

2.3.4 Properties of Closed Testing Procedures

Neel Kurupassery

Closed Testing Procedures

Review of *closed testing procedures*:

{H₁, H₂, H₃, H₁₂, H₂₃, H₁₃, H₁₂₃} closed family of hypotheses, the elements of which are termed intersection hypotheses.

A closed testing procedure:

- rejects a hypothesis $(ex.H_1)$ if and only if all containing intersection hypotheses are rejected $(ex.H_2)$

$$H_{_{1}},\ H_{_{12}},\ H_{_{13}},\ H_{_{123}}).$$

- Strong FWER control
- Methods reduce complexity from 2^m steps to order m or order m²

Properties of Closed Testing Procedures

A closed testing procedure could be

1) *Monotone*:

$$p_i < p_j \Longrightarrow (rejection \ of \ H_j \Longrightarrow rejection \ of \ H_i)$$

2) *Consonant*:

$$rejection \ of \ H_I \ where \ I \subseteq \{1, \dots, m\} \ and \ |I| > 1 \ \Longrightarrow reject \ H_J, where \ J \subset I$$

3) α -exhaustive:

$$P(Reject H_I) = \alpha \ \forall \ H_I, I \subseteq \{1, ..., m\}$$

2.3.4 Properties of Closed Testing Procedures

- Hommel procedure is *non-consonant closed* as the global null can be rejected without rejecting intersection hypotheses.
- Non- α -exhaustive procedures such as fallback and Hochberg may be chosen for other reasons such as computational simplicity.