Solution to Introduction to the Theory of Computation

Lwins_Lights

Contents

1	Regular Languages	2
2	Context-Free Languages	3
3	The Church–Turing Thesis	4
4	Decidability	5
5	Reducibility	7
6	Advanced Topics in Computability Theory	9
7	Time Complexity	11
8	Space Complexity	13
9	Intractability	16
10	Advanced Topics in Complexity Theory	17

1 Regular Languages

2 Context-Free Languages

3 The Church–Turing Thesis

4 Decidability

- 4.10 Refer to the textbook.
- 4.11 By the pumping lemma, L(M) is an infinite language $\iff L(M)$ includes a string of at least length p. Since $R = \Sigma^p \Sigma^*$ is a regular language, it is easy to design a PDA P recognizing $L(M) \cap R$. Then use E_{PDA} 's decider to decide whether $L(M) \cap R = \emptyset$.
- 4.12 Refer to the textbook.
- $4.13 \ L(R) \subseteq L(S) \iff L(R) \cup L(S) = L(S)$, which can be decided by EQ_{DFA} 's decider.
- 4.14 Refer to the textbook.
- *4.15 By the pumping lemma, $\mathbf{1}^k \in L(G) \implies \mathbf{1}^{k+p!} \in L(G)$ for every $k \geq p$. Therefore $\mathbf{1}^* \subseteq L(G) \iff \{\mathbf{1}^k \mid k \leq p+p!\} \subseteq L(G)$, which can be easily checked by a TM in finite time.
- 4.16 Since $A = \{\langle R \rangle \mid R \text{ is a regular expression, } R \cap \Sigma^* 111\Sigma^* \neq \emptyset \}$, we only need an E_{DFA} 's decider.
- 4.17 Suppose we have two DFAs D_1 and D_2 . Let D be a DFA recognizing $L(D_1) \oplus L(D_2)$, where \oplus means symmetric difference. By the pumping lemma, $L(D) \cap (\Sigma \cup \epsilon)^p = \emptyset \implies L(D) = \emptyset$, thus p can be the required length.
- *4.18 \Leftarrow : It is enough to design a TM, which recognizes C by checking whether $\langle x, y \rangle \in D$ for all possible y one by one.
 - \Rightarrow : Suppose TM M recognizes C. Let $D = \{\langle x, y \rangle \mid x \in C \text{ and } y \text{ is the computation history of } M \text{ on input } x\}$, which is obviously decidable.
- *4.19 Let C be a recognizable but undecidable language, e.g., A_{TM} . Construct D provided by Problem 4.18. Letting homomorphism f satisfy $f(\langle x,y\rangle)=x$ for every x,y we obtain f(D)=C.
- 4.20 Let M be a TM which runs both \overline{A} 's recognizer and \overline{B} 's recognizer on its own input. M accepts when \overline{B} 's recognizer accepts and rejects when \overline{A} 's recognizer accepts. Clearly C = L(M) separates A and B
- 4.21 M is a DFA that accepts $w^{\mathcal{R}}$ whenever it accepts $w \iff L(M) = L(M)^{\mathcal{R}}$, which can be decided by EQ_{DFA} 's decider.
- 4.22 In order to determine whether L(R) is prefix-free, it suffices to check whether the DFA recognizing L(R) has the property that from a reachable accept state we could arrive an accept state again by several transitions.
- *4.23 Refer to the textbook.
- 4.24 A PDA $P=(Q, \Sigma, \Gamma, \delta, q_0, F)$ has an useless state $q \in Q$ if and only if PDA $P'=(Q, \Sigma, \Gamma, \delta, q_0, \{q\})$ recognizes \varnothing . Therefore we can use E_{PDA} 's decider to solve it.
- *4.25 Refer to the textbook.
- *4.26 M is a DFA that accepts some palindrome \iff CFL $\{w \mid w = w^{\mathcal{R}}\} \cap L(M)$ is not empty, which can be decided by E_{PDA} 's decider.
- *4.27 Refer to the solution to Problem 4.26.
- 4.28 x is a substring of some $y \in L(G) \iff L(G) \cap \Sigma^* x \Sigma^* \neq \emptyset$, which can be decided by E_{PDA} 's decider.
- 4.29 By the pumping lemma, L(G) is an infinite language \iff L(G) includes a string of at least length p. So we can first use $INFINITE_{PDA}$ from Problem 4.11 to check whether $|L(G)| = \infty$, and then check whether $x \in L(G)$ for all x of less-than-p length, one by one.
- 4.30 Let E be A's enumerator which generates $\langle M_1 \rangle, \langle M_2 \rangle, \ldots$ in order. Construct $D = \{ \langle n \rangle \mid \langle n \rangle \notin L(M_n) \}$.

- 4.31 First, recursively determine whether $V \stackrel{*}{\Rightarrow} w$ with some $w \in \Sigma^*$, for all variables V. Then, recursively determine whether $V \stackrel{*}{\Rightarrow} xAy$ with some $x,y \in \Sigma^*$, for all variables V.
- 4.32 Construct DPDA $P'_{(q,x)}$ by modifying P, such that $L(P'_{(q,x)}) = \emptyset$ if and only if (q,x) is a looping situation for P. Then we only need E_{PDA} .

