MAADSBML AutoML Report For FIERA CAPITAL

Generated On: 2024-04-24 18:34:30 (UTC)

Best Model(s) Report For admin_stockdata_csv

MODEL DESCRIPTION

Model Trained On: 2024/04/24 Training Start Time: 1825 Training End Time: 1834 Was Data Normalized: Yes Was Data Shuffled: Yes Deep Analysis: No **Total Training Data Set: 946** Training Data Percentage: 75% Total Test Data Set: 314 Total # of Variables: 5 Adjusted for Seasonality: Total Algorithms Run for WINTER (11.12.1.2): 3600

Total Algorithms Run for SUMMER (6,7,8): 3600 Total Algorithms Run for SHOULDER (3,4,5,9,10): 3600 Removed Outliers: N

Best Distribution FOR ACTUAL Y: VONMISES

Dependent Variable: CLOSE

Independent Variables: ['Open', 'High', 'Low', 'Volume']

PREDICTION VARIABLE STATS

Mean: 84.328 STD: 8.393 Kurtosis: -0.621 Skewness: 0.645 Coef. of Variation: 0.100 Shapiro Test for Normality: 0.929 Jarque-Bera Goodness of Fit: 51.184 Anderson: 15.753 KStat: 70.564

KStatvar: 11.474 Wilcox: 0.000 Theil Slope: 0.043

ACTUAL VARIABLE STATS

Mean: 84.287 STD: 8.449 Kurtosis: -0.658 Skewness: 0.606 Coef. of Variation: 0.100 Shapiro Test for Normality: 0.934 Jarque-Bera Goodness of Fit: 47.497 Anderson: 14.514

KStat: 71.497 KStatvar: 11.462 Wilcox: 0.000 Theil Slope: 0.044

Statistics Showing Comparison Between Prediction and Actuals

Mood(actuals, predictions): 0.404 Pearson(actuals,predictions): 0.999 Kendall Tau(actuals,predictions): 0.961 Ansari(actuals,predictions): 179427.500 Jaccard_distance(actuals,predictions): 0.998 Minkowski_distance(actuals,predictions): 210.809 Euclidean_distance(actuals,predictions): 10.956

IMPORTANT FILE PATHS FOR RAW AND OUTPUT DATA

NOTE: These are DOCKER CONTAINER Paths. You can view these files inside the container by using the command: docker exec -it {container id} bash If you have re-run the container, these files will be GONE but they exist on your HOST machine. The HOST MACHINE location is based on the volumes you mapped when you ran the Docker container. The Docker RUN Volume Mappings are :: (For example here is the docker run command (use multiple -v for multiple mappings):

DOCKER RUN COMMAND: docker run -d -p 5595:5595 -p 5495:5495 -p 10000:10000 -v {HOST MACHINE FOLDER}:{CONTAINER FOLDER}:z --env TRAININGPORT=5595 --env PREDICTIONPORT=5495 --env ABORTPORT=10000 --env COMPANYNAME=MYCOMPANY --env MAXRUNTIME=20 --env MAINHOST=127.0.0.1 maadsdocker/maads-batchautoml-otics

Docker Volume Mappings:

- Docker Volume Mappings:

 1. (HOST MACHINE FOLDER)/csvuploads:/maads/agentfilesdocker/dist/maadsweb/csvuploads:z

 2. (HOST MACHINE FOLDER)/pdfreports:/maads/agentfilesdocker/dist/maadsweb/pdfreports:z

 3. (HOST MACHINE FOLDER)/autofeatures:/maads/agentfilesdocker/dist/maadsweb/autofeatures:z

 4. (HOST MACHINE FOLDER)/sulliers:/maads/agentfilesdocker/dist/maadsweb/outliers:z

 5. (HOST MACHINE FOLDER)/sqlloads:/maads/agentfilesdocker/dist/maadsweb/sqlloads:z

- 6. {HOST MACHINE FOLDER}/networktemp:/maads/agentfilesdocker/dist/maadsweb/networktemp:z 7. {HOST MACHINE FOLDER}/networks:/maads/agentfilesdocker/networks:z 7. {HOST MACHINE FOLDER}/networks:/maads/agentfilesdocker/networks:z 8. {HOST MACHINE FOLDER}/exception:/maads/agentfilesdocker/dist/maadsweb/exception:z
- 9. {HOST MACHINE FOLDER}/staging:/maads/agentfilesdocker/dist/staging:z

