

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055

PROYECTO N° CT-PKS-402

CONTROL DE REVISIONES:									
Elaborado		Revisado							
Rev.	Iniciales	Firma	Iniciales	Firma	Fecha	CHK'D	Emitido Para		
Α	J. C.		Н. Н.		26-06-2023		Revisión Interna		
В	J. C.		Н. Н.		03-07-2023		Revisión del cliente		

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 2 de 31

TABLA DE CONTENIDO

1.	INTRODUCCION	4
2.	OBJETIVO DEL SERVICIO.	4
3.	ALCANCE DEL SERVICIO	4
4.	EQUIPO DE TRABAJO	6
5.	PLAN DE TRABAJO	7
5.1.	RECOMENDACIONES DE SEGURIDAD	7
5.2.	TRABAJO PREVIO	7
5.3.	TRABAJO DURANTE EL SERVICIO	8
5.4.	TRABAJOS FINALIZADO EL SERVICIO	
6.	PLAN DE PROYECTO	6
7.	PLAN DE SEGURIDAD Y SALUD OCUPACIONA	
8.	PLAN DE CALIDAD	6
9.	PLAN DE GESTIÓN DE RIESGOS2	8
10.	PLAN DE MANEJO AMBIENTAL	8
11.	FACILIDADES	9
12.	HERRAMIENTAS Y MATERIALES2	9
13.	ENTREGABLES	0
14.	FORMA DE PAGO3	1
	LISTA DE TABLAS	
TABLA	A 1. LISTA DE EQUIPOS A SUMINISTRAR	5
TABLA	A 2. LISTA DE EQUIPOS A INTERVENIR EN SISTEMA DE BOMBEO	8
TABLA	A 3. LISTA DE EQUIPOS A INTERVENIR EN RB15 Y RB17	9
TABLA	A 4. LISTA IO DE ESTACIÓN DE BOMBEO 31	2
TABLA	A 5. LISTA DE VARIABLES DE LA POZA 31	3
TABLA	A 6. LISTA DE VARIABLES DE LA POZA 21	5
TABLA	A 7. LISTA DE VARIABLES DE LA POZA 11	7
TABLA	A 8. LISTA DE VARIABLES DE RB151	8
TABLA	A 9. LISTA DE VARIABLES DE RB171	9
TABLA	A 10. LISTA DE HERRAMIENTAS Y EQUIPOS2	9
TABLA	A 11. MATERIALES ENTREGADOS POR PK SOLUCIONES2	9
TABLA	A 12. LISTADO DE ENTREGABLES3	0

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 3 de 31

LISTA DE FIGURAS

FIGURA N°1 ORGANIGRAMA DE SERVICIO	6
FIGURA N°2 ARQUITECTURA DE COMUNICACIONES DEL SERVICIO	8
FIGURA N°3 ARQUITECTURA DE COMUNICACIÓN DE LA POZA 3	9
FIGURA N°4 DIAGRAMA DE CONEXIÓN DE SEÑALES DE SST-01 Y SST-02	10
FIGURA N°5 MODULO MODBUSTCP-05 PARA EL VARIADOR WEG	10
FIGURA N°6 MONTAJE Y CONEXIONADO DE SENSOR VEGAPULS 31	11
FIGURA N°7 CALIBRACIÓN DE SENSOR VEGAPULS 31	11
FIGURA N°8 DIAGRAMA DE CONEXIÓN DE PLC-03 MIRCROLOGIX 870	13
FIGURA N°10 PANTALLA A MONITOREO A MODIFICAR DEL HMI-01	16
FIGURA N°11 PANTALLA DE OPERACIÓN DE POZA 1	16
FIGURA N°12 PANTALLA DE SELECCIÓN DE HABILITACIÓN DE CONTROL	16
FIGURA N°13 PANTALLA DE CONFIGURACIÓN AVANZADA DEL MODO AUTOMÁTICO	17
FIGURA N°14 DIAGRAMA DE CONEXIÓN ELÉCTRICA DE RB15	19
FIGURA N°15 DIAGRAMA DE CONEXIÓN ELÉCTRICA DE RB17	21
FIGURA N°16 CONFIGURACIÓN DE REFERENCIA POR MODBUS TCP/IP EN VDF ATV	21
FIGURA N°17 CONFIGURACIÓN DE COMANDO POR MODBUS TCP/IP EN VDF ATV	21
FIGURA N°19 PANTALLA DE COTROL DE RB15 EN GROOV VIEW	22
FIGURA N°20 PANTALLA DE CONTROL Y VISUALIZACIÓN POZA 1 EN GROOV VIEW	23
FIGURA N°21 PANTALLA DE MONITOREO DE RB15 Y RB17 EN GROOV VIEW	23
FIGURA N°22 PANTALLA DE CONTROL Y VISUALIZACIÓN ESTADO DE SISTEMA DE BOMBEO	24
FIGURA N°23 PANTALLA DE MONITOREO DE RB15 Y RB17 EN GROOV VIEW	24
FIGURA N°24 PANTALLA DE CONTROL Y VISUALIZACIÓN DE NIVELES GROOV VIEW	25
FIGURA N°25 PANTALLA DE POZA1 EN GROOV VIEW	25
FIGURA N°26 PLAN DE CONTROL DE PROYECTO	28

1. INTRODUCCION.

La Empresa SMEB, requiere de los servicios de un Proveedor especializado y adecuadamente calificado para desarrollar el servicio de "AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055", en adelante el "Servicio", dentro de los plazos definidos y de acuerdo con lo señalado en el presente documento y sus anexos. El proyecto se ubica en el Cerro Marcapunta, para el ingreso se requiere habilitación de parte de la Empresa, está ubicada en la localidad de Smelter Antiguo, distrito de Tinyahuarco, provincia de Cerro de Pasco.

2. OBJETIVO DEL SERVICIO.

El objetivo del presente proyecto, es realizar la automatización e integración del sistema de bombeo, RB15 y RB17 a la interfaz gráfica groov view.

3. ALCANCE DEL SERVICIO.

El alcance se desglosa en los siguientes puntos:

Suministro de equipos.

• Suministro de equipos según la tabla 1.

Automatización de la poza 3 (NV4055).

- Montaje de sensor de nivel.
- Instalación de tablero de control.
- Programación de PLC y diseño de la interfaz gráfica en HMI.
- Instalación de módulo MODBUSTCP-05 en variador WEG para habilitar la comunicación Modbus TCP/IP.
- Integración de un variador WEG y dos soft starter al sistema de bombeo.
- Automatización de la poza 3.

Automatización de la poza 2.

- Integración de un variador VACON a sistema de bombeo.
- Modificación de la programación de PLC y diseño de la interfaz gráfica
 HMI para la integración de variables de la poza 3
- Modificación de la programación de PLC para habilitar las variables de lectura y escritura que se envía al EPIC.

Automatización de la poza 1.

 Modificación de la programación de PLC para habilitar las variables de lectura y escritura que se envía al EPIC.

SOLUCIONES	PROPUESTA T	Sociedad Minera El Brocal S.A.A	
AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055	PT-PKS-402	Rev. B	Página: 5 de 31

Automatización de la estación RB15.

- Modificación de la programación de PLC para habilitar las variables de lectura y escritura que se envía al EPIC.
- Configuración de IP a los equipos a intervenir.

Automatización de la estación RB17.

- Modificación de la programación de PLC para habilitar las variables de lectura y escritura que se envía al EPIC.
- Configuración de IP e integración de los equipos a intervenir.

Integración del sistema de bombeo, RB15 y RB17 al Groov View.

