

Our Path

MLE vs MAP

Maximum Likelihood Estimation

$$\theta_{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} f(X_1, X_2, \dots, X_n | \theta)$$
$$= \underset{\theta}{\operatorname{argmax}} \sum_{i} \log f(X_i | \theta)$$

Maximum A Posteriori

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{argmax}} f(\theta|X_1, X_2, \dots, X_n)$$

$$= \underset{\theta}{\operatorname{argmax}} \left(\log g(\theta) + \sum_{i} \log f(X_i|\theta)\right)$$

Is Peer Grading Accurate Enough?

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

Is Peer Grading Accurate Enough?

= hyperparameter

- 1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_i^j) score for assign i
 - Bias (b_i) for each grader j
 - Variance (r_i) for each grader j
- 2. Designed a probabilistic model that defined the distributions for all random variables

$$z_i^j \sim \mathcal{N}(\mu = s_i + b_j, \sigma = \sqrt{r_j})$$
 $s_i \sim N(\mu_0, \sigma_0)$
 $b_i \sim N(0, \eta_0)$
 $r_i \sim \text{InvGamma}(\alpha_0, \theta_0)$

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Is Peer Grading Accurate Enough?

- 1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_i^j) score for assign i
 - Bias (b_i) for each grader j
 - Variance (r_i) for each grader j
- 2. Designed a probabilistic model that defined the distributions for all random variables
- 3. Found variable assignments using MAP estimation given the observed data

Inference or Machine Learning

Gonna Need Priors

Parameter

Distribution for Parameter

Bernoulli p

Binomial p

Poisson λ

Exponential λ

Multinomial p_i

Normal μ

Normal σ^2

Beta

Beta

Gamma

Gamma

Dirichlet

Normal

Inverse Gamma

Multinomial Parameter Estimation

- Recall example of 6-sides die rolls:
 - X ~ Multinomial(p₁, p₂, p₃, p₄, p₅, p₆)
 - Roll n = 12 times
 - Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
 - $_{\circ}$ MLE: $p_1=3/12$, $p_2=2/12$, $p_3=0/12$, $p_4=3/12$, $p_5=1/12$, $p_6=3/12$
 - Dirichlet prior allows us to pretend we saw each outcome k times before. MAP estimate: $p_i = \frac{X_i + k}{n + mk}$
 - $_{\circ}$ Laplace's "law of succession": idea above with k = 1
 - ∘ Laplace estimate: $p_i = \frac{X_i + 1}{P_i}$
 - Laplace: $p_1=4/18$, $p_2=3/18$, $p_3=1/18$, $p_4=4/18$, $p_5=2/18$, $p_6=4/18$
 - No longer have 0 probability of rolling a three!

The last estimator has risen...

Machine Learning

Machine Learning: Formally

- Many different forms of "Machine Learning"
 - We focus on the problem of prediction
- Want to make a prediction based on observations
 - Vector **X** of *m* observed variables: <X₁, X₂, ..., X_m>
 - $_{\circ}$ X_{1} , X_{2} , ..., X_{m} are called "input features/variables"
 - Based on observed X, want to predict unseen variable Y
 - Y called "output feature/variable" (or the "dependent variable")
 - Seek to "learn" a function g(X) to predict Y: $\hat{Y} = g(X)$
 - When Y is discrete, prediction of Y is called "classification"
 - When Y is continuous, prediction of Y is called "regression"

Training Data

Assume IID data:

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$$

$$m = |\mathbf{x}^{(i)}|$$

Each datapoint has m features and a single output

Example Datasets

Heart

Ancestry
23andMe

Netflix

Target Movie "Like" Classification

Output Movie 1 Movie 2 Movie *m* PATRIOT The operation of whiches or not not are allow and the primers has been primered. CONGENIALITY User 1 User 2 User n

Single Instance

Feature Vector

Output Value

Single Feature Value

	ROI 1	ROI 2	ROI m	Output
Heart 1	0	1	1	0
Heart 2	1	1	1	0
		•		:
Heart n	0	0	0	1

Ancestry Classifier

How Many Points will Warriors Score

	sing team		At Home?	Output
	ELO	last game		# Points
Game 1	84	105	1	120
Game 2	90	102	0	95
		• •		•
Game n	74	120	0	115

Training Data

Assume IID data:

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$$

$$m = |\mathbf{x}^{(i)}|$$

Each datapoint has m features and a single output

Machine learning problems are expressed abstractly.

We can write machine learning algorithms generally.

