Linguaggi Formali e Compilatori (Formal Languages and Compilers)

prof. S. Crespi Reghizzi, prof.ssa L. Sbattella (prof. Luca Breveglieri) Prova scritta - Martedì 7 marzo 2006 - Parte I: Teoria CON SOLUZIONI

NOME &	Š.	CO	$_{ m GN}$	ON	ME:
--------	----	----	------------	----	-----

MATRICOLA:	FIRMA
MAIRICOLA:	Γ I Γ . IVI P

ISTRUZIONI - LEGGERE CON ATTENZIONE:

- L'esame si compone di due parti:
 - I (80%) Teoria:
 - 1. espressioni regolari e automi finiti
 - 2. grammatiche e automi a pila
 - 3. analisi sintattica e parsificatori
 - 4. traduzione e analisi semantica
 - II (20%) Esercitazioni Flex e Bison
- Per superare l'esame l'allievo deve avere sostenuto con successo entrambe le parti (I e II), unitamente in un solo appello oppure separatamente ma entro quattro appelli. Esempio: se si sostiene con successo la parte II nell'appello di settembre, la parte I va superata entro (e non oltre) l'appello di luglio; altrimenti il voto della parte II scade.
- Consegnando una parte (qualunque sia l'esito della correzione), il voto precedente della stessa è annullato. Ritirandosi senza consegnare una parte, l'eventuale voto precedente della stessa resta valido (entro quattro appelli, vedi sopra).
- Per superare la parte I (teoria) occorre dimostrare di possedere sufficiente conoscenza di tutte le quattro sezioni (1-4) in cui si divide il tema d'esame.
- È permesso consultare libri e appunti personali.
- Per scrivere si utilizzi lo spazio libero e se occorre anche il tergo del foglio; in fondo a ogni sezione (1-4) c'è un foglio bianco addizionale.
- Tempo: Parte I (teoria): 2h.30m Parte II (esercitazioni): 30m

1 Espressioni regolari e automi finiti 20%

1. Sia data l'espressione regolare R seguente, di alfabeto $\Sigma = \{a, b, c\}$:

$$R = (ab \mid ac)^*$$

(a) Si dica quali delle uguaglianze seguenti siano valide e quali no (marcare a lato), dando (sotto, non a lato) un controesempio per ciascuna uguaglianza non valida:

#	uguaglianza è valida ?	sì	no
1	$R = \overline{(b \mid c) \Sigma^*} \mid \overline{\Sigma^* a} \mid \overline{\Sigma^* (aa \mid bc \mid cc \mid cb \mid bb) \Sigma^*} \mid \overline{\Sigma} (\Sigma^2)^*$		
2	$R = \overline{\left(\begin{array}{c c c} (b \mid c) \ \Sigma^* & \Sigma^* a & \Sigma^* (aa \mid bc \mid cc \mid cb \mid bb) \ \Sigma^* & \Sigma^* \end{array} \right)}$		
3	$R = \overline{\left(\ (b \mid c) \ \Sigma^* a \ \mid \ \Sigma^* \left(aa \mid bc \mid cc \mid cb \mid bb \right) \Sigma^* \ \mid \ \Sigma \left(\Sigma^2 \right)^* \ \right)}$		
4	$R = \overline{(\ (b \mid c) \ \Sigma^* a \ \ \Sigma^* \ (aa \mid bc \mid cc \mid cb \mid bb) \ \Sigma^* \)}$		

- (b) Si ricavi un automa indeterministico equivalente all'espressione regolare $S = a^+ R = a^+ (ab \mid ac)^*$, cercando di contenerne il numero di stati.
- (c) (facoltativo) Si ricavi l'automa deterministico minimo equivalente a S.

Soluzione

(a) Ecco la risposta complessiva:

#	uguaglianza è valida ?	sì	no
1	$R = \overline{(b \mid c) \Sigma^*} \mid \overline{\Sigma^* a} \mid \overline{\Sigma^* (aa \mid bc \mid cc \mid cb \mid bb) \Sigma^*} \mid \overline{\Sigma (\Sigma^2)^*}$		×
2	$R = \overline{\left(\ (b \mid c) \ \Sigma^* \ \mid \ \Sigma^* a \ \mid \ \Sigma^* \left(aa \mid bc \mid cc \mid cb \mid bb \right) \Sigma^* \ \mid \ \Sigma \left(\Sigma^2 \right)^* \ \right)}$	×	
3	$R = \overline{\left(\ (b \mid c) \ \Sigma^* a \ \mid \ \Sigma^* \left(aa \mid bc \mid cc \mid cb \mid bb \right) \Sigma^* \ \mid \ \Sigma \left(\Sigma^2 \right)^* \ \right)}$	×	
4	$R = \overline{(\ (b \mid c) \ \Sigma^* a \ \ \Sigma^* \ (aa \mid bc \mid cc \mid cb \mid bb) \ \Sigma^* \)}$		×

