Algoritmos em Grafos

Ana Paula Tomás

Desenho e Análise de Algoritmos 2017/18

Outubro 2017

Determina os nós acessíveis de s no grafo G = (V, A)

Estratégia: **pesquisa em largura** a partir do nó s

```
BFS_VISIT(s, G) // Breadth-First Search
     Para cada v \in G.V fazer
          visitado[v] \leftarrow false;
          pai[v] \leftarrow \text{NULL};
     visitado[s] \leftarrow true;
     Q \leftarrow \text{MKEMPTYQUEUE()};
     ENQUEUE(s, Q);
     Repita
          v \leftarrow \text{Dequeue}(Q);
          Para cada w \in G.Adjs[v] fazer
               Se visitado[w] = false então
                   ENQUEUE(w, Q):
                    visitado[w] \leftarrow true;
                   pai[w] \leftarrow v; // v precede w no caminho de s para w
     até (QUEUEISEMPTY(Q) = true );
```

Visita o grafo G = (V, A) em largura a partir de s

Propriedades

- pai[·] define uma árvore com raíz s, que se designa por árvore de pesquisa em largura a partir de s.
- Os ramos da árvore são os pares (pai[v], v) tais que $pai[v] \neq NULL$.
- O caminho de s até v na árvore é um caminho mínimo de s até v no grafo (aqui, mínimo significa que tem o menor número de ramos possível).
 Os nós são visitados por ordem crescente de distância a s.
- Se G for não dirigido, os vértices visitados na chamada BFS_VISIT(s, G) são os que definem a componente conexa a que s pertence.
- Para G dado por listas de adjacências e as operações MkEmptyQueue, Enqueue, QueueIsEmpty e Dequeue suportadas em O(1):
 - a complexidade temporal de BFS_VISIT(s, G) é O(|V| + |A|).
 - a complexidade espacial é O(|V|), se a fila for suportada por uma lista ligada, inicialmente está vazia (além de $\Theta(|V| + |A|)$ para G).

Escrita do caminho de s para v (se existe), $s \neq v$

Assumindo que $pai[v] \neq \text{NULL}$, a função seguinte determina a sequência de vértices no caminho de s para v

```
ESCREVECAMINHO(v, pai)

Se pai[v] \neq \text{NULL então}

ESCREVECAMINHO(pai[v], pai);
escrever(v);
```

Visitar o grafo G = (V, A) em largura

```
\begin{array}{c|c} \operatorname{BFS}(G) \\ & \operatorname{Para\ cada\ } v \in G.V \text{ fazer} \\ & \operatorname{\textit{visitado}}[v] \leftarrow \text{false}; \\ & \operatorname{\textit{pai}}[v] \leftarrow \text{NULL}; \\ & Q \leftarrow \operatorname{MkEmptyQueue}(); \\ & \operatorname{Para\ cada\ } v \in G.V \text{ fazer} \\ & \operatorname{Se\ \textit{visitado}}[v] = \text{false\ então} \\ & \operatorname{BFS\_VISIT}(v, G, Q); \end{array}
```

```
\begin{aligned} & \text{BFS\_VISIT}(s, G, Q) \\ & \textit{visitado}[s] \leftarrow \text{true}; \\ & \text{ENQUEUE}(s, Q); \\ & \text{Repita} \\ & \textit{v} \leftarrow \text{DEQUEUE}(Q); \\ & \text{Para cada } \textit{w} \in \textit{G.Adjs}[\textit{v}] \text{ fazer} \\ & \text{Se } \textit{visitado}[\textit{w}] = \text{false então} \\ & \text{ENQUEUE}(\textit{w}, \textit{Q}); \\ & \textit{visitado}[\textit{w}] \leftarrow \text{true}; \\ & \textit{pai}[\textit{w}] \leftarrow \textit{v}; \\ & \text{até } (\text{QUEUEISEMPTY}(\textit{Q}) = \text{true} ); \end{aligned}
```

Assume que as variáveis $pai[\cdot]$ e $visitado[\cdot]$ são globais.

Distância mínima do nó s a cada nó (minimizar número de ramos)

```
BFS_VISIT_DISTANCIA(s, G)
     Para cada v \in G.V fazer
           visitado[v] \leftarrow false;
           pai[v] \leftarrow \text{NULL};
           dist[v] \leftarrow \infty:
     visitado[s] \leftarrow true;
     dist[s] \leftarrow 0;
     Q \leftarrow \text{MKEMPTYQUEUE}():
     ENQUEUE(s, Q);
     Repita
           v \leftarrow \text{Dequeue}(Q);
           Para cada w \in G.Adjs[v] fazer
                Se visitado[w] = false então
                      dist[w] \leftarrow dist[v] + 1;
                      Enqueue(w, Q);
                      visitado[w] \leftarrow true;
                      pai[w] \leftarrow v;
     até (QUEUEISEMPTY(Q) = true );
```

Proposição: Se v é acessível de s em G = (V, E) então $dist[v] = \delta(s, v)$, onde $\delta(s,v)$ é o número de ramos do caminho mais curto s para v, para todo $v \neq s$.

- Caso de Base: Se $\delta(s, v) = 1$ então $(s, v) \in E$ e dist[v] = 1, pois s visita todos
- Hereditariedade
 - Suponhamos agora, como hipótese de indução, que para todo o u tal
 - Seja v tal que dist[v] = d. De todos os caminhos mínimos de s para v,
 - Quando v' sai da fila, v está por visitar. Se não, dist[v] < dist[v'].
 - Logo, v' visita v e, portanto, dist[v] = dist[v'] + 1. Como

Proposição: Se v é acessível de s em G = (V, E) então $dist[v] = \delta(s, v)$, onde $\delta(s, v)$ é o número de ramos do caminho mais curto s para v, para todo $v \neq s$.

Prova (por indução forte sobre a distância d):

- Caso de Base: Se $\delta(s, v) = 1$ então $(s, v) \in E$ e dist[v] = 1, pois s visita todos os seus adjacentes.
- Hereditariedade
 - Suponhamos agora, como hipótese de indução, que para todo o u tal que dist[u] < d se tem $dist[u] = \delta(s, u)$.
 - Seja v tal que dist[v] = d. De todos os caminhos mínimos de s para v, tomamos aquele em que o nó v' que **precede imediatamente** v foi o primeiro a ser visitado no algoritmo. Seja $\gamma = s \leadsto v' \to v$ tal caminho. Tem-se $(v',v) \in E$ e $\delta(s,v) = \delta(s,v') + 1$.
 - Quando v' sai da fila, v está por visitar. Se não, $dist[v] \leq dist[v']$.
 - Logo, v' visita v e, portanto, dist[v] = dist[v'] + 1. Como dist[v'] = d 1 < d, tem-se, pela hipótese, $dist[v'] = \delta(s, v')$. Logo, $dist[v] = \delta(s, v') + 1 = \delta(s, v)$.

Outubro 2017

Proposição: Se v é acessível de s em G=(V,E) então $dist[v]=\delta(s,v)$, onde $\delta(s,v)$ é o número de ramos do caminho mais curto s para v, para todo $v\neq s$.