A (Very Short) List of Applications

- Machine learning widely used in many contexts
 - Stock price prediction
 - Using economic indicators, predict if stock will go up/down
 - Computational biology and medical diagnosis
 - Predicting gene expression based on DNA
 - Determine likelihood for cancer using clinical/demographic data
 - Credit card fraud and telephone fraud detection
 - Based on past purchases/phone calls is a new one fraudulent?
 - Saves companies billions(!) of dollars annually
 - Spam E-mail detection (gmail, hotmail, many others)

That list is ridiculously short ©

Linear Regression

A Grounding Example: Linear Regression

Problem: Predict real value Y based on observing variable X

Model: Linear weight for every feature

$$\hat{Y} = \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_{n-1} X_{n-1} + \theta_n 1$$
$$= \theta^T \mathbf{X}$$

Training: Chose the best thetas to describe your data

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} - \sum_{i=1}^{n} (Y^{(i)} - \theta^{T} \mathbf{x}^{(i)})^{2}$$

Predicting Warriors

 $X_1 = Opposing team ELO$

 X_2 = Points in last game

 $X_3 = Curry playing?$

 X_4 = Playing at home?

Y = Warriors points

Predicting CO₂

$$X_1 = Temperature$$

$$X_2 = Elevation$$

$$X_3 = CO_2$$
 level yesterday

$$X_4 = GDP$$
 of region

$$X_5$$
 = Acres of forest growth

$$Y = CO_2$$
 levels

Regression Data

Assume IID data:

N training datapoints

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots (\mathbf{x}^{(n)}, y^{(n)})$$

$$m = |\mathbf{x}^{(i)}|$$

Each datapoint has m features and a single output

How Many Points will Warriors Score

•		At Home?	Output
ELO	last game		GOLDEN STATE
			# Points
1	30		# Points
84	105	1	120
90	102	0	95
	: :		: :
74	120	0	115
	84 90	Iast game Iast game	Iast game 84 105 1 90 102 0

How Did We Get Linear Regression?

N training pairs:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})$$

1. Linear Regression Model:

$$Y = \theta_1 X_1 + \theta_2 X_2 + \dots \theta_{n-1} X_{n-1} + \theta_n 1 + Z$$
$$= \theta^T \mathbf{X} + Z$$
$$Z \sim N(0, \sigma^2)$$

2. Find the LL function and chose thetas which maximize it

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} - \sum_{i=1}^{n} (Y^{(i)} - \theta^{T} \mathbf{x}^{(i)})^{2}$$

3. Use an optimizer to calculate each theta.

The Machine Learning Process

- Training data: set of N pre-classified data instances
 - \circ N training pairs: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$
 - Use superscripts to denote i-th training instance
- Learning algorithm: method for determining g(X)
 - \circ Given a new input observation of $x = x_1, x_2, ..., x_m$
 - \circ Use g(x) to compute a corresponding output (prediction)

Training

Predicting Warriors

Y = Warriors points

$$\hat{Y} = \theta_1 X_1 + \theta_2 X_2 + \dots \theta_{n-1} X_{n-1} + \theta_n 1$$
$$= \theta^T \mathbf{X}$$

$$X_1 = Opposing team ELO$$

 X_2 = Points in last game

 $X_3 = Curry playing?$

 X_4 = Playing at home?

$$\theta_1 = -2.3$$

$$\theta_2 = +1.2$$

$$\theta_3 = +10.2$$

$$\theta_4 = +3.3$$

$$\theta_5 = +95.4$$

Training

Testing

That is linear regression ©

Classification

Healthy Heart Classifier

	ROI 1	ROI 2	ROI m	Output
Heart 1	0	1	1	0
Heart 2	1	1	1	0
		•		:
Heart n	0	0	0	1

Ancestry Classifier

And Learn

Target Movie "Like" Classification

Feature 1

User 1 1

User 2 1

User *n* (

 $x_j^{(i)} \in \{0, 1\}$

Output

1

0

•

1

$$y^{(i)} \in \{0, 1\}$$

How could we predict the class label: will the user like life is beautiful?

Fake Algorithm: Brute Bayes Classifier

Simply chose the class label that is the most likely given the data

This is for one user

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(y|\mathbf{x})$$

Simply chose the class label that is the most likely given the data

This is for one user

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(y|\mathbf{x})$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

Simply chose the class label that is the most likely given the data

This is for one user

* Note how similar this is to Hamilton example ©

What are the Parameters?

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

Y X ₁	0	1	
0	θ_0	θ_1	
1	θ_2	θ_3	

 $egin{array}{c} oldsymbol{y} \ oldsymbol{ heta}_4 \ oldsymbol{ heta}_5 \end{array}$

Learn these during training

Training

 X_1

User 1 1

User 2 0

User n 0

y

1

0

•

1

Let (x_1,y) be one giant multinomial

MLE Estimate

TRESPORATE TO A PROPERTY OF THE PROPERTY OF TH

User 1 1

User 2 0

User n 0

1

0

•

1

MLE: Just count

0.3

0.5

MAP Estimate

User 1 1

User 2 0

User n = 0

1

0

•

1

Add Laplace smoothing

Testing

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

Y X ₁	0	1	у
0	0.20	0.01	0.21
1	0.30	0.49	0.79

Test user: Likes independence day

$$P(x_1 = 1 | y = 0)P(y = 0)$$

VS

$$P(x_1 = 1 | y = 1)P(y = 1)$$

That was pretty good!

