Subject Index

A _{2A} receptor gene	short runs and long scan durations, 285
EEG theta/alpha activity, 57–58	thalamus, 285
G-protein-coupled adenosine receptors, 57–58	alpha-band oscillatory activity, 278
T/T genotype, 57–58	BOLD-BOLD correlation analyses, 280
Adenosine deaminase (ADA) gene	correlations, electrophysiological signals,
G/A genotype, 57	290
genotype-dependent alterations, 57	data processing and analysis
pharmacological inhibition, 57	community structure, 282–285
pharmacologic and genetic evidence, 57	electrophysiological and fMRI BOLD resting
polymorphism, 57	state, 281–285
Adenosine triphosphate (ATP)	large-scale, 282
cytokine–adenosine, 45–46	PALS visualization mapping, 285
levels, 45–46	SoNIA visualization, 285
NREMS, 43–44	definition, human sleep, 278
sleep regulation, 43	description, sleep, 277–278
Alpha and theta power (ATR), 281–282	DMN activity, 279
ATP. See Adenosine triphosphate	external and internal thoughts, 278
ATR. See Alpha and theta power	frontoparietal cortices and thalamus activity,
	279
Blood oxygen-level dependent (BOLD), 234, 285,	frontoparietal pattern, anticorrelated activity,
286. See also Brain's functional network	289–290
architecture	functional changes, 279–280
BOLD fMRI signal. See Spontaneous fMRI	general methods
activity	analysis set, group 1, 280
Brain-derived nerve growth factor (BDNF), 6	artifact-free data, group 2, 280
Brain-derived neurotrophic factor gene	electroencephalography, 281
prefrontal cortex and hippocampus, 58	functional imaging, 280
REM sleep and wakefulness, 58	group 1 and 2, 280
sleep propensity, 58	image preprocessing, 280–281
Val/Val homozygotes, 58	global network connectivity, 290
Brain's functional network architecture	graph theoretical approach, 279, 290
alpha-band EEG and rsfMRI correlations	inter-regional connectivity, 290–291
BOLD correlations, 285, 286	large-scale network connectivity analysis
positive and negative, αHDR , 285	community structure, 286–287, 288, 289
	, , ,

Brain's functional network architecture	description, 208–209
(Continued)	EEG butterfly plot, stimulation modalities,
dissociation, anterior and posterior nodes,	210, 211
287	hd-EEG recording, 209-210
modularity analysis, 286–287	micro-osmatic animals, 215
parahippocampal node, 287–288, 289	modality specific differences, 214–215
real-world complex systems, 286	nonspecific pathways, 215
ROIs, 283, 286	peripheral stimulation, 209
state dependent changes, 291	Post hoc analysis, 212–213
strengthening, DMN, 287, 289	primary and secondary visual cortex, 212–213
task-switching (TSw) region, 287	P200 time period, 213–214
temporal regions, 287–288	Quade test, 212
thalamic regions, 288	scalp topography and flat maps, N550 time
transitional states, 286, 287	periods, 210–212
N2 and N3, 279	source modeling technique, 210–212
positive correlations, 290	stimulation blocks, 209–210
quiet eyes-closed rest, 289	neuroimaging technologies, 202–203
reduced attention, 278	PET, 205
seed-based functional connectivity analyses,	slow oscillation
290	cortical neurons, 204
sleep onset (N1) and EEG, 278-279	decorticated thalamus, 204
small-scale network connectivity analysis	EEG recordings, humans, 204–205
comparison, attention-related networks, 285–286	ketamine/xylazine anesthetized cats, 204
reduction, functional anticorrelations,	synchronization
285–286	anterior cingulate, 208
'Brain Voyager" software package,	multisite intracellular recordings, 208
311–312	neurosurgical patients, 208
	regional specificity, 207
Childhood-onset schizophrenia (COS), 74	scalp-level analysis, 207
COMT gene	streamline pathway analysis, 207–208
amino acid sequence, 58-59	traveling waves, 207–208
sleep variables, 58–59	traditional EEG studies
Val158Met polymorphism, 58–59	deep current source, 203–204
Continuous performance tasks (CPTs), 335–337	electrical fields, 203
Cortical source dynamics and slow waves	nasopharyngeal electrode, 203
behavioral states, 202	precentral and far frontal focus, 203
elektrenkephalogram, 202	recordings, 203
event-triggered fMRI, 205–206	scalp voltage topographies, 203–204
hd-EEG	CPTs. See Continuous performance tasks
advantages, 206	Cytokines, slow wave sleep
source modeling and results, 206-207	brain organization
K-complexes	biochemical sleep mechanism, 44-45
auditory and respiratory occlusion, 208-209	neuronal/glia network, 45
auditory cortex activation, 209	sleep and waking cognition, 44–45

