CE888: Data Science and Decision Making

Lab 3: Modelling

Ana Matran-Fernandez 28 January 2019

Institute for Analytics and Data Science University of Essex

Table of contents

- 1. Setting up
- 2. Regression
- 3. Modelling

Setting up

CE888 repository

email NOW with subject "CE888 github" and your GitHub	
emait NOW with subject close github and your dithub	
username. (e.g., "CE888 github amatra").	
$\ \square$ You don't need to email me when you finish the practice.	
☐ If you have changed anything in your repository since the latime you were in this computer, make sure you do: git put from the repository folder.	
$\hfill\Box$ This will download all the changes you did into your local f	older.

Downloading the lab 3 materials

Go to the Moodle page for this week:
<pre>https://moodle.essex.ac.uk/course/view.php?id= 6683&section=9</pre>
Download the slides and code for today's practice into your local Github directory (e.g., /labs/lab3).
Unzip the code, commit and push it before you make any changes.
Start with the instructions from project_start.pdf
This might take a while. In the meantime, come and get a USB drive!

Regression

Lab structure

Inside lab3 you will see three ipython notebooks
Open them and see what is inside:
☐ facebook_regression.ipynb☐ facebook_classification.ipynb☐ Breast_Cancer_dataset.ipynb
Start with Breast_Cancer_dataset.ipynb to get used to scikit-learn.
Push your changes to GitHub!
After this, you will create your own notebook and work on a new dataset (see next slide).

Modelling

Bank Marketing dataset

□ Create a new ipython notebook
 □ Check the dataset
 □ https://archive.ics.uci.edu/ml/datasets/
 Bank+Marketing: here you have a description of each attribute.
 □ It's saved as bank-additional-full.csv in your lab directory

Your tasks

In the Ipython notebook you created

Load the data from bank-additional-full.csv
Use a classifier (anything, but ExtraTreesClassifier with
100 estimators is the easiest option) on the data with
outcome/output variable y
☐ Convert to dummies using df_dummies =
<pre>pd.get_dummies(df)</pre>
☐ Columns y_no and duration must be deleted — use
something like del df_copy["attribute"] for this
□ Plot histogram of the label y_yes
☐ Get the values and run a classifier (with outcome y_yes)
☐ Report the results of 10-Kfold stratified cross-validation
☐ Get feature importances and a confusion matrix
Once you are done, save your changes in github