTACCA CGAGAGTTTG AATACATTGG TCCTACGTGA ACTTGATAAC CATGTGCGAC	1140
70	CGCTGCCTTT TGACCATCAT ATCTTACAGC TATTGGTAAG AAATGGAACA TTAAGTTAGG	1200
	ATAALCAACT TCGTTATTTG AACGTACAAA TCCGCCACCT TCAAAATGGT TAGATGCTGC	1260
15	TGCACCTGTA CGTGTGAAAA TCCATTGTAA ACCAATAAAT GGCATGCGCT TGALATCTAA	1320
	GCTTGGCtGt AATGATACAG GTTCCTTACA	1350
	(2) INFORMATION FOR SEQ ID NO: 18:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
	TAATGCTATT GGCAACACCA TATATGAAAN CTCCAAACGA TCCTAAACCG ACTATAGATT	60
30	CACCAAATTT NACAATCCAT GAATAAAGTA GTGGCCATAA GAATAACAAT ATGACAACTA	120
	AAAATGTACA GTAAAATGCA GTCATAATTG GAACTAGACG TTTACCACTA AAAAATGATA	180
35	ATGCTAATGG TAATTCTGTT TCACTAAACT TATTGTATGC ATAAGCTGCT ATTAAACCTA	240
	TTACAATACC AACAAAGACA TTGCCATTAT TCATCTTTTC AAAAGCTGAA TTTATTTCCG	300
	ArgCTTTCAT TCCTAATAAA GGCGCTAATT TCATTGGTGA TAATACAACT GTAACTAAAA	360
40	AATATCCTAA CGTrGCTGCA rGCGsGACTG CACCATCATT TTTCTTTGCC ATTCCTATAG	420
	CTACACCAAT TGCAAATAAA ATACCTAATT GCTCTAAAAT CGTAGTACCT ACCGTAGTAA	480
	AGAACATTGC GATTTTCGGC GTCGCATGAA GTGCATTTAA CGTATTACCA ATTCCGGCAA	540
45	TAATTGCTGC AGCCGGTAAA ATGGCAACTG GTAACATTAA CGAACGCCCT AAATTTTGGA	600
	AAAATTTATA CATTGAATGT CATCCTTCTT AAAATAATGT AGAAATATAA AGATTACTAA	660
	TGTAACTAGA ATAACTACTT CGATACTCCG TTATAGTCAC CTAGGCTTAC TAACCAGCTA	720
50	TATTTCTACC TCAAGTTATT TTATAAACTT TTTACAATTT CATGCAATTC TTGTTGTAAC	780
	TTTGCTGTTC GTGTTTCAAT CTCTTTTGTA ATATAATCGA TACGCTCGTT TCGTTTTAAA	840

	AAAGACCGTG AATCTTAGTA GGACCAACAT AAGCAACAGG TAATATTGGT GACTTACTTA	960						
	ACATTGCAAT TGTTGAAGCA CCACGTTTCA AAGGTGCACC TTCTTGCGAT GTGCGAGAAC	1020						
5	CTGTTGGGAA GATACCAACT GTCTTATTAT CTTTCAACAA ATTGATTGGG CGTTTTAAAG	1080						
	TACTAGGTCC TGGATTTTCA CGATCTACAG GAAATGCATT TAAAGACGTT AAAAATTTAC	1140						
	CAATCCATTT ATTITTGAAT AATTCTTTTT TAGCCATATA ATGAATTTGA TTAGGATATA	1200						
10	ATGCCATACC TAGCATAATG ACTTCGTTAT AACTTTCATG CGTACAAGTT ACGACATATT	1260						
	TACTATCCTT AGGAATATTA TCTTTACCGA TTACGTATAA TGATTTTGAC ATTTTAACTA	1320						
15	AAATGAAATT CAAAATCTTA CTAATCACTG AATACATTGT GCCACCTACT TAACTT	1376						
,5	(2) INFORMATION FCR SEQ ID NO: 19:							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7363 base pairs							
20	(A) LENGIH: 7363 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double							
	(D) TOPOLOGY: linear							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

TTGTCATACC	AATATTTTGT	AAAATATGGA	ACACAAGTAA	AGTGACGAAA	CCAACGATAA	60
AGATTTTGTT	AAATTGATCT	TCAATTTTCG	CAGCTAATCT	TATTAGATGG	AAGATTAAAA	120
АТАААААТАТ	TAAGATCAAT	ATGACAGAAC	CGATAAAGCC	AAGTTCCTCT	CCAATCACTG	180
AAAAGATAAA	GTCAGTATGA	TTTTCAGGTA	TATAAACTTC	ACCGTGATTG	TATCCTTTAC	240
CTAGTAACTG	TCCAGAACCG	ATAGCTTTAA	GTGATTCAGT	TAAATGaTAG	CCATCACCAC	300
TACTATATGT	ATAGGGGTCA	AGCCATGAAT	TGATTCGTCC	CATTTGATAC	AGTTGGaCAC	360
СТААТАААТТ	TTCAATTAAT	GCGGGTGCAT	ATAGaATACC	TAAAATGACT	GTCATTGCAC	420
CAACaATACC	TGTAATAAAG	ATAGGTGCTA	AGATACGCCA	TGTTATACCA	CTTACTAACA	480
TCACACCTGC	AATAATAGCA	GCTAATACTA	ATGTAGTTCC	TAGGTCATTT	TGCAGTAATA	540
TTAAAATACT	TGGTACTAAC	GAGACACCAA	TAATTTTGAA	AAATAATAAC	AAATCACTTT	600
GGAATGATTT	ATTGAATGTG	AATTGATTAT	GTCTAGAAAC	GACACGCGCT	AATGCTAAAA	660
TTAAAATAAT	TTTCATGAAT	TCAGATGGCT	GAATACTGAT	AGGGCCAAAC	GTGTACCAAC	720
TTTTGGCACC	ATTGATAATA	GGTGTAATAG	GTGACTCAGG	AATAACGAGC	AAGCCTATTA	780
ATAATAGACA	GATTAAGAAA	TACAATAAAT	ATGTATAATG	TTTAATCTTT	TTAGGTGAAA	840
TAAACATGAT	GATACCTGCA	AAAATTGCAC	CTAAAATGTA	ATAAAAAATT	TGTCTGATAC	900

	TTGCTAAAAC	AGCTATAGTG	GCTACTAATA	CCCAGTCTAC	TTTGCGAAnC	aATGCTTATC	1020
	CGGCTGTTGA	CGAGATGAAT	AATTCATTGC	AAACTCCTTT	TATACTCACT	AATGTTTATA	1080
5	TCAATTITAC	ATGACTTTTT	AAAAATTAGC	TAGAATATCA	CAGTGATATC	AGCTATAGAT	1140
	TTCAATTTGA	ATTAGGAATA	AAATAGAAGG	GAATATTGTT	CTGATTATAA	ATGAATCAAC	1200
	ATAGATACAG	ACACATAAGT	CCTCGTTTTT	AAAATGCAAA	ATAGCATTAA	AATGTGATAC	1260
10	TATTAAGATT	CAAAGATGCG	AATAAATCAA	TTAACAATAG	GACYAAATCA	ATATTAATTT	1320
	ATATTAAGGT	AGCAAACCCT	GATATATCAT	TGGAGGAAAA	CGAAATGACA	AAAGAAAATA	1380
15	TTTGTATCGT	TTTTGGAGGG	AAAAGTGCAG	AACACGAAGT	ATCGATTCTG	ACAGCACAAA	1440
	ATGTATTAAA	TGCAATAGAT	AAAGACAAAT	ATCATGTTGA	TATCATTTAT	ATTACCAATG	1500
	ATGGTGATTG	GAGAAAGCAA	AATAATATTA	CAGCTGAAAT	TAAATCTACT	GATGAGCTTC	1560
20	ATTTAGAAAA	TGGAGAGGCG	CTTGAGATTT	CACAGCTATT	GAAAGAAAGT	AGTTCAGGAC	1620
	AACCATACGA	TGCAGTATTC	CCATTATTAC	ATGGTCCTAA	TGGTGAAGAT	GGCACGATTC	1680
	AAGGGCTTTT	TGAAGTTTTG	GATGTACCAT	ATGTAGGAAA	TGGTGTATTG	TCAGCTGCAA	1740
25	GTTCTATGGA	CAAACTTGTA	ATGAAACAAT	TATTTGAACA	TCGAGGGTTA	CCACAGTTAC	1800
	CTTATATTAG	TTTCTTACGT	TCTGAATATG	AAAAATATGA	ACATAACATT	TTAAAATTAG	1860
	TAAATGATAA	ATTAAATTAC	CCAGTCTTTG	TTAAACCTGC	TAACTTAGGG	TCAAGTGTAG	1920
30	GTATCAGTAA	ATGTAATAAT	GAAGCGGAAC	TTAAAGAAGG	TATTAAAGAA	GCATTCCAAT	1980
	TTGACCGTAA	GCTTGTTATA	GAACAAGGCG	TTAACGCACG	TGAAATTGAA	GTAGCAGTTT	2040
	TAGGAAATGA	CTATCCTGAA	GCGACATGGC	CAGGTGAAGT	CGTAAAAGAT	GTCGCGTTTT	2100
35	ACGATTACAA	ATCAAAATAT	AAAGATGGTA	AGGTTCAATT	ACAAATTCCA	GCTGACTTAG	2160
	ACGAÁGATGT	TCAATTAACG	CTTAGAAATA	TGGCATTAGA	GGCATTCAAA	GCGACAGATT	2220
40	GTTCTGGTTT	AGTCCGTGCT	GATTTCTTTG	TAACAGAAGA	CAACCAAATA	TATATTAATG	2280
	AAACAAATGC	AATGCCTGGA	TTTACGGCTT	TCAGTATGTA	TCCAAAGTTA	TGGGAAAATA	2340
	TGGGCTTATC	TTATCCAGAA	TTGATTACAA	AACTTATCGA	GCTTGCTAAA	GAACGTCACC	2400
1 5	AGGATAAACA	GAAAAATAAA	TACAAAATTG	ACTAACTGAG	GTTGTTATTA	TGATTAATGT	2460
	TACATTAAAG	CAAATTCAAT	CATGGATTCC	TTGTGAAATT	GAAGATCAAT	TTTTAAATCA	2520
	AGAGATAAAT	GGAGTCACAA	TTGATTCACG	AGCAATTTCT	AAAAATATGT	TATTTATACC	2580
50	ATTTAAAGGT	GAAAATGTTG	ACGGTCATCG	CTTTGTCTCT	AAAGCATTAC	AAGATGGTGC	2640
	TOCCOCTOCT	א א ב אדעדעד איזיד	GAGGGAGAGG	татасатска	A ATTOTA A COO	CCC COTTA TOTTA TT	2700

	AAACCCTAAA	GTAATTGCCG	TCACAGGGTC	TAATGGTAAA	ACAACGACTA	AAGATATGAT	2820
	TGAAAGTGTA	TTGCATACCG	AATTTAAAGT	TAAGAAAACG	CAAGGTAATT	ACAATAATGA	2880
5	AATTGGTTTA	CCTTTAACTA	TTTTGGAATT	AGATAATGAT	ACTGAAATAT	CAATATTGGA	2940
	GATGGGGATG	TCAGGTTTCC	ATGAAATTGA	ATTTCTGTCA	AACCTCGCTC	AACCAGATAT	3000
	TGCAGTTATA	ACTAATATTG	GTGAGTCACA	TATGCAAGAT	TTAGGTTCGC	GCGAGGGGAT	3060
10	TGCTAAAGCT	AAATCTGAAA	TTACAATAGG	TCTAAAAGAT	AATGGTACGT	TTATATATGA	3120
	TGGCGATGAA	CCATTATTGA	AACCACATGT	TAAAGAAGTT	GAAAATGCAA	AATGTATTAG	3180
15	TATTGGTGTT	GCTACTGATA	ATGCATTAGT	TIGTTCTGTT	GATGATAGAG	ATACTACAGG	3240
	TATTTCATTT	ACGATTAATA	ATAAAGAACA	TTACGATCTG	CCAATATTAG	GAAAGCATAA	3300
	TATGAAAAAT	GCGACGATTG	CCATTGCGGT	TGGTCATGAA	TTAGGTTTGA	CATATAACAC	3360
20	AATCTATCAA	AATTTAAAAA	ATGTCAGCTT	AACTGGTATG	CGTATGGAAC	AACATACATT	3420
	AGAAAATGAT	ATTACTGTGA	TAAATGATGC	CTATAATGCA	AGTCCTACAA	GTATGAGAGC	3480
	AGCTATTGAT	ACACTGAGTA	CTTTGACAGG	GCGTCGCATT	CTAATTTTAG	GAGATGTTTT	3540
25	AGAATTAGGT	GAAAATAGCA	AAGAAATGCA	TATCGGTGTA	GGTAATTATT	TAGAAGAAA	3600
	GCATATAGAT	GTGTTGTATA	CGTTTGGTAA	TGAAGCGAAG	TATATTTATG	ATTCGGGCCA	3660
	GCAACATGTC	GAAAAAGCAC	AACACTTCAA	TTCTAAAGAC	GATATGATAG	AAGTTTTAAT	3720
30	AAACGATTTA	AAAGCGCATG	ACCGTGTATT	AGTTAAAGGA	TCACGTGGTA	TGAAATTAGA	3780
	AGAAGTGGTA	AATGCTTTAA	TTTCATAGAG	ATTAGTCGAG	GGACCTTTTA	CTTATAAAAA	3840
	TGATTTGAAT	TAATACTAAA	AGATTACAAA	GAAGAGGTGG	TTTTGTGTGT	AAATACAAAA	3900
35	TTGCCTTTTT	CTTTTTATGT	тааатстата	AATTTGAAAC	TAAATCAAGG	TTAATTCTAT	3960
	GTAÇÃCACTT	TATATAGGAA	GTAGTTTGAA	TGTTTATATA	ATGTTTTACA	AAAAGATGTA	4020
10	GTATTATAAT	GTCTAATTTC	ACATGTGTTT	CAGTAAAATT	TGTTGTGGAA	TGTTAACGAT	4080
	ATACGTATTT	TATAAAAaAT	TTTTTTATAAT	GATTATTCGA	ATGATGCGTA	ACGCTTACAT	4140
	CTTATCTAAT	GCTAGCTTTT	TGACAAAAAT	ATGACAATCA	ATTAATGTGA	TTCTAATAAA	4200
15	TATTCGCAAA	TTGCTTTATT	GCGATTAAAT	TTTTTTGGTG	GTACTATATA	GAAGTTGATG	4260
	AAATATTAAT	GAACTTATAT	GCAAAAGTAT	ATTGAGAAAT	AAACAGGTAA	AAAGGAGAAT	4320
	TATTTTGCAA	AATTTTAAAG	AACTAGGGAT	TTCGGATAAT	ACGGTTCAGT	CACTTGAATC	4380
50	AATGGGATTT	AAAGAGCCGA	CACCTATCCA	AAAAGACAGT	ATCCCTTATG	CGTTACAAGG	4440
	A A COURT A COLO COLO	CTTCCCCANC	OFFICE A RECORD	TACACCTAAA	ACACCACCAT	TOCOTATTOC	4500

	AGAATTGGCA	ATGCAGGTAG	CTGAACAATT	AAGAGAATTT	AGCCGTGGAC	AAGGTGTCCA	4620
	AGTTGTTACT	GTATTCGGTG	GTATGCCTAT	CGAACGCCAA	ATTAAAGCCT	TGAAAAAAGG	4680
5	CCCACAAATC	GTAGTCGGAA	CACCTGGGCG	TGTTATCGAC	CATTTAAATC	GTCGCACATT	4740
	AAAAACGGAC	GGAATTCATA	CTTTGATTTT	AGATGAAGCT	GATGAAATGA	TGAATATGGG	4800
4.0	ATTCATCGAT	GATATGAGAT	TTATTATGGA	TAAAATTCCA	GCAGTACAAC	GTCAAACAAT	4860
10	GTTGTTCTCA	GCTACAATGC	CTAAAGCAAT	CCAAGCTTTA	GTACAACAAT	TTATGAAATC	4920
	ACCAAAAATC	ATTAAGACAA	TGAATAATGA	AATGTCTGAT	CCACAAATCG	AAGAATTCTA	4980
15	TACAATTGTT	AAAGAATTAG	AGAAATTTGA	TACATTTACA	AATTTCCTAG	ATGTTCATCA	5040
	ACCTGAATTA	GCAATCGTAT	TCGGACGTAC	AAAACGTCGT	GTTGATGAAT	TAACAAGTGC	5100
	TTTGATTTCT	AAAGGATATA	AAGCTGAAGG	TTTACATGGT	GATATTACAC	AAGCGAAACg	5160
20	TTt AGAAGTA	TTanAGAAAT	TTAAAAATGA	CCAAATTAAT	ATTTTAGTCG	CTACTGATGT	5220
	AGCAGCaAGA	GGACTAGATA	TTTCTGGTGT	GAGTCATGTT	TATAACTTTG	ATATACCTCA	5280
	AGATACTGAA	AGCTATACAC	ACCGTATTGG	TCGTACGGGT	CGTGCTGGTA	AAGAAGGTAT	5340
25	CGCTGTAACG	TTTGTTAATC	CAATCGAAAT	GGATTATATC	AGACAAATTG	AAGATGCAAA	5400
	CGGTAGAAAA	ATGAGTGCAY	TCGTCCACCA	CATCGTAAAG	AAGTACTTCA	AGCACGTGAA	5460
	GATGACATCA	AAGAAAAGT	TGAAAACTGG	ATGTCTAAAG	AGTCAGAATC	ACGCTTGAAA	5520
30	CGCATTTCTA	CAGAGTTGTT	AAATGAATAT	AACGATGTTG	ATTTAGTTGC	TGCACTTTTA	5580
	CAAGAGTTAG	TAGAAGCAAA	CGATGAAGTT	GAAGTTCAAT	TAACTTTTGA	AAAACCATTA	5640
25	TCTCGCAAAG	GCCGTAACGG	TAAACCAAGT	GGTTCTCGTA	ACAGAAATAG	TAAGCGTGGT	5700
35	AATCCTAAAT	TTGACAGTAA	GAGTAAACGT	TCAAAAGGAT	ACTCAAGTAA	GAAGAAAGT	5760
	ACAÃAAAAAT	TCGACCGTAA	AGAGAAGAGC	AGCGGTGGAA	GCAGACCTAT	GAAAGGTCGC	5820
10	ACATTTGCTG	ACCATCAAAA	ATAATTTATA	GATTAAGAGC	TTAAAGATGT	AATGTCTTGA	5880
	GCTCTTTTTT	GTTTTCAATA	ATTGATTCTC	TGTAGATATC	aAAGTaCTAA	CGTTTTAAAG	5940
	GTTAAATATT	TAATTGGATT	GAGATCTGTA	TGCGGTTATA	TCaTTCTGTG	TAAATATGGT	6000
15	TCTCCACCAA	ATGTGGTGAG	TATATAATTT	AAAGAACTAT	TTTTAAATTA	AGAATAATCG	6060
	AACATAAATA	AACTTTATGA	AATTTCAGTA	TCATGTTCTT	ATAAAAAACA	ATAGGGCTTT	6120
	TTGctGACGC	TAGTGCGCGA	ТАААТААТАА	GTTGAATATA	AAAAAGATCA	CTGCCAATCA	6180
50	TTCGTTTAAT	GGCAGCGATC	TTTTTTTATTT	AATTATTTCT	CTTTCCACTG	CAACATTTGA	6240
	TA A CCA A TCC	CTCC A TCTCT	ייייייי א א ייי א א ייי א	TOTTTTCCCT	CCTCATCACA	ምጥርጥር እ አ አርጥ	6300

	CCATATATTC	GTTTTAATAT	CATCTCATAA	GTGAGTACTT	TTCCTTTATG	ATTTGACAAT	6420
	AGTTCTAACA	AGCTAAATTC	ATTTGGCGTC	AAATGTACCT	CCTGATTATT	AATAACAACA	6480
5	GATTTGGAGC	CAAAGTCGAT	GCTTAGCAAA	CCGTTAGTAA	ATACAATGTT	AGTTTCTTGA	6540
	TGTGACTTAG	CGATTCTCTC	GATGACTCGT	ATTCGTGCCC	GAAGCTCATC	AACATTAAAA	6600
10	GGTTTAGTCA	TATAGTCATT	CGCACCGTTA	TCTAAAGCTT	GAATAATTGT	TTGTTCTTCT	6660
•	TGTCTTGCAC	TTATTACAAT	GATAGGAATG	TCAGTATGTT	GCCTGATTTC	TGAAATCAAA	6720
	CATAATCCAT	CTTTATCTGG	TAAACCTAAA	TCTAATAAAA	TGACATCTGG	TTTATCAATT	6780
15	TGAATTTTAA	AGTGTGCTTG	TGTGGCATTG	TCGGCTGTAG	TTACATTGTA	АТААТСТААА	6840
	GTTAATGCAA	CATCAAGTAA	ATGTGTGATT	GCGTGATCAT	CTTCAATTAT	CAATATTTTA	6900
	GATTGCATTA	TACGTCTCCT	TCGTTAAAGT	CTGTATATAT	ATTGAAATAG	AATATACTGC	6960
20	CGTGTGGTTG	GTTCGGTTTA	TATTGTAAGT	TTGATTGATG	TTTGTGTAGG	ATAGTCTGTA	7020
	CTAAATATAA	GCCTAGTCCC	ATGCTTTCTT	TTTGGTTATC	TTTAAAATAT	TTATTTGATC	7080
	CTGTGTAAAA	AGGCTCGAAT	ATCTTTTGTt	GTTCTTCTAA	ACTAATTCCA	GGTCCTTCGT	7140
25	CTATAACGGC	AAATTCGATT	TGTTCATAGC	TAGCATAACG	AATAGATAAA	TTGATTTTGG	7200
	TGTCAGTAGA	AGTGTGTTTA	ACTGCATTTT	CAATCAAATT	GAAt AAAgCT	TGTAAAATCA	7260
	ACTTACTGTC	AATGTGTATA	AACtGTAAAT	TTACTGAGGA	TGATACAGTT	ATACGCTTTT	7320
30	TTAAATGGCG	ACGTTCTAAA	ATACATATCG	ATTTCTTATA	CTA		7363
	(2) INFORMA	ATION FOR SE	EQ ID NO: 20):			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10470 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

40

45

50

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTAACAATCG	ATAACCACAA	TACTTCTATT	GTAATTGTTT	AACGATTTCn	CGATTAAAAT	60
CATCTAAATC	GTCTGGTACT	CGACTTGTTA	CAATATTGTT	GTCTACACTA	CTGACTCATC	120
AACTACATGT	GCGCCTGCAT	TTGATAAATC	TTTGCGTACA	TTTAATACTG	CTGTTAACGT	180
ACGACCTTTT	AAATCGTCTG	TATCTATTAG	TATTTGTGGC	CCATGACAAA	TGGCAAATGT	240
TGGTACATCA	TTTTTAGTAA	AGTATTTAGC	AAATGTGCCA	TATCGACCTT	CTGTATCTCC	300
ACGTAAATGA	TCTGGTGAAA	ATCCTCCAGG	AATTAATAAT	GCATCATAAT	CTTCTGGTTT	360

	ATTTGCAGTA	TCTCCAATCA	CTACAGTATT	AAAGCCTGCA	TTCTCTAATG	CCTCTTTAGG	480
	GCTTGAATAT	TCTATATCTT	CAAATTCGTT	TGCTAGAATA	ATTGCTACTT	TTTTAGTCAT	540
5	TGAAAATCAC	CTTTCTATAT	ATCATTGATA	TAATTACTAT	AGACAAGTAA	ATCAGTGATT	600
	AAACATACAA	GATATAAAAA	ATATTAAGCG	ACTGTCGCGA	TATCTAACCC	TAACACATCT	660
	TATGTGGCAT	TTACTTAGAT	ACTAATTTAA	ссттттсттс	AAGCTGATCT	AACAATCCAA	720
10	TCCATTCATC	TATATCTTCA	ACACGTACTT	CATCAGGATT	TACATGATCG	ATATCCTCAA	780
	TAAACTTATT	TAAACGCGCT	TTTATCTGTT	CGATTGTTTG	CTGTTCATTC	ATAAAAAGTT	840
15	AACTCCTTTT	ATTTTGTTTT	CTTTTTCATT	ATTATCCTAA	CAGAAATTGC	GTTAAAGCGA	900
	TATAATCTTA	GCTATATTTA	TGACATTCAA	ATTATTTTGA	CTTTTAAAAA	TCCCCTTTTC	960
	AATTAACTAA	AATTAAGAGA	TAATTTGTTA	CGAGTGATAA	TACGAaGkGG	TaTCATACCG	1020
20	ATATGAACCA	AATAGAAAGA	AGGAAGTTTA	AGACGATGAA	TAGCGTCAAA	TTGAAGCAAC	1080
	CTGTTAGCAT	TTACAATGAT	CCATGGGAAG	TGAAATTTAT	ATACATTTAA	ATTTCATGAG	1140
	ACAATAAACG	TTGATTTAAT	GCGTTTTTTT	GCCTTTTTTA	TTTTCCTTAT	TTTTTCTGTT	1200
25	TTACAACAAA	ATGGTATCAA	AAATGGTATC	ATTTGTAGTT	ATTTTAGCTT	CACATATTAA	1260
	AACAACCACA	CTCCTAAATT	AATAGGTGGT	GTGGTTTTGT	TGGTTGTGTG	GGGATAAAAA	1320
	TAACCGCATC	AGTTAAGATG	CGGTTATCTA	GCAAGGGCCA	CGTATTTATA	AATACGTTTA	1380
30	GAATCTCTTC	GGCAACTTTG	CTATAGACAG	TCTATGCTGT	TACTAAATTA	TACCACCACA	1440
	CAAACCTACT	CCCATTCAGG	AACACAGAGC	TTTGTCGCTC	GTCAGCAACG	TCATATGAAT	1500
	TCTCAGTTCA	TGTTGTGGTG	ACACTTTAAA	CGGTCTGTGC	CAGTAGCGAC	CGAGTCATTT	1560
35	CAAGAATGAC	CATTTCACAT	TTATATTATA	ACACTTGTCG	TGCGTAACTG	TATAGTTTTT	1620
	CAGTTGTATT	TAAAGTTAAG	TTATCTACTT	CGCGCTTTCC	TTGCCTTAAT	TGTGAAATTA	1680
10	CATATTGCGC	TACGCCAGTT	TGTTTGTGAA	TTTGGTAACC	TGTTATATCA	CTTTTGATCA	1740
	ATTCAATTAT	TTTTAATTTA	TAATCACTCA	TATTATCTAC	GTCCATTCTT	TTTATCTAAA	1800
	CAATAAAAAT	GTGTCTTTCT	CCCGATAAAT	AATAACAATG	GTAGGCTTAA	TAAAAACAAT	1860
15	ATTAAATACA	TTTGTTCTGT	CATAATTGAA	AACCTCCAAA	TAATATTATA	TTATATAAGT	1920
	GTAAGGAGGA	GCCATCAGGC	TCCAAGCATA	ATGTTAATCT	TTGTTGTTTG	GCTTTCGGTC	1980
	TAGGTAGCCG	AGATGCCaTT	CTCTAAGTTG	TTTTAACACT	TCTGGAATTA	TCAGTACTGC	2040
50	CAATACTTGA	TGTTCTAGAA	GTGTTTTTAT	TATGTCTAGC	ATGAGGCTTT	TCACCTCCTT	2100
	3 C 3 C 3 C 3 C 3 S 5 S 5 S 5 S	TOTALOTORY	CNACTRACCT	ACAAATATAA	TT A TT A CTT A A A	CAAATCTTTA	2160

	GTTATCTACA	TITAAATCIT	GAGAGAAATG	TTAAAAAGTT	CTAGTAAAAT	AATAGCACAT	2280
	TTTATCTTTA	AATGTAAATA	GAAAGCAGGT	ATGTAACGCA	CCTGCTTAAA	TAGaCATGAC	2340
5	TATGTCATTC	TAACTGATTT	CTCCCCATAA	GTCACCTAAT	ATCTGATTAG	GTGGGGCAGA	2400
	ACCATTCCAT	GTTCTAATAG	GCAAGTAATA	ACGTTGCCCC	TCCCATGTAT	ATCCTACCCA	2460
	AACATGACCA	TCTTGTAACA	TCACTTCTGT	ATAATCACAA	TACCCACCAG	GTTGGAACTG	2520
10	ATAACCCACT	GGACAAGATA	AGAATGGCCC	CACTTTTCTT	ACTGTGATTG	GTTGATTGCC	2580
	GTTTGTGAAT	CTAGCACTTT	CTTCCATGTA	GTAAGTACCA	TATTTATTAC	GTTTCCATGC	2640
15	ACTTGCAACT	GGTTTAACTG	TATTACTTGA	AGCGCTTGAC	TCATTAGAGA	CAGTGGCAAC	2700
	CGGTATTTTA	CCATCCATGT	ACGCCCTAAT	CTGCTTGATA	AAGTAGTCTT	TAAGTTGCAA	2760
	CCGCTTGTCT	TCTGGCAATA	GACCGCGAGT	TACTGGGTCA	AAACCAGTGT	GTAAAACCGA	2820
20	ACTTCTATGA	GGGCATGATG	TTGAAGTAAA	TTCATTGTGC	AATCTGATTG	TATTTCTGTT	2880
	TGCTGGTAAT	CCCCATTTTT	TCAACAATCT	AGCGCATTCT	TGGAAAGTTG	CCTGTTCATT	2940
	TTTTAAGAAT	GTCGCGTTAT	CTGCGCCCAT	TGATTGACAT	ACTTCAATAC	CGTAATAATA	3000
?5	TTTATTACCT	ATTTGATTAG	CGGTATGCCA	ACCTACTTGT	GATTCATCTA	AGGCTTGCCA	3060
	AACTGTGTTG	CCTGATACGT	AACTATGCGC	AATGCCCGCT	TCTAATCTTG	ATAAAGGTGC	3120
	ATTTACTAAT	CCGTTACGAT	ATGCTTCAGC	AGTCGCCCCT	TTGCTCCCTG	CGTCGTTGTG	3180
30	TATAACTATA	CCTTTAGGGT	TACTACCACG	CTTAGGTAGG	TCATAACCTT	TAACCACATC	3240
	TTTGATGATT	TTAAGTTCTA	CTGCTTTAGG	TTGTGGCTTA	GCTGTTTCTT	TTTTAGGTGC	3300
	TTGTGTAGGA	GATTGAACTG	ATCGTGGCGC	TGTCTCACTT	TTAAAATTCG	GACGGATAAA	3360
35	CCACATAGGG	AAATCATAAG	CATGTTGTCG	TCTTGTAACT	TTTTCCCAAC	CCCAGCCGGG	3420
	TTGTFCGATT	CCGTCAGTCC	AGCCACCGCC	TAGCCAATTC	TGCTCATATA	CAATGATGTA	3480
10	ATCTAAAGTT	GCTTCAATTA	CCCATGCAAC	GTGACCATAT	CCAGCACCGT	AGTTGCTACC	3540
	GAATACCACC	ATGTCGCCAG	GTTGTGCTAA	GAAGTCCGGT	GTATTTTGGT	ATACAGTAGC	3600
	TAATCCGTCG	AAGTTGTTAG	CGAACGGAAT	ATCTTTTGCA	CCTAAACCTT	TTAGAAGTAA	366
15	TCCAAACAAA	ACTTTCCAAC	CAGCATTGGC	ATAATCAAAG	CATTGAAATC	CATACCATAA	372
	GTCCACATTG	AATTGTTTTC	CCTCAGAAGT	TTTCAACCAC	TCTATAAACT	CATTTTTAGT	378
	TAATTTTGCT	TGCATTGTCG	CCACCTCCAT	GATGATACTC	ATTCACATCA	AAGCCAACAT	384
50	CGTTAGAGGC	GTCTGTGAAA	GGTTGTGATG	TATCATATTC	TTTTGGTGcT	TTCGCGCTTA	390
	* Tmcooccom	TA A A COTTA COTC	mammama x ma	NTTTTCCN CCT	* * CADAL CAMECA		306

	TTGGGTCAGT	AATAACGCCA	ATACCTGTAA	GTAACGTGAG	GATAGCGCCT	ATAATTGCGC	4080
	TAGCTTGATT	TAATTGAGTA	GATAAATCTA	ATCCGAATAA	ATCCGTGACT	TGCTTGATAA	4140
5	ATAGCAACAA	TGCTCCAACT	AAACCAGTTA	GTACTGCTTT	GTTTTTGAAT	CTCAATTTCC	4200
	AGTTAATATC	CATTTGTTTG	CTCCTTTTAT	CCAAAATAAA	AAAACGACTA	AAAATTAGTC	4260
	GTTTAAAATT	ATTCAATGGT	CAATGTCGGA	GATCCTGAAT	AAACATCACT	TATAGTGACG	4320
10	TACAACATCC	CTGAAGGATT	ACTAAAGTTG	ATATTTTTAC	TTGCAACTCC	GCTATTGACT	4380
	CCTGATATTC	CTAAATCACT	TGACCCTAAA	TTAGTTTGCG	AAATCCTCAT	TATACCGCTA	4440
15	CGTACATTTT	CTATTGTCAC	CTGATAACTT	TTATTGGGTT	CAACTCCATT	TATTGTCCAT	4500
,,,	TTTGCTGTTG	ATTCTTCTAT	GCTATCCGGA	TATTTATTTT	TAGGTAAGGG	TTTTATTACA	4560
	AAAGATGAAG	GCTTTTTCCA	TACTTGGATA	TTTCCAGCAT	ATACTTTTGT	ATATTCTTCA	4620
20	CCTTCGTAAA	TAAACTTCTT	TACATTTTTA	AAATTACCTT	CCATAAAAAT	CACCCTTTAA	4680
	ттааататаа	CGTATTCGGG	TCTTTTTGAT	ATATATAGTT	ATATTCATTT	TCTGTTCCTG	4740
	TCCAAATTTT	AACCGTCGGT	TGAGATGCGC	TTTTTAGTTG	ATATAAATTA	TCCGCTTGTT	4800
25	GTTTAGTAAA	AGCTTGAGAT	GACAAAACAT	ACCGCTCGTC	ATGATTATGA	TTTTTTGGAG	4860
	CATATAAATC	ATTTAGTGTT	TGTTTGAATT	CCTCAAAATC	TTCTGTATTA	ACTTTTGAGC	4920
	CAATCTGTTG	CAATACACTT	TCTGAAATAG	AGTTGTTTTG	TATTGCTTCT	GCTAATTCTC	4980
30	TTAATGTGTT	CATAGATTCA	GGCGCGCTAT	CAACTAGTTC	AGCAATTTTT	GTATCCGTAT	5040
	ACGTTTTAGA	GTCGTTGAGA	GTTGTATCTT	TGATTTTTC	AACTTCTTGC	AATTTATTTT	5100
	CTAACCCTTC	AACATTTGCG	ATATTGATTT	TGTCCAATAA	CTCAGGTTCT	GCTTTGATAT	5160
35	CTGTATCTTT	ACCATCAATT	TGCCACATTT	TAGTGTCAGG	ATTGATTGAT	ACTACAGTAC	5220
	CGTTTTTACC	GGGTGCGCCT	TGTTCTCCTT	TTTTACCTGC	TTCACCTTTT	GCTCCAGGTT	5280
10	GTCCCGGTTC	ACCTTTATCA	CCTTTCGCAC	CTTTAAATCT	ACTTTCATTC	TTTTCGATGT	5340
40	AAGAAATGAC	ATCTTTATCT	ATTTTCTCTT	TAAAGTCTTT	GCTCAATAAA	TCTGTCGCGT	5400
	TATCTTTTAA	AATTCTCGTA	ATAGCATCAT	CTACCAATTT	AACATCGATT	TCTTTTGCTA	5460
4 5	CAGCAGATTC	AATACCACTA	TCAACGATAT	TGAAAGAAAA	GTTTGCGACA	TGTATTTTT	5520
	CTTCTTCTTT	CTCTAAAAAC	AGCTTACAGC	GAACATAACC	AGCGTGTTTG	ATAACCTTTT	5580
	TAGGTATCTT	GTAGGTAAGG	AAACCTTTTA	CAACATCGTC	GATAATAAGG	GGCTCATTTT	5640
50	TGAATATAGA	GCCATCTTCC	ATAAACAAAT	GTAATCTAGG	TGTTAAGCCA	TGTGCTTTTA	57 00
	GATCGATACG	ACCTTGTTTG	TCATTGATAC	CTATTCTTAT	AGATGCTGTA	TTTTCATCTT	5760

	CAACATCTTT	TATTTTGTAC	ATTTACACAC	CTCTTTATTT	ATATTTATCC	CTTGTGAAGT	5880
	AGATACCTTT	TAAGCCGATT	TGTTTATATA	ACTTAGCGAT	TGTACTTGCT	TGATGTTGGC	5940
5	ACCACTCTAT	AGCAGTAGCG	TATTGGTGGG	TAGCTGGATT	CTTAGGATTC	CATCTAATTC	6000
	GGTACAATGT	GTTTTGACCT	TTATTGATGT	AATCCTTTCT	TACGAAGCTA	GCACCGCCCA	6060
10	TGATTGCTTT	TGCTGGAGAT	GTCCAACCTT	TATTCCTTGC	AAACGTCATT	GCGTAGTTAG	6120
.0	GATTGTTGTC	GTAAGCGCCA	ATGCCGAAGT	AGTTGTATAC	TCCATCTTTT	CCGTTAGCGA	6180
	AGTTACTTGT	TCCATATCCA	CTTTCTAAGA	AAGCATGCGC	GATTAAATAA	ATTTCATTAA	6240
15	TGTTGTGCTT	TTTACAAGCT	TCTGCGAACG	CTTTACCTTG	ATTATTCAAT	GTTCCCTTAC	6300
	CTTTAAGTAT	CTTATTAAGT	GCGCTAACTG	AAACACCTTG	ATACTTGCCT	AAATTAAGCA	6360
	TTTGGTAGCA	TTGTGTGTTA	CTTTCCCATA	TACGCTTTAC	ATTCATTGCT	GAACTCGTTT	6420
20	GTGCTCGTGT	AGCGTTAscC	AACCCCAAGC	ATTAGATTTT	TTCGGGTTAC	CTCTTGCCAT	6480
	TTGTTTATCC	AGTGCTTGTT	TGAATGTATA	AGGACTCGTT	TCTGTTATGA	TCTGCGGTTG	6540
	TTTAGATGCC	GAACCATTGT	TGGCTGTTGG	TGACGAGTCT	CTTACATTAG	CTATATCAGC	6600
25	GTTTTTATTA	TCTACCATAA	CTTTTATTCT	AGATTTTGTT	ACTGTTGGCT	TAGTTATAGA	6660
	ATTTAATAAT	TTTTCTCTGT	TTTTAAATAT	ATTAAGTAAT	GCCTTTTCTA	ATGCTTCGTA	6720
	TTTATCTTTA	GGAGGAACAC	CGTTGTCAAT	CATATTCCAA	TTAACATGTT	CCAACATTGA	6780
30	ACGCCAAATG	CTGTCGTCTA	CTTTTAAATT	TTCAATACTT	AGAGGTATCT	CATATTTGGC	6840
	CATCATATCT	ACAGCTACAA	CCATTGCGTG	AATCTCATTA	AAAATAAATT	CATTTTTACT	6900
35	CGCACTATAA	TCTTCACATA	CGTCTATAAC	TATATAATCA	GGTTCATTAG	GAACTTCAAA	6960
33	TACAGCTCTT	CTAGGTGCCC	AAATATTATG	TCTATCAACA	TAAAAGTGGG	GATATTCTAC	7020
	ATCCTGTTTG	TATTTCTTCC	TACTGTTATA	TAAACTTTCT	ACCGAGCTCA	TCGTTTGTGC	7080
40	GTTTCTAATC	ATTATTCCTT	TAGGTTTTTC	GAGTCGTCGA	TTACCTTCTA	CTATAAAGTG	7140
	ATAAATATAT	TCTGGATAAT	TAACCTCTTG	GCTAGAAATA	GTGTACTTTA	TAGTTGTTAC	7200
	ATCTTTCCAA	ATTGGAACTT	TTTTATTATT	TTTTTCGTTA	TCATCACTAT	CATCTTCTGG	7260
45	TTTAGGTGCC	GGTGTAGTTT	TGTCTGGATG	ATATGGTGGT	CTAACAAAAT	ATTTAACCCC	7320
	TCCACCTGGT	CCATCATGAT	AAGAGTGTTT	AATTTTATAA	GGTGGACTTC	CTGTTGCGTT	7380
	ATTTGTATAC	CAGTTTTGAT	CTACGCCATA	CCAATAGTCT	TTTGTGCATG	GTCCCACTAC	7440
50	AATGTTTACA	TGTCCTGCCC	AACCACCAGT	CCAAACACCC	CAGTCGCCTG	GTTGTGGTAC	7500
	AAAATCTTTT	GTATTTCTAA	TTATCTTGAA	ATCTCTACCT	CTATAATTGG	ATTTTTGAGC	7560

	TAAATCCCAG	CATTGTGCTC	CCATTCCAGA	ACCAGGTACA	TCAATAGCTA	TERGETEE	7680
	AGCGATATAT	AACGCCCATT	CAACCACTTC	ACTAGCTGTG	GGCTTTCTAT	TTTTCGGATT	7740
5	AGGTAATCCC	ATGTATGCAC	CTCATTTCAA	TCAAAATAAA	AAGCCAGTGC	CGAAGCACTG	7800
	ACTCTTAACT	GTTATTTACA	TTTACCAAAC	CAGAAGCACG	CCCAGAAGCT	ATATCCTAAA	7860
	ATCCCTTTAA	GCATGGTAAT	CACCTCCTTT	AAATACCAAA	AACAGTTCTT	AGTAAAGCTA	7920
10	TGACAATCGT	ACTGAAGATA	GTCCCTATCA	AACCTAGAAT	CCACATTTTT	ATGTCTCTAA	7980
	TATTCTTGGC	ATTCTTTTCT	TTATTCTTTT	CATCTTCTAC	CTTGTCGCGC	TTTAATTCTT	8040
15	CAAAATTTCT	ATCTAATTTG	TCATAAATCT	TTTCTTGCGC	TCTAAGACTA	TCTTCTATTC	8100
15	TGTCGAATTT	TTCAAACATA	GTCTTATCAT	TTTCTTCTAA	TCGCGTTAAA	CGCCAATCTT	8160
	GTTCATGTCG	TTTGGTAAAT	CCAAACATTA	TGCCACCCAC	TTTATTCAAA	TTAAAAAGCC	8220
20	ACAAGCATTA	CACCTGTGAC	TTTTCATCTT	TTGTTTCTGG	ATATTTTCT	CCAGTGATTA	8280
	AAGCGTATTC	TTCTTTATCG	ATTAAACCCT	TGTCTACGTA	CCACTTAATT	TGCTCGTTTT	8340
	TATAGTAACC	CCAAACATAA	AAAGTTTTAA	TGTCTTTAAA	AGTTGGATAA	ATCATCTTCA	8400
25	TTATTTAAAC	GTCCCCCTCA	GTACTTGTTT	TGTTAGTTTT	CAGTTCAGTC	AACTGTTGTG	8460
	TTAACATAGC	GTTTTGTTGA	GCTAATTCCA	TTGTTAATAC	GTTTACTTGT	GCCACCTGCA	8520
	TTTGCATACT	CGCAACCATT	CCGCGAAGTT	CCTCATCACT	TAAATCTGAC	GCACTTTGTT	8580
30	GGTTTGATGC	ATTCGGTACG	TCTTCTTTTT	CGAAATTGCT	ATTGTATTTA	ATTTCGCCGT	8640
	TAGTGAAAAC	AAACTTTCTA	GGTTCGAACT	CTTCTTTAAA	TTTAATAGGC	ACATTGTTAT	8700
	CATCTACATC	TAAACTATTG	CGTAAACCGC	CAGTATTAAC	GAATCCGATA	ACTTCGTTTT	8760
35	TATCGTTTAC	TGTGATTTTC	ATTATTTCCA	CCCCATAATT	TTAGTTATAG	TAACTTTGTT	8820
	GGCATTCGCT	CCAGAACCTG	ATGTTTTACC	TAAATCAAAG	TACACATCGT	TATCTATTCT	8880
	TAAAGTAGTG	CTACTTGTTT	TGGATAGTAA	GCACTCATAA	ATACCGCCAC	CGTTGCCGTC	8940
40	TGAGTCAACT	ACATTCGCTT	TACTCAATTG	AATCGCGTTA	GGTAATGCGG	TTAGTCCGAA	9000
	TCCCTCAATA	ACGCCACCTG	GATAAGTTCC	ACTTACCAAC	AAAATAGAAT	AGTTTGTGTA	9060
45	CGGTTCAGTT	AGATTGATTG	TTGTACCTAC	ACCATTTGCG	CCACCGTCGA	ACAATACCGT	9120
,,,	TGATTTATGT	TCATTAGGAA	CTGTCCACTG	TTGCTCAAGT	CTGCCGTTTG	TGATTGATCG	9180
	TGTGTAAATC	TTTTTAGAGT	TATAAGGTGT	GAAGTTAAAT	AGCTTGTTTG	TATCATCTTT	9240
50	AACGAATACC	GATAAATAAC	CCTCATAACT	TTCAACGCTA	CCTGGTAAAT	CCGGCACTCT	9300
	TGTTGCATAG	TAATTACCAG	CAGTTAAATA	TCCCAAATCG	CCTTGCGCAT	TATTTAAGTT	9360

	GAATTTATCA	TCTACATACT	GCTTAGCTTG	ATTTAAAGCG	TTGTTAGACG	TTTCTTCAAC	9480
	AAATTGCTTA	GTTAAGTTTC	CATCATTCTT	TTTATAAAAC	GGGTACCATG	TGCCGTAGAT	9540
5	TTTGTATTTT	GTGTACTCAT	CGTTTGAATC	GTCTGGGTAC	CATGTTGCAC	GAGCAGTATT	9600
	ATTATCAACA	ACATAAACAA	CTAACACACC	AGATTTGCTT	GATGTATAAG	TTGATTCATC	9660
10	GAACGAAGAA	CCGTCATCAA	CACCATCTTG	TCCAGGCTTC	TCTAACGTGC	CTATATCCGT	9720
70	CTTTTCTGGC	GCATCTGTTG	CATTAGTAAT	ATGAATAATC	CTAGATGTGT	TAACTGCGCT	9780
	TAAAACGCTA	TCTATGGACT	GCTCATACGA	TTCAATTGCT	TTACCGTAAT	CATCTGTAAG	9840
15	TTTAGACTTT	TGCCAATTCG	TTGTTGAATT	ACCTTTAACA	AGGTCAGCGC	CATTGATTTG	9900
	TTGTTCAACT	TCGTTAACAC	GTTCAAAAAT	CGCTTGCTCT	TTTTCAACTA	TTTTATCGAA	9960
	TTCAGCTGTA	ACAGCTTGTG	TTGCACTAGT	TTGCGTCGCA	GTAATAGCTT	GTATAGCTTC	10020
20	GTTTTGCTTG	ATTTCGATTT	GTTGAATGCC	TTTTGTCGCA	CTATCATTCA	CTTTTGCTAT	10080
	TAACGTTTGT	GTATCAGCCA	TATTTTGCTT	TAATTGGTTA	AAATCTTTAC	CGACAGCTTC	10140
	GATAGTATCT	TGAATAGATT	TGATATAAAC	AAGCTTTGTT	ATACCATCAA	ACCCACTAAC	10200
25	TAAATCATTT	TCAATATTGA	AGCTAAATTG	ACGTTCAACA	ACAACATTAT	TACTCCCGTT	10260
	TTGTGTAAAG	AATGCCTGAG	CATGCACCTT	GCCTGAATGT	TTTAAAAATT	CATTCGGTAT	10320
	CACATACTGC	AAACGCCCAT	TAATTGCGTC	TACTATCGTT	AATTCGTCTG	AAATATAAGC	10380
30	GCCTCTATCT	ACGTTATAAT	CATCGGTTTT	TAAnaCGATA	GATGTTTTAA	CATGTTCAGA	10440
	ACTTATAGAT	AAGGGTCTGT	TATnCTTAGT				10470
	(2) INFORMA	TION FOR SE	Q ID NO: 21	:			
35		QUENCE CHAR A) LENGTH:					
		B) TYPE: nu C) STRANDED		.e			
10	(D) TOPOLOGY	: linear				
	(xi) S	EQUENCE DES	CRIPTION: S	SEQ ID NO: 2	21:		

ATCAGATCTT GAGAATCGAG TTATTAAGTC TATCGAAGAC TTAACTAAAA TCCAACCATT

CATGCCTACA CAAGATTTTG ATTTTAAAAC TAAAGAAATT CAATCAAACA TTTCTGAAGA

AAGATTTATC GAAATGATTC AGTATTTCAA AGAGAAAATA ACAGAAGGGG ATATGTTCCA

AGTTGTGCCA TCAAGAATTT ACAAATATGC GCATCATGCT AGTCAGCATT TAAATCAACT

TTCGTTTCAA CTGTATCAAA ATTTAAAACG ACAAAACCCA AGTCCATATA TGTATTATCT

60

120

180

240

300

55

	TCAAATTGTA	ACAACTAATC	CTATTGCAGG	TACGATTCAA	CGTGGTGAGA	CGACACAAAT	420
	AGATAATGAG	AATATGAAAC	AACTACTTAA	TGATCCAAAA	GAATGCAGCG	AACATCGTAT	480
5	GCTAGTTGAT	TTAGGACGTA	ATGATATTCA	TAGAGTAAGT	AAAATCGGTA	CCTCAAAAAT	540
	TACTAAATTA	ATGGTTATTG	AAAAATATGA	ACATGTTATG	CATATCGTAA	GTGAAGTCAC	600
	AGGTAAAATA	AATCAAAATT	TATCGCCAAT	GACAGTTATT	GCGAATTTAT	TACCAACAGG	660
10	TACCGTTTCA	GGTGCACCAA	AATTACGTGC	AATTGAAAGA	ATATATGAAC	AATATCCACA	720
	TAAACGGGGC	GTTTATAGTG	GTGGTGTTGG	ATACATAAAT	TGTAATCATA	ACTTAGATTT	780
15	TGCATTAGCA	ATTCGAACGA	TGATGATAGA	TGAGCAGTAT	ATCAACGTAG	AAGCTGGTTG	840
	TGGCGTTGTA	TATGATTCTA	TTCCTGAAAA	AGAACTGAAT	GAAACGAAAT	TGAAAGCTAA	900
	AAGCTTATTG	GAGGTGAGCC	CATGATCTTA	GTTGTAGATA	ATTATGATTC	CTTTACATAT	960
20	AACCTAGTGG	ATATTGTTGC	TCAACATACT	GACGTCATTG	TTCAATACCC	TGATGATGAT	1020
	AATGTGCTGA	ATCAATCGGT	GGACGCTGTT	ATTATATCTC	CTGGTCCAGG	GCATCCATTA	1080
	GACGATCAAC	AGTTAATGAA	AATCATATCA	ACCTATCAAC	ACAAACCCAT	TTTAGGTATT	1140
25	TGTTTAGGGG	CTCAGGCACT	GACTTGTTAC	TACGGTGGAG	AAGTCATTAA	AGGCGACAAG	1200
	GTTATGCACG	GCAAAGTTGA	TACACTAAAG	GTTATATCGC	ATCATCAACA	TCTGTTATAT	1260
	CAAGATATAC	CAGAACAGTT	TTCAATTATG	AGATATCATT	CATTAATAAG	TAACCCTGAC	1320
30	AATTTTCCAG	AAGAATTGAA	AATTACTGGA	CGTACCAAAG	ATTGTATACA	GTCATTCGAG	1380
	CATAAAGAAA	GACCGCATTA	TGGTATTCAG	TACCATCCTG	AATCATTTGC	TACAGACTAT	1440
	GGTGTCAAAA	TAATTACAAA	TTTCATTAAT	CTAGTGAAGG	AAGGATGAAA	ACCATGACAT	1500
35	TACTAACAAG	AATAAAAACT	GAAACTATAT	TACTTGAAAG	CGACATTAAA	GAGCTAATCG	1560
	ATATÁCTTAT	TTCTCCTAGT	ATTGGAACTG	ATATTAAATA	TGAATTACTT	AGTTCCTATT	1620
10	CGGAGCGAGA	AATCCAACAA	CAAGAATTAA	CATATATTGT	ACGTAGCTTA	ATTAATACAA	1680
‡O	TGTATCCACA	TCAACCATGT	TATGAAGGGG	CTATGTGTGT	GTGCGGCACA	GGTGGTGACA	1740
	AGTCAAATAG	TTTCAACATT	TCAACGACTG	TTGCTTTTGT	TGTAGCAAGT	GCTGGCGTAA	1800
15	AAGTTATAAA	ACATGGLAAT	AAAAGTATTA	CCTCaAATTC	aGGTAGTACG	GATTTGTTAA	1860
	ATCAAATGAA	CATACAAaCA	ACAACTGTTG	ATGATACACC	TAACCAATTA	AATGAnAAAG	1920
	ACCTTGTATT	CATTGGTGCA	aCTGAATCAT	ATCCAATCAT	GAAGTATATG	CAACCAGTTA	1980
50	GAAAAATGAT	TGGAAAGCCT	ACAATATTAA	ACCTTGTGGG	TCCATTAATT	AATCCATATC	2040
	A COTTA A COTTA	TODARTOOTA	CCCCTCTTTTC	ATCCTACAAA	CTTABACTTA	COTOCOTAAAA	22.00

ATTACACATT	AAATGCGACT	GATTATGGTT	TGAAACATGC	GCCGAATAGT	GATTTTAAAG	2280
GCGGTTCACC	TGAAGAAAAT	TTAGCAATCT	CCCTTAATAT	CTTGAATGGT	AAAGATCAGT	2340
CAAGTCGACG	TGATGTTGTC	TTACTAAATG	CGGGTTTAAG	CCTTTATGTT	GCAGAGAAAr	2400
TGGATACCAT	CGCAGAAGGC	ATAGAACTTG	CAACTACATT	GATTGATAAT	GGTGAAGCAT	2450
TGGAAAAATA	CCATCAAATG	AGAGGTGAAT	AATATGACGA	TTTTATCAGA	AATTGTTAAA	2520
TATAAACAGT	CACTTTTACA	AAATGGCTAT	TATCAAGACA	AACTTAATAC	CTTGAAAAGT	2580
GTGAAGATTC	AGAATAAAAA	ATCTTTTATA	AACGCAATTG	AGAAAGAACC	AAAGCTAGCA	2640
ATTATTGCAG	AAATTAAATC	GAAGAGTCCT	ACAGTTAATG	ACTTACCTGA	ACGAGATTTA	2700
TCGCAACAAA	TCTCAGATTA	TGACCAATAT	GGTGCAAATG	CCGTGTCCAT	TTTAACTGAT	2760
GAAAAGTACT	TTGGTGGTAG	TTTTGAAAGA	TTACAAGCAT	TGACGACAAA	AACAACATTA	2820
CCCGTATTAT	GCAAAGACTT	TATTATAGAC	CCGCTTCAAA	TTGATGTTGC	TAAACAAGCT	2880
GGTGCATCTA	TGATTTTATT	GATCGTTAAC	ATCTTATCTG	ATAAACAATT	GAAAGATTTA	2940
TATAACTACG	CTATATCGCA	AAATCTAGAA	GTGTTAGTTG	AAGTACATGA	TCGCCATGAA	3000
TTAGAACGTG	CCTATAAGGT	TAATGCTAAA	TTGATTGGTG	TAAATAACAG	GGACTTAAAA	3060
CGATTTGTTA	CAAATGTGGA	ACATACAAAT	ACTATTTTAG	AAAATAAAA	AACAAATCAT	3120
TATTATATTT	CTGAAAGTGG	TATTCACGAT	GCATCTGATG	TAAGAAAAAT	CTTGCATAGT	3180
GGTATCGATG	GCTTACTAAT	AGGTGAGGCG	CTTATGCGTT	GTGACAATCT	ATCTGAATTT	3240
TTACCACAAC	TGAAAATGCA	AAAGGTGAAG	TCATGATGAA	ATTGAAATTT	TGTGGCTTTA	3300
CATCAATAAA	GGATGTTACA	GCGGCCAGTC	AATTACCTAT	TGATGCGATA	GGTTTCATCC	3360
ATTATGAAAA	AAGTAAAAGG	CATCAAACAA	TTACCCAAAT	AAAAAAGTTA	GCGTCTGCTG	3420
TTCCAAATCA	TATCGATAAA	GTATGTGTCA	TGGTAAATCC	TGATTTAACA	ACAATTGAAC	3480
ACGTATTAAG	CAATACGTCA	ATTAACACAA	TACAGTTACA	CgGCACAGAA	TCTATTGATT	3540
TTATACAGGA	AATTAAAAA G	AAATATTCAA	GCATTAAAAT	CACTAAAGCT	TTAGCTGCaG	3600
ATGGAAAACm	TWATCCCAAA	caTtAAtnAA	tnTTAgGGGG	TCCGTGG		3647
	GCGGTTCACC CAAGTCGACG TGGAAAAATA TATAAACAGT GTGAAGATTC ATTATTGCAG TCGCAACAAA GAAAAGTACT CCCGTATTAT GGTGCATCTA TATAACTACG TTAGAACGTG CGATTTGTTA TATTATATTT GGTATCGATG TTACCACAAC CATCAATAAA ATTATGAAAA TTCCAAATCA ACGTATTAAG	GCGGTTCACC TGAAGAAAAT CAAGTCGACG TGATGTTGTC TGGATACCAT CGCAGAAGGC TGGAAAAAATA CCATCAAATG TATAAACAGT CACTTTTACA GTGAAGATTC AGAATAAAAA ATTATTGCAG AAATTAAATC TCGCAACAAA TCTCAGATTA GAAAAGTACT TTGGTGGTAG CCCGTATTAT GCAAAGACTT TATAACTACG CTATAATCGCA TTAGAACGTG CCTATAAGGT CGATTTGTTA CAAAATGTGGA TATTATATTT CTGAAAGTGG GGTATCGATG GCTTACTAAT TTACCACAAC TGAAAATGCA CATCAATAAA GGATGTTACA ATTATGAAAA GGATGTTACA ATTATGAAAA AAGTAAAAAGG TTCCAAAATCA TATCGATAAA ACGTATTAAG CAATACGTCA TTATACAGGA AATTAAAAAAG	GCGGTTCACC TGAAGAAAAT TTAGCAATCT CAAGTCGACG TGATGTTGTC TTACTAAATG TGGATACCAT CGCAGAAGGC ATAGAACTTG TGGAAAAATA CCATCAAATG AGAGGTGAAT TATAAACAGT CACTTTTACA AAATGGCTAT GTGAAGATTC AGAATAAAAA ATCTTTTATA ATTATTGCAG AAATTAAATC GAAGAGTCCT TCGCAACAAA TCTCAGATTA TGACCAATAT GAAAAGTACT TTGGTGGTAG TTTTGAAAGA CCCGTATTAT GCAAAGACTT TATTATAGAC GGTGCATCTA TGATTTATT GATCGTTAAC TATAACTACG CTATATCGCA AAATCTAGAA TTAGAACGTG CCTATAAGGT TAATGCTAAA CGATTTGTTA CAAATGTGGA ACATACAAAT TATTATATTT CTGAAAGTGG TATTCACGAT GGTACCACAC TGAAAATGCA AAAGGTGAAG CATCAATAAA GGATGTTACA GCGGCCAGTC ATTATGAAAA AAGTAAAAGG CATCAAACAA TTCCAAAATCA TATCGATAAA GTATGTCA ACGTATTAAG CAATACGTCA ATTAACACAA TTCCAAAATCA TATCGATAAA GTATGTGTCA ACGTATTAAG CAATACGTCA ATTAACACAA	GCGGTTCACC TGAAGAAAAT TTAGCAATCT CCCTTAATAT CAAGTCGACG TGATGTTGTC TTACTAAATG CGGGTTTAAG TGGATACCAT CGCAGAAGGC ATAGAACTTG CAACTACATT TGGAAAAATA CCATCAAATG AGAGGTGAAT AATATGACGA TATAAACAGT CACTTTTACA AAATGGCTAT TATCAAGACA GTGAAGATTC AGAATAAAAA ATCTTTATA AACGCAATTG ATTATTGCAG AAATTAAATC GAAGAGTCCT ACAGTTAATG CGCAACAAA TCTCAGATTA TGACCAATAT GGTGCAAATG GAAAAGTACT TTGGTGGTAG TTTTGAAAGA TTACAAGCAT CCCGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA GGTGCATCTA TGATTTTATT GATCGTTAAC ATCTTATCTG TATAACTACG CTATATCGCA AAATCTAGAA GTGTTAGTTG CGATTTGTTA CAAATGTGGA ACATACAAAT ACTATTTAG CGGTATCATT CTGAAAGTG TAATGCTAAA TCGATTGGTG CGATTTGTTA CAAATGTGGA ACATACAAAT ACTATTTTAG GGTATCGATG GCTTACTAAT AGGTGAGGCG CTTATGCGTT TTACCACAAC TGAAAATGCA AAAGGTGAAG TCATGATGAA CATCAATAAA GGATGTTACA GCGGCCAGTC AATTACCTAT ATTATGAAAA AAGTAAAAGG CATCAAACAA TTACCCAAAT TTCCAAATCA TATCGATAAA GTATGTGTCA TGGTAAATCC ACGTATTAAG CAATACGTCA ATTACACAA TACAGTTACA TTCCAAATCA TATCGATAAA GTATGTGTA TGGTAAATCC ACGTATTAAG CAATACGTCA ATTAACACAA TACAGTTACA TTATCAAGGA AATTAAAAAG AAATATTCAA GCATTAAAAT	GCGGTTCACC TGAAGAAAAT TTAGCAATCT CCCTTAATAT CTTGAATGGT CAAGTCGACG TGATGTTGTC TTACTAAATG CGGGTTTAAG CCTTTATGTT TGGATACCAT CGCAGAAGGC ATAGAACTTG CAACTACATT GATTGATAAT TGGAAAAATA CCATCAAATG AGAGGTGAAT AATATGACGA TTTTATCAGA TATAAAACAGT CACTTTTACA AAATGGCTAT TATCAAGACA AACTTAATAC GTGAAGATTC AGAATAAAAA ATCTTTTATA AACGCAATTG AGAAAGAACC ATTATTGCAG AAATTAAATC GAAGAGTCCT ACAGTTAATG CCGTGTCCAT GAAAAGTACT TTGGTGGTAG TTTTGAAAGA TTACAAGCAT TGACGACAAA CCCGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA TTGATGTTGC GGTGCATCTA TGATTTTTTT GATCGTTAAC ATCTTATCTG ATAAACAATT TATAACTACG CTATATCGCA AAATCTAGAA GTGTTAGTTG AAAACAATT TATAACTACG CCTATAAGGT TAATGCTAAA TTGATGTTG AAAACAATT TATAACTACG CCTATAAGGT TAATGCTAAA TTGATGTTG AAAAACAAT CCGATTTGTTA CAAAATGTGGA ACATACAAAT ACTATTTTAG AAAATAAAAA TATTATATTT CTGAAAGTGG TATTCACGAT GCATCTGATG TAAGAAAAAA TATTATATTT CTGAAAGTGG TATTCACGAT GCATCTGATG TAAGAAAAAA TATTAAAATAA GGATGAAAA AAAGGTGAAG TCATGAATGA ATTGAAATTT CAACAAAA GGATGTTACA GCGGCCAGTC AATTACCTAT TGATGCGATA ATTAAAAAAA AAGTAAAAAG CATCAAACAA TTACCCAAAT AAAAAAGTTA ATTATGAAAAA AAGTAAAAAG CATCAAACAA TTACCCAAAT AAAAAAGTTA ACCGAATCAA TATCGATAAA GTATGTGTCA TGGTAAATCC TGATTTAACCA ACGTATTAAG CAATACGTCA ATTAACCACA TCGGTTACCA TGATTTAACCA ACGTATTAAG CAATACCATA ATTACCACAA TACCGTTACACAA CGGCACAGAA	ATTACACATT AAATGCGACT GATTATGGTT TGAAACATGC GCCGATTAGT GATTTTAAAG GCGGTTCACC TGAAGAAAAT TTAGCAATCT CCCTTAATAT CTGAATGGT AAAGACAGT CAAGTCGACG TGATGTTGTC TTACTAAATG CGGGTTTAAG CCTTTATGTT GCAGAGAAAF TGGATACCAT CGCAGAAGGC ATAGAACTTG CAACTACATT GATTGATAAT GGTGAAAGAT TGGAAAAATA CCATCAAATG AGAGGTGAAT AATATGACGA TTTTATCAGA AATTGTTAAA TATAAACAGT CACTTTTACA AAATGGCTAT TATCAAGACA AACTTAATAC CTTGAAAAGT GTGAAGATTC AGAATAAAAA ATCTTTTATA AACGCAATTG AGAAGAACC AAAGCTAGCA ATTATTGCAG AAATTAAATC GAAGAGTCCT ACAGTTAATG CCGTGTCCAT TTTAACTGAT TGGCAACAAA TCTCAGATTA TGACCAATAT GGTGCAAATG CCGTGTCCAT TTTAACTGAT GAAAAGTACT TTGGTGGTAG TTTTGAAAGA TTACAAGCAT TGACGACAAA AACAACATTA CCCGTATTAT GCAAAGACTT TATTATAGAC CCGCTTCAAA TTGATGTTGC TAAACAAGCT GGTGCATCTA TGATTTTATT GATCGTTAAC ATCTTATCTG ATAAACAATT GCACAAGAATTA CCCGTATTAT CAAATGCCA AAATCTAGAA GTGTTAGTTG AAATAAAAA ACCAATTA TATAACTACG CTATAACGT TAATGCAAA TACATTTTATG AAATAAAAA AACAAATCAT TATAACTACG CTATAAGGT TAATGCAAAT ACTATTTTAG AAAATAAAAA AACAAATCAT TATTATATTT CTGAAAATGC ACATACAAAT ACTATTTTAG AAAATAAAAA AACAAATCAT TATTATATTT CTGAAAATGCA AAAGGTGAAG CATTCAGATG TAAGAAAAT CTTGCATAGT TATACACAAC TGAAAATGCA AAAGGTGAAG CATTCAGAT TAAGAAAAT CTTGCATAGT TTACCACAAC TGAAAATGCA AAAGGTGAAG TCATGATGAA ATTGAAATCT TGTGCATAGT TTACCACAAC TGAAAATGCA AAAGGTGAAG TCATGATGAA ATTGAAATTT TGTGGCTTTA CATCAAATAAA AGGTAAAAGG CATCAAACAA TTACCTAT TGATGCGATA GTTCATCC ATTATGAAAA AAGTAAAAG CATCAAACAA TTACCTAAT TGATGCGATA GGTTTCATCC ATTATGAAAA AAGTAAAAG CATCAAACAA TTACCCAAAT AAAAAAGTTA GCGTCTGCTG TTCCAAAATCA TATCGATAAA GTATGTGTCA TGCGTAAATCC TGATTTAACA ACAATTGAAC ACGTATTAAG CAATACAAA TACAGATACAA TACAGTTACC TGATTTAACA ACAATTGAAC ACGTATTAAG CAATACAAA TACAGATACA TACAGGTTACA ACAATTGAAC TTACCCAAAT AAAAAAGGTTA ACCATTGATT TTATACAGGA AATTAAAAAG AAATATTCAA GCATTAAAATC CACTAAAAC ACAATTGAAC ACGTATTAAG CAATACAAA TACAGATAAA TACAGATA TACACAAAT TACACAAAT TACCCAAAT TACACAGAA TCTATTGATT TTATACAGGA AATTAAAAAG AAATATTCAA GCATTAAAAT CACTTAAAACG TTACCTGCG TTATACAGGA AATTAAAAAG AAATATTCAA CAATTAAAAC TACAGTTAAAA CAATTGAAC TTACCTAAA TACAGAAT TACACAAAT TA

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5966 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	CCACCTTGAC	CACCTTTACG	TGGAATCTTT	TCmCCTkGAG	CAACaTCGaT	AATATATATT	60
5	GAAAgTCAAC	AAGTTCTGGA	CTAAATGTTG	CTGCTAAGTT	ATCGCCACCA	GATTCTATGA	120
	AAATTAGTTC	TATATCGTCA	TGACGTTCTA	ATAATTCGTC	TATTGCTGCA	AAGTTCATAG	180
10	ATGCATCTTC	ACGAATCGCA	GTATGAGGAC	ATCCACCAGT	TTCAACACCA	ATGATACGAC	240
70	TTTCAGGTAG	AACTCCTGAA	TTTACTAATA	TCTTTTCGTC	TTCTTTTGTA	TATATATCAT	300
	TTGTAATAAC	GCCGATACTC	ATTTCTTTTG	AAAGACGTTT	TACAACTTTT	TCAATTAATT	360
15	GTGTTTTACC	TGCACCTACA	GGACCACCAA	TACCAATTTT	AATCGGATTT	GCCACAATTA	420
	TAACCTCCTA	TGATATGAAA	tTCTAACATT	GaCGTTCTCA	TGCGCCATTT	GATTTAGTTC	480
	TAAACCAGGC	GCTGTCATGC	CAAAATCTGC	TTCTTTTAAT	TCGAAAATCT	GCTTTCTTGT	540
20	TCCTTCTATA	TAAGGAATCA	TGTGAGTAAC	TATCTTTTGA	CCAGCAGTTT	GTCCAAGTGG	600
	AATAGCACGA	ACAGCATTTT	GAGTTAAACT	TGAAACATTT	TGATATAAAT	AGTAATCAAT	660
	AATCGTTTCA	ATATCTACAC	CTAAATGATG	GCCTAGCATA	GTAAAACAAA	TAGCTGGATT	720
25	TnACTTTGCT	TTCTTATCTT	GCATTTGTTG	ATGATACCAA	GCAATCCATG	GGCTATTATA	780
	AAGTTCTAAA	GCCAATTTAA	CCATGCGAGT	CCCCATTTGT	kTTGCACCAA	CACGTGTTTC	840
30	TTTAGGTAAG	TTTTGrACAr	ACATCAGTTT	ATCTATGTGT	AATACTTTTT	GTGTATCATC	900
	ATTTTCCAAT	GCATCATAAA	CTAaACGCAT	GGCTAAACCA	TCAGAATAGG	TAAGTTGCTC	960
	TTGTAAAAAC	ATTTTTAACC	AAGCAATAAA	AGTATGATCG	TCATGAATTA	TATTTCGTTG	1020
35	AATATATGTT	TCAAGACCAA	ATGAATGACT	GAAAGCACCT	GTTGGAAACT	GTGAATCACA	1080
	GAACTGAAAT	AATCTTAAGT	GTGTATGATC	AATCATGAGA	ATGCCCTATA	TGTCTGAAAG	1140
	CCTTATTAAC	TITACGGTCT	TCTCGAACAT	ATGGGATGCC	TAAACTTTTT	AATAAATCTT	1200
40	CAACTAAATA	ATCATATTGT	ACTAGCATTT	CAGTCTCTGT	AAATTGTGCT	GGCAAATGAC	1260
	GATTTCCTAA	TTGATGGGCT	ATATCTCCCA	TTTCTTGCAA	TGTTCTTGGT	TGAATCACTA	1320
45	AAAGATCTTC	TGAATTAACA	TCCACAATAA	TCATATTATG	GTCATCTGCG	TATAAAATAT	1380
	CTCCATATTG	TAAGTCAATA	GGTTGTTTTA	AACGAATGCC	TATTTCAGTG	CCATGGTCTG	1440
	TAACGACTCT	TTGAATACGT	TTAACAAGAT	CTGAATTTTC	AAGGTATACT	TTTTCGACGT	1500
50	GCTTTTGTTT	TTCTGAATTT	GACAAATTGG	CAATATTGCC	TTGGATTTCT	TCAACAATCA	1560
	TTCTATGTTC	CTCCTAGAAT	AAGAAGTATC	TTTGAGTTAA	TGGTAACTCA	GTTGCTGCAT	1620
	TACTTGTAAT	TTTTTCTCCA	TCTACATATA	CTTCATATGT	TTGTGGATCA	ACGTCTAATT	1680

	GACGCACCAT	GCGTTTTAAA	TTTAATGCAC	GATTGATACC	ATTTTCATAA	GCAGTTTTAG	1800
	ACACGAATGT	CATTGACGTA	CTTGTAAGGT	TTCCGCCGTA	TTGACCATAC	ATTTTACGGT	1850
5	ACTTCATCGG	TTCAGATGTA	GGTATAGAAC	CATTTGCATC	GCCATTTACG	GCAGAGTTAA	1920
	TTAATCCGCC	CTTTACAACT	AATTCAGGTT	TAACCCCAAA	GAAAATTGGG	TCCCATAAGA	1930
10	CAATGTCAGC	TAGTTTGCCC	GGCTCGATAG	ATCCTACATA	TTCAGAAATA	CCATGTGTAA	2040
	TTGCTGGGTT	AATTGTATAT	TTAGCGATAT	AACGTTTGAT	GCGATTATTA	TCATTATGTT	2100
	CAAAATCACC	ATCTAAAGGA	CCACGTTGTT	CTTTCATGCG	ATGTGCTACT	TGCCATGTTC	2160
15	GTGTAATTAC	TTCACCTACA	CGGCCCATTG	CTTGTGAATC	GGAACTAATC	ATACTGAATA	2220
	CACCCATATC	TTGCAGAACA	TCTTCTGCTG	CAATCGTTTC	TTTACGAATA	CGTGAATCTG	2280
	CGAATGCGAT	ATCTTCAGGA	ATAGCCGCAT	TTAAATGGTG	AGTAATCATT	ACCATATCTA	2340
20	AATGTTCATC	TACAGTATTA	TGTGTATAAG	GCAAAGTTGG	ATTTGTAGAT	GAAGGTAAAA	2400
	TATTTGAAAA	TGCAGCGGAT	TTAATTAAAT	CAGGCGCATG	ACCGCCACCA	GCACCTTCAG	2460
25	TATGGTACAT	ATGAAGTACA	CGGTCTTTAA	CAGCAGCCAT	TGTGTCTTCC	ATAAATCCTG	2520
23	CTTCATTTAA	AGTATCTGCA	TGTAATGCAA	TTTGAACATC	AAATTCATCA	GCAACATCTA	2580
	ATGCATGACT	CAAAGCAGAT	GGTGTTGCAC	CCCAGTCTTC	ATGTACTTTT	AATCCAATTG	2640
30	CTCCGGCATT	GATTTGTTCA	ATGAGTGCAG	TTGGATTTGT	TGCTTGTCCT	TTACCTGTAA	2700
	AACCGACATT	AATCGGTAAA	CcTTCGGCAG	CTTCTAACAT	TCTATGAATA	TGCCATGGAC	2760
	CTGGAGTTAC	AGTTGTTGCT	TTAGAACCTT	CTGAAGCACC	AGTACCACCA	CCAATATGAG	2820
35	TCGTAATACC	ACTTTCTAAT	GCGACCTCTG	CTTGTTCAGG	ATTAATAAAA	TGAACATGAG	2880
	TATCAATACC	ACCAGCAGTG	ACGATTTTAC	CTTCAGCGGC	AATGATATCT	GTTGTTGAAC	2940
	CTATÃATAAT	GTCGACATTA	TCCATTATAT	CTGGGTTGCC	GGCATTACCT	ATGGCGAAAA	3000
40	TATAACCATT	TTTAATGCCT	ATATCAGCTT	TAACCACTTT	ATCGTAATCG	ATAATAACGG	3060
	CATTAGAAAT	GACAAGGTCT	GCAACGTTCA	CGTCATCACG	TGTTACACGA	GGATTTTGCG	3120
45	CCATACCGTC	TCTAATAGAT	TTACCACCAC	CAAAAGTAGC	TTCTTCACCA	TAAACCGCAT	3180
	AGTCTTTTTC	TATTTGAGCA	AATAGATTCG	TATCACCTAA	ACGAATGGAA	TCTCCAACAG	3240
	TTGGACCGTA	TAAGCTCGTA	TATTGATTTT	GCGTCATTTT	AAAGCTCATG	ATCTTTTTCC	3300
50	TCCTTTTTTA	TTCACGTTTT	CAGCACCGTT	ATCTCCGAAT	ACACCTGCAT	ATTCATCATT	3360
	TTCATCAGTT	GGGCGATAGA	CACGTGACTC	ATCGATAGGA	CCATTGACCA	TACCACGAAA	3420
	ACCAAAAATT	TTACGTTTGC	CAGCATATTC	AACTAATTGA	ACTICTTTTT	TATCCCCAGG	3480

	TTCGAAATCT	AATGCTGCAT	TTGCTTCATA	AAAATGAAAA	TGTGAGCCCA	CTTGAATTGG	3600
_	TCGATCTCCT	GTATTTTCAA	CTTCGATAAC	TGTTTCAGGA	TGATGGTTAT	TAATTTCAAC	3660
5	CTCTGTACTT	TTTGTAATAA	TTTCTCCTGG	TATCATTTGA	CTGCCTCCTT	TAAACAATAG	3720
	GGTGATGTAC	TGTGATTAAC	TTAGTACCAT	CGGGGAACGT	AGCCTCGATT	TCGATATCTG	3780
10	TAATCATGTG	TTCGACACCA	TCCATGACAT	CTTCTTTGTT	TAGAATTTGT	CTACCATAAC	3840
	TCATTAACTC	TGCAACGGTC	TTACCATCGC	GTGCACCTTC	TAATAATTCA	TCGCTGATTA	3900
	AAGCTAATGC	CTCAGGATGA	TTTAGTTTCA	AACCACGTGC	TTTACGACGA	CGTGCAACTT	3960
15	CCGCCGCCAC	TACAATCATT	AATTTGTCTT	GCTCTCGTTG	TGTAAAATGC	AAATTAAAAC	4020
	CCCCAATTTC	ATATTAGATA	CaATTTACAA	AATTTATATT	AATCCTAATT	GTTGTGATAA	4080
	ACAAGTAATA	TACAAAGTTC	AATGTGTAAT	TAGAAAATTA	TATTTTTAGC	ATATCCGATA	4140
20	TTGAAGCAAA	CAATCTAATC	GAAAACAAAT	AGTGGAATAT	ATTTATGTAA	AAACCAAAAT	4200
	AGTTTTTAAT	ATAACTTTTC	ATAGAATAGT	AGTATATTAA	TGAGTAATGA	TTCAAAGGAA	4260
25	AGGTGAAAGA	TTTGAAGATA	ATAGATGTGC	TTTTGAAAAA	TATATCTCAG	GTTGTGTTAA	4320
	TTAGTAATAA	ATGGACAGGA	TTATTTATCT	TAATAGGATT	ATTTGTAGCC	GATTGGACAA	4380
	TTGGATTAGC	GGCTATTGTA	GGTAGCATCA	TCGCCTATAC	TTTTGCGCGT	TTTATAAATT	4440
30	ATAGTGAGGC	AGAGATTAAT	GATGGGTTAG	CTGGATTTAA	TCCAGTGCTA	ACTGCCATTG	4500
	CGTTAACAAT	CTTTTTAGAT	AAGTCAGGAT	TAGATATTGT	TATAACAATG	ATAGCAACTT	4 560
	TATTAACGTT	ACCAGTTGCT	GCTGCAGTGA	CAGAAGTTTT	AAGACCATAT	AAAGTTCCGA	4620
35	TGCTGACGAT	GCCTTTTGTC	ATTGTGACTT	GGTTTACAAT	TTTACTTTCA	GGACAGGTTA	4680
	AATTTGTAGA	TACATCGTTA	AAGTTAATGC	CTCAAAACAT	TGAAACGGTT	AATTTTAGCA	4740
	ACAATGATAG	AATaCATTTC	ATTCAGTCAT	TATTTGAAGG	ATTCAGTCAA	GTATTTATCG	4800
10	AAGCGAGTGT	AATTGGTGGC	GTATGTATTT	TAATCGGCAT	ATTGATAGCA	TCAAGAAAAG	4860
	CAACACTCTT	AGCTGTTATA	GCTAGTTTGT	TAAGCTTTAT	CATTGTAGCT	CTATTAGGTG	4920
1 5	GTAATTATGA	TGATATTAAT	CAGGGATTAT	TCGGTTATAA	CTTTGTATTA	ATGGCAATCG	4980
	CACTAGGATA	TACATTTAAA	ACAGCGATTA	ACCCTTATAT	TTCGACTTTT	TTAGGTGTGT	5040
	TATTAACAGT	AGTGGTGCAA	CTAGGTACAA	CAACATTGCT	TGAACCGTTT	GGCTTACCTG	5100
50	CATTAACATT	GCCATTTATT	ATCGTGACAT	GGATTTTATT	ATTTGCTGGT	ATTAAACATG	5160
	ACAAAGTAGA	TGCTTGATAG	TTAAATCAAA	CCTAATATTG	TTTGAATATC	ACCTTAAACT	5220
	ATACAGCGAA	TTGTATAGTT	TAAGGTGTAT	TTTTATGGAT	AAAATTAAGT	GCATACTTAA	5280

GTGTTAAACT	AGGAATAAAT	AATITATATT	GTGTGTTGTG	TGGGGTGACT	AATATGAATG	5400
ATATGGATAA	TTCCTTTTTA	ATAACAACGG	AAATTCAAAG	AAAATGGATT	GAAAAATTCA	5460
AAGTAATTAG	AGATACATTT	AAGGCTAAAG	CTGAATATAA	TGATCAACAT	AGCCAATTTC	5520
CATATAAAAA	TATTGAATGG	TTAATTAAAG	AAGGTTATGG	AAAATTAACG	TTACCAAAAG	5580
CATATGGTGG	TGAAGGTGCG	ACCATAGAAG	ACATGGTTAT	TTTGCAATCA	TTTTTAGGCG	5640
AACTTGATGG	TGCCACAGCA	TTATCTATTG	GTTGGCATGT	GAGTGTCGTA	GGACAAATTT	5700
ATGAACAGAA	ATTATGGTCT	CAAGATATGT	TGGAGCAATT	TGCTGTTGAA	ATTAATAATG	5760
GTGCATTAGT	TAATAGAGCA	GTTAGTGAAG	CTGAAATGGG	TAGTCCAACA	AGAGGGGGAA	5820
GACCAAGTAC	ACATGCTGTT	AAAGCTGATG	ATGGGTATAT	TTTAAATGGT	GTGAAGACAT	5880
ATACATCAAT	GAGTAAAGCA	CTAACACATA	TTATTGTTGC	TGCTTATATA	GAAGAATTAG	5940
AAAGTGTTGG	TTTTTTCTTA	GTAGAC				5966
(2) INFORMA	ATION FOR SE	Q ID NO: 23):			
(i) SE	OUENCE CHAR	ACTERISTICS	3 :			
	(A) LENGTH:					
(B) TYPE: nu	cleic acid	-			
((C) STRANDED	NESS: doubl	.e			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

(D) TOPOLOGY: linear

CTGTGTCATC GCGAAATAGT TAGGGTCATT CATTAATCCT TTTGAACGTA TTTCATCAAA ATATAACAAT TTCATTAGTA AAGGGGACTT GTTCAAACCA GCTATAATAC AAAATAGACC TATAGTCACA CTGCTTATAA TATAAGAGGT AACGATCACT TTTTTGCTAT TACCTAACTT AAAGATGATC ATCCCTAAAT AGAAATAAAT GACTACAAAT GCATATTTAA CTGTAGATGC AAGAACTTCC TTAACCGTAA TAAATATCAA ATCATCAAAA AATaGCAAAC AArGCGTAAT AATCATACGA TATGTATACA AAATAATGAm AAACTGTMAA AAATGATTTG CCTTTAATAA ATGGTTAGCG AAAAACAGTA AATAAACTAA TATTAGTAAT GTGATAAAGT CAGCTATAGA AACATTCACA CCGGCAATAA CCGAAGATTG CTGAATAAAA ACCGCTAAAC CGATAAGTAA CAATGTTAGT AATTTACTAT TGTGTTGATT TTCCATTATA AACGTCTTCC ACTTCTTTAA TCATTTCTC CTCAGTAAAA CATTCTAAAT AACGTTTTCT AGATTGATTA CTCATTTTGA TGTAATCACT GTCTATTAAA TATTTTTCCA GGACTTTAGC AATAGTTTCG GGTTGGTTGT TCATCATACA TATACCATTA TCAGCTACTA ATTCTGAAAT ACCGCCAACA TGACTGGCTA

	TTATTAAAAT	AAACGTATCG	TATTGTGATA	ATAAATGACT	CGCATTAATG	ACATTGCCCA	840
	AAAATGTGAC	ATCATTTTCT	AACCCAGCTT	GTACAACTTG	TTGCTGACAA	TCATTTAATG	900
5	TAGGTCCATC	GCCTATAAAT	GTAAAATGCG	CATGATTACT	GTTATGTAAT	TTCAATATCT	960
	CTATTGCCGC	GATTAGATTT	TGTGGCAATT	TTGGATAAGC	AAATCTTGCA	ATCATAACAA	1020
0	ATTGATGCTT	TGTCGGGGCA	TTAATCTGTA	AATCTTGTTT	ATTAGGCAAC	ATTCCAACTA	1080
	CTTCGCCAAT	ATTGTTATGT	GATTGGCTTT	TTAGCGTTTG	CTTAACAGCG	GGAACATCTG	1140
	CAATACCATT	ATGTATTGTG	GTTAATTTCA	ATCGATTAAA	TCGATATTTT	AACGCTAACT	1200
5	GTTTATCGAA	ATCTGAAACA	CAAATAATGC	TATCTGTAAT	AAGTGACATT	AATTTTTCGA	1260
	ТААСТАААТА	TAGAAATTTT	TTAGCTGGTT	TAACACCCTC	TGTAAAAGCC	CATCCATGTG	1320
	CAGTAAAAAC	TATACGTGTG	TCTTTCGATT	TCGAAATGAa	CTCCGCAATT	CGTCcGACCG	1380
20	TtCCAGCTTT	GGAAGAATGT	AAATGGATAA	CATCAGGTTT	AATTTTCGAG	AATAACTGTG	1440
	CTAACACTTT	GACAGCTAAA	ATATCTTGTT	TAAAGTCAAT	TGGACCTACT	AAATGTTCGA	1500
25	TAATAATTAC	ATTAACTCTT	GCATCTAGTT	GTTCAATCAT	TGGTCCATGA	TTGCCTACAA	1560
:5	TGACATAAAC	ATCATTGTGT	ACGCAAAAAT	GGTTGGCGAG	TTGAATGAGA	TGTGTTTGTG	1620
	CACCACCATT	GTCTGCTTTA	GTAATACAAT	ATATAATTTT	CAACTGTTAC	AAACCCCTTT	1680
30	AATGCTATAC	TTTCAATTTC	TTAACATGGC	TATCTCATCA	GATGAATAGT	ATTTATAGCC	1740
	ATGCAAATCA	ATGATGGCAC	ATATTTCTTA	ATGCCATTTG	ATACTGTCTC	AAGGGATTCC	1800
	TCGTTATACT	GTAACAATTG	GTCACAATCT	TTAAAATATA	ACTTTTATTT	GAACTTATTA	1860
35	AGTAAATTAA	GACTACCTTG	AGCCTTCCCC	TGTAATAACA	ACCATCAATG	TTCTAATTGA	1920
	TATATATAGT	TCCATCATTA	AACTACCTTT	ATGTATATAT	TTCATGTCAT	ATTTCAGTTT	1980
	TTGTTGCGGT	GTTAAGTCAT	ATCCACCTTG	AATTTGCGCA	AGTCCTGTTA	ACCCTGGTGT	2040
10	AACAAGACAT	CTTTGCTCGA	AACCTATCAC	TTCTGAACTA	AATAATTCTA	CAAATTCCGG	2100
	ACGTTCCGGG	CGTGGTCCAA	TAAAACTCAT	TTCCCCTTTA	ACAACATTAA	TTAGTTGTGG	2160
15	TAATTCATCA	ATGCGTGTTT	TACGAATAAA	CTTCCCGACA	TTTGTTATAC	GATCATCATC	2220
	TTTATCAGCC	CATTGCGCAC	CGTTTTTCTC	TGCGTTTTTG	CACATCGAAC	GTAATTTGTA	2280
	TATTTTAATT	AATTTACCCA	TCTTCCCAAC	TCTAACCTGA	CTATAAATAG	GGTTTCCTGG	2340
50	CGAATCTATG	ACGATAGCAA	TGGCGAATAT	AACCATAATC	GGTAAAGTTA	AAAATAATAA	2400
	AACAATGCTT	AAAATTAAGT	CAATCGCACG	TTTAATTGGG	TAATAGCTTT	TTCTCACTTC	2460
	TTCTAGTTTG	TCTAATTTTC	TTTGATAGGC	ATAACCCTTA	TTATTATGGA	CAGCTTCAAT	2520

	AATTAAAGTA	ATCCTTTAAA	CCTGTTTCTA	CTGTATATTT	AGGAACAAAT	CCTAATGCCT	2640
	TTAAGTTAGA	AATATCTGCA	TAAGAATGCT	TAATATCTCC	TTTTCGTGCT	TCTTTAAATT	2700
5	CATGCTCGAC	TGATTTTCCA	TATAATTCAC	CAATAATACG	ATAAACCTCT	AATAAATTAG	2760
	TAAAAGTGCC	TGTACCAATG	TTATAACCGT	GTCCAATTGC	ATCTTTGTGT	TCCATAATTA	2820
10	AGCGTACAGA	TTGAACAACA	TCATATACAT	ATACAAAATC	TCTAGTTTGC	AGTCCGTCAC	2880
	CAAAAAATGT	AAATGGCTTG	TTATGCTCAA	ATGAATCGAA	CATCTTTGAA	ATCACACCTG	2940
	AATATTGTGA	CTTAGGATCC	TGTCTTGGCC	CAAATACATT	ATTTAAAAAA	ACAACCGCTG	3000
15	TTGGTATGTT	ATATAACGAA	CAATAATTTA	ATGTCGTCCG	TTCGCCGTAA	TATTTATCTA	3060
	TTGCATATGG	TGATAATGGT	AAGATTAATG	ATTGATCACT	TTTAGGCAAA	TCAGGAAGAT	3120
	CACCATAAAC	AGCTGCTGAC	GAAGCAAAGA	TAAAACGTTT	TATATGATTA	TTATATTTT	3180
20	TAATGATTTC	TAACAATCTT	AATGTTGCTA	CGACGTTTAT	TTCTTGAGAT	AAGATAGGTT	3240
	TCTCAACCGA	CTCAGCAACA	CTAACTAATG	CTGCTAAATG	AATAACATAA	TCAAATTGAT	3300
25	ATGTCTTCAT	GATTTGTTCA	ACTGCATCAT	ATTCACGAAT	ATCTAATTCA	AACACATGAT	3360
20	CGTCAGCCAA	ACTTTTAATA	TTTTCTCGTT	TACCTGTTCT	ATAGTTATCT	AGAACATAAA	3420
	CATCATAATC	TTGTTGTAAA	TCATCTACTA	AATGCGACCC	AATAAAACCA	GCCCCACCAG	3480
30	TTATCAAAAC	TCTTTCCAAA	TCTTCCACCT	CATTTATACA	TTAAAAATAT	ATCATAAAAA	3540
	CATAAAGTAT	TGTAAGCTTT	TTATCGATAT	TTTTTTTTTA	AAAAAAAA	ATGAGATAAC	3600
	TTTGTGAATT	TTTATTGAGA	TAAATTAGAT	AGTGGTGTTT	TTGTGATGTT	TTATAATATC	3660
35	TTGGGTGTGT	TAATACTAAT	AATGCTTTCA	ACTGATGCAT	TAGACTGTGA	CATCATAACT	3720
	CACTTAAGAA	CTTCGCTTAT	TAATTITCTA	CCAATACACT	CCCTTCTAAG	TGCACTAAAA	3780
	AATCETTACT	GCTAAGTGAT	TAAACTTAAC	AATAAGGATT	TATTTATCAT	TAGTGGATGA	3840
40	TTATTAACGG	AATCTCATAC	CACCATCTAC	AATAATTGTT	TGTCCAGTAA	TGTAATCAGA	3900
	GTCTTTACCA	GCTAAGAAGC	TCACTACATT	TGAAACATCT	TCTGGTTGAG	AAACTCTGCC	3960
45	CAAAGCAATC	TGACTTGTAA	ATTGTTCCCA	ACCCCATGCT	TCAGGTTTAC	CTGCTTCTTC	4020
	GGCTGTTGCC	ACTGCGATAC	TTTCCATCAT	TGGTGTTTGA	ACGATACCAG	GTGCGAATGC	4080
	ATTCACAGTA	ATACCTTCAG	ACGCTAAATC	TTGTGCGGCT	ACTTGTGTTA	AACCTCGCAC	4140
50	TGCGAATTTT	GTACTGCAAT	ATAAAGACAA	GCCTGGGTTA	CCCTCAACGC	CTGCTTGAGA	4200
	TGTTGCATTG	ATAATTTTAC	CGCCATGATT	GAATTTTTTA	AATTGTTCAT	GTGCGGCTTG	4260
	AATACCCCAT	AGCACACCTG	CAACGTTCAC	GCCATATACT	GTTTTAAACT	GTTCTTCAGT	4320

	GCCAAATTGC	GCGGCAGTTT	GTCTTAcTGC	GTTAAATACA	TCATCACGGT	TTGATACATC	4440
5	TGCTTTGATA	GCAATAGCTT	TTGTACCATC	ACTTGATAAT	TTAAGTGCAG	CTGCTTTTGC	4500
	CCCTTCTTCA	TTGAAATCAA	CAACTGCTAC	TTTGAAACCA	TCTTCCACTA	AACGTTCTGC	4560
	AAATTTTAAAA	CCAATCCCTT	GTGcTCCGCC	AGTTACTAAT	GCTACTTTGT	TGTTTGTCAT	4620
10	AAAGATCACT	CCTCAAATTT	CTTTCCTTTA	ATTACATTTT	ACTCCTCTTC	ATTTGAATAG	4680
	TACAACAAAG	GTAGCTCCAT	TTAACAAAAT	ATTCAGATAT	TTAAGGTATA	GTTAAACGCA	4740
	CTACCATTAG	TGATTGGCAA	TGCGTTTAAA	TGTCGTTTTA	AAAGTTCTTA	TGTTGAATAT	4800
15	TATTTTTTTA	AGTCTCTCGA	TTAGTTTGTC	ATCAATCTTT	TTTCGAGACA	TGGTCTTTTG	4860
	ATTCAATAGG	CGGTTCCGTG	TTATCACTGA	CAACTTTAGT	TGTAGCTTCA	TCTTTATGTA	4920
	TTTCTTCGTT	AAATCCTTCA	AGGTTTTTAG	TCGTGGGATT	TTTAACCTCA	GGATGTTCCA	4980
20	TCATGTCTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	ATGTGATGCT	TGATTTGCGT	5040
	TCCCTTTACT	TTTTTGAATA	GTGGTAGTAT	CTGCTGCAGC	TACTAATTTT	TTTCTACCTA	5100
25	AAATAGATAT	GGCTGAAACA	AACCAGAGTA	TTGCAGATAC	AAAGTTGCAT	AATACTAAAG	5160
23	CGATAATAGC	CAATACAATT	AATATGACAC	CTTTTGAAAT	CCTTTCTTTA	AATAAGTCAG	5220
	ATGCCAATAC	GATGACAGGT	ACGATTGAAA	GTATAATTAC	AAATATAGAA	ATTATTGCCG	5280
30	ATATAACTAT	TGTTACTATT	AAATAATCAG	CTCTGCTACC	TGATAATAAA	TAGAAAAGGC	5340
	CGAAAATTAG	TCCATAGCAA	ATTACAAACC	CACATAAAGT	TATAGCCATG	AGTACTATAT	5400
	AAGCTATTTG	AAAATATAAA	CCTATCTTTA	TGAATGATTT	TTCTACATTT	TTTTCCATGT	5460
35	CTATTCCCCA	TTTATTTAAA	ATTTATACTT	TACCTTAAAT	ATTCTCTTTA	TTCTTTAGTG	5520
	ATTTTATCTT	TAGATTCAAA	TTGATTCTCT	GTACTTTCAA	TATCAACTTT	TTCATTTTCG	5580
	TCTGTCGATT	CATCTTTTGA	GTATTTATTC	CAAATCAGCA	AAATACCACC	AATCAGCCAT	5640
40	AAAATTGACG	AAAGGAAATT	ATATAAACAC	AGTGCAATAA	TAGCATAAAC	AATAAAAAGT	5700
	GCACCTCCGA	TTACAGAGTA	ACTTTCCATA	TAAATCGCAG	TAAAGATGGT	TGGTAAAACA	5760
45	GTGAAAAGAG	CCAATATTAA	TCCTAATAAA	AAAATTGTTT	CGTAATCAGA	TCCTCCAGCA	5820
	ATATTAATAG	ATATCATCCT	AACAAAAACG	ACACTAAAAT	ATATTTGAGC	TACGATGCCT	5880
	ATCCAAATTG	CTATTTTTCC	TATAATTGAG	CTCATACTCA	TTCCCCATTT	TTAAAATT	5940
50	TATACTTTAC	CTTAATATAC	CTTATTTTAT	TTAATTTTTA	TATGCAAAAT	ACAAAAATGG	6000
	AGAACTTCAA	TATTTATAAA	ATATCAAAAG	TTCTCCACAC	TATATTGTTT	TATTATATTT	6060
	TCGCTATCAA	TACGCTAAAT	CATCATATTT	CCCTCAACAT	CACAGTAAAA	CTATTGCTCC	6120

	TTCCAATTGC	GCAGTTGTTC	AACATCATCA	TCTTGTTTAA	GTAATGCCAG	TGGTACTTGA	6240
	AGATTAAGAC	ATCGTCCTGA	AATATTAAAG	CGTGTCACAC	CTGCTGGCAC	AGTTTCCCCT	6300
5	TTATGAACAA	CCGCTTCAAT	TTCCTTATAA	CTCAATGGCT	GATACTTCAT	GAGTACATCT	6360
	TGTTGAGAAA	GACAAGGATA	TGTACCTTGT	GCAATTCTCT	CTACAGAACA	ACAACCACTA	6420
10	TAACTTGCGA	CAACCTTTTC	CCATACTTGA	AAATGTGCTT	CGCCTAAATC	TTTTGTATAC	6480
	AAATATTGTT	CTGTATCACC	ATGACACATT	GTAATAAATG	GCGCTTCTTG	TCTTGTCTCA	6540
	GTAGTCCATG	GCAAGCGATG	TTCTTGTTGT	AACGTTTCCC	ACCACACACC	AAATGGAACT	6600
15	TTATGTTGCC	ATGTACTAAT	TGAATATTGT	GTTTCATGGA	TTTCTTGCAC	TGGAACTTTC	6660
	TTACATCCTA	ACGCTTTCAA	ACTTGTATAC	CGATGCACAC	CATCTATAAC	CATATATCTA	6720
	CCATGTTGCA	TCGCTGTCAC	TAAAATAGGA	TGACGTATAA	AATCATCTGC	TTCAATACTA	6780
20	CTTTTCGTTT	TTTCCAATCT	TAAAGGTTCG	AATGTTTCGT	GAAGATCAAT	CTTATCTACT	6840
	GGTACCAATT	TTAAATGTTC	ATGAATATGA	TTCAATAGTT	ATTCATCCTC	CTTTGTTTGT	6900
	GTTAAATAAA	TAAATTCAGG	ATGTGGATGG	CTTAAGAAAT	CGTGATGTGA	AATAGACCAT	6960
25	CCGTATGCAC	CTGCATATTT	GAAAACAATA	ACGTCGCCTG	TACTGATTGC	GTCTATCTGT	7020
	ACTTCTCTAG	CAAAGACATC	TTTCGGTGTA	CATAATTGAC	CGACTAACGT	TGTGTCCTGT	7080
30	CTCGAAATTG	AAACTTTTTC	AAATGAATAT	GGATTGTCCT	TATAGCGATA	AATGTCAAAA	7140
	GGATGGTTAT	GTTGCCAAGA	TACCGGCAGT	CTAAATTGTT	GCGTACCTCC	TCTTAATATG	7200
	GCATACCAAG	CACCATGTAC	TTTCTTAATG	TCTAGCACTT	CTGTCACATA	GTAACCAATA	7260
35	TGTGCCACAA	TAAAGCGCCC	ACATTCAAAG	TTCAATGTCA	CATCTTCCAT	TTCTTGCTCA	7320
	ACGATAAGTG	TTTTAAAACG	TTCTACAAAA	TTATCCCATT	CAAATTGGTT	AGTTAAATCT	7380
	GCATAGTTAA	CGCCTATGCC	ACCACCAAGA	TTGATATGTT	TGAGTGGAAA	TCGATGTTTT	7440
10	TCAGACCATG	CCTTTGCTTT	TTTAAAATAA	AGTTTCACTA	CATCGACATG	TAAATTCGAG	7500
	TCTAAATTGT	TAGAAATAGA	ATGAAAATGA	AATCCATCTA	GATGAATCTT	TGGCATTGCG	7560
1 5	AGCGCAgcTT	CAATGACATC	ATCAACTTCG	TCTTCAGAAA	TACCAAATTG	TGTTGGGCGT	7620
	CCTGCCATAT	GCAACGTTGC	ATTGGGAAAT	GGTCCTGCTA	AATTAACACG	CAATAAAATG	7680
	TGTTGTGTCT	TATCTTCATC	TTCTAAGATG	GCATTTAGCC	GTTGTAATTC	ATGCATACTT	7740
50	TCAACATGAA	TACGCTGAAC	ACCTTCACTT	ACTGCATATC	TTAGTTCCTC	GTCTGTCTTA	7800
	CCAGGGCCAC	CAAAAATAAT	ATGATTTGCT	GGTTTAAAAG	CAAGACCTTT	TGCTATTTCA	7860
	CCTTGAGATG	CAACTTCGAA	TCCTTCAACA	TACTGACTAA	TTGTATCTAG	GATTTTTCGT	7920

	TGTTGCAAAT	GATGTTCCAG	TCCGACTAAA	TCATAGATAT	AATGACAAAC	TGGATGAGAT	8040
5	TGTGCTTTTA	ATTGTTCAAT	AACAGGTTGA	ACTATACGCA	TTAGCCTTCA	TCCCCTTTCT	8100
	GTTTAGACGT	CGCTAGAGAT	GCACTTAAAT	GGCGATATAT	TTTTCCGCGA	TCATCACCTA	8160
	AAATAAATGT	TTGTACACCT	TGTGCCTGCC	ATTTTGCAAT	ATCTTCATCT	TCACGTGGTA	8220
10	ATGCACAAAA	ATGTTTACCA	TGTGCATTCA	CAACTTCAAA	AATATGTTGA	ACATGTGATG	8280
	TTACTTGATC	ATCACGCGTT	TGCCATGGTA	TGCCAAGTGA	CTGCGATAAA	TCTGCGGCAC	8340
15	CTTCGACTAT	CATGTCTAAA	CCTTCGACTT	GTGCTATATC	GTCAATGGCC	ATAACCCCTT	8400
	CAACATCTTC	TATCATGGCA	ATCACCATAA	TATGCTCATT	AGCCATCTCC	ATTGCATCAA	8460
	GTAATGGTGT	ACGTCCAAAT	CTTGCCATGC	GACCACCATT	CAAACTTCTT	AATCCTTGCG	8520
	GGTAATAACG	ACTTAATTTC	ACAATATGCT	CAACTGTCTC	ACGATCTTTA	ACGTGTGGCA	8580
20	CAATAATACC	TCTCGCACCC	ATATCCAACA	CTTTAATGAT	ATCTCTATCT	ATCACTGCAG	8640
	TGACACGTAC	AATTGGTATA	ATATGCGCTG	CTTCAGCTGC	ACGAATTAAA	TGCGCTAGTG	8700
	TCTCATCATT	AATCGCCACG	TGTTCTGTAT	CAATCACAAC	AAAGTCATAC	CCGCTTGCTG	8760
25	CGATAACCTC	GATCATCAAT	GGGTCCGGTA	TAGAATTAAA	AATGCCATAA	ACTGAATCAC	8820
	CATTGTTTAA	TCTATGTTTC	AGAGATAGTT	GTTGCATCAT	TGATACCTCC	TACACCTAAT	8880
30	GGATTTGTAA	CATGATGAAT	TCTTAACTCG	GAGTCACTTA	ATAATCGACG	TGTCGTTAAC	8940
	TTTTCAACTT	GAATCGTAGG	TTCAAACAAA	TCGAAATGTT	GATAGTTATT	CAACTCTGGA	9000
	AATGCTTCTT	GATACGCCTC	GATGATGCCT	TTAACCCATT	GCCATTGCAG	CTCCTCATCG	9060
35	ATACCATATT	GCTTTTCAAT	AAATAAGATG	ATTTCGGCGA	TATTAATAAA	GAAAATGCA	9120
	TCATGTAAAA	AGTCGCGTAC	TAAACGTTCG	TCATCTGTTT	CAATAAATGA	ATTACTATTC	9180
	ACTTTTTTAT	GTGCTTCTGG	CATTGGCTTT	AATGTCAGGT	GTGAAGCAGC	TTCACTTAAA	9240
10	TGCtCACGCT	TAAAACGAAC	ACCATCATGG	AAATCTTTTA	AGGCAATACG	TGTAGGCCAA	9300
	CCATTTTCAT	GAATGAGCAT	CATATTTTGT	GCATGCGATT	CAAAGGCAAT	ACCGTGATAA	9360
4 5	TAAAGCATAT	GAATCATTGG	ACGAATCGCT	ACAGCTAAAA	ATTGCTTTGT	CCAAGCTTCA	9420
	GAACCATATT	GTTTAATCCA	ATTTTCAATG	AATGGTACAC	CATCCTTATC	ACTTGCATAA	9480
50	AGTGCATTAA	ATGGTATCGC	ATCCTCTTCA	TCGATTAACA	TATGATATAT	ATTTTCACGC	9540
	CATATAACAC	CTAACGCACC	ATAAACTTGA	GTTTGTTTAT	AAGGCGAAAG	TTGTGTATTT	9600
	AAATAAGACT	GTCCTAAGAC	TTCCCCTAGA	AAAACTGTCT	TTAATTCATC	TTTTAAATAC	9660
	ATATCTTGTT	GCTGTATCTG	CTTTAACCAA	TCCGTAATTT	GCGCTGCATT	TTCAATTGTA	9720

	TATTTTGTCG	TGTCTATTGG	CGACATCGTA	CGAATCGATT	GTTGAGGGTG	ATATAGCTCA	9840
	TCACTTTCCC	CTAACCATAG	TACTGTGCCA	TTAAGCCTTT	CTTCAGCCAA	ATCAACTTGG	9900
5	ATGACATGTT	CAAACTGCCA	TGGGTGTACA	GGTATCATCT	CAACATCATT	TACATGTTTG	9960
	CCAGATGCTT	CAATTTGCTG	TACAAAATGT	TCATAAGTCT	TATCGCCAAC	TTGTTGACGT	10020
	AACATTTCGT	TAACTACAAC	ATTTCTTGAT	ACCGTCGTTT	CTACTITATC	TTTGTCGATA	10080
10	GCTAACCACT	GCAGTTTAAC	GTTTGGTACA	AAATCAGGAC	CAAATTTCAA	ATTATCACTC	10140
	AACGTAAATC	CTAAACGTGA	TTTGTAACTT	GGATGATACT	GATGCCCTTC	CATCGCATAA	10200
15	AATTCATAGT	CGTTAAATGT	CTCAGGTGTT	GCTGGTGGGT	TTGATTCTCG	ATACTGCATA	10260
	CTTTGCGTAT	CTTTTAATTC	TGTCTGTAAT	AACTCGACAA	TAAATTGTTC	TAGCTTTTCA	10320
	TCATTTTTAG	GAAATGTAAA	TACAACCTCT	CTCAATAATT	GTGTATAGTC	TGTTGTTGTA	10380
20	TCTGCCTCAT	CTCCTACGAC	ACGCTCAATT	GGTGATGTGA	TACGTATACG	ATCAAAGCTA	10440
	TGTGTCTTTT	CAGCAGTAAA	ACGATACTCT	GAATCATGTC	CTTCTATTGT	AAAATGACCG	10500
	ACACCGTCTT	GATATGACGC	TTTATACACA	ACAATATTCT	CATAAATAAG	TGATGATACC	10560
25	AGTTGGTGCA	TCACTCTAGT	CTTTACACGA	TTAAGAATTG	TTTGATTCAC	AATACGATAC	10620
	CTCCTTGTTA	TGACAAATTG	GATTTGGTAT	ATGTGTATAA	ATAGGGTTTG	CACCACAATC	10680
30	ATTCAATTTA	CTCATCAAAT	TCGCTTTAGC	CGcAATGGTC	GGCGTTTGAT	ATAAATCTTC	10740
	TACACAGTCA	ACAAATACTG	CGTTATTCGC	GTATTCTTTT	TTCCAAGTCA	TAAGACGATG	10800
	CGCTACAAGT	TGCCATAACA	CAACTTCATT	TCTAGTCGCT	TTACCAATAG	TTGATACTAA	10860
35	ATGTCCTAAG	TGATTTACTA	CAACGTAATA	TTTAAGACGA	TGCCATGCTT	CATCATGTGC	10920
	ATATACAACA	GGGCTTGATG	CTGCCACAAC	ATTTGGCACA	AGCTGTTTTT	CAGTAGCAAT	10980
	CGTTCTAGAT	AGACAAATGC	CTTCAAGATC	TCTGACAAAG	CATACGTCGG	GTATGCCATC	11040
40	TTTTAATTCA	ATTAATGTAT	TTTGTACATG	TGCTTCTAGA	CTAATGCCTG	TGTTACTAAA	11100
	CAGCTTTAAT	ATCGGCAATA	ATGTACGATT	CAAATAACAT	TCAAGCCATG	CTTCTGGTGC	11160
45	TAAACCACTT	TGCTCAATCA	CTTGTGATAA	CTTAGACATC	GGTGAATCAG	GCATCGTTTC	11220
45	AAATAATGAC	GCCAATACAT	GAATATCTTT	ATCAGCATGG	TAATTCGGTA	TCCCTTCACG	11280
	AACAATCATG	GCACTATTTG	TTAATAAATC	CATTTCAGGT	TCAACTGTTT	GCCCTAATGG	11340
50	ATTCGGTAAC	AATGCACGAT	ATCCTTCTTC	AAACATCAAT	TTAAAATGGG	GTGTTTCAAC	11400
	CTCATCTTTG	ACTGATGCGA	TAACTTGCGC	GGCATCAATT	GTCCGTTCAA	TCTGTTCAAG	11460
	GTCATTCGTA	CGTATAAAAT	TAGTGATTTT	AACGTGTATC	GGTAATTTTA	AATAAATGTT	11520

	GCCAAGGTCT	TTTATTAAAC	CTTGTTCACT	ATATTGCATA	TACTGTGGAT	GCTGTCGCAA	11640
	CACATTGATT	TGATAAGGAT	GTGTTGGTAA	ТААААТАААА	TCTTTGGGTA	TCTCTGATAT	11700
5	ATCTATGTCT	GCTAATTGAT	ACAACACTTT	CTCAACCTGA	TCTTCTTTAC	CTTCTACATA	11760
	GCGCGTGAGC	AGAACATCTT	GATGCACAGC	TAAATAATGC	AATTGGAATG	ATGTATGACA	11820
10	TTCGGGTGCA	TATTTCTCTA	AATCTGCTTC	TGAAAACCCA	CTTGCACTCT	TAGGAGTCGG	11880
	ATGAAATGGA	TGACCTAAGT	ATAAAGATTG	TTCTGAAACG	ATATAACGAT	CCTCTACGTA	11940
	GTCTATTGTG	TTACTTTGCA	AATAACGTGC	CGTGCGATGA	ATGCTATTAT	CGATGTCAGA	12000
15	CATAATTTGC	GCCATATGTT	GTTGCACTGC	CGTTTGATTA	TCTGCACTTT	GAGCCATATG	12060
	TTGCAAAATA	CGCGCAATTG	CTTCTTTATA	AGTTGTTATT	TTTTTACTTT	TTCCATCGAT	12120
	AAGCCATACC	TCTGGATGAT	ACATATGATG	CCCCATCGCA	GACCAATAGC	GAAATTCACC	12180
20	CGTTAAAGTT	TCGAGCTCTG	ATAATTGTAT	AGACCATTGA	TGATTTTGAG	GTGGTACTTG	12240
	ATATAAATTT	TCTTCTCTAA	AATATTCATT	TAAAATGCGT	TCGATAGCCG	CATACGCTGC	12300
	ATGTTGTATT	AATTCTTTAT	TTTGCACTTT	TTTGTTTCAA	CTCCCATAAT	TTCATTAATG	12360
25	TGTGATCGTT	GATTTGATTA	GTGATGGTTG	AACAAATTAA	AAATAAACTA	CTTACTGCAA	12420
	ATACTACGCC	CATAACGATA	AACGTAGTAG	CTGGTGTAGT	ATAACTTGTA	ATGGCAGCGC	12480
30	cactaagact	GCCAATAATT	TGACCAACAA	CTAACATACT	GTTCGTCGTT	CCAACAAATG	12540
	TGCCTTTAAG	TTGTTGATGA	CACGCATTCA	CGACAACAAA	CATGACACTT	TGAATCAATG	12600
	CACTATATGT	TAATCCTTGA	AGTATTCTTG	CAGCCATTAA	AAACTCTATA	TTCGTCGCTA	12660
35	AACCTTGCAG	TATCGCACTA	CAACCACATG	CAATCGTGGC	AAATATATAT	ACTGATTTAA	12720
	CATATGATTT	ATCATTAAAG	CGTCCCCATA	AAGGCGCGCT	TAATATCGAA	GCCGTCCAAA	12780
	ATGCGGACTG	TAAAAATCCA	ATCACACTAC	GGTCATCTAT	CGCTGTATGA	TTCACTGATG	12840
40	AAGCAAGTGG	TGATAATGCA	GTTAGCATGC	CATACATAGC	AAAGTTTGCT	AAAACGCCAA	12900
	CGATAATAAA	TCGACATGTT	TGTTGTGTGC	ATAATAGACA	TTGAAATGAA	CGGCGAATAC	12960
45	CTTTATTAAT	ATTTGGTGTT	TGTGATTTTG	GCATATGTGT	CGTTTCAATC	AATTTTAATG	13020
	CACCGAAAAT	ACAGACAATA	AAAGTAATAA	CGGCAATACT	CATCAGTAAC	GCACTAAAAC	13080
	CTAATATCGA	AGCTGTAACA	CCGCCAATTA	ATGGCCCCAC	AAGAGACCCT	GCGCTGACTG	13140
50	AACTTTGCAG	TCTTCCTAAT	ACCTTTCCAC	GATCTTCAGC	TGGCGCCTCT	GCACTCGCAA	13200
	ACGCACTTGA	TGCATCAACA	ACACCACCAA	ATAGTCCCTG	CAATAACCTC	ACAAGTACAA	13260
	ACTGTAATGG	TGTCGTACAC	AATGCCATTA	AAAATAAGCA	TACCGCCAAA	CCAAGTAACG	13320

	CTATCATCGT	CGTTACAGCT	GGAGCAGCAA	TCGCTATACC	ACTCCACAAC	TGTATTTCTA	13440
5	CGACTGATAG	ATTTTGTAGT	GATGCCATAT	AAATTGGCAA	TAATGGCACA	AGTACTGTCA	13500
	GTCCAGCAAT	CGCTATAAAC	TGACTGAGCC	ATAAAATGCG	AAAGTTACTG	CGCCATATAG	13560
	ACTGATTAAT	CATATGTCAC	CATTGGATTT	GGTACGGTAG	TTAAACCTGA	AGGCATACTA	13620
10	CCTCCACCAC	TATCACGTTG	ATATAGCAAT	GGTAATAAAA	TTTGTTTGAA	TGGCCACGTC	13680
	TGTTTATCAA	ATAAAATGTG	TCTGACAGCT	AGCTGATCAG	TTGTAACCCA	GGAAATAGTT	13740
	GCCACTTCAT	TTTTTAAAAT	TTGTTTTAAC	AACGACATAA	GTTCATGCTC	ACTTACACCA	13800
15	AATAAATCTT	GAATTGCATC	AATAATGGCA	TATAGATTTA	CCGATACAGC	TAATGTTTGA	13860
	AAATAAGCAA	AGAATGTTTC	CAAATCCTCA	TTAATTAGCG	TATTAGGTGT	ATCTTCTCTG	13920
20	ACGACATACT	TCGGCAATGA	AAGCTGATGT	GCTGTTAGCC	ATGGTTTATA	AATTCTGACA	13980
20	GTATCATGAT	CACGTAACAC	GCATTTTTGT	ACACGTCCAT	CTTCAAATGA	CAACAATATA	14040
	TTTTGACCAT	GCAACTCTGG	TAATGCGCCG	TATTGCATAA	ATGATAGTGT	TACCTTTAAA	14100
25	AAGACTTGCG	CGATATCTTC	AAATAACGTC	ATGACATCAT	TTTTAGAAAT	ATTATCTTTT	14160
	CCACAAATCA	TTTGATATAA	AGTGCGATCA	TTTGCCGCGA	GTGCTGCCAT	TGACACTAGC	14220
	TGTTGCGTAT	CATTTTTGGC	TAGCACTTCG	GGATACTTTC	TTAGCTGAAC	AGTTAGATGA	14280
30	CCTAATTGAT	CTTTGAAAAT	ATCATTATCT	TGACCCATAT	ATGACCACCA	AGCTGTTTCA	14340
	TCACAAACCA	TGACATACTT	AGCTAGTGCT	TCATCTTTTT	CTATAAGCTG	ACGTAATAAT	14400
	TGTTCTGCTT	GTTCTCCGTT	TTTCATGTAA	CGCGTAGGCG	TTAGCCTTAA	TGCGCCTAAT	14460
35	GACTGCATTG	CAAATGGTAC	TTTGACATGG	TTATACGGTG	CGCCAATATC	AATTAATGAA	14520
	CGCATACTTG	AAGACGACAG	ATAATCTCCA	AATTTTAACG	GTAATAGTAC	AACCAACTTT	14580
40	TCACTAATCT	CTTTCGCAAA	GACGTTCGGC	AGAATATGCT	GATATTGCCA	AGGATGTACC	14640
	GGAAATAGTA	CATAGTCATC	TATTGATAAC	CCTTGATCAT	TTAACATGTC	TGTCGCTTGT	14700
	TCTTTTATAG	GTACTGTCAA	ATTTTCTAAT	TCATCGATAT	TTGCAGTATC	GCCATGAATC	14760
45	ATATGTGTCT	TTTTAACTGC	TGCAACCATT	AAAGGAAATG	ATTGATTTAA	TTCAGCTTGA	14820
	TACACTTGAT	AATCCGCTTC	TCTTAATCCT	CTTTTTTCTT	TAGCTAATGG	ATGAAATGGA	14880
	CGATCTTTTA	AACTTGCAAA	CTGCTCTGAC	ATCACAAAAG	GATGTGACGC	TAAATCTAAT	14940
50	TCTGATAATT	GTTTAGCAAG	CTGTGTGGCA	GCAGTAGTCA	GTCCTTCTTC	AACGCGAGCC	15000
	ACTTCCCATT	CATGACTTAG	ATCACAATTC	ATATTAGCAA	TTGTTTGCCA	AAATTCAGCT	15060
5 5	GCCGTTAAAG	GTTGCTTAGA	CACCCTTCCC	TCTATCGTAA	TTGGTTGTGA	ACTTTCGTAA	15120
JJ							

	TATATCAAAA	GCGTTTGTCC	GTTTTCTTTA	GTAATCTCAC	TATTCGATAC	AATTCCGGCT	15240
	ATATCTTCAA	ATAATAATGC	ATCAACTAAA	TCTCTTAATA	TTATCGCTTG	TGCTGTATTG	15300
5	ACTGCTGTAT	GATTCTGCAA	TGTTCAGACA	CCTCGCATTC	TTAATATAGG	TTCAATGTTG	15360
	TCCCAATATT	TTGTTGTTGT	GCCTGTTGAT	AAATAAAATA	AGCACTTGAA	ATATCTTCGA	15420
10	TAGCCATACC	CATCGGATTA	AGTAATATGA	TCTCATCATC	GTCTTCACGT	CCTGGTATGT	15480
	CACCTGTCAC	AAGTTGTCCT	AGTTCAGCAT	GAAGAGCTTC	TTTGCTGAAT	TTACCTTCTA	15540
	ACACCAATTG	GTTAATAGTT	TTCTTTTCTC	GATTACATTG	TGACCAGTCA	TCTACTACGA	15600
15	CTTTGTCAGC	TTTAATAAAG	ACTTCTTTAT	GCACATCCAT	GATAGAAATG	TTGCTAATAA	15660
	ATGCACCCTT	TTGTAACCAA	TCATATTCAA	TGTATGGTTG	ATCCGTTACG	GTACATGTAA	15720
	TGACTACTTC	ACCATTTGAT	ACTGCTTCTT	TAGCATTTTC	TGTCGCAATA	AAATTAATTT	15780
20	CCGGACGCTG	TTGTTGCCAT	CTATCAACAA	AGCGTGCACA	TGCTTCAGAG	AATTGATCGT	15840
	AAACAAACAC	GCGTTCAATA	TGATCGAATT	GCTCTAACAT	ACTTTGTAAT	TGCTTGTCTC	15900
25	CGATTAGCCC	GCATCCAATG	ATTGTTAAGT	CTTTAAATCC	TTTTTAGCC	AAATGCTTTG	15960
	CTGCAATCAC	TGAAACTGCT	GCAGTACGCA	TACTACTAAT	TAAACTTGCT	TCCATAACTG	16020
	CAATTGGATA	ATTCGTTTCT	GGATCATTCA	AAATAATGAC	GCCACTTGCA	CGCTCCATAT	16080
30	TACGTTTCGA	TGGATTGTCG	TGCTTACTAC	CTATCCACTT	AATACCTGAA	ATTGCGTGTT	16140
	CACCACCGAT	ATGACTTGGC	ATTGCAATAA	TTCGATCTGC	GATGTGTCCA	TTTTCAGGAT	16200
	CCtGTCTTAA	ATACGGCTTA	AGCGGTTGTA	CAAAATCATT	GTGCGCATGG	GCTGTTAATG	16260
35	CTTCTGTTAA	TGCGTCCACA	TAAACTTGTG	AATGATTACC	TCCCGCTTGT	TCAATATCTG	16320
	ATCTATTTAA	ATACAACATC	TCTCTatTCa	TTCTGaTTTA	ACTCCTTGTC	TTGATTTCAT	16380
40	TTTTTCTAAC	CATGTATCTG	AATAAACTAA	ATCTAAGTAA	CGATCGCCTC	GATCTGGTAA	16440
40	AATCGTGACA	ATTGTTGCAC	CTTCTTCAAT	TGACGTTATC	AACTGCTCAA	TCGCTGCAAT	16500
	AATCGAACCT	GTTGAACCTC	CGGCAAATAT	GCCTTCATAA	TCAATCAGTT	TTCGACAGCC	16560
45	CAAAGCAGAT	TGATAATCAT	CTACATGGAT	CACTTGATTA	ATTTCTGATC	TATTCAATAT	16620
	TTCGGGTACA	CGACTAGCAC	CGATACCAGG	TAATTCTCTA	TTAATAGGTT	TGTCACCAAA	16680
	AATGACTGAC	CCTTTCGCAT	CAACAGCAAC	AATTTGTGCG	TTTGGATGCA	CTTCTTTTAT	16740
50	TTTTCTACTC	ATACCCATAA	TGCTACCTGT	CGTGCTGACT	GGCGCGACAA	AATAATCTAT	16800
	AGGTTGCTTA	ATTGTTTCAA	CAATCTCTGT	GCCTGCACCA	TGATAATGGG	ATTGCCAATT	16860
	TAACTCATTC	GCATATTGAT	TAATCCAATA	TGCATCGTCA	ATAGTGGCTA	ACAGTTCTTG	16920

