

#### RAPPELS

Calculer un pourcentage :  $\frac{Effectif}{Effectif total} \times 100$ 

Exemple : Dans un groupe de 40 élèves, il y a 18 filles. Quel est le pourcentage de filles ?

Appliquer un pourcentage de p % à une valeur revient à la multiplier par  $\frac{p}{100}$ 

Exemple: Dans un groupe de 40 élèves, il y a 30 % de filles. Quel est le nombre de filles ?

Augmenter (diminuer) une valeur de p % revient à la multiplier par  $1 + \frac{p}{100}$  (par  $1 - \frac{p}{100}$ ).

Exemples: Un objet coûte  $25 \epsilon$ , son prix diminue de 12 %.

Quel est son nouveau prix?  $2.5_{\times} \left(1 - \frac{12}{100}\right) = 22 \epsilon$ Un objet coûte  $14 \epsilon$ , son prix augmente de 30 %.

Quel est son nouveau prix?  $14 \times \left(1 + \frac{30}{100}\right)$ 

Calculer un pourcentage d'évolution :  $\frac{\text{valeur finale-valeur initiale}}{\text{valeur finale-valeur initiale}} \times 100$ 

Exemples: Un village est passé de 250 à 300 habitants. Quel est le pourcentage d'évolution ?

Un village est passé de 480 à 420 habitants. Quel est le pourcentage d'évolution ?

### II. <u>ÉQUATIONS ET INÉQUATIONS DU 1<sup>ER</sup> DEGRÉ</u> :

$$\underline{\text{Exemples}}: 2x+3=0$$

$$x = -1,5$$

$$-2x+3=4x+5$$

$$2x = 0 - 3$$

$$\frac{2x}{2} = \frac{-3}{2}$$

$$-2\alpha - 4z = S - 3$$
  
 $-6\alpha = 7$ 

Dans une inéquation, il faut changer le sens de l'inégalité lorsqu'on multiplie ou divise par un nombre

Exemples:  $2x - 3 \le 0$ 

$$(3) \propto \leq \frac{3}{2}$$

$$3x+1 \leqslant 5x+2$$

$$3x - Sx \leq 2 - 1$$

$$-2x \leq 1$$

$$x \geq -3$$

### III. ÉQUATIONS ET INÉQUATIONS DU 2ND DEGRÉ :

| $\Delta = b^2 - 4ac$     | Δ > 0                                                                                                | $\Delta = 0$                                                                                           | $\Delta < 0$ Pas de solution réelle.  Deux solutions complexes: $z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$ $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$ |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $ax^2 + bx + c = 0$      | Deux solutions réelles : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ | Une solution réelle : $x_0 = \frac{-b}{2a}$                                                            |                                                                                                                                                 |  |  |  |  |
| Signe de $ax^2 + bx + c$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               | $ \begin{array}{c cccc} -\infty & x_0 & +\infty \\ \hline Signe de & Signe de \\ a & & a \end{array} $ | $ \begin{array}{ c c } \hline -\infty & +\infty \\ \hline Signe de \\ a \end{array} $                                                           |  |  |  |  |

Exemples: Résoudre dans R les équations et inéquations suivantes: 2 $x^2+5x-3=0$   $-4x^2+8x-4=0$  -4=6 -4=6 -4=6



S=[-3; 1) IV. FORMULAIRE:

















# RÉVISIONS

EXERCICE 1: une entreprise

Dans une entreprise, il y a 500 salariés dont 320 femmes. De plus, on sait que 70 % des salariés ont plus de 30 ans.

1 Déterminer le pourcentage de femmes parmi les salariés de l'entreprise.

2 Déterminer le nombre de salariés de plus de 30 ans.

3 Dans cette entreprise, il y a 12 cadres supérieurs. Sachant que les cadres supérieurs représentent 30 % de l'effectif total, déterminer le nombre total de cadres.

#### EXERCICE 2 : un lycée

Dans un lycée, on dénombre 350 élèves de 1ère. On sait que :

- 20 % des élèves de 1 ère sont dans la section L et 40 % des élèves de 1 ère L sont des garçons.
- 54 % des élèves de 1<sup>ère</sup> sont des filles et que 1/9 des filles de 1<sup>ère</sup> sont en section ES.
- 38 % des élèves de 1ère sont des garçons de 1ère S.

