Análisis de redes sociales dinámicas de aprendizaje colaborativo

David Alarcón Rubio

dalarcon32@alumno.uned.es

Trabajo fin del máster de ingeniería y ciencia de datos Universidad Nacional de Educación a Distancia

Director: Antonio Rodríguez Anaya

Contenidos

- Introducción
- Objetivos
- 3 Subobjetivos e hipótesis
- 4 Procesamiento de datos y técnicas de aprendizaje supervisado
- 6 Resultados
- **6** Conclusiones

Aprendizaje colaborativo

- En un mundo cada vez más conectado, el aprendizaje colaborativo online se ha convertido en una herramienta poderosa para adquirir conocimientos y desarrollar habilidades [1].
- Las redes sociales de aprendizaje virtual se convierten en espacios donde los estudiantes pueden interactuar, colaborar y aprender unos de otros [2].
- Los foros de una asignatura son mucho más que simples espacios para hacer preguntas y respuestas. Son entornos sociales dinámicos donde los estudiantes construyen conocimiento juntos [3].
- El análisis de redes sociales aplicado a los foros proporciona información valiosa sobre la participación de los estudiantes, lo que puede ser utilizado para monitorear su progreso de aprendizaje y predecir su rendimiento académico [4, 5].

Pregunta de investigación y motivación del estudio

¿Cómo podemos utilizar el análisis de redes sociales de aprendizaje colaborativo para predecir el abandono de los estudiantes?

En el ámbito educativo, el análisis de redes sociales y el aprendizaje automático pueden ser herramientas poderosas para comprender las interacciones entre los estudiantes y predecir el abandono de asignaturas.

Motivación del estudio

- Analizar las interacciones y la estructura social en una comunidad educativa en línea utilizando técnicas de análisis de redes sociales aplicadas a los foros de discusión de una asignatura.
- Desarrollar modelos de aprendizaje automático supervisado para predecir el abandono de los estudiantes en una asignatura, utilizando medidas de centralidad de la red social y medidas del sentimiento expresado en los mensajes.

Objetivos principales

Objetivo Principal: Evaluar la eficacia del análisis de redes sociales dinámicas en la predicción del abandono estudiantil en una asignatura.

- Objetivo 1: Analizar la eficacia de las predicciones basadas en el análisis de redes sociales, considerando diferentes rangos de tiempo desde el inicio del curso.
- Objetivo 2: Evaluar la eficacia del análisis de las redes temporales al subdividir el rango temporal en bloques de días seriados secuencialmente.
- Objetivo 3: Evaluar la eficacia del análisis de las redes temporales dinámicas al analizar bloques seriados dinámicamente o encadenados.

Rangos de tiempo

Se analizaron cuatro rangos de tiempo: 30, 60, 90 y 120 días. Estos rangos representan segmentos específicos de interacción en los foros de los estudiantes desde el inicio del curso.

Rangos de tiempo	Porcentaje de cobertura
30 días	25 %
60 días	50 %
90 días	75 %
120 días	100 %

Cuadro 1: Porcentaje de cobertura por rango de tiempo.

Rangos de tiempo

Figura 1: Evaluación de la eficacia de lso diferentes rangos de tiempo en la predicción del abandono

Subdivisión en bloques

La subdivisión en bloques permite un análisis más detallado de la red social en segmentos específicos de tiempo Kim and Anderson [6]. Se consideraron diferentes rangos temporales y se determinaron las opciones de subdivisión en bloques.

Rangos	Número de días × Número de bloques		
30 días	5×6 , 10×3 , 15×2		
60 días	5 \times 12, 10 \times 6, 15 \times 4, 20 \times 3, 30 \times 2		
90 días	5 \times 18, 10 \times 9, 15 \times 6, 30 \times 3, 45 \times 2		
120 días	5 \times 24, 10 \times 12, 15 \times 8, 20 \times 6, 30 \times 4, 40 \times 3, 60 \times 2		

Cuadro 2: Opciones de subdivisión en bloques para cada rango temporal.

