FEUILLE 13: APPLICATIONS LINÉAIRES

I EXERCICES TECHNIQUES

Exercice 1

Les applications suivantes sont-elles des applications linéaires?

Si oui, en donner la matrice dans les bases canoniques, et déterminer l'image et le noyau :

a.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^3, f_1(x, y, z) = (2x, x + y, 2x - 3z)$$

b.
$$f_2: \mathbb{R}^3 \to \mathbb{R}^3, f_2(x, y, z) = (x + y, x - y, xy)$$

c.
$$f_3: \mathbb{R}^3 \to \mathbb{R}^2, f_3(x, y, z) = (x + y, z)$$

d.
$$f_4: \mathbb{R}^2 \to \mathbb{R}^2, f_4(x,y) = (x+y, x-y+1)$$

e.
$$f_5: \mathbb{R}^2 \to \mathbb{R}^3, f_5(x,y) = (x+y, x-y, 2x)$$

f.
$$f_6: \mathbb{R}^3 \to \mathbb{R}^3, f_6(x, y, z) = (x + y, x - y + z, z + 2x)$$

g.
$$f_7: \mathbb{R}_2[X] \to \mathbb{R}_2[X], f_7(P) = P - XP'$$

h.
$$f_8: \mathbb{R}_2[X] \to \mathbb{R}_2[X], f_8(P) = 1 + XP'$$

i.
$$f_9: \mathbb{R}_2[X] \to \mathbb{R}_2[X], f_9(P) = P(0) + P(1)X + P(2)X^2$$

j.
$$f_{10}: \mathbb{R}_3[X] \to \mathbb{R}_2[X], f_{10}(P) = P(0) + P(1)X + P(2)X^2$$

Exercice 2

Pour chacune des matrices ci-dessous, expliciter l'application linéaire canoniquement associée, puis en déterminer l'image et le noyau :

a.
$$\begin{pmatrix} 1 & -2 & 4 \\ -1 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 b. $\begin{pmatrix} 1 & -2 & 4 \\ -1 & -2 & 0 \end{pmatrix}$ c. $\begin{pmatrix} 1 & -1 \\ -2 & -2 \\ 4 & 0 \end{pmatrix}$ d. $\begin{pmatrix} 1 & -1 & 2 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

Exercice 3

Montrer que les matrices suivantes sont les matrices d'un projecteur, et en déterminer les éléments caractéristiques :

Vérifier que $M^2 = M$ et déterminer Im(M) et Ker(M)

a.
$$A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$$
 b. $B = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix}$ **c.** $C = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}$

Montrer que les matrices suivantes sont les matrices d'une symétrie, et en déterminer les éléments caractéristiques :

Vérifier que $M^2 = I_3$ et déterminer $Ker(M - I_3)$ et $Ker(M + I_3)$

a.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 1 & -2 \end{pmatrix}$$
 b. $B = \begin{pmatrix} 3 & 0 & 2 \\ 0 & -1 & 0 \\ -4 & 0 & -3 \end{pmatrix}$ **c.** $C = \begin{pmatrix} -1 & 2 & -2 \\ -2 & 3 & -2 \\ -2 & 2 & -1 \end{pmatrix}$

II EXERCICES SUR LES APPLICATIONS LINEAIRES

Exercice 5

On considère l'endomorphisme f de \mathbb{R}^2 déterminé dans la base canonique (e_1, e_2) par

$$f(e_1) = 2e_1 - e_2, \quad f(e_2) = 4e_1 - 2e_2$$

- a. Déterminer une base du noyau et de l'image de f.
- **b.** Ces deux sous-espaces sont-ils supplémentaires?

Exercice 6

On considère l'endomorphisme g de \mathbb{R}^2 déterminé dans la base canonique (e_1, e_2) par

$$g(e_1) = e_1 + e_2, \quad g(e_2) = 2e_1 + 2e_2$$

- a. Déterminer une base du noyau et de l'image de f.
- b. Ces deux sous-espaces sont-ils supplémentaires?

Exercice 7

On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et (f_1, f_2) celle de \mathbb{R}^2 .

Déterminer les dimensions du noyau et de l'image de $\varphi \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ définie par :

$$\varphi(e_1) = f_1 - f_2$$
 $\varphi(e_2) = f_1 + f_2$ $\varphi(e_3) = f_1 + 2f_2$

On ne demande que les dimensions, il n'est pas nécessaire de déterminer les sev. En trouvant le rang, on a la dimension du noyau par le théorème du rang.

Exercice 8

Soient E, F et G trois espaces vectoriels, $f \in \mathcal{L}(E, F), g \in \mathcal{L}(F, G)$ et $h \in \mathcal{L}(F, G)$. Montrer que :

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker}(h \circ f) \iff \operatorname{Im}(f) \cap \operatorname{Ker}(g) = \operatorname{Im}(f) \cap \operatorname{Ker}(h)$$

Montrer les deux implications. Pour montrer les égalités, il suffit de montrer une inclusion, l'autre se déduisant par symétrie.

