第8章

一阶电路的暂态分析

- 8.2 零输入响应
- 8.3 直流电源激励下的响应
 - 8.3.1 直流电源激励的RC电路
 - 8.3.2 直流电源激励的RL电路
 - 8.3.3 RC电路的方波响应
 - 8.4 正弦电源激励下的RC电路
 - 8.6 线性非时变特性

Motivation

动态电路: 含有动态元件的电路, 当电路状态发生改变时需要经历一个变化过程才能达到新的稳态。

上述变化过程习惯上称为电路的<mark>过渡过程</mark>。数 学化表达这一过渡过程是我们的学习目的。

重点 列微分方程,进行求解

难点 │ → 列微分方程,进行求解

考点 列微分方程,进行求解

三个重要概念

零输入响应

换路后**外加激励为零**,仅由动态元件初始储能产生的电压和电流。

零状态响应

→ 动态元件初始能量为零,由*t* >0电路中外加激励作用所产生 的响应。

全响应

电路的初始状态不为零,同时 又有外加激励源作用时电路中 产生的响应。

零输入响应

一 换路后外加激励为零,仅由动态元件初始储能产生的电压和电流。

已知 $u_C(0)=U_0$, 求 $u_C(t)$

零状态响应

一 动态元件初始能量为零,由*t* >0电路中外加激励作用所产生的响应。

已知 $u_C(0)=0$ V,求 $u_C(t)$

全响应

电路的初始状态不为零,同时 又有外加激励源作用时电路中 产生的响应。

已知 $u_C(0) = U_0$, 求 $u_C(t)$

8.2 零输入响应 Zero-input response

1. RC 电路

$$\begin{cases} RC\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 0 & t > 0 \\ u_C(0_+) = u_C(0_-) = U_0 \end{cases}$$

特征根:
$$s = -\frac{1}{RC}$$

$$U_C = k e^{-\frac{1}{RC}t}$$

代入初始值:
$$u_C(0_+) = u_C(0_-) = U_0$$
 可得: $k = U_0$

最终可得:
$$u_c = U_0 e^{-\frac{1}{RC}t} \qquad t > 0$$

$$i = \frac{u_C}{R} = \frac{U_0}{R} e^{-\frac{t}{RC}} = I_0 e^{-\frac{t}{RC}}$$

表明

①电压、电流是随时间按同一指数规律衰减的函数;

②响应与初始状态成衰减关系,其衰减快慢与RC有关;

令 ⊤ = RC, 7 7 7 7 9 1 8 1 9 1 8 1 9

$$[\tau] = [RC] = [] [法] = [] [\frac{\overline{F}}{\overline{K}}] = [] [\frac{\overline{F}}{\overline{K}}] = [] [\frac{\overline{F}}{\overline{K}}] = [] []$$

$$\tau = RC$$

$$p = -\frac{1}{RC} = -\frac{1}{7}$$

时间常数ァ的大小反映了电路过渡过程时间的长短

⊤大→过渡过程时间长

ァ小→过渡过程时间短

注意

a. τ :电容电压衰减到原来电压 36.8% 所需的时间。 工程上认为, 经过 $3\tau-5\tau$, 过渡过程结束。

b. 时间常数 r 的几何意义:

$$u_{\rm C} = U_0 e^{-\frac{t}{RC}}$$

tı时刻曲线的斜率等于

$$\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t}\Big|_{t_{1}} = -\frac{U_{0}}{\tau}e^{-\frac{t}{\tau}}\Big|_{t_{1}} = -\frac{1}{\tau}u_{\mathrm{C}}(t_{1}) = \frac{u_{\mathrm{C}}(t_{1}) - 0}{t_{1} - t_{2}}$$

③能量关系 —

电容不断释放能量被电阻吸收,直到全部消耗完毕.

