PROTOCOL ENGINEERING AND TECHNOLOGY UNIT ECE DEPARTMENT IISc., BANGALOINE, INDIA

Introduction to Basics of Communication Protocol

Prof Pallapa. Venkataram

Department of Electrical Communication Engineering
Indian Institute of Science
Bangalore – 560012, India

Physical Communication Model

Communication

It is any transmission, emission, or reception of signs, signals, writings, images and sounds or intelligence of any nature by wire, radio, optical or other electromagnetic system

Communication model

A communication model comprises of following subsystems:

- Source Generates the data to be transmitted
- Transmitter Converts the data into transmittable signals
- Transmission system Carries the data.
- Receiver Converts received signals into data.
- Destination Takes incoming data.

Electronics Communication Model

The key communication tasks are:

- Transmission system utilization
- Interfacing
- Signal generation
- Synchronization
- Exchange management
- Error detection and correction
- Addressing and routing
- Security and network management

Network Model

Communication Software

It is a set of computer programs which are used for generation, transmission and reception of information between/among the set of computers connected by wired or wireless media.

Different Kinds of Programs for Communication are:

Dialing: Dialing software tells the computer, how to place a call on the phone line connected to it.

File Transfer: Transfer of files, from one to the other (Downloading / Uploading of files)

Terminal Emulation: Programs running on a network that connects to a computer bulletin board system

Data Encryption: Program to encode data

Communication Subsystems

- The design and implementation of large scale communication systems requires the interconnection and integration of diverse subsystems.
- The main purpose of the communication environment is to keep all the subsystems informed of any changes in the design parameters.
 - 1. Change reported from one of the subsystems.
 - 2. Request for data from one subsystem to another

Communication between two system

Protocol

- It is a set of rules governing the format and meaning of frames, packets, or messages that are exchanged by peer entities within a layer.
- Protocol are used for communications between entities in a systems.
- Entities use protocols in order to implement their service definitions.

The key elements of a protocol are:

Syntax: Include Time data formats and signal levels

Semantics: Includes control information and error handling.

Simple message exchange protocol flowchart

Representation of Protocol

The process of a protocol like, sender and receiver protocol can be formally specified using

- 2. Finite State Machine (FSM/PETRINETS)
- 3. State transition table

Finite State Machine (FSM)

- A : Finite state machine M is a quintuple, M=(I; O; S; N; A)
- I : Finite and nonempty sets of input symbols
- O: Finite and nonempty sets of output symbols
- S: Finite and nonempty sets of states
 Figure gives FSM of simple message exchange protocol

FSM of simple message exchange Protocol

State Transition Table

FSM state and transitions can be represented in the form of table called as state transition tables.

Input	i.e. 1 (data_ready)	RTR	i.e. 2 (data_ready)	ACK
State				
S1	S2/RTS	S1/-	S1/-	S1/-
S2	S2/-	S3/-	S2/-	S2/-
S3	S3/-	S3/-	S4/data	S3/-
S4	S4/-	S4/-	S4/-	S1/-

Communication protocol development methods

There are two ways of design and development of Communication protocols

- 1. Informal
- 2. Formal Methods

Informal methods

- Informal way of specification of the protocols include textual description.
- Not suitable for large complex protocols.
- Often leads unclear and ambiguous specifications.
- The complexity of protocols make them very hard to analyze in an informal way.

Informal Specifications

Formal methods

Use of formal specification languages.

These protocols must be of high quality with higher

performance with low cost.

Petrinet model

A petrinet is a four tuple (P; T; IN; OUT; M0) where, $P = fp_1; p_2; \dots; p_n g$ is a set of places.

 $T = ft_1; t_2; \dots; p_n g$ is a set of transition.

M0= Initial marking (token at a place).

IN: (PT)! N is an input function that defines directed arcs from places to transition

OUT : (P T) ! N is an output function that defines directed arcs From transition to places.

A Petrinet model of a simple protocol with a timeout mechanism

Protocol Engineering Process

Need for protocol engineering

- Many protocols if not properly designed and implemented as per the requirements, leads to improper behavior of network and system may jam the networks.
- Hence it is required to, engineer the protocols for their correctness reliability, optimized performance, reusability, and code optimization
- Deals with application of formal techniques and software engineering methodologies to protocol design and implementation

Phases of Protocol Engineering

Functions:

- Service specification: The service required for performing certain tasks in any given environment.
- Synthesis: It is an automated tool to generate the formal specification of a protocol.
- Protocol specification: It looks into syntax and semantics of the protocols specifications.
- Protocol verification / validation: User makes about the structure of possible dialogs between processes of protocol.
- Performance analysis: It analyses the protocol performance in terms of message complexity, time complexity, space complexity, scalability.
- Conference testing: it tests whether the protocol conforms to the specifications laid down in protocol specification phase by generating exhaustive set of test sequences.
- Protocol implementation: It deals with the real coding of the protocol using software engineering aspects.
- Monitoring/diagnosis: It monitors the working of implemented protocol and checks for the errors.