	TACATTGGCA CCATAACTTT TAATAATTTT CAAATTTGTT GGTGATATTT TAGGATCAAC	17040
	AACACACGTG AGTTTTAATC CCTTGATTTT AGCTATCATT GCCAACGCAA TGCCTAAATT	17100
5	ACCAGAAGTA CTTTCAATTA AATGTGTATT CTCAGTGATT AAACCATGTT TAATACCATG	17160
	TTCAATGATG TACTTGGCAG GTCGATCTTT CATGCTGCCT CCAGGATTCA TATACTCTAA	17220
10	CTTTGCAAAC ACTTCATGTT TCGGAAATAG TTGATGAAGT TGAACCATAG GTGTTTGCCC	17280
	TACAGAATCT AACAATGAAT CGTGCACATG	17310
	(2) INFORMATION FOR SEQ ID NO: 24:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5423 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
25	ATACTAGTAA GCGCATCGGT TATTGACATC GAATTCAACT TTAACAGTTT TCATGTTCGG	60
25	TGATGTTTCa ATAGAATGTG TGTGTTGTAC TTGCGCATTT ATATTTCCAC CTAAATTACT	120
	TAAGTTTCCT GTAATACTAG AAATGTCAGG TGCGTTTAAT GTAGGTTGAA ATGCATCAAC	180
30	TACTTTATCT GCAACATTAG AAACATTACG GATAACTTTA CTTGAATGAT TATCTATACC	240
	TITAACGAAA CCTAACATTG AATACATACC AACATCCATG AATTCACGTG AAGGTGAGTG	300
	AATACCTAGC GCTCTTTTGG CTGCATTTAA AGCACCTTTT GCTACACTAG CTGCTTTTTC	360
35	AGCTAAGTCT CTAGCCATAT TACCAATACC TCTCATCAAA CCACGGATCA TATCAGCACC	420
	TGCTGATACA AAGTCATCCA CAAAGCTTTT AACTTTATTT ACTGCATTTG TCATACCTTG	480

40

45

50

55

TGTTATTGCG ATAGTCATAA TTGTGGTAAA CACTGTAGTT ATTACAGTGA CTAACAAATT
CCAAATCGTA GTAGCGATTG TAATTATCGT ATTCCAGATT GTACTTAAGA ACGTCCAAAT

AGCTGTCCAT ATCGTCATAA CTATTGTCAT TATCGTCGTG AAAACAGTTG TAATGATTGT

ACTAACTTTG TTTACAACAT TAACGAATCC TTGAACAACT CTATTAACAA rGTTAATTAG

CGTACTTGTT ATAGTAGATA CCCATNGCAT ACCTTTAGTG ACMATGAAGT TCCAAGCTTG

AGACATTTTG TCTGATATAG TTGAAACAAC TTGTGTGAAT ATGCTTACAA CTTTATTCCA

AATTGTCGTT AATATACCAG ATAAGAAACT CCAAATCGTA TTCCATATAT TAGAAATAAA

ACTCCATGCC GCTTGTAACG CAGTAGATAT AGCTGTAGTG ATAGCGTTCC AAACCTTAGT

TGCCACAGTA ACTATAGTGT TCCACAACGT TTGTAAGAAC GTCCAAATAG CGTTCCAAAT

540

600

720

840

900

960

1020

	ATAAGCGACT	ATTTGATTCC	AAACAATCAT	TATAAAATTG	TAAACATTCG	ATACTGCTGT	1140
-	AGTGATAGCT	GTTAAAATAG	CATTCCATAC	AACCGAAGCT	ACAGCTTTTA	ATACATTCCA	1200
5	AACATTAACC	ATAAACGTTT	TTATCGCATT	CCAAGCATTT	ATAATAAAGT	TTCTGAATCC	1260
	TTCATTTTTA	TTCCACAATA	AAACGAATAT	AGCTATTAAT	GCAGCAATTA	CACCAATTAC	1320
10	TATTGTTATT	GGACCGCCTA	AAATACCAAA	CACAGTTACT	AGTCCTGTGA	TAGCATTTCT	1380
	AATTAATCCA	ATCTTACCGA	ATAACAATTG	GAATATAACT	GATATAATTT	TTAATGGTCC	1440
	TTTTAATAAC	ATGAACGCAC	CTTTTAAAAT	TGTTAATCCC	GCTCTTAATA	AACCGAACTT	1500
15	ACTTACTAAT	GCAATGTTTC	TACCTATTAA	TCCGCCACCC	ATAAAGTTAG	ATACAGCAAG	1560
	AATAATCGGT	ATTAAAAATC	TAAATGCACC	AACTAAAGTT	ATAATGACAC	CAACTAATTG	1620
	TGCTGTAGCT	GGATGCGCCT	CAAACAAGTT	AGCTATCCAA	CCAGTTATTG	CAACTGCAAC	1680
20	GCGTAATACT	GCACTAGCTA	TAGGAGCCAT	TGCTGTTGCG	AATGCArmTA	ATCCTCTTGC	1740
	GATGTTTCCA	ATCAATTGCA	TTATTAGTGG	TCCATTIGTT	TGTATATAAC	TGACAAAGTC	1800
25	TTTAAACCCT	TGAGATTGTC	CTACTTGTTC	AGACCATTCC	CTAAACTTAG	CTGTCATTTG	1860
	TTCAAGAGAT	TGGAATATGC	CAGTTGATGA	TCCGCTGAAT	GCATTCATCA	AATTGTTAAT	1920
	TCCAACGAAA	ACATTTTTGA	AAATATTACC	AATGATAGGT	AAGTTTGTTT	TTGTGTATTC	1980
30	AATAAAACGA	GTTATCGAAT	TTTCTCCAGC	TGCACTATTA	GCCCAGTTAG	AGAAAGATTG	2040
	ACCTAATCTA	TCCAACCAAT	CAGCCGACCA	TTGAAACAGT	GGTGCTAATT	GCGTGAATAC	2100
	ATTGACTAAT	CCGTCACCAA	AACCACCTGC	AGCACTTAAT	AGCTTGTTAA	ATACCGAAAC	2160
35	ACCCGTTGTA	TTCATCATAT	TAAAGAATCT	TGAAGCTACA	CTGCTATTTT	CAGCCCATTT	2220
	AAGCACGCTT	TGAGACGCTT	CTTCCATTCC	TCTTGAAATA	CCACTAAAAA	ACGGTTGTAA	2280
10	GCTCTGCATT	GCAGTTTTAA	CAGTATTTAA	ACCATTTGCA	AGAGTTGTGA	AGATAGCGGA	2340
40	TTGATTTTGC	TTTATAATAT	CAGTCCATGC	TGACTTTACG	CCATCTAACG	CTTTTTTGTA	2400
	TTCGTTTGTT	GCTGAGCTAG	CTTGTAAAGT	GCCATCATTA	AGCATCTTTA	TAGCGCTGAT	2460
45	AGCCATTGCG	CCAAACGCTA	CAAATCCTGC	TCCCGCTATT	GCTACGGCAC	CACCTAAAGC	2520
	AAGTACACCA	CCAGTTAACA	CTTTGATAGC	GTTTAATAGC	GCAAATACTA	CAGGTACTAC	2580
	GCTCGCTATT	ACAGGTATTA	AGATACTAAA	AGATGATGTA	AGTAATCCAC	CAACCATATT	2640
50	AGAACCTACA	GTACCGAACA	CACGGAACAT	ATTAGCTAAA	TTCCCCATCT	GTCTTTGAAA	2700
	ATTGTCATTT	GCTTTTATTA	TGTAGGCATA	AGCTTTCTTT	AAACCATTAG	TATCGACATC	2760
	TACCTTTGTT	GTTTTTTGT	TCGGCAATGC	GTCTAATGAT	TTTTTAAACG	CATAAATAGT	2820

	AAGTTCTTCT	TTAGTACGTT	TGATTTTAGA	GTTAGCAACA	CCATTGTCCA	CGTCTATAAT	2940
	AGCTTTGGCT	TTAGACCTAT	TTAATGCTTC	GAGACTAGCT	TTAGATACTT	TTAACACTCG	3000
5	ATTGAATTTA	CTGTTATCTG	CATTGACGTC	AATATTGACA	CGTTTCTTTT	CTAATTCTGA	3060
	TAATTTAGCT	TCTGTTTCAG	CGATATCTTT	AATCAACTTT	TGTTTTTGCA	ACTTAACTTC	3120
10	TGGTGTAACT	TOTTTAGAGT	TTAGTTTGTC	TAGTTCAAAA	TTCGATTCTA	GTACCTTTTG	3180
	TTGTAAATCT	TGTATACTAG	CATCTAATTT	AGCTTTTACA	TTTTTGTTAC	TAAAGGCATC	3240
	TAAAGACTTT	TTAGCAACTT	TGATAGTTTT	TTGTAAATTT	TTATCGTTAG	CGTTTAATTC	3300
15	AACATCTTTA	GTTTGATCTG	CTACTCGTTT	AAATCTTTGC	ACAGACTTAA	CCGCACTATC	3360
	AATTTGCCTT	TTGAATTTGG	CTACACTAGC	TTCAATAGTC	GCTTTAATTT	TATATTCCGT	3420
	CACATTAACA	CCTCTCTTTC	TATTGCTTAT	TAAATTCTGC	TATAACTTTA	AAGAATTCAT	3480
20	TATTTTGTGG	TTCGTATTCA	TCACGTTCGC	TACTAAATCT	TATATCTTTA	CCTTCGTTAA	3540
	GCCGTTGGAT	ATTTTCTTCA	TAAGGCAATA	CGTCGTTTGC	ATTGTTAAAA	ACATATTCCT	3600
25	CTTTAGGTTT	ATTTTCTGTC	CCAACATTTT	TAGTAGCTGC	AGCATCACGA	ATAGCAAACG	3660
25	CAAGTTTGTA	ACGTTCGAAT	TCTTGGGTTA	GCATTTCATA	CTCTTTCGCA	TACATTCGAT	3720
	AGTTATATTC	TGTTAATGTC	ATTTGCTCAA	TAACGTTCAA	ATCTGTAATA	CCAAGTGTTG	3780
30	ACATACAAGT	TATAACGATT	CTGTCGTAAG	TTATTAGGCT	TCCGCTGGTT	TTTCTTCCGT	3840
	TTCCACTACT	TCGACTAGGT	TTCGGGTCAT	AGGTCGCTTT	CCCAAcTCCG	TTAAAATATC	3900
	CGAACCGAAT	TCTTCTAGTC	CGATATTTTC	TGCGATTTCA	TCTAATGCTT	CATCAATGTT	3960
35	ATTAATAGTA	ATTGCTTGTT	TTTTTAAGTG	AGATGTAGCT	GCGATTAAAA	CTTCGCCAAT	4020
	CACAACCGGA	TTTCCACTTT	CTAAACCTAC	AGGCAACATT	GATACACCTT	GACCGATAGA	4080
	AGCTTGTTCA	ACTTTTAAAC	CTAATCGGTT	ATCGATTTCT	CTTAAAAATT	TAAAACCAAA	4140
40	ACTTAATTCT	AATGACTTTC	CGTTAATTTC	TACATTCATA	ACTTAAAATC	TCCATTCATA	4200
	ATTAATTTAA	ACAAAATAAA	mArGCTTAAC	GCCCTATTTT	TATACCTCTC	TTGGTGCAAC	4260
45	CGGTGGTGAA	TCTACTTTAG	GTTGTGGAAT	TGCTGTTAAA	TCTTCGCCAG	TTAATGCATC	4320
	TGCTTTTGTA	GTGTCGTGGA	ATCTGTATCC	AGTCGCCTTA	AGTTTCTTTG	TTACAGCCTC	4380
	AGGTAGTGTT	GCAAATCCAC	GTTGGAAACG	ACCATTCACT	CCATATTCAT	ATTCATATTC	4440
50	ATCAATACCG	TTAGCTTCTG	CTTTTAATTC	AAATTTATTG	TGGAAACCTT	GGAAATATTT	4500
	CGCTTTAAAT	TTAGCGGAAT	CCCCATTTTT	GCCTGGTATT	CTACTTTCAA	CTTCCCAAGC	4560
	TTCATACAAT	ACGCGATCTA	CAACTGCATC	TTCAATTTCA	TCTGCAAAAT	CGTCACCATA	4620

	GTCCATTGTA TCCTCTGTAT CTGTATCAGC TTCATGTGAT AAGCCGTATT CAGTTAAAAA	4740
	AAGCATTTTA GTAGCATCTA CTTTTTCGCC AGCTTTTCTA AATAAAATAA	4800
5	ACTATTTTC ATATTTGCCA TTCAATATTC CTCCGTTTTT TAAAATGTTT TGTAAGATAT	4860
	CGTTACTGAT GTGTGTAGCA ATTCTTGATT GGTAGTATCA TCAACTAACT GTGTGATGTT	4920
10	AGTATCTTCT TCTTCAAAGT CATAATCGTT TGTTTTAACG CTAGGTGTTA AATCATCAAT	4980
	ACATCTTTTA ACAAGTCCGT CATGATGTCC TAAATCATCG CTTACACTCC AAATATCAAT	5040
	AACTAAATTC GTATCGCCAG AATAACTATC AAACGTGTAC TTACTTCTAT TTGACTCCGG	5100
15	CATTTTATT ACAAAAAAA GATACGGAAT CTCTTGTTGC ATCTCTTTAC GAGAAATAAC	5160
	AGGGAATCCA TATCCTTGTA GCGTTTCATA CGCTTTATTA TAAAGTTGTA AGTTCGGTGT	5220
	CATGCTTTTA TCTCCTATTC AAACAACGCT TTCAATTCTT CTACAGTTGA TTTCCTAATC	5280
20	ACTTCGTATA CCGGCCACAT AAAAGGTTCA GCCTCCATGT ATCGAGTACC AAATTCTAAG	5340
	AAACCACTAT AAGCTGCGTG CGATGTGATA GTGTATTGCA AATCGCCAGT TTTTTTATAT	5400
	CTGATATTGC GTGATaAATT ACC	5423
?5	(2) INFORMATION FOR SEQ ID NO: 25:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6251 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	AAACGCAGAT GTTCAATTAG AACCAGTCTA TCGTATTAAG GAAGGTATTA AACAAAAGCA	60
	AATACGAGAC CAAATTAGAC AAGCGTTAAA TGATGTGACA ATTCATGAAT GGTTAACTGA	120
10	TGAACTAAGA GAAAAATATA AATTAGAGAC CTTGGACTTT ACTTTGAACA CATTACATCA	180
	TCCTAAAAGT AAAGAGGATT TATTACGTGC TCGTAGAACC TATGCATTTA CTGAACTGTT	240
15	TTTATTCGAA TTACGTATGC AATGGCTAAA TAGATTAGAA AAGTCATCTG ACGAAGCAAT	300
	TGAAATTGAT TATGACATAG ACCAAGTTAA ATCATTTATT GATCGTTTAC CTTTTGAACT	360
	AACTGAAGCA CAGAAATCCA GTGTTAATGA AATTTTTAGA GATTTAAAAG CACCAATACG	420

296

TATGCATCGA TTACTTCAAG GTGATGTAGG TTCAGGAAAA ACAGTAGTTG CTGCAATTTG

TATGTATGCG TTAAAAACTG CTGGTTATCA ATCAGCATTG ATGGTACCAA CTGAAATTTT

AGCAGAGCAA CATGCTGAAA GTTTAATGGC TTTATTTGGA GATTCTATGA ACGTTGCATT

55

480

540

	TACGATTGAT	TGTTTAATTG	GAACCCATGC	TTTGATTCAA	GATGATGTGA	TTTTCCATAA	720
	TGTTGGTTTA	GTAATTACAG	ATGAACAACA	TCGATTTGGT	GTGAATCAAC	GCCAGCTTTT	780
5	AAGAGAAAAA	GGTGCAATGA	CGAATGTGTT	ATTTATGACA	GCAACGCCGA	TACCAAGAAC	840
	ACTAGCAATA	TCAGTTTTTG	GTGAGATGGA	TGTGTCTTCA	ATTAAACAAT	TACCAAAAGG	900
10	TCGTAAACCT	ATCATTACTA	CTTGGGCAAA	GCATGAGCAA	TACGATAAAG	TTTTGATGCA	960
	AATGACCTCA	GAGTTGAAAA	AAGGTCGTCA	AGCATATGTC	ATTTGCCCGC	TAATAGAAAG	1020
	TTCTGAGCAT	CTCGAAGATG	TTCAAAATGT	TGTCGCATTG	TACGAGTCTT	TACAACAGTA	1080
15	TTATGGTGTT	TCCCGTGTAG	GGTTATTGCA	TGGTAAGTTA	TCTGCCGATG	AAAAAGATGA	1140
	GGTCATGCAA	AAGTTTAGTA	ATCATGAGAT	AAATGTTTTA	GTTTCTACTA	CTGTTGTTGA	1200
	AGTAGGTGTT	AATGTACCGA	ATGCAACTTT	TATGATGATT	TATGATGCGG	ATCGCTTTGG	1260
20	ATTATCAACT	TTACATCAGT	TACGCGGTCG	TGTAGGTAGA	AGTGACCAGC	AAAGTTACTG	1320
	TGTTTTAATT	GCATCCCCTA	AAACAGAAAC	AGGAATTGAA	AGAATGACAA	TTATGACACA	1380
?5	AACAACGGAT	GGATTTGAAT	TGAGTGAACG	AGACTTAGAA	ATGCGTGGTC	CTGGAGATTT	1440
.5	CTTTGGTGTT	AAACAAAGTG	GaTTGCCAGA	TTTCTTAGTT	GCCAATTTAG	TTGAAGATTA	1500
	TCGTATGTTA	GAAGTTGCTC	GTGATGAAGC	AGCTGAACTT	ATTCAATCTG	GCGTATTCTT	1560
3 <i>0</i>	TGAAAATACG	TATCAACATT	TACGTCATTT	TGTTGAAGAA	AATTTATTAC	ATCGTAGTTT	1620
	TGACTAATTG	CCATGCTGAT	TTGTCAATTT	GAGTGCAACa	CTTCGTTAAT	TGAGTGATAT	1680
	GACACTTGAA	CTATTTAAAT	GTAAAGTGGT	ATTTTAACAA	TTTATAAATT	TTCGACTAAA	1740
35	TAATAGCTAA	ATATTACAGT	TATTTGTTGA	GTCGGTTAAA	TAGAAAGTGT	TATGATATGT	1800
	GAGGAATGTT	TAAGACTAGG	TACTAAAAA	TGAGGGGTGA	GACGTTGAAA	CTAAAGAAAG	1860
	ATAAACGTAG	AGAAGCAATC	AGACAACAAA	TTGATAGCAA	TCCCTTCATC	ACAGACCATG	1920
10	AACTAAGCGA	CTTATTTCAA	GTGAGTATAC	AAACAATTCG	TTtAGaTCGC	ACTTATTTAA	1980
	ACATACCAGA	ATTAAGGAAG	CGTATTAAAT	TAGTTGCTGA	AAAGAATTAT	GACCAAATAA	2040
15	GTTCTATTGA	AGAACAAGAA	TTTATTGGTG	ATTTGATTCA	AGTCAATCCa	AATGTTAAAG	2100
	CGCAATCAAT	TTTAGATATT	ACATCGGATT	CTGTTTTTCA	TAAAACTGGA	ATTGCGCGTG	2160
	GTCATGTGCT	GTTTGCTCAG	GCAAATTCGT	TATGTGTTGC	GCTAATTAAG	CAACCAACAG	2220
50	TTTTAACTCA	TGAGAGTAGC	ATTCAATTTA	TTGAAAAAGT	AAAATTAAAT	GATACGGTAA	2280
	GAGCAGAAGC	ACGAGTTGTA	AATCAAACTG	CAAAACATTA	TTACGTCGAA	GTAAAGTCAT	2340
	ATGTTAAACA	TACATTAGTT	TTCAAAGGAA	ATTTTAAAAT	GTTTTATGAT	AAGCGAGGAT	2400

	TTAGAAGCCG	TACAAAAGGC	TGTTGAAGAC	TTTAAAGATC	TAGAAATTAT	ACTTTTCGGT	2520
	GACGAAAAAA	AGTATAATCT	GAACCATGAA	CGAATCGAAT	TTAGACATTG	TTCTGAAAAG	2580
5	ATTGAAATGG	AAGATGAGCC	TGTTAGAGCG	ATTAAACGTA	AAAAAGATAG	CTCAATGGTA	2640
	AAAATGGCTG	AAGCTGTGAA	ATCTGGTGAA	GCAGATGGAT	GTGTGTCAGC	AGGTAATACT	2700
0	GGTGCTTTAA	TGTCAGCTGG	TTTATTCATT	GTTGGACGTA	TTAAAGGTGT	AGCTAGACCG	2760
	GCTTTAGTAG	TAACATTGCC	AACGATTGAT	GGAAAAGGTT	TTGTCTTTTT	AGACGTTGGT	2820
	GCAAATGCTG	ATGCTAAACC	TGAACACTTA	TTACAGTATG	CGCAACTAGG	GGATATTTAT	2880
5	GCTCAAAAAA	TTAGAGGTAT	TGATAATCCG	AAAATCTCAT	TATTAAATAT	AGGAACCGAG	2940
	CCAGCTAAAG	GTAATAGTTT	AACGAAAAA	TCATATGAGT	TATTAAATCA	TGATCATTCA	3000
	TTGAATTTTG	TTGGGAATAT	TGAAGCGAAG	ACATTAATGG	ATGGCGATAC	AGATGTTGTA	3060
0	GTTACCGATG	GCTATACTGG	GAACATGGTC	CTTAAAAATT	TAGAAGGTAC	TGCAAAATCA	3120
	ATCGGTAAAA	TGTTAAAAGA	TACGATTATG	AGTAGTACTA	AAAATAAATT	AGCAGGTGCA	3180
Λ.C.	ATATTGAAGA	AAGATTTAGC	TGAATTCGCT	AAAAAGATGG	ATTACTCAGA	ATACGGTGGT	3240
5	TCCGTATTAT	TAGGATTGGA	AGGTACTGTA	GTTAAAGCAC	ACGGTAGTTC	AAATGCTAAA	3300
	GCTTTTTATT	CTGCAATTAG	ACAAGCGAAA	ATCGCAGGAG	AACAAAATAT	TGTACAAACA	3360
10	ATGAAAGAGA	CTGTAGGTGA	AtCAAATGaG	Taaaacagca	ATTATTTTTC	CGGGACAAGG	3420
	TGCCCAAAAA	GTTGGTATGG	CGCAAGATTT	GTTTAACAAC	AATGATCAAG	CAACTGAAAT	3480
	TTTAACTTCA	GCAGCGAACA	CATTAGACTT	TGATATTTTA	GAGACAATGT	TTACTGATGA	3540
5	AGAAGGTAAA	TTGGGTGAAA	CTGAAAACAC	ACAACCAGCT	TTaTTGaCGC	aTAGTTCGGC	3600
	ATTATTAGCA	GCGCTAAAAA	ATTTGAATCC	TGATTTTACT	ATGGGGCATA	GTTTAGGTGA	3660
	ATATTCAAGT	TTAGTTGCAG	CTGACGTATT	ATCATTTGAA	GATGCAGTTA	AAATTGTTAG	3720
0	AAAACGTGGT	CAATTAATGG	CGCAAGCATT	TCCTACTGGT	GTAGGAAGCA	TGGCTGCAGT	3780
	ATTGGGATTA	GATTTTGATA	AAGTCGATGA	AATTTGTAAG	TCATTATCAT	CTGATGACAA	3840
5	AATAATTGAA	CCAGCAAACA	TTAATTGCCC	AGGTCAAATT	GTTGTTTCAG	GTCACAAAGC	3900
-	TTTAATTGAT	GAGCTAGTAG	AAAAAGGTAA	ATCATTAGGT	GCAAAACGTG	TCATGCCTTT	3960
	AGCAGTATCT	GGACCATTCC	ATTCATCGCT	AATGAAAGTG	ATTGAAGAAG	ATTTTTCAAG	4020
0	TTACATTAAT	CAATTTGAAT	GGCGTGATGC	TAAGTTTCCT	GTAGTTCAAA	ATGTAAATGC	4080
	GCAAGGTGAA	ACTGACAAAG	AAGTAATTAA	ATCTAATATG	GTCAAGCAAT	TATATTCACC	4140
	AGTACAATTC	ATTAACTCAA	CAGAATGGCT	AATAGACCAA	GGTGTTGATC	ATTTTATTGA	4200

	AACATCAATT	CAAACTTTAG	AAGATGTGAA	AGGATGGAAT	GAAAATGACT	AAGAGTGCTT	4320
	TAGTAACAGG	TGCATCAAGA	GGAATTGGAC	GTAGTATTGC	GTTACAATTA	GCAGAAGAAG	4380
5	GATATAATGT	AGCAGTAAAC	TATGCAGGCA	GCAAAGAGAA	AGCTGAAGCA	GTAGTCGAAG	4440
	AAATCAAAGC	TAAAGGTGTT	GACAGTTTTG	CGATTCAAGC	AAATGTTGCC	GATGCTGATG	4500
10	AAGTTAAAGC	AATGATTAAA	GAAGTAGTTA	GCCAATTTGG	TTCTTTAGAT	GTTTTAGTAA	4560
, 0	ATAATGCAGG	TATTACTCGC	GATAATTTAT	TAATGCGTAT	GAAAGAACAA	GAGTGGGATG	4620
	ATGTTATTGA	CACAAACTTA	AAAGGTGTAT	TTAACTGTAT	CCAAAAAGCA	ACACCACAAA	4680
15	TGTTAAGACA	ACGTAGTGGT	GCTATCATCA	ATTTATCAAG	TGTTGTTGGA	GCAGTAGGTA	4740
	ATCCGGGACA	AGCAAACTAT	GTTGCAACAA	AAGCAGGTGT	TATTGGTTTA	ACTAAATCTG	4800
	CGGCGCGTGA	ATTAGCATCT	CGTGGTATCA	CTGTAAATGC	AGTTGCACCT	GGTTTTATTG	4860
20	TTTCTGATAT	GACAGATGCT	TTAAGTGATG	AGCTTAAAGA	ACAAATGTTG	ACTCAAATTC	4920
	CGTTAGCACG	TTTTGGTCAA	GACACAGATA	TTGCTAATAC	AGTAGCGTTC	TTAGCATCAG	4980
	ACAAAGCAAA	ATATATTACA	GGTCAAACAA	TCCATGTAAA	TGGTGGAATG	TACATGTAAT	5040
25	ATATTTGAGC	TAAAGCTCAT	TGACGCAGTG	GTTGACTGGT	CATCCAATGG	AGAATTGTCT	5100
	GACCTAGTCA	ACTTTGCGGG	GGAAATTCTA	AGCAACCTAG	ATAAGGTTCC	AGAATTTCTC	5160
30	CCTAAGAAAC	ACTAATCAAT	aAATTGWTAA	GTGTTTCTAA	AATTTCTACT	TGTTTTTAG	5220
	AATTTAAAAT	GGGAAAATAT	AGTAGTCTAT	GTATAGGCAT	TTTTAAAGGA	GGTGAATCGA	5280
	CGTGGAAAAT	TTCGATAAAG	TAAAAGATAT	CATCGTTGAC	CgTTTAGGTG	TAGACGCTGA	5340
35	TAAAGTAACT	GAAGATGCAT	CTTTCAAAGA	TGATTTAGGC	GCTGACTCAC	TTGATATCGC	5400
	TGAATTAGTA	ATGGAATTAG	AAGACGAGTT	TGGTACTGAA	ATTCCTGATG	AAGAnGCTGA	5460
	AAAAATCAAC	ACTGTTGGTG	ATGCTGTTAA	ATTTATTAAC	AGTCTTGAAA	ААТААТАААТ	5520
10	CTTACATCTG	GGTCGTCAGT	ATTGTCGACT	CAGTTTTTT	CTTTAATTAT	CAATAGTTTT	5580
	AACGTAAAAT	TAAAGATGAT	TCAAGAGCAA	CACATAAAGG	AGATAAAATA	ATGTCTAAAC	5640
1 5	AAAAGAAAAG	TGAGATAGTT	AATCGTTTTA	GAAAGCGCTT	TGATACTAAA	ATGACAGAGT	5700
•0	TAGGCTTTAC	TTATCAAAAT	ATTGATTTAT	ACCAACAAGC	ATTTTCGCAT	TCGAGTTTTA	5760
	TTAATGATTT	TAATATGAAT	CGTTTAGACC	ATAATGAGCG	TTTAGAGTTT	TTGGGTGATG	5820
50	CGGTATTAGA	ATTGACGGTT	TCACGATATT	TATTTGATAa	ACATCCCAAC	TTGCCAGAAG	5880
	GGAATTTAAC	AAAAATGCGT	GCCaCTATTG	TATGTGAGCC	CtCACTkGTA	ATATTTGCGA	5940
	ATAAAATTGG	ATTGAACGAA	ATGATTTTAC	TTGGTAAAGG	TGAAGAGAAA	ACAGGGGGAC	6000

	ATCAAGGACT AGATATAGTT TGGAAATTTG CTGAGAAAGT CATTTTCCCA CATGTAGAAC	6120
	AAAATGAGTT ATTAGGCGTG GTAGATTTTA AAACACAATT CCAAGAATAT GTGCACCAGC	6180
5	AAAATAAAGG TGATGTAACC TATAATTTAA TAAAAGAAGA GGGACCGGCA CATCATCGTC	6240
	TATTCACTTC A	6251
10	(2) INFORMATION FOR SEQ ID NO: 26:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4920 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
20	ACCTACTGAA GTTGCTAATT TTTTGGAGCA ACTAAGCACT GAAATTGAAC GTCTTAAAGA	60
	AGATAAAAAA CAACTTGAAA AAGTAATCGA AGAGAGAGAT ACTAATATTA AGTCTTATCA	120
25	AGACGTGGCA TCAATCTGTA AGTGATGCTT TGATACAAGC TCAAAAAGCT GGTGAAGAAA	180
25	CTAAGCAAGC TGCAGAGAAA CAAGCTGAAG CGATTATAGC TAAGGCAGAA GCGCAAgcTA	240
	ATCAAATGGT TGGTGACGCG GTAGAAAAAG CACGCCGTTT AGCATTCCAG ACTGAAGATA	300
30	TGAAACGTCA ATCAAAAGTA TTTAGATCGC GTTTCCGTAT GTTAGTTGAA GCGCAATTAG	360
	ACTTATTAAA AAACGAAGAT TGGGATTACT TGTTGAATTA TGATTTAGAC GCTGAACAAG	420
	TGACGCTTGA AAATATTCAT CATTTGCATG AAAATGATTT AAAGCCAGAT GAAGTTGCAG	480
35	CAAATGCACA AAATAATGCA TCAAATACAC CAGACAATAA TCAACAATCC AATGATTCAG	540
	AAACAACTAA GAAGTAAGAA TTAAATAAAG ACAGACGCGT AATATACATT TAACTTTTCA	600
10	CAGCGAATTA GGTAATGGTG AGAGCCTAGT AAAAGCATGT ATGTTATATC ACTGGCTTTT	660
40	TAATATTTAA ATAATGTAAT GAGAGAACTC TAAGTTGAGT TAATAAGGGT GGTACCGCGA	720
	GCAATCGTCC CTTTTAATTT AACTTAGAGT TTTTTAAATT TTTAAGGAGT GAAAAAAATG	780
45	GATTACAAAG AAACGTTATT AATGCCTAAA ACAGATTTCC CAATGCGAGG TGGTTTACCA	840
	AACAAGGAAC CGCAAATTCA AGAAAAATGG GATGCAGAAG ATCAATACCA TAAAGCGTTA	900
	GAAAAAAATA AAGGTAACGA AACATTCATT TTACATGATG GCCCACCATA CGCGAATGGT	960

300

1020

1080

1140

AACTTACATA TGGGACATGC CTTGAACAAA ATTTTAAAAG ACTTTATTGT ACGTTATAAA

ACTATGCAAG GGTTCTATGC ACCATACGTA CCAGGTTGGG ATACACATGG TTTACCAATT

GAACAAGCAT TAACGAAAAA AGGTGTTGAC CGAAAGAAAA TGTCAACAGC TGAATTCCGT

50

	TTAGGTGTTC	GTGGTGACTT	TAATGATCCA	TATATTACAT	TAAAACCTGA	ATACGAAGCT	1260
	GCACAAATTC	GTATTTTTGG	AGAAATGGCA	GATAAAGGTT	TAATTTATAA	AGGTAAAAAG	1320
5	CCAGTTTATT	GGTCTCCTTC	AAGTGAGTCT	TCATTAGCAG	AAGCAGAAAT	TGAATATCAC	1380
	GATAAACGTT	CAGCATCAAT	TTACGTTGCA	TTTGACGTTA	AAGATGACAA	AGGTGTCGTT	1440
10	GATGCAGATG	CTAAATTTAT	TATCTGGACA	ACAACGCCAT	GGACAATTCC	ATCAAATGTT	1500
	GCGATTACCG	TTCATCCTGA	ATTAAAATAT	GGTCAATACA	ATGTAAATGG	CGAAAAATAT	1560
	ATTATTGCAG	AAGCCTTGTC	TGACGCTGTA	GCAGAAGCAC	TGGaTTGGGA	TAAAGCATCA	1620
15	ATCAAATTAG	AAAAAGAATA	CACAGGTAAA	GAATTAGAGT	ATGTTGTAGC	ACAACATCCA	1680
	TTCTTAGACA	GAGAATCGTT	AGTGATTAAT	GGTGATCATG	TTACTACAGA	TGCTGGTACA	1740
	GGTTGTGTAC	ATACAGCACC	AGGTCACGGG	GAAGATGACT	ATATTGTTGG	TCAAAAATAT	1800
20	GAATTGCCAG	TAATTAGTCC	AATCGATGAT	AAAGGTGTAT	TTACTGAAGA	AGGCGGCCAA	1860
	TTTGAAGGGA	TGTTCTATGA	TAAAGCTAAT	AAAGCCGTTA	CTGATTTATT	AACAGAAAAA	1920
25	GGTGCACTAT	TAAAATTAGA	CTTTATTACA	CATAGCTATC	CACACGACTG	GAGAACAAAA	1980
25	AAACCTGTAA	TCTTCCGTGC	TACACCACAA	TGGTTTGCCT	CAATCAGTAA	AGTAAGACAA	2040
	GATATTTTAG	ATGCAATCGA	AAATACAAAC	TTCAAAGTAA	ATTGGGGTAA	AACACGTATT	2100
30	TACAATATGG	TTCGTGACCG	TGGCGAATGG	GTTATTTCTC	GTCAACGTGT	GTGGGGTGTA	2160
	CCGTTACCAG	TATTTTATGC	TGAAAATGGC	GAAATTATCA	TGACGAAAGA	AACAGTGAAT	2220
	CATGTTGCTG	ATTTATTTGC	AGAACACGGT	TCAAATATTT	GGTTTGAAAG	AGAAGCGAAA	2280
35	GACTTACTAC	CAGAAGGATT	TACACATCCA	GGCAGCCCTA	ACGGTACATT	TACTAAAGAA	2340
	ACAGACATTA	TGGACGTTTG	GTTTGATTCT	GGTTCATCAC	ACCGTGGCGT	GTTGGAAACA	2400
_	AGAÇCGGAAT	TAAGTTTCCC	AGCGGATATG	TATTTAGAAG	GTAGTGACCA	ATATCGTGGT	2460
40	TGGTTCAACT	CTTCTATCAC	AACTTCAGTT	GCTACAAGAG	GAGTATCACC	TTATAAATTC	2520
	TTACTTTCTC	ATGGTTTTGT	TATGGACGGT	GAAGGTAAGA	AAATGAGTAA	ATCTTTAGGT	2580
45	AATGTGATTG	TACCTGACCA	AGTGGTTAAA	CAAAAAGGTG	CTGATATTGC	GAGACTTTGG	2640
	GTAAGTAGTA	CGGACTATTT	AGCTGATGTT	AGAATTTCTG	ATGAAATTTT	AAAACAAACA	2700
	TCTGATGTTT	ATCGTAAAAT	CAGAAATACA	TTAAGATTTA	TGTTAGGTAA	CATTAACGAT	2760
50	TTCAATCCTG	ACACAGATAG	CATTCCTGAA	TCAGAGTTAT	TAGAAGTGGA	TCGTTACTTG	2820
	CTAAATCGTT	TACGTGAATT	TACTGCAAGT	ACGATTAACA	ACTATGAAAA	CTTTGACTAC	2880
	TTAAAATTT	ATCAAGAAGT	TCAAAACTTT	ATCAATGTTG	AGTTAAGTAA	TTTCTATTTG	2940

	CAAACAGTGT	TATATCAAAT	TTTAGTTGAT	ATGACGAAGT	TGTTAGCACC	AATCTTAGTG	3060
5	CATACAGCTG	AAGAAGTTTG	GTCTCATACA	CCACATGTTA	AAGAAGAAAG	TGTTCACTTA	3120
3	GCAGACATGC	CTAAAGTTGT	AGAAGTAGAT	CAAGCTTTAT	TGGATAAATG	GCGTACATTT	3180
	ATGAATTTAC	GTGATGATGT	GAACCGTGCA	TTAGAAACTG	CTCGTAATGA	AAAAGTTATT	3240
10	GGTAAATCAT	TAGAAGCTAA	AGTTACGATT	GCTAGTAACG	ATAAATTTAA	TGCATCTGAA	3300
	TTCTTAACTT	CATTTGATGC	ATTACATCAA	TTATTTATCG	TGTCACAAGT	TAAAGTTGTA	3360
	GATAAGTTAG	ACGATCAGGC	AACAGCTTAT	GAACATGGTG	ATATTGTCAT	CGAACATGCA	3420
15	GATGGTGAAA	AATGTGAAAG	ATGTTGGAAC	TATTCAGAGG	ATCTTGGTGC	TGTTGATGAA	3480
	TTGACGCATC	TATGTCCACG	ATGCCAACAA	GTTGTAAAAT	CACTTGTATA	ATTGAAATTG	3540
	TATAAAGTAC	TCATACAGAT	GATATAAATT	AAAGCTCTCT	TCATAATCAT	GTTGTAGTTT	3600
20	TTGTTGACAT	GATGAAGAGA	GTTTTTTGT	GAATAAAAAA	ATGACCAAGT	TACCGGTCAT	3660
	ATATGTAAAA	AATGTGCGAT	TTACTAAAAT	AAAAATTATT	CAGGAATGGT	ACAAATTCTC	3720
?5	TGAGGCATAT	AAATGCGTTA	TAGTTGCTAT	TCTCAATTAT	GTTCGCGATA	ATTTTAAGTA	3780
	AAAGTAAGCA	CAGATATTGA	ATTTGATAGG	AGTTAATTGA	ATGTATCATA	ACAGTAACGC	3840
	AAACTTTGTC	AATGGTATCA	CTTTAAATGT	GAGAGATAAG	AATGAATTAA	AGCCATTTTA	3900
30	TGAGGACATA	TTAGGATTAA	ATATTATAAA	TGAGACATTA	ACATCGATAC	AATATGAAGT	3960
	AGGTCAAAAT	AATCATGTCA	TTACACTTGT	TGAATTACAA	AATGGACGTG	AACCTTTAAT	4020
	GTCCGAAGCG	GGACTGTTTC	ATATCGCAAT	TAAACTACCT	CAAATTAGTG	ATTTAGCTAA	4080
35	TTTACTAATT	CATTTAAGCG	AATATGATAT	TCCAGTTAAC	GGAGGTATAC	AGCCTGCTTC	4140
	GTTATCATTA	TTTTTTGAAG	ACCCGGAAGG	AAACGGTTTT	AAATTTTATG	TTGATAAAGA	4200
10	CGAĄGCGCAA	TGGACGAGGC	AAAATAATTT	AGTAAAAATT	GATATTAGAC	CATTAAATGT	4260
,,	ACCGAGATTA	GTGAGTCATG	CAACAAAATT	GTTATGGTTA	GGTATTCCAG	ATGACGCTAT	4320
	TATAGGTGCA	TTGCATATTA	AGACAATTCA	TTTATCAGAG	GTAAAAGAGT	ACTACCTCGA	4380
15	TTATTTTGGA	TTAGAGCAAT	CGGCATATAT	GGATGATTAT	TCAATATTTT	TAGCATCGAA	4440
	TGGCTATTAT	CAACATTTGG	CCATGAATGA	TTGGGTATCA	GCAACGAAAC	GTGTAGAAAA	4500
	TTTTGATACG	TATGGATTAG	CAATTGTTGA	CTTTCATTAT	CCTGAAACAA	CACATTTAAA	4560
50	TTTACAAGGT	CCGGATGGTA	TCTATTATCG	CTTTAATCAT	ATCGAAGTTG	AAGATTAGTA	4620
	TATACTTTGA	ATGGACGAAC	CATATAATGA	ATCGTTTTTA	ATGATCTTTT	TATACAAGTT	4680
	ATGAAGGAGG	CTGGGACATT	AAGTTCTTAG	GCAATGTAAA	AAGCTGATTT	СТАТТААТТА	4740

	TTTTCCTTAT ATTAATTGCC ATTAATACAA AACCTAGCTC TCGTTTAACT TTATTTATTC	4860
	CTCGAACTGA CATTCGnGTG AACTCAAAAT nGCCTACTTn CTTAAATTAC CAATATCTAT	4920
5	(2) INFORMATION FOR SEQ ID NO: 27:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	TGGATTGCCA TTACATGGAC AAGATTTAAC TGAATCAATT ACACCATATG AAGGTGGTAT	60
	CGCTTTTGCA AGTAAACCAT TAATTGATGC TGATTTTATT GGTAAATCTG TATTAAAAGA	120
20	TCAAAAAGAA AATGGTGCAC CAAGAAGAAC AGTGGGATTA GAATTACTTG AAAAAGGAAT	180
	TGCAAGAACT GGTTATGAAG TTATGGATTT AGATGGAAAT ATTATTGGAG AAGTAACTTC	240
25	AGGAACACAG TCTCCATCAT CAGGAAAATC AATTGCACTT GCAATGATAA AAAGAGATGA	300
25	GTTTGAAATG GGTAGAGAGT TGCTTGTTCA AGTTCGTAAG CGTCAATTAA AAGCGAAAAT	360
	TGTTAAGAAA AATCAAATTG ATAAATAATT AAAAAGGGGT GTGCATTGTG AGTCATCGTT	420
30	ATATACCTTT AACTGAAAAA GACAAGCAAG AAATGTTACA AACAATTGGT GCAAAATCTA	480
	TAGGAGAATT ATTCGGTGAT GTACCAAGTG ACATTTTATT AAATAGAGAT TTAAATATTG	540
	CTGAAGGCGA ACGGAGAACA ACGTTACTTA GAAGATTNAA TCGCATTGCA AGCAAGAGTA	600
35	TCACTAGAGG AACGCGTACA TCGTTT	628
	(2) INFORMATION FOR SEQ ID NO: 28:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
4 5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	nggaagtggt gtatatattt gtaatgagtg tattgaatta tgctcagaaa tcgtcgaaga	6
50	AGAATTAGCT CAAAACACTT CTGAAGCGAT GACAGAATTA CCTACTCCTA AAGAAATTAT	120
	GGATCATTTA AACGAATATG TTATTGGTCA AGAAAAAGCT AAAAAATCTT TAGCTGTAGC	180
	TGTTTATAAC CACTATAAGC GTATTCAACA ATTAGGACCA AAAGAAGATG ATGTTGAATT	240
55		

	AACCTTAGCC AAGACGTTGA ATGTACCATT TGCAATTGCA GATGCGACAA GTTTAACTGA	360
	AGCTGGTTAT GTAGGCGATG ATGTTGAAAA TATCTTGTTG AGATTAATTC AAGCAGCTGA	420
5	CTTTGACATT GATAAAGCCG AAAAAGGTAT TATTTATGTA GATGAAATTG ATAAAATTGC	480
	ACGTAAATCT GAAAACACAT CTATAACACG TGACGTTTCA GGTGAAGGTG TTCAACAAGC	540
10	ATTGCTTAAA ATCTTAGAAG GTACGACTGC AAGTGTTCCG CCACAAGGTG GACGCAAACA	600
	TCCAAACCAA GAAATGATTC AAATTGATAC AACAAATATC TTATTTATTC TTGGTGGTGC	660
	CTTTGATGGT ATTGAAGAAG TGATTAAGCG CCGTCTTGGT GAAAAAGTTA TTGGTTTCTC	720
15	AAGCAATGAA GCTGATAAAT ATGACGAACA AGCATTATTA GCACAAATTC GCCCAGAAGA	780
	TTTGCAAGCC TATGGTTTGA TTCCTGAATT TATCGGACGT GTGCCAATTG TAGCTAATTT	840
	AGAAACATTA GATGTAACTG CGTTGAAAAA CATCTTAACG CAACCTAAAA ATGCACTTGT	900
20	GAAACAATAT ACTAAAATGC TGGAATTAGA TGATGTGGAT TTAGAGTTCA CTGAAGAAGC	960
	TTTATCAGCA ATTAGTGAAA AAGCAATTGA AAGAAAAACA GGTGCGCGTG GTTTACGTTC	1020
25	AATCATAGAA GAATCGTTAA TCGATATTAT GTTTGATGTG CCTTCTAACG AAAATGTAAC	1080
	GAAGGTAGTT ATTACAGCAC AAACMATTAA TGrAGAACTG AACCAG	1126
	(2) INFORMATION FOR SEQ ID NO: 29:	
30 35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	ATTGACTTCT TAGCAATDAA TATGAGTGAA GAACGTACTG TTGAAGTACC AGTTCAATTA	60
10	GTTGGTGAAG CAGTAGGCGC TAAAGAAGGC GGCGTAGTTG AACAACCATT ATTCAACTTA	120
	GAAGTAACTG CTACTCCAGA CAATATTCCA GAAGCAATCG AAGTAGACAT TACTGAATTA	180
1 5	AACATTAACG ACAGCTTAAC TGTTGCTGAT GTTAAAGTAA CTGGCGACTT CAAAATCGAA	240
	AACGATTCAG CTGAATCAGT AGTAACAGTA GTTGCTCCAA CTGAAGAACC AACTGAAGAA	300
	GAAATCGAAG CTATGGAAGG CGAACAACAA ACTGAAGAAC CAGAAGTTGT TGGCGAAAGC	360
50	AAAGAAGACG AAGAAAAAAC TGAAGAGTAA TTTTAATCTG TTACATTAAA GTTTTTATAC	420
	TTTGTTTAAC AAGCACTGTG CTTATTTTAA TATAAGCATG GTGCTTTTTG TGTTATTATA	480
	AAGCTTAATT AAACTTTATT ACTTTGTACT AAAGTTTAAT TAATTTTAGT GAGTAAAAGA	540

	CTTACTAAGC	TAAAGAATAA	TGATAATTGA	TGGCAATGGC	GGAAAATGGA	TGTTGTCATT	660
	ATAATAATAA	ATGAAACAAT	TATGTTGGAG	GTAAACACGC	ATGAAATGTA	TTGTAGGTCT	720
5	AGGTAATATA	GGTAAACGTT	TTGAACTTAC	AAGACATAAT	ATCGGCTTTG	AAGTCGTTGA	780
	TTATATTTTA	GAGAAAAATA	ATTTTTCATT	AGATAAACAA	AAGTTTAAAG	GTGCATATAC	840
10	AATTGAACGA	ATGAACGGCG	ATAAAGTGTT	ATTTATCGAA	CCAATGACAA	TGATGAATTT	900
	GTCAGGTGAA	GCaGTTGCAC	CGATTATGGA	TTATTACAAT	GTTAATCCAG	AAGATTTAAT	960
	TGTCTTATAT	GATGATTTAG	ATTTAGAACA	AGGACAAGTT	CGCTTAAGAC	AAAAAGGAAG	1020
15	TGCGGGCGGT	CACAATGGTA	TGAAATCAAT	TATTAAAATG	CTTGGTACAG	ACCAATTTAA	1080
	ACGTATTCGT	ATTGGTGTGG	GAAGACCAAC	GAATGGTATG	ACGGTACCTG	ATTATGTTTT	1140
	ACAACGCTTT	TCAAATGATG	AAATGGTAAC	GATGGAAAAA	GTTATCGAAC	ACGCAGCACG	1200
20	CGCAATTGAA	AAGTTTGTTG	AAACATCACG	ATTTGACCAT	GTTATGAATG	AATTTAATGG	1260
	TGAAGTGAAA	TAATGACAAT	ATTGACAACG	CTTATAAAAG	AAGATAATCA	TTTTCAAGAC	1320
25	CTTAATCAGG	TATTTGGACA	AGCAAACACA	CTAGTAACTG	GTCTTTCCCC	GTCAGCTAAA	1380
	GTGACGATGA	TTGCTGAAAA	ATATGCACAA	AGTAATCAAC	AGTTATTATT	AATTACCAAT	1440
	AATTTATACC	AAGCAGATAA	ATTAGAAACA	GATTTACTTC	AATTTATAGA	TGCTGAAGAA	1500
30	TTGTATAAGT	ATCCTGTGCA	AGATATTATG	ACCGAAGAGT	TTTCAACACA	AAGCCCTCAA	1560
	CTGATGAGTG	AACGTATTAG	AACTTTAACT	GCGTTAGCTC	AAGGTAAGAA	AGGGTTATTT	1620
	ATCGTTCCTT	TAAATGGTTT	GAAAAAGTGG	TTAACTCCTG	TTGAAATGTG	GCAAAATCAC	1680
35	CAAATGACAT	TGCGTGTTGG	TGAGGATATC	GATGTGGACC	AATTTCTTAA	CAAATTAGTT	1740
	AATATGGGGT	ACAAACGGGA	ATCCGTGGTA	TCGCATATTG	GTGAATTCTC	ATTGCGAGGA	1800
••	GGTATTATCG	ATATCTTTCC	GCTAATTGGG	GAACCAATCA	GAATTGAGCT	ATTTGATACC	1860
10	GAAATTGATT	CTATTCGGGA	TTTTGATGTT	GAAACGCAGC	GTTCCAAAGA	TAATGTTGAA	1920
	GAAGTCGATA	TCACAACTGC	AAGTGATTAT	ATCATTACTG	AAGAAGTGAT	CAGCCATCTT	1980
15	AAAGAAGAGT	TAAAAACTGC	ATATGAAAAT	ACAAGACCCA	AAATAGATAA	ATCAGTGCGC	2040
	AATGATTTGA	AAGAAACGTA	TGAAAGCTTT	AAATTATTCG	AAAGTACATA	CTTTGATCAT	2100
	CAAATACTAC	GTCGCTTAGT	AGCGTTTATG	TATGAAACAC	CTTCGACAAT	TATTGAGTAT	2160
50	TTCCAAAAAG	ATGCAATCAT	TGCAGTTGAT	GAATTTAATC	GTATTAAAGA	AACTGAAGAA	2220
	AGTTTAACAG	TAGAGTCTGA	TTCGTTTATT	AGCAATATTA	TTGAAAGTGG	TAATGGATTT	2280
	ATAGGACAAA	GTTTTATAAA	ATATGATGAT	TTTGAAACAT	TGATTGAAGG	CTATCCTGTC	2340

	TCATGTAAAC	CTGTCCAACA	ATTTTATGGG	CAATATGACA	TTATGCGTTC	TGAATTTCAA	2460
	CGATATGTTA	ATCAAAACTA	TCATATCGTG	GTTTTGGTCG	AAACCGAAAC	TAAAGTTGAA	2520
5	CGTATGCAAG	CGATGTTAAG	TGAAAtGCAT	ATTCCATCAA	TAACAAAATT	GCATCGCTCA	2580
	ATGTCATCGG	GGCAAGCAGT	GATTATTGAA	GGCAGTTTAT	CTGAAGGATT	TGAACTACCT	2640
10	GATATGGGAT	TAGTTGTCAT	TACTGAGCGT	GAGCTTTTTA	AATCAAAACA	GAAAAAGCAA	2700
	CGAAAACGTA	CGAAAGCTAT	CTCAAATGCT	GAAAAAATTA	AGTCTTACCA	AGATTTAAAT	2760
	GTGGGAGATT	ATATTGTTCA	TGTGCATCAT	GGTGTTGGTA	GATATTTAGG	TGTTGAGACG	2820
15	CTCGAAGTGG	GGCAAACGCA	TCGTGATTAT	ATTAAATTGC	AATATAAAGG	TACGGATCAA	2880
	CTATTTGTTC	CAGTAGATCA	AATGGATCAA	GTTCAAAAAT	ATGTAGCTTC	GGAAGATAAG	2940
	ACGCCAAAAT	TAAATAAACT	CGGTGGCAGT	GAATGGAAAA	AAACAAAAGC	TAAAGTTCAA	3000
20	CAAAGTGTTG	AAGATATTGC	TGAAGAGTTG	ATTGATTTAT	ATAAAGAAAG	AGAAATGGCA	3060
	GAAGGTTATC	AATATGGGGA	AGACACAGCT	GAGCAAACAA	CATTTGAATT	AGATTTTCCA	3120
25	TATGAACTTA	CGCCTGACCA	AGCTAAATCT	ATCGATGAAA	TTAAAGATGA	CATGCAAAAA	3180
	TCGCGTCCAA	TGGATCGCTT	GCTATGTGGT	GATGTTGGTT	ATGGTAAAAC	TGAAGTTGCA	3240
	GTGAGAGCAG	CATTCAAAGC	TGTAATGGAA	GGAAAGCAGG	TTGCATTTTT	AGTTCCTACA	3300
30	ACTATTTTAG	CTCAGCAACA	TTATGAGACG	TTAATTGAGC	GTATGCAAGA	TTTTCCTGTT	3360
	GAAATTCAAT	TAATGAGTCG	TTTTAGAACG	CCTAAAGAGA	TAAAACAAAC	TAAGGAAGGA	3420
	CTTAAAACTG	GATTTGTTGA	CATAGTTGTT	GGTACACACA	AATTACTTAG	TAAAGATATA	3480
35	CAGTATAAAG	ATTTAGGGCT	GTTGATTGTA	GATGAAGAAC	AACGATTTGG	TGTACGCCAT	3540
	AAAGAGCGTA	TTAAAACATT	AAAACATAAT	GTAGATGTAC	TAACATTGAC	TGCAACCCCA	3600
10	ATAGCTAGAA	CATTGCATAT	GAGTATGCTA	GGTGTGCGGG	ATTTGTCAGT	GATTGAAACG	3660
40	CCGCCAGAAA	ATCGTTTCCC	AGTTCAAACA	TATGTATTAG	AACAGAACAT	GAGTTTTATC	3720
	AAAGAAGCTT	TAGAAAGAGA	ACTATCCCGT	GATGGCCAAG	TGTTTTATCT	TTATAATAAA	3780
45	GTGCAATCCA	TTTATGaAAA	ACGAGAACAA	CTCCAGATGT	TAATGCCAGA	TGCTAACATT	3840
	GCAGTTGCTC	ATGGACAAAT	GACAGAGCGC	GATTTAGAAG	AAACGATGTT	AAGTTTTATC	3900
	AATAATGAAT	ATGATATTTT	AGTAACGACG	ACGATTATTG	AAACAGGTGT	CGATGTCCCA	3960
50	AATGCAAATA	CTTTGATCAT	TGAAGATGCA	GATCGCTTTG	GATTGAGTCA	GTTGTATCAA	4020
	TTAAGAGGTC	GTGTTGGTCG	TTCAAGTCGT	ATTGGTTATG	CATACTTCTT	ACATCCAGCA	4080
	AATAAGGTAC	TAACTGAGAC	TGCAGAAGAT	CGATTACAAG	CGATTAAAGA	ATTTACGGAG	4140

	TTAGGTAAAC AACAGCACGG CTTTATTGAT ACAGTTGGAT TTGATTTGTA CAGTCAAATG	4260
_	TTAGAAGAAG CTGTAAATGA AAAACGTGGT ATTAAGGAAC CAGAATCTGA GGTGCCAGAA	4320
5	GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA	4380
	GCTAAAATTG AA	4392
10	(2) INFORMATION FOR SEQ ID NO: 30:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
20	TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC	60
	GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA	120
25	TTATCTTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT	180
23	TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA	240
	ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	300
30	CATTAAGCGC TTTTTGTTGA TTAGCAATAG TTTTAATTAA GGTCGATTTT CCAATACCAT	360
	TTGGCCCAAT GATTGCTATA TGATCGCCTT TAGAGACCTC TATACTCATA GGTTTGGTAA	420
	TTGCAGTTTG ATAACCGATT TCTAAATTTT TTACATGCAT GACGTCATTA CCTGTATTCC	480
35	GGTCAAAGCC AAATTGAATA TTTGCACTTT TGGCATCTAA CATTGGTTTA TCAATGCGTT	540
	CCATTTTTC TAAAATCTTA CGTCTACTTT TTGCCATTCC ACTTGTTGAA GCACGGGTAA	600
	TATITTCTC AACAAAAGTT TCTAATCGTT TTATTTCTGC TTGTTGACTT TCATATTCTT	660
40	GCATTCGTTT TTGATAATAT AAATCCCGTT GCTGTATAAA TTCCTCGTAA TTACCAACAT	720
	AGCGTTTGA	729
45	(2) INFORMATION FOR SEQ ID NO: 31: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 13856 base pairs (B) TYPE: nucleic acid	
50	<pre>(C) STRANDEDNESS: double (D) TOPOLOGY: linear</pre>	

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

	TGATGTTTCG	ATACATTTGT	TGCACCTTGT	GGATATACTT	TAAAGGTTGT	GTCGTATGTT	120
	TCCTTACTAT	CTTTAGCTTC	AGATTCCTGT	GATTCAACCG	TTTTATATTT	TTCAAGTGCA	180
5	TGTCCTTCAA	TATCAACTCG	TGGAATAATG	CGATTCAACC	ATGCTGGTAA	ATACCACGAA	240
	CCTTTtCCAA	ACAATTTCGt	TAATGCAGGA	ATTAACATCA	TECTGACTAC	GAAGGCATCA	300
10	AAGAGTACAC	CAAACGCTAA	TGCCATACCC	ATTGATTTAA	TCATGACATC	TTCTTGGAAT	360
	ACAAACGCAA	AGAAGACACT	AAACATAATT	AATGCAGCTG	CTACAATAAC	AGGACCGCTT	420
	TCTTTCAATC	CTACTTTGAT	AGAATAATCA	TTATCCCCTG	TTTTACTATm	yyCTTCATGr	480
15	ATTCGCGACA	TAAGGAAGAC	TTCATAATCC	ATCGCTAATC	CAAATAAGAT	ACCTATAGTA	540
	ATAACCGGTA	AAAATGCTAG	CATTGGTCCT	GTCGTTTCAA	TACCAAACAG	ACCTTTCATA	600
	AAACCATCTT	GCATTACTAA	TGTTGTAAAT	CCTAATGTTG	CCATTAATGA	CAAGACGAAT	660
20	CCTAAAACTG	CTTTTAATGG	TATTAGAATT	GAACGGAAGA	CAATCATTAA	TAAGAAAAT	720
	GCTAATACAA	CAATGACTGA	GGCAAATAAA	GGTATCGCCT	CATTTAACTT	TTTAGACATA	780
	TCAATATTAA	TGACACTTTG	TCCCGAAATC	TCCGTTTTGA	ACCCATATTT	ATCTTGTGCA	840
?5	TCTTTATGAT	AATCTCGTAA	ATCATGCACT	AAATCATTTG	TACTCTCTGC	ATTAGGCCCT	900
	TGCTTAGGTA	TCACGACCAT	CAAAGCGTAA	TCATTATCTT	TACTCATTTG	TGGTGGCGTA	960
30	ACGATATCTA	CATTTTTCTT	ATCTTTAATA	TCTTTATATA	CAGACTGTAA	ATCTTGTTGT	1020
	AATCCTTGTG	GATCATCCTT	TTTATCTTTC	ACATTTATCA	ACATCGGTAT	TTGGCCATTA	1080
	AATCCTTCAC	CAAATTTATC	CGAGATAATA	TCGTAAGCTT	TTTTCTGTGT	AGAATCTGCT	1140
35	GGTTTAACAC	CGTCATCTGG	AATACCAAGT	CGCATATGAC	TAACTGGTAT	TGCAGCTGCT	1200
20	ACTAATATGA	TTAAACCTAG	TAATACTGCC	GCAAGTGCAT	TTCCTGTAAT	AAATTTAGAC	1260
	CATGGCGTAT	CAATATCTTT	TTTGAATTTA	GACTGTAATT	TATTCACTTT	AATGCGTTtA	1320
10	TGGAAAATGC	TTATTAATGC	AGGTAATAAA	GTTAAAGCGC	TAAGTACTGC	AAAAACAACA	1380
	CTAATTGCCG	AAGCAAATCC	CATTACCGCT	AAGAAGTCAA	TGCCTACTAA	TGATAAACCA	1440
15	CATACTGCAA	TTACAACTGT	TACACCAGCA	AAAACAACTG	CACTACCTGC	TGTTCCTATT	1500
	GCAAGACCAA	TGCCTTTAAT	GTAATCTGTT	TCAGTTTTCA	TAACTTGTCG	ATATCTGAAT	1560
	аааатааата	ATGCATAATC	GATACCAACT	GCTAGTCCAA	TCATTACGGC	TAATGTCAGT	1620
50	GTGACATTTG	GTATATCGAA	TGCATAAGTT	AACAAACTGA	TAATACCTAC	ACCAGAGGCT	1680
	AGACCAATCA	ATGCACTTAT	AATTGGTAAT	CCTGCAGCAA	TGACTGAACC	GAATGTGATT	1740
	AACAGTACAA	CAAATGCAAC	AATAATACCA	ACTAGTTCAG	AATTACCGCC	TACTTCTGTA	1800

	AAATGACTTT	TAACATTATC	TCTAGAGCCA	TCTTTTAAAG	ATGTTTGACT	AACGTCATAT	1920
	GTGATATCTG	CAAATGCAGT	TGTTTTATCT	TTACTAATTT	GCTTATTTTC	ATAAGGATCT	1980
5	GATATTTTAT	CAATGTGCTT	GTCATCTTTT	TTAATATCAT	CTAACGTTTT	CTTAATATCT	2040
	TTAGTAATGT	TCGGTTGCAC	AATACCATCA	TCTTTAGTCG	TCTTAAAGAC	AACACGTATT	2100
10	TGTGCCTTTT	CACTATCTTG	ATTAAAATGT	TTTTCAATCT	TTTTATTCGT	ATCTAACGAC	2150
	TCTAATCCTG	TCATTTTAAT	ATCATTGTCA	AATTTCGGTG	CATTTGTAGC	AAGTGGTATC	2220
	AATATTGCAG	CTACAATCAC	TATCCATGCA	ATGACCGCGG	ACCATTTATG	TTTTGCGATG	2280
15	AATGTCCCCA	TCTTATATAA	AAATTTTGCC	AAAGTATATT	GCCTCCTTTT	AAAATCAACG	2340
	TTATAGTTTA	AATATACAGT	GTAGATTATT	GTTCGATTAT	AGTATCTATC	CCCGACCTCT	2400
	TAAAGAATCA	ATTGGAAAAT	TTTGTATATT	AAACTACACA	CAAAGGAGAA	ATGTAGATGA	2460
20	AAGAGACTGA	TTTACGAGTT	ATAAAGACAA	AAAAAGCATT	GTCGAGTAGC	TTGCTACAAT	2520
	TGTTAGAACA	GCAATTATTC	CAAACGATTA	CTGTCAATCA	AATTTGCGAC	AACGCACTCG	2580
25	TACACCGTAC	AACATTTTAT	AAACATTTTT	ATGATAAATA	TGATCTTCTA	GAGTACTTGT	2640
25	TCAATCAATT	GACTAAAGAC	TACTTTGCTA	GAGATATCAG	TGACCGTCTT	AATCATCCAT	2700
	TCCAAACGAT	GAGTGATACG	ATTAATAATA	AAGAGGATTT	GAGAGAAATC	GCAGAATTCC	2760
30	AAGAAGAAGA	CGCTGAATTT	AATAAAGTAT	TAAAAAATGT	CTGCATTAAA	ATTATGCATA	2820
	ACGATATCAA	AAATAATAGA	GACCGTATCG	ATATTGACAG	CGACATCCCA	GATAATCTCA	2880
	TATTTTATAT	TTATGACTCG	TTGATTGAAG	GTTTTATACA	TTGGATAAAA	GATGAAAAA	2940
35	TTGATTGGCC	TGGCGAAGAT	ATTGATAACA	TTTTCCATAG	ATTAATCAAT	ATTAAGATTA	3000
	AATAGTAGAT	GAGAAACTCA	TGAGCGTTAC	CAACATTCAT	AATAAAAACG	ATAGTGKACA	3060
	CGTTÄATGAA	TTCGTGTACT	ACTATCGTTT	TTTATTTTTA	TCGTGCTTAT	CGCTATTAAA	3120
10	ACAACTGATA	CACAACACAT	AAACTATGAA	GAAAAAAATA	AATCCGCTAT	CTAAATGACT	3180
	TTGACTCAGT	TGTTTAAATG	ACCAAATTGC	TAATACAATT	CCCATTATTA	TTGAAATAAC	3240
1 5	GTATCTCACA	TTCTTATACC	TATAATCCTT	TTCTAAAAAT	ATGGTTGCTA	TTACTTAATT	3300
	TTTAAAGTTA	TAAATAAAA	GAGCCAACCG	CAATGGATGG	CCCTTGTTCA	TTATGAAGCA	3360
	TTAGAACATT	TCTGAAACAA	CCTTTTGTTC	TAAGAAGTGT	AATAAGTAGT	CTGGACTACC	3420
50	TGTTTTAGCG	TCCGTACCTG	ACATTTTGAA	ACCACCAAAT	GGATGGTATC	CAACAACTGC	3480
	TGAAGTACAG	CCTCTGTTAA	GGTATAAATT	GCCTACATCA	AATTCGTTTA	CCGCTTTAAT	354
	CCAATGCTCG	CGATTATTTG	TAATCACTGC	ACCAGTTAAA	CCGTAATCTG	TATCATTTGC	3600

	TTCTTCTTGC	ATGATTCTAT	CTTTAGATTT	AAGTCCTGAA	ATGATTGTTG	GTTCTACAAA	3720
	GTAACCTTTT	GAATCATCAG	TGCCGCCACC	TTGTTCTAAT	TTACCTTCTT	CTTTACCAAT	3780
5	CTCAATATAA	TTTTTAATCT	TATCAAATTG	TTTTTTATTA	ATAACTGGGC	CCATATACGT	3840
	ATTGTCTACA	GTATTGCCCA	ACGTTAATTC	TTTTGTTAAT	TTGATTGATT	TCTCTAATAC	3900
10	TTCGTCATAA	ACGTCTTTAT	GCACAATTGC	ACGTGAACAT	GCTGAACATT	TTTGACCAGA	3960
,0	AAAACCAAAT	GCTGACGTTA	CAATAGCTTC	TGCTGCCATA	TCTGTATCAA	TATTTTCATC	4020
	AACTACAATG	GCATCTTTAC	CACCCATTTC	AGCGATAACA	CGTTTCAAGA	AGTTTTGACC	4080
15	TTCTTGAACA	ACGGCACTAC	GTTCATAAAT	TCTAGTACCT	GTCGCACGTG	ATCCTGTAAA	4140
	TGTAACGAAA	TGCGTATCTT	TATGATCAAC	TAAGTAATCA	CCAATTTCTT	TCGGATCACC	4200
	AGGAACAAAG	TTAACTACGC	CTTTTGGTAA	TCCTGCTTCT	TCTAAAATTT	CCATTAATTT	4260
20	ATAAGCGATA	TAAGGTGTAT	CCTCAGCAGG	TTTCAATAAC	ACTGTATTAC	CTGCCACAAC	4320
	TGGTGCTAAA	GTTGTACCAG	CCATAATCGC	AAACGGGAAG	TTCCACGGCG	GAATTGTAAC	4380
	ACCTGTACCA	ATTGATTTAT	AGAAATATTT	ATTGTGTTCA	CCTTCACGAT	CAAGTACTGG	4440
25	CTTACCTTGA	GCCAAGTCCA	TCATTGAACG	TGCATAGTAT	TCAATAAAAT	CAATACCTTC	4500
	AGCTGCATCA	CCAACTGCTT	CATCCCATGG	CTTACCTGCT	TCATAAACCA	TAATTGCTGC	4560
30	AATTTCCGCT	TTTCGACGAC	GAATAATTGC	CGAAACACGT	AACATAAGCT	CTGCACGATC	4620
	ATTTGCTGAC	CATGTTTTCC	AAGATTTATA	AGCTTCGTTT	GCTGCTTTAA	ACGCATCTTC	4680
	AACATCTTGT	TTTGTTGCCT	TTGATGCATT	TGCAATCACT	TGTGATGTGT	CTGCAGGATT	4740
35	GATTGATTTA	ATTTTGTCAT	CTTTGAAAAT	CTTCTCTCCA	TTAATCACTA	ATGGTATGTC	4800
	TTGACCTAAT	TCTTTTTCCA	CGTCTTTCAA	TGCTTTCTTA	AACATATCCA	CATTTTCTTG	4860
	GACTGAAAAA	TCGTAACCAG	GTTCATTTTT	AAATTCTACT	ACCATGTACA	CTTACCCCCT	4920
40	ATAAATTTTG	AAAGTGGTTT	AACCCTTTGA	TTTAATGATA	TAACATCATT	TAAACTCATT	4980
	TTACTATGAT	TAAGGTTAGT	TTTGCAATCG	CTTTCATTTT	TATGTTTTAT	CACTTATTCT	5040
45	CAAGTATTTT	GAAATTGATT	GGTTACTTTT	TAAAATTTAT	ATGGGTCGCA	ACTGCTACTT	5100
	TATCGTTTCG	TCATTTAATG	TTTCGGATGG	TAGGTCATTA	TCAATTTTAC	GAACGACTTT	5160
	ACAAGGGTTT	CCAACCGCTA	AGCTGTGTGG	CGGAATATCT	TTAGTGACAA	CACTACCAGC	5220
50	ACCAATCACA	CTGCCTTCTC	CAATCGTCAC	CCCTGGTAAC	ACGGCTACAT	GACCGCCAAA	5280
	CCAAGTATTA	CTGCCAATAT	GAATGGGTCC	GGCTTTTTCA	AAACCTTCAT	TTCTATGATG	5340
	GAAATTAAGT	GGATGTGTCG	CTGTGTAGAA	TCCACAATTA	GGTCCTATAA	AAACATTATC	5400

	TCCTAGTTTA	ACGTTCCAAC	CATAATCTGT	ATCAAAAGGA	ATCGAAATAC	TTACATTGTC	5520
_	TGTTGTTGTT	TGAAATAATT	GATCAATTAA	TTCCTTTCTT	TTATTTGTAG	CACTCGGTCT	5580
5	TGTATGATTT	AATTCAAAGC	AAATATCTTT	CGCTCGTGCA	CGTTCATTGA	TTAAGTATTG	5640
	ATCAAAGTTT	GCATCGTACC	ATTTTTCTGC	TAACATTTTT	TCTTTTTCAG	TCATTACACC	5700
10	TTTCAACTCC	TAATAACTTA	TTTACTTGTT	TAAAAGTTAA	TCAAATAAAC	CTTCGCCTAT	5760
	GCAACTAATA	CGCTATAACA	TTATGAAATC	ATGACCTTAT	CACCCTTATC	TATACAATTC	5820
	TCGCATCAAA	TACTGCTAAA	GTAGTAGATA	AATTCAATAC	TACAGACGCA	TTCATTTTTT	5880
15	AATCTATTAA	CGTACAATGT	GAGTAAGAGA	AATATAAAGG	AGTATGATAG	CGATGAGAAT	5940
	ATTAATTACA	GGCACAGTTG	CTATCTTAAT	CATTCTAGGT	TTGGTCAAAA	CGATACAAGA	6000
	TTACGAAATG	ACAAACGACA	CGAGTCGTCA	GTTGTCAGAC	AACAAAGATG	ATGATAAAGT	6060
20	CATCCATCTT	AATAATTTTA	AAAATTTACA	TGCGAAAGAA	TTTAACCCAT	CTGATTTCTT	6120
	TTAAGTCACC	TAAGAATTGC	AAATCCAGAA	GTCATTTAAG	TTTTACCTTT	CATTCATACA	6180
25	TCCTTTAATA	TTAATTACGA	CTTCTTTTAT	ATAGATGCTA	AGTAGAGAGA	TTGTTG T GC A	6240
	ATGTTTGCAC	GGCAATCTCT	CTTTTTCTTT	TTAAAATTGG	TAAAAGTAAA	ACGCAACGAT	6300
	TGACTTATAT	ACCTATAGGG	GGTACATTAG	ACGTGTAACA	ATGAATCACA	GGGAGGCAAT	6360
30	AATGTGGCTA	ATACGAAAAA	AACAACATTA	GATATCACTG	GTATGACTTG	TGCCGCATGT	6420
	TCAAATCGTA	TCGAAAAGAA	ACTGAATAAA	CTTGATGACG	TTAATGCCCA	AGTGAATTTA	6480
	ACTACAGAGA	AAGCAACTGT	TGAGTATAAC	CCTGATCAAC	ATGATGTCCA	AGAATTTATT	6540
35	AATACGATTC	AACATTTAGG	TTACGGTGTC	GCTGTAGAAA	CTGTCGAATT	AGACATTACA	6600
	GGTATGACTT	GTGCTGCATG	CTCAAGCCGT	ATTGAAAAAG	TGTTAAATAA	AATGGACGGC	6660
40	GTTCAAAATG	CAACGGTCAA	TTTAACAACA	GAGCAAGCTA	AAGTTGACTA	TTATCCTGAA	6720
40	GAAACAGATG	CTGATAAACT	TGTCACTCGC	ATTCAAAAAT	TAGGTTATGA	CGCGTCTATT	6780
	AAAGATAACA	ATAAAGATCA	AACGTCACGC	AAAGCTGAAG	CGCTACAACA	TAAATTGATT	6840
45	AAGCTTATCA	TATCAGCAGT	ATTATCTTTA	CCACTATTAA	TGTTAATGTT	TGTACATCTT	6900
	TTCAATATGC	ATATACCAGC	ACTATTTACG	AATCCATGGT	TCCAATTTAT	TTTAGCTACA	6960
	CCTGTACAAT	TTATTATTGG	ATGGCAATTT	TATGTAGGTG	CTTATAAAAA	CTTAAGAAAT	7020
50	GGTGGCGCCA	ATATGGATGT	ACTTGTTGCT	GTTGGTACAA	GTGCAGCATA	TTTTTACAGT	7080
	ATTTATGAAA	TGGTTCGTTG	GCTAAATGGC	TCAACAACGC	AACCGCATTT	ATACTTTGAA	7140
	ACAAGCGCCG	TACTAATTAC	CTTAATCTTA	TTCGGTAAGT	ATTTAGAAGC	TAGAGCGAAG	7200
55							

	TTAAAAGATG	GTAATGAAGT	GATGATTCCT	CTAAATGAAG	TACATGTTGG	AGATACACTT	7320
	ATCGTTAAAC	CAGGTGAAAA	GATACCTGTT	GATGGCAAAA	TTATTAAAGG	TATGACTGCC	7380
5	ATCGACGAAT	CTATGTTAAC	AGGTGAATCT	ATCCCTGTTG	AGAAGAATGT	TGATGATACT	7440
	GTAATTGGTT	CAACGATGAA	CAAAAACGGT	ACTATTACTA	TGACAGCAAC	AAAAGTTGGC	7500
10	GGGGACACTG	CGTTGGCAAA	TATTATTAAA	GTTGTCGAAG	AAGCTCAAAG	TTCTAAAGCG	7560
	CCGATTCAAC	GATTGGCAGA	TATTATTTCT	GGTTATTTCG	TTCCTATCGT	TGTTGGTATC	7620
	GCACTATTAA	CATTTATCGT	GTGGATTACT	TTAGTTACAC	CAGGTACATT	TGAACCTGCA	7680
15	CTTGTTGCGA	GTATTTCCGT	TCTCGTCATT	GCTTGTCCAT	GCGCATTGGG	ACTTGCTACA	7740
	CCAACTTCTA	TTATGGTAGG	TACTGGTCGC	GCTGCTGaAA	ATGGTATTTT	ATTTAAAGGT	7800
	GGCGAGTTTG	TTGAACGCAC	ACATCAAATT	GATACCATCG	TTTTAGATAA	GACGGGTACC	7860
20	ATTACAAATG	GTCGTCCAGT	CGTGACAGAT	TATCATGGTG	ACAATCAAAC	GCTACAACTA	7920
	CTTGCTACTG	CTGAAAAAGA	TTCTGAACAC	CCATTGGCAG	AAGCCATTGT	CAATTATGCA	7980
	AAAGAAAAGC	AATTAATATT	AACTGAGACA	ACAACATTTA	AAGCAGTACC	TGGCCATGGT	8040
?5	ATTGAAGCAA	CGATTGATCA	TCACCATATA	TTGGTTGGTA	ACCGTAAATT	AATGGCTGAC	8100
	AATGATATTA	GCTTGCCTAA	GCATATTTCT	GATGATTTAA	CACATTATGA	ACGAGATGGT	8160
30	AAAACTGCTA	TGCTCATTGC	TGTTAATTAT	TCATTAACTG	GTATCATCGC	AGTGGCAGAT	8220
	ACTGTCAAAG	ATCATGCCAA	AGATGCTATA	AAACAATTGC	ATGATATGGG	CATTGAAGTT	8280
	GCCATGTTAA	CTGGCGATAA	TAAAAACACT	GCTCAAGCCA	TTGCAAAACA	AGTAGGCATA	8340
35	GATACTGTTA	TTGCAGATAT	TTTACCAGAA	GAAAAAGCTG	CACAAATTGC	GAAACTACAG	8400
	CAACAAGGTA	AGAAGGTTGC	GATGGTTGGT	GACGGTGTAA	ATGATGCACC	TGCATTAGTT	8460
	AAAGCTGATA	TCGGTATCGC	CATTGGTACA	GGTACAGAAG	TTGCCATTGA	AGCAGCTGAT	8520
10	ATTACTATTC	TTGGTGGCGA	CTTGATGCTT	ATTCCTAAAG	CCATTTATGC	AAGTAAAGCA	8580
	ACCATTCGTA	ATATTCGTCA	AAATCTATTT	TGGGCATTCG	GCTATAATAT	TGCCGGTATC	8640
15	CCTATAGCTG	CATTGGGCTT	ACTTGCGCCA	TGGGTTGCTG	GTGCTGCAAT	GGCACTAAGT	8700
	TCAGTAAGTG	TTGTCACAAA	CGCACTTAGA	TTGAAAAAGA	TGCGATTAGA	ACCACGCCGT	8760
	AAAGATGCCT	AGATTCCTTA	ATAATGAAGG	ATTCGTTGGT	GATTCTGAGA	TAGGCTAGTG	8820
50	ATTGGCTCTA	TAATGTCGCG	GTTTAyaGTt	GGATCTTCGC	TCCAACTGCA	TATATAGTNA	8880
	CACTTTTCGC	TTGGCGAATT	AGTGTATCTT	ACCTAATAGC	TCCGCCTATT	AGGTTCCATC	8940
	ATTATTAA	ATAATAAGTA	CACTACGGtT	TACAGTTGGA	TCTTCGCTCC	AACTGCATAA	9000

	GAAATTTTAA	ATGTTGAAGG	TATGAGCTGT	GGTCACTGCA	AAAGTGCTGT	TGAATCTGCA	9120
	TTAAATAATA	TTGACGGTGT	CACTTCAGCT	GACGTTAACC	TTGAAAATGG	TCAAGTAAGT	9180
5	GTTCAATATG	ATGACAGTAA	AGTTGCTGTA	TCTCAAATGA	AAGACGCAAT	TGAAGATCAA	9240
	GGTTACGATG	TCGTTTAATT	AGGCAATATT	CAACGTCATC	AACACCAAAT	TAAAAAATCG	9300
10	AACTGATGAG	AATCCCAACA	ATCCAAATTA	TCTCATCAGT	TCGATTTTTA	ATTTACTCGT	9360
	AACCTAGTAT	CTCCAGTCTG	CAATACATCT	AATGTTGCAT	CTAATGCATC	GACAATTAGA	9420
	TTTTTAACTG	CAGCTTCAGT	ATAAAACGCA	ATATGTGGTG	TTAATATGAC	ATCTTCCCTG	9480
15	TCAATCAACG	ATTCTAACAA	TGGATCGTTC	AGTGTTTTGC	CCCTTTGATC	ACTTGGGAAA	9540
	AGTTTGCGTT	CAAATTCATA	CGTATCAAGT	GCTGCACCTT	TAATCACACC	ATTGTCTAAT	9600
	GCGTCTAATA	ACGCCTTAGT	ATCTACTAAA	GAACCTCTCG	CACAATTGAC	AAATACTGCG	9660
20	CCCTTTTTAA	AATGTTTAAA	TAATTCAGCA	TTAAATAGAT	AATGATTATA	TTTCGTTGCA	9720
	GGTACATGTA	ATGTCACGAT	ATCAGCACCT	TCAACCGCTT	CCTCAATCGT	ATCTTTGTAA	9780
or.	TCGACATACG	TTGCAATTTT	AGCATTAGGA	AACGGtCGTA	TGCGACCACA	TCACTTTGAT	9840
25	AACCATTGGC	AAATATATCG	GCTACTACAC	GGCCAATTCG	ACCTGTACCA	ATAACAGCTA	9900
	CTTTTAAATC	TTTAATGGAT	TTCGATAAAA	TAGTAGGTTC	CCATCTAAAA	TCATGCTCCC	9960
30	GCACTTTCGT	TTGAATTTGA	TTAAAATGAC	GAACCACATT	AATAGCCTGG	TTCACAGCAA	10020
	ACTCCGCAAT	TGAATTCGGA	GAGTATGACG	GCACATTTGA	CACAATAAAG	TTATACTTGT	10080
	TTGCTAACTC	CAAATCATAT	GTATCAAATC	CAGCACTACG	TTGTGCGATT	TGTTTAATAC	10140
35	CTAGTTCATT	TAATCGTTTA	TAAACATGCT	CTGATAATGG	TATTTGTTGT	GATAGCGATA	10200
	AGCCATCATA	ACCAGCGACA	CCTTCAACAT	TGTCATCAGT	TAATGCTTCT	TTAGTAATAT	10260
	CTACCTCAAC	ATGATGTTTC	TCTGCCCACG	CCTTGATATA	AGGCATATCT	TCATCACGTA	10320
40	CACTCATGAT	TTTAATTTTT	GTCATTTTAA	CATCACCCTT	AACTTTATTA	TTCATATAAA	10380
	TATGCTAGTT	CTGTTAATCT	TATTGCAGCT	TCGTCTAATT	TCTGGTCATC	TAACGCCAAT	10440
15	GAAATTCTCA	CATAACGATT	ACCATTCTCT	CCAAATGGTT	TCCCTGGAGC	AACAAGTATT	10500
	GACTTCTCTT	GCACTAAAAA	TTGCTCAAAT	TGCTCGCTGT	CATAACCAGG	CGGTGTTTCC	10560
	AACCATACAT	ATATGCCACC	TTTAGCATGA	ACAAATGGCA	AATCAGCTTT	TGCAAGCATG	10620
50	GCTTCGAATC	GGTCACGACG	TGTTTTAAAT	ACATTGCTTT	GTTCTTCTAA	AAAATCATCA	10680
	TAATGATTCA	AAGCATATAT	TGCGGCATCT	TGTAATGCAC	CAAACATCCC	AGCATTTGTG	10740
	TGCGTTTGGT	ACTITITCAA	AGCTTGAATC	ATATCTTTAT	TACCAACTGC	AAAACCGACT	10800

	CCATTTTCCG	AAGCAAGTAT	ACTAGGATTT	TTAGCGTCGA	AACCGAAAGC	ACCATAAGCA	10920
	AAATCATGCA	CGATTTTAGT	GTCTGTACCT	TTAAATTTAG	CTATCGCTTC	ATCAAAAACT	10980
5	TCTTTCGTAG	CTGTCGATCC	AGTTGGATTA	TTTGGATACG	TTAAATAAAT	GAGTTTTGTT	11040
	TTATCTATTA	TTTGTGAATC	AACTTTGGAC	CAATCTGGCA	AATAATGTGG	CGGTTCTAAA	11100
10	TTAAGCGGGA	CTGGCTTGCC	ATCAGCTAAA	AGTACACCTG	CTAAATAATC	CGTGTAGCCT	11160
,0	GGATCAGGTA	GTAATACATA	GTCTCCTGGA	TTGATAACAC	ATGTTGGTAC	TGCCACTAAT	11220
	CCATTTTTTG	TACCATATAA	AATGCATACT	TCATCTTCTT	TATCTAACGT	CACATTATAT	11280
15	TGTCTTTGAT	AAAAATCTAC	AATAGCTTGC	TTGAACGCTT	CTTTACCATG	AAAAGCACCA	11340
	TATTTTTGAT	TTTCAGGAAT	AGTTAGTGCT	TTTTGAAAAT	GATCAATAAT	ACCTIGTGGC	11400
	GTGGGCCCAT	CAGGGATTCC	AACTGCCATA	TTAATTAATG	GCAATGGTCC	ATGTTCGATT	11460
20	TTACGTCCCA	TCGTTTTCCC	GAAATAACTA	TCAGGGATAT	TTGCTAATTT	GTTAGAGATC	11520
	ATCAAATTCC	TCCTCTATCA	TTAAACATAG	CCTGGGCGAC	TATCATAATC	CTAACAACTT	11580
	GTATCACTCT	CATTTAGATG	GTTACAATGA	CATCGCCATT	CACCGTTATG	TTCAACAGAA	11640
25	CTTATGACAC	ACGTTGTATT	GAATGAATTT	ATTTTCATTT	TAGGTAGGTA	TAATATTATT	11700
	GTCAATATTA	GGAATTTTCA	GATTAATATG	CACTCAATCG	TTATGATTTA	ACTGTCATGC	11760
30	ATATCCGCAT	GCGCAACCAG	TTAGATATGC	TTATATAAAG	TATAACGCCC	ATCAAGGTAC	11820
	GTATTCAAAC	GTGAACCTTA	ACAGGCGTCA	TTCATTGTTA	AATAAAACTT	CTTAAGCACA	11880
	TACTTATTTC	ACTATGCCTT	TTACGTTCCC	CTTATACTTT	TCTCACATCT	TTCTCTTAGA	11940
35	CTACTCCCTT	ATACGCCCCG	CTCAATATCT	TTAATCATTT	CATCTACAGT	TATTTTCGCA	12000
	CTCGTTAAGA	CAATAGGAAC	GCCTGCACCT	GGATGCGTAC	TTGCACCTGC	AAAATATAAA	12060
	TCTTTATAAT	CTCGCGATAC	ATTTTGTGGA	CGATAATAAT	TACTTTGCGC	TAAAGTTGGC	12120
40	ATTAAACCGA	ATGCCGAACC	AAATTTCGCA	TGATACGTTT	GCTCAAAATC	ATTTGGCGTA	12180
	AAGATTGTTT	CTGAAACAAT	ATGCGATTTT	ATATCTTCAA	ATACTTCAAT	CGTTGCTAAT	12240
45	TTACGATAAA	TAATTTCCTT	TATTTGTTGC	GTCAAAGCTT	CATCTGACCA	ATCGATTCCG	12300
	CTACCTGTTT	TAAGTTCCGG	CGTCGGCATT	AGCACATAAA	TACCAGTTTT	GCCTTCTGGC	12360
	GCAAGTGATT	TATCAGCGAC	CGCTGGTACA	TACACATAAA	TAGAAGGATC	ATATGATAAA	12420
50	CGTCCCTCAA	ATATTTCTTC	AATATTGCCT	CTAAAGTCAT	CTGAAAAAAT	AACATTATGA	12480
	AGTCTCACTT	GATCTGTCAC	ATCAATATCT	ATACCGATAT	ACATTAAAAA	TGCTGAACAA	12540
	GAGTAATCTA	AGTCTGCAAT	TTTATGTGGT	GGATACTTTT	TAATAGGTGC	AAAATCTGGC	12600

	ATGTCACCAT	TCACTTTTAT	CGCATCGGCC	CGTTTGAATT	TAGGATCAAT	AATAATTTGC	12720
	TCAATTTCAG	CATTTAGTTC	AATATTAACG	CCTAAGTCTT	TATTTAATTG	CGCTAGcCCT	12780
5	TGAGCCATGC	CATACATACC	GCCTTTAATA	AAATGCACAC	CAAACATCAT	TTCAATCATA	12840
	GGAATAATTG	AATATAGTGA	CGGCCTCGT	TTTGGATCAA	TTCCTATGTA	TAACGTTTGA	12900
10	AACGCTAAAA	GCTTTTGTAT	CTTTTCGTTA	TCAATATAAT	GTTCAATTAG	CTGATCTGCA	12960
. •	TGATTTAACG	TTTTTAACTT	AGCACCTTGC	ACAAGTGACG	TCATATTATA	AAAGTCACTC	13020
	GGTTTGCGAT	ACGTTCTTTC	TAAGAAATAG	CGACGTGCAA	TTTCATATIT	TTTATAAACA	13080
15	TCCGTTAAAA	AGGACATAAA	ACCATGCGTT	GAACCAGGTT	CTATACTTIC	TAGCATTTGC	13140
	TGTAATTCAG	CTAAATCTGT	AGGCACCGTT	ATACGATCAT	CGTGGTCAAA	ATACACATCG	13200
	TAAATATAAC	GTAATTGTCT	CAATTCAATA	TAATCTTCAT	AATTTTTACC	ACACGCTGTA	13260
20	AAAACATCTT	TATAAACATC	TGGCATCATG	ACAATTGTGG	GACCCATATC	AAATGTAAAG	13320
	CCGTCTTTCT	TTAATTGATT	CATACGCCCG	CCTACATTAT	TATTTTTTC	AAATATCGTC	13380
25	ACTTCATGAC	CTTGAGAAGC	AATACGGGCT	GCCGCTGCTA	ATCCTGTGAC	ACCTGCACCA	13440
.5	ATTACTGCAA	TCTTCATTAT	TCAACCACCT	ATATTCTATG	ATATTTACTA	TTTATTTCAT	13500
	GAAACAACTT	TGCCTTTTTC	CTCTTATCCA	CAAAAACACG	TTCATGTAAT	GTATAGTTAG	13560
30	CCTGTCTCAC	TTCGTCCAGT	ATTTCAATAT	ATATACGTGC	TGCTAATTCT	ATGATTGGTT	13620
	GTGCTTCAAT	ACTAAATACT	TTGATTTGAT	CCATAACATC	TTGAAAATCT	TTTTCTGCGA	13680
	TAGCTGCATA	ATATTCCCAT	AAGTCAATAT	AATGATTATT	AACACCATTT	TGGTACACTT	13740
35	CAGCAATATC	AACTTCATAT	TGCTTTAATC	GTTGCTTACT	AAAATATATC	CGTTCATTGT	13800
	CAAAATCTTC	ACCGACATCT	CTTAATATAT	TAAnGGGATC	CTCTAGAGTC	GACCTG	13856
	(2) INFORMA	ATION FOR SE	EQ ID NO: 32	2:			
10				_			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10088 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ATATATAAAT ATAGATTAAG TATATAGATT AATCAACTTT TTTGGAAGAG CAAATCACGC 60 AATCAACAAA TAATATAAGA AGTTTTTGCG ATAGTTTTAA AATAGCTGTA ATAGAATACT 120 AAATGTGACA AACTTAGAAC TAATATCAAG TGTTGATGTT TTGAATATAA AAATGCTAAT

	ATAATTGGTT	AATATATGAG	TAATTAGAAA	ATAGACAAAG	GATGACGATT	TATGTATATC	300
	AATATGAAAG	ATTATGGGTT	AACAGGCATA	AACAAAACTA	AAGATACTCG	AGCAATACAA	360
5	CGTGCGTTAA	ATCGTGGAAG	ATGTAAACCA	ACGACAGTTT	ATATACCGAA	AGGGACGTAT	420
	GATATTTGCA	AACCATTAAC	GATATATGGC	AATACAACAC	TTTTGTTAGA	TAATGAAACT	480
10	ATTTTACGCC	GATGTCATTC	TGGTCCTTTA	TTAAAAAATG	GTCGTCGCTT	TGGTTTTTaT	540
, 0	CGTGGTTATA	ATGGACACAG	TCATATTCAT	ATTAAAGGCG	GCAAGTTTGA	TATGAATGGT	600
	GTATCGTATC	CTTATAACAA	TACAGCTATG	TGCATTGGGC	ATGCTGAAGA	TATTCAATTA	660
15	ATAGGTGTGA	CCATTAAGAA	TGTAGTGAGT	GGTCATGCAA	TTGATGCTTG	TGGGATTAAC	720
	GGACTCTATA	TTAAAAGCTG	TTCATTTGAA	GGATTCATAG	ACTATAGTGG	CGAACCTTTT	780
	ATTCTGAAGC	AATACAATTA	GACATTCAAG	TACCTGGTGC	TTTTCCAAAA	TTCGGAACGA	840
20	CAGATGGTAC	GATAACGAAA	AATGTCATTA	TCGAAGATTG	TTATTTTGGA	CCTTCAGAAT	900
	TGCCCGAAAT	GGGAAGTTGG	AATCGTGCTA	TTGGCTCACA	TGCAAGTAGA	CATAATCGAT	960
	ACTATGAGAA	TATTCATATT	AGAAATAATA	TATTTGAAGA	TATACAAGGT	TATGCATTAA	1020
25	CTCCCTTGaA	GTATAAAGAT	GCTTTCATTA	ттаатаатаа	GTTTATTAAC	TGTGaGGGTG	1080
	GCATTAGATA	TTTAGGAGTT	AGAGATGGTA	AAAATGCAGC	AGATGTGaTG	ACAGGAAAAG	1140
3 0	ACTTAGGTTC	CCAAGCAGGC	ATAAATATGA	ATATAATTGG	AAATGAATTT	AAAGGATCAA	1200
	TGTCTAAAGA	TGCGATACAT	GTACGTAATT	ATAATAATGT	TAAACATAAA	GATGTATTAA	1260
	TCGTTGGGAA	TACATTCAAT	AATTCGACTC	AATCAATTCA	TTTAGAAGAT	ATTGATACAG	1320
35	TGTTTTTAAG	TCCTGTTGAA	GCGGGTATTC	AAGTTACTAC	AATCAATGTA	GATGAAATAA	1380
	AAAAGTAAAA	AGTTTCGCAT	GACATTAGGA	TTAAGAATAG	TAGATAATTT	TTGAAAGCGC	1440
	ATTÉATAAAA	CGGTATAAAT	ATGCTATAAT	AAACCCAATT	ATCTGATAAA	AGGGGTATTT	1500
10	TGACGGTAAT	GATAATACAA	GATAGACAAC	TTTCTATACT	CTAATATAGT	GAGTTGAAGT	1560
	AGCTTGTCAT	AATCATCATG	AGGGGGAAAT	TTATGGCTTA	TTTCAATCAA	CATCAATCAA	1620
15	TGATATCGAA	AAGGTATTTA	ACATTCTTTT	CAAAATCAAA	GAAAAAGAAA	CCGTTTAGTG	1680
•0	CGGGACAACT	TATTGGACTA	ATATTAGGTC	CATTACTTTT	CCTATTAACA	TTATTATTCT	1740
	TTCATCCACA	AGACTTACCT	TGGAAAGGCG	TCTATGTTTT	AGCGATTACT	TTATGGATTG	1800
50	CGACTTGGTG	GATTACTGAA	GCAATTCCTA	TTGCAGCAAC	GAGCTTATTA	CCAATTGTGT	1860
	TATTACCATT	AGGTCATATA	CTTACACCAG	AACAAGTATC	ATCCGAATAT	GGCAATGATA	1920
	TTATCTTTTT	GTTTTTAGGT	GGATTTATTT	TGGCAATTGC	AATGGAAAGA	TGGAATTTAC	1980

	TTGGATTCAT	GGTGGCAACA	GGATTCTTAT	CTATGTTTGT	ATCGAACACT	GCAGCTGTAA	2100
	TGATTATGAT	TCCGATTGGT	TTAGCAATTA	TTAAGGAAGC	ACATGATTTA	CAAGAAGCCA	2160
5	ATACGAATCA	AACAAGTATT	CAAAAGTTTG	AAAAATCTCT	AGTTTTAGCA	ATTGGCTATG	2220
	CAGGTACGAT	TGGTGGCTTG	GGTACATTAA	TCGGAACCCC	GCCATTAATT	ATTTTAAAAG	2280
	GACAATACAT	GCAACATTTT	GGACATGAAA	TTAGTTTTGC	TAAATGGATG	ATTGTAGGGA	2340
10	TTCCAACGGT	CATTGTTTTG	TTAGGTATTA	CTTGGCTCTA	TTTAAGATAT	GTTGCGTTTA	2400
	GACATGATTT	GAAATATTTa	CCTGGTGGTC	AGACGTTAAT	TAAACAAAAG	TTAGACGAGC	2460
15	TTGGCAAAAT	GAAGTATGAA	GAAAAGGTAG	TACAAACTAT	CTTTGTACTT	GCTAGCTTAT	2520
	TATGGATTAC	AAGAGAGTTT	CTTCTGAAAA	AATGGGAAGT	TACGTCATCT	GTTGCAGATG	2580
	GTACGATTGC	TATTTTTATA	TCAATATTAT	TATTTATTAT	TCCAGCTAAA	AATACTGAAA	2640
20	AACATCGCCG	TATCATTGAC	TGGGAAGTTG	CAAAAGAGCT	CCCTTGGGGT	GTATTAATTT	2700
	TATTTGGTGG	CGGTTTAGCA	TTAGCGAAAG	GTATTTCTGA	AAGTGGTTTA	GCAAAATGGT	2760
	TAGGCGAACA	GTTGAAATCA	TTAAATGGTG	TTAGTCCGAT	TCTTATTGTA	ATTGTCATAA	2820
25	CAATCTTTGT	CTTATTTTTA	ACTGAAGTGA	CATCTAATAC	TGCAACTGCA	ACGATGATTT	2880
	TACCGATTTT	AGCAACGTTG	TCTGTTGCTG	TTGGAGTGCA	TCCATTACTA	CTTATGGCAC	2940
30	CTGCAGCTAT	GGCGGCTAAC	TGTGCATACA	TGTTACCAGT	AGGGACACCA	CCGAATGCAA	3000
	TTATCTTTGG	TTCTGGTAAA	ATATCTATCA	AACAAATGGC	ATCAGTAGGA	TTCTGGGTAA	3060
	ACTTAATCAG	TGCAATAATT	ATTATTTTAG	TCGTGTATTA	TGTAATGCCT	ATAGTTTTAG	3120
35	GTATTGATAT	AAATCAACCA	CTGCCATTGA	AATAGTAATT	GCAGATTAGA	ACGAAAAATA	3180
	AAAGGTTACA	TTAGCAATTG	CTTGGACGAG	TGGTAACGAA	ACGTATACCG	CAGCATCGTG	3240
	TAASAACAAT	ACAAACAAAA	GAAAGTCAAC	CAAGGATGGA	TTCCTATTTT	AATCCTTGGT	3300
40	TGACTCTTTA	TTTTATTTAA	ATTGTAGAAC	CTAGAAAATA	AAGTTTAATT	AAAAGCACCA	3360
	ATCATTTCTA	CTTTGAAATC	TAAGGTTTCT	AAAATAGCAA	TGACTTTCTT	TATATCGGTT	3420
45	GTAATTGCAG	AATCAGCCTG	AACGAAAAAT	CGATACATAC	CTAATTGTGT	TTTTAAAGGA	3480
43	CGAGACTCAA	TCCAGGATAA	ATTAATATTA	AACAAAGCAA	ATGTATTAAG	CACACTTGCT	3540
	AACAACCCAG	GTTTATCATG	CATTGGTGTA	ATTAAAAACA	TCAATGATGT	CGCATTTTGA	3600
50	TCAAATTGCT	GCTGATTTTT	TATAACTAAA	AAACGTGTCA	CGTTATGTGG	ATAGTCTTCA	3660
	ATATGTGTAT	CAATAGGTGT	AAAACCATAA	GctTCGCCAC	TACCTAAAGG	TGCAATTGCT	3720
	GCAACGCCAT	TTTCAATTTT	AGTCAAACTT	TGAATTGTAC	TGTCGACATA	ATCATAGTCA	3790

	TTTTTAATAT	CAGAAATGGA	ATCTGTTCCA	TTACCATATA	ATGCAAAGTT	AATATCTAAA	3900
	CGTATTTCAC	CGTGTGCAAA	GACATCTTGC	TGTGCAAGTG	CATCTGCCAC	AATGTTGATT	3960
5	GTTCCTTCTA	TAGAATTTTC	AATAGGGACA	ACACCAATCG	ATGTGTCATC	ATCTGCAACT	4020
	GCCTTGATGA	CTTCAAATAA	ATTTGACTTT	GGTTGAAAAG	TTGCTTCATT	TTCAGAAAAA	4080
0	TACTGACGAC	AAGCCAAATA	TGAAAATGTA	CCTTTAGGGC	СТАААТААТА	TAATTGCATA	4140
	TGCTACACCT	CTACTAACTT	AATGATGGAA	AGGGCACTGG	TTAGCATTTG	ATTCTTTCTT	4200
	TTTATAGAAA	AAGTTTGGAT	CTTTTACTGT	ATTGTCATAT	CCGTGATGAT	AATTTGACGT	4260
5	CAATGTTGGA	GATAATGGCG	GTGCTAGCCA	AGACCATTTT	CCGGTAACTT	GACGACCTTG	4320
	TTGTGCTTCG	TTACGTTCGA	ATAGTTCGAA	TTGCTTTGCA	GCGGTCAAAT	GATCGACAAT	4380
	TGATACGCCT	TCTTTTTTAA	AGGAATGATA	CACAGCATAG	TTCAATTCAA	CAAGTGCTCG	4440
20	ATCTTTATTA	AATGAATTAT	TTTTAAGTGT	ATCAAATTCA	AACGCATCTG	CAACTTTTTC	4500
	TAGTAAATTG	TAACGGTAAT	CATCAATAAA	GTTACGTACG	CCAATTTCAG	TTACCATATA	4560
25	CCAACCGTTA	AAGGGTGCAG	TTGGATATAC	AATGCCACCG	ATTTTTAAGT	CCATATTGGA	4620
.5	AATGATAGGG	ACTGCATACC	ATTTTAAGTT	CAATTTTCTT	AATTTTGGAT	AATGATTATG	4680
	TTCAATAGGT	ACTTCTTTAA	TTAATGAAGT	AGGATATTCG	TAAAATTTAA	CTGACTCATT	4740
80	AGGTAATTGG	TAAATCAGTG	GTAACACGTC	AAAATTAGTA	CCTTTTCCTT	TCCAACCTAA	4800
	GTGATTTGCT	AAGCGTGTAA	CTTCTTTTTC	AGCAGGATCA	CCACAATTGT	CATAGCCAGC	4860
	ATAGCGAATT	AATTGATTGT	TGAAAATTTT	AGGTCCATCC	TTTGGAGCAT	ATATAGTAAT	4920
35	ATACGGCTTT	AATTTACCTT	CATTTGTAGC	CTGTGTAATA	TGATAAGTAA	TTGATGATAA	4980
	GAACGATGCT	TCGTCAGTAA	CATCTCTTGC	ATCAATGACA	TTTAACGAAT	CCCAAAATAA	5040
_	ACGACCAATG	CAACGATTTG	AATTACGCCA	AGCCATTTTA	GCACCATAAA	TAAGTTCTTC	5100
10	TTCTGTATGT	GTATATGTCC	CAGTTTCTTT	TATTTCTAGT	TCAATGTCAT	GTAAACGTTT	5160
	ATTGATAATT	TGCGTTTCAT	AATGACACTC	TTTATACATG	TTTTCTATGA	AAGCTTGAGC	5220
15	CTCTTTAAAT	AACATTAACA	ACACCTCGCT	TTATATTATA	GTCTACATTA	TTAAAATACT	5280
	CTTAAAAATT	ATGTATATGT	CATTAAATTG	TTGGTTGATT	TTAATTAAAA	GTATGGAAAT	5340
	TAAGGGGCTC	TTATGTATAT	AAAAAAATGA	ATTATGATAA	AATGTAAGAA	AATATTTAGG	5400
50	TCGATTGGAG	AGATACAAGT	GTACCAATTA	GAAGACGACA	GTTTAATGTT	ACATAATGAC	5460
	TTATATCAAA	TAAATATGGC	TGAAAGTTAT	TGGAATGATA	ATATTCATGA	AAAAATGGCT	5520
	GTATTTGATT	TGTATTTTAG	AAAAATGCCA	TTTAATAGTG	GCTATGCTGT	TTTTAATGGT	5580

	TTAAAGTCTA	TTGGCTACAA	GGATGATITC	TTATCATATT	TAAAAGATTT	AAAATTCACA	5700
-	GGCAGCATCC	GTTCGATGCA	AGAAGGCGAA	TTATGCTTTG	GTAACGAACC	ATTGTTACGC	5760
5	GTAGAAGCAC	CATTGATTCA	AGCGCAATTA	ATAGAAACAA	TTTTATTAAA	CATTGTAAAT	5820
	TTCCATACAT	TAATTACAAC	AAAGGCTAGC	AGAATTCGTC	AAATTGCATC	AAATGATAAA	5880
10	TTAATGGAGT	TTGGTACACG	TCGTGCGCAA	GAAATTGATG	CAGCATTGTG	GGGCGCTAGA	5940
	GCTGCTTACA	TCGGGGGCTT	TGATTCTACA	AGTAATGTTA	GGGCGGGGAA	ATTATTTGGT	6000
	ATACCTGTGT	CTGGTACACA	TGCACATGCA	TTTGTCCAAA	CTTATGGAGA	CGAATATGTT	6060
15	GCCTTCAAAA	AATATGCTGA	AAGACATAAA	AATTGTGTGT	TCCTAGTAGA	TACATTCCAT	6120
	ACTITAAAAT	CTGGCGTGCC	AAATGCAATA	AAAGTTGCAA	AAGAATTAGG	TGACAAAATT	6180
	AACTTTGTAG	GTATTCGATT	AGATTCTGGA	GATATCGCTT	ATTTATCTAA	AGAGGCAAGA	6240
20	CGTATGCTTG	ATGAAGCAGG	ATTTACTGAA	ACTAAAATTA	TCGCGTCTAA	TGATTTGGAT	6300
	GAAGAAACGA	TTACGAGTTT	GAAAGCACAA	GGTGCAAAAG	TAGATTCTTG	GGGCGTTGGT	6360
25	ACAAAGCTGA	TTACAGGATA	CGATCAACCA	GCATTAGGTG	CAGTATATAA	ACTTGTAGCT	6420
	ATTGAAAATG	AAGATGGTTC	ATATAGTGAT	CGTATTAAAT	TATCAAATAA	CGCTGAAAAG	6480
	GTTACGACGC	CAGGTAAGAA	AAATGTATAT	CGCATTATAA	ACAAGAAAAC	AGGTAAGGCA	6540
30	GAAGGCGATT	ATATTACTTT	GGAAAATGAA	AATCCATACG	ATGAACAACC	TTTAAAATTA	6600
	TTCCATCCAG	TGCATACTTA	TAAAATGAAA	TTTATAAAAT	CTTTCGAAGC	CATTGATTTG	6660
	CATCATAATA	TTTATGAAAA	TGGTAAATTA	GTATATCAAA	TGCCAACAGA	AGATGAATCA	6720
35	CGTGAATATT	TAGCACTAGG	ATTACAATCT	ATTTGGGATG	AAAATAAGCG	TTTCCTGAAT	6780
	CCACAAGAAT	ATCCAGTCGA	TTTAAGCAAG	GCATGTTGGG	ATAATAAACA	TAAACGTATT	6840
•0	TTTGAAGTTG	CGGAACACGT	TAAGGAGATG	GAAGAAGATA	ATGAGTAAAT	TACAAGACGT	6900
10	TATTGTACAA	GAAATGAAAG	TGAAAAAGCG	TATCGATAGT	GCTGAAGAAA	TTATGGAATT	6960
	AAAGCAATTT	ATAAAAAATT	ATGTACAATC	ACATTCATTT	ATAAAATCTT	TAGTGTTAGG	7020
‡ 5	TATTTCAGGA	GGACAGGATT	CTACATTAGT	TGGAAAACTA	GTACAAATGT	CTGTTAACGA	7080
	ATTACGTGAA	GAAGGCATTG	ATTGTACGTT	TATTGCAGTT	AAATTACCTT	ATGGAGTTCA	7140
	AAAAGATGCT	GATGAAGTTG	AGCAAGCTTT	GCGATTCATT	GAACCAGATG	AAATAGTAAC	7200
50	AGTCAATATT	AAGCCTGCAG	TTGATCAAAG	TGTGCAATCA	TTAAAAGAAG	CCGGTATTGT	7260
	TCTTACAGAT	TTCCAAAAAG	GAAATGAAAA	AGCGCGTGAA	CGTATGAAAG	TACAATTTTC	7320
	AATTGCTTCA	AACCGACAAG	GTATTGTAGT	AGGAACAGAT	CATTCAGCTG	AAAATATAAC	7380

	TAAACGACAA	GGTCGTCAAT	TATTAGCGTA	TCTTGGTGCG	CCAAAGGAAT	TATATGAAAA	7500
	AACGCCAACT	GCTGATTTAG	AAGATGATAA	ACCACAGCTT	CCAGATGAAG	ATGCATTAGG	7560
5	TGTAACTTAT	GAGGCGATTG	ATAATTATTT	AGAAGGTAAG	CCAGTTACGC	CAGAAGAACA	7620
	AAAAGTAATT	GAAAATCATT	ATATACGAAA	TGCACACAAA	CGTGAACTTG	CATATACAAG	7680
10	ATACACGTGG	CCAAAATCCT	AATTTAATTT	TTTCTTCTAA	CGTGTGACTT	AAATTAAATA	7740
	TGAGTTAGAA	TTAATAACAT	TAAACCACAT	TCAGCTAGAC	TACTTCAGTG	TATAAATTGA	7800
	AAGTGTATGA	ACTAAAGTAA	GTATGTTCAT	TTGAGAATAA	ATTTTTATTT	ATGACAAATT	7860
15	CGCTATTTAT	TTATGAGAGT	TTTCGTACTA	TATTATATTA	ATATGCATTC	ATTAAGGTTA	7920
	GGTTGAAGCA	GTTTGGTATT	TAAAGTGTAA	TTGAAAGAGA	GTGGGGCGCC	TTATGTCATT	7980
	CGTAACAGAA	AATCCATGGT	TAATGGTACT	AACTATATTT	ATCATTAACG	TTTGTTATGT	8040
20	AACGTTTTTA	ACGATGCGAA	CAATTTTAAC	GTTGAAAGGT	TATCGTTATA	TTGCTGCATC	8100
	AGTTAGTTTT	TTAGAAGTAT	TAGTTTATAT	CGTTGGTTTA	GGTTTGGTTA	TGTCTAATTT	8160
	AGACCATATT	CAAAATATTA	TTGCCTACGC	ATTTGGTTTT	TCAATAGGTA	TCATTGTTGG	8220
25	TATGAAAATA	GAAGAAAAC	TGGCATTAGG	TTATACAGTT	GTAAATGTAA	CTTCAGCAGA	8280
	ATATGAGTTA	GATTTACCGA	ATGAACTTCG	AAATTTAGGA	TATGGCGTTA	CGCACTATGC	8340
30	TGCGTTTGGT	AGAGATGGTA	GTCGTATGGT	GATGCAAATT	TTAACACCAA	GAAAATATGA	8400
	ACGTAAATTG	ATGGATACGA	TTTAAAAATTT	AGATCCGAAA	GCATTTATCA	TTGCGTATGA	8460
	ACCTCGAAAC	ATACATGGTG	GATTCTGGAC	TAAAGGCATT	CGTCGTAGAA	AGCTTAAAGA	8520
35	TTATGAACCA	GAAGAACTGG	AAaGTGTAGT	AGAaCATGAA	aTTCmAAGTA	AaTGAGAaTG	8580
	AAmCAATtGC	TGATTGTTTG	TCACGAATGA	A AtGC AA GGG	TATATGCCGG	TAAAACGTAT	8640
	TGAAAACCC	GTGTTTCAAG	AGCAAAAAGA	TGGCACGGTT	GAAGTATCAC	ATCAAGAAAT	8700
10	CGTTTTTGTA	GGTAAGAAAA	TCCAATAACA	TAATCCAATT	TAAATAAAGA	CTATTTGAAG	8760
	AGGAAAGGCT	ATTCAAAGTT	TGAGTAATTT	TACTTTGAAT	AGCCTATTTG	TTTATACATG	8820
1 5	CAAGATGCTC	GATCCATATT	GTATGAGAAA	CCCCCAGCAA	GCTATATAAA	GCATATGC TG	8880
•3	GGGGTTCTTA	ATATTTTAAA	AATTATTGTT	AGATTATATA	TATCGTCGCT	TTTTCTAAAA	8940
	CAATCTCATC	GCATGAAATT	TTTTCTTCCT	AGAGACCTTT	AATAAGATTA	ATAGTTTACT	9000
50	TAATCATATC	TAGATAGTCT	TATGACTTAT	GCTTAATGAA	AGTCATTCTA	GGAGAAGTTC	9060
	CCAAAGCTTC	TGTGTTCATA	ATTGTTAGTA	GTATTTTATT	ATCATTTGGT	ATAAATATTT	9120
	CAATAACAAT	TGAGCTATTA	TTTTTTTTT	ATAATGTGAG	TTGTTTGTGT	TCTGTATTTA	9180

CATTTAAATC	TTGAGGATGC	CATTCTCCCT	CAATAATATT	AAGATAATAC	TTAGCCTCTG	9300
AATTACATTT	GAATTTATCA	ATACTAAATA	ATTCAATTTG	TTCCATAATA	TTATTTACCT	9360
TTCTAAAATA	CAAATTTTAA	TAACCATAAA	TAGATGAATA	CCATCGATAA	TGGTCGCCAT	9420
TGGATACTGG	AATAACATTG	TTTTTAGCAT	CTTGAGTCAT	AAAACCATTA	TCCCATGGAT	9480
TCCATATAAT	TATAACCTCT	TGTCCATTAT	CTAATTTAGC	GTTCCCAACA	ACTGCCATGG	9540
CATGCCCTGC	GTGCATACCA	TTTCTTGATT	CTACTCTACT	ACCTAAAACA	GCAATTCCTT	9600
TATTATTTTT	AGTAAGATTG	TCAACTTCAT	TATATGTAGT	CATTCTATTA	AGAAGTTGTG	9660
GACTTCTTCC	CTGAGTTTGT	CCAAAATAAA	TCATCTCTCT	TGGCGTTAAA	CCAGTAAATT	9720
GGAATCGTTG	TCCTTGTAAG	TTTGGGTGTA	AAAATCTCAT	CACAGCTTCT	GCATGATATT	9780
TGTTAGTATT	ATAAGTCGCA	TTTAGTAATT	CAGACATCGT	ATAGCCTGCA	CACCAACCAT	9840
TGTTACCTTG	AGTTTCTCTT	ATCTTGAAAT	TCTCAAGTTT	ATTTATATAT	TGsTCGTTGT	9900
AAGTATAATT	ATTACTTTTA	AATTGACTAG	TTGGCATAGT	GACAGAAGCT	TTTTGCTTTA	9960
GTTGCGTTAC	ATTATTGCCA	GTAGGTATAC	TCTCAGTCTT	TnTnAACTnT	nTATCTTCTA	10020
GACGTGGTGT	TTTTAGTACT	AGTTTAGCTT	TATGATTTTG	AGTACCACAT	AGTAACCTTT	10080
TGAGTTGT						10088

(2) INFORMATION FOR SEQ ID NO: 33:

30

10

15

20

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7563 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGGÄAACGNA CCCNATGCGT ATGCTTGACG TGCCAAAATT AAATACGAAG TTCATAGCTT 60 TGAGGTACCA GAAGAACATT TATCTGGTCA AGAAGTCGCA GNACTCATAC AAGCAAATGT 120 TAAAACAGTA TTTAAAACGC TTGTTCTAGA AAATACAAAA CATGAACATT TTGTATTTGT 180 TATCCCAGTA AGTGAAACTT TAGATATGAA AAAGGCAGCT GCTTTGGTTG GAGAGAAGAA 240 ATTGCAGCTT ATGCCTTTAG ATAATTTGAA AAATGTAACG GGATACATTC GTGGTGGGTG 300 TTCGCCTGTT GGTATGAAAA CATTGTTTCC AACAGTCGTT GACAAATCGT GTGAAAATTA 360 TAGTCATATC AGTGTGAGTG GTGGGCTTCG AACAATGCAA ATCACAATAG CTGTTGAGGA 420 TTTGATTACA ATAACTAAAG GCAAAATTGG AGCAGTTATC CATGAATGAT TAATAACAAC 480

	TGCCACACTC	CTTTTTGATT	GAATTAGCAT	TTTACGATCA	TAAACAGTCA	TTATAATTGA	600
	GTATTTGAAC	ATAAAAATGT	AATTTTATCG	TAACAATTTG	AGTGTTTGTG	ATTGTTTTTG	660
5	GTAATTTATG	ATTGAAAAGT	GAAAGCGTAC	TCATTATAAT	ACAAAGTGAG	ATGGGGTGAT	720
	GATGATAATT	ACTGAAAAA	GACACGAGTT	AATATTAGAA	GAACTTTCGC	ACAAAGATTT	780
10	TTTGACTTTA	CAAGAATTAA	TAGATCGAAC	TGGTTGCAGT	GCTTCAACAA	TACGArGAGA	840
10	TTTATCTAAA	CTACAACAAT	TAGGGAAATT	GCAACGTGTG	CATGGTGGTG	CAATGTTAAA	900
	AGAAAATCGT	ATGGTTGAGG	CGAATTTAAC	TGAAAAATTA	GCAACGAATC	TTGATGAAAA	960
15	GAAAATGATT	GCTAAAATAG	CAGCTAATCA	AATCAACGAT	AATGAATGCT	TATTTATCGA	1020
	TGCTGGTTCA	TCTACATTGG	AGCTAATTAA	ATATATTCAA	GCGAAAGATA	TCATTGTGGT	1080
	AACCAATGGT	TTAACACATG	TAGAAGCTTT	ACTTAAAAAA	GGTATTAAAA	CAATTATGCT	1140
20	AGGTGGTCAA	GTTAAAGAAA	ATACACTTGC	TACGATTGGT	TCTAGTGCTA	TGGAGATATT	1200
	AAGACGATAT	TGTTTCGATA	AAGCTTTTAT	CGGGATGAAT	GGATTAGATA	TTGAACTTGG	1260
	ATTAACTACT	CCCGATGAGC	AAGAGGCATT	AGTTAAACAA	ACAGCAATGT	CATTAGCCAA	1320
25	TCAATCATTT	GTACTTATAG	ATCATTCTAA	GTTTAATAAA	GTATATTTTG	CTCGTGTACC	1380
	TTTGCTAGAA	AGTACGACAA	TCATCACATC	TGAAAAAGCA	TTAAATCAAG	AATCGTTAAA	1440
30	AGAATACCAA	CAAAAGTATC	ACTTTATAGG	AGGGACTTTA	TGATTTATAC	AGTGACTTTC	1500
	AATCCTTCAA	TTGACTATGT	CATTTTTACG	AATGATTTTA	AAATTGATGG	TTTGAACAGA	1560
	GCAACAGCAA	CATATAAATT	CGCTGGGGGG	AAAGGTATTA	ATGTCTCGCG	CGTCTTAAAG	1620
35	ACATTGGATG	TTGAGTCAAC	TGCCTTGGGA	TTTGCAGGTG	GATTTCCTGG	GAAATTCATT	1680
	ATAGATACAT	TAAATAACAG	TGCAATTCAA	TCGAATTTTA	TTGAAGTTGA	TGAAGATACA	1740
	CGTATTAATG	TGAAATTAAA	AACAGGACAA	GAAACAGAAA	TCAATGCACC	GGGTCCTCAT	1800
‡ 0	ATAACGTCAA	CACAATTTGA	ACAACTGTTA	CAACAAATTA	AAAATACAAC	AAGCGAAGAT	1860
	ATAGTTATTG	TTGCTGGAAG	TGTACCAAGT	AGTATTCCAA	GCGATGCGTA	TGCGCAAATT	1920
	GCACAAATTA	CAGCACAGAC	AGGTGCTAAA	TTAGTAGTCG	ACGCTGAAAA	AGAATTGGCT	1980
4 5	GAAAgCGTTT	TACCATATCA	TCCACTATTT	ATTAAACCTA	ATAAAGATGA	ATTAGAAGTG	2040
	ATGTTTAATA	CAACAGTGAA	CTCAGACACA	GATGTTATTA	AATATGGTCG	TTTGTTAGTT	2100
50	GATAAAGGTG	CGCAATCTGT	TATTGTCTCG	CTTGGCGGTG	ATGGTGCTAT	TTATATTGAT	2160
	AAAGAAATCA	GTATTAAAGC	AGTTAATCCA	CAAGGGAAAG	TGGTTAATAC	AGTTGGCTCT	2220
	CCTCATACTA	CAGTTGCAGG	CATGGTGGCT	GGAATTGCTT	CACCTTTAAC	GATTGAAAAA	2280

	CGGGACGCTA	TAGAAAAAAT	AAAATCACAA	GTTACGATTA	GCGTACTTGA	TGGGGAGTGA	2400
	AAATAATGAG	AGTAACAGAG	TTATTAACAA	AAGATACAAT	AGCAATGGAT	TTAATGGCAA	2460
5	ATGACAAAAA	TGGTGTTATT	GATGAGTTAG	TAAATCAATT	AGACAAAGCA	GGTAAATTAA	2520
	GTGATGTCGC	GTCATTTAAG	GAAGCGATTC	ACAATCGAGA	ATCACAAAGT	ACAACTGGTA	2580
	TCGGCGAAGG	TATTGCCATT	CCACATGCCA	AAGTGGCCGC	AGTTAAGTCA	CCAGCTATTG	2640
10	CGTTTGGTAA	ATCTAAAGCA	GGCGTAGATT	ATCAAAGTTT	GGATATGCAA	CCAGCACACT	2700
	TATTCTTTAT	GATTGcAGcG	CCAGAAGGTG	GCGCCCAAAC	ACATCTAGAT	GCTTTAGCTA	2760
15	AGTTGTCTGG	TATTTTAATG	GATGAAAATG	TACGTGAGAA	ATTATTACAT	GCTTCATCAC	2820
	CTGAAGAAGT	ACTAGCGATC	ATAGATGAGG	CTGATGATGA	AGTGACAAAA	GAAGAAGAGG	2880
	CAGAAGCTGA	AGCACAACAA	GTTGCAACTG	CAGAACAATC	ATCTAAACAA	TCTAATGAGC	2940
20	CATATGTGTT	AGCAGTAACT	GCTTGTCCAA	CAGGTATTGC	ACACACATAT	ATGGCACGTG	3000
	ATGCATTGAA	AAAGCAAGCG	GATAAAATGG	GTATTAAAAT	TAAAGTAGAA	ACGAATGGTT	3060
	CAAGCGGCAT	TAAAAACCAT	TTAACTGAAC	AAGATATTGA	AAATGCAACA	GGTATCATTG	3120
25	TTGCTGCTGA	TGTTCATGTT	GAGACGGATC	GCTTCGATGG	TAAAAATGTC	GTAGAAGTAC	3180
	CAGTAGCAGA	TGGTATTAAA	CGCCCAGAAG	AATTAATTAA	TAAAGCATTA	GATACAAGTC	3240
30	GTAAACCTTT	TGTTGCCCGT	GATGGTCAAA	GAAAAGGTAA	CTCAAATGAC	AGTCAAGAAA	3300
50	AATTAAGCCC	AGGTAAAGCA	TTCTATAAAC	ACTTAATGAA	CGGTGTTTCT	AACATGTTGC	3360
	CACTTGTAAT	ATCTGGTGGT	ATTTTAATGG	CAATTGTATT	TTTATTTGGA	GCAAATTCAT	3420
35	TTAATCCAAA	AAGCTCAGAG	TACAATGCGT	TTGCAGAGCA	GCTTTGGAAC	ATTGGTAGTA	3480
	AAAGTGCATT	CGCGTTAATC	ATTCCAATTT	TATCTGGATT	CATTGCACGT	AGTATTGCGG	3540
	ATAAACCTGG	TTTCGCTTCA	GGTCTTGTAG	GTGGTATGTT	AGCAATTTCA	GGTGGTTCAG	3600
40	GATTTATTGG	TGGTATTATT	GCAGGTTTCT	TAGCAGGTTA	CTTAACACAA	GGTGTTAAAG	3660
	CCATGACACG	TAAGTTACCA	CAAGCATTAG	AGGGATTAAA	GCCAACATTA	ATTTATCCAC	3720
	TATTAACAGT	GACGGCTACA	GGCTTATTGA	TGATTTATGC	CTTTAATCCA	CCAGCATCTT	3780
4 5	GGTTAAATCA	TTTGTTATTA	GATGGATTAA	ACAATTTATC	AGGTTCTAAT	ATTGTATTAT	3840
	TAGGTTTAGT	TATTGGCGCT	ATGATGGCGA	TTGATATGGG	CGGTCCATTC	AACAAAGCGG	3900
50	CATATGTTTT	TGCAACAGGT	GCGTTGATTG	AAGGTAATGC	AGCACCAATT	ACAGCTGCAA	3960
	TGATTGGTGG	TATGATTCCA	CCGTTAGCAA	TTGCGACAGC	GATGTTAATT	TTTAGACGTA	4020
	3 3 mmm 3 (13 3 3 3	101101100	OCHMON NIPHON	mcccma a cena	mama s maaam	a momora mmma	4000

