DATENBANK-ARCHITEKTUR FÜR FORTGESCHRITTENE

Performanceoptimierung

Dani Schnider

Performance Tuning Tasks

Performance Planning

- Scalability
- System Architecture
- Application Design
- Data Model
- Testing
- etc.

Instance Tuning

- Memory Allocation
- I/O Balancing
- Database Configuration
- System Configuration
- etc.

SQL Tuning

- Indexing
- Partitioning
- Rewrite SQL Statements
- Gathering Statistics
- Hints
- etc.

See Oracle® Database Performance Tuning Guide, Chapter 1, Performance Tuning Overview

OPTIMIZER STATISTIKEN

Performanceoptimierung

Query Optimizer

Ziel:

■ Finde effizientesten Weg zur Ausführung einer SQL-Befehls

Vorgehensweise:

- Für jeden SQL-Befehl werden folgende Schritte durchgeführt:
 - 1. Generierung von mehreren möglichen Execution Plans
 - 2. Bewertung jedes Execution Plans mit Kosten*
 - Ausführung des Execution Plans mit den geringsten Kosten
- Als Basis für die Kostenberechnung werden Optimizer-Statistiken verwendet

^{*} Die Kosten sind ein geschätzter Wert für die I/O- und CPU-Ressourcen die zur Ausführung des Plans benötigt werden

Object Statistics

Objekt-Statistiken können über Data Dictionary Views abgefragt werden:

- USER TABLES
- USER_TAB_STATISTICS
- USER_TAB_COL_STATISTICS
- USER_TAB_HISTOGRAMS
- USER_INDEXES
- USER_IND_STATISTICS
- USER_TAB_PARTITIONS
- USER_PART_COL_STATISTICS
- USER_PART_HISTOGRAMS

Berechnung von Statistiken mit Standard-Package DBMS_STATS:

https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/DBMS_STATS.html

Object Statistics

- Table statistics
 - Number of rows
 - Number of blocks
 - Average row length
- Column statistics
 - Number of distinct values (NDV)
 - Number of nulls in column
 - Data distribution (histogram)
 - Extended statistics
- Index statistics
 - Number of leaf blocks
 - Levels
 - Clustering factor

→ cardinality

- → selectivity (uniform distribution)
- → selectivity (skewed)
- → selectivity (correlations and expressions)

→ table access overhead

Histogramme

Statistiken über Datenverteilung

- Nützlich für Attribute mit untergleichmässiger 👸 Datenverteilung ("skewed data")
- Histogramme bestehen aus mehreren Buckets (max. 254 bzw. 2048)
- Verschiedene Arten von Histogrammen
 - (Top-)Frequency histograms
 - Height-balanced histograms (legacy)
 - Hybrid histograms (seit Oracle 12c)

Extended Statistics

Multicolumn statistics

```
SELECT COUNT(*) FROM ADDRESSES
WHERE CTR_CODE= 'FR' AND CITY = 'PARIS'
```

- Normal calculation of selectivity p = p(col1) * p(col2) will fail if col1 and col2 are correlated
- Need to calculate statistics for combinations of col1 and col2 values

Expression statistics

```
SELECT COUNT(*) FROM ADDRESSES WHERE UPPER(CITY) = 'ZÜRICH'
```

- Existing statistics on column city (e.g., the histogram) cannot be used
- Need to additionally calculate statistics on upper(city)

HINTS

Performanceoptimierung

Was sind Hints?

- Hinweise für den Optimizer zur Wahl des Execution Plans
- Können verschiedene Entscheidungen beeinflussen
 - Zugriffsmethoden (Index, Full Table Scan)
 - Joinreihenfolge, Joinmethoden
 - **.** ...
- Werden als Kommentare hinter erstem Schlüsselwort angegeben (z.B. SELECT /*+ index(...) */)
- Liste von Hints
 - SQL Language Reference, Kapitel "Comments"

 https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Comments.html#GUID-D316D545-89E2-4D54-977F-FC97815CD62E
 - v\$sql_hint
- Achtung: Durch Hints können die Kosten eines Execution Plans nie reduziert werden! Warum?

Konzept von Hints

