KL Divergence and MLE

Tri Nguyen

nguyetr9@oregonstate.edu

August 17, 2022

Claim. Maximizing likelihood is equivalent to minimizing KL divergence between 2 distributions x and x.

Derivation. Assume we have n i.i.d samples x_1, \ldots, x_n drawn from unknown distribution P. We wish to find a parameter $\theta(P)$ of P using an estimator $\widehat{\theta}(x_1, \ldots, x_n)$.

To see the connection, let's write down the KL divergence

$$D_{kl}(X|\theta \parallel X|\widehat{\theta}) = \mathbb{E}_{X \sim P(\cdot;\theta)} \left[\log \frac{P(X;\theta)}{P(X;\widehat{\theta})} \right]$$
$$= \mathbb{E}_{X \sim P(\cdot;\theta)} \left[\log P(X;\theta) \right] - \mathbb{E}_{X \sim P(\cdot;\theta)} \left[\log P(X;\widehat{\theta}) \right]$$

Hence,

$$\underset{\widehat{\theta}}{\operatorname{arg\,min}} \ D_{\mathrm{kl}}(X|\theta \parallel X|\widehat{\theta}) = \underset{\widehat{\theta}}{\operatorname{arg\,max}} \ \mathbb{E}_{X \sim P(\cdot;\theta)} \left[\log P(X;\widehat{\theta}) \right]$$

Obviously we cannot evaluate expectation on the RHS since we do not know θ . However, we have an approximation of this term thanks to n i.i.d samples x_1, \ldots, x_n which are drawn from this exact distribution $P(\cdot; \theta)$. And this is nothing but the MLE recipe:

$$\underset{\widehat{\theta}}{\operatorname{arg \, max}} \log P(x_1, \dots, x_n; \widehat{\theta}) = \underset{\widehat{\theta}}{\operatorname{arg \, max}} \sum_{i=1}^n \log P(x_i; \widehat{\theta})$$

$$= \underset{\widehat{\theta}}{\operatorname{arg \, max}} \frac{1}{n} \sum_{i=1}^n \log P(x_i; \widehat{\theta})$$

$$\approx \underset{\widehat{\theta}}{\operatorname{arg \, max}} \mathbb{E}_{X \sim P(\cdot; \theta)} \log P(X; \widehat{\theta})$$