



# **Artificial Intelligence**

# **Machine Learning Basics**

Dr. Sophia Saller

Summer 2022

Thank you to Prof. Jana Koehler and Annika Engel for their contribution to the slides.



## Agenda

- The learning agent revisited
- Basic concepts of machine learning
- Decision Trees
  - Entropy and information gain
- Evaluating a learned classifier
- Neural Networks
  - Perceptron and Multi-Layer Perceptron
  - Training with Backpropagation algorithm
- Risks and Challenges of applications using machine learning



#### **Recommended Reading**

#### Artificial Intelligence: A Modern Approach

by Stuart J. Russell and Peter Norvig (2016)

- Chapter 18: Learning from Examples
  - 18.1 Forms of Learning
  - 18.3 Learning Decision Trees
  - 18.7 Artificial Neural Networks
- Chapter 22: Natural Language Processing
  - 22.3.2 IR (Information Retrieval) System Evaluation



#### **Further Reading**

- Christopher M. Bishop: Pattern Recognition and Machine Learning, Springer 2006 <a href="https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/">https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/</a>
- Ovidiu Calin: Deep Learning Architectures, Springer 2020

#### More resources to learn neural networks:

- Andrew Ng's machine learning and neural networks courses on Coursera <a href="https://www.coursera.org/instructor/andrewng">https://www.coursera.org/instructor/andrewng</a>
- Intuitive introduction (including example) (and watch the further videos on this list for a more thorough introduction to backpropagation)
  https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1 67000Dx ZCJB-3pi&index=1
- A nice toolbox to visualize Neural Nets in Latex: https://github.com/HarisIqbal88/PlotNeuralNet



#### **The Learning Agent**

So far, an agent's percepts have only served to help the agent choose its actions now they also serve to improve future behavior



Russell & Norvig, Fig. 2.15



#### **Types of Learning**

The type of feedback available determines the nature of the learning problem:

- Unsupervised learning
  - No feedback is given, the agent detects patterns in the sensory input data,
     e.g., clustering and association algorithms
- Supervised learning
  - Agent observes example input—output pairs and learns a function that maps from input to output, e.g., decision trees and neural networks
- Reinforcement learning
  - Agent learns from a series of reinforcements (rewards or punishments) returned from the environment when the agent executes actions, e.g., AlphaZero



#### **Supervised Learning**

- A training example is a pair (x, f(x))
- The complete set of examples is called the training set
- Pure inductive inference: for a collection of examples for f, return a function h
   (hypothesis) that approximates f
- The function h is member of a hypothesis space H
- A learning problem is realizable if the hypothesis space H contains the true function f



#### Accuracy of a Learned Function and Ockham's Razor

- A learned hypothesis h is given a test set of examples that are distinct from the training set
  - h is consistent with the training set if it agrees with all examples from the training set
  - h generalizes well if it correctly predicts value of y = f(x) for examples from the test set

- How do we choose from among multiple consistent hypotheses?
  - Ockham's Razor: prefer the simplest hypothesis consistent with the data
  - In general, there is a tradeoff between complex hypotheses that fit the training data well and simpler hypotheses that may generalize better
  - Maximize a combination of consistency and simplicity



#### **Example: Which Hypothesis is Preferred by Ockham's Razor?**



a) Consistent hypothesis that agrees with all the data

Russell & Norvig, Fig. 18.1

- b) Degree-7 polynomial that is also consistent with the data set
- c) Data set that can be approximated consistently with a degree-6 polynomial
- d) Sinusoidal exact fit to the same data



#### Supervised Learning is a Form of Inductive Learning

- Supervised learning is a simplified model of real learning, which ignores prior knowledge of the agent, and that induces a hypothesis from input-output example pairs
  - Assumes that such example pairs exists
- Deductive learning learns a new rule from an existing rule, which is entailed by the data and more specific (and thus useful, because more efficient to apply)
- Supervised learning shown impressive results over the last years
  - Training data occur in massive amounts through digitization (observable environments)
  - Annotation of input data (labeling) to add the expected output is possible, but labor-intensive and risks that human bias is encoded into the data



## **Decision Tree Learning**



#### **Decision Tree**

## **Input**

Description of an example object or a situation through a fixed set of attributes  $A = \{a_1, ..., a_n\}$ 

#### **Output**

A single value, a final "decision", of the example based on its attributes

- Both, input values and output values can be discrete or continuous
- Learning a discrete-valued functions leads to classification problems
- If the classification is Yes/No → Boolean Decision Tree
- Learning a continuous function is called regression



#### **Boolean Decision Tree when Training**

#### <u>Input</u>

A set S of vectors of input attributes  $A_i = \{a_1, ..., a_n\}$  and for each vector a single Boolean output value y of the goal predicate (function to be learned)

#### <u>Output</u>

Definition of the goal predicate in the form of a decision tree

$$S = \{A_i, y_i\}_{i \in \{1, ..., m\}} \mapsto D$$

where  $D: \{a_j\}_{j \in I} \mapsto \{\text{TRUE}, \text{FALSE}\} \text{ and } J \subseteq \{1, ..., n\}.$ 



#### **Properties of (Boolean) Decision Trees**

- Each root or internal node of the decision tree represents a test of an attribute
- Branches are labeled with the possible outcome attribute values of the test
- Each leaf node specifies the Boolean value to be returned if this leaf is reached
- A classification of an instance means to traverse the tree from the root node to one of the leaf nodes



