

RF TEST REPORT

Applicant Kizy Tracking SA

FCC ID 2AGPEWT2

Product Tracker

Model K-2

Report No. R1903A0135-R1

Issue Date April 25, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2018)/ FCC CFR 47 Part 24E (2018). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

Report No: R1903A0135-R1

1. Test Laboratory	
1.1. Notes of the test report	
1.2. Test facility	
1.3. Testing Location	
2. General Description of Equipment under Test	6
3. Applied Standards	<u>7</u>
4. Test Configuration	
5. Test Case Results	
5.1. Radiates Spurious Emission	9
6. Main Test Instruments	14
ANNEX A: EUT Appearance and Test Setup	15
A.1 EUT Appearance	15
A.2 Test Setup	
ANNEX B: Product Change Description	18

Summary of measurement results

No.	Test Case	Clause in FCC rules	Verdict			
1	RF power output	2.1046	Refer to the Original			
2	Effective Isotropic Radiated power	24.232(c)	Refer to the Original			
3	Occupied Bandwidth	2.1049	Refer to the Original			
4	Band Edge Compliance	2.1051 /24.238(a)	Refer to the Original			
5	Peak-to-Average Power Ratio	24.232/KDB 971168 D01(5.7)	Refer to the Original			
6	Frequency Stability	2.1055 / 24.235	Refer to the Original			
7	Spurious Emissions at Antenna Terminals	2.1051 / 24.238(a)	Refer to the Original			
8	Radiates Spurious Emission	2.1053 / 24.238(a)	PASS			
	Note: PASS: The EUT complies with the essential requirements in the standard. FAIL: The EUT does not comply with the essential requirements in the standard.					

Date of Testing: April 26, 2019

K-2 (Report No: R1903A0135-R1) is a variant model of K-2 (Report No: RXA1712-0426RF02R2). Test values partial duplicated from Original for variant. WCDMA II was selected as the worst condition. There is only tested Radiates Spurious Emission of WCDMA II for variant in this report. The detailed product change description please refers to the ANNEX B.

FCC RF Test Report

Report No: R1903A0135-R1

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

CNAS (accreditation number: L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Address:

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

2. General Description of Equipment under Test

Client Information

Applicant	Kizy Tracking SA
Applicant address	Maladiere 71c Neuchatel Switzerland 2002
Manufacturer	Xavi (Suzhou) Technologies CO., LTD.
Manufacturer address	No. 108# Huahong Rd., Wujiang , Suzhou , JiangSu
Manufacturer address	Province, China

General information

EUT Description					
Model	K-2				
IMEI	/				
Hardware Version	WT2-N V0.2C				
Software Version	WT2_linux_350				
Power Supply	Battery				
Antenna Type	Internal Antenna				
Antenna Gain	-4.00dBi				
Test Mode(s)	GSM1900; WCDMA Ban	d II;			
Test Modulation	(GSM)GMSK,8PSK; (WCDMA)QPSK;				
Rated Power Supply	3.7V				
Voltage	0.7 V				
Extreme Voltage	Minimum: 3.6V Maximu	m: 4.2V			
Extreme Temperature	Lowest: 0°C Highest: +	-55°C			
Operating Fraguency	Band	Tx (MHz)	Rx (MHz)		
Operating Frequency Range(s)	GSM1900	1850 ~ 1910	1930 ~ 1990		
rtange(3)	WCDMA Band II	1850 ~ 1910	1930 ~ 1990		
	EUT Accessory				
	Manufacturer: Guangdong	Power-Tech New P	Power Co.,Ltd.		
Battery	Model: PT503450				
	Power Rating: DC 3.7V, 900mAh, 3.33Wh				
USB Cable	32.5cm, shielded				
Note: 1. The information of th	e EUT is declared by the ma	anufacturer.			