5 Reducibility

- 5.9 Reduce from A_{TM} . To determine whether $\mathsf{TM}\ M$ accepts w, construct $\mathsf{TM}\ N$ which always accepts $\mathsf{01}$ but accepts $\mathsf{10}$ if and only if M accepts w.
- 5.10 Refer to the textbook.
- 5.11 Refer to the textbook.
- 5.12 Reduce from E_{TM} . To determine whether $\mathsf{TM}\ M$ accepts nothing, construct $\mathsf{TM}\ N$ which simulates M on N's own input w but never writes a blank symbol over a nonblank symbol unless when M accepts.
- 5.13 Reduce from E_{TM} . To determine whether $\mathsf{TM}\ M$ accepts nothing, construct $\mathsf{TM}\ N$ which simulates M on N's own input w and obviously has no useless state except the one q_{accept} .
- 5.14 Reduce from A_{TM} . To determine whether $\mathsf{TM}\ M$ accepts w, construct $\mathsf{TM}\ N$ which simulates M on N's own input w but never attempts to move its head left when its head is on the left-most tape cell unless when M accepts.
- 5.15 Let M' be M after modifying all its transitions $\delta(q_i, a) = (q_{\text{accept}}, b, X)$ to $\delta(q_i, a) = (q_{\text{reject}}, b, X)$, and then modifying all $\delta(q_i, a) = (q_j, b, L)$ to $\delta(q_i, a) = (q_{\text{accept}}, b, R)$. The problem is now reduced to checking whether M', as a TM with stay put instead of left described in Problem 3.13, accepts w. It is easy since L(M') is regular by the solution to Problem 3.13.
- 5.16 Suppose for the sake of contradiction that BB is computable. Then obviously there exists a TM M having k states (let k be sufficiently large), which writes BB(n) + 1 1s on the tape, when given input $\langle n \rangle$. Further, using M we can construct a series of TMs M_n having exactly k + n/2 states for large n, which writes BB(n) + 1 1s on the tape when started with a blank tape. However, then M_{2k} , as a 2k-state TM, would write BB(2k) + 1 1s. Absurd.
- 5.17 Obviously, in this case a PCP instance P always has a match unless all dominos in P have longer top strings, or they all have longer bottom strings.
- 5.18 Reduce from *PCP*, since any string with finite alphabet can be encoded to a binary one.
- 5.19 Trivial.
- 5.20 We can encode any language to the one over the unary alphabet.
- 5.21 The hint in the textbook is sufficient.
- $5.22 \Leftarrow: Trivial.$
 - \Rightarrow : Let $f(x) = \langle M, x \rangle$, where TM M is A's recognizer.
- 5.23 \Leftarrow : Trivial, since 0^*1^* is surely decidable.
 - \Rightarrow : Suppose there is an A's decider, then f defined as follows is computable.

$$f(x) = \begin{cases} 01, & x \in A \\ 10, & x \notin A \end{cases}$$

- 5.24 It immediately follows from $A_{\mathsf{TM}}, \overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} J$.
- 5.25 $\overline{E_{\mathsf{TM}}} \leq_{\mathsf{m}} A_{\mathsf{TM}}$ by Problem 5.22 and it is well known that $A_{\mathsf{TM}} \leq_{\mathsf{m}} E_{\mathsf{TM}}$. By the way, it is not difficult to construct an undecidable language B such that $B \equiv_{\mathsf{m}} \overline{B}$.
- 5.26 The idea is the same as how we deal with A_{LBA} and E_{LBA} .
- 5.27 Prove that $A_{\mathsf{TM}} \leq_{\mathsf{m}} E_{\mathsf{2DIM-DFA}} \leq_{\mathsf{m}} EQ_{\mathsf{2DIM-DFA}}$, in which the former reduction can be done by computation history method.

- *5.28 Refer to the textbook.
- 5.29 The case P is not nontrivial is trivial. As for the second condition, let $P = \{\langle M \rangle \mid \mathsf{TM} \ M \text{ has } 100 \text{ states} \}$.
- 5.30 Trivial.
- 5.31 Let M be a TM which on input $\langle x \rangle$ $(x \in \mathbb{Z}^+)$ calculates $x, f(x), f(f(x)), \ldots$ until it finds some $f^{(n)}(x) = 1$, and then accepts. Let N be a TM uses H to calculate whether $\langle M, x \rangle \in A_{\mathsf{TM}}$ for $x = 1, 2, \ldots$ in order, until it finds some $\langle M, x \rangle \notin A_{\mathsf{TM}}$, and then accepts. We have the positive answer to the 3x + 1 problem if and only if $\langle N, 0 \rangle \notin A_{\mathsf{TM}}$.
- 5.32 a. As hinted, reduce from *PCP*.
 - b. Reduce from $OVERLAP_{\mathsf{CFG}}$ by constructing a grammar whose rules are G's and H's rules and $S \to S_G \$ | $S_H \$, where S_G and S_H are G's and H's start variables.
- 5.33 Refer to the proof of undecidability of ALL_{CFG} . Let $w = \#C_1 \#C_3 \#C_5 \#\cdots \#C_6^{\mathcal{R}} \#C_4^{\mathcal{R}} \#C_2^{\mathcal{R}} \#.$
- 5.34 Reduce from A_{TM} . To determine whether $\mathsf{TM}\ N$ accepts w, construct $\mathsf{TM}\ M$ which simulates N on M's own input w but never modifies the portion of the tape that contains the input w unless when N accepts.
- 5.35 a. Just enumerate w.
 - b. Reduce from ALL_{CFG} . In order to determine wether $L(G) = \Sigma^*$, construct a grammar whose rules are G's rules and $S \to S_G \mid T; T \to aT \mid \epsilon \ (a \in \Sigma)$, where S_G are G's start variable.
- *5.36 See https://cstheory.stackexchange.com/q/39407/46760 for two different solutions.

