Numerical Methods for Stochastic Differential Equations. Exercise 1. Decay from an unstable steady state. Due date: October 23, 2023

Consider $\dot{x}(t) = ax - bx^3 + \sqrt{D}\xi(t)$ where $\xi(t)$ is a Gaussian white noise of zero mean and correlation $\langle \xi(t)\xi(t')\rangle = \delta(t-t')$. Take $a=4,\ b=1,\ D=0.01,\ x(0)=0$ as initial condition and use h=0.001 as integration time step.

- a) Trajectories: Integrate numerically 20 trajectories until time t=4 storing data every $\Delta t=0.01$ and plot them. Discuss the results.
- b) Transient anomalous fluctuations: Evaluate $\langle x(t) \rangle$, $\langle x(t)^2 \rangle$ and $\langle x(t)^4 \rangle$, where $\langle ... \rangle$ stands for averages over trajectories, sampling at intervals $\Delta t = 0.01$. Use 1000 trajectories for the averages. Plot the results and also the variance of x^2 , namely $\sigma_{x^2}^2(t) = \langle x(t)^4 \rangle \langle x(t)^2 \rangle^2$ and show that it goes through a maximum at an intermediate time. Discuss the results.
- c) Probability density function: Integrate numerically 5000 trajectories and evaluate an histogram for the distribution of x at times t = 0.6, t = 0.9, t = 1.2, t = 1.5, t = 1.8, t = 3 and t = 4. Normalize the histogram such that the total area is 1 and so that it corresponds to the probability distribution of x at these times and plot the results. Discuss the changes in shape.
- d) First passage time distribution: Integrate the equations numerically to generate 5000 trajectories until the trajectory reaches $|x(t)| = x_b = 0.5$, recording the time at which the trajectory reaches that value. Plot a histogram of the distribution of the times normalized such that the total area is 1, this is known as the first passage time distribution. Is it symmetrical? Discuss the results.
- e) Mean first passage time: Generate 5000 trajectories as before evaluating the average of the time at which trajectories reach $|x(t)| = x_b = 0.5$ (mean first passage time) for D = 0.1, D = 0.01, D = 0.001, and D = 0.0001. Plot the results as function of $\ln D$. Compare with $(-1/2a) \ln D$.
- f) Include the listing of the programs.