基础电路与电子学

主讲: 陈开志

办公室:学院2号楼304

Email: ckz@fzu.edu.cn

半导体二极管和三极管

半导体材料 → PN 结 二极管 → 稳压管 三极管 → 基本放大电路

主要内容有:

- ◆ 二极管的结构
- ◆ 二极管的伏安特性
- ◆ 二极管的主要参数
- ◆ 二极管的等效电路与应用
- ◆ 稳压二极管

4, 二极管的等效电路与应用

二极管电路分析方法:

- 1,判断采用理想模型还是管压降的模型
- 2,断开二极管,P端为正,N端为负,判断加在两端 电压大小。大于正向压降电压(稳压管电压)则导通, 否者截止。
- 3,如果电路中有多个二极管时,电位差大的二极管优先导通,在此基础上再去分析其它二极管。

已知: $u_i = 10$ sinwt, $U_s = 5$ V, 假设二极管 D 为理想二极管, 请作出 u_o 的

理想二极管的特性是:

- ① 正向偏置, D 导通, 相当于导线;
- ② 反向偏置, D 截止, 相当于断开;

解题关键:写出二极管断开时两端电压的表达式

$$u_i = u_D + U_S :: u_D = u_i - U_S$$

① 当 $u_D > 0$ 时($u_i > U_S$), D 导通;则 $u_o = U_S$

已知: $u_i = 10$ sinwt, $U_s = 5$ V, 假设二极管 D 为理想二极管, 请作出 u_o 的

理想二极管的特性是:

- ① 正向偏置, D 导通, 相当于导线;
- ② 反向偏置, D 截止, 相当于断开;

解题关键:写出二极管断开时两端电压的表达式

$$: u_i = u_D + U_S : u_D = u_i - U_S$$

① 当 $u_D > 0$ 时 ($u_i > U_S$) , D 导通;则 $u_o = U_S$ 当 $u_D < 0$ 时 ($u_i < U_S$) , D 截止;则 $u_o = U_S$

二极管作为"限幅

器考要求小于-5V 时 也限幅,怎么设计? 已知: $u_i = 10$ sinwt, $U_s = 5$ V, 假设二极管 D 为理想二极管, 请作出 u_o 的

波形。

思考要求小于-5V 时 也限幅,怎么设计?

作业: P116 4-4 实验二: 限幅电路

假设 u_i =15sin ω t, D_1 、 D_2 为硅普通二极管(U_D =0.7V), 请分析下面三种情况的u。的波形。(请写出详细的分析过程)

① S1闭合, S2打开; ② S1打开, S2闭合; ③ S1和S2全部闭合

实现正向限幅 实现负向限幅

实现双向限幅

设交流电源 u 为: $u = U_m \sin \omega t = \sqrt{2}U \sin \omega t(V)$

由于二极管具有单向导电性,因此利用它可以进行交流电到直流电的转换。这样的电路叫整流电路 (Rectifier Circuits)。图 (a) 就是一个实用的单相桥式全波整流电路,常应用于直流稳压电源中。四个二极管 $D_1 \sim D_2$ 接成电桥形式。

全波整流工作原理:利用四个D的两两交替导通,实现方向统一

正半周期: $V_a > V_b$ D_1 通 D_2 止, D_4 止 D_3 通 $u_o = u_{ab}$

负半周期: $V_a < V_b$ $D_1 \perp D_2$ 通, D_4 通 D_3 止 $u_o = u_{ba} = -u_{ab}$

变压器副边电压

桥式整流电路(设D全为理想)

问题1: 若任意一个D被烧断,输出波形?

后果: 一定有半个周期的信号无法输出

此时的波形与单管整流的输出波形相同

■ 负载电阻 R₁ 中流过

问题2: 求整流后的直流分量 U_0 ?

中医2: 水金加河田町里加刀里O 的电流 i_0 的平均值 I_0 全波整流 $U_0 = \frac{1}{\pi} \int_0^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{2\sqrt{2}}{\pi} U \approx 0.9$ $I_0 = \frac{U_0}{R_{\rm L}} = 0.9 \frac{U}{R_{\rm L}}$

半波整流
$$U_{\rm O} = \frac{1}{2\pi} \int_{0}^{\pi} \sqrt{2}U \sin \omega t d\omega t = \frac{\sqrt{2}}{\pi} U \approx 0.45U$$

问题3: 单管承担的最大反向电压?

$$U_{DR} = \sqrt{2}U$$

思考:有载时如何进一步稳定电压?

