Table of Contents

1.2 ARP, Wireshark, Netsim	1
1.2.1 ARP (linux.cs.pdx.edu)	1
1.2.2 –	3
1.2.3 ARP (Cloud)	4
1.2.4 Netsim	5
1.3: Cloud networking	6
1.3.1 Network scanning (nmap) #1	6
1.3.2 Launch targets	6
1.3.3 Scan targets for services	6
1.3.4 CIDR and subnets #2	7
1.3.5 Navigating default networks	7
1.3.6 Creating custom networks	10
1.3.7 Clean up	12

1.2 ARP, Wireshark, Netsim

1.2.1 ARP (linux.cs.pdx.edu)

Include both in your lab notebook

What is the default router's IP address (e.g. the gateway address for the default route 0.0.0.0/0)

```
srirams@ada:~$ netstat -rn
Kernel IP routing table
Destination
               Gateway
                               Genmask
                                              Flags
                                                      MSS Window irtt Iface
0.0.0.0
               131.252.208.1
                               0.0.0.0
                                              ŪĠ
                                                        0 0
                                                                     0 ens3
10.218.208.100
               131.252.208.1
                               255.255.255.255 UGH
                                                        0 0
                                                                     0 ens3
10.218.208.108 131.252.208.1
                               255.255.255.255 UGH
                                                        0 0
                                                                     0 ens3
131.252.110.102 131.252.208.1
                               255.255.255.255 UGH
                                                        0 0
                                                                     0 ens3
131.252.110.103 131.252.208.1
                               255.255.255.255 UGH
                                                        0 0
                                                                     0 ens3
131.252.208.0 0.0.0.0
                               255.255.255.0 U
                                                        0 0
                                                                     0 ens3
131.252.208.1
                                                        0 0
                                                                     0 ens3
                               255.255.255.255 UH
131.252.208.53 0.0.0.0
                                                        0 0
                                                                     0 ens3
srirams@ada:~$
```

What is the name of the default router and its hardware address?

Name: router.seas.pdx.edu Hardware address: 00:00:5e:00:01:01

```
srirams@ada:~$ arp 131.252.208.1

Address HWtype HWaddress Flags Mask Iface router.seas.pdx.edu ether 00:00:5e:00:01:01 C ens3 srirams@ada:~$
```

How many entries are there in the ARP table?

42

```
srirams@ada:~$ arp -a | wc -l
42
srirams@ada:~$
```

1.2.2 -

List any IP addresses that share the same hardware address

All IP address in our screenshot have their own hardware address.

```
srirams@ada:~$ arp -a | sort -k 4
router.seas.pdx.edu (131.252.208.1) at 00:00:5e:00:01:01 [ether] on ens3
mirrors.cat.pdx.edu (131.252.208.20) at 00:00:5e:00:01:14 [ether] on ens3
rdns.cat.pdx.edu (131.252.208.53) at 00:00:5e:00:01:35 [ether] on ens3
gitlab.cecs.pdx.edu (131.252.208.138) at 00:00:5e:00:01:8a [ether] on ens3
jammy.cecs.pdx.edu (131.252.208.11) at 52:54:00:59:3e:39 [ether] on eṇs3
babbage.cs.pdx.edu (131.252.208.23) at 52:54:00:5c:6f:6e [ether] on ens3
focal.cecs.pdx.edu (131.252.208.94) at 52:54:00:78:73:00 [ether] on ens3
tanto.cs.pdx.edu (131.252.208.5) at 52:54:00:87:21:c4 [ether] on ens3
dc-rdns-01.cat.pdx.edu (131.252.208.117) at 52:54:00:a9:30:9f [ether] on ens3
danimoth.cat.pdx.edu (131.252.208.34) at 52:54:00:b4:6e:05 [ether] on ens3
rita.cecs.pdx.edu (131.252.208.28) at 52:54:00:eb:9a:42 [ether] on ens3
ruby.cecs.pdx.edu (131.252.208.85) at 52:54:00:f2:09:bc [ether] on ens3
destiny.cat.pdx.edu (131.252.208.17) at cc:aa:77:50:b9:5d [ether] on ens3
expn.cat.pdx.edu (131.252.208.110) at cc:aa:77:5f:de:0e [ether] on ens3
srirams@ada:~$
```

How many less hardware addresses are there than IP addresses in the ARP table?

