This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(19)

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(A n'utiliser que pour le classement et les commandes de reproduction).

72.02035

2.168.227

N° d'enregistrement national : 72.0203

(A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec 1'1.N.P.1.)

DEMANDE DE BREVET D'INVENTION

1re PUBLICATI	ION	ı
---------------	-----	---

(2) (41)	Date de la mise à la disposition du	21 janvier 1972, à 15 h. B.O.P.I. — «Listes» n. 35 du 31-8-1973.
51	Classification internationale (Int. Cl.)	A 61 k 27/00//C 07 d 33/00, 57/00.
71)	Déposant : Société anonyme dite : SYNT	HÉLABO, résidant en France.
		·
73	Titulaire : Idem (71)	
74)	Mandataire : Jean Casanova, Ingénieur-C	onseil.
(54)	Dérivés de la quinoléine, leur préparation	et les médicaments qui en contiennent.
72	Invention de : Claude Louis Clément Ca	rron et Philippe Michel Jacques Manoury.
1 (31)	Priorité conventionnelle :	•

La présente invention concerne de nouveaux dérivés de la quinoléine, leurs sels d'addition à des acides minéraux et organiques pharmaceutiquement acceptables, leur préparation et les médicaments qui renferment ces substances comme principes actifs.

1

Ces composés répondent à la formule générale I

$$\begin{array}{c}
NH \\
\hline
\text{CO - R}
\end{array}$$

dans laquelle

10

20

25

30

35

R représente soit un radical arylamino

soit un radical pipérazino-éthoxy

$$- 0 - CH2 - CH2 - N - R2$$

dans lesquels

R₁ représente un halogène, notamment le chlore ou un radical amino-éthoxy

R₂ représente un alcoyle de faible masse moléculaire, en particulier le méthyle, un hydroxy-alcoyle, en particulier l'hydroxy-2 éthyle, un aryle, notamment le phényle, un radical aryl-carbonyle de

R₃ et R₅ représentant un alcoyle de faible masse moléculaire, tel que l'éthyle et

30

R₄ représentant un alcoyle de faible masse moléculaire, en particulier le méthyle.

Les bases ci-dessus donnent des sels d'addition avec les acides minéraux et organiques, en particulier l'acide chlorhy-5 drique.

Selon les conditions du milieu, les composés de l'invention peuvent exister sous leurs formes tautomères

qui font également partie de la présente invention.

Les composés de l'invention sont utilisables comme médicaments, en médecine humaine et vétérinaire, particulièrement comme anti-inflammatoires et analgésiques.

On peut préparer les composés de l'invention selon diverses méthodes représentées par les schémas ci-dessous.

Schéma I

C1

H2N

C0 - NH

R

C0 - NH

R

C0 - NH

La réaction est effectuée de préférence à la température de reflux d'un solvant polaire, tel que l'eau un alcool ou un mélange de ces produits. La dichloro-4,7 quinoléine de départ est obtenue dans le commerce

35
$$R = -0 - CH_2 - CH_2 - N - R_2$$

Schéma II

$$\longrightarrow \qquad \qquad C_1 \qquad \qquad C_0 - 0 - CH_2 - CH_2 - M \qquad N - R_2$$

La réaction est effectuée de préférence à la température de reflux d'un solvant polaire, tel que l'eau, un alcool ou un mélange de ces produits.

L'ester d'acide anthranilique intermédiaire

$$COO - CH_2 - CH_2 - N - R_2$$
 peut être préparé selon

diverses techniques, par exemple :
1°)

La réaction du chlorure de nitro-2 benzoyle avec le dérivé de pipérazine est réalisée de préférence au sein d'un solvant non polaire, comme le chloroforme et à froid.

La réduction ultérieure est effectuée notamment de façon catalytique, en présence de palladium sur charbon.

2°)

5

10

L'anhydride isatoïque et l'(hydroxy-2 éthyl)-1 pipérazine-4 substituée réagissent à chaud au sein d'un solvant non polaire, notamment d'un hydrocarbure aromatique, (toluène, xylène etc...)

15 Schéma III

La condensation de la di-chloro-4,7 quinoléine avec l'anthranilate de chloro-2 éthyle est effectuée de préférence à la température d'ébullition d'un solvant polaire (eau, alcool ou mélange de ces produits) et la condensation finale est réalisée facilement en présence ou en l'absence de solvant.

40

R₆ est un alcoyle ou un cyclo-alcoyle en particulier.
Cette transestérification est effectuée de préférence à la température d'ébullition d'un solvant non polaire, notamment d'un hydrocarbure (benzène, toluène, xylène etc...) et en présence d'un métal alcalin. Les divers sels ont été préparés par réaction de la base et d'un acide, en général au sein d'un alcool.

