SOLUTION TO HOMEWORK #6

#1

(a) Compute the convolution integral using the graphical approach used in class. Here we have

 $x(\tau) = e^{-\alpha \tau} u(\tau)$

 $h(\tau) = e^{-\beta(\tau - 2)}u(\tau - 2)$

• If t < 2,

and there is no overlap. So the product $x(\tau)h(t-\tau)=0$ and y(t)=0.

• If $t \geq 2$,

when $\alpha \neq \beta$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{0}^{t-2} e^{-\alpha\tau}e^{-\beta(t-\tau-2)}d\tau$$

$$= \int_{0}^{t-2} e^{(-\alpha+\beta)\tau}e^{-\beta(t-2)}d\tau = e^{-\beta(t-2)}\int_{0}^{t-2} e^{(-\alpha+\beta)\tau}d\tau$$

$$= e^{-\beta(t-2)} \left[-\frac{1}{\alpha-\beta}e^{-(\alpha-\beta)\tau} \right]_{0}^{t-2}$$

$$= e^{-\beta(t-2)} \left(\frac{1}{\beta-\alpha} \right) \left[e^{-(\alpha-\beta)(t-2)} - 1 \right]$$

$$= \frac{e^{-\alpha(t-2)} - e^{-\beta(t-2)}}{\beta-\alpha}$$

Therefore,
$$y(t) = \left[\frac{e^{-\alpha(t-2)} - e^{-\beta(t-2)}}{\beta - \alpha}\right] u(t-2)$$

(b)
$$x(t) = e^{-\alpha t} u(t) \longleftrightarrow X(j\omega) = \frac{1}{j\omega + \alpha}$$

$$h(t) = e^{-\beta(t-2)} u(t-2) \longleftrightarrow H(j\omega) = \frac{e^{-j2\omega}}{j\omega + \beta}$$

Then, the frequency characteristic of the output is

$$Y(j\omega) = X(j\omega)H(j\omega) = \frac{e^{-j2\omega}}{(j\omega + \beta)(j\omega + \alpha)}$$

(c) Let
$$Z(j\omega) = \frac{1}{(j\omega + \beta)(j\omega + \alpha)} = (\frac{A}{j\omega + \alpha} + \frac{B}{j\omega + \beta})$$

$$A = Z(j\omega)(j\omega + \alpha)\Big|_{j\omega = -\alpha} = \frac{1}{j\omega + \beta}\Big|_{j\omega = -\alpha} = \frac{1}{\beta - \alpha}$$

$$B = Z(j\omega)(j\omega + \beta)\Big|_{j\omega = -\beta} = \frac{1}{j\omega + \alpha}\Big|_{j\omega = -\beta} = \frac{1}{\alpha - \beta}$$
So, $z(t) = Ae^{-\alpha t}u(t) + Be^{-\beta t}u(t) = \frac{1}{\beta - \alpha}(e^{-\alpha t} - e^{-\beta t})u(t)$.
But $Y(j\omega) = Z(j\omega)e^{-j2\omega}$. So, using the time-shift property,
$$y(t) = z(t - 2) = \frac{1}{\beta - \alpha}\left[e^{-\alpha(t - 2)} - e^{-\beta(t - 2)}\right]u(t - 2)$$

#2

(a)

$$X(j\omega) = \underbrace{\frac{2\sin(\omega - 2)}{\omega - 2}}_{X_1(j\omega)} * \underbrace{\frac{e^{-2j\omega}\sin 2\omega}{\omega}}_{X_2(j\omega)}$$

Since convolution-in-frequency is multiplication-in-time (see Property 4.5), $x(t) = 2\pi x_1(t)x_2(t)$.

Let $Y_1(j\omega) = \frac{2\sin\omega}{\omega}$, then, $X_1(j\omega) = Y_1(j(\omega - 2))$, and, using Property 4.3.6, $x_1(t) = y_1(t)e^{j2t}$. Inverting $Y_1(j\omega)$, we get

$$y_1(t) = \begin{cases} 1, & |t| < 1 \\ 0, & |t| < 1 \end{cases}$$

Similarly, let $Y_2(j\omega) = \frac{2\sin 2\omega}{\omega}$. Then, $X_2(j\omega) = \frac{1}{2}e^{-2j\omega}Y_2(j\omega)$, and using Property 4.3.2, $X_2(t) = \frac{1}{2}y_2(t-2)$. Inverting $Y_2(j\omega)$, we get

$$y_2(t) = \begin{cases} 1, & |t| < 2\\ 0, & |t| < 2 \end{cases}$$

Therefore, $x(t) = 2\pi x_1(t)x_2(t) = [2\pi y_1(t)e^{j2t}][\frac{1}{2}y_2(t-2)]$, and

$$x(t) = \begin{cases} \pi e^{j2t}, & 0 < t < 1\\ 0, & \text{otherwise} \end{cases}$$

