Індивідуальне завдання з курсу "Теорія міри"

Студента 3 курсу групи МП-31 Захарова Дмитра

6 листопада 2023 р.

Варіант 5

Завдання 1

Умова. Нехай $X=\mathbb{Z}$ є основною множиною,

$$B = \{3k + 2 : k \in \mathbb{N}\}, \ \mathcal{H} = 2^X \cap B$$

З'ясувати,

- 1. чи є \mathcal{H} σ -кільцем;
- 2. чи є \mathcal{H} σ -алгеброю.

Відповіді обгрунтувати.

Розв'язок.

Пункт 1. За означенням, оскільки 2^X і B є різними за структурами множинами, перетин ми визначаємо наступним чином:

$$2^X \cap B \triangleq \{A \cap B : A \in 2^X\}$$

Тобто, ми беремо будь-яку множину, що складається з цілих чисел, обираємо серед них ті додатні, що дають остачу 2 за модулем 3 окрім 2,

і складаємо з цього набір \mathcal{H} . Наприклад, множина $\{5,11\}$ або $\{6k+2: k \in \mathbb{Z} \land k > 10\}$ належать до \mathcal{H} . Також, очевидно, пуста множина також входить до \mathcal{H} .

З'ясуємо, чи буде \mathcal{H} σ -кільцем. Якщо так, то мають виконуватись наступні дві умови:

- 1. $\forall \{A_n\}_{n\in\mathbb{N}} \subset \mathcal{H} : \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{H}$
- 2. $\forall A, B \in \mathcal{H} : A \setminus B \in \mathcal{H}$

Розглянемо умову на об'єднання. Якщо об'єднати будь-які дві множини, які складаються з чисел множини B, то всі елементи отриманої множини також будуть належати B, а також будуть множиною з цілих чисел. Якщо ми будемо і далі додавати множини, то все ще будемо отримувати множину з елементів B, де всі числа цілі. Якщо візьмемо нескінченну послідовність множин $\{A_n\}_{n\in\mathbb{N}}$, то можемо таким чином отримати або скінченну множину елементів B, або нескінченну, але оскільки при цьому всі числа будуть залишатися цілими, то отримана множина все одно буде належати 2^X . Отже, проблем не виникає і дійсно маємо замкнення відносно нескінченного об'єднання елементів множини.

Тепер візьмемо операцію віднімання. Якщо від множини, що складається з елементів з B, відняти якісь елементи, що теж є з B, то ми або отримаємо пусту множину, що входить до \mathcal{H} , або знову ж таки будемо мати лише елементи з B. Ця множина також буде складатися з цілих чисел, тому знову отримуємо замкнення відсноно \setminus .

Отже, бачимо, що є замикання по обом операціям, що дає право стверджувати, що \mathcal{H} є σ -кільцем.

Пункт 2. Якщо \mathcal{H} є σ -алгеброю, то окрім умови на σ -кільце ще має виконуватись, що $X \in \mathcal{H}$. Проте, звичайно, множина усіх цілих чисел не входять до \mathcal{H} , оскільки існує безліч елементів, котрі дають остачу не 2 з \mathbb{Z} .

Відповідь. 1. Так. 2. Ні

Завдання 2

Умова. Нехай X є основною множиною, функція $\varphi: 2^X \to [0, +\infty)$ є адитивною на 2^X , $A, B, C \in 2^X$. Виразити значення

$$\varphi((A \cup B) \cap \overline{C})$$

через $\varphi(X)$, $\varphi(A)$, $\varphi(B)$, $\varphi(C)$, $\varphi(A \cap B)$, $\varphi(A \cap C)$, $\varphi(B \cap C)$, $\varphi(A \cap B \cap C)$ (не обов'язково мають бути задіяні всі перелічені значення).

Розв'язок. По перше помічаємо, що

$$(A \cup B) \cap \overline{C} = \underbrace{(A \cap \overline{C})}_{:=L} \cup \underbrace{(B \cap \overline{C})}_{:=R}$$

Отже:

$$\varphi((A \cup B) \cap \overline{C}) = \varphi(L \cup R) = \varphi(L) + \varphi(R) - \varphi(L \cap R)$$

Задача значно спростилась. Тепер нам потрібно знайти $\varphi(L), \varphi(R), \varphi(L \cap R)$.