Exercice 9

Soient f et g deux endomorphismes d'un espace vectoriel E tels que $f \circ g = g \circ f$.

Montrer que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont stables par g.

Un sev F est stable par g si $x \in F \Rightarrow g(x) \in F$

Exercice 10

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. Montrer l'équivalence suivante :

$$\operatorname{Ker}(f) = \operatorname{Ker}(f^2) \Longleftrightarrow \operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}$$

Montrer les deux implications, sachant que pour la première égalité, une inclusion est toujours vraie.

Soient E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$.

- **a.** Montrer que $\operatorname{Im}(u^2) \subset \operatorname{Im}(u)$ et $\operatorname{Ker}(u) \subset \operatorname{Ker}(u^2)$
- \mathbf{b} . On suppose que E est de dimension finie. Montrer l'équivalence des trois propositions suivantes :
 - i. $Im(u) \oplus Ker(u) = E$
 - ii. $\operatorname{Im}(u) = \operatorname{Im}(u^2)$
 - iii. $Ker(u) = Ker(u^2)$

Montrer (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)

Exercice 12

Soit $u = (a, b, c) \in (\mathbb{R}^*)^3$ tel que a + b + c = 1. On définit $f : \mathbb{R}^3 \to \mathbb{R}^3$ par :

$$f(x, y, z) = (x, y, z) - (x + y + z)u$$

- \mathbf{a} . Montrer que f est un projecteur.
- **b.** Préciser Im(f) et en donner une base. Il suffit d'extraire la plus grande sous-famille libre de $\{f(1,0,0), f(0,1,0), f(0,0,1)\}$.
- c. Déterminer Ker(f). Trouver un vecteur de Ker(f) et utiliser le théorème du rang pour la dimension.

Exercice 13

Soient E un \mathbb{K} -espace vectoriel de dimension finie, u et v des endomorphismes de E tels que :

$$E = \operatorname{Im}(u) + \operatorname{Im}(v) = \operatorname{Ker}(u) + \operatorname{Ker}(v)$$

Montrer que ces sommes sont directes.

Raisonner sur les dimensions en utilisant la formule de Grassmann et le théorème du rang.

Exercice 14

Soient E un \mathbb{K} -espace vectoriel de dimension finie, f et g des endomorphismes de E tels que :

$$f \circ g \circ f = f$$
 et $g \circ f \circ g = g$

- a. Montrer que $E = \text{Im}(f) \oplus \text{Ker}(g)$. Montrer que l'intersection est réduite à 0, et écrire un vecteur de E comme somme d'un vecteur de Im(f) et d'un vecteur de Ker(f).
- **b.** Montrer que $Ker(f \circ g) = Ker(g)$ et que $Ker(g \circ f) = Ker(f)$
- c. Montrer que rg(f) = rg(g) puis que $rg(f \circ g) = rg(g \circ f)$ Utiliser les questions précédentes et le théorème du rang.

Exercice 15

Soient $E = C^0(\mathbb{R})$ et $T : E \to E$ défini par :

$$\forall x \in \mathbb{R}, \quad T(f)(x) = \int_0^x t f(t) dt$$

- **a.** Montrer que $T \in \mathcal{L}(E)$.
- **b.** Soient $f \in E$ et g = T(f). Montrer que g est dérivable sur \mathbb{R} et que g''(0) existe. Utiliser le TFI et un taux d'accroissement.
- c. Montrer que T est injective et non surjective. Déterminer Ker(T) et trouver une fonction continue sur \mathbb{R} qui n'est pas dans Im(T).

Soient E un \mathbb{K} -espace vectoriel, u et v des endomorphismes de E. Montrer que :

- **a.** $u \circ v = 0 \Leftrightarrow \operatorname{Im}(v) \subset \operatorname{Ker}(u)$
- **b.** $(u \circ v = u \text{ et } v \circ u = v) \Leftrightarrow (u \text{ et } v \text{ sont des projecteurs et } \operatorname{Ker}(u) = \operatorname{Ker}(v)).$

Il faut à chaque fois montrer les deux implications.

Exercice 17

Soient E un \mathbb{K} -espace vectoriel, u et v des endomorphismes de E. Montrer que :

a. $\operatorname{Ker}(v \circ u) = \operatorname{Ker}(u) \Leftrightarrow \operatorname{Ker}(v) \cap \operatorname{Im}(u) = \{0\}.$

Montrer les deux implications, sachant que pour la première égalité une inclusion est toujours vérifiée.

b. $\operatorname{Im}(v \circ u) = \operatorname{Im}(v) \Leftrightarrow \operatorname{Ker}(v) + \operatorname{Im}(u) = E$.