Si nécessaire, on arrondira les pourcentages à 10<sup>-1</sup> près.

1) Compléter le tableau d'effectifs suivant

|         | 1 <sup>ère</sup> L | 1ère ES | 1ère S | Total |  |  |
|---------|--------------------|---------|--------|-------|--|--|
| Garçons | 28                 | 0       | 133    | 161   |  |  |
| Filles  | 47.                | 21      | 126    | 189   |  |  |
| Total   | 70                 | 21      | 259    | 350   |  |  |

- 2) Quel est le pourcentage de garçons de 1ère L parmi les élèves de 1ère ?
- 3 Quel est le pourcentage de filles de 1ère L parmi les filles de 1ère ?
- 4 Quel est le pourcentage de filles parmi les élèves de 1 ère S?

### EXERCICE 3: un commerçant

Un commerçant achète ses articles chez un grossiste. Il calcule ses prix de vente en prenant un bénéfice de 30 % sur ses prix d'achat.

1 Déterminer le prix de vente d'un article qu'il a acheté 175 euros.

2 Déterminer le prix d'achat d'un article qu'il a vendu 113,10 euros.

(3) Le commerçant vend un article 159,90 euros. En fin de saison, il le solde 145 euros. Déterminer le pourcentage d'évolution du prix de l'article. Arrondir à 10<sup>-1</sup> près.

#### EXERCICE 4: un chiffre d'affaires

Voici l'évolution du chiffre d'affaires annuel d'une entreprise de 2014 à 2016 :

| Années                   | 2014    | 2015    | 2016    |  |  |  |
|--------------------------|---------|---------|---------|--|--|--|
| Chiffres d'affaires en € | 120 000 | 150 000 | 130 000 |  |  |  |

Si nécessaire, on arrondira les résultats à l'unité.

- (1) Déterminer le chiffre d'affaires de l'année 2017 sachant qu'il a diminué de 20 % par rapport à 2016.
- 2 Déterminer le pourcentage d'évolution du chiffre d'affaires entre 2014 et 2015.
- 3 Déterminer le pourcentage d'évolution du chiffre d'affaires entre 2015 et 2016.

#### EXERCICE 5 : des équations et des inéquations du 1er degré

Résoudre dans R les équations et les inéquations suivantes.

(1) 3x-5=1

2(x-3)+4=3x-3

# EXERCICE 6 : des problèmes du 1er degré

1 Problème 1 : des périmètres

On donne la figure ci-contre. Quelles sont les dimensions du carré et du triangle équilatéral pour que le périmètre du triangle soit égal à celui du carré ? On notera x la longueur d'un côté du carré.



2 Problème 2 : un vendeur

Un commercial propose à ses vendeurs de choisir leur mode de rémunération entre deux contrats :

- Contrat 1 : le vendeur reçoit une part fixe de 800 € par mois à laquelle s'ajoute 2 % de ses ventes.
- Contrat 2 : le vendeur reçoit une part fixe de 350 € par mois à laquelle s'ajoute 5 % de ses ventes.

Comment doit être le montant des ventes de ce vendeur pour que le contrat 2 soit plus avantageux que le contrat 1 ? On notera x le montant des ventes.

3 Problème 3 : des aires

On considère la figure ci-contre où ABCD est un rectangle.

On pose MC = x. On a  $0 \le x \le 6$ .

Pour quelles valeurs de x l'aire du triangle AMD est-elle inférieure ou égale à la moitié de l'aire du trapèze ABCM? Justifier.



4 Problème 4 : un transporteur

Un particulier a des marchandises à faire transporter :

- Un premier transporteur lui demande 460 € au départ et 3,50 € par kilomètre.
- Un second transporteur lui demande 1 000 € au départ et 2 € par kilomètre.

Déterminer les nombres de kilomètres pour lesquels il est plus avantageux de s'adresser au second transporteur. On notera x le nombre de kilomètres cherché.

EXERCICE 7 : des équations et des inéquations du 2<sup>nd</sup> degré

Résoudre dans R les équations et les inéquations suivantes.

