< Chapter 7> <51.de #4> Example) Xi's i'd N(M, 02). Let m; = i = Xi'; jth sample moment To find the method of moment estimator (MME), we set estimater m, set E[m,] = u

mmz set E[mz] = 52+42. and solve the above equations to find it and or MME MME = M, 62 MME = M2 - m,2.

25/ide #57.

EX)
$$\chi_{i}$$
's iid G_{amma} (α, β) . Q^{MME} , $\beta^{MME} = \frac{2}{6}$.
Set $m_1 = E[m_1] = \alpha\beta$ — Ω
 $m_2 = E[m_2] = \alpha\beta^2 + \alpha^2\beta^2 - \Omega$

Solve the first one Dos = mi plug-in into 2 provides $m_2 = \alpha \cdot \left(\frac{m_1}{\alpha}\right)^2 + \alpha^2 \left(\frac{m_1}{\alpha}\right)^2 = \frac{m_1^2}{\alpha} + m_1^2 \iff \alpha = \frac{m_1^2}{m_2 - m_1^2}$

-- BMME = MI - MI.

EX). X_i 's id Beta (α, β) , α MIME β HIME = β Set $M_1 = E(M_1) = \frac{\alpha}{\alpha + \beta}$, $M_2 = E(M_2) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + \beta)^2 (\alpha + \beta + \beta)^2}$ Note: $E[m_2] = \left(\frac{\alpha}{\alpha + \beta}\right) \left(1 - \frac{\alpha}{\alpha + \beta}\right) \left(\frac{1}{\alpha + \beta + 1}\right) + \left(\frac{\alpha}{\alpha + \beta}\right)^2 = \frac{m_1(1 - m_1)}{\alpha + \beta + 1} + m_1^2$

From D (x+3) m1 = x. From ((x+1) m2 = m1+ (x+1) m12.) solving this will give

$$\mathcal{L}^{MME} = \frac{m_1(m_1 - m_2)}{m_2 - m_1^2}, \quad \mathcal{B}^{MME} = \frac{(m_1 - m_2)(1 - m_1)}{m_2 - m_1^2}$$

$$X_{ij}^{ind} = N(M_i, \sigma^2), \quad X_{i=1,\dots, S}, \quad y_{i=1,\dots, N}.$$

$$\lim_{n \to \infty} \left[L(M_i, \dots, M_i, \sigma^2) \right] = \lim_{n \to \infty} \frac{1}{|I|} \frac{1}{|I|} \frac{1}{|I|} \frac{1}{|I|} \exp\left[-\frac{(X_{ij}^2 - M_i)^2}{2\sigma^2}\right]$$

$$= -\frac{S_i^n}{2} \log 2\pi \sigma^2 - \sum_{i=1}^n \frac{\sum_{j=1}^n (X_{ij}^2 - M_i)}{2\sigma^2}$$

$$\frac{\partial}{\partial \mu_{i}} \ln \left[L(\mu_{i}, \mu_{s}, \sigma^{2}) \right] = 2 \sum_{j=1}^{m} (\chi_{ij} - \mu_{i}) / (2\sigma^{2}) \stackrel{\text{set}}{=} 0 \quad i = 1, \dots, s \quad -0$$

$$\frac{\partial}{\partial \mu_{i}} \ln \left[L(\mu_{i}, \mu_{s}, \sigma^{2}) \right] = -\frac{sn}{2\sigma^{2}} + \sum_{i=1}^{m} (\chi_{ij} - \mu_{i}) / (2\sigma^{4}) \stackrel{\text{set}}{=} 0 \quad -0$$

From (a),
$$\mathcal{M}_{i} = \frac{2}{J^{-1}} \chi_{ij}/m$$
, $i=1,\dots, S$.

