ercedes-benz-greener-manufacturing

September 8, 2023

0.0.1 Importing Libraries and Datasets

```
[1]: # Importing libraries
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[2]: # Reading the dataset
     df1 = pd.read_csv('train.csv')
     df2 = pd.read_csv('test.csv')
[3]: df1.head()
[3]:
                   y XO X1
                                                       X375
                                                             X376
                                                                    X377
                                                                           X378
                                                                                  X379
         ID
                              X2 X3 X4 X5 X6 X8
     0
             130.81
                                                          0
                                                                 0
                                                                              0
          0
                       k
                              at
                                      d
                                                                        1
                                                                                     0
     1
              88.53
                                                          1
                                                                 0
                                                                        0
                                                                              0
                                                                                     0
          6
                       k
                          t
                                      d
                                         у
                                            1
                              av
                                                0
     2
          7
              76.26
                                                                 0
                                                                        0
                                                                              0
                      az
                               n
                                      d
                                                          0
                                                                                     0
     3
          9
              80.62
                                  f
                                      d
                                            1
                                                          0
                                                                 0
                                                                        0
                                                                              0
                                                                                     0
                          t
                               n
                                         х
                      az
        13
              78.02
                               n
                                  f
                                      d
                                         h
                                            d
                                                          0
                                                                 0
                                                                                     0
                      az
        X380
               X382
                      X383
                            X384
                                   X385
     0
            0
                   0
                         0
                                0
                                       0
     1
            0
                   0
                         0
                                0
                                       0
     2
            0
                   1
                         0
                                0
                                       0
     3
                   0
            0
                         0
                                0
                                       0
     4
            0
                   0
                         0
                                       0
     [5 rows x 378 columns]
[4]: df2.head()
[4]:
             XO X1
                     X2 X3 X4 X5 X6 X8
                                          X10
                                                   X375
                                                          X376
                                                                 X377
                                                                        X378
                                                                              X379
                                                                                     X380
                                                       0
                                                             0
                                                                    0
                                                                                  0
                                                                                         0
     0
          1
                         f
                             d
                                             0
                                                                           1
             az
                 V
                      n
                                                             0
                                                                           0
     1
          2
              t
                 b
                     ai
                         a
                            d
                                             0
                                                       0
                                                                    1
                                                                                  0
                                                                                         0
                                b
                                   g
                                       У
     2
          3
                                                             0
                                                                    0
                                                                           1
                                                                                  0
             az v
                     as
                         f
                            d
                                a
                                   j
                                       j
                                            0
                                                       0
                                                                                         0
     3
          4
                 1
                      n
                         f
                             d
                                z
                                   1
                                       n
                                            0
                                                       0
                                                             0
                                                                    0
                                                                                  0
                                                                                         0
             az
          5
                         С
                            d
                                   i
                                             0
                                                       1
                                                             0
                                                                                         0
              W
                 S
                     as
                                У
                                       m
```

	X382	X383	X384	X385
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0

[5 rows x 377 columns]

0.0.2 Data Exploration

[5]: # Describe the dataset df1.describe()

[5]:		ID	77	X10	X11	X12 \		
[0].	count	4209.000000	у 4209.000000	4209.000000		9.000000		
	mean	4205.960798	100.669318	0.013305		0.075077		
	std	2437.608688	12.679381	0.114590		0.263547		
	min	0.000000	72.110000	0.000000		0.000000		
	25%	2095.000000	90.820000	0.000000		0.000000		
	50%	4220.000000	99.150000	0.000000		0.000000		
	75%	6314.000000	109.010000	0.000000		0.000000		
		8417.000000						
	max	8417.000000	265.320000	1.000000	0.0	1.000000		
		X13	X14	X15	X16	X17		\
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	•••	
	mean	0.057971	0.428130	0.000475	0.002613	0.007603	•••	
	std	0.233716	0.494867	0.021796	0.051061	0.086872	•••	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	75%	0.000000	1.000000	0.000000	0.000000	0.000000	•••	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	•••	
		X375	X376	Х377	X378	Х379	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	0.318841	0.057258	0.314802	0.020670	0.009503		
	std	0.466082	0.232363	0.464492	0.142294	0.097033		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		
	25%	0.000000	0.000000	0.000000	0.000000	0.000000		
	50%	0.000000	0.000000	0.000000	0.000000	0.000000		
	75%	1.000000	0.000000	1.000000	0.000000	0.000000		
	max	1.000000	1.000000	1.000000	1.000000	1.000000		
		X380	X382	X383	X384	X385		
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	Journ	1200.00000	1200.00000	1200.00000	1200.00000	1200.00000		

mean	0.008078	0.007603	0.001663	0.000475	0.001426
std	0.089524	0.086872	0.040752	0.021796	0.037734
min	0.000000	0.00000	0.00000	0.000000	0.000000
25%	0.000000	0.00000	0.00000	0.000000	0.000000
50%	0.000000	0.00000	0.00000	0.000000	0.000000
75%	0.000000	0.00000	0.00000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000

