Examen (14/03/2014) - 1hUV Modélisation Partie - Problèmes inverses

Documents autorisés, barème indicatif.

Exercice 1 - Quelques propriétés élémentaires de la SVD [10 pts]

Dans cet exercice, on considère une matrice $A \in \mathbb{R}^{m \times n}$. On note sa SVD $A = U \Sigma V^T$ avec $U = [u_1, \dots, u_m]$ et $V = [v_1, \dots, v_n]$.

- 1. Montrer que le nombre de valeurs singulières de A est inférieur ou égal à $\min(m,n)$.
- 2. Dans cette question, on pose

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}.$$

On rappelle que la SVD de A est donnée par

$$A = U\Sigma V^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}^T.$$

On considère la fonction

$$J: \quad \mathbb{R}^2 \quad \to \mathbb{R}$$
$$\quad x \quad \mapsto \frac{1}{4} \langle Ax, Ax \rangle$$

où $\langle \cdot, \cdot \rangle$ est le produit scalaire usuel. Sur un même schéma, dessiner, les lignes de niveau 1 et 2 de J ainsi que les vecteurs singuliers v_1 et v_2 . Pour une matrice A quelconque, comment pouvez retrouver les valeurs singulières en traçant les lignes de niveau de J(x)?

3. Montrer que si σ est une valeur singulière de A alors il existe deux vecteurs $v \in \mathbb{R}^n$ et $u \in \mathbb{R}^m$ tels que $Av = \sigma u, A^*u = \sigma v$ et $\|u\|_2 = \|v\|_2 = 1$.

Exercice 2 - Tykhonov et norme de la solution [12 pts]

Soit $A \in \mathbb{R}^{m \times n}$. On pose $J_{\alpha}(x) = \frac{1}{2} ||Ax - z||_2^2 + \frac{\alpha}{2} ||x||_2^2$ où $\alpha \ge 0$ et $z \in \mathbb{R}^m$ est une donnée. On considère le problème suivant :

Trouver
$$x(\alpha) \in \underset{x \in \mathbb{R}^n}{\arg \min} J_{\alpha}(x)$$
. (1)

- 1. Calculer $\nabla J_{\alpha}(x)$.
- 2. On pose $\alpha > 0$. A quelle(s) condition(s) existe-t-il une solution? Une solution unique?
- 3. On pose $\alpha = 0$. A quelle(s) condition(s) existe-t-il une solution? Une solution unique?
- 4. On définit le projecteur sur l'image de A par :

$$P_{Im(A)}(z_0) = \arg\min_{z \in Im(A)} ||z - z_0||_2.$$

On suppose que A est une matrice de rang r dont la SVD s'écrit $A = U\Sigma V^T$ où $U = [u_1, \ldots, u_m] \in \mathbb{R}^{m \times m}$ et $V = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}$ sont orthogonales. Donner l'expression de $P_{Im(A)}(z)$ et de $P_{Im(A)^{\perp}}(z)$ en fonction de $(u_i)_{i \in \{1,\ldots,m\}}$ et $(v_i)_{i \in \{1,\ldots,n\}}$.

5. Montrer que le problème 1 est équivalent à :

Trouver
$$x(\alpha) \in \underset{x \in \mathbb{R}^n}{\arg\min} \frac{1}{2} ||Ax - P_{Im(A)}(z)||_2^2 + \frac{\alpha}{2} ||x||_2^2.$$

- 6. On suppose $\alpha > 0$. Montrer que $x(\alpha) = V(\Sigma^T \Sigma + \alpha I)^{-1} \Sigma^T U^T z$. 7. On pose $x(\alpha) = \sum_{i=1}^n \lambda_i(\alpha) v_i$ et $z = \sum_{i=1}^m \gamma_i u_i$. Déterminer les valeurs $\lambda_i(\alpha)$ en fonction de σ_i et γ_i . 8. Montrer que $\|\lambda(\alpha)\|_2 \leq \frac{\|\|A\|\| \cdot \|z\|_2}{\alpha}$.