# 6.1 로지스틱 회귀분석

로지스틱(Logistic) 회귀분석은 회귀분석이라는 명칭과 달리 회귀분석 문제와 분류문제 모두에 사용할 수 있다. 로지스틱 회귀분석 모형에서는 종속변수가 이항분포를 따르고 그 모수  $\mu$ 가 독립변수 x에 의존한다고 가정한다.

$$p(y \mid x) = Bin(y; \mu(x), N)$$

위 식에서 보듯이 로지스틱 함수는 y의 값이 특정한 구간내의 값 $(0 \sim N)$ 만 가질 수 있기 때문에 종속변수가 이러한 특성을 가진 경우에 회귀분석 방법으로 쓸 수 있다.

또는 이항 분포의 특별한 경우(N=1)로 y가 베르누이 확률분포인 경우도 있을 수 있다. 여기에서는 베르누이 확률분포를 따르는 로지스틱 회귀분석만 고려하기로 한다.

$$p(y \mid x) = \text{Bern}(y; \mu(x))$$

종속변수 y가 0또는 1인 분류 예측 문제를 풀 때는 x 값을 이용하여  $\mu(x)$ 를 예측한 후 다음 기준에 따라  $\hat{y}$ 값을 출력한다.

$$\hat{y} = \begin{cases} 1 & \text{if } \mu(x) \ge 0.5\\ 0 & \text{if } \mu(x) < 0.5 \end{cases}$$

회귀분석을 할 때는  $\hat{y}$ 으로 y = 1이 될 확률값  $\mu(x)$ 를 직접 사용한다.

$$\hat{y} = \mu(x)$$

# 시그모이드함수

로지스틱 회귀모형에서는 베르누이 확률분포의 모수  $\mu$ 가 x의 함수라고 가정한다.  $\mu(x)$ 는 x에 대한 함수를 0부터 1사이의 값만 나올 수 있도록 **시그모이드함수(sigmoid function)**라는 함수를 사용하여 변형한 것을 사용한다.

시그모이드함수는 종속변수의 모든 실수 값에 대해

• 유한한 구간 (*a*, *b*) 사이의 한정된(bounded) 값을 가지고

• 항상 양의 기울기를 가지는 단조증가하는

$$a > b \rightarrow f(a) > f(b)$$

함수의 집합을 말한다. 실제로는 다음과 같은 함수들이 주로 사용된다.

• 로지스틱(Logistic)함수

$$logitstic(z) = \sigma(z) = \frac{1}{1 + \exp(-z)}$$

• 하이퍼볼릭탄젠트(Hyperbolic tangent)함수

$$\tanh(z) = \frac{\sinh z}{\cosh z} = \frac{(e^z - e^{-z})/2}{(e^z + e^{-z})/2} = 2\sigma(2z) - 1$$

• 오차(Error)함수

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$$

하이퍼볼릭탄젠트함수는 로지스틱함수를 위아래 방향으로 2배 늘리고 좌우 방향으로 1/2로 축소한 것과 같다.

#### In [1]:

```
xx = np.linspace(-5, 5, 1000)
plt.plot(xx, 1/(1+np.exp(-xx)), 'r-', label="로지스틱함수")
plt.plot(xx, sp.special.erf(0.5*np.sqrt(np.pi)*xx), 'g:', label="오차함수")
plt.plot(xx, np.tanh(xx), 'b--', label="하이퍼볼릭탄젠트함수")
plt.ylim([-1.1, 1.1])
plt.legend(loc=2)
plt.xlabel("x")
plt.show()
```



# 로지스틱함수

로지스틱함수는 음의 무한대부터 양의 무한대까지의 실수값을 0부터 1사이의 실수값으로 1 대 1 대응시키는 시 그모이드함수다. 보통 시그모이드함수라고 하면 로지스틱함수를 가리킨다. 로지스틱함수는 다음 과정을 통해 정의되었다.

베르누이 시도에서 1이 나올 확률  $\mu$ 와 0이 나올 확률  $1-\mu$ 의 비율(ratio)을 승산비(odds ratio)라고 한다.

odds ratio = 
$$\frac{\mu}{1 - \mu}$$

0부터 1사이의 값만 가지는  $\mu$ 를 승산비로 변환하면 0부터 양의 무한대까지의 값을 가질 수 있다.

승산비를 로그 변환한 것이 로지트함수(Logit function)다.

$$z = \text{logit}(\text{odds ratio}) = \log\left(\frac{\mu}{1-\mu}\right)$$

로지트함수의 값은 로그 변환에 의해 음의 무한대 $(-\infty)$ 부터 양의 무한대 $(\infty)$ 까지의 값을 가질 수 있다.

