

СЕМИНАР 5. БММ191, 13.05.2020

Представьте себе, что у вас есть паблик с мемами. Вы — Хозяин мемов. Как и любой другой Хозяин мемов, вы любите лайки под мемами. Возникает желание привлечь в паблик целевую аудиторию, которая будет ставить под мемы лайки. Для этого вы хотите запустить рекламную кампанию паблика. Ясное дело, что рекламу хочется показывать не всем подряд, а только под- ходящим людям.

У вас есть данные по профилям всех тех людей, которые уже ставили в паблике лайки. По этим данным вам хочется построить модель, которая могла бы предсказать подходит ли кон- кретный человек для вашей рекламной компании (поставил бы ли он в паблик лайк, если бы был на него подписан).

- а) Сформулируйте задачу машинного обучения. Какой должна быть целевая переменная, чтобы перед вами была задача классификации. Какой должна быть целевая переменная, чтобы это была задача регрессии?
- б) Какие факторы из профилей вы бы использовали, чтобы спрогнозировать подходит ли человек для рекламной кампании?
- в) Приведите еще парочку примеров задачи классификации и задачи регрессии.

Добрыня, Алеша и Илья смотрят мемы и ставят на них лайки. Мы пытаемся предсказать сколько лайков они оставят под мемами на основе поведения их однокурсников.

Для этого мы оценили регрессию. Ну и она нам напредсказывала, что парни поставят 4, 20 и 110 лайков. В реальности они поставили 5, 10 и 100 лайков. Возникает вопрос: насколько сильно наша модель ошиблась в прогнозировании.

Что такое MAE, MSE, RMSE и MAPE? Посчитайте для модели все четыре метрики качества.

РЕШЕНИЕ

$$MAE = \frac{1}{\ell} \sum_{i=1}^{\ell} |y_i - \widehat{y}_i|$$

$$MAE = \frac{1}{\ell} \sum_{i=1}^{\ell} |y_i - \widehat{y_i}| \qquad MAPE = \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{|y_i - \widehat{y_i}|}{y_i}$$

$$MSE = \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - \widehat{y}_i)^2$$

$$MSE = \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - \hat{y}_i)^2$$
 $RMSE = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - \hat{y}_i)^2}$

РЕШЕНИЕ

$$MAE = 7$$
 $MSE = 67$
 $RMSE = \sqrt{67} = 8.19$
 $MAPE = 0.28$ или 28%

$$R^{2} = 1 - \frac{\sum_{i=1}^{\ell} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

$$\bar{y}$$
= 44.67

$$R^2 = 1 - \frac{201}{6530.7} = 0.97$$

У	$\widehat{\mathcal{Y}}_i$	y - $\widehat{y_i}$	$ y$ - $\widehat{\mathcal{Y}_i} $	$(y - \widehat{y_i})^2$	$ y_i - \widehat{y}_i $	$(y_i - \bar{y})^2$
					y_i	
4	5	= 4 – 5 = -1	1	1	= 1/4 = 0.25	(-40.67)^2
20	10	= 20 – 10 = 10	10	100	= 10/20 = 0.5	-24.67
110	100	= 110 – 100 = 10	10	100	= 10 / 110 = 0.09	65.33

Предположим, Олег хочет купить автомобиль и считает, сколько денег ему нужно для этого накопить 1. Он пересмотрел десяток объявлений в интернете и увидел, что новые автомобили стоят около 20000, годовалые — примерно 19000, двухлетние — 18000 и так далее. В уме Олег-аналитик выводит формулу: адекватная цена автомобиля начинается от 20000 и падает на 1000 каждый год, пока не упрется в 10000. Олег сделал то, что в машинном обучении называют регрессией — предсказал цену по известным данным. Давайте попробуем повторить подвиг Олега.

- а) Как выглядит формула в случае Олега?
- б) За сколько продать старый айфон? Придумайте формулу для предсказания. Проинтерпретируйте каждый коэффициент в ней.
- в) Сколько одежды брать с собой в путешествие? Придумайте формулу для предсказания. Проинтерпретируйте каждый коэффициент в ней.
- г) Сколько шашлыка брать на дачу? Как выглядит формула?
- д) Сколько брать шашлыка, если есть друг-вегетарианец? Как можно назвать этого друга в терминах машинного обучения? Испортит ли вегетарианец формулу?

