Elementos de Álgebra

Aula 06: Matrizes Inversíveis

Profa Dra. Karla Lima

Sumário

- 1. Matrizes Inversíveis
- 2. Bibliografia

Matrizes Inversíveis

Definição 1: Seja A uma matriz quadrada de ordem n. Dizemos que A é **inversível** se existir uma matriz B tal que $AB = BA = I_n$.

Se A não é inversível, dizemos que A é uma matriz **singular**.

Teorema 1: Se A é inversível, então é única a matriz B tal que $AB = BA = I_n$.

Teorema 1: Se A é inversível, então é única a matriz B tal que $AB = BA = I_n$.

Demonstração:

- Suponha que exista outra matriz C tal que $AC = CA = I_n$.
- Como $X = I_n X = XI_n$, para toda matriz $X_{n \times n}$, temos:

$$C = I_n C = (BA)C = B(AC) = BI_n = B$$
,

e, portanto, C só pode ser a matriz B, mostrando a unicidade desejada.

Definição 2: Dada uma matriz inversível A, chama-se **inversa de** A a matriz A^{-1} (que é única) tal que $AA^{-1} = A^{-1}A = I_n$.

- Exemplo 1: A matriz $A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ é inversível e $A^{-1} = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix}$.
- **Exemplo 2:** Qual é a inversa da matriz $A = \begin{pmatrix} 3 & 7 \\ 5 & 11 \end{pmatrix}$?
- Exemplo 3: Mostre que a matriz $A = \begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$ é singular.

Clique no texto para ter acesso aos arquivos PDFs:

- Livro texto: IEZZI, Gelson. Fundamentos de matemática elementar: sequências, matrizes, determinantes e sistemas. São Paulo,SP: Atual, 2004. 232 p.,
- José Roberto Bonjorno et. al., Prisma matemática: sistemas, matemática financeira e grandezas.