PAR_EL1, Physical Address Register

The PAR EL1 characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully, or fault information if the instruction did not execute successfully.

Configuration

AArch64 System register PAR_EL1 bits [63:0] are architecturally mapped to AArch32 System register PAR[63:0].

AArch64 System register PAR_EL1 is a 128-bit register that can also be accessed as a 64-bit value. If it is accessed as a 64-bit register, accesses read and write bits [63:0] and do not modify bits [127:64].

Single stage AT Instructions (ATS1*) report their result using the 128-bit format of PAR_EL1 if the translation system that they target uses VMSAv9-128.

ATS12* Instructions report their result using the 128-bit format PAR EL1 if either of the following is true:

- if stage 2 translations are enabled and the stage 2 translation system uses VMSAv9-128.
- if stage 2 translations are disabled and the stage 1 translation system uses VMSAv9-128.

Otherwise, 64-bit format of PAR EL1 is used.

Attributes

PAR EL1 is a:

- 128-bit register when FEAT_D128 is implemented, GetPAR EL1 D128() == 1 and GetPAR EL1 F() == 0
- 128-bit register when FEAT_D128 is implemented, GetPAR_EL1_D128() == 1 and GetPAR_EL1_F() == 1
- 128-bit register when FEAT_D128 is implemented, GetPAR_EL1_D128() == 0 and GetPAR_EL1_F() == 0
- 128-bit register when FEAT_D128 is implemented, GetPAR EL1 D128() == 0 and GetPAR EL1 F() == 1

- 64-bit register when FEAT_D128 is not implemented and GetPAR EL1 F() == 0
- 64-bit register when FEAT_D128 is not implemented and GetPAR_EL1_F() == 1

Field descriptions

When FEAT_D128 is implemented, GetPAR_EL1_D128() == 1 and GetPAR_EL1_F() == 0:

	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	111	110	109	108	107	106	105	104	103	1021
				RE	S 0																	PA				
	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
										P	A												RES	0		
ľ	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
				AT	TR																	RES0				
ľ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6
		RES0									NSE	IMPLEMENTATION DEFINED	NS	S	Н											

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

Bits [127:120]

Reserved, res0.

PA, bits [119:76]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[55:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [75:65]

Reserved, res0.

D128, bit [64]

Indicates if the PAR_EL1 uses the 128-bit format.

D128	Meaning
0b1	PAR_EL1 uses the 128-bit format.
	PAR_EL1[127:0] holds valid data.

• On a Warm reset, this field resets to an architecturally unknown value.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

The value returned in this field can be the resulting attribute that is actually implemented by the implementation, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

Note

The attributes presented are consistent with the stages of translation applied in the address translation instruction. If the instruction performed a stage 1 translation only, the attributes are from the stage 1 translation. If the instruction performed a stage 1 and stage 2 translation, the attributes are from the combined stage 1 and stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [55:12]

Reserved, res0.

NSE, bit [11] When FEAT RME is implemented:

Reports the NSE attribute for a translation table descriptor from the EL3 translation regime.

For a description of the values derived by evaluating NS and NSE together, see PAR EL1.NS.

For a result from a Secure, Non-secure, or Realm translation regime, this bit is unknown.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

IMPLEMENTATION DEFINED, bit [10]

implementation defined.

NS, bit [9]

When FEAT_RME is implemented:

Non-secure. The NS attribute for a translation table descriptor from a Secure translation regime, a Realm translation regime, and the EL3 translation regime.

NS	Meaning
0b0	When $NSE == 0$: Secure.
	When $NSE == 1$: Root.
0b1	When $NSE == 0$: Non-secure.
	When $NSE == 1$: Realm.

For a result from a Secure translation regime, when <u>SCR_EL3</u>.EEL2 is 1, this bit reflects the Security state of the intermediate physical address space of the translation for the instructions:

- In AArch64 state: <u>AT S1E1R</u>, <u>AT S1E1W</u>, <u>AT S1E1RP</u>, <u>AT S1E1WP</u>, <u>AT S1E0R</u>, and <u>AT S1E0W</u>.
- In AArch32 state: <u>ATS1CPR</u>, <u>ATS1CPW</u>, <u>ATS1CPRP</u>, <u>ATS1CPWP</u>, <u>ATS1CUR</u>, and <u>ATS1CUW</u>.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is unknown.

