

Waffle-Iron Waveguide Filter: (a) view looking into port 2, (b) exploded view.

FIG. 1



Examples of resonant vias from Riad's US patent 5,886,597.

FIG. 2



FIG. 3

Sheet 2 of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III Atty. Noel C. Gillespie (858) 720-2500 EL997866311US

|          | Mechanically-Unbalanced        | Mechanically-Balanced                 |  |
|----------|--------------------------------|---------------------------------------|--|
| Internal | Internal "T"                   | Internal "double T" US Pat. 6,542,342 |  |
|          | US Pat. 5,886,597              | Internal "I"                          |  |
| External | External "T" US Pat. 5,886,597 | External "I"                          |  |
| Hybrid   |                                | Hybrid "I"                            |  |

Examples of resonant vias. Dielectric layers required for support are not shown.

FIG. 4

Sheet 3 of 13
39588.00002.UTL1
WILLIAM E. MCKINZIE, III
Atty. Noel C. Gillespie
(858) 720-2500'
EL997866311US

The starting point for the derivation of new inventions is the loaded wire media: (a) a single wire with uniform periodic series loads, (b) a rectangular array of loaded wires, (c) loads are now defined as parallel-plate capacitors.

(c)

(b)

(a)

FIG. 5



Exploit the planes of physical symmetry to obtain electromagnetically equivalent structures: (a) the infinite wire media, (b) PPW structures of finite height. The supporting dielectric structure is not shown.



Alternative embodiments of PPW stop band filters: (a) Capacitive-loaded infinite wire media, (b) a PPW filter of finite height using internal capacitors, (c) PPW filters of finite height using external capacitors. The supporting dielectric structure is not shown.

**FIG. 7** 

Sheet 5 of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III Atty. Noel C. Gillespie (858) 720-2500 EL997866311US



Hybrid embodiments include combined internal and external capacitive loads. Dielectric cores are omitted for clarity.

FIG. 8



Elevation view of a square lattice of internal T resonant vias.

FIG. 9



Brillouin zone for a 2D periodic structure with a rectangular lattice of unit cell dimensions a x b in Cartesian coordinates.

FIG. 10



Dispersion diagram along the  $\Gamma X$  line for the capacitive-loaded wire media corresponding to the array of resonant vias shown in Figure 9. The stop bands are bracketed.

Sheet 7of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III Atty. Noel C. Gillespie (858) 720-2500 EL997866311US



Dispersion diagram along the  $\Gamma M$  line for the capacitive-loaded wire media corresponding to the array of resonant vias shown in Figure 9. The stop bands are bracketed.

FIG. 12

Sheet 8 of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III Atty. Noel C. Gillespie (858) 720-2500 EL997866311US



Geometry for the simulation of the resonant via array shown in Figure 9: (a) plan view showing all 8 cascaded unit cells, (b) top view with upper plate hidden, (c) bottom view with the lower plate hidden.

FIG. 13

Sheet 9 of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III-Atty. Noel C. Gillespie (858) 720-2500 EL997866311US



Transmission response for a TEM mode propagating in the x direction through the stop band filter shown in Figure 9. A -10 - dB stop band is shown from 1.4 GHz to 3.9 GHz, a ratio of 2.78:1.

FIG. 14

| Stopband    | Microstripes    |                 | Eigenvalue Solution |                 |
|-------------|-----------------|-----------------|---------------------|-----------------|
|             | Lower Band Edge | Upper Band Edge | Lower Band Edge     | Upper Band Edge |
|             | (GHz)           | (GHz)           | (GHz)               | (GHz)           |
| Fundamental | 1.401           | 3.906           | 1.422               | 4.036           |
| Secondary   | 7.07            | 8.85            | 7.198               | 8.918           |
| Tertiary    | 18.28           | 19.62           | 18.21               | 19.54           |

Comparison of stop band frequencies for the PPW filter shown in Figure 9.

**FIG. 15** 



At lower frequencies around the first stop band, wave propagation along a principal axis, such as the x-axis, can be modeled using a simple transmission line circuit model.

**FIG. 16** 



Examples of resonant via arrays with commensurate periods. Each is a PPW stoop band filter.

Sheet 11 of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III Atty. Noel C. Gillespie (858) 720-2500 EL997866311US (a) H-wall Port 1 H-wall (b) **ABC** H-wall H-wall E-wall (c)

Geometry for the simulation of a commensurate period resonant via array of type H12: (a) perspective view showing all 8-cascaded unit cells, (b) plan view, (c) elevation view. Hidden are the dielectric cores in (a), (b) and (c).

Sheet 12 of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III Atty. Noel C. Gillespie (858) 720-2500 EL997866311US Lossy T20



Transmission response (1901) for a TEM mode propagating in the x direction through the stop band filter shown in Figure 18. A -10 dB stop band is shown from 1.33 GHz to 10.0 GHz, a 7.5:1 ratio.

**FIG. 19** 



Stop band filter embodiment  $\mathbf{EF}_{ext}$  is well suited for integration into existing PWB designs since it requires neither additional metal layers nor any additional thickness.

Sheet 13 of 13 39588.00002.UTL1 WILLIAM E. MCKINZIE, III Atty. Noel C.-Gillespie (858) 720-2500 EL997866311US



Plated through holes may be used in the fabrication of resonant vias as illustrated here for an internal I resonant via.

FIG. 21