Basic statistics and data handling – Day 3

Introduction to Scientific Figure Design

Aiora Zabala

Science Daily

Cancer spread is increased by a high fat diet, groundbreaking evidence shows

Researchers discover new cancer spreading protein

Date: December 7, 2016

Source: Worldwide Cancer Research

Summary: New research shows that the metastatic process (cancer spread) is enhanced by fat

intake. Mice given a high fat diet, including palmitic acid (a major component of palm oil

which is found in lots of household products) developed the most aggressive cancer

spread. The study identifies for the first time a protein called CD36 which has an

essential role in cancer spreading.

Pascual et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36.

Nature. 7 December 2016

What is figure design? Why design?

'is not to take bad scientific content and disguise it as great [...] the goal is to **communicate great content in a clear**, **succinct**, **and inspiring way** [...] in the best possible light'

'is not decoration [...] is not adding anything meaningless that lacks information or **purpose'**Carter

'Design should never say, 'Look at me.'
It should always say, *Look at this.*'
Craib

Goals of this session

Theory

- Explain the key ingredients for sci-figure design
- Discuss what works, what doesn't and what's unethical
- How to choose a type of figure that is appropriate for the data

Practical

- Use Inkscape to apply the theory (free vectorial image editing software)
- Produce a journal-ready figure using R and Inkscape

Structure of this session

Theory

1

Why figure design?
Principles of figure design
Elements of a figure
Dealing with complexity

3

Choosing the right figure Colour
Typography
Composition & layout

Practical

2

Hands-on Inkscape
Document properties
Create & manipulate
objects

4

Colour
Composition
Import, save & export
for journal submission

What is data visualisation?

Visual representation of data to communicate information clearly and "help people carry out tasks more effectively"

Search

	Target known	Target unknown
Location known	·.·· Lookup	: Browse
Location unknown	⟨`ฺ⊙∙> Locate	Explore

Figure: Tamara Munzner

Exploratory visualisation

- Understand your data
- Multiple ways to present and summarise
- Crude representations
- Interactive
- Not intended for final publication
 - Can be adapted for publication

Correlogram to see bivariate relations

Histograms to see the **distribution** of variables

Interactive data exploration with the R package **ggobi**

Reference visualisation

- Using your data as a resource
- Allows users to look up data of interest
- Tabular / Configurable
- Interactive

Illustrative visualisation

- Intended to convey a specific point
- Carefully chosen subset of data
- Optimised presentation
- Good design
- Used for figures in papers

Figures: Avian phylogenetic tree, Jetz et al 2012. Sleep deprivation and genetic expression Möller-Levet et al 2013

Data Visualisation Process

Things you can illustrate

Graphical Representations

- Basic questions:
 - How are you going to turn the data into a graphical form (weight becomes length etc.)
 - How are you going to arrange things in space
 - How are you going to use colours, shapes etc. to clarify the point you want to make

Key ingredients: principles

- Simplicity
- Continuous process
- Rules in graphic design are, as in many other disciplines, rather guidelines: you can break them to allow for creativity and when there is a good reason to break them, but you need to know how to use them.

Areas and 3D can be misleading

- Has a clear message
 - Helps to tell a story
 - Adds and relates to the text
- Is focused
 - Don't confuse one message with another
- Is easy to interpret correctly
 - Good data visualisation
 - Good design
- Is a honest and true reflection of the data

A data visualisation should:

- Show the data
- Link to the accompanying text and statistics
- Summarise to make things clearer
- Serve a clear purpose
- Not distort the data

Simplicity

- Every single element has to be there for a reason, 'distinguish between what is **meaningful** and what is **unnecessary** [...] avoid the latter'
- Simplicity is not boredom, but effectiveness in communicating a message and leaving aside anything unnecessary
- Avoid confounding decorations, e.g. excessive background grids or frames

Simplicity

This figure indicates altitude in **six separate ways**. Can you find them?

Consistency

- Make the figures uniform to helps viewers understand the figure
- Try not to use more than two types of these
 - Font styles and sizes
 - Line weights (thickness)
- When combining more than one chart
 - Use the same colours and shapes for the same groups
 - Use same sizes and scales for comparable charts
 - Position of axis titles and labels
 - Stick to your own rules, e.g. if presented 'Sample A' and then 'Sample B', maintain this throughout

Some useful concepts

- Data-ink ratio (and non-data ink)
- Data density of a display: high-info graphics and the shrink principle

Edward Tufte

Key ingredients: the tools

Elements: marks and channels

- Data
- Points, lines, areas
- Colour
- Typography

Composition

- Grid and alignments
- Balance
- Hierarchy and focus

Elements: Marks and channels

Marks (geometric primitives): used to represent data

Channels control the graphical appearance of marks: used to **encode** data, can be combined

