E - 18 - 2012

저압 개폐장치의 정비에 관한 기술지침

2012. 6

한국산업안전보건공단

안전보건기술지침의 개요

o 작성자 : 인천대 안전공학과 교수 황 명환

o 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전연구실

- o 제·개정 경과
 - 2009년 10월 KOSHA CODE 전기분야제정위원회 심의
 - 2012년 4월 전기안전분야 제정위원회 심의(개정)
- o 관련규격 및 자료
 - KOSHA GUIDE E-85-2011(전기설비 설치상의 안전에 관한 기술지침)
 - KOSHA GUIDE E-105-2011(전기작업 안전에 관한 기술지침)
 - KOSHA GUIDE O-3-2011(전기설비의 정비를 위한 일반 기술지침
 - Code of practice for maintenance of electrical switchgear and controlgear for voltage up to and including 1 kV BS 6423: 1983, BSI
 - Electrical switchgear and safey: concise guide for users, INDG 372, HSE, 2003
- o 관련법령·고시 등
 - 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지)
- o 기술지침 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건 기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6월 20일

제 정 자 : 한국산업안전보건공단 이사장

저압 개폐장치의 정비에 관한 기술지침

1. 목적

이 가이드는 저압 개폐장치의 정비 시 안전을 위한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 가이드는 정격전압이 1 kV 이하인 저압 개폐장치의 보수작업을 하는 경우에 적용한다. 다만, 방폭형에 대하여는 적용하지 않는다.

3. 정의

- (1) 이 가이드에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "개폐장치(Switchgear)"란 전력공급계통에서 전원을 연결하거나 차단하기 위한 개폐기구, 제어장치, 측정장치, 보호장치 등이 하나의 외함 또는 부속설비로 이루어 진 것을 말한다.
 - (나) "제어장치(Controlgear)"란 전력계통에 연결된 전력설비의 제어를 위하여, 개폐 장치, 측정장치, 보호장치 등이 하나의 외함 또는 부속설비로 이루어 진 것을 말한다.
 - (다) "사후정비(Post-fault maintenance)"란 차단기반의 과전류 보호장치가 일정 횟수만큼 동작한 후에 시행하는 정비를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

E - 18 - 2012

4. 안전 일반사항

- (1) 개폐장치 및 제어장치의 정비작업자는 법적 요구사항에 따라 작업하여야 한다.
- (2) 정비기간동안 발생하는 전기 이외의 모든 위험원에 대하여 보수과정의 안전측면 에서 전부 고려하여야 한다.

5 안전규칙 및 절차

5.1 안전규칙

- (1) 개폐장치 및 제어장치에 대한 안전은 전기가 아닌 다른 위험원에 대한 안전기준 및 절차를 확인함으로써 쉽게 확보할 수 있다.
- (2) 사업장의 장비를 운전하기 위하여 설치되는 전기설비에는 이에 적합한 안전규칙 및 절차를 수립하는 것이 권장된다.
- (3) 안전확보를 위해서는 안전작업허가제를 도입하는 것이 권장되며, 안전규칙 및 절차를 수립하는 기본원칙은 예상되는 모든 위험으로부터 실용 가능한 범위 내에서 위험을 예방할 수 있도록 수립되어야 한다.
- (4) 전기도체는 전류가 흐르지 않는 것이 사전 입증되지 않았으면 항상 활선인 것으로 간주하여야 한다.
- (5) 다른 장비의 운전으로 인해 도체가 활선으로 될 수 있는 경우에는 각별한 주의 가 필요하며, 이러한 장비에는 외함에 경고표지 등 안내문을 부착하여야 한다.
- (6) 전기설비를 사용하는 동안 안전에 영향을 미치는 여러 요인이 변화할 수 있으므로, 설비변경 후 안전 조치사항 확인 및 정기점검 등을 실시하여야 한다.

E - 18 - 2012

(7) 전기에 관한 모든 안전규정은 모든 사람들에게 엄격히 적용되어야 한다.

5.2 비상구 및 조명장치

- (1) 전기설비의 보수작업 전에 비상구를 확인하고, 통행에 지장이 없도록 조치하여야 한다.
- (2) 작업장으로의 접근 또는 안전한 작업을 위해 고정형 또는 이동형 조명장치를 이용한 적절한 조명을 확보하여야 한다.

