Notas de Física Geral 2

Max Jáuregui

25 de Setembro de 2018

Conteúdo

- 1 Equilíbrio de um corpo rígido
- 2 Gravitação newtoniana
- 3 Movimento periódico

1 Equilíbrio de um corpo rígido

Considere uma partícula de massa m na posição \vec{r} sobre a qual atua uma força \vec{F} . O **torque** da força \vec{F} é definido por $\vec{\tau} = \vec{r} \times \vec{F}$, onde × denota o **produto vetorial** de dois vetores, o qual é definido por

$$\begin{split} \vec{A} \times \vec{B} &= \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{array} \right| \\ &= (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j} \\ &+ (A_x B_y - A_y B_x) \hat{k} \; . \end{split}$$

A unidade do torque no sistema internacional (SI) é $N\cdot \textbf{m}.$

Exercício 1.1. Verifique que, para uma partícula de $10 \, \text{kg}$ na posição $\vec{r} = \cos 30^{\circ} \hat{i} + \sin 30^{\circ} \hat{j}$ (em metros), o torque do peso é igual a $-49\sqrt{3}\hat{k}$ (em N·m).

Usaremos a notação \vec{a} para representar a derivada de \vec{a} em relação ao tempo, ou seja, $\vec{a} = \frac{d\vec{a}}{dt}$.

Exercício 1.2. Considere uma partícula de massa m na posição \vec{r} sobre a qual atua uma força \vec{F} . Definindo o **momento angular** de uma partícula por $\vec{L} = \vec{r} \times \vec{p}$, onde \vec{p} é o momento linear da partícula, mostre que $\vec{\tau} = \vec{L}$. Isso quer dizer que o torque da força \vec{F} é igual à taxa de variação do momento angular da partícula (note a semelhança com a segunda lei de Newton). A unidade de momento angular no SI é kg · m²/s.

Dica: Na expressão do torque substitua \vec{F} por \vec{p} , em virtude da segunda lei de Newton $(\vec{F} = \dot{\vec{p}})$. Logo, utilize a identidade $\frac{d}{dt}(\vec{r} \times \vec{p}) = \dot{\vec{r}} \times \vec{p} + \vec{r} \times \dot{\vec{p}}$ e use o fato de que $\dot{\vec{r}} \times \vec{p} = 0$, pois o vetor velocidade $\dot{\vec{r}}$ é paralelo a \vec{p} .

Exercício 1.3. Considere duas partículas de massas m_1 e m_2 sobre as quais atuam forças externas \vec{F}_1 e \vec{F}_2 respectivamente. Além das forças externas, há forças internas \vec{F}_{12} (sobre a partícula 1) e \vec{F}_{21} (sobre a partícula 2) devido a interação das partículas (por exemplo, interação gravitacional ou elétrica), as quais são paralelas ao vetor $\vec{r}_1 - \vec{r}_2$. Mostre que

$$\vec{F}_1 + \vec{F}_2 = \dot{\vec{p}}_1 + \dot{\vec{p}}_2
\vec{\tau}_1 + \vec{\tau}_2 = \dot{\vec{L}}_1 + \dot{\vec{L}}_2.$$
(1)

Dica: Segue da segunda lei de Newton que

$$\vec{F}_1 + \vec{F}_{12} = \dot{\vec{p}}_1
\vec{F}_2 + \vec{F}_{21} = \dot{\vec{p}}_2.$$
(2)

Somando essas equações e usando a terceira lei de Newton ($\vec{F}_{12} = -\vec{F}_{21}$), obtém-se a primeira equação em (1). Para se obter a segunda equação em (1), multiplicam-se vetorialmente à esquerda as equações (2) pelos vetores posição \vec{r}_1 e \vec{r}_2 respectivamente. Logo, somam-se as equações obtidas e usa-se o fato de que $(\vec{r}_1 - \vec{r}_2) \times \vec{F}_{12} = \vec{0}$.

O exemplo anterior pode ser generalizado sem realizar nenhuma alteração fundamental para o caso de um sistema de *n* partículas. Nesse caso vamos ter que

$$\vec{F}_{\text{ext}} = \dot{\vec{p}} \vec{\tau}_{\text{ext}} = \dot{\vec{L}},$$
 (3)

onde $\vec{F}_{\text{ext}} = \vec{F}_1 + \dots + \vec{F}_n$ é a força externa total sobre o sistema, $\vec{p} = \vec{p}_1 + \dots + \vec{p}_n$ é o momento linear total do sistema, $\vec{\tau}_{\text{ext}} = \vec{\tau}_1 + \dots + \vec{\tau}_n$ é o torque externo total sobre o sistema e $\vec{L} = \vec{L}_1 + \dots + \vec{L}_n$ é o momento angular total do sistema.

Um **corpo rígido** é um corpo não pontual que não se deforma. O fato de um corpo rígido não se deformar equivale a dizer que a distância entre dois pontos quaisquer do corpo é uma constante.

Para estudar a dinâmica de um corpo rígido, podemos dividir ele em n partes pequenas e assim considerar o corpo rígido como um sistema de n corpos. Se a massa

da i-ésima parte é Δm_i , sua posição é \vec{r}_i e sua velocidade é \vec{v}_i , o momentum total do sistema é

$$\vec{p} = \sum_{i=1}^{n} \vec{v}_i \Delta m_i$$

e o momento angular total do sistema é

$$\vec{L} = \sum_{i=1}^{n} (\vec{r}_i \times \vec{v}_i) \Delta m_i.$$

Considerando que o número de partes *n* tende ao infinito e simultaneamente a massa de cada parte tende a zero, as somas anteriores tornam-se integrais. Dessa maneira, encontramos que o **momento linear do corpo rígido** é dado por

$$\vec{p} = \int \vec{v} \, dm \tag{4}$$

e o momento angular do corpo rígido por

$$\vec{L} = \int (\vec{r} \times \vec{v}) \, dm \,, \tag{5}$$

onde as integrais são sobre toda a massa do corpo rígido.

