

Estudio comparativo de *pipelines* de análisis de *small non-coding RNAs (sncRNA)*

Álvaro Santacruz Roco

Máster en Bioinformática y Bioestadística

Área 4: Análisis de datos ómicos

Tutora: Mireia Ferrer Almirall

Profesor responsable de la asignatura: Antoni Pérez Navarro

06/06/2022

- 1. Revisión de pipelines disponibles para el análisis de small non-coding RNAs (sncRNA)
 - Búsqueda bibliográfica: Pubmed, Web of Science, Github,...
 - Estudio comparativo de *pipelines*: estructura, tipos *sncRNA*, herramientas,...

- 2. Estudio comparativo del análisis de *sncRNA* realizado por diferentes *pipelines*
 - Selección de pipelines: estrategia alineamiento, tipos sncRNA, tipos de análisis,...
 - Análisis de *sncRNAs (miRNAs)* en un *dataset* con los *pipelines* seleccionados

Esquema general de un pipeline de análisis de sncRNAs

1. Dataset y análisis de calidad

Stanford, CA 94305; and *Chan Zuckerberg Biohub, San Francisco, CA 94158

A mouse tissue atlas of small noncoding RNA

Alina Isakova , Tobias Fehlmann , Andreas Keller , and Stephen R. Quake , 6,0,1

*Department of Bioengineering, Stanford University, Stanford, CA 94305; Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Department of Neurology, School of Medicine, Stanford University, Stanford, CA 94305; Department of Applied Physics, Stanford University, Stanford, CA 94305; Department of Applied Physics, Stanford University, Stanford, CA 94305; Department of Applied Physics, Stanford University, Stanford, CA 94305; Department of Applied Physics, Stanford University, Stanford, CA 94305; Department of Applied Physics, Stanford University, Stanford, CA 94305; Department of Applied Physics, CA 94

Contributed by Stephen R. Quake, July 29, 2020 (sent for review February 10, 2020; reviewed by John C. Marioni and Igor Ulitsky)

Library strategy	ncRNA-Seq
Library source	transcriptomic
Library selection	size fractionation
Instrument model	Illumina NextSeg 50

FICHEIOS DE SINA	Muestias	JEXU		
SRR7807267	Lung F1	Hembra		
SRR10695926	Lulig_i I	Hembra		
SRR7807270	Lung F2	Hembra		
SRR10695929	Lung_i Z	Ticilibra		
SRR7807271	Lung_F3	Hembra		
SRR10695930	Lung_i 3	Tiembia		
SRR7807259	Lung M1	Macho		
SRR10695918	Lung_ivi1	Widerio		
SRR7807260	Lung M2	Macho		
SRR10695919	Lung_IVIZ	Widerio		
SRR7807261	Lung M3	Macho		
SRR10695920				

Sexo

Ficheros de SRA Muestras

Procesado de los ficheros .fastq:

FASTQC/MultiQC: análisis/control de calidad de muestras y visualización

Cutadapt 4.0: eliminación de adaptadores y secuencias de baja calidad

2. Selección pipelines

Published online 21 July 2021

NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3 1 https://doi.org/10.1093/nargab/lqab068

miRge3.0: a comprehensive microRNA and tRF sequencing analysis pipeline

Arun H. Patil and Marc K. Halushka

Department of Pathology, Division of Cardiovascular Pathology, Johns Hopkins University School of Medicine, Rattimore, MD 21205 USA

OPEN COMPSRA: a COMprehensive Platform for Small RNA-Seq data Analysis

> Jiang Li@1*, Alvin T. Kho², Robert P. Chase², Lorena Pantano 63, Leanna Farnam², Sami S. Amr 64 & Kelan G. Tantisira 1.5*

