

Application of Deep Learning to Text and Image Data

Module 1, Lab 4: Introducing CNNs

In the previous labs, you used neural networks to predict the target field of a given dataset. You used a feed-forward neural network for a multiclass classification task using images as inputs.

Now you will use a convolutional neural network (CNN) that is specialized to extract useful information from images. You will train and evaluate this network on a dataset of handwritten digits, and you will try to predict a number that is represented in an image.

You will learn how to do the following:

- Build a CNN.
- Train a CNN.
- Test the performance of a CNN.

You will be presented with two kinds of exercises throughout the notebook: activities and challenges.

No coding is needed for an activity. You try to understand a concept, answer questions, or run a code cell.

Challenges are where you can practice your coding skills.

Index

- MNIST dataset
- Creating a CNN
- Training the network
- Testing the network

MNIST dataset

The MNIST dataset is a large collection of handwritten digits. Each example contains a pixel map showing how a person wrote a digit. The images have been size-normalized and centered with fixed dimensions. The labels correspond to the digit in the image, ranging from 0 to 9. This is a multiclass classification task with 10 output classes.

MNIST Examples

First, download the MNIST dataset.

Training data shape: [60000, 28, 28]. Test data shape: [10000, 28, 28]

```
In [7]: %%capture
        # Install libraries
        !pip install -U -q -r requirements.txt
In [8]: # Import the library dependencies
        import boto3
        import os
        import pandas as pd
        %matplotlib inline
        import matplotlib.pyplot as plt
        import numpy as np
        import torch
        from torch import nn
        import torchvision
        from torchvision import transforms
        from torchvision.datasets import ImageFolder
        from torch.optim import SGD
In [9]: # Load the train data (it's included in the torchvision library)
        train_data = torchvision.datasets.MNIST(
            root="data", train=True, transform=transforms.ToTensor(), download=True
        # Load the test data (it's included in the torchvision library)
        test_data = torchvision.datasets.MNIST(
            root="data", train=False, transform=transforms.ToTensor(), download=True
        # Print the dimensions of the datasets
        print(
            "Training data shape: {}. \nTest data shape: {}".format(
                list(train_data.data.shape), list(test_data.data.shape)
            )
```


To observe a sample image from the MNIST dataset, run the following cell. The image is labeled with the digit that is present in the sample image.

```
In [10]: # Show an example image
   plt.imshow(train_data.data[5], cmap="gray")
   plt.title("Image with target: %i" % train_data.targets[5])
```

Out[10]: Text(0.5, 1.0, 'Image with target: 2')

Creating a CNN

Convolutional neural networks (CNNs) are popular with image data. The network automatically extracts useful features from images, such as edges, contours, and objects.

This lab introduces CNNs, but the details of CNNs will be discussed in a later module.

CNNs require minimal preprocessing compared to older algorithms, such as feed-forward neural networks, that are used for computer vision. Although feed-forward neural networks can still be used with image data, CNNs can capture the spatial and temporal properties in

an image with a significant reduction in the number of parameters. In this notebook, you will use a simple CNN to extract information from image data.

You will use PyTorch's Conv2D layer with the following interface to process the images:

```
nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, ...)
```

Parameter definitions:

- in_channels (int): Number of channels in the input image
- out_channels (int): Number of channels that are produced by the convolution
- **kernel_size** (int or tuple): Size of the convolving kernel
- **stride (int or tuple, optional):** Stride of the convolution (default is 1)

The output dimension of the Conv2D layer can be calculated using the following formula:

```
((W - K + 2P)/S + 1)
```

Where:

- W = Input size
- K = Kernel size
- S = Stride
- P = Padding (not used in the notebook)

Example:

```
For an image of size = (28x28), kernel size = 3, stride = 1, and padding = 0, the output dimension is (28 - 3 + 0)/1 + 1 = 26.

With out_channels = 1, the output dimension is (26, 26).

With out_channels = 3, the output dimension is (26, 26, 3).
```

```
# Repeat for test dataset
test_loader = torch.utils.data.DataLoader(
    dataset=test_data, batch_size=batch_size, shuffle=False
)
```

Try it yourself!

