machine learning (732A99) lab
1 Block 2

Anubhav Dikshit(anudi287)

4 December 2018

Contents

Assignment 1	1
Loading The Libraries	-
1. Your task is to evaluate the performance of Adaboost classification trees and random forests on the spam data. Specifically, provide a plot showing the error rates when the number of trees considered are 10,20,,100. To estimate the error rates, use 2/3 of the data for training and 1/3 as hold-out test data. Loading Input files	2
2 Your task is to implement the EM algorithm for mixtures of multivariate Bernoulli distributions. Please use the template in the next page to solve the assignment. Then, use your implementation to show what happens when your mixture models has too few and too many components, i.e. set $K = 2,3,4$ and compare results. Please provide a short emplanation as well	
short explanation as well.	-
Function for EM Algorithm	
EM function with loops	
K=2	
K=3	
$K = 4 \dots \dots$.45
Appendix 20	08

Assignment 1

Loading The Libraries

1. Your task is to evaluate the performance of Adaboost classification trees and random forests on the spam data. Specifically, provide a plot showing the error rates when the number of trees considered are 10,20,...,100. To estimate the error rates, use 2/3 of the data for training and 1/3 as hold-out test data.

Loading Input files

```
spam_data <- read.csv(file = "spambase.data", header = FALSE)
colnames(spam_data)[58] <- "Spam"
spam_data$Spam <- factor(spam_data$Spam, levels = c(0,1), labels = c("0", "1"))</pre>
```

Splitting into Train and Test with 66% and 33% ratio.

```
set.seed(12345)
n = NROW(spam_data)
id = sample(1:n, floor(n*(2/3)))
train = spam_data[id,]
test = spam_data[-id,]
```

Trainning the Model

Adaboost with varying depth

```
final result <- NULL
for(i in seq(from = 10, to = 100, by = 10)){
ada_model <- mboost::blackboost(Spam~.,</pre>
                                   data = train,
                                   family = AdaExp(),
                                 control=boost_control(mstop=i))
forest_model <- randomForest(Spam~., data = train, ntree = i)</pre>
prediction function <- function(model, data){</pre>
  predicted <- predict(model, newdata = data, type = c("class"))</pre>
  predict_correct <- ifelse(data$Spam == predicted, 1, 0)</pre>
  score <- sum(predict_correct)/NROW(data)</pre>
 return(score)
}
train_ada_model_predict <- predict(ada_model, newdata = train, type = c("class"))</pre>
test_ada_model_predict <- predict(ada_model, newdata = test, type = c("class"))</pre>
train_forest_model_predict <- predict(forest_model, newdata = train, type = c("class"))</pre>
test_forest_model_predict <- predict(forest_model, newdata = test, type = c("class"))</pre>
```

```
test_predict_correct <- ifelse(test$Spam == test_forest_model_predict, 1, 0)</pre>
train_predict_correct <- ifelse(train$Spam == train_forest_model_predict, 1, 0)</pre>
train_ada_score <- prediction_function(ada_model, train)</pre>
test_ada_score <- prediction_function(ada_model, test)</pre>
train_forest_score <- prediction_function(forest_model, train)</pre>
test_forest_score <- prediction_function(forest_model, test)</pre>
iteration_result <- data.frame(number_of_trees = i,</pre>
                                accuracy = c(train_ada_score,
                                              test_ada_score,
                                              train_forest_score,
                                              test_forest_score),
                                type = c("train", "test", "train", "test"),
                                model = c("ADA", "ADA", "Forest", "Forest"))
final_result <- rbind(iteration_result, final_result)</pre>
final_result$error_rate_percentage <- 100*(1 - final_result$accuracy)
ggplot(data = final_result, aes(x = number_of_trees,
                                 y = error_rate_percentage,
                                 group = type, color = type)) +
  geom_point() +
  geom_line() +
  ggtitle("Error Rate vs. increase in trees") + facet_grid(rows = vars(model))
```

Error Rate vs. increase in trees

Analysis:

From the plots we can clearly see that ADA boosted methods uses more trees(~50) to reduce the test error, while randomforest achieves saturation in short number of trees(~10). We also see that random forest achieves less error than ADA tree for both tree and test cases.