For a result from an S1E1 or S1E0 operation on the Realm EL1&0 translation regime, this bit is unknown.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT_RME is not implemented:

Non-secure.

The NS attribute for a translation table descriptor from a Secure translation regime.

For a result from a Secure translation regime, when <u>SCR_EL3</u>.EEL2 is 1, this bit reflects the Security state of the intermediate physical address space of the translation for the instructions:

- In AArch64 state: <u>AT S1E1R</u>, <u>AT S1E1W</u>, <u>AT S1E1RP</u>, <u>AT S1E1WP</u>, AT S1E0R, and AT S1E0W.
- In AArch32 state: <u>ATS1CPR</u>, <u>ATS1CPW</u>, <u>ATS1CPRP</u>, <u>ATS1CPWP</u>, ATS1CUR, and ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is unknown.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SH, bits [8:7]

Shareability attribute, for the returned output address.

SH	Meaning
0b00	Non-shareable.
0b01	Outer Shareable.
0b10	Inner Shareable.
0b11	Reserved.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

Note

This field returns the value 0b10 for:

- Any type of Device memory.
- Normal memory with both Inner Non-cacheable and Outer Noncacheable attributes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [6:1]

Reserved, res0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F	Meaning
0b0	Address translation completed
	successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT_D128 is implemented, GetPAR_EL1_D128() == 1 and GetPAR EL1 F() == 1:

127	126	5125	124	123	122	121	120	119	118	117	116	115	114	113	112	111	110	109	108	10
																	RES0			
95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75
																F	RES0			
63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
	ΙΝ	1PLE	ME	NT	ATI(NC		IMPL	EMI	ENT/	OITA	M PI	EME	NTA	10IT	VI				RI
			EFI	NE	D				DEF	NEC)		DEF	INED)					N
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11
								RE	S 0							DirtyBit	Overlay	TopLevel	AssuredOnl	yRES

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

Bits [127:65]

Reserved, res0.

D128, bit [64]

Indicates if the PAR EL1 uses the 128-bit format.

D128	Meaning
0b1	PAR_EL1 uses the 128-bit format.
	PAR_EL1[127:0] holds valid data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [63:56]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [55:52]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [51:48]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [47:16]

Reserved, res0.

DirtyBit, bit [15]

When FEAT_S1PIE is implemented or FEAT_S2PIE is implemented:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission, this field holds information about the fault.

DirtyBit	Meaning
0b0	The Permission Fault is not
	due to nDirty State or Dirty
	State.
0b1	The Permission Fault is due to
	nDirty State or Dirty State.

For any other fault or Access, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Overlay, bit [14] When FEAT_S1POE is implemented or FEAT_S2POE is implemented:

Overlay flag. If a memory access generates a Data Abort for a Permission fault, this field holds information about the fault.

Overlay	Meaning
0b0	The Data Abort is due to Base
	Permissions.
0b1	The Data Abort is due to
	Overlay Permissions.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TopLevel, bit [13] When FEAT_THE is implemented:

Fault due to TopLevel. Indicates if the fault was due to TopLevel.

TopLevel	Meaning
0b0	Fault is not due to TopLevel.
0b1	Fault is due to TopLevel.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AssuredOnly, bit [12] When FEAT_THE is implemented:

AssuredOnly flag.

If a memory access generates a Stage 2 Data Abort, this field holds information about the fault.

AssuredOnly	Meaning
0b0	The Data Abort is not
	due to AssuredOnly.
0b1	The Data Abort is due to
	AssuredOnly.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [11]

Reserved, res1.

Bit [10]

Reserved, res0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

	S	Meaning
--	---	---------

0b0	Translation aborted because of a
0.00	fault in the stage 1 translation.
	5
0b1	Translation aborted because of a
	fault in the stage 2 translation.

