Regards 6770 X4

Texas A&M University

Department of Mechanical Engineering • College Station, TX 77843-3123 • 409/845-1251 • FAX 409/845-3081

1..S. "Skip" Fletcher; Ph.D., P.E.

"LSF0290@TAMSIGMA"

409/845-7270

July 30, 1991

Ms. Betty Gaiser/1162 EF Contracting Officer Naval Weapons Support Center-Crane Crane, IN 47552-5011

Subject: Contract N00164-91-C-0043

Dear Ms. Gaiser:

In accordance with our Second Quarterly Report for the above-referenced contract, we are pleased to submit an Interim Report entitled, "A Review of Thermal Enhancement Coatings for Navy Standard Electronic Module Card Rails," (CHTL-6770-3). A copy of the Report has been forwarded to the cognizant Field Contract Administration Office.

Sincerely,

Leroy S. Fletcher

Enclosure

cc:

Mr. Jerry Adams/NWSCC

Mr. Martial W. Davoust/ONR-Austin

Dr. G.P. Peterson/TAMU

Ms. Kathy Ho/TAMRF

Approved for pushe reloced

Distribution Universel

DLIC CONTILL IKESFORM T

A REVIEW OF THERMAL ENHANCEMENT COATINGS FOR NAVY STANDARD ELECTRONIC MODULE CARD RAILS

CHTL-6770-3

Contract No. N00164-91-C-0043

M.A. Lambert and L.S. Fletcher Conduction Heat Transfer Laboratory Department of Mechanical Engineering Texas A&M University College Station, TX 77843-3123

July 26, 1991

1

TABLE OF CONTENTS

1.0	INTROL	DUCTION	1	
2.0	LITERATURE REVIEW			
	2.1	Metallic Coatings	3	
	2.2	Oxide and Anodized Coatings		
3.0	EVALU	ATION OF THEORETICAL PREDICTIONS	19	
4.0	SELECT	TION OF CANDIDATE COATING MATERIALS	24	
	4.1	Coating Materials	24	
	4.2	Coating Requirements for Maximum Contact Conductance	25	
	4.3	Survey of Metallic Elements	25	
	4.4	Coating Thicknesses	30	
5.0	PREDIC	TIONS OF CANDIDATE MATERIAL PERFORMANCE	33	
6.0	CONCL	USIONS	35	
RE	FERENC	ES	36	
AP	PENDICE	ES		
	Α.	Theoretical/Analytical Equations for Predicting Contact Conductance		
	В.	Periodic Chart of the Elements		
	C.	Published Experimental Data for Coatings		

Accesio	on For	1			
DTIC Unann	NTIS CRA&I DIDTIC TAB Unannounced Ustification				
By acq tto: Distribution/					
Availability Codes					
Dist	Avail a Spec				
A-1					

ABSTRACT

The reliability of Navy standard electronic modules may be improved by decreasing overall module temperature. This may be accomplished by enhancing the thermal contact conductance at the interface between the module frame guide rib and the card rail to which the module is clamped. The surface irregularities resulting from the machining or extruding of the components cause the true contact area to be much less than the apparent contact area, increasing the contact resistance. Some metallic coatings, applied to the card rail, would deform easily under load and increase the contact area and associated conductance. This investigation evaluates possible coatings and determines those most suitable for use on card rails based upon predictions using existing theories for thermal contact conductance of coated junctions.

NOMENCLATURE

a	Contact spot factors
b	Radius of heat flux channel
h	Thermal contact conductance
H	Hardness
k	Thermal conductivity
m	Combined RMS absolute asperity slope $(m_1^2 + m_2^2)^{1/2}$
N	Mean number of microcontact spots per unit area
P	Apparent contact pressure
R	Thermal contact resistance
t	Coating thickness
σ	Combined RMS roughness of both surfaces $(\sigma_1^2 + \sigma_2^2)^{1/2}$
ф	Constriction factor

subscripts and superscripts

an	Annular type contacts
av	Average
Α	Per unit nominal area
С	Contact
f	Filler
ff	Filler-to-filler
i	Joint
M	Metal
Mf	Metal-to-Filler
MM	Metal-to-Metal
0	Oxide
00	Oxide-to-Oxide
S	Substrate
t	Total
1,2	Refers to surfaces 1 and 2
•	Refers to coating or coated contact
-	Average

1.0 INTRODUCTION

Pursuant to the objective of enhancing the thermal contact conductance at the interface between the Navy Standard Electronic Module (SEM) formats D and E and their associated card rails, this review presents an evaluation of the most appropriate surface treatments and coating materials for the card rails.

One of the most effective means of controlling contact conductance is through the use of interstitial materials between components. The choice of interstitial material for a particular application is governed by such factors as contact pressure and temperature, environmental conditions, and of course, the degree to which it is desired to decrease or increase heat flow across the junction. Many thermal control materials are available, and Fletcher (1990) suggested that the materials could be divided into the following the major classifications:

- (1) Greases and Oils
- (2) Metallic Foils and Screens
- (3) Composites and Cements
- (4) Surface Treatments

Fletcher (1990) also identified and discussed the principal advantages and disadvantages of each group of thermal control materials. Greases and oils, although easy to apply, may leak from the joint or evaporate with time. Metallic foils are effective for increasing contact conductance. However, improper insertion of the foil into the joint can cause wrinkling of the foil and actually decrease conductance. Also, disassembly and reassembly of junctions with interstitial foils is tedious, and they generally are not suitable for use in repeated contacts. Because of these shortcomings, thermal greases and foil inserts are excluded from further consideration. Composites and cements will also be excluded since they are generally used for thermal insulation.

Surface treatments are generally used to improve contact conductance or provide thermal control. Treatments such as metallic platings, coatings, and vapor deposited films are more permanent in nature than interstitial materials and may be suitable for applications involving repeated and/or sliding contact, depending upon coating properties and clearance. Therefore, surface treatments are the best choice for many applications.

A thorough search of the literature was undertaken to identify those investigations containing data and prediction techniques for the thermal conductance of coated contacts. Three types of coating materials were identified:

- (1) Metallic
- (2) Oxide
- (3) Anodic

In all studies, the coatings were deposited on a metallic substrate.

The results of each investigation are summarized in the literature review, and those materials suitable for thermal enhancement are identified.

2.0 LITERATURE REVIEW

There have been a number of investigations dealing with thermal contact conductance of coated surfaces. Some of these investigations do not provide enough information to permit evaluation. Those that provide complete experimental data are reviewed along with those theoretical/analytical studies which are suitable for coated surfaces.

The review is divided into two sections. The first deals with metallic coatings, the second with oxide and anodic films.

2.1 Metallic Coatings

Fried (1965) and Fried and Kelley (1965) described thermal contact conductance in the following manner. The contact heat transfer phenomenon, exclusive of the contribution of radiation, can be divided into the actual physical contact area determination and the contact heat transfer based on conduction across this actual area with and without an intervening film. The determination of the true contact area is very difficult because existing techniques are not suitable or practical. They stated that general elasticity and plasticity methods cannot be applied in most thermal contact problems for the following reasons:

- (1) The microscopic irregularities do not engage each other uniformly to form contacts but do so in groups as the large scale macroscopic areas engage each other. The possibility of sliding contact cannot be excluded from this consideration.
- (2) The contact intersection is neither purely elastic nor purely plastic but is elastoplastic or elastoviscous in character. Thus, as a load is applied there is a redistribution of pressure among the load-bearing asperities.
- (3) The surface layers, particularly when machined and polished or when exposed and oxidized, have properties different from the underlying material.

They suggested that similar classes of materials having similar types of work history and surface finish should permit the use of statistical or semi-empirical prediction methods. Thus, although the thermal performance of a particular set of interfaces may not be specifically predicted, a method may be developed to estimate the performance of a particular class of contacts provided the surfaces are well defined.

Fried and Kelley (1965) performed contact conductance experiments using 304 stainless steel specimens coated with vapor deposited aluminum and magnesium. One trial employed aluminum coatings on both contacting surfaces, which were 1.5 and 1.9 μm (59 and 75 μin.) in thickness. The surface roughnesses were 0.6 and 1.0 μm (24 and 39 μin.). For the other trial involving the magnesium coating, a 2 μm (79 μin.) thick film was applied to one surface only. The roughnesses of the coated and uncoated surfaces were 0.6 and 0.3 μm (24 and 12 μin.), respectively. Contact pressures ranged from approximately 0.4 to 8 MPa (58 to 1160 psi). Both interstitial materials enhanced the contact conductance over that of bare joints by as much as an order of magnitude at high contact pressures. For the aluminum-coated surfaces, the values of contact conductance obtained for descending loads were less than those for ascending loads.

The basic conclusions of the investigation applicable to coated contacts are:

- (1) There appears to be no significant effect of trapped or adsorbed gases on contact heat transfer.
- (2) Coarsely finished surfaces appear to permit more reliable contact heat transfer predictions and provide more reproducible test data. Conversely, very finely finished surfaces (such as optically polished surfaces) result in the least reproducibility and predictability.
- (3) The presence of soft metal platings substantially improves joint conductance.
- (4) Statistical prediction methods appear to hold promise for the thermal performance of inexactly defined surfaces.

Mal'kov and Dobashin (1969) investigated the resistance of Kh18N9T stainless steel specimens with electroplated coatings of silver, nickel, and copper. All coatings were 25 μm

(0.001 in.) in thickness. Surface roughnesses varied from 0.85 to 1.9 μ m (33 to 75 μ in.), and deviations from true flatness ranged from 5 to 40 μ m (0.0002 to 0.0016 in.) Apparent contact pressures ranged from 0.48 to 5.6 MPa (70 to 810 psi), and testing was performed in a vacuum. The test temperature range was 250 to 550°C (482 to 1022°F).

They found that the microgeometry of the coating surface is determined to a large extent by the microgeometry of the underlying metal surface. Although the thickness of the coatings applied in this set of experiments was 12-15 times the height of the asperities, the surface characteristics of the coatings remained practically unchanged from those of the substrate for the case of the silver coating. The surfaces of the copper and nickel coatings were somewhat rougher and smoother, respectively, then their underlying stainless steel surface.

Mal'kov and Dobashin (1969) noted that for the given pressure range, the thermal contact resistances of the coated joints were reduced by factors of 2 to 10 from the value for the uncoated contact. The resistance of specimens that were lapped after being coated became negligibly small with increasing contact pressure. Increases in surface roughness and waviness resulted in increased resistance; however, the contact resistance was less affected by pressure for increasing waviness. Coated or uncoated lapped surfaces had lower resistance than unlapped surfaces, which they attributed to the decreased roughness and waviness. The coatings became decreasingly effective with increasing waviness.

Mikic and Carnasciali (1969) developed an analysis for the thermal contact resistance of an elemental heat channel (single contact). They argued that the analysis for an elemental heat channel can be used for evaluation of contact resistance for multiple contacts between nominally flat, rough surfaces or directly applied to calculation of macroscopic constriction resistance for wavy, smooth surfaces.

They also proposed that the thermal contact resistance is inversely proportional to the thermal conductivity of the material in the disturbed region, where isothermal surfaces are not parallel to the interface. They also stated that an increase in thermal conductivity in the vicinity of the contact points will reduce the contact resistance for a fixed geometry. They noted that highly conductive platings may significantly reduce the resistance. Platings may also be used to alter the geometry of the contact for a given interfacial load due to the generally different yield strengths of the plating and substrate.

Mikic and Carnasciali (1969) further suggested that the plating of only one contacting surface should have only a limited effect on the resistance since the entire constriction on the unplated side still has to take place in a low-conductivity material. When both surfaces are plated, the combined effects of the change of thermal conductivity in the constriction region and the change in geometry of the contact are fully realized, and the contact conductance is most improved.

Their model for predicting the ratio of the coated-to-uncoated contact conductance uses as input information three ratios: t/a, a/b, k_1/k_2 , where t is the plating thickness, a is the radius of the microcontact of the two plating asperities, b is the radius of the heat flux channel remote from the constriction, and k_1 and k_2 are the thermal conductivities of the plating and substrate materials, respectively. The resistance ratio for the coated-to-uncoated contacts (R/R) is reduced by increases in each of the three previously listed ratios.

An experimental verification of the theory was conducted by Mikic and Carnasciali (1969) using a macroscopic model of a single constriction. The plating and substrate materials were copper and 303 stainless steel, respectively. Cylinders of each material were soldered together to simulate perfect bonding of the plating to the substrate. Then a portion of each copper cylinder was turned to a smaller radius to simulate a constriction. Experiments using ratios of

a/b and t/a from 0.5 to 2.0 ($k_1/k_2=23.0$) yielded reductions in the resistance ratio by a factor of 10 to 20. Their experimental results demonstrated close agreement with the theory. However, no information on surface topography was provided that would allow comparison of their results to those of other investigations.

O'Callaghan et al. (1981) present a theory which predicts the optimum thickness of a metallic coating for maximum thermal contact conductance. It assumes that ideal plastic deformation occurs at the interface of a rough and smooth surface. It further assumes that the material within intersections of the surfaces (i.e., parts of the asperities protruding into the coating) has no effect on the contact conductance. They indicate that if the filler material were fully ductile it would extrude from the asperity intersections into non-contact regions and result in greater values of thermal contact conductance than the theory suggests.

The following assumptions are intrinsic to their theory:

- (1) Surface asperities may be represented as right circular cones.
- (2) All microcontacts regions are annular.
- (3) The filler is of uniform thickness, so its presence does not alter the surface topographies.
- (4) As a result of assumptions (2) and (3), the contact configuration is comprised by base-material-to-base-material circular microcontacts surrounded by concentric annuli of the filler material with additional circular microcontacts of the filler material alone.
- (5) Height distributions of the asperities may be described by Gaussian probability functions.
- (6) The effective thermal conductivity of a filler-to-filler contact, k_{ff}, is given by the harmonic mean of the filler and base metal conductivities.
- (7) The effective thermal conductivity of an annular contact is the arithmetic mean of the base metal and filler conductivities.

They suggested that if the filler is softer than the base materials, the real contact area will be increased for a given pressure compared to the same interface without filler. They also contend that the degree of improvement depends on the ratio of the conductivities of the filler

and base materials; and the optimal filler thickness is expected to be of the order of the surface roughness.

O'Callaghan et al. (1981) conducted experiments using stainless steel (En58b) specimens with ion-deposited tin coatings ranging in thickness from approximately 3 to 106 μ m (0.00012 to 0.0042 in.) Their theoretical prediction exhibited fairly good agreement with the data.

Snaith et al. (1982) identified a general criterion for determining whether a filler material of suitable thickness will decrease contact resistance:

$$H_M k_f / H_f k_M > 1$$

where H_F and H_M are the hardnesses of the filler and substrate, and k_F and k_M are the thermal conductivities of the filler and substrate.

The optimal thickness is expected to occur when filler thickness, t, is on the order of the RMS surface roughness, σ . If $t < \sigma$, resistance is reduced because of the presence of additional solid flow channels through the filler. For $t >> \sigma$, the bulk resistance of the filler tends to exceed the reduction in constriction resistance afforded by the filler. The assumptions made in developing this theory are identical to those of O'Callaghan et al. (1981).

Antonetti and Yovanovich (1985) developed a thermomechanical model for predicting the contact conductance of a nominally flat, rough surface and a metallic-coated smooth surface. A correlation for bare joints, by Yovanovich (1982), was used as the basis for this coated contact theory. The major assumptions made in formulating this theory were:

- (1) Contacting surfaces are clean and in a vacuum. That is, gaseous conduction across the gaps is negligible. Radiation heat transfer is also negligible.
- (2) Contacting surfaces are microscopically rough but macroscopically flat and have Gaussian height distributions.

- (3) When either of the contacting surfaces is coated with a soft metal, the real pressure between the surfaces is equal to that of the "effective" hardness of the layer-substrate combination.
- (4) The real contact area consists of circular, isothermal, microcontact spots which are distributed uniformly over the apparent area. When a coating is present, the contact is also assumed to be a circular spot, but now residing on the top of the coating. In other words, penetration of the harder surfaces into the coating, which undoubtedly occurs to some extent, is ignored to simplify the subsequent thermal analysis.
- (5) Contact between the coating and substrate is perfect. They cited an earlier investigation by Cecco and Yovanovich (1972) which states that the resistance of a perfect joint is about two orders of magnitude smaller than the constriction resistance of the pressed contact.
- (6) A coated surface has the same surface characteristics as the underlying substrate.

Their predicted contact conductance is presented in a dimensionless form that is dependent on parameters which include: surface roughness and asperity slope, apparent pressure, microhardness of the rough surface and effective microhardness of the coated smooth surface, and the effective thermal conductivity of the joint (which involves the thermal conductivities of the two contacting materials and a constriction parameter correction factor for a coated joint). They stated that the effective microhardness of the coated surface must be determined experimentally for the particular coating-substrate combination in question. Experiments were performed on silver coated nickel specimens in contact with bare nickel specimens to verify the contact conductance theory. The applied contact pressure extended over the range of 500 to 3700 kPa (72 to 540 psi), and the mean interface temperature varied from 85 to 206°C (185 to 403°F). Their results for a pressure of 2000 kPa (290 psi) were nominally within 10% of their theoretical predictions of contact conductance. The contact conductance of the coated junction was as much as an order of magnitude greater than that of the bare junction. They also noted that for a given layer thickness, the enhancement increased for smoother surfaces.

Kang et al: (1989) determined the degree to which lead, tin, and indium vapor-deposited coatings could increase the contact conductance of 6101-T6 aluminum interfaces. They used four thicknesses of each coating ranging from a few tenths of a μm to a few μm. All tests were conducted in a vacuum and over a nominal pressure range of 200 kPa (29 psi). Metrological information included average and RMS roughness, peak-to-valley height, average and RMS asperity slope, and average and maximum waviness height. They reported typical specimen surface measurements of approximately 0.7 μm (28 μin.) for RMS roughness, 0.08 for RMS asperity slope and 2.5 μm (98 μin.) for average waviness height. The average interface temperature for all tests was approximately 25°C (77°F).

They performed extensive Vickers microhardness tests of coated and uncoated specimens. Five readings at seven indenter loads were taken for each specimen tested. Coated surfaces exhibited a trend of increasing microhardness with increasing load (i.e., decreasing ratio of coating thickness to indenter penetration depth), which was also noted by Antonetti and Yovanovich (1985). Kang et al. developed analytical expressions for the effective microhardness of the three coating-substrate combinations that were analogous to that given by Antonetti and Yovanovich (1988) for a silver-coated nickel specimen. Kang et al. noted that the microhardness of the bare 6101-T6 aluminum samples increased slightly for greater indenter loads.

Kang et al. (1989) concluded that the optimal coating thicknesses were in the range of 2.0 to 3.0 μm (79 to 118 μin.) for indium, 1.5 to 2.5 μm (59 to 98 μin.) for lead, and 0.2 to 0.5 μm (8 to 20 μin.) for tin. They reported maximum coated-to-uncoated contact conductance ratios of approximately 7, 4, and 1.5 for indium, lead, and tin, respectively, and suggested that the coating hardness appears to be the most significant factor in ranking the effectiveness of a coating. They further noted that the conductance enhancement provided by a coating of a given thickness was greatest at low contact pressures, decreasing significantly with increases in contact pressure.

They reasoned that as pressure was initially increased, the growth in contact area of the coated joints was much greater than for the bare joints due to the softness of the coating. They went on to state that as the pressure was steadily increased, the rapid growth in contact area was reduced by the contact between substrate asperities which had penetrated the coating material. Finally, they concluded that the reduction in the contact area growth rate resulted in a reduction in the thermal contact conductance enhancement. Kang et al. (1989) also observed that the optimal coating thickness decreased as pressure was increased.

Chung et al. (1990) studied the effects on contact conductance of ion-vapor-deposited coatings of aluminum, lead, and indium on 6061-T6 aluminum. They employed two coating thicknesses, 25.4 and 50.8 μm (0.001 and 0.002 in.), and two surface roughnesses, 1.6 and 3.2 μm (63 and 126 μin.). Two-surface coatings (i.e., both surfaces of a contact pair were coated with a combined coating thickness of 25.4 or 50.8 μm) were also investigated. Thermal conductance enhancement varied from 0 to 500 percent of the uncoated value depending on the surface characteristics. Four nominal contact pressures from 100 to 500 kPa (14 to 72 psi) were used.

The ratios of coated-to-uncoated contact conductance for the rougher substrates showed greater improvements. This was attributed to the fact that a rougher substrate will penetrate a soft coating more deeply, thereby increasing contact area and contact conductance. For the smaller substrate roughness, 1.6 µm (63 µin.), pressure had little effect on the conductance ratio with the exception that the thicker indium coating exhibited a peak conductance at 175 kPa (25 psi). Also, for aluminum and lead coatings, the coated-to-uncoated conductance ratios for the two coating thicknesses showed little difference, while the conductance ratios for indium increased slightly for the thicker coating.

For the larger substrate roughness, 3.2 µm (126 µin.), the conductance ratio increased with pressure for aluminum and lead coatings and was generally slightly less for the thicker coating than for the thinner coating. Interfaces coated with indium exhibited an opposite trend of higher conductance ratios for the thicker coating, and contact pressures between 175 and 275 kPa (25 and 40 psi) provided the greatest enhancement of conductance. Also, for a given coating material and total coating thickness, two-surface coatings generally provided greater increases in contact conductance than one-surface coatings.

The enhancement of thermal contact conductance varied from 150 to 500, 0 to 250, and 0 to 100 percent increases for indium, aluminum, and lead, respectively. Chung et al. (1990) observed that the differences between the conductance ratios of two-surface and one-surface coatings were dependent on the coating material involved. Lead coatings showed no significant differences, whereas two-surface coatings of aluminum and indium displayed significantly increased conductance over one surface values. They noted that in general, for a given coating thickness the enhancement of conductance increases with surface roughness, provided the thickness of the coating is many times greater than the value of surface roughness.

Chung et al. (1991) examined pure copper and copper-carbon mixtures (transitional buffering interfaces, TBI) applied to both contacting surfaces of 6061-T651 Al. They employed four aluminum surface roughnesses ranging from 0.17 μm to 3.55 μm (6.8 to 142 μin.). Two coating thicknesses, 0.19 and 0.24 μm (7 and 9 μin.) for the copper coatings and 0.25 and 0.45 μm (10 and 18 μin.) for the Cu/C coatings, were tested for each of the four surface roughnesses. The coating process involves plasma-enhanced deposition onto cold surfaces of either conducting (metallic) or non-conducting (nonmetallic) base material. They claimed that TBI coatings provide excellent contact conductance and long life under repeated loads.

Pure copper yielded contact conductance values 1.09 to 1.31 times those for copper and carbon phase mixtures over a pressure range of 125 to 500 kPa (18 to 72 psi). They stated that pure copper coating is more thermally conductive than a Cu/C coating because of the low thermal conductivity and high hardness of carbon.

They assumed that load cycling increased contact conductance by successively plastically deforming the surfaces. There were also hysteresis effects, i.e., the unloading conductance was greater than loading conductance for a given pressure. Blasted rough, bare surfaces had higher conductances than polished surfaces by a factor of from 1.3 to 2.6 due to the larger area of contact spots of the former. They also noted that the most significant improvement in conductance, as a result of the application of coatings, was obtained for turned surfaces (as opposed to polished or blasted surfaces) for which the root-mean-square (rms) roughness was approximately equal to the coating thickness. Coating thicknesses beyond this led to decreased conductance. Also, coatings much thinner than the surface roughness values did not improve conductance.

