Object rendering Overview Scene Object Camera Light Objects Geometry Colour Microstructure

Object • Geometry - Structure - Surface orientation (normal vectors) • Microstructure - Shiny - Matt - Textured • Colour • Transparency

Topics for the next lectures

- Surface orientation normal vectors
- Lighting
- Surface shading algorithms
- · Colour and colour representations
- Revision of the above
- · Viewing and projections

Normal vectors

- · What they are
- How to compute them

Normal vectors

• Normal vector = vector perpendicular to the face

Flat surface patch

Curved surfaces

Surface normal vectors - uses

- Surface visibility (→ hidden surface removal)
- · Surface shading
- · Surface texture

Normal vectors

- · Computing normal vectors
 - A cross-product of two vectors is a vector perpendicular (orthogonal, normal) to both input vectors

if $n = a \times b$, $n \perp a$ and $n \perp b$

• Cross product is NOT commutative:

a×b ≠ b×a

although both cross-products are orthogonal to a and b

Surface visibility from surface normal

E1=V2 - V1

E2=V3 - V2

N1=E1 × E2 =

Unit vectors

$$1_x (y_2 - y_1)(z_3 - z_2) - (y_3 - y_2)(z_2 - z_1) +$$

$$1_v (x_3 - x_2)(z_2 - z_1) - (x_2 - x_1)(z_3 - z_2) +$$

$$1_z (x_2 - x_1)(y_3 - y_2) - (x_3 - x_2)(y_2 - y_1)$$

Surface visibility from surface normal

- In a right-handed coordinate system a surface visible to the viewer will have positive value of z-coordinate of the normal vector: N₂>0
- Render only the visible surfaces facing the viewer

Homework

- In the cube defined by homogeneous vertices in the vertex table V and faces in the face table F, demonstrate that face F2 is visible and face F4 is not visible in the right-handed coordinate system.
- Given the same vertex table V and the face table F, would it be the case in the left-handed coordinate system?

Ver	tices			
V1	0.00	0.00	0.00	1.00
V2	0.00	1.00	0.00	1.00
V3	-0.26	1.00	0.97	1.00
V4	-0.26	0.00	0.97	1.00
V5	0.97	0.00	0.26	1.00
V6	0.97	1.00	0.26	1.00
V7	0.71	1.00	1.22	1.00
٧8	0.71	0.00	1.22	1.00

3			
1	2	6	5
5	6	7	8
3	4	8	7
1	4	3	2
1	5	8	4
2	3	7	6
	1 5 3 1 1	1 2 5 6 3 4 1 4 1 5	1 2 6 5 6 7 3 4 8 1 4 3 1 5 8

Next lecture

Illumination and shading

Credits

http://www.absoluteastronomy.com/topics/Surface_normal

http://commons.wikimedia.org/wiki/File:Crossproduct.png