	TGATTGGTTC	AGGTATAGGT	GGCGCAATTG	CTTTAGGCTT	AGGTTCACGA	ATTACTGCGC	4200
	CACATGGTGG	TATTATTGTA	ATTGTTGGTA	CTGATGGTGC	ACACTTACTT	CAAACTCTTA	4260
5	TTGCACTTCT	AGTTGGCACA	TTAGTTTCAG	CATTAATTTA	CGGTTTAATC	AAACCAAAGT	4320
	TAACTGAAAC	AGAAATCGAA	GCTTCAAAAT	CAATGGACGA	GTAGTTTTAA	TGATGTAAAA	4380
10	TGATTGTTAG	CAAAGAGCTT	CATATTAAGT	TGTATGTTCA	ATGAATATAT	GTTAGTTTTA	4440
, 0	TATATCGTGT	TAACGGTAGC	TTATACAAAG	CTGTAAAAAC	ACTTTCTATT	AATTCAGTTT	4500
	TTATGAATTG	ATATGAAAGT	GTTTTTATTT	TTAGATAAAT	GAATGAAGAA	ATAGACACCA	4560
15	CAAATGTATA	GACTTTTTTA	ATATTTTGCA	AAAAGTTATG	CCAAACGAAG	CAGATATAGT	4620
	AAAATATGAG	TGTCTTAAAG	TGAAAATTTA	TAAATAAAGA	AGGGTTTATA	CGTGTCAGAA	4680
	TTAATTATAT	ATAACGGCAA	AGTTTATACT	GAAGATGGCA	AAATCGATAA	TGGTTACATT	4740
20	CATGTGAAAG	ATGGACAGAT	TGTTGCAATT	GGAGAAGTGG	ATGATAAAGC	AGCAATTGAT	4800
	AATGATACGA	CAAATAAAAT	TCAAGTGATT	GATGCTAAAG	GTCATCATGT	ATTACCAGGT	4860
	TTTATTGATA	TACATATTCA	TGGTGGTTAT	GGTCAAGATG	CAATGGATGG	GTCATACGAT	4920
25	GGCTTAAAAT	ATCTATCCGA	AAATTTGTTG	TCTGAAGGGA	CGACATCATA	CTTGGCCACT	4980
	ACAATGACGC	AATCGACTGA	TAAAATAGAT	AATGCACTTA	CAAATATTGC	TAAATATGAA	5040
3 0	GCGGAGCAAG	ATGTTCACAA	TGCAGCGGAA	ATTGTAGGTA	TACATTTAGA	AGGACCATTT	5100
	ATATCTGAAA	ATAAAGTTGG	TGCTCAACAT	CCGCAATACG	TTGTACGCCC	ATTTATCGAT	5160
	AAAATTAAAC	ATTTTCAAGA	GACTGCTAAC	GGATTAATAA	AGATTATGAC	GTTTGCACCT	5220
35	GAAATTGAAG	GTGCAAAAGA	AGCGCTTGAA	ACGTATAAAG	ATGACATTAT	TTTTTCAATT	5280
	GGTCATACAG	TAGCAACATA	CGAAGAAGCA	GTTGAAGCTG	TTGAGCGAGG	AGCTAAACAT	5340
	GTCACGCATT	TATATAATGC	AGCGACGCCA	TTCCAACATA	GAGAACCAGG	TGTTTTTGGA	5400
40	GCAGCATGGT	TGAATGATGC	TCTACATACC	GAAATGATTG	TTGATGGCAC	TCATTCTCAT	5460
	CCGGCATCGG	TTGCAATTGC	TTACCGTATG	AAAGGTAATG	AACGTTTTTA	TTTAATTACC	5520
	GATGCAATGC	GTGCAAAAGG	TATGCCTGAA	GGAGAATATG	ATTTGGGTGG	ACAAAAGTA	5580
45	ACTGTTCAAT	CGCAACAAGC	ACGTCTTGCA	AATGGTGCGC	TTGCTGGTAG	TATTTTAAAA	5640
	ATGAATCATG	GGTTACGTAA	CTTAATATCA	TTTACAGGTG	ATACATTAGA	TCATTTATGG	5700
50	CGAGTAACAA	GTTTAAATCA	AGCCATTGCA	TTAGGTATCG	ATGATAGAAA	AGGTAGTATT	5760
	AAAGTAAATA	AGGATGCAGA	TCTTGTTATT	CTAGATGATG	ATATGAATGT	AAAATCTACA	5820
	ATAAAACAAG	GCAAGGTTCA	CACATTTAGC	TAATAAATAA	TCATAATTAA	ATGTATGCAA	5880

	TTTTCTGGGG	GTGTCTAAAT	GGGAAGGCGA	TAACATGTAG	TTGTAATTTA	AGTCATAGTG	6 000
	ATAAATTTGA	ATGCGTGTTA	CCCATGAGTG	ACACATATAA	CATGGAGGTG	AATCCCTAGA	6060
5	AATAGGGAAT	TAATTGGAAA	CTTCGACCAT	AATTAGTTTG	ATTATATTA	TTCTATTAAT	6120
	TGCATTAACC	ACTGTATTTG	TTGGTTCAGA	ATTTGCATTA	GTAAAAATTA	GAGCAACAAG	6180
10	AATTGAACAG	CTAGCAGATG	AAGGAAATAA	ACCTGCTAAA	ATAGTAAAAA	AGATGATTGC	6240
10	TAATCTAGAT	TATTATCTTT	CTGCTTGTCA	GTTAGGTATA	ACAGTAACAT	CTTTAGGGTT	6300
	AGGTTGGCTT	GGTGAACCAA	CGTTTGAAAA	GCTATTACAC	CCAATATTIG	AAGCAATCAA	6360
15	TTTACCAACT	GCATTAACGA	CGACGATTTC	GTTTGCAGTG	TCATTTATAA	TCGTTACGTA	6420
	TTTGCATGTA	GTACTTGGTG	AATTAGCGCC	TAAATCTATA	GCTATTCAAC	ATACTGAAAA	6480
	GCTTGCTTTA	GTATATGCAA	GACCATTGTT	CTATTTCGGT	AACATTATGA	AACCATTGAT	6540
20	TTGGCTGATG	AATGGTTCTG	CACGTGTTAT	TATTAGAATG	TTTGGTGTAA	ATCCTGATGC	6600
	CCAAACTGAT	GCAATGTCAG	AAGAAGAAAT	CAAAATTATT	ATTAACAATA	GTTATAATGG	6660
	TGGAGAAATC	AACCAAACTG	AATTGGCATA	TATGCAAAAT	ATCTTTTCAT	TCGATGAAAG	6720
25	ACATGCAAAA	GATATAATGG	TACCTAGAAC	TCAAATGATT	ACACTAAATG	AACCTTTTAA	6780
	TGTAGACGAA	TTACTAGAAA	CAATAAAAGA	ACATCAATTT	ACGCGTTATC	CAATTACTGA	6840
30	TGATGGTGAT	AAAGACCACA	TTAAAGGATT	TATTAACGTC	AAAGAATTTT	TAACTGAATA	6900
	CGCTTCTGGA	AAAACGATTA	AAATAGCAAA	CTATATACAT	GAGTTGCCAA	TGATTTCAGA	6960
	GACAACACGT	ATCAGTGATG	CATTAATTAG	AATGCAACGT	GAACATGTAC	ATATGAGTCT	7020
35	TATTATAGAT	GAATATGGTG	GAACGGCAGG	TATTTTAACG	ATGGAAGATA	TTTTAGAAGA	7080
	AATCGTTGGA	GAAATTCGTG	ATGAATTTGA	TGATGATGAA	GTGAATGATA	TCGTTAAAAT	7140
	TGATAATAAG	ACATTCCAAG	TAAATGGCAG	AGTACTATTG	GATGATTTAA	CTGAAGAGTT	7200
40	CGGTATAGAA	TTTGATGACT	CTGAGGATAT	TGATACGATA	GGTGGATGGT	TACAATCTCG	7260
	TAATACCAAT	TTACAAAAAG	ATGATTACGT	GGATACAACT	TATGATCGCT	GGGTTGTTTC	7320
	AGAAATCGAT	AACCACCAAA	TTATTTGGGT	GATATTAAAC	TATGAATTTA	ATGAAGCGAG	7380
45	ACCTACTATC	GGACAGTCTG	ATGAAGATGA	AAAATCAGAA	TAGATATTAA	TATATAAACC	7440
	AACTAAGAAT	GATTTAATTC	ATTTTTGGTT	GGTTATTTTT	TTGACTAAAA	TTAAnGAAAA	7500
50	GTGAAAATAG	TATTGGAACT	CAATATCTTT	AATGATTTAA	TGAATAAnTT	TTATTGAAAG	7560
•	CGA						7563

(2) INFORMATION FOR SEQ ID NO: 34:

(A) LENGTH: 3492 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

10	TTATATCAAC	TTCATGGCGG	AACCATTGAT	GACCCATTAG	ACGAAACAAT	AAGCGCATTT	60
	satgaattga	AACAAGAAGG	AATTATACGT	GCTTACGGTA	TTTCTTCTAT	TCGCCCAAAT	120
	GTAATTGATT	ATTATTTAAA	ACATAGTCAA	ATCGAAACGA	TAATGTCTCA	ATTCAATTTG	180
15	ATTGATAATC	GTCCAGAATC	ATTATTAGAT	GCAATTCACA	ACAATGATGT	TAAAGTATTG	240
	GCAAGAGGAC	CTGTGTCTAA	AGGATTATTA	ACTTCAAACA	GTGTTAATGT	GCTCGACAAT	300
	AAATTTAAAG	ATGGTATTTT	TGATTATTCT	CATGATGAAT	TGGGTGAAAC	AATAGCCTCT	360
20	ATTAAAGAAA	TTGAAAGTAA	TTTATCTGCA	TTGACATTTA	GTTATTTAAC	ATCACATGAC	420
	GTGCTTGGTT	CCATCATTGT	AGGTGCAAGT	AGCGTCGACC	AATTAAAAGA	AAATATTGAA	480
25	AACTATCATA	CTAAAGTTAG	TTTAGATCAG	ATTAAAACAG	CAAGAGCTCG	TGTAAAGGAT	540
	TTGGAATATA	CCAATCATTT	AGTGTAGAAG	TCATTTTCAG	TAATAAAAAC	AGCAGCATGA	600
	GGCGTTTCAT	TATAAAAATG	CCTTACTGCT	GTTGTTTATG	TACAATTCGC	TATAATTTAT	660
30	GATTATGATT	ACTCACTTAT	GATAGAAATT	AAAGCGTTGT	CCTCACGCAT	CAGTATTTAG	720
	TAATTTCGCC	TTGCGGCATT	GCCTTAAGCA	AACTTCTGCC	ACTTCATCTC	TTAATAATTT	780
	TATTAAAACA	TCTTTCTATA	TTTCACTTCG	CATGTTGATT	CATCATTATT	AGTTATTATT	840
35	TGTACACCCA	GCACATTTCC	TTGCAACACA	AGTAGTTTGA	ATTTTTCACA	AGTATAATAT	900
	AATGTACCGT	CTGAAATTTG	GTCTACAGAA	ATATCGCCTA	AAATATCCAG	CACTGTAAAT	960
	TCTTCAAATA	CTGATAGTTG	TTCCGCATAT	CGTACACAAA	GTCTTACCAC	ACTCTCCGAT	1020
40	TGACAGTTCA	TTGCCATCCC	ACCTATTTAT	GCTTTATTTT	TAAATAATTT	AGGGAAACAT	1080
	CGTTCAAAAA	ATCTAGGCGC	AATTTGATAC	ATTTTCAACG	CATGATGCAT	CCATTTAGGC	1140
45	CGATTAATTT	CCAATTGTTT	TGTTTTAATG	CCATAAATGA	TATCTTCTGC	AAGCTGATTA	1200
	GCATCAAGCA	TAATTTCCCC	CATCTTTTTA	gCATACTTCA	TTGATGGGTC	GGCTTTTTGA	1260
	TGAAAAGGTG	TATCAATCGG	GCCAACATTA	ACTGTCATGA	TATGTAAGTT	TGGTGACTCT	1320
50	AGTCTTAAAG	CATTCATTAA	TGCATAAAAC	CCTGCTTTCG	ATGCCCCATA	ATGTGCAGCA	1380
	TTTGCTTGTG	TGGAAAATGC	AGCTTGACTT	GAAATACCTA	CAATATGTGC	GTTAGATGTT	1440
	AAATATGGTC	TCAACACAGT	ATATAAAACA	TTAAAACTAA	TTAAATTAAG	CTGATACGTT	1500

	TAAATGAATC	CATCGAATGA	TGTATTGTCT	TCAAATIGCA	GTGCCTGTAT	CGACTTCAAA	1620
	TCATTTAAGT	CACAAGGAAT	AACATTTATA	GTTTTCCCCA	ATTCCTGTTC	AAAGATTCTA	1680
5	GTTGCTTTAT	CAACATCACG	CACCAACAAC	GTTACATGCA	CTTTATTTTC	TAGTAACTTT	1740
	CGGACAATCG	ATAAACCTAA	ACCACTCGTA	CCACCAGTCA	CTATAAAATG	TTGTCCTTTC	1800
10	ATCAATTAAC	CTTCCTTTTC	AATTATATAG	AATGCAATTT	ATCAACTTTA	CATAATTGAG	1860
	ACAAGTTGAT	TATCTTTCCT	AATATATATA	CAATAATAAG	AAAATATAAC	ATACAAATCA	1920
	AAAACTAAAG	GGATGTGaCG	TTAATGrAAC	TCGTATTTTA	TGGAGCTGGT	AATATGGCAC	1980
15	AAGCTATATT	TACAGGrATT	ATTAACTCmA	GCAACTTAGA	TGCCAATGAT	ATATATTTAA	2040
	CAAATAAATC	TAATGAACAA	GCTTTAAAAG	CATTCGCTGA	AAAACTAGGT	GTTAACTATA	2100
	GTTATGAtGA	TGCGACATTA	TTAAAAGATG	CAGAYTATGT	ATTTTTAGGT	ACCAAACCAC	2160
20	ATGACTTTGA	TGCTCTAGCA	ACACGCATCA	AACCACATAT	TACAAAAGwC	AATTGCTTCA	2220
	TTTCAATTAT	GGCAGGTATT	CCGATTGATT	ATATTAAACA	ACAATTAGAA	TGCCAAAATC	2280
	CaGTTGCTAG	AATTATGCCA	AACACAAATG	CGCAAGTTGG	ACACTCTGTT	ACTGGCATTA	2340
25	GTTTTTCAAA	CAACTTTGAC	CCTAAATCTA	AAGATGAAAT	TAACGATTTA	GTTAAAGCAT	2400
	TTGGTTCTGT	AATTGAAGTA	TCAGAAGATC	ATTTACATCA	AGTAACAGCT	ATCACCGGAA	2460
30	GCGGCCCAGC	ATTTTTATAT	CATGTATTCG	AGCAATATGT	TAAAGCTGGT	aCsAAACTTG	2520
	GTCTAGAAAA	AGAACAAGTT	GAAGAATCTA	TACGCAACCT	TATTATAGGT	ACAAGTAAGA	2580
	TGATTGAACG	TTCAGAt TTG	AGCATGGCTC	AATTAAGAAA	AAATATTACC	TCTAAAGGTG	2640
35	GTACGACACA	AGCTGGCCTT	GATACATTGT	CACAATATGA	TTTAGTATCT	ATTTCGAAG	2700
	ATTGTCTAAA	CGCTGCCGTC	GACCGTAGTA	TTGAACTTTC	TAATATAGAA	GACCAATAAA	2760
	AACAAACCCG	CCAACACATG	TATGCATCAT	CGCAAGCACT	GTGTTTGACG	GGTTATTTTT	2820
40	ATAATTTATT	GTTATTTGGC	AAGCATTGTT	TATTACTTTG	TCATTAGATT	TTAAAACTAT	2880
	CAAAATCTTT	TACAAAATTA	AAATTAGGTG	TATCTTCATT	TTGTATCAAT	GTTTGATAAA	2940
	TTTCATTTAT	ATCTTCTGTA	TTATAGCGAT	TGCTCAAATG	TGTAATCAAC	GTACGTTTAA	3000
15	CATTGGCTTC	TTTTATCAAT	GCAAATACGT	CTTCAATATG	GCTATGATGA	TAATTGTTGG	3060
	CTAAATGCTT	TTCACCATCT	ATATAGGTCG	CTTCATGTAC	CATCACATCA	GCATCTCTAG	3120
50	AAATCACACG	TTCATTAGAA	CATGGTTTTG	TATCACCAAA	AATTGCTACA	ACTGGACCCT	3180
	GTTTGGACTC	АССТСТАААА	TCTTTTGATT	GATAAACTTG	ACCATTATGT	TCAAATGTAT	3240
	CATGAGATTT	TACTTCTTCA	татттассас	СТССТТСААС	ACCAATGTTT	TTTAACGCTT	3300

	CATGATTAAG TAAATGCGCC TCTACAGTAA AACCATCCAT GATGATATGT CAGATGATCA	3420
	TCGATTTCAA TATATGLAAT TGGATAGTTT AAATGTGACT CTGATAAATT CATAGACATT	3480
5	TCCACATATG CT	3492
	(2) INFORMATION FOR SEQ ID NO: 35:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1973 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	ATCTAGCGGT ACAAGCGTCT TGGAGGCTAG TATGTTGAAC ATTGTAAACC CTGAAGATCA	60
20	CTTCGTTGTC ATTGTTTCAG GTGCCTTTGG TAACCGATTT AAACAAATTG CACAAACTTA	120
	TTACAAAAAT GTGCATATTT ATGACGTAAC ATGGGGAGAA GCTGTAGATG TCAAAGATTT	180
	CATCAATTIC CTTTCAACTT TAAATGTTGA AGTTAAAGCA GTATTTAGTC AATATTGCGA	240
25	AACATCTACG ACAGTGCTAC ACCCTATTCA CGAGTTAGGA AATGCCATTA ATCAATTTAA	300
	TAGTAATATT TATTTTGTAG TTGACGGCGT AAGTLGCATT GGTGCTGTTG ATGTTGACAT	360
	TAACAAAGAT AAAATTGATG TACTTGTTTC TGGTAGTCAA AAAGCAATTA TGTTACCTCC	420
30	AGGATTAGCT TTTGTAGCTT ATAGCCACCG TGCAAAAGAA CATTTCAAAG AAGTAACTAC	480
	GCCAAAATTT TATCTAGACT TAAATAAATA CATTTCGTCA CAAGCTGACA ATTCTACACC	540
35	GTTCACACCA AATGTGTCTT TATTTAGAGG TGTAAATGCA TACGTTGAAA CCGTAAAAGC	600
35	AGAAGGTTTC AATCACGTAA TAGCACGACA CTATGCAATT AGAAATGCAT TAAGAAGCGC	660
	CTTAMAAGCA TTAGATTTAA CTTTATTAGT CAATGATAAA GATGCATCTC CAACGGTTAC	720
10	AGCATTCAAA CCTAATACAA ATGATGAAGT GAAAATAATC MAAGATGAAC TTAAAAATnG	780
	CTTTAAAATA ACAATTGCng GTGGTCAAGG CCATCTTAAA GGTCAAATTT ThAGAATTGG	840
	TCATATGGGG AAAATTAGTC CTTTCGATAT TTTATCGGTA GTATCTGCTT TAGAAATTAT	900
4 5	TTTAACTGAA CACCGTAAAG TTAACTATAT CGGTAAAGGT ATATCAAAAT ATATGGAGGT	960
	TATTCATGAA GCAATTTAAT GTACTCGTTG CAGATCCCAT ATCAAAAGAT GGTATCAAAG	1020
	CATTATTAGA TCACGAACAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1080
50	CATTATIAGA TCACGAMCAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1050

55

TAATCAAAAT TATACCTTCA TACCATGCTT TAATCGTTCG TAGTCAAACT ACGGTTACTG

AAAATATCAT AAATGCTGCT GATTCTTTAA AAGTAATCGC ACGCGCCGGT GTTGGTGTAG

1200

	GTAATACGAT TTCAGCTACT GAACATACAC TGGCAATGTT ATTATCAATG GCACGAAATA	1320
	TTCCGCAAGC ACACCAATCA CTTACAAATA AAGAATGGAA TCGAAATGCA TTTAAAGGTA	1380
5	CTGAGCTTTA TCATAAAACA TTAGGTGTCA TTGGTGCTGG TAGAATTGGT TTAGGTGTTG	1440
	CTAAACGTGC GCAAAGTTTC GGAATGAAAA TACTAGCTTT TGACCCTTAC TTAACGGATG	1500
10	AAAAAGCAAA ATCTTTAAGC ATTACGAAGG CAACAGTTGA TGAGATTGCC CAACATTCTG	1560
	ATTTCGTTAC ATTACATACA CCACTAACAC CTAAAACAAA AGGCTTAATT AATGCTGTCT	1620
	TTTTTGCCAA AGCAAAACCT AGTTTGCAAA TAATCAATGT GGCACGTGGT GGTATTATTG	1680
15	ATGAAAAGGC GCTAATAAAA GCATTAGACG AAGGACAAAT TAGTCGGGCA GCTATCGATG	1740
	TGTTTGAACA TGAACCTGCA ACTGACTCGC CTCTTGTTGC ACATGATAAA ATTATTGTTA	1800
	CACCTCATTT GGGTGCTTCA ACAGTCGAAG CTCAAGAAAA AGTGGCAATT TCTGTTTCAA	1860
20	ATGAAATCAT CGAAATTTTA ATTGATGGTA CTGTAACGCA TGCAGTGAAT GCACCTAAAA	1920
	TGGACTTAAG CAATATAGAT GATACTGTAA AATCATTCAT CAATTTAAGC CAA	1973
	(2) INFORMATION FOR SEQ ID NO: 36:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
35	GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA	60
	TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT	120
	AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA	180
10	TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT	240
	GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC	300

GCTAAATTTG GAATAAACGT TGCCAAACTA TAGACAAAAG TATACACAGA TGTAAGGATA

ATCATCAATA TACTCATAAC TATTAATGTT TCGTTATCCG CCGCTATAGA AATAAAGAAT

AGAAATAGGT TTATTATTAG CACACACAC GCTGGAACCA TAAGTATCAA ATGCCATAGT

GCCATATACC AATATTCACT ACGTCTTGAT CTCCCCTTAA AATTTACATA ATTTTTCCAA

AATAAAACGA ATGATTTCAT AAAACCTACT TGAGGTAATT GTTCCATTGT AATCTCCCTT

TCGTTAATCA TATTTATATT TTTAATTATT GTTACCGTTA TAATTTACAA GATTCATTAT

360

420

480

540

600

660

	GTAAAATGAA	AACCCGCTAC	AAGTACACAT	CTATATGGAG	ACTCATTTGA	AAGTCAACGC	780
	TTCGTTAACT	АТАСТААААА	TATGTCATAC	TGCAATGTTC	ACGTTTAAAA	GAGTCTCAAT	840
5	CTATGCAAAT	AAAATATTCC	ATAACAAAGT	ATATACTTTA	CATTTTTATA	ATTCTTAACA	900
	ATACTATTTT	ATCAAACATT	TACCACAATA	AAAATATCTT	TTTCATTTTT	ATTTAAATTA	960
10	ATCATATAAT	TGCGAGGAGA	ATATTATGGA	TTTCGTTAAT	AATGATACAA	GACAAATTGC	1020
, 0	TAAAAACTTA	TTAGGTGTCA	AAGTGATTTA	TCAGGATACC	ACTCAAACGT	ATACAGGCTA	1080
	CATCGTGGAA	ACGGAAGCTT	ACTTAGGTTT	GAATGATCGT	GCGGCTCATG	GCTATGGCGG	1140
15	TAAAATAACA	CCTAAAGTCA	CGTCATTATA	TAAACGTGGT	GGTACAATTT	ATGCACATGT	1200
	CATGCATACG	CATTTACTCA	TTAATTTTGT	AACAAAATCT	GAAGGTATAC	CTGAAGGCGT	1260
	ACTTATCCGC	GCAATTGAAC	CAGAAGAAGG	TTTATCCGCT	ATGTTCCGTA	ACAGAGGTAA	1320
20	GAAAGGCTAC	GAGGTAACGA	ATGGCCCAGG	AAAATGGACT	AAGGCATTTA	ACATTCCACG	1380
	GGCTATCGAT	GGCGCTACGT	TAAATGACTG	TAGATTGTCT	ATTGATACTA	AGAATCGTAA	1440
	ATATCCTAAA	GATATTATTG	CTAGTCCACG	AATCGGTATT	CCAAATAAAG	GTGATTGGAC	1500
25	ACATAAATCT	TTACGTTACA	CAGTGAAAGG	TAATCCATTT	GTGTCTCGCA	TGCGTAAATC	1560
	AGATTGTATG	TTTCCCGAAG	ATACTTGGAA	ATAAATGCCA	TCTTTCATTG	ATTACTATCA	1620
3.0	TGAAAATGAA	ATCTATCTCC	TTATAAGTCA	ATCAATCGTG	CCGTCAACAT	GCGGATGGGT	1680
30	TGATTGTTTT	TCTTTGTATC	CATCATATTT	TTTGATTCAT	CTCCTCTTAT	TGAACTTGTT	1740
	CTTAATTATA	AAATATAACA	ATAGAATTAT	TTATAATTAT	TAAATTTAGA	TGCATTAATA	1800
35	TTATTGATAT	TATTTTCAAA	AACTAGAAAT	ATTGATTTGT	TGCATGTATA	ATGTTAAAAG	1860
	CGCCCTTTTA	TAACGCTTAC	ATATAAAAGC	TTATTTAGGG	AGAGGGATAT	TCAACAAGGG	1920
	GGATTTGAAA	ATGATAGAAC	TTAATGCAAT	TACAACATTA	TGTTTAGCTT	GTATCCTTTA	1980
10	TTTACTTGGT	AAGGCTATCG	TTAATCACGT	TAATTTTTTA	AAACGTATTT	GTATACCAGC	2040
	ACCAGTGATT	GGCGGCTTAA	TCTTTGCTAT	TTTAGTTGCG	GCTTTGGATT	CATTTGGCAT	2100
	GGTTAAGATT	AAATTAGATG	CTTCATTCAT	TCAAGATTTC	TTCATGTTAG	CATTCTTTAC	2160
15	GACAATCGGT	CTTGGTGCAT	CATTGAAATT	ATTTAAATTA	GGTGGCAAAG	TCTTGCTATT	2220
	ATACTTTATG	TTTTGTGCTA	TCATTTCAGT	CATTCAAAAC	ATAGTTGGTG	TATCACTAGC	2280
	AAAAGTATTA	AATATTAAAC	CTTTGTTAGG	ATTAACAGCA	GGTTCCATGT	CTATGGAAGG	2340
50	CGGTCATGGT	AATGCTGCTG	CTTATGGTAA	GACAATTCAA	GATTTAGGTA	TTGATTCGGC	2400
	ACTGACAGCC	CCTCTTCCAC	CUCCAACTUT	ACCTOTTCTA	TTTCC ACCCC	TTATCCCTCC	2460

	ATTTAAAGAT	TATAGCCAAG	TAGCATATAA	CGAACATITA	CATAGTAAAT	TTAATGCCAC	2580
_	TGAAGTATTC	TTCATTCAAT	TTACAATCGT	TGTATTCTGT	ATGGCAGTTG	GAAGTTATTT	2640
5	CAGTCATTTG	TTTACAGCTC	AAACAGGGAT	TAATGTTCCA	ATTTACGTTG	GCTCATTATT	2700
	TGTAGCTGTT	ATTGTCCGAA	ATATCTCTGA	AAGTTTTAAT	TTTAATATTG	TAGATTTAAA	2760
10	AATTACTAAT	CAAATTGGCG	ATGTCGCATT	AGGTATTTTC	TTATCTCTTG	CGCTAATGAG	2820
	CATTCAATTA	ATCGAAATTT	ATAAACTTGC	TATACCTCTT	ATTATTATCG	TTTTAGTTCA	2880
	AGTTGTCGTT	ATGATTTTAT	TTGCTGTTTT	AATTTTATTT	AGAGGTTTAG	GAAAAGATTA	2940
15	TGATGCTGCA	GTAATGGTAG	GTGGTTTTAT	CGGTCATGGG	CTTGGTGCAc	GCCAAATGCC	3000
	ATGGCAAATT	TAGATGTTAT	TACTAAAAAA	TATGGAAACT	CACCTAAAGC	ATATTTAGTT	3060
	GTACCTATTG	TTGGTGCATT	CTTAATCGAT	TTAATTGGTG	TTATAGTCAT	TATGGGATTC	3120
20	ATACAATGGT	TTAGTTAAAC	ACCAAACTCA	TAAATAAAAG	AGGAGGCCTT	CGCCTCcTcT	3180
	TTTATTTATC	CTCGATGTAT	ATTCAAGTTA	CGTTGTTCTA	TCCATGACAA	TATTTCCGGA	3240
	CTAAATACGA	TTTGTTTTTG	TGTTAAGTCG	TCAATATTTT	TAGCATCTAA	CATCGTCATT	3300
25	ATTGATTICA	TGTGTTCAAT	AAATGATTCT	ACATAAGCTA	CTGTATGTGC	AATGCCATTA	3360
	TTTTCAACTT	GATTTAAAAA	CGGACGTGAC	ATACCAGTTG	CCTTTGCACC	AAGTGCTAAA	3420
30	CTTTTAATTG	CATCGAGTGG	TGTACGTAAA	CCACCACTCG	CGAAAACTGA	AATTTCGCTT	3480
	TGATAAGCCG	TTGTTTCAAG	TAATGACTCA	ACTGTAGACT	GTCCCCATGA	TGATAAGTAA	3540
	TCCATATCTT	TATTTGCACG	ACGTTCATTT	TCAATATCTA	CAAAGTTAGT	ACCACCTTTG	3600
35	CCACTAACAT	CGACATACTT	GACGCCTATT	TGTTGTAAGT	CATGCATTAA	TTCTTTGCTC	3660
	ATACCAAATC	CAACTTCTTT	TATAATGACT	GGAACAGACA	CTCGTGATAC	AATCGACGCT	3720
	ATATTATCTA	ACCAAGTCAC	AAATTCACGA	TTCCCTTCAG	GCATAACTAA	TTCTTGAGGA	3780
40	GAATTAACAT	GGATTTGTAA	CGCTTGTGCC	TCAAGTAATT	CAACTGCTTC	CAAAGCCTTT	3840
	TCTACTGGTA	CGTCCGCACC	AACATTGCTA	AAAATCATGC	CTTCAGGATT	CATTTTTCGC	3900
	GCAATCGTAA	ACGTCTCAGC	CATGCGTGGA	TTTCTCAATG	CCGCATGTGT	TGATCCAACT	3960
45	GCCATCGCTA	AGCCAGTTTC	TCTTGCAACT	ACAGCTAGCT	TTTCATTGAT	GTTTTTCGTC	4020
	CACTCGCTAC	CACCCGTCAT	TGCATTAATA	TAAACCGGAT	ATGCCATCGT	TAAGTCAGGC	4080
50	GTCTGTGATG	TCAAATCGAT	ATCATTTACA	TTAATTGATG	GGATAGAATG	ATGCACAAAA	4140
- *	CGCATCTTAT	CAAAATCTGA	ATGCATTGCG	TCAGATTGGG	CCATTGCTAT	TTCAACATGT	4200
	TCATTTTTTC	тстсттстст	ттсьвььтсь	СТСАТСАТТА	AACCTACCTT	TTCCTCNTTT	4260

	ATTACAGCTA	AGCAAATATA	ATATCCATAA	TGTAAATGTA	ATGCCGGCAT	ATTTACAAAG	4380
-	TTCATACCAT	AAATCCCAGC	TATGAATGTT	AACGGTGAAA	ATATAACTGA	TACTAATGTC	4440
5	AGTACTTGCA	TAATACTATT	CATTCTAAAT	GACGTGTATG	ACTCAAAATT	TTCTCGTATT	45C0
	TCGTTTGTCA	TTTCTTGAGC	AGTACGAATG	ATATTACGTT	GCTTAATCAA	GTGGTCATCG	4560
10	ATATGTTGAA	TGTATAGCGA	ATGTTTATTA	TCTATAATCA	AATCACCATT	TTGTTTCATT	4620
	GTATCAATTA	GCTCTTGCAT	AGGAAACAGT	ACACGTTTTA	CTTTAATCAA	ATCCGAACGT	4680
	AACTTAAAGA	CACTATCCAT	GACCATTTTA	TTAAAGCGAT	CATCTACATG	GCGGTCTTCA	4740
15	AAATGATAAA	CACTATCTTC	AAGTGCATAT	ACAAAGTTGA	AATATTTATC	AACCATCATA	4800
	TCTAAAATTA	ATATGACGAC	ATCTGCACAA	TCTAATTCTG	CATCTAATGT	ATTCATATAC	4860
	TTATAGACTA	CTTTATTTAA	TGATTCCAAC	GTTTGATGAT	GATATGTTAC	TAATACATTG	4920
20	TCTTGTATAA	AAATATTTAG	TGCTATTGGT	GAATAGTTTG	ACCCCATAAT	ACTATGGAAT	4980
	ACTAAGTATT	GATAATCTTT	ATAAGATTTA	TATTTAGCTC	GTGGCATACC	GTTAATTGCA	5040
25	TCATCCACTT	CTAAATCATT	AAAATTAAAA	TGTGCTTTAA	ACCATTCATT	TTCTTGTTCA	5100
25	TTCGGTTCAT	CAAAATCATA	CCAAACAATA	GTCGCATCTT	TTGGTATCTC	TTTGATATCA	5160
	TCAACTACTT	TAAACGGTTC	ATATGTAGTT	TGATACCGTA	TCTTTAAAGC	CATCGATACT	5220
30	CCCCCTAAAT	AACGAATTCT	CTATTATTTT	ATCATGAATT	AAATAACGTG	TATGTCTTAA	5280
	TTTATTTTAG	TATGATAGTC	ACTAAGGAGA	TGGTTATTAT	CAAACAACTT	TTTACACATA	5340
	CTCAAACCGT	AACATCTGAA	TTCATTGACC	ATAACAATCA	TATGCATGAT	GCAAATTATA	5400
35	ATATCATTTT	TAGTGACGTC	GTGAATCGTT	TTAATTACAG	CCACGGTCTT	TCTTTAAAAG	5460
	AACGCGAAAA	TTTAGCATAT	ACGCTATTTA	CACTAGAAGA	ACATACGACA	TACCTCTCAG	5520
	AATTGTCTCT	TGGCGATGTA	TTTACTGTTA	CTTTATATAT	TTATGATTAC	GATTATAAGC	5580
10	GGTTGCATTT	ATTTTTAACA	TTAACTAAAG	AAGATGGTAC	ACTAGCATCA	ACAAATGAAG	5640
	TAATGATGAT	GGGAATTAAT	CAGCACACAC	GTCGTTCTGA	TGCTTTTCCT	GAATCATTTT	5700
	CAACACAAAT	AGCACACTAT	TATAAAAATC	AATCAACTAT	CACTTGGCCT	GAACAATTAG	5760
15	GACATAAAAT	AGCAATTCCA	CACAAAGGAG	CATTAAAATG	ACAGATGCAT	TACAACAAAA	5820
	GATTCATATC	GAATTACTAG	ATTTATTAGA	TGATGTTAAG	TTTGAATTAA	CAGAATTAAA	5880
50	TGCACAAAAA	GGGTTATACA	TTAACGGACC	AGCAAATCAG	CTACTTAAGC	GTGGCGTGCA	5940
	TATGGCTTAT	GTTCAAGGAC	AAAAGCAAGC	CATCGATAAT	ATTATGACTA	TTGTGGAACA	6000
	A CA COMMON A	A CATCA A CAT	THE CHILD CARC	******	*******	CACCITICCITC	6060

	ATAATTTTTT	AGATCAATTT	TATCAAATTA	AAGGGCAATA	CTTTATCATC	ACACATATCA	6180
_	ATACACTTAT	TGGTGATTTT	CACTCAGAAG	CTCATTAACA	ATTAGTCTAT	ATAACCCTTG	6240
5	CTATATTTTC	AAAAACAAAA	CCCAATTACG	TTTTCATGTC	AAATATCATC	TTGCATGAAA	6300
	TCGTAACTGG	GTCATTTATA	TGTTATTAGT	TATTTTGTGT	TACATCCTCA	TCTATCGATT	6360
10	TGGCAATTTG	TTTAATAGCT	TTATGTGATT	GTCTAATTGG	ATAAATTGGA	AAATCATGTA	6420
	CCATCTTAGG	ATAATCATAA	AACTCAATGT	ATTGATGATG	TTGCAACATC	ATTTGTTCAA	6480
	ATAGCTTCAT	ATCAGGATGT	GTCATTTCAC	GTCCACCACC	AAACATATAA	ACTGGTGGCA	6540
15	ATCCTTCTAT	TGTGCCATTA	ATTGGCGATA	TGCGCTTATC	TGTTAATGGT	AGGCCATTCG	6600
	CCCATTTTTT	CATAATCTCA	TTGACACCAA	ACTGACTTAG	aACCGCATCT	TGTTCGATTA	6660
	AGGCGTCCGA	AATATCTTTA	TTAGATAGTG	TTGCATCTAA	AATTGGTGAG	ATTAAATACA	6720
20	ATTTATTCGG	TAATGGCTGT	TGATTAkCTA	AAAGAGATTG	TACAAAGGAT	AATGCCAGTG	6780
	CACCACCTGA	ACCATCACCC	ATGACTACGA	CATTTTGATG	TCCTACTTCA	GATACTAATT	6840
25	Gatcataaac	ACGTTGTATC	GCTTGGnAAA	GTATCGTCaA	TATGNAAACT	CTGGTGTCTT	6900
25	TGGATAGATA	GGCAGTACAA	CCTCATATAA	TGtACTTAAA	GTGATTTTAT	CCCAACAATC	6960
	TCCAATGGAA	CGGTGATGGT	TGTAGTGCAT	TGAATCCACC	GTGAATATAT	AAAATTTTCT	7020
30	TATCAATTTG	ATGTCTGAAA	TTAAAGCGAA	AGACTTGCAT	ATCATCTAAT	GACAATTTTT	7080
	CTAAATTTGC	TTTAACATTT	AATGTTGAAG	GCTGCTTATG	TTTTTTTCTA	TTTTCAATTT	7140
	CTCTTTTATA	AAAAAATCTT	TCAACATCTT	GATCATTTTT	AAACATAATC	GAGCGATTGT	7200
35	GAAGCAAATA	TTTATTGACA	ACGCTATTCA	TAACACGGTT	TCTAATCAAT	GTCTTAACCT	7260
	ACCTTTATAT	ATTTTATGTA	TCCAATGATK	GTCTATCCCC	TACATTCTTT	GCCAAAAAA	7320
	GTATATAATG	TAGAAGATAT	TTTCTTTTTC	ACTTTCAAAT	TTAAGACTAC	AATTGAACAG	7380
40	TGATTTTTCA	TCATTATAAC	AGACAACTAG	ACATATTGAT	AAGTAAAGAA	AAGAACTTTA	7440
	TACGGAGGTA	CCTTGCATGA	CAAATCCAAA	TCAACGATTA	GAACCATTTG	ATGAGACATT	7500
	TCAACAACCG	AATATTCATC	GTGGTAAGCG	ATATGGTAAG	AAAAAACGTT	CATTGGTAAG	7560
4 5	CATGATTATT	CAAATCATTG	TTGTWATATT	AACCACCATC	GCTGGAATAC	AGCATGGTGG	7620

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9834 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	GTCATLACCG	amTTTCtTAG	Aatcatttaa	AGATGATAAA	TATACAAACG	TTGGTAATIT	60
5	AAAAGAAGTG	AATTTTGATA	AAATTGCTGC	GACGAAACCC	GAAGTAATCT	TTATCTCTGG	120
	ACGTACAGCT	AATCAAAAGA	ATTTAGATGA	ATTCAAAAAA	GCTGCACCTA	AAGCGAAAAT	180
	TGTTTATGTT	GGTGCAGATG	AAAAGAACTT	AATTGGTTCA	ATGAAACAAA	ACACTGAAAA	240
10	TATCGGAAAA	ATTTACGATA	AAGAAGATAA	AGCTAAAGAA	TTAAATAAAG	ATTTAGATAA	300
	CAAAATTGCT	TCAATGAAAG	ATAAAACGAA	AAACTTCAAT	AAAACTGTTA	TGTATTTACT	360
15	AGTTAACGAA	GGTGAATTAT	CAACATTTGG	ACCTAAAGGT	CGTTTTGGTG	GATTAGTTTA	420
	CGATACATTA	GGATTCAATG	CAGTTGATAA	AAAAGTAAGT	AATAGCAATC	ATGGACAAAA	480
	TGTTTCTAAC	GAATATGTTA	ATAAAGAAAA	TCCAGATGTT	ATTTTAGCGA	TGGATAGAGG	540
20	TCAAGCGATA	AGTGGTAAAT	CAACTGCGAA	ACAAGCATTA	AATAATCCTG	TATTAAAAAA	600
	TGTTAAAGCA	ATTAAAGAAG	ACAAAGTATA	TAATTTAGAT	CCTAAATTAT	GGTACTTTGC	660
	AGCTGGATCA	ACTACAACTA	CAATTAAACA	AATTGAGGAA	CTTGATAAAG	TTGTAAAATA	720
?5	ATTTTAAAAG	AGGGGAACAA	TGGTTAAAGG	TCTTAATCAT	TGCTCCCCTC	TTTTCTTTAA	780
	AAAAGGAAAT	CTGGGACGTC	AATCAATGTC	CTAGACTCTA	AAATGTTCTG	TTGTCAGTCG	840
	TTGGTTGAAT	GAACATGTAC	TTGTAACAAG	TTCATTTCAA	TACTAGTGGG	CTCCAAACAT	900
30	AGAGAAATTT	GATTTTCAAT	TTCTACTGAC	AATGCAAGTT	GCCGGGCCC	AAACATAGAG	960
	AATTTCAAAA	AGGAATTCTA	CAGAAGTGGT	GCTTTATCAT	GTCTGACCCA	СТСССТАТАА	1020
35	TGTTTTGACT	ATGTTGTTTA	AATTTCAAAA	TAAATATGAT	AGTGATATTT	ACAGCGATTG	1080
,5	TTAAACCGAG	ATTGGCAATT	TGGACAACGC	TCTACCATCA	TATATTCATT	GATTGTTAAT	1140
	TCGTGTTTCC	ATACACCGCA	TAAGATTGCT	TTTTCGTTAA	ATGAAGGCTC	AGACCAACGC	1200
10	TTAATGGCGT	GCTTTTCAAA	CTCATTATGG	CACTTATAGC	ATGGATAGTA	TTTATTACAA	1260
	CATTTAAATT	TAATAGCAAT	AATATCTTCT	TCGGTAAAAT	AATGGCGACA	scgTGTTTCA	1320
	GTATCGATTA	ATGAACCATA	AACTTTAGGC	ATAGACAAAG	CTCCTTAACT	TACGATTCCT	1380
15	TTGGATGTTC	ACCAATAATG	CGAACTTCAC	GATTTAATTC	AATGCCAAAT	TTTTCTTTGA	1440
	CGGTCTTTTG	TACATAATGA	ATAAGGTTTT	CATAATCTGT	AGCAGTTCCA	TTGTCTACAT	1500
	TTACCATAAA	ACCAGCGTGT	TTGGTTGAAA	CTTCAACGCC	GCCAATACGG	TGACCTTGCA	1560
50	AATTAGAATC	TTGTATCAAT	TTACCTGCAA	AATGACCAGG	CGGTCTTTGG	AATACACTAC	1620
	CACATGAAGG	ATACTCTAAA	GGTTGTTTAG	ATTCTCTACG	TTCTGTTAAA	TCATCCATTT	1680

	AGTGTTCTTT	TTGAATAATG	CTATTACGAT	AATCTAACTC	TAATTCTTTT	GTTGTAAGTT	1800
	TAATTAACGA	GCCTTGTTCG	TTTACGCAAA	GCGCATAGTC	TATACAATCT	TTAACTTCGC	1860
5	CACCATAAGC	GCCAGCATTC	ATATACACTG	CACCACCAAT	TGAACCTGGA	ATACCACATG	1920
	CAAATTCAAG	GCCAGTAAGT	GCGTAATCAC	GAGCAACACG	TGAGACATCA	ATAATTGCAG	1980
	CGCCGCTACC	GGCTATTATC	GCATCATCAG	ATACTTCGAT	ATGATCTAGT	GATAATAAAC	2040
10	TAATTACAAT	ACCGCGAATA	CCACCTTCAC	GGATAATAAT	ATTTGAGCCA	TTTCCTAAAT	2100
	ATGTAACAGG	AATCTCATTT	TGaTAGGCAT	ATTTAACAAC	TGCTTGTACT	TCTTCATTTT	2160
15	TAGTAGGGGT	AATGTAAAAG	TCGGCATTAC	CACCTGTTTT	AGTATAAGTG	TATCGTTTTA	2220
, 0	AAGGTTCATC	AACTTTAATT	TTTTCATTTG	GGATAAGTTG	TTGTAAAGCT	TGATAGATGT	2280
	CTTTATTTAT	CACTTCTCAG	TACATCCTTT	CTCATGTCTT	TAATATCATA	TAGTATTATA	2340
20	CCAATTTTAA	AATTCATTTG	CGAAAATTGA	AAAGAAAGTA	TTAGAATTAG	TATAATTATA	2400
	AAATACGGCA	TTATTGTCGT	TATAAGTATT	TTTTACATAG	TTTTTCAAAG	TATTGTTGCT	2460
	TTTGCATCTC	ATATTGTCTA	ATTGTTAAGC	TATGTTGCAA	TATTTGGTGT	TTTTTTGTAT	2520
25	TGAATTGCAA	AGCAATATCA	TCATTAGTTG	ATAAGAGGTA	ATCAAGTGCA	AGATAAGATT	2580
	CAAATGTTTG	GGTATTCATT	TGAATGATAT	GTAGACGCAC	CTGTTGTTTT	AGTTCATGAA	2640
	AATTGTTAAA	CTTCGCCATC	ATAACTTTCT	TAGTATATTT	ATGATGCAAA	CGATAAAACC	2700
30	CTACATAATT	TAAGCGTTTT	TCATCTAAGG	ATGTAATATC	ATGCAAATTT	TCTACACCTA	2760
	CTAAAATATC	TAAAATTGGC	TCTGTTGAAT	ATTTAAAATG	aTGctACCGC	CAATATGTTT	2820
35	TGTATATTTT	ACTGGGCTGT	CTAAGAGGTT	GAATAATAAT	GATTCAATTT	CAGTGTATTG	2880
33	TGATTGAAAA	CAATTAGTTA	AATCACTATT	AATGAATGGT	TGAACATTTG	AATACATGAT	2940
	AAAÇTcCTTT	GATATTGAAA	ATTAATTTAA	TCACGATAAA	GTCTGGAATA	CTATAACATA	3000
10	ATTCATTTTC	ATAATAAACA	TGTTTTTGTA	TAATGAATCT	GTTAAGGAGT	GCAATCATGA	3060
	AAAAAATTGT	TATTATCGCT	GTTTTAGCGA	TTTTATTTGT	AGTAATAAGT	GCTTGTGGTA	3120
	ATAAAGAAAA	AGAGGCACAA	CATCAATTTA	CTAAGCAATT	TAAAGATGTT	GAGCAAAAAC	3180
15	AAAAAGAATT	ACAACATGTC	ATGGATAATA	TACATTTGAA	AGAAATTGAT	CATCTAAGTA	3240
	AAACTGATAC	AACTGATAAA	AATAGTAAAG	AATTTAAGGC	ACTACAAGAA	GATGTTAAAA	3300
	ACCATCTCAT	ACCTAAATTT	GAAGCATATT	ATAAGTCAGC	AAAAAATTTG	CCTGATGATA	3360
50	CAATGAAAGT	TAAGAAATTA	AAAAAAGAAT	ATATGACGCT	TGCAAATGAG	AAGAAGGATG	3420
			mmos ms comm	m> m c m> > m c n	A TOTA TO A A C	MATA A CON A C	2400

	AATTAGCTGA	TAATAAAAGT	GAAGCAACTA	ATCTTACGAC	AAAATTAGAA	CATAATAATA	3600
	AAGCGTTAAG	AGATACTGCG	AAGAAGAACC	TAGATGATAG	TAAAGAAAAT	GAAGTAAAAG	3660
5	GCGCGATTAA	AAATCACATT	ATGCCAATGA	TTGAAAAGCA	AATTACCGAT	ATTAACCAAA	3720
	CTAATATTAG	TGATAAGCAT	GTTAATAATG	CAAGGAAAAA	CGCAATAGAA	ATGTATTACA	3780
	GTCTGCAGAA	CTATTATAAT	ACACGTATTG	AAACAATAAA	GGTTAGTGAG	AAGTTATCAm	3840
10	AAGTCGATGT	AGATAAGTTG	CCGAAAAAGG	GTATAGATAT	AACTCACGGC	GATAAAGCCT	3900
	TTGAAAAAA	GCTTGAAAAA	TTAGAAGAAA	AATAACTATA	ATCATTTTC	AAAGTTAAAA	3960
15	ATTTTGAATT	TATGGTTAAC	ATGTCAACTT	ACTATGTGTA	TAATGGTAAA	CATTGATATT	4020
	AACTATATGT	ATAAAAATGT	CACGCAGATG	CTATTTAAAT	GTGATAAATA	TTTTTAGAGG	4080
	TGAATAGAGT	GGCTATAAAG	CTAAGTTCAA	TTGACCAATT	TGAACAGGTT	ATTGAGGAAA	4140
20	ATAAATATGT	TTTTGTATTA	AAACATAGTG	AAACTTGTCC	AATATCGGCA	AATGCGTACG	4200
	ATCAATTTAA	TAAATTTTTA	TATGAACGCG	ATATGGACGG	TTATTATTTG	ATTGTCCAAC	4260
	AAGAACGCGA	TTTGTCAGAT	TATATTGCTA	AAAAAACGAA	CGTTAAACAT	GAATCACCTC	4320
25	AAGCATTTTA	TTTTGTAAAT	GGTGAAATGG	TTTGGAATCG	AGACCACGGT	GATATCAATG	4380
	TGTCGTCATT	AGCACAAGCA	GAAGAATAAT	GAAACTATAG	GGTTGGAACA	TTTTGCCTTA	4440
	CACTACTAGA	CGTGAATAGC	ACAACTTAAA	TTCGTGTGAA	TCAGAGTAGT	TTGGCTATAA	4500
30	TGATGTTCTG	ACCTTTTATT	TTATGTCACC	TTTAGAAGCA	GTTAAGTTAG	TACTTTTTTA	4560
	CAAACATATG	TATAATATAT	TCGAGTATTT	TTATTGAAAa	tATTTTGGAA	AACGACGAAT	4620
35	CCAATAAGAA	AATTTAAACA	TGATTTGTAA	GTTAGTTTAA	TAGGAAATAT	ATGCTAAACC	4680
	AAAAGAAGCA	TATTGTTATT	TACTGGAATA	ATTAATAATC	ATGTCATGTT	AAATGTTAGC	4740
	ATATAATCAC	GAGATAAAAT	СТААААТТТА	AGATTAATCT	TTTATGAATA	AAAAACGTAT	4800
10	CACAACAAAT	AATAAAGTAA	GGTGGTCAAG	GTTATGAAAG	TATTAGTAGC	CATGGATGAG	4860
	TTTCATGGAA	TTATTTCAAG	TTATCAAGCT	AATAGATATG	TTGAAGAGGC	AGTTGCAAGC	4920
	CAAATTGAAA	CTGCAGATGT	agttcaagta	CCATTGTTTA	ATGGAAGACA	TGAATTATTA	4980
1 5	GATTCTGTAT	TTTTATGGcm	ATCTGGGcaA	AAGTATCGTA	TACCAGTACA	TGATGCAGAT	5040
	ATGAATGAAG	TTGAAGGTGT	TTACGGACAA	ACTGATACAG	GGATGACCGT	TATCGAGGGG	5100
	AATTTATTTT	TAAAAGGTAA	AAAACCAATT	GTTGAACGAA	CAAGTTATGG	TTTAGGAGAA	5160
50	ATGATTAAAC	ATGCATTAGA	TAACGACGCA	AAACATGTTG	TAATTTCACT	AGGTGGGATT	5220
	САТАСТТТТС	ATGCTGGTCC	ACCTATCTEA	CAACCATTAC	CTCCTCAATT	CT NTC NTC NC	E 2 9 0

	GATATGTCGA	ACTTACACCC	TAAAATGGAA	ACAGCAAGAA	TTCAAGTAAT	GTCGGATTTT	5400
	TCAAGTCGAT	TATATGGTAA	GCAAAGTGAA	ATCATGCAAA	CTTATGATGC	GCATCAGTTG	5460
5	AATCATAATC	AAGCAGCAGA	AATCGATAAT	TTAATTTGGT	ATTTTAGTGA	GTTATTTAAA	5520
	AGTGAATTGA	AAATTGCAAT	TGGTCCAGTT	GAACGTGGTG	GTGCTGGTGG	TGGAATTGCA	5580
	GCAGTCTTGA	ATGGACTGTA	TCAAGCTGAA	ATATTAACCA	GTCATGCATT	AGTAGACCAA	5640
10	CTAACACATT	TAGAAAATTT	AGTTGAACAA	GCGGATTTAA	TTATTTTTGG	AGAAGGATTA	5700
	AATGAAAATG	ATCAGTTGCT	AGAAACGACA	ACATTGCGTA	TTGCAGAACT	TTGTCATAAA	5760
15	CATCAAAAGG	TTGCCATTGC	AATTTGTGCA	ACTGCTGAAA	AGTTTGATTT	ATTTGAATCA	5820
	CAAGGGGTTA	CAGCAATGTT	TAATACATTT	ATCGATATGC	CAGAAACTTA	TACTGACTTT	5880
	AAAATGGGtT	ACAAATTAGG	CATTATACGG	TTCAGTCTTT	AAAACTGTTG	AAAACACATT	5940
20	TTAATGTTGA	GGTTTAGTAA	AGAAGGACTA	AATTGGTGAT	GCTGTCATGA	TGGTTAATAA	6000
	CATTTATGAT	GGTTAGCAAA	ACGAATTAGA	AGATCGAAAG	TATACGTAAA	AAATATGAAA	6060
	AATCACGCTA	TCATTGCACT	GAATGTTAGC	GTGATTTTTA	TATATTAATT	AAGCCTGAGT	6120
25	TGAACTAGTA	TATAATCGTT	GGTTTTTAGT	GATTTTCAGC	GATATCTTCT	ACAATTCCAA	6180
	TGATTACTTG	TACTGCTTTT	TCCaTAACAT	CAATGGATGC	aTATTCATAT	GGGCCGTGGA	6240
	AGTTACCGCA	ACCTGTAAAG	ATGTTTGGAG	TTGGTAACCC	CATAAATGAC	AATTGTGAAC	6300
30	CATCTGTACC	ACCGCGAATA	GGTTCAGTGT	TTGCTGGAAT	ATCTAATTTG	GCAAAGACAC	6360
	GTTTAGGTAT	ATCAATAATA	TGAGGCAATG	GTAATATTTT	TTCTGCCATA	TTGAAATATT	6420
35	GATCCGATAT	ATCAACTTTA	ACTGGATAAT	TTTCAAAATG	GGCATTGATA	TCGTCACGTA	6480
55	TTTCTAAAAT	ACGTTTCTTA	CGCAATTCGA	ATTGTTTTTT	ATCATGATCA	CGAATAATGT	6540
	ATTGCAAAGT	TGCTTTTTCA	ACAGTTCCTT	CAAAGTTCAT	TAAGTGATAA	AAGCCTTCGT	6600
10	ATCCTTCTGT	TCGCTCCGGA	ACTTCACTAT	CAGGTAGCAA	ACTATCGAAT	TGTTCACCTA	6660
	AACGTATTGC	GTTTACCATT	GCATTTTTAG	CTGAACCAGG	ATGAACATTT	ACACCGTGGC	6720
	ATGTAATAAC	CGCTTCAGCA	GCGTTAAAGC	TTTCATATTG	TAATTCTCCA	TATTGACTAC	6780
4 5	CATCCATAGT	ATAAGCAAAA	TCAGCATTGA	AGCGGTCAAC	ATCAAATTTA	TGTGGACCAC	6840
	GACCGATTTC	TTCGTCTGGT	GTAAATCCAA	TGCGAATGGT	ACCATGTTTA	ATTTCTGGAT	6900
	GTTCTTGTAA	ATAACAAATA	GCTTCCATAA	TTTCCACAAT	ACCCGCTTTA	TCGTCTGCAC	6960
50	CTAGTAACGA	TGTACCATCA	GTTACCATTA	ATGTATGACC	AACTAAACTG	TTAAGTTCTG	7020
	יייייייייייייייייייייייייייייייייייייי	ACC A TOTA AC	a ca commena c	TR TTCCCTT A C	mmmama maaa		7000

	GCGCCAAAAA	TCCAACTGTT	GGGACGTCGA	CATCGATGTT	ACTITCTAAT	GTAGCAAATA	7200
	AGTAGCCATT	TTCATCTAAA	TCAGTTGGCA	ATCCTAATTG	TTGTAATTCT	TTTTCTAATA	7260
5	AATGTAACAA	ATCCCATTGC	TTTTCAGTTG	AAGGTGTTGT	TGTAGATTTT	GGATCAGATT	7320
	GCGTATCAAT	TGTCGTATAT	CTTGTTAATC	TATCTATCAA	TTGGTTCTTC	ATTATATTCG	7380
	ACCCCTTAAA	CTCTATTATT	CATGTTGTAA	GATTTTTTAT	ATGTCTTACC	TTTGATTTTA	7440
10	CCATACAGTT	GTTTGATACG	TGTGTATAGG	TAATATAGAA	TTTCAGAAAC	TAATATACCG	7500
	AAAGCAATCG	CACCTGAAAT	CAGTGTACTT	CTAAAAATGT	ATTTACAGCA	CTTGTATAAT	7560
15	CATTTGATAC	TAAAAAACGA	GTCGCTTGAT	AAGCTGCACC	ACCAGGTACT	AATGGTATAA	7620
	TGCCTGGCAC	TATGAATATA	ATTACCGGTC	GTTTATATCT	GCGACTCATA	GTATGACTCA	7680
	TTAAGCCTAA	AATTAAGCTT	CCCAAAAATG	AAGCGCCAAC	TTTTCCAAAC	TCTAAATCTA	7740
20	CCGTTAATTG	GTAAATCGTC	CATGCAATGG	CACCCACAAA	TCCACATGCT	ACTAAGAGGC	7800
	GTTTGGGTGC	ATTGAAAATG	ATAGAGAAAA	GTACTGTTGA	TATAAAGCTG	ATTGTAAAAT	7860
	GAAATAAATA	AAATAGCATG	CTTTAACAGT	CCTTCCTTAA	ATGATTAATA	AAACGATTGC	7920
25	GACACCAGCA	CCGATTGCGA	ATGCTGTTAA	TGCAGCTTCA	ACACCGCGAG	ACATACCTGC	7980
	AAGTAATTCA	CCCGCTAATA	AATCTCGAAT	GGCATTGGTA	ATTAATATAC	CAGGGACAAG	8040
	TGGCATGACA	CTGGCTATAG	TAATGATATC	TTGATTGGTT	GCAATGCCTA	ATTTAGTAAA	8100
30	TGTGGCTGCA	ATGGATATGA	CCACAGCGGC	TGCAACAAAC	TCTGAGAAAA	ATTTAATTTG	8160
	TATATAGCGT	tGCACAAAGC	TGAATGTTAA	AAATGCGGAT	CCGCCAGCAA	TGACTGCAAT	8220
	CCAACAATCT	GATGCGACAC	CACCAAACAT	AAATAGGAAG	AAGCCACATG	CAATGGCAGC	8280
35	TGCAAAGAAA	TTCGTTAAAA	AAGAATATTG	TAATGATGCA	TGCTGTAAAT	GAATAAATTC	8340
	AGATTTAGCT	TCATCAATTG	TGAGTTCTTT	ATTTGATATT	TTACGTGAAA	GACTATTCGT	8400
‡O	TAAAGCGATT	TTCTCTAAAT	CTGTTGTACG	CTCTTGTACA	CGAATTAATC	TTGTACTTGT	8460
	TCGATCGTTT	AATGAAAAA	TAATTGCAGT	TGAACTGACA	AAACTATATG	TATTATGAAG	8520
	ACCATAACTA	TGTGCGATAC	GGTTCATTGT	ATCTTCAACT	CGATATGTTT	CAGCACCTGA	8580
1 5	TTCaAGTAAA	ATTCTACCTG	CAATTAATAC	AACATCAATC	ACTTTGTTTT	CATCTATAAT	8640
	TGTGATTGAA	TCTGGCATAT	CAATTCACCT	CCAATGATAT	GTGTTATTTA	TTTGAACAAT	8700
	TGaAGTTTAC	AACTTGTTGT	TACAACTTTC	AATAGTGAGA	CTTTGTGTTA	GTATGATGAA	8760
50	CTTGTATGGT	TCAAATTTAA	ATAAGAAAAA	CTGTTAATCT	TTGCTATTAT	ACTATGATTT	8820
	3 3 T 3 3 T 3 C C 3	3.5.C.3.EE 3.3.C	y Chandallelle	ጥ ጥር ጥጥ እ ጥ እ እ	ተተ ረግ አመስ አመስ ረ	CCTTABACAT	0000

	TTTACGCTGT GATTTTGGAT CGTCATCTGT TAAATAACCA ACACCGATAG ACACTGACAA	9000
	TTTAATAACT TCTTTGTTTG GTAAATGGAA TGATGATTTT TCAACACCCG AACGAATATT	9060
5	TTCAGCTAAT TTAACACTTT GATCAAGTGA ATAATTGTGA ATGACAACTG AGAACTCTTC	9120
	GCCACCATTT CTAAAAATTT TAAATTGATT CGGCACATAG TTTTTAAGTA ATTGAGACAT	9180
	TTGTTTTAAT ACAGCATCAC CTGATTTGTG TGAGTAGGTA TCATTGACAT CTTTAAATCC	9240
10	ATCGATATCG ATTAATAATA ATGCGATACT TTGATGTTCT TTTTCAGCTT TTCGTGAAAT	9300
	TTCATTTAAA TGTCTATCAA ATTCTTTTAC ATTACCTAAG CCTGTTAAGT AATCATATTT	9360
15	ATCTTCGTTT TCATAACGAT TTACGAGTGA GAAGAAATGC CAAATATCGA CAAATGTTAT	9420
,,,	CGCTGAAGCT AAAGTGATAA TTAATGAAAT TGGTATTAAA ATGATAACTT CCGATAGTGT	9480
	GTAAATAGGA CTCACTAACG CGACACCAAA TAAAATGATT ATTGTAACAA CATTAAGTAT	9540
20	TAATAATGAT AGCACATCAT TTTGTTTTAA AAATGGTCCA ATAGCACTTG TTACTGCAGC	9600
	AATAACAATC AACGTAACAC CGTACATAAT CGAGTTGTTA AATACTACAA TTTCAACAAT	9660
	TGCTACAATT ACTGTGGCAG ATAATGTATA GACCATATTT GTAAATCTAC CTAAAAACAA	9720
25	TAAAGGAACG AATGTTAAGT GAATTAAATA ATCTTCACGA TAAGGGATAG GGTAGACAGA	9780
	TAATAATAAT GATACGATTG TCATTAAAAC AGTGACATAA GCCTTAGAAA AAAC	9834
	(2) INFORMATION FOR SEQ ID NO: 38:	
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23439 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	C(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	TCTCAATCAG ATGAAAAATT GCATATCGTA GGTTTTACAG AAAGTGCAAA ATATAATGCG	60
10	TCATCAGTCA TTTTCACGAA TGACGCTACC ATTGCCAAGA TCAATCCTAG ATTGACTGGA	120
	GATAAAATTA ATGCAGTTGT TGTACGTGAT ACAAATTGGA AAGACAAAAA ATTAAACCAA	180
4 5	GAGCTTGAAG CGGTAAGTAT TAATGACTTT ATTGAAAATT TACCAGGTTA TAAACCACAG	240
	AACTTAACAT TAAACTTTAT GATTTCATTC TTATTTGTCA TTTCAGCTAC AGTTATAGGC	300
	ATTTTCCTAT ATGTCATGAC ATTACAAAAG ACGAGTTTAT TTGGCATATT AAAAGCTCAA	360
50	GGATTTACGA ATGGCTATTT GGCGAATGTG GTAATTTCGC AGACGGTCAT ATTAGCACTA	420

55

480

TTTGGTACGG CATTTGGCTT ACTGTTAACA GGCGTTACAG GTGCATTTTT ACCTGATGCA

	TCTGTATTAG	GAAGTTTATT	CTCCATTTTA	ACAATTAGAA	AAATAGATCC	GTTAAAGGCG	600
	ATTGGGTAGG	AGGTGTAGCA	AATGTTGAAA	TTTGAAAATG	TAACAAAGTC	ATTTAAAGAT	660
5	GGGAATCGTA	ACATTGAAGC	GGTTAAAGAT	ACAAATTTTG	AGATAAATAA	AGGTGATATT	720
	ATAGCATTGG	TTGGACCTTC	TGGCTCTGGT	AAAAGTACAT	TTCTAACTAT	GGCAGGTGCT	780
	TTACAAACAC	CGACATCTGG	GCACATTTTA	ATCAATAACC	AAGATATTAC	GACAATGAAG	840
10	CAAAAAGCAT	TGGCAAAAGT	TAGAATGTCT	GAAATAGGTT	TTATTTTACA	AGCTACAAAC	900
	CTTGTACCAT	TTTTAACGGT	AAAGCAACAA	TTTACATTAT	TGAAAAAGAA	AAATAAGAAT	960
15	GTTATGTCTA	ATGAAGACTA	TCAGCAACTT	ATGTCACAAT	TAGGTCTAAC	TTCATTGCTT	1020
-	AATAAGTTAC	CTTCAGAAAT	TTCAGGTGGT	CAGAAACAAC	GTGTGGCGAT	AgCaAAGCGT	1080
	TATATACGAA	TCCGTCGATT	ATTTTAGCGG	ATGAACCTAC	CGCGGCGTTA	GATACTGAAA	1140
20	ATGCGATTGA	AGTCATTAAA	ATTCTACGTG	ATCAAGCCAA	ACAAAGAAAG	AAAGCATGTA	1200
	TTATTGTTAC	ACATGATGAA	CGACTTAAAG	CATATTGTGA	TCGTTCATAT	CATATGAAAG	1260
	ATGGCGTCCT	TAATCTTGAA	AATGAAACAG	TAGAATAGTT	TTATTAAGCC	GGTACATCAT	1320
?5	GTGCCGGTAT	TTTTATGTTT	ATGTATTATT	TGAATAAACT	TTCACATTCA	АТТААТААТА	1380
	ATTATTATCG	AAAATCAGAA	ATATTCCGTG	AAATATAATA	TTTTTTGTAG	TAAAATGGCC	1440
	TCTAAGTATT	CAATATTTAA	ATATGGGGAT	TGAATATAAA	ATTATCGTAA	TGGGGGTCAA	1500
30	TGGTTATGGA	TTTATTGATA	GGTACTTTAT	TTTTATTTTT	GGTCTTAGTG	ATTTTTACAT	1560
	TATTTACATA	TAAAGCGCCT	AATGGTATGC	GTGCCATGGG	AGCATTAGCT	AATGCAGCAA	1620
25	TCGCAACATT	TTTAGTGGAA	GCATTTAATA	AATATGTTGG	TGGCGAAGTA	TTCGGTATTA	1680
35	AATTTTTAGA	AGAGCTAGGA	GACGCTGCGG	GAGGTCTAGG	TGGTGTCGCT	GCCGCTGGAT	1740
	TAACAGCATT	AGCTATCGGT	GTGTCACCAG	TATATGCATT	AGTTATAGCA	GCCGCGTGCG	1800
10	GTGGTATGGA	TTTATTACCA	GGTTTCTTTG	CGGGTTATAT	GATTGGATAT	GTGATGAAAT	1860
	ATACAGAGAA	ATATGTGCCG	GATGGTGTCG	ACTTAATTGG	ATCGATTGTC	ATCTTAGCGC	1920
	CATTAGCTCG	TCTTATTGCA	GTATTATTAA	CGCCAGTAGT	GAATAGTACA	TTGATTCGAA	1980
15	TTGGTGATAT	TATCCAAAGT	AGTACGAATA	CGAATCCAAT	TATCATGGGT	ATCATTTTAG	2040
	GTGGTATTAT	TACGGTTGTC	GGCACAGCGC	CATTGAGTTC	AATGGCATTG	ACAGCATTAT	2100
	TAGGTTTAAC	GGGTGTACCT	ATGGCTATTG	GTGCCATGGC	AGCATTTAGT	TCGGCATTTA	2160
50	TGAATGGGAC	GCTATTCCAT	CGCTTAAAAT	TAGGTGATCG	TAAGTCTACG	ATTGCAGTAA	2220
	OTTATTO A A CC	TTTTATCACAA	CCACATATTC	TATCACCCAA	TICON APPROOR	N COURS CONTRACTOR	2200

	ATGCGACAGG	TACAGCTACA	CCGATTGCAG	GATTTTTAGT	TATGTTTGGA	TTTAATCATC	2400
	CGACGACAAT	TGTGATTTAT	GGTGTAGTAA	TGGCGATTGT	AGGTGCGCTT	GCAGGTTATC	2460
5	TTGGTTCAAT	TGTATTTAAA	AAATATCCAA	TTGTTACTAA	GCAAGACATG	ATTAATCGAG	2520
	GTGCAGTAGA	CGCATAGCAT	CATCATATTG	AATAGTAAAA	АСАААТАААА	CATAGTAACG	2580
	TGATTCAGTC	GATGTAACAG	TCGATAATGA	GTCACGTTTT	TTTATAGAAA	AATACAAGAC	2640
10	ATAAAAATGT	CATAATTTAT	TGTCGACAAA	TATCATACTG	TATAAACATT	TATCATTTTC	2700
	TCAAGTACCT	TTTACACGAT	GGAATGAACT	TACTTTTTAC	GAAATTATGC	GTATTTTATA	2760
	AACAAATATC	ATTGATATAA	CGGTAAATGT	AAGCGTTTAC	AACAGAAATA	ACAGCATGCT	2820
15	ACGATATTTT	TGTAAATTCA	CTGATTCAAG	TATTTTAAGT	CAATATGAGG	AGGGATGTTA	2880
	TGAGCGATTC	TGAGAAAGAA	AAAAAATTTTA	GAATTAAAGA	TAATCCGTTT	ATTTCACAAC	2940
20	GTGAACTTGC	TGAGGCAATT	GGATTATCTA	GACCCAGCGT	AGCAAACATT	ATTTCAGGAT	3000
	TAATACAAAA	GGAATATGTT	ATGGGAAAGG	CATATGTTTT	AAATGAAGAT	TATCCTATTG	3060
	TTTGTATTGG	CGCAGCGAAT	GTAGATCGTA	AGTTTTATGT	GCATAAAAAT	TTAGTTGCAG	3120
25	AAACATCAAA	TCCTGTAACG	TCAACACGCT	CTATTGGTGG	CGTAgCAAGA	AATATTGCTG	3180
	AGAACTTAGG	TAGGCTTGGC	GAAACGGTCG	CTTTTTTATC	TGCTAGTGGA	CAAGATAGTG	3240
	AATGGGAAAT	GATTAAACGA	TTGTCCACAC	CATTTATGAA	TTTGGATCAT	GTTCAACAAT	3300
30	TTGAAAATGC	GAGTACAGGT	TCATATACAG	CTTTAATTAG	TAAAGAAGGC	GACATGACAT	3360
	ATGGCTTaGC	AGATATGGAA	GTGTTTGACT	ACATTACGCC	TGAATTTTTA	ATTAAGCGTT	3420
	CACACTTATT	GAAAAAGGCT	AAGTGCATTA	TTGTAGATTT	GAATTTAGGC	AAAGAGGCAT	3480
35	TAAACTTCTT	ATGTGCCTAT	ACCACGAAAC	ATCAAATCAA	ATTAGTTATC	ACCACGGTTT	3540
	CTTCCCCAAA	AATGAAAAAT	ATGCCTGATT	CATTACATGC	TATTGATTGG	ATTATCACGA	3600
10	ATAAAGATGA	AACAGAAACA	TACTTAAATT	TAAAAATAGA	ATCTACTGAT	GATTTAAAAA	3660
40	TAGCTGCTAA	ACGCTGGAAT	GATTTAGGTG	TTAAAAATGT	TATTGTGACA	AATGGCGTGA	3720
	AAGAACTCAT	TTATCGAAGT	GGTGAGGAAG	AAATCATTAA	GTCAGTTATG	CCATCAAATA	3780
4 5	GTGTGAAAGA	TGTTACAGGT	GCAGGCGATT	CATTCTGTGC	TGCAGTAGTG	TATAGCTGGT	3840
	TAAATGGGAT	GTCTACTGAA	GATATATTAA	TTGCTGGTAT	GGTTAACGCA	AAGAAAACGA	3900
	TAGAAACGAA	ATATACAGTT	AGGCAAAACC	TAGATCAACA	GCAACTTTAT	CACGATATGG	3960
50	AGGATTATAA	AAATGGCAAA	TTTACAAAAG	TATATTGAGT	ATTCTCGAGA	AGTTCAGCAA	4020
	GCACGGGAGA	ACAATCAACC	GATTGTAGCA	TTAGAATCAA	CAATTATTTC	GCATGGTATG	4080

	GCCATTCCAG	CAACCATAGC	CATTATAGAT	GGCAAAATTA	AAATTGGTTT	AGAAAGCGAA	4200
	GATTTAGAAA	TACTGGCAAC	TAGTAAAGAC	GTTGCTAAAG	TATCTAGAAG	GGATTTAGCA	4260
5	GAAGTTATTG	CGATGAAGTG	TGTTGGTGCT	ACTACTGTAG	CGACGACGAT	GATATGTGCT	4320
	GCAATGGCTG	GTATTCAATT	TTTTGTTACA	GGAGGTATTG	GGGGCGTCCA	TAAAGGTGCA	4380
	GAACATACGA	TGGACATTTC	AGCAGACTTA	GAAGAACTGT	СТААААСААА	TGTCACTGTT	4440
10	ATCTGTGCAG	GTGCCAAATC	AATTTTAGAC	TTACCTAAGA	CGATGGAGTA	TTTAGAAACA	4500
	AAAGGCGTTC	CAGTTATTGG	ATATCAAACG	AATGAATTGC	CAGCATTCTT	CACTCGCGAA	4560
15	AGCGGTGTTA	AGTTAACAAG	TTCGGTTGAA	ACGCCAGAAC	GACTTGCTGA	CATTCATTTA	4620
	ACAAAACAGC	AGTTAAATCT	TGAAGGTGGC	ATTGTTGTTG	CTAATCCAAT	TCCATATGAG	4680
	CATGCCTTAT	CAAAAGCATA	TATTGAGGCA	ATCATAAATG	AAGCTGTTGT	TGAAGCGGAA	4740
20	AATCAAGGTA	TTAAAGGTAA	GGACGCCACA	CCGTTCTTGT	TAGGGAAAAT	TGTAGAAAA	4800
	ACGAATGGTA	AAAGTTTAGC	AGCAAATATA	AAACTTGTTG	AAAACAATGC	GGCGTTGGGT	4860
	GCTAAAATTG	CTGTCGCTGT	TAATAAATTA	TTGTAGGTGA	TGATACATGA	ATATTTTATT	4920
25	CGCTATCACA	GGGATAGCAT	TTGCACTATT	TGTTGCGTTT	TTATTCAGTT	TTGATCGTAA	4980
	AAAAATAGAC	TTCAAAAAGA	CGTTAATAAT	GATATTTATT	CAAGTGTTGA	TCGTGTTATT	5040
	TATGATGAAC	ACAACGATTG	GTTTGACAAT	TTTAACTGCA	CTAGGTTCAT	TTTTTGAAGG	5100
30	GCTAATAAAT	ATTAGTAAAG	CAGGCATAAA	TTTTGTTTTT	GGAGATATAC	AAAATAAAA	5160
	TGGCTTTACG	TTCTTTTTAA	ACGTATTACT	GCCATTAGTT	TTTATTTCTG	TATTAATAGG	5220
35	CATCTTTAAT	TATATTAAGG	TATTACCATT	TATTATCAAA	TATGTAGGTA	TCGCTATTAA	5280
30	TAAAATAACT	AGAATGGGGC	GCTTAGAAAG	TTATTTTGCT	ATTTCAACAG	CAATGTTTGG	5340
	GCAACCAGAA	GTATATTTAA	CAATAAAAGA	TATTATTCCA	AGATTATCTA	GAGCGAAATT	5400
‡O	ATATACAATT	GCGACGTCTG	GTATGAGTGC	TGTTAGTATG	GCAATGCTAG	GTTCATATAT	5460
	GCAGATGATT	GAACCCAAGT	TCGTAGTTAC	AGCAGTAATG	TTAAATATTT	TTAGTGCGCT	5520
	TATCATCGCC	AGTGTAATCA	ATCCCTATAA	ATCTGATGAT	ACTGATGTTG	AAATTGATAA	5580
4 5	CTTAACGAAA	TCCACAGAAA	CTAAAACATT	GAATGGAAAA	ACAGGAAAAC	CTAAGAAAGT	5640
	TGCCTTTTTC	CAAATGATTG	GTGATAGTGC	GATGGATGGG	TTTAAAATCG	CTGTTGTAGT	5700
	AGCCGTAATG	TTGTTAGCAT	TTATTTCATT	AATGGAAGCA	ATTAATATCA	TGTTTGGTAG	5760
50	TGTTGGTTTG	AACTTTAAAC	AGCTTATTGG	CTATGTGTTT	GCACCAATCG	CATTCTTAAT	5820
	GGGGATTCCA	TGGAGCGAAC	тсттесьсет	ርርርጥርጥጥጥ አ	TOCOCONOTAN	A TIME A A TIME A CLA	5000

	CAAGGTATCA	TTTCAGTTTA	CTTAGTAAGC	TTCGCTAATT	TTGGTACGGT	TGGTATCATC	6000
	GTAGGTTCAA	TTAAAGGCAT	TAGTGATAAA	CAAGGAGAAA	AAGTTGCATC	CTTTGCAATG	6060
5	AGGTTGCTAC	TTGGTTCAAC	TCTAGCTTCA	ATCATTTCAG	GATCAATCAT	TGGCTTAGTA	6120
	TTGTAAATGA	ATCGAAGTAC	СТАААТТААА	TTCATGGCAA	AGCTAAACCC	CGTCACCAAG	6180
10	TTGGCGCAAC	AGCGcATgcA	TAACTTAGTG	ACGGGGTTTT	ATCATAACAA	TCTACTTTTT	6240
, •	CGTAGCCGTT	TTTGAAATGT	ATGTTGATGG	TTTATCTTTT	TCAAAAATTG	TTAATCCCGT	6300
	TATATCTTTT	TTATGTTTTG	AAGGGACAAT	GAAGCTAAGT	ATATAAGCAA	AGACAAAAGC	6360
15	AACTGTAAAT	GAAATGGTAG	ATACATAGAA	AGGTGAGTTA	CCTTTGCCAA	CACCATTATA	6420
	GACATAAGCA	AAGATGATAC	CCAATATTAA	TCCACAAATA	ACACCGAATG	TATTCGTACG	6480
	TTTAGTGAAA	ATACCAACTG	CAAATACACC	AGCCAATGGA	ACGCCGAATA	ATCCAGTCAC	6540
20	AAACAAGAAT	AAATCCCATA	AGTCATTTGA	ATTAGAAGCA	ATTAAGTATA	GTGACATTCC	6600
	AAAACCGAAA	ATACCTGCAA	TGATAATAAT	GAAACGTGCA	AAGTTAACTT	CGTGTCGCTC	6660
	GCTACCTTTT	CCGAAGAAGC	GTTGCTTAAT	GTCGATTGAA	ATACAAGCAG	ATATAGAATT	6720
25	TAAACTAGAT	GAAATGGTAG	ACTGTGCAGC	GGCGAAAATG	GCTGCAATAA	GTAATCCTGC	6780
	TACAAATGGT	GGCATCTCAG	TCAAAATGAA	ATATGGCACT	ACAGATGATG	TATTGAAGCC	6840
20	TTTTGGTAAA	ACAGCTTCAT	GTGTATAAAA	TGAATACAGC	ATTGTACCCA	TACCATAAAA	6900
30	TAAGGGTGCT	GAAATTAAAG	CTAGGATACC	ATTTGTCCAT	AACGATTTAT	TTGTTTCTTT	6960
	TAAACTATCA	GAAGCTTGAT	AACGCTGCAC	GACGTCTTGA	CTCGCTGTGT	ATTGATACAA	7020
35	GTTGTTGAAA	ATATTTCCTA	GGAAAATAAT	TGGAATGGCA	GCTGCCGCAG	TATTTAGTTT	7080
	CCAATTGTCT	GCACTAATTA	ATTTTTTGTG	CTCAATCGCA	TCTGCAAAGA	CAGTGCCGAA	7140
	ACCGČCTTTA	ATGTTCACAA	CACCTAGAAT	AATAATAACT	AAAGCGCCGC	СТААТААААТ	7200
10	GACGCCTTGA	ATGAAATCAC	TCCAAACCAC	ACCTTCGAAA	CCACCTAAAA	ATGTATATAA	7260
	AATACATAGT	AAACCAACGA	GTGATGCAAC	GATATAAGGG	TTCATGTCTG	ATACAGATGT	7320
	GATTGCTAAT	GTTGGTAAGT	AGATAACAAT	TGCAACACGC	CCTAAATGGT	AAACGACAAA	7380
15	TAATAATGAG	CCAATGACAC	GTATGCTAGG	GCCAAATCTA	GCTTCTAAAT	ATTCATATGC	7440
	AGATGTTACC	TTTAACTTTT	TAAAGAAAGG	GACATAGAAA	TAAATAAGTA	ATGGAATAAT	7500
	TGCGACGATA	GCAATGTTAC	CAGCGATATA	TGACCAATCT	GTTAAAAATG	CTTTCTCTGG	7560
50	TGTCGACATA	AATGTAATCG	CACTTAACGT	AGTAGCATAA	ATTGAAAAGC	CAACTACCCA	7620
	AGATGGCAAG	CGACCACTTG	CCCTAAACAA	ACTATTCCTA	CTTTCCCTCC	CCCCCTTCCT	7600

	TGTGCCAAAT	CCAACTTCTT	TCATGGGCAA	CATCCCCTTT	ACAATGTATT	GATTCTTTGA	7800
	TGTCTATAAA	TCGTATTTTG	CAATGAGTTG	ATCTAATGTT	TGTCGATGTG	CTTCGTTAAA	7860
5	AGGTTTGAAA	GGTCTTTTCG	GTAATCCTGC	ATCAATGCCA	CGATGACGTA	ATATTTCTTT	7920
	CAATGTTGGA	TAAATCCCCA	TTGATAACAC	TGTTTCGATA	ATGTCGTTTG	AATCATGTTG	7980
	CAGTTGGTAA	GCTTCTTGAA	TTTGACCTTG	TCGTGCTAAG	TCGAAGATTT	TTCTTGCACG	8040
10	GCGACCATTA	ACGTTATATG	TAGAACCAAT	TGCACCATCT	ACGCCAGAAA	TCGTAGCTTG	8100
	AACTAACATT	TCATCAAAGC	CAGATAAGAT	TAATTTGTCT	GGGAATGCTT	TTCTAATACG	8160
15	TTCGAGTAGG	AAGAAGTTTG	GCGCTGTATA	TTTAACACCA	ACAATTTTTT	CATGATTAAA	8220
	TAGCTCGCTG	AATTGTTCAA	TAGAAATATT	CACACCTGTT	AAATCTGGTA	TTGCATAAAT	8280
	AATCATATTG	TTCTGAGTTG	CTTCGATAAT	ATCGAAATAG	TAATCTCTAA	TTTCTTCAAA	8340
20	AGTAAATGGA	TAGTAGAATG	GTGTTACGGC	AGAAAGTGCA	TCATAACCGA	GTTCTGTGGC	8400
	ATATTTTCCA	AGTTCAATGG	CTTCATTTAA	ATCTAACGAA	CCTACTTGAG	CAATCAATTT	8460
	CACTTTATCC	CCAACTGCCT	CTTTGGCAAC	CTTGAAAACT	TGCTTCTTCT	GCTCTGTATT	8520
25	TAATAAAAAG	TTTTCGCCTG	AGCTACCATT	TACATAAAGA	CCGTCTAATT	CTTCAGTTTC	8580
	AATGGCATTT	TGAGCAATTT	GTTTAAGTCC	TTGTTCATTT	ACTTGACCAT	TTTCATCAAA	8640
	AGGAACGAGT	AACGCTGCAT	ATAAACCTTT	TAAATCTTTG	TTCATTATGA	AGTCCCTCCA	8700
30	AAAATCATTT	GATAATATAG	TTTACAGCTA	TAATTGTAAA	CGCTATCATA	AAATGTAACA	8760
	ATATCTTTTT	GAAAATTGTA	GTCATATTTA	TGTATAATTA	ATGAAAATGT	TTTTCAAAAT	8820
	CAATAGAAAT	GGAGTGAGTA	AGGTGTATTA	CATCGCAATC	GATATTGGAG	GCACTCAAAT	8880
35	TAAATCGGCA	GTTATTGATA	AGCAATTGAA	TATGTTTGAC	TATCAACAAA	TATCAACGCC	8940
	GGACAACAAA	AGTGAGCTTA	TTACTGACAA	AGTATATGAG	ATTGTAACAG	GATATATGAA	9000
10	GCAATATCAG	TTGATCCAAC	CTGTCATAGG	TATTTCATCA	GCAGGCGTTG	TTGATGAACA	9060
	AAAAGGCGAA	ATTGTATACG	CAGGGCCAAC	CATTCCGAAT	TATAAAGGTA	CTAATTTTAA	9120
	GCGATTATTA	AAATCACTGT	CTCCTTATGT	CAAAGTAAAA	AATGATGTAA	ACGCTGCATT	9180
1 5	ACTAGGCGAA	TTGAAATTAC	ATCAATATCA	AGCAGAACGG	ATCTTTTGTA	TGACGCTTGG	9240
	TACAGGCATT	GGGGGTGCGT	ACAAGAATAA	TCAAGGTCAT	ATTGATAATG	GTGAGCTTCA	9300
	TAAGGCAAAT	GAAGTTGGGT	ATTTATTGTA	TCGTCCAACT	GAAAATACAA	CGTTTGAGCA	9360
50	ACGTGCTGCA	ACGAGTGCAT	TGAAAAAGCG	CATGATTGCC	GGAGGATTTA	CGAGAAGCAC	9420
	ACATGTGCCA	GTATTGTTTG	AAGCAGCTGA	AGAAGGTGAT	GATATTGCAA	AACAAATATT	9480

	AGGGCTTATA	TTAATTGGGG	GCGGTATATC	TGAACAAGGA	GATAATCTCA	TTAAATATAT	9600
	CGAGCCGAAA	GTTGCACACT	ATTTACCAAA	AGACTATGTT	TATGCACCAA	TACAAACGAC	9660
5	TAAGAGTAAA	AATGATGCAG	CATTATATGG	CTGTTTGCAA	TGATAGTTGA	AAGAAGGAGT	9720
	CATTCTAAAA	TAGAATTTGA	AACCGTTACG	AGAGATGAGA	GCTGTTGTTA	GTTCCACACA	9780
10	TCACACTCTA	TCTAGGACCA	ATCTAAACTA	TATCAACCAA	CAGTGTGCCA	CGGGCAAATT	9840
	AAATTGAAGA	AGCTGAGATA	TTAAAATTTT	AGAAAATGTA	AAAAAATATT	TGGTATTGAA	9900
	ATTAAAAAAG	CACCTAGCAA	CTCGTTGGGA	CAATCACGAT	GATTGTCTAC	AGTTGCAGGT	9960
15	GGATTTGAAT	ATACTACTAG	TTATTTGTTG	TCTAGGATAA	TAGATTTAGT	ATGTTGATAA	10020
	GTTTGACTCA	GATTCGTATT	TTCTAATAAA	TGATAACTCA	CGATATCGAT	TAAAAAGAGT	10080
	GTCGCAATTT	GTGTGTTGAT	AAATTGATGG	TCGGTATTAC	GCGATTGATC	CGTTGTTAAA	10140
20	AGTACTAAAT	CTGCACAATC	TGTAAGTTTA	CTACCTTCAA	AATTTGTGAT	GGCAACGACA	10200
	TATGCACCAT	GAGATTTGGC	GACTTCCGCT	GCAGAAATTA	ATTCCGAAGT	ATTACCACTA	10260
	TTTGACATAG	CAATAAACAT	ATCCGAATGA	GATAGTAGGG	ATGCCGATAT	TTTCATTAAA	10320
25	TGTGAATCGG	TAGTAACATT	ACCTTTTAGC	CCCATACGAA	TCATACGATA	ATAAAATTCA	10380
	GTCGCTGATA	AACCAGAGCT	ACCTAGTCCA	GCAAAGAGTA	TATGTCGACT	TGATTGAAGT	10440
	TTGTCGATAA	AGGTTTGGAT	AATGTCGTTA	TCAATAAATT	CACCAGTTTG	TTGAATGATT	10500
30	TGTTGATGAT	ATTTATGAAT	TCTTTGAATA	ATTGGGCTAT	TTTCAATAAC	TGTCTCTGTC	10560
	ATTTCTTGTT	GAATATTAAA	TTTTAAATCT	TGGAAATTCT	CATAATCCAG	CTTATGACTA	10620
35	AAGCGTGTCA	TCGTTGCTGG	TGATGTACCA	ATCGCATGGG	CTAAGGAGTT	AATCGTTGAA	10680
,,,	AAGGCATCGC	TATAACCATT	TTGTCTTATA	TAATTGACGA	TGCGTTTATC	AGTTTTTGTA	10740
	AATAAATGTT	GATAACGTTG	AACACGATTC	TCAAATTTCA	TTGTGTCACC	CCTTCATCTT	10800
10	AATGATTACT	ATTATATATG	AAAAATATTT	TCAAGATAGT	AAAAAGCATT	GATAAAAATT	10860
	ATCTTAATGA	TATATTGTAA	ATGACTTTAC	GTGAAAAAAC	GACTTATGGA	GTGAGGAATA	10920
	ATGTTACCAC	ATGGATTAAT	AGTATCTTGT	CAGGCACTAC	CAGATGAACC	ATTGCATTCA	10980
‡ 5	TCTTTTATTA	TGTCGAAAAT	GGCATTAGCT	GCGTATGAAG	GTGGTGCTGT	TGGTATTCGC	11040
	GCAAATACTA	AGGAAGACAT	TTTAGCAATT	AAAGAAACGG	TAGATTTACC	AGTTATTGGC	11100
	ATTGTGAAAC	GTGACTATGA	TCACTCAGAT	GTTTTCATTA	CTGCAACGTC	AAAAGAAGTT	11160
50	GATGAACTGA	TAGAAAGCCA	ATGTGAAGTC	ATTGCATTGG	ATGCAACGTT	ACAGCAACGT	11220
	CCCDBACBAA	CCTTACACCA	ATTACTATCA	ጥልጥልጥጥል <i>ር</i> አል	CACATCCACC	CARCCTTCAR	11290

	TATATTGGCA	CGACGTTACA	TGGCTATACT	AGTTATACGO	: AAGGACAATT	ACTTTATCAA	11400
	AATGACTTCC	AAATTTTTAAA	AGATGTACTA	CAAAGTGTTG	ATGCAAAAGT	TATTGCGGAA	11460
5	GGTAATGTCA	TTACACCGGA	TATGTATAA	CGTGTGATGG	ACTTAGGCGI	TCATTGTTCA	11520
	GTCGTTGGTG	GTGCGATAAC	ACGACCAAAA	GAAATTACGA	AACGTTTTGT	TCAAATTATG	11580
10	GAAGATTAAA	TGATAACGAT	AAAAAAACGA	GATGACCATC	ATTAATTAAA	GGCACCTAAT	11640
70	TATCTTAGGT	' GGCTGAATGA	ATGTAATGGG	TTCATCTCGT	TTTGTTTGTT	TATGATAGTG	11700
	ATTTTATTTT	CAACTTTATC	CAAAAATAAG	TAAAGCGACG	GGGATGGTGA	TTAATAGCGA	11760
15	CAACGCCACG	CGTAAAAACC	AAATGATGAT	GAGTTTCCAG	ACAGGTATTT	TAATTTCAGT	11820
	TGCTAGTATA	CATGGCACTA	ATGCTGAGAA	AAAGATAATG	GCTGATACGC	TTACTACACC	11880
	GACGACAAAT	TTAGTACTCA	TTGCAGCTTT	AGTTACTAAC	AAAGATGGTA	GAAACATCTC	11940
20	TACAATAGAA	AckCTGACGC	TTTTGCTAGT	AAAGCCTGAT	CAGCAATTGG	GAAAATATAA	12000
	ATAAATGGAT	AGAAGATATA	GCCAAGCCAA	TCAATGAATG	GTGTATAGTT	CGCTACAATC	12060
	AGTCCTAAAA	AACCAATCGA	TAATATAGAA	GGTAAAATAC	CAACAGTCAT	TTCTAAACCG	12120
25	TCTTTCAAAT	TGTCCCAAAC	GTTCTTCACG	AGAGATGGTG	TTAATGCATT	TTGTTTCATC	12180
	GCCTCTGCAT	ATGCAGTTTT	CAGTCTGCTT	CCTTCAATAG	CAACTTCTTG	TTCTCCTTCT	12240
	TGTCCGTTAT	AATATTCTGT	TGATTCATTG	CTGATTGGCG	GTAGCCATGC	AGTAATTGCA	12300
30	GTCACGACAA	ATGTGATGAC	TAAAGTTATC	CAAAAGTATA	AATTCCAATG	CGGCATTAAT	12360
	CCTAAAGTTT	TAGCAACGAT	AATCATAAAA	GTTGCTGAAA	CTGTTGAAAA	GCCAGTCGCA	12420
	ATAATCGTGG	CTTCTCGTTT	GTTGTACATC	CCTTGCTTAT	AGACACGATT	AGTAATCAAT	12480
35	AATCCTAAGG	AATAACTGCC	GACAAACGAA	GCCACTGCAT	CGACAGCGGA	TTTTCCTGGT	12540
	GTTTTAAAAA	TAGGTCTCAT	AATAGGCTCC	ATATAAACAC	CGACAAATTC	TAATAAGCCA	12600
40	TAGCCCACTA	ATAAAGAAAG	cGcAATTGCA	CCTACTGGAA	TTAAGATACT	TAATGGCATC	12660
	ATTAATTTTT	CAAACAAAAA	CGGACCATAG	TTAGCTTTAA	ATAGTATTGA	TGGACCGATT	12720
	TTAAATACAT	ACATTATACC	GATCATTGCA	CCTGCAACTT	TAAATAATGT	AATGACCAAG	12780
45	TTTGTGATTG	AAGTCATAAA	AGTACGTCTC	ACTATTGGTA	ACGCTGTACC	AATTAAAATC	12840
	ATAATCAGTG	CAACATAGGG	CATAAGTGGA	CCTATGATTG	AGCGAATGGC	TAGATGAACA	12900
	TGATCGACGA	AAATAGTGTT	GTTACCATTA	ATCGTAAAAG	GAATAAAGAA	ACATAGTATG	12960
50	CCCACTAAAC	TATAGACAAA	AAAACGCCAT	GCACTTGGTT	GTTGTGCATT	AGAATGATAT	13020
	TGATTCATTA	AAGCAACCCC	TTTGTTTAAA	TGAATACACA	AAACTGTATG	ATGCATCTTC	13080

	ATAGTTTGA	A TTATTTTCAT	ACCAATACA	A ATTAACTAA	T TATATATAGA	TTGAAACTAT	13200
	ATTACTTAA	T AAAAT T	TCTTAAATG	TGTTGTGTT	G ATTCAACAC	CACAACTAAAA	13260
5	GTGTTTATA	A ATTATTTGGA	AATACACATA	TTTGTAAAT	G ATTAGTATCO	ATTTAATATC	13320
	GTATTATTA	A ATTTTTATTA	ATTTTGTAGT	CTTAATCMA	A AAATAATATA	TGTCATGTTA	13380
	TATTGAAGG	r gcagttgtti	TTCATTCTC	AGAGGGGGT	C AAAAAAATAC	TTTTGAGGTG	13440
10	ATTATATGT	r aagaggacaa	GAAGAAAGAA	AGTATAGTA	TAGAAAGTAT	TCAATAGGCG	13500
	TGGTGTCAGT	r gttagcggct	ACAATGTTTG	TTGTGTCAT	C ACATGAAGCA	CAAGCCTCGG	13560
15	AAAAAACATO	AACTAATGCA	GCGGCACAAA	AAGAAACACT	Г AAATCAACCG	GGAGAACAAG	13620
7.0	GGAATGCGAT	AACGTCACAT	CAAATGCAGT	'CAGGAAAGC	A ATTAGACGAT	ATGCATAAAG	13680
	AGAATGGTAA	AAGTGGAACA	GTGACAGAAG	GTAAAGATAC	GCTTCAATCA	TCGAAGCATC	13740
20	AATCAACACA	AAATAGTAAA	ACAATCAGAA	CGCAAAATGA	TAATCAAGTA	AAGCAAGATT	13800
	CTGAACGACA	AGGTTCTAAA	CAGTCACACC	AAAATAATGO	GACTAATAAT	ACTGAACGTC	13860
	AAAATGATCA	GGTTCAAAAT	ACCCATCATG	CTGAACGTAA	TGGATCACAA	TCGACAACGT	13920
25	CACAATCGAA	TGATGTTGAT	AAATCACAAC	CATCCATTCC	GGCACAAAAG	GTAATACCCA	13980
	ATCATGATAA	AGCAGCACCA	ACTTCAACTA	CACCCCCGTC	TAATGATAAA	ACTGCACCTA	14040
	AATCAACAAA	AGCACAAGAT	GCAACCACGG	ACAAACATCC	AAATCAACAA	GATACACATC	14100
30	AACCTGCGCA	TCAAATCATA	GATGCAAAGC	AAGATGATAC	TGTTCGCCAA	AGTGAACAGA	14160
	AACCACAAGT	TGGCGATTTA	AGTAAACATA	TCGATGGTCA	AAATTCCCCA	GAGAAACCGA	14220
	CAGATAAAAA	TACTGATaAT	AAACAACTAA	TCAAAGATGC	GCTTCAAGCG	CCTAAAACAC	14280
35	GTTCGACTAC	AAATGCAGCA	GCAGATGCTA	AAAAGGTTCG	ACCACTTAAA	GCGAATCAAG	14340
	TACAACCACT	TAACAAATAT	CCAGTTGTTT	TTGTACATGG	ATTTTTAGGA	TTAGTAGGCG	14400
40	ATAATGCACC	TGCTTTATAT	CCAAATTATT	GGGGTGGAAA	ТАААТТТААА	GTTATCGAAG	14460
40	AATTGAGAAA	GCAAGGCTAT	AATGTACATC	AAGCAAGTGT	AAGTGCATTT	GGTAGTAACT	14520
	ATGATCGCGC	TGTAGAACTT	TATTATTACA	TTAAAGGTGG	TCGCGTAGAT	TATGGCGCAG	14580
45	CACATGCAGC	TAAATACGGA	CATGAGCGCT	ATGGTAAGAC	TTATAAAGGA	ATCATGCCTA	14640
	ATTGGGAACC	TGGTAAAAAG	GTACATCTTG	TAGGGCATAG	TATGGGTGGT	CAAACAATTC	14700
	GTTTAATGGA	AGAGTTTTTA	AGAAATGGTA	ACAAAGAAGA	AATTGCCTAT	CATAAAGCGC	14760
50	ATGGTGGAGA	AATATCACCA	TTATTCACTG	GTGGTCATAA	CAATATGGTT	GCATCAATCA	14820
	CAACATTAGC	AACACCACAT .	AATGGTTCAC	AAGCAGCTGA	TAAGTTTGGA	AATACAGAAG	14880

	ATTTAGGATT	AACGCAATGG	GGCTTTAAAC	AATTACCAAA	TGAGAGTTAC	ATTGACTATA	15000
	TAAAACGCGT	TAGTAAAAGC	AAAATTTGGA	CATCAGACGA	CAATGCTGCC	TATGATTTAA	15060
5	CGTTAGATGG	CTCTGCAAAA	TTGAACAACA	TGACAAGTAT	GAATCCTAAT	ATTACGTATA	15120
	CGACTTATAC	AGGTGTATCA	TCTCATACTG	GTCCATTAGG	TTATGAAAAT	CCTGATTTAG	15180
10	GTACATTTTT	CTTAATGGCT	ACAACGAGTA	GAATTATTGG	TCATGATGCA	AGAGAAGAAT	15240
10	GGCGTAAAAA	TGATGGTGTC	GTACCAGTGA	TTTCGTCATT	ACATCCGTCC	AATCAACCAT	15300
	TTGTTAATGT	TACGAATGAT	GAACCTGCCA	CACGCAGAGG	TATCTGGCAA	GTTAAACCAA	15360
15	TCATACAAGG	ATGGGATCAT	GTCGATTTTA	TCGGTGTGGA	CTTCCTGGAT	TTCAAACGTA	15420
	AAGGTGCAGA	ACTTGCCAAC	TTCTATACAG	GTATTATAAA	TGACTTGTTG	CGTGTTGAAG	15480
	CGACTGAAAG	TAAAGGAACA	CAATTGAAAG	CAAGTTAAAT	TCATCTTCTG	TATTAATTTAA	15540
20	GCTATGTAAA	TCGTGCTGTT	ATCATGGCAC	ATCAGATATA	AGTAGCATCA	CAGTGTTGAA	15600
	TTTAAAAATA	GTAAAGTGAA	ATAAAGCGCC	TGTCTCATTA	GCGAAAACTA	AAGGGACAGG	15660
	CGTATCTGTT	TATGAGCTTA	ATAAATTGTA	TGAATAATAT	GGTTGATCGA	ATAACTGTTT	15720
25	ATCATGATGA	TAAATTGAGT	TTTTTAAAAT	AATGATATAT	TACATCATTG	TTATAGCGTT	15780
	TAAGAAATCA	ACAACTTTAC	GATAAATAGT	GATTGCTTCG	TCATTAGGTC	TACGATCAAA	15840
	ATCATGCTCG	TTTTTATTCA	CGCGTTCAAA	TGTTGAATGT	GGAACATGAT	TCATGATATG	15900
30	TTCGCTTTCC	TCAACGGGAA	CATCATAATC	GCCATTACAA	TGCGCAATGA	AAACAGGTGG	15960
	AAGTGTTTTA	AGTTCATCTG	GTGCAATATT	ATATTTTGAA	TTAGTATAAT	CAGCAATGTT	16020
25	AATCATATTT	ATCCATTTAC	CTGTGCCACG	TGCATAAACG	TAGATTAAAA	AACGTTGTGC	16080
35	GATTTGATCT	TGAACAACCG	GTGTTGGTGA	AGTGAGTTGT	GCAATCATTG	TTTCGTTTAC	16140
	GCTTTGAGCT	ATTTTTGCGT	AATAACTATT	AGTTGTTTTA	AAAGGTTCAG	TGTTGATGCG	16200
<i>‡0</i>	ACTATAACCA	TAAAAATCAA	TAACACCATC	AATATCTCTG	TCTCGTGCAA	TTAATAGACT	16260
	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	ATTGTGATTG	16320
	AATCGCATCG	AATGAtGCgn	AGNACATCCT	CAATAATGCA	ATCGAGACTT	ACTTCTGGTA	16380
1 5	ATAAACGATA	ACTTAGTTGA	ATTAAATCGT	AATGTTCCGT	AAgATATCGA	TATACTGTGG	16440
	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	CAATAGCGCC	16500
	TTTTGTTGGT	TGATTTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	CATCTTTAGT	16560
50	AATTACTTTA	TCTTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTATTTTT	GATATTGATG	16620
	TCATTATAAC	ACTGTCTTAA	ATTTCCATGA	AAAATAGTCT	TAAGACGATG	AGTCATGATA	16680

	CATCATTTTA	ACAATATCTT	TAAAAGCAGC	ATGTGGAATG	GCTAAATCTT	CTAAATCTGC	16800
	CATAGAAAAT	TCAAGATTGA	TATCATGTGG	TCGCTGTTCA	GCAAGTTTAT	GCACAAAGTC	16860
5	AGGTTCTGTG	ACAAAAGGCG	AAGACATGCC	GACCATATCT	GCATGTTGTA	AAGCATCTAA	16920
	AGCAGACTCT	GGAGAATTAA	TCCCGCCACT	TGCAATTAAA	GGGATACGAC	CTGCTAAATG	16980
10	TTCATAGACA	ATTTGGTTAA	CTGGTCGACC	GAAATGATCA	CCTGGTGTAC	GAGACGTATT	17040
	TTGATAAATA	TGTCGACCCC	AGCTAGCGAT	TGCTAAGTAT	TGGATGTTTG	AAACGTCCAT	17100
	GACCCAATTG	ATTAATTGGT	TGAACTCGTC	AATGGTATAT	CCTAAATCAC	TGCCTCTGGT	17160
15	TTCTTCTGGC	GTTGCTCGAA	ATCCTAAAAT	AAAATTGTCA	GGTGCTTCTT	TATCAATCAC	17220
	TTCTTGTACC	GCACGCATAA	CTTCTAAACA	TAATCTTGCA	CGATTTTTTA	ATGAGTCGGC	17280
	ACCGTAATGG	TCTGTACGTT	TATTCGAAAA	AGTTGAGAAA	AATGTTTGAA	TCAGCAAACG	17340
20	TTGTGCAATC	GAAATTTCCA	CACCATCAAA	ACCTGCTTTA	ATCGCGCGTA	ATGTAGCATC	17400
	GCGATACTGC	TGAATGATGC	TATTGATTTT	CTCATGAGAC	ATGGCGATAA	CATCGTGTTC	17460
	AATCGGTGAA	TGCAATGTCA	TAGGGCTTGG	TCCATACACC	TTTCCAAAAT	TTAAAATGGC	17520
25	TTGATTTGAA	AAACGACCAG	CATGCGCTAg	CTGGATAATA	GCGAGGCTAC	CATGTTGTTT	17580
	CATCGTAGAT	GCCATGTTAG	TTAATCCAGG	GATACAAGCA	TCATGATCAA	TATTAAAGCC	17640
	ATATTCAAAC	AATTGACCAT	AAGGTTCAAT	GTAAGCAGCG	CCGGTGACTT	GCATTCCAGC	17700
30	TGAATTAGAG	CGACGTGCAG	CATAAGCCAA	GTCTTCTTTT	GTAATATAGC	CTTCTTTTGT	17760
	TGATGTGTTT	ACGGTCATTG	GTGATAATAC	AAAGCGATTC	GAAATTTTGA	TGCCATTAGG	17820
35	TAAGTGGATT	GATTGTAAAA	GTGGTTTGTA	TCGGTACATA	CTATGATTCC	TTTTCTATTC	17880
,,	AATATTGTTT	TCAAAGTACC	ATGGAAAGAA	TGAATAATCA	ATGATGAACA	GTCTTGATAG	17940
	AATAGAATTG	GTACATGGAA	AGTATTTTTA	AAATTAAACT	AATGAATGGC	ATTTGTAGGT	18000
10	CTGAAAATAT	GAATATGAAA	AAGAAAATA	AAGGCGAAAA	GATATAAAAG	TTAATTGAAA	18060
	AACGTTATCA	TATACGTGGG	TATATGAAGA	GGGAATGGTA	TTAAGAACGC	TAAAATGTTA	18120
	TGTCGGTTTG	ACATGACAGG	ATAAGTTTGG	AGATGACGGA	TTGGTTAAAT	TAAGCGTATT	18180
15	AGACTATGCC	TTAATAGATG	AAGGTAAGGA	TGCACAAAAG	GCATTGCAAG	ATTCAGTGAC	18240
	ACTTGCAAAA	TTAGCAGATC	GACTTGGCTT	TAAGCGAATT	TGGTTTACGG	AACATCATAA	18300
	TGTACCAGCG	TTTGCGTGTA	GTAGTCCAGA	ACTTTTGATG	ATGCATACAT	TGGCGCAGAC	18360
50	AAATCACATA	CGAGTTGGCT	CTGGTGGTGT	GATGCTGCCG	CACTATCGAC	CTTATAAAAT	18420

	TAGTTACGAT	GAATCGATTT	CGTTATTACG	TGATTATCTT	ACAATAAAGG	ATAAACCAAG	18600
	TGCGCATACG	TTAGGTGTCC	AACCACACAT	TGATCATTTT	CCAGAAATGT	GGTTATTAAG	18660
5	TAGTAGCGCA	ACATCTGCCA	AAATAGCTGC	CGAACTAGGT	ATAGGGCTTT	CTGTTGGAAC	18720
	ATTTTTGCTA	CCAGATATAA	ATGCGATACA	TACAGCGAAG	GATAACATTG	ATATTTACAA	18780
	AAAACATTTC	CAAGCATCAA	CGATTAAAAT	GGACGCAAAG	GTGATGGCAT	CTGTATTTGT	18840
10	CATTGTAGCT	GATAACGAAG	CGGAAGTAGC	AGCATTACAA	CATGCCTTAG	ATGTTTGGTT	18900
	ATTAGGTAAA	TTACAATTTG	CAGAATTTGA	AGATTTTCCT	TCAGTAGACA	CAGCACAAAA	18960
15	GTATAAGCTT	AATGATCGAG	ACAAAGAGAT	GATTCAAGCA	CATCAAGCAC	GCATCATTGC	19020
	AGGTACACAA	GAAAAGGTTA	AAGCACAATT	AGATGATTTC	ATTGCTACGT	TTGAAGTTGA	19080
	TGAGGTGTTA	GTAGCACCGC	TTATTCCAGG	TATTGAACAG	CGTTGTAAAA	CATTAAAATT	19140
20	ACTCGCGGAA	ATTTATTTGT	AGCATTTTAA	ATAGAAGAGA	AAGGATGAAG	ATAAGATGAA	19200
	AAAGTTAGCC	AATTATTTAT	GGGTAGAAAA	AGTAGGAGAT	TTGTATGTGT	TTAGTATGAC	19260
	ACCTGAATTG	CAAGATGATA	TTGGGACAGT	AGGTTATGTT	GAATTCGTAA	GTCCAGATGA	19320
25	AGTTAAAGTG	GATGATGAAA	TTGTGAGTAT	CGAAGCATCG	AAAACGGTCA	TTGATGTGCA	19380
	AACGCCATTG	TCAGGAACGA	TTATTGAGCG	AAATACAAAA	GCGGAAGAAG	AACCGACAAT	19440
	TTTAAACTCT	GAAAAACCAG	AAGAAAATTG	GTTGTTCAAA	TTGGATGATG	TCGATAAAGA	19500
30	AGCATTCCTA	GCATTACCGG	AGGCTTAAAT	GGAAACGTTA	AAATCAAATA	AAGCGAGACT	19560
	TGAATATTTA	ATCAATGATA	TGCATCGAGA	GAGAAATGAC	AATGACGTAT	TGGTAATGCC	19620
	ATCTTCATTT	GAAGATTTGT	GGGAATTATA	TCGAGGCTTA	GCAAATGTCA	GACCGGCATT	19680
35	ACCTGTAAGT	GATGAATATT	TAGCTGTACA	AGATGCTATG	TTAAGTGATT	TGAATCGTCA	19740
	ACATGTTACG	GATTTGAAGG	ATTTGAAGCC	GATAAAAGGT	GACAATATCT	TTGTTTGGCA	19800
10	AGGTGATATC	ACGACGTTAA	AAATCGATGC	TATTGTTAAT	GCTGCAAATA	GTCGTTTTCT	19860
70	AGGATGTATG	CAAGCTAATC	ATGACTGCAT	TGATAATATT	ATTCATACAA	AAGCGGGTGT	19920
	TCAAGTTCGA	CTTGATTGTG	CAGAGATCAT	TCGACAACAA	GGGCGCAATG	AAGGTGTAGG	19980
1 5	TAAAGCCAAA	ATAACACGTG	GATATAATTT	GCCAGCAAAG	TATATAATTC	ATACGGTTGG	20040
	TCCGCAAATA	CGTCGATTGC	CTGTTTCAAA	GATGAATCAG	GACTTGTTAG	CTAAATGTTA	20100
	TCTTAGCTGT	CTTAAATTGG	CTGATCAACA	TAGTTTAAAT	CATGTCGCTT	TTTGCTGTAT	20160
50	ATCTACAGGT	GTATTTGCTT	TTCCTCAAGA	TGAAGCAGCA	GAAATTGCTG	TTCGAACAGT	20220
	AGAAAGCTAT	CTCAAAGAAA	CAAATTCAAC	ATTGAAAGTC	GTGTTCAATG	TATTTACAGA	20280

	CAATGTCTCT	GTTAATGGAT	GACAAGACAA	AGCAGGCTGA	AGTATTGCGT	ACTGCGATTG	20400
	ATGAAGCAGA	TGCGATAGTG	ATTGGAATTG	GTGCAGGCAT	GTCTGCATCT	GACGGATTTA	20460
5	CATATGTAGG	AGAGCGTTTT	ACGGAAAATT	TCCCAGATTT	TATTGAAAAA	TATCGCTTCT	20520
	TTGATATGTT	GCAAGCGAGT	TTACATCCTT	ATGGCAGTTG	GCAAGAGTAT	TGGGCATTTG	20580
	AGAGTCGTTT	TATTACATTA	AACTATTTAG	ATCAACCTGT	AGGTCAGTCT	TACCTCGCTT	20640
10	TAAAATCCTT	GGTGGAAGGT	AAACAGTACC	ACATTATAAC	TACGAATGCA	GATAATGCTT	20700
	TCGATGTAGC	TGATTATGAT	ATGACTCATG	TATTTCATAT	ACAAGGGGAG	TATATACTGC	20760
15	AACAGTGTAG	cTCAGCATTG	TCATGCTCAA	ACGTATCGCA	ATGATGATTT	AATTCGTAAA	20820
	ATGGTTGTTG	CGCAACAAGA	TATGCTTATA	CCTTGGGAGA	TGATTCCAAG	ATGTCCAAAA	20880
	TGTGATGCCC	CAATGGAAGT	GAATAAACGT	AAAGCGGAAG	TTGGGATGGT	TGAAGATGCT	20940
20	GAATTTCATG	CGCAACTACA	TCGTTATAAT	GCTTTTCTAG	AGCAACATCA	AGATGATAAA	21000
	GTGTTGTATT	TGGAAATTGG	AATTGGTTAT	ACTACACCAC	AATTTGTGAA	GCATCCTTTT	21060
	CAGCGTATGA	CACGTAAAAA	TGAAAATGCC	CTTTATATGA	CGATGAATAA	AAAGGCATAT	21120
25	CGCATTCCGA	ATTCAATTCA	AGAACGTACC	ATACATTTAA	CTGAGGATAT	CTCAACATTG	21180
	ATTACAGCAG	CACTCCGGAA	CGACAGCACA	ACGAAAAATA	ACAACATTGG	AGAGACAGAA	21240
	GATGTACTTA	ATAGAACCGA	TTAGAAATGG	AGAATATATT	ACTGATGGTG	CGATTGCACT	21300
30	CGCTATGCAA	GTTTATGTTA	ACCAGCATAT	CTTTTTAGAT	GAAGATATTT	TATTCCCTTA	21360
	TTATTGTGAT	CCAAAAGTGG	AAATTGGACG	TTTTCAAAAT	ACTGCTATAG	AAGTGAATCA	21420
	AGATTATATA	GATAAACACA	GTATTCAAGT	AGTTCGCCGA	GATACTGGTG	GTGGCGCTGT	21480
35	GTATGTTGAT	AAAGGTGCCG	TTAATATGTG	TTGTATTTTA	GAACAAGACA	CTTCAATTTA	21540
	TGGTĞATTTT	CAACGATTTT	ATCAACCAGC	TATAAAGGCG	TTGCATACAT	TAGGTGCAAC	21600
‡O	AGATGTGGTA	CAAAGCGGTA	GAAATGATTT	AACATTGAAT	GGTAAAAAAG	TGTCAGGCGC	21660
•0	CGCAATGACA	TTAATGAATA	ATCGTATTTA	TGGCGGTTAT	TCGCTATTAC	TTGATGTTAA	21720
	TTATGAAGCA	ATGGATAAAG	TGTTAAAGCC	TAATCGCAAA	AAGATTGCAT	CGAAAGGGAT	21780
15	TAAATCTGTG	CGCGCACGTG	TTGGTCATCT	TAGAGAAGCA	CTGGATGAAA	AGTATCGTGA	21840
	TATAACCATT	GAAGAATTTA	TAATTTAAA	GGTGACGCAG	ATTTTGGGAA	TCGATGACAT	21900
	TAAAGAGGCG	AAACGATATG	AATTAACGGA	TGCAGATTGG	GAAGCGATTG	ATGAATTAGC	21960
50	TGATAAAAAG	TATAAAAATT	GGGATTGGAA	TTATGGCAAG	TCACCCAAAT	ATGAATACAA	22020
	TCGAAGTGAA	AGATTATCTT	CAGGTACGGT	AGACATAACA	ATTTCTGTTG	AACAAAATCG	22080

	AGAAGCATTA	CAAGGAACAA	AAATGACAAG	AGAAGATTTA	ACGCATCAGT	TAAAGCAATT	22200
	AGACATCGTT	TATTATTTTG	GCAATGTTAC	GGTAGAAGCA	TTAGTGGATA	TGATTTTAAG	22260
5	TTAATATTGT	TATTTTATGT	ATGCTGAATC	ATTGGAAGTG	TTTGCTTGCT	CTTGAAAAGG	22320
	TGACAATAGT	GTTTGGTGAA	GGTTGAACAT	ATGAGTGGAA	ATTATTGCCT	TTAACTATTC	22380
10	AAAGTATGAT	ATATATATGG	TTTTTGTTTC	TAAATGATTG	GGTATTTGAA	AATAGATGAG	22440
10	TTTAATATTT	TAAGGAATAT	AATGATGTTT	ACTTTTATAA	TTCATATAGA	ATATTAAGCA	22500
	ATATAAGTCT	GTTGATATAT	ACAAAATATA	ATGACTGCTA	TAATGAGTAA	TCAATAGACA	22560
15	CAAAGAGGAG	ATTATGTGAT	GAATAATAAA	GTATTAGTAA	CCGGTGGTAC	AGGGTTTGTT	22620
	GGCATGCGAA	TTATTTCACG	ATTATTAGAA	CAAGGTTATG	ACGTACAAAC	GACGATACGT	22680
	GATTTAAGTA	AAGCTGATAA	AGTAATTAAA	ACAATGCAAG	ACAATGGCAT	TTCCACAGAG	22740
20	CGATTAATGT	TTGTCGAAGC	GGATTTATCA	CAAGATGAAC	ATTGGGATGA	AGCAATGAAA	22800
	GATTGCAAGT	ATGTCTTGAG	TGTAGCATCT	CCGGTGTTTT	TCGGTAAAAC	AGACGATGCA	22860
	GAAGTGATGG	CGAaCTGCAA	TTGAAGGTAT	ACAACGTATT	TTAAGAGCTG	CAGAACATGC	22920
25	GGGTGTTAAA	CGTGTGGTAA	TGACTGCAAA	CTTTGGTGCA	GTTGGTTTTA	GTAATAAAGA	22980
	TAAAAATTCA	ATCACAAATG	AAAGTCATTG	GACAAATGAA	GATGAACCAG	GCTTATCAGT	23040
	ATATGAAAAA	TCAAAATTGT	TAGCTGAAAA	GGCAGCGTGG	GATTTTGTTG	AGAATGAAAA	23100
30	TACAACAGTA	GAATTTGCCA	CAATCAATCC	AGTTGCAATT	TTTGGGCCAT	CATTAGATGC	23160
	ACACGTTTCA	GGAAGCTTTC	ATTTATTAGA	AAATTTATTG	AATGGTTCAA	TGAAACGTGT	23220
25	ACCGCAAATT	CCGTTAAATG	TTGTTGATGT	GAGAGACGTA	GCTGAACTGC	ACATTTTGGC	23280
35	AATGACAAAT	GAACAAGCTA	ATGGCAAGCG	ATTTATTGCG	ACGGCTGATG	GACMAATTWA	23340
	tTTGTTGGGA	ATTGcCAAAt	TAATTAAAGA	AAAGGGCCTG	GAAATAGCTC	CAAAAGTTCC	23400
40	TACTAAAAA	TTACCCAGCT	TTATTTTGAG	CnAnGnGCC			23439

(2) INFORMATION FOR SEQ ID NO: 39:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4522 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCCTTTGAGA GTATATCATC TAGTCAAATT ATGCCTGTCA TTAGAGCGAC TAGCTTTGAT 6

	TATTATGCAG	TCGATTTAGG	GAAATCATAT	CGTCTAATTG	ACGAAAGCAT	GTTAGAGGAT	180
	TTGAAGTTAA	CTGAACAACA	AATAAGAGAA	ATGTCTCTGT	TTAATGTTAG	AAAATTGTCA	240
5	AATTCATATA	CGACTGATGA	AGTAAAAGGT	AATATTTTTT	ATTTTATTAA	CTCAAATGAC	300
	GGGTATGATG	CAAGTAGGAT	ACTAAATACT	GCATTTTTAA	ATGAAATTGA	GGCACAATGT	360
	CAAGGCGAAA	TGCTCGTAGC	AGTGCCACAC	CAAGATGTGT	TAATTATTGC	AGATATACGC	420
10	AATAAAACAG	GATATGATGT	GATGGCACAT	TTAACAATGG	AATTTTTCAC	TAAAGGTCTA	490
	GTTCCAATTA	CATCATTATC	CTTTGGATAT	AAACAGGGTC	ATCTTGAACC	GATATTTATT	540
15	TTAGGTAAAA	ATAATAAACA	AAAAAGAGAT	CCAAACGTGA	TTCAGCGTTT	AGAAGCAAAT	600
, 0	CGTCGTAAAT	TTAATAAAGA	TAAATAGAAA	TAATTGGATA	AGGAGTTTTG	TCATAATGAA	660
	TTTATTTTAC	AATCCTAAAT	ATGTAGGAGA	TGTCGCATTT	TTACAAATTG	AACCAGTTGA	720
20	AGGTGAATTA	AACTACAATA	AAAAAGGTAA	TGTTGTTGAA	ATTACLAATG	AAGGTAATGT	780
	TGTAGGTTAT	AATATTTTTG	AAATTTCAAA	AGATATAACA	ATTGAAGAAA	AAGGTCATAT	840
	TAAATTAACT	GATGAACTTG	TAAATGTATT	CCAAAAGCGT	ATTTCAGAAG	CTGGTTTTGA	900
25	TTATAAATTA	AATGCTGATC	TATCACCGAA	ATTTGTAGTT	GGCTACGTTG	AAACTAAAGA	960
	CAAACATCCT	GATGCAGATA	AATTAAGTGT	ACTAAATGTA	AACGTTGGAA	ATGACACATT	1020
	ACAAATTGTA	TGTGGCGCGC	CTAACGTTGA	AGCTGGACAG	AAAGTTGTTG	TTGCTAAAGT	1080
30	AGGTGCAGTG	ATGCCTAGCG	GTATGGTAAT	TAAAGATGCT	GAATTACGTG	GTGTTGCCTC	1140
	AAGCGGTATG	ATTTGTTCAA	TGAAAGAATT	GAATTTACCT	AATGCACCTG	AAGAAAAAGG	1200
	TATTATGGTA	TTAAATGACA	GCTATGAAAT	TGGACAAGCA	TTtTTTGAAT	AATTAAGGAA	1260
35	GGTAGTGAAA	ATATGAGCTG	GTTTGATAAA	TTATTCGGCG	AAGATAATGA	TTCAAATGAT	1320
	GACTTGATTC	ATAGAAAGAA	AAAAAGACGT	CAAGAATCAC	AAAATATAGA	Tracgatcat	1380
10	GACTCATTAC	TGCCTCAAAA	TAATGATATT	TATAGTCGTC	CGAGGGGAAA	ATTCCGTTTT	1440
•0	CCTATGAGCG	TAGCTTATGA	AAATGAAAAT	GTTGAACAAT	CTGCAGATAC	TATTTCAGAT	1500
	GAAAAAGAAC	AATACCATCG	AGACTATCGC	AAACAAAGCC	ACGATTCTCG	TTCACAAAAA	1560
1 5	CGACATCGCC	GTAGAAGAAA	TCAAACAACT	GAAGAACAAA	ATTATAGTGA	ACAACGTGGG	1620
	AATTCTAAAA	TATCACAGCA	AAGTATAAAA	TATAAAGATC	ATTCACATTA	CCATACGAAT	1680
	AAGCCAGGTA	CATATGTTTC	TGCAATTAAT	GGTATTGAGA	AGGAAACGCA	CAAGCCAAAA	1740
50	ACACATAATA	TGTATTCTAA	TAATACAAAT	CATCGTGCTA	AAGATTCAAC	TCCAGATTAT	1800
	CACAAAGAAA	GTTTCAAGAC	TTCAGAGGTA	CCGTCAGCTA	TTTTTGGCAC	AATGAAACCT	1860

