

Sumário

- 1) Introdução
- 2) Efetividade do Rolamento de uma asa flexível rolamento permanente
- 3) Efetividade do Rolamento de uma asa flexível caso da asa engastada na raiz
- 4) Efeito da posição na envergadura na superfície de controle
- 5) Aeronave completa efetividade dos controles
- 6) Efeito do Estabilizador na velocidade de reversão

Introdução

Considerações iniciais

- vamos abordar apenas o controle em rolamento
- foco: obtenção da velocidade de reversão do controle
- estes cálculos são efetuados no projeto para dimensionar as superfícies de controle e depois revistos
- a indústria considera duas possibilidades de aparecimento do fenômeno:
 - rolamento da asa com velocidade angular constante
 - asa engastada com a atuação do aileron

Efetividade do Rolamento de uma asa flexível – rolamento permanente

Figure 9.1 Wing with a full span aileron undergoing steady roll.

- corda c e semi-envergadura s
- perfil simétrico
- incidência na raiz $-\theta_0$
- ângulo de rotação do aileron β
- asa flexível em torção e varia linearmente com:

$$\theta = \left(\frac{y}{s}\right)\theta_{\rm T}$$

Efetividade do Rolamento de uma asa flexível – rolamento permanente

- torção positiva: nariz para cima
- ec = distância do ¼ c
- fuselagem e empenagens não estão sendo consideradas
- movimento de rolamento de um corpo rígido e torção da asa
- $a_0=b_0=0$ e $b_w=a_w.e$ em aerofólios simétricos

$$C_L = a_0 + a_W(\theta_0 + \theta) + a_C \beta$$
 and $C_M = b_0 + b_W(\theta_0 + \theta) + b_C \beta$,

Efetividade do Rolamento de uma asa flexível – rolamento permanente

- sustentação adicional devido a rotação do aileron age na articulação do aileron, em torno de 2/3 dos 3/4 de corda
- qualquer movimento do aileron fornece não apenas uma força de sustentação mas também um momento nariz para baixo e portanto reduz o ângulo de incidência

Figure 9.2 Effect on lift distribution of applying a control surface rotation.

Rolamento

Diya's Funplay

$$\mathrm{d}L = q\mathrm{c}\,\mathrm{d}y \left[a_\mathrm{W} \left(\theta_0 + \frac{y}{s} \theta_\mathrm{T} - \frac{\dot{\phi}y}{V} \right) + a_\mathrm{C}\beta \right] \quad \text{and} \quad \mathrm{d}M = qc^2\mathrm{d}y \left[b_\mathrm{W} \left(\theta_0 + \frac{y}{s} \theta_\mathrm{T} - \frac{\dot{\phi}y}{V} \right) + b_\mathrm{C}\beta \right],$$

Figure 9.3 Change of incidence due to the downwash from rolling motion.

- q pressão dinâmica
- ∭é a redução da incidência devido ao *downwash* gerado pelo rolamento

Relação entre a taxa de rolamento φ , torção na ponta - θ_T e Ângulo do aileron – β:

$$\begin{bmatrix} \frac{2q \, cs^3 a_W}{3V} & \frac{-2q \, cs^2 a_W}{3} \\ \frac{2q \, c^2 s^2 b_W}{3V} & \left(\frac{2GJ}{s} - \frac{2q \, c^2 s \, b_W}{3}\right) \end{bmatrix} \begin{Bmatrix} \dot{\phi} \\ \theta_T \end{Bmatrix} = \begin{Bmatrix} q \, cs^2 a_C \\ q \, c^2 s b_C \end{Bmatrix} \beta \Rightarrow \begin{bmatrix} 1 & -1 \\ e & (\mu - e) \end{bmatrix} \begin{Bmatrix} \frac{s \dot{\phi}}{V} \\ \theta_T \end{Bmatrix} = \begin{Bmatrix} \frac{3a_C}{2a_W} \\ \frac{3b_C}{2a_W} \end{Bmatrix} \beta,$$
where