2 Your task is to implement the EM algorithm for mixtures of multivariate Bernoulli distributions. Please use the template in the next page to solve the assignment. Then, use your implementation to show what happens when your mixture models has too few and too many components, i.e. set K = 2,3,4 and compare results. Please provide a short explanation as well.

Function for EM Algorithm

```
myem <- function(K){
    set.seed(1234567890)

max_it <- 100 # max number of EM iterations
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions</pre>
```

```
x <- matrix(nrow=N, ncol=D) # training data
true_pi <- vector(length = K) # true mixing coefficients</pre>
true_mu <- matrix(nrow=K, ncol=D) # true conditional distributions</pre>
true_pi=c(rep(1/3, K))
if(K == 2){
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true mu[2,], type="o", col="red")
  true mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
else if(K == 3){
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true_mu[2,], type="o", col="red")
    points(true_mu[3,], type="o", col="green")
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
}else {
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true_mu[2,], type="o", col="red")
    points(true_mu[3,], type="o", col="green")
    points(true_mu[4,], type="o", col="yellow")
    true mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
    true mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
    true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
    true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)}
# Producing the training data
for(n in 1:N) {
k <- sample(1:K,1,prob=true_pi)</pre>
for(d in 1:D) {
x[n,d] <- rbinom(1,1,true_mu[k,d])</pre>
}
}
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
# Random initialization of the paramters
pi \leftarrow runif(K, 0.49, 0.51)
pi <- pi / sum(pi)
for(k in 1:K) {
mu[k,] \leftarrow runif(D,0.49,0.51)
}
for(it in 1:max_it) {
```

```
if(K == 2){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
}else if(K == 3){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
  points(mu[3,], type="o", col="green")
}else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")}
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for(k in 1:K)
prod <- \exp(x \% \log(t(mu))) * \exp((1-x) \% t(1-mu))
num = matrix(rep(pi,N), ncol = K, byrow = TRUE) * prod
dem = rowSums(num)
poster = num/dem
#Log likelihood computation.
llik[it] = sum(log(dem))
# Your code here
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the lok likelihood has not changed significantly
if( it != 1){
if(abs(llik[it] - llik[it-1]) < min_change){break}</pre>
}
#M-step: ML parameter estimation from the data and fractional component assignments
# Your code here
num_pi = colSums(poster)
pi = num pi/N
mu = (t(poster) %*% x)/num_pi
}
a <- pi
b <- mu
c <- plot(llik[1:it], type="o")</pre>
result <- list(c(a,b,c))
return(result)
}
```

Analysis:

EM is an iterative expectation maximumation technique. The way this works is for a given mixed distribution we guess the components of the data. This is done by first guessing the number of components and then randomly initializing the parameters of the said distribution (Mean, Varience).

Sometimes the data do not follow any known probability distribution but a mixture of known distributions such as:

$$p(x) = \sum_{k=1}^{K} p(k).p(x|k)$$

where p(x|k) are called mixture components and p(k) are called mixing coefficients: where p(k) is denoted by

 π_k

With the following conditions

 $0 \le \pi_k \le 1$

and

$$\sum_{k} \pi_k = 1$$

$$\pi_k^{ML} = \frac{\sum_N p(z_{nk}|x_n,\mu,\pi)}{N}$$

$$\mu_{ki}^{ML} = \frac{\sum_{n} x_{ni} p(z_{nk} | x_n, \mu, \pi)}{\sum_{n} p(z_{nk} | x_n, \mu, \pi)}$$