	AAACAAAAAT	ATGATAAATA	TGTAGCTAAG	ACGCAAACGT	CTCAAAATAA	ACAATTAGAA	1980
	CAAGAAAAAC	AAAATGATAG	TGTTGTCAAA	CAAGGAACTG	CATCTAAATC	ATCTGATGAA	2340
5	AATGTATCAT	CAACAACAAA	ATCAATGCCT	AATTATTCAA	AAGTTGATAA	TACTATCAAA	2100
	ATTGAAAATA	TTTATGCTTC	ACAAATTGTT	GAAGAAATTA	GACGTGAACG	AGAACGTAAA	2160
	GTGCTTCAAA	AGCGTCGATT	TAAAAAAGCG	TTGCAACAAA	AGCGTGAAGA	ACATAAAAAC	2220
10	GAAGAGCAAG	ATGCAATACA	ACGTGCAATT	GATGAAATGT	ATGCTAAACA	AGcGGAACgC	2280
	TATGTTGGTG	ATAGTTCATT	AAATGATGAT	AGTGACTTAA	CAGATAATAG	TACAGATGCT	2340
. 5	AGTCAGCTTC	ATACAAATGG	CATAGAGAAT	GAAACTGTAT	CAAATGATGA	AAATAAACAA	2400
15	GCGTCAATAC	AAAATGAAGA	CACTAATGAC	ACTCATGTAG	ATGAAAGTCC	ATACAATTAT	2460
	GAGGAAGTTA	GTTTGAaTCA	AGTATCGACA	ACAAAACAAT	TGTCAGATGA	TGAAGTTACG	2520
20	GTTTCGAATG	TAACGTCTCA	ACATCAATCA	GCACTACAAC	ATAACGTTGA	AGTAAATGAT	2580
	AAAGATGAAC	TAAAAAATCA	ATCCAGATTA	ATTGCTGATT	CAGAAGAAGA	TGGAGCAACG	2640
	aATAAAGAAG	AATATTCAGk	AAGTCAAATC	GATGATGCAG	AATTTTATGA	ATTAAATGAT	2700
25	ACAGAAGTAG	ATGAGGATAC	TACTTCAAAT	ATCGAAGATA	ATACCAATAG	AAACGCGTCT	2760
	GAAATGCATG	TAGACGCTCC	TAAAACGCAA	GAGTACGCAG	TAACTGAATC	TCAAGTAAAT	2820
	AATATCGATA	AAACGGTTGA	TAATGAAATT	GAATTAGCAC	CGCGTCATAA	AAAAGATGAC	2880
30	CAAACAAACT	TAAGTGTCAA	CTCATTGAAA	ACGAATGATG	TGAATGATAA	TCATGTTGTG	2940
	GAAGATTCAA	GCATGAATGA	AATAGAAAAG	AATAACGCAG	AAATTACAGA	AAATGTGCAA	3000
	AACGAAGCAG	CTGAAAGTGA	ACAAAATGTC	GAAGAGAAAA	CTATTGAAAA	CGTAAATCCA	3060
35	AAGAAACAGA	CTGAAAAGGT	TTCAACTTTA	AGTAAAAGAC	CATTTAATGT	TGTCATGACG	3120
	CCATCTGATA	AAAAGCGTAT	GATGGATCGT	AAAAAGCATT	CAAAAGTCAA	TGTGCCTGAA	3180
	TTAAAGCCTG	TACAAAGTAA	GCAAGCTGTG	AGTGAAAGAA	TGCCTGCGAG	TCAAGCCACA	3240
40	CCATCATCAA	GATCTGATTC	ACAAGAGTCA	AATACAAATG	CATATAAAAC	AAATAATATG	3300
	ACATCAAACA	ATGTTGaGAA	CAATCAACTT	ATTGGTCATG	CAGAAACAGA	AAATGATTAT	3360
15	CAAAATGCAC	AACAATATTC	AGAGCAGAAA	CCTTCTGTTG	aTTCAACTCA	AACGGAAATA	3420
	TTTGAAGAAA	GTCAAGATGA	TAATCAATTG	GAAAATGAGC	AAGTTGATCA	ATCAACTTCG	3480
	TCTTCAGTTT	CAGAAGTAAG	CGACATAACT	GAAGAAAGCG	AAGAAACAAC	ACATCCAAAC	3540
50	AATACTAGTG	GACAACAAGA	TAATGATGAT	CAACAAAAAG	ATTTACAGTC	ATCATTTTCA	3600
	AATAAAAATG	AAGATACAGC	TAATGAAAAT	AGACCTCGGA	CGAACCAACA	AGATGTTGCA	3660

	CCAAGTGTTT CATTACTAGA AGAACCACAA GTTATTGAGT CGGACGAGGA CTGGATTACA	3780
	GATAAAAGA AAGAACTGAA TGACGCATTA TTTTACTTTA ATGTACCTGC AGAAGTACAA	3840
5	GATGTAACTG AAGGTCCAAG TGTTACAAGA TTTGAATTAT CAGTTGAAAA AGGTGTTAAA	3900
	GTTTCAAGAA TTACGGCATT ACAAGATGAC ATTAAAATGG CATTGGCAGC GAAAGATATT	3960
	CGTATAGAAG CGCCTATTCC AGGAACTAGT CGTGTTGGTA TTGAAGTTCC GAACCAAAAT	4020
10	CCAACGACAG TCAACTTACG TTCTATTATT GAATCTCCAA GTTTTAAAAA TGCTGAATCT	4080
	AAATTAACAG TIGCGATGGG GTATAGAATT AATAATGAAC CATTACTTAT GGATATTGCT	4140
15	AAAACGCCAC ACGCACTAAT TGCAGGTGCA ACTGGATCAG GGAAATCAGT TTGTATCAAT	4200
	AGTATTTGA TGTCTTTACT ATATAAAAAT CATCCTGAGG AATTAAGATT ATTACTTATC	4260
	GATCCAAAAA TGGTTGAATT AGCTCCTTAT AATGGTTTGC CACATTTAGT TGCACCGGTA	4320
20	ATTACAGATG TCAAAGCAGC TACACAGAGT TTAAAATGGG CCGTAGAAGA AATGGAACGA	4380
	CGTTATAAGT TATTTGCACA TTACCCATGT ACGTANTATA ACAGCATTTA ACNAAAAAGC	4440
	CCCATATGAT GAAAGAATGn CAAAAATTGT CATTGTAATT GATGAGTTGG CTGATTTAAT	4500
25	GATGATGGTC CGCAAGAAGT TG	4522
	(2) INFORMATION FOR SEQ ID NO: 40:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 751 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	TCAAGTTTAC GGATACGTAT ATATTTTGCA TGACATTTAG TGCAATAATA TTCATAATTT	
	GCCCGTTGTT GATAGCTTTC AATGCTGTTA CAAAATCTAG GCGCTCCAAC CTGTTGGCTC	60
10	AATCGTTTAA AATCTTGATC TTTATGTTGA TAACCTTTAC CAGCAATATG CAAGTGATAA	120
		180
	TGACACAATT CGTGCAGTAT AATTTTTACA ACAGCATCTT CTCCATAATG CTCATATTGT	240
15	TTTGGATTAA TTTCAATATC ATGGGACTTT AAAAGATAAC GTCCGCCTGT TGTACGTAAC	300
	CTTTTATTAA AATATGCACA ATGTCGAAAC GTACGTCCAA ATTTTTCTTC CGAAAGATTC	360
	TCAACCATTC GCTGAAGTTT GTCATTATTC ATGTGGATCA ATCATCGTTA ATGATACTTT	420

GTCTTTATTT TTGTCAATAC TGTAAATCCA AACGTCAACG ATATCACCAA CACTGACAAT

ATCCATTGGA TTTTTTACGA ACTTCTTAGA AAGTTTCGAA ACATGGACAA GTCCATCTTG

	TTTCATTCCT TCTTGTAAAT CTTCAATTGA TAGCACATCG GATTTAAGGA TTGGTGTTTC	660
	AAACTCGTCC CTTGGATCTC GATTAGGTGC GTTCAAGGAT TTAATAATAT CCTCTAATGT	720
5	AGGTACACCG ACTTGTAATT CAATCGCCAG T	751
	(2) INFORMATION FOR SEQ ID NO: 41:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1076 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	TCTCCAGCTT TAACTTGATC TGGCACTTTA ACAATTGTCT GATCCATACA TACGCGACCA	60
20	ATAACTTCGC ATTGATGACC ATTTACATTT ACAAAGCTAC CTTGCATTAT GCGTAAATGG	120
	CCATCTGCAT ATCCAATAGG TAACAATGCT ATTGTAGTTG GGTCAGTAGC TGTATAAGTT	180
	GCACCATAAC TTACAGACTC ACCCGCTTGT AGCGTCTTTG TTTGAACTAC ATTAGCAATT	240
25	AATTGCACAC TTGGTTTAAG GTGTACTTTA ACTTTTTGCT GTACATACTC TGATGGATAA	300
	TATCCATAAA GGGAAATTCC TGGTCTTATT GCATTACAGA ATTGGCAATC CATTAATAGA	360
	GAGCCTGCTG AGTTCTGACA ATGTATATAT TCAGGTTTAA TTGCTTCATT GACCATATCT	420
30	TTAAAACGTT GATATTGTTC AGTTGTCATA TCTCCTGGTT CGTCAGCACA GGCAAAGTGT	480
	GTAAACACGC CTTCAAATAC AAGTTGCTCA TATTGTTGAA TGATTTCAAT CACTTCTTGA	540
	TACGTTTTAG TATCTTTAAT ACCTAAACGT CCCATTCCTG TATCTAATTT AATGTGCAAC	600
35	CATAACTITI TCTCTTGCTC ACCAGAAATG TTTTTAATTG CTTCTTTCAA CCACTGTTTA	660
	GACGGAACCG TTAAGGCAAC TCGGTGTTGT ATCGCTTTAT CAATATCTTT AGCTGGTAAC	720
40	ACACCTAAGA CTAAAATTTT AGCAGTAATC CCATGCATTC TAAGTTCTAT CGCTTCATCT	780
40	AACGTTGCTA CAGCAAAAAA TGTGGCGCCA TTTTCCATTA AATGACGTGC TACTTTAACA	840
	CTACCTAGTC CATAGGCATT GGCTTTAACG ACAGCCATCA CTGTTTTATT TGGATGCAAT	900
4 5	GTACTGAATA CTTTGAAATT TGATGCAACA GCGTTTAAAT CTACATTCAT ATACGCAGAT	960
	CTATAATATT TATCCGACAT ATTACTTCCT CCTGTAATTC CCACACGTTT TAAAACTAGA	1020
	TCTTAATTAT CATTGTATAA CAAATTTAAA ATGCTGACTT TTCTAAAACA ACTTGG	1076
50	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2930 base pairs	

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

5	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	42:		
	TGACCACAAT	GCCCAATACA	ACCATCCCAT	GGTAAAGCCA	AGAGATGAGT	CAATAAAGCG	60
10	TGTTGAATAA	GAGCTGAATG	AACCTGATAC	TGGATAAAAT	GTTGCCAACT	CTCCAATTGA	120
	TGACATTAAG	AAATATAGCA	TGACACCAAT	AACAAGATAA	GCGAGTATAG	CGCCTCCAGG	180
	ACCAGCTTGA	GAAATGATAT	TACCAGTAGC	TACAAATAGA	CCAGTCCCAA	TTGCACCACC	240
15	TATAGCAATC	ATGGAAATGT	GTCTTGAGTT	AAGACTACGG	TTCATTTTAT	TATCTTCCAT	300
	ATTTAGTCTC	CCATCTATTT	AAATATACCC	ATTATTGTAA	GCTTTTTAAG	TGTACTATTC	360
	AATAACTATT	TAGTACTGTA	AAGCGAAAAA	TTTAAAATTT	TCTGATTTTT	TAATCATCTT	420
20	GAGCATGTTT	AATTGTAATT	TTGATGGGGT	TAAATTATAA	TATGTATTAA	ATTATAATTA	480
	Inataaattg	TGGAGGGaTG	ACTATGTCAC	AACAAGACAA	AAAGTTAACT	GGTGTTTTTG	540
	GGCATCCAGT	ATCAGACCGA	GAAAATAGTA	TGACAGCAGG	GCCTAGGGGA	CCTCTTTTAA	600
25	TGCAAGATAT	TTACTTTTTA	GAGCAAATGT	CTCAATTTGA	TAGAGAAGTA	ATACCAGAAC	660
	GTCGAATGCA	TGCCAAAGGT	TCTGGTGCAT	TTGGGACATT	TACTGTAACT	AAAGATATAA	720
	CAAAATATAC	GAATGCTAAA	Atattctctg	AAATAGGTAA	GCAAACCGAA	ATGTTTGCCC	780
30	GTTTCTCTAC	TGTAGCAGGA	GAACGTGGTG	CTGCTGATGC	GGACGTGACA	TTCGAGGATT	840
	TGCGTTAAAG	TTCTACACTG	AAGAAGGGAA	CTGGGATTTA	GTAGGGAATA	ACACACCAGT	900
35	ATTCTTCTTT	AGAGATCCAA	AGTTATTTGT	TAGTTTAAAT	CGTGCGGTGA	AACGAGATCC	960
	TAGAACAAAT	ATGAGAGATG	CACAAAATAA	CTGGGATTTC	TGGaCGGGTt	TCCAGAAGCA	1020
	TTGCACCAAG	TAACGATCTT	AATGTCAGAT	AGAGGGATTC	CTAAAGATTT	ACGTCATATG	1080
40	CATGGGTTCG	GTTCTCACAC	ATACTCTATG	TATAATGATT	CTGGTGAACG	TGTTTGGGTT	1140
	AAATTCCATT	TTAGAACGCA	ACAAGGTATT	GAAAACTTAA	CTGATGAAGA	AGCTGCTGAA	1200
	ATTATAGCTA	CAGATCGTGA	TTCATCTCAA	CGCGATTTAT	TCGAAGCCAT	TGAAAAAGGT	1260
4 5	GATTATCCAA	AATGGACAAT	GTATATTCAA	GTAATGACTG	AGGAACAAGC	TAAAAACCAT	1320
	AAAGATAATC	CATTTGATTT	AACAAAAGTA	TGGTATCACG	ATGAGTATCC	TCTAATTGAA	1380
	GTTGGAGAGT	TTGAATTAAA	TAGAAATCCA	GATAATTACT	TTATGGATGT	TGAACAAGCT	1440
50	GCGTTTGCAC	CAACTAATAT	TATTCCAGGA	TTAGATTTTT	CTCCAGACAA	AATGCTGCAA	1500
	GGGCGTTTAT	TCTCATATGG	CGATGCGCAA	AGATATCGAT	TAGGAGTTAA	TCATTGGCAG	1560

	GGTCAAATGC	GCGTAGTTGA	CAATAACCAA	GGTGGAGGAA	CACATTATTA	TCCAAATAAC	1680
	CATGGTAAAT	TTGATTCTCA	ACCTGAATAT	AAAAAGCCAC	CATTCCCAAC	TGATGGATAC	1740
5	GGCTATGAAT	ATAATCAACG	TCAAGATGAT	GATAATTATT	TTGAACAACC	AGGTAAATTG	1800
	TTTAGATTAC	AATCAGAGGA	CGCTAAAGAA	AGAATTTTTA	CAAATACAGC	AAATGCAATG	1860
	GAAGGCGTAA	CGGATGATGT	TAAACGACGT	CATATTCGTC	ATTGTTACAA	AGCTGACCCA	1920
10	GAATATGGTA	AAGGTGTTGC	AAAAGCATTA	GGTATTGATA	TAAATTCTAT	TGATCTTGAA	1980
	ACTGAAAATG	ATGAAACATA	CGAAAACTTT	GAAAAATAAA	TTTGATATGT	AGTTTCTATA	2040
15	TTGCGTAGTT	GAGCAGTTTA	TGATATCATA	ATAAATCGTA	AAGATTCCTA	ACAAGAGAGG	2100
15	GTGTTTAACG	TGCGCGTAAA	CGTAACATTA	GCATGCACAG	AATGTGGCGA	TCGTAACTAT	2160
	ATCACTACTA	AAAATAAACG	TAATAATCCT	GAGCGTATTG	AAATGAAAAA	ATATTGCCCA	2220
20	AGATTAAACA	AATATACGTT	ACATCGTGAA	ACTAAGTAAT	TCTTATCATT	CAAATACGAC	2280
	GATTTGAAAA	TAAAGCGGGC	TTACCTATTA	TATTGGGGAG	CTCGCTTTTT	TATGAAATTT	2340
	TTGTGAAGAG	TGATTAATGG	ATTGAGTTTC	ATCGGTAGAA	CAATATATGA	TTATATTAGT	2400
25	TGTTACTTTA	TTAAAaTTTG	AGAATATTTA	TAGAAGGAAA	TAGATTACTG	AAATTTTTAAA	2460
	GTCACTTTGT	TAGCGAATGC	TTGAAAGAGT	ATTTAATATA	GTAGAATTTA	AAATTTCAAA	2520
	GCGGAATTTA	ATAAGTACGA	AGTAGTTCTG	GGTATGTTTT	ATAAATGTTC	GATAATACAC	2580
30	TTTAATCTTA	AATATGATGG	TTTAGAAAAT	GATTTAACAA	AGAAATGAAA	CTTTACTGTT	2640
	GAATTATGTG	AGGATTGTGT	TATTATATAA	ATCGTAATAA	TTACGATTTG	ATAAAAAGTG	2700
	AGGTAACTAT	ATATGGCTAA	GAAATCTAAA	ATAGCAAAAG	AGAGAAAAAG	AGAAGAGTTA	2760
35	GTAAATAAAT	ATTACGAATT	ACGTAAAGAG	TTAAAAGCAA	AAGGTGATTA	CGAAGCGTTA	2820
	AGAAAATTAC	CAAGAGATTC	ATCACCTACA	CGTTTAACTA	GAAGATGTAA	AGTAACTGGA	2880
	AGACCTAGAG	GTGTATTACG	TAAATTTGAA	ATGTCTCGTA	TTGCGTTTAG		2930
40	(2) INFORMA	TION FOR SE	Q ID NO: 43	:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3606 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

50 CTTCTTGCCA TGGCTCTCTT TATTTAAAAA TGCTTCCAAC TTGTCCATTT GATTGTTTCT 60

55

	TTATAAAAAA	CTAATTTTAC	AAATGCTTTT	GCGTTCTTAC	AAAAAATGCA	TTTGACTATT	180
	ATTATAATAA	GCGTATAATT	GTCGCATATT	ATTTTTTGTA	TTTTTGGCAA	TAACGAAGGA	240
5	GTATTTATGA	ATAAAGACAA	GCAATTGCAC	AACGACAAAA	TCAATCTATC	CCAATTAGTC	300
	TTATTAGGGT	TAGGCTCTTT	AATAGGATCT	GGTTGGCTAT	TTGGTGCGTG	GGAAGCATCA	360
	TCAATAGCTG	GACCAGCAGC	AATCATATCA	TGGGTTCTTG	GATTCCTAGT	CATTGGAACC	420
10	ATTGCCTATA	ACTACATTGA	AATCGGCACA	ATGTTTCCTC	AATCAGGTGG	CATGAGTAAC	480
	TATGCCCAGT	ATACACATGG	CTCATTATTA	GGCTTTATTG	CTGCTTGGGC	GAATTGGGTG	540
	TCTTTGGTGA	CAATAATACC	TATCGAAGCT	GTGTCAGCTG	TTCAATATAT	GAGTTCTTGG	600
15	CCGTGGCATT	GGGCGAAACC	AATGAGATAT	TTAATGGAAA	ATGGCTCTAT	TAGCACATAC	660
	GGATTGCTAG	CTGTATATCT	CATCATTGTT	ATTTTTTCAT	TATTAAACTA	TTGGTCCGTA	720
	AAACTTTTAA	CATCATTTAC	GAGTTTAATT	TCTGTATTTA	AATTAGGCGT	ACCCATGTTA	780
20	ACCATCATCA	TGTTGATGCT	ATCAGGATTC	GACACTTCAA	ATTACGGCCA	TTCGGCAAGC	840
	ACATTTATGC	CTTACGGAAG	TGCACCGATT	TTTGCTGCAA	CAACAGCATC	AGGGATTATT	900
25	TTTTCATTCA	ATTCATTCCA	GACAATTATT	AATATGGGTT	CAGAAATTAA	AAATCCTGAA	960
23	AAAAATATCG	CAAGAGGCAT	CGCTATCTCA	CTGTCAATCA	GTGCAGTGTT	GTACATCATT	1020
	TTACAAAGTA	CGTTTATCAC	TTCTATGCCT	CAATCAATGT	TACAACATAG	TGGATGGAAT	1080
30	GGCATCAACT	TCAATTCACC	ATTTGCTGAT	TTAGCTATCT	TATTAGGAAT	TAATTGGCTC	1140
	GCAATTTTAC	TATACATTGA	AGCTTTTGTA	TCACCATTCG	GTACTGGCGT	GTCATTTGTC	1200
	GCCGTTACAG	GTCGAGTTTT	ACGAGCAATG	GAGAAAAATG	GACATATCCC	TAAATTTCTT	1260
35	GGGAAGATGA	ATGAAAAATA	TCATATCCCA	CGTGTAGCAA	TCATCTTTAA	TGCCATCATT	1320
	AGTATGATTA	TGGTTACATT	ATTTAGAGAT	TGGGGTACGC	TAGCAGCAGT	TATTTCTACT	1380
	GCAACTTTAG	TAGCCTATTT	AACTGGCCCA	ACGACAGTGA	TTGCATTAAG	AAAAATGGGA	1440
10	CCAACAATGA	CTCGTCCATT	TAGAGCAAAA	ATTTTAAAAG	TAATGGCACC	ATTATCATTT	1500
	GTATTAGCTT	CATTAGCTAT	ATATTGGGCA	ATGTGGCCAA	CAACGGCTGA	AGTTATTTTA	1560
	ATCATTATAC	TTGGATTACC	AATCTACTTC	TTCTATGAAT	ATCGTATGAA	TTGGCGTAAT	1620
4 5	ACAAAGAAAC	AAATTGGTGG	TAGCTTATGG	ATTATTGTAT	ATTTAATCGT	GCTATCAATA	1680
	CTGTCATTTA	TAGGAAGCAA	AGAATTTAAA	GGCTTAAATA	TGATTCACTA	TCCATTTGAC	1740
	TTTATCGTTA	TTATTATTGT	GGCACTTATC	TTCTATTACA	TCGGTACAAC	GAGTTCATTT	1800
50	GAAAGCGTCT	ATTTCCGTCG	CGCAACACGA	ATCAATACGA	AGATGCGTGA	GTCACTAAAT	1860

	CACACACATT	AACCAACCAT	TGATTTCAAC	ATCTTGGTTG	GTTTTTTATT	TTGAAAATCG	1980
	GTTATAAATA	ACTAACATAA	CAAGATGATG	ATCAGGCTGG	GACATAAATC	AATGTTCTAT	2040
5	GCTCTACGAA	gTTATATTGG	CAGTAGTTGA	CTGAACGAAA	ATGCGCTTGT	AACAAGCTTT	2100
	TTTCGATTCT	AGTCAGGGGC	CCCAACACAG	AGAATTTCGA	AAAGAAATTC	TACAGGCAAT	2160
	GCAAGTTGGG	GTGGGACGAC	GATAAAGAAA	TACTITITET	ATAGAAATTA	GTATYTCTTA	2220
10	TGCATGAGTT	TTACTCATGT	ATTCATATTT	TTAAGTACAC	ATTAGCTGTG	GCTAATGTAT	2280
	AAGAACCACT	ACATAATAAA	TCATTTGTGG	CTCTTTATCA	TTTCTGTCCC	ACTCCCGTAG	2340
	AAGTACATCA	TATAATGCTG	AAAATGGTTT	GAGTTAAAAC	AGATATCAAG	CTCGTCTGAT	2400
15	TCAGTCACAA	AATTGTCTTG	TTATACTTGT	CACCTATCAT	CTATAGACCG	TGGTATGATT	2460
	AAATTGGGGA	TGATAAAGGA	GGTTAATAAA	TATGAAGATT	AATACTACAG	GTGGTCAAAT	2520
	TCATGGTATT	ACACAAGATG	GTTTAGATAT	CTTCTTAGGC	ATTCCTTATG	CAGAACCACC	2580
20	AGTTCATGAC	AATCGCTTTA	AACATTCTAC	GTTAAAAACA	CAATGGTCAG	AGCCAATTGA	2640
	TGCAACTGAA	ATACAACCCA	TCCCACCGCA	ACCAGACAAC	AAATTAGAAG	ATTTTTTCTC	2700
25	CTCACAATCT	ACAACTTTTA	CTGAACATGA	AGACTGTTTA	ТАТСТАААТА	TTTGGAAACA	2760
20	ACATAATGAT	CAGACGAAGA	AACCTGTCAT	CATTTATTTT	TATGGTGGTA	GTTTTGAAAA	2820
	TGGTCATGGT	ACAGCCGAAC	TCTATCAACC	GGCACATTTA	GTACAAAATA	ACGACATTAT	2880
30	CGTTATTACA	TGCAATTATC	GTTTAGGCGC	ATTAGGATAT	TTAGACTGGT	CATATTTTAA	2940
	TAAAGATTTT	CATTCCAATA	ATGGCCTTTC	AGATCAAATC	AATGTCATAA	AATGGGTGCA	3000
	TCAATTTATT	GAATCCTTCG	GTGGCGACGC	TAATAACATT	ACTTTAATGG	GTCAGTCTGC	3060
35	AGGCAGTATG	AGCATTTTGA	CTTTACTTAA	AATACCTGAC	ATTGAGCCAT	ACTTCCATAA	3120
	AGTÇGTTCTA	CTAAGTGGCG	CACTACGATT	AGACACCCTT	GAGAGTGCAC	GCAATAAAGC	3180
	ACAACATITC	CAAAAAATGA	TGCTCGATTA	TTTAGATACA	GATGATGTTA	CATCATTATC	3240
40	GACAAATGAT	ATTCTTATGC	TGATGGCGAA	gcTAAAACAA	TCTCGAGGAC	CTTCTAAAGG	3300
	GCTTGATTTA	ATATATGCGC	CTATTAAAAC	AGATTATATA	CAAAATAATT	ATCCAACAAC	3360
	GAAACCAATT	TTTGCATGTT	ATACAAAAGA	TGAAGGCGAT	ATTTATATTA	CTAGTGAACA	3420
45	GAAAAAATTA	TCGCCGCAAC	GCTTTATCGA	CATTATGGAA	TTAAATGATA	TTCCTTTAAA	3480
	ATACGAAGAT	GTTCAGACGG	CGAAGCAACA	ATCTTTAGCG	ATTACACATT	GTTATTTCaA	3540
	ACAGCCGATG	aAGCAATTTT	TACMACMACT	CAATATACMA	GATTCCAACC	GCACCAACTA	3600
50	TGGCTT						3606

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15109 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10	GAAATTAAAA	AAGCAATTGG	nACAAGATGO	: AACAGTGTCA	TTGTTTGATG	AATTTGATAA	60
	AAAATTATAC	ACTTACGGCG	ATAACTGGGG	TCGTGGTGGA	GAAGTATTAT	ATCAAGCATT	120
	TGGTTTGAAA	ATGCAACsAG	AACAACAAAA	GTTAACTGCA	AAAGCAGGTT	GGGCTGAAGT	180
15	GAAACAAGAA	GAAATTGAAA	AATATGCTGG	TGATTACATT	GTGAGTACAA	GTGAAGGTAA	240
	ACCTACACCA	GGATACGAAT	CAACAAACAT	GTGGAAGAAT	TTGAAAGCTA	CTAAAGAAGG	300
	ACATATTGTT	AAAGTTGATG	CTGGTACATA	CTGGTACAAC	GATCCTTATA	CATTAGATTT	360
20	CATGCGTAAA	GATTTAAAAG	Amaaattaat	TAAAGCTGCA	AAATAATTCA	GCTATATAAG	420
	TTAGTGAAAT	GAGAGTCTGA	AACATATCAA	TCTTTTGATA	TTGTATTAGG	CTCTTATTTT	480
25	TATAGCTAGA	AAGTTAGATA	TTTGTATTTT	TTTAAATAAT	AAGTGCCGTT	GTTATCGTTC	540
25	AATTTAATTA	ATGATAGATT	AGTATTATTA	TAGCTAAAGT	AGTATACCTG	AGAAAATAGC	600
	TCAATGTATC	TCTTTATTAA	TAAGTTATAT	CATAATTATT	TTAGTGCATA	CTTTATGGAA	660
30	GGGATATCAG	GGAATGGCTT	TCAATTAAAG	AAGAGGTTTA	AAAGGATTAC	AACAGAATGT	720
30	TATGATTTTG	TAGAAAGATA	TATAACAACG	TTTTATAAAA	ACATAATATT	GTTAATGGAA	780
	AATGAAATGT	AAGGGGGATT	TCGAGTGACT	AAGAAAGTTT	ATTTTAACCA	CGATGGTGGT	840
35	GTAGATGATT	TAGTATCTCT	ATTTTTATTA	TTACAAATGG	AAAACGTTCA	ATTGATAGGG	900
	GTCAGTACAA	TTGGTGCTGA	TTGTTATTTA	GAGCCATCTT	TGAGCGCATC	AGTAAAAATT	960
	ATTAATCGTT	TTTCAAATGA	AGATATTCAA	GTTGCGCCAT	CATATGAACG	AGGAAAAAT	1020
40	CCATTTCCTA	AAGAATGGCG	TATGCATGCC	TTTTTTATGG	ACGCATTGCC	AATTTTAAAT	1080
				AGCGACAAAG			1140
				ACATTATTAT			1200
45				ATCGTTCAGT			1260
				GTTGAAGAAC			1320
				GTTAAAATTG			1320
50				CAAGTACCCC			1380

55

	GTACCACCAT	TAACACACTT	TATAACAAAT	TCTACTTACT	TTTTATGGGA	TGTTTTAACG	1560
	ACTGCTTATA	TTGGTAACAA	GGACTTGGTT	CATTCAATTG	AGAAAAAGT	CGATGTAATA	1620
5	AGTTATGGAC	CAAGTCAAGG	TAAGACATTT	GAGTGTAAAG	ATGGGCGCAA	AATTAATGTC	1680
	ATAAATCATG	TAGATAACAA	CGCATTTTTT	GATTATATA	CTGCACTTGC	TAAAAAGTA	1740
	AATTAACAGC	TGTGTAGAAT	AATTAAGGTT	TTAATTTATA	TAGAACAACT	TATTGTAAAC	1800
10	TTTTCATTTC	TTAAAGTTTA	CAATGGTGCT	ATAATAATGG	TCATGAAATA	CGAAAGGAAG	1860
	TAAAAAATGA	CAACAAAACA	GTTAGTATAT	ACAGCTTTAA	TGACAGCGAT	TATCGCTATT	1920
	TTAGGATTGG	TACCGGTAAT	TCCACTACCA	TTTTCTTCAG	TACCAATTGT	ACTTCAAAAC	1980
15	ATTGGTATTT	TCTTAGCAGG	TGCGATTTTA	GGACGTAAAT	ATGGCACATT	AAGTGTTATC	2040
	GTCTTTTTAT	TATTAGTAGT	TGCTGGCTTG	CCATTGTTAT	CAGGTGGTCG	CGGTGGCATC	2100
	GGTGTATTCG	CAGGTCCTTC	AGCAGGGTTT	TTACTATTAT	ATCCAGTTGT	AGCATTCATG	2160
20	ATTGGGGCGA	TTCGAGATAG	ATTCATCAAT	GAAATTAATT	TCTGGATTTT	ATTCGTTGGT	2220
	ATTTTAGTTT	TTGGTGTTAT	AGCATTAGAT	GTTATTGGTA	CATTGATTAT	GGGCATGATT	2280
25	ATTAACATAC	CATTTACGAA	AGCTATTTCA	ATTTCATTAG	CTTATTTGCC	TGGTGATATA	2340
20	TTAAAAGCAA	TTGTAGCAAG	TTTGATTGGT	ACAGCTTTAC	TTAATCACTC	GCAGTTTCGT	2400
	CAAATTATGG	GAATAAAATA	ATCATATTTA	AGATAGTAAA	GTAATTGAAT	AAGTTGCTTT	2460
30	GAAATTTATA	AAAGTGAAAG	GAGTAGGTGT	CAATGGCTAG	TATAAGTATG	TCAGATATAT	2520
	ATTGTAACGG	CACTATATTT	GAAAATGACG	ACGAGCAGTT	GATTTATTTA	ACGCCTTCTT	2580
	TTCCACAACG	ATACACAAGT	AACACATGGA	TATATAAAAA	GACGCCTACC	CAAGAGCGAT	2640
35	GGCTGAAAGA	CTTAGAACGT	CAACATCAAT	TACATACAAA	TCAAGGTTCA	AATCATTATG	2700
	CGTTTAGTTT	CCCGGAAAAT	GAACAACTTG	ATAATCATTG	GATGGCTATG	TTTAAAGATA	2760
	TGAATTTTGA	ACTAGGTATT	ATGGAATTGT	ATGCCATAGA	AAGTGATGCG	CTTGCCAATT	2820
40	TGCCGCGTAA	CTCTGACGTT	GAAATTGCCA	TCGTTGACGA	GTCGCATATA	GATGCCTATT	2880
	TAAAAGTTGC .	ATATCAGTTT	AGTTTGCCAT	TTGGAAAAGA	CTATGCAGAT	GCACATGAAG	2940
	AAATGGTAAG	GGAACATTAT	CAAAAAGATG	TGATTAAACG	CTTAGTAGCT	TATTTAAATA	3000
45	ATGAACCTAT	TGGCGTTGTA	GATGTCATTG	AAAGTGAAAA	TTACATTGAA	TTAGATGGAT	3060
	TTGGTGTATT .	AGAACAATTT	CGGCACCAAG	GAATTGGATC	TACAATTCAA	TCGTTGATAG	3120
	GTGAATACGC	CATATCAAAA	AATCACAAAC	CAATCATATT	AGTTGCAGAT	GGTGAAGATA	3180
50	CAGCAAAAGA	TATGTATGCA	AAGCAAGGTT	ATGTCTATCA	ATCGTTTTGT	TATCAAATAT	3240

	TAAGCTGGTT	TCGAGTAGAA	ATCAACTTAC	TGCTTTTTAA	ATTGTTTTGA	GCTACTTATA	3360
	CTTATAAAAA	TAGTGCGTTT	AAATTGTTGA	TTCATGTAGA	ATATCGTTCA	TTATGACACA	3420
5	CTATAATGAA	TATGTTATTG	TTCAGAATCA	ATGATACGTT	CTGGATGACT	GTATATATTA	3480
	AAGCCACCAT	TTCGAATAAA	TCCAACTGCC	GTAATATTTA	GGTCATTAGC	TAAGGTTACA	3540
. 0	GCAAGCGTTG	TCGGAGCTGA	TTTAGATAAA	ATGACGCCAA	CACCAATTTT	TGCGGCTTTA	3600
10	ATTAAAATTT	CTGATGAAAT	ACGTCCACTA	AAAATTAATA	CTTTATCTCG	GACAGTAATA	3660
	TGTCGCTGAA	TACAAAATCC	ATATAATTTA	TCTAGAGCGT	TATGTCTACC	AATGTCTTGT	3720
15	CGATGTACAA	AAAATGTCAA	ACCATCGCTT	ATAGCAGCAT	TATGTAAGCC	ACCTGTTTCT	3780
	TGGTAAATAT	GACTTGCACT	TTGTAATCGA	GTCATCATGT	TAATAATTTG	CATTGGAGTT	3840
	AAAGTGATTT	TAGACATAGA	TGTTTTAGCG	ATAGCAGCAT	CATTTTGAAA	ATAAAACTCA	3900
20	CGACTCTTTC	CGCAACAAGA	TGCAATCATT	CGTTTTGTGG	AATATTGAAA	GCGATCGCCT	3960
	AAATCTTTAT	TAAGTTCAAC	ATGGGCAAAA	CCTTTACTAT	CATCAATCAG	TACAGATTTT	4020
	AATTCATCTC	GCTTTAAAAT	GGCACCTTCC	GAAGCCAGAA	ATCCAATGAC	TAACTCCTCA	4080
25	AGGTTTGTTG	GACTGCATAT	AACAGTCGCA	AATTCTTCAC	CATTCACCAT	AATTGTAAGT	4140
	GGAAATTCTG	TCACATATTG	ATCTGTTGTA	TTGAATAATT	TTCCATCTTC	ATATCTAACA	4200
	ATTGGTTGAC	CTAAAGATAC	ATCTTTGTTC	ATTATCTAAC	CCCTTTAATT	AGCTTAAACT	4260
30	AAATTTTAAA	GCAATTTGCT	TAAAATTTTA	ACATATTTGC	TTAAGTTTGA	AATTTGATTG	4320
	ATAAAAATTA	ATAGCGAGCA	ATCTGTTTGA	TTTAAATTGA	ATTCGAGAAT	ATACATACTA	4380
35	GGGCATCAAT	TAATAAATAT	CAATCTTATG	CAAATTTGAC	AATTGTTTGA	ATCAATATAT	4440
	AAACAGGCAA	CGGTTCTTTT	CAAATATAAT	AGTAAGTGTA	TAATGAAAAT	GTAAATATTA	4500
	TTAAAAATGG	GGGTTCACTC	AATGAAATTG	AAACGTTTAT	TTGCTGTTGT	GATTGCAATG	4560
10	CTTTTAGTAT	TAGCTGGTTG	CTCTAATTCT	AACGATAATA	ATGAAAGTAA	AAAAGATGAC	4620
	GCAGACAATG	GTAAGAAACA	AGAGATTCAA	GTTGCAGCGG	CAGCAAGTTT	AACAGATGTA	4680
	ACCAAGAAAT	TAGCTTCAGA	ATTTAAAAAA	GAGCATAAAA	ATGCTGATAT	TAAATTTAAC	4740
1 5	TATGGTGGAT	CAGGGGCATT	AAGAAAACAA	ATTGAATCAG	GCGCACCTGT	TGACGTATTT	4800
	ATGTCTGCAA	ATACTAAAGA	TGTAGATGCA	TTAAAAGACA	AGAATAAAGC	GCATGATACA	4860
	TATAAATATG	CGAAAAATAG	TCTAGTATTA	ATTGGTGATA	AAGATTCAAA	TTACACTTCA	4920
50	GTAAAAGACT	TAAAAGACAA	TGATAAATTA	GCATTAGGTG	AAGTGAAAAC	TGTACCAGCA	4980
	GGAAAATATG	CGAAACAGTA	TTTAGATAAC	AATAACTTAT	TTAAAGAAGT	CGAAAGTAAA	5040

	CAAGGTTTTG TGTATAAAAC TGACTTATAT AAACAAAATA AAAAAATTGA TACTGTAAAA	5160
	GTAATTAAAG AAGTAGAACT TAAGAAGCCA ATCACATACG AAGCTGGTGC TACATCAGAT	5220
5	AGTAAATTAG CAAAAGAGTG GATGGAATTC TTAAAATCAG ATAAAGCTAA AGAAATACTA	5280
	AAAGAATACC ACTTTGCAGC ATAAGGAGTT GTAATCCATG CCTGACTTAA CACCTTTTTG	5340
	GATATCAATA CGAGTTGCTG TAATCAGTAC GATTATTGTA ACGGTTTTAG GTATTTTTAT	5400
10	ATCTAAATGG TTGTATCGTC GTAAGGGTTC GTGGGTTAAA GTATTGGAAA GTTTATTGAT	5460
	ATTACCTATT GTTTTGCCGC CAACGGTATT AGGTTTTATT CTATTAATCA TCTTCTCGCC	5520
15	AAGAGGACCA ATCGGTCAAT TCTTTGCGAA TGTACTACAT TTACCTGTAG TGTTCACTTT	5580
75	GACAGGTGCT GTGATAGCAT CTGTCATTGT TAGTTTTCCA CTAATGTATC AACATACTGT	5640
	GCAAGGCTTC AGAGGTATAG ACACGAAAAT GATTAATACA GCTAGAACGA TGGGAGCAAG	5700
20	TGAAACGAAA ATTTTCCTCA AATTAATTTT ACCATTAGCT AAACGCTCTA TTTTAGCAGG	5760
	TATAATGATG AGTTTTGCTC GTGCATTAGG TGAGTTTGGT GCTACATTAA TGGTTGCAGG	5820
	ATATATTCCA AATAAAACGA ATACACTACC TTTAGAAATA TACTTCTTAG TGGAACAAGG	5880
25	TAGAGAAAAT GAAGCGTGGT TATGGGTATT AGTGCTAGTC GCATTCTCTA TTGTGGTTAT	5940
	ATCTACAATT AATTTATTGA ATAAAGATAA ATATAAGGAG GTCGACTAGA TGCTTAAAAT	6000
	CAATGTGAAA TATCAATTAA AGAACACTTT AATTCGCATC AATATAGATG ATACTGAACC	6060
30	AAAAATTTAT GCAGTTCGTG GTCCATCTGG CATTGGTAAA ACTACTGTTT TAAATATGAT	6120
	TGCCGGATTA CGTAAAGCAG ATGAAGCTAT TATCGAAGTG AATGGGCAAT TACTTACTGA	6180
	TACGGCAAAA AACGTGAATG TTAAAATTCA ACAACGACGT ATTGGATATC TGTTTCAAGA	6240
35	CTACCAATTG TTTCCTAATA TGACGGTCTA TAAAAATATT ACTTTTATGG CTGAACCATC	6300
	TGAACACTC GATCAATTAA TTCAAACTTT AAACATTGAT CATTTGATGA AACAATATCC	6360
40	TATGACATTG TCAGGTGGAG AGGCACAACG TGTAGCACTT GCACGTGCAC TTAGCACTAA	6420
	ACCAGATTTA ATTTTATTAG ATGAACCTTT TTCTAGTTTG GATGATACTA CAAAAGATGA	6480
	GAGTATTACA TTAGTTAAAC GTATTTTCAA CGAATGGCAA ATACCAATCA TATTTGTGAC	6540
45	ACATTCAAAC TATGAAGCAG AACAAATGGC TCATGAAATT ATTACAATTG GGTAATCATT	6600
	TATTTGCCAT TAAAGAGTTT AGAACGTATT TAAAATTGTA GAAGTGAATG CTTCTATCAG	6660
	CATTTTAATG ATGTTTTAAA CTCTTTTTTA GGGGCAGTTT TTTTGAGAGA CATTGACGCG	6720
50	CGTCATATAA TGAAAGTAAT GATAAAAAGA AAGGATAACT TAATGTGAGT CAAGAACGTT	6780
	ATTCAAGGCA AATTTTATTT AAACAAATAG GTGAAATAGG TCAAAGCAAA ATAAATCAAA	6840

	GAGCAGGCAT	TGCCAAACTA	ATCATTGTTG	ATAGAGATTA	TATTGAATTT	AGTAATTTAC	6960
	AAAGACAAAC	ATTGTTTACT	GAAGAAGATG	CTTTGAAAAT	GATGCCTAAG	GTGGTTGCAG	7020
5	CTAAAAAGCA	TTTGCTAGCG	TTACGTAGTG	ATGTTGATAT	TGATGATTAT	ATTGCCCATG	7080
	TGGATTATTA	TTTTTTGGAA	ACACATGGAC	AGGACGTTGA	CGTTATTATT	GATGCAACCG	7140
	ATAACTTTGA	AACACGACAA	CTGATTAATG	ATTTTGCATA	TAAATATCGT	ATACCTTGGA	7200
10	TTTATGGTGG	TGTTGTACAG	AGTACATATA	CAGAAGCTGC	ATTTATACCT	GGTAAAACAC	7260
	CTTGCTTTAA	CTGTTTGGTA	CCACAATTGC	CAGCATTAAA	TTTAACATGT	GATACAGTAG	7320
15	GGGTCATTCA	ACCTGCCGTG	ACGATGGCAA	CAAGTTTACA	ATTAAGAGAT	GCGATGAAAG	7380
	TATTAACGGA	ACAACCAATT	GACACAAAAA	TAACTTATGG	CGATATTTGG	GAAGGTAGTC	7440
	ATTATTCATT	TGGTTTCAGT	AAAATGCAAC	GTTCAGACTG	TACAACTTGT	GGAGATGTAC	7500
20	CAAGTTATCC	GTATTTAAAC	AAGAATGAAC	AACGTTATGC	AACATTGTGT	GGTAGAGACA	7560
	CTGTACAGTA	TGAAAATGCA	TCAATTACAC	ACGACATTCT	TGTTCAATTT	TTAAAACAAC	7620
	ATCAGTTAAA	TTATCGCAGT	AATTCGTATA	TGGTTATGTT	TGAATTTAAA	GGACACCGCA	7680
25	TTGTTGCTTT	TAAAGGTGGA	AGGTTTTTAA	TACATGGCAT	GACACGCACA	TCAGATGCCA	7740
	CACATCTAAT	GAATTTATTG	TTTGGATAAA	AAAAGATAAG	ACAAAAGGAG	TGTAATATTA	7800
	TGGGCGAACA	TCAAAACGTT	AAATTGAATC	GTACAGTTAA	AGCAGCCGTA	CTAACGGTAT	7860
30	CAGATACTAG	AGACTTTGAT	ACAGATAAAG	GTGGTCAATG	CGTGCGCCAA	CTATTACAAG	7920
	CAGATGACGT	TGAAGTGAGT	GACGCACATT	ATACAATTGT	GAAAGATGAA	AAAGTAGCCA	7980
35	TCACGACGCA	GGTGAAGAAG	TGGTTAGAAG	AAGATATTGA	TGTCATCATT	ACGACTGGTG	8040
	GAACAGGTAT	TGCACAACGT	GATGTGACGA	TTGAAGCAGT	AAAACCACTT	TTAACTAAAG	8100
	AGATAGAAGG	CTTTGGGGAA	TTGTTTAGAT	ATTTGAGTTA	TGTTGAAGAT	GTTGGCACGC	8160
40	GTGCATTATT	GTCTCGTGCT	GTAGCAGGTA	CAGTTAATAA	TAAATTGATA	TTTTCGATTC	8220
	CAGGATCAAC	AGGCGCAGTT	AAATTAGCAT	TAGAAAAGCT	CATTAAACCA	GAATTAAATC	8280
	ATCTGATTCA	TGAGCTTACA	AAATAATTTA	TTGATTTGAT	TGGCGTTGAA	AATCTCCAGA	8340
45	TTTACCGCCA	GACTTGCTTT	CAAGGTAGGT	TTCGCCAATA	ATCATACCTT	TATCAACTGC	8400
	TTTCGTCATG	TCGTAAATGG	TTAAAGCCGT	TGCTGATGCA	GCGGTTAAAG	CTTCCATTTC	8460
	AACACCGGTT	TTGCCAGTTG	TAGAGACAGT	TGTTTGAATG	TTTAAAGTAT	AAAGGGGTGC	8520
50	ATTTGTTTCA	TCCCAGCTGA	AGTGAACATC	TATGCCAGTC	AATGGTAATG	GATGGCACAT	8580
	CGGAATAAGT	GTTGATGTAT	TTTTGGCAGC	CATAATACCA	GCGATTTGAG	CAGTGTTCAA	3640

	AATGCTTGAA	. TGAGCGACAG	CAGTTCTTT	TGTAATTTGT	TTGTCTGATA	CATCGACCAT	8760
	TTTGGCGTGG	CCTTGTTGAT	TAATATGAGI	AAACTCAGTC	ATTTTACCCC	TCCTAGTGCA	8820
5	TCTAGTATAT	CATGAAAAA	TAAAAGTTTT	GGAGATGATT	TTTAATGGTA	GTAGAAAAA	8830
	GAAACCCAAT	CCCAGTTAAA	GAAGCAATTC	AACGTATCGT	TAATCAGCAG	AGTTCAATGC	8940
10	CGGCAATTAC	GGTAGCACTT	GAAAAAAGTC	TAAATCATAT	CTTAGCAGAA	GATATTGTAG	9000
, 0	CTACTTATGA	TATACCAAGG	TTTGATAAAT	CACCTTATGA	TGGTTTTGCA	ATTCGCAGTG	9060
	TTGATTCACA	AGGGGCAAGT	GGTCAGAATC	GCATTGAGTT	TAAAGTGATT	GATCATATTG	9120
15	GTGCAGGTTC	AGTTTCTGAT	AAATTAGTTG	GGGATCACGA	AGCGGTGCGT	ATTATGACTG	9180
	GAGCACAAAT	ACCTAATGGC	GCAGATGCTG	TTGTTATGTT	TGAACAAACG	ATTGAACTAG	9240
	AAGATACATT	TACAATTCGT	AAACCATTTT	CAAAAAATGA	AAATATATCT	TTAAAAGGTG	9300
20	AAGAAACAAA	GACAGGCGAT	GTTGTTCTAA	AAAAAGGACA	AGTAATTAAT	CCAGGGGCTA	9360
	TCGCGGTCCT	TGCAACATAT	GGCTATGCAG	AGGTTAAAGT	TATTAAGCAA	CCGAGTGTCG	9420
	CTGTTATTGC	AACAGGAAGC	GAATTATTAG	ATGTTAATGA	TGTATTAGAA	GATGGGAAAA	9480
25	TTCGTAACTC	TAATGGCCCA	ATGATTCGTG	CCTTAGCAGA	AAAATTAGGT	CTTGAAGTTG	9540
	GTATTTACAA	AACACAAAAA	GATGATTTAG	ATAGTGGCAT	CCAAGTCGTT	AAAGAAGCTA	9600
	TGGAAAAACA	TGATATCGTT	ATTACAACGG	GCGGAGTTTC	TGTTGGAGAT	TTTGACTATT	9660
30	TACCTGAGAT	TTATAAGGCT	GTAAAGGCGG	AAGTGTTATT	TAATAAAGTA	GCAATGCGTC	9720
	CTGGTAGCGT	AACAACGGTT	GCATTTGTAG	ATGGaAAGTA	TTTGTTTGGa	TTATCTGGAA	9780
35	ATCCATCAGC	TTGTTTTACA	GGATTTGAAC	TATTTGTGAA	nCCAGCTGTT	AAACATATGT	9840
	GTGGCGCACT	AGAAGTCTTC	CCGCAAATAA	TTAAAGCAAC	ATTAATGGAA	GATTTTACCA	9900
	AGGCAAACCC	ATTCACACGA	TTTATACGTG	CTAAAGCAAC	GTTAACAAGT	GCTGGAGCTA	9960
40	CTGTAGTACC	TTCAGGATTC	AATAAATCAG	GTGCGGTTGT	AGCGATTGCA	CATGCTAACT	10020
	GTATGGTCAT	GTTACCAGGA	GGGTCACGTG	GTTTTAAAGC	GGGGCATACA	GTAGATATTA	10080
	TATTGACTGA	ATCTGACGCT	GCTGAAGAGG	AACTTCTTTT	ATGATTTTAC	AAATTGTAGG	10140
45	TTACAAAAAG	TCTGGTAAGA	CAACATTGAT	GAGGCATATT	GTCTCTTTCT	TAAAGTCACA	10200
	TGGTTATACA	GTTGCTACTA	TTAAACATCA	TGGGCATGGT	AAGGAAGATA	TTCAATTACA	10260
	GGATTCAGAC	GTCGATCACA	TGAAGCATTT	TGAAGCGGGG	GCAGATCAAA	GTATTGTACA	10320
50	AGGTTTTCAA	TATCAGCAAA	CTGTAACACG	TGTAGATAAT	CAAAATCTTA	CTCAAATTAT	10380
	TGAAAAATCT	GTTACAATTG	ACACCAATAT	CGTATTAGTT	GAAGGCTTTA	AAAATGCTGA	10440

	GAATGTTTGT	TATAGCATTA	ATGTAAGGGA	GCATGAAGAT	TTTACAGCAT	TTGAGCAATG	10560
	GTTATTAAAT	AAAATTAAAA	ATGATTGTGA	TACACAATTA	ACATAGAGGA	TTGAAATGAA	10620
5	TGAAACAATT	TGAAATCGTG	ACAGAACCGA	TACAAACAGA	ACAATATCGT	GAATTCACTA	10680
	TAAATGAATA	TCAAGGTGCA	GTAGTTGTTT	TTACCGGTCA	TGTTCGCGAA	TGGACTAAAG	10740
	GCGTCAAAAC	GGAATATTTA	GAATATGAAG	CGTATATTCC	AATGGCTGAA	AAGAAATTGG	10800
10	CACAAATTGG	AGATGAAATA	AATGAAAAAT	GGCCTGGAAC	GATAACGAGT	ATTGTTCATA	10860
	GAATAGGGCC	ATTACAAATT	TCAGATATCG	CTGTATTAAT	TGCGGTTTCT	TCACCGCATC	10920
15	GTAAAGATGC	CTATCGAGCA	AATGAATATG	CAATTGAGCG	TATAAAAGAA	ATTGTTCCGA	10980
7.5	TTTGGAAAAA	AGAAATTTGG	GAAGATGGTT	CAAAATGGCA	AGGGCATCAA	AAAGGGAATT	11040
	ATGAAGAAGC	AAAGAGGGAG	GAATAAGAGA	GATGAAGGTA	CTTTACTTCG	CAGAAATTAA	11100
20	AGATATATTA	CAAAAAGCAC	AGGAAGATAT	TGTGCTTGAA	CAAGCATTGA	CTGTACAACA	11160
	ATTTGAAGAT	TTATTGTTTG	AACGTTATCC	GCAAATCAAT	AATAAAAAGT	TTCAAGTTGC	11220
	TGTAAATGAG	GAATTTGTAC	AAAAATCGGA	TTTCATTCAA	CCTAATGATA	CTGTTGCATT	11280
25	AATTCCACCG	GTTAGTGGAG	GTTAAGGGAG	CATGAAAGCA	ATAATTCTTG	CAGGTGGTCA	11340
	TTCAGTGCGA	TTTGGTAAGC	CCAAAGCTTT	TGCGGAAGTG	AACGGTGAGA	CCTTTTATAG	11400
	TAGAGTAATT	AAGACATTAG	AATCAACAAA	TATGTTCAAT	GAAATTATTA	TTAGTACAAA	11460
30	TGCGCAATTG	GCAACGCAAT	TTAAATATCC	AAATGTTGTT	ATAGATGATG	AGAATCATAA	11520
	TGATAAAGGT	CCATTAGCAG	GAATTTATAC	AATCATGAAG	CAACATCCTG	AAGAAGAATT	11580
	GTTTTTTGTC	GTTTCTGTTG	ATACACCAAT	GATTACTGGT	AAAGCTGTAA	GCACGTTGTA	11640
35	TCAGTTTTTA	GTTTCTCATC	TTATTGAAAA	TCATTTAGAT	GTCGCAGCTT	TTAAAGAAGA	11700
	TGGACGTTTT	ATTCCAACAA	TTGCATTTTA	TAGTCCGAAT	GCATTAGGCG	СТАТААСТАА	11760
40	AGCACTACAT	TCTGATAATT	ACAGTTTTAA	AAATGTATAT	CATGAATTAT	CAACGGATTA	11820
40	TTTGGATGTA	AGGGATGTAG	ATGCGCCCTC	ATATTGGTAC	AAAAATATAA	ATTATCAGCA	11880
	TGATTTGGAC	GCTTTAATTC	AAAAATTGTA	AGCTGTTAGG	AGGTCCACAA	ATGGTAGAAC	11940
45	AAATAAAAGA	TAAACTAGGA	CGTCCCATCC	GTGACTTACG	GTTATCTGTG	ACAGATCGGT	12000
	GTAACTTTAG	GTGTGATTAT	TGCATGCCTA	AAGAGGTATT	TGGAGATGAT	TTCGTATTTT	12060
	TACCTAAAAA	TGAACTTTTA	ACGTTTGATG	AAATGGCTAG	AATCGCTAAG	GTATATGCAG	12120
50	AATTAGGTGT	АААААААТА	CGCATTACAG	GTGGAGAACC	ATTGATGCGA	CGGGATTTAG	12180
	A TOTA OTTO	3.00T3.3.DT3	******	> - - - - - - - - - -			

	ATGTCAGTTT	GGATGCTATT	GATGATACGC	TATTTCAATC	AATCAATAAT	CGTAATATTA	12360
	AAGCGACTAC	GATTTTAGAA	CAAATTGATT	ACGCGACGTC	TATTGGTTTG	AATGTAAAAG	12420
5	TAAATGTTGT	TATACAAAAA	GGTATTAACG	ATGATCAAAT	CATACCAATG	CTTGAATATT	12480
	TTAAAGATAA	ACATATAGAG	ATTCGATTTA	TAGAATTTAT	GGATGTTGGT	AATGATAATG	12540
	GATGGGATTT	CAGTAAAGTT	GTAACTAAAG	ATGAAATGCT	TACAATGATA	GAGCAGCACT	12600
10	TTGAAATCGA	TCCTGTAGAA	CCAAAATATT	TTGGGGAAGT	AGCAAAATAT	TATCGCCATA	12660
	AGGATAATGG	TGTTCAATTT	GGTTTGATTA	CAAGTGTTTC	ACAATCATTT	TGTTCTACAT	12720
15	GTACACGCGC	AAGGCTGTCA	TCAGATGGGA	AGTTTTACGG	ATGTTTATTT	GCAACTGTCG	12780
	ATGGATTTAA	CGTTAAAGCG	TTTATTCGTT	CTGGCGTGAC	CGACGAAGAA	TTAAAAGAAC	12840
	AATTTAAAGC	TTTATGGCAA	ATAAGAGATG	ATCGATATTC	AGATGAGAGA	ACTGCTCAAA	12900
20	CAGTTGCCAA	TCGTCAACGT	AAAAAGATAA	ACATGAATTA	TATTGGTGGT	TAATGTGTAG	12960
	GGACCACTAC	ATATTAAATC	ATTAGAGATG	TTTTAATATT	TCTGTCTTAC	TCCCTAAAAT	13020
	ACAATATTAT	TTATTAAAGT	AAAAACGGTC	ATATCTATGC	CAGATTTAAT	AGAAATGATC	13080
25	GTTTTTAAAG	TTTTTACAAG	TTGGCGGGGC	CCCAACACAG	AAGCTGACAG	AAAGTCAGCT	13140
	TACAATAATG	TGCAAGTTGG	CGGGGCCCCA	ACATAGAGAA	TTTCAAAAAG	AAATTCTACA	13200
	GACAATGCAA	GTTGGGGAAC	GGGGCCCCAA	CACAGAAGGT	GACGAAAAGT	CAGCATACAA	13260
30	TAATGTGCAA	GTTGGCGGGG	CCCCAACATA	GAGAATTTCA	AAAGAAATTC	TACAGACAAT	13320
	GCAAGTTGGG	GATCAACGAA	ATAAATTTTA	TGAGAATATC	ATTTCTATCC	CACTCTTAAG	13380
	AATCACTACA	TAATAAATCT	TTAGTGGTTC	TTTAACATTG	ATGTCACACT	CCATGCCATT	13440
35	GAGTTGTAAT	ATATCTTTTT	TAGGTATAAA	TGTTGTCGAA	TAAACAACAA	GTTGTCCAAA	13500
	AGATATAAAT	CTAAACAAGA	TATAGCCAGC	TATAATTTAA	TTGTAATAGA	TAAAATGCTA	13560
40	AGTITGATAT	ATAATAAATT	TAAGTAATTG	TATAATAATA	TGAATTACAA	ACATCTAAGA	13620
70	AGAAACATAG	GAGGCATCAT	ATTATGAGTA	ATAAAGTTCA	ACGTTTTATA	GAAGCAGAAA	13680
	GGGAGTTAAG	TCAGTTAAAG	CACTGGTTAA	AAACAACACA	TAAGATTTCA	ATTGAAGAAT	13740
45	TTGTAGTCCT	TTTTAAAGTG	TATGAAGCTG	AAAAGATTAG	CGGTAAAGAA	TTGAGGGATm	13800
	CATTACATTT	TGAAATGCTA	TGGGATACAA	GTAAAATCGA	TGTGATTATC	CGTAAAaTCT	13860
	ATAAAAAAGA	GCTTATTTCT	AAATTGCGTT	CTGAAACGGA	TGAAAGACAA	GTATTCTATT	13920
50	TCTATAGTAC	TTCTCAAAAG	AAATTGTTAG	ATAAAATTAC	TAAAGAAATA	GAAGTGTTAA	13980
	CCCTTACAAA	ריים או או או איים או מיים או איים או או מיים או איים או או איים או איים או איים או איים או איים או איים איים	- 3 3 3 3 TC	CC3 3 TOTOTS	mmax max mx x	*******	

	GTTCATGGCA TTTCTAGTTA CATGACGTCC ATGAATTAAG AAGTAAACAA GCATAGTAAT	14160
	GATTGCTAAA GCGGCCATAA AGCCGAAGAT TTCACTATAT GAAAACATAT GAGTAAATAA	14220
5	CCCAAGGAAT GATGGACCGA AGCCGACACC TGCATCTAGA CCAACGTAAA AAGTAGATGT	14280
	CGCGATACCA TATTTAATCG GGGGTGAGAC TTTTATCGCA ATAGATTGCA TTGCAGATGA	14340
	TAAATTTCCA TACCCTAAAC CTAGGCAAGC ACCAGCAAGT AATATTAACC AGCTTTGATA	14400
10	GCTTGAAATT AAGCATACAA ATGAAAGGAA AAGCATGATA AATGCTGGGT AGACAATAAT	14460
	ATTTCATTT TTATCATCCA TCAATCTACC AGCAATAGGT CTAGTAATTA ACGATGCTAT	14520
15	AGCATAGCAA ATAAAGAAAT AGCTTGCTGC AGTGACTAGG TGTCGCTCTA AAGCAAATGC	14580
13	TTGTAAATAA GTTAGGATGG ACGCATAGGT AACGCCAATT AAAAGCATAA TTACAGCAAC	14640
	AGGAATGGCC TCTTTTGCAA TAAATTGATG AATACTAAAT CTTGGTTTAT CAATGACATT	14700
20	AGTTTCAGTT TTGTTATTTG TTACTTCGAA ATCAACTTTT ATAAATAATG AGATAATGAG	14760
	TCCGAGTATG CCTAATATGA CACAAATAAT AAACAGTAAG TCAATTGCGT ATTTTGTAAT	14820
	AAGTAACATG CCTAGAAATG GGCCAATCGC TGTACCTAAT ACTAAACTTA AGGAAAATAA	14880
25	ACTGATGCCT TCACTTTTC TATTAACAGG GGTAACGTAT GCCGCAATAG TACCTGTTGC	14940
	AGTTGTCACA ACTGCAGTTG CGATACCGTT TATGAGACGT ACAAAGATTA AAAAAGCTAA	15000
	AGATCCATCA ATAAAATAAA GTAATTGCGT GATAATTAAA GCAATTAAAC CAATAAATAA	15060
30	TAATCGTTTA GGTCCrATTT SATTTACAAA TTTACCTGTA GCAAATCGA	15109
	(2) INFORMATION FOR SEQ ID NO: 45:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9072 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	GAGAGTCAAT GGCAAGAAGA ATATAAATAT TTGAGAGCGT TAATCTTTAA TGAAACAGAA	60
45	TTAGAGGAAG CGTATAAATG GATGCATCCT TGTTACACGT TGAATAATAA AAATGTAGTA	120
	CTTATCCATG GCTTCAAAAA TTATGTTGCA CTATTATTTC ATAAAGGTGC CATTTTGGAG	180
	GATAAATATC ATACACTCAT TCAACAGACT GAAAAGGTGC AAGCAGCTCG TCAGTTACGA	240
50	TTTGAAAATT TAACAGAGAT TCAAGCACGT ACCGAAGAAA TTAAATATTA TCTAGCCGAA	300

GCAATTAAAG CTGAAAAAAGC TGGTAAAAAA GTTGAAATGA AGAAAACAGA GGAATATGTT

	AAATTAACGC CAGGCAGACA ACATCAATAT ATATATCATA TTGGACAAGC TAAACGCAGT	480
	GGAACAAGAC AAAAGCGTGT TGAAAAGTAT ATTAACCAAA TACTAGAAGG TAAAGGGATG	540
5	CATGATAAGT AATTAATGAG TAAAGCATAC CGGTTATACA ACAACATACA AGATGACACG	600
	AAACAACCAA TGGCTCATGC TGTTGGTTGT TTTTTTAGGT GTGTCTGTCA TGGGCAACAC	660
	TTTGACGTTG GAATTCCGTT ACAGGCTTGG GAGTAGAAAA TGTTAGCAAA AGGCAAGGGT	720
10	GTCTACAATG AATGATGAAG ATATTAAAAT ATAAGGATGA CTTTGTGAGT GGCGGATGGG	780
	CGGTTGTCCG TCTGTAACAA TGGATGCGTG TGCATTATTA CAAAAATTCG ACTTTTGTAA	840
	TAATATTTCA CATTTTCGAC ACTTTTTTGC TATAAAACAA CCAATTGAGC GATAATAAAT	900
15	TCGCTTTTAA AAAATATGAG TTATCTATTT AGTTGCCAAA GATAAAATAA TAATGTTTAA	960
	TAACATCATA TAGAGTATGT TAGTTTTAAA TGTCGAATAT ACGAATGTGC AAACAAAGTA	1020
20	ATCGGTAGAA ATTCAACATA CATAGCGCCG TTTACTGTTA AGTATTCACA TTACAGATGA	1080
20	AAAATATAAA ATTCTACATA ATCAAGACCA TGATGTGTAC TTGTTTAACT TATGACTCTA	1140
	TTTGTTTAAC AATTGCGATA ATGGTCTTTT TATTTTATGC GTATCATTCG TCATATTTTT	1200
25	TATGAGGAAG GAGAAATGAT TATGTTAAGT ATTAAGCATT TAACGAAAAT TTATTCTGGT	1260
	AATAAAAAGG CAGTAGATGA CATCTCTTTA GATATTCAAT CTGGGGAATT TATCGCATTT	1320
	ATTGGAACCA GTGGAAGTGG CAAAACGACT GCTTTAAGAA TGATAAACCG TATGATTGAA	1380
30	GCGACAGAAG GACAAATTGA AATTGATGGT AAAGATGTTC GGAGTATGAA TCCTGTCGAA	1440
	TTGCGTAGAA ATATTGGCTA TGTTATTCAA CAAATTGGCT TAATGCCTCA TATGACGATT	1500
	AAAGAGAATA TTGTGTTGGT ACCCAAATTG TTGAAATGGA CTAAAGAGGA AAAGGATAAA	1560
35	CGTGCAAAGG AATTAATTAA ACTTGTGGAT TTACCGGAGT CATTTTTAGA GCGTTATCCA	1620
	GCAGAACTAT CAGGTGGGCA ACAACAACGT ATCGGTGTTG TAAGAGCACT TGCGGCCGAA	1680
	CAAGATATTA TTTTAATGGA TGAACCTTTT GGTGCATTGG ATCCTATTAC GAGAGATACG	1740
40	TTACAAGATT TAGTTAAAAC GTTACAACGA AAATTAGGCA AGACGTTTAT CTTTGTAACA	1800
	CATGATATGG ATGAAGCGAT TAAATTAGCA GACAAAATTT GTATTATGTC AGAAGGTAAG	1860
	GTGGTGCAAT TTGATACGCC AGACAATATT TTAAGACATC CCGCAAATGA TTTTGTACGT	1920
45	GATTTTATAG GACAAAATAG ACTGATTCAA GACCGTCCCA ATGACAAGAC TGTAGAAGGT	
	GTAATGATTA AACCAATCAC GATACAAGCA GAAGCAACAC TGAATGACGC CGTTCATATT	1980
50	ATGAGACAAA AACGTGTTGA TACTATTTTT GTAGTAGATA GTAATAACCA TTTACTAGGT	2040
	TTCTTAGACA TTGAAGATAT AAATCAGGGT ATACGTGGAC ACAAAAGTTT ACGAGACACC	2160

	ATTTTAAAAA	GAAACGTTAG	GAATGTACCT	GTCGTAGATG	ATCAACAGCG	TTTAGTAGGA	2280
	CTGATTACGC	GTGCCAATGT	TGTTGATATT	GTATATGACA	CGATTTGGGG	CGATAGTGAG	2340
5	GATACAGTGC	AAACAGAACA	TGTGGGGGAA	GACACTGCGT	CCTCAAAAGT	GCATGAGCAA	2400
	CACACTACTA	ATGTCAAAGT	ACGTGACATA	GGAGATGATA	AATCATGATT	GAGTTCCTAC	2460
	ATGAACATGG	TGGACAGTTG	ATGTCGAAAA	CACTGGAACA	TTTCTATATT	TCTATAGTGG	2520
10	CATTATTACT	TGCCATCATT	GTTGCAGTAC	CTATAGGCAT	TTTATTATCA	AAAACAAAGC	2580
	GAACTGCCAA	TATTGTATTA	ACTGTGGCAG	GTGTCTTACA	AACTATTCCA	ACACTAGCTG	2640
15	TACTTGCTAT	TATGATACCG	ATTTTTGGTG	TTGGTAAAAC	GCCTGCAATT	GTAGCGCTAT	2700
13	TTATTTATGT	ATTATTACCT	ATTTTAAATA	ACACGGTACT	CGGTGTTCAA	AATATTGATA	2760
	GCAACATTAA	AGAAGCTGGA	AAAAGTATGG	GAATGACACA	ATTTCAATTG	ATGAAGGATG	2820
20	TTGAATTGCC	GTTAGCATTG	CCGCTTATCA	TTGGTGGCAT	TCGTTTGTCA	TCTGTGTATG	2880
	TAATTAGTTG	GGCTACACTT	GCAAGTTATG	TAGGTGCGGG	TGGATTAGGT	GATTTCATTT	2940
	TCAATGGTTT	AAATTTATAT	GATCCACTGA	TGATTGTAAC	TGCAACGGTA	CTCGTTACTG	3000
25	CACTAGCATT	AGGTGTTGAT	GCCTTATTAG	CTTTAGTTGA	AAAATGGGTA	GTTCCCAAAG	3060
	GCTTAAAAGT	ATCTGGATAA	TTAGGAGGCT	AAGATAATGA	AGAAAATTAA	ATATATACTT	3120
	GTCGTGTTTG	TCTTATCGCT	TACCGTATTA	TCTGGATGTA	GTTTGCCCGG	ACTAGGTAGT	3180
30	AAGAGCACGA	AAAATGATGT	CAAAATTACA	GCATTATCAA	CAAGCGAATC	GCAAATTATT	3240
	TCACATATGT	TACGGTTGTT	AATAGAGCAT	GATACACACG	GTAAGATAAA	GCCAACATTA	3300
	GTAAATAATT	TAGGGTCAAG	TACGATTCAA	CATAATGCCT	TAATTAATGG	GGATGCTAAT	3360
35	ATATCAGGTG	TTAGATATAA	TGGCACAGAT	TTAACGGGAG	CTTTGAAGGA	AGCACCAATT	3420
	AAAAATCCTA	AGAAAGCAAT	GATAGCAACA	CAACAAGGAT	TTAAAAAGAA	ATTTGATCAA	3480
	ACGTTTTTTG	ATTCGTATGG	TTTTGCGAAT	ACGTATGCAT	TCATGGTAAC	GAAGGAAACC	3540
10	GCTAAAAAAT	ATCATTTAGA	GACAGTTTCA	GATTTAGCAA	AGCATAGTAA	AGATTTACGT	3600
	TTAGGTATGG	ATAGTTCATG	GATGAATCGT	AAAGGCGATG	GCTATGAAGG	ATTTAAAAAA	3660
15	GAGTATGGTT	TTGACTTTGG	TACAGTGAGA	CCAATGCAAA	TAGGTCTAGT	CTACGACGCA	3720
	TTAAACTCAG	AGAAGTTAGA	CGTTGCATTA	GGTTATTCTA	CAGATGGTCG	AATTGCGGCG	3780
	TATGATTTGA	AAGTACTTAA	AGATGATAAA	CAATTTTTCC	CACCTTATGC	TGCGAGTGCT	3840
50	GTTGCAACAA	ATGAATTATT	ACGGCAACAC	CCAGAACTTA	AAACGACGAT	TAATAAGTTG	3900
	ACAGGAAAGA	TTTCGACTTC	AGAGATGCAA	CGCTTGAATT	ATGAAGCGGA	TGGTAAAGGT	3960

	AAAGGTGGTC	ATAAGTAATG	GAAGGTAATT	TATTACAGCA	ATTATTCAAT	TATTATGTTA	4080
	CGAACTTTGG	TTATCTATGG	GATTTATTTT	TCAAACACTT	ATTAATGTCT	GTCTATGGTG	4140
5	TGCTGTTTGC	AgCTTTAATT	GGTATTCCAT	TGGGAATCTT	GCTTGCaAGA	TACACAAAAC	4200
	TTTCTGGATT	TGTAATTACA	ATTGCAAATA	TAATTCAAAC	AGTTCCAGTC	ATTGCAATGT	4260
	TAGCTATTTT	AATGTTAGTC	ATGGGCTTAG	GTTCAGAAAC	AGTAGTTTTA	ACAGTGTTTT	4320
10	TATATGCGTT	ACTTCCAATT	ATAAAAAACA	CTTATACTGG	TATAGCTAGT	GTTGATGCGA	4380
	ATATTAAGGA	TGCTGGCAAA	GGTATGGGAA	TGACACGCAA	TCAAGTGCTA	CGAATGATTG	4440
15	AATTACCGTT	ATCTGTTTCG	GTTATTATCG	GTGGCATTCG	TATTGCCTTG	GTTGTTGCGA	4500
	TAGGTGTTGT	TGCCGTTGGA	TCATTTATAG	GAGCACCTAC	GCTTGGTGAC	ATTGTGATTC	4560
	GTGGTACAAA	TGCGACGGAT	GGCACAACGT	TTATTTTAGC	AGGTGCGATT	CCGATTGCTA	4620
20	TCATTGCAAT	CGTCATTGAT	GTACTATTAA	GATTITTAGA	AAAACGATTA	GACCCAACAA	4680
	CACGACATCG	TAAAAATCAA	TCTAATCATC	GGCCGCAAAG	TATTAATATG	TAATAGTAGA	4740
	AGATGTTTAT	AATTTAGCGA	TTTCGTTTCA	TGATTTATAA	AAAATGAGGC	TACTCAAGGA	4800
25	GCTCAAATAA	TCTTTGAGTA	GCCTTTTTAT	AGGTTGTGTT	TGTATGCGTT	TACACTAAAA	4860
	TAGCAATTAT	TATCATGAAA	GTTTTTGGAT	AAAAAGCGTT	AATTATTGTA	AAAATACTAA	4920
	AAAATGAGAT	GTTTTATTTA	TAATTTTCTG	CAAATTTATG	ATATTGTTTC	TTAATATATC	4980
30	ATATTAAAAA	TTTGTTTTTC	TTAAACATAG	GAGGCTTATC	TAATTCATGG	ACACATCAAA	5040
	ACAATTTAGA	GGTGACAACC	GATTGCTTTT	GGGTATCGTT	TTAGGGGTTA	TTACCTTTTG	5100
	GCTATTCGCG	CAGTCACTTG	TTAATCTTGT	TGTCCCATTA	CAATCAACAT	ATAGTAGTGA	5160
35	CGTTGGAACG	ATAAATATCG	CTGTTAGCTT	ATCTGCCTTA	TTTGCTGGTT	TGTTTATCGT	5220
	AGGTGCTGGT	GATGTTGCTG	ATAAATTTGG	TCGCGTCAAA	ATTACTTATG	TAGGATTGAT	5280
40	ATTAAATGTT	GTAGGTTCAT	TACTCATCAT	CATTACACCT	TTGCCAGCAT	TTTTAATTAT	5340
•0	AGGTAGAATA	ATTCAAGGTT	TGTCTGCAGC	ATGTATTATG	CCATCAACAC	TTGCTATTAT	5400
	TAACGAATAT	TATATTGGTA	CAAGAAGACA	ACGTGCCTTA	AGCTATTGGT	CTATTGGTTC	5460
4 5	TTGGGGTGGT	AGTGGTATTT	GTACGTTGTT	TGGTGGCTTA	ATGGCTACAT	ATATAGGTTG	5520
	GCGTTCAATA	TTTGTTGTTT	CAATTCTATT	AACATTATTA	GCAATGTACT	TAATCAAACA	5580
	TGCACCTGAG	ACTAAAGCAG	AACCAATCAA	AGGTATGAAA	GCAGAAGCTA	AAAAGTTTGA	5640
50	CGTTATTGGT	TTAGTCATTT	TAGTAGTGAC	GATGTTAAGT	TTAAATGTAA	TCATCACACA	5700
	GACGTCTCAT	TTTGGTTTAG	TTTCACCGTT	AATTCTAGGT	TTAATTGTTG	TGTTTATCTG	5760

	AAATTTTTAAA	AATAGAGGAT	ACAGTGGTGC	AACTATTTCA	AACTTCTTAT	TAAATGGTGT	5880
	AGCAGGTGGT	GCACTTATCG	TTATTAACAC	GTATTATCAA	CAACAATTAG	GATTTAATTC	5940
5	TTCGCAAACG	GGTTATATTT	CATTAACGTA	TTTAATAACA	GTGTTGTCAA	TGATTCGTGT	6000
	AGGTGAAAAG	ATTTTATCTC	AACATGGTCC	GAAGCGCCCA	CTATTACTAG	GAAGTGGCTT	6060
	TACAGTGATT	GGGTTAATCT	TATTGTCGTT	AACATTTTTA	CCAGAAGTGT	GGTATATCAT	6120
10	ATCTAGTATA	GTTGGATATT	TATTGTTTGG	TACTGGTTTA	GGATTATATG	CTACACCATC	6180
	AACTGATACA	GCAGTTGCTA	GTGCGCCAGA	TGATAAGTCG	GGTGTTGCTT	CAGGTGTGTA	6240
	TAAAATGGCG	TCATCATTAG	GAAATGCATT	TGGAGTAGCA	GTATCTGGTA	CGGTTTATAC	6300
15	TGTGTTAGCA	GCTAATTTAA	ATTTGAACTT	AGGTGGTTTC	ACAGGTATGA	TGTTTAATGC	6360
	CTTGCTAGCA	ATTGTTGCAT	TTTTAGTCAT	TTTACTATTA	GTTCCTAAAA	ATCAAACGAA	6420
20	TTTGTAAAAC	TGAAATGAAA	GCAAGTTATT	ATGTAGGGAT	TTTAAAGGAA	ATTTTGTGAA	6480
	AGTAAGTTTA	TCATACACAC	TTAATGTTGC	GTATTGACGT	TTAATGTTAG	GTGTGTTCTT	6540
	TTATAGACGA	TAAAAGCTGT	GTGCATATTA	AGCGAATGAT	TTTCAAATTG	ACGCTAATAT	6600
25	GCGAAAGTAG	TATTTTTAAA	ATGAACAACA	ACGATGAAGA	GGGGTTTATA	GGATGAAAAT	6660
	TGCAATTGCT	GGATCGGGTG	CATTAGGTAG	TGGCTTTGGT	GCCAAACTAT	TTCAAGCAGG	6720
	ATATGATGTC	ACACTTATTG	ACGGATATAC	ATCTCATGTT	GAAGCGGTTA	AGCAACATGG	6780
30	ATTAAATATA	ACGATTAATG	GAGAGGCATT	CGAGTTAAAC	ATTCCGATGT	ATCATTTTAA	6840
	TGATCAACCG	GACGAAAGCA	TTTACGATGT	TGTCTTTCTA	TTTCCAAAGT	CTATGCAATT	6900
	AAAAGAAGTG	ATGGAAGATA	TGAAGCCACA	TATTGATAAT	GAAACGATCG	TCGTATGTAC	6960
35	GATGAATGGT	CTGAAGCATG	AAGAAGTCAT	TGCGCAGTAT	GTTGCTCAAT	CACAAATTGT	7020
	CAGAGGTGTT	ACGACTTGGA	CGGCAGGTCT	TGAAAGCCCT	GGACACAGTC	ATTTACTTGG	7080
	TAGTGGACCA	GTTGAAATAG	GTGAACTAGT	GGATGAAGGT	AAAGAAAATG	TTATAAAAGT	7140
40	TGCTGATTTA	CTTAACGAAG	CGGAATTGAA	TGGTGTCATT	AGTAAAGATT	TATACCAATC	7200
	GATTTGGAAA	AAGATTTGTG	TTAATGGTAC	GGCAAATGCA	TTAAGCACAG	TGTTGGAGTG	7260
45	TAATATGGCA	TCGCTGAATG	AAAGTAGTTA	TGCGAAGTGT	TTGATTTATA	AATTAACGCA	7320
	AGAAATAGTG	CATGTAGCGA	CGATTGATAA	TGTTCATTTA	AATGTTGATG	AAGTATTTGA	7380
	ATATTTAGTT	GATTTAAATG	AAaAAGTTGG	TGCGCATTAT	CCATCCATGT	ATCAAGATTT	7440
50	AATTGTTAAT	AATAGAAAAA	CTGAAATTGA	TTATATTAAT	GGCGCAGTTG	CAACATTAGG	7500
	TAAACAACGT	Catattgaag	CGCCAGTCAA	TCGCTTTATT	ACTGATTTAA	TTCATACTAA	7560

	CAATCACGTG	ATATTACGGT	CATTATTAAG	ATTGAAATGT	AATAAATAAA	GAACAGCAGT	7680
	AAGGTACTTT	CAAATTGAAA	TGATCTTGGT	GCTGTTTTTC	TTGATTGATC	TTCGTCATAA	7740
5	TTCAGATTTG	TCATAGGCTA	CGACATACTA	TTAGTATTTA	CTAGACAGTT	TTTACGACGA	7800
	CACTTTGAAA	AATTTTGAGG	CAAATCATTT	GGAAGTCTCA	CGTGAATTTT	GTAAACTCAT	7860
	CAAGCAAGTA	ATTATATTAA	AAAGACAAAT	AGAGAAAAGG	TGTTTATAAT	GAGTAAAATT	7920
10	TTTGTAACTG	GTGCAACGGG	CCTTATTGGC	ATTAAATTAG	TTCAAAGACT	AAAAGAAGAG	7980
	GGGCATGAGG	TTGCTGGTTT	TACTACATCT	GAGAATGGTC	AACAAAAGCT	AGCTGCTGTT	8040
15	aatgtaaaag	CATATATTGG	TGATATATTA	AAAGCTGATA	CTATTGATCA	AGCGTTAGCA	8100
	GATTTTAAAC	CAGAAATCAT	TATCAATCAA	ATTACGGATT	TAAAAAATGT	TGATATGGCA	8160
	GCAAATACGA	AAGTACGTAT	TGAAGGTTCT	AAAAACCTAA	TTGATGCGGC	GAAAAAGCAT	8220
20	GACGTTAAGA	AAGTAATTGC	CCAAAGTATT	GCCTTTATGT	ATGAACCTGG	CGAAGGATTA	8280
	GCAAATGAGG	AAACTTCACT	TGATTTTAAC	TCAACTGGCG	ATAGAAAAGT	AACGGTTGAT	8340
	GGTGTGGTTG	GTTTAGAAGA	AGAAACGGCT	CGTATGGATG	AATACGTTGT	TTTACGTTTT	8400
25	GGCTGGTTAT	ATGGCCCAGG	TACTTGGTAC	GGAAAAGATG	GCATGATTTA	TAATCAATTT	8460
	ATGGATGGTC	AAGTGACACT	TTCAGATGGC	GTAACATCAT	TTGTGCATCT	TGATGATGCA	8520
	GTTGAAACAT	CTATTCAAGC	TATTCATTTT	GAAAATGGTA	TCTATAATGT	AGCAGATGAT	8580
30	GCACCTGTTA	AAGGTTCTGA	ATTTGCAGAA	TGGTATAAAG	AACAACTTGG	TGTTGAACCA	8640
	AATATTGATA	TTCAACCTGC	GCAACCATTT	GAACGTGGCG	TAAGCAATGA	GAAGTTTAAA	8700
25	GCGCAAGGTG	GTACTCTGAT	TTATCAAACT	TGGAAAGATG	GCATGAATCC	AATTAAATAA	8760
35	TAATTTATCC	GTTTAATATA	CAAAGAATAA	AGACTTGGTC	GAATCGTGGA	TGATATATTA	8820
	TCAAACGCAC	GGCTCGAACA	AGTCTTTTTT	ATTATGTCTT	CGTTATCTTT	GTATGAAGGA	8880
40	ATAACAGAAT	TACAATTAAT	GTACTGAATA	ATGCAATTAA	TGTTGTGATT	AGTGCTAATT	8940
	TAATTTCTAT	TGGTAGCCAA	GTCAGTACAA	AAGACCAATT	ATTGCTACCG	AGAATGAGAT	9000
	ATGGTAATGC	ATATAATATG	AGCGCTAAAG	CGATACATAT	ACATAATGAT	AACCAACTCA	9060
45	ATACAGCAAT	CC					9072

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 16826 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

	GTGGAACAGC	TGTAACTATA	TCATTTCTTT	CAACATTTAT	TGGGAAAATG	TTAGCTACAT	60
5	TTCTATATCC	GATTAATAAT	GTAGTACTTT	CATATATnTC	TGTAAATGAA	AGTGACAATA	120
	TAAAGAAGCA	ATATTTGaAA	ACTAATCTAA	TTGCTATAGC	TGCCCTATGT	TTAGTCATGA	180
	TTATATGTTA	TCCAATTACA	ATAATTATTG	TCTCTTTACT	GTATAACATT	GATTCAAGTT	240
10	TATATTCGAA	GTTTATTATT	TTAGGTAATA	TAGGTGTTTT	ATTCAATGCA	GTGAGTATTA	300
	TGATCCAAAC	TTTAAATACA	AAACACGCAT	CAATAACATT	ACAAGCGAAT	TATATGACGC	360
15	TTCACACGAT	TACATTTATA	TTCATAACTA	TTTTAATGAC	AATTGCGTTT	GGTCTAAATG	420
, ,	GATTCTTTTG	GACAACGCTG	TTCAGCAACA	TTATTAAGTA	TGTGATTTTA	AATATTATAG	480
	GTTTAAAGTC	TAAATTCATT	AATAAAAAGG	ACGTCGATTA	GATGAGTGAA	AAAAAGATTT	540
20	TGATTTTATG	TCAGTATTTT	TATCCGGAAT	ATGTATCTTC	TGCGACGTTA	CCAACTCAAT	600
	TGGCGGAAGA	TTTAATTGCG	AATCACATTA	ATGTCGATGT	CATGTGTGGA	TGGCCATATG	660
	AATATAGTAA	TCATAAACAG	GTTTCTAAAA	CCGAGATGCA	TCGTGGTATT	CGCATTCGAC	720
25	GTCTCAAGTA	TTCGAGGTTT	AATAACAAAA	GTAAGGTTGG	AAGGATCATC	AATTTCTTTA	780
	GTTTATTTTC	AAAATTCGTG	ATTAATATAC	CTAAAATGTT	GAAATATGAT	CAGATTCTTG	840
	TTTACTCTAA	TCCACCAATC	TTGCCATTAA	TACCAGACGT	TTTACACAGA	CTGCTTAAGA	900
30	AAAAATATTC	TTTTGTGGTG	TATGATATAG	CACCTGATAA	TGCGATTAAG	ACAGGTGCAA	960
	CTCGTCCAGG	TAGCATGATT	GATAAGCTGA	TGCGTTACAT	TAATAGACAT	GTCTACAAGA	1020
	ATGCTGAAAA	TGTCATTGTC	CTTGGTACGG	AAATGAAAAA	CTACTTACTA	AATCATCAAA	1080
35	TTTCTAAAAA	TGCTGACAAT	ATCCATGTGA	TTCCTAACTG	GTATGACATG	CGTCAATTAC	1140
	AAGACAATCG	TATCTATAAT	GACACATTTA	AAGCTTACCG	TGAGCAATAC	GACAAAATTT	1200
	TATTGTATAG	CGGTAATATG	GGGCAGTTAC	AGGATATGGA	GACACTTATC	TCATTTTTAA	1260
10	AATTAAATAA	GGATCAGTCT	CAAACGTTAA	CAATACTTTG	TGGTCATGGT	AAGAAATTTG	1320
	CAGATGTCAA	AACGGCAATA	GaAGACCATC	GTATTGAAAA	TGTTAAAATG	TTTGAGTTTT	1380
1 5	TAACAGGTAC	AGACTATGCT	GACGTATTAA	AAATTGCGGA	TGTATGTATT	GCATCGCTGA	1440
	TTAAAGAAGG	CGTCGGTTTA	GGCGTGCCGA	GCAAGAATTA	TGGCTATCTT	GCAGCTAAGA	1500
	AAGCGTTGGT	ACTCATCATG	GATAAGCAAT	CTGATATCGT	TCAACATGTT	GAACAATATG	1560
50	ATGCGGGTAT	CCAAATTGAT	AATGGCGATG	CACATGCCAT	TTATAACTTC	ATCAACACTC	1620
	ACTCGAGTAA	GGAATTGCAC	GAGATGGGTG	AGCGCGCACA	TCAACTGTTT	AAAGATAAAT	1680

	AAGCGATTAT	TCGATGTAGT	GAGTTCAATA	TATGGTTTAG	TAGTTTTAAG	TCCGATTCTG	1800
	TTAATTACAG	CATTACTAAT	TAAAATGGAa	TCACCTGGAC	CAGCCATTTT	CAAACAAAAA	1860
5	AGACCGACGA	TTAATAATGA	ATTGTTTAAT	ATTTATAAGT	TTAGATCAAT	GAAAATAGAC	1920
	ACACCTAATG	TTGCAACTGA	TTTAATGGAT	TCAACATCGT	ATATAACAAA	GACAGGGAAG	1980
	GTCATTCGTA	AGACCTCTAT	TGATGAATTG	CCACAATTAT	TGAATGTTTT	AAAAGGAGAA	2040
10	ATGTCAATTG	TAGGTCCTAG	ACCAGCGCTT	TATAATCAAT	ACGAATTAAT	CGAAAAACGT	2100
	ACAAAAGCGA	ACGTGCATAC	GATTAGACCA	GGTGTGACAG	GACTAGCTCA	AGTGATGGGG	2160
15	AGAGATGATA	TCACTGATGA	TCAAAAAGTA	GCGTATGATC	ATTATTACTT	AACACATCAA	2220
, ,	TCTATGATGC	TTGATATGTA	TATCATATAT	AAAACAATTA	AAAATATCGT	TACTTCAGAA	2280
	GGTGTGCATC	ACTAATGAGA	AAAAATATTT	TAATTACAGG	CGTACATGGA	TATATCGGTA	2340
20	ATGCTTTAAA	AGATAAGCTT	ATTGAACAAG	GACATCAAGT	AGATCAAATT	AATGTTAGGA	2400
	ATCAATTATG	GAAGTCGACC	TCGTTCAAAG	ATTATGATGT	TTTAATTCAT	ACAGCAGCTT	2460
	TGGTTCACAA	CAATTCACCT	CAAGCAAGGC	TATCTGATTA	TATGCAAGTG	AATATGTTGC	2520
25	TGACGAAACA	ATTGGCACAA	AAGGCTAAAG	CTGAAGACGT	TAAACAATTT	ATTTTTATGA	2580
	GTACTATGGC	AGTTTATGGA	AAAGAAGGTC	ATGTTGGTAA	ATCAGATCAA	GTTGATACAC	2640
	AAACACCAAT	GAACCCTACG	ACCAACTATG	GTATTTCCAA	AAAGTTCGCT	GAACAAGCAT	2700
30	TACAAGAATT	GATTAGTGAT	TCGTTTAAAG	TAGCAATTGT	GAGACCACCA	ATGATTTATG	2760
	GTGCACATTG	CCCAGGAAAT	TTCCAACGGT	TAATGCAATT	GTCAAAGCGA	TTGCCAATCA	2820
	TTCCCAATAT	TAACAATCAG	CGCAGTGCAT	TATATATTAA	ACATCTGACA	GCATTTATTG	2880
35	ATCAATTAAT	ATCATTAGAA	GTGACAGGTG	TGTACCATCC	TCAAGATAGT	TTTTACTTTG	2940
	ATACATCGTC	AGTAATGTAT	GAAATACGTC	GCCAATCACA	TCGTAAAACG	GTATTGATCA	3000
10	ACATGCCTTC	AATGCTAAAT	AAGTATTTTA	ATAAGTTGTC	GGTCTTTAGA	AAATTATTCG	3060
40	GCAATTTAAT	ATACAGCAAT	ACGTTATATG	AAAATAATAA	TGCACTTGAA	ATTATTCCTG	3120
	GAAAAATGTC	ACTTGTTATT	GCGGACATCA	TGGATGAAAC	GACAACCAAA	GATAAGGCAT	3180
1 5	AAGTCATCTA	TTAAATAAAA	TCAACATACA	AATCGTTTTA	TTTGGAGGTT	ATAGTATGAA	3240
	GTTAACAGTA	GTTGGCTTAG	GTTATATTGG	TTTACCAACA	TCAATTATGT	TTGCAAAACA	3300
	TGGcGTCGAT	GTGCTTGGTG	TTGATATTAA	TCAGCAAACG	ATTGATAAGT	TACAAAGTGG	3360
50	TCAAATTAGT	ATTGAAGAAC	CTGGATTACA	AGAGGTTTAT	GAAGAGGTAC	TGTCATCGGG	3420
	AAAATTGAAG	GTATCTACAA	CGCCAGATGC	ATCTGATGTT	TTTATCATTG	CCGTTCCGAC	3480

	TAGTATTTTA	TCATTTTTAG	AAAAAGGAAA	TACCATTATT	GTAGAGTCGA	CAATTGCGCC	3600
	TAAAACGATG	GATGATTTTG	TAAAACCAGT	CATTGAAAAT	TTAGGGTTTA	CAATAGGTGA	3660
5	AGATATTTAT	TTAGTGCATT	GTCCAGAACG	TGTACTGCCA	GGAAAAATTT	TAGAAGAATT	3720
	AGTTCATAAC	AATCGTATCA	TTGGCGGTGT	GACTGAAGCT	TGTATTGAAG	CGGGTAAACG	3780
	TGTCTATCGC	ACATTCGTTC	AGGGAGAAAT	GATTGAAACA	GATGCACGTA	CTGCTGAAAT	3840
10	GAGTAAGCTA	ATGGAAAACA	CATATAGAGA	CGTGAACATT	GCTTTAGCTA	ATGAATTAAC	3900
	AAAAATTTGC	AATAACTTAA	ATATTAATGT	ATTAGATGTG	ATTGAAATGG	CAAACAAACA	3960
15	TCCGCGTGTT	AACATCCATC	AGCCTGGTCC	AGGTGTAGGC	GGTCATTGTT	TAGCTGTTGA	4020
	TCCGTACTTT	ATTATTGCTA	AAGACCCTGA	AAATGCAAAG	TTAATTCAAA	CTGGACGTGA	4080
	AATTAATAAT	TCAATGCCGG	CCTATGTTGT	TGATACAACG	AAGCAAATCA	TCAAAGTGTT	4140
20	GAGCGGGAAT	AAAGTCACAG	TATTTGGTTT	AACTTATAAA	GGTGATGTTG	ATGATATAAG	4200
	AGAATCACCA	GCATTTGATA	TTTATGAGCT	ATTAAATCAA	GAACCAGACA	TAGAAGTATG	4260
	TGCTTATGAT	CCACATGTTG	AATTAGATTT	TGTGGAACAT	GATATGTCAC	ATGCTGTCAA	4320
25	AGACGCATCG	CTAGTATTGA	TTTTAAGTGA	CCACTCAGAA	TTTAAAAATT	TATCGGACAG	4380
	TCATTTTGAT	AAAATGAAGC	ATAAAGTGAT	TTTTGATACA	AAAAATGTTG	TGAAATCATC	4440
	ATTTGAAGAT	GTATCGTATT	ATAATTATGG	CAATATATTT	AATTTTATCG	ACAAATAAAA	4 500
30	TGTGTCAAAC	TAGGGCATAC	ATGATTAAGG	AAAGATAAGC	TGTCATGTGT	TTGAACTTCA	4560
	GAGAGGATAA	TGTTATGAAA	AAAATTATGG	TTATTTTCGG	TACGAGACCC	GAAGCAATAA	4620
	AAATGGCACC	ATTAGTAAAA	GAAATTGATC	ATAATGGGAA	CTTTGAAGCG	AACATTGTGA	4680
35	TTACAGCACA	ACATAGAGAT	ATGTTAGATA	GTGTGTTAAG	TATATTTGAT	ATTCAAGCTG	4740
	ATCATGATTT	AAATATTATG	CAAGATCAAC	AAACATTAGC	AGGCCTTACG	GCGAATGCAC	4800
‡O	TTGCTAAACT	TGATAGCATC	ATTAATGAGG	AACAACCGGA	TATGATTTTA	GTACATGGTG	4860
•0	ATACTACAAC	GACTTTTGTA	GGAAGTTTGG	CAGCATTTTA	TCATCAAATT	CCGGTCGGAC	4920
	ATGTAGAAGC	TGGACTTCGA	ACACATCAGA	AATACTCACC	ATTTCCTGAA	GAGTTAAATC	4980
1 5	GAGTCATGGT	AAGTAATATT	GCTGAATTGA	ATTTTGCGCC	AACAGTAATT	GCAGCTAAAA	5040
	ATTTACTTTT	TGAAAACAAA	GACAAAGAGC	GTATCTTTAT	TACTGGAAAT	ACAGTTATTG	5100
	ACGCATTGTC	AACAACAGTT	CAAAATGATT	TTGTTTCAAC	GATTATTAAT	AAACATAAAG	5160
50	GCAAGAAAGT	TGTTTTACTA	ACAGCGCATC	GTCGTGAAAA	TATTGGGGAA	CCGATGCATC	5220
	AGATTTTTAA	AGCAGTAAGA	GATTTGGCAG	ATGAATATAA	AGATGTTGTC	TTCATTTATC	5280

	GGATTGAATT	AATTGAGCCA	TTAGATGCGA	TTGAGTTCCA	TAATTTTACA	AATCAATCGT	5400
	ACCTCGTGCT	GACAGATTCT	GGTGGTATTC	AAGAGGAGGC	TCCTACATTT	GGAAAACCTG	5460
5	TGTTGGTATT	AAGGAATCAT	ACAGAGCGTC	CCGAAGGCGT	TGAGGCGGGA	ACATCGAGAG	5520
	TAATTGGCAC	AGATTATGAC	AATATTGTTC	GAAATGTGAA	ACAATTGATT	GAGGATGATG	5580
	AAGCGTATCA	ACGTATGAGT	CAAGCGAATA	ATCCATATGG	TGATGGACAA	GCATCACGAC	5640
10	GTATTTGTGA	AGCAATAGAA	TATTATTTTG	GATTGCGCAC	AGACAAGCCG	GATGAATTCG	5700
	TACCTTTACG	TCACAAATAA	TAAAAAACCC	CTAATCATGA	AGTTGGTTTA	GACAACCAGC	5760
15	GGTGACTAGG	GGTTTTTAAT	ATATTTATTT	TTGATAGTGG	TAGCCAATAT	CATATTTGAA	5820
	TACTTTATTT	GATAATATTG	GACTTTGCTG	TCCATCGTCA	TCACTTTTTA	AACGTACATT	5880
	TTTATGAGCT	TCTTTAAATA	CATCGGAATT	CAACCAATTA	TTAAAGCTAT	CTTCAGATTC	5940
20	CCAAATAGTT	AAGATTTTAA	CTTCGTCTGT	ATCCTCGGTA	TTTAATGTTT	TAGTGACAAA	6000
	CATTTGTTGG	AAGCCTTCAA	TAGTTTCAAT	ACCTTGTCTA	TTGTAAAAAC	GTTCAATCGT	6060
	TTCTTCCGCA	CTGCCTTTTT	GTAATTGTAA	TCTATTTTCT	GCCATAAACA	TGGGCAATCA	6120
25	CTCCTCTATT	TTATGATTTG	ATTTGGGTAA	TGTTTTTACA	AATGTAAAGA	GTACAGCGGT	6180
	TTGTATGATA	ACCATTATGA	TTAATCCTAC	ACGGACTGCA	AGAACATCCA	CCATATAAAT	6240
	TGAAAAACCT	ATTACAATGT	ATAAGCTAAT	TAAAATTTTA	ATTTTCTGTT	GTAGCGTGTA	6300
30	GCCTCGATGT	AAATAAAAGT	TTTCTACATA	TTCTTTATAA	ATTTTTTGAT	TAATAAGCCA	6360
	ATTGTAAAAG	CGATCTGAAC	TTCGAGCAAA	GCAAAAAACT	GCTACGAGTA	AAAAAGGGGT	6420
	CGTTGGCAGT	AAAGGTAATA	CGGCACCTGC	AATACCAAGC	GCTGTAAATA	TTAAGCCAAT	6480
35	GACGATTAAA	ATAAGTCGCA	TTGAAAAAAC	TCCATTCTAG	TACTAATGCG	CATGTAATAT	6540
	TGTTTTAGTA	ATATAACTCA	TGCTAAATAT	AATGTGTATG	ATAAGTGCAA	TGACTCAGTA	6600
‡ 0	AAATGAAACG	ATGTTGAATT	ATCCTTGTCA	CATTAACGCA	TTTTAAGCGC	GACTTTCATA	6660
•0	ACAACCAAAC	TATTTAATGA	GAATTATTCT	CAAGTATTAT	AGTTATATTA	TGTGTTTTAT	6720
	TTTTGAAAAG	TGCAATATGT	TTTCGAAAAT	AAGATTATTT	TTATGTGCAA	AAACGACGCA	6780
15	AAAGTTTTAA	AAATGAGACT	TCTGTGAGCT	GATTATTTTA	TAAAATGTAA	ACGCTTACTA	6840
	TATAATGTGA	ATCATATCGT	TTAAAAGCAT	TATTAAATAT	GATGCTAAGA	GATTTATATT	6900
	ATAGCCAATA	AACAAAGGAG	AGATAATATG	GCAGTAAACG	TTCGAGATTA	TATTGCAGAG	6960
50	AATTATGGTT	TATTTATCAA	TGGGGAATTT	GTTAAAGGTA	GCAGTGACGA	AACAATCGAA	7020
	GTGACTAATC	CAGCAACTGG	AGAAACACTA	TCACATATTA	CAAGAGCAAA	AGATAAAGAT	7080

	TCAGAACGTG	CACAAATGTT	GCGTGATATT	GGTGATAAAT	TAATGGCACA	AAAAGATAAA	7200
	ATTGCAATGA	TTGAAACATT	AAATAATGGT	AAACCGATTC	GTGAGACAAC	AGCAATTGAT	7260
5	ATTCCATTTG	CTGCAAGACA	TTTCCATTAT	TTCGCAAGTG	TTATTGAAAC	AGAAGAAGGT	7320
	ACAGTGAATG	ATATCGATAA	AGACACAATG	AGTATCGTAC	GACATGAGCC	GATTGGCGTC	7380
	GTAGGTGCTG	TTGTTGCTTG	GAACTTCCCA	ATGCTATTAG	CTGCATGGAA	GATTGCGCCA	7440
10	gCCATTGCTG	CAGGTAATAC	AATTGTGATT	CAACCTTCGT	CTTCAACACC	ATTAAGTTTA	7500
	TTGGAAGTTG	CTAAAATTTT	CCAAGAGGTA	TTACCTAAAG	GTGTTGTCAA	TATACTAACG	7560
15	GGTAAAGGTT	CAGAATCAGG	TAATGCAATT	TTCAATCATG	ATGGTGTAGA	TAAATTATCA	7620
	TTTACGGGCT	CAACTGATGT	AGGTTATCAA	GTTGCCGAAG	CTGCAGCAAA	ACATCTAGTA	7680
	CCCGCTACAT	TAGAGCTTGG	TGGTAAAAGC	GCCAATATCA	TATTAGATGA	TGCTAATTTA	774
20	GACCTTGCAG	TTGAAGGTAT	TCAGTTAGGT	ATTTTATTCA	ACCAAGGTGA	AGTATGTAGT	7800
	GCAGGTTCTC	GATTATTAGT	TCATGAAAAA	ATTTATGATC	AATTGGTGCC	ACGTTTACAA	7860
	GAGGCATTTT	CAAATATTAA	AGTTGGAAAT	CCACAAGATG	AAGCTACACA	AATGGGTAGT	7920
25	CAAACTGGTA	AGGATCAATT	AGATAAAATT	CAATCATATA	TTGATGCAGC	AAAAGAATCA	7980
	GATGCACAAA	TTTTAGCAGG	CGGTCATCGC	TTAACTGAAA	ATGGATTAGA	TAAAGGGTTC	8040
	TTCTTTGAGC	CGACATTAAT	TGctGTGCCA	GACAATCATC	ACAAATTAGC	ACAAGAAGAA	8100
30	ATATTTGGAC	CAGTGTTAAC	AGTGATTAAA	GTGAAGGACG	ATCAAGAAGC	AATTGATATA	8160
	GCTAATGATT	CTGAGTATGG	TTTAGCAGGC	GGTGTATTTT	CTCAAAATAT	CACACGTGCA	8220
	TTAAATATTG	CTAAAGCTGT	ACGTACAGGA	CGTATTTGGA	TTAACACTTA	CAACCAAGTA	8280
35	CCAGAAGGCG	CACCATTTGG	TGGTTATAAA	AAATCAGGTA	TCGGTCGAGA	AACTTATAAA	8340
	GGTGĈGTTAA	GTAACTATCA	ACAAGTTAAA	AATATTTATA	TTGATACAAG	CAATGCTTTA	8400
10	AAAGGTTTGT	ACTAGAATAA	ATATCGTTTC	TGAAGCGTGT	TTGTAGGTCA	GTCTAGCGGT	8460
. •	AAGTCTTAAC	ATTTAACGGC	GTTGTTTAGA	TTTTAAGCAA	AACAAAATAT	ATAGGAACAC	8520
	GTATCATGAT	ATTAGGATAT	AATGACTAAA	ATAATAGCAG	TAGGATGGTT	TTTAATTGCA	8580
1 5	AATCATCTTA	CTGCTGTTTT	TAATTATGCT	AATTTGCGAT	GCGGCTATTA	TAAGGACAGA	8640
	GTTGTTTATT	AATTATGGTG	ATTTAGAAAT	ATGAAGTTCA	ATATGCAAAG	TCATCGTTTG	8700
	TTTTAATATG	CGGAACAATC	ATTAAAGTTA	TTGCGATTTT	TTGAACTTAA	TGAAACTAAA	8760
50	CAATAAATTT	GAGATACTTT	TTTGTCATTT	TTATGTAACT	AACACAATAA	TCTCGTACAT	8320
	TO A THE R A B A STREET	THE COURT OF THE R	TACCAATAAA	CONNECCCC	NOTION CONCE	A A A A COMPONE	0 2 0 7

	GATGATGTAT	AAATCATGGT	TAATTACGGA	AGCATTAATA	TTAACCTGAG	AAGCTATAAA	9000
	GAATTATTTT	TAAAAGCGAC	AATATTAAAT	ACGACGCATT	TATTTAGGAG	TGGCAAACGT	9060
5	ATGAATGGGA	AAAAGGCGAA	TACGATAAAC	AGATACAAAT	ATTTTCATCA	TGTCAATCAT	9120
	CAAAAAATTC	AACAAAGTTC	TAAAAAGACG	CTGTGGGCAT	CACTAATCAT	CACATTGTTA	9180
	TTTACAGTGA	TTGAATTTGT	CGGAGGTTTA	GTATCTAATt	CATTGGCATT	ACTGTCAGAT	9240
10	TCATTTCATA	TGCTTAGTGA	TGTATTAGCA	CTTGGTTTAT	CTATGTTGGC	CATTTATTTT	9300
	GCAAGTAAAA	AGCCGACTGC	ACGATACACA	TTTGGATATT	TAAGATTTGA	GATATTAGCT	9360
15	GCATTTTTAA	ATGGTTTAGC	ATTAATTGTA	ATTTCAATCT	GGATTTTATA	TGAAGCTATT	9420
	GTACGTATTA	TTTATCCGCA	ACCAATTGAA	AGTGGCATTA	TGTTTATGAT	TGCTAGTATT	9480
	GGTTTACTCG	TCAATATTAT	TTTGACTGTT	ATCCTTGTAA	GGTCTTTAAA	ACAAGAAGAC	9540
20	AATATCAATA	TTCAAAGTGC	ATTATGGCAT	TTCATGGGAG	ACTTATTGAA	CTCTATTGGT	9600
	GTCATCGTTG	CAGTTGTATT	GATTTACTTT	ACAGGATGGC	GCATCATCGA	CCCAATCATT	9660
	AGTATTGTAA	TTTCACTCAT	CATTTTACGT	GGTGGTTATA	AAATTACGCG	TAATGCgTGG	9720
25	ttaattttaa	TGGAAAGTGT	GCCTCAACAT	TTGGATACTG	ATCAAATTAT	GGCAGATATT	9780
	AAAAACATAG	ATGGCATATT	AGATGTACAT	GAATTTCATT	TGTGGAGTAT	TACAACAGAG	9840
	CATTATTCAT	TAAGTGCCCA	TGTTGTGTTA	GATAAAAAAT	ATGAGGGTGA	TGATTATCAA	9900
30	GCGATTGATC	AAGTATCATC	ATTGTTGAAA	GAAAAATATG	GCATTGCACA	TTCAACGTTG	9960
	CAAATTGAAA	ACTTGCAATT	GAATCCATTA	GATGAGCCAT	ACTTCGACAA	ATTAACATAA	10020
	ATAAAACATT	GTAGCGCCTA	AAACATTAAT	CTATGTCATA	GGCGCACGTT	TCGTTTTATA	10080
35	CTTATGTTGC	ATCATTTAAA	TGATTTTCGT	CAATTTCTTT	GATGCTATCT	ACATCTAACA	10140
	CGACATCTTT	AGGTTTCAAA	ATATGAATAT	GTTTTTCATC	ATTTGTATGT	AAAATGCGTT	10200
	CTATGATGTA	CCTTTGACCG	GCCATTGTTT	CTACAGCAAT	CTTTTTGTTT	CTAGCTAAAC	10260
10	TTGCTACGAC	AGATTCTTTA	TCCATAATGA	TAGCCCCCTA	TATATATGTT	TATTTACTTA	10320
	TACCCTAACA	TGATTTTTAT	ACTCTTTGAA	AATATATTTT	ACAGAATTTT	ATCTAAATAT	10380
45	TTAAAAAAAT	ATCTTAATAT	CCTTGTAATC	CGATAAGAAT	TATAGTAATA	TTTTTTCAAC	10440
	CATTGTTATA	GGAGGTCTTA	TTAATGACAT	TATTTTTATT	AGAAGCTAAC	AATCTTGATT	10500
	TTGCATCAAC	GAAAGAAGAA	CTAGAAGCAA	AGGCAGCATC	ACTATCTACG	AAGACAATTC	10560
50	CAACATTAAT	TGAAGTACAA	GCTACTGAAA	ATTTAACTCA	TGGTTATTTT	ATTGTGGAAG	10620
	CAAATGACGA	aGCAGAAGCT	AAACAATTTT	TAACAGAAGC	AGATATTAGT	ATTCAATTAG	10680

	TTGATTACCT	TGTAACTTGG	AACATTCCGG	AAGGCATTAC	GATGGATCAA	TATTTAGCAC	10800
	GTAAAAAGAA	AAATTCTGTT	CATTATGAAG	AAGTGCCAGA	AGTTGAATTT	AAACGCACAT	10860
5	ATGTATGTGA	AGATATGTCT	AAATGTATTT	GTTTATACAA	CGCACCTGAT	GAAGAAGCGG	10920
	TACGTCGCGC	GCGCAAAGCA	GTTGATACAC	CGATTGATGG	CATCGAAAAA	CTTTAATAAG	10980
10	ACAACAAGTT	GATGAGATAT	ATGTATATAG	GTTTGGCATG	GATTTCGATT	GCAGTTAATT	11040
70	AGAATAGCTC	AATGCTATAA	ATGTAAGTAG	TTGATATGAA	GAAACTAATG	AACTAAATGC	11100
	AAGTATTGTC	TAAAACAATC	ATTTTATTGA	AATTTAGTAG	AGCTGAAATT	AATATAACGT	11160
15	CGTTAATTGA	ATAACGCTTA	TGTTATAAGA	GCACTCATAC	CAAACCATAA	TCATCTATAG	11220
	ATATAACAAT	TCACGATATA	AGGGCTGTGT	TTGGCATAGC	CCTTTAGATA	TACACTTAAT	11280
	TCCTATTAAA	ATAGTAGGGA	TTAAAAGGGG	GCTTGTCATG	ATTAAAATTC	AACAATTACA	11340
20	ACATCACTTT	GGATCACATA	AAGTAATTCA	TAACTTTAAT	TTGGACATTA	GCAAGGGAGA	11400
	AATAGTCACT	TTCATAGGGA	AAAGTGGTTG	CGGAAAGTCT	ACTTTACTCA	ATATTATCGG	11460
	TGGATTTATT	CATCCATCGT	CTGGTCGTGT	CATTATTGAT	AACGAAATTA	AACAACAGCC	11520
25	ATCTCCAGAT	TGTTTAATGC	TATTTCAACA	TCATAATTTG	CTGCCATGGA	AAACGATTAA	11580
	TGACAACATT	AGGATTGGAT	TACAACAGAA	AATTAGTGAT	GAAGAGATTA	ACGCACAGCT	11640
	TAAATTAGTT	GATTTAGAAG	ACAGGGGAAA	GCATTTTCCC	GAGCAACTGT	CCGGGGGTAT	11700
30	GAAACAACGT	GTGGCACTAT	GTCGAGCGCA	TGTGCATAAG	CCTAACGTTA	TATTGATGGA	11760
	TGAGCCATTA	GGTGCATTAG	ATGCATTTAC	ACGTTATAAA	CTTCAGGATC	AACTAGTGCA	11820
	aCTAAAACAT	AAAACGCAAT	CAACTATTAT	TTTAGTGACG	CATGACATTG	ATGAAGCTAT	11880
35	TTATCTTTCC	GACCGCATTG	TTCTGTTAGG	TGAAGGGTGC	AATATTATTT	CTCAATATGA	11940
	AATTACAGCA	TCACATCCAC	GCAGTCGTAA	TGATAGCCAC	CTACTTAAGA	TTCGTAATGA	12000
40	AATTATGGAA	ACATTTGCAT	TGAATCATCA	TCAAGTTGAA	CCTGAATATT	ATTTATAAGG	12060
40	AGTGAGTGAC	GATGAAAAGG	TTAAGCATAA	TCGTCATCAT	TGGAATCTTT	ATAATTACAG	12120
	GATGTGATTG	GCAAAGGACG	TCTAAAGAAC	GGTCTAAAAA	TGCCCAAAAT	CAGCAAGTGA	12180
45	TTAAAATTGG	ATATTTGCCG	ATTACACATT	CAGCTAATTT	GATGATGACT	AAAAAATTAT	12240
	TATCACAATA	CAATCATCCG	AAATATAAAC	TAGAATTAGT	TAAATTCAAT	AATTGGCCAG	12300
	ATTTAATGGA	CGCATTAAAC	AGTGGTCGTA	TTGATGGTGC	ATCAACTTTA	ATAGAGCTAG	12360
50	CGATGAAATC	AAAACAGAAG	GGCTCAAATA	TAAAGGCTGT	GGCATTGGGC	CATCATGAAG	12420
	GCAATGTCAT	TATGGGACAA	AAAGGTATGC	ACTTAAATGA	ATTTAATAAT	AATGGCGATG	12480

	GTAAACAATT	AAAGATTAAA	CCGGGGCATT	TTAGCTATCA	TGAAATGTCG	CCAGCAGAAA	12600
	TGCCAGCCGC	ATTGAGTGAA	CACAGAATTA	CAGGGTATTC	TGTAGCCGAA	CCATTCGGTG	12660
5	CACTGGGTGA	AAAGTTAGGC	AAAGGTAAGA	CTTTGAAACA	TGGTGATGAC	GTTATACCTG	12720
	ATGCGTATTG	CTGTGTGCTA	GTACTGAGAG	GGGAATTGCT	TGATCAACAC	AAGGATGTAG	12780
	CGCAAgCATT	TGTACAAGAT	TATAAAAAGT	CTGGCTTTAA	AATGAATGAT	CGCAAGCAAA	12840
10	GTGTAGACAT	TATGACGCAT	CATTTTAAAC	AAAGTCGTGA	CGTTTTAACA	CAGTCAGCGG	12900
	CATGGACATC	CTATGGTGAT	TTAACAATTA	AGCCATCCGG	CTATCAAGAA	ATTACGACAT	12960
15	TGGTAAAACA	ACATCATTTG	TTTAATCCAC	CTGCATATGA	TGACTTTGTT	GAACCGTCAT	13020
	TGTATAAGGA	GGCATCGCGT	TCATGACACG	TCCCACAAAT	AACAAATTTA	TATTACCTAT	13080
	TATCACATTT	ATTATTTTCT	TAGGCATTTG	GGAAATGGTC	ATTATTATTG	GGCATTACCA	13140
20	ACCTGTATTG	TTACCGGGTC	CTGCTCTTGT	AGGAAAAAGT	ATATGGTCTT	TCATTGTTAC	13200
	TGGAGAAATT	TTCCAACATT	TAGCAATTAG	TTTATGGAGA	TTTGTAGCGG	GCTTTGTTGT	13260
	CGCATTGTTG	GTTGCTATTC	CATTGGGCTT	CTTGCTTGGA	AGGAATCGTT	GGCTATACAA	13320
25	CGCTATCGAA	CCGCTATTTC	AATTGATTAG	GCCGATATCT	CCGATAGCAT	GGGCACCATT	13380
	TGTTGTTCTA	TGGTTTGGTA	TTGGTAGTTT	GCCAGCGATT	GCGATTATTT	TTATCGCTGC	13440
	TTTTTTCCCA	ATTGTGTTCA	ATACTATTAA	AGGCGTTAGA	GACATTGAAC	CTCAATATTT	13500
30	AAAAATAGCA	GCAAATTTAA	ATTTAACTGG	GTGGTCATTG	TATCGCAATA	TATTATTTCC	13560
	CGGGGCATTT	AAACAAATCA	TGGCTGGGAT	ACATATGGCG	GTAGGAACAA	GTTGGATATT	13620
	TTTAGTTTCT	GGTGAAATGA	TTGGTGCACA	ATCGGGATTA	GGTTTTTTAA	TCGTTGATGC	13680
35	ACGAAATATG	TTGAACTTAG	AAGATGTTTT	AGCAGCAATA	TTCTTTATCG	GATTATTTGG	13740
	TTTTATTATT	GATCGATTCA	TTAGTTATAT	TGAGCAGTTT	ATACTTAGAA	GATTTGGTGA	13800
	ATAÁGGAGAG	ATGATGATGA	CTTTAGAAAC	GCTTATCAAA	GAACAATTAG	ATCCTCATTT	13860
10	AGTAGAAGTT	GATGAAGGGA	CGTATTATCC	GAGAACATTT	ATTCAGCAAT	TATTTGTAGA	13920
	TGGTTATTTC	GGTGAGGCGG	CATTGAGAAA	AAATGCTGAA	GTAATCGAAG	CTGTATCGCA	13980
1 5	GTCTTGTTTG	ACAACAGGAT	TTTGTTTATG	GTGCCAATTA	GCTTTTTCAA	CGTATTTAGA	14040
	AAATGCCACG	CAGCCACATT	TAAATAATGA	CTTACAACAG	CAATTGTTAT	CTGGAGAAAT	14100
	ATTAGGTGCT	ACCGGATTGT	CTAATCCGAT	GAAGTCATTT	AATGATTTAG	AAAAGTTGAA	14160
50	CCTTGAACAC	ACTTATGTTG	ATGGACAATT	GGTTGTCAGT	GGACGTATGC	CAGCTGTAAG	14220
	ma ama mmoa a	CARCACANT	N TOTAL COMPAC	CATTOCALA	CARCAARCAT	CACAMOAAMO	14000

	TTTAGGAGTC	AACGGGTCAG	CAACGTATCA	AATCACATTG	AATCAAGTCG	TAGTGCCACA	14400
	ATCACAAATT	ATCACGCATG	ATGCGAAGCA	GTTTGCGGCA	ACTATTCGCC	CGCAATTTAT	14460
5	TGCTTACCAA	ATTCCAATAG	GATTAGGCTC	AATTAAAAGT	TCTTTAGAGT	TAATTGATGC	14520
	ATTTTCAAAT	GTGCAAAACG	GAATAAATCA	ATATTTAGAG	TATGATGTTG	AAGCTTTTAA	14580
	AAAACGTTAT	CGTCAACTTA	GAGAGGAATA	TTATGCAATA	TTAGATGACG	GTAACTTAAC	14640
10	TTCACATTTA	AATGAATTAA	TATCATTGAA	GAAGGACATC	GGCTATTTAT	TGTTAGATGT	14700
	AAATCAAGCT	TCTGTTGTCA	ATGGTGGTTC	TAGAGCGTAC	ACACCATATT	CGCCACAAGT	14760
15	TCGCAAGTTA	AAAGAAGGAT	TCTTCTTCGC	AGCATTGACA	CCGACATTAA	GACATTTAGG	14820
	TAAACTTGAA	GCAGAGTTGA	AGGGGTAAGT	GTGATAAGCT	GATTTTTTGT	TTAGATGCGT	14880
	TTGTTGAAAC	ATTTTTTAAA	ATAATATAAA	TCTTAGTTTA	TAAACATTTT	CTGTTAATTT	14940
20	GTTATATCCT	TTTAACTAGG	AAAATATACA	TTTCGTAATA	ATAATAATCG	TTATCATTGA	15000
	AAAAGTGTTA	ATAAGGTGTA	TAATGAAAAT	GTGAACAATT	AATGAACTTC	TTATTTTAAA	15060
	GAAGGTGAAT	ACTATAGATA	CGCATACTAA	AGAACAACAA	TTCTCGAATC	TAGTAAGATC	15120
25	TTATCGTAAA	GAATACGTGG	GTAAAGGACC	CAATAGTATT	CGAGTGTCGT	TTAAAGATAA	15180
	TTGGGCGATT	GCACATATGA	CAGGTGTTTT	GAGTAAAGTT	GAGAGTTTTT	ACCTAAACGA	15240
	CAAACGCAAT	GAATCGATGC	TCCATTATAC	ACGCACAGAG	AAGATTAAAC	AGATGTATAA	15300
30	AGAAATAGAT	GTAAATGAGA	TGGAAAGTCT	TGTAGGCGCT	AAGTTTGTAA	AATTATTTAC	15360
	AGATATTGAT	TTGAATGATG	ATGAAGTCAT	TTCAATATTT	GTTTTCGATA	AGTCAATAGA	15420
	ATAAGTGTTG	CTGGTGTAAG	GTACACGGTG	CTGTTTGCTA	ACTTCGCTTT	GAATTTAACA	15480
35	ATAATTCAAG	GGGGTGGTAT	GTCAAACGGT	GCCGTTTTTT	TGTCATATTT	TTAAAACAAG	15540
	CAACATGCAA	CACGTACTTT	AAGGAAGTCA	AAATTTATCA	TTTAGGAGAG	ATGGATATGA	15600
	AAATCGTAGC	ATTATTTCCA	GAAGCAGTAG	AAGGTCAAGA	AAATCAATTA	CTTAATACTA	15660
10	AAAAAGCATT	AGGATTAAAA	ACATTTTTAG	AGGAAAGAGG	ACATGAGTTC	ATTATATTAG	15720
	CAGATAATGG	TGAAGACTTA	GATAAACATT	TACCAGATAT	GGATGTGATT	ATTAGTGCGC	15780
1 5	CATTTTATCC	TGCATATATG	ACTCGTGAAC	GTATTGAAAA	AGCACCGAAC	TTGAAATTAG	15840
	CAATTACAGC	AGGTGTAGGA	TCTGACCATG	TAGATTTAGC	GGCAGCAAGT	GAACACAATA	15900
	TTGGTGTCGT	TGAAGTTACA	GGAAGTAATA	CAGTTAGTGT	GGCAGAACAT	GCGGTTATGG	15960
50	ATTTATTAAT	ACTTCTTAGA	AACTATGAAG	AAGGTCATCG	TCAATCAGTA	GAAGGTGAAT	16020
	GGAACTTGTC	TCAAGTAGGT	AATCATGCGC	ATGAATTACA	ACACAAAACA	ATTGGTATTT	16080