 $\mu = \frac{3GJ}{q \, c^2 s^2 a_W}.\tag{9.9}$

A solução fornece uma medida de relação entre a efetividade do rolamento quando comparada com o resultado obtido para uma asa rígida e para a torção na ponta por ângulo de deflexão do aileron

$$\frac{\dot{\phi}}{\beta} = \frac{3V}{2\mu s a_{W}} [a_{C}(\mu - e) + b_{C}]$$

$$\frac{\theta_{T}}{\beta} = \frac{3(b_{C} - e a_{C})}{2a_{W}\mu} = \frac{q c^{2} s^{2}(b_{C} - e a_{C})}{2GJ}.$$

$$\Rightarrow S = \frac{\left(\dot{\phi}/\beta\right)_{\text{flexible}}}{\left(\dot{\phi}/\beta\right)_{\text{rigid}}},$$

$$\text{EFETIVIDADE DO CONTROLE}$$
DE ROLAMENTO

Na asa rígida $GJ \rightarrow \infty$ e $\mu \rightarrow \infty$:

$$\Im = \frac{\left(\dot{\phi}/\beta\right)_{\text{flexible}}}{\left(\dot{\phi}/\beta\right)_{\text{rigid}}} = \frac{[3V/(2\mu s a_{\text{W}})][a_{\text{C}}(\mu-e)+b_{\text{C}}]}{3V a_{\text{C}}/2s a_{\text{W}}} = \frac{a_{\text{C}}(\mu-e)+b_{\text{C}}}{\mu a_{\text{C}}},$$

$$\mu > 0$$
, $a_C > 0$, $b_C < 0$.

Relação da Efetividade com a Velocidade

Figure 9.4 Roll effectiveness and tip twist/control angle against velocity normalized to the reversal speed.

Velocidade de Reversão

não há mudança da taxa de rolamento em relação ao ângulo do aileron: $\frac{\dot{\phi}}{B} = 0$.

$$[a_{\rm C}(\mu - e) + b_{\rm C}] = 0 \qquad q_{\rm rev} =$$

$$q_{\text{rev}} = \frac{3GJa_{\text{C}}}{c^2s^2a_{\text{W}}(ea_{\text{C}} - b_{\text{C}})}$$

$$\Im = \frac{\left(\dot{\phi}/\beta\right)_{\text{flexible}}}{\left(\dot{\phi}/\beta\right)_{\text{rigid}}} = \frac{a_{\text{C}}(\mu - e) + b_{\text{C}}}{\mu a_{\text{C}}},$$

with a corresponding tip twist per aileron angle of

$$\frac{\theta_{\text{Trev}}}{\beta} = -\frac{3a_{\text{C}}}{2a_{\text{W}}}$$

Velocidade de Reversão

Efetividade em relação a pressão dinâmica:

$$\Im = 1 - \frac{q}{q_{\text{rev}}}$$
.

Relação entre a velocidade de divergência e a velocidade de reversão:

$$\frac{q_{\rm W}}{q_{\rm rev}} = \frac{3GJ/(ec^2s^2a_{\rm W})}{3GJa_{\rm C}/[c^2s^2a_{\rm W}(ea_{\rm C}-b_{\rm C})]} = \frac{ea_{\rm C}-b_{\rm C}}{ea_{\rm C}}$$

Distribuição da Sustentação no Rolamento Permanente

Sustentação por unidade de envergadura:

- aumenta linearmente com a pressão dinâmica e ângulo do aileron
- reduz da raiz da asa até a ponta devido a torção negativa provocada pelo acionamento do aileron

Sustentação Total e Momento na Velocidade de Reversão

Total lift =
$$\int_0^s q c a_{\rm C} \left(1 - \frac{3y}{2s}\right) \beta \, dy = \frac{q c s a_{\rm C}}{4} \beta$$
.

Mrolamento =
$$\int_0^s qca_{\rm C} \left(1 - \frac{3y}{2s}\right) \beta y \, dy = qca_{\rm C} \left(\frac{s^2}{2} - \frac{s^2}{2}\right) \beta = 0,$$

Efetividade do Rolamento de uma asa flexível – caso da asa engastada na raiz

Efetividade do Rolamento de uma asa flexível – caso da asa engastada na raiz

Torção na ponta da asa engastada

$$\theta_{\rm T} = \frac{qc^2s}{(2GJ/s - 2qc^2sb_{\rm W}/3)}(b_{\rm W}\theta_0 + b_{\rm C}\beta) = \frac{qc^2s^2}{2GJ(1 - q/q_{\rm W})}(b_{\rm W}\theta_0 + b_{\rm C}\beta).$$

A sustentação agindo na semi-asa devido à aplicação do aileron:

$$L_{\rm W} = \int_0^s \frac{\mathrm{d}L}{\mathrm{d}y} \, \mathrm{d}y = qcs \left[\frac{qc^2 s^2 a_{\rm W}}{4GJ \left(1 - q/q_{\rm W} \right)} b_{\rm C} + a_{\rm C} \right] \beta$$