로지스틱함수(Logistic function)는 로지트함수의 역함수이다. 즉 음의 무한대(-∞)부터 양의 무한대(∞)까지의 값을 가지는 입력변수를 0부터 1사의 값을 가지는 출력변수로 변환한 것이다.

logitstic(z) = 
$$\mu(z) = \frac{1}{1 + \exp(-z)}$$

# 선형 판별함수

로지스틱함수  $\sigma(z)$ 를 사용하는 경우에는 z값과  $\mu$ 값은 다음과 같은 관계가 있다.

- z = 0일 때  $\mu = 0.5$
- z > 0일 때  $\mu > 0.5 \rightarrow \hat{y} = 1$
- z < 0일 때  $\mu < 0.5 \rightarrow \hat{y} = 0$

즉 z가 분류 모형의 판별함수(decision function)의 역할을 한다. 로지스틱 회귀분석에서는 판별함수 수식으로 선형함수를 사용한다.

$$z = w^T x$$

따라서 판별 경계면도 선형이 된다.

# 로지스틱 회귀분석 모형의 모수 추정

로지스틱 회귀분석 모형의 모수 w는 최대가능도(Maximum Likelihood Estimation, MLE)방법으로 추정할 수 있다.

우선 베르누이분포의 확률밀도함수는 다음과 같다.

$$p(y \mid x) = \text{Bern}(y; \mu(x; w)) = \mu(x; w)^{y} (1 - \mu(x; w))^{1-y}$$

 $\mu \vdash w^T x$ 에 로지스틱함수를 적용한 값이다.

$$\mu(x; w) = \frac{1}{1 + \exp(-w^T x)}$$

이 식을 대입하면 조건부 확률은 다음과 같다.

$$p(y \mid x) = \left(\frac{1}{1 + \exp(-w^T x)}\right)^y \left(1 - \frac{1}{1 + \exp(-w^T x)}\right)^{1-y}$$
$$= \left(\frac{1}{1 + \exp(-w^T x)}\right)^y \left(\frac{\exp(-w^T x)}{1 + \exp(-w^T x)}\right)^{1-y}$$

데이터 표본이  $\{x_i, y_i\}_{1:N}$ 로 여러 개 있는 경우 전체 데이터의 로그가능도 LL를 구하면 다음과 같다.

베르누이 확률분포의 정의에서

$$\begin{split} LL &= \log \prod_{i=1}^{N} \mu(x_i; w)^{y_i} (1 - \mu(x_i; w))^{1 - y_i} \\ &= \sum_{i=1}^{N} \left( y_i \log \mu(x_i; w) + (1 - y_i) \log (1 - \mu(x_i; w)) \right) \\ &= \sum_{i=1}^{N} \left( y_i \log \left( \frac{1}{1 + \exp(-w^T x_i)} \right) + (1 - y_i) \log \left( \frac{\exp(-w^T x_i)}{1 + \exp(-w^T x_i)} \right) \right) \end{split}$$

가 된다.

로그가능도를 최대화하는 w 값을 구하기 위해 모수로 미분한다.

$$\frac{\partial LL}{\partial w} = \sum_{i=1}^{N} \frac{\partial LL}{\partial \mu(x_i; w)} \frac{\partial \mu(x_i; w)}{\partial w}$$

LL을  $\mu$ 로 미분하면

$$\frac{\partial LL}{\partial \mu(x_i; w)} = \left( y_i \frac{1}{\mu(x_i; w)} - (1 - y_i) \frac{1}{1 - \mu(x_i; w)} \right)$$

μ를 w로 미분하면

$$\frac{\partial \mu(x_i; w)}{\partial w} = \frac{\partial}{\partial w} \frac{1}{1 + \exp(-w^T x_i)} = \frac{\exp(-w^T x_i)}{(1 + \exp(-w^T x_i))^2} x_i = \mu(x_i; w)(1 - \mu(x_i; w))x_i$$

두 식을 곱하면 그레디언트 벡터의 수식을 구할 수 있다.

$$\frac{\partial LL}{\partial w} = \sum_{i=1}^{N} \left( y_i \frac{1}{\mu(x_i; w)} - (1 - y_i) \frac{1}{1 - \mu(x_i; w)} \right) \mu(x_i; w) (1 - \mu(x_i; w)) x_i$$

$$= \sum_{i=1}^{N} \left( y_i (1 - \mu(x_i; w)) - (1 - y_i) \mu(x_i; w) \right) x_i$$

$$= \sum_{i=1}^{N} \left( y_i - \mu(x_i; w) \right) x_i$$

그레디언트 벡터가 영벡터가 되는 모수의 값이 로그가능도를 최대화하는 값이다. 하지만 그레디언트 벡터 수식이 w에 대한 비선형 함수이므로 선형 모형과 같이 간단하게 그레디언트가 0이 되는 모수 w 값에 대한 수식을 구할 수 없으며 수치적인 최적화 방법(numerical optimization)을 통해 반복적으로 최적 모수 w의 값을 구해야 한다.