Ed ecco qua il ragionamento. I componenti delle espressioni a destra del segno di uguaglianza sono più o meno di tipo locale, cioè danno vincoli di inizio e fine della stringa, e di adicenza tra lettere, più un vincolo di parità sulla lunghezza. In particolare tali vincoli sono i seguenti:

- i. $(b \mid c) \Sigma^*$ sono le stringhe di lunghezza ≥ 1 inizianti con b o c
- ii. Σ^*a sono le stringhe di lunghezza ≥ 1 terminanti con a
- iii. Σ^* ($aa \mid bc \mid cc \mid cb \mid bb$) Σ^* sono le stringhe di lunghezza ≥ 2 contenenti (almeno) una coppia di lettere adiacenti di tipo aa, bc, cc, cb o bb

iv. $\Sigma (\Sigma^2)^*$ sono le stringhe di lunghezza dispari 1, 3, 5, ...

Siccome tali vincoli compaiono anche in forma separatamente complementata, è bene rivederli pure così (si ricordi che $\overline{\Delta} = \Sigma^* - \Delta$):

- i. $\overline{(b \mid c) \Sigma^*}$ sono le stringhe di lunghezza ≥ 1 inizianti con a, più ε^1
- ii. $\overline{\Sigma^*a}$ sono le stringhe di lunghezza ≥ 1 terminanti con b o c, più ε^2
- iii. $\overline{\Sigma^* (aa \mid bc \mid cc \mid cb \mid bb) \Sigma^*}$ sono le stringhe di lunghezza ≥ 2 contenenti solo coppie di lettere adiacenti di tipo³:

$$\Sigma^2 - \{aa, bc, cc, cb, bb\} = \{ab, ac, ba, ca\}$$

più le stringhe a, b e c, ed ε (ossia quelle di lunghezza < 2)

iv. $\overline{\Sigma(\Sigma^2)^*}$ sono le stringhe di lunghezza pari 2, 4, ..., più ε

Conviene dunque vedere anche l'espressione regolare R sotto tale luce. Esaminando le stringhe generate R si vede subito come quelle più brevi siano ε , ab, ac, abab, abac, acab, acac, e come in generale abbiano l'aspetto seguente:

$$L(R) \ni a b a b \dots a b a c a c \dots a c a b \dots a b$$

$$L(R) \ni a c a c \dots a c a b a b \dots a b a c \dots a c$$

L'intuizione suggerisce immediatamente che le stringhe di R siano caratterizzate dagli aspetti seguenti:

- i. iniziano con la lettera a
- ii. terminano con la lettera b o c
- iii. contengono solamente coppie di lettere adiacenti del tipo ab, ac, ba e ca
- iv. sono di lunghezza pari: 2, 4, ecc, compresa ε (lunghezza 0, pari, se si vuole)

Si nota subito come gli aspetti di R siano i complementi dei vincoli elencati prima. Va inoltre osservato che il complemento dell'unione di insiemi è equivalente all'intersezione dei complementi di tali insiemi (De Morgan). Tenendo conto di ciò, si vede che valgono solo le uguaglianze (2) e (3):

- la (2) vale perché a destra è l'unione complementata degli aspetti di R e dunque è l'intersezione dei complementi dei vincoli (De Morgan); la parte destra comprende i vincoli di inizio (né b né c) e di fine (non a), le adiacenze vietate, le quali sono aa, bc, cb, cc e bb come visto prima, e il vincolo di lunghezza (no stringhe di lunghezza dispari)
- la (3) (a destra anch'essa è strutturata come unione complementata) vale giacché pur accoppiando i vincoli di inizio e fine (si vietano le stringhe che, iniziando con b o c, finiscono con a, e viceversa), e dunque restringendone la portata rispetto a quanto si vede nella (2), non riesce comunque, stanti le adiacenze permesse ab, ac, ba e ca, a formare stringhe di lunghezza pari le quali, pur iniziando con b (o con c), non finiscano con a (tipo la stringa baba, che ha adiacenze ammissibili ma $\notin L(R)$), perché si deve alternare tra b (o c) e a ... o che finendo con a non inizino con b (o con c)

Infatti ε è una stringa non di lunghezza ≥ 1 e non iniziante né con b né con c.