6 Advanced Topics in Computability Theory

- 6.6 Let $M = P_{\langle N \rangle}$ and N print $q(\langle N \rangle) = \langle M \rangle$.
- 6.7 A TM that always loops.
- *6.8 Suppose for the sake of contradiction that f is a reduction from EQ_{TM} to $\overline{EQ_{\mathsf{TM}}}$. It is easy to generalize the fixed-point version of the recursion theorem to find $f(\langle M, N \rangle) = \langle M', N' \rangle$ such that M, N simulate M', N' respectively. Then $\langle M, N \rangle \in EQ_{\mathsf{TM}} \iff \langle M', N' \rangle \in \overline{EQ_{\mathsf{TM}}} \iff \langle M, N \rangle \in \overline{EQ_{\mathsf{TM}}}$. Absurd.
- 6.9 Refer to the textbook.
- 6.10 Refer to the textbook.
- *6.11 ($\mathbb{R}, =, <$).
- 6.12 Refer to the textbook.
- 6.13 Since \mathbb{Z}_m is finite, any sentence in the language of \mathcal{F}_m can be decided by brute-force checking.
- 6.14 Let $J = 0A \cup 1B$.
- 6.15 Let $B = A_{\mathsf{TM}^A} = \{ \langle M^A, w \rangle \mid M^A \text{ accepts } w \}$. Then apply any classical method used in proving undecidablity of A_{TM} .
- *6.16 (Kleene-Post) For convenience let any language L be a subset of \mathbb{N} instead of Σ^* . Denote $\{0, 1, \ldots, m\}$ by [m]. Define

$$\mathcal{L}_m(A) = \{ L \subseteq \mathbb{N} \mid L \cap [m] = A \} \quad (A \subseteq [m])$$

Let M_0, M_1, M_2, \ldots be all possible oracle TMs. We will give two series of families of languages $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots$ and $B_0 \supseteq B_1 \supseteq B_2 \supseteq \cdots$ such that

$$\forall A \in \mathcal{A}_n, B \in \mathcal{B}_n, \ M_n^A$$
 is not B's decider and M_n^B is not A's decider.

Then taking arbitrary $A \in \mathcal{A} = \bigcap_{n \in \mathbb{N}} \mathcal{A}_n$ and $B \in \mathcal{B} = \bigcap_{n \in \mathbb{N}} \mathcal{B}_n$ we have $A \nleq_{\mathrm{T}} B$ and $B \nleq_{\mathrm{T}} A$. We build them by induction. Given $\mathcal{A}_{n-1} = \mathcal{L}_m(X)$ and $\mathcal{B}_{n-1} = \mathcal{L}_m(Y)$, we first find $\mathcal{A}'_n \subseteq \mathcal{A}_{n-1}$ and $\mathcal{B}'_n \subseteq \mathcal{B}_{n-1}$ such that $\forall A \in \mathcal{A}'_n, B \in \mathcal{B}'_n, \ M_n^A$ is not B's decider.

- If there is no $A \in \mathcal{A}_{n-1}$ such that M_n^A is a decider, let $\mathcal{A}'_n = \mathcal{A}_{n-1}$ and $\mathcal{B}'_n = \mathcal{B}_{n-1}$.
- Suppose M_n^A is a decider with some $A \in \mathcal{A}_{n-1}$, then there exists an m' > m such that

$$\forall A' \in \mathcal{L}_{m'}(A \cap [m']), \ m+1 \in L(M_n^A) \iff m+1 \in L(M_n^{A'}).$$

Then, let $\mathcal{A}'_n = \mathcal{L}_{m'}(A \cap [m'])$, $\mathcal{B}'_n = \mathcal{L}_{m'}(Y)$ or $\mathcal{L}_{m'}(Y \cup \{m+1\})$, depending on whether $m+1 \in L(M_n^A)$.

The same method can be also used to find $\mathcal{A}_n \subseteq \mathcal{A}'_n$ and $\mathcal{B}_n \subseteq \mathcal{B}'_n$ such that $\forall A \in \mathcal{A}_n, B \in \mathcal{B}_n, M_n^B$ is not A's decider.

*6.17 Let

$$A = \{ \langle M, w \rangle \mid \mathsf{TM}\ M \text{ on input } w \text{ halts with 0 on its tape} \}$$

$$B = \{ \langle M, w \rangle \mid \mathsf{TM}\ M \text{ on input } w \text{ halts with 1 on its tape} \}$$

If there is a C's decider N, we can construct TM M which on input w first run N on $\langle M, w \rangle$ to know that M would not halt with $x \in \{0, 1\}$ on M's tape, and then violates it.