(b)
$$y(t) = x(t-2)$$

$$\therefore Y(j\omega) = X(j\omega)e^{-2j\omega}$$

$$\sin t \cdot d \sin 2t$$

$$x(t) = \underbrace{\frac{\sin t}{\pi t}}_{a(t)} * \frac{d}{dt} \left[\underbrace{\frac{\sin 2t}{\pi t}}_{b(t)} \right]$$

$$\therefore X(j\omega) = A(j\omega) \cdot j\omega B(j\omega)$$

$$\therefore Y(j\omega) = \begin{cases} j\omega e^{-2j\omega}, & |\omega| \le 1\\ 0, & \text{otherwise} \end{cases}$$

(c) (This was a clicker question in class.) Use Parseval's theorem

$$\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 2\pi \int_{-\infty}^{\infty} |x(t)|^2 dt$$

We have the Fourier transform pair

$$X(j\omega) = \frac{2}{j\omega + 2} \to x(t) = 2e^{-t}u(t)$$

Therefore,

$$\int_{-\infty}^{\infty} \left| \frac{2}{j\omega + 2} \right|^2 d\omega = 2\pi \cdot 4 \int_{0}^{\infty} e^{-4t} dt = 8\pi (\frac{1}{4}) = 2\pi$$

#3

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

This is a periodic function (draw graph if not sure) with period T. To determine the Fourier series coefficients a_k , we use Eq. (3.39) in the textbook and select the interval of integration to be [-T/2, T/2], avoiding the placement of impulses at the integration limits. Within this interval, $x(t) = \delta(t)$, and thus

$$a_k = \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk2\pi t/T} dt = \frac{1}{T} \text{ for all } k$$

Substituting this value for a_k in Eq. (4.42) yields

$$X(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$$

$$#4$$
 $H(j)$

$$H(j\omega) = \frac{2}{-\omega^2 + 3j\omega + 2} = \frac{2}{(j\omega)^2 + 3j\omega + 2}$$

(a) Using partial fraction expansion,

$$H(j\omega) = \frac{2}{(j\omega)^2 + 3j\omega + 2} = \frac{2}{(j\omega + 1)(j\omega + 2)} = \frac{A}{j\omega + 1} + \frac{B}{j\omega + 2}$$
$$A = H(j\omega)(j\omega + 1)\Big|_{j\omega = -1} = \frac{2}{j\omega + 2}\Big|_{j\omega = -1} = 2$$

$$B = H(j\omega)(j\omega + 2)\Big|_{j\omega = -2} = \frac{2}{j\omega + 1}\Big|_{j\omega = -2} = -2$$

$$\therefore H(j\omega) = \frac{2}{j\omega + 1} - \frac{2}{j\omega + 2}$$

Taking the inverse Fourier transform of $H(j\omega)$ gives

$$h(t) = 2e^{-t}u(t) - 2e^{-2t}u(t) = 2(e^{-t} - e^{-2t})u(t)$$

(b)
$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{2}{(j\omega)^2 + 3j\omega + 2}$$
$$(j\omega)^2 Y(j\omega) + 3j\omega Y(j\omega) + 2Y(j\omega) = 2X(j\omega)$$

Taking the inverse Fourier transform of this equation gives

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 2x(t)$$

#5 Consider an LTI system described by the following differential equation

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt}$$

(a) Taking the Fourier transform of the differential equation, we get

$$(j\omega)^{2}Y(j\omega) + 4(j\omega)Y(j\omega) + 3Y(j\omega) = X(j\omega)$$
$$Y(j\omega) [(j\omega)^{2} + 4j\omega + 3] = X(j\omega)$$

Thus,

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{j\omega}{(j\omega)^2 + 4j\omega + 3}$$

(b) $h(t) = \text{Impulse response} = \mathcal{F}^{-1}\{H(j\omega)\}\$. Using partial fraction expansion,

$$H(j\omega) = \frac{j\omega}{(j\omega+1)(j\omega+3)} = \frac{A}{j\omega+3} + \frac{B}{j\omega+1}$$

