Introdução à simulação de circuitos com o LTspice IV

Renan Birck Pinheiro

Universidade Federal de Santa Maria

8 de Outubro de 2012

■ Por que simular circuitos?

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos
 - Reduzir custos de prototipagem

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos
 - Reduzir custos de prototipagem
 - Simplificar o processo de projeto

- Por que simular circuitos?
 - Complexidade do projeto de novos circuitos
 - Reduzir custos de prototipagem
 - Simplificar o processo de projeto
 - entre outros.

SPICE

- Simulation Program With Integrated Circuit Emphasis Programa de Simulação com Ênfase em Circuitos Integrados
- Primeiras versões: FORTRAN, anos 70, grandes computadores, modo texto
- **SPICE 2**: linguagem C, anos 80/90, computadores de pequeno/médio porte, interface gráfica simples
- **Versões atuais**: C/C++, computadores pessoais, interface gráfica avançada, desenho de circuitos

SPICE

- Simulation Program With Integrated Circuit Emphasis Programa de Simulação com Ênfase em Circuitos Integrados
- Primeiras versões: FORTRAN, anos 70, grandes computadores, modo texto
- **SPICE 2**: linguagem C, anos 80/90, computadores de pequeno/médio porte, interface gráfica simples
- **Versões atuais**: C/C++, computadores pessoais, interface gráfica avançada, desenho de circuitos
- Vários fabricantes pegaram o código e fizeram suas próprias versões adicionando recursos
 - Motivação: atender interesses específicos de indústrias: microeletrônica, RF etc...
 - Assim, temos hoje diversos simuladores: PSpice, HSpice, LTspice, Spectre, Proteus entre outros

Vantagens:

- Projeto mais rápido, podem-se testar diversos valores de componentes.
- Realizar medidas que muitas vezes são difíceis de fazer na bancada.
- Projeto iterativo, usando métodos de otimização para atender requisitos.

Desvantagens:

- Não substitui prototipagem: os modelos são aproximados, não levam efeitos térmicos ou as componentes parasitas da placa
- Necessidade de modelos para os componentes
- O simulador deverá suportar as tecnologias usadas
- Em geral: lixo entra, lixo sai. Os resultados das simulações são tão bons quanto os modelos e o projeto do circuito forem.

Figura : O simulador é uma "máquina ignorante" que só faz o que ele é mandado. Pena que ele não faz café

Obtendo e instalando o LTspice

- http://www.linear.com/ltspice \rightarrow Download LTspice IV
- Proceder com a instalação, será criado um ícone na área de trabalho.

Desenhando um circuito

Figura : Botões da barra

(A maioria dos botões é auto-explicativa, então simplesmente coloquei os que podem causar mais dificuldade)

Todo circuito deve ter ao menos:

- Um terra (GND);
- Uma fonte de tensão ou de corrente:
- Um elemento qualquer (resistor, indutor, capacitor etc...).

Teclas de atalho

- F3: Desenhar fio
- F4: Etiquetar
- F9: Desfazer
- Ctrl-R: Rotacionar componente
- G: Colocar terra

Componentes

- Acessíveis pelo teclado: Resistor (R), capacitor (C), indutor (L), diodo (D)
- No menu de componentes (aperte F2): Fonte de tensão (Voltage) e de corrente (Current), transistores (npn/pnp, njf/pjf (FET), nmos/pmos (MOSFET))

Parâmetros: fontes de tensão/corrente

Clique com o botão direito na fonte e após clique em Advanced. Aparecerá uma janela com diversas configurações possíveis para a fonte.

Functions	
C (none)	DC value:
 PULSEIV1 V2 Tdelay Trise Tfall Ton Period Noycles) 	Make this information visible on schematic:
C SINE(Volfset Vamp Freq Td Theta Phi Ncycles)	
C EXP(V1 V2 Td1 Tau1 Td2 Tau2)	Small signal AC analysis(AC)
C SFFM(Voff Vamp Foar MDI Fsig)	AC Amplitude:
C PWL(1 v1 (2 v2)	AC Phase:
C PWLFILE: Browse	Make this information visible on schematic: V
Vinitia[V] Vor(V] T delay[e]	Parasitic Properties Series Resistance(oh Parallel Capacitance(F): Make this information visible on schematic: F
Trise(s) 	
Tperiod(s) Ncycles:	
Additional PWL Points	
Make this information visible on schematic: 🔽	Cancel DK

Fonte de tensão: pulso

- V_{off} : Valor inicial
- V_{on} : Valor do pulso
- T_{delay}: Atraso (contado a partir do 0 segundo)
- \blacksquare T_r : Tempo de subida
- \blacksquare T_f : Tempo de descida
- \blacksquare T_{on} : Tempo ligado
- *T*_{period}: Período (1/frequência)
- N_{cvcles}: Número de repetições

Para T_r e T_f , se omitidos o LTspice assume que eles são 10% de T_{period} . Isso visa evitar problemas numéricos (onda trocando imediatamente de estado $\to dV/dt = \infty$).

