佛山科学技术学院

实 验 报 告

课程名标	尔	电工电子	子技术				
实验项目	1	集成计数器及	_				
专业班级	及	22 物联网工程 2 到	生姓名		_学 号		
指导教师	帀	李小华	成绩_		_日期_	2023-11-29	

一、实验目的

- 1. 熟悉中规模集成电路计数器的功能及应用。
- 2. 了解数字电路实验箱中的译码显示功能。

二、实验原理

74LS90 是异步二-五-十进制计数器。其外引线排列如图 6-1 所示,逻辑图如图 6-2 所示。它的内部由两个计数电路组成,一个为二进制计数电路,计数脉冲输入端为 CP_0 ,输出端为 Q_0 ; 另一个为五进制计数电路,计数脉冲输入端为 CP_1 ,输出端为 Q_1 、 Q_2 、 Q_3 。这两个计数器可独立使用。当将 Q_0 连到 CP_1 时,可构成十进制计数器。74LS90 具有复"0"输入端 R_{01} 和 R_{02} ,并有复"9"输入端 S_{91} 和 S_{92} 。如果输入端 R_{01} 和 R_{02} 皆为高电平时,计数器复"0"; S_{91} 和 S_{92} 皆为高电平时,计数器复"9"。计数时 R_{01} 和 R_{02} 其中之一或者同时接低电平,并要求 S_{91} 和 S_{92} 其中之一或者同时接低电平。

图 6-1 74LS90 引脚排列图

图 6-2 74LS90 逻辑图

- 1、计数器的级连
- (1)、将二、五进制计数器级连为十进制计数器

(A) 十进制

(B) 二一五混合进制

图 6-3 由 74LS90 构成的两种十进制计数器

利用 74LS90 自有的二进制计数器和五进制计数器,通过级连可实现十进制计数。图 6-3(A)、(B) 所示为两种典型的连接方法。

(2) 任意进制计数器设计方法。

采用脉冲反馈法(也称复位法或置位法),可用 74LS90 组成任意模(M)计数器。图 6-4 是用 74LS90 实现模 7 计数器的两种方案。左图采用复位法,即计数计到 M 时异步清零。右图采用置位法,即计数计到 M-1 时异步置 0。

图 6-4 利用 74LS90 实现七进制计数的方法

图 6-5 四十五进制

将多片 74LS90 级连可实现十以上进制计数。图 6-5 是实现四十五进制计数的一种方案。

三、实验设备与器件

1、数字电路学习机

2、器件: 74LS90 74LS08

四、实验内容

1、测试 74LS90 异步二一五一十进制计数器的逻辑功能

计数脉冲由单次脉冲源提供,置9端、置0端分别接逻辑电平开关,四个输出端接逻辑电平显示。按如下逐项测试并判断该集成块的功能是否正常。

- "1"代表高电平, "0"代表低电平
- "×"表示任意, "↓"表示高到低电平跳变
- 1、 测试运用集成计数器 74LS90 构成二一五混合进制、十进制计数器的逻辑功 能。

3、任意进制计数器的设计

- (1)、用 74LS90 实现 8421 码六进制计数器,画出电路图并将输出接到显示器上验证,自拟 实验数据表并填写之。
 - *(2)、设计一个六十进制计数器,画出电路图将输出端接到数码显示器的相应输入端,用 单脉冲作为输入脉冲验证设计是否正确。

五、实验结果与数据分析

表 6-1

		输	输出						
R_{01}	R_{02}	S_{91}	S_{92}	СР	Q_3	Q_2	Q_1	(
								0	
1	1	0	×	×	L	L	L	I	
1	1	×	0	×	L	L	L	I	
0	×	1	1	×	Н	1	L	ŀ	
X	0	1	1	×	Н	L	L	I	
X	0	×	0	↓	计数				
0	×	0	×	↓	计数				
0	×	×	0	↓	计数				
×	0	0	×	↓	计数				

观察输出状态并记录,填表 6-2、 6-3。

表 6-2 二——五混合进制 表 6-3 十进制

计		斩	前 出	1	计	输出			
数	Q_0	Q_3	\mathbb{Q}_2	Q_1	数	\mathbb{Q}_3	\mathbb{Q}_2	Q_1	Q_0
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	1
2	0	0	1	0	2	0	0	1	0
3	0	0	1	1	3	0	0	1	1
4	0	1	0	0	4	0	1	0	0
5	0	1	0	1	5	0	1	0	1

6	0	1	1	0	6	0	1	1	0
7	0	1	1	1	7	0	1	1	1
8	1	0	0	0	8	1	0	0	1
9	1	0	0	1	9	1	0	1	0

六、讨论分析(完成指定的思考题和作业题)

使用计数器的体会是,计数器是一种非常有用的数字电路元件,可以用于各种计数和计时应用。通过适当的配置和控制,计数器可以实现不同进制的计数,如二进制、十进制、二-五混合进制等。

在实验中,我们使用了 74LS90 异步二-五-十进制计数器进行了功能测试,并观察了其输出状态。通过逐项测试不同输入组合,我们可以验证计数器的逻辑功能是否正常。这样的测试有助于我们了解计数器的工作原理和正确使用方式。

此外,我们还设计了六进制计数器和六十进制计数器的电路,并将其连接到数码显示器上进行验证。这样的实验展示了计数器的灵活性,可以根据需要实现不同进制的计数。

总的来说,使用计数器的体会是它们是一种强大的工具,可以用于各种计数和计时任务。通过了解 计数器的功能和正确配置,我们可以实现所需的计数模式,并将其应用于各种电子系统和实验中。 计数器的使用可以提高系统的控制和计算能力,为我们提供更多的灵活性和功能性。

七、改进实验建议

- 1. 扩展功能测试:除了测试 74LS90 异步二-五-十进制计数器的基本逻辑功能外,您可以进一步测试其他功能,例如复位功能、设置功能和计数脉冲源的频率范围等。这样可以更全面地评估计数器的性能和功能。
- 2. 比较不同型号的计数器:除了使用 74LS90 计数器,您可以尝试使用其他型号或不同技术的计数器进行比较。不同型号的计数器可能具有不同的特性和性能,通过比较它们,您可以更好地理解计数器的差异和适用范围。
- 3. 实际应用示例:在实验中,您可以引入一些实际应用示例,例如使用计数器设计简单的计时器或频率计算器。这样可以将实验与实际应用场景联系起来,增加实验的实用性和趣味性。

实验完成的签名

注: 实验报告的内容: 一、实验目的; 二、实验原理; 三、实验仪器及材料; 四、实验操作步骤与实验现象解释; 五、实 验结果与数据分析; 六、讨论分析(完成指定的思考题和作业题); 七、改进实验建议。