²Infatti ε è una stringa non di lunghezza ≥ 1 e non iniziante con a.

³Ovvero, all'insieme di tutte le coppie di lettere adiacenti possibili, Σ^2 , si tolgono le coppie che non devono figurare (adiacenze vietate), ottenendo così quelle che sole possono figurare (adiacenze permesse).

Invece, l'uguaglianza (1) è insensata, perché per esempio a destra consente tutte le stringhe di lunghezza pari, cosa che R non fà (essa è l'unione dei complementi dei vincoli, e confrontandola con la (2) dove invece di fatto sono intersecati, se ne comprende tutta la radicale assurdità, come dovrebbe saltare immediatamente all'occhio), e per controesempio basta dare una delle adiacenze vietate, come aa. E la (4) (essa è affine alla (2) e alla (3)) non vale perché, indipendentemente da ogni altra osservazione, a destra non ha vincolo di parità, e dunque ammette le stringhe, non generate da R, di lunghezza uno (controesempi: a, b e c), oltre a stringhe di lunghezza dispari ≥ 3 e dunque $\not\in L(R)$. Ciò chiude la questione.

Si lasciano altre tre relazioni di uguaglianza con risposta, da esaminare:

#	uguaglianza è valida ?	sì	no
5	$R = \overline{(\ (b \mid c) \ \Sigma^* \ \ \Sigma^*a \ \ \Sigma^* (aa \mid bc \mid cc \mid cb \mid bb) \ \Sigma^*)}$	×	
6	$R = \overline{(b \mid c) \Sigma^*} \mid \overline{\Sigma^* a} \mid \overline{\Sigma^* (aa \mid bc \mid cc \mid cb) \Sigma^*} \mid \overline{\Sigma (\Sigma^2)^*}$		×
7	$R = \overline{\left(\ (b \mid c) \ \Sigma^* a \ \mid \ \Sigma^* \ (aa \mid bc \mid cc \mid cb \mid bb \mid ba) \ \Sigma^* \ \mid \ \Sigma \left(\Sigma^2\right)^* \ \right)}$		×

Il lettore provi a giustificare le risposte servendosi degli stessi concetti di prima.

- (b)
- (c)

2. Sono dati i due automi riconoscitori seguenti $A \in B$, a stati finiti, di alfabeto $\{a, b\}$:

Essi riconoscono i linguaggi regolari $L_A = L(A)$ e $L_B = L(B)$, rispettivamente. Si svolgano i punti seguenti:

- (a) Si costruisca l'automa che riconosce il linguaggio intersezione $L_{\cap} = L_A \cap L_B$.
- (b) Si costruisca l'automa che riconosce il linguaggio unione $L_{\cup} = L_A \cup L_B$.
- (c) Si costruisca l'automa che riconosce il linguaggio unione disgiunta $L_{\oplus} = L_A \oplus L_B$.

Nota: gli automi costruiti possono essere deterministici o indeterministici, a scelta; si proceda nel modo che si preferisce.

Soluzione

Se si adatta la costruzione del prodotto, si fanno tutte e tre con poco sforzo; per l'ultima occorre prima determinizzare A (in \oplus è implicito un complemento) e anche mettere in evidenza lo stato di errore.

Per le prime due domande, ci sono anche facili risposte quasi intuitive: $L_A = (a \mid ab)^*$ e $L_B = (a \mid b^2)^*$, dunque $L_{\cup} = (a \mid ab)^* \cup (a \mid b^2)^*$, e l'automa corrispondente è quasi immediato (non-det.); mentre $L_{\cap} = a^*$, perché in L_A la lettera b è sempre isolata ma in L_B sempre accoppiata come bb, e l'automa corrispondente è immediato (anche det.). La terza domanda richiede la costruzione del prodotto e, prima di questa, la determinizzazione di A e l'esposizione dello stato di errore sia A sia in B; ho verificato che determinizzando A gli stati restano due (più uno di errore); l'automa prodotto ha pertanto al massimo $3 \times 3 = 9$ stati (o meno, magari si pulisce), dunque è gestibile ... Si osservi che, comunque, $L_{\oplus} = (a \mid ab)^*ab(a \mid ab)^* \cup (a \mid b^2)^*b^2(a \mid b^2)^*$, perché la parte comune a^* va tolta, mentre le stringhe che contengono almeno una lettera b sono sempre disgiunte; dunque ci si arriva anche per via intuitiva, e l'automa corrispondente (non-det.) è abbastanza semplice. Oppure, si può fare con De Morgan. Ci sono pertanto diverse opzioni, sceglieranno quella che preferiscono.

