(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-26602

(43)公開日 平成9年(1997)1月28日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
G02F	1/136	500		G 0 2 F 1/136	5 O O
H01L	29/786			H01L 29/78	6 1 6 A
	21/336				6 1 7 W

審査請求 未請求 請求項の数5 FD (全 7 頁)

(21)出願番号	特願平7-199015	(71)出願人 000002185
		ソニー株式会社
(22)出顧日	平成7年(1995)7月12日	東京都品川区北品川6丁目7番35号
		(72)発明者 鈴木 信明
		東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内
		(72)発明者 藤野 昌宏
		東京都品川区北品川6丁目7番35号 ソニ
	·	一株式会社内
		(72)発明者 九鬼 みどり
		東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内
		(74)代理人 弁理士 鈴木 晴敏
		A 1 A 1 A common Selection All and

(54) 【発明の名称】 アクティブマトリクス表示装置

(57)【要約】

【課題】 ボトムゲート型の薄膜トランジスタを集積形成したアクティブマトリクス表示装置に設けられる信号配線の電気抵抗及び信頼性を改善する。

【解決手段】 アクティブマトリクス表示装置は所定の 間隙を介して接合した駆動基板1及び対向基板2を備え ており、両者の間隙には液晶3が保持されている。駆動 基板1には薄膜トランジスタ4、画素電極5及び信号配 線6が集積形成されている。対向基板2には対向電極7 が形成されている。薄膜トランジスタ4はボトムゲート 構造を有しており、駆動基板1にパタニング形成された ゲート電極Gと、ゲート電極Gを被覆するゲート絶縁膜 9,10とゲート絶縁膜9,10の上にパタニング形成 された半導体薄膜11とを備えている。信号配線6は下 側金属層13と上側金属層14を重ねた積層構造を有し ている。下側金属層13はアルミニウムからなり、電気 抵抗が比較的低く且つ物理的強度が比較的小さい。上側 金属層14はモリブデンからなり下側金属層13を被覆 するとともに電気抵抗が比較的高く且つ物理的強度が比 較的大きい。

【特許請求の範囲】

【請求項1】 薄膜トランジスタ、画素電極及び信号配線が集積形成された駆動基板と、対向電極を有し所定の間隙を介して該駆動基板に接合した対向基板と、該間隙に保持された電気光学物質とを備えたアクティブマトリクス表示装置であって、

前記薄膜トランジスタは、該駆動基板にパタニング形成 されたゲート電極と、該ゲート電極を被覆するゲート絶 緑膜と、該ゲート絶縁膜の上にパタニング形成された半 導体薄膜とを備えたボトムゲート構造を有し、

前記信号配線は、該半導体薄膜に接続するとともに電気 抵抗が比較的低く且つ物理的強度が比較的小さい下側金 属層と、該下側金属層を被覆するとともに電気抵抗が比 較的高く且つ物理的強度が比較的大きい上側金属層を重 ねた積層構造を有することを特徴とするアクティブマト リクス表示装置。

【請求項2】 前記下側金属層はアルミニウム、銅、銀及び金から選択された低融点金属材料を主成分とし、前記上側金属層はモリブデン、タンタル、クロム、ニッケル及びチタンから選択された高融点金属材料を主成分とすることを特徴とする請求項1記載のアクティブマトリクス表示装置。

【請求項3】 前記信号配線は、比較的反射率の高い下側金属層を比較的反射率の低い上側金属層で被覆することを特徴とする請求項1記載のアクティブマトリクス表示装置。

【請求項4】 前記信号配線は、比較的線幅の狭い下側 金属層を比較的線幅の広い上側金属層で完全に被覆する ことを特徴とする請求項1記載のアクティブマトリクス 表示装置。

【請求項5】 前記薄膜トランジスタは層間絶縁膜により被覆されており、前記信号配線は該層間絶縁膜に開口したコンタクトホールを介して該薄膜トランジスタに電気接続することを特徴とする請求項1記載のアクティブマトリクス表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アクティブマトリクス表示装置に関する。より詳しくは、ボトムゲート型の薄膜トランジスタと画素電極を集積形成した駆動基板 40の信号配線構造に関する。

[0002]

【従来の技術】アクティブマトリクス表示装置は間隙を 介して互いに接合した駆動基板及び対向基板と、この間 隙に保持された液晶などの電気光学物質とからなるフラットパネル構造を有している。駆動基板には画素電極、 これをスイッチング駆動する薄膜トランジスタ、信号配 線、ゲート配線などが集積形成されている。画素電極は 行状のゲート配線と列状の信号配線との交差部に形成されている。スイッチング駆動用の薄膜トランジスタも両 50 ブマトリクス表示装置を直視型のディスプレイとして用

配線の交差部に形成されている。従来から薄膜トランジ スタの活性層として、非晶質シリコンや多結晶シリコン が用いられている。スイッチング駆動用の薄膜トランジ スタに加え周辺回路部を構成する薄膜トランジスタを同 一基板上に形成する場合、キャリア移動度などの観点か ら特性的に優れている多結晶シリコンが採用される。 又、薄膜トランジスタにはトップゲート型とボトムゲー ト型がある。前者は絶縁基板上に半導体薄膜を形成し、 その上にゲート絶縁膜を介してゲート電極をパタニング 10 形成する。逆に、ボトムゲート型は絶縁基板の上にゲー ト電極をパタニングし、その上にゲート絶縁膜を介して 半導体薄膜を形成する。ボトムゲート型は薄膜トランジ スタの活性層となる半導体薄膜がゲート絶縁膜を介して 絶縁基板から離間しているため基板に含まれる不純物な どの悪影響を受けにくく、現在盛んに開発されている。 更に、薄膜トランジスタは高温プロセス又は低温プロセ スで製造される。高温プロセスでは処理温度が600℃ 以上に昇るため、基板材料として耐熱性に優れた石英な どが用いられる。低温プロセスでは処理温度が600℃ 以下に押さえられるので、比較的安価なガラス材料など を基板に用いることができる。以上の観点から、現在多 結晶シリコンを用いたボトムゲート型の薄膜トランジス 夕を低温プロセスで形成する技術が注目を集めている。 この場合、ゲート電極を含むゲート配線やこれと交差す る信号配線は主として金属材料が用いられている。 [0003]