• On a Warm reset, this field resets to an architecturally unknown value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [7]

Reserved, res0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

FST	Meaning	Applies when
00000000	Address size	
	fault, level 0	
	of	
	translation	
	or	
	translation	
	table base	
	register.	
0b000001	Address size	
	fault, level 1.	
0b000010	Address size	
	fault, level 2.	
0b000011	Address size	
	fault, level 3.	
0b000100	Translation	
	fault, level 0.	
0b000101	Translation	
	fault, level 1.	
0b000110	Translation	
	fault, level 2.	
0b000111	Translation	
	fault, level 3.	

0b001001	Access flag fault, level 1.	
0b001010	Access flag fault, level 2.	
0b001011	Access flag fault, level 3.	
0b001000	Access flag fault, level 0.	When FEAT_LPA2 is implemented
0b001100	Permission fault, level 0.	When FEAT_LPA2 is implemented
0b001101	Permission fault, level 1.	
0b001110	Permission fault, level 2.	
0b001111	Permission fault, level 3.	
0b010010	Synchronous External abort on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented
0b010011	Synchronous External abort on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented
0b010100	Synchronous External abort on translation table walk or hardware update of translation table, level 0.	

0b010101	Synchronous External abort on translation table walk or hardware update of translation table, level 1.	
0b010110	Synchronous External abort on translation table walk or hardware update of translation table, level 2.	
0b010111	Synchronous External abort on translation table walk or hardware update of translation table, level 3.	
0b011011	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented and FEAT_RAS is not implemented

0b011100	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.	When FEAT_RAS is not implemented
0b011101	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.	When FEAT_RAS is not implemented
0b011110	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.	When FEAT_RAS is not implemented
0b011111	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.	When FEAT_RAS is not implemented

0b100010	Granule Protection Fault on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented and FEAT_RME is implemented
0b100011	Granule Protection Fault on translation table walk or hardware update of translation table, level -1.	When FEAT_RME is implemented and FEAT_LPA2 is implemented
0b100100	Granule Protection Fault on translation table walk or hardware update of translation table, level 0.	When FEAT_RME is implemented
0b100101	Granule Protection Fault on translation table walk or hardware update of translation table, level 1.	When FEAT_RME is implemented
0b100110	Granule Protection Fault on translation table walk or hardware update of translation table, level 2.	When FEAT_RME is implemented

0b100111	Granule Protection Fault on translation table walk or hardware update of translation table, level 3.	When FEAT_RME is implemented
0b101000	Granule Protection Fault, not on translation table walk or hardware update of translation table.	When FEAT_RME is implemented
0b101001	Address size fault, level -1.	When FEAT_LPA2 is implemented
0b101010	Translation fault, level -2.	When FEAT_D128 is implemented
0b101011	Translation fault, level -1.	When FEAT_LPA2 is implemented
0b101100	Address Size fault, level -2.	When FEAT_D128 is implemented
0b110000	TLB conflict abort.	_
0b110001	Unsupported atomic hardware update fault.	When FEAT_HAFDBS is implemented
0b111101	Section Domain fault, from an AArch32 stage 1 EL1&0 translation regime using Short- descriptor translation table format.	When EL1 is capable of using AArch32

Page Domain fault, from an AArch32 stage 1 EL1&0 translation regime using Short- descriptor translation	When EL1 is capable of using AArch32
table format.	
	Domain fault, from an AArch32 stage 1 EL1&0 translation regime using Short- descriptor translation

• On a Warm reset, this field resets to an architecturally unknown value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F	Meaning
0b1	Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT_D128 is implemented, GetPAR_EL1_D128() == 0 and GetPAR_EL1_F() == 0:

12	712	26125	5124	1123	122ء	121	.120	119	118	117	116	115ر	114	.113	112	.111	.110	109	108	107	106	105	104	103	31021
																	R	ES0)						
95	9،	4 93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
																R	RESC	<u>)</u>							
63	3 6	2 61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38
			AT	ΠR					RES	50		P/	A[5:	1:4	8]						PA[47:	12]			
31	1 30	J 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6
	PA[47:12]											NSE	IMPLEMENTATION DEFINED	NS	S	Н									

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the values that appear in the Translation table descriptors. More precisely:

- The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any applicable configuration bits, instead of reporting the values that appear in the Translation table descriptors.
- See the PAR_EL1.NS bit description for constraints on the value it returns.

Bits [127:65]

Reserved, res0.

D128, bit [64]

Indicates if the PAR EL1 uses the 128-bit format.

