Distribuição Log-Normal

Propriedades e aplicações

Luiz Fernando Palin Droubi* Norberto Hochheim[†] Willian Zonato[‡] 09/08/2018

Resumo

Pretende-se com este artigo detalhar o motivo pelo qual a transformação de variável dependente pela função logaritmo é frequentemente adequada na área de avaliação de imóveis. Um procedimento muito comum nesta área é a adoção de transformações para a obtenção de um "melhor" modelo de regressão. A mais usual e preferida de muitos avaliadores é a função logaritmo, especialmente para a variável dependente. Muitas vezes esta transformação é adequada e percebe-se uma notória melhora no ajuste do modelo. Outras vezes, esta transformação pode não ser adequada. Apesar do modelo aparentar-se melhor ajustado, problemas podem ocorrer quanto às verificações das hipóteses clássicas da regressão, as quais nem sempre os avaliadores estão tão atentos quanto estão com as verificações dos intervalos de confiança e níveis de significância. No entanto, o avaliador que assim procede estará verificando intervalos de confiança e níveis de significâncias incorretos, haja vista que a hipótese da heteroscedasticidade implica na incorreção destas inferências. Entendemos que a melhor maneira para apresentar aos avaliadores a importância de criteriosas escolhas de transformações seja através da análise do histograma da variável original e transformada. Normalmente, uma boa escolha de transformação leva à uma distribuição aproximadamente normal. Quando a variável dependente apresenta distribuição lognormal, esta transformação é a transformação logaritmica. Desta maneira, demonstramos as características básicas desta distribuição, sua formulação, características além do seu relacionamento com a distribuição normal. Por fim, demonstramos as implicações da adoção da transformação da variável dependente e abordamos o problema da retransformação da variável dependente à sua escala original.

1 INTRODUÇÃO

A transformação de variáveis é um procedimento comum na Engenharia de Avaliações. No entanto, a transformação dos dados por vezes é realizada sem uma análise profunda do comportamento das variáveis. A Food and Drug Administration (FDA), órgão federal dos EUA que atua no controle da comercialização de alimentos e medicamentos no país, recomenda:

A transformação desnecessária de dados deve ser evitada. Caso tenha sido realizada transformação de dados, uma justificativa para a escolha da transformação junto com a interpretação das estimativas dos efeitos do tratamento com base nos dados transformados deve ser fornecida. (FDA, 1988 apud KEENE (1985))

No entanto, a transformação logarítmica é especial, por uma série de aspectos, como pode ser visto em KEENE (1985).

A distribuição lognormal apresenta diversas aplicações práticas. É comum, na área de avaliação de imóveis, mas não apenas¹, nos depararmos com dados que seguem esta distribuição. Neste artigo pretendemos demonstrar as principais características da distribuição lognormal, sua relação com a distribuição normal de Gauss, assim como debatemos a melhor maneira de se lidar com dados lognormais.

^{*}SPU/SC, luiz.droubi@planejamento.gov.br

[†]UFSC, hochheim@gmail.com

[‡]SPU/SC, willian.zonato@planejamento.gov.br

¹Dados estritamente positivos, como valores em moeda, altura, peso, etc, normalmente seguem a distribuição lognormal.

2 REVISÃO BIBLIOGRÁFICA

2.1 Formulação

A formulação da distribuição lognormal para os parâmetros μ e σ pode ser vista abaixo (FARIAS)

$$\begin{cases} f(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp(-\frac{(\log(x) - \mu)^2}{2\sigma^2}) & \forall x > 0 \\ 0 & \text{se } x = 0 \end{cases}$$

2.2 Propriedades

2.2.1 Valor Esperado e Variância

O valor Esperado $\mathbb E$ de uma variável aleatória com distribuição lognormal X é (FARIAS):

$$\mathbb{E}(X) = \exp\left(\mu + \frac{\sigma^2}{2}\right)$$

E sua variância é:

$$Var(X) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$$

2.2.2 Medidas de Tendência Central

A figura 1 mostra a posição das medidas de tendência central (moda, média e mediana) para um variável aleatória de distribuição log-normal.

Figura 1: Ilustração das posições de medidas de tendência central numa distribuição lognormal.