【発明が解決しようとする課題】信号配線を構成する金 属材料としては、比較的高融点のモリブデン (Mo)や 比較的低融点のアルミニウム(A1)が代表的に用いら 30 れている。従来、これらの金属材料は単層膜として信号 配線に加工されていた。この為、アクティブマトリクス 表示装置の大画面化もしくは高密度化を進めた場合、以 下に述べる解決すべき課題が生じていた。モリブデンの 単層膜の場合、電気抵抗が比較的高いため、アクティブ マトリクス表示装置が大型化した場合、配線長が長くな るため信号伝達特性の悪化を招いていた。同様に、アク ティブマトリクス表示装置を高密度化した場合でも信号 配線の幅が狭くなるため信号伝達特性の悪化が生じる。 一方、アルミニウムの単層膜の場合、膜応力に起因して マイグレーションが生じ、所謂ヒロックと呼ばれる欠陥 が多発していた。このヒロックは信号配線の断線故障の 原因となる。又、アルミニウムは比較的剛性が低く物理 的強度が弱い。従って、ゲート配線と信号配線との交差 部に生じる段差などでアルミニウムが容易に断線故障を 起こしていた。更に、アルミニウムは化学的に活性であ るため後工程で用いるエッチング液などにより容易に腐 食を起こしていた。これも断線故障の原因となる。加え て、アルミニウムは反射率が高いため、表示装置に入射 する外光を大量に反射してしまう。このため、アクティ

いた場合、外光反射により表示コントラストが悪化する という課題がある。

[0004]

【課題を解決するための手段】上述した従来の技術の課 題を解決するため以下の手段を講じた。即ち、本発明に 係るアクティブマトリクス表示装置は、基本的な構成と して、所定の間隙を介して互いに接合した駆動基板及び 対向基板と、この間隙に保持された電気光学物質とを備 えている。駆動基板には薄膜トランジスタ、画素電極及 び信号配線が集積形成されている。対向基板には対向電 極が全面的に形成されている。薄膜トランジスタはボト ムゲート構造を有しており、駆動基板にパタニング形成 されたゲート電極と、該ゲート電極を被覆するゲート絶 縁膜と、該ゲート絶縁膜の上にパタニング形成された半 導体薄膜とからなる。前記信号配線は下側金属層と上側 金属層とを重ねた積層構造を有している。下側金属層は 半導体薄膜に接続するとともに電気抵抗が比較的低く且 つ物理的強度が比較的小さい。上側金属層は下側金属層 を被覆するとともに電気抵抗が比較的高く且つ物理的強 度が比較的大きい。

【0005】下側金属層は、例えばアルミニウム、銅、 銀及び金から選択された低融点金属材料を主成分とす る。上側金属層は例えば、モリブデン、タンタル、クロ ム、ニッケル及びチタンから選択された高融点金属材料 を主成分とする。好ましくは、前記信号配線は比較的反 射率の高い下側金属層を比較的反射率の低い上側金属層 で被覆している。又好ましくは、前記信号配線は比較的 線幅の狭い下側金属層を比較的線幅の広い上側金属層で 完全に被覆している。更に好ましくは、前記薄膜トラン ジスタは層間絶縁膜により被覆されており、前記信号配 線は該層間絶縁膜に開口したコンタクトホールを介して 該薄膜トランジスタに電気接続する。

【0006】本発明によれば、信号配線は下側金属層と 上側金属層を重ねた積層構造(複合構造)を採用してい る。下側金属層として比較的電気抵抗の低いアルミニウ ムを用いることで、複合構造全体としての電気抵抗が下 がり、アクティブマトリクス表示装置の大画面化及び高 密度化に対応できる。上側金属層として物理的強度が比 較的大きいモリブデンなどを用いることで、複合構造全 体の剛性を高めており断線故障などを効果的に抑制でき る。又、比較的線幅の狭い下側金属層を比較的線幅の広 い上側金属層で完全に被覆することで、複合構造全体の 耐圧性を改善できる。即ち、化学的に活性なアルミニウ ムを下側金属層に用いた場合でも、その表面のみならず 端面も化学的に不活性な上側金属層で被覆されているた め、後工程でエッチング液などにさらされた場合でも腐 食が進行しない。更に、アルミニウムなどからなる反射 率の高い下側金属層をモリブデンなどの比較的反射率の 低い上側金属層で被覆することで、複合構造全体の反射 率が低くなり、外光反射を抑制してアクティブマトリク 50 続するようになっている。なお、本例では信号配線6と

ス表示装置のコントラスト改善につながる。

[0007]

【発明の実施の形態】以下、図面を参照して本発明の好 適な実施形態を詳細に説明する。 図1は本発明に係るア クティブマトリクス表示装置の具体的な構成を示す部分 断面図である。図示するように、本表示装置は所定の間 隙を介して互いに接合した駆動基板1及び対向基板2を 備えている。両者の間隙には液晶3などの電気光学物質 が保持されている。駆動基板1には薄膜トランジスタ 4、画素電極5及び信号配線6などが集積形成されてい る。対向基板2には対向電極7が全面的に形成されてい 3.