# 수치적 최적화

로그가능도함수 LL을 최대화하는 것은 다음 목적함수를 최소화하는 것과 같다.

$$J = -LL$$

최대경사도(Steepest Gradient Descent)방법을 사용하자.

그레디언트 벡터는

$$g_k = \frac{d}{dw}(-LL)$$

이고, 이 방향으로 스텝사이즈  $\eta_k$ 만큼 이동한다.

$$w_{k+1} = w_k - \eta_k g_k$$
  
=  $w_k + \eta_k \sum_{i=1}^{N} (y_i - \mu(x_i; w_k)) x_i$ 

# StatsModels 패키지의 로지스틱 회귀

다음과 같은 1차원 독립변수를 가지는 분류문제를 풀어보자.

#### In [2]:



StatsModels 패키지는 베르누이 분포를 따르는 로지스틱 회귀 모형 Logit 를 제공한다. 사용방법은 OLS 클래스 사용법과 동일하다. 종속변수와 독립변수 데이터를 넣어 모형을 만들고 fit 메서드로 학습을 시킨다. fit 메서드의 disp=0 인수는 최적화 과정에서 문자열 메세지를 나타내지 않는 역할을 한다.

#### In [3]:

```
X = sm.add_constant(X0)
logit_mod = sm.Logit(y, X)
logit_res = logit_mod.fit(disp=0)
print(logit_res.summary())
```

#### Logit Regression Results

| Dep. Variable: Model: Method: Date: Time: converged: Covariance Type |                  | y<br>Logit<br>MLE<br>t, 06 Jun 2020<br>10:01:05<br>True<br>nonrobust | Df Re Df Mc Pseuc Log-L LL-Nu | do R-squ.:<br>ikelihood: |                 | 100<br>98<br>1<br>0.7679<br>-16.084<br>-69.295<br>5.963e-25 |
|----------------------------------------------------------------------|------------------|----------------------------------------------------------------------|-------------------------------|--------------------------|-----------------|-------------------------------------------------------------|
|                                                                      | coef             | std err                                                              | <br>Z                         | P> z                     | [0.025          | 0.975]                                                      |
| const<br>x1                                                          | 0.2515<br>4.2382 | 0.477<br>0.902                                                       | 0.527<br>4.699                | 0.598                    | -0.683<br>2.470 | 1.186<br>6.006                                              |

결과 객체에서 summary 메서드를 사용하여 리포트를 출력할 수 있다. 결과 리포트에서 판별함수의 수식이 다음과 같다는 것을 알 수 있다.

$$\mu(x) = \sigma(4.2382x + 0.2515)$$

따라서 z값의 부호를 나누는 기준값은 4.2382x + 0.2515 = 0.5가 되는 x값 즉, (0.5 - 0.2515)/4.2382다.

predict 메서드를 사용하면  $\mu(x)$ 값을 출력한다.

유의확률을 감안하면 상수항의 값은 0과 마찬가지이므로  $\mu(x)$ 가 다음과 같다고 볼 수도 있다.

$$\mu(x) = \sigma(4.2382x)$$

이렇게 생각하면 z값의 부호를 나누는 기준값은 실질적으로는 0.5/4.2382 = 0.118이다.

# In [4]:



# 판별함수

Logit 모형의 결과 객체에는 fittedvalues 라는 속성으로 판별함수  $z=w^Tx$  값이 들어가 있다. 이 값을 이용하여 분류문제를 풀 수도 있다.

#### In [5]:

```
plt.scatter(X0, y, c=y, s=100, edgecolor="k", lw=2, label="데이터") plt.plot(X0, logit_res.fittedvalues * 0.1, label="판별함수값") plt.legend() plt.show()
```



# 로지스틱 회귀 성능 측정

로지스틱 회귀 성능은 맥파든 의사결정계수(McFadden pseudo R square)값으로 측정한다.

$$R_{\text{pseudo}}^2 = 1 - \frac{G^2}{G_0^2}$$

 $G^2$ 는 이탈도(deviance)라고 하는 양으로 다음과 같이 정의된다.

$$G^{2} = 2\sum_{i=1}^{N} \left( y_{i} \log \frac{y_{i}}{\hat{y}_{i}} + (1 - y_{i}) \log \frac{1 - y_{i}}{1 - \hat{y}_{i}} \right)$$

여기에서  $\hat{v}$ 는 y = 1일 확률  $\mu$ 를 뜻한다.

$$\hat{y}_i = \mu(x_i)$$

이탈도는 모형이 100% 정확한 경우에는 0이 되고 모형의 성능이 나빠질수록 값이 커진다.

또한 이탈도는 로그 가능도에 음수를 취한 값과 같다.

$$G^2 = -LL$$

 $G^2$ 는 현재 이탈도이고  $G_0^2$ 는 귀무모형(null model)으로 측정한 이탈도다.

