A Theorical Analysis of Fitted Q-Iteration

Jacob Harder University of Copenhagen

February 27, 2020

1 Abstract

2 Foreword

The main purpose of this master thesis for me, has been to uncover what (at present) it is possible to say (mathematically) about the convergence of Q-learning algorithms. In particular Q-learning algorithms using (deep) ANNs.

I came to realize during my reading of [TODO ref to YangXieWang] that it is quite error-prone with some errors not obviously fixable.

3 Disambiguation

- $[\phi] = 1$ when ϕ is true/holds and 0 otherwise, for a logical formula ϕ .
- $[q] = \{1, \dots, q\}$ for $q \in \mathbb{N}$.
- $C_{\mathbb{K}}(X) = \{ f : X \to \mathbb{K} \mid f \text{ continuous} \}, \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}. \ C(X) = C_{\mathbb{R}}(X)$
- ANN abrv. artificial neural network see definition 2.
- δ_a Dirac-measure of point a. I.e. $\delta_a(A) = [a \in A]$.
- $(\Omega, \mathcal{F}, \mathbb{P})$ the underlying measure space of all random variables and processes when not otherwise specified.

3.1 Notational deviations from [TODO ref YangXieWang]

Because σ is used ambigously in theorem 1 we denote the probability distribution ' σ ' from [YangX-ieWang, thm. 6.2, p. 20] by ν instead.

I dislike the shorthand defined in [YangXieWang, p. 26 bottom]: $||f||_n^2 = 1/n \cdot \sum_{i=1}^n f(X_i)^2$. This is partially due to inconsistencies and abuse of this notation employed. For example $||f||_n$ is used as $1/n \sum_{i=1}^n f(X_i)$ as opposed another likely interpretation $\sqrt{||f||_n^2}$, whereas $||f||_n^{-1}$ is used to mean $1/(||f||_n)$. This is avoided by using finite dimensional *p*-norms instead. The conversion to my notation thus becomes $||f||_n \leadsto ||f||_1^2 \leadsto ||f||_n^2 \leadsto ||f||_n^{-1} \leadsto n||f||_1^{-1}$.

4 Introduction

4.1 Reinforcement Learning

In Reinforcement Learning (RL) we are concerned with finding an optimal policy for an agent in some environment. Typically (also in the case of Q-learning) this environment is a Markov decision process

Definition 1. A Markov decision process (MDP) (S, A, P, R, γ) consists of

• S a set of states

- \mathcal{A} a set of actions
- $P: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$ its Markov transition kernel
- $R: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathbb{R})$ its immediate reward distribution
- $\gamma \in (0,1)$ the discount factor

A policy (for an MDP) is a function

$$\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$$

With this we can define the state-value function $V^{\pi}: \mathcal{S} \to \mathbb{R}$

$$V^{\pi}(s) = \mathbb{E}\left(\sum_{t \geq 0} \gamma^{t} R_{t} \mid R_{t} \sim R(S_{t}, A_{t}), S_{t} \sim P(S_{t-1}, A_{t-1}), A_{t} \sim \pi(S_{t}), S_{0} = s\right)$$

And the state-action-value (Q-) function $Q^{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

$$Q^{\pi}(s, a) = \mathbb{E}(R(s, a) + \gamma V^{\pi}(S_0) \mid S_0 \sim P(s, a))$$

The optimal Q-function is defined as

$$Q^*(s,a) = \sup_{\pi} Q^{\pi}(s,a)$$

One can show that there is a policy π^* such that $Q^* = Q^{\pi^*}$. This is the optimal policy - the goal of RL.

Note that V^{π} , Q^{π} and Q^* are usually infeasible to calculate to machine precision, unless $\mathcal{S} \times \mathcal{A}$ is finite and not very big.

4.2 Q-Learning

Let $\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$ be a policy. We define the operator

$$(P^{\pi}Q)(s,a) = \mathbb{E}(Q(S',A') \mid S' \sim P(s,a), A' \sim \pi(S'))$$

Intuitively this operator yields the expected state-action-value function when looking one step ahead following the policy π and taking expectation of Q.

We define the operator T^{π} called the Bellman operator by

$$(T^{\pi}Q)(s,a) = \mathbb{E}R(s,a) + \gamma(P^{\pi}Q)(s,a)$$

This operator adjust the Q function to look more like Q^{π} making one "iteration" of "propagation of rewards" discounting with γ . Indeed it is easily seen that Q^{π} is a fixed point for T^{π} .

A greedy policy π with respect to a state-action value function Q is a policy which deterministically chooses an action with maximal value of Q for each state. That is $\pi(s) = \delta_a$ for some $a \in \operatorname{argmax}_a Q(s, a)$. We then write $\pi = \pi_Q$. With this we can define the operator T:

$$TQ = T^{\pi_Q}Q$$

called the Bellman *optimality* operator.

The Bellman optimality equation can then be written $Q^* = TQ^*$.

Proposition 1. Q^{π} is the unique fixed point of T^{π} .

