UNIT-III

RECURRENT NEURAL NETWORKS

INTRODUCTION:

NEED FOR RNN:

- Convolutional neural network uses the local correlation of data and the idea of weight sharing.
- It is very suitable for pictures with spatial and local correlation.
- Text we are reading, speech signal while we speak, change of stock market over the time etc. are some signals which have spatial as well as temporal dimension
- This type of data does not necessarily have local relevance, and the length of the data in the time dimension is also variable.
- Convolutional neural networks are not good at processing such data.

INTRODUCTION TO RNN:

- A recurrent neural network (RNN) is a kind of artificial neural network mainly used in speech recognition and natural language processing (NLP).
- RNN is used in deep learning and in the development of models that imitate the activity of neurons in the human **brain**.
- Recurrent Networks are designed to recognize patterns in sequences of data, such
 as text, genomes, handwriting, the spoken word, and numerical time series data
 emanating from sensors, stock markets, and government agencies.
- A recurrent neural network looks similar to a traditional neural network except that a memory-state is added to the neurons.
- The computation is to include a simple memory.
- The recurrent neural network is a type of deep learning-oriented algorithm, which follows a sequential approach.
- In neural networks, we always assume that each input and output is dependent on all other layers.
- These types of neural networks are called recurrent because they sequentially perform mathematical computations.

SEQUENCE REPRESENTATION METHOD:

- Data with order is generally called a sequence.
- **For example**, commodity price data that changes over time is a very typical sequence.
- Assume, price trend of a commodity between January to June as a 1D vector [x1, x2, x3, x4, x5, x6], and its shape is [6].

• Example 2:

• price change trend of **b** goods from January to June, you can record it as a 2-dimensional tensor:

$$\left[\left[x_{1}^{(1)}, x_{2}^{(1)}, \cdots, x_{6}^{(1)}\right], \left[x_{1}^{(2)}, x_{2}^{(2)}, \cdots, x_{6}^{(2)}\right], \cdots, \left[x_{1}^{(b)}, x_{2}^{(b)}, \cdots, x_{6}^{(b)}\right]\right]$$

- where b represents the number of commodities, and the tensor shape is [b, 6].
- SO WHAT'S THE PROBLEM?? For the previous case, A tensor with shape [b, s] is needed, where b is the number of sequences and s is the length of the sequence.
- However, many signals cannot be directly represented by a scalar value.

- For example, to represent feature vectors of length n generated by each timestamp, a tensor of shape [b, s, n] is required.
- Consider more complex text data: sentences.
- The word generated on each timestamp is a character, not a numerical value.
- Neural networks cannot directly process string data.
- Conversion of words or characters into numerical values becomes particularly critical, in neural network applications like NLP.

REPRESENTATION METHOD OF TEXT SEQUENCES:

- Consider a sentence having 'n' words.
- The process of encoding text into numbers as Word Embedding. Lets use one hot encoding location names is as shown below:

- **Disadvantage of One Hot Encoding:** The one-hot encoding vector is high-dimensional and extremely sparse, with a large number of positions as 0s.
- Therefore, it is computationally expensive and also not conducive to the neural network training.
- It ignores the **semantic relevance inherent in words. Example:** "like," "dislike," "Rome," "Paris," "like," and "dislike".
- For a group of such words, if one-hot encoding is used, there is no correlation between the obtained vectors, and the semantic relevance of the original text cannot be well reflected.

SEMANTIC LEVEL OF RELEVANCE:

- In NLP, the semantic level of relevance can be well reflected through the word vector.
- One way to measure the correlation between word vectors is the cosine similarity:

$$similarity(a,b) \triangleq cos cos (\theta) = \frac{a \cdot b}{|a| \cdot |b|}$$

where a and b represent two word vectors.

EMBEDDING LAYER:

- In a neural network, the representation vector of a word can be obtained directly through training.
- We call the representation layer of the word **Embedding layer**.
- The Embedding layer is responsible for encoding the word into a word vector v.
- It accepts the word number i using digital encoding, such as 2 for "I" and 3 for "me".
- The total number of words in the system is recorded as *Nvocab*, and the output is vector *v* with length *n*:

$$v = f_{\theta}(i|N_{vocab},n)$$

- The Embedding layer is very simple to implement. Build a lookup table with shape [*Nvocab*, *n*].
- For any word number i, you only need to query the vector at the corresponding position and return: v = table[i]
- The Embedding layer is trainable. It can be placed in front of the neural network to complete the conversion of words to vectors.
- The resulting representation vector can continue to pass through the neural network to complete subsequent tasks, and calculate the error L.
- Sample Code:

```
x = tf.range(10) # Generate a digital code of 10 words
x = tf.random.shuffle(x) # Shuffle
# Create a layer with a total of 10 words, each word is
represented by a vector of length 4
net = layers.Embedding(10, 4)
out = net(x) # Get word vector
```

PRETRAINED WORD VECTORS:

- The lookup table of the Embedding layer is initialized randomly and needs to be trained from scratch.
- In fact, we can use pre-trained Word Embedding models to get the word representation.
- The word vector based on pre-trained models is equivalent to transferring the knowledge of the entire semantic space, which can often get better performance.
- Currently, the widely used pre-trained models include Word2Vec and GloVe.
- They have been trained on a massive corpus to obtain a better word vector representation and can directly export the learned word vector table to facilitate migration to other tasks.
- For example, the GloVe model GloVe.6B.50d has a vocabulary of 400,000, and each word is represented by a vector of length 50.
- Users only need to download the corresponding model file in order to use it. The "glove6b50dtxt.zip" model file is about 69MB.
- For the Embedding layer, random initialization is no longer used. Instead, we use the pre-trained model parameters to initialize the query table of the Embedding layer.

```
# Load the word vector table from the pre-trained model
embed_glove = load_embed('glove.68.50d.txt')
# Initialize the Embedding layer directly using the pre-trained
word vector table
net.set_weights([embed_glove])
```

DEALING WITH SEQUENCE SIGNAL:

Consider a sentence:

"I hate this boring movie"

Through the Embedding layer, it can be converted into a tensor with shape [b, s, n], where b is the number of sentences, s is the sentence length, and n is the length of the word vector. The preceding sentence can be expressed as a tensor with shape [1,5,10], where 5 represents the length of the sentence word, and 10 represents the length of the word vector. The sentiment classification task extracts the overall semantic features expressed by the text data and thereby predict the sentiment type of the input text: **positive or negative.**

NETWORK ARCHITECTURE 1 -FULLY CONNECTED ARCHITECTURE:

• The first thing we think of is that for each word vector, a fully connected layer network can be used.

$$o = \sigma(Wt xt + bt)$$

• Extract semantic features, as shown in Figure, using a fully connected layer.

