⑩ 日本 国特 許 庁 (JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭64-54749

⑤Int_Cl.・ 識別記号 庁内整理番号 ④公開 昭和64年(1989)3月2日 H 01 L 23/28 Z-6835-5F 6918-5F 23/50 G-7735-5F 審査請求 未請求 発明の数 4 (全 4 頁)

砂発明の名称 半導体装置およびその製造方法

②特 顋 昭62-211993

發出 願 昭62(1987)8月26日

大阪府門真市大字門真1006番地 松下電器產業株式会社内 勇 広 切祭 明 者 北 大阪府門真市大字門真1006番地 松下電器産業株式会社内 悠 司 藤 の発 明 者 近 大阪府門真市大字門真1006番地 松下電器產業株式会社内 立 郎 池 砂発 明 者 菊 大阪府門真市大字門真1006番地 松下電器產業株式会社内 喜 久 砂発 明 沯 高瀬 松下電器產業株式会社 大阪府門真市大字門真1006番地 頣 人 ⑪出 弁理士 中尾 敏男 外1名 20代 理 人

明 細 種

1、発明の名称

Λ

半導体装置およびその製造方法

- 2 、特許請求の範囲
- (1) 一群の金属製リードの上面に絶縁基板を設け、 前記絶縁基板上に半導体チップを搭載し、前記 半導体チップ上の電極と前記リードの上面を金 属細線で接続し、前記リードの下面の少なくと も一部を除いて樹脂体で被覆した半導体装置。
- (2) リードはその下面にリード突出部を有し、とのリード突出部を樹脂体から露出させた特許請求の範囲第1項記載の半導体装置。
- (3) 半導体チップの電極から金属細線で接続される金属リードの上面の接続領域を、周辺に比べ 突出させた特許請求の範囲第1項配数の半導体 装置。
- (4) リードは上面、および下面にリード突出部を有し、上面のリード突出部には前配半導体チップの電極に接続する金属細線の一端を接続し、前記リードの下面のリード突出部は樹脂体から

露出させた特許請求の範囲第1項記載の半導体 装置。

- (6) 一群の金属製リードの上面に絶縁基板を接着する工程、前記絶縁基板上に半導体チップを接着する工程、前記半導体チップ上の電極と航記リードの上面の一部を金属細級で接続する工程、少なくとも前記リード下面の一部を除いて街順体で被獲する工程からなる半導体装置の製造力は
- (G) 一件の金属製リードの上面と下面の一部とを 除いて樹脂封止する工程、前記リード群の上面 に絶縁基板を接着する工程、前記絶縁基板上に 半導体チップを接着する工程、前記半導体チップ プ上の電極と前記リードの上面の一部を金 級で接続する工程、少なくとも前記リード面 を除いて樹脂で被優する工程からなる半導体を 健の製造方法。
- (7) 一群の金属製リードの上面と下面の突出部を 餘いて樹脂体で封止する工程、前記リード上面 の樹脂部上に半導体チップを扱着する工程、前

記半導体チップ上の電質と前記リードの上面の 突出部を金属細線で接続する工程、少なくとも 前記リード下面を徐いて樹脂体で被覆する工程 からなる半導体装置の製造方法。

3、発明の詳細な説明

産業上の利用分野

本発明はICカード等に用いられる尊型・小型の半導体装置に関するものである。

従来の技術

近年、マイクロコンピュータ、メモリなどの集 関回路累子をブラスティック製カードに搭載また は内蔵したいわゆるICカードが実用に供されつ つある。

このICカードは、すでに多量に使用されている磁気ストライブカードに比して、記憶容量が大きく、防犯性に優れていることから、従来の磁気ストライブカードの用途ばかりでなく身分証明書等多様な用途に使用することが考えられている。

また、ICカードは、塩化ビニル樹脂等のブラスチックカードにリーダ・ライター等の外部装置

よって接続した両面配線基板であるので次のよう な問題がある。まず、スルーホール付き両面基板 であるため高価である。また、基板の耐熱温度が 低く、ワイヤボンディング時の基板加熱温度が制 限されるためボンディング工程の量産性・信頼性 に問題がある。

本発明は、上記問題点に鑑みてなされたもので、 高寸法精度かつ高能率に製造でき、しかも安価な 博型の半導体装置を提供するものである。

問題点を解決するための手段

上記問題点を解決するために本発明の半導体装置は一群の金属製リードの上面は、半導体チュプ 上の電極と金属細線で接続する際のボンディング 領域として使用し、リードの下面は外部接続端子 として使用する構造としたものである。