IL1 and TNF	averaged stimuli, 237
injection, 40	P1 and N1 amplitudes, 238
sleep regulation, 40–43	Default-mode network (DMN)
sleep function	activity, 11
ATP-cytokine-adenosine, 45-46	and ICNs, 10
ATP levels, 45–46	Diffusion tensor imaging (DTI)
molecular signals, 45–46	description, 327
physical and cognitive performance, 45–46	preprocessing steps, 327
upstream and downstream events	use, DTIquery, 327
adenosine tissue concentrations, 44	DQS. See Deep quiet sleep
ATP, 43	DTI. See Diffusion tensor imaging
brain-derived neurotrophic factor (BDNF)	
release, 43–44	EEG. See Electroencephalogram
effector molecules, 44	Electrical and cerebral vascular responses
purine type 2 receptors (P2Rs), 43–44	basal neural activity, 239-240
P2Y1 and the P2X7 receptor, 40-41	blood flow, 239–240
P2Y receptors, 43–44	cerebral processing and cognitive performance,
sleep promoting activity, 43	234
	chronic implantation
Data acquisition and analysis, resting state fMRI	electric potential differences, 235
BOLD activity and one-sample ANOVAs, 312	electrocardiographic activity (ECG), 235
"Brain Voyager" software package, 311–312	occipital lobe, 235
scanning sessions, 311	data analysis
Data processing and analysis, brain's functional	evoked response potential (ERP)
network architecture	amplitudes, 237
community structure	LQS and DQS, 237
final region groupings, 285	Mann-Whitney U-test, 237
modularity optimization, 282	recovery period, 237
thresholds range, 282	vascular response, 237
electrophysiological and fMRI BOLD resting	deficiency, metabolic, 240–241
state	electrical response potential (ERP), 238, 240
alpha power time series, 281	electroencephalographic (EEG) and NIRS, 234
ATR and M2, 281–282	hemodynamic response, 239
band-limited power time series, 281–282	LQS and DQS, 237–238, 241
αHDR, 281	membrane potential fluctuations, 239–240
Wilcoxon rank sums test, 281–282	metabolite delivery, 234
large-scale	neural activation, 233–234
definition, ROI, 282, 283	nonpathological conditions, 234
graph theoretic approach and correlation	optical measurements, 237
values, 282	recovery period, 237–238
seed region definition, 282	signal-to-noise ratios, 237–238
time series and correlation values, 282	sleep deprivation paradigm
PALS visualization mapping, 285	auditory cortex, 236
SoNIA visualization, 285	evoked responses, 236
Deep quiet sleep (DQS)	room temperature, 235–236

Electrical and cerebral vascular responses	DQS, 239
(Continued)	P1 and N1 amplitudes, 237, 240
time-of-day and novel environment effects,	significant decline, 238
235–236	Excitatory postsynaptic potential (EPSP), 23–24,
sleep scoring	127–129
fast Fourier transform (FFT) analysis, 236	
rapid eye movement (REM) sleep, 236	Fast Fourier transform (FFT) analysis, 236
time spent, wake/sleep, 238	fbEEG. See Full band electroencephalography
vascular responses, 238–240	[18F] Flurorodeoxyglucose positron emission
wake and REM, 240–241	tomography (FDG-PET)
Electrical status epilepticus (ESES), 74–75	Siemens CTI 951 R16/31 scanner, 324–325
Electroencephalogram (EEG)	SPM analysis, 324–325
delta waves, 40	fMRI. See Functional magnetic resonance
description, 325–326	imaging
fMRI, 115	fMRI investigation
gradient and gross motion artifacts, 281	correlation, 264
hippocampal, 171–172	description, PICA, 264
human, 189	DSC values, 267
ISFs (see Infra-slow fluctuations (ISFs))	frequency band and content, 265-266
MagLink TM system and Synamps/2 TM	frequency bandpass characteristics, 265–266
amplifier, 281	GLM analysis, 264, 266–267
neocortical cells, 182–183	intertrial phase coherence, 266
neuroimaging, slow waves	oscillatory processes, 264
deep current source, 203–204	parameters, 264
electrical fields, 203	phase synchrony
event-triggered fMRI, 205-206	function, 266
hd-EEG, 206–207	measurement, 267, 268
nasopharyngeal electrode, 203	PDF and RSN1, 266
precentral and far frontal focus, 203	significance, testing, 267, 268
recordings, 203, 204–205	statistical significance, 266
scalp voltage topographies, 203–204	time-course, 266
parahippocampal gyrus, 114	PICA, 264, 265, 267
patterns, 122	power spectra, 267, 269
recordings, 339–340	Varian INOVA 3-Tesla MRI system, 264
slow rhythm, 112	Full band electroencephalography (fbEEG)
slow waves, 114	BOLD, 159
spectral analysis, 63–64	human, 156
synchronized vs. desynchronized, 183	Functional hemispherectomy. See Multimodal
topographic representations, 325–326	neuroimaging, consciousness disorders
wakefulness, 64–65	Functional imaging, 280
Empirical mode decomposition (EMD). See HHT	Functional magnetic resonance imaging (fMRI).
and EMD	See also Resting state networks (RSNs)
E-prime 1.1 software, 248–249	BOLD resting state, 325, 326
EPSP. See Excitatory postsynaptic potential	"BrainVoyager" software, 325
Evoked response potential (ERP)	EEG, 207, 209

