YOLOv11n-Segmentation Model

It focuses on detecting **blue color changes (dots)** within a **pink patch** using **YOLOv11n-seg** for instance segmentation. The objective is to localize blue dot-like irregularities inside circular pink regions, useful for real-time monitoring of chemical changes or reactions on paper.

Dataset Details

Manual Dataset Preparation

- **Pink Paper**: Circular patches were manually cut from pink-coloured paper.
- **Dot Creation**: Blue watercolour droplets were placed within the pink circles, resulting in **irregular-shaped blue marks**.
- Photography Setup: Images were captured on a plain background under varying lighting conditions to ensure diversity and robustness in the dataset. This helps the model generalize better across different real-world scenarios.

Annotation

- Tool Used: Roboflow
- **Project Type**: Instance Segmentation
- **Annotation Method**: Smart Polygon Tool (per-pixel blue dot region inside pink patch)
- Dataset Split

Set Count Percentage

Train Set 159 88% Valid Set 15 8% Test Set 7 4%

Preprocessing: The preprocessing steps included Auto-Orient, which was successfully applied, and Resize, where all images were stretched to 640×640 pixels, preserving non-uniform aspect ratios.

Augmentations

Each training image generates **3 outputs** via augmentation:

Augmentation Type	Range
Rotation	±45°
Shear	$\pm 13^{\circ}$ Horizontal, $\pm 14^{\circ}$ Vertical
Saturation	-55% to +55%
Brightness	-36% to +36%
Exposure	-27% to +27%

These augmentations ensure the model learns to generalize across various lighting, orientation, and color shift conditions.

Model & Training Setup

Command Used: yolo segment train data=data.yaml model=yolo11n-seg.yaml pretrained=yolo11n-seg.pt epochs=100 imgsz=1024 batch=32

Configuration

Setting	Value
Model	yolo11n-seg.yaml (2.84M params)
Pretrained	yolo11n-seg.pt
Epochs	100
Image Size	1024
Batch Size	32
Device	GPU (CUDA)
Augmentations	s Enabled

Training Results Summary

Metric	Value
Box mAP@0.5	0.985
Segmentation mAP@0.5	0.971
Segmentation mAP@0.5:0.95	0.712

- Loss steadily decreased.
- Accuracy peaked in last 10 epochs.
- Best model saved as runs/segment/train/weights/best.pt.

Final Outputs

Output File / Folder

Description

train_batch*.jpg Sample predictions during training

results.csv Epoch-wise logs

confusion_matrix.png, F1_curve.png, PR_curve.png Evaluation metrics

best.pt / last.pt Trained weights

MODEL INFERENCE

The MAIN.py Python script utilizes a YOLOv11 segmentation model to detect blue dots inside pink paper regions in both images and videos. It supports dynamic annotation visualization and saves the output with detected masks.

Features

- Accepts both **image** and **video** file inputs.
- Supports **YOLOv11 segmentation** format with retina_masks=True for fine-grained instance masks.
- Automatically saves **annotated output** images or videos.
- Displays real-time detection results during video processing.

Dependencies

- ultralytics (YOLOv11)
- OpenCV (cv2)
- os for path and file checks

Working Mechanism

1. Model Loading:

Loads the pretrained YOLOv11n segmentation model from: train/weights/best.pt

2. Image Processing:

- Performs inference.
- Applies **segmentation masks** (without bounding boxes).
- Saves and displays the annotated output image.

3. Video Processing:

- o Reads video frame-by-frame.
- o Runs YOLOv11 segmentation on each frame.
- o Applies mask overlays and writes annotated frames to an output .avi file.
- o Allows early exit with the 'q' key.

Example Output

- output_detected.jpg for image input
- output_detected.avi for video input