Midterm Exam

7:00-9:00pm, Wednesday, March 1, 2023

Name: _			
Section:	9:00 AM	12:00 PM	3:00 PM
NetID: _		_	
Score: _			

Problem	Pts.	Score
1	10	
2	12	
3	15	
4	6	
5	20	
6	20	
7	9	
8	4	
9	4	
Total	100	

Instructions

- You may not use any books, calculators, or notes other than one <u>handwritten</u> two-sided sheet of 8.5" x 11" paper.
- Show all your work to receive full credit for your answers.
- When you are asked to "calculate", "determine", or "find", this means providing closed-form expressions (i.e., without summation or integration signs).
- Neatness counts. If we are unable to read your work, we cannot grade it.
- Turn in your entire booklet once you are finished. No extra booklet or papers will be considered.

(10 Pts.)

- 1. Answer **True** or **False** to each of the following statements: Grading: Correct answer = 2 pt.; Incorrect answer = -1 pt. No answer = 0 pts.
 - (a) If the system response y[n] of a discrete-time system to any possible input signal x[n] is fully described by its unit pulse response, then the system must be LTI. **True/False**
 - (b) If a system is BIBO stable, any unbounded input will produce an unbounded output. True/False
 - (c) If a system has a right-sided unit pulse response, then it must be causal. True/False
 - (d) The DTFT, $X_d(\omega)$, of a sequence x[n] is always related to its z-transform X(z) by $X_d(\omega) = X(z)|_{z=e^{j\omega}}$. True/False
 - (e) If x[n] is a real-valued sequence, then $|X_d(\omega)|$ is an even function. True/False

(12 Pts.)

2. For each of the systems with input x[n] and output y[n] shown in the table, indicate by "yes" or "no" whether the properties indicated apply to the system. Note: you do not need to provide proofs/justification.

	Linear	Shift-Invariant	Causal	Stable
$y[n] = x[n] * (-1)^n u[n]$				
$y[n] = rac{x[n]}{x[2]}$				
$y[n] = \cos^2\left(\frac{\pi}{2}n\right)x[n]$				

(15 Pts.)

3. For each of the following parts, compute the convolution x[n] * h[n] between the given sequences.

(a)
$$x[n] = \{1, -2, 2\}, h[n] = \{3, 1, 0, 3, 1, 1\}$$

(b)
$$x[n] = \left(-\frac{1}{2}\right)^n u[n], h[n] = \left(\frac{2}{3}\right)^n u[n-1]$$

(c)
$$x[n] = \log(|n|+1), h[n] = u[n+1] - u[n-2]$$

(6 Pts.)

4. An LTI system with unit pulse response h[n] has the following input-output relationships:

$$x_1[n] * h[n] = y_1[n]$$

 $x_2[n] * h[n] = y_2[n],$

where

$$x_1[n] = \{1, 3, 6, -3\}$$

$$x_2[n] = \{1, 2, -1, 0\}.$$

Determine h[n] in terms of $y_1[n]$ and $y_2[n]$.

(20 Pts.)

5. Consider a causal LTI system described by the following LCCDE:

$$y[n] = y[n-1] + \frac{3}{4}y[n-2] + x[n] - 4x[n-2].$$

(a) Determine the transfer function H(z) and state the poles, zeros, and the ROC of this system.

(b) Calculate the system's response y[n] to input $x[n] = 2\delta[n] - 3\delta[n-1]$.

(c) Is the system given by H(z) BIBO stable? Justify your reasoning.

(20 Pts.)

6. Suppose that the input x[n] to a causal and stable LTI system produces the output y[n]. The z-transform of x[n] and y[n] is given below:

$$X(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})}$$

$$Y(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})(1 - \frac{1}{4}z^{-1})}$$

- (a) Find the transfer function H(z) and its ROC.
- (b) Find the unit pulse response h[n].
- (c) Determine the difference equation of the system.

(9 Pts.)

7. The transfer function of a causal LTI system is given below:

$$H(z) = \frac{z-3}{z-4}$$
, ROC: $|z| > 4$

(a) Find a **bounded** input x[n] that will produce an **unbounded** output y[n].

(b) Find an **unbounded** input x[n] that will produce a **bounded** output y[n].

(c) Find a **bounded** input x[n] that will produce a **bounded** output y[n].

(4 Pts.)

8. Determine the signal x[n] whose DTFT is $X_d(\omega) = 1 + 2\cos(2\omega) - 2j\sin(4\omega)$. (Circle one of the following) **Note**: The arrow indicates n = 0.

(a)
$$x[n] = \{0.5\pi, 0, 1, 0, \stackrel{1}{\downarrow}, 0, 1, 0, -0.5\pi\}$$

(b)
$$x[n] = \{0.5, 0, 0, 0, 1, -3j, 0, 0, -0.5\}$$

(c)
$$x[n] = \{-j, 0, 1, 0, j, 0, 1, 0, j\}$$

(d)
$$x[n] = \{-1, 0, 1, 0, \underset{\uparrow}{1}, 0, 1, 0, 1\}$$

(e)
$$x[n] = \{-1, 0, j, 0, \underset{\uparrow}{1}, 0, j, 0, 1\}$$

(f) None of the above

(4 Pts.)

9. Consider the sequence $\{x[n]\}_{n=-1}^2 = \{1-j, 1, -1-j, 2j\}$. Determine the values of A, B, C, and D of the following calculations without explicitly evaluating $X_d(\omega)$ for every ω .

(a)
$$X_d(0) = A + jB$$
.

(b)
$$X_d(\frac{\pi}{2}) = C + jD$$
.