北京工业大学 2022 ——2023 学年第二学期期末 《高等数学(管)-2》模拟复习

承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分 条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做 到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承证	若人:			学号	} :_					班	号:				
0000			00000	00000	00000	00000	00000	000000	00000	0000	000000	00000		0000	
12	T) T) X 11	元 上 田寿	17	.I 日云	44	0		14-11	100	11	+/ \-	1.02	11	工儿	٠ ٢

注:本试卷共 两大题,17小题,共 6 页,满分 100 分,考试时必须使用卷后附加的统一草稿纸(可以撕下)。

	卷	面成	绩 汇	总 表	(阅卷教师填写)
--	---	----	-----	-----	----------

题号	_	=	总成绩
得分			

得分	一、填空题	(共 10 小题,	每题3分,	总分 30 分)

1. 将和式极限:

$$M \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{1}{1}$$

附题: 可微函数 z=z(x,y) 由方程 F(x-2z,y-3z)=0 所确定,则 $2\frac{\partial z}{\partial x}+$

$$3\frac{\partial z}{\partial y} = ____1$$

3. 设 $\sum_{n=1}^{\infty} a_n$ 条件收敛,那么 $\sum_{n=1}^{\infty} [(-1)^{n-1} a_n + \sqrt{|a_n|}]$ 的敛散性是 发散 ... $(-1)^{N-1} O_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{\sim} f_n + |O_n| > 0$) $n \stackrel{?}{\sim} f_n + |O_n| > 0$ ($n \stackrel{?}{$

附题: 设 $z = f(e^{xy}, x - y), f$ 具有二阶连续偏导,则 $\frac{\partial^2 z}{\partial y \partial x} =$

$$(1+xy)e^{xy}f_1' + xye^{2xy}f_{11}'' + (x-y)e^{xy}f_{12}'' - f_{22}''$$

5.级数
$$\sum_{n=1}^{\infty} 3^n x^{3n} (x > 0)$$
的收敛域是______($-\frac{1}{3^{\frac{1}{3}}}, \frac{1}{3^{\frac{1}{3}}}$)

$$7. \lim_{x \to 2} \frac{\int_{2}^{x} t(t^{2}-1)dt}{x-2} = \underline{\qquad} .6$$

8.交换积分次序
$$I = \int_0^a dx \int_x^{\sqrt{2ax-x^2}} f(x,y) dy = \int_0^a dy \int_{a-\sqrt{a^2-y^2}}^y f(x,y) dx$$

附题. 计算二重积分 $\iint_{\Sigma} y e^{xy} dx dy$ (要求先对 x 积分) ,其中 $D = \{(x,y) \Big| \frac{1}{x} \le y \le 1, \ 1 \le x \le 2 \}$.

(画出积分区域的图形)

9.幂级数
$$\sum_{n=1}^{\infty} (-1)^n x^n$$
的和函数是 $\frac{-x}{1+x}, x \in (-1,1)$

得 分 二、综合题 (共 7 小题, 每题 10 分, 总分 70 分)

在此处键入公式。

11. 设 $z = f(x, y) = x^2 - (y - 1)^2$, 求函数的极值.

 $\frac{3}{4}$ 精测出错了?应该改为 $z = x^2 + (y - 1)^2$,这时(0,1)为极小值点

12. 求微分方程 $\frac{dy}{dx} = e^{\frac{y}{x}} + \frac{y}{x}$ 的通解 (不需要求特解或奇解).

13. 求一阶线性微分方程的 $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$ 通解

附题: 设函数 f(x) 在 $(0, +\infty)$ 内连续,且满足 $f(x) = 1 + \int_1^x \frac{f(t)}{x} dt$,求f(x).

解:
$$f(x) = I + \int_{x}^{x} \int_{x}^{(t)} dt$$

$$= I + \int_{x}^{x} \int_{x}^{(t)} dt$$

$$= \int_{x}^{1} \int_{x}^{(x)} - \int_{x}^{1} \int_{x}^{(t)} dt$$

$$= \int_{x}^{1} \int_{x}^{(t)} - \int_{x}^{1} \int_{x}^{(t)} dt$$

$$= \int_{x}^{1} \int_{x}^{(t)} \int_{x}^{(t)} dt$$

$$= \int_{x}^{(t)} \int_{x}^{(t)} dt$$

14. 求方程 $y'' + 3y' + 2y = xe^{-x}$ 的通解

15. 求幂级数 $\sum_{n=1}^{\infty}nx^n$ 的和函数,并求 $\sum_{n=1}^{\infty}rac{n}{2^n}$ 的和。

16. 已知 $f(x) = x + 2 \int_0^1 f(t) dt$, 求 f(x).

17. 求由曲线y = sinx ($0 \le x \le \pi$) 与 x 轴围成的图形绕y轴旋转一周所成的旋转体的 体