

Wang, Daixin, et al. "A semi-supervised graph attentive network for financial fraud detection." 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.

Introduction

[배경 설명]

- Fintech 서비스는 많은 사람들에게 편리를 주고 있고, 이 분야는 최근 많은 성장을 하고 있다. → 핀테크의 성장에 따라 fraud도 증가하고 있다.
- 여러 종류의 Fraud는 유저와 회사의 security에 타격을 준다. 그므로, Fraud Detection 방법의 탐구는 중요하다.

[태스크 정의]

• Fraud Detection은 엔터티(유저,디바이스 등)가 미래에 Fraud activity를 수행할지 여부를 예측하는 task.

[기존 방법의 한계]

- 일반적으로, 전통적인 접근에서, 이 Fraud Detection은 규칙 기반으로 수행되는 이진 분류 작업으로 간주되었다.
 - 규칙-기반의 Fraud Detection은 오랫동안 산업에서 사용되었지만, 이 방법에 대한 결점들이 있다.
 - 1. 이것은 너무 인간의 사전 지식(expert knowledge)에 의존한다.
 - 2. 그래서,이 방법은 복잡한 패턴과 변화를 다루기 어렵다.
 - 3. 규칙 기반 방법은 공격 당하기 쉽다. (공격자가 한번 FD 시스템의규칙을 알고 나면, 그 시스템은 공격 당하기 쉬워진다.)

Introduction

[대안1 제시]

- 규칙-기반 FD 방법이 가진 한계를 극복하기 위해, 자동으로 fraud pattern을 찾기 위한 ML 방법이 제안되었다.
 - 대부분의 ML은 유저의 다양한 측면(프로필,행동,트랜잭션 요약정보)에서 유저의 통계적 특징을 추출한다.

[대안1 한계]

- 전통적인 ML 방법은 분류 작업을 수행하기 위해 로지스틱 회귀, NN 등에 기반하여 예측을 수행한다.
- 하지만,이 방법은 유저 간 interaction을 거의 고려하지 않는다.
 - 사용자들은 다양한 사회적 관계를 갖는다. 이들은 다른 사용자와 트랜잭션을 주고 받는다.
 - 이런 관계에 대한 정보는 이상 거래를 탐지하는 데 도움이 될 수 있다.

[대안1 한계 극복 시도: Graph Embedding]

- Conventional approaches: 일부 연구자는 유저 상호관계를 통합하기 위해 그래프 임베딩 사용.
- 하지만 FD에서 labeled 데이터는 별로 없고, 우리가 가진 건 (기존의 그래프 기반 방법에서는 이용되지 않은) 다수의 unlabeled 데이터일 뿐.

Introduction

[대안2: author's proposal]

• 기존 방법의 한계를 극복하기 위해, labeled and unlabeled multi-view data both를 이용하여 FD 수행할 것

[semiGNN]

- The basic idea of SemiGNN is to enhance the representations of users by fully exploiting the relational data and attribute data of both labeled and unlabled data.
- [Advantages]
 - 1. Using Labeled, unlabeled information
 - 2. 우리 모델은 comprehensive result를 얻기 위해 multiview data를 통합시킨다.
 - 3. Attribution을 Dense feature로 이용하지 않고, attribute network를 구축하는 것은 attribute information의 representation을 향상시킴.
 - 4. 우리는 계층적 어텐션 메커니즘을 모델 내에 넣었다.
 - 1. 어텐션은 data의 다양한 관점 간의 상관관계를 구하도록 함.
 - 2. 어텐션 기반 모델은 해석 가능한 결과를 제공하기 때문에 task에 대한 인사이트를 제공할 수 있음.

[Considerations]

- 어떻게 labeled & unlabeled 둘다 사용할 것인가
 - 적은 수의 유저만이 fraud or not 여부가 라벨되어 있을 뿐
 - 어떻게 data heterogeneity를 모델링 할 것인가
 - multiview data를 이용하는 건 더 포괄적인 정보를 제공할 수 있다. 그런데, 사회적 관계 & 유저 특성 같은 multiview data는 different 통계적 속성을 지닌다.
 - 그런 이질성은 다측면적 데이터를 통합하는 데 어려움을 준다.
- 어떻게 해석 가능한 모델을 학습시킬 것인가
 - 금융 서비스 제공자는 (이상 거래 탐지에 대한) 예측 결과에 대한 지식을 better 얻게 해주는 해석 가능한 모델을 원한다.

