CS 215 Data Analysis and Interpretation

Estimation

Suyash P. Awate

Sample

Definition:

If random variables X_1 , ..., X_N , are **i.i.d.**, then they constitute a random **sample** of size N from the common distribution

- N = "sample size"
- One set of observed data is one instance/realization of the sample
 - i.e., {x₁, ..., x_N}
- The common distribution from which data was "drawn" is usually unknown

Statistic

• Definition:

Let X_1 , ..., X_N denote a sample associated with random variable X (i.e., all of X_1 , ..., X_N have the same distribution as X). Let $T(X_1, ..., X_N)$ be a function of the sample. Then, random variable T is called the **statistic**.

• For the drawn sample $\{x_1, ..., x_N\}$, the value $t := T(x_1, ..., x_N)$ is an instance of the statistic

Model

Statistical model

- Typically, a probabilistic description of real-world phenomena
- Description involves a distribution that may involve some parameters
 - e.g., P(X; θ)
- Describes/represents a data-generation process
- Designed by people
 - Unlike data that is observed/measured/acquired
 - Nature doesn't generate models

Estimation

Estimation theory

- A branch of statistics that deals with estimating the values of parameters (underlying a statistical model) based on measured/empirical data
- While data generation starts with parameters and leads to data, estimation starts with data and leads to parameters

Estimation problem

- Given: Data
- Assumption: Data was generated from a parametric family of distributions (i.e., a family of models)
- Goal: To infer the distribution parameters

 (i.e., the distribution/model instance from the family of distributions/models)
 that the data was generated from

Estimator, Estimate

Estimator

- A deterministic (not stochastic) rule/formula/function/algorithm for calculating/computing an estimate of a given quantity (e.g., a parameter value) based on observed data
 - Sometimes the estimator is obtained as a closed-form expression
 - But not always
- An estimator $T(X_1, ..., X_N)$ is also a statistic

Estimate

A value resulting from applying the estimator to data

Estimator Mean, Variance, Bias

- Let $X_1, ..., X_N$ be a sample on a random variable X with PDF/PMF P(X; θ)
- Let $T(X_1, ..., X_N)$ be a estimator for parameter whose true value is θ
- Mean of the estimator (definition): Expected value of T, i.e., E[T]
- Bias of the estimator (definition) Bias(T) := $E[T] - \theta$
- Unbiased estimator (definition) is one where Bias(T) = 0
- Variance of the estimator (definition)
 Var(T) := E[(T E[T])²]

- Mean squared error (MSE) of the estimator (definition)
 - Expected value of the squared error MSE(T) := $E[(T \theta)^2]$

Estimator MSE, Bias, Variance

- MSE(T) := $E[(T \theta)^2]$
- $= E[(T E[T] + E[T] \theta)^2]$
- $= E[(T E[T])^{2}] + E[(E[T] \theta)^{2}] + E[2(T E[T])(E[T] \theta)]$

Probability

- $= Var(T) + (Bias(T))^2 + 0$
- : Variance + Bias²
- Bias-variance density decomposition/"tradeoff":
 - If two estimators T₁ and T₂ have same MSE, then

if one estimator (say, T₁) has a smaller bias magnitude, it (i.e., T₁) also has a larger variance

Not Precise

Estimator Mean, Variance, Bias

- Let $X_1, ..., X_N$ be a sample on a random variable X with PDF/PMF P(X; θ)
- Let $T(X_1, ..., X_N)$ be a estimator for parameter whose true value is θ
- Consistent estimator (definition)
 - Estimator $T_N = T(X_1, ..., X_N)$ is consistent if $\forall \epsilon > 0$, $\lim_{N \to \infty} P(|T_N \theta| \ge \epsilon) = 0$
 - Thus, T_N is said to "converge in probability" to θ

