

A Low Cost Antialiased Space Filled Voxelization Of Polygonal Objects

S. Thon, G. Gesquière, R. Raffin LSIS Laboratory Marseilles, France

Previous works

Objectives

Transform a polygonal object into a set of voxel

Previous works

- Objectives
 - space filled voxelization
 - take into account holes or tunnels (image)
 - Decrease aliasing problems

Previous works

- Objectives ...
 - Fast computation (although not in real time),
 - Low memory usage.
 - Using this method on a personal computer without specific graphics hardware.

None of the existing methods matches all of our criteria

Our method

- based on an optimized raycasting through the faces of the polygonal object
- Two steps:
 - a space partitioning of the object faces
 - voxelization by raycasting trough the space partitioned faces.

Space partitioning

- Computation of the object bounding box
- Subdivision of the bounding box as a quadtree of boxes
- Each leaf of the quadtree contains a list of faces

Voxelization

- Steps for the voxelization
 - Computation of a grid of voxels around the object
 - Raycasting
 - Inside/ outside determination

Voxelization-Raycasting

- 3D grid composed of n x m x p cells
- Only n x m rays are cast
- For each ray
 - Detect the intersected leaf in the quadtree
 - Compute intersections between ray and faces contained in this list leaf
 - Fill a sorted list with z-intersection between the ray and faces.

Voxelization-Inside/ outside determination

- For each voxel of the 3D Grid
 - Compute the z-coordinate of the center
 - Count the number of values in the sorted list that are greater than this z-coordinate
 - If this number is even
 - then the voxel is outside the object (0)
 - □ else
 - the voxel is inside the object (1)

Voxelization- Results

Resolution	64 ³	128 ³	256 ³
Time (in sec.)	0,17	0,30	1

^{*} Voxelization of polygonal object made of **10444** faces
Results obtained on an **Intel XEON 2.66 GHz with 512 Mo**.

Voxelization- Problems

Voxelization of a polygonal object is a 3D sampling process

⇒ aliasing problems (missing details, disconnected

parts)

Solution : oversampling

Antialiasing

- Instead of casting only one ray through a row of voxels, we cast several rays.
- Two solutions for oversampling

Antialiasing

- Two ways for the oversampling process
 - Binary values
 - Grey level

Antialiasing- Results with binary

values

Polygonal model

voxelization without antialiasing

uniform 2x2x2 oversampling

uniform 4x4x4 oversampling

Antialiasing- Results with grey values

Antialiasing-Results with grey values

Using the grey value for the marching cube

Marching Cubes with binary values

Marching Cubes with grey values

Antialiasing-Results

Conclusion

- voxelization method for polygonal objects based on an optimized raycasting.
- allows to fill the inner space of the object with voxels.
- Aliasing problems inherent to the sampling process of voxelization are tackled.
- Not real-time but fast enough to provide results within few seconds for polygonal objects made of several thousands of faces for large voxelizations such as 5123.

Future Works

- As our method is based on a raycasting, it can be easily extended to the voxelization of other object (implicit surfaces, nurbs or analytic objects)
- Take into account polygonal objects that are not correctly closed, with missing faces.
- Compute adaptively the voxels in an octree.

A Low Cost Antialiased Space Filled Voxelization Of Polygonal Objects

S. Thon, G. Gesquière, R. Raffin LSIS Laboratory Marseilles, France