TA Technology (Shanghai) Co., Ltd. TA-MB-05-002R Page 6 of 25

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC CFR47 Part 2 (2018)

FCC CFR 47 Part 24E (2018)

ANSI C63.26 (2015)

KDB 971168 D01 Power Meas License Digital Systems v03r01

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, vertical polarization) and the worst case was recorded.

Test modes are chosen to be reported as the worst case configuration below:

Took itomo	Modes/Modulation
Test items	WCDMA Band II
Radiates Spurious Emission	RMC

5. Test Case Results

5.1. Radiates Spurious Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

- 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015).
- 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).
- A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=200Hz, VBW=600Hz for 9kHz150kHz, RBW=10kHz, VBW=30kHz 150kHz-30MHz, RBW=100kHz, VBW=300kHz for 30MHz to 1GHz and RBW=1MHz, VBW=3MHz for above 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 7. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

The measurement results are amend as described below:

Power(EIRP)=PMea- PcI + Ga

8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

Report No: R1903A0135-R1

The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration.

Test setup

9KHz ~ 30MHz

30MHz ~ 1GHz

Above 1GHz

Note: Area side: 2.4mX3.6m

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB.

Test Result

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report.

Report No: R1903A0135-R1

WCDMA Band II CH-Low

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3702.8	-54.17	5.10	11.05	Horizontal	-48.22	-13.00	35.22	135
3	5553.8	-45.56	5.42	12.65	Horizontal	-38.33	-13.00	25.33	90
4	7409.6	-56.71	6.70	13.85	Horizontal	-49.56	-13.00	36.56	135
5	9262.0	-54.97	7.01	14.75	Horizontal	-47.23	-13.00	34.23	45
6	11114.4	-53.87	7.48	15.95	Horizontal	-45.40	-13.00	32.40	225
7	12966.8	-44.39	7.51	16.55	Horizontal	-35.35	-13.00	22.35	90
8	14819.2	-51.51	8.24	15.35	Horizontal	-44.40	-13.00	31.40	180
9	16671.6	-52.55	8.41	14.95	Horizontal	-46.01	-13.00	33.01	135
10	-	-	-	-	-	-	-	-	-

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

WCDMA Band II CH-Middle

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3757.5	-52.88	5.10	11.05	Horizontal	-46.93	-13.00	33.93	270
3	5636.3	-47.38	5.42	12.65	Horizontal	-40.15	-13.00	27.15	135
4	7518.8	-56.21	6.70	13.85	Horizontal	-49.06	-13.00	36.06	45
5	9411.0	-56.25	7.01	14.75	Horizontal	-48.51	-13.00	35.51	270
6	11288.3	-54.05	7.48	15.95	Horizontal	-45.58	-13.00	32.58	135
7	13167.0	-50.14	7.51	16.55	Horizontal	-41.10	-13.00	28.10	225
8	14984.3	-52.84	8.24	15.35	Horizontal	-45.73	-13.00	32.73	90
9	16890.0	-50.47	8.41	14.95	Horizontal	-43.93	-13.00	30.93	180
10	-	-	-	-	-	-	-	-	-

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

2. The worst emission was found in the antenna is Horizontal position.

WCDMA Band II CH-High

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	3812.6	-52.45	5.10	11.05	Horizontal	-46.50	-13.00	33.50	0
3	5726.6	-37.92	5.42	12.65	Horizontal	-30.69	-13.00	17.69	45
4	7630.4	-55.24	6.70	13.85	Horizontal	-48.09	-13.00	35.09	270
5	9538.0	-52.07	7.01	14.75	Horizontal	-44.33	-13.00	31.33	135
6	11445.6	-51.55	7.48	15.95	Horizontal	-43.08	-13.00	30.08	45
7	13353.2	-47.93	7.51	16.55	Horizontal	-38.89	-13.00	25.89	270
8	15260.8	-53.27	8.24	15.35	Horizontal	-46.16	-13.00	33.16	135
9	17168.4	-51.59	8.41	14.95	Horizontal	-45.05	-13.00	32.05	90
10	-	-	-	-	-	-	-	-	-

Report No: R1903A0135-R1

Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor.