3. Análisis de expresión diferencial

Correlación de los perfiles de expresión de miRNAs

Análisis de miRNAs diferencialmente expresados

miRge3.0

Tipo de sncRNAs: miRNAs

Alineamiento de lecturas frente a librerías específicas de anotación

Anotación mediante librerías específicas a partir de miRBase

Tipo de sncRNAs: miRNAs, piRNAs, snRNAs, snoRNAs, tRNAs, circRNAs

Alineamiento de lecturas frente a genoma de referencia

Anotación mediante librerías específicas a partir de miRBase, piRNABank, piRBase, piRNACluster, gtRNAdb, GENCODE release 27, circBase.

nf-core/smrnaseq

Tipo de sncRNAs: miRNAs

Alineamiento de lecturas frente a librerías de anotación de miRBase: identificación de *miRNAs* y análisis de *isomirs*

Anotación mediante librerías específicas a partir de miRBase

Alineamiento frente a genoma de referencia: control de calidad e identificación de novel *miRNAs*

Análisis y control de calidad. FASTQC

Los valores medios de calidad de las secuencias y de *Phred score* de todas las muestras son correctos

Identificación y eliminación de los adaptadores (Illumina small RNA 3' adapater). Cutadapt 4.0

Análisis y control de calidad. FASTQC

Los valores atípicos son consecuencia del tipo de librería:

- Librerías de sRNAseq: secuencias cortas 20-76 (nucleótidos)

La muestra Lung_F3 sí es en realidad atípica:

- Alto contenido lecturas de 30 nucleótidos de longitud

Conclusión general del análisis de calidad:

Las muestras son adecuadas para llevar a cabo un análisis de sncRNAs

Mapped

97.1%

M Total

seqs

59.8

Resultados pipelines. Alineamiento de lecturas

miRge3.0 COMPSRA

Sample name(s)	Total Input Reads	Trimmed Reads (all)	Trimmed Reads (unique)	All miRNA Reads	Filtered miRNA Reads	Unique miRNAs	
Lung F1	20739536	20728333	1338516	11088664	10821633	555	
24.18 1	20700000	99.9%	6.45%	53.47%	52.18%	555	
Lung F2	17931049	17919074	1269486	10141292	10016198	564	
Lulig_F2	g_F2 1/931049	99.9%	7.08%	56.56%	55.86%	304	
Lung F3	20137854	20131926	569910	5270501	5167849	471	
Lulig_13		99.9%	2.83%	26.17%	25.66%	4/1	
Lung M1	25479710	25469227	686192	14745377	14629699	604	
Lulig_ivi1	254/9/10	99.9%	2.69%	57.87%	57.42%	604	
Lung M2	28669675	28655390	984313	16146363	16022545	639	
Lung_M2	20009073	99.9%	3.44%	56.32%	55.89%	639	
Lung M3	34230890	34212487	1261741	19949919	19804088	659	
Lulig_IVI3	34230890	99.9%	3.69%	58.28	57.85	039	

Sample	Total processed reads	Total input reads	Uniquely mapped reads	% Uniquely mapped reads	Multiple mapped reads	% Multiple mapped reads	% of reads unmapped
Lung_F1	20821100	20779213 99.79%	11439149	55.05	7558106	36.37	8.57
Lung_F2	18028815	17971780 99.68%	11125510	61.91	5625506	31.30	6.79
Lung_F3	20189824	20167472 99.88%	5558061	27.56	13683405	67.85	4.59
Lung_M1	25545228	25518199 99.89%	16737106	65.59	7411893	29.05	5.37
Lung_M2	28758079	28723260 98.87%	18031315	62.78	8839093	30.77	6.45
Lung_M3	34333318	34281857 99.85%	22665167	66.11	10019907	29.23	4.65

