decision **f** forests

Decision Forests are another type of ensemble method where weak classifiers are combined to build a stronger algorithm.

- " **Decision Forests** are a powerful prediction tool that are highly complex
- "They are another type of **black-box** algorithm where interpretability is low
- " Similar logic to **Boosted Decision Trees**; averaging many uncorrelated, yet accurate, models reduces overall variance

Returning to the illustrative restaurant scenario from the Decision Tree example:

Example: Will the customer wait for a table at a restaurant?

- " OthOptions: Other options, True if there are restaurants nearby.
- " Weekend: This is true if it is Friday, Saturday or Sunday.
- " Area: Does it have a bar or other nice waiting area to wait in?
- " Plans: Does the customer have plans just after dinner?
- Price: This is either \$, \$\$, \$\$\$, or \$\$\$\$
- " Precip: Is it raining or snowing?
- " Genre: French, Mexican, Thai, or Pizza
- " Wait: Wait time estimate: 0-5 min, 6-15 min, 16-30 min, or 30+
- " Crowded: Whether there are other customers (no, some, or full)

	OthOptions	Weekend	Area	Plans	Price	Precip	Genre	Wait	Crowded	Stay?
X ₁	Yes	No	No	Yes	\$\$\$	No	French	0-5	some	Yes
X ₂	Yes	No	No	Yes	\$	No	Thai	16-30	full	No
X ₃	No	No	Yes	No	\$	No	Pizza	0-5	some	Yes
X ₄	Yes	Yes	No	Yes	\$	No	Thai	6-15	full	Yes
X ₅	Yes	Yes	No	No	\$\$\$	No	French	30+	full	No
X ₆	No	No	Yes	Yes	\$\$	Yes	Mexican	0-5	some	Yes
X ₇	No	No	Yes	No	\$	Yes	Pizza	0-5	none	No
X ₈	No	No	No	Yes	\$\$	Yes	Thai	0-5	some	Yes
X ₉	No	Yes	Yes	No	\$	Yes	Pizza	30+	full	No
X ₁₀	Yes	Yes	Yes	Yes	\$\$\$	No	Mexican	6-15	full	No
X ₁₁	No	No	No	No	\$	No	Thai	0-5	none	No
X ₁₂	Yes	Yes	Yes	Yes	\$	No	Pizza	16-30	full	Yes

A new observation is applied to the models above:

Genre: Mexican

Price: \$\$ Crowded: Full Wait Time: 5-15

Plans: No

OthOptions: No

Applying the observation to the models above, the labels respectively assigned are yes, yes, no.

Therefore, the combination of the models apply the majority vote as the predicted label: yes

More precisely, the method utilizing **bootstrapping** of samples. A **bootstrap sample** of size n: A sample of n points drawn with replacement at random from the training data. Each point is taken one at a time and then replaced prior to selecting another. Thus some points will be repeated as expected.

Decision Forest Pseudocode

For t = 1: T

Draw a **Bootstrap Sample** of size n from the training dataset

Build a **Decision Tree** $tree_t$ using the splitting and stopping procedure:

Choose m features at random (out of p)

Evaluate the splitting criteria on all features m

Split on the most valuable feature

Repeat until the node has $< n_{\min}$ observations, then cease splitting

Output all trees (noting that only no pruning takes place, only splitting)

To predict on a new observation x, the majority vote of the trees is applied to x

Decision Forests Compared to Decision Trees

- Decision Trees use all sample data; Decision Forests use bootstrapped resamples to compute many decision trees.
- **Decision Trees** are allowed to use all of the features for consideration of each split; **Decision** Forests only consider m randomly chosen features for each split.
- " **Decision Forests** do not utilize pruning, making trees fit more tightly and reduce bias.
- Decision Forests apply majority vote to make predictions; Decision Forests use a single tree.

Measuring Variable Importance with Decision Forests

In measuring the importance of feature *j*:

The data **not used** to construct $tree_t$ is taken: referred to here as "out-of-bag" $00B_t$

The **error**_t will be computed on the OOB_t data using the model **tree**_t

The $\mathbf{00B}_t$ data is then taken and randomly permutated on the j^{th} feature values:

$$\mathbf{00B_t} \to \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} \to \text{randomly permuted} \to \begin{bmatrix} x_{11} & x_{32} & x_{13} \\ x_{21} & x_{12} & x_{23} \\ x_{31} & x_{22} & x_{33} \end{bmatrix} \to \mathbf{00B_{t,permuted}}$$

The logic behind a random permutation is explained hypothetically: if the feature j was unimportant originally, randomly arranging the feature values would have little impact.

Then, the $error_{t,permuted}$ will be computing using model $tree_t$ on data $OOB_{t,permuted}$

The "**raw importance**" of variable **j** is thus the average over trees of the difference:

$$\frac{1}{T} \sum_{\text{trees } t} (\text{error}_t - \text{error}_{t, \text{permutated}})$$

Decision Forests for Regression

For t = 1: T

Draw a **Bootstrap Sample** of size n from the training dataset

Build a **Decision Tree tree**_t using the splitting and stopping procedure:

Choose m features at random (out of p)

Evaluate the splitting criteria on all features m

Split on the most valuable feature

Repeat until the node has $< n_{\min}$ observations, then cease splitting

Output all trees (noting that only no pruning takes place, only splitting)

To predict on a new observation x, the majority average vote of the trees is applied to x

Summary of Decision Forests

Advantages

" Complex and powerful prediction tool that is highly nonlinear

Disadvantages

- " Black-box algorithm that is difficult to interpret
- " Prone to overfitting unless tuned carefully (not intuitive with R package)
- " Slow running algorithm with high computational cost

Decision Forests are essentially a collection of overfitted heuristic models that are averaged over their individual majority votes to predict new labels in a dataset.