EPI and T1-weighed MPRAGE sequence, 325	Hilbert-Huang transform (HHT). See HHT and
event-triggered, 205–206	EMD
HHT and EMD	Hippocampal-cortical interactions and memory
algorithm, 261–263	trace reactivation
definition, Hilbert transform, 263–264	coherent reactivation
description, HSA, 261	EEG and concurrent spike activity, 171–172
functions, 261	indexing theory, 171–172
IMF, 261, 263–264	memory performance, 172
monocomponent/narrow-band signal,	subcomponents, 170–171
263–264	ventral striatum, 172
oscillatory components, 261	data structure and ensemble recordings
ICA, 260–261	animal's brain state, 167–168
investigation (see fMRI investigation) RSN, 146–147	distribution, state-vector correlation values, 167, 168
	Pearson correlation coefficients, 168
Gating hypothesis	state and rate correlation matrices, 167, 168
cholinergic (ChATa) neurons, 90	template matching procedure, 168
memory replay and neuronal plasticity, 90	organization and indexing
neuronal computations, 90–91	cortex and hippocampus, 163–165
SWA, 90–91	encoding principle, 163–165
	knowledge extraction, 165-166
hd-EEG. See High-density electroencephalogram	rapid plasticity, 165
HHT and EMD	semantic memory, 165
algorithm	place cells
candidate calculation, 261–263	hippocampal pairwise correlations, 168–169,
description, 261	170
flowchart, 261, 262	"phase sequences", 169–170
fMRI signal, 261–263	population vectors and template matching,
maxima and minima, signal, 261-263	169–170
sifting process, 261–263	rodent hippocampus, 168–169
stopping criteria, sifting process, 263	synaptic connections, 168–169, 170
definition, Hilbert transform, 263–264	sparse vs. distributed coding
description, HSA, 261	"indexing" theory, 166–167
functions, 261	information transmission, 166
IMF	primary sensory/motor cortex, 166
calculation, 263–264	SWS, 172–175
conditions, 261	Homeostatic sleep pressure
monocomponent/narrow-band signal,	amplitude and slopes
263–264	cortical synchrony, 23
oscillatory components, 261	high-amplitude slow waves, 23
High-density electroencephalogram (hd-EEG)	neurons recruitment/decruitment, 23
advantages, 206	SWA, 22
recording, 209–210	cortical neurons synchronization
source modeling and results, 206–207	computer simulations, 31

Homeostatic sleep pressure (Continued)	EEG power topography, 67
cortical neurons, 28	frontal derivations, 67
EEG and LFPs, 28–29	posterior–anterior time course, 67
firing patterns, 29	SWA topography, 66
NREM sleep, 28–29	U-shaped time course
ON-OFF and OFF-ON transitions, 31	brain morphology and function, 66
sensory stimuli, 28	cross-sectional and longitudinal studies,
cortical plasticity	66–67
antidromic/polysynaptic components, 19	SWA, 67
EEG and LFP slow waves, 20	Infra-slow fluctuations (ISFs)
left frontal cortex, transcallosal stimulation, 27	amplitude dynamics (see Multiscale brain activity fluctuations roles)
LTP and LTD, 26	BOLD
miniature excitatory postsynaptic currents	described, 337
(mEPSCs), 19	temporal structure, 338–339
saturation, 26	EEG
spontaneous and evoked cortical activity, 20	mechanisms, 340
electrically evoked cortical responses	neuronal activity, 341
correlated synaptic activity, 23–24	phase, 340–341
cortical interneurons, 25	scale-specific cellular mechanisms, 340–341
cortical networks, 25–26	time scales and fractal nature, 341
electrical stimuli, 25	phase, 339–340
excitatory postsynaptic potential (EPSP),	scale-free, 335–337
23–24	Infraslow oscillations (ISO), thalamic relay nuclei
local field potential (LFP) recordings, 24	animal brain
NREM sleep, 24	cyclic paroxysms, 148–149
sleep slow waves, 25	LFP, 148–149
synaptic efficacy, 24	LGN neuron activity, 148–149
transcallosal evoked response, 25	oscillatory activity, 149–150
	rabbits neocortex, 147–148
ICA. See Independent component analysis	cyclic paroxysms
ICNs. See Intrinsic connectivity networks	HT burst, 156
Image preprocessing	in vivo, 156–158
Fisher-z transformed correlation values,	mGluRs/AchRs, 156, 158
280–281	firing rate histograms, 150, 151
noise signals regression, 280–281	human brain
slice-dependent time shifts compensation,	activities, 146
280–281	fbEEG, 146–147
IMF. See Intrinsic mode function	fMRI, 146
Independent component analysis (ICA)	periodic signals, 146
description, 260–261	hyperpolarizing potentials and astrocytes
PICA, 260–261	adenosine, 153
Infants, children and adolescents disparities	Ca ²⁺ oscillations, 153–155
properties, slow waves, 66	ionotropic glutamate receptors, 153
regional shifts, slow-wave topography	role, 153–155