5.3 소화설비

- (1) 설비 보수작업중 화재의 위험이 있을 때를 대비한 소화설비의 준비 및 이의 사용방법에 대한 교육이 필요하며, 필요시 비상연락을 할 수 있도록 하여야 한다.
- (2) 전기설비에 적용되는 소화설비의 형태는 기름화재의 경우 물을 사용하지 않아야 하며, 전기설비를 격리시키기 전에는 물을 이용한 소화설비가 사용되어서는 안된다.
- (3) 소화설비는 제조 또는 설치업체를 통하여 정기적으로 정비하여야 하며, 검사표지를 부착하여야 한다.
- (4) 자동 소화설비가 설치된 장소에는 이에 대한 내용을 건물 외부에 분명하게 표시하여야 하며, 자동 소화설비의 기능을 정지시키는 절차도 포함되어 있어야 한다.
- (5) 자동 소화설비가 설치된 장소에 들어가거나, 작동중인 장소에 들어가는 경우 위험으로부터 개인 보호조치에 관한 절차가 수립되어야 한다.

5.4 정보제공

(1) 안전규칙이 정해지면 모든 운전원 및 작업자가 활용할 수 있도록 이를 공표하여 야 하며, 운전원 및 작업자는 관련 설비에 대한 안전규칙을 숙지하여야 한다.

E - 18 - 2012

- (2) 감전이나 전기화재시의 응급조치 사항을 게시하여야 한다.
- (3) 전기설비의 회로도와 보호장치의 상세내용을 확보하여야 하며, 불시의 전원공급 으로 작업자가 충전 도체에 노출되지 않도록 주의표시와 안전 잠금장치가 충분 히 갖추어져야 한다.
- (4) 활선에 대한 위험표지를 항상 구비하여야 하며, 표지는 확연하게 읽기 쉽도록 변형이 되지 않은 재질로 제작하여야 한다.
- (5) 비상구는 건물 내부에서 외부로 탈출하는 방향으로 표지를 명확하게 부착하여야 한다.

6. 응급조치

- (1) 전기작업을 수행하는 경우 작업책임자는 감전시의 응급조치에 대한 지시를 명확히 하여야 한다.
- (2) 응급조치 설비는 작업자에 의해 이용 가능하도록 설치하여야 한다.
- (3) 가장 가까운 장소의 응급조치센터, 의사, 병원 등에 관한 주소와 전화번호가 작업장 주변에 게시되어야 한다.
- (4) 모든 전기기술자는 심폐소생술 훈련을 받아야 하고, 응급서비스 센터에 호출할 수 있는 방법을 알고 있어야 한다.

E - 18 - 2012

7. 접근 및 정비작업 전 격리

7.1 접근

- (1) 전기설비의 외함은 일반인이 쉽게 접촉이 되지 않도록 설계되어야 하고, 제작된 외함의 등급이 항상 유지되도록 관리하여야 한다.
- (2) 전기설비가 안전하게 동작하고 운전하는데 지장이 없도록 공간을 확보하고, 접근 경로에 장애물이 없도록 조치하여야 한다.
- (3) 이동사다리의 재질은 비도전성 재질을 사용하여야 한다.

7.2 정비작업전 격리

- (1) 보수작업을 수행하기 전 전기설비는 가능한 격리시켜야 한다.
- (2) 격리절차에는 다음의 사항이 포함되어야 한다.
- (가) 불시에 에너지가 재충전되지 않도록 하는 조치
- (나) 검전기를 사용하여 전기설비가 정전상태임을 확인하는 조치
- (3) 정비작업 전 다음과 같은 특별한 주의가 필요하다.
 - (가) 정상상태에서 단로기가 개방(OFF)된 경우에는 전로로부터 분리된 위치에 주의 표시를 하여야 한다.
 - (나) 퓨즈 링크를 설치하는 경우 이중으로 연결되지 않도록 주의사항을 표시하여야 한다.
 - (다) 단로기 접점은 전로의 차단기로 역할을 대신해서는 안 된다.
 - (라) 예기치 못한 사고로 전로에 재충전되는 것을 방지하기 위한 관련 개폐기 연동 장치는 너무 과신하면 안 된다.
 - (마) 차단부의 접점 작동상태는 기기의 외부에서 확인할 수 없고, 기계적 결함으로

E - 18 - 2012

인해 모든 접점이 개방되지 않을 수도 있으므로, 외부 손잡이(Handle)로 수동 조작 또는 자동동작을 위한 제어전원이 반드시 차단하였다고 간주하면 안 된다.