2 Grammatiche libere e automi a pila 20%

1. Si consideri il linguaggio libero L seguente, di alfabeto $\Sigma = \{a,b\}$:

$$L = \{ a^h \ b^k \ a^h \ b^k \ | \ (h \le 1 \land k \ge 0) \lor (h \ge 0 \land k \le 1) \}$$

Esempi: ε aa bb abab abbabb aabaab

Controesempi: aabab aabbaabb

Si svolgano i punti seguenti:

- (a) Si progetti una grammatica libera G qualunque, che generi il linguaggio L.
- (b) Se G è ambigua, se ne dia una forma G^\prime equivalente non ambigua.

Soluzione

Facile, ma c'è ambiguità di unione, comunque si risolve ...

- 2. Si progetti la grammatica EBNF non ambigua che modella il linguaggio, semplificato, della teoria elementare degli insiemi. Sono presenti i concetti seguenti:
 - $\bullet\,$ i nomi di elementi sono lettere alfabetiche minuscole, da aa z
 - i nomi di insiemi sono lettere alfabetiche maiuscole con indice intero positivo non nullo, p. es. A1, B33, ecc; \emptyset è l'insieme vuoto
 - una collezione (anche vuota) di elementi separati da ',' e racchiusa tra parentesi graffe '{' e '}' è un insieme; un singoletto può non avere graffe
 - tra insiemi sono consentite le operazioni insiemistiche di unione ' \cup ', intersezione ' \cap ' e complemento ' \neg '; complemento precede intersezione che precede unione
 - sono ammesse sotto-espressioni parentetizzate mediante '(' e ')'
 - le frasi del linguaggio consistono in liste (non vuote) di dichiarazioni del tipo:

```
nome di insieme '=' espressione insiemistica ';'
```

dove l'espressione è costruita con le operazioni insiemistiche consentite, a partire da altri nomi di insiemi o da collezioni di elementi.

Esempio di frase:

```
A1 = a;

B2 = \{a, b\};

C4 = A1 \cup c;

D3 = \neg B2 \cup \{d, e\};

E32 = C4 \cap (D3 \cup \{a\});
```

Si scriva la grammatica G in questione (in forma EBNF non ambigua). Quali aspetti semantici non sono esprimibili sintatticamente ?

Soluzione

Abbastanza ovvia; notare che gli insiemi sono finiti, ma ce ne possono essere infiniti, per via degli infiniti nomi possibili; se ci pensano, generando le liste di elementi possono evitare le ripetizioni (non così con i nomi di insiemi).

3 Analisi sintattica e parsificatori 20%

1. È data la grammatica estesa (EBNF) G seguente:

$$S \rightarrow A^* b^* C$$
 $C \rightarrow b C d$ $A \rightarrow a A b$ $C \rightarrow b d^+$ $A \rightarrow a b$

Si svolgano i punti seguenti:

- (a) Si disegni la rete delle macchine ricorsive (automi) equivalente a G.
- (b) Si calcolino gli insiemi guida e si verifichi che la rete delle macchine non è LL(1).
- (c) Si studi come modificare la grammatica G per renderla LL(1).

Soluzione

Gli stati 1 e 11 violano la condizione LL(1).

Per lo stato 11, si potrebbe eliminare l'indeterminismo, sostituendo all'ultima regola le due regole seguenti:

$$C \to D d^*$$

$$D \rightarrow b D d \mid b d$$

Ora nella regola di C l'autoanello d^* ha d come insieme guida, mentre la freccia dello stato finale ha \dashv come insieme guida. La regola di D è chiaramente LL(1).

Ma per togliere il problema in 1, si deve fare un ragionamento sul linguaggio

$$\{A^* \ b^* \ b^n \ d^n \ d^* \ | \quad m, n \ge 1\} \qquad L(A) = a^h b^h \quad h \ge 1$$

che può essere scritto come

$$\left\{A^* \ b^+ \ d^+ \ | \quad m \ge 1\right\}$$

di qui si scrive la grammatica equivalente

$$S \to A^* b^+ d^+ \qquad A \to a A b \mid a b$$

che risulta facilmente LL(1).

2. È data la grammatica G seguente:

$$S \rightarrow S a S$$

$$S \rightarrow A$$

$$S \rightarrow S a S$$
 $S \rightarrow A$ $A \rightarrow a A b$ $A \rightarrow \varepsilon$

$$A \rightarrow \varepsilon$$

Si svolgano i seguenti punti:

- (a) Per G si costruisca l'automa pilota LR(1) (cioè il riconoscitore dei prefissi).
- (b) Si discuta se la grammatica G sia LR(1) e LALR(1).