D128	Meaning
0b1	PAR EL1 uses the 128-bit format.
	PAR EL1[127:0] holds valid data.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

The value returned in this field can be the resulting attribute that is actually implemented by the implementation, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the Translation table descriptor.

Note

The attributes presented are consistent with the stages of translation applied in the address translation instruction. If the instruction performed a stage 1 translation only, the attributes are from the stage 1 translation. If the instruction performed a stage 1 and stage 2 translation, the attributes are from the combined stage 1 and stage 2 translation.

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [55:52]

Reserved, res0.

PA[51:48], bits [51:48] When FEAT_LPA is implemented:

Extension to PA[47:12]. For more information, see PA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[47:12].

When FEAT_LPA is implemented and 52-bit addresses are in use, PA[51:48] forms the upper part of the address value. Otherwise, when 52-bit addresses are not in use, PA[51:48] is res0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

NSE, bit [11] When FEAT_RME is implemented:

Reports the NSE attribute for a translation table entry from the EL3 translation regime.

For a description of the values derived by evaluating NS and NSE together, see PAR EL1.NS.

For a result from a Secure, Non-secure, or Realm translation regime, this bit is unknown.

Otherwise:

Reserved, res1.

IMPLEMENTATION DEFINED, bit [10]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

NS, bit [9] When FEAT_RME is implemented:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime, a Realm translation regime, and the EL3 translation regime.

For a result from an EL3 translation regime, NS and NSE are evaluated together to report the physical address space:

NSE	NS	Meaning
0d0	0b0	When Secure state is implemented, Secure.
		Otherwise reserved.
0b0	0b1	Non-secure.
0b1	0b0	Root.
0b1	0b1	Realm.

For a result from a Secure translation regime, when <u>SCR_EL3</u>.EEL2 is 1, this bit distinguishes between the Secure and Non-secure intermediate physical address space of the translation for the instructions:

- In AArch64 state: <u>AT S1E1R</u>, <u>AT S1E1W</u>, <u>AT S1E1RP</u>, <u>AT S1E1WP</u>, <u>AT S1E0W</u>.
- In AArch32 state: <u>ATS1CPR</u>, <u>ATS1CPW</u>, <u>ATS1CPRP</u>, <u>ATS1CPWP</u>, <u>ATS1CUR</u>, and <u>ATS1CUW</u>.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is unknown.

For a result from an S1E1 or S1E0 operation on the Realm EL1&0 translation regime, this bit is unknown.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when <u>SCR_EL3</u>.EEL2 is 1, this bit distinguishes between the Secure and Non-secure intermediate physical address space of the translation for the instructions:

- In AArch64 state: <u>AT S1E1R</u>, <u>AT S1E1W</u>, <u>AT S1E1RP</u>, <u>AT S1E1WP</u>, AT S1E0R, and AT S1E0W.
- In AArch32 state: <u>ATS1CPR</u>, <u>ATS1CPW</u>, <u>ATS1CPRP</u>, <u>ATS1CPWP</u>, <u>ATS1CUR</u>, and <u>ATS1CUW</u>.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is unknown.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SH, bits [8:7]

Shareability attribute, for the returned output address.

SH	Meaning
0b00	Non-shareable.
0b10	Outer Shareable.
0b11	Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.

 Normal memory with both Inner Noncacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [6:1]

Reserved, res0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F	Meaning
0b0	Address translation completed
	successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT_D128 is implemented, GetPAR_EL1_D128() == 0 and GetPAR_EL1_F() == 1:

127	12	2612	251	.24	123	122	2121	.120	119	118	117	116	115	114	113	112	111	110	109	108	10
																		RES0			
95	9	4 9	3	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75
																	F	RES0			·
63	6	2 6	1	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43
	Ī	MP	_E	ME	NT	ATI	ON		IMPI	LEMI	ENT/	TIOI	M PI	EME	NTA	10IT	4				RI
			DI	EFI	NE	D				DEF	NEC)		DEFI	NED	l					ΝI
31	3	0 2	9	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11
									RE	S 0							DirtyBit	Overlay	TopLevel	AssuredOnl	yRES

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

Bits [127:65]

Reserved, res0.