We can compute the coefficients A and B using the method in Problem # 4a. An alternative is to simply cross multiply. Using this approach, we get

$$j\omega = A(j\omega + 1) + B(\omega + 3)$$
$$j\omega = (A+B)j\omega + (A+3B)$$
$$A+3B=0, A+B=1 \Rightarrow A=\frac{3}{2}, B=-\frac{1}{2}$$
$$H(j\omega) = \frac{3/2}{j\omega + 3} - \frac{1/2}{j\omega + 1}.$$

Taking the inverse transform of $H(j\omega)$ gives

$$h(t) = \frac{3}{2}e^{-3t}u(t) - \frac{1}{2}e^{-t}u(t)$$

#6

The message x(t) is to be transmitted using AM modulation. Its frequency characteristic is shown above. From the diagram in the homework statement, the output y(t) is

$$y(t) = x(t) \cos \omega_o t, \ \omega_0 = 5 \text{ radians/sec}$$

$$= x(t) \left(\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}\right)$$

$$= \frac{x(t)}{2} e^{j\omega_0 t} + \frac{x(t)}{2} e^{-j\omega_0 t}$$

Use the frequency-shift property (4.3.6)

$$e^{j\omega_0 t} x(t) \longleftrightarrow X(j(\omega - \omega_0))$$

$$\therefore Y(j\omega) = \underbrace{\frac{1}{2} X(j(\omega - \omega_0))}_{\text{shift up in frequency}} + \underbrace{\frac{1}{2} X(j(\omega + \omega_0))}_{\text{shift down in frequency}}$$

#7

The received signal is y(t) = x(t) + n(t).

(a) Noise energy =
$$\int_{-\infty}^{\infty} |n(t)|^2 dt \stackrel{\text{Parseval}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} |N(j\omega)|^2 d\omega = \frac{1}{2\pi} (\frac{1}{4}40) = \frac{5}{\pi}$$

(b) Desired signal energy =
$$\int_{-\infty}^{\infty} |x(t)|^2 dt \stackrel{\text{Parseval}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = \frac{1}{2\pi} (4 \cdot 4) = \frac{8}{\pi}$$

(c) The received signal y(t) = x(t) + n(t), where the first term extends from $\omega = -2$ to 2, and the second term from $\omega = -20$ to 20.

So, if we lowpass filter y(t) with a cutoff frequency at $\omega_c = 2 \text{ rad/sec}$, the signal will pass unaffected, while the noise energy will be reduced to

$$\frac{1}{2\pi} \int_{-2}^{2} (1/2)^2 d\omega = \frac{1}{2\pi} 1 = \frac{1}{2\pi}$$

 \therefore The noise energy has been reduced by a factor of 10 (10 dB).

Conceptual

- (a) A lowpass filter will cutoff the higher frequencies and not permit the image to contain regions which vary rapidly \rightarrow so the edges will be blurred.
- (b) A highpass filter will cutoff the low frequencies, and accentuate the high frequencies (that is, where the image changes rapidly) \rightarrow so the edges will be enhanced.

Math Review

(a) The given integral can be written as

$$\int_{\alpha}^{\infty} e^{-t} dt = -e^{-t} \Big|_{\alpha}^{\infty} = -\left(e^{-\infty} - e^{-\alpha}\right) = e^{-\alpha}$$

For the integral to exist, α can be any value except $\alpha = -\infty$.

(b)
$$\int_0^\infty e^{-(\alpha+j\omega)t} dt = \frac{1}{-(\alpha+j\omega)} e^{-(\alpha+j\omega)t} \Big|_0^\infty = \frac{1}{\alpha+j\omega} \left[1 - \lim_{t\to\infty} e^{-j\omega t} e^{-\alpha t}\right]$$

For the integral to exist, the second term must remain finite as $t \to \infty$. Therefore, α must be non-negative, $\alpha \ge 0$.

(c) The given integral can be written as

$$\int_{-\infty}^{0} e^{-(\alpha+1)t} dt = \frac{1}{-(\alpha+1)} e^{-(\alpha+1)t} \Big|_{-\infty}^{0}$$
$$= -\frac{1}{\alpha+1} \left[1 - \lim_{t \to -\infty} e^{-(\alpha+1)t} \right]$$

For the integral to exist, the second term must remain finite as $t \to -\infty$. Therefore, $(\alpha + 1)$ must be negative. Therefore, $\alpha + 1 < 0$, and $\alpha < -1$.

At $\alpha = -1$, we have $\int_{-\infty}^{0} 1 dt$ which does not converge.