作用

本発明の構成によれば、金属製リード自体は極めて高精度に製作することが可能であり、さらには、半導体チップを搭載し、ワイヤボンディング した後トランスファーモールド等で樹脂封止する との接続用端子を有する半導体接置が搭載された 構成であり、この半導体接置は極めて薄型に構成 することが必要とされる。このため、従来の半導体接 板41に外部接続端子44、配線導体45、 おま 板41に外部接続端子44、配線導体45、 おま を続しているスルーホール47を設け、絶縁をチ 41上に半導体チップ42を搭載し、半導体チップ42上の電極(第4図では省略)と配線導体 45とを金属細線46で接続し、しかる後樹脂 43で封止した構造をとっていた。 (特開昭55-56647号公報、特開昭58-

(特開昭 5 5 - 5 6 6 4 7 号公報,特開昭 5 8 - 9 2 6 9 7 号公報)

発明が解決しようとする問題点

ICカードに搭載される半導体装置においては、 薄型化と同時に高信頼性、高寸法精度さらに低コ ストであることが求められている。しかしながら、 前述したような半導体装置においては、用いられ る基板が、絶縁基板41の両面に配級導体45と 外部接続端子44を形成し、スルーホール47に

ことにより、極めて高精度で高信頼性の半導体装置を実現することができる。

奥施例

第1図は本発明の一実施例による半導体装置の 断面図、第2図▲は第1図の半導体装置の裏面を 示す図、第2図Bは第1図に関連して半導体チップの搭載状態を示す図である。第1図から第3図 まで共通部分には同一番号を付した。

第1~3図において、1は金属のリード、2は 樹脂体、3は絶縁基板、4は半導体チップ、5は 金属細線、6はリード突出部、7は樹脂体である。 なお、金属リード突出部6は破終的には外部端子 となるものである。まず、第1図に沿って、本発 明の第1の突施例を説明する。一群のリード1の 上には絶縁基板3が搭収されており、半導体チップ では4は前記絶縁基板3上に接着固定されて略し たけ4はかにかり、2は金属細線5(第1図では3)に たりとリード1とは金属細線5(第1図では割止 たりとりの金線)で接続されている。第1図では割止 樹脂を樹脂体2と樹脂体7に分けて示したが、 者同一樹脂であってもかまわない。

第2図は第1図の平面図である。第2図本は本発明の半導体装置を裏面から見た図である。金属リード突出部 8 はここでは外部端子としてその配置、形状、電極ビッチ等はICカードの規格に一致させてある。第2図 B は説明の都合上第1図の構造から樹脂体でを省略した図である。リード1の上面に絶縁基板3が搭載されている。前記絶縁基板3が搭載されている。前記絶縁を板3上には半導体チップ4が接着・固定され、前記チップ4上の電極(第2図では省略した)と明っド1とは金属細線5(例えば25ミクロンの金線)で接続されている。

ここではリード1の形状として、下方へのリード突出部6を有する例について説明したが、その他にリードの上面に金属細線接続部としての突出部を有するリード、またリードの上面、下面両方に突出部を有するリードを使用することが考えられる。

次に、本発明の半導体装置の製造方法について 第3図に沿って説明する。この例も下方へのリー

同時に作り、その後第3図の工程C以降の工程を 進めても良い。

発明の効果

以上のように本発明によれば、一部に特殊形状の部分を有する金属製リードを用いるだけで、両面基板のような複雑な構成にせず、製造工程が簡単で寸法精度・信頼性ともに高い薄型・小型の半導体装置を容易に製造することができる。このため本発明による半導体装置はICカードのような超薄型で厚さに関する精度が極端に要求される機器に最適となる。

4、図面の簡単な説明

第1図は本発明の一実施例を示す新面図、第2図A、Bは同リードの下面図と上面図、第3図A~Fは本発明の製造工程を示す図、第4図は従来例を示す新面図である。

1 ……リード、2 ……樹脂体、3 ……絶縁基板、4 ……半導体チップ、5 ……金属細線、6 ……リード突出部、7 ……樹脂体。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

製造方法の他の例としては、第1図に示すごとくリード1を樹脂体2とともに成型した状態で第3図の工程B以降の各工程を進めても良い。また、リード1を樹脂で一体成型する際、絶縁基板3のかわりに成型樹脂でもって前記絶縁基板の部分を

第 1 図

73 3 🖾

(B)

3T 4 🔯