^{2.} The worst emission was found in the antenna is Horizontal position.

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Base Station Simulator	R&S	CMU200	118133	2018-05-13	2019-05-12
Power Splitter	Hua Xiang	SHX-GF2-2-13	10120101	/	/
Spectrum Analyzer	Key sight	N9010A	MY50210259	2018-05-20	2019-05-19
Universal Radio Communication Tester	Key sight	E5515C	MY48367192	2018-05-20	2019-05-19
Signal Analyzer	R&S	FSV30	100815	2018-12-16	2019-12-15
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-09-26	2019-09-25
Trilog Antenna	SCHWARZBECK	VUBL 9163	9163-201	2017-11-18	2019-11-17
Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06
Horn Antenna	ETS-Lindgren	3160-09	00102643	2018-06-20	2020-06-19
Signal generator	R&S	SMB 100A	102594	2018-05-20	2019-05-19
Climatic Chamber	ESPEC	SU-242	93000506	2017-12-17	2020-12-16
Preampflier	R&S	SCU18	102327	2018-05-20	2019-05-19
MOB COMMS DC SUPPLY	Keysight	66319D	MY43004105	2018-05-07	2019-05-06
RF Cable	Agilent	SMA 15cm	0001	2019-03-15	2019-06-14
Software	R&S	EMC32	9.26.0	/	/

*****END OF REPORT *****

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

a: EUT

b:USB Cable **Picture 1 EUT and Accessory**

FCC RF Test Report Report No: R1903A0135-R1

Test Setup

30MHz ~ 1GHz

Above 1GHz Picture 2 Radiated Spurious Emissions Test setup

ANNEX B: Product Change Description

Kizy Tracking SA rue de la Maladière 71C, 2000 Neuchatel, Switzerland

K-2 Difference statement

K-2 modified:

Appearance change:
 There are no changes in the material, only the appearance changes: as shown below

Kizy Tracking SA

rue de la Maladière 71C, 2000 Neuchatel, Switzerland

2. Modified PCBA(Modified K-2 For 0.2C PCB)

The following modifications and RF signals have no effect, that is, U6 (motion sensing chip) is removed, R18 is removed, D3 is removed, R32 & R24 is 0Ω , and R35, R36, R37, R38 are added, and R31, R33, R34, R6, R25 are added, R27 to confirm the hardware version.

1. Added 3 resistors to confirm the version,R31,R33,R34,

			Add pull low resistance to check HW Ver.
			MTK U402 I2S3_WS(G25),
			I2S3_BCK(F24),I2S3_DO(D25),
			PCB version, PULL HIGH100K Ω, VIO18_PMU,
1	WT2N	Hardware Ver. Control	with PULL LOW $100 \mathrm{K}\Omega$ to GND
			Actually the pieces are:
			U402_I2S3_WS(G25),PULL LOW
			U402_I2S3_BCK(F24),PULL LOW
			U402_I2S3_DO(D25),PULL LOW

Kizy Tracking SA rue de la Maladière 71C, 2000 Neuchatel, Switzerland

	WT2N	14.1 Carrier out 14.2 Carrier -	Add pull low resistance to shut down VBATT power	
2			Because it cannot be completely shut down, it must be 1.Q3' s G PIN parallel $10K\Omega$ to GND	
			2.Q160' s G PIN parallel 10K Ω to GND	
			3.Q5' s G PIN parallel 10 K Ω to GND	
			4.Q7's G PIN parallel $10K\Omega$ to GND	

Kizy Tracking SA rue de la Maladière 71C, 2000 Neuchatel, Switzerland

Kizy Tracking SA rue de la Maladière 71C, 2000 Neuchatel, Switzerland

RF: No Change

HW: 6 items As adove

SW: No Change

Company Name: Kizy Tracking SA

Signature: Bell Chang

Date:2019/03/22