D128, bit [64]

Indicates if the PAR EL1 uses the 128-bit format.

D128	Meaning			
0b1	PAR_EL1 uses the 128-bit format.			
	PAR_EL1[127:0] holds valid data.			

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [63:56]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [55:52]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [51:48]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [47:16]

Reserved, res0.

DirtyBit, bit [15]

When FEAT S1PIE is implemented or FEAT S2PIE is implemented:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission, this field holds information about the fault.

DirtyBit	Meaning		
0b0	The Permission Fault is not		
	due to nDirty State or Dirty		
	State.		
0b1	The Permission Fault is due to		
	nDirty State or Dirty State.		

For any other fault or Access, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Overlay, bit [14] When FEAT S1POE is implemented or FEAT S2POE is implemented:

Overlay flag. If a memory access generates a Data Abort for a Permission fault, this field holds information about the fault.

Overlay	Meaning
0b0	The Data Abort is due to Base
	Permissions.
0b1	The Data Abort is due to
	Overlay Permissions.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TopLevel, bit [13] When FEAT_THE is implemented:

Fault due to TopLevel. Indicates if the fault was due to TopLevel.

TopLevel	Meaning
0b1	Fault is due to TopLevel.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AssuredOnly, bit [12] When FEAT_THE is implemented:

AssuredOnly flag.

If a memory access generates a Stage 2 Data Abort, this field holds information about the fault.

AssuredOnly	Meaning
0b0	The Data Abort is not
	due to AssuredOnly.
0b1	The Data Abort is due to
	AssuredOnly.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [11]

Reserved, res1.

Bit [10]

Reserved, res0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

S	Meaning
0b0	Translation aborted because of a
	fault in the stage 1 translation.
0b1	Translation aborted because of a
	fault in the stage 2 translation.

• On a Warm reset, this field resets to an architecturally unknown value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [7]

Reserved, res0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort exception ESR encoding.

FST	Meaning	Applies when
0000000	Address size	
	fault, level 0	
	of	
	translation	
	or	
	translation	
	table base	
	register.	
0b000001	Address size	
	fault, level 1.	
0b000010	Address size	
	fault, level 2.	
0b000011	Address size	
	fault, level 3.	
0b000100	Translation	
	fault, level 0.	
0b000101	Translation	
	fault, level 1.	
0b000110	Translation	
	fault, level 2.	
	•	

0b000111	Translation fault, level 3.	
0b001001	Access flag fault, level 1.	
0b001010	Access flag fault, level 2.	
0b001011	Access flag fault, level 3.	
0b001000	Access flag fault, level 0.	When FEAT_LPA2 is implemented
0b001100	Permission fault, level 0.	When FEAT_LPA2 is implemented
0b001101	Permission fault, level 1.	•
0b001110	Permission fault, level 2.	
0b001111	Permission fault, level 3.	
0b010010	Synchronous External abort on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented
0b010011	Synchronous External abort on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented
0b010100	Synchronous External abort on translation table walk or hardware update of translation table, level 0.	

0b010101	Synchronous External abort on translation table walk or hardware update of translation table, level 1.	
0b010110	Synchronous External abort on translation table walk or hardware update of translation table, level 2.	
0b010111	Synchronous External abort on translation table walk or hardware update of translation table, level 3.	
0b011011	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented and FEAT_RAS is not implemented

0b011100	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.	When FEAT_RAS is not implemented
0b011101	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.	When FEAT_RAS is not implemented
0b011110	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.	When FEAT_RAS is not implemented
0b011111	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.	When FEAT_RAS is not implemented

0b100010	Granule Protection Fault on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented and FEAT_RME is implemented
0b100011	Granule Protection Fault on translation table walk or hardware update of translation table, level -1.	When FEAT_RME is implemented and FEAT_LPA2 is implemented
0b100100	Granule Protection Fault on translation table walk or hardware update of translation table, level 0.	When FEAT_RME is implemented
0b100101	Granule Protection Fault on translation table walk or hardware update of translation table, level 1.	When FEAT_RME is implemented
0b100110	Granule Protection Fault on translation table walk or hardware update of translation table, level 2.	When FEAT_RME is implemented