Lung_F1_*.hairpin	3.9	2.75%	28.9%	13.5
Lung_F1_*.mature	8.9	0.34%	41.7%	21.5
Lung_F2_*.genome	67.6	0.83%	98.2%	68.8
Lung_F2_*.hairpin	3.1	2.71%	28.9%	10.8
Lung_F2_*.mature	8.2	0.33%	44.6%	18.4
Lung_F3_*.genome	126.2	0.89%	98.9%	127.6
Lung_F3_*.hairpin	1.9	2.88%	11.3%	16.7
Lung_F3_*.mature	4.2	0.34%	20.4%	20.4
Lung_M1_*.genome	51.7	0.95%	97.4%	53.1
Lung_M1_*.hairpin	2.8	3.04%	20.6%	13.5
Lung_M1_*.mature	13.2	0.21%	50.6%	26.0
Lung_M2_*.genome	62.4	0.98%	97.1%	64.3
Lung_M2_*.hairpin	3.1	3.01%	19.8%	15.6
Lung_M2_*.mature	14.4	0.21%	49.1%	29.3
Lung_M3_*.genome	75.8	0.97%	97.9%	77.5
Lung_M3_*.hairpin	3.6	3.03%	20.2%	17.8
Lung_M3_*.mature	17.8	0.21%	51.1%	34.9

nf-core/smrnaseq

Error

rate

1.21%

M Reads

Mapped

58.0

Sample Name

Lung F1 *.genome

Mas del 95% de las lecturas válidas y alineadas para los tres pipelines

Lecturas alineadas frente a miRNAs:

- 52-57% para miRge 3.0
- 70% COMPSRA y nf-core/smrnaseq

La muestra Lung_F3 presenta valores atípicos en el resultado de los tres pipelines:

- miRge 3.0 y nf-core/smrnaseq : bajo número de lecturas alineadas frente a miRNAs
- COMPSRA: : elevado número de lecturas alineadas como Multiple mapped reads

Resultados pipeline miRge3.0

Sample name(s)	Hairpin miRNAs	mature tRNA Reads	primary tRNA Reads	snoRNA Reads	rRNA Reads	ncRNA others	mRNA Reads	Remaining Reads
Lung_F1	86362	2025418	26890	759389	2666510	1574963	877737	1622400 7.82%
Lung_F2	84607	2263985	21538	1259650	1518384	282121	667520	1679977 9.36%
Lung_F3	51424	11056388	14828	647420	1366104	124736	379381	1221144 6.06%
Lung_M1	39145	1114897	35843	6391052	1236845	165997	325088	1414983 5.55%
Lung_M2	41722	1656528	33490	6684429	1703325	217043	380034	1792456 6.25%
Lung_M3	48856	2088887	27259	7708025	1346355	232511	505762	2304913 6.73%

Lung_F3: elevado número de lecturas alineadas frente a tRNA

Resultados pipeline nf-core/smrnaseq

Análisis de calidad con miRTrace

100% lecturas miRNAs orden Rodentia

Resultados específicos pipeline miRge3.0

Top 40 *miRNAs* más abundantes en cada una de las muestras

Los *miRNAs* más abundantes son en su mayoría los mismos para todas las muestras, destacando por ejemplo *miR10a-5p, miR143-3p, miR181a-5p, miR26a-5p o miR30a-5p*

Resultados específicos pipeline miRge3.0

Cumulative isomiR variant type distribution of the samples

Proporción de *isomirs* con respecto a la región de la secuencia en la que se produce las variantes: region 3p

top 20 de *miRNAs* más abundantes: distribución de las lecturas en las regiones de la secuencia donde se producen las variantes