Path for Training Dataset File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/stockdata.csv

Path for PDF Report (i.e. this file): /maads/agentfilesdocker/dist/maadsweb/pdfreports/admin_stockdata_csv_seasons.pdf
Path for AutoFeature File: /maads/agentfilesdocker/dist/maadsweb/autofeatures/admin_stockdata_csv_.csv

Path for Outliers File: /maads/agentfilesdocker/dist/maadsweb/outliers/admin_stockdata_csv.csv

Path for Algo JSON File: /maads/agentilesdocker/dist/maadsweb/outners/admin_stockdata_csv.csv
Path for Algo JSON File: /maads/agentfilesdocker/dist/maadsweb/scqlloads/
Path for MySQL Scripts: /maads/agentfilesdocker/dist/maadsweb/scqlloads/
Path for Detailed Prediction File: /maads/agentfilesdocker/dist/maadsweb/csvuploads/admin_stockdata_csv_prediction_details.csv
Path for Algorithm Zlp File (i.e pickle files): /maads/agentfilesdocker/dist/maadsweb/networktemp/admin_stockdata_csv.zip Path for Algorithm Pickle Files:

1. /maads/agentfilesdocker/networks/Alberta-Electric-System-Operator_AESO)_ADMIN_STOCKDATA_CSVSUMMER_AG1_1_VotingRegressor_normal_946_ensemble_pkl
2. /maads/agentfilesdocker/networks/Alberta-Electric-System-Operator_AESO)_ADMIN_STOCKDATA_CSVSUMMER_AG1_1_VotingRegressor_normal_946_ensemble_scalerx_pkl
3. /maads/agentfilesdocker/networks/Alberta-Electric-System-Operator_AESO)_ADMIN_STOCKDATA_CSVSUMMER_AG1_1_VotingRegressor_normal_946_ensemble_scalery_pkl

DESCRIPTIVE STATISTICS

Variables	T-Statistic	Count	Mean	STD	MIN	25%	50%	75%	MAX
Open	1221.412	946.0	94.354	70.58	15.464	80.4	93.29	107.905	125.25
High	1233.139	946.0	95.083	70.75	15.58	80.892	93.925	109.128	125.72
Low	1.521615424968217e+16	946.0	93.697	69.0	15.379	79.803	92.285	107.398	123.68
Volume	-9.308	946.0	2723209.302	686200.0	1440702.602	1984825.0	2433550.0	3089250.0	28284300.0
CLOSE	NA	946.0	94.437	70.28	15.504	80.43	93.295	108.152	125.4

		(Note: This trained model will be used to predict CLOSE)			
Algorithm	Description	Model Results	MAPE Accuracy	Forecast Months	Season
VotingRegressor	VotingRegressor:	StackingRegressor(meta_regressor=RidgeCV(fit_intercept=False, gcv_mode='auto'), regressors=[SVR(epsilon=-0.12801216839443494, gamma='auto'), LinearRegression(fit_intercept=False), Ridge(alpha=1.729496144488756, random_state=4, solver='saga'), Lasso(alpha=8.220892850737137, random_state=4)]) R-square: 0.997 Mean Squared Error (MSE): 0.200 Skewness: -0.495 Kurtosis: 3.841 Mean Square Model (MSM): 42268.860 F-Statistic (F): 211269.186 Jarque-Bera (JB): 42.249 Explained Variance (EV): 0.997 Multicolinearity Test (Avg. VIF): inf Heteroscedasticity Test (Avg P-Value): -1.000 (Based on White Test, there seems to be heteroscedasticity in the model) Autocorrelation (Durbin-Watson) Test: 1.793 (Based on DW Test - there seems to be autocorrelation in your model)	0.996	3,4,5,9,10	shoulde

