Resumo Prob. 2

Caio Volpato

15 de dezembro de 2014

• Probabilidade Condicional:
$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

• Formula de Bayes:
$$E = (E \cap F) \cup (E \cap F^C) \Rightarrow P(E) = P(E|F)P(F) + P(E|F^C)(1 - P(F))$$

Generalização: $P(F_j|E) = \frac{P(E|F_j)P(F_j)}{\sum_{i=1}^n P(E|F_i)P(F_i)}$

• Série de Taylor:
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

• Série Geométrica (Geral):
$$\sum_{k=k_1}^{k_2} ar^k = a\frac{r^{k_1}-r^{k_2}}{1-r} \quad k_1,k_2 \geq 0, |r| < 1$$

• Teorema Binomial:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

• Esperança, Variância:(Discreto):
$$\mathbb{E}[X] := \sum_{x \in Dom} x \mathbb{P}(X = x)$$
 (Continuo): $\mathbb{E}[X] := \int_{-\infty}^{\infty} x f(x) dx$

$$\operatorname{Var}[X] := \mathbb{E}[X^2] - \mathbb{E}^2[X] \ \mathbb{E}[aX + b] = a\mathbb{E}[X] + b \ \operatorname{Var}[aX + bY] = a^2 \operatorname{Var}[X] + b^2 \operatorname{Var}[Y] + 2ab \operatorname{Cov}[X, Y]$$

• Função Geratriz de Momento:
$$M_X(t) := \mathbb{E}[e^{tx}] \quad \mathbb{E}[x^n] = \lim_{t \to 0} M_X^{(n)}(t)$$

• Função Característica:
$$\varphi_X(t) := \mathbb{E}[e^{itx}] \quad i^k \mathbb{E}[X^k] = \lim_{t \to 0} \varphi_X^{(k)}(t)$$

• Função Gamma:
$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx \quad \Gamma(n) = (n-1)! \quad \Gamma(t+1) = t \cdot \Gamma(t)$$

• Relações entre VA's:
$$X \sim N(\mu, \sigma^2) \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$X \sim N(\mu_x, \sigma_x^2), Y \sim N(\mu_y, \sigma_y^2) \Rightarrow X \pm Y \sim N(\mu_x \pm \mu_y, \sigma_x^2 + \sigma_y^2)$$

$$X_i \sim \exp(\lambda) \Rightarrow \sum_{i=1}^n X_i \sim \text{Gamma}(n, \lambda)$$

$$X_i \sim \text{Gamma}(\alpha_i, \beta) \Rightarrow \sum_{i=1}^k X_i \sim \text{Gamma}(\sum_{i=1}^k \alpha_i, \beta)$$

$$X_i \sim N(0,1) \Rightarrow \sum_{j=1}^n X_j^2 \sim \chi_n^2$$
 Gamma $(\alpha = n/2, \lambda = 1/2) \sim \chi_n^2$

$$Z \sim N(0,1), V \sim \chi_k^2 \Rightarrow \frac{Z}{\sqrt{V/k}} \sim t_k$$

$$X_i \sim N(\mu, \sigma^2) \Rightarrow t = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t_{n-1}$$
 Onde: $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

$$U \sim \chi_u^2, V \sim \chi_v^2 \Rightarrow \frac{U/u}{V/v} \sim F(u, v)$$

$$X, Y \sim N(0, 1) \Rightarrow X/Y \sim \text{Cauchy}(0, 1)$$

• Desigual
dades: Markov:
$$\forall a>0 \quad P(|x|\geq a)\leq \frac{\mathbb{E}[X]}{a}$$
 Chebyshev: $\forall a>0 \quad P(|x-\mu|\geq a)\leq \frac{Var[X]}{a^2}$

