$10_{154} \ (K10n_7)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^5 + 2u^4 + u^3 - 2u^2 + b - u, \ u^3 + 2u^2 + a + 2u, \ u^6 + 3u^5 + 3u^4 - 2u^3 - 4u^2 - u + 1 \rangle \\ I_2^u &= \langle b, \ u^2 + a + 2u + 1, \ u^3 + u^2 - 1 \rangle \\ I_3^u &= \langle -a^2 + b - 3a - 1, \ a^3 + 3a^2 + 2a + 1, \ u - 1 \rangle \\ I_4^u &= \langle u^4 + 2u^3 + u^2 + 2b - u - 1, \ -u^5 - 3u^4 - 7u^3 - 4u^2 + 4a - 2u + 5, \ u^6 + 2u^5 + 4u^4 + u^3 + 2u^2 - 3u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \ I_1^u = \\ \langle u^5 + 2u^4 + u^3 - 2u^2 + b - u, \ u^3 + 2u^2 + a + 2u, \ u^6 + 3u^5 + 3u^4 - 2u^3 - 4u^2 - u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} - 2u^{2} - 2u \\ -u^{5} - 2u^{4} - u^{3} + 2u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{3} - 2u^{2} - 2u \\ -2u^{5} - 2u^{4} + 2u^{2} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u^{2} + 2 \\ u^{3} - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{2} - 2u - 1 \\ -2u^{4} - 2u^{3} + u^{2} + 2u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{4} + 2u^{3} - 2u - 1 \\ -4u^{5} - 8u^{4} + 8u^{2} + 4u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-8u^5 24u^4 32u^3 8u^2 6$

Crossings	u-Polynomials at each crossing	
c_1, c_6, c_8 c_9	$u^6 - u^5 + 5u^4 + 2u^3 + 4u^2 + u - 1$	
c_2, c_5	$u^6 + 3u^5 + 13u^4 + 20u^3 + 18u^2 + 9u + 1$	
c_3, c_4, c_7 c_{10}	$u^6 - 3u^5 + 3u^4 + 2u^3 - 4u^2 + u + 1$	

Crossings	Riley Polynomials at each crossing	
c_1, c_6, c_8 c_9	$y^6 + 9y^5 + 37y^4 + 36y^3 + 2y^2 - 9y + 1$	
c_2, c_5	$y^6 + 17y^5 + 85y^4 + 16y^3 - 10y^2 - 45y + 1$	
c_3, c_4, c_7 c_{10}	$y^6 - 3y^5 + 13y^4 - 20y^3 + 18y^2 - 9y + 1$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.822978 + 0.498752I		
a = 0.732119 - 0.244993I	1.78286 + 4.10821I	-5.51333 - 7.68125I
b = 0.203480 - 0.959760I		
u = -0.822978 - 0.498752I		
a = 0.732119 + 0.244993I	1.78286 - 4.10821I	-5.51333 + 7.68125I
b = 0.203480 + 0.959760I		
u = 0.931750		
a = -4.40872	-3.00199	-62.5370
b = -0.350492		
u = 0.385643		
a = -1.12608	-0.943503	-9.62410
b = 0.572966		
u = -1.33572 + 1.10504I		
a = -0.964719 - 0.871256I	14.9943 + 9.2499I	-8.40611 - 3.97593I
b = -0.81472 + 2.12358I		
u = -1.33572 - 1.10504I		
a = -0.964719 + 0.871256I	14.9943 - 9.2499I	-8.40611 + 3.97593I
b = -0.81472 - 2.12358I		

II.
$$I_2^u = \langle b, u^2 + a + 2u + 1, u^3 + u^2 - 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} - 2u - 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} - 3u - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} - 2u - 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^2 8$

Crossings	u-Polynomials at each crossing
c_1	$u^3 + u^2 + 2u + 1$
c_2, c_8	$u^3 - u^2 + 2u - 1$
c_3	$u^3 - u^2 + 1$
c_4	$(u-1)^3$
c_5, c_7	$(u+1)^3$
c_{6}, c_{9}	u^3
c_{10}	$u^3 + u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_8	$y^3 + 3y^2 + 2y - 1$
c_3,c_{10}	$y^3 - y^2 + 2y - 1$
c_4, c_5, c_7	$(y-1)^3$
c_6, c_9	y^3

