Chapter 1 Introduction

Incomplete Data

- Due to no direct measurement
- Due to refusal / Don't know / not available
- Due to uncertainty in the measurement
- Due to design
- Due to self-selection

J.K. Kim (ISU) Chapter 1 2 / 28

Example 1: No direct measurement

- A study of managers of lowa farmer cooperatives (n = 98)
- Five variables
 - x₁: Knowledge (knowledge of the economic phase of management directed toward profit-making in a business and product knowledge)
 - x₂: Value Orientation (tendency to rationally evaluate means to an economic end)
 - x_3 : Role Satisfaction (gratification obtained by the manager from performing the managerial role)
 - x₄: Past Training (amount of formal education)
 - y: Role performance
- We are interested in estimating parameters in the regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$

J.K. Kim (ISU) Chapter 1 3/28

Example 1 (Cont'd)

Measure	No. of Items	Mean	Reliability
x_1 Knowledge	26	1.38	0.6096
x_2 Value orientation	30	2.88	0.6386
x_3 Role satisfaction	11	2.46	0.8002
x_4 Past training	1	2.12	1.0000
y Role performance	24	0.0589	0.8230

Example 1 (Cont'd)

Ordinary least squares method

$$\hat{Y} = -0.9740 + 0.2300X_1 + 0.1199X_2 + 0.0560X_3 + 0.1099X_4$$

$$(0.0535) \quad (0.0356) \quad (0.0375) \quad (0.0392)$$

Errors-in-variable estimates

$$\hat{Y} = -1.1828 + 0.3579X_1 + 0.1549X_2 + 0.0613X_3 + 0.0715X_4$$

$$(0.1288) \quad (0.0794) \quad (0.0510) \quad (0.0447)$$

Reference:

Warren, White, and Fuller (1974). "An Errors-In-Variables Analysis of Managerial Role Performance", JASA, 69, p 886-893.

J.K. Kim (ISU) Chapter 1 5/28

Example 2. Asthma Study Data (Pigott, 2001)

Variable descriptions

Variable	Definition	Possible values	Mean	N
Asthma	Level of confidence	1= little confidence	4.057	154
belief		5= lots of confidence		
Group	Treatment or control	0 = treatment	0.558	154
		1 = control		
Symsev	Severity of asthma	0 = no symptoms	0.235	141
	symptoms in 2 weeks	3 = severe symptoms		
Reading	Standardized state	Grade equivalent scores,	3.443	79
	reading test scores	from 1.10 to 8.10		
Age		Ranging from 8 to 14	10.586	152
Gender		0 =Male	0.442	154
		1 = Female		
Allergy	No. of allergies	Range from 0 to 7	2.783	83
-				

J.K. Kim (ISU) Chapter 1 6 / 28

Example 2 (Cont'd)

Missing Data Patterns

Symsev	Reading	Age	Allergy	# of cases	% of cases
0	0	0	0	19	12.3
M	0	0	Ο	1	0.6
Ο	М	0	Ο	54	35.1
0	Ο	0	М	56	36.4
M	М	0	0	9	5.8
M	0	0	М	1	0.6
Ο	М	0	М	10	6.5
Ο	0	М	М	2	1.3
M	М	0	М	2	1.3
				154	100.0

J.K. Kim (ISU) Chapter 1 7/2

Example 2 (Cont'd)

Results (CC: Complete Case, ML: Maximum Likelihood)

Variable	CC an	alysis	ML analysis		
	В	SE	В	SE	
Intercept	4.617	0.838	4.083	0.362	
Trt group	-0.550	0.276	-0.132	0.112	
Symsev	-0.315	0.161	-0.480	0.144	
Reading	0.409	0.096	0.218	0.039	
Age	-0.211	0.115	-0.089	0.043	
Gender	0.198	0.189	0.084	0.104	
Allergy	-0.005	0.057	0.063	0.029	

Reference:

Pigott (2001). "A Review of Methods for Missing Data", *Educational Research and Evaluation*, 7, 353-383.

