N を 2 以上の整数とする。N が合成数ならば,2 つの正整数 n_1, n_2 $(2 \le n_1 \le n_2 \le N-1)$ を用いて $N=n_1n_2$ と表すことができ, $\lceil \sqrt{N} \rceil \ge \sqrt{N}$ より $\lceil \sqrt{N} \rceil^2 \ge N$ であることに注意すれば, $n_1 \le \lceil \sqrt{N} \rceil$ である。実際, $n_1 > \lceil \sqrt{N} \rceil$ と仮定すると,

$$\begin{array}{ccc} n_1 n_2 & > & \lceil \sqrt{N} \rceil n_2 \\ & \geq & \lceil \sqrt{N} \rceil n_1 \\ & > & \lceil \sqrt{N} \rceil^2 \\ & \geq & N \end{array}$$

となり矛盾する。

したがって,次が成り立つ:

$$N$$
 が合成数 $\Longrightarrow N$ は $\lceil \sqrt{N} \rceil$ 以下の約数を持つ

対偶より,

N が $\lceil \sqrt{N} \rceil$ 以下の約数を持たない $\Longrightarrow N$ は素数