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0.539798 - 0.182582I	1.37919 + 2.82812I	-7.78492 - 1.30714I
b = 0		
u = -0.877439 - 0.744862I		
a = 0.539798 + 0.182582I	1.37919 - 2.82812I	-7.78492 + 1.30714I
b = 0		
u = 0.754878		
a = -3.07960	-2.75839	-7.43020
b = 0		

III.
$$I_3^u = \langle -a^2 + b - 3a - 1, \ a^3 + 3a^2 + 2a + 1, \ u - 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a \\ a^{2} + 3a + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{2} + 4a + 1 \\ a^{2} + 3a + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a + 2 \\ a + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2a^{2} - 4a - 1 \\ -a^{2} - 2a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a + 2 \\ a + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-a^2 3a 9$

Crossings	u-Polynomials at each crossing
c_{1}, c_{8}	u^3
c_2,c_{10}	$(u-1)^3$
<i>c</i> ₃	$(u+1)^3$
C4	$u^3 + u^2 - 1$
c_5, c_9	$u^3 + u^2 + 2u + 1$
<i>C</i> ₆	$u^3 - u^2 + 2u - 1$
<i>C</i> ₇	$u^3 - u^2 + 1$

Crossings	Riley Polynomials at each crossing		
c_{1}, c_{8}	y^3		
c_2, c_3, c_{10}	$(y-1)^3$		
c_4, c_7	$y^3 - y^2 + 2y - 1$		
c_5, c_6, c_9	$y^3 + 3y^2 + 2y - 1$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.337641 + 0.562280I	1.37919 + 2.82812I	-7.78492 - 1.30714I
b = -0.215080 + 1.307140I		
u = 1.00000		
a = -0.337641 - 0.562280I	1.37919 - 2.82812I	-7.78492 + 1.30714I
b = -0.215080 - 1.307140I		
u = 1.00000		
a = -2.32472	-2.75839	-7.43020
b = -0.569840		

IV.
$$I_4^u = \langle u^4 + 2u^3 + u^2 + 2b - u - 1, \ -u^5 - 3u^4 - 7u^3 - 4u^2 + 4a - 2u + 5, \ u^6 + 2u^5 + 4u^4 + u^3 + 2u^2 - 3u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{5} + \frac{3}{4}u^{4} + \dots + \frac{1}{2}u - \frac{5}{4} \\ -\frac{1}{2}u^{4} - u^{3} - \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{4}u^{5} + \frac{1}{4}u^{4} + \dots + 2u - \frac{7}{4} \\ u^{5} + \frac{1}{2}u^{4} + \dots - \frac{5}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{4}u^{5} - \frac{5}{4}u^{4} + \dots + \frac{1}{2}u + \frac{7}{4} \\ \frac{3}{4}u^{5} + \frac{1}{4}u^{4} + \dots + \frac{3}{2}u - \frac{3}{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{5} + \frac{3}{2}u^{4} + \dots + u - \frac{5}{2} \\ -\frac{1}{4}u^{5} - \frac{1}{4}u^{4} + \dots + u + \frac{3}{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{3}{4}u^{5} - \frac{1}{4}u^{4} + \dots + \frac{3}{2}u - \frac{9}{4} \\ \frac{7}{4}u^{5} - \frac{3}{4}u^{4} + \dots + \frac{5}{2}u + \frac{1}{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{1}{2}u^5 + u^4 + \frac{3}{2}u^3 \frac{1}{2}u^2 \frac{1}{2}u 9$

Crossings	u-Polynomials at each crossing	
$c_1, c_6, c_8 \ c_9$	$u^6 - u^5 + 8u^4 - u^3 + 8u^2 + 20u + 8$	
c_2, c_5	$u^6 - 4u^5 + 16u^4 - 29u^3 + 18u^2 + 5u + 1$	
c_3, c_4, c_7 c_{10}	$u^6 - 2u^5 + 4u^4 - u^3 + 2u^2 + 3u + 1$	