2.2 Oxide and Anodized Coatings

Yip (1974) developed a prediction for the contact resistance of oxidized metal surfaces. These oxides form as a result of exposure to the atmosphere, fresh or sea-water, or soil. He stated that oxides are much less ductile than most light metals, and their presence decreases the actual contact area. He suggested that contact conductance is further reduced by the generally poor thermal conductivity of oxides.

The expression for estimating contact resistance includes as variables: surface roughness, asperity slope, nondimensional oxide thickness, the ratios of apparent pressure to substrate metal hardness and oxide-to-metal hardness, and the thermal conductivities of the metal and its oxide.

The theory predicts a one-hundred fold increase in contact resistance for aluminum with a total oxide thickness approximately equal to the surface roughness for a non-dimensional stress of 10⁻³, which is the ratio of the apparent pressure to the metal hardness.

Yip noted that the oxidation film thickness of aluminum alloys varies from 0.003 to 0.3 μ m (0.12 to 12 μ in.) when such metals are exposed to air at various humidities. Magnesium and its alloys exhibit a build-up of magnesium hydroxide at a rate of 0.01 μ m (0.4 μ in.) per year when exposed to humid air. He stated that the roughness of machined surfaces may range from 0.025 to 6.5 μ m (0.98 to 256 μ in.). Thus, it was suggested that the contact resistance of aluminum alloys may vary by a factor of 100 over the stated range of surface finishes and severity of oxidation.

He conducted experiments using specimens of 6061-T6 aluminum alloy with one of two rms average surface roughnesses, 1.5 and 6.6 μ m (59 and 260 μ in.), and an assumed oxide thickness of 0.075 μ m (3 μ in.). Theory and data agreed quite well for this assumed oxide thickness. The contact resistance increased by a factor of nine for a pair of smoother surfaces with roughnesses of 1.5 μ m (59 μ in.) and by a factor of two for a pair of surfaces with roughnesses of 6.6 μ m (260 μ in.). Yip's theory could not be explicitly proven accurate due to the lack of knowledge of actual oxide film thicknesses.

Mian et al. (1979) examined the contact resistance of oxide films on samples of mild steel (EN3B). They tested specimens that were lapped flat then sandblasted to a roughness of 0.08 μ m (3.3 μ in.). One contacting surface was oxidized to obtain a film thickness of 0.35 μ m (14 μ n.). They employed a form of the Arrenhius equation was used to estimate the growth of oxide films for various temperatures and oxidation periods.

The data, when plotted with additional data for different oxidized EN3B specimens obtained from colleagues (Al-Astrabadi et al., 1980), indicated that the thermal contact resistance

decreased with increasing load and surface roughness. Mian et al. suggested that the common slope of the linear-resistance-versus-pressure traces was suggested to be the result of ideal plastic deformation of the surface irregularities. They also attributed the observance of a slight hysteresis upon unloading to plastic deformation. The contact resistance was doubled when the ratio of total oxide film-thickness-to-surface-roughness was approximately equal to four, but increases in the ratio beyond this value did not significantly increase the contact resistance. The film thickness, rather than the roughness, was the dominant variable affecting the resistance. They correlated the entire population of data and demonstrated that it agreed reasonably well with Yip's theory.

Mian et al. (1979) identified factors that affect contact resistance. These include constriction and dilation of heat flow in oxide films, the shapes of the microcontacts as dictated by the history of the surfaces, the isotropy of the surface roughness, and the degree of waviness. They also proposed that knowledge of the manner in which oxide films rupture, the local yielding regions, and the fracture stresses are needed for a comprehensive understanding of the behavior of oxidized contacts. The authors contend that although the film does fracture, it is still present and probably affects the contact resistance.

Al-Astrabadi, et al. (1980) developed a theoretical prediction for the contact resistance of oxidized, nominally flat, randomly rough metallic surfaces. The assumptions regarding the nature of the microcontacts are analogous to those later described by O'Callaghan, et al. (1981). The filler material for the former case was an oxide film, whereas in the latter investigation it was replaced by a metallic coating. Al-Astrabadi et al. noted that an oxide is, in general, harder and less ductile than its parent metal. Thus, they concluded that the formation of oxides tends to reduce the true metal-to-metal contact for freshly assembled joints, resulting in increased thermal contact resistance.

Al-Astrabadi et al. (1980) contended that the resistance of a metal-to-metal joint between clean surfaces, assembled in a vacuum and under constant heat flux and loading, should decrease when exposed to an oxidizing atmosphere. This is due to the growth of oxide around the contacting asperities leading to enhanced annular oxide-to-oxide contacts as well as additional newly formed oxide-to-oxide bridges. However, they also stated that resistance is seen to increase with oxide film growth because of several factors.

- (1) The contact is seldom subjected to a constant load and heat flux.
- (2) Such mechanical and thermal fluctuations result in intermittent contact behavior allowing the growth of oxides to disrupt the metallic contact bridges.
- (3) The accumulation of oxide in the non-contact regions could force the surfaces apart, breaking the metallic bridges.
- (4) Oxide and contaminant formation induces passive transient behavior, encouraging factors (2) and (3) above.

They conducted experiments to verify the theory using mild steel (EN3B) specimens with surface roughnesses ranging from approximately 0.12 to 2.0 µm (4.7 to 79 µin.), asperity slopes between 0.04 and 0.19 radians, and oxide film thicknesses of 0.055 to 0.118 µm (2.2 to 4.6 µin.). They noted that oxidation of the surfaces had a minimal effect on their topography, and the distribution of asperity heights was nearly Gaussian. However, they cautioned that this observation was only valid for thin oxide films. Heavily oxidized surfaces exhibited a five-fold increase in roughness over the unoxidized condition and displayed skewed height distributions. The theory agreed reasonably well with the data for the range of surface parameters examined.

The authors further noted that when coated surfaces are pressed together, the contact is different from bare surfaces under identical conditions. They stated that the following three ratios influence the contact resistance: the ratio of coating to substrate hardness, the ratio of coating to substrate thermal conductivity, and the ratio of coating thickness to surface roughness. They

postulated that if the coating is much thicker than the roughness, then the resistance increases with increasing coating thickness. Provided that the coating thickness is on the order of or less than the roughness, the resistance will decrease if the coating is much softer than the substrate.

Peterson and Fletcher (1991) conducted an experimental investigation of the thermal contact conductance of anodized coatings. Seven anodized samples of 6061-T6 aluminum with coating thicknesses ranging from 60.9 to 163.8 μ m (0.0024 to 0.0065 in.) were tested in contact with a single bare sample. Surface roughness ranged from 0.30 to 5.33 μ m (12 to 210 μ in.), while asperity slopes varied from 0.08 to 0.25. All surfaces were flat to within approximately 1 μ m (39 μ in.). Both the overall joint conductance between the anodized and bare surface and the bulk conductance of the anodic coating increased with increasing contact pressure and decreased with increasing coating thickness.

The authors described the basic methods in applying anodic surface treatments and other types of coatings. Anodized coatings result from an oxidation process at the surface of a material. Although anodized surfaces are mechanically similar to electroplated or vapor-deposited coatings, the anodized coatings are created by chemical conversion of the outer layers of a material, whereas the other two processes involve the bonding of a substance to the substrate. The oxidized surface is an integral part of the material and has excellent adherence.

Their conclusions indicated that for very smooth, untreated surfaces, slight increases in the roughness cause moderate increases in contact conductance. The overall joint conductance was more sensitive to variations in pressure for the thinner coatings than for the thicker coatings. They explained this as being due to variations in the effective microhardness of the surfaces. They proposed that for very thin anodized layers, the effective microhardness of the interface results from a combination of the uncoated aluminum surface, the relatively hard oxide, and the aluminum substrate. As the thickness of the anodized surface increases, the uncoated surface

asperities do not penetrate the anodized coating, and the effective microhardness results only form a combination of the uncoated aluminum surface and the anodized surface.

Using their experimental data, the authors developed an empirical, dimensionless expression that related the overall joint conductance to the coating thickness, the surface roughness, the interfacial pressure, and the thermophysical properties of the aluminum substrate.

3.6 EVALUATION OF THEORETICAL PREDICTIONS

This section is devoted to describing how the various theories for predicting contact conductance compare to the available data. The prediction (or predictions) that best models the existing data is used to determine the level of contact conductance enhancement afforded by the potential rail coating materials. These materials are listed in Table 1, and discussed in more detail in this section. First, the adequacy of the prediction technique must be ascertained.

The descriptions and comparisons of the various theories and data given below refer frequently to Figs. 1a and 1b. These figures illustrate four prediction techniques and data from ten investigations on the thermal contact conductance of metallic junctions with metallic or oxide (including anodic) interstitial coatings. All data and prediction technique included in Figs. 1a and 1b have been reduced to the same dimensionless groupings as those employed by Antonetti and Yovanovich (1985), since this prediction technique proved to be most useful for reducing all of the information to an equivalent form. It should be noted that all the prediction techniques incorporate Bessel functions into the computation of constriction factors for characterizing the contact. These often involve simultaneous solution of several algebraic or integral equations. However, the analysis in Antonetti and Yovanovich (1988) also contains a table of constriction factors that are listed in terms of topographical (i.e., metrological), thermophysical, and loading information on the contact that is readily, though tediously, calculable. This later work illustrates the application of their 1985 investigation to different coatings and substrates. The predictions of Antonetti and Yovanovich (1985) and O'Callaghan et al. (1981) explicitly apply to metallic coatings, whereas those of Al-Astrabadi et al. (1980) and Yip (1974) are intended for oxide films.

The predictive technique in Antonetti and Yovanovich (1985) utilizes the mean asperity slope, m, a surface parameter not found in all ten investigations on contact conductance from

which data has been extracted. However, Antonetti and Yovanovich (1985, 1988), Kang et al. (1989), Al-Astrabadi et al. (1980), Peterson and Fletcher (1990), Yip (1974), and O'Callagahan et al. (1981) did provide measurements of mean asperity slope. Analysis of the metrological information revealed a relationship between RMS asperity slope and RMS roughness, which is described by the expression:

$$m \sim \sqrt{\frac{\sigma}{100}}$$

This relationship was used in reducing data from those investigations lacking asperity slope measurements to the nondimensional form given by Antonetti and Yovanovich (1985). This expression is accurate to within approximately ±50% for all but the data of O'Callaghan et al. (1981). The measurement asperity slopes of O'Callaghan et al. are considerably smaller than those predicted by the slope equation.

Translation of the other three prediction techniques, those of O'Callaghan et al.(1981), Al-Astrabadi et al. (1980), and Yip (1974), to the nondimensional form found in Antonetti and Yovanovich (1985), resulted in a family or group of parallel lines for each theory. Since the prediction lines for each theory were not widely separated, the average trace of each group is plotted in the appropriate figure (1a or 1b). As evident in both figures, the predictions lie quite closely to each other, and they tend to define an upper bound to the data. Also, as expected, each theory closely approximates its associated data. The predictive expressions from the four theories described above, as well as the expression for anodized surfaces from Peterson and Fletcher (1990), are listed in Appendix A.

The two theories that apply to metallic coatings, those of O'Callaghan et al. (1981) and Antonetti and Yovanovich (1985), are almost precisely colinear, although they extend over the low and high pressure regimes, respectively. Although the two theories for metallic coatings are

accurate for their corresponding data, they both perform rather poorly for the majority of the data on such contacts extracted from other investigations: Chung et al. (1991), Fried and Kelley (1965), Kang (1989), and Mal'kov and Dobashin (1969). The two predictions overestimate the contact conductance by as much as a factor of 100. These discrepancies may be due in part to the fact that all of the theories implicitly assume that the contacting surfaces are perfectly flat, so they cannot account for the significant flatness deviations (waviness) reported in some of the other studies. As the waviness of a surface increases, its contact area decreases, thereby reducing the contact conductance. For example, specimens used by Mal'kov and Dobashin (1969) exhibited surface waviness measurements from 5 to as great as 40 µm (0.0002 to 0.0016 in.). This last value is approximately 20 times larger than its associated roughness. This wide range of waviness may be the cause of the considerable scatter of the results from their experiments seen in Fig. 1a. Fried and Kelley (1965) listed the maximum flatness deviation as 3.8 µm (150 μin.). Although, this value is approximately four times the associated rms surface roughness, it is unlikely that this alone could have caused the very low dimensionless conductances (nearly two orders of magnitude less than the theories) calculated for this set of experiments. These large variations may suggest the existence of some important and, as of yet, unrecognized parameter. Chung et al. (1991) did not provide explicit values of waviness. However, some of the specimens they studied had turned surfaces, which usually exhibit significant deviations from flatness. Kang (1989) listed waviness heights typically equal to 2.5 µm (98 µin.) for the turned aluminum surfaces examined.

The anodized 6101-T6 aluminum and nickel plated C11000 copper SEM frames have specified flatness deviations of 50 and 250 µm (0.002 and 0.010 in.), respectively. Thus, for the reasons described above, the contact conductance of these frames to the A356-T61 aluminum card rails should be significantly less than that predicted by the theory of Antonetti and

Yovanovich (1985)

Since the theory in Antonetti and Yovanovich (1985) is presented in the most tractable form for calculations, it is used here to estimate the contact conductance provided by the possible coating materials listed in Table 1. This prediction describes the upper bound of contact conductance, since it was developed for flat surfaces. The estimated contact conductances of coated contacts determined using this prediction, will not be representative of real machined or ground surfaces (which exhibit considerable waviness) unless corrected by some appropriate factor to account for this waviness. No theory has been proven adequate for quantitatively evaluating the effect of surface waviness. Consequently, the estimated ratios of coated to uncoated contact conductance listed in Table 2 and illustrated in Fig. 2 are no doubt inflated. The value of these computed ratios is in the fact that they allow the various candidate coatings to be qualitatively compared and ranked in order of expected thermal performance.

The predictions for contacts containing interstitial oxide films, shown in Fig. 1b, although accurate for oxide films, somewhat overestimate the contact conductance of junctions with anodic coatings. Peterson and Fletcher (1991) conducted experiments on 6061-T6 aluminum with anodized coating thicknesses varying from 61 to 164 µm (0.0024 to 0.0065 inch) and surface roughnesses from 0.3 to 5.3 µm (12 to 212 µin.) in contact with bare 6061-T6. The specimens had flatness deviations on the order of 1 µm (39 µin.) or less. Since the descriptions of the 6101-T6 SEM frames do not stipulate the exact anodized coating thickness, it is assumed to be 50 µm (0.002 inch) as instructed in MIL-A-8625E (1988). The roughness of the aluminum 6101-T6 frames is specified to be 0.6 µm (24 µin.), and the maximum allowable flatness deviation is 50 µm (0.002 in.). Thus, apart from surface flatness, these two contact systems are quite similar since the thermal conductivities and hardnesses of the aluminum alloys considered do not differ greatly. As with metallic contacts, increased deviations from flatness cause reductions in the

contact area and, consequently, the contact conductance. Therefore, the values of conductance obtained in Peterson and Fletcher (1991) should be greater than those of the presently employed anodized 6101-T6 to uncoated A356-T61 junctions.

4.0 -- SELECTION OF CANDIDATE COATING MATERIALS

A number of materials have been used as coatings for controlling the thermal contact conductance of pressed contacts. This section describes in detail the selection of those coatings that may best improve the contact conductance of the SEM/card rail interface.

4.1 Coating Materials

As explained by Fletcher (1990), of the four basic types of interstitial materials, only surface treatments and coatings are deemed suitable for microelectronic applications. Coatings may be polymeric, ceramic, composite, metallic, nonmetallic, or oxidic in nature. Although polymeric coatings are typically resistant to deterioration in a marine environment, and may improve conductance if impregnated with metal particles, they generally only provide moderate enhancement. Ceramics and oxides are almost invariably insulative. Composites generally exhibit the same performance as polymers, as they are usually comprised mainly of polymeric resins. Metallic coatings are typically the most highly thermally conductive materials and may afford the greatest improvement in thermal contact conductance. Thus, consideration of possible coating materials is limited primarily to metals.

One noteworthy, potentially highly conductive nonmetallic coating material is carbon. It exists in two main allotropic forms, graphite and diamond. Graphite has a thermal conductivity of 1950 W/m-K in directions parallel to the layers of atoms although its thermal conductivity is only 5.7 w/mK perpendicular to the layers. This is approximately five times that of silver, the most conductive metal. However, graphite is probably too soft and brittle to remain intact in sliding or clamped contacts. Chemical vapor-deposited (CVD) diamond coatings are also highly conductive (1000-1300 W/m-K), as determined by Herb et al. (1989). Diamond is extremely

hard and impervious to environmental corrosion. Diamond also has a high thermal conductivity, and is extremely effective as an electrical insulator. At present the effect of CVD diamond coatings on contact conductance is unknown, and additional research is necessary to determine the performance of diamond films for both static and sliding thermal enhancement applications.

4.2 Coating Requirements for Maximum Contact Conductance

Criteria that are considered most important for enhancement of the thermal contact conductance of the frame-rail interface have been evaluated. Some investigators, such as O'Callaghan et al. (1981) and Snaith et al. (1982), suggest that the ideal coating material possesses a large ratio of thermal conductivity to hardness. They contend that coatings of low hardness deform readily under load, flow around the asperities, and thereby increase the contact area. High values of thermal conductivity tend to alleviate the constriction resistance through the reduced areas of the microcontacts, and this coating property is considered by Mikic and Carnasciali (1969) to be highly important. A number of metals with high ratios of thermal conductivity-to-hardness are listed in Table 1 for comparison.

4.3 Survey of Metallic Elements

Since metals are the type of coating material thought to be most appropriate for SEM/card rail applications, an assay of all metallic elements has been made to justify the selection of those elements considered as candidate coatings. Those selected are listed in Tables 1 and 2. Properties of the metals were taken from a number of sources, including: Tabor (1951), the Metals Handbook (1990), Touloukian and Ho (1972, 1976), Hultgren et al. (1973), Westbrook and Conrad (1973), Ho (1974), Weast, (ed) (1974), Smith (1981), Richman (1967), Brick et al. (1971), and Flinn and Trojan (1981). A summary of the performance characteristics is provided

in Table 2.

The elements in the periodic table, shown in Appendix B, are arranged according to their electronic configurations, which give rise to many of their properties. Therefore, it would seem logical to sort through the metals group by group, a group being those elements with similar valence or outer shell electron configurations, to determine those which best suit the requirements of a conductance-enhancing coating.

The first two columns of the periodic table, except for hydrogen, contain the alkali metals with valence numbers of one or two. These are typically highly reactive. All but two, beryllium and magnesium, may be summarily excluded from consideration because they are either poisonous, radioactive, available in insufficient supply, or react vigorously or even explosively when exposed to moisture or ignite spontaneously when exposed to air. Beryllium, although it is employed where lightness and stiffness are needed and does resist oxidation in air, is toxic. Although Beryllium has a high thermal conductivity, it is toxic and is very hard with a Brinell Hardness (BHN) of 97. Magnesium tarnishes slightly when exposed to air and ignites when heated. This combination of disadvantages makes magnesium an unlikely choice. However, since it is used in a number of applications, it is included in the group of candidate coatings.

To the right of the alkali metals are the rare-earth or lanthanide series of metals, and below them are the actinide series. Lanthanum, the first of the rare-earths, oxidizes rapidly in air and exhibits low to moderate toxicity. Next is cerium, which oxidizes very readily in moist air and may ignite if scratched. Praseodymium, though somewhat more stable than lanthanium or cerium, develops a green oxide coating in air which spalls off, thereby exposing more of the metal. Neodymium quickly tarnishes in air, its oxide also spalls off, and it has low to moderate acute toxicity. Promethium is extremely rare, it does not exist naturally on earth, and must be

synthesized at great expense. Samarium, though reasonably stable in air at room temperature, ignites when heated above 150°C and is also possibly toxic. Europium is about as hard as lead, is the most reactive metal of this series, and quickly oxidizes in air. As with other rare-earth metals, except for lanthanium, europium ignites in air at 150 to 180°C. Gadolinium is relatively stable in dry air, but in moist air it tarnishes with the formation of a loosely adhering oxide film that spalls off. Terbium is reasonably stable in air and is soft and ductile, however, it is very expensive and possibly toxic. Dysprosium is soft and relatively stable in air at room temperature, rapidly oxidizes in moist air and at elevated temperature, and possibly exhibits low toxicity. Erbium is fairly stable in air and does not oxidize as rapidly as some of the other rare-earth metals. Thulium is reasonably stable in air but will oxidize when exposed to moisture. It is expensive and has low to moderately acute toxicity. Ytterbium, while fairly stable, oxidizes in air and moisture and has low acute toxicity. The last rare-earth, lutetium, is stable in air but very expensive and also has low toxicity.

Below the rare-earth metals are the actinides. The first in this series, actinium, is highly radioactive. Its chemical behavior is similar to the rare-earths, particularly lanthanum. Thorium is soft and very ductile, however, it is a radiation hazard and should be stored and handled in areas with good ventilation. Protactinium is a dangerous toxin and is very expensive. Uranium and its compounds are highly toxic, both chemically and radiologically. Neptunium, found only in trace quantities in nature, is chemically reactive and very expensive. The remainder of the transuranium elements (those to the right of uranium) are radiological poisons. They are absorbed by bone marrow, and trace quantities may destroy the body's ability to generate blood corpuscles.

To the right of the rare-earth metals in the periodic table are the ten columns of transition elements. The subject of their applicability is discussed in more detail, as they are not

radioactive and are generally less reactive than the alkali or rare-earth metals.

In the first column of the ten columns of transition elements are scandium and yttrium. Their properties resemble those of the rare-earth elements. Scandium is relatively soft, oxidizes slightly in air, is expensive, and may also be toxic. Yttrium is less expensive than scandium and is relatively stable in air in bulk form.

The second column is composed of titanium, zirconium, and hafnium. All have excellent resistance to seawater corrosion. Titanium is too hard (BHN 200) to be useful as a coating.

Vanadium, niobium, and tantalum comprise the third column. Vanadium is moderately hard and ductile and resistant to salt water. Niobium is slightly harder but still ductile. It begins to oxidize above 200 C. Tantalum is almost completely inert below 150°C and is relatively hard (BHN 60). All are considered because of their desirable low reactivity.

Chromium, the uppermost element of the fourth column is extremely resistant to corrosion and is usually quite hard, even in the annealed state (BHN 100). It is included in consideration because it is widely used as a protective plating. Molybdenum and tungsten are too hard and brittle for this application.

As for the fifth column, manganese is extremely hard (BHN 300) and brittle, so it not considered. Technetium does not naturally exist, is very expensive, and is radioactive. Rhenium, is corrosion and wear resistant, but too hard to be useful.

The top element in the sixth column, iron, is moderately hard (BHN 70) and oxidizes rapidly in moist air. The next two, ruthenium and osmium, are extremely hard (BHN 220 and 400, respectively) and are stable in air at room temperature. The oxides of the latter two are highly toxic and unsuitable for microelectronic interfaces.

The seventh column of the transition elements contains cobalt, rhodium, and iridium. All are extremely oxidation resistant. Cobalt is moderately hard (BHN 48) in the annealed state and

may be worth consideration. Rhodium is very hard (BHN 135), but, since it is sometimes employed as a plating, it is listed as a candidate material. Iridium is even harder (BHN 170) than rhodium, so it is unlikely to improve conductance.

In the eighth column are nickel, palladium, and platinum. All are noble metals and are used to differing extents as platings. Thus, all are evaluated in terms of their applicability to this project. Nickel is fairly hard (BHN 75). Palladium and platinum are markedly softer but expensive.

The ninth column is occupied by copper, silver, and gold. These are the most highly conductive metals and are relatively soft, making them attractive possibilities. Copper and silver tarnish slightly in air. Gold has the unique property among the metals that its oxide is unstable. Therefore, gold surfaces will remain bright indefinitely.