Likelihood Function

- Let $X_1, ..., X_N$ be a sample on a random variable X with PDF/PMF P(X; θ)
- **Definition:** Likelihood function L(θ ; X₁, ..., X_N) := $\prod_{i=1}^{N} P(X_i; \theta)$
- We want to use the likelihood function to estimate θ from the sample
- Sometimes, analysis relies on log(L(θ; X₁, ..., X_N)), leveraging that log(.) is strictly monotonically increasing within (0,∞)
- Some assumptions (#)
 - 1. Different values of θ correspond to different CDFs associated with P(X; θ)
 - i.e., parameter θ identifies a unique CDF
 - 2. All PMFs/PDFs have common support for all parameters θ
 - i.e., support of X cannot depend on θ
 - Under these assumptions, the likelihood function has a nice property (as discussed next)

Likelihood Function

• **Theorem:** Let θ_{true} be the parameter value that led to sample $X_1, ..., X_N$. Assume $E_{P(X;\theta_{\text{true}})}[P(X;\theta)/P(X;\theta_{\text{true}})]$ exists (e.g., it is finite). Then, $\lim_{N\to\infty} P(L(\theta_{\text{true}};X_1,\cdots,X_N)>L(\theta;X_1,\cdots,X_N);\theta_{\text{true}})=1, \forall \theta\neq\theta_{\text{true}}$

Proof:

- Event $L(\theta_{\text{true}}; X_1, \dots, X_N) > L(\theta; X_1, \dots, X_N) \equiv \frac{1}{N} \sum_{i=1}^N \log \left| \frac{P(X_i; \theta)}{P(X_i; \theta_{\text{true}})} \right| < 0$
- We want to show that, as $N \rightarrow \infty$, this event (with strict inequality) has prob. 1
- Because of the law of large numbers:

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{P(X_i;\theta)}{P(X_i;\theta_{\text{true}})} \right] \to E_{P(X;\theta_{\text{true}})} \left[\log \frac{P(X;\theta)}{P(X;\theta_{\text{true}})} \right] \qquad \text{For all } \varepsilon > 0, \text{ as } n \to \infty, \\ P(|\overline{Y} - \mu| \ge \varepsilon) \to 0$$

Law of large numbers:

• Common support implies prob-ratio is >0 and <∞. So sum & expectation exist. Then, $\log(.)$ is **strictly** concave within $(0,\infty)$. Then, Jensen's inequality makes

above expectation strictly
$$< \log \left(E_{P(X;\theta_{\text{true}})} \left[\frac{P(X;\theta)}{P(X;\theta_{\text{true}})} \right] \right)$$
 Using the series of the series of

Likelihood Function

• **Theorem:** Let θ_{true} be the parameter value that led to sample X_1 , ..., X_N . Assume $E_{P(X;\theta_{\text{true}})}[P(X;\theta)/P(X;\theta_{\text{true}})]$ exists (e.g., it is finite). Then, $\lim_{N\to\infty}P(L(\theta_{\text{true}};X_1,\cdots,X_N)>L(\theta;X_1,\cdots,X_N);\theta_{\text{true}})=1, \forall \theta\neq\theta_{\text{true}}$

Proof:

- Consider the summation/integration underlying $\log \left(E_{P(X;\theta_{\text{true}})} \left\lfloor \frac{P(X;\theta)}{P(X;\theta_{\text{true}})} \right\rfloor\right)$
 - Expectation is summing/integrating only over support of $P(X; \theta_{\text{true}})$. Thinking empirically, instances of $x \sim P(X; \theta_{\text{true}})$ never lie outside support of PMF/PDF. The first $P(X; \theta_{\text{true}})$ term indicates a PMF/PDF; second one indicates a transformation.
 - When the support of $P(X; \theta_{\text{true}})$ is a superset of the support of $P(X; \theta)$, the summation/integral underlying the expectation evaluates to 1 and $\log \left(E_{P(X;\theta_{\text{true}})} \left[\frac{P(X;\theta)}{P(X;\theta_{\text{true}})} \right] \right) = \log(1) = 0$
 - If $\forall \theta \neq \theta_{\text{true}}$, we want the expectation to evaluate to 1, then all PMFs/PMFs $P(X; \theta)$ need to have the same support.