【0008】薄膜トランジスタ4はボトムゲート構造と なっており、ガラスなどからなる駆動基板1の表面にパ タニング形成されたゲート電極Gを備えている。ゲート 電極Gはタンタル、アルミニウム、モリブデン/タンタ ルの合金などからなり、ゲート配線(図示せず)の一部 としてパタニング形成される。ゲート電極Gの表面は陽 極酸化膜8で被覆されている。更にその上には、第1ゲ 20 ート絶縁膜9及び第2ゲート絶縁膜10が順に成膜され ている。第1ゲート絶縁膜9は例えばSiNxからな り、第2ゲート絶縁膜10はSiOz からなる。このよ うに、積層構造のゲート絶縁膜を採用することで、ボト ムゲート型薄膜トランジスタ4の耐圧性を確保してい る。第2ゲート絶縁膜10の上には多結晶シリコンなど からなる半導体薄膜11がパタニング形成されており、 薄膜トランジスタ4の活性層となる。即ち、ゲート電極 Gの直上にはチャネル領域Chが設けられ、その両側に は不純物が高濃度で注入されたソース領域S及びドレイ ン領域Dが設けられている。なお、本例では薄膜トラン ジスタ4は所謂LDD構造を有しており、ソース領域S とチャネル領域Chの間及びドレイン領域Dとチャネル 領域Chの間に、それぞれ低濃度不純物領域(LDD) が介在している。このLDD構造を採用することで、薄 膜トランジスタ4の電流リークを抑制している。なお、 チャネル領域 Chの直上には保護膜12がパタニング形 成されている。

【0009】本発明の特徴要素である信号配線6は下側 金属層13と上側金属層14を重ねた積層構造となって いる。この信号配線6は層間絶縁膜15の上にパタニン グ形成されている。即ち、薄膜トランジスタ4は層間絶 縁膜15により被覆されており、信号配線6はこの層間 絶縁膜15に開口したコンタクトホール16を介して薄 膜トランジスタ4のソース領域Sに電気接続している。 なお、ドレイン領域D側にもコンタクトホールを介して 下側金属層13及び上側金属層14が接続している。図 示のように薄膜トランジスタ4をスイッチング素子とし て用いる場合には、これらの下側金属層13及び上側金 属層14を介してドレイン領域Dが画素電極5と電気接 画素電極5はアクリル樹脂などからなる平坦化膜17に より互いに絶縁されている。ところで、薄膜トランジス タを周辺駆動回路の回路素子として用いる場合には、ド レイン領域Dにもソース領域Sと同様に信号配線が接続 されることになる。

【0010】上述したように、信号配線6は下側金属層 13と上側金属層14を重ねた複合構造を有している。 下側金属層13は半導体薄膜11に直接接続するととも に、電気抵抗が比較的低く且つ物理的強度が比較的小さ い。これに対し、上側金属層14は下側金属層13を被 覆するとともに電気抵抗が比較的高く且つ物理的強度が 比較的大きい。下側金属層13は、例えばアルミニウ ム、銅、銀、金などから選択された低融点金属材料を主 成分とする。上側金属層14は例えば、モリブデン、タ ンタル、クロム、ニッケル、チタンなどから選択された 高融点金属材料を主成分とする。下側金属層13の電気 抵抗を小さくして、信号配線6の導電性を確保してい る。又、上側金属層14の物理的強度を大きくして剛性 を高め、信号配線6全体の信頼性を確保している。即 ち、信号配線6を複合構造とすることにより断線故障な どを効果的に防止している。加えて、本例では比較的線 幅の狭い下側金属層13を比較的線幅の広い上側金属層 14で完全に被覆している。下側金属層13は表面ばか りでなく側面(端面)も上側金属層14で覆われてお り、エッチング液などから保護されている。加えて、比 較的反射率の高い下側金属層13を比較的反射率の低い 上側金属層14で被覆している。例えば、下側金属層1 3としてアルミニウムを用いた場合、その反射率は90 %程度である。上側金属層14としてモリブデンを用い た場合、その反射率は45%程度である。この構造で は、アクティブマトリクス表示装置を直視型のディスプ レイとして用いた場合、信号配線6は外光反射を抑制で きるため、表示コントラストが高くなる。

【0011】次に、図2及び図3を参照して、図1に示 した表示装置の製造方法を詳細に説明する。先ず、図2 の工程Aで、ガラスなどからなる絶縁基板1の上にゲー ト電極 G 及びゲート配線 (図示せず)をパタニング形成 する。前述したように、ゲート電極Gとしては通常タン タル、アルミニウム、モリブデン/タンタルなどを用い ることができる。次に工程(B)で、金属ゲート電極G の表面を陽極酸化処理する。これにより、ゲート電極G は陽極酸化膜8により被覆される。工程Cに進み、この 絶縁基板1の上にプラズマCVD法などを用いて第1ゲ ート絶縁膜9、第2ゲート絶縁膜10及び半導体薄膜1 1を連続成膜する。第1ゲート絶縁膜9は例えばSiN x からなる。第2層間絶縁膜10はSiO2 からなる。 半導体薄膜11は非晶質シリコンからなる。工程Dに進 み、300℃乃至350℃程度で加熱処理(アニール) を行い、プラズマCVDにより成膜された非晶質シリコ ンからなる半導体薄膜11に含まれた過剰の水素を離脱 50 属層13に重ねて例えばモリブデンからなる上側金属層

