Project Synopsis MAT1003 - D Slot

<u>Title</u>: Submarine cable route planner

Group: G7

Group members:

18BCE7147	Vadlapati Hari Praneeth
18BCE7291	Shreekar Reddy V.M.
18BCN7051	Putluri Sai Vishal Reddy
18BCE7335	Penumutchu Avinash
18BCE7339	Vellanki Pramod Sai Kumar

Document written by: Praneeth

Objectives:

To help the networking companies manage the routes in an efficient way to save the operating costs, and send data in a minimal amount of time.

Methodology:

Map data is entered into text files. We use <u>Dijkstra's algorithm</u> to find the route. The algorithm finds the shortest path between the mentioned source and destination which is entered by the user.

Code is uploaded to GitHub repository:

https://github.com/vh-praneeth/Submarine cable route

Sample Output:

Running code

```
[ ] !java Test.java

Enter source: India_Mumbai
Enter destination: USA
Route:
    India_Mumbai -> India_Chennai -> Singapore -> USA
```

Map screenshot:

Other parts from Project Proposal document

Abstract:

We need to send data from our computer to a different server using the internet. It is sent to different countries through Submarine cables which are installed in the sea. The cables route about 99% of global internet traffic. These cables are also called Undersea cables.

There are many possible paths using which we can send data. Each cable has a different capacity and different amount of other traffic which is currently being sent. Cable map is available on the website: https://www.submarinecablemap.com/.

Expected Outcome:

Using this project, we write an algorithm that finds the best path to send the data to the destination, with the minimum distance possible.