local alpha (8–13 Hz) rhythms	and VB, 156
BOLD signal, 147, 156	LFPs. See Local field potentials
depolarized phase, 156, 157	LGN. See Lateral geniculate nucleus
EEG rhythms and RSN, 147, 156	Light quiet sleep (LQS)
HT bursts, 156, 157	and DQS, 237
LFP frequency components, 148, 156	EMG, 236
LFP recording, LGN, 156, 157	hemodynamic response amplitude, 239
LGN slice, 156	P1 and N1 amplitudes, 240
LGN TC neuron, 156, 157	peak amplitude, 237
long-lasting hyperpolarizing potentials, 150–152	recovery period, 241
manifestation, 150	time spent, 238, 238
physiological and pathological significance, 159	vascular responses, 238–239
Interleukin-1 beta (IL1)	Local field potentials (LFPs)
injection, 40	deflections, 150
P2 receptors, 43–44	DPCPX, 153
sleep regulation	LGN, 148–149
animal models, 40	monkey cortex, 191
ATP, 43	neurons, 149–150
circulating levels, 42	recordings, 24, 184–186
cytokine levels, 42	signal, 150
description, 40	SWS, 182–183
NREMS and REMS, 40–41	Long-term depression (LTD), 130-131
pathology, 42–43	Long-term potentiation (LTP)
recombinant preparations, 40	description, 130–131
Intraclass correlation coefficients (ICC), 53	LTD, 133
Intrinsic connectivity networks (ICNs)	LQS. See Light quiet sleep
amplitude covariance, 344–345	LTD. See Long-term depression
amplitude dynamics, 342–344	LTP. See Long-term potentiation
BOLD-signal, 338, 339	
description, 337–338	Magnetoencephalography (MEG)
fluctuations, 340	and EEG data, 342–344
Intrinsic mode function (IMF)	1:2-phase synchrony, 345–346
definition, 261	prestimulus phase, broadband ongoing activity
description, top four, 264	342
EMD algorithm, 261–263	Major depression disorder (MDD), 74
instantaneous phase and frequency, 263–264	MEG. See Magnetoencephalography
oscillatory processes, 264	Multimodal neuroimaging, consciousness
phase function, 266	disorders
phase synchrony, 266	behavioral assessment, 324
regressors, GLM analysis, 264	data acquisition and analysis
ISFs. See Infra-slow fluctuations	DTI, 327 EEG, 325–326
Lateral geniculate nucleus (LGN)	FDG-PET, 324–325
LFP, 148–149	fMRI, 325
neurons, 148–149	DTI analyses, 331
	·· J · · · · · · ·

Multimodal neuroimaging, consciousness	dorsal attentional regions, 338, 339
disorders (Continued)	prestimulus activity, 339
functional and structural connectivity, 331	requirements, neuronal process, 339
head trauma	stimulus detection, 339
GCS, brain CT and EEG, 327	causal dissection
standardized behavioral and multimodal	role, neuronal activities/interaction, 346
neuroimaging assessments, 327	TMS and microstimulation, 346
VS and MCS, 324	CPTs, 335–337
metabolic PET and hemodynamic fMRI	cross-scale binding, CF phase-amplitude and
results, 330–331	phase-phase interactions
multimodal imaging	complementary roles, 345
DTI tractography, 328–329	neuronal mechanisms, 345
FDG-PET and fMRI default mode network	n:m-phase synchronization, 345
connectivity, 328–329, 330	ordering, 346
high-density EEG, 328, 329	phase-amplitude correlation, 345
resting state FDG-PET data, 328	1:2-phase synchrony, 345–346
resting state fMRI, 326, 328	physiological mechanisms, 345
WS/VS vs. MCS, 329–330	spatiotemporally tree-like excitability
multimodal neuroimaging techniques, 324	windows, 346
objective paraclinical markers, 324	description, TSDTs, 335-337
resting state BOLD and functional	electrophysiological characterization
hemispherectomy, 330	EEG ISFs and cellular mechanisms, 339-34
resting state fMRI acquisitions, 330	EEG ISFs phase and functional connectivity
"resting state" network, 331	340–341
unremarkable medical history	ISF phase, 339–340
brain CT-scan, EEG and structural MRI,	ISOs phase, 339–340
327–328	LFP/EEG recordings, 339–340
coma recovery scale-revised assessment, 328	scale-specific cellular mechanisms, 340–341
user-independent automatic analyses, 330	time scales and fractal nature, 341
UWS/VS	human perceptual/cognitive performance, 335
characterization, 324	hypotheses examination, 337
patient lacking clinical proof, 331	infraslow fluctuations (ISFs), fMRI
Multiscale brain activity fluctuations roles	BOLD and "resting-state networks", 337
amplitude dynamics	DAN and data-driven functional connectivity
fMRI ICN fluctuations, 342–344	mapping techniques, 337–338
frequency bands, prestimulus oscillation, 344	description, 337
ISFs, 342	ICNs and DMN, 337–338
mechanisms, ICN and amplitude covariance,	temporal structure, BOLD ISF, 338–339
344–345	ISFs/"behavioral avalanches", 335–337
M/EEG use, 344–345	neuronal oscillations
MEG and EEG data, 342–344	coexistence, scale-free and scale-specific
transcranial magnetic stimulation (TMS), 344	dynamics, 341
behavioral scaling laws, 337	cognitive operations and neuronal activity
BOLD-signal, correlation	per se, 341
behavioral variability, 339	invasive depth electrode recordings, 341