- Disadvantage of network scheme 1: The amount of network parameters is considerable, and the memory usage and calculation cost are high. At the same time, since the length s of each sequence is not the same, the network structure changesdynamically.
- Each fully connected layer sub-network *Wi* and *bi* can only sense the input of the current word vector and cannot perceive the context information before and after, resulting in the lack of overall sentence semantics. Each sub-network can only extract high-level features based on its own input.

NETWORK ARCHITECTURE 2 – SHARED WEIGHTS:

- We already know that convolutional neural networks is better than fully connected networks in processing locally related data.
- This is because it makes full use of the idea of weight sharing and greatly reduces the amount of network parameters, which makes the network training more efficient.
- can we learn from the idea of weight sharing when dealing with sequence signals?

PROS:

• Amount of parameters is greatly reduced,

Network training becomes more stable and efficient

CONS:

- This network structure does not consider the order of sequences
- The same output can still be obtained by shuffling the order of the word vectors.
- Therefore, it cannot obtain effective global semantic information.

NETWORK ARCHITECTURE 3 – GLOBAL SEMANTICS:

- Using Memory Mechanism the network extract the semantic information of word vectors in order and accumulate it into the global semantic information of the entire sentence.
- If the network can provide a separate memory variable, each time the feature of the word vector is extracted then the memory variable is refreshed.
- This is done until the last input is completed and thus the memory variable at this time stores the semantic features of all sequence

Figure 11-6. Recurrent neural network (no bias added)

The state tensor **h** refresh mechanism for each timestamp **t** is:

$$h_t = \sigma \left(W_{xh} X_t + W_{hh} h_{t-1} + b \right)$$

EXPANDED RNN:

• At each time stamp t, the network layer accepts the input xt of the current time stamp and the network state vector of the previous time stamp ht - 1:

$$h_t = f_\theta \left(h_{t-1}, x_t \right)$$

- After transformation, the new state vector *ht* of the current time stamp is obtained and written into the memory state.
- Here $f\theta$ represents the operation logic of the network, and θ is the network parameter set.
- At each time stamp, the network layer has an output to produce

$$o_t$$
, $o_t = g_\phi(h_t)$,

FOLDED RNN:

- The preceding network structure is folded on the time stamp, as shown in Figure.
- The network cyclically accepts each feature vector xt of the sequence, refreshes the internal state vector ht, and forms the output ot at the same time.
- For this kind of network structure, we call it the recurrent neural network (RNN).

Folded RNN model

USING RNN LAYERS:

- let's learn how to implement the RNN layer in TensorFlow.
- In TensorFlow, the $\sigma(Wxhxt + Whhht 1 + b)$ calculation can be completed by layers.SimpleRNNCell() function.
- It should be noted that in TensorFlow, RNN stands for recurrent neural network in a general sense. For the basic recurrent neural network we are currently introducing, it is generally called SimpleRNN.
- The difference between SimpleRNN and SimpleRNNCell is that the layer with cell only completes the forward operation of one timestamp, while the layer without cell is generally implemented based on the cell layer, which has already completed multiple timestamp cycles internally. Therefore, it is more convenient and faster to use.

SIMPLE RNN:

import tensorflow as tf

```
# Define the input feature length n = 4
```

Create a SimpleRNNCell with a cell state vector feature length of 3 cell = tf.keras.layers.SimpleRNNCell(3)

```
# Build the cell with the input feature length cell.build(input_shape=(None, n))
```

```
# Get the trainable variables (wxh, whh, b) trainable variables = cell.trainable variables
```

```
# Print the trainable variables for var in trainable_variables: print(var)
```

In this code:

- We define the input feature length 'n' as 4.
- We create a SimpleRNNCell with a cell state vector feature length of 3.
- We use the cell.build(input_shape=(None, n)) method to build the cell with the specified input feature length.
- We then access the trainable variables of the cell using cell.trainable_variables and print them.
- This code will give you the weights and bias tensors (wxh, whh, b) associated with the SimpleRNNCell.

It can be seen that SimpleRNNCell maintains three tensors internally, the kernel variable is the tensor Wxh, the recurrent_kernel variable is the tensor Whh, and the bias variable is the bias vector b. However, the memory vector b of RNN is not maintained by SimpleRNNCell, and the user needs to initialize the vector b0 and record the b1 on each time stamp. The forward operation can be completed by calling the cell instance:

$$o_t, [h_t] = Cell(x_t, [h_{t-1}])$$

For SimpleRNNCell, ot = ht, is the same object. There's no additional linear layer conversion. [ht] is wrapped in a list. This setting is for uniformity with RNN variants such as LSTM and GRU. In the initialization phase of the recurrent neural network, the state vector h0 is generally initialized to an all-zero vector.

import tensorflow as tf

```
# Initialize state vector. Wrap with list, unified format h0 = [tf.zeros([4, 64])] x = tf.random.normal([4, 80, 100]) # Generate input tensor, 4 sentences of 80 words xt = x[:, 0, :] # The first word of all sentences

# Construct a Cell with input feature n=100, sequence length s=80, state length=64 cell = tf.keras.layers.SimpleRNNCell(64)

# Reshape xt to match the input requirements of the SimpleRNNCell xt = tf.reshape(xt, [4, 100])

# Forward calculation out, h1 = cell(xt, h0)

print(out.shape, h1[0].shape)
```

In this code:

- You correctly initialize the state vector h0.
- You create random input data x for 4 sentences, each with 80 words, and you extract the first word using xt.
- You construct a SimpleRNNCell with the specified input feature size (n=100), sequence length (s=80), and state length (64).
- You reshape xt to match the input requirements of the cell, ensuring it has the shape [batch size, input feature].
- You perform the forward calculation by passing xt and h0 to the cell and print the output shapes.