Prova (por indução forte sobre a distância d):

- Caso de Base: Se $\delta(s, v) = 1$ então $(s, v) \in E$ e dist[v] = 1, pois s visita todos os seus adjacentes.
- Hereditariedade
 - Suponhamos agora, como hipótese de indução, que para todo o u tal que dist[u] < d se tem $dist[u] = \delta(s, u)$.
 - Seja v tal que dist[v] = d. De todos os caminhos mínimos de s para v, tomamos aquele em que o nó v' que **precede imediatamente** v foi o primeiro a ser visitado no algoritmo. Seja $\gamma = s \leadsto v' \to v$ tal caminho. Tem-se $(v',v) \in E$ e $\delta(s,v) = \delta(s,v') + 1$.
 - Quando v' sai da fila, v está por visitar. Se não, $dist[v] \leq dist[v']$.
 - Logo, v' visita v e, portanto, dist[v] = dist[v'] + 1. Como dist[v'] = d 1 < d, tem-se, pela hipótese, $dist[v'] = \delta(s, v')$. Logo $dist[v] = \delta(s, v') + 1 = \delta(s, v)$.

Proposição: Se v é acessível de s em G = (V, E) então $dist[v] = \delta(s, v)$, onde $\delta(s, v)$ é o número de ramos do caminho mais curto s para v, para todo $v \neq s$.

Prova (por indução forte sobre a distância d):

- Caso de Base: Se $\delta(s, v) = 1$ então $(s, v) \in E$ e dist[v] = 1, pois s visita todos os seus adjacentes.
- Hereditariedade
 - Suponhamos agora, como hipótese de indução, que para todo o u tal que dist[u] < d se tem $dist[u] = \delta(s, u)$.
 - Seja v tal que dist[v]=d. De todos os caminhos mínimos de s para v, tomamos aquele em que o nó v' que **precede imediatamente** v foi o primeiro a ser visitado no algoritmo. Seja $\gamma=s\leadsto v'\to v$ tal caminho. Tem-se $(v',v)\in E$ e $\delta(s,v)=\delta(s,v')+1$.
 - Quando v' sai da fila, v está por visitar. Se não, $dist[v] \leq dist[v']$.
 - Logo, v' visita v e, portanto, dist[v] = dist[v'] + 1. Como dist[v'] = d 1 < d, tem-se, pela hipótese, $dist[v'] = \delta(s, v')$. Logo $dist[v] = \delta(s, v') + 1 = \delta(s, v)$.

Proposição: Se v é acessível de s em G = (V, E) então $dist[v] = \delta(s, v)$, onde $\delta(s, v)$ é o número de ramos do caminho mais curto s para v, para todo $v \neq s$.

Prova (por indução forte sobre a distância d):

- Caso de Base: Se $\delta(s, v) = 1$ então $(s, v) \in E$ e dist[v] = 1, pois s visita todos os seus adjacentes.
- Hereditariedade
 - Suponhamos agora, como hipótese de indução, que para todo o u tal que dist[u] < d se tem $dist[u] = \delta(s, u)$.
 - Seja v tal que dist[v] = d. De todos os caminhos mínimos de s para v, tomamos aquele em que o nó v' que precede imediatamente v foi o primeiro a ser visitado no algoritmo. Seja $\gamma = s \rightsquigarrow v' \rightarrow v$ tal caminho. Tem-se $(v', v) \in E$ e $\delta(s, v) = \delta(s, v') + 1$.
 - Quando v' sai da fila, v está por visitar. Se não, $dist[v] \leq dist[v']$.
 - Logo, v' visita v e, portanto, dist[v] = dist[v'] + 1. Como dist[v'] = d - 1 < d, tem-se, pela hipótese, $dist[v'] = \delta(s, v')$. Logo, $dist[v] = \delta(s, v') + 1 = \delta(s, v).$

Obter as componentes conexas de um grafo não dirigido

- Em BFS(G), o valor de pai[v] identifica o primeiro nó que descobriu v durante a procura.
- No fim, o vetor pai[.] define uma floresta de árvores pesquisa em largura.
- Por análise para trás a partir de v, podemos localizar a raíz da árvore de pesquisa em largura a que v pertence (podendo esta ser v se pai[v] = NULL).
- Para grafos não dirigidos, essa árvore define a componente conexa a que v pertence. Se G for conexo, a floresta reduz-se a uma árvore, à qual pertencem todos os vértices de G.

Obter as componentes conexas de um grafo não dirigido

Proposição Se G for um grafo não dirigido, cada árvore da floresta obtida por BFS(G) identifica uma componente conexa do grafo.

Ideia da prova:

- G pode ser representado por um grafo dirigido simétrico G' (que designamos por adjunto de G)
- Os vértices que constituem a árvore a que w pertence não dependem do nó raíz (embora a estrutura da árvore possa ser diferente os vértices são os mesmos).
- Na chamada de BFS(v, G, Q) no segundo ciclo de BFS(G), serão visitados todos os vértices acessíveis de v em G.
- Como o grafo adjunto de G é simétrico, se algum w acessível de v tivesse sido visitado numa chamada anterior, então também v teria de ter sido marcado como visitado por algum dos descendentes de w.

Ordenação topológica dos nós de um DAG

Dado um **grafo dirigido acíclico** G=(V,A) finito, determinar uma função bijectiva σ de V em $\{0\ldots,|V|-1\}$ tal que $\sigma(v)<\sigma(w)$, para todo $(v,w)\in A$. Ou seja, σ atribui um número distinto a cada nó e satisfaz a condição indicada.

```
Para todo v \in G.V fazer GrauE[v] \leftarrow 0;

Para todo (v,w) \in G.A fazer GrauE[w] \leftarrow GrauE[w] + 1;

S \leftarrow \{v \in G.V \mid GrauE[v] = 0\}; /* S deve ser suportado por uma fila ou uma pilha. */i \leftarrow 0;

Enquanto (S \neq \emptyset) fazer v \leftarrow um qualquer elemento de S; S \leftarrow S \setminus \{v\}; sigma[v] \leftarrow i; i \leftarrow i + 1;

Para todo w \in G.Adjs[v] fazer GrauE[w] \leftarrow GrauE[w] - 1;

Se GrauE[w] = 0 então S \leftarrow S \cup \{w\};
```

Recordar que: qualquer DAG tem sempre algum vértice com grau de entrada zero.

Justificar que: se G não for um DAG, o ciclo "Enquanto" termina sempre mas com i < n em vez de i = n.

Ordenação topológica dos nós de um DAG

Dado um **grafo dirigido acíclico** G=(V,A) finito, determinar uma função bijectiva σ de V em $\{0\ldots,|V|-1\}$ tal que $\sigma(v)<\sigma(w)$, para todo $(v,w)\in A$. Ou seja, σ atribui um número distinto a cada nó e satisfaz a condição indicada.

```
Para todo v \in G.V fazer GrauE[v] \leftarrow 0;

Para todo (v,w) \in G.A fazer GrauE[w] \leftarrow GrauE[w] + 1;

S \leftarrow \{v \in G.V \mid GrauE[v] = 0\}; /* S deve ser suportado por uma fila ou uma pilha. */ i \leftarrow 0;

Enquanto (S \neq \emptyset) fazer v \leftarrow um qualquer elemento de S; S \leftarrow S \setminus \{v\}; sigma[v] \leftarrow i; i \leftarrow i + 1;

Para todo w \in G.Adjs[v] fazer GrauE[w] \leftarrow GrauE[w] - 1;

Se GrauE[w] = 0 então S \leftarrow S \cup \{w\};
```

Recordar que: qualquer DAG tem sempre algum vértice com grau de entrada zero.