2.2.3 Efeito das variações do desvio-padrão na forma da distribuição

Figura 2: Distribuição lognormal com $\mu = 0$ e diversos valores de σ

2.2.4 Relação com a distribuição normal

Lembrando que a função densidade de probabilidade de uma variável aleatória com distribuição normal é dada por:

$$f(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\frac{(t-\mu)^2}{\sigma^2}}$$

E que para a distribuição normal-padrão (N(0,1)) a função densidade de probabilidade torna-se:

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2}$$

Seja X uma variável aleatória de distribuição normal padronizada $(X \sim N(0,1)), f_X$ a função densidade de probabilidade e $Y = e^X$. Então (F_Y) é igual a:

$$F_Y(y) = \mathbb{P}(e^X \le y) = \mathbb{P}(X \le \ln(Y)) = \int_{-\infty}^{\ln(y)} f_X(x) dx = \int_{-\infty}^{\ln(y)} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

o que equivale a:

$$F_Y(y) = \int_0^y \frac{1}{x} \frac{1}{\sqrt{2\pi}} e^{-\ln(x)^2/2}$$

Ou seja, a distribuição de uma variável $Y = e^X$, em que $X \sim N(0,1)$ é equivalente a distribuição de uma variável lognormal com parâmetros $\mu = 0$ e $\sigma = 1$.

A figura 3 ilustra este fato.

Figura 3: Comparação entre distribuições normal e lognormal padronizadas.

2.2.5 Analogia com o Teorema do Limite Central

Assim como o resultado da soma de diversas variáveis independentes com distribuições quaisquer resulta numa variável aleatória de distribuição normal (Teorema do Limite Central), o produto de diversas variáveis aleatórias resulta numa distribuição lognormal.

2.2.6 Transformação de variável e Homoscedasticidade

De acordo com Matloff (2017, p. 138), se uma variável aleatória W é aproximadamente normal, com baixo coeficiente de variação ($CV = \sigma/\mu$), e g(W) é uma função suave, então a nova variável também será aproximadamente normal, com média g(EW) e variância:

$$[g'(EW)]^2 Var(W)$$

Assumindo que os erros de uma função de regressão sejam heteroscedásticos, seguindo uma função conhecida $\sigma(t) = \mu(t)$, se aplicarmos a função logaritmo natural à variável dependente, segundo a equação acima, teremos²:

 $^{^2}$ Lembrando que a derivada da função logaritmo natural é $\frac{d}{dt} \ln t = \frac{1}{t}$ e que $\mathrm{Var}(W) = \sigma^2(W)$

$$\frac{1}{\mu^2(t)}\mu^2(t) = 1$$

Ou seja, o uso da transformação logaritmo natural, para este caso em particular, conduz à homoscedasticidade do modelo.

De acordo com Matloff (2017, p. 138), ainda, se $\sigma(t) = \sqrt{\mu(t)}$, a transformação raiz-quadrada é que traria de volta a homoscedasticidade.³

3 EXEMPLO

3.1 Dados

Os dados utilizados aqui são oriundos de Hochheim (2015, pp. 21-22) e são reproduzidos no ANEXO I.

3.2 Ajuste de distribuições aos dados

Figura 4: Ajuste da distribuição empírica a diversas distribuições teóricas.

Percebe-se pela análise das figuras 4 que o melhor ajuste se deu para a distribuição lognormal ajustada seja pelo método dos momentos (MME) ou pelo método da verossimilhança (MLE), haja vista que as outras distribuições inicialmente crescem mais rapidamente e tem pico mais achatado que os dados empíricos e as distribuições log-normais ajustadas.

$$\frac{3 \frac{d}{dt} \sqrt{t} = \frac{0.5}{\sqrt{t}} \rightarrow \text{Var}(\sqrt{W}) = \left(\frac{0.5}{\sqrt{t}}\right)^2 (\sqrt{t})^2 = 0,25$$

3.3 Gráficos

As figuras 5 a 8 mostram que os valores observados para a variável valor do conjunto de dados mencionados acima (HOCHHEIM, 2015, pp. 21–22) apresentam distribuição aproximadamente lognormal, com parâmetros $\mu = ln(v\bar{a}lor)$

a. Densidade

A figura 5 mostra o gráfico da função densidade de probabilidade (FDP) construídos com os parâmetros μ e σ obtidos da variável valor.

Figura 5: Função densidade de probabilidade com parâmetros obtidos dos dados da variável valor

b. Histograma com densidade superposta

A figura 6 mostra o histograma dos dados da variável valor, superposto com a curva da função densidade de probabilidade (FDP) da figura 5.

Figura 6: Histograma das variável valor com função densidade de probabilidade superposta.

c. Cumulativa

A figura 7 ilustra o gráfico da função cumulativa de probabilidade (FCP) para a variável valor.

Figura 7: Função cumulativa de densidade de probabilidade com parâmetros obtidos dos dados da variável valor

d. Distribuição da variável ln(valor)

A figura 8 mostra a distribuição da variável $\ln(valor)$. Pode-se notar que, conforme esperado, já que a distribuição da variável valor é aproximadamente lognormal, seu logaritmo tem distribuição aproximadamente normal.