Both are equal number in our screenshot ie. 14 IP addresses mapped to 14 hardware addresses.

```
srirams@ada:~$ arp -a | sort -k 4
router.seas.pdx.edu (131.252.208.1) at 00:00:5e:00:01:01 [ether] on ens3
mirrors.cat.pdx.edu (131.252.208.20) at 00:00:5e:00:01:14 [ether] on ens3
rdns.cat.pdx.edu (131.252.208.53) at 00:00:5e:00:01:35 [ether] on ens3
gitlab.cecs.pdx.edu (131.252.208.138) at 00:00:5e:00:01:8a [ether] on ens3
jammy.cecs.pdx.edu (131.252.208.11) at 52:54:00:59:3e:39 [ether] on ens3
babbage.cs.pdx.edu (131.252.208.23) at 52:54:00:5c:6f:6e [ether] on ens3
focal.cecs.pdx.edu (131.252.208.94) at 52:54:00:78:73:00 [ether] on ens3
tanto.cs.pdx.edu (131.252.208.5) at 52:54:00:87:21:c4 [ether] on ens3
dc-rdns-01.cat.pdx.edu (131.252.208.117) at 52:54:00:a9:30:9f [ether] on ens3
danimoth.cat.pdx.edu (131.252.208.34) at 52:54:00:b4:6e:05 [ether] on ens3
rita.cecs.pdx.edu (131.252.208.28) at 52:54:00:eb:9a:42 [ether] on ens3
ruby.cecs.pdx.edu (131.252.208.85) at 52:54:00:f2:09:bc [ether] on ens3
destiny.cat.pdx.edu (131.252.208.17) at cc:aa:77:50:b9:5d [ether] on ens3
expn.cat.pdx.edu (131.252.208.110) at cc:aa:77:5f:de:0e [ether] on ens3
srirams@ada:~$
```

Include the command in your lab notebook

```
arp -an | awk -F '[()]' '{print $2}' > arp_entries
```

```
srirams@ada:~$ arp -an | awk -F '[()]' '{print $2}' > arp_entries srirams@ada:~$
```

What network prefix do most of the IP addresses in the ARP table share?

The common network prefix shared by most IP address is 131.252.208

```
rw----- 1 srirams them 211 Oct 5 15:50 arp_entries
rirams@ada:~$ cat arp_entries
131.252.208.20
131.252.208.110
131.252.208.11
131.252.208.85
131.252.208.34
131.252.208.138
131.252.208.53
31.252.208.1
131.252.208.17
.31.252.208.117
131.252.208.23
131.252.208.28
131.252.208.94
131.252.208.5
srirams@ada:~$ awk -F '.' '{print $1"."$2"."$3}' arp_entries | sort | uniq -c | sort -nr
srirams@ada:~$
```

1.2.3 ARP (Cloud)

Find the IP address and hardware address of the local ethernet card interface (Typically beginning with eth, ens, or enp).

```
srirams@course-vm:~$ ip address
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred lft forever
    inet6 :: 1/128 scope host
       valid lft forever preferred lft forever
   LIST. CDNOADCAST, MODIFICAST, OT, LOWER UP> mtu 1460 qdisc mq state UP group default glen 1000 link/ether 42:01:0a:8a:00:02 ord ff:ff:ff:ff:ff
    inet 10.138.0.2/32 metric 100 scope global dynamic ens4
       valid lit 86150sec preferred lft 86150sec
    inet6 fe80::4001:aff:fe8a:2/64 scope link
       valid_lft forever preferred_lft forever
3: docker0: <NO-CARRIER, BROADCAST, MULTICAST, UP> mtu 1500 qdisc noqueue state DOWN group default
    link/ether 02:42:94:84:a7:84 brd ff:ff:ff:ff:ff
    inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
       valid lft forever preferred lft forever
srirams@course-vm:~$
```