Justificar que: se G não for um DAG, o ciclo "Enquanto" termina sempre mas com i < n em vez de i = n.

Caminho máximo num DAG

Determinar um caminho de comprimento máximo num grafo dirigido acíclico G = (V, A), sendo o comprimento dado pelo número de ramos do caminho.

```
Para todo v \in G.V fazer ES[v] \leftarrow 0; Prec[v] \leftarrow Nenhum; GrauE[v] \leftarrow 0;
Para todo (v, w) \in G.A fazer GrauE[w] \leftarrow GrauE[w] + 1;
S \leftarrow \{v \in G.V \mid GrauE[v] = 0\}; \ \ /*\ S deve ser suportado por uma fila ou uma pilha. */
Max \leftarrow -1: v_f \leftarrow Nenhum:
Enquanto (S \neq \emptyset) fazer
    v \leftarrow \text{um qualquer elemento de } S:
    S \leftarrow S \setminus \{v\}:
    Se Max < ES[v] então Max \leftarrow ES[v]; v_f \leftarrow v;
                                                                      /* ES[v] é o número de ramos do caminho */
    Para todo w \in G.Adjs[v] fazer
        Se ES[w] < ES[v] + 1 então
            ES[w] \leftarrow ES[v] + 1; Prec[w] \leftarrow v;
         GrauE[w] \leftarrow GrauE[w] - 1;
        Se GrauE[w] = 0 então S \leftarrow S \cup \{w\}:
ESCREVECAMINHO(v_f, Prec); escrever(Max);
```

Escrever um caminho dado $Prec[\cdot]$ e o vértice final

Abordagem recursiva para escrever o caminho encontrado, sendo dados $Prec[\cdot]$ e o vértice v que é o último nesse caminho:

```
ESCREVECAMINHO(v, Prec)

Se Prec[v] \neq Nenhum então

ESCREVECAMINHO(Prec[v], Prec);
escrever(v);
```

Caminho máximo num DAG com pesos associados aos nós

Problema de escalonamento de tarefas: Um projeto é constituído por um conjunto de tarefas, sendo conhecida a duração de cada tarefa e as restrições de precedência entre tarefas. Não se pode dar início a uma tarefa sem que as que a precedem estejam concluídas. Pretende-se agendar as tarefas de modo a concluir o projeto o mais cedo possível. Dado G = (V, A, D) em que $D(v) \in \mathbb{R}_0^+$ é a duração da tarefa $v \in V$, obter MAX e agendar v o mais cedo possível (ES designa "earliest start").

```
Para todo v \in G.V fazer ES[v] \leftarrow 0; Prec[v] \leftarrow Nenhum; GrauE[v] \leftarrow 0;
Para todo (v, w) \in G.A fazer GrauE[w] \leftarrow GrauE[w] + 1;
S \leftarrow \{v \in G.V \mid GrauE[v] = 0\}; \ /* S deve ser suportado por uma fila ou uma pilha. */
Max \leftarrow -1: v_f \leftarrow Nenhum:
Enquanto (S \neq \emptyset) fazer
     v \leftarrow \text{um qualquer elemento de } S; S \leftarrow S \setminus \{v\};
    Se Max < ES[v] + D[v] então Max \leftarrow ES[v] + D[v]; v_f \leftarrow v;
    Para todo w \in G.Adjs[v] fazer
        Se ES[w] < ES[v] + D[v] então
            ES[w] \leftarrow ES[v] + D[v]: Prec[w] \leftarrow v:
         GrauE[w] \leftarrow GrauE[w] - 1;
        Se GrauE[w] = 0 então S \leftarrow S \cup \{w\}:
ESCREVECAMINHO(v_f, Prec); escrever(Max);
```

Visita grafo G = (V, A) em profundidade

```
DFS(G)
     instante \leftarrow 0:
     Para cada v \in G.V fazer cor[v] \leftarrow branco; Prec[v] \leftarrow Nenhum;
     Para cada v \in G.V fazer
         Se cor[v] = branco então DFS_VISIT(v, G);
DFS_VISIT(v, G)
     /* Vértices por visitar ainda a branco */
     instante \leftarrow instante + 1:
     t_{inicial}[v] \leftarrow instante;
     cor[v] \leftarrow cinzento; // cor útil para detetar ciclos
     Para cada w \in G.Adjs[v] fazer
         Se cor[w] = branco então
             Prec[w] \leftarrow v;
             DFS_Visit(w, G);
     cor[v] \leftarrow preto;
     instante \leftarrow instante + 1:
     t_{\text{-}} final [v] \leftarrow instante;
```

Visita grafo G = (V, A) em profundidade (outra versão)

Versão simplificada e adaptada para que DFS retorne stack com os nós ordenados por ordem decrescente de tempo de finalização

```
DFS(G)
    stack \leftarrow MK\_EMPTY\_STACK():
    Para cada v \in G.V fazer
         visitado[v] \leftarrow false;
    Para cada v \in G.V fazer
         Se visitado[v] = false então
            DFS_VISIT(v, G, visitado, stack);
    return stack:
DFS_VISIT(v, G, visitado, Stack)
    visitado[v] \leftarrow true;
    Para cada w \in G.Adjs[v] fazer
         Se visitado[w] = false então
            DFS_VISIT(w, G, visitado, stack);
    Push(v, Stack):
```

Ordenação topológica por pesquisa em profundidade

```
TopSort_DFS(G)
     Stack \leftarrow \{\}; // definir stack vazia
    Para cada v \in G.V fazer cor[v] \leftarrow branco;
     Para cada v \in G.V fazer
         Se cor[v] = branco então TopSort_DFSVISIT(v, G);
    /* Enquanto (S \neq \{\}) fazer escrever(Pop()); */
    i \leftarrow 0:
    Enquanto (S \neq \{\}) fazer
         sigma[Pop()] \leftarrow i; /* como anteriormente */
         i \leftarrow i + 1:
TopSort_DFSVisit(v, G)
     cor[v] \leftarrow cinzento;
    Para cada w \in G.Adjs[v] fazer
         Se cor[w] = branco então
            TopSort_DFSVisit(w, G);
         senão se cor[w] = cinzento então // retirar se sabe que G \in DAG
            Termina com indicação de erro (G não é DAG); // retirar se sabe que G é DAG
     cor[v] \leftarrow preto;
     Push(v);
```

Componentes fortemente conexas

Algoritmo de Kosaraju-Sharir

```
Usar DFS(G) para obter pilha S com os nós por ordem decrescente de t_{-}final[\cdot]
Para v \in G.V fazer cor[v] \leftarrow branco;
Enquanto (S \neq \{\}) fazer
    v \leftarrow POP(S);
    Se cor[v] = branco então DFS_VISIT(v, G^T) e indica os nós visitados;
```

 $G^T = (V, A^T)$ denota o **grafo transposto** de G = (V, A), obtém-se de G se se trocar o sentido dos arcos, sendo, $A^T = \{(y, x) \mid (x, y) \in A\}.$

Complexidade temporal do algoritmo de Kosaraju-Sharir

O algoritmo de Kosajaru-Sharir tem complexidade $\Theta(|V| + |A|)$, (ou seja, linear na estrutura do grafo), se o grafo for representado por listas de adjacências.