Maximum Likelihood (ML) Estimation

• Definition:

An estimator $T = T(X_1, ..., X_N)$ is a "maximum likelihood (ML) estimator" if $T := \arg \max_{\theta} L(\theta; X_1, \cdots, X_N)$

- "arg max_{θ} g(θ)": the argument (i.e., θ) that maximizes the function g(.)
- "max_{θ} g(θ)": the maximum possible value of the function g(.) across all θ
- Properties of ML estimation
 - Sometimes, ML estimator may not exist, or it may not be unique
 - When assumptions (#) hold, and max of likelihood function exists & is unique, then ML estimator is a consistent estimator
 - When sample size is finite, it loses convergence guarantee
 - When sample size is finite, this behavior holds for most methods,
 unless very strong assumptions (usually not holding in practice) are made on the data
 - In practice, a large enough sample size take ML estimate T sufficiently close to θ_{true} so that the ML estimate T is still useful

MLE for Bernoulli

- Let θ := probability of success
 - θ must lie within [0,1]
- Likelihood function L(θ) := $\prod_{i=1}^{N} \theta^{X_i} (1-\theta)^{(1-X_i)}$
- ML estimate for θ is what ?
 - At maximum of $L(\theta)$:
 - First derivative must be zero
 - This gives one equation in one unknown θ
 - Second derivative must be negative
 - ML estimate is sample mean, i.e., $\sum_{i=1}^{N} X_i / N$

MLE for Binomial

• Let θ := probability of success

 $P(X=k;\theta,M) = {}^{M}C_{k} \theta^{k} (1-\theta)^{(M-k)}$

- θ must lie within [0,1]
- Let M := number of Bernoulli tries for each Binomial random variable
- Let $\{X_i : i = 1, ..., N\}$ model repeated draws from Binomial, where X_i models number of successes in i-th draw from Binomial
- ML estimate for θ is sample mean $\sum_{i=1}^{N} X_i / (NM)$
- Interpretation:
 - N independent Binomials draws, where each Binomial has M independent Bernoulli draws, is equivalent to NM independent Bernoulli draws
 - Total number of successes in NM Bernoulli trials is $\sum_{i=1}^{N} X_i$

MLE for Poisson

Parameter is average rate of arrivals/hits λ

 $P(X=k; \lambda) = \lambda^{k} e^{-\lambda} / k!$

- ML estimate is sample mean $\sum_{i=1}^{N} X_i / N$
- Note that λ is both mean and variance of the Poisson random variable
 - So, sample variance can also estimate λ
 - But computing sample variance needs computing sample mean anyway
 - Also, sample mean is an "efficient" estimator (more on this later)

Sample-Variance Estimator

• Sample variance estimate for σ^2 is biased

$$\begin{split} \mathrm{E}[S^2] &= \mathrm{E}\left[\frac{1}{n}\sum_{i=1}^n\left(X_i - \overline{X}\right)^2\right] = \mathrm{E}\left[\frac{1}{n}\sum_{i=1}^n\left((X_i - \mu) - (\overline{X} - \mu)\right)^2\right] \\ &= \mathrm{E}\left[\frac{1}{n}\sum_{i=1}^n\left((X_i - \mu)^2 - 2(\overline{X} - \mu)(X_i - \mu) + (\overline{X} - \mu)^2\right)\right] \\ &= \mathrm{E}\left[\frac{1}{n}\sum_{i=1}^n(X_i - \mu)^2 - \frac{2}{n}(\overline{X} - \mu)\sum_{i=1}^n(X_i - \mu) + (\overline{X} - \mu)^2\right] \\ &= \mathrm{E}\left[\frac{1}{n}\sum_{i=1}^n(X_i - \mu)^2 - \frac{2}{n}(\overline{X} - \mu) \cdot n \cdot (\overline{X} - \mu) + (\overline{X} - \mu)^2\right] \\ &= \sigma^2 - \mathrm{E}\left[(\overline{X} - \mu)^2\right] = \left(1 - \frac{1}{n}\right)\sigma^2 < \sigma^2 \end{split}$$