- (바) 기계적 연동장치를 사용한 외부 손잡이의 경우 전원의 차단실패 가능성이 높으므로, 정비작업 전에 계측기를 사용하여 정전상태임을 확인하여야 한다.
- (사) 정전을 확인하기 위한 전압시험은 오결선 상태를 고려하여 상전압 및 선간전 압을 모두 확인하여야 하며, 전압계는 시험전후에 정상적임을 반드시 점검하여 야 한다.
- (아) 전기설비에는 경보장치, 제어장치, 온습도조절기 및 조명, 축전지 전원 등 서로 다른 회로로부터 전원이 공급되고 있으므로, 주 전원이 차단되더라도 일부 활선상태인 주변 전원에 대하여는 절연덮개로 격리시키거나 경고표지 및 차단장치 등에 대한 설명을 부착하여야 한다.
- (자) 변압기로부터의 역송전 또는 변류기 2차 측의 개방에 따른 감전을 예방하기 위한 안전조치가 필요하다.
- (차) 한 사람은 전원을 차단하고, 다른 사람은 보수작업을 하는 경우 전원을 차단하는 자는 작업대상 전기설비가 정전상태로 안전함을 확인하여야 하고, 재충전될 가능성이 없도록 안전조치를 취하여야 한다.

8. 정비작업

8.1 활선작업의 감독

- (1) 감전 및 전기화상을 예방하기 위하여, 특별한 이유가 없는 한 활선 및 활선근접 작업을 하여서는 안 된다.
- (2) 활선 및 활선근접작업을 시행하여야 하는 경우에는 수행작업의 특성과 장비의 설계의도를 고려하여 정비에 적합한 작업자의 수행능력에 대한 요구사항이 명시되어야 한다.
- (3) 작업을 시작하기 전 작업자의 수행능력이 적합한 지, 작업자에 대한 사전 안전조 지 사항을 알려주었는지를 확인하는 절차가 수립되어야 한다.

E - 18 - 2012

8.2 오염물 예방

- (1) 전기설비로 수분, 먼지, 동물 등이 침입하게 되면, 기기의 오작동 및 전기사고의 위험이 발생되므로 사전 예방조치가 필요하다.
- (2) 보수기간 중 오염물 침입에 대한 흔적을 검사하여 이의 흔적이 발견된 경우 오염물을 제거하고, 재발방지를 위한 조치가 이루어져야 한다.

8.3 절연장구

- (1) 정비작업자에게는 안전확보를 위해 절연공구, 절연보호구, 방호구 등 절연장구가 제공되어야 한다.
- (2) 절연장구는 항상 절연성능을 유지하도록 주기적으로 확인 및 검사를 하여야 한다.

8.4 장비사용

- (1) 접지장비가 필요한 경우에는 즉시 사용될 수 있도록 미리 구비하여야 하며, 그 기능을 유지할 수 있도록 관리가 되어야 한다.
- (2) 전압계는 사용목적에 적합한 전압범위와 고장전류에 견딜 수 있는 것을 사용하여야 한다.
- (3) 고장전류에 대한 보호장치는 전압을 측정하는 지점에서 가장 가까운 곳에 설치하여야 한다.

8.5 용량성 부하

케이블, 콘덴서 등 용량성 부하를 갖는 전기설비는 전로에 전압이 없음을 검전기로 확인하고. 충전된 에너지가 완전히 방전되었음을 확인하여야 한다.

E - 18 - 2012

8.6 관련 부대설비

- (1) 제어반의 기능시험시 제어반과 관련된 설비가 갑작스럽게 동작하지 않도록 주의 하여야 하며, 전동기 및 밸브 등에 대하여는 기계적으로 분리시켜야 한다.
- (2) 관련 부대설비 또는 공정에 대한 정보가 필요한 경우 기능시험을 위한 적정 인력의 지원을 받아야 한다.

