

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

<u>Help</u>

Unit 0: Overview

- EntranceSurvey
- Unit 1: Probability models and axioms
- ▼ Unit 2:
 Conditioning and independence

Unit overview

Lec. 2: Conditioning and Bayes' rule

Exercises 2 due Feb 2, 2017 20:59 ART

<u>Lec. 3:</u> <u>Independence</u>

Exercises 3 due Feb 2, 2017 20:59 ART

Solved problems

Problem Set 2
Problem Set 2 due Feb
2, 2017 20:59 ART

Unit 3: Counting Unit 2: Conditioning and independence > Lec. 3: Independence > Exercise: Independence of event complements

Exercise: Independence of event complements

☐ Bookmark this page

Exercise: Independence of event complements

1/1 point (graded)

Suppose that $m{A}$ and $m{B}$ are independent events. Are $m{A^c}$ and $m{B^c}$ independent?

Yes, they are independent ▼

✓ Answer: Yes, they are independent

Answer:

We saw in the previous segment that for any 2 generic events E_1 and E_2 , independence of E_1 and E_2 implies independence of E_1 and E_2^c . In the case of this particular problem, we can apply this result with $E_1=A$ and $E_2=B$ to conclude that since A and B are assumed to be independent, then A and B^c are also independent.

Independence is symmetric, so A and B^c being independent is the same as B^c and A being independent. If we now reuse the generic result with $E_1=B^c$ and $E_2=A$, we can conclude that B^c and A^c are also independent, which by symmetry is the same as A^c and B^c being independent.

To summarize:

A and B independent \Rightarrow A and B^c independent \Rightarrow B^c and A independent \Rightarrow A^c and A^c independent

Submit

You have used 1 of 1 attempt

Correct (1/1 point)

© All Rights Reserved

29/1/2017 Exercise: Independence of event complements | Lec. 3: Independence | 6.041x Courseware | edX

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

