Notes

November 7, 2014

5.3.J

Let $m(x,y) = \max\{x,y\}$. prove that m is continuous and then show that $h(x) = \max\{f(x),g(x)\}$ is continuous if f(x) and g(x) are continuous.

case 1, m(x, y) = x, $m(x_1, y_1) = x_1$ then $|m(x, y) - m(x_1, y_1)| = |x - x_1|$. take $r = \varepsilon$ and then $||(x, y) - (x_1, y_1)|| < r$ then $|m(x, y) - m(x_1, y_1)| < \varepsilon$. similar with m(x, y) = x and $m(x_1, y_1) = y_1$ is similar now if m(x, y) = x and $m(x_1, y_1) = y_1$ then $-\varepsilon < x - y_1 < \varepsilon$.

$$-r < x - x_{1} < r$$

$$-r < y - y_{1} < r$$

$$x > y$$

$$y_{1} > x_{1}$$

$$-y_{1} < -x_{1}$$

$$(x - y_{1}) < (x - x_{1})$$

So if $x - x_1 < \varepsilon$ then $(x - y_1) < \varepsilon$.

$$y - y1 < x - y1$$
if $y - y1 > -\varepsilon$
then $x - y1 > -\varepsilon$

so $r = \varepsilon$ will give us $|x - y1| < \varepsilon$

now let $\varepsilon \circ f(x) = \varepsilon_1(f(x)) = (f(x), 0)$ and $\varepsilon_2 \circ g(x) = \varepsilon_2(g(x)) = (0, g(x))$. and $h(x) = m \circ (\varepsilon \circ f(x) + \varepsilon \circ g(x))$ because sum and composition of continuous functions are continuous, then h is continuous. induction gives us continuity for $\max\{f_1(x), \ldots, f_m(x)\}$

5.4H,I& 5.5F

let $f: \mathbb{R} \to \mathbb{R}$ be periodic and continuous, ie $\exists d > 0$ such that $\forall x \in \mathbb{R}, f(x+d) = f(x)$.

show it attains max min

look at $y \in [x, x+d]$ then $\exists a, b \in [x, x+d]$ such that $f(a) \leq f(y) \leq f(b)$. periodicity gives us same properties on all of \mathbb{R}

show that it is bounded and uniformally continuous

find a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(x+1,y) = f(x,y) \forall (x,y)$ but f is not bounded or does not attain it's max