Orders

Alon Gurny

May 5, 2025

Contents

1	Preorders	2
2	Linear Orders	5
3	General Hausdorff Rank	9
4	ω -Hausdorff rank	11
5	WO-Hausdorff rank	13
6	Decidability of the rank	14
7	Everything Better	18

1 Preorders

We begin by studying the properties of preorders. Basically, we define a *property* as a class which is close under isomorphism. We then define the sum operation on preorders. This will be used to create new properties from old ones.

Definitions 1.1 ((Labeled) Preorder). A preorder is a a set M together with a binary relation \leq on M such that \leq is reflexive and transitive.

A labeled preorder is a preorder M together with a labeling function $\gamma: M \to C$, where C is a set of labels (colors).

Definition 1.2 (Property of preorders). A property **P** of preorders is a class of labeled preorders which is closed under isomorphism.

Definition 1.3. A property \mathbf{P} of preorders is monotone if for every preorder $M, M \in \mathbf{P}$ implies that every suborder of M is in \mathbf{P} .

Definition 1.4. Let M be a (labeled) preorder.

Then M^* is the dual/reverse (labeled) preorder of M.

Definition 1.5 (Sum of preorders). Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of labeled preorders.

The sum $M = \sum_{i \in I} M_i$ is defined as follows:

The domain is $\overline{M} = \biguplus_{i \in I} M_i$ (a disjoint union).

Let \leq_i be the preorder on M_i .

The order is defined as follows:

$$x \le y \iff \begin{cases} \exists i \in I.x, y \in M_i \land x \le_i y \\ \exists i, j \in I.x \in M_i \land y \in M_j \land i < j \end{cases}$$

The labels are defined naturally.

If I=2, we define $M_1+M_2:=\sum_{i\in 2}M_i$.

Lemma 1.6. Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of preorders. Then $M=\sum_{i\in I}M_i$ is a preorder.

Proof. Reflexivity is clear.

For transitivity, suppose $x \leq y$ and $y \leq z$.

Suppose $x \in M_i$, $y \in M_i$, $z \in M_k$.

Then $i \leq j$ and $j \leq k$, so $i \leq k$. If i = k, then necessarily i = j = k, and so $x \leq_i y$ and $y \leq_i z$, so $x \leq_i z$, so $x \leq_i z$, as required.

Otherwise, i < k, and thus $x \le z$, as required.

Definition 1.7. Let P_1 and P_2 be properties of preorders.

Then we define

$$\mathbf{P}_1 + \mathbf{P}_2 := \{ M_1 + M_2 : M_1 \in \mathbf{P}_1 \land M_2 \in \mathbf{P}_2 \}$$

Definition 1.8. A property \mathbf{P} of preorders is an additive property if for every preorders M_1 and M_2 , $M_1 + M_2 \in \mathbf{P}$ iff $M_1, M_2 \in \mathbf{P}$.

Definition 1.9 (Kleene plus). Let **P** be a property of preorders.

We define its Kleene plus as the smallest property of preorders \mathbf{P}^+ which contains \mathbf{P} and is closed under finite sums.

That is, $1^+ = \{1, 2, ...\}$, and $\mathbf{P}^+ = \sum_{1^+} \mathbf{P}$.

Definition 1.10 (Sum of a property over a preorder). Let I be a preorder.

Let Q be a property of preorders.

Then we define

$$\sum_{I} \mathbf{Q} := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in \mathbf{Q} \right\}$$

Definition 1.11 (Sum of a family of properties over a preorder). Let I be a preorder.

Let $\{\mathbf{Q}_i\}_{i\in I}$ be a family of properties of preorders.

Then we define

$$\sum_{i \in I} \mathbf{Q}_i := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in \mathbf{Q}_i \right\}$$

Note 1.12. By the previous two definitions,

$$\sum_I \mathbf{Q} = \sum_{i \in I} \mathbf{Q}$$

Definition 1.13 (Sum of properties over a labeled preorder). Let I be a labeled preorder, with a labeling function $\gamma: I \to \vec{C}$, where \vec{C} is a set of colors.

Let $\vec{\mathbf{Q}} = {\{\mathbf{Q}_c\}}_{c \in \vec{C}}$ be a family of properties of preorders, indexed by the colors.

Then we define

$$\sum_{I} \left[\vec{C} \leftarrow \vec{\mathbf{Q}} \right] := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in \mathbf{Q}_{\gamma(i)} \right\}$$

Notes 1.14. 1. We can see a sum over an unlabeled preorder I as a sum over a labeled preorder with a constant labeling function $\gamma: I \to \{1\}$.

