NN_Jax_Poisson

June 21, 2022

1 Solving PDEs with Jax - Poisson

1.1 Description

This file contains our first approach to solve PDEs with neural networks on Jax Library.

1.1.1 Average time of execution

Between 2 and 3 minutes on GPU

1.1.2 PDE

We will try to solve the poisson Equation : $-\Delta \psi(x,y) = f(x,y)$ on $\Omega = [0,1]^2$

1.1.3 Boundary conditions

$$\psi|_{\partial\Omega} = 0$$
 and $f(x,y) = 2\pi^2 sin(\pi x)sin(\pi y)$

1.1.4 Loss function

The loss to minimize here is $\mathcal{L} = ||\Delta \psi(x, y) + f(x, y)||_2$

1.1.5 Analytical solution

The true function ψ should be $\psi(x,y) = \sin(\pi x)\sin(\pi y)$

1.1.6 Approximated solution

```
We want find a solution \psi(x,y) = F(x,y)N(x,y) + A(x,y) s.t: F(x,y) = \sin(x-1)\sin(y-1)\sin(x)\sin(y) A(x,y) = 0
```

2 Importing libraries

[14]: # Jax libraries from jax import value_and_grad,vmap,jit,jacfwd from functools import partial from jax import random as jran from jax.example_libraries import optimizers as jax_opt

```
from jax.nn import tanh
from jax.lib import xla_bridge
import jax.numpy as jnp

# Others libraries
from time import time
import matplotlib.pyplot as plt
import numpy as np
import os
import pickle
print(xla_bridge.get_backend().platform)
```

gpu

3 Multilayer Perceptron

```
[15]: class MLP:
              Create a multilayer perceptron and initialize the neural network
          Inputs:
              A SEED number and the layers structure
          # Class initialization
          def __init__(self,SEED,layers):
              self.key=jran.PRNGKey(SEED)
              self.keys = jran.split(self.key,len(layers))
              self.layers=layers
              self.params = []
          # Initialize the MLP weigths and bias
          def MLP_create(self):
              for layer in range(0, len(self.layers)-1):
                  in_size,out_size=self.layers[layer], self.layers[layer+1]
                  std_dev = jnp.sqrt(2/(in_size + out_size ))
                  weights=jran.truncated_normal(self.keys[layer], -2, 2, __
       →shape=(out_size, in_size), dtype=np.float32)*std_dev
                  bias=jran.truncated_normal(self.keys[layer], -1, 1, shape=(out_size,__
       →1), dtype=np.float32).reshape((out_size,))
                  self.params.append((weights, bias))
              return self.params
          # Evaluate a position XY using the neural network
          @partial(jit, static_argnums=(0,))
          def NN_evaluation(self,new_params, inputs):
              for layer in range(0, len(new_params)-1):
```

```
weights, bias = new_params[layer]
   inputs = tanh(jnp.add(jnp.dot(inputs, weights.T), bias))
weights, bias = new_params[-1]
   output = jnp.dot(inputs, weights.T)+bias
   return output

# Get the key associated with the neural network
def get_key(self):
   return self.key
```

4 Two dimensional PDE operators

```
[16]: class PDE_operators2d:
              Class with the most common operators used to solve PDEs
          Input:
              A function that we want to compute the respective operator
          # Class initialization
          def __init__(self,function):
              self.function=function
          # Compute the two dimensional laplacian
          def laplacian_2d(self,params,inputs):
              fun = lambda params, x, y: self.function(params, x, y)
              @partial(jit)
              def action(params,x,y):
                  u_xx = jacfwd(jacfwd(fun, 1), 1)(params,x,y)
                  u_yy = jacfwd(jacfwd(fun, 2), 2)(params,x,y)
                  return u_xx + u_yy
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              laplacian = vec_fun(params, inputs[:,0], inputs[:,1])
              return laplacian
          \# Compute the partial derivative in x
          @partial(jit, static_argnums=(0,))
          def du_dx(self,params,inputs):
              fun = lambda params, x, y: self.function(params, x, y)
              @partial(jit)
              def action(params,x,y):
                  u_x = jacfwd(fun, 1)(params, x, y)
                  return u_x
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              return vec_fun(params, inputs[:,0], inputs[:,1])
```

```
# Compute the partial derivative in y
@partial(jit, static_argnums=(0,))
def du_dy(self,params,inputs):
    fun = lambda params,x,y: self.function(params, x,y)
        @partial(jit)
    def action(params,x,y):
        u_y = jacfwd(fun, 2)(params,x,y)
        return u_y
    vec_fun = vmap(action, in_axes = (None, 0, 0))
    return vec_fun(params, inputs[:,0], inputs[:,1])
```