Crossings	Riley Polynomials at each crossing	
c_1, c_6, c_8 c_9	$y^6 + 15y^5 + 78y^4 + 183y^3 + 232y^2 - 272y + 64$	
c_2, c_5	$y^6 + 16y^5 + 60y^4 - 223y^3 + 646y^2 + 11y + 1$	
c_3, c_4, c_7 c_{10}	$y^6 + 4y^5 + 16y^4 + 29y^3 + 18y^2 - 5y + 1$	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.277479 + 1.215720I		
a = -0.222521 - 0.974928I	4.69981	-6.19806 + 0.I
b = -0.90097 + 1.51597I		
u = -0.277479 - 1.215720I		
a = -0.222521 + 0.974928I	4.69981	-6.19806 + 0.I
b = -0.90097 - 1.51597I		
u = 0.400969 + 0.193096I		
a = -0.900969 + 0.433884I	-0.939962	-9.24698 + 0.I
b = 0.623490 - 0.085936I		
u = 0.400969 - 0.193096I		
a = -0.900969 - 0.433884I	-0.939962	-9.24698 + 0.I
b = 0.623490 + 0.085936I		
u = -1.12349 + 1.40881I		
a = 0.623490 + 0.781831I	15.9794	-7.55496 + 0.I
b = -0.22252 - 2.53859I		
u = -1.12349 - 1.40881I		
a = 0.623490 - 0.781831I	15.9794	-7.55496 + 0.I
b = -0.22252 + 2.53859I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{3}(u^{3} + u^{2} + 2u + 1)(u^{6} - u^{5} + 5u^{4} + 2u^{3} + 4u^{2} + u - 1)$ $\cdot (u^{6} - u^{5} + 8u^{4} - u^{3} + 8u^{2} + 20u + 8)$
c_2	$((u-1)^3)(u^3 - u^2 + 2u - 1)(u^6 - 4u^5 + \dots + 5u + 1)$ $\cdot (u^6 + 3u^5 + 13u^4 + 20u^3 + 18u^2 + 9u + 1)$
c_3, c_7	$(u+1)^{3}(u^{3}-u^{2}+1)(u^{6}-3u^{5}+3u^{4}+2u^{3}-4u^{2}+u+1)$ $\cdot (u^{6}-2u^{5}+4u^{4}-u^{3}+2u^{2}+3u+1)$
c_4, c_{10}	$(u-1)^{3}(u^{3}+u^{2}-1)(u^{6}-3u^{5}+3u^{4}+2u^{3}-4u^{2}+u+1)$ $\cdot (u^{6}-2u^{5}+4u^{4}-u^{3}+2u^{2}+3u+1)$
c_5	$((u+1)^3)(u^3 + u^2 + 2u + 1)(u^6 - 4u^5 + \dots + 5u + 1)$ $\cdot (u^6 + 3u^5 + 13u^4 + 20u^3 + 18u^2 + 9u + 1)$
c_6, c_8	$u^{3}(u^{3} - u^{2} + 2u - 1)(u^{6} - u^{5} + 5u^{4} + 2u^{3} + 4u^{2} + u - 1)$ $\cdot (u^{6} - u^{5} + 8u^{4} - u^{3} + 8u^{2} + 20u + 8)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_8 c_9	$y^{3}(y^{3} + 3y^{2} + 2y - 1)(y^{6} + 9y^{5} + 37y^{4} + 36y^{3} + 2y^{2} - 9y + 1)$ $\cdot (y^{6} + 15y^{5} + 78y^{4} + 183y^{3} + 232y^{2} - 272y + 64)$
c_2, c_5	$(y-1)^{3}(y^{3} + 3y^{2} + 2y - 1)$ $\cdot (y^{6} + 16y^{5} + 60y^{4} - 223y^{3} + 646y^{2} + 11y + 1)$ $\cdot (y^{6} + 17y^{5} + 85y^{4} + 16y^{3} - 10y^{2} - 45y + 1)$
c_3, c_4, c_7 c_{10}	$((y-1)^3)(y^3 - y^2 + 2y - 1)(y^6 - 3y^5 + \dots - 9y + 1)$ $\cdot (y^6 + 4y^5 + 16y^4 + 29y^3 + 18y^2 - 5y + 1)$