Applied Machine Learning

- Residuals and Standardized Residuals
- R^2
- Cook's distance
- Outliers

Linear Regression

- Linear classifier
 - N pairs of (\mathbf{x}_i, y_i) items
 - **X**_i: feature vector
 - y_i : numerical value of function evaluated at \mathbf{X}_i
- Regressing dependent variable against explanatory variable

•
$$y = \mathbf{x}^{\mathsf{T}} \boldsymbol{\beta} + \boldsymbol{\xi}$$

•
$$\beta = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Residuals

- Linear classifier
 - N pairs of (\mathbf{x}_i, y_i) training set items
 - Find coefficients of linear function $\hat{\beta}$
- Residual

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$$
$$= \mathbf{v} - \mathbf{X}\hat{\boldsymbol{\beta}}$$

- and y measured in the same units
- Mean Square Error of training examples:

•
$$m = \frac{\mathbf{e}^{\mathsf{T}}\mathbf{e}}{N}$$

UIUC - Applied Machine Learning

Residuals

- Residual $\mathbf{e} = \mathbf{y} \mathbf{X}\hat{\beta}$
- Some properties of residuals:
 - **e** is orthogonal to feature columns in **X**: $\mathbf{e}^T \mathbf{X} = 0$
 - sum of residuals:

$$\mathbf{e}^{\mathsf{T}}\mathbf{1} = 0$$

$$\mathbf{1}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = 0$$

sum of product of individual errors and their corresponding predictions:

$$\mathbf{e}^T \mathbf{X} \hat{\beta} = 0$$

$$R^2$$

•
$$\mathbf{y} = \mathbf{X}\hat{\beta} + \mathbf{e}$$

- Applying properties of residuals
 - $var(\mathbf{y}) = var(\mathbf{X}\hat{\beta}) + var(\mathbf{e})$

$$R^2 = \frac{\text{var}(\mathbf{X}\hat{\boldsymbol{\beta}})}{\text{var}(\mathbf{y})}$$

- $0 \le R^2 \le 1$
- $R^2 \to 1$: $var(\mathbf{e}) \to 0$: Good regression
- $R^2 \to 0$: $var(\mathbf{e}) \to var(\mathbf{X}\hat{\beta})$

 $R^2 \approx 0.98$

UIUC - Applied Machine Learning

$$R^2$$

•
$$\mathbf{y} = \mathbf{X}\hat{\beta} + \mathbf{e}$$

- Applying properties of residuals
 - $var(\mathbf{y}) = var(\mathbf{X}\hat{\beta}) + var(\mathbf{e})$

$$R^2 = \frac{\text{var}(\mathbf{X}\hat{\boldsymbol{\beta}})}{\text{var}(\mathbf{y})}$$

- $0 \le R^2 \le 1$
- $R^2 \to 1$: $var(\mathbf{e}) \to 0$: Good regression
- $R^2 \to 0$: $var(\mathbf{e}) \to var(\mathbf{X}\hat{\beta})$

 $R^2 \approx 0.59$

UIUC - Applied Machine Learning

Potential holdups for regressions

- Outliers
- Linear function may not explain the data
- Insufficient number of features

Outliers

- Items that are for from most other items in dataset
 - rare occurrences that do impact the process
 - errors when collecting data
- large residuals with heavy pull on the regression
 - minimization of $\sum_{i} e^{2}$

Outliers

- Options
 - keep outliers => poor regression
 - remove outliers
 - discount effect of outliers
 - transform data
- Outlier detection
 - Leverage
 - Changes after removing points

Leverage - Hat Matrix

Estimated coefficients

$$\hat{\beta} = (X^{\mathsf{T}}X)^{-1}(X^{\mathsf{T}}\mathbf{y})$$

Predictions

$$\mathbf{y}^{(p)} = X\hat{\beta}$$

$$= X(X^{\mathsf{T}}X)^{-1}(X^{\mathsf{T}}\mathbf{y})$$

$$= (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\mathbf{y}$$

• Hat Matrix $H = X(X^{T}X)^{-1}X^{T}$

 $\mathbf{y}^{(p)} = H\mathbf{y}$

- ullet elements $h_{i,j}$
- symmetric with eigenvalues that are either 0 or 1

Leverage - Hat Matrix

• Hat Matrix
$$H = X(X^TX)^{-1}X^T$$

$$\mathbf{y}^{(p)} = H\mathbf{y}$$

$$\sum_{j} h_{i,j}^2 \le 1$$

leverage of training point
$$i$$
: $h_{i,i}$

$$y_i^{(p)} = \sum_j h_{i,j} y_j$$
$$= h_{i,i} y_i + \sum_{j \neq i} h_{i,j} y_j$$

- dataset items with high leverage have a high pull on the prediction
 - may be outliers

Leverage - Standardized Residuals

• Hat Matrix $H = X(X^TX)^{-1}X^T$

$$\sigma_i^2 = m(1 - h_{i,i}) = \frac{\mathbf{e}^\mathsf{T} \mathbf{e}}{N} (1 - h_{i,i})$$

Standardized residual for data item i

$$s_i = \frac{e_i}{\sigma} = \frac{e_i}{\sqrt{\frac{\mathbf{e}^\mathsf{T}\mathbf{e}}{N}(1 - h_{i,i})}}$$

 s_i away from normal: data item i may be an outlier

$$\sim 68\% \in [-1,1]$$

$$\sim 95\% \in [-2,2]$$

$$\sim 99\% \in [-3,3]$$

Cook's Distance for data item i

Coefficients and prediction with full training set

•
$$\mathbf{y}^{(p)} = X\hat{\beta}$$

• Coefficients and prediction excluding item i from training set

$$\mathbf{y}_{\hat{i}}^{(p)} = X\hat{\beta}_{\hat{i}}$$

• Cook's distance for point i:

$$\frac{(\mathbf{y}^{(p)} - \mathbf{y}_{\hat{i}}^{(p)})^{\mathsf{T}}(\mathbf{y}^{(p)} - \mathbf{y}_{\hat{i}}^{(p)})}{dm}$$

• for a dataset with N items, model with d coefficients, and $m = \frac{\mathbf{e}^T \mathbf{e}}{N}$

- Residuals and Standardized Residuals
- R^2
- Cook's distance
- Outliers

Applied Machine Learning