TACAACACTA	TGATCCAATC	AATCAACAAG	ACCATAAATT	GTCTAAATTT	GTAAGCTTTG	16200
ATGAACTTGT	TTCAACAAGT	GATGCGATTA	CAATTCATGC	ACCATTAACA	CCAGAAACTG	16260
ATAACTTATT	TGATAAAGAT	GTTTTAAGTC	GTATGAAAAA	ACACAGTTAT	TTAGTGAATA	16320
CTGCACGTGG	TAAAATTGTA	AATCGCGATG	CGTTAGTTGA	AGCGTTAgCA	TCCGAGCATT	16380
TACAAGGATA	TGCTGGTGAT	GTTTGGTATC	CaCAACCtGC	ACCTGCTGAT	CATCCATGGA	16440
GAACAATGCC	TAGAAATGCT	ATGACGGTTC	ACTATTCAGG	TATGACTTTA	GAAGCACAAA	16500
AACGTATTGA	AGATGGAGTT	AAAGATATTT	TAGAGCGTTT	CTTCAATCAT	GAACCTTTCC	16560
aagataaaga	TATTATTGTT	GCAAGTGGTC	GTATTGCTAG	TAAAAGTTAT	ACAGCTAAAT	16620
AGAATAAGGA	TGCTGGGCTA	GCGATTAACG	CTTTCAATTT	TATATAAATG	AATCATATAA	16680
GCACTACTGC	TGTTGTAAAG	ATGGCAGTAG	TTTTTTTATG	ATTACATCTA	AGTATAGTCA	16740
CGGCTATGTT	AGGACAATGA	TTTAACATTT	ACGCACATAT	GTGTTCACTT	ACGCAATTAT	16800
TGAnAAATnT	CATTCATGTG	GnAATC				16826

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4012 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

35

40

45

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

TTCAATGAGA	GTAGTGGGCT	GATGTTTAGC	GATATCGCGT	AAGATTAACC	ATTGGCCATA	60
ATATATATTG	TGTTTTTCTA	AAATCGGCTC	GGCTAATTTT	AAATAGGGGC	GATATATTGT	120
татҗаааста	TTGAAAAATT	CTTGTGATAG	CATAGTGACA	TCTCCTAAGA	CAAAATAGTT	180
AGCTTAGCTA	mCCTTTTTAC	AACAATAGTA	ATTATAAAAC	GGGAGCAATT	AGAAATCAAT	240
ATATAATTAT	TAAGAGCAAA	AATAATTATA	CTTTGTTAAA	ATAAGCGTAA	TTACATGTAA	300
ATAGGGGGAT	ACTAATGATA	TTGAAATTTG	aTCACATCAT	TCATTATATA	GATCAGTTAG	360
ATCGGTTTAG	TTTTCCAGGA	GATGTTATAA	AATTACATTC	AGGTGGGTAT	CATCATAAAT	420
ATGGAACATT	CAATAAATTA	GGTTATATCA	ATGAAAATTA	TATTGAGCTA	CTAGATGTAG	480
AAAATAATGA	AAAGTTGAAA	AAGATGGCAA	AAACGATAGA	mGGCGGAGTC	GCTTTTGCTA	540
CTCAAATTGT	TCAAGAGAAG	TATGAGCAAG	GCTTTAAAAA	TATTIGTTIG	CGTACAAATG	600
ATATAGAGGC	AGTTAAAAAT	AAACTACAAA	GTGAGCAGGT	TGAAGTAGTA	GGGCCGATTC	660

55

	ATCAGGATGA	TGATGAAATT	AAGCCACCAT	TTTTTATTCA	ATGGGAAGAA	AGTGATTCCA	780
	TGCGTACTAA	AAAATTGCAA	AAATATTTTC	AAAAACAATT	TTCAATTGAA	ACTGTTATTG	840
5	TGAAAAGTAA	AAACCGATCA	CAAACAGTAT	CGAATTGGTT	GAAATGGTTT	GATATGGACA	900
	TTGTAGAAGA	GAATGACCAT	TACACAGATT	TGATTTTAAA	AAATGATGAT	ATTTATTTTA	960
	GAATTGAAGA	TGGTAAAGTT	TCAAAATATC	ATTCGGTTAT	CATAAAAGAC	GCACAAGCAA	1020
10	CTTCACCATA	TTCAATTTTT	ATCAGAGGTG	CTATTTATCG	CTTTGAACCA	TTAGTATAAA	1080
	TATACGTAAG	TGCTATGAGC	GAGAATGCCC	ATATGAATAA	TGACAAGCAC	AATGGAAAGA	1140
	ATCGTTAATA	TATTATTTAA	TCGTGATGAC	ТТААТТАААА	TGAAAAAGAT	TGATAATATA	1200
15	AATGTGAAAA	AGATAAGTAT	AACCCGTAAA	CTAAAGTAAT	TCACGGTGAG	AGGTTGACTC	1260
	AATGTCATAA	TGATTGCAAC	GATGTTCATA	ATTATAAATA	GACTTAAAAT	AATTGTTCTC	1320
20	ATATCAAACA	CCTCATTGTT	AGATTATTGA	CATTATAACA	GGGGTAATTG	TATATGAACA	1380
.0	TTAATGTGGT	TGCTTGAGGA	TTATTTAAAA	CATTGAAGTC	AAGTTGGTTC	ATTTTAGAAA	1440
	TGAATATCGT	GTTAGATGAT	GAAAGTATAT	TGAAGTATAG	GTAACTAGTT	GAAAAGTATT	1500
?5	AATTGTACGA	TAACATTAAA	TTTAACACGA	AACATAGATA	TAAAATGATT	CACAATTAAA	1560
	ATGGGTAAAT	TTGAACTTGC	TAAACTATTA	ATTGGAGCAT	GGACATTTCA	AAAATAAGAG	1620
	TTCAAATCTT	ACACAAGCTC	TGAATCGACA	CTATAAGATA	CAAACTGTAT	AATTAAAGGT	1680
30	ATTGTTAAAT	AGAAGGAGAT	ATCATAAATC	ATGGAAAAGA	TGCATATCAC	TAATCAGGAA	1740
	CATGACGCAT	TTGTTAAATC	CCACCCAAAT	GGAGATTTAT	TACAATTAAC	GAAATGGGCA	1800
	GAAACAAAGA	AATTAACTGG	ATGGTACGCG	CGAAGAATCG	CTGTAGGTCG	TGACGGTGAA	1860
35	GTTCAGGGTG	TTGCGCAGTT	ACTTTTTAAA	AAAGTACCTA	AATTACCTTA	TACGCTATGT	1920
	TATATTTCGC	GTGGTTTTGT	TGTTGATTAT	AGTAATAAAG	AAGCGTTAAA	TGCATTGTTA	1980
	GACAGTGCAA	AAGAAATTGC	TAAAGCTGAG	AAAGCGTATG	CAATTAAAAT	CGATCCTGAT	2040
10	GTTGAAGTTG	ATAAAGGTAC	AGATGCTTTG	CAAAATTTGA	AAGCGCTTGG	TTTTAAACAT	2100
	AAAGGATTTA	AAGAAGGTTT	ATCAAAAGAC	TACATCCAAC	CACGTATGAC	TATGATTACA	2160
	CCAATTGATA	AAAATGATGA	TGAGTTATTA	AATAGTTTTG	AACGCCGAAA	TCGTTCAAAA	2220
15	GTGCGCTTGG	CTTTAAAGCG	AGGTACGACA	GTAGAACGAT	CTGATAGAGA	AGGTTTAAAA	2280
	ACATTTGCTG	AGTTAATGAA	AATCACTGGG	GAACGCGATG	GCTTCTTAAC	GCGTGATATT	2340
50	AGTTACTTTG	AAAATATTTA	TGATGCGTTG	CATGAAGATG	GAGATGCTGA	ACTATTTTA	2400
,,,	GTAAAGTTGG	ATCCAAAAGA	AAATATAGCG	AAAGTAAATC	AAGAATTGAA	TGAACTTCAT	2460

	CAAAA.A.GA	TTAATGATGC	GCAAAATAAA	ATTGCTAAAA	ATGAAGATTT	AAAACGAGAC	2590
	CTAGAAGCTT	TAGAAAAGGA	ACATCCTGAA	GGTATTTATC	TTTCTGGTGC	ACTATTAATG	2640
5	TTTGCTGGCT	CAAAATCATA	TTACTTATAT	GGTGCGTCTT	CTAATGAATT	TAGAGATTTT	2700
	TTACCAAATC	ATCATATGCA	GTATACGATG	ATGAAGTATG	CACGTGAACA	TGGTGCAACA	2760
10	ACTTACGATT	TCGGTGGTAC	AGATAATGAT	CCAGATAAAG	ACTCAGAACA	TTATGGATTA	2820
, 0	TGGGCATTTA	AAAAAGTGTG	GGGAACATAC	TTAAGTGAAA	AGATTGGTGA	ATTTGATTAT	2880
	GTATTGAATC	AGCCATTGTA	CCAATTAATT	GAGCAAGTTA	AACCGCGTTT	AACAAAAGCT	2940
15	AAAATTAAAA	TATCTCGTAA	ATTAAAACGA	AAATAGATTA	ACGACTGAAA	TCTGAACGCT	3000
	CATAAGACTG	TCATTTGCGT	TCAGATTTTT	TTACACAATA	TAGAATGGTT	GAGTAAAATA	3060
	TTTTTGAATA	TAGTGAAAGA	GGGGGAAGTA	CTGTGATAAA	AAAGCTATTA	CAATTTTCTT	3120
20	TAGGGAATAA	GTTTGCTATC	TTTTTAATGG	TTGTTTTAGT	TGTCTTGGGC	GGTGTATATG	3180
	CGAGTGCTAA	ATTGAAATTA	GAATTACTAC	CAAATGTACA	AAATCCAGTT	ATTTCAGTTA	3240
	CAACAACAAT	GCCGGGTGCA	ACGCCACAAA	GTACCCAAGA	TGAAATAAGT	AGTAAAATTG	3300
25	ACAATCAAGT	AAGATCATTG	GCATATGTGA	AAAATGTTAA	AACGCAATCC	ATACAAAATG	3360
	CTTCAATTGT	AACAGTTGAA	TATGAAAATA	ATACAGATAT	GGATAAAGCA	GAAGAACAGC	3420
	TTAAAAAAGA	AATCGATAAA	ATTAAATTTA	AAGATGAAGT	TGGTCAACCA	GAATTAAGAC	3480
30	GTAATTCGAT	GGATGCTTTT	CCGGTTTTAG	CATATTCATT	TTCAAATAAA	GAGAATGACT	3540
	TGAAAAAAGT	AACGAAAGTA	CTGAATGAAC	AATTAATACC	AAAATTGCAA	ACGGTAGATG	3600
	GTGTGCAAAA	TGCGCAATTA	AATGGGCAGA	CGAACCGTGA	AATCACCCTT	AAATTTAAGC	3660
35	AAAATGAACT	TGAAAAATAT	GGGTTGACTG	CTGATGATGT	AGAAAACTAT	CTAAAAACGG	3720
	CAACÁAGAAC	AACGCCACTT	GGATTGTTCC	AATTTGGTGA	TAAAGATAAT	CAATTGTTGT	3780
10	TGATGGTCAA	TATCAATCTG	TTGATGCTTT	TAAAAACATA	AATATTCCAT	TAACGTGGCA	3840
•	GGAGGACCAA	GGGCATCTCA	TCCCAAAGTG	ACCATAAACC	AAATTCAGCC	ATGTCAGACG	3900
	TTATCAGGCA	TCACCACAGC	AAATTCAAAG	CGTCAGCnCC	AATATATAGT	GGATGCCGCA	3960
15	nGAACTAGGG	GTTTAGCGnT	ATCAGTGGTG	TGGCGACTCT	ATTCTAAACG	AT	4012

(2) INFORMATION FOR SEQ ID NO: 48:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7778 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

	CAATATAGGT	CGCCGAGTTT	CAACTACATC	AACTGGTTCA	GTTACATTAG	ATAATGCGCT	60
5	AGGTGTAGGT	GGCTATCCTA	AAGGACGAAT	TATTGAAATT	TATGGTCCTG	AAAGTTCTGG	120
	TAAGACAACA	GTAGCGCTTC	ACGCTATTGC	TGAAGTACAA	AGTAATGGCG	GGGTGGCAGC	180
	ATTTATCGAT	GCTGAACATG	CTTTAGATCC	AGAATATGCT	CAAGCATTAG	GCGTAGATAT	240
10	CGATAATTTA	TATTTATCGC	AACCGGATCA	TGGTGAACAA	GGTCTTGAAA	TCGCCGAAGC	300
	ATTTGTTAGA	AGTGGTGCAG	TTGATATTGT	AGTTGTAGAC	TCAGTTGCTG	CTTTAACACC	360
15	TAAAGCTGAA	ATTGAAGGAG	AAATGGGAGA	CACTCACGTT	GGTTTACAAG	CTCGTTTAAT	420
	GTCACAAGCG	TTACGTAAAC	TTTCAGGTGC	TATTTCTAAA	TCAAATACAA	CTGCTATTTT	480
	CATCAACCAA	ATTCGTGAAA	AAGTTGGTGT	TATGTTCGGT	AATCCAGAGA	CTACACCAGG	540
20	TGGACGTGCA	TTAAAATTCT	ATAGTTCAGT	AAGACTAGAA	GTACGTCGTG	CAGAACAGCT	600
	TAAACAAGGA	CAAGAAATTG	TAGGTAATAG	AACTAAAATT	AAAGTCGTTA	AAAATAAAGT	660
	GGCACCACCA	TTTAGAGTAG	CTGAAGTTGA	TATTATGTAT	GGACAAGGTA	TTTCTAAAGA	720
25	GGGTGAACTT	ATTGATTTAG	GTGTTGAAAA	CGACATCGTT	GaTAAATCAG	GAGCATGGTA	780
	TTCTTACAAT	GGCGAACGAA	TGGGTCAAGG	TAAGGAAAAT	GTTAAAATGT	ACTTGAAAGA	840
	AAATCCACAA	ATTAAAGAAG	AAATTGATCG	TAAATTGAGA	GAAAAATTAG	GTATATCTGA	900
30	TGGTGATGTT	GAAGAAACAG	AAGATGCACC	AAAGTCATTA	TTTGACGAAG	AATAGTACAC	960
	AAATTTATAT	CTATAGTTAA	ACTTAGCAAA	TATCCTTATA	GGATTGATTG	AAAGTGATAT	1020
	TCATCTCATA	AAGCTAGAAT	AATATCTAAC	TTTATGGGAT	ACACTACAAA	TCGAGACTAT	1080
35	AAGGTTTTTT	ATTTATTTA	TTATTACATT	ATCAATAGTT	TTATAATCGA	GCTTCAAAAC	1140
	TTTAĞAAAAT	AGTAGAAATA	GCATTCAATA	TAGTGCAAAA	GTGCAAATTG	ATAACTTGAC	1200
	ACTTATCTCC	TATAAACCGT	ACAATTAATI	TGTATGATTT	ATATATAATT	TCATAAAGTC	1260
10	ATATTGAATT	TCATATAAAG	AGCAAACCCT	AGAAAAGGAG	GTGTTTGTGT	GAATTTATTA	1320
	AGCCTCCTAC	TCATTTTGCT	GGGGATCATT	CTAGGAGTTG	TTGGAGGGTA	TGTTGTTGCC	1380
1 5	CGAAATTTGT	TGCTTCAAAA	GCAATCACAA	GCTAGACAAA	CTGCCGAAGA	TATTGTAAAT	1440
•5	CAAGCACATA	AAGAAGCTGA	CAATATCAAA	AAAGAGAAAT	TACTTGAGGC	AAAAGAAGAA	1500
	AACCAAATCC	TAAGAGAACA	AACTGAAGCA	GAACTACGAG	AAAGACGTAG	CGAACTTCAA	1560
50	AGACAAGAAA	CCCGACTTCT	TCAAAAAGAA	GAAAACTTAG	AGCGCAAATC	TGATCTATTA	1620
	GATAAAAAAG	ATGAGATTTT	AGAGCAAAAA	GAATCAAAAA	TTGAAGAAAA	ACAACAACAA	1680

	CGCATCTCCG	GTCTCACTCA	AGAAGAAGCT	ATTAATGAGC	AACTTCAAAG	AGTAGAGGAA	1800
	GAACTGTCAC	AAGATATTGC	AGTACTTGTT	AAAGAAAAAG	AAAAAGAAGC	TAAAGAAAA	1360
5	GTTGATAAAA	CAGCAAAAGA	ATTATTAGCT	ACAGCAGTAC	AAAGATTAGC	AGCAGATCAC	1920
	ACAAGTGAAT	CAACGGTATC	AGTAGTTAAC	TTACCTAATG	ATGAGATGAA	AGGTCGAATC	1980
	ATTGGACGAG	AAGGACGAAA	CATCCGCACA	CTTGAAACTT	TAACTGGCAT	TGATTTAATT	2040
10	ATTGATGACA	CACCAGAAGC	GGTTATATTA	TCTGGTTTTG	ATCCAATAAG	AAGAGAAATT	2100
	GCTAGAACAG	CACTTGTTAA	CTTAGTATCT	GATGGACGTA	TTCATCCAGG	TAGAATTGAA	2160
15	GATATGGTCG	AAAAAGCTAG	AAAAGAAGTA	GACGATATTA	TTAGAGAAGC	AGGTGAACAA	2220
	GCTACATTTG	AAGTGAACGC	ACATAATATG	CATCCTGACT	TAGTAAAAAT	TGTAGGGCGT	2280
	TTAAACTATC	GTACGAGTTA	CGGTCAAAAT	GTACTTAAAC	ATTCAATTGA	AGTTGCGCAT	2340
20	CTTGCTAGTA	TGTTAGCTGC	TGAGCTAGGC	GAAGATGAGA	CATTAGCGAA	ACGAGCTGGA	2400
	CTTTTACATG	ATGTTGGTAA	AGCAATTGAT	CATGAAGTAG	AAGGTAGTCA	TGTTGAAATC	2460
	GGTGTAGAAT	TAGCGAAAAA	ATATGGTGAA	AATGAAACAG	TTATTAATGC	AATCCATTCT	2520
25	CATCATGGTG	ATGTTGAACC	TACATCTATT	ATATCTATCC	TTGTTGCTGC	TGCAGATGCA	2580
	TTGTCTGCGG	CTCGTCCAGG	TGCAAGAAAA	GAAACATTAG	AGAATTATAT	TCGTCGATTA	2640
	GAACGTTTAG	AAACGTTATC	AGAAAGTTAT	GATGGTGTAG	AAAAAGCATT	TGCGATTCAG	2700
30	GCAGGTAGAG	AAATCCGAGT	GATTGTATCT	CCTGAAGAAA	TTGATGATTT	AAAATCTTAT	2760
	CGATTGGCTA	GAGATATTAA	AAATCAGATT	GAAGATGAAT	TACAATATCC	TGGTCATATC	2820
	AAGGTGACAG	TTGTTCGAGA	GACTAGAGCA	GTAGAATATG	CGAAATAATT	TTTGTCTCCC	2880
35	TCACAAATTA	GTGAGGGAGC	TTTTTTAAGT	TGTAGTCTTA	AtCTAGTTAG	ACAGCACTTT	2940
	ATCGGTAATA	ACTATATTAA	ACAGTAGTTA	TTTGAAAGTA	AGACGGACCT	TATATTAAAT	3000
	AAGAAGTTAT	TGCTTTTAAT	AAAAATGTTT	TAGGCTTCGT	AATTACTATA	TTTATATTAT	3060
40	GTAAACCTAT	AAAGATGATT	GGTTTTCTAT	CCAATAAAAA	AGAAGAGAAG	ATGTAACACA	3120
	TCTTCTCTTC	yGCAATATTA	ATTAGGATTT	ATTTCTAAGT	TGAGTTATTT	TAATTGTAAA	3180
45	TCTGTTTTCT	TTAATTCTTT	TATAACTTCT	GCAGTATCAT	AACAATTTGT	TGCAATTGTT	3240
	GAATATCTCT	CTGCTAAACG	ATATGCATTA	ATGTAAAGCT	TTAAACTTTC	TTTAGCTATA	3300
	TCCTCTGCAT	CTTCGAATTT	TGATGGGTTA	GACATAACCA	CTAATTCTGC	AAATTTTTCT	3360
50	GGATCAATAT	TAATAGACAT	GTATTTATTT	ACAACTCCTA	TTTATTTTGA	TGTCTTAATA	3420
	CTAACATATT	CAACTTTCA	CACAAACTAA	тототота	TA A TTC A A C A	3 3 3 5 T 3 3 TTTC	2400

	GGATGAACAA	AACATGAGAA	TAATGTTTAT	AGGGGATATC	GTAGGTAAAA	TTGGACGAGA	3600
	CGCAATTGAA	ACGTACATAC	CTCAACTGAA	GCAAAAGTAT	AAACCAACAG	TTACAATTGT	3660
5	AAATGCTGAA	AATGCAGCAC	ATGGTAAAGG	TTTGACTGAA	AAAATATATA	AACAATTACT	3720
	AAGAAATGGT	GTAGATTTCA	TGACTATGGG	TAATCACACA	TATGGTCAAC	GTGAAATTTA	3780
	TGATTTTATA	GATGAAGCAA	AACGACTAGT	AAGACCAGCG	AATTTTCCGG	ATGAAGCGCC	3340
10	GGGAATTGGT	ATGAGATTTA	TACAAATTAA	TGATATTAAA	CTTGCAGTTA	TTAATCTGCA	3900
	AGGAAGAGCG	TTTATGCCAG	ATATTGATGA	TCCTTTTAAA	AAGGCAGATC	AATTAGTCAA	3960
15	GGAAGCACAA	GAACAAACTC	CGTTTATATT	TGTTGATTTT	CATGCAGAAA	CAACTTCTGA	4020
	AAAGTATGCA	ATGGGATGGC	ATTTAGATGG	TAGASTAGCG	CTGTTGTTGG	AACGCATACA	4080
	CACATTCAAA	CAGCAGATGA	ACGTATTTTA	CCAAAGGGGA	CAGGGTATAT	AACGGATGTT	4140
20	GGTATGACAG	GTTTTTATGA	TGGCATTTTA	GGAATAAATA	AAACAGAGGT	AATTGAGCGT	4200
	TTTATCACTA	GTTTGCCACA	AAGACATGTT	GTTCCAAATG	AAGGTAGAAG	TGTATTATCT	4260
	GGTGTTGTTA	TTGATTTAGA	CAAAGAAGGT	AAAACAAAGC	ACATCGAACG	TATATTGATA	4320
?5	AATGATGACC	ATCCATTTTC	AACATTTTAA	AATTACGTAA	GTAAACATTC	GAATTGGACC	4380
	CTATCGTCCA	TTAGTATGAA	TTTAATATAG	TACCACTGTT	TACATAGTAA	ATCGGTGGTT	4440
	CTTTTTGTTA	TCATTTAATA	TGAAATATAT	CCATAGGAGG	CATATAACTA	TGAAACCACA	4500
30	ATTATCGTGG	AAAGTTGGCG	GTCAACAAGG	CGAAGGTATT	GAATCAACTG	GGGAAATCTT	4560
	CGCTACGGCT	ATGAATAGAA	AAGGATATTA	TTTATATGGA	TATAGACATT	TTTCAAGTCG	4620
	TATCAAAGGT	GGACATACGA	ATAATAAAAT	TAGAGTTTCT	ACGACGCCTG	TTCATGCAAT	4680
35	TAGTGATGAT	TTAGATATTT	TGATTGCATT	TGACCAAGAA	ACAATTGATG	TTAACCATCA	4740
	TGAAATGAGA	GAAGACAGTA	TTATTTTATC	TGATGCCAAG	GCTAAACCTG	TGAAaCCAGA	4800
	AGGÁTGTCAT	GCACAGCTTA	TTGAATTACC	TTTTACAGCA	ACCGCTAAAG	AATTAGGTAC	4860
10	AGCATTAATG	AAAAACATGG	TTGCAATAGG	TGCTACTAGC	GCATTGATGA	ATTTGAATAC	4920
	AAATACATTT	GAAGAACTTA	TTACTAATAT	GTTTTCTAAA	AAAGGTGACA	AGGTAGTTGA	4980
15	AGTCAATATC	CAAGCATTAA	ACGAAGGTTA	TCAATTAATG	CAATCTCGCT	TACCTGAAAT	5040
	CTACGGGGAC	TTTGAATTAG	AGTCAACAGA	TGCACTACCA	CATCTATATA	TGATTGGTAA	5100
	CGATGCCATT	GGATTAGGTG	CAATTGCTGC	AGGTTCACAA	TTTATGGCGG	CATATCCTAT	5160
50	TACACCTGCG	TCTGAAGTTA	TGGAATATAT	GATTGCCAAT	ATATCTAAAG	TAAACGGAGC	5220
	GGTTATTCAA	ACAGAAGATG	AAATTGCTGC	TGTAACTATG	GCTATTGGTG	CAAATTATGG	5280

	.GGATTATCT	GGTATGACTG	AAACGCCATT	AGTCATTATT	AATACCCAAC	CAGGIGGACC	5400
5	TTCTACTGGA	TTACCTACGA	AACAAGAACA	GTCAGATTTA	ATGCAAATGA	TTTATGGTAC	5460
5	ACATGGTGAT	ATTCCAAAAA	TTGTTGTAGC	ACCAACAGAT	GCAGAAGATG	CATTTTATTT	5520
	AACTATGGAA	GCATTTAATT	TAGCAGAACA	ATATCAATGC	CCTGTTATAG	TTCTAAGTGA	5580
10	TTTGCAATTA	TCTTTAGGTA	AACAAACTGT	TGAAAAATTA	GATTATAATC	GTATTGAAAT	5640
	TAAACGTGGT	GAAATCATTC	AATCTGATAT	TGAACGTGAA	GAAGATGATA	AAGGTTATTT	5700
	CAAGCGTTAT	GCGTtAACAT	CCGATGGTGT	TTCTCCTAGA	CCTATCCCCG	GTGTTAAAGG	5760
15	AGGTATTCAT	CATATAACTG	GTGTGGAaCa	CAATGAAGAA	GGTAAACCTA	GTGAATCTGC	5820
	GTCAAATAGA	CAACAACAAA	TGGAAAAACG	AATGCGTAAA	ATTGAGCAGT	TACTAATTGA	5880
20	ATCGCCAGTA	GAAGCTAACT	TACAACATGA	GGATGCAGAT	ATTCTTTATA	TCGGTTTTAT	5940
20	TTCTACAAAA	GGTGCAATTC	AAGAAGGTAG	TAACCGTTTG	AATCAACAAG	GCATAAAAGT	6000
	TAACACTATA	CAAATTAGAC	AATTGCATCC	ATTCCCAACA	AGCGTTATTC	AAGATGCAGT	60 6 0
25	TAATAAAGCG	AAGAAAGTCG	TTGTAGTGGA	GCACAATTAT	CAAGGACAAT	TGGCTAGTAT	6120
	TATAAAAATG	AATGTCAATA	TTCATGATAA	GATTGAAAAT	TATACAAAGT	ATGATGGGAC	6180
	ACCTTTCCTA	CCACATGAAA	TCGAAGAAAA	AGGCAAAATA	ATTGCTACTG	AAATAAAGGA	6240
30	GATGGTATAG	ATGGCGACAT	TTAAAGATTT	TAGAAATAAT	GTTAAGCCTA	ACTGGTGCCC	6300
	CGGATGTGGC	GATTTCTCAG	TACAAGCTGC	AATTCAAAAA	GCAGCCGCAA	ATATAGGGTT	6360
	AGAACCTGAA	GAAGTAGCTA	TCATCACCGG	TATAGGATGT	TCTGGCCGTC	TTTCAGGATA	6420
35	TATTAATTCT	TATGGCGTTC	ATTCTATTCA	CGGACGTGCA	TTACCTTTAG	CTCAAGGTGT	6480
	AAAAATGGCG	AATAAAGATT	TAACTGTTAT	TGCATCGGGA	GGAGATGGTG	ATGGTTATGC	6540
‡O	TATAGGTATG	GGGCATACAA	TCCATGCTTT	AAGAAGAAAT	ATGAACATGA	CGTATATAGT	6600
	CATGGATAAT	CAAATTTATG	GTTTGACAAA	GGGACAAACA	TCGCCGTCAT	CAGCAGTAGG	6660
	ATTTGTTACT	AAAACAACGC	CAAAAGGTAA	TATAGAAAAA	AATGTTGCGC	CTTTAGAATT	6720
1 5	AGTATTATCA	TCTGGTGCCA	CATTTGTAGC	CCAAGGTTTT	TCAAGCGATA	TTAAAGGATT	6780
	AACAAAACTA	ATTGAAGATG	CAATTAATCA	TGATGGATTT	TCATTCGTTA	ATGTCTTTTC	6840
	ACCATGTGTG	ACTTATAATA	AAATTAACAC	ATACGATTGG	TTTaAAGAAC	ATTTAACAAG	6900
50	TGTTGATGAC	ATTGAAAATT	ATGATTCTAC	AGATAAACAA	TTAGCGACTA	AAACTGTTAT	6960
	TGAACATGAA	TCTTTAGTAA	CTGGTATTGT	TTATCaAGAT	AAAGAAACAC	CATCATATGA	7020
	ATCLCAAATT	AAAGAGTTAG	ATGATmCACC	ACTTGCTAAA	AGAGATATCa	AAATTaCTGA	7080

	TGTATTTATA ACAGATCCAT TTATGCTACT CAGTTTTTTA CTATTACAAA AAATAAAGGA	7200
	GTTTTTAAAA ATGAAAGACA CATTAATGAG TATACAAATA ATTCCTAAAA CACCAAACAA	7260
5	TGACAATGTT ATACCTTACG TAGACGAGGC GATTAAAATA ATTGACGAAT CTGGTTTGCA	7320
	TTTTAGAGTA GGTCCGTTAG AAACGACAGT ACAAGGAAAT ATGAATGAAT GTTTAATTTT	7380
10	AATACAATCA TTAAATGAAC GAATGGTGGA ACTTGAATGT CCAAGTATTA TTAGCCAAGT	7440
	TAAGTTTTAT CATGTGCCAG ATGGCATCAC TATTGAAACT TTAACTGAAA AATATGATGA	7500
	ATAACATTAA AAGTGAAGTA AACTGGATTT GAATTGGCTT GTTAGAGATG ACGTATAACT	7560
15	TTAACTGTTT TTGCACTTTA TAGTTAAATT TAATATAATT ATTAAATGAT ACGGGCAAAT	7620
	AGAAAGGATT TTGTAAAGTG AACGAAGAAC AAAGAAAAGC AAGTTCTGTA GATGTTTTAG	7680
	CTGAGAGAGA TAAGAAAGCA GAAAAAGATT ATAGTAAATA TTTTGAACAT GTTTATCAGC	7740
20	CGCCTAATTT AAAAGCAAGC GCAAAAAAAG AGGTnAAA	7778
	(2) INFORMATION FOR SEQ ID NO: 49:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1128 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG	60
35	TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC	120
	ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT	180
10	CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT	240
	GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG	300
	CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC	360
15	AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC	420
	CTACCACCTA ATAAATGATA TTTTAAAAAT GCTTCTGTAA CTTCCTGTTG GCTAGCACCA	480
	ATTGCGACGG ATCCTTGTGC AATTTTATTA AAACGAACGA TTTGTTCTTT ATAAAAACTT	540
	misconess meetistee	3.0
50	GTCACAAGAA CGCGGTCAAA TGCTTGATTT TCTGCAATTG TATCAAACAT AATTTGTGGT	
50		600

	AATGTATGGG CACTAACTTT TCCAGAGCCG TTCGTCGTTC TATCAACAGT TGCGTCATGA	840
	AAAACGATAA GCTGTTGATC TTTTGTGAGT CTCACATCTG TTTCAAAGCC ATCAACGCCT	900
•	AATTGTTTAG CATAGTCAAA TGCAAGTTGC GTTTGCTCTG GTCTTAAAGC CATACCACCG	960
	CGATGCGCAA ATATATATGG TGCATTGCCT TTGAAAAAAG CAGGGATGGT TTGCTTTTTA	1020
2	GTAATCACTT TATTTTATT GATCATTAAT AGACTACTTA AAAATCCAGC ACCGACTAGT	1080
	ACCGCATTTA AAATGTTTCT GTTTACnTTT TTCATAAAAA ATTCCTCC	1128
	(2) INFORMATION FOR SEQ ID NO: 50:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6252 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
5	CAAGCAAACA ATCGTCGATA AAATTGCTAA AATAATAAAA GTAATTCGAA CTTTCATCAT	60
	GATCATCCTT TGTTTATAGA GTCAATATAA GTATGGAATA TGTTAGGTAT ATAGTCAAAT	120
	GCGTCAACTA ATGGGAATTT TGGCATAGAT AGAGAATTTA AGGCAATTAA AAAGGCATCA	180
)	AACAGTAATA TGCTGCTTGA TGCCCAAATG ATGACTTTAG CTAAATTGAT TAGTCACTTT	240
	TAAAGATAAA GAATTGTCAT GAATTAAAAC TCATGTAATG ATGTGTTACA TTTCGCAATG	300
	ATGGCTTTCA GTTATTTATC GATAACATCA CTCTTGATAC CTTTAGATTT TAAGAAATCT	360
5	TTAATTTTAT CTTGTTGCTT TTTATTAACA TCACCGGCAT ATTTTGTTGG CACGTCGACA	420
	ACATTGATTT TATTTTGCGG TTGATAGCTA AGCTTTTCAA TATCTTCATC AACATTGGCG	480
)	ATTGFACTAT TTAAAGCTTT GAAGTAATTC ATCATTAATT CAACGGGTTT CTTATATTCT	540
	TTAGGAATAT TGTTTTCAGT GACAAATTTC TTGAAATGCA AATCGTTTTT AACAGCTAAG	600
	TTAGATAAGT GGCTAAGTGT TTCTGCTTGT TTTTCAGTCA CTTTTGTTTG ACTGTCAATT	660
5	TGTTTATCTA GTTTATGTTG CATAATATAT TTGTTATCAA GTATATCGCT ATTTACAGAC	720
	AAATACTTTT CTATAGCTTG CTTCATCTCT GCATCACTAA TATCACTATT TTTCTTATCT	780
	GAGTTAAAGA TATCTTTTGT tTCTAATTTT TTAGCGCTTT TAGGTGCATG GATGCCAGTA	840
7	CTTGTATGAT GATCTTCGTT ATCAGATTGA TCGGACGCGC AACCTGTAAG AATTAATGTC	900
	GATGCTAAAA ATGTACTTAG TAGTAATCTC TTTTTCATAA TGTAATATAA CTCCTTAGTT	960
	TATCTTTAAT TGAAAAAATA TGTATTCATG TTTAATAGAG TAACATTGAA TTAGTTTGGA	1020

	TCTATCAATA	A.GCATCATT	TIGGACGITG	TTAAGGA.AG	CTITATCIAL	AAATAACTGC	1140
	ATAATTGGTT	GTACTAATTT	AGACGTAGGT	ATCGTACGTA	AAAGCATAAT	AATTTCGTTC	1200
5	ACATACTTTT	CTTTCTCAAT	ATCATTTTTC	ATATTGATTT	GTTTGCGAGA	GGTACATACT	1260
	TTAAGCATTA	TCGCACATCT	CGTTGTATAT	ATTAAGTTTA	TCATAACATG	ATTTTATGTC	1320
10	GGGATAAAAA	AATAACAGCA	TCTTAACAAA	TGTAAGATAC	TGTCAGTGAA	ATGAATGAAA	1380
	CTTTAGTTTC	TGaTAATATA	GTCAAAGGCA	TTTAATGCTG	CATTTGCACC	AGCGCCCATT	1440
	GAAATGATAA	TITGTTTGTT	CTTCTGATCT	GTGACATCGC	CAGCAGCAAA	TATTCCAGGA	1500
15	ACATTCGTAT	TATTGTTACG	ATCAATCACA	ATTTCACCAC	GTTCGTTTAA	TTCAACAGCA	1560
	TCGTTTAACC	ATGATGTGTT	TGGAAGTAAA	CCAATTTGAA	CAAAGATACC	ATCTAAGTTA	1620
	AGTAGATGTT	CTTCGCCGGT	GTTCATGTCT	TCGTAACGTA	TACCTGTAAC	ATGGTCTTCT	1680
20	CCGACAACTT	CAGTAGTTTT	GGCATTTGTT	TTGATATCAA	CATTTGATAA	AGAACGTAAA	1740
	CGATCTTGTA	ACACGTTGTC	TGCTTTTAAT	TCGCTAGCGA	ATTCGAATAA	TGTAACATGA	1800
25	TTAACGATAC	CAGCAAGGTC	AATTGCTGCT	TCAACCCCAG	AGTTACCGCC	ACCGATAACT	1860
	GCTACGTCTT	TATTTTCAAA	TAGAGGTCCG	TCACAGTGAG	GGCAGAATGC	AACACCTTTA	1920
	TTAATCAATT	GCTCTTCACC	TGGAATGTTT	AGCTTACGCC	AACCTGCACC	AGTAGCAATA	1980
30	ATGACTGTTT	TACTTTCTAA	GACAGCACCG	TTTTCTAACG	TAACTTTAAT	TGCTTCGTCA	2040
	GTCTTTTCGA	TATCTGTAGC	ACGTATACCT	GTCATTGCAT	CAATGTCATA	TTGATCAATG	2100
	TGCGCTGCTA	AGTTAGAAGA	AAATTCAGAA	CCAGTTGTTT	CTTTAACAGT	AATGAAGTTC	2160
35	TCAATACCAG	CAGTATCATT	AACTTGGCCA	CCGATACGAT	CAGCAACTAT	ACCAGTACGT	2220
	AAACCTTTAC	GTGCTGTGTA	AATCGCTGCA	CTACCACTAG	CAGGACCACC	ACCAACGATT	2280
10	AAGĀCATCAT	AAGGTTCTTT	ATTTTCAAAC	TCAGATGCAT	CTGCCGTACT	GCCTAGTTTC	2340
. •	GAAAGAATAT	CTTGGATTGT	CATACGACCA	TTGCCAAATT	CTTCGCCATT	TAAAAAGACA	2400
	GCAGGGACTG	CCATGATGTT	TTCAGATTCT	TCACGGAACA	CTGCACCATC	AATCATAGAA	2460
15	TGCGTGATGT	TAGGGTTGAT	CACACTCATT	AAGTTAAGTG	CTTGAACGAC	ATCAGGACAT	2520
	TTTTGACACG	TTAAACTAAT	GAATGTTTCA	AAATGGAATG	AACCTTCTAA	TTTTTTAATT	2580
	TGGTCAATGA	TTGACTGTTT	TTCTTTAGGT	GCACGACCAC	TAACCTGTAA	AATTGCTAAA	2640
50	ACAAGTGAGT	TAAACTCGTG	ACCTAATGGA	ATACCTGCAA	ATGTTACACC	TGTTTCTTCG	2700
	CCAGGACGAT	TGACTGAGAA	ACTTGGTGTA	CGTTTTAAAG	ATTTTCAGA	AAGAGATAGT	2760
	CTAGGTGACA	TATCAGTAAT	TTCTGTCAAC	AAATCTTTAA	GTTCTTTGGA	TTTATCATCT	2820

	TGTTGTTTTA	AATCAGCATT	AAGCATGGTT	GTAATGCCTC	CTTAGATTTT	ACCTACTAAA	2940
5	TCTAAACCAG	GTTGCAATGT	TTTAGCGCCT	TCTTCCCATT	TAGCTGGGCA	TACTTCGCCA	3000
3	GGGTTTTTAC	GAACATATTG	AGCTGCTTTG	ATTTTGTGAG	CTAATGTACT	AGCGTCACGG	3060
	CCAATTCCGT	CAGCGTTAAT	TTCAGATGCT	TGTACAACAC	CGTCTGGGTC	GATAATGAAT	3120
10	GTACCACGTT	GAGCTAAACC	AGTAGCTTCA	TCTAATACAT	CAAAATTACG	AGTGATTGTT	3180
	TGTGATGGGT	CACCAATCAT	AGTGTAAGTG	ATTTTGCTAA	TTGCATCTGA	ATGGTCATGC	3240
	CATGCTTTGT	GTACGAAGTG	AGTATCAGTT	GATACTGAGA	ATACATTTAC	GCCTAATTTT	3300
15	TGTAATTCTT	CATATTGGTT	TTGTAAGTCT	TCTAATTCAG	TTGGACAAAC	GAATGAGAAG	3360
	TCAGCAGGAT	AGAAGCATAC	TACGCTCCAA	GAACCTTTTA	AATCTTCTTG	TGTAACTTCT	3420
20	TTAAATTGAT	CTTTTTTTGG	ATCGAAArCT	TGCGCTGTAA	ATGGTAAGAT	TTCTTTGTTA	3480
20	ATTAATGACA	TAAATATCTT	CCTCCTAAGA	ATTTAAGTAT	GAATTAGAAC	TATCAATTGA	3540
	TTGCGCTTAA	TTATAATAAT	TCTAATCTCT	TAGTTAGCAT	TATTACATTT	TGATCCAGAA	3600
25	TAGTCAACTG	GATAACTTTG	TAAAGTGAAT	GATTACTTTT	AAAATAAAGA	AAGATAATAT	3660
	AAAGTGCTTT	GATAATGGAT	TTTGTAGTTG	ATGATTTAAA	AGGTTGTGTC	TATATTTAAT	3720
	ATCTTGATTT	TAATGTAAAA	AATGTAAAAA	AAGAAGATTT	GTATTCTCAA	CTAAGTCAAC	3780
30	CTTATTGATA	ATGGTATGAG	AATATTTGTT	CGAGATGGAT	GAAGGTAATG	AGTGAGAAAC	3840
	TGGATTTTTA	AAGTATGAGA	CAATATTTTA	AAAAGTTCAA	TTATTAACTT	ATAAGCAAAT	3900
	AATTGCTATA	AAAAAGTTTG	GACGTGTACA	ATTGCAATAT	GAAGATTTTA	AATTAATTGT	3960
35	AAAGTATCGA	GGAGTGGGTA	ACGTGTCAGA	ACATGTATAT	AATCTTGTGA	AAAAGCATCA	4020
	TTCTGTTAGA	AAATTTAAGA	ATAAACCTTT	AAGTGAAGAC	GTIGTTAAGA	AATTGGTAGA	4080
10	AGCTGGACAA	AGCGCTTCGA	CGTCAAGTTT	CCTGCAAGCA	TACTCAATTA	TTGGTATCGA	4140
	CGATGAGAAG	ATTAAAGAAA	ATTTACGAGA	AGTTTCTGGA	CAACCTTATG	TTGTAGAAAA	4200
	TGGCTATTTA	TTCGTCTTTG	TTATTGATTA	TTATCGTCAT	CATTTAGTTG	ATCAACATGC	4260
15	TGAAACTGAT	ATGGAAAATG	CATATGGTTC	AACGGAAGGT	TTGCTAGTAG	GTGCAATCGA	4320
	TGCAGCATTA	GTTGCCGAAA	ATATTGCGGT	AACTGCTGAA	GATATGGGGT	ATGGCATTGT	4380
	CTTTTTAGGA	TCATTAAGAA	ATGATGTTGA	ACGCGTTCGA	GAAATTTTAG	ACTTACCTGA	4440
50	CTATGTCTTC	CCGGTATTTG	GTATGGCAGT	AGGGGAACCc	GCAGATGACG	AAAATGGTGC	4500
	AGCCAAGCCA	CGCTTACCAT	TTGACCATGT	CTTCCATCAT	AATAAGTATC	ATGCTGATAA	4560
15	GGAAACACAG	TATGCACAAA	TGGCAGATTA	CGACCAGACA	ATCAGCGAGT	ACTATGATCA	4620

	CAAAGCAAGA	TTAGATATGT	TAGAACAATT	GCAAAAATCA	GGCTTAATAC	AGCGATAGCA	4/40
	AGATACCAAA	ATAACCCGCC	CCCCTCTAGC	TTAAAATGAT	AAGTATAGCT	AGAGGGGGCG	4800
5	GGTATTTCTT	GCAATGAATT	AGTGTGAAGT	TAATGCAGCA	TTATCATTTG	AATCGAAAGT	4860
	ATCTTTATCC	CAATGTTTAG	TTAACTTGGC	GGTACCTGTA	CCAGCTAGCA	TTGAATCGTT	4920
10	CACGTTTAAT	GCTGTTCTAC	CCATGTCAAT	CAATGGTTCA	ACGGAGATGA	GCACGCCGGc	4980
	TAAAGCGACT	GGCAAGTTTA	ACGTTGACAA	CACCAATATG	GATGCAAATG	TAGCCCCGCC	5040
	ACCGACGCCA	GCAACGCCGA	ATGAACTAAT	AATCACGACA	GCGATTAACG	TTACAATAAA	5100
15	TTGTAAATCA	ATTTCTACAT	TAGCGACGGG	TGCGACCATA	ATTGCAAGCA	TGGCAGGGTA	5160
	AATGCCTGCA	CAACCATTTT	GTCCAATCGA	CAATCCAAAT	GTCGCAGCGA	AATTGGCAAT	5220
	ACCTTCTGGC	ACGCCTAGAC	GTCTTGTTTG	TGTTTGTACA	TTCAATGGTA	AGGCACCCGC	5280
20	GCTTGAGCGT	GATGTGAATG	CAAAGATTAA	TACTTCCAAA	GTCTTTTTAA	CATAGCGAAT	5340
	TGGGCTAATA	CCTAACAGGC	TTAAAATAAT	TAAGTGAATG	ATATACATCG	TAATTAATGC	5400
25	AGCGTACGAT	GCGATTAAGA	ATTTTCCTAA	AGTCCAAATG	GCGCCAAAGT	CACTTGTCGA	5460
25	TAATGTGTTG	GCCATAATTG	CTAATACACC	GTATGGCGTT	AAACGTAAGA	CGAACGTCAC	5520
	AATCGCCATT	ACTAGTGAAT	AGATAGCGTC	AATCGCACGC	TTAAGCAATT	CACCATGATC	5580
30	AGGTTGTTTG	CGTnTACGCG	TAAATAAGCA	AATCCTATAA	ACGAAGCAAA	TATCACGACA	5640
	GCAATCGTGG	aAGTTGCACG	TTGTCCaGTG	AAATCTAAGA	ATGGATTTTT	AGGCAATAAT	5700
	TCCAAAATTT	GTTGTGGTAA	CGTATGTGCT	GTTAAATCTT	TCGCTTGTTT	AGCAATTTCG	5760
35	CTTCCACGTG	CTTGTTCAGC	GTTACCAAGG	TTAATTGTTG	ATGCATCTAA	ACCAAACACC	5820
	AAGGCATACA	CAACACCAAC	AATCGCAGCA	ATGGTGACAG	TGCCAATTAA	AAAGATAAAA	5880
	ATGAGACTAC	CAATTTTAGC	AAACTTTTCT	CCGATTTGAA	TTTTAGTGAA	TGCAGCTACA	5940
40	ATAGAAATGA	AAATTAAAGG	CATAACAATC	ATTTGCAACA	ATGCAACGTA	ACCTTGTCCG	6000
	ACAATGTTGA	ACCAGTCACT	TGTTGATGTA	ATAACATTCG	AATGTGTGCC	ATAAATAAGA	6060
45	TGCAATAACA	CACCGAATAC	TATACCAATC	CCTAAAGCTG	TAAACACACG	TTTCGCAAAA	6120
	GATATATGTT	TGCGAGCCAT	CATGTGCAAT	ATTACGATGA	AAATCACCAA	TACAATAATA	6180
	TTAATCAGTG	TAAGAAAAGC	ATTCATGAAC	GTCACTCCTT	AAATTTTTGA	ATATAATTCC	6240
50	GACTAGTATG	CT					6252

(2) INFORMATION FOR SEQ ID NO: 51:

55

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6730 base pairs

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

5	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	51:		
	ATCAAATCnC	AAAATATTTA	TTAATnAnAA	GGGGATTATC	CaTGTgAGAA	ACAAAGTAAT	60
10	GCTCTTTTTT	TACCTCTTGT	GGGTTGAAAA	aTGGATCATC	AGAGATAGAC	TTCTTCTTTT	120
	TCGAAGATGA	CATTTGATAC	TTTAATCTTC	TAAAACCATA	ACTTGTCGCA	TCAAAAATGC	180
	CTTCTTGTAC	AAGTAAAATC	AAAAATATGC	TAATAAAAAT	AATTAATGAA	ACATAAAACA	240
15	ATATATTTAA	ATATGTAATG	ATAGTATGGC	TATTAAAAAG	CCATATAATA	AACGTTAATA	300
	TTGGCGTTAT	TAGTGCCATT	CCAAGCCATT	TTTTCAACAT	TTGATCACTC	CCACTTATAG	360
20	AAAACTCTTA	CGCATAGTTT	ACATTAAAAT	CAGACATTGA	GGAATGATTT	TTTAATTTCT	420
	TCAGCTTTAT	TGAAATTCTA	AAATCAATCA	TTCTTCATTA	GTTTAAAGCA	AAAAAATATT	480
	GATATATAGT	AAATATTGTA	TATATAATAT	TAGTTAAGAT	TTCaGAAAAT	TTTGAAGGGA	540
25	ATGGAAATTT	AGAAATCGGA	ATTTGTTAGA	GGAGGGGATT	AGATGGGGAA	ATATATTTTC	600
	AAACGATTTA	TTTATATGCT	TATTTCTTTA	TTTATTATTA	TTACAATTAC	ATTTTTCTTA	660
	ATGAAATTAA	TGCCAGGTTC	GCCATTTAAC	GATGCTAAAT	TAAATGCTGA	ACAAAAAGAA	720
30	ATTTTAAATG	AAAAATATGG	ATTAAATGAT	CCTGtAGCTA	CGCAGTATTT	ACATTATTTA	780
	AAAAATGTTG	TTACAGGCGA	TTTTGGTAAT	TCATTCCAGT	ATCATAATCA	ACCTGTGTGG	840
35	GATTTGATTA	AACCGAGACT	ACTACCTTCT	TTTGAAATGG	GTCTTACAGC	AATGTTCaTC	900
	GGTGTGATAC	TGGGACTTAT	TTTAGGTGTT	GCAGCAGCTA	CTAAACAAAA	TTCTTGGGTT	960
	GACTATACAA	CTACAGTTAT	TTCAGTTATT	GCAGTATCTG	TACCATCTTT	TGTACTTGCT	1020
40	GTACTTTTAC	AATATGTATT	TGCAGTTAAA	TTAAGATGGT	TCCCAGTAGC	TGGATGGGAA	1080
	GGTTTTTCGA	CCGCGGTATT	ACCGTCACTT	GCATTATCTG	CAGCTGTTTT	AGCAACTGTC	1140
	GCCAGATACA	TAAGAGCAGA	GATGATAGAG	GTATTAAGTT	CAGACTATAT	TTTATTAGCG	1200
45	AGAGCTAAAG	GTAATTCGAC	AATGCGTGTA	CTTTTTGGAC	ATGCACTTAG	AAATGCTTTA	1260
	ATTCCAATTA	TTACAATTAT	CGTTCCCATG	TTAGCAAGTA	TTTTAACAGG	CACTTTAACA	1320
50	ATTGAAAATA	TTTTTGGAGT	TCCTGGATTA	GGGGATCAAT	TCGTACGTTC	AATTACAACA	1380
	AATGATTTCT	CAGTAATCAT	GGCAATCACA	CTATTATTTA	GCACACTGTT	TATCGTTTCT	1440
	ATTTTTATTG	TAGATATITT	GTACGGTGTG	ATAGATCCAC	GAATTCGTGT	TCcAAGgAGG	1500
55	TAAAAATAA	TGGCTGAAAA	TAAAAACAAT	TTGTCGATTA	ACGACGATCA	TTCTAATGCA	1560

	TGAATCAGGA	ACCTGAAATG	CAACGAGAAA	GCAAAAACTT	TTGGCAAGAT	GCTTGGGCTC	1530
5	AGTTAAAACG	AAATAAGTTA	GCTGTTGTCG	GTATGATAGG	TTTAATTATC	ATTGTAATAT	1740
3	TTGCTTTTAT	CGGTCCAGTT	ATAAATAAAC	ATGATTATGC	TGAACAAAAT	GTAGAACATA	1300
	GAAATCTTCC	GGCAAAAATA	CCTGTATTAG	ACAAAGTTCC	ATTTTTACCT	TTTGATGGTA	1860
10	AAGATGCAGA	TGGCAAGGAT	GCTTATAAAG	CAGCAAATGC	TAAAGAAAAT	TATTGGTTTG	1920
	GTACTGATCA	GTTGGGTCGA	GATTTATGGA	CAAGAACATG	GAAAGGTGCT	CAAATTTCAT	1980
	TGTTTATCGG	TGTTGTTGCA	GCGATGTTAG	ATATTTTTAT	TGGTGTTGTA	TATGGTGCGA	2040
15	TTTCTGGATT	CTTCGGTGGA	CGTGTCGATA	CGATTATGCA	ACGTATACTT	GAAGTCATAG	2100
	CATCTATTCC	GAATTTAATT	GTCGTAATTT	TATTTGTATT	AATTTTTGAA	CCATCCATTT	2160
	GGACAATTAT	ATTGGCTATG	TCTATCACAG	GCTGGTTAGG	CATGAGCAGA	GTTGTACGTG	2220
20	GAGAATTTTT	AAAATTAAAA	AATCAAGAGT	TTGTCATGGC	TTCGAAAACA	TTGGGGGCTT	2280
	CAAAATTCAA	ATTGATATTT	AAGCATATTT	TACCTAATAC	ATTAGGTGCT	ATCGTGGTTA	2340
25	CATCAATGTT	TACAGTACCT	AGTGCTATTT	TCTTCGAAGC	ATTTTTAAGT	TTCATTGGTA	2400
	TAGGTGTACC	CGCACCTCAA	ACATCGTTAG	GGTCATTAGT	AAATGATGGG	CGCGCAATGT	2450
	TATTAATTTA	TCCACATGAA	TTATTTATAC	CAGCAATGAT	TTTAAGTTTA	TTAATTCTAT	2520
30	TCTTTTACTT	ATTTAGTGAT	GGATTACGTG	ATGCATTTGA	TCCGAAAATG	CGTAAATAAA	2580
	AAGGGGGCAT	AGCATATGAC	TGAAAGAATA	TTAGAAGTAA	ATGATTTGCA	TGTTTCCTTT	2640
	GATATTACAG	CAGGGGAAGT	GCAGGCAGTG	AGAGGCGTAG	ATTTTTATTT	GAACAAAGGG	2700
35	GAAACATTGG	CAATTGTTGG	TGAATCAGGT	TCAGGTAAAT	CTGTAACAAC	AAAAGCAATT	2760
	ACAAAATTAT	TCCAAGGGGA	CACAGGAAGA	ATTAAAAAGG	GAGAAATTTT	ATTTTTAGGG	2820
‡ <i>0</i>	GAAGÁTTTAG	CAAAAAAACC	TGAAAATGAG	TTGATTAAAT	TACGTGGCAA	AGATATTTCA	2880
	ATGATCTTTC	AAGATCCAAT	GACATCTTTA	AACCCAACGA	TGCAAATTGG	TAAACAAGTC	2940
	ATGGAACCAT	TAATTAAGCA	CAAAAATTAT	AGTAAAGCAC	AAGCTAAAAA	GCGCGCATTG	3000
15	GAAATACTAA	ATCTTGTAGG	TTTACCAAAT	GCAGAAAAA	GATTTAAAGC	ATATCCTCAT	3060
	CAATTTTCAG	GTGGACAAAG	GCAAAGAATT	GTTATTGCAA	CCGCATTAGC	TTGTGAACCT	3120
	AAAGTGCTCA	TTGCTGATGA	ACCAACGACT	GCATTAGACG	TAACGATGCA	GGCACAAATT	3180
50	TTAGATTTAA	TGAAAGAACT	ACAACAAAAA	ATCGATACAG	CAATTATTTT	TATAACGCAT	3240
	GATTTAGGGG	TTGTTGCGAA	TATTGCTGAT	AGAGTGGCAG	TTATGTATGG	TGGTCAAATG	3300
	GTTGAAACAG	GAGATGTTAA	CGAAATATTT	TATGATCCAA	AGCATCCATA	TACATGGGGA	3360

	GGAGCGCCAC	CTGATTTATT	ACACCCACCT	AAAGGTGATG	CATTTGCGAG	ACGTAGCAAT	3480
5	ATGCATTAGA	TATTGATTTT	AAAGTAGAAC	CACCGTGGTT	TAAAGTTTCA	CCGACACATT	3540
J	TTGTGAAATC	TTGGTTATTA	GACGCACGTG	CACCAAAAGT	TGAACTACCC	GAGCTGGTAA	3600
	AACAACGTAT	GAAACCGATG	CCTAATAATT	ATGAAAAACC	ACTCAAGGTA	GAAAGGGTGT	3660
10	CGTTCAATGA	AAAATGATGA	AGTGCTATTA	TCTATTAAAA	ATTTAAAGCA	ATATTTTAAC	3720
	GCAGGAAAGA	AAAACGAAGT	GgaGCGATTG	AAAATATTTC	GTTTGATATA	TACAAAGGGG	3780
	AAACATTAGG	TTTAGTAGGA	GAATCGGGGT	GTGGTAAATC	TACAACTGGT	AAATCAATTA	3840
15	TTAAACTTAA	TGATATTACA	AGTGGAGAAA	TTTTGTATGA	GGGTATTGAT	ATACAAAAGA	3900
	TTCGTAAACG	TAAAGATTTG	CTTAAATTTA	ATAAAAAGAT	ACAGATGATT	TTTCAAGACC	3960
	CATATGCGTC	TTTAAATCCT	AGGTTAAAAG	TAATGGATAT	AGTAGCTGAA	GGTATTGATA	4020
20	TCCATCATTT	AGCAACTGAT	AAGCGTGACC	GAAAAAAACG	TGTCTATGaT	TTACTTGaAA	4080
	CTGTTGGATT	AAGTAAAGAA	CATGCCAATC	GCTATCCTCA	TGAATTTTCA	GGTGGaCAAC	4140
25	GCCAACGTAT	TGGaATTGCC	CGTGCATTAG	CCGTTGaACC	AGAATTCATT	ATCGCGGACG	4200
	AACCAATATC	GGCATTGGAT	GTTTCAATCC	AAGCTCAAGT	AGTTAATTTA	TTATTAAAAT	4260
	TACAACGTGA	AAGAGGGATT	ACGTTCCTAT	TTATAGCTCA	TGATCTATCA	ATGGTGAAGT	4320
30	ATATTTCAGA	TCGTATTGCA	GTCATGCATT	TTGGGAAAAT	AGTTGAAATT	GGACCGGCAG	4380
	AAGAAATTTA	TCAAAATCCA	TTACACGATT	ATACTAAGTC	TTTATTATCA	GCCATTCCAC	4440
	AACCTGATCC	TGAATCAGAA	CGCAGTCGCA	AACGATTTAG	TTATATTGAT	GATGAAGCAA	4500
35	ATAATCATTT	AAGACAATTA	CATGAAATTA	GACCGAATCA	CTTTGTCTTT	AGTACTGAAG	4560
	AAGAAGCGGC	ACAACTACGA	GAAAATAAAT	TGGTGACACA	AAATTAAGGG	GAAGGGGGAA	4620
40	ATGCAATGAC	GAGAAAATTT	AGAACACTTA	TTTTAATTTT	GATTGCTACA	ATTGCATTAA	4680
40	GTGGTTGTGC	TAATGACGAT	GGTATTTATT	CAGATAAAGG	TCAAGTATTC	AGAAAAATTT	4740
	TGTCATCAGA	CTTAACATCC	CTTGATACAT	CATTAATAAC	GGATGAAATA	TCTTCTGAAG	4800
45	TGAcTGCGCA	AACATTCGAA	GGTTTATACA	CATTAGGAAA	AGGTGACAAA	CCGGTGTTAG	4860
	GTGTTGCGAA	AGCTTTTCCT	GAAAAGAGTA	AAGATGGTAA	AACTTTAAAG	GTTAAATTAA	4920
	GAAGCGATGC	TAAATGGAGC	AATGGTGACA	AAGTGACTGC	ACAAGACTTT	GTTTATGCTT	4980
50	GGAGAAAAAC	AGTTGACCCT	AAAACAGGTT	CTGAATTTGC	ATACATTATG	GGGGACATTA	5040
	AAAATGCGAG	TGATATTAGT	ACTGGTAAGA	AACCTGTAGA	GCAATTAGGT	ATCAAAGCAT	5100
	TAAATGATGA	AACATTACAA	ATTGAATTAG	AAAAGCCGGT	TCCATATATT	AATCAATTAT	5160
55							

	ACGGIACGGC	AGCIGATAGA	GCGGTATACA	Arggreearr	TAAAGIIGAI	GATIGGAAAC	5280
5	AAGAAGATAA	AACCTTACTA	TCTAAAAATC	AGTATTATTG	GGATAAAAAG	AATGTAAAAT	5340
J	TAGATAAAGT	GAATTATAAA	GTTATTAAAG	ACTTACAAGC	CGGTGCATCA	TTGTATGATA	5400
	CTGAATCAGT	AGATGACGCA	TTTATTACTG	CAGATCAAGT	AAATAAATAT	AAAGACAACA	5460
10	AAGGATTAAA	CTTTGTGTTA	ACGACTGGGA	CATTTTTTGT	AAAAATGAAT	GAAAAACAAT	5520
	ATCCTGATTT	TAAAAACAAA	AATTTAAGAT	TGSTATCGCA	CAAGCAATAG	ATAAAAAAGG	5580
	ATACGTTGAT	TCAGTGAAAA	ACAATGGCTC	AATTCCTTCC	GATACACTAA	CAGCCAAAGG	5640
15	AATTGCGAAA	GCGCCTAATG	GCAAAGATTA	TGCGAGTACC	ATGAATTCGC	CTTTAAAATA	5700
	TAATCCTAAA	GAAGCAAGAG	CACACTGGGA	CAAAGCTAAA	AAAGAGTTAG	GTAAAAATGA	5760
	AGTGACATTT	TCAATGAACA	CAGAAGATAC	ACCAGATGCA	AAAATATCTG	CTGAATATAT	5820
?0	CAAATCGCAA	GTTGAGAAAA	ATTTACCAGG	AGTTACTTTG	AAAATTAAGC	AATTACCGTT	5880
	TAAACAAAGA	GTATCACTAG	AACTGAGTAA	CAATTTTGAA	GCATCACTTA	GTGGTTGGTC	5940
?5	TGCAGATTAC	CCTGATCCTA	TGGCTTATTT	AGAAACAATG	ACCACAGGTA	GCGCACAAAA	6000
	TAATACAGAC	TGGGGTAATA	AAGAATATGA	TCAATTACTT	AAAGTAGCAA	GAACCAAATT	6060
	GGCACTTCAA	CCGAACGAAC	GATATGAAAA	CTTGAAAAAA	GCAGAAGAAA	TGTTCCTAGG	6120
80	AGATGCACCG	GTAGCACCAA	TTTATCAAAA	AGGTGTtGCA	CATTTAACAA	aTCCTCAAGT	6180
	AAAAGGATTA	ATTLACCATA	AATTTGGTCC	AAATAACTCA	CTTAAACATG	TATATATTGA	6240
	TAAATCGATA	GATAAAGAAA	CAGGTAAGAA	GAAAAAATAA	TATGCTTTGT	AAATTAGGCT	6300
35	GGAGACATAT	CTCCAGTCTT	TTTGTGTTGG	ATAAAAaCTT	TGGGAATAAA	AATTTAAAAT	6360
	AAGTCGTTTT	TTAAATTACT	GAAATTGATT	AAATGCATAA	ATAACTGAAT	ATTCTAAAAA	6420
10	TAAACTTGTA	ATAATTTTTT	CTATGAGTAA	ACTAAAAAGA	AAAAATTAGA	TTGAAAGTAG	6480
·	GAGGCATATG	TATGGGGAAG	СТААТТАААТ	ATATTTCAAT	ACTTCTTATT	GTCGTTTTAG	6540
	TGTTGAGTGC	TTGCGGAAAA	AGCAGTAATA	AAGATGAAGG	AGTAAAAGAT	GCTACTAAAA	6600
5	CGGAAACCTC	AAAACATAAA	GGTGGTACCT	TAAATGTAGC	ATTAACAGCA	CCGCCAAGTG	6660
	GTGTTTATTC	TTCGTTATTA	AATAGTACAC	ATGCAGATTC	TGTAGTTGAG	GGATATTTTA	6720
	ACGAAAGCTT						6730

(2) INFCRMATION FOR SEQ ID NO: 52:

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6482 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

5	AATTTTTGTC	ATTATTAAAA	ACCTCGCTTT	TAAAAGATTG	AAAAGTAAAT	GAGTGAAATT	60
	AAAGATTATG	CACATTAAAA	TCACGCCACA	ATTTAATTGT	GAAAAATATC	ACAAATATAT	120
	TATAACACTA	AATTTCCCAA	AATTCAAAAG	TGTGTTTTAT	TGCAGAAAAC	TTATAACAyG	180
10	TGCACAAGTT	ATAGTGAATT	GCAAACGGAT	TACTTTAGTC	TTTTTAAAAC	ATGAAGTATA	240
	ATTTGTATAG	CAATAAATAT	AAAAATGGGA	GGCTATGTTC	AATGAGCAAT	ATGAATCAAA	300
	CAATTATGGA	TGCATTTCAT	TTCAGACATG	CGACTAAGCA	ATTCGATCCA	CAAAAGAAAG	360
15	TTTCGAAAGA	AGATTTTGAA	ACAATATTAG	AGTCAGGTAG	ATTGTCTCCA	AGTTCTCTTG	420
	GGTTAGAACC	TTGGAAGTTT	GTCGTGATTC	AAGATCAAGC	GTTACGTGAT	GAATTAAAAG	480
	CGCACAGTTG	GGGCGCAGCA	AAACAATTAG	ATACAGCGAG	CCATTTTGTG	CTAATTTTTG	540
20	CGCGTAAAAA	TGTAACGTCA	AGATCACCGT	ATGTACAACA	TATGTTAAGA	GATATTAAAA	600
	AATATGAGGC	ACAAACGATT	CCAGCTGTTG	AACAAAAATT	CGATGCATTC	CAAGCAGATT	660
25	TCCATATTTC	TGATAATGAT	CAAGCCTTGT	ATGACTGGTC	AAGTAAACAA	ACGTATATTG	720
	CATTAGGCAA	TATGATGACG	ACAGCCGCAT	TGTTAGGTAT	TGATTCATGT	CCGATGGAAG	780
	GTTTTAGTCT	GGATACAGTG	ACAGACATTT	TAGCAAATAA	AGGGATCTTA	GATACTGAGC	840
30	AATTTGGTTT	ATCAGTGATG	GTCGCATTTG	GCTACAGACA	ACAAGAGCCA	CCGAAAAATA	900
	AAACACGCCA	AGCTTATGAA	GATGTTATTG	AATGGGTTGG	ACCAAAAGAA	TAAATAGAAT	960
	ACCGTATGTC	TAAATATATA	AAAATTAAAA	GTTAGCAATA	AAAAAGCCTG	CGATTACATA	1020
35	AATGAATCGC	AGGCTTTTGC	GTGAAAAAAT	TGTATTAATA	AAGTATGGAT	GATTATTTTT	1080
	CTGG&ACAAG	GTCAGTATTT	GAATGAACTG	TGATGTCAAA	CCCTTCTGGT	GCCGTAAATG	1140
40	TATGTGTTGA	GGCGTCGGGT	TGATAAATAT	CAACATGTGT	TAATCCATAA	CTTTGTGAAT	1200
40	TGTTTTGTCT	TGCTTGATTG	GATTGCCAAG	TATTAGCAGC	AATATGATGG	TGATAATGAT	1260
	TCGTTGACAT	AAATAGCGCA	CGTGGAAAAT	CAGACACATG	TTGGAATCCT	AATTGTTCAA	1320
45	TGTAACATTG	ATATGCTGCG	TCTAAATCAT	GTGTTTTTAA	ATGTAAGTGT	CCAATCATGC	1380
	CTTTTGCTGG	CATTCCTTGC	CAACCTTCAT	CAGTACGATG	TGTTAATAAG	GTTTGGCTAT	1440
	CAACTTCTAA	AGTATCCATT	TTAACTTTGC	CATTTTGCCA	TTCCCATGAA	GATGAAGGTC	1500
50	TATCGCGATA	GACTTCAATA	CCATTACCTT	CGGGGTCGTT	GAAATATAAA	GCTTCACTTA	1560
	CTAAATGATC	ACCAGCGCCG	ATGCCCATAT	TTTTTTGTGC	CACGAAATAT	AAGAAGTTAG	1620

	aAGTCTGACG	GCCGTCTTCT	AATAAATGTA	ACGTTAGAGT	ATGGCCACCA	GTCCCAACAG	1740
	ATAATACGGT	TGTATTATCG	TCAGAACTTT	TAACGGATAG	TCCTAAAATG	TTTTTGTAAA	1800
5	ATGTTGTCAT	TAAGTCTAAG	TCTCTTACGT	TCAGTACAAT	GTTTGTCACT	TGTGTTGCTG	1360
	TTTTATCGTG	AAATGCCATT	ATGCATCGCC	TCTTTTTCTA	TTTTTCTATA	AGTTAGTATA	1920
10	AAAAGTATAC	CAGAAAAGAA	AATGAATTGA	TAGCATAAAG	TTTGAAATGC	ААААТААСТА	1980
	GTCGTTTTGC	AATTTTALAT	TGATGCGAAC	AAAAAAGCGA	TGGTACAGTT	GCACCATCGC	2040
	AAAATTTATT	TAACCAAGAT	ATACATCTIG	ATATGAATCT	TCTTTTTCTA	ACATATGTTT	2100
15	GGCAAATGAA	CATGAGGCAA	TAATTTTCAA	ATTATTTTCT	CGAGCGTGTT	CAACAACTGC	2160
	TTTAAGTAGT	TTTTTGCCAA	CACCTTGACC	ACCAAGTTCA	TCAGATACGC	CTGTATGATC	2220
	AATGTTAATT	TCATTATTAT	CCACAAAACG	GTATGTGATT	TCAGCTAAAG	CATTATTTTC	2280
20	ATCATCACCA	ATATAGAATT	TGTTCTCGCC	TTGTTTGATT	TCAAGGTTAC	TCATACATAT	2340
	CAACTCCTAT	CATGATTGAT	TATAGTATTT	CCCTATTCTA	TTTTAACTTA	AACGAAGTCA	2400
	AAGGTGCATG	ACAGTCATGT	GACGACATTG	CCACATCTAT	GTAGTCGTTT	TTATTAAGCA	2460
25	CAGTTTGAAA	TGAAGATGAA	AACACGTATC	TTGACATTAA	ATCTATTCAG	CTATATAATT	2520
	TATCTCGAAA	TCGAAATAAA	ATAAAAAAGT	TGGTGATCAT	ATGGATCGAA	CGAAACAATC	2580
30	TCTCAATGTT	TTTGTCGGAA	TGAATAGGGC	GTTAGACACA	TTAGAGCAAA	TTACAAAAGA	2640
	AGACGTAAAG	CGATATGGCT	TAAATATTAC	TGAATTTGCA	GTGCTCGAGT	TGCTTTATAA	2700
	TAAAGGTCCG	CAACCAATTC	AACGTATTAG	AGACCGCGTA	TTAATTGCAA	GTAGCAGCAT	2760
35	TTCATATGTT	GTAAGTCAAT	TAGAGGACAA	AGGTTGGATT	ACACGTGAAA	AGGATAAAGA	2820
	TGATAAACGT	GTATATATGG	CTTGTTTAAC	TGAAAAAGGT	CAAAGTCAAA	TGGCAGATAT	2880
	TTTÇCCTAAG	CATGCTGAGA	CATTAACAAA	AGCGTTTGAT	GTGTTAACAA	AGGATGAATT	2940
10	AACAATCTTA	CAACAAGCGT	TTAAGAAACT	AAGTGCACAA	TCTACAGAAG	TGTAAGGCGT	3000
	GCACTAAAAA	TTTACATTAA	AGTATCTCGA	TTTCGAGATA	AATGCACTAA	AAATATAAAG	3060
	AGGGTATATA	AAATGATAAA	TAATCATGAA	TTACTAGGTA	TTCACCATGT	TACTGCAATG	3120
1 5	ACAGATGATG	CAGAACGTAA	TTATAAATTT	TTTACAGAAG	TACTAGGCAT	GCGTTTAGTT	3180
	AAAAAGACAG	TCAATCAAGA	TGATATTTAT	ACGTATCATA	CTTTTTTTGC	AGATGATGTA	3240
50	GGTTCGGCAG	GTACAGACAT	GACGTTCTTT	GATTTTCCAA	ATATTACAAA	AGGGCAGGCA	3300
	GGAACAAATT	CCATTACAAG	ACCGTCTTTT	AGAGTGCCTA	ACGATGACGC	ATTAACATAT	3360
	TATGAACAGC	GCTTTGATGA	GTTTGGTGTT	AAACACGAAG	GTATTCAAGA	ATTATTTGGT	3420

	TTAAATGAAG	GGGTAGCACC	TGGTGTACCT	TGGAAGAATG	GACCGGTTCC	AGTAGATAAA	3540
	GCGATTTATG	GATTAGGCCC	CATTGAAATT	AAAGTAAGTT	ATTTTGACGA	CTTTAAAAAT	3600
5	ATTTTAGAGA	CTGTTTACGG	TATGACAACT	ATTGCGCATG	AAGATAATGT	CGCATTACTT	3660
	GAAGTTGGCG	AAGGAGGCAA	TGGTGGCCAG	GTAATCTTAA	TAAAAGATGA	TAAAGGGCCa	3720
10	GCaGCACGTC	AAGGTTATGG	tGAGGTACAT	CATGTGTCAT	TTCGTGTGAA	AGATCATGAT	3780
	GCAATAGAAG	CGTGGGCAAC	GAAATATAAA	GAGGTAGGTA	TTAATAACTC	AGGCATCGTT	3840
	AATCGTTTCT	ATTTTGAAGC	ATTATATGCA	CGTGTGGGGC	ATATTTTAAT	AGAAATTTCA	3900
15	ACAGATGGAC	CAGGATTTAT	GGAAGATGAA	CCTTATGAAA	CATTAGGCGA	AGGGTTATCC	3960
	TTACCACCAT	TTTTAGAAAA	TAAAAGAGAA	TATATTGAAT	CGGAAGTTAG	ACCTITTAAT	4020
	ACGAAGCGTC	AACATGGTTA	ATTGGAATGA	GGAGGATTTG	TGATGGAACA	TATTTTTAGA	4080
20	GAAGGACAAA	ATGGTGCGCC	AACACTAATA	TTATTGCATG	GTACAGGTGG	TGATGAGTTC	4140
	GATTTATTAC	CGTTAGGCGA	AgcATTGAAT	GAAAATTATC	ACTTGTTAAG	TATTAGAGGA	4200
	CAAGTTTCAG	AAAATGGGAT	GAACCGTTAT	TTCAAACGTC	TTGGTGAAGG	TGTTTATGAT	4260
25	GAAGAAGATT	TGGCATTTCG	TGGACAAGAA	TTGTTGACGT	TCATTAAAGA	AGCTGCTGaA	4320
	CGTTATGATT	TTGaTATTGA	AAAAGCAGTA	CTTGTTGGAT	TTTCAAATGG	ATCAAATATA	4380
30	GCGATTAACT	TAATGTTGCG	TTCAGAAGCA	CCATTTAAAA	AAGCATTGTT	ATATGCACCG	4440
	TTATACCCAG	TTGAAGTAAC	GTCAACAAAG	GATTTATCAG	ATGTCAGTGT	GTTGCTTTCT	4500
	ATGGGGAAAC	ATGATCCAAT	TGTGCCATTA	GCTGCAAGTG	AACAAGTCAT	TAACTTGTTT	4560
35	AATACACGTG	GGGCACAAGT	CGAAGAAGTT	TGGGTGAAGG	GCCATGAAAT	TACAGAAACT	4620
	GGATTAACGG	CTGGTCAACA	AATACTTGGG	AAATAACAGT	TCTATTAAGA	AGCGGACAGA	4680
	TGGAÃAAGAT	TTTTACTTTT	CATCTGCCCG	CTTTTTTGAT	TTTGAAGTGC	TGTACTAAAT	4740
40	TTTACAATAG	TATAGATATT	TTAATCGATA	TGAGATTTGC	CGGTAATACG	CTTAATTAAA	4800
	CCTTTATAGA	GTACAGGTAT	GAGTAAGATG	AAACCGAACA	ATCCCATAAT	AGGGAATACT	4860
	TTTCCAATTA	ATGAAATGAa	ACCGATAAAT	GTACTAATAT	AAGTGATGAC	AGCCATTGTA	4920
4 5	ATAATAATGA	TGAAGTAACG	TCTGCTGAAT	GGAACGCTGA	AACGTGACGC	AAATGCATAC	4980
	ATTAATCCAA	CAACAGTATT	GTAGATGACA	AGTATCATAA	TGACAGACAT	AATAATACCA	5040
50	ATTGACGGAG	ACATTTGTGT	CGCTAATTTT	AATGTAGGTA	GATCTACGTG	TTTAATTTTA	5100
	TCGAATTGAG	AAATTAAACC	TAGATTAATC	ATCATGAGTA	AAAATGTAAT	GATTAAACCG	5160
	CCAATCAAGC	CCCCGTATAA	CGTTGAGTCA	CGATATTTAA	CTTTACTACC	CATCACTGAT	5220

	CCAGGTGATA A	ATGATTTCTG	CTTATGAATC	TGAGCATCAT	TATTAGCGGC	AGTAAAATCA	5340
	AGATGACTTG	TTGTGAAATA	GTAGACCGCA	ATCATAATGA	CAATCGCAAT	TAAAAATGGG	5400
5	GTAACACCGC (CAAGCACAGC	AATTAAACGA	TCGAATTTTA	GAAACAGTGT	TGCTAAAATA	5460
	AAGGCGACTA	ATATGAGTGC	GCTCAGCCAA	TACGGTAAGT	TGAAACTTTG	ATGAATGGTT	5520
10	GACGCACCAC	CTGCAGTCAT	AATAATAGCT	AAAGACAACA	TAAACATTGT	TAAAATAATA	5580
	TCAAAACCTC	TTGCAATAGA	GGGGTATAAG	AAATAGTTAA	TTGAATCAGA	ATGATTTCTG	5640
	GACTTTAGAT (GATGACCTGT	ATGCATGACA	ACCATTCCAC	CTAAAGTAAT	CAATAGTCCT	5700
15	GTTACAATAA	TGCCTGAAAT	GCTATATGCG	CCATGACTTG	TGAAAAACTG	GAAAATTTCT	5760
	TGACCAGTAG	CAAAGCCGGC	ACCAACGACA	ACACCAACAA	AGGCAAATGC	CACAATAATG	5820
	GACTCTTTTA A	AGATACGCAT	GATTTAAAAA	TGTCCCTTCG	TAATTTTAAG	TAATATAGAA	5880
20	AATGTAACAT A	ACATGTTAAT	GAAAAATATA	GTACTAATAT	AGTATTTTGT	TAAATTGGAG	5940
	TAGAAGCGAG	GGTGTCGGTC	ATTTCATTAA	TTTATTAGTT	GATTTTGCAT	TTTTTTGCTG	6000
25	TAAAGTTGTT A	ATAATACAGT	TAACAGGAAT	TAGCATAGAT	ACACCAATCC	CCTCACTACT	6060
25	CGCAATAGTG A	AGGGGATTTT	TTTCGGTGTA	GCTAGGTCGC	CTATTTATCA	TCGTGTTTGC	6120
	GTAgCaATGC (GTAAACACAG	TACCACTAAA	TAAGTGCACG	ATACATGCAT	CAAATGTCGT	6180
30	CTTTAGTCTA	AGTAACGATC	ATGCATTAAC	ATTTTCAAAA	TATCTATTTG	AGCTTGAAGA	6240
	TCTTTACCAA	TATTGGTATC	ACGAATCTTC	TTACGTTGTA	ATTCTTTATC	TACGACGCGC	6300
	TTTATAGAAA (GTTCATCGAT	ACCTTCGGAA	AGTATTTTTn	CTTTAGCGTT	AAATTGTTGG	6360
35	TGTGCAACGA (GTTGCATACC	GAATGAATTA	TACAATAGTG	TATAGCCTGC	AATGCCAGTn	6420
	GTTGACTGAT	AAGCTTTTGA	AAAGCCACCA	TCAATGACAA	GCATCTTTCC	ATCAGCCTTG	6480
	AT -						6482
40	(2) INFORMA	TION FOR SE	EQ ID NO: 53	3 :			
	•	-	RACTERISTICS 16592 base				
	,	,	cleic acid	-			
45	((C) STRANDEL	NESS: doub	re			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

(D) TOPOLOGY: linear

ATTTAAGGCG	ATTGCTTGTG	TATTTCTCTC	TTTTGTAGGC	AAACCTGCAC	TCGTTCCAAA	60
AAATGTAACT	TCCATATATG	CCCCTCCTTT	TCTTCAATTC	ATTTTATCAT	AAAATTTGTA	120

55

	AATTTTTCTA	ACTTTAACGT	AGACATAACT	ATATAAATTT	TGATAATTAC	GTTATACTTA	240
	TCATTAATAA	GTATCACATT	AAACATGATA	CATGAATCGA	TATTTCATTT	AAGACACTGC	300
5	ATACAGTCGA	GCATATTGTA	TGACCTACTG	AATGGATTAT	CTTATAATAA	TAAATCATAT	360
	ATCTAATTAA	GAATTGAGGT	TTTAATCTTG	AGTACTAAAA	ACAAACACAT	CCCATGTTTA	420
10	ATCACAATCT	TTGGTGCACT	GCGTGACTTA	AGCCATCGTA	AGTnGTTTCC	ATCAATATTC	480
•	CATCTCTACC	AACAAGACAA	TTTAGATGAA	CATATTGCCA	TCATCgGTAT	TGGACGTCGT	540
	GACATkwnTA	ATGATGATTT	CCGTAATCAA	GTAAAATCAT	CAATTCAAAA	GCACGTAAAA	600
15	GATACAAACA	AAATTGACGC	GTTTATGGAA	CATGTCTTCT	ATCATAGACA	TGATGTTAGT	660
	AATGAAGAAA	GCTATCAAGA	ATTACTAGAT	TTTAGTAATG	AATTAGATAG	CCAATTTGAA	720
	TTAAAAGGTA	ATCGACTATT	CTATTTAGCA	ATGGCACCAC	AATTCTTTGG	CGTTATTTCT	780
20	GATTATCTAA	AATCTTCTGG	TCTTACTGAT	ACAAAAGGAT	TTAAACGCCT	TGTTATCGAA	840
	AAACCATTCG	GTAGTGATTT	AAAATCAGCC	GAAGCATTAA	ACAATCAAAT	TCGTAAATCA	900
	TTTAAAGAAG	AAGAAATTTA	TCGTATTGAC	CACTATTTAG	GAAAAGACAT	GGTTCAAAAT	960
25	ATCGAGGTAT	TACGTTTTGC	GAATGCGATG	TTTGAACCAT	TATGGAATAA	CAAATATATT	1020
	TCAAACATCC	AAGTTACATC	TTCTGAAATA	CTAGGTGTTG	AAGATCGTGG	TGGTTATTAT	1080
30	GAATCAAGTG	GCGCGCTAAA	AGATATGGTG	CAAAACCACA	TGTTACAAAT	GGTTGCATTA	1140
	TTAGCTATGG	AAGCACCTAT	TAGTTTAAAT	AGTGAAGATA	TCCGTGCTGA	GAAAGTAAAA	1200
	GTACTTAAAT	CACTGCGTCA	TTTCCAATCT	GAAGATGTTA	AAAAGAACTT	TGTTCGTGGT	1260
35	CAATATGGCG	AAGGCTATAT	CGATGGTAAA	CAAGTTAAAG	CATACCGTGA	TGAAGATCGC	1320
	GTTGCAGATG	ACTCTAACAC	ACCTACCTTT	GTTTCAGGTA	AATTAACAAT	TGATAACTTT	1380
	AGATGGGCTG	GTGTACCATT	CTATATTCGT	ACTGGTAAAC	GTATGAAATC	TAAAACAATT	1440
10	CAAGTTGTCG	TTGAATTTAA	AGAAGTACCA	ATGAACTTAT	ACTATGGAAA	CTGaTAAACT	1500
	GTTAGATTCA	AACCTATTAG	TAATCAATAT	CCAACCTAAT	GAAGGTGGTA	TCTTTLACAT	1560
	Ctaaatgcta	AGAAAATAC	ACAAGGTATC	gAAACAGrAC	CTGtCCmATT	GtCTTACTCm	1620
1 5	ATGAGCGcTC	aAGaTAAAAT	GaATACTGTA	GATGCATATG	AAAATCTATT	ATTTGATTGT	1680
	CTTAAAGGTG	ATGCCACTAA	CTTCACGCAC	TGGGAAGAAT	TAAaATCAAC	ATGGAAATTT	1740
50	GTTGATGCAA	TTCAAGATGA	ATGGAATATG	GTTGaTCCAG	AATTCCCTAA	CTATGAATCA	1800
	GGTACTAATG	GTCCATTAGA	AAGTGATTTA	CTACTTGCTC	GTGATGGTAA	CCATTGGTGG	1860
	GGACGATATT	CAATAATTGA	ATTAAAACGC	ACATGTTAAA	CAAAAATAAA	TGAGCGAATG	1920

	TATATTATGA	AATTATATTT	TACAATGCCC	AAAACTATTT	TAATAATCAT	TGAACAAATG	2040
	GGTGTATAAT	TTATAGAAAT	AATGTAGAAT	TAAAATAAAT	GATTGAATTA	ATTGGAGTGA	2100
5	AAGTTTTGGA	CGTTATCAAG	CAAATACAAC	AGGCAATTGT	TTATATTGAA	GATCGTTTAT	2160
	TAGAGCCTTT	CAATTTGCAA	GAATTAAGTG	ATTACGTTGG	TCTTTCGCCA	TACCATCTTG	2220
10	ATCAATCATT	TAAAATGATT	GTCGGCTTAT	CTCCAGAAGC	TTATGCACGC	GCGCGTAAAA	2280
,,,	TGACACTCGC	TGCAAATGAT	GTGATTAATG	GTGCTACACG	ACTTGTAGAT	ATCGCTAAAA	234
	AATATCACTA	TGCAAATTCA	AATGATTTTG	CAAATGATTT	TAGTGATTTT	CACGGCGTAT	2400
15	CACCTATTCA	AGCCTCTACT	AAAAAAGATG	AATTACAAAT	TCAAGAGCGA	TTATATATCA	2460
	AATTATCAAC	TACTGAGAGA	GCACCTTATC	CATACAGATT	AGAAGAGACA	GATGATATTT	2520
	CATTGGTTGG	ATATGCACGA	TTTATAGACA	CTAAGTATTT	GTCACATCCT	TTTAATGTTC	2580
20	CGGATTTTTT	AGAAGACTTG	CTCATTGATG	GTAAAATTAA	AGAGTTACGA	CGATATAATG	2640
	ACGTTAGTCC	ATTTGAACTA	TTTGTTATTA	GTTGTCCTCT	TGAAAATGGT	TTAGAAATAT	2700
	TTGTAGGTGT	ACCAAGTGAA	CGTTATCCTG	CACACTTAGA	AAGTCGATTT	TTACCTGGCA	276
25	AACATTGTGC	GAAATTCAAT	TTACAAGGTG	AAATTGATTA	TGCAACTAAT	GAAGCTTGGT	2820
	ACTATATTGA	ATCAAGTTTG	CAGTTAACAT	TGCCATATGA	ACGAAATGAT	TTATATGTTG	2880
20	AAGTGTACCC	TCTCGATATT	TCATTTAATG	ACCCATTCAC	TAAAATTCAG	CTTTGGATTC	294
30	CTGTTAAACA	GAGTCCTTAT	GACGAAGATT	AAATAATAAA	AAACAAAGAA	GCCCCTAAT	3000
	ATATCTATAG	GTCTACAAAT	GGCCTTAGAT	TCTATTAGGG	GGCATATTAA	TATGTTAATT	3060
35	TAGTTCGATA	ACACATGCTT	CATATGGACG	TAACTGTTTT	AAATTAACTT	TGGCATCATA	312
	ATTAAATAGC	TTTACTTCTC	CATGGCTTAA	ATCAAATGGT	ACAGTTAATT	CTGCTTCGTG	318
	GTTAGTAAGA	TTACCTACAA	TAAGAACTTG	CTTTTCATTT	AATGTTCTCG	TGTACGCAAA	324
10	AACTTGTGAA	TTTTCAGCAT	CTACTAAATC	AAATTGACCA	TATACGTATA	CATCATTAGA	330
	CTTTCTTAAT	TGAATTAAAT	CTTTATAAAA	TTGTAATACT	GAATGCTCAT	CTTCTAATTG	336
	TTGTGCAACA	TTGATAGTTT	TATAATTCGG	ATTCACTGGG	AACCACGGTT	CACCATTIGT	342
15	AAATCCTCCA	TTTAACGTAT	CATCCCATTG	CATTGGTGTG	CGAGAATTAT	CTCGGTTCTC	348
	ATCTTTATAT	TTCGCAAGTA	AAGCGTCTAC	ATCTCCACCT	TGAGCTTTCA	CTATTTGATA	354
- 0	GTCATTTTTA	ACAGCAACAT	CGTTAAACGT	TTCAATACTT	TCAAATGGAT	AATTCGTCAT	360
50	ACCAATTTCT	TGACCTTGAT	AAATGAATGG	CGTACCTTGT	TGCAAGAAAT	AAACAGCTGC	366
	N TOO N COMMONT	CCTCATTCAT	ACCA ATACTT	CTCATCCTCA	CCCACCTCC	ATACACGTCG	372

	CCATCTATTT	AATACAGATT	TATACGAATT	TACATCAAAG	TGAGAATCAC	CACTATTCCA	3840
	CAGTCCCAAA	TGTTCAAATT	GGAATATCAT	ATTAAATTTA	CCATTTTCTT	CCCCGACCCA	3900
5	GTCATCAGCA	TCATCAGGGC	TTACACCATT	CGCTTCACCA	ACAGTCATAA	TGTCATACTT	3960
	ACTTAATGAG	CGATCTTTCA	TCTCTTGTAA	CCAAGTTTGT	ATACCTGGCT	GATTCATATC	4020
	TACATCAAAT	GCTGGGGCAT	ATGTTTTACC	CTCAGGTACA	GGTAAGTCAC	CCGCTTCAAA	4080
10	CGTCTTCTTA	ATATGCGTAA	TTGCATCTAC	TCTAAATCCA	TCAATGCCTT	TATCAAACCA	4140
	CCAGTTCATC	ATTTCAAATA	CAGCATCTCT	AACTTCCGGA	TTACCCCAAT	TCAAATCAGG	4200
15	TTGTTTTTTA	CTGAATAAAT	GGAAATAATA	TTGCTCAGTA	TTAGCATCAT	ATTCCCATGT	4260
	AGATCCATTA	AATATACTTT	CCCAGTTGTT	AGGTTCAGAG	CCATCTGGCT	TTGGATCTTG	4320
	CCAAATGTAC	CAATCACGTT	TGGGATTGTC	TTTACTAGAT	TTGGATTCTA	TAAACCAAGG	4380
20	ATGTTCATCA	GATGTATGAT	TTACAACTAA	ATCTAAAATA	AGCTTCATGC	CTCTATCATG	4440
	AACACCTTTT	AATAAACGAT	CAAAGTCTTC	CATCGTTCCA	AATTCATCCA	TAATCTCTTG	4500
	GTAGTCACTA	ATATCATAAC	CATTGTCATC	ATTAGGTGAT	TTAAACATTG	GACTGAGCCA	4560
25	AATGACATCG	ATACCGAAAT	CTTTTAAGTA	GTCCAATTTA	TCAATCATTC	CAGGTAAATC	4620
	CCCAATACCA	TCGTGATTAC	TATCATTAAA	ACTTCTTGGA	TATACTTGAT	ATGCTACTGC	4680
30	TTCTTTCCAC	CATTGCTTAT	TCATTTTAAA	ACTCCTTTGC	TATCGCTGTG	TTGATTTTCT	4740
30	TATTTTTAAT	TCTGTATCTA	TAATGACGAG	TTCAATAACA	TCCTGTGCTT	TGTTTTTCAA	4800
	TATATTTAAA	ATTGCTGCAC	CAGCCTGTTG	ACCTAACATT	CGAGGCTTGA	TGTCAATACA	4860
35	GGTTTGTGGT	GGTGACGCAA	TTTCGGTTAA	ATAAGAATCA	TTGAACGTTG	CTGTCATTAC	4920
	ATCTTTCGGA	ATTTCAATAT	TAAGTTCATA	TAGGACACTT	AAAATCGCTA	AATGTAACAT	4980
	AGCATCTAAC	GAAATGATTG	CCTGTTTAAT	ATTTGGGTCC	TTCAAACGCG	TATGTAGATT	5040
10	TTGCATGTAA	TTAAAAATAA	CTTCTCTTTC	ATTACTAGTC	TCAATAATTT	GATAATTAAT	5100
					TCTTTTGAAA		5160
	TCCTTTTTCT	GTAATAAATA	TTAATTCATC	TACACCTTGT	TCAATAACAT	GTCGTGTCAA	5220
15	ATTTTCAGAA	GCTAATATAT	TATCATTATC	TATATGTGTA	AATTGATGAT	CTATATCCGA	5280
	TGTAGGCTTA	CCAATCACAA	TAAATGGCAT	GCTTTCATCA	ATTAACATTT	GTTTAATCGG	5340
50	ATCATTTTCT	TTTGAATAGA	GCAGTATAAA	CGCATCAACC	ATTCGTTGTT	TAATCATTTT	540
50	ATAAACTTCA	TCCATTAAAT	CATTCATATT	ATTTGAGACT	GTCGTTTGTG	TACCATAGCC	546
	ATGCTGGTTA	CACGTTTCAG	AAATTCCTAG	CAATACATTG	ATGTAGAATG	GATTCAGTCG	552

	AGTTCTAGCA	GCGGTATTAG	GAAAATAATT	CAATTCTTCC	ATAACTTTCT	TCACTTTTGA	5640
	AATTGTCGCT	TCGCTAATAC	GTTGATTTCC	TTTTATAACT	CTTGAAACTG	TCGAAGGAGA	5700
5	AACACCGGCT	TTTAGTGCAA	CATCTTTAAT	CGTAACCATT	TAATCACCTC	CTGTTAATTT	5760
	CTGCATCGGA	AAACGCTTCC	AACCACTGTA	TAATACCAGT	TTAGTCACAC	TTTCTAAAAA	5820
10	AGTCAAAAGA	TTTGTGCAAA	CGATTGCATA	AAACGATAAA	AATAAAACCT	TCATACTGAA	5880
, 0	ATTCAATCCG	AAAATCAATA	TAAAGGTTTG	TATAAATATT	AAAATCGATT	GTTTAGTCAC	5940
	TAACTGCAAA	ATAGTTACCT	TGGCCATCTT	GAAAATTAAA	TACACGTTGA	CCATTCATTT	6000
15	CTACTATATC	ATGCCCAGTT	AAACCTAAAT	CATTTAATTT	TGAGTATAAT	GCATCAAAGT	6060
	TITTCTCTTT	AAACATTAAA	GATGGTGTTC	CTAGGTTCAC	TTCCGGGCTA	TGCTTTTCAA	6120
	TAAATTCTTT	TGCCATAATC	GTCAATGACG	TTTCAGCATC	TTTGGTAGGT	GATACTTCAA	6180
20	CTGCAACATA	GTCCTCAGCT	AACGGTGTTT	CACTTACAAC	AACAAATTCT	AAAGTTTCTG	6240
	TCCAAAATGC	TTTCGCTTTT	TCGACATCAT	CAACATATAA	CATAACTTGA	TTTAACTTTT	6300
	ССАТААААТА	GTACCTCTAT	TTCTCTATAG	TACATGCTAT	CATAACACAG	TAAATATTTT	6360
25	ATTACTTCAC	AAAATGCTTA	AAAATATGGC	GGGATGCTTT	TAAGGTCAAG	GATAATACTT	6420
	GTGTAATTTT	TTATAGGTTG	TAGCTACTCT	ATCACACTCT	CTTTTATATT	TATCAAAAGA	6480
20	TATAAAAAAG	GATAGTATCT	TTCAACTATC	CTTTAATCAA	TATTATTCTT	CAATCCATTG	6540
30	TGTATGGAAT	ACGCCLTCTT	TATCTTTTCT	TTCGTACGTA	TGAGCACCGA	AGTAGTCACG	6600
	TTGTGCTTGA	ATTAAGTTTG	CAGGTAAATC	AGCAGCACGG	TAACTATCAT	AGTAATTAAT	6660
35	ACTTGATGAG	AAACCAGGTG	TTGGTACACC	ATTTTGAACA	CCAGTTGCGA	CAACATCACG	6720
	TAACGCATCT	TGATATTCAG	TAACGATGTT	TTTAAAGTAA	GGATCTAGCA	ATAAGTTTTG	6780
	TAATCCTGGA	TTATTATCGT	AAGCATCTTT	GATCTTTTGT	AAGAATTGTG	CACGGATAAT	6840
10	GCAACCTTCT	CTCCAAATCA	TAGCTAAATC	ACCAAGTTTT	AAATTCCATT	CATTATCTTC	6900
	ACTTGCTTTA	CGCATTTGcG	CGAAACCTTG	TGCATAAGAA	CAAATTTTAC	TCATATATAA	6960
	TGCTTTACGA	ATTTTTTCTA	AAAAGTCTTT	CTTGTCACCA	TCAAATGATG	CTTTTGGACC	7020
1 5	ATTTAATTCT	TTAGAAGCAT	TTACGCGCTC	TTCTTTGaTT	GAAGAGATAA	AACGTGCAAA	7080
	TACAGATTCA	GTAATGATTG	TTAATGGAAT	ACCTAATTCT	AATGCGTTAA	TTGAAGTCCA	7140
	TTTTCCTGTA	CCTTTTTGaC	CTGCAGTATC	AAGAATTTT	TCAACTAATG	CTTCTTTATT	7200
50	TTCATCTAAT	TTCATGAAAA	TATCACCAGT	GATTTCAATT	AAATAACTTT	CTAATTCACC	7260
	1001mm0616	mamma	***********	OFFICE POLY	CACATOCCTA	ATT A TOTAL CONTOUR	7770

	CATTTTCACA	TAGTGTCCAG	CACCATTAGG	TCCAATATAA	GTAACACATG	AAGCACCGTC	7440
	TTTTGCCTTT	GCAGCAATTG	CATCAAGAAT	ATCTGCAACT	TTGTTATAAG	CTTCTTCTTG	7500
5	TCCACCCGGC	ATTAATGACG	GACCAGTTAA	CGCTCCAATT	TCACCACCAG	AAACGCCCAT	7560
	ACCAATAAAG	TTGATTGCAC	TTTGTGywaa	TGCTTTATTA	CGTCTGATAG	TATCTTGATA	7620
	GTTTGTATTA	CCACCATCAA	TTAAAATATC	TCCATCATCT	AATAAAGGTA	ACAAACTATC	7680
10	AATCGTTGCG	TCCGTAGCTT	TACCTGCTTG	AACCATTAAT	AAAATTTTAC	GTGGTTTTTC	7740
	TAAAGAATTA	ACAAATTCTT	CCAATGAATA	CGTTGGATGA	ATATTTTTCC	CTTTTGATTC	7800
15	TTCAACCATT	AAATCAGTTT	TTTCACTTGA	GCGGTTAAAT	ACAGATACAC	TATATCCGCG	7860
	TGATTCAATA	TTCCAAGCTA	GGTTTTTACC	CATAACGGCT	AAACCAATAA	CTCCAATTTG	7920
	TTGTGTCATA	TTACTTACCT	CACTTGTTGA	TTTTTCATTA	GTATTGTATC	ACAAAATAGA	7980
20	CATACACTAC	ACTAAATCAT	TTCGAATGTC	GCGCAACTAT	TTTGATTATT	TCTAACACTT	8040
	GACTTGCAAG	CAAGTTCAAT	GATTTAATCG	GCATTCTCTC	ATTTGTTGTA	TGGATTTTTT	8100
	CATAACCCAC	TCCTAAAATG	ACTGAAGGAA	TACCAAATGT	ATTAATAATA	CTGCCGTCTG	8160
25	AACCGCCACC	AGAAATAATT	GTATTTGCAG	ATAATCCTAA	ATTACGAGCA	CTTTCTTGTG	8220
	CAATTTTAAC	AACCGCTTCA	TTATCATTAA	TTTTAAATCC	TGGATAACTT	TGCTCCACTG	8280
	TAACTACTGC	TTTCCCACCT	AATTCTGATG	CAGTAGTTTC	AAACACATCA	GTCATATGTT	8340
30	TGACTTGTGT	TTTTATTCTT	TCTGGATCGT	GAGAACGTGC	CTCTGCTTCT	AAAATGACTT	8400
	CATCTGCAAC	AATATTCGTA	GCTGAACCGC	CATGAAACTT	ACCAATATTG	GCAGTAGTTA	8460
35	TTTCATCAAC	TTGTCCTAAT	TTCATTCGAC	TAATTGcTTT	CGCCGCAATA	TTAATAGCAC	8520
	TAACACCCTC	TTTTGGCGTA	CTTGCATGAG	CCGTTTTGCC	AAAAATTTTA	GCTGAAATTA	8580
	ACATTTGCGT	CGGTGCACCT	ACAACCGTAG	TACCGACATC	AGCACTTGCA	TCAATAGCAT	8640
40	AACCAAAGTC	CGCGTCCAAC	AACTCTGAAT	TTAATTCTTT	AGCACCAATT	AAACCTGATT	8700
	CTTCTCCAAC	AGTAATCACA	AATTGAATTT	GTCCATGTGG	GATTTGTTGT	TCCTTTATCA	8760
	CTTGCAAAAC	TTCAAGCATC	GCTGATAATC	CTGCTTTATC	ATCTGCACCT	AGAATAGTCG	8820
45	TACCATCAGA	GTATATGTAG	CCGTCATCTT	TTACAATTGG	CTTTACATTA	ATTGCGGGTA	8880
	CAACAGTATC	CATATGGCTC	GTCAAATATA	ATTTAGGTAC	TTCGCCTTCT	TCGATAGTAC	8940
	TATTCATTGT	ACACACTAGA	TTATTGGCAC	CTAATTTAGG	ATGTTTAGCC	GCTTCATCTT	9000
50	CTTTAACATC	TAACCCTAAT	GCTATGAATT	TTTCTTTTAA	AATAGGTTGG	ATTGTTGATT	9060
	C N TWO C COTTON	CEC TO BE CO	A TOTOTOTA CA A	CTTCAAAAAA	CCTATTAACT	N N TOTTTCCT	9120

	GATGAAATAA	AATGTTACAG	TAATTGACGT	TACACAGATT	TATCAGGTTT	GTAAATTGTG	9240
	TCATATTATT	TTCAATTTAT	TATATATAAT	TATTGTAACT	CAAACTAAGC	TTTGTCAAAA	9300
5	ATATATTGAT	TGATTTTTCA	AAGATATCGT	ATAATGAGGA	AAATGACATA	AGCAAACTTA	9360
	CTCATGTTTT	TTATTATATT	CCTTTATGAT	GATTGCTAGT	TATATCGTCT	CAAGTTAAAA	9420
10	GTTTTATATC	TTATGTCGTA	ATTATTAATA	CAAAGGTTAT	TCATTTGGAG	GCACACAAAA	9480
70	TGCAAAATAA	AGTTTTAAGA	ATTATCATTA	TCGTTATGCT	TGTATCAGTT	GTATTAGCAT	9540
	TGTTATTAAC	GAGTATCATT	CCAATTTTAT	AAACTATATC	TCAACTACCT	ATACAAAATC	9600
15	ATACAATTAA	AAATCCATCC	ATTATAAACG	CATGTATTAA	TAAGTTATCG	TATTGCAACG	9660
	ATTACTTTCA	AACATGGGTC	ATACGGATGG	ATTATTTTTT	AAGCTACTTC	ACTATGCATT	9720
	TTCAATGAAC	CAAATTGCGA	TTTGATTTGT	AAATATTCTT	CTAATTCATT	TAATATTTGA	9780
20	ATAATACTTG	CTCTCGAGTT	AAGCGCTTTG	TGTGTTGTTG	GCAATGGCAG	TTCATCCAAT	9840
	TTCAAACGCG	TCTCATACAA	ATTGTGTAAA	CGCATTGCTG	TATAGTCATT	ACTATTCACA	9900
	TTTAGACCAA	TTTCTTTCAG	CAGTGACGCA	ACATCATTTA	AAAGCGGATC	TTTATGACAG	9960
25	ATACTTTCGA	TGAGCGGTTT	CATTCTCATT	AACAATTCCA	CTTGCTCTTC	TCGCATATCA	10020
	AAATAATGAT	AGTATGAATT	TTCGTTTCTA	ACAAAATGAT	TTTTAACATC	TCGGAACGCG	10080
	ATAGACTECG	CCTTTTTAAT	ATTTAAAAGT	AACACTTCAA	ATTCAATCGC	AATGGTATCT	10140
30	TCATATTTTT	CACAAATATA	ACTATATTTA	CTAAAAATAT	CAGCAATTTG	TTGCTCAATT	10200
	TTACATTTGT	ATTCGTCtAG	TTGTTTGTCT	AAACTTGGCA	TCATTAAATT	Cattgtaaat	10260
35	GCAATGCTTA	GTCCAATTAA	CAGTAATAAT	GTTTCATTAA	CAATTAAATG	TGCATCAATT	10320
	GATTTTGCAT	TAAAAACATG	AAGTAATATA	ACGCAACTCG	TAATGACACC	TTCTTGTACT	10380
	TTTAATACGA	CAGTTAATGG	TATAAATAAC	AATACGATAA	TACCGAGTAC	AATTGGACTC	10440
10	TGACCTAATA	AACTAAATAT	TGCTGAACCT	AAAAACAATA	CTAAAAAACA	TGATACTAAT	10500
	CTTGAAATAA	TCGCTTGTAG	CGAATGTACT	TTTGTATGTT	TAATACATAA	TACGACTAAT	10560
	ATGGCGCTTG	AAGCATAATT	ATCTAAACCT	AACAGCTTAC	TAATAATTAC	ACCTAAAGTC	10620
15	ATACCCACTG	CTGTTTTTAT	TGTTCTAAAT	CCAATCTTGT	AAGGATTTAA	CTTTAACATG	10680
	GGTTAGCGCC	TCTTATCTTT	CTTCACAATA	TTTATTGAAT	AATGTTTGTA	ATTGATTAAT	10740
	TACGTTCATC	ACATCATGAC	CTTCGATTTG	ATGTCTTTCA	ATCATTTCTG	TAATCTTTCC	10800
50	ATCTTTTACT	AATGCAAATG	ACGGACTTGA	AGGCGCATAA	CCTTCGAAGT	ATTCACGCGC	10860
	теттетете	CCTTCTTTT	CTTGTCCACC	A A A TA CTCTC	ACTACACCAT	CACCTAATAC	10920

	AGAATTGATC	ATAACTAGTG	TTGTACCATC	TTGTTTAAGA	ACTTTGTCAA	CATCTTCTGC	11040
	AGTAGTTAAT	TGCTCATATC	CCGCAGATTC	AATTTCATTC	CTTGCTTGTT	CTACAACACC	11100
5	GTTCATGTAT	AAATCGAAAT	TCATGnCCAT	AAGTTCAATC	ACCTATCCCT	TTATATTTAA	11160
	ACTALCCTCA	TTCTACTAAT	TAATAACATA	TTGTTCAATA	AACTAATCTG	AATCACACCT	11220
10	ATATTTAGAC	ACAATTTTAA	CAATATACCA	AACATTATTG	TGCTTAAAAT	CATGGTAACT	11230
	AATTTGTTCA	CATGTTTTCA	TTAATATGTT	TCAAGTATGA	TGTCTTATTT	TGACTTTACT	11340
	GCAAAAATGC	ATTCAACCAT	GTTGATTATT	GTTCTTTATC	TTTTTTGAAT	ATATTGCACA	11400
15	TATTTTAGTG	ССАААААТА	ATACATCCAT	CGACAAGAAC	AAGATAAAAC	AAGTTGTCGA	11460
	TAGATGCATC	TATGTTATCA	СТААТАТАТА	TTTGTATTTT	CTAAAGTATA	CTGTTCGATA	11520
	CGCTGTTTAA	TATGATTCAT	Aratttacct	GTTTGTAAAC	CATCTAAAAT	ACGATGATCA	11580
20	ATTGAAATAC	ATAAATTAAC	CATGTTACGA	ATTGCAATCA	TATCATTAAT	TACTACTGGC	11640
	TTTTTAACGA	TTGATTCTAC	TTGTAAAATC	GCTGCTTGTG	GATGATTTAT	AATACCCATT	11700
	GATGATACTG	AACCAAATGT	ACCAGTATTA	TTTACCGTAA	ATGTACCGCC	CTGCATATCT	11760
25	TCAGCTGTCA	ATTGCTTATT	ACGCGCTTTC	GTTGCTAAAG	TATTAATTTC	TCTAGCTATA	11820
	CCTTTGATTG	ACTITICGIC	TGCATGCTTA	ATCACAGGTA	CGTATAATTT	ATTITCATCA	11880
30	GCAACAGCAA	TTGAAATATT	AATGTCTTTA	TGTAAGACAA	TTTCATTTCC	TTGCCAGCTA	11940
	CTATTTAATA	AAGGATATGC	TTTTAAAGCA	TCTGCTACAG	CTTTTACAAA	GAAAGCAAAG	12000
	AACGTTAGAT	TATATCCTTC	TTTATTTTTA	AAGCTGTTTT	TATAATGATT	TCTCGTATTC	12060
35	ACAAGATTTG	TAGCATCTAC	TTCAATCATC	ATCCATGCAT	GTGGAATCTC	TGTTACACTA	12120
	TTAACCATAT	TTTGCGCAAT	TGCTTTACGC	ACACCATTTA	CTGGTATTGT	GCTGTTTTCA	12180
	CTATTGTCTT	CAGATGATTG	GTTACTTGAT	GTATCTACTG	ATGTTGATTT	TGTTTGAACT	12240
40	TGTTTGTCAG	ATTGAGCTGT	GGTACCACCA	TTTTCAATAA	CTGACATTAT	ATCCTTCTTA	12300
	GTTACACGAC	CTTCAAATCC	ACTACCTACA	ACTTGTGATA	AATCAATGTC	ATGCTCTGAA	12360
	GCGAGTTTAA	ATACAACAGG	TGAAAAGCGA	CCATTATTAC	GTGGTTGATT	TTGTTTAGCA	12420
45	GTAGATGTCT	GTTCCACTGT	TGCACTAGCT	TTTTTAGTAG	ATTTCTGAGT	ATGCTCATCC	12480
	ACTTTTGCTT	GTATCTCTTC	AGTTGTTTCA	TTTGTCTTTT	CATCAGCAGT	TTCAATTTTA	12540
50	CAGATAATTG	TATCAATAGC	TACTGTCTGC	CCCGCTTCAA	CTAAAATTTC	TGTAATTGTT	12600
~~	CCTGATATCG	TGGAAGGGAC	TTCAGCTGTC	ACTITATCTG	TAATAACTTC	ACATAATGGT	12660
	TCATATTCAT	CAATATGATC	ACCAACAGAA	ACTAACCATT	GTTCAATGGT	GCCTTCATGA	12720

	AATTCACGCA	TTTTATTTAA	GATTTTTTCT	GGATTCATCA	TAATTTCATT	TTCTAATACA	12840
	GGAGAAAATG	GCATAGATGG	TACALCTGGA	GCAGCTAAAC	GCATGATTGG	TGCATCTAAA	12900
5	TCGAACAAGC	AATGCTCTGC	AATAATCGCT	GACACTTCTG	ACATAATACT	ACCTTCTAAA	12960
	TTATCTTCAG	TTACAAGTAA	AACTTTACCT	GTATGTTTAG	CACGATCAAT	AATTGTTTCT	13020
10	TTATCTAATG	GATAAACAGT	TCGTAAATCA	ACGACTTCAA	CATTGATACC	GTCTGCAGCT	13080
	AAAATATCCG	CTGCTTGTAA	ACAATAATTG	ACCATTAATC	САТААСАААА	TACTGTTAAA	13140
	TCTTCACCTT	CACGTTTCAC	ATCTGCTTTT	CCTAAAGGTA	CAGTGTAATA	TTCTTCTGGC	13200
15	ACTTCTTCCT	TTAAGAAACG	ATAAGCTTTT	TTATGCTCAA	AGTACAATAC	TGGATCATTT	13260
	GATTCGATAG	ATGATAATAA	AAGCCCTTTA	GCATCATACG	GTGTGGAAGG	AATAACAATT	13320
	GTTAAACCTG	GCGATGAAGC	AAATATACTT	TCAATACTTT	GTGAATGATA	TAGTCCTCCG	13380
20	TGAACACCGc	CACCAAATGG	TGCACGAATC	GTTAATGGGC	ATTGCCAATC	ATTATTTGAA	13440
	CGATAACGCA	TTTTCGCAGC	TTCACTAATA	ATTTGATTTG	TCGCAGGTAA	AATAAAATCT	13500
	GCAAATTGAA	TTTCTGCAAT	TGGTCTTTTA	CCTACCATAG	CTGCACCAAT	GGCAGTTCCA	13560
25	ACAATATTTG	ACTCAGCTAA	TGGCGTATCG	ATAACTCTGT	CTTCACCATA	TTTTTGTTGC	13620
	AGTCCTTGAG	TAGTACCAAA	TACGCCACCT	TTTCTACCAA	CATCTTCACC	AAGAATAAAC	13680
20	ACATCTTTAT	TTTGTTGTAA	TGCTAAGTCT	TGTGCCtGcG	TATCGCCTCT	AAATAAGATA	13740
30	ATTTAGCCAT	TAGTTAAGAC	TCCCTTCTTC	GTACACAAAT	GCATAGGCTT	CTTCGACACT	13800
	TGGATATGGC	GCGTCTTCAG	CAGCCTTTGT	CGCTTTATTG	ATGATGTCTT	TnATgTCCGC	13860
35	TTCTATTTCT	GCCAACCAAG	CATCATCGAT	AATGCCAGCT	GAAAGCAACT	CTTTTTTGAA	13920
	CTTTTCATTG	CAGTCTGCTT	TTTTAAGcGT	TTCACGCTCT	TCTTTCGTAC	GATATTGGTC	13980
	GTCATCATCT	GATGAATGAG	CTGTCATACG	ACTTGTTACT	GCTTCAATCA	AAGTTGAACC	14040
40	TTGÁCCAGAA	ATAGCTCGAT	CTCTTGCTTC	TTTCATCGCT	TTATACATTG	CTAATGGATC	14100
	ATTACCATCT	ACTTGTTCAC	CATGTATACC	GTAACCAAGT	GCTCTATCCG	ATAATTTTTC	14160
	AGCTGCGTAT	TGTAATGAAT	CAGGTACTGA	AATTGCATAT	TTATTATTTA	TAATGACACA	14220
45	TACAAAAGGA	AGTTTGTGTA	CACCCGCGAA	GTTTAAACCT	TCATGGAAGT	CACCTTGGTT	14280
	TGAGCTACCT	TCACCAACAG	TTGCTGTTGC	AATTTTCTTC	TTACCATCCA	TTTTTAAAGC	14340
	TAAAGCAGCA	CCAACAGCAT	GGGGTATTTG	AGTTGCTACC	GGTGAACTTT	GAGACAAAAT	14400
50	ATTCTTAGCT	СТАСТАСТАА	AGTGTGATGG	CATTTGTTTT	CCACCAGAGT	TAACATCGTC	14460
	TTTCTTTCCA	AACGCTGATA	AAAACGTATC	ATACGCTGAG	ልተል <i>ር</i> ርርልተኔተ	AAGTAACGAA	14520

	AATCTGAGTT	GCTTCTTGTC	CTTGACCACT	TACAACAAAT	GGAATTTTAC	CTGCACGGTT	14640
	CAATAACCAC	AGTCTTTCAT	CTATTTTTCT	ACCTAAATCC	ATCCATTTAT	ATATTACTTT	14700
5	TAGGTCTTCT	TCGCTAAGGC	CTAATGATTT	ATAATCAATC	ATGTTAAATC	CTCCTATTTA	14760
	TACGTGAATA	GCTCTACTTT	CTGCTTTCAA	TCCTAATTCC	ATCAACACTT	CAGAGATGGA	14820
10	AGGATGTGCG	TGTGTTGTTA	GTCCTAATTC	TAATGCCGAG	CCATTCATGA	ACTGTAACAG	14880
10	TGATGCCTCA	TTAATCAATT	CTGTTACATG	TGGACCAATC	ATATTAATAC	CCACAATTTC	14940
	TTCAGTTGAT	TGATCAATCA	CCATTTCGCT	ATACCCTTCG	TTTGTGTCAT	GGCTATCAAT	15000
15	CACTGCTTTA	CCAATTGCTT	TAAATGGTAC	TTTAAAACTT	TTAACTTTCA	TTCCCTCTGC	15060
	CTTTGCTTGT	TCAATGTTTA	AACCGATAGA	AGCAATTTCA	GGTTGTGAAT	AAATACACTT	15120
	AGGCATCATG	TTATAGTTTA	CTGGGATTGG	GTTCCCCTCA	AACATATGAT	CAACAGCCAC	15180
20	AACACCTTCT	TTTGATCCAA	CATGTGCCAA	TTGTAATTTT	CCTATACAAT	CACCAGCTGC	15240
	ATAAATATGT	TTATCTTCAG	TTTGTTGAAA	TTCGTTCGTT	AAAATATGTC	CTGATGTTGa	15300
	AAGTTTTATT	TTAGTGTTGT	TTAAACCAAT	ATCTGATGTG	TTAGGTTTTC	TACCAATCGA	15360
25	TAGCAACACT	TTATCTACTT	TAATTATGTC	TGAGGAAATT	TCAAACGTAA	CACCATCTTC	15420
	GTTAACATTT	ATATCATTTT	CAGAAAGTTT	TATTCCCTCA	TAGAATTTAA	CACCACGTGC	15480
	TGACAATGAT	TTTTTTAATA	GTTGTGAAGC	TTGTTTACTT	TCAGTTGGTA	AAATTCTTTC	15540
30	ACCTGCTTCT	ATAACTGTTA	CGTCAACACC	TAAATCTATC	ATCAATGATG	CAAATTCCAT	15600
	TCCGATAACA	CCACCACCAA	TAATACCAAT	ACTTGATGGT	AACGTCTTTA	ATGATAATAT	15660
35	ATCATCGCTA	GATAAAATTT	TATCATGATC	AAATGATAAG	AATGGCAACT	CTGCAGGCGA	15720
	AGAACCAGTT	GCAATTAATA	CAAATTGGTT	GGGTAATAAG	TCTGATTCAC	CATCTTCATA	15780
	TTCGACAGAA	ATTGTGCCAC	TTTGAGGTGA	AAATATAGAT	GTACCTAGAA	TACGTCCCGT	15840
40	GCCATTATAA	ATGTCAATGT	GATTGTGTTG	CATTAAATGC	TTTACACCTT	GATACATTTG	15900
	ATTAATAATG	TCTTCTTTTC	GTGCCAACAT	ATTTTCAAAA	TTAACATTAG	CATCTTTGAC	15960
	ATCAACGCCA	AACATTGCTG	CCTGTTTTAC	TGTTTGAAAT	ACTTCAGCAG	ATTTAAGCAG	16020
45	CGATTTAGTA	GGAATACAAC	CTTTATGGAG	ACAAGTACCT	CCTAATAGTT	GTCGTTCTAC	16080
	TATTGCCACT	TTTTTACCTA	ATTGAGACGC	ACGTATCGCA	GCAACATATC	CTGCAGTACC	16140
	TCCACCGAGA	ACGACTAAAT	CATATTGTTT	CTCTGACATG	TTCTTACTCC	TAACTAATGA	16200
50	TATATATCCA	TTGAAAATTT	ATTAATACAT	AGTTTTCATG	TCCATTAATT	ACCTATTTTA	16260
	CATGATTGTC	TATTTAGTTT	GAATGCACAT	AAATAAATCC	ATAAATGAGT	ATTCAACACA	16320

TAAATCAGTA ACACTTGCAC CTGAAATCAT TCGTGCAATT TCATCTACTT TATCATCGCT 16440 AATTAACTCT TGAACTTGTG TTGTTGTACG ATCATCTTTT GATGATTTCG AAATTAATAA 16500 ATGATGGTCG CTCATCGATG CAACTTGTGG TAAGTGAGAG ATACAAATAA CTTGTATATA 16560 TTCTGCTaTA TCTCGCATTT TCTCTGCCAT TT 16592 (2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13794 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

60 CCAATACAAC GTAAAAAGAT TGCTTGTTT ATTAATGAGT TAGATAAAAT AATTAAAGGA TTTAATAAGG AAAGAGACTA CATAAAATAT CAATGGGCTC CAAAATATAG CAAAGANTTT 120 180 240 ACATTTCTTG ATTTATCTAT CTTATATGTA ATATCATCTC GAAAAAATGA GATACTAAAT TTAAAAGATT TGTTTGAAAG TATTAGATTT ATGTATCCTC AAATTGTTAG GTCAGTTAAT 300 AGATTAAATA ATAAAGGTAT GCTAATCAAA GAACGATCCC TTGCAGATGA AAGGATTGTG 360 420 TTAATCAAAA TAAATAAAAT ACAATATAAC ACTATTAAAA GCATATTCAC AGATACTTCC AAGATTCTCA AACCAAGAAA ATTTTTCTTT TAAATTTAAA CAGATTTACC TCTTGATAAA 480 ATAAATAAGC AATCATACTA CTTCTCAATT TAGTATAAAT AAAAATACAT AATTAACTTT 540 CTTTTGTTTT TATATTATTT CAATACCCTA CTATATATCA CAACACATAA ATTAAGCATG 600 ACACTCATTC AATTTAGTTC ACCATTTCGT GTTCCAATTT TACTGAGTAT CATGCTTTTA 660 ATGTTATAAA CCTAATGCTT TAATAAATCG TGTTAATTCT TCTCGCATAC TGTCATCTTT 720 CAATGCATAT TCTATGGTAG TTTTAACGAA GCCTAATTTT TCTCCAACGT CATAACGTTC 780 GCCTTCGAAG TCATATGCAT ACACTTGGTT ATCATTATTC ATACGTTCAA TCGCATCTGT 840 TAACTGAATT TCGTTACCTG CGCCTTCTTT TTGCGTTTTT AAATAATCGA AAATTTCAGG 900 CGTTAATACA TAACGTCCCA TAATAGCTAG GTTTGATGGT GCCGTACCTT GTGCTGGCTT 960 TTCAACAAAC TTTTTCACTT CATACTGACG TCCGTTTTTA GTTAATGGGT CAATAATTCC 1020 ATAACGATGA GTATCTGCTT CCGGAACTTC TTGGACACCT ATAACTGAGT GCCCTGTTTC 1080 TTCATAAACG TCAATCAACT GTTTCACTGC TGGCACTTCA GATTCAACAA TATCGTCACC 1140

