SEMI-SUPERVISED MULTI-INSTANCE INTERPRETABLE MODELS FOR FLU SHOT ADVERSE EVENT DETECTION

Junxiang Wang, Liang Zhao, and Yanfang Ye International Conference on Big Data(BigData) 2018

Content

- Introduction
- Problem Formulation
- Our Method
- Optimization
- Experiments

Introduction: Background.

- Vaccinations are now available worldwide.
- ➢ flu vaccination coverage during the 2013-14 flu season was 46.2 percent of the whole U.S. population.

- Vaccines can cause adverse reactions and even lead to death.
- A woman died of multiorgan failure and respiratory distress in Spain on October 24, 2004, which is caused by a yellow fever vaccination.
- It is imperative to develop a system which can identify adverse events promptly and accurately.

Introduction: Formal reporting systems VS Social media.

Disadvantages of formal reporting systems	Advantages of social media
Only a few people submit reports due to complex procedures involved.	Social media messages reflect the public's mood and trend.
A serious time delay to release reports due to administrative processing. E.g., The FDA's reporting system releases data every three months.	Social media messages can be posted instantly by portable mobile devices.

 Social media, as platforms to disseminate information, have begun to be used in several healthcare applications.

Introduction: An example of flu shot adverse events.

Follow So, I got a flu shot yesterday. My arm is still really sore but also my elbow joint is Symptom descriptions sore and I have a killer tension headache .. I slept really bad last night had chills and couldn't warm up) and I currently feel sick to my stomach... 6:02 PM - 4 Dec 2018 Tweet your reply Gunna keep an eye on things but... yeah, this is the weirdest reaction I've had to a vaccine since I got a bunch of travel vaccines done all at once

Introduction: Challenges of flu shot adverse event detection.

- 1. The sparsity of indicative messages:
- ➤ Only 7.22% of messages from positive users were indicative of adverse reactions.
- ➤ About 33.33% users are positive users who are affected by adverse events.

"I'm about to go get my flu shot! \ud83d\ude16\ud83d\udc89", "geocoded": {"city": "San An "Dust got my flu shot, & it hurt so bad. Thanks skinny arms with no muscle or fat :(" "RT @TwoInLoveEC: I talk about my relationship a lot. That's just how it is. Like it, or "I'm so ready to get through tomorrow so it can be the weekend already!", "geocoded": {"c "RT @GFstatus: I can find a flaw in every other I guy I look at besides my boyfriend #hes "Thank you grandpa for making me tacos this morning! Now I can function.", "geocoded": {" "Me & Anthony laughed so hard this morning. We do the funniest things. \ud83d\ude02\u "RT @anthonyandrew18: @ AlexisMariah only because I threw the tortilla at the window!\ud8 "@anthonyandrew18 hahaha & the egg stuck on the window \ud83d\ude02\ud83d\ude02\ud83d "& the stressing begins on my math final next week. \ud83d\ude23", "geocoded": {"city "One of these will be my two year anniversary gift from my boyfriend! #Tiffany&Co < "Yayyyy! Pretty much the last day of classes were today! Just next week of finals & i "Going with babe to pick up some barbecue plates!\ud83d\udc4c", "geocoded": {"city": "San "Going to Edible Arrangements to get something for my mommy's birthday tomorrow. \ud83d\u "Spoiled myself to some VS < 3 http://t.co/Ga96KaCP", "geocoded": {"city": "San Antonio "I'm already all depressed knowing I won't get to see Anthony tomorrow. \ud83d\ude29", "g "If your boyfriend tweets more than you, that's a problem..", "geocoded": {"city": "San A "I can't fucking stand hypocrites.", "geocoded": {"city": "San Antonio", "country": "Unit "I also want a matching bracelet with the necklace my boyfriend is gonna get me.. #Tiffan "I forget I even have my nose pierced anymore.", "geocoded": {"city": "San Antonio", "cou "RT @Gf Moments: My boyfriend is not whipped, he respects me. #YoureJustJealous", "geocod "RT @DGreen 14: Spurs v Rockets 830pm eastern...tune in", "geocoded": {"city": "San Anton "My upgrade is in March or April. Maybe I'll get the iPhone 5.", "geocoded": {"city": "Sa "The pretty lights in my room! All ready for Christmas! \ud83d\udc99\ud83c\udf84 http://t

Only one tweet which indicates adverse reactions.