Num	Algorithm	Model Accuracy	Details	Season	Description
1	TheilSenRegressor	0.9931	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.147 MSM: 42511.032 Skewness: 0.767 Kurtosis: 6.288 F: 290120.02 DW: 2.065 JB: 329.034	winter	THEIL-SEN ESTIMATOR: Theil-Sen Estimator: robust multivariate regression model.
2	LassoLarsCV	0.9930	R-square: 0.996 MAPE: 0.995 Explained Variance (EV): 0.998 MSE: 0.269 MSM: 42949.582 Skewness: 1.685 Kurtosis: 4.668 F: 159801.476 DW: 1.151 [B: 353.495	winter	CROSS-VALIDATED LASSO, USING THE LARS ALGORITHM: The optimization objective for Lasso is:
3	HuberRegressor	0.9930	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.146 MSM: 42531.487 Skewness: 0.769 Kurtosis: 6.253 F: 290581.193 DW: 2.059 JB: 323.657	winter	HUBER REGRESSOR: Linear regression model that is robust to outliers.
4	ARDRegression	0.9930	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.147 MSM: 42524.554 Skewness: 0.79 Kurtosis: 6.413 F: 289497.085 DW: 2.059 JB: 353.536	winter	BAYESIAN ARD: Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization)
5	BayesianRidge	0.9930	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.147 MSM: 42525.272 Skewness: 0.799 Kurtosis: 6.461 F: 289205.78 DW: 2.059 JB: 363.296	winter	BAYESIAN RIDGE REGRESSION: Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise).
			R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.148		RANSAC (RANDOM SAMPLE CONSENSUS) ALGORITHM.: RANSAC is an iterative

6	RANSACRegressor	0.9930	MSM: 42530.065 Skewness: 0.841 Kurtosis: 6.709 F: 287589.355 DW: 2.058 JB: 414.662	winter	algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models.
7	LassoLarsIC	0.9930	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.148 MSM: 42530.065 Skewness: 0.841 Kurtosis: 6.709 F: 287589.355 DW: 2.058 JB: 414.662	winter	LASSO MODEL FIT WITH LARS USING BIC OR AIC FOR MODEL SELECTION: Lasso model fit with Lars using BIC or AIC for model selection
8	LarsCV	0.9930	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.148 MSM: 42530.065 Skewness: 0.841 Kurtosis: 6.709 F: 287589.355 DW: 2.058 JB: 414.662	winter	LEAST ANGLE REGRESSION WITH CROSS-VALIDATION: Cross-validated Least Angle Regression model
9	Lars	0.9930	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.148 MSM: 42530.065 Skewness: 0.841 Kurtosis: 6.709 F: 287589.355 DW: 2.058 JB: 414.662	winter	LEAST ANGLE REGRESSION MODEL A.K.A. LAR: Least-angle regression (LARS) is a regression algorithm for high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. LARS is similar to forward stepwise regression. At each step, it finds the predictor most correlated with the response. When there are multiple predictors having equal correlation, instead of continuing along the same predictor, it proceeds in a direction equiangular between the predictors.
10	simpleregression_reg	0.9930	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.148 MSM: 42530.065 Skewness: 0.841 Kurtosis: 6.709 F: 287589.355 DW: 2.058 JB: 414.662	winter	LINEAR REGRESSION: Simple multivariate linear regression

Num	Algorithm	Model Accuracy	Details	Season	Description
	-3		R-square: 0.998 MAPE: 0.996 Explained Variance (EV): 0.998 MSE: 0.146	300001	
1	TheilSenRegressor	0.9822	MSM: 42860.659 Skewness: 0.499 Kurtosis: 4.29 F: 293613.426 DW: 2.065 JB: 66.501	summer	THEIL-SEN ESTIMATOR: Theil-Sen Estimator: robust multivariate regression model.
2	RANSACRegressor	0.9821	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.14 MSM: 42643.773 Skewness: 0.332 Kurtosis: 3.977 F: 303865.166 DW: 2.056 JB: 34.876	summer	RANSAC (RANDOM SAMPLE CONSENSUS) ALGORITHM.: RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models.
3	HuberRegressor	0.9820	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.14 MSM: 42648.976 Skewness: 0.323 Kurtosis: 3.985 F: 304761.685 DW: 2.053 JB: 34.697	summer	HUBER REGRESSOR: Linear regression model that is robust to outliers.
4	<u>LassoLarsIC</u>	0.9819	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.14 MSM: 42643.773 Skewness: 0.332 Kurtosis: 3.977 F: 303865.166 DW: 2.056 JB: 34.876	summer	LASSO MODEL FIT WITH LARS USING BIC OR AIC FOR MODEL SELECTION: Lasso model fit with Lars using BIC or AIC for model selection
5	ARDRegression	0.9816	R-square: 0.998 MAPE: 0.996 Explained Variance (EV): 0.998 MSE: 0.142 MSM: 42639.99 Skewness: 0.34 Kurtosis: 3.937 F: 300390.468 DW: 2.055 JB: 33.545	summer	BAYESIAN ARD: Fit the weights of a regression model, using an ARD prior. The weight of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization)
			R-square: 0.998 MAPE: 0.996 Explained Variance (EV): 0.998 MSE: 0.142		