As Eqs. (3) continuam valendo da mesma forma para um corpo rígido, levando em conta que \vec{p} e \vec{L} são dadas pelas Eqs. (4) e (5).

O movimento de um corpo rígido pode ser estudado analisando separadamente os movimentos de translação e de rotação em torno de um eixo que passa pelo corpo.

Exercício 1.4. Considere um corpo rígido de massa M que realiza um movimento de translação pura com velocidade \vec{v} . Mostre que nesse caso

$$\vec{p} = M\vec{v} \quad e \quad \vec{L} = \vec{R} \times \vec{p} \,, \tag{6}$$

onde

$$\vec{R} = \frac{1}{M} \int \vec{r} \, dm$$

é a posição do centro de massa do corpo.

Dica: Quando um corpo rígido realiza um movimento de translação pura, todos os pontos do corpo possuem a mesma velocidade. Dessa forma, a velocidade \vec{v} pode sair das integrais nas Eqs. (4) e (5).

O exercício anterior nos diz que um corpo rígido que realiza um movimento de translação pura se comporta como uma partícula de massa *M* localizada no centro de massa do corpo. Em outras palavras, as dimensões do corpo rígido não são relevantes no movimento de translação.

Diferentemente do caso do movimento de translação, quando um corpo rígido realiza um movimento de rotação ao redor de um eixo que passa por ele, os pontos do corpo que estão mais próximos do eixo de rotação tem velocidade menor do que os pontos mais afastados. Logo, nesse caso a velocidade \vec{v} não pode sair da integral nas Eqs. (4) e (5).

Para simplificar nosso estudo do movimento de rotação de um corpo rígido, vamos considerar um corpo homogêneo (massa distribuída uniformemente) e simétrico. Além disso, vamos analisar o caso em que o corpo gira em torno de um dos seus eixos de simetria com velocidade angular $\vec{\omega}$.

Antes de continuar, lembramos que, para uma partícula que realiza um movimento circular com velocidade angular $\vec{\omega}$, vale a relação vetorial $\vec{v} = \vec{\omega} \times \vec{r}$, onde \vec{v} é a velocidade da partícula e \vec{r} é sua posição em relação a um sistema de referência fixo ao eixo de rotação.

Continuando nossa análise da rotação de um corpo rígido, vemos que o momento angular do corpo é dado por

$$\vec{L} = \int [\vec{r} \times (\vec{\omega} \times \vec{r})] dm,$$

onde a posição \vec{r} é em relação a um sistema de referência fixo ao eixo de rotação. Usando a identidade vetorial

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

temos que

$$\vec{L} = \int [(\vec{r} \cdot \vec{r})\vec{\omega} - (\vec{r} \cdot \vec{\omega})\vec{r}] dm.$$
 (7)

Se θ é o ângulo entre os vetores $\vec{\omega}$ e \vec{r} , então $\vec{r} \cdot \omega = r\omega \cos \theta$ e, por conseguinte,

$$\vec{L} = \int [r^2 \vec{\omega} - (r\omega \cos \theta) \vec{r}] dm.$$

Devido a que o corpo gira em torno de um eixo de simetria, podemos inferir que o vetor \vec{L} deve ter a mesma direção que o vetor $\vec{\omega}$. Isso quer dizer que as direções perpendiculares a $\vec{\omega}$ devem se anular após fazer a integral na Eq. (7). Logo, vamos ter

$$\begin{split} \vec{L} &= \int \left(r^2 \vec{\omega} - (r\omega \cos \theta) (r\cos \theta) \frac{\vec{\omega}}{\omega} \right) dm \\ &= \int (r^2 - r^2 \cos^2 \theta) \vec{\omega} dm \\ &= \int (r^2 \sin^2 \theta) \vec{\omega} dm \,. \end{split}$$

Como todo ponto do corpo rígido gira com a mesma velocidade angular, obtemos que

$$\vec{L} = I\vec{\omega} \,, \tag{8}$$

onde

$$I = \int (r \sin \theta)^2 dm \tag{9}$$

é o chamado **momento de inércia** do corpo. Cabe ressaltar que para cada ponto do corpo, $r \operatorname{sen} \theta$ é a distância do ponto ao eixo de rotação.

A Eq. (8) nos diz que o momento angular é um indicador da rotação de um corpo rígido.

Um corpo rígido está em **equilíbrio estático** quando não realiza movimento de translação nem de rotação.

Se um corpo rígido está em equilíbrio estático, todo ponto do corpo tem velocidade nula. Logo, segue das Eqs. (4) e (5) que nesse caso vamos ter

$$\vec{p} = \vec{0}$$
 e $\vec{L} = \vec{0}$,

onde, na segunda condição, \vec{L} pode ser calculado em relação a qualquer ponto. Substituindo isso nas Eqs. (3), obtemos as chamadas condições de equilíbrio para o corpo rígido:

$$\vec{F}_{\text{ext}} = \vec{0} \quad \text{e} \quad \vec{\tau}_{\text{ext}} = \vec{0} \,, \tag{10}$$

onde, na segunda condição, $\vec{\tau}_{\rm ext}$ pode ser calculado em relação a qualquer ponto.

O fato de um corpo rígido satisfazer uma das condições dadas na Eq. (10) não implica que a outra será também satisfeita. Por exemplo, se temos uma barra sobre uma mesa e aplicamos forças de direções opostas sobre os extremos da barra e perpendiculares a ela, a primeira condição em (10) é satisfeita, mas a segunda não.