 $u_C \stackrel{+}{=} \boxed{C}$ $R \square$

设 $u_C(0_+)=U_0$

电容放出能量: $\longrightarrow \frac{1}{2}CU_0^2$

电阻吸收(消耗)能量: -

$$W_R = \int_0^\infty i^2 R dt = \int_0^\infty \left(\frac{U_0}{R} e^{-\frac{t}{RC}}\right)^2 R dt$$

$$= \frac{U_0^2}{R} \int_0^\infty e^{-\frac{2t}{RC}} dt = \frac{U_0^2}{R} \left(-\frac{RC}{2} e^{-\frac{2t}{RC}}\right) \Big|_0^\infty = \frac{1}{2} C U_0^2$$

能量守恒!

例: 求零输入响应 u_R , 已知 $u_C(0)=10V$ 。

解: 零输入响应具有如下形式:

(1).求
$$t=0_+$$
时的初始值: $u_c(0_+)=u_c(0_-)=10(V)$

(2).求时间常数
$$\tau$$
: $T = RC = 50 \times (1/4) = 12.5(S)$

$$u_{c}(t) = u_{c}(0_{+})e^{-\frac{1}{\tau}t} = 10e^{-\frac{1}{12.5}t} \qquad (t \ge 0)$$

$$u_{R}(t) = \frac{60}{40 + 60}u_{c}(t) \pm 6e^{-\frac{1}{12.5}t} \qquad (t \ge 0)$$

$$u_{R}$$

例 一组 40μF的电容器,从高压电网上切除,切除瞬 间,电容器两端的电压为 3.5kV。切除后,电容经本身漏 电电阻Rs放电。今测得Rs=100MΩ、试求电容器电压下 降到1kV所需的时间。

解 电容从高压电网切除的等效电路如 右图、电容器经漏电电阻器Rs放电、其 电压逐步降低

$$v_C = 3.5 \times 10^3 e^{-\frac{t}{\tau}}$$

$$v_C = 3.5 \times 10^3 e^{-\frac{t}{\tau}}$$
 $\sharp \Phi = RsC = 100 \times 10^6 \times 40 \times 10^{-6} = 4000s$

如果在 $t=t_1$ 时 v_C 下降到1000V,则有 $3.5\times10^3 e^{-\frac{t_1}{T}}=1000V$

$$3.5 \times 10^3 e^{-\frac{1}{7}} = 1000 \text{V}$$

解得
$$t_1 = \ln 3.5 \times 4000 = 1.25 \times 4000 = 5000s$$

可见, 电容虽与电源断开已逾1小时, 但还保持高达1000V电压。这 样高的电压足以造成人身安全事故。

8.2 零输入响应 Zero-input response

Example: Assume $u_c(0)=10$ V. Find u_c for t>0.

$$\begin{array}{c|c}
2\Omega & t = 0 \\
2\Omega & 2F & u_C
\end{array}$$

$$7 = 3 \times 2 = 6s$$

2020-12-11 电路理论 17

8.2 零输入响应 Zero-input response

2. RL 电路

2020-12-11 电路理论 18

②响应与初始状态成衰减关系,其衰减快慢与L/R有关;

$$T = L/R$$
 为一阶 RL 电路时间常数

$$\begin{bmatrix} \tau \end{bmatrix} = \begin{bmatrix} \frac{L}{R} \end{bmatrix} = \begin{bmatrix} \frac{9}{\text{OD}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac$$

时间常数√的大小反映了电路过渡过程时间的长短 √大→过渡过程时间长 √小→过渡过程时间短

③能量关系

电感不断释放能量被电阻吸收 直到全部消耗完毕。

设 $i_L(0_+) = I_0$

电感放出能量: $\longrightarrow \frac{1}{2}LI_0^2$

电阻吸收(消耗)能量:

$$W_R = \int_0^\infty i^2 R dt = \int_0^\infty (I_0 e^{-\frac{t}{L/R}})^2 R dt$$

$$=I_0^2 R \int_0^\infty e^{-\frac{2t}{L/R}} dt = I_0^2 R \left(-\frac{L/R}{2} e^{-\frac{2t}{RC}}\right) \Big|_0^\infty = \frac{1}{2} L I_0^2$$

