PROBLEM STATEMENT: HOW TO PREDICT THE BEST ACCURACY BASED ON THE GIVEN DATASET

1.Data Collection

In [1]: #Importing Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

In [3]: df=pd.read_csv(r"C:\Users\pavan\Downloads\rainfall in india 1901-2015.csv")
 df

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oc De
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	980
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	716
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	690
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	571
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	630
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	316
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	167
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	177
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	290
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	555

4116 rows × 19 columns

2.Data Cleaning & Preprocessing

In [4]: df.head()

\sim			г а	т.
()	111	ГΙ	ΙД	
$\mathbf{\circ}$	u	_	_	

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	980.3
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	716.7
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	690.6
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	571.0
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	630.8

In [5]: df.tail()

Out[5]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	316.6
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	167.1
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	177.6
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	290.5
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	555.4

In [6]: df.shape

Out[6]: (4116, 19)

In [7]: df.describe()

_			`	-
<i>ا</i> ۱		-		
w	u	u		н.
_	٠.	_	L 1	

:		YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
	count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000	4109.000000	4112.000000	4110.000000	4109.0
	mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444	347.214334	290.263497	197.361922	95.5
	std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758	269.539667	188.770477	135.408345	99.5
	min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.000000	0.100000	0.0
	25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000	175.600000	155.975000	100.525000	14.6
	50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000	284.800000	259.400000	173.900000	65.2
	75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000	418.400000	377.800000	265.800000	148.4
	max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.600000	1222.000000	948.3
	4											

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):

Data	COTAIIII3 (COC	ar is corumns).	
#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4112 non-null	float64
3	FEB	4113 non-null	float64
4	MAR	4110 non-null	float64
5	APR	4112 non-null	float64
6	MAY	4113 non-null	float64
7	JUN	4111 non-null	float64
8	JUL	4109 non-null	float64
9	AUG	4112 non-null	float64
10	SEP	4110 non-null	float64
11	OCT	4109 non-null	float64
12	NOV	4105 non-null	float64
13	DEC	4106 non-null	float64
14	ANNUAL	4090 non-null	float64
15	Jan-Feb	4110 non-null	float64
16	Mar-May	4107 non-null	float64
17	Jun-Sep	4106 non-null	float64
18	Oct-Dec	4103 non-null	float64
dtvpe	es: float64(1	7), int64(1), ob	iect(1)

dtypes: float64(17), int64(1), object(1)

memory usage: 611.1+ KB

```
In [9]: | df.isnull().sum()
Out[9]: SUBDIVISION
                        0
                        0
        YEAR
        JAN
                        4
        FEB
                        3
                        6
        MAR
        APR
                        4
                        3
5
        MAY
        JUN
                        7
        JUL
        AUG
                        4
        SEP
                        6
                        7
        OCT
        NOV
                       11
        DEC
                       10
        ANNUAL
                       26
        Jan-Feb
                        6
        Mar-May
                        9
        Jun-Sep
                       10
        Oct-Dec
                       13
```

dtype: int64

```
In [10]: df.isna().any()
Out[10]: SUBDIVISION
                       False
         YEAR
                       False
         JAN
                        True
         FEB
                        True
         MAR
                        True
         APR
                        True
         MAY
                        True
         JUN
                        True
         JUL
                        True
         AUG
                        True
         SEP
                        True
         0CT
                        True
         NOV
                        True
         DEC
                        True
         ANNUAL
                        True
         Jan-Feb
                        True
         Mar-May
                        True
         Jun-Sep
                        True
         Oct-Dec
                        True
         dtype: bool
In [13]: df.fillna(method="ffill",inplace=True)
```

```
In [12]: df['YEAR'].value_counts()
Out[12]: YEAR
         1963
                36
         2002
                36
         1976
                36
         1975
                 36
         1974
                 36
         1915
                35
         1918
                35
         1954
                35
         1955
                35
         1909
                 34
```

Data Analysis

Name: count, Length: 115, dtype: int64

In [14]: sns.lmplot(x='FEB',y='JAN',order=2,data=df,ci=None)
 plt.show()

In [16]: sns.pairplot(df)
plt.show()

Training the model

```
In [17]: x=np.array(df['FEB']).reshape(-1,1)
y=x=np.array(df['JAN']).reshape(-1,1)

In [18]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)

In [19]: lin=LinearRegression()
lin.fit(x_train,y_train)
print(lin.score(x_train,y_train))
1.0
```

```
In [20]: y_pred=lin.predict(x_test)
    plt.scatter(x_test,y_test,color='blue')
    plt.plot(x_test,y_pred,color='black')
    plt.show()
```



```
In [21]: df700=df[:][:700]
    sns.lmplot(x='FEB',y='JAN',order=2,ci=None,data=df700)
    plt.show()
```


