

Fundamentos Computacionais

Fundamentos Computacionais

Correção dos exercícios da Semana06

Material para consultar

RESUMO

Conjunção ^ E (AND)

р	q	p ^ q
V	٧	V
٧	F	F
F	٧	F
F	F	F

Disjunção v OU (OR)

p	q	$p \vee q$
V	V	V
V	F	V
F	٧	V
F	F	F

Negação ~ NÃO (NOT)

p	~p
٧	F
F	V

SE, ENTÃO

->

р	q	$p \rightarrow q$
V	٧	٧
٧	F	F
F	٧	٧
F	F	٧

Bicondicional

<->

p	q	$p \leftrightarrow q$
٧	٧	V
٧	F	F
F	٧	F
F	F	V

Negação Composta

Proposição	Negação
p \ q	¬p ∨ ¬q
p∨q	¬p ∧ ¬q
$p \rightarrow q$	p ∧ ¬q

Negação de Quantificadores

Quantificadores	Negação
Todo / Todos	Existe, Algum, alguém (não)
Existe, Alguém	Todo / Todos (não)
Nenhum	Algum

Equivalência	Nome
p ^ V ⇔ p p v F ⇔ p	Propriedades dos elementos neutros
p v V ⇔ V p ^ F ⇔ F	Propriedades de dominação
p v (q ^ r) \Leftrightarrow (p v q) ^ (p v r) p ^ (q v r) \Leftrightarrow (p ^ q) v (p ^ r)	Propriedades distributivas
$p \mathbf{v} (p \mathbf{q}) \Leftrightarrow p$ $p \mathbf{q} (p \mathbf{v} q) \Leftrightarrow p$	Propriedades de absorção
$p \mathbf{v} \neg p \Leftrightarrow \mathbf{V}$ $p \mathbf{^{\wedge}} \neg p \Leftrightarrow \mathbf{F}$	Propriedades de negação

Regras de Equivalência

• Permite substituição em **ambos os sentidos**

Expressão	Equivalente a	Nome/Abreviação
A ∨ B A ∧ B	$B \lor A$ $B \land A$	Com utatividade / com
(A ∨ B) ∨ C (A ∧ B) ∧ C	$A \lor (B \lor C)$ $A \land (B \land C)$	Ass ociatividade / ass
¬(A ∨ B) ¬(A ∧ B)	$\neg A \land \neg B$ $\neg A \lor \neg B$	Leis de De Morgan / De Morgan
$A \rightarrow B$	$\neg A \lor B$	Condicional / cond
¬¬А	Α	D upla n egação / dn
$A \vee A$	Α	Idem potência / idem

Regras de Inferência

• Permite substituição em **apenas um sentido**

Para a expressão	Podemos deduzir	Nome/Abreviação
$\begin{array}{c} A \to B \\ A \end{array}$	В	Modus Ponens / mp
$\begin{array}{c} A \to B \\ \neg B \end{array}$	⊸A	M odus T ollens / mt
A B	$A \wedge B$	Conj unção / conj
A ∧ B	A B	Simplificação / simp
Α	$A \vee B$	Ad ição / ad
A∨B ¬A	В	S ilogismo D isjuntivo / sd
$\begin{array}{c} A \to B \\ B \to C \end{array}$	$A \rightarrow C$	Silogismo Hipotético / sh

Exercícios da Semana07

Vamos resolver alguns em parceria

5) Construa a tabela-verdade da seguinte fórmula.

$$(p \land q) -> (p <-> q)$$

5) Construa a tabela-verdade da seguinte fórmula.

$$(p \land q) -> (p <-> q)$$

p	q	(p ^ q)	(p <-> q)	(p ^ q) -> (p <-> q)
V	٧	V	V	V
V	F	F	F	V
F	٧	F	F	V
F	F	F	V	V

7) Assinale a alternativa incorreta com relação aos conectivos lógicos:

- a) Se os valores lógicos de duas proposições forem falsos, então a conjunção entre elas tem valor lógico falso.
- b) Se os valores lógicos de duas proposições forem falsos, então a disjunção entre elas tem valor lógico falso.
- c) Se os valores lógicos de duas proposições forem falsos, então o condicional entre elas tem valor lógico verdadeiro.
- d) Se os valores lógicos de duas proposições forem falsos, então o bicondicional entre elas têm valor lógico falso
- e) Se os valores lógicos de duas proposições forem falsos, então o bicondicional entre elas têm valor lógico verdadeiro.