Efetividade do Rolamento de uma asa flexível – caso da asa engastada na raiz

Momento Fletor na raiz:

$$\int_{0}^{s} \frac{dL}{dy} y \, dy = qcs^{2} \left[\frac{qc^{2}s^{2}a_{W}}{6GJ(1 - q/q_{W})} b_{C} + \frac{a_{C}}{2} \right] \beta = qcs^{2} \left[\frac{qb_{C}}{2eq_{W}(1 - q/q_{W})} + \frac{a_{C}}{2} \right] \beta$$

Considerando que o Momento de flexão na raiz é zero na velocidade de reversão:

$$\frac{qc^2s^2a_W}{6GJ(1-q/q_W)}b_C + \frac{a_C}{2} = 0.$$
 $q_{rev} = \frac{q_Wea_C}{ea_C - b_C},$

Efetividade do Aileron – Asa Engastada

Sustentação por unidade de envergadura devido a rotação do controle na asa rígida

$$\frac{\mathrm{d}L}{\mathrm{d}y} = qca_{\mathrm{C}}\beta.$$

Momento Estático devido a rotação do Aileron para a asa rígida:

$$\int_0^s qca_C\beta y\,\mathrm{d}y = \frac{qcs^2a_C}{2}\beta.$$

Efetividade do Momento Estático:

$$\Im_{\text{static moment}} = \frac{\text{static bending moment t (flexible)}}{\text{static bending moment (rigid)}} = \frac{1 - q/q_{\text{rev}}}{1 - q/q_{\text{W}}}$$

Comparação da Efetividade quando se tem taxa constante de rolamento e no caso da Asa Engastada

Figure 9.6 Control effectiveness for constant roll rate and static moment cases.

Exercício

Calcule a velocidade de reversão e determine a efetividade do aileron na velocidade de 160 m/s para uma asa engastada na raiz como os seguintes parâmetros:

- rigidez torsional da asa= 7,06.10⁶
- relação entre a mudança da sustentação e o ângulo de rolamento = 0,15 e entre o coeficiente de momento e o ângulo de deflexão do aileron é -0,3
- parâmetros da asa: c=3 m, b=9,5 m, ec=0,25%c e a_W = 3,5

$$q_{\text{rev}} = \frac{3GJa_{\text{C}}}{c^2s^2a_{\text{W}}(ea_{\text{C}} - b_{\text{C}})}$$
 $\Im_{\text{static moment}} = \frac{1 - q/q_{\text{rev}}}{1 - q/q_{\text{W}}}$ $q_{\text{W}} = \frac{3GJ}{ec^2s^2a_{\text{W}}}$.

Efeito da posição do aileron na envergadura

Considere dois casos:

1. aileron na metade interna da asa

$$M_{\text{inboard}} = qcs^2 \left[\frac{qc^2sa_{\text{W}}}{24\left(GJ/s - qc^2sb_{\text{W}}/3\right)} b_{\text{C}} + \frac{a_{\text{C}}}{2} \right] \beta.$$

2. aileron na metade externa da asa

$$M_{\text{outboard}} = qcs^2 \left[\frac{qc^2sa_{\text{W}}}{8(GJ/s - qc^2sb_{\text{W}}/3)} b_{\text{C}} + \frac{a_{\text{C}}}{2} \right] \beta.$$

$$q_{\text{rev}_{\text{inboard}}} = \frac{q_{\text{W}} a_{\text{C}} e}{a_{\text{C}} e - b_{\text{C}} / 4}, \qquad q_{\text{rev}_{\text{outboard}}} = \frac{q_{\text{W}} a_{\text{C}} e}{a_{\text{C}} e - 3b_{\text{C}} / 4},$$

Efeito da posição do aileron na envergadura

$$M_{\text{inboard}} = qcs^{2} \left[\frac{qc^{2}sa_{W}}{24\left(GJ/s - qc^{2}sb_{W}/3\right)}b_{C} + \frac{a_{C}}{2} \right] \beta. = 0$$

$$M_{\text{outboard}} = qcs^{2} \left[\frac{qc^{2}sa_{W}}{8\left(GJ/s - qc^{2}sb_{W}/3\right)}b_{C} + \frac{a_{C}}{2} \right] \beta. = 0$$

$$q_{\text{rev}_{\text{inboard}}} = \frac{q_{W}a_{C}e}{a_{C}e - b_{C}/4},$$

$$q_{\text{rev}_{\text{outboard}}} = \frac{q_{W}a_{C}e}{a_{C}e - 3b_{C}/4},$$

Alcança a divergência primeiro (b_c < 0) -> aeronaves comerciais os bloqueiam no cruzeiro

Aeronave completa – efetividade dos controles

Considere o vetor de coordenadas generalizadas:

$$p = \begin{cases} \phi \\ \theta_{\rm T} \end{cases}$$
 rigid body roll angle (constrained to zero), wing twist (assume ∞ fuselage pitch inertia).