$$\bullet \text{ Tipos de convergência:} \begin{cases} \operatorname{Probabilidade} & \lim_{n \to \infty} \mathbb{P}(|X - a| > \varepsilon) = 0 \Leftrightarrow X \overset{\mathbf{p}}{\longrightarrow} a \\ \operatorname{Distribuição} & \lim_{n \to \infty} F_W(w) = F_Z(z) \Leftrightarrow W \overset{\mathbf{d}}{\longrightarrow} F \text{ ou } \lim_{n \to \infty} \varphi_w(t) = \varphi_z(t) \Leftrightarrow W \overset{\mathbf{d}}{\longrightarrow} F \end{cases} \\ \operatorname{Quase Certamente} & \mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1 \Leftrightarrow X_n \overset{\mathbf{q.c}}{\longrightarrow} X \end{cases}$$

• Lei dos Grandes Números:
$$\begin{cases} \text{Fraca:} & \overline{X_n} \stackrel{p}{\longrightarrow} \mu \\ \text{Forte:} & \overline{X_n} \stackrel{\text{q.c}}{\longrightarrow} \mu \end{cases}$$

• Teorema do Limite Central:
$$X_1, \cdots, X_n$$
 iid tq. $\mathbb{E}[X] = \mu, Var[X] = \sigma^2 \Rightarrow \frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n'}} \to N(0, 1)$

Distribuição	FDP	Domínio	$\mathbb{E}[x]$	Var[x]	$M_X(t)$	$\varphi_X(t)$
Discretas						
Bernoulli (p)	$\mathbb{P}(X=k) = p^k (1-p)^{1-k}$	$x \in \{0,1\}, p \in [0,1]$	p	p(1-p)	$(1-p) + pe^t$	$(1-p) + pe^{it}$
Binomial(n,p)	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$	$k=0,1,\cdots,n$	np	np(1-p)	$(p(e^t - 1) + 1)^n$	$(p(e^{it}-1)+1)^n$
$Poisson(\lambda)$	$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$	$\lambda > 0, k = 0, 1, \cdots$	λ	λ	$\exp(\lambda(e^t - 1))$	$\exp(\lambda(e^{it}-1))$
Geométrica(p)	$\mathbb{P}(X=k) = (1-p)^k p$	$k=0,1,\cdots$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$	$\frac{p}{1 - (1 - p)e^{it}}$
Continuas						
Uniforme(a,b)	$f(x) = \frac{1}{b-a}$	$x \in [a, b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}$	$\frac{e^{ibt} - e^{iat}}{it(b-a)}$
Exponencial (λ)	$f(x) = \lambda e^{-\lambda x}$	$\lambda > 0, x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$	$rac{\lambda}{\lambda - it}$
$Normal(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right)$	$x \in \mathbb{R}$	μ	σ^2	$\exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$	$\exp\left(\mu it - \frac{\sigma^2 t^2}{2}\right)$
$\operatorname{Gamma}(\alpha,\lambda)$	$f(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}$	$\alpha, \lambda > 0, x \ge 0$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{\lambda-t}{\lambda}\right)^{-\alpha}$	$\left(\frac{\lambda - it}{\lambda}\right)^{-\alpha}$
t de Student (t_v)	$\frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi}\Gamma(\frac{v}{2})}(1+\frac{x^2}{v})^{-\frac{v+1}{2}}$	$x \in \mathbb{R}, v > 0$			-	
F(u,v)					-	
Cauchy (α, β)	$f(x) = \frac{1}{\pi\beta \left[1 + \left[\frac{x-\alpha}{\beta}\right]^2\right]}$	$\beta > 0 \ x, \alpha \in \mathbb{R}$	-	-	-	
Qui Quadrado (χ_v^2)	$f(x) = \frac{1}{2^{v/2} \Gamma(v/2)} x^{(v/2)-1} \exp\left(-\frac{x}{2}\right)$ $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	x > 0, v > 0	v	2v	$(1-2t)^{-v/2}$	$(1-2it)^{-v/2}$
$\mathrm{Beta}(lpha,eta)$	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$			

Tabela 1: Resumo de Distribuições