- $2x^2 + 5x 3 = 0$
- $2x^2+x+4=3x$

3  $2x^2 + x - 6 > 0$ 

EXERCICE 8 : des problèmes du 2<sup>nd</sup> degré

1 Problème 1 : une aire

On considère la figure ci-contre où ABCD et HKGD sont des rectangles et EBFK est un carré. On pose BF =  $x \ cm$ . On a  $x \in [0; 6]$ .

Déterminer la valeur de x pour laquelle l'aire de la surface hachurée est supérieure ou égale à  $36 \text{ cm}^2$ .



2 Problème 2 : une entreprise

Une entreprise fabrique un produit. Le coût total de production, en euros, est donné en fonction du nombre x d'articles fabriqués par  $C(x) = 2x^2 + 10x + 900$  avec  $0 \le x \le 80$ .

Un article est vendu 120 euros.

Pour quels nombres d'articles x vendus le bénéfice est-il positif?

Rappel: bénéfice = recette - coût

3 Problème 3 : une conserve

On considère une conserve de hauteur 5 cm.

Comment doit être le rayon x de la conserve pour que l'aire totale soit égale  $88 cm^2$ ? Arrondir les valeurs à 1 près.

Rappel: aire totale = aire latérale + aire des disques.



4 Problème 4 : une affiche

Une affiche rectangulaire a pour périmètre 100 cm et pour aire  $600 cm^2$ .

Quelles sont les dimensions de cette affiche ? On notera x la largeur et y la longueur de l'affiche.

Exercice 1 320 x 100 = 64% Soc 70 x S00 = 350 100 12×100= 10 cedos Exercice 350 - 3% 4) 126 x 100 = 48 Exencice 3 125 x 03 4 175= 227,5 2/ x 1,3=113,10 = = 113,10= 87 = x 145 - 159,30 - 9,39 189,90

Exencice 4 1/ 0,8 × 136 000 = 10 4000 2/100 150000 - 120000 - 25% 120 000 130000 - 150000×100 = 13.3% 150 000 Exercice 5 21 2(2-3)+6=300-3 (=) 2x -6+6= 3x -3 (=) · 1> -2 = -3 (=) x = -1 dorne se = 1 5/ 31/20 < 55, 19 6-16-5 (x-2)>x+28 93-32 < 9 (=) 6-S=+10 / 2+28 (3) -Boc < 6 (=> 4-60c+10),28 (=) j (=> 4-600 > 18 (=> -60c 714 G> OC < - 7 Exercice 6 1) (10-oc) × 3 = 40c (=) 30 - 30c = 40c C=> -7x = -30 = x Tier

Exercice 6 suite contrat 1 = 800 + 0,02 x x contrat 2 = 350 + 0,05 x x  $\frac{350 + 5}{100} \times 800 + \frac{2}{100} \times 350 + \frac{3}{100} \times 800$ (=) 3 x > 450  $(2) \times 30$ 3/ Apoch = (6+2) × 6 (36+62 ( ) La 600 < 36 (=)-5C & 38 460+ 3,50c > 1000 + 2 x 4/ <=> 460+1,5=>1000 C=7 1,50c 7 540 <=> x 7 360

| ( | Exen | cice |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|---|------|------|---|----------|-----|----|---|------|-----|-----|----|----|-----|-----|----|----|----|------|------|---|
|   | 10   | =    | 2 | <b>h</b> | = 5 |    |   | -3   |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     | 1   |    |    |     |     |    |    |    |      |      |   |
|   | Δ =  | - b  | _ | 400      |     |    |   | 52-  |     |     |    | 1  | )   |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   | 15 - |     | -   | 6) |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     | -> | 40 | >   | 0   | do | nc | 2. | solo | itia | W |
|   |      |      |   |          |     |    |   |      | 5   | V   | 3  |    | -10 |     |    | 3  |    |      |      |   |
|   |      |      |   |          |     | 20 | 4 |      | 2,  | 2   |    |    | 4   |     |    |    |    |      |      |   |
|   |      |      |   |          |     | x  |   | -5   |     |     | 5  | _  | 2   | - 5 | 1  |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      | 2.8 | 2   |    |    | 7   |     |    |    |    |      |      |   |
|   | 1    |      |   |          |     |    |   |      |     | 3/2 |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      | -6   |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |
|   |      |      |   |          |     |    |   |      |     |     |    |    |     |     |    |    |    |      |      |   |

