Ejemplo 11.23

Analice el pórtico de la figura:

Dimensiones (b x h en cm)

Viga: 30 × 35

Columnas: 30 × 30

 $E = 190 \, \text{T/cm}^2$

Solución

Se adopta la siguiente numeración y orientación:

Los miembros tienen las siguientes propiedades:

Miembro	θ°	λ	μ	AE/L	EI	2EI/L	4EI/L	6 EI/L2	12 EI/L3
1.2	26.56	0.89443	0.44721	A CONTRACTOR	NAME OF TAXABLE PARTY.	N. P. Brahaman	THE RESIDENCE	A STATE OF THE PARTY.	273
4-1	53.13	0.60000	0.80000	34200	1282	513	1026	308	123
2-3	-71.56	0.31623	-0.94868	27037	1282	406	811	192	61

Las fuerzas de empotramiento de la viga cargada son:

Aplicando las ecuaciones (11.59) y (11.60) a cada miembro se obtiene:

$$\begin{bmatrix} X_{12} \\ Y_{12} \\ Y_{12} \\ X_{21} \\ Y_{21} \\ M_{21} \end{bmatrix} = \begin{bmatrix} 35743 & 17735 & -273 & -35743 & -17735 & -273 \\ -17735 & 9141 & 546 & -17735 & -9141 & 546 \\ -273 & 546 & 1822 & 273 & -546 & 911 \\ -35743 & -17735 & 273 & 35743 & 17735 & 273 \\ -17735 & -9141 & -546 & 17735 & 9141 & -546 \\ -273 & 546 & 911 & 273 & -546 & 1822 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ \theta_2 \end{bmatrix} + \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ \theta_2 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 5.60 \\ 3.733 \\ + \\ 0 \\ 5.60 \\ -3.733 \end{bmatrix}$$
 (a)

 \mathbf{u}_2 V_2 2758 -8093182 u_2 61 -8093 24339 Y 23 811 61 8093 8093 -24339 -6161 406 M_{32} (c)

Al ensamblar los términos correspondientes a los nudos libres se llega a:

$$\begin{bmatrix} X_1 & = & X_{12} + X_{14} & = & 1.5 \\ Y_1 & = & Y_{12} + Y_{14} & = & 0 \\ M_1 & = & M_{12} + M_{14} & = & 0 \\ X_2 & = & X_{21} + X_{23} & = & 0 \\ Y_2 & = & Y_{21} + Y_{23} & = & 0 \\ M_2 & = & M_{21} + M_{23} & = & 0 \end{bmatrix} =$$

$$\begin{bmatrix} 48134 & 34092 & -27 & -35743 & -17735 & -273 \\ 34092 & 31073 & 362 & -17735 & -9141 & 546 \\ -27 & 362 & 2848 & 273 & -546 & 911 \\ -35743 & -17735 & 273 & 38502 & 9642 & 456 \\ -17735 & -9141 & -546 & 9642 & 33480 & -486 \\ -273 & 546 & 911 & 456 & -486 & 2633 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ \theta_1 \\ u_2 \\ v_2 \\ \theta_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 5.600 \\ 3.733 \\ 0 \\ 5.600 \\ -3.733 \end{bmatrix}$$

Y resolviendo el sistema resultante:

$$u_1 = 13.29 \times 10^{-3} \text{ m}$$
 $v_1 = -10.16 \times 10^{-3} \text{ m}$
 $\theta_1 = -1.655 \times 10^{-3} \text{ rad}$
 $u_2 = 7.09 \times 10^{-3} \text{ m}$
 $v_3 = 2.10 \times 10^{-3} \text{ m}$
 $v_4 = 4.64 \times 10^{-3} \text{ rad}$
 $v_5 = 4.64 \times 10^{-3} \text{ rad}$

Reemplazando estos valores en las ecuaciones (a), (b) y (c) se obtienen las fuerzas internas, referidas a coordenadas generales:

$$X_{12} = 3.428 \quad T \rightarrow X_{21} = -3.429 \quad T \rightarrow Y_{12} = 5.155 \quad T \quad \uparrow \quad Y_{21} = 6.045 \quad T \quad \uparrow \quad M_{12} = -3.452 \quad T - m \quad M_{21} = -5.185 \quad T - m \quad M_{21} = -5.185 \quad T - m \quad M_{21} = -5.185 \quad T - m \quad M_{22} = -5.156 \quad T \quad \uparrow \quad M_{23} = 3.429 \quad T \rightarrow X_{23} = 3.429 \quad T \rightarrow X_{32} = 3.429$$

616 ANALISIS DE ESTRUCTURAS

Las fuerzas en los nudos 3 y 4 son las reacciones, con las cuales se puede verificar el equilibrio general:

$$\Sigma F_x = 0.000$$
 Ton
 $\Sigma F_y = 0.001$ Ton
 $\Sigma M_4 = 0.009$ T-m

Para hallar las fuerzas internas referidas a coordenadas locales se utilizan las matrices de transformación, $[\bar{F}] = [T][F]$

			_						I 7	
	\overline{X}_{12}		0.89443	0.44721	0	0	0	0	3.428	
	Y ₁₂		-0.44721	0.89443	0	0	0	0	5.155	
54	\overline{M}_{12}	1000	0	0	1	0	0	0	-3.452	
	\overline{X}_{21}		0	0	0	0.89443	0.44721	0	-3.429	THE REAL PROPERTY.
	Y ₂₁		0	0	0-	-0.44721	0.89443	0	6.045	
	M 21		0	0	0	0	0	1	-5.185	
		100								

$$= \begin{bmatrix} 5.372 & T & / \\ 3.078 & T & / \\ -3.452 & T - m \end{pmatrix}$$

$$= \begin{bmatrix} -0.364 & T & / \\ 6.940 & T & / \\ -5.185 & T - m \end{bmatrix}$$

$$\begin{bmatrix} \overline{X}_{41} \\ \overline{Y}_{41} \\ \overline{M}_{41} \\ \overline{X}_{14} \\ \overline{Y}_{14} \\ \overline{M}_{14} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.8 & 0 & 0 & 0 & 0 & 0 \\ -0.8 & 0.6 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.6 & 0.8 & 0 & -1.929 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1.929 \\ 5.156 \\ -4.301 \\ -1.929 \\ -5.156 \\ 3.452 \end{bmatrix} =$$

$$= \begin{bmatrix} 5.282 & T & / \\ 1.550 & T & \\ 4.301 & T - m & \\ -5.282 & T & / \\ -1.550 & T & \\ 3.452 & T - m & \\ \end{bmatrix}$$

barra 2

barra 3

Finalmente se dibujan los diag-

Refuerzo Primario