Figura 8: Histograma com função densidade de probabilidade normal superposta

3.4 Modelos

Detectando-se a presença de variável resposta com distribuição lognormal, pode-se proceder da seguinte maneira:

- Proceder com a transformação da variável resposta pela função logarítmica;
- Proceder com a variável na escala original, corrigindo posteriormente a heteroscedasticidade com o método de Eickert-White;
- Proceder com o Método dos Mínimos Quadrados Ponderados.

3.4.1 Modelo linear com a variável resposta transformada

É fácil mostrar que o modelo linear com a variável resposta logaritmizada, ou seja, com distribuição normal, é melhor ajustado que o modelo linear de uma variável resposta lognormal. Na tabela 1, no entanto, mostra-se que, para o presente caso, esta melhora de ajuste é modesta, próxima a 4,5%. Além disso, o modelo linear, sem transformação, é heteroscedástico.

##

studentized Breusch-Pagan test

```
##
## data: fit
## BP = 17.882753, df = 7, p-value = 0.01251035
```

A função máxima verossimilhança de Box-Cox também vai apresentar como transformação ótima a transformação logarítimica, como demonstra a figura 9

Figura 9: Gráfico da função verossimilhança de Box-Cox

Na tabela 1 é possível comparar os modelos com e sem a transformação da variável resposta. Porém, como o modelo sem transformação é heteroscedástico, os intervalos de confiança dos regressores e os p-valores mostrados na tabela são inválidos, pois deve-se calcular os erros robustos antes de computá-los, o que será visto na próxima seção.

3.5 Retransformação de variáveis

O problema da transformação da variável resposta no logarítmo da variável resposta original, é que devemos estudar como proceder na retranformação da variável, para efetuar a avaliação do imóvel.

3.5.1 A desigualdade de Jensen

Segundo Matloff (2017, p. 142), a desigualdade de Jensen (aplicada à estatística) se traduz na seguinte expressão, válida para funções convexas:

$$\mathbb{E}[h(V)] \ge h(\mathbb{E}[V])$$

Isto aplicado no caso da transformação logarítimica, que é uma função côncava, se reduz à expressão abaixo (MATLOFF, 2017, p. 142):

$$\mathbb{E}[\ln Y | X = t] \le \ln(E[Y | X = t])$$

Para Matloff, então, como a igualdade só irá acontecer em poucos casos especiais, a função de regressão de $\ln(Y)$ será quase sempre menor do que o logaritmo natural da função de regressão de Y, de tal forma que a suposição que dado uma variável aleatória Y tal que assumimos que $E(Y|X=t)=e^{\beta_0+\beta_1t}$, não podemos concluir de imediato que um modelo linear razoável seria da forma $E(\ln Y|X=t)=\beta_0+\beta_1t$, pois, pela desigualdade de Jensen, se temos dados significantemente heteroscedásticos da variável original (Y), a discrepância entre os dois lados da desigualdade acima poderia variar bastante com t, potencialmente produzindo uma grande distorção à forma da curva de regressão (MATLOFF, 2017, p. 143). Segundo Becker (2012, p. 4), a desigualdade de Jensen pode ser transformada numa igualdade do tipo:

$$\mathbb{E}[f(X)] = f(\mathbb{E}[X]) + \Delta$$

Tabela 1: Comparação entre modelos com e sem transformação da variável resposta

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dependent variable:				
$\begin{array}{c} \text{area_total} \\ \text{area_total} \\ \text{area_total} \\ & \begin{array}{c} 2,893.178 \\ (2,065.405,3,720.951) \\ & \begin{array}{c} (0.001,0.002) \\ & \begin{array}{c} t = 6.850 \\ & \begin{array}{c} p = 0.00000^{***} \end{array} \end{array} \end{array} \\ & \begin{array}{c} p = 0.00000^{***} \\ & \begin{array}{c} p = 0.00000^{***} \end{array} \end{array} \\ & \begin{array}{c} p = 0.00000^{***} \\ & \begin{array}{c} 0.062 \\ & \begin{array}{c} 0.002 \\ & \begin{array}{c} 0.0002 \\ & \begin{array}{c} 0.002 \\ & \begin{array}{c} 0.003 \\ & \begin{array}{c} $	valor				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1)	(2)			
$\begin{array}{c} t = 6.850 \\ p = 0.00000^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.886 \\ p = 0.00002^{***} \\ \end{array} \qquad \begin{array}{c} t = 4.841 \\ 11.330 \\ p = 0.091 \\ \end{array} \qquad \begin{array}{c} t = 3.870 \\ p = 0.0004^{***} \\ \end{array} \qquad \begin{array}{c} t = 3.870 \\ p = 0.0004^{***} \\ \end{array} \qquad \begin{array}{c} t = 2.113 \\ p = 0.040^{***} \\ \end{array} \qquad \begin{array}{c} t = 2.121 \\ p = 0.040^{***} \\ \end{array} \qquad \begin{array}{c} t = 2.121 \\ p = 0.040^{***} \\ \end{array} \qquad \begin{array}{c} t = 2.945 \\ p = 0.000^{****} \\ \end{array} \qquad \begin{array}{c} t = 4.394 \\ p = 0.0001^{****} \\ \end{array} \qquad \begin{array}{c} t = -2.945 \\ p = 0.005^{****} \\ \end{array} \qquad \begin{array}{c} t = -3.215 \\ p = 0.0045^{***} \\ \end{array} \qquad \begin{array}{c} t = -3.215 \\ p = 0.003^{****} \\ \end{array} \qquad \begin{array}{c} t = -3.215 \\ p = 0.003^{****} \\ \end{array} \qquad \begin{array}{c} t = -3.190 \\ p = 0.003^{****} \\ \end{array} \qquad \begin{array}{c} t = -3.190 \\ p = 0.003^{****} \\ \end{array} \qquad \begin{array}{c} t = 3.975 \\ p = 0.600 \\ \end{array} \qquad \begin{array}{c} t = 3.975 \\ p = 0.0003^{****} \\ \end{array} \qquad \begin{array}{c} t = 3.975 \\ p = 0.0003^{****} \\ \end{array} \qquad \begin{array}{c} t = 0.221 \\ p = 0.827 \\ \end{array} \qquad \begin{array}{c} t = 101.170 \\ p = 0.0000^{***} \\ \end{array} \qquad \begin{array}{c} t = 101.170 \\ p = 0.0000^{***} \\ \end{array} \qquad \begin{array}{c} t = 0.906 \\ 0.940 \\ 0.940 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.930 \\ 0.940 \\ 0$	2,893.178	0.002			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.001, 0.002)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p = 0.00000^{***}$	$p = 0.00002^{***}$			
$\begin{array}{c} t = 1.330 \\ p = 0.191 \end{array} \qquad \begin{array}{c} t = 3.870 \\ p = 0.0004^{****} \end{array}$ suites $\begin{array}{c} 111,000.591 \\ (8,045.131,213,956.052) \\ t = 2.113 \\ p = 0.041^{***} \end{array} \qquad \begin{array}{c} 0.088 \\ (0.007,0.170) \\ t = 2.113 \\ p = 0.041^{***} \end{array} \qquad \begin{array}{c} t = 2.121 \\ p = 0.040^{***} \end{array}$ agaragens $\begin{array}{c} 148,427.448 \\ (49,657.102,247,197.795) \\ t = 2.945 \\ p = 0.006^{****} \end{array} \qquad \begin{array}{c} 0.097,0.253) \\ t = 4.394 \\ p = 0.0001^{****} \end{array}$ $\begin{array}{c} t = 2.23.217 \\ (-434.862,-11.571) \\ t = -2.067 \\ p = 0.045^{***} \end{array} \qquad \begin{array}{c} -0.0003 \\ (-0.0004,-0.000) \\ t = -3.215 \\ p = 0.005^{****} \end{array}$ $\begin{array}{c} t = -3.215 \\ p = 0.003^{****} \end{array} \qquad \begin{array}{c} 0.268 \\ (0.103,0.433) \\ t = -1.379 \\ p = 0.176 \end{array} \qquad \begin{array}{c} 0.034 \\ (0.169,0.498) \\ t = -0.528 \\ p = 0.600 \end{array} \qquad \begin{array}{c} 0.334 \\ (0.169,0.498) \\ t = 3.975 \\ p = 0.0003^{****} \end{array}$	73,524.375	0.169			
suites $\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-34,814.143, 181,862.894)	(0.084, 0.255)			
suites $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	t = 1.330				