Zinc, cadmium, and mercury comprise the tenth and last column of the transition metals. Cadmium is soft and also toxic but used extensively in electroplating. Thus, it is considered. Mercury is, of course, highly poisonous and liquid at room temperature, making it unsuitable. Zinc is fairly soft but highly reactive. It is frequently used as a plating, so it is included in the present analysis.

To the right of the transition metals are those elements that become increasingly more like metalloids and nonmetals with increasing proximity to the noble gases. Beginning with the column under boron, the first metal encountered is aluminum, which is quite soft and highly conductive, making it worthy of attention. However, aluminum does form an oxide scale in air. Gallium, next below aluminum, has an insufficiently high melting point, 30°C (86°F). Indium is extremely soft and more resistant to atmospheric corrosion than silver. There is evidence that it has a low level of toxicity, but this is considered minor and is effectively dealt with by exercising normal hygiene. Thallium, at the bottom of this column, is very soft. It also forms

a heavy oxide if left in air and is poisonous, even when only in contact with the skin.

The first metalloid below carbon is germanium. It is crystalline and brittle, therefore unsuitable. Tin is next. It is very soft and resistant to sea water. Last in this column is lead, which is also very soft and resistant to corrosion. A lead carbonate-hydroxide forms on lead in the presence of moisture and carbon dioxide, resulting in a white deposit on the surface. Care must be exercised in handling lead as it is a cumulative poison.

Arsenic is the first metalloid below nitrogen. It is very hard (BHN 147) and brittle, tarnishes in air, and is poisonous. Underneath arsenic is antimony, which is an extremely brittle metal with a flaky, crystalline texture. It does not react with air at room temperature, but burns when heated. Antimony is also toxic. At the bottom this column is bismuth. It is quite soft, though poorly conductive. It burns when heated sufficiently in air. Since it is so soft (BHN 11) it is evaluated as a coating, despite its disadvantages.

Below oxygen and sulfur is selenium, a nonmetal which resembles sulfur in its various forms and compounds and has a very low thermal conductivity. Although elemental selenium is considered almost nontoxic, hydrogen selenide is extremely poisonous. Tellurium is a semiconductor and is brittle and probably toxic. Polonium is dangerously radioactive.

In all, 20 metallic elements were chosen for evaluation of their ability to enhance the contact conductance of the frame-card rail interface. Their selection was based on loosely defined requirements of low hardness, high thermal conductivity, excellent corrosion resistance, or a combination of these properties.

4.4 Coating Thicknesses

Reasons for the specification of coating thicknesses for the candidate metals listed in Table 2 are described below. Coating thicknesses which are of the same order as the combined

rms surface roughness have been demonstrated to be optimal by O'Callaghan (1981). Existing data on the various coating materials was utilized in selecting the precise thickness of each coating to be used in calculations of contact conductance. Kang (1989) demonstrated that the optimal coating thicknesses for indium, lead, and tin on substrates of 6061-T6 aluminum were 2.5, 2.0, and 0.5 μm (98, 79, and 20 μin .), respectively. The surfaces roughness of the nominally flat specimens investigated by Kang (1989) was typically 0.7 μm (28 μin .), which is nearly equal to that specified for the 6101-T6 aluminum and copper frames. Since a surface roughness of 0.6 μm (24 μin.) is prescribed for the frame materials, it is here assumed that this would be an appropriate roughness for the A356-T61 aluminum card rails. Thus, because the optimal coating thickness is assumed to be dependent on the roughness, and because the roughness of the specimens used by Kang is approximately equal to that assumed to be appropriate for the rails, the optimal thicknesses of the indium and lead coatings given above are used for the present purposes. A tin coating thickness of 2 µm (79µin.) is used instead of 0.5 µm (20µin.) to maintain uniformity. It seems odd that the optimal tin coating thickness should be greatly different from the optimal lead coating thickness, since they have essentially the same hardness.

Antonetti and Yovanovich (1988) reported the ideal thickness of a silver coating on an aluminum substrate to be approximately 20 μm (0.0008 in.) for a combined rms roughness for both surfaces of 4 μm (157 μin.), yielding a ratio of coating thickness-to-roughness of five. Thus, for a combined rms roughness of 0.85 μm (33 μin.) for the frame-rail combination, the optimal silver coating thickness should be approximately 4 μm (157 μin.). The same coating thickness is employed in calculations involving materials that are similar in hardness (BHN from 25 to 40 kg/mm²) to silver (e.g., gold, copper, magnesium, etc.). Aluminum and bismuth are intermediate in hardness to the very soft coatings (indium, tin, and lead) and the group containing silver, gold, copper, magnesium, platinum, etc. Thus, an intermediate value of thickness, 3 μm

(120 μ in.), is used in computations for the aluminum and bismuth coatings. The remaining metals in Table 1 with hardness values greater than BHN 40 are assigned coating thicknesses of 5 μ m (197 μ in.) for calculations of contact conductance, since it appears that the optimal coating thickness increases with increasing hardness.

5.0 PREDICTIONS OF CANDIDATE MATERIAL PERFORMANCE

The performance of the various coating materials has been evaluated in terms of their applications to SEM card rails. Note that Table 2 lists two coated-to-uncoated contact conductance ratios for each material. These are for the minimum and maximum contact pressures, 173 and 865 kPa (25 and 125 psi), respectively, prescribed for the frame-card rail interface. The contact conductance information provided in Navy RFP N00164-90-R-0565 lists a contact resistance of 0.189°C/W for a contact area of 0.00159 m² (2.46 in.²) without specifying the associated contact temperature and pressure. The corresponding area-independent contact conductance is 3334 W/m²K. This value is used as the uncoated conductance in calculating the conductance ratios.

As listed in Table 2 and illustrated in Fig. 2, the three very soft coatings (indium, tin, and lead) provide the greatest estimated increases in thermal contact conductance. However, according to Table 1 of MIL-STD-889B (1976), lead is susceptible to galvanic corrosion in a marine environment, when in contact with the nickel plating of the C11000 copper frames. Thus, lead is excluded from consideration. Aluminum, magnesium, zinc, and cadmium coatings should improve the contact conductance. But, as indicated in MIL-STD-889B, these metals are also incompatible with the nickel plating. Bismuth is not listed in the galvanic series included in Table 2 of MIL-STD-889B, but, judging from its position to the right of lead (i.e., generally more active due to a sometimes higher valence number than lead), it is probably also incompatible.

Silver, gold, copper, palladium, platinum, rhodium, chromium, cobalt, tantalum, and, of course, nickel are all compatible with the nickel plating of the C11000 copper card rails. Although not listed in MIL-STD-889B, vanadium and niobium are both probably compatible with the nickel plating because they are almost completely surrounded in the periodic chart by metals

that are compatible with nickel (i.e., chromium, molybdenum, tungsten, tantalum, and titanium).

These harder metals (e.g., silver, gold, etc.) do not afford such large estimated improvements in contact conductance as do indium and tin.

MIL-STD-889B does not provide information on the comparability of metals in contact with anodized aluminum surfaces, such as those of the 6101-T6 aluminum frames. It is likely that dissimilarities in electric potential of the proposed coatings with the anodized 6101-T6 aluminum are less severe than with the nickel-coated C11000, because the low electrical conductivity of the anodized coating should greatly impede galvanic corrosion of the card rail coating. Nevertheless, in order to be conservative in evaluating the proposed coatings, the observations made for contacts involving the nickel-coated C11000 copper are assumed to hold for contacts involving the anodized 6101-T6 aluminum.

6.0 CONCLUSIONS

Although estimates indicate that indium is expected to provide the greatest enhancement of thermal contact conductance, its poor shear strength makes it susceptible to being worn from the A356-T61 rail surfaces with repeated removal and insertion of the SEM frames. Tin is expected to be second in terms of increasing contact conductance. However, tin platings, when mechanically or thermally stressed, have been found to form "whiskers" in electronic components. Also, at temperatures below -18°C (0°F) tin platings deteriorate into a powder.

Of the remaining metals that are compatible with the nickel plated copper frame, silver, gold, and copper are expected to provide far greater increases in contact conductance than the rest. Since copper forms a light oxide and its thermal conductance is calculated to be slightly less than that of gold or silver, copper would likely be supplanted by one of the other two. Silver also tarnishes slightly but its cost is a small fraction of that of gold. Both silver and gold are readily plated or deposited onto surfaces, and they are excellent choices for the rail coating.

REFERENCES

Ai-Astrabadi, F. R., O'Callaghan, P. W., and Probert, S. D., 1980, "Thermal Resistance of Contacts: Influence of Oxide Films," AIAA Paper no. 80-1467, presented at the AIAA 15th Thermophysics Conference, Snowmass, Colorado, July 14-16.

Antonetti, V. W., and Yovanovich, M. M., 1985, "Enhancement of Thermal Contact Conductance by Metallic Coatings: Theory and Experiment," ASME Journal of Heat Transfer, Vol. 107, August, pp. 513-519.

Antonetti, V. W. and Yovanovoch, M. M., 1988, "Using Metallic Coatings to Enhance Thermal Contact Conductance of Electronic Packages," *Heat Transfer Engineering*, Vol. 9, No. 3, pp. 85-92.

Brick, R.M., Pense, A.W., and Gordon, R.B., 1977, Structure and Properties of Engineering Materials, Fourth Edition, McGraw-Hill, New York, New York.

Cecco, V.S. and Yovanovich, M.M., 1972, "Electrical Measurements of Joint Resistance at Perfect Contact Interfaces: Application to Joint Conductance," AIAA Paper No. 72-19, AIAA 10th Aerospace Sciences Meeting, San Diego, California, January.

Chung, K. C., Sheffield, J. W., and Sauer, H. J. Jr., 1990, "Effects of Metallic Coated Surfaces on Thermal Contact Conductance: An Experimental Study," 6th Miami International Symposium on Heat and Mass Transfer, Miami Beach, Florida, December 10-12.

Chung, K. C., Sheffield, J. W., Sauer, H. J. Jr., and O'Keefe, T. J., 1991, "The Effects of Transitional Buffering Interface Coatings on Thermal Contact Conductance," AIAA Paper No. 91-0490, presented at the AIAA 26th Thermophysics Conference, Honolulu, Hawaii, June 24-26.

Fletcher, L. S., 1990, "A Review of Thermal Enhancement Techniques for Electronic Systems," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 4, December, pp. 1012-1021.

Flinn, R.A. and Trojan, P.K., 1981, Engineering Materials and Their Applications, Second Edition, Houghton Miflin Co., Boston, Massachusetts.

Fried, E., 1965, "Study of Interface Thermal Contact Conductance," Summary Rep., G. E. Document No. 65504395, G. E. Valley Forge Space Technology Center, Philadelphia, Pennsylvania.

Fried, E., and Kelly, M. J., 1965, "Thermal Conductance of Metallic Contacts in a Vacuum," AIAA Paper No. 65-661, in *Proc. AIAA Thermophysics Specialist Conference*, Monterey, California, September 13-15.

Herb, J. A., Dailey, C., and Ravi, K. V., 1989, "The Impact of Deposition Parameters on the Thermal Conductivity of CVD Thin Diamond Films," Proceedings of the First International Symposium on Diamond and Diamond-Like Films, Vol. 89-12, Dielectrics and Insulation,

Electronics, and High Temperature Materials Division, Ed. by J. P. Dismukes et al., The Electrochemical Society, Inc., Pennington, New Jersey, pp. 366-379.

Ho, C.Y., Powell, R.W., and Liley, P.E., 1974, "Thermal Conductivity of the Elements: A Comprehensive Review," Journal of Physical Chemistry Reference Data, 3, Supplement 1.

Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., and Wagman, D.D., 1973, Selected Values of the Thermophysical Properties of the Elements, American Society for Metals, Metals Park, Ohio.

Kang, T. K., Peterson, G. P., and Fletcher, L. S., 1989, "Enhancing the Thermal Contact Conductance Through the Use of Thin Metallic Coatings," ASME Journal of Heat Transfer, paper 89-HT-23.

Mal'kov, V. A., and Dobashin, 1969, "The Effect of Soft-Metal Coatings and Linings on Contact Thermal Resistance," *Inzhenerno-Fizicheshii Zhurnal*, Vol. 17, No. 5, pp. 871-879, November.

Metals Handbook, 1990, Vol. 1, "Properties and Selection: Nonferrous Alloys and Special-Purpose Materials," 10th Edition, American Society for Metals (ASM), Metals Park, Ohio.

Mian, M. N., Al-Astrabadi, F. R., O'Callaghan, P. W., and Probert, S. D., 1979, "Thermal Resistance of Pressed Contacts Between Steel Surfaces: Influence of Oxide Films," *Journal of Mechanical Engineering Science*, Vol. 21, No. 3, pp. 159-166.

MIL-A-8625E, Military Specification, 1988, "Anodic Coatings, Aluminum and Aluminum Alloys," Department of Defense, Washington, D.C., April 25.

MIL-C-26074E, Military Specification, 1990, "Coatings, Electroless Nickel, Requirements For," Department of Defense, Washington, D.C., October 30.

MIL-STD-889B, Military Standard, 1976, "Dissimilar Metals," Department of Defense, Washington, D.C., July 7.

Mikic, B. B., and Carnasciali, G., 1969, "The Effect of Thermal Conductivity of Plating Material on Thermal Contact Resistance," ASME Transactions, Journal of Heat Transfer, ASME Paper No. 69-WA/HT-9, presented at the ASME Winter Annual Meeting, Los Angeles, California, November 16-20.

O'Callaghan, P. W., Snaith, B., Probert, S. D., and Al-Astrabadi, F. R., 1981, "Prediction of Optimal Interfacial Filler Thickness for Minimum Thermal Contact Resistance," AIAA Paper No. 81-1166, presented at the AIAA 16th Thermophysics Conference, Palo Alto, California, June 23-25.

Peterson, G. P., and Fletcher, L. S., 1990, "Measurement of the Thermal Contact Conductance and Thermal Conductivity of Anodized Aluminum Coatings," ASME Transactions, Journal of Heat Transfer, Vol. 112, No. 3, August, pp. 579-585.

Richman, M.H., 1967, An Introduction to the Science of Metals, Blaisdell Publishing Co., Waltham, Massachusetts.

Smith, W. F., 1981, Structure and Properties of Engineering Alloys, McGraw-Hill, New York.

Snaith, B., O'Callaghan, P. W., and Probert, S. D., 1982, "Minimizing the Thermal Resistance of a Pressed Contact," *Journal of Mechanical Engineering Science*, Vol. 24, No. 4, pp. 183-189.

Tabor, D., 1951, The Hardness of Metals, Oxford University Press, Amen House, London.

Touloukian, Y.S. and Ho, C.Y., Eds., 1972, Thermophysical Properties of Matter: Thermal Conductivity of Metallic Solids, Vol. 1, Plenium Press, New York, New York.

Touloukian, Y.S. and Ho, C.Y., Eds., 1976, Thermophysical Properties of Selected Aerospace Materials, Part II: Thermophysical Properties of Seven Materials, Thermophysical and Electronic Properties Information Analysis Center, CINDAS, Purdue University, West Lafayette, Indiana.

Weast, R.C., Ed., 1974, CRC Handbook of Chemistry and Physics, 55th edition, Chemical Rubber Co.

Westbrook, J. H., and Conrad, Hj., Eds., 1973, The Science of Hardness Testing and its Research Applications, American Society for Metals, Metals Park, Ohio.

Yip, F. C., 1974, "Effect of Oxide Films on Thermal Contact Resistance," AIAA Paper No. 74-693, presented at the AIAA/ASME 1974 Thermophysics and Heat Transfer Conference, Boston, Massachusetts, July 15-17.

Yovanovich, M. M., 1982, "Thermal Contact Correlations," in: AIAA Progress in Astronautics and Aeronautics: Spacecraft Radiative Transfer and Temperature Control, ed. T. E. Horton, New York.

TABLE 1: Thermophysical Properties of Candidate Coating Materials

Material	Atomic Symbol	Brinnel Hardness	Thermal Conductivity	Thermal Expansion	Melting Point	Mol. Weight	Density	Comments'
		(BHN)	(W/mK)	Coefficient (µm/mK)	(c)		(g/cm²)	
fodim	2	-	872	32.1	156.6	114.8	7.3	inert, low toxicity
lead	æ	*	35.3	.82	327.5	207.2	11.34	Inert, cumul. toxin
Ę	S	S	66.6	20.	232	118.7	7.31	Inert
Aliminum	2	91	237.	3 2	660.4	27.0	2.71	Oxidizes
Silver	Ag	×	420.	19.	961.9	107.9	10.5	Oxidizes slightly
pro	Ā	8	317.	14.2	1064.4	197.0	19.3	Inert
2000	ā	8	401.	16.6	1083.4	63.5	8.9	Oxidizes slightly
Cadmirm	8	R	96.8	98	320.9	112.4	8.6	Oxidizes, toxic
Zinc	2	8	116.	36.	419.5	65.4	7.14	Oxidizes
Magnesium	δ	8	156.	. 85	648.8	24.3	1.74	Oxidizes
Palladum	Pd	đ	71.8	11.8	1552	106.4	12.0	Inert
Platinum	ď	\$	71.6	Ö	1772	195.1	21.45	lnert
Cobalt	8	83	99.2	13.8	1490	56.0	6.6	Inert
Bismuth	西	=	7.86	13.	271.3	200.0	0.90	Oxidzes
Rhodium	듄	135	150.	80	1966	102.0	12.5	Inert
Chromium	ច	91	7:88	ý.	1903	52.0	7.1	Inert
Nickel	Z	82	7:06	13.	1453	58.7	8.0	inert
Nobium	£	8	53.7	80.4	1960	92.9	8.4	Inert
Tantalum	Ę	8	67.5	6.5	2977	181.0	16.6	Inert
Vanadium	>	22	30.7	8.3	1730	6.09	5.96	Inert
Vanacium	,	16						

Reactivity in air, level of toxicity.

TABLE 2: Estimated Thermal Contact Conductance of Candidate Coatings

Coating	Atomic	Rank	Contact Pressure	Estimated Thermal Contact	Coated/ Uncoated	Coating Thickness	Comments*
			(<u>8</u>	Conductance* (W/m*-K)	Conductance Ratio*	(mm)	
	٠	ŀ	25/125	163,000/756,000	48.9 /227	2.5	Сотр.
manu	6	,	25/125	59,700/250,000	17.9 / 75.0	2.0	Inc.
F 150	2 8	6	25/125	54,600/232,000	16.4 / 69.6	2.0	Comp.
Aluminum	2	4	25/125	31,500/146,000	9,45/ 43.8	3.0	Inc.
Cher	¥	10	25/125	23,200/107,000	6.96/ 32.1	4.0	Comp.
Pilos diago	?		25/125	18,600/ 85,300	5.58/ 25.6	4.0	Comp.
Cooper	ē	^	25/125	16,800/ 77,600	5.04/ 23.3	4.0	Comp.
Cadmin	8	8	25/125	16,300/ 75,300	4.89/ 22.6	4.0	Inc.
Zinc	2	٥	25/125	13,600/ 62,500	4.08/ 18.8	4.0	Inc.
Managina	3	9	25/125	11,900/ 54,800	3.57/ 16.4	4.0	Inc.
maginamin	3	=	26/126	9,390/ 43,400	2.82/ 13.0	4.0	Comp.
Tales Con	2 8	:	28/126	9.120/ 42.200	2.74/ 12.7	4.0	Comp.
Fleenom			361136	A 300/ 38 400	2,49/11.5	6.0	Comp.
Coosit	3 2	2 ;	36/136	8 140/ 37,500	2.44/11.2	3.0	Probably Inc.
Bemum	8 8		26/126	6.520/ 30,300	1.96/ 9.08	9.0	Comp.
Chmmlim	ð	9	26/126	5,240/ 24,300	1.57/ 7.30	5.0	Comp.
Nickel	Z	17	25/125	5,170/ 24,000	1.56/ 7.20	6.0	Comp.
Niobium	£	18	25/125	4,120/ 19,100	1.24/ 5.74	9.0	Probably Comp.
Tentalum	£	5	25/125	3,940/ 18,200	1.18/ 5.44	6.0	Сотр.
Vanadium	>	8	25/125	3,300/ 15,300	0.99/ 4.59	6.0	Probably Comp.
The state of the s							

¹ Minimum/maximum allowable contact pressures for SEM-guide rail interface.

² Calculated using theoretical prediction of Antonetti and Yovanovich (1985) for nominally flat surfaces.

SEM surface topography used in calculations: combined mas roughness of both surfaces, 0.85 um; ms asperity slope, 0.11.

Flatness deviation (.002 in. for aluminum surfaces, .010 in. for nickel-plated copper) not used in calculations.

Themas contact conductance of uncoated contact is 3334 W/m²-K.

* Thermal contact conductance of uncompatability with Ni plating on C11000 card rail as per MIL-STD-889B (1976).

Dimensionless Contact Conductance vs. Relative Figure 1A.

40

Dimensionless Contact Conductance vs. Relative Figure 1B.

Coated/Uncoated Contact, Conductance Ratios 5 Figure

APPENDICES

Appendix A

Antonetti and Yovanovich (1985)

$$\frac{h_j'\sigma}{mk'} - 1.25 \left(\frac{P}{H'}\right)^{0.95}$$

O'Callaghan et al. (1981)

$$\frac{1}{R'_{i < 0}} = \frac{1}{R'_{on}} + \frac{1}{R_{i \neq j}}$$

$$= 2\bar{a}_{on} N_{MM} k_{ov} + 2\bar{a}_{Mj} N_{Mj} k_{Mj}$$

Peterson and Fletcher (1990)

$$\left(\frac{h_c t}{k_s}\right) \left(\frac{t}{\sigma}\right)^{0.25} - 0.83 \times 10^{-2} \left(\frac{P}{H_s}\right) + 0.11 \times 10^{-4}$$

Al-Astrabadi et al. (1980)

$$\frac{1}{R_{\text{not}}} = \frac{1}{R_{00}} + \frac{1}{R_{\text{on}}}$$
$$= 2\bar{a}_{00}N_{A00}k_{00} + 2\bar{a}_{\text{on}}N_{AM}k_{\text{on}}$$

Yip (1974)

$$R_{mot} = R_{mol} + R_{mo2}$$

$$1/R_{mol} = \frac{\pi}{4\phi_1} (k_{ml} a_{ml} N_{ml} + k_{ml} a_{m2} N_{m2} + k_{ol} a_{ol} N_{ol} + k_{ol} a_{o2} N_{o2}) + \frac{\pi}{4\phi_2} (k_{ol} a_{ol} N_{ml} + k_{ol} a_{o2} N_{m2})$$

$$1/R_{mo2} = \frac{\pi}{4\phi_1} \left(k_{m2} a_{ml} N_{ml} + k_{m2} a_{m2} N_{m2} + k_{o2} a_{o1} N_{o1} + k_{o2} a_{o2} N_{o2} \right) + \frac{\pi}{4\phi_2} \left(k_{o2} a_{o1} N_{ml} + k_{o2} a_{o2} N_{m2} \right)$$

0

0

Appendix B

0 4 0 4-0-Z-Orbit O 1 00 -8-4 00260 34 94E 20.17 1X.49X40 35.453 -27 85 At 52 Te :: 7.77 32.0% 2-11-6 **©** 14.0067-2 121 75 201.010H .10.97.176 2-8-5 74 9214 Sp 3.0 S. S. 32 :: Ge :: \$ P 777 28.086 2-6-4 1.0 · U Siz -1-18-3 ئ Ga 13 +3 7 26.9K154 \$ = s Œ 112.40 ∵ P. **∵** P. 65.38 -8-18-2 82 Transition 47 .. Ag .. 107.864 -18-18-1 38.71 63 546 -8-16-2 -8-18-1 ** Pd 102.9055 106.4 -18-16-1-18-18-0 77 85 - 1-27-22 £ <u>-</u>= .÷ .÷ Group K % \$5 -12-14-2 98.9062 101.07 -18-13-2 -18-15-1 15. 15. Transition Elements KEY TO CHART ۶ Atomic Number - 50 +2 Symbol - Sin +4 Atomic Weight - 18.60 -32-12-2 NP : WO 20.441-1-1-1-2 73 +5 Ta 777 717 4.01-4 4-10-2 .. JZ 41 22 -1K-10-3 13x 4055 4 0 5 4 4 - 0 - 4 -; %> - 6-8-- 18-9-8 స్ట్రా . % Bu 12 E : :: 7-7-7 88 ×2 8.4 ×2 40 04 -4-4-12 +2 Mg 9.01218 2-2 22.98977 24.305 **→**₩ 7 1-1-61--(22) -18-8-1 K. 467. 18-8-1 7 77 0079 ಌ୯ 6 94. 2-1

PERIODIC TABLE OF THE ELEMENTS

						:		** 37	77	67	17 67	17 07	2	71 11		_	
	\$ (\$ d	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 	70	31	: 	i c	i i	Ho	i i	E		ריי			
on a series and a	7	-	7			;	,		-				- 2	10.01			
	140 12	140 12 140,4077 144 24 -20-8-2 -21-8-2 -22-6-2	-27-6-2	-23-6-2	-24-8-2	-25-4-2	-25-6-2	7.7.2.	-28-8-	70-H-2	20.0	-31-8-2	(145) 150 4 151.96 157.25 138 4234 162.30 194 424 187.25 150 44 17 17 17 17 17 17 17 17 17 17 17 17 17	-32-4-2			Z
	8		00	1.0	70	10 30	38	97 .3	38	8	8	<u>.</u>	102	10.3	3		
	; ? F			No + Pu + Am + Cm Bk + Cf Es	2	Am	E	Bk ↔	っ		F	ğ	ŝ	ב			
	:					• •											
	232 0381	232 0381 231 0359 238 02V		27.0462	Ī	(243)	1247	247	12511		12.71	7.5	237 Odd2 (1244) (1243) (1247) (1247) (1241) (1254) (1254) (1254) (1254) (1254) (1254) (1254) (1254) (1254)	-32-4-2	- : :		5
	-18-10-2	2-2-02-		7	7.4.27											J	
				ż	4	A. G.		Managed at the property of the state of most stable regions of that element	qris isom	S POTOTO S	Cihai elen	102					

Source: Weats, R.C., Ed., 1974, CRC Handbook of Chemistry and Physics, 55th Edition, Chemical Rubber Company.

