Differential- und Integralrechnung, Wintersemester 2024-2025

9. Vorlesung

Definition

Seien $\emptyset \neq M \subseteq \mathbb{R}^n$ und $f \colon M \to \mathbb{R}$. Einen Punkt $a \in M$ nennt man eine

- lokale Minimalstelle von f, falls $\exists r > 0$ so, dass $f(x) \ge f(a)$, $\forall x \in M \cap B(a, r)$ ist,
- lokale Maximalstelle von f, falls $\exists r > 0$ so, dass $f(x) \le f(a)$, $\forall x \in M \cap B(a, r)$ ist.

Die lokalen Minimal- und Maximalstellen von f nennt man lokale Extremstellen von f.

Ist a eine lokale Extremstelle von f, so nennt man f(a) einen lokalen Extremwert von f.

Definition

Seien $\emptyset \neq M \subseteq \mathbb{R}^n$ und $f \colon M \to \mathbb{R}$. Einen Punkt $a \in M$ nennt man eine

- globale Minimalstelle von f, falls $f(x) \ge f(a)$, $\forall x \in M$ ist,
- globale Maximalstelle von f, falls $f(x) \le f(a)$, $\forall x \in M$ ist.

Die globalen Minimal- und Maximalstellen von f nennt man globale Extremstellen von f.

Th1 (Fermat)

Seien $M \subseteq \mathbb{R}^n$, $a \in \operatorname{int} M$ und $f : M \to \mathbb{R}$ eine in a partiell differenzierbare Funktion. Ist a eine lokale Extremstelle von f, dann ist $\nabla f(a) = 0_n$, d.h. $\frac{\partial f}{\partial x_i}(a) = 0$, $\forall i \in \{1, \ldots, n\}$.

Definition

Seien $\emptyset \neq M \subseteq \mathbb{R}^n$ offen und $f: M \to \mathbb{R}$. Man nennt einen Punkt $a \in M$ einen stationären (kritischen) Punkt von f, falls f in a partiell differenzierbar und $\nabla f(a) = 0_n$ ist.

Definition: Sei $C=(c_{ij})_{\substack{i=\overline{1,n}\\j=1,n}}$ eine reelle $n\times n$ Matrix. Die Funktion $\Phi_C\colon\mathbb{R}^n\to\mathbb{R}$, definiert durch

$$\Phi_{C}(h) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}h_{i}h_{j}, \ \forall h = (h_{1}, \ldots, h_{n}) \in \mathbb{R}^{n},$$

nennt man die durch C definierte quadratische Form.

Die quadratische Form Φ_C (oder, äquivalent, die Matrix C) nennt man:

- positiv definit, falls $\forall h \in \mathbb{R}^n \setminus \{0_n\} : \Phi_C(h) > 0$ ist;
- positiv semidefinit, falls $\forall h \in \mathbb{R}^n : \Phi_C(h) \geq 0$ ist;
- negativ definit, falls $\forall h \in \mathbb{R}^n \setminus \{0_n\} : \Phi_C(h) < 0$ ist;
- negativ semidefinit, falls $\forall h \in \mathbb{R}^n : \Phi_C(h) \leq 0$ ist;
- indefinit, falls $\exists u, v \in \mathbb{R}^n : \Phi_C(u) < 0 < \Phi_C(v)$ ist.

Definition

Die reelle $n \times n$ Matrix $C = (c_{ij})_{i=\overline{1,n} \atop j=\overline{1,n}}$ nennt man symmetrisch, falls $C = C^T$, d.h. $c_{ij} = c_{ji}$, $\forall i,j \in \{1,\ldots,n\}$ ist.

S2

Die reelle 2×2 Matrix $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ ist

- positiv definit $\iff a > 0$ und $ad b^2 > 0$;
- negativ definit $\iff a < 0$ und $ad b^2 > 0$;
- indefinit \iff $ad b^2 < 0$.

Definition

Sei $C=(c_{ij})_{\stackrel{i=\overline{1,n}}{j=\overline{1,n}}}$ eine reelle n imes n Matrix. Die Determinanten

$$\Delta_s := \left| egin{array}{ccc} c_{11} & \cdots & c_{1s} \ dots & dots & dots \ c_{s1} & \cdots & c_{ss} \end{array}
ight|, \ s \in \{1,\ldots,n\}, ext{ nennt man die}$$

Hauptminoren von C.

Th3 (Sylvester)

Sei $C=(c_{ij})_{\stackrel{i=\overline{1,n}}{j=\overline{1,n}}}$ eine reelle symmetrische $n\times n$ Matrix. Dann gelten:

- C ist positiv definit $\iff \Delta_s > 0$, $\forall s \in \{1, \dots, n\}$.
- C ist negativ definit $\iff (-1)^s \Delta_s > 0, \forall s \in \{1, ..., n\}.$

Th4

Seien $M \subseteq \mathbb{R}^n$ offen, $a \in M$ und $f \in C^2(M)$. Dann gelten:

- 1° Ist a eine lokale Minimalstelle (bzw. eine lokale Maximalstelle) von f, dann ist $\nabla f(a) = 0_n$ und $H_f(a)$ ist positiv semidefinit (bzw. negativ semidefinit).
- 2° Ist $\nabla f(a) = 0_n$ und $H_f(a)$ positiv definit (bzw. negativ definit), dann ist a eine lokale Minimalstelle (bzw. lokale Maximalstelle) von f.
- 3° Ist $\nabla f(a) = 0_n$ und $H_f(a)$ indefinit, dann ist a keine lokale Extremstelle von f.

Algorithmus zur Bestimmung der lokalen Extremstellen einer reellwertigen Funktion von mehreren Variablen

Seien $M \subseteq \mathbb{R}^n$ nichtleer und offen, $f \in C^2(M)$.

- ①Bestimme alle partiellen Ableitungen erster Ordnung von f.
- ② Bestimme alle stationären Punkte von f, d.h. alle Punkte $a \in M$, für die $\frac{\partial f}{\partial x_i}(a) = 0$, $\forall i \in \{1, \dots, n\}$, ist.

Falls f keine stationären Punkte hat, so hat f keine lokalen Extremstellen. STOP

- 3 Bestimme alle partiellen Ableitungen zweiter Ordnung von f und bilde $H_f(x)$ für einen beliebigen Punkt $x \in M$.
- \P Für jeden bei \P erhaltenen stationären Punkt A untersuche man $H_f(A)$. Ist $H_f(A)$
 - positiv definit \implies a ist eine lokale Minimalstelle von f,
 - negativ definit \implies a ist eine lokale Maximalstelle von f,
 - indefinit \implies a ist keine lokale Extremstelle von f.