Sistemas de Apoio às Decisões

Aula 04 – Introdução à Arquitetura de Dados I

Prof. Esp. Guilherme Jorge Aragão da Cruz

- guilherme.jacruz@sp.senac.br
- in linkedin.com/in/guijac

Roteiro

- Um Pouco de Arquitetura da TI;
- Arquitetura de Dados;
- Online Transaction Processing (OLTP);
- Online Analytical Processing (OLAP);
- OLTP x OLAP;
- Bancos de Dados Relacionais;
- Bancos de Dados Não-Relacionais;
- Bancos de Dados em Memória;
- Referências Bibliográficas.

Um Pouco de Arquitetura da TI

Arquitetura?

Um Pouco de Arquitetura da TI

Arquitetura?

Fonte: A importância de um projeto arquitetônico completo para a boa execução da obra - MGSP - Arquitetura

Um Pouco de Arquitetura da Tl

Arquitetura?

L Técnica de planejar cada detalhe, **estrutural** e artístico de uma edificação ou espaço em construção; O projeto arquitetônico é uma etapa importante para garantir a **segurança**, a **viabilidade** e a **aplicação** de todas as necessidades que envolvem uma construção

TUA CASA (2023)

Fonte: A importância de um projeto arquitetônico completo para a boa execução da obra - MGSP - Arquitetura

Um Pouco de Arquitetura da TI

Arquitetura?

L Técnica de planejar cada detalhe, **estrutural** e artístico de uma edificação ou espaço em construção; O projeto arquitetônico é uma etapa importante para garantir a **segurança**, a **viabilidade** e a **aplicação** de todas as necessidades que envolvem uma construção

TUA CASA (2023)

Fonte: 40 fotos mais BIZARRAS e ENGRAÇADAS da construção civil! (meiacolher.com)

Um Pouco de Arquitetura da TI

Arte e ciência de **projetar** e entregar **estratégia de tecnologia** valiosa para **negócios**.

Série de princípios, diretrizes ou regras usadas por uma empresa para direcionar o processo de **aquisição**, **construção**, **modificação** e **interface** de recursos de TI em toda a empresa. Esses recursos podem incluir **equipamentos**, **softwares**, comunicações, **metodologias** de desenvolvimento, **ferramentas** de modelagem e estruturas organizacionais.

GARTNER (2023)

Fonte: What is TOGAF? - ArchiMetric

Arquitetura de Dados

Descreve como os dados são gerenciados, desde a coleta até a transformação, a distribuição e o consumo.

O design de uma arquitetura de dados deve ser voltado para os requisitos de negócios, para definir as estruturas básicas de apoio.

Data BI / Analytics ETL Sources **Data Marts Data Warehouse** Marketing OLTF **Databases Enterprise** Finance **Applications Externals** Test/Dev Web / Log Data Science **Data Lake**

Fonte: Beyond "Modern" Data Architecture - Blog (snowflake.com)

Online Transaction Processing (OLTP)

- O Processamento de Transações Online é um tipo de processamento de dados que consiste na execução de várias transações que ocorrem simultaneamente (transações bancárias online, compras, entrada de pedidos ou envio de mensagens de texto, por exemplo);
- Normalmente envolve inserir, atualizar e/ou excluir pequenas quantidades de dados como aplicações da Web, móvel ou corporativa.

Fonte: What Is an OLTP Database? {Concepts & Examples} (phoenixnap.com)

Online Analytical Processing (OLAP)

- Já O Processamento Analítico Online é um tipo de processamento de dados que permite uma análise de dados de negócios de diferentes pontos de vista.
- Normalmente combina diversas fontes de dados agregadas para facilitar a tomada de decisão, para responder a perguntas como quais produtos coloridos são mais populares ou como o posicionamento do produto afeta as vendas.

Fonte: Online analytical processing (OLAP) - Azure Architecture Center | Microsoft Learn

Online Analytical Processing (OLAP)

Fonte: database design - Understanding OLTP and OLAP - Database Administrators Stack

Online Analytical Processing (OLAP)

Fonte: Elaboração própria.

OLTP x OLAP

Critério	OLAP	OLTP
Objetivo	Análise de grandes volumes de dados para apoiar a tomada de decisões.	Gerenciar e processar transações em tempo real.
Fonte de dados	Usa dados históricos e agregados de várias fontes.	Usa dados transacionais e em tempo real de uma única fonte.
Estrutura de dados	Usa bancos de dados multidimensionais (cubos) ou relacionais.	Usa bancos de dados relacionais.
Volume de dados	Grandes requisitos de armazenamento. Pense em terabytes (TB) e petabytes (PB).	Requisitos de armazenamento comparativamente menores. Pense em gigabytes (GB).
Tempo de resposta	Mais longos, normalmente em segundos ou minutos.	Mais curtos, normalmente em milissegundos.
Aplicativos de exemplo	Bom para analisar tendências, prever o comportamento do cliente e identificar a lucratividade.	Bom para processar pagamentos, para o gerenciamento de dados de clientes e o processamento de pedidos.

Fonte: Adaptado de OLTP vs. OLAP | Diferença entre sistemas de processamento de dados | AWS (amazon.com)

OLTP x OLAP

Fonte: OLAP vs OLTP: Differences | Board Infinity

Fonte: Elaboração Própria

 Trabalha com armazenamento de estrutura de dados em tabelas relacionais, através de chaves primárias e estrangeiras, permitindo uma associação e garantindo a integridade relacional.

Fonte: Elaboração Própria

 Trabalha com armazenamento de estrutura de dados em tabelas relacionais, através de chaves primárias e estrangeiras, permitindo uma associação e garantindo a integridade relacional.