Помітимо, що
$$\varphi(L) = \varphi(A \cap \overline{C}) = \varphi(A \setminus C), \varphi(R) = \varphi(B \cap \overline{C}) = \varphi(B \setminus C).$$

Скористаємось тим, що для будь-яких $M, N \in X$ виконується $\varphi(M) = \varphi(M \setminus N) + \varphi(M \cap N)$, тому $\varphi(M \setminus N) = \varphi(M) - \varphi(M \cap N)$. Звідки:

$$\varphi(L) = \varphi(A \backslash C) = \varphi(A) - \varphi(A \cap C), \ \varphi(R) = \varphi(B \backslash C) = \varphi(B) - \varphi(B \cap C)$$

Залишилось лише знайти $\varphi(L \cap R)$:

$$\varphi(L \cap R) = \varphi(A \cap \overline{C} \cap B \cap \overline{C}) = \varphi(A \cap B \cap \overline{C}) = \varphi((A \cap B) \setminus C)$$

Звідси остаточно вираз для $\varphi(L \cap R)$:

$$\varphi(L\cap R)=\varphi(A\cap B)-\varphi(A\cap B\cap C)$$

I тому можемо остаточно записати відповідь.

Відповідь.
$$\varphi(A) + \varphi(B) - \varphi(A \cap C) - \varphi(B \cap C) - \varphi(A \cap B) + \varphi(A \cap B \cap C)$$

Завдання 3

Умова. Для послідовності $\{A_n\}_{n\in\mathbb{Z}^+}$, де для $n\in\mathbb{Z}^+$:

$$A_n = \begin{cases} \left(-4 - \frac{1}{1+n^2}, 2 + \frac{1}{1+n^2}\right), & n \text{ парне,} \\ \left[-2 + e^{-n^2}, 1 - e^{-n^2}\right], & n \text{ непарне} \end{cases}$$

- 1. Знайти $A = \overline{\lim}_{n \to \infty} A_n$.
- 2. Довести, що множина $A \setminus \mathbb{Q}$ є борельовою.
- 3. Обчислити міру Лебега множини $A \setminus \mathbb{Q}$, тобто обчислити $\lambda_1(A \setminus \mathbb{Q})$

Розв'язок. Скористаємося тим, що

$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n\in\mathbb{Z}^+} \bigcup_{k=n}^{\infty} A_k$$

Тому спочатку знайдемо $W_n := \bigcup_{k=n}^{\infty} A_k$. Нехай для конкретності $n = 2m, m \in \mathbb{Z}^+$. Тоді

$$W_{2m} = \bigcup_{k=m}^{\infty} A_{2k} \cup \bigcup_{k=m}^{\infty} A_{2k+1}$$

Розглянемо кожен з доданків. Почнемо з $\bigcup_{k=m}^{\infty} A_{2k}$:

$$\bigcup_{k=m}^{\infty} A_{2k} = \bigcup_{k=m}^{\infty} \left(-4 - \frac{1}{1+4k^2}, 2 + \frac{1}{1+4k^2} \right)$$

Маємо послідовність відрізків виду $\mathcal{I}_k := (-4 - x_k, 2 + x_k)$ де послідовність $x_k = \frac{1}{1+4k^2}$ завжди додатня та монотонно спадаюча. Таким чином, з кожним новим членом, ліва межа збільшується від $-4 - x_m$ до -4 асимптотично, а права межа зменшується від $2 + x_m$ до 2 теж асимптотично. При цьому ліва межа завжди залишається лівішою за праву. Тобто, $\{\mathcal{I}_k\}_{k=m}^{\infty}$ є спадною, оскільки $\mathcal{I}_{k+1} \subset \mathcal{I}_k \ \forall k \in \mathbb{Z}^+$. Якщо взяти об'єднання, то тоді просто отримаємо \mathcal{I}_m , тобто $\bigcup_{k=m}^{\infty} A_{2k} = \left(-4 - \frac{1}{1+4m^2}, 2 + \frac{1}{1+4m^2}\right)$.