Figures are a combination of marks and channels

Figures are a combination of marks and channels

1 Mark =
Rectangle
1 Channel =
Length of
longest side

1 Mark =
Cross shape
2 Channels =
X position
Y position

1 Mark =
Circle segment
2 Channel =
Angle
Colour

1 Mark =
Circle
4 Channels:
X position
Y position
Area
Colour

Types of channel

Identity channels: categorical/ qualitative attributes

Magnitude channels: ordered/ quantitative attributes

Types of channel (continued)

More principles

- Effectiveness: encode the most important information with the most effective channel
- Expressiveness: match the properties of the data and channel
 - i.e. heed whether the data are quantitative,
 ordered or categorical, and choose accordingly

More principles

Discriminability and **separability**

How many different types can you distinguish? How easy is it to distinguish them?

Qualitative discrimination

Fillable **shapes**: can be combined with colour, but the fillable area needs to be similar,

and they have to be distinguishable at small sizes

Separability

Separability

- The effectiveness of a channel does not always survive being combined with a second channel
- There are large variations in how much two different channels interfere with each other
- Trying to put too much information on a figure can erode the impact of the main point you're trying to make

Find the red dot: how long does it take?

The speed of identification is independent of the count of distractors

Find the circle

Colour stands out more than shape

Find the red dot

Mixing channels removes the effect

Dealing with complexity

- In order to:
 - Focus the viewer's attention
 - Require less cognitive load for the viewer to understand the message

Grouping

Ordering (only for categories)

Containment

Filter, link, embed

Small multiples

Small multiples

Small multiples

Practical

Choosing the type of figure

- Text, table or figure?
 - Text: one or two numbers
 - Table:
 - Exact numerical values
 - Small datasets (a figure may be best avoided if it has low data density)
 - When the data presentation requires many localised comparisons

Treatment 1	0.01
Treatment 2	0.13
Treatment 3	0.30

Each figure tells a different story

Each figure tells a story differently

Stripchart - comparison

- Only one of the axis is meaningful
- To explore small datasets
- The most basic plot (rarely in publications)

Line chart – relationships

- To show a trend of continuous data (usually over time)
- Story: how data change, rather than the discrete values of the data

Bar chart – comparison

 To compare discrete quantities of noncontinuous data

Bar chart variations

Stacked bar chart

Normalised stacked bar chart

Bar chart alternative for comparisons: **Dotchart with confidence intervals**

 Focuses attention on the relative values and their measure of variability, rather than on the absolute values (height of the bar)

Histogram – distribution

- To show the distribution of a variable and the relative frequency of values
- Estimate of the probability distribution of the variable
- The number of bins (resolution) affects the perceived shape of the distribution
- Rules: Number of intervals ≈√N and Interval width ≈ Range ÷√N

Boxplot – distribution

- Also box-and-whisker plot
- Shows the central value, the extremes, and the area where 50% of the values are located.
 - Usually median, minimum, maximum, lowest and highest quartiles
- Particularly useful to understand distribution of not-normal data

Boxplot variation: Violin/ Bean plots

 To the above, it adds a **stripchart** of the actual datapoints and shows the data **density**, to understand the distribution in more detail

Data density mirrored by the shape of the polygon

Scatterplot – relationships

- To show the relationship between two continuous variables
- For high-density data: use colours or transparency
- Variation: bubble scatterplot. It adds a 3rd dimension (but only for small datasets)

Problem: very big dataset

• Solution: smoothed densities colour representation

Scatterplot matrix (correlogram)

relationships

Pie chart - composition/ proportion

- To show relative proportions of a whole
- Not a great idea, 'given their low data-density and failure to order numbers along a visual dimension' (Tufte)

Alternative:

Polar area chart

Heatmap – relationship

 Shows more complex relationships, e.g. many conditions

Summary

Plot	Aim	Main R function
Stripchart	distribution	stripchart()
Line chart	relationships	plot(type="1")
Bar chart (stacked, norm. stacked)	comparison (and composition)	barplot()
Dotchart with CI	comparison	dotchart()
Histogram	distribution	hist()
Boxplot (violin/ bean)	distribution	<pre>boxplot(), vioplot()</pre>
Scatterplot (correlogram)	relationships	plot(x, y), corrgram package
Pie chart	composition	pie()
Heatmap	relationship	heatmap()

Colour

- Colour can be used to:
 - Highlight specific data
 - Group categories of data
 - Encode quantitative values
- Colours: primary, secondary, intermediate
- Our perception of hue is not linear

Don't let your COLOLIS
distract from your message...

