Logan Cudia

llcudia2@illinois.edu | (847)-977-2961 | LinkedIn | GitHub | Website

EDUCATION

University of Illinois Urbana-Champaign

Bachelor of Science in Computer Engineering

GPA: 3.30

GPA: 3.30

Expected Graduation: May 2025

Relevant Coursework: IoT and Cognitive Computing, Computer Systems and Programming, Discrete Structures, Analog Signal Processing, Computational Linear Algebra, Multivariable Calculus

SKILLS

Frameworks: TensorFlow, TFLite, OpenCV, NumPy, SciPy, Keras

Languages: C, C++, Python, x86 Assembly, HTML, CSS, JavaScript, SystemVerilog, SQL **Technologies:** Docker, Git, Raspberry Pi, Arduino, Linux, Node.js, MongoDB, KiCAD

PROJECTS

IoT Security System

Apr 2023 - May 2023

- Designed a Wireless Sensor Network connected by MQTT to create a cloud supported security system composed of 3 Raspberry Pi's as edge devices and a Jetson Nano to processes data from Raspberry Pi
- Developed facial recognition and object detection ML models deployed on each Raspberry Pi for live feed security and authentication from cameras
- Implemented hardware such as RFID tags, electronic locks, PiCameras, and fingerprint sensors to allow approved guests into the house

Maze-Solver Nov 2022 - Dec 2022

- Created a maze solver in C that solves a prebuilt maze from a text file inputted by file I/O
- Implemented a recursive depth first search (DPS) algorithm to that detects dead ends within the maze, visited parts of the maze, available path options, and the end position

Vending Machine Finite State Machine (FSM)

Feb 2022 - Apr 2022

- Designed a vending machine simulation that identified only dimes and quarters, tracked the amount of money inputted, accepted/rejected coins accordingly, and signaled when exactly 35 cents have been paid
- Developed a schematic on Intel Quartus Prime and tested functionality through a simulated waveform
- Incorporated sequential logic of FSMs with TTL chips, 555 Timer IC, and flip-flops to keep track of current vending machine states and transitions

Wall Following Car

Oct 2021 - Dec 2021

- Designed a motor-control circuit that utilizes ultrasonic sensors to move away from any nearby walls
- Created a 9 to 5 volt converter for the ultrasonic sensor using Zener diodes and validated using Thevenin theory
- Utilized a square wave oscillator to trigger the ultrasonic sensor to ensure proper pulses
- Implemented a push-button delay by utilizing an RC time constant to temporarily shut off the car motors

EXPERIENCE

Illini EV Concept

Aug 2022 - Dec 2022

Embedded Systems Engineer

- Designed a PCB board with a STM32 microcontroller, Hall Effect sensor, and IR sensor to track the RPM of the wheels
- Developed a corresponding program that tracks the RPM and relays that data through CANBus to the driver headboard display

St. Peter Lutheran School and Church

June 2022 - Aug 2022

Summer Camp Leader

- Taught STEM lessons to second graders and facilitated STEM-related projects in class such as designing and constructing a bridge made of noodles
- Coordinated and collaborated with other counselors to implement camp events, field trips, and Water Days
- Communicated to parents about concerns and responded to Summer Camp Coordinators' expectations and policies
- Provided leadership to second graders and helped them learn cleanliness, rules, respect, and communication

Wurth Baer Supply Company

July 2018 - Aug 2019

Purchaser/Buyer

- Participated in weekly meetings about inventory analysis and cost optimization
- Networked with current vendors and customers about current catalog and inventory
- Documented reports for purchase order history and resolved product defects and order discrepancies