Appendix C

Published Experimental Data on Coated Contacts

Key to tabular quantities:

3-74-50

Вс	Linear thermal expansion coefficient of coating, µm/mK
Del-1,2	Roughness of surfaces 1 and 2 (RMS/Avg.), µm
Ec	Elastic (Young's) modulus of coating, GPa
Es	Elastic (Young's) modulus of substrate, GPa
ħ	Thermal contact conductance, W/m ² K
Нс	Hardness of coating, MPa
Hs	Hardness of substrate, MPa
Hc, BHN	Brinell Hardness of coating, kg/mm ²
Hs, BHN	Brinell Hardness of substrate, kg/mm ²
kc	Thermal conductivity of coating, W/mK
ks	Thermal conductivity of substrate, W/mK
P	Apparent contact pressure, kPa
Slope-1,2	Asperity slope of surfaces 1 an 2 (Absolute/Radians)
Tm	Mean interface temperature, C
t1,2	Coating thickness on surfaces 1 and 2, µm
wave-1,2	Waviness (flatness deviation) of surfaces 1 and 2 (Avg./Max.), µm

2											•		-																		*			•												
Del-1 Del-7 Mare-1 Mare-1 Del-1						-									-											I																				
,	2	2.5	1 0	3 ;	3	22	22	25	2 6	7	3;	23	13	13	1.3		? :	? :	?	1.3	1.3	13	1.3	1.3	1.3	?	7 9	12	71	12	12	\$	\$	\$	3	\$	=	==	Ξ	=	Ξ	12	12	12	12	12
1-248M	E		? :	?		13	1.3	1.3	1.3	? :	2 ;	1.3	•	•	0	•	•	•	•	•	0	•	•	•	•	•	71	12	12	12	12	\$	\$	\$	\$	\$	11	11	=	=	Ξ	12	12	12	12	12
7-12		-		-	_	-	-	-	-		-	_	0.3	0.3	0.3	0.3	3 6	C	0	03	0.3	0.3	0.3	03	2	3		1.7	1.7	1.7	1.7	1.85	1.85	1.85	1.85	1.85	1.075	1.075	1.075	1.075	1.075	0.925	0.925	0.925	0.925	0.925
1 1	90	2	9	0.0	9.0	9.0	9.0	90	7 6	9	9.0	9.0	9.0	9.0	9.0	90	2	0.0	90	9.0	9.0	9.0	9.0	90		3	- 1	1.7	1.7	1.7	1.7	1.85	1.83	38.				1.075		1.075		0.925		0.925	_	4
8 8	Ž	3 \$	8	3	38	38	98	3	3 \$	8	3	38	\$	\$	8	\$	2 :	\$	\$	\$	\$	\$	\$	4	*			R				7	7	<u>r</u>		7	_	17	7	7	_	123	_		125	125
3 6	a k	1	R	R	É	202	7007	3	1	3	18	R	B	702				8			Ä				i §			8	R	Ä	×	R	R	A	8	8	8		8	<u> </u>	28	58	200	18	8	180
3 2	Yu/u,	3 3	B	z	ĸ	X	×	7	3 5	3	23	x	n	22	×	3 %	9 !	B	_		n							13		13	13	5	61	6	2	5	<u></u>	62			19	_	_	_	_	16.6
3	W/BK	3	F	E	E	737	2	į	à	123	13	23	156	156						156	_		3			_		8	_		8	20 20 20 20	405	£	\$	<u>\$</u>	\$	_	\$	204	_			2		
53	W/⊞K		_	152	152	152	15.			_	152	15.2			_		_	_		152	152		152						31 182	_		18.2		_	182	_	182		182	_	182			182		
Hc	MPs	98	686.7	686.7	686.7	1 767	404	2000	6	686.7	686.7	686.7	696.7	696.7	200	7.000	686.7	686.7	686.7	686.7	686.7	686	6,43	6 4	8	686.7	762	2843	253	ž	25.5	8	88	88	88	88	8	8	8	\$	88	1373.4		1373.4		1373.4
	MP.	0.060	2550.6	2550.6	2550.6	2656	7686	0.00	2330.0	2550.6	2550.6	2550.6	2656	2666	2000	230.0	2550.6	2550.6	2550.6	2550.6	2550.6	9 9556	3656	7656	0.00	2550.6	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1599.03	1 599 03	1599.63	1599.03	1599.03
	_	2	2	2	2	. 8	2 8	2 (R	2	2	2	3	3	2 8	2	2	2	2	۶	2	5	2 8	2 8	2	2	300	38	300	8	8	8	8	8	18	100	81	8	100	9	90	3	140	9	\$	140
	kg/mm2 kg	700	8	980	5	5	3 8	8	3	Z	98	8	Ş	5	3 3	3	8	98	260	260	9%	96	3 5	3 5	3	260	163	163	163	163	53	163	163	163	163	163	163	163	163	163	163	163	163	153	3	163
H.		1.9	6.1	0		::		7.	1.9	6:1	1.9		3 *	•	•	0	•	•	•	•	• •	•	•	•	•	0	0	•	•	•	•	•		0	•	•	•	•	0	•	•	•	•	•	•	•
72		1.5	1.5	7	2 -	1;	3 ;	2	1.5	1.5	1.5	*	3 .	4 6	7	7	7	7	2	7		• •	7 (7 (7	2	25	K	X	×	×	25	7	×	x	23	22	×	×	2	X	72	7	1 %	X	N
Tm ti	C	29.3	29.3	700	3	7 6	31.3	31.5	30.5	30.5	20.7	· ·	2 5	21.3	0.63	7.8	34.8	34.3	35.8	446	35	3	3.5	2	35.4	34.8	28	88																		
Cond, h	_	017	615	1301	7636	8	300	4113	147	1476	Ē	366	3 5	3	\$13	7	8	3	8	22.2	12110	20100	2	8	288	172	3170	37.8	4760	9	3	3330	967	9	7140	9520	8000	9230	11760	12500	1330	1000	00,391	9	100000	10000
Press, P. Co			8	1646	200	787	2816	8	3863	3018	ž	3 8	6	1	200	1646	448	109	971	3151	1677		8	8	2765	878	(S)	9	9592	5	3	57	5	2,4	4150	9	57	9	5%	9	8	5	5	5	4150	2098
L				_		_	8		_	_																		<u> </u>	È		_															
Materials		Substrate	746.00	3		Vapor	Deposited	₹						¥													Substrate	.00	KAIRNOT	1	2	: 3	?									č	3			
	Reference	Fried and		- Carrie	3							_															Mallow and	Pobeshin	1960	130																
	No. R	É	. 3	_	_							_		-	_	_						_					-						_		_			_	_				_	_	_	

7-3	1	5	15	£.	£	38	38	11	2	Z	13	3	3	3	3	0.129	0.15	6	0.129	0.129	6.129	5.7	÷ :-	0.14	5.7	0.35	0.35	35	33	3	3	.338	25.0	170	338	927	338	348	2	38	348	88.5	3
Slop			_	_	_	_	-	_		_	_				긔			_	_	_	•					_	_	_	80	œ		_	_	_	_		_	_	_	_	_	_	2
Slope-		0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.0157	0.025	0.023	0.025	0.025	0.02	0.025	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.023	0.025	0.025	0.025	0.025	0.025	0.024	70.0	0.024	0.0	0.024	0.0
Wave-I Wave-2 Slope-1 Slope-2	um	1	, in	. تهو	-	Ī	-	-	_	_	_	_	-	-	-	Ī	_	_	_	_	_	_		_	_	_	_	_	_	_		_		_	_	_	_	_	_	_	<u> </u>		
Vave-1	C D		-	-	-	-	-	_	-	-	-	1	1	-	1	1	_		_	-	-	1	_	-	-	-	-	_	-	_	-	_	_	_	_	_	_	_		_	_		
2:190	_	5.16	5.16	5.16	5.16	5.82	5.82	6.341	6.341	6.341	6.341	6.548	6.548	6.548	6.548	1.24	7.	1.24	1.2	1.2	1.24	1.3	1.3	1.3	1.3	8.62	8.62	8.62	8.62	8.62	8.62	8.31	8.31	£3	8.31	8.31	8.31	8.03	8.03	8.03	8.03	8.03	8.03
11-1901		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	03	0.3	0.3	0.3	0.3	0.3	0.17	0.17	0.17	0.17	0.17	0.17	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.17	0.17	0.17	0.17	0.17	0.17	0.19	0.19	0.19	0.19	0.19	0.19
	GPa u	F	1	\$	1	\$	\$	‡	1	\$	\$	\$	\$	1	\$	14	2	1	r	7	7	1	11	71	7	7	7	7	7	7	17	7	r -	Ľ	7	r	7	r	r	7	17	F :	14
3		L R	707	53	K	58	100	53	182	18	707	100	E	202	202	100	R	B	S	200	B	200	202	202	B	200	Ä	500	202	100	B	B	A	E	ā	S	S	53	S	200	B	50	162
1	K GP.		9	8	8	8	2	2	2	2	2	8	8	8	8	61	19	19	19	19	19	61	61	19	6	19	2	19	19	2	19	19	19	61	2	19	19	61	19	19	61	10	2
2	_	•															-	-	-	2							8	8	8	2	2	2	22	n	2	x 2	23	X	S	×	<u>x</u>	X	2
22	W/mK	203	602	602	60.2	60.2	8	602	602	60.2	602	62	602	8	60.2	43	\$	425	23	435	425	\$3	\$	425	\$	425	\$	\$	\$	23	23	42	\$	\$	43	43	42	2	_	_	_	_	
	X	F	15	15	12	15	15	15	¥	: <u>~</u>	<u> </u>	7	15	15	15	F	F	F	4	4	+	7	7	7	7:	7	7	7	7	7	7	7	7	7	F	7	7	F	F	<u>_</u>	F	7	F
		É	A00 E01	102 005	103.005	103.005	103.005	103.005	100 CO	100.00	A CO.	103.005	103.005	103.005	103.005	176E	392.4	392.4	392.4	392.4	392.4	392.4	392.4	300	302	200	392.4	392.4	392.4	392.4	392.4	392.4	392.4	372.4	372.4	392.4	392.4	372.4	392.4	392.4	3924	392.4	392.4
Ė		E	70 1000	2001 24	24	24	24	24	24 100	72	1	70.10	7001 24	2001.24	2001 24	3531.6	3531.6	3531.6	3531.6	3531.6	9169	91656	3531.6	712	9123	746.8	892	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8	2746.8
N THE	×	1	_				-		_	-			_	_		L	2	9	9	9	9	3	3	2 \$	\$	\$	3	3	3	3	\$	\$	\$	\$	\$	\$	3	3	\$	\$	\$	\$	\$
TIC BUILD	re/mm2			7 9 6	7 91	2 5	10.	10.0	2 4	7 4	-	2 5	2 5			l																_		_	_	_			_	_	_	_	
1000	14, Dill's	7W.	§ §	\$ 2	\$ 2	Ş	į	Ę	§ §	§ §	\$ 8	\$ }	\$ 2	\$ \$	2	9	95	3	\$	\$	3 5	3	3	3 5	3	3 8	3 8	8	96	28	280	280	8	28	290	280	280	280	25	87	8	987	280
ı		_	> 0	•	•	•	•	•	> <	•	•	•	•	9 6	•	•	•	•	•	•	•	•	•	•	> <	•	•	•	•	•	•	0	0	0	•	•	•	•	•	•	•	•	0
		1	3 3	2 3	3 3	3:	2 :	3 8	3 8	8 8	8	8	8 3	8 2	3 %		2		2 :	2 .	7 .	7 7	3 5	3 5	3 5	3 ;	, ,	17		7	2.4	12	7.2	7.2	7.2	1,5	1,5	2	× ×	90	18	81	18
-		E			_					_							×				_	_			_							_									_		
ł		_	_	10180 53	275	25450	91300	200	08/1/2	33900	21020	101800	14040	18520	9070	-		_	2000	300	20000	2000	330	33000		3 5	3 3	3 8	3 5	3	2	ş	1050	14600	Ş	3450	9	\$	17500	22900	32000	44000	28000
_	-	٤			_				_		_	_				1				-	> 9	2 9	2 9	2 5	2 5	2 5	2 5	2 5	2 5	2 5	2 5	2 5	2 2	2 8	3 5	2 5	2 8	2 8	2 8	8	3	8	8
	T Tage	KP.8	4000	86	1567	21890	13678	21890	9	8	282	21890	900		1307	2017	3 5	37	3 8		3 3	366	8 8	22.5		18.00	3 8	2 5	3 5	3 5	3	3	2	1520	5	3 8	3 6	3		9	306	31	3700
1	Materials		Substrate	SS ENS8B		Coating	Sa 46-59	1 Surface									Subaraic	200	:	Vapor	deposited	7		Series B	de rite	87.1-1vs						200											
	Г		u	et al.,				,									Antonetti oc Substrate	Yovanovich,	1983																								
		No.	3 (_				_			_					7	•							_								_								_			

			_	_		_						_			_	_									_			_						_
7-adols		17.0	0.23	6.23	0.73	0.73	0.23	0.73	0.733	0.233	0.233	0.233	0.233	0.233	0.233	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.232	0.232	0.232	0.222	0.232	0.232	0.27	0.24	• 22.	0.22	9.24	0.77
Slope-1		0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.022	0.022	0.022	0.022	0.022	0.022	0.027	0.027	0.027	0.027	0.027	0.027
Vave-Z	9	-	_	<u> </u>	-	_	-	-	-	-	-	-		-	-	-	-	-	_	-	_	_	_	-	-	-	-	-	-	-	-	-	-	7
Ke-1	9	-	-	-	_	-	-	-	_	,	-	-	-	-	-	_	-	_	-	_	_	_	-	-	-	-	-	-	_	-	-	-	-	=
7-1	-	8	8.4	8	8	8	8.	90.4	7	4.24	7.	7	7	4.24	4.2	4.45	4.45	4.45	4.45	4.45	4.45	4.45	* 3	¥.38	438	4.38	8 7	₩. 96.	4.19	4.19	4.19	4.19	4.19	4.19
1-		0.19	0.19	0.19	0.19	0.19	0.19	61.0	0.7	0.7	0.2	0.7	0.2	0.2	0.2	12.0	0.27	0.27	170	0.27	0.27	0.27	0.14	0.14	0.14	0.14	0.14	0.14	0.21	0.21	0.21	0.21	0.21	0.21
	E E	1	r	7	Ľ	L	7	r	<u>د</u>	17	7	7	7	r	に	ド	7	<u></u>	7	2	2	7	2	1	ב	7	2	7	1	7	7	<u>۲</u>	7	11
33		187	S	R	S	S	ğ	S	À	53	ğ	ğ	S	R	S	S	S	8	S	À	ğ	S	À	Ä	Ä	180	E	R	58	S	R	É	S	K
2		19	61	•	19	6	61	19	13	19	61	19	61	19	19	19	61	61	61	61	61	61	2	12	19	16	2	2	19	19	19	6	61	2
匚	-	57	Ž,	23	23	\$	23	\$	23	425	425	\$3	23	425	23	23	ž,	23	23	425	23	\$3	ß	\$3	\$	425	\$	23	424	425	425	\$	Ŝ	23
-	N/mK	11	+	4	7	7	+	7	F	7	7	F	=	F	7	F	F	F	4	7	+	7	F	F	7	7	7	F	F	7	F	7	F	7
9	W/mK	**	*	3	3	<u> </u>	3	3	*	*	7	7,	7.4	7.4	7.4	7.4	7.4	77	7.4	7.4	7.7	7.7	7.4	24	7.4	2.4	74	2.4	. 47	7.4	7.4	74	392.4	2.4
ı			8	Ž	Ž	8	×	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Hc	회									_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_
	회							2943	2943	2943	2943	2943	2943	2943	2943	2943	2943	2943	2943	2943	2843	2943	2943	2843	2943	2943	2943	2943	2943	2943	2943	2943	2843	2943
	MPs							5043 943	5943	40 2943	40 2943						40 2943				_		_	40 2943	40 2943	5943	40 2943	2943	40 2943	E V62	2943	\$ 2943	\$ 2943	40 2943
Hc, BHN Hs	ke/mm2 MPs MP	5962 09	40 2943	2943	2943	40 2943	2943	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	300 40 2943	\$
HC, BHN He	kg/mm2 kg/mm2 MPs MP	5962 09	40 2943	2943	2943	40 2943	2943	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
Hc, BHN Hs	um kg/mm2 kg/mm2 MPs MP	5962 09	40 2943	2943	2943	40 2943	2943	\$	\$	\$	\$	\$	\$	\$	\$	0 300 40	900 40	\$	\$	\$	300	900 0	900 0	300	0 300 40	300	0 300 40	300	0 300	300 40	300	300	300 40	0 300 40
II T TE HE, BHN HC, BHN He	um kg/mm2 kg/mm2 MPs MP	EH62 0t 006 0 11	1.4 0 300 40 2943	1.4 0 300 40 2943	2943	40 2943	200 40 2943	\$	\$	\$	\$	\$	\$	\$	\$	\$	900 40	\$	\$	\$	300	900 0	900 0	300	0 300 40	300	0 300 40	300	0 300	300 40	300	300	\$	0 300 40
Tm 1 1 2 Hs, BHN Hc, BHN Hs	C um um kg/mm2 kg/mm2 MPs MP	185- 1.4 0 300 40 Z843	206 1.4 0 300 40 2943	1.4 0 300 40 2943	1.4 0 300 40 2943	1.4 0 300 40 2943	1.4 0 300 40 2943	1.4 0 300 40	5,1 0 300 40	5.1 0 300 40	5.1 0 300 40	5.1 0 300 40	. 5.1 0 300 40	5.1 0 300 40	5.1 0 300 40	39.5 0 300	39.5 0 300 40	39.5 0 300 40	39.5 0 300 40	39.5 0 300 40	39.5 0 300 40	09 300 40	0.81 0 300 40	0.81 0 300 40	0.81 0 300 40	0.81 0 300 40	0.81 0 300 40	0.81 0 300 40	1.2 0 300 40	1.2 0 300 40	1.2 0 300 40	1.2 0 300 40	12 0 300 40	1.2 0 300 40
Cond, h Tm 11 12 Hs, BHN Hc, BHN Hs	W/m2K C um um kg/mm2 kg/mm2 MPs MP	3850 85- 1.4 0 300 40 2843	6200 206 1.4 0 300 40 2943	2943	13200 40 2943	16700 1.4 0 300 40 2943	20000 1.4 0 300 40 2943	23500 1.4 0 300 40	7200 5.1 0 300 40	12500 5.1 0 300 40	19000 5.1 0 300 40	25500 5.1 0 300 40	31000 61 300 40	38000 5.1 0 300 40	48000 5.1 0 300 40	12000 39.5 0 300 40	22000 0 39.5 0 300	35000 39.5 0 300 40	48000 39.5 0 300 40	51000 39.5 0 300 40	000 0 266 00019	95000 39.5 0 300 40	2350 0.81 0 300 40	3550 0.81 0 300 40	07 000 0 18'0 0000	7000 0.81 0 300 40	000 0 180 0008	12800 0.81 0 300 40	3200 1.2 0 300 40	5700 1.2 0 300 40	8300 1.2 0 300 40	11000 1.2 0 300 40	13600 1.2 0 300 40	19500 1.2 0 300 40
Tm 1 1 2 Hs, BHN Hc, BHN Hs	W/m2K C um um kg/mm2 kg/mm2 MPs MP	SH2 04 000 0 1.4 0 2043	6200 206 1.4 0 300 40 2943	2943	13200 40 2943	16700 1.4 0 300 40 2943	20000 1.4 0 300 40 2943	23500 1.4 0 300 40	7200 5.1 0 300 40	12500 5.1 0 300 40	19000 5.1 0 300 40	25500 5.1 0 300 40	31000 61 300 40	38000 5.1 0 300 40	48000 5.1 0 300 40	12000 39.5 0 300 40	22000 0 39.5 0 300	35000 39.5 0 300 40	48000 39.5 0 300 40	51000 39.5 0 300 40	000 0 266 00019	95000 39.5 0 300 40	2350 0.81 0 300 40	3550 0.81 0 300 40	07 000 0 18'0 0000	7000 0.81 0 300 40	000 0 180 0008	12800 0.81 0 300 40	3200 1.2 0 300 40	5700 1.2 0 300 40	8300 1.2 0 300 40	11000 1.2 0 300 40	12 0 300 40	19500 1.2 0 300 40
Press, P Cond, h Tm 11 12 Hs, BHN Hc, BHN Hs	W/m2K C um um kg/mm2 kg/mm2 MPs MP	560 3850 85- 1.4 0 300 40 2943	1030 6200 206 1.4 0 300 40 2943	1490 9800 1.4 0 300 40 2943	13200 40 2943	ted 2500 16700 1.4 0 300 40 2943	3050 20000 1.4 0 300 40 2943	3550 23500 1.4 0 300 40	7200 5.1 0 300 40	12500 5.1 0 300 40	1520 19000 5.1 0 300	7 2000 25500 5.1 0 300 40	2450 31000 6.1 0 300 40	38000 5.1 0 300 40	48000 5.1 0 300 40	12000 39.5 0 300 40	22000 0 39.5 0 300	35000 39.5 0 300 40	48000 39.5 0 300 40	51000 39.5 0 300 40	000 0 266 00019	95000 39.5 0 300 40	2350 0.81 0 300 40	3550 0.81 0 300 40	07 000 0 18'0 0000	7000 0.81 0 300 40	000 0 180 0008	12800 0.81 0 300 40	3200 1.2 0 300 40	5700 1.2 0 300 40	8300 1.2 0 300 40	11000 1.2 0 300 40	13600 1.2 0 300 40	19500 1.2 0 300 40
Cond, h Tm 11 12 Hs, BHN Hc, BHN Hs	W/m2K C um um kg/mm2 kg/mm2 MPs MP	26 Substrate 560 3850 85- 1.4 0 300 40 2943	Ni 200 1030 6200 206 1.4 0 300 40 2943	1490 9800 1.4 0 300 40 2943	Vapor 1940 13200 1.4 0 300 40 2943	2500 16700 1.4 0 300 40 2943	Ar 3050 20000 1.4 0 300 40 2943	3550 23500 1.4 0 300 40	7200 5.1 0 300 40	990 12500 5.1 0 300 40	1520 19000 5.1 0 300 40	7 2000 25500 5.1 0 300 40	2450 31000 6.1 0 300 40	38000 5.1 0 300 40	48000 5.1 0 300 40	12000 39.5 0 300 40	22000 0 39.5 0 300	35000 39.5 0 300 40	48000 39.5 0 300 40	51000 39.5 0 300 40	000 0 266 00019	95000 39.5 0 300 40	2350 0.81 0 300 40	3550 0.81 0 300 40	07 000 0 18'0 0000	7000 0.81 0 300 40	000 0 180 0008	12800 0.81 0 300 40	3200 1.2 0 300 40	5700 1.2 0 300 40	8300 1.2 0 300 40	11000 1.2 0 300 40	13600 1.2 0 300 40	19500 1.2 0 300 40