Correção do Algoritmo Kosaraju-Sharir

 O grafo das componentes fortemente conexas G_{scc} de um grafo dirigido é um grafo dirigido acíclico (DAG).

 G_{SCC} : os nós correspondem às componentes fortemente conexas de G e os ramos são os pares (C,C') tais que $C \neq C'$ e existe algum ramo de algum nó de C para algum nó de C' em G.

Se G_{scc} não fosse acíclico, quaisquer dois nós x e y que estivessem em componentes C_x e C_y (distintas) envolvidas num ciclo seriam acessíveis um do outro em G. Isso é absurdo, pois contradiz a noção de componente fortemente conexa.

- As componentes fortemente conexas de G e G^T têm os mesmos nós. Qualquer percurso de x para y em G é um percurso de y para x em G^T (e vice-versa).
- Uma ordenação topológica das componentes de G corresponde a uma ordenação topológica por ordem inversa (da cronológica) para as componentes de G^T. O DAG de componentes de G^T é o transposto do DAG de componentes de G.
- A ordem dada por S para visita de G^T faz com que as componentes acessíveis de uma dada componente já estejam visitadas quando entra nessa componente.

Componentes fortemente conexas (exemplo)

Componentes fortemente conexas

Pilha

DAG componentes em G^T $C_2 \longleftarrow C_3 \longleftarrow C_4$ $\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$ $C_5 \qquad C_1$

Árvores geradoras com peso mínimo/máximo

Exemplo

Uma companhia de distribuição de gás natural pretende construir uma rede que assegure a distribuição a um certo número de locais a partir de um dado local. Dados os custos da ligação entre cada par de locais, há que determinar as ligações a efetuar de modo a reduzir os custos globais.

Resolução

- As árvores são os grafos não dirigidos conexos com menos ramos.
- Determinar uma árvore geradora de peso mínimo (minimum spanning tree) num grafo G = (V, E, d) não dirigido, finito e conexo com valores associados aos ramos, em que $d : E \to \mathbb{R}^+_0$ indica o valor associado a cada ramo.
- Designação alternativa: árvore de suporte de peso mínimo/máximo.
- Algoritmos de Prim (1957) e de Kruskal (1956).
 Baseiam-se em estratégias "greedy" (gulosas, ávidas, gananciosas).

Em cada iteração, a seleção localmente ótima. Não haverá retrocesso para analisar outras possibilidades.

Algoritmo de Kruskal [1956] - minimum spanning tree

- ullet São escolhidos sucessivamente os |V|-1 ramos da árvore de suporte;
- os ramos são analisados por ordem crescente de valores de peso, e
- o ramo corrente só não fará parte da árvore de suporte se o grafo resultante da sua junção à floresta construída até esse passo ficar com um ciclo.

Algoritmo de Kruskal - pseudocódigo

Dados: Um grafo G = (V, E, d) não dirigido, conexo, com valores nos ramos.

Resultado: O conjunto de ramos T na árvore mínima de suporte de G.

Ordenar E por ordem crescente de valores nos ramos.

$$T \leftarrow \emptyset$$
; $C \leftarrow \{\{v\} \mid v \in V\}$;

Enquanto
$$|T| \neq |V| - 1$$
 fazer

Seja $\langle u, v \rangle \in E$ o primeiro ramo não escolhido (na ordem considerada).

Sejam C_u e C_v os elementos de C tais que $u \in C_u$ e $v \in C_v$.

Se
$$C_u \neq C_v$$
 então $T \leftarrow T \cup \{\langle u, v \rangle\}; \ \mathcal{C} \leftarrow (\mathcal{C} \setminus \{C_u, C_v\}) \cup \{C_u \cup C_v\};$

Algoritmo de Kruskal - pseudocódigo

[CLRS 23.2]

 $MST_KRUSKAL(G, w)$

```
T \leftarrow \emptyset
Para cada vértice v \in G.V

MAKE_SET(v)
Ordenar as arestas de G.E por ordem não decrescente de peso w
Para cada aresta (u,v) \in G.E (por ordem não decrescente de peso) fazer
Se FIND_SET(u) \neq FIND_SET(v)
T \leftarrow T \cup \{(u,v)\}
UNION(u,v)
```

Algoritmo de Kruskal - pseudocódigo

 $T \leftarrow T \cup \{\langle u, v \rangle\}$: UNION(u, v, C);

Árvore geradora com peso mínimo:

```
ALGORITMOKRUSKAL(G)
      Q \leftarrow \text{Fila que representa } E \text{ por ordem crescente de valores nos ramos};
   2. T \leftarrow \emptyset:
   3. \mathcal{C} \leftarrow \text{Init\_Singletons}(V);
      Enquanto (|T| \neq |V| - 1 \land QUEUEISEMPTY(Q) = false) fazer
   5.
                \langle u, v \rangle \leftarrow \text{DEQUEUE}(Q):
```

Se $FINDSET(u, C) \neq FINDSET(v, C)$ então

A condição QUEUEISEMPTY(Q) = false é redundante se o grafo for conexo. Contudo, permite que o algoritmo possa ser aplicado a um grafo não conexo para obter a floresta de árvores geradoras mínimas das suas componentes conexas.

Árvore geradora com peso máximo: obtém-se por aplicação do algoritmo se se ordenar os ramos por ordem decrescente de peso inicialmente.

6.

Algoritmo de Prim [1957] - Minimum spanning tree

- São escolhidos sucessivamente os |V| vértices da árvore;
- em cada passo, é ligado, à sub-árvore já construída, o vértice que está mais próximo dos já nela incluídos.
- O primeiro vértice pode ser qualquer um dos vértices do grafo.

Árvore geradora com peso máximo: obtém-se por aplicação do algoritmo se em cada iteração se ligar o nó **mais afastado** dos que já estão na árvore (na implementação, usa *"heap de máximo"*).

Algoritmo de Prim - pseudocódigo

```
ALGORITMOPRIM(G, s) // [CLRS 23.2]
 Para cada v \in V fazer \{ pai[v] \leftarrow \text{NULL}; dist[u] \leftarrow \infty; ok[v] \leftarrow \text{false}; \}
                                                                                                 \Theta(|V|)
 dist[s] \leftarrow 0;
                                                                                                 O(1)
 Q \leftarrow \text{Mk\_PQ\_Heapmin}(dist, |V|);
                                                                                                 \Theta(|V|)
 T \leftarrow \{\}:
                                                                                                 O(1)
 Enquanto (PQ_NOT_EMPTY(Q)) fazer
     v \leftarrow \text{EXTRACTMIN}(Q);
                                                                                                 O(\log_2 |V|)
     T \leftarrow T \cup \{(pai[v], v)\}; ok[v] \leftarrow true; /* ok[v] indica se v já está em <math>T^*/
                                                                                                 O(1)
     Para cada w \in Adjs[v] fazer
        Se ok[w] = false e d(v, w) < dist[w] então
                                                                                                 O(1)
          dist[w] \leftarrow d(v, w);
                                                                                                 O(1)
          pai[w] \leftarrow v;
                                                                                                 O(1)
          DECREASEKEY(Q, w, dist[w]);
                                                                                                 O(\log_2 |V|)
```

