MATH 20510 Lecture 16

April 30, 2025

Definition 0.1. A 2-surface is a C^1 map $\gamma: I^2 \to \mathbb{R}^n$.

Definition 0.2. (Informal) A 2-form on \mathbb{R}^n is

- (i) An object which can be integrated over any 2-surface.
- (ii) A rule which assigns a real number to every oriented parallelogram in \mathbb{R}^n in a "suitable" way.

Specify an oriented parallelogram in \mathbb{R}^n based at $p \in \mathbb{R}^n$ by giving (v, w). We want every 2-form ω to satisfy the following for every $p \in \mathbb{R}^n$

- (i) $\omega_p(tv_1, v_2) = \omega_p(v_1, tv_2) = t\omega_p(v_1, v_2).$
- (ii) $\omega_p(v_1, v_2 + v_3) = \omega_p(v_1, v_2) + \omega_p(v_1, v_3)$ and $\omega_p(v_1 + v_2, v_3) = \omega_p(v_1, v_3) + \omega_p(v_2, v_3)$.
- (iii) $\omega_p(v_1, v_2) = -\omega_p(v_2, v_1).$

Basic 2-forms on \mathbb{R}^n . $\forall v, w \in \mathbb{R}^n$,

(i)
$$(dx_1 \wedge dx_2)(v, w) = \det \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix}$$
.

(ii)
$$(dx_1 \wedge dx_3)(v, w) = \det \begin{pmatrix} v_1 & w_1 \\ v_3 & w_3 \end{pmatrix}$$
.

(iii)
$$(dx_i \wedge dx_j)(v, w) = \det \begin{pmatrix} v_i & w_i \\ v_j & w_j \end{pmatrix}$$
.

Remark 0.3. If ω_p satisfies (i) - (iii) then ω_p can be expressed as

$$\omega_p = \sum_{i,j} A_{i,j}(p) (dx_i \wedge dx_j)$$

for constant $A_{i,j}$.

Definition 0.4. A 2-form in \mathbb{R}^n is a rule assigning a real number to each oriented parallelogram in \mathbb{R}^n that can be written as

$$\omega = \sum_{i,j} f_{i,j} (dx_i \wedge dx_j)$$

where $f_{i,j}: \mathbb{R}^n \to \mathbb{R}$ is C^2 .

For any $p \in \mathbb{R}^n$, $v, w \in \mathbb{R}^n$,

$$\omega_p(v,w) = \sum_{i,j} f_{i,j}(p) (dx_i \wedge dx_j)(v,w).$$

Example 0.5. ω is a 2-form in \mathbb{R}^2 ,

$$\omega = f_{1,1} \underbrace{(dx_1 \wedge dx_1)}_{=0} + f_{1,2}(dx_1 \wedge dx_2) + f_{2,1} \underbrace{(dx_2 \wedge dx_1)}_{=-(dx_1 \wedge dx_2)} + f_{2,2} \underbrace{(dx_2 \wedge dx_2)}_{=0}$$

$$= (f_{1,2} - f_{2,1})(dx_1 \wedge dx_2)$$

This implies that every 2-form in \mathbb{R}^2 can be written as $\omega = f(dx_1 \wedge dx_2)$ where f is C^2 .

Example 0.6. ω is a 2-form in \mathbb{R}^3 ,

$$\omega = f_1(dx_1 \wedge dx_2) + f_2(dx_1 \wedge dx_3) + f_3(dx_2 \wedge dx_3).$$

Definition 0.7. Let $\gamma: I^2 \to \mathbb{R}^3$ be C^1 , and $\omega = f_1(dx_1 \wedge dx_2) + f_2(dx_1 \wedge dx_3) + f_3(dx_2 \wedge dx_3)$ be a 2-form. Then

$$\begin{split} \int_{\gamma} \omega &= \int_{I^{2}} \omega_{\gamma(z)} \left(\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z) \right) dz \\ &= \int_{I^{2}} f_{1}(\gamma(z)) (dx_{1} \wedge dx_{2}) \left(\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z) \right) \\ &+ f_{2}(\gamma(z)) (dx_{1} \wedge dx_{3}) \left(\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z) \right) + f_{3}(\gamma(z)) (dx_{2} \wedge dx_{3}) \left(\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z) \right) dz \\ &= \int_{I^{2}} f_{1}(\gamma(z)) \det \begin{pmatrix} D_{1}\gamma_{1}(z) & D_{2}\gamma_{1}(z) \\ D_{1}\gamma_{2}(z) & D_{2}\gamma_{2}(z) \end{pmatrix} \\ &+ f_{2}(\gamma(z)) \det \begin{pmatrix} D_{1}\gamma_{1}(z) & D_{2}\gamma_{1}(z) \\ D_{1}\gamma_{3}(z) & D_{2}\gamma_{3}(z) \end{pmatrix} + f_{3}(\gamma(z)) \det \begin{pmatrix} D_{1}\gamma_{2}(z) & D_{2}\gamma_{2}(z) \\ D_{1}\gamma_{3}(z) & D_{2}\gamma_{3}(z) \end{pmatrix} \end{split}$$