

APEX INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MACHINE LEARNING (21CSH-286) Faculty: Prof. (Dr.) Vineet Mehan (E13038)

Lecture - 2 Introduction to Machine Learning DISCOVER . LEARN . EMPOWER

COURSE OBJECTIVES

- 1. Understand and apply various data handling and visualization techniques.
- 2. Understand about some basic learning algorithms and techniques and their applications, as well as general questions related to analysing and handling large data sets.
- 3. To develop skills of supervised and unsupervised learning techniques and implementation of these to solve real life problems.
- 4. To develop basic knowledge on the machine techniques to build an intellectual machine for making decisions behalf of humans.
- 5. To develop skills for selecting suitable model parameters and apply them for designing optimized machine learning applications.

On completion of this course, the students shall be able to:-

Understand machine learning techniques and computing environment that are suitable for the applications under consideration.

CU	P	Unit-1 Syllabus
	Unit-1	Introduction to Machine Learning
	Introduction to	Definition of Machine Learning, Working principles of Machine
	Machine Learning	Learning; Classification of Machine Learning algorithms: Supervised
		Learning, Unsupervised Learning, Reinforcement Learning, Semi-
		Supervised Learning; Applications of Machine Learning.
	Data Pre-	Data Sourcing and Cleaning, Handling Missing data, Encoding
	Processing and	Categorical data, Feature Scaling, Handling Time Series data; Feature
	Feature	Selection techniques, Data Transformation, Normalization,
	Extraction	Dimensionality reduction
	Data Visualization	Data Frame Basics, Different types of analysis, Different types of
		plots, Plotting fundamentals using Matplotlib, Plotting Data
		Distributions using Seaborn.

SUGGESTIVE READINGS

- TEXT BOOKS:
- There is no single textbook covering the material presented in this course. Here is a list of books recommended for further reading in connection with the material presented:
 Ti: Tom.M.Mitchell, "Machine Learning, McGraw Hill international Edition".
- T2: Ethern Alpaydin," Introduction to Machine Learning. Eastern Economy Edition, Prentice Hall of India, 2005."
- T3: Andreas C. Miller, Sarah Guido, Introduction to Machine Learning with Python, O'REILLY (2001).
- REFERENCE BOOKS:
- R1 Sebastian Raschka, Vahid Mirialili, Python Machine Learning, (2014)
- R2 Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification, Wiley, 2nd Edition".
 R3 Christopher Bishop, "Pattern Recognition and Machine Learning, illustrated Edition, Springer, 2006"

Introduction to Machine Learning

- · Humans learn from experiences.
- · Whatever we learn from experiences(Good or Bad) we try to implement/perform action correspondingly.
- · Example: Driving a Car
 - Initially we learn how to drive
 - Then we drive
 - · & then we become expert

computers allows to behaviors based on data.