NB: Apenas as distâncias dos nós que estão na fila podem ser alteradas

Complexidade Temporal $O(|E| \log |V|)$, se for suportado por uma heap de mínimo. Como G é conexo, $|E| \ge |V| - 1$. O ciclo "Enquanto" domina a complexidade, sendo:

$$O(\sum_{v \in V} (1 + \log_2 |V| + |Adjs[v]| \log_2 |V|)) = O(|V| \log_2 |V| + |E| \log_2 |V|) = O(|E| \log_2 |V|)$$

Algoritmo de Prim - pseudocódigo

```
ALGORITMOPRIM(G, s) // [CLRS 23.2]
 Para cada v \in V fazer \{ pai[v] \leftarrow \text{NULL}; dist[u] \leftarrow \infty; ok[v] \leftarrow \text{false}; \}
                                                                                                 \Theta(|V|)
 dist[s] \leftarrow 0;
                                                                                                 O(1)
 Q \leftarrow \text{MK\_PQ\_HEAPMIN}(dist, |V|);
                                                                                                 \Theta(|V|)
 T \leftarrow \{\}:
                                                                                                 O(1)
 Enquanto (PQ_NOT_EMPTY(Q)) fazer
     v \leftarrow \text{EXTRACTMIN}(Q);
                                                                                                 O(\log_2 |V|)
     T \leftarrow T \cup \{(pai[v], v)\}; ok[v] \leftarrow true; /* ok[v] indica se v já está em <math>T */
                                                                                                 O(1)
     Para cada w \in Adjs[v] fazer
        Se ok[w] = false e d(v, w) < dist[w] então
                                                                                                 O(1)
          dist[w] \leftarrow d(v, w);
                                                                                                 O(1)
          pai[w] \leftarrow v;
                                                                                                 O(1)
          DECREASEKEY(Q, w, dist[w]);
                                                                                                 O(\log_2 |V|)
```

NB: Apenas as distâncias dos nós que estão na fila podem ser alteradas

Complexidade Temporal $O(|E| \log |V|)$, se for suportado por uma heap de mínimo. Como G é conexo, $|E| \ge |V| - 1$. O ciclo "Enquanto" domina a complexidade, sendo:

$$O(\sum_{v \in V} (1 + \log_2 |V| + |Adjs[v]| \log_2 |V|)) = O(|V| \log_2 |V| + |E| \log_2 |V|) = O(|E| \log_2 |V|)$$

Algoritmo de Prim - pseudocódigo

```
ALGORITMOPRIM(G, s) // [CLRS 23.2]
 Para cada v \in V fazer \{pai[v] \leftarrow \text{NULL}; dist[u] \leftarrow \infty; ok[v] \leftarrow \text{false}; \}
                                                                                                 \Theta(|V|)
 dist[s] \leftarrow 0;
                                                                                                 O(1)
 Q \leftarrow \text{MK\_PQ\_HEAPMIN}(dist, |V|);
                                                                                                 \Theta(|V|)
 T \leftarrow \{\}:
                                                                                                 O(1)
 Enquanto (PQ_NOT_EMPTY(Q)) fazer
     v \leftarrow \text{EXTRACTMIN}(Q);
                                                                                                 O(\log_2 |V|)
     T \leftarrow T \cup \{(pai[v], v)\}; ok[v] \leftarrow true; /* ok[v] indica se v já está em <math>T */
                                                                                                 O(1)
     Para cada w \in Adjs[v] fazer
        Se ok[w] = false e d(v, w) < dist[w] então
                                                                                                 O(1)
          dist[w] \leftarrow d(v, w);
                                                                                                 O(1)
          pai[w] \leftarrow v:
                                                                                                 O(1)
          DECREASEKEY(Q, w, dist[w]);
                                                                                                 O(\log_2 |V|)
```

NB: Apenas as distâncias dos nós que estão na fila podem ser alteradas

Complexidade Temporal $O(|E| \log |V|)$, se for suportado por uma heap de mínimo. Como G é conexo, $|E| \ge |V| - 1$. O ciclo "Enquanto" domina a complexidade, sendo:

$$O(\sum_{v \in V} (1 + \log_2 |V| + |Adjs[v]| \log_2 |V|)) = O(|V| \log_2 |V| + |E| \log_2 |V|) = O(|E| \log_2 |V|)$$

Correção dos algoritmos de Prim e Kruskal

A correção dos algoritmos descritos resulta da propriedade seguinte

Propriedade das árvores geradoras de peso mínimo

Seja T uma árvore geradora mínima de um grafo G=(V,E,d) não dirigido e conexo. Para toda a partição $\{V_1,V_2\}$ do conjunto de vértices V, a árvore T tem algum ramo $\langle v_1,v_2\rangle$ tal que $v_1\in V_1,\ v_2\in V_2$, e $d(v_1,v_2)=\min\{d(x,y)\mid x\in V_1,y\in V_2,\langle x,y\rangle\in E\}$.

```
Prova: (por redução ao absurdo) Seja T uma árvore geradora mínima de G e suponhamos que \{V_1, V_2\} é uma partição de V tal que T não contém nenhum ramo \langle v_1, v_2 \rangle com d(v_1, v_2) = \min\{d(x, y) \mid x \in V_1, y \in V_2, \langle x, y \rangle \in E\}, v_1 \in V_1 e v_2 \in V_2. Seja \langle v_1, v_2 \rangle um tal ramo. Como T é uma árvore geradora de G, existe um e um só caminho entre v_1 e v_2 em T. Esse caminho tem que ter algum ramo \langle x, y \rangle com x \in V_1 e y \in V_2, pois, caso contrário, os nós em V_1 (respectivamente, em V_2) só estariam ligados em T a nós em V_1 (respectivamente, em V_2), e a árvore T não seria conexa (o que é absurdo). Note-se que é possível que ou x = v_1 ou y = v_2. Pela hipótese inicial, d(x, y) > d(v_1, v_2). Por outro lado, se substituirmos \langle x, y \rangle em T por \langle v_1, v_2 \rangle, o grafo resultante ainda é uma árvore geradora de G e tem "peso" menor do que a árvore T, o que contradiz o facto de T ser mínima. Portanto, a árvore T tem de ter algum dos ramos de menor peso nesse corte (por definição, o corte determinado pela partição \{V_1, V_2\} de V é o conjunto de ramos que ligam vértices de V_1 a vértices de V_2).
```

Correção dos algoritmos de Prim e Kruskal

A correção dos algoritmos descritos resulta da propriedade seguinte

Propriedade das árvores geradoras de peso mínimo

Seja T uma árvore geradora mínima de um grafo G = (V, E, d) não dirigido e conexo. Para toda a partição $\{V_1, V_2\}$ do conjunto de vértices V, a árvore T tem algum ramo (v_1, v_2) tal que $v_1 \in V_1$, $v_2 \in V_2$, e $d(v_1, v_2) = \min\{d(x, y) \mid x \in V_1, y \in V_2, \langle x, y \rangle \in E\}$.