[8 rows x 370 columns]

[6]: df2.describe()

[6]:		ID	X10	X11	X12	X13	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	4211.039202	0.019007	0.000238	0.074364	0.061060		
	std	2423.078926	0.136565	0.015414	0.262394	0.239468		
	min	1.000000	0.000000	0.000000	0.000000	0.000000		
	25%	2115.000000	0.000000	0.000000	0.000000	0.000000		
	50%	4202.000000	0.000000	0.000000	0.000000	0.000000		
	75%	6310.000000	0.000000	0.000000	0.000000	0.000000		
	max	8416.000000	1.000000	1.000000	1.000000	1.000000		
		X14	X15	X16	X17	X18	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	•••	
	mean	0.427893	0.000713	0.002613	0.008791	0.010216	•••	
	std	0.494832	0.026691	0.051061	0.093357	0.100570	•••	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	75%	1.000000	0.000000	0.000000	0.000000	0.000000		
	max	1.000000	1.000000	1.000000	1.000000	1.000000		
		X375	X376	X377	Х378	X379	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	0.325968	0.049656	0.311951	0.019244	0.011879		
	std	0.468791	0.217258	0.463345	0.137399	0.108356		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		
	25%	0.000000	0.000000	0.000000	0.000000	0.000000		
	50%	0.000000	0.000000	0.000000	0.000000	0.000000		
	75%	1.000000	0.000000	1.000000	0.000000	0.000000		
	max	1.000000	1.000000	1.000000	1.000000	1.000000		
		X380	X382	X383	X384	X385		
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	0.008078	0.008791	0.000475	0.000713	0.001663		
	std	0.089524	0.093357	0.021796	0.026691	0.040752		
	min	0.000000	0.000000	0.000000	0.000000	0.000000		

```
25%
           0.000000
                        0.000000
                                      0.000000
                                                    0.000000
                                                                   0.000000
50%
           0.000000
                        0.000000
                                       0.000000
                                                    0.000000
                                                                   0.000000
75%
           0.000000
                        0.000000
                                       0.000000
                                                    0.000000
                                                                   0.000000
           1.000000
                         1.000000
                                       1.000000
                                                     1.000000
                                                                   1.000000
max
```

[8 rows x 369 columns]

```
[7]: df1.shape
```

[7]: (4209, 378)

```
[8]: df2.shape
```

[8]: (4209, 377)

Name = X11

As stated in the question, if for any column(s), the variance is equal to zero, then you need to remove those variable(s).

```
[9]: variance = pow(df1.drop(columns={'ID','y'}).std(),2).to_dict()

variance_is_zero_count = 0
for key, value in variance.items():
    if(value==0):
        print('Name = ',key)
        variance_is_zero_count = variance_is_zero_count+1
print('No of columns which has zero variance = ', variance_is_zero_count)
```

```
Name = X93
Name = X107
Name = X233
Name = X235
Name = X268
Name = X289
Name = X290
Name = X293
Name = X297
Name = X330
Name = X347
No of columns which has zero variance = 12
```

C:\Users\lrnem\AppData\Local\Temp\ipykernel_4380\1335638582.py:1: FutureWarning: The default value of numeric_only in DataFrame.std is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.

```
variance = pow(df1.drop(columns={'ID','y'}).std(),2).to_dict()
```

```
[10]: df1 = df1.drop(columns={'X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', \_
       [11]: df1.shape
[11]: (4209, 366)
     Check for null and unique values for test and train sets.
[12]: check1 = df1.isnull().sum()
[13]: check1.any()
[13]: False
[14]: check2 = df2.isnull().sum()
[15]: check2.any()
[15]: False
     0.0.3 Label encoding
[16]: from sklearn.preprocessing import LabelEncoder
      label_encoder = LabelEncoder()
[17]: x1 = df1.drop(columns={'y', 'ID'}, axis=1)
      y1 = df1['y']
[18]: x1.shape
[18]: (4209, 364)
[19]: y1.shape
[19]: (4209,)
[20]: x1.describe(include=object)
[20]:
                XΟ
                            Х2
                                  ХЗ
                                       Х4
                                              Х5
                                                    Х6
                                                          Х8
                     Х1
             4209
                   4209
                          4209
                                4209
                                     4209
                                            4209
                                                  4209
                                                        4209
      count
                                         4
      unique
                47
                      27
                            44
                                  7
                                              29
                                                    12
                                                          25
      top
                                         d
                      aa
                                   С
                                               W
                                                     g
                                                           j
      freq
              360
                     833
                          1659
                                1942
                                     4205
                                             231
                                                  1042
                                                         277
[21]: x1['X0'] = label_encoder.fit_transform(x1.X0)
      x1['X1'] = label_encoder.fit_transform(x1.X1)
```

```
x1['X2'] = label_encoder.fit_transform(x1.X2)
x1['X3'] = label_encoder.fit_transform(x1.X3)
x1['X4'] = label_encoder.fit_transform(x1.X4)
x1['X5'] = label_encoder.fit_transform(x1.X5)
x1['X6'] = label_encoder.fit_transform(x1.X6)
x1['X8'] = label_encoder.fit_transform(x1.X8)
```