- Asymptotically (as $n \rightarrow \infty$) unbiased
- So, (corrected) estimator of variance is $S_c := S^2.n/(n-1)$ that is unbiased

$$S^2 = rac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \,
ight)^2$$

Sample-Variance Estimator

- What about estimator of standard deviation σ defined as $\hat{\sigma} := \sqrt{S_c^2}$?
 - Is $E[\hat{\sigma}] = \sigma$?
 - Sqrt(.) is a strictly concave function within (0,∞)
 - Apply Jensen's inequality:

$$E\left[\sqrt{S_c^2}\right] < \sqrt{E[S_c^2]} = \sigma$$

Excepting the degenerate case when distribution has variance 0

Sample-Variance Estimator

- Variance of sample variance
 - Variance of (uncorrected or corrected) sample-variance tends to zero asymptotically (as N→∞)
 - When (finite-variance) conditions underlying the law of large numbers hold
 - https://en.wikipedia.org/wiki/Variance#Distribution_of_the_sample_variance
 - https://mathworld.wolfram.com/SampleVarianceDistribution.html
 - Then, (uncorrected or corrected) sample variance is a consistent estimator

Sample-Covariance Estimator

- Consider a joint PDF/PMF P(X,Y) with Cov(X,Y) = E[XY] E[X]E[Y]
- Let $E[XY] = \mu_{xy}$, $E[X] = \mu_{x}$, $E[Y] = \mu_{y}$
- Let (X_i, Y_i) and (X_j, Y_j) be i.i.d. (e.g., X_i independent of X_j and Y_j for all $i \neq j$)
- Sample-covariance estimator $\hat{C} = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right) \left(\frac{1}{n} \sum_{i=1}^{n} Y_i\right)$
 - $E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}Y_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}Y_{i}] = \frac{1}{n}n\mu_{xy} = \mu_{xy}$
 - $E\left[\left(\frac{1}{n}\sum_{i=1}^{n}E[X_{i}]\right)\left(\frac{1}{n}\sum_{i=1}^{n}E[Y_{i}]\right)\right] = \frac{1}{n^{2}}\sum_{i}E[X_{i}Y_{i}] + \frac{1}{n^{2}}\sum_{i\neq j}E[X_{i}Y_{j}]$ = $\frac{1}{n^{2}}n\mu_{xy} + \frac{1}{n^{2}}n(n-1)\mu_{x}\mu_{y} = \frac{1}{n}\mu_{xy} + \frac{n-1}{n}\mu_{x}\mu_{y}$
- So, expectation of sample-covariance = $\frac{n-1}{n} (\mu_{xy} \mu_x \mu_y)$
 - Asymptotically unbiased. Corrected version will be unbiased.
 - Can be shown to be consistent

MLE for Gaussian

- ullet Parameters are mean μ and standard deviation σ
- Likelihood function $L(\mu,\sigma)$ is a function of 2 variables
- Maximizing likelihood function $L(\mu, \sigma)$ is equivalent to maximizing log-likelihood function $log(L(\mu,\sigma))$
 - Because $\log(.)$ function is a (strictly) monotonically increasing within $(0,\infty)$
- Need to solve for 2 equations in 2 unknowns

• ML estimate for
$$\mu$$
 is sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ $S^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$ • ML estimate for σ^2 is sample variance

MLE for Half-Normal

• PDF:

$$f(x;\sigma) = rac{\sqrt{2}}{\sigma\sqrt{\pi}} \expigg(-rac{x^2}{2\sigma^2}igg) \quad x>0$$

 $\begin{array}{c|c} {\rm Mean} & \frac{\sigma\sqrt{2}}{\sqrt{\pi}} \\ \hline {\rm Median} & \sigma\sqrt{2}\,{\rm erf}^{-1}(1/2) \\ \hline {\rm Mode} & 0 \\ \hline {\rm Variance} & \sigma^2\left(1-\frac{2}{\pi}\right) \end{array}$

