

Dinámica Global y bifurcaciones en un modelo depredador-presa con doble efecto Allee

Departamento de Matemática

Dana Contreras daniela.contreras@alumnos.usm.cl

Profesor guía: Pablo Aguirre

El Modelo

- ➤ Se estudia un modelo depredador-presa con un doble efecto Allee fuerte sobre el crecimiento de la presa.
- ► El modelo a estudiar viene dado por el siguiente sistema de EDOs:

$$m{X}: \left\{ egin{array}{l} \dot{x} = rac{rx}{x+n} \left(1 - rac{x}{k}\right) (x-m) - qxy; \\ \dot{y} = sxy - dy - cy^2; \end{array}
ight.$$

donde la población de presa y depredador viene dado por x(t) e y(t) respectivamente, con $t \geq 0$ y pertenecen al dominio $\Omega = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0, \ y \geq 0\}$. Los parámetros $(r,n,k,q,s,c,d,m) \in \mathbb{R}^7_+ \times \]0,k[$ poseen interpretaciones biológicas. En particular, el doble efecto Allee viene dado por los los términos $\frac{1}{x+n}$ y (x-m) que multiplican la expresión de crecimiento logístico de las presas.

ightharpoonup Con un cambio de coordenadas y parámetros junto con un reescalamiento del tiempo se reescribe el sistema X:

$$Y: \left\{ \begin{array}{l} \dot{x} = x \left[r(1-x)(x-M) - y(x+N) \right]; \\ \dot{y} = y(x+N)(Sx-d-Cy); \end{array} \right.$$

donde los parámetros $(r, N, S, d, C, M) \in \Lambda : \mathbb{R}^5_+ \times]0, 1[$. Este modelo es topológicamente equivalente al original.

Coordenadas de los puntos de equilibrio

Los puntos de equilibrio de Y sobre los ejes son (0,0), (M,0), (1,0), y dependiendo de los parámetros existen hasta dos puntos de equilibrio $p_+ = (a_+, y_{a_+})$ y $p_- = (a_-, y_{a_-})$ en $int(\Omega)$ con $a_{\pm} \in M$, 1 donde

$$a_\pm = rac{D \pm \sqrt{\Delta}}{2(Cr+S)}$$
 y $y_{a_\pm} = rac{Sa_\pm - d}{C}$ con

$$\Delta = (Cr(M+1) + d - NS)^{2} + 4(Cr + S)(dN - CrM),$$

$$D = Cr(M+1) + d - NS.$$

Existencia de puntos de equilibrio

Sea σ la curva para la cual $\Delta=0$ y S^* es punto de intersección de σ con la recta d=MS. Se definen las curvas:

$$\Gamma_1 = \{(S, d) \in \mathbb{R}^2_+ \mid d = S\}, \quad \Gamma_2 = \{(S, d) \in \mathbb{R}^2_+ \mid d = MS\},$$

$$\Gamma_3 = \{(S, d) \in \sigma \mid S < S^*\}, \quad H = \{(S, d) \in \mathbb{R}^2_+ \mid Tr(DY(\mathbf{p_+})) = 0\}.$$

En la figura 1 se muestra la existencia de puntos de equilibrio en el $int(\Omega)$ dependiendo de las regiónes en el espacio de parámetros (S,d).

Fig. 1: Existencia de puntos de equilibrio en $int(\Omega)$.

- Lema 1 (Condiciones para p_{\pm} colapsen con otros puntos)
 - i. Si $(S,d) \in \Gamma_1$, entonces p_+ colapsa con el punto (1,0).
 - ii. Si $(S,d) \in \Gamma_2$ y $S < S^*$, entonces p_- colapsa con el punto (M,0).
 - iii. Si $(S,d) \in \Gamma_2$ y $S > S^*$, entonces p_+ colapsa con el punto (M,0).
- iv. Si $(S,d) \in \Gamma_3$ y, entonces p_+ colapsa con p_- .

Acotamiento de Soluciones

- ▶ El campo de vectores Y es invariante a lo largo de los ejes coordenados. Mas aún, por medio del estudio de los puntos de equilibrio de Y en el infinito con la compactificación de Poincaré se demuestra que ninguna trayectoria de Y en int $\{\Omega\}$ converge al infinito.
- ► Lema 2 (Acotamiento de soluciones)
 - i. Si C>1, existen 3 puntos de equilibrio en el infinito: q_y nodo repulsor no hiperbólico, q_x nodo repulsor hiperbólico y además q_C silla hiperbólica.
 - ii. Si C < 1, existen 2 puntos de equilibrio en el infinito: q_y silla no hiperbólica y q_x nodo repulsor hiperbólico.

Dinámica Global

En la figura 2 se muestra un bosquejo de la dinámica global del sistema \boldsymbol{Y} , en el caso particular de C<1 para las distintas regiones en el espacio de parámetro (S,d).

Fig. 2: Todos los retratos de fase no equivalentes del sistema.

- ▶ Bifurcaciones locales de codimension 1: Silla-nodo (SN_1, SN_2) y Hopf (H_1, H_2) .
- ▶ Bifurcaciones de codimension mayor: Silla-nodo degenerada (SN_d) y Bogdanov-Takens (BT).
- ▶ Bifurcaciones globales: Homoclínica (hom), Heteroclínica (het), Ciclo heteroclínico (Het) y Silla-nodo heteroclínico (SN_h) .

Conclusiones

- Análisis de bifurcaiones locales y globales además de los retratos de fase del sistema.
- Condiciones para sobrevivencia/extinción de los depredadores y presas.
- $ightharpoonup W^s(p_+)$ y $W^s(M,0)$ son separatrices o umbrales para la extinción o sobrevivenccia de los depredadorews y presas.

Referencias

- ▶ P. Aguirre, J. Flores y E. Gonzales-Olivares. *Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response*. 2013
- ► P. Aguirre. A general class of predation models with multiplicative Allee effect. 2014
- Steven H. Strogatz. *Nonlinear Dynamics and Chaos*
- ➤ Yuri A. Kuznetsov. *Elements of Applied Bifurcation Theory, Second Edition*