Exercise 4: Configuring NVMe in a Storage VM

In this exercise, you use best practice tools to create a simple NVMe server in a storage VM.

Objectives

This exercise focuses on enabling you to do the following:

- Prepare the Linux host to use the NVMe protocol
- Use NetApp ONTAP System Manager to configure a storage VM for NVMe over TCP (NVMe/TCP)
- Create NVMe namespaces
- Access the NVMe-attached namespace on the Linux host

Lab Equipment

Use the following equipment to complete the exercise:

System	Host Name	IP Addresses	User Name	Password
Windows Server	jumphost	192.168.0.5	DEMO\Administrator	Netapp1!
ONTAP cluster-management LIF (cluster2)	cluster2	192.168.0.102	admin (case sensitive)	Netapp1!
CentOS Linux Server	centos8	192.168.0.21	root (case sensitive)	Netapp1!

Task 1: Prepare the Linux host for NVMe

Step	Action				
1-3	Load the core NVMe kernel module into memory.				
	modprobe -v nvme				
	Sample output:				
	[root@centos8 nas1]# modprobe -v nvme insmod /lib/modules/4.18.0-240.el8.x86_64/kernel/drivers/nvme/host/nvme- core.ko.xz insmod /lib/modules/4.18.0-240.el8.x86_64/kernel/drivers/nvme/host/nvme. ko.xz				
1-4	Load the NVMe over TCP kernel module into memory.				
	modprobe -v nvme-tcp				
	Sample output:				
	[root@centos8 nas1]# modprobe -v nvme-tcp insmod /lib/modules/4.18.0-240.el8.x86_64/kernel/drivers/nvme/host/nvme-fabrics.ko.xz insmod /lib/modules/4.18.0-240.el8.x86_64/kernel/drivers/nvme/host/nvme-tcp.ko.xz				
1-5	Display the host NVMe Qualified Name (NQN).				
. •	nvme show-hostnqn				
	Sample output:				
	[root@centos8 nas1]# nvme show-hostnqn nqn.2014-08.org.nvmexpress:uuid:2322432f-74c6-4bf7-9a45-7e5a23e0f215				

Task 2: Enable NVMe Over TCP on a Storage VM

Step	Action
2-1	Log in to NetApp ONTAP System Manager for cluster2.
2-2	From the System Manager menu, select Storage > Storage VMs .

2-7 In the Network interface section, specify the following settings:

Enable NVMe/TCP: <selected>

Cluster2-01:

• Subnet: Without a subnet (default)

IP Address: 192.168.0.69

Subnet Mask: 24

Gateway: 192.168.0.1 (default)

Broadcast Domain and Port: Default

Use the same subnet mask and gateway for all of the following interfaces <selected>

Cluster2-02:

• Subnet: Without a subnet (default)

• IP Address: 192.168.0.70

Port: Automatically select a home port (recommended) (default)

Task 3: Create NVMe Namespaces

Step Action

- **3-2** In the Add NVMe Namespaces dialog box, specify the following settings:
 - Name Prefix: svm5_NS
 - Number of Namespaces: 3
 - Capacity: 1 GiB

3-3 Click More Options.

- On the Add NVMe Namespaces page, scroll to the Host Information section, and then specify the following settings:
 - Host Operating System: Linux
 - Add a new subsystem: <selected>
 - Name: c2_svm5_subsystem_centos8

Task 4: Access the NVMe-Attached Namespace from the Linux Host

Step Action

Discover the NVMe enabled storage VM by using the IP address that you assigned to a LIF.

nvme discover -t tcp -a 192.168.0.69 -s 4420

Sample output:

4-4 Connect to the NVMe enabled storage VM by using the subsystem NQN that you obtained in the previous step.

nvme connect -t tcp -n nqn.1992-08.com.netapp:sn.935d3f1d99c211ecb61e00
5056b08c1a:subsystem.c2_svm5_subsystem_centos8 -a 192.168.0.69 -s 4420