$ \begin{array}{c} (8,045.13\overset{\cdot}{1},213,956.052) & (0.007,0.170) \\ t=2.113 & t=2.121 \\ p=0.041^{**} & p=0.040^{**} \\ \end{array} $ garagens $ \begin{array}{c} 148,427.448 & 0.175 \\ (49,657.102,247,197.795) & (0.097,0.253) \\ t=2.945 & t=4.394 \\ p=0.006^{***} & p=0.0001^{***} \\ \end{array} $ $ \begin{array}{c} -223.217 & -0.0003 \\ (-434.862,-11.571) & (-0.0004,-0.000 \\ t=-2.067 & t=-3.215 \\ p=0.045^{**} & p=0.003^{***} \\ \end{array} $ padraomedio $ \begin{array}{c} -146,549.393 & 0.268 \\ (-354,850.457,61,751.672) & (0.103,0.433) \\ t=-1.379 & t=3.190 \\ p=0.176 & p=0.003^{***} \\ \end{array} $ padraoalto $ \begin{array}{c} -56,064.550 & 0.334 \\ (-264,003.525,151,874.426) & (0.169,0.498) \\ t=-0.528 & t=3.975 \\ p=0.600 & p=0.0003^{***} \\ \end{array} $ padraoalto $ \begin{array}{c} -60,064.550 & 0.334 \\ (-264,003.525,151,874.426) & (0.169,0.498) \\ t=-0.528 & t=3.975 \\ p=0.600 & p=0.0003^{***} \\ \end{array} $ Constant $ \begin{array}{c} 33,953.788 & 12.315 \\ (-267,469.800,335,377.375) & (12.076,12.553) \\ t=0.221 & t=101.170 \\ p=0.827 & p=0.000^{***} \\ \end{array} $ Observations $ \begin{array}{c} 50 & 50 \\ 0.906 & 0.940 \\ 0.490 & 0.930 \\ 0.400 & 0.930 \\ 0.400 & 0.930 \\ 0.400 & 0.930 \\ 0.400 & 0.930 \\ 0.400 & 0.930 \\ 0.400 & 0.930 \\ 0.165 \\ \end{array} $	p = 0.191	$p = 0.0004^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111,000.591	0.088			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(8,045.131, 213,956.052)	(0.007, 0.170)			
garagens $ \begin{array}{ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p = 0.041^{**}$	p = 0.040**			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148,427.448	0.175			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.097, 0.253)			
dist_b_mar $ \begin{array}{ccccccccccccccccccccccccccccccccccc$,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p = 0.006^{***}$	$p = 0.0001^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-223.217	-0.0003			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-434.862, -11.571)	(-0.0004, -0.0003)			
padraomedio $ \begin{array}{ccccccccccccccccccccccccccccccccccc$,	,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p = 0.045^{**}$	$p = 0.003^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-146,549.393	0.268			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-354,850.457, 61,751.672)	(0.103, 0.433)			
padraoalto $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	t = -1.379	t = 3.190			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p = 0.176	$p = 0.003^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-56,064.550				
Constant $p = 0.600 \qquad p = 0.0003^{***}$ $33,953.788 \qquad 12.315$ $(-267,469.800, 335,377.375) \qquad (12.076, 12.553)$ $t = 0.221 \qquad t = 101.170$ $p = 0.827 \qquad p = 0.000^{***}$ $0bservations \qquad 50 \qquad 50$ $R^2 \qquad 0.906 \qquad 0.940$ $Adjusted R^2 \qquad 0.890 \qquad 0.930$ $Akaike Inf. Crit. \qquad 1,375.659 \qquad -29.275$ $Residual Std. Error (df = 42) \qquad 207,903.003 \qquad 0.165$					
Constant $ \begin{array}{ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p = 0.600	$p = 0.0003^{***}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•				
Observations 50 50 R^2 0.906 0.940 Adjusted R^2 0.890 0.930 Akaike Inf. Crit. 1,375.659 -29.275 Residual Std. Error (df = 42) 207,903.003 0.165					
R^2 0.906 0.940 Adjusted R^2 0.890 0.930 Akaike Inf. Crit. 1,375.659 -29.275 Residual Std. Error (df = 42) 207,903.003 0.165	p = 0.827	$p = 0.000^{***}$			
	50	50			
Akaike Inf. Crit. $1,375.659$ -29.275 Residual Std. Error (df = 42) $207,903.003$ 0.165	0.906 0.940				
Residual Std. Error (df = 42) $207,903.003$ 0.165	0.890 0.930				
	1,375.659 -29.275				
	57.731***	94.063***			
Note:		$valor$ (1) $2,893.178$ $(2,065.405, 3,720.951)$ $t = 6.850$ $p = 0.00000^{***}$ $73,524.375$ $(-34,814.143, 181,862.894)$ $t = 1.330$ $p = 0.191$ $111,000.591$ $(8,045.131, 213,956.052)$ $t = 2.113$ $p = 0.041^{**}$ $148,427.448$ $(49,657.102, 247,197.795)$ $t = 2.945$ $p = 0.006^{***}$ -223.217 $(-434.862, -11.571)$ $t = -2.067$ $p = 0.045^{**}$ $-146,549.393$ $(-354,850.457, 61,751.672)$ $t = -1.379$ $p = 0.176$ $-56,064.550$ $(-264,003.525, 151,874.426)$ $t = -0.528$ $p = 0.600$ $33,953.788$ $(-267,469.800, 335,377.375)$ $t = 0.221$ $p = 0.827$ 50 0.906 0.890 $1,375.659$ $207,903.003$			