Resultados específicos pipeline miRge3.0

Análisis basado en supporting vector machine (SVM) novel miRNAs

id	Name	Probability	Chr	Start pos.	End Pos.	Mature miRNA sequence	<i>miRNA</i> read Count
1	Lung_F1_novel_miRNA_1	0.88	chr7	19327284	19327305	ACCGAUCCCGGGUUAGUCUCCU	14
2	Lung_F2_novel_miRNA_1	0.82	chr14	31128290	31128309	CUUAACCUGAAUUUCUGAGC	13
3	Lung_F3_novel_miRNA_1	0.99	chr14	31128290	31128309	CUUAACCUGAAUUUCUGAGC	16
4	Lung_M1_novel_miRNA_1	0.99	chr12	110663149	110663169	AUUCCAAAUGUCCUGCUUUCU	14
5	Lung_M1_novel_miRNA_2	0.82	chr14	31128290	31128309	CUUAACCUGAAUUUCUGAGC	10
6	Lung_M2_novel_miRNA_1	0.99	chr14	31128290	31128309	CUUAACCUGAAUUUCUGAGC	11
7	Lung_M3_novel_miRNA_1	0.99	chr1	55449415	55449434	UUGGUACUGAGGGAAUUAGA	13
8	Lung_M3_novel_miRNA_2	0.97	chr6	90772958	90772978	ACCCUGGACUGUCUACAAAUA	11
9	Lung_M3_novel_miRNA_3	0.91	chr7	19327284	19327305	ACCGAUCCCGGGUUAGUCUCCU	12
10	Lung_M3_novel_miRNA_4	0.82	chr14	31128290	31128309	CUUAACCUGAAUUUCUGAGC	11

miRNA localizado en el cromosoma 14. Identificado en todas las muestras excepto en Lung_F1

Análisis de expresión diferencial. Comparativa inicial entre pipelines

Análisis de expresión diferencial de *miRNAs*Ficheros de contaje obtenidos a partir de cada *pipeline*Fichero de contaje publicado por Isakova *et al.* 2020

1090 miRNAs comunes a los 3 pipelines
miRNAs en un solo pipeline: COMPSRA y miRge3.0 más miRNAs exclusivos

715 miRNAs comunes a los 3 pipelines con Isakova et al. 2020

COMPSRA se mantiene como el más diferente

Análisis de expresión diferencial. Análisis exploratorio

Valores normalizados correctos y agrupamiento adecuado de las muestras de acuerdo a los grupos macho y hembra en todos los casos

Análisis de expresión diferencial. Correlación de los perfiles de expresión

Perfil de expresión de *miRNAs* comunes entre *pipelines*

Valores de correlación entre 0,98 y 0,99 en todas las comparaciones

La cuantificación llevada a cabo por los tres *pipelines* a partir del alineamiento de lecturas es muy similar.

Análisis de expresión diferencial. *miRNAs* diferencialmente expresados

miRNAs diferencialmente expresados **DESEQ2**: log2FC absoluto mayor de 1 y padj menor de 0.05

Pipeline	Total	Upregulated	Downregulated	No significativos
miRge3.0	417	46	47	324
COMPSRA	733	77	93	563
nf-core/smrnaseq	558	56	65	437
Isakova et al. 2020	355	26	33	296

COMPSRA identifica el mayor número de *miRNAs* diferencialmente expresados

Significativos (log2FC absoluto mayor de 1 y padj menor de 0.05):

- COMPSRA identifica el mayor número
- el número de *upregulated* y *downregulated* es bastante similar para un mismo *pipeline*

Análisis de expresión diferencial. Comparativa miRNAs diferencialmente expresados y significativos

Heatmap: miRNAs diferencialmente expresados y significativos (log2FC absoluto mayor de 1 y padj menor de 0.05)

Se pueden identificar perfiles de expresión claramente específicos de sexo

COMPSRA

54

14

5

Análisis de expresión diferencial. Comparativa miRNAs diferencialmente expresados y significativos

nfcoresmrnaseq Isakova et al. 2020

9

3.0		
\		
/		

miRge3.0

miRNAs mmu-miR-101a mmu-miR-190a mmu-miR-409 mmu-miR-122 mmu-miR-193b mmu-miR-423 mmu-miR-125a mmu-miR-1943 mmu-miR-500 mmu-miR-125b mmu-miR-19a mmu-miR-532 mmu-miR-126a mmu-miR-21a mmu-miR-542 mmu-miR-128 mmu-miR-298 mmu-miR-582 mmu-miR-1298 mmu-miR-299a mmu-miR-598 mmu-miR-326 mmu-miR-677 mmu-miR-150 mmu-miR-328 mmu-miR-8112