Parâmetros: resistores, capacitores e indutores

- Para capacitores e indutores, podemos definir condições iniciais de tensão e corrente, respectivamente...
- mas elas só serão respeitadas se marcarmos Use initial Conditions nos parâmetros de simulação
- Por padrão, os indutores têm uma resistência em série de 1 $m\Omega$. Se for desejado removê-la, clique com o botão direito nele e coloque 0 no campo *Series Resistance*

Parâmetros: semicondutores

- Modelos de semicondutores contêm os parâmetros que serão usados pelas equações de dispositivos.
- Normalmente esses modelos são fornecidos pelos fabricantes.
- Componentes mais complexos estão disponíveis na forma de subcircuitos.
 - Subcircuito: arquivo que contém as linhas de código necessárias para descrever um componente. Conceito similar ao de bibliotecas em linguagens de programação.

Análise transiente

 Simulação no domínio do tempo, para circuitos lineares ou não, empregando as equações de dispositivos e as técnicas de análise de circuitos

Análise transiente - opções de configuração

- Stop Time: por quanto tempo executar a simulação
- Time to Start Saving Data: quando começar a salvar dados?
- Start external DC supplies at 0V: iniciar as fontes DC em 0V; após 20 μs elas subirão ao nível especificado. O famoso impulso unitário.
- Skip Initial Operating Point Solution: usar as condições iniciais especificadas anteriormente (se não tiver nenhuma, ele usa 0 V), caso contrário ele tenta calcular um ponto de operação DC.

Exemplo 1: Circuitos RC e RLC

Exemplo 2: Transformador

Usamos o elemento K para definir um acoplamento magnético entre dois indutores.

Exemplo 3: Circuito a transistor

Análise AC

- Análise de pequenos sinais no domínio da frequência
- Circuitos não-lineares são linearizados ao redor do ponto de operação
- As fontes são definidas como fasores com módulo e fase
- Por exemplo: Fonte definida como AC 1 0 = $1 \angle 0$

Análise AC - Opções de configuração

- Type of Sweep: seleciona se a varredura é feita por oitavas, por décadas, de forma linear ou para pontos especificados.
 - Oitava: faixa de frequências de f a 2f
 - Década: faixa de frequências de f a 10f
- Number of Points: número de pontos.
- Start Frequency/Stop Frequency: frequências de início e de fim.

Usando o mesmo circuito do exemplo anterior...

Clique com o botão direito na análise (.tran 25m), mude para a aba *AC Analysis* e preencha:

- Type of Sweep: Octave
- Number of Points: 1000
- Start Frequency: 1
- Stop Frequency: 1Meg
 - IMPORTANTÍSSIMO: **m** é **mili** (10⁻³), se quiseremos **mega** (10⁶) temos que digitar **Meg**!

Execute a simulação e clique no nó de saída (marcado com OUT).

Exemplo 4: Circuito com amplificador operacional

- O símbolo opamp fornece um opamp genérico. Porém, precisamos incluir o arquivo opamp.sub.
- Para isso, clique em *SPICE Directive* e digite .lib opamp.sub.

Análise de varredura DC

Exemplo 5: Curvas do diodo

Exemplo 6: Amplificador common source

Para este exemplo, excepcionalmente usamos o símbolo *nmos4*, já que nos interessa especificar as dimensões do transistor.

Análise de Fourier

- Permite visualizar o conteúdo harmônico de um sinal, isto é, as frequências que formam esse sinal.
- Sempre especificar o parâmetro plotwinsize=0, para desativar a compactação (que pode resultar na perda de componentes do sinal).

Exemplo 7: Modulador AM a transistor

Resultados

Da teoria de Fourier, sabemos que ao multiplicarmos um sinal de frequência F_s por uma portadora de frequência F_c (modulação em amplitude), obtemos as harmônicas $F_s + F_c$ e $F_s - F_c$. E isso fica visível no gráfico.

Medição de THD com Fourier

- Excita-se o circuito com um sinal senoidal naentrada, e determina-se o conteúdo harmônico da saída.
 - Sintaxe: .four freq-fundamental V(out)
 - Obs.: definir uma análise transiente antes

Exemplo 8: Amplificador push-pull

Links de interesse

http://tech.groups.yahoo.com/group/LTspice/ - grupo de usuários do LTspice

OBRIGADO!

Contatos: renan.ee.ufsm@gmail.com http://facebook.com/renanbirck http://twitter.com/renan2112

O código-fonte desses slides e os circuitos empregados estão disponíveis em

https://github.com/renanbirck/minicurso-2012 ou com o autor.

Crédito das tirinhas: Vida de Programador http://www.vidadeprogramador.com.br