Akademia Górniczo-Hutnicza im. S.Staszica w Krakowie LABORATORIUM MASZYN I NAPĘDU ELEKTRYCZNEGO

Elektrotechnika z Napędami Elektrycznymi

Ćwiczenie EA1 Silniki wykonawcze prądu stałego

Wyo	dz. EAIIIB kier.AiR rok II	Grupa ćwicz: B	Grupa laborat: 4b
Lp	lmię i nazwisko	Ocena	Data zaliczenia
1	Aleksandra Stachniak		
2	Martyna Wolny		
3	Julita Wójcik		
4	Piotr Stosik		
5	Jakub Szczypek		
6	Tomisław Tarnawski		

1. Cel ćwiczenia

Celem ćwiczenia jest pomiar statycznych charakterystyk mechanicznych oraz charakterystyk sterowania silnika elektromagnetycznego obcwozbudnego i magnetoleketrycznego tarczowego. Charakterystyka mechaniczna podaje zależność prędkości obrotowej od prądu twornika (ponieważ moment obrotowy jest proporcjonalny do prądu twornika) przy stałej wartości napięcia twornika i prądu wzbudzenia. W regulowanym zakresie wartości prądu, charakterystyki powinny być liniowe i jednoznaczne.

Rysunek 1 Schemat stanowiska EA1

Dane znamionowe silników:

A - elektromagnetycznego: PAMd12c

 $P_N = 225W$, $U_N = 24V$, $I_N = 13.4A$, $n_N = 1500$ obr/min, $I_{wb} = 1.1A$, $\eta = 70$, $R_{tw20} = 0.192\Omega$

B - magnetoelektrycznego: PTT-16

 $P_N = 300W$, $U_N = 50V$, $I_N = 7.5A$, $n_N = 3000$ obr/min, $T_n = 0.95$ Nm, $R_{tw20} = 1.0\Omega$

2. Wykonanie ćwiczenia

Charakterystyki mechaniczne silnika elektromagnetycznego

Zaczęliśmy od wykonywania pomiarów do charakterystyk silnika elektromagnetycznego. Mierzyliśmy liczbę obrotów \mathbf{n} [obr/min] w funkcji prądu twornika \mathbf{l}_{tw} [A].

Dla prądu wirnika $I_w = 1.1A$, napięcia twornika $U_{tw} = 24V$ otrzymaliśmy charakterystykę mechaniczną przedstawioną na Rysunku 2.

Tabela 1.

n [obr/min]	2227	2169	2175	2166	2166	2123	2116	2106
Itw [A]	1	2	3	4	5	6	7	8

Rysunek 2

Kolejne pomiary wykonywaliśmy dla zmniejszonego napięcia twornika $U_{tw} = 12V$, natomiat prąd wirnika I_{w} pozostał na poziomie 1.1A. Dane są zestawione w Tabeli 2 i na Rysunku 3.

Tabela 2.

n [obr/min]	1169	1151	1123	1111	1086	1078	1072	1043
Itw [A]	1	2	3	4	5	6	7	8

Rysunek 3

Ostatnią charakterystykę mechaniczną wyznaczyliśmy dla prądu wirnika I_w = **0.7A** oraz napięcia twornika U_{tw} = **12V.** Dla początkowych wartości prądu twornika liczba obrotów pozostawała na tym samym poziomie. Obrazuje to Rysunek 4.

Tabela 3.

n [obr/min]	1488	1489	1489	1487	1462	1409	1392	1334
Itw [A]	1	2	3	4	5	6	7	8

Charakterystyki regulacyjne silnika elektromagnetycznego

W celu uzyskania pomiarów potrzebnych do wyznaczenia charakterystyki regulacyjnej silnika elektromagnetycznego, utrzymywaliśmy stały prąd twornika \mathbf{I}_{tw} przez cały zakres wykonywania pomiarów. Wykonaliśmy dwie charakterystyki regulacyjne przy sterowaniu od strony twornika \mathbf{U}_{tw} .

Pierwsza charakterystyka uzyskana dla prądu wzbudzenia I_{wzb} = **1.1A** oraz prądu twornika I_{tw} = **2A.** Uzyskaliśmy niemalże idealny liniowy kształt charakterystyki pokazany na Rysunku 5.

Tabela 4.

n [obr/min]	2350	2103	1834	1566	1361	1096	860	562	299
Utw [V]	25,0	22,5	20,0	17,5	15,0	12,5	10,0	7,5	5,0

Rysunek 5

Ostatnią charakterystykę uzyskaliśmy dla prądu twornika I_{tw} = **10A** oraz prądu wzbudzenia I_{wzb} = **1.1A**. Dane przedstawiliśmy w Tabeli 5 i na Rysunku 6. Tak jak w przypadku poprzedniej charakterystyki spodziewaliśmy się, że nawet przy zmienionych wartościach prądu twornika oraz prądu wzbudzenia, będzie miała liniowy charakter.

Tabela 5.

n [obr/min]	2234	1931	1694	1460	1282	858	765
Utw [V]	25,0	22,5	20,0	17,5	15,0	12,5	10,0

Rysunek 6

Wnioski

Zapoznaliśmy się z działaniem silnika elektromagnetycznego. Wyznaczyliśmy jego charakterystyki mechaniczne w przypadku doboru różnych wartości prądu wirnika i napięcia twornika. Na podstawie pomiarów stwierdziliśmy, że napięcie twornika ma wpływ na wartość uzyskanych obrotów przez silnik – mniejsze napięcie twornika powoduje zmniejszenie obrotów na minutę. W odwrotny sposób działa zmiana prądu wirnika – niższa wartość powoduje zwiększenie liczby obrotów.

Zbadaliśmy też charakterystyki regulacyjne silnika elektromagnetycznego dla dwóch zestawów wartości prądu twornika i prądu wzbudzenia. Obie charakterystyki, przedstawiające liczbę obrotów na minutę w funkcji napięcia twornika, zmieniały się w sposób liniowy. Dla dwóch prób uzyskaliśmy podobne co do wartości obroty, natomiast w przypadku mniejszej wartości prądu twornika zmierzyliśmy nieco większą maksymalną ilość obrotów. Niestety w trakcie ćwiczeń nie zdążyliśmy zrealizować pomiarów dla silnika magnetolektrycznego.