Instead, use colour to communicate

Characteristics of a colour

- <u>Hue</u>: the *actual* colour (qualitative)
- <u>Saturation</u>: the intensity of the hue (quantitative)
- Value: the lightness/ darkness
 of a colour (quantitative; useful
 to know how a colour will behave
 when transformed to grayscale)

- **Shade**: the amount of black

- **Tint**: the amount of white

Colour: How computers identify colours

CMYK: percentage of Cyan + Magenta + Yellow + Black

RGB: intensity of Red + Green + Blue

HSL: Hue + Saturation + Lightness

Hexvalue: 0 to F values of Red, Green, Blue. 0: no intensity. F: maximum, what colour is this? #FF 00 00

Colour in screen and in print usually differ slightly (especially greens). To match them, the screen has to be calibrated (a cumbersome process!).

Playing with colours: http://www.w3schools.com/colors/colors_picker.asp

Three ways to name colours in R

- 1.By **name**, see available colours using **colors()**, and the list with the actual colours: http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
- 2.Using **hexadecimal**, e.g. **"#00FF00"**, or **"#00FF0055"** (the 7th and 8th digits, if any, correspond to opacity)
- 3.Converting **RGB** to hexadecimal, using the function **rgb**, e.g. **rgb(1, 1, 1)**

Colour tools in R

Colour ramps:

```
# rainbow, heat.colors, topo.colors, terrain.colors,
cm.colors
plot(1:5, col=palette(terrain.colors(7)), pch=15, cex=3)
```

RcolorBrewer:

Colour palettes

Sequential: between two values or colours.

For quantitative

distinctions.

Divergent: colours diverge in opposite directions from a central value.

Quantitative and qualitative.

Categorical: no order in the colours.

Qualitative.

Images from Munzner Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.bersonal.bsu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Colour: Choosing palettes

 The colour wheel. Choose combinations that are:

A.Monochromatic: for a uniform look

B.Complementary: to highlight differences between categories

C.Analogous: for both

Online colour pickers
 e.g. http://colorbrewer2.org/

Colour: Choosing palettes

- Principles for choosing colours:
 - Contrast
 - Colour blindness
 - Black and white/ grayscale printing
 - How many separable colours in a legend?
- "Black and white are colours, too"

Contrast

Fine detail (e.g. text) needs good contrast to be visible Beware of patterned backgrounds

Colour Blindness

- Affects 1:12 men and 1:200 women worldwide
- "If a submitted manuscript happens to go to three male reviewers of Northern European descent, the chance that at least one will be colour blind is 22 percent."

Types of colour blindness

Normal vision: trichromacy (all 3 primary colours)
Colour deficient vision:

- **A. Anomalous Trichromacy**: unusual 3 colour vision
- B. Dichromacy: 2 colour vision
- C. Monochromacy: black and white vision

Typography

- All the elements need to be labelled
- The essential criteria for choosing fonts is readability:
 - Scalability (readable at small sizes)
 - Contrast with the background
- Fonts convey a personality or attitude (some more than others)

Labels and fonts

- Serif for large blocks of text,
 sans serif for titles and labels
- Monospace (e.g. m vs m and i vs i)
- Sizing, the size of fonts is given in points, and it's the size of an imaginary block of metal that is used in printing. In practice, the only way to know exactly how well your font will be read is to print it.
- Casing: UPPERCASE, lowercase,
 Sentence case, Title Case.
- Check the journal guidelines for font types

Typography: Typesetting

- Is the arrangement (spacing) of characters in words, lines or paragraphs
 - Tracking: space between characters
 - **Leading:** line height
 - Paragraph alignment: left, justified, etc.
- Important considerations where figures have many annotations, and in axis and figure titles.

Typography: Guidelines

- Avoid aspect-ratio distortions: changing font height or size.
 - The same applies to images and circular objects
 - Scale axes using comparable units
- Avoid colour in text (to maximise contrast)
- Do not tilt text, always horizontal or vertical
- Check scalability: text should be readable after resizing

- Typeset in blocks of text that are solid shapes
- Typeset in blocks of text that are solid shapes

Typography:

Heed the numbers in your font

1	I	1	1
2	2	2	2
7	7	7	7
6	6	6	6

- Each font has different styles of numbers
- Make sure that the font you choose distinguishes them well (e.g. I in *Gill Sans*) and is legible at small sizes

Typography:

Think your words carefully

- Avoid wordiness... it's a figure!
- Choose words that "precisely convey what you mean"
- Avoid contractions and spell out whenever possible

Composition and layout

- Grid and alignments
- Balance and hierarchy

Grids

- Grids are the invisible structure behind a composition that makes it look balanced
- Every alignment (of a box, column, text line and text margin) creates a visual line in the grid
- Conversely, a composition where elements are aligned to a grid creates a sense of balance

Grids can help to organize the spaces around and in-between elements. *Rolandi et al 2011*

Alignments

Alignments

Most programmes have tools for automatic alignment and to distribute objects with equal space, e.g. Libreoffice, Inkscape (doing it by eye is not sufficient!)

