

# CSE-422 Artificial Intelligence Lab Project

Title- Movie ratings classification & analysis.

# **Group-4, members:**

| Ushama Rashid | 23341079 |
|---------------|----------|
| Protaya Roy   | 24241160 |

# **Table of contents:**

| Content                                  | Page number |
|------------------------------------------|-------------|
| Introduction                             | 0-2         |
| Dataset description                      | 3-5         |
| Dataset preprocessing                    | 5-6         |
| Dataset splitting                        | 6-7         |
| Model Training and Testing               | 7-10        |
| Model Selection & Comparison<br>Analysis | 10-11       |
| Conclusion                               | 11-12       |

#### 1. Introduction

This project aims to classify movies into one of four rating categories: "Excellent," "Good," "Average," or "Poor." Using features such as budget, genre, runtime, and popularity metrics, we use multiple machine learning models to predict the movie rating category. The goal is to develop a system that can automate movie rating prediction based on pre-release metadata. The motivation lies in the increasing reliance on data-driven decision-making in the film industry and the need to assess film performance before market release.

#### 2. Dataset Description

#### **Dataset Overview**

- **Total Features:** 11 input features
- **Target Column:** Rating\_Category (4 classes)
- **Problem Type:** Classification
  - The target variable is categorical with values such as "Excellent,"
     "Good," etc.
- **Total Records:** 1200 movies
- Feature Types:
  - Quantitative: Budget\_MillionUSD, Runtime\_Minutes, Release\_Year, Director\_Popularity, Num\_Main\_Actors, Avg\_Actor\_Popularity, Num\_Awards\_Won, Marketing\_Spend\_MillionUSD
  - o Categorical: Genre, Has\_Famous\_Producer, Is\_Sequel

# **Correlation Analysis**

We have used a confusion matrix as our heatmap for each of the models.







#### **Imbalanced Dataset Check**

• The distribution of classes is fairly balanced:

Excellent: 304
 Good: 324
 Average: 294
 Poor: 278

• A percentage chart confirmed that the dataset is not significantly imbalanced.

```
print("Target variable distribution:")
print(y.value_counts(normalize=True))
```

Target variable distribution:

Rating\_Category

Good 0.270000 Excellent 0.253333 Average 0.245000 Poor 0.231667

Name: proportion, dtype: float64

## **EDA Highlights**

- High-budget movies tended to receive better ratings.
- Sequels slightly leaned toward poorer ratings.
- Movies with famous producers had a higher chance of being rated "Excellent."

| Numeri | ical features stat | istics:    |             |                  |              |   |
|--------|--------------------|------------|-------------|------------------|--------------|---|
|        | Director_Popular   | ity Budget | _MillionUSD | Runtime_Minutes  | Release_Year | \ |
| count  | 1067.000           | 999        | 1096.000000 | 1074.000000      | 1088.000000  |   |
| mean   | 5.452              | 624        | 152.768723  | 129.401304       | 2002.330882  |   |
| std    | 2.600              | 397        | 85.998943   | 28.744659        | 13.068670    |   |
| min    | 1.010              | 999        | 1.040000    | 80.000000        | 1980.000000  |   |
| 25%    | 3.310              | 000        | 78.857500   | 103.000000       | 1991.000000  |   |
| 50%    | 5.400              | 999        | 156.060000  | 130.000000       | 2002.000000  |   |
| 75%    | 7.690              | 999        | 226.017500  | 154.000000       | 2014.000000  |   |
| max    | 10.000             | 000        | 299.730000  | 179.000000       | 2024.000000  |   |
|        | Num_Main_Actors    | Avg_Actor_ | Popularity  | Num_Awards_Won \ |              |   |
| count  | 1075.000000        | 1          | 066.000000  | 1061.000000      |              |   |
| mean   | 2.531163           |            | 5.495159    | 24.113101        |              |   |
| std    | 1.143236           |            | 2.620555    | 14.464153        |              |   |
| min    | 1.000000           |            | 1.000000    | 0.000000         |              |   |
| 25%    | 1.000000           |            | 3.230000    | 12.000000        |              |   |
| 50%    | 3.000000           |            | 5.470000    | 24.000000        |              |   |
| 75%    | 4.000000           |            | 7.820000    | 37.000000        |              |   |
| max    | 4.000000           |            | 10.000000   | 49.000000        |              |   |
|        | Marketing_Spend_   | MillionUSD |             |                  |              |   |
| count  | 1                  | 089.000000 |             |                  |              |   |
| mean   |                    | 24.351947  |             |                  |              |   |
| std    |                    | 14.648245  |             |                  |              |   |
| min    |                    | 0.000000   |             |                  |              |   |
| 25%    |                    | 11.130000  |             |                  |              |   |
| 50%    |                    | 24.430000  |             |                  |              |   |
| 75%    |                    | 37.160000  |             |                  |              |   |
| max    |                    | 49.980000  |             |                  |              |   |
|        |                    |            |             |                  |              |   |