させる(脱水素)。更に、エキシマレーザパルスなどの レーザ光を照射して半導体薄膜11のみを部分的に加熱 溶融し、冷却過程を経て非晶質シリコンを多結晶シリコ ンに転換する。工程Eに進み、ゲート電極Gと整合する ように半導体薄膜11の上に保護膜(チャネルストッ パ)12をパタニング形成する。保護膜12のパタニン グには例えば裏面露光を用い、ガラスなどからなる透明 な絶縁基板1の裏側からゲート電極Gをマスクとしてセ ルフアライメントで露光処理を行い、保護膜12のパタ 10 一ンを規定する。予め成膜されたSiO2 などの絶縁膜 をこの裏面露光により規定されたパターンで選択的にエ ッチングすることにより、ゲート電極Gに整合した保護 膜(チャネルストッパ)12が得られる。工程Fに進 み、保護膜12をマスクとしてセルフアライメントで不 純物イオンを比較的低濃度で半導体薄膜11にドーピン グする。このイオンドーピングは不純物元素を含む原料 気体をプラズマ化し、不純物イオンを生成した後質量分 離を行うことなく電界加速して半導体薄膜11に打ち込 むものである。これにより、半導体薄膜11に低濃度不 純物領域(LDD領域)が形成される。なお、保護膜1 2の直下には不純物イオンが実質的にドーピングされて いないチャネル領域Chが残される。更に、保護膜12 のパターンより一回り大きなフォトレジストを形成し、 これをマスクとして同じくイオンドーピングにより半導 体薄膜11に不純物を高濃度で注入する。これにより、 ボトムゲート型薄膜トランジスタ4のソース領域S及び ドレイン領域Dが形成される。このフォトレジストのパ タニングは、例えばゲート電極Gをマスクとする裏面露 光により行うことができる。更に半導体薄膜11にレー ザ光を照射し、注入された不純物を活性化しておく。 【0012】図3の工程Gに進み、半導体薄膜11をア イランド状にエッチングして、個々の薄膜トランジスタ 4を互いに分離する。更に、絶縁基板1を水素プラズマ 雰囲気中もしくは水素ガス雰囲気中に投入し、半導体薄 膜11に水素を拡散させる。工程Hに進み、薄膜トラン ジスタ4をSiNx などからなる層間絶縁膜15で被覆 する。この状態で例えば300℃にて熱アニールを行 い、半導体薄膜11に導入された水素を固定する。所謂 半導体薄膜11の水素化処理を行い、薄膜トランジスタ 4の動作特性を改善する。工程 I に進み、層間絶縁膜1 5を選択的にエッチングして、薄膜トランジスタ4のソ ース領域S及びドレイン領域Dに連通するコンタクトホ ール16を開口する。更に、層間絶縁膜15の上に例え ばアルミニウムからなる下側金属層13を蒸着する。工 程Jに進み、下側金属層13を所定の形状にパタニング する。例えば、ソース領域S側に接続した下側金属層1 3は信号配線のパターンに合わせてエッチングされる。 ドレイン領域D側に接続した下側金属層13はパッド電 極のパターンに合わせてエッチングされる。この下側金

30

14を蒸着する。最後に工程Kに進み、上側金属層14 を所定の形状にパタニングする。これにより、薄膜トラ ンジスタ4のソース領域S側に電極接続した積層構造 (複合構造)の信号配線6が得られる。この後、信号配 線6を被覆するようにアクリル樹脂などからなる平坦化 膜を成膜する。この平坦化膜にコンタクトホールを開口 した後ITOなどの透明導電膜を成膜し、所定の形状に パタニングして画素電極に加工する。以上の工程によ り、図1に示してある駆動基板の構造が得られる。この 介して駆動基板に接合し、この間隙に液晶を封入する と、アクティブマトリクス型の表示装置が完成する。 【0013】最後に、図4は図1に示したアクティブマ トリクス型表示装置の平面形状を表わしている。図示す

るように、信号配線6は列状にパタニングされ、ゲート 配線20は行状にパタニングされている。両者はともに 金属材料からなり優れた遮光性を有する。信号配線6と ゲート配線20は行列状に交差してブラックマトリクス を形成する。このブラックマトリクスで囲まれた領域に 画素電極5がパタニング形成される。ブラックマトリク スを構成する信号配線6及びゲート配線20はともに比 較的反射率の低い金属材料からなり、外光反射を抑制し て表示コントラストを高めることができる。信号配線6 とゲート配線20の交差部にはボトムゲート型の薄膜ト ランジスタ4が形成されており、対応する画素電極5を スイッチング駆動する。薄膜トランジスタ4はアイラン ド状にパタニングされた半導体薄膜11を活性層として おり、その下側にはゲート配線20から延設されたゲー ト電極 Gが形成されている。半導体薄膜 11 に形成され たソース領域Sは複合構造の信号配線6に電気接続して 30 いる。一方ドレイン領域Dは画素電極5に電気接続して いる。

[0014]

【発明の効果】以上説明したように、本発明によれば、 信号配線が下側金属層と上側金属層を重ねた複合構造を 有している。下側金属層は物理的強度が比較的小さい代 わりに電気抵抗が比較的低い。上側金属層は電気抵抗が