귀무모형이란 모든 x가 y를 예측하는데 전혀 영향을 미치지 않는 모형을 말한다. 즉, 무조건부 확률 p(y)에 따라 x에 상관없이 동일하게 y를 예측하는 모형을 말한다. 결국 우리가 만들 수 있는 가장 성능이 나쁜 모형이 된다.

$$\mu_{\text{null}} = \frac{\text{number of } Y = 1 \text{ data}}{\text{number of all data}}$$

따라서 맥파든 의사결정계수는 가장 성능이 좋을 때는 1이 되고 가장 성능이 나쁠 때는 0이 된다.

scikit-learn 패키지의 metric 서브패키지에는 로그 손실을 계산하는 log\_loss 함수가 있다. normalize=False로 놓으면 이탈도와 같은 값을 구한다

위 예제에서 최적 모형의 로그 손실은 약 16.08로 계산된다.

## In [6]:

```
from sklearn.metrics import log_loss

y_hat = logit_res.predict(X)
log_loss(y, y_hat, normalize=False)
```

#### Out[6]:

16.084355200413036

귀무 모형의 모수값을 구하면 0.51이고 이 값으로 로그 손실을 계산하면 약 69이다.

#### In [7]:

```
mu_null = np.sum(y) / len(y)
mu_null
```

#### Out [7]:

0.51

#### In [8]:

```
y_null = np.ones_like(y) * mu_null
log_loss(y, y_null, normalize=False)
```

#### Out[8]:

69.29471672244784

두 값을 이용하여 맥파든 의사 결정계수 값을 계산할 수 있다.

#### In [9]:

```
1 - (log_loss(y, y_hat) / log_loss(y, y_null))
```

#### Out[9]:

0.7678848264170398

# Scikit-Learn 패키지의 로지스틱 회귀

Scikit-Learn 패키지는 로지스틱 회귀 모형 LogisticRegression 를 제공한다.

#### In [10]:



#### 연습 문제 1

- 1. 붓꽃 분류문제에서 클래스가 세토사와 베르시칼라 데이터만 사용하고 (setosa=0, versicolor=1) 독립변수로 는 꽃받침 길이(Sepal Length)와 상수항만 사용하여 StatsModels 패키지의 로지스틱 회귀모형으로 결과를 예측하고 보고서를 출력한다. 이 보고서에서 어떤 값이 세토사와 베르시칼라를 구분하는 기준값(threshold) 으로 사용되고 있는가?
- 2. 위 결과를 분류결과표(confusion matrix)와 분류결과보고서(classification report)로 나타내라.
- 3. 이 모형에 대해 ROC커브를 그리고 AUC를 구한다. 이 때 Scikit-Learn의 LogisticRegression 을 사용하지 않고 위에서 StatsModels로 구한 모형을 사용한다.

#### In [11]:

```
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
dfX = pd.DataFrame(X, columns=iris.feature_names)
dfy = pd.DataFrame(y, columns=["species"])
df = pd.concat([dfX, dfy], axis=1)
df = df[["sepal length (cm)", "species"]]
df = df[df.species.isin([0, 1])]
df = df.rename(columns={"sepal length (cm)": "sepal_length" })
import statsmodels.api as sm
model = sm.Logit.from_formula("species ~ sepal_length", data=df)
result = model.fit()
print(result.summary())
```

Optimization terminated successfully.

Current function value: 0.321056

Iterations 8

Logit Regression Results

Dep. Variable: No. Observations: 100 species Model: Logit Of Residuals: 98 Method: MLE Df Model: 1 Date: Sat, 06 Jun 2020 Pseudo R-squ.: 0.5368 Time: 10:01:22 -32.106 Log-Likelihood: converged: True LL-Null: -69.3156.320e-18 Covariance Type: LLR p-value: nonrobust

|              | coef     | std err | Z      | P> z  | [0.025  | 0.975]  |
|--------------|----------|---------|--------|-------|---------|---------|
| Intercept    | -27.8315 | 5.434   | -5.122 | 0.000 | -38.481 | -17.182 |
| sepal_length | 5.1403   | 1.007   | 5.107  |       | 3.168   | 7.113   |

#### In [1]:

```
# 기준값
(0.5 + 27.8315) / 5.1403
```

## Out[1]:

5.511643289302181

#### In [12]:

```
y_pred = result.predict(df.sepal_length) >= 0.5
from sklearn.metrics import confusion_matrix
confusion_matrix(df.species, y_pred)
```

#### Out [12]:

```
array([[45, 5],
      [ 6, 44]])
```

#### In [13]:

```
from sklearn.metrics import classification_report

print(classification_report(df.species, y_pred))
```

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.88<br>0.90 | 0.90<br>0.88 | 0.89<br>0.89         | 50<br>50          |
| accuracy<br>macro avg<br>weighted avg | 0.89<br>0.89 | 0.89<br>0.89 | 0.89<br>0.89<br>0.89 | 100<br>100<br>100 |

## In [14]:

```
from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(df.species, result.predict(df.sepal_length))
plt.plot(fpr, tpr)
plt.show()
```



## In [15]:

```
from sklearn.metrics import auc
auc(fpr, tpr)
```

## Out[15]:

0.9326

# 로지스틱 회귀를 사용한 이진 분류의 예

다음 데이터는 미국 의대생의 입학관련 데이터이다. 데이터의 의미는 다음과 같다.

