## 3d Game Programming with DirectX 11

ianaesthetic
October 14, 2017

## 1 向量 (Vector)

## 1.1 正交化 (Orthogonalization)

对于一组向量  $\{\mathbf{v}_0, \mathbf{v}_1 \cdots \mathbf{v}_n\}$ ,正交化的过程为:

$$egin{aligned} \mathbf{w}_0 &= \mathbf{v}_0 \ \mathbf{w}_i &= \mathbf{v}_i - \sum_{j=0}^i \mathsf{proj}_{\mathbf{w}_j}(\mathbf{v}_i) \ \mathbf{w}_i &= rac{\mathbf{w}_i}{\parallel \mathbf{w}_i \parallel} \end{aligned}$$

## 1.2 数学库 DirectXMath

数学库已经从原来的 XNAMath 转变为集成到 Windows SDk 的 DirectX-Math 。相较于使用 <xnamath.h> ,现在是使用 <DirectXMath.h> 并且在所有的函数都将在命名空间 DirectX 下。

使用 SIMD 的向量 XMVECTOR 用于计算,而相对应的储存由专门的其他类型来储存,以 3D 为例 XMFLOAT3 。整形向量使用数组来定义。之间的转换定义为:

```
XMVECTOR XMLoadFloat3(const XMFLOAT3 *source);
void XMStoreFloat3(XMFLOAT3* destination, FXMVECTOR v);
```

单独获取一个分量或者修改一个分量的定义为 (分量替换为 X, Y, Z, W):

```
FLOAT XMVectorSetX(FXMVECTOR v, FLOAT x);
FLOAT XMVectorGetX(FXMVECTOR v);
```

在定义函数的时候,参数需要使用 FXMVECTOR 或者 CXMVECTOR 以更好的利用 SIMD 。函数的前三个 XMVECTOR 参数为 FXMVECTOR,后面的一律使用 CXMVECTOR 。引用参数依然为 XMVECTOR 。常量 XMVECTOR 定义为

```
XMVECTORF32 v = \{1.0f, 1.0f, 1.0f, 1.0f\};
```

一些很常用的 3D 函数列表 (注意有一些返回标量的函数为了保持 SIMD 选择依然返回一个 XMVECTOR ,并且将所有的分量都设置为结果标量):

```
XMVECTOR XMVectorSet(
   FLOAT x, FLOAT y, FLOAT z, FLOAT w
);

XMVECTOR XMVector3Length(FXMVECTOR v);

XMVECTOR XMVector3LengthSq(FXMVECTOR v);

XMVECTOR XMVector3Dot(FXMVECTOR v, FXMVECTOR u);

XMVECTOR XMVector3Cross(FXMVECTOR v, FXMVECTOR u);

XMVECTOR XMVector3Normalize(FXMVECTOR v);

BOOL XMVectorEqual(FXMVECTOR v, FXMVECTOR u);
```