```
# DataFlair Iris Flower Classification
# Import Packages
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
%matplotlib inline
columns = ['Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Class_labels']
# Load the data
df = pd.read_csv('iris.data', names=columns)
df.head()
₹
        Sepal length Sepal width Petal length Petal width Class_labels
      0
                  5.1
                                             1.4
                                                          0.2
                               3.5
                                                                   Iris-setosa
      1
                  4.9
                               3.0
                                                          0.2
                                                                   Iris-setosa
                                             1.4
      2
                  4.7
                               3.2
                                             1.3
                                                          0.2
                                                                  Iris-setosa
      3
                  4.6
                               3.1
                                             1.5
                                                          0.2
                                                                  Iris-setosa
```

1.4

0.2

Iris-setosa

 $\ensuremath{\mbox{\#}}$ Some basic statistical analysis about the data df.describe()

5.0

₹		Sepal length	Sepal width	Petal length	Petal width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

3.6

Visualize the whole dataset
sns.pairplot(df, hue='Class_labels')


```
# Separate features and target
data = df.values
X = data[:,0:4]
Y = data[:,4]
# Calculate average of each features for all classes
Y_Data = np.array([np.average(X[:, i][Y==j].astype('float32')) for i in range (X.shape[1])
for j in (np.unique(Y))])
Y_Data_reshaped = Y_Data.reshape(4, 3)
Y_Data_reshaped = np.swapaxes(Y_Data_reshaped, 0, 1)
X_axis = np.arange(len(columns)-1)
width = 0.25
# Plot the average
plt.bar(X_axis, Y_Data_reshaped[0], width, label = 'Setosa')
plt.bar(X_axis+width, Y_Data_reshaped[1], width, label = 'Versicolour')
plt.bar(X_axis+width*2, Y_Data_reshaped[2], width, label = 'Virginica')
plt.xticks(X_axis, columns[:4])
plt.xlabel("Features")
plt.ylabel("Value in cm.")
plt.legend(bbox_to_anchor=(1.3,1))
plt.show()
```


Split the data to train and test dataset.
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)

Support vector machine algorithm
from sklearn.svm import SVC
svn = SVC()
svn.fit(X_train, y_train)

Predict from the test dataset
predictions = svn.predict(X_test)

Calculate the accuracy
from sklearn.metrics import accuracy_score
accuracy_score(y_test, predictions)

3. 0.96666666666666666666

Start coding or generate with AI.