CS 224S / LINGUIST 281 Speech Recognition, Synthesis, and Dialogue

Dan Jurafsky

Lecture 6: Forward-Backward (Baum-Welch) and Word Error Rate

IP Notice:

Outline for Today

- Speech Recognition Architectural Overview
- Hidden Markov Models in general and for speech
 - Forward
 - Viterbi Decoding
- How this fits into the ASR component of course
 - July 27 (today): HMMs, Forward, Viterbi,
 - Jan 29 Baum-Welch (Forward-Backward)
 - Feb 3: Feature Extraction, MFCCs
 - Feb 5: Acoustic Modeling and GMMs
 - Feb 10: N-grams and Language Modeling
 - Feb 24: Search and Advanced Decoding
 - Feb 26: Dealing with Variation
 - Mar 3: Dealing with Disfluencies

LVCSR

- Large Vocabulary Continuous Speech Recognition
- ~20,000-64,000 words
- Speaker independent (vs. speakerdependent)
- Continuous speech (vs isolated-word)

Viterbi trellis for "five"

Viterbi trellis for "five"

\mathbf{V}	0		0		0.008		0.0072		0.00672		0.00403		0.0	0.00188		0.00161		0.000667		0.000493	
AY	0		0.04		0.048		0.0448		0.0269		0.0125		0.0	0.00538		0.00167		0.000428		8.78e-05	
F	0.8		0.32		0.112		0.0224		0.00448		0.000896		0.0	0.000179		4.48e-05		1.12e-05		2.8e-06	
Time	1		2		3		4		5		6			7		8		9		10	
	f	0.8	f	0.8	f	0.7	f	0.4	f	0.4	f	0.4	f	0.4	f	0.5	f	0.5	f	0.5	
	ay	0.1	ay	0.1	ay	0.3	ay	0.8	ay	0.8	ay	0.8	ay	0.8	ay	0.6	ay	0.5	ay	0.4	
В	ν	0.6	v	0.6	ν	0.4	v	0.3	v	0.3	v	0.3	ν	0.3	v	0.6	v	0.8	v	0.9	
	p	0.4	p	0.4	p	0.2	p	0.1	p	0.1	p	0.1	p	0.1	p	0.1	p	0.3	p	0.3	
Co.	iy	0.1	iy	0.1	iy	0.3	iy	0.6	iy	0.6	iy	0.6	iy	0.6	iy	0.5	iy	0.5	iy	0.4	

Search space with bigrams

Viterbi trellis

Viterbi backtrace

The Learning Problem

Learning: Given an observation sequence O and the set of possible states in the HMM, learn the HMM parameters A and B.

- Baum-Welch = Forward-Backward
 Algorithm (Baum 1972)
- Is a special case of the EM or Expectation-Maximization algorithm (Dempster, Laird, Rubin)
- The algorithm will let us train the transition probabilities $A = \{a_{ij}\}$ and the emission probabilities $B = \{b_i(o_t)\}$ of the HMM

Input to Baum-Welch

- O unlabeled sequence of observations
- Q vocabulary of hidden states

- For ice-cream task
 - $O = \{1,3,2,...\}$
 - \bullet Q = {H,C}

Starting out with Observable Markov Models

- How to train?
- Run the model on observation sequence O.
- Since it's not hidden, we know which states we went through, hence which transitions and observations were used.
- Given that information, training:
 - B = {b_k(o_t)}: Since every state can only generate one observation symbol, observation likelihoods B are all 1.0

• A = {a_{ij}}:
$$a_{ij} = \frac{C(i \to j)}{\sum_{q \in Q} C(i \to q)}$$

Extending Intuition to HMMs

- For HMM, cannot compute these counts directly from observed sequences
- Baum-Welch intuitions:
 - Iteratively estimate the counts.
 - Start with an estimate for a_{ij} and b_k, iteratively improve the estimates
 - Get estimated probabilities by:
 - computing the forward probability for an observation
 - dividing that probability mass among all the different paths that contributed to this forward probability

The Backward algorithm

 We define the backward probability as follows:

$$\beta_t(i) = P(o_{t+1}, o_{t+2}, ... o_T, | q_t = i, \Phi)$$

• This is the probability of generating partial observations O_{t+1}^T from time t+1 to the end, given that the HMM is in state i at time t and of course given Φ .

