- List the members of these sets.
 - a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
 - **b)** $\{x \mid x \text{ is a positive integer less than } 12\}$
 - c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
 - **d)** $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

a) {-1,1} b) [1,2,3,4,5,6,7,8,9,10,11] c) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81} d) Ø

Suppose that A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$.

Suppose that $x \in A$. Because $A \subseteq B$, this implies that $x \in B$. Because $B \subseteq C$, we see that $x \in C$. Because $x \in C$. A implies that $x \in C$, it follows that $A \subseteq C$.

a) F b) F c) F d) T e) F f) F g)T

- Determine whether each of these statements is true or false.
 - a) $0 \in \emptyset$

b) $\emptyset \in \{0\}$

c) $\{0\} \subset \emptyset$

- **d**) $\emptyset \subset \{0\}$

e) $\{0\} \in \{0\}$ \mathbf{g}) $\{\emptyset\} \subseteq \{\emptyset\}$

f) $\{0\} \subset \{0\}$

- 4 Draw the Venn diagrams for each of these combinations of the sets A, B, and C.

 - **a)** $A \cap (B C)$ **b)** $(A \cap B) \cup (A \cap C)$
 - c) $(A \cap B) \cup (A \cap C)$
 - a) The double-shaded portion

b) The desired set is the entire shaded portion

Let $A_i = \{1, 2, 3, ..., i\}$ for i = 1, 2, 3, ... Find

$$\mathbf{a)} \ \bigcup_{i=1}^n A_i$$

$$\mathbf{b}) \bigcap_{i=1}^n A_i.$$

Let A, B, and C be sets. Use the identities in Table 1 to show that $\overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)} = \overline{A} \cap \overline{B} \cap \overline{C}$.

By De Morgan's law, the left-hand side equals $(A \cap B) \cap (B \cap C) \cap (A \cap C)$. By the commutative, associative, and idempotent laws, this simplifies to the right-hand side

c) The desired set is the entire shaded portion.

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\frac{\overline{A \cap B} = \overline{A} \cup \overline{B}}{\overline{A \cup B} = \overline{A} \cap \overline{B}}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Find these values.

a) $\lceil \frac{3}{4} \rceil$

b) $\lfloor \frac{7}{8} \rfloor$

c) $[-\frac{3}{4}]$

d) $[-\frac{7}{8}]$

e) [3]

 \mathbf{f}) $\begin{bmatrix} -1 \end{bmatrix}$

 $\mathbf{g}) \ \lfloor \frac{1}{2} + \lceil \frac{3}{2} \rceil \rfloor$

h) $\lfloor \frac{1}{2} \cdot \lfloor \frac{5}{2} \rfloor \rfloor$

a)1 b)0 c)0 d)-1 e)3 f)-1 g)2 h) 1

• 8 Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if

- **a**) f(m, n) = m + n.
- **b**) $f(m, n) = m^2 + n^2$.
- **c**) f(m, n) = m.
- **d**) f(m, n) = |n|.
- e) f(m, n) = m n.

a) Onto b) Not onto c) Onto d) Not onto e) Onto

- 9 Find these terms of the sequence $\{a_n\}$, where $a_n =$ $2 \cdot (-3)^n + 5^n$.

- **a**) a_0 **b**) a_1 **c**) a_4 **d**) a_5

- 10 Compute each of these double sums.

 - a) $\sum_{i=1}^{2} \sum_{j=1}^{3} (i+j)$ b) $\sum_{i=0}^{2} \sum_{j=0}^{3} (2i+3j)$ c) $\sum_{i=1}^{3} \sum_{j=0}^{2} i$ d) $\sum_{i=0}^{2} \sum_{j=1}^{3} ij$

a)21 b)78 c)18 d)18