Tango Puzzle

Team members:

Suraj Thapa Sadiksha Chitrakar

Lal Bahadur Reshmi Thapa

Tango

A daily brain teaser that engages players in solving a 6x6 grid puzzle using logical reasoning and pattern recognition, with alternating Sun and Moon symbols as key elements.

How to play:

- Fill each cell with either a suns or moons (for instance) can be any two distinct symbols
- No more than 2 of the same symbol may be next to each other, vertically or horizontally
- Each row and column must have an equal number of suns and moons
- Cells separated by = must be the same type
- Cells separated by × must be opposite types
- Each puzzle has one right answer and can be solved via deduction

Objective

To simulate mental agility by requiring players to fill a grid with suns and moons while adhering to predefined rules and constraints

Target Audience

Puzzle enthusiasts and casual gamers looking for a mentally engaging yet relaxing gameplay experience

Levels:

Easy, Medium, Hard

Data Collection

We developed the Tango Puzzle Game using Pygame, creating a visually engaging and interactive gameplay experience. Then, played game manually to record gameplay data and build a dataset for ML model training.

Recorded Parameters:

- 1. Number of Default Sun and Moon: The count of initially locked symbols.
- 2. Number of x and =: Constraint markers present in the grid.
- 3. Time to Solve (in seconds): Time taken to complete each puzzle.
- 4. Sum of Parameters: Total of locked symbols and constraint markers, serving as an indicator of puzzle complexity.

Random Forest Classifier(RFC)

- An ensemble learning method that uses multiple decision trees to classify data based on majority voting, enhancing prediction accuracy and reducing overfitting.

K-Nearest Neighbors(KNN)

- A simple yet effective algorithm that classifies data points based on the majority class among its closest neighbors.

RFC vs KNN's accuracy

Accuracy of Random Forest Classifier (RFC)

Training: Testing Dataset = 80:20

Training Data Accuracy = 72.09%

Testing Data Accuracy = 67.44%

Accuracy of K-Nearest Neighbors(KNN)

Training: Testing Dataset = 80:20

Training Data Accuracy = 69.18%

Testing Data Accuracy = 58.14%

Game Difficulty Thresholds (Based on Time to Solve)

- Easy: Time to solve \leq 55 seconds
- Medium: 55 seconds < Time to solve \le 74 seconds
- Hard: Time to solve > 74 seconds

```
Enter the number of parameters (0-36), or 'q' to quit: 10 Predicted Level: Hard
Enter the number of parameters (0-36), or 'q' to quit: 15 Predicted Level: Medium
Enter the number of parameters (0-36), or 'q' to quit: 20 Predicted Level: Easy
```

Game Time Prediction Based on Parameters

- We predicted the **time to solve the game** based on the **number of parameters** (i.e., number of suns, moons, crosses, and equal signs).

Example:

For 12 parameters, our model predicted a completion time of 72 seconds.

Summary

Why Tango Puzzle Game is Engaging:

- 1. Daily Brain Teaser: Provides a quick yet challenging mental exercise, perfect for short breaks.
- 2. Dynamic Difficulty: Adaptive gameplay ensures a balanced challenge, keeping players engaged and motivated.
- 3. Cognitive Boost: Enhances logical reasoning and pattern recognition through strategic puzzle-solving.
- 4. Replayability: Multiple difficulty levels and randomized puzzles encourage repeated play.
- 5. Engaging Visuals: Simple yet captivating design fosters user interaction and retention.

Future Improvements

Enhance Prediction Accuracy

Explore additional machine learning algorithms to improve the accuracy of both difficulty level classification and game time prediction.

Optimize Difficulty Thresholds

Adjust the time-based thresholds for classifying game difficulty to better reflect actual player performance.

Visual Analysis with Heatmaps

Use heatmaps to visualize how changes in thresholds affect difficulty classification and model behavior.