Brute Force Bayes m = 2

Brute Force Bayes m = 2

Simply chose the class label that is the most likely given the data

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(y|\mathbf{x})$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$y=\{0,1\}$$

$$P(x_1, x_2|y)$$

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

Fine

Brute Force Bayes m = 3

	TOUR PER DENCE DAY	X2 ZOODPIR MARCH 4. MARCH 4.	NETFLIX This Decline is not of authors. ATT AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	AND THE SAME IN TH
User 1	1	0	1	1
User 2	1	0	1	0
				•
User n	0	1	1	1

Brute Force Bayes m = 3

Simply chose the class label that is the most likely given the data

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(y|\mathbf{x})$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$y=\{0,1\}$$

$$P(x_1, x_2, x_3|y)$$

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

And if m=100?

Brute Force Bayes m = 100

Simply chose the class label that is the most likely given the data

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(y|\mathbf{x})$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$P(x_1, x_2, x_3, \dots, x_{100}|y)$$

Oops... Number of atoms in the univserse

What is the big O for # parameters? m = # features.

Big O of Brute Force Joint

What is the big O for # parameters? m = # features.

$$O(2^m)$$

Assuming each feature is binary...

Not going to cut it!

What is the problem here?

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(y|\mathbf{x})$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$P(\mathbf{x}|y) = P(x_1, x_2, \dots, x_m|y)$$

Naïve Bayes Assumption

$$\hat{y} = \underset{y=\{0,1\}}{\operatorname{argmax}} P(y|\mathbf{x})$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

$$= \underset{y=\{0,1\}}{\operatorname{argmax}} P(\mathbf{x}|y)P(y)$$

Naïve Bayes Assumption:

$$P(\mathbf{x}|y) = \prod_{i} P(x_i|y)$$

Naïve Bayes Classifier

Naïve Bayes Classifier

- Say, we have m input values $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Assume variables X₁, X₂, ..., X_m are <u>conditionally</u> <u>independent</u> given Y
 - $_{\circ}$ Really don't believe $X_1, X_2, ..., X_m$ are conditionally independent
 - Just an approximation we make to be able to make predictions
 - This is called the "Naive Bayes" assumption, hence the name
 - Predict Y using $\hat{Y} = \underset{v}{\operatorname{arg max}} P(X, Y) = \underset{v}{\operatorname{arg max}} P(X \mid Y) P(Y)$
 - But, we now have:

$$P(X | Y) = P(X_1, X_2, ..., X_m | Y) = \prod_{i=1}^m P(X_i | Y)$$
 by conditional independence

- Note: computation of PMF table is <u>linear</u> in m : O(m)
 - Don't need much data to get good probability estimates

Naïve Bayes Example

- Predict Y based on observing variables X₁ and X₂
 - X₁ and X₂ are both indicator variables
 - X₁ denotes "likes Star Wars", X₂ denotes "likes Harry Potter"
 - Y is indicator variable: "likes Lord of the Rings"
 - $_{\circ}$ Use training data to estimate PMFs: $\hat{p}_{X_i,Y}(x_i,y),~\hat{p}_{Y}(y)$

Y X1	0	1	MLE estimates	YX ₂	0	1	MLE estimates	Y	#	MLE est.
0	3	10	0.10 0.33	0	5	8	0.17 0.27	0	13	0.43
1	4	13	0.13 0.43	1	7	10	0.23 0.33	1	17	0.57

- Say someone likes Star Wars $(X_1 = 1)$, but not Harry Potter $(X_2 = 0)$
- Will they like "Lord of the Rings"? Need to predict Y:

$$\hat{Y} = \underset{v}{\text{arg max}} \hat{P}(\mathbf{X} | Y) \hat{P}(Y) = \underset{v}{\text{arg max}} \hat{P}(X_1 | Y) \hat{P}(X_2 | Y) \hat{P}(Y)$$

One SciFi/Fantasy to Rule them All

X ₁	0	1	MLE estimates		
0	3	10	0.10	0.33	
1	4	13	0.13	0.43	

YX ₂	0	1	MLE estimates	
0	5	8	0.17	0.27
1	7	10	0.23	0.33

Prediction for Y is value of Y maximizing P(X, Y):

$$\hat{Y} = \underset{y}{\text{arg max }} \hat{P}(\mathbf{X} \mid Y) \hat{P}(Y) = \underset{y}{\text{arg max }} \hat{P}(X_1 \mid Y) \hat{P}(X_2 \mid Y) \hat{P}(Y)$$