#### The Restaurant Example

- Goal predicate: WillWait
- Test predicates:
  - 1. Patrons: How many guests are there? (none, some, full)
  - 2. WaitEstimate: How long do we have to wait? (0-10, 10-30, 30-60, >60)
  - 3. Alternate: Is there an alternative? (True/False)
  - 4. Hungry: Am I hungry? (True/False)
  - 5. Reservation: Have I made a reservation? (True/False)
  - 6. Bar. Does the restaurant have a bar to wait in? (True/False)
  - 7. Fri/Sat: Is it Friday or Saturday? (True/False)
  - 8. Raining: Is it raining outside? (True/False)
  - 9. *Price*: How expensive is the food? (\$, \$\$, \$\$\$)
  - 10. Type: What kind of restaurant is it? (French, Italian, Thai, Burger)



## **The Training Set**

| Example           | Input Attributes |     |     |     |      |               |      |     |         |       | Goal           |
|-------------------|------------------|-----|-----|-----|------|---------------|------|-----|---------|-------|----------------|
|                   | Alt              | Bar | Fri | Hun | Pat  | Price         | Rain | Res | Type    | Est   | WillWait       |
| $\mathbf{x}_1$    | Yes              | No  | No  | Yes | Some | \$\$\$        | No   | Yes | French  | 0–10  | $y_1 = Yes$    |
| $\mathbf{x}_2$    | Yes              | No  | No  | Yes | Full | \$            | No   | No  | Thai    | 30–60 | $y_2 = No$     |
| $\mathbf{x}_3$    | No               | Yes | No  | No  | Some | \$            | No   | No  | Burger  | 0–10  | $y_3 = Yes$    |
| $\mathbf{x}_4$    | Yes              | No  | Yes | Yes | Full | \$            | Yes  | No  | Thai    | 10–30 | $y_4 = Yes$    |
| $\mathbf{x}_5$    | Yes              | No  | Yes | No  | Full | <i>\$\$\$</i> | No   | Yes | French  | >60   | $y_5 = No$     |
| $\mathbf{x}_6$    | No               | Yes | No  | Yes | Some | <b>\$\$</b>   | Yes  | Yes | Italian | 0–10  | $y_6 = Yes$    |
| $\mathbf{x}_7$    | No               | Yes | No  | No  | None | \$            | Yes  | No  | Burger  | 0–10  | $y_7 = No$     |
| <b>X</b> 8        | No               | No  | No  | Yes | Some | <b>\$\$</b>   | Yes  | Yes | Thai    | 0–10  | $y_8 = Yes$    |
| <b>X</b> 9        | No               | Yes | Yes | No  | Full | \$            | Yes  | No  | Burger  | >60   | $y_9 = No$     |
| $\mathbf{x}_{10}$ | Yes              | Yes | Yes | Yes | Full | <i>\$\$\$</i> | No   | Yes | Italian | 10–30 | $y_{10} = No$  |
| $\mathbf{x}_{11}$ | No               | No  | No  | No  | None | \$            | No   | No  | Thai    | 0–10  | $y_{11} = No$  |
| $\mathbf{x}_{12}$ | Yes              | Yes | Yes | Yes | Full | \$            | No   | No  | Burger  | 30–60 | $y_{12} = Yes$ |

Russell & Norvig, Fig. 18.3

Classification of examples (and value of the goal predicate) is positive (T) or negative (F)



#### A Boolean Decision Tree for deciding whether to wait for a Table



Russell & Norvig, 4<sup>th</sup> edition Fig. 19.3



#### **Inducing Decision Trees from Examples**

- Naive solution: we simply construct a tree with one path to a leaf for each example
- In this case, we test all the attributes along the path and attach the classification of the example to the leaf
- Whereas the resulting tree will correctly classify all given examples, it will not say much about other cases

- It just memorizes the observations and does not generalize
  - "Overfitting"



#### **An Intuitive Characterization of Overfitting**

- A machine learning algorithm that suffers from overfitting will generate a hypothesis h, which is consistent with all training examples
- However, h is not generalizing beyond the training data
  - It will unlikely predict unseen data well
  - It often does not correspond to Ockham's razor as it is not a simpler description of the training data than the training data themselves



https://en.wikipedia.org/wiki/Overfitting (June 2021)



#### **Memoization of the Training Set**

 A trivial consistent decision tree for any training set has one path from the root node to a leaf node for each example attribute vector (row in the table)

| Instance | Attr. A | Attr. B | Goal: A XOR B |  |  |
|----------|---------|---------|---------------|--|--|
| X1       | F       | F       | F             |  |  |
| X2       | F       | Т       | Т             |  |  |
| Х3       | Т       | F       | Т             |  |  |
| X4       | Т       | Т       | F             |  |  |



- > Prefer to find a small tree consistent with the training examples
  - (Recursively) choose the most "significant" attribute as root of the (sub)tree that is constructed in the next step of the learning algorithm



## Size of the Hypothesis Space for Decision Tree Learning

- How many distinct decision trees can we built with n Boolean attributes?
  - Number of distinct truth tables with n rows :  $2^n$
  - "Answer" column of a truth table:  $2^n$ -bit number that defines the function
  - Number of Boolean functions over  $n = 2^{2^n}$  ( $2^{2^n}$  functions from  $2^n$  to  $\{0,1\}$ )
  - There are more than that number of trees, since more than one tree can compute the same function
- 6 Boolean attributes yield a hypothesis space of at least 18,446,744,073,709,551,616 trees
- For the 10 attributes of the restaurant example, there are more than  $2^{1024} = 10^{308}$  potential candidate decision trees