2. We can see $P_1 + P_2$ as a sum over $I = \{1, 2\}$, colored with $\gamma(i) = i$.

Definition 1.15 (Sum of a property over a property). Let **P** be a property of unlabeled preorders.

Let **Q** be a property of preorders.

Then we define,

$$\sum_{\mathbf{P}} \mathbf{Q} := \left\{ \sum_{I} \mathbf{Q} : I \in \mathbf{P} \right\}$$

Definition 1.16 (Sum of a property over a labeled property). Let P be a property of labeled preorders, over a set of colors \vec{C} .

Let $\vec{\mathbf{Q}} = {\{\mathbf{Q}_c\}_{c \in \vec{C}}}$ be a family of properties of preorders, Then we define,

$$\sum_{\mathbf{P}} \left[\vec{C} \leftarrow \vec{\mathbf{Q}} \right] := \left\{ \sum_{I} \left[\vec{C} \leftarrow \vec{M} \right] : I \in \mathbf{P} \right\}$$

Linear Orders $\mathbf{2}$

Definitions 2.1 ((Labeled) Linear Order). A (labeled) linear order a (labeled) preorder which is symmetric and total.

Definition 2.2 (Property of linear orders). A property **P** of linear orders is a class of labeled linear orders which is closed under isomorphism.

Definition 2.3. Subintervals Let M be a linear order, and let $x, y \in M$, such that $x \leq y$.

Then we define the bounded subintervals [x,y], (x,y], [x,y) and (x,y) as usual.

We also define the semi-bounded subintervals $(-\infty, x]$, $[x, \infty)$, $(-\infty, x)$ and (x,∞) as usual.

We also define the unbounded subinterval $(-\infty, \infty)$ as the whole linear order M, as usual.

A subinterval is either a bounded subinterval, a semi-bounded subinterval or the unbounded subinterval.

If x > y then we define the intervals as follows:

$$[x, y] := [y, x]$$

 $(x, y] := (y, x]$
 $[x, y) := [y, x)$
 $(x, y) := (y, x)$

Definition 2.4. Let M be a linear order.

A set $A \subseteq M$ is left cofinal in M if for every $x \in M$, there exists $y \in A$ such that y < x.

A set $A \subseteq M$ is right cofinal in M if for every $x \in M$, there exists $y \in A$ such that x < y.

A set $A \subseteq M$ is bi-directionally cofinal in M if it is both left and right cofinal.

Lemma 2.5. Let **P** be an additive property of linear orders.

Then $1 \in \mathbf{P}$.

Note 2.6. The above lemma is false if we do not restrict ourselves to linear

For example, $(1 \uplus 1)^+$ is a property of preorders which is additive, but does not contain 1.

Proof. Let $M \in \mathbf{P}$ be any linear order.

Let $x \in M$. Then, $M = (-\infty, x) + \{x\} + (x, \infty)$, where $(-\infty, x)$ and/or (x, ∞) may be empty.

Since **P** is additive, we conclude that $\{x\} \in \mathbf{P}$.

Corollary 2.7. Let P be an additive property of linear orders.

Let M be a linear order.

Let $x, y \in M$ be any two points in a linear order M. Then the following are equivalent:

- 1. $(x, y) \in \mathbf{P}$
- 2. $(x,y] \in \mathbf{P}$
- 3. $[x,y) \in \mathbf{P}$
- 4. $[x, y] \in \mathbf{P}$

Proof. This is just applying the definition of an additive property to the orders [x, y] and 1.

Corollary 2.8. Let P be an additive property of linear orders.

Let M be a linear order.

Let $x, y, z \in M$ be any three points in a linear order M, such that $[x, y] \in \mathbf{P}$ and $[y, z] \in \mathbf{P}$.

Then $[x,z] \in \mathbf{P}$.

Proof. If $y \in [x, z]$, then [x, z] = [x, y] + (y, z], and $(y, z] \in \mathbf{P}$ by corollary 2.7. Otherwise, either $x \in [y, z]$ or $z \in [x, y]$. WLOG, suppose $z \in [x, y]$. Then [x, y] = [x, z] + (z, y], so $[x, z] \in \mathbf{P}$ by the fact that \mathbf{P} is additive. \square

Definitions 2.9. Let **P** be a property of linear orders.

