La droite dans le plan

Leçon : droite dans le plan Présentation globale

- I) Repère et coordonnées d'un point et coordonnées d'un vecteur
- II) Condition analytique de colinéarité de deux vecteurs
- III) La droite dans le plan

IV)positions relatives de deux droites dans le plan

I) Repère et coordonnées d'un point et coordonnées d'un vecteur

1) Activité:

Soient O. I et J trois points non alignés dans le plan P. Et soit M un point quelconque du plan

1)Construire le point M_1 la projection de M sur (OI)

parallèlement a $\left(OJ\right)$ et le point $M_{_2}$ la projection de M sur

ig(OIig) parallèlement a ig(OIig)

2)soit x l'abscisse de M_1 sur l'axe gradué (OI) et y

l'abscisse de M_2 sur l'axe (OJ)

a) Ecrire $\overrightarrow{OM_1}$ en fonction de \overrightarrow{OI} et écrire $\overrightarrow{OM_2}$ en fonction de \overrightarrow{OJ}

b) En déduire \overrightarrow{OM} en fonction de \overrightarrow{OI} et \overrightarrow{OJ} **Réponse :** 1)

2) a) on a : x l'abscisse de $\,M_{\scriptscriptstyle 1}\,$ sur l'axe gradué $\left(OI\right)\,$ donc

 $\overrightarrow{OM_1} = x\overrightarrow{OI}$

Et on a : y l'abscisse de M_2 sur l'axe (OJ) donc

 $\overrightarrow{OM}_2 = y\overrightarrow{OJ}$

b) dans le quadrilatère OM_1MM_2 : $(OM_1)||(MM_2)$ et

 $\left(\textit{OM}_{2}\right)||\left(\textit{MM}_{1}\right)$

Donc OM_1MM_2 est un parallélogramme

Et par suite : $\overrightarrow{OM} = \overrightarrow{OM_1} + \overrightarrow{OM_2}$ alors

Prof/ATMANI NAJIB

 $\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ}$

2) Le Repère dans le plan:

Soient O. I et J trois points non alignés dans le plan P.

Le triplet (O; I; J) détermine un Repère dans le plan. On

le note $R\left(O\;;I\;;J\right)$ ou R

Le point O est l'origine du Repère (O; I; J)

La droite (O I) est l'axe des abscisses du Repère (O ; I ; J)

La droite (O J) est l'axe des ordonnées du Repère (O; I; J)

Si les droites (O I) et (O J) sont perpendiculaires ont dit

que le Repère est orthogonal

Si on a OI =OJ = 1 ont dit que le Repère (O; I; J) est normé Si les droites (O I) et (O J) sont perpendiculaires et si on a OI =OI = 1 ont dit que le Repère (O:

=OJ = 1 ont dit que le Repère (O; $\stackrel{\checkmark}{\downarrow}$ I; J) est orthonormé

On pose $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$ on

note alors le Repère (O; I; J) par $(O; \vec{i}; \vec{j})$

3) Les coordonnées d'un point :

<u>Propriété et définition</u>: Le plan est rapporté au Repère (O; I; J).Pour tout point M du plan il existe un unique couple (x, y) tel que $x \in \mathbb{R}$ et $y \in \mathbb{R}$

et
$$\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ}$$

Le couple (x, y) est le couple de coordonnée de M et on

note : M(x, y) : x est l'abscisse du point M et y est l'ordonnée du point M

4) Les coordonnées d'un vecteur :

<u>Définition</u>: Le plan est rapporté au Repère $(O; \vec{i}; \vec{j})$

Le couple de coordonnée d'un vecteur \overrightarrow{u} est le couple de coordonnée du point M tel que $\overrightarrow{OM} = \overrightarrow{u}$ et on note :

$$\vec{u}(x,y)$$
 ou $\vec{u}\begin{pmatrix} x \\ y \end{pmatrix}$

Application: Le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$ Construire les points A(-4; 2); B(-2; 3);