# 3. Dataset Preprocessing

# **Problem: Null/Missing Values**

- **Detected:** Missing values in Genre, Budget, Director\_Popularity, etc.
- Solution:
  - Numerical columns: Imputed using **most frequent** strategy to handle NaN values.
  - Categorical columns: Imputed using **most frequent** strategy to handle NaN values.

#### **Problem: Categorical Variables**

- **Detected:** Genre, Is\_Sequel, Has\_Famous\_Producer
- **Solution:** One-hot encoding was applied to ensure compatibility with sklearn models.

### **Problem: Feature Scaling**

- **Detected:** Input features like Budget, Runtime, etc., vary in magnitude.
- **Solution:** Used StandardScaler to normalize numerical features (mean=0, std=1).

#### 4. Dataset Splitting

• Split Type: Stratified to preserve class distribution

Training Set: 70% (840 samples)Testing Set: 30% (360 samples)

# 5. Model Training & Testing:

#### 5.1. MLPClassifier

• **Library:** Scikit-learn

• Layers: 1 hidden layer with 100 neurons

• Evaluation: 24-26% accuracy

• Note: Basic neural network without hyperparameter tuning



# 5.2. Logistic Regression

• Library: Scikit-learn

• **Solver:** Default (liblinear)

• **Evaluation:** Comparable performance with MLP.



## 5.3. Naive Bayes

• **Type:** GaussianNB

• Evaluation: Simpler but surprisingly competitive for some classes



#### **5.4. Decision Tree**

- Library- Scikit-learn
- Evaluation- Approximately 19% accuracy.

| Decision Tree accurac<br>Classification report |           | 0.19166666 |          |         |
|------------------------------------------------|-----------|------------|----------|---------|
|                                                | precision | recall     | f1-score | support |
| Average                                        | 0.17      | 0.16       | 0.17     | 88      |
| Excellent                                      | 0.20      | 0.21       | 0.20     | 91      |
| Good                                           | 0.18      | 0.16       | 0.17     | 97      |
| Poor                                           | 0.21      | 0.24       | 0.22     | 84      |
| accuracy                                       |           |            | 0.19     | 360     |
| macro avg                                      | 0.19      | 0.19       | 0.19     | 360     |
| weighted avg                                   | 0.19      | 0.19       | 0.19     | 360     |

CV scores: [0.25833333 0.2375 0.25 0.24166667 0.24166667] Mean CV accuracy: 0.2458333333333333

8



# 6. Model Selection & Comparison Analysis

# **Accuracy Comparison (Bar Chart)**

A bar chart was plotted to show prediction accuracies across all models.





#### **Precision & Recall**

- All models were compared using macro average precision and recall.
- Precision/recall values are comparable for Logistic Regression and Naive Bayes with MLPClassifier leading.

False Positive Rate

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Average      | 0.28      | 0.26   | 0.27     | 88      |
| Excellent    | 0.28      | 0.26   | 0.27     | 91      |
| Good         | 0.29      | 0.30   | 0.29     | 97      |
| Poor         | 0.24      | 0.26   | 0.25     | 84      |
| accuracy     |           |        | 0.27     | 360     |
| macro avg    | 0.27      | 0.27   | 0.27     | 360     |
| weighted avg | 0.27      | 0.27   | 0.27     | 360     |

MLP classifier having the highest accuracy.

#### **Confusion Matrices**

• Confusion matrices for all three models were plotted using ConfusionMatrixDisplay.

#### **ROC Curves & AUC Scores**

- ROC curves for all 4 classes were plotted for each model.
- AUC scores per class were shown in legends.

#### 7. Conclusion

From the evaluation, Logistic Regression and Naive Bayes provided competitive results compared to the MLPClassifier. While the neural network might improve with tuning and more data, the simpler models performed adequately. The biggest challenge was the near-baseline performance of the neural network, indicating either insufficient data complexity or the need for model tuning. Imputation and encoding choices played a big role in data usability. The project was successful in building a full classification pipeline with clean comparisons across algorithms.