УДК 66.001.001.57:66.022:621.926/929

## ИССЛЕДОВАНИЕ ПРОЦЕССА ВЫДЕЛЕНИЯ ИЗОБУТИЛЕНА ИЗ ПИРОЛИЗНОГО ГАЗА

#### ••••

# RESEARCH OF PROCESS OF SEPARATION OF ISOBUTYLENE FROM THE PYROLYSIS GAS

#### Гулиева Севиндж Низами кызы

доктор технических наук по философии, старший лаборант, Азербайджанский государственный университет нефти и промышленности raoztun@mail.ru

**Аннотация.** Во фракции  $C_4$  пиролиза содержится от 20 до 40 % изобутилена и столько же бутиленов нормального строения. Экспериментальных данных по исследованию кинетики поглощения изобутилена серной кислотой под давлением, обеспечивающим жидкофазный процесс, сравнительно немного, которые проводили опыты в автоклавах с интенсивным перемешиванием, полагая, что реакция происходит на границе раздела фаз, и скорость ее контролируется массопередачей.

**Ключевые слова:** пиролизный газ, изобутан, С<sub>4</sub>— углеводородная фракция, изобутилен сернокислотная экстракция, дегидрохлорирование третичного бутилхлорида.

#### Guliyeva Sevinj Nizami qizi

Doctor of Technical Sciences in Philosophy, Senior Laboratory Assistant, Azerbaijan State Oil and Industry University raoztun@mail.ru

Annotation. The  $C_4$  fraction of pyrolysis contains from 20 to 40 % isobutylene and the same amount of butylenes of normal structure. Experimental data on the study of the kinetics of absorption of isobutylene by sulfuric acid under pressure, providing a liquid-phase process, relatively few, who conducted experiments in autoclaves with intensive mixing, believing that the reaction occurs at the interface of phases, and its speed is controlled by mass transfer.

**Keywords:** pyrolysis gas, isobutane, C<sub>4</sub>–hydrocarbon fraction, isobutylene sulfuric acid extraction, dehydrochlorination of tertiary butyl chloride.

аиболее распространенными являются методы извлечения изобутилена из смесей углеводородов С<sub>4</sub> экстракцией растворами серной кислоты [1], причем из патентов, полученных по способам производства изобутилена, более 40 % общего массива приходится на эти методы [2].

Размещение и показатели крупных промышленных производств изобутилена приведены в таблице 1.

По методу фирмы Esso Research абсорбцию изобутилена проводят при температуре 40  $^{\circ}$ C и давлении 0,1 МПа. Взаимодействие изобутилена с кислотой осуществляется в нескольких последовательно соединенных реакторах. Это дает возможность увеличить степень извлечения изобутилена до 85–90 %, при чистоте 96–99 %.

Основным недостатком процесса является необходимость концентрирования разбавленной серной кислоты или ее утилизации [2].

В основу процесса, разработанного французской фирмой совместно с фирмой Badger, положено извлечение изобутилена 50 % серной кислотой при температуре 50 °C и избыточном давлении 0,8–1,3 МПа. Кислотную фазу, обогащенную изобутиленом, быстро нагревают при высокой температуре и низком давлении, отгоняют изобутилен, а раствор кислоты направляют в экстрактор. Достоинством процесса считается возможность циркуляции кислоты в зону экстракции без организации промежуточной стадии упарки [4].

Недостатки: малая скорость реакции, что вероятно, приводит к значительному увеличению объема реакционного пространства, высокая коррозионная способность среды.