8.7 이동식 전기장비 및 전등

- (1) 이동식 전동기구 및 전등은 저압에서 사용되어야 한다.
- (2) 도전성의 밀폐공간에서 사용되는 전기장치는 대지전압 25 V 이하에서 사용되어 야 한다.
- (3) 주 전원을 사용하는 이동식 전동기구는 외함 전체가 절연되거나 이중 절연구조 의 것이 사용되어야 한다.
- (4) 전원에 연결되는 케이블의 길이는 최소화 되어야 하고, 외부 충격으로부터 보호되어야 한다.

8.8 기기 접지선의 보수

- (1) 모든 노출된 금속제 외함은 접지가 되어야 한다.
- (2) 접지도체의 연결은 기계적으로 견고하여야 하고, 모든 연결나사는 꽉 죄어져서 접촉상태를 양호하게 하여야 한다.
- (3) 정비작업 중에 풀어진 볼트와 너트를 다시 조이도록 조치하여야 한다.

E - 18 - 2012

9. 정비작업 후 조치사항

9.1 사고의 억제

전기설비의 정비작업에는 화염, 연기, 가스, 또는 액체가 침입할 수 있는 모든 부위에 대한 방화벽과 밀봉조치의 검사를 포함시켜야 한다.

9.2 시험

(1) 일반사항

- (가) 전압측정시 전압계에 흐르는 전류가 최소가 되도록 조치하여야 한다.
- (나) 모든 전기설비는 용량성 부하를 갖고 있어 전기를 저장할 수 있으므로 검전 후에는 반드시 방전시켜야 한다.
- (다) 전기설비가 시험전압 및 시험전류의 극성에 의해 손상되지 않도록 주의하여야 한다.

(2) 시험장비의 사용

- (가) 시험장비는 극성을 잘못 연결하여 오동작 또는 단락전류가 흐르지 않도록 하는 구조의 것을 사용하여야 한다.
- (나) 일반적으로 접지되어 있지 않은 부동회로(Floating circuit)를 사용하는 신호용 회로가 적용된 경우에는 계기의 접지선은 위험할 수 있다.
- (다) 시험장비의 모든 금속 외함은 항상 접지되어야 하고, 접지하지 않은 경우에는 안전작업절차와 같은 시험자의 안전을 위한 특별한 조치가 수립되어야 한다.

E - 18 - 2012

9.3 폐기물 처리

- (1) 정비작업 후 발생된 폐품 및 폐자재 등을 안전하게 취급하지 않으면 새로운 위험이 발생할 수 있다. 처리방안이 불분명한 폐기물은 제조자의 권고사항을 참조하거나 해당 기관의 지시에 따라야 한다.
- (2) 손상된 부품을 재활용하는 경우 관련 안전규정을 만족하는지 확인하여야 하며, 사용시 재활용 부품임을 표기하는 등 특별한 주의가 필요하다.

9.4 기록

- (1) 주요 부품에 대한 정보는 기록하여 보존하여야 한다.
- (2) 기록에는 다음의 사항이 포함되어야 한다.
- (가) 장비의 상세내용이 있는 제작자 기술사양
- (나) 최대 정비주기를 포함한 제작자 정비사양
- (다) 제작자가 권장하는 예비부품 목록
- (라) 보수 및 운전사양과 현장에서 발견한 주요 내용
- (3) 주요 고장에 대하여는 원인 분석한 결과를 기록하여야 하고, 향후 예방대책이 수립되어야 한다.

10. 정비 주기

10.1 일반사항

- (1) 일부 부품은 정비하지 않고 정기적으로 새로운 부품으로 교체하여야 한다.
- (2) 전기설비는 사용장소의 주변환경이 매우 다양하므로 모든 환경에 적합한 획일된 정비주기를 결정하는 것은 불가능하다. 따라서 제작자는 특정조건에서의 최소한

E - 18 - 2012

의 정비주기를 제시하여야 하고, 조건에 따라 정비주기를 어떻게 조정하여야 하는 지에 대한 지침을 제시하여야 한다.

