Initiation à l'algèbre A

Université de la Polynésie Française, 2021-2022

Devoir Maison 1 - Solutions 27/09/2021

Ex 1. Soit $E = \{1, 2, 3, 4, 5\}$ et $F = \{a, b, c, d, e\}$. On considère la fonction suivante:

- a) Déterminer les ensembles $f(\{1,4,5\})$ et f(E).
- b) Déterminer les images réciproques des ensembles $\{b\}$ et $\{a,c\}$.
- c) La fonction f, est-elle injective? Justifiez votre réponse.
- d) La fonction f, est-elle surjective? Justifiez votre réponse.
- e) Est-il possible de définir une fonction injective entre E et F. Si oui, définissez-la, sinon expliquez pourquoi.
- f) Est-il possible de définir une fonction surjective entre E et F. Si oui, définissez-la, sinon expliquez pourquoi.
- g) Trouver un sous-ensemble non vide $G \subseteq E$ tel que la restriction $f|_G$ est injective et déterminer la fonction réciproque de $f|_G : G \to f(G)$.

Solution

a)
$$f(\{1,4,5\}) = \{a,b,d\}$$
 et $f(E) = \{a,b,d\}$.

b)
$$f^{-1}{b} = {2,3,5}$$
 et $f^{-1}{a,c} = {1}$.

- c) Non, parce que f(2) = f(3) = b.
- d) Non, parce que $f(E) = \{a, b, d\} \neq F$.
- e) Oui, par exemple la fonction suivante est une fonction injective de E dans F:

- f) Oui, la fonction g définie au point (d) est aussi surjective.
- g) Soit $G = \{1, 2\}$. Alors on a:

$$\begin{array}{cccc} f|_G: & G=\{1,2\} & \rightarrow & f(G)=\{a,b\} \\ & 1 & \mapsto & a \\ & 2 & \mapsto & b \end{array}$$

Donc $f|_G: \{1,2\} \to \{a,b\}$ est bijective et sa fonction réciproque est la fonction

$$(f|_G)^{-1}: \{a,b\} \rightarrow \{1,2\}$$

$$a \mapsto 1$$

$$b \mapsto 2$$

Ex 2. On considère la fonction suivante :

$$\begin{array}{ccccc} f: & \mathbb{Z} \times \mathbb{Z} & \to & \mathbb{Z} \\ & (x,y) & \mapsto & x+2y. \end{array}$$

- a) La fonction f est-elle injective ? Si oui démontrez-le, sinon expliquez pourquoi.
- b) La fonction f est-elle surjective ? Si oui démontrez-le, sinon expliquez pourquoi.

Solution

- a) La fonction f n'est pas injective. En effet, on a f((4,0)) = f((0,2)) = 4.
- b) La fonction f est surjective. En effet, soit $n \in \mathbb{Z}$. Alors on a n = f((n, 0)). Donc $f(\mathbb{Z} \times \mathbb{Z}) = \mathbb{Z}$.

Ex 3. On considère la fonction suivante :

$$g: \quad \mathbb{R} \setminus \{2\} \quad \to \quad \mathbb{R}$$

$$x \quad \mapsto \quad \frac{1}{x-2} + 1$$

- a) La fonction g est-elle injective? Si oui démontrez-le, sinon expliquez pourquoi.
- b) La fonction g est-elle surjective? Si oui démontrez-le, sinon expliquez pourquoi.

Solution

a) La fonction g est injective. Soient $x,y\in\mathbb{R}\setminus\{2\}$ tels que g(x)=g(y). Alors on a:

$$\frac{1}{x-2}+1=\frac{1}{y-2}+1\Rightarrow\frac{1}{x-2}=\frac{1}{y-2}\stackrel{\text{multiplie par}\,(x-2)(y-2)}{\Rightarrow}x-2=y-2\Rightarrow x=y.$$

b) La fonction g n'est pas surjective, puisque pour tout $x \in \mathbb{R} \setminus \{2\}$ on a $g(x) \neq 1$ (et donc $1 \notin g(\mathbb{R} \setminus \{2\})$). En effet s'il existait $x \in \mathbb{R} \setminus \{2\}$ tel que g(x) = 1 alors on aurait:

$$\frac{1}{x-2}+1=1\Rightarrow\frac{1}{x-2}=0\Rightarrow 1=0,$$

ce qui est absurde.

Ex 4. Soit $f: E \to F$ une fonction et soient $A, B \subseteq F$ deux ensembles. Montrer (par double inclusion) que

a)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
.

b)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
.

Solution

- a) Montrons que $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ par double inclusion:
 - \subseteq) Soit $x \in f^{-1}(A \cup B)$. Alors $f(x) \in A \cup B$, c'est-à-dire $f(x) \in A$ ou $f(x) \in B$. Donc $x \in f^{-1}(A)$ ou $x \in f^{-1}(B)$, ce qui implique $x \in f^{-1}(A) \cup f^{-1}(B)$.
 - ⊇) Soit $x \in f^{-1}(A) \cup f^{-1}(B)$. Alors $x \in f^{-1}(A)$ ou $x \in f^{-1}(B)$, ce qui implique $f(x) \in A$ ou $f(x) \in B$. Donc $f(x) \in A \cup B$, c'est-à-dire $x \in f^{-1}(A \cup B)$.
- b) \subseteq) Soit $x \in f^{-1}(A \cap B)$. Alors $f(x) \in A \cap B$, c'est-à-dire $f(x) \in A$ et $f(x) \in B$. Donc $x \in f^{-1}(A)$ et $x \in f^{-1}(B)$, ce qui implique $x \in f^{-1}(A) \cap f^{-1}(B)$.
 - $\supseteq) \ \ \text{Soit} \ x \in f^{-1}(A) \cap f^{-1}(B). \ \ \text{Alors} \ x \in f^{-1}(A) \ \text{et} \ x \in f^{-1}(B), \ \text{ce qui implique} \\ f(x) \in A \ \text{et} \ f(x) \in B. \ \ \text{Donc} \ f(x) \in A \cap B, \ \text{c'est-\`a-dire} \ x \in f^{-1}(A \cap B).$