- 6.18 Suppose $L(M) \neq L(N)$, we can enumerate x to find one such that $\langle M, x \rangle \in A_{\mathsf{TM}} \oplus \langle N, x \rangle \in A_{\mathsf{TM}}$ holds, where \oplus means exclusive or.
- $6.19 \ |\{L(M^A) \mid M^A \text{ is an oracle } \mathsf{TM}\}| \leq |\{M^A \mid M^A \text{ is an oracle } \mathsf{TM}\}| \leq \aleph_0 < 2^{\aleph_0} = |\{L \mid L \text{ is a language}\}|.$

- 6.20 Let M be PCP's recognizer. Then check whether $\langle M, \langle P \rangle \rangle \in A_{\mathsf{TM}}$ to know if instance P has a match.
- 6.21 Since $K(x) \le |x| + c$, we can check all possible minimal description $\langle M, w \rangle$ to see if M on input w halts with x on its tape by simulating M, where "possible" means that $|\langle M, w \rangle| < |x| + c$ and $\langle M, w \rangle \in A_{\mathsf{TM}}$.
- 6.22 Trivial.
- 6.23 Reduce from Problem 6.24.
- 6.24 Reduce from Problem 6.25.
- 6.25 If not, there is an enumerator E which would print infinite many incompressible strings one by one: s_1, s_2, \ldots By using E we can construct TM M, which prints an incompressible string s_i , such that $|s_i| > |\langle M, 0 \rangle|$, on its tape. Then we have $K(s_i) \le |\langle M, 0 \rangle| < |s_i|$. Absurd.
- *6.26 Solution 1. Suppose for the sake of contradiction that $K(xy) \le K(x) + K(y) + c$ always holds. Define

$$f_n = \sum_{|x|=n} 2^{-K(x)}.$$

Then $K(xy) \le K(x) + K(y) + c \implies f_{n+m} \ge 2^{-c} f_n f_m \implies f_{kn} \ge (2^{-c} f_n)^k$. On the other hand, Corollary 6.30 implies $f_n \le n+1$. Therefore,

$$f_n \le 2^c \sqrt[k]{f_{kn}} \le 2^c \sqrt[k]{kn+1}.$$

Letting $k \to +\infty$ we obtain that $f_n \leq 2^c$ for all n. However, there is a TM M which on input $\langle p,q \rangle$ $(p,q \in \mathbb{N} \text{ and } q < 2^{2^p})$ halts with r(p,q), a 2^p -bits binary representation of q, on its tape. So $K(r(p,q)) \leq 2\log_2 p + \log_2 q + d$ with some constant d. Then, if $n = 2^p$ for some large p,

$$f_n = \sum_{|x|=n} 2^{-K(x)} \ge \sum_{q < 2^n} 2^{-K(r(p,q))} \ge 2^{-2\log_2 p - d} \sum_{q < 2^n} \frac{1}{q} \ge \frac{n}{2^d (\log_2 n)^2},$$

which apparently contradicts with $f_n \leq 2^c$.

Solution 2. $\forall c$, the following process of choosing x and y constructs the inequality directly.

First, select an incompressible string w with length n. Denote its prefix string of length $\frac{1}{2} \log n$ as u. Let number p equal the value of 1u when perceived as a binary number.

Then, divide w into two substrings w = xy, where $|x| = \frac{1}{2} \log n + p$ and |y| = n - |x| (since $p < 2^{\frac{1}{2} \log n + 1} = 2\sqrt{n}$, |y| > 0 is a valid string as long as n is large enough).

We observe that since w is incompressible, $K(xy) \ge n$. Also, $K(y) \le |y| + c_1$ for some constant c_1 independent of n.

We claim that $K(x) \leq p + c_2$ for some constant c_2 independent of n. In fact, the following Turing machine M generates x when the input string is the tail string of x with length p:

M="With input string z:

Calculate q = |z| and write q in binary representation on the tape;

Remove the leading character 1 of q, append q with z, and output them together."

Now, with all the above claims, we get $K(xy) - (K(x) + K(y) + c) \ge \frac{1}{2} \log n - (c_1 + c_2 + c) > 0$ as long as n is large enough.

6.27 Show that $\overline{HALT_{TM}} \leq_{\mathrm{m}} S, \overline{S}$

6.28 a.
$$x = 0 \iff \forall y, x + y = y$$

b.
$$x = 1 \iff \forall u, \ u = 0 \land x + u = 1$$

c.
$$x = y \iff \forall z, z = 0 \land x + z = y$$

d.
$$x < y \iff \exists z, \ \neg(z = 0) \land x + z = y$$

7 Time Complexity

7.13 $a^b = (a^{\lfloor b/2 \rfloor})^2 \cdot a^{b \mod 2}$, where $a, b \in \mathbb{N}$.

7.14 $q^t = (q^{\lfloor t/2 \rfloor})^2 \cdot q^{t \mod 2}$, where $q \in S_k$ and $t \in \mathbb{N}$.

7.15 The hint in the textbook is sufficient.

7.16 Refer to the textbook.

7.17 Use dynamic programming. Denote $dp[i][j] = \mathbf{1}\{\langle \{x_1, \dots, x_i\}, j \rangle \in SUBSET\text{-}SUM\}$, where $\alpha \implies \mathbf{1}\{\alpha\} = 1$ and $\neg \alpha \implies \mathbf{1}\{\alpha\} = 0$.

7.18 First $A \in P = NP$. Then since there exist $x \in A$ and $y \notin A$, for an arbitrary language $B \in NP = P$, f defined as follows is polynomial time computable.

$$f(w) = \begin{cases} x, & w \in B \\ y, & w \notin B \end{cases}$$

*7.19 Let the certificate of $q \in \mathbb{P}$ consist of

 $-g \in \mathbb{Z}_m^*$ such that $g^{m-1} = 1$ and $g^{(m-1)/q} \neq 1$ for all prime $q \mid m-1$,

- the standard factorization of $m-1 = \prod q_i^{r_i}$,

– certificates of $q_i \in \mathbb{P}$.

