Econ 722 - Advanced Econometrics IV

Francis J. DiTraglia

University of Pennsylvania

Lecture #1 – Decision Theory

Lecture #2 – Model Selection I

Lecture #3 - Model Selection II

Lecture #4 – Asymptotic Properties

Lecture #5 - Andrews (1999) Moment Selection Criteria

Lecture #6 – Focused Moment Selection

Lecture #7 - High-Dimensional Regression I

Lecture #8 - High-Dimensional Regression II

Lecture #10 – Selective Inference

Optimal Inference After Model Selection (Fithian et al., 2017)

How Statistics is Done In Reality

Step 1: Selection – Decide what questions to ask.

"The analyst chooses a statistical model for the data at hand, and formulates testing, estimation, or other problems in terms of unknown aspects of that model."

Step 2: Inference – Answer the Questions.

"The analyst investigates the chosen problems using the data and the selected model."

Problem - "Data-snooping"

Standard techniques for (frequentist) statistical inference assume that we choose our questions before observing the data.

$$Y_i \sim \text{iid N}(\mu_i, 1) \text{ for } i = 1, \dots, n$$

- ▶ I want to know which $\mu_i \neq 0$, but I'm busy and n is big.
- ▶ My RA looks at each Y_i and finds the "interesting" ones, namely $\widehat{\mathcal{I}} = \{i \colon |Y_i| > 1\}.$
- ▶ I test $H_{0,i}$: $\mu_i = 0$ against the two-sided alternative at the 5% significance level for each $i \in \widehat{\mathcal{I}}$.

Two Questions

- 1. What is the probability of falsely rejecting $H_{0,i}$?
- 2. Among all $H_{0,i}$ that I test, what fraction are false rejections?

$$\begin{split} \mathbb{P}_{H_{0,i}}(\{\text{Reject } H_{0,i}\}) &= \mathbb{P}_{H_{0,i}}(\{\text{Test } H_{0,i}\} \cap \{\text{Reject } H_{0,i}\}) \\ &= \mathbb{P}_{H_{0,i}}(\{\text{Reject } H_{0,i}\} | \{\text{Test } H_{0,i}\}) \mathbb{P}_{H_{0,i}}(\{\text{Test } H_{0,i}\}) \\ &= \mathbb{P}_{H_{0,i}}\left(\{|Y_i| > 1.96\} | \{|Y_i| > 1\}\right) \mathbb{P}_{H_{0,i}}(\{|Y_i| > 1\}) \\ &= \frac{2\Phi(-1.96)}{2\Phi(-1)} \times 2\Phi(-1) \\ &\approx 0.16 \times 0.32 \approx 0.05 \end{split}$$

$$\begin{split} \mathbb{P}_{H_{0,i}}(\{\text{Reject } H_{0,i}\} | \{\text{Test } H_{0,i}\}) &= \mathbb{P}_{H_{0,i}}\left(\{|Y_i| > 1.96\} | \{|Y_i| > 1\}\right) \\ &= \frac{\Phi(-1.96)}{\Phi(-1)} \approx 0.16 \end{split}$$

Conditional vs. Unconditional Type I Error Rates

- ▶ The conditional probability of falsely rejecting $H_{0,i}$, given that I have tested it, is about 0.16.
- ▶ The unconditional probability of falsely rejecting $H_{0,i}$ is 0.05 since I only test a false null with probability 0.32.

Idea for Post-Selection Inference

Control the Type I Error Rate conditional on selection: "The answer must be valid, given that the question was asked."

Conditional Type I Error Rate

Solve
$$\mathbb{P}_{H_{0,i}}(\{|Y_i|>c\}|\{|Y_i|>1\})=0.05$$
 for c .

$$\mathbb{P}_{H_{0,i}}(\{|Y_i| > c\}|\{|Y_i| > 1\}) = \frac{\Phi(-c)}{\Phi(-1)} = 0.05$$

$$c = -\Phi^{-1}(\Phi(-1) \times 0.05)$$

$$c \approx 2.41$$

Notice:

To account for the first-stage selection step, we need a larger critical value: 2.41 vs. 1.96. This means the test is less powerful.

Selective Inference vs. Sample-Splitting

Classical Inference

Control the Type I error under model $M: \mathbb{P}_{M,H_0}(\text{reject } H_0) \leq \alpha$.

Selective Inference

Control the Type I error under model M, given that M and H_0 were selected: $\mathbb{P}_{M,H_0}(\text{reject }H_0|\{M,H_0\text{ selected}\}) \leq \alpha$.

Sample-Splitting

Use different datasets to choose (M, H_0) and carry out inference:

 $\mathbb{P}_{M,H_0}(\text{reject } H_0|\{M,H_0 \text{ selected}\}) = \mathbb{P}_{M,H_0}(\text{reject } H_0).$

Selective Inference in Exponential Family Models

Questions

- 1. Recipe for selective inference in realistic examples?
- 2. How to construct the "best" selective test in a given example?
- 3. How does selective inference compare to sample-splitting?

