LTE Wireless Backhaul

Jul 28, 2011

LTE承载解决方案

- LTE承载网络需求分析
- LTE承载解决方案比较
- 时钟时间同步

LTE网络架构

扁平架构有助于减少延时和简化维护、降低成本:

- CS核心网消失, LTE只有PS域
- GGSN -> 业务网关(S-GW/PDN-GW)
- SGSN -> 网络控制器 (MME)
- UMTS RNC消失,RNC的功能转移到了eNodeB之中
- eNode B 直接和核心网连接S1、eNodeB之间出现用于切换的逻辑连接X2。

LTE网络各网元逻辑连接

•MME (Mobility Management Entity)

•S-GW (Serving gateway)

PDN GW(3GPP anchor)

S1/X2接口

\$1/X2 用户面

- eNB、SGW的数据传送
- 基于IP/UDP/GTP-U

S1控制面

- 业务启动、调整、释放
- 3GPP、LTE切换
- 调度
- 信令传送
- 故障指示和重启
- 漫游和区域限制
- UE更正
- MME 负载均衡
- 位置报告
- RAN信息管理
- 过载管理
- . . .

X2 控制面

- 用户通道控制
- 切换控制
- 上传管理
- 故障处理

POOL化以提高可靠性和灵活性

 S1-Flex支持MME/SGW POOL 增强可 靠性 • MME/SGW POOL简化网络复杂性

安全性IPSec设计(可选)

安全性考虑

- eNB接入需要认证
- 保护用户特殊会话
- 经过不信任网络

隧道模式

IPSec需求

- 3GPP建议支持隧道模式.
- 如果传送网可信,可以不需要 IPSec

传送模式

LTE基站数量增加2~3倍

	LTE 2.6GHz 64QAM	LTE 0.7GHz 64QAM	HSPA+ QAM64 MIMO
Bandwidth	20MHz	20	5
Uplink	36 Mb/s	36	11
Down link	216Mb/s	216	42
Densed Urban	85 m	142 m	302 m
Urban	267	449	509
Sub Urban	533	895	1,140
Ex-Urban	845	1,419	2405
Rural	1,686	2,831	3141

TD LTE带宽需求和开销(理论上)

Bandwidth	UL/DL	MIMO	Peak TP per cell(Mbps)	Payload Peak TP per cell(Mbps)
20MHz	Uplink	1	48.07	40.37
	Downlink	2	160.22	137.31
10MHz	Uplink	1	24.03	20.19
	Downlink	2	80.11	68.65
5MHz	Uplink	1	12.02	10.09
	Downlink	2	40.05	34.33
1.25MHz	Uplink	1	3.00	2.52
	Downlink	1	5.01	4.29

Protocol layer and overhead

Protocol layer	Overhead (bytes)
GTP-U	12
UDP	8
IPv4/IPv6	20/40
IPSec(tuunel mode)	50
IPSec(transport	30
VLAN	4
MAC	18
Physical layer	20

S1/X2承载开销

流量特征

- LTE对于承载网络时延的要求更为严格 S1单向时延5ms
- 整网流量以S1为主 97%的流量

LTE业务承载质量要求

QCI	Resource Type	Priority	Packet Delay Budget	Packet Error Loss Rate	Example Services	
1		2	100 ms	10-2	Conversational Voice	
2	GBR	4	150 ms	10 ⁻³	Conversational Video (Live Streaming)	
3		5	300 ms	10 ⁻⁶	Non-Conversational Video (Buffered Streaming)	
4		3	50 ms	10 ⁻³	Real Time Gaming	
5	Non-GBR	1	100 ms	10 ⁻⁶	IMS Signaling	
6		7	100 ms	10 ⁻³	Voice, Video (Live Streaming) , Interactive Gaming	
7		6		10 ⁻⁶	Video (Buffered Streaming)	
8		8	300 ms		TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)	
9		9			(Excerpted from TS 23.203)	

- LTE由于带宽能力得到提升,支持的业务种类能够和固定网络看齐
- LTE将业务质量标识分为9类,分别对应承载网的不同优先级和报文时延

LTE承载需求小结

LTE网络的承载需求

- 1. 接入带宽: LTE基站的接入带宽最高可达 90M~150Mb/s或更高,分组承载网需支持带宽扩展;
- 2. 网络规模: LTE实现深度覆盖, 网络节点数将是现有基站数量的2-3倍;
- 3. 统一承载: LTE和2G、3G网络共存,承 载网考虑多场景统一接入。现有承载网 应具备向分组网络平滑演进的需求;
- **4. \$1和X2**: \$1为eNB与\$GW/MME之间的接口,X2为eNB基站之间的连接;
- 5. \$1 Flex: 网络需要支持eNB归属于不同的SGW/MME;
- 6. 网络可靠性: 承载IP化同样要求网络保证 高可靠性, 故障切换小于50ms
- 7. 网络QoS: E2E时延要求<20ms, 比2G、 3G需求更严格;
- 8. 时钟同步: LTE部分业务需要时间同步。

