Principle of Proof Writing

Jiaxin Hu

06/14/2020

• Grammar: Combine the equations -> Combining

• Notation should be uniform: ∇^2

• Follow the tradition: matrix should be bold

• Be clear for every notation you mention: drop \mathcal{Y} , domain of the function

1 MATH, NOTATION

- 1. Specify the variables/functions. Every time you use a variable/function, you should explain it, including its domain and meaning. Use := or $\stackrel{\triangle}{=}$ for definition or assignment. The operator = means a equal comparison.
 - Let $\mathcal{A} = (\mathcal{C}, \{M_k\})$ denote the decision variables. \rightarrow Let $\mathcal{A} = (\mathcal{C}, \{M_k\}) \in \mathbb{R}^d$ denote the decision variables, where $d = \prod_k r_k + \sum_k r_k d_k$ is the number of parameters.
 - Let S denote the update mapping. \rightarrow Let $S: \mathbb{R}^d \mapsto \mathbb{R}^d$ denote the update mapping.
 - The objective function is a function of tensor coefficient $\mathcal{B} = \mathcal{C} \times_1 \mathbf{M}_1 \times_2 \cdots \times_K \mathbf{M}_K$ \rightarrow The objective function is a function of tensor coefficient $\mathcal{B} := \mathcal{C} \times_1 \mathbf{M}_1 \times_2 \cdots \times_K \mathbf{M}_K$
 - $\|\mathcal{B}(\mathcal{A}^{(t)}) \mathcal{B}(\mathcal{A}^*)\|_F \le c \|\mathcal{A}^{(t)} \mathcal{A}^*\|_F \rightarrow \|\mathcal{B}(\mathcal{A}^{(t)}) \mathcal{B}(\mathcal{A}^*)\|_F \le c \|\mathcal{A}^{(t)} \mathcal{A}^*\|_F, \ \forall t \in \mathbb{N}_+.$
- 2. Make the notation consistent. You should not change the variable/function you defined previously without any explanation. You also should not use the same notation for two different things.
 - The notation \mathcal{L} a shorthand of $\mathcal{L}_{\mathcal{Y}}(\cdot)$. You should make it clear before you use it. Suppose \mathcal{A}^* is a stationary point of $\mathcal{L}(\cdot)$.
 - \rightarrow For notational convenience, we drop the subscript \mathcal{Y} from the objective $\mathcal{L}_{\mathcal{Y}}(\cdot)$. The objective function can be viewed either as a function of decision variables \mathcal{A} or a function of coefficient tensor \mathcal{B} . With slight abuse of notation, we write both function as $\mathcal{L}(\cdot)$... Suppose \mathcal{A}^* is a stationary point of $\mathcal{L}(\cdot)$.

• If you use ∇f to refer the derivative or gradient of a function, you should not use df or f' in the rest of the proof.

$$\nabla^2 \mathcal{L} \left(\mathcal{A}^* \right) = \left(\begin{array}{cccc} d_{CC}^2 \mathcal{L} & d_{CM_1}^2 \mathcal{L} & \cdots & d_{CM_K}^2 \mathcal{L} \\ d_{M_1C}^2 \mathcal{L} & d_{M_1M_1}^2 \mathcal{L} & \cdots & d_{M_1M_K}^2 \mathcal{L} \\ \vdots & \vdots & \ddots & \vdots \\ d_{M_KC}^2 \mathcal{L} & d_{M_KM_1}^2 \mathcal{L} & \cdots & d_{M_KM_K}^2 \mathcal{L} \end{array} \right) \rightarrow \left(\begin{array}{cccc} \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ M_1C & M_1M_1 & \cdots & M_1M_K \\ \vdots & \vdots & \ddots & \vdots \\ \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ M_KC & \nabla^2 \mathcal{L} & \nabla^2 \mathcal{L} & \cdots & \nabla^2 \mathcal{L} \\ M_KM_1 & \cdots & M_1M_K \end{array} \right)$$

- You should not use ρ for spectral radius and contraction parameter at the same time. Let ρ be the spectral radius of ∇S ... Let $\rho = \rho + \epsilon$ be the contraction parameter.
 - \rightarrow Let ρ be the spectral radius of ∇S ... Let $\rho_0 = \rho + \epsilon$ be the contraction parameter.
- Use bold for matrices. $(C, M_1, ..., M_K) \rightarrow (C, M_1, ..., M_K).$
- 3. Avoid unnecessary notation.
 - You have already explained the domain of \mathcal{A} . The new notation Ω is unnecessary. Let Ω denote the domain of \mathcal{A} and Ω_O denote the equivalent class of \mathcal{A}^* ... For $\mathcal{A} \in \Omega_O$, ..., For $\mathcal{A} \in \Omega/\Omega_O$...
 - \rightarrow Let Ω_O denote the equivalent class of \mathcal{A}^* ... For $\mathcal{A} \in \Omega_O$, ..., For $\mathcal{A} \in \mathbb{R}^d/\Omega_O$...

2 LANGUAGE

- 1. Grammar! Grammar!
 - some notation \rightarrow some notation
 - There exists a sub-sequences of iterate $A \dots \to T$ here exist a sub-sequence of iterate A
 - Combine the equation 7 and 8, we have ... \rightarrow Combining the equation 7 and 8, we have...
- 2. Use sentences. The math notation or equation should be a noun or short clause in a sentence.
- 3. Be short and concise. Proof is also a part of academic writing.
 - The set \mathcal{E} only contains a finite number of different equivalent classes.
 - \rightarrow The set \mathcal{E} contains only a finite number of equivalent classes.
 - The set \mathcal{E} satisfies below two properties.
 - \rightarrow The set \mathcal{E} satisfies two properties below.

3 LOGIC

- 1. Use a clear proof structure. You can prove step by step from assumptions to the goal or you can use contradiction. Never mix these two structures in a single proof.
- 2. Avoid big leaps. Make every step concrete.
- 3. Reorganize. Check whether your proof logic is a "chain".
- 4. Summarize the cited or too detailed steps. Also be short and concise logically.