E, de acordo com o mesmo (2012, p. 5), o valor de Δ , chamado de Defeito de Holder, é proporcional à variância da variável aleatória X, tal que se $f:[a,b]\to\mathbb{R}$ é duas vezes continuamente diferenciável e existem limites finitos m e M tais que $0\le m\le f''(x)\le M$ para todo $x\in[a,b]$, então existe um valor $\mu\in[m,M]$ para o qual a fórmula abaixo é válida:

$$\mathbb{E}[f(X)] - f(\mathbb{E}[X]) = \frac{1}{2}\mu \text{Var}(X)$$

Em suma, o valor de Δ é proporcional à variância de X ($\Delta \propto \sigma^2(X)$).

Deste modo, existem na literatura diversos estudos sobre qual seria o "melhor" estimador – paramétrico ou não-paramétrico – para a variável resposta original, quando da ocorrência da transformação da variável pela função logaritmo natural, como pode ser visto em DUAN (1983), MEULENBERG (1965) e SHEN; ZHU (2008).

De acordo com Shen e Zhu (2008), com a simples aplicação da transformação inversa (exponencial) à aplicada na variável dependente (logarítimica), chegamos ao *Back-Transform* (BT) *Estimator*, que tem performance "muito pior do que os outros estimadores" (2008, p. 554). De fato, o estimador BT seria mais apropriado para estimar a mediana (SHEN; ZHU, 2008, p. 554), no entanto a equação de regressão linear é uma equação para a média da variável dependente. Métodos de regressão à mediana (KOENKER; HALLOCK, 2001), então, seriam mais apropriados para este fim.

Entendemos que, na precisão necessária para a área de avaliação de imóveis, é suficiente a adoção do estimador teórico, apesar do funcionamento dos estimadores não-paramétricos ter sido demonstrado mais eficiente do que ele.