0.0.4 Dimensionality reduction

```
[22]: from sklearn.decomposition import PCA
      pca = PCA(n_components=0.90)
[23]: pca.fit(x1, y1)
[23]: PCA(n_components=0.9)
[24]: x1_transformed = pca.fit_transform(x1)
      x1_transformed.shape
[24]: (4209, 5)
     Predict your test df values using XGBoost
[25]: from math import sqrt
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import r2_score, mean_squared_error
      import xgboost as xgb
[26]: x_train, x_test, y_train, y_test = train_test_split(x1_transformed, y1,__

state=3)

[27]: x_train.shape, x_test.shape
[27]: ((3788, 5), (421, 5))
[28]: y_train.shape, y_test.shape
[28]: ((3788,), (421,))
[29]: dtrain_reg = xgb.DMatrix(x_train, y_train, enable_categorical=True)
      dtest_reg = xgb.DMatrix(x_test, y_test, enable_categorical=True)
[30]: params = {"objective": "reg:squarederror", "tree_method": "gpu_hist"}
[31]: params = {"objective": "reg:squarederror", "tree method": "gpu hist"}
      n = 300
```

```
xgb1 = xgb.train(params=params, dtrain=dtrain_reg, num_boost_round=n,)
[32]: from sklearn.metrics import mean_squared_error
      pred = xgb1.predict(dtest_reg)
[33]: rmse = mean_squared_error(y_test, pred, squared=False)
      print(f"Base model RMSE val : {rmse:.3f}")
     Base model RMSE val : 10.211
[34]: params = {"objective": "reg:squarederror", "tree_method": "gpu_hist"}
      n = 1000
      results = xgb.cv(params, dtrain_reg, num_boost_round=n, nfold=5,__
       ⇔early stopping rounds=20)
[35]: results.head()
[35]:
         train-rmse-mean train-rmse-std test-rmse-mean test-rmse-std
               71.148586
                                0.139979
                                                71.156159
                                                                0.752683
      1
               50.469313
                                0.122809
                                                50.496843
                                                                0.822578
      2
               36.170590
                                                36.214890
                                                                0.906990
                                0.123311
               26.413531
                                0.136587
                                                26.525787
                                                                0.959477
               19.851765
                                0.161268
                                                20.093561
                                                                1.039389
[36]: best_rmse = results['test-rmse-mean'].min()
[37]: best rmse
[37]: 10.195234054808457
     Using k-fold cross validation, RMSE comes as 10.195.
     0.0.5 Testing dataset
[38]: df2 = df2.
       odrop(columns={'X11','X93','X107','X233','X235','X268','X289','X290','X293','X297','X330','X
[39]: df2.shape
[39]: (4209, 365)
[40]: check3 = df2.isnull().sum()
[41]: check3.any()
```

```
[41]: False
[42]: x2 = df2.drop(columns={'ID'})
      print(x2.shape)
     (4209, 364)
[43]: x2.describe(include='object')
[43]:
                XΟ
                      Х1
                            X2
                                   ХЗ
                                         Х4
                                               Х5
                                                      Х6
                                                            Х8
              4209
      count
                    4209
                          4209
                                 4209
                                       4209
                                             4209
                                                   4209
                                                          4209
                                    7
                                          4
      unique
                49
                      27
                             45
                                               32
                                                      12
                                                            25
      top
                ak
                                          d
                      aa
                             as
                                    С
                                                V
                                                       g
      freq
               432
                     826
                                       4203
                                              246
                                                   1073
                          1658
                                 1900
                                                           274
[44]: x2['X0'] = label_encoder.fit_transform(x2.X0)
      x2['X1'] = label_encoder.fit_transform(x2.X1)
      x2['X2'] = label_encoder.fit_transform(x2.X2)
      x2['X3'] = label_encoder.fit_transform(x2.X3)
      x2['X4'] = label_encoder.fit_transform(x2.X4)
      x2['X5'] = label encoder.fit transform(x2.X5)
      x2['X6'] = label_encoder.fit_transform(x2.X6)
      x2['X8'] = label_encoder.fit_transform(x2.X8)
[45]: pca.fit(x2)
[45]: PCA(n_components=0.9)
[46]: x2_transformed = pca.fit_transform(x2)
      x2_transformed.shape
[46]: (4209, 5)
      dtest = xgb.DMatrix(x2_transformed)
[48]: test_pred = xgb1.predict(dtest)
      test_pred
[48]: array([ 73.144936, 95.4681 , 95.36935 , ..., 91.54465 , 108.6302
              96.124054], dtype=float32)
 []:
```