0b100111	Granule Protection Fault on translation table walk or hardware update of translation table, level 3.	When FEAT_RME is implemented
0b101000	Granule Protection Fault, not on translation table walk or hardware update of translation table.	When FEAT_RME is implemented
0b101001	Address size fault, level -1.	When FEAT_LPA2 is implemented
0b101010	Translation fault, level -2.	When FEAT_D128 is implemented
0b101011	Translation fault, level -1.	When FEAT_LPA2 is implemented
0b101100	Address Size fault, level -2.	When FEAT_D128 is implemented
0b110000	TLB conflict abort.	_
0b110001	Unsupported atomic hardware update fault.	When FEAT_HAFDBS is implemented
0b111101	Section Domain fault, from an AArch32 stage 1 EL1&0 translation regime using Short- descriptor translation table format.	When EL1 is capable of using AArch32

0b111110	Page Domain fault, from an AArch32 stage 1 EL1&0 translation regime using Short- descriptor translation	When EL1 is capable of using AArch32
	table format.	

• On a Warm reset, this field resets to an architecturally unknown value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F	Meaning
0b1	Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT_D128 is not implemented and GetPAR_EL1_F() == 0:

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the values that appear in the Translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any applicable configuration bits, instead of reporting the values that appear in the Translation table descriptors.

• See the PAR_EL1.NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

If FEAT_MTE_PERM is implemented and the instruction performed a stage 2 translation, the following additional encoding is defined:

ATTR	Meaning
0b11100000	Tagged NoTagAccess
	Normal Inner Write-Back,
	Outer Write-Back, Read-
	Allocate, Write-Allocate
	Non-transient memory.
	Note: This encoding in
	MAIR_ELx is Reserved

The value returned in this field can be the resulting attribute that is actually implemented by the implementation, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the Translation table descriptor.

Note

The attributes presented are consistent with the stages of translation applied in the address translation instruction. If the instruction performed a stage 1 translation only, the attributes are from the stage 1 translation. If the instruction performed a stage 1 and stage 2 translation, the attributes are from the combined stage 1 and stage 2 translation.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Bits [55:52]

Reserved, res0.

PA[51:48], bits [51:48]

When FEAT LPA is implemented:

Extension to PA[47:12]. For more information, see PA[47:12].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[47:12].

When FEAT_LPA is implemented and 52-bit addresses are in use, PA[51:48] forms the upper part of the address value. Otherwise, when 52-bit addresses are not in use. PA[51:48] is res0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

NSE, bit [11] When FEAT RME is implemented:

Reports the NSE attribute for a translation table entry from the EL3 translation regime.

For a description of the values derived by evaluating NS and NSE together, see PAR EL1.NS.

For a result from a Secure, Non-secure, or Realm translation regime, this bit is unknown.

Otherwise:

Reserved, res1.

IMPLEMENTATION DEFINED, bit [10]

implementation defined.

• On a Warm reset, this field resets to an architecturally unknown value.

NS, bit [9] When FEAT RME is implemented:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime, a Realm translation regime, and the EL3 translation regime.

For a result from an EL3 translation regime, NS and NSE are evaluated together to report the physical address space:

NSE	NS	Meaning
0d0	0d0	When Secure state is
		implemented, Secure.
		Otherwise reserved.
0b0	0b1	Non-secure.
0b1	0d0	Root.
0b1	0b1	Realm.

For a result from a Secure translation regime, when <u>SCR_EL3</u>.EEL2 is 1, this bit distinguishes between the Secure and Non-secure intermediate physical address space of the translation for the instructions:

- In AArch64 state: <u>AT S1E1R</u>, <u>AT S1E1W</u>, <u>AT S1E1RP</u>, <u>AT S1E1WP</u>, AT S1E0W.
- In AArch32 state: <u>ATS1CPR</u>, <u>ATS1CPW</u>, <u>ATS1CPRP</u>, <u>ATS1CPWP</u>, <u>ATS1CUR</u>, and <u>ATS1CUW</u>.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is unknown.