C(-3;3); E(0;4); F(-3;0) et les vecteurs $\vec{u}(3;2);$ $\vec{v}(-2;-4)$

Réponse : soit M tel que OM = udonc M(3;2) et soit N tel que $\overrightarrow{ON} = \overrightarrow{v}$ donc N(-2;-4)

Propriétés: Le plan est rapporté au Repère orthonormé $(O;\vec{i};\vec{j})$

Soient $A(x_A; y_A)$; $B(x_B; y_B)$; $I(x_I; y_I)$ trois points dans le plan et $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ deux vecteurs

$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$
 et

$$AB = \left\| \overrightarrow{AB} \right\| = \sqrt{\left(x_B - x_A\right)^2 + \left(y_B - y_A\right)^2}$$

Le milieu I du segment [AB] a pour coordonnées

$$I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$$

$$\vec{u}(x; y) = \vec{v}(x'; y')$$
 ssi $x' = x$ et $y = y'$
 $\vec{u} + \vec{v}(x + x'; y + y')$ et $\vec{u} - \vec{v}(x - x'; y - y')$

$$\vec{u} + \vec{v} = (x + x')\vec{i} + (y + y')\vec{j}$$

Pour tout $\alpha \in \mathbb{R}$ $\alpha \cdot u(\alpha x; \alpha y)$

Application: Le plan est rapporté au Repère orthonormé (O; i; j) et soient A(1;2); B(-5;4)

- 1. Déterminer les coordonnée de I le milieu du segment [AB] et calculer $AB = \|\overrightarrow{AB}\|$
- 2. Déterminer les coordonnées du point C tel que OA + OB = OC
- 3. Quelle est la nature du quadrilatère *OACB*
- 4. Déterminer les coordonnées du vecteur *u* tel que $\overrightarrow{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$

Réponse :1) Le milieu I du segment [AB] a pour

coordonnées $I\left(\frac{x_B + x_A}{2}; \frac{y_B + y_A}{2}\right)$

Donc:
$$I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right) \text{donc} I\left(\frac{1 + (-5)}{2}; \frac{2 + 4}{2}\right) \text{donc} : I\left(-2; 3\right)$$

$$AB = \|\overline{AB}\| = \sqrt{(-5-1)^2 + (4-2)^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$$

<u>2)</u> on a A(1;2); B(-5;4); O(0;0) donc

$$\overrightarrow{OA}(x_A - x_O; y_A - y_O)$$
 donc $\overrightarrow{OA}(1-0; 2-0)$ donc $\overrightarrow{OA}(1; 2)$

 $\overrightarrow{OB}(x_B - x_O; y_B - y_O)$ donc $\overrightarrow{OB}(-5 - 0; 4 - 0)$ donc $\overrightarrow{OB}(-5; 4)$

on a $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$ donc $\overrightarrow{OC}(1+(-5);2+4)$ donc

 $\overrightarrow{OC}(-4;6)$ donc C(-4;6)

3) on a $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ donc OACB est un parallélogramme

On vérifie : on a OA(1;2) 1

Et
$$\overrightarrow{BC}(-4+5;6-4)$$
 c a d $\overrightarrow{BC}(1;2)$ ②

(1) et (2) on a donc $\overrightarrow{OA} = \overrightarrow{BC}$ donc \overrightarrow{OACB} est un parallélogramme

4) on a $\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$ et $\overrightarrow{OA}(1,2)$ et

 $2\overrightarrow{OB}(-10;8)$

 $\overrightarrow{IC}(-4+2;6-3)$ donc $\overrightarrow{IC}(-2;3)$

on a $\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$ donc $\vec{u} (1 - 10 + 2; 1 + 8 + 3)$

donc u(-11;13)

II) Condition analytique de colinéarité de deux vecteurs

Dans la suite de ce cours le plan est rapporté au Repère orthonormé (O; i; j)

