Graph Skills

February

Note, this is graph only material - not networks, so this includes Eulerian, Hamiltonian and planar issues, but not Dijkstra, TSP.

- 1. How many arcs in:
 - (a) K_6
 - (b) C_7
 - (c) $K_{3,4}$
 - (d) K_n
 - (e) C_n
 - (f) $K_{m,n}$
 - (g) a MST on a graph with n vertices.
- 2. Draw example graphs that are:
 - (a) simple and connected
 - (b) simple but not connected
 - (c) connected but not simple
 - (d) neither simple nor connected
- 3. True or False: A minimal spanning tree is a trail.
- 4. State Euler's formula in terms of a planar graph.
- 5. Prove this theorem¹: The sum of all the degrees of the faces/regions of a connected planar graph is equal to twice the number of arcs $(\Sigma degree(f) = 2e)$.
- 6. If G is a planar simple graph, prove that $e \leq 3v 6$
- 7. Show that $K_{2,n}$ is planar, for any value of n.
- 8. State Kuratowksi's Theorem.
- 9. Use Kuratowksi's theorem to prove that all complete graphs for K_n where $n \geq 5$ are non-planar.
- 10. Prove that a graph is Eulerian if and only if it is connected and every vertex has even degree.
- 11. State Ore's Theorem.
- 12. Prove Ore's Theorem.

 $^{^1{\}rm known}$ as The Handshaking Theorem for Planar Graphs