Decision Trees: Learning Goals

- General framework of supervised learning
- 2. Decision trees for binary classification
- 3. Extensions
- Russell 18.2-18.3

Supervised Learning

- * Recall that *Clustering* seeks to answer:
 - What are the sub-classes of objects in the dataset?
 - i.e., Identify classes and put class labels on data objects
- * Next, we focus on *Classification*:
 - How are the sub-classes different from each other?
 - i.e., Identify characteristics that discriminate objects with different labels
- * The latter is called *supervised* learning, requiring prior labeling of data

- Let X be the input data matrix, N objects/rows with k attributes/columns
- There is a training set of examples:

$$(X_1, y_1), ..., (X_N, y_N)$$

where $y_{i,}$ called the label, is either $\{0,1\}$ and is generated by an unknown function y = f(x)

The goal is to identify a function h, called the hypothesis or model, that approximates the true function f

Evaluating the Hypothesis

- * There is the accuracy of h over the training data: predicted $\hat{y}_i = h(X_i)$ vs the true y_i
- * Accuracy is improved if the training set includes both positive (i.e., y = 1) vs negative examples (i.e., y = 0)
 - We will talk about the imbalance problem when the number of positive examples is drastically different from the number of negative examples
- * Actually, we care *more* about the accuracy of predicting a **new** example than the accuracy over the training examples; this is called **generalization** accuracy (retrospective vs prospective)

Evaluating the Hypothesis (2)

- When the generalization accuracy is lost at the expense of accuracy over the training examples, it is called overfitting
 - We will discuss various ways to guard against overfitting, e.g., regularization
 - Complex hypothesis tends to overfit, as well taking more time to compute

Everyday Examples of Prediction

- A bank loan application
 - High risk vs low risk
 - Too conservative: bank loses customers
 - Too aggressive: bank loses money for customers who default
- (Auto) insurance: discount for "good" customers
- University admissions
- Matching making

Many Classification Approaches

- Decision trees
- Linear models, e.g., regression, ridge, lasso
- Neural Nets
- Naïve Bayes
- * kNN
- * SVM
- Ensembles
- Random forests
- Hidden Markov Models
- Conditional Random Fields

Decision Tree Structure

- Each node in the tree is of the form: attr in range
- Binary decision: if the node is internal, there are two children nodes
- An attribute can appear multiple times
- Thus, binary decision is not a restriction, as an n-ary decision can be represented as multiple binary decisions (e.g., Fig 18.2)
- If the node is external, it specifies a label value

Funny Decision Tree (forums.beyond.ca)

CPSC

What Video Game System Should I own? A very simple yet acurate guide on what Video Game System is right for you.

(from pinterest.com)

Is this a decision tree? More a deception tree! (from Sheldon Comics)

Simple Example Predicting Auto insurance risk

Age	CarType	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Notice the mixing of numeric and categorical attrs

Clicker Question

- What is the accuracy of the tree on the training data?
- a) Perfect for high risk but not perfect for low risk.
- b) Perfect for low risk but not perfect for high risk.
- c) Imperfect for both low and high risks.
- d) Perfect for both low and high risks.

Simple Test on Generalization

Age	CarType	Risk
29	Family	High
45	Sports	Low
22	Truck	High

Clicker Question

- What is the accuracy on the test data?
- a) 0/3
- b) 1/3
- c) 2/3
- d) 3/3

Building a Decision Tree

- Start with a single node with all the training examples
- ❖ If the node is pure (i.e., unique label value), done; annotate the node with the label value
- Else perform attribute selection based on an impurity function
- Select the attribute that is the best to split, and recurse

Impurity functions

Entropy:

- Compute the entropy, $p \log_2 p$, if the attribute is selected
- Compute the entropy if not selected
- *Gain* = reduction in entropy

Other variations exist

- Gini index
 - Gini(S) = 1 \sum (pj * pj), where pj is the probability of class j in S
 - ◆ Gini-split(S) proportional to gini(S1) and gini (S2)
- Chi-squared statistic

Choosing the Best Split Point

- ❖ If age ≤ 17, two subsets $D_1 = \{r_2\}$, $D_2 = rest$
 - $Ent(D_1) = -[1 log 1 + 0 log 0] = 0$ [* 0 log 0 defined as 0 *]
 - $Ent(D_2) = -[0.6 \log 0.6 + 0.4 \log 0.4] = 0.97$
 - Ent(D) = $-[0.67 \log 0.67 + 0.33 \log 0.33] = 0.92$
 - Entropy reduction = Ent(D) $[1/6 *Ent(D_1) + 5/6*Ent(D_2)] = 0.11$

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Choosing the Best Split Point

- ❖ If age ≤ 20, two subsets $D_1 = \{r_2, r_6\}$, $D_2 = rest$
 - $Ent(D_1) = -[1 log 1 + 0 log 0] = 0$
 - Ent(D₂) = $-[0.5 \log 0.5 + 0.5 \log 0.5] = 1$
 - Ent(D) = 0.92
 - Entropy reduction = Ent(D) $[2/6* Ent(D_1)+4/6*Ent(D_2)]=0.25$

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Choosing the Best Split Point (2)