• ML estimate is:

$$\hat{\sigma} = \sqrt{rac{1}{n} \sum_{i=1}^n x_i^2}$$

• This isn't sample mean, 0.4 isn't sample std. dev., 0.3 isn't sample median

MLE for Laplace

• PDF:

$$f(x \mid \mu, b) = rac{1}{2b} \exp \left(-rac{|x - \mu|}{b}
ight)$$

- ML estimates
 - For location parameter: sample median
 - For scale parameter: mean/average absolute deviation (MAD/AAD) from the median

$$\hat{b} = rac{1}{N} \sum_{i=1}^N |x_i - \hat{\mu}|$$

Mean

 μ

MLE for Uniform Distribution (Continuous)

- Parameters are: lower limit 'a' and upper limit 'b' (a < b)
 - Support of PDF depends on parameters
- Let data from U(a,b) be $\{x_1, ..., x_N\}$, sorted in increasing order, & $x_1 < x_N$
- What are **ML estimates**?
 - First, data must lie within [a,b]
 - a $\leq x_1$, else likelihood function = 0
 - $b \ge x_N$, else likelihood function = 0
 - Likelihood function L(a,b; $\{x_1, ..., x_N\}$) := $(1/(b-a))^N$
 - Log-likelihood function $log(L(a,b); \{x_1, ..., x_N\}) = -N.log(b-a)$
 - Partial derivative w.r.t. 'a' is N/(b-a) > 0
 - Partial derivative w.r.t. 'b' is (-N/(b-a)) < 0
 - L(a,b) is maximum when $a = x_1$ and $b = x_N$

MLE for Uniform Distribution (Continuous)

- Parameters are: lower limit 'a' and upper limit 'b' (a < b)
- Let data from U(a,b) be $\{x_1, ..., x_N\}$, sorted in increasing order, & $x_1 < x_N$
- Analysis of consistency
 - For estimator of 'b': $\forall \epsilon > 0$ and $\epsilon <$ (b-a), consider $P\left(b \max_{i=1,\dots,N} x_i \geq \epsilon\right)$
 - $= P(b x_1 \ge \epsilon)P(b x_2 \ge \epsilon) \cdots P(b x_N \ge \epsilon)$
 - $= P(x_1 \le b \epsilon) \cdots P(x_N \le b \epsilon) = \left(\frac{(b \epsilon) a}{(b a)}\right)^N$

which $\rightarrow 0$ as N $\rightarrow \infty$

Estimator $T_N = T(X_1, ..., X_N)$ is consistent if $\forall \epsilon > 0, \lim_{N \to \infty} P(|T_N - \theta| \ge \epsilon) = 0$

- For estimator of 'a': $\forall \epsilon > 0$ and $\epsilon <$ (b-a), consider $P\left(\min_{i=1,\dots,N} x_i a \ge \epsilon\right)$
- $= P(x_1 \ge a + \epsilon)P(x_2 \ge a + \epsilon) \cdots P(x_N \ge a + \epsilon)$

$$= \left(1 - P(x_1 \le a + \epsilon)\right) \cdots \left(1 - P(x_N \le a + \epsilon)\right) = \left(1 - \frac{(a + \epsilon) - a}{(b - a)}\right)^N = \left(\frac{(b - a) - \epsilon}{(b - a)}\right)^N$$

which $\rightarrow 0$ as N $\rightarrow \infty$

MLE for Uniform Distribution (Continuous)

- Parameters are: lower limit 'a' and upper limit 'b' (a < b)
- Let data from U(a,b) be $\{x_1, ..., x_N\}$, sorted in increasing order, & $x_1 < x_N$
- Analysis of bias

Bias(T) :=
$$E[T] - \theta$$

(check that makes sense for N=1)

