CS 5522: Artificial Intelligence II

Markov Decision Processes

Instructor: Alan Ritter

Ohio State University

[These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Non-Deterministic Search

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Grid World Actions

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

Video of Demo Gridworld Manual Intro

Video of Demo Gridworld Manual Intro

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$= P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

Policies

 In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

• For MDPs, we want an optimal policy π^* : $S \to A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

R(s) = -0.01

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

A robot car wants to travel far, quickly

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast 0.5 Going faster gets double reward 1.0 Fast Slow -10 +1 0.5 Warm Slow 0.5 +2 **Fast** 0.5 Cool Overheated 1.0

MDP Search Trees

Each MDP state projects an expectimax-like search tree

What preferences should an agent have over reward sequences?

What preferences should an agent have over reward sequences?

More or less?

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

Now or later?

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

1

Worth Now

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

How to discount?

 Each time we descend a level, we multiply in the discount once

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge

How to discount?

 Each time we descend a level, we multiply in the discount once

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Example: discount of 0.5

How to discount?

 Each time we descend a level, we multiply in the discount once

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

How to discount?

 Each time we descend a level, we multiply in the discount once

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Stationary Preferences

Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

10 1

• Quiz 2: For $\gamma = 0.1$, what is the optimal policy? $|_{10}$

• Quiz 3: For which γ are West and East equally good when in state d?

Problem: What if the game lasts forever? Do we get infinite rewards?

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:

Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)

Problem: What if the game lasts forever? Do we get infinite rewards?

Solutions:

- Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
- Discounting: use $0 < \gamma < 1$

$$U([r_0,\dots r_\infty])=\sum_{t=0}^\infty \gamma^t r_t \leq R_{\max}/(1-\gamma)$$
 • Smaller γ means smaller "horizon" - shorter term focus

Problem: What if the game lasts forever? Do we get infinite rewards?

Solutions:

- Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
- Discounting: use $0 < \gamma < 1$

$$U([r_0,\dots r_\infty])=\sum_{t=0}^\infty \gamma^t r_t \leq R_{\max}/(1-\gamma)$$
 • Smaller γ means smaller "horizon" - shorter term focus

- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

Markov decision processes:

- Set of states S
- Start state s₀
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)

MDP quantities so far:

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Snapshot of Demo - Gridworld V Values

Noise = 0.2 Discount = 0.9 Living reward = 0

Snapshot of Demo - Gridworld Q Values

Noise = 0.2 Discount = 0.9 Living reward = 0

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^*(s) = \max_a Q^*(s, a)$$

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1

Key idea: time-limited values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

k=0

Noise = 0.2 Discount = 0.9 Living reward = 0

$$k=3$$

k = 100

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

• Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

Complexity of each iteration: O(S²A)

• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

• Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 V_0 0 0 0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence*

How do we know the V_k vectors are going to converge?

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max | R | different
 - So as k increases, the values converge

Next Time: Policy-Based Methods