比較的高い代わりに物理的強度が比較的大きい。このよ うな複合構造を採用することで、信号配線の電気抵抗を 実効的に低く押さえることが可能になり、表示装置の大 画面化及び高精彩化に対応できる。又、係る複合構造を 採用することで信号配線の断線故障が起こりにくぐな り、信頼性向上が望める。特に上側金属層として物理的 強度が高く剛性に優れた金属材料を用いることで信頼性 が増す。又、下側金属層よりも反射率の低い上側金属層 を設けることで、信号配線自体をブラックマトリクスに 後、予め対向電極が形成された対向基板を所定の間隙を 10 利用でき、アクティブマトリクス型表示装置を直視型デ ィスプレイに応用した場合などコントラストが向上す

【図面の簡単な説明】

【図1】本発明に係るアクティブマトリクス表示装置の 構造を示す部分断面図である。

【図2】本発明に係るアクティブマトリクス表示装置の 製造方法を示す工程図である。

【図3】同じくアクティブマトリクス表示装置の製造方 法を示す工程図である。

【図4】アクティブマトリクス表示装置のパターン形状 を示す平面図である。

【符号の説明】

- 駆動基板 1
- 対向基板 2
- 3 液晶
- 薄膜トランジスタ
- 画素電極
- 信号配線
- 7 対向電極
- 第1ゲート絶縁膜 9
 - 10 第2ゲート絶縁膜
 - 11 半導体薄膜
 - 13 下側金属層
 - 14 上側金属層
 - 15 層間絶縁膜
 - 16 コンタクトホール

【図4】

DERWENT-ACC-NO:

1997-150954

DERWENT-WEEK:

199714

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Active matrix display device with bottom

gate type thin

film transistor that uses polycrystalline

silicon - has

upper metal layer with high electrical

resistance and

large physical strength that coats lower

metal layer with

low electrical resistance and small

physical strength, at

signal wiring

PATENT-ASSIGNEE: SONY CORP[SONY]

PRIORITY-DATA: 1995JP-0199015 (July 12, 1995)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

PAGES MAIN-IPC

JP 09026602 A January 28, 1997 N/A

007 G02F 001/136

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE

JP 09026602A N/A 1995JP-0199015

July 12, 1995

INT-CL (IPC): G02F001/136, H01L021/336, H01L029/786

ABSTRACTED-PUB-NO: JP 09026602A

BASIC-ABSTRACT:

The device has a thin film transistor (4), a pixel electrode (5) and a signal

wiring (6) whose integration are performed at an actuating substrate (1). An

opposing substrate (2) with a counter electrode (7) is attached to the

actuating substrate through a predetermined gap maintained by a lig. crystal

(3). A pair of gate insulating films (9,10) coat the gate

08/25/2003, EAST Version: 1.04.0000

electrode (G) of the TFT.

A patterning is formed on the gate insulating films by a semiconductor thin film (11) i.e. connected to the signal wiring. An upper metal layer (14) with a high electrical resistance and a large physical strength coats a lower metal layer (13) with a comparatively low electrical resistance and small physical

strength, at the signal wiring.

ADVANTAGE - Efficiently minimises electrical resistance of signal wiring since upper metal layer coats lower metal layer at signal wiring; minimises disconnection fault of signal wiring. Increases display reliability due to

large physical strength of upper metal layer that uses rigid metal ingredient.

Improves contrast when display is applied to direct-view type display.

CHOSEN-DRAWING: Dwg.1/4

TITLE-TERMS: ACTIVE MATRIX DISPLAY DEVICE BOTTOM GATE TYPE THIN FILM TRANSISTOR

POLYCRYSTALLINE SILICON UPPER METAL LAYER HIGH

ELECTRIC RESISTANCE

PHYSICAL STRENGTH COAT LOWER METAL LAYER LOW

ELECTRIC RESISTANCE

PHYSICAL STRENGTH SIGNAL WIRE

DERWENT-CLASS: P81 U11 U12 U14

EPI-CODES: U11-D03C; U12-B03A; U12-D02A4; U14-K01A1B; U14-K01A2B;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1997-124767

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] this invention relates to active-matrix display. It is related with the signal wiring structure of the drive substrate which carried out accumulation formation of bottom gate type TFT and a pixel electrode in more detail.

[0002]

[Description of the Prior Art] Active-matrix display has the flat panel structure which consists of the drive substrate and opposite substrate which were joined through the gap, and electrooptic materials, such as liquid crystal held in this gap. Accumulation formation of a pixel electrode, the TFT which carries out the switching drive of this, signal wiring, the gate wiring, etc. is carried out at the drive substrate. The pixel electrode is formed in the intersection of gate wiring of behavior, and the signal wiring of a seriate. The TFT for a switching drive is also formed in the intersection of both wiring. As a barrier layer of TFT, amorphous silicon and polycrystal silicon are used from the former. When forming the TFT which constitutes the circumference circuit section in addition to the TFT for a switching drive on the same substrate, the polycrystal silicon which is excellent in property from viewpoints, such as carrier mobility, is adopted. Moreover, there are a top gate type and a bottom gate type in TFT. The former forms a semiconductor thin film on an insulating substrate, and carries out patterning formation of the gate electrode through a gate insulator layer on it. On the contrary, a bottom gate type carries out patterning of the gate electrode on an insulating substrate, and forms a semiconductor thin film through a gate insulator layer on it. Since the semiconductor thin film used as the barrier layer of TFT has estranged the bottom gate type from the insulating substrate through a gate insulator layer, it cannot receive easily bad influences, such as an impurity contained in a substrate, and it is developed briskly now. Furthermore, TFT is manufactured in an elevated-temperature process or a low-temperature process. In an elevated-temperature process, since processing temperature rises at 600 degrees C or more, the quartz which was excellent in thermal resistance as a substrate material is used. In a lowtemperature process, since processing temperature is pressed down by 600 degrees C or less, a comparatively cheap glass material etc. can be used for a substrate. From the above viewpoint, the technology which forms the bottom gate type TFT using the present polycrystal silicon in a lowtemperature process attracts attention. In this case, as for the signal wiring which intersects the gate wiring containing a gate electrode, and this, the metallic material is mainly used. [0003]

