필요한 모듈 불러오기

In [1]: import pandas as pd import numpy as np import random import matplotlib.pyplot as plt import seaborn as sns
주피터 노트북을 사용하는 경우에는 다음처럼 매직(magic) 명령으로 노트북 내부에 그림을 표시하도록 지경 %matplotlib inline

,	• • •				5	style				
K	tind	색깔			마커	선스타일		기타 스타일		
	O. E.		01-71	마커	의미 point marker	선 스타일 문자열	의미	스타일	약자	의미
문자열	의미	문자열	약자		pixel marker	선 그의를 군사를		color	c	선 색깔
line	line plot (default)	blue	b	0	circle marker	-	실선	linewidth	lw	선 국결
	, ,	green	g	V	triangle_down marker		대시선	linestyle	ls	선 스타일
bar	vertical bar plot		3	^	triangle_up marker		점선	marker		마커 종류
	horizontal	red	r	<	triangle_left marker	:	대시-점선	markersize	ms	마커 크기
<u>barh</u>	bar plot	cyan	С	>	triangle_right marker			markeredge		마커 선 색깔
hist	histogram			1	tri_down marker		color			
		magenta	m	2	tri_up marker			markeredge width	mew	마커 선 굵기
box	boxplot	yellow	у	3	tri_left marker			markerfacec	mfc	마커 내부 색깔
kde	Kernel	·	-	4	tri_right marker			olor	IIII.	-111 12
	Density Estimation	black	k	s	square marker					
	plot	white	W	р	pentagon marker					
	pie plot			*	star marker					
pie	pie piot			h	hexagon1 marker					
scatter	scatter plot			Н	hexagon2 marker					
				+	plus marker					
				х	x marker					
				D	diamond marker					
				d	thin diamond marker					

색상: https://matplotlib.org/examples/color/named_colors.html (https://matplotlib.org/examples/color/named_colors.html)

기타 스타일: https://matplotlib.org/api/ as gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D (https://matplotlib.org/api/ as gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D)

1. line 그리기

- (1) plt.plot(data, 'rs--')
- 색깔(color), 마커(marker), 선 종류(line style)의 순서로 지정한다. 만약 이 중 일부가 생략되면 디폴트값이 적용
- list, series 둘다 가능
- 기본적으로 해당 자료구조의 index가 x축 value가 y축으로 들어가게됨

```
In [13]: # line을 그리는 함수 plt.plot(sr)
# jupyter notebook에서는 셀마다 실행하기 때문에 필요 없지만 다른 interpreter방식에서는 적어줘야
```

Out[13]: [<matplotlib.lines.Line2D at 0x1a21870210>]

실습

```
In [14]: # 이미지 크기 변경
            plt.figure(figsize = (5, 5))
             # plot 그리기
            plt.plot(["Seoul", "Paris", "Seattle"], [10, 35, 20], '-', color = 'orange')
plt.plot(["Seoul", "Paris", "Seattle"], [20, 45, 10], '--', color = 'blue')
plt.plot(["Seoul", "Paris", "Seattle"], [30, 25, 16], ':', color = 'yellow')
             # 🗴축 이름 지정
            plt.xlabel('city')
             # y축 이름 지정
            plt.ylabel('values')
             # 제목 지정
            plt.title('example')
             # 범례 추가
             # upper, center, lower / left, center, right
            plt.legend(['a', 'b', 'c'], loc = 'upper left')
             # 축값 변경
            plt.ylim(0, 60)
             # grid 표시
            plt.grid(True)
```



```
In [8]: # 이미지 크기 변경
           plt.figure(figsize = (7, 7))
           # plot 그리기
          plt.plot(["Seoul", "Paris", "Seattle"], [10, 35, 20], '-', 'r1--')
plt.plot(["Seoul", "Paris", "Seattle"], [20, 45, 10], '--', 'g2-')
plt.plot(["Seoul", "Paris", "Seattle"], [30, 25, 16], ':', 'b3:')
           # x축 이름 지정
           plt.xlabel('city')
           # y축 이름 지정
           plt.ylabel('value')
           # 제목 지정
           plt.title('result')
           # 범례 추가
           # upper, center, lower / left, center, right
           plt.legend(['a', 'b', 'c'], loc = 'upper right')
           # 축값 변경
           plt.ylim(5, 50)
           # grid 班시
           plt.grid(True)
```


(2) data.plot()

axes = data.plot()으로 지정후 시각화 변경


```
In [19]: # x축 이름 지정
axes.set_xlabel('city')

# # y축 이름 지정
axes.set_ylabel('value')

# # 제목 지정
axes.set_title('result')

# 범례 추가
# upper, center, lower / left, center, right
axes.legend('a', loc = 'upper left')

# 축값 변경
axes.set_ylim(0, 17)

# grid 표시
axes.grid(True)
axes.figure
```

