Chapter 27 Electromagnetic Induction and Faraday's Law

- > Electromagnetic Induction
- Faraday's Law of Induction; Lenz's Law
- > EMF Induced in a Moving Conductor
- > A Changing Magnetic Flux Produces an Electric Field
- > Applications of induction

- ➤ An electric current produces a magnetic field;
- A magnetic field exerts a force on an electric current or moving electric charge.

Scientists then began to wonder: if electric currents produce a magnetic field, is it possible that a magnetic field can produce an electric current?

Ten years later, the American Joseph Henry (1797-1878) and the Englishman Michael Faraday (1791-1867) independently found that it was possible.

EMF (Electromotive force) of a battery (power supply)

EMF: moving a positive unit charge from the negative electrode to the positive one of the battery, the work done by the non-electrostatic force \vec{E}_k :

$$\boldsymbol{\varepsilon} = \int_{-}^{+} \vec{E}_{k} \cdot d\vec{l}$$

§27-1 Electromagnetic Induction

Faraday's experiments:

As long as the magnetic flux passing through a closed circuit changes over time, a current will appear in the circuit (Electromagnetic induction).

The condition for electromagnetic induction:

$$\frac{\mathrm{d}\Phi_m}{\mathrm{d}t}\neq 0$$

To achieve this condition, there are two means:

$$\Phi_m = \int \vec{B} \cdot d\vec{S} = \int B \cos \theta dS$$

(1) By changing B (2) By changing S of the loop (3) By changing θ

§27-2 Faraday's Law of Induction; Lenz's Law

1. Faraday's law of induction

The EMF induced in a circuit is equal to the rate of change of magnetic flux through the circuit.

$$\varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t}$$

- (1) EMF is produced even if the circuit is not closed;
- (2) If the circuit contains N closely wrapped loops:

$$\varepsilon = -N \frac{\mathrm{d}\Phi_m}{\mathrm{d}t}$$

(3) Induction current in a closed circuit: $I = \frac{\varepsilon}{R}$

2. Lenz's law

An induced EMF is always in a direction that opposes the original change in flux that caused it.

Complies with the conservation of energy:

If contrary to Lenz's law \rightarrow Ampère force does positive work \rightarrow no external energy required for the circuit to work \rightarrow contradicts the conservation of energy.

Usually, it's difficult to find a clear circuit loop, so, Lenz's law is often expressed as:

The effect of induced current always resists the cause of induced current. (effect of the result is always against the reason)

Induced charges

Example: At time t_1 and t_2 , the magnetic flux passing through the area enclosed by a circuit is Φ_1 and Φ_2 , determine the induced charge through any cross-section of the circuit at time interval $t_1 \rightarrow t_2$?

$$\mathbf{q}_i = \int_{t_1}^{t_2} I_i dt = \int_{\Phi_1}^{\Phi_2} -\frac{1}{R} d\Phi_m$$

$$\Rightarrow q_i = \frac{\Phi_1 - \Phi_2}{R}$$

Thinking: A small coil moves far away from the position in the figure shown below. How to determine the total induced charge going through the coil?

Example 1 (Rotating coil): A circular coil is rotating in uniform magnetic field. Determine the EMF.

Solution: The magnetic flux:

$$\Phi_B = BS\cos\theta = \pi R^2 B\cos(\omega t + \theta_0)$$

$$\therefore \varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t} = \pi R^2 \omega B \sin(\omega t + \theta_0)$$

If the magnetic field is changing as:

$$B = B_0 e^{-\beta t}$$

$$\varepsilon = \pi R^2 \omega B_0 e^{-\beta t} \sin(\omega t + \theta_0) + \pi R^2 \beta B_0 e^{-\beta t} \cos(\omega t + \theta_0)$$

§27-3 EMF Induced in a Moving Conductor

Motional EMF: Caused by a component of Lorentz force.

$$\vec{F}_{\perp} = -e\vec{v} \times \vec{B}$$
 does positive work on e

$$\vec{F}_{\parallel} = -e\vec{u} \times \vec{B}$$
 does negative work on e

Total Lorentz force $\vec{F} = \vec{F}_{\parallel} + \vec{F}_{\perp}$ does no work on e.