#### **Expressiveness of Decision Trees**

Each decision tree hypothesis for the WillWait goal predicate is equivalent to an assertion of the form

$$WillWait \Leftrightarrow Path_1 \vee Path_2 \vee \cdots \vee Path_n$$

where each  $Path_i$  is the conjunction of tests along a path from the root of the tree to a leaf with the value true, e.g.,  $Path = Patrons = Full \land WaitEstimate = 0-10$ 

Limitation:

$$\exists r_2: NearBy(r_2,r) \land Price(r,p) \land Price(r_2,p_2) \land Cheaper(p_2,p)$$

cannot be represented as a test. Adding a new attribute *CheaperRestaurantNearby* makes the decision tree grow exponentially



#### **Compact Representations of Boolean Functions**

- For every Boolean function we can construct a decision tree by translating every row of a truth value table to a path in the tree
  - a tree of size exponential in the number of attributes
- There are functions that require an exponentially large decision tree:

Parity function: 
$$p(x) = \begin{cases} 1, & \text{even number of inputs are 1} \\ 0, & \text{otherwise} \end{cases}$$

Majority function: 
$$p(x) = \begin{cases} 1, & \text{half of inputs are 1} \\ 0, & \text{otherwise} \end{cases}$$

 There is no consistent and compact (non-exponential) representation for all possible Boolean functions



#### Finding a Smallest Tree is Intractable

- Applying Ockham's Razor, we would like to find the simplest decision tree that is consistent with the training set
  - An optimal decision tree minimizes the expected number of tests
- Finding an optimal decision tree is NP-complete [Hyafil & Rivest, 1976]
  - No efficient algorithm to construct an optimal decision tree exists, unless P=NP



Can we devise an efficient decision tree learning algorithm that generates "smallish" trees?



#### **Splitting Examples by Choosing an Attribute**

- Idea: a good attribute splits the examples into subsets that are (ideally) all positive or all negative: Patrons is a better choice than Type
- Type is a poor attribute it leaves us with four subsets each containing positive and negative examples





#### Idea for a Recursive Decision Tree Learning Algorithm

- Divide and Conquer approach:
  - Choose a good (or better: the best) attribute
- Split the training set into subsets each corresponding to a particular value of that attribute
- Once the training set is divided into several smaller training sets, the algorithm can recursively apply this process to the smaller training sets
  - Select the next best attribute and split the remaining training sets further
  - In general, after an attribute test splits up the examples, each outcome is a new decision tree learning problem with fewer examples and one less attribute



### Four Cases to consider for a recursive Decision Tree Learning Algorithm

- 1. If the remaining examples are all positive (or all negative), then terminate and return Yes (or No)
- 2. If there are some positive and some negative examples, then choose the best attribute to split them
- 3. If there are no examples left, then no example has been observed for this combination of attribute values:
  - Return a default value calculated from the plurality classification of all the examples that were used in constructing the node's parent
  - Answer Yes if the majority of the parent node's examples is positive, otherwise No
- 4. If there are no attributes left, but both positive and negative examples, then these examples have exactly the same description, but different classifications:
  - Do a plurality classification of the remaining examples: Answer Yes if the majority of the remaining examples is positive, otherwise No



#### **Root Causes for Inconsistent Classifications**

- If there are no attributes left, but both positive and negative examples, then these
  examples have exactly the same description, but different classifications
- Possible root causes:
  - There is an error or noise in the data
  - The domain is nondeterministic
  - The agent cannot observe an attribute that would distinguish the examples



#### The Decision-Tree-Learning Algorithm

**function** DECISION-TREE-LEARNING(examples, attributes, parent\_examples) **returns** a tree

```
if examples is empty then return PLURALITY-VALUE(parent\_examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else A \leftarrow \operatorname{argmax}_{a \in attributes} \text{ IMPORTANCE}(a, examples) tree \leftarrow \text{a new decision tree with root test } A for each value v_k of A do exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\} subtree \leftarrow \text{DECISION-TREE-LEARNING}(exs, attributes - A, examples) add a branch to tree with label (A = v_k) and subtree subtree Russell & Norvig, Fig. 18.5 return tree
```

- IMPORTANCE assigns importance measure to each attribute (precise definition see later slides)
- PLURALITY-VALUE selects the most common output value among a set of examples breaking ties randomly



#### The Learned Tree





first version of the tree

Russell & Norvig, 4<sup>th</sup> edition Fig. 19.6



#### **Properties of the Decision Tree Learning Algorithm**

- The algorithm returns a tree that is consistent with all training examples (in general: if no plurality decision needed to be taken during construction)
  - Some attributes tests are not included since the algorithm can classify the examples without them
- The learned tree is considerably simpler than the one originally given
  - The greedy search used is designed to approximately minimize the depth of the final tree
- Ideally, the Importance function selects the perfect attribute, which divides the examples into sets of only positive or only negative examples to construct a leaf
  - A formal measure of the importance of an attribute can be based on the information gain of this attribute



#### **Properties of Decision Trees**

- + Can represent any (Boolean) function
- Can handle both numeric and categorical data
- + Require only little data preparation
- Perform well on smaller and larger data sets
- + Small decision tree can be generated by ranking attributes based on information gain
- Easy to understand and interpret for humans (explainability)

