Announcements

Midtern 1: Wednesday 2/19 7:00-8:30 pm Sidney Lu 1043

- · Material: everything through Tower Law is. through \$13.2, except for composite extins
- · One reference sheet allowed (regular size, two sided)
- see policy email for more Practice problem soln sketches posted

Tomorrow's problem session

L Wedneskay's class: review

Recall: If $K_{11}K_{2} \subseteq L_{1}$ the composite $K_{1}K_{2}$ of K_{1} and K_{2} is the smallest field containing K_{1} and K_{2} .

Prop: Let K1/F, K2/F be finite extre w/ K1, K2 & L.

- $\alpha) \left[K'K^{r} : K^{s} \right] \leq \left[K' : E \right]$
- b) [k,k2: F] < [K,:F] [K2:F]

Pf: Let $\{\alpha_{1,1}, -, \alpha_n\}$ be a basis for k_1 over F. Let $K = \{f_1\alpha_1 + \cdots + f_n\alpha_n | f_i \in K_2\}$ We have $K_1 \subseteq K_2$, $K_2 \subseteq K_3$, $K \subseteq K_1$, K_2 , and K_2 $K \subseteq K_3$, so if it's a field it is K_1 , K_2 , and a) will hold. Closed under $t_1 - t_2$ yes, since K_3 is a V.s.

Closed under .:

Since dirande is an F-basis for ki, write

$$a_id_j = \sum_{k} h_k d_k$$
 $F \subseteq K_k$

Then, e^{kz} $(f_1 \alpha_1 + \cdots + f_n \alpha_n) (g_1 \alpha_1 + \cdots + g_n \alpha_n)$

$$= \underbrace{\sum_{i,j,k} f_{i}g_{j} d_{i}d_{j}}_{E_{K_{1}}} = \underbrace{\sum_{i,j,k} f_{i}g_{j}h_{k} d_{k}}_{E_{K_{1}}} = \underbrace{\sum_{i,j,k} f_{i}g_{i}h_{k} d_{k}}_{E_{K_{1}}} = \underbrace{\sum_{i,j,k} f_{i}g_{i}h_{k} d_{k}}_{E_{K_{1}}} = \underbrace{\sum_{i,j,k} f_{i}g_{i}h_{k} d_{k}$$

Inverses: Let YEK- foz, and consider the Kz-linear transformation

Since L is an integral domain,

 $Ker(T_8) = \{0\}$, so by the rank-nullity theorem, (DRF Cor. 11.8)

dim im Ty + dim ker Ty = n, so Ty is onto.

Thus Y has inverse $T_{\gamma}^{-1}(1) \in K$.

b) Using the Tower Law,

$$[\kappa_1:F][\kappa_2:F] \ge [\kappa_1\kappa_2:\kappa_2][\kappa_2:F] = [\kappa_1\kappa_2:F]$$

Alternate pf (see DRF): Finite extins are interated simple extensions. Prove a) for simple extins by considering degrees of min'l polys, and use induction for the general case

17

Straightedge and Compass Constructions

Game (ancient Greeks): Given a straightedge (ruler w/out markings) and compass, what can we construct?

Operations:

1) Connect two pts. by a line

2) Draw a circle w/ a given center and point

3) Find int. pt. of lines/circles

No measuring allowed!

With these operations, can do many things:

a) Perpendicular bisector

b) Double the area of a square

C) Construct the n-gon for certain n (Gauss: 17-gon)

3 problems that the Greek's couldn't solve!

I) Double the cube

II) Trisect an arbitrary angle

III) Square the circle"

Big idea: constructible numbers

Constructible numbers:

Rephrase:

II) Construct cos
$$\frac{\Theta}{3}$$
 given cos Θ

Prop: C is closed under

- 0) 5 H) 151
- $\beta \mapsto \underline{s}$
- c) $z \mapsto ke(z)$
- d) = H Im(2)

- e) Addition
- f) Subtraction
- 9) Mult by i

D