Introduction: Challenges of flu shot adverse event detection.

2. Cost of labeling health states.

Number of active Twitter users(million) in 2018	Number of tweets per month user has in 2018	Number of tweets per month(million) in 2018
335	50	15000

- ➤ In order to label accurately, all tweets from a user should be checked thoroughly.
- Labeling cost increases with the surge of Twitter users.

Problem Formulation: Mathematical formulation.

Flu shot adverse event detection task aims to detect the health states of Twitter users based on their Twitter messages.

- \triangleright Problem input: $X_{u,i}$ (the i-th tweet from user u).
- \triangleright Problem output: Y_u (the health state of user u). A bag of tweets
- Then we want to learn the mapping f: $\{X_{u,1}, X_{u,2}, \cdots, X_{u,n_u}\} \rightarrow Y_u$
- $\succ Y_u = 1$ denotes that user u is positive (i.e., affected by adverse events), while
- $> Y_u = 0$ denotes that user u is negative (i.e., unaffected by adverse events).

Problem Formulation: An illustration.

Our method: Semi-supervised Multi-instance learning model.

Select representative tweets automatically.

Positive Users	Negative users
At least one tweet indicates abnormal description	None of tweets should imply any abnormal description

■ This idea can be summarized as "the max rule".

$$p_{u,i} = sigmoid(X_{u,i}; \beta; \beta_0)$$

$$p_u = \max_{i=1,\dots,n_u} p_{u,i}$$

$$H_u(\beta, \beta_0) = -Y_u \log p_u - (1 - Y_u) \log(1 - p_u)$$

The max rule biases for positive users and hence reduces the imbalance from a majority of negative users.

 p_u : the probability of labeling user u as positive. $p_{u,i}$: the probability of labeling user u as positive from the i-th tweet.

 $X_{u,i}$: The i-th tweet from user u.

 β : The coefficient vector of the classifier.

 β_0 : The intercept of the classifier.

 n_u : The number of tweets from user u.

 $sigmoid(\cdot)$: The sigmoid function.

 $H_u(\cdot)$: The log-loss function.

Our method: Semi-supervised Multi-instance learning model.

Utilize unlabeled users.

$$L_u(\beta; \beta_0) = -\min(\log(p_u), \log(1 - p_u))$$
$$= \max(-\log(p_u), -\log(1 - p_u))$$

p_u	>0.5(Positive)	<0.5(Negative)
$L(\cdot;\cdot)$	$-\log(p_u)$	$-\log(1-p_u)$

 p_u : the probability of labeling user u as positive.

 β : The coefficient vector of the classifier.

 β_0 : The intercept of the classifier.

 $L_u(\cdot;\cdot)$: The semi-supervised loss function.

Introduce unlabeled user to

1. Improve the generalization ability of the classifier.

2. Reduce the noise by labeled users.

Our method: Semi-supervised Multi-instance learning model.

Overall model.

 β : The coefficient vector of the classifier.

 β_0 : The intercept of the classifier.

 ν , λ : two tuning parameters.

 U_1 : labeled user set.

 U_2 : unlabeled user set.

Optimization: nSSM and sSSM.

The nonsmooth model(sSSM):
$$(\beta^*, \beta_0^*) = \arg\min_{\beta, \beta_0} \sum_{u \in U_1} (\log(1 + \exp(\max_{i = 1, \dots, n_u} (X_{u,i}\beta + \beta_0)))$$
$$- Y_u \max_{i = 1, \dots, n_u} (X_{u,i}\beta + \beta_0) + \lambda \|\beta\|_1$$
$$+ \nu \sum_{u \in U_2} (\log(1 + \exp(\max_{i = 1, \dots, n_u} (X_{u,i}\beta + \beta_0)))$$
$$- \min(\max_{i = 1, \dots, n_u} (X_{u,i}\beta + \beta_0, 0)))$$
 (5)

