pseudo-compact space

あるふぁ

2020年12月29日

概要

pseudo-compact 空間とは、Tychonoff であって、かつ「任意の実数値連続関数は有界」を充たす位相空間のことです。ここでは pseudo-compact 空間についての基本的な性質についてまとめます。

内容は Engelking, 3.10 あたりを参考にしました。ここではコンパクト空間には Hausdorff 性を課します。

目次

 1
 定義

 2
 性質

1 定義

定義 1.1

位相空間 X が pseudo-compact であるとは、以下の条件を充たすことをいう。

- X は Tychonoff
- 任意の連続関数 $X \to \mathbb{R}$ は有界

次に Tychonoff 空間のクラスにおける同値な条件について調べる。

命題 1.2

Tychonoff空間 X について以下は同値である。

- 1. X lt pseudo-compact
- 2. X の局所有限な空でない開集合の族は有限
- 3. X の局所有限な空でない開被覆は有限
- 4. X の局所有限な開被覆は有限な細分被覆を持つ

Proof. $1. \Rightarrow 2.$ を示す。X は Tychonoff 空間であるため、任意の 開集合 U と $x \in U$ と実数 r について、f(x) = r かつ $f[X - U] = \{0\}$ であるような正値連続関数 $f: X \to \mathbb{R}$ が存在する。ここで、局所有限な無限の空でない開集合族が存在したとすると、開集合族 $\{U_i\}_{i \in \mathbb{N}}$ であって空でなくかつ局所有限なものが取れるが、それぞれ U_i から点 x_i を選び、次のような関数族 $\{f_i\}_{i \in \mathbb{N}}$ をつくることができる。

• $i \in \mathbb{N}$ について、 $f_i(x_i) = i$ かつ $f_i[X - U_i] = \{0\}$

これらの関数は局所的に足し合わせることができる。すると X 上の非有界な実数値連続関数が構成される。

 $2. \Rightarrow 3. \Rightarrow 4.$ は自明である。

 $4. \Rightarrow 1.$ について、X が pseudo-compact でないならば、ある非有界な連続関数 $f\colon X\to \mathbb{R}$ が存在する。このとき、整数 i について U_i を $f^{-1}[(i-1,i+1)]$ とおくと、 $\{U_i\}_{i\in\mathbb{Z}}$ は局所有限な開被覆であるが、有限な細分被覆を持たない。

命題 1.3

Tychonoff空間 X について以下は同値である。

- 1. X \(\text{tpseudo-compact} \)
- 2.~X の空でない開集合の可算減少列 $U_1 \supset U_2 \supset \dots$ について、 U_i の閉包の交叉 $\bigcap_{i \in \mathbb{N}} \overline{U_i}$ は空でない
- 3.~X の可算な開集合族 $\{V_i\}_{i\in\mathbb{N}}$ であって、有限交叉性を持つものについて、 V_i の閉包の交叉 $\bigcap_{i\in\mathbb{N}}\overline{V_i}$ は空でない

 $Proof.\ 1. \Rightarrow 2.$ を示す。X の空でない無限開集合族について、これは局所有限でないため、ある点 $x \in X$ が存在して、任意の x の近傍が無限個の i についての U_i と交わるようなものが取れる。このとき、x は任意の i についての $\overline{U_i}$ に含まれる。従って $\bigcap_{i \in \mathbb{N}} \overline{U_i}$ は空でない。

 $2. \Rightarrow 3.$ については、 $U_i = \bigcup_{1 < j < i} V_j$ についての適用を行えばよい。

 $3. \Rightarrow 1.$ を示す。X が非有界な実数値連続関数 f を持ったとする。このとき、 V_i を $f^{-1}[(-\infty,-i)\cup(i,\infty)]$ とおくと、これは有限交叉性を持つ。また、 V_i の閉包は $f^{-1}[(-\infty,-i]\cup[i,\infty)]$ に含まれるが、これらの交叉は空である。従って $\bigcup_{i\in\mathbb{N}}V_i$ は空である。

2 性質

命題 2.1

pseudo-compact 空間 X と Tychonoff 空間 Y について、X から Y への連続全射が存在するとき、Y は pseudo-compact である。

命題 2.2

空でない位相空間族 $\{X_s\}_{s\in S}$ について、 $\bigoplus X_s$ pseudo-compact であることと、S が有限でありかつすべて $O(s)\in S$ について $O(s)\in S$ にしい $O(s)\in S$