[Problem(s) to be Solved by the Invention] As a metallic material which constitutes signal wiring, molybdenum (Mo) and the aluminum (aluminum) of comparatively the low melting point of a high-melting point are used comparatively typically. Conventionally, these metallic materials were processed into signal wiring as a monolayer. When big-screen-izing or densification of active-matrix display was advanced for this reason, the technical problem which is described below and which should be solved had arisen. Since electric resistance was comparatively high, when active-matrix display was enlarged in the case of the monolayer of molybdenum, since a wire length became long, aggravation of signal

transfer characteristics had been caused. Since similarly the width of face of signal wiring becomes narrow even when densification of the active-matrix display is carried out, aggravation of signal transfer characteristics arises. On the other hand, in the case of the monolayer of aluminum, it originated in membrane stress, migration arose, and the defects called so-called hillock were occurring frequently. This hillock causes [of signal wiring] open-circuit failure. Moreover, rigidity is comparatively low and physical intensity of aluminum is weak. Therefore, aluminum had caused open-circuit failure easily with the level difference produced in the intersection of gate wiring and signal wiring. Furthermore, since aluminum was activity chemically, it had caused corrosion easily by the etching reagent used at an after process. This also causes open-circuit failure. In addition, since the reflection factor of aluminum is high, it will reflect the outdoor daylight which carries out incidence to display in large quantities. For this reason, when active-matrix display is used as a display of a direct viewing type, the technical problem that display contrast gets worse by outdoor daylight reflection occurs.

[Means for Solving the Problem] The following meanses were provided in order to solve the technical problem of a Prior art mentioned above. That is, the active-matrix display concerning this invention is equipped with the drive substrate and opposite substrate which were joined through the predetermined gap as fundamental composition, and the electrooptic material held in this gap. Accumulation formation of TFT, a pixel electrode, and the signal wiring is carried out at the drive substrate. The counterelectrode is extensively formed in the opposite substrate. TFT has bottom gate structure and consists of a gate insulator layer which covers the gate electrode by which patterning formation was carried out, and this gate electrode to a drive substrate, and a semiconductor thin film by which patterning formation was carried out on this gate insulator layer. The aforementioned signal wiring has the laminated structure which piled up the bottom metal layer and the top metal layer. Electric resistance is comparatively low and a bottom metal layer has comparatively small physical intensity while connecting with a semiconductor thin film. Electric resistance is comparatively high and its physical intensity is comparatively large while a top metal layer covers a bottom metal layer.

[0005] A bottom metal layer makes a principal component the low melting point metallic material chosen from aluminum, copper, silver, and gold. A top metal layer makes a principal component the high-melting point metallic material chosen from molybdenum, a tantalum, chromium, nickel, and titanium. Preferably, the aforementioned signal wiring has covered the bottom metal layer with a comparatively high reflection factor with the top metal layer with a comparatively low reflection factor. Moreover, the aforementioned signal wiring has covered completely the bottom metal layer with comparatively narrow line breadth with the top metal layer with comparatively wide line breadth preferably. Furthermore, preferably, the aforementioned TFT is covered with the layer insulation film, and electrical connection of the aforementioned signal wiring is carried out to this TFT through the contact hole which carried out opening to this layer insulation film.

[0006] According to this invention, signal wiring has adopted the laminated structure (composite construction) which piled up the bottom metal layer and the top metal layer. By using aluminum with comparatively low electric resistance as a bottom metal layer, the electric resistance as the whole composite construction falls, and it can respond to big-screen-izing and densification of active-matrix display. As a top metal layer, by using comparatively large molybdenum etc., physical intensity is raising the rigidity of the whole composite construction, and can suppress open-circuit failure etc. effectively. Moreover, the pressure resistance of the whole composite construction is improvable by covering completely a bottom metal layer with comparatively narrow line breadth with a top metal layer with comparatively wide line breadth. That is, when activity aluminum is chemically used for a bottom metal layer, or when [since not only the front face but the end face is chemically covered with the inactive top metal layer,] it is exposed to an etching reagent etc. at a back process, corrosion does not advance. Furthermore, by covering a bottom metal layer with the high reflection factor which consists of aluminum etc. with top metal layers with a comparatively low reflection factor, such as molybdenum, the reflection factor of the whole composite construction becomes low, suppresses outdoor daylight reflection, and leads to the contrast improvement of active-matrix display.

[0007]

[Embodiments of the Invention] Hereafter, with reference to a drawing, the suitable operation gestalt of this invention is explained in detail. <u>Drawing 1</u> is the fragmentary sectional view showing the concrete composition of the active-matrix display concerning this invention. This display is equipped with the drive substrate 1 and the opposite substrate 2 which were joined through the predetermined gap so that it may illustrate. Electrooptic materials, such as liquid crystal 3, are held in both gap. Accumulation formation of TFT 4, the pixel electrode 5, the signal wiring 6, etc. is carried out at the drive substrate 1. The counterelectrode 7 is extensively formed in the opposite substrate 2.