Proof. Clearly
$$T^{\pi}Q^{\pi} = Q^{\pi}$$
. [TODO: rest of this proof]

4.3 Artificial Neural Networks

Definition 2. An **ANN** (Artificial Neural Network) with structure $\{d_i\}_{i=0}^{L+1} \subseteq \mathbb{N}$, activation functions $\sigma_i = (\sigma_{ij} : \mathbb{R} \to \mathbb{R})_{j=1}^{d_i}$ and weights $\{W_i \in M^{d_i \times d_{i-1}}, v_i \in \mathbb{R}^{d_i}\}_{i=1}^{L+1}$ is the function $F : \mathbb{R}^{d_0} \to \mathbb{R}^{d_{L+1}}$

$$F = w_{L+1} \circ \sigma_L \circ w_L \circ \sigma_{L-1} \circ \cdots \circ w_1$$

where w_i is the affine function $x \mapsto W_i x + v_i$ for all i.

Here
$$\sigma_i(x_1,\ldots,x_{d_i})=(\sigma_{i1}(x_1),\ldots,\sigma_{id_i}(x_{d_i})).$$

 $L \in \mathbb{N}_0$ is called the number of hidden layers.

 d_i is the number of neurons or nodes in layer i.

An ANN is called *deep* if there are two or more hidden layers.

4.4 Fitted Q-Iteration

We here present the algorithm which everything in this paper revolves around:

Algorithm 1: Fitted Q-Iteration Algorithm

Input: MDP (S, A, P, R, γ) , function class \mathcal{F} , sampling distribution ν , number of iterations K, number of samples n, initial estimator \widetilde{Q}_0

for $k = 0, 1, 2, \dots, K - 1$ do

Sample i.i.d. observations $\{(S_i, A_i), i \in [n]\}$ from ν obtain $R_i \sim R(S_i, A_i)$ and $S'_i \sim P(S_i, A_i)$

Let $Y_i = R_i + \gamma \cdot \max_{a \in \mathcal{A}} \widetilde{Q}_k(S_i', a)$

Update action-value function:

$$\widetilde{Q}_{k+1} \leftarrow \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(S_i, A_i))^2$$

Define π_K as the greedy policy w.r.t. \widetilde{Q}_K

Output: An estimator \widetilde{Q}_K of Q^* and policy π_K

5 Assumptions

5.1 Assumption 1: Holder Smoothness

Definition 3. For $s, V \in \mathbb{R}$ a (s,V)-**Sparse ReLU Network** is an ANN f with any structure $\{d_i\}_{i\in[L+1]}$, all activation functions being ReLU i.e. $\sigma_{ij} = \max(\cdot,0)$ and any weights (W_ℓ, v_ℓ) satisfying

- $\max_{\ell \in [L+1]} \left\| \widetilde{W}_{\ell} \right\|_{\infty} \leq 1$
- $\bullet \ \textstyle \sum_{\ell=1}^{L+1} \left\| \widetilde{W}_{\ell} \right\|_0 \leq s$
- $\max_{j \in [d_{L+1}]} ||f_j||_{\infty} \leq V$

Here $\widetilde{W}_{\ell} = (W_{\ell}, v_{\ell}).$

The set of them we denote $\mathcal{F}(s, V)$.

Definition 4. Let $\mathcal{D} \subseteq \mathbb{R}^r$ be compact and $\beta, H > 0$. A function $f : \mathcal{D} \to \mathbb{R}$ we call Holder smooth if

$$\sum_{\alpha: |\alpha| < \beta} \|\partial^{\alpha} f\|_{\infty} + \sum_{\alpha: \|\alpha\|_{1} = |\beta|} \sup_{x \neq y} \frac{|\partial^{\alpha} (f(x) - f(y))|}{\|x - y\|_{\infty}^{\beta - \lfloor \beta \rfloor}} \le H$$

Where $\alpha = (\alpha_1, \dots, \alpha_r) \in \mathbb{N}^r$. We write $f \in C_r(\mathcal{D}, \beta, H)$.

Definition 5. Let $t_j, p_j \in \mathbb{N}$, $t_j \leq p_j$ and $H_j, \beta_j > 0$ for $j \in [q]$. We say that f is a Composition of Holder smooth Functions when

$$f = g_q \circ \cdots \circ g_1$$

for some functions $g_j:[a_j,b_j]^{p_j}\to [a_{j+1},b_{j+1}]^{p_{j+1}}$ that only depend on t_j of their inputs for each of their components g_{jk} , and satisfies $g_{jk}\in C_{t_j}([a_j,b_j]_j^t,\beta_j,H_j)$, i.e. they are Holder smooth. We denote the class of these functions

$$\mathcal{G}(\{p_j, t_j, \beta_j, H_j\}_{j \in [q]})$$

Definition 6. Define

$$\mathcal{F}_0 = \{ f : \mathcal{S} \times \mathcal{A} \to \mathbb{R} \mid f(\cdot, a) \in \mathcal{F}(s, V) \ \forall a \in \mathcal{A} \}$$

and

$$\mathcal{G}_0 = \{ f : \mathcal{S} \times \mathcal{A} \to \mathbb{R} \mid f(\cdot, a) = \mathcal{G}(\{p_j, t_j, \beta_t, H_j\}_{j \in [q]}) \ \forall a \in \mathcal{A} \}$$

Assumption 1. It is assumed that $Tf \in \mathcal{G}_0$ for any $f \in \mathcal{F}_0$.