Exercício 1.5. Considere um corpo rígido de massa M. Se a aceleração da gravidade \vec{g} é constante, mostre que o torque do peso do corpo é dado por $\vec{\tau}_P = \vec{R} \times (M\vec{g})$, onde \vec{R} é a posição do centro de massa do corpo. Em outras palavras, o torque do peso do corpo rígido pode ser calculado considerando o corpo como uma partícula de massa M localizada no centro de massa do corpo.

Dica: O torque do peso de um corpo rígido é igual à soma de todos os torques dos pesos das partes do corpo. Quando o número de partes tende a infinito e a massa de cada parte tende a zero, essa soma torna-se uma integral. Dessa forma, $\vec{\tau}_P = \int (\vec{r} \times \vec{g}) dm$.

Define-se o **centro de gravidade** de um corpo rígido de massa M como o ponto no qual uma partícula de massa M teria um torque do peso igual ao torque do peso do corpo rígido. O exercício anterior mostra que, se \vec{g} é constante (por exemplo, na superfície da Terra), o centro de gravidade de um corpo rígido coincide com seu centro de massa. Para nossos fins, centro de gravidade e centro de massa serão equivalentes.

Se um corpo rígido é homogêneo e tem um eixo de simetria, o centro de massa do corpo estará localizado em algum ponto desse eixo.

Se um corpo rígido é pendurado a partir de um ponto arbitrário e está em equilíbrio, o centro de massa do corpo deve estar localizado em algum ponto da linha vertical que passa pelo ponto de suspensão. Com efeito, como nesse caso o torque do peso deve ser nulo, segue do exercício 1.5 que \vec{R} e \vec{g} devem ser vetores paralelos, ou seja, \vec{R} deve ser um vetor vertical.

Se consideramos uma pessoa como um corpo rígido, quando a pessoa se equilibra em um pé só, o centro de massa dela deve estar na linha vertical que passa pelo pé de suporte. Para isso é necessário realizar um deslocamento do centro de massa, o qual pode não ser possível se a pessoa está junto a uma parede.

Exercício 1.6. Considere um corpo rígido em um plano inclinado de superfície rugosa, como ilustrado na figura 1A. Dê argumentos que indiquem que o corpo pode de fato estar em equilíbrio (não vai tombar).

Dica: Desenhe as forças que atuam sobre o corpo. As forças normais e de atrito podem assumir valores de tal forma que a força resultante sobre o corpo seja nula. Para calcular os torques das forças escolha o ponto de apoio mais baixo, pois, em relação a esse ponto, os torques das forças de atrito e da normal que atua nesse ponto são nulos. Logo, mostre que o torque externo total pode ser escrito como $\vec{\tau}_{\text{ext}} = \vec{\tau}_P + \vec{\tau}_N$, onde $\vec{\tau}_P$ e $\vec{\tau}_N$ têm direções opostas.

Figura 1: Estudo do tombo de um corpo rígido.

Exercício 1.7. Considere um corpo rígido em um plano inclinado de superfície rugosa, como ilustrado na figura 1B. Dê argumentos que indiquem que o corpo não pode estar em equilíbrio (vai tombar).

Dica: Proceda da mesma forma que no exercício anterior. Mostre que o torque externo total pode ser escrito como $\vec{\tau}_{\text{ext}} = \vec{\tau}_P + \vec{\tau}_N$, onde $\vec{\tau}_P$ e $\vec{\tau}_N$ têm a mesma direção.

Suponhamos que queremos calcular o torque de uma força \vec{F} aplicada sobre um ponto de um corpo rígido que se encontra na posição \vec{r} em relação a um ponto arbitrário O. Por definição esse torque estará dado por $\vec{\tau} = \vec{r} \times \vec{F}$. Porém, às vezes o módulo de \vec{r} ou sua direção podem ser difíceis de se conhecer. Para dar conta desse problema, observamos que se \vec{r}' é um vetor qualquer paralelo a \vec{F} , então $\vec{r}' \times \vec{F} = 0$ e, por conseguinte, $\vec{\tau} = (\vec{r} + \vec{r}') \times \vec{F}$. Dessa maneira, escolhendo o vetor \vec{r}' de forma conveniente podemos calcular $\vec{\tau}$ de forma mais simples. Em

particular, se $\vec{r} + \vec{r}'$ é um vetor perpendicular a \vec{F} , então $\tau = |\vec{r} + \vec{r}'|F$.

Na maioria dos exercícios lidaremos com problemas onde as posições e as forças se encontram em um plano; específicamente, o plano do papel. Dessa forma, os torques das forças sempre serão vetores perpendiculares ao papel. Devido a isso, podemos adotar a seguinte convenção: se o vetor torque aponta para fora do papel, consideraremos ele como positivo; caso contrário, consideraremos ele como negativo. Uma regra prática para determinar o sinal do torque de uma força é a seguinte: se a força tende a fazer girar o corpo em sentido antihorário em relação ao ponto de referência, o torque será positivo; caso contrário, será negativo.

Exercício 1.8. Uma barra homogênea de 12 kg está em equilíbrio estático. Um extremo dela está apoiada em uma parede rugosa e o outro está amarrado a uma corda como ilustrado na figura 2. (i) Encontre o valor da tensão na corda. (ii) Encontre o valor da força de atrito sobre a barra devido à parede.

Figura 2: Barra homogênea em equilíbrio estático.

Exercício 1.9. Uma escada homogênea de 8 m de comprimento e 5 kg de massa é apoiada em uma parede vertical lisa fazendo um ângulo de 60° com o chão. Se uma pessoa de 70 kg está sobre a escada e ela se encontra em equilíbrio estático, determine o valor da força de atrito sobre a base da escada quando a pessoa andou na escada (i) 4 m e (ii) 6 m.

