Data Structure: Graph & Tree Basics

Graph

Definition (Graph)

- 一個圖 (Graph) G = (V, E) 由兩個部分組成:
 - 1. V 是一個有限的集合,稱作 Virtices。
 - 2. *E* 是一個 V 上的 Binary Relation,稱作 Edge Set。這個 Relation 通常用 (_,_) 表示。
 - 3. 如果 E 是 ordered pair,則這個圖稱作「有向圖」;如果 E 是 unordered pair,則稱作無向圖。

Remark

- 1. 雖然 E 中的元素有 order/unordered 之別,但符號上都用 (u,v) 表示。
- 2. 在無向圖中 $(u,v) \Rightarrow (u,v)$; 但有向圖中 $(u,v) \Rightarrow (u,v)$

Definition (Incident)

- 1. 若 G=(V,E) 是有向圖,且 $(u,v)\in E$,則稱 (u,v) 「incident from / leaves u」,且「incident to / enters v」。
- 2. 若 G=(V,E) 是無向圖,且 $(u,v)\in E$,則稱 (u,v) 「incident on u and v」。

Remark

- 1. 其實這比較像英文的用語介紹。
- 2. 接下來的內文為了方便,在有向圖中,用「從 u 離開」表示「incident from/leaves u」;用「進入 u」表示「incident to / enters v」。
- 3. 用「經過u的邊」表示「incident on u」。

Definition (Degree)

- 1. 若 G=(V,E) 是個有向圖, $u\in V$, 則:
 - 1. In-degree of u: 進入 u 的邊數。

$$d_{u,i} = |\{(i,u)|(i,u) \in E\}|$$

2. Out-degree of u: 從 u 出發的邊數。

$$d_{u,o} = |\{(u,i)|(u,i) \in E\}|$$

3. Degree of u: u 的 in-degree m out-degree。

$$\deg(u) = d_{u,i} + d_{u,o}$$

- 2. 若 G=(V,E) 是個無向圖,且 $u\in V$,則:
 - 1. Degree of u:

$$\deg(u) = |\{(u,i)|(u,i) \in E\}|$$

3. (Hand-Shaking Lemma) 假定 G=(V,E) 是個無向圖,則:

$$\sum_{u \in V} \deg(u) = 2|E|$$

Definition (Path)

1. 一個從 u 到 u', 長度為 $k \ge 0$ 的 path, p, 定義為一個由 V 中的元素形成的序列:

$$p = \langle v_0, v_1 \ldots v_k
angle$$

且該序列滿足「 (v_i, v_{i+1}) 是邊」「頭尾分別是 u, u'」即:

$$egin{cases} v_0 = u \ v_k = u' \ orall i \in \{0\dots k-1\}.\,(v_i,v_{i+1}) \in E \end{cases}$$

因為上面這個東西定義要塞進邏輯裡面實在是太長了,所以用:

$$p$$
 is a path from $_{-1}$ to $_{-2}$

來說明 p 是一個滿足上述性質的序列。

2. (Simple) 若 p is a path from u to u', 且 p 的長度為 k。若:

$$orall (i,j) \in \{(i,j) | 0 \leq i,j \leq k, i
eq j \}. \ v_i
eq v_j$$

則稱 p 為「simple」 path。因為把 path 的定義跟 simple 的定義全部塞進邏輯裡面實在是太長了,所以就用:

p is a simple path

表示 p 是一個滿足 simple 和 path 性質的序列。

3. (Cycle) 若 p is a path from u to u', 且:

$$u = u'$$

則稱p為一個「cycle」。一樣因為實在是太長了,所以

p is a cycle

表示 p 是一個滿足 cycle 跟 path 性質的序列。

4. (Reachable) 若 (u,v) 之間存在 path, p, 則稱「v is reachable from u via p」。即:

$$egin{aligned} \exists k \in \mathbb{N} \cup \{0\}. \, \exists \langle v_0 \ldots v_k
angle. \ v_0 &= _1, \ v_k &= _2, \ orall i \in \{n | 0 \leq n \leq k\}. \, v_i \in V \end{aligned}$$

因為在 formal logic 中把 Reachable 的定義全部填上去實在太麻煩,所以用:

 $_{-1}$ $_{-2}$ reachable

表示兩個點 $_{-1}$, $_{-2}$ 是 reachable 的。以及:

 $_{-1}$ $_{-2}$ is not reachable

表示: ¬(_1 _2 reachable)

另外,因為k可以是0,所以不管是否(u,u),u自己一定跟自己是 reachable 的。

5. (Connected) 假定:

 $\forall \mathrm{u}, \mathrm{u}' \in V$. $\exists p. p$ is a path from u to u'

則稱圖是 Connected. 用:

G is connected

表示 G 是一個滿足 connected 性質的 graph; 用:

G is not connected

表示 \neg (G is connected)

6. (cyclic) 假定:

 $\exists p. p \text{ is a path } and p \text{ is a cycle}$

則稱 G 是 cyclic。相反地,若:

 $\neg(\exists p. p \text{ is a path } and p \text{ is a cycle})$

則稱 G 是 acyclic. 分別用:

 $\left\{ \begin{array}{l} G \text{ is cyclic} \\ G \text{ is acyclic} \end{array} \right.$