**Таблица 1** – Размещение и показатели промышленных производств изобутилена сернокислотной экстракцией из С₄–углеводородных фракций

| Фирма    | Страны     | Мощность установки | Показатели производства |                          |                                  |
|----------|------------|--------------------|-------------------------|--------------------------|----------------------------------|
| лицензер | размещения | тыс. т / год       | Степень извлеч.<br>%    | Конц-я изобут.<br>% мас. | Образование олигомеров<br>% мас. |
| CFR      | Шотландия  | 33,0               |                         |                          |                                  |
| Badger   | Бельгия    | 60,0               | 87–90                   | 99,3–99,6                | 4,0                              |
|          | Италия     | 45,0               |                         |                          |                                  |
| ESSO     | Япония     | 30,0               |                         |                          |                                  |
| Research | США        | нет данных         | 85                      | 96                       | до 10                            |
| BASF     | {ΦΡΓ       | 6,3                | 90–95                   | 99,93                    | 1                                |





Рисунок 1 — Распределение информации о сернокислотном способе получения изобутилена по годам

Рисунок 2 – Зависимость объемов поглощенного изобутилена от времени контакта при различных концентрациях серной кислоты: 1 – 35 %; 2 – 45 %; 3 – 55 %; 4 – 65 %

Основной проблемой, возникающей при извлечении изобутилена 55–60 % серной кислотой, является существенное разбавление серной кислоты (до 40–45 %) в узле разложения изобутилсерного экстракта, осуществляемого при использовании в качестве теплоносителя «острого» водяного пара. Для повторного использования серной кислоты в процессе экстракции необходима организация сложного в конструкционном оформлении и дорогостоящего узла упарки серной кислоты.

 $\tau$  . MUH

Изобутилен чистотой 99,9 % получается обработкой фракции водным раствором хлорида металла и соляной кислоты при умеренной температуре и последующим дегидрохлорированием третичного бутилхлорида на том же катализаторе. Несмотря на высокую коррозионную агрессивность рабочих сред, способ вследствие высокой чистоты изобутилена и низкой его стоимости конкурентоспособен по сравнению с другими.

Таким образом, анализируя опубликованные материалы по методам извлечения изобутилена, можно заключить:

- 1. Несмотря на освоение новых бескислотных методов извлечения изобутилена, промышленные установки сернокислотной экстракции изобутилена не только продолжают находиться в эксплуатации, но и намечается ввод новых мощностей (Италия, Япония);
- 2. Интенсификация сернокислотного метода извлечения изобутилена в большинстве зарубежных производств осуществляется либо увеличением числа ступеней экстракции изобутилена серной кислотой, либо использованием более разбавленной кислоты с последующим превращением образовавшегося триметилкарбинола в изобутилен;
- 3. Улучшение технико-экономических показателей производства изобутилена сернокислотным методом возможно за счет коренного усовершенствования узлов поглощения изобутилена и разложения изобутилсерного экстракта.

## Литература:

- 1. Ибрагимов Ч.Ш., Бабаев А.И. Научное основы и практические задачи химической кибернетики. Баку : изд-во АГНА, 2015. С. 387.
- 2. Ибрагимов Ч.Ш., Бабаев А.И., Гулиева С.Н. Моделирование процессов системы разделения компонентов фракций пиролиза нефтяных углеводородов // Вестник Азерб. Инженерной Академии. 2013. Т. 5. № 4. С. 73–84.
- 3. Ибрагимов Ч.Ш., Бабаев А.И., Гулиева С.Н. Получение глубокочистых изобутана и изобутилена из изобуган-изобутиленовой фракции пирогаза / ЦНИИТЭНЕФТЕХИМ // Нефтепереработка и нефтехимия. 2015. № 9. С. 15–19.

### References:

- 1. Ibragimov C.Sh., Babaev A.I. Scientific bases and practical tasks of chemical cybernetics. Baku : AGNA Publishing House, 2015. P. 387.
- 2. Ibragimov C.Sh., Babaev A.I., Guliyeva C.H. Modeling of Processes of Separation System of Pyrolysis Fraction Components of Oil Hydrocarbons // Vestnik Azerb. Engineering Academy. 2013. V. 5. № 4. P. 73–84.
- 3. Ibragimov C.Sh., Babaev A.I., Gulieva S.N. Production of deep-clean isobutane and isobutylene from isobutylene fraction of pyrogas // Petroleum processing and petrochemistry. 2015. № 9. P. 15–19.