Dica: Usando a primeira condição de (10), obtenha que o valor da força de atrito é igual à força normal devido à parede. Use a segunda condição de (10) para encontrar o valor dessa força normal, tomando como ponto de referência para o cálculo de torques o ponto mais baixo da escada.

Exercício 1.10. Uma roda homogênea de massa *M* e raio *R* se encontra atascada devido a um desnível do chão.

Qual deve ser o valor mínimo de uma força \vec{F} horizontal aplicada no centro de massa da roda para que a ela comece a se mover? Esse valor mínimo é menor se a força é aplicada no ponto mais alto da roda?

Dica: Se a bola está prestes a se mover, a força normal devido ao chão é nula. Use a condição de equilíbrio $\vec{\tau}_{\rm ext} = 0$ considerando o ponto mais alto do desnível como ponto de referência para o cálculo de torques.

Figura 3: Roda atascada devido a um desnível do chão.

Exercício 1.11. Quando temos um bloco homogêneo na borda de uma mesa e queremos que ele esteja em equilíbrio estático, o centro de massa do bloco deve se encontrar dentro da mesa. Considere agora dois blocos homogêneos de comprimento l. (i) Determine as condições para que ao se colocar um bloco sobre o outro na borda de mesa eles estejam em equilíbrio estático. (ii) Determine a distância máxima entre o extremo da mesa ao extremo do bloco superior.

Dica: Se x_1 e x_2 são as posições horizontais dos centros de massa dos blocos em relação ao bordo da mesa (origem), deve-se ter $x_1 \le 0$, $x_2 \le l + x_1$ e $x_1 + x_2 \le 0$. Para maximizar a distância entre o extremo da mesa e o extremo do bloco 2, nas condições anteriores devemos considerar $x_2 = l + x_1$ e $x_1 + x_2 = 0$.

Exercício 1.12. No espíritu do exercício anterior, considere agora três blocos homogêneos de comprimento l e determine a distância máxima entre o extremo da mesa ao extremo do bloco superior. Generalizando seu resultado, infira que ao empilhar n blocos, a distância máxima entre o extremo da mesa e o extremo do bloco superior é dada por

$$d = \frac{l}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right).$$

Mostre que usando 4 blocos vamos ter d > l.

Dica: Primeiramente considere os dois blocos de cima como um bloco só e encontre as posições dos centros de massa desse bloco grande e do bloco de baixo. Logo, use o resultado do exercício anterior para colocar os dois

blocos de cima de tal forma que d tenha o maior valor possível.

2 Gravitação newtoniana

Estudando o movimento da Lua e dos planetas, Newton concluiu que existe uma força atrativa entre dois corpos quaisquer, chamada de **força gravitacional**. Mais precisamente, ele encontrou a seguinte expressão para o valor da força gravitacional entre duas partículas de massas m_1 e m_2 separadas por uma distância r:

$$F_g = \frac{Gm_1m_2}{r^2} \,,$$

onde G é uma constante chamada de **constante gravitacional**. Sobre cada partícula atua uma força de módulo F_g que aponta na direção da outra partícula, ou seja, as partículas se atraem. Dessa maneira, se as partículas estão nas posições \vec{r}_1 e \vec{r}_2 , a força gravitacional sobre a partícula 1 devido à particula 2 é dada vetorialmente por

$$\vec{F}_{12} = \frac{Gm_1m_2}{|\vec{r}_1 - \vec{r}_2|^3}(\vec{r}_2 - \vec{r}_1)$$

e a força sobre a partícula 2 devido à partícula 1 é

$$\vec{F}_{21} = \frac{Gm_1m_2}{|\vec{r}_1 - \vec{r}_2|^3} (\vec{r}_1 - \vec{r}_2) \; .$$

O valor da constante gravitacional G pode ser encontrado experimentalmente. Quase 100 anos depois de Newton publicar sua lei da gravitação (junto com as três leis de Newton), Cavendish conseguiu medir o valor de G usando uma balança de torsão (ver livro). O valor que ele encontrou estava próximo do valor atualmente aceito, que é $G = 6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}$.

Como toda a força, as forças gravitacionais obedecem o princípio de superposição. Por exemplo, se temos três partículas, sobre cada partícula atuarão duas forças gravitacionais devido às duas partículas restantes. Logo, se as partículas tem massas m_1 , m_2 e m_3 , a força gravitacional resultante sobre a partícula $1 \, \mathrm{sera}$

$$\begin{split} \vec{F}_1 &= \vec{F}_{12} + \vec{F}_{13} \\ &= \frac{Gm_1m_2}{|\vec{r}_1 - \vec{r}_2|^3} (\vec{r}_2 - \vec{r}_1) + \frac{Gm_1m_3}{|\vec{r}_1 - \vec{r}_3|^3} (\vec{r}_3 - \vec{r}_1) \,. \end{split}$$

Consideremos uma partícula de massa m na posição $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ sobre a qual atua uma força gravitacional devido a uma partícula de massa M que se encontra na origem do nosso sistema de coordenadas. Essa força gravitacional está dada por

$$\vec{F}_g = -\frac{GMm}{r^3}\vec{r} \,.$$

Essa força é conservativa pois ela pode ser derivada a partir de uma energia potencial. De fato, se definimos a **energia potencial gravitacional** da partícula de massa *m* por

$$V_g = -\frac{GMm}{r},\tag{11}$$

vemos que

$$\frac{\partial V_g}{\partial x} = \frac{\partial}{\partial x} \left(-\frac{GMm}{\sqrt{x^2 + y^2 + z^2}} \right)$$
$$= -\frac{GMmx}{(x^2 + y^2 + z^2)^{3/2}}$$
$$= -\frac{GMmx}{x^3}.$$

Analogamente vamos ter que

$$\frac{\partial V_g}{\partial y} = -\frac{GMmy}{r^3}$$
 e $\frac{\partial V_g}{\partial z_1} = -\frac{GMmz}{r^3}$.

