SUMMATIVE ASSISEMENT - 1, JANUARY - 2022

MATHEMATICS PAPER - 1

(Modal Paper – 5)

Class: 9th Max. Marks: 40 Time: 2hr 45 min

Instructions to students:

- 1. There are four sections and 33 questions in this paper.
- 2. Answers should be written in answer sheets.
- 3. There is an internal choice in Section Iv
- 4. Write all questions visible and legibly.
- 5. 15 Minutes are given for reading the question paper and 2hr 30 min given for writing answers.

Section - I

Note: 1. Answer all the questions

2. Each question carries 1 mark.

4×1=4 M

- 1. Show that every integer is a rational number by an example?
- 2. Write two points which are at 4 units distance from X axis and 5 units distance from

Y – axis?

- 3. Factorize: $49x^2 64y^2$
- 4. Find zero of the polynomial 2x + 5?

Section - II

Note: 1. Answer all the questions.

2. Each question carries 2 marks.

5 × 2 = 10 M

- 5. Find the value of $\sqrt{3}$ upto 3 decimal places.
- 6. Check whether the polynomial $P(y) = 4y^3 + 4y^2 y 1$ is a multiple of (2y + 1)?
- 7. Give possible expressions for the length and breadth of a rectangle whose area is $x^2 3x + 4$
- 8. Explain about cartesian plane with a diagram?
- 9. Area of a rectangle part is 180 m². if its width is $5\sqrt{3}$ m, find its perimeter?

Section - III

Note: 1. Answer all the questions.

- 2. Each questions carries 4 marks.
- 3. There is internal choice for each question.

 $4 \times 4 = 16 M$

10. Simplify:
$$\frac{1}{7+4\sqrt{3}} + \frac{1}{2+\sqrt{5}}$$
.

OR

Prove the following with an example.

- A) Sum of two irrational numbers is need not be an irrational number.
- B) Product of two irrational numbers is need not be an irrational number.
- 11. find the value of 'k' if 2x 3 is a factor of $2x^3 9x^2 + x + K$?

OR

Factorize: $x^3 - 23x^2 + 142x + 120$.

12. if $x^2 - x - 6$ and $x^2 + 3x - 18$ have a common factor (x - a) then find the value of 'a'?

OR

Find the value of 'a' and 'b' so that the polynomial $x^3 + 10x^2 + ax + b$ is exactly divisible by (x - 1) and (x - 2).

13. Visualize 2.874 on the number line, using successive magnification

OR

Plot six points on a coordinate plane whose sum of coordinates is five

Note: 1. Answer all questions

2. Each	question	carries	1/2	mark.
---------	----------	---------	-----	-------

 $20 \times \frac{1}{2} = 10 \text{ M}$

14.

A) Q₁

B) Q₂

C) Q₃

D) Q₄

15. ax² + bx + c represents a quadratic polynomial if _____

A) a ≠ 0

C) $c \neq 0$

D) all the above

16. if m < n, then $\frac{a^m}{a^n} =$ _____

A) a^{m-n}

B) a^{n-m}

C) $\frac{1}{a^{n-m}}$

D) $\frac{1}{a^{m-n}}$

17. Choose the correct answer following.

Statement P: If A = 0.525252...... and B = 0.010011...... then A is rational and B is irrational Statement Q: A rational number can be expressed as a terminal decimal or non-terminating repeating decimal.

A) P true, Q false B) P false, Q true

C) Both P, Q are true D) Both P, Q are false

18. The point (3, 0) lies on _____

19. If $\frac{x}{y} + \frac{y}{x} = -1$, then the value of $x^3 - y^3 =$ ______

20. Assertion: If x < 0 and y < 0, then the point (-x, -y) lies in Q_1 .

Reason : in Q_1 , both abscissa and ordinate are positive.

- A) Both Assertion and Reason are true. Reason is supporting the Assertion.
- B) Both Assertion and Reason are true. Reason does not support the Assertion.
- C) Assertion is true. Reason is false
- D) Assertion is false. Reason is true.
- 21. Match the following

A. (343)^{1/3}

p) 6

B. $(64)^{1/2}$

) q) 7

C. $3\sqrt[5]{32}$

() r)8

A) A - p, B - q, C - r B) A - q, B - r, C - p C) A - q, B - p, C - r D) A - r, B - p, C - q

- 22. The coefficient of x^3 in the polynomial $3x^2 + 5x 1$ is _____
- 23. If $\frac{p}{a}$ is a terminating decimal, the _____ is a prime factor of 'q'.

C) 2 or 5

D) 2 and 5

24. If sum of coefficient of all variables in a polynomial is zero, _____ is a factor of polynomial

A) x + 1

B) x - 1

C) x

D) $x^2 - 1$

25. The identity used in the simplification of 101 × 101 is _____

A) $(a + b)^2 = a^2 + 2ab + b^2$

C) $(a - b)^2 = a^2 - 2ab + b^2$

B)
$$(a + b)(a - b) = a^2 - b^2$$

D) None of these.

- 26. A factor of xⁿ 1 is _____
 - A) x-1
- B) x + 1
- C) n
- D) x

- 27. Who proved $\sqrt{2}$ as irrational number?
 - A) Euclid
- B) Pythagoreans
- C) Rene Descart
- D) Theodorus

- 28. The value of $\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}} =$ _____
 - A) $\frac{4}{3}$
- B) 4
- C) 3
- D) $\frac{2}{4}$

- 29. If $x + \frac{1}{x} = 2$, then $x^2 + \frac{1}{x^2} =$ _____
 - A) 25
- B) 10
- C) 23
- D) 27
- 30. The ordinate of any point on X axis is _____
- 31. The following diagram represents _____

- A) $\sqrt{2}$
- B) $\sqrt{3}$
- C) √5
- D) $\sqrt{10}$
- 32. Every point on number line represents _____ number.
 - A) Real
- B) rational
- C) irrational
- D) integer

- 33. $\frac{a^2-b^2}{a-b} =$ _____
 - A) a b
- B) a + b
- C) 2
- D) can't say