Logique des Propositions

Corrigé Série N°3 Exo1 et Exo2

Etude Sémantique

a) $P \leftrightarrow \neg P$

P	¬ P	$P \leftrightarrow \neg P$
V	F	F
F	V	F

Quelque soit l'instanciation la formule : $P \leftrightarrow \neg P$ est toujours fausse. Donc cette formule est insatisfiable. C'est une Antilogie.

c)
$$(P \lor Q) \rightarrow (\neg P)$$

Р	Q	¬P	P∨Q	$P \lor Q \rightarrow \neg P$
V	V	F	V	F
V	F	F	V	F
F	V	V	V	V
F	F	V	F	V

Il existe au moins une instanciation pour laquelle la formule : $P \lor Q \to \neg P$ est vraie. Donc cette formule est Satisfiable.

Elle contient 2 modèles : (P=F - Q=V) et (P=F - Q=F)

Et 2 contre-modèles : (P=V - Q=V) et (P=V - Q=F)

d)
$$P \wedge (P \vee Q)$$

P	Q	P∨Q	P ∧ (P∨Q)
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	F

Il existe au moins une instanciation pour laquelle la formule : $P \land (P \lor Q)$ est vraie. Donc cette formule est Satisfiable.

Elle contient 2 modèles : (P=V - Q=V) et (P=V - Q=F)

Et 2 contre-modèles : (P=F - Q=V) et (P=F - Q=F)

b) $(P \rightarrow Q) \rightarrow (P \rightarrow R)$

Р	Q	R	$P \rightarrow Q$	$P \rightarrow R$	$P \rightarrow Q \rightarrow (P \rightarrow R)$
V	V	V	V	V	V
V	V	F	V	F	F
V	F	V	F	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	V	F	V	V	V
F	F	V	V	V	V
F	F	F	V	V	V

	Var prop	α	β	ανβ	αΛβ
		V		V	
Soit une		•			
instanciation		V	V	V	V
quelconque =		V	F	V	F
de la TV.		•		•	
		•	•	•	•
		V		V	

Pour cette instanciation : $\alpha = V$ (Hyp : α Tautologie) et deux cas se présentent pour β :

Soit :
$$1^{er}$$
 Cas : $\beta = V$ Donc : $\alpha \lor \beta = V$ et $\alpha \land \beta = V$

Soit :
$$\underline{2^{\text{ème}} \text{ Cas}}$$
 : $\beta = F$ Donc : $\alpha \lor \beta = V$ et $\alpha \land \beta = F$

Conclusion 1 :
$$\alpha \lor \beta$$
 Tautologie

Conclusion 2:
$$\alpha \land \beta \equiv \beta$$

2/ Montrer l'équivalence $\alpha = \beta$ (sans utiliser les TV)

- B/ Equivalence Logique (≡) est :
- -Symétrique : si $\alpha = \beta$ alors $\beta = \alpha$
- -Transitive : si $\alpha = \beta$ et $\beta = \delta$ alors $\alpha = \delta$

C/ Par Transitivité
$$\alpha = \alpha_1 = \alpha_2 = \alpha_3 = \dots = \alpha_n = \beta$$

Commutativité

$$\alpha \land \beta \equiv \beta \land \alpha$$

$$\alpha \lor \beta \equiv \beta \lor \alpha$$

<u>Associativité</u>

$$(\alpha \land \beta) \land \delta \equiv \alpha \land (\beta \land \delta)$$

$$(\alpha \vee \beta) \vee \delta \equiv \alpha \vee (\beta \vee \delta)$$

<u>Idempotence</u>

$$\alpha \land \alpha \equiv \alpha \text{ et } \alpha \lor \alpha \equiv \alpha$$

Double Négation

$$\neg \neg \alpha \equiv \alpha$$

Antilogie _

$$\alpha \wedge \mathbf{F} \equiv \mathbf{F} \text{ et } \alpha \vee \mathbf{F} \equiv \alpha$$

<u>Tautologie</u>

$$\alpha \wedge \mathbf{V} \equiv \alpha \text{ et } \alpha \vee \mathbf{V} \equiv \mathbf{V}$$

<u>Distributivité</u>

$$\alpha \wedge (\beta \vee \delta) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \delta)$$
$$\alpha \vee (\beta \wedge \delta) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \delta)$$