From (b), $\int_{-1}^{MLE} \frac{2}{J^{-1}} \frac{2}{J^{-1}} (\chi_{ij} - \mathcal{U}_{i}^{-1})^{-1}/(5n)$

< 5/ide#197

 $X \mid \Theta \sim N(\Theta, \sigma^2)$, σ^2 known. $\Theta \sim N(\mu, \tau^2)$, μ, τ^2 known. Find $[\Theta \mid X]$

$$= \exp \left\{ \left[\theta - \frac{\sigma^{2} \mu + 7^{2} \chi}{\sigma^{2} + 7^{2}} \right]^{2} / \left(\frac{1}{27^{2}} + \frac{1}{24^{2}} \right)^{-1} \right\}$$

$$= \exp \left\{ \left(\theta - \frac{\sigma_{u}^{2} + 7^{2} \chi}{\sigma^{2} + 7^{2}} \right)^{2} / 2 \left(\frac{7^{2} \sigma^{2}}{\sigma^{2} + 7^{2}} \right) \right\}.$$

 $(0|X) \sim N\left(\frac{\sigma^2 \mu + z^2 x}{\sigma^2 + z^2}, \frac{z^2 \sigma^2}{\sigma^2 + z^2}\right)$. Note, the posterior is a neighbor Mean and the

data.
$$\left(\frac{\sigma^2}{\sigma^2+7^2}\right)$$
- \mathcal{M} + $\left(\frac{7^2}{\sigma^2+7^2}\right)$. \mathcal{X} .

Ēx). Xis iid f(x10) = 0e-0x, T(0)-pe-BO, 070. (Slide#20) 3). O(X ~ T(0) f(X10) $\propto e^{-\beta\theta} \cdot \theta^{n} - \theta \Sigma X^{o}$ $\mathbf{e}_{\mathbf{Q}} = \mathbf{e}_{\mathbf{C}} (\mathbf{E} \mathbf{x}_i + \mathbf{e}_{\mathbf{C}})$ = (n+1)-1 - 0/[ZX;+B]-1 ~ Ganina $(n+1, \frac{1}{\sum x_i + \beta})$ Note $E[\theta] = \frac{1}{\beta}$ $E[\theta|X] = \frac{n+1}{\Sigma x_i + \beta} = \frac{1+V_m}{X+\beta/m}$ Posterior mean is mainly dependent on the data X unless & is an extremly large value. L'Slide # 32 > Proof of Lemma 7.3.11. Note that $E\left[\frac{\partial \log f(x)(0)}{\partial 0}\right] = 0$ if differentiation and integration are exchangeable. Then $\frac{\partial}{\partial \theta} E\left[\frac{\partial \log f(x(\theta))}{\partial \theta}\right] = E\left[\frac{\partial}{\partial \theta}\left[\frac{\partial \log f(x(\theta))}{\partial \theta}\right]\right]$ $= \left(\frac{\partial}{\partial o} \left\{ \frac{\partial \operatorname{legf}(x(o))}{\partial o} \cdot f(x(o)) \right\} dx$ $= \int \frac{\partial^2 \log f(x|\theta)}{\partial \theta^2} f(x|\theta) dx + \int \frac{\partial \log f(x|\theta)}{\partial \theta} \cdot \frac{\partial f(x|\theta)/\partial \theta}{f(x|\theta)} \cdot f(x|\theta) dx$ $= E\left[\frac{\partial^2 \log f(x(0))}{\partial \theta^2}\right] + E\left[\left(\frac{\partial \log f(x(0))}{\partial \theta}\right)^2\right] = 0.$

Ex) Xi's iid N(M, o'), o' known. Find UMVUE of M2. Distribution of X kelongs to the exponential family.

Thus X 13 a complete statistic. [and sufficient by factorization than] Consider Var $(\bar{X}) = E(\bar{X}^2) - E(\bar{X})^2 = \sigma_n^2$. $E[\bar{x}^2] = \mu^2 + \sigma_n^2.$ Thus $X^2 - \frac{\delta^2}{n}$ is an $UE = \int u^2 \left(\frac{\delta^2}{m}\right) is known here)$ By Lehmann & Scheffé Theorem, X-5 is a UMVUE of Mi. EX). X2's i'd U(-0,0). Find UMVUE of 0., 0>0 $T = f(x_i(0)) = \frac{1}{(20)^n} T = \frac{1}{$ Thus, by factorization theorem max |Xi is a Sufficient Statistic. - a' Let Y = max | Xil. Then YoU[0,0), fy(y) = ny n-1/0, 0 = y < 0. Suppose g(y) is a function sit. $E[g(Y)] = \int_{0}^{\theta} \frac{ny^{n-1}}{\rho^{n}} g(y) dy = 0, \quad \forall \theta$