- Integración del sistema de bombeo.
- Integración de RB15.
- Integración de RB17.
- Programación del EPIC desde en Groov View para el sistema de control y monitoreo.
- Puesta en marcha del sistema de monitoreo y control desde Groov View.

TABLA 1. LISTA DE EQUIPOS A SUMINISTRAR

	Equipo	Descripción	Marca	Modelo	Cantidad
1	Sensor de nivel	Sensor de radar compacto para la medición continua del nivel. 4 Salida de 20 mA/HART, rango de medición de hasta 15 m, precisión ±2 mm, aprobación Ex, pantalla in situ y funcionamiento con 3 botones	Vega	VEGAPULS 31	1
2	Controlador	Controlador Micro870 24 E / S ENet / IP	Allen Bradley	2080-LC70- 24QWB	1
3	Tapas finales	Tapas finales de expansión de E / S Micro870 con terminador	Allen Bradley	2085-ECR	1
4	Módulo analógico	Módulo de entrada analógica Micro800 de 4 puntos	Allen Bradley	2085-IF4	1
5	Fuente de alimentación	Fuente de alimentación para controladores Micro800, entrada de 100-120 / 200-240 VCA salida de24VDC	Allen Bradley	2080-PS120- 240VAC	1
6	Conector RJ45	Conector Rj45 Cat6 Sp688-c Plug	Panduit	SP688-C	15
7	Panel view	Panel View 800 HMI de 7 pulgadas, pantalla ancha táctil TFT 800 x 480 WVGA,	Allen Bradley	2711R-T7T	1
8	Fuente de alimentación	Fuente de alimentación, 80 W, 24V DC, sin función especial, línea esencial	Allen Bradley	1606-XLE80E	1
9	Switch	Switch no administrado de 5 puerto 2000T Stratix 5	Allen Bradley	1783-US5T	1
10	Patch cord	Patch cord Cat 6A de 1.5 metros, Plug Modular TX6A™ 10Gig™ PLUS UTP6A5BU	Panduit	UTP6A5BU	2
11	Tablero	Tablero Rittal de acero inoxidable 400x500x210mm	Rittal	1015600	1
12	Bornera de tierra	BORNERA DE CONEXION RAPIDA A TIERRA DE 2.5mm² – DS2.5-PE. Borne de paso, Tipo de conexión: Conexión	Degson	DEG.DS2.5-PE- 01P-1Y-00AH	3

		por tornillo, Sección: 0.2-4mm², AWG:26 – 12, Color: verde amarillo,			
13	Bornera de paso	Borne de paso, Tipo de conexión: Conexión por tornillo, Sección: 0.2mm²-2.5 mm², AWG:26-12, Anchura: 5.2 mm, Color: gris	Degson	DEG.DC2.5-01P- 1Y-00AH	24
14	Borneras portas fusibles	BORNE PORTA FUSIBLE, UKK 5-HESILA 250 (5X20) 6.3A, 0.2-4MM2(24-12 AWG), TORNILLO,110-250VAC/DC, A=8.2MM	Phoenix compact	711629	2

4. EQUIPO DE TRABAJO

Para el correcto desarrollo del trabajo y para el cumplimiento del objetivo del servicio, se requiere los servicios del siguiente personal:

EQUIPO OPERATIVO (Obra)

0	Ingeniero Residente	01
0	Ingeniero de Seguridad	01
0	Ingeniero Especialista	02
0	Técnico Electricista	02
0	Técnico Soldador	01
0	Técnico Mecánico	01
EQU	IPO DE SOPORTE (Obra y remoto)	
0	Jefe del departamento de ingeniería	01
0	Ingeniero Electrónico	01
0	Cadista	01
PLA	NIFICACIÓN Y GESTIÓN	
0	Administrador de obra	01
0	Coordinador y planificador	01

ORGANIGRAMA PARA EL PRESENTE SERVICIO

Figura N°1 Organigrama de servicio.

En PK Soluciones SAC, garantizamos que el personal está capacitado y calificado, los cuales cuentan con la experiencia necesaria para realizar dicha labor, en tanto nos comprometemos en facilitarles los CV de cada personal una vez aprobada nuestra propuesta.

Asimismo, se dispondrá de un grupo de contingencia, el mismo que actuará en caso se presenten eventualidades que afecten el normal desarrollo del trabajo y con la finalidad que se puedan cumplir con los tiempos establecidos. Este personal adicional estará debidamente habilitado para realizar trabajos dentro de la unidad minera.

PLAZO DE EJECUCIÓN

El plazo para el presente servicio será de: 24 días de trabajo

5. PLAN DE TRABAJO

5.1. RECOMENDACIONES DE SEGURIDAD

Instrucciones importantes durante el "Servicio".

- Durante la ejecución del servicio se hará uso de EPPs, se tendrá cerca kit de primeros auxilios y kit antiderrame.
- Por precaución el personal a cargo de la instalación no dispondrá de ningún objeto metálico en el cuerpo.
- En todo momento se realizará una inspección visual del área de trabajo para evitar los accidentes.
- Se mantendrá el orden y limpieza durante todo el servicio.

5.2. TRABAJO PREVIO

GESTIÓN DOCUMENTARIA

- Se realizará y gestionará toda la documentación requerida (Gestión de Cambio – PMA) para la liberación del área de trabajo.
- Se presentará IPERC LINEA BASE y PETS, se enviará con dos semanas de anticipación al inicio de ejecución del servicio.
- Se calibrará y certificará los equipos de medición.

SUMINISTRO DE EQUIPOS

- Se realizará toda la gestión de compra de equipos de la tabla 1 y materiales a ser suministrados por parte de PK Soluciones.
- Se realizará las coordinaciones con SMEB para el ingreso de los equipos, se movilizará los materiales y equipos a la zona de trabajo.

5.3. TRABAJO DURANTE EL SERVICIO

 En este servicio se automatizará cinco estaciones, las cuales se presenta en la arquitectura de comunicación, para ello será necesario la intervención en los equipos del sistema de bombeo, los ventiladores RB15 y RB17 los cuales se detalla en la tabla 2 y tabla 3.

Figura N°2 Arquitectura de comunicaciones del servicio.

TABLA 2. LISTA DE EQUIPOS A INTERVENIR EN SISTEMA DE BOMBEO.

ITEM	TAG EQUIPO		DESCRIPCION	TIPO	IP	MASCARA	GATEWAY
1	PLC	PLC-01	PLC de la poza 1	MAESTRO	10.10.89.170	255.255.254.0	10.10.88.1
2	HMI	HMI-01	HMI de la poza 1	ESCLAVO	10.10.89.171	255.255.254.0	10.10.88.1
3	VDF	VDF-01	VDF ESTROQUE de poza 1	ESCLAVO	10.10.89.172	255.255.254.0	10.10.88.1
4	VDF	VDF-02	VDF SILVER de poza 1	ESCLAVO	10.10.89.173	255.255.254.0	10.10.88.1
5	PLC	PLC-02	PLC de la poza 2	MAESTRO	10.10.89.174	255.255.254.0	10.10.88.1
6	HMI	HMI-02	HMI de la poza 2	ESCLAVO	10.10.89.175	255.255.254.0	10.10.88.1
7	VDF	VDF-03	VDF de la poza 2	ESCLAVO	10.10.89.176	255.255.254.0	10.10.88.1
8	VDF	VDF-04	VDF de la poza 2	ESCLAVO	10.10.89.177	255.255.254.0	10.10.88.1
9	PLC	PLC-03	PLC de la poza 3	MAESTRO	10.10.89.178	255.255.254.0	10.10.88.1
10	HMI	HMI-03	HMI de la poza 3	ESCLAVO	10.10.89.179	255.255.254.0	10.10.88.1
11	VDF	VDF-05	VDF de la poza 3	ESCLAVO	10.10.89.180	255.255.254.0	10.10.88.1
12	SST	SST-01	SST de la poza 3	-	-	-	-
13	SST	SST-02	SST de la poza 3	-	-	-	-
14	LT	LT-01	Sensor indicador de nivel poza 1	-	-	-	-
15	LT	LT-02	Sensor indicador de nivel poza 2	-	-	-	
16	LT	LT-01	Sensor indicador de nivel poza 3	-	-	-	-

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG - ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 9 de 31

TABLA 3. LISTA DE EQUIPOS A INTERVENIR EN RB15 Y RB17.