Subdivisión en bloques seriados secuencialmente

Figura 2: Subdivisión del rango de tiempo en bloques seriados secuencialmente

Subdivisión en bloques dinámicos o encadenados

- La subdivisión en bloques secuenciales permite analizar las interacciones y dinámicas dentro de cada bloque. La subdivisión en bloques dinámicos o encadenados establece una relación de continuidad entre los bloques, capturando la evolución y los cambios a largo plazo [7].
- En la subdivisión en bloques encadenados, cada bloque temporal se superpone con el bloque anterior y el bloque siguiente.
- Esto significa que se comparten nodos y conexiones entre bloques adyacentes, lo que permite capturar la continuidad y los cambios graduales en la red a lo largo del tiempo.

Subdivisión en bloques dinámicos o encadenados

Figura 3: Subdivisión del rango de tiempo en bloques seriados dinámicamente (encadenados)

Subbjetivos e hipótesis

Subobjetivo 1: Teoría del capital social de la red

Hipótesis A: Las medidas de centralidad ponderadas serán más capaces de capturar la importancia de las interacciones entre los nodos y predecir el abandono estudiantil [8].

Subobjetivo 2: Teoría de la estructura social de la red

Hipótesis B: Los modelos de medidas de centralidad globales serán más eficaces para predecir el abandono estudiantil en comparación con los modelos que solo consideran medidas locales [9].

Subobjetivo 3: Teoría del balance social de la red

Hipótesis C: Las medidas de centralidad junto a las medidas de sentimiento expresadas en los mensajes podrán predecir el abandono estudiantil de manera más precisa [6].

Medidas de Centralidad en Redes Sociales

- Grado (Degree): Número de enlaces que tiene un nodo. Los nodos con un alto grado son actores clave para la comunicación y difusión de información.
- Cercanía (Closeness): Evalúa la distancia promedio entre un nodo y todos los demás nodos de la red. Los nodos con alta cercanía están más cerca de los demás nodos y pueden acceder rápidamente a la información y difundirla eficientemente.
- Intermediación (Betweenness): Se enfoca en los caminos más cortos de la red. Un nodo con alta intermediación se encuentra en muchos caminos más cortos entre otros nodos, actuando como intermediario en la comunicación y transferencia de información en la red.

Medidas de Centralidad en Redes Sociales

Medidas de Centralidad Ponderadas

- Las medidas de centralidad sin pesos consideran solo la topología de la red.
- 2 Las medidas de centralidad con pesos tienen en cuenta los pesos asociados a las conexiones Tang et al. [10], Barrat et al. [11].

Medidas de Centralidad Locales o Globales

- Las medidas de centralidad local se centran en la importancia de un nodo en relación con sus vecinos directos en la red.
- Las medidas de centralidad global (híbridas) evalúan la importancia de los nodos considerando tanto las interacciones directas del nodo como las interacciones de los nodos vecinos a los que está conectado [12, 7].

Medidas de Sentimiento y Emoción

Sentimiento

 Métrica utilizada para evaluar el tono emocional transmitido en los mensajes de texto. Asigna un valor numérico entre 0 y 1 representando la probabilidad de que el texto sea "positivo".

Russel Valence y Russel Arousal

- Russel Valence: Métrica que evalúa la carga emocional o la valencia de un texto.
- Russel Arousal: Métrica que evalúa el nivel de excitación o activación emocional transmitido por un texto.

Emoción

• Utiliza una región de Russel para clasificar el texto en categorías emocionales como neutro, relajado, feliz, triste o enfadado.