Fithian, Sun & Taylor (2017)

- Use classical theory for exponential family models (Lehmann & Scheffé).
- Computational procedure for UMPU selective test/CI after arbitrary model/hypothesis selection.
- Sample-splitting is typically inadmissible (wastes information).
- Example: post-selection inference for high-dimensional regression

A Prototype Example of Selective Inference

This is my own example, but uses the same idea that underlies Fithian et al.

- Choose between two models on a parameter δ .
 - ▶ If $\delta \neq 0$, choose M1; if $\delta = 0$, choose M2
 - ▶ E.g. δ is the endogeneity of X, M1 is IV and M2 is OLS
- Observe $Y_{\delta} \sim N(\delta, \sigma_{\delta}^2)$ and use this to choose a model.
 - ▶ Selection Event: $A \equiv \{|Y_{\delta}| > c\}$, for some critical value c
 - ▶ If A, then choose M1. Otherwise, choose M2.
- After choosing a model, carry out inference for β .
 - ▶ Under a particular model M, $Y_{\beta} \sim N(\beta, \sigma_{\beta}^2)$
 - β is a model-specific parameter: could be meaningless or not even exist under a different model.
- If Y_β and Y_δ are correlated (under model M), we need to account for conditioning on A when carrying out inference for β.

All Calculations are Under a Given Model M

Key Idea

Under whichever model M ends up being selected, there is a joint normal distribution for Y_{β} and Y_{δ} without conditioning on A.

WLOG unit variances, ρ known

$$\left[\begin{array}{c} Y_{\beta} \\ Y_{\delta} \end{array}\right] \sim \mathsf{N}\left(\left[\begin{array}{c} \beta \\ \delta \end{array}\right], \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]\right)$$

As long as we can consistently estimate the variances of Y_{β} and Y_{δ} along with their covariance, this is not a problem.

Selective Inference in a Bivariate Normal Example

$$\left[\left[\begin{array}{c} Y_{\beta} \\ Y_{\delta} \end{array} \right] \sim \mathsf{N} \left(\left[\begin{array}{c} \beta \\ \delta \end{array} \right], \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array} \right] \right), \quad A \equiv \{|Y_{\delta}| > c\}$$

Two Cases

- 1. Condition on A occurring
- 2. Condition on A not occurring

Problem

If δ were known, we could directly calculate how conditioning on A affects the distribution of Y_{β} , but δ is unknown!

Solution

Condition on a sufficient statistic for δ .

Conditioning on a Sufficient Statistic

Theorem

If U is a sufficient statistic for δ , then the joint distribution of (Y_{β}, Y_{δ}) given U does not depend on δ .

In Our Example

Residual $U = Y_{\delta} - \rho Y_{\beta}$ from a projection of Y_{δ} onto Y_{β} is sufficient for δ .

Straightforward Calculation

$$\left[egin{array}{c} Y_{eta} \ Y_{\delta} \end{array}
ight] \left(U=u
ight) = \left[egin{array}{c} eta+Z \ u+
ho(eta+Z) \end{array}
ight], \quad Z\sim {\sf N}(0,1)$$

Notice that this is a singular normal distribution

The Distribution of $Y_{\beta}|(A, U = u)$

$$\left[egin{array}{c} Y_{eta} \ Y_{\delta} \end{array}
ight] \left(U=u
ight) = \left[egin{array}{c} eta+Z \ u+
ho(eta+Z) \end{array}
ight], \quad Z\sim {\sf N}(0,1)$$

Start with case in which A occurs so we select M1. Under H_0 : $\beta = \beta_0$,

$$\mathbb{P}_{\beta_0} (Y_{\beta} \le y | A, U = u) = \frac{\mathbb{P}_{\beta_0} (\{ Y_{\beta} \le y \} \cap A | U = u)}{\mathbb{P}_{\beta_0} (A | U = u)}$$

$$= \frac{\mathbb{P} (\{ Z \le y - \beta_0 \} \cap \{ | u + \rho(\beta_0 + Z) | > c \})}{\mathbb{P} (| u + \rho(\beta_0 + Z) | > c)}$$

