

Introduksjon til Big Data

Terje Berg-Hansen Stavanger 28. august 2019

Hva er Big Data?

«Big Data» is like Teenage Sex:

- Everybody is talking about it
- Nobody knows how to do it
- Everybody assumes that all the others are doing it
- So they claim they, too are doing it

Litt mer formelle definisjoner

- «Big Data inkluderer vanligvis datasett som er større enn det vanlig brukte verktøy kan håndtere når det gjelder datafangst, konvertering og prosessering innen rimelige tidsrammer»
- «Big Data er data som karakteriseres av så stor mengde (volume), hastighet (velocity) og mangfold (variety) at det er nødvendig med spesielle teknologier og analysemetoder for å skape verdi av dem»
- «Big Data er data som må behandles ved parallell prosessering over flere maskiner»

Big Datas fire V'er

Volume

 Mengden data som produseres og lagres. Mengden avgjør verdien og potensiale for innsikt, og om det kan kalles Big Data eller ikke. Terabytes og Petabytes med data er vanlig.

Variety

 Datas type og natur. Big Data hentes fra tekst, bilder, audio, video osv. - og har evnen til å fylle inn manglende biter gjennom datafusjon.

Big Datas fire V'er

Velocity

 Hastigheten data genereres og prosesseres med.
 Hvor ofte genereres data, og hvor ofte behandles og publiseres data? Big Data er ofte tilgjengelig i sanntid og produseres kontinuerlig.

Veracity

 «Sannhetsgehalt». Utvidet definisjon av Big Data som refererer til datakvalitet og dataverdi.
 Kvaliteten i datafangsten kan variere og påvirke analysene i stor grad

Typer Big Data

Strukturerte data

Databaser, Loggfiler, Sensordata osv

Semi-strukturerte data

Twitter-feeds, Data som XML / JSON osv

Ustrukturerte data

- Tekstmeldinger, Eposter, Tekstdokumenter osv.
- Stadig større andel av datamengden er ustrukturert

To hovedtyper data

- «Data at rest»
 - Data fra Databaser og data-filer
 - Data fra lagrede dokumenter, bilder, audio, video
- «Data in Motion»
 - Strømmer av Logger, web clicks, twitter-meldinger
 - Sanntids annonse-matching
 - Sensordata (IoT)
 - Online kredittkort-sjekker

Big Data-kilder

BIG DATA SOURCES

O'REILLY®

IDCs Prediksjoner for 2025

- Data går fra forretnings-kritisk til livs-kritisk.
 - I 2025 vil nær 20% av data globalt være kritiske for menneskers dagligliv og nær 10% av dette vil være livskritiske data.
- Innebygde systemer og Internet of Things (IoT).
 - I 2025 vil en gjennomsnitts-person interagere med oppkoblede gjenstander nær 4.800 ganger daglig – dvs en interaksjon hvert 18. sekund.
- Maskinlæring endrer landskapet
 - IDC beregner at mengden i den globale datasfæren som blir analysert vil ganges med 50 til 5.2 ZB i 2025.

IDCs Prediksjoner for 2025

- Data i sanntid.
 - I 2025 vil mer enn en fjerdedel av alle genererte data være sanntidsdata, og 95% av dette vil være sanntidsdata fra IoT.
- Automatisering og maskin-til-maskin teknologier vil generere brorparten av data.
 - Mens veksten i data generert de siste 10 årene primært har kommet fra underholdnings-industrien, vil neste tiår se et skifte mot produktivitets-data og data fra innebygde enheter, som sensordata, video fra overvåknings-kameraer osv.

IDCs Prediksjoner for 2025

Trender i Big Data

- Strømming av Internet of Things for Maskinlæring
 - Bruk av IoT til å kombinere strøm-analyser med maskinlæring
 - Maskinlæring bruker typisk lagrede data til trening, i et kontrollert læringsmiljø. Med denne nye modellen brukes strømmede data fra «Internet of Things» til å tilby maskinlæring i sanntid i et mindre kontrollert miljø.

Trender i Big Data

- Kunstig Intelligens-plattformer
 - Bruk av Kunstig Intelligens-plattformer til å prosessere Big Data for å generere Business Intelligence.
 - KI-plattformer består av 5 logiske lag:
 - Data & Integrasjons-laget gir tilgang til data
 - Eksperimenterings-laget lar Data Scientists utvikle, teste, og bevise hypoteser.
 - Drift og Provisjonerings-laget gir tilgjengelighet
 - Intelligens-laget gir intelligente Al-tjenester .
 - Erfarings-laget interagerer med brukere via f.eks.: «augmented reality», «conversational UI» og «gesture control».

Noen hovedeffekter av BD

- Distribuerte systemer er blitt nødvendig
 Skalere ut istedenfor å skalere opp
 - Distribuerte filsystemer
 - Distribuerte Databaser
 - Distribuert parallell-prosessering for Data Science og Data Wrangling
- Bruken av skytjenester har økt dramatisk
 - Offentlige skytjenester
 - In-house skytjenester
 - Hybride skytjenester

- Ny IT-rolle: Datakurator
 - Ansvar for å organisere bedriftens Metadata,
 Datasikkerhet, «Data Governance» og Datakvalitet.
 - Datakuratoren har ansvar for å forstå hvilke analysetyper ulike grupper i organisasjonen har behov for, hvilke datasett som er egnet for disse analysene, og hvilke trinn som er involvert i å få data fra sin rå form til den form og tilstand som trengs for den jobben en datakonsument skal gjøre. Datakuratoren bruker systemer som «self-service data platforms» for å fasilitere brukernes tilgang til data uten å lage uendelige kopier av datasettene.

- Funksjonell programmering
 - Big Data medfører parallell-prosessering i nettverk med mange servere. Funksjonell programmering er spesielt godt egnet til dette, f.eks. ved å vektlegge: «Minimize Mutable State».
 - Ved å bruke konstanter istedenfor variabler unngår man bieffekter som kan ødelegge prosesseringen.
 - Java, Scala, Python osv. Støtter funksjonell programmering i større grad i hver ny versjon.

- Paradigmeskifte i utvikling og bruk av programvare
 - Programvare utvikles av IT-avdelinger i bedrifter som ikke lever av å selge programvare, som Facebook, Twitter, LinkedIn, Google osv.
 - Utstrakt samarbeid og deling via Open Source organisering og -lisensiering, som regel gratis.
 - Pragmatisk valg av programvare:
 - Fra «Vi bruker Oracle til alt» til «Vi bruker den databasen som passer best til dette formålet»

- Paradigmeskifte i bruk av Maskinvare
 - Billige, standard servere og komponenter
 - «Redundancy» og «High availability» ved ekstensiv replikering i klynger av servere med distribuerte filsystemer.
 - «Sharding» ved partisjonering av datasett over mange harddisker, mange servere og mange datasentere.
 - Bruk og kast kjøp billig maskinvare og bytt ut når de går istykker.