

BAYESIAN NETWORKS

Shaoguang Huang, Srđan Lazendić, Xian Li, Laurens Meeus, Nina Žižakić professor: Aleksandra Pižurica

INTRODUCTION – BAYESIAN LOGIC

P(WetGrass | Sprinkler, Rain)

No

Yes

0.80

0.90

0.00

Yes

No

No

0.20

0.10

1.00

(a) It is raining

(b) The sprinkler is on

(c) The grass is wet

OVERVIEW

Get acquainted with the framework UnBBayes

- Download: https://sourceforge.net/projects/unbbayes/
- Tutorial: https://www.youtube.com/watch?v=ExlfjBQfvMk

Build the probabilistic network

- Identify the query variables (i.e., diseases) and the evidence variables (i.e., risk factors and symptoms) and establish the logical causality among them.
- Fill in the CPT's given the information available.

Analyze the diagnosis provided by the expert system

- Use the expert system to infer the probabilities of the potential diseases given the evidence available.
- Explain the results.

INCOMPLETE DATA

- In practice, we often deal with incomplete data, which do not allow to specify the CPT's completely.
- Often, we can make up for the missing information by using common sense reasoning, i.e., relying on some general knowledge (about the particular problem).
- In some cases we can also use a compact conditional distribution (less information needed, but there are inherent assumptions which are not always valid)

REMARKS:

- In most cases in practice, some assumptions are made
- Be aware of the assumptions made in your model!

ASSIGNMENT

- Ufora: Content/B. Practicals/Practical 2
- In groups of 2 like for the previous assignment
- Send questions to <u>ai@lists.ugent.be</u>
- Submit your report and Bayesian network xml-file
- Deadline: November 22nd, 2019 (23:59)