Soient u(x; y) et v(x'; y') deux vecteurs

u et *v* sont colinéaires ssi il existe $\alpha \in \mathbb{R}$ tel que $u = \alpha \cdot v$

On a $\vec{u}(x; y)$ et $\alpha \cdot \vec{v}(\alpha x'; \alpha y')$

On a $\vec{u} = \alpha \cdot \vec{v}$ donc $x = \alpha x'$ et $y = \alpha y'$

Si $x' \neq 0$ et $y' \neq 0$ alors $\alpha = \frac{x}{x'}$ et $\alpha = \frac{y}{y'}$

donc $\frac{x}{x'} = \frac{y}{y'}$ alors xy' = x'y finalement on a:

xy' - x'y = 0

Si x' = 0 alors x = 0 la condition est juste

Si y' = 0 alors y = 0 la condition est juste

1) Le déterminant de deux vecteurs :

Définition: Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs

On appelle le déterminant de deux vecteurs $\vec{u}(x; y)$ et

v(x'; y') le réel : xy' - x'y

Et on le note : $\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - x'y$

Exemple : $\vec{u}(-2;3)$ et $\vec{v}(4;5)$

 $\det(\vec{u}; \vec{v}) = \begin{vmatrix} -2 & 4 \\ 3 & 5 \end{vmatrix} = (-2) \times 5 - 3 \times 4 = -10 - 12 = -22$

Propriété: Deux vecteurs $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ sont

colinéaires ssi $\det(\vec{u}; \vec{v}) = 0$

Deux vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ sont non colinéaires ssi III)La droite dans le plan $\det(\vec{u}; \vec{v}) \neq 0$

Remarque: Trois points A. B et C sont alignés ssi les vecteurs AB et AC sont colinéaires

Ssi
$$\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$$

Exemple :1) $\vec{u}(1;2)$ et $\vec{v}(-3;1)$

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} = 1 \times 1 - (-3) \times 2 = 1 + 6 = 7 \neq 0 \quad \text{donc}$$
Remarques:

 $\vec{u}(1;2)$ et $\vec{v}(-3;1)$ sont non colinéaires

2)
$$\vec{u}(-6;4)$$
 et $\vec{v}(3;-2)$

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} -6 & 3 \\ 4 & -2 \end{vmatrix} = (-6) \times (-2) - 3 \times 4 = 12 - 12 = 0$$

Donc $\vec{u}(-6;4)$ et $\vec{v}(3;-2)$ sont colinéaires

Application: Le plan est rapporté au Repère orthonormé (O;i;j)

Soit m un paramètre réel

Discuter suivant les valeurs de m la colinéarité de u et vdans chaque cas:

1)
$$\vec{u}(3;2m+1)$$
 et $\vec{v}(2;m)$

2)
$$\vec{u}(m;1)$$
 et $\vec{v}(1;m)$

Réponse:1) on a:

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 3 & 2 \\ 2m+1 & m \end{vmatrix} = 3 \times m - 2(2m+1) = 3m - 4m - 2 = -m - 2$$

$$\det(\vec{u}; \vec{v}) = 0 \text{ ssi } -m-2 = 0 \text{ ssi } m = -2$$

Si m = -2 alors $\det(\vec{u}; \vec{v}) = 0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires

Si $m \neq -2$ alors $\det(\vec{u}; \vec{v}) \neq 0$ donc les vecteurs \vec{u} et \vec{v} sont non colinéaires

2) on a :

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} m & 1 \\ 1 & m \end{vmatrix} = m^2 - 1 = m^2 - 1^2 = (m+1)(m-1)$$

$$\det(\vec{u}; \vec{v}) = 0 \text{ ssi } (m+1)(m-1) = 0 \text{ ssi } m = -1 \text{ ou}$$

$$m = -1$$

Si m=1 alors $\det(\vec{u}; \vec{v}) = 0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires

Si m = -1 alors $\det(\vec{u}; \vec{v}) = 0$ donc les vecteurs \vec{u} et \vec{v}