I.e. when using the Bellman optimality operator on our sparse ReLU networks, we should stay in the class of compositions of Holder smooth functions.

5.2 Assumption 2: Concentration Coefficients

Definition 7 (Concentration coefficients). Let $\nu_1, \nu_2 \in \mathcal{P}(\mathcal{S} \times \mathcal{A})$ be probability measures, absolutely continuous w.r.t. m_{λ} Define

$$\kappa(m, \nu_1, \nu_2) = \sup_{\pi_1, \dots, \pi_m} \left[\mathbb{E}_{v_2} \left(\frac{\mathrm{d}(P^{\pi_m} \dots P^{\pi_1} \nu_1)}{\mathrm{d}\nu_2} \right)^2 \right]^{1/2}$$

Assumption 2. Let ν be the sampling distribution from the algorithm, and μ the distribution over which we measure the error in the main theorem, then we assume

$$(1-\gamma)^2 \sum_{m\geq 1} \gamma^{m-1} m \kappa(m,\mu,\nu) = \phi_{\mu,\nu} < \infty$$

6 Main theorem

Theorem 1 (Yang, Xie, Wang). For any $K \in \mathbb{N}$ let Q^{π_K} be the action-value function corresponding to policy π_K which is returned by Algorithm 1, when run with a sparse ReLU network on the form

$$\mathcal{F}_0 = \{ f(\cdot, a) \in \mathcal{F}(L^*, \{d_j^*\}_{j=0}^{L^*+1}, s^*) \mid a \in \mathcal{A} \}$$

where

$$L^* \lesssim (\log n)^{\xi'}, d_0 = r, d_i^*, d_{L+1} = 1, \lesssim n^{\xi'}, s^* \times n^{\alpha^*} \cdot (\log n)^{\xi'}$$

Let μ be any distribution over $\mathcal{S} \times \mathcal{A}$. Under assumption 1 and assumption 2

$$\|Q^* - Q^{\pi_K}\|_{1,\mu} \le C \cdot \frac{\phi_{\mu,\nu} \cdot \gamma}{(1-\gamma)^2} \cdot |\mathcal{A}| \cdot (\log n)^{\xi^*} \cdot n^{(\alpha^*-1)/2} + \frac{4\gamma^{K+1}}{(1-\gamma)^2} \cdot R_{\max}$$

Here $C, \xi', \xi^*, \phi_{\mu,\nu} \in \mathbb{R}_+$ and $\alpha^* \in (0,1)$ are constants depending on the assumptions and R_{max} the maximum possible reward.

7 Proofs

Proof of main theorem. Using theorem 2 we get

$$\|Q^* - Q^{\pi_K}\|_{1,\mu} \le 2\frac{\phi_{\mu,\nu}}{(1-\gamma)^2} + \frac{4\gamma^{K+1}}{(1-\gamma)^2} R_{\text{max}}$$
 (1)

where $\varepsilon_{\max} = \max_{k \in [K]} \left\| T \widetilde{Q}_{k-1} - \widetilde{Q}_k \right\|_{2,\nu}$. Using ?? with $Q = \widetilde{Q}_{k-1}$, $\mathcal{F} = \mathcal{F}_0$, $\epsilon = 1$ and $\delta = 1/n$, we get

$$\varepsilon_{\text{max}} \le 4\omega(\mathcal{F}_0) + C \cdot V_{\text{max}}^2 / n \cdot \log N_0$$
 (2)

where $C = 64 + 8/V_{\text{max}}$ and $N_0 = |\mathcal{N}(1/n, \mathcal{F}_0, ||\cdot||_{\infty})|$.

Theorem 2 (Error Propagation). Let $\{\widetilde{Q}_i\}_{0 \leq i \leq K}$ be the iterates of the fitted Q-iteration algorithm. Then

$$\|Q^* - Q^{\pi_K}\|_{1,\mu} \le \frac{2\phi_{\mu,\nu}\gamma}{(1-\gamma)^2} \cdot \varepsilon_{\max} + \frac{4\gamma^{K+1}}{(1-\gamma)^2} \cdot R_{\max}$$

Where

$$\varepsilon_{\max} = \max_{k \in [K]} \left\| T\widetilde{Q}_{k-1} - \widetilde{Q}_k \right\|_{2,\nu}$$

