Łukasiewicz Public Announcement Logic

Non-classical Dynamic Epistemic Logics

Umberto Rivieccio
UFRN

Introduction: DEL

- Dynamic logics are language expansions of modal logic designed to reason about change, and widely applied in computer science.
- Dynamic epistemic logic (DEL) models changes affecting the cognitive state of agents.
- We focus here on changes that do not concern facts of the world but rather cognitive states (e.g., public announcements).
- Logical consequence in DEL can be difficult to treat (from a syntactic as well as semantic point of view), e.g. because it is not substitution-invariant.

Introduction: DEL

- Recent work of Alessandra Palmigiano and collaborators tackles the above problems using display calculi to axiomatize systems of DEL and duality theory to study their semantics.
- Alessandra & co. propose a uniform methodology for developing DEL in a number of non-classical settings, which can be useful for different applications.
- In this talk I will report on the algebraic and duality-theoretic aspects of this ongoing enterprise.

Epistemic updates

- Epistemic change is represented in DEL as a transformation from a (relational, algebraic) model representing the current situation to a new model that represents the situation after some epistemic action has occurred.
- The update on the epistemic state of agents caused by an action is known as epistemic update.
- Epistemic updates are formalized
 - on Kripke-style models via (pseudo-) co-products and sub-models,
 - on algebras via (pseudo-) products and quotients.

- The logic EAK was introduced by A. Baltag, L.S. Moss and S. Solecki (1999) to deal with "Public Announcements, Common Knowledge and Private Suspicions".
- The language of EAK is that of modal logic (S5) expanded with dynamic operators $\langle \alpha \rangle$ and $[\alpha]$, where α is an action structure.
- The intended meaning of $\langle \alpha \rangle \varphi$ is: the action α can be executed, and after execution φ holds.
- Dually, $[\alpha]\varphi$ means: if the action α can be executed, then after execution φ holds.

Language of (classical, single-agent) EAK

$$\varphi ::= \mathbf{p} \in \mathsf{Var} \mid \neg \varphi \mid \varphi \vee \varphi \mid \dots \mid \Diamond \varphi \mid \square \varphi \mid \langle \alpha \rangle \varphi \mid [\alpha] \varphi,$$

where α is an action structure:

$$\alpha = (K, k, R_{\alpha}, Pre_{\alpha} : K \rightarrow Fm).$$

Language of (classical, single-agent) EAK

$$\varphi ::= p \in \mathsf{Var} \mid \neg \varphi \mid \varphi \vee \varphi \mid \dots \mid \Diamond \varphi \mid \Box \varphi \mid \langle \alpha \rangle \varphi \mid [\alpha] \varphi,$$

where α is an action structure:

$$\alpha = (K, k, R_{\alpha}, Pre_{\alpha} : K \rightarrow Fm).$$

Kripke semantics

For M = (W, R, v), define

$$M, w \Vdash \langle \alpha \rangle \varphi$$
 iff $M, w \Vdash Pre(\alpha)$ and $M^{\alpha}, w \Vdash \varphi$

 $M, w \Vdash [\alpha] \varphi$ iff if $M, w \Vdash Pre(\alpha)$, then $M^{\alpha}, w \Vdash \varphi$

where M^{α} is the updated model, after execution of α .

Intermediate model (pseudo coproduct)

Given
$$\alpha := (K, k, R_{\alpha}, Pre_{\alpha} : K \rightarrow Fm)$$
 and $M = (W, R, v)$, let

$$\coprod_{\alpha} M := (\coprod_{K} W, R \times R_{\alpha}, \coprod_{K} v)$$

- $\bullet \coprod_{K} W \cong W \times K$
- $(w,j)(R \times R_{\alpha})(u,i)$ iff wRu and $jR_{\alpha}i$
- $\bullet \ (\coprod_{K} v)(p) := \coprod_{K} v(p).$

Intermediate model (pseudo coproduct)

Given
$$\alpha := (K, k, R_{\alpha}, Pre_{\alpha} : K \rightarrow Fm)$$
 and $M = (W, R, v)$, let

$$\coprod_{\alpha} M := (\coprod_{K} W, R \times R_{\alpha}, \coprod_{K} v)$$

- $\bullet \coprod_K W \cong W \times K$
- $(w,j)(R \times R_{\alpha})(u,i)$ iff wRu and $jR_{\alpha}i$
- $\bullet \ (\coprod_{\mathcal{K}} \mathsf{v})(\mathsf{p}) := \coprod_{\mathcal{K}} \mathsf{v}(\mathsf{p}).$

The second step, M^{α}

 M^{α} is the submodel of $\prod_{\alpha} M$ with domain

$$W^{\alpha} := \{(w, j) \mid M, w \Vdash Pre_{\alpha}(j)\}.$$

Axiomatization

EAK is axiomatized by

- the axioms and rules of modal logic (S5) plus the following axioms:

where $\alpha = \alpha_k$ and $\alpha_i = (K, i, R_\alpha, Pre_\alpha)$ for each $i \in K$.

The rule:

from
$$\varnothing \vdash \varphi \to \psi$$
 infer $\varnothing \vdash \langle \alpha \rangle \varphi \to \langle \alpha \rangle \psi$.

Methodology: dual characterizations

Methodology: dual characterizations

The above methodology can be uniformly applied to a variety of (non-classical) modal systems, including:

- Distributive lattice-based logics (classical, intuitionistic, positive modal logic).
- Paraconsistent modal logics (bilattices, N4-lattices).
- Substructural logics (finite-valued Łukasiewicz).