[0008] TFT 4 has bottom gate structure and equips the front face of the drive substrate 1 which consists of glass etc. with the gate electrode G by which patterning formation was carried out. The gate electrode G consists of an alloy of a tantalum, aluminum, and a molybdenum/tantalum etc., and patterning formation is carried out as a part of gate wiring (not shown). The front face of the gate electrode G is covered with the oxide film on anode 8. Furthermore, on it, it reaches 1st gate insulator layer 9, and the 2nd gate insulator layer 10 is formed in order. the 1st gate insulator layer 9 -- from SiNx -- becoming -the 2nd gate insulator layer 10 -- SiO2 from -- it becomes Thus, the pressure resistance of bottom gate type TFT 4 is secured by adopting the gate insulator layer of a laminated structure. On the 2nd gate insulator layer 10, patterning formation of the semiconductor thin film 11 which consists of polycrystal silicon etc. is carried out, and it becomes the barrier layer of TFT 4. That is, the channel field Ch is established in right above [of the gate electrode G], and the source field S where the impurity was poured in by high concentration, and the drain field D are established in the both sides. In addition, in this example, TFT 4 has the so-called LDD structure, and the low concentration impurity range (LDD) intervenes, respectively between the source field S and the channel field Ch and between the drain field D and the channel field Ch. Current leak of TFT 4 is suppressed by adopting this LDD structure. In addition, patterning formation of the protective coat 12 is carried out right above [of the channel field Ch 1.

[0009] The signal wiring 6 which is the feature element of this invention has a laminated structure which piled up the bottom metal layer 13 and the top metal layer 14. Patterning formation of this signal wiring 6 is carried out on the layer insulation film 15. That is, TFT 4 is covered with the layer insulation film 15, and is carrying out electrical connection of the signal wiring 6 to the source field S of TFT 4 through the contact hole 16 which carried out opening to this layer insulation film 15. In addition, the bottom metal layer 13 and the top metal layer 14 have connected also with the drain field D side through a contact hole. In using TFT 4 as a switching element like illustration, the drain field D carries out electrical connection to the pixel electrode 5 through these bottom metal layers 13 and the top metal layer 14. In addition, in this example, signal wiring 6 and the pixel electrode 5 of each other are insulated with the flattening film 17 which consists of acrylic resin etc. By the way, when using TFT as a circuit element of a circumference drive circuit, signal wiring will be connected to the drain field D like the source field S.

[0010] As mentioned above, signal wiring 6 has the composite construction which piled up the bottom metal layer 13 and the top metal layer 14. Electric resistance is comparatively low and its physical intensity is comparatively small while carrying out the direct file of the bottom metal layer 13 to the semiconductor thin film 11. On the other hand, electric resistance is comparatively high and its physical intensity is comparatively large while the top metal layer 14 covers the bottom metal layer 13. The bottom metal layer 13 makes a principal component the low melting point metallic material chosen from aluminum, copper, silver, gold, etc. The top metal layer 14 makes a principal component the highmelting point metallic material chosen from molybdenum, a tantalum, chromium, nickel, titanium, etc. The electric resistance of the bottom metal layer 13 was made small, and the conductivity of signal wiring 6 is secured. Moreover, physical intensity of the top metal layer 14 was enlarged, rigidity was raised, and the reliability of the signal wiring 6 whole is secured. That is, open-circuit failure etc. is effectively prevented by making signal wiring 6 into a composite construction. In addition, this example has covered completely the bottom metal layer 13 with comparatively narrow line breadth in the top metal layer 14 with comparatively wide line breadth. Not only a front face but the side (end face) is

being worn in the top metal layer 14, and the bottom metal layer 13 is protected from the etching reagent etc. In addition, the bottom metal layer 13 with a comparatively high reflection factor is covered with the top metal layer 14 with a comparatively low reflection factor. For example, when aluminum is used as a bottom metal layer 13, the reflection factor is about 90%. When molybdenum is used as a top metal layer 14, the reflection factor is about 45%. With this structure, when active-matrix display is used as a display of a direct viewing type, since signal wiring 6 can suppress outdoor daylight reflection, display contrast becomes high.

[0011] Next, with reference to drawing 2 and drawing 3, the manufacture method of the display shown in drawing 1 is explained in detail. First, patterning formation of the gate electrode G and the gate wiring (not shown) is carried out on the insulating substrate 1 which consists of glass etc. at the process A of drawing 2. As mentioned above, as a gate electrode G, a tantalum, aluminum, molybdenum/tantalum, etc. can usually be used. Next, at a process (B), anodizing of the front face of the metal gate electrode G is carried out. Thereby, the gate electrode G is covered with an oxide film on anode 8. It progresses to Process C, and on this insulating substrate 1, a plasma CVD method etc. is used and continuation membrane formation of the 1st gate insulator layer 9, the 2nd gate insulator layer 10, and the semiconductor thin film 11 is carried out. the 1st gate insulator layer 9 -- for example, SiNx from -- it becomes the insulator layer 10 between the 2nd layer -- SiO2 from -- it becomes The semiconductor thin film 11 consists of amorphous silicon. It progresses to Process D, heat-treats at 300 degrees C or about 350 degrees C (annealing), and is made to secede from the superfluous hydrogen contained in the semiconductor thin film 11 which consists of amorphous silicon formed by plasma CVD (dehydrogenation). Furthermore, laser beams, such as an excimer laser pulse, are irradiated, heating fusion only of the semiconductor thin film 11 is carried out partially, and amorphous silicon is converted into polycrystal silicon through a cooling process. It progresses to Process E, and patterning formation of the protective coat (channel stopper) 12 is carried out on the semiconductor thin film 11 so that it may have consistency with the gate electrode G. Exposure processing is performed by self-alignment by using the gate electrode G as a mask from the background of the transparent insulating substrate 1 which consists of glass etc. at patterning of a protective coat 12 using rear-face exposure, and the pattern of a protective coat 12 is specified. SiO2 formed beforehand etc. -- by ********ing alternatively by the pattern to which the insulator layer was specified by this rear-face exposure, the protective coat (channel stopper) 12 adjusted in the gate electrode G is obtained It progresses to Process F and impurity ion is comparatively doped to the semiconductor thin film 11 by low concentration by self-alignment by using a protective coat 12 as a mask. Without performing mass separation, after plasma-izing the raw material gas containing an impurity element and generating impurity ion, electric-field acceleration is carried out and this ion doping is driven into the semiconductor thin film 11. Thereby, a low concentration impurity range (LDD field) is formed in the semiconductor thin film 11. In addition, the channel field Ch where impurity ion is not substantially doped directly under the protective coat 12 is left behind. Furthermore, a protective coat 12 turns pattern twist 1, a big photoresist is formed, and an impurity is poured into the semiconductor thin film 11 for this by high concentration by ion doping the same as a mask. Thereby, the source field S of bottom gate type TFT 4 and the drain field D are formed. The rear-face exposure which uses for example, the gate electrode G as a mask can perform patterning of this photoresist. Furthermore, the impurity which irradiated the laser beam and was poured into the semiconductor thin film 11 is activated.