Si $m \neq 1$ et $m \neq -1$ alors $\det(\vec{u}, \vec{v}) \neq 0$ donc les vecteurs u et v sont non colinéaires

1) Définition vectorielle d'une droite :

a. Vecteur directeur d'une droite :

Un vecteur directeur d'une droite (D) est un vecteur non nul u qui possède la même direction que la droite (D)

- Toute droite possède une infinité de vecteurs directeurs.
- si u est un vecteur directeur de la droite (D) alors tout vecteur non nul et colinéaire au vecteur u est aussi vecteur directeur de cette droite.

• Deux points distincts quelconques de la droite (D) définissent un vecteur directeur de cette droite

• . Deux droites (D), et (D') sont parallèles si tout vecteur directeur de l'une est aussi vecteur directeur de l'autre.

b. Propriété : Soit u un vecteur non nul et A un point du plan .L'ensemble des points M du plan tq il existe $\alpha \in \mathbb{R}$ tq: $\overrightarrow{AM} = \alpha \overrightarrow{u}$ est la droite (D) de vecteur directeur \overrightarrow{u} et passant par A qu'on note : $D(A; \vec{u})$

$$D(A; \vec{u}) = \{ M \in P / \overrightarrow{AM} = \alpha \vec{u} \} \text{ avec } \alpha \in \mathbb{R}$$

C'est la Définition vectorielle d'une droite

2) Représentation paramétrique d'une droite :

Soit u(a;b) un vecteur non nul et $A(x_a; y_a)$ un point du plan

On a $M \in D(A; \vec{u})$ ssi il existe $\alpha \in \mathbb{R}$ tq: $\overrightarrow{AM} = \alpha \vec{u}$

On a
$$\overrightarrow{AM}(x-x_A; y-y_A)$$
 et $\overrightarrow{\alpha u}(\alpha a; \alpha b)$ donc

$$\overrightarrow{AM} = \alpha \overrightarrow{u} \text{ ssi}$$

$$\begin{cases} x - x_A = \alpha a \\ y - y_A = \alpha b \end{cases} \text{ ss}$$

$$\begin{cases} x = \alpha a + x_A \\ y = \alpha b + y_A \end{cases} \text{ avec } \alpha \in \mathbb{R}$$

Définition : Soit u(a;b) un vecteur non nul et

 $A(x_A; y_A)$ un point du plan et $t \in \mathbb{R}$

le système : $\begin{cases} x = ta + x_A \\ y = tb + y_A \end{cases}$ avec $t \in \mathbb{R}$ s'appelle une

représentation paramétrique de la droite D(A;u)

Exemples:

Exemple 1 : Donner un point et un vecteur directeur de la la

droite
$$D$$
 de représentation paramétrique
$$\begin{cases} x = 7t - 1 \\ y = -4t + 11 \end{cases}$$

avec $t \in \mathbb{R}$

Réponse: on a $A(-1;11) \in D$ et $\vec{u}(7;-4)$ est un

vecteur directeur de la la droite D

Exemple 2:

Soient A(1; 2) et B(-3; 0)

- Donner une représentation paramétrique de la droite 1) (AB).
- 2) Déterminer si chacun des points suivants appartient ou non a la droite (AB):

$$C(0;2)$$
; $D(-1;1)$; $E(9;6)$

Réponse :1) \overrightarrow{AB} est un vecteur directeur de (AB), ses composantes sont : \overrightarrow{AB} (-4, -2)

La représentation paramétrique de (AB) est donnée par le système:

2)on a C(0;2) on remplace les coordonnées de C dans le système (1

Donc
$$\begin{cases} 0 = -4t + 1 \\ 2 = -2t + 2 \end{cases}$$
 on trouve
$$\begin{cases} t = \frac{1}{4} \text{ or } \frac{1}{4} \neq 0 \text{ donc } C \notin (AB) \\ t = 0 \end{cases}$$
 si, et seulement si $\det \left(\overrightarrow{AM}; \overrightarrow{u} \right) = 0$

on a D(-1;1) on remplace les coordonnées de D dans le système (1)