Далі, розглядаємо $\bigcup_{k=m}^{\infty} A_{2k+1}$:

$$\bigcup_{k=m}^{\infty} A_{2k+1} = \bigcup_{k=m}^{\infty} \left[-2 + e^{-(2k+1)^2}, 1 - e^{-(2k+1)^2} \right]$$

Маємо послідовність виду $\mathcal{I}_k = [-2 + y_k, 1 - y_k]$, де $y_k = e^{-(2k+1)^2}$ є додатньою і монотонно спадною послідовністю. Ліва межа зменшується від $-2 + y_m$ до -2 асимптотично. Права межа буде збільшуватись від $1 - y_m$ до 1 асимптотично. Таким чином, маємо монотонно зростаючу послідовність $\{\mathcal{I}_k\}_{k=m}^{\infty}$, що означає, що об'єднання буде дорівнювати $\mathcal{I}_{\infty} = (-2, 1)$.

Тому остаточно маємо:

$$W_{2m} = \left(-4 - \frac{1}{1 + 4m^2}, 2 + \frac{1}{1 + 4m^2}\right) \cup (-2, 1)$$

Оскільки $(-2,1) \subset \left(-4 - \frac{1}{1+4m^2}, 2 + \frac{1}{1+4m^2}\right)$, то $W_{2m} = \left(-4 - \frac{1}{1+4m^2}, 2 + \frac{1}{1+4m^2}\right)$.

Тепер розглядаємо випадок n = 2m + 1. В такому випадку:

$$W_{2m+1} = \bigcup_{k=m}^{\infty} A_{2k+1} \cup \bigcup_{k=m}^{\infty} A_{2k+2}$$

Перший доданок просто дорівнює (-2,1), а другий $\left(-4-\frac{1}{1+4(m+1)^2},2+\frac{1}{1+4(m+1)^2}\right)$. Отже, $W_{2m+1}=\left(-4-\frac{1}{1+4(m+1)^2},2+\frac{1}{1+4(m+1)^2}\right)$.

Далі, залишається знайти $\bigcap_{n\in\mathbb{Z}^+}W_n$. Отже:

$$\bigcap_{n\in\mathbb{Z}^+} W_n = \bigcap_{n\in\mathbb{Z}^+} W_{2n} \cap \bigcap_{n\in\mathbb{Z}^+} W_{2n+1}$$

Насправді, як лівий, так і правий перетин мають однакове значення. Дійсно, маємо послідовності виду $(-4-z_k,2+z_k)$ де z_k монотонно спадаючі до 0 від 1 для випадку W_{2n} і від $\frac{1}{5}$ для випадку W_{2n+1} . Тоді, ліва межа при цьому збільшується, а права зменшується, тобто наші відрізки звужуються до [-4,2]. Отже, $\overline{\lim_{n\to\infty}} A_n = [-4,2]$.

Пункт 2. Треба довести, що $[-4,2] \setminus \mathbb{Q} \in \mathcal{B}(\mathbb{R})$. Дійсно, $[-4,2] \in \mathcal{B}(\mathbb{R})$, оскільки [-4,2] є замкненою множиною. Множина \mathbb{Q} є зліченною множиною, тому теж є борельовою. Отже, $[-4,2], \mathbb{Q} \in \mathcal{B}(\mathbb{R})$. Оскільки $\mathcal{B}(\mathbb{R})$ є замкненою відносно операції віднімання, бо є σ -алгеброю, то і різниця $[-4,2] \setminus \mathbb{Q} \in \mathcal{B}(\mathbb{R})$.

Пункт 3. Помітимо, що

$$\lambda_1([-4,2] \setminus \mathbb{Q}) = \lambda_1([-4,2]) - \lambda_1([-4,2] \cap \mathbb{Q})$$

Множина $\mathbb{Q} \cap [-4,2]$ є множиною раціональних чисел на відрізку [-4,2]. Оскільки \mathbb{Q} є зліченною множиною, то і $\mathbb{Q} \cap [-4,2]$ теж. Оскільки міра Лебега зліченних та скінченних множин дорівнює 0, то $\lambda_1([-4,2] \cap \mathbb{Q}) = 0$. В такому разі:

$$\lambda_1([-4,2] \setminus \mathbb{Q}) = \lambda_1([-4,2]) = 2 - (-4) = 6$$

Відповідь. 1. A=[-4,2]. 2. Див. розв'язок. 3. $\lambda_1(A)=6$.