55

5

10

15

20

30

40

45

	TAAACCTTTT	TGTTCTTTCT	GCCTTACATA	AAAAATATTC	GCAAGTTCCG	TTGAATACTG	1260
	AACTTTCTCT	AGTAATTCAG	ATTTACCTTT	TTCTTTTAAC	ACCATTTCTA	ATTCTTTTTG	1320
5	ACTATCAAAA	TGATCTTCAA	TCGCGCGTTT	GTGGCGACCT	GTCACTATAA	TAATATCTTC	1380
	AATTCCAGCT	CTTGCAGCTT	CTTCAACGAT	ATATTGTATT	GTGGGTTTAT	CTAAGATAGG	1440
	AAGCATTTCC	TTTGGCATCG	CTTTAGTTGC	TGGTAAAAAT	CTAGTCCCTA	AACCAGCAGC	1500
10	GGGAATGATT	GCCTTTTTTA	TTTTTTTCAA	AGTTAATGTG	CTCCTTTTCC	TAAGTATTAA	1560
	ATCTATGTAT	CAACGTCATT	TTAACACTAA	TTAGAACGCC	TTCATAGTGT	CATTGAGTAT	1620
15	GTAATTATTT	CTTGGGAAAT	TTGTTTTAAT	TTTAAAAAAC	AGGCTTACTT	CATATAATTT	1680
	ATGAAATAAA	CCTGTCAATT	TTGGATTGAT	TATGCTTTGT	GATTCTTTTT	ATTTCTGCGT	1740
	AATAACGCTA	AACCTAAAAT	GCTAAATAAT	CCGCCGAACA	ACATGCCGTT	GTTTGTTGAT	1800
20	TCTTCTCCAC	CTGTTTCAGG	TAGTTCAGAT	TTCTTAGATT	GTGCTTTTTT	AGTTGGTACC	1860
	ACTGCTTTAA	CCTTTTCATT	GATTTCAATA	ACAGGTGTTA	CTACTTTACC	TTGTTCCACT	1920
	GGTTTAGAAG	GTTTTTTAGG	TTCTTCTTTA	GCAGGTGGTA	TTGGTTTACC	AGGTTCAGTT	1980
25	GGTACCTCTG	GCGTTGGCGG	TGTTGGTGTT	TCCGGCTCGC	TTGGTACTTC	TGGTGTCGGT	2040
	GGTGTTGGTG	TTTCCGGCTC	GCTTGGTACT	TCTGGTGTCG	GTGGCGTTGG	TGGCACGATT	2100
	GGAGGTGTTG	TATCTTCTTC	AATCGTTTGT	TGACCTTCAT	TATGACCACT	TACTTGTGGA	2160
30	AGTGTATCTT	CTTCAAAGTC	AACACTATTG	TGTCCACCGA	ATTGATAATT	TGGTTTATCT	2220
	TTATTTGTAT	CTTCTTCAAT	AATTTCAGTG	TGCTTATTGA	ATCCGTGAAT	ATGTGGCACA	2280
25	CTGTCGAAGT	CGATATCAAT	GATATTACCA	CCTTGTTCAT	ACTTAGGTTT	GTCTTTCTCT	2340
35	GTATCTTCTT	CGAATGATTG	GTTACCATTA	TTTTGACCAT	GAATTTGAGG	TACACTATCG	2400
	AAATCGATAT	CTACGATATT	GCCACCTTGT	TCATATTTCG	GTTTATCTTC	TTCTGTGTCT	2460
40	TCCTCAAATG	ACTGATTACC	GCTATTTTGG	CCACCTTCGT	AACCTAATTC	ACTCTTAATA	2520
	TCCACGTGGC	TATTTTCTTC	GATTTCTTCA	ATCACGCCAT	AATTACCGTG	ACCATTTTCA	2580
	GTTCCTAAAC	CAGAATGAGA	aatatgatga	TTGTTTTCAG	TAATTTCCTC	GATTGGTCCT	2640
45	TGCGCTTGAC	CATGTTCTTC	AGGTAGTTCA	TCTACTAGTT	CAATCAGATT	ACTTTCAGTC	2700
	GTATATTCTT	TCGTATCTTC	AATTGTTGTA	TGATCGCTAA	CAGCACCAGT	TACAATACCT	2760
	TTTGTAGAAT	CTTCGTCAAA	TTCAACTAGG	TTAGACTCAG	TAGTAACCTG	ACCACCACCT	2820
50	GGGTTTGTAT	CTTCTTCATA	TTCAACAACA	TCAGCATGAT	GTTTTGAATT	TTCATGTGTC	2880
	GATTCTTCAA	AGTCTACATG	AATAGAATCT	TCTTCAGTTT	CAATGGTACC	TTCTGCATGA	2940

	TCTTCGATTG	TACCAGTCAA	TTCATGCTTC	TCCACTGGCG	GCTCTGATTT	AAATTCAAGT	3060
_	TCGATAGGAG	TACTATGTTC	TATAATAGGT	TCCTTTAGTT	TATCTTTGCC	GTCGCCTTGA	3120
5	GCGTTATTAG	AGTAAAATGC	AACGCCATTT	TTCCaAGTTA	AATTACTTGT	ATAATAATAG	3130
	TTATAATATC	CAAAAAGGTG	TGTTTGAAAT	TCTAAGTTGC	TAGCATTTGA	ATCATAATAC	3240
10	CCTTCATATT	TTATTACATA	ATTTTTACTT	TGGTCTAAAT	TATTAAAGTT	TAAAGAATAA	3300
	CCACCATTAG	TATCAAAATC	TAAACTCATA	TTATCAGTCA	CATCTTCAAA	TTTGCTGACA	3360
	TCATCAAGCT	TTGCATAnTn	AgctTTCAGC	TAAATCGTCT	GAACCAATGT	GTTTATATAC	3420
15	CTTAACTGTT	GGATTATTAA	CCCCTGGTTT	ATTTCCTTTA	GTTACTTGAC	CAGTTACTGT	3480
	CACAGAGCTT	AACGACTGGT	TGTTAGGTTT	CATGTACGCA	AAATGACTAA	ATTTCCCATC	3540
	TACTTTATTT	AAAGTATCAA	TTCGACCATT	AGCTGTTACT	CCCCAATTAT	CTCTAACTCC	3600
20	ACCTAAATAT	TGAATATTAA	ATATTTTGCT	AACCGTAGTC	TCACCCAATT	TAACTTCAAC	3660
	ATTTTGGTTA	CCTTTTTGCG	TCACTGTTGT	AGGATCAATA	AATAGATTTA	AAGATAATTC	3720
	AGCAGTTAAA	TCTTTCTTTT	CTTGTACATA	TTCTTTAAAC	GTATATCTAA	CTTTTCTTTC	3780
25	TCCAATTATT	TCTCCTGTCG	CCATAACTTG	ACCATCTGTA	CTTTTTATCT	CCGGAACTTT	3840
	ACGCAGTGTT	GAGATACCAT	GAGTTTCAAC	ATTATCGCTT	AATGTGAAAT	CAAAATAATC	3900
30	TCCCGCCTTA	ATTCCTTCTC	CAAATTTCCA	TTTATATTTC	AAGGTTACTC	TTTCTGCGTT	3960
	ATGAGGATTT	ACAACATTCG	TATCTTGTTT	ATGTCCTACA	ATTTCACTAC	CTTCTTCTAC	4020
	TTCCACTTTA	TTTGTTACAT	CTGTACCTGT	CGCTTTAGTT	TCTTCCACTA	CTTCTTTCTC	4080
35	TGCAACTGCT	GTAACGTCAt	TGatCTTTTC	ATTCTTGGTT	TAATTTCTGA	GACGTTACTT	4140
	GGTTGAGCTA	TGTCAACTTG	AGTTCCTGTA	GTTTCCTTAT	CAGCAACTTT	TTCCGATGGC	4200
	AAATCAACTC	GCGAAgTTTC	TACTTTTGGT	GCTTGCAcAG	TTTTCGGTGC	TTCTTCTGTT	4260
‡ 0	GTTACTTGTG	TTGATTGTGA	TGGTTGCTCA	GTTGATGTCG	CGCTGTATGA	TTGTGTTTCA	4320
	TCTATTGTAT	TAACGTTATT	TGTAGTTGTT	TGTGTTTCGC	TTGCTTTACT	TTCAGTAGCT	4380
	GAACTCCCAC	TTTCCTCTAC	TGTAGTATTG	TTTTGTTCCG	ATGCTGCAGC	TTCTTTTTCT	4440
<i>‡5</i>	TGTCCCATTC	CAACAACGAT	CATTGTTCCT	AAGAATACTG	AGGCCGCTCC	CAATTTGTGT	4500
	TTTCTTATGC	CGTATCTAAG	ATTGCTTTTC	ACTATAATAT	TCTCCCTTAA	ATGCAAAATT	4560
50	CATTTATTTT	таааастсаа	TAAATGCAAT	TCTATATTGT	TCGGTTTTTA	AAAGCAATGA	4620
,,,	AAAAAAGCGA	GTTAATAAAA	AGTTAAGATT	GTTGTTAACT	TTATGTATAA	TGAGTTTTTT	4680
	ATTATTTGAA	ACTCACATAT	ATATTGCATA	CAAAGCTCTT	GAACACCTTG	ATATAACAGG	4740

	TACTAAACCA	TACATAATAA	TCGCCTGTAC	AATGCATCAT	TAACAAGTCA	CTGAAACGCC	4860
	TTTCATTGTA	TTAATAACGT	CACTATAATT	TTTATATCGT	TCGGTTTTTG	TTTGATTTTA	4920
5	ATGATTATTT	ATACAAAAAC	AGCCGTATTT	CAAGCCGACA	TTTTAAATTT	AACTAAATTT	4980
	GCATCTAGTT	AATAATTGCA	TTTATCAAAT	TTGTCTTATT	GATCCAATCT	AATTTGTACT	5040
10	CACAAACTAG	TTTAAAATTC	TAACTTTATC	TCTCAGTTCG	TTATCAATCA	TCAGACATAA	5100
, ,	ACCAATGAAG	CAATCAGAAA	ACACTCTAAT	TTTCTATTAG	AAATTTGATT	TAATATAAAA	5160
	AAACAGGCTT	ACTTCATATA	ATTTATGAAA	TAAACCCGTC	AATTTTTGTT	TAATTATGCT	5220
15	TTGTGATTCT	TTTTATTTCT	GCGTAATAAT	GCTAAACCTA	GAATGCTGAA	TAATCCGCCG	5280
	AACAACATAC	CTTTGTTTGT	TGATTCTTCT	CCACCTGTTT	CAGGTAGTTC	AGATTTCTTA	5340
	GATTGTGGTT	TTTTAGTTGG	TGCCACTGCT	TTAACCTTTT	CATTGATTTC	AATAACAGGT	5400
20	GTTACTACTT	TACCTTGTTC	CACTGGTTTA	GAAGGCTTTT	TAGGTTCTTC	TTTGGCAGGT	5460
	GGTACTGGTT	TACCAGGTTC	AGCTGGTACC	TCTGGTGTTG	GCGGTGTTGG	AGTTTCTGGC	5520
	TCACTCGGCA	CTTCTGGTGT	CGGTGGTGTT	GGTGTTTCCG	GCTCACTTGG	TACTTCTGGT	5580
25	GTTGGTGGCG	TTGGTGTTTC	CGGCTCACTT	GGTACTTCTG	GTGTCGGTGG	CGTTGGTGGC	5640
	ACGATTGGAG	GTGTTGTATC	TTCTTCAATC	GTTTGTTGAC	CTTCATTTTG	GCCGCTTACT	5700
	TTTGGAAGTG	TATCTTCTTC	AAAGTCAACA	CTATTGTGTC	CACCGAATTG	ATAACTTGGT	5760
30	TTATCTTTAT	TTGTATCTTC	TTCAATAATT	TCAGTGTGCT	TATTGAATCC	GTGAATATGT	5820
	GGCACACTGT	CGAAGTCGAT	ATCAATGATG	TTACCGCCAT	GTTCATACTT	AGGTTTGTCT	5880
35	TTTTCTGTAT	CTTCCTCGAA	TGACTGATTA	CCTTTATTTT	GACCATGAAT	TTGAGGTACA	5940
	CTATCAAAAT	CGaTATCTAC	GATATTGCCA	CCTTGTTCAT	ATTTAGGTTT	GTCTTCTTCT	6000
	GTGTCTTCCT	CGAATGACTG	GTTACCGCTA	TTTTGGCCAC	CTTCATAACC	TAATTCACTC	6060
‡O	TTAATATCAA	CGTGGCTATT	TTCTTCGATT	TCTTCAATCA	CGTCATAATT	CCCGTGACCA	6120
	TTTTCAGTTC	CTAAACCAGA	ATGAGAAATA	TGATGATTGT	TTTTAGTAAT	TTCCTCGACT	6180
	GGTCCTTGTG	CTTGACCATG	CTCTTCAGGT	AATTCATCCA	CTAATTCAAT	CAGATTACTT	6240
15	tCAGTTGTAT	ATTCTTTCGT	ATCTTCAACT	GTTGTATGAT	CGCTCACtGC	GCCAGTTACA	6300
	ATACCTTTTG	TAGACTCTTC	GTCAAATTCA	ACTAAGTTAG	ACTCAGTAGT	AACCTGACCA	6360
	CCACCTGGGT	TTGTATCTTC	TTCATATTCA	ACAACATCAG	CGTGATGTTT	TGAATTTTCA	6420
50	TGTGTAGATT	CTTCAAAGTC	AATTGGATTT	GATTCCTCAG	AGGACTCAGT	GTATCCTCCA	6480
	ACGTGACCTG	CLTCGCTATC	CACAGCAGTA	TGGTAATCGA	TATCAATAGC	TGATGAATCC	6540

	TGGTAATCAA	TGTCAAGAGT	TGATGAATCA	TATTCCTCTT	CAACAGTAGT	TACTAAATTC	6660
	TTATCATATT	GACCTGTAAG	AGTTTCTTTA	ATTGTATCTT	CTTTATATTC	AAATTTATTA	6720
5	TTTTGAATAA	TCGGACCATT	TTTCTCATTT	CCGTTCGCTT	TATTACTGTA	TAAAACTAAA	6730
	CCATTATCCC	AAGTTAAGGT	ATATCCTCTA	TCATAATAAT	ACTTATAAAG	TTGCTCTGGA	6840
10	TGTCCTACCA	TTTGTGTTCT	AAAATCAACT	TCATCAGTAC	CATTTAAATA	CTCTCCATCA	6900
	TAGTGAACAA	CATAAGTTTT	ATCTAGATTT	TCTATATTCA	ATGAATAGCT	TCCATTATTT	6960
	TGTAAATTCA	AATTCCCACT	CATATTACTT	GTGACTTCTT	TAAATTTAGA	AGTATCTGTC	7020
15	GTATTTGCAT	ATACACTCTT	CGCTATGTCT	TCATTATTAC	CCAAGTATTC	AAATATCCTA	7080
	ACTTTTGGTT	GATTTCCATT	CTGATTACTA	CCTTTCATTA	AAGTTCCAGT	AACAGTCACA	7140
	CTTGTCGTTT	TACCATTATT	AGGTTTAATA	AATGCAACAT	GCGAAAATCT	ATTATTCGCT	7200
20	TTATTAAATG	TCTCAATCGA	TCCATTTAAA	TTGGCATAAT	AATTCCCAAT	ACCATCTTTA	7260
	TATTTAACAT	CTAATTCCTT	TGAAGTTTGT	TCTTCATTTA	GTGTTGAAGT	TATAGTTTGA	7320
	TTTCCATTAG	TTTGTACAGT	TTTAGGATCA	АТАААТАААТ	TAATTTCTAG	TTCAGCCGTT	7380
?5	ACATCAACCT	TATCTTCAAT	ATCATTTGTA	AATGTATATC	TAATCTTTCC	ACCTTCTAAA	7440
	ACTTCACCTG	TCGCCATTAC	GACTGAACCA	TTTTTAATTT	CTGGTACTTT	TCTAGCAGTT	7500
20	GATACGCCAT	GCGTATTTAC	ATTATTTGAT	AAAGTAAAGT	CAAAGTAGTC	ACCTTGATGT	7560
30	AAACCATTCT	CAAATTTCAA	CTTATATTTT	AGTACCGCTC	GTTGTCCTGC	ATGAGGTTCT	7620
	ACTTTATTTG	TATTGTTATG	CCCCTCAATA	GAACCAATTT	CTACTGTAAC	TTTACTTGTT	7680
35	ACATCTGTAC	CCGTTTCCAC	TTTCGCGTTA	CTAGCTTCCT	TAGCTTCCGC	TACATCTGCT	7740
	GATCTTGTCA	CACGTGGCTT	ACTTTCTGAT	GCCGTTCTTG	GCTGTGCCAC	TTCAACTTGT	7800
	GTTTCTGCGA	CTTGATTTTG	TGTAGCCTTT	TTAGGTGTTA	AATCTACTTG	TCTTTGATCT	7860
10	CCGCTATTGT	CTTGAGATTG	TGTTGTTTCC	TTAACTTGAG	GTTTCGCTTC	TTCCTTAACT	7920
	ACCTCTTCTT	TAACTGTTTC	TATATTTGCT	GGTTGTGCAG	TTTGTGGTGC	TTGTACTGCT	7980
	TTTGGTGCTT	CTTCAGTTGT	TACTTGTGTT	GCGTTTGACG	GTTGTTCTGT	TACTGTTGCG	8040
15	TTATATGATT	GAGTTTCTTC	TATATGATTA	ACGTTAGTTG	CAGTTGTTTG	TGTTTCACTT	8100
	GTTTTATTAT	CAGTAGCTGA	ATTCCCATTT	TCTTCTACTG	TAGTTGTCTT	TTGTTCTGAT	8160
	GCTGCAGCTT	CTTTGTCTTG	TCCCATCCCA	ACAACGATCA	TTGTTCCTAA	GAATACTGAT	8220
50	GCTGCTCCCA	ATTTATGTTT	TCTAATGCCG	TACCTAAGAT	TGTTTTTCAC	TATAATATCT	8280
	000000000000000000000000000000000000000	001117000	THE RESIDENCE OF THE PERSON OF	***	*********	ma ma mmommo	0340

	ATGTTAATTG	ATAATTTTAT	TATTTGAAAT	ATACCTATAA	ATTGTATTCA	AGTCATCAGA	8460
	AACCCTTGTC	ACACAAGGCT	TGTATTTTT	ATACTTATTT	тттаааттаа	ATTCATCATT	8520
5	ATCTAATTTA	AAACAATATA	CTAAACGTTT	CATAATTATC	GCCTGTACAA	TACGCACAAA	8580
	AACATGTCTT	GAAACGCCTT	TCATTACTCT	AAAATACCCA	ATATACTTTT	TATATCGTTC	8640
	GGATTCTGAG	TATTTCAGAC	GATTTTCTGC	АТАААААТАА	ACGTGTTTCA	AGGCAATATA	8700
10	TTGCAATTAC	CTAAAAACAC	GTTTACTTAA	TATTTAGTTA	AACAAATAAG	CTAATGAATA	8760
	AAATGAAGAT	GATACCTGAA	ACGGAAATAA	TCGTTTCTAA	TAATGACCAT	GTTAAGAATG	8820
15	TTTCTTTTAC	AGTTAAACCA	AAATATTCTT	TAAACATCCA	AAATCCTGCG	TCATTTACAT	8880
	GAGACAAAAT	CACACTACCT	GCACCTATCG	CAAGTACAAC	TAATGCAACA	TTTACATCTG	8940
	ATGATTGTAA	TAATGGTAAG	ACAATACCTG	TAGTTGAAAT	CGCAGCTACT	GTAGCCGAAC	9000
20	CTAATGCGAT	ACGTAGCACA	GCTGCAACAA	TCCATGCTAG	TAAAATCGGA	GACATCTCTG	9060
	TACCTTCAAA	CATTTTAGCA	ATTGTATTTC	CGACACCGCC	GTCAATTAAT	ACTTGTTTAA	9120
	ATGTACCGCC	ACCGCCAATA	ATCAATAACA	TCATTCCGAT	TGGATAAATC	GCATTCGTCA	9180
25	CTGATTCCAT	AATATGATTC	ATCTTACGCT	TTCTCATTAA	TCCCATCGTA	ACGATTGCAA	9240
	ATAATACTGC	TATTAGCATG	GCTGTCCCTG	CTGTTCCTAT	CATATAAATG	ATAGATTCAA	9300
	ATAGATTTGT	AGGTTTGTCA	TGCCCAGTTA	CAAGTTGCGT	TATCGTAGAC	ACTAACATTA	9360
30	ATATGACTGG	TAATGTTGCT	GTTAATAAAC	TCATACCAAA	TCCTGGCATC	TCTTGATCCG	9420
	TAAATTCTTT	TTGTGCACCT	AACGCTGAAA	TATCGCCTTC	TCGTGTATAC	GCAGACGGAA	9480
35	TCATTTTTTG	TGCAcTTTGT	TAAATATAGG	CCCTGCAATG	AGTGTAACTG	GaATGGCAAT	9540
33	AATCATACCA	TACAGTAATA	CATCTCCAAC	ATTTGCCTTT	AATTCTTTTG	CGATGACTAC	9600
	CGGTCCTGGA	TGTGGTGGTA	AAAAGCCATG	TGTCACTGAT	AAAGCTGTTA	CCATAGGTAG	9660
40	TCCTAGTTTT	AACACTGAAA	CATTTGCGCG	TTTTGCTACT	GTAAATACTA	ATGGAATCAG	9720
	TAAGACTAAA	CCTACTTCAA	AGAACAATGC	AATACCGACG	ATAAATGCTG	CAACAAGCAT	9780
	TGCCCATTGT	ACATGTTTTT	GACCAAATTT	TTGAATCAAC	GTGTCTGCGA	TTCGAGTTGC	9840
45	ACCACCACCA	TCAGCAAGCA	ATTTCCCAAG	TATGGCACCT	AAACCGAATA	TCAGTGCAAT	9900
	GTGGCCGAGC	GTACTGCCCA	TTCCTTTCTC	AATCGTCTCC	ATAATTTTAG	TCAATGGTAT	9960
	ACCTAGCATT	AACGCTGTAA	TCATCGATGT	GATAATTAAT	GAAATAAATG	TATTTAATTT	10020
50	AAACCCAATA	ATTAATACTA	ATAAAATAAC	GATACCTAAA	ACAACACTGA	TTAACGGCCA	10080
	TATTTCGTTA	AACATGACAT	TCCCCTCTTT	CTCTTTTCAA	TAGAATGTAA	CACCGTCGTC	10140

	GAGTGACGTA	TTTATTGTGT	TTTATTTTCA	GCGATATGTT	GGCGTTGAAA	ATCTGCAATT	10260
	TGTTCATAAT	TCTCTGTTAA	AGAACGACTT	AAATTGATAA	AAATGGATAC	GATCTCTTGG	10320
5	TAAACAGTGA	CATTTTCTTC	AATCGGCGTA	TGATTGTTTG	TGGCACCGAC	CATCGATGAA	10380
	ACGATTGAAA	AATCTTCAAT	GTCACCTACA	GCTTTAAGTC	CGAGCACGCA	GGCACCTAAG	10440
10	CATGAACTTT	CATAACTTTC	AGGAACCACT	AACTCTGTGT	CAAATATATC	TGACATCATT	10500
, 0	TGACGCCATA	CTTCACTTTT	CGCAAAACCA	CCTGTTGCTT	TTATCATCTT	AGGTGTTTCA	10560
	TTCATTACTT	CAATAAGCGC	AAGATAGACG	GTATACAAAT	TGTAAAGAAC	ACCTTCTAAT	10620
15	GCAGCGCGAA	TCATATGTTC	TTTTTTATGA	GATAAAGTTA	AACCGAAGAA	TGAACCTCTT	10680
	GCATTTGCGT	TCCAAAGCGG	CGCACGTTCT	CCTGCTAAAT	AGGGATGGAA	TATTAAACCA	10740
	TCTGCACCTG	GTTTAACACG	CTTTGCAATT	TGAGTTAAGA	CATCATAAGG	ATCAACACCG	10800
20	AGACGTTTCG	CAGTTTCGAC	TTCACTCGCT	AGCAACTCGT	CGCGCAACCA	TCTCAATACG	10860
	ACACCACCAT	TATTTACAGG	ACCTCCGATG	ACGTAGTGGT	CCTCTGTTAA	GACATAACAA	10920
	AATATTCTAC	CTTTGTAATC	AGTACGCGGT	TTATCTATCA	CAGTACGAAT	CGCCCCAGAT	10980
25	GTACCGATTG	TGACAGCAAC	TTCTCCTTTA	CCAACACTAT	TGACACCTAA	ATTAGAAAGG	11040
	ACCCCATCAC	TCGCACCAAT	AACAAACGGT	GTATCTTTAT	TAAGCCCCAT	TAATGTTGCA	11100
30	TAACGTTCTT	TCATACCTTT	CAtCACATAC	GTTGTTGGAA	CTAATTCCGG	CAACATTTCC	11160
30	TTGGAAATAC	CCAGCAGTTC	TAATGCCTCA	ACATCCCAAT	CTAATGTTTC	TAAATTAAAC	11220
	ATCCCTGTTG	CGGAAGCCAT	TGAATAATCA	ATGATATATG	TATCAAATAA	ATGATAGAAA	11280
35	ATGTATGTTT	TAATATCTGC	AAACTTAGCA	GTACGTTGAA	ATACATCTTG	CCATTCATGT	11340
	TTCATCCAAA	AAATCTTCGC	TAATGGCGAC	ATAGGATGAA	TCGGTGTGCC	TGTTCGCTGG	11400
	TAAÃTCGCAT	TGCCATCATG	CACTTCATTT	ATTACTGTTG	CATATTTTGC	AGCGCGGTTA	11460
40	TCTGCCCAAG	TAATATTATT	TGTTAATCTT	TGATGTTGCT	GATCCATCGC	AATCAAGCTA	11520
	TGCATTTGCG	CACTAAATGA	CACAAACTTA	ATGTCGTCTT	TATTAACTTT	GGATTCTCTC	11580
	ATAACATATT	TAATAGTCAT	TAGTACTGCA	TCAAATAATT	CATCTGGGTT	TTCTTCTGAG	11640
45	ACATCAACGT	TTGGTGTGTG	TAAATCATAG	CCTATTTGAT	GTTTCATGAT	AAAAGTTCCA	11700
	TTTTCATCAT	ATAAGACTGA	CTTGGTACTC	GTCGTTCCAA	TGTCGACACC	AATCATATAT	11760
50	TTCATGATAA	ATCCTTCTTT	CTTTCATTTT	AATTCAACCA	AAATCCTTCA	ATATCTTTAC	11820
50	CAACATCGTC	GAAATTTAAA	TGAAACGCTT	CTTTCAAAAT	TTGACTGTCG	TATTGTTCCA	11880
	CTGCATCAAT	AAACACTTGA	TGATTATGAT	GTATGCGTTC	AAAATCTTGC	GGGTTCTGTT	11940

	AAAATGAGTT	TAAATATTGA	TGATTAGATG	CTTTGATTAA	TGTTTCATGA	AATTCAAAGT	12060
	CATGCTTCGT	AAATGATTCT	GCATCCTCAA	ATTTTACTGC	CACTTTCATC	ATTTCAAGTT	12120
5	GTTTCTTCAT	TTCTTTTACG	ATAGGTAGTC	GCTCTTGATT	TTTAACTCTT	GAAAATGCAA	12180
	ATGACTCTAA	CATCAGTCGC	AAATCATACA	TTTCTTTCTT	TTCTTGTTCC	CCAAACGGCA	12240
10	ACACATGTGC	ACCCATTCTT	TCTAATTGGA	TGAGTTGATT	TTGTTGCAAT	AATTTAAATG	12300
10	CATCTCGAAT	TGGCGAACGA	CTCACATTAA	ATTGCTTTGC	CATTTGATTT	TCAGTGAGTA	12360
	ACGTACCTTC	AGCTATGTGA	CCATTCACAA	TGCCTAAGCG	TAATTCTGCC	GCGATACCTT	12420
15	CTCCAGTTGT	CATACCTTCC	AACCATTTCT	CTGGATATCC	ATACATCATC	AAAGTCACTC	12480
	CTTCATTACA	CGACATACTT	GTATACAAGT	ATGTTAATAT	AGTTATTATG	AGTTTGCAAG	12540
	CGCTTTCTTT	ACGAGCACTA	AAATAGTGAC	CACCCCTTTT	CGATTTAAAT	TTAAAGGAAA	12600
20	TGGTCACTAT	CACACGAATG	ATTTAATTGT	TATGTTGTAT	GTGGGATATT	TCTAATTGTT	12660
	CTGTACTCAT	ATGCGCTTTA	GGTACTTCAA	TGCAATAATG	CGTTTCATGA	CAGTTTGGAC	12720
	ATTCGAATCG	ACGTGTTGTC	GCTGTATGTT	TCGCTTTGAT	AACTGCCCAC	AAAGATGGTG	12780
25	AGAATATATG	CTGGCAGTTA	GGACATAAAT	AGGCAACCTT	TTGTTGGTAA	TAAAAAGTAA	12840
	CACCAATGCC	ATAACCAATC	ATAAATGGTA	AAGCAATTAA	AAACGGCCAT	TTATTTTTCA	12900
	TCAAAATTGC	ACTTATAATG	CTAGAATATT	GAATTATTCC	TATAATACCA	GCACTAATCC	12960
30	AAATGTTACG	ACGAATACTT	TTCATTTCAG	CTGATTTACT	CATGACATGC	TCTATGTCTT	13020
	TTAAGTGTGT	GATTGGAGAC	GTCGACGCTT	CATTTACGTA	ATATTGAACA	TTTTTAATTT	13080
35	TGTTTAATAC	CGCTTGTTGC	TGTTTAACTT	GTTGGTTAAT	TTCTTGTTGT	TTCATAGTTA	13140
	GTAAAGTATT	GAGCGTCTTC	AAAGTACCTT	CACCTTTTAG	CAACATATCT	ATATCGCTTA	13200
	ACGCÁCAACC	TAAATCTTTA	AGCAATAAGA	TTAACTCTAA	TGTTTGTCGC	TGTTGTTCTG	13260
40	TATACACACG	ACGCTTTCCT	TCTGTAAATC	CTTGTGGTTT	CAAAATACCT	TTGCGATCAT	13320
	AATATTGAAT	CGTTCGTGTT	GTCACATTGC	ATAATTTTGC	GAGTTCTCCA	GTCGAATAGT	13380
	TAGACATAGA	TTCCACCTCC	TATAATTACC	ATAGTTGATG	ACCCGACGTC	ACGAGCAAGT	13440
45	ACAATTTCCA	CATTTTAAAG	AAATTTATTA	TACTAGGCGT	CTTATTTTTA	TGATTTCGTA	13500
	CCATGTTGAT	TTACAAACTC	ACTCAAACTA	AGTAACACAC	CTACTAAACA	TCTACTCTGT	13560
	TATTTCAGAA	TGAATTTGTT	GTAATTTATC	TTCAACTTCA	GTAATCTCTG	TCGCACATTC	13620
50	TTTCAGTAAA	TCTCGATACT	TTTCCGTCTC	TGCATTGTTT	TTATAACGTA	TTTTATGTTC	13680
	TAAACTTGcC	CACATATCCA	TACCTATCGT	TCTAATTTGA	ATTTCAACAG	GCAATACCTC	13740

(2) INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1059 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPCLOGY: linear

10

15

20

25

30

35

40

45

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

60	TCCGCCCTTT	TTTCATTGTT	CAATTTTGAT	ATTTCTTTTT	AGGTAAATTC	GGATAAGTTC
120	TATATATGTT	CACTTTGCTT	TATTCCAAAT	CTGTTCCTCA	TTAGTTGCTT	TAAAATAAAG
180	CACGATATGA	GCCAACCTGG	TTCACACCTT	AAATGTCTTT	CCGCTGTATC	TCAAGCTCTT
240	GTTATCCTGA	CCACTCGTTC	TGGATATGTG	ATTTACTACA	AATAAGTGCC	CCGTGAAAGT
300	GCTATCTGTC	CTTTACGCGC	TTTAGGTATT	AAAGAATTGA	TCTTAGATCC	TACAGATATC
360	TCGTATAGCT	CATGCATTCG	GACCAAACGA	CAATTAGGCA	CTCCTTTTAA	ATGGTCATCA
420	TTATGACTCA	GCTAACTTCT	CAATCACATT	TTATAGTTTT	TATGCTTGCC	CTTCATTACT
480	TGCTCCTGTA	TAATTCCAGT	CGCAGTCTTC	GTATATTTTT	TTGTTCGTCT	TTGCTTTAAC
540	ACAAGTCAAA	TAACCCTCCC	TTGCCATCGT	TGTCTTTGGG	ATATTCAACT	ATGACATCAC
600	TTAACGGTGC	TGACCATTCT	TAAATCCTCA	TCGCCTTTGC	ACGTAAAACT	AGCTCTTTGG
660	GATACTGTGC	AGTTGAGGTG	TGCGAATGCT	CATTACCTAT	TATTTGATTG	TCTAGACATG
720	GCGCTGGTTG	TATGTGTAGT	AATGTCGCCG	CTATAATTTC	TCGATAAAAT	CGTAACCTGT
780	CGCTCATTAT	TTACTGATTA	TACTTTTCTG	CGTTCATATC	TCTTGCGCTT	CTTAACATTG
840	CGGATCACGT	CGAACCAGTA	TAAGTGACAT	CATTTGGTTA	ATTTCTTGAA	GCTTCACTCC
900	TCTTTCCTGT	ATCTTCTCTT	CATGGTCTTA	ATCATAAAGC	GTGGCGTTCC	GAATGTTTTT
960	TCTGATTTTT	TCGCTTTTTT	CGGTTCAAAA	TCGTTGGTAT	CTCTCACATT	TCATATTCCG
1020	TTCTGTAGAT	ATTCAACTTC	CTCTnCATAT	TTTnATtTGA	TTTCTTCATC	TCTCTCCCTT
1059			nCGCCGCGC	CAATAATTCA	TTCTTCCACA	nTTGAGTCCT

(2) INFORMATION FOR SEQ ID NO: 56:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30246 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

	GAAGTAAAAG	AAGAATTAAA	TTTAACATTA	ACAATGGATG	AAATTGAATA	TGTCGGGACA	60
	ATTGTAGGTC	CTGCATATCC	ACAACAGGAT	ATGTTAACTG	AGTTAAATGG	ATTTCGCGCA	120
5	TTAACCAAAA	TCGATTGGGA	AAACGTAACT	ATCAATAATG	AAATTACGGA	TATACGCTGG	180
	ATTGATAAAG	ATAATGATGC	GTTGATTGCG	CCTGCTGTCA	AAGTTTGGAT	TGAAACTTAT	240
10	GGTGGTAAAC	ATGACAAATA	ATGACACCAT	CATGTTACGA	CATTATGTCC	CACAAGATTA	300
10	TTCGATGTTA	GAAGCTTTTC	AATTAAGTGA	AAGTGATTTG	AAGTTTGTTA	AAACGCCAGA	360
	GGAAAATATT	ACAGCTGCAA	TGTCTGATAA	TGAAAGGTAT	CCCATCGTTG	TAATGGATGG	420
15	CAGGCAATGT	GTGGCCTTTT	TTACATTACA	TCGTGGAAAA	GGGGTCGCAC	CATTTAGCGA	480
	TAACCAAGAT	GCAGTATTTT	TCAGGTCATT	TAGTGTTGAT	CAACGTTATC	GTAATAGAGG	540
	AATAGGTAAA	GTGGTAATGG	AAAAATTGGC	GTCATTTATC	ACTTCAACAT	TTCAGGATAT	600
20	TAATGAGATT	GTGTTAACGG	TTAATACTGA	CAATCCACAT	GCCATGGCAC	TTTATCGCCA	660
	ACAAGGATAT	CAATATATGG	GAGATAGTAT	GTTCGTCGGA	AGACCTGTTC	ATATTATGGC	720
	GTTAACTATA	ааатааатта	AATTTAAAAG	CATCTTTACT	CATCGTCGAC	CACAACAATT	780
25	AATGATGAAT	AAAGGTGCTT	TTTGTTATAG	ATCATCGGAC	AATTTACTAT	AGTAAAAAGC	840
	GACCTAGTGA	ACAATTGACA	TATATCCACA	GGTCGCTTAA	CTTAAGTTAT	ATTGCTAGTT	900
	GCGATTAATT	GATAGACTCA	TCATTTTTGC	GCTGTCGAGA	TGGTCTTTTT	ATTAAAAATG	960
30	CCGTAATCCA	AGCCGTAATC	GGAATACTGA	TTGCAACGGC	AATACCGCCT	AAAATAATAG	1020
	AAATAAATTC	TTGGGCAAAT	ATTITCGAGT	TTATAATATG	ACCAAATGAA	TATITAAGTT	1080
35	TGAAAAACCA	аатааатааа	GCAAGTTGGC	CACCAAAAAA	GGCAAGGTAA	ATCGTGTTCG	1140
	CAGATGTCGC	TAAAATTTCT	CTACCAACAC	GCATGCCAGA	TTGGAATAAT	TCGTATTGCG	1200
	TAACGTTgGA	TTCACTTGAT	GCAATTCATA	AATGGGTGAA	CTAATGGTAA	TTGTTAAATC	1260
10	TATCACAGCT	GCAATAACAG	CAAGAATAAT	AGTGAACACC	ATAAATTGAA	CCATATCAAT	1320
	GCCAATATTC	ATTGAATACA	CATATGTTTC	ATCTTGTTGT	TCGGTTGaAA	AGCCTTGTAG	1380
	ATGACCGAAG	TAGACCGATA	AATAAATGAG	TGTAATCAAC	AATATTGTTG	TAACGATAGT	1440
1 5	GCtGgATAAA	TGCaGCTTGT	GTTTTAACAT	TGTAACTATT	GAGTACGAAT	AAATTACAAG	1500
	CGCCAATAAT	AATGCAGAAA	AAGAATGTGA	CGACATAAAT	CGGTACGCCA	AAAATAATCA	1560
	ATACAATACT	AATAATTAAA	ATAGCGAAAT	TTAAAAATAG	GGTTAAATAA	GAGATGAATC	1620
50	CCTTTTTACC	TCCGAAAATT	ATCATCAGAA	AGAGGAGCAA	TAACGCCAAT	ATAAATACAG	1680
	CATTCATTGT	TTCGCCCTCC	TTAATGTTTC	AAATATTTCC	ATAAACAATA	TTGTGATAGG	1740

	CATCGAAATA	GTATAAGTCA	CTGTATTGGC	ATTTTTTAAA	AAGATTAAAA	ACATAGGTAG	1860
	TGCACCGGAT	AAATATGAGA	ATAATAAGAT	GTTAGTCATT	GTTCCCATAA	TATCTTGGCC	1920
5	GATGTTTCGC	CCAGCAAGCG	CCCATCTCCT	CATTGAAATG	TGTGGCGTAC	GCTGTAAAAT	1980
	TTCATGCATA	CCACTAGCAA	TTGTAATTGC	AACATCCATA	ATAGCGCCAA	GTGAACCTAT	2040
	TAACACTGAG	GCTAGGAAGA	TATCTTTCGG	TGGTAATGAT	AAAAAGTTCA	TCGTTTCATA	2100
10	TTTAATGCCT	TTACCATCTG	TCATATATAT	GATTAATTCT	GTTAAACCTA	TACTCAAAAA	2160
	AGTTCCGATA	ATTGTACTGG	CTATGGTAAT	GAGTGTACGC	ATATGCCAGC	CTGTAACGAG	2220
15	CAATAAAGTG	AGTATTGTTG	AACAGATCAT	GGCAATGGTC	ATGAGTAAGA	ATAAATTAAT	2280
13	ATTGCTATGT	TGAATATGAA	TGTAAATTGC	GATTAATATG	GCAATAGAAT	TCAAGATTAA	2340
	CGATAAAATC	GATTGCAGTC	CGACTTTGCG	ACCAACCAAT	AATACAGTTA	ATAAGAACAA	2400
20	ACCAGTGATG	ATAACCGTTA	AGGTATCACG	CTTCTTTTCT	ATAATATAAG	CATCACTCGG	2460
	CTTGTTAGAA	ATATGTAATA	ATACTTTTTC	GTGTGTGCGA	AATGCCTCAG	AATCTGCTTG	2520
	CGATTTGACG	TACTGATGAT	TAATCGTCGT	CGTTTCTCCA	GCAAATTGAC	CATTTAATAT	2580
25	TTTGACTTTT	AATTGATTTT	TATATTTAAT	ATCACGATTA	TTTTGTGCAT	CTTTTGTAGG	2640
	TGTCGAAGAA	ACATGTTTGA	CATCTATAAT	TTGACCAATT	GGTTTGTTGT	AAAAGTTCTC	2700
	ATTATTGAAT	GTAAATAAAA	TAGCACCAAT	GAATGCGATG	CAGAACAAAC	CTAAAATTAT	2760
30	ATTAAATGGC	TTTGTAAATA	AATTTCTATA	TTTCAAAAAC	AAAACCCCAA	TTCTATGAAT	2820
	GAATTAATAT	GGTGATTATA	CGCCCTTAAT	TTTTTATTTT	CAAAGATATT	ACTGCTAAGT	2880
	GTAAAACGAA	AATCATCATT	GATAGCATCG	AATTACTTAA	TGGAATGTAG	ACGTTTTAGT	2940
35	CATTAATTGC	TGAATAAGTG	TTAATAATAT	GCCAATATCA	CTCTTTGTAT	AAGGCTCCTT	300 0
	TGTAATAGCA	CATATCGTTC	TTTTTAATTC	AGTATGATCT	AATTTTATAT	CTATCCATGA	3060
10	TTTAGATTCT	GGTAAATGTA	TATTTTGTGA	TGAAATGATG	TAACCTTCTT	TTTGACGAAG	3120
1 0	GAGATACTGC	GCAAGTGGTT	GGCTACTGAT	TGTGTATACA	TCTGATTTAG	TAATCTTGCG	3180
	CAATTGTTTT	TTTACAGTTT	CGGCAAATGG	TGCCAAGCAA	TAAATATGAC	TATGCTCAAA	3240
4 5	CTGAATTAAT	GGTGGGTGTG	TCGCCATCGT	AATTGGATCG	TCTGAAGGCG	CATATAAATG	3300
	ATAGTGCTCT	TCGAATAAAG	GTAGCATATG	TAATTGTTTG	TGTTTACGTA	TTTCTGGTGT	3360
	AAGTTCCGTG	AAACCAATGT	CTATATTCCC	ATTTAATACG	СТАТТТАТАА	TTGTGTCATG	3420
50	TTCTAATAAG	CTCGGTATGA	CATGTGTATC	ATTTTGTAAA	TGAAACGTTT	GGATAAGTGG	3480
	TAGTAACATG	TGGGATACGT	CACTCTCATC	ATAGCCAATG	TAGATACTTT	TATTTTTAGT	3540

	TTCATTAAAT	AATAATTTCC	CTTCAGATGT	GAGCGTAATA	TTGCGTCCTT	GCTTTTTAAA	3660
	TAAAGACACA	TTAAGTTCTT	GTTCTAATAA	TGTAATITGA	CGGCTTATCG	CTGATTGAGC	3720
5	AATGTTTAGT	TCAAGTGCTG	TTTCGGAGAT	ATGTTCTCTT	TTAGCGACCT	CGATAAAATA	3780
	TCTTAATTGT	TTAATTTCCA	TAGCGATATA	GGCACCTCCA	AAAATGAGTG	TTTTGTAACT	3840
10	ATTATAGCAA	TATTATTGAT	AAATGTTCTA	TTTTTTAGAT	GAATATCTTC	TATTTTATAT	390 0
70	ATTGAACAGA	TAAATTTTTT	AGATTATAGT	AATTATCATT	AATAACTAAT	ATCAGAATAT	3960
	TCTAAAAAAG	GGGTGTGCAT	CATGCACAAT	GAGAAATTAA	TTAAAGGCTT	ATATGACTAT	4020
15	CGTGAGGAAC	ATGATGCGTG	TGGTATTGGT	TTTTATGCGA	ATATGGATAA	TAAAAGGTCT	4030
	CACGACATCA	TTGATAAATC	GCTTGAAATG	TTGCGACGCT	TAGATCACAG	GGGCGGGGTC	4140
	GGCGCAGATG	GCATCACTGG	TGATGGCGCA	GGTATTATGA	CTGAAATACC	TTTTGCATTT	4200
20	TTCAAACAAC	ATGTAACGGA	CTTTGATATC	CCAGGTGAAG	GTGAATATGC	CGTGGGGTTA	4260
	TTTTTTCCA	AAGAACGCAT	TTTAGGTTCT	GAACATGAAG	TAGTTTTTAA	AAAATATTTT	4320
	GAAGGCGAAG	GGTTATCAAT	TCTTGGTTAT	CGTAATGTAC	CAGTTAATAA	AGATGCCATT	4380
25	GCTAAACATG	TAGCAGATAC	GATGCCAGTC	ATTCAACAAG	TGTTTATTGA	TATTAGGGAC	4440
	ATTGAAGATG	TTGAAAAGCG	TTTGTTTTTA	GCGAGAAAAC	AATTAGAGTT	CTATTCGACT	4500
	CAGTGCGATT	TAGAATTGTA	TTTTACGAGC	TTATCACGCA	AAACAATTGT	ATATAAAGGT	4560
30	TGGTTACGAT	CAGACCAAAT	тааааааста	TATACAGATT	TATCGGATGA	TTTATATCAA	4620
	TCAAAGCTAG	GGTTAGTGCA	TTCGAGATTT	AGTACGAATA	CATTCCCGAG	TTGGAAAAGG	4680
25	GCACATCCTA	ACCGTATGTT	AATGCATAAT	GGTGAGATTA	ACACGATTAA	AGGTAATGTA	4740
35	AACTGGATGC	GAGCACGCCA	ACATAAATTA	ATCGAAACAT	TATTTGGCGA	GGATCAACAT	4800
	AAAGTGTTTC	AAATTGTCGA	TGAGGATGGT	AGTGACTCTG	CCATTGTAGA	TAATGCGCTA	4860
40	GAGTTCTTAT	CGTTAGCCAT	GGAGCCAGAA	AAGGCAGCGA	TGTTACTCAT	ACCTGAACCT	4920
	TGGTTATATA	ATGAAGCGAA	TGATGCAAAT	GTACGTGCGT	TTTATGAATT	TTATAGTTAT	4980
	TTAATGGAAC	CGTGGGATGG	TCCTACAATG	ATTTCGTTCT	GTAACGGTGA	CAAACTTGGC	5040
45	GCGCTTACAG	ATAGAAATGG	ATTACGTCCA	GGTCGTTATA	CGATTACTAA	AGATAACTTT	5100
	ATTGTCTTTT	CATCTGAAGT	GGGTGTTGTG	GACGTACCTG	AAAGTAATGT	TGCTTTTAAA	5160
	GGTCAATTGA	ATCCTGGAAA	GTTATTGCTT	GTTGATTTTA	AACAGAATAA	AGTCATTGAA	5220
50	AATAATGATT	TAAAAGGTGC	GATTGCTGGA	GAATTACCAT	ATAAAGCGTG	GATTGATAAC	5280
	CATAAAGTTG	ACTTTGATTT	TGAAAATATA	CAATATCAAG	ATTCGCAATG	GAAAGATGAG	5340

	CAGGAACTTG	TAGAAGGTAA	GAAGGATCCT	ATCGGTGCAA	TGGGATATGA	TGCGCCAATT	5460
5	GCAGTGTTGA	ACGAGCGACC	AGAATCACTA	TTTAATTACT	TTAAACAGCT	GTTTGCACAA	5520
3	GTTACGAATC	CACCAATTGA	TGCGTATCGT	GAAAAAATCG	TAACGAGTGA	ACTTTCTTAT	5580
	TTAGGTGGCG	AAGGTAACTT	ACTAGCACCT	GACGAAACGG	TTTTAGATCG	TATTCAATTG	5640
10	AAAAGGCCGG	TATTGAATGA	ATCACACTTA	GCAGCGATTG	ATCAGGAACA	TTTTAAATTA	5700
	ACTTATTTAT	CAACGGTATA	TGAAGGGGAT	TTGGAAGATG	CGTTAGAAGC	ATTAGGCCGA	5760
	GAAGCAGTGA	ATGCTGTAAA	GCAAGGCGCT	CAAATTCTAG	TGTTAGATGA	TAGTGGATTA	5820
15	GTTGATAGCA	ATGGCTTTGC	AATGCCGATG	TTACTCGCAA	TAAGTCATGT	GCATCAATTA	5880
	CTTATTAAAG	CAGATTTACG	TATGTCTACA	AGTTTAGTCG	CTAAATCTGG	TGAGACACGA	5940
	GAAGTGCATC	ATGTTGCTTG	TTTACTCGCA	TATGGCGCGA	ATGCAATTGT	GCCATACCTA	6000
20	GCGCAACGTA	CAGTTGAACA	ACTGACATTG	ACAGAAGGGT	TACAAGGCAC	CGTTGTCGAT	6060
	AATGTTAAGA	CATATACGGA	TGTATTGTCA	GAAGGTGTCA	TTAAAGTAAT	GGCTAAGATG	6120
	GGAATTTCGA	CAGTGCAAAG	TTATCAAGGG	GCACAAATAT	TTGAAGCGAT	TGGCTTGTCT	6180
25	CATGATGTGA	TTGATCGTTA	TTTTACTGGG	ACACAGTCTA	AGTTATCTGG	TATTTCGATT	6240
	GATCAAATTG	ATGCTGAAAA	TAAAGCACGT	CAACAAAGTG	ATGATAATTA	TCTTGCATCA	6300
22	GGTAGTACAT	TCCAATGGAG	ACAACAAGGT	CAACATCATG	CTTTTAATCC	GGAATCTATT	6360
30	TTCTTATTGC	AGCACGCATG	TAAAGAAAAT	GACTATGCGC	AATTTAAAGC	ATACTCTGAA	6420
	GCGGTGAACA	AAAATAGAAC	AGATCACATT	AGACATTTAC	TTGAATITAA	AGCATGTACA	6480
35	CCGATTGACA	TCGACCAAGT	TGAACCGGTA	AGTGACATTG	TCAAACGCTT	TAATACAGGG	6540
	GCGATGAGTT	ATGGATCGAT	TTCAGCGGAA	GCACATGAAA	CGTTAGCACA	AGCCATGAAC	6600
	CAATTAGGTG	GAAAGAGTAA	TAGTGGTGAA	GGTGGCGAAG	ATGCAAAACG	TTATGAAGTA	6660
40	CAAGTTGATG	GAAGCAACAA	AGTAAGTGCG	ATTAAACAAG	TTGCTTCTGG	GCGTTTTGGT	6720
	GTAACTAGTG	ATTATTTACA	ACATGCCAAA	GAAATTCAAA	TTAAAGTTGC	GCAAGGTGCA	6780
	AAGCCTGGTG	AAGGTGGTCA	ATTACCTGGT	ACTAAGGTAT	ATCCGTGGAT	TGCGAAGACA	6840
45	AGAGGGTCAA	CGCCAGGTAT	CGGTCTGATT	TCACCACCGC	CACATCATGA	TATTTATTCA	6900
	ATAGAAGATT	TAGCGCAACT	GATACATGAT	TTGAAAAATG	CGAATAAAGA	TGCAGATATC	6960
	GCGGTAAAAT	TAGTTTCGAA	AACAGGTGTT	GGTACCATTG	CATCTGGGGT	GGCAAAAGCA	7020
50	TTTGCAGATA	AAATTGTCAT	CAGTGGTTAC	GATGGTGGTA	CAGGGGCTTC	ACCCAAAACG	7080
	A CONSTRUCTOR CO	N MOCOCOCOCO	TO COMPOSITION OF A CO	a mmccmmra a	C1C111C1C1	EC. 1.1 C1 EE	7140

	AAAGATGTAG	CGTACGCATG	TGCGCTTGGA	GCGGAAGAAT	TTGGATTTGC	AACTGCACCA	7260
	TTAGTGGTGT	TGGGCTGTAT	TATGATGCGT	GTATGCCATA	AAGATACATG	TCCAGTAGGA	7320
5	GTTGCAACTC	AAAACAAAGA	TTTACGTGCT	TTATATAGAG	GTAAAGCACA	TCATGTTGTT	7380
	AATTTTATGC	ATTTTATTGC	ACAAGAATTA	AGAGAAATTT	TAGCATCTTT	AGGTTTGAAA	7440
	CGTGTAGAAG	ACTTAGTTGG	AAGAACTGAT	TTATTACAAC	GATCATCAAC	ATTAAAAGCG	7500
10	AATAGCAAAG	CGGCTAGTAT	TGATGTTGAA	AAACTGTTAT	GTCCTTTCGA	TGGGCCAAAC	7560
	ACAAAAGAAA	TTCAACAAAA	TCATAATCTT	GAGCATGGAT	TTGATTTAAC	TATATTAAA	7620
15	GAAGTAACGA	AGCCATATAT	TGCTGAAGGG	CGTCGCTATA	CAGGTAGCTT	TACAGTAAAT	7680
	AATGAACAAC	GTGATGTAGG	GGTTATTACA	GGTAGTGAGA	TTTCGAAACA	ATATGGAGAA	7740
	GCAGGACTTC	CTGAAAATAC	AATTAATGTT	TATACGAATG	GTCATGCTGG	TCAAAGTCTT	7800
20	GCAGCATATG	CACCGAAAGG	CTTAATGATT	CATCATACTG	GAGATGCGAA	TGACTATGTT	7860
	GGTAAAGGAT	TATCTGGTGG	TACGGTCATT	GTCAAAGCAC	CTTTTGAAGA	ACGACAAAAT	7920
	GAAATTATTG	CTGGTAACGT	CTCATTCTAT	GGTGCGACAA	GTGGTAAGGC	ATTTATTAAC	7980
25	GGTAGTGCAG	GAGAAAGATT	CTGTATTAGA	AATAGTGGTG	TAGATGTTGT	CGTTGAAGGT	8040
	ATCGGCGACC	ATGGATTAGA	GTATATGACT	GGTGGACATG	TCATTAATTT	AGGTGATGTA	8100
	GGTAAGAACT	TCGGTCAAGG	TATGAGTGGT	GGTATTGCTT	ACGTTATCCC	GTCTGATGTA	8160
30	GAAGCTTTTG	TTGAAAATAA	TCAACTAGAT	ACGCTTTCGT	TTACAAAGAT	TAAACACCAA	8220
	GAAGAAAAAG	CATTCATTAA	GCAAATGCTG	GAAGAACATG	TGTCACACAC	GAATAGTACG	8280
	AGAGCGATTC	ATGTGTTAAA	ACATTTTGAT	CGCATTGAAG	ATGTCGTCGT	TAAAGTTATT	8340
35	CCTAAAGATT	ATCAATTAAT	GATGCAAAAA	ATTCATTTGC	ACAAATCATT	ACATGACAAT	8400
	GAAGÃTGAAG	CGATGTTAGC	TGCATTTTAC	GATGACAGTA	AAACAATCGA	TGCTAAACAT	8460
	AAACCAGCCG	TTGTGTATTA	AGGAAAGGGG	GAGATACGAT	GGGTGAATTT	AAAGGATTTA	8520
10	TGAAGTATGA	CAAACAGTAC	TTAGGTGAAT	TATCACTGGT	AGACCGTTTG	AAGCATCATA	8580
	AAGCATATCA	ACAACGATTT	ACTAAAGAAG	ATGCCTCTAT	CCAAGGTGCA	CGATGTATGG	8640
15	ATTGTGGAAC	GCCGTTTTGT	CAAACCGGAC	AACAGTATGG	TAGGGAAACA	ATAGGTTGTC	8700
••	CAATTGGAAA	CTACATTCCT	GAATGGAACG	ACTTAGTGTA	TCATCAAGAT	TTTAAAACTG	8760
	CTTATGAACG	CTTAAGCGAA	ACAAATAACT	TTCCTGACTT	TACAGGGCGT	GTATGTCCTG	8820
50	CACCATGCGA	AAGTGCTTGT	GTGATGAAGA	TTAATAGAGA	ATCGATTGCG	ATTAAAGGTA	8880
	TTO A A COCCA C	አ አመጥ አመመንግ አጥ	CAACCTTTTC	AAAATCCTTC	CCTACCCCC	AAAGTTCCGA	8940

	CTGAAGAACT	TAATCTACTA	GGATATCAAG	TAACTATTTA	TGAACGTGCT	AGAGAATCAG	9060
	GCGGTTTATT	AATGTATGGT	ATTCCGAATA	TGAAACTTGA	TAAAGATGTG	GTTCGACGTC	9120
5	GTATTAAGTT	AATGGAAGAA	GCGGGCATTA	CTTTCATTAA	TGGTGTTGAA	GTCGGTGTTG	9180
	ATATTGATAA	AGCAACGTTA	GAATCTGAGT	ATGATGCCAT	TATATTATGT	ACTGGTGCAC	9240
	AAAAAGGTAG	AGATTTACCT	TTAGAAGGAC	GCATGGGTGA	TGGTATACAT	TTCGCTATGG	9300
10	ATTATTTAAC	TGAACAAACG	CAGTTGTTAA	ATGGAGAAAT	TGATGATATA	ACAATAACTG	9360
	CAAAAGATAA	GAATGTCATT	ATCATTGGTG	CTGGTGATAC	AGGGCAGAC	TGTGTAGCGA	9420
15	CAGCATTAAG	AGAAAATTGT	AAATCGATTG	TTCAATTTAA	TAAATATACG	AAATTGCCAG	9480
	AAGCAATTAC	ATTTACAGAA	AATGCATCAT	GGCCTTTAGC	AATGCCGGTG	TTTAAAATGG	9540
	ACTATGCGCA	CCAAGAGTAC	GAAGCTAAGT	TTGGTAAGGA	ACCACGTGCA	TATGGTGTTC	9600
20	AAACAATGCG	TTACGATGTT	GACGATAAAG	GACACATACG	TGGTTTGTAT	ACTCAAATTT	9660
	TAGAGCAAGG	CGAAAATGGT	ATGGTCATGA	AAGAAGGACC	TGAAAGATTT	TGGCCTGCTG	9720
	ACCTTGTATT	ATTATCAATC	GGCTTCGAAG	GTACAGAACC	AACAGTACCG	AATGCTTTTA	9780
?5	ACATTAAAAC	GGATAGAAAT	CGAATCGTGG	CGGATGATAC	AAACTATCAA	ACTAATAATG	9840
	AAAAGGTATT	TGCTGCTGGA	GATGCTAGAC	GTGGTCAAAG	TTTAGTTGTA	TGGGCAATTA	9900
	AAGAAGGTAG	AGGCGTAGCG	AAAGCAGTAG	ATCAGTATTT	AGCTAGTAAA	GTTTGTGTAT	9960
30	AATCTTTGTA	TGGAAATGGT	GGTTACGTTG	ACGTTGTGAC	ATGCTGAATC	GAGTTTGAAA	10020
	AAATCTAGTA	TCTATCAACG	TCACATGCCA	TCTTTGTAAC	CTAAAAACAA	AGGTTTGTAA	10080
	GACAACAAAT	AGATTAATTA	TAAGTAGTGA	TTTTTTACAT	TCGTTTATAG	GTCAACTGTA	10140
35	GTGGAAGACA	ATGATTTGTG	GTAATCATGT	AATGCTTAAA	AACAATATTG	ACTTTTACAG	10200
	AACOTTCATA	TATGATAAAT	ATTGTGTTTA	GGAGGAATAC	CCAAGTCCGG	CTGAAGGGAT	10260
	CGGTCTTGAA	AACCGACAGG	GGCTTAACGG	CTCGCGGGG	TTCGAATCCC	TCTTCCTCCG	10320
10	CCATCAATAT	ттататтааа	TTCTATATAT	AATGAAGGTA	AGTGCTCAAA	TTTTGAGTAT	10380
	TTACCTTTTT	TATTTGTCTT	TGAATGGCTC	GTAATTTTTG	ATAATAGAAA	TGATAAGGCA	10440
15	TTGAGATTGG	AAGGGCATTT	GGCTTGTGCA	ATATACATAG	CTAAATGTCT	TTTTTGTTTT	10500
,5	GTGAAATATG	ATGGATGGCT	TGTGTGGACA	AGTTTGCTAT	TTATAGATAT	GCATTTTTCA	10560
	ATTTAGGAGT	TGGCCATGCA	TCTACACTTT	ATAATGGTGA	GAGCGTGGTG	AGGTATTGTT	10620
50	AATAACGCAA	TTGTAGCGAG	GAGTTATTGC	TACATATGTC	GTTATGGCTC	ATTGATTTTC	10680
	man na mada am	NOCCONCINEN	ammore a cas	*****	TTTTCTTCAA	A CCCTTTTA CA	1074/

	TAAAAAGAGA	AGATGTAAAA	GCCATCGTAA	CCGCTATTGG	GGGAAAAGAA	AATCTTGAAG	10860
	CTGCAACGCA	TTGTGTAACA	CGATTACGTT	TAGTGCTGAA	GGATGAAAGT	AAAGTTGATA	10920
5	AAGACGCATT	AAGTAATAAC	GCGTTGGTCA	AGGGGCAGTT	TAAAGCAGAC	CATCAATATC	10980
	AAATTGTCAT	TGGTCCAGGA	ACAGTCGATG	AAGTGTATAA	GCAGTTTATT	GATGAAACAG	11040
	GTGCTCAAGA	AGCTTCGAAA	GATGAAGCGA	AACAAGCAGC	TGCACAAAAA	GGGAATCCAG	11100
10	TACAACGTTT	GATCAAATTG	TEGGGGGATA	TTTTTATACC	AATATTACCT	GCGATTGTGA	11160
	CAGCTGGTTT	GTTAATGGGA	ATCAATAATT	TACTTACAAT	GAAAGGTTTA	TTTGGTCCAA	11220
	AAGCACTTAT	TGAGATGTAT	CCACAAATTG	CTGATATTTC	AAACATCATT	AATGTGATTG	11280
15	CGAGTACGGC	ATTTATTTTC	TTACCAGCAT	TAATTGGTTG	GAGTAGTATG	CGTGTATTTG	11340
	GTGGTAGTCC	GATTCTAGGC	ATAGTCTTAG	GTTTGATTTT	AATGCATCCG	CAATTAGTAT	11400
20	CTCAGTATGA	TTTGGCAAAA	GGGAATATTC	CGACGTGGAA	CTTATTTGGC	TTAGAGATTA	11460
20	AGCAGTTGAA	TTACCAAGGT	CAAGTGTTGC	CAGTETTAAT	TGCAGCTTAC	GTTCTAGCTA	11520
	AAATTGAAAA	AGGATTAAAT	AAAGTCGTTC	ACGATTCGAT	AAAAATGTTG	GTCGTTGGAC	11580
25	CCGTAGCGCT	TTTAGTTACT	GGATTTTTAG	CATTTATTAT	CATTGGACCA	GTTGCGTTAT	11640
	TGaTTGGTAC	AGGTATTACA	TCTGGTGTTA	CATTTATATT	CCAACATGCA	GGATGGCTTG	11700
	GCGGAGCAAT	ATATGGATTG	TTATATGCAC	CACTTGTAAT	TACAGGACTA	CACCATATGT	11760
30	TTTTAGCAGT	AGATTTCCAA	TTGATGGGTA	GCAGCTTAGG	CGGTACGTAT	TTATGGCCAA	11820
	TTGTTGCGAT	TTCCAATATT	TGTCAGGGCT	CTGCAGCATT	TGGAGCATGG	TTTGTCTATA	11880
	AACGTCGTAA	AATGGTTAAA	GAAGAAGGCT	TGGCATTAAC	ATCTTGTATT	TCTGGTATGT	11940
35	TAGGTGTTAC	TGAACCAGCC	ATGTTCGGTG	TGAACTTACC	TCTGAAATAT	CCATTTATCG	12000
	CTGCGATATC	AACGTCTTGT	GTATTGGGGG	CAATCGTTGG	TATGAATAAC	GTACTTGGAA	12060
	AAGTTGGTGT	TGGTGGCGTG	CCAGCATTCA	TTTCAATTCA	AAAAGAATTT	TGGCCAGTAT	12120
40	ATCTTATTGT	GACAGCTATT	GCTATTGTTG	TACCATGTAT	ACTAACAATT	GTGATGTCTC	12180
	ATTTTAGTAA	ACAAAAAGCG	AAAGAAATTG	TTGAAGATTA	АТААААТААА	AAAGGGCGT	12240
	TCGTTATTTG	GACGTCCTTT	ATTACGTTAT	AAGGTGGTAA	TTGTGTGTCG	AAAGAAATAG	12300
45	ATTGGAGAAA	ATCCGTTGTA	TATCAAATTT	ATCCTAAGTC	GTTTAATGAT	ACGACGGGGA	12360
	ATGGTATAGG	AGATATCAAT	GGAATTATAG	AAAAATTGGA	TTATATCAAG	TTATTGGGTG	12420
50	TTGATTATAT	TTGGTTAACA	CCAGTGTATG	AATCACCGAT	GAATGATAAT	GGCTATGATA	12480
	TCAGCAATTA	TTTAGAAATC	aATGAAGACT	TTGGAACGAT	GGATGATTTT	Gaaaagttaa	12540

	CGACGGAGCA	TGaATGGTTT	AAAGAAGCCC	GTAAATCTAA	AGATAACCCy	TATAGAGATT	12660
	ATTACTTTTT	CAGATCATCT	GAAGACGGGC	CGCCAACAAA	TTGGCATTCT	AAATTCGGTG	12720
5	GTAATGCATG	GAAGTATGAT	TCTGAGACAG	ATGAATATTA	TTTACATTTA	TTTGATGTCA	12780
	GTCAAGCTGA	TTTAAATTGG	GATAATCCGG	AAGTACGTCA	ATCGTTATAT	CGCATAGTCA	12840
	ATCATTGGAT	AGACTTCGGC	GTTGATGGTT	TTCGATTTGA	TGTCATTAAC	TTAATTTCTA	12900
10	AAGGTGAATT	TAAGGACTCT	GACAAAATAG	GTAAAGAATT	TTATACGGAT	GGTCCTAGAG	12960
	TGCATGAGTT	TCTGCATGAA	TTAAATCGTC	AAACGTTTGG	TAACACTGAC	ATGATGACTA	13020
15	TAGGAGAAAT	GTCTTCGACG	ACGATTGAAA	ATTGTATTAA	GTATACACAA	CCAGAACGCC	13080
, ,	AAGAATTGAA	TAGTGTTTTT	AATTTTCATC	ATCTAAAGGT	TGATTATGTT	GATGGTGAAA	13140
	AGTGGACAAA	TGCGAgcTTG	nATTTTCATA	AGTTAAAGGA	AATTCTGATG	CAATGGCAAC	13200
20	GAGGTATTTA	TGACGGTGGC	GGATGGAACG	CGATTTTCTG	GTGTAATCAT	GATCAGCCAC	13260
	GGGTAGTGTC	TAGATTTGGT	GATGATACGT	CGGAAGAGAT	GAGGATACAA	AGTGCTAAAA	13320
	TGTTAGCTAT	CGCACTGCAT	ATGTTGCAAG	GGACGCCATA	TATTTACCAA	GGTGAAGAAA	13380
2 5	TTGGTATGAC	GGACCCACAT	TTTACATCAA	TAGCACAATA	TCGTGATGTT	GAATCGATTA	13440
	ATGCCTACCA	TCAGTTGTTA	AGTGAAGGGC	ATGCTGAAGC	GGATGTGTTA	GCGATTTTAG	13500
	GACAGAAGTC	ACGAGACAAT	TCGAGAACGC	CTATGCAATG	GAGTGATGAT	GTTAATGCTG	13560
30	GATTTACAGC	TGGTAAnCCT	TGGATTGATA	TTTCGGAAAA	TTATCATCAG	GTCAACGTTA	13620
	GACAAGCACT	TCAGAATAAA	GAGTCTATTT	TCTATACGTA	TCAAAAATTA	ATACAATTAA	13680
	GACATACGCA	TGATATTATT	ACGTATGGAG	ACATTGTGCC	ACGTTTTATG	GATCATGATC	13740
35	ATTTATTTGT	TTATGAACGT	CATTATAAGA	ATCAACAATG	GCTAGTAATT	GCGAATTTCT	13800
	CAGCATCGGC	TGTTGATTTG	CCAGAAGGAT	TGGCTAGAGA	AGGTTGTGTT	GTGATTCAAA	13860
	CAGGCACAGT	GGAAAATAAT	ACGATAAGCG	GGTTTGGTGC	AATTGTAATC	GAAACAAACG	13920
10	CGTAAAATAA	ATTGAGTGGA	TGCGTTTATA	TGGCGAAACA	AAAAAAGTTT	ATGAAGATTT	13980
	ATGAGGCGTT	GAAAGAAGAT	ATATTAAACG	GGCAGATTCA	ATATGGTGAA	CAAATTCCGT	14040
15	CTGAACATGA	TTTGGTGCAA	TTGTACCAGT	CATCTCGAGA	GACCGTGCGT	AAGGCATTAG	14100
	ATTTGTTGGC	ATTAGACGGC	ATGATTCAAA	AGATTCATGG	TAAAGGGTCA	CTTGTCATTT	14160
	ATCAGGAGGT	TACAGAGTTT	CCATTTTCTG	AACTTGTTAG	TTTTAAAGAA	ATGCAAGAAG	14220
50	AAATGGGCGT	CGCATATTTA	ACTGAAGTTG	TTGTGAATGA	GGTTGTTGAA	GCGCATGAAG	14280
	TTCCAGAAGT	TCAACATGCT	TTAAACATCA	ATTCTAGTGA	ATCACTCATT	CATATTGTTA	14340

	TTGTTTCAGA	TATAGGTAAT	GATGTTGCGA	GTGATTCTAT	TTATGATTAT	TTGGAAAAGG	14460
	TATTAAATCT	TAATATTAGT	TATTCAAGTA	AGTCTATTAC	TTTTGAACCG	TTTGATGAAC	14520
5	AAGCATATCA	ATTGTTTGGT	GATGTATCGG	TGGCTTATTC	AGCAACAGTT	CGAAGTATTG	14580
	TGTATTTAGA	AAATACAATG	CCGTTTCAAT	ATAATATTTC	AAAACATCTT	GCAAATGAAT	14640
	TTAAATITAA	TGACTTCTCA	AGACGTCGTA	TAAAGTAAAC	AATGATATAA	ATGATTTATA	14700
10	CTTGCAATTA	ACTATTAAAA	TATAGTAATA	TATATCTTGC	CGTGCTAGGT	GGGGAGGTAG	14760
	CGGTTCCCTG	TACTCGAAAT	CCGCTTTATG	CGAGGCTTAA	TTCCTTTGTT	GAGGCCGTAT	14820
	TTTTGCGAAG	TCTGCCCAAA	GCACGTAGTG	TTTGAAGATT	TCGGTCCTAT	GCAATATGAA	14880
15	CCCATGAACC	ATGTCAGGTC	CTGACGGAAG	CAGCATTAAG	TGGATCATCA	TATGTGCCGT	14940
	AGGGTAGCCG	AGATTTAGCT	AACGACTTTG	GTTACGTTCG	TGAATTACGT	TCGATGCTTA	15000
20	GGTGCACGGT	TTTTTATTTT	TTAAATATTA	AACCGATTAT	TAAGAGTTGA	AATATATAA	15060
20	TTATAGAAGC	TACTTTCTTG	AAGACAATTC	AGCGTATTAT	ACGTGGAACA	TGTTTGTGGG	15120
	AAGTAGCTTT	TTTATATGTG	AAGTTTGATT	CAAGTGAACT	CGATGTGCAG	TTTGAATGAT	15180
25	TTTTGTGTCA	ATGAAAAGTA	AGAAGTTATA	ATTTGATGAT	AAAGAAATGA	TGGTGAAATG	15240
	AGGGGGAGTA	TCTTACAATA	GAATTATTAA	TGAGATACGT	TATGATTATT	GACAATCAAA	15300
	TGCCTACGGA	GGACATATGC	AAATATATTT	AAGTACTTTA	ACAGAGTTAG	ATTATGATAA	15360
30	ATCTTTAAAT	AGTATTGAAG	AAAGTTTTGA	TGATAATCCT	GAAACGAGTT	GGCAAGCACG	15420
	TGCGAAAGTA	AAACATTTAA	GAAAATCTCC	TTGCTATAAT	TTTGAATTAG	AAGTAATAGC	15480
	GAAAAATGAA	AATAACGATG	TCGTTGGACA	CGTTTTATTA	ATTGAAGTAG	AAATTAATAG	15540
35	TGATGATAAG	ACGTATTATG	GTTTGGCGAT	TGCCTCTTTA	TCAGTTCATC	CTGAATTACG	15600
	TGGACAAAAA	TTAGGTCGTG	GCTTGGTTCA	AGCAGTAGAA	GAGCGTGCCA	AAGCACAAGA	15660
	GTATAGTACG	GTTGTTGTAG	ACCATTGTTT	TGACTACTTT	GAAAAGTTGG	GTTATCAAAA	15720
40	TGCTGCTGAG	CATGACATTA	AATTAGAATC	TGGTGATGCA	CCGTTACTTG	TAAAATATTT	15780
	ATGGGATAAT	TTGACGGATG	CACCACACGG	AATCGTAAAA	TTTCCAGAAC	ATTTTTATTA	15840
• •	ATTGTTCAAT	TAAGAAGTAA	AGGTATTATC	ATGCTATAAT	GAGAGGTAAT	TGTTTATGGA	15900
45	GGTGCTAACT	TGAATTATCA	AGCCTTATAT	CGTATGTACA	GACCCCAAAG	TTTCGAGGAT	15960
	GTCGTCGGAC	AAGAACATGT	CACGAAGACA	TTGCGCAATG	CGATTTCGAA	AGAAAAACAG	16020
50	TCGCATGCTT	ATATTTTAG	TGGTCCGAGA	GGTACGGGGA	AAACGAGTAT	TGCCAAAGTG	16080
-	TTTGcTAAAG	CAATCAACTG	TCTAAATAGC	ACTGATGGAG	AACCTTGTAA	TGAATGTCAT	16140

	AATAATGGCG	TTGATGAAAT	AAGAAATATT	AGAGACAAAG	TTAAATATGC	ACCAAGTGAA	16260
	TCGAAATATA	AAGTTTATAT	TATAGATGAG	GTGCACATGC	TAACAACAGG	TGCTTTTAAT	16320
5	GCCCTTTTAA	AGACGTTAGA	AGAACCTCCA	GCACACGCTA	TTTTTATATT	GGCAACGACA	16380
	GAACCACATA	AAATCCCTCC	AACAATCATT	TCTAGGGCAC	AACGTTTTGA	TTTTAAAGCA	15440
	ATTAGCCTAG	ATCAAATTGT	TGAACGTTTA	AAATTTGTAG	CAGATGCACA	ACAAATTGAA	16500
10	TGTGAAGATG	AAGCCTTGGC	ATTTAtcgCT	AAAGCGTCTG	AAGGGGGTAT	GCGTGATGCA	16560
	TTAAGTATTA	TGGATCAGGC	TATTGCATTT	GGTGATGGTA	CGTTAACATT	GCAAGATGCG	16620
15	TTGAATGTCA	CAGGTAGCGT	ACATGATGAA	GCGTTGGATC	ACTTGTTTGA	TGATATTGTA	16680
15	CAAGGTGACG	TACAAGCATC	TTTTAAAAAA	TACCATCAGT	TTATAACAGA	AGGTAAAGAA	16740
	GTGAATCGCC	TAATAAATGa	TATGATTTAT	TTTGTCaGAG	ATACGATTAT	GAATAAAACA	16800
20	TCTGAGAAAG	ATACTGAGTA	TCGAGCACTG	ATGAACTTAG	AATTAGATAT	GTTATATCAA	16860
	ATGATTGATC	TTATTAATGA	TACATTAGTG	TCGATTCGTT	TTAGTGTGAA	TCAAAACGTT	16920
	CATTTTGAAG	TGTTGTTAGT	AAAATTAGCT	GAGCAGATTA	AGGGTCAACC	ACAAGTGATT	16980
25	GCGAATGTAG	CTGAACCAGC	ACAAATTGCT	TCATCGCCAA	ACACAGATGT	ATTGTTGCAA	17040
	CGTATGGAAC	AGTTAGAGCA	AGAACTAAAA	ACACTAAAAG	CACAAGGAGT	GAGTGTCGCT	17100
	CCTGTTCAAA	AATCTTCGAA	AAAGCCTGCG	AGAGGCATAC	AAAAATCTAA	AAATGCATTT	17160
30	TCAATGCAAC	AAATTGCAAA	AGTGCTAGAT	AAAGCGAATA	AGGCAGATAT	CAAATTGTTG	17220
	AAAGATCATT	GGCAAGAAGT	GATTGATCAT	GCCAAAAATA	ATGATAAAAA	ATCACTCGTT	17280
	AGTTTATTGC	AAAATTCGGA	ACCTGTGGCG	GCAAGTGAAG	ATCACGTACT	TGTGAAATTT	17340
35	GAGGAAGAGA	TCCATTGTGA	AATCGTCAAT	AAAGACGACG	AGAAACGTAG	TAGTATAGAA	17400
	agtgītgtat	GTAATATCGT	таатааааас	GTTAAAGTTG	TTGGTGTACC	ATCAGATCAA	17460
	TGGCAAAGAG	TTCGAACGGA	ATATTTACAA	AATCGTAAAA	ACGAAGGCGA	TGATATGCCA	17520
10	AAGCAACAAG	CACAACAAAC	AGATATTGCT	CAAAAAGCAA	AAGATCTTTT	CGGTGAAGAA	17580
	ACTGTACATG	TGATAGATGA	AGAGTGATAC	ATGACAAGCG	ATATAATCGT	ATGTATAATG	17640
	AAAGAAACAT	CATTTTATTG	ATAAATATTT	ATTGATTTTC	AAGGAGGAAA	TGGAATATGC	17700
4 5	GCGGTGGCGG	AAACATGCAA	CAAATGATGA	AACAAATGCA	AAAAATGCAA	AAGAAAATGG	17760
	CTCAAGAACA	AGAAAAACTT	AAAGAAGAGC	GTATTGTAGG	AACAGCTGGC	GGTGGCATGG	17820
50	TTGCAGTTAC	TGTAACTGGT	CATAAAGAAG	TTGTCGACGT	TGAAATCAAA	GAAGAAGCTG	17880
	TAGACCCAGA	CGATATTGAA	ATGCTACAAG	ACTTAGTGTT	AGCAGCTACT	AATGAAGCGA	17940

	TCCCTGGaAT	GTGATCATAG	ATGCATTATC	CAGAACCTAT	ATCAAAACTT	ATTGATAGCT	18060
	TTATGAAATT	GCCAGGCATT	GGTCCAAAGA	CAGCCCAACG	TCTGGCTTTT	CATACCTTAG	18120
5	ATATGAAAGA	AGACGATGTT	GTTCAGTTTG	CCAAAGCATT	AGTAGATGTT	AAGAGAGAAT	18180
	TAACATATTG	TAGCGTATGT	GGTCACATTA	CTGAAAATGA	TCCATGTTAT	ATTTGTGAAG	13240
	ATAAGCAAAG	AGATCGTTCA	GTTATTTGTG	TTGTGGAAGA	TGACAAAGAT	GTCATAGCTA	18300
10	TGGAAAAAAT	GAGAGAATAC	AAAGGTTTAT	ATCACGTTTT	ACATGGGTCT	ATTTCGCCTA	18360
	TGGATGGCAT	TGGACCAGAA	GATATTAATA	TTCCTTCATT	GATTGAACGC	TTGAAAAACG	18420
	ATGAAGTTAG	CGAATTAATC	TTAGCTATGA	ACCCGAACTT	AGAGGGGGAA	TCTACAGCCA	18480
15	TGTATATTTC	TAGATTAGTT	AAGCCTATAG	GTATCAAAGT	GACGAGATTA	GCACAAGGGT	18540
	TATCGGTAGG	TGGCGATTTA	GAGTATGCTG	ACGAAGTAAC	ATTATCTAAA	GCAATCGCAG	18600
22	GTAGAACAGA	AATGTAATKT	CTTCTATTAA	ACATTTTTGA	TTTTAATACT	ATAGTAAGAA	18660
20	AAGTCACAGT	GTAATCATTG	TGGCTTTTTT	TATGGTGTGG	TGTGATGTAC	TACTTTATTT	18720
	GCGGTGTGGC	GGTGGTATGG	TTTACCTAGT	TTTACTGAGG	GATGGGTAAT	CTTTAGGAAG	18780
25	CAAGCCGTTG	GTTGTGATTT	GTTACTTCTA	ATAGTAATGA	TGTGAATTGG	ATTATCGAAT	18840
	TAGATCTATG	GTTATGGTGT	GTTGGTGCTA	TTAATTTGAT	AAATGCGGTT	AATGACTATG	18900
	CAAATGAAAT	TCTTTTGTAA	TTGAAATGAT	AGATGCTGGC	TTAGTAAGTT	GTACTTCTTT	18960
30	GGTCTAAAGC	TTATTAAATC	AGCCTGTATA	GCGGTGTTTT	GAGAGATTAT	TTAAAACTTG	19020
	TAAATTTATT	TTTAATTTCT	GGTAAAAAAA	TAACGTTCTG	TTTTGCGTTT	TTTTTGATTG	19080
	ATATGGTTAG	AGAAAAATCT	GTTTCTTGTT	CTAAAAAACG	TACTATTTAT	AAGTGGGGAT	19140
35	TTTTTAAGTT	CGATTTTTAG	GATAAGGGCG	TTCAGTACAG	ATGACAAAGG	TGTAATTTTT	19200
	ACTGTTGTTA	AGCAGTTTGA	AAGCCTGTAT	AGTATTTATT	TGTTGAGGCA	AACAAAACAA	19260
	CTCAACTTAA	GAAATAACTT	GAATTACTAA	CGAAAATTAA	TTTTAAAAAG	TTATTGACTT	19320
40	AAATGTTAAT	AAAATGTATA	ATTAATTCTT	GTCGGTAAGA	AAAATGAACA	TTGAAAACTG	19380
	AATGACAATA	TGTCAACGTT	AATTCCAAAA	AACGTAACTA	TAAGTTACAA	ACATTATTTA	19440
	GTATTTATGA	GCTAATCAAA	CATCATAATT	TTTATGGAGA	GTTTGATCCT	GGCTCAGGAT	19500
45	GAACGCTGGC	GGCGTGCCTA	ATACATGCAA	GTCGAGCGAA	CGGACGAGAA	GCTTGCTTCT	19560
	CTGATGTTAG	CGGCGGACGG	GTGAGTAACA	CGTGGATAAC	CTACCTATAA	GACTGGGATA	19620
	ACTTCGGGAA	ACCGRAGCTA	ATACCGGATA	ATATTTTGAA	CCGCATGGTT	CAAAAGTGAA	19680
50	AGACGGTCTT	GCTGTCACTT	ATAGATGGAT	CCGCGCTGCA	TTAGCTAGTT	GGTAAGGTAA	19740

	GAGACACGGT	CCAGACTCCT	ACGGGAGGCA	GCAGTAGGGA	ATCTTCCGCA	ATGGGCGAAA	19860
	gCtGaCGGAG	CAACGCCGCG	TGAGTGATGA	AGGTCTTCGG	ATCGTAAAAC	TCTGTTATTA	19920
5	GGGAAGAACA	TATGTGTAAG	TAACTGTGCA	CATCTTGACG	GTACCTAATC	AGAAAGCCAC	19980
	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGTGG	CAAGCGTTAT	CCGGAATTAT	20040
	TGGGCGTAAA	GCGCGCGTAG	GCGGTTTTTT	AAGTCTGATG	TGAAAGCCCA	CGGCTCAACC	20100
10	GTGGAGGGTC	ATTGGAAACT	GGAAAACTTG	AGTGCAGAAG	AGGAAAGTGG	AATTCCATGT	20160
	GTAGCGGTGA	AATGCGCAGA	GATATGGAGG	AACACCAGTG	GCGAAGGCGA	CTTTCTGGTC	20220
	TGTAACTGAC	GCTGATGTGC	GAAAgCGTGG	GGATCAAACA	GGATTAGATA	CCCTGGTAGT	20280
15	CCACGCCGTA	AACGATGAGT	GCTAAGTGTT	AGGGGGTTTC	CGCCCCTTAG	TGCTGCAGCT	20340
	AACGCATTAA	GCACTCCGCC	TGGGGAGTAC	GACCGCAAGt	TGAAACTCAA	AGGAATTGAC	20400
20	GGGGACCCGC	ACAAGCGGTG	GAGCATGTGG	TTTAATTCGA	AGCAACGCGA	AGAACCTTAC	20460
20	CAAATCTTGA	CATCCTTTGA	CAACTCTAGA	GATAGAGCCT	TCCCCTTCGG	GGGACAAAGT	20520
	GACAGGTGGT	GCATGGTTGT	CGTCAGCTCG	TGTCGTGAGA	TGTTGGGTTA	AGTCCCGCAA	20580
25	CGAGCGCAAC	CCTTAAGCTT	AGTTGCCATC	ATTAAGTTGG	GCACTCTAAG	TTGACTGCCG	20640
	GTGACAAACC	GGAGGAAGGT	GGGGATGACG	TCAAATCATC	ATGCCCCTTA	TGATTTGGGC	20700
	TACACACGTG	CTACAATGGA	CAATACAAAG	GGCAGCGAAA	CCGCGAGGTC	AAGCAAATCC	20760
30	CATAAAGTTG	TTCTCAGTTC	GGATTGTAGT	CTGCAACTCG	ACTACATGAA	GCTGGAATCG	20820
	CTAGTAATCG	TAGATCAGCA	TGCTACGGTG	AATACGTTCC	CGGGTCTTGT	ACACACCGCC	20880
	CGTCACACCA	CGAGAGTTTG	TAACACCCGA	AGCCGGTGGA	GTAACCTTTT	AGGAGCTAGC	20940
35	CGTCGAAGGT	GGGACAAATG	ATTGGGGTGA	AGTCGTAACA	AGGTAGCCGT	ATCGGAAGGT	21000
	GCGGCTGGAT	CACCTCCTTT	CTAAGGATAT	ATTCGGAACA	TCTTCTTCAG	AAGATGCGGA	21060
	ATAACGTGAC	ATATTGTATT	CAGTTTTGAA	TGTTTATTTA	ACATTCAAAT	ATTTTTTGGT	21120
40	TAAAGTGATA	TTGCTTATGA	AAATAAAGCA	GTATGCGAGC	GCTTGACTAA	AAAGAAATTG	21180
	TACATTGAAA	ACTAGATAAG	TAAGTAAAAT	ATAGATTTTA	CCAAGCAAAA	CCGAGTGAAT	21240
	AAAGAGTTTT	AAATAAGCTT	GAATTCATAA	GAAATAATCG	CTAGTGTTCG	AAAGAACACT	21300
45	CACAAGATTA	ATAACGCGTT	TAAATCTTTT	TATAAAAGAA	CGTAACTTCA	TGTTAACGTT	21360
	TGACTTATAA	AAATGGTGGA	AACATAGATT	AAGTTATTAA	GGGCGCACGG	TGGATGCCTT	21420
	GGCACTAGAA	GCCGATGAAG	GACGTTACTA	ACGACGATAT	GCTTTGGGGA	GCTGTAAGTA	21480
50	AGCTTTGATC	CAGAGATTTC	CGAATGGGGA	AACCCAGCAT	GAGTTATGTC	ATGTTATCGA	21540

	GAGGAAGAGA	AAGAAAATTC	GATTCCCTTA	GTAGCGGCGA	GCGAAACGGG	AAGAGCCCAA	21660
	ACCAACAAGC	TTGCTTGTTG	GGGTTGTAGG	ACACTCTATA	CGGAGTTACA	AAGGACGACA	21720
5	TTAGACGAAT	CATCTGGAAA	GATGAATCAA	AGAAGGTAAT	AATCCTGTAG	TCGAAAATGT	21780
	TGTCTCTCTT	GAGTGGATCC	TGAGTACGAC	GGAGCACGTG	AAATTCCGTC	GGAATCTGGG	21840
	AGGACCATCT	CCTAAGGCTA	AATACTCTCT	AGTGACCGAT	AGTGAACCAG	TACCGTGAGG	21900
10	GAAAGGTGAA	AAGCACCCCG	GAAGGGGAGT	GAAATAGAAC	CTGAAACCGT	GTGCTTACAA	21960
	GTAGTCAGAG	CCCGTTAATG	GGTGATGGCG	TGCCTTTTGT	AGAATGAACC	GGCGAGTTAC	22020
	GATTTGATGC	AAGGTTAAGC	AGTAAATGTG	GAGCCGTAGC	GAAAGCGAGT	CTGAATAGGG	22080
15	CGTTTAGTAT	TTGGTCGTAG	ACCCGAAACC	AGGTGATCTA	CCCTTGGTCA	GGTTGAAGTT	22140
	CAGGTAACAC	TGAATGGAGG	ACCGAACCGA	CTTACGTTGA	AAAGTGAGCG	GATGAACTGA	22200
20	GGGTAGCGGA	GAAATTCCAA	TCGAACCTGG	AGATAGCTGG	TTCTCTCCGA	AATAGCTTTA	22260
20	GGGCTAGCCT	CAAGTGATGA	TTATTGGAGG	TAGAGCACTG	TTTGGACGAG	GGGCCCCTCT	22320
	CGGGTTACCG	AATTCAGACA	AACTCCGAAT	GCCAATTAAT	TTAACTTGGG	AGTCAGAACA	22380
25	TGGGTGATAA	GGTCCGTGTT	CGAAAGGGAA	ACAGCCCAGA	CCACCAGCTA	AGGTCCCAAA	22440
	ATATATGTTA	AGTGGAAAAG	GATGTGGCGT	TGCCCAGACA	ACTAGGATGT	TGGCTTAGAA	22,500
	GCAGCCATCA	TTTAAAGAGT	GCGTAATAGC	TCACTAGTCG	AGTGACACTG	CGCCGAAAAT	22560
30	GTACCGGGGC	TAAACATATT	ACCGAAGCTG	TGGATTGTCC	TTTGGaCAAT	GGtAGGAGAG	22620
	CGTTCTAAGG	GCGTTGAAGC	ATGATCGTAA	GGACATGTGG	AGCGCTTAGA	AGTGAGAATG	22680
	CCGGTGTGAG	TAGCGAAAGA	CGGGTGAGAA	TCCCGTCCAC	CGATTGACTA	AGGTTTCCAG	22740
35	AGGAAGGCTC	GTCCGCTCTG	GGTTAGTCGG	GTCCTAAGCT	GAGGCCGACA	GcGTAGGCGA	22800
	TGGATAACAG	GTTGATATTC	CTGTACCACC	TATAATCGTT	TTAATCGATG	GGGGGACGCA	22860
	tAGGATAGGC	GAAgcGTGcG	ATTGGATTGC	ACGTCTAAGC	AGTAAGGCTG	AGTATTAGGC	22920
40	AAATCCGGTA	CTCGTTAAGG	CTGAGCTGTG	ATGGGGAGAA	GACATTGTGT	CTTCGAGTCG	22980
	TTGATTTCAC	ACTGCCGAGA	AAAGCCTCTA	GATAGAAAAT	AGGTGCCCGT	ACCGCAAACC	23040
	GACACAGGTA	GTCAAGATGA	GAATTCTAAG	GTGAGCGAGC	GAACTCTCGT	TAAGGAACTC	23100
45	GGCAAAATGA	CCCCGTAACT	TCGGGAGAAG	GGGTGCTCTT	TAGGGTTAAC	GCCCAGAAGA	23160
	GCCGCAGTGA	ATAGGCCCAA	GCGACTGTTT	ATCAAAAACA	CAGGTCTCTG	CTAAACCGTA	23220
	AGGTGATGTA	TagGGcTGAC	GCCTGCCCGG	TGCTGGAAGG	TTAAGAGGAG	TGGTTAGcTT	23280
50	CTGCGAAgCT	ACGAATCGAA	GCCCCAGTAA	ACGGCGGCCG	таастатаас	GGTCCTAAGG	23340

	TGTCTCAACG	AGAGACTCGG	TGAAATCATA	GTACCTGTGA	AGATGCAGGT	TACCCGCGAC	23460
	AGGACGGAAA	GACCCCGTGG	AGCTTTACTG	TAGCCTGATA	TTGAAATTCG	GCACAGCTTG	23520
5	TACAGGATAG	GTAGGAGCCT	TTGAAACGTG	AGCGCTAGCT	TACGTGGAGG	CGCTGGTGGG	23580
	ATACTACCCT	AGCTGTGTTG	GCTTTCTAAC	CCGCACCACT	TATCGTGGTG	GGAGACAGTG	23640
	TCAGGCGGGC	AGTTTGACTG	GGGCGGTCGC	CTCCTAAAAG	GTAACGGAGG	CGCTCAAAGG	23700
10	TTCCCTCAGA	ATGGTTGGAA	ATCATTCATA	GAGTGTAAAG	GCATAAGGGA	GCTTGACTGC	23760
	GAGACCTACA	AGTCGAGCAG	GGTCGAAAGA	CGGACTTAGT	GATCCGGTGG	TTCCGCATGG	23820
15	AAGGCCATC	GCTCAACGGA	TAAAAGCTAC	CCCGGGGATA	ACAGGCTTAT	CTCCCCCAAG	23880
15	AGTTCACATC	GACGGGGAGG	TTTGGCACCT	CGATGTCGGC	TCATCGCATC	CTGGGGCTGT	23940
	AGTCGGTCCC	AAGGGTTGGg	CTGTTCGCCC	ATTAAAGCGG	TACGCGAGCT	GGGTTCAGAA	24000
20	CGTCGTGAGA	CAGTTCGGTC	CCTATCCGTC	GTGGGCGTAG	GAAATTTGAG	AGGAGCTGTC	24060
	CTTAGTACGA	GAGGACCGGG	ATGGACATAC	CTCTGGTGTA	CCAGTTGTCG	TGCCAACGGC	24120
	ATAGCTGGGT	AGCTATGTGT	GGACGGGATA	AGTGCTGAAA	GCATCTAAGC	ATGAAGCCCC	24180
25	CCTCAAGATG	AGATTTCCCA	ACTTCGGTTA	TAAGATCCCT	CAAAGATGAT	GAGGTTAATA	24240
	GGTTCGAGGT	GGAAGCATGG	TGACATGTGG	AGCTGACGAA	TACTAATCGA	TCGAAGACTT	24300
	AATCAAAATA	AATGTTTTGC	GAAGCAAAAT	CACTTTTACT	TACTATCTAG	TTTTGAATGT	24360
30	ATAAATTACA	TTCATATGTC	TGGTGACTAT	AGCAAGGAGG	TCACACCTGT	TCCCATGCCG	24420
	AACACAGAAG	TTAAGCTCCT	TAGCGTCGAT	GGTAGTCGAA	CTTACGTTCC	GCTAGAGTAG	24480
	AACGTTGCCA	GGCAAAAAAT	GGATGCGATG	AGCCGCATTG	AGACCGCAAG	GTCTCTTTTT	24540
35	TTTATGTCTA	AAACGTCAAA	ATAAAAAGCA	AACACAAAGA	AAAATGGCTT	GGCGAAGTGA	24600
	AAACGTTTGA	ATCTGACGAA	ACGAGAAAAG	Arcgcaacga	GTTTAGTAGA	GCTAAATGAG	24660
	TAAGyGAGAG	CCGAAGrAGA	GGAAAGAAGC	AAGCGATTGT	CACAAGTCAA	GAAAGGTTCT	24720
10	TAGCGASGAT	GGTAGCCAAC	TTACGTTCCG	CTAGAGTAGA	ACTGGAAATG	ATAATTTAAT	24780
	AATGTACACT	TTCGATTGTC	TAAGTATGTA	CAACTTTAAT	TTTGTGTTTA	TATAAATTTA	24840
	AAATGATATC	ATCGAAAACA	AAATATTGTA	TAAATAGAGA	AGAGCAGTAA	GACGGTATCT	24900
15	AATTGAAAAT	GATCTTACTG	CTCTTTTATA	TACTTTATTG	AAATACAAAA	AGGAAATTAA	24960
	TTATTATACA	ATAGACAAGC	TATTGCATAA	GTAACACTAA	CTTTTATCAA	AGAAGTGTTA	2502 0
50	CTTTATAATT	AATGATTTTA	TTAGAGCGTC	TACATGCGGT	TTTAAAGCAT	CATCGTCTAT	25080
	ACCGCCAAAG	CCTAATATAA	ATTTAGGGGT	TTTCTTATAG	TCTTGATCAT	CATCAAAATT	25140

	TCCATTTTT	ACTGTAATTG	TAAAATGCAT	ACCCGTTTCA	GCACCTTGAA	TATCAAGCTG	25260
	CTCTTTGTAA	GGTTTCAATC	TTTTTAAAAT	ATAGGTTAGT	TTTCTACGAT	AAATTCGTCT	25320
5	CATTTTATTT	AAATGCCTTT	CAAAACCACC	GGAAGATATA	AACGTTGCAA	TAAGGTTTTG	25380
	CATATGAACA	GGTACAGTGT	TGCCTTCAAT	GTGATTTTGA	GAATGATATT	TTTTCATTAT	25440
	AGAATAGGGT	AACACCATAT	ATGCAACTCG	ACAGCTAGGA	AAAATAGACT	TTGAAAATGT	25500
10	ACTGATATAA	ATCACTTTTT	CTCCTCTTGA	ATATAGACCT	TGAATTGCTG	GAATGGGTTT	25560
	GCCGAAATAT	CTAAACTCGG	AATCATAATC	ATCTTCTATA	ATAAATCGTT	CTTCTTTTTC	25620
_	TTGAGCCCAT	TGTATTAATT	GAGTTCGTTT	TTTTAAGTCC	ATCACATATC	CAGTTGGAAA	25680
15	TTGATGGGAA	GGCGTTATAT	ATACTATATT	TTTTTGTGAT	TTAATAACTT	CATCTACGTT	25740
	TATTCCATTA	TCTTCAACTT	CAATTTGTTC	ATATTCAACT	TGTTTTTTAT	CTAAAATATT	25800
20	TTTGATTGGT	GGATAACTAG	GTTTTTCGAT	AATAAATGTT	GAAGTATAAA	GTAAATCGAC	25860
20	TAATTGATTT	ACTAATTGTT	CGGTAGATGA	GCCAATTATA	ATTTGATTAG	GATCACAAAT	25920
	TACGCCACGA	TTAGTAAATA	AATAAAATGC	CAGTTGAAAC	CGCAAATGTA	ATTCTCCTTG	25980
25	AAAATGTCCT	CTACGTAATT	GATTTAAATG	ATTTGTATCA	TAAAGATCTT	TGGAATACTT	26040
	TCTGAAAAGT	TCTATAGGGA	AATGTTTCGT	ATCTATTTCA	TCCAAATTAA	AAGCATAATC	26100
	ATAAGCTTCA	TCACTCGCTT	TTGGTTTATA	TGAATCATCA	TCAAAAAGAG	AGGGGATAGG	26160
30	TTGATTGTTT	AAAATTGTTA	AAGATTCAAT	TTCGGACACA	AAATATCCAG	AGCGAGGTCT	26220
	TGAATAAATG	TAACCTTCGT	CTAATAGAAG	TTGATATGCA	TGCTCTACGG	TTGTTTGGCT	26280
	AATAGATAAA	TGTTTGCTTA	ATTGTCTTTT	AGAATAAAAT	TTATCGCCTT	CTTTAAATTG	26340
35	ACCTTCAATT	ATTTGTTTTT	TTAATTTTTC	ATAAAGTTGA	TGGTATAAAG	TGTTTTTCAA	26400
	TTTTATAACT	GACCTCCTAA	ATTTATCTTA	TTTTGTACCT	TTTTAAATAT	CAGTTTATAC	26460
	ATTACAATGT	ATTTAATCAA	CTTGAAAAGG	GGTTTTATGT	ATAATGAGTA	AAATTATTGG	26520
40	ATCAGACAGA	GTCAAAAGAG	GTATGGCTGA	AATGCAAAAA	GGCGGCGTTA	TTATGGATGT	26580
	CGTTAATGCT	GAGCAAGCAA	GAATTGCAGA	AGAAGCTGGC	GCGGTAgCAG	TTATGGCATT	26640
	AGAACGAGTA	CCTTCTGATA	TTAGAGCTGC	TGGTGGTGTT	GCACGTATGG	CAAACCCTAA	26700
45	AATTGTAGAA	GAAGTAATGA	ATGCTGTTTC	TATTCCAGTC	ATGGCTAAAG	CACGTATTGG	26760
	TCATATCACT	GAAGCAAGAG	TATTAGAGGC	GATGGGTGTT	GACTATATTG	ATGAATCAGA	26820
	AGTGTTAACA	CCAGCAGATG	AGGAATATCA	CTTAAGAAAA	GATCAATTTA	CAGTACCATT	26880
50	TGTATGTGGA	TGTCGTAATT	TAGGTGAAgm	TGCGCGTAGA	ATTGGTGAAG	GTGCTGCTAT	26940

	ACAAGTTAAT	TCAGAAGTTA	GTCGATTGAC	TGTAATGAAT	GATGATGAGA	TTATGACTTT	2706
	TGCGAAAGAT	ATCGGTGCGC	CTTATGAAAT	TTTAAAACAA	ATTAAAGACA	ATGGTCGTTT	2712
5	ACCGGTAGTT	AACTTTGCAG	CTGGTGGCGT	TGCGACTCCT	CAAGATGCTG	CTTTAATGAT	2718
	GGAATTAGGT	GCTGACGGTG	TATTCGTTGG	ATCAGGTATT	TTTAAATCAG	AAGATCCAGA	2724
10	AAAATTTGCT	AAAGCAATTG	TTCAAGCAAC	AACACATTAC	CAAGACTATG	AACTAATTGG	2730
, 0	AAGATTAGCA	AGTGAACTTG	GCACTGCTAT	GAAAGGTTTA	GATATCAATC	AATTATCATT	2736
	AGAAGAACGT	ATGCAAGAGC	GTGGTTGGTA	AGATATGAAA	ATAGGTGTAT	TAGCATTACA	2742
15	AGGTGCAGTA	CGTGAACATA	TTAGACATAT	TGAATTAAGT	GGTCATGAAG	GTATTGCAGT	2748
	TAAAAAAGTT	GAACAATTAG	AAGAAATCGA	GGGCTTAATA	TTACCTGGTG	GCGAGTCTAC	2754
	AACGTTACGT	CGATTAATGA	ATTTATATGG	ATTTAAAGAG	GCTTTACAAA	ATTCAACTTT	2760
20	ACCTATGTTT	GGTACATGCG	CAGGATTAAT	AGTTCTAGCG	CAAGATATAG	TTGGTGAAGA	2766
	AGGATACCTT	AACAAGTTGA	ATATTACTGT	ACAACGAAAC	TCATTCGGTA	GACAAGTTGA	2772
	CAGCTTTGAA	ACAGAATTAG	ATATTAAAGG	TATCGCTACA	GATATTGAAG	GTGTCTTTAT	2778
25	AAGAGCCCCA	CATATTGAAA	AAGTAGGTCA	AGGCGTAGAT	ATCCTATGTA	AGGTTAATGA	2784
	GAAAATTGTA	GCTGTTCAGC	AAGGTAAATA	TTTAGGCGTA	TCATTCCATC	CTGAATTAAC	2790
20	AGATGACTAT	AGAGTAACTG	ATTACTITAT	TAATCATATT	GTAAAaAAAG	CATAGCTTAA	27960
30	TGTATGCTAA	ATCAACGAAT	TATTGATATT	TATAGATTTG	TTGAGAAGAA	AATATCTCCT	28020
	TCAAACTTAG	CTTTGGAGGA	GTTATTTTTT	ATGTCAAAAT	TAAAAATGAT	AAAAAAAA	28080
35	GCTATACATA	AGAAAAAAAC	CCTTCAAAGA	GACTGAGAAT	AGTCAAAATT	TTGAAGGGGT	28140
	TAATTCGATG	TTGATGTATT	TGTTAAATAA	AGAATCcAGC	GATTGCAGCT	GAAATGAAAG	28200
	ATACTAGTGT	tGCACCGAAT	AATAATTTCA	AACCAAAGCG	GGCAACTGTA	TCTCCTTTTT	28260
10	TGTCATTAAG	TGATTTAATC	GCACCTGAAA	TAATACCGAT	AGAGCTAAAG	TTAGCAAATG	28320
	ATACTAAGAA	TACAGATGTA	ACACCTTTTG	CGTGTTCAGA	ТАААТСАСТА	AGTTTACCAA	28380
	GTGCTTGCAT	TGCTACAAAT	TCGTTAGATA	ATAGTTTTGT	CGCCATAACT	GAACCGGCTT	28440
15	GAACTGCATC	TTGCCATGGC	ACACCGACTA	AGAATGCAAA	TGGTGCAAAG	ACAAAACCAA	28500
	TTAATGTTTG	GAAATCCCAA	GAAATAGCGC	CACCTGAAAC	TGTACTAAAG	ATATTGCTTA	28560
	CAATTCCATT	TAATAGAGCG	ATAATGGCAA	TGTATCCGAT	TAACATTGCG	CCTACAATGA	28620
50	CAGCTACTTT	AAATCCATCT	AAAATATATT	CTCCTAGCAT	TTCGAAGAAT	GATTGTTGTC	28680
	TTTCTTCAGT	TTCTTCAACT	AATAATTTGT	CATCTTCTTC	ATTAACTTTA	TAAGGGTTAA	28740

	TAGGTTCAAT	TAAGGTAAAG	TATGCACCGA	TAATTGAAGC	AGAAACAGTC	GACATTGCTG	28860
	AAGCTGTTAA	TGTGTATAAA	CGTTGCTTAG	GTATGTATGG	TAATTGTTTT	TTAATTGAAA	2892
5	TAAATACTTC	AGATTGTCCC	AAAATTGCTG	CAGCAACTGC	ATTGTATGAT	TCTAAACGTC	28980
	CCATACCATT	AATTTTAGAA	ATTAAGAATC	CTAAAACATT	AATGATTAAA	GGTAAAATCT	29040
10	TTGTGTATTG	AAGGATACCG	ATAATCGCTG	AAATAAATAC	GATAGGTAAT	AATACACTGA	29100
,0	AGAAGAATGG	TGGTTGCTTA	GGATCGATAT	ATTGAATACC	ACCGAATACA	AAGTTAACAC	29160
	CATCTGCTGC	TTTTAATAAT	AAGTAGTTAA	AACCGTTTGA	AATACCACCA	ATAACCTTGA	29220
15	TTCCCATTGT	AGTTTTAAGC	AAGATAAATG	CAAAGATAAG	CTGAATTGCA	AGTAAAATTC	29280
	CTACATATTT	CCAGCGAATA	TTTTTCCTGT	CTGAGCTAAA	TAGAAACGCA	AGTGCTAAAA	29340
	AGAAGATAAT	TCCGATAATC	CCAATTAGAA	TATGCATATA	TTTCTCATTC	CTTTAGTTTT	29400
20	TTCTACaATc	TATCATACAA	TAAAATGGAA	GGGCTAACAT	CATAAATTTT	TGAAAATATA	29460
	AAAACAAATT	AATTGAAAAA	GGTCAAAATA	GGTCATATAA	TATAGTCAAA	GAAGGTCAAA	29520
	AAGGGGTGAT	ATACATGCAC	AATATGTCTG	ACATCATAGA	ACAATAaTCA	AACGTTTATT	29580
25	TGAAGAGTCG	AATGAAGATG	TCGTTGAAAT	TCAGAGAGCG	AATATCGCAC	AGCGTTTTGA	29640
	TTGCGTACCA	TCACAATTAA	ATTATGTAAT	CAAAACACGA	TTCACTAATG	AACATGGTTA	29700
30	TGAAATCGAA	AGTAAACGTG	GTGGTGGTGG	TTACATCCGA	ATCACTAAAA	TTGAAAATAA	29760
30	AGATGCAACA	GGTTATATTA	ATCATTTGCT	TCAGCTGATT	GGACCTTCTA	TTTCTCAACA	29820
	ACAAGCTTAT	TATATTATTG	ATGGGCTTTT	AGATAAAATG	TTAATAAATG	AACGTGAAGC	29880
35	TAAAATGATT	CAAGCAGTTA	TTGATAGAGA	AACGCTATCA	ATGGATATGG	TTTCTAGAGA	29940
	TATTATTAGA	GCAAATATTT	TAAAACGTTT	GTTACCAGTT	ATAAATTATT	ACTAAATGAA	30000
	ATGAGGTGTT	GAAGTGCTTT	GTGAAAATTG	TCAACTTAAT	GAAGCGGAAT	TAAAAGTTAA	30060
40	AGTTACAAGT	AAAATAAAA	CAGAAGAAAA	AATGGTGTGT	CAAACTTGTG	CTGAGGGGCA	30120
	CCATCCGTGG	AATCAAGCTA	ATGAACAACC	TGAaTATCAA	GAACATCAAG	ATAATTTCGA	30180
	AGAAGCATTT	GTTGTTAAGC	AAATTTTACA	ACATTTAGCT	ACGAAACATG	GAATTAATTT	30240
45	TCAAGA						30246

(2) INFORMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14333 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

	TATTCCCCCA	TCGGTTTATT	AAATCGTCCA	TTTCAATACT	GTTTTTCCCC	AAGATGTCGA	60
5	TAAATCCATT	TCAAACGCTT	GGACGATATC	TTGCATCGTA	CATACATTAA	TTTCATGTCC	120
	TTTTAATAAT	GCTAACTTTT	CAACTATGTC	TGGGTACTTA	CGATATAAAT	CAACAACTTG	180
10	CTCAAAATCT	TTAGAGCCGC	TTCGACTACT	ACCAATCAAC	GTTAATCCTT	TTTCAAGTAC	240
	TAATCGTGTA	TTCACTTCCA	CGGGTAATTC	ACTTACGCCT	AACAAAGCAA	TACTGCCTTC	300
	TGGTGAAATA	TGTTCAACTA	TTTGTTGAAG	TGCAACTTGA	CTTCCTTTAC	CTCCAACACA	360
15	TTCAAATGCA	TGATCAATTT	TAAGATCATC	TGGTATTTGA	TTTACTGTAA	AGATGTCATC	420
	TACAAATGAA	AAATGACTTA	ATTTATAGTC	TGTCTTACCA	AATACATAAG	TTTTAGCTTC	480
	TGGGTACAAC	TTACGTAGCA	AAATAGCAGT	AATATAACCT	AAGTTACCAT	CACCCCAAAT	540
20	ACCAAAGCTG	GTTTTCAAAG	GTATAGATTT	ACGTTCAAAT	CGTTGTATAG	CATGATAACT	600
	TACTGACACT	AACTCTGTGT	ATGAAATCGT	ACTCAAATCA	ATGTCATTAG	GCAGCGGAAC	660
	GATACGATCA	TGTGCCATCA	CAACGTAGTC	TTGCATAAAA	CCATCATAAC	CACTAGATCT	720
?5	AAAATAACTA	GAGGCTAAGT	AATTCTCCGC	AATAATATGA	TGTTGCTCTG	TAGGTGTATT	780
	CGGTACCATT	ACTACTTTCG	TACCTTTTTC	AAATACCCCT	TTACTATCAA	ATACAACTTC	840
30	ACCAACAGCT	TCATGAACTA	ATGACATTGG	TAATTTTTTG	CGTAGTACAT	TTTCATCTCT	900
,,,	TCGACCTGTG	TAATACCTTT	GATCAGCTGC	ACAAATAGAC	AAGTATAAAG	GTCTTACGAT	960
	GACATGATTA	CCATAAATAT	CAACATTATT	ATATGTGACG	TCGAACTGTC	TCGGTGCAAC	1020
35	GAGTTGATAT	ACTTGATTAA	TCATCGGCAA	TATCACCTTG	AATAATGGCA	TTTGCTACTT	1080
	TTAAATCATA	CGGTGTTGTC	ACTTTAATGT	TGTATAGTTC	TCCaCGTACC	AATTTAACTG	1140
	CATGTCCAGA	TTCGACAATG	ATTTTACATG	CATCTGATAA	GATTTCTTTT	TGTTCACTAC	1200
10	TTAAGGCGCG	ATAACTATCT	TGTAATAATT	TAATATTAAA	TGATTGTGGT	GTTTGGCCTT	1260
	GATACATTTC	ATTCCTTACA	GGGATACTGT	GTATGTTCTG	TTTATCTTTA	GACATTACAA	1320
	TCGTATCAAT	TGCTTCAATG	ACTGTATCTA	CTGCACCATA	TTTTGCTGCT	ACTTCAATGT	1380
15	TCTCTTTAAT	AATACGTTGA	GTTAAAAATG	GTCTTACGGC	ATCATGAGTT	ACAATCACAT	1440
	CATCATTATT	AATTCCATTT	ACATTGCGAA	TATGGTCGAT	AATGTTCATA	ATTGTTTCAT	1500
- 0	TTCGATCCGT	ACCACCTGCA	ACTACTTTGA	CACGTTGATC	TGTAATGTTA	TATTTTTTA	1560
50	AAATATCCTG	TGTATGGGAA	ATCCACTGTG	CTGGCGTTGC	GATAATAATC	TCATTAAATT	1620
	CACTCACTAA	AATGAACTTC	TCAATTGTAT	GGATTAAAAT	CGGTTTATTA	TCAATATCTA	1680

	CTGCATAAAT	CATGTTGTCC	TCCATTCTGT	CATTACATCA	TTTCCATTTA	TACATTACTG	1800
	ACCTATGCCC	GCACATAAGC	CTAACCTATT	GCTCACTTGC	CTCTTTTATT	AATCCAAAGA	1360
5	TAGTTGTCAC	AATAGTGTGA	TAATTTTTTA	TAAAAATGTA	TTTTTGTAAC	TGACCATTCT	1920
	AAGTTGTTTT	GCCATGCAGT	TAATCATTAA	CTCTGACGAT	ATTAAATTGT	TAAAGGTATT	1980
10	AATGTTTACT	CTTTTTCAAA	TTCATTATTA	CTGCCATCAT	TTTACCATAT	ATTATAATAA	2040
70	ATTTATCTTA	TTAAGTGGCT	GTACTTGATT	TTCACTTTAA	AAATTATCAA	ATATTGCCAT	2100
	CTCATTTTAA	GTATACAAAA	TGCAAAACAA	CCGATTCACA	AGCATATTTC	ACACAAGTAA	2160
15	ACCGGCTATT	TATCAACGTA	TATTCGAAGA	TGAATTATTT	CGATAGTATC	TATAGACCAG	2220
	ACGGCATTCG	CACTTTCATA	GCTATAACTA	TACCAGCGTT	TTCGTCCTCA	AAGGTGCATA	2280
	CTAATAAATC	GTAAACATGA	CTTTATCAAA	TCGTTCTTTC	TTGTTAACTA	ATTTATCAAA	2340
20	TGTCTCCGGG	CCTTTTTCTA	ACGGTAAAAA	ATGAGAAATA	ATAGGCTTTA	CATTAATATC	2400
	TTTCGTCTTC	ATATAATGTA	AGGTTGCCGT	CCACTCTTTG	CCCGGAAAAT	TACTGGACAA	2460
	ACAGTTCCAA	GAGCCACATA	CTGTCAACTC	GTTACGCAGA	ATTTTTTCAA	AATGAACGCG	2520
25	ATCAATCTCA	ATATCATCAT	ATGGTATTCC	GAGTAATACC	ACCTCGCCAC	CTTTTTTAGG	2580
	TAGCGTCAAT	ATTTGACCAA	TCGTAACTTT	AGCACCTGAT	GATTCTATAG	CTAAATCGAT	2640
3 0	TTGATTGGCG	TAATGATTTT	CGATGAATTT	CTCAAGATTT	TCTTCTTTTG	AATTGATTGT	2700
50	TTGATGTGCG	CCCAATGATG	TTGCAATATC	TAGTTTATGC	GCATCTATAT	CTATAGCGAT	2760
	GATATGTGCA	GCACCAAATA	TTCGTGCCCA	TTGAATAGCT	AACAAACCTA	TACTGCCACA	2820
35	CCCCATTACT	GCAACAGTCA	TACCAGGTTG	TATATTCGAT	TTATAAAACC	CATGCGCAAC	2880
	AACGGCTGAT	GGCTCAACCA	TTGCTGCTTC	AATGTAATCA	ACATTGTCTG	GAACCTTTAA	2940
	AACATTTTGC	GCTGGCAATT	TGACATATTC	CGCGAACGAT	CCAGGTTCAT	ATGAGCCAAT	3000
10	GACGAATAAC	TTTTCACATC	GTGCATATTC	ACCTTITAAA	CAATACTCGC	ATTGATAACA	3050
	AGGTATTGCT	GGGCAACCTG	TCACTTTGTC	GCCCACATTA	ACATGCGTAA	CATCACTTCC	3120
	AATGGCATCT	ACTACACCTG	AAAATTCATG	ACCAAATGGC	ATACCTTTAA	TGTATGGCCC	3180
45	CATTTTTTTG	TATCGTGACG	TGTCTGAACC	ACATATGCCA	GTCGCTCGTA	СТТТААТААТ	3240
	AACGTCATTC	GCACTTTCAA	TGACTGGCTT	TTCATTATCC	TCATACCGTA	AATCTTCCAC	3300
50	GCCATATAAT	TTCAATGCTT	TCACTTGTAA	ATCACCTCAA	ATTTGATTTA	ATTCACAACT	3360
	TTTTTCTTTT	TAAAAATACC	TGTCGCAAAA	TAACCTGCAA	TGACAATGGA	ATTACTTACG	3420
	AGTAAATGTT	ССАТАТАААА	ATCACTCATT	TCTCTTAATC	GCCCAAGCAT	A A A A CTTTACC	3490

	TGCTTTAATA	CCTTCGCCGG	ATTTTAAATG	TTGATACGCC	TCGTCCCATT	TCGAAATATC	3600
	ATATATTTT	GTCACCAAAG	CTTCAGCATT	TACTAAACCA	TCCGCCATAA	GTTGCAATGA	3660
5	AGGTTCCCAA	TCTGCTGGCT	TTTGACTTCT	ACTACCAACA	ACTGTTATTT	CTTTTTGAAT	3720
	CACTTTTTCC	ATATCAAATG	GAATTTCAGC	ATCCTTAAAA	ATACCTATTT	GACTGTAGAA	3780
10	ACCTTTTTTG	CGTAAAATAT	CCAAACCTTG	TCGTGCTGCT	GGAACTGCAC	CTGAACATTC	3840
10	AACAACAACA	TCTGCACCGT	AACCGTCTGT	AATTCCATTG	ATATACGTTT	TTAAGTCTGT	3900
	TTGTTGTAAA	TTGACTACAT	AATCCATGTG	CAATGCTTCT	GCTTTATCTA	ATCTGACTTT	3960
15	GTCATTGTCC	AATCCAGTTA	CCACAACAGT	TGCGCCTTTA	CTTTTTAACA	CTTGTGCTAC	4020
	AAGTAATCCG	ATTGGCCCAG	GTCCCATTAC	AACTGCTACA	TCGCCTGAAT	TGACTTGAAT	4080
	CTTAGAAACG	CCATGATGTG	CACATGCTAA	TGGTTCTGTC	ATAGCTGCAG	ACTGATACGA	4140
20	TATTCGTCTG	GAATATGATG	CAAACTTTCT	TCACGTGCAA	TGACATAATT	AGTAAATGCG	4200
	CCATCAACTT	GTGTTCCAAT	ACCTTTTCGA	TGGTTGCATA	AATTATAGTC	TTTTGATTTA	4260
	CAGTATTCAC	ACTCATTACA	AACATAGAAT	GTCGTTTCAG	aTGtGACACG	GTCACCAACT	4320
25	TTAAAATCTT	TAACGTCTGC	TCCAACTTCA	ACGATTTCAC	CAGAAAATTC	ATGACCTAAT	4380
	GTCACTGGAA	AATTAACTTT	ATAATGACCT	TCATAAGTAT	GAATATCTGT	GCCACAAATT	4440
	CCTGCATAAT	GTACTTTAAT	CTTTACTTTA	TCATCTAGCG	GTGTTGCAAC	TTCTTTATCA	4500
30	AGAAGTTCTA	AGTTGCCATG	TCCTTCTCTT	GTTTTTACTA	AAGCTTTCAC	CACAAACACC	4560
	TCGATTTTTA	ATTGAATAGA	CTAAATAGTT	TAAAGATAAG	ATAGTTAACG	ATATTACCAC	4620
35	CTTGATCAAT	ACTTGAAATT	TCAGATGAAC	CTTTTGGCAT	TTGTACATTC	GTACCTTTCG	4680
	CCATATCTGT	GAAAATGGGT	GCTACGTCTG	TTGCAATATA	TAGTGAAATT	GCAATCATAA	4740
	TCGTACCCAC	AATGACAGAA	TGAATAATGT	TTCCTCTTGC	TGCACCAACA	ATAAACGCGA	4800
40	CAACAAATGG	TATCGTTGCT	AAGTCACCAA	AAGGTAGTAC	TTGGTTTCCT	GGTAAAATAA	4860
	CGGCTAATAA	AACAGTGATA	GGTACTAAAA	TTAATGCTGT	CGAAATAACT	GCTGGATGAC	4920
	CTAATGCTAC	AGCCGCATCC	AATCCAATAT	AAATTTCACG	TTCGCCAAAA	CGTTTATTTA	4980
45	GCCATGTTCT	TGCAGACTCT	GAAACTGGCA	TTAAACCTTC	CATTAAGATT	TTTACCATTC	5040
	TAGGCATTAA	TACCATTACT	GCAGCCATTG	ACATTCCTAA	ATTAATGATG	TCTCCAGGTT	5100
	TGTAACCTGC	TAACACACCA	ATACCTAAAC	CTAAAATTAA	GCCGACAAAT	ATAGACTCTC	5160
50	CAAATGCGCC	AAAACGTTTT	TGAATTGTTT	CAGGATCAGC	ATCTAACTTA	TTCAGACCGG	5220
	GTACTTTTTG	TAACAATTTA	ACTAAGTAAA	TACCTGGTGC	ATAAGAAATT	GTACTTCCTG	5280