Было бы удобно иметь формулу под каждую проблему на свете. Но взять те же цены на автомобили: кроме пробега есть десятки комплектаций, разное техническое состояние, сезонность спроса и ещё столько неочевидных факторов, которые Олег, даже при всём желании, не учёл бы в голове.

Предположим, Олег хочет купить автомобиль и считает, сколько денег ему нужно для этого накопить 1. Он пересмотрел десяток объявлений в интернете и увидел, что новые автомобили стоят около 20000, годовалые — примерно 19000, двухлетние — 18000 и так далее. В уме Олег-аналитик выводит формулу: адекватная цена автомобиля начинается от 20000 и падает на 1000 каждый год, пока не упрется в 10000. Олег сделал то, что в машинном обучении называют регрессией — предсказал цену по известным данным. Давайте попробуем повторить подвиг Олега.

а) Как выглядит формула в случае Олега?

20000 - 1000n

$$y = 20000 - 1000 x_1$$

 $x_1 \le 10$

б) За сколько продать старый айфон? Придумайте формулу для предсказания. Проинтерпретируйте каждый коэффициент в ней.

у – цена айфона (для которого мы прогнозируем)

X₁ – количество выпущенных после моделей

 X_2 — возраст модели

х₃ – битый или не битый – дамми-переменные

 $y = 70\ 000 - 20\ 000^*x_1 - 15\ 000^*x_2 - 24\ 000^*x_3$

Давайте попробуем совсем-совсем на пальцах почувствовать, как модели обучаются. Пусть у Хозяина мемов есть две переменные: х — возраст подписчика и у — число лайков, которое он оставил. Хозяин мемов хочет оценить регрессию $y = \beta \cdot x$, то есть он хочет попытаться пред- сказать число лайков по возрасту подписчика. Хозяин собрал два наблюдения для оценивания модели: $x_1 = 15$, $y_1 = 10$ и $x_2 = 22$, $y_2 = 2$.

Теперь хозяину надо подобрать коэффициент β так, чтобы ошибка прогноза, измеряемая с помощью MSE оказалась поменьше.

- 1. Пусть β = 1. Какие значения нам спрогнозирует модель? Какая у нее будет ошибка?
- 2. Пусть $\beta = 0.5$. Найдите прогнозы и ошибку модели.
- 3. Какое значение для β нам больше подходит? Как можно найти оптимальное β?

РЕШЕНИЕ

$$y = \beta \cdot x$$
,
 $x_1 = 15$, $y_1 = 10$ и $x_2 = 22$, $y_2 = 2$.

1. Пусть β = 1. Какие значения нам спрогнозирует модель? Какая у нее будет ошибка?

у	х	$\widehat{y}_i = 1^*x$	
10	15	15	(10-15)^2 = 25
2	22	22	$(2-22)^2 = 400$
			MSE = 425 / 2 = 212.5

2. Пусть β = 0.5. Найдите прогнозы и ошибку модели.

у	Х	$\widehat{y}_i = 0.5^*x$	
10	15	7.5	(10-7.5)^2 = 6.25
2	22	11	$(2-11)^2 = 81$
			MSE = 87.25 / 2 = 43.625

Для того чтобы решать задачу регрессии и прогнозировать что-нибудь, можно пытаться искать коэффициенты в уравнениях, которые мы выписывали выше. Это один из вариантов модели. Он называется линейной регрессией. Линейной, потому что мы пытаемся провести через облако точек линию. Можно пробовать оценивать и какие-то другие, более сложные, нелинейные модели. Например, можно построить регрессионное дерево. Было бы нечестно бросать вас не обучив ручками ни одной модели. Давайте обучим!

t	У
21	1
19	2
12	8
8	8

Миша работает в маленькой кофейне. Харио Малабар Монсун — фирменный напиток этой кофейни. Мише интересно узнать, как именно ведёт себя количество заказов напитка уі в зависимости от температуры за окном ti. Четыре дня Миша записывал свои наблюдения:

Сегодня он решил обучить регрессионное дерево. В качестве функции потерь он использует

$$MSE = \frac{1}{\ell} \sum_{i=1}^{\ell} (y_i - \widehat{y}_i)^2$$

- а) Обучите регрессионное дерево.
- б) Какой прогноз на сегодня сделает дерево Миши, если за окном 13 градусов?
- в) Можно ли для обучения дерева использовать МАЕ?

