Informe etapa 2 proyecto 316514

Cambios en la sensibilidad a la insulina en hígado y músculo esquelético, microbiota intestinal y concentraciones postprandiales de GLP-1 provocados por el consumo de la sucralosa

Reporte del análisis de metabolómica de suero con cromatografía de gases-espectrometría de masas para la evaluación de las dos fases de la pinza euglucémica hiperinsulinémica (sensibilidad a la insulina hepática y de músculo esquelético)

Se llevó a cabo la estandarización del método de metabolómica no dirigida para analizar las diferencias de los pacientes.

Protocolo General de Análisis

Material y Equipo

Todos los disolventes utilizados fueron grado HPLC:

Metanol (Sigma-Aldrich)

Cloroformo (Tecsiquim)

Reactivos

Clorhidrato de metoxiamina (Sigma-Aldrich)

Ácido tridecanoico (Sigma-Aldrich)

N,O-Bis(trimetilsilil)trifluoroacetamida (MBSTFA- Sigma-Aldrich)

Clorotrimetilsilano (TMCS Sigma-Aldrich)

• Equipo utilizado:

Cromatógrafo de gases marca Agilent modelo 5977A.

Espectrómetro de masas marca Agilent modelo 7890B GC-MS.

Centrifuga marca Eppendorf modelo 5810.

Parrilla de calentamiento marca Cole-Palmer modelo Stable Temp 1.

Columna analítica marca Agilent modelo HP5-MS (30 m x 250 μm x 0.25 μm).

Sistema de purificación de H2O a grado miliQ marca Millipore modelo Integral 10.

Extracción de la muestra

Se extrajeron los metabolitos empleando una mezcla Metanol-Cloroformo 3:1 (300 uL) a partir de 45 μ L de suero a los cuales se añadieron 5 μ L de estándar interno (ácido tridecanoico, 0.36mg/mL). Se incubó a -20°C durante 20 minutos y se centrifugó la mezcla anterior a 15000 rpm a 4°C durante 5 min. Se recuperó el sobrenandante y se llevaron a desecación empleando el speedvac.

Derivatización de la muestra

A la mezcla anterior se añadieron 25 μ L de clorhidrato de metoxiamina disuelto en piridina (20 mg/mL) y se incubó durante 90 minutos a 37°C.

Posteriormente, se añadieron 50 μ L de MBSTFA 1% TMCS y se incubó durante 30 min a 37°C. Finalmente, se inyectó 1 μ L de la mezcla anterior.

Análisis por cromatografía de gases acoplada a espectrometría de masas (GC/MS).

Se empleó un sistema de cromatografía de gases acoplado a espectrometría de masas, ambos de la marca Agilent (5977A/7890B GC–MS).

Se utilizó la columna HP5MS (30 m x 250 μ m x 0.25 μ m) de la marca Agilent para llevar a cabo la separación de los analitos.

La fase móvil fue helio al 99.9999% de pureza.

La calibración del equipo se llevó a cabo con el estándar perfluorotributilamina (PFTBA) de la marca Agilent.

Se realizó un análisis tipo no dirigido (untargeted) con un rango de adquisición de 50 a 600 Da con una energía de ionización de 70 eV. Se utilizó una velocidad de escaneo de 3 scan/s con un escaneo digital de 20 Hz.

Se emplearon los parámetros especificados en la tabla 1 para llevar a cabo la corrida cromatográfica y la detección por espectrometría de masas.

Tabla 1 Parámetros uso GC/MS						
Temperatura del inlet	200 °C	Sistema de Inyeccion	Automático G4513A			
Temperatura del cuadrupolo	150 °C	Tipo de inyección	Estándar			
Temperatura de la fuente	250 °C	Volumen de Inyección	1 μL			
Velocidad de Flujo	1 mL/min	Split	1/30			

La corrida cromatográfica fue de 37 minutos totales y consistió en el siguiente programa de temperaturas:

Tabla 2 Corrida cromatográfica					
Velocidad °C/min	Temperatura	Tiempo mantenido	Tiempo de corrida		
Inicial	60	1	1		
10	325	0	37		

Deconvolución y alineamiento

Una vez obtenidos los datos cromatográficos, se utilizó el software mzMine 2.54 para realizar el proceso de deconvolución y alineamiento. Se obtuvieron los datos de tiempo de retención y altura de pico, los cuales podrán ser utilizados para comparar los metabolitos entre los grupos.