We define the following properties of linear orders:

- $\mathcal{B}[\mathbf{P}]$ is the class of linear orders M such that for every $x, y \in M$, the bounded subinterval [x, y] is in \mathbf{P} .
- $\mathcal{L}[\mathbf{P}]$ is the class of linear orders M such that for every $x \in M$, the left-bounded ray $[x, \infty) = \{y \in M : x \leq y\}$ is in \mathbf{P} .
- $\mathcal{R}[\mathbf{P}]$ is the class of linear orders M such that for every $x \in M$, the right-bounded ray $(-\infty, x] = \{y \in M : y \leq x\}$ is in \mathbf{P} .

Definition 2.10. A property \mathbf{P} of linear orders is a star property if for every linear orders M, and every family $\mathcal{F} \subseteq \mathbf{P}$ of subintervals of M such that $J_1 \cap J_2 \neq \emptyset$ for every $J_1, J_2 \in \mathcal{F}$, we have that $\bigcup \mathcal{F} \in \mathbf{P}$.

Lemma 2.11. Let P be a star property.

Then for every linear order M, and every point $x \in M$, there exists a largest subinterval $J \subseteq M$ such that $J \in \mathbf{P}$.

Equivalently, we can define a convex equivalence relation $\sim_{\mathbf{P}}$ on M such that $x \sim_{\mathbf{P}} y$ iff $[x, y] \in \mathbf{P}$.

That is, $x \sim_{\mathbf{P}} y$ iff x and y are in the same largest **P**-subinterval.

Proof. Let $J \subseteq M$ be the union of all $\mathcal{B}[\mathbf{P}]$ -subintervals containing x. All such subintervals intersect at x.

Therefore, by the star lemma, J is in $\mathcal{B}[\mathbf{P}]$, and by definition J is the largest \mathbf{P} -subinterval containing x.

Thus we can define the equivalence relation $\sim_{\mathbf{P}}$ as above.

Lemma 2.12 (Star Lemma). Let P be an additive property of linear orders. Then the property $\mathcal{B}[P]$ is a star property.

Proof. Let M be a linear order, and let $\mathcal{F} \subseteq \mathcal{B}[\mathbf{P}]$ be a family of subintervals of M.

Let $[x,y] \subseteq \bigcup \mathcal{F}$ be any bounded subinterval. We need to prove it is in **P**. Suppose $x \in J_1$ and $y \in J_2$ for $J_1, J_2 \in \mathcal{F}$.

Since $J_1 \cap J_2 \neq \emptyset$, we can take $z \in J_1 \cap J_2$.

Then $[x,z] \subseteq J_1$ and $[z,y] \subseteq J_2$, and thus by the definition of $\mathcal{B}[\mathbf{P}]$, $[x,z],[z,y] \in \mathbf{P}$. Since \mathbf{P} is additive, by corollary 2.8, we have $[x,y] \in \mathbf{P}$.

Lemma 2.13. Let \mathbf{P} be an additive property of linear orders. Then.

- $\mathcal{B}[\mathbf{P}] = \{M : 1 + M + 1 \in \mathbf{P}\}\$
- $\mathcal{L}[\mathbf{P}] = \{M : M + 1 \in \mathbf{P}\}\$
- $\mathcal{R}[\mathbf{P}] = \{M : 1 + M \in \mathbf{P}\}\$
- $\mathbf{P} = \mathcal{L}\left[\mathbf{P}\right] \cap \mathcal{R}\left[\mathbf{P}\right]$

Proof. TBC.

Lemma 2.14. Let P be an additive property of linear orders.

Then,

$$\begin{split} \mathcal{B}\left[\mathbf{P}\right] &= \mathbf{P} \\ & \uplus \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right)\right) \end{split}$$

Proof. By lemma 2.13, we conclude that $\mathcal{L}[\mathbf{P}]$, $\mathcal{R}[\mathbf{P}] \subseteq \mathcal{B}[\mathbf{P}]$, since $M+1 \in \mathbf{P}$ and $1+M \in \mathbf{P}$ both imply $1+M+1 \in \mathbf{P}$.

Thus,

$$\begin{split} \mathcal{B}\left[\mathbf{P}\right] &= \left(\mathcal{L}\left[\mathbf{P}\right] \cap \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right)\right) \end{split}$$

Since by lemma 2.13 $\mathbf{P} = \mathcal{L}[\mathbf{P}] \cap \mathcal{R}[\mathbf{P}]$, we conclude what we wanted to prove.