miRNAs

mmu-let-7d-5p	mmu-miR-1298-5p	mmu-miR-17-3p	mmu-miR-19a-3p	mmu-miR-3109-3p	mmu-miR-34b-5p	mmu-miR-511-3p	mmu-miR-98-3p
mmu-let-7g-3p	mmu-miR-130b-3p	mmu-miR-181a-1-3p	mmu-miR-212-5p	mmu-miR-31-3p	mmu-miR-351-3p	mmu-miR-532-5p	mmu-miR-99a-3p
mmu-let-7i-3p	mmu-miR-130b-5p	mmu-miR-1843a-3p	mmu-miR-21a-5p	mmu-miR-326-3p	mmu-miR-409-3p	mmu-miR-542-3p	
mmu-miR-122-5p	mmu-miR-144-5p	mmu-miR-185-5p	mmu-miR-24-2-5p	mmu-miR-328-3p	mmu-miR-423-3p	mmu-miR-542-5p	
mmu-miR-125a-3p	mmu-miR-150-3p	mmu-miR-188-5p	mmu-miR-26b-3p	mmu-miR-331-3p	mmu-miR-423-5p	mmu-miR-582-5p	
mmu-miR-125a-5p	mmu-miR-150-5p	mmu-miR-18a-3p	mmu-miR-298-5p	mmu-miR-331-5p	mmu-miR-450b-3p	mmu-miR-598-3p	
mmu-miR-125b-1-3p	mmu-miR-151-5p	mmu-miR-190a-5p	mmu-miR-29a-5p	mmu-miR-335-3p	mmu-miR-455-3p	mmu-miR-6952-3p	
mmu-miR-126a-5p	mmu-miR-152-5p	mmu-miR-193b-3p	mmu-miR-301a-3p	mmu-miR-340-3p	mmu-miR-455-5p	mmu-miR-700-5p	
mmu-miR-128-3p	mmu-miR-15b-3p	mmu-miR-1943-5p	mmu-miR-3068-5p	mmu-miR-345-5p	mmu-miR-500-3p	mmu-miR-8112	
mmu-miR-1298-3p	mmu-miR-15b-5p	mmu-miR-1955-5p	mmu-miR-30c-1-3p	mmu-miR-34b-3p	mmu-miR-505-5p	mmu-miR-877-5p	

- La variedad en los *pipelines* disponibles hace que tanto el tipo de *sncRNAs* que se quieren analizar como el tipo de análisis que se quiera realizar sean aspectos importantes a tener en cuenta a la hora de seleccionar un *pipeline* de trabajo.
- Una posibilidad es analizar los datos con más de un *pipeline* y consensuar resultados, lo que puede hacer que estos sean más fiables o completos.
- Los tres *pipelines* utilizados han tenido un rendimiento en el alineamiento de lecturas similar, y superior al 95%, independientemente de si la estrategia de alineamiento está basada en un genoma de referencia o en librerías de anotación específicas.
- Sería necesario evaluar otros *pipelines* o utilizar otros *dataset* más complejos para confirmar si existen o no diferencias significativas entre ambas estrategias de alineamiento.
- El análisis de la calidad de las lecturas de las muestras utilizadas, así como su correcto procesamiento, son fundamentales para obtener buenos resultados. Un *dataset* con muestras con perfiles atípicos como la muestra Lung_F3 del *dataset* utilizado pueden afectar negativamente en los resultados obtenidos.
- Las diferencias en los programas utilizados por cada *pipeline* en cada uno de sus pasos, o incluso para un mismo programa, la configuración de los argumentos disponibles, da lugar a diferencias en el número de *sncRNAs* identificados, su cuantificación, etc... y afecta directamente a análisis posteriores como por ejemplo análisis de expresión diferencial.

https://github.com/asroco/TFM

Agradecimientos

Tutora: Mireia Ferrer Almirall

Muchas gracias por su atención