Gebze Technical University Computer Engineering

CSE222-2020-SPRING

Homework-8_part2 Report

Ferdi Sönmez 161044046

1)Problem Solutions Approach

Reads the selected file contents and puts it into the link list structure as 2-D. After the linked list structure is filled, DeepFirstSearch and Breadthfirstsearch operations can be run according to the user request.

2) Class Diagram

+ Main — fields —— — constructors —— — methods —— + main (args: String[]):void	+ Graph — fields — methods + getNumV():int + isDirected():boolean + insert(e:Edge):void + isEdge(source:int, dest int):boolean + getEdge(source:int, dest int):Edge + edgetterator(source:int):Iterator <edge></edge>	+ BreadthFirstSearch <e> — fields ————————————————————————————————————</e>
+ Edge If fields	+ AbstractGraph implements Graph fields constructors methods getNumV(): init isDirected(): boolean insert(e: Edge): void getEdge(source:int, dest.int): boolean getEdge(source:int, dest.int): Edge edgetErator(source:int): Iterator <edge> load@seFormFile(scan: Scanner): void createGraph(isDirected: boolean, type: String): Graph createGraph(scan: Scanner, isDirected: boolean, type: String): Graph</edge>	- DepthFirstSearch ⊞iclds methods - depthFirstSearch (current.int):void - getDiscoveryOrder():int[] - getGraph():Graph - getParent():int[] - getVisited():boolean[] - getFinishIndex():int - getFinishIndex():int
	+ ListGraph extends AbstractGraph Bields Constructors methods + isEdge (source.int, dest.int): boolean + insert (edge: Edge): void + edge!terator(source.int): iterator <edge> + getEdge (source.int, dest.int): Edge + toString():String + loadEdgesFromFile (scan: Scanner): void - parseFileString (input: String): Edge</edge>	

3)Use Case Diagram

4)Test Case

a) The user is asked which file he wants to choose.

b) Graph structure created after reading the file.

c) User can do Deep-First-Search if he/she wants.

```
***DepthFirstSearch***
Discovery and finish order:
0 6
1 5
2 4
3 3
4 2
5 1
6 0
```

d) User can do Breadth-First-Search if he/she wants.

```
***BreadthFirstSearch****
Node and Parent in tree:
0 -1
1 0
2 1
3 0
4 0
5 0
6 1
```