Les exemples non limitatifs qui vont suivre feront 10 aisément comprendre comment l'invention peut être réalisée. EXEMPLE 1:

[(chloro-7 quinoly1-4) amino]-2 chloro-2' benzanilide

15

30

35

(Numéro de Code 71-338 R & C)

Préparation selon le schéma I.

On introduit 4 g (0,016 mole) d'amino-2 chloro-2' benzanilide et 3,2 g (0,0162 mole) de dichloro-4,7 quinoléine dans 50 ml d'éthanol contenant 10 % d'eau.

On chauffe le mélange au reflux pendant 5 heures, on le refroidit et on le jette dans 200 ml d'eau contenant du bicarbonate de sodium. On agite lentement pendant 2 heures puis on filtre le solide qui a précipité. On sèche dans un dessic25 cateur sous vide, à la température ordinaire et 1'on obtient 6 g d'une poudre jaune pâle, ce qui représente un rendement de 90 %.

Le produit fond à 192°.

Analyse:

chlore ionisé

calculé % 17,4

trouvé % 17,35.

EXEMPLE 2 :

Dichlorhydrate de /(chloro-7 quinolyl-4) amino/-2 benzoate de (méthyl-4 pipérazino)-2 éthyle

$$R = -0 - CH_2 - CH_2 - N - CH_3$$

(Numéro de code 71-277 R & C)

Préparation selon le schéma II-1°

Dans une fiole d'Erlenmeyer d 500 ml, équipée d'un agitateur électromagnétique, on place 43,2 g (0,3 mole) de méthyl-1 (hydroxy-2 éthyl)-4 pipérazine et 250 ml de

chloroforme anhydre.

On refroidit la solution à -5° et l'on ajoute, goutte à goutte, une solution de 56,15 g (0,3 mole) d chlorure de nitro-2 benzoyle dans 60 ml du même solvant. On laisse 5 revenir à la température ambiante. La réaction dure environ 2 heures.

Le chloroforme est évaporé sous pression réduite et l'on triture le solide résiduel avec de l'éther, on filtre et on le sèche à 60° sous pression réduite. On obtient 93,575 g 10 (rendement 94,6 %) du composé intermédiaire, le monochlorhydrate du nitro-2 benzoate de (méthyl-4 pipérazino)-2 éthyle, qui fond à 134,5°.

La base, préparée dans la pyridine dans des conditions similaires aux précédentes fond à 58° après cristallisation 15 dans l'éther de pétrole.

Le produit ci-dessus est réduit en dichlorhydrate de l'anthranilate de (méthyl-4 pipérazino)-éthyle dans les conditions suivantes :

On met dans un appareil à hydrogéner sous pression 20 ordinaire de 250 ml, 16,475 g (0,05 mole) de mono-chlorhydrate du nitro-2 benzoate de (méthyl-4 pipérazino)-éthyle, 150 ml de méthanol et 1,7 g de carbone palladié à 10 %. Une quantité de 3360 ml d'hydrogène est absorbée très rapidement (40 mm). On sépare le catalyseur par filtration et l'on ajoute de l'acide 25 chlorhydrique dissous dans de l'éthanol jusqu'à obtention d'un pH de 4. Au refroidissement, on obtient un beau précipité de l'intermédiaire voulu que l'on essore, lave avec de l'isopropanol puis de l'éther et sèche à l'étuve à 60°. On obtient 13,7 g du produit, soit un rendement de 81,5 %. Ce composé fond à 228°. 30 Finalement, pour obtenir le 71-277 R & C, on porte à reflux pendant 3 jours une suspension de 1,680 g (0,05 mole) de dichlorhydrate de l'anthranilate de (méthyl-4 pipérazino)-éthyle et de 0,990 g (0,05 mole) de dichloro-4,7 quinoléine dans 50 ml d'isopropanol. Puis on ajoute de l'acide chlorhydrique dissous

Après refroidissement, on essore le précipité, on le rince avec de l'isopropanol, puis de l'éther et on le sèche à 60° sous vide. On obtient 2 g de produit (rendement 74,8 %) fondant à 252°.

35 dans de l'éthanol jusqu'à obtention d'un pH de 1.

