

Numerical Methods Exercise Sheet 6

HS 16 M. Chrzaszcz D. van Dyk

Issued: 16.11.2016

Due: 23.11.2016

I. Bezshyiko, A. Pattori

http://www.physik.uzh.ch/en/teaching/PHY233/

HS2016.html

Exercise 1: Explicit Runge-Kutta methods (120 Pts.)

In this exercise you will be asked to find numerically the solution to the following ODE:

$$\frac{dy}{dx} = f(x,y) = 8(1-2x)y, \qquad y(0) = e^{-2}.$$
 (1)

You will do it using the so-called Bogacki–Shampine method, which makes use of the following two Butcher tableaus:

Tableau A								Tableau B						
	(2^{nd} order) :							(3^{rd} order) :						
0									0					
$\frac{1}{2}$ $\frac{3}{4}$	$\frac{1}{2}$								$\frac{1}{2}$	$\frac{1}{2}$				
$\frac{3}{4}$	0	$\frac{3}{4}$							$\frac{3}{4}$	0	$\frac{3}{4}$			
1	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{4}{9}$						1	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{4}{9}$		
	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{4}{9}$	0						$\frac{7}{24}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{8}$	

Tableau B will be used to extract $y_{n+1} \equiv y_{n+1}^B$, while tableau A will be used to estimate the error on y_{n+1} through the difference $\delta y_{n+1} = y_{n+1}^B - y_{n+1}^A$.

Please notice that tableau A and B differ only by the last row.

a) Implement the two tableaus A and B in a function

$$\Phi(x_n, y_n, h) \tag{2}$$

which returns:

- The point $\{x_{n+1}, y_{n+1}\}^B$, computed using the tableau B (3rd order).
- The value $\delta y_{n+1} = y_{n+1}^B y_{n+1}^A$, defined as the difference in the prediction for y_{n+1} between the tableaus B and A.

(20 points)

Optional: make the ODE function f(x, y) and the Butcher tableaus themselves input parameters of Φ , in order to give more flexibility to your code. (20 points)

b) As explained, δy_{n+1} gives you an estimate of the error with which y_{n+1}^B is extracted. Compute $\delta y_1(h)$ for $\{x_0, y_0\} = \{0, e^{-2}\}$ and different values of h (e.g. $h = 0.01, 0.02, \dots, 0.1$). Use these results to show that your error indeed scales as h^3 , as expected by the order of the method. (20 points)

- c) Fixed step size method. We want to solve eq. (1) in the range $x \in [0, 2]$. We will first do it using a fixed step size. Set h = 0.1 and solve ODE (1) using your function $\Phi(x_n, y_n, h)$.
 - Plot the result and the errors δy_{n+1} of each step (you may do it in two different plots). (20 points)
- d) Adaptive step size method. Suppose we want to impose $\delta y_n < 10^{-4}$ at every step. A possibility could be to reduce uniformly the step size h until we reach such goal. This is not an efficient solution and sometimes it is overwhelmingly time-consuming.

A more interesting solution is the adaptive step size method, in which you adjust h at each step accordingly to the estimated error δy_{n+1} .

Implement a simple adaptive step size method in this way:

- 1- Start with h = 0.1
- 2- At every step $n \to n+1$, evaluate δy_{n+1} :
 - If $\delta y_{n+1} \in (10^{-5}, 10^{-4})$, keep the result and go to next step
 - If $\delta y_{n+1} > 10^{-4}$, reduce h accordingly:

$$h \to 0.9 \sqrt[3]{\frac{10^{-4}}{\delta y_{n+1}}} h$$

then compute again step $n \to n+1$

- If $\delta y_{n+1} < 10^{-5}$, increase h accordingly:

$$h \to 1.1 \sqrt[3]{\frac{10^{-5}}{\delta y_{n+1}}} h$$

and go to the next step

Solve ODE (1) for $x \in [0, 2]$ with this method.

(20 points)

Compare the result and the errors δy_n with what obtained in task (1c).

(10 points)

Also, keep tracks of the adapted h_n of each step, plot and comment them.

(10 points)

Maximum number of points for mandatory tasks on 23.11: 100 Maximum possible number of points for tasks on 23.11: 120