ITEM	TAG EQUIPO		TAG EQUIPO		TAG EQUIPO		TAG EQUIPO		TAG EQUIPO		TAG EQUIPO		DESCRIPCION	TIPO	IP	MASCARA	GATEWAY
1	PLC	PLC-01	PLC de RB15	MAESTRO	10.10.89.190	255.255.254.0	10.10.88.1										
2	IMH	HMI-01	HMI de RB15	ESCLAVO	10.10.89.191	255.255.254.0	10.10.88.1										
3	VDF	VDF-06	VDF de RB15	ESCLAVO	10.10.89.192	255.255.254.0	10.10.88.1										
4	PLC	PLC-01	PLC de RB17	MAESTRO	10.10.89.193	255.255.254.0	10.10.88.1										
5	НМІ	HMI-01	HMI de RB17	ESCLAVO	10.10.89.194	255.255.254.0	10.10.88.1										
6	VDF	VDF-07	VDF de RB17	ESCLAVO	10.10.89.195	255.255.254.0	10.10.88.1										

AUTOMATIZACIÓN DE POZA 3.

- En esta etapa, se armará y habilitará el tablero de control de marca Rittal de acero inoxidable 400x500x210mm para la poza 3 de acuerdo al plano eléctrico, se intervendrá la puerta del tablero donde se realizará el calado para posteriormente montar el Panel View 800 HMI de 7 pulgadas de la marca Allen Bradley, por último, se realizará el montaje del tablero de control en la sala eléctrica de la poza 3.
- Se montará tubería flexible pesada Liquid Tigh ½ para la alimentación eléctrica del tablero, la integración del variador de frecuencia VACON y los dos soft starter, la conexión del sensor de nivel y la comunicación con el gabinete de la red de SMEB, finalmente se tenderá los cables correspondientes y se realizará el taggeado de los cables.

Figura N°3 Arquitectura de comunicación de la poza 3

• En los dos tableros de soft starter se habilitará el control en modo remoto para esto se modificará la conexión en dichos tableros las señales que se intervendrá son selección remota, falla de tablero, confirmación de marcha de soft starter y parada de emergencia de tablero estas se conectarán a las de entradas de PLC; asimismo las señales de START, STOP, RESET del soft starter que se conectarán a las salidas del PLC, se representa esta conexión en la figura 3.

POZO 03 - MKPS - INTERIOR MINA

Figura Nº4 Diagrama de conexión de señales de SST-01 y SST-02.

 En la intervención del tablero variador WEG, se instalará el módulo MODBUSTCP-05 para habilitar la comunicación Modbus TCO/IP se conectará el cable ethernet en la entra ETH1 también se modificará la conexión para habilitar el control local/remoto en selector del tablero, también se establecerá el mapa de direcciones Modbus en el variador, por último, se configurará el control y referencia por protocolo Modbus TCP por medio del software WLP de WEG.

Figura N°5 Modulo MODBUSTCP-05 para el variador WEG.

 Se fabricará el soporte para el sensor de nivel VEGAPULS 31 con ángulo de 2"x2" la estructura será soldada y pintada con

anticorrosivo, a continuación, se montará el soporte en la poza 3 de MKPS, posteriormente se instalará y conexionará el sensor de nivel Vegapuls31 tipo radar, finamente se calibrará el sensor mencionado.

Figura N°6 Montaje y conexionado de sensor VEGAPULS 31

Figura N°7 Calibración de sensor VEGAPULS 31

- Se realizará la programación de la interface de control de la poza 3, se elaborará las pantallas de control, pantalla de monitoreo de variables, pantalla de supervisión de parámetros, pantalla de inserción de set point y niveles de operación. Se cargará el programa en el Panel View 800 de 7 inches de modelo 2711R-T7T.
- Se realizará la configuración de la dirección IP, mascara y Gateway en el controlador PLC3 Micro870, panel View 800, variador de frecuencia; estas direcciones serán proporcionada por el área de TI de SMEB. Se realizará la programación del PLC Micro870 de acuerdo a la filosofía de control, el cual contará con un control PID sobre bomba del variador por medio de la regulación de la frecuencia, esto permitirá mantener un nivel deseado en la poza 3.
- Se realizará el precomisionamiento, en el cual se verificará las direcciones IP y la prueba de comunicación de cada equipo; se validará las señales de discretas de los soft starter (START, STOP, REINICIO, CONTROL REMOTO); se comprobará la configuración del variador de frecuencia mandando las ordenes de escritura de referencia Modbus TCP/IP (frecuencia) y orden de marcha/parada

desde el PLC3 Micro870 a su vez en las direcciones Modbus del controlador se visualizará los parámetros del variador. Se confirmará que la lectura del sensor de nivel de la poza 3 tenga un error menor a 1%.

TABLA 4. LISTA IO DE ESTACIÓN DE BOMBEO 3.

EQUIPO	MÓDULO		I/O	BORNERA	TIPO	TAG PLC	TAG de Señal
			DI	IN1	DIGITAL	_IO_EM_DI_00	Selector remoto de Tablero SST-02
			DI	IN2	DIGITAL	_IO_EM_DI_01	Falla de tablero SST-02
			DI	IN3	DIGITAL	_IO_EM_DI_02	Confirmación marcha de tablero SST-02
			DI	IN4	DIGITAL	_IO_EM_DI_03	Parada de emergencia de tablero SST-02
			DI	IN5	DIGITAL	_IO_EM_DI_04	Selector remoto de Tablero SST-03
			DI	IN6	DIGITAL	_IO_EM_DI_05	Falla de tablero SST-03
		Entrada	DI	IN7	DIGITAL	_IO_EM_DI_06	Confirmación marcha de tablero SST-03
		Lilliaua	DI	IN8	DIGITAL	_IO_EM_DI_07	Parada de emergencia de tablero SST-03
			DI	IN9	DIGITAL	_IO_EM_DI_08	
			DI	IN10	DIGITAL	_IO_EM_DI_09	
			DI	IN11	DIGITAL	_IO_EM_DI_10	
	2080-LC70-		DI	IN12	DIGITAL	_IO_EM_DI_11	
	24QWB		DI	IN13	DIGITAL	_IO_EM_DI_12	
			DI	IN14	DIGITAL	_IO_EM_DI_13	Parada de emergencia de TC-03
			DO	OUT1	DIGITAL	_IO_EM_DO_00	START de tablero SST-02
			DO	OUT2	DIGITAL	_IO_EM_DO_01	STOP de tablero SST-02
			DO	OUT3	DIGITAL	_IO_EM_DO_02	RESET de tablero SST-02
			DO	OUT4	DIGITAL	_IO_EM_DO_03	START de tablero SST-02
		Salida	DO	OUT5	DIGITAL	_IO_EM_DO_04	STOP de tablero SST-02
		Saliua	DO	OUT6	DIGITAL	_IO_EM_DO_05	RESET de tablero SST-02
			DO	OUT7	DIGITAL	_IO_EM_DO_06	
			DO	OUT8	DIGITAL	_IO_EM_DO_07	Ind_Funciona_1
			DO	OUT9	DIGITAL	_IO_EM_DO_08	Ind_Detenido_1
PLC			DO	OUT10	DIGITAL	_IO_EM_DO_09	Ind_Falla_Poza_1
			Al	IN2	ANALOGICO	_IO_X1_A1_01	Sensor de nivel de poza 3
	2085-IF4	Entrada	Al	IN3	ANALOGICO	_IO_X1_A1_00	
	2000-1F4	EIIIIaua	Al	IN4	ANALOGICO	_IO_X1_A1_02	
MD-01			Al	IN8	ANALOGICO	_IO_X1_A1_03	

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG - ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 13 de 31

Figura Nº8 Diagrama de conexión de PLC-03 MircroLogix 870.