Modelos predictivos por combinación de factores

_					MOCION			EMOC				
			Días por	NO HIE	RIDO	NO	RIDO	NO HIBRIDO NO		HIBRIDO NO		
	Total	Bloques	bloque	PESOS	PESOS	PESOS	PESOS	PESOS	PESOS	PESOS	PESOS	
_	10tai 30		30	1	2	3	4	5	6	7	R R	
	60	1	60	9	10	11	12	13	14	15	16	
	90	1	90	17	18	19	20	21	22	23	24	
	120	1	120	25	26	27	28	29	30	31	32	
	30	2	120	33	34	35	36	37	38	39	40	
	30	3	10	41	42	43	44	45	46	47	48	
	30	6	5	49	50	51	52	53	54	55	56	
	60		30	57	58	59	60	61	62	63	64	
	60		20	65	66	67	68	69	70	71	72	
ë	60		15	73	74	75	76	77	78	79	80	
, in	60	6	10	81	82	83	84	85	86	87	88	
Bloques Secuenciales	60	12	5	89	90	91	92	93	94	95	96	
Š	90		45	97	98	99	100	101	102	103	104	
5	90	3	30	105	106	107	108	109	110	111	112	
ğ	90	6	15	113	114	115	116	117	118	119	120	
ĕ	90	9	10	121	122	123	124	125	126	127	128	
	90	18	5	129	130	131	132	133	134	135	136	
	120	2	60	137	138	139	140	141	142	143	144	
	120	3	40	145	146	147	148	149	150	151	152	
	120	4	30	153	154	155	156	157	158	159	160	
	120	6	20	161	162	163	164	165	166	167	168	
	120	8	15	169	170	171	172	173	174	175	176	
	120	12	10	177	178	179	180	181	182	183	184	
	120	24	5	185	186	187	188	189	190	191	192	
	30	2	15	193	194	195	196	197	198	199	200	
	30	3	10	201	202	203	204	205	206	207	208	
	30		5	209	210	211	212	213	214	215	216	
	60	2	30	217	218	219	220	221	222	223	224	
	60		20	225	226	227	228	229	230	231	232	
	60		15	233	234	235	236	237	238	239	240	
Bloques Encadenados	60		10	241	242	243	244	245	246	247	248	
na na	60		5	249	250	251	252	253	254	255	256	
ě	90		45	257	258	259	260	261	262	263	264	
2	90	3	30	265	266	267	268	269	270	271	272	
e e	90	6	15	273	274	275	276	277	278	279	280	
죑	90	. 9	10	281	282	283	284	285	286	287	288	
ĕ	90	18 2	5 60	289 297	290 298	291 299	292 300	293 301	294 302	295 303	296 304	
ш	120 120	3	60 40	297 305	298 306	299 307	300	301 309	302	303	304	
	120 120	3	40 30	305 313	305 314	307 315	308 316	309 317	310 318	311 319	312 320	
	120	6	20	313	322	323	316	325	318	319	320	
	120	8	15	321	330	331	332	333	334	335	336	
	120	12	10	337	338	339	340	341	342	343	344	
	120	24	10 5	345	338 346	347	348	341 349	342 350	343 351	352	
_	120	24		242	240	347	340	242	350	331	352	

Algoritmos de aprendizaje supervisado

- Regresión Logística: Clasificación binaria basada en un modelo logístico.
- SVM (Support Vector Machine): Clasificación y regresión basada en hiperplanos óptimos en un espacio de alta dimensionalidad.
- Decision Tree Classifier: Toma de decisiones basada en una estructura de árbol que divide los datos según características.
- KNN (K-Nearest Neighbors): Clasificación basada en los K puntos de entrenamiento más cercanos en función de la distancia.
- MLP Classifier (Multi-Layer Perceptron): Clasificación basada en redes neuronales artificiales con múltiples capas de nodos.

Métricas de evaluación de la predicción

- Precisión (Accuracy): Proporción de predicciones correctas sobre el total de predicciones realizadas.
- Precisión (Precision): Proporción de verdaderos positivos sobre el total de positivos predichos. Indica qué tan bien el modelo identifica correctamente los casos positivos.
- Exhaustividad (Recall): Proporción de verdaderos positivos sobre el total de positivos reales. Indica qué tan bien el modelo captura todos los casos positivos.
- Puntuación F1 (F1 Score): Media armónica de la precisión y la exhaustividad. Proporciona una medida equilibrada del rendimiento del modelo.
- ROC AUC (Area Under the Receiver Operating Characteristic Curve):
 Capacidad de discriminación del modelo y su habilidad para distinguir entre las clases positiva y negativa.

Índices de evaluación de las redes sociales dinámicas en la predicción

Evaluamos las teorías e hipótesis propuestas utilizando índices construidos específicos.

- Índice de amplitud o cobertura de la información: Mide la capacidad del algoritmo para capturar la diversidad de interacciones en la red social dinámica.
- Índice de unidad de información: Evalúa la capacidad del algoritmo para identificar grupos o comunidades dentro de la red social dinámica.
- Índice de cantidad de información: Cuantifica la cantidad de información relevante proporcionada por el algoritmo sobre las interacciones en la red social dinámica.