non-scale-free/scale-specific, 341	anesthetized animals, 183–184
synchronization, 341	cat neocortex, 183
oscillation phase, behavioral dynamics	experimental setup, 184–186
attentional and motor phenomena, 342	ketamine-xylazine anesthesia, 184-186
neuronal oscillations, 342	nonanesthetized animals, 184
prestimulus phase, broadband ongoing	offline data analysis, 184
activity, 342	synchronized vs. desynchronized EEG, 183
scale-free, 342	Neonatal sleep function
scale-free infraslow neurophysiological and	correlation-based studies, 222
psychophysical dynamics, 342, 343	experience-dependent plasticity, 221
sensory-attentional-communication channel,	pharmacological sleep deprivation
342	anxiety and sexual behavior, 222
scale-free activity, 346–347	behavioral changes, 222
scale-free behavioral fluctuations, 335–337	neonatal treatments, 222
,	REM sleep deprivation (RSD), 222
Neocortical neuron's membrane potential, slow	rapid-eye-movement (REM) sleep, 221
oscillation	Neuronal plasticity
active and silent states	brain oscillations, 135–136
described, 182–183	description, 121–122
detection methods, 186, 187	homeostatic
onset delay vs. distance, cell pairs,	cortical network, 134, 135
188, 189	GABA, 134
overlap calculation, 186–189	mEPSCs, 134
phase-relation, 189	and neocortical epilepsy, 134
quadruple intracellular and LFP recording,	and SWS, 134
186–189	intrinsic, 133–134
correlation dynamics	synaptic, 125–133
crosscorrelogram computation, state	TC system, 122
transition, 193, 195	Nocturnal slow-wave activity affects reduction
electrode location, 193, 194	auditory stimulation, 252–253
recorded neurons, 193, 194	brain mechanisms, 254
time course and state transition, 193, 194	cognitive functioning and psychomotor
electric activity patterns, 182–183	vigilance, 251–252
intracellular analysis, 183	declarative memory formation, 252
long-range correlation	deep sleep, 253–254
correlograms, 191–193	disruption, sleep affects, 246
crosscorrelogram peak shift, 190, 191	implicit memory acquisition, 252–253
distance-dependency, 189–191	primary insomnia patients, 246
fluctuations, 195–197	PVT
intracellular recording, 191–193	declarative memory, 248–249
recorded neurons, 189–191	implicit memory, 249
slow oscillation vs. without slow oscillation,	vigilance, 248
191–193	sleep and lower sleep efficiency,
strength vs. peak shift, 190, 191	252–253
simultaneous intracellular recording	statistical analysis
C	•

Nocturnal slow-wave activity affects reduction	NREM sleep. See Non-rapid eye movement sleep
(Continued)	
declarative memory, 250	Ocular dominance plasticity (ODP)
implicit memory, 250	adult brains
vigilance, 249–250	infant animal sleep, 228
subjects, 247	neural development, 228
supplementary motor area (SMA),	neuron path-finding, 228
252	plasticity change, lifespan, 228
SWA reduction, 247–248declarative memory,	REM and non-REM sleep, 228
251	cellular mechanisms
implicit memory, 251	AMPA receptor, 226
sleep parameters, 250–251	cortical neuronal activity, 225
vigilance task performance, 251	downstream kinase activation, 226
test procedures, 247	GABA-A (R)eceptor agonists, 226
Non-rapid eye movement (NREM) sleep	normal enhancement, 226
ATP, 43–44	visual response properties, 225
cortical neurons, 26–28	wakefulness, synaptic changes, 226
cyclic occurrence, 52	hypnotic sleep, early life
distinct frequency bands, 54–55	childhood/adolescent mental disorders,
duration, 41	226–227
EEG, 53, 59, 111–112	psychotropic medications, 226–227
electrical brain activity, 54–55	sleep-dependent consolidation, 227
genotype-dependent differences, 56	sleep-mediated functions, 226–227
IL1, 40	investigations
large-amplitude slow waves, 26	developing cortex in vivo, 225
LFP slow waves, 29	intrinsic cortical signals, 224–225
locus coeruleus, 41	ocular dominance, 224–225
and REM sleep, 18	sleep deprivation procedure, 224–225
responses, 40–41	natural forms, stimuli, 224
slow waves	physiological and anatomical changes, 224
brainstem activity, 114	REM and non-REM
cerebellar activity, 114	brain development and plasticity, 227
parahippocampal gyrus, 114	visual development, 227–228
rhythm (1 Hz), 112	waking experience, 227–228
subcortical and cortical, 114	ODP. See Ocular dominance plasticity
SWA, 112	
transient activity, 114	PALS. See Population-average, landmark-and
variability, 112–114	surface-based
spindles	Pedunculopontine nucleus (PPN), cortical
kinds, 114–115	high-frequency oscillations
memory consolidation, 115	acetylcholine receptors, 85
μ rhythm, 115	cerebral cortex, 85
slow and fast, 115, 116	cholinergic hypothesis, 86
structure and intensity, 52	gating hypothesis, 90–91
SWA, 21	neurochemical markers, 86

