CS461: WRITTEN ASSIGNMENT - 3

Devaishi Tiwari (170101021)

QUATERNIONS in Computer Graphics

1. Brief Introduction

Similar to complex numbers, there are two different ways to understand and define quaternions, the **geometric** and the **algebraic** approach.

1.1 Algebraic Definition

While the complex numbers are obtained by adding the element i to real numbers which satisfies $i^2 = 1$, quaternions are obtained by adding the elements **i**, **j**, and **k** to the real numbers. Here i, j and k satisfy the following relations,

$$i^2 = j^2 = k^2 = ijk = -1$$

Every quaternion is a real **linear combination** of basis quaternions 1, i, j, and k, that means every quaternion can be uniquely expressible in the form $\mathbf{a} + \mathbf{b}i + \mathbf{c}j + \mathbf{d}k$.

1.2 Geometric Definition

Quaternions can also be considered as a pair of **scalar** and **vector** quantities. It can be represented as,

$$q = s + \vec{v}$$

$$q = [s, \vec{v}]$$

$$q = a + bi + cj + dk$$

The axes can be visualized as shown in the diagram in the right.

2. Need for Quaternions

Over the last few years, quaternions are used **instead of matrices** to **rotate 3D characters**. We will go more into the details of the rotation in the application section.

The reason why Quaternions were preferred in computer graphics were as follows,

- Quaternions allow a character to rotate about multiple axes simultaneously, instead of sequentially.
- Quaternions consume less memory and computation time as compared to matrices.
- Quaternions can overcome the common issues with other methods of rotating 3D structures such as Gimbal Lock.

2.1 Gimbal Lock

A **Gimbal** is a hardware implementation of euler angles used for rotation in 3D space. **Gimbal lock** situation arises when **two rotational axes of an object point in the same direction.**Due to this orientation, the rotation ends up **losing one degree of freedom**, hence "locking" the system into **rotation in a degenerate 2D space**.

3. Mathematics related to Quaternions

We will only discuss a few basic operations like addition and subtraction, multiplication and norm. You can refer to this link to know more about mathematics pertaining to quaternions.

3.1 Addition and Subtraction

In quaternion addition and subtraction, the corresponding scalar and vectors from each quaternion are added/subtracted, respectively.

$$q_1 = [s_1, \vec{v}_1]$$

 $q_2 = [s_2, \vec{v}_2]$
 $q_1 \pm q_2 = [s_1 \pm s_2, \vec{v}_1 \pm \vec{v}_2]$

3.2 Multiplication

Quaternions can be multiplied by another quaternion or a scalar. Mathematically, the multiplication can be written as,

$$q_1 = [s_1, \vec{\mathbf{v}}_1]$$

$$kq_{1} = k[s_{1}, \vec{V}_{1}] = [ks_{1}, k\vec{V}_{1}]$$

$$q_{2} = [s_{2}, \vec{V}_{2}]$$

$$q_{1}q_{2} = [s_{1}, \vec{V}_{1}][s_{2}, \vec{V}_{2}]$$

$$q_{1}q_{2} = [s_{1}, s_{2}, s_{1}\vec{V}_{2} + s_{2}\vec{V}_{1} + \vec{V}_{1} \times \vec{V}_{2}]$$

Note: The **Cross Product** of two quaternions is equivalent to the cross product of the vector part of quaternions.

$$q_1 = [s_1, \vec{V}_1]$$

$$q_2 = [s_2, \vec{V}_2]$$

$$q_1 \times q_2 = \vec{V}_1 \times \vec{V}_2$$

The **Dot Product** of two quaternions can be written as follows,

$$q_{1} = [s_{1}, \vec{v}_{1}]$$

$$q_{2} = [s_{2}, \vec{v}_{2}]$$

$$q_{1} \cdot q_{2} = s_{1}s_{2} + \vec{v}_{1} \cdot \vec{v}_{2}$$

3.3 Norm

Norm for quaternions is similar to that of vectors, it can be represented as,

$$||q|| = (s^2 + |\vec{V}|^2)^{0.5}$$

4. Applications

Quaternions have various uses in the sector of science and technology, including but not limited to, **electro mechanics**, **quantum mechanics**, **3D rotation and animation**, and **topology**. Here, we will only discuss 3D rotation and animation in brief.

4.1 Rotation using Quaternions

As mentioned above, quaternions allow a character to rotate about multiple axes simultaneously, instead of sequentially as matrix rotation allows.

In 3D space, according to **Euler's rotation theorem**, any rotation or sequence of rotations of a structure about a fixed point is equivalent to a **single rotation** by a **given angle** θ about a **fixed axis** (called the **Euler axis**) that runs through the fixed point.

Using this theorem, we can represent the rotation in 3D space as a combination of a vector \vec{v} and a scalar θ . This **axis-angle representation** can be encoded as a quaternion,

$$q^{-1} = Cos(\theta/2) - (v_x i + v_y j + v_z k) Sin(\theta/2)$$