数字信号处理 (Digital Signal Process) 笔记

Jin Huang

更新: July 13, 2021

1 线性时不变 (LTI) 系统

1.1 线型时不变系统的定义及响应

线性时不变系统的特性:可加权、可叠加、可时移

$$y(n) = ay_1(n) + by_2(n - n_0)$$
(1)

线性时不变系统的定义:

• 同时满足线型和时不变性的系统。

系统的输出响应分类:

- 1. 零状态相应 $y_{zs}(n)$: 仅由输入序列在观察时刻之后产生的相应。(线性时不变的)
- 2. 零输入相应 $y_{zi}(n)$: 仅由初始状态引起的相应。(非线性的)
- 3. 全响应 $y(n) = y_{zs}(n) + y_{zi}(n)$ 。(非线性的)

$$y(n) = x(n) + b (2)$$

公式2中, x(n) 表示输入, b 表示初始状态。

1.2 单位脉冲响应

定义: 当系统输入为 $\delta(n)$ 时,系统的零状态相应称为单位脉冲响应,记为 h(n)。

对于
$$y(n) = T[x(n)]$$
 有 $h(n) = T[\delta(n)]$

换言之,对于一个线性时不变系统,输入一个单位脉冲序列 $\delta(n)$,输出一个单位脉冲相应 h(n)3a;如果输入序列移位,则输出响应也对应移位3b;如果输入加权,则输出相应也对应加权3c。

$$\delta(n) = h(n) \tag{3a}$$

$$\delta(n-1) = h(n-1) \tag{3b}$$

$$a\delta(n-2) = ah(n-1) \tag{3c}$$

1.3 线性时不变系统的输入输出运算

在**线型时不变系统**中,有一乘法器,乘法器的两个输出分别为 x(n) 和 $p(n) = \sum_{m=-\infty}^{+\infty} \delta(n-m)$ 。依次考虑各项

$$x(n)p(n) = y(n)$$

$$p(n) = \sum_{n=0}^{+\infty} \delta(n-m)$$

表1: 系统输入输出参照

m	p(n)	输出
m=0	$\delta(n)$	x(0)h(n)
m=1	$\delta(n-1)$	x(1)h(n-1)
m=2	$\delta(n-2)$	x(2)h(n-2)
	$\sum_{m=-\infty}^{+\infty} \delta(n-m)$	$\sum_{m=-\infty}^{+\infty} x(m)h(n-m)$

$$y(n) = x(n) * h(n) = \sum_{m=-\infty}^{+\infty} x(m)h(n-m)$$
 (4)

由公式4可看出,序列输入系统的运算是卷积和。

1) 线性时不变系统的输入输出运算关系

$$y(n) = x(n) * h(n)$$

用卷积和运算描述系统输入输出关系的注意事项:

- (1) 系统必须是线性时不变系统
- (2) 所求输出为系统的零状态相应
- 2) 单位脉冲响应可以描述线型时不变系统的零状态响应特征