7.20 It follows from the result of Problem 7.18.

7.21 a. Modify the proof of $PATH \in P$.

b. It is in NP evidently. For the other side, reduce from $\mathit{UHAMPATH}$ by setting k to the amount of nodes in G minus 1.

7.22 It is in NP evidently. For the other side, reduce from SAT. In order to determine whether $\langle \phi \rangle \in SAT$, construct $\phi' = \phi \wedge (z \vee \overline{z})$.

7.23 Refer to the textbook.

7.25 If there is no unitary negated clause in ϕ , then ϕ is satisfiable since we can just assign value 1 to all variables. However, if ϕ contains some clauses in the form $(\overline{x_i})$, then this implies that the only possible way to make ϕ true is to let those x_i equal 0. So ϕ can be reduced to some shorter formula repeatedly.

*7.36 It is in NP evidently. For the other side, reduce from 3SAT. If there is no limitation on Σ , let the following DFA correspond to an assignment to variables x_1, x_2, \ldots, x_n in 3cnf-formula ϕ . You may need some extra states and transitions.

Once you solved the problem without regard to the limitation on Σ , based on your solution, consider how to build a reduction where $\Sigma = \{0, 1\}$.

7.37 Using the computation history as certificate we easily obtain $U \in \text{NP}$. And it is easy to show that $3SAT \leq_{\text{P}} U$, by designing an NTM M, which accepts $\langle \phi \rangle$ in polynomial time on at least one branch if and only if $\langle \phi \rangle \in 3SAT$.

11

- *7.38 Let $\phi(x/t)$ denote the Boolean formula ϕ after replacing every existance of x in ϕ with t. Suppose there are n variables x_1, \ldots, x_n in ϕ . $\langle \phi \rangle \in SAT \Longrightarrow \langle \phi(x_1/0) \rangle \in SAT$ or $\langle \phi(x_1/1) \rangle \in SAT$, so we can directly assign 0 or 1 to x_1 . Recursively assigning x_2, \ldots, x_n in this way we have done.
- *7.39 Construct language $L = \{\langle n, x, y \rangle \mid n \text{ has a nontrivial factor in interval } [x, y] \}$, which is apparently in NP = P. Then refer to the solution to Problem 7.38.
- *7.40 Refer to the textbook.
- 7.41 Trivial.
- *7.42 For b), note that the complement graph of G induces an equivalence relation \sim on Q ([q] is exactly the equivalence class under \sim including q), which has much to do with $\equiv_{L(M)}$ defined in Problem 1.51.
- 7.43 Here is a sample for $\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_3})$.

And $\langle \phi \rangle \notin SAT \iff$ the equivalent minimal NFA is a trivial one.

- *7.44 It is a classical problem. See https://en.wikipedia.org/wiki/2-satisfiability or refer to Problem 7.51.
- 7.45 Trivial.
- 7.46 Since P is closed under complement, we only need to show that $\overline{MIN\text{-}FORMULA} \in NP = P$. It is easy to do because $SAT \in NP = P$, and then the certicifate for $\langle \phi \rangle \in \overline{MIN\text{-}FORMULA}$ can be $\langle \phi' \rangle$ such that $|\phi'| < |\phi|$ and they are equivalent.
- 7.47 $Z = \{\langle G_1, k_1, G_2, k_2 \rangle \mid \langle G_1, k_1 \rangle \in CLIQUE\} \{\langle G_1, k_1, G_2, k_2 \rangle \mid \langle G_2, k_2 \rangle \in CLIQUE\}.$
- *7.48 Obviously MAX- $CLIQUE \in DP$. Suppose there is a graph G = (V, E) with $V = \{v_1, v_2, \dots, v_n\}$. Denote $[n] = \{1, 2, \dots, n\}$. Let $G_+ = (V_+, E_+)$, where

$$\left\{ \begin{array}{l} V_{+} = \{(i,v_{j}) \mid i \in [n+1], \ v_{j} \in V\} \cup \{(i,\alpha) \mid i \in [n+1] - [k]\} \\ E_{+} = \{\{(i,u),(j,v)\} \mid i \neq j, \ \{u,v\} \in E\} \cup \{\{(i,\alpha),(j,v)\} \mid i \neq j, \ v \in V \cup \{\alpha\}\} \end{array} \right.$$

Then $\langle G, k \rangle \in CLIQUE \iff \langle G_+, n+1 \rangle \in MAX\text{-}CLIQUE$. Let G_- consist of G_+ and a n-clique (i.e., complete graph K_n). Then $\langle G, k \rangle \notin CLIQUE \iff \langle G_-, n \rangle \in MAX\text{-}CLIQUE$. Try to build a reduction by taking advantage of G_+ and G_- .

- *7.49 Need a solution.
- *7.50 $\overline{EQ}_{\mathsf{SF-REX}} = \{\langle R, S \rangle \mid \exists c, c \in L(R) \oplus c \in L(S) \}$. Determining whether $c \in L(R)$ can be achieved in (deterministic) polynomial time by constructing a corresponding NFA. Note that any $c \in L(R)$ for a star-free REX satisfies $|c| \leq \operatorname{Poly}(|R|)$.
- *7.51 Trivial.
- *7.52 Need a solution.
- *7.53 Need a solution.
- 7.54 Need a solution.