 $\Rightarrow \frac{1}{SP} \mathbb{E}[g(Y)] = \frac{\partial}{\partial \theta} \int_{0}^{\theta} \frac{ny^{n-1}}{\theta^{n}} g(y) dy = 0 \Rightarrow n \theta^{n-1} g(\theta) = 0 \quad \forall \theta.$ $So. g(\theta) = 0 \quad \text{for all } \theta. \quad \text{Therefore} \quad Y \quad \text{is a complete sufficient statistic-} D$ $Thom \ \Theta, \ \Theta, \quad Y \quad \text{is a } C, S, S.$

 $E[Y] = \begin{cases} \forall y \cdot ny^{n-1} dy = \frac{n}{n+1}\theta & \frac{n+1}{n}Y \text{ is } U.E. \text{ of } \theta. \end{cases}$ Then by Lehmann - Schefe' Theorem, $\frac{n+1}{n}Y \text{ is a UMVUE of } \theta.$

EXI). Xis Lid N (M, o2).

$$\frac{\partial}{\partial s^{2}} \log_{1} f(X \mid s^{2}) = \frac{\partial}{\partial s^{2}} \log_{1} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp_{1} \left[-\frac{(X \cdot - \mu)^{2}}{2\sigma^{2}} \right]$$

$$= \frac{\partial}{\partial s^{2}} \left[-\frac{\eta \log_{2} 2\pi\sigma^{2}}{2\sigma^{2}} - \frac{\Sigma(X \cdot - \mu)^{2}}{2\sigma^{2}} \right]$$

$$= -\frac{\eta}{2\sigma^{2}} + \frac{\Sigma(X \cdot - \mu)^{2}}{2\sigma^{4}}$$

$$= \frac{\eta}{2\sigma^{4}} \left\{ \frac{\Sigma(X \cdot - \mu)^{2}}{2\sigma^{4}} - \frac{\sigma^{2}}{2\sigma^{4}} \right\}$$

$$= \frac{\eta}{2\sigma^{4}} \left\{ \frac{\Sigma(X \cdot - \mu)^{2}}{2\sigma^{4}} - \frac{\sigma^{2}}{2\sigma^{4}} \right\}$$

$$= \frac{\eta}{2\sigma^{4}} \left\{ \frac{\Sigma(X \cdot - \mu)^{2}}{2\sigma^{4}} - \frac{\sigma^{2}}{2\sigma^{4}} \right\}$$

$$= \frac{\eta}{2\sigma^{4}} \left\{ \frac{\Sigma(X \cdot - \mu)^{2}}{2\sigma^{4}} - \frac{\sigma^{2}}{2\sigma^{4}} \right\}$$

Thus, if u is known, the variance of <u>SUXI-M</u> attains the CRLB. (If μ is unknown, then $\Sigma(X_i - \mu)^2/n$ does not attain the CRLB).

EX2). Xis i'd Exp().

$$\frac{\partial}{\partial \lambda} \operatorname{leg} f(X|\lambda) = \frac{\partial}{\partial x} \operatorname{leg} \prod_{i=1}^{n} \frac{1}{\lambda} e^{-\frac{x_{i}^{2}}{\lambda}} = \frac{\partial}{\partial \lambda} \left(-n \operatorname{leg} \lambda - \frac{z_{i}^{2}}{\lambda}\right)$$

$$= -\frac{n}{\lambda} + \frac{z_{i}^{2}}{\lambda^{2}} = \frac{n}{\lambda^{2}} \left(\frac{z_{i}^{2}}{n} - \lambda\right)$$

$$= a(x) \quad w \quad \tau(\lambda).$$

Thus W= X attains the CRLB.

L Slide #35).

Rao-Blackwell Theorem says, we need to condition on a sufficient stat. If not ...??

 $E \times$). Let X_1 , X_2 iid $\mathcal{N}(\mathcal{M}, 1)$. $\overline{X} = (X_1 + X_2)/2$. Note X_1 is not sufficient.

Let $\beta(X_i) = E[X_i | X_i]$. Then, $E\beta(X_i) = E[E[X_i | X_i]] = E[X_i] = \mu$.

Here, $Var(\phi(XI)) = Var[E(\overline{X}|XI)] = Var[E[\frac{1}{2}XI + \frac{1}{2}XI + \frac{1}{2}XI$ which is smaller than $Var(\overline{X}) = \frac{1}{2}$.