For a result from an S1E1 or S1E0 operation on the Realm EL1&0 translation regime, this bit is unknown.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when <u>SCR_EL3</u>.EEL2 is 1, this bit distinguishes between the Secure and Non-secure intermediate physical address space of the translation for the instructions:

- In AArch64 state: <u>AT S1E1R</u>, <u>AT S1E1W</u>, <u>AT S1E1RP</u>, <u>AT S1E1WP</u>, AT S1E0R, and AT S1E0W.
- In AArch32 state: <u>ATS1CPR</u>, <u>ATS1CPW</u>, <u>ATS1CPRP</u>, <u>ATS1CPWP</u>, ATS1CUR, and ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is unknown.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SH, bits [8:7]

Shareability attribute, for the returned output address.

SH	Meaning
0b00	Non-shareable.
0b10	Outer Shareable.
0b11	Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

- Any type of Device memory.
- Normal memory with both Inner Noncacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any

applicable configuration bits, instead of the value that appears in the Translation table descriptor.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [6:1]

Reserved, res0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F	Meaning
0d0	Address translation completed
	successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When FEAT_D128 is not implemented and GetPAR_EL1_F() == 1:

<u>6362616059585756</u>	55 54 53	52	51	50	49	48	47	46	45	44	43	42	41	40
IMPLEMENTATION	IMPLEMEN	ITAT	N	LEM	IEN ⁻	ΓΑΤΙ	ON				RESO			
DEFINED	DEFINE	D	DEFINED							RESU				
	RES0						DirtyBit	Overlay	TopLevel	AssuredOnl	yRES1	RESC	S	PTW
3130292827262524	23 22 21	20	19	18	17	16	15	14	13	12	11	10	9	8

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

IMPLEMENTATION DEFINED, bits [63:56]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [55:52]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IMPLEMENTATION DEFINED, bits [51:48]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [47:16]

Reserved, res0.

DirtyBit, bit [15]

When FEAT S1PIE is implemented or FEAT S2PIE is implemented:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission, this field holds information about the fault.

DirtyBit	Meaning	
0b0	The Permission Fault is not	
	due to nDirty State or Dirty	
	State.	
0b1	The Permission Fault is due to	
	nDirty State or Dirty State.	

For any other fault or Access, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Overlay, bit [14]

When FEAT S1POE is implemented or FEAT S2POE is implemented:

Overlay flag. If a memory access generates a Data Abort for a Permission fault, this field holds information about the fault.

Overlay	Meaning	
0b0	The Data Abort is due to Base	
	Permissions.	
0b1	The Data Abort is due to	
	Overlay Permissions.	

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TopLevel, bit [13] When FEAT_THE is implemented:

Fault due to TopLevel. Indicates if the fault was due to TopLevel.

TopLevel	Meaning
0b1	Fault is due to TopLevel.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AssuredOnly, bit [12] When FEAT THE is implemented:

AssuredOnly flag.

If a memory access generates a Stage 2 Data Abort, this field holds information about the fault.

AssuredOnly	Meaning	
0b0	The Data Abort is not	
	due to AssuredOnly.	
0b1	The Data Abort is due to	
	AssuredOnly.	

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [11]

Reserved, res1.

Bit [10]

Reserved, res0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

S	Meaning
0b0	Translation aborted because of a
	fault in the stage 1 translation.
0b1	Translation aborted because of a
	fault in the stage 2 translation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table walk.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [7]

Reserved, res0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort exception ESR encoding.

FST	Meaning	Applies when
0000000	Address size fault, level 0 of translation	••
	or translation table base register.	
0b000001	Address size fault, level 1.	
0b000010	Address size fault, level 2.	
0b000011	Address size fault, level 3.	
0b000100	Translation fault, level 0.	
0b000101	Translation fault, level 1.	
0b000110	Translation fault, level 2.	
0b000111	Translation fault, level 3.	
0b001001	Access flag fault, level 1.	
0b001010	Access flag fault, level 2.	
0b001011	Access flag fault, level 3.	
0b001000	Access flag fault, level 0.	When FEAT_LPA2 is implemented
0b001100	Permission fault, level 0.	When FEAT_LPA2 is implemented
0b001101	Permission fault, level 1.	1
0b001110	Permission fault, level 2.	
0b001111	Permission fault, level 3.	

