

Uebungsblatt 03

Truong (Hoang Tung Truong), Testfran (Minh Kien Nguyen), Hamdash

Aufgabe 1

a. 1. $r_1 = (0+1)^*(010)(0+1)^*$ 2. $r_2 = (1)^*0(1)^*(01^*01^*)^*$ 3. $r_3 = (00)^*10(00)^*1(00)^*$ $+ (00)^*01(00)^*1(00)^*$ $+ (00)^*1(00)^*10(00)^*$ 4. $r_4 = (0^+ + 1^+0^*)(1 + 110^+)^*$ 5. $r_5 = w^*0(010)w^*$ $+ 0w^*(010)w^*$ $+ w^*(010)w^*$ $+ w^*(010)w^*0$ mit $w = (1^*01^*01^*)$ b. $r = \emptyset$ oder $r = \epsilon\emptyset$ oder $r = (\emptyset)^*$ oder $r = \emptyset a(\sqrt[4]{va} \in \Sigma)$

Aufgabe 2

Es befindet sich eine Fehler in Induktionsschritt

Wir betrachten den Fall n + 1 = 2 (also n = 1)

- 1. Annahme: Es existiert ein rosafarbenes Einhorn innerhalb den n+1 (2) Einhörner.
- 2. Annahme: Die ersten n Einhörner (also das erste Einhorn) ist rosa.

Aus den beiden Annahmen kann nicht geschlossen werden, dass das zweite Einhorn rosa sein muss.

Im Beweis wurde angenommen, dass wenn die ersten n Tiere (von ingesamt n+1 Tieren) Einhörner sind, dann gibt es in den letzten n Tieren mindestens ein Einhorn. Diese Annahme ist aber falsch für n=1.

Aufgabe 3

a.
$$\{((letter^+ := digit^+;)^*(letter^+ := digit^+))?\}$$

b.

Aufgabe 4

Aufgabe 5

- a. Ja. Alle drei Eigenschaften werden erfüllt:
- Reflexivität (R): $\forall a \in A: a \sim a \ (a \ \text{liegt im selben Bundesland wie} \ a)$
- Symmetrie (S): $\forall a_1, a_2 \in A : (a_1 \sim a_2 \Leftrightarrow a_2 \sim a_1)$ a_1 und a_2 liegen in selben Bundesland genau dann wenn a_2 und a_1 liegen in selben Bundesland

• Transitivität (T): $\forall a_1, a_2, a_3 \in A$: $(a_1 \sim a_2 \land a_2 \sim a_3 \Rightarrow a_1 \sim a_3)$

Wenn a_1 und a_2 liegen im selben Bundesland und a_2 und a_3 auch, dann liegen a_1 und a_3 im selben Bundesland

- b. Nein. Die Transitivität ist nicht erfüllt. Wenn m_1 m_2 kennt und m_2 m_3 kennt, gilt nicht unbedingt, dass m_1 m_3 kennt
- c. Nein. Die Symmetrie ist nicht erfüllt: Gegenbeispiel: $4 \le 5$ ist wahr aber $5 \le 4$ ist falsch
- d. Ja. Alle drei Eigenschaften sind erfüllt:
- R: $\forall (a,b) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ gilt: $ab ab = 0 \Leftrightarrow (a,b) \sim (a,b)$
- S: $\forall (a_1, b_1), (a_2, b_2) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ gilt: $(a_1, b_1) \sim (a_2, b_2)$ $\Leftrightarrow a_1b_2 - a_2b_1 = 0 \Leftrightarrow \frac{a_1}{b_1} - \frac{a_2}{b_2} = 0$ $\Leftrightarrow \frac{a_2}{b_2} - \frac{a_1}{b_1} = 0 \Leftrightarrow a_2b_1 - a_1b_2 = 0$ $\Leftrightarrow (a_2, b_2) \sim (a_1, b_1)$
- T: $\forall (a_1, b_1), (a_2, b_2), (a_3, b_3) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ $(a_1, b_1) \sim (a_2, b_2) \Leftrightarrow a_1b_2 - a_2b_1 = 0 \Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2}$ Analog $(a_2, b_2) \sim (a_3, b_3) \Leftrightarrow \frac{a_2}{b_2} = \frac{a_3}{b_3}$ Daraus folgt: $\frac{a_2}{b_2} = \frac{a_1}{b_1} = \frac{a_3}{b_3} \Leftrightarrow a_1b_3 - a_3b_1 = 0 \Leftrightarrow (a_1, b_1) \sim (a_3, b_3)$