ближенно вычислить $\sqrt[3]{9}$ и оценить ошибку, которая получится, если взять три члена разложения.

2922. Приближенно вычислить:

a)
$$\arctan 1,2$$
; 6) $\sqrt[10]{1000}$; B) $\frac{1}{\sqrt{e}}$; r) $\ln 1,25$

и оценить соответствующие погрешности.

Пользуясь соответствующими разложениями, вычислить с указанной степенью точности следующие значеиия функций:

2923. sin 18° с точностью до 10-5.

2924. cos 1° с точностью до 10-6.

2925. tg 9° с точностью до 10-3.

2926. e с точностью до 10⁻⁶.

2927. ln 1,2 с точностью до 10⁻⁴.

2928. Исходя из равенства

$$\frac{\pi}{6} = \arcsin \frac{1}{2}$$
,

найти число π с точностью до 10^{-4} . 2929. Пользуясь тождеством

$$\frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{3}.$$

вычислить число л с точностью до 0,001. 2930. Пользуясь тождеством

$$\frac{\pi}{4} = 4 \arctan \frac{1}{5} - \arctan \frac{1}{239},$$

определить число π с точностью до 10^{-9} . 2931. Пользуясь формулой

$$\ln(n+1) = \ln n + 2\left[\frac{1}{2n+1} + \frac{1}{3(2n+1)^3} + \ldots\right],$$

найти $\ln 2$ и $\ln 3$ с точностью до 10^{-5} .

2932. С помощью разложений подынтегральных функций в ряды вычислить с точностью до 0,001 следующие интегралы:

a)
$$\int_{0}^{1} e^{-x^{2}} dx$$
; 6) $\int_{2}^{4} e^{1/x} dx$; B) $\int_{0}^{2} \frac{\sin x}{x} dx$;