• Acceptance: 0이면 불합격, 1이면 합격

• BCPM: Bio/Chem/Physics/Math 과목의 학점 평균

• GPA: 전체과목 학점 평균

VR : MCAT Verbal reasoning 과목 점수
 PS : MCAT Physical sciences 과목 점수
 WS : MCAT Writing sample 과목 점수

• BS: MCAT Biological sciences 과목 점수

MCAT : MCAT 촘점Apps : 의대 지원 횟수

#### In [16]:

```
data_med = sm.datasets.get_rdataset("MedGPA", package="Stat2Data")
df_med = data_med.data
df_med.tail()
```

## Out[16]:

|    | Accept | Acceptance | Sex | BCPM | GPA  | VR | PS | ws  | BS | MCAT | Apps |
|----|--------|------------|-----|------|------|----|----|-----|----|------|------|
| 50 | D      | 0          | М   | 2.41 | 2.72 | 8  | 8  | 8.0 | 8  | 32   | 7    |
| 51 | D      | 0          | М   | 3.51 | 3.56 | 11 | 8  | 6.0 | 9  | 34   | 6    |
| 52 | Α      | 1          | F   | 3.43 | 3.48 | 7  | 10 | 7.0 | 10 | 34   | 14   |
| 53 | D      | 0          | М   | 2.61 | 2.80 | 7  | 5  | NaN | 6  | 18   | 6    |
| 54 | D      | 0          | М   | 3.36 | 3.44 | 11 | 11 | 8.0 | 9  | 39   | 1    |

일단 학점(GPA)과 합격여부의 관계를 살펴보자.

# In [17]:



로지스틱 회귀분석을 실시한다. MCAT = VR + PS + WS + BS 이므로 이 MCAT 은 독립 변수에서 제외해야 한다.

# In [18]:

```
model_med = sm.Logit.from_formula("Acceptance ~ Sex + BCPM + GPA + VR + PS + WS + BS + Apps", df_med
result_med = model_med.fit()
print(result_med.summary())
```

Optimization terminated successfully.

Current function value: 0.280736

Iterations 9

Logit Regression Results

| Dep. Variate Model: Method: Date: Time: converged: Covariance        |                                                                            | Sat,                                       | 06 Jun<br>10:0                                                                 | ogit<br>MLE<br>2020<br>1:33<br>True | Df Re<br>Df Mo<br>Pseud<br>Log-L<br>LL-Nu                            | do R-squ.:<br>_ikelihood:                                                     |                                                                                        | 54<br>45<br>8<br>0.5913<br>-15.160<br>-37.096<br>6.014e-07                        |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ========                                                             | CO                                                                         | ef                                         | std err                                                                        | =====                               | =====<br>Z                                                           | P> z                                                                          | [0.025                                                                                 | 0.975]                                                                            |
| Intercept<br>Sex[T.M]<br>BCPM<br>GPA<br>VR<br>PS<br>WS<br>BS<br>Apps | -46.64<br>-2.28<br>-6.16<br>12.39<br>0.07<br>1.16<br>-0.77<br>1.91<br>0.05 | 335<br>333<br>73<br>790<br>573<br>84<br>84 | 15.600<br>1.429<br>6.963<br>8.611<br>0.311<br>0.539<br>0.396<br>0.682<br>0.147 | -1<br>-0<br>1<br>0<br>2<br>-1<br>2  | .990<br>.597<br>.885<br>.440<br>.254<br>.164<br>.968<br>.814<br>.348 | 0.003<br>0.110<br>0.376<br>0.150<br>0.799<br>0.030<br>0.049<br>0.005<br>0.728 | -77.216<br>-5.085<br>-19.811<br>-4.479<br>-0.530<br>0.110<br>-1.554<br>0.582<br>-0.237 | -16.067<br>0.518<br>7.484<br>29.274<br>0.688<br>2.225<br>-0.003<br>3.255<br>0.340 |

예측 결과와 실제 결과를 비교하면 다음과 같다.

#### In [19]:

```
df_med["Prediction"] = result_med.predict(df_med)
sns.boxplot(x="Acceptance", y="Prediction", data=df_med)
plt.show()
```



위 분석 결과를 토대로 유의하지 않은 변수들을 제외하고 PS와 BS 점수만을 이용하여 다시 회귀분석하면 다음과 같다.