- (3) 정비주기의 결정요소는 매우 많지만, 가장 중요한 요소는 운전시간과 부하부담 (Severity of duty)이다.
- (4) 연속운전의 경우 정비계획과 생산계획 일정을 함께 고려하여야 하며, 정기적으로 공정을 중단하는 경우에는 정비도 이 기간 중에 시행되어야 한다.
- (5) 정비주기는 운전시간을 기반으로 정할 수도 있고, 전기적·기계적·환경적 운전상 황을 기반으로 하여 일정기간별로 정할 수도 있다.
- (6) 정비주기는 운전시간 및 설비의 운전환경 등을 고려하여 전기설비별로 정하는 것이 일반적이며, 비정상상태에서의 운전이 많은 경우에는 정비주기를 짧게 할수도 있으며, 그 반대의 경우에는 늘릴 수도 있다.
- (7) 반도체와 같은 전력전자 부품은 쉽게 손상될 수 있으므로, 정비는 하지 않고 이 상현상이 발견된 때에는 일괄교체토록 하는 것이 바람직하다.
- (8) 습기, 과열, 도전성 분진의 축적 등에 대한 점검주기도 정비주기와 함께 고려되어야 한다.

10.2 정기보수

- (1) 정기보수는 일상점검을 보완하기 위하여, 점검기간보다 더 긴 주기를 갖고서 운 전상의 점검 및 시험을 하도록 구성된다.
- (2) 일상점검은 정상적인 운전을 유지하기 위하여 손상이나 과도한 마모부분이 없도 록 확인하는 과정이다.
- (3) 시험은 접촉부위의 검사 및 기계적 조정, 윤활 상태에 대한 확인, 절연상태의 적정 여부 등을 확인하는 것이다.

E - 18 - 2012

- (4) 정비작업 전에 주요 회로에 대하여는 사전 진단을 수행하는 것이 권장된다.
- (5) 연속운전을 하는 설비는 생산계획을 고려하여 정비계획을 수립하여야 한다.

10.3 사후정비

- (1) 고장전류가 흘러 이의 영향을 받은 전기설비 및 보호장치, 관련 부품 및 연결장 치 등은 보수 후 재사용되기 전 안전하게 동작하는 지를 확인하여야 한다.
- (2) 복잡한 전기설비의 사후정비는 다음의 두 단계로 진행시킬 수 있다.
 - (가) 기능을 수행하는 부분의 교체를 포함하는 첫 번째 단계
 - (나) 기능을 수행하는 부분의 수리를 포함하는 두 번째 단계
- (3) 고장전류로 인한 추가적인 오동작의 위험을 없애기 위하여 전기설비에는 반도체 부품을 최소한으로 설치하여야 한다.

11. 절연재의 정비

11.1 고체 절연재

- (1) 애자(Porcelain) 또는 몰딩 절연재질은 금이 가거나 흠이 있는지를 점검하여야 한다.
- (2) 접착 또는 적층 섬유(Laminated fibrous), 기타 유기질 절연재질은 트래킹(Tracking), 수트리(Treeing), 부풀림, 갈라짐, 기계적 손상 등을 점검하여야 한다.
- (3) 절연저항의 측정은 보수 또는 운전정지 후, 절연성능에 의심이 갈 때 수행된다.
- (4) 절연재질은 측정 전에 건조시키고, 깨끗하게 청소하여야 한다.

E - 18 - 2012

(5) 전기설비 내에 설치된 반도체 부품은 절연저항 측정시 인가되는 전압에 의해 소 손될 우려가 있으므로, 반도체 부품을 포함한 전기설비의 절연저항 측정시에는 이에 대한 보호대책을 강구하여야 한다.

11.2 절연유

- (1) 절연유의 시험주기는 전기설비의 운전특성 및 제작업체의 권고사항을 기준으로 결정하여야 한다.
- (2) 절연유의 오염은 정비주기를 결정하는 주요 요인이 된다.

12. 잠금장치

- (1) 어떤 조건하에서도 오작동하지 않도록 기계적인 잠금장치는 주의깊게 확인하여 야 한다.
- (2) 잠금장치는 부식되지 않아야 하며, 운전으로 인해 스스로 풀어지지 않는 구조의 너트, 잠금장치 등을 구비하여야 한다.
- (3) 제작업체의 특별한 권고가 없다면, 경 윤활유는 베어링, 축 등에 사용되고, 중 기계유는 차단레버, 롤러 등에 사용된다.

13. 연동장치

13.1 안전사항

연동장치를 시험할 때 이의 오동작 또는 잘못된 조작으로 인해 작업자가 위험하지 않도록 주의하여야 한다.