The Backward algorithm

1. Initialization:

$$\beta_T(i) = a_{i,F}, \quad 1 \le i \le N$$

2. **Recursion** (again since states 0 and q_F are non-emitting):

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(o_{t+1}) \beta_{t+1}(j), \quad 1 \le i \le N, 1 \le t < T$$

3. Termination:

$$P(O|\lambda) = \alpha_T(q_F) = \beta_1(0) = \sum_{j=1}^{N} a_{0j} b_j(o_1) \beta_1(j)$$

Inductive step of the backward algorithm (figure inspired by Rabiner and Juang)

Computation of $\beta_t(i)$ by weighted sum of all successive values β_{t+1}

Intuition for re-estimation of aij

We will estimate â_{ij} via this intuition:

$$\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$$

- Numerator intuition:
 - Assume we had some estimate of probability that a given transition i→j was taken at time t in observation sequence.
 - If we knew this probability for each time t, we could sum over all t to get expected value (count) for i→j.

Re-estimation of aij

• Let ξ_t be the probability of being in state i at time t and state j at time t+1, given $O_{1.T}$ and model Φ :

$$\xi_{t}(i,j) = P(q_{t} = i,q_{t+1} = j \mid O,\lambda)$$

We can compute ξ from not-quite-ξ, which is:

$$not_quite_{\xi_t}(i,j) = P(q_t = i, q_{t+1} = j, O | \lambda)$$

Computing not-quite-ξ

The four components of $P(q_t = i, q_{t+1} = j, O \mid \lambda)$: α, β, a_{ij} and $b_j(o_t)$

not-quite-
$$\xi_t(i,j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

From not-quite-ξ to ξ

• We want:

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda)$$

We've got:

$$not_quite_\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O | \lambda)$$

Which we compute as follows:

not-quite-
$$\xi_t(i,j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

From not-quite-ξ to ξ

• We want:

$$\xi_{t}(i,j) = P(q_{t} = i,q_{t+1} = j \mid O,\lambda)$$

We've got:

$$not_quite_\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O \mid \lambda)$$

Since:

$$P(X|Y,Z) = \frac{P(X,Y|Z)}{P(Y|Z)}$$

• We need: $\xi_t(i,j) = \frac{not_quite_\xi_t(i,j)}{P(O \mid \lambda)}$

From not-quite-ξ to ξ

$$\xi_t(i,j) = \frac{not_quite_\xi_t(i,j)}{P(O \mid \lambda)}$$

not-quite-
$$\xi_t(i,j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

$$P(O|\lambda) = \alpha_T(q_F) = \beta_T(q_0) = \sum_{j=1}^N \alpha_t(j)\beta_t(j)$$

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\alpha_T(q_F)}$$

From ξ to a_{ij}

$$\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$$

- The expected number of transitions from state
 i to state j is the sum over all t of ξ
- The total expected number of transitions out of state i is the sum over all transitions out of state i
- Final formula for reestimated a_{ii}

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

Re-estimating the observation likelihood b

• This is the probability of a given symbol v_k from the observation vocabulary V, given a state j: $\hat{b}_j(v_k)$.

$$\hat{b}_{j}(v_{k}) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v_{k}}{\text{expected number of times in state } j}$$

We'll need to know the probability of being in state *j* at time *t*:

$$\gamma_t(j) = P(q_t = j | O, \lambda)$$

$$\gamma_t(j) = \frac{P(q_t = j, O|\lambda)}{P(O|\lambda)}$$

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \sum_{s:t:O_t=v_k} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$

Computing y (gamma)

Summary

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

The ratio between the expected number of transitions from state i to j and the expected number of all transitions from state i

$$\hat{b}_{j}(v_{k}) = \frac{\sum_{t=1}^{T} \sum_{s.t.O_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