6	BayesianRidge	0.9816	MSM: 42640.178 Skewness: 0.337 Kurtosis: 3.928 F: 299861.446 DW: 2.055 JB: 32.881	summer	BAYESIAN RIDGE REGRESSION: Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise).
7	NuSVR	0.9765	R-square: 0.998 MAPE: 0.996 Explained Variance (EV): 0.998 MSE: 0.15 MSM: 42859.427 Skewness: 0.094 Kurtosis: 3.628 F: 284923.628 DW: 2.013 JB: 10.756	summer	NU SUPPORT VECTOR REGRESSION.: Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.
8	RidgeRegression	0.9690	R-square: 0.996 MAPE: 0.995 Explained Variance (EV): 0.996 MSE: 0.286 MSM: 42551.761 Skewness: 0.133 Kurtosis: 3.908 F: 148998.65 DW: 1.938 JB: 22.378	summer	RIDGE REGRESSION: Linear least squares with 12 regularization.
9	SVR	0.9668	R-square: 0.996 MAPE: 0.995 Explained Variance (EV): 0.996 MSE: 0.29 MSM: 43065.351 Skewness: 0.83 Kurtosis: 4.1 F: 148411.667 DW: 1.692 JB: 99.131	summer	EPSILON-SUPPORT VECTOR REGRESSION.: The method of Support Vector Classification can be extended to solve regression problems. This method is called Support Vector Regression.
10	ElasticNetCV	0.9492	R-square: 0.99 MAPE: 0.992 Explained Variance (EV): 0.99 MSE: 0.697 MSM: 36587.253 Skewness: 0.685 Kurtosis: 3.02 F: 52529.39 DW: 0.806 JB: 46.928	summer	ELASTIC NET CROSS VALIDATION: Elastic Net model with iterative fitting along a regularization path

Num	Algorithm	Model Accuracy	Details	Season	Description
1	MAPE: 0.996 Explained Variance (EV): 0.99 MSE: 0.2 VotingRegressor 0.9961 MSH: 42268.86 Skewness: -0.495 Kurtosis: 3.841 F: 211269.186 DW: 1.793 JB: 42.249		Explained Variance (EV): 0.997 MSE: 0.2 MSM: 42268.86 Skewness: -0.495 Kurtosis: 3.841 F: 211269.186 DW: 1.793	shoulder	VOTINGREGRESSOR:
2	NuSVR	0.9955	R-square: 0.997 MAPE: 0.996 Explained Variance (EV): 0.997 MSE: 0.211 MSM: 42754.593 Skewness: -5.19 Kurtosis: 70.4 F: 202807.07 DW: 1.778 JB: 116263.395	shoulder	NU SUPPORT VECTOR REGRESSION.: Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.
3	simpleregression_reg	0.9950	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.146 MSM: 42595.355 Skewness: -0.191 Kurtosis: 5.738 F: 291238.835 DW: 2.03 JB: 191.015	shoulder	LINEAR REGRESSION: Simple multivariate linear regression
4	RidgeRegression	0.9950	R-square: 0.996 MAPE: 0.995 Explained Variance (EV): 0.996 MSE: 0.255 MSM: 42655.148 Skewness: -0.664 Kurtosis: 4.181 F: 167250.15 DW: 1.929 JB: 78.986	shoulder	RIDGE REGRESSION: Linear least squares with l2 regularization.
5	LarsCV	0.9949	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.144 MSM: 42462.433 Skewness: -0.378 Kurtosis: 4.696 F: 295069.631 DW: 2.014 JB: 86.171	shoulder	LEAST ANGLE REGRESSION WITH CROSS-VALIDATION: Cross-validated Least Angle Regression model
			R-square: 0.998 MAPE: 0.996 Explained Variance (EV): 0.998 MSE: 0.176		