- Se realizará la puesta en marcha del sistema automatizado de la poza 3, para ello se efectuará el modo de control manual de la bomba 1, bomba 2 y bomba 3 que se operará desde el panel view dando la orden de marcha, paro y regulación de la velocidad de la bomba del variador. Se comprobará el modo automático en el cual se ingresará el set point y el otro parámetro desde el panel view, también se ajustará los parámetros del PID, se realizará seguimiento de este modo por 4 días. Por otro lado, se ejecutará la prueba de cambio de bomba principal, modificación de configuración del modo automático.
- Se habilitará en la programación del PLC-03 las variables de lectura y escritura de la poza 3 que se enviarán al EPIC, estas variables se describen en la siguiente tabla.

TABLA 5. LISTA DE VARIABLES DE LA POZA 3

N°	Tag	Descripción	Tipo	Función
1	Write_Freq_pric_P3	Frecuencia de bomba principal	Real	Write
2	Write_Freq_sec_P3	Frecuencia de bomba auxiliar	Real	Write
3	Write_set_point_P3	Set point	Real	Write
4	Write_start_B1_P3	Start de bomba 1	Bool	Write
5	Write_stop_B1_P3	Stop de bomba 1	Bool	Write
6	Write_reset_B1_P3	Reinicio de bomba 1	Bool	Write
7	Write_start_B2_P3	Start de bomba 2	Bool	Write
8	Write_stop_B2_P3	Stop de bomba 2	Bool	Write
9	Write_reset_B2_P3	Reinicio de bomba 2	Bool	Write

10	Write_M_manual_P3	Modo de operación manual	Bool	Write
11	Write_M_automa	Modo de operación automático	Bool	Write
12	Write_pb_inicio_auto_P 3	Botón de inicio automático	Bool	Write
13	Read_B1_Freq_P3	Frecuencia actual de bomba principal	Real	Read
14	Read_B1_voltaje_P3	Voltaje actual de la bomba principal	Real	Read
15	Read_B1_corrient_P3	Corriente actual de bomba principal	Real	Read
16	Read_B1_potencia_P3	Potencia actual de bomba principal	Entero	Read
17	Read_B1_termico_P3	Térmico actual de bomba principal	Entero	Read
18	Read_B1_estado_P3	Estado de VDF de bomba principal	Entero	Read
19	Read_B2_Freq_P3	Frecuencia actual de bomba secundaria	Real	Read
20	Read_B1_voltaje_P3	Corriente actual de bomba secundaria	Real	Read
21	Read_B1_corrient_P3	Potencia actual de bomba secundaria	Real	Read
22	Read_B1_potencia_P3	Térmico actual de bomba secundaria	Entero	Read
23	Read_B1_termico_P3	Estado de VDF de bomba secundaria	Entero	Read
24	Read_B1_estado_P3	Voltaje actual de la bomba secundaria	Entero	Read
25	Read_nivel_poza_P3	Nivel actual de la poza	Real	Read
26	Read_M_operac_P3	Estado de modo de operación	Entero	Read

AUTOMATIZACIÓN DE POZA 2.

- Se modificará la programación del PLC-02 y HMI-02 para añadir las variables de la poza 3, estas variables de visualización de la poza 3 será el nivel de la poza, el valor de la frecuencia, corriente entre otros parámetros de los dos VDF, los modos de operación de la poza y las alarmas.
- Se intervendrá la estación de bombeo 2, donde se modificará la programación del PLC-02 y HMI-02 para la integración del variador VACON por Modbus TCP/IP para ello se tendrá que modificar el conexionado del tablero del variador VACON, también se configurará el variador a través del software VACON LIVE, se puede apreciar el uso del software en la figura 7.

Figura N°9 Configuración de VDF por el software VACON LIVE.

SOLUCIONES	PROPUESTA TÉCNICA		EL BROCAL Sociedad Minera El Brocal S.A.A
AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055	PT-PKS-402	Rev. B	Página: 15 de 31

 Se habilitará en la programación del PLC-02 las variables de lectura y escritura de la poza 2 que se enviarán al EPIC, estas variables se describen en la siguiente tabla.

TABLA 6. LISTA DE VARIABLES DE LA POZA 2

N°	Tag	Descripción	Tipo	Función
1	Write_Freq_pric_P2	Frecuencia de bomba principal	Real	Write
2	Write_Freq_sec_P2	Frecuencia de bomba auxiliar	Real	Write
3	Write_set_point_P2	Set point	Real	Write
4	Write_start_B1_P2	Start de bomba 1	Bool	Write
5	Write_stop_B1_P2	Stop de bomba 1	Bool	Write
6	Write_reset_B1_P2	Reinicio de bomba 1	Bool	Write
7	Write_start_B2_P2	Start de bomba 2	Bool	Write
8	Write_stop_B2_P2	Stop de bomba 2	Bool	Write
9	Write_reset_B2_P2	Reinicio de bomba 2	Bool	Write
10	Write_M_manual_P2	Modo de operación manual	Bool	Write
11	Write_M_automa_P2	Modo de operación automático	Bool	Write
12	Write_pb_inicio_auto_P 2	Botón de inicio automático	Bool	Write
13	Read_B1_Freq_P2	Frecuencia actual de bomba principal	Real	Read
14	Read_B1_voltaje_P2	Voltaje actual de la bomba principal	Real	Read
15	Read_B1_corrient_P2	Corriente actual de bomba principal	Real	Read
16	Read_B1_potencia_P2	Potencia actual de bomba principal	Entero	Read
17	Read_B1_termico_P2	Térmico actual de bomba principal	Entero	Read
18	Read_B1_estado_P2	Estado de VDF de bomba principal	Entero	Read
19	Read_B2_Freq_P2	Frecuencia actual de bomba secundaria	Real	Read
20	Read_B1_voltaje_P2	Corriente actual de bomba secundaria	Real	Read
21	Read_B1_corrient_P2	Potencia actual de bomba secundaria	Real	Read
22	Read_B1_potencia_P2	Térmico actual de bomba secundaria	Entero	Read
23	Read_B1_termico_P2	Estado de VDF de bomba secundaria	Entero	Read
24	Read_B1_estado_P2	Voltaje actual de la bomba secundaria Entero		Read
25	Read_nivel_poza_P2	Nivel actual de la poza	Real	Read
26	Read_M_operac_P2	Estado de modo de operación	Entero	Read

AUTOMATIZACIÓN DE POZA 1.

