Linear Algebra II

Supplementaries - 10 _____

ζ

May 5, 2023

1 正规矩阵与正规算子

Problem 1.1. 设 V 是 n 维内积空间, φ 是 V 上的正规算子, 则有对任意向量 α , 有 $\|\varphi(\alpha)\| = \|\varphi^*(\alpha)\|$

Problem 1.2. 设 V 是 n 维内积空间, φ 是 V 上的正规算子, α 是 V 中的非零向量, 求证: α 是 φ 属于其特征值 λ 的特征向量的充要条件是 α 是 φ^* 属于特征值 $\bar{\lambda}$ 的特征向量.

1.1 正规算子的等价刻画

Problem 1.3. 设 V 是 n 维酉空间, φ 是 V 上的线性变换, 求证: φ 是正规算子的充要条件 是对 V 中任意的向量 α , 都有 $\|\varphi(\alpha)\| = \|\varphi^*(\alpha)\|$.

Problem 1.4. 设 V 是 n 维酉空间, φ 是 V 上的线性变换, 求证: φ 是正规算子的充要条件 是若 v 是 φ 属于特征值 λ 的特征向量, 则 v 也是 φ^* 属于特征值 $\bar{\lambda}$ 的特征向量. [Hint] 可以 考虑归纳法.

Problem 1.5. 设 V 是 n 维酉空间, φ 是 V 上的线性变换, 求证: φ 是正规算子的充要条件 是 $\varphi = \varphi_1 + \varphi_2$, 其中 φ_1 和 φ_2 是子伴随算子且 $\varphi_1\varphi_2 = \varphi_2\varphi_1$.

Problem 1.6. 设 V 是 n 维酉空间, φ 是 V 上的线性变换, 求证: φ 是正规算子的充要条件 是存在某个复系数多项式 f(x), 使得 $\varphi^* = f(\varphi)$.

Problem 1.7. 设 V 是 n 维酉空间, φ 是 V 上的线性变换, 求证: φ 是正规算子的充要条件 是 $\varphi = \omega \psi$, 其中 ω 为酉算子, ψ 是半正定自伴随算子, 且 ω 与 ψ 可交换.

Problem 1.8. 设 $\mathbf{A} = (a_{ij})$ 是 n 阶复矩阵, $\lambda_1, \lambda_2, \ldots, \lambda_n$ 是其特征值, 求证: \mathbf{A} 是正规矩阵的充要条件是

$$\sum_{i=1}^{n} |\lambda_i|^2 = \sum_{i,j=1}^{n} |a_{ij}|^2.$$

1 正规矩阵与正规算子 2

1.2 同时 (对合) 对角化

Problem 1.9. 设 φ , ψ 是 n 维欧氏空间 (酉空间) V 上的两个自伴随算子 (正规算子), 求证: V 有一组由 φ 和 ψ 的公共特征向量构成的标准正交基的充要条件是 $\varphi\psi = \psi\varphi$.

Problem 1.10. 设 A_1 (i = 1, 2, ..., m) 是 m 个实对称矩阵 (复正规矩阵) 且两两可换, 求证: 存在正交矩阵 (酉矩阵) P, 使 P^TA_iP (P^HA_iP) 都是对角矩阵. [Hint] 考虑归纳法.

Problem 1.11. 设 V 是 n 维内积空间, φ 是 V 上的正规算子, U 是 φ 的不变子空间. 求证: U 也是 φ^* 的不变子空间, 从而 φ 在 U 上的限制仍然是一个正规算子.

Problem 1.12. 设 A, B 是两个 n 阶实正规矩阵且 AB = BA, 求证: 存在正交矩阵 P 使得 $P^{T}AP$ 和 $P^{T}BP$ 同时为正交相似标准型.