It can be seen that after one timestamp calculation, the shape of the output and the state tensor are both [b, h], and the ids of the two are printed as follows:

```
print(id(out), id(h1[0]))
```

Post execution we find that The two ids are the same, that is, the state vector is directly used as the

output vector. For the training of length s, it is necessary to loop through the cell class s times to complete one forward operation of the network layer.

Lets attempt to now to iterate over the sequence length and apply the SimpleRNNCell to each time step to get both the output at each time step and the final state.

```
import tensorflow as tf
# Initialize state vector. Wrap with list, unified format
h0 = [tf.zeros([4, 64])]
x = tf.random.normal([4, 80, 100]) # Generate input tensor, 4 sentences of 80 words
# Construct a Cell with input feature n=100, sequence length s=80, state length=64
cell = tf.keras.layers.SimpleRNNCell(64)
# Save a list of state vectors on each time step
h = h0
state history = []
# Unpack the input in the dimension of the sequence length to get xt: [batch size,
input feature]
for xt in tf.unstack(x, axis=1):
  out, h = cell(xt, h)
  state history.append(out)
# The final output can aggregate the output on each time step or take the output of the last
time step
final output = out # Output of the last time step
# final output = tf.concat(state history, axis=1) # Aggregate outputs from all time steps
```

In this code:

print(final output.shape)

- state history is used to collect the output at each time step.
- The tf.unstack operation is used to unpack the input tensor along the time dimension (axis=1) to get each xt for each time step.
- The SimpleRNNCell is applied to each xt, updating the state h at each time step.
- You can choose to aggregate the outputs from all time steps or take only the output from the last time step, as shown in the comments.

The output variable out of the last time stamp will be the final output of the network. In fact, you can also save the output on each timestamp, and then sum or average it as the final output of the network.

MULTI LAYER SIMPLERNNCELL NETWORK:

Like the convolutional neural network, although the recurrent neural network has been expanded many times on the time axis, it can only be counted as one network layer. By stacking multiple cell classes in the depth direction, the network can achieve the same effect as a deep convolutional

neural network, which greatly improves the expressive ability of the network. However, compared with the number of deep layers of tens or hundreds of convolutional neural networks, recurrent neural networks are prone to gradient diffusion and gradient explosion. Deep recurrent neural networks are very difficult to train.

Lets apply two SimpleRNN cells sequentially to the input data, with each cell having its own initial state vector.

import tensorflow as tf

```
# Generate input data: 4 sentences of 80 words, each with 100 features
x = tf.random.normal([4, 80, 100])
# Extract the input at the first time step
xt = x[:, 0, :]
# Define the first SimpleRNNCell (cell0) with a memory state vector length of 64
cell0 = tf.keras.layers.SimpleRNNCell(64)
# Define the second SimpleRNNCell (cell1) with a memory state vector length of 64
cell1 = tf.keras.layers.SimpleRNNCell(64)
# Initialize the state vectors for cell0 and cell1
h0 = [tf.zeros([4, 64])] # Initial state vector for cell0
h1 = [tf.zeros([4, 64])] # Initial state vector for cell1
# Apply cell0 to the input
out0, h0 = cell0(xt, h0)
# Apply cell1 to the output of cell0
out1, h1 = cell1(out0, h1)
print("Output of cell0:", out0.shape)
print("Output of cell1:", out1.shape)
```

In this code:

We generate random input data 'x' representing 4 sentences, each with 80 words, and 100 features.

We extract the input at the first time step 'xt'.

We define two SimpleRNN cells ('cell0' and 'cell1'), each with a memory state vector length of 64.

We initialize the state vectors 'h0' and 'h1' for cell0 and cell1.

We apply 'cell0' to 'xt' and update 'h0' with the new state.

We then apply 'cell1' to the output of 'cell0' and update 'h1' with the new state.

Finally, we print the shapes of the outputs of both cells.

This code demonstrates applying two SimpleRNN cells sequentially to the input data.

Now lets Calculate multiple times on the time axis to realize the forward operation of the entire network. The input xt on each time stamp first passes through the first layer to get the output out0, and then passes through the second layer to get the output out1.

```
import tensorflow as tf
```

```
# Generate input data: 4 sentences of 80 words, each with 100 features x = tf.random.normal([4, 80, 100])
```

```
# Define the first SimpleRNNCell (cell0) with a memory state vector length of 64
cell0 = tf.keras.layers.SimpleRNNCell(64)
# Define the second SimpleRNNCell (cell1) with a memory state vector length of 64
cell1 = tf.keras.layers.SimpleRNNCell(64)
# Initialize the state vectors for cell0 and cell1
h0 = [tf.zeros([4, 64])] # Initial state vector for cell0
h1 = [tf.zeros([4, 64])] # Initial state vector for cell1
# Initialize an empty list to store the outputs at each time step
output sequence = []
# Iterate through the input sequences
for xt in tf.unstack(x, axis=1):
  # Apply cell0 to the input 'xt'
  out0, h0 = cell0(xt, h0)
  # Apply cell1 to the output of cell0
  out1, h1 = cell1(out0, h1)
  # Append the output of cell1 to the output sequence
  output sequence.append(out1)
# Stack the output sequence to get the final output tensor
final output = tf.stack(output sequence, axis=1)
print("Final Output Shape:", final output.shape)
The preceding method first completes the propagation of the input on one time stamp on all
layers and then calculates the input on all time stamps in a loop.
In fact, it is also possible to first complete the calculation of all time stamps input on the first
layer, and save the output list of the first layer on all time stamps, and then calculate the
propagation of the second layer, the third layer, etc. as in the following:
import tensorflow as tf
# Generate input data: 4 sentences of 80 words, each with 100 features
x = tf.random.normal([4, 80, 100])
# Define the first SimpleRNNCell (cell0) with a memory state vector length of 64
cell0 = tf.keras.layers.SimpleRNNCell(64)
# Define the second SimpleRNNCell (cell1) with a memory state vector length of 64
cell1 = tf.keras.layers.SimpleRNNCell(64)
# Initialize the state vectors for cell0 and cell1
h0 = [tf.zeros([4, 64])] # Initial state vector for cell0
h1 = [tf.zeros([4, 64])] # Initial state vector for cell1
```

```
# Initialize lists to store the outputs at each time step for both layers
output sequence cell0 = []
output sequence cell1 = []
# Iterate through the input sequences for the first layer (cell0)
for xt in tf.unstack(x, axis=1):
  # Apply cell0 to the input 'xt' and save the output
  out0, h0 = cell0(xt, h0)
  output sequence cell0.append(out0)
# Iterate through the output sequences of the first layer (cell0) for the second layer (cell1)
for xt in output sequence cell0:
  # Apply cell1 to the input 'xt' and save the output
  out1, h1 = cell1(xt, h1)
  output sequence cell1.append(out1)
# Stack the output sequences for both layers to get the final output tensors
final output cell0 = tf.stack(output sequence cell0, axis=1)
final output cell1 = tf.stack(output sequence cell1, axis=1)
print("Final Output for cello Shape:", final output cello.shape)
print("Final Output for cell1 Shape:", final output cell1.shape)
```