_	_				_				_	_	_	_	_	_	_	-	_		- 1	_		~	~	~	S	8	Y		2 1	2	2
	0.084										_	0.084					-		_	_		_	_	_	_	_	_		_	_	
	110.0	0.077	110.0	100	100		0.077	0.077	0.077	0.077	0.077	0.077	0.077	0 077	0.077	0.00	0 000	000	0.069	0.083	0.080	0.089	0.089	0.089	0.089	0.080	000	9		_	0.08
CED	6817	2 490	2 480	2 400		1017	7.489	2.489	2489	2.480	2 490	2.480	2.480	2 400	2 480	2337	2 337		733/	2337	2.337	2337	2337	2.337	2.337	2337	2 237	1004	122	1331	2337
um um	157	2	2	3	5	Ž	3	25	254	3	3	2	7	2	2	27.5	27.		522	223	222	2235	2235	2235	2235	2235	2226	200	7.73	2235	2235
	0.6085	7007	2007	3000	200	286	2969	5869	6085	7007	2002	A 600.0	2007	2007	2007	95050	0,000	0000	0.6858	0.6858	0.6858	0.6858	958970	0.6858	0.6858	8589	2000	00000	0.6858	0.6858	0.6858
		_	2000	_	_	_	_	_	_			986								6069.0	_	60690				0.007	2000	0.0	0.6909	0.6909	0.6909
_	ŀ	_	\$:	: :	‡	\$	\$	4	: 3	; ;	; ;	; ;	;	: :	\$:	; ;	; ;	\$	\$	\$	\$	1	1	3	1		: :	\$	1	\$	2
3 6	ŀ	6 5	\$ 8	8	\$	\$	\$	3	\$	5 8	8	\$ 3	\$ 8	6 8	3 8	\$ 8	\$ \$	8	\$	\$	\$	\$	\$	3	\$	\$ \$	6	\$	\$	\$	\$
ww/mK GP		3 8	8	R	8	8	2	. 8	3 8	3 2	8	8 8	8 8	8	8	R	8 8	3	8	8	8	8	8	8 8	3 8	3 8	3	2	8	8	8
_	+	07.00	.76	.76	.76	.76	7	7	2 6	2	9	65.76	2.76	2.70	2.76	5.76	5.70	5.76	5.76	8.76	7. 7.	× 2,	72.5	2 7	5 75	2 3	6.3	5.76	5.76	5.76	65.76
K K	-	3		_	_	_	9											_													2
2/2	7		_	_	_							49.05																	_		
P H	ME		•	•	•				-																				_		
1	- 1	186	38	88	8	8	į į	Ē.	F	¥	¥	8	8	8	8	8	3	8	3	9	Ē 8	Ŕ	Ř	R 8	3	R	8	8	8	₹ 8	8 8
-	Kg/mm/2	3	S	S	V	~		0	~	S	S	S	×	S	×	S	8	~	. ~	, ,	n '	n \	n `	<u> </u>	2	~	×	'	~	, •) ¥
		100	8	8	8		3	8	8	28	8	28	8	8	18	8	8	8	8	3 3	3	3	3	8	8	8	8	9	2	3 8	3 8
He, BHIN	ke/mm ²		_	_		_	_	_	_	•	•		•	_	•	_	•	0	•	-	0	0	•	•	•	•	•	•	-	_	D (
27	9			_		_	_	_	_	_						-			_		~		~	~	~	~	~		2 *	-	2 1
F	물	0.2505	0.2505	A200	2000	200	0.2303	02205	02205	0.2505	0.2505	0.2505	02505	0.2505	0.2505	02505	0.7575	0.70			0.757.	0.7575	_	_	_	5 0.7575	_	_		0.7575	
18	U	t.	X	*	1 7	9 1	23	S	22	25	×	_	22		25	32	2 25	7	3 5	3	22	<u>8</u>	_		22	22		_	3 3		2 2
Cond, h	W/m2K		21.0			27	2302	3 29	719	7880	202.0	97.5	1013	1000	12028	1280	F		3	\$	8	8	311	S	\$22	200				7018	_
Pross, P	P. P.	ŀ	1366	200		353.7	\$	526.6	9728	78.	2	0 100	1055.3	1777.5	1413	1590 6	1016		181	269.4	348.8	441.6	534.3	613.8	710.9	799.2	1 283	1000	1.6601	1236.4	1404.2
Materials			Substitute TX	01-1007		Vapor	deposited	S																							
	_	T	Kang 1909	•																											
1		١	<u> </u>							_	_																				

Ъ		. 2	2	2	2	2	2	2	2	2	2	2	8	8	8	æ	80	æ	8	8	8	2	878	2	28	2	8	
0.07	5	0.03	0.0	6.0	<u>.</u>														_			_		_	_	-		
0 08	8	8	0.08	90.0	90.0	0.08	90.0	80.0	90.0	90.0	90.0	0.0						_	_			_		90.0	_	_	0.08	
UIII III	100	2.489	2.489	2.489	2.489	2.489																2.591					2.591	
E S	707	2 286	2286	2286	2286	2286	2.286	2.286	2.286	2,286	2286	2.286	2.286	254	25	252	252	254	22	25	252	25.	252	254	254	254	2.54	
g a	7147	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	
-	0.000	0.6858	0.6858	0.6858	9,6858	0.6858	0.6858	0.6858	0.6858	0.6858	0.6858	0.6858	0.6858	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	0.7417	
e do	\$	1:	1 3	3	1	3	1	7	\$	3	3	1	3	3	3	3	1	4	4	4	3	3	4	: 1	7	: 1	4	
_	6	\$ 8	8	3	\$	\$	3	3	\$	3	3	3	3	3	3	\$	\$	3	\$	\$	3	\$	\$	\$	3	\$	\$	
um/mK	82	8	R 8	3 8	3 8																							
_	65.76	65.76	65.76	66.76	64.74	26.76					6,75												_			-	_	27:23
W/mK	64.1	•	- '	- '	•						2 5																	
	19.05	49.05	\$9.03	6.64	3.5	3.6	3.5	3.5	5.5	6.6	6.6	6.6	50.05	3.5	3.63	3.6	30.65	3.5	3.5	0.65	0.64		30.00	3.5	0.65	3.5	5.5	6.6
MP.	F	9	8	R	E	R	E	E	E	8	3	1	8	F 3	Ē	F 3	F	R S	E 8	F	R S	Ē.	ē i	R	2	Ē.	F 8	198
IN Ha																												4
	1	, <u>~</u>	8	~	S	· ·	8	ς,	S)	v)	S.	~	S	2	2	S I	2	2	,	0	'	2	2	vo '	2	2	'n	
Ke/mm2 M		. 20	\$	8	· 0	2	S	\$	S	'n	, u	2	20	2	2	2	2	2	2	2	2	2	2	0	2	2	0	5
	Т	100	100	100	100	100	100	100	100	200	180	200	100	100	2	100	100	100	8	2	2	2	2	2	180	180	180	100
Ha, BHN		100	0 100 5	0 100 5	0 100 5	0 100 2	0 100 5	0 100 5	0 100	180	180	0 100 5	100	0 100	0 100	0 100	0 100 5	100	0 100	001	0 100	100	100	0 100	100	190	100	0 100 5
NHB, BHN		12996 0 100 5	•	•	0	•	•	•	•	•	•	•	•	•	•	•	1.8202 0 100 5	•	0	•	•	•	•	•	1.8202 0 100 5	•	•	1.8202 0 100 5
NHB, BHN	The same of the sa	•	•	•	0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.25% 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	20281 22	25 1.8202 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	25 1.8202 0
Tm 11 12 Hs, BHN		26 12506	•	25 1,2598 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.25% 0	25 1.2598 0	25 1.2598 0	25 1.2598 0	25 1.8202 0	25 1.8202 0	25 1.8202 0	540 25 1.8202 0	710 25 1.8202 0	818 25 1.8202 0	928 25 1.8202 0	1042 25 1.8202 0	0 2028.1 22 211.	1264 25 1.8202 0	1467 25 1.8202 0	1689 25 1.8202 0	1925 25 1.8302 0	2140 25 1.8202 0
Cond, h Tm 11 12 Hs, BHN	W/m/X	0 96571 57 1266	25 12598 0	2243 25 1.2598 0	2731 25 1.2598 0	3152 25 1.2598 0	3825 25 1.2596 0	25 1.2598 0	4499 25 1.2598 0	4923 25 1.2598 0	5889 25 1.2598 0	25 1.2598 0	7158 25 1.2598 0	7826 25 1.2598 0	0 2028 1 22 271	291 25 1.8202 0	444 25 1.8202 0	540 25 1.8202 0	710 25 1.8202 0	818 25 1.8202 0	928 25 1.8202 0	1042 25 1.8202 0	0 2028.1 22 211.0	1264 25 1.8202 0	1467 25 1.8202 0	1689 25 1.8202 0	25 1.8202 0	2140 25 1.8202 0
e, P Cond, h Tm 11 12 Hs, BHN	W/m2K	0 300,21 30 000.	1729 25 1.2598 0	353.2 2243 25 1.2598 0	446 2731 25 1.2598 0	529.9 3152 25 1.2598 0	653.5 3825 25 1.2598 0	4114 25 1.2598 0	4499 25 1.2598 0	4923 25 1.2598 0	5889 25 1.2598 0	6424 25 1.2598 0	7158 25 1.2598 0	7826 25 1.2598 0	0 2028 1 22 271	291 25 1.8202 0	444 25 1.8202 0	540 25 1.8202 0	710 25 1.8202 0	818 25 1.8202 0	928 25 1.8202 0	1042 25 1.8202 0	0 2028.1 22 211.0	1264 25 1.8202 0	1467 25 1.8202 0	1689 25 1.8202 0	1925 25 1.8302 0	2140 25 1.8202 0
Materials Press, P Cond, h Tm tl t2 Hs, BHN	kPa W/m2A C um	Substrate 97.1 92.1 22 1.298 0	Al 6061-10 161 160 1729 25 1.2598 0	353.2 2243 25 1.2598 0	2731 25 1.2598 0	529.9 3152 25 1.2598 0	653.5 3825 25 1.2598 0	4114 25 1.2598 0	4499 25 1.2598 0	4923 25 1.2598 0	5889 25 1.2598 0	6424 25 1.2598 0	7158 25 1.2598 0	7826 25 1.2598 0	0 2028 1 22 271	291 25 1.8202 0	444 25 1.8202 0	540 25 1.8202 0	710 25 1.8202 0	818 25 1.8202 0	928 25 1.8202 0	1042 25 1.8202 0	0 2028.1 22 211.	1264 25 1.8202 0	1467 25 1.8202 0	1689 25 1.8202 0	1925 25 1.8302 0	2140 25 1.8202 0
Materials Press, P Cond, h Tm tl t2 Hs, BHN	W/m2K	Substrate 97.1 92.1 22 1.298 0	Al 6061-10 161 160 1729 25 1.2598 0	353.2 2243 25 1.2598 0	446 2731 25 1.2598 0	529.9 3152 25 1.2598 0	653.5 3825 25 1.2598 0	4114 25 1.2598 0	4499 25 1.2598 0	4923 25 1.2598 0	5889 25 1.2598 0	6424 25 1.2598 0	7158 25 1.2598 0	7826 25 1.2598 0	0 2028 1 22 271	291 25 1.8202 0	444 25 1.8202 0	540 25 1.8202 0	710 25 1.8202 0	818 25 1.8202 0	928 25 1.8202 0	1042 25 1.8202 0	0 2028.1 22 211.	1264 25 1.8202 0	1467 25 1.8202 0	1689 25 1.8202 0	1925 25 1.8302 0	2140 25 1.8202 0

_	2	*	3 8	2 3	2 3	3	&	2	3	3	\$	33	3	88	<u>8</u>	<u></u>	ē	<u>=</u>	2	0.081	ē	<u> </u>	8	8	Ē	8	8	8	8	
	0.08												_							_			_	_	_	_	_	_	1	
	0.083	_		_	_	_	_												_	0.084						_	_	5 0.084	4	
8	1.4.4		•																				_				_	2235	-	
																			_	_	_	_	_	_	_	_	_	2286		
	N AGER	0.0000	9.080	0.6858	0.6858																							0.6477		
	t	0.0	0.640	0.6401	0.6401	0.6401	0.6401	0.6401	0.6401	0.6401	0.6401	0.6401	0.6401	0770	0.6401													0.6985		
3 6	1	17.14	12.74	12.74	12.74	12.74	1274	12.74	1274	12.74	1274	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	1274	12.74	12.74	12.74	12.74	12.74	12.74	12.74	
	1	\$	\$	\$	\$	3	\$	3	3	\$	\$	3	3	\$	3	\$	\$	\$	3	3	\$	\$	\$	3	3	3	\$	\$	\$	
3	48	37.1	32.1	22.1	32.1	21	2	3	3	3	Ş	3	3 5	1 5	3 5	į	3	2	į	10	2	2	2	3	į	3 5	į	2	2	
3	긔	98.52	23.88	2 88	28	8	2 8 2	200	32.00	3 2	32.55	8 8	8 8	8 8 8	8 8	8 8	8 8	3 2	8 8	2 8	2 2	2 2	8 2	8	3 2	3 2 2 8	3 5	8 8	2 2	
_	3																			_	_		_	_	_	_		3 2	_	
5	*	187	180		100	100	100	10%	197	18.6	19.6	100	18.6	187	186	19.6	187	1976	1.51	1876	10.0	100	10.6	100	19.6	9.81	186	19.6	10.0	100
			•	•																										- 1
)HIC	X	L								_			_	_	_					_	_		_		P4 1	_	_			
		186	100	2 8	R 8	R	F 3	F	E	R	1 3	R	1	-	198	E	R	R 8	E	8	F 3	R 8	S 8	Ŕ	R	8	15 E	1 8	£ 8	180
		186	98	2 8	R 8	2	1 2	1	1 SE	1 2 3 3	1 3	8	198	S	198	1 S	R	198	1	1 3	1 S	1 S	198	R 3	E	8	S	S S	E 8	118%
HC BHN He	ke/mm2 MPs	186		- ,		-	-		, ·			-	_						_		pred (pro 1		-		-	-	p=1 1		
HC BHN He	ke/mm2 MPs	186		- ,		-	-		, ·			-	_						_		pred (pro 1		-		-	-	p=1 1	100 1	
HC BHN He	ke/mm2 ke/mm2 MPs	186		- ,		-	-		, ·			-	_				0 100	100	100 1	100	0 100	001	100	901	0 100	100 1	100 1	1000	100	0 100 1
HE BHN HC BHN HS	ke/mm2 ke/mm2 MPs	186		31	0	-	-		, ·		-	-	_		100 100			100	_	100	0 100	001	100	901		-	100 1	0.2762 0 100 1	0.2762 0 100 1	0.2762 0 100 11
HE BHN HC BHN HS	um ke/mm2 ke/mm2 MPa	186		31	001	1 000	180	1000	001	25 2.5003 0 100 1	25 2,5003 0 100 1	25 2,5003 • 100 1	25 2,5003 0 100 1	25 2,5003 0 100 1	25 2.5003 0 100 1	25 2.5003 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 11
HE BHIN HC BHIN He	Lim ke/mm2 ke/mm2 MPs	186	500C7 C7	31	001	25 2.5003 0 100 1	180	18225 25 2,5003 0 100 1	19601 25 2.5003 0 100 1	21181 25 2,5003 0 100 1	22045 25 2.5003 0 100 1	23509 25 2,5003 • 100 1	26125 25 2,5003 0 100 1	25 2,5003 0 100 1	25 2.5003 0 100 1	25 2.5003 0 100 1	25 0.2762 0 100 1	25 0.2762 0 100 1	3725 25 0.2762 0 100 1	4833 25 0.2762 0 100 1	7098 25 0.2762 0 100 1	8458 25 0.2762 0 100 1	9589 25 0.2762 0 100 1	11396 25 0.2762 0 100	12091 25 0.2762 0 100 1	14134 25 0.2762 0 100 1	16381 25 0.2762 0 100 1	18180 25 0.2762 0 100 1	20203 25 0.2762 0 100 1	21611 25 0.2762 0 100 11
HE BHINI HE BHINI HE	Lim ke/mm2 ke/mm2 MPs	186 C 1001 M 100	CONC.7 C7 8184	25 2.5003 0 100	11625 25 2.5003 0 100	14584 25 2.5003 0 100 1	25 2.5003 0 100 1	18225 25 2,5003 0 100 1	1 25 2,5003 0 100 1	21181 25 2,5003 0 100 1	22045 25 2.5003 0 100 1	23509 25 2,5003 • 100 1	26125 25 2,5003 0 100 1	28109 25 2,5003 0 100 1	30962 25 2.5003 0 100 1	25 2.5003 0 100 1	1920 25 0.2762 0 100 1	2530 25 0.2762 0 100 1	3725 25 0.2762 0 100 1	4833 25 0.2762 0 100 1	7098 25 0.2762 0 100 1	8458 25 0.2762 0 100 1	9589 25 0.2762 0 100 1	11396 25 0.2762 0 100	12091 25 0.2762 0 100 1	14134 25 0.2762 0 100 1	16381 25 0.2762 0 100 1	25 0.2762 0 100 1	20203 25 0.2762 0 100 1	21611 25 0.2762 0 100 11
A INHE BRINING BEING HE	rrea, r Cond, n im ke/mm2 ke/mm2 MPa	KPs W/M2h C 1000 1000 1000 1000 1000 1000 1000 1	88.3 4818 25 25003	8626 25 2.5003 0 100	278.2 11625 25 2,5003 0 100	14584 25 2.5003 0 100 1	441.6 16485 25 2.5003 0 100 1	529.9 18225 25 2.5003 0 100	609.3 19601 25 2,5003 0 100 1	21181 25 2,5003 0 100 1	22045 25 2.5003 0 100 1	23509 25 2,5003 • 100 1	26125 25 2,5003 0 100 1	28109 25 2,5003 0 100 1	30962 25 2.5003 0 100 1	33371 25 2.5003 0 100 1	1920 25 0.2762 0 100 1	2530 25 0.2762 0 100 1	3725 25 0.2762 0 100 1	4833 25 0.2762 0 100 1	7098 25 0.2762 0 100 1	8458 25 0.2762 0 100 1	9589 25 0.2762 0 100 1	11396 25 0.2762 0 100	12091 25 0.2762 0 100 1	14134 25 0.2762 0 100 1	16381 25 0.2762 0 100 1	18180 25 0.2762 0 100 1	20203 25 0.2762 0 100 1	21611 25 0.2762 0 100 11
A INHE BRINING BEING HE	Materials From F Cond, in the lim ke/mm2 ke/mm2 MPs	KPs W/M2h C 1000 1000 1000 1000 1000 1000 1000 1	CONC.7 C7 8184	A1 6061-76 172.2 8626 23 2.5003 0 100 1	278.2 11625 25 2,5003 0 100	Vance 348.8 14584 25 2.5003 0 100 1	441.6 16485 25 2.5003 0 100 1	18225 25 2,5003 0 100 1	609.3 19601 25 2,5003 0 100 1	21181 25 2,5003 0 100 1	22045 25 2.5003 0 100 1	23509 25 2,5003 • 100 1	26125 25 2,5003 0 100 1	28109 25 2,5003 0 100 1	30962 25 2.5003 0 100 1	33371 25 2.5003 0 100 1	1920 25 0.2762 0 100 1	2530 25 0.2762 0 100 1	3725 25 0.2762 0 100 1	4833 25 0.2762 0 100 1	7098 25 0.2762 0 100 1	8458 25 0.2762 0 100 1	9589 25 0.2762 0 100 1	11396 25 0.2762 0 100	12091 25 0.2762 0 100 1	14134 25 0.2762 0 100 1	16381 25 0.2762 0 100 1	18180 25 0.2762 0 100 1	20203 25 0.2762 0 100 1	21611 25 0.2762 0 100 11

	1											0.083		_	_									_				
	1											0.084			_			_	_					_		_	_	•
	CE C	157	254	2.54	2.54	7.25	22					2.54								_								
		6817	2489		2.489		2489					2,489										_	_					
-	C C	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0.7747	0 7747	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0 7112	0 7117	0 7117	0.7112	
4	um	0.6553	0.6553	6883	0,6553	0.6553	0.6553	0.6553	55590	65590	0.6553	0.6553	0.6553	2559 0	0.6985	0.6985	0.6985	0.6985	0.6985	0.6985	0.6985	0.6985	58690	0 6000	2000	7007	0 6000	
3		E	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12.74	12 22	12.74	
	OP.	5	\$	8	\$	8	3	3	3	\$	3	3	3	3	\$	3	\$	\$	3	\$	\$	\$	3	3	\$	\$ 3	\$ 3	
	WE/EK 0		a	į	2	20.1	2	į	3	3 5	3 5	3 5	3 5	;	3 5	3	2	3	į	2	2	2	3	į	3 5	i	3 5	
	W/mK a	т.	22 86	2 20	2 88	2 8	28	22.00	3 6 6	8 8	8 8	8 8	8 8	8 8	8 8	3 2	3 2	2 8 8	8 52	2 8	2 8	28	8	8 8	8 8	9 5	8 8	
	mK																			_		_						
2	_	E	100	10.6	10.6	10.0	10.0	100	10.4	18.6	19.6	19.6	10.4	10%	19.6	100	100	10.0	10%	10.0	10.0	100	10.0	10%	18.6	9.81	9.81	
光	N.	100	1 6	10	100	10	1 9	7 5	19	50 3	10		1 3	2	1 3	ē 5	2 2	1 5	Ē :	Ē 8	2 2	į 5	Ē S	Ę :	8	18	2 3	
Ŧ	2		_	_			_	_	_		_			_												-		
HC BHN HS	-		٠,	 ,	- •	٠,		- '	_	_	_	,	- '	_			- '	_ `										
HE BHILL		ZEIE Z	3	8	8	3 :	3	8	2	8	3	8	8	3	8	8	8	8	8	8	3 3	3 3	3	8	3	8	2	
		1	>	•	0	0	0	0	•	•	•	0	•	•	•	0	0	0	•	•	0	0	0	0	0	•	•	
20			053	933	.7053	053	933	2053	53	7053	7053	7053	7053	2053	7053	417	417	417	417	417	417	417	1	.4117	1.417	1.417	1.4417	
	_	E	25 3.7	33	33	33.	23	K K	3.	25	S S	25	K K	8	23	_	_	2	_	2	_		_	2	25 1.	2	_	
		ZK C	3433	886	5356	533	129	906	36	7630	818	843	38	12439	13591	3763	5175	83	7143	2307	11181	13266	14993	16399	18502	19822	21589	
1 2000	3	W/m2K		_	_									_					333.2								6.1621	
Ľ	•	-	72	X	33	1	Š	613	71	<u>¥</u>	87.	1059.7	123	1	138	7.	8	8	38	1	S	62	2	8	8	200	123	
		4	L																									
ı		EP.	ubstrate	N 6061-T6		Vapor	seposited																					
ı	Marchail	No. Reference kPa	Kang, 1989 Substrate	AI 6061-T6	Cont.	Vapor	deposited	ď																				