Portanto, notamos que

$$-\left(\frac{\partial V_g}{\partial x}\hat{i}+\frac{\partial V_g}{\partial y}\hat{j}+\frac{\partial V_g}{\partial z}\hat{k}\right)=\vec{F}_g\,.$$

O vetor que está entre parêntesis no lado esquerdo dessa equação é chamado de **gradiente** de V_g e é usualmente denotado em cálculo por ∇V_g . Assim, temos que

$$\vec{F}_g = -\nabla V_g \,. \tag{12}$$

A Eq. (12) nos diz que, sabendo a energia potencial de uma partícula de massa m devido a uma outra partícula, podemos encontrar o módulo e a direção da força gravitacional aplicada sobre ela. Se temos três partículas de massas m_1 , m_2 e m_3 nas posições \vec{r}_1 , \vec{r}_2 e \vec{r}_3 , sabemos que as forças gravitacionais sobre a partícula 1 devido às outras partículas se somam. Logo, podemos inferir que a energia potencial gravitacional da partícula 1 nesse caso vai ser dada por

$$V_g = -\frac{Gm_1m_2}{|\vec{r}_1 - \vec{r}_2|} - \frac{Gm_1m_3}{|\vec{r}_1 - \vec{r}_3|} \,.$$

Podemos generalizar esse fato para um número arbitrário de partículas. Além disso, podemos inferir que a energia potencial gravitacional de uma partícula de massa m na posição \vec{r} devido a um corpo rígido é dado por

$$V_g = \int -\frac{Gm}{|\vec{r} - \vec{r}'|} \, dM \,,$$

onde a integral é sobre todos os pontos do corpo rígido, cujas posições são dadas pelo vetor \vec{r}' .

Exercício 2.1. Considere uma partícula de massa m e um arame circular homogêneo de massa M e raio R como ilustrado na figura 4). Mostre que a energia potencial gravitacional da partícula é dada por

$$V_g = -\frac{GMm}{\sqrt{R^2 + z^2}} \,.$$

Dica: Como o arame é homogêneo, podemos definir a densidade de massa $\lambda = M/2\pi R$. Um pedaço do arame de tamanho Δs tem massa $\Delta M = \lambda \Delta s$. Por geometria sabe-se que $\Delta s = R\Delta \phi$. Logo, $\Delta M = \lambda R\Delta \phi$. Por outro lado, a distância entre um pedaço do arame e a partícula é $\sqrt{R^2 + z^2}$. Usando esses fatos conclua que a energia potencial gravitacional da partícula é dada por

$$V_g = -\int_0^{2\pi} \frac{Gm}{\sqrt{R^2 + z^2}} \lambda R \, d\phi \,.$$

Figura 4: Partícula de massa *m* sobre um arame circular homogêneo de massa *M*.

Exercício 2.2. Considere uma partícula de massa m e uma casca esférica homogênea de massa M e raio R como ilustrado na figura 5). Mostre que a energia potencial gravitacional da partícula é dada por

$$V_g = \begin{cases} -\frac{GMm}{z} & \text{se } z \ge R \\ -\frac{GMm}{R} & \text{se } z < R. \end{cases}$$

Dica: Defina a densidade de massa $\sigma = M/4\pi R^2$. Considere uma fita circular de raio $R \operatorname{sen} \theta$ e largura $R\Delta\theta$, onde θ é o ângulo que eixo vertical e o raio da casca fazem quando ele aponta para um ponto da fita. A massa dessa fita é $\Delta M = \sigma (2\pi R \operatorname{sen} \theta) R\Delta\theta$. A distância entre

o centro da fita e a partícula é $z - R \cos \theta$. Usando o resultado do exercício anterior, mostre que a energia potencial gravitacional da partícula é dada por

$$V_g = -\int_0^{\pi} \frac{2\pi Gm\sigma R^2 \sin \theta}{\sqrt{R^2 + z^2 - 2Rz\cos \theta}} d\theta.$$

Use a mudança de variável $u = R^2 + z^2 - 2Rz\cos\theta$ na integral para chegar na expressão

$$V_g = -\frac{\pi G m \sigma R}{z} \int_{R^2 + z^2 - 2Rz}^{R^2 + z^2 + 2Rz} \frac{du}{\sqrt{u}}.$$

Figura 5: Partícula de massa *m* sobre uma casca esférica homogênea de massa *M*.

Exercício 2.3. Considere agora que a figura 5 se refere a uma esfera sólida de massa M e raio R. Mostre que a energia potencial gravitacional da partícula é dada por

$$V_g = \begin{cases} -\frac{GMm}{z} & \text{se } z \ge R \\ 2\pi Gm\sigma(\frac{z^2}{3} - R^2) & \text{se } z < R. \end{cases}$$

Dica: Defina a densidade de massa $\rho = \frac{M}{(4/3)\pi R^3}$. Considere uma casca esférica de raio r e espessura Δr . A massa dessa casca é $\Delta M = \rho (4\pi r^2) \Delta r$. Usando o resultado do exercício anterior, mostre que, se $z \ge R$,

$$V_g = -\int_0^R \frac{4\pi G m \sigma r^2}{z} \, dr;$$

se z < R,

$$V_g = -\int_0^z \frac{4\pi Gm\sigma r^2}{z} dr - \int_z^R \frac{4\pi Gm\sigma r^2}{r} dr.$$

Exercício 2.4. Determine o módulo e a direção da força gravitacional sobre uma partícula de massa m na situação dada no exercício 2.2 quando $z \ge R$ e quando z < R. Repita o mesmo para o caso do exercício 2.3. Mostre que seus resultados podem ser escritos de forma unificada como

$$\vec{F}_g = -\frac{GM_{\rm env}m}{\tau^2}\hat{k} \,,$$

onde $M_{\rm env}$ é a massa do corpo esférico que está envolta por uma esfera de raio z.

