Algorithmics	Student information	Date	Number of session
	UO: 283060		5
	Surname: Carvajal Aza	Escuela de Ingeniería	
	Name: Guillermo Dylan		

Activity 1. Create a table with the times you get for the different sizes of the problem using LevenshteinDistanceTest.java. What is the complexity of the algorithm? Do the empirical results make sense?

Size of the problem	Time to solve	
100	5	
200	10	
400	15	
800	10	
1600	9	
3200	27	
6400	107	
12800	366	

The complexity of the algorithm is O(length(str1) * length(str2)), but if both strings have the same length (like for these cases), the complexity is quadratic $O(n^2)$.

The empirical results do make sense (even if for some values such as 800 and 1600 it takes less for the highest size, but that may be because of the computers processor that was used), for most of the values the growth is clearly exponential (since strings of the same length where used).