• The smooth model(sSSM) model is obtained by approximating nonsmooth terms $\max(\cdot)$ and $min(\cdot)$ by the smooth max function:

$$\max(x_{i=1,\dots,n}) \simeq \frac{\log \sum_{i=1}^n e^{Ax_i}}{A}, A > 0$$

•
$$\min(x_{i=1,\dots,n}) \simeq \frac{\log \sum_{i=1}^n e^{Bx_i}}{B}, B < 0$$

$$\max(x_{i=1,\dots,n}) \simeq \frac{\log \sum_{i=1}^{n} e^{Ax_{i}}}{A}, A > 0$$

$$(\beta^{*}, \beta_{0}^{*}) = \arg \min_{\beta,\beta_{0}} \sum_{u \in U_{1}} (-Y_{u} \log p_{u} - (1 - Y_{u}) \log(1 - p_{u}))$$

$$+ \nu \sum_{u \in U_{2}} \log(e^{-B \log(p_{u})} + e^{-B \log(1 - p_{u})}) / B + \lambda \|\beta\|_{1}$$

$$s.t. \ p_{u} = 1/(1 + (\sum_{i=1}^{n_{u}} e^{A(\beta X_{u,i} + \beta_{0})})^{-1/A})$$

$$(6)$$

Two models are solved by Alternating Direction Method of Multipliers (ADMM).

Experiments: Data Setup.

Synthetic Dataset

- \geq 10000 bags and 55,195 instances.
- \triangleright Each bag had at most 10 instances. Each instance is generated either by $N(\mu_1, I)$ or $N(\mu_2, I)$.
- $\triangleright N(\cdot,\cdot)$ is a multivariate normal distribution of a 100-dimensional vector.
- $\triangleright \mu_1$ is a zero vector, μ_2 is a vector whose elements are all 0.3, I is an identity matrix.
- \triangleright One bag was considered as positive if at least one of the instances was generated by $N(\mu_2, I)$.
- \triangleright One bag was considered as negative if all of the instances was generated by $N(\mu_1, I)$.
- ➤ 1974 bags were positive while 8026 bags were negative.

Experiments: Data Setup.

- Twitter data: Two-stage data collection.
- ➤ The first stage:
- ➤ Number of retrieved Tweets: 11,993,211,616.
- > Time interval: between Jan 1,2011 and Apr 15,2015.
- ➤ Country: United States.
- The second stage:
- > Queried these users again within 60 days since they received vaccination.

User class	Number of users	Number of corresponding Tweets
Positive users	566	41438
Negative users	1006	
Unlabeled users	1567	48847

Experiments: Parameter Settings

- \triangleright Two tuning parameters ν and λ were both set to 1 based on the 5-fold cross validation on the training set.
- ➤ A and B in the sSSM model were set to 10 and -10, respectively.
- \triangleright We also investigate the effect of ρ (a key parameter in the ADMM algorithm) on the classification performance. Three different types of ρ were chosen:
- $\triangleright \rho(1)$. The constant $\rho = 1$.
- ho ho
- ho (3). $\rho^{k+1} = \rho^k + 2/MAX_ITER$ with $\rho^0 = 1$, where MAX_ITER is the optimal iteration. The MAX_ITER in the nSSM and sSSM model were set to 2000 and 20, respectively.

Experiments: Metrics and comparison methods

Metrics:

<pre>Precision(PR)=TP/(FP+TP)</pre>

	Recall((RE):	=TP/	(FN+	TP)
--	---------	-------	------	------	-----

	Negative	Postive
negative	TN	FP
positive	FN	TP

- > Area Under ROC curve(AUC): compute the Area under Receiver Operating Characteristic (ROC) curve.
- > Area Under PR curve(AUPR): compute the Area under Precision Recall(PR) curve.

Comparison methods:

- ➤ Multi-instance learning: Constructive Clustering based Ensemble (CCE), Multi-instance learning with graph (miGraph) Multi-instance Learning based on the Vector of Locally Aggregated Descriptors representation (miVLAD), Multi-instance Learning based on Fisher Vector representation (miFV).
- ➤ Semi-supervised learning: WEakly LabeLed Support Vector Machines (WELLSVM).