Prova: (por reducão ao absurdo) Seja T uma árvore geradora mínima de G e suponhamos que $\{V_1, V_2\}$ é uma partição de V tal que T não contém nenhum ramo $\langle v_1, v_2 \rangle$ com $d(v_1, v_2) = \min\{d(x, y) \mid x \in V_1, y \in V_2, \langle x, y \rangle \in E\}$, $v_1 \in V_1$ e $v_2 \in V_2$. Seja (v_1, v_2) um tal ramo. Como T é uma árvore geradora de G, existe um e um só caminho entre v_1 e v_2 em T. Esse caminho tem que ter algum ramo $\langle x,y\rangle$ com $x\in V_1$ e $y\in V_2$, pois, caso contrário, os nós em V_1 (respectivamente, em V_2) só estariam ligados em T a nós em V_1 (respectivamente, em V_2), e a árvore T não seria conexa (o que é absurdo). Note-se que é possível que ou $x = v_1$ ou $y = v_2$. Pela hipótese inicial, $d(x, y) > d(v_1, v_2)$. Por outro lado, se substituirmos $\langle x, y \rangle$ em T por $\langle v_1, v_2 \rangle$, o grafo resultante ainda é uma árvore geradora de G e tem "peso" menor do que a árvore T, o que contradiz o facto de T ser mínima. Portanto, a árvore T tem de ter algum dos ramos de menor peso nesse corte (por definição, o corte determinado pela partição $\{V_1, V_2\}$ de V é o conjunto de ramos que ligam vértices de V_1 a vértices de V_2).

Correção dos algoritmos de Kruskal e de Prim

Da propriedade anterior conclui-se que:

- no algoritmo de Prim, é seguro ligar o vértice v à sub-árvore já construída. Em cada iteração do ciclo "Enquanto", V_1 seria o conjunto dos vértices que já estão na sub-árvore e V_2 seria o conjunto dos restantes.
 - Para cada $v \in V_2$, o valor de dist[v] é o custo dos ramos mais leves com extremidade em v e que estão no corte definido por $\{V_1, V_2\}$. Este invariante é preservado pelo ciclo.
- no algoritmo de Kruskal, quando $\langle u, v \rangle$ é escolhido para ligar duas componentes, se tomarmos V_1 como os nós da componente que contém u e V_2 como os restantes nós, podemos concluir que $\langle u, v \rangle$ é seguro.
 - Alguma árvore geradora mínima contém $\langle u, v \rangle$, pois este ramo tem peso mínimo no corte definido por $\{V_1, V_2\}$.

Caminhos mínimos em grafos com pesos positivos

Seja G = (V, E, d) um grafo dirigido, finito e com pesos (*distâncias* ou *valores*) positivos associados aos ramos, d(u, v) > 0, para todo $(u, v) \in E$.

- A distância associada a um percurso de u para v é a soma das distâncias associadas aos ramos que constituem o percurso.
- Assumimos que a distância mínima de um nó do grafo a si mesmo é zero.

Dependendo da aplicação, podemos querer encontrar um:

- caminho mínimo de s para t, para um par $(s,t) \in V \times V$, com $s \neq t$;
- caminho mínimo de s para cada um dos outros nós, para $s \in V$ fixo;
- caminho mínimo de s para t, para todos os pares $(s,t) \in V \times V$, $s \neq t$.

Algoritmo de Dijkstra (1959)

Restrição de aplicabilidade: Os valores nos ramos têm de ser positivos.

Caminhos mínimos a partir de um nó origem s:

```
AlgoritmoDijkstra(G, s)
            Para cada v \in G.V fazer \{pai[v] \leftarrow \text{NULL}; dist[v] \leftarrow \infty;\}
      2.
            dist[s] \leftarrow 0;
            Q \leftarrow \text{MK-PQ-HEAPMIN}(dist, G.V);
      4.
            Enquanto (PQ_Not_Empty(Q)) fazer
      5.
                  v \leftarrow \text{EXTRACTMIN}(Q);
      6.
                 Para cada w \in G.Adjs[v] fazer
      7.
                      Se dist[v] + G.d(v, w) < dist[w] então
      8.
                           dist[w] \leftarrow dist[v] + G.d(v, w);
      9.
                           pai[w] \leftarrow v;
     10.
                           DECREASEKEY(Q, w, dist[w]);
```

Melhoramento: Sair se $dist[v] = \infty$ na linha 5. (pois não há caminho de s os nós em $Q \cup \{v\}$)

Caminho mínimo de s para t, com s e t fixos: sair quando t é extraído de Q,

Algoritmo de Dijkstra (1959)

Restrição de aplicabilidade: Os valores nos ramos têm de ser positivos.

Caminhos mínimos a partir de um nó origem s:

```
AlgoritmoDijkstra(G, s)
            Para cada v \in G.V fazer \{pai[v] \leftarrow \text{NULL}; dist[v] \leftarrow \infty;\}
      2.
           dist[s] \leftarrow 0;
      3. Q \leftarrow \text{MK\_PQ\_HEAPMIN}(dist, G.V);
      4.
            Enquanto (PQ_Not_Empty(Q)) fazer
      5.
                  v \leftarrow \text{EXTRACTMIN}(Q);
      6.
                 Para cada w \in G.Adjs[v] fazer
      7.
                      Se dist[v] + G.d(v, w) < dist[w] então
      8.
                           dist[w] \leftarrow dist[v] + G.d(v, w);
      9.
                           pai[w] \leftarrow v;
     10.
                           DECREASEKEY(Q, w, dist[w]);
```

Melhoramento: Sair se $dist[v] = \infty$ na linha 5. (pois não há caminho de s os nós em $Q \cup \{v\}$)

Caminho mínimo de s **para** t, **com** s **e** t **fixos**: sair quando t é extraído de Q, colocando Se (v = t) então retornar; entre as linhas 5 e 6.

Complexidade temporal do algoritmo de Dijkstra

```
ALGORITMODLIKSTRA(G, s)

1. Para cada v \in G.V fazer \{pai[v] \leftarrow \text{NULL}; dist[v] \leftarrow \infty;\}

2. dist[s] \leftarrow 0;

3. Q \leftarrow \text{MK.PQ.HEAPMIN}(dist, G.V);

4. Enquanto (\text{PQ.NOT.EMPTY}(Q)) fazer

5. v \leftarrow \text{EXTRACTMIN}(Q);

6. Para cada w \in G.Adjs[v] fazer

7. Se dist[v] + G.d(v, w) < dist[w] então

8. dist[w] \leftarrow dist[v] + G.d(v, w);

9. pai[w] \leftarrow v;

10. DecreaseKey(Q, w, dist[w]);
```

Se G for dado por **listas de adjacências** e a fila de prioridade Q for suportada por uma **heap de mínimo**, tem complexidade temporal $O((|V| + |E|) \log_2 |V|)$, pois é dominada pelo ciclo "Enquanto":

$$O(\sum_{v \in V} (1 + \log_2 |V| + |Adjs[v]| \log_2 |V|)) = O((|V| + |E|) \log_2 |V|).$$

Mantemos a expressão assim pois não sabemos qual é a ordem de grandeza de |E| relativamente a |V|.

Árvores de peso mínimo / Árvores de caminhos mínimos

O algoritmo de Dijkstra pode ser aplicado a grafos G = (V, E, d) não dirigidos (que podem ser vistos como grafos dirigidos simétricos). Quando G é conexo, a árvore dos caminhos mínimos com origem em s contém todos os nós mas nem sempre é uma árvore geradora mínima de G. Consequentemente,

o algoritmo de Prim **não pode ser usado** para determinar os caminhos mínimos com origem em s.