例:电路如图所示,t < 0时电路处于稳定,t = 0时开关K打开,求t > 0 时的电流 i_L 和电压 u_R 、 u_L 。

解:零输入响应具有如下形式:

$$y(t) = y(0_+)e^{-\frac{t}{\tau}}$$

$$t < 0$$
时,电感 L 看作短路 $i_L(0_+) = i_L(0_-) = 2$ A $u_R(0_+) = -R_2 i_L(0_+) = -4(V)$ $u_L(0_+) = -(R_2 + R_3) i_L(0_+) = -8(V)$

时间常数: $\tau = L/(R_2 + R_3) = 1/4(S)$

例:电路如图所示,t < 0时电路处于稳定,t = 0时开关K打开,求t > 0 时的电流 i_L 和电压 $u_R \setminus u_L$ 。

例: t=0时,打开开关K,求 u_v 。 (电压表量程: 50V)

现象:电压表坏了

u_V(0₊)= - 10000V 造成

小结

①一阶电路的零输入响应是由储能元件的初值引起的响应, 都是由初始值衰减为零的指数衰减 函数;

$$y(t) = y(0_+)e^{-\frac{t}{\tau}}$$

$$RC$$
电路 $u_C(0_+) = u_C(0_-)$ $i_L(0_+) = i_L(0_-)$

小结

②衰减快慢取决于时间常数 /;

R为与动态元件相连的一端口电路的等效电阻

- ③同一电路中所有响应具有相同的时间常数;
- ④一阶电路的零输入响应和初始值成正比, 称为零输入线性。

8.3直流电源激励下的响应

8.3.1直流电源激励下的RC电路

三要素法

First - order circuits:
$$\begin{cases} \frac{dy(t)}{dt} + \frac{1}{\tau}y(t) = f(t) & t > 0 \\ y(0_{+}) & t \end{cases}$$

其解的一般形式为:
$$y(t) = ke^{-\frac{t}{\tau}} + y(\infty)$$

 $y(\infty)$ 一个显著的特解,对于直流电路特别容易求出

注意形象记忆其物理意义!

8.3直流电源激励下的响应

直流电源激励下的一阶电路通解:

$$y(t) = [y(0_+) - y(\infty)]e^{-\frac{1}{\tau}t} + y(\infty)$$

分析一阶电路问题转为求解电路的三个要素的问题。

$$y(\infty)$$
 稳态解 \longrightarrow 用 $t\longrightarrow\infty$ 的稳态电路求解
三要素 $y(0_+)$ 初始值 \longrightarrow 用 0_+ 等效电路求解
 τ 时间常数

8.3.1 一阶电路的零状态响应

零状态响应

一,动态元件初始能量为零,由t > 0电路中外加激励作用所产生的响应。

1.RC电路的零状态响应

非齐次线性常微分方程

万程: $RC\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}u_{\mathrm{C}}} + u_{\mathrm{C}} = U_{\mathrm{S}}$

解答形式为:

$$u_c(t) = [u_c(0_+) - u_c(\infty)]e^{-\frac{1}{\tau}t} + u_c(\infty)$$

8.3.1 一阶电路的零状态响应

$$u_c(0_+) = u_c(0_-) = 0$$

$$u_c(\infty) = U_s$$

$$\tau = RC$$

$$u_C = U_S - U_S e^{-\frac{t}{RC}} = U_S (1 - e^{-\frac{t}{RC}}) \quad (t \ge 0)$$

 $u_{C} = U_{S} - U_{S}e^{-RC} = U_{S}(1 - e^{-RC}) \qquad (t \ge 0)$ 从以上式子可以得出: $i = C\frac{\mathrm{d}u_{C}}{\mathrm{d}t} = \frac{U_{S}}{R}e^{-\frac{t}{RC}}$

表明

①电压、电流是随时间按同一指数规律变化的函数:

- ②响应变化的快慢,由时间常数T = RC决定;T大, 充电慢, r 小充电就快;
- ③响应与外加激励成线性关系; [1]。(

电源提供能量:
$$\int_0^\infty U_{\rm S} i \mathrm{d}t = U_{\rm S}[q(\infty) - q(0)] = CU_{\rm S}^2$$

电阻消耗能量:
$$\int_0^\infty i^2 R \, \mathrm{d}t = \int_0^\infty \left(\frac{U_S}{R} e^{-\frac{t}{RC}}\right)^2 R \, \mathrm{d}t$$

电容储存能量:
$$\frac{1}{2}CU_{\rm S}^2$$
 = $\frac{1}{2}CU_{\rm S}^2$

电源提供的能量一半消耗在电阻上,一半转换 成电场能量储存在电容中。

例 t=0时,开关S闭合,已知 $u_C(0_-)=0$,求(1)电容电 压和电流,(2) $u_C=80$ V时的充电时间t 。

解 (1)这是一个RC电路零 状态响应问题,有:

$$\tau = RC = 500 \times 10^{-5} = 5 \times 10^{-3} \,\mathrm{s}$$

$$\int_{-}^{+} \frac{500\Omega}{100V} \frac{10\mu}{10\mu} = u_{C}$$

$$u_C = U_S(1 - e^{-\frac{t}{RC}}) = 100(1 - e^{-200t})V \quad (t \ge 0)$$

$$i = C \frac{du_{C}}{dt} = \frac{U_{S}}{R} e^{-\frac{t}{RC}} = 0.2e^{-200t} A$$

(2)设经过 t_1 秒, $u_C = 80V$

$$80 = 100(1 - e^{-200t_1}) \rightarrow t_1 = 8.045$$
 ms

2. RL电路的零状态响应

已知 $i_L(0_-)=0$,电路方程为:

$$S(t=0) R i_{L}$$

$$U_{S} u_{L}$$

$$L$$

$$L\frac{\mathrm{d}i_{\mathrm{L}}}{\mathrm{d}t} + Ri_{\mathrm{L}} = U_{\mathrm{S}}$$

 $i_{\rm L} = \frac{U_{\rm S}}{R} (1 - e^{-\frac{R}{L}t}) \equiv \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E}$

$$u_{\rm L} = L \frac{\mathrm{d}i_{\rm L}}{\mathrm{d}t} = U_{\rm S} e^{-\frac{R}{L}t}$$

8.3 一阶电路的全响应

全响应

电路的初始状态不为零,同时又有外 加激励源作用时电路中产生的响应。

1. 全响应

以RC电路为例, 电路微分方程:

强制分量(稳态分量)

自由分量(暂态分量)

2. 全响应的两种分解方式

①着眼于电路的两种工作状态 → 物理概念清晰 全响应 = 强制分量(稳态分量)+自由分量(暂态分量)

②着眼于因果关系 —— 便于叠加计算

$$u_{c} = U_{s}(1 - e^{-\frac{t}{\tau}}) + U_{0}e^{-\frac{t}{\tau}}$$
 $(t \ge 0)$

零状态响应

零输入响应

全响应 = 零状态响应 + 零输入响应

$$u_{c} = U_{s}(1 - e^{-\frac{t}{\tau}}) + U_{0}e^{-\frac{t}{\tau}}$$
 $(t \ge 0)$

零状态响应

零输入响应

Find u_c for t>0.

三要素法:

$$u_C(0_+) = 10V$$
 $u_C(\infty) = 11V$

$$\tau = 1 \times 1 = 1$$
s

$$u_c(t) = [u_c(0_+) - u_c(\infty)]e^{-\frac{1}{\tau}t} + u_c(\infty)$$
10V

1Ω

 $u_{\rm c}(\infty)$

1A

例 已知: t=0时开关由 $1\rightarrow 2$,求换路后的 $u_C(t)$

解 三要素为:

$$u_C(0_+) = u_C(0_-) = -8V$$

戴维角等效电影
$$_{C}(\infty) = 4i_{1} + 2i_{1} = 6i_{1} = 12V$$

$$u = 10i_1 \to R_{eq} = u/i_1 = 10\Omega \longrightarrow \tau = R_{eq}C = 10 \times 0.1 = 1s$$

$$u_C(t) = u_C(\infty) + [u_C(0^+) - u_C(\infty)]e^{-t/\tau}$$

$$u_C(t) = 12 + [-8 - 12]e^{-t} = 12 - 20e^{-t}V$$

8.3.3 RC电路的方波响应

 $\tau = RC$

$$T < t < 2T$$

$$u_C(T_+) = 100V \quad u_C(\infty) = 0$$

$$u_C = 100e^{\frac{t-T}{RC}}V$$

暂态过程:

分解: P314 图3

T < t < 2T 等效电路图

$$u_{C}(T^{+})=U_{2}$$

$$u_{C}(\infty)=0 \qquad \qquad u_{C}=U_{2}e^{\frac{t-T}{RC}}V$$

$$\tau = RC$$

$$u_{C}(0^{-})=0$$
 0
 T
 $2T$
 $3T$
 t
 $T < t < 2T$
 $u_{C} = 100 + (U_{1} - 100)e^{-\frac{t}{RC}}$
 $u_{C} = U_{2}e^{-\frac{t-T}{RC}}$

$$t = T$$

$$u_{C} = U_{2} = 100 + (U_{1} - 100)e^{-\frac{T}{RC}}$$

$$u_{C} = U_{1} = U_{2}e^{-\frac{2T - T}{RC}}$$

$$100e^{-\frac{T}{RC}}$$

$$100e^{-\frac{T}{RC}}$$

$$100e^{-\frac{T}{RC}}$$

$$U_{1} = \frac{100e^{-\frac{T}{RC}}}{U_{1}} = \frac{100e^{-\frac{T}{RC}}}{U_{2}} = \frac{100e^{-\frac{T}{RC}}}{U_{1}} = \frac{100e^{-\frac{T}{RC}}}{U_{2}} = \frac{100e$$

例

已知: 开关原在"3"位置, 电容未充电。当

t=0 时,开关合向"1"

t = 20 ms 时,开关再从"1"合向"2"

求: $u_C(t)$ 、i(t)

解: 第一阶段 $t = 0 \sim 20 \,\text{ms}$

$$u_C(0^+) = u_C(0^-) = 0 \text{ V}$$

$$i(0^+) = \frac{E}{R_1} = 3 \text{ mA}$$

第一阶段 $t = 0 \sim 20 \text{ ms}$

$$i(\infty) = \frac{E_1}{R_1 + R_2}$$
$$= 1 \text{ mA}$$

$$u_C(\infty) = \frac{R_2}{R_1 + R_2} \cdot E_1 = 2 \text{ V}$$

第一阶段 $t = 0 \sim 20 \text{ ms}$ 时间常数

$$R_d = R_1 // R_2 = \frac{2}{3} \text{ k } \Omega$$
 $\tau = R_d C = 2 \text{ ms}$

5倍的时间常数动态电路已经达到稳态

第一阶段 $(t=0\sim 20 \text{ ms})$ 电压过渡过程方程:

$$f(t) = f(\infty) + \left[f(0^{+}) - f(\infty) \right] \cdot e^{-t/\tau}$$

$$\begin{cases} \tau = \mathbf{R}_{d} \mathbf{C} = 2(\text{ms}) \\ \mathbf{u}_{C} (0^{+}) = \mathbf{u}_{C} (0^{-}) = 0(\mathbf{V}) \\ \mathbf{u}_{C} (\infty) = \frac{\mathbf{R}_{2}}{\mathbf{R}_{1} + \mathbf{R}_{2}} \cdot \mathbf{E}_{1} = 2(\mathbf{V}) \end{cases}$$

$$u_c(t) = 2 - 2e^{-t/0.002} V$$

第一阶段 $(t=0\sim 20 \text{ ms})$ 电流过渡过程方程:

第一阶段
$$(t=0\sim 20 \text{ ms})$$
 电流过渡过程方程:
$$f(t) = f(\infty) + \left[f(0^+) - f(\infty)\right] \cdot e^{-t/\tau}$$

$$c \tau = R_A C = 2 \text{ms}$$

 $i(t) = 1 + 2e^{-t/0.002} \text{mA}$

第一阶段波形图

说明: 57 = 10 ms

20 ms > 10 ms, t=20 ms 时,可以认为电路已基本达到稳态。

第二阶段: 20ms~

$$u_C(20\text{ms}^+)$$

= $u_C(20\text{ms}^-) = 2\text{V}$

$$i(20\text{ms}^+)$$

$$= \frac{\boldsymbol{E}_2 - \boldsymbol{u}_c(20\text{ms}^+)}{\boldsymbol{R}_1 + \boldsymbol{R}_3}$$

$$= 1.5\text{mA}$$

$$u_{c}(\infty) = \frac{R_{2}}{R_{1} + R_{2} + R_{3}} E_{2} \qquad i(\infty) = \frac{E_{2}}{R_{1} + R_{2} + R_{3}}$$

$$= 2.5 \text{ V}$$

$$= 1.25 \text{ mA}$$

第二阶段

时间常数

$$R_d = (R_1 + R_3) // R_2 = 1 \text{ k}\Omega$$

$$\tau = \mathbf{R}_d \mathbf{C} = 3 \text{ms}$$

第二阶段 (20ms~) 电压过渡过程方程

$$\begin{cases} \tau = \mathbf{R}_d \mathbf{C} = 3 \text{ms} \\ \mathbf{u}_C (20 \text{ms}^+) = 2 \text{V} \\ \mathbf{u}_C (\infty) = 2.5 \text{V} \end{cases}$$

$$u_C(t-20) = 2.5 - 0.5 e^{-\frac{t-0.02}{0.003}} V$$

第二阶段 (20ms~) 电流过渡过程方程

$$\begin{cases}
\tau = R_d C = 3\text{ms} \\
\mathbf{i}(20\text{ms}^+) = 1.5\text{mA} \\
\mathbf{i}(\infty) = 1.25\text{mA}
\end{cases}$$

$$i(t-20) = 1.25 + 0.25 e^{-\frac{t-0.02}{0.003}}$$
 mA

第一阶段小结:

$$u_c(t) = 2 - 2 e^{-t/2} V$$

 $i(t) = 1 + 2 e^{-t/2} \text{ mA}$

第二阶段小结:

$$u_c(t-20) = 2.5 - 0.5 e^{-\frac{t-20}{3}} \text{ V}$$

 $i(t-20) = 1.25 + 0.25 e^{-\frac{t-20}{3}} \text{ mA}$

8.6线性非时变特性

线性非时变电路:

- 除独立电源外,元件是线性、非时变元件。
- 线性非时变动态电路的微分方程是常系数线性微分方程。

线性特性:

1. 齐次性

若激励变为原来的k倍,则响应也相应的变为原来的k倍

如:

● 零状态响应,激励 U_s 与响应分量 $U_s(1-e^{-t/RC})$ 成正比

8.6线性非时变特性

线性特性:

2. 可加性

若激励 $x_1(t)$ 的响应为 $y_1(t)$,激励 $x_2(t)$ 的响应为 $y_2(t)$,则激励 $x_1(t)+x_2(t)$ 的响应为 $y_1(t)+y_2(t)$,如:

非时变特性:

线性非时变电路零状态响应的非时变特性体现为:

若激励 $x_1(t)$ 的响应为 $y_1(t)$,则激励 $x_1(t-t_0)$ 的响应为 $y_1(t-t_0)$

本质是微分方程不随时间发生本质变化(系数)

8.6线性非时变特性

零状态响应与激励间的关系

如果考虑全响 应?