Nos exercícios 2.2, 2.3 e 2.4 consideramos que a partícula se encontrava em um ponto de uma linha vertical. No entanto, devido à simetria de um corpo esférico, os resultados desses exercícios continuam valendo da mesma forma desde que escolhamos o eixo z como a semirreta que sai do centro do corpo esférico e passa pela partícula.

Dos exercícios 2.2, 2.3 e 2.4 concluímos que para obter a energia potencial ou a força gravitacional de um corpo qualquer localizado fora de um outro corpo esférico homogêneo podemos considerar o segundo como uma partícula localizada no seu centro de massa. Em particular, se consideramos a Terra como uma esfera sólida homogênea, a energia potencial gravitacional de uma partícula de massa *m* que se encontra a uma altura *h* da superfície da Terra será

$$V_g = -\frac{GM_Tm}{R_T + h} \,,$$

onde M_T e R_T são respectivamente a massa e o raio da Terra. Também podemos obter imediatamente que o valor da força gravitacional sobre a partícula é

$$F_g = \frac{GM_T m}{(R_T + h)^2},\tag{13}$$

a qual aponta para o centro da Terra.

Considerando a Terra como uma esfera, o raio dela pode ser medido experimentalmente de várias formas. Nós vamos considerar que o raio da Terra é $R_T=6380\,\mathrm{km}$.

Se uma partícula de massa m se encontra a uma altura $h \ll R_T$ em relação à superfície da Terra, a força gravitacional sobre a partícula é chamada de **peso**. Nesse caso, o peso da partícula segundo a Eq. (13) vai ser aproximadamente

$$F_g = \frac{GM_Tm}{R_T^2} \, .$$

Por outro lado, nessa aproximação sabemos que $F_g = mg$, onde $g = 9.8 \,\mathrm{m/s^2}$. Logo, a partir dessas relações podemos obter o valor da massa da Terra. De fato, vamos

obter que $M_T = 5.98 \times 10^{24} \, \mathrm{kg}$. O valor atualmente aceito para a massa da Terra é

$$M_T = 5.974 \times 10^{24} \,\mathrm{kg}$$
.

Exercício 2.5. Determine a velocidade mínima que deve ser proporcionada a uma partícula de massa m, inicialmente sobre a superfície da Terra, para que ela se afaste da Terra e nunca volte. Essa velocidade é chamada de **velocidade de escape**.

Dica: A energia inicial da partícula é

$$E_i = \frac{1}{2} m v^2 - \frac{G M_T m}{R_T} \,. \label{eq:energy}$$

A energia final da partícula, em uma posição infinitamente distante da Terra, é $E_f = 0$ (velocidade final nula).

Exercício 2.6. Uma partícula de massa *m* se move uniformemente em uma órbita circular de raio *r* em relação ao centro da Terra. Mostre que o módulo da velocidade da partícula deve ser dado por

$$v = \sqrt{\frac{GM_T}{r}} .$$

Definindo o **período** T como o tempo que a partícula demora em dar uma volta na órbita, mostre que

$$T = \frac{2\pi r^{3/2}}{\sqrt{GM_T}} \, .$$

Dica: A força gravitacional sobre a partícula é a força centrípeta. Logo,

$$\frac{GM_Tm}{r^2}=ma_c\,,$$

onde a_c é a aceleração centrípeta.

Exercício 2.7. Encontre qual é a velocidade que deve ser proporcionada a uma partícula de massa m, inicialmente na superfície da Terra, para que ela se mova em uma órbita circular de raio r em relação ao centro da Terra.

Dica: Use o teorema da conservação da energia junto com a velocidade obtida no exercício anterior.

Quase 80 anos antes de Newton formular a lei da gravitação universal, Kepler, baseado em dados observacionais sobre o movimento dos planetas, obteve as seguintes leis empíricas:

- 1. Os planetas se movem em órbitas elípticas ao redor do Sol, o qual está localizado em um dos focos da elipse (ver figura 6).
- 2. O vetor posição de um planeta em relação ao Sol varre áreas iguais em intervalos de tempo iguais (ver figura 7).

Figura 6: Primeira lei de Kepler. Uma elipse tem a propriedade de que, para qualquer ponto dela, a soma das distâncias entre o ponto e os focos é uma constante.

Figura 7: Segunda lei de Kepler.

3. O período de um planeta é diretamente proprocional ao semi-eixo maior da sua órbita elíptica elevado ao expoente 3/2.

Tendo formulado a lei da gravitação universal, Newton descobriu que a partir dessa lei podem ser deduzidas as três leis de Kepler. As deduções da primeira e da terceira leis usam manipulações de equações diferenciais que estão fora do escopo do curso. A dedução da segunda lei é mais elementar e veremos que é consequência da conservação do momento angular.

Consideremos um planeta de massa m a uma distância r do centro do Sol. Se \vec{F}_g é a força gravitacional sobre o planeta devido ao Sol, então o vetor \vec{F}_g é proporcional ao vetor $-\vec{r}$. Dessa maneira, o torque de \vec{F}_g vai ser nulo, pois é o produto vetorial de vetores paralelos. Se \vec{F}_g é a única força que atua sobre a planeta, segue então da Eq. (3) que o momento angular do planeta $\vec{L} = \vec{r} \times (m\vec{r})$ se conserva, ou seja, \vec{L} é um vetor constante (módulo e direção constantes). Em particular, isso implica que o vetor \vec{L} vai ser sempre perpendicular aos vetores \vec{r} e \vec{r} e, por conseguinte, o movimento do planeta é realizado

em um plano que é perpendicular a \vec{L} . Assim, podemos considerar convenientemente que o plano do movimento é o plano xy (ver figura 8).

