Goals and constraints

Calculation of voltage drops

Thermal calculation

Selectivity of the protections

Electrical standards

Goals and constraints

Calculation of voltage drops

Thermal calculation

Selectivity of the protections

Electrical standards

Goals

- Number and Positioning of TPSSs;
- Number and Size of Transformer Rectifier Groups;
- Wire Section of traction line;
- Number and pk of parallel points.

Design constraints and verifications

Design constraints

- Maximum voltage drops,
- 2. Maximum current density
- 3. Transformer overload limit.

Other Verifications

- Selectivity of protections
- constraints 1), 2) and 3) also in case of out of order of a single TPSS.

Design Constraints: Voltage Drop Limits

IEC 850: measured voltage on pantograph

Type of traction	V _{min}	V _n	V _{max}
D.C.	500	750	900
D.C.	1000	1500	1800
D.C.	2000	3000	3600
A.C. 16 2/3 HZ	12000	15000	17250
A.C. 50 HZ	19000	25000	27500

Total Voltage Drop: Grid + TPSS + contact line + return circuit line

Design Contraints: Current Density

- Current Density: J < 4 A/mm²
- Electrical limit for copper wire: T max = 85° C

T max = 45° C (environmental conditions) + **40° C** (maximum increase of temperature because of electric load)

Design Contraints: TPSS Power

Transformer Overload:

- Overload for 2 hours
- Overload for 5 minutes

Other verifications: selectivity of protections

 I_{SC} MIN > I_{LOAD} MAX

- I_{SC} MIN minimum short circuit current
- I_{LOAD} MAX maximum load current

Goals and constraints

Calculation of voltage drops

Thermal calculation
Selectivity of the protections
Electrical standards

Calculation of TPSS Voltage Drops

Open-Circuit: $V_u = 3.400 \text{ V}$

On load: total voltage drops = transformer voltage drops (>) + rectifier voltage drops (<)

Silicon rectifiers 3.600 kW:

$$V_{sc}^{trasf} = 0.07 \text{ pu} \rightarrow Voltage drop}_{tot} < 8\%$$

Calculation of voltage drops on contact line – simplified hypotheses

- Constant voltage at the exit of the TPSS
- Absorbed current from train: costant and indipendent from the voltage value

Contact line resistance

$$R_l = \frac{18,8}{s} \times l(Ohm)$$

18,8 Ω mm² / km (copper resistivity)

Rail resistance

$$R_b = \frac{1}{2p} \times L(Ohm)$$

p = mass per linear meter of rail

Calculation of voltage drops on contact line – case study

- UNILATERAL POWER SUPPLY
 - 1 TRAIN
 - 2 TRAINS
 - Uniformly Distributed Load

- BILATERAL POWER SUPPLY
 - 1 TRAIN
 - 2 TRAINS
 - Uniformly Distributed Load

Calculation of voltage drops on contact line: unilateral power supply

Calculation of voltage drops on contact line: unilateral power supply

Calculation of voltage drops on contact line: bilateral power supply

Maximum voltage drop of 25% of bilateral power supply

Calculation of voltage drops on contact line: bilateral power supply

$$I_1 = I_{1a} + I_{1b}$$
; $rx I_{1a} = r(L-x) I_{1b}$

$$I_{1a} = [(L-x) / L] I_1 \rightarrow I_{1a} = I_1 \text{ se } x = 0$$

= 0 se x = L

$$I_{1b} = (x / L) I_1$$
 $\rightarrow I_{1b} = I_1 \text{ se } x = L$
= 0 se x = 0

$$\Delta V_x = r x I_{1a} = r x (L-x) / L] I_1$$

$$\Delta V_{x-d} = r(x-d) I_{1a} = r(x-d) [(L-x)/L] I_1$$

$$I_2 = I_{2a} + I_{2b}$$
; $r(x-d) I_{2a} = r(L-x+d) I_{2b}$

$$I_{2a} = [(L-x+d) / L] I_2$$

$$I_{2b} = (x-d) / L I_2$$

$$\Delta V_{x-d} = r(x-d) I_{2a} = r (x-d) (L-x+d)/L] I_2$$

$$\Delta V_x = r(L-x) I_{2b} = r (L-x) [(x -d)] /L] I_2$$

$$\Delta V_x = r x (L-x) / L] I_1 + r (L-x) [(x-d)] / L] I_2 = \frac{r (L-x)}{L} [x I_1 + (x-d) I_2]$$