Display a list of the discovered NVMe namespaces, and observe the namespace device names.

nvme list

Sample output:

```
[root@centos8 nas1]# nvme list
Node SN Model
Namespace Usage Format FW Rev

/dev/nvme1n1 wpEzyNSZi-/TAAAAAAAB NetApp ONTAP Controller
1 1.07 GB / 1.07 GB 4 KiB + 0 B FFFFFFF
/dev/nvme1n2 wpEzyNSZi-/TAAAAAAAB NetApp ONTAP Controller
2 1.07 GB / 1.07 GB 4 KiB + 0 B FFFFFFF
/dev/nvme1n3 wpEzyNSZi-/TAAAAAAAB NetApp ONTAP Controller
3 1.07 GB / 1.07 GB 4 KiB + 0 B FFFFFFF

/dev/nvme1n3 wpEzyNSZi-/TAAAAAAAB NetApp ONTAP Controller
```

```
Step | Action
     Build an ext2 type file system in the first NVMe namespace.
4-6
     mkfs -t ext2 /dev/nvme1n1
     Sample output:
     [root@centos8 nas1]# mkfs -t ext2 /dev/nvmeln1
     mke2fs 1.45.6 (20-Mar-2020)
     Creating filesystem with 262144 4k blocks and 65536 inodes
     Filesystem UUID: 4c9343e4-567a-4318-8b56-b7477e781541
     Superblock backups stored on blocks:
             32768, 98304, 163840, 229376
     Allocating group tables: done
     Writing inode tables: done
     Writing superblocks and filesystem accounting information: done
     Build an ext3 type file system in the second NVMe namespace.
4-7
     mkfs -t ext3 /dev/nvme1n2
     Sample output:
     [root@centos8 nas1]# mkfs -t ext3 /dev/nvme1n2
     mke2fs 1.45.6 (20-Mar-2020)
     Creating filesystem with 262144 4k blocks and 65536 inodes
     Filesystem UUID: 25d2467b-26df-40e4-bb35-65ef12fea717
     Superblock backups stored on blocks:
             32768, 98304, 163840, 229376
     Allocating group tables: done
     Writing inode tables: done
     Creating journal (8192 blocks): done
     Writing superblocks and filesystem accounting information: done
     Build an ext4 type file system in the third NVMe namespace.
4-8
     mkfs -t ext4 /dev/nvme1n3
     Sample output:
     [root@centos8 nas1]# mkfs -t ext4 /dev/nvme1n3
     mke2fs 1.45.6 (20-Mar-2020)
     Creating filesystem with 262144 4k blocks and 65536 inodes
     Filesystem UUID: b9d326f5-d264-4680-84ee-f6064a2b9c21
     Superblock backups stored on blocks:
             32768, 98304, 163840, 229376
     Allocating group tables: done
     Writing inode tables: done
     Creating journal (8192 blocks): done
     Writing superblocks and filesystem accounting information: done
     Create mount point directories for the three NVMe namespaces.
4-9
     mkdir /nvme_vol1_ext2
```

mkdir /nvme_vol2_ext3
mkdir /nvme vol3 ext4

```
Attach the three NVMe namespaces to the three mount point directories.

mount /dev/nvmeln1 /nvme_vol1_ext2
mount /dev/nvmeln2 /nvme_vol2_ext3
mount /dev/nvmeln3 /nvme_vol3_ext4

4-11 Verify that the three NVMe namespaces are mounted and accessible.

df -h /nvme*

Sample output:

[root@centos8 nas1]# df -h /nvme*
Filesystem Size Used Avail Use% Mounted on /dev/nvmeln1 1008M 1.3M 956M 1% /nvme_vol1_ext2 /dev/nvmeln2 976M 1.3M 924M 1% /nvme_vol2_ext3 /dev/nvmeln3 976M 2.6M 907M 1% /nvme_vol3_ext4
```

End of exercise