 $\mathbb{P}(A|U=u)$ under H_0 : $\beta=\beta_0$

$$P_{D}(A) \equiv P_{\beta_{0}}(A|U=u)$$

$$= \mathbb{P}(|u+\rho(\beta_{0}+Z)| > c)$$

$$= \mathbb{P}[u+\rho(\beta_{0}+Z) > c] + \mathbb{P}[u+\rho(\beta_{0}+Z) < -c]$$

$$= \mathbb{P}[\rho(\beta_{0}+Z) > c-u] + \mathbb{P}[u+\rho(\beta_{0}+Z) < -c-u]$$

$$= 1 - \Phi\left(\frac{c-u}{\rho} - \beta_{0}\right) + \Phi\left(\frac{-c-u}{\rho} - \beta_{0}\right)$$

$$\mathbb{P}(\{Y_{\beta} \leq y\} \cap A | U = u) \text{ under } H_0 \colon \beta = \beta_0$$

$$\begin{split} P_N(A) &\equiv \mathbb{P}(\{Y_\beta \leq y\} \cap A | U = u) \\ &= \mathbb{P}(\{Z \leq y - \beta_0\} \cap \{|u + \rho(\beta_0 + Z)| > c\}) \\ &= \begin{cases} \Phi(y - \beta_0), & y < (-c - u)/\rho \\ \Phi\left(\frac{-c - u}{\rho} - \beta_0\right), & (-c - u)/\rho \leq y \leq (c - u)/\rho \\ \Phi(y - \beta_0) - \Phi\left(\frac{c - u}{\rho} - \beta_0\right) + \Phi\left(\frac{-c - u}{\rho} - \beta_0\right), & y > (c - u)/\rho \end{cases} \end{split}$$

$$F_{\beta_0}(y|A, U=u)$$

Define $\ell(u) = (-c - u)/\rho$, $r(u) = (c - u)/\rho$. We have:

$$F_{\beta_0}(y|A, U=u) = P_N(A)/P_D(A)$$

where

$$P_D(A) \equiv 1 - \Phi(r(u) - \beta_0) + \Phi(\ell(u) - \beta_0)$$

$$P_{N}(A) \equiv \begin{cases} \Phi(y - \beta_{0}), & y < \ell(u) \\ \Phi(\ell(u) - \beta_{0}), & \ell(u) \leq y \leq r(u) \\ \Phi(y - \beta_{0}) - \Phi(r(u) - \beta_{0}) + \Phi(\ell(u) - \beta_{0}), & y > r(u) \end{cases}$$

Note that $F_{\beta_0}(y|A,U=u)$ has a flat region where $\ell(u) \leq y \leq r(u)$

$$Q_{\beta_0}(\rho|A, U=u)$$

Inverting the CDF from the preceding slide:

$$Q_{\beta_0}(p|A, U = u) = \begin{cases} \beta_0 + \Phi^{-1}(p \times P_D(A)), & p < p^* \\ \beta_0 + \Phi^{-1}[p \times P_D(A) + \Phi(r(u) - \beta_0) - \Phi(\ell(u) - \beta_0)], & p \ge p^* \end{cases}$$

where

$$p^* \equiv \Phi \left(\ell(u) - \beta_0 \right) / P_D(A)$$

$$P_D(A) \equiv 1 - \Phi \left(r(u) - \beta_0 \right) + \Phi \left(\ell(u) - \beta_0 \right)$$

$$\ell(u) \equiv (-c - u) / \rho$$

$$r(u) \equiv (c - u) / \rho$$

The Distribution of $Y_{\beta}|(A^c, U = u)$

$$\left[\left[\begin{array}{c} Y_{\beta} \\ Y_{\delta} \end{array} \right] \middle| (U=u) = \left[\begin{array}{c} \beta + Z \\ u + \rho(\beta + Z) \end{array} \right], \quad Z \sim \mathsf{N}(0,1)$$

If A does not occur, when we select M2. Under H_0 : $\beta = \beta_0$,

$$\mathbb{P}_{\beta_0} (Y_{\beta} \leq y | A^c, U = u) = \frac{\mathbb{P}_{\beta_0} (\{ Y_{\beta} \leq y \} \cap A^c | U = u)}{\mathbb{P}_{\beta_0} (A^c | U = u)} \\
= \frac{\mathbb{P} (\{ Z \leq y - \beta_0 \} \cap \{ | u + \rho(\beta_0 + Z) | < c \})}{\mathbb{P} (| u + \rho(\beta_0 + Z) | < c)}$$

$$F_{\beta_0}(y|A^c, U=u)$$

As above, define $\ell(u) = (-c - u)/\rho$, $r(u) = (c - u)/\rho$. We have:

$$F_{\beta_0}(y|A^c, U=u) = P_N(A^c)/P_D(A^c)$$

where

$$P_{D}(A^{c}) \equiv \Phi(r(u) - \beta_{0}) - \Phi(\ell(u) - \beta_{0})$$

$$P_{N}(A^{c}) \equiv \begin{cases} 0, & y < \ell(u) \\ \Phi(y - \beta_{0}) - \Phi(\ell(u) - \beta_{0}), & \ell(u) \leq y \leq r(u) \\ \Phi(r(u) - \beta_{0}) - \Phi(\ell(u) - \beta_{0}), & y > r(u) \end{cases}$$

Notice that this is a CDF with a bounded support set: $y \in [\ell(u), r(u)]$