Lemma 1. $TQ \geq T^{\pi}Q$ for any policy $\pi : \mathcal{S} \to \mathcal{P}(\mathcal{A})$ and any action value function $Q : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$. *Proof.*

$$(TQ)(s, a) = \mathbb{E}\left(R(s, a) + \gamma \max_{a'} Q(S', a') \mid S' \sim P(\cdot \mid s, a)\right)$$

$$\geq \mathbb{E}\left(R(s, a) + \gamma Q(S', A') \mid S' \sim P(\cdot \mid s, a), A' \sim \pi(\cdot \mid S')\right)$$

$$= T^{\pi}Q(s, a)$$

Lemma 2. Let $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ be an action-value function, τ_1, \ldots, τ_m be policies and $\mu \in \mathcal{P}(\mathcal{S} \times \mathcal{A})$ be a probability measure. Then

$$\mathbb{E}_{\mu}[(P^{\tau_m} \dots P^{\tau_1})(f)] \leq \kappa(k-i+j;\mu,\nu) \|f\|_{2,\nu}$$

For any measure $\nu \in \mathcal{P}(\mathcal{S} \times \mathcal{A})$ which is absolutely continuous w.r.t. $(P^{\tau_m} \dots P^{\tau_1})(\mu)$. Here κ is the concentration coefficients defined in definition 7.

Proof. Recall that

$$\kappa(m; \mu, \nu) := \sup_{\pi_1, \dots, \pi_m} \left[\mathbb{E}_{\nu} \left| \frac{\mathrm{d}(P^{\pi_m} \dots P^{\pi_1} \mu)}{\mathrm{d}\nu} \right|^2 \right]^{1/2}$$
$$= \sup_{\pi_1, \dots, \pi_m} \left\| \frac{\mathrm{d}(P^{\pi_m} \dots P^{\pi_1} \mu)}{\mathrm{d}\nu} \right\|_{2, \nu}$$

Thus

$$\mathbb{E}_{\mu}[(P^{\tau_m} \dots P^{\tau_1})(f)] = \int (P^{\tau_m} \dots P^{\tau_1})(f) \,\mathrm{d}\mu \tag{3}$$

$$= \int f \, \mathrm{d}(P^{\tau_m} \dots P^{\tau_1} \mu) \tag{4}$$

$$= \int f \frac{\mathrm{d}(P^{\tau_m} \dots P^{\tau_1} \mu)}{\mathrm{d}\nu} \,\mathrm{d}\nu \tag{5}$$

$$\leq \left\| \frac{\mathrm{d}(P^{\tau_m} \dots P^{\tau_1} \mu)}{\mathrm{d}\nu} \right\|_{2,\nu} \cdot \|f\|_{2,\nu} \tag{6}$$

$$\leq \kappa(m,\mu,\nu) \|f\|_{2,\nu} \tag{7}$$

Where eq. (5) is due to the Radon-Nikodym theorem and eq. (6) is Cauchy-Schwarz.

Proof of theorem 2. First some things to keep in mind during the proof. Recall that $V_{\text{max}} = R_{\text{max}}/(1-\gamma)$ and that π_Q is the greedy policy w.r.t. Q. Denote

$$\pi_i = \pi_{\widetilde{Q}_i}, \ Q_{i+1} = T\widetilde{Q}_i, \ \varrho_i = Q_i - \widetilde{Q}_i, \ \text{ for } i \in \{0, \dots, K+1\}$$

Note that for any policy π , P^{π} is linear and 1-contrative on $\mathcal{L}^{\infty}(\mathcal{S} \times \mathcal{A})$. Also

$$T^{\pi}Q^{\pi} = Q^{\pi}$$
, $TQ = T^{\pi_Q}Q$, $TQ^* = Q^* = Q^{\pi^*}$

where π^* is greedy w.r.t. Q^* . If f > f' for $f, f' : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ then $P^{\pi}f \geq P^{\pi}f'$.

The proof consists of four steps.

Step 1 We start by relating $Q^* - Q^{\pi_K}$, the quantity of interest, to $Q^* - \widetilde{Q}_K$, which is more related to the output of the algorithm. Using lemma 1 we can make the upper bound

$$Q^{*} - Q^{\pi_{K}} = T^{\pi^{*}}Q^{*} - T^{\pi_{K}}Q^{\pi_{K}}$$

$$= T^{\pi^{*}}Q^{*} + (T^{\pi^{*}}\widetilde{Q}_{K} - T^{\pi^{*}}\widetilde{Q}_{K}) + (T\widetilde{Q}_{K} - T\widetilde{Q}_{K}) - T^{\pi_{K}}Q^{\pi_{K}}$$

$$= (T^{\pi^{*}}\widetilde{Q}_{K} - T\widetilde{Q}_{K}) + (T^{\pi^{*}}Q^{*} - T^{\pi^{*}}\widetilde{Q}_{K}) + (T\widetilde{Q}_{K} - T^{\pi_{K}}Q^{\pi_{K}})$$