定義 2.3

位相空間の射 $f: X \to Y$ が完全写像であるとは、以下の条件を充たすことをいう。

- X は Hausdorff
- f は閉写像
- 任意の点 $y \in Y$ について $f^{-1}[\{y\}]$ はコンパクト

補題 2.4

コンパクト空間 X と Hausdorff 空間 Y について、射影 $p: X \times Y \to Y$ は完全写像である。

Proof. p の閉写像性については、Kuratowski の定理により従う。

補題 2.5

完全写像 $f: X \to Y$ について、X の局所有限集合族 A の f による像は局所有限である。

 $Proof.\ y \in Y$ について $f^{-1}[\{y\}]$ はコンパクトであるため、 $f^{-1}[\{y\}]$ を含む開集合 U_y であって、 U_y が有限 個の A の要素のみと交わるようにできる $(f^{-1}[\{y\}]$ の各点ごとに開集合をとればよい)。

f は閉写像であるため、y の近傍 V_y であって、 $f^{-1}[V_y]\subset U_y$ なるものが取れる $(X-U_y)$ の像を考える)。 従って $f(\mathcal{A})$ は局所有限である。

定義 2.6

位相空間 X の部分集合 F が k-closed であるとは、任意のコンパクト空間 K からの連続射 $f\colon K\to X$ による逆像 $f^{-1}[F]$ が閉集合となることをいう。

定義 2.7

位相空間 X が k-space であるとは、k-closed であることと閉集合であることが同値であることをいう。

補題 2.8

Hausdorff空間 X とコンパクト空間 Z と $X \times Z$ の局所有限な非空集合族 $\{A_s \times B_s\}_{s \in S}$ が与えられたとする。このとき、 $\{A_s\}_{s \in S}$ は局所有限である。

Proof. 射影 $X \times Z \to Z$ は完全写像であることより従う。

補題 2.9

位相空間 X と k-space Y について、 $\{A_s \times B_s\}_{s \in S}$ が局所有限かつ無限な非空集合族であるとする。このとき、ある無限集合 $S_0 \subset S$ が存在して、 $\{A_s\}_{s \in S_0}$ または $\{B_s\}_{s \in S_0}$ が局所有限となる。

Proof. 以下 $\{B_s\}_{s\in S}$ が局所有限でないと仮定する。このとき、 $y\in Y$ であって、任意の y の近傍が無限個の U_s と交わるようなものが取れる。

 $\{A_s \times \overline{B_s}\}_{s \in S}$ は局所有限であるため、以下 B_s を閉集合であると仮定する。

 $y \in B_s$ なる s の集合を S(y) とおく。S(y) が無限集合の場合、 $Z = \{y\}$, $S_0 = S(y)$ とおく。S(y) が有限集合の場合、 $B = \bigcup_{s \in S - S(y)} B_s$ とおくと、 $y \in \overline{B} - B$ となるため、B が閉集合でないことが示される。このとき、Y は k-space であるため、Y のコンパクト集合 Z であって $Z \cap B$ が閉集合でないものが取れる。ここで、 $Z \cap B = \bigcup_{s \in S - S(y)} Z \cap B_s$ であり、また $Z \cap B_s$ は閉集合であるため、Z と交わる B_s は無限個存在する。これらの s のなす集合を S_0 とおく。

このとき、コンパクト集合 Z と無限集合 S_0 であって、 $\{A_s \times Z \cap B_s\}_{s \in S_0}$ は局所有限な非空集合族である。従って $\{A_s\}_{s \in S_0}$ は局所有限である。

命題 2.10

pseudo-compact 空間 X と pseudo-compact k-space Y について、 $X \times Y$ は pseudo-compact である。

 $Proof.~X \times Y$ の局所有限な開集合族 $\{W_s\}_{s \in S}$ を任意に取る。このとき、開集合 $U_s \subset X, V_s \subset Y$ であって $U_s \times V_s \subset W_s$ なるものが取れるため、 W_s を $U_s \times V_s$ に取り換えると、S の有限性が言える。

 $X \times Y$ は Tychonoff であるから、pseudo-compact である。

命題 2.11

可算コンパクト Tychonoff 空間は pseudo-compact である。

Proof. pseudo-compact 空間の同値な特徴付けより。

命題 2.12

無限離散空間を閉部分空間として含む正規空間は pseudo-compact でない。

参考文献

[1] Ryszard Engelking, "General Topology"