Improving pandemic forecasts by assimilating observations

Geir Evensen

Motivation

- Provide realistic predictions with uncertainty estimates.
- Scenario modeling (e.g., importance of interventions).
- · Inform public and decision makers.

Approach

- Use an extended SEIR model.
- · Condition on observed hospitalizations and deaths.
- Use ensemble data-assimilation methods for parameter estimation.
- Estimate effective reproductive number R(t) as a function of time.
- The "control parameter" R(t) drives the model.
- Interventions two weeks ago determines today's deaths and hospitalizations.
- Meterological centers use ensemble DA (EnKF) for updating weather prediction models.
- Petroleum companies use ensemble DA (IES) for history matching reservoir models.

Extended SEIR model

- We add age classes to model age-specific infection and death rates.
- We differentiate between mild, severe, and fatal symptoms.
- We model those with fatal symptoms who die in care homes.

Back-to-school scenarios for Norway

Norway: prediction including vaccinations

Prior ensemble and measurement

Regression update using ensemble correlations

Prior parameter ensemble

Summary EnKF_seir

- The DA system tracks the epidemic accurately by estimating the past R(t).
- Short-term forecasting using R-persistence works well.
- · Predictions include uncertainty estimates.
- Long-term scenario forecasting with specified future R.
- Code: https://github.com/geirev/EnKF_seir
- The code supports multiple interacting "compartments."
- Plug and play model.
- Paper: (Evensen et al., 2020)
 http://www.aimsciences.org/article/doi/10.3934/fods.2021001
- Book: (Evensen et al., 2022b) https://link.springer.com/book/10.1007/978-3-030-96709-3

Bibliography

- Evensen, G., J. Amezcua, M. Bocquet, A. Carrassi, A. Farchi, A. Fowler, P. L. Houtekamer, C. K. Jones, R. J. de Moraes, M. Pulido, C. Sampson, and F. C. Vossepoel. An international initiative of predicting the sars-cov-2 pandemic using ensemble data assimilation. *Foundations of Data Science*, page 65, 2020. doi:10.3934/fods.2021001.
- Evensen, G., J. Amezcua, A. N. Carrassi, and A. Fowler. Improving pandemic forecasts: Assimilating observations and simulations. In Dhersin, J.-S., H. Kaper, W. Ndifon, F. Roberts, C. Rousseau, and G. M. Ziegler, editors, *Mathematics for action: supporting science-based decision-making*, pages 9–10. Springer, 2022a. ISBN 978-92-3-100517-6. URL https://unesdoc.unesco.org/ark:/48223/pf0000380883.locale=en.
- Evensen, G., F. C. Vossepoel, and P. J. Van Leeuwen. *Data Assimilation Fundamentals: A Unified formulation for State and Parameter Estimation*. Springer, 2022b. ISBN 978-3-030-96708-6. doi:10.1007/978-3-030-96709-3. Open access.
- Fleurantin, E., C. Sampson, D. Maes, J. Bennett, T. F. Nunez, S. Marx, and G. Evensen. A study of disproportionately affected populations by race/ethnicity during the SARS-COV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation. *Foundations of Data Science*, page 72, 2021. doi:10.3934/fods.2021022.

Constant model parameters

- 1. Relative fractions $p_{\rm m}^i, p_{\rm s}^i, p_{\rm f}^i$ per age group.
- 2. Fractions dying in a Hospital p_h versus in a Care home $1 p_h$.

Age group	1	2	3	4	5	6	7	8	9	10	11
Age range	0–5	6-12	13-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90–105
p-mild	1.00	1.00	0.99	0.99	0.97	0.96	0.93	0.90	0.84	0.81	0.81
p-severe	0.00	0.00	0.00	0.00	0.02	0.02	0.05	0.08	0.11	0.11	0.11
p-fatal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.06	0.06

Model parameters estimated by DA

Parameter	First guess	Description				
$ au_{ m inc}$	5.5	Incubation period				
$ au_{ ext{in f}}$	3.8	Infection time				
$ au_{ m recm}$	14.0	Recovery time mild cases				
$ au_{ m recs}$	5.0	Recovery time severe cases				
$ au_{ m hosp}$	6.0	Time until hospitalization				
$ au_{ m death}$	16.0	Time until death				
$p_{ m f}$	0.009	Case fatality rate				
$p_{ m s}$	0.039	Hospitalization rate (severe cases)				
I_0		Initial number of infectious				
E_0		Initial number of exposed				
R(t)		Effective reproductive number				

Effective reproductive number

$$\mathbf{R}(t) = R(t)\hat{\mathbf{R}}$$

 $\mathbf{R}(t)$ is a function of time (steered by how people isolate or interact).

- R(t) is a scalar function of time.
- \hat{R} a constant matrix of transmissions between age classes..
- · Behavior two weeks ago determines today's deaths and hospitalizations.
- We can estimate R(t) for the past.
- We assume the value R(t) for the future.

We used ESMDA

- · Simple implementation and use.
- Efficient for large ensemble sizes.
- 5000 realizations and 32 ESMDA steps.