LIFE INSURANCE

What is Life Insurance?

Life Insurance can be termed as an agreement between the policy owner and the insurer, where the insurer for a consideration agrees to pay a sum of money upon the occurrence of the insured individual's or individuals' death or other event, such as terminal illness, critical illness or maturity of the policy.

Why to have a Life Insurance?

- Protection
- Liquidity
- Tax Relief
- Money when you need it

CANYOU MAKE BUYINGLIFE INSURANCE EASIER?

Dataset information: The dataset consists of roughly 59300 customers records and their 126 respective features and one target variable which describe the level of risk.

Data fields

Variable	Description		
Id	A unique identifier associated with an application.		
Product_Info_1-7	A set of normalized variables relating to the product applied for		
Ins_Age	Normalized age of applicant		
Ht	Normalized height of applicant		
Wt	Normalized weight of applicant		
BMI	Normalized BMI of applicant		
Employment_Info_1-	A set of normalized variables relating to the employment history		
6	of the applicant.		
InsuredInfo_1-6	A set of normalized variables providing information about the applicant.		
Insurance_History_1-A set of normalized variables relating to the insurance history of			
9	the applicant.		
Family_Hist_1-5	A set of normalized variables relating to the family history of the applicant.		
Medical_History_1- 41	A set of normalized variables relating to the medical history of the applicant.		
Medical_Keyword_1- 48	A set of dummy variables relating to the presence of/absence of a medical keyword being associated with the application.		
Response	This is the target variable, an ordinal variable relating to the final decision associated with an application		

Dataset Insight:

As BMI values are normalized so we can't take this value to decide the level of risk to company

Higher the medical record higher the risk to insurance company

Feature Engineering:

• Removing columns (Medical_History_10, Medical_History_24 and Medical_History_32) having missing values more than 90%.

	Total	Percent
Medical_History_10	58824	0.990620
Medical_History_32	58274	0.981358
Medical_History_24	55580	0.935990
Medical_History_15	44596	0.751015
Family_Hist_5	41811	0.704114
Family_Hist_3	34241	0.576632
Family_Hist_2	28656	0.482579
Insurance_History_5	25396	0.427679
Family_Hist_4	19184	0.323066

Label encoded

of only number

0

Feature Engineering:

10

D3

• There is a categorical variable called Product Info 2 which contains character and number. I had factorize the column and split the character and number, then create additional two columns with the extract character and number after factorization.

Label encoded

of column

Product Info 2 Product Info 2 label Product Info 2 char Product Info 2 num D3 0 0 0 0 A1 E1 2 2 2 3 D4 0 2 3 D2 3 4 0 D2 0 3 5 A8 5 D20 3 7 D3 0 0 8 E1 0

Label encoded of

only character

0

Feature Engineering:

• Created a new features by multiply the BMI column and Ins_Age column value because the product these two feature having same significant since & it is a useful feature for model to learn.

Product of BMI & Ins_Age columns

	вмі	Ins_Age	BMI_Age
0	0.323008	0.641791	0.207304
1	0.272288	0.059701	0.016256
2	0.428780	0.029851	0.012799
3	0.352438	0.164179	0.057863
4	0.424046	0.417910	0.177213
5	0.364887	0.507463	0.185166
6	0.376587	0.373134	0.140517
7	0.571612	0.611940	0.349792
8	0.362643	0.522388	0.189440
9	0.587796	0.552239	0.324604
10	0.521668	0.537313	0.280299

Feature Engineering:

• For the Medical_Keyword columns, it has 48 in totals and it is a set of dummy variables relating to the presence of/absence of a medical keyword being associated with the application. I added a column which sum all the counts of those dummy variables.

	Medical_counts
Med	_Keywords_Count
О	0
1	0
2	0
3	1
4	0
5	2
6	0
7	0
8	1
9	2
10	4

Sum of all 48

Machine Learning Model:

No.	Model	quadratic_weighted_kapp a
1	Logistic Regression	0.3092
2	XGBClassifier	0.6239
3	RandomForestClassifier	0.6995

Random Forest model is giving the best performance among the models considered and is used for the final prediction.

**XGBClassifier with GridSearchCV is overfitting the data.

GET INSURED

Thank You