Lois de Morgan

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$

<u>Abréviations</u>

$$\alpha \vee \beta \equiv \neg (\neg \alpha \wedge \neg \beta)$$

$$\alpha \rightarrow \beta \equiv \neg(\alpha \land \neg \beta) \equiv \neg \alpha \lor \beta$$

$$\alpha \leftrightarrow \beta \equiv \neg(\alpha \land \neg \beta) \land \neg(\beta \land \neg \alpha)$$
$$\equiv (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$$

O

$$\alpha \rightarrow \beta \equiv \neg \beta \rightarrow \neg \alpha$$

2/ Montrer l'équivalence (sans utiliser les TV)

$$P \rightarrow Q \equiv \neg P \lor Q$$

$$P \rightarrow Q \equiv \neg P \lor Q$$
 $P \rightarrow Q \equiv \neg P \lor Q$
 $\neg (P \land \neg Q) \equiv \qquad \qquad \text{(Abréviation de } \rightarrow \text{)}$
 $\neg P \lor \neg \neg Q \equiv \qquad \qquad \text{(Ioi de Morgan)}$
 $\neg P \lor Q \equiv \qquad \qquad \text{(Double Négation)}$

2/ Montrer l'équivalence (sans utiliser les TV) $P \rightarrow (Q \land R) \equiv (P \rightarrow Q) \land (P \rightarrow R)$

$$P \rightarrow (Q \land R) \equiv \\ \neg (P \land \neg (Q \land R)) \equiv \\ (Abréviation de \rightarrow) \\ \neg (P \land (\neg Q \lor \neg R)) \equiv \\ (Ioi de Morgan) \\ (P \land \neg Q) \lor (P \land \neg R) \equiv \\ (P \land \neg Q) \land \neg (P \land \neg R) \equiv \\ (P \rightarrow Q) \land \neg (P \land \neg R) \equiv \\ (P \rightarrow Q) \land \neg (P \land \neg R) \equiv \\ (P \rightarrow Q) \land (P \rightarrow R) = \\ (Abréviation de \rightarrow) \\ (P \rightarrow Q) \land (P \rightarrow R) = \\ (Abréviation de \rightarrow) \\ (Abréviation de \rightarrow) \\ (P \rightarrow Q) \land (P \rightarrow R) = \\ (Abréviation de \rightarrow) \\ (Abrévi$$

2/ Montrer l'équivalence (sans utiliser les TV) $P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$

$$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P) \equiv (Abréviation de \leftrightarrow)$$

$$((P \lor Q) \land (\neg Q \lor P) \equiv X2 \text{ (Abréviation de } \rightarrow)$$

$$((\neg P \lor Q) \land \neg Q) \lor ((\neg P \lor Q) \land P) \equiv (Distributivité)$$

$$((\neg Q \land (\neg P \lor Q)) \lor (P \land (\neg P \lor Q)) \equiv X2 \text{ (Commutativité)}$$

$$((\neg Q \land \neg P) \lor (\neg Q \land Q)) \lor ((P \land \neg P) \lor (P \land Q)) \equiv X2 \text{ (Distr)}$$

$$((\neg P \land \neg Q) \lor (P \land Q) \equiv X2 \text{ (Antilogie)}$$

$$(P \land Q) \lor (\neg P \land \neg Q) \equiv (Commutativité)$$

2/ Montrer l'équivalence (sans utiliser les TV) $\neg (P \land Q) \land ((P \lor R) \land \neg R) \equiv P \land \neg (Q \lor R)$

 $P \land \neg (Q \lor R) \equiv$

$$\neg(P \land Q) \land ((P \lor R) \land \neg R) \equiv \\ \neg(P \land Q) \land ((P \land \neg R) \lor (R \land R)) \equiv \\ (Distributivité) \\ \neg(P \land Q) \land (P \land \neg R) \equiv \\ (Antilogie) \\ (\neg P \lor \neg Q) \land (P \land \neg R) \equiv \\ ((\neg P \lor \neg Q) \land P) \land \neg R \equiv \\ (P \land (\neg P \lor \neg Q)) \land \neg R \equiv \\ ((P \land P) \lor (P \land \neg Q)) \land \neg R \equiv \\ (P \land \neg Q) \rightarrow \neg R \equiv \\ (P \land \neg Q) \rightarrow \neg R \equiv \\ (P \land \neg Q) \rightarrow \neg R \equiv \\ (P \land \neg Q) \rightarrow \neg R \equiv \\ (P$$

(Loi de Morgan)