Training AI on Stolen Car Parts

Developer Documentation

Harmond Drenth, Kurt Wokoek, Warren Burrus, Courtney Hodge, Denny Lee, Tacoma Velez

Architecture Design

Risk Score Formula

Evaluates the suspiciousness of car posts on a scale from 0.0 (low) to 1.0 (high)

$$Score = 0.25 \left(\frac{|P_{Market} - P_{Post}|}{P_{Market}} \right) + 0.10 \left(1 - \frac{1}{R+1} \right) + 0.15 \left(1 - \frac{1}{K+1} \right) + 0.20 \left(\frac{N+P}{2} \right)$$

- P_{Market} = average market price of car part
- O P_{Post} = selling price of car part in post
- o **R** = number of **R**ed flags in photos (tags, opened packages, etc.)
- o K = number of suspicious Keywords, phrases and terms in description
- o N = binary 0 or 1 if Name is standard first and last name or not
- o P = binary 0 or 1 if Phone number is standard number format or not

$$+0.10\left(1-\frac{1}{D+1}\right)+0.10\left(\frac{1}{\Delta T+1}\right)+0.10\left(\frac{100-r}{100}\right)$$

- D = number of Duplicate posts with same content
- ΔT = difference in days between Timestamps of two posts

o \mathbf{r} = mile radius from high-crime city (0 <= r <= 100)

API Specifications

- raw_process.py
 - Process the JSON files and create the data frame/csv files
- CarParts_Text_Processing.ipynb
 - Get data from the csv files
 - o Produce the visualization and perform data analysis in the csv files

Prerequisites

- You will need a Google Colab account to run the provided scripts
- You will need to upload the required files to the Google Colab runtime

Risk Score Testing in Colab

The risk score formula and weights can be tested on a given set of post data in Colab. First, manually enter the post data into the arrays storing metadata on the posts. Each post corresponds to a single index across all arrays.

```
# MANUALLY FILL WITH INPUT DATA FROM EACH POST!!!

marketPrices = [350, 350, 350, 350, 350, 350, 1000, 1000]

sellerPrices = [65, 65, 65, 300, 125, 299, 350, 1000, 1000]

redFlagWords = [0, 0, 0, 1, 4, 0, 1, 1, 1]

oddNamesPhones = [1, 1, 1, 1, 1, 0, 0, 2, 2]

duplicates = [2, 2, 2, 0, 0, 296, 0, 1, 1]

crimeCityRanges = [35, 35, 35, 100, 27, 0, 0, 100, 100]

monthDayYrDates = ["8/11/2023", "7/8/2023", "6/4/2023",

"7/23/2023", "7/13/2023", "6/28/2023",

"9/12/2023", "8/16/2023", "5/18/2023"]

timestamps = datesToTimestamps(monthDayYrDates)
```

- oddNamesPhones[] 0 means neither phone nor name is suspicious; 1 means only one of phone or name is suspicious; 2 means both phone and name are suspicious
- duplicates[] number of duplicate posts, excluding self

• crimeCityRanges[] - if more than 100 miles from crime city, enter 100 miles

After manual data entry, run the statistical analysis in Colab.

Chrome Extension

- Canceled for this research project
 - If the extension produced a false positive post score that discouraged customers from buying a car part, vendors (Craigslist, OfferUp) could press charges for loss of business.