Montrer la double implication. Pour le sens direct, on part de $x \in E$ et on écrit v(x) = v(u(a)) puis on utilise u(a) pour trouver la décomposition.

Pour le sens indirect une inclusion est toujours vérifiée.

Exercice 18

Soient E un \mathbb{K} -espace vectoriel, u et v des projecteurs de E.

- **a.** i. Montrer que $(v \circ u = u) \Leftrightarrow (\operatorname{Im}(u) \subset \operatorname{Im}(v))$.
 - ii. En déduire que $(u \circ v = v \circ u \text{ et } \operatorname{Im}(u) = \operatorname{Im}(v)) \Leftrightarrow (u = v)$.
- **b.** On suppose que $u \circ v = v \circ u$.
 - i. Montrer que $u \circ v$ est un projecteur.
 - ii. Montrer que $\operatorname{Im}(u \circ v) = \operatorname{Im}(u) \cap \operatorname{Im}(v)$. Montrer la double inclusion.
 - iii. Montrer que $Ker(u \circ v) = Ker(u) + Ker(v)$. Montrer la double inclusion.
- **c.** On suppose que $u \circ v = v \circ u = 0$.
 - i. Montrer que u + v est un projecteur de E.
 - ii. Montrer que $\text{Im}(u+v) = \text{Im}(u) \oplus \text{Im}(v)$ Il faut montrer Im(u+v) = Im(u) + Im(v) par double inclusion, puis que la somme directe.
 - iii. Montrer que $Ker(u+v) = Ker(u) \cap Ker(v)$. Montrer la double inclusion.

III EXERCICES SUR LES MATRICES D'APPLICATIONS LINEAIRES

Exercice 19

Soient E un K-espace vectoriel de base $\mathscr{B} = (e_1, e_2, e_3)$ et $f \in \mathscr{L}(E)$ tel que

$$mat_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}$$

- **a.** Déterminer Ker(f), Im(f) et f^2 .
- **b.** Soit $\varepsilon_1 = e_1 3e_2 2e_3$, $\varepsilon_2 = e_1$ et $\varepsilon_3 = e_1 e_2$. Montrer que $\mathscr{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de E et déterminer la matrice de f dans cette base.

Exercice 20

Soit $f \in \mathcal{L}(\mathbb{R}^2)$ de matrice $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ dans la base canonique (e_1, e_2) de \mathbb{R}^2 .

a. Montrer que $\frac{1}{2}A^2 - \frac{1}{2}A - I_2 = 0$; en déduire que A est inversible et exprimer A^{-1} .

- **b.** Déterminer $\alpha \in \mathbb{R}$ tel qu'il existe au moins un vecteur u non nul de \mathbb{R}^2 vérifiant $f(u) = \alpha u$. Trouver pour quelles valeurs de α l'endomorphisme $f - \alpha \mathrm{Id}_{\mathbb{R}^2}$ n'est pas bijectif.
- **c.** Déterminer $E_1 = \{u \in \mathbb{R}^2, f(u) = -u\}$ et $E_2 = \{u \in \mathbb{R}^2, f(u) = 2u\}.$
- **d.** Soient $\varepsilon_1 = -e_1 + e_2$ et $\varepsilon_2 = 2e_1 + e_2$. Montrer que $(\varepsilon_1, \varepsilon_2)$ est une base de \mathbb{R}^2 et déterminer la matrice B de f dans cette base.
- e. Déduire de ce qui précède l'expression de A^n pour $n \in \mathbb{N}^*$.

Soient $A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$ la matrice d'un endomorphisme f de \mathbb{R}^3 dans la base canonique (e_1, e_2, e_3) ,

$$\varepsilon_1 = e_1 - e_3$$
, $\varepsilon_2 = e_2 + e_3$ et $\varepsilon_3 = e_1 + e_3$

- a. Montrer que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 et expliciter la matrice de f dans cette base.
- **b.** En déduire l'expression de A^n pour $n \in \mathbb{N}^*$.

Exercice 22

Soient $\mathscr{B} = (e_1, e_2, e_3)$ et $\mathscr{C} = (f_1, f_2)$ les base canoniques de \mathbb{R}^3 et \mathbb{R}^2 , $\varphi \in \mathscr{L}(\mathbb{R}^3, \mathbb{R}^2)$ telle que $\max_{\mathscr{B},\mathscr{C}}(\varphi) = \begin{pmatrix} -3 & 0 & 3 \\ 1 & 2 & -1 \end{pmatrix}$, $\psi \in \mathscr{L}(\mathbb{R}^2, \mathbb{R}^3)$ telle que $\max_{\mathscr{C},\mathscr{B}}(\psi) = \begin{pmatrix} -3 & 1 \\ 0 & 2 \\ 3 & -1 \end{pmatrix}$, et les vecteurs :

$$e'_1 = e_1 - e_2 + e_3$$
, $e'_2 = e_1 + e_3$, $e'_3 = e_1 + e_2 - e_3$, $f'_1 = f_1 + f_2$ et $f'_2 = f_1 - f_2$