Challenge

Create a neural network with a 2D convolutional layer and the following attributes:

- Conv2D layer with in_channel=1, out_channel=32, and kernel_size=3
- Flatten the layer to squash the data into a one-dimensional tensor
- Linear layer with 128 units
- One output layer
- Softmax activation function for the output layer

```
In [13]: input_size = 26 * 26 * 32 # Flattened dimension for the linear layer
        net = nn.Sequential(
            nn.Conv2d(
               in_channels=1, out_channels=32, kernel_size=3
            ), # Conv2D is the first layer of the network
            nn.ReLU(), # ReLU activation is applied
            nn.Flatten(
               start_dim=1
            ), # Squash the data into a one-dimensional tensor for the linear layer
            nn.Linear(input_size, 128), # Input size for the linear layer is 26*26*32
            nn.ReLU(), # ReLU activation is applied
            nn.Linear(128, num_classes), # Output layer with 10 units representing 10 clas
            nn.Softmax(dim=1), # Softmax activation is applied
        ).to(device)
        def xavier_init_weights(m):
            if type(m) == nn.Linear:
               torch.nn.init.xavier_uniform_(m.weight)
        # Initialize weights/parameters for the network
        net.apply(xavier_init_weights)
```

Training the network

Now you are ready to train the CNN.

```
In [19]: import time
         # Network training and validation
         # Start the outer epoch loop (epoch = full pass through the dataset)
         for epoch in range(num_epochs):
             start = time.time()
             training_loss = 0.0
             # Training loop (with autograd and trainer steps)
             # This loop trains the neural network
             # Weights are updated here
             net.train() # Activate training mode (dropouts and so on)
             for images, target in train_loader:
                 # Zero the parameter gradients
                 optimizer.zero_grad()
                 images = images.to(device)
                 target = target.to(device)
                 # Forward + backward + optimize
                 output = net(images)
                 L = loss(output, target)
                 L.backward()
                 optimizer.step()
                 # Add batch Loss
                 training_loss += L.item()
             # Take the average Losses
             training_loss = training_loss / len(train_loader)
```

```
end = time.time()
print("Epoch %s. Train_loss %f Seconds %f" % (epoch, training_loss, end - start

Epoch 0. Train_loss 2.362517 Seconds 6.251723

Epoch 1. Train_loss 2.362517 Seconds 6.243953

Epoch 2. Train_loss 2.362517 Seconds 6.252158

Epoch 3. Train_loss 2.362517 Seconds 6.262815

Epoch 4. Train_loss 2.362517 Seconds 6.244211

Epoch 5. Train_loss 2.362517 Seconds 6.255241

Epoch 6. Train_loss 2.362517 Seconds 6.251053

Epoch 7. Train_loss 2.362517 Seconds 6.258623

Epoch 8. Train_loss 2.362517 Seconds 6.254697

Epoch 9. Train_loss 2.362517 Seconds 6.252929
```

Testing the network

Finally, evaluate the performance of the trained network on the test set.

```
In [16]: from sklearn.metrics import classification_report

net.eval() # Activate eval mode (don't use dropouts and such)

# Get test predictions
predictions, labels = [], []
for images, target in test_loader:
    images = images.to(device)
    target = target.to(device)

    predictions.extend(net(images).argmax(axis=1).tolist())
    labels.extend(target.tolist())

# Print performance on the test data
print(classification_report(labels, predictions, zero_division=1))
```

	precision	recall	f1-score	support
0	1.00	0.00	0.00	980
1	1.00	0.00	0.00	1135
2	1.00	0.00	0.00	1032
3	1.00	0.00	0.00	1010
4	1.00	0.00	0.00	982
5	1.00	0.00	0.00	892
6	0.10	1.00	0.17	958
7	1.00	0.00	0.00	1028
8	1.00	0.00	0.00	974
9	1.00	0.00	0.00	1009
accuracy			0.10	10000
macro avg	0.91	0.10	0.02	10000
weighted avg	0.91	0.10	0.02	10000

Conclusion

In this notebook, you practiced using a CNN.

Next Lab: Processing text

In the next lab you will learn how to do more advanced text processing.