What is the default router's IP address (e.g. the gateway address for the default route 0.0.0.0/0)

```
srirams@course-vm:~$ netstat -rn
Kernel IP routing table
Destination
                Gatewav
                                 Genmask
                                                  Flags
                                                          MSS Window irtt Iface
0.0.0.0
                10.138.0.1
                                 0.0.0.0
                                                  ŪĠ
                                                            0 0
                                                                          0 ens4
                                 255.255.255.255 UH
                                                            0 0
                                                                          0 ens4
10.138.0.1 0.0.0.0
169.254.169.254 10.138.0.1
                                 255.255.255.255 UGH
                                                            0 0
                                                                          0 ens4
172.17.0.0
                                 255.255.0.0
                                                σ
                                                            0 0
                                                                          0 docker0
                0.0.0.0
srirams@course-vm:~$
```

What is the default router's hardware address?

```
srirams@course-vm:~$ arp 10.138.0.1

Address HWtype HWaddress Flags Mask Iface

_gateway ether 42:01:0a:8a:00:01 C ens4

srirams@course-vm:~$
```

1.2.4 Netsim

1.3: Cloud networking

- 1.3.1 Network scanning (nmap) #1
- 1.3.2 Launch targets
- 1.3.3 Scan targets for services

Show a screenshot of the output for the scan for your lab notebook.


```
srirams@course-vm:~$ nmap 10.138.0.2/24
Starting Nmap 7.80 (https://nmap.org) at 2024-10-07 02:55 UTC
Nmap scan report for course-vm.c.cloud-nurani-srirams.internal (10.138.0.2)
Host is up (0.00090s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
22/tcp open ssh
3389/tcp open ms-wbt-server
 Nmap scan report for limesurvey-1-vm.c.cloud-nurani-srirams.internal (10.138.0.3)
Host is up (0.00035s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
Nmap scan report for wordpress-1-vm.c.cloud-nurani-srirams.internal (10.138.0.4)
Host is up (0.00033s latency).
Not shown: 875 closed ports, 122 filtered ports
           STATE SERVICE
22/tcp
              open ssh
80/tcp open http
10000/tcp open snet-sensor-mgmt
Nmap scan report for tikiwiki-1-vm.c.cloud-nurani-srirams.internal (10.138.0.5)
Host is up (0.00083s latency).
Not shown: 998 closed ports
PORT STATE SERVICE
22/tcp open ssh
Nmap done: 256 IP addresses (4 hosts up) scanned in 12.67 seconds srirams@course-vm:~\$
```

1.3.4 CIDR and subnets #2

1.3.5 Navigating default networks

How many subnetworks are created initially on the default network? 84

```
srirams@cloudshell:~ (cloud-nurani-srirams)$ gcloud compute networks subnets list | grep default | wc -l
84
srirams@cloudshell:~ (cloud-nurani-srirams)$
```

How many regions does this correspond to? 42

```
srirams@cloudshell:~ (cloud-nurani-srirams)$ gcloud compute networks subnets list | grep REGION | wc -1
42
srirams@cloudshell:~ (cloud-nurani-srirams)$
```

Given the CIDR prefix associated with each subnetwork, how many hosts does each subnetwork support?

CIDR Prefix associated is /20 that means 2 $^{(32-20)}$ -2 hosts i.e. 4094 hosts supported for each subnetwork

```
srirams@cloudshell:~ (cloud-nurani-srirams) $ gcloud compute networks subnets list
NAME: default
REGION: us-central1
NETWORK: default
RANGE: 10.128.0.0/20
STACK TYPE: IPV4 ONLY
IPV6_ACCESS_TYPE:
INTERNAL_IPV6_PREFIX:
EXTERNAL_IPV6_PREFIX:
NAME: default
REGION: europe-west1
NETWORK: default
RANGE: 10.132.0.0/20
STACK_TYPE: IPV4_ONLY IPV6_ACCESS_TYPE:
INTERNAL_IPV6_PREFIX:
EXTERNAL_IPV6_PREFIX:
NAME: default
REGION: us-west1
NETWORK: default
RANGE: 10.138.0.0/20
STACK_TYPE: IPV4_ONLY
IPV6_ACCESS_TYPE:
INTERNAL_IPV6_PREFIX:
EXTERNAL_IPV6_PREFIX:
NAME: default
REGION: asia-east1
NETWORK: default
RANGE: 10.140.0.0/20
STACK TYPE: IPV4_ONLY IPV6_ACCESS_TYPE:
INTERNAL_IPV6_PREFIX:
EXTERNAL_IPV6_PREFIX:
NAME: default
REGION: us-east1
NETWORK: default
RANGE: 10.142.0.0/20
STACK_TYPE: IPV4_ONLY
IPV6 ACCESS TYPE:
INTERNAL IPV6 PREFIX:
EXTERNAL IPV6 PREFIX:
```