Example 3: 2009 Local Area Labor Force survey in Korea.

- Large scale survey with about n = 157K sample households.
- Obtain the employment status: Employed, Unemployed, Not in labor force.
- To obtain response, interviewers visit the sample households up to four times. That is, the current rule allows for three follow-ups.

J.K. Kim (ISU) Chapter 1 9 / 28

Example 3 (Cont'd)

Realized Responses from the Korean LF survey data

status	t=1	t=2	t=3	t=4	No response
Employment	81,685	46,926	28,124	15,992	
Unemployment	1,509	948	597	352	32,350
Not in LF	57,882	32,308	19,086	10,790	

J.K. Kim (ISU) Chapter 1 10 / 28

Example 3 (Cont'd)

	First Response at t-th visit			No	
	t = 1	t=2	t=3	t = 4	Response
Response Rate (%)	42.94	24.40	14.55	8.26	9.85
Ave. Unemp. Rate (%)	1.81	1.98	2.08	2.15	?

Response propensity seems to be correlated with the unemployment rate.

Reference:

Kim, J.K. and Im, J. (2014). "Propensity score weighting adjustment with several follow-ups", *Biometrika* **101**, 439-448.

J.K. Kim (ISU) Chapter 1 11/28

Example 4: BMI data example

- Korean Longitudinal Study of Aging (KLoSA) data (http://www.kli.re.kr/klosa/en/about/introduce.jsp)
- Original sample measures height and weight from survey questions (N=9,842)
- A validation sample (n=505) is randomly selected from the original sample to obtain physical measurement for the height and weight.

Reference:

Y. Xu, J.K. Kim, and Y. Li. (2017). "Semiparametric estimation for measurement error models with validation data", Canadian Journal of Statistics 45, 185–201.

J.K. Kim (ISU) Chapter 1 12 / 28

Outline

Table: Outline of a 15-week lecture

Weeks	Chapter	Topic
1-2	1-2	Introduction. Likelihood-based approach
3-5	3	Computation
6-7	4	Imputation
8-9	5-6	Multiple Imputation & Fractional Imputation
10-11	7	Propensity scoring approach
12	8	Nonignorable missing data
13-14		Causal inference
15		Final Presentation

J.K. Kim (ISU) Chapter 1 13/2

Overview lecture: Measurement errors in the outcome variable

Bayes theorem

Bayes theorem

$$P(C \mid D) = \frac{P(D \mid C)P(C)}{\sum_{c} P(D \mid C)P(C)}$$

where

- C: true status (e.g. disease status) (Unobservable)
- D: measurement (e.g. test result) (Observable)
- Conditional Bayes theorem

$$P(C \mid D, X) = \frac{P(D \mid C, X)P(C \mid X)}{\sum_{c} P(D \mid C, X)P(C \mid X)},$$
 (1)

where X is covariates (observable).

J.K. Kim (ISU) Chapter 1 15/28

May assume that

$$P(D \mid C) = P(D \mid C, X).$$

This is often called the non-differentiable measurement error assumption.

• Under the non-differentiable measurement error assumption, we can express (1) as

$$P(C \mid D, X) = \frac{P(D \mid C)P(C \mid X)}{\sum_{C} P(D \mid C)P(C \mid X)},$$
 (2)

J.K. Kim (ISU) Chapter 1 16/28

Assumptions

- Two models in (2):
 - $P(D \mid C)$: data model
 - $P(C \mid X)$: process model
- Data model is known (or directly estimated from a validation sample)
- The process model has a probability structure. That is, we may use $P(C \mid X) = P(C \mid X; \theta)$ for some $\theta \in \Omega \subset \mathbb{R}^p$.
- The true status C is not observed, but we observe D and X.
- To make the presentation simple, we will assume C is binary with support $\{0,1\}$.

J.K. Kim (ISU) Chapter 1 17 / 28

Measurement error model framework

- (1): Data model (known),
- (2): Process model (known up to θ).