Out[19]:

2. bar 그리기

plt.bar(x = 'x축 표시', height = 'y축 표시', width = '너비', color = '색깔')

```
In [23]: # bar 그리기
plt.bar(x = sr2.index, height = sr2.values, width = 0.7, color = 'yellow')

# x축 지정
plt.xlabel('a')

# y축 지정
plt.ylabel('b')

# 제목
plt.title('c')
```

Out[23]: Text(0.5, 1.0, 'c')


```
In [25]: sr2.plot(kind = 'bar', rot = 0)
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1a20fa3b10>

여러개의 그래프를 하나로 그리기

```
# figsize 지정
In [37]:
         fig = plt.figure(figsize = (5, 5))
         # ax1
         ax1 = fig.add_subplot(2, 2, 1)
         # ax2
         ax2 = fig.add subplot(2, 2, 2)
         # ax3
         ax3 = fig.add subplot(2, 2, 3)
         # ax4
         ax4 = fig.add_subplot(2, 2, 4)
         # histogram 그리기
         ax1.hist(random.sample(range(1, 100), 50), bins = 10, color = 'y', alpha = 0.5)
         # bar 그리기
         ax2.bar(x = sr2.index, height = sr2.values)
         # scatter 그리기
         ax3.scatter(random.sample(range(1, 100), 50),
                    random.sample(range(1, 100), 50), color = 'r')
         # ax4 위치에 y=x 그래프를 그려보기
         ax4.plot([x for x in range(10)])
         # hspace: height, wspace: width
         plt.subplots_adjust(hspace = 0.5, wspace = 0.3)
```



```
# style 변경
In [34]:
         # 사용가능한 style 출력
         plt.style.available
Out[34]: ['seaborn-dark',
           'seaborn-darkgrid',
          'seaborn-ticks',
          'fivethirtyeight'
          'seaborn-whitegrid',
          'classic',
           ' classic test',
          'fast',
          'seaborn-talk',
          'seaborn-dark-palette',
          'seaborn-bright',
           'seaborn-pastel',
          'grayscale',
          'seaborn-notebook',
          'ggplot',
          'seaborn-colorblind',
          'seaborn-muted',
          'seaborn',
          'Solarize_Light2',
          'seaborn-paper',
          'bmh',
           'tableau-colorblind10',
          'seaborn-white',
          'dark_background',
          'seaborn-poster',
          'seaborn-deep']
In [35]: # ggplot 사용
         plt.style.use('ggplot')
In [36]: # plotユ려보기
         sr2.plot()
Out[36]: <matplotlib.axes. subplots.AxesSubplot at 0x1a229d4890>
          900
          800
```


1. iris에서 sepal_length(꽃받침의 길이) 1행부터 20행까지의 데이터로 막대그래프 그리 기

단 sepal_length의 길이가 5가 넘으면 파란색 아니면 빨간색

실습

```
In [2]: # 데이터 불러오기
iris = sns.load_dataset('iris')
titanic = sns.load_dataset('titanic')
```

In [3]: iris

Out[3]:

	species	petal_width	petal_length	sepal_width	sepal_length	
_	setosa	0.2	1.4	3.5	5.1	0
	setosa	0.2	1.4	3.0	4.9	1
	setosa	0.2	1.3	3.2	4.7	2
	setosa	0.2	1.5	3.1	4.6	3
	setosa	0.2	1.4	3.6	5.0	4
	virginica	2.3	5.2	3.0	6.7	145
	virginica	1.9	5.0	2.5	6.3	146
	virginica	2.0	5.2	3.0	6.5	147
	virginica	2.3	5.4	3.4	6.2	148
	virginica	1.8	5.1	3.0	5.9	149

150 rows × 5 columns

```
In [6]: import matplotlib
# 한글 깨짐 방지
matplotlib.rcParams['font.family'].insert(0, 'AppleGothic')
```

```
In [7]: matplotlib.rcParams['font.family']
```

Out[7]: ['AppleGothic', 'sans-serif']

```
In [9]: # 의도
          my_color = []
          for i in iris['sepal_length'][:20]:
              if i >= 5:
                  my_color.append('blue')
              else:
                  my color.append('red')
          my_color
Out[9]: ['blue',
           'red',
           'red',
           'red',
           'blue',
           'blue',
           'red',
           'blue',
           'red',
           'red',
           'blue',
           'red',
           'red',
           'red',
           'blue',
           'blue',
           'blue',
           'blue',
           'blue',
           'blue']
In [12]:
          ['blue' if x > 5 else 'red' for x in iris['sepal_length'][:20]]
Out[12]: ['blue',
           'red',
           'red',
           'red',
           'red',
           'blue',
           'red',
           'red',
           'red',
           'red',
           'blue',
           'red',
           'red',
           'red',
           'blue',
           'blue',
           'blue',
           'blue',
           'blue',
           'blue']
```