In [22]: df700.fillna(method='ffill',inplace=True)

```
In [23]: x=np.array(df700['FEB']).reshape(-1,1)
y=x=np.array(df700['JAN']).reshape(-1,1)

In [24]: df700.dropna(inplace=True)

In [25]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.03)

In [26]: lr=LinearRegression()
lr.fit(x_train,y_train)
print(lr.score(x_test,y_test))
```

1.0

```
In [27]: y_pred=lr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [28]:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

```
In [29]: lr=LinearRegression()
lr.fit(x_train,y_train)
y_pred=lr.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 1.0

The Accuracy is 1.0

Ridge Regression

```
In [30]: #Importing Libraries
    from sklearn.linear_model import Lasso,Ridge
    from sklearn.preprocessing import StandardScaler
```

```
In [31]: plt.figure(figsize=(10,10))
    sns.heatmap(df700.corr(),annot=True)
    plt.show()
```



```
In [32]: features=df.columns[0:5]
target=df.columns[-5]
```

```
In [33]: x=df[features].values
    y=df[target].values
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=1)
    print("The dimension of X_train is {}".format(x_train.shape))
    print("The dimension of X_test is {}".format(x_test.shape))
```

The dimension of X_train is (2881, 5) The dimension of X_test is (1235, 5)

```
In [34]: lr = LinearRegression()
#Fit model
lr.fit(x_train, y_train)
#predict
actual = y_test
train_score_lr = lr.score(x_train, y_train)
test_score_lr = lr.score(x_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

```
In [35]: ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
    #train and test scorefor ridge regression
    train_score_ridge = ridgeReg.score(x_train, y_train)
    test_score_ridge = ridgeReg.score(x_test, y_test)
    print("\nRidge Model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.999999999856335 The test score for ridge model is 0.999999999840021

```
In [36]: plt.figure(figsize=(10,10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color='red',label=r'Ridge;$\alpha
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker="o",markersize=7,color='green',label='LinearRegression')
plt.xticks(rotation=90)
plt.legend()
plt.show()
```


The Accuracy is 0.999

Lasso Regression

```
In [37]: #Importing Libraries
    lasso= Lasso(alpha=10)
    lasso.fit(x_train,y_train)
    #train and test scorefor ridge regression
    train_score_ls = lasso.score(x_train, y_train)
    test_score_ls= lasso.score(x_test, y_test)
    print("Ntasso Model:\n")
    print("The train score for lasso model is {}".format(train_score_ls))
    print("The test score for lasso model is {}".format(test_score_ls))

Lasso Model:
    The train score for lasso model is 0.9999147271297208
    The test score for lasso model is 0.9999147248375002

In [38]: plt.figure(figsize=(10,10))
Out[38]: <Figure size 1000x1000 with 0 Axes>
```

```
In [39]: from sklearn.linear model import LassoCV
In [40]: #using the linear cv model
         from sklearn.linear model import RidgeCV
         #cross validation
         ridge cv=RidgeCV(alphas =[0.0001,0.001,0.01,0.1,1,10]).fit(x train,y train)
         #score
         print(ridge cv.score(x train,y train))
         print(ridge cv.score(x test,y test))
         0.99999999261034
         0.999999993719254
In [41]: #using the linear cv model
         from sklearn.linear_model import LassoCV
         #cross validation
         lasso cv=LassoCV(alphas =[0.0001,0.001,0.01,0.1,1,10]).fit(x train,y train)
         #score
         print(lasso_cv.score(x_train,y_train))
         print(lasso cv.score(x test,y test))
         0.9999999999995
```

The Accuracy is 0.999

Elastic Net

0.9999999999995

```
In [42]: from sklearn.linear_model import ElasticNet
```

The accuracy is 0.0009

CONCLUSION

The given dataset is "Rain Fall Prediction".we need to find the bestfit for this dataset. For the used different models and got different accuracies. for linear regression we got the accuracy of 1.0. For lasso regression we got the accuracy of 0.999. For Ridge regreesion we got the accuracy of 0.999. For ElasticNet we got the accuracy of 0.0009.

So, the Ridge Regression is the bestfit model for the given dataset "Rainfall Prediction"