[0012] It progresses to the process G of <u>drawing 3</u>, the semiconductor thin film 11 is ********ed in the shape of an island, and each TFT 4 is separated mutually. Furthermore, an insulating substrate 1 is supplied in hydrogen plasma atmosphere or hydrogen gas atmosphere, and the semiconductor thin film 11 is made to diffuse hydrogen. Process H -- progressing -- TFT 4 -- SiNx etc. -- from -- it covers with the becoming layer insulation film 15 Heat annealing is performed at 300 degrees C by this state, and the hydrogen introduced into the semiconductor thin film 11 is fixed. The so-called hydrogen treating of the semiconductor thin film 11 is performed, and the operating characteristic of TFT 4 is improved. It progresses to Process I, and the layer insulation film 15 is ********ed alternatively and opening of the contact hole 16 which is open for free passage to the source field S of TFT 4 and the drain field D is

carried out. Furthermore, the vacuum evaporation of the bottom metal layer 13 which consists of aluminum is carried out on the layer insulation film 15. It progresses to Process J and patterning of the bottom metal layer 13 is carried out to a predetermined configuration. For example, the bottom metal layer 13 linked to the source field S side ******** according to the pattern of signal wiring. The bottom metal layer 13 linked to the drain field D side ******* according to the pattern of a pad electrode. The vacuum evaporationo of the top metal layer 14 which turns into this bottom metal layer 13, for example from molybdenum in piles is carried out. Finally it progresses to Process K and patterning of the top metal layer 14 is carried out to a predetermined configuration. Thereby, the signal wiring 6 of a laminated structure (composite construction) which made electrode connection at the source field S side of TFT 4 is obtained. Then, the flattening film which consists of acrylic resin etc. so that signal wiring 6 may be covered is formed. After carrying out opening of the contact hole to this flattening film, transparent electric conduction films, such as ITO, are formed, patterning is carried out to a predetermined configuration, and it is processed into a pixel electrode. According to the above process, the structure of the drive substrate shown in drawing 1 is acquired. Then, if the opposite substrate in which the counterelectrode was formed beforehand is joined to a drive substrate through a predetermined gap and liquid crystal is enclosed with this gap, active-matrix type display will be completed.

[0013] Finally, drawing 4 expresses the flat-surface configuration of the active-matrix type display shown in drawing 1. Patterning of the signal wiring 6 is carried out to a seriate, and patterning of the gate wiring 20 is carried out to behavior so that it may illustrate. Both both have the shading nature which consisted of a metallic material and was excellent. Signal wiring 6 and the gate wiring 20 cross in the shape of a matrix, and form a black matrix. Patterning formation of the pixel electrode 5 is carried out to the field surrounded by this black matrix. The signal wiring 6 and the gate wiring 20 which constitute a black matrix can consist of a metallic material with a reflection factor low both comparatively, can suppress outdoor daylight reflection, and can raise display contrast. Bottom gate type TFT 4 is formed in the intersection of signal wiring 6 and the gate wiring 20, and the switching drive of the corresponding pixel electrode 5 is carried out. TFT 4 makes the barrier layer the semiconductor thin film 11 by which patterning was carried out to the shape of an island, and the gate electrode G installed from the gate wiring 20 is formed in the bottom. Electrical connection of the source field S formed in the semiconductor thin film 11 is carried out to the signal wiring 6 of a composite construction. On the other hand, electrical connection of the drain field D is carried out to the pixel electrode 5.

[Effect of the Invention] As explained above, according to this invention, signal wiring has the composite construction which piled up the bottom metal layer and the top metal layer. A bottom metal layer has comparatively low electric resistance to instead of [with comparatively small physical intensity]. A top metal layer has comparatively large physical intensity to instead of [with comparatively high electric resistance]. By adopting such a composite construction, it becomes possible to press down the electric resistance of signal wiring low in efficiency, and can respond to big-screenizing of display, and high brilliance-ization. Moreover, open-circuit failure of signal wiring stops being able to happen easily due to adopting the starting composite construction, and improvement in reliability can be desired. Reliability increases because physical intensity uses especially the metallic material which was highly excellent in rigidity as a top metal layer. Moreover, when the signal wiring itself can be used for a black matrix and active-matrix type display is applied to a direct-viewing-type display by preparing a top metal layer with a reflection factor lower than a bottom metal layer, contrast improves.

[Translation done.]