IN THE SPECIFICATION:

Please amend the specification as follows:

Please delete Table 1 on page 21 of the specification as filed, and replace it with the following Table 1:

TABLE 1

Primer Sequences Used for Mutation Analysis of SCN2

Fillier Sequences Used for Mutation Analysis of SUN2A							
Exon	Forward Primer	Davanaa Duimaan	a.	SEQ			
<u>Enton</u>	roi waid rimei	Reverse Primer	<u>Size</u>	$\overline{\mathrm{ID}}$			
			<u>(bp)</u>	NO:			
5'UTR	<u>ACAGGAAGTTAGGTGTGGTC</u>	GAGAAGCATCACAGAG	206	1,2			
<u></u>	TGCTGTATCTCAGTGCTCAG	TCATCATCCTCATCCTTGCG	$\frac{200}{281}$	$\frac{1,2}{3,4}$			
<u>1b</u>	GCTAAGAGACCCAAAC	TAGGCAGTGAAGGCAACTTG	$\frac{201}{201}$	5, 4 5, 6			
	GGCACTATTTTACAGGGC	CATAACATTGCCAACCACAG	$\frac{201}{325}$	<u>3, 8</u> 7, 8			
3	TGGTGAAGGCATGGTAGT	ATTGAGGAGGTCTCAAGGTG	239	9, 10			
$\frac{-}{4}$	ACCAACCTGGAAGTGTCT	ATAGTATAGGCTCCCACCAG	<u>239</u> 300	11, 12			
2 3 4 5 5n	AGGCCCCTTATATCTCCAAC	TAGCAACAAGGCTTCTGCAC	244	$\frac{11, 12}{13, 14}$			
<u>5n</u>	GATGAAAGACCAAGGAAGAC	TGGAGATATAAGGGGCCTAG	$\frac{244}{200}$	15, 14 15, 16			
<u>6a</u>	TTCCAGGACAAGCTCATG	GGAAGAATTATCTGGAGGCCA	<u>249</u>	17, 18			
<u>6b</u>	TTGTTCATGGGCAACCTACG	GTCTAAGTCACTTGATTCAC	$\frac{219}{271}$	$\frac{17, 10}{19, 20}$			
<u>7</u>	GTGAGCTTTGCCACCTAAAC	TGAGAGTCACCGTGAAGTAG	$\frac{271}{280}$	$\frac{15,20}{21,22}$			
8	ACCAATTAGCAGACTTGCCG	CTACAGCAATTCTCTTGAG	<u>264</u>	$\frac{21,22}{23,24}$			
7 <u>8</u> 9	CTCAAGAGAATTGCTGTAG	AGGACCGTATGCTTGTTCAC	326	$\frac{25,24}{25,26}$			
10a	TTCCACATACTTTGCGCCCTTC	GCTGTCTTCAGATTCCGA	235	$\frac{23,20}{27,28}$			
<u>10b</u>	CAGAAAGAACAGTCTGGAG	CTCTGAAAGCATTGTGCCA	$\frac{256}{256}$	$\frac{27,20}{29,30}$			
<u>11a</u>	CCACATGTCCAATGAC	CACGAACAGAGAGTCTCTTC	296	$\frac{25,30}{31,32}$			
<u>11b</u>	TGATGAGCACAGCACCTTTG	CACCAGTCACAACTCTCTTC	$\frac{290}{281}$	$\frac{31,32}{33,34}$			
<u>12</u>	CTTTGGGCTTTGCTGCTTTC	AAGTAACTGTGACGCAGGAC	$\frac{222}{222}$	$\frac{35,36}{35,36}$			
<u>13a</u>	CCTCCAGCAGATTAACCCAT	CAGGTCAACAAATGGGTCCA	268	$\frac{37,38}{37,38}$			
<u>13b</u>	<u>ACACCTTGTCAACCTGGTTG</u>	GATGTCAAGATATACATGGCC	258	39, 40			
<u>14</u>	<u>CCCGTGTTTCAAGAGTATTTGCTC</u>	GCTTATGAACACTCCCAG	252	41, 42			
<u>15a</u>	<u>GCAGAGCATTAACACTGTTC</u>	AGCGTGGGAGTTCACAATCA	241	43, 44			
<u>15b</u>	GCATGCAGCTCTTTGGTAAG	CCCTTCAGTTGAACACAC	299	45, 46			
<u>16a</u>	<u>CCTGTTTTTCCTGCTGTGTTTC</u>	GCCACTAGTAGTTCCATTTCCGTC	336	$\frac{47,48}{}$			
<u>16b</u>	<u>GACAGCTGTATTTCCAACC</u>	AACAGGAAGGAAACACGC	346	49, 50			
<u>17</u>	CTGACCTTTACCAAAGCGGA	GAGGATACTCAAGACCAC	318	$\overline{51, 52}$			
<u>18</u>	TGAATCTCCCACCAACAC	GAGTGGATCATGCATCACCT	252	53 , 54			
<u>19</u>	<u>CTTAGGCACCTGATAAGAGC</u>	AAAGCAGCAAAGTGCAGC	302	55, 56			
<u>20</u>	CATTGCATAGAGCAAGGC	GGTACAAAGTGTCAGTCTGCTCTC	263	57, 58			
<u>21a</u>	<u>TTTCCTTCTCATCCTGTGCC</u>	CTGGCAGTTTGATTGCTCTC	240	59, 60			
<u>21b</u>	<u>AGCGTGGTCAACAACTACAG</u>	<u>GCCATTCTAACAGGTGGA</u>	217	61, 62			
<u>22</u>	<u>GCCCCAAAAGTGAATAC</u>	<u>GCGCCAATTTCCCTCTAACTAGAC</u>	224	63, 64			
<u>23</u>	GGGCCCAGAGATTAAAACATGC	CAGAGCAAGGATGAAG	272	65, 66			
<u>24</u>	<u>GAATGAAATGTGGGAGCC</u>	TTCGGGCTGTGAAACGGTTA	266	67, 68			
<u>25a</u>	TTACCTCAGCTCTCCAATCACTGG	TGGTCATCGGTTTCCACCAT	292	69, 70			
<u>25b</u>	<u>TCATCTGCCTTAACATGGTC</u>	GGGAGTTTGGGATGAATG	<u>311</u>	71, 72			
<u>26a</u>	GTACCTAACTGTCCTGTTCAC	TAAACAACGCAGGAAGGGAC	<u>270</u>	73, 74			
<u>26b</u>	CACGCTGCTCTTTGCTTTGA	<u>GATCTTTGTCAGGGTCACAG</u>	<u> 269</u>	75, 76			
<u>26c</u>	<u>GGATGGATTGCTAGCACCTA</u>	<u>TCGCATCGGGATCAAACTTC</u>	<u>281</u>	<u>77, 78</u>			

<u>26d</u>	<u>AGCCTCTGAGTGAGGATGAC</u>	TCCATCTGTATTCGAAGGGC	277	79, 80
<u>26e</u>	<u>GTGAGAGTGGAGAGATGGAT</u>	TATCATACGAGGGTGGAGAC	330	81, 82
<u>26f</u>	AACCGATATGACGCCTTCCA	GGTCTCTGTCTTGTTATAGGC	288	83, 84

Note: Primer sequences are listed 5' to 3'. Due to the large size of exons 1, 6, 10, 11, 13, 15, 16, 21, 25 and 26, the exons were split into two or more overlapping amplicons. The neonatally expressed exon 5 is represented as exon 5n.