7) Assinale a alternativa incorreta com relação aos conectivos lógicos:

- a) Se os valores lógicos de duas proposições forem falsos, então a conjunção entre elas tem valor lógico falso.
- b) Se os valores lógicos de duas proposições forem falsos, então a disjunção entre elas tem valor lógico falso.
- c) Se os valores lógicos de duas proposições forem falsos, então o condicional entre elas tem valor lógico verdadeiro.
- d) Se os valores lógicos de duas proposições forem falsos, então o bicondicional entre elas têm valor lógico falso
- e) Se os valores lógicos de duas proposições forem falsos, então o bicondicional entre elas têm valor lógico verdadeiro.

Bicondicional

<->

p	q	$p \leftrightarrow q$
٧	٧	V
٧	F	F
F	٧	F
F	F	٧

10) Um casal está no supermercado fazendo compras do mês e o marido diz para a esposa: "Vamos comprar iogurte ou melancia". A esposa negando a afirmação diz:

- a) Se vamos comprar iogurte, então não vamos comprar melancia.
- b) Não vamos comprar iogurte ou não vamos comprar melancia.
- c) Se não vamos comprar iogurte, então não vamos comprar melancia.
- d) Não vamos comprar iogurte e não vamos comprar melancia.
- e) Se não vamos comprar iogurte, então vamos comprar melancia.

- 10) Um casal está no supermercado fazendo compras do mês e o marido diz para a esposa: "Vamos comprar iogurte ou melancia". A esposa negando a afirmação diz:
 - a) Se vamos comprar iogurte, então não vamos comprar melancia.
 - b) Não vamos comprar iogurte ou não vamos comprar melancia.
 - c) Se não vamos comprar iogurte, então não vamos comprar melancia.
 - d) Não vamos comprar iogurte e não vamos comprar melancia.
 - e) Se não vamos comprar iogurte, então vamos comprar melancia.

Negação composta
<=>
p∨q ¬p∧¬q

11) A afirmação que é logicamente equivalente à afirmação: "Se faço capoeira, então sei me defender" é:

- a) Se não faço capoeira, então não sei me defender.
- b) Se sei me defender, então faço capoeira.
- c) Se não sei me defender, então não faço capoeira.
- d) Se não sei me defender, então faço capoeira.
- e) Se faço capoeira, então não sei me defender.

11) A afirmação que é logicamente equivalente à afirmação: "Se faço capoeira, então sei me defender" é:

- a) Se não faço capoeira, então não sei me defender.
- b) Se sei me defender, então faço capoeira.
- c) Se não sei me defender, então não faço capoeira.
- d) Se não sei me defender, então faço capoeira.
- e) Se faço capoeira, então não sei me defender.

Equivalência de Modus Tollens ("negar voltando")

- 12) Dois amigos estavam conversando sobre exercícios físicos quando um deles disse: "Se você fizer esteira, então você emagrecerá e melhorará o condicionamento físico". O outro amigo, para negar a afirmação, deverá dizer:
 - a) Faça esteira e você não emagrecerá e não melhorará o condicionamento físico.
 - b) Faça esteira e você não emagrecerá ou não melhorará o condicionamento físico.
 - c) Se você fizer esteira e não emagrecer, então não vai melhorar o condicionamento físico.
 - d) Faça esteira e você emagrecerá e não melhorará o condicionamento físico.
 - e) Se você fizer esteira e emagrecer, então não melhorará o condicionamento físico.

