Sprint 2 : S02 T05: Exploració de les dades

Nivell I

Exercici 1

Descarrega el data set Airlines Delay: Airline on-time statistics and delay causes i carrega'l a un pandas Dataframe.

Explora les dades que conté, i queda't únicament amb les columnes que consideris rellevants.

In [215...

import pandas as pd
df= pd.read_csv(r"C:\users\hecto\OneDrive\Documentos\IT Data Science\Sprint2\Sprint2
df.head(3)

Out[215...

٠		Unnamed: 0	Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArrTim
	0	0	2008	1	3	4	2003.0	1955	2211.0	222
	1	1	2008	1	3	4	754.0	735	1002.0	100
	2	2	2008	1	3	4	628.0	620	804.0	75

3 rows × 30 columns

- """ El Data Frame contiene los siguientes campos de información:
 - 1. Unnamed: id
 - 2. Year: 2008
 - 3. Month: 1-12
 - 4. DayofMonth: 1-31
 - 5. DayOfWeek: 1 (Monday) 7 (Sunday)
 - 6. DepTime: actual departure time (local, hhmm)
 - 7. CRSDepTime: scheduled departure time (local, hhmm)
 - 8. ArrTime: actual arrival time (local, hhmm)
 - 9. CRSArrTime: scheduled arrival time (local, hhmm)
- 10. UniqueCarrier: unique carrier code
- 11. FlightNum: flight number
- 12. TailNum: plane tail number: aircraft registration, unique aircraft identifier
- 13. ActualElapsedTime: in minutes
- 14. CRSElapsedTime: in minutes
- 15. AirTime: in minutes
- 16. ArrDelay arrival delay, in minutes: A flight is counted as "on time" if it operated less than 15 minutes later the scheduled time shown in the carriers' Computerized Reservations Systems (CRS)
- 17. DepDelay: departure delay, in minutes
- 18. Origin: origin IATA airport code

- 19. Dest: destination IATA airport code
- 20. Distance: in miles
- 21. Taxiln: taxi in time, in minutes
- 22. TaxiOut: taxi out time in minutes
- 23. Cancelled: *was the flight cancelled
- 24. CancellationCode: reason for cancellation (A = carrier, B = weather, C = NAS, D = security)
- 25. Diverted: 1 = yes, 0 = no
- 26. CarrierDelay: in minutes. Carrier delay is within the control of the air carrier. Examples of occurrences that may determine carrier delay are: aircraft cleaning, aircraft damage, awaiting the arrival of connecting passengers or crew, baggage, bird strike, cargo loading, catering, computer, outage-carrier equipment, crew legality (pilot or attendant rest), damage by hazardous goods, engineering inspection, fueling, handling disabled passengers, late crew, lavatory servicing, maintenance, oversales, potable water servicing, removal of unruly
 - passenger, slow boarding or seating, stowing carry-on baggage, weight and balance delays.
- 27. WeatherDelay: in minutes. Weather delay is caused by extreme or hazardous weather conditions that are forecasted or manifest themselves on point of departure, enroute, or on point of arrival.
- 28. NASDelay: in minutes. Delay that is within the control of the National Airspace System (NAS) may include: non-extreme weather conditions, airport operations, heavy traffic volume, air traffic control, etc.
- 29. SecurityDelay: in minutes. Security delay is caused by evacuation of a terminal or concourse, re-boarding of aircraft because of security breach, inoperative screening equipment and/or long lines in excess of 29 minutes at screening areas.
- 30. LateAircraftDelay: in minutes. Arrival delay at an airport due to the late arrival of the same aircraft at a previous airport. The ripple effect of an earlier delay at downstream airports is referred to as delay propagation.

.....

```
In [216...
```

```
# descripcion estadistica las variables numéricas (int o float) y objectos
# quito la columna "Unname"
df.drop('Unnamed: 0',axis=1,inplace=True)
df.describe(include="all").round(1)
```

Out[216...

	Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArı
count	1936758.0	1936758.0	1936758.0	1936758.0	1936758.0	1936758.0	1929648.0	1936
unique	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
top	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
freq	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
mean	2008.0	6.1	15.8	4.0	1518.5	1467.5	1610.1	1
std	0.0	3.5	8.8	2.0	450.5	424.8	548.2	
min	2008.0	1.0	1.0	1.0	1.0	0.0	1.0	
25%	2008.0	3.0	8.0	2.0	1203.0	1135.0	1316.0	1

	Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArı
50%	2008.0	6.0	16.0	4.0	1545.0	1510.0	1715.0	1
75%	2008.0	9.0	23.0	6.0	1900.0	1815.0	2030.0	2
max	2008.0	12.0	31.0	7.0	2400.0	2359.0	2400.0	2

11 rows × 29 columns

Exercici 2

Fes un informe complet del data set:

- 1. Resumeix estadísticament les columnes d'interès
- 1.1 Matriz de correlaciones entre todas las variables del Data Frame

```
In [126...
          import matplotlib.pyplot as plt
          import numpy as np
          from matplotlib.colors import LogNorm
          # matriz de correlaciones
          corrmat = df.corr()
          #print(corrmat)
          # dimensión de la tabla de colores definida a partir de una módulo aleatorio
          Z = np.random.rand(30, 30)
          #fig, ax0 = plt.subplots()
          f, ax = plt.subplots(figsize=(12,9))
          ax.pcolor(Z)
          ax.set_title('Matriz de correlaciones')
          \#x,y = corrmat
          #sns.heatmap(corrmat, vmax=10, square=True);
          sns.heatmap(corrmat, cmap="YlGnBu", square = True)
          plt.show()
```


""" Observaciones sobre los datos:

- 1. A través de la matriz de correlación se observa que algunas variables del conjunto de datos, presentan multicolinealidad, es decir, se pueden predecir linealmente a partir de otras.
- 2. Solo cuando el retraso en la llegada es superior a 15 minutos, se informa sobre la causa del retraso.
- 3. El retraso de llegada es: CarrierDelay + WeatherDelay + NASDelay + LateAircraftDelay.
- 4. En los casos de cancelación o desvío no hay datos relacionados con las causas del retraso.
- 5. La mayoría de ocasiones, los aeropuertos y los transportistas asignan un CRSElapsedTime superior al tiempo real empleado en las operaciones, Taxi In + Taxi out + Airtime (Tiempo transcurrido real). Por este motivo cuando los aviones despegan a tiempo, pueden aterrizar antes de la la hora prevista y les permite absorber retrasos por vuelos encadenados.

.....

1.2 Minutos de retraso en la llegada del avión

In [133... print(np.round(df['ArrDelay'].describe()))

count 1928371.0
mean 42.0
std 57.0
min -109.0
25% 9.0
50% 24.0

75% 56.0 max 2461.0

Name: ArrDelay, dtype: float64

1.3 Minutos de retraso en la salida del avión

In [137...

```
print(np.round(df['DepDelay'].describe()))
```

count	1936758.0
mean	43.0
std	53.0
min	6.0
25%	12.0
50%	24.0
75%	53.0
max	2467.0

Name: DepDelay, dtype: float64

1.4 Graficos de Retrasos en las Salidas (en minutos) por Meses

In [247...

Se han eliminado los datos del quartile >0.75 porque desvirtuaban la escala del bo

df_no_outliers = df[df["DepDelay"].between(df["DepDelay"].quantile(.25), df["DepDela
plot1= sns.boxplot(data=df_no_outliers.sort_values(by="DepDelay",ascending = False),
plot1.figure.savefig("Dep_delay-Month_plot.png")

2. Troba quantes dades faltants hi ha per columna

In [230...

#tipo de datos y cuántos nulos hay
df.info(show_counts = True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1936758 entries, 0 to 1936757

Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Year	1936758 non-null	int64
1	Month	1936758 non-null	int64
2	DayofMonth	1936758 non-null	int64
3	DayOfWeek	1936758 non-null	int64
4	DepTime	1936758 non-null	float64
5	CRSDepTime	1936758 non-null	int64
6	ArrTime	1929648 non-null	float64
7	CRSArrTime	1936758 non-null	int64
8	UniqueCarrier	1936758 non-null	object

In [129...