- Without loss of generality, let a≥0 (shifted random variable)
- For non-negative random variable, apply tail-sum formula

$$E[\max_{i=1,\dots,N} x_i] = \int_{t=0}^{t=\infty} \left(1 - P\left(\max_{i=1,\dots,N} x_i \le t\right)\right) dt$$

$$E[\max_{i=1,\dots,N} x_i] = \int_{t=0}^{\infty} \left(1 - P\left(\max_{i=1,\dots,N} x_i \le t\right)\right) dt$$

$$E[X] = \int_{0}^{\infty} (1 - F_X(x)) dx$$

$$= \int_{t=0}^{t=a} (1) dt + \int_{t=a}^{t=b} \left(1 - P\left(\max_{i=1,\dots,N} x_i \le t\right)\right) dt + \int_{t=b}^{t=\infty} (1 - 1) dt$$

$$= a + \int_{t=a}^{t=b} \left(1 - \left(\frac{t-a}{b-a}\right)^N\right) dt$$

$$= a + (b-a) - \frac{(b-a)}{N+1} = b - \left(\frac{b-a}{N+1}\right) \qquad \text{(check that makes sense for N=1)}$$

- Given: Data $\{(x_i, y_i)\}_{i=1}^n$
- Linear Model: $Y_i = \alpha_{\text{true}} + \beta_{\text{true}} X_i + \eta_i$, where errors η_i (in measuring Y_i ; not X_i) are zero-mean i.i.d. Gaussian random variables
- Goal: Estimate α_{true} , β_{true}
- Log-likelihood function
 - $L(\alpha, \beta; \{(x_i, y_i)\}_{i=1}^n) = \log(\prod_i G(y_i; \alpha + \beta x_i, \sigma^2))$
- Partial derivative w.r.t. α is 0 implies: $\alpha = \bar{y} \beta \bar{x}$ (bar denotes mean)
- Partial derivative w.r.t. β is 0 implies: $\sum_i (y_i \alpha \beta x_i) x_i = 0$
 - Substituting expression for α gives:

$$\beta = \frac{\sum_{i} (y_i - \bar{y}) \dot{x}_i}{\sum_{i} (x_i - \bar{x}) \dot{x}_i} = \frac{\overline{xy} - \bar{x}\bar{y}}{\overline{x^2} - \bar{x}^2} = \frac{\text{SampleCov}(X, Y)}{\text{SampleVar}(X)}$$

Slope m := Cov(X,Y) / Var(X) Intercept c := E[Y] - Cov(X,Y) E[X] / Var(X)

- Analysis of estimates
 - Slope $\beta = \frac{\text{SampleCov}(X,Y)}{\text{SampleVar}(X)}$
 - Unbiased (see next slide)
 (ratio of sample-covariance and sample-variance is same with/without correction)
 - Can be shown to be consistent (see next slide)
 - Intercept $\alpha = \bar{y} \beta \bar{x}$
 - We already know that \bar{y} and \bar{x} are unbiased and consistent estimators of E[Y] and E[X]
 - Unbiased
 - If β is unbiased
 - Can be shown to be consistent
 - If β is consistent

•
$$\beta = \frac{\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\text{SampleVar}(X)} = \frac{\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})y_{i}-\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})\bar{y}}{\text{SampleVar}(X)} = \frac{\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})y_{i}}{\text{SampleVar}(X)}$$

• But, as per model, $y_i = \alpha_{\text{true}} + \beta_{\text{true}} x_i + \eta_i$. Substituting y_i gives:

•
$$\beta = \frac{\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})(\alpha_{\mathsf{true}}+\beta_{\mathsf{true}}x_{i}+\eta_{i})}{\mathsf{SampleVar}(X)} = \frac{\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})(\beta_{\mathsf{true}}x_{i}+\eta_{i})}{\mathsf{SampleVar}(X)}$$

$$\bullet = \frac{\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})\beta_{\text{true}}(x_{i}-\bar{x})+\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})\beta_{\text{true}}\bar{x}+\left(\frac{1}{n}\right)\sum_{i}(x_{i}-\bar{x})\eta_{i}}{\text{SampleVar}(X)}$$

• =
$$\beta_{\text{true}}$$
 + $\frac{\sum_{i}(x_i - \bar{x})\eta_i}{(n) \text{ SampleVar}(X)}$

• So, $E[\beta] = \beta_{true}$, because $E[\eta_i] = 0$. So, unbiased.