- Finding a minimal decision tree is NP-hard
- Size of the tree can be exponential in the number of attributes
- Algorithms tend to create complex trees that do not generalize well (overfitting)
- As any learning algorithm, DT learning is sensitive to data quality
- Small change in training data can result in a big change in the tree
- Less predictive power than other machine learning algorithms



## **Information Gain and Entropy**



#### The Notion of Information Gain and Entropy

- The IMPORTANCE function will be based on the information gain provided by an attribute
  - Information gain is defined based on entropy, the fundamental quantity in information theory (Shannon and Weaver, 1949)
- Entropy is a measure of the uncertainty of a random variable
  - Acquisition of information corresponds to a reduction in entropy
  - The less one knows about the outcome of an action or event, the more valuable the information when the outcome can be observed
  - The higher the information gain when observing the outcome



#### **Defining Entropy: Example of Tossing a Coin**

- A random variable with only one value an unfair coin that always comes up heads - has no uncertainty
  - Entropy is defined as zero
  - No gain in information by observing its value, because the outcome is known in advance
- A flip of a fair coin is equally likely to come up heads or tails, 0 or 1
  - Counts as 1 bit of entropy
- The outcome of the roll of a fair six-sided die can be encoded using 3 bits
  - It takes 3 bits to describe one of the six outcomes of equal probability
  - Its entropy will be a value between 2 and 3



#### **Definition of (Bitwise) Entropy**

• Entropy H of a random variable V with values  $v_k$ , each with probability  $P(v_k)$ , is defined as

$$H(V) = \sum_{k} P(v_k) \log_2 \left(\frac{1}{P(v_k)}\right) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

$$\log_n\left(\frac{a}{b}\right) = \log_n(a) - \log_n(b), \text{ here } a = 1 \text{ and thus } \log_n(1) = 0 \quad \text{more at CMS>Information>Materials>Supplementary Materials}$$

$$\sum_k P(v_k) \log_2\left(\frac{1}{P(v_k)}\right) = \sum_k P(v_k) \underbrace{\log_2(1)}_{0} - \sum_k P(v_k) \log_2(P(v_k)) = -\sum_k P(v_k) \log_2(P(v_k))$$

Entropy of a fair coin:

$$H(Fair) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1 \text{ bit}$$

Entropy of an unfair ("loaded") coin that gives 99% heads:

$$H(Loaded) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01) \approx 0.08 \text{ bits}$$



### **Example: Entropy of a Fair Die**

$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

$$P(v_k) = \frac{1}{6} = 0.166$$

Sum up 6 times for the 6 possible outcomes:

$$H(Die) = -6 \times (0.166 \log_2 0.166)$$
  
 $\approx -6 \times (0.166 \times -2.59074485332)$  bits  
 $\approx -6 \times -0.43006364565$   
 $\approx 2.5803818739$ 



### **Entropy of a Boolean Variable**

• B(q) is the entropy of a Boolean variable that is true with probability q

$$B(q) = -(q \log_2 q + (1 - q) \log_2 (1 - q))$$

For example,

$$H(Loaded) = B(0.99) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01) \approx 0.08 bits$$

• If a training set contains p positive and n negative examples, then the entropy of the goal attribute on the whole set is

$$H(Goal) = B\left(\frac{p}{p+n}\right)$$

 $\frac{p}{p+n}$  is the fraction of positive outcomes



### Influence of Testing an Attribute on Entropy

- The restaurant example has p = n = 6,  $\frac{p}{p+n} = 0.5$  as there are 50 % positive examples where a guest waits
- The entropy of the goal attribute is  $B(WillWait) = 1 \, bit$ , which encodes the two possible outcomes (wait or do not wait)
- A test on a single attribute cannot give more than this entropy
- Measure this value precisely by determining the entropy <u>after</u> performing the test on this attribute
  - The value of an attribute A depends on the additional information that is still required to classify the remaining examples after A was applied



# Entropy of the Goal Predicate w.r.t. a specific Attribute Value

- An attribute A with d distinct values divides the training set E into subsets  $E_1, \dots, E_d$
- Each subset  $E_k$  with  $k=1,\ldots,d$  has  $p_k$  positive and  $n_k$  negative examples, so along this branch we need an additional

$$B\left(\frac{p_k}{p_k + n_k}\right)$$

Type=Italian:  $B\left(\frac{1}{2}\right)$ 

bits of information to classify the remaining examples

• A randomly chosen example from the training set has the  $k^{th}$  value for the attribute with probability  $\underline{p_k + n_k}$ 

$$\frac{n}{p+n}$$

Type=Italian:  $\left(\frac{1+1}{6+6}\right)$ 



### **Expected Entropy after Testing an Attribute**

• Multiplying the entropy of an outgoing branch for a specific attribute value (1) with the probability of its occurrence (2) and summing this up over all possible attribute values  $k=1,\ldots,d$  with number of positive outcomes  $p_k$  and number of negative outcomes  $n_k$  yields the expected entropy after the test on attribute A





#### **Information Gain**

- The information gain from the attribute test on A is the reduction in entropy of the goal predicate by the expected entropy after testing on A
  - IMPORTANCE function computes the information gain and chooses the attribute with the largest value

$$Gain(A) = B\left(\frac{p}{p+n}\right) - Remainder(A)$$

$$= B\left(\frac{p}{p+n}\right) - \sum_{k=1}^{d} \frac{p_k + n_k}{p+n} B\left(\frac{p_k}{p_k + n_k}\right)$$



