Trabajo computacional 1. Simulación

Alejandro Santorum, Sergio Galán, Rafael Sánchez

November 19, 2018

1 Ejercicio 1.

Siguiendo el procedimiento sugerido en el ejercicio 1, integramos la función de densidad $f_X(x)$ para hallar la función de distribución de X, $F_X(x)$.

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0\\ 2x^2 & \text{si } 0 \le x < \frac{1}{2}\\ 4x - 2x^2 - 1 & \text{si } \frac{1}{2} \le x < 1\\ 1 & \text{si } x > 1 \end{cases}$$

Hallamos su inversa:

$$F^{-1}(u) = \begin{cases} \sqrt{\frac{u}{2}} & \text{si } 0 \le u < \frac{1}{2} \\ 1 - \sqrt{\frac{1-u}{2}} & \text{si } \frac{1}{2} \le u < 1 \end{cases}$$

Con la inversa, transformamos 3000 muestras u de $\mathcal{U}(0,1)$, generadas con aleatorio(), en muestras de X. A cada dato le aplicamos la función: $Z = e^X - X + \cos(X)$ para obtener muestras de Z. Finalmente, calculamos la media muestral de Z para hallar un valor que es próximo al de referencia (2.043).

2 Ejercicio 2.

2.1 Generación de muestras del par (\bar{X}, S^2)

Siguiendo las indicaciones que se nos dan para este ejercicio, sorteamos 20 muestras uniformes U con aleatorio(), la transformamos a una normal estándar $Z \sim \mathcal{N}(0,1)$ con la función de excel INV.NORM.ESTAND(U). Después obtuvimos muestras de nuestra variable $X \sim \mathcal{N}(\mu = 1, \sigma^2 = 2)$ con la transformación $X = \mu + \sigma Z$.

Usando tablas de excel sorteamos 3000 veces 20 muestras y hallamos la media muestral \bar{x} y la cuasivarianza s^2 de cada una de las 3000 muestras. Para evitar que se sorteen cada vez, copiamos los valores a columnas contiguas y desactivamos el sorteo automático. De esta forma obtenemos 3000 muestras de la variable media muestral \bar{X} y cuasivarianza muestral S^2 .

¹En este tramo existe otra inversa, pero si la usamos hace que F^{-1} sea discontinua.

2.2 Análisis de la muestra obtenida

Una vez tenemos las 3000 muestras es sencillo hallar la media y varianza muestral de cada variable usando las funciones PROMEDIO() y VAR.P() de excel.

Para construir el histograma hacemos uso de la función CONTAR.SI(), para contar los valores que pertenecen a cada intervalo que fijamos a un paso de 0.1 para \bar{X} y de 0.2 para S^2 . Con esto hallamos la frecuencia relativa de cada intervalo y lo representamos en un gráfico de barras.

Además, usando los intervalos ya calculados es sencillo hallar la probabilidad de $1 \ge \bar{X} \ge 1.2$ y $1.6 \ge S^2 \ge 2$. Para calcular la probabilidad conjunta hacemos uso de la función CONTAR.SI.CONJUNTO() y observamos que no se aleja mucho de la multiplicación de las individuales. Esto es lógico debido a que por Fisher-Cochran sabemos que ambas variables son independientes, así que la probabilidad conjunta es la multiplicación de ambas por separado.

De hecho, el resultado teórico es el siguiente:

$$\mathbb{P}(\{1 \le \bar{X} \le 1.2\} \cap \{1.6 \le S^2 \le 2\}) = \mathbb{P}(\{1 \le \bar{X} \le 1.2\}) \mathbb{P}(\{1.6 \le S^2 \le 2\}) = \mathbb{P}\left(0 \le \mathcal{N}(0, 1) \le \frac{0.2}{\sqrt{0.1}}\right) \mathbb{P}(15.2 \le \chi_{19}^2 \le 19) \simeq 0.7365 \cdot 0.5 \simeq 0.059816$$

Que es bastante próximo a ambos resultados muestrales.

Finalmente, para hallar número de grados de libertad n de χ^2_n que distribuye a S^2 hemos tomado la función Vero para $n \in [10,30]$. Para evitar que el resultado sea muy próximo a 0, hemos tomado logaritmos ya que alcanza el máximo para el mismo valor de n y nos transforma el productorio en un sumatorio. Observando la gráfica es sencillo ver que alcanza el máximo en n=19.

