6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

CLAIMS

We claim:
1). A method, comprising:
optimizing an implementation of a programming language, comprising;
analyzing one or more values computed by a program written in the
programming language, wherein analyzing one or more values
comprises;
representing each bit within a value of the one or more values as an
abstract element of a lattice having a set of abstract elements
including 0_A , 1_A , \perp_A and T_A , where in the lattice is an abstraction of a
concrete domain containing 0, f , and \pm ;
analyzing one or more output bits that are produced by an operation in
terms of one or more input bits that are input to the operation; and
analyzing the input bits that are input to the operation in terms of the
output bits that are produced by the operation.
2). The method of claim 1, wherein optimizing further comprises:
applying a forward abstract semantic to the abstract element; and
i e e e e e e e e e e e e e e e e e e e

- applying a forward abstract semantic to the abstract element; and applying a backward abstract semantic to the abstract element; wherein the forward abstract semantic is an approximation of a forward concrete semantic including AND, OR, and NOT; and wherein the backward abstract semantic is an approximation of a backward concrete semantic including AND⁻¹, OR⁻¹, and NOT⁻¹.
- 1 3). The method of claim $\not\supseteq$, further comprising:
- 2 identifying the values within the program as partially constant values.
- 4). The method of claim 3, wherein the backward abstract semantic is for a complex boolean function including LEFT¹, URIGHT¹, JOIN⁻¹, MEET¹, LE⁻¹

SKD

14

15

3	and SRIGHT ¹ , and wherein the forward abstract semantic is for the complex
4	boolean function including LEFT, URIGHT, JOIN, MEET, LE, and SRIGHT.
1	5). The method of claim 4, wherein the program is represented in an
١2	intermediate language.
1	6). The method of claim 5, wherein the implementation is a compiler for the
2	programming language.
1	7). The method of claim 5, wherein the implementation is a computer aided
2	design compiler for the programming language.
1	8). A computer-readable medium having stored thereon a plurality of
2	instructions, said plurality of instructions when executed by a computer,
3	cause said computer to perform:
4	optimizing an implementation of a programming language, comprising;
5	analyzing one or more values computed by a program written in the
6	programming language, wherein analyzing one or more values
7	comprises;
8	representing each bit within a value of the one or more values as an
9	abstract element ϕ f a lattice having a set of abstract elements
10	including 0_A , 1_A , $\not f_A$ and f_A , wherein the lattice is an abstraction of a
11	concrete domain containing 0, 1, and \pm ;
12	analyzing one or more output bits that are produced by an operation in
13	terms of one or more input bits that are input to the operation; and
14	analyzing the jhput bits that are input to the operation in terms of the

output bits that are produced by the operation.

- 1 9). The computer-readable medium of claim 8 having stored thereon additional
- instructions, said additional instructions when executed by a computer for
- 3 optimizing, cause said computer to further perform:
- applying a forward abstract semantic to the abstract element; and
 applying a backward abstract semantic to the abstract element;
 wherein the forward abstract semantic is an approximation of a forward
 concrete semantic including AND, OR, and NOT; and

8 wherein the backward abstract semantic is an approximation of a backward

9 concrete semantic including AND⁻¹, OR⁻¹, and NOT⁻¹.

- 1 10). The computer-readable medium of claim 9 having stored thereon
- 2 additional instructions, said additional instructions when executed by a computer,
- 3 cause said computer to further perform:
- 4 identifying the values within the program as partially constant values.
- 1 11). The computer-readable medium of claim 10, wherein the backward
- 2 abstract semantic is for a complex boolean function including LEFT¹,
- 3 URIGHT⁻¹, JOIN⁻¹, MEET⁻¹, LE⁻¹/and SRIGHT⁻¹, and wherein the forward
- 4 abstract semantic is for the complex boolean function including LEFT,
- 5 URIGHT, JOIN, MEET, LE, and SRIGHT.
- 1 12). The computer-readable medium of claim 11, wherein the program is
- 2 represented in an intermediate language.
- 1 13). The computer-readable medium of claim 11, wherein the implementation
- is a computer aided/design compiler for the programming language.
- 1 14). A system, comprising:
- 2 a processor;