Which CIDR subnetworks are these instances brought up in?

```
srirams@cloudshell:~ (cloud-nurani-srirams) $ gcloud compute instances list
NAME: instance-1
ZONE: us-central1-c
MACHINE_TYPE: n1-standard-1
PREEMPTIBLE:
INTERNAL IP: 10.128.0.3
EXTERNAL_IP: 35.194.9.121
STATUS: RUNNING
NAME: course-vm
ZONE: us-west1-b
MACHINE TYPE: e2-medium
PREEMPTIBLE:
INTERNAL_IP: 10.138.0.2
EXTERNAL_IP: 35.197.115.90
STATUS: RUNNING
NAME: instance-2
ZONE: us-east1-b
MACHINE TYPE: n1-standard-1
PREEMPTIBLE:
INTERNAL_IP: 10.142.0.2
EXTERNAL_IP: 34.75.144.207
STATUS: RUNNING
srirams@cloudshell:~ (cloud-nurani-srirams)$
```

Do they correspond to the appropriate region based on the prior commands?

Yes

```
srirams@cloudshell:~ (clo
NAME: default
REGION: us-central1
NETWORK: default
RANGE: 10.128.0.0/20
STACK_TYPE: IPV4_ONLY
IPV6_ACCESS_TYPE:
INTERNAL_IPV6_PREFIX:
EXTERNAL_IPV6_PREFIX:
```

```
NAME: default
REGION: us-east1
NETWORK: default
RANGE: 10.142.0.0/20
STACK_TYPE: IPV4_ONLY
IPV6_ACCESS_TYPE:
INTERNAL_IPV6_PREFIX:
EXTERNAL_IPV6_PREFIX:
```

From instance-1, perform a ping to the Internal IP address of instance-2. Take a screenshot of the output.

```
srirams@instance-1:~$ ping 10.142.0.2
PING 10.142.0.2 (10.142.0.2) 56(84) bytes of data.
64 bytes from 10.142.0.2: icmp_seq=1 ttl=64 time=31.3 ms
64 bytes from 10.142.0.2: icmp_seq=2 ttl=64 time=30.6 ms
64 bytes from 10.142.0.2: icmp_seq=3 ttl=64 time=30.6 ms
64 bytes from 10.142.0.2: icmp_seq=4 ttl=64 time=30.7 ms
64 bytes from 10.142.0.2: icmp_seq=5 ttl=64 time=30.6 ms
64 bytes from 10.142.0.2: icmp_seq=6 ttl=64 time=30.7 ms
```

What facilitates this connectivity: the virtual switch or the VPN Gateway?

Virtual Switch

1.3.6 Creating custom networks

Take a screenshot of the new subnets created in custom-network1 alongside the default subnetworks in those regions assigned to the default network.

```
srirams@cloudshell: (cloud-nurani-srirams)$ gcloud compute networks subnets list --regions=us-centrall,europe-west1
NAME: default
RECTION: surope-west1
NETWORK: default
RECTION: surope-west2
NTERNAL 1PV6 PREPIX:
INTERNAL 1PV6 PREPIX:
INTERNAL 1PV6 PREPIX:
NAME: subnet-surope-west-192
RECTION: surope-west1
NETWORK: custom-network1
RANGE: 192.168.5.0/24
STACK TYPE: IPV4 ONLY
IPV6 ACCESS TYPE:
INTERNAL 1PV6 PREPIX:
EXTERNAL 1PV6 PREPIX:
```

Explain why the result of this ping is different from when you performed the ping to instance-2.

In Previous case, ping occurred in servers where both are in the same network range while in this case instance-3 was on the custom network

Take screenshots of all 4 instances in the UI including the network they belong to.

Take a screenshot of the subnetworks created for the custom-network1 network and some of the subnetworks of the default network showing their regions, internal IP ranges and Gateways.

1.3.7 Clean up