SIMPLE RNN LAYER:

Through the use of the SimpleRNNCell layer, we can understand every detail of the forward operation of the recurrent neural network. In actual use, for simplicity, we do not want to manually implement the internal calculation process of the recurrent neural network, such as the initialization of the state vector at each layer and the operation of each layer on the time axis. Using the SimpleRNN high-level interface can help us achieve this goal very conveniently.

```
import tensorflow as tf

# Create a SimpleRNN layer with a state vector length of 64
layer = tf.keras.layers.SimpleRNN(64)

# Generate input data: 4 sentences of 80 words, each with 100 features
x = tf.random.normal([4, 80, 100])

# Apply the SimpleRNN layer to the input data
out = layer(x)

# Print the shape of the output
print("Output Shape:", out.shape)
```

When creating a SimpleRNN layer in TensorFlow and setting return_sequences=True, the layer will return outputs for all timestamps. Here's how you can do it: import tensorflow as tf

```
# Create a SimpleRNN layer with a state vector length of 64 and return sequences layer = tf.keras.layers.SimpleRNN(64, return_sequences=True)

# Generate input data: 4 sentences of 80 words, each with 100 features x = tf.random.normal([4, 80, 100])

# Apply the SimpleRNN layer to the input data out = layer(x)

# The 'out' variable now contains the outputs for all timestamps

# You can access the output at each timestamp as needed print(out.shape)
```

To create MULTI LAYER RNN i.e. a sequence of SimpleRNN layers where all layers except the last one return sequences that can be used as input for the next layer, you can use a Sequential model in TensorFlow. Here's how you can do it:

import tensorflow as tf

```
# Create a Sequential model with multiple SimpleRNN layers
net = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(64, return_sequences=True),
    tf.keras.layers.SimpleRNN(64, return_sequences=True),
    tf.keras.layers.SimpleRNN(64),
])

# Generate input data: 4 sentences of 80 words, each with 100 features
x = tf.random.normal([4, 80, 100])

# Forward calculation
out = net(x)

# 'out' now contains the final output
print(out.shape)
```

HANDS ON SENTIMENT ANALYSIS USING RNN AND IMDB DATASET:

The classic IMDB movie review dataset is used here to complete the sentiment classification task. The IMDB movie review dataset contain 50,000 user reviews. The evaluation tags are divided into negative and positive. User reviews with IMDB rating <5 are marked as 0, which means negative; user reviews with IMDB rating ≥7 are marked as 1, which means positive. Twenty-five thousand film reviews were used for the training set and 25,000 were used for the test set. The IMDB dataset can be loaded by datasets tool provided by Keras as follows:

First specify the batch size, vocabulary size, maximum sentence length, and word vector feature length. You load the IMDB dataset using keras.datasets.imdb.load_data(). You print the shapes of the training and test data, along with the length of the first training and test samples, and the shapes of the corresponding labels.

```
import tensorflow as tf
from tensorflow import keras
# Define dataset parameters
batch size = 128
                     # Batch size
total words = 10000
                       # Vocabulary size (N vocab)
max review len = 80
                        # Maximum length of sentences
embedding len = 100
                         # Word vector feature length (n)
# Load the IMDB dataset using Keras
(x train, y train), (x test, y test) = keras.datasets.imdb.load data(num words=total words)
# Print the shapes of the input data and labels
print("Training Data Shape:", x train.shape)
                                              # (number of samples, maximum sequence
length)
print("Length of First Training Sample:", len(x train[0])) # Length of the first training
print("Training Labels Shape:", y train.shape)
                                                # (number of samples,)
print("Test Data Shape:", x test.shape)
                                             # (number of samples, maximum sequence
length)
print("Length of First Test Sample:", len(x test[0]))
                                                       # Length of the first test sample
print("Test Labels Shape:", y test.shape)
                                              # (number of samples)
#lets fetch the word-to-index mapping for the IMDb dataset.
# Get the word-to-index mapping for the IMDb dataset
word index = keras.datasets.imdb.get word index()
# Print out the first few words and their corresponding numbers in the coding table
for k, v in list(word index.items())[:10]:
  print(f"Word: {k}, Index: {v}")
""you will start making modifications to the word-to-index mapping to account for special
tokens such as padding, start, unknown, and unused tokens. You're also creating a reversed
mapping to convert numerical indices back to words."""
# Original word-to-index mapping (word index)
# Add 3 to all values in the word index dictionary
word index = \{k: (v + 3) \text{ for } k, v \text{ in word index.items}()\}
# Define special tokens and their corresponding indices
word_index["<PAD>"] = 0 # Padding token
word index["<START>"] = 1 # Start token
word index["<UNK>"] = 2 # Unknown word token
word index["<UNUSED>"] = 3 # Unused token
# Create the reversed index mapping (numerical index to word)
reverse word index = dict((value, key) for (key, value) in word index.items())
```