表示有環跟無環。

Thm:無向圖有 Path ⇒ 有 Simple Path

存在 $path \Rightarrow$ 存在 $simple\ path$

- 1. |V|=2: 只有兩個點。顯然成立。
- 2. 假定 |V| = |V'| 1 時命題成立,則對於任意 $u, v \in V$:
 - 1. $u, v \in V'$: 由歸納法假設可知命題成立。
 - 2. $u \in V', v \notin V'$, 且 u, v 存在 path, 且僅有最後一個點為 v: 令該 path 為:

$$p = \langle u, u_1 \dots u_{k-1}, v \rangle$$

- $\exists v \neq u, u_1 \ldots u_{k-1} \text{ if } u, u_1 \ldots u_{k-1} \in V'$.
- 由歸納法假設知 u, u_{k-1} 間存在 simple path, p'。
- 又 $v \notin V'$, 故 $v \notin p'$, 因此可知p為一 simple path。
- 3. $u \in V', v \notin V'$, 且 u, v 存在 path, 且 v 不只最後一個點為 v:
 - 假定v第一次出現在 u_k

 - 由於 p' 中 v 僅在最後出現,故套用 2. 可知 $u, u_k = v$ 之間存在 simple path。

Thm: Undirected, Connected $\Rightarrow |E| \ge |V| - 1$

- 1. |V| = 1 原題顯然成立。
- 2. 假定 |V| = |V'| + 1,隨便挑出一個點 $v \in V$,並令剩下的子圖 G' = (V', E')。 $V = V' \cup \{v\}, v \notin V', E' \subset E$:

已知: $|E'| \geq |V'| - 1$

且: |V| = |V'| + 1

若原圖 $G=(V,E)=(V'\cup\{v\},E)$ 連通,則 $\exists u\in V'.(u,v)=:e\in E$,否則 v 不連通。而 $v\not\in V'$,故 $e\not\in E'$,因此:

$$|E| \ge |E'| + 1 \ge |V'| + 1 = |V|$$

3. 由數學歸納法知原題成立。

Free Trees

Definition (樹等價定義們)

下列敘述等價:

1. G 是 Tree \equiv G 是個連通、無環、無向的圖。

$$G ext{ is a tree} \equiv \left\{ egin{aligned} G ext{ is undirected}, and \ G ext{ is connected}, and \ G ext{ is acyclic} \end{aligned}
ight.$$

2. 任兩點存在唯一 simple path 的圖:

$$\forall u, u' \in V, u \neq u'$$
. $\exists ! p. p$ is a simple path

- 3. 隨便砍一條邊就會不連通的連通圖:
 - 1. G is connected, and
 - 2. $\forall e \in E. G' = (V, E \setminus e)$ is not connected
- 4. 連通, 而且邊數 = 點數 1 的圖:
 - 1. G is connected, and
 - 2. |E| = |V| 1
- 5. 無環,而且邊數=點數-1的圖
 - 1. G is acyclic, and
 - 2. |E| = |V| 1
- 6. 無環,
 - 1. G is acyclic

2. $\forall e \in \{(u_i, u_j) | u_i, u_j \in V, (u_i, u_j) \notin E\}. \forall G' \in \{(V, E \cup e)\}.G' \text{ is cyclic}$

證明

1. $\lceil 1. \Rightarrow 2. \rfloor$

反證:

- 1. 如果不存在 path, 顯然與連通的前提矛盾。
- 2. 若存在超過兩個相異 simple path,任選兩條 $p_1=(a_0\dots a_{k_a})$, $p_2=(b_0\dots b_{k_b})$,其中 $a_0=b_0$, $a_{k_A}=b_{k_b}$ 。
 - 1. 在 p_1,p_2 中,選擇最小的 k_1 與最小的 k_2 ,使得 $a_{k_1}=b_{k_2}$ 。以及次小的 k_1',k_2' ,使得 $a_{k_1'}=b_{k_2'}$ 。
 - 2. 這樣的 k_1, k_2 與 k_1', k_2' 必定存在,因為最差狀況下 $k_1 = 0, k_2 = 0$,以 及 $k_1' = a_{k_a}, k_2' = b_{k_b}$ 。
 - 3. $p = (a_{k_1} \dots a_{k'_1}, b_{k'_2-1} \dots b_{b_{k_1}})$ 為一個 cycle。與前提矛盾。

Remark: 敘述的意思並不是「任兩點存在的 path 都是 simple path」,而是「如果兩點間有 simple path,則該 simple path 唯一」。

- 2. $\lceil 2. \Rightarrow 3. \mid$
 - 1. 因為任兩點都存在 simple path,故 connected.
 - 2. 假定 $\exists e = (u, v)$. $G' = (V, E \setminus (u, v))$ is connected,則可知 u, v 仍然 rechable,令這條 path 為 p',則可知 G 當中,至少有兩個方法構造 u 往 v 的相異 simple path:
 - 1. p': 因為「u, v 有 path $\Rightarrow u, v$ 有 simple path」
 - 2. (u, v)

故:

$$\neg (\exists e = (u, v). G' = (V, E \setminus (u, v)) \text{ is connected})$$

把「塞進去之後得證原敘述成立。

3. 「3. ⇒4. 」

前面 Thm 已經證完 $|E| \geq |V| - 1$,僅證 $|E| \leq |V| - 1$ 即可。