Resumen teorías, hipótesis e índices

Bloques	Medidas Ponderadas	Medidas Hibridas	Medidas Sentimiento				
Bloque único	Rango de amplitud de la información						
Bloques secuenciales	Tamaño de la unidad de información						
Boques dinámicos	Cantidad total de información						

Figura 5: Resumen de teorías, hipótesis e índices

Resultados. Objetivo 1 - Hipótesis A

Objetivo 1. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo (en un solo bloque).

Hipótesis A: medidas de centralidad ponderadas (con pesos vs sin pesos).

Resultados. Objetivo 2 - Hipótesis A

Objetivo 2. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo subdivididos por bloques secuenciales.

Hipótesis A: medidas de centralidad ponderadas (con pesos vs sin pesos).

Resultados. Objetivo 3 - Hipótesis A

Objetivo 3. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo subdivididos por bloques encadenados.

Hipótesis A: medidas de centralidad ponderadas (con pesos vs sin pesos).

Resultados. Objetivo 1 - Hipótesis B

Objetivo 1. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo (en un solo bloque).

Hipótesis B: medidas de centralidad locales vs globales (híbridas).

Resultados. Objetivo 2 - Hipótesis B

Objetivo 2. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo subdivididos por bloques secuenciales.

Hipótesis B: medidas de centralidad locales vs globales (híbridas).

Resultados. Objetivo 3 - Hipótesis B

Objetivo 3. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo subdivididos por bloques encadenados.

Hipótesis B: medidas de centralidad locales vs globales (híbridas).

Resultados. Objetivo 1 - Hipótesis C

Objetivo 1. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo (en un solo bloque).

Hipótesis C: medidas de centralidad vs medidas centralidad-sentimiento.

Resultados. Objetivo 2 - Hipótesis C

Objetivo 2. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo subdivididos por bloques secuenciales.

Hipótesis C: medidas de centralidad vs medidas centralidad-sentimiento.

Resultados. Objetivo 3 - Hipótesis C

Objetivo 3. Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo subdivididos por bloques encadenados.

Hipótesis C: medidas de centralidad vs medidas centralidad-sentimiento.

Resultados. Objetivo 1 - Rangos Tempolares

Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo en cualquier tipo de subdivisión por bloques (un bloque único, bloques secuenciales y bloques encadenados).

Índice de amplitud o cobertura de la información.

Figura 15: Eficacia de los algoritmos de aprendizaje supervisado en función del índice de amplitud de información

Resultados. Objetivo 1 - Rangos Tempolares

Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo en cualquier tipo de subdivisión por bloques (un bloque único, bloques secuenciales y bloques encadenados).

Índice de tamaño de la unidad de información.

Figura 16: Eficacia de los algoritmos de aprendizaje supervisado en función del índice de unidad de información

Resultados. Objetivo 1 - Rangos Tempolares

Analizar la eficacia de las predicciones utilizando distintos rangos de tiempo en cualquier tipo de subdivisión por bloques (un bloque único, bloques secuenciales y bloques encadenados).

Índice de cantidad de información.

Figura 17: Eficacia de los algoritmos de aprendizaje supervisado en función del índice de cantidad de información

Analizar la eficacia de las predicciones utilizando distintos tipos de subdivisión en bloques temporales: secuenciales vs encadenados.

Índice de amplitud o cobertura de la información.

Figura 18: Eficacia de los tipos de bloques temporales en función de la cobertura temporal

Analizar la eficacia de las predicciones utilizando distintos tipos de subdivisión en bloques temporales: secuenciales vs encadenados.

Índice de tamaño de la unidad de información.

Figura 19: Eficacia de los tipos de bloques temporales en función del índice de unidad de información

Analizar la eficacia de las predicciones utilizando distintos tipos de subdivisión en bloques temporales: secuenciales vs encadenados.

Índice de cantidad de información.

Figura 20: Eficacia de los tipos de bloques temporales en función del índice de cantidad de información

Analizar la eficacia de las predicciones utilizando distintos tipos de subdivisión en bloques temporales: secuenciales vs encadenados.