5 Physics Informed Neural Networks

```
[17]: class PINN:
          Solve a PDE using Physics Informed Neural Networks
              The evaluation function of the neural network
          # Class initialization
          def __init__(self,NN_evaluation):
              self.operators=PDE_operators2d(self.solution)
              self.laplacian=self.operators.laplacian_2d
              self.NN_evaluation=NN_evaluation
              self.dsol_dy=self.operators.du_dy
          # Definition of the function A(x,y) mentioned above
          Opartial(jit, static_argnums=(0,))
          def A_function(self,inputX,inputY):
              return jnp.zeros_like(inputX).reshape(-1,1)
          # Definition of the function F(x,y) mentioned above
          Opartial(jit, static_argnums=(0,))
          def F_function(self,inputX,inputY):
              F1=jnp.multiply(jnp.sin(inputX),jnp.sin(inputX-jnp.ones_like(inputX)))
              F2=jnp.multiply(jnp.sin(inputY),jnp.sin(inputY-jnp.ones_like(inputY)))
              return jnp.multiply(F1,F2).reshape((-1,1))
          # Definition of the function f(x,y) mentioned above
          @partial(jit, static_argnums=(0,))
          def target_function(self,inputs):
              return (2*jnp.pi**2*jnp.sin(jnp.pi*inputs[:,0])*jnp.sin(jnp.pi*inputs[:
       \rightarrow,1])).reshape(-1,1)
          # Compute the solution of the PDE on the points (x,y)
```

```
Opartial(jit, static_argnums=(0,))
def solution(self,params,inputX,inputY):
    inputs=jnp.column_stack((inputX,inputY))
    NN = vmap(partial(jit(self.NN_evaluation), params))(inputs)
    F=self.F_function(inputX,inputY)
    A=self.A_function(inputX,inputY)
    return jnp.add(jnp.multiply(F,NN),A).reshape(-1,1)
# Compute the loss function
@partial(jit, static_argnums=(0,))
def loss_function(self,params,inputs):
    targets = solver.target_function(inputs)
    preds=self.laplacian(params,inputs).reshape(-1,1)
    return jnp.linalg.norm(preds+targets)
# Train step
Opartial(jit, static_argnums=(0,))
def train_step(self,i, opt_state, inputs):
    params = get_params(opt_state)
    loss, gradient = value_and_grad(self.loss_function)(params,inputs)
    return loss, opt_update(i, gradient, opt_state)
```

6 Initialize neural network

```
[18]: # Neural network parameters
SEED = 351
n_features, n_targets = 2, 1  # Input and output dimension
layers = [n_features,30,n_targets]  # Layers structure

# Initialization
NN_MLP=MLP(SEED,layers)
params = NN_MLP.MLP_create()  # Create the MLP
NN_eval=NN_MLP.NN_evaluation  # Evaluate function
solver=PINN(NN_eval)
key=NN_MLP.get_key()
```

7 Train parameters

```
[19]: batch_size = 50
num_batches = 100000
report_steps=1000
loss_history = []
```

8 Adam optimizer

It's possible to continue the last training if we use options=1

```
[20]: opt_init, opt_update, get_params = jax_opt.adam(0.0005)

options=0
if options==0:  # Start a new training
    opt_state=opt_init(params)

else:  # Continue the last training
    # Load trained parameters for a NN with the layers [2,30,1]
    best_params = pickle.load(open("./NN_saves/NN_jax_params.pkl", "rb"))
    opt_state = jax_opt.pack_optimizer_state(best_params)
    params=get_params(opt_state)
```

