CS3230

Tutorial 9

- 1. Compute the longest common subsequence of
 - (a) SLWOVNNDK and ALWGQVNBBK.

Ans: LWVNK

(b) AGCGATAGC and ACAGATGAG

Ans: ACGATAG

2. Show that if X and Y are two sequences starting with a, then the longest common subsequence of X and Y starts with an a.

Ans: Consider any longest common subsequence of X and Y, say $s_1s_2...s_k$. Then, for some $1 \le r_1 < r_2 < ... < r_k \le |X|$ and for some $1 \le r'_1 < r'_2 < ... < r'_k \le |Y|$, $s_i = X[r_i] = Y[r'_i]$. If $s_1 \ne a$, then $r_1 > 1$ and $r'_1 > 1$. But then $as_1s_2...s_k$ is also a common subsequence of X and Y which is of length greater than k. A contradiction.

- 3. Give a counterexample to the following claims:
 - (a) If X = X[1] ... X[m] and Y = Y[1] ... Y[n], and $X[m] \neq Y[n]$, then the longest common subsequence of X and Y must end in either X[m] or Y[n].

Ans: Let X = abac and Y = abab.

(b) If X = X[1] ... X[m] and Y = Y[1] ... Y[n], and $X[m] \neq Y[n]$, then the longest common subsequence of X and Y must not end with either X[m] or Y[n].

Ans: Let X = abbc and Y = abab.

4. Consider the following problem:

A relation on a set A is a subset of $A \times A$.

A relation T is called transitive if the following holds for all $a, b, c \in A$:

if
$$(a, b) \in T$$
 and $(b, c) \in T$, then $(a, c) \in T$.

A relation T is called a transitive closure of a relation R on a set A if it is the smallest relation (on A) which is a superset of R and is transitive. In other words, (a, b) is in T iff there exist b_1, b_2, \ldots, b_k such that, $a = b_1, b = b_k$, and $(b_1, b_2), (b_2, b_3), (b_3, b_4), \ldots, (b_{k-1}, b_k)$ are all in R (here k may be equal to 2).

Give a dynamic programming algorithm to compute transitive closure T of a relation R, given the relation R as a matrix.

Ans: Suppose B is the matrix giving the relation R over the set $A = \{1, 2, ..., n\}$. Then, consider the following algorithm:

```
For k=1 to n { For i=1 to n { For j=1 to n { A[i,j]=A[i,j] \text{ or } (A[i,k] \text{ and } A[k,j]). } }
```

5. (a) A Chomsky Normal Form grammar G is of the form $G = (\Sigma, V, S, \delta)$, where Σ is the alphabet set, V is a set of non-terminals (where $V \cap \Sigma = \emptyset$), $S \in V$ is a starting symbol and δ is a set of productions of the form:

$$A \to BC$$
 or $A \to a$, where

 $A, B, C \in V$ and $a \in \Sigma$ is a terminal.

In the following α, β, γ, w are strings in $(\Sigma \cup V)^*$.

- (b) We say that $\alpha A\beta \Rightarrow_G \alpha w\beta$, where $A \to w$ is a production in G (that is member of δ).
- (c) We say that $\alpha \Rightarrow_G^* \beta$ if one of the following holds: (i) $\alpha = \beta$, (ii) $\alpha \Rightarrow_G \beta$ or (iii) for some γ , $\alpha \Rightarrow_G \gamma$ and $\gamma \Rightarrow_G^* \beta$.
- (d) We say that $L(G) = \{w : w \in \Sigma^* \text{ and } S \Rightarrow_G^* w\}.$

Given a Chomsky Normal Form grammar G, give a dynamic programming algorithm to determine if a string $w \in \Sigma^*$ is a member of L(G).

Ans: Suppose $w = w_1 w_2 \dots w_n$.

For $1 \le i \le j \le n$, let $X_{i,j}$, be the set of nonterminals A such that $A \Rightarrow_G^* w_i w_{i+1} \dots w_j$.

Then, $A \in X_{i,i}$, iff $A \to w_i$ is a production in the grammar.

For $1 \le i < j \le n$, $A \in X_{i,j}$, iff $A \to BC$ and $B \in X_{i,k}$, $C \in X_{k+1,j}$, for some k such that $i \le k < j$.

Then, finally $w \in L(G)$ iff $S \in X_{1,n}$.

To compute $X_{i,j}$, one can compute them in order of increasing difference j-i.

- 1. For i = 1 to n, let $A \in X_{i,i}$, iff $A \to w_i$ is a production.
- 2. For r = 1 to n 1 {

 For i = 1 to n r {

 Let j = i + r.

 Let $X_{i,j} = \emptyset$.

 For k = i to j 1 {

For each production $A \to BC$ in the grammar do, {