Feuille d'exercices n°3 Algèbre linéaire I

(du lundi 22 octobre 2012 au vendredi 23 novembre 2012)

Exercice 1

Soient E un \mathbb{R} -ev, F et G deux sev de E.

- 1. Donner un exemple pour lequel $F \cup G$ n'est pas un sev de E.
- 2. Montrer que

$$(F \cup G \text{ sev de } E) \Leftrightarrow (F \subset G \text{ ou } G \subset F).$$

Exercice 2

Soient E un \mathbb{R} -ev, F et G deux sev de E. Montrer que

$$F + G = \text{Vect}(F \cup G)$$

Exercice 3

- 1. Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par f(x, y, z) = x y + 2z.
 - Déterminer Ker(f) (en précisant une base) et Im(f).
- 2. Soit $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par g(x, y, z) = (x y + 2z, 2x z).

Déterminer Ker(f) (en précisant une base) et Im(f).

Exercice 4

1. Soient E un \mathbb{R} -ev et $(f,g) \in (\mathcal{L}(E))^2$.

Montrer que $g \circ f = 0 \iff \operatorname{Im}(f) \subset \operatorname{Ker}(g)$

- 2. Soient E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$ tel que $f^2 + f 2id = 0$ où id désigne l'application identique de E
 - a. Montrer que $\operatorname{Im}(f-id) \subset \operatorname{Ker}(f+2id)$ et $\operatorname{Im}(f+2id) \subset \operatorname{Ker}(f-id)$.
 - b. Montrer que $E = \text{Ker}(f id) \oplus \text{Ker}(f + 2id)$

Mathématiques Info-Spé 12/13Algèbre linéaire I ЕРІТА

Exercice 5

Soient E un \mathbb{R} -ev, $(u,v) \in \mathcal{L}(E) \times \mathcal{L}(E)$ tels que $u \circ v = v \circ u$. Montrer que

$$E = \operatorname{Ker}(u) \oplus \operatorname{Ker}(v) \Longrightarrow \operatorname{Im}(u) \subset \operatorname{Ker}(v) \text{ et } \operatorname{Im}(v) \subset \operatorname{Ker}(u)$$

Exercice 6

Soit E un \mathbb{R} -ev.

- 1. Soit p un projecteur de E i.e. $p \in \mathcal{L}(E)$ et $p^2 = p$. Montrer que $E = \mathrm{Ker}(p) \oplus \mathrm{Im}(p)$.
- 2. Soient p et q deux projecteurs de E. Montrer que

a.
$$(p \circ q = q \land q \circ p = p) \iff (\operatorname{Im}(p) = \operatorname{Im}(q))$$

b.
$$(p \circ q = p \land q \circ p = q) \iff (\operatorname{Ker}(p) = \operatorname{Ker}(q))$$

c. On suppose $p \neq 0$, $q \neq 0$ et $p \neq q$. Soit $\alpha \in \mathbb{R}$. Montrer que $q = \alpha p \Rightarrow \alpha p = \alpha^2 p$. En déduire que (p,q) forme une famille libre dans $\mathcal{L}(E)$.

Exercice 7

Les familles suivantes sont-elles libres dans E?

1.
$$(1, X - 1, (X + 1)^2)$$
 $(E = \mathbb{R}_2[X])$

2.
$$(x \mapsto e^{2x}, x \mapsto x^2, x \mapsto x)$$
 $(E = \mathbb{R}^{\mathbb{R}})$

3.
$$(x \mapsto e^x, x \mapsto e^{x+1}, x \mapsto e^{x+2})$$
 $(E = \mathbb{R}^{\mathbb{R}})$

4.
$$(x \mapsto \sin(x), x \mapsto \cos(x), x \mapsto x)$$
 $(E = \mathbb{R}^{\mathbb{R}})$

Exercice 8

Soient E un \mathbb{R} -ev de dimension 3 et $f \in \mathcal{L}(E)$ vérifiant $f^3 = 0$ et $f^2 \neq 0$. Soit $x \in E$ tel que $f^2(x) \neq 0$. Montrer que la famille $\{x, f(x), f^2(x)\}$ est une base de E.

Exercice 9

Soient E un \mathbb{R} -ev de dimension finie et $f \in \mathcal{L}(E)$. Montrer que

$$(\operatorname{Im}(f) = \operatorname{Im}(f^2)) \iff (E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f))$$

Info-Spé 12/13

Еріта

Algèbre linéaire I

Exercice 10

Soit
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ -2 & 1 & -1 \end{pmatrix}$$
. Déterminer la matrice A^{-1} .

Exercice 11

Soient
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Déterminer (sous forme factorisée) pour tout $\lambda \in \mathbb{R}$, $\det(A - \lambda I)$ et $\det(B - \lambda I)$

Exercice 12

Soient $(a_1, ..., a_n) \in \mathbb{R}^n$ et $(a, b) \in \mathbb{R}^2$. Déterminer le déterminant (sous forme factorisée) des matrices A et B suivantes :

$$A = \begin{pmatrix} a_1 & a_1 & a_1 & \dots & a_1 \\ a_1 & a_2 & a_2 & \dots & a_2 \\ a_1 & a_2 & a_3 & \dots & a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_n \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} a & b & \dots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & b \\ b & \dots & \dots & b & a \end{pmatrix}$$

Exercice 13

Soit
$$(x_1, x_2, ..., x_n) \in \mathbb{R}^n$$
. Déterminer sous forme factorisée $V(x_1, x_2, ..., x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & ... & x_1^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & ... & x_n^{n-1} \end{vmatrix}$

Exercice 14

Soit $f \in \mathcal{L}(\mathbb{R}_n[X])$ définie par f(P) = P'.

En ayant vérifié que f est linéaire, écrire la matrice de f relativement à la base canonique de $\mathbb{R}_n[X]$.

Exercice 15

Soient
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ et } f : \begin{cases} \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}) \\ X \mapsto AX - XA \end{cases}$$

- 1. Montrer que $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$.
- 2. f est-elle bijective?
- 3. Déterminer la matrice de f dans la base canonique $\mathscr{B} = (e_{11}, e_{12}, e_{21}, e_{22})$ de $\mathscr{M}_2(\mathbb{R})$.