## **Example: Information Gain of Attributes in the Restaurant Example**



$$Gain(Type) = 1 - \left[\frac{2}{12}B\left(\frac{1}{2}\right) + \frac{2}{12}B\left(\frac{1}{2}\right) + \frac{4}{12}B\left(\frac{2}{4}\right) + \frac{4}{12}B\left(\frac{2}{4}\right)\right] = 1 - \frac{12}{12} = 0 \text{ bits}$$
French Italian Thai Burger

4 different values of the Type attribute

French: 1 positive + 1 negative Italian: 1
Thai: 2 positive + 2 negative Burger: 2

Italian: 1 positive + 1 negative
Burger: 2 positive + 2 negative



# **Evaluating a Learned Classifier**



# **Machine Learning Workflow: Training and Testing**

- 1. Collect a large number of examples with known outcome (ground truth)
  - The data should be representative for the application domain, of high quality and free of noise, errors, and bias
- 2. Divide the examples into two <u>disjoint</u> sets: the training set and the test set
- 3. Use the training set to generate *h*
- 4. Evaluate h based on the test set
  - For example, measure the percentage of examples of the test set that are correctly classified by h
- 5. Repeat the process for randomly-selected training/test sets of different sizes
  - Result is a learning curve for the learning algorithm



# Learning Curve for the Decision Tree Learner on the Restaurant Example

- Learning curve (aka happy graph)
   evaluates the accuracy of a learning
   algorithm based on a given example set:
   100 examples in the restaurant problem
  - Start with training set size 1 and increase in each training by 1 until 99
- For each size, repeat the process of randomly splitting 20 times, and average the test results of the 20 trials
- The curve shows that as the training set size grows, the accuracy increases



Russell & Norvig, 4<sup>th</sup> edition Fig. 19.7



# **Separation of Training and Test Set**

- Training and test sets must be kept separate!
- Common error: Retraining an algorithm using examples from the test set and then repeating the evaluation using the <u>same</u> test set
  - Knowledge about the test set is learned by the algorithm and represented in the resulting classifier
  - Training and test sets are no longer independent
- Note the limitation: the accuracy of machine learning is only demonstrated using a set of example data how can we know that  $h \approx f$  for all data?
  - No generalization beyond the sample data is possible with certainty
  - Lab testing results rarely transferrable to the real-world



# Systematic Splitting of Example Data using k-fold Cross-Validation

- Basic idea: each example can serve as training data and test data
- 1. Split data into k equal subsets
- 2. Perform k rounds of learning on k-1 sets of training data
- 3. Test on remaining 1/k of data
- Average test set score of the k rounds should then be a better estimate than a single score
  - Popular values for k are 5 and 10





### Possible Outcomes of a Boolean Classifier on a Test Example

- TRUE Positive (Tp)
  - Classifier correctly predicts a positive example as being positive
- TRUE Negative (Tn)
  - Classifier correctly predicts a negative example as being negative
- FALSE Positive (Fp)
  - Classifier incorrectly predicts a negative example as being positive
- FALSE Negative (Fn)
  - Classifier incorrectly predicts a positive example as being negative



# **Example: False Positives and False Negatives in Medical Diagnosis**









Lilly does <u>not</u> have measles (false negative: the virus infection is not recognized)

No treatment



Lilly has measles false positive: the bacterial infection is not recognized

Wrong treatment

CAS DBI: Introduction to AI



# **Example Testing Scenario**

- Test set size 165 examples
  - Positive examples  $p_T = 105$
  - Negative examples  $n_T = 60$
- Outcomes of the classifier
  - TRUE Positive Tp = 100
  - TRUE Negative Tn = 50
  - FALSE Positive Fp = 10
  - FALSE Negative Fn = 5
- Note that  $p_T = Tp + Fn$  and  $n_T = Tn + Fp$



# **Accuracy: Percentage of Correct Classifications**

 Accuracy shows the proportion of correct classifications compared to the total number of tests

$$accuracy = \frac{Tp + Tn}{p_T + n_T}$$

• A perfect classifier that has learned the correct function h=f has accuracy 1 (or 100%) as Tp=pT and Tn=nT hold



# Recall/Sensitivity: Performance when Answering YES

- Recall measures how often a classifier returns YES in comparison to the positive examples
- Recall is also called True-Positive Rate or Sensitivity
  - For example, i information retrieval, recall is the fraction of the relevant documents that are successfully retrieved

$$recall = \frac{Tp}{Tp + Fn}$$

• A perfect classifier has recall = 1 (or 100%) because Fn = 0



# **Specificity: Performance when Answering NO**

- Specificity defines how often a classifier returns NO in comparison to the negative examples
- Specificity is also called True-Negative Rate:
  - For example, specificity is the estimated probability that a randomly selected patient is correctly identified as not having a tested disease

$$specificity = \frac{Tn}{Tn + Fp}$$

• A perfect classifier has specificity = 1 (or 100%) because Fp = 0



# Precision: Performance when Answering YES and Tn cannot be assessed

- Often, the size of Tn cannot be determined in an application domain
  - For example: how many web pages are not correct matches for a Google search query?
  - Accuracy and specificity cannot be calculated in these cases
- Instead, use precision: When the classifier predicts YES, how often is it correct?