Donc
$$\begin{cases} -1 = -4t + 1 \\ 1 = -2t + 2 \end{cases}$$
 on trouve
$$\begin{cases} t = \frac{1}{2} \\ t = \frac{1}{2} \end{cases}$$
 don $D \in (AB)$

on a E(9;6) on remplace les coordonnées de E dans le système (1)

Donc
$$\begin{cases} 9 = -4t + 1 \\ 6 = -2t + 2 \end{cases}$$
 on trouve
$$\begin{cases} t = -2 \\ t = -2 \end{cases}$$
 donc

 $E \in (AB)$

3) Equations cartésiennes d'une droite

Soit $u(\alpha; \beta)$ un vecteur non nul et $A(x_A; y_A)$ un point du

plan et soit
$$(D) = D(A; \vec{u})$$

On a $M(x; y) \in (D)$ ssi \overrightarrow{AM} et \overrightarrow{u} sont colinéaires

ssi $\det(\overrightarrow{AM}; \overrightarrow{u}) = 0$ On a $\overrightarrow{AM}(x - x_A; y - y_A)$

$$\begin{vmatrix} x - x_A & \alpha \\ y - y_A & \beta \end{vmatrix} = \beta (x - x_A) - \alpha (y - y_A) = \beta x - \beta x_A - \alpha y + \alpha y_A$$
$$= \beta x - \alpha y - \beta x_A + \alpha y_A$$

on pose: $\beta = a$ et $-\alpha = b$ et $-\beta x_A + \alpha y_A = c$

alors: $M(x; y) \in (D)$ ssi ax + by + c = 0

Définition :Toute droite (D) admet une équation cartésienne de la forme ax + by + c = 0 avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$ et $c \in \mathbb{R}$ et $a \neq 0$ ou $b \neq 0$

Remarque : Une droite (D) admet une infinité d'équations cartésiennes

En effet, si $\mathbf{ax} + \mathbf{by} + \mathbf{c} = \mathbf{0}$ est une équation cartésienne de (D), alors pour tout réel k non nul alors kax + kby + kc = 0est une autre équation de la même droite.

Propriété: Soient $a \in \mathbb{R}$ et $b \in \mathbb{R}$ et $c \in \mathbb{R}$ tel que $a \neq 0$ ou $b \neq 0$

L'ensemble des points M (x ; y) vérifiant l'équation : $\mathbf{ax} + \mathbf{by} + \mathbf{c} = 0$ est une droite de vecteur directeur u(-b;a)

Exemples:

Exemple 1 : Déterminer une équation cartésienne de la droite D) passant par le point

A(1;-1) et de vecteur directeur u(-1;3)

Réponse : Soit M un point de d de coordonnées : M (x ; y) Les vecteurs

et
$$\vec{u}(-1;3)$$
 sont \vec{A} \vec{M} \vec{A} \vec{A} \vec{M} \vec{A} \vec{M} \vec{A} \vec{A}

Équivaut à : (x - 1)(3) - (y + 1)(-1) = 0 équivaut à : $3 \times -3 + y + 1 = 0$ équivaut à : $3 \times + y - 2 = 0$ Une équation cartésienne de la droite (D), est :

3 x + y - 2 = 0

Exemple 2 : Déterminer une équation cartésienne de la droite (D), passant par les points A (5; 13) et B (10; 23). Réponse : Les points A et B appartiennent à la droite (D), donc le vecteur \overrightarrow{AB} est un vecteur directeur de cette droite. On a $\overrightarrow{AB}(10-5;23-13)$ donc $\overrightarrow{AB}(5;10)$ en divisant les coordonnées du vecteur \overline{AB} par 5, nous obtenons le vecteur u(1,2) est vecteur directeur aussi de la droite (D),

