ЗАДАЧИ ОТ ИЗПИТНИ ТЕМИ - І част

- 1 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} , за които $|\vec{a}|=2$, $|\vec{b}|=1$, $|\vec{c}|=2$, $\sphericalangle(\vec{a},\vec{b})=\sphericalangle(\vec{a},\vec{c})=$ $\sphericalangle(\vec{c},\vec{b})=\frac{\pi}{2}$. Нека $\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OB}=\vec{b}$ и $\overrightarrow{OC}=\vec{c}$. Нека т.Н е петата на височината през върха О на тетраедъра OABC. Да се изрази вектора \overrightarrow{OH} като линейна комбинация на \vec{a} , \vec{b} и \vec{c} , и да се намери дължината му.
- 2 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} , за които $|\vec{a}|=1$, $|\vec{b}|=1$, $|\vec{c}|=2$, $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$, $\sphericalangle(\vec{c},\vec{b})=\frac{\pi}{2}$. Нека OABC е тетраедър, за който $\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OB}=\vec{b}$ и $\overrightarrow{OC}=\vec{c}$.
 - а) Да се намери обема на тетраедъра ОАВС;
 - b) Нека точките M, N и P принадлежат съответно на отсечките AB, BC и CA като AM:MB = BN:NC = CP:PA = 1:2. Да се изразят векторите \overrightarrow{MN} , \overrightarrow{NP} и \overrightarrow{MP} като линейни комбинации на \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} . Да се пресметне соѕ $\blacktriangleleft NMP$;
 - с) Нека точката G е медицентърът на ΔABC . Да се докаже, че т.G е медицентърът и на ΔMNP .
- 3 зад. Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}|=|\vec{b}|=\frac{1}{\sqrt{2}}$ и $\sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$. Нека $\overrightarrow{OA}=2\vec{a}-\vec{b}$, $\overrightarrow{OB}=\vec{a}+\vec{b}$, $\overrightarrow{OC}=\vec{a}\times\vec{b}$.
 - а) Да се намери обема на тетраедъра ОАВС;
 - b) Ако точките A_1 , B_1 и O_1 са средите на страните на триъгълник OAB, да се намерят обиколката и лицето на триъгълник $A_1B_1O_1$.
- 4 зад. Дадени са векторите $\overrightarrow{CA} = \vec{a} \times (\vec{b} \times \vec{a}), \overrightarrow{CB} = \vec{a} + \vec{b}, \overrightarrow{CD} = \vec{a} \times \vec{b}$, като $|\vec{a}| = 1, |\vec{b}| = 2,$ $\angle (\vec{a}, \vec{b}) = \frac{\pi}{3}$.
 - а) Нека точка H е петата на височината на Δ ABC, спусната от върха A към страната BC. Да се изрази \overrightarrow{AH} като линейна комбинация на \overrightarrow{a} и \overrightarrow{b} . Да се намери дължината на \overrightarrow{AH} .
 - b) Да се намерят лицето на триъгълник *ABC* и обема на тетраедъра *ABCD*.
- 5 зад. Дадени са векторите \vec{a} и \vec{b} като $|\vec{a}|=1, |\vec{b}|=2, \sphericalangle(\vec{a}, \vec{b})=\alpha$. $\overrightarrow{CA}=\vec{a}\times(\vec{b}\times\vec{a}), \overrightarrow{CB}=\vec{b}, \overrightarrow{CD}=\vec{a}\times\vec{b}.$
 - а) Нека точката \vec{H} е петата на височината през върха A на триъгълник ABC. Да се изрази векторът \overrightarrow{AH} като линейна комбинация на \vec{a} и \vec{b} . Да се намери $\sphericalangle(\vec{a}, \vec{b})$, ако $|\overrightarrow{AH}| = 1$.
 - b) При каква стойност на ъгъла α векторите \overrightarrow{CA} , \overrightarrow{CB} и \overrightarrow{CD} са линейно независими?
 - c) При $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{6}$, да се намери обема на тетраедъра *ABCD*.
- 6 зад. Дадени са векторите \vec{a} и \vec{b} като $|\vec{a}| = 2$, $|\vec{b}| = 3$, $\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$. Даден е успоредника ABCD, за който $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$. Нека точката M е средата на страната AB, а точките N, P и Q са медицентровете съответно на ΔAMD , ΔMCB и ΔCDM .
 - а) Да се изразят векторите \overrightarrow{NQ} , \overrightarrow{QP} и \overrightarrow{PN} чрез \vec{a} и \vec{b} и да се докаже, че правите PN и CD са успоредни;
 - b) Да се намерят лицето и обиколката на ΔNPQ ;
 - с) Ако $\overrightarrow{AS} = \vec{a} \times \vec{b}$, да се намери обема на паралелепипеда с ръбове \overrightarrow{AB} , \overrightarrow{AD} и \overrightarrow{AS} .

- 7 зад. Даден е тетраедър OABC, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Точките M, N и P са медицентровете съответно на триъгълниците: AOB, BOC и AOC.
 - а) Да се изразят векторите \overrightarrow{MN} , \overrightarrow{NP} и \overrightarrow{PM} като линейни комбинации на \vec{a} , \vec{b} и \vec{c} ;
 - b) Да се докаже, че следните прави са две по две успоредни: MN и AC, PM и BC, NP и AB:
 - с) Ако $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ и $\sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{b}) = \sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}$, да се намери периметъра на триъгълник MNP.