	1	9	90	90	90	80	90	90	90	99	90	92	92	28	2	23	5	2	23	2	8	5	8	8	8	8	8	8	
					_					_		80.	_				_								90.	_	•	9	
		8/0.0	_	_	_	_	_	_				0.078													_		90.0		
•	um m	2413	2413	2.413	2413	2413	2413	2413	2413	2413	2413	2.413	2413	2413	7997	7.667	7.667	7.667	2.667	7.667	2.667	2.667	7.667	7,007	7.667	7,007	7.667	2.667	
1	UID	2.413	2413	2413	2413	2413	2413	2413	2413	2413	2413	2413	2413	2.413	2337	2337	1331	2337	2337	1337	2331	2337	2337	2337	2.337	2337	2.337	2337	
?	87	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	0.7874	
1-15	1 En	E	0 7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.7112	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0.6782	0,6782	0.6782	0.6782	0.6782	
_	OP.	E		2		_		_	_		9	61	61	16	9	19	19	19	10	16	19	19	19	61	9	2	19	19	
	OP.	E	3	3	3	3	3	\$	\$	\$	\$	\$	\$	3	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	
2	mX	R	3 6	3 8	2 8	8	8	2	3 8	3 8	2	8	8	2	8	8	2	2	8	8	8	2	2	2	2	2	2	2	
_	W/mK	-	3 6	3 6	3 6	3 6	3.5	3 6	3 2	3 6	3	3	3	3 2	3	1	30	30	3	100	3	3	3	20	2	1	3	3.6	
	W/mK						2		3 2	9 2		2		9	2	2	2	2	2	2	2	2	8	2				2	
			27.75	3.6	3.6	3.6	\$ 6	33.46	3.6	37.6	3.5	30.26	30.55	30.00	30.00	200	20.00	200	20.00	200	20.00	30.00	30.00	200	3 6	35	30.00	30.26	
He	2	-	R	F S	R 8	R S	Ē 8	F 8	R 8	F 8	R 8	Ē S	į į	r e	R 8	ž S	į	į į	R B	2 8	į į	2 8	2 8	į į	r e	Ř 8	Ē 8	Ē 3	
		E E	_	_			_	_	_	_	_	-	-	_	•	• •	_	_		•		-	• •				-	• •	-
12 12	1 10 10 10	Zelen.	•	•		•		•	•	•	•	•																	
DE BENEFIC REIN HE	9																		_	_		_	_	_			_	9	
F		-1	81	8	8	8	8	8	8	8	8	8 8	3 3	8	8	3 5	3 8	3 5	3 5	3 5	3 8	3 5	3 8	3 5	3	8	3 3	2 5	-1
Ļ		kg/mm/2	001	8	8	8	100	9 :	9	8	8	9 3	8 3	8	8	3 5	3 8	3 8	3 5	8 8	3 8	3 8	3 8	3 3	3 3	0	3 3	9 9	•
		um kg/mm2	001 0 8157	•	•	•	•	•	•	•	0	0	•	•	0	11.7784 0	5	> 1	•	0 (•	•	> (D	•	0	•	•	1.7/84
	3	kg/mm/2	25 0.2518 0 100	•	•	•	•	•	•	•	•	0.2518 0	•	•	0.2518 0	•	1.778	1.7784	1.7784	0 (1.7784	•	> (D	•	0	•	•	0 1.7/54 1
	18 1		1995 25 0.2518 0 100	25 0.2518 0	25 0.2518 0	25 0.2518 0	25 0.2518 0	25 0.2518 0	25 0.2518 0	25 0.2518 0	25 0.2518 0	0.2518 0	25 0.2518 0	25 0.2518 0	25 0.2518 0	25 1.7784 0	25 1.7784	25 1.7784	25 1.7784 0	25 1.7784 0	1.7784	23 1.7784	25 1.7784	25 1.7784	25 1.7784	25 1.7784 0	25 1.7784 0	•	22
	18 1	W/m2K C um um kg/mm2	0 81572 0	3005 25 0.2518 0	25 0.2518 0	5983 25 0.2518 0	6730 25 0.2518 0	25 0.2518 0	8299 25 0.2518 0	8955 25 0.2518 0	9534 25 0.2518 0	10469 25 0.2518 0	11061 25 0.2518 0	11964 25 0.2518 0	12199 25 0.2518 0	3667 25 1.7784 0	5549 25 1.7784 0	7606 25 1.7784	8896 25 1.7784 0	25 1.7784 0	11922 23 1.7784 0	12611 23 1.7784 0	13538 25 1.778	15020 23 1.7784	25 1.7784	17915 25 1.7784 0	20134 25 1.7784 0	25 1.784	22457 25
	Press, P Cond, h 1m 11 L		101.6 1995 25 0.2518 0	6 181 3005 25 0.2518 0	278.2 4053 25 0.2518 0	5983 25 0.2518 0	538.7 6730 25 0.2518 0	622.6 7484 25 0.2518 0	710.9 8299 25 0.2518 0	8955 25 0.2518 0	9534 25 0.2518 0	10469 25 0.2518 0	11061 25 0.2518 0	11964 25 0.2518 0	12199 25 0.2518 0	3667 25 1.7784 0	5549 25 1.7784 0	7606 25 1.7784	8896 25 1.7784 0	10328 25 1.7784 0	11922 23 1.7784 0	12611 23 1.7784 0	13538 25 1.778	15020 23 1.7784	15937 25 1.7784 0	17915 25 1.7784 0	20134 25 1.7784 0	21258 25 1.7784 0	22457 25
	18 1	W/m2K C um um kg/mm2	101.6 1995 25 0.2518 0	6 181 3005 25 0.2518 0	278.2 4053 25 0.2518 0	5983 25 0.2518 0	538.7 6730 25 0.2518 0	622.6 7484 25 0.2518 0	710.9 8299 25 0.2518 0	8955 25 0.2518 0	9534 25 0.2518 0	10469 25 0.2518 0	11061 25 0.2518 0	11964 25 0.2518 0	12199 25 0.2518 0	3667 25 1.7784 0	5549 25 1.7784 0	7606 25 1.7784	8896 25 1.7784 0	10328 25 1.7784 0	11922 23 1.7784 0	12611 23 1.7784 0	13538 25 1.778	15020 23 1.7784	15937 25 1.7784 0	17915 25 1.7784 0	20134 25 1.7784 0	21258 25 1.7784 0	22457 25
	Press, P Cond, h 1m 11 L	kPs W/m2K C um um kg/mm2	Substrate 101.6 1995 25 0.2518 0	A1 6061-76 181 3005 25 0.2518 0	278.2 4053 25 0.2518 0	Vapor 476.9 5983 25 0.2518 0	538.7 6730 25 0.2518 0	7484 25 0.2518 0	710.9 8299 25 0.2518 0	8955 25 0.2518 0	9534 25 0.2518 0	10469 25 0.2518 0	11061 25 0.2518 0	11964 25 0.2518 0	12199 25 0.2518 0	3667 25 1.7784 0	5549 25 1.7784 0	7606 25 1.7784	8896 25 1.7784 0	10328 25 1.7784 0	11922 23 1.7784 0	12611 23 1.7784 0	13538 25 1.778	15020 23 1.7784	15937 25 1.7784 0	17915 25 1.7784 0	20134 25 1.7784 0	21258 25 1.7784 0	22457 25
	Press, P Cond, h 1m 11 L	W/m2K C um um kg/mm2	Substrate 101.6 1995 25 0.2518 0	A1 6061-76 181 3005 25 0.2518 0	278.2 4053 25 0.2518 0	Vapor 476.9 5983 25 0.2518 0	538.7 6730 25 0.2518 0	622.6 7484 25 0.2518 0	710.9 8299 25 0.2518 0	8955 25 0.2518 0	9534 25 0.2518 0	10469 25 0.2518 0	11061 25 0.2518 0	11964 25 0.2518 0	12199 25 0.2518 0	3667 25 1.7784 0	5549 25 1.7784 0	7606 25 1.7784	8896 25 1.7784 0	10328 25 1.7784 0	11922 23 1.7784 0	12611 23 1.7784 0	13538 25 1.778	15020 23 1.7784	15937 25 1.7784 0	17915 25 1.7784 0	20134 25 1.7784 0	21258 25 1.7784 0	22457 25

	190.0	3	9		Ē	8	0.081	8	9	8	8	1987	188	188	198	190.0	296.0	2807	0.085	0.085	0.085	0.085	0.085	0.085	0.065	0.085	0.085	0.085	280	0 000	
	L	_			_	_															0.085					_	_	_	_		3
	0.0																		_		_	_	_	_	_	_	_	_	_		-1
Ę									_	_		_				_	_	_	_		2235	_				_	_		-	_	1
	1																				2337		_					_	_	_	7
	1744	2017.0	0.7103	0.7163	0.7163																0.6985										0.0%
•	t	70000	70000	0.8052	0.8052	0.9052	(300.0	2000	75000	0.8052	0.8052	0.8052	0 BO\$2	0 8052	6500	2000	0009	00070	0.00%	0,000	0.009	00090	0009	0000	0.00%	0.000	0000	0000		0.090	0.090
16	ŀ	_	61	_	_	_	_	_	19	_	_	_	2	2	9	1 9	1 0	2	2								1 5	1	1	19	19
_	1	6	\$	\$	\$	9	\$ \$	6	\$	\$	3	3	3	3	\$ \$	\$ 8	\$ 5	\$ 3	\$ 9	\$ 5	8	\$ 8	\$ \$	\$	\$ 9	\$ 5	8	\$ 8	3	\$	\$
2	S V V V	23	2	2	2	3 6	3 8	3	23	2	8	3 8	3 8	3 8	9 8	R S	9 8	9 8	3 8	3 8	3 8	3 8	9 8	9 8	9 8	4 8	3 1	3	4	2	2
_	4	1	_	_	_	_	2/10	_	_	_	_	_	\$ 3	5		3	8	\$ 2	\$ 2	8	37.04	5	5				1	10.	\$	2.2	200
3	≥		-																		179				_	_			_		-
2	š	L		_	_																					_	_				77
10	MPs	77.66	39.24	20 06		37.6	39.74	39.57	20 24	5	3.6	39.7	39.7	39.7	39.5	39.7	39.5	39.7	39.5	39.5	39.74	39.5	39.7	39.7	39.7	39.7	38.7	39.7	39.7	39.7	39.7
-	-																														
		186	8	9	R	Ŕ	8	8	8	Ŕ	2	F	ī	2	8	198	ī	\$	8	3	8	8	8	8	9	8	8	8	8	8	198
	MP.		1861	100	R	R	# #	198	8	R 8	R	2	5	- T	8	1861	8	198 T	8	2	188	186	198	8	198 T	18 +	198	198	188	7	4 981
	MP.		_		•	*	-	-	_	•	+	*	*	*	•	+	*	-	-	•	*	*	+	•	*	*	*	*	*	-	4
HC BHN He	ke/mm2 MPs		_		•	*	-	-	_	•	+	*	*	*	•	+	*	-	-	•	*	*	+	•	*	*	*	*	*	-	100 4 961
HA. BHNIHC BHNI HA	ke/mm2 kg/mm2 MPs	1001	_		•	*	-	-	_	•	+	*	*	*	•	+	*	-	-	•	*	*	+	•	*	*	*	*	*	-	4
HC BHN He	um ke/mm2 ke/mm2 MPs	7 100		3 4	3	7 001	7 001	7 001		81	100	100 4	7 001	100 1	100	0 100 +	100	190	100	100	001	0 100	100 4	4 001 0	001 0	4 001 0	100	7 001 0	4 001	8	0 100 4
TO THE BHINING BHINING	um ke/mm2 kg/mm2 MPa	4 001 0 000			3	*	180	7 001		81	+	100 4	7 001	100 4	100	0 100 +	100 +	190	5.0222 0 100 4	5.0222 0 100 4	5.0222 0 100	5.0222 0 100 4	5.0222 0 100 4	5.0222 0 100 4	5.0222 0 100	5.0222 0 100 4	100	5.0222 0 100 4	\$ 001 0 V	8	5.0222 0 100 4
THE BHILL BH	c um ke/mm2 kg/mm2 MPs	4 001 CHAT	7	7cm's 57	25 4,0052 0 100	25 4.0052 0 100 4	25 4,0052 0 100 4	25 40052 0 100 4		25 4,0052 0 100	25 4.0052 0 100 4	25 4,0052 0 100 4	25 4,0052 0 100 4	25 4.0052 0 100 4	25 4.0052 0 100 4	25 4.0052 0 100 4	25 4,0052 0 100 4	25 5,0222 0 100 4	25 5.0222 0 100 4	25 5.0222 0 100 4	25 5.0222 0 100 4	25 5.0222 0 100	25 5.0222 0 100 4	25 5.0222 0 100	5.0222 0 100	4 001 0 2220 52	25 5,6722 0 100	4 001 0 2220 5 52	25 5 60222 0 100	5,022	25 5.0222 0 100 4
HE BHINI HE BHINI HE	www. rem ke/mm2 ke/mm2 MPs	1001 Cale 1 Cale	3333	75007 57 6907	So45 25 4,0052 0 100	4 001 0 25 4.0052 0 100	4 6530 25 4.0052 0 100 4	4 100 1 0 100 4	100	7650 25 4.0052 0 100	8631 25 4.0052 0 100 4	9332 25 4.0052 0 100 4	10598 25 4,0052 0 100 4	11749 25 4.0052 0 100 4	13090 25 4,0052 0 100 4	14520 25 4,0052 0 100 4	15916 25 4,0052 0 100 4	2534 25 5.0222 0 100	3371 25 5.0222 0 100	4738 25 5.0222 0 100 4	5 5.0222 0 100 4	6889 25 5.0222 0 100 4	4 001 0 22202 25 7817	8384 25 5.0222 0 100 4	9205 25 5.0222 0 100	4 001 0 22202 25 8592	10606 25 5.0222 0 100	4 001 0 22025 25 100	4 100 100 100	13674 24 5,0222 0 100	14570 25 5.0222 0 100 4
HE BHINI HE BHINI HE	www. rem ke/mm2 ke/mm2 MPs	1001 Cale 1 Cale	2005	7cm's 57	Sots 25 4,0052 0 100	4 001 0 25 4.0052 0 100	4 6530 25 4.0052 0 100 4	4 100 1 0 100 4	100	7650 25 4.0052 0 100	8631 25 4.0052 0 100 4	9332 25 4.0052 0 100 4	10598 25 4,0052 0 100 4	11749 25 4.0052 0 100 4	13090 25 4,0052 0 100 4	14520 25 4,0052 0 100 4	15916 25 4,0052 0 100 4	2534 25 5.0222 0 100	3371 25 5.0222 0 100	4738 25 5.0222 0 100 4	25 5.0222 0 100 4	6889 25 5.0222 0 100 4	4 001 0 22202 25 7817	8384 25 5.0222 0 100 4	25 5.0222 0 100	4 001 0 22202 25 8592	10606 25 5.0222 0 100	4 001 0 22025 25 100	4 100 100 100	25 5022 0 100	14570 25 5.0222 0 100 4
SHINI HE BEINI HE	E, r Cono, il im um ke/mm2 ke/mm2 MPs	A COUNTY OF THE PROPERTY OF TH	110.4 3333 23 333	75007 57 6907	269.4 SO45 25 4,0052 0 100	244.4 5904 25 4.0052 0 100	446 6670 25 4,0052 0 100 4	4 001 0 100 4	2000	622.6 7650 25 4,0052 0 100	8631 25 4.0052 0 100 4	9332 25 4.0052 0 100 4	10598 25 4,0052 0 100 4	11749 25 4.0052 0 100 4	13090 25 4,0052 0 100 4	14520 25 4,0052 0 100 4	15916 25 4,0052 0 100 4	2534 25 5.0222 0 100	3371 25 5.0222 0 100	4738 25 5.0222 0 100 4	5 5.0222 0 100 4	6889 25 5.0222 0 100 4	4 001 0 22202 25 7817	8384 25 5.0222 0 100 4	9205 25 5.0222 0 100	4 001 0 22202 25 8592	10606 25 5.0222 0 100	4 001 0 22025 25 100	4 100 100 100	13674 24 5,0222 0 100	14570 25 5.0222 0 100 4
SHINI HE BEINI HE	Materials From, F. Colle, II. 11 um he/mm2 kg/mm2 MPs	A COUNTY OF THE PROPERTY OF TH	110.4 3333 22 233	Al 6061-T6 181 4069 25 4:0052	269.4 SO45 25 4,0052 0 100	1,	4 6530 25 4.0052 0 100 4	4 001 0 100 4	2000	622.6 7650 25 4,0052 0 100	8631 25 4.0052 0 100 4	9332 25 4.0052 0 100 4	10598 25 4,0052 0 100 4	11749 25 4.0052 0 100 4	13090 25 4,0052 0 100 4	14520 25 4,0052 0 100 4	15916 25 4,0052 0 100 4	2534 25 5.0222 0 100	3371 25 5.0222 0 100	4738 25 5.0222 0 100 4	5 5.0222 0 100 4	6889 25 5.0222 0 100 4	4 001 0 22202 25 7817	8384 25 5.0222 0 100 4	9205 25 5.0222 0 100	4 001 0 22202 25 8592	10606 25 5.0222 0 100	4 001 0 22025 25 100	4 100 100 100	13674 24 5,0222 0 100	14570 25 5.0222 0 100 4

<u> </u>	_		_			_		_		_	_	_	_		-				_	_		_	_		_	_		_			٦
Slope.		-																		_											-
Slope-1		•																											_		
Mave-Z	an n			-74			-																								
Wave-1 Wave-2 Slope-1 Slope-2	an a																														
Del-2		\mathbf{I}	1.6	1.6	1.6	1.6	91		0.7	0 \	0 1	0.1	0.	9.	9.1	1.6	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	23	7.0	3.7	3.2	3.2	3.2	3.2
Dei-I		9.1	9.1	1.6	9.1	1.6	7	2 ,	0 \	9.1	9.	9	1.6	9.1	1.6	1.6	3.2	3.2	3.2	3.2	3.2	3.2	3.2	32	,	7 :	3.2	3.2	3.2	3.2	3.2
Γ		73	3	62	S	69	3 8	3 5	3 5	79	3	3	79	3	62	3	3	29	62	3	62	S	3	3	3	70	79	3	62	79	62
3		69	\$	\$	\$	9	\$ 5	6	3	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	3	3	3	3	\$	\$	\$	\$	\$
=		23	x	n	22	7	3 2	3 ;	23	n	ห	n	ห	ĸ	ĸ	×	n	×	ĸ	22	×	1 %	X	1 %	1 2	Q	x	ĸ	n	n	22
2		-	4	4	2		à 5	3/	34	31	3	3	31	31	31	123	3	3	10	E	3	3	à E	1 5	1	157	E	E	152	153	152
_	X X		_				_	_	_	_				167 2		167			167	_		_					_	191	_		. 19
Ŀ	¥ k	٠.		_		_	_		167	_											_		_				•	_		_	
	Z Z	100	18.	16.2	200		2	1862	196.2	196.2	196.2	196.2	1962	1962	18	1962	8	1962	3	3	2 2	2 2	Ř ž	Ř ž	R	8	28	28	18	196.2	196.2
Ī		E	8	2010	A 100	21.2	331.95	31.95	931.95	931.95	931.95	931.95	931.95	931.95	21.8	931.95	8	\$ 18	8	8	20.00	200	27:2	201.00	27:32	231.95	231.95	931.95	20.00	23.58	931.95
	He, BHN He		3 8			_	8	R	8	8	8	8	8	8	8	8	3 8	3 8	3 8	3 8	3 8	3 2	8 8	3 8	3	8	8	8	8	8	8
		٦.		2 4	2 4	_	2	35	3	χ.	×	Y	Y	Y	· Y	· ¥	2 4	- X	2 %	2 3	2 3	<u> </u>	<u>د</u> :	<u>د</u> ک	<u>.</u>	x	8	8	. ¥	3 %	8
	He, BHN		i a	N 4	× 6	•	•	•	•	•	^	•		-			_														
ı			•	•	0 (•	•	•	•	•	0	•	•	•	•	•	•		•	•	> (•	0	•	•	•	•		•	•	•
			3 2	9	3	4.0	23.4	25.4	25.4	9	Ş	Ş	5	\$ 5	3	2 5	2	3 6		9	0	23.4	¥.	25.4	8	808	5	5	3	2 5	808
		٥	1												_	_															
	_	-1	3	98	2	286	1900	1850	2	S	\$ 8	3 5	3 5		200	200	1	8	611	871	8	1410	1420	1330	341	951	5	2 6	2 5	997	999
			87.8	180.9	274.1	522.9	280	1682	7	3 :	27.0	2000	2 7 6	0.500	0.0/7	2 3	Š	7711	3	275.8	51	2827	1683	3	103.5	1711	777		7010	207	2 2
		2		_			_	_											_						_						
	Materials		Substrate	A 6661-T6		Vapor	denomited			DOG LINE T																					
		Reference	Chung et al.	1990	Motal cont												•														
		No. R	9		_		_	_		_	_		_	_						_		_									