• Compute P(X, Y=0):
$$\hat{P}(X_1 = 1 | Y = 0)\hat{P}(X_2 = 0 | Y = 0)\hat{P}(Y = 0)$$

= $\frac{\hat{P}(X_1 = 1, Y = 0)}{\hat{P}(Y = 0)} \frac{\hat{P}(X_2 = 0, Y = 0)}{\hat{P}(Y = 0)} \hat{P}(Y = 0) \approx \frac{0.33}{0.43} \frac{0.17}{0.43} 0.43 \approx 0.13$

• Compute P(X, Y=1):
$$\hat{P}(X_1 = 1 | Y = 1)\hat{P}(X_2 = 0 | Y = 1)\hat{P}(Y = 1)$$

= $\frac{\hat{P}(X_1 = 1, Y = 1)}{\hat{P}(Y = 1)} \frac{\hat{P}(X_2 = 0, Y = 1)}{\hat{P}(Y = 1)} \hat{P}(Y = 1) \approx \frac{0.43}{0.57} \frac{0.23}{0.57} 0.57 \approx 0.17$

Since P(X, Y=1) > P(X, Y=0), we predict Ŷ = 1

What is Bayes Doing in my Mail Server

This is spam:

Who was crazy enough to think of that?

Spam, Spam... Go Away!

The constant battle with spam

As the amount of spam has increased, Gmail users have received less of it in their inboxes, reporting a rate less than 1%.

"And machine-learning algorithms developed to merge and rank large sets of Google search results allow us to combine hundreds of factors to classify spam."

Source: http://www.google.com/mail/help/fightspam/spamexplained.html

Email Classification

- Want to predict if an email is spam or not
 - Start with the input data
 - Consider a lexicon of m words (Note: in English $m \approx 100,000$)
 - ∘ Define *m* indicator variables $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - $_{\circ}$ Each variable X_i denotes if word i appeared in a document or not
 - Note: m is huge, so make "Naive Bayes" assumption
 - Define output classes Y to be: {spam, non-spam}
 - Given training set of N previous emails
 - ∘ For each email message, we have a training instance: $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$ noting for each word, if it appeared in email
 - Each email message is also marked as spam or not (value of Y)

Training the Classifier

Given N training pairs:

$$(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})$$

- Learning
 - Estimate probabilities P(Y) and each P(X_i | Y) for all i
 - Many words are likely to not appear at all in given set of email
 - Laplace estimate: $\hat{p}(X_i = 1 | Y = spam)_{Laplace} = \frac{(\# \text{spam emails with word } i) + 1}{\text{total } \# \text{ spam emails } + 2}$
- Classification
 - For a new email, generate $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Classify as spam or not using: $\hat{Y} = \arg \max \hat{P}(X | Y)\hat{P}(Y)$
 - Employ Naive Bayes assumption: $\hat{P}(X \mid Y) = \prod_{i=1}^{m} \hat{P}(X_i \mid Y)$

Training Naïve Bayes, is estimating parameters for a multinomial.

Thus it is just counting.

How Does This Do?

- After training, can test with another set of data
 - "Testing" set also has known values for Y, so we can see how often we were right/wrong in predictions for Y
 - Spam data
 - Email data set: 1789 emails (1578 spam, 211 non-spam)
 - First, 1538 email messages (by time) used for training
 - Next 251 messages used to test learned classifier

Criteria:

- Precision = # correctly predicted class Y/ # predicted class Y
- Recall = # correctly predicted class Y / # real class Y messages

	Sp	am	Non-spam		
	Precision	Recall	Precision	Recall	
Words only	97.1%	94.3%	87.7%	93.4%	
Words + add'l features	100%	98.3%	96.2%	100%	

On biased datasets

Ethics and Datasets?

Sometimes machine learning feels universally unbiased.

We can even prove our estimators are "unbiased" ©

Google/Nikon/HP had biased datasets

Ancestry dataset prediction

East Asian
or
Ad Mixed American (Native, European and
African Americans)

Is the ancestry dataset biased?

Yes!

It is much easier to write a binary classifier when learning ML for the first time

Learn Three Things From This

- 1. What classification with DNA Single Nucleotide Polymorphisms looks like.
- 2. That genetic ancestry paints a more realistic picture of how we are mixed in many nuanced ways.
- 3. The importance of choosing the right data to learn from. Your results will be as biased as your dataset.

Know it so you can beat it!

Ethics in Machine Learning is a whole new field