$$precision = \frac{Tp}{Tp + Fp}$$

• A perfect classifier has precision = 1 (or 100%) because Fp = 0



# F<sub>1</sub> Score

- The F<sub>1</sub> score provides a single measure that summarizes the overall performance combining precision and recall
  - F<sub>1</sub> is the harmonic mean between precision and recall
  - $F_1$  is independent of Tn

$$F_{1} = \frac{2}{\frac{1}{recall} + \frac{1}{precision}} = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

- A perfect classifier has an F₁ score of 1 due perfect precision and recall
- The lowest possible value is 0 if either precision or recall is zero



# **Example**

- Test set size 165 examples
  - Positive examples  $p_T = 105$
  - Negative examples  $n_T = 60$
- Outcomes of the classifier
  - TRUE Positive Tp = 100
  - TRUE Negative Tn = 50
  - FALSE Positive Fp = 10
  - FALSE Negative Fn = 5

• 
$$accuracy = \frac{Tp+Tn}{p_T+nT} = \frac{150}{165} = 0.909$$

• 
$$recall = \frac{Tp}{Tp+Fn} = \frac{100}{100+5} = 0.952$$

• 
$$specificity = \frac{Tn}{Tn+Fp} = \frac{50}{60} = 0.833$$

• 
$$precision = \frac{Tp}{Tp+Fp} = \frac{100}{100+10} = 0.909$$

• 
$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall} = 2 \cdot \frac{91.95}{91+95} = 92,95$$



## A Probabilistic Interpretation of Precision and Recall

Let us consider a medical diagnosis system for cancer

Recall is the probability of a positive test given that the patient has cancer:

$$\frac{Tp}{Tp+Fn} = \frac{p(Classifier = YES, Cancer = YES)}{p(Cancer = YES)} = p(Classifier = YES | Cancer = YES)$$

 Precision is the probability that a randomly selected patient from all patients with a positive test indeed has cancer:

$$\frac{Tp}{Tp+Fp}$$
 = p(Cancer = YES | Classifier = YES)

- Relation to statistical errors:
  - Type I error: 1 specificity Type II error: 1 recall



# **Neural Networks**



#### A Neuron in the Human Brain

- 10<sup>11</sup> neurons of over 20 types
- A neuron can connect to 10-10<sup>5</sup> other neurons via synapses
- Signals are noisy "spike trains" of electrical potential
- A key property of the human brain is neural plasticity
  - The neural network can reorganize its connections





#### **Neural Networks Research**



https://beamandrew.github.io/deeplearning/2017/02/23/deep\_learning\_101\_part1.html (accessed in 2017, picture no longer available)



#### McCulloch-Pitts "Unit" Model of a Neuron

Neuron fires when a linear combination of its inputs exceeds predefined threshold



 The bias weight (multiplied with input 1.0) is a constant to shift the result of activation function towards the positive or negative side (offset the result)



### **Activation Functions commonly used in Neural Networks**

Russell/Norvig, 4th edition, Figure 21.2







- (a) logistic or sigmoid function  $1/(1 + e^{-x})$
- (b) ReLU function max(0, x) and softplus function  $ln(1 + e^x)$  (smooth approximation of ReLU function to constrain output to always be positive, derivative is the logistic function)
- c) the tanh function  $\tanh x = \frac{e^x e^{-x}}{e^x + e^{-x}}$



# **Neural Networks can implement Boolean Functions**

• Using a step function with step value t (the threshold value), the output 1 or 0 is produced depending on whether the weighted input sum is higher/lower than t







OR

**NOT** 

weighted input:

$$1 \cdot 1 + 1 \cdot 1 = 2$$

$$1 \cdot 1 + 1 \cdot 0 = 1$$

 $1 \cdot 0 + 1 \cdot 0 => 0$  $1 \cdot 0 + 1 \cdot 1 => 1$ 

$$-1 \cdot 0 => 1$$
  
 $-1 \cdot 1 => 0$ 

Output depending on threshold:

$$2 > 1.5 => 1$$

$$1 < 1.5 => 0$$



#### **Network Structures**

- Feed-forward networks are directed acyclic graphs, they have no internal state other than the weights
  - Single-layer perceptron
  - Multi-layer perceptron

- Recurrent networks:
  - Activation is fed back to causing units (cyclic graphs)
  - Have internal state (short term memory), e.g., LSTM networks
  - Hopfield nets use bidirectional connections with symmetric weights  $w_{i,j} = w_{j,i}$



# Single-Layer Perceptron (Rosenblatt 1957)

- Inputs connected directly to the outputs
  - Output units all operate separately:
     m outputs = m separate networks
- Minsky and Papert showed in 1969 that perceptrons can only learn linear separable functions
  - M. Minsky, S.Papert: Perceptrons: An Introduction to Computational Geometry MIT Press 1969





# **Linear Separable Functions**

 $\sum_{j} w_{j} x_{j} > t \text{ or } W \cdot x > t$ 

- Consider a perceptron with a step function
  - Can represent AND, OR, NOT, majority, etc., but not XOR
  - Represents a linear separator in the input space
  - Only a small fraction of all Boolean functions is linearly separable









# Multi-Layer Perceptron / Feed-forward Network

- Input and output layers are usually fully connected via at least one hidden layer
- Network architecture (number of hidden layers/edges typically chosen by hand)





## **Expressiveness of Feed-Forward Networks with Hidden Layers**

- Feed-Forward network with a single, sufficiently large hidden layer can represent any continuous function of the inputs with arbitrary accuracy
- Feed-Forward with two hidden layers can be represent discontinuous functions

