

Αρχείο Εκφωνήσεων ΓΕ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ 4

Ημερομηνία ανάρτησης: Παρασκευή 6 Μαρτίου 2020 Καταληκτική ημερομηνία υποβολής: Τετάρτη 8 Απριλίου 2020 Ημερομηνία ανάρτησης ενδεικτικών λύσεων: Παρασκευή 10 Απριλίου 2020

Πριν από την εκπόνηση της εργασίας και τη λύση των ασκήσεων συνιστάται η μελέτη των παραδειγμάτων και των λυμένων ασκήσεων στο αντίστοιχο σύγγραμμα και στο βοηθητικό υλικό.

Οι ασκήσεις της 4ης εργασίας αναφέρονται στα:

- Ενότητα 3 (σειρές (εν μέρει))
- Ενότητα 8 (ανάπτυγμα Taylor)
- Ενότητα 9 (το ολοκλήρωμα)
- Ενότητα 10 (γενικευμένη ολοκλήρωση)
- Ενότητα 11 (εφαρμογές των ολοκληρωμάτων)
- Ενότητα 12 (σειρές Fourier)

του συγγράμματος του ΕΑΠ «Λογισμός Μιας Μεταβλητής» του Γ. Δάσιου.

Για την κατανόηση της ύλης συνιστάται να μελετηθεί επίσης το εξής **βοηθητικό υλικό** στο study.eap.gr: Συνοδευτικό Εκπαιδευτικό Υλικό : Λογισμός

- Σειρές (εν μέρει)
- Σειρές Taylor
- Ολοκληρώματα 1
- Ολοκληρώματα 2
- Σειρές Fourier

Σκοπός της εργασίας αυτής είναι να βοηθήσει στη μελέτη και κατανόηση των εξής εννοιών:

- Σειρές: κριτήριο λόγου, κριτήριο ρίζας, ανισοτικά και οριακά κριτήρια σύγκρισης σειρών.
- Πολυωνυμική προσέγγιση, αναπτύγματα Taylor, μέθοδοι εύρεσης σειρών Taylor και Maclaurin, σειρές Taylor βασικών συναρτήσεων, δυναμοσειρές, διάστημα σύγκλισης.
- Ολοκληρώματα: ορισμένο ολοκλήρωμα, γενικές ιδιότητες, αόριστο ολοκλήρωμα, βασικές τεχνικές ολοκλήρωσης, Θεμελιώδες Θεώρημα του Λογισμού.
- Γενικευμένα ολοκληρώματα: είδη γενικευμένων ολοκληρωμάτων, κριτήρια σύγκλισης.
- Εφαρμογές των ολοκληρωμάτων: εμβαδά χωρίων, όγκοι στερεών, μήκη επίπεδων καμπυλών, επιφάνειες και στερεά εκ περιστροφής.
- Σειρές Fourier: περιοδικότητα, υπολογισμός συντελεστών Fourier, σύγκλιση σειρών Fourier.

Ασκηση 1 (Mov. 20) Να εξεταστούν ως προς τη σύγκλιση οι ακόλουθες σειρές:

$$\alpha) \qquad \sum_{n=0}^{\infty} \frac{n^5}{5^n}$$

$$\beta) \qquad \sum_{n=0}^{\infty} \frac{1}{2^n + \sin^2(n)}$$

$$\gamma$$
) $\sum_{n=0}^{\infty} \frac{3n^2 + 2n + 2}{2n^3 + 3n + 3}$

$$\delta) \quad \sum_{n=1}^{\infty} n \tan \left(\frac{1}{n} \right)$$

$$\epsilon$$
) $\sum_{n=1}^{\infty} \frac{\cos(n)}{\sqrt{n^3}}$

Άσκηση 2 (Mov. 20)