Related Work

A. Financial Fraud Detection

- · Credit card fraud, Insurance fraud 등이 연구되어 왔다.
- 초창기 연구는 fraud activities에는 어떤 패턴이 있다는 가정 하에 규칙-기반 방법을 사용했다.
 - 이 방법은 단순함과 해석의 용이성 때문에 인기있게 사용되었다.
 - 그러나 이 규칙 기반 방법은 인간이 사전에 갖고 있는 지식에 너무 의존적이었다.
 - 이 이들은 변화하는 복잡한 패턴을 포착하기에 어려움이 있었다.
 - 게다가, 한번 fruad attacker에게 규칙이 발각되면, attacker는 공격을 더 쉽게 할 수 있었다.

B. Learning over graphs

- Network Embedding
- 그래프의 구조를 모델링할 수 있는 효과적인 방법
- 각 노드에 대한 low-dimensional vector-representation 학습이 목적
- Graph Convolution Network
- Network topology와 Node attribute를 동시에 학습할 수 있는 귀납적 방법
- 이것은 보통 link prediction을 위해 고안되기 때문에 classification 성능에는 suboptimal
- 이것은 interpretable results 제공 x

The model

Data 특징

· Different views 가 있고, each view는 different information 표현

SemiGNN 특징

- · 이 모델은 다양한 유형의 nodes와 그래프의 다양한 views를 다룰 수 있다.
- ㆍ 계층적 어텐션 구조
 - · From node-level to view-level

- · 이 모델은 각 view에서 rich semantic을 fuse할 수 있고, comprehensive user embedding을 학습할 수 있다.
- · 이 모델은 어텐션을 이용한 덕택에 해석에 용이할 수 있다.
 - · 어떤 node가 주어진 task에서 중요한지, 어떤 factor가 어느 유저가 fraud or not 여부를 분류하는 데 중요한지 알 수 있음

The model Node-level Attention

- 1) e^{v}_{ui} 는 그래프 정보를 모델에 전달
- 2) Neighbor's embedding 취합(aggregate)

Node-level attention

$$\alpha_{ui}^v = \frac{exp(e_{ui}^v \cdot H_{ui}^v)}{\sum_{k \in \mathcal{N}_u^v} exp(e_{uk}^v \cdot H_{uk}^v)}.$$

- 1) 필요성: Different nodes contribute unequally for user's embedding and the final task
- 2) H^{v} : learnable attention matrix parameter
- 3) α_{ui}^{v} : u-i 간 (normalized) importance

$$h_u^v = \sum_{k \in \mathcal{N}_u^{(A)}} lpha_{uk} e_{uk},$$
 : view-specific low-level embedding for each user

The mode View-level Attention

To fuse multiple views of information

- 1) 각 view에 대한 user embedding (h_{μ}^{ν}) 을 comprehensively 학습하기 위해 요구됨
- 2) Problem: low-level representations of multiview data lie in heterogeneous domains, which makes it difficult to capture the multiview correlations in low-level space
- 3) **Solution**:
 - 1) Use separate MLP to project low-level view-specific user embedding \rightarrow high-level semantic space.
 - 1) It is easier to correlate multiview data
 - 2) Integrate multiview data
 - 1) We propose a view-level attention mechnism to automatically learn the importance of different views and accordingly integrate multiview data

$$h_u^{v(l)} = Relu(h_u^{v(l-1)}W_l^v + b_l^v), v \in \{2,...,m\},$$
 where $h_u^{v(1)} = h_u^v$.

view-level attention

The view-level attention mechanism models personalized preference on different views

$$\alpha_u^v = \frac{exp(h_u^{v(L)} \cdot \phi_u^v)}{\sum\limits_{k \in \{1,...,m\}} exp(h_u^{k(L)} \cdot \phi_u^k)}, v \in \{1,...,m\}, \qquad \phi_u^v \text{: view preference vector} \\ \quad - \text{ for user to guide the view - level attention mechanism.} \\ \quad h_u = ||_{i=1}^m (\alpha_u^v \cdot h_u^{v(L)}),$$

Concatenate

 a_{\shortparallel} : Use a one-layer perceptron, which use $h_{\iota\iota}$ as the input to refine the representations

The model Loss

For labeled users,

Use softmax on the representations of the embedding layer to get the classification result

$$\mathcal{L}_{sup} = -\frac{1}{|U_L|} \sum_{u \in U_l} \sum_{i=1}^k I(y_u = i) \log \frac{exp(a_u \cdot \theta_i)}{\sum_{j=1}^k exp(a_u \cdot \theta_j)},$$

- · $I(\cdot)$ is the indicator function
- · k is the number of occupations to be predicted
- θ is the parameter of the softmax.