Figura 8: O movimento do planeta é realizado no plano *xy*.

Da figura 8 vemos que $\vec{r} = r \cos \theta \hat{i} + r \sin \theta \hat{j}$. Logo,

$$\dot{\vec{r}} = (\dot{r}\cos\theta - r\dot{\theta}\sin\theta)\hat{i} + (\dot{r}\sin\theta + r\dot{\theta}\cos\theta)\hat{j}$$

e, por conseguinte,

$$\vec{L} = m\vec{r} \times \dot{\vec{r}}$$

$$= m \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r\cos\theta & r\sin\theta & 0 \\ \dot{r}\cos\theta - r\dot{\theta}\sin\theta & \dot{r}\sin\theta + r\dot{\theta}\cos\theta & 0 \end{vmatrix}.$$

Portanto,

$$\vec{L} = m[r\cos\theta(\dot{r}\sin\theta + r\dot{\theta}\cos\theta) - r\sin\theta(\dot{r}\cos\theta - r\dot{\theta}\sin\theta)]\hat{k}$$
$$= mr^2\dot{\theta}\hat{k}.$$

Como esse vetor é constante, seu módulo $L = mr^2\dot{\theta}$ é uma constante. Por outro lado, sabe-se dos cursos de cálculo que a área da região limitada pela elipse e os vetores $\vec{r}(\theta_1)$ e $\vec{r}(\theta_2)$ é dada por

$$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 \, d\theta \,.$$

Se $\theta_1 = \theta(t_1)$ e $\theta_2 = \theta(t_2)$, mudando a variável de integração para t, temos que

$$A = \frac{1}{2} \int_{t_1}^{t_2} r^2 \frac{d\theta}{dt} dt = \frac{1}{2} \int_{t_1}^{t_2} r^2 \dot{\theta} dt = \frac{1}{2} \int_{t_1}^{t_2} \frac{L}{m} dt$$

Logo, como L é constante, temos que

$$A = \frac{L}{2m}(t_2 - t_1) \ .$$

Dessa maneira fica provada a segunda lei de Kepler, pois a área varrida pelo vetor posição do planeta entre dois instantes de tempo t_1 e t_2 , só depende da diferença $t_2 - t_1$ e não dos instantes individuais.

Usando a lei da gravitação de Newton, a terceira lei de Kepler pode ser formulada mais precisamente pela seguinte equação:

$$T = \frac{2\pi a^{3/2}}{\sqrt{GM_S}}\,,$$

onde T é o período do planeta, a é o comprimento do semi-eixo maior da sua órbita e $M_S=1,99\times 10^{30}\,\mathrm{kg}$ é a massa do Sol.

Exercício 2.8. O cometa Halley se move em uma órbita elíptica ao redor do Sol. No instante em que o cometa está mais próximo do Sol (**perihélio**), a distância entre o cometa e o Sol é de $8,75 \times 10^7$ km. No instante em que o cometa está mais afastado do Sol (**afélio**), a distância entre o cometa e o sol é de $5,26 \times 10^9$ km. Encontre o comprimento do semi-eixo maior da órbita e o período do cometa.

As leis de Kepler, na forma em que foram anunciadas acima, valem sob a condição de que a massa do Sol é muito maior do que a massa dos planetas. De fato, a massa do Sol é maior do que a soma das massas dos planetas. Nesse caso, o Sol fica praticamente em repouso enquanto os planetas se movem. No entanto, em um sistema solar onde um planeta tenha uma massa comparável com a do Sol, o Sol também se move. Nesse caso, ambos corpos se movem em órbitas elípticas ao redor do centro de massa. Omitindo a demonstração, afirmamos que as leis de Kepler continuam valendo para o movimento relativo. O único detalhe é que a terceira lei de Kepler é enunciada na seguinte forma:

$$T = \frac{2\pi a^{3/2}}{\sqrt{G(M_S + m)}}$$

onde *m* é a massa do planeta.

3 Movimento periódico

Uma partícula realiza um movimento **periódico** se para qualquer instante *t* seus vetores posição e velocidade satisfazem as condições

$$\vec{r}(t+c) = \vec{r}(t)$$

$$\vec{v}(t+c) = \vec{v}(t)$$
(14)

para algum número $c \neq 0$. O menor número $c \neq 0$ para o qual as Eqs. (14) são satisfeitas é chamado de **período** da partícula (ou do movimento) e é usualmente denotado por T. A unidade de período no SI é o segundo (s).

Define-se a **frequência** do movimento como o inverso do período, ou seja, f = 1/T. A unidade de frequência no SI é o **Hertz** (Hz).

Exemplos de movimentos periódicos são os seguintes:

- 1. O movimento circular uniforme de uma partícula.
- 2. O movimento de um planeta em uma órbita ao redor do Sol.
- 3. O movimento horizontal de um bloco, acoplado a uma mola fixa sobre uma superfície lisa.
- 4. O movimento de uma partícula suspensa por uma corda unicamente sob o efeito da gravidade da Terra.
- O movimento de um corpo rígido suspenso a partir de um ponto unicamente sob o efeito da gravidade da Terra.