Prova de correção do algoritmo de Dijkstra

Usamos $\delta(s, v)$ para denotar **a distância mínima** de s a v em G, para $v \in V$.

- O algoritmo de Dijkstra mantém o invariante seguinte, para $k \ge 1$. No final da iteração k do ciclo "Enquanto", seja \mathcal{Q}_k o conjunto de nós que estão na fila Q e $\mathcal{M}_k = V \setminus \mathcal{Q}_k$ o conjunto de nós que já sairam de Q. Tem-se:
 - **1** $dist[r] = \delta(s, r)$, para todo $r \in \mathcal{M}_k$;
 - ② dist[r] é a distância mínima de s a r em G se os percursos só puderem passar por vértices de $\mathcal{M}_k \cup \{r\}$, para todo $r \in \mathcal{Q}_k$.

Prova (por indução sobre $k \ge 1$)

(Caso de base) Para k=1, o nó que sai de Q (linha 5) é s e, no bloco 6-10, dist é atualizado, ficando dist[w]=d(s,w), para todo $w\in Adjs[s]$ (e mantém $dist[r]=\infty$ para os restantes $r\neq s$). Logo, as condições 1. e 2. verificam-se, já que, $\mathcal{M}_1=\{s\}$, $dist[s]=0=\delta(s,s)$, por definição, e para $r\in Q_1=V\setminus\{s\}$, o caminho mínimo de s para r que só pode passar por $M_1\cup\{r\}=\{s,r\}$ é dado por (s,r) ou não existe, para $r\in V\setminus\{s\}$.

Prova de correção do algoritmo de Dijkstra

Usamos $\delta(s, v)$ para denotar **a distância mínima** de s a v em G, para $v \in V$.

- O algoritmo de Dijkstra mantém o invariante seguinte, para $k \ge 1$. No final da iteração k do ciclo "Enquanto", seja \mathcal{Q}_k o conjunto de nós que estão na fila Q e $\mathcal{M}_k = V \setminus \mathcal{Q}_k$ o conjunto de nós que já sairam de Q. Tem-se:
 - **1** $dist[r] = \delta(s, r)$, para todo $r \in \mathcal{M}_k$;
 - ② dist[r] é a distância mínima de s a r em G se os percursos só puderem passar por vértices de $\mathcal{M}_k \cup \{r\}$, para todo $r \in \mathcal{Q}_k$.

Prova (por indução sobre $k \ge 1$):

(Caso de base) Para k=1, o nó que sai de Q (linha 5) é s e, no bloco 6-10, dist é atualizado, ficando dist[w]=d(s,w), para todo $w\in Adjs[s]$ (e mantém $dist[r]=\infty$ para os restantes $r\neq s$). Logo, as condições 1. e 2. verificam-se, já que, $\mathcal{M}_1=\{s\}$, $dist[s]=0=\delta(s,s)$, por definição, e para $r\in Q_1=V\setminus\{s\}$, o caminho mínimo de s para r que só pode passar por $M_1\cup\{r\}=\{s,r\}$ é dado por (s,r) ou não existe, para $r\in V\setminus\{s\}$.

Prova de correção do algoritmo de Dijkstra (cont.)

(cont.) Prova (por indução sobre $k \ge 1$):

(*Hereditariedade*) Suponhamos, como hipótese de indução, que o invariante se verifica no final da iteração k, para $k \geq 1$ fixo, e que $\mathcal{M}_k \neq V$, ou seja, $Q \neq \{\}$. Vamos mostrar que então o invariante se verifica no final da iteração k+1.

Iremos analisar os dois casos seguintes:

- (Caso A) não existem vértices em Q_k acessíveis de s
- (Caso B) existem vértices em Q_k acessíveis de s

Caso A

Todo $r \in \mathcal{Q}_k$ está, por convenção, a distância mínima ∞ de s e, de acordo com o invariante, no final da iteração k, tem-se $dist[r] = \infty$ para todo $r \in \mathcal{Q}_k$ (como se definiu inicialmente). O vértice v que sai da fila na iteração k+1 tem $dist[v] = \infty$ e, assim, como $dist[v] + d(v,w) = \infty + d(v,w) = \infty$, não altera o valor de dist[w], para nenhum $w \in Adjs[v]$. Logo, todos os vértices em $r \in \mathcal{Q}_{k+1}$ se manterão com $dist[r] = \infty$, e a condição 2. do invariante mantém-se.

Prova de correção do algoritmo de Dijkstra (cont.)

(cont.) Prova (por indução sobre $k \ge 1$): Seja $\hat{d}(\gamma)$ o comprimento de um percurso γ , ou seja, $\hat{d}(\gamma) = \sum_{(x,y) \in \gamma} d(x,y)$.

Caso B

- Seja $w \in \mathcal{Q}_k$ um vértice que se encontra a distância mínima de s, ou seja tal que $\delta(s,w) = \min\{\delta(s,r) \mid r \in \mathcal{Q}_k\}$. Seja $\gamma_{s,w}$ um caminho mínimo de s para w em G. Logo, tem-se $\hat{d}(\gamma_{s,w}) = \delta(s,w)$.
- Se $\gamma_{s,w}$ só tem um ramo, então $w \in Adjs[s]$, e do (caso de base, k = 1) segue $dist[w] = \delta(s,w) = \hat{d}(\gamma_{s,w})$.
- Se $\gamma_{s,w}$ tem mais do que um ramo, seja u o vértice que precede w no caminho $\gamma_{s,w}$, e $\gamma_{s,u}$ o sub-caminho até u.
 - $\delta(s,u) = \hat{d}(\gamma_{s,u})$
 - $u \notin Q_k$ pois $\delta(s, w) = \delta(s, u) + d(u, w)$ implica que $\delta(s, u) < \delta(s, w)$. Se u estivesse em Q_k seria escolhido em vez de w. Então $u \in M_k$, e, pela hipótese de indução, $dist[u] = \delta(s, u)$ e $dist[w] \le \hat{d}(\gamma_{s,w})$. Logo, $dist[w] = \hat{d}(\gamma_{s,w}) = \delta(s, w)$.

Prova de correção do algoritmo de Dijkstra (cont.)

Caso B (cont.)