Where

$$p(z_{nk}|x_n, \mu, \pi) = Z = \frac{\pi_k p(x_n|\mu_k)}{\sum_k p(x_n|\mu_k)}$$

EM function with loops

```
myem_loop <- function(K){</pre>
# 2 - Mixture Models ####
set.seed(1234567890)
max_it <- 100 # max number of EM iterations</pre>
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions
x <- matrix(nrow=N, ncol=D) # training data
true_pi <- vector(length = K) # true mixing coefficients</pre>
true_mu <- matrix(nrow=K, ncol=D) # true conditional distributions</pre>
true_pi=c(rep(1/3, K))
if (K == 2){
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  plot(true mu[1,], type="o", col="blue", ylim=c(0,1))
 points(true_mu[2,], type="o", col="red")
else if (K == 3){
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
```

```
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
  points(true_mu[3,], type="o", col="green")
}else{
true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true mu[3,], type="o", col="green")
points(true_mu[4,], type="o", col="yellow")
}
# Producing the training data
for(n in 1:N) {
  k <- sample(1:K,1,prob=true_pi)</pre>
  for(d in 1:D) {
    x[n,d] \leftarrow rbinom(1,1,true_mu[k,d])
}
 # number of quessed components
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
# Random initialization of the paramters
pi \leftarrow runif(K, 0.49, 0.51)
pi <- pi / sum(pi)</pre>
for(k in 1:K) {
  mu[k,] \leftarrow runif(D,0.49,0.51)
}
рi
for(it in 1:max_it) {
  if (K == 2){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
  else if (K == 3){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
  }else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")
  Sys.sleep(0.5)
```

```
# E-step: Computation of the fractional component assignments
m <- matrix(NA, nrow = 1000, ncol = k)
#Here I create the Bernouilli probabilities, lecture 1b, slide 7. I use 3 loops to do it for the thre
# not very efficient, but it works.
for (j in 1:k){
  for(each in 1:nrow(x)){
    row <- x[each,]</pre>
    vec <- c()
    for (i in 1:10) {
      a <- mu[j,i]^row[i]
      b <- a * ((1-mu[j,i])^(1-row[i]))
      vec[i] <- b
      c <- prod(vec)
    m[each, j] \leftarrow c
  }
}
# Here I create a empty matrix, to store all values for the numerator of the formula on the bottom of
# slide 9, lecture 1b.
m2 \leftarrow matrix(NA, ncol = k, nrow = 1000)
# m2 stores all the values for the numerator of the formula on the bottom of slide 9, lecture 1b.
for (i in 1:1000){
  a <- pi * m[i,]
  m2[i,] <- a
}
# Sum m2 to get the denominator of the formula on the bottom of slide 9, lecture 1b.
m2_sum <- rowSums(m2)</pre>
m_final <- m2 / m2_sum
#Log likelihood computation.
11 <- matrix(nrow = 1000, ncol = K)</pre>
for (j in 1:K){
  for (i in 1:1000){
    11[i, j] <- sum(((x[i,] * log(mu[j,])) + (1 - x[i,])*log(1-mu[j,])))
  }
}
11 <- 11 + pi
llnew <- m_final * 11</pre>
llik[it] <- sum(rowSums(llnew))</pre>
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the lok likelihood has not changed significantly
if (it != 1){
if (abs(llik[it] - llik[it-1]) < min_change) {break}</pre>
#M-step: ML parameter estimation from the data and fractional component assignments
```

```
# Create the numerator for pi, slide 9, lecture 1b.
  numerator_pi <- colSums(m_final)</pre>
  # Create new values for pi, stored in the vector pi_new
  pi_new <- numerator_pi / N</pre>
  pi_new
  mnew <- matrix(NA, nrow = 1000, ncol = 10)</pre>
  mu_new <- matrix(NA, nrow = K, ncol = 10)</pre>
  for (j in 1:k){
   for (i in 1:1000){
      row <- x[i,] * m_final[i,j]
      mnew[i,] <- row</pre>
    mnewsum <- colSums(mnew)/numerator_pi[j]</pre>
    mu_new[j,] <- mnewsum</pre>
  }
  # Now, to create the iterations, I have to run the code again and again, and specifying mu as new the
  # created for mu. Same goes for the other variables.
  mu <- mu_new
  pi <- pi_new
z <- m_final
output1 <- pi
output2 <- mu
output3 <- plot(llik[1:it], type="o")</pre>
result <- list(c(output1, output2, output3))</pre>
return(result)
}
myem_loop(K=3)
```


