

METODI ED ALGORITMI DI OTTIMIZZAZIONE PER IL PROBLEM SOLVING

Docente: Aristide Mingozzi Adattamento: Edoardo Rosa

CONTENTS

1	Mo	delli e formulazioni matematiche	1
	1.1	The Traveling Salesman Problem	1
	1.2	Formulazioni Matematiche del TSP	1
		1.2.1 TSP asimmetrico	2
		1.2.2 TSP simmetrico	2
		1.2.3 Eliminazione subtours di Miller, Tucker, Zemlin (1960)	3
		1.2.4 Il Traveling salesman problem con time windows (TSPTW)	
	1.3	Project scheduling with resource constrants (PSR)	5
		1.3.1 Esempio di PSR	5
2		roduzione alla programmazione lineare a numeri interi	6
\mathbf{A}	Pro	ova	7
	A.1	Pippo	7

LIST OF FIGURES

1.1	Grafo orientato	3
1.2	Grafo H delle precedenze	5

Copertina: http://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg

LIST OF TABLES

CHAPTER 1

MODELLI E FORMULAZIONI MATEMATICHE

1.1 The Traveling Salesman Problem

Il Traveling Salesman Problem (TSP) è il problema più noto dell'ottimizzazione combinatoria. Siano date n città e i costi c_{ij} per andare dalla città i alla città j. Si vuole determinare un cammino che parte da una città (diciamo i_1), visitare una ed una sola volta tutte le rimanenti città e terminare nella città di partenza i_1 . Inoltre si vuole che il costo di tale cammino sia minimo.

Ha molteplici applicazioni pratiche e teoriche perche è la struttura di molti problemi pratici. Si è soliti modella il TSP come segue:

• è dato un grafo orientato (o non orientato) G = (N, A) dove N è un insieme di n vertici e A è un insieme di m archi.

Ad ogni arco $(i,j) \in A$ è associato un costo c_{ij} .

Un circuito hamiltoniano di G è un circuito che passa per ogni vertice una ed una sola volta.

Il costo di un circuito hamiltoniano di G è pari alla somma dei costi degli archi che compongono il circuito;

• il problema del TSP è di trovare un grafo G, con una data matrice dei costi $[c_{ij}]$, un circuito hamiltoniano di costo minimo.

1.2 Formulazioni Matematiche del TSP

In letteratura esistono molteplici (e a volte fantasiose) formulazioni del TSP. Presentiamo le due formulazioni più note e su cui si basano i metodi esatti più efficienti.

1.2.1 TSP asimmetrico

I costi c_{ij} non verificano $c_{ij} = c_{ji} \ \forall \ i, j \ \text{con} \ i < j$.

Sia x_{ij} una variabile (0-1) associata ad ogni arco $(i,j) \in A$ dove $x_{ij} = 1$ se l'arco (i,j) è nella soluzione ottima e $x_{ij} = 0$ altrimenti.

$$Min \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ij} \tag{1.1}$$

$$s.t. \sum_{i \in N} x_{ij} = 1, \quad \forall j \in N$$
 (1.2)

$$\sum_{j \in N} x_{ij} = 1, \ \forall i \in N$$
 (1.3)

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \ \forall S \subset N$$
 (1.4)

$$x_{ij} \in \{0,1\} , \ \forall (i,j) \in A$$
 (1.5)

Il vincolo 1.4 impone che ogni soluzione ammissibile debba contenere almeno un arco (i, j) con $i \in S$ e $j \in N \setminus S$ per ogni sottoinsieme S di N. Un'alternativa al vincolo 1.4 è:

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1, \quad \forall S \subset N$$

$$\tag{1.4'}$$

1.2.2 TSP simmetrico

Sia dato un grafo non-orientato G = (N, A) con $c_{ij} = c_{ji}$, $\forall i, j \in N$. Gli archi di A sono numerati da 1 a m. L'arco di indice l corrisponde a (α_l, β_l) con $\alpha_l < \beta_l$.

 A_i è il sottoinsieme degli indici degli archi che incidono sul vertice i:

$$A_i = \{l: l = 1, m \text{ s.t. } \alpha_l = i \text{ or } \beta_l = i\}$$

Per una dato $S \in N$ e $\bar{S} = N \setminus S$ indichiamo con (S, \bar{S}) il sottoinsieme degli indici degli archi per cui $\alpha_l \in S$ e $\beta_l \in \bar{S}$ oppure $\alpha_l \in \bar{S}$ e $\beta_l \in S$.

Ad ogni arco di incide l è associato un costo $d_l = c_{\alpha_l \beta_l}$ e $x_l \in \{0,1\}$ è una variabile che vale 1 se e solo se l'arco di indice l è nella soluzione ottima.

$$Min \sum_{l=1}^{\infty} d_l x_l \tag{1.6}$$

$$s.t. \sum_{l \in A_i} x_l = 2, \ \forall i \in N$$
 (1.7)

$$\sum_{l \in (S,\bar{S})} x_l \ge 1, \ \forall S \subset N \tag{1.8}$$

$$x_l \in \{0, 1\}, \ l = 1, ..., m$$
 (1.9)

1.2.3 Eliminazione subtours di Miller, Tucker, Zemlin (1960)

Sia u_i una variabile intera il cui valore sappresenta la posizione che il vertice i occupa nel tour.