- ❖ If age ≤ 23, two subsets $D_1 = \{r_1, r_2, r_6\}$, $D_2 = rest$
 - $Ent(D_1) = 0$
 - Ent(D₂) = -[$0.67 \log 0.67 + 0.33 \log 0.33$] = 0.92
 - Ent(D) = 0.92
 - Entropy reduction = Ent(D) $[3/6 * Ent(D_1) + 3/6 * Ent(D_2)] = 0.46$
- ... for all possible splits based on Age
- * (corrected!) If carType = family, two subsets $D_1 = \{r_1, r_4, r_6\}$, $D_2 = \text{rest}$
 - Ent(D₁) = $-[0.67 \log 0.67 + 0.33 \log 0.33] = 0.92$
 - Ent(D₂) = $-[0.67 \log 0.67 + 0.33 \log 0.33] = 0.92$
 - Ent(D) = 0.92
 - Entropy reduction = Ent(D) $[3/6* Ent(D_1)+3/6*Ent(D_2)]=0$
- CPSC 340, R Ng for all possible values on carType

Continuing Example

- Age ≤ 23 turns out to reduce entropy the most, thus chosen as the split point
 - Using 23 as the threshold may overfit
 - Take the mean of 23 and 32 (next value), which is 28
- Left branch of the tree becomes pure, done
- * Right branch consists of r_3 , r_4 , r_5
- Not pure: so recurse on those training examples

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Re-doing Slide 20 using Gini Index

- **❖** If age ≤ 23, two subsets $D_1 = \{r_1, r_2, r_6\}$, $D_2 = \text{rest}$
 - $Gini(D_1) = 1 (1 * 1) (0 * 0) = 0$
 - $Gini(D_2) = 1 (0.67 * 0.67) (0.33 * 0.33) = 0.44$
 - Gini(D) = 1 (0.67 * 0.67) (0.33 * 0.33) = 0.44
 - **Gini** reduction = $Gini(D) [3/6 * Gini(D_1) + 3/6 * Gini(D_2)] = 0.22$
 - (actually, Gini(D) is fixed per node)

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Age	CarTy pe	Risk
23	Family	High
17	Sports	High
43	Sports	High
68	Family	Low
32	Truck	Low
20	Family	High

Stopping Criteria

- One criterion is clearly when the node is pure
- It is always possible to build a decision tree with all pure nodes
- But experience indicates that the accuracy for test data drops, i.e., overfitting
- One way is to apply early stopping
 - stop (i) after a maximum depth, or (ii) when the impurity gain is too small, or (iii) the number of training samples for a node is too small
 - If a leaf node is impure, then use majority voting to determine the label value

Tree Pruning

- Early stopping may stop too early when a combination of attributes leads to significant gain
- A better way, which is more expensive, is to prune a generated tree
- Start with parents of leaf nodes
- Identify irrelevant nodes to be pruned, i.e., replaced by the lead descendants

Tree Pruning (2)

- Use statistical testing to identify irrelevant nodes
- * Test if the proportion of positive and negative examples in the subtree is different from the proportion in the training set
 - Chi-squared test,
 - Student T-test
- * Experience shows that pruned trees perform better than unpruned trees when the training set contains a lot of noisy examples
- Pruned trees are smaller and easier to understand

Extension: Multi-class Classification

- So far we've discussed binary classification
- ❖ Can easily extend decision trees to m ≥ 3 subclasses
 - Both entropy and gini index can deal with 3+ subclasses
 - No change to choosing the best split point

CPSC 340, RNg

Extension: Continuous-valued Label

- So far we've assumed that the label attribute is categorical, i.e., discrete values
- * What if the label attribute is numeric, e.g., the salary, the price?
 - Put the numeric values into discrete bins and treat it as a binary or multi-class classification problem
 - Use regression tree when the leaf node is not a single label value, but a linear regression line (later)

CPSC 340, R Ng

Extension: Mixing Continuous and Categorical Attributes

- Actually, both the entropy and gini index are not affected – we are already doing it!
 - Age is numeric whereas carType categorical
 - Ubiquitous in everyday applications
- Contrast that with our previous discussion on clustering when in the context of distance functions, we've assumed numeric attributes
 - There are more sophisticated clustering algorithms that deal with mixed attributes

CPSC 340, R Ng

Extension: Missing Values

- For many everyday applications, data may have missing values
- N/A may mean: (i) value does not exist; (ii) value exists but unknown; (iii) not sure whether it is (i) or (ii)
- Solution 1: remove the examples with missing values
 - For some applications, this may remove a significant percentage of the training data
 - If the missing values predominantly occur to one sub-class but not the other, then this phenomenon is discriminating and valuable

CPSC 340, R Ng

Extension: Missing Values (2)

- Solution 2: remove the attributes with missing values
 - Very similar to the previous solution of removing examples containing missing values
- ❖ Solution 3: if the attribute is categorical, treat N/A as a special categorical value and proceed as usual; if the attribute is numeric, ignore the missing value/example and proceed as usual
- Solution 4: apply missing value imputation (later) – which can be treated as a prediction problem!

Concluding Remarks: Big Data

- (Binary) classification is arguably the most popular tool for data mining
- Choosing the best split points dominates decision tree computation
- That step is inherently very parallelizable
- Thus, fast parallel schemes for decision trees have been well developed