"The decode_review function you provided takes a list of numerical indices (representing words) and converts them into a human-readable text by looking up the corresponding words in the reverse_word_index mapping. If a word index is not found in the mapping, it is replaced with a question mark "?"."

```
def decode review(text):
  return ''.join([reverse word index.get(i, '?') for i in text])
decoded review = decode review(x train[0])
print(decoded review)
decoded review = decode review(x train[0])
print(decoded review)
"' lets truncate and pad the sequences in the training and test data to make them of equal
length. Long sentences are truncated to the specified max review len, retaining the
beginning of the sentence, and short sentences are padded in front with zeros to reach the
desired length."
x train = keras.preprocessing.sequence.pad sequences(x train, maxlen=max review len)
x test = keras.preprocessing.sequence.pad sequences(x test, maxlen=max review len)
"' After truncating or filling to the same length, wrap it into a dataset
object through the Dataset class, and add the commonly used dataset
processing flow, the code is as follows:""
# Create a TensorFlow Dataset from the training data and labels
db train = tf.data.Dataset.from tensor slices((x train, y train))
# Shuffle the training data with a buffer size of 1000 and batch it, dropping incomplete
batches
db train = db train.shuffle(1000).batch(batchsz, drop remainder=True)
# Create a TensorFlow Dataset from the test data and labels and batch it, dropping incomplete
batches
db test = tf.data.Dataset.from tensor slices((x test, y test))
db test = db test.batch(batchsz, drop remainder=True)
# Print dataset attributes
print('x train shape:', x train.shape, tf.reduce max(y train), tf.reduce min(y train))
```

lets create a network model now. To create a custom model class named MyRNN that inherits from the base Model class and contains an Embedding layer, two RNN layers, and one classification layer, you can use TensorFlow and Keras.

import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers

print('x test shape:', x test.shape)

```
class MyRNN(keras.Model):
  def init (self, units, total words, embedding len, max review len, batchsz):
     super(MyRNN, self). init ()
     # Initialize RNN cell states
     self.state0 = [tf.zeros([batchsz, units])]
     self.state1 = [tf.zeros([batchsz, units])]
     # Word vector encoding
     self.embedding = layers.Embedding(total words, embedding len,
input length=max review len)
     # Construct 2 RNN cells with dropout to prevent overfitting
     self.rnn cell0 = layers.SimpleRNNCell(units, dropout=0.5)
     self.rnn cell1 = layers.SimpleRNNCell(units, dropout=0.5)
     # Classification network to classify the output features of cells
     self.outlayer = layers.Dense(1)
  def call(self, inputs):
     x = self.embedding(inputs) # Word embedding
     state0 = self.state0
     state1 = self.state1
     # Iterate through the sequence with RNN cells
     for word in tf.unstack(x, axis=1):
       out0, state0 = self.rnn cell0(word, state0)
       out1, state1 = self.rnn cell1(out0, state1)
     # Apply the classification layer to the final RNN output
     x = self.outlayer(out1)
     return x
"The final output is obtained from the last layer's last timestamp, and it is passed through a
sigmoid activation function to obtain the probability that a given input belongs to the positive
class (p(y is positive | x))."
def call(self, inputs, training=None):
  x = inputs # [b, 80]
  # Word vector embedding: [b, 80] => [b, 80, 100]
  x = self.embedding(x)
  # Pass through 2 RNN cells: [b, 80, 100] => [b, 64]
  state0 = self.state0
  state1 = self.state1
  for word in tf.unstack(x, axis=1): # word: [b, 100]
     out0, state0 = self.rnn cell0(word, state0, training)
     out1, state1 = self.rnn cell1(out0, state1, training)
```

```
# Last layer's last timestamp as the network output: [b, 64] => [b, 1]
  x = self.outlayer(out1, training)
  # Pass through the activation function, p(y \text{ is positive } | x)
  prob = tf.sigmoid(x)
  return prob
"LETS TRAIN & TEST THE MODEL"
"'For simplicity, here we use Keras' Compile&Fit method to train the
network. Set the optimizer to Adam optimizer, the learning rate is
0.001, the error function uses the two-class cross-entropy loss function
BinaryCrossentropy, and the test metric uses the accuracy rate. The code is
as follows:""
def main():
  units = 64 # RNN state vector length n
  epochs = 20 # Training epochs
  # Create an instance of your custom RNN model
  model = MyRNN(units)
  # Compile the model
  model.compile(
    optimizer=tf.optimizers.Adam(0.001),
     loss=tf.losses.BinaryCrossentropy(),
    metrics=['accuracy']
  )
  # Fit the model on the training dataset and validate on the test dataset
  model.fit(db train, epochs=epochs, validation data=db test)
  # Evaluate the model on the test dataset
  model.evaluate(db test)
```

NOTE: After 20 Epoch trainings, the network achieves 80.1% accuracy rate at testing dataset.

GRADIENT VANISHING & GRADIENT EXPLODING:

Gradient Vanishing:

Problem Explanation:

Gradient vanishing occurs when the gradients computed during backpropagation through time (BPTT) become very small, approaching zero.

It often happens when using activation functions like sigmoid or tanh, which have derivatives that are close to zero in certain regions.

Causes:

Repeated multiplications of small gradients across many time steps in the network. The nature of RNN architectures that involve long sequences.

Solutions:

Use Activation Functions: Replace sigmoid or tanh activations with ReLU (Rectified Linear Unit) or variants. ReLU has a simple derivative that is either 0 or 1, which mitigates the vanishing gradient problem.

Advanced Architectures: Switch to more advanced RNN architectures like Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU), which are designed to capture long-range dependencies without suffering from vanishing gradients.

Gradient Clipping: Clip gradients during training to prevent them from growing too large or too small.

Gradient Exploding:

Problem Explanation:

Gradient exploding occurs when gradients become extremely large during BPTT. It can lead to unstable training and numerical overflow issues.

Causes:

Poorly initialized model weights, especially when weights are initialized too large. Inadequate choice of the learning rate.

Unstable recurrent computations.

Solutions:

Weight Initialization: Properly initialize model weights using techniques like Xavier/Glorot initialization, which scales weights appropriately.

Reduce Learning Rate: Use learning rate schedules that gradually reduce the learning rate during training to stabilize updates.

Gradient Clipping: Clip gradients during training to prevent them from becoming too large and destabilizing the optimization process.

Batch Normalization: Apply batch normalization to stabilize activations within the network, which can help mitigate exploding gradients.

It's essential to experiment with these techniques to find the right combination that works best for your specific RNN architecture and dataset. In practice, using more advanced RNN architectures like LSTMs or GRUs is a common strategy, as these architectures are designed to handle long sequences and mitigate both gradient vanishing and exploding issues to some extent.

LSTM & GRU

LIMITATION OF RNN:

- LSTM & GRU are more evolved versions of the vanilla RNN.
- During back propagation RNN undergoes vanishing gradient problem.
- A **gradient** is the value used to upgrade the weight of a Neural network.