#### In [20]:

```
model_med = sm.Logit.from_formula("Acceptance ~ PS + BS", df_med)
result_med = model_med.fit()
print(result_med.summary())
```

Optimization terminated successfully.

Current function value: 0.460609

Iterations 7

#### Logit Regression Results

Dep. Variable: No. Observations: 55 Acceptance Model: Of Residuals: 52 Logit Method: MLE Df Model: Date: Sat, 06 Jun 2020 Pseudo R-squ.: 0.3315 10:01:36 Time: Log-Likelihood: -25.333converged: True LL-Null: -37.8963.503e-06 Covariance Type: nonrobust LLR p-value: std err P>|z|[0.025]0.975] coef Ζ -15.5427-24.723-6.362Intercept 4.684 -3.3180.001 PS 0.4798 1.518 0.129 -0.1401.099 0.316 BS 1.1464 0.387 2.959 0.003 0.387 1.906

## 연습 문제 2

- 1. 붓꽃 분류문제에서 클래스가 베르시칼라(versicolor)와 버지니카(virginica) 데이터만 사용하여(versicolor=1, virginica=2) 로지스틱 회귀모형으로 결과를 예측하고 보고서를 출력한다. 독립변수는 모두 사용한다. 이 보고서에서 버지니카와 베르시칼라를 구분하는 경계면의 방정식을 찾아라.
- 2. 위 결과를 분류결과표와 분류결과보고서로 나타내라.
- 3. 이 모형에 대해 ROC커브를 그리고 AUC를 구하라. 이 때 Scikit-Learn의 LogisticRegression 을 사용하지 않고 위에서 StatsModels로 구한 모형을 사용한다.

#### In [21]:

```
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
dfX = pd.DataFrame(X, columns=iris.feature_names)
dfy = pd.DataFrame(y, columns=["species"])
df = pd.concat([dfX, dfy], axis=1)
df = df[df.species.isin([1, 2])]
df["species"] -= 1
df = df.rename(
    columns={
        "sepal length (cm)": "sepal_length",
        "sepal width (cm)": "sepal_width",
        "petal length (cm)": "petal_length",
        "petal width (cm)": "petal_width",
    }
)
import statsmodels.api as sm
model = sm.Logit.from_formula(
    "species ~ sepal_length + sepal_width + petal_length + petal_width",
    data=df)
result = model.fit()
print(result.summary())
```

Optimization terminated successfully.

Current function value: 0.059493

Iterations 12

Logit Regression Results

| Dep. Variable: Model: Method: Date: Time: converged: Covariance Type | del:<br>thod:<br>te: Sat, C<br>me:                  |                                            | Df Resi<br>Df Mode<br>Pseudo                 | l:<br>R-squ.;<br>elihood;<br>:            | 100<br>95<br>4<br>0.9142<br>-5.9493<br>-69.315<br>1.947e-26 |                                             |
|----------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------|---------------------------------------------|
|                                                                      | coef                                                | std err                                    | Z                                            | P> z                                      | [0.025                                                      | 0.975]                                      |
| Intercept sepal_length sepal_width petal_length petal_width          | -42.6378<br>-2.4652<br>-6.6809<br>9.4294<br>18.2861 | 25.708<br>2.394<br>4.480<br>4.737<br>9.743 | -1.659<br>-1.030<br>-1.491<br>1.990<br>1.877 | 0.097<br>0.303<br>0.136<br>0.047<br>0.061 | -93.024<br>-7.158<br>-15.461<br>0.145<br>-0.809             | 7.748<br>2.228<br>2.099<br>18.714<br>37.381 |

Possibly complete quasi-separation: A fraction 0.60 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

## In [22]:

```
y_pred = result.predict(df) >= 0.5
from sklearn.metrics import confusion_matrix
confusion_matrix(df.species, y_pred)
```

## Out[22]:

```
array([[49, 1],
[ 1, 49]])
```

# In [23]:

```
from sklearn.metrics import classification_report
print(classification_report(df.species, y_pred))
```

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0                                     | 0.98<br>0.98 | 0.98<br>0.98 | 0.98<br>0.98         | 50<br>50          |
| accuracy<br>macro avg<br>weighted avg | 0.98<br>0.98 | 0.98<br>0.98 | 0.98<br>0.98<br>0.98 | 100<br>100<br>100 |

## In [24]:

```
from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(df.species, result.predict(df))
plt.plot(fpr, tpr)
plt.show()
```



#### In [25]:

```
from sklearn.metrics import auc
auc(fpr, tpr)
```

#### Out [25]:

0.997200000000001

# 로지스틱 회귀를 사용한 회귀분석

로지스틱 회귀는 분류문제뿐만 아니라 종속변수 y가 0부터 1까지 막혀있는 회귀분석 문제에도 사용할 수 있다. 이때는 다음처럼  $\mu$  값을 종속변수 y의 예측값으로 사용한다.

$$\hat{y} = \mu(x)$$

만약 실제 y의 범위가 0부터 1이 아니면 스케일링을 통해 바꿔야 한다.