Control de calidad

Con el fin de evaluar posibles cambios en los tiempos de retención y variaciones en la sensibilidad del equipo se utilizará un estándar interno que consiste en ácido tridecanoico. Un valor de RSD<30% es adecuado para este tipo de análisis ¹.

Para determinar variaciones en los parámetros cromatográficos a nivel de los metabolitos detectados, se generó una mezcla (a volúmenes iguales) de todas las muestras a analizar, la cual funcionó como control de calidad (QC). Esta mezcla se inyectó durante todos los días de análisis. Se determinó el valor de %RSD para cada uno de los picos detectados en esta muestra de QC. Solo aquellos picos cromatográficos con valor de RSD<30% fueron considerados para análisis posteriores.

El análisis por cromatografía de gases nos permitió incluir 40 metabolitos, los cuales se enumeran en la tabla 1.

Tabla 1. Metabolitos incluidos en el análisis de metabolómica no dirigida.				
1	Alanine	21	4-Hydroxyproline	
2	Glycine	22	5-methoxy-1H-Indole-3-acetic acid	
3	alpha-Hydroxybutyric acid	23	2,3,4-Trihydroxybutyric acid	
4	Oxalic acid	24	Creatinine	
5	3-Hydroxybutanoic acid	25	Ornithine	
6	alpha-Hydroxyisovaleric acid	26	Glutamic acid	
7	Aminobutyric acid	27	Phenylalanine	
8	Valine	28	Lysine	
9	Leucine	29	Glutamine	
10	Glycerol	30	Citric acid	
11	Isoleucine	31	Myristic acid	

12	Proline	32	1,5-Anhydro-D-sorbitol
13	Succinic acid	33	Tyrosine
14	Glyceric acid	34	Palmitic acid
15	Serine	35	Myo-inositol
16	Threonine	36	Uric acid
17	Malic acid	37	Linoleic acid
18	Methionine	38	Oleic acid
19	Pyroglutamic acid	39	Tryptophan
20	Aspartic acid	40	Cholesterol

Empleando análisis tipo Heatmap combinados con análisis jerárquicos se observa las diferencias principales entre las distintas fases de su primera visita (F1V1, F2V1, F3V1) y la segunda visita (F1V2, F2V2, F3V2). La fase 1 corresponde al estado basal en donde solamente se infunden los isótopos estables de glucosa (6-6-D2, 99%). En la fase 2 se inicia la infusión de insulina regular a una velocidad de 7 mU/m²ASC/min (comenzando con una dosis de 28 mU/m²ASC/min durante 5 minutos y posteriormente a 14 mU/m²ASC/min durante 5 minutos) a la par que se inicia la infusión de la solución glucosada al 20% que se modifica acorde a la glucemia del paciente hasta lograr la euglucemia (95-105 mg/dL) y que se mantenga estable durante un periodo de 30 minutos. En la fase 2 se evalúa la sensibilidad a la insulina en el hígado ante una infusión con dosis baja de insulina al no suprimir por completo la producción hepática de glucosa. En la fase 3 la infusión de insulina se incrementa a una velocidad de 50 mU/m²ASC/min (comenzando con una dosis de 200 mU/m²ASC/min durante 5 minutos y posteriormente a 100 mU/m²ASC/min durante 5 minutos) y se continúa la infusión de la solución glucosada al 20% que se modifica acorde a la glucemia del paciente hasta lograr la euglucemia (95-105 mg/dL) y que se mantenga estable durante un periodo de 30 minutos. En la fase 3 se evalúa la sensibilidad a la insulina en el músculo esquelético ante una infusión con dosis alta de insulina al bloquear por completo la producción hepática de glucosa y observar al máximo la captación de glucosa en tejidos periféricos.

En este momento se está llevando a cabo el análisis experimental de los sueros de los pacientes restantes.