Ex 7.1

Since Ex 7.4 Proves expression (7.21), for this question we will take that as given and Prove that For a linear fit with d basis functions:

 $\frac{2}{N}\sum_{i=1}^{N}Cov(\hat{y}_{i},y_{i})=\frac{2d}{N}\sigma_{\varepsilon}^{2}$ thus Proving (7.24)

Where Y = f(X) + E with $E^{1/2}N(0,G_{E}^{2})$ as usual.

Now, we notice that $\sum_{i=1}^{N} Cov(\hat{y}_i, y_i)$ is just the Sum of the diagonal elements of the Covariance matrix of the vectors \hat{y}_i , y_i explicitly trace (\sum) where $\sum = Cov(\hat{y}_i, y_i)$

Now we Just need to find an expression for I. $\Sigma = Cov(\hat{y}, y) = Cov(X(X^TX)^TX^Ty, y)$ (Since linear model

= $X(X^T (X)^{-1} X^T (x)^{-1}$

= $X(X^TX)^{-1}X^T \sigma_{\varepsilon}^2$ (see aside) = $E[(F(x)+\varepsilon-F[F(x)+\varepsilon])^2]$

Now we may use this expression = $E[(f(X)+E-f(X))^2]$ to solve the original Problem e.g. = $E[E^2] = \sigma_E^2$

2/N trace (∑)

= 3/N trace (X(XTX) XTG2)

$$= \frac{2\sigma^2}{N} + \text{trace} \left(X(X^TX)^{-1}X^T \right) \quad \text{(since σ^2 constant)}$$

$$= \frac{2\sigma^2}{N} + \text{trace} \left((X^TX)^{-1}(X^TX) \right) \quad \text{(trace(AB) = trace(BA))}$$

$$= \frac{2\sigma^2}{N} + \text{trace} \left(I_d \right)$$

$$= 2 \cdot \frac{d}{N} \cdot \sigma^2 \quad \text{(as required)}$$