Out[129...

FlightNum

```
1936758 non-null int64
 10 TailNum
                        1936753 non-null object
 11 ActualElapsedTime 1928371 non-null float64
 12 CRSElapsedTime
                       1936560 non-null float64
                       1928371 non-null float64
 13 AirTime
 14 ArrDelay
                       1928371 non-null float64
 15 DepDelay
                       1936758 non-null float64
 16
    Origin
                       1936758 non-null object
 17
    Dest
                       1936758 non-null object
 18 Distance
                       1936758 non-null int64
 19 TaxiIn
                       1929648 non-null float64
 20 TaxiOut
                       1936303 non-null float64
 21 Cancelled
                       1936758 non-null int64
 22 CancellationCode 1936758 non-null object
 23 Diverted
                       1936758 non-null int64
                       1247488 non-null float64
 24 CarrierDelay
                       1247488 non-null float64
    WeatherDelay
 25
 26 NASDelay
                       1247488 non-null float64
 27 SecurityDelay
                       1247488 non-null float64
 28 LateAircraftDelay 1247488 non-null float64
 29 TotalDelay
                       1928371 non-null float64
                       1936758 non-null object
 30 FlightCode
dtypes: float64(15), int64(10), object(6)
memory usage: 458.1+ MB
# dónde están los valores nulos
df.isnull().sum()
Year
                          0
Month
                          0
DayofMonth
                          0
DayOfWeek
                          0
DepTime
                          0
CRSDepTime
                          0
ArrTime
                       7110
CRSArrTime
                          0
UniqueCarrier
                          0
FlightNum
                          0
TailNum
                          5
ActualElapsedTime
                       8387
CRSElapsedTime
                       198
AirTime
                       8387
ArrDelay
                       8387
DepDelay
                          a
                          0
Origin
Dest
                          0
Distance
                          0
TaxiIn
                       7110
TaxiOut
                        455
Cancelled
                          0
CancellationCode
                          0
Diverted
                          0
CarrierDelay
                     689270
WeatherDelay
                     689270
NASDelay
                     689270
SecurityDelay
                     689270
LateAircraftDelay
                     689270
dtype: int64
# porcentaje de valores nulos / total
 (df.isnull().sum()/len(df)*100).round(1)
```

file:///C:/Users/hecto/Downloads/estructures dataframe.html

Year

0.0

In [130...

```
0.0
Out[130... Month
         DayofMonth
                                0.0
         DayOfWeek
                                0.0
         DepTime
                                0.0
         CRSDepTime
                                0.0
         ArrTime
                                0.4
         CRSArrTime
                                0.0
         UniqueCarrier
                                0.0
         FlightNum
                                0.0
         TailNum
                                0.0
         ActualElapsedTime
                                0.4
         CRSElapsedTime
                                0.0
         AirTime
                                0.4
         ArrDelay
                                0.4
         DepDelay
                                0.0
         Origin
                                0.0
         Dest
                                0.0
                                0.0
         Distance
         TaxiIn
                                0.4
         TaxiOut
                                0.0
         Cancelled
                                0.0
                                0.0
         CancellationCode
         Diverted
                                0.0
         CarrierDelay
                               35.6
         WeatherDelay
                               35.6
         NASDelay
                               35.6
         SecurityDelay
                               35.6
         LateAircraftDelay
                               35.6
         dtype: float64
```

3. Crea columnes noves (velocitat mitjana del vol, si ha arribat tard o no...)

3.1 Columna de Velocidad Media del Vuelo

```
# unidad de medida de la Velocidad Media (millas/horas)

df['Velocidad_Med']= df['Distance'].mean()*60/df['CRSElapsedTime'].mean()

df[:3]
```

Out[150		Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArrTime	UniqueC
	0	2008	1	3	4	2003.0	1955	2211.0	2225	
	1	2008	1	3	4	754.0	735	1002.0	1000	
	2	2008	1	3	4	628.0	620	804.0	750	