#### Perceptron



Adjusting weights moves location, orientation, and steepness of the linear separator

#### Feed-Forward Networks with Hidden Layers



Result of combining two oppositefacing soft threshold functions to produce a ridge



Result of combining two ridges to produce a bump

Russell/Norvig,, Figures 18.17 and 18.23



### **Learning in Feed-forward Network**

- Feed-forward network is a parameterized family of nonlinear functions
- Adjusting weights changes the function: do learning this way!



inputs hidden layer output

$$a_5 = g(w_{3,5} \cdot a_3 + w_{4,5} \cdot a_4)$$
  
=  $g(w_{3,5} \cdot g(w_{1,3} \cdot a_1 + w_{2,3} \cdot a_2) + w_{4,5} \cdot g(w_{1,4} \cdot a_1 + w_{2,4} \cdot a_2))$ 



## Idea of Backpropagation Learning for Multi-Layer Networks

- Output expressed as a function of the inputs and the weights
- When the derivative of this function can be calculated, we can use the gradientdescent loss-minimization method to train the network
- Learning = minimizing the squared error "cost" function by performing optimization search using gradient descent
  - Split error across hidden units: unit j is responsible for some fraction of the error in each of the output units to which it connects
  - Error is divided according to the strength of the connection between a hidden unit and the output unit
  - Continue to propagate the error to the previous layer and adjust weights between two layers until input layer is reached



# **Derivation of the Error and the Correcting Error Term**

The squared error on a single example with expected output  $y_k$  and current output  $a_k$  is defined as

$$E = \frac{1}{2} \sum_{k} (y_k - a_k)^2$$

$$a_k = g(in_k) = g\left(\sum_{j} w_{j,k} a_j\right)$$

where the sum is over the k units in the output layer

Then, the partial derivative of the error wrt. a specific weight using the chain rule yields

$$\frac{\delta E}{\delta w_{j,k}} = -(y_k - a_k) \frac{\delta a_k}{\delta w_{j,k}} = -(y_k - a_k) \frac{\delta g(in_k)}{\delta w_{j,k}} = -(y_k - a_k) \frac{\delta in_k}{\delta w_{j,k}}$$

$$= -(y_k - a_k)g'(in_k) \cdot \frac{\delta}{\delta w_{j,k}} \Biggl( \sum_j w_{j,k} a_j \Biggr) = -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$

$$= -(y_k - a_k)g'(in_k) \cdot a_j = -\Delta_k a_j$$



# **Illustration of Steepest Gradient Descent**

- The error is minimized by moving the weights into the opposite direction of the derivative of the squared error
- Backpropagation is an iterative numerical process as there is no analytical solution to the equation  $\nabla E(\vec{w}) = 0$





 $\nabla E$  = Vector of derivatives with respect to weights  $w_1$  and  $w_2$ 



# **Backpropagation Learning by Adjusting Weights**

Adjust weights of edges leading to unit k in output layer:

$$w_{j,k} \leftarrow w_{j,k} + \alpha \times a_j \times \Delta_k$$

 $\alpha\,$  - learning rate, a small constant, e.g., 0.02

g' - derivative of activation function g

where 
$$\Delta_k = g'(in_k)(y_k - a_k)$$

Adjust weights of edges leading to unit j in hidden layer:

$$w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta_i$$

where 
$$\Delta_j = g'(in_j) \sum_k w_{j,k} \Delta_k$$



# The Backpropagation Algorithm

 The book by Calin 2020 contains a comprehensive overview over modern training algorithms using for example, local and stochastic search to find an error-minimizing weight vector

```
function Back-Prop-Learning (examples, network) returns a neural network
   inputs:
   examples a set of examples, each with input vector x and output vector y;
   network, a multilayer network with L layers, weights w_{i,j}, activation function g
   local variables: \Delta, a vector of errors, indexed by network node
   while some stopping criterion is not satisfied do
       for each weight w_{i,j} in network do
           w_{i,j} \leftarrow \text{a small random number}
       for each example (x, y) in examples do
           /* Propagate the inputs forward to compute the outputs */
           for each node i in the input layer do
               a_i \leftarrow x_i
           for l=2 to L do
               for each node j in layer l do
                   in_j \leftarrow \sum_i w_{i,j} a_i
                   a_i \leftarrow q(in_i)
           /* Propagate deltas backward from output layer to input layer*/
           for each node j in the output layer do
               \Delta[j] \leftarrow g'(in_j) \cdot (y_j - a_j)
           for l = L - 1 to 1 do
               for each node i in layer l do
                   \Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]
           /* Update every weight in network using deltas */
           for each weight w_{i,j} in network do
               w_{i,j} \leftarrow w_{i,j} + \alpha \cdot a_i \cdot \Delta[j]
   return network
```



## **Termination of the Learning Process in a Neural Network**

- Backpropagation searches for a weight vector  $\vec{w}$  such that  $E(\vec{w})$  takes its smallest value
- The error function usually has a highly nonlinear dependence on the weights and the bias parameters and there will be man points in the weight space at which the gradient vanishes or is numerically very small
  - 2-layer network with m hidden units: each point in weight space is a member of  $m! \ 2^m$  equivalent points
  - Multiple inequivalent minima exist
- For a successful application using neural networks it might not be necessary to find the global minimum, but to compare several local minima from different training processes



