2020 级计算机学院《数值分析》期末试卷 A 卷

注意: ① 答题方式为闭卷。 ② 可以使用计算器。

③ 请将所有答案答在答题纸上,不要在试卷上答题。

一、填空题(每空2分,共40分)

- 1. 采用四位有效数字计算方程 x^2 -56x+1=0 的解,要使计算结果也有四位有效数字,则较好的求解方程根的**公式**为: x_1 =【】, x_2 =【】。
- 2. 计算系列的积分值 $I_n = \int_0^1 x^n e^{x-1} dx, n=1,2,...,10$ 。试采用以下两种计算方法:

方法 A: I_n=1-n I_{n-1}

方法 B: $I_n = \frac{1 - I_{n+1}}{n+1}$

两种计算方法中,数值稳定的算法为计算方法【】。使用数值稳定的算法,若初始数据 I_0 或 I_{10} 都是有 6 位有效数字,则计算的 I_6 有【】位有效数字。

- 3. 已知方程 $e^{x}+10x-2=0$ 的一个有根区间[0,0.25],用对分法圈定方程的根,当有根区间长度缩短到 $\frac{0.25}{2^3}$ 时,有根区间为【】。
- 4. 方程 $x^3+4x^2-10=0$ 在区间[1,2]上有一个根,构造等价形式 $x=x-x^3-4x^2+10$,取 $x_0=1.5$, 迭代计算得 $x_1=\mathbb{Z}$, 迭代过程 \mathbb{Z} (填收敛或不收敛)。若在同样的迭代函数下使用埃特肯 (Aitken)加速法迭代计算得 $x_1=\mathbb{Z}$.
- 5. 解非线性方程的弦截法是在牛顿迭代法的基础上改进的迭代解法,弦截法优于牛顿迭代法的地方【】,牛顿迭代法优于弦截法的地方【】。
- 6. 消元法是求解线性方程组的常用方法,但在实际应用中仍存在的不足在于:【】;【】。

7.
$$A = \begin{bmatrix} -2 & -5 & 4 \\ -1 & 0 & 3 \\ 4 & 2 & -2 \end{bmatrix}$$
, $||A||_1 = [1]$.

- 8. 向量 X=(1,-2,3), 则向量 X 的 $1-范数||X||_1=【】。$
- 9. 用带松弛因子的松弛法 $(\omega=0.5)$ 解方程组 $\begin{cases} 5x_1+2x_2+x_3=-12\\ -x_1+4x_2+2x_3=20 \end{cases}$ 的迭代公式是 $2x_1-3x_2+10x_3=3$

- 10. 已知 n=5 时的牛顿-科特斯系数 $C_1^{(5)} = \frac{25}{96}$, $C_2^{(5)} = \frac{25}{144}$, 则 $C_0^{(5)} = \mathbb{I}$.
- 11. 求积公式 $\int_{-1}^{1} f(x)dx \approx [f(-1) + 4f(0) + f(1)]/3$ 具有【】次代数精确度。
- 12. 设 $f(x)=6x^5+3x^4-12x$,则差商 f[1,3,5,7,9,11,13]=【】
- 13. 已知函数 y=f(x)满足 f(1)=2, f(2)=2, f(4)=1,则二次拉格朗日插值公式 $L_2(x)=$ 【】。

二、计算题(共60分)

- 1. 求 $f(x)=x^3-x-3=0$ 在区间[0,2]的根,用牛顿下山法取初值 $x_0=0$ 计算,计算过程保留到小数点后 6 位。
- 2. 用高斯消元法解以下线性方程组的解,计算结果保留 4 位小数。

$$\begin{cases} 3x_1 + 2x_2 + 5x_3 = 6 \\ -x_1 + 4x_2 + 3x_3 = 5 \\ x_1 - x_2 + 3x_3 = 1 \end{cases}$$

3. 用高斯-赛德尔迭代法解下列线性方程组,初始向量 $X^{(0)}=(0,0,0)^T$,计算过程保留 4 位小数。

$$\begin{cases} x_1 + 5x_3 = 6 \\ -x_1 + 4x_2 = 3 \\ 5x_1 + 2x_2 - x_3 = 6 \end{cases}$$

4. 根据下表数据,利用插值多项式反插值法求方程 $\ln(x)+x=0$ 的解,计算过程保留到小数点后 2 位。(要求使用**牛顿后向**差值公式,,迭代 3 次即可)

x	0.2	0.4	0.6	0.8	
ln(x)	-1.61	-0.92	-0.51	-0.22	

5. 已知函数 $f(x) = e^x - x$ 在一些节点上的函数值及其导数值如下表:

x	2.2	2.4	2.6
f(x)	6.825	8.623	10.864
f'(x)		10.023	12.464

写出埃尔米特插值多项式,计算 f(2.3)的近似值并估计**方法误差**。(计算过程中保留小数点后 3 位)

6. 已知函数 f(x)在下列点的函数值,请用复化辛卜生(Simpson)公式计算积分 $I = \int_0^2 f(x) dx$ 的近似值 S_4 ,并估计结果的误差(包括方法误差和舍入误差)。

	0								
f(x)	0.6	1.1	1.4	1.6	1.8	2.1	2.2	2.4	2.5