```
In [8]: iris['sepal_length'][:20].plot(kind = 'bar', rot = 0, color = )
```

Out[8]: <matplotlib.axes. subplots.AxesSubplot at 0x1a1891f490>

2. iris에서 1행부터 5행까지의 데이터를 시각화해보기

```
In [13]: iris[:5].plot(kind = 'bar', rot = 0)
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1a190f6310>

3. species별 평균 막대그래프 시각화

```
In [15]: iris.groupby('species').mean().plot(kind = 'bar', rot = 0)
```

Out[15]: <matplotlib.axes. subplots.AxesSubplot at 0x1a1946fd50>

4. 성별에따른 fare, age 평균 막대그래프 시각화

```
In [18]: titanic.groupby('sex')[['fare', 'age']].mean().plot(kind = 'bar', rot = 0)
Out[18]: <matplotlib.axes. subplots.AxesSubplot at 0x1a196a9f90>
```


5. titanic에서

- fare와 age column에서 NaN값을 지우고
- 나이를 기준으로 오름차순 정렬 이후
- 나이에 따른 요금 선그래프 시각화

```
In [22]: titanic.dropna(subset = ['fare', 'age'], inplace = True)
```

```
In [25]: temp = titanic.sort_values(by = 'age', ascending = True)
temp
```

Out[25]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck
803	1	3	male	0.42	0	1	8.5167	С	Third	child	False	NaN
755	1	2	male	0.67	1	1	14.5000	S	Second	child	False	NaN
644	1	3	female	0.75	2	1	19.2583	С	Third	child	False	NaN
469	1	3	female	0.75	2	1	19.2583	С	Third	child	False	NaN
78	1	2	male	0.83	0	2	29.0000	S	Second	child	False	NaN
116	0	3	male	70.50	0	0	7.7500	Q	Third	man	True	NaN
493	0	1	male	71.00	0	0	49.5042	С	First	man	True	NaN
96	0	1	male	71.00	0	0	34.6542	С	First	man	True	Α
851	0	3	male	74.00	0	0	7.7750	S	Third	man	True	NaN
630	1	1	male	80.00	0	0	30.0000	S	First	man	True	Α

714 rows × 15 columns

```
In [26]: plt.plot(temp.age, temp.fare)
```

Out[26]: [<matplotlib.lines.Line2D at 0x1a19906150>]

선실별 승객 수 비율 pie chart 시각화

```
In [28]: temp = titanic.pclass.value_counts()
temp.plot(kind = 'pie', autopct = '%.2f%%')
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1998c690>

Out[29]:

	서울	경기	중정	경상	선라
2015	1053.5	1023	512	897	451
2016	1023.0	1067	489	872	421
2017	987.0	1123	487	811	399

인구추이

dtype=object)

2. 왕좌의 게임 데이터 분석 및 시각화 실습

1. 데이터 불러오기

```
In [33]: battles = pd.read_csv('data/data-society-game-of-thrones/battles.csv')
death = pd.read_csv('data/data-society-game-of-thrones/character-deaths.csv')
```

2. 책의 챕터(Book of Death)별로 사망자 수 추이 시각화

```
In [35]: death['Book of Death'].value_counts().sort_index().plot()
# plt.xlim(0, 6)
# plt.grid(True)
```

Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1c8b3290>

3. 대규모 전쟁의 공격진영과 수비 진영의 숫자 시각화

대규모 전쟁 = 공격과 수비 모두 합쳐서 10,000명 이상 참가한 전쟁

```
In [41]: # 1. 대규모 전쟁만 선택
big_battles = battles[battles['attacker_size'] + battles['defender_size'] >= 10
big_battles
```

Out[41]:

	name	year	battle_number	attacker_king	defender_king	attacker_1	attacker_2	attacker_3	а
0	Battle of the Golden Tooth	298	1	Joffrey/Tommen Baratheon	Robb Stark	Lannister	NaN	NaN	_
2	Battle of Riverrun	298	3	Joffrey/Tommen Baratheon	Robb Stark	Lannister	NaN	NaN	
3	Battle of the Green Fork	298	4	Robb Stark	Joffrey/Tommen Baratheon	Stark	NaN	NaN	
5	Battle of the Camps	298	6	Robb Stark	Joffrey/Tommen Baratheon	Stark	Tully	NaN	
14	Battle of Oxcross	299	15	Robb Stark	Joffrey/Tommen Baratheon	Stark	Tully	NaN	
15	Siege of Storm's	299	16	Stannis Baratheon	Renly Raratheon	Baratheon	NaN	NaN	