3 rows × 30 columns

←

3.2 Columna de LLegada con Retraso o en Tiempo

```
In [159...
df['Llegada_retraso']=df.ArrDelay>=0
df[:5]
```

Out[159		Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArrTime	UniqueC
	0	2008	1	3	4	2003.0	1955	2211.0	2225	
	1	2008	1	3	4	754.0	735	1002.0	1000	
	2	2008	1	3	4	628.0	620	804.0	750	

	Year	Month	DayofMonth	DayOfWeek	DepTime	CRSDepTime	ArrTime	CRSArrTime	UniqueC
3	2008	1	3	4	1829.0	1755	1959.0	1925	
4	2008	1	3	4	1940.0	1915	2121.0	2110	
_		20 1							

5 rows × 32 columns

←

4. Taula de les aerolínies amb més endarreriments acumulats

```
In [217...

df["TotalDelay"]=df['DepDelay']+df['ArrDelay']

df[:3]
```

Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCo Out[217... Year 2003.0 0 2008 1 3 1955 2211.0 2225 2008 3 4 754.0 735 1002.0 1000 **2** 2008 3 620 750 4 628.0 804.0

3 rows × 30 columns

```
retraso = df[['UniqueCarrier','TotalDelay']].copy()
retraso_ok = retraso.dropna().sort_values("TotalDelay", ascending=False)
retraso_ok = retraso_ok.groupby('UniqueCarrier').aggregate(sum)
retraso_ok.sort_values("TotalDelay", ascending=False)
```

Out [218... TotalDelay

UniqueCarrier

WN 24331347.0 **AA** 17746439.0 **UA** 13764664.0 MQ 12554319.0 **OO** 11869335.0 **XE** 10329576.0 DL 8971757.0 CO 8340506.0 EV 7834335.0 ΥV 7387293.0 7370623.0 US NW 6715503.0 FL 6115528.0 **B6** 6043070.0 ОН 5241678.0

TotalDelay

UniqueCarrier			
9E	4862296.0		
AS	2888170.0		
F9	1569572.0		
НА	502618.0		
AO	35176.0		

4.2 Grafico de los Retrasos en las Salidas por Compañías Aéreas

```
df_no_outliers = df[df["DepDelay"].between(df["DepDelay"].quantile(.25), df["DepDela
plt.figure(figsize=(10,10))
plot1= sns.boxplot(data=df_no_outliers.sort_values(by="DepDelay",ascending=True), x=
plot1.figure.savefig("Dep_delay_UniqueCarrier_plot.png")
```


Las aerolínias con menores retrasos son: F9, HA y AQ

4.3 Grafico de los Retrasos en las Llegadas por Compañías Aéreas

```
In [250...
    df_no_outliers = df[df["ArrDelay"].between(df["ArrDelay"].quantile(.25), df["ArrDela
    plt.figure(figsize=(10,10))
```

plot1= sns.boxplot(data=df_no_outliers.sort_values(by="ArrDelay",ascending=True), x=
plot1.figure.savefig("Arr_delay_UniqueCarrier_plot.png")

Las aerolíneas con menores retrasos en las llegadas son: HA, AQ y F9

5. Quins són els vols més llargs? I els més endarrerits?

5.1 Más tiempo en Aire

```
# Creamos un Data Frame para clasificar los códigos de los vuelos en un mismo campo
df["FlightCode"] = df["UniqueCarrier"].astype(str) + "/" + df["FlightNum"].astype(st
vuelosLargos = pd.DataFrame(df, columns=["AirTime","FlightCode"]).copy()
vuelosLargos_ok = vuelosLargos.dropna()
vuelosLargos_ok[:5]
```

Out[221		AirTime	FlightCode
	0	116.0	WN/335
	1	113.0	WN/3231
	2	76.0	WN/448
	3	77.0	WN/3920
	4	87.0	WN/378

```
In [222...
```

Ordenamos de forma ascendente los Vuelos más Largos en función de "AirTime" vuelosLargos_ok.sort_values("AirTime", ascending=False).head()

```
Out[222...
```