8 Space Complexity

- 8.8 Refer to Example 8.4.
- 8.9 Build an NTM which nondeterministically guesses a ladder s, s_2, \ldots, s_k and verifies whether $s_k = t$, where k is obviously bounded in $2^{\mathcal{O}(|s|)}$. Then $LADDER_{DFA} \in NPSPACE = PSPACE$ follows.
- 8.10 It can be reduced to FORMULA-GAME directly.
- 8.11 If so, SAT is PSPACE-hard, thus it is PSPACE-complete.
- 8.12 It is because $\phi_{c_1,c_2,1}$ in the proof of Theorem 8.9 can be written in conjunctive normal form, as we see in the proof of Theorem 7.37 (Cook–Levin theorem).
- 8.13 Reduce from TQBF. Clearly we can construct a $g(n) = n^{100} + 10^{100}$ space TM M deciding TQBF. Build mapping $f(\langle \phi \rangle) = \langle M', \langle \phi \rangle \$0^{g(|\langle \phi \rangle|)} \rangle$, where LBA M' does almost the same as M does. On the other side, obviously $A_{\mathsf{LBA}} \in \mathsf{PSPACE}$.
- *8.14 For any $\langle G, c, m, h \rangle$, here is a polynomial time algorithm. Let C[i][j] = +1 or -1 stand for that we can determine $\langle G, i, j, h \rangle \in HAPPY\text{-}CAT$ or $\langle G, i, j, h \rangle \in HAPPY\text{-}MOUSE$. Similarly let M[i][j] = +1 or -1 stand for that we can determine $\langle G, i, j, h \rangle \in HAPPY\text{-}MOUSE$ or $\langle G, i, j, h \rangle \in HAPPY\text{-}CAT$, where HAPPY-CAT is defined like HAPPY-CAT, except that Mouse moves first. Now we set M[i][i] = -1 and C[i][h] = -1 for all $i \in G$. Then, repeatedly assign new value to M and C according to the following rules until we get nothing more from the rules.

$$\begin{cases} C[i][j] = -1, & \forall i' \in N(i), \ M[i'][j] = +1 \\ C[i][j] = +1, & \exists i' \in N(i), \ M[i'][j] = -1 \\ M[i][j] = -1, & \forall j' \in N(j), \ C[i][j'] = +1 \\ M[i][j] = +1, & \exists j' \in N(j), \ C[i][j'] = -1 \end{cases}$$

where N(v) stands for the collection of all nodes adjacent to v in G. After this calculation, we claim that $\langle G, c, m, h \rangle \in HAPPY\text{-}CAT \iff C[c][m] = +1$. The proof of correctness of the algorithm is not evident but also not hard.

- 8.15 Need a solution.
- 8.16 Need a solution.
- 8.17 A left-to-right scan with memorizing the amount of non-matched (s is enough.
- *8.18 Let h be a homomorphism that maps brackets to parentheses, e.g., h(([)][]) = (())(). Denote the substring of w from the i-th character to the j-th character as $w_{[i,j]}$ and $w_i = w_{[i,i]}$. Then, $w \in B$ if and only if
 - $-h(w) \in A$, where A is defined in Problem 8.17.
 - w_i matches w_j whenever $h(w_{[i+1,j-1]}) \in A$, for all $1 \le i \le j \le |w|$.
- *8.19 It is a classical problem. See https://en.wikipedia.org/wiki/Nim.
- 8.20 Need a solution.
- 8.21 Need a solution.
- 8.22 Need a solution.
- *8.23 Suppose G = (V, E) has n nodes named $v_0, v_1, \ldots, v_{n-1}$ and define $v_k = v_{k \mod n}$. Consider the sequence consisting of *directed* edges in G, by seeing an undirected edge as two directed ones: w_0, w_1, w_2, \ldots , where

$$w_{m+1} = (v_j, v_k)$$
, if $w_m = (v_i, v_j)$ and $\{v_j, v_{i+1}\}, \{v_j, v_{i+2}\}, \dots, \{v_j, v_{k-1}\} \notin E$.

G contains no cycle if and only if for every $w_0 = (u, v)$, the first w_r in the sequence such that $w_r = (\cdot, u)$ is (v, u). You may assume G is connected without loss of generality and then use mathematical induction on n to prove this. Note that the sequence w_0, w_1, w_2, \ldots would traverse every edges in G, i.e., perform depth-first search, if G is a tree.

*8.24 **Solution 1.** Let $N_i^{(n)}$ be an NFA given as follows, with $\Sigma = \{x_1, \dots, x_n\}$.

Denote its corresponding regular expression as $R_i^{(n)}$. Then the shortest string which is not in $R_1^{(n)} \cup R_2^{(n)} \cup \cdots \cup R_n^{(n)}$ is $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1 \cdots \mathbf{x}_n \cdots \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_1$, which is of length $2^n - 1$.

Solution 2. See https://math.stackexchange.com/a/79031/134950 for a simpler solution involving number theory.

- 8.25 Surely $BIPARTITE \in \text{coNL} = \text{NL}$, since we can guess an odd cycle, whose length is no more than n, to verify $\langle G \rangle \notin BIPARTITE$.
- 8.26 Here is a sample which shows how to do reduction.

- 8.27 Reduce from *PATH*. In order to determine whether a path from s to t exists in graph G = (V, E), we add some edges (v, s) and (t, v) for all $v \in V$ to obtain a modified graph G'. Then a path exists if and only if G' is strongly connected. On the other side, it is obviously in NL.
- 8.28 Need a solution.
- 8.29 Need a solution.
- 8.30 Need a solution.

