Machine Learning

Homework 3

Not collected, not graded.

1 From probabilistic PCA to linear regression models

We have seen that pPCA builds a data model for $\mathbf{x} \in \mathbb{R}^D$ based on latent variable $\mathbf{z} \in \mathbb{R}^M$, for M < D:

$$\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\varepsilon}$$

where **W** is a $D \times M$ matrix, $\boldsymbol{\mu} \in \mathbb{R}^D$, and $\boldsymbol{\varepsilon}$ is Gaussian random noise, $p(\boldsymbol{\varepsilon}) = \mathcal{N}(\boldsymbol{\varepsilon} \mid 0, \sigma^2 I_D)$. On the other hand, a linear regression model describes the target value $t \in \mathbb{R}$ as a linear model (in w_0 , **w**) from the given input data $\mathbf{x} \in \mathbb{R}^D$, plus noise:

$$t = w_0 + \mathbf{w}^T \mathbf{x} + \mathbf{\varepsilon}$$

where w_0 is a bias term, $\mathbf{w} \in \mathbb{R}^D$ are weights and $\mathbf{\varepsilon}$ is again Gaussian random noise, $p(\mathbf{\varepsilon}) = \mathcal{N}(\mathbf{\varepsilon} \mid 0, \sigma^2 I_D)$.

- 1. For both models, write down the likelihood, $p(\mathbf{x} \mid \mathbf{z})$ and $p(t \mid \mathbf{x})$, respectively. Differences? Similarities?
- 2. What is the major difference between the models? *Hints:* try looking at the predictive distribution $p(\mathbf{x})$ and p(t), respectively, by marginalizing. Why do we fail for p(t)? What is different between the latent variables \mathbf{z} and the input variables \mathbf{x} ?
- 3. Once we introduce basis functions $\phi_j(\mathbf{x})$, write down the linear regression model corresponding to the above fully linear regression. What PCA model does this most closely correspond to?
- 4. Compare the minimum-error formulation of **W** in PCA to the maximum likelihood estimate of **w** in linear regression (eigenvectors versus minimal least squares). What are the similarities and what is different? *Hint:* draw a point cloud and a linear "subspace" (linear manifold more precisely, because the origin is not necessarily contained in it), and visualize what errors are minimized in each case.
- 5. In class we have seen that the maximum likelihood estimate of the weights is found by minimizing the data error function:

$$\frac{1}{2}\sum_{n=1}^{N}\left(t_{n}-\mathbf{w}^{T}\phi(\mathbf{x}_{n})\right)^{2},$$

where we had adopted the convention $\phi_0(\mathbf{x}) = 1$. Let's make the bias term w_0 more explicit by writing:

$$\frac{1}{2} \sum_{n=1}^{N} \left(t_n - w_0 - \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}_n) \right)^2,$$

instead. Determine the maximum likelihood estimate for w_0 from this, explicitly, and discuss it.

2 Bayesian linear regression

The data-likelihood of the linear regression model considered above, based on observed data $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ and target variables $\mathbf{t} = (t_1, \dots, t_N)$, is given by

$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \boldsymbol{\beta}) = \prod_{n=1}^{N} \mathcal{N}(t_n \mid \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \boldsymbol{\beta}^{-1}),$$

where $\beta \ (=1/\sigma^2)$ is the noise precision parameter (assumed known). Instead of just maximum likelihood estimation for \mathbf{w} , let's now assume a Gaussian prior distribution on the parameters $\mathbf{w} \in \mathbb{R}^M$ (including w_0 , again):

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_0, \mathbf{S}_0)$$

for \mathbf{m}_0 and \mathbf{S}_0 given mean and covariance matrix. The resulting posterior distribution is Gaussian:

$$p(\mathbf{w} \mid \mathbf{t}) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_N, \mathbf{S}_N).$$

1. Show that the mean and covariance of the posterior are given by

$$\mathbf{m}_N = \mathbf{S}_N(\mathbf{S}_0^{-1}\mathbf{m}_0 + \beta \Phi^T \mathbf{t})$$

and

$$\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^T \mathbf{\Phi},$$

where $\boldsymbol{\Phi}$ is the data design matrix. Hint: see page 93 of PRML.