Methodology: dual characterizations

The above methodology can be uniformly applied to a variety of (non-classical) modal systems, including:

- Distributive lattice-based logics (classical, intuitionistic, positive modal logic).
- Paraconsistent modal logics (bilattices, N4-lattices).
- Substructural logics (finite-valued Łukasiewicz).

Results

- Hilbert-style axiomatizations
- Completeness w.r.t. to algebraic and relational models
- Display calculi.

Intermediate models as algebras

Let \mathbb{A} be a modal algebra and $\alpha = (K, k, R_{\alpha}, Pre_{\alpha} : K \to \mathbb{A})$ an action structure over \mathbb{A} .

Define

$$\prod_{\alpha} \mathbb{A} := (\mathbb{A}^{\kappa}, \lozenge^{\prod_{\alpha} \mathbb{A}}, \square^{\prod_{\alpha} \mathbb{A}})$$

where, for each $f: K \to \mathbb{A}$ and $j \in K$,

$$(\lozenge^{\prod_\alpha \mathbb{A}} f)(j) = \bigvee \{\lozenge^\mathbb{A} f(i) \mid jR_\alpha i\}$$

$$(\Box^{\prod_{\alpha} \mathbb{A}} f)(j) = \bigwedge \{ \Box^{\mathbb{A}} f(i) \mid jR_{\alpha}i \}.$$

A similar definition can be given for (semi)lattices with operators, HAOs, modal bilattices etc.

The pseudo quotient

Let \mathbb{A} be a modal algebra and $\alpha = (K, k, R_{\alpha}, Pre_{\alpha} : K \to \mathbb{A})$ an action structure over \mathbb{A} .

Since $\mathit{Pre}_{\alpha} \in \prod_{\alpha} \mathbb{A}$, we let, for every $b, c \in \prod_{\alpha} \mathbb{A}$,

$$b \equiv_{\alpha} c \quad \text{iff} \quad b \wedge Pre_{\alpha} = c \wedge Pre_{\alpha}$$

and we have a Boolean algebra $\prod_{\alpha} \mathbb{A}/\equiv_{\alpha}$ on which we define, for any $[b] \in \prod_{\alpha} \mathbb{A}/\equiv_{\alpha}$,

$$\lozenge^{\alpha}[b] := [\lozenge^{\prod_{\alpha} \mathbb{A}}(Pre_{\alpha} \wedge b)]$$

$$\square^{\alpha}[b] := [\square^{\prod_{\alpha} \mathbb{A}}(Pre_{\alpha} \to b)].$$

The pseudo quotient

Remarks:

- We can define an injective map $\iota : [b] \longmapsto b \land Pre_{\alpha}$ that embeds $\prod_{\alpha} \mathbb{A}/\equiv_{\alpha}$ into $\prod_{\alpha} \mathbb{A}$.
- If $\mathbb A$ is a different algebra with operators (bilattice, MV), the relation $\{(b,c)\in A\times A\mid b\wedge Pre_\alpha=c\wedge Pre_\alpha\}$ may not be a congruence of the non-modal reduct of $\mathbb A$.
- A more widely applicable recipe: if the underlying non-modal logic $\mathcal L$ is algebraizable, take the congruence $\theta(Fi_{\mathcal L}(Pre_{\alpha}))$ determined by the logical filter $Fi_{\mathcal L}(Pre_{\alpha})$.
- To define \Diamond^{α} , \Box^{α} we still need a uniform characterization of $\theta(Fi_{\mathcal{L}}(Pre_{\alpha}))$, for example

$$\{(b,c)\in A\times A\mid b\wedge (Pre_{\alpha})^n=c\wedge (Pre_{\alpha})^n\}$$

works for *n*-potent modal MV-algebras.

Algebraic semantics

For every algebraic model $M = (\mathbb{A}, v)$, where $v \colon \mathsf{Var} \to \mathbb{A}$, the extension map $[\![\cdot]\!]_M \colon \mathit{Fm} \to \mathbb{A}$ is defined as:

Completeness results

- Soundness of the axioms is checked w.r.t. to algebraic models.
- Completeness is obtained using the interaction axioms to reduce EAK to its static fragment (e.g., modal logic S5).
- Soundness and completeness w.r.t. relational models follow by duality.
- Classical and intuitionistic EAK are also axiomatized by means of modular, cut-free display-style sequent calculi.

Further work

- Understand epistemic updates on algebras in the most general setting (role of Leibniz congruence, preservation of equations).
- Extend to other logics (e.g., positive modal logic, infinite-valued Łukasiewicz, logics of order).
- Study updates in a topological duality setting.
- Applications in non-classical reasoning (e.g., public announcements with lies).

References

- A. Kurz and A. Palmigiano. Epistemic Updates on Algebras. Logical Methods in Computer Science, 9(4:17), 2013, 1–28.
- M. Ma, A. Palmigiano and M. Sadrzadeh.
 Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic.
 Annals of Pure and Applied Logic, 165 (2014), 963–995.
- U. Rivieccio. Bilattice public announcement logic.
 R. Goré, B. Kooi and A. Kurucz (eds.), Advances in Modal Logic, Vol. 10, College Publications, 2014, 459–477.
- Z. Bakhtiari and U. Rivieccio. Epistemic updates on bilattices.
 To appear on Proceedings of LORI 2015.
- L. Cabrer, U. Rivieccio and R. Rodríguez.
 Łukasiewicz Public Announcement Logic. In preparation.