$$\mathbb{E}(Y|X) = \exp(\beta_0 + \beta_1 X + 0.5\sigma^2)$$

3.5.2 Modelo linear com posterior correção da heteroscedasticidade

3.5.2.1 Erros-padrão robustos

- a. Coeficientes
- b. Teste F

Na tabela 2, o resultado para o teste F para o modelo robusto está errado. O teste deve ser refeito com a consideração dos erros robustos:

```
## Wald test
##
## Model 1: valor ~ area_total + quartos + suites + garagens + dist_b_mar +
## padrao
## Model 2: valor ~ 1
## Res.Df Df F Pr(>F)
## 1 42
## 2 49 -7 33.42548 3.3877e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

3.5.3 Mínimos quadrados ponderados

De acordo com Matloff (2017, p. 139), em princípio, o Método dos Mínimos Quadrados ponderados (MQP) fornece melhores estimativas para os coeficientes e inferência estatística correta mesmo na presença de heteroscedasticidade. Tal método consiste, analogamente ao Método dos Mínimos Quadrados Ordinários (MQO), em uma minimização. No caso dos MQO, minimiza-se a quantidade abaixo (MATLOFF, 2017, p. 69):

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \tilde{X}_i' b)^2$$

Tabela 2: Comparação entre modelos com e sem erros robustos

	Dependen	at variable:
		lor
	default	robust
	(1)	(2)
area_total	$\begin{array}{c} 2.893,178 \\ (2.065,405,\ 3.720,951) \\ t = 6,850 \\ p = 0,00000^{***} \end{array}$	$\begin{array}{c} 2.893,178 \\ (1.712,055,\ 4.074,302) \\ t = 4,801 \\ p = 0,00001^{***} \end{array}$
quartos	73.524,375 $(-34.814,143, 181.862,894)$ $t = 1,330$ $p = 0,191$	73.524,375 $(-31.897,755, 178.946,506)$ $t = 1,367$ $p = 0,172$
suites	111.000,591 $(8.045,131, 213.956,052)$ $t = 2,113$ $p = 0,041**$	$111.000,591$ $(18.671,249, 203.329,934)$ $t = 2,356$ $p = 0,019^{**}$
garagens	148.427,448 $(49.657,102, 247.197,795)$ $t = 2,945$ $p = 0,006***$	$148.427,448$ $(73.906,905, 222.947,992)$ $t = 3,904$ $p = 0,0001^{***}$
dist_b_mar	-223,217 $(-434,862, -11,571)$ $t = -2,067$ $p = 0,045**$	-223,217 $(-406,588, -39,845)$ $t = -2,386$ $p = 0,018**$
padraomedio	-146.549,393 $(-354.850,457, 61.751,672)$ $t = -1,379$ $p = 0,176$	-146.549,393 $(-322.293,226, 29.194,441)$ $t = -1,634$ $p = 0,103$
padraoalto	-56.064,550 $(-264.003,525, 151.874,426)$ $t = -0,528$ $p = 0,600$	-56.064,550 $(-197.646,893, 85.517,794)$ $t = -0,776$ $p = 0,438$
Constant	33.953,788 $(-267.469,800, 335.377,375)$ $t = 0,221$ $p = 0,827$	33.953,788 $(-191.823,586, 259.731,161)$ $t = 0,295$ $p = 0,769$
Observations R^2 Adjusted R^2 Akaike Inf. Crit. Residual Std. Error (df = 42) F Statistic (df = 7; 42)	50 0,906 0,890 1.375,659 207.903,003 57,731***	50 0,906 0,890 1.375,659 207.903,003 57,731***

Enquanto o MQP minimiza (MATLOFF, 2017, p. 133):

$$\frac{1}{n} \sum_{i=1}^{n} \frac{1}{w_i} (Y_i - \tilde{X}_i' b)^2$$

Onde $w_i = \sigma^2(X_i)$.

3.5.4 Comparação das previsões para os dois modelos

4 CONCLUSÃO

Foi possível demonstrar de maneira gráfica que os dados da variável valor apresentados se ajustam bem a uma distribuição lognormal equivalente. Por definição, então, o logaritmo da variável possui distribuição normal.

Consideramos que o valor mais provável para a variável resposta é o seu Valor Esperado. Logo, a retransformação da variável deve ser feita para a média da variável log-normal.

Uma alternativa seria a aplicação da regressão linear ponderada (ou mínimos quadrados ponderados). No entanto, o método de Eickert-White parece ser adequado e sua aplicação menos complexa do que o método de regressão ponderada.

	fit	lwr		upr	amplitude	
1.106.966	5,61 1.012.	097,40	1.210.7	728,40	0,18	
665.565		364,31	709.4	184,96	0,13	
889.515	5,06 839.	323,09	942.7	708,54	$0,\!12$	
778.638	3,69 732.	296,73	827.9	913,31	$0,\!12$	
926.373	826.	896,03	1.037.8	317,93	0,23	
366.492	2.31 337.	377,96	398.1	119,10	0,17	
720.258		775,68		534,37	0,12	
679.913		304,18		554,68	0,14	
677.695		095,02		139,04	0,14	
703.407		531,44		933,93	0,12	
855.019		611,95		156,25	0,12	
743.187		766,15		302,39	0,12	
747.511		804,25		933,73	0,12	
479.030	,	602,14		165,94	0,24	
685.488	3,30 640.	831,29	733.2	257,28	0,13	
1.339.514	1,49 1.217.	$160,\!39$	1.474.1	168,13	0,19	
1.116.148	3,08 1.040.	974,23	1.196.7	750,59	0,14	
663.458	8,78 618.	$767,\!51$	711.3	377,93	0,14	
712.383	3,70 668.	$349,\!56$	759.3	319,03	0,13	
431.580),00 389.	600,88	478.0	082,34	0,21	
243.707	7 09 218	091,05	272.3	31,87	0,22	
483.061		055,79		133,57	0,22 $0,21$	
629.182		007,59		704,53	$0,\!21$ $0,\!17$	
778.457		734,27		298,28	0,13	
720.258		775,68		534,37	0,13 $0,12$	
385.471		491,70		157,91	0,17	
236.922		532,40		233,11	0,18	
289.533		323,28		951,95	0,17	
233.663		605,75		182,61	0,22	