## **Neural Network Training - An Intuitive Example**

## Take a Right Turn?

- Traffic Light is Red & Green Arrow exists: Yes
- Traffic Light is Green: Yes
- Traffic Light is Red & No Green Arrow: No



https://www.sueddeutsche.de/auto/abbiegen-rot-radfahrer-gruenpfeil-1.4280175

Training Example:

77 CAS DBI: Introduction to AI



# **Example Neural Network Learning**

#### **Network structure**



Learning rate:  $\alpha = 1$ 

## **Example Instance:**

input vector = (1,0) expected output value = 0

#### g-function



Derivative of the ReLu function max(0, x)

$$ReLu'(x) = 0$$
 for  $x \le 0$   
 $ReLu'(x) = 1$  for  $x > 0$ 

Note that when x = 0, the derivative does not exist, but one can define a value, common practice 0, 0.5, or 1.



#### Initialization of Input Layer with Training Example Vector





Expected output: 0

Experiment with computations in neural networks:

https://playground.tensorflow.org



#### Forward Propagation of Inputs to Hidden Layer





## Forward Propagation of Values from Hidden Layer to Output Layer





# **Observing the Error at the Output Unit**





# Computation of Error Correcting Term Delta in Output Layer





# Backpropagation and Distribution of Delta Value to Units in Hidden Layer



= -0.5



# **Update Weights**





#### Impact of Learning Rate on Weight Update

for each weight  $w_{i,j}$  in network do  $w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$ 

$$\alpha = 1$$

$$w_{1,3} = 1 + 1 \cdot 1 \cdot (-0.5) = 1 + (-0.5) = 0.5$$

$$1 \qquad 1 \qquad \Delta = -0.5$$
New weight: 0.5





## **Network with Updated Weights**



Old values in grey for comparison

weighted input sum is -0.25, ReLu returns 0 for a negative input expected output 0 is now computed on this training example

- Same input into the new network → Squared error is reduced to 0
  - The network has learned to recognize the example correctly

• Squared Error: 
$$\frac{1}{2}(0 - a_5)^2$$
: old network =  $\frac{1}{2}(0 - 1)^2 = 0.5$ 

new network = 
$$\frac{1}{2}(0-(0))^2 = 0$$



# Comparison Multi-Layer Network - Decision Tree in the Restaurant Domain

- Training curve on the left shows the gradual reduction in error by backpropagation over several epochs (number of complete passes through the training set)
- Comparative learning curves on the right that decision-tree learning does slightly better on the restaurant problem than backpropagation in a multi-layer network





# **Risks and Challenges of Machine Learning Applications**



# Review of the Machine Learning Workflow to build Applications





Test on Test Set

Assess prediction quality of statistical pattern



#### Apply to single concrete case

- Predict membership of this case in trained class with certain confidence
- "Lilly has measles with 99 % confidence"

There is no solid mathematical basis that supports the correctness of the prediction on a single case CORRELATION 

CORRELATION

#### Train on Training Set

- Cases of measles and non-measles
- Extract statistical pattern



#### A Statistical Model is NOT a CAUSAL Model

- Machine learning algorithms extract statistical patterns, which are valid for a large population of specific examples
- There is no guarantee that the statistical pattern represents a causal model for the application domain and the question to be answered.
- Furthermore, the learned model is often inaccessible to human understanding
  - In neural networks, the model is described by the network architecture and the weight vector
  - Its semantic interpretation in terms of causality is unknown and an open question for AI research
- This means when we apply these models to a single case, the prediction may be correct or wrong independently of the confidence value a machine learning algorithm might have returned (the error on the single case can be high even if it is low on a larger population)



# **Wrong Predictions with High Confidence**

- Neural networks can make predictions with high confidence on totally meaningless input patterns
  - The patterns were generated from real object pictures using genetic algorithms
- Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." In *Proceedings of the IEEE conference on* computer vision and pattern recognition, pp. 427-436. 2015.



A baseball with 99.6 % confidence





## Incorrect Prediction with High Confidence by Google Vision Service in 2018

 Incorrect high-confidence predictions can occur anywhere at anytime leading to uncontrollable risks in an AI application





#### **Universal Adversarial Perturbations in Neural Networks**

- A small universal (image-agnostic) perturbation vector can be automatically computed that causes natural images to be misclassified with high probability
- Perturbations are quasi-imperceptible to the human eye and generalize very well across state-of-the-art neural networks
  - Attacks succeed even when the network architecture in an application is unknown
- Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. "Universal adversarial perturbations." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1765-1773. 2017.





## **Summary**

- Machine learning is a very important and huge research area in Al
- Supervised learning takes a set of annotated training data (input-output pairs) as input and computes a function to correctly predict the output for a given input
- Information theory provides an important basis for learning and the evaluation of learning algorithms
- Decision tree learning is an effective learning method for smaller data sets
- Feed-forward neural networks are directed layered graphs of units and can be trained with backpropagation
- Machine learning algorithms extract statistical models, not causal models these models must be applied with extreme caution, they should not be applied to take decisions on human individuals



# **Working Questions**

- 1. What is the architecture of a learning agent?
- 2. What is supervised learning?
- 3. How does Decision Tree learning work?
- 4. How can we compute the information gain of an attribute?
- 5. How can we evaluate the results of a learning algorithm?
- 6. What is the architecture of a neural network?
- 7. What is the difference between a perceptron and a multi-layer perceptron?
- 8. How does the training of neural networks work with backpropagation?