neuromodulatory systems	E-prime 1.1 software, 248–249
acetylcholine receptors, 90	hippocampal activation, 248–249
cholinergic afferents, 90	paired t-tests, 249
thalamic neurons, 90	retrieval performance, 249
thalamocortical systems, 90	implicit memory, 249
wakefulness, 90	vigilance
neurons, sleep	complex, 248
acetylcholine-receptor activation, 87–89	simple, 248
axon collaterals, 87–89	Purine type 2 receptors (P2Rs), 43–44
cortical slow oscillations, 88	PVT. See Psychomotor vigilance tasks
functional properties, 87	,
nested gamma oscillations, 87	Rapid-eye-movement (REM) sleep
neuronal subtypes, 86–87	density, 53
phasic components, 87	distinct frequency bands, 54-55
thalamic neurons, 87	duration, 40–41
sleep wake cycle, 86	EEG, 53–55
subcortical modulation	genotype-dependent differences, 56
brainstem activating structures, 89	IL1, 41
forebrain neuronal networks, 89-90	and non-REM
midbrain/brainstem networks, 89-90	brain development and plasticity, 227
reticular-activating system, 89	visual development, 227–228
thalamocortical neurons, 86	PER3 ^{4/4} genotype, 56
PER3 gene	timing, 52
human chromosome 1, 56	TNF receptors, 41
REM, 56	wakefulness, 58
sleep architecture, 56	Regions of interest (ROI)
PET. See Positron emission tomography	correlation matrices and spatial correlation
PICA. See Probabilistic independent component	maps, 280–281, 283
analysis	large-scale network analysis, 282
Population-average, landmark-and surface-based	thalamic, 288
(PALS), 285	REM sleep. See Rapid-eye-movement sleep
Positron emission tomography (PET), 205	Resting state fMRI, hypnotic modulation
Prion protein gene	autobiographical mental imagery, 310–311
fatal familial insomnia, 59	block design, 316–317
Met/Val genotype, 59	characterization, 313–315
NREM sleep, 59	connectivity, posterior midline parts, 317–318
Probabilistic independent component analysis	correlation analysis, 310
(PICA)	functional connectivity, 318–319
analysis, 272–273	generation, autobiographical episodic mental
description, 260–261	images, 318
fMRI data, 260–261	hypnosis
production, RSNs, 265, 267	vs. autobiographical mental imagery,
use, MELODIC, 264	316–317
Psychomotor vigilance tasks (PVT)	definition, 310
declarative memory	induced modulation, 319

Resting state fMRI, hypnotic modulation	"neural" spectrum, 271
(Continued)	power spectra, 269–270
selection, control condition, 315-316	spatial maps and time-courses, 268–269
independent component analysis (ICA), 310	3-T Siemens Trio, fMRI data, 268
intrinsic and extrinsic system, 310	spectral characteristics, 274
methods	spectra, perfusion fMRI
absorption, dissociation and external	described, ASL, 271
awareness scores, 312, 313	DMN, perfusion (ASL) data, 271–272
data acquisition and analysis, 311–312	power spectra, 272, 273
default mode network and extrinsic system,	single channel radio-frequency transmit/
313, 316	receive head coil, 271
healthy subjects, 311	"tag" acquisitions, 271
hypnosis vs. mental imagery, 313, 317, 318	tag-control, sinc-based shifting, 271–272
hypnotic state, permissive and indirect	temporal characteristics, 260
suggestions, 311	use, low-frequency fluctuations, 260
mental imagery and hypnotic state, 313, 315	"REST" periods, 298
posterior cingulate/precuneus, 313, 314	ROI. See Regions of interest
ongoing resting activity, 313–315	RSNs. See Resting state networks
"self-centered absorption", 319	
spontaneous brain activity, 310	Serial reaction time (SRT), 249
Resting state networks (RSNs)	Sleep and developmental plasticity
α band power, 146	central visual pathways, subcortical
broadband neuronal process, 274	LGN, 224
connectivity, 11	morphological plasticity, LGN, 223-224
contributing frequency, 272	regulated cortical plasticity in vitro, 223
correlation analysis and DMN, 259–260	neonatal sleep function
description, 259–260	correlation-based studies, 222
determination, EMD/PICA analysis, 272–273	experience-dependent plasticity, 221
fluctuations, 10–11	pharmacological sleep deprivation, 222
fMRI	rapid-eye-movement (REM) sleep, 221
HHT, 261–264	ocular dominance plasticity (ODP)
ICA, 260–261	adult brains, 228
investigation, 264–267	hypnotic sleep, 226–227
Fourier analysis, 260, 264, 272	investigations, 224–225
GLM approach, 273	natural forms, stimuli, 224
global regulation, 273–274	physiological and anatomical changes, 224
mean phase synchrony, 268, 274	REM and non-REM, 227–228
phase synchrony, frequency bands, 268,	Sleep and waking oscillations
273–274	cortical neurons, 123, 124
resting data connectivity, 259–260	EEG, 122
spectra, HRF blurring	electrophysiological types, 123–125
analysis, BOLD data, 267–268	firing frequencies, 123–125
deconvolution, 270–271	TC and reticular thalamic neurons, 122
DMN, 269–270	Sleep EEG profiles genetic determination
gamma-based, 270–271	delta oscillations, 51–52