Lemma 2.15 (Associativity of sum). Let \mathbf{P}_1 , \mathbf{P}_2 and \mathbf{P}_3 be properties. Then $\sum_{\mathbf{P}_1} \sum_{\mathbf{P}_2} \mathbf{P}_3 = \sum_{\sum_{\mathbf{P}_1} \mathbf{P}_2} \mathbf{P}_3$.

Proof. It follows directly from the associativity of the sum operation on linear orders. Actually, it generalizes to any algebraic equation which holds on linear orders. \Box

Lemma 2.16 (Sum over a union). Let \mathcal{P} be a family of properties.

Let
$$\mathbf{Q}$$
 be a property.
Then $\sum_{\bigcup \mathcal{P}} \mathbf{Q} = \bigcup_{\mathbf{P} \in \mathcal{P}} \sum_{\mathbf{P}} \mathbf{Q}$.

Proof. This is obvious from the definition of the sum operation.

Definition 2.17. We define CNT as the class of all countable linear orders.

Definition 2.18. Let
$$\beta \geq \omega$$
 be a limit ordinal. We define $\Gamma_{\beta} := \{\gamma : \gamma \subseteq \beta^* + \beta\}^+$.

Example 2.19.

$$\Gamma_{\omega} = \{1, \omega, \omega^*\}^+$$

Observation 2.20. Let $\beta \geq \omega$ be a limit ordinal.

Then Γ_{β} is a monotone, additive property of linear orders.

3 General Hausdorff Rank

Definition 3.1. Let \mathbf{Q} be a property of linear orders. We define a property $\mathbf{Q}^{<\alpha}$ for every ordinal $\alpha > 0$ as follows:

- For $\alpha = 1$, $\mathbf{Q}^{<1} = \{1\}$.
- For $1 < \alpha = \gamma + 1$,

$$\mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}} \mathbf{Q}^{<\gamma}$$

• For α a limit ordinal,

$$\mathbf{Q}^{<\alpha} = \bigcup_{\beta < \alpha} \mathbf{Q}^{<\beta}$$

We define further $\mathbf{Q}^{\leq \alpha} = \mathbf{Q}^{<\alpha+1}$ and $\mathbf{Q}^{=\alpha} = \mathbf{Q}^{\leq \alpha} - \mathbf{Q}^{<\alpha}$.

Observations 3.2. Let \mathbf{Q} be a property of linear orders. Let $\alpha > 0$ be an ordinal. Then.

•
$$\mathbf{Q}^{\leq 1} = \mathbf{Q}$$

Lemma 3.3. Let **Q** be a property of linear orders. Let $\alpha > 0$, $\delta \ge 0$ be ordinals. Then,

$$\mathbf{Q}^{<\alpha+\delta} = \sum_{\mathbf{Q}^{<1+\delta}} \mathbf{Q}^{<\alpha}$$

Proof. We shall prove this by induction on $\delta \geq 0$. For $\delta = 0$ we need to prove

$$\mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}^{<1}} \mathbf{Q}^{<\alpha}.$$

Which is true by definition, since $\mathbf{Q}^{<1} = \{1\}$. For $\delta = \gamma + 1$, using the induction hypothesis,

$$\mathbf{Q}^{<\alpha+\gamma+1} = \sum_{\mathbf{Q}} \mathbf{Q}^{<\alpha+\gamma}$$

$$= \sum_{\mathbf{Q}} \sum_{\mathbf{Q}^{<1+\gamma}} \mathbf{Q}^{<\alpha}$$

$$= \sum_{\sum_{\mathbf{Q}} \mathbf{Q}^{<1+\gamma}} \mathbf{Q}^{<\alpha}$$

$$= \sum_{\mathbf{Q}^{<1+\gamma+1}} \mathbf{Q}^{<\alpha}$$

$$= \sum_{\mathbf{Q}^{1+\delta}} \mathbf{Q}^{<\alpha}$$

For δ a limit ordinal, using the induction hypothesis,

$$\mathbf{Q}^{<\alpha+\delta} = \bigcup_{\gamma<\delta} \mathbf{Q}^{<\alpha+\gamma}$$

$$= \bigcup_{\gamma<\delta} \sum_{\mathbf{Q}^{<1+\gamma}} \mathbf{Q}^{<\alpha}$$

$$= \sum_{\mathbf{U}_{\gamma<\delta} \mathbf{Q}^{<1+\gamma}} \mathbf{Q}^{<\alpha}$$

$$= \sum_{\mathbf{Q}^{<1+\delta}} \mathbf{Q}^{<\alpha}$$

4 ω -Hausdorff rank

Definitions 4.1. Let $\alpha > 0$ be an ordinal.

