

Exercice 3 Le Dipole RC (circuit a deux résistances)

On se propose d'étudier la charge d'un condensateur à travers deux résistors, pour cela on réalise le circuit de la **figure 2** formé d'un générateur de tension de fem E, d'un condensateur de capacité C initialement déchargé, d'un interrupteur K et de deux résistors de résistances R_1 = 500 Ω et R_2 inconnue.

- 1- Représenter les connexions à effectuer pour visualiser sur un oscilloscope à mémoire les tensions u_c sur la voie 1 et u_{R1} sur la voie 2.
- 2- Lorsqu'on ferme l'interrupteur K, à t =0, on observe sur l'oscilloscope à mémoire les deux courbes (a) et (b) suivantes :

- **b-** Montrer qu'à l'instant t = 0, la tension \mathbf{u}_{R1} est donnée par la relation $\mathbf{u}_{R1} = E \frac{R_1}{R_1 + R_2}$
- 3- a- Etablir l'équation différentielle relative à $u_c(t)$.
- **b-** En déduire qu'en régime Permanent u_c = E. Donner sa valeur
- c- Vérifier que $u_c(t) = Ae^{\alpha t} + B$

est solution de cette équation différentielle avec A , α et B des constantes à détermine

- 4- a- Déterminer la valeur de R2
 - **b-** Déterminer graphiquement τ . En déduire la valeur de C.
- 5- a- Déterminer les expressions en fonction du temps des tensions u_{R1} et de u_{R2} b- Représenter sur le même graphe $u_{R2}(t)$.