- 12) Dois amigos estavam conversando sobre exercícios físicos quando um deles disse: "Se você fizer esteira, então você emagrecerá e melhorará o condicionamento físico". O outro amigo, para negar a afirmação, deverá dizer:
 - a) Faça esteira e você não emagrecerá e não melhorará o condicionamento físico.
 - b) Faça esteira e você não emagrecerá ou não melhorará o condicionamento físico.
 - c) Se você fizer esteira e não emagrecer, então não vai melhorar o condicionamento físico.
 - d) Faça esteira e você emagrecerá e não melhorará o condicionamento físico.
 - e) Se você fizer esteira e emagrecer, então não melhorará o condicionamento físico.

```
F = Fazer esteira
```

E = Emagrecerá

M = Melhorará o condicionamento

```
F -> (E ^ M)
F ^ ~(E ^ M)
F ^ (~E v ~M)
```

13) Considere a sentença: "Se cometi um crime, então serei condenado". Uma sentença logicamente equivalente à sentença dada é:

- a) Não cometi um crime ou serei condenado.
- b) Se não cometi um crime, então não serei condenado.
- c) Se eu for condenado, então cometi um crime.
- d) Cometi um crime e serei condenado.
- e) Não cometi um crime e não serei condenado.

- 13) Considere a sentença: "Se cometi um crime, então serei condenado". Uma sentença logicamente equivalente à sentença dada é:
 - a) Não cometi um crime ou serei condenado.
 - b) Se não cometi um crime, então não serei condenado.
 - c) Se eu for condenado, então cometi um crime.
 - d) Cometi um crime e serei condenado.
 - e) Não cometi um crime e não serei condenado.

14) Considere a afirmação: Se Lara vence a eleição, então Isaac continua membro da comissão. Do ponto de vista lógico, uma afirmação equivalente é:

- a) Isaac continua membro da comissão e Lara vence a eleição.
- b) Lara não vence a eleição ou Isaac continua membro da comissão.
- c) Se Isaac continua membro da comissão, então Lara vence a eleição.
- d) Ou Isaac continua membro da comissão ou Lara vence a eleição.
- e) Se Lara não vence a eleição, então Isaac não continua membro da comissão.

- 14) Considere a afirmação: Se Lara vence a eleição, então Isaac continua membro da comissão. Do ponto de vista lógico, uma afirmação equivalente é:
 - a) Isaac continua membro da comissão e Lara vence a eleição.
 - b) Lara não vence a eleição ou Isaac continua membro da comissão.
 - c) Se Isaac continua membro da comissão, então Lara vence a eleição.
 - d) Ou Isaac continua membro da comissão ou Lara vence a eleição.
 - e) Se Lara não vence a eleição, então Isaac não continua membro da comissão.

15) Vou à academia todos os dias da semana e corro três dias na semana. Uma afirmação que corresponde à negação lógica da afirmação anterior é:

- a) Não vou à academia todos os dias da semana ou não corro três dias na semana.
- b) Vou à academia quase todos os dias da semana e corro dois dias na semana.
- c) Nunca vou à academia durante a semana e nunca corro durante a semana.
- d) Não vou à academia todos os dias da semana e não corro três dias na semana.
- e) Se vou todos os dias à academia, então corro três dias na semana.

- 15) Vou à academia todos os dias da semana e corro três dias na semana. Uma afirmação que corresponde à negação lógica da afirmação anterior é:
 - a) Não vou à academia todos os dias da semana ou não corro três dias na semana.
 - b) Vou à academia quase todos os dias da semana e corro dois dias na semana.
 - c) Nunca vou à academia durante a semana e nunca corro durante a semana.
 - d) Não vou à academia todos os dias da semana e não corro três dias na semana.
 - e) Se vou todos os dias à academia, então corro três dias na semana.

16) A frase "A vítima fez boletim de ocorrência ou o acidente foi grave" é logicamente equivalente a:

- a) A vítima não fez boletim de ocorrência ou o acidente não foi grave.
- b) A vítima não fez boletim de ocorrência e o acidente não foi grave.
- c) A vítima fez boletim de ocorrência se, e somente se, o acidente foi grave.
- d) Se a vítima não fez boletim de ocorrência, então o acidente foi grave.
- e) Se a vítima fez boletim de ocorrência, então o acidente não foi grave.

