MEU302 - Algèbre TD2

Rappel de cours

Definition 1. Soit X une variable aléatoire de moyenne μ alors sa variance $\sigma^2(X) = E[(X - \mu)^2]$

MEU302 - Algèbre TD2

Exercice 1

On a

$$E(X) = \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi r^2}} e^{-\frac{(x-m)^2}{2r^2}} dx$$

Démonstration variance

$$E((X-m)^2) = \int_{-\infty}^{+\infty} (x-m)^2 \frac{1}{\sqrt{2\pi r^2}} e^{-\frac{(x-m)^2}{2r^2}} dx$$

Changement de variable $u = \frac{x-m}{r}$, donc dx = rdu

$$E((X-m)^2) = \int_{-\infty}^{+\infty} r^2 u^2 \frac{1}{\sqrt{2\pi r^2}} e^{-\frac{u^2}{2}} r du = \frac{r^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u^2 e^{1/2u^2} du = r^2$$

Donc la variance est bien r^2 dans la formule.

Démonstration de la moyenne

$$E(X) = \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi r^2}} e^{-\frac{(x-m)^2}{2r^2}} dx$$

Changement de variable $u = \frac{x-m}{r}$, donc dx = rdu et x = ur + m.

$$E(X) = \int_{-\infty}^{+\infty} (ur + m) \frac{1}{\sqrt{2\pi r^2}} e^{-\frac{u^2}{2}} r du = \frac{r}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u e^{-\frac{u^2}{2}} du + \frac{m}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du$$

Première intégrale $\int ue^{-\frac{u^2}{2}rdu}$. Changement de variable $t=u^2/2,\,du=dt/x$.

$$\int ue^{-\frac{u^2}{2}rdu} = \int e^t dt = [e^t] = [e^{u^2/2}]$$

donc

$$\int_{-\infty}^{+\infty} u e^{-\frac{u^2}{2}r du} = \left[e^{u^2/2}\right]_{-\infty}^{+\infty} = 0$$

Seconde intégrale $\int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du = \sqrt{2\pi}$ Donc E(X) = m.

Exercice 2

Soit X une variable aléatoire sur (Ω, F) , $\forall xin\mathbb{R}, [X \leq x] = \{\omega \in \Omega, X(\omega) \leq x\} \in A$. Mntrons que $Y = \max(X, 0)$ est une v.a.

On a $\forall yin\mathbb{R}, Y \leq y = \max(X,0) \leq y = [X \leq y] \cup [0 \leq y]$. On a $[X \leq y] \in A$ cat X est une v.a. sur (Ω,F) et $[0 \leq y] \in A$. Donc $\forall yin\mathbb{R}, Y \leq y \in A$, ce qui montre que $\max(0,X)$ est une v.a.