• Se modificará la programación del PLC-01 y HMI-01 para añadir las variables de la poza 3 de control y visualización. Las variables de visualización de la poza 3 será el nivel de la poza, el valor de la frecuencia, corriente entre otros parámetros de los dos VDF, los modos de operación de la poza y las alarmas. Las variables de control serán el cambio de modo de operación, inserción de set point de nivel deseado en la poza 3, control de la velocidad de cada VDF, arranca/parada de cada bomba, entre otras, esto permite que se tenga el control total de la poza 3 desde el tablero de control de la poza 1.

Página: 16 de 31

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG - ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

CONTROL DE POZAS MKPS

POZA 2

Bomba 1

FALLA

Bomba 2

FALLA

LT: 0 %

BI_FREC. 0 HZ

FALLA

BI_FREC. 0 HZ

Figura N°10 Pantalla a monitoreo a modificar del HMI-01.

Figura N°11 Pantalla de operación de poza 1.

Figura N°12 Pantalla de selección de habilitación de control.

Figura N°13 Pantalla de configuración avanzada del modo automático.

• Se habilitará en la programación del PLC-01 las variables de lectura y escritura de la poza 2 que se enviarán al EPIC, estas variables se describen en la siguiente tabla.

TABLA 7. LISTA DE VARIABLES DE LA POZA 1

N°	Tag	Descripción	Tipo	Función
1	Write_Freq_pric_P1	Frecuencia de bomba principal	Real	Write
2	Write_Freq_sec_P1	Frecuencia de bomba auxiliar	Real	Write
3	Write_set_point_P1	Set point	Real	Write
4	Write_start_B1_P1	Start de bomba 1	Bool	Write
5	Write_stop_B1_P1	Stop de bomba 1	Bool	Write
6	Write_reset_B1_P1	Reinicio de bomba 1	Bool	Write
7	Write_start_B2_P1	Start de bomba 2	Bool	Write
8	Write_stop_B2_P1	Stop de bomba 2	Bool	Write
9	Write_reset_B2_P1	Reinicio de bomba 2	Bool	Write
10	Write_M_manual_P1	Modo de operación manual	Bool	Write
11	Write_M_automa_P1	Modo de operación automático	Bool	Write
12	Write_pb_inicio_auto_P 1	Botón de inicio automático	Bool	Write
13	Read_B1_Freq_P1	Frecuencia actual de bomba principal	Real	Read
14	Read_B1_voltaje_P1	Voltaje actual de la bomba principal	Real	Read
15	Read_B1_corrient_P1	Corriente actual de bomba principal	Real	Read
16	Read_B1_potencia_P1	Potencia actual de bomba principal	Entero	Read
17	Read_B1_termico_P1	Térmico actual de bomba principal	Entero	Read
18	Read_B1_estado_P1	Estado de VDF de bomba principal	Entero	Read
19	Read_B2_Freq_P1	Frecuencia actual de bomba secundaria	Real	Read
20	Read_B1_voltaje_P1	Corriente actual de bomba secundaria	Real	Read
21	Read_B1_corrient_P1	Potencia actual de bomba secundaria	Real	Read
22	Read_B1_potencia_P1	Térmico actual de bomba secundaria	Entero	Read
23	Read_B1_termico_P1	Estado de VDF de bomba secundaria	Entero	Read
24	Read_B1_estado_P1	Voltaje actual de la bomba secundaria Er		Read
25	Read_nivel_poza_P1	Nivel actual de la poza	Real	Read
26	Read_M_operac_P1	Estado de modo de operación	Entero	Read

AUTOMATIZACIÓN DE LA ESTACIÓN RB15

- Se realizará la modificación de la programación en el PLC-04 Schneider Modicon M251 de la estación RB15 para habilitar las señales de la tabla 8 que se leerán y escribirán desde el EPIC.
- Se asignará las direcciones IP a los equipos como se muestra en la tabla 3, por último, se mapeará las variables habilitadas.

TABLA 8. LISTA DE VARIABLES DE RB15

N°	Tag	Descripción	Tipo	Función
1	Pb_Start_Stop_RB15	Marcha y paro de ventilador	Bool	Write
2	Pb_Reset_RB15	Reset de VDF	Bool	Write
3	Pb_Inversion_RB15	Inversión de giro de ventilador	Bool	Write
4	M_emergency_RB15	Modo de emergencia	Bool	Write
5	M_operation_RB15	Local/Remoto	Bool	Read
6	Ventilador_marcha_RB15	Ventilador En Marcha	Bool	Read
7	Motor_start_direc_RB15	Orden Marcha Directa	Bool	Read
8	Motor_start_inver_RB15	Orden Marcha Inversa	Bool	Read
9	Corte_presente_RB15	Corte Presente	Bool	Read
10	Aviso_presente_RB15	Aviso Presente	Bool	Read
11	Aviso_bom_gas_RB15	Aviso Bomba Gases Caudal Bajo	Bool	Read
12	Corte_bom_direc_RB15	Corte Bombeo Directo	Bool	Read
13	Corte_seta_emer_RB15	Corte Seta De Emergencia	Bool	Read
14	Corte_fallo_accio_RB15	Corte Fallo Accionamiento	Bool	Read
15	Corte_fallo_comun_RB15	Corte Fallo Comunicación E/S Remota	Bool	Read
16	Corte_temp_R_del_RB15	Corte Temperatura Rodamiento Delantero	Bool	Read
17	Corte_temp_R_tra_RB15	Corte Temperatura Rodamiento Trasero	Bool	Read
18	Corte_temp_deva_RB15	Corte Temperatura Devanados	Bool	Read
19	Corte_temp_dev_U_RB15	Corte Temperatura Devanado U	Bool	Read
20	Corte_temp_dev_V_RB15	Corte Temperatura Devanado V	Bool	Read
21	Corte_temp_dev_W_RB15	Corte Temperatura Devanado W	Bool	Read
22	Corte_temp_motor_RB15	Corte Vibraciones Motor	Bool	Read
23	Aviso_temp_R_del_RB15	Aviso Temperatura Rodamiento Delantero	Bool	Read
24	Aviso_temp_R_tra_RB15	Aviso Temperatura Rodamiento Trasero	Bool	Read
25	Aviso_temp_dev_RB15	Aviso Temperatura Devanados	Bool	Read
26	Aviso_temp_dev_U_RB15	Aviso Temperatura Devanado U	Bool	Read
27	Aviso_temp_dev_V_RB15	Aviso Temperatura Devanado V	Bool	Read
28	Aviso_temp_dev_W_RB15	Aviso Temperatura Devanado W	Bool	Read
29	Aviso_temp_aire_RB15	Aviso Temperatura Aire	Bool	Read
30	Aviso_vibr_motor_RB15	Aviso Vibraciones Motor	Bool	Read
31	Aviso_gas_o2_RB15	Aviso Gas O2	Bool	Read
32	Aviso_gas_co_RB15	Aviso Gas Co	Bool	Read
33	Aviso_gas_no2_RB15	Aviso Gas No2	Bool	Read
34	Damper_act1_abier_RB15	Damper Actuador1 Abierto	Bool	Read
35	Damper_act1_cerra_RB15	Damper Actuador1 Cerrado	Bool	Read
36	Damper_act2_abier_RB15	Damper Actuador2 Abriendo	Bool	Read
37	Damper_act2_cerra_RB15	Damper Actuador2 Cerrando	Bool	Read
38	Damper_act1_fallo_RB15	Damper Actuador1 En Fallo	Bool	Read
39	Alarm_pro_act_RB15	Alarma Proteccion Actuador1 Damper	Bool	Read