Gradient Update Rule

new weight = weight - learning rate*gradient

- Vanishing Gradient problem: During back propagation through time, if the gradient shrinks then it leads to vanishing gradient descent i.e gradient value becomes extremely small, which doesn't contribute much to learning.
- Generally, in RNN, the earlier layers of the network don't learn much due to vanishing gradient descent problem.
- This leads RNN to **FORGET** and thus have a short term memory in "long sequences".
- RNN cannot retain long term sequences in the memory!
- Reason of failure: Long term sequences & Inherent relationship between each sentence.
- Solution to this short term memory are LSTM AND GRU
- LSTM and GRU: these have the mechanism with **gates** which can regulate the flow of information, Recognise which data is important to keep / throw away!! They Use relevant information to make predictions

APPLICATION OF LSTM & GRU:

- Speech recognition models
- Speech synthesis
- Text generation
- Generation of captions for videos!!

LONG SHORT TERM MEMORY – LSTM:

- Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in the field of deep learning.
- It was proposed in 1997 by **Sepp Hochreiter** and **Jurgen schmidhuber**.
- Unlike standard feed-forward neural networks, LSTM has feedback connections.
- It can process not only single data points (such as images) but also entire sequences of data (such as speech or video).

- LSTM is an application to tasks such as unsegmented, **connected handwriting recognition**, or **speech recognition**.
- Long Short- Term Memory (LSTM) networks are a modified version of recurrent neural networks, which makes it easier to remember past data in memory.
- Before going to actual architecture lets understand simple working of cells of RNN & LSTM individually.
- Lets consider RNN: first words get transformed into machine readable vectors
- These sequence of words are processed one by one where in previous hidden state is passed to next step of the sequence
- Lets see how a hidden state is calculated?
- A vector with current input & previous input is created and its passed to a Tanh activation function.
- Output of this will be a new hidden state.

- Tanh activation function is a squishing function used to regulate the value of a neural network
- Information vectors undergo various mathematical transformations in this process.
- Some values can explode in this process, causing other values to be insignificant. Tanh function ensures the value remains between -1 and +1
- LSTM has similar control flow as that of RNN
- It processes data sequentially passing on the information as it propagates forward.
- Major difference lies in the operations within the cells of LSTM!!

- It can achieve long term dependency.
- It knows which information to discard or retain.
- How does LSTM achieve it????
- Answer: using GATE and CELL STATES
- THE LSTM CELL:

- The **cell state** acts like a sequence highway which transfers the relative information down to the sequence chain. **Its like a memory of the network!!**
- **Cell state can transfer information from previous time steps** as well thus it reduces the effect of short term memory!
- Information can get added or removed via the **Gates** present in the cell.
- Gates are a kind of neural networks which decides which information to retain or discard on the cell state!!
- Gates are trained to learn which information to retain or discard.
- **Hidden state** in LSTM is broken into two states:
- CELL STATE: called internal memory where all the information is stored
- HIDDEN STATE: used for computing the output
- NOTE: cell state and hidden state are shared across every time step.

GATES IN LSTM:

- o Gates contain sigmoid Activation.
- o Sigmoid function squishes Values between 0 & 1.
- o This can help to update or forget the data.
- o Thus a network learns which data to remember and which to forget!!!!
- o There are 3 different gates which regulate the information flow in an LSTM cell.

FORGET GATE:

- Decides which information is kept or thrown away!
- Information from previous hidden state and current input is passed to sigmoid function, output expected is 0 or 1 out of it.
- Closer to 0 means FORGET
- Closer to 1 means RETAIN
- EXAMPLE SEQUENCE: MARK is a good singer. He lives in California. JACOB is also good singer.

MARK---→JACOB

- Forget gate
 Sigmoid function
 Input 'x' at time 't'
 Information stored in previous time step
 Bias
- Weights corresponding to forget gates(matrix)
- NOTE: B=batch size ,D= feature <u>vector,H</u>= hidden layer direction

INPUT GATE:

- Updates the cell state
- Previous hidden state and current input is passed to sigmoid function which decides which values will be updated by transforming values between 0 & 1
- 0 means NOT IMPORTANT
- 1 means IMPORTANT
- NOTE: to regulate the network we also Pass hidden state and current input to tanh Activation function.
- We multiply tanh activation function output with sigmoid output.
- This is done majorly to decide which information from tanh output must be retained or discarded.
- After this we have enough information to calculate cell state!!!!
- Cell state is multiplied by forget vector which helps which information to be retained or dropped.
- The output of input gate goes to a polarised addition which updates the cell state to new values.

- Weights corresponding to input gates gates(matrix)
- NOTE: B=batch size ,D= feature <u>vector,H</u>= hidden layer direction

OUTPUT GATE:

- Decides what the next hidden state should be? i.e it decides which information should be taken from the cell to give as an output.
- Hidden states contains information belonging to previous inputs.
- Hidden states are also used for predictions.
- For this we pass on current input andhidden state to a sigmoid function and the newly modified cell state to a tanh function.
- Tanh output & sigmoid output are multiplied to decide which information is to be carried by the hidden state!!!!
- The new hidden state and new cell state are then passed on to the next time step.
- Example sequence : Jacob made a debut album which was super hit.
 Congratulations!------

Answer: Jacob.

- gates(matrix)
- NOTE: B=batch size ,D= feature vector,H= hidden layer direction

CANDIDATE STATE:

- The main function of candidate state is to update the cell state
- This means adding new information and removing information from previous state

FINAL EQUATION:

GATED RECURRENT UNIT – GRU:

versa

- New generation of RNN
- Similar to LSTM in functionality i.e. solves vanishing gradient problem but much simpler than **LSTM**

- Invented in 2014 by K.Cho.
- Just uses hidden state in place of cell state to transfer information
- It has 2 gates: RESET gate and UPDATE gate

UPDATE GATE AND RESET GATE:

- Similar to Forget and input gate of LSTM
- Decides which information to discard/ retain
- Reset gate decides which past information to forget.

UPDATE GATE EQUATION:

Sigmoid activation is used to derive Zt.

$$z_t = \sigma(W^{(z)}x_t + U^{(z)}h_{t-1})$$

- Input
- Previous state
- Weight parameters of update gate
- Sigmoid function

RESET GATE EQUATION:

$$r_t = \sigma(W^{(r)}x_t + U^{(r)}h_{t-1})$$

- Sigmoid function
- Input
- Previous state
- Weight parameters

 Next we will use reset gate output to move ahead <u>i.e</u> to create a memory component.

