Recitation # 11: Improper Integrals and Differential Equations

Warm up:

True or False: It is possible for a region to be infinitely long but have a finite area.

Group work:

Problem 1 Review of limits:

(a)
$$\lim_{x \to -\infty} \left(3x^{-6} + e^{5x} + \frac{\sin x}{x^2 + 3} \right)$$

(b)
$$\lim_{x \to \infty} \frac{x}{\sqrt{9x^2 + 4}}$$

(c)
$$\lim_{x \to -\infty} \arctan x$$

Problem 2 Determine if the given integral converges or diverges. If it converges, find the value.

$$\int_{-1}^{\infty} \frac{3}{2x+1} \, dx$$

Problem 3 (a) Show that

$$\frac{9}{2x^2+3x} = \frac{3}{x} - \frac{6}{2x+3}$$

(b) Determine if the integral

$$\int_{1}^{\infty} \frac{9}{2x^2 + 3x} \, dx$$

converges or diverges. If it converges, give the value that it converges to.

Problem 4 (a) Show that

$$\frac{6x-8}{x^3+4x} = \frac{2x+6}{x^2+4} - \frac{2}{x}$$

(b) Determine if the integral

$$\int_3^\infty \frac{6x - 8}{x^3 + 4x} \, dx$$

converges or diverges. If it converges, give the value that it converges to.

Problem 5 Which of the following is a solution to the differential equation y'' + 9y = 0?

- (a) $y = e^{3t} + e^{-3t}$
- (b) $y = C(t^2 + t)$
- (c) $y = \sin(3t) + 6$
- (d) $y = 5\cos(3t) 7\sin(3t)$
- (e) $y = A\cos(3t) + B\sin(3t)$ (where A and B are real numbers.)

Problem 6 Explain why the functions with the given graphs cannot be solutions of the differential equation $y' = e^x(y-1)^2$.