Let M be a linear order.

We define:

1.
$$\mathcal{L}_{\alpha} := \{ M \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] : 1 + M \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] \}$$

2.
$$\mathcal{R}_{\alpha} := \{ M \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] : M + 1 \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] \}$$

And then:

1.
$$\mathcal{S}^1_{\alpha} := L_{\alpha} \cap R_{\alpha}$$

2.
$$\mathcal{S}^{\omega}_{\alpha} := L_{\alpha} \setminus R_{\alpha}$$

3.
$$\mathcal{S}_{\alpha}^{\omega^*} := R_{\alpha} \setminus L_{\alpha}$$

4.
$$S_{\alpha}^{\omega^* + \omega} := \mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right] \setminus (L_{\alpha} \cup R_{\alpha})$$

In particular, by the definition,

$$\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right] = \mathcal{S}_{\alpha}^{1} \uplus \mathcal{S}_{\alpha}^{\omega} \uplus \mathcal{S}_{\alpha}^{\omega^{*}} \uplus \mathcal{S}_{\alpha}^{\omega^{*}+\omega}$$

Let $M \in \mathcal{B}[\Gamma_{\omega}^{<\alpha}]$.

We define the α -shape of M to be the $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ for which $M \in \mathcal{S}^s_{\alpha}$.

Lemma 4.2.

$$\mathcal{S}^1_\alpha = \Gamma^{<\alpha}_\omega$$

Proof. (\supseteq) Let $M \in \Gamma_{\omega}^{<\alpha}$. Since $\Gamma_{\omega}^{<\alpha}$ is additive, 1+M and M+1 are also in $\Gamma_{\omega}^{<\alpha}$. Therefore, $M \in \mathcal{L}_{\alpha} \cap \mathcal{R}_{\alpha} = \mathcal{S}_{\alpha}^{1}$.

 $\Gamma_{\omega}^{<\alpha}$. Therefore, $M \in \mathcal{L}_{\alpha} \cap \mathcal{R}_{\alpha} = \mathcal{S}_{\alpha}^{1}$. (\subseteq) Let $M \in \mathcal{S}_{\alpha}^{1}$. Then $M \in \mathcal{L}_{\alpha}$ and $M \in \mathcal{R}_{\alpha}$, so $1 + M, M + 1 \in \mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$.

By lemma 2.12, $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ is a star property. So $1+M+1\in\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$. Since it is by itself an interval, it is in $\Gamma_{\omega}^{<\alpha}$.

By monotonicity, $M \in \Gamma_{\omega}^{<\alpha}$.

Lemma 4.3. Let $\alpha > 0$ be an ordinal. Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$.

Suppose that $\alpha = \sup_{i \in s} (\alpha_i + 1)$ for ordinals $\alpha_i > 0$ for all $i \in s$.

Then, we have the following:

$$\mathcal{S}^s_{\alpha} = \sum_{i \in s} \Gamma^{<\alpha_i}_{\omega}$$

Proof. Fur s = 1, it follows from lemma 4.2.

Otherwise, TBC.

Corollary 4.4. Let $\alpha > 0$, $\delta \geq 0$ be ordinals.

Let
$$s \in \{\omega, \omega^*, \omega^* + \omega\}$$

Then,

$$\mathcal{S}^s_{\alpha+\delta} = \sum_{\mathcal{S}^s_{1+\delta}} \Gamma^{<\alpha}_{\omega}$$

Proof. Suppose that $\delta = \sup_{i \in s} (\delta_i + 1)$. Then $\alpha + \delta = \sup_{i \in s} (\alpha_i + 1 + \delta_i)$.

$$\mathcal{S}^s_{\alpha+\delta} = \sum_{i \in s} \mathcal{S}^s_{\alpha+\delta_i} = \sum_{i \in s} \sum_{\Gamma^{<1+\delta_i}_{\omega}} \Gamma^{<\alpha}_{\omega} = \sum_{\sum_{i \in s} \Gamma^{<1+\delta_i}_{\omega}} \Gamma^{<\alpha}_{\omega} = \sum_{\mathcal{S}^s_{1+\delta}} \Gamma^{<\alpha}_{\omega}$$

5 WO-Hausdorff rank

Definition 5.1. A property P of preorders is called a computable property if $\mathbf{type}_n[P]$ is computable as a function of n.