But $\phi(X_1) = \frac{1}{2}X_1 + \frac{1}{2}$ is not a statistic. So, we need to consider only estimators based on a Sufficient Statistic.

(Slide # 37)

XI, ", Xn i'd Binomial (b, 0). Find UMVUE of OO, @ 60(1-0) 1.

 $= {k \choose x} \cdot {(1-\theta)}^{k} \cdot \exp\left[x \log \frac{\theta}{1-\theta}\right]$ $= {k \choose x} \cdot {(1-\theta)}^{k} \cdot \exp\left[x \log \frac{\theta}{1-\theta}\right]$ $+ {i \choose x} = x \quad w(\theta) = \log \frac{\theta}{1-\theta}.$

Thus Xi's are from an exponential family. Then \(\sum_{i=1}^{m} \times_{i} \) is 'CSS. [This is a result of Theorem 6.2.10 and Theorem 6.2.25].

 $E[\Sigma X:/(nk)] = \theta$ as $\Sigma X: \sim Binomial(nk, 0)$.

Thus IXI is a UMVUE of O by Lehmann-Scheffé Theorem.

2) Notice that $P(X_i=1) = {k \choose i} \theta^i (i-\theta)^k = k \theta(i-\theta)^k$. Thue, consider an estimator based on this. $h(X_i) = {k \choose 0}$ of w. Then $E[h(x_1)] = \sum_{s=0}^{k} h(x) {k \choose x} \theta^x (1-\theta) = k\theta (1-\theta)^{k-1}$; unbiased.

Since T=ZX: is CSS, &CH=E[h(X1) | XX;] is a UMVUE of kO(1-0) by

Note, 2 in slide #36]

Unbiased

CSS

Then when we observe $\sum_{i=1}^{m} z_i = t$, $\phi(t) = E[h(x_i)|ZX_i = t] = p(X_i = 1|ZX_i = t)$

 $= \frac{P(X_1=1 \& \frac{\Xi}{\Sigma}X_1=t-1)}{P(\Sigma X_1=t)} = \frac{ko(1-0)^{k-1} \cdot \left(\frac{k(n-1)}{t-1}\right) \circ \left(1-0\right)}{\left(\frac{kn}{t}\right) \circ \left(1-0\right)}$ $= \frac{k\left(\frac{k(n-1)}{t-1}\right)}{\left(\frac{kn}{t}\right)} \Rightarrow \text{Therefore} \quad \emptyset(T) = k \frac{\left(\frac{k(n-1)}{\Sigma}X_1-1\right)}{\left(\frac{kn}{\Sigma}X_1-1\right)}$ $= \frac{k\left(\frac{kn}{t-1}\right)}{\left(\frac{kn}{t}\right)} \Rightarrow \text{Therefore} \quad \emptyset(T) = k \frac{\left(\frac{k(n-1)}{\Sigma}X_1-1\right)}{\left(\frac{kn}{\Sigma}X_1-1\right)}$

<5/ide#38> Xi's i'd Geometric (p), it Find the UMVUE of p. fx (x(p)= (1-p) p, x=1,2,... = p. exp (x-1) leg (1-p) = exponential family. $T = \sum_{i=1}^{n} X_i$ is CSS. $T \sim NB(n, p)$. $f_{\tau}(t|P) = \binom{n+t+1}{n-1} p^{\tau} (r-p)^n$ We need to find an unbiased estimator of P. To get some hint, let's find PMLE $\Rightarrow log ft(t(p) \propto t log p + n log (1-p).$ $\Rightarrow \frac{\partial}{\partial p} \log f_T(t/p) = \frac{t}{p} + \frac{n}{(-1)} \frac{\text{set}}{= 0} \Rightarrow p = n+T.$ $E[p^{Mlt}] = \sum_{t=0}^{\infty} \left(\frac{t}{n+t}\right) \binom{n+t-1}{n-1} p^{t} \binom{1-p}{n}$ $= \frac{20}{100} \frac{t}{n+t} \frac{(n+t-1)!}{(n-1)! t!} p^{t} (1-p)^{m}$ => The final line provide a clue that there will be a cancellation when ntt+ $=) E \left[\frac{T}{n+T-1} \right] = \sum_{t=1}^{\infty} \frac{t}{n+t-1} \cdot \frac{(n+t-1)!}{(n-1)!} p^{t} (r-p)^{n} + t = 0 \text{ has no effect on}$ the sum. = \(\frac{(n+t-2)!}{(n-1)!(t-1)!} \rightarrow \((1-p)^n \cdot P \) $= p \frac{\infty}{\sum_{u=0}^{\infty} \frac{(n+u-1)!}{(n-1)! u!}} p^{u} (1-p)^{m}$ by letting t-1=upmf of NB(n-1, p) = P. . unbiased

By Lehmann - Scheffe Theorem, n+ZXi-1 is an UMNUE of P.