Donc b = 1 et a = -2 Une équation cartésienne de la droite d est donc

de la forme : — 2 x + y + c = 0 Comme le point A (5 ; 13) appartient à la droite (D), ses coordonnées vérifient 1'équation : -2x5 + 13 + c = 0

Donc — 10+13+c=0 D'où : c=-3

Une équation cartésienne de la droite (D) est donc :

$$-2x + y - 3 = 0$$

Exemple 3 : Déterminer l'équation cartésienne d'une droite à partir de sa représentation graphique

Soit $\left(O; \vec{i}; \vec{j}\right)$ un repère du plan. Déterminer une équation

cartésienne de la droite (D), , tracée ci-dessous

Réponse: *Méthode 1*: Le vecteur \overrightarrow{u} est un vecteur directeur de la droite (D),

On lit graphiquement $\vec{u}(3;1)$ Donc a = -1 et b = 3

Une équation cartésienne de la droite d est de la forme : -x + 3y + c = 0 Comme le point A (4 ; 1) appartient à la droite (D), ses coordonnées vérifient l'équation :

$$-4 + 3 + c = 0$$
 donc : $c = 1$

Une équation cartésienne de la droite d est : -x + 3y + 1 = 0 *Méthode* 2 : On prend deux points de la droite, par exemple : A (4; 1) et B (-2; -1) et on applique la même méthode qu'à l'exemple 2.

4) Equation réduite d'une droite

Soit (D) une droite d'équation cartésienne ax + by + c = 0donc by = -ax - c

Si
$$b \neq 0$$
 alors $y = -\frac{a}{b}x - \frac{c}{b}$

On pose:
$$m = -\frac{a}{b}$$
 et $p = -\frac{c}{b}$ alors $y = mx + p$

Si
$$b = 0$$
 alors on a $ax + c = 0$ donc $x = -\frac{c}{a}$ $(a \ne 0)$

dans ce cas (D) est parallèle à l'axe des ordonnées

Propriété : une droite n'est pas parallèle à l'axe des ordonnées ssi son équation cartésienne s'écrit sous la forme :

$$y = mx + p$$
 avec $m \in \mathbb{R}$ et $p \in \mathbb{R}$

<u>Définition</u>: Soit (D) une droite non parallèle à l'axe des ordonnées.

L'équation : y = mx + p s'appelle L'équation réduite de (D)

- Le nombre *m s'appelle* le coefficient directeur de la droite
- Le nombre p s'appelle l'ordonnée a l'origine

Remarque:

• si m est le coefficient directeur de la droite alors un vecteur directeur de cette droite est $\vec{u}(1;m)$

• si $\vec{u}(-b;a)$ est un vecteur directeur de la droite (D) et

 $b \neq 0$ alors $m = -\frac{a}{b}$ est un coefficient directeur de la droite

Exemple: Soit (D) la droite d'équation cartésienne :

$$4x + 2y + 3 = 0$$

- Son équation réduite est de la forme : y = -2x-3
- -2 est le coefficient directeur de la droite (D)
- Un vecteur directeur de cette droite est u(-2;4) ou u(1;-2)

Remarque: si $A(x_A; y_A)$; $B(x_B; y_B)$ et $x_A \neq x_B$ alors

 $m = \frac{y_B - y_A}{x_B - x_A}$ est coefficient directeur de la droite (AB)

Exemple: Représenter graphiquemt les droites suivantes:

1)
$$(D_1) 2x + y - 3 = 0$$

2)
$$(D_2): x = 3$$

3)
$$(D_2): y = 2$$

Réponse :1)

Iv)positions relatives de deux droites dans le plan

Propriété :

Deux droites (D) et (D'), d'équations respectives :

$$ax + by + c = 0$$
 et $a'x + b'y + c' = 0$

Sont parallèles si et seulement si : a b' - a'b = 0

Démonstration :

u(-b;a) est un vecteur directeur de la la droite(D)

 $|\overrightarrow{u}'(-b';a')|$ est un vecteur directeur de la la droite(D'),

(D) et (D') sont parallèles équivaut à \vec{u} et \vec{u} sont colinéaires ce qui équivaut à :

-b a' - a (-b') = 0 ce qui équivaut à : a b' - a'b = 0.