20

35

c'est le trichlorhydrate de (chloro-7 quinoly1-4)
amino/-2 benzoate de (méthy1-4 pipérazino)-2 éthyle. Ce sel
a une réaction fortement acide qui le rend impropre à l'utilisation thérapeutique. On a donc libéré la base (fusion 102)

à l'aide de bicarbonate de sodium, puis préparé le dichlorhydrate
par réaction au sein d'un alcool (méthanol, éthanol ou mélange
des deux) d'un mélange en proportions exactement calculées de
trichlorhydrate et de base. Le dichlorhydrate fond à 190°.

EXEMPLES 3 et 4:

Monobenzilate et dibenzilate du \(\text{(chloro-7 quinolyl-4)-amino} \) 7-2 benzoate de (méthyl-4 pipérazino)-2 éthyle (Numéros de code 72-115 et 72-114 R & C).

Ces sels sont obtenus par réaction de quantités stoechiométriques de la base du 71-277 R & C (qui fond à 102°) et d'acide benzilique en solution dans le méthanol. Les rendements sont quantitatifs (point de fusion dans le tableau I). EXEMPLE 5:

Dichlorhydrate du / (chloro-7 quinoly1-4)-amino/-2 benzoate de (phény1-4 pipérazino)-2 éthyle

$$R = -0 - CH_2 - CH_2 - N N - C_6H_5$$
(Numéro de code 71-335 R & C)

Préparation selon le schéma II 2°.

On chauffe à reflux, pendant 3 heures, 4,120 g

25 (0,02 mole) de phényl-1 (hydroxy-2 éthyl)-4 pipérazine,

3,586 g (0,022 mole) d'anhydride isatoïque et 100 ml de
toluène. On filtre ensuite à chaud des impuretés insolubles.

On évapore le filtrat sous pression réduite, on dissout le
résidu concentré dans le méthanol et l'on acidifie cette

30 solution à pH 2 - 3 à l'aide d'acide chlorhydrique dissous
dans de l'éthanol. Après addition de 50 ml d'isopropanol on
met le mélange au réfrigérateur pendant 1 nuit. On essore
ensuite le précipité et on le lave avec de l'isopropanol,
puis avec de l'éther et on le sèche à 60°.

On obtient 7 g (rendement 89 %) du produit cristallisé intermédiaire

15

20

$$C_{0}$$
 - C_{0} - C_{0

La base fond à 106°.

On place 3,97 g (0,01 mole) de ce produit dans une fiole d'Erlenmeyer de 500 ml, munie d'un agitateur électromagnétique, et on ajoute 2,2 g (0,01 mole) de dichloro-4,7 quinoléine et 200 ml de méthanol. On porte 4 heures au reflux et on ajoute 2,2 g de la quinoléine. On renouvelle cette opération 3 fois, car la dichloro-4,7 quinoléine se dégrade en milieu acide et la réaction ne se fait pas en milieu neutre ou basique. On chauffe 16 heures au total. On filtre les impuretés insolubles et on évapore le solvant sous pression réduite. Le résidu est repris par de l'isopropanol et le précipité formé au refroidissement est essoré. On le rince avec de l'isopropanol, puis de l'eau et on le sèche. Le sel fond à 202°.

Les divers produits préparés ainsi que leurs caractéristiques sont rassemblés dans le tableau I. Tous les esters peuvent être préparés selon les schémas II, III et IV. Les sels sont obtenus par réaction de l'acide correspondant et de la base de la manière indiquée ci-dessus et dans les exemples 3 et 4.

(voir tableau I page suivante)

Н	
5	
A	
ı	
B	
4	

	Point de fusion d'autres sels (ou de la base)	ı	Base f. 179°	Base f. 102° trichlor- hydrate fond à	1	1
	Point de fusion de la code	192°	180° (fusion pâteuse dès 130°)	190°	80° (prodult lyophilysé non cristallisé)	90° (produit
	Rende- ment (%)	06	70	74,8	100	100
	Forme corres- pondant au numéro de code	Base	Ditartrate	Dichlorhy- drate	Monobenzi- late	Dibenzilate
cı 🚫	ρ ζ	- MH (-)	- NH - (-0-CH2-CH2-(CH3	14.	14.
	Numero de code R & C	71-338	72~120	.71-277	72-115	72-114

(suite)	
EAUI	
TABL	

) IS				
Numero de code R & C	æ	Forme correspon- dant au numéro de code	Rendement (ダ)	Foint de Tusion Foint de de la forme fusion correspondant d'autres au numéro sels (ou de code	roint de fusion d'autres sels (ou de la base)
71-349	-0-сн2-сн2-м-сн2-сн2-он	Dichlorhydrate	45	163°	trichlohy- drate fond à 190°
71-335	-0-ch2-ch2-NN-c6H5	Dichlorhydrate	75	202°	
71-336	1d. /OCH ₇	Base	6,88	134°	
72-112	-0-CH2-CH2-10 N-CO (-1) OCH3	Base	53,8	. 96	1
72-113	1d.	Monobenzilate	100	100° (produtt lyophilysé non cristal-	
71-351	$-0-\text{CH}_2 - \text{CH}_2 - \text{(N} - \text{CO} - \text{N} \\ \text{C}_2 + \text{S}$	Dichlorhy- drate	97	11sé) 170°	ı
71-352	14.	Ваѕе	84,3	107°	ŧ