LTE承载解决方案研讨

- LTE承载网络需求分析
- LTE承载解决方案比较
- 时钟时间同步

□ 方案描述

- PTN的汇聚层和接入层设备不变, 在核心层PTN设备引入L3功能,根 据IP地址转发S1和X2
- □ L3 PTN与S-GW和CE相连,跨城域 的流量可通过CE上IP专网,而本 地流量不需要经过CE和IP专网

□ 方案描述

- PTN的核心层、汇聚层和接入层设 备都保持不变
- 核心层PTN与CE相连,所有流量都要经过CE转发,判断去往本核心局房归属的S-GW或X2,跨核心局房的S-GW或X2,跨城域的流量

PTN+CE回传方案描述

- 保持PTN回传网主体。使用PTN承载传统的2G/3G业务,以及LTE阶段非交换(例如\$2)或非多归属(例如S1-flex)业务。
- 在PTN网络汇聚/核心节点和无线主设备(如BSC、RNC、S-GW等)之间引入CE设备,用CE设备实现交换或者多归属业务的灵活调度。
- PTN网络沿用当前方案,实现高性能承载。CE设备使用IP转发,或者L3 VPN转发。跨区域的流量,可以通过CE间的IP承载网实现承载。
- PTN内部、PTN与CE间,以及CE和无线主设备采用分布式保护,从而实现了端到端的无缝覆盖保护。同时,保护方式高效灵活,维护分工界面清晰。对于单归保护,延用现网的PTN保护方案。对于双归保护,引入PW APS等系列化技术方案。
- 当前PTN内部、PTN和CE间,以及CE设备间,使用分段式OAM的方式。通过技术组合,各段间OAM实现了正常对接。

协议实现和业务承载: L2VPN/PWE3+ Native IP/ L3 VPN **BSC** RNC 2G BTS TN 910 PTN 950 **PTN 1900** PTN3900 CE 3G NodeB E1/ aGW Pool **TDM PWE3** ch STM-1 2G TDM **ATM PWE3** eNB 3G ATM 2G TDM Native ETH L2VPN LTE IP 3G ATM LTE IP IEEE 1588v2 for Sync STM-1 **MPLS OAM** ETH OAM ! BFD

- 2G/3G TDM/ATM基站,使用端到端PW承载,PTN3900终结PW,通过ch STM-1接口将原始 TDM/ATM流量上送BSC/RNC,网络规划及维护简单。LTE基站业务,PW在PTN3900终结, 通过Native ETH接入aGW CE,CE同时作为基站上行和aGW下行的IP路由网关。需要跨网段 转发时,CE使用IP路由,或者L3 VPN,实现不同网段或者CE局点间转发。
- PTN 通过IEEE 1588v2实现频率/时间同步方案,在端到端的OAM、设备容量、业务高质量承载等方面均充分考虑了LTE网络需要,满足网络平滑演进需求

eNB接口的IP地址规划

- 对于承载网而言,eNB提供多个VLAN IF 和多个IP
 - S1分为两类,S1-C(S1-MME)属于信令, S1-U属于业务
 - X2 基站之间互联接口
 - OM 基站的管理接口

业务承载模型和VPN实现

双归保护方案部署

主用SGW CE

主用PW

备用PW

DNI-PW

SGW侧VRRP心跳

基站侧VRRP心跳

双归保护倒换(故障场景一)

主用SGW CE

主用PW

备用PW

倒换后上行流量

双归保护倒换(故障场景二)

主用SGW CE

主用PW

备用PW

DNI-PW

→ 倒换后上行流量

双归保护倒换(故障场景三)

主用SGW CE

主用PW

备用PW

DNI-PW

双归保护倒换(故障场景四)

主用SGW CE

主用PW

备用PW

DNI-PW

──→ 倒换后上行流量

双归保护倒换(故障场景五)

主用SGW CE

主用PW

备用PW

LTE承载QoS需求

- LTE传输网络面临挑战:业务类型多样化,不同业务(包括时钟同步/控制/信令)对时延、抖动及丢包率有不同的要求;对带宽的需求增长迅速。
- LTE端到端的QoS保证应该包括无线侧QoS方案和传输网QoS方案两个层次。这里重点 关注传输层QoS方案。

HQos方案部署示例: CE提供4级HQoS控制

- □ 带宽瓶颈主要发生在汇聚以上节点,CE设备做H-QOS控制,效率高、效果好
- □ 4-level HQOS可以做到针对业务、基站、基站组、端口四级精细化调度

PTN+L3方案描述

- ■使用PTN设备端到端组网,所有业务流量静态转发(PW+L3VPN)。
- ■核心层设备支持弱三层功能,实现业务交换或多归属业务灵活调度。
- ■接入层汇聚层PTN沿用现有方案,通过静态PW实现业务高性能承载;核心层PTN设备通过L3VPN转发实现跨机房跨区域的业务流量调度。
- ■可以沿用当前TMPLS/MPLS-TP OAM实现网络OAM

