ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Graduação em Engenharia Computação

PCS3732 - Laboratório de Processadores

Professor Jorge Kinoshita

Grupo 10 - Planejamento E6

Arthur Pires da Fonseca NUSP: 10773096

Sumário

6.1.2 B. Responda	3
1- O que há de errado com as seguintes instruções?	3
a) STMIA r5!, {r5, r4, r9}	3
b) LDMDA r2, {}	3
c) STMDB r15!, [r0-r3, r4, lr}	3
2- Se o registrador r6 possui 0x8000 (como ponteiro para a memória); após executar "LDMIA r6,{r7,r4,r0,lr}" o que fica em r0, r4, r7 e em Ir?	4
3- Assuma que a memória e registradores estejam:	4
4- Suponha que a pilha esteja como o diagrama abaixo. Que instrução seria necessária para sair do estado original e ir para o estado a), depois b) e depois compondo, por exemplo, que r0 = 0xbabe2222, r1 = 0x12340000 e r13 = 0x80000	2
6.1.3 C. Apresente o código Assembly rodando com printscreen de: 6.5.2 Bubble sorting	6

6.1.2 B. Responda

1- O que há de errado com as seguintes instruções?

a) STMIA r5!, {r5, r4, r9}

Os registradores entre chaves não estão em ordem crescente.

O registrador de writeback está na lista, portanto tem que ser o de menor índice entre as chaves, o que não é o caso.

b) LDMDA r2, {}

Não há nenhum registrador especificado, onde se deva carregar o que será tirado da memória quando a instrução for executada.

c) STMDB r15!, [r0-r3, r4, lr]

O registrador r15 (program counter) não pode servir como registrador-base.

2- Se o registrador r6 possui 0x8000 (como ponteiro para a memória); após executar "LDMIA r6,{r7,r4,r0,lr}" o que fica em r0, r4, r7 e em lr?

Os registradores ficam com os seguintes valores:

r0 = palavra guardada em 0x8000

r4 = palavra guardada em 0x8004

r7 = palavra guardada em 0x8008

Ir = palavra guardada em 0x800c

3- Assuma que a memória e registradores estejam:

0x8010	0x1
0x800C	0xfeeddeaf
0x8008	0x00008888
0x8004	0x12340000
0x8000	0xbabe0000

r0 = 0x13; r1 = 0xffffffff; r2 = 0xeeeeeeee; r3 = 0x8000

Descreva a memória e conteúdos dos registradores após a instrução:

LDMIA r3!, {r0,r1,r2}

A memória permanecerá como estava antes da instrução e os registradores estarão assim:

- r0 = 0xbabe00000
- r1 = 0x12340000
- r2 = 0x00008888
- r3 = 0x800c

4- Suponha que a pilha esteja como o diagrama abaixo. Que instrução seria necessária para sair do estado original e ir para o estado a), depois b) e depois c)?

Endereço	Original	А	В	С
0x8010	0x1	0x1	0x1	0x1
0x800C	0xfeeddeaf	0xfeeddeaf	0xfeeddeaf	0xfeeddeaf
0x8008		0xbabe2222	0xbabe22222	
0x8004			0x12340000	
0x8000				

Supondo, por exemplo, que r0 = 0xbabe2222, r1 = 0x12340000 e r13 = 0x800c:

STMFA r13!, {r0}

STMFA r13!, {r1}

LDMFA r13!, {r0, r1}

6.1.3 C. Apresente o código Assembly rodando com printscreen de: 6.5.2 Bubble sorting

```
ldr r1, =0x4000 @ address list = *a
mov r2, #0 @ indice do bubble = i
add r3, r2, #1 @ i + 1
ldrb r4, [r0], r2 @ operando1 = a[i]
ldrb r5, [r0], r3 @ operando2 = a[i + 1]
add r7, r6, #1
                @ j + 1
add r2, r2, #1
                @ i++
add r3, r3, #1
                @ i++
bge loop1
cmp r4, r5
               @ se op1 < op2 => não precisa fazer mais nada
strb r4, [r0], r7 @ a[j + 1] = operando1
add r6, r6, #1 @ j++
add r7, r7, #1 @ j++
```


Print do fim da execução do código acima.