

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В. Ломоносова

Суперкомпьютерное моделирование и технологии

Отчет по заданию №4 «Задача для трёхмерного гиперболического уравнения в прямоугольном параллелепипеде»

Вариант №1

студент 628 группы Гугучкин Егор Павлович

1. Математическая постановка задачи

В трехмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z]$$

для $0 \le t \le T$ требуется найти решение u(x, y, z, t) уравнения в

частных производных $\frac{\partial^2 u}{\partial t^2} = \Delta u$ с начальными условиями

$$u(t = 0) = \phi(x, y, z)$$

$$\frac{\partial u}{\partial t}(t = 0) = 0$$

$$u(0, y, z, t) = 0$$

$$u(L_x, y, z, t) = 0$$

$$u(x, 0, z, t) = 0$$

$$u(x, L_y, z, t) = 0$$

$$u(x, y, 0, t) = u(x, y, L_z, t)$$

$$u_z(x, y, 0, t) = u_z(x, y, L_z, t)$$

2. Численный метод решения задачи

Введем на
$$\Omega$$
 сетку $\omega_{h\tau}=\overline{\omega_h}\,\times\,\omega_{\tau}$, где $T=T_0$,
$$L_x=L_{x0}, L_y=L_{y0}, L_z=L_{z0},$$
 $\overline{\omega_h}=\big\{\big(x_i=ih_x,y_j=jh_y,z_k=kh_z\big),i,j,k=\overline{0,N},h_xN=L_x,h_yN=L_y,h_zN=L_z\big\},$
$$\omega_{\tau}=\{t_n=n\tau,n=\overline{0,K},\tau K=T\}$$

Через ω_h обозначим множество внутренних, а через γ_h – множество граничных узлов сетки $\overline{\omega_h}$.

Для аппроксимации исходного уравнения воспользуемся следующей системой уравнений:

$$\frac{u_{i,j,k}^{n+1} - 2u_{i,j,k}^n + u_{i,j,k}^{n-1}}{\tau^2} = \Delta_h u^n, (x_i, y_i, z_i) \in \omega_h, n = \overline{1, K - 1}$$

Здесь Δ_h — семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Приведенная выше разностная схема является явной — значения $u_{i,j,k}^{n+1}$ на (n+1)-ом шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета должны быть заданы значения:

$$u_{i,j,k}^{0}, u_{i,j,k}^{1}, (x_{i}, y_{i}, z_{i}) \in \omega_{h}:$$

$$u_{i,j,k}^{0} = \phi(x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i}) \in \omega_{h}$$

$$u_{i,j,k}^{1} = u_{i,j,k}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \phi(x_{i}, y_{i}, z_{i})$$

$$u_{i,j,0}^{n+1} = u_{i,j,N}^{n+1}$$

$$u_{i,j,1}^{n+1} = u_{i,j,N+1}^{n+1}$$

$$i, j, k = \overline{0, N}$$

3. Программная реализация

Реализовано две версии программы: последовательная и параллельная с использованием MPI +OpenMP. В качестве входных аргументов задаются следующие переменные: N — количество точек сетки вдоль одной оси, L — длина сетки вдоль одной оси, *filename* — имя выходного файла. На выходе программа выводит N, число MPI-процессов и погрешность полученного решения.

Параллельная версия программы выполнена следующим образом:

- 1. Сетка разделяется на *size* блоков, где *size* число MPI- процессов. Каждому процессу выделяется свой блок.
- 2. Процессы находят ранги процессов-соседей и вычисляют координаты границ блока.
- 3. Процессы вычисляют u_0 и u_1 для своего блока.
- 4. Процессы вычисляют u_i и обмениваются граничными значениями.
- 5. Итоговая погрешность редуцируется с помощью оператора MPI Reduce.

4. Результаты расчетов

MPI+OpenMP (128 нитей) программа; L = 1; сравнение с 1процессной последовательной программой

Число МРІ-	Число точек	Время решения Т	Ускорение <i>S</i>	Погрешность σ
процессов N_p	сетки <i>N</i> ³			
1	256^{3}	61,881	1,000	5.9588e-08
2	256^{3}	29,396	2,105	5.9588e-08
4	256^{3}	15,453	4,005	5.9588e-08
6	256^{3}	11,798	5,245	5.9588e-08
1	512 ³	80,990	1,000	3.96013e-09
2	512 ³	181,983	0,445	3.96013e-09
4	512 ³	121,522	0,666	3.96013e-09
6	512 ³	67,1751	1,206	3.96013e-09

MPI+OpenMP (128 нитей) программа; L = π; сравнение с 1процессной последовательной программой

Число МРІ-	Число точек	Время решения Т	Ускорение <i>S</i>	Погрешность σ
процессов N_p	сетки <i>N</i> ³			
1	256^{3}	62,084	1,000	7.3784e-09
2	256^{3}	27,47	2,260	7.3784e-09
4	256^{3}	15,3425	4,047	7.3784e-09
6	256^{3}	10,0954	6,150	7.3784e-09
1	512 ³	81,881	1,000	1.73213e-09
2	512 ³	172,148	0,476	1.73213e-09
4	512 ³	89,3822	0,916	1.73213e-09
6	512 ³	68,823	1,190	1.73213e-09

MPI+CUDA программа; L = 1; сравнение с 1-процессной последовательной программой

Число МРІ-	Число точек	Время решения Т	Ускорение <i>S</i>	Погрешность σ
процессов N_p	сетки <i>N</i> ³			_
1	256^{3}	61,881	1,000	5.9588e-08
2	256^{3}	2,095	29,538	5.9588e-08
4	256^{3}	0,727	85,124	5.9588e-08
6	256^{3}	0,710	87,181	5.9588e-08
1	512 ³	80,990	1,000	3.96013e-09
2	512 ³	7,152	11,325	3.96013e-09
4	512 ³	2,501	32,381	3.96013e-09
6	512 ³	3,097	26,148	3.96013e-09

MPI+CUDA программа; L = π; сравнение с 1-процессной последовательной программой

Число МРІ-	Число точек	Время решения Т	Ускорение <i>S</i>	Погрешность σ
процессов N_p	сетки <i>N</i> ³			_
1	256^{3}	62,084	1,000	7.3784e-09
2	256^{3}	2,53	24,562	7.3784e-09
4	256^{3}	0,47	132,299	7.3784e-09
6	256^{3}	0,672	92,363	7.3784e-09
1	512 ³	81,881	1,000	1.73213e-09
2	512 ³	6,291	13,015	1.73213e-09
4	512 ³	3,307	24,757	1.73213e-09
6	512 ³	3,147	26,018	1.73213e-09

5. Выводы

По полученным результатам, можно сделать вывод, что обе реализации: MPI+OpenMP(128 нитей) и MPI+CUDA имеют потенциал для распараллеливания. Для MPI+OpenMP(128 нитей) выгодно использовать 4 и более MPI-процесса, так как при низком числе MPI-процессов, последовательная реализация оказывается быстрее. Реализация MPI+CUDA на полученных данных достигает наибольшего ускорения при 4, 6 MPI-процессов. Если сравнивать обе реализации между собой, то MPI+CUDA лучше распараллеливается по сравнению с MPI+OpenMP(128 нитей).