40	Alarm_tiem_manio_RB15	Alarma Tiempo De Maniobra ExcedidoActuador1	Bool	Read
41	Alarm_fina_carr_RB15	Alarma Finales De Carrera Actuador1	Bool	Read
42	Read_temp_aire_RB15	Temperatura Aire PT100	Int	Read
43	Read_temp_R_del_RB15	Temperatura rodamiento delantero PT100	Int	Read
44	Read_temp_R_atr_RB15	Temperatura rodamiento trasero PT100	Int	Read
45	Read_temp_fase_U_RB15	Temperatura fase U PT100	Int	Read
46	Read_temp_fase_V_RB15	Temperatura fase V PT100	Int	Read
47	Read_temp_fase_W_RB15	Temperatura fase W PT100	Int	Read
48	Read_vibra_motor_RB15	Vibraciones Motor	Int	Read
49	Read_vel_venti_RB15	Velocidad Ventilador	Int	Read
50	Read_caudal_direc_RB15	Lectura de caudal directo	Int	Read
51	Read_flow_direc_RB15	Lectura de presión directa	Int	Read
52	Read_motor_power_RB15	Consumo de motor	Int	Read
53	Read_sensor_O2_RB15	Sensor de O2	Int	Read
54	Read_sensor_CO_RB15	Sensor de CO	Int	Read
55	Read_sensor_NO2_RB15	Sensor de NO2	Int	Read

Figura N°14 Diagrama de conexión eléctrica de RB15.

AUTOMATIZACIÓN DE LA ESTACIÓN RB17

 Se modificará de la programación en el PLC-05 Beckhoff BC9191 0100 de la estación RB17 para habilitar las señales de la tabla 9 que se leerán y escribirán desde el EPIC. Asimismo, se asignará las direcciones IP a los equipos como se muestra en la tabla 3, por último, se mapeará las variables habilitadas.

TABLA 9. LISTA DE VARIABLES DE RB17

N°	Tag	Descripción	Tipo	Función
1	Pb_Start_Stop_RB17	Marcha y paro de ventilador	Bool	Write
2	Pb_Reset_RB17	Reset de VDF	Bool	Write
3	Pb_Inversion_RB17	Inversión de giro de ventilador	Bool	Write
4	M_emergency_RB17	Modo de emergencia	Bool	Write
5	M_operation_RB17	Local/Remoto	Bool	Read
6	Ventilador_marcha_RB17	Ventilador En Marcha	Bool	Read
7	Motor_start_direc_RB17	Orden Marcha Directa	Bool	Read
8	Motor_start_inver_RB17	Orden Marcha Inversa	Bool	Read

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 20 de 31

9	Corte_presente_RB17	Corte Presente	Bool	Read
10	Aviso_presente_RB17	Aviso Presente	Bool	Read
11	Aviso_bom_gas_RB17	Aviso Bomba Gases Caudal Bajo	Bool	Read
12	Corte_bom_direc_RB17	Corte Bombeo Directo	Bool	Read
13	Corte_seta_emer_RB17	Corte Seta De Emergencia	Bool	Read
14	Corte_fallo_accio_RB17	Corte Fallo Accionamiento	Bool	Read
15	Corte_fallo_comun_RB17	Corte Fallo Comunicación E/S Remota	Bool	Read
16	Corte_temp_R_del_RB17	Corte Temperatura Rodamiento Delantero	Bool	Read
17	Corte_temp_R_tra_RB17	Corte Temperatura Rodamiento Trasero	Bool	Read
18	Corte_temp_deva_RB17	Corte Temperatura Devanados	Bool	Read
19	Corte_temp_dev_U_RB17	Corte Temperatura Devanado U	Bool	Read
20	Corte_temp_dev_V_RB17	Corte Temperatura Devanado V	Bool	Read
21	Corte_temp_dev_W_RB17	Corte Temperatura Devanado W	Bool	Read
22	Corte_temp_motor_RB17	Corte Vibraciones Motor	Bool	Read
23	Aviso_temp_R_del_RB17	Aviso Temperatura Rodamiento Delantero	Bool	Read
24	Aviso_temp_R_tra_RB17	Aviso Temperatura Rodamiento Trasero	Bool	Read
25	Aviso_temp_dev_RB17	Aviso Temperatura Devanados	Bool	Read
26	Aviso_temp_dev_U_RB17	Aviso Temperatura Devanado U	Bool	Read
27	Aviso_temp_dev_V_RB17	Aviso Temperatura Devanado V	Bool	Read
28	Aviso_temp_dev_W_RB17	Aviso Temperatura Devanado W	Bool	Read
29	Aviso_temp_aire_RB17	Aviso Temperatura Aire	Bool	Read
30	Aviso_vibr_motor_RB17	Aviso Vibraciones Motor	Bool	Read
31	Aviso_gas_o2_RB17	Aviso Gas O2	Bool	Read
32	Aviso_gas_co_RB17	Aviso Gas Co	Bool	Read
33	Aviso_gas_no2_RB17	Aviso Gas No2	Bool	Read
34	Damper_act1_abier_RB17	Damper Actuador1 Abierto	Bool	Read
35	Damper_act1_cerra_RB17	Damper Actuador1 Cerrado	Bool	Read
36	Damper_act2_abier_RB17	Damper Actuador2 Abriendo	Bool	Read
37	Damper_act2_cerra_RB17	Damper Actuador2 Cerrando	Bool	Read
38	Damper_act1_fallo_RB17	Damper Actuador1 En Fallo	Bool	Read
39	Alarm_pro_act_RB17	Alarma Proteccion Actuador1 Damper	Bool	Read
40	Alarm_tiem_manio_RB17	Alarma Tiempo De Maniobra ExcedidoActuador1	Bool	Read
41	Alarm_fina_carr_RB17	Alarma Finales De Carrera Actuador1	Bool	Read
42	Read_temp_aire_RB17	Temperatura Aire PT100	Int	Read
43	Read_temp_R_del_RB17	Temperatura rodamiento delantero PT100	Int	Read
44	Read_temp_R_atr_RB17	Temperatura rodamiento trasero PT100	Int	Read
45	Read_temp_fase_U_RB17	Temperatura fase U PT100	Int	Read
46	Read_temp_fase_V_RB17	Temperatura fase V PT100	Int	Read
47	Read_temp_fase_W_RB17	Temperatura fase W PT100	Int	Read
48	Read_vibra_motor_RB17	Vibraciones Motor	Int	Read
49	Read_vel_venti_RB17	Velocidad Ventilador	Int	Read
50	Read_caudal_direc_RB17	Lectura de caudal directo	Int	Read
51	Read_flow_direc_RB17	Lectura de presión directa	Int	Read
52	Read_motor_power_RB17	Consumo de motor	Int	Read
53	Read_sensor_O2_RB17	Sensor de O2	Int	Read
54	Read_sensor_CO_RB17	Sensor de CO	Int	Read
55	Read_sensor_NO2_RB17	Sensor de NO2	Int	Read

 Se configurará el variador ATV del RB15 para mandar la referencia y comando por Modbus TCP/IP, en la figura 11 y figura 12 se muestra la configuración por medio del software Somove.

Figura N°15 Diagrama de conexión eléctrica de RB17.

Figura N°16 Configuración de referencia por Modbus TCP/IP en VDF ATV.

Figura N°17 Configuración de comando por Modbus TCP/IP en VDF ATV.

INTEGRACIÓN DE SISTEMA DE BOMBEO, RB15 Y RB17 AL GROOV VIEW.

