

University of Stuttgart

Artificial Intelligence Software Academy

Project Coordinator: Christian Pfaendner

Goal

Problem: Experimentally resolved protein structures often lack hydrogen atoms.

Dataset

The PDB **Chemical Component Dictionary** contains information about bonds of the atoms and their 3D coordinates.

- 41440 protein molecules
- 286717 Carbon atoms
- 53803 Oxygen atoms

Training

Data Splitting

Training	Validation	Testing
γ	Υ	Υ
64 %	16 %	20 %

Specifications

- A different model is trained for each:
 - type of central atom
 - depth of the neighborhood
 - number of bonded non-hydrogen atoms to the central atom
- This project's scope includes predicting the position of **one** hydrogen with:
 - Carbon central atom with 3 non-hydrogen bonded atoms
 - Oxygen central atom with 1 non-hydrogen bonded atom

Both with a neighborhood depth of 1 and 2

Models used

In total, we trained 11 different models from the following model types:

Evaluation

Dataset	Model	Metrics					
		MSE	\mathbb{R}^2	Angle error (Degree)	Bond length error (Ångström)	Bond angles (Wasserstein distance)	Dihedral angles (Wasserstein distance)
C-neighbors4-depth1	support vector regressor	0.01	0.98	3.5	0.02	0.35	n/a
	simple MLP	0.01	0.98	4.86	0.01	1.09	n/a
	catboost $n = 500$	0.01	0.98	4.62	0.02	0.95	n/a
C-neighbors4-depth2	catboost $n = 500$	0.01	0.97	4.94	0.02	1.17	0.26
	randomforest $n = 500$	0.01	0.98	4.28	0.06	0.36	0.2
	simple MLP	0.01	0.98	5.25	0.03	1.29	0.32
O-neighbors2-depth1	catboost $n = 200$	0.26	0.14	65.04	0.55	39.36	n/a
	gradient boosting $n = 500$	0.26	0.14	65.48	0.56	41.76	n/a
	simple-MLP	0.26	0.14	65.92	0.58	46.31	n/a
O-neighbors2-depth2	simple MLP	0.1	0.66	24.19	0.17	7.74	4.86
	catboost $n = 500$	0.1	0.66	24.96	0.2	8.82	5.16
	support vector regressor	0.11	0.65	22.24	0.12	4.58	3.89

Prediction of Hydrogen Positions with Machine Learning

Markus Escher
Oussama Barhoumi
Hasan Evci

Approach

1. Segment the molecule into neighborhoods centered around each non-hydrogen

3. Train a model to add the hydrogen atom connected to the central atom.

Bond Length

Bond Angle

Dihedral Angle

Conclusion

- Hydrogen position was predicted accurately
- The model with depth 1 is performing well with carbon but poorly with the oxygen as central atoms
- The oxygen model improves when including more neighbors

Outlook

- Predicting hydrogen positions for different atom types
- Predicting positions of more than one missing Hydrogen bonded to the central atom
- Implement a Graph Neural Network for improved input invariance