$$\leq (T^{\pi^{*}}Q^{*} - T^{\pi^{*}}\widetilde{Q}_{K}) + (T\widetilde{Q}_{K} - T^{\pi_{K}}Q^{\pi_{K}})$$

$$= (T^{\pi^{*}}Q^{*} - T^{\pi^{*}}\widetilde{Q}_{K}) + (T^{\pi_{K}}\widetilde{Q}_{K} - T^{\pi_{K}}Q^{\pi_{K}})$$

$$= \gamma P^{\pi^{*}}(Q^{*} - \widetilde{Q}_{K}) + \gamma P^{\pi_{K}}(\widetilde{Q}_{K} - Q^{\pi_{K}})$$

$$= \gamma (P^{\pi^{*}} - P^{\pi_{K}})(Q^{*} - \widetilde{Q}_{K}) + \gamma P^{\pi_{K}}(Q^{*} - Q^{\pi_{K}})$$
(8)

This implies

$$(I - \gamma P^{\pi_K})(Q^* - Q^{\pi_K}) \le \gamma (P^{\pi^*} - P^{\pi_K})(Q^* - \widetilde{Q}_K)$$

Since γP^{π_K} is γ -contractive, $U = (I - \gamma P^{\pi_K})^{-1}$ exists as a bounded operator on $\mathcal{L}^{\infty}(\mathcal{S} \times \mathcal{A})$ and equals

$$U = \sum_{i=0}^{\infty} \gamma^i (P^{\pi_K})^i$$

From this we also see that $f \geq f' \implies Uf \geq Uf'$ for any $f, f' : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$. Therefore we can apply U on both sides of eq. (8) to obtain

$$Q^* - Q^{\pi_K} \le \gamma U^{-1} (P^{\pi^*} (Q^* - \widetilde{Q}_K) - P^{\pi_K} (Q^* - \widetilde{Q}_K))$$
(9)

Step 2 Using lemma 1 for any $i \in [K]$ we can get an upper bound

$$Q^{*} - \widetilde{Q}_{i+1} = Q^{*} + (T\widetilde{Q}_{i} - T\widetilde{Q}_{i}) - \widetilde{Q}_{i+1} + (T^{\pi^{*}}\widetilde{Q}_{i} - T^{\pi^{*}}\widetilde{Q}_{i})$$

$$= (Q^{*} - T^{\pi^{*}}\widetilde{Q}_{i}) + (T\widetilde{Q}_{i} - \widetilde{Q}_{i+1}) + (T^{\pi^{*}}\widetilde{Q}_{i} - T\widetilde{Q}_{i})$$

$$= (T^{\pi^{*}}Q^{*} - T^{\pi^{*}}\widetilde{Q}_{i}) + \varrho_{i+1} + (T^{\pi^{*}}\widetilde{Q}_{i} - T\widetilde{Q}_{i})$$

$$\leq T^{\pi^{*}}Q^{*} - T^{\pi^{*}}\widetilde{Q}_{i} + \varrho_{i+1}$$

$$= \gamma P^{\pi^{*}}(Q^{*} - \widetilde{Q}_{i}) + \varrho_{i+1}$$
(10)

and a lower bound

$$Q^* - \widetilde{Q}_{i+1} = Q^* + (T\widetilde{Q}_i - T\widetilde{Q}_i) - \widetilde{Q}_{i+1} + (T^{\pi_i}Q^* - T^{\pi_i}Q^*)$$

$$= (T^{\pi_i}Q^* - T^{\pi_i}\widetilde{Q}_i) + \varrho_{i+1} + (TQ^* - T^{\pi_i}Q^*)$$

$$\geq T^{\pi_i}Q^* - T^{\pi_i}\widetilde{Q}_i + \varrho_{i+1}$$

$$= \gamma P^{\pi_i}(Q^* - \widetilde{Q}_i) + \varrho_{i+1}$$
(11)

Applying eq. (10) and eq. (11) iteratively we get

$$Q^* - \widetilde{Q}_K \le \gamma^K (P^{\pi^*})^K (Q^* - \widetilde{Q}_0) + \sum_{i=0}^{K-1} \gamma^{K-1-i} (P^{\pi^*})^{K-1-i} \varrho_{i+1}$$
(12)

and

$$Q^* - \widetilde{Q}_K \ge \gamma^K (P^{\pi_{K-1}} \dots P^{\pi_0})(Q^* - \widetilde{Q}_0) + \sum_{i=0}^{K-1} \gamma^{K-1-i} (P^{\pi_{K-1}} \dots P^{\pi_{i+1}}) \varrho_{i+1}$$
 (13)

Step 3 Combining eq. (12) and eq. (13) with eq. (9) we get

$$Q^* - Q^{\pi_K} \le U^{-1} \left(\gamma^{K+1} ((P^{\pi^*})^{K+1} - P^{\pi_K} \dots P^{\pi_0}) (Q^* - \widetilde{Q}_0) + \sum_{i=0}^{K-1} \gamma^{K-i} ((P^*)^{K-i} - P^{\pi_K} \dots P^{\pi_{i+1}}) \varrho_{i+1} \right)$$

$$(14)$$

For shorthand define constants

$$\alpha_i = \frac{(1-\gamma)\gamma^{K-i-1}}{1-\gamma^{K+1}} \text{ for } 0 \le i \le K-1 \text{ and } \alpha_K = \frac{(1-\gamma)\gamma^K}{1-\gamma^{K+1}}$$
 (15)