	AirTime	FlightCode
1488690	1091.0	HA/21
1367047	733.0	HA/28
362529	664.0	CO/15
556381	655.0	CO/15
556385	654.0	CO/15

5.2 Vuelos más Largos

```
df["FlightCode"] = df["UniqueCarrier"].astype(str) + "/" + df["FlightNum"].astype(st
    vuelosLargos = pd.DataFrame(df, columns=["ActualElapsedTime","FlightCode"]).copy()
    vuelosLargos_ok = vuelosLargos.dropna()
    vuelosLargos_ok[:5]
```

```
Out[223...
             ActualElapsedTime FlightCode
          0
                          128.0
                                   WN/335
          1
                          128.0
                                  WN/3231
          2
                           96.0
                                   WN/448
          3
                           90.0
                                  WN/3920
                          101.0
          4
                                   WN/378
```

```
In [224... vuelosLargos_ok.sort_values("ActualElapsedTime", ascending=False).head()
```

Out[224...

	ActualElapsedTime	FlightCode
1488690	1114.0	HA/21
1926817	790.0	CO/15
1173580	776.0	DL/151
1418032	750.0	CO/15
1367047	750.0	HA/28

5.3 Vuelos más retrasados

```
retrasados = pd.DataFrame(df, columns=["ArrDelay","FlightCode"]).copy()
retrasados_ok = Retrasados.dropna()
retrasados_ok.sort_values('ArrDelay', ascending=False).head()
```

Out[225... ArrDelay FlightCode 322516 2461.0 NW/808 686014 2453.0 NW/1699 839306 1951.0 NW/1107

	ArrDelay	FlightCode
1009553	1707.0	MQ/3538
1881639	1655.0	NW/357

5.4 Los 5 aeropuertos con más retraso en la salida

```
airDelays = df[["DepDelay","Origin"]].copy()
airportDelays = airDelays.groupby("Origin").aggregate(sum)
airportDelays.sort_values("DepDelay", ascending=False)[:5]
```

Out[226... DepDelay

Origin

ORD 6365866.0ATL 5382082.0DFW 3658231.0DEN 2801893.0

EWR 2669013.0

Exercici 3

Exporta el data set net i amb les noves columnes a Excel.

```
In [227... path = "C:\\Users\hecto\\Downloads\\DelayedFlightsVams.csv"
    df.to_csv(path, index = False)
In [251... df.info(show_counts = True)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1936758 entries, 0 to 1936757
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Year	1936758 non-null	int64
1	Month	1936758 non-null	int64
2	DayofMonth	1936758 non-null	int64
3	DayOfWeek	1936758 non-null	int64
4	DepTime	1936758 non-null	float64
5	CRSDepTime	1936758 non-null	int64
6	ArrTime	1929648 non-null	float64
7	CRSArrTime	1936758 non-null	int64
8	UniqueCarrier	1936758 non-null	object
9	FlightNum	1936758 non-null	int64
10	TailNum	1936753 non-null	object
11	ActualElapsedTime	1928371 non-null	float64
12	CRSElapsedTime	1936560 non-null	float64
13	AirTime	1928371 non-null	float64
14	ArrDelay	1928371 non-null	float64
15	DepDelay	1936758 non-null	float64
16	Origin	1936758 non-null	object
17	Dest	1936758 non-null	object
18	Distance	1936758 non-null	int64
19	TaxiIn	1929648 non-null	float64

20	TaxiOut	1936303	non-null	float64
21	Cancelled	1936758	non-null	int64
22	CancellationCode	1936758	non-null	object
23	Diverted	1936758	non-null	int64
24	CarrierDelay	1247488	non-null	float64
25	WeatherDelay	1247488	non-null	float64
26	NASDelay	1247488	non-null	float64
27	SecurityDelay	1247488	non-null	float64
28	LateAircraftDelay	1247488	non-null	float64
29	TotalDelay	1928371	non-null	float64
30	FlightCode	1936758	non-null	object
	63	/ >		

dtypes: float64(15), int64(10), object(6)

memory usage: 458.1+ MB