Evaluación conjunta de la cobertura y la unidad de información.

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: sin pesos vs con pesos.

Índice de amplitud o cobertura de la información.

Figura 22: Eficacia de los tipos de medidas de centralidad en función de la amplitud de información

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: sin pesos vs con pesos.

Índice de tamaño de la unidad de información.

Figura 23: Eficacia de los tipos de medidas de centralidad en función del índice de unidad de información

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: sin pesos vs con pesos.

Índice de cantidad de información.

Figura 24: Eficacia de los tipos de medidas de centralidad en función del índice de cantidad de información

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: sin pesos vs con pesos.

Evaluación conjunta de la cobertura y la unidad de información.

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: locales vs globales (híbridas).

Índice de amplitud o cobertura de la información.

Figura 26: Eficacia de los tipos de medidas de centralidad en función del porcentaje de cobertura temporal o amplitud de la información

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: locales vs globales (híbridas).

Índice de tamaño de la unidad de información.

Figura 27: Eficacia de los tipos de medidas de centralidad en función de la unidad de información

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: locales vs globales (híbridas).

Índice de cantidad de información.

Figura 28: Eficacia de los tipos de medidas de centralidad en función de la calidad de información

Analizar la eficacia de las predicciones utilizando distintos tipos de medidas centrales: locales vs globales (híbridas).

Evaluación conjunta de la cobertura y la unidad de información.

Resultados. Subobjetivo 3: Hipótesis del Balance Social Cognitivo (medidas centrales y medidas de emoción)

Analizar la eficacia de las predicciones utilizando medidas centrales vs medidas centrales y de sentimentos.

Índice de amplitud o cobertura de la información.

Figura 30: Eficacia del uso de medidas de centralidad sin o con medidas de sentimiento en función del porcentaje de cobertura temporal o amplitud de la información

Resultados. Subobjetivo 3: Hipótesis del Balance Social Cognitivo (medidas centrales y medidas de emoción)

Analizar la eficacia de las predicciones utilizando medidas centrales vs medidas centrales y de sentimentos.

Índice de tamaño de la unidad de información.

Figura 31: Eficacia del uso de medidas de centralidad sin o con medidas de sentimiento en función del índice de unidad de información

Resultados. Subobjetivo 3: Hipótesis del Balance Social Cognitivo (medidas centrales y medidas de emoción)

Analizar la eficacia de las predicciones utilizando medidas centrales vs medidas centrales y de sentimentos.

Índice de cantidad de información.

Figura 32: Eficacia del uso de medidas de centralidad sin o con medidas de sentimiento en función del índice de cantidad de información

Analizar la eficacia de las predicciones utilizando medidas centrales vs medidas centrales y de sentimentos.

Evaluación conjunta de la cobertura y la unidad de información.

Resultados clave

- A medida que aumenta el porcentaje de cobertura temporal, la eficacia de todos los tipos de subdivisión en bloques también incrementa.
- Existe un equilibrio entre la cantidad (amplitud x unidad) de información analizada y la capacidad predictiva del modelo, ya que el punto máximo de eficacia en la predicción no se encuentra en el máximo nivel de cobertura temporal.
- La subdivisión del análisis de la red social en bloques temporales encadenados muestra una eficacia superior en comparación con la subdivisión en bloques secuenciales.
- Las medidas de centralidad globales que evalúan la posición en la red de los nodos vecinos pueden ser más eficaces para capturar la estructura de la red del estudiante y predecir su abandono de la asignatura.
- La integración de medidas emocionales con las medidas de centralidad mejora la capacidad predictiva del modelo.

Limitaciones y futuras investigaciones

- Tamaño limitado y sesgado de los datos analizados.
- Uso de medidas de cohesión de la red y algoritmos de detección de comunidades diferentes.
- Integración de medidas de centralidad y análisis de sentimiento para comprender la relación entre emociones y posición de los nodos.
- Utilización de técnicas de balanceo de datos, como SMOTE, para abordar el desbalance de los datos.
- Evaluación de la importancia relativa de las características mediante la técnica SHAP.
- Implementación de técnicas de ensamblaje, como Bagging o RandomForest.