Visual balance and hierarchy

The composition of a graphic object and the **emphasis** on each element will determine what is the hierarchy between elements, and how the eye will **flow** and where it will focus

Keep a balance between white space, text and figures Visual weight/ emphasis:

- How much an object on the page attracts and retains the attention of your viewer
- Depends on size, colour, position, etc.
- Should match the relevance of the information

These are some questions you can make to assess visual balance and flow: *Is there a clear* (and justified) hierarchy or arrangement between elements? Can adjustments be made to make more relevant connections? Does the place feel cluttered/scattered? (Krause, 2004)

Visual balance

In the left figure, the black diamond and, to a lesser extent, the circle stand out (is this our intention?). There is also little separation between the charts, which makes the figure look cluttered.

General tips

Don't-s:

- Don't distort the data
- No unnecessary figures or elements: do we really need a figure? or a table would suffice?
- Don't rely absolutely on colour
- No 3D: in most cases it distorts perception

Do-s:

- One point per figure
- Summarise to clarify
- Have a clear purpose/ message
- Link to accompanying text and statistics

Figure ethics

 The figure/graph/image should show what is actually happening and not what you want to happen

Is my plot ethical?

- Would a reader come to a different conclusion if they could see the details of the data which were omitted from the plot?

Unethical figures

- Not exploring/getting to know the data well enough
- Choosing the wrong graph to present the data
- Choosing the wrong axis/scale.
 - e.g. logarithmic scale: For cheating, a bar graph using a log axis is a great tool, as it lets you either exaggerate differences between groups or minimize them.
- Simply cheating: choosing the 'most representative' experiment or manipulating images

Checklist

Is your figure effective?

The figure is self contained : understandable without additional information
Every element is labelled or explained in the caption, including x and y units
x and y axis: scales show appropriate variation of the data, or are comparable
Readability and contrast are appropriate
Every use of colour has a reason
The figure works in grayscale (except for very complex figures)
If there are groupings , they help understand the message without manipulating
There are no channel inconsistencies within the figure
It is as simple as possible: i.e. no decorations, every piece that could be eliminated without losing information has been eliminated
Has been validated with other people

Validation Data Visualisation Process

Validation

- Always try to validate plots you create
- You have seen your data too often to get an unbiased view
- Show the plot to someone not familiar with the data
 - What does this plot tell you?
 - Is this the message you wanted to convey?
 - If they pick multiple points, do they choose the most important one first?

Not covered in this session

Diagrams

- Definition
- Workflow:
 - Clarify the purpose: essential elements to depict and their relation
 - Draft the structure of the diagram by hand and share and discuss it
- Use grids and think carefully about the label choice and position
- Types: Venn diagrams (composition of datasets), flowcharts (for decision making processes), tree diagrams, timelines, networks, pathways, procedural diagrams
- Remember: the key "is not the quality of the diagram or drawing, but the clarity of the information" Carter p128

Photos

- Avoid unethical manipulation (deleting noise, etc.), even if it doesn't change the results
- Crop to emphasize important bits
- Rule of thirds
- Use good quality images (sufficient resolution and colour/ brightness settings)
- Format differences: JPEG, TIFF, GIF, PNG
- Resolution
- Cropping and image composition
- Image size and proportions
- In context: contrast and relation with surrounding content
- Check license for use

Some useful resources

- Short papers:
 - Rolandi et al 2011. A Brief Guide to Designing Effective Figures for the Scientific Paper.
 Advanced Materials 23
 - Rougier et al 2014. Ten Simple Rules for Better Figures. Plos Computational Biology 10:9
- Design for scientists/ data:
 - **Carter**. 2013. Designing science presentations *not just figures, very clear*
 - Munzner. 2014. Visualization, analysis and design.
 - from a computer-graphics perspective
 - **Tufte**. 2001. The visual display of quantitative information
 - from a theory-of-design perspective
 - **Meirelles**. 2013. Design for information
 - advanced information visualizations (maps, time-space, flows)
- Graphic design more generally:
 - **Krause**. 2004. Design basics index *very concise and to the point*
 - **Samara**. 2014. Design elements: a graphic design manual *reference book*
- Nature Points of View:

http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html

If you need additional help: az296@cam.ac.uk

http://aiora.zabala.net/portfolio