Numerical Optimization HW05

November 14, 2021

20211108 Donghyuk Jung

1 Conjugate Gradient method

- 1. Implement linear Conjugate Gradient method for the following function
- $f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$
- 2. Implement nonlinear Conjugate Gradient method for the following function
- $f(x,y) = 40(y-x^2)^2 + (1-x)^2$ $f(x,y) = (1.5 x + xy)^2 + (2.25 x + xy^2)^2 + (2.625 x + xy^3)^2$

Linear Conjugate Gradient method

Linear conjuage gradient method use relation between two problem

• Solving linear system $\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \text{Solving mizimize problem arg min } \left\{ \frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} - \mathbf{b}^{T}\mathbf{x} \right\}$

Let the observation function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} - \mathbf{b}^T\mathbf{x}$, then $\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$

f(x) has optimal point \mathbf{x}^* where $\nabla f(\mathbf{x}^*) = 0$

Find the quadratic form of $f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$

$$f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$$

$$= 5x^2 + 8xy + 5y^2 - 34x - 38y + 74$$

$$= \frac{1}{2} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + f$$

$$\therefore a = 10, b = 8, c = 10, d = -34, e = -38, f = 74$$

$$\Leftrightarrow \arg\min\left\{\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathrm{T}}\mathbf{x} + f\right\}$$

$$= \arg\min\left\{\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathrm{T}}\mathbf{x}\right\}$$

$$\therefore \mathbf{A} = \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 34 \\ 38 \end{bmatrix}$$

^{*}since linear CG method use minimization problem, we remove constant term temporary in f(x,y)

```
[6]: def linearCG(x0, f=f_1, color='red'):
         iter = 0
         start = t.time()
         A = np.array([[10, 8], [8, 10]])
         b = np.array([[34, 38]]).T
         rk = A.dot(x0)-b
         pk = -rk
         bk = np.array([[0, 0]]).T
         xk = x0
         cnt = 0
         while np.linalg.norm(rk) >1e-4:
             iter += 1
             ak = rk.T.dot(rk)/np.matmul(np.matmul(pk.T, A), pk)
             plotLine(xk, xk+ak*pk, color)
             plotPoint((xk.T[0][0], xk.T[0][1]), color)
             xk = xk+ak*pk
             rk1 = rk+ak*np.matmul(A, pk)
             bk = rk1.T.dot(rk1)/rk.T.dot(rk)
             rk = rk1
             pk = -rk+bk*pk
         return printVal(xk, f, iter, start)
```


Check result with linear system $\mathbf{A}\mathbf{x}=\mathbf{b}$

```
[20]: A = np.array([[10, 8], [8, 10]])
b = np.array([[34, 38]]).T

x = np.array([[1, 3]]).T

bb = np.matmul(A, x)
print("Ax=b")
print("b=(%.1f, %.1f)" % (bb.T[0][0], bb.T[0][1]))
```

Ax=b b=(34.0, 38.0)

3 Non-linear Conjugate Gradient method

```
[8]: h = 1e-7
      def grad(p, f):
          dx = np.array([[[-h], [0]], [[h], [0]]])
          dy = np.array([[[0], [-h]], [[0], [h]]])
          g1 = (f(p+dx[1])-f(p+dx[0]))/(2*h)
          g2 = (f(p+dy[1])-f(p+dy[0]))/(2*h)
          return np.array([[g1], [g2]])
 [9]: def stepLength(x0, p, f): # Use backtrakingMethod
          a, r, c = 3, 0.9, 0.6
          while f(x0+a*p) > a*c*np.dot(grad(x0, f).T, p)+f(x0):
          return a
[10]: def CG_FR(df1,df,pk,f): # Flectcher-Reeves
          return df1.T.dot(df1)/df.T.dot(df)
      def CG_PR(df1,df,pk,f): # Polak-Ribiere
          return df1.T.dot(df1-df)/df.T.dot(df)
      def CG_HS(df1,df,pk,f): # Hestenes-Stiefel
          return df1.T.dot(df1-df)/(df1-df).T.dot(pk)
[11]: def nonLinearCG(x0, f, beta, color='black'):
          start = t.time()
          df = grad(x0, f)
          pk = -df
          bk = np.array([[0, 0]]).T
          xk = x0
          iter = 0
          while np.linalg.norm(df) > 1e-4:
              iter += 1
              ak = stepLength(xk, pk, f)
              plotLine(xk, xk+ak*pk, color)
              plotPoint((xk.T[0][0], xk.T[0][1]), color)
              xk1 = xk+ak*pk
              df1 = grad(xk1, f)
              bk = beta(df1, df, pk, f)
              pk = -df1+bk*pk
              xk,df = xk1,df1
          return printVal(xk, f, iter, start)
[12]: x0 = np.array([[1.2, 1.2]]).T
      plotContour(f_2, rangeX=(0.9, 1.3), rangeY=(0.95, 1.35), grid=(5,5))
```

f_2 results at (1.20, 1.20)

١	f(x)		x			iter		time	
		-			-		–		
١	CG-FR 0.00000		(1.00005897,	1.00011874)		20		70.17	
١	CG-PR 0.00000		(1.00002044,	1.00004097)		27	l	96.77	
١	CG-HS 0.00000	ı	(1.00002180,	1.00004348)	1	23	l	95.92	

[13]: plotContour(f_3, rangeX=(0.5, 4.0), rangeY=(-1, 1.5), grid=(7, 5)) resultsInTable(x0.copy(), f_3)

f_3 results at (1.20, 1.20)

f(x)	•				iter			
				- -		-		1
CG-FR -5.73452		(3.35003123,	-0.54359099)		54		163.14	
CG-PR -5.73452		(3.35000673,	-0.54359075)		19		47.71	
CG-HS -5.73452	I	(3.35000916,	-0.54359129)	1	21		50.27	