Vamos estudar o movimento oscilatório (vaivém) de um bloco acoplado a uma mola fixa, como mostrado na figura 9. A posição de equilíbrio indicada na figura representa a posição do bloco quando a mola não está deformada (não está esticada nem comprimida). Quando o bloco está à direita da posição de equilíbrio, ele estica a mola e, por conseguinte, a mola exerce uma força sobre o bloco orientada para a esquerda. Quando o bloco está à esquerda da posição de equilíbrio, ele comprime a mola e devido a isso a mola exerce uma força sobre o bloco orientada para a direita. Em ambos os casos a força aplicada pela mola tenta restituir a forma da mola, por isso às vezes essa força é chamada de **força de restituição**.

Figura 9: Movimento oscilatório de um bloco acoplado a uma mola fixa.

Se o bloco está em uma posição x, segundo a lei de Hooke, a força de restituição sobre a o bloco é dada por F = -kx. Essa expressão vale quando o bloco estica a mola (x > 0) assim como quando o bloco comprime a mola (x < 0). Como a força de restituição é a força resultante sobre o bloco, pela segunda lei de Newton, temos

$$-kx = ma$$
,

onde a é a aceleração do bloco. Como $a = \dot{v}$ e $v = \dot{x}$, segue que $a = \ddot{x}$ (segunda derivada de x em relação a t). Logo, obtemos a equação diferencial

$$\ddot{x} + \frac{k}{m}x = 0, \tag{15}$$

que é chamada de equação do **oscilador harmônico simples**. Nesses termos, o bloco da figura 9 é chamado de um **oscilador harmônico**.

Existem vários métodos para resolver a Eq. (15) que podem ser estudados nos cursos de cálculo. No entanto, é possível obter-se a forma de uma solução dessa equação de uma maneira simples relacionando o movimento do oscilador harmônico com o movimento circular uniforme de uma partícula.

Consideremos uma partícula que descreve uma trajetoria circular de raio A e se move uniformemente com velocidade v, como mostrado na figura 10. Nota-se dessa figura que a sombra da partícula realiza um movimento horizontal oscilatório. Se x=0 é a posição da origem do círculo e a partícula se encontra na posição indicada na figura, vemos que sua sombra estará localizada na posição

$$x = A\cos\theta. \tag{16}$$

Como a partícula se move com velocidade angular constante $\omega = \Delta \theta / \Delta t$, segue que

$$\theta = \omega t + \phi \,, \tag{17}$$

onde $\phi = \theta(0)$ é o ângulo de partida. Logo, segue das Eqs. (16) e (17) que

$$x = A\cos(\omega t + \phi). \tag{18}$$

Pode-se perceber que o movimento descrito pela sombra da partícula da figura 10 é similar ao movimento do oscilador harmônico da figura 9. Como o último é descrito pela Eq. (15), podemos procurar uma solução dessa equação da forma dada na Eq. (18). Substituindo então (18) em (15) temos que

$$-A\omega^2\cos(\omega t+\phi)+\frac{k}{m}A\cos(\omega t+\phi)=0\,,$$

o qual é verdadeiro para quaisquer valores de x e t se, e somente se, $\omega = \sqrt{k/m}$. Portanto, uma solução da equação do oscilador harmônico (15) é

$$x = A\cos(\omega t + \phi)$$
, com $\omega = \sqrt{\frac{k}{m}}$. (19)

De acordo com a teoria de equações diferenciais ordinárias, a solução dada na Eq. (19) é a chamada **solução**

Figura 10: Relação entre movimento circular uniforme e movimento de um oscilador harmônico.

geral da Eq. (15), pois depende de duas constantes A e ϕ a serem determinadas. Como veremos depois, essas constantes podem ser obtidas a partir do conhecimento da posição e da velocidade iniciais do bloco, as quais são chamadas de **condições iniciais**.

Se a Eq. (19) é a posição de um oscilador harmônico, sua velocidade é dada por

$$v = \dot{x} = -A\omega \operatorname{sen}(\omega t + \phi). \tag{20}$$

Se no instante inicial o oscilador está na posição x_0 e tem velocidade v_0 , segue das Eqs. (19) e (20) que

$$x_0 = A\cos\phi$$
 e $v_0 = -A\omega\sin\phi$,

ou, escrito de outra forma,

$$x_0 = A\cos\phi$$
 e $\frac{v_0}{\omega} = -A\sin\phi$. (21)

Elevando essas equações ao quadrado e somando-as, obtemos que

$$x_0^2 + \frac{v_0^2}{\omega^2} = A^2(\cos^2\phi + \sin^2\phi) = A^2$$
.

Portanto,

$$A = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}}. (22)$$

Vemos que $A \ge 0$ e que a igualdade acontece se $x_0 = 0$ e $v_0 = 0$ (nesse caso o bloco não se move e fica na posição de equilíbrio). Logo, se A > 0, segue da Eq. (21) que

$$\phi = \arccos \frac{x_0}{A} \,. \tag{23}$$

A Eq. (19) junto com as condições iniciais contêm toda a informação sobre o movimento de um oscilador harmônico. Em particular, deve ser possível verificar a partir daqui que o movimento do oscilador é limitado e periódico. Com efeito, segue da Eq. (19) que $|x| \le A$ para qualquer instante t, pois a função cosseno não excede 1. Logo, a posição do oscilador só pode assumir valores no intervalo [-A,A]. Por essa razão, a constante A é chamada de **amplitude** do oscilador harmônico. Por outro lado, as funções cosseno e seno tem período 2π , ou seja, o menor valor de p tal que $\cos(z+p)=\cos z$ e $\sin(z+p)=\sin z$ para qualquer z é $p=2\pi$. Logo, segue da Eq. (19) que, para qualquer t,

$$x\left(t + \frac{2\pi}{\omega}\right) = A\cos\left[\omega\left(t + \frac{2\pi}{\omega}\right) + \phi\right]$$
$$= A\cos(\omega t + \phi + 2\pi)$$
$$= A\cos(\omega t + \phi)$$
$$= x(t).$$