6	TheilSenRegressor	0.9949	MSM: 42854.857 Skewness: 1.364 Kurtosis: 17.241 F: 244179.254 DW: 1.99 JB: 5256.323	shoulder	THEIL-SEN ESTIMATOR: Theil-Sen Estimator: robust multivariate regression model.
7	BayesianRidge	0.9946	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.146 MSM: 42596.666 Skewness: -0.203 Kurtosis: 5.722 F: 291117.86 DW: 2.029 JB: 189.394	shoulder	BAYESIAN RIDGE REGRESSION: Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise).
8	ARDRegression	0.9946	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.146 MSM: 42596.563 Skewness: -0.2 Kurtosis: 5.731 F: 291146.112 DW: 2.03 JB: 190.515	shoulder	BAYESIAN ARD: Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization)
9	RANSACRegressor	0.9946	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.146 MSM: 42595.355 Skewness: -0.191 Kurtosis: 5.738 F: 291238.835 DW: 2.03 JB: 191.015	shoulder	RANSAC (RANDOM SAMPLE CONSENSUS) ALGORITHM.: RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models.
10	LassoLarsIC	0.9946	R-square: 0.998 MAPE: 0.997 Explained Variance (EV): 0.998 MSE: 0.146 MSM: 42595.355 Skewness: -0.191 Kurtosis: 5.738 F: 291238.835 DW: 2.03 JB: 191.015	shoulder	LASSO MODEL FIT WITH LARS USING BIC OR AIC FOR MODEL SELECTION: Lasso model fit with Lars using BIC or AIC for model selection