- Portanto, no algoritmo de Dijkstra, o **vértice** v **que se retira de** Q **na iteração** k+1 satisfaz $dist[v] = \delta(s,v)$ (é um vértice de Q_k que está a distância mínima de s, dado que dist[v] não seria alterado em nenhuma das iterações seguintes). Como $\mathcal{M}_{k+1} = \mathcal{M}_k \cup \{v\}$, a condição 1. do invariante verifica-se no final da iteração k+1.
 - Importa observar que se $r \in Adjs[v] \cap \mathcal{M}_k$, o valor de dist[r] não pode ser reduzido na iteração k+1 pois, pela hipótese de indução, $dist[r] = \delta(s,r)$ e, portanto, $dist[v] + d(v,r) \geq dist[r]$, por definição de caminho mínimo.
- Resta ver que, para todo $r \in \mathcal{Q}_{k+1}$, no final da iteração k+1, o valor de dist[r] é a distância mínima de s a r se os percursos só puderem passar por vértices de $\mathcal{M}_{k+1} \cup \{r\}$. Tais percursos são caminhos sendo:
 - ou caminhos mínimos de s para r que não passam por $Q_k \setminus \{r\}$ Nesse caso, pela hipótese de indução, dist[r] é já a distância mínima de s a r com essa restrição.
 - ou caminhos mínimos que passam em v mas não em $Q_k \setminus \{r, v\}$ Notar que $Q_k \setminus \{r, v\} = Q_{k+1} \setminus \{r\}$. Se se verificar o segundo caso (mas não o primeiro), tal caminho mínimo passa por v e, por ser mínimo terá de ser da forma $\Gamma_{s,v}$, (v,r), para $\Gamma_{s,v}$ mínimo. Mas, r é adjacente a v e $dist[v] + d(v,r) = \delta(s,v) + d(v,r) = \hat{d}(\Gamma_{s,v},(v,r)) < dist[r]$. Portanto, dist[r] é atualizado no bloco 6-10 na iteração k+1 ficando com $\hat{d}((\Gamma_{s,v},(v,r)))$.

Caminhos de capacidade máxima (adaptação do Algoritmo de Dijkstra)

Seja G = (V, E, c) um grafo dirigido, finito, $c(u, v) \ge 0$ indica a **capacidade** do ramo (u, v). A **capacidade de um percurso** é o **mínimo** das capacidades dos ramos que constituem o percurso.

Problema:

Para um nó origem s, determinar um percurso com capacidade máxima de s para v, para cada $v \neq s$.

```
CAMINHOS CAPACIDADE MAXIMA (G, s)
            Para cada v \in V fazer \{pai[v] \leftarrow \text{NULL}; cap[v] \leftarrow 0;\}
      2. | cap[s] \leftarrow \infty;
      3. Q \leftarrow \text{MK\_PQ\_HEAPMAX}(cap, V);
            Enquanto (PQ_NOT_EMPTY(Q)) fazer
      4.
      5.
                 v \leftarrow \text{EXTRACTMAX}(Q);
      6.
                 Para cada w \in Adis[v] fazer
      7.
                      Se min(cap[v], c(v, w)) > cap[w] então
                           cap[w] \leftarrow \min(cap[v], c(v, w));
      8.
      9.
                           pai[w] \leftarrow v;
                           INCREASEKEY(Q, w, cap[w]);
     10.
```

Caminhos de capacidade máxima (adaptação do Algoritmo de Dijkstra)

Complexidade temporal

- Se G for dado por **listas de adjacências** e a fila de prioridade Q for suportada por uma **heap de máximo**, tem complexidade temporal $O((|V| + |E|)\log_2 |V|)$, como o algoritmo de Dijkstra.
- Correção: o ciclo "Enquanto" preserva o invariante seguinte, para todo $k \geq 1$: sendo \mathcal{Q}_k o conjunto de nós que estão na fila Q e $\mathcal{M}_k = V \setminus \mathcal{Q}_k$ o conjunto de nós que já sairam de Q, no final da iteração k, tem-se
 - ① para $r \in \mathcal{M}_k$, o valor cap[r] é a capacidade máxima dos percursos de s para r em G, para todo $r \in \mathcal{M}_k$;
 - ② para $r \in Q_k$, o valor cap[r] é a capacidade máxima dos percursos de s para r em G se os percursos só puderem passar por nós de $\mathcal{M}_k \cup \{r\}$.
- Propriedade que explora: um percurso γ_{st} de capacidade máxima $\underbrace{\tilde{\mathbf{nao}}}$ tem de ter subestrutura ótima. Mas, é verdade que se $\gamma_{st} = \gamma_{sv}\gamma_{vt}$, para algum v, podemos substituir cada um dos percursos γ_{sv} e γ_{vt} por caminhos γ_{sv}^* e γ_{vt}^* de capacidade máxima.

Caminhos de capacidade máxima em grafos não dirigidos

Propriedade

Se G = (V, E, c) for um grafo não dirigido e conexo, a árvore geradora de **peso máximo criada a partir da raíz** s por adaptação do algoritmo de Prim contém um caminho de capacidade máxima de s para v, para cada $v \in V \setminus \{s\}$.

- Por isso, em instâncias deste tipo, o algoritmo de Prim (adaptado para obter árvores de peso máximo) seria uma alternativa ao que apresentámos acima.
- Esta propriedade resulta da definição de caminho de capacidade máxima e da seguinte propriedade estrutural das árvores de suporte de peso máximo:

Seja T uma árvore geradora de peso máximo de um grafo G=(V,E,d) não dirigido e conexo. Qualquer que seja a partição $\{V_1,V_2\}$ do conjunto de vértices V, a árvore T tem algum ramo $\langle v_1,v_2\rangle$ com $v_1\in V_1$ e $v_2\in V_2$ e tal que $d(v_1,v_2)=\max\{d(x,y)\mid x\in V_1,y\in V_2,\langle x,y\rangle\in E\}.$

Algoritmo de Floyd-Warshall

Problema:

Determinar o comprimento do caminho mínimo de s para t, para **todos os pares** $(s,t) \in V \times V$, $s \neq t$.

- Pode ser resolvido usando o algoritmo de Dijkstra
 - Para cada nó v_i (origem), aplicar o algoritmo de Dijkstra para determinar D_{ij}^{\star} , para todo j. Complexidade: $O(|V|(|E|+|V|)\log_2|V|)$.
 - Para grafos densos, com $|E| \in \Theta(|V|^2)$, seria $O(n^3 \log_2 n)$.
- Mas, o algoritmo de Floyd-Warshall (1962), tem complexidade $\Theta(n^3)$. Supõe-se que inicialmente $D_{ii}=0$, $D_{ij}=d(i,j)$, se $(i,j)\in E$; e, caso contrário, $D_{ij}=\infty$ se $i\neq j$

ALGORITMOFLOYD-WARSHALL(D, n)

```
Para k \leftarrow 1 até n fazer
Para i \leftarrow 1 até n fazer
Para j \leftarrow 1 até n fazer
Se D[i,j] > D[i,k]
```

Algoritmo de Floyd-Warshall

Problema:

Determinar o comprimento do caminho mínimo de s para t, para **todos os pares** $(s,t) \in V \times V$, $s \neq t$.

- Pode ser resolvido usando o algoritmo de Dijkstra
 - Para cada nó v_i (origem), aplicar o algoritmo de Dijkstra para determinar D_{ij}^{\star} , para todo j. Complexidade: $O(|V|(|E|+|V|)\log_2|V|)$.
 - Para grafos densos, com $|E| \in \Theta(|V|^2)$, seria $O(n^3 \log_2 n)$.
- Mas, o algoritmo de Floyd-Warshall (1962), tem complexidade $\Theta(n^3)$.

Supõe-se que inicialmente $D_{ii}=0$, $D_{ij}=d(i,j)$, se $(i,j)\in E$; e, caso contrário, $D_{ij}=\infty$ se $i\neq j$

ALGORITMOFLOYD-WARSHALL(D, n)

```
Para k \leftarrow 1 até n fazer

Para i \leftarrow 1 até n fazer

Para j \leftarrow 1 até n fazer

Se D[i,j] > D[i,k] + D[k,j] então D[i,j] \leftarrow D[i,k] + D[k,j];
```