Soluzione

Da fare ... $(G \ è \ ambigua, \ dunque \ non \ è \ LR(1)).$

4 Traduzione e analisi semantica 20%

1. Si consideri lo schema di traduzione sintattica τ seguente:

gramm. sorgente	gramm. pozzo
$S \rightarrow a S b$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$S \rightarrow a S c$	$S \rightarrow S c$
$S \rightarrow X$	$S \rightarrow X$
$X \rightarrow b X a$	$X \rightarrow X c$
$X \rightarrow c X a$	$X \rightarrow X b$
$X \rightarrow b a$	$X \rightarrow c$
$X \rightarrow c a$	$X \rightarrow b$

Si svolgano i punti seguenti:

(a) Si calcoli la traduzione della stringa *a a b c a a c b*, e si completi la definizione della relazione di traduzione

$$\tau = \{(x,y) \mid \ x \in \{a,b,c\}^* \land y \in \{b,c\}^* \land \operatorname{pred}\}$$

dando la definzione del predicato 'pred'.

- (b) Si discuta se la traduzione, definita dallo schema, sia a un solo valore, e se sia invertibile.
- (c) (facoltativo) Si costruisca un automa *riconoscitore*, il più semplice possibile, preferibilmente deterministico, che riconosca il linguaggio *sorgente* dello schema.

Soluzione

Da fare ... comunque, per il punto (a): $\tau(aabcaacb) = bccb$; se $x = a^n x_1 a^m x_2$, con $n \geq 0, m \geq 1, x_1, x_2 \in (b \mid c)^*$ e $|x_1| = m, |x_2| = n$, allora $\tau(x) = y = \pi(x_1^R)x_2$, dove π è la proiezione che scambia b con c e e la riflessione (p. es. da prima $x_1 = bc$, dunque $\pi(x_1^R) = \pi((bc)^R) = \pi(cb) = bc$ e $x_2 = cb$); il predicato si scrive di conseguenza. Per (b), è a un solo valore ma non invertibile. Per (c), è un automa a pila, il linguaggio sorgente è $a^n(b \mid c)^m a^m(b \mid c)^n, n \geq 0, m \geq 1$ (vedi prima), non è difficile anche se un po' noisso.

2. Una base dati contiene una relazione con tre attributi:

age	name	wages
23	mary	1200, 50
45	bob	1150,00
19	susy	850,00

Un esempio di interrogazione (in stile SQL) è il seguente:

select name from (45 bob 1150,00) (23 mary 1200,50) (19 susy
$$850,00$$
) where $age > 20$

Essa produce come risultato una lista con i valori selezionati del campo indicato:

Il supporto sintattico è il seguente:

$$S \rightarrow \text{`select'} F \text{`from'} R \text{`where'} P$$
 $F \rightarrow \text{`age'} | \text{`name'} | \text{`wages'}$
 $R \rightarrow \text{`('} A N W \text{`)'} R | \text{`('} A N W \text{`)'}$
 $P \rightarrow \text{`age'} \text{`>'} A$
 $A \rightarrow \dots \qquad \text{--l'età è un intero}$
 $N \rightarrow \dots \qquad \text{--il nome è una stringa}$
 $W \rightarrow \dots \qquad \text{--il salario è un numero reale}$

Si chiede di progettare una grammatica con attributi per calcolare il risultato della selezione, come attributo della radice dell'albero. La soluzione deve evitare di copiare inutilmente i valori che non fanno parte del risultato.

Ecco i punti da svolgere:

- (a) Elencare gli attributi, con il rispettivo tipo e significato.
- (b) Scrivere le funzioni semantiche che calcolano gli attributi (alle pagine successive sono già pronti gli schemi da compilare).
- (c) Disegnare i grafi delle dipendenze funzionali tra attributi, per ciascuna produzione separatamente.
- (d) Stabilire se la grammatica sia di tipo a una sola scansione.
- (e) Stabilire se la grammatica sia di tipo L.

Soluzione

Da fare ...

sintassi	$funzioni\ semantiche$
$S \rightarrow$ 'select' F 'from' R 'where' P	
$R \rightarrow$ '(' $A N W$ ')' R	
$R \rightarrow $ '(' $A N W$ ')'	

sint assi	$funzioni\ semantiche$
F ightarrow 'age'	
F ightarrow `name'	
F ightarrow `wages'	
$P \rightarrow `age' > A$	
$A o \dots$	
$N o \dots$	
$W o \dots$	