端到端静态PTN业务承载: PWE3+ L3 VPN **BSC** RNC 2G BTS TN 910 PTN 950 **PTN 1900** PTN 3G NodeB E1/ aGW Pool **TDM PWE3** 2G TDM ch STM-1 **ATM PWE3** eNB 3G ATM 2G TDM **Native ETH** ETH PWE3/L2VPN LTE IP 3G ATM **MPLS OAM ETH OAM** LTE IP STM-1

- 2G/3G TDM/ATM基站,使用现有承载方案,通过端到端静态PW传送至核心层PTN 终结,通过ch STM-1接口将原始TDM/ATM流量上送BSC/RNC,网络规划及维护简单。
- LTE基站业务,PW在核心层PTN终结,通过Native ETH接入aGW,不同机房之间 通过核心PTN L3VPN进行归属调度和业务交换。

业务流量模型

eNB1	X2_VLAN1	S_VLAN1_U/C	M_VLAN1
eNB2	X2_VLAN2	S_VLAN2_U/C	M_VLAN2
eNBn	X2_VLANn	S_VLANn_U/C	M_VLANn

- 在接入汇聚层网络,ETH PW完成点到点承载,实现eNB到PE节点的承载,同时PE 节点实现业务的双节点保护
- 根据运营商的需要合理布放PE节点(初期PE的位置可以很高,后续可以随着网络的 演进PE可以下移),L3VPN实现业务灵活调度

业务保护模型

- 网络侧单归场景,通过LSP 1+1/1:1 APS保护实现端到端50ms保护倒换, 双归场景,通过PW APS+DNI PW技术实现网络侧和核心层设备的保护。
- RNC/eGW侧通过MC-LMSP/MC-LAG实现控制器与PE网关之间的链路保护。

OAM实现

PTN支持现有TMPLS/MPLS-TP OAM标准协议,实现多层次的OAM机制

Qos实现

HQOS基于以下层次灵活调度:

1、基站各业务; 2、基站间; 3、各级基站组间; 4、子接口/LSP; 5、物理接口。

LTE承载解决方案研讨

- LTE承载网络需求分析
- LTE承载解决方案比较
- 时钟时间同步

同步基本概念

√频率同步 (时钟同步)

✓时间同步(相位同步)

无线基站同步需求

无线制式	时钟频率精度要求	时钟相位同步要求
GSM	0.05ppm	NA
WCDMA	0.05ppm	NA
TD-SCDMA	0.05ppm	1.5us
CDMA2000	0.05ppm	3us
WiMax FDD	0.05ppm	NA
WiMax TDD	0.05ppm	lus
LTE	0.05ppm	倾向于采用时间同步 1.66us

LTE对时间/时钟同步的需求

- 在OFDM信号内的所有子载波在时间和频率 上同步,才能保证子载波之间不发生干扰。
- TD-LTE要求时间同步。

- 以太网真的不能传输时钟码?
 - 以太网技术本身对时钟的要求很宽松,保持 100ppm 就可以了
 - 很多以太网 PHY,特别是光口 PHY 芯片,具备恢复时钟的能力
 - PHY 芯片依靠 CDR 技术从串行数据码流中恢复出发送端的时钟
 - 这种技术与 SDH 时钟恢复技术是相同的
 - 以太网只是缺乏全网时钟同步的机制,是因为以太网标准中没有定义发送端时钟与接收端 恢复出来的时钟的关系
 - 从一个 PHY 芯片恢复出的时钟不能被其他 PHY 芯片共享
 - 以太网只是不需要,并不是不能够传输时钟
- 如何在以太网上传输时钟
 - 仿照 SDH 机制,可以将以太 PHY 恢复出的时钟,送到时钟板上进行处理,然后通过时钟板将时钟送到各个单板,用这个时钟进行数据的发送。这样上游时钟与下游时钟就产生级连的关系,实现了在以太网络上时钟同步的目标。

同步以太网

• 优点

- 时钟同步质量接近 SDH
- 不受 PSN 网络影响
- 可实现性比较好

• 局限

- 需要全网部署,必须所有设备都支持
- 现阶段不是所有厂家的芯片都支持高精度时钟恢复质量
- 不能支持时间同步

同步以太应用场景

1588

IEEE1588 的全称是: 网络测量和控制系统的精密时钟同步协议标准

IEEE P1588 TM D2.2

Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems

IEEE1588 协议设计用于精确同步分布式网络通讯中各个结点的实时时钟。其基本构思为通过硬件和软件将网络设备(客户机)的内时钟与主控机的主时钟实现同步;

1588应用场景

几种分组同步技术的比较

- 时钟通过物理层传送
- 类似SDH 同步机制,每个网元都必须支持同步以太网
- 无需占用带宽资源,频率精度高,跟踪 级数多,需要全网部署
- 时钟通过报文传送
- 只需要源和宿端支持同步 TOP即可
- TOP对分组网络性能有一定的要求,需要占用业务带宽
- 时钟通过报文传送
- IEEE 1588V2可解决频率的同步问题也可解决时间的同步问题,需要全网进行部署