J.K. Kim (ISU) Chapter 1 18 / 28

Data Model

- C = 1 means disease status
 - sensitivity (true positive rate): $P(D=1 \mid C=1) = 1 \alpha$
 - specificity (true negative rate): $P(D=0 \mid C=0) = 1-\beta$

Sensitivity vs. Specificity

Process Model

- We may use a statistical model for the probability of C = 1, denoted by $P(C = 1 \mid X; \theta)$ with unknown θ .
- For example, we may use a logistic regression model

$$P(C = 1 \mid X; \theta) = \frac{\exp(\mathbf{x}'\theta)}{1 + \exp(\mathbf{x}'\theta)} := \pi(\mathbf{x}; \theta)$$

• If θ is known, then we can compute

$$P(C = 1 \mid X, D) = \frac{P(D \mid C = 1)P(C = 1 \mid X; \theta)}{\sum_{c} P(D \mid C = c)P(C = c \mid X; \theta)}$$

as a denoised version of classification.

J.K. Kim (ISU) Chapter 1 20 / 28

Remark

- The parameters in the data model are assumed to be known.
- If the true labels were observed, then we could use the following maximum likelihood method for parameter estimation.

$$\hat{\theta} = \arg\max_{\theta} \ell_{C}(\theta), \tag{3}$$

where

$$\ell_{C}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[C_{i} \log \pi(\mathbf{x}_{i}; \boldsymbol{\theta}) + (1 - C_{i}) \log \{1 - \pi(\mathbf{x}_{i}; \boldsymbol{\theta})\} \right]$$

is the log-likelihood function of θ using the C-values.

• More generally, we may use a general form of loss function $\ell(\pi, C)$ associated with a classifier $\pi(\mathbf{x})$.

J.K. Kim (ISU) Chapter 1 21 / 28

Learning with noisy labels: 1. Direct approach

- Idea:
 - Compute the conditional probability for

$$P(D = 1 \mid X; \theta) = \sum_{c=0}^{1} P(D = 1 \mid C = c) P(C = c \mid X; \theta)$$
$$= \beta \{1 - \pi(X; \theta)\} + (1 - \alpha)\pi(X; \theta)$$
$$:= \tilde{\pi}(X; \theta)$$

Construct the loss function for θ using the noisy label:

$$\ell_{obs}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[D_i \log \tilde{\pi}_d(\mathbf{x}_i; \boldsymbol{\theta}) + (1 - D_i) \log \{ 1 - \tilde{\pi}_d(\mathbf{x}_i; \boldsymbol{\theta}) \} \right]. \tag{4}$$

Compute the maximizer of $L_{obs}(\theta)$:

$$\hat{\theta} = \arg\max_{\theta} \ell_{obs}(\theta).$$

Learning with noisy labels: 2. EM algorithm

• First define the log-likelihood function using true label C:

$$\ell_{\mathcal{C}}(\theta) = \sum_{i=1}^{n} \left[C_i \log \pi(X_i; \theta) + (1 - C_i) \log\{1 - \pi(X_i; \theta)\} \right]$$

- Iterative computation:
 - **E-step**: Given the current parameter $\theta^{(t)}$, compute

$$\begin{aligned} Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(t)}) &= E\{\ell_{\mathcal{C}}(\boldsymbol{\theta}) \mid X, D; \boldsymbol{\theta}^{(t)}\} \\ &= \sum_{i=1}^{n} \left[\hat{C}_{i}^{(t)} \log \pi(X_{i}; \boldsymbol{\theta}) + (1 - \hat{C}_{i}^{(t)}) \log\{1 - \pi(X_{i}; \boldsymbol{\theta})\} \right], \end{aligned}$$

where $\hat{C}_i^{(t)} = E\left(C_i \mid X_i, D_i; \theta^{(t)}\right)$.