- α) (μον. 10) Να βρεθούν όλες οι τιμές της πραγματικής μεταβλητής x για τις οποίες συγκλίνει η σειρά $\sum_{n=0}^{\infty} \frac{2^n}{3^n \sqrt{5n+4}} x^n.$
- β) (μον. 4) Να υπολογιστούν οι τρείς πρώτοι μη μηδενικοί όροι του αναπτύγματος Taylor της συνάρτησης με τύπο $f(x) = \tan(x)$ γύρω από το σημείο $x_0 = \frac{\pi}{4}$.
- γ) (μον. 6) Δίνεται ότι η δυναμοσειρά $\sum_{n=0}^{\infty} a_n x^n$ συγκλίνει για x=2 και αποκλίνει για x=-3. Να αποδειχθεί ότι η δυναμοσειρά συγκλίνει για x=1 και αποκλίνει για x=4.

Ασκηση 3 (Μον. 20) Να υπολογιστούν τα παρακάτω ολοκληρώματα:

$$\int \sin(x)\cos(x)\cos(\cos(x)) dx$$

$$\int \frac{e^{x} - e^{-x}}{(e^{x} + e^{-x})^{2} - 1} dx$$

$$\int \left(\frac{\arcsin(x)}{\sqrt{1-x^2}} + \arctan(x) \right) dx$$

$$\int \frac{x+2}{x^3+x} \, dx$$

$$\int_{-2}^{2} \frac{\sin(x^3)}{x^4 + 7x^2 + 29} \, dx$$

Υπόδειξη για το ε): Δεν είναι καλή ιδέα να επιχειρηθεί ο υπολογισμός του αόριστου ολοκληρώματος.

Άσκηση 4 (Mov. 20)

α) (μον. 4) Να υπολογιστεί το εμβαδό του κλειστού φραγμένου χωρίου που περικλείεται μεταξύ των γραφικών παραστάσεων των συναρτήσεων με τύπους $f_1(x) = x$ και $f_2(x) = x^4$.

 \underline{Y} πόδειξη: Βρείτε πρώτα τα σημεία τομής και τη σχετική θέση των γραφικών παραστάσεων των f_1 και f_2 .

- β) (μον. 4) Να υπολογιστεί το γενικευμένο ολοκλήρωμα $\int\limits_{1}^{+\infty} \frac{e^{-\frac{1}{x}}}{x^2} \ dx$.
- γ) (μον. 4) Να υπολογιστεί το γενικευμένο ολοκλήρωμα $\int\limits_{1}^{2-} \frac{x}{\sqrt{12-3x^2}} dx$.
- δ) (μον. 8) Να εξεταστούν ως προς τη σύγκλιση τα ακόλουθα γενικευμένα ολοκληρώματα:

i)
$$\int_{1}^{+\infty} \frac{\sin^2(x)}{x^5} dx$$

ii)
$$\int_{2}^{33} \frac{\ln(x)}{(x-3)^5} dx$$
.

Ασκηση 5 (Mov. 20)

- α) (μον. 3) Θεωρούμε τη συνάρτηση με τύπο $f(x) = \frac{x^2 \sin(x^2)}{x^6}$ στο $(0, +\infty)$. Χρησιμοποιώντας τη σειρά Maclaurin της συνάρτησης ημιτόνου, να εκφραστεί η f ως δυναμοσειρά με κέντρο το σημείο $x_0 = 0$.
- β) Έστω $f:\mathbb{R} \to \mathbb{R}$ συνάρτηση για την οποία ισχύουν οι παρακάτω δύο συνθήκες:
 - $f(x) = |\cos(x)|$, για κάθε $x \in [-\pi, \pi)$,
 - $f(x+2\pi) = f(x)$, για κάθε $x \in \mathbb{R}$.
- i) (μον. 12) Να υπολογιστεί η σειρά Fourier της f .

 $\underline{\text{Υπόδειξη για το i):}} \ \text{Ισχύει η ισότητα} \ \cos(x)\cos(y) = \frac{\cos(x-y) + \cos(x+y)}{2}, \ \text{για κάθε} \ x, \ y \in \mathbb{R}.$

ii) (μον. 5) Χρησιμοποιώντας τη σειρά Fourier της f , να υπολογιστεί το άθροισμα $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2-1}$.