Introduction to Data Science

CS 5665
Utah State University
Department of Computer Science
Instructor: Prof. Kyumin Lee

Practicums

https://usu.instructure.com/courses/431417/discussion_topics/1385921

Practicum Presenters and Dates

- Sept 15:
 - Tableau public (Sirisha Rani)
 - AWS (Anuj Khasgiwala)
 - Scikit-learn (Vishal)
- Sept 22:
- ?:

Project Overview

https://usu.instructure.com/courses/43141//discussion_topics/138/815

Project Details

- · 2 or 3-person team
- · Code must live on github
- · Must use non-trivial data
- · Must apply some mining or analytics algorithm
- Must use the "data science loop"
- Final output:
 - Data project or data visualization
 - Ideally, a "rich" or "interactive" final product; a single figure is insufficient

Project Phases

- [25%] Proposal: October 20
- [25%] Check Point: November 17
- [50%] Project Workshop: Dec 6 and 8 inclass

Previous Class...

Data Science Process (Loop

Back to Basics:

Getting to Know Our Data

Data models vs. Conceptual models

- Data models are low-level descriptions of the data
 - Math: Sets with operations on them
 - Example: integers with + and x operators
- Conceptual models are mental constructions
 - Include semantics and support reasoning
- Examples (data vs. conceptual)
 - (1D floats) vs. temperatures
 - (3D vector of floats) vs. space

Data Type Taxonomy

- 1D (sets and sequences)
- Temporal
- 2D (maps)
- 3D (shapes)
- nD (relational)
- · Trees (hierarchies)
- Networks (graphs)

The eyes have it: A task by data type taxonomy for information visualization [Shneiderman 96]

Types of Datasets

Document 2

Bread, Coke, Milk

Coke, Diaper, Milk

Beer, Coke, Diaper, Milk

Beer, Bread, Diaper, Milk

Beer, Bread

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: termfrequency vector
 - Transaction data
- · Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

Example: Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Example: Data Matrix

- If data objects have the same fixed set of numeric attributes, then
 the data objects can be thought of as points in a multi-dimensional
 space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load			Load	Thickness	
10.23	5.27	15.22	2.7	1.2	
12.65	6.25	16.22	2.2	1.1	

Example: Document Data

- · Each document becomes a 'term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Example: Transaction Data

- A special type of record data, where each record (transaction) involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Example: Graph Data

• Examples: Generic graph and HTML Links

Example: Ordered Data

Sequences of transactions

Example: Ordered Data

· Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCCCGCGCCTC
GAGAAGGGCCCGCCCTGGCGGGCG
GGGGGAGGCGGGCCCCCAGC
CCAACCGAGTCCGACCAGCTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCACCAGGG

Data Objects

- · Data sets are made up of data objects.
- A data object represents an entity.
 - Examples:
 - · sales database: customers, store items, sales
 - · medical database: patients, treatments
 - university database: students, professors, courses
 - Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- In database... rows → data objects; columns → attributes.

Attributes

- Attribute (or dimension, feature, variable): a data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- · Types:
 - Nominal / Binary (a part of Nominal)
 - Ordinal
 - Quantitative (Numeric)
 - Interval-scaled
 - · Ratio-scaled

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as Objects variable, field, characteristic, or feature
- A collection of attributes describe an object

Attributes

Attributes: Nominal, Ordinal, and Quantitative

- · Nominal (categories, states, labels :: "names of things")
 - Ex. Fruits: Apples, oranges, ...
 - Special case of Nominal: Binary
- · Ordinal (Ordered)
 - Values have a meaningful order (rank), but magnitude between successive values is unknown
 - Quality of meat: Grade A, AA, AAA
- (Q) Interval (No true zero-point)
 - Calendar dates: Jan 24, 2012; Location (Lat/Long)
 - Only differences (intervals) may be compared
- (Q) Ratio (Inherent zero-point)
 - Physical measurements: Length, Mass, ...
 - Counts and amounts

Discrete vs. Continuous Attributes

- · Discrete Attribute
 - Has only a finite or countable set of values
 - · E.g., zip codes, counts, or the set of words in a collection of documents
 - Often represented as integer variables.
 - Note: binary attributes are a special case of discrete attributes
- · Continuous Attribute
 - Has real numbers as attribute values
 - · Examples: temperature, height, or weight.
 - Continuous attributes are typically represented as floating-point variables.