$$\Delta V_{x-d} = r(x-d)[(L-x)/L]I_1 + r(x-d)(L-x+d)/L]I_2 = \frac{r(x-d)}{L}[(L-x)I_1 + (L-x+d)I_2]$$

Calculation of voltage drops: parameters

- Voltage level: 3 kV o 1.5 kV (in Italy)
- Wire section: equivalent section= (contact line number* contact line section*0,7) + (messenger wire number * messenger wire section) + (reinforcement feeder number * reinforcement feeder section)
- Distance between TPSSs

Goals and constraints
Calculation of voltage drops

Thermal calculation

Selectivity of the protections
Electrical standards

Thermal Calculation - limits

Current density: J < 4 A/mm²

For copper wire: $T_{max} = 85^{\circ} C$

Thermal Calculation - limits

• Time constant of about 10' with a density current of 4 A/mm^2 , increase of temperature of 40° C in 30°

Time constant of about 7' with interruption of current,
 temperature lowering of 40° C in 20 '

Goals and constraints

Calculation of voltage drops

Thermal calculation

Selectivity of the protections

Electrical standards

Selectivity of the protections

The following condition needs to be verified on each feeder:

$$I_{SC}^{MIN} > I_{LOAD}^{MAX}$$

$$I_{SC}^{MIN} = Vdo_{min}/R_{PTSS}+(r*L)+R_g$$

Vdo_{min} open-circuit minimum voltage;

r kilometric resistance of the line at maximum temperture;

L distance between PTSSs;

R_{sse} maximum internal resistance of TPSSs;

R_q fault resistance;

Selectivity of the protections

Other protections:

relays conditioned to the gradient, Minimum Voltage relays or Maximum Nondirectional Line Current relays, pilot wire

If distance between PTSSs is 40 km:

 $R = 40 \times 0.08 \Omega/km = 3.2 \Omega/km \Rightarrow I = V/R = 3400/3.2 \approx 1000 A \approx operating current$

$$\frac{\Delta V'}{V} = \frac{r'L'I'_{max}}{4V} = 0.2$$

$$\frac{\Delta V^{\prime\prime}}{V} = \frac{r^{\prime\prime}L^{\prime\prime}I^{\prime\prime}}{4V} = 0.1$$

$$\frac{I'_{max}}{I'_{sc}} = 0.8$$

$$I'_{sc} = \frac{V}{r'L'}$$

$$I_{sc}^{\prime\prime} = \frac{V}{r^{\prime\prime}L^{\prime\prime}}$$

$$\frac{I''_{max}}{I''_{sc}} = 0.4$$

Goals and constraints
Calculation of voltage drops
Thermal calculation
Selectivity of the protections

Electrical standards

RFI Electrical standard-contact line

Traction Circuit

Catenary of 540mm² per direction

- 2 Messenger wires of 120 mm²
- 2 Contact lines of 150 mm²

Reinforcement feeder (1 conductor or 2): 100 mm²
 150 mm²

RFI Electrical standard- TPSS

5.4 MVA Group:

- Nominal Power 5,4 MVA
- Open-circuit Voltage 3,6 kV
- Internal resistance 0,13 Ω
- Overload 100% for 2h 133% for 5 min

RFI Electrical standard

Standard:

- L = 16 km
- $S = 540 \text{ mm}^2 (2x150 \text{ mm}^2 + 2 \text{ x } 120 \text{ mm}^2)$
- $P_{TPSS} = 2 \times 5.400 \text{ kW (overload: } 100 \% \text{ for } 2h 133 \% \text{ for } 5')$