	_					_		_		_		_				-		_			_	_	_	_			_	_	_		1
																										_					
-			= 2-	¥.?*	• •																										
	T.																														
	F	-	9 9	2	9	,	7.7	2 `	0 ;	9	9	9.	9.1	1.6	1.6	3.2	3.2	33	3 6	3.6	3.6	3.2	3.2	3.2	3.2	32	33		, ,	3.5	3.6
		2 7	0.7		2 4	7	2 4	9	9.	9.1	9.1	9.1	1.6	1.6	1.6	3.2	12	2	9 6	3.4	3.6	3.2	3.2	3.2	3.2	3.2	33	, ,	3 6	4.6	3.4
3 6	1	3 9	3 5	3 2	3 8	3 5	3 5	3	79	3	3	3	3	3	62	29	S	3 5	3 (70	70	3	62	B	29	62	3	3 5	3 9	3 5	70
2 (1	8	\$ \$	\$ 3	8	\$ 6	8	\$	\$	\$	\$	\$	\$	\$	3	3	3	\$ \$	6	\$	\$	8	\$	\$	\$	\$	\$	\$ 3	8	\$ \$	8
2		3	23 2	Q ;	3 2	3 3	3 1	23	ห	×	ห	n	ĸ	22	×	×	3 %	3 ;	3	z	ผ	ห	n	ห	22	X	3 8	3 3	3	23	2
g e	-	157	5	5	5	1	157	12	152	ħ	E	133	152	22	3	3 5	3 5	3	123	E	B	E	133	123	737	3	à	12	157	52	122
23		191	167	167	167	167	167	167	191	167	167	167	167	147		5	2	0	167	167	167	167	167	167	191		9	167	191	167	1671
		7961	196.2	8.2	196.2	1962	196.2	196.2	1962	196.2	196.2	196.2	2	106.3	2 2	7.02	7.00	7.06	1862	196.2	1962	196.2	196.2	2	2	2 2	2	1862	196.2	1962	196.2
Hc	M.	L	8	<u>x</u>	8	8	S.	S.	8	8	8	8	A 120	3 2	221.73	31.55	531.95	35	931.95	31.95	31.95	20.15	8	8	3 8	21.33	21.25	31.95	21.2	231.95	1.95
HIS	¥.	531.95	_	931.95	_	_	231.55	531.95	931.95	_	_	_	_			2	_	_		_	_	_		3 8	_	_	_	_	_	8	831
HC, BHN HS	ke/men2	R	8	8	••	8	R	×	*			3 2																			
NHA	ke/mm2	5	8	8	*	x	ጽ	8	8	3	3	3	2 8	2 3	\$	*	ድ	ጽ	ጽ	8	S	3	3 8	2 2	2 5	\$	ድ	ጄ	8	8	x
	•	Þ	127	127	127	127	12.7	127	ì	3 6	3 2	3 2		3	23.4	×.	127	127	127	12.7	12.7	2 2	1	1	9	23.4	X	25.4	25.4	33.4	25.4
		F	127	127	127	127	12.7	2.2	1 7	4 2	3 3	4 3	9	3.	72.4	23.4	127	127	127	12.7		1	14	/4	2	4.5	25.4	25.4	25.4	25.4	25.4
	_	1													_		_						-								
1 2 2		t	3 2	2000	8	3	3 8		3	200	8	88	3	88	2846	2830	3010	9000	9636	3		2	35.00	33.78	28	27	8/2	3380	210	2810	3220
		-	72.0	2 2 2	. 0	200	3 5	7 :	Š	03.1	23	75.7	133	6.08	1.19	02.7	600	677	7		7.01	6.673	175.5	14.1	28	1712	280.9	1213	200	1703	114.1
					i 5		-	-		<u> </u>	-	7	~	~	_	_	_	_			_		_	_				_	_		
	Materials		Substrate	01-10m		Vapor	deposition	₹	2 Surface																•						
		Reference	Chung et al.	1990	Metal coat																										
		No.	9	<u></u>	-		_		_		_						_														

_	_	_							_	_			_	-		_		_					_	_		_	_		٦
		1																								_			
•																												_	
				7-2																									
	EB	-																											
	um	1.6				9.																			3.2	3.2	3.2	3.2	32
•	8	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	9.	9.											_		3.2	3.2	3.2	3.2	32
3	G.	P		_		19	-	16		•				19													_		2
ă	GP.					\$																					_		4
	May /m K					23																							╛
	W/mK	-				35.3																				_			_
_	W/mK		191	191	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167
	-	1	20.00	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	39.24	20.0%	39.24	39.24
H		Ě	30.10	27.5	201.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	231.95	31.95	931.95	231.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	8	831.95	931.95
HE BHN HS	, Me	=				*	*	-	*	*	+	+	*	*	*	•	•	*	-	4	•	*	•	4	7	-	•	•	7
AT HE. B			2 4	n w	. *	. *	· v1	· v	· Y	Y.	X	30	20	×	32	2	<u>x</u>	×	×	×	8	2	X	*	8	3	. 8	3 %	8
HE RHN		ZHIMIZ.	× 3	× a			. •	•		. •	. 0	• •	-	•	•	•	•	•	•	•			•						
-	•		_														_							_	_	_	_	_	
ŀ	_		>		•	• c	, 0		• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	0	-	• •	•	•	• •	0
	3		25.4	23.4		476	25.4	25.4	3 5	88	3	80%	8 9	805	808	25.4	25.4	25.4 0	25.4	25.4	244	25.4	9	3	3	2 3	98	2 3	50.8
			1												_														
t	8		2070	1860	2100	27.5	25.50	3 5	200	0101	3110	2180	9000	3 5	962	2160	2230	2450	9	25.5	3	3 2	2 5	900	216	8017	R. 17	25.00	27.5
	Cond, in	W/m2K C um	2070	1860	2100	27.5	25.50	3 5	200	0101	3110	2180	9000	3 5	962	2160	2230	2450	9	25.5	3	3 2	2 5	900	216	8017	R. 17	25.00	
	Press, r Cond, n 1m	W/m2K C um	108.9 2070	175.5 1980	275.7 2100	519.7	000	100.8	103.0	0101	3110	2180	9000	3 5	962	2160	2230	2450	9	25.5	3	3 2	2 5	900	216	8017	R. 17	25.00	27.5
	Cond, in	W/m2K C um	2070	1860	275.7 2100	519.7	25.50	100.8	200	0101	2110	2180	9000	3 5	962	2160	2230	2450	9	25.5	3	3 2	2 5	900	216	8017	R. 17	25.00	27.5
	Press, r Cond, n 1m	kPa W/m2K C um	1. Substrate 108.9 2070	Al 6061-T6 175.5 1980	275.7 2100	519.7	000	100.8	103.0	0101	2110	2180	9000	3 5	962	2160	2230	2450	9	25.5	3	3 2	2 5	900	216	8017	R. 17	25.00	27.5
	Press, r Cond, n 1m	W/m2K C um	1. Substrate 108.9 2070	AJ 6061-T6 175.5 1980	275.7 2100	519.7	000	100.8	103.0	0101	2110	2180	9000	3 5	962	2160	2230	2450	9	25.5	3	3 2	2 5	900	216	8017	R. 17	25.00	22.2

-																												-1	
												_											_	_		_		4	
Œn.	-	, t =	7.7	2	-																				_				
an a	1																												
na m	1.6	1.6	1.6	1.6	9.	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	3.2	3.2	3.2	3.2	3.2	3.2			_				3.2		
_	1.6	1.6	1.6	1.6	1.6				1.6				1.6					3.2	3.2	3.2						,	3.2		
_		•			19																						61		
GP.	69	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	3	\$	\$	\$	\$	\$	\$	\$	\$	8	\$	\$	\$	\$	3	\$	\$	
E/BK																										2	2	20	
W/BK E	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	35.3	353	35.3	353	35.3	35.3	35.3	35.3	35.3	35.3	14.1		333		1
W/mK	_	167	167	167	167	167	167	191	167	167	167	167	167	167	167	167	167	167	167	167	167	167	167	191	191	191	191	191	
	1	30.24	39.24	39.24	39.24	39.24	30.06	20.00	20.00	30.24	39.24	39.24	39.24	39.24	30.24	20.0%	20.00	30.24	20.74	20.06	30.24	39.24	39.24	30.24	8	3.6	20.00	20.00	
MP.	E	8	81.8	8	31.95	8	70 10	A 100	201.20	8 8	8	2	8	8	8	8	8	8	A 100	201.05 201.05	8	20.00	8	8	70.50	5.1.7	2 2 2	30 100	721.7.7
He w		8	. 8		-	. 8	-	× 4			_			_		_	_								-		• •	-	+
Hc, BHIN Hs																													
-	ř	3	2 %	3 %	3	8	2 2	2 5	8 5	۶ ۶	2 %	3 8	2 %	2 %	2 8	2 8	2 8	2 8	2 5	2 3	2 8	S &	3 8	2 8	2 5	ያ ;	ድ ጸ	2 8	2
	t	14.	171	745	127	17.	771	171	2	3 3	3 6	3 5		3 2		1	771	/71	77	171	14:	777	3 8	3 2		25.4	22.	3 3	•:0
		171	177	17.	14.	14.	171	127	23.4	20.0	9 6	3	i i	3	3	175	/71	/71	/71	177	/7!	7	3 2		5.	25.4	X		4.0
-	د						_																			_			
ond, h	W/m2K	202	2120	2480	2720	000	200	288	2180	2190	200	3	2590	867	3550	7160	22	200	3	999		297	2/1		22	255	2860	7.17	2800
		1229	170.3	287.9	517.1	274.8	167.7	105.4	104.5	175.5	2962	519.7	254.6	184.4	288.7	5	166.8	273.9	517.9	280.9	169.	105.4	105.4	174.7	*LL2	536.4	789.1	1713	107.1
	kPa	2	-18			8		8																			-		
Materials		Substrate	AI 6061-T6		Vapor	deposited	2	2 surface																					
	Reference	Chung et al.	1990	Metal cost																									
-	No. R		1	2							_		_	_	_				_			_	_		_				

_	_	_						_	_	_	_	_	_	_		_			_			_	_	_	_		-	_	_	-	
																								_							
																											_				
83			f=1;	100		_																									
																					_		_	_		_					
		2.1	0.1	1.6	1.6	1.6	1.6	9.1	1.6	1	7 7	2 4	0.1	9.				3.2		_			32	32	3.2	3.7		32			
			1.6	_	•													32		32			3.2	3.2	3.2	3.7		32			
3 8		171	1274	1274	12.74	12.74	12.74	12.74	12.74	12.72	14.14	171	1274	1274	1274	1274	12.74	12.74		_	_		_	_	127	12.7	_	_	_	-	1
3 8	5		\$												\$			\$		\$					\$	3	3			8 8	
2	٩۱																	321			_			_	_		_		_	_	4
9	_	23.9	23.9	23.9	23.9	23.9	230											23.9						22		2				3	1
2		191	191															167								_		25	07	191	S
	MP.	18.6	18.6	9.81	9	0 81	2 6	100	7.81	18'6	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9	0	9	0 81	9	9		10.	18.0	186	9.81	8
Н	-																														1
		931.95	931.95	8	A 150	201.50	221.52	251.75	931.95	931.95	931.95	931.95	231.95	931.95	2			2	\$ 150	A 150	A 100	201.00	X 100	8 18	201.00	27.15	231.75	831.85	231.35	931.95	231.95
		156,195	1 931.95	21.5	A 150	20100	20152	251.75	1 931.95	1 931.95	1 931.95	1 931.95	1 931.95	1 931.95	8				8	30 100	201.50 1	1 231.33		20102	20104	20100	251.95	831.83	1 931.95	1 931.95	1 931.95
Hc, BHN Hs	kg/mm2 MPs	-	-	• -			- ,	-	_	_	-	_	-	-		231.82	201.05	921 95	-	•	-	4 7	1 201.00	4 -	4 +	-	_	_	-	1 23	5 1 931.95
Hc, BHN Hs	kg/mm2 MPs		-	• -			- ,		_	_	-	_	-	-		231.82	201.05		-	•	-	4 7	1 201.00	4 -	4 +	-	_	_	-	1 23	95 1 931.95
HE, BHN HC, BHN HE	ke/mm2 kg/mm2 MPs	30	8	2 8	2 2 2	2 2	2 3	8	28 1	95 1	28	8	8	38	2 8	83.58	20100	8218	2 2	2 8	2 2	2 2	20100	2 2	2 3	2	8	28	28 1	0 95 1 93	0 95 1 93
Hc, BHN Hs	ke/mm2 kg/mm2 MPs	So u	8	2 8	2 2 2	2 2	2 3	8	28 1	95 1	28	8	8	38	2 8	83.58	20100	921 95	2 2	2 8	2 2	2 2	20100	2 2	2 3	2	8	28	28 1	0 95 1 93	0 95 1 93
HE, BHN HC, BHN HE	um ke/mm2 kg/mm2 MPa	So u u	200	70	25.4	25.4	25.4	25.4	25.4 0 95 1	508 0 95	20 00 00 11	56	200	2000	200	20.0	50100	36179	200	25.0	25.	25.4	25.4	25.4	895	20.8	26.8 0	50.8 0 95	50.8 0 95 1	50.8 0 95 1 93	50.8 0 95 1 93
THE BHILL BHILL BHILL BHILL HE	C um ke/mm2 kg/mm2 MPs		200	212	2150	2260	2310 25.4 0 23	2320 25.4 0 35	2960 25.4 0 95 1	1770	1730 0 95	1 56 0 000	200	2000	1930	20120	2100	56126	3000	3000	3370	3460 25.4 0	3630	3370	20%	20.800	4530 50.8 0 95	5530 50.8 0 95	5430 50.8 0 95	5210 50.8 0 95 1 931	5580 50.8 0 95 1 93
THE BHILL BHILL BHILL BHILL HE	C um ke/mm2 kg/mm2 MPs	N/III/M	200	212	2150	2260	2310 25.4 0 23	2320 25.4 0 35	2960 25.4 0 95 1	1770	1730 0 95	1 56 0 000	200	2000	1930	20120	2100	56126	3000	3000	3370	3460 25.4 0	3630	3370	20%	20.800	4530 50.8 0 95	5530 50.8 0 95	5430 50.8 0 95	5210 50.8 0 95 1 931	50.8 0 95 1 93
HA BHN HC, BHN H	C um ke/mm2 kg/mm2 MPs	SO UNITED TO SELECT TO SEL	1052 2130	212	275.8 2150 25.4	2260	ted 280.9 2310 25.4 0 %2	1633 2320 25.4 0 75	1000 2860 25.4 0 95 1	1770	1730 0 95	1 56 0 000	200	2000	1930	20120	2100	56126	3000	3000	3370	3460 25.4 0	3630	3370	20%	20.800	4530 50.8 0 95	5530 50.8 0 95	5430 50.8 0 95	5210 50.8 0 95 1 931	5580 50.8 0 95 1 93
HA BHN HC, BHN H	Materials (100, 1 Mps) um kejmm 2 kejmm MPs	SO UNITED TO SELECT TO SEL	1. Substrate 105.2 2150	176.5 2120	1 275.8 2150 25.4 U	Vapor 518 2260 25.4 0 75	ted 280.9 2310 25.4 0 %2	1633 2320 25.4 0 75	1000 2860 25.4 0 95 1	1770 508 0 95 1	1730 0 95	1 56 0 000	200	2000	1930	20120	2100	56126	3000	3000	3370	3460 25.4 0	3630	3370	20%	20.800	4530 50.8 0 95	5530 50.8 0 95	5430 50.8 0 95	5210 50.8 0 95 1 931	5580 50.8 0 95 1 93

_	_	_			_			_		_		_	_	_	_		-				_			_			_	_	_		1	
							_											_				_		_							$\frac{1}{2}$	
1	:																															
85		-	- 1.																													
-	T.																															
	100	9	9	1.6	1.6	1.6	7 1	0 ,	0 1	9	9	9.1	1.6	9.1	1.6	12		4.0	3.5	3.2	3.2	3.2	3.2	3.2	22	7 0	3.7	3.2	3.2	3.2	3.4	
1	4		2 9	1.6	91	7 1	2 4	0.	9	9.	97	1,6	1.6	1.6	1.6	3.2	3 6	7	3.2	3.2	3.2	3.2	3.2	17	;	7:0	32	32	32	32	32	
	ŀ		77.	12.74	2.74	27.6	1	1/7	274	12.74	1274	12.74	12.74	1274	17.74	72 61		177	12.74	12.74	12.74	12.74	12.74	17.74		17.1	1274	12.74	1274	12.74	12.74	
3 8	7		_	3		_		_	\$	_	\$	_	\$	_	9	\$		_	\$	\$	_	_	_	3	5 5	\$	\$	\$	\$	\$	\$	
3 6		1	3:	3 %	1 5	1 :	17	77	51	2.1	2.1	2.1	2.1	10	1 5	1 6	1	32	122	27	20.1	10	2	i	1	32.1	32.1	32.1	32.1	32.1	32.1	
	3			25.5															•				3 2		25	39	23.9	3.9	23.0	23	3.9	
2	≩	_					_	_	_	_		_	_	_				_												2 29	57 2	
853	W/mK	16/	167	19.	9 ;	9	167	167	,			167		_	201						19			_	_	_						
ЭН		9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9	9.81	190	100	19.6	9.81	9.81	9.81	9.8	0	9 6	9 6	0,0	9.8	9.81	9.81	86	9.0	3 8	98	8.6	
		131.95	931.95	21.8	331.95	31.35	331.95	231.95	8	2	8	8	2	251.25	231.55	931.95	21.5	931.95	21.00	A 100	22.25	21.75	231.75	231.25	2.5	931.95	2	30	201.72	21.8	\$1.55	
Hc, BHN Hs	a2 MPs	L	-	-		_	-	-				-		_	_	-	_	-			- ,	-	_	-	-	-		• •	٠,	-	-	1
						_						_	_	_		10	~	_		2 1	2	~	2	2	2	¥	2 8	2 }	0 3	8 8	×	
H. BHN	ke/mm2	۴	*	ጽ	ኤ	ድ	8	3	3		6 8	K 2	K i	•	8.	8	•	•		_	~ (~	6	<u></u>	_	_		_			_	
72		F	127	127	127	127	127		14.	3	9	1	Ö	22.4	25.4	25.4	12.7		1	/71	127	12.7	127	127	25.4	7 76			2	2	3 %	
E	. 9	F	12.7	127	12.7	127	12.7		1	3	•	234	23.4	727	25.4	25.4	127	1	171	171	12.7	127	127	127	25.4	3	9	3	23.	N N		2.5
		t.						_		_	_			_			_		_					_								
1 1 1 2 2 3		t		380	4310	8	8	6	86	314	9019	5150	900	3	9	98		300		2	3840	418	4200	957	9	200	8	229	3	8	8	2
		Т		35	7.4			7	9.0	5.4	5.5	83	4	15.7	2	ž		?	13.8	17	17.1	07.2	57.1	2	7	2 3	6.0	996	26.7	254.6	27	22
	100		99	7	5	3 8	; ;	=	=	2	=	2	2	7	-	1 =	-	<u> </u>	_	74	<u></u>	<u></u>		-	_		_	_	<u>~</u>	-	_	
	Materials		Substrate	01-100 T	Venne		deposition	9	2 surface																							
		No. Reference			Metal coat																											
		No. K	9	= 2	2			_					_				_	_		_							_		_		_	

_	_			_	_		_	_		_			_		_	_		-			_	-			_							_				┒	
•				_																					_			_				_					
								_																								_					
			3-T	₽£÷																																	
																												_			_		_	_			
,		3 2	22																0.17	0.17	1	1.0	0.17	87	0.29	8	2		8 3	8				_	3.7		
7	t	12	0.17	0.17	0.29	0.29	0.20	2	9.0	3.2	3.2	3.2		7 0	3.8	3.8	3.8	8.5	7		CT:0	0.15	0.15	9,30	97.0	20	2 4	3	1.51	1.5	1.9	1.91	3.4	3.4	3.4	3.4	
3	1	9	3 5	1 2	125	125	125	2	9	123	125	125	3 3	9	125	125	125	125	1																	-	
	_	3 8	\$ 8	9	3	\$	3	\$ 5	\$	\$	\$	3	3	\$	\$	\$	\$	9	\$	6	\$	\$	\$	\$	9	\$	\$ 3	8	\$	\$	\$	\$	\$	\$	3	\$	
	-	16.6	3	9 7	7 7	16.6	777	3 ;	3	16.6	16.6	77	9	36	16.6	16.6	16.6	771	3	1														`			
KC 33	4	396	R 8	8 8	6 8	8 8	2 2	8	86	38	ğ	3 8	8	8	88	8	8	2 8	8																		
	W/mK W	140.5	140.5	200	707	200	2	140.5	140.5	140.5	7 97		204	140.5	140.5	140 5	166		2	140.5	140.5	140.5	140.5	4			200	140.5	140.5	140.5	140.5	140.5	140 5	7 4	7 97	18.0	2
9			1688	1887	1879	183	8	28	1817	1521	1617	/101	1515	1513	156	907	2 2	2	1491	<u>z</u>	1963	1975	5	3	E S	7691	288	1882	1615	1608	1602	3	1674		*1CT	151	8
He	Ž	L							_		_				_													_	_	_		_	_	_		_	4
ľ																																					1
	M	1.		5	_	ac 1	_	2	•		-	20	*	23	-		- 1	2	99	23	1	×	2 1	- 1	28	3	21	15	88	7	. 8	3 8	2 5	70	32	3 :	17
HC KHNI HS	ke/mm2 MPa	1.	192.457	191.845	191.539	187.258	186.137	185.525	185.219	155.046	133.000	154,638	154.434	154.23	152517	10001	10/761	152.192	151.968	203.262	202.141	201 725	200	716.000	194.068	192.864	192.151	191.845	164.628	163.914	LUL 191	300 071	666.363	755.551	154,332	153.925	153,517
RHNING BHINING	ke/mm2	193.578	192.457	191.845	191.539	187.258	186.137	185.525	185.219	155.046	133.000	154.638	154.634	154.23	152517	TOTAL STATE OF THE PARTY OF THE	132/01	152.192	151.988	203.262	202.141	\$22.100	200	200.917	19.088	192.864	192.151	191.845	164.628	163.914	202 691	308 675	20000	135.352	18,332	153.925	153.517
HH. HHN	ke/mm2 ke/mm2	193578		0.19 191.845			0.19 186.137				_		_		_		0.24				0.75					0.45	0.45 192.151								0.25		0.25 153.517
NHS HHW	ke/mm2 ke/mm2	193.578	0.19	0.19	0.19	0.19		0.19	0	27.	7.0		0.24			7	1720		0.24		0.35	35	3	270	0.45		0.45	570		970	976	6.43	6.43	7		9.25	
NEW ARTHURSON	ke/mm2 ke/mm2	8/25/91	0.19 0.19	0.19 0.19	0.19	0.19 0.19	0.19 0.19	0.19 0.19	010	0.17	0.24	0.24	0.24 0.24	0.24		7	1720	0.24	0.24	925	0.26	35		270	0.45	0.45	0.45 0.45	570 570	046 045	0.45	200	0.43	0.45	0.25	9.25	0.25 0.25	0.25
NHW HH	Im It ke/mm2 ke/mm2	193.578	60 0.19 0.19	60 0.19 0.19	60 0.19 0.19	60 0.19 0.19	60 0.19 0.19	60 0.19 0.19	910	61.0	82.0	0.24 0.24	60 024 024	0.00	200	80 05 05 05 05 05 05 05 05 05 05 05 05 05	1720	60 0.24 0.24	60 024 024	60 0.25 0.25	20 976	35	3	60 0.25 0.25	60 0.45 0.45	0.45 0.45	60 0.45 0.45	570 570 07	570 570	240 246	37.0	0.43	60 0.45	60 0.25 0.25	60 0.25 0.25	60 0.25 0.25	0.25 0.25
NHW HH	Im It ke/mm2 ke/mm2	8/27/8	1.00 0.19 0.19	1900 60 0.19 0.19	2060 60 0.19 0.19	3040 60 0.19 0.19	3460 60 0.19 0.19	2cm 60 0.19 0.19	2000	4210 00 0.15	2320 60 0.24 0.24	2560 60 0.24 0.24	200 60 0.24 0.24	AC 0 47 0 02	200	2390 60 6.24 0.24	3080 60 0.24 0.24	3110 60 0.24 0.24	2460 60 024 0.24	1760 60 0.25 0.25	200 300	300 0001	CT-0 00 0817	2500 60 0.25 0.25	2600 60 0.45 0.45	2840 60 0.45 0.45	3190 60 0.45 0.45	570 570 07 0000	200 200 07 0035	246 246 02	370	2220	2710 60 0.45	2030 60 0.25 0.25	2170 60 0.25 0.25	2510 60 0.25 0.25	2810 60 0.25 0.25
NHW HH	A, F Cond, n 1m its ke/mm2 ke/mm2	193.578	1580 60 0.19 0.19	1900 60 0.19 0.19	2060 60 0.19 0.19	3040 60 0.19 0.19	3460 60 0.19 0.19	2cm 60 0.19 0.19	2000	61.0	2320 60 0.24 0.24	2560 60 0.24 0.24	200 60 0.24 0.24	AC 0 47 0 02	200	2390 60 6.24 0.24	0.24	3110 60 0.24 0.24	2460 60 024 0.24	1760 60 0.25 0.25	200 ACA A2 A000	25 DE 1950	377.5 2180 00 0.50	482.8 2500 60 0.25 0.25	2600 60 0.45 0.45	60 0.45 0.45	3190 60 0.45 0.45	570 570 07 0000	570 570 07	246 246 02	37.0	2220	2710 60 0.45 0.45	2030 60 0.25 0.25	2170 60 0.25 0.25	2510 60 0.25 0.25	2810 60 0.25 0.25
NEW THE RESERVED TO SERVED THE SERVED	Fresh, F. Cond, n. 1 m. ke/mm2 ke/mm2	KP2 W/m/X	14.6 60 0.19 0.19	19 60 019 0.19 0.19	456.5 2060 60 0.19 0.19	3040 60 0.19 0.19	249.3 3460 60 0.19 0.19	977 60 0.19 0.19	2000	4210 00 0.15	2320 60 0.24 0.24	2560 60 0.24 0.24	200 60 0.24 0.24	AC 0 47 0 02	200	2390 60 6.24 0.24	3080 60 0.24 0.24	3110 60 0.24 0.24	2460 60 024 0.24	1756 66 0.25 0.25	200 ACA A2 A000	300 0001	377.5 2180 00 0.50	482.8 2500 60 0.25 0.25	2600 60 0.45 0.45	2840 60 0.45 0.45	3190 60 0.45 0.45	570 570 07 0000	200 200 07 0035	246 246 02	370	2220	2710 60 0.45	2030 60 0.25 0.25	2170 60 0.25 0.25	2510 60 0.25 0.25	2810 60 0.25 0.25
NEW THE RESERVED TO SERVED THE SERVED	Materials Press, F Cond, n I'm	193.578	g et al. Substrate 114.1	774 0 1900 60 0.19 0.19	456.5 2060 60 0.19 0.19	114.1 3040 60 0.19 0.19	Americal 249.3 3460 60 0.19 0.19	900, October 200 0.19 0.19	3//2 3000 000	482.8 4210 60 0.17	2320 60 0.24 0.24	2560 60 0.24 0.24	200 60 0.24 0.24	AC 0 47 0 02	200	2390 60 6.24 0.24	3080 60 0.24 0.24	3110 60 0.24 0.24	2460 60 024 0.24	1756 66 0.25 0.25	200 ACA A2 A000	25 DE 1950	377.5 2180 00 0.50	482.8 2500 60 0.25 0.25	2600 60 0.45 0.45	2840 60 0.45 0.45	3190 60 0.45 0.45	570 570 07 0000	200 200 07 0035	246 246 02	370	2220	2710 60 0.45	2030 60 0.25 0.25	2170 60 0.25 0.25	2510 60 0.25 0.25	2810 60 0.25 0.25

