#### **Numerical Descriptive Measures**

## **Summary Definitions**

• The **central tendency** is the extent to which all the **data values group around a typical** or **central value**.

• The **variation** is the amount of **dispersion**, or **scattering**, of values

• The **shape** is the pattern of the distribution of values from the **lowest value to the highest** value.



### Measures of Central Tendency: The Mean

The arithmetic mean (often just "mean") is the most common measure of central tendency

called

• For a sample of size n:





#### Measures of Central Tendency: The Mean

(continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)



$$\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$$



$$\frac{1+2+3+4+10}{5} = \frac{20}{5} = 4$$



## Mean for Grouped Data

Formula for Mean is given by

$$\overline{X} = \frac{\sum f(X)}{n}$$

Where

$$\overline{\mathbf{X}}$$
 = Mean

 $\sum f(X)$  = Sum of cross products of frequency in each class with midpoint X of each class

n = Total number of observations (Total frequency) =  $\sum f$ 



# Mean for Grouped Data Example

Find the arithmetic mean for the following continuous frequency distribution:

Class 0-1 1-2 2-3 3-4 4-5 5-6 Frequency 1 4 8 7 3 2

# Solution for the Example

|   | A      | В      | С  | D    |
|---|--------|--------|----|------|
| 1 | Class  | X (mid | f  | fX   |
|   |        | pt)    |    |      |
| 2 | 0-1    | 0.5    | 1  | 0.5  |
| 3 | 1-2    | 1.5    | 4  | 6.0  |
| 4 | 2-3    | 2.5    | 8  | 20.0 |
| 5 | 3-4    | 3.5    | 7  | 24.5 |
| 6 | 4-5    | 4.5    | 3  | 13.5 |
| 7 | 5-6    | 5.5    | 2  | 11.0 |
| 8 | Totals |        | 25 | 75.5 |
| 9 | Mean   |        |    | 3.02 |

Applying the formula

$$\overline{X} = \frac{\sum f(X)}{n}$$

$$=75.5/25=3.02$$



#### Mean

| Class i | nterval  | f   |
|---------|----------|-----|
| 0       | 49.99    | 78  |
| 50      | 99.99    | 123 |
| 100     | 149.99   | 187 |
| 150     | 199.99   | 82  |
| 200     | 249.99   | 51  |
| 250     | 299.99   | 47  |
| 300     | 349.99   | 13  |
| 350     | 399.99   | 9   |
| 400     | 449.99   | 6   |
| 450     | 499.99 4 |     |
|         |          | 600 |

| Class interval |        | f   |
|----------------|--------|-----|
| 0              | 49.99  | 78  |
| 50             | 99.99  | 123 |
| 100            | 149.99 | 187 |
| 150            | 199.99 | 82  |
| 200            | 249.99 | 51  |
| 250            | 299.99 | 47  |
| 300            | 349.99 | 13  |
| 350            | 399.99 | 9   |
| 400            | 449.99 | 6   |
| 450            | 499.99 | 4   |
|                |        | 600 |

By taking mid values as 25, 75,... 475.

$$\overline{X} = \frac{\sum f(X)}{n}$$

Mean: 142.25

$$f(X) = 85350$$
  
 $n=600$ 





#### Mean using coding:

| Class | f |
|-------|---|
| 0-7   | 2 |
| 8-15  | 6 |
| 16-23 | 3 |
| 24-31 | 5 |
| 32-39 | 2 |
| 40-47 | 2 |

$$\frac{Mean=x0+w*}{n} \frac{(Summation of u*f))}{n}$$

w=numerical width of class interval X0=value of midpoint assigned code 0



| 3.6   | •      | 1.      |
|-------|--------|---------|
| Mean  | 11C1no | coding: |
| Mican | using  | counig. |

|       | ng coung. |    |          |     |
|-------|-----------|----|----------|-----|
| Class | mid       | f  | Code (u) | u*f |
| 0-7   | 3.5       | 2  | -2       | -4  |
| 8-15  | 11.5      | 6  | -1       | -6  |
| 16-23 | 19.5      | 3  | 0        |     |
| 24-31 | ??        | 5  | 1        | ??  |
| 32-39 | ??        | 2  | 2        | 4   |
| 40-47 | 43.5      | 2  | 3        | 6   |
|       |           | 20 |          | 5   |

$$Mean=x0+w*(\underline{Summation\ of\ u*f)})$$

n

$$= 19.5 + 8*(5)/(20) = 21.5$$

w=numerical width of class interval X0=value of midpoint assigned code 0