	CTACTTTCAA	ACAGATAATT	TGGAAAATAA	CTGCTGCTAA	TAACGCTTGC	CAAATACTGC	5400
-	CTGATACGGC	ATAAACCATT	GCTGCTGTAA	ACGTATAATG	CCAAAAATTC	CAAATATCTA	5460
5	CATTCATCGT	CTTTGTCACT	TTAGTTACTA	GCAATACAAC	GTTAACTATG	ATTCCGAGTG	5520
	GAATAATAAA	TGCTGCGACA	GATGATGCCC	AAGCGATAGA	TGATGTTGCT	GGCCAACCTA	5580
10	CATCAATCAC	ATTCAGACTG	ACGCCTAAAT	TTTTAACCAT	CGCTTGTGCT	GCTGGCCCTA	5640
	AATTTTTAAC	TAATAAATCG	ATGACTAAGA	AAATCCCTAC	AAAAGCCACA	CCTATTGTTA	5700
	AACCAGACCT	AAATGCCGCT	CCAATTTTCT	GCCTAAAGAA	TAGGCCAAGC	AAGAATATGA	5760
15	CAACCGGTAA	AATAACAGTt	GCACCTAAAT	CTAAAAATCC	CCTTACAAAA	TCAGTGAAGT	5820
	AACTCATATT	TAAACCCTCC	CTGTTATATA	TGCATTGTCA	CGATACTTTC	CGATTGTGAT	5880
	TACATTTGAC	GTTACAGTCA	TTTCAACGAC	AACCCTTGCT	AAATTCGACT	GCAGTCCTTT	5940
20	TGAATTACAG	tCACTGCGTT	TCTATGTCAT	CAACAATCAT	TTGTCGTGAT	AGTCATTTAT	6000
	ATGCAATTTG	CATATATTAA	TATGTTATCG	ACCCACGTTA	CATATCAATT	CCGTTATTTT	6060
	TGTAACTCTG	TTAAGATTTG	TTGTTTTGTT	TCTTCAATAC	CAATACCAGT	TAAGAAATTA	6120
25	CGTGCGTTGA	TAACTGGGAA	TTTATATTCT	TTTTTTGTCA	TTGCAGTTGT	AACTAATAAA	6180
	TCTGCAGTGT	CTTCATAAGG	TCCAACTTCT	GTAATTTTGA	TTTGTTTAAT	ATCTACTTTA	6240
3 0	ATATTGTGTT	CCTTTGCCAT	TTCTTCAATT	GCATTATTTA	CTACTGTTGA	CGTTGCAATA	6300
	CCTGCACCAC	ACGCTACTAA	TACTTGTTTC	ATTTTCAATT	CCTCCAATTA	ATTTTTAGTT	6360
	ATATTCCAAA	TAATCATTGA	TTAGTGTTGC	TAAAATTGTT	TCATCTTTCG	TTCGTAGAAT	6420
35	CTGCTCCAAT	TTTTCTTCAC	TTTGAAAAAT	TTGCATCAAC	TGTTGTAACA	GCTTAAGTTG	6480
	ATCATCTACT	TTATCCATTG	CTAACATAAA	AACGATTTTC	ACTTCTGTCT	GTTGATCAAG	6540
	TGTTCCCATT	TCAATAAACG	GCACTTCTTT	TTCTAGAACA	GCCACACCTA	TCGTTCTATG	6600
10	GTTAATATGT	TCGACATCTG	TATGCGGTAT	AGCGACCGAA	CATAGATGCG	TTGGTAAACC	6660
	AGTAGCAAAT	TCTTTTTCTC	TGTCGATGAC	TGCATCTTTA	AACGTTGACT	TCACGAACCC	6720
	ATTTTGAAAT	AACACATCTG	ACATTTGTGA	CAATACGGAT	TCTTTATCAG	TTGCCGACAA	6780
15	ATTGAGCATT	ATATTTTCTT	TATGCACTAA	TTGCTGTCCC	ATCCATTTTC	CCTCGCTTCT	6840
	TTATTTGAAT	AATTTTTTAA	AATCTCATTT	ACATCAGAAT	TTTTGCGACT	TTGTATGATG	6900
50	CGCTTAATTG	CGTCATTGTC	TTGCGCCACA	TCTCTCAATT	GTAGTAACGC	TCTTAAGTGT	6960
>V	GTCACTTTAT	CAACAGCAGC	AATAGGTACA	ATAATATGGA	TTGCTGTGCC	ATCTGACATG	7020
	TATATTGGTT	CTTGTAATAT	CAACATACTC	ATCGCTGTTT	TATGTACATG	CTTTTCAGAG	7080

	TGCATCTCAT	GAATATATTT	AATATCAATA	AAATGATTAG	CAACTAACAC	ATCACTTGCT	7200
5	TTAGCAATAG	CTTCATCAAT	ATTTTCAACA	TGATGCATTC	TTTTCACGTG	CCTTGCCGGT	7260
5	ATCAAGTCAG	CTAAATCTAA	TGYCTWATTT	tGTGtGACaA	TCGATCCATT	AATGGTTGAA	7320
	ATTGAATTAT	AATTGGCAAT	AAAATCTTCT	AAACCATCAC	GTAGTCTGTA	ATGTCATTAA	7380
10	CTGTCGTTGT	GCGTTCAATT	AATGCCATTA	ACTTGTTTAT	TTCCTTATCA	ATGTCAGCCG	7440
	ATTCCTTATT	AATGTACTTC	ATCACTTCTT	TACGTAACTT	TCGTTGCTCA	TTTTCAGATA	7500
	AAGCTACTTT	TGTGATAAAT	AATTTTTTAT	GTGTTAGGAC	AAACATTGGT	GAAAAGACGA	7560
15	TGTCATAATC	TAATGTGTAA	TTTTCAAATG	TTCTAAGTGA	AATCGCATCT	AAGAAAATAA	7620
	TTTCTGGAAA	TAAGTTTCGC	AACTCGTATA	ACATCATTTG	TGATACTGAC	GTGCCTTGTG	7680
	TACACACGAT	AATAGCTTTT	ATCTTGCCAT	CGAAGTTTTC	ATCTTGACGT	CTCAAACTAC	7740
20	CTCCGAACAA	CATGGTTAAA	TATGCTATTT	CATTATCAGG	CAACGATTTT	CCGAAATATT	7800
	CAGTTAACGA	TTGACATGAT	TGTTTCACCA	TATGAAATAA	GGATTGATAA	TTTCCTTGTA	7860
	AAGGATTTAT	TAATTCATCA	CGATCCGTTA	AGTTATATTT	AATCCTATAA	AAAGCAGGCG	7920
25	TTAAATGTAA	CAAGAGTTGC	TGTGATAATT	TCTCCTTATC	TTCAATGTTA	ATAAAAGTGA	7980
	TTTGTTCAAA	ATGGTGAATC	ATTTGAGCGA	TGGCCATCGT	TAAATTCGAT	ATGCTATCTG	8040
3 <i>0</i>	ATTCTTGCAA	ATCAGTCCAT	TGCACACTTG	TTGAAAGTAA	GTGTAATGTC	AAATATAACT	8100
	TTTCCGCTTC	TGGCAAATCC	GGCTCATGTT	GCGTCATAAT	CTCCGTTGCT	TGATATTCTT	8160
	TCGTATCCCT	CAAATACTGA	TAATTAATAT	TTAATGGATT	CATCACATGA	CCACTTTGAA	8220
35	TTCGTCTACG	AATCACACAA	AGGACATAAG	GCAATGAACT	AAGTGATTTG	TCTATAAAGC	8280
	GACTCTTCAA	AAATTGTTCT	ACCTGTTTGA	TCTTGTCTTT	TTGATATGCG	ATATCTTCGA	8340
	ATGTTAAGTT	GAGCGCCTTT	AAAACTTCAC	TTTTAGTAAT	ATCATGATTC	AACCTTTGAT	8400
10	CAATCAACTT	AATGAAGAAA	CGGCGAACTT	CAAATTCATC	ACCAACAATT	TCATAACCAT	8460
	GTTTTCGAGA	ATACTTAAGT	GACAAACCAT	GATTTTCCAA	TTGCTCTTTC	ACATGATTTA	8520
	TATCGTGAAT	GACAGTATTT	TTACTGACTT	GTAAATCAAT	TGAAAAATGG	TTTAGAGACA	8580
15	TTGCGTTTTC	СТТАСТАААА	AGCATGAGCA	ттааатаата	ACGACGTGTT	TCTATGCTAA	8640
	AAATGACATT	GTTGCCGTTT	AACATTTGCT	GCTCCGATAC	ATCTCGCTTG	AATAACGTCA	8700
50	TGATTTCAGA	ACTTACAATA	AAATTTCCTT	GGCTTGTTCT	TTCAAGTTTT	GGATAACCCT	8760
50	CTTGTTCAAG	CCACAAATTG	ATTTTTTGAA	TGCGATATCC	TAGTTGTCTA	CGAGACAAAC	8820
	CAAATATCCA	ጥጥር እ እርጥጥርጥ	TTACCATCAA	ጥ ስ ርጥ አ ርጎር አ ጥጥ	CARTACARTT	TOTOTONOTA	0000

	TCAATCGTCA	CACCGATGTA	CACACTTTGA	ACACATATTT	TCAAAATGAG	CATGTACATC	9000
	ATTGTGATGT	TTTAACAACA	TTTCAATTAT	ATCTATATTT	TTTGTGATTT	TAATCTTTTA	9060
5	AAATAAAGCA	ATTGAAATTT	TTGCATATAT	TTTTGTGTTT	TGTGTTTTTT	TGAAGCATTT	9120
	TTAACATACA	TATCTCAATC	ATTATCAAAT	TGTCATGACC	ATTGTAACCC	AATACAAAAA	9180
10	CCCTAAGGAC	GCTTATATCA	GGCGCCTTAG	GGTTAACTGT	ATCTATTTAA	TTAAGTATTA	9240
, 0	TTATTCGTAT	GTACGTAACT	TATGGTCTAT	CAAGTTCCAC	ACTTCTTCAA	CATCAACTGC	9300
	TGTAGCAAAA	TAAGCATTGG	CAGGCTTACC	TGTAACATGA	TTTAAATCGA	CAGCCATAGT	9360
15	GCCATAAGTT	AGTGGACTTT	GATGTTCAAT	GTCGATATTA	ACGGGTACCA	TTGTAAACAA	9420
	TTCTGGTTGT	AACAAATACA	AAATTGTACA	AGCATCATGT	ATTGGACCAC	CATCCATATT	9480
	AAAGTGAGTC	TTGTATGTCT	TCTTAAAGAA	TTGCAATAAT	TCTACGACGA	ACTGTGCAAC	9540
20	AGGATTATTG	ATACTTTCAA	AGCGTTCAAT	CACGTGATCG	TCGGCTAAAA	CTTGATGTGT	9600
	TACATCTAAA	CCAAACACAT	TTATAGTAAT	CCCACTTTCA	AAAACACGCT	TCGCTGCTTC	9660
	AGCATCTACC	CAAATATTGA	ATTCTGCTGT	AGGCGTCCAA	TTTCCAAATG	TACCACCACC	9720
25	CATCAAAGTA	ATAGATTCAA	TATGCTCAGC	GATTCTTGGC	TCACGAATCA	ATGCCGTTGC	9780
	TACATTCGTA	AGAGGACCTG	TCGCTACAAT	TGTTACAGGT	GTATCACTCG	TCATCACTTT	9840
	GTTTATAATC	ACATCTGATG	CTGGCATTGC	AACTGCTTGA	CGTGATGGTG	TCGACGGTAG	9900
30	TTTCGGACCA	TCTAATCCAG	ATTCCCCATG	TATTTCAGAA	GCAAAGGCAG	CTGGTTTAAT	9960
	TAACGGCCTA	TCCGCACCTT	TCGCTACTGC	TATATCTTGG	CGTCCCATAA	TATCCAATAC	10020
35	GTTCAAGGCG	TTTGTCGTAT	TCTTGTCAAC	TGATTGATTA	CCTGCGACTG	TTGTTACAGC	10080
-	TAATATCTCT	AGTGGACTGT	CAATTGCCCC	CGCTAAAATT	AATGCTATTG	CATCATCGTG	10140
	TCCTGGATCA	CAATCCATAA	TAATCTTTCT	TTTCATTTAT	ATATCCACCT	TTCTTAAGTT	10200
10	GTTATCGATA	GCTTATGTAT	ATTTATTTAT	GTGGTGAATC	ATGTTTATTT	TGAAAAATAG	10260
	TTTTAACTTT	CTCATATTTT	TGGATACAAA	CACTATTTAT	CTATTTTATG	GCTTATAAAT	10320
	TTATCCGATA	TGCCTTATCA	ACCTACCTCG	CTAAAAATAG	GATGTCTACA	TATCTATACC	10380
15	GACTTTTGTC	AACTCATTTT	CACAACAATA	TAAACAGCAA	TTTATATGAT	TGTTACATGA	10440
	TTCAAACAAT	TTTTATGAAA	AATATTTTCA	TACACAGAAT	ATATATTGAT	ATTAAATTTC	10500
	TCAAAAGCTA	TATTGAGAAT	AATTAGGAGG	GATGTTGATG	AAATCTTTAT	TTGAAAAAGC	10560
50	ACAGCAGTTC	GGCAAGTCCT	TTATGTTACC	TATCGCAATC	TTACCAGCTG	CAGGTCTATT	10620
	CTTCCCTTATC	CCTCCTCCAT	THE ROTE RECO	3 3 3 C 3 C C C T T	AAACCATACC	ביים איישיים איים ביים	10680

	AAATTTACCG	GTCATCTTTG	CAATTGGTGT	CGCAATCGGA	TTATCTAGAA	GCGATAAAGG	10800
	TACTGCAGGT	'tTAGctGCGC	TGCTCGGTTT	CTTAATTATG	G AACGCAACTA	TGAATGGCTT	10860
5	ATTAACTATO	ACGGGCACAT	TGGCAAAAGA	TCAGCTTGCA	CAAAATGGAC	AAGGCATGGT	10920
	GCTCGGTATA	CAAACGGTTG	AAACCGGTGT	TTTTGGCGGG	ATTATCACAG	GTATTATGAC	10980
10	CGCAATACTT	CACAACAAAT	ATCACAAAGT	GGTATTACCA	CCGTATTTAG	GTTTCTTTGG	11040
10	TGGCTCTAGA	TTTGTCCCTA	TTGTCACAGC	ATTTGCCGCA	ATCTTTTTAG	GTGTATTGAT	11100
	GTTTTTCATT	TGGCCAAGCA	TACAAGCCGG	CATTTATCAT	GTTGGTGGAT	TTGTAACGAA	11160
15	AACAGGTGCC	ATCGGTACTT	TTGTTTATGG	CTTCATCTTA	AGATTGTTAG	GTCCACTCGG	11220
	TTTACACCAT	ATTTTTTACT	TACCGTTTTG	GCAGACGGCA	CTTGGTGGTA	CTTTAGAAGT	11280
	CAAAGGGCAC	TTAGTTCAAG	GTACGCAGAA	CATCTTCTTT	GCTCAACTTG	GTGATCCAGA	11340
20	TGTGACGAAG	TATTATTCAG	GTGTGTCACG	CTTTATGTCA	GGCCGTTTTA	TTACGATGAT	11400
	GTTCGGCTTA	TGTGGTGCCG	CACTTGCAAT	TTATCACACA	GCTAAACCTG	AACATAAAAA	11460
	AGTTGTCGGC	GGTTTAATGT	TATCCGCTGC	ACTCACTTCA	TTTTTAACAG	GTATTACCGA	11520
25	ACCTTTAGAG	TTTAGTTTCT	TGTTTGTCGC	ACCTATTCTT	TATGTAATCC	ATGCCTTCTT	11580
	TGATGGATTA	GCATTTATGA	TGGCAGACAT	TTTCAACATT	ACAATTGGTC	AAACCTTCAG	11640
	TGGAGGCTTT	ATCGATTTCT	TACTCTTTGG	TGTGCTACAA	GGTAATAGTA	AAACAAACTA	11700
30	CCTATACGTC	ATACCTATTG	GAATTGTGTG	GTTCTGTTTG	TATTACATCG	TTTTCAGATT	11760
	CTTAATTACG	AAATTTAATT	TCAAAACACC	TGGTCGAGAA	GATAAAGCTG	CAGCACAACA	11820
35	AGTTGAGGCT	ACTGAAAGAG	CACAAACTAT	TGTTGCTGGT	TTGGGAGGCA	AAGATAACAT	11880
	TGAAATCGTT	GACTGTTGTG	CAACGAGACT	ACGCGTCACA	CTTCATCAAA	ATGACAAAGT	11940
	CGATAAAGTA	TTACTCGAAA	GTACTGGTGC	CAAAGGTGTA	ATCCAGCAAG	GCACTGGTGT	12000
10	GCAAGTAATT	TATGGGCCTC	ACGTTACAGT	TATCAAAAAT	GAAATTGAAG	AATTGCTCGG	12060
	GGATTAAGAC	TAACCGAAAT	ATCAACAGAA	CTAATGGCAA	CGATGTACGA	AGTAAGAAGT	12120
	GACATCGTTG	CTTTTATTTT	TAATGTTACA	TTTGAAGCAT	TAAGTTCATC	ATGCACTGTA	12180
15	GTGAGCCCGC	AAATCGCCTC	TGCTAGACAA	TCATCTTAAT	GCTATGATTA	AAGCTTAAGT	12240
	GCCAGATTTG	AATTTAATTT	CAACAACGAC	TTTCACTACA	TTAAAAATAG	GGCCACTCGA	12300
	CACATATAGT	TGTATCAAAT	AGCCCTTTAT	ACAATTTTTT	GGGTAAGGTT	TTACAATTTT	12360
50	TGGGATGGTA	TAGATTTTAT	AAAAAGTTAT	TTAAGTTCTT	CTGCTTCAGC	CATAATATCT	12420
	TTTAATGTTT	TAGCTGAATG	TGCGAACTTG	CTTTGTTCTT	CGTCGTTTAA	ፕር ርር <u>እ</u> ጥጥርጥ	12490

	TCCTCATATT	CGCCTTCTAA	TAATGCTGAT	ACAGTCAATA	CGGCATCTTC	ATTTCTGAAA	12600
_	ATCGCTTCAG	TAATTCTAGC	TAATCCCATT	GCAACACCAT	AATAAGTGGC	ACCTTTAGCT	12660
5	TGAATAATGT	CATATGCTGC	ATCACGTGTT	TGAACAAAA	TTTGTTCAAT	TTGCGCTTTG	12720
	CCCTCAGGAC	GTTGTTCAAG	TAATGTCTTC	AAAGGTTGAC	CCGCAATATT	AGCGTGTGAC	12780
10	CATACTGGTA	ATTCAGTGTC	ACCATGTTCA	CCAATAATTT	GAGCATCGAC	GCTACGTGGC	12840
	GCAACATCGn	AcgyTcGCTT	AACAATAATC	TAAAGCGTGC	AGAGTCTAAA	ATTGTACCAG	12900
	AACCTATAAC	ACGTTCTTTA	GGTAAACCAG	AGAATTTCCA	TGTTGCATAC	GCTAAAATAT	12960
15	CAACAGGATT	TGTAGCTACC	AAGAAAATAC	CATCAAATTT	TGATGCCATT	ACTTCACCAA	13020
	CAATTGATTT	GAATATTTTC	AAGTTTTTAG	ATACTAAATC	TAAACGTGTT	TCTCCAGGTT	13080
	TTTGTGCAGC	ACCAGCACAG	ATGACAACTA	GATCCGCATC	ATGACAATCA	CTGTATTCGC	13140
20	CAGCTTTCAC	ACGAACTGTT	GTTGGAGAAT	ATGGTGTGGC	ATGTTTTAAA	TCCATAACAT	13200
	CTCCTCGAAC	TTTTTCAGTG	TCTAAATCAA	TGATGACTAA	TTCATCAACA	ATGCTTTGGT	13260
	TCACTAATGA	AAATGCGTAG	CTTGAACCTA	CTGCACCATT	ACCTATTAAT	ACAACTTTGT	13320
25	TCCCTTTAAA	TTTGTTCATT	ACAAAAACTC	CCTTATGATT	AATTCACTAA	CATACATGTA	13380
	GCTTCAAATA	TGTTAGTTTA	ATGCTGCTTA	TTGACGATAC	AAAAGCAAAT	AAACATCTCT	13440
20	TTTATTTTCA	ACGCATAACT	TAAAAGGTCA	TGTGTCATCC	GCTTTTAAGT	TTGTGATTTA	13500
30	TTTCACATAT	AAAATGTAAC	ATGCATTAAG	TACTGGGTCA	ATATTAAATT	GTGATTTATT	13560
	TCACATTTTA	TTTTAATTTT	TACACCTTTT	TAATTIGTAT	mCGATTACAT	CTTAGATGTC	13620
35	TTTAGTCTTC	GTACTTCGCC	AGTGATTATT	TACACTTTCA	CATTTTTATT	ATCATGTTTA	13680
	CTTTTTTCTA	GGAAAACAAC	AATGTTTTTT	GAATTAGTCA	AATAAATGCG	CTCAATCGTC	13740
	GGTĢŦGCAAA	CAGACAATTG	TACACAATGC	TTATTGATAA	GTATTTAAAA	AATTAAAAAT	13800
40	GTCATACAAT	TATCAAATTT	GCCATTTTAT	TTATATITTC	TCAAACCAAT	TAATTGAATA	13860
	TCGAAATTTT	TAGTAGAATA	ATCAAAATAT	ACAGATTAAA	GGAGGAGTAT	CATGCTTACA	13920
	GAACAAGAGA	AAGACATTAT	CAAACAAACG	GTGCCTTTAC	TTAAAGAGAA	AGGGACAGAA	13980
4 5	ATTACGTCAA	TCTTTTATCC	AAAAATGTTT	AAAGCGCATC	CTGAACTTTT	AAACATGTTT	14040
	AATCAAACGA	ACCAAAAACG	AGGCATGCAA	TCTTCAGCAT	TAGCACAAGC	TGTAATGGCC	14100
	GCAGCGGTTA	ATATCGATAA	CTTAAGTGTT	ATTAAACCAG	TCATTATGCC	AGTCGCATAT	14160
50	AAACACTGCG	CACTACAAGT	TTATGCTGAA	CATTATCCAA	TTGTGGGGAA	AAATTTATTA	14220
	AAAGCCATTC	AAGACGTGAC	ACCATTAGAA	CAAAATGACC	CTCTCATTCA	AGCTTCCCCA	14280

(2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8779 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

GGTATTTTnG	GAnGGGTACC	TAAAGCAATT	CCGGCAAAGG	GTnAATCCAG	GTACCGAAAT	60
GGACTTCCCG	TTATCGATAA	TACCGACATA	TATTGTGACA	AGTAGATTTT	ATGGACATTT	120
AGGCTTACTT	TTACTTGTGA	TAATTGCATG	TATGTTTACT	GGTATTTALC	Catcaataca	180
TATCATTCAA	TTATTGATAT	ATGTACCGTT	TIGTITITC	TTAACTGCCt	CGGTGACGTT	240
ATTAACATCA	ACACTCGGTG	TGTTAGTTAG	AGATACACAA	ATGTTAATGC	AAGCAATATT	300
AAGAATATTA	TTTTACTTTT	CACCAATTTT	GTGGCTACCA	AAGAACCATG	GTATCAGTGG	360
TTTAATTCAT	GAAATGATGA	AATATAATCC	AGTTTACTTT	ATTGCTGAAT	CATACCGTGC	420
AGCAATTTTA	TATCACGAAT	GGTATTTCAT	GGATCATTGG	AAATTAATGT	TATACAATTT	480
CGGTATTGTT	GCCATTTTCT	TTGCAATTGG	TGCGTACTTA	CACATGAAAT	ATAGAGATCA	540
ATTTGCAGAC	TTCTTGTAAT	ATATTTATAT	GACGAAACCC	CGCTAACCAT	TAATAAATGG	600
AAGTGGGGTT	CATTTTTGTT	TATAATTTAA	GTAAATAACA	TATTAAGTTG	GTGTATTATG	660
AACGTTTTAA	TAAAGAAATT	TTATCATTTG	GTAGTTCGAA	TACTTTCTAA	AATGATTACG	720
CCTCAAGTGA	TTGATAAACC	GCATATCGTA	TTTATGATGA	CTTTTCCAGA	AGATATTAAG	780
CCTATCATCA	AAGCATTAAA	TAATTCGTCG	TATCAGAAAA	CTGTTTTAAC	AACACCAAAA	840
CAAGCGCCTT	ATTTATCTGA	ACTTAGCGAC	GATGTTGATG	TGATAGAAAT	GACTAATCGA	900
ACATTGGTAA	AACAAATTAA	GGCTTTGAAA	AGCGCGCAGA	TGATTATTAT	CGATAATTAT	960
TACCTATTGC	TAGGTGGATA	TAATAAGACT	TCTAATCAAC	ACATTGTTCA	AACGTGGCAT	1020
GCAAGTGGTG	CATTAAAAAA	CTTTGGCTTA	ACAGATCATC	AAGTCGATGT	GTCTGACAAG	1080
GCAATGGTTC	AGCAGTACCG	TAAAGTTTAT	CAAGCGACGG	ATTTTTACTT	AGTGGGTTGT	1140
GAACAAATGT	CACAATGTTT	TAAACAGTCT	TTAGGTGCAA	CAGAAGAGCA	AATGCTGTAT	1200
TTTGGGCTTC	CGAGAATTAA	TAAATATTAC	ACAGCTGATA	GAGCAACGGT	TAAGGCAGAG	1260
TTAAAGGATA	AATATGGAAT	TACAAATAAG	TTGGTATTAT	ATGTACCAAC	ATATAGAGAA	1320
GATAAAGCAG	ATAATAGGGC	TATTGATAAA	GCTTATTTTG	AAAAATGTTT	ACCAGGATAT	1380

	ATCGACACGT	CTACATTAAT	GCTAATGTCA	GATATAATTA	TTAGCGACTA	TAGTTCGCTG	1500
	CCAATAGAAG	CTAGCTTGTT	AGATATTCCA	ACTATATTT	ATGTGTATGA	TGAAGGAACA	1560
5	TATGATCAGG	TGAGAGGCCT	GAATCAATTT	TACAAAGCAA	TACCGGATAG	CTACAAAGTG	1620
	TATACTGAAG	AAGATTTAAT	AATGACGATA	CAAGAAAAAG	AACATCTATT	AAGTCCGTTA	1680
	TTTAAAGATT	GGCATAAGTA	TAATACTGAT	AAAAGTTTAC	ATCAGCTCAC	AGAATATATA	1740
10	GATAAGATGG	TGACAAAATG	AGGTTTACGA	TAATCATACC	TACATGTAAT	AATGAGGCAA	1800
	CAATTCGACA	ATTGTTAATA	TCTATTGAGA	GTAAAGAACA	CTATAGAATC	CTTTGTATTG	1860
15	ATGGTGGTTC	TACTGATCAA	ACAATTCCTA	TGATTGAACG	GTTACAAAGA	GAACTCAAGC	1920
	ATATTTCATT	AATACAATTA	CAAAATGCTT	CGATAGCTAC	GTGTATTAAT	AAAGGTTTGA	1980
	TGGATATCAA	AATGACAGAT	CCACATGATA	GTGACGCATT	TATGGTCATA	AAACCAACAT	2040
20	CAATCGTATT	GCCAGGTAAA	TTAGATAGGT	TAACTGCTGC	TTTCAAAAAT	AATGATAATA	2100
	TTGATATGGT	AATAGGGCAG	CGAGCTTACA	ATTACCATGG	TGAATGGAAA	TTGAAAAGTG	2160
	CTGATGAGTT	TATTAAAGAC	AATCGAATCG	TTACATTAAC	GGAACAACCA	GATTTGTTAT	2220
25	CAATGATGTC	TTTTGACGGA	AAGTTATTCA	GTGCTAAATT	TGCTGAATTA	CAGTGTGaCG	2280
	AAACTTTAGC	TAACaCATAC	AATCACGCAA	TACTTGTCAA	GGCGATGCAA	AAAGCTACGG	2340
	ATATACATTT	AGTTTCACAG	ATGATTGTCG	GAGATAACGA	TATAGATACA	CATGCTACAA	2400
30	GTAACGATGA	AGATTTTAAT	AGATATATCA	CAGAAATTAT	GAAAATAAGA	CAACGAGTCA	2460
	TGGAAATGTT	ACTATTACCT	GAACAAAGGC	TATTATATAG	TGATATGGTT	GATCGTATTT	2520
25	TATTCAATAA	TTCATTAAAA	TATTATATGA	ACGAACACCC	AGCAGTAACG	CACACGACAA	2580
35	TTCAACTCGT	AAAAGACTAT	ATTATGTCTA	TGCAGCATTC	TGATTATGTA	TCGCAAAACA	2640
	TGTTTGACAT	TATAAATACA	GTTGAATTTA	TTGGTGAGAA	TTGGGATAGA	GAAATATACG	2700
40	AATTGTGGCG	ACAAACATTA	ATTCAAGTGG	GCATTAATAG	GCCGACTTAT	AAAAAATTCT	2760
	TGATACAACT	TAAAGGGAGA	AAGTTTGCAC	ATCGAACAAA	ATCAATGTTA	AAACGATAAC	2820
	GTGTACATTG	ATGACCATAA	ACTGCAATCC	TATGATGTGA	CAATATGAGG	AGGATAACTT	2880
1 5	AATGAAACGT	GTAATAACAT	ATGGCACATA	TGACTTACTT	CACTATGGTC	ATATCGAATT	2940
	GCTTCGTCGT	GCAAGAGAGA	TGGGCGATTA	TTTAATAGTA	GCATTATCAA	CAGATGAATT	3000
	TAATCAAATT	AAACATAAAA	AATCTTATTA	TGATTATGAA	CAACGAAAAA	TGATGCTTGa	3060
50	ATCAATACGC	TATGTCGATT	TAGTCATTCC	AGAAAAGGGC	TGGGGACAAA	AAGAAGACGA	3120
	TGTCGAAAAA	TTTGATGTAG	ATGTTTTTGT	TATGGGACAT	GACTGGGAAG	GTGAATTCGA	3180

	TAAAATCAAA	CAAGAATTAT	ATGGTAAAGA	TGCTAAATAA	ATTATATAGA	ACTATCGATA	3300
	CTAAACGATA	AATTAACTTA	GGTTATTATA	AAATAAATAT	AAAACGGACA	AGTTTCGCAG	3360
5	CTTTATAATG	TGCAACTTGT	CCGTTTTTAG	TATGTTTTAT	TTTCTTTTTC	TAAATAAACG	3420
	ATTGATTATC	ATATGAACAA	TAAGTGCTAA	TCCAGCGACA	AGGCATGTAC	CACCAATGAT	3480
	AGTGAATAAT	GGATGTTCTT	CCCACATACT	TTTAGCAACA	GTATTTGCCT	TTTGAATAAT	3540
10	TGGCTGATGA	ACTTCTACAG	TTGGAGGTCC	ATAATCTTTA	TTAATAAATT	CTCTTGGATA	3600
	GTCCGCGTGT	ACTTTACCAT	CTTCGACTAC	AAGTTTATAA	TCTTTTTTAC	TAAAATCACT	3660
15	TGGTAAAACA	TCGTAAAGAT	CATTTTCAAC	ATAATATTTC	TTACCATTTA	TCCTTTGCTC	3720
, ,	ACCTTTAGAC	AATATTTTTA	CATATTTATA	CTGATCAAAT	GAGCGTTCCA	TTAATGCATT	3780
	CCCCATCATA	TTACGTTGCT	TCTCGCCACC	AAGGTTTTTA	TAGTCTCCTG	CACCCATGAT	3840
20	AACTTGATTA	ATTCTAAATT	TACCTCGTTT	GGTAGTAATC	GTATGGTTGT	AATTTGCTGT	3900
	ATCACTTGAT	CCAGTTTTTA	AACCATCTGT	ACCCGGCAAA	CTCATTTTTG	CACCTTCCAA	3960
	TGAAAAGTTG	AATGTGTAAT	ACGTAACTGC	ATGCGTTGTT	GGTGCTAACT	GCTTTGTAAA	4020
25	GTCTAATATT	TTAGGTGTCT	CTTTAATCAC	GTGTAAATCT	AAAATGGCAT	AGTCTCTAGC	4080
	AGTCGTTACA	GTACGTTCTT	GGTCTTTATA	CTTTGTTGGT	GCAAATGTAC	GTAATCTTGA	4140
	ATTTTCAGCA	CCCGTTGGAT	TGACGAAATG	TGTATTTTTC	ATTCCGATAG	CTTTAGCTTT	4200
30	GTTATTCATT	AAATCAACGA	AATCGCTGGT	GTTTTTTGAA	ACCTTCTTAG	CTAAAATTAA	4260
	TGCCGCGGCA	TTACTAGAAT	TAGATACTGT	AATTTGTAAT	AGGTCTGCGA	TTGTCCATAC	4320
	TTGTCCAGGA	TATAGTTTCG	TATTACTCAA	CTCAGGTAGT	GTAGACATAA	TATATTCTTT	4380
35	GTTCGTCATT	GTGACTGTGT	CATCAAGTGA	AAGCTGCCCC	TTATTTACAG	CTTCCAATGT	4440
	TAAGTACATT	GTCATTAATT	TAGTCATAGA	CGCTGGAtTC	CACTTAGTAT	CGATATTGTA	4500
40	TTGATACAGT	AATTGTCCAG	TTTGACTTAC	ATTAACAGCA	CTCGTCGGTT	CGTATGCAGC	4560
	CGACAAACCT	GCATAACCAT	ATTGATTTGC	TGCTTGTACA	GGGGTTACGT	CACTGTTAGT	4620
	AGCTTGTGCA	TATGGTGTCA	TAATACTTAA	TGTTAAACAT	AAAATGATGA	TAATAGATAT	4680
45	TAAATTTTTC	ATAAAGCGTT	AATCTTCCCT	TTTCCAATTC	TTAAATATTC	CCTAAAAGCA	4740
	ATGGTTATTC	CTACTTACGG	AAATCATTGC	TAATTCACTT	CACCTTAATT	AAATTGTTGA	4800
	AAATAAAGTT	TTCTGCAGTT	AATTTGAAAA	ATAATGCAAA	TATATTACGT	GTGTAGCTAA	4860
50	AGGTGTTATA	ATGTTTGTAC	GAAGAGCAAA	CTTACTCAAA	AGCGATTAAT	TTTCATGTTT	4920
	TAATATAAAG	ACTTTGAGAA	GTTATTACAA	AAAATGCAAT	AGAAATATTC	TATCATATAA	4980

	AAGTATATGA	TAGAAATGCA	TGTATCTATC	TAAATGAATT	AACTATAAAT	TTCAAACAGA	5100
	AGAGGTAAAA	CTATGAAACG	AGAAAATCCA	TTGTTTTTCT	TATTTAAAAA	ACTATCATGG	5160
5	CCAGTGGGTC	TTATCGTTGC	AGCTATCACT	ATTTCATCAC	TAGGGAGCTT	AAGTGGACTA	5220
	TTAGTGCCAC	TGTTTACTGG	ACGAATTGTA	GATAAATTTT	CCgTGAGCCA	TATCAATTGG	5280
	AATCLAATCG	CATTATTTGG	TGGTATCTTT	GTCATCAATG	CTTTATTAAG	CGGATTAGGT	5340
10	TTATATTTAT	TAAGTAAAAT	TGGTGAAAAG	ATTATTTATG	CGATACGCTC	AGTTTTATGG	5400
	GAGCATATCA	TACAATTAAA	AATGCCATTC	TTTGACAAAA	ATGAAAGTGG	TCAATTAATG	5460
15	AGTCGATTAA	CTGACGATAC	GAAAGTGATA	AATGAATTTA	TTTCACAAAA	GCTACCTMAC	5520
	TTATTACCAT	CAATCGTTAC	ATTAGTTGGG	TCACTAATCA	TGTTATTTAT	TTTAGATTGG	5580
	AAAATGACAT	TATTAACATT	TATAACGATA	CCGATATTCG	TTTTAATTAT	GATTCCTCTA	5640
20	GGTCGTATTA	TGCAAAAGAT	ATCGACAAGT	ACACAATCTG	AAATTGCAAA	CTTCAGTGGT	5700
	TTGTTAGGGC	GTGTCCTAAC	TGAAATGCGT	CTTGTTAAAA	TATCAAATAC	AGAGCGTCTT	5760
	GAATTAGATA	ATGCACATAA	AAATTTGAAT	GAAATATATA	AATTAGGTTT	AAAACAGGCT	5820
25	AAAATTGCGG	CAGTTGTACA	ACCAATTTCA	GGTATAGTTA	TGTTGCTAAC	AATTGCAATT	5880
	ATTTTAGGTT	TTGGTGCATT	AGAAATTGCG	ACTGGTGCAA	TCACTGCAGG	TACATTAATT	5940
	GCAATGATAT	TTTATGTTAT	TCAGTTATCT	ATGCCTTTAA	TCAATCTTTC	CACGTTAGTT	6000
30	ACAGATTATA	AAAAGGCAGT	CGGTGCAAGT	AGTAGAATAT	ACGAAATCAT	GCAAGAACCT	6060
	ATTGAACCGA	CAGAAGCTCT	TGAAGATTCT	GAAAATGTAT	TAATTGATGA	CGGTGTATTG	6120
35	TCATTTGAAC	ATGTAGACTT	TAAATATGAT	GTGAAGAAAA	TATTAGATGA	TGTGTCGTTC	6180
00	CAAATCCCAC	AAGGTCAAGT	GAGTGCTTTT	GTAGGCCCTT	CTGGGTCTGG	TAAAAGTACG	6240
	ATATTTAATC	TGATAGAACG	TATGTATGAA	ATTGAGTCAG	GTGATATTAA	ATATGGCCTT	6300
40	GAAAGTGTCT	ATGATATCCC	GTTATCTAAG	TGGCGACGCA	AAATTGGATA	TGTTATGCAA	6360
	TCAAATTCGA	TGATGAGTGG	TACAATTAGA	G ACAATAT TT	TATACGGAAT	TAATCGTCAT	6420
	GTTTCAGATG	AAGAACTTAT	TAATTATGCT	AAATTAGCGA	ACTGTCATGA	TTTTATCATG	6480
45	CAATTTGATG	AAGGATATGA	CACGCTTGTA	GGTGAACGAG	GATTGAAACT	GTCTGGCGGA	6540
	CAACGTCAAC	GTATTGATAT	TGCTAGAAGT	TTTGTTAAAA	ATCCTGATAT	TTTGTTACTT	6600
	GATGAAGCAA	CAGCTAATCT	CGATAGTGAA	AGTGAATTGA	AAATTCAAGA	AGCTTTAGAA	6660
50	ACATTGATGG	AAGGTAGAAC	AACGATTGTC	ATTGCGCATC	GTTTGTCTAC	AATTAAAAAA	6720
	GCCGGTCNAA	יושרי ביישר אידי אידי אידי	ACACAAACCA	CACCTAACAC	CTA BACCTAC	CCATTCACA	6300

	TTTTATATAT	ATAAGTAAGC	TTGGAGCAAA	TACACATATA	CCATCGAGGA	AATTAAAGTG	€900
	TGGCACATTG	ATGGATATAG	ATGTTAATAA	ATTGCTTCAA	GCTTTTGTCT	ATTTTAAATC	6960
5	ATTTGAGAAG	TTACGACATA	ATAATTCTTA	AATTAATGAA	ATCGATATTT	TAAGAAAAA	7020
	ATGCTCATGG	TATAATACAA	GTTATAAGCA	AACATACATA	TATTAAATAC	TGTAGCCACG	7080
	AGTCATAATT	CTTCATATTT	TACATAGCAA	TTTAACTGAT	TTTAGAGTCC	ACGGTACAGA	7140
10	AGTTTGATAT	TTCAATGTTT	CTAAATTTTT	AAAAAATTAA	ATCATAGGTG	GGTGCCAAAT	7200
	GTTTTTATTA	ATCAACATTA	TIGGICTAAT	TGTATTTCTT	GGTATTGCGG	TATTATTTTC	7260
	AAGAGATCGC	AAAAATATCC	AATGGCAATC	AATTGGGATC	TTAGTTGTTT	TAAACCTGTT	7320
15	TTTAGCATGG	TTCTTTATTT	ATTTTGATTG	GGGTCAAAAA	GCAGTAAGAG	GAGCAGCCAA	7380
	TGGTATCGCT	TGGGTAGTTC	AGTCAGCGCA	TGCTGGTACA	GGTTTTGCAT	TTGCAAGTTT	7440
20	GACAAATGTT	AAAATGATGG	ATATGGCTGT	TGCAGCCTTA	TTCCCAATAT	TATTAATAGT	7500
	GCCATTATTT	GATATCTTAA	TGTACTTTAA	TATTTTACCG	AAAATTATTG	GAGGTATTGG	7560
	TTGGTTACTA	GCTAAAGTAA	CAAGACAACC	TAAATTCGAG	TCATTCTTTG	GGATAGAAAT	7620
25	GATGTTCTTA	GGAAATACTG	AAGCATTAGC	CGTATCAAGT	GAGCAACTAA	AACGTATGAA	7680
	TGAAATGCGT	GTATTAACAA	TCGCAATGAT	GTCAATGAGC	TCTGTATCGG	GAGCTATTGT	7740
	AGGTGCGTAT	GTACAAATGG	TACCAGGAGA	ACTGGTACTA	ACGGCAATTC	CACTAAATAT	7800
30	CGTTAACGCG	ATTATTGTGT	CATGCTTGTT	GAATCCAGTA	AGTGTTGAAG	AGAAAGAAGA	7860
	TATTATTTAC	AGTCTTAAAA	ACAATGAAGT	TGAACGTCAA	CCATTCTTCT	CATTCCTTGG	7920
	AGATTCTGTA	TTAGCAGCAG	GTAAATTAGT	ATTAATCATC	ATCGCATTTG	TTATTAGTTT	7980
35	TGTAGCGTTA	GCTGATCTAT	TTGATCGTTT	TATCAATTTG	ATTACAGGAT	TGATAGCAGG	8040
	ATGGATAGGC	ATAAAAGGTA	GTTTCGGTTT	AAACCAAATT	TTAGGTGTGT	TTATGTATCC	8100
10	ATTTGCGCTA	TTACTCGGTT	TACCTTATGA	TGAAGCGTGG	TTGGTAGCAC	AACAAATGGC	8160
•0	TAAGAAAATT	GTTACAAATG	AATTTGTTGT	TATGGGTGAA	ATTTCTAAAG	ATATTGCATC	8220
	TTATACACCA	CACCATCGTG	CGGTTATTAC	AACATTCTTA	ATTTCATTTG	CAAACTTCTC	8280
15	AACGATTGGT	ATGATTATCG	GTACATTGAA	AGGCATTGTT	GATAAAAAGA	CATCAGACTT	8340
	TGTATCTAAA	TATGTACCTA	TGATGCTATT	ATCAGGTATC	CTAGTTTCAT	TATTAACAGC	8400
	AGCTTTCGTT	GGTTTATTTG	CATGGTAATA	TGTCGAAGAG	TGACTATGAT	AATACATTTT	8460
50	AACTAATAAA	TATGTCCAGG	CATGTCGTCT	ATTGATATAG	GTGAGATGCT	TGGACTTTTT	8520
	TATTATTGAT	ATAAAGGTAT	nTAAATATTT	TTAAAGTTAC	CGAAATTGAA	GCATTATAAA	8580

	GACAGIAGO ACIAGGIACA GICAIAGIAC ITCGAGCAAA AIIIGIIIIG ITAITATAAA	8700							
	CAACACAAAG GAGATAACTT CTCTAnTGAA GAAGTTAAAA ACATTATAGC AGACAATGAA	8760							
5	ATGAAAGTAA ATTAAAAAT	8779							
	(2) INFORMATION FOR SEQ ID NO: 59:								
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31096 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 								
15									
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:								
	GTTGCAGTAG TCAAAGAATT AAACAAGGTG AAGGCGTGTA GCTTGCACAC CCGAAAATGT	60							
20	GCGTAAGTTA aCGGATGCAG GACATAAAGT AATTGTTGAA AAAAATGCTG GCATTGGTTC	120							
	AGGATTTTCT AACGATATGT ATGAAAAAGA AGGCGCTAAG ATCGTAACTC ACGAACAAGC	180							
	ATGGGAAGCT GATCTTGTTA TCAAAGTAAA AGAACCTCAT GAAAGCGAAT ATCAATATTT	240							
25	CAAAAAGAAT CAAATTATCT GGGGATTTTT ACATCTAGCA TCTTCAAAAG AAATAGTAGA	300							
	AAAAATGCAA GAAGTTGGTG TAACTGCGAT TAGTGGTGAA ACCATTATAA AAAATGGAAA	360							
	AGCAGAATTA TTAGCGCCAA TGAGTGCTAT AGCAGGTCAA CGCTCAGCAA TTATGGGAGC	420							
30	TTACTACTCT GAAGCACAAC ATGGTGGTCA AGGTACTTTA GTGACTGGTG TACATGAAAA	480							
	TGTGGATATA CCTGGTAGTA CATATGTGAT TTTCGGTGGT GGAGTAGCAG CAACAAATGC	540							
35	AGCAAATGTT GCCTTGGGAC TAAATGCTAA AGTAATCATT ATCGAGTTAA ACGATGACCG	600							
35	CATTAAATAT CTTGAAGATA TGTATGCAGA AAAAGATGTC ACAGTAGTCA AATCAACACC	660							
	AGAAAATTTA GCAGAACAAA TTAAGAAAGC AGATGTATTT ATTTCTACAA TTTTAATTTC	720							
40	AGGTGCGAAA CCGCCAAAAT TGGTTACTCG TGAGATGGTT AAATCAATGA AAAAAGGTTC	780							
	AGTATTAATC GATATAGCTA TTGACCAAGG TGGAACTATT GAAACAATTA GACCAACTAC	840							
	AATTTCTGAT CCAGTGTATG AAGAAGAAGG TGTGATTCAT TATGGTGTAC CAAATCAACC	900							
45	AGGAGCAGTC CCAAGAACTT CAACAATGGC ATTAGCACAA GGAAATATTG ATTATATATT	960							
	AGAAATTTGT GACAAAGGCT TAGAACAAGC AATTAAAGAT AATGAAGCCT TAAGTACTGG	1020							
	TGTAAACATT TACCAAGGAC AAGTGACAAA TCAAGGATTA GCTTCATCAC ATGACCTAGA	1080							
50	TTATAAAGAA ATATTAAATG TTATCGAATA GATAGTAATT TAAATGAAAT TGAGTGAAAT	1140							
	GAATATTTTA AATATAGCAT TATAGTTTGG ACTAAAAATT TACAAAACGG AAGGATGTAA	1200							

	TCGAAGAAGC	TAAAGCAAGC	ATTAAACCAT	TTATTCGTCG	AACACCTCTA	ATTAAATCAA	1320
	TGTATTTAAG	CCAAAGTATA	ACTAAAGGGA	ATGTATTTCT	AAAATTAGAA	AATATGCAAT	1380
5	TCACAGGATC	TTTTAAATTT	AGAGGCGCTA	gCAATnAAAA	TTAATCACTT	AACAGATGAA	1440
	CAAAAAGAAA	AAGGCATTAT	CGCAGCATCT	GCTGGGgAAC	CATGCACAAG	GTGTTGCTTT	1500
	AACAGCTAAA	TTATTAGGCA	TTGATGCAAC	GATTGTAATG	CCTGAAACAG	CACCACAAGC	1560
10	GAAACAACAA	GCAACAAAAG	GCTATGGGGC	AAAGGTTATT	TTAAAAGGTA	AAAACTTTAA	1620
	CGAAACTAGA	CTTTATATGG	AAGAATTAGC	GAAAGAAAAT	GGCATGACAA	TCGTTCATCC	1680
15	ATATGACGAT	AAGTTTGTAA	TGGCAGGCCA	AGGAACAATT	GGTTTAGAAA	TTTTAGATGA	1740
73	TATTTGGAAT	GTGAATACAG	TCATCGTACC	AGTTGGCGGT	GGAGGATTAA	TTGCAGGTAT	1800
	TGCCACCGCA	TTAAAATCAT	TTAACCCTTC	AATTCATATT	ATCGGTGTTC	AATCTGAGAA	1860
20	TGTTCATGGT	ATGGCTGAGT	CTTTCTATAA	GAGAGATTTA	ACTGAACATC	GAGTGGATAG	1920
	CACAATAGCA	GATGGTTGTG	ATGTAAAAGT	TCCTGGTGAA	CAAACATATG	AAGTAGTTAA	1980
	ACATTTAGTA	GATGAATTTA	TTCTTGTTAC	TGAAGAAGAA	ATTGAACATG	CTATGAAAGA	2040
25	TTTAATGCAG	CGTGCCAAAA	TTATTACTGA	AGGTGCAGGC	GCATTACCAA	CAGCTGCAAT	2100
	TTTAAGTGGA	AAAATAAACA	ATAAATGGCT	TGAAGATAAA	AATGTTGTTG	CATTAGTTTC	2160
	AGGCGGGAAT	GTTGACTTAA	CTAGAGTTTC	AGGTGTCATT	GAACATGGAC	TGAATATTGC	2220
30	AGATACAAGC	AAGGGTGTGG	TAGGTTAAAA	CATTTAATCT	TAAAAATGAG	GTGTAATTAT	2280
	GTCAAATGGT	AAAGAATTAC	AAAAAATAT	AGGTTTCTTC	TCAGCGTTTG	CTATTGTTAT	2340
	GGGGACAGTT	ATTGGTTCAG	GAGTATTCTT	TAAAATATCA	AACGTAACAG	AAGTAACAGG	2400
35	AACAGCAGGA	ATGGCCTTGT	TTGTATGGTT	CCTAGGCGGC	ATCATTACCA	TTTGTGCGGG	2460
	GTTAÃCAGCA	GCAGAACTTG	CTGCTGCAAT	CCCTGAAACA	GGTGGCTTAA	CGAAGTATAT	2520
40	AGAATATACA	TACGGTGATT	TCTGGGGCTT	CCTATCAGGT	TGGGCGCAAT	CATTTATTTA	2580
	TTTTCCAGCT	AACGTAGCAG	CATTGTCTAT	CGTATTTGCG	ACACAGCTAA	TTAATTTATT	2640
	CCATTTATCT	ATAGGTTCGT	TAATACCAAT	AGCAATCGCA	TCTGCGTTAT	CTATTGTGTT	2700
45	GATAAATTTC	CTAGGTTCAA	AAGCAGGCGG	AATTTTACAA	TCAGTTACTT	TAGTAATTAA	2760
	ACTGATTCCA	ATCATCGTTA	TTGTAATTTT	TGGTATTTTT	CAATCTGGAG	ATATCACTTT	2820
	TTCATTAATT	CCAACTACAG	GTAATTCaGG	AAATGGCTTC	TTTACAGCAA	TTGGTAGTGG	2880
50	TTTATTAGCA	ACTATGTTTG	CATATGATGG	TTGGATTCAT	GTAGGAAATG	TTGCGGGGGA	2940
	ACTTAAAAAT	CCTAAACGCG	ATTTACCTTT	AGCGATTTCA	GTTGGTATCG	GTTGTATTAT	3000

	TGGTAATTTA	AATGCAGCTT	CAGATACATC	AAAAATATTA	TTTGGTGAAA	ATGGCGGTAA	3120
	GATTATTACA	ATCGGTATAT	TAATTTCTGT	TTATGGTACG	ATCAATGGCT	ATACTATGAC	3180
5	TGGTATGCGC	GTACCATATG	CAATGGCTGA	AAGAAAATTA	TTGCCATTTA	GCCATTTATT	3240
	CGCAAAATTA	ACAAAATCTG	GCGCACCATG	GTTTGGCGCA	ATTATACAAC	TTATAATCGC	3300
	TATCATCATG	ATGTCAATGG	GAGCATTTGA	TACAATTACA	AATATGTTAA	TCTTTGTTAT	3360
10	TTGGTTGTTC	TATTGTATGT	CATTTGTTGC	GGTAATAATT	TTAAGAAAAC	GTGAACCAAA	3420
	TATGGAACGA	CCATATAAAG	TACCGTTATA	TCCGATCATA	CCTTTAATTG	CTATTTTGGC	3480
15	AGGATCATTT	GTATTAATTA	ATACACTGTT	TACACAATTT	ATATTAGCAA	TCATTGGAAT	3540
-	TCTAATAACA	GCACTTGGTA	TACCAGTTTA	ТТАСТАТААА	AAGAAACAAA	AAGCAGCATA	3600
	AGGTAAGATA	ACTAGCATTG	AGAATAAATG	GATGGACTAC	TAATAAATTT	AAAGTTTTAC	3660
20	ACATTAAAAT	CAAAAACCAT	TCAATTATTC	TATGGAACAG	ACAAATTTCT	GTTATGGAAT	3720
	TTGTCTGTTT	TTCAAAAGTA	TAGGGAGGCA	AATAGAGATG	GAAAAGCCGT	CAAGAGAGGC	3780
	ATTTGAAGGC	AATAATAAGT	TGTTAATAGG	AATTGTTCTA	AGTGTAATAA	CGTTTTGGCT	3840
?5	ATTTGCACAA	TCATTGGTTA	ATGTTGTACC	AATACTTGAA	GATAGTTTCA	ATACAGATAT	3900
	TGGAACGGTT	AATATCGCCG	TTAGTATAAC	TGCTTTATTT	TCAGGAATGT	TTGTAGTAGG	3960
	AGCAGGTGGT	CTTGCTGATA	AATATGGCAG	AATTAAACTC	ACGAACATTG	GTATTATCTT	4020
30	AAATATATTA	GGTTCATTAT	TAATCATTAT	TTCAAATATT	CCTTTATTAC	TTATTATAGG	4080
	AAGATTAATT	CAAGGACTTT	CAGCAGCATG	TATTATGCCT	GCAACTTTGT	CTATTATTAA	4140
	GTCATATTAC	ATTGGGAAAG	ATAGACAACG	CGCTTTAAGT	TATTGGTCAA	TTGGCTCATG	4200
35	GGGCGGCTCT	GGTGTTTGTT	CATTTTTTGG	AGGTGCAGTT	GCAACGCTTT	TAGGTTGGCG	4260
	TTGGATTTTC	ATCCTATCAA	TTATAATTTC	ATTAATTGCA	CTGTTTCTTA	TTAAAGGCAC	4320
10	ACCTGAAACT	AAATCTAAAT	CGATTTCTCT	AAATAAATTT	GACATTAAAG	GTCTGGTTCT	4380
	TTTAGTCATT	ATGCTCCTCA	GTTTAAATAT	TTTAATTACT	AAAGGATCAG	AATTAGGTGT	4440
	AACCTCACTT	CTTTTTATTA	CTTTATTAGC	TATTGCAATT	GGATCTTTTA	GTTTATTTAT	4500
15	AGTTCTTGAA	AAGCGTGCTA	CAAATCCTTT	AATCGATTTT	AAATTATTTA	AAAATAAAGC	4560
	TTACACAGGT	GCAACAGCTT	CAAACTTTTT	GTTAAATGGT	GTTGCAGGAA	CATTAATAGT	4620
	AGCCAACACA	TTTGTTCAAA	GAGGTTTAGG	ATATTCTTCA	TTGCAAGCAG	GAAGTTTATC	4680
50	AATCACTTAT	TTAGTAATGG	TACTAATTAT	GATTCGTGTT	GGTGAAAAGT	TACTTCAAAC	4740
	ACTICCICA TYPE	AAGAAACCAA	יייייים אייייייטי	A A C A C C A C T T	CTT ATTCTCC	CACAATCTCT	4000

	ATTCTTTGGT	TTAGGACTAG	GGATATATGC	TACACCATCA	ACAGATACAG	CAATTGCAAA	4920
	TGCACCGTTA	GAAAAAGTAG	GCGTTGCTGC	AGGTATCTAT	AAAATGGCTT	CTGCATTAGG	4980
5	TGGAGCATTT	GGCGTCGCAT	TGAGTGGTGC	AGTATATGCA	ATCGTATCAA	ATATGaCAAA	5040
	CATTTATACA	GGTGcAATGa	TTGnCATTAT	GGTTaAATGC	AGGTATGGGa	ATATTATCaT	5100
	TCGTTATCAT	TTTGtTACTT	GTGCCTAAAC	mAAACGACAC	TCAATTATGA	TAATTGAGAA	5160
10	TTAAATTGAA	ATCATACAAG	TCGCTACAAT	ATTAAACAAA	AATATAAACC	GATTCTTATG	5220
	TGTCATTATT	TTAAATGAAC	ATAGGGATTG	GTTTTTTATT	ACTCTTTTAC	GCTACTTTAT	5280
15	TTATAATTAT	TATAAATTGT	CACAAATTCA	ATTTACCTTA	CAATATATTT	TGTGTTATTA	5340
	TATTCTGGAG	САТАААТААА	TTGTTCAACA	CATAGTTGTA	ATGTGTTTCA	ATACTTTTTG	5400
	GATAGATTGC	GAAATTGTAT	TGAATCGTCA	TCGTTTTAAA	TTTTTAAATG	AGAATGGAAT	5460
20	GAGCATTACA	ATACACAAGC	AATCAAAAGT	AAATACATTC	ACAACACAAC	AGAGACATAA	5520
	CAACAAGATA	AGGAGTGAAC	AATAGCTGTG	AATTATCGTG	ATAAAATTCA	AAAGTTTAGT	5580
	ATTCGTAAAT	ATACAGTTGG	TACATTTTCA	ACTGTCATTG	CGACATTGGT	ATTTTTAGGA	5640
?5	TTCAATACAT	CACAAGCACA	TGCTGCTGAA	ACAAATCAAC	CAGCAAGCGT	GGTTAAACAG	5700
	AAACAACAAA	GTAATAATGA	ACAGACTGAG	AATCGAGAAT	CTCAAGTACA	AAATTCTCAA	5760
	AATTCACAAA	ATGGTCAATC	ATTATCTGCT	ACTCATGAAA	ATGAGCAACC	AAATATTAGT	5820
30	CAAGCTAATT	TAGTAGATCA	AAAAGTAGCG	CAATCATCTA	CTACTAATGA	TGAACAACCA	5880
	GCATCTCAAA	ATGTAAATAC	AAAGAAAGAT	TCGGCAACGG	CTGCGACAAC	ACAACCAGAT	5940
35	AAAGAACAAA	GTAAGCATAA	ACAAAACGAA	AGTCAATCTG	CTAATAAAAA	TGGAAACGAC	6000
	AATAGAGCGG	CTCATGTAGA	AAATCATGAA	GCAAATGTAG	TAACAGCTTC	AGATTCATCT	6060
	GATAATGGTA	ACGTACAACA	TGACCGAAAT	GAATTACAAG	CGTTTTTTGA	TGCAAATTAT	6120
10	CATGATTATC	GCTTTATTGA	CCGTGAAAAT	GCAGATTCTG	GCACATTTAA	CTATGTAAAA	6180
	GGCATTTTTG	ATAAGATTAA	TACGTTATTA	GGCAGTAATG	ATCCAATAAA	CAATAAAGAC	6240
	TTGCAACTTG	CATACAAAGA	ATTGGAACAA	GCTGTTGCTT	TAATTCGTAC	AATGCCTCAA	6300
15	CGTCAACAGA	CTAGCCGACG	TTCAAATAGA	ATTCAAACGC	GTTCGGTTGA	GTCAAGAGCT	6360
	GCAGAGCCTA	GATCAGTATC	AGACTATCAA	AATGCAAATT	CATCATATTA	TGTTGAAAAT	6420
	GCTAATGATG	GTTCGGGCTA	TCCTGTTGGT	ACATATATCa	ATGCTTCTAG	TAAAGGGGCG	6480
50	CCATATAATT	TACCAACTAC	ACCATGGAAT	ACATTGAAGG	CCTCTGACTC	AAAGGAAATT	6540
	GCTCTTATGA	CAGCGAAACA	AACTGGAGAC	GGGTACCAAT	GGGTTATTAA	GTTTAATAAA	6600

	GTAGGAAGAA	CTGACTTTGT	AACAGTTAAT	TCAGATGGAA	CAAATGTACA	ATGGAGTCAT	6720
	GGAGCAGGAG	CAGGTGCAAA	TAAACCACTT	CAACAAATGT	GGGAATATGG	AGTAAATGAT	6780
5	CCTCATCGTT	CACATGACTT	TAAAATAAGA	AATAGAAGTG	GCCAAGTAAT	ATATGACTGG	6840
	CCAACTGTCC	ATATTTATTC	TTTAGAAGAT	TTATCTAGAG	CGAGTGATTA	TTTTAGTGAA	6900
	GCTGGAGCGA	CACCTGCTAC	TAAAGCTTTT	GGTAGACAAA	ATTTTGAATA	TATTAATGGT	6960
10	CAAAAACCTG	CTGAATCACC	GGGTGTTCCT	AAAGTTTATA	CTTTCATCGG	TCAAGGTGAT	7020
	GCAAGTTATA	CAATTTCATT	TAAAACACAA	GGTCCAACTG	TTAATAAATT	GTACTATGCA	7080
	GCAGGTGGGC	GTGCTTTAGA	GTACAATCAA	TTATTTATGT	ACAGTCAACT	ATACGTCGAA	7140
15	TCAACGCAAG	ACCATCAACA	ACGTCTTAAT	GGTTTAAGAC	AAGTGGTTAA	TCGTACATAT	7200
	CGCATAGGTA	CAACTAAACG	TGTAGAAGTG	AGTCAAGGAA	ATGTACAAAC	GAAAAGGTA	7260
20	TTAGAAAGTA	CAAACCTAAA	TATAGATGAT	TTTGTTGATG	ATCCTTTAAG	TTATGTTAAG	7320
	ACGCCGAGTA	ATAAAGTGTT	AGGATTTTAT	TCGAATAATG	CAAATACTAA	TGCTTTTAGA	7380
	CCGGGTGGAG	CCCAACAATT	AAATGAATAT	CAATTAAGTC	AATTATTTAC	TGATCAAAAA	7440
25	TTACAAGAAG	CAGCAAGAAC	TAGAAACCCA	ATAAGATTAA	TGATTGGTTT	CGACTATCCT	7500
	GATGCTTATG	GTAATAGTGA	ACTTTAGTTC	CTGTTAACTT	AACGGTATTA	CCTGAAATCC	7560
	AACATAATAt	TaAATTCTTT	AAAAATGACG	ATACTCAAAA	TATTGCTGAA	AAACCATTTT	7620
30	CAAAACAAGC	TGGGCATCCA	GTTTTCTATG	TATATGCAGG	TAACCAAGGG	AATGCTTCCG	7680
	TGAATTTAGG	TGGTAGCGTA	ACATCTATTC	AACCATTACG	TATTAATTTA	ACAAGTAATG	7740
	AGAATTTTAC	AGATAAAGAT	TGGCAAATTA	CAGGTATTCC	GCGTACATTA	CACATTGAAA	7800
35	ACTCGACAAA	TAGACCTAAT	AATGCCAGAG	AACGCAATAT	TGAACTTGTT	GGTAACTTAT	7860
	TACCAGGGGA	TTACTTTGGA	ACGATACGTT	TTGGACGTAA	AGAACAATTA	TTCGAAATTC	7920
	GTGTTAAACC	ACATACACCA	ACAATTACAA	CGACAGCTGA	GCAATTAAGA	GGTACAGCAT	7980
40	TACAAAAAGT	GCCTGTTAAT	ATTTCGGGAA	TACCGTTGGA	TCCATCGGCA	TTGGTTTATT	8040
	TAGTTGCACC	AACAAATCAA	ACTACGAATG	GTGGTAGTGA	GGCAGATCAA	ATACCATCTG	8100
1 5	GTTATACGAT	ACTTGCGACT	GGTACACCTG	ATGGGGTGCA	TAATACAATT	ACTATACGAC	8160
	CGCAAGATTA	TGTTGTATTC	ATACCACCTG	TAGGTAAACA	AATTAGAGCA	GTAGTTTATT	8220
	ATAATAAAGT	AGTTGCATCT	AATATGAGTA	ATGCTGTTAC	TATTTTGCCA	GATGACATTC	8280
50	CACCAACAAT	CAATAATCCT	GTTGGAATAA	ATGCCAAATA	CTATCGAGGC	GACGAAkCAA	8340
	CTTTACAATG	GGTGTCTCTG	ATAGACATTC	TGGTATAAAA	AATACAACTA	TTACGACATT	8400

	TACAGGTAGA	GTGAGTATGA	ATCAGGCATT	TAACAGTGAT	ATTACATTTA	AAGTGTCAGC	8520
	GACAGaCAAT	GTCAATAATA	CGACAAATGA	TAGTCAATCT	AAACATGTTT	CAATTCATGT	8580
5	AGGTAAAATT	AGTGAAGATG	CTCATCCGAT	TGTATTAGGA	AATACTGAGA	AAGTTGTAGT	8640
	AGTCAATCCG	ACTGCTGTAT	CTAATGATGA	AAAGCAAAGC	ATAATTACTG	CCTTTATGAA	8700
	TAAAAACCAA	AATATAAGAG	GATATTTAGC	ATCAACTGAT	CCAGTAACTG	TCGATAATAA	8760
10	TGGTAATGTC	ACATTACATT	ACCGTGATGG	CTCATCGACA	ACGCTTGATG	CTACAAATGT	8820
	GATGACATAC	GAACCAGTTG	TGAAACCTGA	ATACCAAACT	GTCAATGCTG	CTAAAACAGC	8880
15	AACGGTAACG	ATTGCTAAAG	GACAATCATT	TAGTATTGGT	GATATTAAAC	AATATTTTAC	8940
.5	TTTAAGTAAT	GGACAACCTA	TTCCAAGTGG	CACATTTACA	AATATTACAT	CTGATAGAAC	9000
	TATTCCAACT	GCACAAGAAG	TTAGTCAAAT	GAACGCAGGC	ACGCAGTTAT	ACCATATAAC	9060
20	TGCTACAAAT	GCGTATCATA	AAGATAGTGA	AGACTTCTAT	ATTAGTTTGA	AAATCATCGA	9120
	TGTGAAACAA	CCAGAAGGCG	ATCAACGTGT	ATATCGTACA	TCAACATATG	ATTTAACTAC	9180
	TGATGAAATC	TCAAAAGTAA	AACAAGCATT	TATTAATGCA	AATAGAGATG	TAATTACGCT	9240
25	TGCCGAAGGT	GATATTTCAG	TTACAAATAC	ACCTAATGGT	GCTAATGTAA	GTACTATTAC	9300
	AGTAAATATT	AATAAAGGTC	GATTAACGAA	ATCATTCGCG	TCAAACCTAG	CTAATATGAA	9360
	TTTCTTGCGT	TGGGTTAATT	TCCCACAAGA	TTATACAGTG	ACATGGACGA	ATGCAAAAAT	9420
30	TGCAAACAGA	CCAACAGATG	GTGGTTTATC	ATGGTCTGAT	GACCATAAAT	CTTTAATTTA	9480
	TCGTTATGAT	GCTACATTAG	GTACTCAAAT	TACGACGAAT	GATATTTTAA	CAATGTTAAA	9540
	AGCAACAACT	ACAGTGCCTG	GATTGCGAAA	TAACATTACT	GGTAATGAAA	AATCACAAGC	9600
35	AGAAGCTGGC	GGAAGACCTA	ACTTTAGAAC	GACTGGTTAT	TCACAATCAA	ATGCGACAAC	9660
	TGATGGTCAA	CGTCAATTTA	CGTTGAATGG	TCAAGTGATT	CAAGTGTTAG	ACATCATCAA	9720
10	CCCTTCAAAC	GGTTATGGTG	GGCAACCTGT	TACAAATTCA	AATACTCGTG	CAAACCATAG	9780
	TAACTCAACT	GTTGTTAACG	TAAACGAACC	GGCAGCTAAT	GGTGcTGGCG	CATTTACAAT	9840
	TGACCACGTT	GTAAAAAGTA	ATTCTACACA	TAATGCAAGT	GATGCAGTTT	ATAAAGCACA	9900
15	GTTATACTTA	ACGCCATATG	GTCCAAAACA	ATATGTTGAA	CATTTAAATC	AAAATACAGG	9960
	AAATACTACT	GACGCTATTA	ACATTTATTT	TGTACCAAGT	GACTTAGTGA	ATCCAACAAT	10020
	TTCAGTAGGT	AATTACACTA	ATCATCAAGT	GTTCTCAGGT	GAAACATTTA	CAAATACTAT	10080
50	TACAGCGAAT	GATAACTTTG	GTGTGCAATC	TGTAACTGTA	CCAAATACAT	CACAAATTAC	10140
	AGGTACTGTT	GATAATAACC	ATCAACATGT	TTCTGCAACG	GCACCAAATG	TGACATCAGC	10200

	GTTCAATGTA	ACAGTGAAAC	CTTTGCGTGA	TAAATATCGA	GTTGGTACTT	CATCAACGGC	10320
	TGCTAATCCT	GTGAGAATTG	CCAATATTTC	GAATAATGCG	ACAGTATCAC	AAGCTGATCA	10380
5	AACGACAATT	ATTAATTCGT	TAACGTTTAC	TGAAACAGTA	CCAAATAGAA	GTTATGCAAG	10440
	AGCAAGTGCG	AATGAAATCA	CTAGTAAAAC	AGTTAGTAAT	GTCAGTCGTA	CTGGAAATAA	10500
	TGCCAATGTg	CACAGTAACT	GTTACTTATC	AAGATGGAAC	AACATCAACA	GTGACTGTAC	19560
10	CTGTAAAGCA	TGTCATTCCA	GAAATCGTTG	CACATTCGCA	TTACACTGTA	CAAGGCCAAG	10620
	ACTTCCCAGC	AGGTAATGGT	TCTAGTGCAT	CAGATTACTT	TAAGTTATCT	AATGGTAGTG	10680
15	ACATTGCAGA	TGCAACTATT	ACATGGGTAA	GTGGACAAGC	GCCAAATAAA	GATAATACAC	10740
, ,	GTATTGGTGA	AGATATAACT	GTAACTGCAC	ATATCTTAAT	TGATGGCGAA	ACAACGCCGA	10800
	TTACGAAAAC	AGCAACATAT	AAAGTAGTAA	GAACTGTACC	GAAACATGTC	TTTGAAACAG	10860
20	CCAGAGGTGT	TTTATACCCA	GGTGTTTCAG	ATATGTATGA	TGCGAAACAA	TATGTTAAGC	10920
	CAGTAAATAA	TTCTTGGTCG	ACAAATGCGC	AACATATGAA	TTTCCAATTT	GTTGGAACAT	10980
	ATGGTCCTAA	CAAAGATGTT	GTAGGCATAT	CTACTCGTCT	TATTAGAGTG	ACATATGATA	11040
25	ATAGACAAAC	AGAAGATTTA	ACTATTTTAT	CTAAAGTTAA	ACCTGACCCA	CCTAGAATTG	11100
	ACGCAAACTC	TGTGACATAT	AAAGCAGGTC	TTACAAACCA	AGAAATTAAA	GTTAATAACG	11160
	TATTAAATAA	CTCGTCAGTA	AAATTATITA	AAGCAGATAA	TACACCATTA	AATGTCACAA	11220
30	ATATTACTCA	TGGTAGCGGT	TTTAGTTCGG	TTGTGACAGT	AAGTGACGCG	TTACCAAATG	11280
	GCGGAATTAA	AGCAAAATCT	TCAATTTCAA	TGAACAATGT	GACGTATACG	ACGCAAGACG	11340
	AACATGGTCA	AGTTGTTACA	GTAACAAGAA	ATGAATCTGT	TGATTCAAAT	GACAGTGCAa	11400
35	CAGTAACAGT	GACACCACAA	TTACAAGCAA	CTACTGAAGG	CGCTGTATTT	ATTAAAGGTG	11460
	GCGACGGTTT	TGATTTCGGA	CACGTAGAAA	GATTTATTCA	AAACCCGCCA	CATGGGGCAA	11520
40	CGGTTGCATG	GCATGATAGT	CCAGATACAT	GGAAGAATAC	AGTCGGTAAC	ACTCATAAAA	11580
	CTGCGGTTGT	AACATTACCT	AATGGTCAAG	GTACGCGTAA	TGTTGAAGTT	CCAGTCAAAG	11640
	TTTATCCAGT	TGCTAATGCA	AAGGCGCCAT	CACGTGATGT	GAAAGGTCAA	AATTTGACTA	11700
45	ATGGAACGGA	TGCGATGAAC	TACATTACAT	TTGATCCAAA	TACAAACACA	AATGGTATCA	11760
	CTGCAGCATG	GGCAAATAGA	CAACAACCAA	ATAACCAACA	AGCAGGCGTG	CAACATTTAA	11820
	ATGTCGATGT	CACATATCCA	GGTATTTCAG	CTGCTAAACG	AGTTCCTGTT	ACTGTTAATG	11880
50	TATATCAATT	TGAATTCCCT	CAAACTACTT	ATACGACAAC	GGTTGGAGGC	ACTTTAGCAA	11940
	GTGGTACGCA	AGCATCAGGA	TATGCACATA	TGCAAAATGC	TACTGGTTTA	CCAACAGATG	12000

	TGAATAAACC	GAATGTGGCT	AAAGTCGTTA	ACGCAAAATA	TGACGTCATC	TATAACGGAC	12120
	ATACTTTTGC	AACATCTTTA	CCAGCGAAAT	TTGTAGTAAA	AGATGTGCAA	CCAGCGAAAC	12180
5	CAACTGTGAC	TGAAACAGCG	GCAGGAGCGA	TTACAATTGC	ACCTGGAGCA	AACCAAACAG	12240
	TGAATACACA	TGCCGGTAAC	GTAACGACAT	ACGCTGATAA	ATTAGTTATT	AAACGTAATG	12300
	GTAACGTTGT	GACGACATTT	ACACGTCGCA	ATAATACGAG	TCCATGGGTG	AAAGAAGCAT	12360
10	CTGCAGCAAC	TGTAGCAGGT	ATTGCTGGAA	CTAATAATGG	TATTACTGTT	GCAGCAGGTA	12420
	CTTTCAACCC	TGCTGATACA	ATTCAAGTTG	TTGCAACGCA	AGGAAGCGGA	GAGACAGTGA	12480
15	GTGATGAGCA	ACGTAGTGAT	GATTTCACAG	TTGTCGCACC	ACAACCGAAC	CAAGCGACTA	12540
	CTAAGATTTG	GCAAAATGGT	CATATTGATA	TCACGCCTAA	TAATCCATCA	GGACATTTAA	12600
	TTAATCCAAC	TCAAGCAATG	GATATTGCTT	ACACTGAAAA	AGTGGGTAAT	GGTGCAGAAC	12660
0	ATAGTAAGAC	AATTAATGTT	GTTCGTGGTC	AAAATAATCA	ATGGACAATT	GCGAATAAGC	12720
	CTGACTATGT	AACGTTAGAT	GCACAAACTG	GTAAAGTGAC	GTTCAATGCC	AATACTATAA	12780
	AACCAAATTC	ATCAATCACA	ATTACTCCGA	AAGCAGGTAC	AGGTCACTCA	GTAAGTAGTA	12840
?5	ATCCAAGTAC	ATTAACTGCA	CCGGCAGCTC	ATACTGTCAA	CACAACTGAA	ATTGTGAAAG	12900
	ATTATGGTTC	AAATGTAACA	GCAGCTGAAA	TTAACAATGC	AGTTCaAGTT	GCTAATAAAC	12960
	GTACTGCAAC	GATTAAAAAT	GGCACAGCAA	TGCCTACTAA	TTTAGCTGGT	GGTAGCACAA	13020
30	CGACGATTCC	TGTGACAGTA	ACTTACAATG	ATGGTAGTAC	TGAAGAAGTA	CAAGAGTCCA	13080
	TTTTCACAAA	AGCGGATAAA	CGTGAGTTAA	TCACAGCTAA	AAATCATTTA	GATGATCCAG	13140
	TAAGCACTGA	aggtaaaaag	CCAGGTACAA	TTACGCAGTA	CAATAATGCA	ATGCATAATG	13200
35	CGCAACAACA	AATCAATACT	GCGAAAACAG	AAGCACAACA	AGTGATTAAT	AATGAGCGTG	13260
	CAAÇÃCCACA	ACAAGTTTCT	GACGCACTAA	CTAAAGTTCG	TGCAGCACAA	ACTAAGATTG	13320
10	ATCAAGCTAA	AGCATTACTT	CAAAATAAAG	AAGATAATAG	CCAATTAGTA	ACGTCTAAAA	13380
	ATAACTTACA	AAGTTCTGTG	AACCAAGTAC	CATCAACTGC	TGGTATGACG	CAACAAAGTA	13440
	TTGATAACTA	TAATGCGAAG	AAGCGTGAAG	CAGAAACTGA	AATAACTGCA	GCTCAACGTG	13500
15	TTATTGACAA	TGGCGATGCA	ACTGCACAAC	AAATTTCAGA	TGAAAAACAT	CGTGTCGATA	13560
	ACGCATTAAC	AGCATTAAAC	CAAGCGAAAC	ATGATTTAAC	TGCAGATACA	CATGCCTTAG	13620
	AGCAAGCAGT	GCAACAATTG	AATCGCACAG	GTACAACGAC	TGGTAAGAAG	CCGGCAAGTA	13630
50	TTACTGCTTA	CAATAATTCG	ATTCGTGCAC	TTCAAAGTGA	CTTAACAAGT	GCTAAAAATA	13740
	CCCCTAATCC	Tammammera a	******	C	NOR NOTICE A A	TOTO COMPA A	12000

	CTGATAATAG	TGCTTTAAAA	ACTGCTAAGA	CGAAACTTGA	TGAAGAAATC	AATAAATCAG	13920
	TAACTACTGA	TGGTATGACA	CAATCATCAA	TCCAAGCATA	TGAAAATGCT	AAACGTGCGG	13980
5	GTCAAACAGA	ATCAACAAAT	GCACAAAATG	TTATTAACAA	TGGTGATGCG	ACTGACCAAC	14040
	AAATTGCCGC	AGAAAAAACA	AAAGTAGAAG	ааааататаа	TAGCTTAAAA	CAAGCAATTG	14100
	CTGGATTAAC	TCCAGACTTG	GCACCATTAC	AAACTGCAAA	AACTCAGTTG	CAAAATGATA	14160
10	TTGATCAGCC	AACGAGTACG	ACTGGTATGA	CAAGCGCATC	TATTGCAGCA	TTTAATGAAA	14220
	AACTTTCAGC	AGCTAGAACT	AAAATTCAAG	AAATTGATCG	TGTATTAGCC	TCACATCCAG	14280
15	ATGTTGCGAC	AATACGTCAA	AACGTGACAG	CAGCGAATGC	CGCTAAATCA	GCACTTGATC	14340
15	AAGCACGTAA	TGGCTTAACA	GTCGATAAAG	CGCCTTTAGA	AAATGCGAAA	AATCAACTAC	14400
	AACATAGTAT	TGACACGCAA	ACAAGTACAA	CTGGTATGAC	ACAAGACTCT	ATAAATGCAT	14460
20	ACAATGCGAA	GTTAACAGCT	GCACGTAATA	AGATTCAACA	AATCAATCAA	GTATTAGCAG	14520
	GTTCACCGAC	TGTAGAACAA	ATTAATACAA	ATACGTCTAC	AGCAAATCAA	GCTAAATCTG	14580
	ATTTAGATCA	TGCACGTCAA	GCTTTAACAC	CAGATAAAGC	GCCGCTTCAA	ACTGCGAAAA	14640
25	CGCAATTAGA	ACAAAGCATT	AATCAACCAA	CGGATACAAC	AGGTATGACG	ACCGCTTCGT	14700
	TAAATGCGTA	CAACCAAAAA	TTACAAGCAG	CGCGTCAAAA	GTTAACTGAA	ATTAATCAAG	14760
	TGTTGAATGG	CAACCCAACT	GTCCAAAATA	TCAATGATAA	AGTGACAGAG	GCAAACCAAG	14820
30	CTAAGGATCA	ATTAAATACA	GCACGTCAAG	GTTTAACATT	AGATAGACAG	CCAGCGTTAA	14880
	CAACATTACA	TGGTGCATCT	AACTTAAACC	AAGCACAACA	AAATAATTTC	ACGCAACAAA	14940
	TTAATGCTGC	TCAAAATCAT	GctGCGCTTG	AAACAATTAA	GTCTAACATT	ACGGCTTTAA	15000
35	ATACTGCGAT	GACGAAATTA	AAAGACAGTG	TTGCGGATAA	TAATACAATT	AAATCAGATC	15060
	AAAATTACAC	TGACGCAACA	CCAGCTAATA	AACAAGCGTA	TGATAATGCA	GTTAATGCGG	15120
40	CTAAAGGTGT	CATTGGAGAA	ACGACTAATC	CAACGATGGA	TGTTAACACA	GTGAACCAAA	15180
	AAGCAGCATC	TGTTAAATCG	ACGAAAGATG	CTTTAGATGG	TCAACAAAAC	TTACAACGTG	15240
	CGAAAACAGA	AGCAACAAAT	GCGATTACGC	ATGCAAGTGA	TTTAAACCAA	GCACAAAAGA	15300
45	ATGCATTAAC	ACAACAAGTG	AATAGTGCAC	AAAACGTGCA	AGCAGTAAAT	GATATTAAAC	15360
	AAACGACTCA	AAGCTTAAAT	ACTGCTATGA	CAGGTTTAAA	ACGTGGCGTT	GCTAATCATA	15420
	ACCAAGTCGT	ACAAAGTGAT	AATTATGTCA	ACGCAGATAC	TAATAAGAAA	AATGATTACA	15480
50	ACAATGCATA	CAACCATGCG	AATGACATTA	TTAATGGTAA	TGCACAACAT	CCAGTTATAA	15540
	CACCAAGTGA	TGTTAACAAT	GCTTTATCAA	ATGTCACAAG	TAAAGAACAT	GCATTGAATG	15600

	ATTTAAATAA	TGCACAACGT	CAAAACTTAC	AATCGCAAAT	TAATGGTGCG	CATCAAATTG	15720
	ATGCAGTTAA	TACAATTAAG	CAAAATGCAA	CAAACTTGAA	TAGTGCAATG	GGTAACTTAA	15780
5	GACAAGCTGT	TGCAGATAAA	GATCAAGTGA	AACGTACAGA	AGATTATGCG	GATGCAGATA	15840
	CAGCTAAACA	AAATGCATAT	AACAGTGCAG	TTTCAAGTGC	CGAAACAATC	ATTAATCAAA	15900
	CAACAAATCC	AACGATGTCT	GTTGATGATG	TTAATCGTGC	AACTTCAGCT	GTTACTTCTA	15960
10	ATAAAAATGC	ATTAAATGGT	TATGAAAAAT	TAGCACAATC	TAAAACAGAT	GCTGCAAGAG	16020
	CAATTGATGC	ATTACCACAT	TTAAATAATG	CACAAAAAGC	AGATGTTAAA	TCTAAAATTA	16080
15	ATGCTGCATC	AAATATTGCT	GGCGTAAATA	CTGTTAAACA	ACAAGGTACA	GATTTAAATA	16140
	CARCGATGGg	TAACTTGCAA	GGTGCAATCA	ATGATGAACA	AACGACGCTT	AATAGTCAAA	16200
	ACTATCAAGA	TGCGACACCT	AGTAAGAAAA	CAGCATACAC	AAATGCGGTA	CAAGCTGCGA	16260
20	AAGATATTTT	AAATAAATCA	AATGGTCAAA	ATAAAACGAA	AGATCAAGTT	ACTGAAGCGA	16320
	TGAATCAAGT	GAATTCTGCT	AAAAATAACT	TAGATGGTAC	GCGTTTATTA	GATCAAGCGA	16380
	nCAAaCAGCA	AAACAGCAGT	TAAATAATAT	GACGCATTTA	ACAACTGCAC	AAAAAACGAA	16440
?5	TTTAACAAAC	CAAATTAATA	GTGGTACTAC	TGTCGCTGGT	GTTCAAACGG	TTCAATCAAA	16500
	TGCCAATACA	TTAGATCAAG	CCATGAATAC	GTTAAGACAA	AGTATTGCCA	ACAAAGATGC	16560
	GACTAAAGCA	AGTGAAGATT	ACGTAGATGC	TAATAATGAT	AAGCAAACAG	CATATAACAA	16620
30	CGCAGTAGCT	GCTGCTGAAA	CGATTATTAA	TGCTAATAGT	AATCCAGAAA	TGAATCCAAG	16680
	TACGATTACA	CAAAAAGCAG	AGCAAGTGAA	TAGTTCTAAA	ACGGCACTTA	ACGGTGATGA	16740
	AAACTTAGCT	GCTGCAAAAC	AAAATGCGAA	AACGTACTTA	AACACATTGA	CAAGTATTAC	16800
35	AGATGCTCAA	AAGAACAATT	TGATTAGTCA	AATTACTAGT	GCGACAAGAG	TGAGTGGTGT	16860
	TGATACTGTA	AAACAAAATG	CGCAACATCT	AGACCAAGCT	ATGGCTAGCT	TACAGAATGG	16920
10	TATTAACAAC	GAATCTCAAG	TGAAATCATC	TGAGAAATAT	CGTGATGCTG	ATACAAATAA	16980
	ACAACAAGAG	TATGATAATG	CTATTACTGC	AGCGAAAGCG	ATTTTAAATA	AATCGACAGG	17040
	TCCAAACACT	GCGCAAAATG	CAGTTGAAGC	AGCATTACAA	CGTGTTAATA	ATGCGAAAGA	17100
15	TGCATTGAAT	GGTGATGCAA	AATTAATTGC	AGCTCAAAAC	GCAGCGAAAC	AACATTTAGG	17160
	TACTTTAACG	CATATCACTA	CAGCTCAACG	TAATGATTTA	ACAAATCAAA	TTTCACAAGC	17220
	TACAAACTTA	GCTGGTGTTG	AATCTGTTAA	ACAAAATGCG	AATAGTTTAG	ATGGTGCTAT	17280
50	GGGTAACTTA	CAAACGGCTA	TCAACGATAA	GTCAGGAACA	TTAGCGAGCC	AAAACTTCTT	17340
	GGATGCTGAT	GAGCAAAAAC	GTAATGCATA	CAATCAAGCT	GTATCAGCAG	CCGAAACCAT	17400

	TGTTAATAAT	GCGAAACATG	CATTAAATGG	TACGCAAAAC	TTAAACAATG	CGAAACAAGC	17520
	AGCGATTACA	GCAATCAATG	GCGCATCTGA	TTTAAATCAA	AAACAAAAAG	ATGCATTAAA	17530
5	AGCACAAGCT	AATGGTGCTC	AACGCGTATC	TAATGCACAA	GATGTACAGC	ACAATGCGAC	17640
	TGAACTGAAC	ACGGCAATGG	GCACATTAAA	ACATGCCATC	GCAGATAAGA	CGAATACGTT	17700
	AGCAAGCAGT	AAATATGTTA	ATGCCGATAG	CACTAAACAA	AATGCTTACA	CAACTAAAGT	17760
10	TACCAATGCT	GAACATATTA	TTAGCGGTAC	GCCAACGGTT	GTTACGACAC	CTTCAGAAGT	17820
	AACAGCTGCA	GCTAATCAAG	TAAACAGCGC	GAAACAAGAA	TTAAATGGTG	ACGAAAGATT	17880
	ACGTGAAGCA	AAACAAAACG	CCAATACTGC	TATTGATGCA	TTAACACAAT	TAAATACACC	17940
15	TCAAAAAGCT	AAATTAAAAG	AACAAGTGGG	ACAAGCCAAT	AGATTAGAAG	ACGTACAAAC	18000
	TGTTCAAACA	AATGGACAAG	CATTGAACAA	TGCAATGAAA	GGCTTAAGAG	ATAGTATTGC	18060
20	TAACGAAACA	ACAGTCAAAA	CAAGTCAAAA	CTATACAGAC	GCAAGTCCGA	ATAACCAATC	18120
	AACATATAAT	AGCGCTGTGT	CAAATGCGAA	AGGTATCATT	AATCAAACTA	ACAATCCGAC	18180
	TATGGATACT	AGTGCGATTA	CCCAAGCTAC	AACACAAGTG	AATAATGCTA	AAAATGGTTT	18240
25	AAACGGTGCT	GAAAACTTAA	GAAATGCACA	AAACACTGCT	AAGCAAAACT	TAAATACATT	18300
	ATCACACTTA	ACAAATAACC	AAAAATCTGC	CATCTCATCA	CAAATTGATC	GTGCAGGTCA	18360
	TGTGAGTGAG	GTAACTGCTA	CTAAAAATGC	AGCAACTGAG	TTGAATACGC	AAATGGGTAA	18420
30	CTTGGAACAA	GCTATCCATG	ATCAAAACAC	AGTTAAACAA	AGTGTTAAAT	TTACTGATGC	18480
	AGATAAAGCT	AAACGTGATG	CGTATACAAA	TGCGGTAAGC	AGAGCTGAAG	CAATTCTGAA	18540
	TAAAACGCAA	GGTGCAAATA	CGTCTAAACA	AGATGTTGAA	GCGGCTATTC	AAAATGTTTC	18600
35	AAGTGCTAAA	AATGCATTGA	ATGGTGATCA	AAACGTTACA	AATGCGAAGA	ATGCAGCTAA	18660
	AAATGCATTA	AATAACTTAA	CGTCAATTAA	TAATGCACAA	AAACGTGACT	TAACAACTAA	18720
40	AATTGATCAA	GCAACAACTG	TAGCTGGTGT	TGAAGCTGTA	TCTAATACGA	GTACACAATT	18780
40	GAALACAGCG	ATGGCTAACT	TGCAAAATGG	TATTAATGAT	AAAACAAATA	CACTAGCAAG	18840
	TGAAAACTAT	CATGATGCTG	ATTCAGATAA	GAAAACTGCT	TATACTCAAG	CCGTTACGAA	18900
4 5	CGCAGAAAAT	ATTTTAAATA	AAAATAGTGG	ATCAAATTTA	GACAAAACTG	CCGTTGAAAA	18960
	CGCGTTGTCA	CAAGTTGCTA	ATGCGAAAGG	TGCCCTAAAT	GGTAACCATA	ATTTAGAGCA	19020
	AGCTAAATCA	AATGCAAACA	СТАСТАТААА	CGGACTTCAA	CATTTAACAA	CTGCTCAAAA	19080
50	AGATAAATTG	AAACAACAAG	TGCAACAAGC	ACAAAATGTT	GCAGGTGTAG	ATACTGTTAA	19140
	ATCAAGTGCC	AACACATTAA	ATGGTGCTAT	GGGTACGTTA	AGAAATAGCA	TACAAGATAA	19200

	TAACAATGCT	GTTGATAGTG	CTAATGGTGT	CATTAATGCA	ACAAGCAATC	CAAATATGGA	19320
	TGCTAATGCA	ATTAACCAAA	TCGCTACACA	AGTGACATCA	ACGAAAAATG	CATTAGATGG	19380
5	TACACATAAT	TTAACGCAAG	CGAAACAAAC	AGCAACAAAT	GCCATCGATG	GTGCTACTAA	19440
	CTTAAATAAA	GCGCAAAAAG	ATGCGTTAAA	AGCACAAGTT	ACAAGTGCGC	AACGTGTTGC	19500
	AAATGTAACA	AGTATCCAAC	AAACTGCAAA	TGAACTTAAT	ACAGCTATGG	GTCAATTACA	19560
10	ACATGGTATT	GATGATGAAA	ATGCAACAAA	ACAAACTCAA	AAATATCGTG	ACGCTGAACA	19620
	AAGTAAGAAA	ACTGCTTATG	ATCAAGCTGT	AGCTGCTGCG	AAAGCAATTT	TAAATAAACA	19680
15	AACAGGTTCA	AATTCAGATA	AAGCAGCAGT	TGACCGTGCA	TTACAACAAG	TAACAAGTAC	19740
	GAAAGATGCA	TTGAATGGTG	ATGCAAAACT	GGCAGAAGCG	AAAGCGGCAG	CTAAACAAAA	19800
	CTTAGGCACT	TTAAACCATA	TTACGAATGC	ACAACGTACT	GACTTAGAAG	GCCAAATCAA	19860
20	TCAAGCGACG	ACTGTTGATG	GCGTTAATAC	TGTAAAAACA	AATGCCAATA	CATTAGACGG	19920
	CGCAATGAAT	AGCTTACAAG	GTTCAATCAA	TGATAAAGAT	GCGACATTAA	GAAATCAAAA	19980
	TTATCTTGAT	GCGGATGAAT	CAAAACGAAA	TGCATATACG	CAAGCTGTCA	CAGCGGCTGA	20040
25	AGGCATTTTA	ААТАААСААА	CTGGTGGTAA	CACATCTAAA	GCAGACGTTG	ATAATGCATT	20100
	AAATGCAGTT	ACAAGAGCGA	AAGcGgCTTT	AAATGGTGCT	GACAACTTAA	GAAATGCGAA	20160
	AACTTCAGCA	ACAAATACGA	TTGATGGTTT	ACCTAACTTA	ACACAATTAC	AAAAAGACAA	20220
30	CTTGAAGCAT	CAAGTTGAaC	AAGCGCAAAA	TGTAGCAGGT	GTAAATGGTG	TTAAAGATAA	20280
	AGGTAATACG	TTAAATACTG	CCATGGGTGC	ATTACGTACA	AGTATCCAAA	ATGATAATAC	20340
	GACGAAAACA	AGTCAAAATT	ATCTTGATGC	ATCTGACAGC	AACAAAAATA	ATTACAATAC	20400
35	TGCTGTAAAT	AATGCAAATG	GTGTTATTAA	TGCAACGAAC	AATCCAAATA	TGGATGCTAA	20460
	TGCGATTAAT	GGCATGGCAA	ATCAAGTCAA	TACAACAAAA	GCAGCGTTAA	ATGGTGCACA	20520
10	AAACTTAGCT	CAAGCTAAAA	CAAATGCGAC	GAACACAATT	AACAACGCAC	ATGACTTAAA	20580
	CCAAAAACAA	AAAGATGCAT	TAAAAACACA	AGTTAACAAT	GCACAACGTG	TATCTGATGC	20640
	AAATAACGTT	CAACACACTG	CAACTGAATT	GAACAGTGCG	ATGACAGCAC	TTAAAGCAGC	20700
15	TATTGCTGAT	AAAGAAAGAA	CAAAAGCAAG	CGGTAATTAT	GTCAATGCTG	ATCAAGAAAA	20760
	ACGTCAAGCG	TATGATTCAA	AAGTGACTAA	CGCTGAAAAT	ATCATTAGTG	GTACACCGAA	20820
	TGCGACATTA	ACAGTCAATG	ACGTAAATAG	TGCGGCATCA	CAAGTCAATG	CGGCTAAAAC	20880
50	AGCATTAAAT	GGTGATAACA	ACTTACGTGT	AGCGAAAGAG	CATGCCAACA	ATACAATTGA	20940
	CCCCTTACCA		ATTOCACAAAA	ACCAAAATTA	****	m malllanaa	04000

	GAAAGGCTTA	AGAGATAGTA	TTGCGAATGA	AGCAACAATT	AAAGCAGGTC	AAAACTACAC	21120
	TGACGCAAGT	CCAAATAATC	GTAACGAGTA	CGACAGTGCA	GTTACTGCAG	CAAAAGCAAT	21180
5	CATTAATCAA	ACATCGAACC	CAACGATGGA	ACCAAATACT	TATTACGCAAG	TAACATCACA	21240
	AGTGACAACT	AAAGAACAGG	CATTAAATGG	TGCGCGAAAC	TTAGCTCAAG	CTAAGACAAC	21300
	TGCGAAAAAC	AACTTGAATA	ACTTAACATC	AATTAACAAT	GCACAAAAAG	ATGCGTTAAC	21360
10	GCGTAgcATT	GATGGTGCAA	CAACAGTAGC	TGGTGTAAAT	CAAGAAACTG	CAAAAGCAAC	21420
	AGAATTAAAT	AACGCAATGC	ATAGTTTACA	AAATGGTATC	AATGATGAGA	CACAAACAAA	21480
15	ACAAACTCAG	AAATACCTAG	ATGCAGAGCC	AAGTAAGAAA	TCAGCTTATG	ATCAAGCAGT	21540
	AAATGCAGCG	AAAGCAATTT	TAACAAAAGC	TAGTGGTCAA	AATGTAGACA	AAGCAGCAGT	21600
	TGAACAAGCA	TTGCAAAATG	TGAACAGTAC	GAAGACGGCG	TTGAACGGTG	ATGCGAAATT	21660
20	AAATGAAGCT	AAAGCAGCTG	CGAAACAAAC	GTTAGGTACA	TTAACACACA	TTAATAATGC	21720
	ACAACGTACA	GCGTTAGACA	ATGAAATTAC	ACAAGCAACA	AATGTTGAAG	GTGTTAATAC	21780
	AGTTAAAGCC	AAAGCGCAAC	AATTAGATGG	TGCTATGGGT	CAATTAGAAA	CATCAATTCG	21840
?5	TGATAAAGAC	ACGACGTTAC	AAAGTCAAAA	TTATCAAGAT	GCTGATGATG	CTAAACGAAC	21900
	TGCTTATTCT	CAAGCAGTAA	ATGCAGCAGC	AACTATTTTA	AATAAAACAg	CTGGCGGTAA	21960
	TACACCTAAA	GCAGATGTTG	AAAGAGCAAT	GCAAGCTGTT	ACACAAGCAA	ATACTGCATT	22020
30	AAACGGTATT	CAMAACTTAG	ATCGTGCGAA	ACArGCTGCT	AACACAGCGA	TTACAAATGC	22080
	TTCGGACTTA	AATACAAAAC	mAAAAGAAGC	ATTAAAAgCA	CAAGTAACAA	GTGCAGGACG	22140
	TGTATCTGCA	GCAAATGGTG	TTGAACATAC	TGCGACTGAA	TTAAATACTG	CGATGACAGC	22200
35	TTTAAAGCGT	GCCATTGCTG	ATAAAGCTGA	GACAAAAGCT	AGTGGTAACT	ATGTCAATGC	22260
	TGATGCGAAT	AAACGTCAAG	CATATGATGA	AAAAGTTACA	GCTGCCGAAA	ATATCGTTAG	22320
10	TGGTACACCA	ACACCAACGT	TAACACCAGC	AGATGTTACA	AATGCAGCAA	CGCAAGTAAC	22380
	GAATGCTAAG	ACGCAGTTAA	ACGGTAATCA	TAATTTAGAA	GTAGCGAAAC	AAAATGCTAA	22440
	CACTGCAATT	GATGGTTTAA	CTTCTTTAAA	TGGTCCGCAA	AAAGCAAAAC	TTAAAGAACA	22500
15	AGTGGGTCAA	GCGACGACGT	TGCCAAATGT	TCAAACTGTT	CGTGATAATG	CACAAACATT	22560
	AAACACTGCA	ATGAAAGGTC	TACGAGATAG	CATTGCGAAT	GAAGCAACGA	TTAAAGCAGG	22620
	TCAAAACTAC	ACAGATGCAA	GTCAAAACAA	ACAAACTGAC	TACAACAGTG	CAGTCACTGC	22680
50	AGCAAAAGCA	ATCATTGGTC	AAACAACTAG	TCCATCAATG	AATGCGCAAG	AAATTAATCA	22740
	AGCGAAAGAC	CAAGTGACAG	CTAAACAACA	ACCCTTA A A C	CCTCDACDAD	A COMPANIAN CO	2222

	AGATGCAGTG	AAACGTCAAA	TCGAAGGTGC	AACGCATGTT	AATGAAGTAA	CACAAGCACA	22920
	AAATAATGCG	GATGCATTAA	ATACAGCTAT	GACGAACTTG	AAAAATGGTA	TTCAAGATCA	22980
5	GAATACGATT	AAGCAAGGTG	TTAACTTCAC	TGATGCCGAC	GAAGCGAAAC	GTAATGCATA	23040
	TACAAATGCA	GTGACGCAAG	CTGAACAAAT	TTTAAATAAA	GCACAAGGTC	CAAATACTTC	23100
	AAAAGACGGT	GTCGAAACTG	CGTTAGAaAA	TGTACAACGT	GCTAAAAACG	AATTGAACGG	23160
10	TAATCAAAAT	GTTGCGAACG	CTAAGACAAC	TGCGAAAAAT	GCATTGAATA	ACCTAACATC	23220
	AATTAATAAT	GCACAAAAAG	AAGCATTGAA	ATCACAAATT	GAAGGTGCGA	CAACAGTTGC	23280
15	AGGTGTAAAT	CAAGTGTCTA	CAACGGCATC	TGAATTAAAT	ACAGCAATGA	GCAACTTACA	23340
	AAATGGTATT	AATGATGAAG	CAGCTACAAA	AGCAGCGCTT	AATGGTACTC	AAAACCTTGA	23400
	AAAAGCTAAA	CAACACGCAA	ATACAGCAAT	TGACGGTTTA	AGCCATTTAA	CAAATGCACA	23460
20	AAAAGAGGCA	TTAAAACAAT	TGGTACAACA	ATCGACTACT	GTTGCAGAAG	CACAAGGTAA	23520
	TGAGCAAAAA	GCAAACAATG	TTGATGCAGC	AATGGACAAA	TTACGTCAAA	GTATTGCAGA	23580
	TAATGCGACA	ACAAAACAAA	ACCAAAATTA	TACTGATGCA	AGTCAGAATA	AAAAGGATGC	23640
25	GTACAATAAT	GCTGTCACAA	CTGCACAAGG	TATTATTGAT	CAAACTACAA	GTCCAACTTT	23700
	AGATCCGACT	GTTATCAATC	AAGCTGCTGG	ACAAGTAAGC	ACAACTAAAA	ATGCATTAAA	23760
	TGGTAATGAA	AACCTAGAGG	CAGCGAAACA	ACAAGCGTCA	CAATCATTAG	GTTCATTAGA	23820
30	TAACTTAAAT	AATGCGCAAA	AACAAACAGT	TACTGATCAA	ATTAATGGCG	CGCATACTGT	23880
	TGATGAAGCA	AATCAAATTA	AGCAAAATGC	GCAAAACTTA	AATACAGCGA	TGGGTAACTT	23940
35	GAAACAAGCG	ATAGCTGACA	AAGATGCTAC	GAAAGCGACA	GTTAACTTCA	CTGATGCAGA	24000
,,,	TCAAGCAAAA	CAACAAGCAT	ATAACaCTGC	TGTTACAAAT	GCTGAAAATA	TCATTTCAAA	24060
	AGCTÂATGGC	GGCAATGCAA	CACAAGCTGA	AGTTGAACAA	GCAATCAAAC	AAGTTAATGC	24120
10	TGCAAAACAA	GCATTAAATG	GTAATGCCAA	CGTTCAACAT	GCAAAAGACG	AAGCAACAGC	24180
	TAATTAATTA	AGCTCTAATG	ACCTTAACCA	AGCACAAAAA	GACGCATTAA	AACAACAAGT	24240
	TCAAAATGCA	ACTACTGTAG	CTGGTGTAAA	CAATGTTAAA	CAAACAGCAC	AAGAGTTAAA	24300
15	CAATGCTATG	ACACAATTAA	AACAAGGCAT	TGCAGATAAA	GAACAAACAA	AAGCTGATGG	24360
	TAACTTTGTC	AATGCAGATC	CTGATAAGCA	AAATGCATAT	AATCAAGCAG	TAGCGAAAGC	24420
	TGAAGCATTA	ATTAGTGCLA	CGCCTGATGT	TGTCGTTACA	CCTAGCGAAA	TTACTGCAGC	24480
50	GTTAAATAAA	GTTACGCAAG	CTAAAAATGA	TTTAAATGGT	AATACAAACT	TAGCAACGGC	24540
	GAAACAAAAT	CTTCAACATC	CTATTCATCA	***********	TT	GGG11 GGTG1	

	AGCGGCGACA	ACGCTTAATG	ACGCGATGAC	ACAATTGAAA	CAAGGTATTG	CGAATAAAGC	24720
	ACAAATTAAA	GGTAGCGAGA	ACTATCACGA	TGCTGATACT	GACAAGCAAA	CAGCATATGA	24780
5	TAATGCAGTA	ACAAAAGCAG	AAGAATTGTT	AAAACAAACA	ACAAATCCAA	CAATGGATCC	24840
	AAATACAATT	CAACAAGCAT	TAACTAAAGT	GAATGACACA	AATCAAGCAC	TTAACGGTAA	24900
	TCAAAAATTA	GCTGATGCCA	AACAAGATGC	TAAGACAACA	CTTGGTACAC	TAGATCATTT	24960
10	AAATGATGCT	CAAAAACAAG	CGCTAACAAC	TCAAGTTGAA	CAAGCACCAG	ATATTGCAAC	25020
	AGTTAATAAT	GTTAAGCAAA	ATGCTCAAAA	TCTGAATAAT	GCTATGACTA	ACTTAAACAA	25080
15	TGCATTACAA	GATAAAACTG	AGACATTAAA	TAGCATTAAC	TTTACTGATG	CAGATCAAGC	25140
3	TAAGAAAGAT	GCTTATACTA	ATGCGGTTTC	ACATGCAGAA	GGTATTTTAT	CTAAAGCAAA	25200
	TGGCAGCAAT	GCAAGTCAAA	CTGAAGTGGA	ACAAGCGATG	CAACGTGTGA	ACGAAGCGAA	25260
20	ACAAGCATTG	AATGGTAATG	ACAATGTACA	ACGTGCAAAA	GATGCAGCGA	AACAAGTGAT	25320
	TACAAATGCA	AATGATTTAA	ATCAAGCAAT	GACACAATTG	AAACAAGGTA	TTGCAGATAA	25380
	AGACCAAACT	AAAGCAAATG	GTAACTTTGT	CAATGCTGAT	ACTGATAAGC	AAAATGCTTA	25440
?5	CAACAATGCG	GTAGCACATG	CTGAACAAAT	AATTAGTGGT	ACACCAAATG	CAAACGTGGA	25500
	TCCACAACAA	GTGGCTCAAG	CGTTACAACA	AGTGAATCaA	GCTAAGGGTG	ATTTAAACGG	25560
	TAACCATAAC	TTACAAGTTG	CTAAAGACAA	TGCAAATACA	GCCATTGATC	AGTTACCAAA	25620
30	CTTAAATCAA	CCACAAAAAA	CAGCATTAAA	AGACCAAGTG	TCGCATGCAG	AACTTGTTAC	25680
	AGGTGTTAAT	GCTATTAAGC	AAAATGCTGA	TGCGTTAAAT	AATGCAATGG	GTACATTGAA	25740
	ACAACAAATT	CAAGCGAACA	GTCAAGTACC	ACAGTCAGTT	GACTTTACAC	AAGCGGATCA	25800
35	AGACAAACAA	CAAGCATATA	ACAATGCGGC	TAACCAAGCG	CAACAAATCG	CAAATGGCAT	25860
	ACCAÁCACCT	GTATTGACGC	CTGATACAGT	AACACAAGCA	GTGACAACTA	TGAATCAAGC	25920
10	GAAAGATGCA	TTAAACGGTG	ATGAAAAATT	AGCACAAGCG	AAACAAGAAG	CTTTAGCAAA	25980
	TCTTGATACG	TTACGCGATT	TAAATCAACC	ACAACGTGAT	GCATTACGTA	ACCAAATCAA	26040
	TCAAGCACAA	GCGTTAGCTA	CAGTTGAACA	AACTAAACAA	AATGCACAAA	ATGTGAATAC	26100
15	aGCaATGAGT	AACTTGAAAC	aAGGTATTGC	aAACAAAGAT	ACTGTCAAAG	CAAGTGAGAA	26160
	CTATCATGAT	GCTGATGCCG	ATAAGCAAAC	AGCATATACA	AATGCAGTGT	CTCAAGCGGA	26220
	AGGTATTATC	AATCAAACGA	CAAATCCAAC	GCTTAACCCA	GATGAAATAA	CACGTGCATT	26280
50	AACTCAAGTG	ACTGATGCTA	AAAATGGCTT	AAACGGTGAA	GCTAAATTGG	CAACTGAAAA	26340
	GCAAAATGCT	AAAGATGCCG	таастессат	CACCCATTEA	AACGATCCTC	****	26400

	AGCAACGAGC	CTAGATCAAG	CAATGGATCA	ATTATCACAA	GCTATTAATG	ATAAAGCTCA	26520
	AACATTAGCG	GACGGTAATT	ACTTAAATGC	AGATCCTGAC	AAACAAAATG	CGTATAAACA	26580
5	GGCAGTAGCA	AAAGCTGAAG	CATTATTGAA	TAAACAAAGT	GGTACTAATG	AAGTACAAGC	26640
	ACAAGTTGAA	AGCATCACTA	ATGAAGTGAA	CGCAGCGAAA	CAAGCATTAA	ATGGTAATGA	26700
	CAATTTGGCA	AATGCAAAAC	AACAAGCAAA	ACAACAATTG	GCGAACTTAA	CACACTTAAA	26760
10	TGATGCACAA	AAACAATCAT	TTGAAAGTCA	AATTACACAA	GCGCCACTTG	TTACAGATGT	26820
	CACTACGATT	AATCAAAAAG	CACAAACGTT	AGATCATGCG	ATGGAATTAT	TAAGAAATAG	26880
15	TGTTGCGGAT	AATCAAACGA	CATTAGCGTC	TGAAGATTAT	CATGATGCAA	CTGCGCAAAG	26940
	ACAAAATGAC	TATAACCAAG	CTGTAACAGC	TGCTAATAAT	ATAATTAATC	AAACTACATC	27000
	GCCTACGATG	AATCCAGATG	ATGTTAATGG	TGCAACGACA	CAAGTGAATA	ATACGAAAGT	27060
20	TGCATTAGAT	GGTGATGAAA	ACCTTGCAGC	AGCTAAACAA	CAAGCAAACA	ACAGACTTGA	27120
	TCAATTAGAT	CATTTGAATA	ATGCGCAAAA	GCAACAGTTA	CAATCACAAA	TTACGCAATC	27180
	ATCTGATATT	GCTGCAGTTA	ATGGTCACAA	ACAAACAGCA	GAATCTTTAA	ATACTGCGAT	27240
25	GGGTAACTTA	ATTAATGCGA	TTGCAGATCA	TCAAGCCGTT	GAACAACGTG	GTAACTTCAT	27300
	CAATGCTGAT	ACTGATAAAC	AAACTGCTTA	TAATACAGCG	GTAAATGAAG	CAGCAGCAAT	27360
	GATTAACAAA	CAAACTGGTC	AAAATGCGAA	CCAAACAGAA	GTAGAACAAG	CTATTACTAA	27420
30	AGTTCAAACA	ACACTTCAAG	CGTTAAATGG	AGACCATAAT	TTACAAGTTG	CTAAAACAAA	27480
	TGCGACGCAA	GCAATTGATG	CTTTAACAAG	CTTAAATGAT	CCTCAAAAAA	CAGCATTAAA	27540
	AGACCAAGTT	ACAGCTGCAA	CTTTAGTAAC	TGCAGTTCAT	CAAATTGAAC	AAAATGCGAA	27600
35	TACGCTTAAC	CAAGCAATGC	ATGGTTTAAG	ACAGAGCATT	CAAGATAACG	CAGCAACTAA	27660
	AGCAÃATAGC	AAATATATCA	ACGAAGATCA	ACCAGAGCAA	CAAAACTATG	ATCAAGCTGT	27720
40	TCAAGCCGCA	AATAATATTA	TCAATGAACA	AACTGCAACA	TTAGATAATA	ATGCGATTAA	27780
	TCAAGCAGCG	ACAACTGTGA	ATACAACGAA	AGCAGCATTA	CATGGTGATG	TGAAGTTACA	27840
	AAATGATAAA	GATCATGCTA	AGCAAACGGT	TAGTCAATTA	GCACATCTAA	ACAATGCACA	27900
45	AAAACATATG	GAAGATACGT	TAATTGATAG	TGAAACAACT	AGAACAGCAG	TTAAGCAAGA	27960
	TTTGACTGAA	GCACAAGCAT	TAGATCAACT	TATGGATGCA	TTACAACAAA	GTATTGCTGA	28020
	CAAAGATGCA	ACACGTGCGA	GCAGTGCATA	TGTCAATGCA	GAACCGAATA	AAAAACAATC	28080
50	CTATGATGAA	GCAGTTCAAA	ATGCTGAGTC	TATCATTGCA	GGATTAAATA	ATCCAACTAT	28140
	CAATAAAGGT	AATGTATCAA	GTGCGACTCA	AGCAGTAATA	TCATCTAAAA	ATGCATTAGA	28200

	TCAATTAACA	CCAGCTCAAC	AACAAGCGCT	AGAAAATCAA	ATTAATAATG	CAACAACTCG	28320
	TGATAAAGTG	GCTGAAATCA	TTGCACAAGC	GCAAgCATtA	AATGAAGCGA	TGAAAGCATT	28380
5	AAAAGAAAGT	ATTAAGGATC	AACCACAAAC	TGAAGCAAGT	AGTAAATTTA	TTAACGAGGA	28440
	TCAAGCGCAA	AAAGATGCTT	ATACGCAAGC	AGTACAACAC	GCGAAAGATT	TGATTAACAA	28500
	AACAACTGAT	CCTACATTAG	CTAAATCAAT	CATTGATCAA	GCGACACAGG	CAGTGACAGA	28560
10	TGCTAAAAAC	AATTTACATG	GTGATCAAAA	ACTAGCTCAA	GATAAGCAAC	GTGCAACAGA	28620
	AACGTTAAAT	AACTTGTCTA	ACTTGAATAC	ACCACAACGT	CAAGCACTTG	AAAATCAAAT	28680
15	TAATAATGCA	GCAACTCGTG	GCGAAGTAGC	ACAAAAATTA	ACTGAAGCAC	AAGCACTTAA	28740
15	CCAAGCAATG	GAAGCTTTAC	GTAATAGCAT	TCAAGATCAA	CAGCAAACGG	AAGCGGGTAG	28800
	CAAGTTTATC	AATGAAGATA	AaccacmAAA	AGTTGCTTAC	CAAGCAGCAG	TTCAAAATGC	28860
20	AAAAGATTTA	ATTAATCAAA	CTAACAATCC	AACGCTTGAT	AAAGCACAAG	TTGAACAATT	28920
	GACACAAGCT	GTTAACCAAG	CTAAAGATAA	CCTACACGGT	GATCAAAAAC	TTGCAGACGA	28980
	TAAACAACAT	GCGGTTACTG	ATTTAAATCA	ATTAAATGGT	TTGAATAATC	CGCAACGTCA	29040
25	AGCACTTGAA	AGCCAAATAA	ACAACGCAGC	AACTCGTGGC	GAAGTAGCAC	AAAAATTAGC	29100
	TGAAGCAAAA	GCGCTTGATC	AAGCAATGCA	AGCATTACGT	AATAGTATTC	AAGATCAACA	29160
	ACAAACAGAA	TCTGGTAGCA	AGTTTATCAA	TGAAGATAAA	CCGCAAAAAG	ATGCTTACCA	29220
30	AGCAGCAGTT	CAAAATGCAA	AAGATTTAAT	TAACCAAACA	GGTAATCCAA	CACTCGACAA	29280
	ATCACAAGTA	GAACAATTGA	CACAAGCAGT	AACAACTGCA	AAAGATAATC	TACATGGTGA	29340
	TCAAAAACTT	GCTCGTGATC	AACAACAAGC	AGTAACAACT	GTAAATGCAT	TGCCAAACTT	29400
35	AAATCATGCA	CAACAACAAG	CATTAACTGA	TGCTATAAAT	GCAGCGCCTA	CAAGAACAGA	29460
	GGTTGCACAA	CATGTTCAAA	CTGCTACTGA	ACTTGATCAC	GCGATGGAAA	CATTGAAAAA	29520
40	TAAAGTTGAT	CAAGTGAATA	CAGATAAGGC	TCAACCAAAT	TACACTGAAG	CGTCAACTGA	29580
	TAAAAAAGAA	GCAGTAGATC	AAGCGTTACA	AGCTGCAGAA	AGCATTACAG	ATCCAACTAA	29640
	TGGTTCAAAT	GCGAATAAAG	ACGCTGTAGA	CCAAGTATTA	ACTAAGCTTC	AAGAAAAAGA	29700
45	AAATGAGTTA	AATGGTAATG	AGAGAGTCGC	TGAAGCTAAA	ACACAAGCGA	AACAAACTAT	29760
	TGACCAATTA	ACACATTTAA	ATGCTGATCA	AATTGCAACT	GCTAAACAAA	ACATTGATCA	29820
	AGCGACGAAA	CTTCAACCAA	TTGCTGAATT	AGTAGATCAA	GCAACGCAAT	TGAATCAATC	29880
50	TATGGATCAA	TTACAACAAG	CAGTTAATGA	ACATGCTAAC	GTTGAGCAAA	CTGTAGATTA	29940
	CACACAACCA	CATTCACATA	******	TTATABACAA	CCTATTCCTC	ATCCTC A A A A	30000

	TGCAAAACAA	GCATTAAATG	GTGATGAACG	TGTAGCACTT	GCTAAAACAA	ATGGTAAACA	30120
	TGACATCGAC	CAATTGAATG	CATTAAACAA	TGCTCAACAA	GATGGATTTA	AAGGTCGCAT	30180
5	CGATCAATCA	AACGATTTAA	ATCAAATCCA	ACAAATTGTA	GATGAGGCTA	AGGCACTTAA	30240
	TCGTGCAATG	GATCAATTGT	CACAAGAAAT	CACTGACAAT	GAAGGACGCA	CGAAAGGTAG	30300
	CACGAACTAT	GTCAATGCAG	ATACACAAGT	CAAACAAGTA	TATGATGAAA	CGGTTGATAA	30360
10	AGCGAAACAA	GCACTTGATA	AATCGACTGG	TCAAAACTTA	ACTGCAAAAC	AAGTTATCAA	30420
	ATTAAATGAT	GCAGTCACTG	CAGCTAAGAA	AGCATTAAAT	GGTGAAGAAA	GACTTAATAA	30480
15	TCGTAAAGCT	GAAGCATTAC	AAAGATTGGA	TCAATTAACA	CATCTAAACA	ATGCTCAAAG	30540
	ACAATTAGCA	ATCCAACAAA	TTAATAATGC	TGAAACGCTA	AATAAAGCAT	CTCGAGCAAT	30600
	TAATAGAGCA	ACTAAATTAG	ATAATGCAAT	GGGTTCAGTA	CAACAATATA	TTGACGAACA	30660
20	GCACCTTGGT	GTTATCAGCA	GCACAAATTA	CATCAATGCA	GATGACAATT	TGAAAGCAAA	30720
	TTATGATAAT	GCAATTGCGA	ATGCAGCACA	TGAGTTAGAT	AAAGTGCAAG	GTAATGCAAT	30780
	TGCaAAAGCT	GAAGCAGAGC	AATTGAAACA	AAATATTATC	GATGCTCAAA	ATGCATTAAA	30840
25	TGGAGACCAA	AACCTTGCAA	ATGCCAAAGA	TAAAGCAAAT	GCGTTTGTTA	ATTCGTTAAA	30900
	TGGATTAAAT	CAACAGCAAC	AAGATCTTGC	ACATAAAGCA	ATTAACAATG	CCGATACTGT	30960
	ATCAGATGTA	ACAGATATTG	TTAATAATCA	AATTGACTTA	AATGATGCAA	TGGAAACATT	31020
30	GAAACATTTA	GTTGACAATG	AAATTCCAAA	TGCAGAGCAA	ACTGTCAATT	ACCAAAACGC	31080
	TGACGATAAT	GCTAAA					31096

(2) INFORMATION FOR SEQ ID NO: 60:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2243 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

ATGACAGAAT GGGAGCGAGG ACTTAGAATG TTTCCTAAAT CAGGTTTATT AAATTTTGAG 60

TTAGCGATAG MAAATCGTTC ATTAAATGAT GATGAAAAAG CATTAAAATA TGTGCGTAAA

GCATTAAATG CAGACCCTAA AAATACAGAT TATATTAACT TAGAAAAAGA GTTGACTAAA

TCAAATGAGT CGAAAAATAA ATAACTTTTA TGATGTACAA CAGTTATTGA AAAGTTACGG 240

ATTTCTAATA TATTTTAAAA ATCCAGAAGA TATGTACGAA ATGATTCAAC AGGAGATTC 300

55

	TAATCAGAGA	AGGAATGAAC	AGAAATGACA	AAAATTATTT	TAGCAGCTGA	TGTAGGCGGG	420
	ACGACTTGTA	AATTAGGTAT	TTTCACACCT	GAATTAGAAC	AATTACATAA	ATGGTCTATT	480
5	CACACTGATA	CATCTGATAG	TACAGGATAT	ACACTTTTGA	AAGGAATTTA	TGATTCGTTT	540
	GTTGAAAAAG	TAAATGAAAA	TAATTATAAT	TTTTCAAATG	TACTTGGCGT	AGGTATTGGT	600
	GTACCAGGTC	CTGTTGACTT	TGAAAAAGGT	ACAGTAAATG	GAGCAGTAAA	CTTATATTGG	660
10	CCAGAAAAAG	TTAATGTACG	TGAGATTTTT	GAACAATTCG	TTGATTGTCC	AGTGTATGTA	720
	GATAATGATG	CTAACATAGC	TGCTTTAGGG	GaGAAACACA	AAGGTGCTGG	TGAAGGTGCC	780
15	GATGATGTTG	TTGCCATCAC	ACTTGGTACA	GGTCTAGGTG	GAGGAATTAT	TTCCAAATGG	840
	TGAAATCGTA	CATGGTCATA	ATGGCTCtGG	CGCAGAAATA	GGTCATTTTA	GAGCAGACTT	900
	CGATCAACGA	TTTAAATGTA	ATTGTGGTCG	TTCTGGATGT	ATTGAAACAG	TTGCTTCaGC	960
20	GACAGGCGTT	GTTAACTTAG	TTAACTTCLA	CTATCCGAAG	TTGACGTTTA	GATCTTCTAT	1020
	ATTAGAATTG	ATTAAAGAAA	ATAAGGTLAC	aGCAAAAGCT	GTTTTTGATG	CGGCAAAAGC	1080
	TGGTGACCAA	TTCTGTATTT	TCATTACTGA	AAAGGTTGCA	AACTATATTG	GATATTTATG	1140
25	TAGTATTATT	AGTGTTACAA	GTAATCCGAA	ATATATCGTT	CTAGGTGGAG	GAATGTCTAC	1200
	TGCAGGACCT	ATTTTAATTG	AAAATATTAA	AACAGAATAT	CATAATTTAA	CATTTGCACC	1260
	TGCTCAATTT	GAAACTGAAA	TTGTACAAGC	GAAATTAGGT	AATGATGCAG	GTATTACAGG	1320
30	AGCAGCAGGA	TTAATCAAGA	CCTATGTATT	AGATAAAGAG	GGGGTAAAAT	AATGGCTATT	1380
	GTTGATGTGG	TTGTTATTCC	AGTTGGAACG	GAAGGTCCGA	GTGTTAGTAA	ATATATTGCA	1440
35	GATATTCAGA	AAAAACTTCA	AGAATATAAA	GCAATGGGTA	AAATTGATTT	TCAATTAACA	1500
55	CCAATGAATA	CTCTAATTGA	AGGTGAATTA	AGCGATGTAT	TAGAAGTTGT	GCAAGTGATA	1560
	CATGAATTAC	CTTTTGATAA	AGGTTTAAGT	AGAGTTTGTA	CAAATATCCG	TATTGATGAC	1620
40	CGACGAGACA	AATCTAGAAA	AATGAATGAT	AAACTAACAT	CAGTACAAAA	ACATTTAGAA	1680
	AATAGTGGTG	AAAACCTATG	AGGATTTCAA	GCTTAACTTT	AGGCTTAGTT	GATACTAATA	1740
	CGTATTTCAT	CGAAAATGAC	AAAGCTGTTA	TTCTGATTGA	CCCTTCAGGT	GAAAGTGAAA	1800
45	AATTATTAA	AAAATTAAAC	CAAATAAATA	AACCGTTAAA	AGCTATTTTA	TTAACACATG	1860
	CACACTTTGA	TCATATCGGA	GCAGTCGATG	ATATAGTTGA	TCGATTCGAT	GTCCCGGTTT	1920
	ATATGCATGA	AGCAGAGTTT	GATTTTCTAA	AAGATCCCGT	TAAAAATGGG	GCAGATAAAT	1980
50	TTAAGCAATA	TGGATTACCA	ATTATTACAA	GTAAGGTAAC	TCCTGAAAAG	TTAAmCGAAG	2040
				- >	as as corrects	CAMPON COAC	2100