*8.31 Note that $\neg x \lor y = x \to y$. Then there is a path from s to t in G = (V, E) if and only if

$$\phi = s \wedge (t \to \neg s) \wedge \bigwedge_{(u,v) \in E} (u \to v)$$

is not satisfiable. Hence $\overline{PATH} \leq_{\mathbf{L}} 2SAT$. And \overline{PATH} is NL-complete by NL = coNL. On the other side, you can use the similar approach to show that $2SAT \in \mathbf{NL}$.

- 8.32 Need a solution.
- *8.33 In other words, you are asked to find an NL-complete language A and a context-free language B such that $A \equiv_{\mathbf{L}} B$. We choose A = PATH and $\{0, 1, \#\}^* \supseteq B = f(A)$, in which $f : A \to B$ is defined as follows.

$$f(\langle G, s, t \rangle) = \langle s \rangle^{\mathcal{R}} (\# \langle e_1 \rangle \langle e_2 \rangle \cdots \langle e_m \rangle \#)^n \langle t \rangle,$$

where
$$G = (V, E), |V| = n, E = \{e_1, \dots, e_m\}, \langle e_i \rangle = \#\langle u_i \rangle \#\langle v_i \rangle^{\mathcal{R}} \# \text{ if } e_i = (u_i, v_i).$$

*8.34 Refer to the textbook.

9 Intractability

- 9.12 $SAT \in TIME(n^k)$ cannot implies $NP \subseteq TIME(n^k)$.
- 9.13 Trivial.
- 9.14 Note that $A \in \text{NTIME}(2^{n^k}) \implies pad(A, 2^{n^k}) \in \text{NP}$, and $pad(A, 2^{n^k}) \in \text{P} \implies A \in \text{TIME}(2^{n^{k+1}})$.
- 9.15 Refer to the textbook.
- 9.16 The proof of Theorem 8.9 shows that a language $L \in SPACE(f(n))$ can be reduced to the TQBF problem with a log space reduction h such that $|h(w)| = \mathcal{O}(f(|w|)^2)$. Letting $f(n) = n^3$ we will get $L \in SPACE(((n^3)^2)^{1/3}) = SPACE(n^2)$, thus $SPACE(n^3) \subseteq SPACE(n^2)$ if $TQBF \in SPACE(n^{1/3})$. Absurd.
- *9.17 Let n denote the length of input string for a certain 2DFA D. There is a TM using $\mathcal{O}(n^2)$ time to decide the language L(D) since D has at most $\mathcal{O}(n^2)$ configurations.
- 9.18 Let E(R) stand for $\langle R \rangle \in E_{\mathsf{REX}\uparrow}$. Then,
 - $-E(RS) \iff E(R) \wedge E(S),$
 - $-E(R \cup S) \iff E(R) \wedge E(S),$
 - $-E(R^*) \iff E(R).$
- 9.19 Refer to the solution to Problem 7.38.
- 9.20 Need a solution.
- 9.21 a. Trivial, since SAT is NP-complete and \overline{SAT} is coNP-complete.
 - b. If so, let $J = 0SAT \cup 1\overline{SAT}$. We have $SAT, \overline{SAT} \leq_{P} J \in P^{SAT,1}$.
- 9.22 We query A and B for the value of $\phi = \exists x_1 \forall x_2 \exists x_3 \dots [\psi]$. If they do not agree with each other, let them play the formula game on ϕ , after which we adopt the winner's opinion.
- 9.23 Need a solution.
- 9.24 Refer to Problem 9.25.
- *9.25 You already have an $\mathcal{O}(n)$ one, if following the hint given in Problem 9.24b.

10 Advanced Topics in Complexity Theory

10.8 Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A. Denote the substring of w from the a-th character to the b-th character as $w_{[a,b]}$. Recursively, i.e., using divide and conquer solve that

is
$$\delta(q_i, w_{[a,b]}) = q_j$$
? $(q_i, q_j \in Q)$

for a series of (a, b)s.

*10.9 Suppose A has size—depth complexity $(f(n), \mathcal{O}(\log n))$, directly write a Boolean formula according to A's circuit. It already has polynomial size due to the $\mathcal{O}(\log n)$ depth. On the other side, note that

$$\phi(\psi, x_1, \dots, x_n) = (\neg \psi \land \phi(0, x_1, \dots, x_n)) \lor (\psi \land \phi(1, x_1, \dots, x_n))$$

where ϕ, ψ are Boolean formulas, which can be used appropriately (choose ψ carefully and use the above transformation in a recursive manner) to rewrite a f(n) size Boolean formula within $\mathcal{O}(\log f(n))$ depth.

*10.10 Denote the length of input by n as usual. For a language decided by a k-PDA P, we can use dynamic programming to decide it in polynomial time, thereby proving $\bigcup_k \text{PDA}_k \subseteq P$. To be specific, let

$$dp[(q, x, p_1, \dots, p_k)][(q', x', p'_1, \dots, p'_k)] \in \{0, 1\} \quad (q, q' \in Q, x, x' \in \Gamma, p_i, p'_i \in \{0, 1, \dots, n\})$$

stand for whether when P is started with configuration (q, x, p_1, \ldots, p_k) , it can reach $(q', x', p'_1, \ldots, p'_k)$, and these two configuration have the same stack except the difference between x and x', and meanwhile P never pops x.