Theorem 5.2 (Decomposition theorem). There exists a computable translation \mathcal{T} from MSO formulae to MSO formulae,

such that for any $M = \sum_{i \in I} M_i$, formula $\varphi(\vec{X})$, vector \vec{A} of the same length as \vec{X} , if n is the quantifier-depth of φ , then

$$M, \vec{X} := \vec{A} \models \varphi \iff I, \Pi \models \mathcal{T}\varphi$$

where $\Pi(i) = \mathbf{type}_n[M_i]$.

Lemma 5.3. There exists a global computable function $h : \mathbb{N} \to \mathbb{N}$ such that the following holds.

Let $\{C_i\}_{i=1}^k$ be a finite set of colors.

Let **P** be a property of linear orders, labeled by the colors $\{C_i\}_{i=1}^k$.

Let $\{\mathbf{Q}_i\}_{i=1}^k$ be a finite set of properties of linear orders.

Then $\mathbf{type}_n \left[\sum_{\mathbf{P}} \left[\vec{C} \leftarrow \vec{\mathbf{Q}} \right] \right]$ is a computable function of $\mathbf{type}_{h(n)} \left[\mathbf{P} \right]$ and $\mathbf{type}_n \left[\vec{\mathbf{Q}} \right] = \left\{ \mathbf{type}_n \left[\mathbf{Q}_i \right] \right\}_{i=1}^k$.

Proof. TBC.

6 Decidability of the rank

Lemma 6.1. Let **Q** be a good property of linear orders.

There exists a computable function $f_{\mathbf{Q}} = f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, and all $a \in \mathbb{N}$ such that $a \geq f(n)$, $\mathbf{type}_n \left[\mathbf{Q}^{\leq a} \right] = \mathbf{type}_n \left[\mathbf{Q}^{\leq f(n)} \right]$.

Equivalently, every linear order of finite rank is n-equivalent to some linear order of rank $\leq f(n)$.

Proof. Since there are only finitely many n-types, and the ω -sequence

$$\left\{ \mathbf{type}_n \left[\mathbf{Q}^{\leq k}
ight]
ight\}_{k \in \omega}$$

is monotone, there must be some k where the sequence stabilizes.

This point k is computable as a function of n, because $\mathbf{type}_n\left[\mathbf{Q}^{\leq k}\right]$ is computable for every finite k.

Lemma 6.2. There exist global computable functions $a, b : \mathbb{N} \to \mathbb{N}$ such that for all $n, c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$,

$$\mathbf{type}_n\left[\mathbf{Q}^{=c_1}\right] = \mathbf{type}_n\left[\mathbf{Q}^{=c_2}\right]$$

Equivalently, the sequence $\{\mathbf{type}_n [\mathbf{Q}^k]\}_{k \in \omega}$ is ultimately periodic for all $n \in \mathbb{N}$. Furthermore, the starting point and the period itself can be computed as a function of n.

Proof. Let $n \in \mathbb{N}$.

Since there are only finitely many sets of *n*-types, there exist (and can be computed) some a(n) > f(n), a(n) + b(n) such that

$$\mathbf{type}_n \left[\mathbf{Q}^{=a(n)} \right] = \mathbf{type}_n \left[\mathbf{Q}^{=a(n)+b(n)} \right]$$

holds for every s.

We shall prove by induction that for all $c \geq a(n)$,

$$\mathbf{type}_{n}\left[\mathbf{Q}^{=c}\right] = \mathbf{type}_{n}\left[\mathbf{Q}^{=c+b(n)}\right]$$

This will complete the proof.

The base case c = a(n) has been proven in the beginning.

Suppose the induction hypothesis holds for c.

Let M be of rank c+1.

Write $M = \sum_{i \in I} M_i$ where $M_i \in \Gamma_{\omega}^{< c+1}$, and $M_i \in \Gamma_{\omega}^{=c}$ infinitely many times.

By the induction hypothesis, if $M_i \in \Gamma_\omega^{=c}$, we can find $N_i \equiv_n M_i$ with $N_i \in \Gamma_\omega^{=c+b(n)}$. Setting $N_i := M_i$ for all other i, we conclude that $N := \sum_{i \in I} N_i$ is n-equivalent to M.

However, clearly $N \in \Gamma_{\omega}^{=c+b(n)+1}$. So overall,

$$\mathbf{type}_n\left[\mathbf{Q}^{=c+1}
ight] \subseteq \mathbf{type}_n\left[\mathbf{Q}^{=c+b(n)+1}
ight]$$

Conversely, suppose M is of rank c+b(n)+1. Write $M=\sum_{i\in I}M_i$ where $M_i\in\Gamma_\omega^{< c+b(n)+1}$, and $M_i\in\Gamma_\omega^{=c+b(n)}$ infinitely many times.