• **M-step**: Update θ by

$$\theta^{(t+1)} = \arg\max Q(\theta \mid \theta^{(t)}).$$
 (5)

Remark

In the E-step, we use Bayes theorem

$$E\left(\frac{C_{i} \mid \mathbf{x}_{i}, D_{i}; \theta^{(t)}}{\mathbf{x}_{i}, D_{i}; \theta^{(t)}}\right) = P\left(\frac{C_{i} = 1 \mid \mathbf{x}_{i}, D_{i}; \theta^{(t)}}{\mathbf{x}_{i}, D_{i}; \theta^{(t)}}\right) P\left(\frac{C_{i} \mid \mathbf{x}_{i}; \theta^{(t)}}{\mathbf{x}_{i}; \theta^{(t)}}\right) P\left(\frac{C_{i} \mid \mathbf{x}_{i}; \theta^{(t)}}{\mathbf{x}_{i}; \theta^{(t)}}\right$$

- To implement the M-step in (5), note that the MLE procedure in (3) is a mapping from $S = \{(\mathbf{x}_i, C_i), i = 1, \dots, n\}$ to $\hat{\theta}$. That is, $\hat{\theta} = \hat{\theta}(S)$.
- Because

$$\ell_{com}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[C_i \log \pi(\mathbf{x}_i; \boldsymbol{\theta}) + (1 - C_i) \log \{1 - \pi(\mathbf{x}_i; \boldsymbol{\theta})\} \right],$$

the M-step in (5) can be expressed as $\theta^{(t+1)} = \hat{\theta}(S^{(t)})$, where $S^{(t)} = \{(\mathbf{x}_i, \hat{C}_i^{(t)}), i = 1, \dots, n\}$.

EM algorithm

Prediction

ullet Best prediction: Expectation from the prediction model at $heta=\hat{ heta}$

$$\hat{C}_{i}^{*} = E\left(\frac{C_{i}}{D_{i}}, X_{i}; \hat{\theta}\right)$$
 (6)

This is a denoised version of D_i .

 Prediction model is obtained by combining data model with process model using Bayes theorem:

$$P\left(C_{i}=1\mid X_{i},D_{i};\hat{\theta}\right)=\frac{P\left(C_{i}=1\mid X_{i};\hat{\theta}\right)P\left(D_{i}\mid C_{i}=1\right)}{\sum_{c=0}^{1}P\left(C_{i}=c\mid X_{i};\hat{\theta}\right)P\left(D_{i}\mid C_{i}=c\right)}$$

J.K. Kim (ISU) Chapter 1 26 / 28

Prediction error

Let

$$C_i^* = E\left(C_i \mid D_i, X_i; \theta\right) := C_i^*(\theta).$$

• Prediction error of $\hat{C}_i^* = C_i^*(\hat{\theta})$ in (6):

$$\hat{C}_i^* - \underline{C}_i = \left\{ C_i^*(\theta) - \underline{C}_i \right\} + \left\{ C_i^*(\hat{\theta}) - C_i^*(\theta) \right\}. \tag{7}$$

- In (7), the first part is the genuine prediction error and the second part is the error due to the uncertainty in $\hat{\theta}$.
- Mean Squared Prediction Error:

$$MSPE(\hat{C}_i^*) \doteq E\{(C_i^* - C_i)^2\} + B_iV(\hat{\theta})B_i'$$

= $E\{V(C_i \mid D_i, X_i)\} + B_iV(\hat{\theta})B_i',$

where $B_i = \partial C_i^*(\theta)/\partial \theta$.

J.K. Kim (ISU) Chapter 1 27 / 28

Statistical Methods (Summary)

Basic Steps

- Model Specification
 - Data model
 - Process model
- Parameter estimation
 - Direct maximization of marginal likelihood
 - EM alghorithm
- Best prediction
 - Derive the predictive model using Bayes formula
 - Best prediction is obtained by computing the expectation of the prediction model evaluated at MLE.
- Uncertainty quantification
 - Linearization or Bootstrap
 - Bayesian approach

28 / 28