1 5 - Gramáticas e linguagens livres de contexto

Uma gramática livre de contexto é $G=(V,\Sigma,\mathcal{P},\mathcal{S})$, onde V é um alfabeto finito:

- Σ (conjunto de símbolos não terminais) é um subconjunto não-vazio de V;
- $\mathcal P$ (conjunto de produções ou regras de substituição) é um subconunto finito de $(V-\Sigma)\times V^*;$
- e $\mathcal S$ (símbolo inicial) é um elemento de $(V-\Sigma)$. Obs:
 - 1. $(V \Sigma)$ é o conjunto de símbolosnão-terminais.
 - 2. Para todo $A \in (V \Sigma)$ e $\alpha \in V^*$, escrevemos $A \to \alpha$, sempre que $(A, \alpha) \in \mathcal{P}$.
 - 3. Convencionamos que letras maiúsculas são símbolos não-terminais e que letras minúsculas são símbolos terminais.
 - Para palavras α e β em V^+ , escrevemos $\alpha \Longrightarrow_G \beta$, e dizemos que β é derivável de α em um passo (ou que α deriva de β em um passo) sse existem palavras α_1, α_2 e γ em V^* e $A \in (V \Sigma)$ tq $\alpha = \alpha_1 A \alpha_2, \ \beta = \alpha_1 \gamma \alpha_2$ e $A \to \gamma \in \mathcal{P}$.
 - Denotamos por \Rightarrow_G^* o fecho reflexivo e transitivo de \Rightarrow_G .
 - Todo seq. da forma $\alpha_0 \Rightarrow_G \alpha_1 \Rightarrow_g \cdots \Rightarrow_g \alpha_n$, para $0 \leq i \leq n$, é uma derivação de α_n em G, a partir de α_0
 - Toda palavra de V^+ derivável a partir de \mathcal{S} (símbolo inicial) é chamada de forma sentencial. Uma sentença é uma forma sentencial em Σ^* .
 - A linguagem gerada por uma gramática G, denotada por L(G), é:

$$L(G) = \{ x \in \Sigma^* : \mathcal{S} \Rightarrow_G^* x \}$$

Dizemos também que G gera cada palavra em L(G).

• Uma linguagem L é livre de contexto se L = L(G), para alguma gramática livre de contexto G.

1.1 Exemplos

1. Seja $G = (V, \Sigma, \mathcal{P}, \mathcal{S})$ uma glc, onde:

$$V = \{a, b, c\}, \Sigma = \{a, b\} \in \mathcal{P} = \{S \to_1 \lambda, S \to_2 aSb\}.$$

$$S \Rightarrow_1 \lambda$$

$$S \Rightarrow_2 aSb$$

$$\mathcal{S} \Rightarrow_2 aa\mathcal{S}bb$$

$$S \Rightarrow_2 aaaSbbb$$

 $S \Rightarrow_1 aaabbb$

$$L(G)=\{a^nb^n:n\geq 0\}=L$$

(a) Para provar que $L \subseteq L(G)$, vamos provar que:

$$\forall n \geq 0, \mathcal{S} \Rightarrow_G^* a^n b^n$$
, por indução em n.

Base:
$$n = 0$$
, então $a^0 b^0 = \lambda$ e $\mathcal{S} \Rightarrow \lambda$ (pois $\mathcal{S} \to \lambda \in \mathcal{P}$)

Seja $n \geq 0$.

Hipótese de indução: Suponha que $S \Rightarrow_G^* a^n b^n$

Passo da indução:

$$\overline{\text{Seja }\alpha = a^{n+1}b^{n+1}}$$

Então,
$$S \Rightarrow_2 aSb \Rightarrow^* aa^nb^nb = a^{n+1}b^{n+1} = x$$
.

(b) Para provar que $L(G) \subseteq L$, vamos provar que:

se
$$S \Rightarrow_G^* x \text{ em } n > 0$$
 passos e $x \in \Sigma^*$,

se
$$\mathcal{S}\Rightarrow_G^*x$$
 em $n>0$ passos e $x\in\Sigma^*,$ então $x=a^{n-1}b^{n-1}.$ (Por indução no número n de passos da derivação)

Base:

Se $S \Rightarrow x$ em 1 passo e $x \in \Sigma^*$, então só podemos utilizar a produção $S \to \lambda$ em \mathcal{P} . Logo, $x = \lambda = a^0 b^0$.

Seja $n \geq 1$.

 $\underline{\text{H.I.}}$: Suponha que se $S \Rightarrow_G^* x$ em n passos e $x \in \Sigma^*$, então $x = a^{n-1}b^{n-1}$.

Passo da indução: Então, $S \Rightarrow aSb \Rightarrow^* x$.

Logo, existe $y \in \Sigma^*$ tq x = ayb e $S \Rightarrow^* y$ em n passos.

Pela h.i., segue que $y = a^{n-1}b^{n-1}$.

2. $L = \{x \in \{a,b\}^* : x = x^R\}$ (Exercício: Prove que L não é rec.) glc $G = (V, \Sigma, \mathcal{P}, \mathcal{S})$, onde:

$$V = \Sigma \cup \{\mathcal{S}\}, \ \Sigma = \{a, b\} \ e$$

$$\mathcal{P} = \{ \mathcal{S} \to_1 \lambda | a | b, \mathcal{S} \to_2 a \mathcal{S}b, \mathcal{S} \to_2 b \mathcal{S}b \}.$$

3. $L = \{a^i b^i : i \neq j\}$

$$L_1 = \{a^i b^i : i > j\}$$

glc
$$G_1 = (V_1, \Sigma, \mathcal{P}_1, \mathcal{S}_1)$$
, onde:

$$V_1 = \Sigma \cup \{\mathcal{S}_1, A, X\},\$$

$$\mathcal{P}_1 = \{ \mathcal{S}_1 \to AX, A \to a | aA, X \to \lambda | aXb \}$$

$$L(G_1) = L_1.$$

$$L_2 = \{a^i b^i : i < j\}$$

$$\text{glc } G_2 = (V_2, \Sigma, \mathcal{P}_2, \mathcal{S}_2), \text{ onde:}$$

$$V_2 = \Sigma \cup \{\mathcal{S}_2, B, X\},$$

$$\mathcal{P}_2 = \{\mathcal{S}_2 \to XB, B \to b | bB, X \to \lambda | aXb\}$$

$$\text{glc } G = (V, \Sigma, \mathcal{P}, \mathcal{S}), \text{ onde:}$$

$$V = \Sigma \cup \{\mathcal{S}, A, X, B\},$$

$$\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$$