利用稳压管

有载: *U_o* ≈ 1.2*U*₂

空载: *U_o* ≈ 1.4*U*₂

电容是电压变化敏感器件 \rightarrow 并联在负载两端利用电容的储能性质,来减缓电压的衰减注意: 电容放电速度与时间常数 $\tau=R_LC$ 有关 P35 C越大或 R_L 越大,放电越慢, u_o 越平滑

思考: $R_L = \infty$ (空载) 时? 不存在放电回路

半导体二极管和三极管

半导体材料 → PN —— 二极管 → 稳压管 三极管 → 基本放大电路

主要内容有:

- ◆ 二极管的结构
- ◆ 二极管的伏安特性
- ◆ 二极管的主要参数
- ◆ 二极管的等效电路与应用
- ◆ 稳压二极管

掌握:

二极管单向导电性,二极管电路的等效和分析稳压二极管电路分析。

(5) 稳压管

稳压管是一种特殊的半导体二极管,它的特殊性在于: 当反向电压>击穿电压 U_Z 时,它不但不会损坏,还具有稳定电压的作用。用 D_Z 来表示稳压管。

从伏安特性曲线上看,它的正向特性曲线和普通二极管相同,但它的反向特性曲线比较陡,具有稳压作用。

(5) 稳压管

注意: 为了限制稳压管击穿以后的电流,使用时必须在电路中串联电阻如图所示。

稳压管的主要参数:

- 1、稳定电压 $U_{\rm Z}$:等于反向击穿电压 $U_{\rm RR}$ 。
- 2、最大稳定电流 I_{max} 和 最小稳定电流 I_{min} : (I_{Z})

$$I_{\min} \leq I \leq I_{\max}$$

- *U*<*U*_z 时,稳压管未击穿,电路不通。
- $U>U_Z$ 时,稳压管击穿 $I=\frac{U-U_Z}{R}$
 - ■必须适当选择R值,使得 $I_{min} \le I \le I_{max}$ 。
 - R 称为限流电阻。

已知: 硅稳压管 $D_{\rm Z}$ 的稳定电压为 $6{
m V}$, 求输出电压 $U_{
m O}=?$

步骤1:判断稳压管是正偏还是反偏? 稳压管反偏

步骤 2: 判断稳压管是否反向击穿?

如果没有稳压管:

$$U_{\rm o} = \frac{300}{100 + 300} \times 10 = 7.5 \text{ V}$$

: 7.5 V > 6 V : 稳压管 D_z 被反向击穿

当稳压管 $D_{\rm Z}$ 被反向击穿后, $U_{
m O}=6{
m V}$

思考1: 求此刻的
$$I = ?$$
 $I = \frac{10-6}{100} = 0.04A$

思考 2: 求此刻的 $U_{
m o}=$? 稳压管 $D_{
m z}$ 正向导通, $U_{
m o}=$ 0.7 ${
m V}$

例题2: R_L =0.6K Ω , D_Z 被反向击穿,其稳定电压 U_Z =6V,其工作电流范围为10mA< $I_{DZ}<$ 30mA,请计算限流电阻 R_Z 的取值范围

4-5: 硅稳压管 $U_{\rm Z1}$ =7V、 $U_{\rm Z2}$ =13V, $I_{\rm Z}$ =5mA,求 $U_{\rm o}$ =?

步骤1: 判断 D_z 是正偏还是反偏? 步骤2: 判断 D_z 是否反向击穿?

 D_{71} 正偏, D_{72} 反偏;

 D_{Z1} 和 D_{Z2} 串联,需要13.7V才能 让 D_{Z1} 正向导通, D_{Z2} 反向击穿

∴ 40V>13.7V ∴
$$U_0$$
=0.7+13=13.7V

$$I = \frac{40-13.7}{2k} = 13.15 \text{mA} > I_Z$$
 一 反向击穿稳定

 D_{z_1} 反偏, D_{z_2} 正偏;

 D_{Z1} 和 D_{Z2} 串联,需要7.7V才能 让 D_{Z1} 反向击穿, D_{Z2} 正向导通

∴ 40V>7.7V ∴
$$U_0$$
=7+0.7=7.7V

∵ D_{Z1}和D_{Z2}都处 于反向截止状态

∵ D_{z1}和D_{z2}是串联 只要一个反向截止 该支路都不起作用

若同时反向击穿至 少需要多大电压?

$$U_s > 2 \times 5 + 7 + 13 = 30V$$

图(a)的40V可满足

∵ *D*_{Z1}和*D*_{Z2}是并联 看谁先被反向击穿

∵ 7<13 ∴D_{Z1}先击穿

三、稳压管的应用 — 作为限幅器 与二极管限幅的区别?

