武溪狸工大学

数学建模暑期培训论文

第1题

基于 xxxxxxxx 模型

第10组

姓名方向刘子川(组长)编程程字建模祁成写作

控制高压油管的压力变化对减小燃油量偏差,提高发动机工作效率具有重要意义。 本文建立了基于质量守恒定理的微分方程稳压模型,采用二分法、试探法以及自适应权 重的蝙蝠算法对模型进行求解。//

针对问题一,建立基于质量守恒定律的燃油流动模型,考察单向阀开启时间对压力稳定性的影响。综合考虑压力与弹性模量、密度之间的关系,提出燃油压力-密度微分方程模型和燃油流动方程。本文采用改进的欧拉方法对燃油压力-密度微分方程求得数值解;利用二分法求解压力分布。综合考虑平均绝对偏差等反映压力稳定程度的统计量,求得直接稳定于100MPa的开启时长为0.2955ms,在2s、5s内到达并稳定于150MPa时开启时长为0.7795ms、0.6734ms,10s到达并稳定于150MPa的开启时长存在多解。最后对求解结果进行灵敏度分析、误差分析。//

针对问题二,建立基于质量守恒定律的泵-管-嘴系统动态稳压模型,将燃油进入和喷出的过程动态化处理。考虑柱塞和针阀升程的动态变动,建立喷油嘴流量方程和质量守恒方程。为提高角速度求解精度,以凸轮转动角度为固定步长,转动时间变动步长,采用试探法粗略搜索与二分法精细搜索的方法求解,求得凸轮最优转动角速度 0.0283rad/ms (转速 270.382 转/分钟),并得到该角速度下高压油管的密度、压力周期性变化图。对求解结果进行误差分析与灵敏度分析,考察柱塞腔残余容积变动对高压油管压力稳态的影响。//

针对问题三,对于增加一个喷油嘴的情况,改变质量守恒方程并沿用问题二的模型调整供、喷油策略,得到最优凸轮转动角速度为 0.0522rad/ms (498.726 转/分钟);对于既增加喷油嘴又增加减压阀的情况,建立基于自适应权重的蝙蝠算法的多变量优化模型,以凸轮转动角速度、减压阀开启时长和关闭时长为参数,平均绝对偏差 MAD 为目标,在泵-管-嘴系统动态稳压模型的基础上进行求解,得到最优参数:角速度 0.0648 rad/ms (619.109 转/分钟)、减压阀的开启时长 2.4ms 和减压阀的关闭时长 97.6ms。//

本文的优点为: 1. 采用试探法粗略搜索与二分法精细搜索结合的方法,降低了问题的求解难度。2. 以凸轮转动角度为固定步长,对不同角速度按照不同精度的时间步长求解,大大提高了求解的精确度。3. 针对智能算法求解精度方面,采用改进的蝙蝠算法,使速度权重系数自适应调整,兼顾局部搜索与全局搜索能力。

关键词: 微分方程 微分方程 微分方程 微分方程

目录

— 、	问题重述	1
	1.1 问题背景	1
	1.2 问题概述	1
二、	模型假设	1
三、	符号说明	1
四、	问题一模型的建立与求解	1
	4.1 问题描述与分析	1
	4.2 模型的建立	2
	4.3 模型的求解	2
	4.4 实验结果及分析	3
五、	问题二模型的建立与求解	3
	5.1 问题描述与分析	3
	5.2 模型的建立	3
	5.3 模型的求解	3
	5.4 实验结果及分析	3
六、	问题三模型的建立与求解	5
	6.1 结果分析	5
七、	灵敏度分析	5
八、	模型的评价	
	8.1 模型的优点	
	8.2 模型的缺点	
	8.3 模型改进	5
附录	A 数据可视化的实现	7

一、问题重述

1.1 问题背景

分析研究^[1]。xxxxxxxxxxx¹.

1.2 问题概述

围绕相关附件和条件要求,研究食品运输车在各仓库间的调度方案,依次提出以下问题:

问题一:

问题二:

问题三:

二、模型假设

- (1)
- (2)
- (3)
- (4)

三、符号说明

符号	说明
P_n	20 个站点
P_n	20 个站点
P_n	20 个站点

注: 表中未说明的符号以首次出现处为准

四、问题一模型的建立与求解

4.1 问题描述与分析

问题一要求

其思维流程图如图 1 所示:

¹ xxxxxxxxxx.

武Ҋ狸工大學

图 1 问题一思维流程图

4.2 模型的建立

$$d(p_i, p_j) = |x_i - x_j| + |y_i - y_j|,$$

4.3 模型的求解

```
Algorithm 1: Procedure of Apriori
   Input: item data base: D
           minimum Support threshold: Sup_{min}
           minimum Confidence threshold: Conf_{min}
   Output: frequent item sets F
1 Initialize
    iteration t \leftarrow 1
    The candidate FIS:C_t = \emptyset
    The length of FIS: length = 1
    for i=1 to sizeof(D) do
      I_i = D(i)
2
        n=sizeof(I_i)
        for j=1 to n do
          if I_i(j) \notin C_t then
 3
 4
           C_t = C_t \cup I_i(j)
          end
 5
      end
 6
7 end
8 F_t = \{f | f \in C_t, Sup(f) > Sup_{min} \}
    while F \neq \emptyset do
      t=t+1
        length=length+1
        C_t \leftarrow \text{all candidate of FIS in } F_{t-1}
        F_t = \{f | f \in C_t, (Sup(f) > Sup_{min}) \cap (Comf(f) > Conf_{min})\}
10 end
11 return F_{t-1}
```

4.4 实验结果及分析

五、问题二模型的建立与求解

5.1 问题描述与分析

问题二要求 其思维流程图如图 2 所示:

武海狸工大学

图 2 问题二思维流程图

- 5.2 模型的建立
- 5.3 模型的求解
- 5.4 实验结果及分析

结果如下表??所示:

xxxxxxx	xxxxxxx
xxxxxxx	909.80
xxxxxxx	852.60

由表1可知

其各个小车的运输细节图下图所示:

六、问题三模型的建立与求解

6.1 结果分析

- 七、灵敏度分析
- 八、模型的评价

- 8.1 模型的优点
- (1)
- (2)
- 8.2 模型的缺点
- 8.3 模型改进

参考文献

[1] 张斯嘉, 郭建胜, 钟夫, 等. 基于蝙蝠算法的多目标战备物资调运决策优化 [J]. 火力与指挥控制, 2016, 41(1): 58-61.

附录 A 数据可视化的实现

第一问画图-python 源代码		
第二问画图–python 源代码		