Aplicación de los resultados

- Identificación temprana de estudiantes en riesgo: El análisis de la interacción en los foros de las asignaturas, considerando medidas de centralidad y evaluaciones emocionales, puede ayudar a identificar a los estudiantes que están en riesgo de abandonar la asignatura o que están experimentando dificultades académicas.
- Oiseño de estrategias de enseñanza personalizadas: La comprensión de los patrones de comportamiento y las preferencias de los estudiantes en los foros de la asignatura puede guiar el diseño de estrategias de enseñanza personalizadas.
- Mejora de la experiencia del estudiante en entornos de aprendizaje en línea: El análisis de medidas de centralidad y evaluaciones emocionales en los foros de las asignaturas puede proporcionar información valiosa para mejorar la experiencia del estudiante en entornos virtuales.
- ① Desarrollo de sistemas de recomendación personalizados: La combinación de medidas de centralidad y emocionales puede ser utilizada para desarrollar sistemas de recomendación personalizados.

Análisis de redes sociales dinámicas de aprendizaje colaborativo

David Alarcón Rubio

dalarcon32@alumno.uned.es

Trabajo fin del máster de ingeniería y ciencia de datos Universidad Nacional de Educación a Distancia

Director: Antonio Rodríguez Anaya

- P. M. Moreno-Marcos, C. Alario-Hoyos, P. J. Munoz-Merino,
 I. Estevez-Ayres, and C. D. Kloos, "A Learning Analytics Methodology for Understanding Social Interactions in MOOCs," *IEEE Transactions on Learning Technologies*, vol. 12, no. 4, pp. 442–455,
 Oct. 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8550792/
- [2] A. Soleymani, L. Itard, M. De Laat, M. Valle Torre, and M. Specht, "Using Social Network Analysis to explore Learning networks in MOOCs discussion forums," *CLIMA 2022 conference*, p. 2022: CLIMA 2022 The 14th REHVA HVAC World Congress, May 2022, publisher: CLIMA 2022 conference. [Online]. Available: https://proceedings.open.tudelft.nl/clima2022/article/view/300
- [3] C. Karina, "Social Network Analysis in eLearning environments: a study of learner's interactions from several perspectives," Ph.D. dissertation, University of Alcalá, 2015.
- [4] C. Romero, M.-I. López, J.-M. Luna, and S. Ventura, "Predicting students' final performance from participation in on-line discussion forums," *Computers & Education*, vol. 68, pp. 458–472, 2013.

- [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0360131513001607
- [5] D. E. Froehlich, "Social Network Analysis in the field of Learning and Instruction: methodological issues and advances," Open Science Framework, preprint, Nov. 2018. [Online]. Available: https://osf.io/ch8bj
- [6] H. Kim and R. Anderson, "Temporal Node Centrality in Complex Networks," *Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics*, vol. 85, p. 026107, 2012.
- [7] M. Elmezain, E. A. Othman, and H. M. Ibrahim, "Temporal degree-degree and closeness-closeness: A new centrality metrics for social network analysis," *Mathematics*, vol. 9, no. 22, p. 2850, Nov 2021. [Online]. Available: http://dx.doi.org/10.3390/math9222850
- [8] Wasko and Faraj, "Why Should I Share? Examining Social Capital and Knowledge Contribution in Electronic Networks of Practice," MIS Quarterly, vol. 29, no. 1, p. 35, 2005. [Online]. Available: https://www.jstor.org/stable/10.2307/25148667

- [9] J. Krause, D. P. Croft, and R. James, "Social network theory in the behavioural sciences: potential applications," *Behavioral Ecology and Sociobiology*, vol. 62, no. 1, pp. 15–27, 2007. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7079911/
- [10] J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia, "Analyzing information flows and key mediators through temporal centrality metrics," in *Proceedings of the 3rd workshop on social network systems*, New York, NY, USA, Apr. 2010.
- [11] A. Barrat, M. Barthelemy, R. Satorras, and A. Vespignani, "The architecture of complex weighted networks," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 101, pp. 3747–3752, 2004.
- [12] A. Abbasi and L. Hossain, "Hybrid centrality measures for binary and weighted networks," in *The 3rd workshop on complex networks*. Germany: Springer: Berlin/Heidelberg, 2013, vol. 424, pp. 1–7.