- En este servicio se integrará 5 controladores de diferentes marcas Allen Bradley, Schneider y BeckHof.
- Se elaborará la interfaz gráfica en groov view para el control y monitoreo de tres estaciones del sistema de bombeo (poza 1, poza 2 y poza 3). Se mapeará la señal desde el PLC de cada poza por medio del protocolo Modbus TCP/IP al Epic, se escribirá y leerá desde el Epic al PLC de cada poza.
- Se elaborará la interfaz gráfica de control y monitoreo, para ventiladores RB15 y RB17. Se tendrá una pantalla global de monitoreo, pantallas específicas para el control de RB15 y RB17. Se mapeará la señal desde el PLC-4 y PLC-05 por medio del protocolo Modbus TCP/IP al Epic, se escribirá y leerá desde el Epic.
- Se realizará el precomisionamiento confirmando la lectura y escritura de todas las variables que se enviará al EPIC. Se ejecutará la puesta en marcha del sistema de bombeo, RB15 y RB17 desde las pantallas del Groov View, se ejecutará las funcionalidades.

Figura N°19 Pantalla de cotrol de RB15 en Groov View.

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG - ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 23 de 31

Figura N°20 Pantalla de control y visualización poza 1 en Groov View.

Figura N°21 Pantalla de monitoreo de RB15 y RB17 en Groov View.

Figura N°22 Pantalla de control y visualización estado de sistema de bombeo.

Figura N°23 Pantalla de monitoreo de RB15 y RB17 en Groov View.

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 25 de 31

Figura N°24 Pantalla de control y visualización de niveles Groov View.

Figura N°25 Pantalla de poza1 en Groov View.

5.4. TRABAJOS FINALIZADO EL SERVICIO.

- Limpieza de la zona de trabajo y retiro de equipos.
- Capacitación a personal de SMEB.
- Elaboración de informe técnico detallado del servicio y otros entregables.

6. PLAN DE PROYECTO

PK Soluciones S.A.C. elaborará un cronograma de ejecución detallado incluyendo recursos a partir del proyecto y condiciones de obra, se iniciará con el siguiente paso:

Kick off Meeting

Considera la reunión de inicio del Proyecto entre representantes del cliente y "PK Soluciones SAC.", para coordinar aspectos generales del servicio. A partir del kick off meeting y con la emisión de la orden de servicio o firma del contrato, se tomará como inicio del plazo de ejecución del presente servicio (cuando ambas acciones ocurran simultáneamente).

7. PLAN DE SEGURIDAD Y SALUD OCUPACIONA

PK Soluciones S.A.C. será responsable de todas las disposiciones de seguridad, seguros y otros establecidas por la ley, reglamentos pertinentes y del propietario y los que sean establecidos durante la obra por la supervisión.

Elaboraremos un plan de prevención de riesgos y un plan de respuesta ante emergencias alineadas con el reglamento interno de S.M.E.B., que se presentará para aprobación; este plan contemplará: charlas de seguridad, equipos de protección personal, medidas de seguridad para trabajos a realizar dentro de las salas eléctricas.

Los colaboradores de PK Soluciones S.A.C. destinados a este proyecto para ser declarados aptos serán sometidos a exámenes médicos ocupacionales e inducciones, así como cursos de seguridad por parte del propietario, los costos generados por estas actividades serán de nuestra responsabilidad.

8. PLAN DE CALIDAD.

PK SOLUCIONES SAC, se preocupa en entregar a sus clientes productos de alta calidad, incluso superior al requerido, ya que comprende que el contratista es el único responsable por el control de calidad de todos los materiales y construcciones. En este afán nuestro Sistema de Gestión de la Calidad (SGS) se apoya en los siguientes estándares:

- ISO 9000:2000, Sistemas de Gestión de la Calidad Fundamentos y Vocabulario.
- ISO 9001:2000, Sistemas de Gestión de la Calidad Requisitos.

• ISO 9004:2000, Sistemas de Gestión de la Calidad – Directrices para la Mejora en el Desempeño.

Además, PK SOLUCIONES SAC, propone un plan de calidad en su documento PC-PKS-402 Plan de calidad.

NORMAS Y CODIGOS APLICABLES

Los códigos aplicados en el servicio son los siguientes:

- A.N.S.I. (American National Standards Institute)
- A.S.M.E. (American Society of Mechanical Engineers)
- A.S.T.M. (American Society for Testing Materials)
- A.W.S. (American Welding Society).

El Sistema de Gestión de la Calidad del Proyecto incluye los siguientes tres niveles:

- Primer nivel: Gestión de Calidad.
- Segundo nivel: Control de Calidad.
- Tercer nivel: Verificación.

El primer nivel consiste en la planificación de la gestión de calidad.

El segundo nivel consiste en inspecciones y revisiones del control de calidad.

El tercer nivel consiste en las inspecciones, incluyendo la presencia durante pruebas, vigilancia de cumplimiento, revisiones y otras pruebas por el personal del área de calidad emitiendo los procedimientos y protocolos que sean requeridos para la ejecución del trabajo.

Finalmente llevará un archivo tanto de procedimientos como de protocolos debidamente llenados, que permitan una revisión por parte del cliente y faciliten las auditorias de gestión correspondientes.

9. PLANEAMIENTO Y CONTROL DEL PROYECTO

El manejo del proyecto se llevará a cabo según los lineamientos basados en el PMBOK (Figura N°16), en los cuales se muestra las diferentes etapas del proyecto.

Para la supervisión se contará con un Ingeniero Residente el cual será encargado de supervisar los trabajos de ejecución, se contará también con un Ingeniero de Seguridad el cual verificará las condiciones estándares de trabajo y finalmente un equipo de técnicos calificados y certificados para las labores que se requieren.

También se tendrá la disposición de nuestra Oficina Técnica y planeamiento para el soporte requerido en todas las fases del proyecto.

Figura N°26 Plan de control de proyecto

El Sistema de Planeamiento y Control de Proyectos integra los elementos claves de los procesos para asegurar que el proyecto cumpla con los requisitos de plazo y costo dentro del alcance predeterminado. Dentro de los objetivos principales podemos citar:

- Preparación del **EDT**.
- Planificación del desarrollo de la construcción Fabricación y Montaje
 y su interrelación con la ingeniería de detalles y el suministro.
- Asignación de recursos en coordinación con las áreas que lideran cada uno de los procesos en las fases de Construcción y Comisionamiento.
- Monitorear el desarrollo del proyecto respecto al programa previsto.
- Reportar las desviaciones al programa y presupuesto.
- Tomar acciones correctivas oportunamente.
- Informar el estado del proyecto se contará con los informes diarios de obra.
- Planificación de despacho de fabricaciones a obra.
- Planificación de recepción y almacenamiento en obra.

10. PLAN DE GESTIÓN DE RIESGOS.

Para este proyecto se identifican posibles riesgos que afecten la correcta ejecución del servicio:

• Tiempo Atmosférico.

11. PLAN DE MANEJO AMBIENTAL.

De acuerdo con nuestros lineamientos, nuestro plan incluye el tratamiento y traslado de los residuos orgánicos, no orgánicos y basura en general originada por el personal del contratista.

12. FACILIDADES.

Se requiere que S.M.E.B. proporcione a un supervisor de campo en la zona para coordinar la liberación de las zonas de trabajo, de manera de esta forma poder optimizar el tiempo de trabajo evitando tiempos muertos por traslado de dicho personal para la liberación de las zonas de trabajo.

13. HERRAMIENTAS Y MATERIALES.

En la Tabla 10. se detalla todas las herramientas y equipos que se requieren para la ejecución del servicio.

