

Number Theory 3: Modular Arithmetic

Erzhuo Wang July 20,2024

Youth STEM Academy

Modulus(同余)

Definition

Let n be a natural number. Two integers a and b are said to be equal modulo n(模 n 同余) if and only if n divides a - b. We write

$$a \equiv b \pmod{n}$$

Example

For example, $7 \equiv 1 \pmod{3}$, and $11 \equiv 2 \pmod{3}$. $2016 \equiv 0 \pmod{7}$.

Proposition

For any positive integer n, if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then

$$a \pm c \equiv b \pm d \pmod{n}$$

 $ac \equiv bd \pmod{n}$
 $a^k \equiv b^k \pmod{n}$, for any positive integer k

Proposition

If $am \equiv bm \pmod{n}$ and gcd(m, n) = 1, then $a \equiv b \pmod{n}$.

Theorem

For any integer $n, n^2 \mod 3$ or 4 can only be 0 or 1. For any integer $n, n^2 \mod 8$ can only be 0 or 1 or 4.

$$(4k+1)^2 \equiv 1 \pmod{4}, (4k+2)^2 \equiv 0 \pmod{4}$$
$$(4k+3)^2 \equiv 1 \pmod{4}, (4k)^2 \equiv 0 \pmod{4}$$
$$(1)^2 \equiv 1 \pmod{8}, (2)^2 \equiv 4 \pmod{8}, (3)^2 \equiv 1 \pmod{8}, (4)^2 \equiv 0 \pmod{8}$$
$$(5)^2 \equiv 1 \pmod{8}, (6)^2 \equiv 4 \pmod{8}, (7)^2 \equiv 1 \pmod{8}, (0)^2 \equiv 0 \pmod{8}$$

Rational roots of polynomial equation(有理根的判定)

Lemma

p is a prime, a, b are integers, p|ab, then either p|a or p|b.

Theorem

If $a_n, a_{n-1}, \ldots, a_0$ are integers, and if p and q are relatively prime integers where p/q is a solution of

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 = 0,$$

then, $p \mid a_0$ and $q \mid a_n$.

Divisibility Rules

If *n* is a natural number with m+1 digits $a_m, a_{m-1}, a_{m-1}, n = a_m \times 10^m + a_{m-1} \times 10^{m-1} + \dots + a_1 \times 10 + a_0$, then

- 2|n if and only if $2|a_0$.
- 3|n if and only if $3|(a_0 + a_1 + \cdots + a_m)$.
- 5|n if and only if $5|a_0$.
- 9|n if and only if $9|(a_0 + a_1 + \cdots + a_m)$.
- 11|n if and only if 11 | $(a_0 a_1 + a_2 \cdots + (-1)^m a_m)$.

base-ten representation of 19!

Question (难)

19! = 1216T510040M832H00, 则 T + M + H =

Exercise

- If $2^{100} = 5m + k$, where k and m are integers and $0 \le k \le 4$, then k is 2^{100} 除以 5 的余数是多少?
- What is the units digit of 3²⁰¹³?
 3²⁰¹³ 的个位数是多少?
- Consider the sequence $a_1 = 1, a_2 = 13, \ldots$, where each term a_n is obtained from the previous term a_{n-1} by appending the n^{th} odd number. So $a_3 = 135, a_4 = 1357$. Find the number m so that a_m is the 30th multiple of 9 in the sequence.

Exercise

- Consider the sum $1^2 + 2^2 + \cdots + 2012^2$. What is its last digit? $1^2 + 2^2 + \cdots + 2012^2$ 个位数是多少?
- Consider the 2700 digit number N = 100101102...999 obtained by listing all the three digit numbers in order. What is the remainder when N is divided by 11?

N = 100101102...999 除以 11 的余数是多少?

Homework

Question (AMC 8, 2020-19)

A number is called flippy if its digits alternate between two distinct digits. For example, 2020 and 37373 are flippy, but 3883 and 123123 are not. How many five-digit flippy numbers are divisible by 15? 如果一个数的各位数在两个不同的数字之间交替, 那么这个数就被称为翻转数. 例如,2020 和 37373 是翻转数, 而 3883 和 123123 不是翻转的。有多少个五位翻转数能被 15 整除?

Question

What is the tens digit of 2015²⁰¹⁶ — 2017? 2015²⁰¹⁶ — 2017 **的十位数是什么**?