(note that $\sum_{i=0}^{K} \alpha_i = 1$) and operators

$$O_i = (1 - \gamma)/2U^{-1}[(P^{\pi^*})^{K-i} + (P^{\pi_K} \dots P^{\pi_{i+1}})]$$
(16)

$$O_K = (1 - \gamma)/2U^{-1}[(P^{\pi^*})^{K+1} + (P^{\pi_K} \dots P^{\pi_0})]$$
(17)

Then by eq. (14)

$$|Q^* - Q^{\pi_K}| \le \frac{2\gamma(1 - \gamma^{K+1})}{(1 - \gamma)^2} \left[\sum_{i=0}^{K-1} \alpha_i O_i |\varrho_{i+1}| + \alpha_K O_K |Q^* - \widetilde{Q}_0| \right]$$
(18)

So by linearity of expectation

$$\|Q^* - Q^{\pi_K}\|_{1,\mu} = \mathbb{E}_{\mu}|Q^* - Q^{\pi_K}| \tag{19}$$

$$\leq \frac{2\gamma(1-\gamma^{K+1})}{(1-\gamma)^2} \left[\sum_{i=0}^{K-1} \alpha_i \mathbb{E}_{\mu}(O_i|\varrho_{i+1}|) + \alpha_K \mathbb{E}_{\mu}(O_K |Q^* - \widetilde{Q}_0|) \right]$$
 (20)

With the bound on rewards we (crudely) estimate

$$\mathbb{E}_{\mu} O_K \left| Q^* - \widetilde{Q}_0 \right| \le 2V_{\text{max}} = 2R_{\text{max}} / (1 - \gamma) \tag{21}$$

The remaining difficulty lies in $\mathbb{E}_{\mu}(O_i|\varrho_{i+1}|)$. **Step 4** Using the sum expansion of U^{-1} we get

$$\mathbb{E}_{\mu}(O_i|\varrho_{i+1}|) \tag{22}$$

$$= \frac{1-\gamma}{2} \mathbb{E}_{\mu} \left(U^{-1} [(P^{\pi_K})^{K-i} + P^{\pi_K} \dots P^{\pi_{i+1}}] | \varrho_{i+1} | \right)$$
 (23)

$$= \frac{1-\gamma}{2} \mathbb{E}_{\mu} \left(\sum_{j=0}^{\infty} [(P^{\pi_K})^j (P^{\pi_K})^{K-i} + (P^{\pi_K})^{j+1} P^{\pi_{K-1}} \dots P^{\pi_{i+1}}] |\varrho_{i+1}| \right)$$
(24)

$$= \frac{1-\gamma}{2} \sum_{i=0}^{\infty} \mathbb{E}_{\mu} \left([(P^{\pi_K})^j (P^{\pi_K})^{K-i} + (P^{\pi_K})^{j+1} P^{\pi_{K-1}} \dots P^{\pi_{i+1}}] |\varrho_{i+1}| \right)$$
 (25)

Notice that there are K - i + j P-operators on both terms in the sum. Therefore were can employ lemma 2 twice. Moreover define $\varepsilon_{\max} = \max_{i \in [K]} \|\varrho_i\|_{2,\nu}$. Then

$$\mathbb{E}_{\mu}(O_{i}|\varrho_{i+1}|) \leq (1-\gamma) \sum_{j=0}^{\infty} \gamma^{j} \kappa(K-i+j;\mu,\nu) \|\varrho_{i+1}\|_{2,\nu}$$

$$\leq \varepsilon_{\max}(1-\gamma) \sum_{j=0}^{\infty} \gamma^{j} \kappa(K-i+j;\mu,\nu)$$
(26)

Using eq. (20), eq. (21) and eq. (26)

$$\|Q^* - Q^{\pi_K}\|_{1,\mu} \le \frac{2\gamma(1 - \gamma^{K+1})}{1 - \gamma} \left[\sum_{i=0}^{K-1} \sum_{j=0}^{\infty} \alpha_i \gamma^j \kappa(K - i + j; \mu, \nu) \right] \varepsilon_{\text{max}} + \frac{4\gamma(1 - \gamma^{K+1})}{(1 - \gamma)^3} \alpha_K R_{\text{max}}$$
(27)

