Лабораторная работа 1.3.3

"Определение вязкости воздуха по течению в тонких трубках"

Белов Михаил Б01-302

13 мая 2024 г.

Аннотация:

Цель лабораторной работы:

экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Теоретические сведения:

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{n}$$

где v — скорость потока, r — радиус трубки, ρ — плотность движущейся среды, η — её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Q = \frac{\pi r^4}{8\Delta \ln}(P_1 - P_2) \tag{1}$$

В этой формуле $P_1 - P_2$ – разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно Δl . Величину Q обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (1). Прежде всего необходимо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей

1

устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0.2 rRe$$
 (2)

Градиент давления на участке формирования потока оказывается больше, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить дину участка формирования.

Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 2. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Рис. 2: Экспериментальная установка

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Результаты измерений:

Зависимость разности давлений от расхода:

Измерим зависимость перепада давления на выбранном участке трубки от расхода газа Q для трубки диаметром $d=4.10\pm0.05~\mathrm{mm}$:

	Q, л/с	dP, Πa
ламинарное	0.003949	7.84
	0.012009	15.68
	0.020091	27.44
	0.033511	43.12
	0.053057	70.56
	0.065149	90.16
турбулентное	0.094228	133.28
	0.100513	152.88
	0.104899	168.56
	0.116985	227.36
	0.138571	333.2
	0.153707	395.92

По полученным данным построим график зависимости $\Delta P(Q)$:

По МНК оценим угловой наклона графика в части ламинарного течения и его погрешность, по формуле 1 найдём вязкость воздуха η :

$$\eta_1 = 1.95 \pm 0.03 \; \Pi a^* c$$

Аналогично построрим графики для трубок с диаметрами $d=3.0\pm0.1$ и $d=5.20\pm0.05$ мм:

В этих случаях получившаяся вязкость:

$$\eta_2 = 1.91 \pm 0.03 \; \Pi a^* c$$

 $\eta_3 = 1.96 \pm 0.03 \; \Pi a^* c$

Зависимость разности давлений от длины участка:

По результатам измерений построим графики P(x) зависимостей давления P от длины участка трубы x:

Зависимость расхода от радиуса трубы

Для фиксированного значения разницы давлений построим график зависимости расхода от радиуса трубки в двойных логарифмических координатах:

По МНК оченим угол наклона графиков, который равен показателю в степени линейной зависимости Q(R):

$$\lambda_1 = 4.29 \pm 0.27$$

 $\lambda_2 = 2.71 \pm 0.29$

Обсуждение результатов и вывод:

Таким образом мы исследовали свойства течения газа по тонким трубам. Из результатов видно экспериментальное подтверждение всех теоретических предположений с достаточно хорошей точностью. В том числе мы убедились, что вязкость воздуха не зависит от толщины трубки и что зависимость расхода газа от радиуса для ламинарного течения $Q \sim R^{4.3}$ для турбулентного течения $Q \sim R^{2.7}$ что соотносится с теоретическими предположениями с учётом погрешности.