

HOCHSCHULE KONSTANZ TECHNIK, WIRTSCHAFT UND GESTALTUNG (HTWG) Fakultät Informatik

Rechner- und Kommunikationsnetze

Prof. Dr. Dirk Staehle

Labor zur Vorlesung Kommunikationstechnik

Theorieübung 4 (Zyklische Blockcodes)

Prof. Dr. Dirk Staehle

1 Einleitung

In der Vorlesung wurde die Fehlererkennung und Fehlerkorrektur mit Hilfe von zyklischen Codes vorgestellt. In dieser Übung soll die Codierung und Fehlerkorrektur mit zyklischen Blockcodes geübt werden.

2 Code-Eigenschaften

Ein zyklischer Code sei durch das Generatorpolynom

$$G(D) = D^{4} + D^{1} + 1$$

gegeben.

- Wie viele Paritäts-Bits (n-k) hat dieser Code?
- 2. Geben Sie die binäre Darstellung des Generatorpolynoms an. (10011)
- 3. Bestimmen Sie die Restklassen des Generatorpolynoms $D^j \mod G(D)$ für $j = 0 \dots 8$

Hinweis zur Bestimmung der Restklassen:

Es gilt:
$$D^{j} \mod G(D) = D \cdot \left(D^{j-1} \mod G(D)\right) \mod G(D)$$

Beispiel für
$$G(D) = D^4 + D^3 + 1 \ (1 \ 1 \ 0 \ 0 \ 1)$$

j	D ^j (binär)	D·(D ^{j-1} mod 2) (binär)	grad(D·(D ^{j-1} mod 2)))	D ^j mod 2 (binär)
0	1	-	-	0001
1	10	10	1	0010
2	100	100	2	0100
3	1000	1000	3	1000
4	10000	10000	4	10000 +11001 =1001
5	100000	10010	4	10010 +11001 =1011
6	1000000	11010 Korrigiert: 10110	4	10110 +11001 =0011
7	10000000	00110	2	0110
8	100000000	01100	3	1100

D·(Dj-1 mod 2) bedeutet: letzte Berechnungsergebnis hängt am Ende eine "0"

Falls der Grad eines Polynoms X(D) kleiner als der Grad von G(D) ist, gilt X(D) mod G(D) = X(D). Dies ist in den Zeilen 0-3 sowie 7-8 der Fall. Falls der Grad beider Polynome gleich ist, ergibt sich der Rest durch Addition der Polyome modulo 2. Dies ist in den Zeilen 4-6 der Fall. Der Grad eines Polynoms entspricht der höchsten Potenz, bei G(D) also 4 bzw. der Anzahl Bits minus 1.

3 Codierung

Codieren Sie das Nutzwort $\overline{u} = 0.1101$

Hinweis:

1. Die Polynomdivision lässt sich am einfachsten in der Binärdarstellung durchführen. Hier ist das Verfahren analog zur Division von Binärzahlen mit dem Unterschied, dass bei der Subtraktion des Divisors modulo 2 gerechnet wird, d.h. es gibt keine Überträge und Addition und Subtraktion sind identisch.

 $u \rightarrow x$, also wir nehmen an, dass x = 01101xxxx ist, dann 011010000 mod (10011) bekommt man 0100, also $\rightarrow x = 011010100$

4 Decodierung

Am Empfänger wird das Codewort $\overline{y} = 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 0$ empfangen.

1. Bestimmen Sie das Fehlersyndrom S

 $S = y(D) \mod g(D)$, also 010010100 mod 10011 = 110

2. Bestimmen Sie das fehlerhafte Bit durch Vergleich mit den in Aufgabe 2 bestimmten Restklassen des Generatorpolynoms.