已知: u_i =10sin ω t, D_{z_1} 、 D_{z_2} 为理想, U_{z_1} = U_{z_2} =5V,求 u_o 波形

两个稳压管串联且方向相反

 $u_i > 5V \rightarrow D_{Z2}$ 反向击穿 $\rightarrow U_0 = 5V$

一个正偏时,另一个必然反偏 u_i <-5 $V \rightarrow D_{Z1}$ 反向击穿 $\rightarrow U_0$ = -5V

作 业

P116 4-5; P118 4-9 实验二: 稳压管限幅电路设计

假设 u_i =15 $\sin \omega t$, D_1 、 D_2 为硅普通二极管(U_D =0.7V),

要求:请用硅稳压管设计出与S1和S2均闭合相同效果的电路, 画出电路图(限流电阻取 250Ω),并进行分析。

将设计图和分析过程写在作业纸上,带到实验室进行仿真验证

作业: 4.1 到 4-10

(1) 半导体三极管结构

半导体三极管可以简称为"晶体管",两个背靠背的 PN 结, 三极管可以分为 PNP 型和 NPN 型两种。

(1) 半导体三极管结构

三极管的作用: 电流放大作用。

放大内部条件:

- ①三个区所掺杂的杂质浓度并不相同,发射区所掺杂的杂质浓度大大高于集电区;发射区>> 集电区>> 基区
- ② 基区所掺杂的杂质浓度非常低,且基区制作的非常薄。

外部条件:外加电压发射结正偏,集电结反偏。

放大电路两种接法:发射结正偏,集电结反偏

1 共基接法

2 共射接法。 $V_{\rm CC} > V_{\rm BB}$

电流放大作用 $i_C = \beta i_B$

一、NPN型三极管的电流放大原理 发射结正偏,集电结反偏

①发射结正偏时, PN 结的内部以多子的扩散运动为主。基区所掺杂的杂质浓度远远低于发射区所掺杂的杂质浓度,扩散的多子以N区的自由电子为主。

 $V_C > V_R > V_E$

二发射区会发射大量的多子(自由电子)到基区。

一、NPN 型三极管的电流放大原理

② 当集电结反偏时, PN 结内部以少子的漂移运动为主。

发射区发射来的大量的自由电子到达基区后,而会在集电结反偏电压的作用下,被收集到集电区。

在运动的过程中,会有少量的自由电子和基区的空穴相复合。

NPN 型三极管的电流放大原理

因为基区非常薄,所掺杂的杂质浓度非常低,所以基区所漂移的少子可以忽略不计。

由于集电结的反偏, PN 结的内部以少子的漂移运动为 主所以集电区的少子(空穴) 会漂移到基区。

NPN型三极管的电流放大原理

发射结正偏, 集电结反偏

$$V_{\rm C} > V_{\rm B} > V_{\rm E}$$

发射区发射大量的自由 电子, 经过基区, 被收集到集电区

集电区会漂移少量的空穴到基区

载流子运动

一、NPN 型三极管的电流放大原理

电流关系:

$$1 \cdot I_{\rm En} = I_{\rm Bn} + I_{\rm Cn}$$

$$2 \cdot I_{\rm En} \approx I_{\rm Cn} \quad I_{\rm Cn} >> I_{\rm Bn}$$

$$\frac{I_{\text{Cn}}}{I_{\text{Bn}}} = \frac{\overline{\beta}}{>} > 1$$

直流电流放大倍数

当三极管制造好后, β 随之固定, 是一个常数。

一、 NPN 型三极管的电流放大原理

电流关系:

$$1 \cdot I_{\rm En} = I_{\rm Bn} + I_{\rm Cn}$$

$$2 \cdot I_{\rm En} \approx I_{\rm Cn} I_{\rm Cn} >> I_{\rm Bn}$$

$$3 \cdot \frac{I_{\text{Cn}}}{I_{\text{Bn}}} = \overline{\beta} >> 1$$

问题:
$$I_{\rm E}$$
、 $I_{\rm C}$ 、 $I_{\rm B}=$? KCL

$$I_{\rm E} = I_{\rm En} = I_{\rm Bn} + I_{\rm Cn}$$

$$I_{\rm B} = I_{\rm Bn} - I_{\rm CBO}$$

$$I_{\rm C} = I_{\rm cn} + I_{\rm CBO}$$

结论1: $I_E = I_B + I_C$

-、NPN 型三极管的电流放大原理

电流关系:

$$I_E = I_{Bn} + I_{Cn} = (1 + \overline{\beta}) I_{Bn}$$

$$1 \cdot I_{\rm En} = I_{\rm Bn} + I_{\rm Cn}$$

$$I_{\rm E} = (1 \overline{\rlap/}{\hskip -1.5mm})I_{\rm B} + (\overline{\rlap/}{\hskip -1.5mm} +)I_{\rm CBO}$$

$$2 \cdot I_{\rm En} \approx I_{\rm Cn} I_{\rm Cn} >> I_{\rm Bn}$$

$$:: I_C = \overline{\beta}I_{Bn} + I_{CBO} = \overline{\beta}(I_B + I_{CBO}) + I_{CBO}$$

$$\frac{I_{\text{Cn}}}{I_{\text{Bn}}} = \overline{\beta} >> 1$$

$$I_{\rm C} = \overline{\beta} I_{\rm B} + \overline{\beta}$$

问题:
$$I_{\rm E}$$
、 $I_{\rm C}$ 、 $I_{\rm B}$ =? KCL

问题:
$$I_{\rm E}$$
、 $I_{\rm C}$ 、 $I_{\rm B}$ =? KCL $I_{\rm CEO} = (1+\overline{\beta}) I_{\rm CBO}$ $I_{\rm E} = I_{\rm En} = I_{\rm Bn} + I_{\rm Cn}$

$$I_{\rm E} = I_{\rm En} = I_{\rm Bn} + I_{\rm Cn}$$

$$I_{\rm B} = I_{\rm Bn} - I_{\rm CBO}$$

结论 2:
$$I_{C} = I_{B} + I_{CEO} = \overline{\beta} I_{B}$$

$$I_{\rm C} = I_{\rm en} + I_{\rm CBO}$$

结论1:
$$I_E = I_B + \gamma_C(1+\beta) I_B$$

一、NPN型三极管的电流放大原理

发射结正偏, 集电结反偏

1.
$$I_{\rm E} = I_{\rm B} + \mathcal{F}_{\rm C}(1+\beta) I_{\rm B}$$

$$2 \cdot I_{\rm C} \not = I_{\rm B} + I_{\rm CEO} \not \beta I_{\rm B}$$

$$3 \cdot \frac{I_{C}}{I_{B}} \approx \overline{\beta} >> 1 \longrightarrow 常数$$

直流电流放大倍数

公共端: 发射极 E 共射接法 {输入端: 基极 B 输出端: 集电极 C

改变电阻 R_R 改变输入电流 I_{R} $I_{\rm C} \approx \overline{\beta} I_{\rm B}$ 改变输出电流 $I_{\rm C}$

二三极管不仅可以实现电流的放大,还能实现输入信号对输出信号的控制。

二、PNP型三极管的电流放大原理

PNP 型三极管的工作原理和 NPN 型非常类似, 区别点有两点:

1、NPN 型的发射结正偏,集电结反偏的条件: $V_{
m C} > V_{
m B} > V_{
m E}$

二、PNP型三极管的电流放大原理

PNP 型三极管的工作原理和 NPN 型非常类似, 区别点有两点:

1、NPN 型的发射结正偏,集电结反偏的条件: $V_{
m C} > V_{
m B} > V_{
m E}$

半导体二极管和三极管

半导体材料 → PN → 二板管 → 稳压管 三极管 → 基本放大电路

主要内容有:

- ◆ 三极管的结构
- ◆ 三极管的放大原理
- ◆ 三级极管的特性曲线
- ◆ 三极管的参数
- ◆ 温度对三极管的影响