Focusing on the first term on RHS of eq. (27), if we then we can take the norm out of the sum as a constant. We are left with

$$\sum_{i=0}^{K-1} \sum_{j=0}^{\infty} \alpha_{i} \gamma^{j} \kappa(K - i + j; \mu, \nu)$$

$$= \sum_{i=0}^{K-1} \sum_{j=0}^{\infty} \frac{(1 - \gamma) \gamma^{K - i + j - 1}}{1 - \gamma^{K + 1}} \kappa(K - i + j; \mu, \nu)$$

$$= \frac{1 - \gamma}{1 - \gamma^{K + 1}} \sum_{j=0}^{\infty} \sum_{i=0}^{K - 1} \gamma^{K - i + j - 1} \kappa(K - i + j; \mu, \nu)$$

$$\leq \frac{1 - \gamma}{1 - \gamma^{K + 1}} \sum_{m=0}^{\infty} \gamma^{m - 1} \cdot m \cdot \kappa(m; \mu, \nu)$$

$$\leq \frac{1}{1 - \gamma^{K + 1} (1 - \gamma)} \phi_{\mu, \nu} \tag{28}$$

Where the last inequality is due to assumption 2. Combining eq. (27) and eq. (28) we arrive at

$$\|Q^* - Q^{\pi_K}\|_{1,\mu} \le \frac{2\gamma \cdot \phi_{\mu,\nu}}{(1-\gamma)^2} \cdot \varepsilon_{\max} + \frac{4\gamma^{K+1}}{(1-\gamma)^2} \cdot R_{\max}$$
 (29)

Theorem 3 (One-step Approximation Error). Let

7

- $\mathcal{F} \subseteq \mathcal{B}(\mathcal{S} \times \mathcal{A}, V_{\max})$ be a class of bounded measurable functions
- $\nu \in \mathcal{P}(\mathcal{S}, \mathcal{A})$ be a probability measure
- $(S_i, A_i)_{i \in [n]}$ be n i.i.d. samples following ν
- $(R_i, S_i')_{i \in [n]}$ be the rewards and next states corresponding to the samples
- $Q \in \mathcal{F}$ be fixed
- $Y_i = R_i + \gamma \max_{a \in \mathcal{A}} Q(S_i', a)$
- $\widehat{Q} = \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(S_i, A_i) Y_i)^2$
- $\epsilon \in (0,1], \ \delta > 0$ be fixed
- $\mathcal{N}(\delta, \mathcal{F}, \|\cdot\|_{\infty})$ a minimal δ -covering of \mathcal{F} w.r.t. $\|\cdot\|_{\infty}$
- $N_{\delta} = |\mathcal{N}(\delta, \mathcal{F}, \|\cdot\|_{\infty})|$ the number of elements in this covering

Then

$$(1+\epsilon)^2 + \omega(\mathcal{F}) + C \cdot V_{\max}^2/(n+\epsilon) \cdot N_{\delta} + C' \cdot V_{\max} \cdot \delta$$

where C = 64, C' = 8 and

$$\omega(\mathcal{F}) = \sup_{g \in \mathcal{F}} \inf_{f \in \mathcal{F}} \|f - Tg\|_{2,\nu}^2$$

Proposition 2. $Y_i(\mathbb{P})$ and $TQ(X_i)(\mathbb{P})$ are i.i.d.

Proof. Recall that $X_i = (S_i, A_i)$,

$$Y_i = \mathbb{E}R(X_i) + \gamma \max_{a \in \mathcal{A}} Q(S_{i+1}, a)$$

where $S_{i+1} \sim P(X_i)$, and

$$TQ(X_i) = \mathbb{E}R(X_i) + \gamma \mathbb{E}_{S'}Q(S', \underset{a \in A}{\operatorname{argmax}} Q(S', a))$$

where $S' \sim P(X_i)$. It is a fundamental assumption/definition that S' and S_{i+1} are i.i.d.

Proof of theorem 3. First some introductory fixing of notation and variables. Fix a minimal δ -covering of \mathcal{F} with centers $f_1, \ldots, f_{N_{\delta}}$. Define

$$\widetilde{Q} := \underset{f \in \mathcal{F}}{\operatorname{argmin}} \|f - TQ\|_{\nu}^{2}$$

$$k^* := \underset{k \in [N_{\delta}]}{\operatorname{argmin}} \left\| f_k - \widehat{Q} \right\|_{\infty}$$

and $X_i := (S_i, A_i)$. Notice that \widetilde{Q} differs from \widehat{Q} in that \widetilde{Q} approximates TQ w.r.t. $\|\cdot\|_{\nu}^2$ while \widehat{Q} approximates $Y = (Y_1, \ldots, Y_n)$ in mean squared error over $X = (X_1, \ldots, X_n)$. We shall be loose about applying functions to vectors (of random variables) in the sense that they are applied entry-wise. We use $\|\cdot\|_p$ to denote the (finite dimensional) p-norm (p ommitted when p = 2). When talking about p-norms on the random variables we always specify the distribution (e.g. $\|\cdot\|_{\nu}$). When the sample (e.g. X) is clear from context we omit it writing $\|f\| = \|f(X)\|$.

the sample (e.g. X) is clear from context we omit it writing ||f|| = ||f(X)||.