TABLA 10. LISTA DE HERRAMIENTAS Y EQUIPOS

ITEM	DESCRIPCIÓN	QTY	UN		
1	KIT MALETÍN DE HERRAMIENTAS ELECTRICISTA	4	UND		
2	GENERADOR DE SEÑALES	1	UND		
3	MULTÍMETRO	1	UND		
4	DETECTOR DE TENSIÓN	1	UND		
5	TESTER DE RED ETHERNET 1 L				
6	KIT MALETÍN DE HERRAMIENTAS MECANICO 1 L				
7	DOBLADORA DE TUBERÍA	1	UND		
8	AMOLADORA 7" 2				
9	TALADRO ELECTRICO	1	UND		
10	MAQUINA DE SOLDAR	1	UND		
11	ROTULADORA 1 L				
12	CRIMPEADORA	1	UND		
13	EXTENSIÓN	3	UND		

En la Tabla 11. se detalla todos los materiales que serán suministrados por PK Soluciones, dichos materiales se requieren para la ejecución del servicio.

TABLA 11. MATERIALES ENTREGADOS POR PK SOLUCIONES

ITEM	DESCRIPCIÓN	QTY	UN	
1	TUBERIA FLEXIBLE PESADA LIQUID TIGH 1/2	30	UND	
2	CONECTORES LIQUIT TIGHT DE 3/4".	14	UND	
3	CABLE ETHERNET CAT 6E	50	M	
4	CABLE DE ALIMENTACIÓN DE DE 3X12 AWG 20			
5	CABLE DE INSTRUMENTACIÓN APANTALLADO DE 1X3X16AWG	50	М	
6	DISCO DE CORTE METAL 4" NORTON X 25 PIEZAS	1	UND	
7	CINTILLO 200X3.6MM	2	UND	
8	CINTILLO 400X4.8MM	6	UND	
9	DISCO DE CORTE METAL 7 NORTON X 25 PIEZAS	1	UND	
10	DISCO POLIFAN 80 MM DE 4" 1/2	3	UND	
11	ELECTRODO CELLOCORD 6011 DE 1/8"	10	KG	

12	GALVANOX SPRAY	3	UND
13	ANGULO DE ACERO 2X2" X 1/4 X 6 M	4	UND
14	TUBO CUADRADO DE 2X3"X1/8X6 METROS	4	UND
15	TERMINALES ELÉCTRICO TUBULAR #14 AWG	50	UND
16	TERMINALES ELÉCTRICO TUBULAR #12 AWG	50	UND
17	CARTUCHOS DE ROTULADOR 8.8 MM	2	UND
18	CARTUCHOS DE ROTULADOR 11.5 MM	2	UND

14. ENTREGABLES.

La empresa PK SOLUCIONES S.A.C. se compromete a facilitar los entregables de la tabla 12.

TABLA 12. LISTADO DE ENTREGABLES

		-	
N°	Disciplina	Código de entregable	Descripción
			DOCUMENTO GENERAL
1	General		Dosier de calidad
2	General		Dosier de seguridad
3	General	P-4022023-GE-QA-IG-001	Arquitectura de comunicaciones
4	General	P-4022023-GE-QA-MO-001	Manual de operaciones de sistema de bombeo
5	General	P-4022023-GE-QA-MO-002	Manual de operaciones de sistema de ventilación
6	General	P-4022023-GE-QA-IF-001	Informe final de servicio
			SISTEMA DE BOMBEO
1	Instrumentación	P-4022023-SB-IN-FC-001	Filosofía de control de sistema de bombeo
2	Instrumentación	P-4022023-SB-IN-LS-001	Listado de equipos de sistema de bombeo
3	Instrumentación	P-4022023-SB-IN-LS-002	Listado cables de estación de bombeo 3
4	Instrumentación	P-4022023-SB-IN-LS-003	Listado IO de estación de bombeo 3
5	Instrumentación	P-4022023-SB-IN-LS-004	Listado de variables de estación de bombeo 1
6	Instrumentación	P-4022023-SB-IN-LS-005	Listado de variables de estación de bombeo 2
7	Instrumentación	P-4022023-SB-IN-LS-006	Listado de variables de estación de bombeo 3
8	Instrumentación	P-4022023-SB-IN-PL-001	Diagrama de control de estación de bombeo 3
9	Instrumentación	P-4022023-SB-IN-PL-002	Diagrama eléctrico de tablero SST-01 de estación de bombeo 3
10	Instrumentación	P-4022023-SB-IN-PL-003	Diagrama eléctrico de tablero SST-02 de estación de bombeo 3
11	Instrumentación	P-4022023-SB-IN-PL-004	Arquitectura de automatización de estación de bombeo 3
			SISTEMA DE VENTILACIÓN
1	Instrumentación	P-4022023-SV-IN-FC-001	Filosofía de control de sistema de ventilación
2	Instrumentación	P-4022023-SV-IN-LS-001	Listado de equipos de sistema de ventilación
3	Instrumentación	P-4022023-SV-IN-LS-002	Listado IO de RB15
4	Instrumentación	P-4022023-SV-IN-LS-003	Listado IO de RB17
5	Instrumentación	P-4022023-SV-IN-LS-004	Listado de variables de RB15
6	Instrumentación	P-4022023-SV-IN-LS-005	Listado de variables de RB17
			CALIDAD
1	General	P-4022023-GE-QA-FT-001	Fichas técnicas
2	General	P-4022023-GE-QA-PR-001	Procedimiento de tendido de cables
3	General	P-4022023-GE-QA-PR-002	Procedimiento de instalación de equipos de instrumentación

AUTOMATIZACIÓN SISTEMA DE BOMBEO MINA UG – ESTACIÓN DE BOMBEO NV. 4055

PT-PKS-402

Rev. B

Página: 31 de 31

i	1		
4	General	P-4022023-GE-QA-PR-003	Procedimiento de instalación de tablero
5	General	P-4022023-GE-QA-PR-004	Procedimiento de calibración de equipo de instrumentación
6	General	P-4022023-GE-QA-PR-005	Procedimiento de configuración de equipos de automatización
7	General	P-4022023-GE-QA-PR-006	Procedimiento de puesta en marcha
8	General	P-4022023-GE-QA-IG-001	Pantallas de interfaz gráfica Groov View
9	Sist. Bombeo	P-4022023-SB-QA-PT-001	Protocolo de tendido de cable en sistema de bombeo
10	Sist. Bombeo	P-4022023-SB-QA-PT-002	Protocolo de instalación de instrumentación en sistema de bombeo
11	Sist. Bombeo	P-4022023-SB-QA-PT-003	Protocolo de instalación de tablero en sistema de bombeo
12	Sist. Bombeo	P-4022023-SB-QA-PT-004	Protocolo de calibración de instrumentación en sistema de bombeo
13	Sist. Bombeo	P-4022023-SB-QA-PT-005	Protocolo de configuración de VDF en sistema de bombeo
14	Sist. Bombeo	P-4022023-SB-QA-PT-006	Protocolo de configuración de controlador en sistema de bombeo
15	Sist. Bombeo	P-4022023-SB-QA-PT-007	Protocolo de configuración de panel view en sistema de bombeo
16	Sist. Ventilación	P-4022023-SV-QA-PT-001	Protocolo de tendido de cable en sistema de ventilación
17	Sist. Ventilación	P-4022023-SV-QA-PT-002	Protocolo de configuración de VDF en sistema de ventilación
18	Sist. Ventilación	P-4022023-SV-QA-PT-003	Protocolo de configuración de controlador en sistema de ventilación
19	Sist. Ventilación	P-4022023-SV-QA-PT-004	Protocolo de configuración de panel View en sistema de ventilación

15. FORMA DE PAGO.

El pago por el presente servicio se realizará de la siguiente manera: 100% con la entrega del servicio.

Factura a treinta (60) días posteriores a la firma del acta de conformidad.

Fin del documento.