#### 예제

다음 데이터는 1974년도에 "여성은 가정을 보살피고 국가를 운영하는 일은 남자에게 맡겨두어야 한다."라는 주장에 대한 찬성, 반대 입장을 조사한 결과이다. 각 열은 다음을 뜻한다.

• education: 교육 기간

• sex: 성별

agree : 찬성 인원disagree : 반대 인원ratio : 찬성 비율

#### In [26]:

```
data_wrole = sm.datasets.get_rdataset("womensrole", package="HSAUR")
df_wrole = data_wrole.data
df_wrole["ratio"] = df_wrole.agree / (df_wrole.agree + df_wrole.disagree)
df_wrole.tail()
```

#### Out [26]:

|    | education | sex    | agree | disagree | ratio    |
|----|-----------|--------|-------|----------|----------|
| 37 | 16        | Female | 13    | 115      | 0.101562 |
| 38 | 17        | Female | 3     | 28       | 0.096774 |
| 39 | 18        | Female | 0     | 21       | 0.000000 |
| 40 | 19        | Female | 1     | 2        | 0.333333 |
| 41 | 20        | Female | 2     | 4        | 0.333333 |

교육을 많이 받은 사람일수록 찬성 비율이 감소하는 것을 볼 수 있다.

## In [27]:

```
sns.scatterplot(x="education", y="ratio", style="sex", data=df_wrole)
plt.grid(True)
plt.show()
```



## 분석 결과는 다음과 같다.

## In [28]:

```
model_wrole = sm.Logit.from_formula("ratio ~ education + sex", df_wrole)
result_wrole = model_wrole.fit()
print(result_wrole.summary())
```

Optimization terminated successfully.

Current function value: 0.448292

Iterations 6

Logit Regression Results

| Dep. Variable Model: Method: Date: Time: converged: Covariance Ty | Sat,                         | ratio<br>Logit<br>MLE<br>06 Jun 2020<br>10:01:57<br>True<br>nonrobust | Df Re Df Mo Pseud Log-L L-Nu | No. Observations: Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value: |                           | 41<br>38<br>2<br>0.3435<br>-18.380<br>-27.997<br>6.660e-05 |
|-------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|
|                                                                   | coef                         | std err                                                               | Z                            | P> z                                                                                           | [0.025                    | 0.975]                                                     |
| Intercept<br>sex[T.Male]<br>education                             | 2.0442<br>-0.1968<br>-0.2127 | 0.889<br>0.736<br>0.071                                               | 2.299<br>-0.267<br>-2.987    | 0.022<br>0.789<br>0.003                                                                        | 0.302<br>-1.640<br>-0.352 | 3.787<br>1.247<br>-0.073                                   |

# 성별은 유의하지 않다는 것을 알게되었으므로 성별을 제외하고 다시 모형을 구한다.

## In [29]:

```
model_wrole2 = sm.Logit.from_formula("ratio ~ education", df_wrole)
result_wrole2 = model_wrole2.fit()
print(result_wrole2.summary())
```

Optimization terminated successfully.

Current function value: 0.449186

Iterations 6

Logit Regression Results

| Dep. Variab<br>Model:<br>Method:<br>Date:<br>Time:<br>converged:<br>Covariance |                   | Sat, 06 Jun | Logit [<br>MLE [<br>2020 F<br>)1:58 L<br>True L | No. Observations: Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value: |                |                 | 41<br>39<br>1<br>0.3422<br>-18.417<br>-27.997<br>1.202e-05 |
|--------------------------------------------------------------------------------|-------------------|-------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|----------------|-----------------|------------------------------------------------------------|
|                                                                                | coef              | std err     |                                                 | z f                                                                                            | P> z           | [0.025          | 0.975]                                                     |
| Intercept<br>education                                                         | 1.9345<br>-0.2117 |             | 2.4<br>-2.9                                     |                                                                                                | ).013<br>).003 | 0.405<br>-0.351 | 3.464<br>-0.073                                            |

#### In [30]:

```
sns.scatterplot(x="education", y="ratio", data=df_wrole)
xx = np.linspace(0, 20, 100)
df_wrole_p = pd.DataFrame({"education": xx})
plt.plot(xx, result_wrole2.predict(df_wrole_p), "r-", lw=4, label="예측")
plt.legend()
plt.show()
```



## In [31]:

## # 연습문제 1 답

# In [32]:

```
from sklearn.datasets import load_iris

iris = load_iris()
idx = np.in1d(iris.target, [0, 1])

X0 = iris.data[idx, :1]

X = sm.add_constant(X0)
y = iris.target[idx]
```