Detailed Histograms of Training and Test Data Sets TRAINING VARIABLES TEST VARIABLES $\begin{bmatrix} 7.03\text{e}{+}01, & [7.97\text{e}{+}01] \\ 7.97\text{e}{+}01] & 8.92\text{e}{+}01 \end{bmatrix} \begin{bmatrix} 8.92\text{e}{+}01, & [9.86\text{e}{+}01] \\ 9.86\text{e}{+}01] \end{bmatrix} \begin{bmatrix} 1.08\text{e}{+}02, & [1.18\text{e}{+}02] \\ 1.08\text{e}{+}02] \end{bmatrix} \begin{bmatrix} 1.18\text{e}{+}02, & [1.18\text{e}{+}02] \\ 1.27\text{e}{+}02] \end{bmatrix}$ [1.15e+02, [1.20e+02, [1.25e+02, [1.30e+02, [1.35e+02, [1.40e+02, Bins Bins 1.20e+02] | 1.25e+02] | 1.30e+02] | 1.35e+02] | 1.40e+02] | 1.45e+02] Count 210 219 143 136 Count Share 11.0% 12.0% Share Total Total 314 1260 1260 1260 1260 1260 1260 314 314 314 314 314 Rows Rows 7.00e+01 7.00e+01 7.00e+01 7.00e+01 7.00e+01 1.14e+02 Min 7.00e+01 Min 1.14e+02 1.14e+02 | 1.14e+02 | 1.14e+02 | 1.14e+02 Max 1.64e+02 | 1.64e+02 | 1.64e+02 | 1.64e+02 | 1.64e+02 | Max 1.64e+02 1.64e+02 1.64e+02 1.64e+02 1.64e+02 1.64e+02 Number of Bins Number of Bins $\begin{bmatrix} 7.08\text{e}{+}01, & [8.02\text{e}{+}01] \\ 8.02\text{e}{+}01 \end{bmatrix} \begin{bmatrix} 8.97\text{e}{+}01, & [9.92\text{e}{+}01] \\ 9.92\text{e}{+}01 \end{bmatrix} \begin{bmatrix} 1.09\text{e}{+}02, & [1.18\text{e}{+}02] \\ 1.28\text{e}{+}02 \end{bmatrix} \begin{bmatrix} 1.18\text{e}{+}02, & [1.28\text{e}{+}02] \\ 1.28\text{e}{+}02 \end{bmatrix}$ $\begin{bmatrix} 1.16e+02 & \begin{bmatrix} 1.21e+02 & \begin{bmatrix} 1.26e+02 & \begin{bmatrix} 1.31e+02 & \end{bmatrix} & \begin{bmatrix} 1.31e+02 & \begin{bmatrix} 1.36e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.21e+02 & \begin{bmatrix} 1.26e+02 & \end{bmatrix} & \begin{bmatrix} 1.31e+02 & \begin{bmatrix} 1.36e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \begin{bmatrix} 1.41e+02 & \end{bmatrix} & \begin{bmatrix} 1.41e+02 & \end{bmatrix} \\ 1.41e+02 & \end{bmatrix} \\ 1.41e+0$ Bins Count 210 218 139 140 174 164 Count 19 30 64 51 16 Share 17.0% 17.0% 11.0% 11.0% 14.0% 13.0% Share 6.0% 20.0% 16.0% 10.09 5.0% Total Total 1260 1260 1260 1260 314 314 314 314 314 1260 314 Rows Rows 7.00e+01 7.00e+01 7.00e+01 7.00e+01 7.00e+01 7.00e+01 1.15e+02 | 1.15e+02 | 1.15e+02 | 1.15e+02 | 1.15e+02 | 1.15e+02 Min Min Max 1.65e+02 | 1.65e+02 | 1.65e+02 | 1.65e+02 | 1.65e+02 | 1.65e+02 Max 1.65e+02 1.65e+02 1.65e+02 1.65e+02 1.65e+02 1.65e+02 Number of Bins Number of Bins INDEPENDENT VARIABLE: LOW INDEPENDENT VARIABLE: LOW

Bins		[7.84e+01, 8.78e+01]				
Count	_	249	_	_	_	170
Share	13.0%	20.0%	12.0%	10.0%	14.0%	13.0%
Total Rows	1260	1260	1260	1260	1260	1260
Min	6.90e+01	6.90e+01	6.90e+01	6.90e+01	6.90e+01	6.90e+01
Max	1.62e+02	1.62e+02	1.62e+02	1.62e+02	1.62e+02	1.62e+02
Number of Bins	6	6	6	6	6	6

Bins	[1.15e+02, 1.20e+02]		[1.24e+02, 1.29e+02]			
Count	23		48	_	27	15
Share	7.0%	19.0%	15.0%	4.0%	9.0%	5.0%
Total Rows	314	314	314	314	314	314
Min	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02
		1.62e+02	1.62e+02	1.62e+02	1.62e+02	1.62e+02
Number of Bins	6	6	6	6	6	6

	1	10	F . 00	120		130	- 1.02	140 Bins		150	. 02 [1.40e+0	170
20			•						•				
30													
Frequency 8													
50					•								

		[8.00e+01, 8.94e+01]				
	221					151
Share	18.0%	17.0%	11.0%	11.0%	14.0%	12.0%
Total Rows	1260	1260	1260	1260	1260	1260
Min	7.00e+01	7.00e+01	7.00e+01	7.00e+01	7.00e+01	7.00e+01
Max	1.64e+02	1.64e+02	1.64e+02	1.64e+02	1.64e+02	1.64e+02
Number of Bins	6	6	6	6	6	6

				Ullia		
Bins				[1.30e+02, 1.35e+02]		
Count	19	60	52		28	15
	6.0%	19.0%	17.0%		-	5.0%
Total Rows	314	314	314	314	314	314
Min	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02	1.14e+02
Max		1.64e+02	1.64e+02	1.64e+02	1.64e+02	1.64e+02
Number of Bins	6	6	6	6	6	6

			1	NDEPENDENT VARIABI	.E: VOLUME			
175								
150								
125								
Prequency 100								
75								
50	1							
25								
0	1	2	3	4 Bins	5	6	7 8	1e6

