Příklad 28. Řešte metodou střelby Blasiovu rovnici mezní vrstvy

$$y''' + yy'' + \lambda (1 - y'^2) = 0$$
, kde $x \in (0, 10)$, $\lambda \in (0, 0.5)$
 $y(0) = y'(0) = 0$, $y'(10) = 1$

Nejprve musíme diferenciální rovnici třetího řádu rozložit na čtyři obyčejné diferenciální rovnice prvního řádu. To provedeme substitucemi:

$$y = z^{(0)}(x), \quad y' = z^{(1)}(x) = \frac{\mathrm{d}z^{(0)}}{\mathrm{d}x}, \quad y'' = z^{(2)}(x) = \frac{\mathrm{d}z^{(1)}}{\mathrm{d}x}, \quad y''' = z^{(3)}(x) = \frac{\mathrm{d}z^{(2)}}{\mathrm{d}x}$$
 (1)

Dosazením 1 do původní rovnice pak získáváme soustavu differenciálních rovnic prvního řádu:

$$z^{(0)}(x) = y$$

$$z^{(1)}(x) = \frac{dz^{(0)}}{dx}$$

$$z^{(2)}(x) = \frac{dz^{(1)}}{dx}$$

$$z^{(3)}(x) = \frac{dz^{(2)}}{dx} = -\lambda \left(1 - z^{(1)^2}\right) - z^{(2)}z^{(0)}$$
(2)

Počáteční podmínky se převedou na $z^{(0)}(0) = 0$ a $z^{(1)}(0) = 0$ a koncová podmínka na $z^{(1)}(10) = 1$.

Tuto soustavu budeme vnímat jako vektorovou funkci od x, a definujeme $\vec{f}(x)$ jako její derivace konkrétně

$$\vec{Z}(x) = \begin{pmatrix} z^{(0)}(x) \\ z^{(1)}(x) \\ z^{(2)}(x) \\ z^{(3)}(x) \end{pmatrix}, \quad \vec{f}\left(x, \vec{Z}\right) = \begin{pmatrix} \frac{\mathrm{d}z^{(0)}}{\mathrm{d}x} |_{x, \vec{Z}} \\ \frac{\mathrm{d}z^{(1)}}{\mathrm{d}x} |_{x, \vec{Z}} \\ \frac{\mathrm{d}z^{(2)}}{\mathrm{d}x} |_{x, \vec{Z}} \\ \frac{\mathrm{d}z^{(3)}}{\mathrm{d}x} |_{x, \vec{Z}} \end{pmatrix}$$
(3)

Numerické řešení budeme provádět jednosměrnou metodou střelby z bodu $x_0 = \vec{0}$ a řešení diferenciálních rovnic s pokusnými parametry Rundge-Kutta metodou čtvrtého řádu tedy:

$$\vec{k}_{1} = h \cdot \vec{f} \left(x_{n}, \vec{Z}(x_{n}) \right)$$

$$\vec{k}_{2} = h \cdot \vec{f} \left(x_{n} + \frac{h}{2}, \vec{Z}(x_{n}) + \frac{\vec{k}_{1}}{2} \right)$$

$$\vec{k}_{3} = h \cdot \vec{f} \left(x_{n} + \frac{h}{2}, \vec{Z}(x_{n}) + \frac{\vec{k}_{2}}{2} \right)$$

$$\vec{k}_{4} = h \cdot \vec{f} \left(x_{n} + h, \vec{Z}(x_{n}) + \vec{k}_{3} \right)$$
(4)

kde finální tvar odhadu $\vec{Z}(x_{n+1})$ je

$$\vec{Z}(x_{n+1}) = \vec{Z}(x_n) + \frac{1}{6} \left(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4 \right)$$
 (5)

Pro dopředný chod potřebujeme čtyři parametry v počátečním bodě a ty vezmeme jako

$$\vec{Z}(0) = \begin{pmatrix} z^{(0)}(0) \\ z^{(1)}(0) \\ z^{(2)}(0) \end{pmatrix}$$
 (6)

tedy s našimi počátečními podmínkami hledáme v parametrickém prostoru

$$\vec{Z}(0) \in \left(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) \tag{7}$$

Koncový bod potom musí splňovat podmínku

$$\vec{Z}(10) \in \begin{pmatrix} 0\\1\\0 \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \end{pmatrix}_{\lambda} \tag{8}$$