

ABOUT COMPUTER VISION

- Deals with the formation, analysis and Interpretation Images
- Is an integral part of Artificial Intelligence (AI)
- Is interdisciplinary subject area
- Is Practical and useful
- Is modern, challenging and continuously evolving

COMPUTER VISION DIFFICULTIES

- Images are ambiguous : Projective
- Images are affected by many factors—Sensor model
 - Illumination
 - Shape of object(s)
 - Color of object(s)
 - Texture of object(s)
- There is no "Universal Solution" to the Vision problem
- There are many theories
- We do not understand how the human Visual System works
- Computer technology changes continuously, HenceComputer Vision is evolving.

WHY IS COMPUTER VISION DIFFICULT?

- It is a many-to-one mapping
 - A variety of surfaces with different material and geometrical properties, possibly under different lighting conditions, could lead to identical images
 - Inverse mapping is under-constrained—non-unique solution (a lot of information is lost in the transformation from the 3D world to the 2D image)
- It is computationally intensive
- We still do not understand the recognition problem

ILLUSIONS

ILLUSIONS

WHAT DO HUMANS SEE?

NOMENCLATURE

- Somewhat interchangeable names, with somewhat different implications:
 - Computer Vision
 - Most general term
 - Computational Vision
 - Includes modeling of biological vision
 - Image Understanding or Scene Understanding
 - Automated scene analysis (e.g., satellite images, robot navigation)
 - Machine Vision
 - Industrial, factory-floor systems for inspection, measurements, part placement, etc.

RELATED FIELDS

- Largely built upon
 - Image Processing
 - Statistical Pattern Recognition, Machine Learning
 - Artificial Intelligence
- Related areas
 - Robotics
 - Biological vision
 - Medical imaging
 - Computer graphics
 - Human-computer interaction

THE THREE PROCESSING LEVELS

- Low-level processing
 - Standard procedures are applied to improve image quality
 - No "intelligent" capabilities

THE THREE PROCESSING LEVELS

- Intermediate-level processing
 - Extract and characterize components in the image
 - Some intelligent capabilities are required

THE THREE PROCESSING LEVELS

- High-level processing
 - Recognition and interpretation
 - Procedures require high intelligent capabilities

Computer Vision

COMPUTER VISION

- Some applications
 - Robotics
 - Navigation, object manipulation, interaction with humans...
 - Inspection, measurement
 - Medical imaging
 - Graphics and animation, special effects
 - Multimedia database indexing and retrieval
 - Human-computer interaction
 - Surveillance and security

WHY STUDY COMPUTER VISION?

- Images and movies are everywhere
 - Mobile phone, cheaper cameras enabling the imaging capture
- Fast-growing collection of useful applications—Face finding, recognition, analysis
 - building representations of the 3D world from pictures
 - automated surveillance (who's doing what)
 - movie post-processing
- Various deep and attractive scientific mysteries—how does object recognition work?
- Greater understanding of human vision

EVERY PICTURE TELLS A STORY

• Goal of computer vision is to write computer programs that can interpret images

Computer Vision

EXAMPLES OF COMMERCIAL VISION SYSTEMS

High Precision Inspection System

Par Systems: Vision Guided Robotics for manufacturing and assembly lines

NASA Rover

TYPES OF IMAGES

- Infra-red
- Ultra-violet
- Radio-waves (radio astronomy)
- Visible light
- Micro-waves (radar)
- Roentgen (tomography)
- Sound-waves (echoscopy, sonar)
- Electrons (microscopy)
- Positron emission (PET-scan)
- Magnetic resonance (NMR)

ELECTROMAGNETIC (EM) SPECTRUM

IMAGING IN DIFFERENT WAVELENGTHS

PART I: THE PHYSICS OF IMAGING

- How images are formed
 - Cameras
 - How a camera creates an image
 - How to tell where the camera was
 - Light
 - How to measure light
 - What light does at surfaces
 - · How the brightness values we see in cameras are determined
 - Color
 - The underlying mechanisms of color
 - How to describe it and measure it

PART II: EARLY VISION IN ONE IMAGE

- Representing small patches of image
 - For three reasons
 - We wish to establish correspondence between (say) points in different images, so we need to describe the neighborhood of the points
 - Sharp changes are important in practice —known as "edges"
 - Representing texture by giving some statistics of the different kinds of small patch present in the texture.
 - Tigers have lots of bars, few spots
 - Leopards are the other way

REPRESENTING AN IMAGE PATCH

- Filter outputs
 - essentially form a dot-product between a pattern and an image, while shifting the pattern across the image
 - strong response -> image locally looks like the pattern
 - e.g. derivatives measured by filtering with a kernel that looks like a big derivative (bright bar next to dark bar)

TEXTURE

- Many objects are distinguished by their texture
 - Tigers, cheetahs, grass, trees
- We represent texture with statistics of filter outputs
 - For tigers, bar filters at a coarse scale respond strongly
 - For cheetahs, spots at the same scale
 - For grass, long narrow bars
 - For the leaves of trees, extended spots
- Objects with different textures can be segmented
- The variation in textures is a cue to shape

PART III: EARLY VISION IN MULTIPLE IMAGES

- The geometry of multiple views
 - Where could it appear in camera 2 (3, etc.) given it was here in 1 (1 and 2, etc.)?
- Stereopsis
 - What we know about the world from having 2 eyes
- Structure from motion
 - What we know about the world from having many eyes
 - or, more commonly, our eyes moving.

PART IV: MID-LEVEL VISION

- Finding coherent structure so as to break the image or movie into big units
 - Segmentation:
 - Breaking images and videos into useful pieces
 - E.g. finding image components that are coherent in internal appearance
 - Tracking:
 - Keeping track of a moving object through a long sequence of views

PART V: HIGH LEVEL VISION (GEOMETRY)

- The relations between object geometry and image geometry
 - Model based vision
 - find the position and orientation of known objects
 - Smooth surfaces and outlines
 - how the outline of a curved object is formed, and what it looks like
 - Aspect graphs
 - how the outline of a curved object moves around as you view it from different directions
 - Range data

PART VI: HIGH LEVEL VISION (PROBABILISTIC)

- Using classifiers and probability to recognize objects
 - Templates and classifiers
 - how to find objects that look the same from view to view with a classifier
 - Relations
 - break up objects into big, simple parts, find the parts with a classifier, and then reason about the relationships between the parts to find the object.
 - Geometric templates from spatial relations
 - extend this trick so that templates are formed from relations between much smaller parts

CONCLUSION

- Computer Vision is an exciting and challenging field
- Applied in many real world solutions
- Tremendous progress in the last decades
- Still have long way to go ...

