

WEBENCH® Design Report

VinMin = 8.0V VinMax = 13.2V Vout = 5.0V Iout = 5.0A Device = TPS5450DDAR Topology = Buck Created = 5/9/16 12:58:07 AM BOM Cost = \$5.38 BOM Count = 9 Total Pd = 3.17W

Design: 4493365/1 TPS5450DDAR TPS5450DDAR 8.0V-13.2V to 5.00V @ 5.0A

Electrical BOM

<u> Na</u>	ame	Manufacturer	Part Number	Properties	Qty	Price	Footprint
. Cb	poot	Kemet	C0805C103K5RACTU Series= X7R	Cap= 10.0 nF ESR= 1.739 Ohm VDC= 50.0 V IRMS= 411.0 mA	1	\$0.01	0805 7 mm ²
. Cir	n	TDK	C3216X5R1E476M160AC Series= X5R	Cap= 47.0 uF ESR= 2.082 mOhm VDC= 25.0 V IRMS= 5.0279 A	2	\$0.35	1206 11 mm ²
. Co	out	Panasonic	16SVP180MX Series= SVP	Cap= 180.0 uF ESR= 30.0 mOhm VDC= 16.0 V IRMS= 3.02 A	1	\$0.29	SM_RADIAL_10AMM 160 mm²
. D1	1	Comchip Technology	CDBC520-G	VF@Io= 550.0 mV VRRM= 20.0 V	1	\$0.23	SMC 83 mm ²
. L1		Coilcraft	SER2915L-223KL	L= 22.0 μH DCR= 1.5 mOhm	1	\$1.88	SER2915L 652 mm ²
. Rfl	bb	Panasonic	ERJ-6ENF3241V Series= ERJ-6E	Res= 3.24 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
7.	Rfbt	Panasonic	ERJ-6ENF1002V Series= ERJ-6E	Res= 10.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
8.	U1	Texas Instruments	TPS5450DDAR	Switcher	1	\$2.25	

R-PDSO-G8 57 mm²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	1.811 A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	89.616 mA	Current	Output capacitor RMS ripple current
3.	IC lpk	5.155 A	Current	Peak switch current in IC
4.	lin Avg	2.134 A	Current	Average input current
5.	L lpp	310.44 mA	Current	Peak-to-peak inductor ripple current
6.	M1 Irms	3.227 A	Current	Q lavg
7.	BOM Count	9	General	Total Design BOM count
8.	FootPrint	994.0 mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	500.0 kHz	General	Switching frequency
10.	IC Tolerance	18.315 mV	General	IC Feedback Tolerance
11.	M Vds Act	458.299 mV	General	Voltage drop across the MosFET

#	Name	Value	Category	Description
12.	Pout	25.0 W	General	Total output power
13.	Total BOM	\$5.38	General	Total BOM Cost
14.	D1 Tj	106.545 degC	Op_Point	D1 junction temperature
15.	Vout Actual	4.99 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
16.	Vout OP	5.0 V	Op_Point	Operational Output Voltage
17.	Cross Freq	17.794 kHz	Op_point	Bode plot crossover frequency
18.	Duty Cycle	41.644 %	Op_point	Duty cycle
19.	Efficiency	88.733 %	Op_point	Steady state efficiency
20.	IC Tj	77.96 degC	Op_point	IC junction temperature
21.	ICThetaJA	30.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
22.	IOUT_OP	5.0 A	Op_point	lout operating point
23.	Phase Marg	49.07 deg	Op_point	Bode Plot Phase Margin
24.	VIN_OP	13.2 V	Op_point	Vin operating point
25.	Vout p-p	9.323 mV	Op_point	Peak-to-peak output ripple voltage
26.	Cin Pd	3.415 mW	Power	Input capacitor power dissipation
27.	Cout Pd	240.93 µW	Power	Output capacitor power dissipation
28.	Diode Pd	1.531 W	Power	Diode power dissipation
29.	IC Pd	1.599 W	Power	IC power dissipation
30.	L Pd	41.25 mW	Power	Inductor power dissipation
31.	Total Pd	3.174 W	Power	Total Power Dissipation
32.	Vout Tolerance	3.049 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	5.0	Maximum Output Current
2.	VinMax	13.2	Maximum input voltage
3.	VinMin	8.0	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	TPS5450	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

- 1. Feature Highlights: 5A, 500kHz Fixed Switching Frequency, Internal Compensation
- 2. TPS5450 Product Folder: http://www.ti.com/product/TPS5450: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.