Es. tour (1,4,5,3,2,1) per TSP con n=5 vertici, si ha $u_1=1,\ u_2=5,\ u_3=4,\ u_4=2,\ u_5=3$

Miller, Tucker e Zemlin propongono in alternativa a:

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1, \ \forall S \subset N$$
 (*)

hanno imposto i seguenti vincoli:

$$u_i - u_j + nx_{ij} \le n - 1, \quad i = 1, ..., n, \quad j = 2, ..., n$$
 (1.10)

Ogni tour hamiltoniano soddisfa questi vincoli e ogni subtour li viola.

Figure 1.1: Grafo orientato

$$u_2 - u_6 + n \cdot x_{2,6} \le n - 1$$

 $u_6 - u_3 + n \cdot x_{6,3} \le n - 1$
 $u_3 - u_2 + n \cdot x_{3,2} \le n - 1$
 \downarrow
 $3n \le 3(n - 1)$

1.2.4 Il Traveling salesman problem con time windows (TSPTW)

È una variante del TSP che ha molte applicazioni.

Sia dato un grafo orientato G = (V, A) di n + 1 vertici $(V = \{0, 1, ..., n\})$. Ad ogni arco $(i, j) \in A$ sono associati

- un costo $c_{ij} \geq 0$
- un tempo di percorrenza $\theta_{ij} \geq 0$

Ad ogni vertice è associato un intervallo $[r_i, d_i]$ chiamato "time window" che rappresenta l'orario in cui il vertice i può essere vistato dal "salesman".

Ovvero il salesman può visitare i ad ogni tempo $t \in \mathbb{Z}^+$ con $r_i \leq t \leq d_i$.

Il problema consiste nel trovare una sequenza dei vertici di G che parte dal vertice 0 al tempo 0 e finisce al nodo 0 tale che sia il minimo il costo del circuito e il tempo di arrivo al nodo i sia nell'intervallo $[r_i, d_i], \forall i \in V$.

Si consideri la sequenza $(0, i, ..., i_{k-1}, i_k, ..., i_n, 0)$ e sia t_{i_k} il tempo di arrivo al vertice i_k , k = 0, 1, ..., n + 1.

I tempi di arrivo sono calcolati come:

$$t_0 = 0 \tag{1.11}$$

$$t_{i_k} = \max\{t_{i_{k-1}} + \theta_{i_{k-1}} \cdot i_k, \ r_{i_k}\}$$
(1.12)

1.2.4.1 Formulazione del TSPTW

Sia x_{ij} una variabile binaria intera che assume il valore 1 se il vertice i è visitato immediatamente prima di i e $x_{ij} = 0$ altrimenti.

$$Min \sum_{(i,j)\in A} c_{ik} x_{ij} \tag{1.13}$$

$$s.t. \quad \sum_{i \in A_j^-} x_{ij} = 1, \quad \forall j \in V$$
 (1.14)

$$\sum_{j \in A_i^+} x_{ij} = 1, \quad \forall i \in V \tag{1.15}$$

$$t_i + \theta_{ij} - t_j \le M(1 - x_{ij}, \ \forall (i, j) \in A, \ j \ne 0)$$
 (1.16)

$$t_i \le d_i, \ \forall i \in V \tag{1.17}$$

$$t_i \ge r_i, \ \forall i \in V \tag{1.18}$$

$$x_{ij} \in \{0, 1\}, \ \forall \in A$$
 (1.19)

$$t_i \in \mathbb{N}^+, \ \forall i \in V$$
 (1.20)

dove

$$\begin{split} A_i^+ &= \{j \in V: (i,j) \in A\} \\ A_i^- &= \{j \in V: (i,j) \in A\} \\ M & un \ intero \ grande \ a \ piacere \\ r_0 &= d_0 = 0 \end{split}$$

1.3 Project scheduling with resource constraints (PSR)

È dato un insieme $\mathbb{X} = \{1, ..., n\}$ di n jobs.

Sono disponibili m risorse dove ogni risorsa k ha una disponibilità b_k ad ogni istante del periodo di scheduling.

Ogni job i ha un tempo di processo d_i e la sua esecuzione, una volta iniziata, non può essere interrotta.

Il job i per essere eseguito richiede b_{ik} unità della risorsa k per ciascun intervallo di tempo in cui rimane in esecuzione.

È dato un grafo G = (X, H) di precedenze, dove ogni arco $(i, j) \in H$ impone che il job j può iniziare solo dopo che il job i è stato completato.

• Si vuole determinare il tempo di inizio di processo di ogni job in modo che siano soddisfatti i vincoli di precedenza, i vincoli sulle risorse e sia minima la durata complessiva del progetto

1.3.1 Esempio di PSR

Siano dati n = 11 jobs e m = 3 risorse con $b_1 = b_2 = b_3 = 4$ e un grafo H delle precedenze corrispondenti agli archi della figura 1.2.

Si osservi che i jobs 2 e 3 non possono essere eseguiti in parallelo poiché $r_{2,1} + r_{3,1} = 5 > b_1!$

Figure 1.2: Grafo H delle precedenze

CHAPTER 2

INTRODUZIONE ALLA PROGRAMMAZIONE LINEARE A NUMERI INTERI

APPENDIX A

PROVA

A.1 Pippo