- **a.** Montrer que les familles $\mathscr{B}' = (e'_1, e'_2, e'_3)$ et $\mathscr{C}' = (f'_1, f'_2)$ sont des bases de \mathbb{R}^3 et \mathbb{R}^2 respectivement.
- **b.** Ecrire la matrice de φ dans les bases \mathscr{B}' et \mathscr{C}' , et la matrice de ψ dans les bases \mathscr{C}' et \mathscr{B}' .

Exercice 23

Soient E un \mathbb{R} -espace vectoriel de dimension n, et $f \in \mathcal{L}(E)$ tels que $f^n = 0$ et $f^{n-1} \neq 0$. Soit $x \in E$ tel que $f^{n-1}(x) \neq 0$.

- **a.** Montrer que $(x, f(x), f^2(x), \dots, f^{n-1}(x))$ est une base de E.
- **b.** Expliciter la matrice de f dans cette base.

Exercice 24

Soient
$$P_1 = (X - 1)(X - 2)$$
, $P_2 = X(X - 2)$, $P_3 = X(X - 1)$, et $f \in \mathcal{L}(\mathbb{R}_2[X])$ tel que $\forall Q \in \mathbb{R}_2[X]$, $f(Q) = Q(0)P_1 + Q(1)P_2 + Q(2)P_3$

- a. Montrer que (P_1, P_2, P_3) est une base de $\mathbb{R}_2[X]$, et déterminer la matrice de f dans cette base.
- **b.** Déterminer la matrice de f dans la base canonique de $\mathbb{R}_2[X]$ de deux façons différentes. Utiliser la définition, et la formule du changement de bases.

Exercice 25

Soient $E=\{(x,y,z)\in\mathbb{R}^3/x-y+z=0\}$, et $F=\{(x,y,z)\in\mathbb{R}^3/x=y=z\}$. On note \mathcal{B} la base canonique de \mathbb{R}^3 .

- **a.** Montrer que $\mathbb{R}^3 = E \oplus F$.
- b. Déterminer la matrice dans \mathcal{B} de la projection sur E parallèlement à F. Exprimer la matrice de la projection dans une base adaptée à la somme directe, puis appliquer la formule de changement de base.

c. Déterminer la matrice dans \mathcal{B} de la symétrie par rapport à E parallèlement à F. Exprimer la matrice de la symétrie dans une base adaptée à la somme directe, puis appliquer la formule de changement de base.

Exercice 26

Montrer que les matrices suivantes sont semblables :

$$\begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Deux matrices sont semblables si, et seulement si elles représentent le même endomorphisme dans des bases différentes.

Soit u l'endomorphisme canoniquement associé à la première matrice. On cherche une base \mathscr{B} de \mathbb{R}^3 telle que la seconde matrice soit la matrice de u dans la base \mathscr{B} .

Exercice 27

- a. Soient $\varphi \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$ une forme linéaire non nulle, $H = \operatorname{Ker}(\varphi)$, et $f \in \mathcal{L}(\mathbb{R}^n)$. Montrer que H est stable par f si, et seulement s'il existe un scalaire $\lambda \in \mathbb{R}$ tel que $\varphi \circ f = \lambda \varphi$. Pour la première implication, si $\varphi \neq 0$, $\dim(\operatorname{Im}(\varphi)) = 1$ donc H admet un supplémentaire de dimension $1: H \oplus \operatorname{Vect}\{a\} = \mathbb{R}^n$; décomposer alors x suivant cette somme et appliquer $\varphi \circ f$...
- **b.** Déterminer les espaces stables par l'endomorphisme f canoniquement associé à $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Faire une disjonction de cas sur la dimension du sev, et utiliser la question **a** pour le cas d'un sev de dimension 2.

LES BONS REFLEXES

- ♣ Une matrice d'application linéaire se lit toujours en colonne. Chaque colonne correspondant à l'image d'un vecteur de la base de départ, exprimée dans la base d'arrivée.
- \maltese Pour déterminer le noyau d'une application linéaire f, on résout f(x) = 0 ce qui revient en dimension finie à la résolution d'une équation matricielle de la forme AX = 0 (où A est la matrice canoniquement associée à f).
- ₹ Pour déterminer l'image d'une application linéaire en dimension finie, on extrait des colonnes de la matrice canoniquement associée la plus grande sous-famille libre.
- Lorsque l'on connait le noyau d'une application linéaire, on connait la dimension de son image grâce au théorème du rang, et de même si l'on connait l'image, on a la dimension du noyau.