On the other side, we can use a k-PDA P for some k to simulate an arbitrary $\mathcal{O}(\log n)$ space alternating TM, thereby proving $\bigcup_k \operatorname{PDA}_k \supseteq \operatorname{AL} = \operatorname{P}$. Nondeterminism or alternation will not be an issue since a PDA can do depth-first search due to its having a stack. The following facts can help you simulate an $\mathcal{O}(\log n)$ work tape. Let p_1, \ldots, p_k ($\in \{0, 1, \ldots, n\}$) denote the positions of k input heads of a k-PDA P. There exists $m = k + \mathcal{O}(1)$ such that P can manipulate p_1, \ldots, p_m in these manners:

- Test whether x=0, or set x:=0, or set $x:=x\pm 1$ (abbreviated as x_{+1} or x_{-1}).
- -y:=x, which can be implemented by

$$y := 0$$
; $z := 0$; while $z \neq 0$ do $\{x_{-1}; y_{+1}; z_{+1}\}$; while $z \neq 0$ do $\{z_{-1}; x_{+1}\}$;

- repeat x times doing W, which can be implemented by
 - y := x; while $y \neq 0$ do $\{y_{-1}; W\}$;
- $-z = x \pm y$, z = xy, z = |x/y|, and so on.

Implement those functions necessary for you to simulate an $\mathcal{O}(\log n)$ read/write work tape.

- 10.11 Trivial
- 10.12 $L \in \prod_1 P \iff \overline{L} \in \Sigma_1 P = NP$, so if P = NP then $P = \prod_1 P$.

 $L \in \Sigma_2 P \iff L = \{w | \exists x \forall y \langle x, y, w \rangle \in C\}$ where $C \in P \iff L = \{w | \exists x \langle x, w \rangle \in C'\}$ where $C' \in \prod_1 P$, so if P = NP then $P = \Sigma_2 P$.

Using the same method can prove that if P = NP then $\forall k \ P = \sum_k P = \prod_k P$.

- 10.13 If PH = PSPACE, then $\forall L \in PH$, $L \leq_P TQBF$. So, if $TQBF \in \Sigma_k P$, then all the languages in $\Sigma_i P$ or $\prod_i P$ where i > k can be reduced to $\Sigma_k P$. Therefore, there is no difference between these hierarchies.
- $10.14 \ L \in \Sigma_2 P$

 $\iff L = \{w | \exists x \forall y \langle x, y, w \rangle \in C\}$ where C is decidable in polynomial time

$$\iff L = \{w | \exists x \langle x, w \rangle \in C'\} \text{ where } C' = \{\langle x, w \rangle | \forall y \langle x, y, w \rangle \in C\}$$

Because $\overline{C'} = \{\langle x, w \rangle | \exists y \langle x, y, w \rangle \in \overline{C} \}$ and \overline{C} is decidable in polynomial time, we know that $\overline{C'} \in NP$. Therefore $\overline{C'}$ is decidable with oracle SAT in polynomial time. So C' is also decidable with oracle SAT in polynomial time and this should tell us that $L = \{w | \exists x \langle x, w \rangle \in C'\} \iff L \in NP^{SAT}$

- *10.15 See https://en.wikipedia.org/wiki/Proofs_of_Fermat\%27s_little_theorem.
- 10.16 Refer to the textbook.
- 10.17 Use similar method in Problem 10.22.
- 10.18 Since A is a regular language, there exists a DFA M recognizing A. Just constructing a branching program of depth n along the possible paths within n transitions in M gives the right proof. The following conversion from a DFA to a branching program of n(=3) variables should explain the way to do that. So, the size is at most $|Q_M| \times n$.

10.19 Obviously RP \subseteq NP. We only need to show that if NP \subseteq BPP then NP \subseteq RP. Since SAT is NP complete, we only need to show SAT \in RP. Given a formula ϕ with m variables, find a BPP algorithm B with error probability 2^{-m-1} (the assumption that SAT \in BPP guarantees this). We can run B on ϕ , if it rejects then the RP algorithm R rejects. Otherwise we randomly choose an assignment to the variable x_1 and run B on the reduced formula. If it rejects then we change the value of x_1 . Then we perform similar steps for $x_2, x_3, ..., x_m$, and in the end test whether the resulting formula is true and we accept or reject accordingly.

- 10.20 See https://en.wikipedia.org/wiki/ZPP_(complexity)#Intersection_definition
 - One note for tackling the difference between worst-time and averaged-time: take the time consumed on a random input as a random variable, and apply Markov's Inequality to it.
- 10.21 Show that $3SAT \leq_P \overline{EQ_{BP}}$: $\phi \in 3SAT$ iff $L(B1) \neq L(B2)$, where B_1 is a branching program which unconditionally outputs 0 and B_2 is a branching program constructed from ϕ so that ϕ is satisfiable iff B_2 can reach the output node 1 with the corresponding assignment of variables.
- 10.22 Suppose A is a language that is decided by a probabilistic logarithmic space TM M with error probability $\frac{1}{3}$, we can construct a polynomial time algorithm that calculates the probability that string w of length n is accepted by M. Then we compare it with $\frac{2}{3}$. The algorithm is described as follows.

First, build a graph G according to M and w. The vertices of G are possible configurations of M under input string w (see *Definition 8.20* for the definition of configuration under current context) and the directed edges of G show whether a configuration can be transited into another within one deterministic step or one flip-coin step of M.

We claim that G is a DAG, because otherwise M is not a decider for string w (it can fall into loops and never terminate). Also, since M runs in logarithmic space, the size of G is bounded by some polynomial of n.

Then, we can calculate the acceptance probability on G in polynomial time using techniques of topological sorting and dynamic programming.