	T-	_				_	_	_	-	9	9	9	9	9	9	Ŷ	Ý	9	Ý	Ŷ	9	-	=	=	=	=	=	11	=	=	=	=	=	=	=	
	1	0.136						•.13v	6.136	613	6.13	_	_	•136			_	_	_	_	6.136	_	_	_	1 0.311	_	_	_	_	_	_	-	<u>•</u>	<u>•</u>	1 031	
	91.0	2	2	7	21.0	8 :	9.136	0.136	0.136	0.136	0.136	0.136	9138	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.311	0.311	0.311	0.31	0.311	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	
£	P	•	. 1	~	Š. (>	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	•	•	•	•	•	_	_	٩	
	Þ	•	•	•	> 1	•	•	•	•	0	0	0	•	• •	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	٥	
	ŧ		1531	157	1531	1.531	1.531	1531	1 531	1 531	1831	1 53		3	23	1831	123	153	1531	131	1 531	6199	6199	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	
<u>. </u>	ŧ	100	15.	150	1531	.531	1.531	1531	531	3		100		121		1531	3 5	3 5	1531	1831		6619	0199	619	6.619	6.619	6.619	6.619	6199	6199	6.619	6.619	6.619	6.619	6.619	
-		_		_	_	_	_			_	_					· -					_						_	-								
		8	8	8	38	38	35	3	3 9	8 8	8 9	8 9	8	8 8	8 9	8 8	8 8	8 9	8 9	8 9	8 8	8 8	8 9	3 3	3 3	3	3	3 %	3 3	3 3	3 3	3 3	3	3 38	38	
3	5									_											_		_			_			_	_	_			_		ł
2	um/mX	1																											_			_	_	_	_	
_	_	1.03	1.03	1.03	1.03	18	3	3 8	3 3	3	1.03	1.63	1.63	29.	1.03	1.63	20.0	1.03	5.3	1.03	50.1	3.5	5.63	3.5	3 5	3 5	3 8	3 5		3 5	3 5	3 5	3 5	18	18	
_		167	167	167	167	167	17		è	16/	167	167	167	167	167	167	167	167	167	191	10/	191	19.	101	101	101	101	101	101	2	9	9	9	3 5	191	
2	*								_	-							_					*			_											
웃	Ž	i																							_				_		_	_	_	_		4
H	MP.	10/9.1	10.01	1001	2		10/2	107.1	1079.1	10001	10001	10201	10201	1939.1	163.1	1939.1	1009.1	1029.1	10201	10201	193	1079.1	1939.1	1000	10/9.1	10/9.1	10/9.1	1979.1	10.0	1079.1	10201	100	10/2	10/2	2 2 2	14/21
BHIN																																				
HC	K	L	_	_		_	_	_	_	_	_	_	_	_	_	_	_	•	_	0	•	•	-	-	•	-	0	0	•	•	0	0	9	9 9	2 5	=
HE BHINLE BHIN	ke/mm2	1	110	=			2	2	=	11	110	Ĭ	Ĭ	110	Ξ	Ξ	11	Ξ	=======================================	11	11	11	=	=	=	=	=	=	=	=	=	=	=	= :		
	6	E	200	7		0.0	0.075	0.075	0.075	0.075	0.075	0.075	0 075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	9.97
	_	Į	_	200	200	0.075	0.075	0.075	0.075	0.075	0.075	0.075	2000	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	6.075	0.075	0.075	0.075
		ť	1			_				_					_													_								
	W/m2K	1	900	115877	3134.57	3225.81	10.590	5025.13	6172.84	K177.84	26.38	83K4 4K	25 07 00	2000	2 0000	10235.4	19762.8	8 1777 B	25390.7	2771.9	21186.4	33670	7462.69	6535.95	9345.79	8695.65	13404.8	18248.2	17241.4	16025.6	999600	12012	20661.2	34129.7	11210.8	27548.2
Ľ	3 3	4	_	_		•••	_	_		_		_			_		_	_		_						_	92	2	22	2	8	8	×	3	8	5
		5	3		212	288	3075	3885	70	8 5		100	200		7,7		100	9788	128	1252	128	1673	120	1360	723	2374	8962	3075	288	22	2180	5180	5935	38	3939	653
			Substrate	AI 6061-T6		Oxide cost	Series																Series R													
I		-	25	<u>₹</u>	_	6	3													_			3					_								
	No. Reference		Ytp, 1974																						•											
	<u>.</u>	-				_	_	_		_		_			_																					

	200	9	8 3	8	8 3	81.0	2 3	3 4		9,1	0.1.0	9.130	8	0.136	_	8			_	_		_	2 0.135	2 0.135	_	_	2 0.130	_	_	_	_	_	81	18	1.0	8	_	98	90
	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	631	0.311	0.311	0.311	0.311	0.311	0.311	0.028	0.028	0.000	200	9000	000	127.0	0.132	0.132	0.132	0.132	0.10	0.13	0 0.13	0 0.18	0.0	0 0.18	0 0.18	0 0.18	0.0	0.0	0 0.038	000
Q D	-	•	0	•	•	•	0	•	-	•	•	•	•	•	<u> </u>	°		-	_	-				_	_	_			-			_					-		-
an an	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	0	-	-	_	_	_		_	_	_				_			_	_	_	2 6	2 6	- E	_
an a	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	1.531	0.08	0.08	80.0	80.0	8 8	8 8	3			_	_	_	1.67			203	_				_	2 0.123	_
9	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	6.619	619.9	6.619	6.619	6.619	6.619	6.619	90.0	90.0	80.0	8	90.0	8 8	9	2 5	-	151	1.57	1.57	1.57	2 .	7 5	3	2 2	2 8		R 2	21.6	9.12	_
3 6																								1	_	_	_	_	_										_
3 6	Ŀ	3	3 35	\$	3	38	38	3	38	3	3	3 3	3	3 %	3	38	102	Ä	28	B	58	B	8	R	3 8	1 2	S	B	R	R	R S	3 8	3 8	8 8	8 2	R 8	3 5	A S	3
Na /mK																								1					•		<u> </u>		<u>~ `</u>	~		~	~	<u>.</u>	_
37	•	3 5	3 5		3 8	3 5	3	8	3		3 8	3 8	3 5	3 5	3 8	3.5	STX D	0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	0.875	873	0.875	0.875	5/20	0.875	0.87	180	0.87	_				_
1	t	0	91		0 5	/01	101	191	19	9	2	91	0	91	ò S	/01	è			7	4	4	47	10	+	= =	-	-	\$	\$	\$	÷ '	÷ '	÷	_	_	_	_	8
	1	_	_														20.11.00	3511.70	3511.36	2611.00	3511.98	3511.98	3511.98	3511.98	3511.98	3511.36	2611.36	3611.00	3511.98	3511.98	3511.98	3511.98	3511.98	3511.98	3511.98	3511.98	3511.98	3511.98	3511.98
He		1.6/01	193	1.67	3	10.0	1.6	1.6	10/9.1	10.61	3	38.1	139	1001	3	1.00	10%	1.08	1,667.7		1667.7	1667.7	1667.7	1667.7	1667.7	1667.7	1667.7	1,647	1667.7	1667.7	1667.7	1667.7	1667.7	1667.7	1667.7	1667.7	1667.7	1667.7	1667.7
TH HE	2 MPs		=	<u> </u>	=	_	=	# T	_	_	_	_	_	_	_	_	\Box	328	200	8 8	8 8	3 %	38	882	358	358	85 8	9 8	3 %	358	38	358	358	358	358	358	358	358	360
HC, B	kg/mm2		_	_	_	_	_	_	_	-	•	•	•	•	9	9	9	0/	2 1	2 1	2 8	3 8	2 8	P	2	2	2 1	2 8	2 2	2	2	2	2	130	2	2	13	2	5
He, BHN Hc, BHN He	ke/mm2	F	110	11	11	Ï	=	=	=	=	=							L					_	1	_								_	_			0.1	1.0	
7.7	9	E	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075		0.075	0.075	•	0.35	0.33	933	93	9 8		1					9.0546	-		_							
	=	2/00	6.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075		•	_		_	_	1	0118	0.118	0.118	0.118	0.0546	0.070	0.00	0.118	0 118	8118	9118	A118	_		_
		Į											_	- ~		, -	. 60	12	1	50	7	0.	9		2 =	2	Ŧ	5	9 1	75.	17.	. X	R ¥	2 4	3 3	3:	3 5	3 8	-
1	70-7		10.10	7462 60	20 00 10	113270	136313	16207.5	184502	25777	9 00.00	77075		27.58	42016.8	5	214133	20.06.17	_	8695.65	_	_		``	20/1/50	_		_		_	16666.7	_	_	_		0 217/00			_
8		-	9,50	900	8 2	1	4630	7007	1519	9	2 2		2 8	13.5	13300	1773	8741	1550	900	7800	12000	1400	1750	2,500	300		20500	24500	2000	3,00	200	368	2 2 2	876	3001	868	30000	8 8	37
		1		A1 9001-10		Oxide coat	ر د											- Carried Control	Mild Steel	æ		Oxide cost			Substrate	MIND Steel,	2	Oxide cost											
	Materials		Substrate	2		5) BCO											1		HNAB	<u></u>	8				Z	3	ő											
	No. Reference		Ytp, 1974		Cont			•											Milan Ci al.,						Al-Astrabadi	ار او او	841												
	O. Re				<u>0</u>					_	-							1	7	_		_	_		5			_				_				_	_		_

	261.0	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	0.1%	0.192	0.192	0.192	0.192	9.19	6 .1%	9.19	6.192	0.192	6.19	6.1%	6.19	
_	L	_	_	_		_	_	_	_	_	_	_	_		_	_			_	0.205	0.205	0.205	0.205	0.205	0.248	0.248	0.248	0.248	9.248	0.248	0.248	0.248	0.248	0.248	0.248	0.242	0.242	0.242	242	0.242	0.242	
	0.77	0.22	0.22	6.22	0.224	0.22	0.22	6.22	0.22	0.224	0.22	_	_	_	_			_	_	_	_				_		_		_	_	_	_	_	_	_	_	_	_	_	_	_	1
	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	1.016	_	_	_	_	_	_	_	1.016	_	_		_	_	_	
	1880	0.884	0.884	0.884	0.884	0.884	0.884	0.884	188	0.884	0.884	0.884	1334	1.334	1.334	1.334	1.334	133	1.334	1.334	1.334	1.334	1.334	1334	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.762	0.762	0.762	0.762	0.762	0.762	
7.10	E	1181	4.877	4.877	4.877	4.877	4.877	187	1877	187	4.877	4.877	4.877	4.877	187	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4877	4877	4877	4.877	187	*
	+	_	3,607	7607	3.607	3607	3.607	1607	3,607	26.07	2,607	3.607	3.099	3.099	300	3.099	3.099	3.099	3.000	3.099	3.099	3.099	3000	300	5 334	233	5334	5.334	5.334	5.334	5.334	5.334	5.334	5.334	5.334	3.683	3683	3,683	1691	5	266	3
_	+				-			_		_	_				_					_			_				_															1
3 8	5	8 9	2 95	2 9	8 9	3 9	2 9	2 9	8 9	R 9	8 9	3 3	3 3	3 38	3	3 35	. 98	98	3	3 8	3 %	3 5	3 3	3 8	3 3	3 3	3 8	3	3	38	3	38	8	3	9	3	3 3	3 9	8 9	8 8	8 \$	8
3	5	.	· ·	_		_	_	_	_	_			_								_	_								,			_	_		_						$\frac{1}{4}$
2	YE P			_																							_		_				_	_	مة ر		2 -		٠,	2 .	2 (
_	¥w¥	3 5	3 5	3 5	3 5	3 8	3 5	3 3	50.1	50.1	5.6	3 5	3 5	3 5	2	3 5	3 5	3 5	3 5	3 5	3.5		3 5	3 5	3 5	3 5	3 5	3 5	18			2	_		3 5		_			3 5		1.63
	_	2 !	2 8	2 1	2 5	2 (2 9		2	2	6	2 8	2 5	2 2		3 8	2 2	2	1	2 (2 5	2 5	2	2 5	2 2	2	2	2	2	2	1 5			2 !	2 5	2	2 (1.3	-
								_		_				_							-																					
HE	MPs		YO !	0	× 1	2	Y	<u>~</u>	χ.	<u>م</u>	2	× :	2	<u>~</u>	R :	2 3	2 3	S 5	S 3	8 3	S,	8 3	8 3	8 3	8	8	8 ;	3.5	20.15	2 2	27.12	21.73	3 8	C.15	C.15.	31.35	231.55	31.5	931.95	21.8	31.3	31.8
E	MPs	931.95	931.95	231.9	\$31.95	231.95	231.95	231.33	931.95	231.95	231.55	931.95	23.55	S 25	251.55	231.55	S. E. S.	S.155	C.12.	531.95	931.95	231.55	231.95	531.55	931.95	231.95	931.95	នីន	2 8	2 8	2 8	2 8	5 8	2 8	2 8	2	2	8	<u>s</u>	8	8	2
NI HE BHIN HE	kg/mm2																																									
HINH	m2 kg		x	x	8	ጽ	ጽ	ጽ	ጽ	ጽ	ጽ	8	x	8	2	8	8	8	x	ጽ	ድ	<u>አ</u>	8	2	x	ጽ	8	8	8 3	ς :	8 3	\$ 3	2 3	8 3	8	S	ጽ	æ	ጽ	ጽ	ጽ	×
THE BHIN	ke/mm2	٥	•	•	•	•	-	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	0	•	0	0	•	•	•	•	•	•	•	•	1
E	9	+-		_	_	_		_	_	_	_	_	_	•	_	_	-	•	*	*	*	*	2	z	2	9	9	9	85.6	85.6	88.6	82.6	85.6	98	85,6	929	118.1	8.1	8.1	118.1	118.1	118.1
Ŀ	. 9	19	19	19	20	19	19	19	19	19			5		_	_	_	_	_		78.74	_	_	_	S 78.74	85.6	85.6		2 2			<u>ಜ</u> ಜ						25 118.1	118.1	22 110	_	_
		2	2	22	22	22	B	25	_	_	22	_	_	_	2	22		23	22	_	23		22						_		_	_									_	_
	W/m/X	8.16	73.43	8	3	1158	177	214.1	474	308	103	5913	697.8	53.71	77	82.95	25.72	192.1	235.1	245.4	315.1	391.6	47.9	559.3	S#S								_		_	611.6	_					
·	1 2		763.5	2	13/41	130	2471.5	277	27.72	2009	9	10,00	18221	333.6	737.4	939.3	1229.3	1694.3	3037.4	3458.8	5197	6952.7	87173	10429	12238	6,049	765.7	1430.9	1597.7	2563.4	3564.2	5302.3	20405	99138	1973	18221	474.1	277	98	11588	17.5	2668.7
-	Materials		A LANGITURE	-	- Frederick	- Contract																								_												
ı		1	8	i		C (3		-				_																													
	No. Reference	-	£ ;	E .	K					_		_		_							_		_					_					_	_			_		_		_	

2010	0.192	0.192	0.192	261.0	0.192	761.0	761.0	0.192	0.192	0.192	0.192	261.0	7.1.0	0.192	261.0	0.192	0.192	761.0	010	919	919	0 192	0.192	0.192	0.192	0.192	0.192	0.192	0.192	919	0 192	0.192	0.192	0.192	0.192	0.192	0.197	0.197	
100				_			_	_	_	0.238	0.238	0.238	97.0	0.238	0.238	0.238	55.0	C.W.0	C(4).0	0.00	20.00	700	300	0 00 5	0.095	0.095	0.005	90.0	90.0	190.0	9	900	190	0.08	9	9	0 0	000	
_			_		_	_	_	_	0 910	_	_	_		_		_		_			_	_	910	916	910	910.1	910	910	910	910	010	910	916	910	910	910.1	910	410	
um um um	1.010	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_				_		_	0.254	_	_	_		254	4 8	130	4	100	200	1 30	3
Ę	297.0	0.762	0.762	0.762	0.559	0.559	0.559	0.559	0.559	0.559	0.559	0.559	0.559	0.559	0.559	0.559	0.254	0.254	_	_	_	_	62.0			_	_	_	_	_	_	_	_		_	_	_	_	4
_	118.4	18.	4.877	4.877	4.877	4.877	4.87	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.877	4.87	4.87	18.	187	187	_	4.877	_	_	_	_	_	_	_	_	_	_	4.8//
-	_	3.65	3683	3,683	4.267	4.267	4.267	4.267	1367	4.267	4.267	4.267	4.267	4.267	4.267	4.267	0.457	0.457	0.457	0.457	0.457	0.457	0.457	0.457	0.457	0.457	0.457	0.305	0.305	0.305	0.305	0.305	0.302	0.305	0.30	0.305	0.305	0.30	600
-	F	_			_				_		_																												
g a		38 9	8 8	8 2	8 8	3 3	3 9	3 9	8 9	8 8	3 9	3 9	3 3	3 3	3 3	3 9	3 3	3	38	38	38	38	8	8	98 9	8 9	3 3	3 3	3 3	38	38	38	38	38	8	8	38	38	Z
K G E									_				_								_	_	-	_			_												
in/mK	-			-	-	2 .	-	5	9	9	2 5	2 5	2 2	3 3	3 8	5 5	3 8	3 8	3 8	3 8	3 8	8	8	28	1.03	1.03	56.	3 3	3 8	3 8	8	1.63	1.63	1.03	1.63	1.03	1.03	1.03	2
K K	103	1.03	1.03	5.5	5.5				_				_						_		_	_							2 8	_	. 8	. 8	8	2	2	8	8	2	
7/7	VIII/M	2	2	2	2	6	2.	2	21	5	2	13	41	2	2	130	2	2 .		2 5	- 12	-	-	=		_	_	_			_	_	_						_
	1																		-																				
H.	ME	3 8	8	8.	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	931.95	31.55	31.55	30.10	931.95	931.95	931.95	931.95	931.95	931.95	531.55	31.25	25.15%	731.33 001 06	201.20	201.70	20107	8	72
	Š	931.95	931.95	931.95	23	g	93	23	23	8	8	8	2	8	<u> </u>	2,	8,	8	8.	<u>8.</u>	8.	-				_	_	_	_			_	_				_		_
Hc, BHIN	ke/mm ²																														_			_		-	-	_	_
HINH		8.8	3 8	8	8	8	8	8	3	8	8	8	8	×	8	8	8	8	8	8	ጽ	ጸ	ጽ :	£ ;	ድ ጸ	8 8	8	X	8	ጽ	ጽ	አ	ጽ ;	S 3	81	S . 1	& ;	× 3	•
HA, BHN	ke/mm2		-					-	-								• •	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	0	•	•	•	0	0
2							_	_	-	_	0 4	0 4		-	, v	0 4	9 V	2 5	-			1.7	1.7	1.7	157.7	57.7	27.7	600	163.8	63.8	163.8	163.8	163.8	163.8	163.8	163.8	163.8	163.8	163.8
		E	118.1	116.1	116.1	1.011	1000	1000	0071	120.0	1.00.0	2 2 2	39.6	_	_	120.0	_			_	_	_	_				_	3 ×	_	25			25 16		_	_	_	_	25
4	J U		13	3 3	3 3	3 3	3	2	23	_			_	3 8	_		3 5						_	22		_			_					_				236.8	> > > > > > > > > > > > > > > > > > > >
	Cond, n	×	263.4	3236	413.7	455.8	47.45	8	なな	8 .	10.0	130.7	160.2	214	7.0.7	326.5	369.1	27.8	3.5	20.00	9 40	1007	139.7	163.9	205.1	35	288.1	3 8	2	6 2	74.52	83.53	29.86	114.81				_	_
		1202	67969	87524	10526	1228	7.697	711.1	8176	1272	1790.9	2607.3	3502.7	5223	7014.2	8769.9	10578	1228	8	3	8176	200	19190	3797	2276	202	8778.7	2	622	403.0	3 2	12554	1790	2695	35203	5773	7005	8752.4	200
	_	2		•	_	_	~	_	_	=	-	<u>a</u>	er -	<u>~</u>	_	œ	_							_						_									_
	Materials	alentate	Al 6061-T6		Anodized	Coeting	•																					_		_						_			_
		1			_	<u> </u>																																	
	No. Reference		Fletcher.	9661		Set															·																		_
	6	-			<u>-</u>		_		_	_			_	_																_	_				_				_