398.390),85 358.	851,53	442.2	286,72	$0,\!21$	
660.321	1,06 621.	395,99	701.6	684,44	0,12	
465.669	9,76 433.	$446,\!51$	500.2	288,54	$0,\!14$	
1.582.956	5,13 1.443.	690,00	1.735.6	656,62	0,18	
2.532.821	1,47 2.218.	551,51	2.891.6	509,49	0,27	
970.590),45 911.	$737,\!58$	1.033.2	$242,\!29$	0,13	
1.219.926	3.54 1.005	450,47	1.358.5	546 82	0,22	
1.022.195	,	895,02	1.148.3	,	0,22 $0,23$	
1.129.958		156,70	1.235.8		0,23 $0,18$	
2.093.864		595,34	2.300.7		0,10 $0,19$	
1.938.988		090,88	2.190.8		0,13 $0,24$	
	*					
1.506.487	*	422,95	1.633.4		0,16	
3.464.954	*	699,80	3.832.4		0,20	
1.178.021		266,41	1.284.6		0,17	
695.650		799,37		37,29	0,19	
653.267	7,76 595.	$450,\!52$	716.6	598,95	0,19	
2.284.770),17 2.093.	977,72	2.492.9	946,64	0,17	
1.639.750		$582,\!17$	1.764.7		0,15	
813.100		277,24		311,91	0,13	
1.587.840		$634,\!52$	1.721.4		0,16	
802.909		036,73		510,12	0,14	
redicted.value	se	(i.lower	ci	upper am	olitud
$1.367.729,\!29$	121.445,88	1.212	.090,13	1.523.	368,45	0,2
614.058,83	54.198,28		.600,94		516,72	0,2
899.907,02	44.247,13		.202,04		611,99	0,1
801.067,23	58.642,85		913,40		221,07	0,1
910.856, 15	108.475,03		.839,81		872,49	0,3
445.349,38	61.718,67	366	.253,72	594	445,03	0,3
±±0.0±0,00	01.110,01	500	. 400,14	044.	110,00	$_{0,0}$

782 087 32

005 402 82

844 240 07

47 705 77

ANEXO I

valor	area total	quartos	suites	garagang	dist b mar	padrao
1060000	350.00	quartos 3		garagens 2	720	medio
			1			
510000	136.56	3	1	1	665	medio
780000	164.77	3	1	2	415	medio
550000	174.58	3	1	1	320	medio
850000	123.01	3	1	3	895	alto
300000	89.83	2	0	1	645	baixo
750000	174.00	2	1	2	860	alto
650000	123.00	3	1	1	745	alto
620000	121.00	3	1	1	745	alto
740000	109.00	3	1	1	300	medio
770000	170.00	3	1	2	590	medio
680000	141.00	3	1	1	290	medio
850000	174.00	3	1	1	465	medio
420000	105.00	3	1	0	60	baixo
547000	128.00	3	1	1	745	alto
1600000	163.00	4	2	2	90	alto
1320000	230.00	3	1	2	215	alto
615000	108.00	3	1	1	745	alto
705000	174.00	2	1	$\stackrel{-}{2}$	900	alto
418000	85.00	1	0	1	620	alto
270000	71.00	2	0	0	1380	baixo
418000	100.00	1	1	1	620	alto
650000	90.00	2	1	1	215	alto
700000	161.00	$\frac{2}{2}$	1	2	500	alto
680000	174.00	2	1	$\frac{2}{2}$	860	alto
420000	76.00	2	1	1	700	baixo
195000	48.00	1	0	0	730	baixo
290000	66.00	1	0	1	745	baixo
272000	50.00	1	0	1	1430	baixo
430000	61.00	2	0	1	170	baixo
895000	109.00	3	1	1	530	medio
450000	89.00	2	0	1	745	medio
1950000	393.00	3	1	3	550	alto
2150000	578.00	3	2	3	260	alto
940000	182.00	3	1	2	200	medio
1400000	262.00	4	1	1	60	alto
1090000	205.00	3	0	3	465	medio
1272000	196.00	3	3	2	610	alto
2800000	463.00	3	3	3	590	alto
1796000	273.00	3	3	4	140	medio
1400000	330.00	4	2	2	655	alto
3000000	533.00	4	3	4	427	alto
1200000	221.00	3	3	2	607	alto
800000	220.00	3	1	1	1000	medio
950000	127.00	2	1	1	60	medio
2061000	362.00	3	3	4	310	alto
1326000	315.00	3	3	3	600	alto
850000	151.00	3	1	2	660	medio
1650000	246.00	3	3	3	307	alto
650000	159.72	3	1	1	120	medio

REFERÊNCIAS

BECKER, R. A. The variance drain and Jensen's inequality. **CAEPR Working Paper**, 2012. Disponível em: http://dx.doi.org/10.2139/ssrn.2027471..

DUAN, N. Smearing estimate: A nonparametric retransformation method. **Journal of the American Statistical Association**, v. 78, n. 383, p. 605–610, 1983. Taylor & Francis. Disponível em: http://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478017...

FARIAS, A. M. L. DE. Métodos estatísticos aplicados à economia II: Variáveis aleatórias contínuas. Universidade Federal Fluminense..

FDA. Guideline for the format and content of the clinical and statistical sections of new drug applications. Food and Drug Administration, Public Health Service, US Department of Health and Human Services, 1988.

HOCHHEIM, N. Engenharia de avaliações - módulo básico. Florianópolis: IBAPE - SC, 2015.

KEENE, O. N. The log transformation is special. Statistics in Medicine, v. 14, p. 811–819, 1985.

KOENKER, R.; HALLOCK, K. F. Quantile regression. **Journal of Economic Perspectives**, v. 15, n. 4, p. 143–156, 2001.

MATLOFF, N. Statistical regression and classification: From linear models to machine learning. Boca Raton, Florida: Chapman & Hall, 2017.

MEULENBERG, M. T. G. On the estimation of an exponential function. **Econometrica**, v. 33, n. 4, p. 863–868, 1965. [Wiley, Econometric Society]. Disponível em: http://www.jstor.org/stable/1910362...

SHEN, H.; ZHU, Z. Efficient mean estimation in log-normal linear models. **Journal of Statistical Planning and Inference**, v. 138, p. 552–567, 2008. Elsevier. Disponível em: https://www.unc.edu/~haipeng/publication/emplnM1.pdf>..