Student: Phong Vo

Instructor: Chuck Ormsby

Course: Multi-Variable and Vector

Assignment: Section 12.1 Homework

Date: 02/06/18

Calculus -- Calculus III Spring 2018

1. If a force has magnitude 112 and is directed 60° south of east, what are its components?

56

The force vector has components, F_x =

and $F_V = -56\sqrt{3}$

(Type an exact answer, using radicals as needed.)

2. Refer the figure to the right and carry out the following vector operation.

Write the following vector as a sum of scalar multiples of **u** and **v**.

Define the points P(0,0) and Q(5,-5). For the vector \overrightarrow{PQ} , do the following.

a. Sketch the vector in an xy-coordinate system.

b. Compute the magnitude of the vector.

a. Graph the vector PQ. Choose the correct graph below.

A.

B.

O D.

b. |PQ| = $5\sqrt{2}$

(Type an exact answer, using radicals as needed.)

4. Let $\mathbf{u} = \langle 6, -2 \rangle$ and $\mathbf{v} = \langle -2, -5 \rangle$. Express $\mathbf{u} + \mathbf{v}$ in the form $\langle a, b \rangle$.

 $u + v = \langle$

(Simplify your answers.)

5. Let $\mathbf{u} = \langle 9,3 \rangle$ and $\mathbf{v} = \langle 8,5 \rangle$. Express $7\mathbf{u} + 2\mathbf{v}$ in the form $\langle a,b \rangle$.

 $7u + 2v = \langle$

31

(Simplify your answers.)

6. Find two vectors parallel to \mathbf{v} with three times the magnitude of \mathbf{v} .

$$\mathbf{v} = \langle 5, 0 \rangle$$

Select the correct two vectors below.

- \square A. $\left\langle \frac{-5}{5}, \frac{0}{5} \right\rangle$
- **≝**B. ⟨15,0⟩
- \square **c**. $\left\langle \frac{5}{5}, \frac{0}{5} \right\rangle$
- \square **D**. $\langle -5,0 \rangle$
- □ **E**. $\langle 0, -15 \rangle$
- **≝ F**. ⟨ − 15,0⟩
- 7. Define the points P(-4,3) and Q(-6,6). Carry out the following calculation.

Express PQ in the form ai + bj.

$$\overrightarrow{PQ} = \begin{pmatrix} -2 \\ \text{(Simplify your answers.)} \end{pmatrix} \mathbf{i} + \begin{pmatrix} 3 \\ \end{pmatrix} \mathbf{j}$$

8. Define the points Q(2, -1) and R(9,23). Carry out the following calculation.

Find the unit vector with the same direction as QR.

- 9. Complete parts (a) through (c) below.
 - **a.** Find two unit vectors parallel to $\mathbf{v} = 5\mathbf{i} + 12\mathbf{j}$.
 - **b.** Find b if $\mathbf{v} = \left(\frac{1}{3}, \mathbf{b}\right)$ is a unit vector.
 - **c.** Find all values of a such that $\mathbf{w} = a\mathbf{i} + \frac{a}{8}\mathbf{j}$ is a unit vector.
 - **a.** The parallel unit vector with the same direction is $\left(\frac{5}{13} \right)$, $\left(\frac{12}{13} \right)$.

The parallel unit vector with the opposite direction is $\left(-\frac{5}{13} \right)$, $-\frac{12}{13}$

b. b =
$$\frac{2\sqrt{2}}{3}$$
, $\frac{-2\sqrt{2}}{3}$

(Type exact answers, using radicals as needed. Use a comma to separate answers as needed.)

c.
$$a = \frac{8}{\sqrt{65}}, -\frac{8}{\sqrt{65}}$$

(Type exact answers, using radicals as needed. Use a comma to separate answers as needed.)

10. Use the properties of vectors to solve the following equation for the unknown vector $\mathbf{x} = \langle a, b \rangle$. Let $\mathbf{u} = \langle 2, -4 \rangle$ and $\mathbf{v} = \langle 5, 1 \rangle$.

$$2x - 8u = v$$

2/6/2018

$$\mathbf{x} = \left(\frac{21}{2}, -\frac{31}{2} \right)$$

(Simplify your answers.)

11. A sum of scalar multiples of two vectors (such as a**u** + b**v**, where a and b are scalars) is called a linear combination of the vectors.

Let $\mathbf{u} = \langle 3,3 \rangle$ and $\mathbf{v} = \langle -3,3 \rangle$. Express $\langle -15,3 \rangle$ as a linear combination of \mathbf{u} and \mathbf{v} .