L Slide # 39 >

Xi's i'd Bemoulli(p). i=1,", n. Find the UMWE of p?

The distribution of Xi's belong to an exponential family.

Thus T= IXi is a CSS, and T~ Binomial (M, P).

We know E[T] = np, E[T2] = np(1-p) + n2p2.

From the above, we construct $E[T^2T] = m(n-D)p^2$.

 $=) E \left[\frac{T(T-1)}{n(n-1)} \right] = p^{2} \cdot \frac{1}{1-1} X_{1} \left(\sum_{i=1}^{n} X_{i}^{2} - 1 \right) \text{ is an UMVUE of } p^{2}$

25tide #50>.

Xi's i'd Bernoulli (8), Br Uniform (0,1)

 $[0] \times [0] [\times 10]$ $\times \theta^{\sum X_{i}} (-0)$

~ Beta ([Xi+1, n-[Xi+1)]

The posterior mean minimizes the squared error loss

=> $0^{\text{Bayes}} = \frac{\sum X_i^2 + 1}{n + 2}$

The posterior median minimizes the absolute error loss

 $\Rightarrow \theta^{\text{Bayes}} = m \text{ s.t. } \begin{cases} m \frac{P(n+2)}{P(2x+1)P(n-2x+1)} & \text{if } m-2x \\ 0 & \text{op} \\ \frac{P(2x+1)P(n-2x+1)}{P(2x+1)P(n-2x+1)} & \text{op} \\ \frac{P(2x+1)P(n-2x+1)}{P(2x+1)P(n-2x+1$

[Solution should be found numerically].

< 51, de #46)

Xi's iid $N(\mu, \sigma^2)$ i=1,..., n. $C_b(x)=b$. S_a^2 is an estimator of σ^2 .

The risk under the squared entr loss is $R((\mu, \sigma^2), d_b(x)) = E[(d_b(x) - \sigma^2)^2] = E[(b_bS^2 - \sigma^2)^2]$ $= Var(bS^2) + bias(bS^2)$ $= b^2 Var(S^2) + E[bS^2 - \sigma^2]^2$, $\frac{(n-1)S^2}{\sigma^2} = \chi^2_{(\mu+1)} \Rightarrow Var(S^2) = \frac{2\sigma^4}{(n-1)}$ $= \sigma^4 \left[\frac{2b^2}{(n-1)} + (b-1)^2\right]$ $\Rightarrow This will be minimized when <math>\frac{2b^2}{(n-1)} + (b-1)^2$ is minimum. $\Rightarrow \frac{1}{n-1} \left(2b^2 + (n-1)b^2 - 2b(n-1) + (n-1)\right) = \frac{1}{n-1} \left((n+1)b^2 - 2b(n-1) + (n-1)\right)$ $= \frac{n+1}{n-1} \left(b - \frac{n-1}{n+1}\right)^2 + (cnst)$. $b = \frac{n-1}{n+1}$ will minimize the visk among the estimators in the form f(b).

-- $S_{l}(X) = \frac{m-1}{n+1} S^2$ minimizes the risk.

Now, we consider the Stein's loss.

$$R(\sigma^{2}, \delta_{b}(x)) = E\left[\frac{bS^{2}}{\sigma^{2}} - 1 - log \frac{bS^{2}}{\sigma^{2}}\right]$$

$$= bE\left[\frac{S^{2}}{\sigma^{2}}\right] - 1 - E\left[log \frac{bS^{2}}{\sigma^{2}}\right]$$

$$= b - 1 - log b + E\left[log \frac{S^{2}}{\sigma^{2}}\right]$$
where S is a function of S .

 \Rightarrow will be minimized whem b=1 by differentiating w.r. t. b and setting to Zero. $\int_{b}^{2} (x) = S^{2}$ minimizes the Visk under the Stein's loss.