#### In [33]:

```
logit_mod = sm.Logit(y, X)
logit_res = logit_mod.fit(disp=0)
print(logit_res.summary())
```

#### Logit Regression Results

| Dep. Variat Model: Method: Date: Time: converged: Covariance |                    | Sat, 06 Jun 1<br>10:0 | ogit Df F<br>MLE Df M<br>2020 Pseu<br>2:05 Log-<br>True LL-N | Observation<br>desiduals:<br>lodel:<br>ldo R-squ.:<br>Likelihood:<br>lull:<br>p-value: | s:               | 100<br>98<br>1<br>0.5368<br>-32.106<br>-69.315<br>6.320e-18 |
|--------------------------------------------------------------|--------------------|-----------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------|
| ========                                                     | coef               | std err               | Z                                                            | P> z                                                                                   | [0.025           | 0.975]                                                      |
| const<br>x1                                                  | -27.8315<br>5.1403 |                       | -5.122<br>5.107                                              | 0.000<br>0.000                                                                         | -38.481<br>3.168 | -17.182<br>7.113                                            |

#### In [34]:

```
logit_res.params
```

#### Out [34]:

```
array([-27.83145099, 5.14033614])
```

#### In [35]:

```
-logit_res.params[0] / logit_res.params[1]
```

#### Out[35]:

5.41432510257189

#### In [36]:

```
y_pred = logit_res.predict(X) >= 0.5
```

## In [37]:

```
from sklearn.metrics import confusion_matrix
confusion_matrix(y, y_pred)
```

## Out[37]:

```
array([[45, 5],
[6, 44]])
```

## In [38]:

```
from sklearn.metrics import classification_report
print(classification_report(y, y_pred))
```

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.88<br>0.90 | 0.90<br>0.88 | 0.89<br>0.89         | 50<br>50          |
| accuracy<br>macro avg<br>weighted avg | 0.89<br>0.89 | 0.89<br>0.89 | 0.89<br>0.89<br>0.89 | 100<br>100<br>100 |

## In [39]:

```
plt.plot(logit_res.fittedvalues, "ro-")
plt.plot(y_pred, "bs-")
```

## Out[39]:

[<matplotlib.lines.Line2D at 0x7f653c0d97f0>]



## In [40]:

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y, logit_res.fittedvalues)
plt.plot(fpr, tpr, 'o-')
plt.show()
```



## In [41]:

# # 연습문제 2 답

## In [42]:

```
from sklearn.datasets import load_iris

iris = load_iris()
idx = np.in1d(iris.target, [1, 2])

X0 = pd.DataFrame(iris.data[idx, :], columns=iris.feature_names[:])
X = sm.add_constant(X0)
y = iris.target[idx] - 1
```

## In [43]:

```
logit_mod = sm.Logit(y, X)
logit_res = logit_mod.fit(disp=1)
print(logit_res.summary())
```

Optimization terminated successfully.

Current function value: 0.059493

Iterations 12

Logit Regression Results

| Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:                   | y<br>Logit<br>MLE<br>Sat, 06 Jun 2020<br>10:02:15<br>True<br>nonrobust |                                            | No. Observations: Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value: |                                           | 100<br>95<br>4<br>0.9142<br>-5.9493<br>-69.315<br>1.947e-26 |                                        |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------------------------------|
| 5]                                                                                      | coef                                                                   | std err                                    | Z                                                                                              | P> z                                      | [0.025                                                      | 0.97                                   |
| - const 8 sepal length (cm) 8 sepal width (cm) 9 petal length (cm) 4 petal width (cm) 1 | -42.6378<br>-2.4652<br>-6.6809<br>9.4294<br>18.2861                    | 25.708<br>2.394<br>4.480<br>4.737<br>9.743 | -1.491                                                                                         | 0.097<br>0.303<br>0.136<br>0.047<br>0.061 | -93.024<br>-7.158<br>-15.461<br>0.145<br>-0.809             | 7.74<br>2.22<br>2.09<br>18.71<br>37.38 |

Possibly complete quasi-separation: A fraction 0.60 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

#### In [44]:

```
y_pred = logit_res.predict(X) >= 0.5
```

# In [45]:

```
from sklearn.metrics import confusion_matrix
confusion_matrix(y, y_pred)
```

## Out [45]:

```
array([[49, 1],
[ 1, 49]])
```

# In [46]:

from sklearn.metrics import classification\_report
print(classification\_report(y, y\_pred))

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0                                     | 0.98<br>0.98 | 0.98<br>0.98 | 0.98<br>0.98         | 50<br>50          |
| accuracy<br>macro avg<br>weighted avg | 0.98<br>0.98 | 0.98<br>0.98 | 0.98<br>0.98<br>0.98 | 100<br>100<br>100 |