Bins	[6.02e+05,	[3.37e+06,	[6.14e+06,	[8.91e+06,	[1.17e+07,	[1.44e+07,
DIIIS	3.37e+06]	6.14e+06]	8.91e+06]	1.17e+07]	1.44e+07]	1.72e+07]
Count	1054	181	21	2	0	1
Share	84.0%	14.0%	2.0%	0.0%	0.0%	0.0%
Total Rows	1260	1260	1260	1260	1260	1260
Min	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05
Max	2.83e+07	2.83e+07	2.83e+07	2.83e+07	2.83e+07	2.83e+07
Number of Bins	6	6	6	6	6	6

Bins	[6.02e+05,	[1.41e+06,	[2.22e+06,	[3.03e+06,	[3.84e+06,	[[4.65e+06,
DIIIS	1.41e+06]	2.22e+06]	3.03e+06]	3.84e+06]	4.65e+06]	5.46e+06]
Count	46	173	57	23	11	0
Share	15.0%	55.0%	18.0%	7.0%	4.0%	0.0%
Total Rows	314	314	314	314	314	314
Min	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05	6.02e+05
		8.69e+06	8.69e+06	8.69e+06	8.69e+06	8.69e+06
Number of Bins	6	6	6	6	6	6

MODEL EXPLANATION

- The x-axis represents the model's output values of CLOSE
 The plot is centered on the x-axis at explainer.expected_value.
 All values are relative to the model's expected value like a linear model's effects are relative to the intercept.
 The y-axis lists the model's features. By default, the features are ordered by descending importance.
 The importance is calculated over the observations plotted. This is usually different than the importance ordering for the entire dataset.
 In addition to feature importance ordering, the decision plot also supports hierarchical cluster feature ordering and user-defined feature ordering.
 Each experience are defined feature ordering.
- Each observation's prediction is represented by a colored line.
 At the top of the plot, each line strikes the x-axis at its corresponding observation's predicted value. This value determines the color of the line on a
- Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model's base value.
 This shows how each feature contributes to the overall prediction.
 At the bottom of the plot, the observations converge at explainer.expected_value.
 The points in the graph are the values of the feature in the training dataset.

FEATURE SELECTION					
RFE Variable (Most important to Least Important)					
Close	0.414				
High	0.206				
Low	0.192				
Open	0.128				
Volume	0.059				
Best Variable(s) From Genetic Algorithm					
Close					
Volume					
Volume					
Excluded Variable(s)					
High					
Low					
Open					
PCA for Best Variable(s)	Value				
Close_pca_1	-0.707				
Close_pca_2	0.707				
Close_pca_3	-0.708				
High_pca_1	-0.673				
High_pca_2	0.218				
High_pca_3	0.706				
Volume_pca_1	0.707				
Volume_pca_2	0.707				
Volume_pca_3	-0.006				
PCA Explained Variance	Value				
PCA1	0.627				
PCA2	0.373				
PCA3	0.000				

- Feature selection shows which variables were more influential than other variables

 It uses two core algorithms: Recursive Feature Elimination (RFE) and Genetic Algorithm to determine influence

 It also performs PCA (principal component analysis) analysis to determine the influence of the best variables in the model

 These results should be used in conjunction with other information as well as theory to establish relevance and confidence in the chosen model formulation

CORRELATED FEATURES				
	Feature(s)	Feature(s)	Correlation >= 0.100	
0	High	Low	0.999	
1	Open	Open	NaN	

SUGGESTED CORRELATED FEATURES TO DELETE					
1 Feature(s) to Delete Correlati	on l				
0 High 0.999					

END OF REPORT

MAADSBML Python Library: https://pypi.org/project/maadsbml/
MAADSBML Docker Container For Windows: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics
MAADSBML Docker Container For MAC: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics-arm64
MAADSBML Sample Code and Setup: https://github.com/smaurice101/raspberrypi/tree/main/maadsbml

MAADSBML
Developed and Maintained by: Otics Advanced Analytics, Inc.
Toronto, Ontario, Canada
https://www.otics.ca
Email: support@otics.ca