By the induction hypothesis, we can find for all i such that $M_i \in \Gamma_{\omega}^{=c+b(n)}$ some $N_i \equiv_n M_i$ with $N_i \in \Gamma_{\omega}^{=c}$. Furthermore, since $c \geq a(n) > f(n)$, we can find $N_i \equiv_n M_i$ with $N_i \in \Gamma_{\omega}^{\leq f(n) < c}$ for all other i.

We conclude that $N:=\sum_{i\in I}N_i$ is n-equivalent to M. However, clearly $N\in\Gamma^{=c+1}_\omega.$ So overall,

$$\mathbf{type}_n\left[\mathbf{Q}^{=c+b(n)+1}\right] \subseteq \mathbf{type}_n\left[\mathbf{Q}^{=c+1}\right]$$

So we have proven the induction step, and the lemma follows. \Box

Corollary 6.3. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be a shape.

Then there exists a computable function b(n) such that for all $c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 > a(n)$ and $c_1 \equiv c_2 \mod b(n)$, we have

$$\mathbf{type}_n\left[\mathcal{S}_{c_1}^s\right] = \mathbf{type}_n\left[\mathcal{S}_{c_2}^s\right]$$

Proof. For s=1, it follows from lemma 6.1, since $\mathcal{S}_c^1=\mathbf{Q}^{\leq c-1}$ by lemma 4.2. and $c>a(n)\geq f(n)$ so $c-1\geq f(n)$ for $c\in\{c_1,c_2\}$.

For $s \in \{\omega, \omega^*, \omega^* + \omega\}$, it follows easily from lemma 4.3 and lemma 6.2. \square

Lemma 6.4. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be a shape.

$$\mathbf{type}_n\left[\mathcal{S}_{\alpha}^s\right] = \bigcup_{c < b(n)} \mathcal{S}_{a(n)+c}^s$$

In particular, $\mathbf{type}_n[S_{\alpha}^s]$ can be computed, and is independent of the choice of $\alpha \geq \omega$.

Proof. TBC.

Definition 6.5. Let $\alpha \geq \omega$ be an ordinal.

Let M be a linear order and $x \in M$.

We define the convex equivalence relation:

$$\sim_{\alpha}:=\sim_{\mathcal{B}[\Gamma_{\omega}^{\leq \alpha}]}$$

and $[x]_{\alpha} := [x]_{\mathcal{B}\left[\Gamma_{\omega}^{\leq \alpha}\right]}$ (that is, $[x]_{\alpha}$ is the largest $\mathcal{B}\left[\Gamma_{\omega}^{\leq \alpha}\right]$ -subinterval containing x in M).

We define $\sigma_{\alpha}(M)$ as the α -shape of M.

Lemma 6.6. The property $\Gamma^{=\alpha}_{\omega}$ is expressible over intervals in $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$. That is, there exists a formula $\varphi_{\alpha}(\Pi, \Xi)$ such that for every linear order M and every $\mathcal{B}[\Gamma^{<\alpha}_{\omega}]$ -subinterval I of M, we have

$$M, \Pi, \Xi \models \varphi_{\alpha}(\Pi, \Xi) \iff I = \sum_{i \in I} M_i \text{ where } M_i \in \Gamma_{\omega}^{=\alpha} \text{ for all } i$$

Proof. It is equivalent to being a sum of \sim_{α} -subintervals, of which at least one has $\sigma_{\alpha} \neq 1$.

Theorem 6.7. There is an oracle reduction from SAT for $MSO[\sim_{\alpha}, \sigma_{\alpha}]$, to SAT for MSO.

Proof. By the decomposition theorem, there exists a translation, that given an $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$ formula φ of quantifier-depth n. outputs an \mathbf{MSO} formula $\psi(\Pi)$ such that...

Let φ be an $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$ formula, and let n be the quantifier-depth of φ . WLOG, assume that φ is a sentence.

First, let us calculate the sets:

$$T_s := \mathbf{type}_n \left[\mathcal{S}_{\alpha}^s \right]$$

for every shape s.