The ratio between the expected number of times the observation data emitted from state j is v_k, and the expected number of times any observation is emitted from state j

The Forward-Backward Alg

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden state set Q) **returns** HMM=(A,B)

initialize A and B iterate until convergence

E-step

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{\alpha_T(q_F)} \,\forall t \text{ and } j$$

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(q_F)} \,\forall t, i, \text{ and } j$$

M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)} \qquad \hat{b}_j(v_k) = \frac{\sum_{t=1s.t. O_t = v_k}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$

return A, B

Summary: Forward-Backward Algorithm

- 1) Intialize $\Phi = (A,B)$
- 2) Compute α , β , ξ
- 3) Estimate new $\Phi'=(A,B)$
- 4) Replace Φ with Φ'
- 5) If not converged go to 2

Applying FB to speech: Caveats

- Network structure of HMM is always created by hand
 - no algorithm for double-induction of optimal structure and probabilities has been able to beat simple hand-built structures.
 - Always Bakis network = links go forward in time
 - Subcase of Bakis net: beads-on-string net:

 Baum-Welch only guaranteed to return local max, rather than global optimum

Complete Embedded Training

- Setting all the parameters in an ASR system
- Given:
 - training set: wavefiles & word transcripts for each sentence
 - Hand-built HMM lexicon
- Uses:
 - Baum-Welch algorithm
- We'll return to this after we've introduced GMMs

Embedded Training

What we are searching for

Given Acoustic Model (AM) and Language Model (LM):

$$AM (likelihood) LM (prior)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(1) \hat{W} = \underset{W \in L}{\operatorname{argmax}} P(O | W) P(W)$$

Combining Acoustic and Language Models

We don't actually use equation (1)

(1)
$$\hat{W} = \underset{W \in L}{\operatorname{argmax}} P(O \mid W) P(W)$$

- AM underestimates acoustic probability
 - Why? Bad independence assumptions
 - Intuition: we compute (independent) AM probability estimates; but if we could look at context, we would assign a much higher probability. So we are underestimating
 - We do this every 10 ms, but LM only every word.
 - Besides: AM (as we've seen) isn't a true probability
- AM and LM have vastly different dynamic ranges

Language Model Scaling Factor

 Solution: add a language model weight (also called language weight LW or language model scaling factor LMSF

(2)
$$\hat{W} = \underset{W \in L}{\operatorname{argmax}} P(O | W) P(W)^{LMSF}$$

- Value determined empirically, is positive (why?)
- Often in the range 10 +- 5.

Word Insertion Penalty

- But LM prob P(W) <u>also</u> functions as penalty for inserting words
 - Intuition: when a uniform language model (every word has an equal probability) is used, LM prob is a 1/V penalty multiplier taken for each word
 - Each sentence of N words has penalty N/V
 - If penalty is large (smaller LM prob), decoder will prefer fewer longer words
 - If penalty is small (larger LM prob), decoder will prefer more shorter words
- When tuning LM for balancing AM, side effect of modifying penalty
- So we add a separate word insertion penalty to offset

(3)
$$\hat{W} = \underset{W \in L}{\operatorname{argmax}} P(O | W) P(W)^{LMSF} W I P^{N(W)}$$

Log domain

- We do everything in log domain
- So final equation:

(4)
$$\hat{W} = \underset{W \in L}{\operatorname{argmax}} \log P(O \mid W) + LMSF \log P(W) + N \log WIP$$

Language Model Scaling Factor

- As LMSF is increased:
 - More deletion errors (since increase penalty for transitioning between words)
 - Fewer insertion errors
 - Need wider search beam (since path scores larger)
 - Less influence of acoustic model observation probabilities

Word Insertion Penalty

- Controls trade-off between insertion and deletion errors
 - As penalty becomes larger (more negative)
 - More deletion errors
 - Fewer insertion errors
- Acts as a model of effect of length on probability
 - But probably not a good model (geometric assumption probably bad for short sentences)

Summary

- Speech Recognition Architectural Overview
- Hidden Markov Models in general
 - Forward
 - Viterbi Decoding
- Hidden Markov models for Speech
- Evaluation