For unlabeled users,

- · 하지만 다수의 사용자는 fraud or not 에 대해 unlabeled 되어 있음.
- · 이들 모두를 label하는 것은 resource consuming
- · Unlabeled data도 이용하여 model training을 해보자.
 - · How? Labeled data를 seed로 하여, 그것으로부터 one-hop 떨어진 unlabeled 관계(친구,동료 등)만을 고려 · To bridge the labeled and unlabeled.

$$\mathcal{L}_{graph} = \sum_{u \in U} \sum_{v \in \mathcal{N}_u \cup Neg_u} -log(\sigma(a_u^T a_v)) \qquad \qquad \mathbf{z}_u^T \mathbf{z}_v \approx \begin{array}{c} \text{probability that } u \\ \text{and } v \text{ co-occur on a random walk over} \\ \\ -Q \cdot E_{q \sim P_{neg}(u)} log(\sigma(a_u^T a_q)), \end{array}$$

- · N_u : user u의 이웃
- · Neg_u : user u의 이웃 아님
- · /v: u의 random walk path에서 co-occur하는 node
- Q: The number of negative samples
- $\cdot a_u$: generated from user's multi view information

· We utilize not only social relations of the unlabel but also integrate their contents.

Experiment

Dataset

Alipay에서 제공하는 Huabei라는 credit service

- 1) user-relation graph
- 2) User-app graph
- 3) User-nick graph
- 4) User-address

4m users with the known labels + Their one-hop neighbors unlabeled $\,pprox$ 100 m

Two tasks

User default prediction: 사용자가 상환을 잘 하는지 여부를 예측 User attribute prediction

Rank	User Default Prediction	User Attribute I	Prediction (Doctor)		
	App	Nick	Address		
1	game-jjhgame (集结号捕鱼)	Head Nurse (护士长)	Maternity Hospital (妇产医院)		
2	p2p-crfchina (信而富)	Dean (院长)	Pet Hospital (宠物医院)		
3	p2p -iqianjin (钱站)	Clinic (诊所)	Dentistry (牙科)		
4	game-templerun2 (神庙逃亡2)	Doctor (医生)	Outpatient Department (门诊部)		
5	financial-eastmoney (东方财富)	Hospital of Chinese Medicine (中医院)	Clinic (诊所)		
6	p2p -xiangqd (向钱贷)	Patient (病人)	Physical Examination (体检)		
7	p2p-niwodai (你我贷借款)	Nurse (护士)	Stomatology Department (口腔科)		
8	p2p -360jie (360借条)	Beauty (美容院)	Traditional CM Department (传统中医科)		
9	shopping-aldb (魔buy商城)	Attending Doctor (主治医师)	Hospital (医院)		
10	p2p -jiedaibao (借贷宝)	Dentist (牙医)	Gynecology (妇科)		
11	game-lua850 (850棋牌李逵捕鱼)	Health-center (体检中心)	Rehabilitation Department (康复科)		
12	entertainment-cashcomic (惠动漫)	Cosmetologist (美容师)	Nursing Department (护理部)		
13	shopping-globalscanner (环球捕手)	Wardmate (病友)	Health Department (卫生部)		
14	social-my (秒缘)	Radiology (放射科)	Pediatric Department (儿科)		
15	p2p -daima360 (贷嘛)	Gynecology (妇科)	Obstetrics Department (产科)		

Experiment

Training

Adam + $Ir = 0.002 + batch_size = 128 + epochs = 3$

- SemiGNN_{sup}: It is a reduced version of our proposed method SemiGNN, which only utilizes the labeled data.
- SemiGNN_{nd}: It is a reduced version of SemiGNN which removes node-level attention.
- SemiGNN_{vw}: It is a reduced version of SemiGNN which removes view-level attention.

TABLE II
USER DEFAULT PREDICTION ON AUC AND KS ON ALIPAY.

Evaluation Metric	Xgboost	LINE	GCN	GAT	SemiGNN _{sup}	SemiGNN _{nd}	SemiGNN _{vw}	SemiGNN
AUC	0.753	0.771	0.780	0.784	0.786	0.798	0.801	0.807
KS	0.370	0.397	0.415	0.424	0.427	0.442	0.448	0.464

- · SemiGNN > GCN, GAT
- · SemiGNN_sup 보다 SemiGNN의 score가 더 높다 → unlabeled data는 score 향상에 기여하는 valuable information
- · KS statistic is the maximum difference between TPR and FPR

Conclusion

- · Our model links the labeled and unlabeled data via their social relations
- · We propose a hierarchical attention mechanism to better mine the multiview graph
 - · The node-level attention is able to better correlate neighbors
 - The view-level attention can better integrate different views.
- · Our method achieves better results compared with baseline methods.