Remarque: 1) si (D) et (D') sont parallèles : on prend un point $A \in (D)$

- Si $A \in (D')$ alors (D) = (D') (confondues)
- Si $A \notin (D')$ alors (D) || (D') strictement
- 2) si (D) et (D') sont sécantes alors le point d'intersection

E (x; y) vérifie le système :
$$\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$$

Conséquence : Soit la droite (D) d'équation : y = mx + p et $| \int y = 2$ (D'): y' = m'x + p'

(D) et (D') sont parallèles si et seulement si m = m'En effet les vecteurs de coordonnées (1; m) et (1; m) sont deux vecteurs directeurs respectifs de (D) et (D')

D'où : ces vecteurs sont colinéaires si et seulement si m = m'**Application :** Étudier la position relative des deux droites D) et (D') dans chaque cas suivant :

1)
$$(D) 2x - 4y + 3 = 0$$
 $(D') : -x + 2y + 5 = 0$
2) $(D) 2x + 5y - 2 = 0$ $(D') : x + 3y - 2 = 0$

$$(D')$$
: $-x + 2y + 5 = 0$

2) (D)
$$2x + 5y - 2 = 0$$

$$(D'): x + 3y - 2 = 0$$

Réponse :1) on a : (D) 2x - 4y + 3 = 0 donc u(4;2)est un vecteur directeur de (D)

Et on a: (D'): -x + 2y + 5 = 0 donc $\vec{v}(-2; -1)$ est un vecteur directeur de (D')

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 4 & -2 \\ 2 & -1 \end{vmatrix} = -4 + 4 = 0 \quad \text{Alors les vecteurs } \vec{u} \text{ et}$$

 \vec{v} sont colinéaires donc (D) et (D') sont parallèles

Soit
$$A(x; y) \in (D)$$
 on prend $x = 0$ Alors:

$$0 - 4y + 3 = 0$$
 donc $y = \frac{3}{4}$ donc $A\left(0; \frac{3}{4}\right) \in (D)$

On vérifie si
$$A\left(0; \frac{3}{4}\right) \in (D')$$
?

on a:
$$-0+2\times\frac{3}{4}+5=\frac{3}{2}+5=\frac{13}{2}\neq 0$$

donc
$$A\left(0; \frac{3}{4}\right) \notin (D')$$
 D'où : $(D) || (D')$ strictement

2) on a : (D) 2x + 5y - 2 = 0 donc $\vec{u}(-5; 2)$ est un vecteur directeur de (D)

Et on a : (D') : x + 3y - 2 = 0 donc $\vec{v}(-3;1)$ est un vecteur directeur de (D')

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} -5 & -3 \\ 2 & 1 \end{vmatrix} = -5 + 6 = 1 \neq 0$$
 Alors les vecteurs

u et v sont non colinéaires donc (D) et (D') sont sécantes On détermine le point d'intersection de (D) et (D')

Soit E(x; y) ce point d'intersection de (D) et (D')

Alors (x; y) vérifie le système :

$$\begin{cases} 2x+5y-2=0\\ x+3y-2=0 \end{cases} \quad \text{donc} \quad \begin{cases} 2x+5y=2\\ x+3y=2 \end{cases}$$

donc
$$\begin{cases} 2x+5y = 2\\ x = 2-3y \end{cases}$$

$$\begin{cases} 2(2-3y)+5y = 2\\ x = 2-3y \end{cases}$$

$$\begin{cases} 4-6y+5y = 2\\ x = 2-3y \end{cases}$$

$$\begin{cases} 4-y = 2\\ x = 2-3y \end{cases}$$

$$\begin{cases} 4 = 2-3y$$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

