Corrigé de l'interrogation de contrôle continu n°2

Exercice 1. Questions de cours

Théorème de Rolle : Soit f une fonction définie et dérivable sur l'intervalle [a, b] et derivable sur l'intervalle [a, b] et d

Remarque: Il faut bien faire attention aux bornes des intervalles (ouvertes, fermées)!

Démo : Comme la fonction f est continue sur l'intervalle fermé borné [a,b], l'image f([a,b]) est un intervalle fermé borné [m,M] (théorème de Weierstrass).

On distingue deux cas:

- 1. si la fonction f est constante sur l'intervalle [a, b], alors sa dérivée f' est identiquement nulle sur cet intervalle. N'importe quel point c de l'intervalle]a, b[convient car il vérifie f'(c) = 0.
- 2. si la fonction f n'est pas constante, l'intervalle [m,M] n'est pas réduit à un point. Donc l'une, au moins, des deux inégalités strictes :

$$M > f(a) = f(b)$$
 ou $m < f(a) = f(b)$

est vérifiée. Supposons que l'on a M > f(a) (le cas m < f(a) se traite de manière analogue). Par définition de l'image d'un intervalle, comme M est un point de [m,M], il existe un point c de l'intervalle [a,b] telque f(c)=M. Comme $M \neq f(a)$ et $M \neq f(b)$, c appartient en fait à l'intervalle [a,b]. La fonction f admet en c un maximum et comme elle est dérivable sur [a,b], on a : f'(c)=0, (d'après la proposition "dérivée et extremum" du cours).

Exercice 2. Calcul de Développements limités

- $1. \ \ \frac{1-x^2}{2+x^2} = \frac{1}{2} \frac{1-x^2}{1+\frac{x^2}{2}}. \ \text{En posant } X = \frac{x^2}{2}, \text{ comme } \frac{1}{1+X} = 1 X + X^2 + X^2 \varepsilon(X), \text{ on a } \frac{1}{1+\frac{x^2}{2}} = 1 \frac{x^2}{2} + \frac{x^4}{4} + x^4 \varepsilon(x). \ \text{Par conséquent} : \\ \frac{x^4}{2+x^2} = \frac{1}{2} (1-x^2) (1 \frac{x^2}{2} + \frac{x^4}{4} + x^4 \varepsilon(x)) = \frac{1}{2} \frac{3}{4} x^2 + \frac{3}{8} x^4 + x^4 \varepsilon(x)$
- 2. On a $\sin(2x)=2x-\frac{(2x)^3}{6}+x^4\varepsilon(x)=2x-\frac{4x^3}{3}+x^4\varepsilon(x)$ et $\ln(1+X)=X-\frac{X^2}{2}+\frac{X^3}{3}+-\frac{X^4}{4}+X^4\varepsilon(X)$. En remplaçant X par $\sin(2x)$, on obtient : $\ln(1+\sin(2x))=2x-2x^2+\frac{4}{3}x^3-\frac{4}{3}x^4+x^4\varepsilon(X)$. Remarque : Attention aux développement de $(2x-\frac{4}{3}x^3)^2$. Il apparaît en effet un terme d'ordre $2:8x^2$, mais également un terme "croisé" : $-2(2x)\times(\frac{4}{3}x^3)$ qui est d'ordre 3 et qu'il faut donc conserver dans le DL.
- 3. On pose t=x-1. On a alors $\ln(2x)=\ln(2(1+t))=\ln(2)+\ln(1+t)=\ln(2)+t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4}+t^4\varepsilon(t)=\ln(2)+(x-1)-\frac{(x-1)^2}{2}+\frac{(x-1)^3}{3}-\frac{(x-1)^4}{4}+(x-1)^4\varepsilon(x-1).$

Exercice 3. Application des développements limités

1.
$$\sin x - x \cos x = \frac{x^3}{3} + x^4 \varepsilon(x)$$
.

2. L'équation de la tangente à Γ en 0 est donnée par le développement limité à l'ordre 1 de f:

$$y = 0$$

La position de cette tangente par rapport à Γ est donné par le signe de $f(x) - y = \frac{x^3}{3} + x^4 \varepsilon(x)$, qui est du signe de x^3 au voisinage de x

3. $\frac{f(x) - \frac{x^3}{3}}{\ln(1 + x^4)} = \frac{\frac{x^3}{3} + x^4 \varepsilon(x) - \frac{x^3}{3}}{x^4 + x^4 \varepsilon(x)} = \frac{x^4 \varepsilon(x)}{x^4 (1 + \varepsilon(x))} = \frac{\varepsilon(x)}{(1 + \varepsilon(x))}$. Le numérateur de cette expression tend vers 0 et le dénominateur tend vers 1. Par conséquent $\lim_{x \to 0} \frac{f(x) - \frac{x^3}{3}}{\ln(1 + x^4)} = 0$

Exercice 4. Etude de fonction

- 1. $g'(x) = 4x^3 + 3x^2 1$ et $g''(x) = 12x^2 + 6x = 6x(2x + 1)$
- 2. g'' est strictement positive sur $]-\infty, -\frac{1}{2}[$ et sur $]0,\infty[$ donc g' est strictement croissante sur chacun de ces intervalles. g'' est strictement négative sur $]-\frac{1}{2},0[$ donc g' est strictement décroissante sur cet intervalle.
- 3. On a $\lim_{x\to -\infty} g'(x) = -\infty$ et $g'(-\frac{1}{2}) = -\frac{3}{4}$, et comme g est continue et strictement croissante sur $]-\infty,\frac{1}{2}]$, on a $g'(]-\infty,-\frac{1}{2}])=]-\infty,-\frac{3}{4}]$ (le fait que $g'(]-\infty,-\frac{1}{2}])$ est intervalle est donné par le théorème des valeurs intermédiaires). De même on montre que $g'(]-\frac{1}{2},0[)=]-1,-\frac{3}{4}[$. Or $]-1,-\frac{3}{4}[\subset]-\infty,-\frac{3}{4}]$. Par conséquent $J=g'(]-\infty,0])=]-\infty,-\frac{3}{4}]$.
- 4. g' est strictement croissante sur $]0, +\infty[$, par conséquent elle définit une bijection de $]0, +\infty[$ sur $g(]0, +\infty[) =]-1, \infty[$. Or $0 \in]-1, \infty[$. Par conséquent, l'équation g'(x) = 0 a une unique solution sur $]0, \infty[$. Comme g' est strictement négative sur $]-\infty, 0]$, l'équation g'(x) = 0 n'a pas de solution sur cet intervalle et par conséquent, cette équation a une unique solution $c \in \mathbb{R}$. Comme g(0) = -1 < 0 et g(1) = 6 > 0, cette solution appartient à]0, 1[(encore une fois grâce au TVI).
- 5. g' s'annule en c, et est strictement négative pour x < c et strictement positive pour x > c. Par conséquent g admet un minimum en c
- 6. Pour tout $x \in [0,c]$, on a $-1 \le g'(x) \le 0$. En appliquant l'inégalité des accroissements finis à la fonction g entre 0 et c, on obtient donc : $-1 \le \frac{g(c)-g(0)}{c-0} \le 0$ c'est-à-dire : $-1 \le \frac{g(c)-1}{c} \le 0$. On a donc $1-c \le g(c)$. Or c < 1, donc g(c) > 0. g(c) est le minimum de g et g(c) > 0, par conséquent l'équation g(x) = 0 n'a pas de solutions dans \mathbb{R} .