Step 1 By definion (of \widehat{Q}) for all $f \in \mathcal{F}$ we have $||\widehat{Q}(X) - Y||^2 \le ||f(X) - Y||^2$, leading to

$$\begin{split} \left\|Y\right\|^2 + \left\|\widehat{Q}\right\|^2 - 2Y \cdot Q \le \left\|Y\right\|^2 + \left\|f\right\|^2 - 2Y \cdot f \\ \iff \left\|\widehat{Q}\right\|^2 + \left\|TQ\right\|^2 - 2\widehat{Q} \cdot TQ \le \left\|f\right\|^2 + \left\|TQ\right\|^2 - 2f \cdot TQ + 2Y \cdot \widehat{Q} - 2Y \cdot f - 2\widehat{Q} \cdot TQ + 2f \cdot TQ \\ \iff \left\|Q - TQ\right\|^2 \le \left\|f - TQ\right\|^2 + 2(Y - TQ) \cdot (\widehat{Q} - f) \\ \iff \left\|Q - TQ\right\|^2 \le \left\|f - TQ\right\|^2 + 2\xi \cdot (\widehat{Q} - f) \end{split}$$

Where $\xi_i := Y_i - TQ(X_i)$ and $\xi := (\xi_1, \dots, \xi_n)$. By proposition 2 we have that Y_i and $TQ(X_i)$ are i.i.d. So satisfy $\mathbb{E}(\xi_i \mid X_i) = 0$. Therefore $\mathbb{E}(\xi_i g(X_i)) = 0$ for any function $g : \mathbb{R} \to \mathbb{R}$. So

$$\mathbb{E}\xi \cdot (\widehat{Q} - f) = \mathbb{E}\xi \cdot (\widehat{Q} - TQ) \tag{30}$$

To bound this we insert f_{k^*} by the triangle inequality

$$\left| \mathbb{E}\xi \cdot (\widehat{Q} - TQ) \right| \le \left| \mathbb{E}\xi \cdot (\widehat{Q} - f_{k^*}) \right| + \left| \mathbb{E}\xi \cdot (f_{k^*} - TQ) \right| \tag{31}$$

We now bound these two terms. The first by Cauchy-Schwarz

$$\left| \mathbb{E}\xi \cdot (\widehat{Q} - f_{k^*}) \right| \le \mathbb{E}\left(\|\xi\| \|\widehat{Q} - f_{k^*}\| \right) \le \mathbb{E}(\|\xi\|) \sqrt{n}\delta \le 2nV_{\max}\delta \tag{32}$$

where we have used that $\|\widehat{Q} - f_{k^*}\|_{\infty} \leq \delta$ so

$$\left\|\widehat{Q} - f_{k^*}\right\|^2 = \sum_{i=1}^n (\widehat{Q}(X_i) - f_{k^*}(X_i))^2 \le \sum_{i=1}^n \delta^2 = n\delta^2$$
 (33)

and that $|Y_i|, TQ(X_i) \leq V_{\text{max}}$ so

$$\|\xi\|^2 = \sum_{i=1}^n (Y_i - TQ(X_i))^2 \le \sum_{i=1}^n (2V_{\text{max}})^2 = 4V_{\text{max}}^2 n$$
(34)

To bound the second term in eq. (31) define

$$Z_{j} := \sqrt{n} \, \xi \cdot (f_{j} - TQ) \| f_{j} - TQ \|_{1}^{-1} \tag{35}$$

Then

$$\mathbb{E}(\xi \cdot (f_{k^*} - TQ)) = \frac{1}{\sqrt{n}} \mathbb{E}\left(\left\| f_{k^*} - TQ \right\|_1 | Z_{k^*}| \right)$$

$$\leq \frac{1}{\sqrt{n}} \mathbb{E}\left(\left(\left\| \widehat{Q} - TQ \right\|_1 + \left\| \widehat{Q} - f_{k^*} \right\|_1 \right) | Z_{k^*}| \right)$$

$$\leq \frac{1}{\sqrt{n}} \mathbb{E}\left(\left(\left\| \widehat{Q} - TQ \right\|_1 + n\delta \right) | Z_{k^*}| \right)$$

$$\leq \frac{1}{\sqrt{n}} \left(\mathbb{E}\left(\left\| \widehat{Q} - TQ \right\|_1 + n\delta \right)^2 \right)^{1/2} \left(\mathbb{E}Z_{k^*}^2 \right)^{1/2}$$

8 Appendices

8.1 Various lemmas

Proposition 3. For x > 0.

$$\int_{-\infty}^{\infty} e^{-t^2/2} \, \mathrm{d}t \le \frac{1}{x} e^{-x^2/2}$$

Proof. Observe that for $t \ge x > 0$ we have $1 \le t/x$ so

$$\int_{x}^{\infty} e^{-t^{2}/2} dt \le \int_{x}^{\infty} \frac{t}{x} e^{-t^{2}/2} dt$$
$$\le \frac{1}{x} e^{-x^{2}/2}$$