M é o momento que se opõe ao rolamento tal que não permita ângulo de rolamento ou taxa de rolamento ($\phi = \dot{\phi} = 0$):

$$\begin{bmatrix} 0 & \frac{-2qcs^2a_W}{3} \\ 0 & \frac{2GJ}{s} - \frac{2qc^2sb_W}{3} \end{bmatrix} \begin{Bmatrix} \phi \\ \theta_T \end{Bmatrix} + \begin{Bmatrix} 1 \\ 0 \end{Bmatrix} M = \begin{Bmatrix} qcs^2a_C \\ qc^2sb_C \end{Bmatrix} \beta = R_{con},$$

R_{con}...vetor de forças generalizadas

Aeronave completa – efetividade dos controles

O momento que se opõe ao rolamento tal que não permita ângulo de rolamento ou taxa de rolamento pode ser obtido:

$$M = qcs^{2} \left[\left(\frac{qc^{2}sb_{C}}{3GJ/s - qc^{2}sb_{W}} \right) a_{W} + a_{C} \right] \beta.$$

Efeito da Empenagem Horizontal

 o leme auxilia no controle lateral na medida que o aileron perde sua efetividade quando se aproxima da velocidade de reversão

Modelamento Aerodinâmico no Nastran:

- 1) Double Lattice Method
 - 2) Lifting Body
 - 3) Zona 51 painéis
 - 4) Mach Box Surface
 - 5) Strip Theory
 - 6) Piston Theory

Attribute	Aerodynamic Theory						
	Doublet- Lattice Panel	Lifting Body (Interference)	ZONA51 Panel	Mach Box Surface	Strip Theory	Piston Theory	
		FEMAP					
Bulk Data	CAERO1	CAERO2	CAERO1	CAERO3	CAERO4	CAERO5	
Entries	PAERO1	PAERO2	PAERO1	PAERO3	PAERO4	PAERO5	
Mach Number	Subsonic	Subsonic	Supersonic	Supersonic	All	High Supersonic	
Symmetry Options	Two Planes $y = 0$ $z = 0$	Two Planes $y = 0$ $z = 0$	One Plane y = 0	One Plane Required	None	None	
Interaction	Panels and Bo Same Group	odies in the	Panels in the Same Group	Boxes on One Surface	None	None	

Femap Estruturar a Simulação Entrar com a geometria (Seja no FEMAP, seja importada de um software CAD) Configurar materiais e suas propriedades Configurar a malha estrutural(elementos finitos) e a malha aerodinâmica Configurar condições de contorno e carregamentos. (No caso de problemas aeroelasticos o carregamento é aerodinámico) Configurar os parâmetros de simuação. (Aqui, dados requisitados por entradas como FLUTTER, FLFACT e EIG serão necessários.)

Malha Elementos Finitos x Painéis Aerodinâmicos

Para construção da asa sugiro assistir os seguintes vídeos:

```
https://www.youtube.com/watch?
v=7meTJ69dqWU&t=335s&ab_channel=Ahmad
Al-Barawy
```

Para análise de divergência sugiro assistir o seguinte vídeo:

https://www.youtube.com/watch? v=O8ZGbmLKv8I&ab_channel=StructuralDesignan dAnalysis%2CInc.

do 7:42 até 24:30

1) Escolha um perfil de asa e construa uma asa com as seguintes dimensões:

envergadura = 160 in

corda = 17 in

U =74 mph

densidade do ar nível do mar 0,0023769 slug/ft³ = 1,146.10⁻⁷ slinch/in³ = 1,225 kg/m³

ângulo de ataque = 1 grau = 0,01745 rad

para converter unidades: https://www.convertworld.com/pt/

Com os dados do slide anterior use o sol 144 e rode uma análise de divergência no Nastran.

Para isto assista o vídeo sobre modelamento de uma asa e depois o video sobre modelamento aerodinâmico

Alumínio 2024

	Stiffness	Tarant annual and	Limit Stress		
	Youngs Modulus, E	10600000,	Tension Compression	11000,	
	Shear Modulus, G	0,		0,	
	Poisson's Ratio, nu	0,33	Shear	0,	
	Thermal				
	Expansion Coeff, a	1,29E-5	Mass Density Damping, 2C/Co Reference Temp	0,0002588	
	Conductivity, k	0,0025278		0,	
	Specific Heat, Cp	85,008		75,	
	Heat Generation Fact	or 0,		73,	
mbre-s	se que existe de elasticid	e relação entre ade e o de cisa	o Poisso alhamento	n, $G = \frac{E}{2(1+v)}$	