

Examen Sistemas Informáticos - Extraordinaria

Nombre:
Apellidos:

Evaluacion 1 Hardware

- 1. Convierte los siguientes números de decimal a binario (1 punto)
 - a. 128
 - b. 35
 - c. 46
 - d. 322
- 2. De decimal a hexadecimal (1 punto)
 - a. 345
 - b. 123
 - c. 52
 - d. 67
- 3. Realiza un esquema de la arquitectura de Von Neuman (1 puntos)
- 4. Define programa y cpu atendiendo a esta arquitectura (1 puntos)
- 5. Identifica los distintos componentes de la siguiente imagen. (0.25 componente)
 - a. Procesador.
 - b. Conectores de alimentación.
 - c. Zocalos de RAM.
 - d. Conectores disco duro.
 - e. Conector salida de video
 - f. BIOS
 - g. Puerto PCI
 - h. SATA

- 6. Indica la función de los siguientes componentes. (0.5 punto /componente)
 - a. Placa base
 - b. Procesador
- 7. ¿Qué función tiene un sistema de archivos? ¿Qué objetivo tiene? Nombra 3 sistemas de archivos (2 puntos)
- 8. Identifica el sistema de archivos de tu máquina. Adjunta una captura. (1 punto)

Comunidad de Madrid

Evaluacion 2

HW2

- 1. ¿Que es la memoria de un ordenador? ¿Qué tipos hay? ¿Qué operaciones permite realizar? (1,5 puntos)
- 2. Define cada uno de los tipos de memoria e indica sus características. (2 puntos)
- 3. Que especifica la frecuencia, el ancho del bus y la velocidad de transferencia.(1 punto)
- 4. Define. (3 puntos)
 - a. Puerto Serie
 - b. Puerto paralelo
 - c. Puerto USB
 - d. Puerto Thunderbolt
 - e. VGA
 - f. HDMI
- **5.** Cuando se hace el formato físico, indica las partes en las que se estructura un disco duro. Y el formato lógico. **(1.5 punto)**
- 6. Indica la estructura interna de un disco SSD y define cada una de sus partes (1 punto)

Redes

- 1. Explica la diferencia entre topología lógica y topología física. (1,5 puntos)
- 2. Define y especifica las ventajas y desventajas de las siguientes topologías: (1 punto)
 - a. Bus
 - b. Estrella
 - c. Anillo
 - d. Malla
- 3. Dibuja un esquema del modelo OSI y define brevemente cada una de sus capas (2 puntos)
- **4.** Calcula la máscara de subred de las siguientes direcciones IPv4, indica a qué dirección IP pertenece, a qué clase pertenece dicha dirección IP e indica el número de dispositivos que puedes instalar en cada subred. **(2 puntos)**
 - a. 192.168.0.0
 - b. 191.167.168.0
 - c. 172.30.40.0
 - d. 9.9.9.0
- **5.** Suponemos que tenemos la red *200.200.100.0* y queremos montar **5 subredes**. Calcula todas las **direcciones de subred**, los rangos IP de cada una de las subredes y las direcciones de Broadcast. **(3.5 puntos)**

Evaluación 3

Linux

Descarga la ISO e instala, mediante una máquina virtual, UBUNTU.

Una vez lo tengas instalado (**Importante**: pon tu nombre como usuario, no un alias), realiza los siguientes ejercicios en la terminal.

- Crea el fichero a.txt con gedit, b.txt con nano y c.txt con vi. Guárdalos en tu subdirectorio personal. Como contenido de los ficheros introduce tu nombre, tu primer apellido y tu segundo apellido, respectivamente. Después mira el contenido de los 3 ficheros en una única línea de comandos.
- 2) Cambia la contraseña al usuario root. Entra como root. Mira como root el contenido de los ficheros /etc/shadow y /etc/gshadow de forma paginada por pantalla. Mira el contenido del fichero /etc/sudoers, y comprueba quién tiene o puede tener todos los privilegios en el sistema.
- 3) Desde la terminal, crea un grupo nuevo, llamado Profesores. Después añade un usuario llamado Alejandro, cuyo grupo primario o principal sea Profesores. Después comprueba lo realizado.
 - Crea otro grupo llamado Tutores. Haz que Alejandro pertenezca a Tutores, pero como grupo secundario. Comprueba lo realizado y después borra los grupos y al usuario.
- 4) Ejecuta nano d.txt. Páralo y mándalo al segundo plano. Comprueba que está en segundo plano. Vuelve a poner activo mandando al primer plano el primer proceso. Mata el segundo proceso. Comprueba que ya no hay procesos asociados a la terminal.
- 5) Crea dos usuarios nuevos, Damian y Valentin.
- 6) Cambia el Shell de Valentín por el de /bin/false. Intenta entrar en el sistema como Valentin. ¿A qué es debido que no puedas entrar? Cambia de nuevo a /bin/bash.
- 7) Crea 2 ficheros:
 - a. F.txt que contiene

ESTO

ESTA

CLARO

b. G.txt que contiene

CLARO

OSCURO

33

Mezclalos en un fichero fj.txt, muestralo por pantalla y evita las lineas repetidas. Crea otro grupo llamado Tutores. Haz que Alejandro pertenezca a Tutores, pero como grupo secundario. Comprueba lo realizado y después borra los grupos y al usuario.