- Now we will calculate a vector to hold the current information of the unit and passes it down the network!!
- For this we use update gate..

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot h_t'$$

KEY DIFFERENCES BETWEEN LSTM AND GRU:

- The GRU has two gates, LSTM has three gates
- GRU does not possess any internal memory, they don't have an output gate that is present in LSTM
- In LSTM the input gate and target gate are coupled by an update gate
- In GRU reset gate is applied directly to the previous hidden state.
- In LSTM the responsibility of reset gate is taken by the two gates i.e., input and target.

GRU ADVANTAGES:

• They have fewer tensor operations than LSTM hence they are faster to train.

Λ _+

- Which one is best to use LSTM or GRU??
- TRY BOTH BASED ON USED CASE & DECIDE!!

SENTIMENT ANALYSIS USING LSTM/GRU:

The IMDb dataset is a popular dataset for sentiment analysis, specifically binary sentiment classification (positive or negative) of movie reviews. You can perform sentiment analysis on the IMDb dataset using LSTM and GRU neural networks. Here's a step-by-step guide on how to do it using Python and TensorFlow/Keras:

```
import tensorflow as tf
```

from tensorflow.keras.datasets import imdb

from tensorflow.keras.preprocessing.sequence import pad sequences

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, LSTM, GRU, Dense

Load IMDb dataset, limit the vocabulary size to the most frequent 10,000 words

(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=10000)

```
# Pad sequences to a fixed length (e.g., 250)
```

```
max_sequence_length = 250
```

X_train = pad_sequences(X_train, maxlen=max_sequence_length)

X_test = pad_sequences(X_test, maxlen=max_sequence_length)

model_lstm = Sequential()

model_lstm.add(Embedding(input_dim=10000, output_dim=128, input_length=max_sequence_length))

model_lstm.add(LSTM(64)) # You can replace LSTM with GRU

model_lstm.add(Dense(1, activation='sigmoid'))

model_lstm.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model_lstm.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=64)
loss, accuracy = model_lstm.evaluate(X_test, y_test)

print(f"Test Accuracy: {accuracy * 100:.2f}%")

•

AUTOENCODER

NEED FOR AUTOENCODERS:

- The need for autoencoders arises from their ability to address challenges such as high dimensionality, unsupervised learning, noise in data, and the extraction of meaningful features. Their versatility makes them valuable in a wide range of applications across various domains.
- In many real-world applications, data can be high-dimensional and redundant. High-dimensional data may suffer from the curse of dimensionality, making it computationally expensive and challenging to process. Autoencoders help reduce the dimensionality of data by learning compact representations.
- Unsupervised learning scenarios involve datasets without labeled target variables.

 Autoencoders, as unsupervised models, can learn patterns and structures in the data without the need for labeled examples.
- Extracting relevant features from raw data is crucial for effective machine learning models. Autoencoders are capable of learning meaningful representations or features from input data, which can be used for downstream tasks such as classification or clustering.
- Real-world data is often noisy, and learning robust representations is essential.

 Denoising autoencoders are specifically designed to reconstruct clean data from noisy inputs, helping the model focus on essential patterns and filter out noise.
- Identifying anomalies or outliers in a dataset is crucial for tasks like fraud detection or system monitoring. Autoencoders can learn normal patterns during training and highlight deviations during testing, making them useful for anomaly detection.
- Learning meaningful representations of data is essential for understanding and interpreting complex patterns. Autoencoders help in capturing hierarchical representations, allowing for better insights into the underlying structure of the data.

AUTO ENCODER:

An auto encoder is a type of artificial neural network used for unsupervised learning. Its main purpose is to learn efficient representations or encodings of input data, typically for the purpose of dimensionality reduction or feature learning. Autoencoders consist of an encoder and a decoder, both of which are neural networks.

Encoder: The encoder takes input data and maps it to a lower-dimensional representation, often called the encoding or latent space. This step involves compressing the input data into a compact representation.

Decoder: The decoder then takes this lower-dimensional representation and attempts to reconstruct the original input data from it. The goal is to generate an output that is as close as possible to the input.

Objective Function: The training of an autoencoder involves minimizing a loss function, which measures the difference between the input data and the reconstructed output. Common loss functions include mean squared error (MSE) or binary cross-entropy, depending on the type of data being used.

PRINCIPLE OF AUTO ENCODER:

- For classification problems, the network model transforms the input feature vector x of length d_{in} to the output vector o of length d_{out} .
- This process can be considered as a **feature reduction process**, transforming the original high-dimensional input vector *x* to a low-dimensional variable *o*.
- **Dimensionality reduction** has a wide range of applications in machine learning, such as file compression and data preprocessing.
- The most common dimension reduction algorithm is **principal component analysis (PCA)**, but PCA is essentially a linear transformation, and the ability to extract features is limited.
- Under unsupervised learning, we try to use the data x itself as a supervision signal to guide the training of the network, that is, we hope that the neural network can learn the mapping $f_0: x \to x$.
- We divide the network f_{θ} into two parts. The first sub-network tries to learn the mapping relationship: $S_{\theta_1} : x \to z$

And the latter sub-network tries to learn the mapping relationship

 $h_{\theta_2}: z \to x$

- The function "g" **encodes** the high-dimensional input x into a low-dimensional hidden variable z (latent variable or hidden variable), which is called **an encoder network**.
- $h_{\theta \ge 1}$ is considered as the process of data decoding, which decodes the encoded input z into high-dimensional x, which is called **a decoder network**.

Autoencoder model

- The encoder and decoder jointly complete the encoding and decoding process of the input data x. We call the entire network model $f\theta$ an **autoencoder** for short.
- If a deep neural network is used to parameterize $g\theta_1$ and $h\theta_2$ functions, it is called **deep autoencoder.**

Figure 12-2. Autoencoder using neural network parameterization

• The self-encoder can transform the input to the hidden vector z, and reconstruct x through the decoder.