Quiz! Census Data

- People: # of people in group
- **Year**: 1850 2000 (every decade)
- Age: 0 90 +
- Sex: Male, Female
- · Marital Status: Single, Married, Divorced

From data model to N, O, Q data type

- Data Model
 - -32.5,54.0,-17.3,...
 - floats
- Conceptual Model
 - Temperature (°C)
- Data/Attribute Type
 - Burned vs. Not-Burned (N)
 - Hot, Warm, Cold (O)
 - Temperature Value (Q)

Quiz! Census Data

- People
- Year
- Age
- Sex
- Marital Status
- 2,348 data points

1	year	age	marst	sex	people
2	1850	0	0	1	148378
3	1850	0	0	2	145037
4	1850	5	0	1	141106
5	1850	5	0	2	135966
6	1850	10	0	1	126009
7	1850	10	0	2	121611
8	1850	15	0	1	107713
9	1850	15	0	2	111061
10	1850	20	0	1	101728
11	1850	20	0	2	100384
12	1850	25	0	1	86254
13	1850	25	0	2	79948
14	1850	30	0	1	73063
15	1850	30	0	2	63963
16	1850	35	0	1	58848
17	1850	35	0	2	50501
18	1850	40	0	1	47591
19	1850	40	0	2	42818
20	1850	45	0	1	38421
21	1850	45	0	2	34125
22	1850	50	0	1	32134
23	1850	50	0	2	28658
24	1850	55	0	1	19408
25	1850	55	0	2	18720
26	1850	60	0	1	17497
27	1850	60	0	2	16223

Census: N, O, Q?

People Q-Ratio

• Year Q-Interval (O)

• Age Q-Ratio (O)

• Sex (M/F) N

Marital Status

Relational data model

- Represent data as a **table** (relation)
- Each row (tuple) represents a record
 - Each record is a fixed-length tuple
- Each column (attribute) represents a variable
 - Each attribute has a name and a data type
- A table's **schema** is the set of names and types
- A database is a collection of tables (relations)

Relational Algebra

- Data Transformations (SQL)
- Projection (SELECT) selects columns
- Selection (WHERE) filters rows
- Sorting (ORDER BY)
- Aggregation (GROUP BY, SUM, MIN, MAX, ...)
- Combine relations (UNION, JOIN, ...)

Basic Statistical Descriptions of Data*

*(These are mainly for understanding individual attributes)

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population) $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Note: *n* is sample size and *N* is population size. $\mu = \frac{\sum x}{N}$

- Weighted arithmetic mean: $\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

- Trimmed mean: chopping extreme values

Measuring the Central Tendency

- Median:
 - Middle value if odd number of values or average of the middle two values otherwise

age	frequency
1-5	200
' 6–15	450
16-20	300
21 - 50	1500
51 - 80	700
81 - 110	44

Measuring the Central Tendency

- Mode
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal
 - Empirical formula:

 $mode \approx mean - 3 \times (mean - median)$

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- · Quartiles, outliers and boxplots
 - Quartiles: Q1 (25th percentile), Q3 (75th percentile)
 - Inter-quartile range: IQR = Q₃-Q₁
 - Five number summary: min, Q₁, median, Q₃, max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
 - Below $Q_1 1.5 \times IQR$, or Abov e $Q_3 + 1.5 \times IQR$

Boxplot

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot Analysis

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IOR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Measuring the Dispersion of Data

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

- Standard deviation s (or σ) is the square root of variance $s^2(or\sigma^2)$

What's Next

- Read section 1 and 2 in Data Mining Concepts and Techniques
- Email me at least two Practicum topics by tonight!
- Let me know names of your team members by Sept 13