Component $\vec{F}_{\perp}/(-e)$ acts as the non-electrostatic force \vec{E}_k to produce the motional EMF:

$$\varepsilon = \int_{-}^{+} \vec{E}_{k} \cdot d\vec{l} = \int_{-}^{+} (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

The result can also be derived by Faraday' law

 $d\vec{l}$ moves with velocity \vec{v}

It sweeps out an area d*S*:

$$d\vec{S} = (\vec{v}dt) \times d\vec{l}$$

Magnetic flux:

$$d\Phi_m = \vec{B} \cdot d\vec{S} = \vec{B} \cdot (\vec{v} \times d\vec{l}) dt$$

EMF:

$$\varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t} = -\vec{B} \cdot (\vec{v} \times \mathrm{d}\vec{l}) = (\vec{v} \times \vec{B}) \cdot \mathrm{d}\vec{l}$$

Example2 (Motion in uniform field): Determine the EMF induced in the conductor in a uniform magnetic field.

EMF: $\varepsilon = Blv$

Force: $F = BIl = B^2 l^2 v / R$

Power: $P = Fv = I^2R$

→ straight wire:

$$\varepsilon = (\vec{v} \times \vec{B}) \cdot \vec{l}_{ab}$$

Example 3 (Rotates in uniform field): A conductor rod rotates about axis \boldsymbol{O} . Determine the induced EMF. (B, L, ω)

Solution: For an infinitesimal:

$$d\varepsilon = B \cdot \omega r \cdot dr$$

Total EMF in the conductor:

$$\varepsilon = \int_0^L B\omega r dr = \frac{1}{2}B\omega L^2$$

Faraday's law:

$$\varepsilon = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} = -\frac{\mathrm{d}\theta}{\mathrm{d}t} \cdot \frac{1}{2}BL^2 = \frac{1}{2}B\omega L^2$$

$$S = \frac{1}{2}L^2\theta$$

Question: As the figure shows, a copper disk is placed in a uniform magnetic field, and rotates clockwise. The field \vec{B} is perpendicular to the face of the disk. Which of the following is right?

- A Current with clockwise direction is induced inside the disk;
- B Current with anticlockwise direction is induced inside the disk;
- © Eddy current is induced inside the disk;
- EMF is induced on the disk, and the edge has the highest potential;
- EMF is induced on the disk, and the center has the highest potential;

Rotates in nonuniform field

Question: A conductor rod rotates about axis o. Determine the induced EMF when the two wires are perpendicular to each other.

$$\varepsilon = \frac{\mu_0 \omega IL}{2\pi} (1 - \ln 2)$$

$$0$$

$$E = \frac{\mu_0 \omega IL}{2\pi} (1 - \ln 2)$$

$$0$$

$$\otimes \vec{B}$$

Example 4 (Motion on rails): Conducting rod rests on frictionless parallel rails with an EMF source. Determine the speed of rod if the source outputs: (a) constant *I*; (b) constant EMF. (c) What is the terminal speed?

Solution: (a)

$$F = ma = BIl$$

$$\Rightarrow v = at = \frac{BIl}{m}t$$

(b) source outputs constant EMF:

$$I = \frac{\varepsilon - Blv}{R}$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{BIl}{m} = \frac{(\varepsilon - Blv)Bl}{mR} \implies \int_0^t \frac{Bl}{mR} \, \mathrm{d}t = \int_0^v \frac{\mathrm{d}v}{\varepsilon - Blv}$$

$$\Rightarrow v = \frac{\mathcal{E}}{Bl} \left(1 - e^{-\frac{B^2 l^2 t}{mR}} \right)$$

(c) Terminal speed

$$v = \frac{\mathcal{E}}{Bl}$$

§27-4 A Changing Magnetic Flux Produces an Electric Field

When the magnetic field changes:

→ Induced EMF → induced current (closed coil)

In the space where the magnetic field changes:

electric field is produced (Maxwell)

Induced (vortex) electric field \vec{E}_i :

- Produced by changing magnetic field;
- > Field lines form closed loops, so it is nonconservative;
- > Acts on electric charges as the electrostatic field.

General form of Faraday's law:

$$\varepsilon = \oint \vec{E}_i \cdot d\vec{l} = -\frac{d\Phi_m}{dt} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{S}$$

$$\Rightarrow \qquad \oint \vec{E}_i \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \qquad \Leftrightarrow \quad \nabla \times \vec{E}_i = -\frac{\partial \vec{B}}{\partial t}$$

Comparison between induced electric field and electrostatic field:

Induced electric field	Electrostatic field
nonconservative	conservative
$\oint_L \vec{E}_i \cdot d\vec{l} = -\frac{d\Phi_m}{dt} \neq 0$	$\oint_L ec{E}_{ otag} \cdot \mathrm{d}ec{l} = 0$
Produced by changing magnetic field	Produced by charges

Summary of fields:

Electrostatic /

$$\oint \vec{E}_s \cdot d\vec{l} = 0$$

$$\oint \vec{E}_s \cdot d\vec{l} = 0$$

$$\oint \vec{E}_s \cdot d\vec{S} = \frac{Q_{encl}}{\varepsilon_0}$$

Field lines:

induced electric /

$$\oint \vec{E}_i \cdot d\vec{l} = -\frac{d\Phi_m}{dt}$$

$$\oint \vec{E}_i \cdot d\vec{S} = 0$$

$$\oint \vec{E}_i \cdot d\vec{S} = 0$$

vortex

magnetic field

$$\oint \vec{B} \cdot \mathrm{d}\vec{l} = \mu_0 I_{\mathit{encl}}$$

$$\oint \vec{B} \cdot d\vec{S} = 0$$

Closed loops

Example 5 (Vortex electric field): Uniform magnetic field in cylindrical space changes as dB/dt=C>0. Determine the induced electric field.

Solution: Analyze the symmetry

$$\oint \vec{E}_i \cdot d\vec{l} = E_i \cdot 2\pi r = -\frac{d\Phi_B}{dt} = C \cdot S$$

$$r < R : E_i = \frac{C \cdot \pi r^2}{2\pi r} = \frac{C}{2}r$$

$$r > R$$
: $E_i = \frac{C \cdot \pi R^2}{2\pi r} = \frac{CR^2}{2r}$

Example 6 (EMF in a wire): Magnetic field in a solenoid changes as dB/dt = C > 0. A straight wire lies tangent to the solenoid at its center. What is the EMF in wire?

Solution: Induced electric field:

$$r > R: E_i = \frac{CR^2}{2r}$$

$$\varepsilon = \int_{L} \vec{E}_{i} \cdot d\vec{l} = \int \frac{CR^{2}}{2r} \cos \theta dl$$

$$=\int_{-\pi/4}^{\pi/4} \frac{CR^2}{2} d\theta = \frac{\pi R^2 C}{4}$$

$$R = r \cos \theta$$

$$l = R \tan \theta$$

Another Solution:

Imagine a closed circuit

$$\varepsilon_1 = \int \vec{E}_i \cdot d\vec{l} = 0, \qquad \varepsilon_2 = 0$$

$$\therefore \quad \varepsilon = \varepsilon_{\Delta} = -\frac{\mathrm{d}\Phi_{m}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\pi R^{2} B}{4} \right) = \frac{\pi R^{2} C}{4}$$

Discussion:

$$\oint \vec{E}_i \cdot d\vec{l} = -\frac{d\Phi_m}{dt} \neq 0!$$

$$arepsilon_{\overline{ab}} = arepsilon_{\widehat{ab}} \ ? \qquad arepsilon_{\overline{ab}} < arepsilon_{\widehat{ab}}$$

Self induction

Thinking: If a solenoid with current *I* is cut off from the battery, will *I* drop abruptly to 0? How does *I* change over time?

§27-5 Applications of induction

Sound systems / microphones:

Recording tape/computer memory/swipe card

Eddy currents

Induction stove

Transformers:

Metal detector:

Reducing the induced currents:

Summary

1. Faraday's law of induction

$$\varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t}$$

2. Lenz's law

An induced EMF is always in a direction that opposes the original change in flux that caused it. (effect of the result is always against the reason)

3. Motional EMF

$$\varepsilon = \int_{-}^{+} \vec{E}_{k} \cdot d\vec{l} = \int_{-}^{+} (\vec{v} \times \vec{B}) \cdot d\vec{l}$$

4. Induced (vortex) electric field

Induced electric field	Electrostatic field
nonconservative	conservative
$\oint_{L} \vec{E}_{i} \cdot d\vec{l} = -\frac{d\mathbf{\Phi}_{m}}{dt} \neq 0$	$\oint_L ec{E}_{\!$
Produced by changing magnetic field	Produced by charges

5. Summary of fields

Electrostatic / induced electric / magnetic field $\oint \vec{E}_s \cdot d\vec{l} = 0 \qquad \oint \vec{E}_i \cdot d\vec{l} = -\frac{d\Phi_m}{dt} \qquad \oint \vec{B} \cdot d\vec{l} = \mu_0 I_{encl}$ $\oint \vec{E}_s \cdot d\vec{S} = \frac{Q_{encl}}{\varepsilon_0} \qquad \oint \vec{E}_i \cdot d\vec{S} = 0 \qquad \oint \vec{B} \cdot d\vec{S} = 0$