ЧТО ТАКОЕ РЕГРЕССИОННОЕ ДЕРЕВО

Модель регрессии. Такая же, как и линейная регрессия.

Востанавливают не линию, а кусочно-непрерывную функцию

1) Задаем вопросы по фиче:

правда ли, что признак > порога?

- 1) Задаем вопросы по фиче: правда ли, что признак > порога?
- 2) Делим данные на две части.

Прогноз в каждой ветке – это среднее значение всех элементов, попавших в эту ветку

3) Улучшаем прогнозы, «углубляем» дерево дальше, задавая вопросы

- 3) »Углубляем» дерево дальше, задавая вопросы
- 4) И до победного, пока не уткнемся в какой-либо критерий останова

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

L	У
21	1
19	2
12	8
8	8

$$\hat{y} = \frac{1}{4}(1+2+8+8) = 3.75$$

t	у	$\hat{\mathbf{y}}$	$y - \hat{y}$	$(y-\hat{y})^2$
21	1	3.75	-2.75	7,5625
19	2	3.75	-1.75	3,0625
12	8	3.75	4.25	18,0625
8	8	3.75	4.25	18,0625

$$MSE = \frac{1}{4}(7.5625 + 3.025 + 18.0625 + 18.0625) =$$

$$= 11.6875$$

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

t	У
21	1
19	2
12	8
8	8

$$\hat{y} = \frac{1}{3}(1+2+8) = 3.67$$

t	У
21	1
19	2
12	8
8	8

$$\hat{y} = \frac{1}{3}(1+2+8) = 3.67$$

t	У	$\hat{\mathbf{y}}$	$y - \hat{y}$	$(y-\hat{y})^2$
21	1	3,67	-2,7	7,11
19	2	3,67	-1,7	2,78
12	8	3,67	4,33	18,8
8	8	8	0	0

MSE = 7.17

t	У
21	1
19	2
12	8
8	8

$$\hat{y} = \frac{1}{2}(1+2) = 1.5$$

t	У	$\hat{\mathbf{y}}$	$y - \hat{y}$	$(y-\hat{y})^2$
21	1	0.75	-0,5	0,25
19	2	0.75	0,5	0,25
12	8	8	0	0
8	8	8	0	0

MSE = 0.125

t	У
21	1
19	2
12	8
8	8

$$\hat{y} = \frac{1}{3}(2 + 8 + 8) = 6$$

t	У	$\hat{\mathbf{y}}$	$y - \hat{y}$	$(y-\hat{y})^2$
21	1	1	1	1
19	2	6	-4	16
12	8	6	2	4
8	8	6	2	4

MSE = 6.25

t	У
21	1
19	2
12	8
8	8

$$\hat{y} = \frac{1}{4}(1+2+8+8) = 3.75$$

t	у	$\hat{\mathbf{y}}$	$y - \hat{y}$	$(y-\hat{y})^2$
21	1	3.75	-2.75	7,5625
19	2	3.75	-1.75	3,0625
12	8	3.75	4.25	18,0625
8	8	3.75	4.25	18,0625

$$MSE = \frac{1}{4}(7.5625 + 3.025 + 18.0625 + 18.0625) =$$

$$= 11.6875$$

РЕЙТИНГ ПОРОГОВ

порог	MSE	
7	11.6875	
9	7.17	
12	0.125	
20	6.25	
22	11.6875	

РЕЙТИНГ ПОРОГОВ

порог	MSE	
7	11.6875	
9	7.17	
12	0.125	
20	6.25	
22	11.6875	

РЕЙТИНГ ПОРОГОВ

ЕЩЕ ОДИН КРУГ

t	У	$\hat{\mathbf{y}}$	$y - \hat{y}$	$(y-\hat{y})^2$
21	1	1	0	0
19	2	2	0	0
12	8	8	0	0
8	8	8	0	0

MSE = 0

ИТОГОВОЕ ДЕРЕВО

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