SKD

3	memory connected to the processor storing instructions for bidirectional		
4	bitwise constant propogation by abstract interpretation executed by the		
5	processor;		
6	storage connected to the processor that stores a software program having a		
7	plurality of separately compilable routines,		
8	wherein the processor optimizes an implementation of a programming		
9	language, by		
10	analyzing one or more values computed by a program written in the		
11	programming language, wherein analyzing one or more values		
12	comprises;		
13	representing each bit within a value of the one or more values as an		
14	abstract element of a lattice having a set of abstract elements		
15	including 0_A , 1_A , \bot_A and T_A , wherein the lattice is an abstraction of a		
16	concrete domain containing 0, 1, and ⊥;		
17	analyzing one or more output bits that are produced by an operation in		
18	terms of one or more input bits that are input to the operation; and		
19	analyzing the input bits that are input to the operation in terms of the		
20	output bits that are produced by the operation.		
1	15). The system of claim 14, wherein the processor further optimizes by		
2	,		
3	applying a backward abstract semantic to the abstract element;		
4	wherein the forward abstract semantic is an approximation of a forward		
5	concrete semantic including AND, OR, and NOT; and		
6	wherein the backward abstract semantic is an approximation of a backward		
7	concrete semantic/including AND ⁻¹ , OR ⁻¹ , and NOT ⁻¹ .		

The system of claim 15, wherein the processor identifies the values within the program as partially constant values.

1 2

		1	
1	17).	The system of claim 16, wherein the backward abstract semantic is for a	
2	CC	omplex boolean function including LEFT¹, URIGHT¹/, JOIN⁻¹, MEET⁻¹, LE⁻¹	
3	and SRIGHT ⁻¹ , and wherein the forward abstract segnantic is for the complex		
4	bo	polean function including LEFT, URIGHT, JOIN, MEET, LE, and SRIGHT.	
1	18).	The system of claim 17, wherein the program is represented in an	
2	in	termediate language.	
1	19).	The system of claim 18, wherein the implementation is a compiler for the	
2	pr	rogramming language.	
1	20).	The system of claim 19, wherein the implementation is a computer aided	
2	de	esign compiler for the programming language.	
1	21).	A system, comprising:	
2 '	m	eans for optimizing an implementation of a programming language,	
3		comprising;	
4		means for analyzing one or more values computed by a program written	
5		in the programming language, wherein analyzing one or more values	
6		comprises;	
7		means for representing each bit within a value of the one or more	
8		values as an abstract element of a lattice having a set of abstract	
9		elements including 0_A , 1_A , \bot_A and \top_A , wherein the lattice is an	
10		abstraction of a concrete domain containing 0, 1, and \pm ;	
11		means for analyzing one or more output bits that are produced by an	
12		operation in terms of one or more input bits that are input to the	
13		operation; and	

SKD --68-- 042390.P12543

Q
4
الم
M
Ф
Jī
ú
ŧŧ
ļ.
14
jl.
:

14	means for analyzing the input bits that are input to the operation in
15	terms of the output bits that are produced by the operation.
1	22). The system of claim 21, wherein the means for optimizing further
2	comprises:
B	means for applying a forward abstract semantic to the abstract element; and
3 1	means for applying a backward abstract semant/c to the abstract element;
5	wherein the forward abstract semantic is an approximation of a forward
6	concrete semantic including AND, OR, and NOT; and
7	wherein the backward abstract semantic is an approximation of a backward
8	concrete semantic including AND ⁻¹ , OR/, and NOT ⁻¹ .
1	23). The system of claim 22, further comprising:
2	means for identifying the values within the program as partially constant
3	values.
1	24). The system of claim 23, wherein the backward abstract semantic is for a
2	complex boolean function including LEFT¹, URIGHT¹, JOIN⁻¹, MEET¹, LE⁻¹
3	and SRIGHT ⁻¹ , and wherein the forward abstract semantic is for the complex
4	boolean function including LEFT, URIGHT, JOIN, MEET, LE, and SRIGHT.
1	25). The system of claim 24,/wherein the program is represented in an
2	intermediate language.
1	26). The system of claim 25, wherein the implementation is a compiler for the
2	programming language.
1	27). The system of claim 26, wherein the implementation is a computer aided
2	design compiler for the programming language.
	I

--69--SKD 042390.P12543