Table 2 (full) Compilation of correlation estimates between individual measures of inbreeding from empirical data in scenarios where molecular estimators are obtained assuming allele frequencies from the current generation

	F _{VR1}	F_{VR2}	F_{YA2}	Flhi or Fhom	F _{LH2}	Froн
FPED	0.21	-0.09	0.42	0.50	0.32	0.50
	0.13^2 , 0.39^2 , 0.10^3 ,	$0.21^6, -0.26^8,$	$0.47^3, 0.72^4, 0.29^5, 0.26^5, 0.68^8,$	$0.66^1, 0.10^2, 0.35^2, 0.77^3, 0.67^4,$	0.32^{17}	$0.63^1, 0.07^2, 0.37^2, 0.77^4, 0.53^5,$
	$0.35^{12}, 0.07^{11}, 0.23^{18}$	$-0.21^8, -0.21^8,$	$0.43^8, 0.32^8, 0.43^{12}, 0.15^{17}$	0.45^5 , 0.41^5 , 0.45^6 , 0.68^7 , 0.78^8 ,		$0.51^5, 0.44^6, 0.73^8, 0.46^8, 0.49^8,$
		$-0.01^{11}, -0.08^{16},$		$0.60^8, 0.37^8, 0.32^{11}, 0.59^{15}, 0.31^{16},$		$0.37^{11}, 0.92^{12}, 0.60^{15}, 0.35^{16},$
		-0.07^{17}		0.43 ¹⁷		$0.47^{17}, 0.25^{18}$
F _{VR1}		0.91	0.84	0.42		0.57
		$0.83^9, 0.94^{10},$	$0.88^3, 0.71^9, 0.92^{10}, 0.84^{12},$	1.0^2 , 0.28^3 , 0.11^9 , 0.63^{10} ,		$0.99^2, -0.13^{11}, 0.73^{12}, 0.70^{18}$
		$0.97^{11}, 0.88^{13}$	0.87^{13}	$-0.13^{11}, 0.62^{13}$		
F _{VR2}			0.52	-0.21	-0.64	0.01
			$0.29^8, 0.42^8, 0.54^8, 0.26^9,$	$0.27^6, -0.61^8, -0.48^8, -0.95^8,$	-0.64^{17}	$0.22^6, 0.09^8, 0.14^8, 0.003^8,$
			$0.75^{10}, 0.66^{13}, 0.72^{17}$	$-0.38^9, 0.35^{10}, -0.32^{11}, 0.36^{13},$		$-0.26^{11}, 0.16^{14}, -0.21^{16}, -0.07^{17}$
				$-0.23^{16}, -0.06^{17}$		
F_{YA2}				0.64	-0.04	0.78
				0.70^3 , 0.92^4 , 0.72^5 , 0.66^5 , 0.58^8 ,	-0.04^{17}	$0.87^4, 0.65^5, 0.62^5, 0.95^8, 0.92^8,$
				0.60^8 , -0.24^8 , 0.74^9 , 0.88^{10} , 0.91^{13} ,		$0.81^8, 0.92^{12}, 0.77^{14}, 0.50^{17}$
				0.54 ¹⁷		
F_{LH1} or					0.72	0.83
Fном					0.72^{17}	$0.97^1, 0.99^2, 0.86^4, 0.90^5, 0.91^5,$
						$0.80^6, 0.71^8, 0.76^8, 0.31^8, 0.90^{11},$
						$0.80^{14}, 0.86^{15}, 0.95^{16}, 0.93^{17}$
F _{LH2}						0.66
						0.66^{17}

The compilation is not intended to be exhaustive, but to give a general picture of the empirical correlations found in different studies with several marker-based estimators of inbreeding: F_{VR1} and F_{VR2} : Estimators described by VanRaden [19]. F_{YA1} and F_{YA2} : Estimator proposed by Yang et al. [36] and modified by Zhang et al. [34]. F_{LH1} and F_{LH2} : Estimators derived from Li and Horvitz [16]. F_{HOM} : Average marker homozygosity. Correlations with estimates from ROH are included for completeness. Averages are shown at the start of each cell in bold face.

REFERENCES: ¹Saura et al. ([14]; Guadyerbas pig strain). ²Yoshida et al. ([51], pure lines of farmed coho salmon). ³Alemu et al. ([42]; Dutch Holstein cattle). ⁴Bérénos et al. ([49]; Soay sheep). ⁵Pryce et al. ([13]; Holstein and Jersey dairy cattle). ⁶Rodríguez-Ramilo et al. ([52]; Rabbits). ⁵Saura et al. ([66]; Iberian pigs). ⁵Zhang et al. ([39], Holstein, Jersey and Danish Red Cattle breeds, sequence data). ⁰Morales-González et al. ([43]; Turbot). ¹⁰Solé et al. ([50]; Belgian Blue cattle). ¹¹Brito et al. ([41]; Goat breeds). ¹²Polak et al. ([57]; Polish cold-blooded horses). ¹³Villanueva et al. ([12]; Guadyerbas pig strain). ¹⁴Nosrati et al. ([58]; Average for 68 sheep populations). ¹⁵Antonios et al. ([53]; Dairy Sheep). ¹⁶Shi et al. ([54]; Pigs). ¹⁵Schiavo et al. ([55]; seven Pig breeds). ¹³Adams et al ([56]; three Turkey lines).