Experiments: Classification performance on synthetic dataset

	Methods	ACC	PR	RE	FS	AUC	AUPR
	CCE	0.8408	0.8166	0.2494	0.3818	0.9067	0.6991
	miGraph	0.8026	0	0	0	0.5	0
Multi-instance learning	miFV	0.8380	0.6998	0.3179	0.4241	0.7875	0.5666
	miVLAD	0.8364	0.6634	0.3458	0.4527	0.7796	0.5563
Semi-supervised learning	WELLSVM	0.7823	0.4804	0.2978	0.3125	0.7694	0.4284
	$nSSM(\rho(1))$	0.9124	0.8383	0.6893	0.7563	0.9442	0.8488
	$nSSM(\rho(2))$	0.9105	0.8631	0.6510	0.7411	0.9433	0.8471
	$nSSM(\rho(3))$	0.9125	0.8397	0.6883	0.7562	0.9441	0.8486
	$sSSM(\rho(1))$	0.9121	0.8610	0.6622	0.7481	0.9449	0.8504
	$sSSM(\rho(2))$	0.9125	0.8545	0.6718	0.7515	0.9446	0.8496
	$sSSM(\rho(3))$	0.9127	0.8551	0.6723	0.7521	0.9446	0.8496

- nSSM and sSSM performed the best in general.
- The semi-supervised learning method outperformed multi-instance learning methods.

Experiments: Classification performance on Twitter dataset

	Methods	ACC	PR	RE	FS	AUC	AUPR
	CCE	0.7405	0.7616	0.4124	0.5308	0.8118	0.7136
	miGraph	0.7188	0.6779	0.4229	0.5194	0.7415	0.6246
Multi-instance learning	miFV	0.7761	0.7324	0.6010	0.6595	0.8405	0.7564
	miVLAD	0.7538	0.6721	0.6217	0.6453	0.7841	0.6806
Semi-supervised learning	WELLSVM	0.6985	0.8635	0.1942	0.3111	0.8373	0.7271
	$nSSM(\rho(1))$	0.8015	0.7813	0.6236	0.6931	0.8804	0.7870
	$nSSM(\rho(2))$	0.8009	0.7790	0.6234	0.6924	0.8745	0.7827
	$nSSM(\rho(3))$	0.7977	0.7356	0.6872	0.7098	0.8755	0.7775
	$sSSM(\rho(1))$	0.7901	0.7497	0.6234	0.6802	0.8699	0.7761
	$sSSM(\rho(2))$	0.7913	0.7572	0.6200	0.6810	0.8696	0.7755
	sSSM(p(3))	0.7939	0.7535	0.6344	0.6876	0.8673	0.7726

- nSSM and sSSM performed the best in general.
- The semi-supervised learning method outperformed multi-instance learning methods.

Experiments: ROC and PR curve on the Twitter dataset.

- nSSM and sSSM performed the best in general.
- The semi-supervised learning method outperformed multi-instance learning methods.

Experiments: Scalability analysis.

Nearly all methods increase linearly with number of features and petitions.

Experiments: Case studies.

	Rank	Positive Tweets	Negative Tweets
ndverse-relevant	1	headache I	bad
	2	sore	feeling
	3	sick	cold
	4	arm	cause
	5	throat	face
	6	swollen	flu
	7	bad	shot
	8	flu	heart
	9	shot	sick
	10	pain	cool

Experiments: Case studies.

Symptoms	Positive tweets extracted by nSSM			
arm pain	Flu shot this afternoon = very sore arm this evening			
	My arm still sore from that flu shot			
	As soon as I walk in my apartment my arm decides to remind me I got a flu shot today			
	I got my flu shot. Hate how it hurts when they give the shot they do it slow arm hurts like hell. hate doctors and shots.			
	How does a simple flu shot immobilize ones left arm? Im weak as hell sore			
headache	got a flu shot yesterday and here comes a headache.			
	Oohh this headache from flu shots?			
	Flu shot this morn. Now I have a headache. ARGH.			
neck pain	I got a flu shot. Body aches are real. The back of my neck is killing me :(
throat pain	Flu shot update: My throat continues to feel tight and clogged, although not so much that I can't breathe.			
	Flu shot dooo Walnut in my throat I cant feel my face.			
fever	Receive a flu shot several days ago, now my nose is clogged, my eyes are heavy, my throat is so sore that I can't talk and I'm so tired, I can't stop coughing! small fever.			

> Arm pain was the most common symptom; Headache, neck pain and throat pain happened sometimes.

Our Dataset

The link of our dataset and code

http://mason.gmu.edu/~lzhao9

Feel free to contact Junxiang Wang (jwang40@gmu.edu) if you have any questions.

Thank you. Any questions?