description, 51–52	EEG slow waves, 30–31
genetic polymorphisms	global and local regulation
ADA gene, 57	cortical plasticity, 22
A _{2A} receptor gene, 57–58	frontal predominance, 20–22
brain-derived neurotrophic factor gene, 58	local slow waves, 22
COMT gene, 58–59	mammals and birds, 20-22
PER3 gene, 56	neurobehavioral performance, 22
prion protein gene, 59	physiological indicator, 20
heritability	SWA, 20–22
candidate genes, 55	homeostatic sleep pressure
monozygotic and dizygotic twins, 55	amplitude and slopes, 22-23
rhythmic brain oscillations, 55	cortical neurons synchronization, 28–30
NREM sleep and REM sleep	cortical plasticity, 26–28
homogenous sample, 53–54	electrically evoked cortical responses, 23-26
ICC, 53–54	principal observations, 30
internight reliability coefficients, 54–55	SWA, 30, 31
Pearson correlation coefficients, 54–55	Sleep regulatory substances (SRSs), 40
sleep architecture	Sleep slow waves developmental aspects
genetic control, 53	amplitude, 67
intraclass correlation coefficients (ICC), 53	characteristics
NREM sleep stages, 53	definition, generation and behavior, 64-65
sleep-wake regulation	homeostatic sleep regulation, 65–66
basic process, 52	sleep homeostasis, 65, 223–224
characteristics, 52	cognitive skills
delta/theta activity, 52	behavioral level, 73
NREM and REM sleep, 52	brain development and learning, 73
two-process model, 52	brain maturation, 73
slow brain oscillations, 51–52	chronic sleep restriction, 72–73
waking heritability	saccadic task performance, 73
additive genetic factors, 52–53	SWA predominance, 73
Val158Met polymorphism, 52–53	electroencephalography (EEG), 63-64
Sleep homeostasis, freely behaving rats	infants, children and adolescents disparities
behavior and brain activity, waking and sleep	regional shifts, 67
architecture and vigilance-specific cortical	SWA topography, 66
activity, 18	U-shaped time course, 66–67
cerebral metabolic rates, 20	linking brain maturation, 68
cortical neuronal firing patterns, 19	mental and neurological developmental
EEG level, 19	disorders
intracortical and cortico-subcortical	ADHD, 74
interactions, 17–18	cerebral functioning, 74–75
mitochondrial electron transport chain, 20	COS, 74
mRNA and protein levels, 20	ESES, 74–75
NREM sleep, 19	MDD, 74
physiological conditions, 20	Williams syndrome (WS), 73–74
slow waves, 18, 19	neuronal activity, 64

Sleep slow waves developmental aspects	pedunculopontine nucleus (PPN)
(Continued)	association, 9
neurophysiological and cellular process, 63-64	putative cholinergic basal forebrain
sleep homeostasis, 63–64	neurons, 9
SWA, 67–69, 71–72, 75–77	rhythmic discharges, corticofugal pathways
Slow brain oscillations	7–8
description, 4	scalp signals, EEG, 5–6
fluctuations	slow-wave activity, 5, 6
BOLD signals, 10	steady state, synaptic plasticity, 8–9
description, RSNs, 10	striatal slow waves, 7–8
DMN activity, 11	topography, 6
ICNs and DMN activation, 10	up-state, high-frequency, 7
independent component analysis (ICA), 11	Slow oscillations and memory consolidation
infraslow, BOLD signal, 10-11	active system consolidation, slow-wave sleep
ISOs modulation, 11–12	declarative memory system, 94–95
local field potentials/neuronal activity, 12	feed-forward control, 95–96
posterior midline and parahippocampal structures, 11	hippocampo-neocortical redistribution, 94–95
RSN connectivity, 11	hippocampus-dependent declarative
spectrum, 10–11	memories, 94
synaptic downscaling and memory	neocortical pyramidal cells, 95–96
consolidation, 12	spindles and ripples, 96
sleep	description, 94
age, slow waves activity, 7	electrical stimulation
amplitude and steep slope, 5	EEG theta activity, 96–98
BDNF, TNF and IL1, 6	nocturnal sleep, 96–98
cellular mechanisms, 9	SWS and waking vigilant behavior, 96–98
complex and widespread neuronal network	transcranial direct current stimulation
activity, 5	(tDCS), 96, 97
cortical layer, 5–6	word-pair memories, 96–98
DMN and RSNs, 5-6	fast vs. slow spindles
dopaminergic innervation, 10	basal conditions, 101
down-and up-state, 4–5	sleep-dependent memory, 101
endogenous electric field, 5-6	slow-wave sleep, 102
external stimuli, 5	SWS, 101
genes polymorphisms, 7	waning depolarization phase, 101
hippocampal activation and memory	grouping spindles
encoding, 8	detection algorithm, human EEG, 98, 99
hippocampo-neocortical network, 8	EEG field potentials, 98
homeostatic regulation, 5	human and animal studies, 99-100
locus coeruleus (LC) activation, 10	learning-dependent enhancements, 100
memory consolidation processes, 9	neocortical neurons, 98
memory-enhancing capacity, 8	non-REM sleep stage 2, 98
memory trace reactivation hypothesis, 8-9	nucleus reticularis, 99–100
NREM, 4	SWS and non-REM, 100

