Ex 1:

1°) Dire que *f* est décroissante sur un intervalle I signifie que

pour tous nombres réels a et b de I, si a < b alors $f(a) \ge f(b)$

Remarque: On dit que la fonction ne conserve pas l'ordre.

2°) Montrons que la fonction f définie par $f(x) = x^2$ est décroissante sur] $-\infty$; 0] .

Soient $a < b \le 0$

Comparons f(a) et f(b) en étudiant le signe de leur différence :

$$f(a)-f(b)=a^2-b^2=(a-b)(a+b)$$

Or, a < b donc a - b < 0

a et b sont négatifs donc a + b est négatif.

Le produit de deux négatifs étant positif, on en déduit que f(a)-f(b)>0

D'où : f(a) > f(b)

L'ordre a été inversé, la fonction est bien décroissante sur $]-\infty;0]$.

Ex 2:

1°) $\overrightarrow{AB} = \overrightarrow{DC}$ donc ABCD est un parallélogramme (c'est à dire BCDA) et donc $\overrightarrow{AD} = \overrightarrow{BC}$

VRAI

2°) On prend
$$x = 0$$
, $0 > -1$ mais $0^2 = 0$ et $0 < 1$ donc FAUX

3°) FAUX

Il peut exister une fonction f avec le tableau de variation suivant :

X	0	1	2
Variation de <i>f</i>	0 -	3	2

Ex 3:

$$\overline{1^{\circ}}$$
) ABCD est un parallélogramme donc $\overline{AB} = \overline{DC}$

Or,
$$\vec{AB}(1,5;8)$$
 et $\vec{DC}(-2-x;-1-y)$ avec D $(x;y)$

D'où :
$$-2 - x = 1.5$$
 et $-1 - y = 8$

Ce qui donne :
$$x = -3.5$$
 et $y = -9$

$$D(-3,5;-9)$$

2°) A milieu de [CE] donc
$$x_A = \frac{x_C + x_E}{2}$$
 et $y_A = \frac{y_C + y_E}{2}$

C'est à dire :
$$2 = \frac{-2 + x_E}{2}$$
 et $-3 = \frac{-1 + y_E}{2}$

Ce qui donne :
$$x_E = 6$$
 et $y_E = -5$

$$E(6; -5)$$

3°)
$$\vec{AB}(1,5;8)$$
 et $\vec{EF}(1,5;8)$

les vecteurs \vec{AB} et \vec{EF} sont colinéaires et donc les droites (AB) et (EF) sont parallèles.

Ex 4:

1.
$$p = \frac{105}{205} \approx 0.51$$

2.
$$f = \frac{91}{227} \approx 0.40$$

donc on peut former un intervalle de fluctuations au seuil de 95%, donné par

$$I_f = [p - \frac{1}{\sqrt{n}}; p + \frac{1}{\sqrt{n}}]$$
 au seuil de 95%, soit $I_f = [0,44;0,58]$ au seuil de 95%.

Or $f \notin I_f$ donc l'échantillon n'est pas représentatif de la population, au risque de 5%, On peut donc suspecter l'existence d'un biais, qui pourrait être une influence des pesticides par exemple.

Ex 5:

Algorithme1:

Compléter cet algorithme pour qu'il calcule les coordonnées du vecteur \overline{AB}

Variables:
$$x_A$$
; x_B ; y_A ; y_B ; X; Y

Entrée : Saisir
$$x_A$$

Saisir x_B

Saisir y_A

Saisir $y_{\rm B}$

<u>Traitement</u>:

X prend la valeur $x_B - x_A$

Y prend la valeur $y_B - y_A$

Sortie: Afficher X

Afficher Y

Algorithme 2:

Cet algorithme permet de vérifier si les vecteurs $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$

et $\vec{v} \begin{pmatrix} x \\ y \end{pmatrix}$ sont colinéaires. Compléter le.

<u>Variables</u>: a;b;x;y

Entrée : Saisir a

Saisir b

Saisir x

Saisir y

Traitement

Si
$$a \times y = b \times x$$

Alors afficher « les vecteurs sont colinéaires »

Sinon afficher « les vecteurs ne sont pas colinéaires »

<u>Ex 6:</u>

Les aires des figures sont représentées par des droites donc ces aires sont des fonctions affines de la variable x.

On remarque que l'aire du triangle CBM décroît quand x grandit.

Donc l'aire de CBM est représentée par la droite de la fonction affine décroissante. Notons cette droite (d_1).

De plus, cette aire est nulle quand x = AB et (d_1) passe par le point (7; 0), ce qui signifie que la fonction associée s'annule quand x = 7.

Donc, AB = 7.

En utilisant à nouveau (d_1), on constate que l'aire vaut 14 quand x = 0.

Or, quand x = 0, le point M est en A et l'aire de CBM est $\frac{AB \times AD}{2} = 3.5CD$

D'où 3.5 AD = 14 et donc AD = 4.

Quand x = 0, l'aire de AMCD (c'est à dire celle du triangle ACD) vaut 8, d'après la 2° droite.

D'où: $\frac{CD \times AD}{2} = 8$ et donc CD = 4

Exercice 7

Partie A

X	2		3		5		6
signe de f(x)		+	0	_	0	+	

X	2	4	6	
Variation de <i>f</i>	3	-1	3	

Partie B

1.a.
$$(t-5)(t-3) = t^2 -5t -3t +15 = t^2 -8t +15 = f(t)$$

1.b.

t	2		3		5		
t - 5		-		-		+	
t - 3		-		+		+	
(t-5)(t-3)		+		-		+	

6

Et on retrouve ainsi le tableau de signes de *f* sur [2;6] de la partie A.

- 2. $2 \le t \le 3,5 \Rightarrow f(2) \ge f(t) \ge f(3,5)$ car f strictement décroissante sur [2;4], d'où $3 \ge f(t) \ge -0.75$
- 3. -1minimum de f sur [2;6] signifie que pour tout t de l'intervalle [2;6], f(t) est toujours supérieur à -1 et qu'il existe une valeur de t dans l'intervalle [2;6] telle que f(t) = -1. Or $f(t) \ge -1$ signifie $t^2 8t + 15 \ge -1$ donc $t^2 8t + 16 \ge 0$ soit $(t-4)^2 \ge 0$ ce qui est toujours vrai, et de plus, on montre que f(4) = -1. Donc -1 est le minimum de f atteint pour t = 4.

Partie C

- 1. D'après la partie B, question 2, l'oiseau se trouve entre 0,75dm sous la surface et 3 dm au dessus du niveau de l'eau.
- 2. D'après la partie B, question 3, l'oiseau ne descendra pas plus bas que 1 dm sous l'eau, soit 10cm...