	GAATCGGACG TACAGATTTA TATAAAGGTG ATTATGAAAC GCTAGTTGAT TCTATTCAAG	2220
	ATAAAATATT TGAATTAGAA GGC	2243
5	(2) INFORMATION FOR SEQ ID NO: 61:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8009 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
15	TTGGnATCAT tyAcgGTAAA AAGAATAAaG CAAGATTLAT TTCATTAGTA CTAATTTGTG	60
	CAATGTTTGC AATTTGTTGG GTTGCATATA TTCAATGGGA GTCTACAATC GCTTCATTTA	120
20	CACAATCTAT TAATATTTCa ATGGCACAAT ATAGTGTTTT ATGGACAATT AACGGAATAA	180
	TGATTTTAGT AGCACAACCA TTAATTAAAC CGATTCTCTA TCTGTTAAAA GGAAACTTAA	240
	AGAAGCAAAT GTTTGTCGGC ATCATCATTT TTATGTTGTC GTTCTTTGTC ACGAGTTTTG	300
25	CCGAAAACTT TACAATATTT GTTGTCGGTA TGATTATTTT AACTTTTGGA GAAATGTTTG	360
	TATGGCCAGC AGTTCCAACT ATAGCCAATC AGTTAGCGCC AGATGGTAAG CAAGGACAGT	420
	ACCAAGGIIT IGIGAATICA GCTGCTACAG TAGGAAAAGC ATTIGGTCCA TITCTIGGTG	480
30	GTGTATTAGT TGATGCGTTT AATATGCGCA TGATGTTTAT CGGTATGATG CTACTACTTG	540
	TATTIGCATI AATATTATTA ATGGTTTTCA AGGAGAATAA TACGCAACCI AAAAAAATAG	600
	ATGCATAATG AGTAAATAGA ATTAACGTTA TAGACTTGAA ATAAATGTCG TTATAACATA	660
35	ATATTAATTT GTATAATTTA ATTTCGTTTG GAGCTTTTCT ACAGAAAGCT AGTGATGCTG	720
	AGAGCTAGTG TTAAGGACTA AATGTAAATC GTATTAATTT TAAATTGAAT GAATGACATC	780
40	TCTTACTATT AAAATGAGTG CACAATTTTT GTGAAATAGG GTGGTAACGC GGCAAATGTC	840
,,	GTCCCTATGT AAATAGAATA GTTAGAGGTG TCTTTTTTAT TGAATAGGAG GAAATGTGTT	900
	GAATTACAAC CACAATCAAA TTGAAAAGAA ATGGCAAGAC TATTGGGACG AAAATAAAAC	960
45	ATTTAAAACA AATGATAACT TAGGTCAAAA GAAATTTTAT GCTTTAGACA TGTTTCCATA	1020
	TCCATCAGGT GCTGGTTTAC ATGTTGGACA TCCTGAGGGC TATACAGCAA CAGATATCAT	1080
	TTCAAGATAT AAAAGAATGC AAGGATATAA TGTATTACAT CCGATGGGGT GGGATGCATT	1140
50	CGGATTACCA GCAGAGCAAT ATGCTTTAGA CACTGGCAAC GACCCACGTG AATTTACAAA	1200
	GAAAAATATC CAAACTTTTA AACGACAAAT TAAAGAATTA GGGTTCAGTT ATGATTGGGA	1260

	GTTATATAAC	AAAGGTTTAG	CATACGTTGA	TGAAGTTGCA	GTTAACTGGT	GTCCAGCATT	1380
	AGGCACTGTT	TTATCTAACG	AAGAAGTGAT	TGATGGTGTC	TCTGAACGTG	GTGGACATCC	1440
5	AGTTTATCGT	AAGCCGATGA	AACAATGGGT	ACTTAAAATC	ACAGAATATG	CAGATCAATT	1500
	ATTAGCAGAT	TTAGATGATT	TAGATTGGCC	TGAGTCTTTA	AAAGATATGC	AGCGCAATTG	1560
	GATTGGACGT	TCTGAAGGGG	CCAAAGTTTC	ATTTGATGTA	GATAATACGG	AAGGAAAAGT	1620
10	AGAAGTATTT	ACGACTAGAC	CAGATACAAT	CTATGGTGCA	TCATTCTTAG	TCTTAAGTCC	1680
	TGAACATGCA	TTAGTTAATT	CAATTACAAC	AGATGAATAT	AAAGAAAAAG	TAAAAGCTTA	1740
15	TCAAACAGAA	GCTTCTAAAA	AGTCAGATTT	AGAACGTACA	GATTTAGCAA	AAGATAAATC	1800
	AGGTGTATTT	ACTGGTGCAT	ATGCAACTAA	TCCTTTATCT	GGTGAAAAAG	TACAAATTTG	1860
	GATTGCTGAT	TATGTATTAT	CAACATATGG	TACTGGAGCA	ATTATGGCAG	TACCAGCGCA	1920
20	TGATGACAGA	GATTATGAAT	TTGCTAAAAA	GTTTGATTTG	CCAATCATTG	AAGTCATCGA	1980
	AGGTGGAAAT	GTTGAAGAAG	CAGCATACAC	TGGTGAAGGT	AAACATATTA	ATTCTGGTGA	2040
	ACTTGATGGT	TTAGAAAATG	AAGCGGCAAT	TACTAAAGCT	ATTCAATTAT	TAGAGCAAAA	2100
25	AGGTGCTGGC	GAAAAGAAAG	TTAATTACAA	ATTAAGAGAT	TGGTTATTCA	GTCGTCAGCG	2160
	TTATTGGGGC	GAACCAATTC	CTGTCATTCA	TTGGGAAGAT	GGAACAATGA	CAACTGTTCC	2220
	TGAAGAAGAG	CTACCATTGT	TGTTACCTGA	AACAGATGAA	ATCAAGCCAT	CAGGGACTGG	2280
30	TGAGTCTCCA	CTAGCTAATA	TTGATTCATT	TGTAAATGTT	GTAGATGAAA	AAACAGGTAT	2340
	GAAAGGACGT	CGTGAAACAA	ATACAATGCC	ACAATGGGCA	GGTAGTTGTT	GGTATTATTT	2400
25	ACGTTACATC	GATCCTAAAA	ATGAAAATAT	GTTAGCAGAT	CCTGAAAAAT	TAAAACATTG	2460
35	GTTACCTGTT	GATTTATATA	TCGGTGGAGT	AGAACATGCG	GTTCTTCACT	TATTATATGC	2520
	AAGATTTTGG	CATAAAGTCC	TTTATGATTT	GGCTATCGTA	CCTACTAAAG	AACCTTTCCA	2580
40	TTTATTAAAA	AACCAAGGTA	TGATTTTAGG	AGAAGGTAAT	GAGAAGATGA	GTAAATCTAA	2640
	AGGAAATGTA	ATCAATCCTG	ATGATATAGT	ACAGTCTCAT	GGTGCAGATA	CTTTGCGTCT	2700
	TTACGAAATG	TTTATGGGAC	CTTTAGATGC	TGCAATTGCA	TGGAGTGAAA	AAGGATTAGA	2760
45	TGGGTCTCGT	CGATTCTTAG	ATCGCGTATG	GCGTTTAATG	GTAAATGAAG	ATGGGACATT	2820
	GAGTTCAAAA	ATTGTAACTA	CAAATAATAA	ATCTTTAGAT	AAAGTTTATA	ACCAAACTGT	2880
	TAAAAAGGTA	ACAGAAGACT	TTGAAACATT	AGGATTTAAT	ACTGCTATTA	GTCAATTAAT	2940
50	GGTATTTATT	AATGAGTGTT	ATAAAGTTGA	TGAAGTTTAT	AAACCTTACA	TTGAAGGCTT	3000
	CGTTAAAATG	TTAGCACCTA	TTGCACCACA	TATCGGTGAA	GAATTATGGT	CAAAATTAGG	3060

	TGATGAAGTA	GAAATCGTTG	TTCAAGTGAA	TGGTAAATTG	AGAGCTAAAA	TTAAAATTGC	3180
	TAAAGATACA	TCAAAAGAAG	AAATGCAAGA	AATTGCCTTA	TCTAATGACA	ATGTTAAAGC	3240
5	GAGTATTGAA	GGTAAAGACA	TCATGAAAGT	CATCGCTGTT	CCTCAAAAAT	TAGTCAATAT	3300
	TGTAGCTAAA	TAATGTTTTA	AGGAGGACTT	TGAAATGAAG	TCAATTACTA	CAGATGAATT	3360
	AAAAAATAAA	CTTTTAGAAT	CTAAACCAGT	TCAAATTGTT	GATGTTCGTA	CTGATGAAGA	3420
10	AACAGCAATG	GGATATATTC	CTAATGCAAA	GTTAATTCCA	ATGGATACCA	TTCCGGATAA	3480
	TTTAAATTCA	TTTAATAAAA	ATGAAATATA	TTATATTGTA	TGTGCTGGTG	GAGTTCGAAG	3540
15	CGCTAAAGTT	GTAGAATATT	TAGAGGCAAA	TGGCATTGAT	GCCGTAAATG	TCGAAGGCGG	3600
15	CATGCACGCA	TGGGGCGATG	AAGGTTTGGA	AATAAAAAGT	ATTTAAAGTA	GTGACATAAT	3660
	TAAAAATAAT	ATTACATTTG	TAATGACACC	AAGTAACGTT	TCGGTTGCTT	GGTGTTTTTT	3720
20	GGTATGAATT	ACTTTCTGTT	ACAAAACAAT	CTAAAGCGTT	CTTGTTATGT	TTTATTAAGA	3780
	TTTTAATTAC	AAAACGGAAA	CTAAATTGTA	ATAAAATAAA	ACTTTATTTT	ATAAAATGAT	3840
	GATGATAAAA	TTGAGTGAAC	TTAAAATATT	GTACAAAATA	ATATAGCTAT	АААТАТААТА	3900
25	TAGCTATAAA	TATAATATGA	GGGAGCGTAT	ATTTTTAGCA	TAATTCTTAA	CAACACAGCA	3960
	GAGAACAGAC	AACCAGGAGG	AAAATGAAAT	GAATTTGTTA	AAGAAAAATA	AATATAGTAT	4020
	TAGGAAGTAT	AAAGTAGGCA	TATTCTCTAC	TTTAATCGGA	ACAGTTTTAT	TACTTTCAAA	4080
30	CCCAAATGGT	GCACAAGCCT	TAACTACGGA	TAATAATGTA	CAAAGCGATA	CTAATCAAGC	4140
	AACACCTGTA	AATTCACAAG	ATAAAGATGT	TGCTAATAAT	AGAGGTTTAG	CAAATAGTGC	4200
	GCAGAATACA	CCTAATCAAT	CTGCAACAAC	CAATCAAGCA	ACGAATCAAG	CATTGGTTAA	4260
35	TCATAATAAT	GGTAGTATAG	TAAATCAAGC	TACGCCAACA	TCAGTGCAAT	CAAGTACGCC	4320
	TTCAĞCACAA	AACAATAATC	ATACAGATGG	CAATACAACA	GCAACTGAGA	CAGTGTCAAA	4380
10	CGCTAATAAT	AATGATGTAG	TGTCGAATAA	TACCGCATTA	AATGTACCAA	CTAAAACAAA	4440
40	TGAAAATGGT	TCAGGAGGAC	ATCTAACTTT	AAAGGAAATT	CAAGAAGATG	TTCGTCATTC	4500
	TTCAAATAAA	CCAGAGCTAG	TTGCAATTGC	TGAACCAGCA	TCTAATAGAC	CGAAAAAGAG	4560
45	AAGTAGACGT	GCGGCACCGG	CAGATCCTAA	TGCAACTCCA	GCAGATCCAG	CGGCTGCAGC	4620
	GGTAGGAAAC	GGTGGTGCAC	CAGTTGCAAT	TACAGCGCCA	TATACGCCAA	CAACTGATCC	4680
	TAATGCCAAT	AATGCAGGAC	AAAATGCACC	TAACGAAGTG	CTGTCATTTG	ATGACAATGG	4740
50	TATTAGACCA	AGTACCAACC	GTTCTGTGCC	AACAGTAAAC	GTTGTTAATA	ACTTGCCGGG	4800
	CTTCACACTA	ATCAATGGTG	GCAAAGTAGG	GGTGTTTAGT	CATGCAATGG	TAAGAACGAG	4960

	TCGTATACAT	GGAACTGATA	CGAATGACCA	TGGCGATTTT	AATGGTATCG	AGAAAGCATT	4980
	AACAGTAAAT	CCGAATTCTG	AATTAATCTT	TGAATTTAAT	ACAATGACTA	CTAAAAACGG	5040
5	TCAAGGCGCA	ACAAATGTTA	TTATCAAAAA	TGCTGATACT	AATGATACGA	TTGCTGAAAA	5100
	GACTGTTGAA	GGCGGTCCAA	CTTTGCGTTT	ATTTAAAGTA	CCTGATAATG	TGAGAAATCT	5160
	CAAAATTCAA	TTTGTACCTA	AAAATGACGC	AATAACAGAT	GCGCGTGGCA	TTTATCAACT	5220
10	AAAAGATGGT	TACAAATACT	ATAGCTTTGT	TGACTCTATC	GGACTTCATT	CTGGGTCACA	5280
	TGTTTTTGTT	GAAAGACGAA	CAATGGATCC	AACAGCAACA	AATAATAAAG	AGTTTACTGT	5340
	AACAACATCA	TTAAAGAATA	ATGGTAATTC	TGGTGCTTCT	CTAGATACAA	ATGACTTTGT	5400
15	ATATCAAGTT	CAATTACCTG	AAGGTGTTGA	ATATGTGAAC	AATTCATTGA	CTAAAGATTT	5460
	TCCAAGTAAC	AATTCAGGCG	TTGATGTTAA	TGATATGAAT	GTTACATATG	ATGCAGCAAA	5520
20	TCGTGTGATA	ACAATTAAAA	GTACTGGAGG	AGGTACAGCA	AACTCTCCGG	CACGACTTAT	5580
	GCCTGATAAA	ATACTCGATT	TAAGATATAA	ATTACGTGTA	AATAATGTGC	CGACACCAAG	5640
	AACAGTAACA	TTTAACGAGA	CATTAACGTA	TAAAACATAT	ACACAAGATT	TCATTAATTC	5700
?5	AGCTGCAGAA	AGTCATACTG	TAAGTACAAA	TCCATATACT	ATCGATATCA	TCATGAATAA	5760
	AGATGCATTA	CAAGCCGAAG	TTGACAGACG	TATTCAACAA	GCTGATTATA	CATTTGCGTC	5820
	ATTAGATATC	TTTAATGGTC	TGAAACGACG	CGCACAAACG	ATTTTAGATG	AAAATCGTAA	5880
30	CAATGTACCA	TTAAATAAAA	GAGTTTCTCA	AGCATATATT	GATTCATTAA	CTAATCAAAT	5940
	GCAACATACG	TTAATTCGAA	GTGTTGATGC	TGAAAATGCA	GTTAATAAAA	AAGTTGACCA	6000
	AATGGAAGAT	TTAGTTAATC	AAAATGATGA	ATTGACAGAT	GAAGAAAAAC	AAGCAGCAAT	6060
35	ACAAGTTATC	GAGGAACATA	AAAATGAAAT	AATTGGTAAT	ATTGGTGACC	AAACGACTGA	6120
	TGATGGCGTT	ACTAGAATCA	AAGATCAAGG	TATACAGACC	TTAAGTGGGG	ATACTGCAAC	6180
10	ACCGGTTGTT	AAACCAAATG	CTAAAAAAGC	AATACGTGAT	AAAGCAACGA	AACAAAGGGA	6240
	AATTATCAAT	GCAACACCAG	ATGCTACTGA	AGACGAGATT	CAAGATGCAC	TAAATCAATT	6300
	AGCTACGGAT	GAAACAGATG	CTATTGATAA	TGTTACGAAT	GCTACTACAA	ATGCTGACGT	6360
15	TGAAACAGCT	AAAAATAATG	GCATCAATAC	TATTGGAGCA	GTTGTTCCTC	AAGTAACTCA	6420
	TAAAAAAGCT	GCAAGAGATG	CAATTAACCA	AGCAACAGCA	ACGAAAAGAC	AACAAATAAA	6480
	TAGTAATAGA	GAAGCAACTC	AGGAAGAGAA	AAATGCAGCA	TTGAACGAAT	TAACTCAAGC	6540
50	AACCAACCAT	GCTTTAGAAC	AAATCAATCA	AGCAACAACA	AATGCTAATG	TTGATAACGC	6600
	CAAAGGAGAT	GGTCTAAATG	CCATTAATCC	AATTGCTCCT	GTAACTGTTG	TTAAGCAAGC	6660

	TGATGCGACT	CAAGAAGAAA	GACAAGCAGC	AATTGACAAA	GTGAATGCTG	CTGTAACTGC	6780
	AGCAAACACA	AACATTTTAA	ACGCTAATAC	CAATGCTGAT	GTTGAACAAG	TAAAGACAAA	6840
5	TGCGATTCAA	GGAATACAAG	CAATTACACC	AGCTACAAAA	GTAAAAACAG	ATGCAAAAA	6900
	TGCCATCGAT	AAAAGTGCGG	AAACGCAACA	TAATACGATA	TTTAATAATA	ATGATGCGAC	6960
	GCTCGAAGAA	CAACAAGCAG	CACAACAATT	ACTTGATCAA	GCTGTAGCCA	CAGCGAAGCA	7020
10	AAATATTAAT	GCAGCAGATA	CGAATCAAGA	AGTTGCACAA	GCAAAAGATC	AGGGCACACA	7080
	AAATATAGTA	GTGATTCAAC	CGGCAACACA	AGTTAAAACG	GATACTCGCA	ATGTTGTAAA	7140
15	TGATAAAGCG	CGAGAGGCGA	TAACAAATAT	CAATGCTACA	ACTGGCGCGA	CTCGAGAAGA	7200
15	GAAACAAGAA	GCGATAAATC	GTGTCAATAC	ACTTAAAAAT	AGAGCATTAA	CTGATATTGG	7260
	TGTGACGTCT	ACTACTGCGA	TGGTCAATAG	TATTAGAGAC	GATGCAGTCA	ATCAAATCGG	7320
20	CGCAGTTCAA	CCGCATGTAA	CGAAGAAACA	AACTGCTACA	GGTGTATTAA	ATGATTTAGC	7380
	AACTGCTAAA	AAGCAAGAAA	TTAATCAAAA	CACAAATGCA	ACAACTGAAG	AAAAGCAAGT	7440
	GGCTTTAAAT	CAAGTGGATC	AAGAGTTAGC	AACGGCAATT	AATmATATAA	ATCAAGCTGA	7500
25	TACAAATGCG	GAAGTAGATC	AAGCGCAACA	ATTAGGTACA	AAAGCAATTA	ATGCGATTCA	7560
	GCCAAATATT	GTTAAAAAAC	CTGCAGCATT	AGCACAAATC	AATCAGCATT	ATAATGCTAA	7620
	ATTAGCTGAA	ATCAATGCTA	CACCAGATGC	AACGAATGAT	GAGAAAAATG	CTGCGATCAA	7680
30	TACTTTAAAT	CAAGACAGAC	AACAAGCTAT	TGAAAGTATT	AAACAAGCTA	ACACAAATGC	7740
	AGAAGTAGAC	CAAGCTGCGA	CAGTAGCAGA	GAATAATATC	GATGCTGTTC	AAGTTGATGT	7800
	AGTAAAAAA	CAAGCAGCGC	GAGATAAAAT	CACTGCTGAA	GTGGcGAacG	TATTGaAGCG	7860
35	GTTAAACAAA	CACCTAATGC	AACTGACGAA	GAAAAGCAGG	CTGCTGTTAA	TCAAATCCAA	7920
	TCAĄCTITAA	AGATTCAAGC	AATTTAATCC	AAATTTAATC	CAAAACCCAA	ACAAATGGAT	7980
40	TCAGGGTAGG	ACACCACTTA	CAAATCCAA				8009
.0	(2) INFORMA	TION FOR SE	Q ID NO: 62	! :			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10953 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62: 50 ACCCACCCC TGGGGATANT TTACCTGGTG GGGCCTTCGA TTGCCTTTAG GTGAAACCAG 60

	AGATGAATGC	TAACCATATT	CATTCTGCTA	AAGATGGTCG	TGTTACTGCG	ACAGCTGAAA	180
	TTATTCATCG	AGGTAAGTCG	ACACATGTAT	GGGATATAAA	AATTAAGAAT	GACAAAGAAC	240
5	AATTAATTAC	AGTTATGCGT	GGTACAGTTG	CTATTAAACC	TTTAAAATAA	AAGAACTGCT	300
	AGCTGAAATG	TTATGAGATA	TTCATAACTA	CGGCTAGCAG	TTTTTTTATG	CGCTATATTG	360
	TTGTAGTTTT	AGAAATGCTT	GTTCAATGCG	TTCGGCAGCT	TTACGGCCAC	CCATAACATT	420
10	TCTACCAAAT	GGTCCTAATT	CTAAGTCTGC	AAAGCATCCT	GCGACAAATA	GATTTGGTAT	480
	CCATTCTAAT	TTTTCGGAAA	TAACAGGGTA	ATTACATTCG	TTGATAGGTG	CATCATAATT	540
15	TTGTATTAAT	TGCTTAATAA	GTGGTTGTGA	CATAAAATCT	TGTTCAAAAC	CAGTTGCAAC	600
15	CATAATCTGT	TGATATGGAA	CAGAATCATT	TTCAGTGTTA	ATTACACCAC	CACTAATTTG	660
	AGTGATAGGT	GTTTTATGCa	CATTTATACG	ACCATTTTTA	ATATGTTTTT	TAAGGCGTAA	720
20	GTACAGTTCG	TGAGGCATTG	ATCCTTTATG	ACGTTCGCGT	TGTACAATGG	CATTTCTTTC	780
	AGGCATGCTT	TTAGTACTTA	AAAATGAAGA	CATATTTTTC	GGACCTAACC	AACCAGGATC	840
	AGCATCAAAG	TCATGTATTT	CAATATCTTT	ATTTAGCCAT	AAATGAATCT	TTTTATCGTT	900
25	ATCATGATTT	AACAATTTAA	GTGCAAGATG	TGCAGCAGTa	ATGCCGCTAC	CAACGATATG	960
	ATCGGTCTTA	TCATATACTA	CTTGATCAAG	TTCTTTCTCG	AAGATATGAT	TTACATTCTG	1020
	TTTGTCTTTT	AAAATGTCAG	GCATAAACGG	AATATTTGTA	CTGCCTATTG	CAATAACGAC	1080
30	GCAATCTGTA	GTGATAATTT	GTCCATCTTC	TAACTTGATA	TGCCATTTGT	CTTCTTGTTT	1140
	ATCTAAAGTT	TGAACTAAAC	CTTGAACCAA	GCAATCCTCT	AATTGATATT	GTTTAGAAGC	1200
	ATGTGCAATA	TGATCCATAA	ACATTGTCAA	TTCAGGTCGT	TGATAAGGAC	CATAAAAAGC	1260
35	ATTTGTATAT	TGGTGCTGTT	TAGCGAATTG	TTTTAGATGG	AACGGTTGTG	GATGTACGTG	1320
	ATGTACAATC	GGTGATCTTA	AATAAGGCAT	TTCTATTCGA	TTTGTATATG	AGTTAAACCT	1380
40	TTGGCAAAAA	GTTTCGTGTG	GGTCAATGAT	TGTTAATCGG	TCTGTTGTTA	ATCCGCTTGA	1440
	TAATAGTTTT	TGTGCGATTG	CAGTTCCCTG	TATGCCACCG	CCGATAATTG	TCCAATGCAT	1500
	AATAAAACCT	CTCTCTTTTT	AAAACGTAAT	AGTTACGATT	TATAATTATT	ATTATCATAA	1560
45	TACATAACGA	CATGAAAGGC	AATTAAATTA	AAGAGATATA	TGTAGATAGG	GCGAATCTGT	1620
	AGTCAAAGAA	AAAATCATTG	AAAAAGAGGT	AACAATGTCA	AAAGAWAACA	GCAGTAAAAT	1680
	CATTCCTAAT	TTGGAATCAT	CTTACTGCTG	TTTGTTGTTG	ATTTATATTC	ATGATTTTGT	1740
50	TATATAATCT	ACAATTTTGT	GTCTTTTAAG	TCTTCCGAAA	TTTCATCGAC	TTTAGTCTTT	1800
	TTAGTATAAG	GCGTTTTAAT	ATTATATGCT	GCTTTCATAA	TCATATGACT	TGAAAGAGGA	1860

	GCAATAAAAT	ATAAAAACGT	ACCAAATAGT	AATGACATTG	CACCTAATGT	TGATGCTTTT	1980
	CCGGCAGCAT	GTGCACGTGA	ATATACATCT	TCAAGTCTCA	ATAATCCTAT	AGCTGCTAGG	2040
5	GCGCTAATTA	AAGCACCGAT	GATAACAAAG	ATAAGTGCAA	GACTAATCAG	TATGATTTTG	2100
	ATCATGTTCA	ATCACCTTAC	CTTTGTCCAT	AAATTTAGAG	AATACTGCAG	TACCTAAAAA	2160
	AGCTAATATA	CCAATCATCA	TAATAACGAC	AATCATGTAT	TTAATATTTA	ATAAAATACT	2220
10	GAATAATGCT	ATAACTGCCA	TTAATTGAAG	ACCAATCGCA	TCTAATGCGA	CAACACGATC	2280
	GGCAAGTGAT	GGGCCTAGCA	CAACGCGAAT	GAGCATAGCT	AACATAGAAA	TGACAACTAT	2340
15	GATTAATGCA	ATAACGATAA	TAACATTATG	ATTCATTATA	TTTCGCCCAC	CTCTCTTACA	2400
	ATTTTCTCTA	ATGATGTTTT	AATACTTTCT	ACTTCTTGCT	CTTTAGTTGA	AAAATCTATG	2460
	GCATGAATAT	AAATTTTTGT	ACGATCGTCA	CTTACACCAA	GCACTACAGT	ACCAGGTGTT	2520
20	AATGTAATTA	AATTAGACAG	CAAGACAATT	TGCCAATCTT	TTTTTAAATC	TGTGTGATAA	2580
	ACAAAGAATC	CTGGTTCATT	TTTAATCGAA	GGTTTAATAA	TAATTTTCAA	AACATCAAAA	2640
	TTAGCTTTAA	TCAGTTCGAT	TAAGAAAATA	ATAACTAATT	TAATAATACG	ATATAGCGTG	2700
25	ATGACATAAA	ATCTACCTGG	TAACACTCTG	TGTAAGAGGT	AAACAAGAAC	TAGGCCAAAG	2760
	ATGAAACCTA	ACACAAAGTT	ATTTGTTGTG	TAACTATTTG	TCACAAACAA	CCAAAACACT	2820
	GCGATAATAA	AGTTTAATAC	TAATTGTACA	GCCATGTTAT	TTACCTCCTA	ATACAGCTTT	2880
30	AACGTAGGTT	GATGGATTGT	AGAATGTTTC	TGCACCAGCT	TTTACCATTG	GATATAAGTA	2940
	ATCTGCTGAC	AATCCATATA	AAACAGTTAT	CACAACTGCA	ACGATTGCAA	TCGTAGTTAA	3000
a.r	ATATTTGACG	TCGACTTTGT	TATTAAGATC	ATATCCTTTT	GGTTGACCGA	AAAAGCCTTG	3060
35	TAGGAATATG	CGAATGACAG	AATATAATAC	GACTAAACTT	GATAATAAGA	CGATGACACC	3120
	ACTŢĀĀĀTĀĀ	AATCCTCTTT	CAAATGTTGA	TTGGACAATA	AAAAATTTTC	CATAAAAGCC	3180
40	ACTGAGTGGG	GGAATGCCAG	CTAAACTTAA	TGCTGCGATA	AAGAATGACC	AACCAAGTAC	3240
	AGGATATCGT	TTAATTAAGC	CACCAAATTG	TCTTAAATCA	GCAGTGCCTG	TAATTTTAAT	3300
	CATAATTCCG	ATAAGCAAGA	ATAATGCAAG	TTTTACTAAC	ATGTCGTGCA	ATGTATAGTA	3360
45	AATAGCCCCA	ATCATACCTG	ACTCTGTCAT	CATTGCAACG	CCGACTAAGA	TCACACCTAC	3420
	AGCAATCATG	ACATTGTATA	GGATGATTTT	TTTAATGTTG	GCATATGCAA	CAGCACCGAC	3480
	ACAACCAAAG	ATGATCGTTA	ATAGTGCTAA	GAATAAAATG	ACATAATGTG	AAAAGCTTAC	3540
50	ATTATCACTA	AAGAATAGGC	TCAATGTTCT	AGCGATTGCA	TAAACACCAA	CTTTTGTTAA	3600
	CAAAGCACCA	AAGAATGCAA	TGATTGGAAT	TGGTGGgCAT	AGTATGCACT	AGGTAACCAA	3660

	ATATTGACTA	AGCCACTGTC	ATGCGCTGAA	AGGTTAGCTA	ATTTATTGCT	TATATCTGCT	3780
	AGATTCAATG	TTCCTACTAC	TGAATATAAA	ATCGCTACAC	CCATTACGAA	GAAGGATGAC	3840
5	GATACAACGT	TAACAAGAAC	ATATTTTATT	GTTTCTTGTA	GTTGAATTTT	TGTAGAACCA	3900
	ATTACTAATA	AGAAATAAGA	TGACATTAAA	AATACTTCGA	AAAATACGAA	TAGGTTGAAA	3960
	ATGTCACCAG	TTGTGAATGC	ACCAATGATA	CCTATTAACA	TAAATAGTAC	TGAAAAATAA	4020
10	TAATAATATC	TTTCACGTTC	AATACCAATT	GTTTGGTATG	AATATAAAAT	CACAATAGCT	4080
	GTAATAATAA	TACTAGTAAT	TATTAGTAGG	GCACTGAATA	TGTCTAATAC	AAAGACAATA	4140
15	CTGTATGGTG	CTTTCCATGA	ACCTAGCTCT	ACGCGTATTG	GTCCATGTTT	AACAACATTT	4200
, •	GCTAAATTGA	TAATTGCCGC	GACCAAGGTT	AATAATGTAC	CGCCTAGTGC	GACATAACGC	4260
	TTTATAATAG	GACGCTTTCC	AATAAAGACA	AGTAATATGG	CTGTAATTAC	TGGAATAACT	4320
20	AGCGTTAACA	CAAGCATATT	ACTTTCAATC	ATCTTCTGGA	ACTCCTTTCA	TACTCTCAAC	4380
	GTTATCTGTG	CCTAATTCTT	TATATGTTCT	AAATGCTAAT	ACTAAGAAAA	AGGCTGTTGT	4440
	CGCAAgGCGA	TAACGATTGC	TGTTAAAATA	AGTGCTTGCG	GGaTAGGaTC	AACATAGCTT	4500
25	TTTACGTTCG	CTTCATAAAT	TGGAACAGTA	CCATGTTTAA	GTCCGCCCAT	AGTTATTAAA	4560
	AATAAATTTG	CTGCATGTGT	TAATAGTGTA	GTTCCCATAA	CAATTCGTAT	CAGACTTTTA	4620
	GACAAAACGA	GATAGACACT	AATTGCTGTG	AGAATACCAC	TAACAAAAAT	САТААТААТТ	4680
30	TCCACTATTC	GTTCTCTCCA	ATCGAAATAA	TAATTGTCAT	GACAGTACCA	ACTACTGCAC	4740
	ATAAAACACC	GAAATCAAAG	AATACTGCTG	TTGTCATATG	AACAGGTTCT	АТАТАААТА	4800
	ACGGTATATC	AAATGTGACA	TGCGTAAAGA	AATTTTTGCC	TAAAAACCAA	CTTGCGATAG	4860
35	GCGTCGCAAT	ACAAAAAACT	AATCCGATAC	CTATCAAGAT	TTTAAAATCT	AATGGGAAAA	4920
	TTTŢĀCGCAT	TGTTTCTATA	TCAAATGCAA	TCGTAATGAT	AACAAGTGAA	CTTGCGAATA	4980
10	ATAATCCGCC	GACGAAACCG	CCACCAGGTG	TATAATGTCC	TGCTAAGAAA	AGTGAAAAAC	5040
	CAAAGACCAT	TACCATGAAA	AAGATAATAA	CTGCAGCAAA	TTGCAAAATT	AGATCATTTT	5100
	GTTGTCTATT	CATGATTTTT	CACCTCGTTA	CCTTGCGTTT	GACGCTTTTT	ACGTAATTTA	5160
4 5	ATCATTGTAT	ATACAGCTAA	TCCTGCGATA	CCAAGCACAG	ATGACTCGAA	TAAAGTATCC	5220
	ATACCACGGA	AATCAACAAG	TATGACGTTT	ACCATGTTTT	TACCGTGAGC	tAAATCATAA	5280
	ACGTGCTCTT	GATAAAACTT	AGATATCGAT	TCAAAATGTC	TATTTCCGTA	TGCAATTAAA	5340
50	CCGATAATAA	TGACGGACAA	ACCAACACCA	CCAGCAATTA	AAGCATTAGT	AAGCTGGAAT	5400
	GAGCGCTTTT	CATTATAACG	ATTTAAATTT	GGTAAGTGGT	AGAAGCATAA	TAAGAACAAT	5460

	ATAAACAATA	CAGACACAGC	ATATCCAACT	GCACTTAACA	TAATGATGCT	AAATAATCTT	5580
	GATTTAGCGA	AAAGAATTAA	AAAGGCAGCA	CTTAATAATA	AAATTACGAT	ACAAACTTCG	5640
5	AAAATTCTAA	TCGGACTAAC	GTCTTTAAAA	TTAATGTTGA	AAGGTACTGA	GAATATAGTG	5700
	ACAAATGTTA	ATAAAATTAA	TGCACCAAAA	ATGATAACTA	AATTATTACG	TGAATAATCG	5760
	GTAACATAGC	TATTCGTCAT	CTTTTCAGAG	TAGTTTGGAA	TAACATTTGC	ACTTCTGTTG	5820
10	TACCAATAAT	TGAATGTTAG	TTTACCAGGT	TGTCGTTGCA	ACAATTTCAC	CCAATAACTA	5880
	AATGTCACAA	TTAGTAAGAT	ACCTAAAATA	TAAATCACTA	ATGTTGATAA	AAAGGCAGGC	5940
15	GTTAATCCAT	GGAACATATG	GAATTCAACA	TCATCAATTA	CCGTATGATT	AATCGAAGag	6000
	TnAGCTGGTT	CAATAATCGA	ATTAGTTAAA	ATGCCAGGGA	ATAAACCAAA	TACAATTACT	6060
	AATGTAGCTA	AAATAGCTGG	TGATAAAAGC	ATTAATATTG	ATACTTCGTG	TGCTTTTTTA	6120
20	GGTAATTGTT	CAGGTTTATA	TTGTCCGAAA	AATATATGCA	TTATAAATTT	AATTGAATAT	6180
	ACAAATGTGA	AGACACTGCC	CACTATACCA	ATGATTGGGA	ATAGGTAGCC	TAATGTATCA	6240
	ACACTGAATA	AATTTGCTTG	GCTTGCTGTA	AATGTTGTTT	CTAAAAATGA	TTCTTTTGAT	6300
2 5	AAGAAACCAT	TGAACGGTGG	TACACCAGCg	CATACTTAAT	GCTGTAATAA	CAGTGATTGT	6360
	AAATGAAATA	GGCATAATTG	TTAGTAAGCC	ACCTAATTTC	TTAACATCAC	GTGTACCAGT	6420
	AGAATGATCC	ACTGCACCTG	TAATCATAAA	TAGGGCACCT	TTAAATGTTG	CATGGTTGAT	6480
30	TAAATGGAAT	ATTGCAGCCG	TAAATGCAGC	AGCATATATT	TTGCTATCAT	CGCCTTGATA	6540
	GTGATAACTA	ATGGCACCGA	TTCCAAGCAT	CGCCATAATC	ATACCTAATT	GGGATACTGT	6600
25	TGAAAATGCC	AGTATACCTT	TCAAGTCTTG	TTGTTTTGTT	GCGTTTAGCG	AAgCCCAGAA	6660
35	TAATGTAATT	AAACCAACGA	GTGTGACAGT	CCATACCCAA	CCTTGCGATG	CTGCGAAGAT	6720
	TGGTĞTCATT	CGAGCGATTA	AATATAACCC	TGCTTTAACC	ATTGTTGCTG	AATGAAGATA	6780
40	AGCACTGACT	GGTGTAGGTG	CTTCCATTGC	ATCTGGTAGC	CAAATATAAA	ATGGAAACTG	6840
	AGCAGATTTT	GTAAAAGCAC	CAATCATGAT	TAAAATCATC	GCAAAAATGA	AGAATGGGCT	6900
	ATTTTGAATT	TCAGAAGCAT	GTTGAATCAT	GTACTGAATG	CTAAATGATT	GTGTTGGTAT	6960
45	AGCGAGTAAG	ATGATACCAC	CTAATAATGA	TAGACCACCA	AATACTGTGA	TTATGAGCGA	7020
	TTTTTGAGCA	CCATATATAG	ATGCTTGTCG	TTCGCGCCAG	AATGAAATAA	GTAAAAAACT	7080
	AGAAAATGAC	GTTAGCTCCC	AGAATAAATA	TAGAATAATA	ACATTATCTG	AAAGTACGAC	7140
50	ACCTAACATT	GCACCCATAA	ATAGTAATAA	ATAACAATAA	AAATTCCCTA	GTTGTTCTGA	7200
	CTTACTTAAG	TAGCCGATTG	AATATAATAC	TACTAAACTG	CCGATTCCTG	AAATAAGCAA	7260

	CCAATTTAAG	GTTTTCATTA	CAGTATTACC	TGACATCGTC	GTTTTAATTA	ATGTAAGCAT	7380
	ATAAATAAAT	ATGACGATAG	GGACAGGTAA	TACGAACCAT	CCTAAATGTA	TACGTTTAAA	7440
5	AAATCTATAC	AGGATAGGAA	TAATGAGTGC	GAATATTAAC	GGTAATATCA	CCGCAATATG	7500
	TAACAAACTC	ACTATGTTGT	CCTCCTTTAA	AAAATATTTA	TGTTATTCAT	TATACATGAA	7560
	TGATATAGTT	CTGAAAAACG	TACACACTCC	TTGTTGTGCT	TTATTTTCAG	Aagtatttaa	7620
10	ATAAGAAGAA	ACACGTCATT	TTTTATTTAA	AATTTTCTTT	GTATTGAAGT	GAATAATCTT	7680
	CTTTTAAGCG	TGCTAAACTA	GCTAAAGACA	TTTCAGCATG	TTTTGTTTGC	TGAGCTTTAA	7740
15	GTTTAGTTTC	TAAATCTGTA	ATTGCTTGTT	GAAGTGAATC	TTCATAGCGC	AATACATCAA	7800
13	CATTGAAGTC	GCGTAATTGT	GAACGTTTCG	TATAGCGTTT	TTCAAAATGG	CTTAATGCTT	7860
	TGCGGTCATG	GAAAAATACA	CCTTCAGTTT	CAGTAGGGTT	ATGTAAATCA	CCTTGTTTCG	7920
20	GGTGTTTGAT	AACTTGTTCA	ACTTTAACAA	GGACATCGTC	TCCATTTTCT	TCAACAATCG	7980
	TGACACCATA	GCTACCTGTT	TTGTGTGAAA	ATCGATATAG	CTTCATGCTA	TTTTCCTCCC	8040
	TTAAAAGTAT	GTTAATATAT	ATGTATCATA	ACATGAATGG	AGAATATAAA	TGGCTAACTA	8100
25	TCCACAGTTA	AACAAAGAAG	TACAACAAGG	TGAAATCAAA	GTGGTTATGC	ACACAAATAA	8160
	AGGTGACATG	ACATTCAAAT	TATTTCCAAA	TATTGCACCA	AAAACAGTTG	AAAATTTTGT	8220
	GACACATGCA	AAAAATGGTT	ATTATGATGG	AATCACATTC	CACCGTGTCA	TTAATGACTT	8280
30	CATGATTCAA	GGTGGCGATC	CAACAGCTAC	TGGTATGGGT	GGCGAAAGTA	TTTATGGCGG	8340
	TGCTTTTGAA	GATGAATTTT	CATTAAATGC	ATTTAACTTA	TATGGCGCAT	TATCAATGGC	8400
	TAACTCAGGA	CCTAATACTA	ATGGTTCACA	ATTTTTCATT	GTTCAAATGA	AAGAAGTACC	8460
35	TCAAAATATG	TTAAGTCAAC	TTGCAGATGG	TGGCTGGCCT	CAACCAATCG	TTGATGCATA	8520
	TGGCGAAAAG	GGTGGTACAC	CATGGTTAGA	TCAAAAACAT	ACAGTATTCG	GTCAAATCAT	8580
40	TGATGGTGAA	aCTACATTAG	AAGATATTGC	AAATACAAAA	GTGGGACCAC	AAGATAAACC	8640
	ACTTCATGAT	GTTGTAATTG	AATCTATTGA	TGTTGAAGAA	TAATATCTAA	ACATAATTAA	8700
	CTACCAACAT	TTTAAACTCG	GATAAAGCTA	ATTTATGAAT	GGATTAGTAT	ATATTCCAAC	8760
4 5	TAAAATAAAT	AAACTAATAT	GATGAGCAAT	CTCAATATAT	TTATCAAGAA	AGCACAGTTT	8820
	TTAAATAGAT	GTGTATTTTA	AAGATAATAG	TTGAGGTTGC	TTTTTATGTT	TTTACAGAGA	8880
	ATTGCTATTC	AAATAGTAAA	TAAATTGAAA	ACAAAGTAGC	TGGATATCAT	ATTGATTTAG	8940
50	ATAGGAATTT	GTTGCTAATT	TTATTTGTAA	ATCCAAGTTT	GTAGAATTCT	TATTCATTTA	9000
	TAAAATAATA	TTCGTATGAT	TTGATTTTTT	AATTAGTCCA	CCATTTCGAT	TTGTGCTATG	9060

	AACATATCAA	GGTGCGTGTA	CTGGTATTCA	ACCATACGGT	GCGTTTGTTG	AGACCCCTAA	9180
	TCATACTGAA	GGACTGATTC	ATATATCAGA	AATTATGGAT	GACTACGTTC	ATAATTTGAA	9240
5	GAAATTTCTA	TCAGAAGGCC	AAATTGTTAA	AGCTAAAATT	TTGTCTATAG	ATGATGAAGG	9300
	AAAGCTTAAT	CTATCATTAA	AGGATAATGA	TTACTTCAAA	AATTATGAGC	GTAAGAAGGA	9360
	AAAACAATCA	GTATTAGATG	AAATCAGAGA	AACAGAAAAA	TATGGGTTTC	AAACACTTAA	9420
10	AGAACGCTTA	CCAATCTGGA	TAAAACAGTC	AAAGCGAGCA	ATTCGAAACG	ACTAAAGGAA	9480
	CAGATAAATC	GTACCGAAAA	TCATACAAAG	GGTCTGAAAT	GAAAGTTTCT	TAGACTATAA	9540
15	AAGAGATTAG	TATCTATTAA	ATTTTATTAG	ATACTAATCT	CTTTTTGTCT	ACGATAACGT	9600
. •	AATATGaTTG	ATTCTATTTA	CACGTACAAA	TGGTTTAAGG	TGACATATCC	ATTATCTTTG	9660
	TTAGATAGAA	TCGTTGATTT	GCaATATTGT	ATGTGGATTT	GTTTTTTTA	TTTATTTTAG	9720
20	AAATGAGAAC	TACAACTTAA	AGTATTAAAC	GAATTGCAAC	TATATAAACA	GATAATTGGA	9780
	GAATGAAAAA	ATTACATGTT	ATAGTCAACT	CAATAATTTT	AAGGAGGAAT	TAAGTAATGA	9840
	AAAGTAAATA	CGAACCATTG	TTTGATAAAG	TAGAATTACC	AAATGGAGTA	GAGTTGAGAA	9900
25	ATCGATTTGT	GTTAGCCCCT	TTAACACATA	TTTCTTCAAA	TGATGATGGT	ACTATTTCAG	9960
	ATGTAGAACT	TCCTTATATT	GAAAAGCGTT	CACAAGATGT	TGGTATTACA	ATTAATGCTG	10020
	CGAGTAATGT	GAGTGATGTC	GGAAAAGCAT	TTCCAGGACA	GCCATCAATC	GCGCATGACA	10080
30	GTAATATTGA	AGGACTAAAA	CGATTAGCTA	CAGCAATGAA	GAAAAACGGT	GCCAAAGCAC	10140
	TCGTACAAAT	ACATCATGGC	GGTGCACAAG	CATTGCCTGA	ATTAACACCT	GATGGAGACG	10200
	TCGTAGCACC	AAGTCCAATT	TCTTTAAAAA	GTTTTGGTCA	GAAACAAGAA	CATAGTGCTA	10260
35	GAGAAATGAC	GAATGAAGAG	ATTGAACAAG	CAATCAAGGA	TTTTGGTGAA	GCAACGCGAC	10320
	GTGCĀĀTTGA	AGCAGGGTTT	GATGGTGTTG	AAATACATGG	CGCGAATCAT	TACTTAATTC	10380
1 0	ATCAATTTGT	ATCACCATAC	TATAATAGAA	GAAATGATGT	ATGGGCAAAT	CAATATAAAT	10440
	TCCCGGTCGC	TGTGATTGAA	GAAGTACTTA	AAGCGAAAGA	AGCGTATGGC	AATAAAGACT	10500
	TTATAGTTGG	ATACAGATTA	TCTCCAGAGG	AAGCGGAGTC	TCCAGGAATC	ACAATGGAAA	10560
1 5	TTACAGAGGA	ACTCGTTAAT	AAAATTAGCC	ATATGCCAAT	CGACTATATT	CATGTTTCAA	10620
	TGATGGATAC	GCATGCAACG	ACACGTGAAG	GTAAATACGC	TGGACAAGAA	AGACTGCCTT	10680
	TAATTCACAA	ATGGATAAAT	GGTCGTATGC	CACTTATCGG	TATTGGTTCA	ATTTTCACAG	10740
50	CTGACGAAGC	TTTAGATGCA	GTTGAAAATG	TTGGTGTTGA	CTTAGTAGCC	ATTGGTAGAG	10800
	AGCTACTACT	GGATTATCAA	TTTGTTGAAA	AAATTAAAGA	TGGACGGGAA	GATGAAATTA	10860

AATTTAATGA AGGGTTTTAT CCATTACCAC GTA 10953 (2) INFORMATION FOR SEQ ID NO: 63: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8155 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63: TTTGATANAA AACTGAATNA ATTAAATGTA TCGATTCAAC CTAATGAAGT GAATTTACAA 60 15 GTTAAAGTAG AGCCTTTTAG CANAAAGGTT AAAGTAAATG TTAAACAGAA AGGTAGTTTA 120 GCAGATGATA AAGAGTTAAG TTCGATTGAT TTAGAAGATA AAGAAATTGA AATCTTCGGT 180 AGTCGAGATG ACTTACAAAA TATAAGCGAA GTTGATGCAG AAGTAGATTT AGATGGTATT 240 20 TCAGAATCAA CTGAAAAGAC TGTAAAAATC AATTTWCCAG AACATGTCAC TAAAGCACAA 300 CCAAGTGAAA CGMAGGCTTA TATAAATGTA AAATAAATAG CTAAATTAAA GGAGAGTAAA 360 25 CAATGGGAAA ATATTTTGGT ACAGACGGAG TAAGAGGTGT CGCAAACCAA GAACTAACAC 420 CTGAATTGGC ATTTAAATTA GGAAGATACG GTGGCTATGT TCTAGCaCAT AATAAAGGTG 480 AAAAACACCC ACGTGTACTT GTAGGTCGCG ATACTAGAGT TTCAGGTGAA ATGTTAGAAT 540 30 CAGCATTAAT AGCTGGTTTG ATTTCAATTG GTGCAGAAGT GATGCGATTA GGTATTATTT 600 CAACACCAGG TGTTGCATAT TTAACACGCG ATATGGGTGC AGAGTTAGGT GTAATGATTT 660 CAGCCTCTCA TAATCCAGTT GCAGATAATG GTATTAAATT CTTTGGATCA GATGGTTTTA 720 35 AACTATCAGA TGAACAAGAA AATGAAATTG AAGCATTATT GGATCAAGAA AACCCAGAAT 780 TACCAAGACC AGTTGGCAAT GATATTGTAC ATTATTCAGA TTACTTTGAA GGGGCACAAA 840 AATATTTGAG CTATTTAAAA TCAACAGTAG ATGTTAACTT TGAAGGTTTG AAAATTGCTT 900 40 TAGATGGTGC AAATGGTTCA ACATCATCAC TAGCGCCATT CTTATTTGGT GACTTAGAAG 960 CAGATACTGA AACAATTGGA TGTAGTCCTG ATGGATATAA TATCAATGAG AAATGTGGCT 1020 CTACACATCC TGAAAAATTA GCTGAAAAAG TAGTTGAAAC TGAAAGTGAT TTTGGGTTAG 1080 45 CATTTGACGG CGATGGAGAC AGAATCATAG CAGTAGATGA GAATGGTCAA ATCGTTGACG 1140 GTGACCAAAT TATGTTTATT ATTGGTCAAG AAATGCATAA AAATCAAGAA TTGAATAATG 1200 50 ACATGATTGT TTCTACTGTT ATGAGTAATT TAGGTTTTTA CAAAGCGCTT GAACAAGAAG 1260

55

1320

GAATTAAATC TAATAAAACT AAAGTTGGCG ACAGATATGT AGTAGAAGAA ATGCGTCGCG

	CTGGTGATGG	TTTATTAACT	GGTATTCAAT	TAGCTTCTGT	AATAAAAATG	ACTGGTAAAT	1440
	CACTAAGTGA	ATTAGCTGGA	CAAATGAAAA	AATATCCACA	ATCATTAATT	AACGTACGCG	1500
5	TAACAGATAA	ATATCGTGTT	GAAGAAAATG	TTGACGTTAA	AGAAGTTATG	ACTAAAGTAG	1560
	AAGTAGAAAT	GAATGGAGAA	GGTCGAATTT	TAGTAAGACC	TTCTGGAACA	aACCATTAGT	1620
	TCGTGTCATG	GTTGAAGCAG	CAACTGATGA	AGATGCTGAA	aGATTTGCAC	AACAAATAGC	1680
10	TGATGTGGTT	CAAGATAAAA	TGGGATTAGA	TAAATAAATA	CTGTATTACA	AATGAGCCGA	1740
	TGCGTATGcA	nTcgtTTTTT	GTGTTTGTAG	AAATAATTTA	TAGTACAAAC	GTAAAATGAT	1800
15	ATAAACAAAA	TAAAAACAAA	GTAATCAATA	TGTAATATAA	AATACACTGG	TACTCAATAT	1860
	ATAATGATGA	TAAAATTAAT	TTTAATTAGA	TAGAGTTGCT	TTGTGTTTTT	AACGCAGATG	1920
	CTACTACTTA	TCTTAACAGT	TGATTAAGTG	AAATCATTTA	ACAGCGAGAA	TAATCAACCA	1980
20	GGAGGATGAC	TTAATGAATT	TATTCAGACA	ACAAAAATTT	AGTATCAGAA	AATTTAATGT	2040
	CGGTATTTTT	TCAGCTTTAA	TTGCCACTGT	TACTTTTATA	TCTACTAACC	CGACAACAGC	2100
	GTCTGCAGCA	GAGCAAAATC	AGCCTGCACA	AAATCAACCA	GCACAACCAG	CTGATGCCAA	2160
25	TACACAGCCT	AACGCAAATG	CTGGTGCTCA	AGCTAATCCT	ACAGCACAGC	CAGCTGCACC	2220
	TGCCAACCAA	GGACAACCAG	CAGTACAACC	AGCAAACCAA	GGTGGACAGG	CTAATCCAGC	2280
	AGGAGGAGCA	GCACAACCAA	ATACACAACC	AGCTGGACAA	GGTGATCAAG	CTGATCCGAA	2340
30	TAACGCTGCA	CAAGCACAAC	CTGGAAATCA	AGCAACACCG	GCAAACCAAG	CAGGTCAAGG	2400
	AAATAACCAA	GCAACACCTA	ATAATAATGC	AACACCGGCA	AATCAAACAC	AGCCAGCGAA	2460
25	TGCTCCAGCA	GCAGCGCAAC	CAGCAGCACC	TGTAGCAGCA	AACGCACAAA	CTCAAGATCC	2520
35	AAATGCTAGC	AATACTGGTG	AAGGCAGTAT	TAATACGACA	TTAACATTTG	ATGATCCTGC	2580
	CATATCAACA	GATGAGAATA	GACAGGATCC	AACTGTAACT	GTTACAGATA	AAGTAAATGG	2640
10	TTATTCATTA	ATTAACAACG	GTAAGATTGG	TTTCGTTAAC	TCAGAATTAA	GACGAAGCGA	2700
	TATGTTTGAT	AAGAATAACC	СТСААААСТА	TCAAGCTAAA	GGAAACGTGG	CTGCATTAGG	2760
	TCGTGTGAAT	GCAAATGATT	CTACAGATCA	TGGTAACTTT	AACGGTATTT	CAAAAACTGT	2820
4 5	AAATGTAAAA	CCAGATTCAG	AATTAATTAT	TAACTTTACT	ACTATGCAAA	CGAATAGTAA	2880
	GCAAGGTGCA	ACAAATTTAG	TTATTAAAGA	TGCTAAGAAA	AATACTGAAT	TAGCAACTGT	2940
	AAATGTTGCT	AAGACTGGTA	CTGCACATTT	ATTTAAAGTA	CCAACTGATG	CTGATCGTTT	3000
50	AGATTTACAA	TTTATTCCTG	ACAATACAGC	AGTTGCTGAT	GCTTCAAGAA	TTACAACAAA	3060
	TAAAGATGGT	TATAAATACT	ATTCATTCAT	TGATAATGTA	GGTCTATTCT	CAGGATCACA	3120

	TAATACTGAA	ATCGGTAACA	ATGGTAATTT	TGGTGCTTCA	TTAAAAGCAG	ATCAATTTAA	3240
	ATATGAAGTA	ACATTACCAC	AAGGTGTAAC	TTACGTTAAT	AATTCATTAA	CTACAACATT	3300
5	CCCTAATGGT	AATGAAGACA	GTACAGTATT	GAAAAATATG	ACTGTTAATT	ATGATCAAAA	3360
	TGCAAATAAA	GTTACATTTA	CAAGCCAAGG	TGTGACAACG	GCACGTGGTA	CACACACTAA	3420
	AGAAGTTTTA	TTCCCAGATA	AATCTTTAAA	ATTATCATAT	AAAGTTAATG	TTGCGAATAT	3480
10	CGATACACCT	AAAAATATTG	ATTTTAATGA	AAAATTAACA	TATCGTACTG	CTTCAGATGT	3540
	TGTAATTAAT	AATGCGCAAC	CAGAAGTaCA	CTAACTGCAG	ATCCATTTTC	AGTAGCGGTT	3600
1.5	GAAATGAACA	AAGATGCGTT	GCAACAACAA	GTAAACTCAC	AAGTTGATAA	TAGTCATTAC	3660
15	ACAACAGCAT	CAATTGCAGA	АТАСААТААА	CTTAAACAAC	AAGCAGATAC	TATTTTAAAT	3720
	GAAGATGCGA	ATCATGTTAA	AACTGCAAAT	CGTGCATCTC	AAGCGGATAT	TGATGGTTTA	3780
20	GTAACTAAAT	TACAAGCTGC	ATTAATTGAT	AATCAAGCAG	CAATTGCTGA	ATTAGATACT	3840
	AAAGCTCAAG	AAAAGGTTAC	AGCAGCACAA	CAAAGTAAAA	AAGTTACGCA	AGATGAAGTT	3900
	GCAGCACTTG	TAACTAAAAT	TAACAATGAT	AAAAATAATG	CAATCGCAGA	AATTAATAAA	3960
25	CAAACTACAG	CACAAGGTGT	CACAACTGAA	AAAGATAATG	GTATCGCAGT	GTTAGAACAA	4020
	GATGTGATTA	CACCAACAGT	TAAACCTCAA	GCGAAACAAG	ATATTATCCA	AGCAGTTACA	4080
	ACTCGTAAAC	AACAAATTAA	AAAGTCAAAT	GCATCATTAC	AAGATGAAAA	AGATGTAGCA	4140
30	AATGATAAAA	TTGGTAAAAT	TGAAACAAAG	GCAATTAAAG	ATATTGATGC	AGCAACAACA	4200
	AATGCACAAG	TAGAAGCCAT	TAAAACAAAA	GCAATCAATG	ATATTAATCA	AACTACACCT	4260
	GCTACAACAG	CTAAAGCAGC	AGCTCTTGAA	GAATTTGACG	AAGTTGTTCA	AGCACAAATT	4320
35	GATCAAGCAC	CTTTAAATCC	TGATACAACA	AATGAAGAAG	TAGCGGAAgC	TATTGAACGT	4380
	ATTAATGCAG	CTAAAGTTTC	TGGTGTTAAA	GCAATTGAAG	CGACAACGAC	TGCACAAGAT	4440
10	TTAGAAAGAG	TTAAAAACGA	AGAAATCTCA	AAAATTGAAA	ATATTACTGA	CTCTACGCAA	4500
	ACAAAAATGG	ATGCCTATAA	TGAAGTTAAA	CAAGCTGCAA	CAGCTAGAAA	AGCTCAAAAT	4560
	GCTACAGTTT	CAAATGCAAC	AAATGAAGAA	GTAGCAGAAG	CTGATGCAGC	AGTAGATGCA	4620
1 5	GCTCAAAAGC	AAGGTTTACA	TGACATCCAA	GTTGTTAAAT	CAAAACAGGA	AGTTGCTGAT	4680
	ACAAAATCAA	AAGTATTAGA	TAAAATCAAT	GCAATTCAAA	CACAAGCAAA	AGTTAAACCT	4740
	GCAGCTGATA	CGGAAGTAGA	AAACGCATAT	AATACACGTA	AACAAGAAAT	TCAAAATAGC	4800
50	AATGCTTCAA	CTACAGAAGA	AAAACAAGCT	GCATATACAG	AATTAGATAC	TAAAAAGCAA	4860
	GAAGCAAGAA	CAAATCTTGA	TGCTGCAAAT	ACAAACAGTG	ATGTAACAAC	AGCTAAAGAC	4920

	GCGGAAATCG	CTCAAAAAGC	AAGTGAACGT	AAAACAGCAA	TTGAAGCAAT	GAATGATTCG	5040
	ACTACTGAAG	AACAACAAGC	AGCGAAAGAC	AAAGTGGATC	AAGCAGTAGT	TACTGCAAAC	5100
5	GCTGATATAG	ATAATGCTGC	AGCAAACAAT	GATGTGGATA	ATGCAAAAAC	TACAAATGAA	5160
	GCTACAATCG	CAGCCATTAC	ACCTGATGCA	AATGTTAAAC	CAGCAGCAAA	ACAAGCAATT	5220
	GCAGATAAAG	TACAAGCTCA	AGAAACAGCA	ATTGATGGAA	ATAACGGCTC	AACAACTGAA	5280
10	GAAAAAGCAG	CTGCTAAACA	ACAAGTTCAA	ACTGAAAAA	CAACAGCTGA	TGCCGCAATA	5340
	GATGCAGCAC	ATACAAATGC	GGAAGTTGAA	GCGGCTAAAA	AAGCAGCAAT	TGCTAAAATT	5400
15	GAAGCGATTC	AGCCAGCAAC	AACAACTAAA	GATAATGCGA	AAGAAGCAAT	TGCTACGAAA	5460
,3	GCGAATGAAC	GTAAAACAGC	AATCGCTCAA	ACGCAAGACA	TTACTGCTGA	AGAAATTGCA	5520
	GCGGCTAATG	CGGACGTAGA	TAATGCTGTG	ACACAAGCAA	ATAGCAACAT	TGAAGCTGCT	5580
20	AATAGTCAAA	ATGATGTAGA	CCAAGCGAAA	ACGACAGGTG	AAAATAGTAT	TGATCAAGTA	5640
	ACACCAACAG	TTAATAAAA	AGCAACTGCA	CGTAATGAAA	TCACAGCAAT	TTTAAATAAC	5700
	AAATTGCAAG	AGATTCAAGc	t.ACGCCAGAT	GCAACAGATG	AAGAAAAACA	AGCAGCTGAT	5760
25	GCTGAAGCAA	ATACTGAAAA	TGGTAAAGCA	AATCAAGCCA	TTTCAGCAGC	AACTACTAAC	5820
	GCACAAGTTG	ATGAAGCTAA	AGCAAATGCA	GAAGCAGCGA	TTAATGCGGT	AACACCAAAA	5880
	GTTGTGAAGA	AACAAGCGGC	TAAAGATGAA	ATTGATCAAT	TACAAGCAAC	GCAAACAAAT	5940
30	GTTATCAATA	ATGATCAGAA	CGCTACAACA	GAAGAAAAAG	AAGCAGCTAT	TCAACAATTA	6000
	GCAACAGCAG	TTACAGACGC	GAAAAATAAT	ATTACAGCTG	CAACTGATGA	TAATGGTGTA	6060
	GATCAGGCGA	AAGACGCTGG	AAAGAATTCA	ATTCAAAGCA	CGCAACCAGC	AACAGCGGTT	6120
35	AAATCAAATG	CTAAAAATGA	TGTTGATCAA	GCTGTGACAA	CTCAAAATCA	AGCAATTGAT	6180
	AATAÉAACTG	GTGCTACAAC	TGAAGAGAAA	AATGCAGCAA	AAGATTTAGT	TTTAAAAGCT	6240
40	AAAGAAAAAG	CGTATCAAGA	TATCTTAAAT	GCACAAACAA	CTAATGATGT	TACGCAAATT	6300
40	AAAGATCAAG	CAGTTGCTGA	TATTCAAGGT	ATTACTGCAG	ATACAACAAT	TAAAGATGTT	6360
	GCGAAAGATG	AATTAGCAAC	AAAAGCAAAC	GAACAAAAAG	CGCTTATTGC	ACAAACTGCA	6420
45	GATGCGACTA	CTGAAGAAAA	AGAACAAGCA	AATCAACAAG	TAGACGCACA	ATTAACACAA	6480
	GGTAATCAAA	ATATTGAAAA	TGCACAGTCA	ATCGATGATG	TAAACACTGC	AAAAGATAAT	6540
	GCAATTCAAG	CAATTGACCC	AATTCAAGCA	TCAACAGATG	TTAAAACGAA	TGCAAGAGCG	6600
50	GAATTGCTAA	CTGAAATGCA	АЛАЛАЛАТА	ACTGAAATAC	TTAATAATAA	TGAGACTACT	6660
	AATGAAGAAA	AAGGTAACGA	TATTGGACCA	GTTAGAGCAG	CATATGAAGA	AGGTTTAAAT	6720

	AAAGTTCAAC	AACTTCATGC	AAATCCTGTT	AAGAAACCAG	CAGGTAAAAA	AGAATTAGAT	6840
	CAAGCTGCAG	CTGATAAGAA	AACACAAATA	GAACAAACAC	CAAATGCATC	ACAACAAGAA	6900
5	ATTAATGATG	CAAAACAAGA	AGTTGATACT	GAATTAAATC	AAGCGAAAAC	AAATGTCGAT	6960
	CAATCATCAA	CAAATGAATA	TGTTGATAAT	GCAGTTAAAG	AAGGAAAAGC	TAAAATTAAT	7020
	GCAGTTAAAA	CATTTAGTGA	GTACAAAAAA	GATGCTTTAG	CTAAAATTGA	AGATGCATAT	7080
10	AATGCTAAAG	TAAACGAAGC	GGATAACTCT	AACGCATCGA	CTTCAAGTGA	AATTGCTGAA	7140
	GCGAAACAAA	AACTTGCTGA	ATTAAAACAA	ACTGCGGATC	AAAATGTTAA	TCAAGCTACT	7200
15	TCTAAAGATG	ACATTGAAGT	TCAAATTCAT	AATGACTTAG	ATAATATTAA	CGATTACACA	7260
15	ATTCCAACAG	GTAAAAAAGA	ATCAGCTACA	ACAGATTTAT	ATGCTTATGC	AGATCAGAAG	7320
	AAAAATAATA	TTTCAGCTGA	CACTAATGCA	ACACAAGATG	AAAAGCAACA	AGCAATTAAG	7380
20	CAAGTTGACC	AAAATGTTCA	AACTGCATTA	GAAAGCATTA	ATAATGGTGT	GGATAATGGT	7440
	GACGTTGATG	ATGCATTAAC	ACAAGGTAAA	GCAGCAATTG	ATGCTATTCA	AGTAGATGCT	7500
	ACTGTTAAAC	CTAAAGCGAA	CCAAGCTATT	GAAGTTAAAG	CAGAAGATAC	GAAAGAATCT	7560
25	ATTGATCAAA	GTGACCAGTT	AACTGCTGAA	GAAAAAACTG	AAGCATTAGC	AATGATTAAA	7620
	CAAATTACAG	ATCAAGCTAA	ACAAGGTATT	ACTGATGCAA	CAACAACTGC	TGAAGTTGAA	7680
	AAAGCGAAAg	CTCaAGGACT	TGAAGCATTT	GATAACATTC	AAATCGACTC	AACAGAAAAA	7740
30	CAAAAAGCTA	TCGAAGAATT	AGAAACTGCA	CTAGACCAGA	TTGAAGCAGG	TGTAAATGTC	7800
	AACGCTGATG	CTACAACTGA	AGAAAAAGAA	GCGTTTACGA	ATGCTTTAGA	AGACATTTTA	7860
	TCAAAAGCAA	CTGaAGATAT	TTCTGATCAA	ACTACAAATG	CAGAAATCGC	TACTGTCAAA	7920
35	AATAGTGCGC	TTGAACAACT	TAAAGCACAA	CGTATTAATC	CTGAAGTTAA	GAAAAATGCT	7980
	TTGGAAGCAA	TCAGAGAAGT	GGTTAACAAG	CAAATAGGAA	taattaaaaa	TGCAGATGCA	8040
40	GATGCATCGG	CGGAAAGAnA	TTGCACGTAC	GGGATTTAGG	TAGATATTTT	GGACCGATTT	8100
40	GCTGGATAAA	TTTAGGGTnA	AACCCCAACC	AATGCCGAAG	TTGCCTGAAT	TACCA	8155

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1630 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

	CTGTTTTATT	TGCAGCACCC	ATACTGGAAA	TCACTTTAAT	CCCTCGGTCA	AGACACTCTT	120
	TCATTAAGTG	TACTITGTAC	ATTATTGTAT	CACTTGCATC	TACAAAATAA	TCTATATCGT	180
5	AGTTATCGAA	AATTTCTTCA	TATGTCTCTT	CTGTATAAAA	CATATGTAAG	GGCGTGACTT	240
	TACAATCTGG	ATTAATTAAT	TTAATACGTT	CTTCCATCAA	AGAAACTTTA	CTTTGTCCTA	300
	CCGTTGTAGT	TAAAGCGTGT	AATTGTCTGT	TTACATTTGT	AATATCAACA	TCATCTTTAT	360
10	CTATTAATAT	AATATGACCA	ATATTCGTTC	TTGCTAATGC	TTCAGCAGCA	AATGAACCAA	420
	CACCTCCAAC	GCCAAGTATG	ACAACAGTTT	GTTGCTTCAA	TAAATCTAAA	CCTTGTTGTC	480
4.5	CAATCGCTAG	TTCATTTCTT	GAAAATTGAT	GTTTCATTAT	TTTACCTCTT	TCACTGATTT	540
15	ATACATAAGT	ACATAGTAAC	TTAAAATTTT	ATATTTAGCA	TTATCACTTT	GATTATTTTC	600
	CCAAAATTCA	ACGAGGAAAC	AAATTATTTA	CGCTATAAAA	CCCAACTAAT	TCTTTATTAA	660
20	AAACTTAAAG	AAACGCATAA	AAATACGCAA	GACAAAGTCT	TGCGTATCGA	TAGAGTCCGT	720
	ATTGCCGTAG	TTATAATAGC	TTGATCATTC	GGCCTGTTAT	ATACAGGTGG	GTGCCCTGTT	780
	TCTTGTTTTG	TACGTCCTTC	ATATAAGGCG	TGTACGCTGC	AAGAAAACCC	ATTGGGCTCC	840
25	CTTGATCAAA	GAGTGTTAGG	CCCAAATTAA	AAAGCAAACT	TACGAACAAC	TCAGATGACT	900
	ATCTTATGAT	GTTATATTAC	CACATAATTA	AAATTAATGA	AATTATAACA	AACCAAAGTT	960
	TATTGATTTT	TTAAAATTTA	GTGACGAATT	CGCAAAGAAA	GTTCTTCTAA	TTGTTTATCA	1020
30	GAAACTTCAC	TAGGCGCATT	CGTTAATAAA	CATGTAGCAG	ATGCTGTTTT	AGGGAATGCG	1080
	ATTGTATCTC	TCAAGTTTGT	TCTATTAGTC	AATAACATGA	CTAATCGGTC	tAATCCTAAT	1140
	GCAATACCGC	CATGTGGTGG	TGCACCATAT	TTAAATGCAT	CTAGTaAGAA	GCCGAACTGT	1200
35	TCCTgTGCTT	GTTCTTTAGT	AAATCCAAGA	ACTTCGAACA	TTTTTTCTTG	TAACTCACCA	1260
	TCATGAATTC	TGATTGAACC	GCCACCTAAT	TCATAACCAT	TTAATACTAT	GTCATAAGCA	1320
10	TTTGCCTCAG	CTTCtTCTGG	CGCAGTGCCA	AGCTTAGCAA	TATCAGCTTC	TTTTGGAGAT	1380
40	GTAAATGGAT	GATGTGCTGC	AACGTAACGT	TTCGCATCTT	CATCATATTC	TAATAATGGC	1440
	CAATCTGTCA	CCCATAAGAA	GTTTAATTTT	GTTTCATCGA	TTAAACCTAA	TTCTTTAGCT	1500
45	AATTTGACAC	GTAATGCACC	TAAACTTTGT	GCAACGACAT	TTGGTttGTC	TGCAACAAAC	1560
	ATTACTAAGT	CACCAGCTTC	AGCACCAGTT	AATGTAAGTA	ATGTTTCAAC	ATTITCTGTT	1620
	cAAAGAAACG						1630

50 (2) INFORMATION FOR SEQ ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 732 base pairs

(C) STRANDEDNESS: double

	(D) TOPOLOGY: linear	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	CAATTGGACA TCTTGTATGA AAAGGACAAC CTTGCGGCGG ATTACTTGGC GAAGGTAATT	60
10	CTCCTTTTAA TATAATTCTA TTGTTATTAT GTTTATCAAT TTGTGGTATT GATGAAATCA	120
	ACGCTTTTGT ATATGGATGT TTGGGATTTT CATAAATTTC TTTATCAGAT GCGATTTCAA	180
	CTATATGACC TAAATACATA ACTCCAATGA CATCACTTAT ATGTTTTACT ACACTTAAAT	240
15	CATGTGCGAT AAATAAATAG CTTAAGTTAA ATTGTTCTTG TAAATCTTTT AATAAATTCA	300
	GTACTTGAGA TTGAACAGAT ACATCTAATG CACTTACAGG CTCATCAGCA ACAATTAAAC	360
	TCGGACGCAA AGCCAATGCT CTTGCAATTC CCACTCTTTG TCTCTGTCCA CCTGAAAATT	420
20	CATGTGCATA TTEATAATAT GCATCTTCAC TTAGGCCAAC ACATTTTAAT AAATATAGTA	480
	CTTCTTTTT TATTTCTTCT TTTGGCAATT TTTTATAATT TAAAATAGGT TCTGAAATGA	540
25	TATCTCCAAC CATTTGCATC GGATTCAATG ATGCATACGG ATCTTGAAAT ATCATCTGAT	600
20	ATTGTTGTCG TGATTTTCTG AGTTTTTTAC CTTGTAATCT TGTTATATCT TCACCATTAA	660
	CAATTATTGA GCCTGAAGTT GCATCTTCAA GCCTGATAAT CACTTTACCT AACGTTGACT	720
30	TACCACAACC CG	732
	(2) INFORMATION FOR SEQ ID NO: 66:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5838 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
	AATATATTCA TATGTTTCAT CAACAATATT AGCTGCTTTT TGAATTAAAG CAATTTCGTC	60
45	AGCATCTTTG ACGTCTCTAA TTTTATCTAC AGTATTAGAA ATGCTTATTA ATGATATACG	120
40	GCTITTATTI AATTCAAGGT ATGTATCATA ACTTACATGA TGCCCCTCAA AACCTACATT	180
	TTCAAAATTT TCTTGGTGTA GCAATTCTTT AATCTCACCA ATAATAGTAG ATTTACGATT	240
50	AATAATTTCA TAATTTGGCG CCTGCTTAGT TGCTTGATCA ATATATCTAA AGTCTGTTAT	300
	CAAATATTGT TTATCTTTAG ATATGATAAG TGCTCCACTG GTACCAGTAA AACCTGATAA	360
	ATATCTTCTA TTGTAATCCG AAAGAATGAT AATCGCATCT AAATGTTTTT GTTCTAAAAT	420

488

	CAACTTTATA	CATTAAAATA	ATATCATAAT	AAGGATAAAA	AATAATAGAT	ATTGATTTTA	540
	GGGAGATAGT	AATGAAAAAA	TTGGTTTCAA	TTGTTGGCGC	AACATTATTG	TTAGCTGGAT	600
5	GTGGATCACA	AAATTTAGCA	CCATTAGAAG	Anaaaacaac	AGATTTAAGA	GAAGATAATC	660
	ATCAACTCAA	ACTAGATATT	CAAGAACTTA	ATCAACAAAT	TAGTGATTCT	AAATCTAAAA	720
	TTAAAGGGCT	TGAAAAGGAT	AAAGAAAACA	GTAAAAAAAC	TGCATCTAAT	AATACGAAAA	780
10	TTAAATTGAT	GAATGTTACA	TCAACATACT	ACGACAAAGT	TGCTAAAGCT	TTGAAATCCT	840
	ATAACGATAT	TGAGAAAGAT	GTAAGTAAAA	ACAAAGGCGA	TAAGAATGTT	CAATCGAAAT	900
15	TAAATCAAAT	TTCTAATGAT	ATTCAAAGTG	CTCACACTTC	ATACAAAGAT	GCTATCGATG	960
	GTTTATCACT	TAGTGATGAT	GATAAAAAA	CGTCTAAAAA	TATCGATAAA	TTAAACTCTG	1020
	ATTTGAATCA	TGCATTTGAT	GATATTAAAA	ATGGCTATCA	AAATAAAGAT	AAAAAACAAC	1080
20	TTACAAAAGG	ACAACAAGCG	TTGTCAAAAT	TAAACTTAAA	TGCAAAATCA	TGATAGGAGT	1140
	CTTTTAATGC	GTAATATAAT	ATTTTATCTT	GTACTTATTA	TTGCTGCGAT	TGGATTAGTA	1200
	ATGAATCTAG	ATGCCTTTAT	TTTTTCAATC	GTCAGAATGT	TAATCAGCTT	TGcgTAaTAG	1260
?5	CTGGTATTAT	TTATCTGATT	TATTATTTCT	TCATCTTAAC	TGAAGACCAA	CGCAAATATC	1320
	GCAAAGCAAT	GCgTrAaGTA	TAAAAGAAAT	CAAAGAAGAA	AATAGATAAA	AAAACGGAAG	1380
	CACTTGTAGG	TAAAATAGTC	TACGTGCTTC	CATTTTTTAT	TCTAAAAACT	ACTTTCTAAA	1440
30	CATCCATTCA	TCTGAACGAT	ATTTTTCAGT	TAATTCTTCC	ACTTCTGCCA	ATTGAGCTTC	1500
	TGTTAATTCA	AGTGGCTTTA	ATTCTATATT	TAAACCTTTC	TTAAAACCTT	TCTCGAAAGC	1560
35	TTCTTCCATT	TGACTAATAG	TAATGTGTTC	ATCTGAAATA	TCATTGATGG	CAACTGCTTT	1620
,5	TTCAACGAAT	GCCTCTTTCA	TTTTTAATTT	TAATCTTTCA	TTTTTATAAA	Traacatatc	1680
	AAAÇÃGTTCA	TCAATATCAA	TATCTTGTAA	AATCGAACCG	TGTTGGAGGA	TTACGCCCTT	1740
10	TTGTCTCGTT	TGAGCACTCC	CAGCAATCTT	ACGGCCTTCA	ACAACTAGCT	CATACCAACT	1800
	TGGTGCATCA	AAACACACTG	AACTTCGAGG	TTGTTTTAAT	TTTTGACGCT	CTTCAGGCGT	1860
	TTTAGGTACC	GCAAAATAAG	TATCAAATCC	TAAGTTTTTA	AATCCTTCTA	ATAATCCTTG	1920
15	TGAAATCACT	CTGTACGCTT	CTGTAACTGT	AGAAGGCATA	TTCGGATGCG	ATTCAGGCAC	1980
	AATCACACTG	TAAGTTAACT	CTTTATCATG	TAGCACCCCA	CGGCCACCAG	TTTGACGCCT	2040
	TACGAGACCA	AAACCTTTCT	CTTTAACCTT	ATCAATATCA	ATTTCTTTTT	GTAGCCTTTG	2100
50	GAAATACCCT	ATTGATAATG	TTGCAGGATT	CCATGTGTAA	AAACGTATAA	CTGGATCAAT	2160
	ттелестета	CACACAAAAT	ттаатаассс	ттсатссатт	CCCATATTAT	እ እጥአጥርርር ጥ ር	2220

	AAATGTATAA	TATTTGATTC	GCTAATTAAT	CAATTTAACT	AAATGAATAA	TAATTGCAAT	2340
	TCTTTAGTGA	AATATTTTGA	TAATTTGACC	TAACAGTCTT	ATAATTATAT	TATCGTTTAA	2400
5	TTAGGGAGGA	TGCAAGATGA	GTGCTAGTTT	GTACATCGCA	ATAATTTTAG	TTATAGCAAT	2460
	TATTGCTTAT	ATGATTGTTC	AACAAATTCT	TAACAAGCGA	GCTGTTAAAG	AATTAGATCA	2520
10	AAATGAATTC	CATAATGGGA	TTAGAAAAGC	TCAAGTCATC	GATGTTAGAG	AGAAAGTTGA	2580
, 0	CTATGACTAC	GGTCACATTA	ATGGGTCTCG	CAATATTCCT	ATGACAATGT	TCAGGCAACG	2640
	ATTCCAAGGA	TTAAGAAAAG	ATCAACCGGT	ATACTTATGT	GATGCCAATG	GGATTGCTAG	2700
15	CTATAGAGCC	GCTCGTATTT	TGAAAAAGAA	TGGATATACA	GATATCTATA	TGTTAAAAGG	2760
	CGGCTATAAA	AAATGGACTG	GAAAAATAAA	GTCTAAAAAA	TAGTTTTTGT	AAATTTAATA	2820
	TACGATTTAA	TAAAATCTGA	GTGTTAATTG	ATCATCAATA	ACAATACTCA	GATTTTAATT	2880
20	TTTTAACAAA	GTCTGTTACT	ATATTTCTCT	AGCTTCACTG	ATCATTAAAC	TTAGTTTCAG	2940
	CATAATAAAG	AAAGTTCAGC	TCATTTTCAA	TACGATTCAA	TTACCGCAAT	CTAAAAAATG	3000
	AAAAGACAAT	TTCTATGAAA	GAATAATACC	AAACCCTAAG	AGTTATTACT	TCGGTTTAGT	3060
25	TTTCTTGTTT	AAATAGAAAT	TGTCTTTTTC	AATTGATTTT	GAAACCATTA	TCCTTAAATC	3120
	TTCATACAAA	GTTAGAATAA	TAATTCTCGG	AATATGTGTT	TAATACTTTA	TTTTTCCTGT	3180
3 <i>0</i>	TTAAGATTTT	CAAACTTTAA	TATTGGTTTA	CGAGCAGCTG	TAGCTTCGTC	TAATCGATCA	3240
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ATCACAGTTG	TATGTGGTGC	TTCTAGCacT	TTATCAGGAT	CATTTTTAGC	TTCTTCAGCA	3300
	ATACTAATTA	ATGTATCGAT	AAAATAATCA	AGTGTTTCTT	TAGACTCTGT	CTCAGTCGGT	3360
35	TCAATCATCA	TACCTTCTTC	AACATTTAAT	GGGAAGTATA	TTGTTGGTGG	ATGTACACCG	3420
	AAATCTAATA	ATCGCTTAGC	CATGTCTAAA	GTACGTACAC	CAAATTCTTT	TTGACGCACA	3480
	CCACTTAACA	CAAACTCGTG	TTTACAATAT	TGTTTATAAG	GTATTTCAAA	GTGTTTAGAT	3540
10	AAACGTGCTT	TAATATAATT	CGCATTAAGA	ACCGCTGCTT	CAGAAACCTC	TTTAAGTCCA	3600
	GTTGCTCCCA	TAGTTCGAAT	ATACGTATAA	GCTCTTAAGT	AAATACCAAA	GTTACCATAA	3660
	AATGGTTTTA	CACGTCCGAT	AGAATTTTTA	ATGTCATTAT	CATATTTAAA	TTTGTCGCCA	3720
15	TCTTTAATAA	CCATTGGCTT	TGGTAAGTAA	CTTGCTAGTT	CTTTTACTAC	ACCGACTGGA	3780
	CCTGAACCAG	GACCGCCACC	ACCATGTGGA	CCAGTAAATG	TTTTATGCAA	GTTTAAATGA	3840
50	ACAGCATCAA	ATCCCATATC	TCCTGGGCGA	ACTTTGTCCA	TAATAGCGTT	TAAATTCGCA	3900
,,,	CCATCATAAT	ATAATAGACC	ACCAGCATTA	TGGACGATTT	CACGGATTTC	CATAATATTT	3960
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TACOTAAAOT	ርምምምርር አምም እ	CTTNACATAA	TACCTCCTCT	ATTENDED ATTEND	4026

	GATTTAAATC	CTGCAAATGa	AGCTGAGGCT	GGaTTCGTAC	CATGCGCAGA	ATCTGGCACA	4140
	ATGACTTCAT	CACGATGACC	TTCACCATTA	TTCTCATGGT	AAGCTTTAAA	TATCATCAAT	4200
5	GCAGTCCATT	CACCATGTGC	GCCAGCAGCT	GGTTGTAATG	TCACCTCATC	CATACCAGTA	4260
	ATTTCTTTTA	ATTCTTCTTG	CAAACTATAA	ATAATTTCTA	ATGAACCTTG	AACTTGATCT	4320
	TCATCTTGTA	ATGGATGTGA	TTCACTAAAT	CCTGGTATTC	TAGCAACCTT	TTCATTAATT	4380
10	TTAGGGTTAT	ACTTCATCGT	ACATGAACCC	AATGGATAAA	ATCCGTTGTC	TACACCGAAA	4440
	TTTTTATTTG	AAAGTTCAGT	ATAATGACGT	ACTAAGTCTA	GTTCAGCAAC	TTCAGGAAAC	4500
15	TCCGCTTTGT	TTTTACGAAT	AAATTTATCA	TCTAACAATG	ACTCAACAGA	ATTTGTTTTA	4560
, 0	ATATCACTTT	TTGGTAATGA	ATATGCATAT	CTGCCTTCAC	GAGATCTTTC	AAAAATTAAT	4620
	GGACTTGATT	TACTAGTCAT	TTAACTCACC	AGCCTTTTCT	ACAAATGTAT	CGATTTCATC	4680
20	TTTTGTTCTT	AATTCAGTTA	CAGCTATTAA	CATGTGATTT	TTAAAGTCGT	CTGAAACAAC	4740
	ACCTAAATCA	AAACCACCGA	TAATATTGTA	CTTCACTAAT	TCCTCGTTAA	CTTGTTGAAT	4800
	TGGTTTGTCA	AATTTGACTA	CAAACTCATT	GmnAAGnTGT	ACCATCTAAT	ACTTCAAAAC	4860
25	CTTTTTTAAT	AAATTGTTGT	TTAGCATAGT	TAGCATGTTC	TATATTTTGA	ACTGCAATAT	4920
	CATAGATACC	TTGTTTACCA	AGTGCTGACA	TTGCAATTGA	TGaCGcTAAA	GCATTTAATG	4980
	CTTGGTTAGA	ACAAATATTA	GATGTCGCTT	TATCGCGTCG	AATATGTTGT	TCACGTGCTT	5040
30	GTAATGTTAA	TACAAAGCCA	CGATTACCTT	CATCATCTTG	TGTTTGACCG	ACTAATCTAC	5100
	CTGGCACTTT	ACGCATTAAC	TTTTTCGTCG	TTGCAAAATA	TCCACAATGT	GGCCCACCGA	5160
25	ATTGAGCAGG	AATTCCGAAT	GGCTGAGTAT	CACCTACAAC	AATATCTGCA	CCAAATGAAC	5220
35	CTGGAGGTGT	AAGTAATCCC	AATGCTAATG	GATTTGCATA	TACGATAAAT	AATGCTTTTT	5280
	TATCFTCAAT	AAAGCTATGA	ATCTTTTCAA	GATCTTCAAT	TGAACCGTAA	AAGTTTGGAT	5340
10	ATTGTACTGC	AACAGCTGCT	GTTTCATCAT	CCACTGCTGC	TTCTAATTTT	TTCAAATCTG	5400
	TAACAGTGCC	ATCTAAATCG	ATTTCCACTA	CTTCGAATTC	CTTACGCGTC	TTAGCATAAG	5460
	TATGAAGTAC	TTGTAATGCT	TGATAATGTA	AACCTTTTGA	GACTACAATT	TTATTTTCT	5520
1 5	TTGTTTGACT	AAATGCTAAG	ATACATGCTT	CAGCAAAGCT	AGTCATCCCA	TCATACATAG	5580
	AAGAATTTGC	TACATCCATA	TCTGTTAATT	CACAAATTAA	AGTTTGGAAC	TCAAAAATGG	5640
	CTTGTAATTC	ACCTTGAGAA	ATTTCCGGTT	GATATGGCGT	ATATGCTGTG	TAAAATTCTG	5700
50	ATCTTGAAAT	CATAGCATCC	ACAACTGATG	GCGCGTAATG	ATCATAAACA	CCAGCACCCA	5760
	TAAATCATCT	ATCCCTTTCT	TTACTCATAT	+ CTTCCTPCC	N N TYCCCC N TT	ጥ እ እ እ ርቊ ጥርጥ እ	E020

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE	CHARACTERISTICS
--------------	-----------------

(A) LENGTH: 18355 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

ATHATAATTG GCTTTGCTAA TAATTACTTC CCTGAATTAC AAGTATTAGC AAACGAAATA	60
AAATCTGATA TGGCTAGTTC ATTAAAACAA TGATATTTTT ATTTAAATTT TTAAAGCTTT	120
GTACGAAATT GTACAAAGCT TTTTTGGTGC GTATTGTATG GGCAACAACT TGACGATGAA	180
AATCCGTTAC AGGATTGGTA ATAGGAAATG TTAGCGAAAG ACAAGGGTAT CCATTGTAGA	240
TTAACAAAAG GACGTTTCCA CAAGTGTGGG TTATTCTCAC TAAAGCAATA CGCAGAGACA	300
ACTTACGTAA AATTTTGAAC TGACTAGAAC GGAACTTCTA CTCAATTATT GATAAAAATT	360
TTCAAAAAGA CTTGAATGTG CTGAGAATAC GAAGTTTATG GAAGGATTAT CAAAATATAA	420
ATGTGCATTC ATTTACAACC TTTATTGACA ATGATTCTCA ACTAATATAG TATATAATCA	480
AATCGTAATA GTTACGATTT GTTTTCTGCA ACTTTTTTGA AGTTTTAGTT GAGGTGAAAA	540
CAATAAAAGC ATCTAAGTGA ATGTAGTTAA CGGACAACTG CATTCGCTTG TAGAGCCACA	600
AGAAGCAACT TTAAATAAGG TTTACGGTTG CATTTTGATA CAACAACCGA TTACTAAGTC	660
ATGCTTTCCA CTTTGCGGGT TAGCATGACT TACCTAATAG ATAGAGCTAT TAGGTTCAGC	720
TTCTAAAAAA TTACAGTTTT AGAGGAATAC AGTTGCTTGC LTCGCAACAA CTGCATAAGA	780
GCCATGGTTT TCGCTTTTGC GAATTAGCAT GACTTACCTA CTAGATAGAG CTATTAGGTT	840
CATCITCTAA AAAATTACAG GTTTAGAGGA ATACAGTTGT TTGcTTCGCA ACAACTGCAT	900
AAGAGCCTCT AGTAATTAAA ATTACAGAGG CTCTAAAAAT ACATCTAAAG GAGTGTCGTA	960
TGAATCGGCA GGTTATAGAA TTTTCTAAGT ATAATCCTTC GGGGAATATG ACGATACTTG	1020
TTCATTCAAA ACATGATGCT AGTGAATATG CATCTATCGC CAATCAGTTG ATGGCCGCAA	1080
CACATGTATG CTGTGAACAG GTAGGCTTTA TAGYATCAAC ACAAAATGAT GATGGTAATG	1140
ATTTTCACTT AGTTATGAGC GGTAATGAAT TTTGCGGTAA TGCGACGATG TCATATATAC	1200
ATCATTTGCA GGAAAGTCAT TTGCTTAAAG ACCAACAGTT TAAGGTGAAG GTGTCTGGCT	1260
GTTCGGATTT AGTGCAATGC GCAATTCATG ATTGCCAATA CTATGAAGTT CAAATGCCAC	1320
AAGCCCATCG TGTTGTGCCA ACAACAATTA ATATGGGTAA TCATTCATGG AAAGCAATAG	1380

	TTCAACATTT	GGTTGAAGCG	TTTGTGCGTG	AgcAACAATG	GAGTCACAAA	TATAAAACAG	1500
	TAGGTATGAT	GCTTTTTGAT	GAACAACGTC	AATTTTTACA	GCCATTAATC	TATATACCAG	1560
5	AAATTCAAAG	TTTAATTTGG	GAAAATAGCT	GTGGTTCTGG	TACAGCATCA	ATTGGGGTTT	1620
	TTAATAATTA	TCAACGTAAT	GACGCATGCA	AAGATTTTAC	AGTACATCAG	CCAGGGGGCA	1680
	GTATTTTAGT	GACATCAAAG	CGATGTCATC	AATTGGGATA	TCAAACTTCA	ATTAAAGGAC	1740
10	AGGTTACAAC	TGTAGCTACA	GGaAAAGCAT	ATATAGAATA	AGGAGCCTAC	AATGAATAAC	1800
	TTTAATAATG	AAATCAAATT	GATATTACAA	CAATATTTAG	AAAAGTTTGA	AGCGCATTAC	1860
15	GAGCGTGTAT	TACAAGACGA	TCAATATATC	GAAGCATTAG	AAACATTGAT	GGATGACTAT	1920
13	AGTGAATTTA	TTTTAAATCC	TATTTATGAA	CAACAATTTA	ATGCTTGGCG	TGACGTTGAA	1980
	GAAAAAGCAC	AATTAATAAA	ATCACTGCAA	TATATTACAG	CGCAGTGTGT	TAAACAAGTG	2040
20	GAAGTCATTA	GAGCGAGACG	TCTATTAGAC	GGACAGGCGT	CTACCACAGG	TTACTTTGAC	2100
	AATATAGAAC	ATTGTATTGA	TGAAGAGTTT	GGACAATGTA	GTATAGCTAG	CAATGACAAA	2160
	TTATTGTTAG	TTGGTTCAGG	TGCATATCCA	ATGACGTTAA	TTCAAGTAGC	AAAAGAAACA	2220
25	GGTGCTTCAG	TTATCGGTAT	TGATATTGAT	CCACAAGCCG	TTGACCTAGG	GCGCAGAATC	2280
	GTTAACGTCT	TAGCACCAAA	TGAAGATATA	ACAATTACGG	ATCAAAAGGT	ATCTGAACTT	2340
	AAAGATATCA	AAGATGTGAC	GCATATCATA	TTCAGCTCGA	CAATTCCTTT	AAAGTACAGC	2400
30	ATTTTAGAAG	AATTATATGA	TTTAACAAAT	GAAAATGTCG	TAGTTGCAAT	GCGCTTTGGT	2460
	GATGGCATCA	AAGCAATATT	TAATTATCCG	TCACAAGAAA	CAGCGGAAGA	TAAGTGGCAA	2520
25	TGTGTGAATA	AACATATGAG	ACCACAGCAA	ATTTTTGATA	TAGCACTTTA	TAAAAAGCA	2580
35	GCTATAAAGG	TAGGTATTAC	GGATGTCTAA	ATTATTAATG	ATAGGCACTG	GTCCgGTCGC	2640
	AATCCAATTA	GCGAATATTT	GCTATTTAAA	ATCAGATTAT	GAGATTGATA	TGGTTGGACG	2700
10	TGCCTCAACA	TCAGAAAAAT	CAAAACGCTT	ATATCAAGCG	TATAAAAAAG	AGAAACAATT	2760
	TGAAGTCAAA	ATACAAAACG	AGGCGCATCA	ACATCTGGAA	GGTAAGTTTG	AAATTAATCG	2820
	TTTGTATAAA	GATGTTAAAA	ACGTTAAGGG	TGAATACGAA	ACGGTTGTCA	TGGCATGCAC	2880
4 5	AGCAGATGCT	TATTATGACA	CACTACAGCA	ATTGTCGTTA	GAAACTTTGC	AAAGTGTCAA	2940
	ACATGTCATT	TTAATATCAC	CGACATTTGG	TTCGCAAATG	ATTGTCGAAC	AATTTATGTC	3000
	TAAATTTAAT	AAAGATATCG	AAGTGATTTC	ATTCTCAACT	TATCTTGGCG	ATACACGTAT	3060
50	TGTTGATAAA	GAAGCGCCTA	ATCATGTGTT	GACAACAGGT	GTAAAAAAGA	AATTGTACAT	3120
	CCCATCCACA	CATTCAAACT	CNACNATOTO	TCAACCAATC	TOTOTOTOTO	CTC A C C A A TT	3180

	TTATGTGCAC	CCACCACTAT	TTATGAATGA	CTTTTCATTG	AAAGCCATTT	TCGAAGGAAC	3300
	AGATGTACCG	GTTTATGTGT	ATAAGTTATT	TCCTGAAGGA	CCGATAACGA	TGACACTAAT	3360
5	CCGTGAAATG	CGTTTAATGT	GGAAGGAAAT	GATGGTTATT	TTACAAGCAT	TTAGAGTGCC	3420
	GTCAGTCAAC	CTGCTTCAAT	TTATGGTGAA	GGAAAATTAT	CCAGTACGTC	CTGAAACTTT	3480
	GGATGAAGGT	GATATTGAGC	ATTTCGAAAT	CTTGCCAGAT	ATCTTACAAG	AATATCTGCT	3540
10	TTATGTAAGA	TATACCGCAA	TCCTCATTGA	TCCATTTTCA	CAGCCAGACG	AAAACGGACA	3600
	TTACTTTGAT	TTTTCAGCTG	TACCATTTAA	GCAAGTCTAT	AAAAATGAAC	AGGATGTTGT	3660
15	TCAAATTCCA	AGAATGCCAA	GTGAAGATTA	TTACAGAACG	GCGATGATTC	AGCATATTGG	3720
	GAAAATGCTA	GGTATCAAAA	CGCCAATGAT	TGATCAGTTC	CTAACTCGCT	ATGAAGCAAG	3780
	TTGCCAGGCG	TACAAGGATA	TGCATCAAGA	TCAACACTTA	TCTTCTCAAT	TTAATACAAA	3840
20	TCTATTTGAA	GGAGATAAAG	CACTCGTCAC	AAAATTTTTG	GAAATCAATA	GAACGCTTTC	3900
	ATAATAAGGG	TTTGAAGTTT	TATAATAGAA	AAAAATTATT	GAATTATGTT	TGACATTTAC	3960
	ATAAAAATAA	GCAAATAATT	GAGAAAAATA	ATCATTACGA	TTTGATTAAG	TAATGCAACT	4020
25	TATCAATTTA	GAAAGAGGAA	AAGCAAATGA	GAAAACTAAC	TAAAATGAGT	GCAATGTTAC	4080
	TTGCATCAGG	GCTAATTTTA	ACTGGTTGTG	GCGGTAATAA	AGGTTTAGAG	GAGAAAAAG	4140
	AAAACAAGCA	ATTAACGTAT	ACGACGGTTA	AAGATATCGG	TGATATGAAT	CCGCATGTTT	4200
30	ACGGTGGATC	AATGTCTGCT	GAAAGTATGA	TATACGAGCC	GCTTGTACGT	AACACGAAAG	4260
	ATGGTATTAA	GCCTTTACTA	GCTAAAAAGT	GGGATGTGTC	TGAAGATGGG	AAGACATACA	4320
35	CGTTCCATTT	GAGAGATGAC	GTTAAATTCC	ATGATGGTAC	GCCATTTGca	TGCtGACGCA	4380
	GTTAAGAAAA	ATATTGACGC	Agttcaagaa	AACAAAAAAT	TGCATTCTTG	GTTAAAGATT	4440
	TCGĀCATTAA	TTGACAATGT	TAAAGTTAAA	GATAAGTACA	CGGTTGAATT	GAATTTGAAA	4500
‡ 0	GAAGCATATC	AACCTGCATT	GGCTGAATTA	GCGATGCCTC	GTCCATATGT	ATTTGTGTCT	4560
	CCAAAAGACT	TTaAAAACGG	TACAACAAAA	GATGGCGTTA	AAAAGTTCGA	TGGTACTGGT	4620
	CCATTTAAAT	TAGGTGAACA	CAAAAAAGAT	GAGTCTGCAG	ACTTTAACAA	AAATGATCAA	4680
1 5	TACTGGGGCG	AAAAGTCTAA	ACTTAACAAA	GTACAAGCAA	AAGTAATGCC	TGCTGGTGAA	4740
	ACAGCATTCC	TATCAATGAA	AAAAGGTGAA	ACGAACTTTG	CCTTCACAGA	TGATAGAGGT	4800
	ACAGATAGCT	TAGACAAAGA	CTCTTTAAAA	CAATTGAAAG	ATACAGGTGA	CTATCAAGTT	4860
50	AAGCGTAGTC	AACCTATGAA	TACGAAAATG	TTAGTTGTCA	ATTCTGGTAA	AAAAGATAAC	4920
	COTOTONOTO	ACAAAACACT	CACACAACC	N TO COTO NO TO N	TO CONTRACTO	A C A TIA A A A TITT	4000

	ACAGACATTA	ATTTCGATAT	GCCAACACGT	AAGTATGACC	TTAAAAAAGC	AGAATCATTA	5100
	TTAGATGAAG	CTGGTTGGAA	GAAAGGTAAA	GACAGCGATG	TTCGTCAAAA	AGATGGTAAA	5160
5	AACCTTGAAA	TGGCAATGTA	CTATGACAAA	GGTTCTTCAA	GTCAAAAAGA	ACAAGCAGAA	5220
	TACTTACAAG	CAGAATTTAA	GAAAATGGGT	ATTAAGTTAA	ACATCAATGG	CGAAACATCA	5280
	GATAAAATTG	CTGAACGTCG	TACTTCTGGT	GATTATGACT	TAATGTTCAA	CCAAACTTGG	5340
10	GGATTATTGT	ACGATCCACA	AAGTACTATT	GCAGCATTTA	AAGAGAAAAA	TGGTTATGAA	5400
	AGTGCAACAT	CAGGCATTGA	GAACAAAGAT	AAAATATACA	ACAGCATTGA	TGACGCATTT	5460
15	AAAATCCAAA	ACGGTAAAGA	GCGTTCAGAC	GCTTATAAAA	ACATTTTGAA	ACAAATTGAT	5520
	GATGAAGGTA	TCTTTATCCC	TATTTCACAC	GGTAGTATGA	CAGTTGTTGC	ACCAAAAGAT	5580
	TTAGAAAAAG	TATCATTCAC	ACAATCACAG	TATGAATTAC	CATTCAATGA	AATGCAGTAT	5640
20	AAATAAAGGA	GCAATTAGAT	GTTCAAATTT	ATCTTAAAAC	GTATTGCGCT	CATGTTTCCA	5700
	TTGATGATTG	TAGTAAGTTT	TATGACATTT	CTATTGACGT	ATATTACAAA	TGAAAATCCA	5760
	GCTGTGACAA	TTTTACATGC	ACAAGGGACG	CCAAATGTAA	CACCAGAGTT	GATTGCAGAA	5820
25	ACGAATGAGA	AGTACGGTTT	CAATGATCCA	TTATTAATTC	AATATAAAAA	TTGGTTACTT	5880
	GAAGCGATGC	AATTTAATTT	TGGTACAAGC	TACATTACAG	GTGACCCAGT	TGCTGAACGT	5940
	ATTGGTCCAG	CATTTATGAA	TACATTGAAA	TTAACAATAA	TTTCAAGTGT	TATGGTGATG	6000
30	ATTACATCAA	TTATTTTAGG	TGTAGTTAGT	GCATTAAAAA	GAGGAAAGTT	CACTGATCGT	6060
	GCGATACGTT	CAGTGGCTTT	CTTTCTAACT	GCATTACCAT	CATATTGGAT	AGCTTCAATA	6120
	CTTATTATTT	ACGTTTCAGT	GAAGTTAAAC	ATATTGCCGA	CTTCTGGATT	AACAGGTCCA	6180
35	GAAAGTTACA	TATTGCCAGT	GATCGTTATT	ACGATTGCCT	ATGCTGGTAT	TTACTTTAGA	6240
	AATGTTAGAC	GCTCGATGGT	GGAACAATTA	AATGAAGATT	ATGTACTTTA	TTTAAGAGCA	6300
10	AGCGGTGTGA	AATCTATCAC	ATTAATGTTG	CATGTGTTGC	GTAATGCTTT	ACAAGTTGCG	6360
	GTATCAATCT	TTTGTATGTC	TATACCAATG	ATAATGGGTG	GACTAGTTGT	TATCGAGTAT	6420
	ATCTTTGCAT	GGCCTGGACT	AGGTCAATTA	AGTTTAAAAG	CAATACTTGA	ACACGATTTT	6480
1 5	CCAGTCATTC	AAGCATATGT	ATTAATTGTA	GCGGTATTAT	TTATTGTATT	TAATACATTA	6540
	GCAGATATCA	TTAATGCGCT	ATTAAATCCA	AGATTAAGGG	aGGCGCACG	ATGATAATTT	5500
	TAAAmCGATT	ATTmCArGwT	AAAGGTGCAG	TAATTGCTTT	AGGCATTATT	GTATTATATG	6650
50	TCTTTTTAGG	ATTAGCAGCA	CCACTTGTGA	CATTTTATGA	TCCTAACCAT	ATCGATACAG	6720
	CAAACAAATT	TGCTGGCATG	AGTTTTTCAAC	ATCTACTAGG	ТАСТСАССАТ	TTAGGTAGAG	6780

	TATTTGTTTC	TGTACTTATT	GGATCTATTT	TAGGATTCTT	ATCAGGATAT	TTCCAAGGGT	6900
	TTGTTGACGC	CTTAATCATG	CGTGCGTGTG	ATGTTATGTT	GGCATTCCCA	AGTTATGTTG	6960
5	TAACGTTAGC	ATTAATTGCA	TTGTTTGGAA	TGGGTGCCGA	AAATATTATC	ATGGCATTTA	7020
	TTTTGACGCG	TTGGGCATGG	TTCTGTCGTG	TTATACGTAC	AAGTGTTATG	CAGTACACTG	7080
	CTTCTGACCA	TGTAAGATTT	GCTAAAACAA	TCGGTATGAA	TGATATGAAA	ATTATTCACA	7140
10	AACATATTAT	GCCATTAACA	TTAGCAGATA	TTGCTATCAT	CTCTAGTAGC	TCGATGTGTT	7200
	CAATGATCTT	GCAAATATCT	GGCTTTTCAT	TTTTAGGATT	AGGTGTCAAA	GCGCCTACTG	7260
15	CAGAGTGGGG	CATGATGCTT	AACGAaGCTA	GAAAAGTGAT	GTTTACACAT	CCTGAAATGA	7320
15	TGTTTGCGCC	AGGTATTGCC	ATAGTGATTA	TAGTGATGGC	ATTTAACTTC	TTATCCGATG	7380
	CTTTACAAAT	TGCTATTGAT	CCCCGCATCT	CTTCTAAAGA	TAAACTTCGT	TCTGTGAAAA	7440
20	AAGGAGTGGT	GCAATCATGA	CATTGTTAAC	AGTTAAACAT	TTGACGATTA	CAGATACCTG	7500
	GACAGATCAA	CCACTCGTGA	GTGATGTGAA	TTTTACATTA	ACTAAGGGTG	AAaCTTTAGG	7560
	CGTTATTGGA	GAAAGTGGTA	GTGGTAAATC	AATCACTTGT	AAATCGATTA	TTGGTTTGAA	7620
25	TCCCGAACGA	CTCGGGGTGA	CAGGTGAAAT	TATCTTTGAT	GGTACAt CAA	TGTTGTCATT	7680
	ATCTGAATCG	CAATTGAAAA	AGTACCGTGG	TAAAGACATT	GCGATGGTCA	TGCAACAAGG	7740
	TAGTCGTGCC	TTTGACCCAT	CAACTACTGT	CGGTAAACAA	ATGTTTGAGA	CTATGAAAGT	7800
30	ACATACGTCA	ATGTCTACAC	AAGAAATTGA	AAAGACATTG	ATTGAATATA	TGGATTATTT	7860
	AAGTTTGAAA	GATCCTAAAC	GTATATTAAA	ATCATACCCT	TACATGTTAT	CAGGAGGAAT	7920
	GTTACAGCGA	TTGATGATTG	CTTTAGCGTT	AgcTTTgAAA	CCAAAGTTAA	TCATTGCTGA	7980
35	TGAGCCGACA	ACGGCTTTAG	ATACAATTAC	ACAATATGAT	GTACTGGAAG	CATTTATAGA	8040
	TATTAAAAAA	CACTTTGACT	GTGCGATGAT	TTTCATTTCA	CATGATTTAA	CGGTTATTAA	8100
10	CAAGATTGCA	GACCGTGTTG	TTGTGATGAA	AAATGGTCAG	CTTATTGAAC	AAGGGACACG	8160
••	TGAATCAGTC	TTGCATCATC	CAGAACATGT	TTATACGArt	ATTKTATTAT	CAACGAAGAA	8220
	GAAGATTAAT	GATCATTTTA	AACATGTGAT	GAGGGGTGAT	GTACATGATT	AAAATTAAAG	8280
4 5	ATGTTGAAAA	GTCATATCAA	AGCGCACATG	TTTTTAAGCG	TCGTCGAACA	CCTATCGTGA	8340
	AAGGTGTGTC	ATTTGAGTGT	CCAATCGGTG	CGACGATTGC	GATTATCGGA	GAAAGTGGTA	8400
	GCGGTAAATC	GACGTTGAGT	CktATGATAT	TAGGTATTGA	GAAACCGGAT	AAAGGTTGTG	8460
50	TAACCTTAAA	TGATCAACCG	ATGCATAAGA	agaaagtgag	ACGTCATCAA	ATTGGTGCTG	8520
	TATTTCAAGA	TTATACGTCA	TCATTACATC	CATTTCAGAC	TGTTAGAGAA	ATCTTATTTG	8580

	TGTTGGAAGA	AGTCGGTCTA	TCTAAGGCAT	ACATGGATAA	ATATCCTAAT	ATGTTATCAG	8700
	GTGGAGAGGC	GCAACGTGTT	GCGATTGCGC	GTGCAATATG	TATTAACCCT	AAATATATTT	8760
5	TGTTTGATGA	AGCCATTAGT	TCACTCGACA	TGTCAATTCA	AACACAAATA	TTAGATTTAT	8820
	TGATTCATTT	ACGTGAAACG	CGTCAGTTGA	GTTATATTTT	TATCACACAT	GATATTCAAG	8880
	CTGCCACGTA	TTTATGTGAT	CAATTAATTA	TTTTTAAAAA	CGGAAAAATA	GAAGAACAAA	8940
10	TTCCGACAAG	CGCATTGCAT	AAAAGTGACA	ATGCTTATAC	AAGAGAATTA	ATAGAAAAAC	9000
	AACTATCATT	CTAAGGAGTG	AGATAATGAA	AGGTGCAATG	GCTTGGCCCT	TTTTGAGATT	9060
15	АТАТАТАТТА	ACATTGATGT	TCTTTAGTGC	CAATGCAATC	TTAAACGTGT	TTATACCTTT	9120
	ACGAGGGCAT	GATTTAGGCG	CAACGAATAC	GGTTATCGGT	ATCGTTATGG	GGGCATACAT	9180
	GTTAACAGCA	ATGGTATTTC	GACCATGGGC	AGGACAAATT	ATTGCTCGTG	TCGGTCCCAT	9240
20	TAAAGTATTA	AGAATTATTT	TGATTATCAA	TGCCATAGCT	TTAATTATTT	ATGGTTTTAC	9300
	TGGCTTAGAA	GGTTATTTCG	TAGCACGTGT	TATGCAAGGT	GTGTGTACGG	CATTCTTTTC	9360
	TATGTCTTTA	CAGCTAGGTA	TTATTGATGC	ATTACCAGAG	GAACATCGTT	CTGAAGGTGT	9420
25	ATCATTGTAC	TCGCTATTTT	CAACGATTCC	AAACTTAATC	GGACCATTAG	TTGCCGTAGG	9480
	TATTTGGAAT	GCAAATAATA	TTTCACTATT	TGCAATTGTC	ATTATCTTTA	TCGCATTAAC	9540
	AACAACATTC	TTTGsTATCG	CGTGACCTTT	GCTGAACAGG	AACCCGATAC	GTCAGATAAG	9600
30	ATTGAAAAAA	TGCCGTTTAA	CGCTGTAACT	GTTTTTGCGC	AATTTTTCAA	AAATAAAGAG	9660
	TTGTTGAACA	GTGGTATTAT	CATGATTGTT	GCATCGATTG	TATTTGGTGC	AGTTAGTACA	9720
	TTTGTACCGT	TATACACAGT	GAGTTTAGGA	TTCGCGAATG	CGGGAATCTT	TTTGACAATA	9780
35	CAGGCCATCG	CAGTTGTTGC	GGCAAGATTT	TACTTAAGGA	AATACATTCC	GTCAGATGGT	9840
	ATGTGGCATC	СТАААТАТАТ	GGTATCTGTA	CTATCATTAT	TAGTAATCGC	GTCATTTGTA	9900
40	GTGGCATTTG	GTCCGCAAGT	AGGTGCAATT	ATTTTCTATG	GTAGTGCGAT	ATTAATAGGA	9960
	ATGACGCAAG	CAATGGTGTA	CCCAACATTA	ACATCATACT	TAAGCTTCGT	CTTACCAAAA	10020
	GTAGGTCGTA	ATATGTTGTT	AGGTTTATTT	ATTGCCTGTG	CAGACTTAGG	TATATCGTTA	10080
45	GGTGGCGCAT	TGATGGGACC	TATTTCCGAT	TTAGTAGGAT	TTAAATGGAT	GTATCTAATT	10140
	TGTGGTATGT	TAGTCATTGT	AATAATGATT	ATGAGTTTCT	TGAAAAAGCC	AACACCACGT	10200
	CCAGCGAGTA	GTCTTTAATG	AAGTGAATTA	AAGCATATTA	agttaatgaa	TATTTAAATT	10260
50	TTAAAAGGTA	TATTGaGCAT	GGCGATTCAT	GTGCTTCATG	CTAGGACATG	AAACATTCTA	10320
	TATGGCTCGT	TTTTAGAACG	ACATATATCT	AAATAAAGCA	CGCTTArAAG	TGAGTTTTGA	10380

	TTACATGAAA	ATATGCAAAA	CGAGTATAAC	TGCTAATTGA	TAGAAATAGC	TCACCATAAA	10500
	ATTACGGTAT	GATTTTAAAT	ATAAGTAAGT	CGCACTACCT	GCTAGTATCA	ATGCTGGAAT	10560
5	GAATTCCCAC	CATGTATTAA	TGTATGGATA	GTAGAACAGA	GTTTCAAGGA	TAATGGACAA	10620
	TACTATTGTA	ATCTTTAAAG	GTATTAATCT	GCTTAATTCT	TGAATTAAAA	TATGACGGAA	10680
	AATAAGTTGA	CAAATCAAAG	TATTTAATAT	AATGGTTAAC	GAAAATATAG	CTATTAAACT	10740
10	GATGGAaCCA	TACCCTTTAA	TGAGCGGGTA	AATGTCAAAG	ACAGTAAAGG	AATCTACATT	10800
	TAGTGCGAAA	ATATTGAAAT	GATTTAAAAG	TAAAAAGAGT	ACGACACTTA	GTGTAAATGA	10860
15	TATAAGAATA	TGCCATTTAT	ATTTAGCACT	AGCAACGATT	TGCGAACGTA	TCATTGGAAT	10920
	AAACGCATCT	TCATGCATCA	GACGAAAAAT	AGCTAGTGAA	ATAATAACTG	CGAGTAAATA	10980
	GCTAATGTTC	ATTGAAATAG	GAAAAGAGAA	ACCCCACGGA	GCTTGTTGAG	TGAATACAGC	11040
20	TACTAACCCA	AAAGTTAAAA	AGACGATAAT	GATCGGCAAG	ATGTTAACCA	AAAATATGTA	11100
	AAGGAAAATA	AATCCAATAT	CACGTTTGAA	AAAACGCGAT	TGTTCGGTAG	CGTATTCTTC	11160
	TTCTATGTAA	TGTTTATTTG	TATTTGACAT	AGTATACCTC	TTAAATAGTT	GTATTATATA	11220
25	GATACTTTAG	CACATATTAC	TTTGTATTGT	ATGTTTTATA	CATTAAAATT	TAAAATGAAA	11280
	AACATATCAT	AAAATTGTTT	TATAAAATGA	AGCGCTTCCA	TTGTGTTTTG	TTTTGTAAGG	11340
	TGTATCATAA	ATATTGAATT	GAAATTTTGG	GGGGAGGTAT	TGTAATGACG	TTTCTTACAG	11400
30	TCATGCAATT	TATAGTTAAC	ATTATCGTTG	TAGGATTCAT	GCTTACGGTT	ATTGTTATCG	11460
	GGCTTATTTG	GTTAATTAAA	GATAAAAGAC	AATCACAACA	TAGTGTATTA	AGGAATTATC	11520
	CTTTACTAGC	ACGTATTAGA	TATATTTCAG	AAAAAATGGG	ACCGGAATTA	CGTCAGTATT	11580
35	TATTTTCTGG	GGATAATGAA	GGGAAACCTT	TTTCACGTAA	TGATTATAAA	AATATCGTTT	11640
	TGGCTGGAAA	ATATAACTCT	CGTATGACCA	GCTTCGGTAC	TACTAAAGAT	TATCAAGACG	11700
10	GCTTTTACAT	ACAGAACACA	ATGTTTCCGA	TGCAACGTAA	TGAGATTTCA	GTAGATAATA	11760
	CAACATTGTT	ATCAACATTC	АТТТАТАААА	TCGCGAATGA	GCGTTTATTT	AGTCGTGAAG	11820
	AATATCGTGT	GCCGACAAAG	ATTGATCCGT	ATTACTTAAG	TGATGACCAT	GCAATAAAAT	11880
‡ 5	TAGGTGAACA	TTTAAAACAT	CCATTTATTT	TAAAACGTAT	CGTAGGACAA	TCTGGTATGA	11940
	GTTATGGCGC	TTTAGGAAAA	AATGCCATTA	CAGCTTTATC	TAAAGGTCTA	GCTAAAGCGG	12000
	GCACTTGGAT	GAATACAGGT	GAAGGTGGCT	TATCAGAATA	TCATTTAAAA	GGTAATGGGG	12060
50	ATATCATTTT	CCAAATTGGT	CCCGGTTTAT	TTGGTGTTCG	TGATAAAGAA	GGTAATTTTA	12120
	GTGAAGGTTT	ATTTAAAGAG	GTTGCACAGT	TATCTAACGT	ACGCGCATTT	GAGCTGAAGT	12180

	TTGCTAAAAT	CCGAAATGTT	GAACCTTATA	AAACAATCAA	TTCACCTAAC	CGTTACGAAT	12300
	TTATTCATAA	TGCTGAAGAT	TTGATTCGTT	TCGTCGATCA	GTTGCAGCAA	TTAGGTCAAA	12360
5	AACCAGTAGG	ATTCAAAATT	GTAGTAAGCA	AAGTTTCAGA	AATTGAAACA	CTTGTACGTA	12420
	CGATGGTGGA	ACTAGATAAG	TATCCAAGCT	TTATTACGAT	TGATGGTGGT	GAAGGTGGTA	12480
	CTGGTGCAAC	ATTCCAAGAA	TTACAAGATG	GTGTTGGCTT	ACCGCTATTT	ACAGCTCTAC	12540
10	CTATTGTGTC	TGGCATGTTA	GAAAAATATG	GTATTCGAGA	TAAAGTGAAA	TTGGCGGCAT	12600
	CTGGTAAGTT	AGTGACACCA	GATAAAATTG	CGATTCCACT	AGGTTTAGGT	GCAGATTTTG	12660
15	TAAATATCGC	ACGTGGGATG	ATGATTAGTG	TCGGTTGTAT	AATGAGTCAA	CAATGTCACA	12720
	TGAATACGTG	TCCTGTAGGT	GTTGCAACGA	CAGATGCGAA	GAAAGAAAAA	GCATTGATTG	12780
	TTGGAGAAAA	GCAATATCGT	GTCACAAACT	ATGTAACAAG	TTTGCATGAA	GGCTTATTCA	12840
20	ATATTGCAGC	AGCTGTTGGC	GTATCCAGTC	CTACAGAAAT	TACTGCTGAT	CATATTGTAT	12900
	ATCGAAAAGT	CGATGGTGAG	TTACAAACGA	TACATGATTA	TAAATTAAAA	CTCATTAGTT	12960
	AACTTAATTA	TTTCGGGAAA	TTGAAAGCAG	CGGATTTTAG	CGTTACTGCA	AATAATTTTA	13020
25	TATTAGTAGT	GGATGCTGGT	CACACAAGAA	CTTCAAATAT	TAAAGCCCTC	AGAATATGAA	13080
	TTAAGGTTTG	TAACCTTAGT	CTTATCTGAG	GGCATTTTTA	AGTTATAAAC	TATTTGTCGT	13140
	CCATTTTATC	TTTTTCTTTT	AAACCTCTGT	GCTTTAATTG	CTTTTCAAGT	TTTTCAAAAC	13200
30	TAATATCTTT	ATTTTCTTTA	GTCGAAACAC	CAAGACGTTT	ATTTAATTTT	TTCATGTCAA	13260
	CTTCTGTGTA	ATCTATGTCT	AAGTGYTCAA	TTGCTTTTTT	ATCTTTATAG	TCTACTTTGT	13320
25	ATTTTACGCC	TTTAAGGTCT	TTGAAAATAC	TTTCAGATTT	GGCGAATAAC	TTTTTGGCTT	13380
35	CGTCTTTATC	CATACCTAGA	TCGTCATATT	TAATTGTGTT	GATTGTAGAC	TGTTTTAAAA	13440
	CTTTATCATC	TTTATATGTG	ATAGAAGTTA	GTACATGTTT	ACCACTAACA	TCACCWTCAT	13500
40	ATGTTTTGGT	TTGTTCTTTA	CCACAAGCTG	ATAATGCAAT	GATACAAACT	AATGCTACTA	13560
	CAATTAATGA	ACATAATTTT	TTCAAAGTCA	GTCGCCTTCT	TTCGATATTT	GTATTATAAA	13620
	GAAATTATAA	CATTTACTAA	AAAATGATGT	TATTCAAAAA	TTTAAATTTT	GTCATTTTTT	13680
45	TTGAAGATAT	GAGTTTTTTT	AAGCGGATTC	CTCACAAAAT	тттааааата	TTTAAGCCTk	13740
	AAAATGATAA	AGCGKTAGGG	AACGTTTTTC	TGAAAGTTAG	TGATACAATA	GTTTTAAGTT	13800
	GAAATACAGG	AGGATGAATA	ACATGAATCA	GTCAGTCAAA	TTACTTAAAC	ATTTAACAGA	13860
50	TGTAAACGGC	ATTGCTGGTT	ATGAAATGCA	AGTTAAAGAA	GCAATGCGTa	ACTATATAGA	13920
	GCCTGTCAGT	GATCAAATTA	TTGAAGATAA	CTTGGGTGGC	ATTTTTGGAA	AGAAAAATGC	13930

	AACAAAGATT	GATAAACATG	GTTTTATTTC	ATTTACGCCA	kTgGTGGATG	GTGGAATCAA	14100
	GTCATGCTAT	CTCAAAAAGT	AACGATTACA	ACAGATTCGG	GCAAAGAAAT	TAGAGGTATC	14160
5	ATCGGTTCTA	AACCGCCACA	TGTCTTAACG	CCTGAAGAAC	GTAAAAAGCC	AATGGAAATC	14220
	AAAAATATGT	TTATAGATAT	TGGTGTTAGT	AGCAAGGAAG	AAGCTGAAGA	AGCTGGCGTT	14280
10	GAAGTAGGCA	ATATGGTTAC	GCCATATAGT	GAATTTGAAG	TGCTTGCAAA	TGATAAATAT	14340
70	TTAACTGCGA	ArCATTTGAT	AATCGCTATG	GCTGTGCATT	AGCTATTGAG	GTATTAAAAC	14400
	GTTTAAAAGA	TGAAAATATT	GGCATTAACT	TATACAGTGG	TGCCACAGTG	CAAGAAGAAG	14460
15	TTGGTTTGCG	TGGTGCGAAA	GTGGCAGCGA	ATACGATTAA	ACCAGACTTG	GCGATAgcTG	14520
	TCGATGTAGG	TATTGCTTAT	GATACCCCAG	GTATGTCAGG	TCAAACGAGC	GATAGTAAAC	14580
	TAGGCGGTGG	TCCAGTTGTC	ATTATGATGG	ATGCTACAAG	TATTGCTCAC	CAAGGTTTGC	14640
20	GAAAgcATaT	TAAAGATGTA	GCTAAGGAAC	ATAACATCGA	AGTACAATGG	GATACGACAC	14700
	CAGGTGGAGG	TACAGATGCG	GGAAGTATTC	ATGTCGCAAA	TGAAGGTATT	CCAACGATGA	14760
	CAATCGGTGT	TACGCTGCGA	TACATGCATT	CTAATGTTTC	AGTGCTCAAT	GTAGATGATT	14820
25	ATGAAAATTC	TATCCGTCTT	GTTACTGAAA	TTGTCCGTTC	ATTGAATGAT	GAAAGTTATA	14880
	AAAATATCAT	GTGGTAATCA	AATCCATAAA	TAATAAAGAA	TCCTTTTAAT	ATGGTAGGTT	14940
	GTTAAACAAT	TGTCTAATTT	TAATTCTTAG	TCATTAGACA	GTATCCATGT	TAATAGGATT	15000
30	TTTTGTTTTT	AATTTAAATG	CTGAAAATCA	ATTATGCCTA	AATTTTGATA	TTACAAGAAA	15060
	ATGATTTTTT	CTTAAATGTA	ATTGCACTAA	АААССААААА	AACGGGAATA	ATATACCTGA	15120
35	TATATTACAT	GAGGAGCGGT	GCAAATGTTG	TTAGAAATTA	AAGATTTAGT	GTATAAAGCG	15180
,,,	AGCGATAGAA	TCATACTAGA	TCATATCAGT	CTAAAAGTAG	ATAAAGGCGA	GAGTATTGCC	15240
	ATTATAGGTC	CATCAGGTAG	TGGTAAAAGT	ACATTTCAAA	AGCAAATATG	TAATTTGTTT	15300
10	AGTCCAACTA	GTGGAGAACT	TTATTTTAAA	GGTAAACCCT	ATAATGATTA	TGACCCGGAA	15360
	GAATTGCGTC	AACGAATCAG	TTATTTGATG	CAGCAAAGTG	ACTTGTTTGG	TGAAACGATT	15420
	GAAGATAACA	TGATATTCCC	ATCACTTGCA	CGTAATGATA	AATTTGATAG	AAAACGTGCA	15480
1 5	AAGCAATTAA	TTAAAGATGT	CGGTTTGGGA	CATTATCAAT	TAAGTTCGGA	AGTGGAAAAT	15540
	ATGTCGGGTG	GTGAGCGGCA	AAGAATTGCT	ATAGCGCGCC	AACTGATGTA	TACACCGGAT	15600
	ATTCTTTTAT	TAGATGAATC	GACCAGTGCA	TTAGACGTTA	ATAATAAAGA	AAAGATAGAA	15660
50	AATATCATTT	TTAAATTAGC	AGATCAAGGC	GTGGCAATTA	TGTGGATTAC	CCACAGCGAT	15720
	GACCAAAGTA	TGCGACACTT	TCAAAAGCGT	ATAACAATTG	TTGATGGTCA	AATTTCTAAT	15780