

팀번호 23

2024-1학기 창의학기제 주간학습보고서 (5주차)

창의과제	세종대학교 집현캠퍼스를 개선시킨 웹서비스 개발				
이름	이지민	학습기간	5월 1일 ~ 5월 9일		
학번	23012127	학습주차	5	학습시간	3
학과(전공)	인공지능	과목명	자기주도 창의전공1	수강학점	3
* 수강학점에 따른 회차별 학습시간 및 10주차 이상 학습 준수					
금주 학습목표	앞으로 웹사이트에 모델을 넣을 것을 대비하고 현재 모델이 실전에서 잘 활용할 수 있는지 확인하기 위해 웹캠으로 이미지를 받아서 학습된 모델을 통해 얼굴 인식을 실행해본다.				
학습내용					

	transforms.ToTensor(),			
	transforms. For ensor(),			
	anchorImage = transform(anchorImage).unsqueeze(0)			
	givenImage = transform(givenImage).unsqueeze(0)			
	givenimage transform(givenimage), unsqueeze(0)			
	 저장학 학습모델을 불러오기 위해 이전에 만들었던 siameseNetwork를 모듈로 만들어			
	불러오고 학습된 모델도 불러온다.			
	from siamese_network import SiameseNetwork			
	model = torch.load('shinchan.pt')			
	• ,			
	코드의 재활용을 위해 siamese network 모델의 연산과 거리차를 구해 theshold로			
	사용자의 얼굴인지를 판단하는 코드를 모듈화시켰다.			
	<judge_function.py></judge_function.py>			
	import torch			
	from tqdm import tqdm_notebook as tqdm			
	import torch.nn.functional as F			
	def judge_model(model, anchorImage, givenImage, device):			
	anchor = anchorImage.to(device)			
	compare = givenImage.to(device)			
	output1, output2 = model(anchor, compare)			
	distance = F.pairwise_distance(output1, output2) if distance < 0.2:			
	print("pass,%.3f"%(distance))			
	else:			
	print("fail,%.3f"%(distance))			
	위의 모듈을 불러와 최종적으로 얼굴을 판단하도록 한다.			
	(main.py에서 사용자의 얼굴인지 판단하는 코드)			
	from judge_function import judge_model			
	device = "cuda:0" if torch.cuda.is_available() "mps" elif			
	torch.backends.mps.is_available() else "cpu")			
	judge_model(model, anchorImage, givenImage, device)			
	pytorch에서 제공하는 튜터리얼에서 모델을 저장하고 불러오는 방법을 익혀 활용하였다. 코			
학습방법	드 구현중 발생하는 사소한 오류는 오류를 읽고 해결하였다.			
	웹캠으로 이미지를 가져오는 방법은 인터넷 자료와 chatgpt의 예시코드를 활용하였다.			
학습성과	완성한 코드를 실행시켜 라이브로 얼굴인식을 시도해 보았다. 여러번 코드를 실행해본 결과			
및	사용자의 얼굴인데도 불구하고 사용자의 얼굴이 아니라고 인식하는 경우가 대부분이었다. 저			
목표달성도	번 주차에서 예상한대로 모델이 단순한 학습 이미지에 오버피팅되었다고 생각하게 되었다.			
0	https://pytorch.org/tutorials/beginner/basics/saveloadrun_tutorial.html			
참고자료	https://pytorch.org/docs/stable/generated/torch.load.html			
및 문헌	https://velog.io/@bangsy/Python-OpenCV3			
	현재 가지고 있는 데이터와 시간을 가지고 오버피팅문제를 해결하고 적정 수준의 얼굴인식			
내주 계획	모델을 만들 방법을 모색한다.			

지도교수 (인)