分解:

零输入+零状态

$$k_{1}x_{1}(t) + k_{2}x_{2}(t) \longrightarrow k_{1}y_{1}(t) + k_{2}y_{2}(t)$$

$$\xrightarrow{\frac{d x_{1}(t)}{d t}} \xrightarrow{\frac{d y_{1}(t)}{d t}} \xrightarrow{\frac{d y_{1}(t)}{d t}} t$$

$$x_{1}(t-t_{0}) \xrightarrow{y_{1}(t-t_{0})} y_{1}(t-t_{0})$$

零状态响应的阶跃函数表示

阶跃响应 ——

激励为单位阶跃函数时,电路中产生的零状态响应。

$$u_{C}(t) = (1 - e^{-\frac{t}{RC}})\varepsilon(t)$$

$$i(t) = \frac{1}{R}e^{-\frac{t}{RC}}\varepsilon(t)$$

注意

$$i = e^{-\frac{t}{RC}} \varepsilon (t)$$
 和 $i = e^{-\frac{t}{RC}}$ $t \ge 0$ 的区别

8.6线性非时变特件

Practice: Find the zero-state response u_c

 $u_{c} = \left[3(1-e^{-\frac{t}{RC}})\varepsilon(t) - 3(1-e^{-\frac{t-5}{RC}})\varepsilon(t-5)\right]V$

$$u_{s} = [3\varepsilon(t) - 3\varepsilon(t - 5)]V$$

$$u_{c} = 3s(t) - 3s(t - 5)$$

$$u_{s}$$

$$u_{c} = 3s(t) - 3s(t - 5)$$

$$u_{s}$$

$$u_{c} = 3v$$

$$u_{$$

$$u_C = 3(1 - e^{-\frac{t}{RC}})V$$

t=5:

$$u_C(t) = 3(1 - e^{-\frac{5}{RC}})e^{-\frac{t-5}{RC}}V$$

$$u_C (5-) = 3(1 - e^{-\frac{5}{RC}}) = u_C (5+)$$

8.7冲激响应计算

单位阶跃响应与单位冲激响应

电路理论

2020-12-11

64

8.7冲激响应计算

Practice: Find the impulse response i_L .

由阶跃响应获得冲激响应

$$s(t) = i_{L}(t) = i_{L}(\infty)(1 - e^{-\frac{t}{\tau}})\varepsilon(t)$$

$$= (1 - e^{-\frac{t}{\tau}})\varepsilon(t)$$

$$h(t) = \frac{ds(t)}{dt} = (1 - e^{-\frac{t}{\tau}})\delta(t) + \frac{1}{\tau}e^{-\frac{t}{\tau}}\varepsilon(t)$$

$$= \frac{1}{\tau}e^{-\frac{t}{\tau}}\varepsilon(t)$$

$$\tau = \frac{L}{R}$$

Practice: 不含独立电源的线性时不变网络N的零输入响应为

e 原始储能不变,电压源

 $u_s(t) =$ 激励**不**的全响应为

试确定/

$$u_{s}(t) = \varepsilon(t)$$
下的零状态响应。

电压源 $u_s(t) = \delta(t) V$ 激励下的零状态 响应为:

$$h(t) = (3e^{-t} - e^{-t})\varepsilon(t) = 2e^{-t}\varepsilon(t)$$

$$\varepsilon(t) \bigoplus_{-}^{+} \mathsf{N} \qquad \qquad \frac{\mathsf{u}_{o}}{\mathsf{v}} = s(t)$$

$$s(t) = \int_{-\infty}^{t} h(t) dt = \int_{-\infty}^{t} 2e^{-t} \varepsilon(t) dt = (\int_{0}^{t} 2e^{-t} dt) \varepsilon(t) = (2 - 2e^{-t}) \varepsilon(t)$$

$$u_o(t) = (2 - 2e^{-t})\varepsilon(t) - [2 - 2e^{-(t-1)}]\varepsilon(t-1)$$

电路理论 66

作业

• 8.2节: 8-2、8-4

• 8.3节: 8-13、8-18, 8-31

• 8.7节: 8-48