0b010010	Synchronous External abort on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented	
0b010011	Synchronous External abort on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented	
0b010100	Synchronous External abort on translation table walk or hardware update of translation table, level 0.		
0b010101	Synchronous External abort on translation table walk or hardware update of translation table, level 1.		
0b010110	Synchronous External abort on translation table walk or hardware update of translation table, level 2.		

0b010111	Synchronous External abort on translation table walk or hardware update of translation table, level 3.	
0b011011	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented and FEAT_RAS is not implemented
0b011100	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.	When FEAT_RAS is not implemented
0b011101	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.	When FEAT_RAS is not implemented

0b011110	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.	When FEAT_RAS is not implemented
0b011111	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.	When FEAT_RAS is not implemented
0b100010	Granule Protection Fault on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented and FEAT_RME is implemented
0b100011	Granule Protection Fault on translation table walk or hardware update of translation table, level -1.	When FEAT_RME is implemented and FEAT_LPA2 is implemented

0b100100	Granule Protection Fault on translation table walk or hardware update of translation table, level 0.	When FEAT_RME is implemented
0b100101	Granule Protection Fault on translation table walk or hardware update of translation table, level 1.	When FEAT_RME is implemented
0b100110	Granule Protection Fault on translation table walk or hardware update of translation table, level 2.	When FEAT_RME is implemented
0b100111	Granule Protection Fault on translation table walk or hardware update of translation table, level 3.	When FEAT_RME is implemented
0b101000	Granule Protection Fault, not on translation table walk or hardware update of translation table.	When FEAT_RME is implemented

0b101001	Address size fault, level -1.	When FEAT_LPA2 is implemented
0b101010	Translation fault, level -2.	When FEAT_D128 is implemented
0b101011	Translation fault, level -1.	When FEAT_LPA2 is implemented
0b101100	Address Size fault, level -2.	When FEAT_D128 is implemented
0b110000	TLB conflict abort.	•
0b110001	Unsupported atomic hardware	When FEAT_HAFDBS is
0b111101	update fault. Section Domain fault, from an AArch32 stage 1 EL1&0 translation	implemented When EL1 is capable of using AArch32
0b111110	regime using Short- descriptor translation table format. Page Domain	When EL1 is capable of
	fault, from an AArch32 stage 1 EL1&0 translation regime using Short- descriptor translation table format.	using AArch32

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F	Meaning
0b1	Address translation aborted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing PAR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PAR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0111	0b0100	0b000

MSR PAR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0111	0b0100	0b000

```
if PSTATE.EL == ELO then
```

When FEAT_D128 is implemented MRRS <Xt+1>, <Xt>, PAR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0111	0b0100	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.D128En == '0' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.PAR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x14);
    elsif EL2Enabled() && (!IsHCRXEL2Enabled() |
HCRX\_EL2.D128En == '0') then
        AArch64.SystemAccessTrap(EL2, 0x14);
    elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x14);
    else
        (X[t + 1, 64], X[t, 64]) = (PAR_EL1<127:64>,
PAR EL1<63:0>);
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.D128En == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
```

```
AArch64.SystemAccessTrap(EL3, 0x14);
else
    (X[t + 1, 64], X[t, 64]) = (PAR_EL1<127:64>,
PAR_EL1<63:0>);
elsif PSTATE.EL == EL3 then
    (X[t + 1, 64], X[t, 64]) = (PAR_EL1<127:64>,
PAR_EL1<63:0>);
```

When FEAT_D128 is implemented MSRR PAR_EL1, <Xt+1>, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0111	0b0100	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED:
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.D128En == '0' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.PAR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x14);
    elsif EL2Enabled() && (!IsHCRXEL2Enabled() |
HCRX\_EL2.D128En == '0') then
        AArch64.SystemAccessTrap(EL2, 0x14);
    elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x14);
    else
        (PAR\_EL1<127:64>, PAR\_EL1<63:0>) = (X[t + 1,
64], X[t, 64]);
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.D128En == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.D128En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x14);
    else
        (PAR\_EL1<127:64>, PAR\_EL1<63:0>) = (X[t + 1,
64], X[t, 64]);
elsif PSTATE.EL == EL3 then
    (PAR\_EL1<127:64>, PAR\_EL1<63:0>) = (X[t + 1,
```

64], X[t, 64]);

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.