```
In [42]: # 2. 필요한 컬럼만 선택
big_battles = big_battles[['name', 'attacker_size', 'defender_size']]
big_battles
```

Out[42]:

	name	attacker_size	defender_size
0	Battle of the Golden Tooth	15000.0	4000.0
2	Battle of Riverrun	15000.0	10000.0
3	Battle of the Green Fork	18000.0	20000.0
5	Battle of the Camps	6000.0	12625.0
14	Battle of Oxcross	6000.0	10000.0
15	Siege of Storm's End	5000.0	20000.0
16	Battle of the Fords	20000.0	10000.0
19	Battle of the Blackwater	21000.0	7250.0
27	Battle of Castle Black	100000.0	1240.0
37	Siege of Winterfell	5000.0	8000.0

In [43]: big_battles.set_index('name', inplace = True)
big_battles

Out[43]:

attacker_size defender_size

name		
Battle of the Golden Tooth	15000.0	4000.0
Battle of Riverrun	15000.0	10000.0
Battle of the Green Fork	18000.0	20000.0
Battle of the Camps	6000.0	12625.0
Battle of Oxcross	6000.0	10000.0
Siege of Storm's End	5000.0	20000.0
Battle of the Fords	20000.0	10000.0
Battle of the Blackwater	21000.0	7250.0
Battle of Castle Black	100000.0	1240.0
Siege of Winterfell	5000.0	8000.0

```
In [44]: # big_battles 시각화
big_battles.plot(kind = 'bar')
```

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1ca1a9d0>


```
In [45]: big_battles.plot(kind = 'barh')
```

Out[45]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1cb58490>

4. 년도별로 사망자의 숫자와 전쟁이 벌어진 횟수 시각화

In [46]: death

Out[46]:

	Name	Allegiances	Death Year	Book of Death	Death Chapter	Book Intro Chapter	Gender	Nobility	GoT	CoK	SoS	FfC	[
0	Addam Marbrand	Lannister	NaN	NaN	NaN	56.0	1	1	1	1	1	1	
1	Aegon Frey (Jinglebell)	None	299.0	3.0	51.0	49.0	1	1	0	0	1	0	
2	Aegon Targaryen	House Targaryen	NaN	NaN	NaN	5.0	1	1	0	0	0	0	
3	Adrack Humble	House Greyjoy	300.0	5.0	20.0	20.0	1	1	0	0	0	0	
4	Aemon Costayne	Lannister	NaN	NaN	NaN	NaN	1	1	0	0	1	0	
912	Zollo	None	NaN	NaN	NaN	21.0	1	0	0	0	1	0	
913	Yurkhaz zo Yunzak	None	300.0	5.0	59.0	47.0	1	0	0	0	0	0	
914	Yezzan Zo Qaggaz	None	300.0	5.0	57.0	25.0	1	1	0	0	0	0	
915	Torwynd the Tame	Wildling	300.0	5.0	73.0	73.0	1	0	0	0	1	0	
916	Talbert Serry	Tyrell	300.0	4.0	29.0	29.0	1	1	0	0	0	1	

917 rows × 13 columns

```
In [48]: temp = death.groupby('Death Year')['Name'].count()
temp
```

Out[48]: Death Year

297.0 3 298.0 46 299.0 156 300.0 100

Name: Name, dtype: int64

```
In [49]: battles
```

Out[49]:

	name	year	battle_number	attacker_king	defender_king	attacker_1	attacker_2	attacker_3
0	Battle of the Golden Tooth	298	1	Joffrey/Tommen Baratheon	Robb Stark	Lannister	NaN	NaN
1	Battle at the Mummer's Ford	298	2	Joffrey/Tommen Baratheon	Robb Stark	Lannister	NaN	NaN
2	Battle of Riverrun	298	3	Joffrey/Tommen Baratheon	Robb Stark	Lannister	NaN	NaN
3	Battle of the Green Fork	298	4	Robb Stark	Joffrey/Tommen Baratheon	Stark	NaN	NaN
4	Battle of the Whispering Wood	298	5	Robb Stark	Joffrey/Tommen Baratheon	Stark	Tully	NaN
5	Battle of the	298	6	Robb Stark	Joffrey/Tommen	Stark	Tully	NaN

```
In [51]: temp2 = battles.groupby('year')['name'].count()
temp2
```

Out[51]: year

298 7

299 20 300 11

Name: name, dtype: int64

```
In [53]: temp3 = pd.concat([temp, temp2], axis = 1)
temp3
```

Out[53]:

	Name	name
297.0	3	NaN
298.0	46	7.0
299.0	156	20.0
300.0	100	11.0

```
In [54]: temp3.columns = ['Death', 'battles']
temp3.plot()
```

Out[54]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1ccc3750>