• We hope that the output of the decoder can perfectly or approximately recover the original input, that is $x_{-} \approx x$, then the optimization goal of the autoencoder can be written as:

$$min L = dist(x,\underline{x})$$

$$\underline{x} = h_{\theta_1}(g_{\theta_1}(x))$$

• where dist(x,x) represents the distance measurement between x and x, which is called the **reconstruction error function**. The most common measurement method is the square of the Euclidean distance.

$$L = \sum_{i} (x_i - \underline{x}_i)^2$$

HANDS-ON FASHION MNIST IMAGE RECONSTRUCTION:

- Fashion MNIST is a dataset that is a slightly more complicated problem than MNIST image recognition. Its settings are almost the same as MNIST.
- It contains ten types of grayscale images of different types of clothes, shoes, and bags, and the size of the image is 28 × 28, with a total of 70,000 pictures, of which 60,000 are used for the training set and 10,000 are used for the test set.

STEP1: LOADING THE DATA SET

```
# Load Fashion MNIST data set
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_
mnist.load_data()
# Normalize
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# Only need to use image data to build data set objects, no tags required
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
# Build test set objects
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)
```

STEP2: ENCODER

Here we reduce the dimension from 784 to 20(h_dim, here). The Encoder is composed of a 3-layer fully connected network with output nodes of 256, 128, and 20, respectively.

A three-layer neural network is used to reduce the dimensionality of the image vector from 784 to 256, 128, and finally to h dim.

Each layer uses the ReLU activation function, and the last layer does not use any activation function.

```
# Create Encoders network, implemented in the initialization function of the autoencoder class self.encoder = Sequential([ layers.Dense(256, activation=tf.nn.relu), layers.Dense(128, activation=tf.nn.relu), layers.Dense(h_dim) ])
```

Step3:DECODER

Here, the hidden vector h_dim is upgraded to the length of 128, 256, and 784 in turn. Except for the last layer, the ReLU activation function are used. The output of the decoder is a vector of length 784, which represents a 28×28 size picture after being flattened, and can be restored to a picture matrix through the reshape operation as in the following:

```
# Create Decoders network
self.decoder = Sequential([
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(784)
])
```

ARCHITECTURE:

Figure 12-5. Fashion MNIST autoencoder network architecture

STEP4: AUTOENCODER

The preceding two sub-networks of encoder and decoder are implemented in the autoencoder class AE, and we create these two sub-networks in the initialization function at the same time.

```
class AE(keras.Model):
# Self-encoder model class, including Encoder and Decoder
2 subnets
def __init__(self):
super(AE, self).__init__()
```

```
# Create Encoders network
self.encoder = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(h_dim)
])
# Create Decoders network
self.decoder = Sequential([
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(784)
])
```

STEP5: FORWARD PROPOGATION

Next, the forward propagation process is implemented in the call function. The input image first obtains the hidden vector h through the encoder sub-network and then obtains the reconstructed image through the decoder. Just call the forward propagation function of the encoder and decoder in turn as follows:

```
def call(self, inputs, training=None):
# Forward propagation function
# Encoding to obtain hidden vector h,[b, 784]=> [b, 20]
h = self.encoder(inputs)
# Decode to get reconstructed picture, [b, 20] => [b, 784]
x_hat = self.decoder(h)
return x_hat
```

STEP6: NETWORK TRAINING

The training process of the autoencoder is basically the same as that of a classifier. The distance between the reconstructed vector x and the original input vector x is calculated through the error function, and then the gradients of the encoder and decoder are simultaneously calculated using the automatic derivation mechanism of TensorFlow.

- First, create an instance of the autoencoder and optimizer, and set an appropriate learning rate.
- Here 100 Epochs are trained, and the reconstructed image vector is obtained through forward calculation each time
- The tf.nn.sigmoid_cross_entropy_with_logits loss function is used to calculate the direct error between the reconstructed image and the original image. (You can also use MSE)

```
# Create network objects
model = AE()
# Specify input size
model.build(input_shape=(4, 784))
# Print network information
model.summary()
# Create an optimizer and set the learning rate
optimizer = optimizers.Adam(lr=lr)

for epoch in range(100): # Train 100 Epoch
for step, x in enumerate(train_db): # Traverse the training set
# Flatten, [b, 28, 28] => [b, 784]
x = tf.reshape(x, [-1, 784])
```

```
# Build a gradient recorder
with tf.GradientTape() as tape:
        # Forward calculation to obtain the reconstructed picture
        x rec logits = model(x)
        # Calculate the loss function between the reconstructed picture and the input
        rec loss = tf.nn.sigmoid cross entropy with
        logits(labels=x, logits=x rec logits)
        # Calculate the mean
        rec loss = tf.reduce mean(rec loss)
# Automatic derivation, including the gradient of 2 sub-networks
grads = tape.gradient(rec loss, model.trainable variables)
# Automatic update, update 2 subnets at the same time
optimizer.apply gradients(zip(grads, model.trainable variables))
if step \% 100 == 0:
        # Interval print training error
        print(epoch, step, float(rec loss))
```

STEP7: IMAGE RECONSTRUCTION

In order to test the effect of image reconstruction, we divide the dataset into a training set and a test set, We randomly sample the test picture $x \in D_{test}$ from the test set, calculate the reconstructed picture through the autoencoder, and then save the real picture and the reconstructed picture as a picture array and visualize it for easy comparison as in the following:

```
# Reconstruct pictures, sample a batch of pictures from the test set
x = next(iter(test db))
logits = model(tf.reshape(x, [-1, 784])) # Flatten and send to autoencoder
x hat = tf.sigmoid(logits) # Convert the output to pixel values, using the sigmoid function
# Recover to 28x28, [b, 784] => [b, 28, 28]
x hat = tf.reshape(x hat, [-1, 28, 28])
# The first 50 input + the first 50 reconstructed pictures merged, [b, 28, 28] => [2b, 28, 28]
x concat = tf.concat([x[:50], x hat[:50]], axis=0)
x_{concat} = x_{concat.numpy()} * 255. # Revert to 0~255 range
x concat = x concat.astype(np.uint8) # Convert to integer
save images(x concat, 'ae images/rec epoch %d.png'%epoch)
# Save picture
def save images(imgs, name):
# Create 280x280 size image array
new im = Image.new('L', (280, 280))
index = 0
for i in range(0, 280, 28): # 10-row image array
for j in range(0, 280, 28): # 10-column picture array
im = imgs[index]
im = Image.fromarray(im, mode='L')
new im.paste(im, (i, j)) # Write the corresponding
location
index += 1
# Save picture array
new im.save(name)
```

EFFECTS OF RECONSTRUCTION:

First Epoch

Tenth Epoch

Hundredth Epoch