synaptic plastic changes, 99–100	REM and non-REM sleep, 248
hippocampal ripples and memory reactivations	selectively, 252
memory consolidation, 103	sleep parameters, 250–251
neocortex and striatal regions, 103	vigilance task performance, 251
neuronal firing patterns, 103	sleep homeostasis, 23
odor-reward association task, 103-104	use, 112
REM sleep, 103	U-shape time course
sharp wave-ripple activity, 103	age-dependent changes, 75–77
SWS, 103–104	animal model, 77
spindle-ripple events	cortical maturation, 75
brain structures, 104	network synchronization, 75–77
CA1 neurons, 104	structural plasticity, 75
hippocampal and neocortical circuitry, 105	structural remodeling, 75–77
non-REM sleep, 104–105, 106	synapses number/density, 75–77
parahippocampal cortex, 104–105	synaptic strength, 75, 76
temporal relationship, 104	Slow-wave sleep (SWS)
thalamic generation, 104	declarative memory system, 94–95
thalamic spindle activity, 104	EEG, 122, 123, 183
thalamocortical and hippocampal network	feed-forward control, 95–96
activity, 104–105	hippocampo-neocortical redistribution, 94-95
Slow-wave activity (SWA)	hippocampus-dependent declarative
adolescence reflects, 67-69	memories, 94
amplitude, 112	homeostatic plasticity, 134
anterior-posterior gradient, 20–22	membrane potential and LFP, 182-183
cortical maturation	memory trace reactivation
activity-dependent process, 71	cross-correlations, neuron pairs, 172-173, 174
posterior to anterior time course, 71	hippocampal sharp waves, 173-175
sex differences, 71	K-complex/LVS epochs, 172–173
synaptic density, 71	linear regression plot, 172–173
topography, 71	principal component analysis, 173–175
EEG, 18	sharp-wave ripple events, 175
homeostatic regulation, 20–22	neocortical pyramidal cells, 95–96
in NREM sleep, 21	spindles and ripples, 96
plasticity-dependent changes	TC neuron, 122
arm immobilization, 71–72	Social network image animator (SoNIA), 285
children and adolescents sample, 72	Spontaneous fMRI activity
normal daily activities, 72	description, BOLD fMRI signal, 296
sleep-dependent performance, 72	neuronal and nonneuronal contributions, 296
reduction	neuronal correlation, BOLD fMRI signal
declarative memory, 251	electrophysiological recordings, 297
EOG signals, 247–248	MEG, 297
implicit memory, 251	metabolic contribution, 297
mean reaction times, 254	multimodal recordings, 297–298
memory encoding, 253	perfusion signals recording, 297
polysomnographic recordings, 247–248	sleep and anesthesia, 297–298

Spontaneous fMRI activity (Continued)	LTP, 130-131
nonneuronal contributions, BOLD fMRI signal	memory formation, 133
independent component analysis, 297	synapses, 133
measurement, 296	transcranial magnetic stimulation, 133
separation, noise sources, 296–297	short-term
thermal noise, 296	activity-dependent modulation, 126-127,
variance regressors and low-frequency drift,	128
296–297	Ca^{2+} , 125–126
origin and role	cooperative action, 127
"common source" hypothesis, 298–300	in vitro and in vivo, 126–127
corticocortical communication, 298–300	mechanisms, 125–126
hippocampal-cortical dialogue, 300	synapse, 125–126
"off-line" periods, 300	
synaptic downscaling/consolidation, 300	Thalamocortical (TC). See Sleep and waking
"up" and "down" states, 300	oscillations
resting state activity, 296	Tumor necrosis factor alpha (TNF)
signal fluctuations, 296	injection, 40
signals and temporal resolution, 295	P2 receptors, 43–44
sleep	sleep regulation
baseline metabolic activity, 298	circulating levels, 42
condition, reduced consciousness, 298	injections, 40
"REST" periods, 298	noradrenergic/serotonergic neurons, 41
use, brain connectivity studies	NREMS and REMS, 40-41
correlation and network patterns, 300	pathology, 42–43
DTI, 300	physiological sleep regulation, 40-41
mental and neurological disorders, 300-301	rheumatoid arthritis, 42–43
SWA. See Slow-wave activity	soluble receptors, 40–41
SWS. See Slow-wave sleep	
Synaptic plasticity	Unresponsive wakefulness syndrome (UWS)
augmenting responses	characterization, 324
EPSP, 127–129	multimodal neuroimaging techniques, 324
short-term neuronal, 130	
stimulus, 129–130	Ventrobasal (VB), 156
TC system, 127–129	
description, 125	Williams syndrome (WS), 73–74
heterosynaptic interactions, 130	
mid-and long-term plasticity	
cortical network, 129, 131–133	