Section 15.2 - Boolean Algebra and Logic Circuits

Layer 1: Logic Gates

Syllabus Content Section 15: Hardware and Virtual Machines

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

${\mathscr O}$ S15.2.2 Show understanding of a flip-flop (SR, JK) ${\mathord{\vee}}$

- Draw a logic circuit and derive a truth table for a flip-flop
- Understand of the role of flip-flops as data storage elements

SR Latch

Characteristic Table

S(t)	R(t)	Q(t)	Q(t+1)	Condition
0	0	0	0	No Change
0	0	1	1	No Change
0	1	0	0	Reset
0	1	1	0	Reset
1	0	0	1	Set
1	0	1	1	Set
1	1	0	-	Not Defined
1	1	1	-	Not Defined

JK Flip-Flop

Characteristic Table

S(t)	R(t)	Q(t)	Q(t+1)	Condition
0	0	0	0	No Change
0	0	1	1	No Change

S(t)	R(t)	Q(t)	Q(t+1)	Condition
0	1	0	0	Reset
0	1	1	0	Reset
1	0	0	1	Set
1	0	1	1	Set
1	1	0	1	Toggle
1	1	1	0	Toggle

- Understand De Morgan's laws.
- Perform Boolean algebra using De Morgan's laws.
- Simplify a logic circuit/expression using Boolean algebra

Unit Property	$x+\overline{x}=1$
Zero Property	$x\overline{x}=0$
Double Complement	$\overline{\overline{x}} = x$
Idempotent Laws	$egin{aligned} x+x&=x\ x\cdot x&=x \end{aligned}$
Identity Laws	$egin{aligned} x+0 &= x \ x\cdot 1 &= x \end{aligned}$
Domination Laws	$egin{aligned} x+1&=1\ x\cdot 0&=0 \end{aligned}$
Commutative laws	$egin{aligned} x+y&=y+x\ x\cdot y&=y\cdot x \end{aligned}$
Associative laws	$x+(y+z)=(x+y)+z \ x\cdot (y\cdot z)=(x\cdot y)\cdot z$
Distributive laws	$x+(y\cdot z)=(x+y)\cdot(x+z) \ x\cdot(y+z)=x\cdot y+x\cdot z$
Absorption laws	$egin{aligned} x\cdot(x+y) &= x & x+x\cdot y &= x \ x\cdot(\overline{x}+y) &= x\cdot y & x+\overline{x}\cdot y &= x+y \end{aligned}$

$x+\overline{x}=1$
$egin{aligned} x\cdot y+\overline{x}\cdot z+y\cdot z&=x\cdot y+\overline{x}\cdot z\ (x+y)\cdot (\overline{x}+z)\cdot (y+z)&=(x+y)\cdot (\overline{x}+z) \end{aligned}$
$\overline{x\cdot y}=\overline{x}+\overline{y}$, $\overline{x+y}=\overline{x}\cdot \overline{y}$

${\hspace{-0.01cm}/}{\hspace{-0.01cm}^{\hspace{-0.01cm}\hspace{-0.01cm}}}$ S15.2.4 Show understanding of Karnaugh maps (K-map) ${\hspace{-0.01cm}\vee}$

• Understand of the benefits of using Karnaugh maps Solve logic problems using Karnaugh maps

3-VARIABLE KARNAUGH MAP

A BC	00	01	11	10
0	ĀBC	ĀĒC	ĀBC	ĀBĒ
1	ABC	ABC	ABC	ĀBĒ

4-VARIABLE KARNAUGH MAP

AB CD	00	01	11	10
00				
01				
11				
10				

5-VARIABLE KARNAUGH MAP

AB CDE	000	001	011	010	110	111	101	100
00								
01								
11								
10								

CELL ADJACENCY

AB CDE	000	001	011	010	110	111	101	100
00								
01		Α						
11								
10								В

MAPPING A STANDARD SOP EXPRESSION

A BC	00	01	11	10	Ā <u>B</u> C — 000	+	ĀBC 001	+	ABC 110	+	ABC 100
0	1	1 🔫									
1	1			1 🗲							

MAPPING A NONSTANDARD SOP EXPRESSION

A BC	00	01	11	10	A 100	+ ĀB 	+ ĀBĒ 010
0	1	1 😽		1 🗲	—101 —111	001	
1	1	1	1	1	 110		