•
$$\operatorname{Var}[\beta] = \frac{\sum_{i}(x_{i}-\bar{x})^{2}\operatorname{Var}(\eta_{i})}{(n^{2})\operatorname{SampleVar}(X)^{2}} = \frac{(n)\operatorname{SampleVar}(X)\sigma^{2}}{(n^{2})\operatorname{SampleVar}(X)^{2}} = \frac{\sigma^{2}}{(n)\operatorname{SampleVar}(X)}$$

So, consistent (using Chebyshev's inequality)

- Interpretation of estimates
 - Line passes through (\bar{x}, \bar{y})
 - If $x \coloneqq \bar{x}$, then $y = \alpha + \beta \bar{x} = (\bar{y} \beta \bar{x}) + \beta \bar{x} = \bar{y}$
 - "Residuals" η_i sum to 0
 - $\sum_{i} \eta_{i} = \sum_{i} (y_{i} \alpha \beta x_{i}) = n\overline{y} n(\overline{y} \beta \overline{x}) \beta n\overline{x} = 0$
 - Slope β = SampleCov(X,Y) / SampleVar(X)

$$=\frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n(x_i-\bar{x})^2}=\frac{\sum_{i=1}^n(x_i-\bar{x})^2\frac{(y_i-\bar{y})}{(x_i-\bar{x})}}{\sum_{i=1}^n(x_i-\bar{x})^2}=\sum_{i=1}^n\frac{(x_i-\bar{x})^2}{\sum_{j=1}^n(x_j-\bar{x})^2}\frac{(y_i-\bar{y})}{(x_i-\bar{x})}$$

- "Centering" data
- Weighted average of "slope" for specific points $(y_i \bar{y})/(x_i \bar{x})$
 - Larger weight for datum (x_i, y_i) if x_i coordinate farther from center \bar{x}
 - Weights are non-negative and sum to 1 (convex combination)
- Intercept $\alpha = \bar{y} \beta \bar{x}$
 - From center (\bar{x}, \bar{y}) , line with estimated slope β intersects 'y' axis at $(\bar{y} \beta \bar{x})$

Effect of outliers

A Poem on MLE

 https://www.math.utep.edu/faculty/ lesser/MLE.html

"MLE"

lyric © 2007 Lawrence M. Lesser (sing to tune of Lennon & McCartney's "Let it Be")

When I'm in need of estimation, Ronald Fisher comes to me,

Speaking words of wisdom: MLE.

And though there may be bias, this will vanish asymptotically,

Speaking words of wisdom: MLE

MLE, MLE, MLE, whisper words of wisdom, MLE.

And when the statisticians put a focus on efficiency,

There will be an answer: MLE.

For samples really large, tell me: where's the lowest M.S.E.?

There will be an answer: MLE.

MLE, MLE, MLE, there will be an answer, MLE.

And when a theta hat is found to be theta's MLE,

Then g of theta has what MLE?

Well, if g is 1-to-1, an invariance property

Says g of theta hat is the MLE.

MLE, MLE, MLE, MLE -- the most likely answer is MLE.

MLE, MLE, asymptotic normality -- whisper its precision, MLE.

On Preparation for Events (Exams) in Life

- From the Iron Man
 - "I don't really prepare for anything like an event."
 - "The goal is to be at a certain level of fitness."
 - "I should be able to run a full marathon whenever I want."
 - "That is the constant level of fitness that I aspire to."
 - "I keep my fitness level as a goal, not an event as a goal."
 - "There is no such thing as a good shortcut."
 - "If you want to be healthy, and you want to be fit, and you want to be happy, you have to work hard."
 - https://youtu.be/x 96xVfdzu0?t=303