 Trabalha com armazenamento de estrutura de dados em tabelas relacionais, através de chaves primárias e estrangeiras, permitindo uma associação e garantindo a integridade relacional.

Fonte: Data Integration SQL or No SQL databases made easy (stambia.com)

Mais flexíveis, não possuem relacionamento entre entidades e trabalham com armazenamento de estrutura de dados de diversas formas, como modelos colunares, orientado a grafos, orientado a documentos ou do tipo chave-valor.

Fonte: NoSQL Databases | Technology solutions | ABCloudz

Document

Os dados são armazenados em documentos no formato JSON. Cada documento é identificado por uma chave única e pode conter diversas informações, como atributos e subdocumentos. Modelo interessante para aplicações que exigem flexibilidade na estrutura dos dados e que lidam com grande volume de informações.

Graph

Os dados são usados para armazenar dados interconectados, como em redes sociais ou sistemas de recomendação. Com o modelo de grafos, é possível fazer buscas detalhadas nas relações entre os dados, mesmo em bancos com centenas de milhares de relacionamentos.

Key-Value

Dados são armazenados em pares de chave-valor, o que significa que cada dado é identificado por uma chave única. Modelo ideal para aplicações que exigem alta performance em leitura e gravação de dados, como em aplicações de cache ou armazenamento de sessões de usuários.

Wide-column

Dados são armazenados como colunas em vez de linhas. Modelo ideal para situações que envolvem grande quantidade de dados e exigem alta performance, pois permite que apenas as colunas relevantes sejam buscadas e lidas, economizando recursos de processamento.

Fonte: SQL e NoSQL: trabalhando com bancos relacionais e não relacionais | Alura

Considerando o seguinte conjunto de dados:

Id	Nome	Sobrenome	Idade
1	João	Pereira	32
2	Carlos	Gonçalves	41
3	Kondado	Inteligência	13

Considerando o seguinte conjunto de dados:

Id	Nome	Sobrenome	Idade
1	João	Pereira	32
2	Carlos	Gonçalves	41
3	Kondado	Inteligência	13

Organização em um banco de dados linear:

1	João	Pereira	32	2	Carlos	Gonçalves	41	3	Kondado	Inteligência	13	
---	------	---------	----	---	--------	-----------	----	---	---------	--------------	----	--

Considerando o seguinte conjunto de dados:

Id	Nome	Sobrenome	Idade
1	João	Pereira	32
2	Carlos	Gonçalves	41
3	Kondado	Inteligência	13

Organização em um banco de dados linear:

Organização em um banco de dados colunar:

1	2	3	João	Carlos	Kondado	Pereira	Gonçalves	Inteligência	32	41	13
---	---	---	------	--------	---------	---------	-----------	--------------	----	----	----

Considerando o seguinte conjunto de dados:

Id	Nome	Sobrenome	Idade
1	João	Pereira	32
2	Carlos	Gonçalves	41
3	Kondado	Inteligência	13

Organização em um banco de dados linear:

Organização em um banco de dados colunar:

 Sendo ideal para operações de sumarização, como uma soma de idades, por exemplo.

Fonte: O que é um banco de dados colunar (kondado.com.br)

Mais flexíveis, não possuem relacionamento entre entidades e trabalham com armazenamento de estrutura de dados de diversas formas, como modelos colunares, orientado a grafos, orientado a documentos ou do tipo chave-valor.

Fonte: Adaptado de Top 10 NoSQL Databases in 2022 (decipherzone.com)

Mais flexíveis, não possuem relacionamento entidades e trabalham com armazenamento de estrutura de dados de diversas formas, como modelos colunares, orientado a grafos, orientado a documentos ou do tipo chave-valor.

colunar

Fonte: Adaptado de Top 10 NoSQL Databases in 2022 (decipherzone.com)

chave-valor

Banco de Dados em Memória

- Trabalha com armazenamento de estrutura de dados de chave-valor na memória, possuindo uma boa performance, sendo utilizado principalmente para cache de dados;
- Redis, acrônimo de REmote Dictionary Server é o mais popular.

How Redis is typically used

Fonte: Redis: What It Is, What It Does, and Why You Should Care | Backendless

Banco de Dados em Memória

Latency Numbers You Should Know

Fonte: EP22: Latency numbers you should know. Also... - by Alex Xu (bytebytego.com)

Por hoje é só!

Fonte: OLAP vs OLTP: Differences | Board Infinity

Prof. Esp. Guilherme Jorge Aragão da Cruz

guilherme.jacruz@sp.senac.br

linkedin.com/in/guijac

Referências Bibliográficas

- ALURA. **SQL e NoSQL:** trabalhando com bancos relacionais e não relacionais. Disponível em https://www.alura.com.br/artigos/sql-nosql-bancos-relacionais-nao-relacionais. Acesso em 14 set 2023;
- AWS. **Teorema CAP**. Disponível em https://docs.aws.amazon.com/pt_br/whitepapers/latest/availability-and-beyond-improving-resilience/cap-theorem.html. Acesso em 14 set 2023;
- IBM. O que é uma arquitetura de dados? Disponível em https://www.ibm.com/br-pt/topics/data-architecture. Acesso em 13 mar 2024;
- LAUDON, K. C.; LAUDON, J. P. **Sistemas De Informações Gerenciais**. 17. ed. Porto Alegre: Bookman, 2019;
- PRESSMAN, Roger S.; MAXIM, Bruce R. **Engenharia de software-9**. McGraw Hill Brasil, 2021;
- SHARDA, R.; DELEN, D.; TURBAN, E. Business intelligence e análise de dados para gestão do negócio. 4. ed. Porto Alegre: Bookman, 2019.