18. Распределение Максвелла по скоростям теплового движения для молекул идеального газа. Экспериментальная проверка закона распределения молекул по скоростям. Рассмотрим распределение Максвелла по скоростям теплового движения молекул идеального газа и экспериментальную проверку этого закона.

1. Распределение Максвелла по скоростям

Распределение Максвелла описывает вероятность того, что молекула газа имеет определённую скорость при заданной температуре.

Формула:

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}},$$

где:

- f(v) функция распределения по скоростям,
- v скорость молекулы,
- т масса молекулы,
- k постоянная Больцмана ($k \approx 1,38 \cdot 10^{-23} \, \text{Дж/K}$),
- T абсолютная температура.

Основные характеристики:

1. Наиболее вероятная скорость ($v_{\text{вер}}$):

$$v_{\text{Bep}} = \sqrt{\frac{2kT}{m}}$$
.

2. **Средняя скорость (**(*v*)):

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}}.$$

3. Среднеквадратичная скорость (v_{ck}) :

$$v_{\rm ck} = \sqrt{\frac{3kT}{m}}$$
.

График распределения:

- График f(v) имеет максимум при $v{=}v_{{}_{\mathrm{Bep}}}$.
- При увеличении температуры максимум смещается вправо, а кривая становится более пологой.

2. Экспериментальная проверка распределения Максвелла

Экспериментальная проверка распределения Максвелла была проведена в опытах Штерна (1920 год) и других экспериментах.

Опыт Штерна:

1. Устройство:

- о Используется вращающийся цилиндр с щелью.
- о Молекулы газа проходят через щель и осаждаются на внутренней поверхности цилиндра.

2. Принцип:

- о Молекулы с разными скоростями осаждаются на разных участках цилиндра.
- о По распределению осаждённых молекул можно определить распределение скоростей.

3. **Результаты**:

о Экспериментальные данные подтвердили теоретическое распределение Максвелла.

Современные методы:

- Использование лазерного охлаждения и спектроскопии.
- Измерение скоростей молекул с помощью масс-спектрометров.

3. Пример

Пример 1: Наиболее вероятная скорость

Молекулы азота (N_2) при температуре $T\!=\!300\,\mathrm{K}$. Найдём наиболее вероятную скорость:

- 1. Молярная масса азота: $M = 28 \, \text{г/моль} = 28 \cdot 10^{-3} \, \text{кг/моль}$.
- 2. Масса молекулы:

$$m = \frac{M}{N_A} = \frac{28 \cdot 10^{-3}}{6,022 \cdot 10^{23}} \approx 4,65 \cdot 10^{-26} \,\mathrm{kg}.$$

3. Наиболее вероятная скорость:

$$v_{\text{Bep}} = \sqrt{\frac{2 k T}{m}} = \sqrt{\frac{2 \cdot 1,38 \cdot 10^{-23} \cdot 300}{4.65 \cdot 10^{-26}}} \approx 422 \,\text{M/c}.$$

Пример 2: Средняя скорость

Для тех же условий найдём среднюю скорость:

$$(v) = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8 \cdot 1,38 \cdot 10^{-23} \cdot 300}{\pi \cdot 4,65 \cdot 10^{-26}}} \approx 476 \,\text{m/c}.$$

4. Итог

• Распределение Максвелла:

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}.$$

- Характеристики распределения:
 - о Наиболее вероятная скорость: $v_{\text{вер}} = \sqrt{\frac{2 \, k \, T}{m}}$.
 - о Средняя скорость: (v)= $\sqrt{\frac{8kT}{\pi m}}$.
 - о Среднеквадратичная скорость: $v_{ck} = \sqrt{\frac{3kT}{m}}$.
- Экспериментальная проверка:
 - о Опыты Штерна и современные методы подтвердили распределение Максвелла.

Эти понятия важны для понимания поведения молекул в газах и их теплового движения.