Seminarul 9 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Inele de polinoame

Exercițiul 1.1:

- a) Câte monoame de grad d în n variabile există?
- b) Precizați numărul de monoame de grad 8 din $\mathbb{Q}[X_1,...,X_5]$ strict mai mici lexicografic ca $X_1^3X_3X_4$.

Exercițiul 1.2: Fie K un corp comutativ și $f, g \in K[X_1, ..., X_n]$.

- a) Demonstrați că, dacă K este infinit, atunci, dacă $f(x_1,...,x_n) = g(x_1,...,x_n)$ pentru orice $x_1,...,x_n \in K$, atunci f=g.
- b) Rămăne adevărată afirmația dacă K este finit?

Exercițiul 1.3: Fie $A \in \mathcal{M}_n(\mathbb{R})$. Demonstrați că

A este nilpotentă
$$\iff tr(A) = tr(A^2) = \dots = tr(A^n) = 0.$$

2 Aritmetică în \mathbb{Z} și K[X]

Exercițiul 2.1: Folosiți algoritmul lui Euclid pentru a afla c.m.m.d.c. d al numerelor $a, b \in \mathbb{Z}$ și o relație de forma ax + by = d, unde:

- a) a = 20, b = 13;
- b) a = 69, b = 372;
- c) a = 11391, b = 5673;
- d) a = 507885, b = 60808.

Exercițiul 2.2: Determinați cel mai mare divizor comun al P și $Q \in \mathbb{Q}[X]$ și scrieți-le ca o combinație a P și Q în $\mathbb{Q}[X]$, unde:

1

a)
$$P = X^3 - 2 \text{ si } Q = X + 1;$$

b)
$$P = X^5 + 2X^3 + X^2 + X + 1$$
 si $Q = X^5 + X^4 + 2X^3 + 2X^2 + 2X + 1$.

c)
$$P = X^3 + 4X^2 + X - 6$$
 și $Q = X^5 - 6x + 5$.

Exercițiul 2.3: Folosiți algoritmul lui Euclid pentru a demonstra că a este inversabil modulo n și pentru a determina inversul lui \hat{a} din \mathbb{Z}_n , unde:

- a) a = 13, n = 20;
- b) a = 69, n = 89;
- c) a = 1891, n = 3797.

Exercițiul 2.4: Fie $R = \mathbb{Z}$ sau K[X] cu K corp.

- a) Fie $a, b, c \in R$. Demonstrați că, dacă $a \mid bc$ și (a, b) = 1, atunci $a \mid c$.
- b) Mai general, demonstrați că, dacă $a \mid bc$, atunci $\frac{a}{(a,b)} \mid c$.
- c) Fie $a, b \in R$ și $n \in R$. Arătați că există $x, y \in R$ cu $ax + by = n \iff (a, b) \mid n$.
- d) Fie $a, b \in R$ și $n \in R$. Arătați că, dacă (x_0, y_0) este o soluție în R a ecuației ax + by = n, atunci toate soluțiile sunt de forma

$$x = x_0 + m \frac{b}{(a,b)}, \ y = y_0 - m \frac{a}{(a,b)}, \ m \in R.$$

Exercitiul 2.5: Rezolvati ecuatiile diofantice (i.e. găsiti solutiile întregi pentru):

- a) 2x + 4y = 15;
- b) 17x + 29y = 31;
- c) 85x + 145y = 505.

Exercițiul 2.6: Fie $I = (X^3 + 1)$ și $J = (X^5 + 1) \triangleleft \mathbb{R}[X]$. Calculați I + J și $I \cap J$.

Exercițiul 2.7: Fie $n \in \mathbb{N}^*$. Arătati că

$$(n! + 1, (n + 1)! + 1) = 1.$$

Exercitiul 2.8: Fie $n, m \in \mathbb{N}^*$. Arătați că, în $\mathbb{Q}[X]$,

$$(X^m - 1, X^n - 1) = X^{(m,n)} - 1.$$

Exercițiul 2.9: Fie $n, m \in \mathbb{N}^*$. Arătați că

$$(2^m - 1, 2^n - 1) = 2^{(m,n)} - 1.$$

Exercițiul 2.10: Determinați toate numerele naturale $n < 10^{100}$ astfel încât $n \mid 2^n$, $n-1 \mid 2^n-1$ și $n-2 \mid 2^n-2$.

Exercițiul 2.11: Calculați $(X^{23} + X^{22} + ... + 1, X^{53} + X^{52} + ... + 1)$.

Exercițiul 2.12: Fie $F_n = 2^{2^n} + 1$ pentru orice $n \ge 0$. Demonstrați că $F_n = F_0 F_1 ... F_{n-1} + 2$ pentru orice $n \ge 1$. Deduceți că $(F_n, F_m) = 1$ pentru $n \ne m$. Redemonstrați faptul că există o infinitate de numere prime.