Kínai karakterek felismerése konvolúciós neurális hálók használatával

Szilvási Péter

Miskolci Egyetem, 2019. január 24.

Kínai karakterek felismerése

Vonások, vonás sorrend

- A vízszintes vonások megelőzik a függőleges vonásokat.
- A balra lejtő vonások megelőzik a jobbra lejtő vonásokat.
- Az írásjegyek írását felülről kell kezdeni.
- Az írásjegyet balról jobbra haladva építik fel.
- A felülről keretezett írásjegyeknél előbb a keretet kell meghúzni.
- Az alulról keretezett írásjegyeknél a keretet legvégül kell meghúzni.
- 🔞 A teljes keretet mindig legvégül kell bezárni.

OCR megvalósítások

- Dokumentumok digitalizálása
- OCR részei: szkennelő fej + szoftver [1]
- Feldolgozási szintek: [2]
 - \blacksquare Alacsony szintű: zajos kép \to előfeldolgozás \to javított kép
 - \blacksquare Középső szintű: kép \to szegmentálás \to kép jellemzők
 - \blacksquare Magas szintű: jellemzők \to osztályozás \to osztálycímke

OCR megvalósítások

OCR típusok: online, offline [3]

Kínai karakter felismerése

- Zaj szűrés: pontszerű zajok, elmosódás, forgatás, kontraszt
- Jellemzők kinyerése

OCR megvalósítások

 Song
 多体汉字

 Fang
 多体汉字

 Kai
 多体汉字

 Hei
 多体汉字

Egy elterjedt algoritmus [4]

Dimenzió redukció

$$d_i = \frac{l_i}{\sqrt{\sum_{k=1}^8 l_k^2}}$$

- Tanítás
- Tesztelés

Font	Song	Fang	Kai	Hei
Train	99.82	99.64	99.81	99.57
Test	99.71	99.50	99.80	99.09

Jellemzők kinyerése, Dimenzió redukció

- Főkomponens analízis (Principle Component Analysis)
 - lacktriangle Magas dimenzió ightarrow Alsó dimenzió
 - $\blacksquare Av = \lambda v$
- Kernelek alkalmazása
 - Nem lineáris leképezések
- Neurális háló szerkezete

Alacsony szintű jellemzők

- Éldetektálás
 - Kép fényerejének hirtelen változása
- Sarokérzékelés
 - Harris és Stephens algoritmus

 - Elforgatott kép: $\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$
- Skála invariáns jellemző transzformáció (SIFT, Scale Invariant Feature Transform)
 - Kulcspontok megtalálása
 - Euklideszi távolság

Irány szerinti jellemző kinyerés

- Irány dekompozíció
 - Négy irányú bontást felváltotta a nyolc irányú
 - Sobel operátor

-1	0	1
-2	0	2
-1	0	1

	1	2	1
	0	0	0
I	-1	-2	-1

- Elmosódás és mintavétel
 - Gauss függvény:

$$g(x,y) = \frac{1}{\sqrt{2\pi}\sigma} e^{\left(-\frac{x^2+y^2}{2\sigma_x^2}\right)}$$

- Korlátozás nélküli minták
 - Normalizálás
 - Jellemző kinyerés
 - Osztályozó modell

Mesterséges neurális hálók

Neurális hálózatok [5]

- Rétegek
- Elemei

Backpropagation

- Hiba $E_{total} = \sum \frac{1}{2} (target output)^2$.
- Láncszabály $\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} \cdot \frac{\partial out_{o1}}{\partial net_{o1}} \cdot \frac{\partial net_{o1}}{\partial w_5}$.

Konvolúciós neurális háló

- Hálózat felépítése (konvolúciós rétegek \rightarrow hagyományos ANN)
- Bemenet \rightarrow (Konvolúció \rightarrow RELU \rightarrow POOL) \rightarrow Kimenet(FC)

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Input x Filter

Feature Map

Hálózat tanítás

- 1. Előre terjesztés
- 3. Hiba visszaterjesztés
- 2. Veszteség számítás
- 4. Súly frissítés

Dropout

A háló felépítése

- Tesztelés
- Transfer learning

A hálózat architektúrája

A hálózat architektúrája

```
model.add(MaxPooling2D(pool\_size = (2,2)))
```

```
model.compile(loss='mean_squared_error', # Hiba
optimizer='adam', metrics=['accuracy'])

model.fit_generator(generator=training_data,
steps_per_epoch=1000, epochs=10) # Tanitas
```

Az offline adatbázis

Adathalmaz: nyomtatott, kézzel írott, generált

- Tanító/Teszt(80/20), random.shuffle(self.images)
- Tanító minták változatossága
- Tesztelés módja
- Helyesség ellenőrzése

A felismerés hatékonysága

Összegzés

- Kínai karakterek
 - stroke
 - vonásrend
- OCR
 - részei
 - használt OCR bemutatás
- Jellemzők kinyerése
 - dimenzió redukció
 - alacsony szintű jellemzők
 - irány szerinti jellemző kinyerés
- Neurális hálózatok
 - hagyományos neurális háló (ANN)
 - konvolúciós neurális háló (CNN)
- Validáció
 - adathalmaz előállítás
 - hálózat osztályozása

Hivatkozások

- 1 Tikk Domonkos: *Optikai karakterfelismerés*, online melléklet, TypoTeX kiadó, 2006.
- 2 Rövid A., Vámossy Z., Sergyán S.: A gépi látás és képfeldolgozás párhuzamos modelljei és algoritmusai, 2014.
- 3 Liu, Yin, Wang, Wang: Online and offline handwritten chinese character recognition: benchmarking on new databases, Pattern Recognition, 2013.
- 4 X. Wu, M. Wu: A recognition algorithm for chinese characters in diverse fonts, Image Processing, 2002.
- 5 Fazekas István: Neurális hálózatok, Debreceni Egyetem, 2013.

Köszönöm szépen a figyelmet!