Now we create the formulae:

$$\theta_s(\Pi,\Xi) := \left\{ i : \bigvee_{\tau \in S_s} \Xi(\Pi(i)) = s \right\}$$

$$L(\Pi,\Xi) := \theta_{\omega}(\Pi,\Xi) \vee \theta_{\omega^* + \omega}(\Pi,\Xi)$$

$$R(\Pi,\Xi) := \theta_{\omega^*}(\Pi,\Xi) \vee \theta_{\omega^*+\omega}(\Pi,\Xi)$$

We create the formula $\chi(\Pi,\Xi)$ as follows:

$$\chi := \Pi = domain(\Xi) \land \forall i, i'.i' = i+1 \implies i \in R(\Pi, \Xi) \lor i' \in L(\Pi, \Xi)$$

Now we claim that φ is satisfiable in $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$ iff $\psi \wedge \chi$ is satisfiable in \mathbf{MSO} .

If φ is satisfiable, then there exists a model M of φ .

Let $M=\sum_{i\in I}M_i$ be the decomposition of M where $I=\sim_{\alpha}$ and M_i are the \sim_{α} -equivalence classes.

By the decomposition theorem, Ψ holds in $I, \Pi := \mathbf{type}_n [\cdot]$.

We claim that χ holds in $I, \Pi := \mathbf{type}_n [\cdot]$.

It follows from the star property of \sim_{α} that the constraint holds.

Conversely, suppose $\psi \wedge \chi$ is satisfiable in **MSO**.

Let $I, \Pi := T$ be a model of $\psi \wedge \chi$.

Let us take a model M_i with the appropriate type. Now define $M:=\sum_{i\in I}M_i$.

We claim that each M_i is a maximum $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ -subinterval of M. Suppose $[M_i, M_j]$ is a $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ -subinterval of M.

In particular, it has a rank, so it is scattered. So in particular, $[i, j] \subseteq I$ is a scattered interval.

If i = j we are done. Otherwise, let i', j' be such that $i \le i' < j' \le j$, and j' = i' + 1. But it cannot be the case by the constraint.

Definition 6.8. Let $\alpha_1, \ldots, \alpha_k$ be ordinals.

We define $C[\alpha_1, \ldots, \alpha_k]$ as the class of countable linear orders, labeled with π_{α_i} and σ_{α_i} for $1 \leq i \leq k$.

Theorem 6.9. Let $\alpha_1, \ldots, \alpha_k$ be ordinals.

Let α be an ordinal such that $\alpha < \alpha_i$ for all $1 \leq i \leq k$.

Let $\delta_i > 0$ for $1 \le i \le k$ be such that $\alpha_i = \alpha + \delta_i$.

Let P be the class of countable linear orders,

Then $C_0 = \sum_{\mathbf{P}} C_1$.

7 Everything Better

Theorem 7.1. Let C be a computable property of linear orders, such that C is closed under taking subintervals, projections and inverse-projections (i.e, of one of the colors), and all finite-sums and C-sums.

Let $\mathbf{P}_1, \dots, \mathbf{P}_k \subseteq \mathcal{C}$ be computable properties of linear orders.

Let $\mathbf{MSO}[P_1, \ldots, P_k]$ be monadic second order logic of order over \mathcal{C} , with P_1, \ldots, P_k as monadic predicates whose semantics are: $P_i(X)$ holds iff X is a subinterval which satisfies \mathbf{P}_i .

Given ϕ a formula of $\mathbf{MSO}[P_1, \dots, P_k]$ (possibly with free variables) we define

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

(Note that M above may be a labeled linear order.) Then \mathcal{C}_{ϕ} is a computable property of linear orders.

Proof. By structural induction on ϕ .

Suppose ϕ is an atomic formula. If ϕ is of the form $X \subseteq Y$ or $X \leq Y$,

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

and thus,

$$\mathbf{type}_{n}\left[\mathcal{C}_{\phi}\right] = \left\{\tau \in \mathbf{type}_{n}\left[\mathcal{C}\right] : \tau \models \phi\right\}$$

which is computable since $\mathbf{type}_n[\mathcal{C}]$ is computable, and we can then compute whether $\tau \models \phi$ for each $\tau \in \mathbf{type}_n[\mathcal{C}]$.

If ϕ is of the form $P_i(X)$, then

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models P_i(X) \}$$

and thus.

$$\mathbf{type}_n\left[\mathcal{C}_{\phi}\right] = \mathbf{type}_n\left[\mathbf{P}_i\right]$$

which is computable since \mathbf{P}_i is computable.

If $\phi = \neg \phi_1$, then

$$\mathcal{C}_{\phi} = \mathcal{C} \setminus \mathcal{C}_{\phi_1}$$