- 8) ¿Dónde y qué mirarías para saber que el usuario "Damian" puede realizar comandos con privilegios de root? Dale los permisos de root si no los tiene ya
- 9) Crea una variable que almacene el resultado de 3+3 y muestrala por pantalla
- 10) Lista todos los procesos que haya en ejecución.

- 11) Crea un fichero llamado "listado" con el listado del directorio /etc ordenado y muéstralo por pantalla.
- 12) Encuentra todos los archivos en tu directorio personal mayores que 5MB.
- 13) Averigua la cantidad de disco usada en total por el directorio home
- 14) Crea un directorio EXAMEN en /tmp y en su interior crea los directorios dir1 y en su interior dir11, dir 2 con dir21 y dir22y dir3 con dir31. Dir 31 tendra a su vez dir311 y dir312 en su interior.
- 15) Crea un script que guarde "Will you be our last ray of hope? No" en una variable y la imprima por pantalla.
- 16) Crea una variable llamada DAÑO que tenga el valor 9999. Imprime por pantalla ¿Has podido hacerlo? ¿Qué cambios se te ocurren para que funcione?
- 17) Ahora, crea otra variable llamada Vacaciones que almacene el mensaje "Ya queda menos" e imprímela por pantalla.

Automatización

1. Dado el siguiente script, indica la salida del comando. (1 punto)

d. No hay salida

2. Dado el siguiente script, indica la salida del comando. (1 punto)

```
```binbash2.sh
```





#### #!/bin/bash

3. Dado el siguiente script, indica la salida del comando (1 punto).

Aclaración: "\_" es lo mismo que "imprime linea vacia"

4. Crea un script llamado echo.sh que permita mostrar el argumento indicado y si se introduce un fichero deberá escribirlo en su interior. El script deberá recibir dos parámetros una palabra y fichero como parámetros y deberá dar un error si el fichero no existe o el fichero no tiene permisos de escritura. (2 puntos)

#### Ejemplo de ejecución:





## \$ ./echo.sh hola hola

\$ ./echo.sh suspenso /home/profe/aprobados.txt suspenso añadido a /home/profe/aprobados.txt

\$ ./echo.sh /no/tiene/permisos/deEscritura.txt
\*Error, el fichero proporcionado no tiene permisos de escritura

5. Crea un script llamado multitask.sh que reciba una opción y una ruta como parámetros. Si la opción es --create o -c deberá crear un fichero con el nombre indicado, si la opción es --remove o -r deberá borrar el fichero indicado y si la opción es --append o -a deberá pedir al usuario que escriba algo por pantalla y será agregado al final del fichero. (3 puntos)

Realiza cada una de las opciones usando una función. (1 punto)

**Punto extra:** Ten en cuenta que un fichero puede no existir o puede que no tengas permisos para editar dicho fichero, ten en cuenta dichos casos e implementa las funciones pertinentes. (hasta +1 punto)

#### Ejemplo de uso:

\$ ./multitask.sh -c /home/profe/examen.txt Fichero creado correctamente

\$ ./multitask.sh --append /home/profe/examen.txt ¿Qué quieres añadir? > Pregunta 5...

Se ha añadido correctamente.

\$ ./multitask.sh --append /home/profe/examen.txt ¿Que quieres añadir? > Pregunta 6...

Se ha añadido correctamente.

\$ cat /home/profe/examen.txt Pregunta 5... Pregunta 6...





# \$ ./multitask.sh -r /home/profe/examen.txt Fichero borrado correctamente





6. Crea un script llamado **restos.sh** que pida al usuario un número y muestre por pantalla los restos de dicho número de dividir el número entre un número entre 1 y dicho número. Se ha de suponer que el usuario va a introducir un número válido en todos los casos.

### Ejemplo de uso:

### \$./restos.sh

Introduce un numero: 15

15 / 1; resto=0 15 / 2; resto=1 15 / 3; resto=0 .

15 / 14; resto=1 15 / 15; resto=0