16) A frase "A vítima fez boletim de ocorrência ou o acidente foi grave" é logicamente equivalente a:

- a) A vítima não fez boletim de ocorrência ou o acidente não foi grave.
- b) A vítima não fez boletim de ocorrência e o acidente não foi grave.
- c) A vítima fez boletim de ocorrência se, e somente se, o acidente foi grave.
- d) Se a vítima não fez boletim de ocorrência, então o acidente foi grave.
- e) Se a vítima fez boletim de ocorrência, então o acidente não foi grave.

17) A frase "Se Larissa trabalha, então ganha dinheiro" equivale logicamente à frase:

- a) "Larissa trabalha e ganha dinheiro".
- b) "Larissa trabalha ou ganha dinheiro".
- c) "Larissa trabalha ou não ganha dinheiro".
- d) "Larissa não trabalha ou ganha dinheiro".
- e) "Larissa não trabalha ou não ganha dinheiro".

17) A frase "Se Larissa trabalha, então ganha dinheiro" equivale logicamente à frase:

- a) "Larissa trabalha e ganha dinheiro".
- b) "Larissa trabalha ou ganha dinheiro".
- c) "Larissa trabalha ou não ganha dinheiro".
- d) "Larissa não trabalha ou ganha dinheiro".
- e) "Larissa não trabalha ou não ganha dinheiro".

<=>

A -> B ~A ∨ B Condicional / cond

18) A negação de "Todos os Argentinos gostam de churrasco" é:

- a) "Apenas um Argentino gosta de churrasco."
- b) "Pelo menos um Argentino gosta de churrasco."
- c) "Existem Argentinos que gostam de churrasco."
- d) "Existem Argentinos que não gostam de churrasco."
- e) "Nenhum Argentino gosta de churrasco."

18) A negação de "Todos os Argentinos gostam de churrasco" é:

- a) "Apenas um Argentino gosta de churrasco."
- b) "Pelo menos um Argentino gosta de churrasco."
- c) "Existem Argentinos que gostam de churrasco."
- d) "Existem Argentinos que não gostam de churrasco."
- e) "Nenhum Argentino gosta de churrasco."

Quantificadores	Negação
Todo / Todos	Existe, Algum, alguém (não)
Existe, Alguém	Todo / Todos (não)
Nenhum	Algum

19) De acordo com raciocínio lógico matemático a frase "O Uruguai não foi campeão ou o presidente foi ao comício" é equivalente a frase:

- a) O Uruguai foi campeão ou o presidente não foi ao comício.
- b) Se o Uruguai foi campeão, então o presidente foi ao comício.
- c) O Uruguai não foi campeão e o presidente foi ao comício.
- d) O Uruguai foi campeão se, e somente se o presidente não foi ao comício.
- e) Ou o Uruguai foi campeão ou o presidente foi ao comício.

- 19) De acordo com raciocínio lógico matemático a frase "O Uruguai não foi campeão ou o presidente foi ao comício" é equivalente a frase:
 - a) O Uruguai foi campeão ou o presidente não foi ao comício.
 - b) Se o Uruguai foi campeão, então o presidente foi ao comício.
 - c) O Uruguai não foi campeão e o presidente foi ao comício.
 - d) O Uruguai foi campeão se, e somente se o presidente não foi ao comício.
 - e) Ou o Uruguai foi campeão ou o presidente foi ao comício.

28) Verifique, a partir da construção de tabelas-verdade, se a negação de cada proposição abaixo está correta.

a)

Proposição: p v q

Negação: ~p -> ~q

b)

Proposição: q -> r

Negação: ~q ^ r

28) Verifique, a partir da construção de tabelas-verdade, se a negação de cada proposição abaixo está correta.

a)

Proposição: p v q

Negação: ~p -> ~q

Não está correta

р	q	(p v q)
>	٧	V
٧	F	V
F	٧	V
F	F	F

р	q	~p	~q	~p -> ~q
>	>	H	H	V
٧	F	F	٧	V
F	٧	٧	F	F
F	F	>	>	V

b)

Proposição: q -> r

Negação: ~q ^ r

Não está correta

q	r	(q -> r)
>	<	V
٧	F	F
F	٧	V
F	F	V

q	r	~q	~q ^ r
٧	٧	F	F
٧	F	F	F
F	٧	٧	V
F	F	V	F