Les composés de l'invention ont été soumis à une série d'essais pharmacologiques qui ont révélé leurs intéressantes propriétés analgésiques et anti-inflammatoires. Pour les expériences, les composés ont été utilisés sous la forme mentionnée dans la colonne 3 du tableau I, forme correspondant au numéro de code.

Toxicité aigue

Les essais ont porté sur des souris Swiss des deux sexes, d'un poids variant entre 18 et 22 g. La dose létale 50 % a été calculée selon la méthode de Miller et Tainter (Proc. Soc. Exp. Biol. Med. 1944, 57, 261). Les résultats sont présentés dans le tableau II.

TABLEAU II

15	Produit R & C	DL 50 mg/kg	
		Voie I.P.	Voie orale
	71-277	360	600
	71-335	. 300	> 2000
0	71-336	1200	< 3000
	71 - 338	<i>3</i> 7,5	-
	71- 349	364	> 2000
	71-351	600	2000
	71-352	600	< 1500
;	72-112	> 1600	_
	72-113	728	_
	72-114	1200	
	72-115	150	-
	72-120	220	_
			

Activité analgésique

On a étudié l'activité analgésique des divers produits de l'invention comparativement à l'amido-pyrine selon 2 protocoles différents.

35 1°) Méthode de la phénylquinone.

L'injection intrapéritonéale de phényl-paraquinone provoque chez la souris un syndrome douloureux caractéristique. On a opéré selon la méthode de Seigmund (Proc. Soc. Exp. Biol.

10

35

)

Med. 1957, 95, 724) modifiée par Cheymol (C.R. Soc. Biol. 1963, 157, 521) et Brittain (Nature, London 1963, 20, 895). Les résultats, rassemblés dans le tableau III sont exprimés en pourcentage de diminution du nombre de contorsions des animaux. 2°) Méthode de la plaque chauffante

On a étudié le pourcentage d'augmentation du temps de résistance des souris placées sur une plaque métallique chauffée par des vapeurs d'acétone, selon la méthode de Woolfe (J. Pharmacol. exp. Therap. 1944, 80, 300) modifiée par Chen (Science 1951, 113, 631), Eddy (J. Pharmacol. exp. Therap, 1953, 107, 385) et Boissier (Anesth. Analg. 1956, 13, 569). Les résultats sont également présentés dans le tableau III.

TABLEAU III

Produit	Méthode à la	phényl quinone	Plaque	chauffante
R & C	dose mg/kg voie orale	% de diminution du nombre de contorsions	dose mg/kg voie orale	% d'augmen tation du temps de résistance
71-277	50	41	150	27
71-335	12,5	54	150	48
71-336	100	62	150	35
71-338	100	58	-	-
71-349	50	60	-	-
71-351	100	57	-	_
71-352	. 50	· 59	-	- .
72-112	25	45	-	-
72-113	100	. 57	~	-
72-114	100	41	.=	· -
72-115	100 .	43	-	-
72-120	100	42	-	-
Amido- pyrine	50	55	. 150	45

Activité anti-inflammatoire.

Selon Chevillard et Giono (Revue du Rhumatisme, 1952, 19, 1051) on a provoqué un oedème par injection de kaolin dans la patte postérieure de rats. Les résultats, exprimés en pourcentage de diminution du volume des membres

30

sous l'influence des médicaments, par rapport au volume des pattes de rats non traités, sont rassemblés dans le tableau IV. La substance de comparaison choisie est la phénylbutazone.