9 Solving PDE

```
Epoch n°1000: 16.8656005859375

Epoch n°2000: 13.043374061584473

Epoch n°3000: 9.39885139465332

Epoch n°4000: 1.402360439300537

Epoch n°5000: 0.5076846480369568

Epoch n°6000: 0.11085353791713715

Epoch n°7000: 0.06346675753593445

Epoch n°8000: 0.05376172065734863

Epoch n°9000: 0.04813845828175545

Epoch n°10000: 0.04360117390751839

Epoch n°11000: 0.039349690079689026

Epoch n°12000: 0.035346005111932755

Epoch n°13000: 0.03126910701394081
```

```
Epoch n°14000:
                0.028206845745444298
Epoch n°15000:
                0.024211522191762924
Epoch n°16000:
                0.021377889439463615
Epoch n°17000:
                0.019194817170500755
Epoch n°18000:
                0.0172917228192091
Epoch n°19000:
                0.015774047002196312
Epoch n°20000:
                0.014490223489701748
Epoch n°21000:
                0.013443739153444767
Epoch n°22000:
                0.012545859441161156
Epoch n°23000:
                0.011805604211986065
Epoch n°24000:
                0.011204875074326992
Epoch n°25000:
                0.010676281526684761
Epoch n°26000:
                0.010222324170172215
Epoch n°27000:
                0.009843493811786175
Epoch n°28000:
                0.009519227780401707
Epoch n°29000:
                0.00924003031104803
Epoch n°30000:
                0.00899475160986185
Epoch n°31000:
                0.008780816569924355
Epoch n°32000:
                0.008575515821576118
Epoch n°33000:
                0.008391273207962513
Epoch n°34000:
                0.008255526423454285
Epoch n°35000:
                0.008075883612036705
Epoch n°36000:
                0.00793217122554779
                0.0078064450062811375
Epoch n°37000:
Epoch n°38000:
                0.007659586612135172
Epoch n°39000:
                0.007549917325377464
Epoch n°40000:
                0.0074103521183133125
Epoch n°41000:
                0.00729281036183238
Epoch n°42000:
                0.007176669780164957
Epoch n°43000:
                0.007057745475322008
                0.006924672517925501
Epoch n°44000:
Epoch n°45000:
                0.00682061119005084
Epoch n°46000:
                0.006709466688334942
Epoch n°47000:
                0.0066167814657092094
Epoch n°48000:
                0.00650136498734355
Epoch n°49000:
                0.006403638049960136
Epoch n°50000:
                0.006314736790955067
Epoch n°51000:
                0.006196542643010616
Epoch n°52000:
                0.006112708244472742
Epoch n°53000:
                0.006019602995365858
Epoch n°54000:
                0.005921232048422098
Epoch n°55000:
                0.005824808496981859
Epoch n°56000:
                0.005728275515139103
Epoch n°57000:
                0.005642217583954334
Epoch n°58000:
                0.005550054833292961
Epoch n°59000:
                0.00547902612015605
Epoch n°60000:
                0.005391993559896946
Epoch n°61000:
                0.005322151817381382
```

```
Epoch n°62000:
                0.005223568063229322
Epoch n°63000:
                0.005156765691936016
Epoch n°64000:
                0.005085991695523262
Epoch n°65000:
                0.005003594793379307
Epoch n°66000:
                0.00494270259514451
Epoch n°67000:
                0.004892820492386818
Epoch n°68000:
                0.004810931161046028
Epoch n°69000:
                0.004736497066915035
                0.004692998714745045
Epoch n°70000:
Epoch n°71000:
                0.004633243195712566
Epoch n°72000:
                0.004559609107673168
                0.004511602688580751
Epoch n°73000:
Epoch n°74000:
                0.004453799221664667
Epoch n°75000:
                0.004404401872307062
Epoch n°76000:
                0.004349804483354092
                0.004302291199564934
Epoch n°77000:
Epoch n°78000:
                0.0042549301870167255
Epoch n°79000:
                0.004204540979117155
Epoch n°80000:
                0.00415925495326519
Epoch n°81000:
                0.004114319104701281
                0.004085968714207411
Epoch n°82000:
Epoch n°83000:
                0.004053623881191015
Epoch n°84000:
                0.003998779226094484
                0.003977752756327391
Epoch n°85000:
Epoch n°86000:
                0.003937471657991409
Epoch n°87000:
                0.0039040734991431236
Epoch n°88000:
                0.003856521099805832
Epoch n°89000:
                0.003834707196801901
Epoch n°90000:
                0.003805336309596896
Epoch n°91000:
                0.0037558376789093018
Epoch n°92000:
                0.0037459018640220165
Epoch n°93000:
                0.0037288772873580456
Epoch n°94000:
                0.003683465765789151
Epoch n°95000:
               0.003662185510620475
Epoch n°96000:
                0.0036490943748503923
Epoch n°97000:
                0.003628856735303998
Epoch n°98000:
                0.0036046761088073254
Epoch n°99000:
                0.0035693005193024874
Epoch n°100000: 0.0035500619560480118
```

10 Plot loss function

```
[22]: fig, ax = plt.subplots(1, 1)
    __=ax.plot(np.log10(loss_history))
    xlabel = ax.set_xlabel(r'${\rm Step}$')
    ylabel = ax.set_ylabel(r'$\log_{10}{\rm (loss_function)}$')
    title = ax.set_title(r'${\rm Training}$')
```

plt.show

[22]: <function matplotlib.pyplot.show(close=None, block=None)>

11 Approximated solution

We plot the solution obtained with our NN

12 True solution

We plot the true solution, its form was mentioned above

13 Absolut error

We plot the absolut error, it's |true solution - neural network output|

14 Save NN parameters

```
[26]: trained_params = jax_opt.unpack_optimizer_state(opt_state)
pickle.dump(trained_params, open("./NN_saves/NN_jax_params.pkl", "wb"))
```