Mathematical Foundation

Ahmed Khaled

May 30, 2019

Abstract

This Document contain my notes about Axioms, Definitions and basic theories.

1 Real Numbers

In rigorous mathematics real number is a set of numbers defined as a complete, ordered field

1.1 Fields

- Def. Field is a non-empty set on which two binary operation are defined
- Def. *Binary Operation* in field \mathbb{F} is a function that "take" an ordered pair of element and "return" an element in \mathbb{F} , and it said to be the operation on the set whose both domain and co-domain in the same set.

$$\forall a, b \in \mathbb{F}(\exists c \in \mathbb{F}) : (c = a \circ b)$$

- the 9 golden basic most primitive axioms:
 - I. AxI. Associative law for addition (a + b) + c = a + (a + c)
 - 2. Axi. Existence of additive identity $\exists 0 : a + 0 = 0 + a = a$
 - 3. Axi. Existence of additive inverse $\forall a \in \mathbb{R} \exists (-a) : a + (-a) = (-a) + a = 0$
 - 4. AxI. Commutative law of addition a + b = b + a
 - 5. AxI. Associative law for multiplication $(a \cdot b) \cdot c = a \cdot (a \cdot c)$
 - 6. AxI. Existence of multiplicative identity $\exists 1 \neq 0 : a \cdot 1 = 1 \cdot a = a$
 - 7. Axi. Existence of multiplicative inverse $\forall a \neq 0 \in \mathbb{R} \exists (a^{-1}) : a + (a^{-1}) = (a^{-1}) + a = 0$
 - 8. AxI. Commutative law of multiplication $a \cdot b = b \cdot a$
 - 9. AxI. Distributive law $a \cdot (b+c) = a \cdot b + a \cdot c$
- Theorem

Theorem 1. $\forall a \in \mathbb{F} : a \cdot 0 = 0$

Proof. using axiom Num.9

$$a \cdot 0 = a \cdot (0+0)$$
$$= a \cdot 0 + a \cdot 0$$

by adding $-(a \cdot 0)$ to both side

$$a \cdot 0 = 0$$

refer to group the ory and se theory

Order 1.2

• Def. Ordered field \mathbb{F} . A field is said to be ordered if it has a distinguished subset $\overline{P \subset \mathbb{F}}$, that have the follow properties:

Positive Numbers

- I. *Trichotomy*: which mean every element $a \in \mathbb{F}$ satisfied one and only one of the follow
 - (a) $a \in P$
 - (b) $-a \in P$
 - (c) a = 0
- 2. Closure under addition $\forall a, b(a, b \in P \implies a + b \in P)$
- 3. Closure under multiplication $\forall a, b(a, b \in P \implies a \cdot b \in P)$

and we said that a < b means $b - a \in P$. which is clear if b bigger than a then the difference between them is positive number.

• Theorem

Theorem 2. $\forall a, b \in \mathbb{F}$ one fo the following hold I. a < b 2. a > b 3. a = b

Proof. using Trichotomy one of these hold 1. $a, b \in P$ then it either 1. $a - b \in P$ then we say a < b 2. $b - a \in P$ then we say a > b 2. $a, -b \in p$ then by using Closure under addition $a + (-b) \in P$ then we say a > b 3. the opposite of Num.2

Theorem 3. $a < b \implies a + c < b + c$

Proof. Suppose a + c < b + c, then it means $a + c - (b + c) \in P$ which deduce to a < b

Theorem 4. Transitivity. $a < b \land b < c \implies a < c$

Proof. a < b means $b - a \in P$ and b < c means $c - b \in P$. Thuh, $c - b - a + b \in P$ which means a < c

Theorem 5. $a, b < 0 \implies a \cdot b > 0$

Proof. Suppose a, b < 0 then $-a \cdot -b \in P$, thuh $a \cdot b > 0$

Corollary 6. $\forall a \neq 0 : a \cdot a \equiv a^2 > 0$

Proof. There is two cases 1. a>0 in this case $a^2>0$ by closure under multiplication 2. a<0 is a spicial case from previous theorem when a = b