TABLEAU	IV
---------	----

Produit R & C	Dose mg/kg voie orale	% de diminution du volume de la patte par rapport aux témoins
71-277	50	34
71-335	100	32
71-336	50	+ 14
71-338	50	16
71-349	100	47
71-351	50	32
71-352	50	16
72-112	50	33
72-113	50	82
72-114	50	53
72-115	50	39
72-120	50	12
Phénylbuta	zone 50	40

Les résultats pharmacologiques qui précèdent montrent que les produits selon l'invention sont utilisables en thérapeutique humaine et vétérinaire comme analgésiques, dans le traitement, en particulier, des céphalées, algies musculaires, rages de dents, douleurs post-opératoires etc... et comme anti-inflammatoires dans les diverses formes rhumastismales. L'administration se fera par voie orale, endorectale, parentérale ou topique selon les formes pharmaceutiques usuelles. Par voie orale (comprimés, dragées, capsules, gélules, etc...) la dose par unité de prise sera de 0,1 à 0,5 g, la dose maximale quotidienne étant de 3 g; par voie rectale ces quantités seront, respectivement, 0,2 à 0,7 g et 3 g; par voie parentérale, elles seront de 0,05 -35 0,1 g et 0,5 g.

Les exemples suivants montrent des réalisations possibles de ces formes pharmaceutiques.

Comprimés

71-335 R & C

0,2 g

Excipients usuels

q.s.p. 1 comprimé de 0,5 g

Ces comprimés peuvent être enrobés ou dragéifiés.

5 Suppositoires

71-352 R & C

0,5 g

Excipient Immhausen

q.s.p. 1 suppositoire adulte

Soluté injectable

71-277 R & C

0,1 g

10 Soluté isotonique physiologique tamponné 5 ml

Crème pour administration locale

71-349 R & C

10 g/100 g de crème type "vanishing".

REVENDICATIONS

1.- Dérivés de la quinoléine répondant à la formule générale

15

dans laquelle

5

15

20

25

représente soit un radical arylamino - NH R

soit un radical pipérazino-éthoxy

dans lesquels

représente un halogène, notamment le R_1 chlore, ou un radical amino-éthoxy $-0 - CH_2 - CH_2 - N_{2}^{R_3}$

reorésente un alcoyle de faible masse R_{2} moléculaire, un hydroxy-alcoyle, un aryle, un aryl carbonyle

- CO
$$\sim OR_{4}$$
 ou un carbamoyle - CO - N $\sim R_{5}$,

 R_3 , R_4 et R_5 représentant des alcoyles de faible masse moléculaire.

2.- Dérivés de la quinoléine selon la revendication 1, caractérisés par le fait que R, représente le radical méthyle, hydroxy-2 éthyle ou phényle, R_3 et R_5 représentent le radical 30 éthyle et Rh représente le radical méthyle.

3.- Sels d'addition des composés selon la revendication 1 ou la revendication 2 aux acides minéraux et organiques pharmaceutiquement acceptables.

4.- Composés selon l'une quelconque des revendications l à 3, sous leur forme tautomère

5

R ayant la signification spécifiée dans la revendication l ou la revendication 2.

5.- Le \(\tag{chloro-7 quinolyl-4}\)-amino\(7-2 \) chloro-2 \(\text{theoro-2} \) benzanilide.

10 6.- La / (chloro-7 quinolyl-4)-amino/-2 (diéthyl amino-2 éthoxy)-4 benzanilide et son ditartrate.

7.- Le / (chloro-7 quinolyl-4)-amino/-2 benzoate de (méthyl-4 pipérazino)-2 éthyle, ses di- et tri-chlorhydrates et ses mono- et dibenzilates.

15 8.- Le ∠(chloro-7 quinolyl-4)-amino7-2 benzoate d'∠(hydroxy-2 éthyl)-4 pipérazino7-2 éthyle et ses di- et tri-chlorhydrates.

9.- Le / (chloro-7 quinolyl-4)-amino/-2 benzoate de (phényl-4 pipérazino)-2 éthyle et son dichlorhydrate.

20 l0.- le /(chloro-7 quinolyl-4)-amino/-2 benzoate
de {/(triméthoxy)-3,4,5 benzoyl/-4 pipérazino} -2 éthyle et
son monobenzilate.

ll.- Le _(chloro-7 quinolyl-4)-amino7-2 benzoate
de _(diéthyl carbamoyl)-4 pipérazino7-2 éthyle et son
25 dichlorhydrate.

12.- Médicament renfermant comme principe actif l'un au moins des composés définis dans l'une quelconque des revendications 1 à 10.

13.- Procédé de préparation des composés selon la 30 revendication 1, procédé caractérisé par le fait que l'on fait réagir la dichloro-4,7 quinoléine avec un dérivé de l'acide anthranilique répondant à la formule

dans laquelle R représente soit un radical arylamino -NH-

soit un radical pipérazino-éthoxy -0-CH₂-CH₂-M

soit un radical $-0-CH_2-CH_2-Cl$ et, dans ce cas, on condense ensuite le composé obtenu avec une pipérazine HN $N-R_2$,

 R_1 et R_2 ayant les significations données dans la revendication 1.

5