E - 18 - 2012

13.2 사용목적

- (1) 전기·기계적 연동장치의 목적은 전기설비가 설계의도와는 다른 운전조건이 되지 않도록 하거나, 작업자가 위험에 노출되는 운전조건이 발생하지 않도록 연속제어 (Sequence)를 수행하는 것이다.
- (2) 연동장치의 기능은 일반적으로 기동시, 운전정지시, 또는 전원투입시 적용된다.
- (3) 정상운전 중에는 연동장치가 동작하지 않고 일반적으로 자동기능에 의해 운전되지만, 비정상상태가 발생하면 연동장치가 효과적으로 동작하게 된다.

13.3 연동장치의 예시

- (1) 회전기기의 베어링에는 기기시동 시 또는 운전 중에 윤활유를 공급하는 보조장 치가 필요하다. 회전기기의 기동기와 윤활유 공급스위치를 다음과 같이 연동시켜 윤활기능이 수행되도록 한다.
- (가) 윤활유펌프가 기동하여 압력이 생성되기 전까지는 회전기계가 동작하지 않도록 한다.
- (나) 윤활유펌프가 고장이 나면 자동적으로 회전기기가 작동을 멈추도록 한다.
- (2) 연동장치의 목적은 잘못된 기동이나 부속설비의 지속적 고장으로 인한 설비손상을 방지하기 위한 것이다.
- (3) 인출시 회로를 분리시키는 차단기는 다음의 기능이 수행되도록 기계적 연동장치를 설치하여야 한다.
 - (가) 차단기 외함이 적정위치까지 완전히 체결되기 전까지는 차단기가 투입되어 회 로를 연결시키면 안 된다.
 - (나) 차단기가 개방되어 회로를 분리하기 전까지는 점검위치로 차단기함을 끌어내 거나 원래의 위치에서 이동시킬 수 없어야 한다.

E - 18 - 2012

(4) 차단기 외함의 기계적 연동장치는 접촉단자를 이용하여 전류의 흐름을 차단하는 것이며, 전류가 차단되지 않을 경우 작업자나 설비의 파손 등 위험을 초래할 수 있다.

13.4 연동장치의 요구사항

연동장치를 점검 또는 정비하는 자는 관련 전기지식과 전기설비에 대한 경험이 풍부하고, 연동장치의 기능과 특성, 목적 등을 충분히 이해하고 있어야 하며, 필요시 제작업체의 설치·운전·정비 매뉴얼을 참고하여야 한다.

13.5 연동시스템의 정비

연동장치를 정비하는 경우 연동장치의 형태에 따라 다음의 사항을 수행하여야 한다.

(1) 기계적 측면

- (가) 볼트, 레버, 스프링, 슬라이드, 잠금장치 등을 깨끗이 청소하고, 정확히 작동되 도록 윤활제를 발라야 한다.
- (나) 과도한 손상이나 저절로 움직이는 경우에는 제작업체와 협의하여 정비하여야 한다.
- (다) 볼트, 너트, 나사, 고정 핀과 같은 모든 고정장치는 풀림이 없이 정확히 설치되어 있는 지를 확인하여야 한다.

(2) 전기적 측면

- (가) 제어전선 및 연결 단자대 부위에 손상이 없는 지를 확인하고, 필요시 보수하여 야 한다.
- (나) 제어회로에 대한 절연시험을 수행하여야 한다.

E - 18 - 2012

13.6 기능시험

- (1) 모선과 분기회로의 전원을 재투입하기 전 모든 연동장치의 기능시험을 수행하여 야 한다.
- (2) 기능시험은 원래의 설계 의도대로 모든 작동제어 절차가 시행되는 것과 위험한 작동이 없는 지를 확인하여야 한다.
- (3) 연동장치의 결함이 발견되었으나 즉시 정비 또는 대체가 불가능한 경우에는 다른 보조수단을 이용하여 안전을 확보하여야 한다.

14. 정비결과

- (1) 장비는 잘못된 부분을 정비하여 부품별 기능이 올바르게 작동되도록 복구되어야 한다.
- (2) 외부 장비 또는 느슨한 배선이 어떤 위험도 초래하지 않도록 하여야 한다.
- (3) 계기 및 계전기 덮개를 안전하게 다시 덮어야 하며, 모든 외함의 체결볼트는 확실히 조여야 하고, 개폐문은 안전하게 잠근 후 원래의 보호등급이 유지되도록 하여야 한다.
- (4) 안전규칙에서 정한 모든 절차가 지켜져야 한다.