iteration: 1 log likelihood: -6597.778

iteration: 2 log likelihood: -6595.239

iteration: 3 log likelihood: -6592.753

iteration: 4 log likelihood: -6573.7

iteration: 5 log likelihood: -6446.022

iteration: 6 log likelihood: -5978.865

iteration: 7 log likelihood: -5537.074

iteration: 8 log likelihood: -5429.225

iteration: 9 log likelihood: -5401.95

iteration: 10 log likelihood: -5389.023

iteration: 11 log likelihood: -5380.443

iteration: 12 log likelihood: -5373.845

iteration: 13 log likelihood: -5368.41

iteration: 14 log likelihood: -5363.759

iteration: 15 log likelihood: -5359.682

iteration: 16 log likelihood: -5356.051

iteration: 17 log likelihood: -5352.782

iteration: 18 log likelihood: -5349.816

iteration: 19 log likelihood: -5347.113

iteration: 20 log likelihood: -5344.641

iteration: 21 log likelihood: -5342.375

iteration: 22 log likelihood: -5340.295

iteration: 23 log likelihood: -5338.385

iteration: 24 log likelihood: -5336.63

iteration: 25 log likelihood: -5335.015

iteration: 26 log likelihood: -5333.529

iteration: 27 log likelihood: -5332.16

iteration: 28 log likelihood: -5330.9

iteration: 29 log likelihood: -5329.738

iteration: 30 log likelihood: -5328.666

iteration: 31 log likelihood: -5327.676

iteration: 32 log likelihood: -5326.762

iteration: 33 log likelihood: -5325.917

iteration: 34 log likelihood: -5325.135

iteration: 35 log likelihood: -5324.41

iteration: 36 log likelihood: -5323.739

iteration: 37 log likelihood: -5323.115

iteration: 38 log likelihood: -5322.537

iteration: 39 log likelihood: -5321.999

iteration: 40 log likelihood: -5321.498

iteration: 41 log likelihood: -5321.031

iteration: 42 log likelihood: -5320.596

iteration: 43 log likelihood: -5320.19

iteration: 44 log likelihood: -5319.81

iteration: 45 log likelihood: -5319.454

iteration: 46 log likelihood: -5319.121

iteration: 47 log likelihood: -5318.809

iteration: 48 log likelihood: -5318.515

iteration: 49 log likelihood: -5318.239

iteration: 50 log likelihood: -5317.979

iteration: 51 log likelihood: -5317.734

iteration: 52 log likelihood: -5317.503

iteration: 53 log likelihood: -5317.284

iteration: 54 log likelihood: -5317.077

iteration: 55 log likelihood: -5316.881

iteration: 56 log likelihood: -5316.695

iteration: 57 log likelihood: -5316.518

iteration: 58 log likelihood: -5316.349

iteration: 59 log likelihood: -5316.189

iteration: 60 log likelihood: -5316.036

iteration: 61 log likelihood: -5315.89

iteration: 62 log likelihood: -5315.75

iteration: 63 log likelihood: -5315.616

iteration: 64 log likelihood: -5315.487

iteration: 65 log likelihood: -5315.364

iteration: 66 log likelihood: -5315.246

iteration: 67 log likelihood: -5315.132

iteration: 68 log likelihood: -5315.022

iteration: 69 log likelihood: -5314.916

iteration: 70 log likelihood: -5314.814

iteration: 71 log likelihood: -5314.715

K = 2

myem(K=2)

iteration: 1 log likelihood: -954.7133

iteration: 2 log likelihood: -957.1002

iteration: 3 log likelihood: -944.9229

iteration: 4 log likelihood: -857.3443

iteration: 5 log likelihood: -464.0063

iteration: 6 log likelihood: 50.2616

iteration: 7 log likelihood: 177.0235

iteration: 8 log likelihood: 189.1059

iteration: 9 log likelihood: 190.0362

iteration: 10 log likelihood: 189.9033

iteration: 11 log likelihood: 189.7476

iteration: 12 log likelihood: 189.6572


```
## [[1]]
## [1] 0.48293133107 0.51706866893 0.49007966733 0.50152946699 0.39332820172
## [6] 0.61703504228 0.59792428535 0.39113495199 0.27182539774 0.69957245640
## [11] 0.70178609664 0.33474375189 0.19877624614 0.76586485831 0.81088543925
## [16] 0.22897928765 0.08857255800 0.89200054923 0.90675481733 0.10849562636
## [21] 0.00008952955 0.94950012035
```

K = 3

myem(K=3)

iteration: 1 log likelihood: -912.7567

iteration: 2 log likelihood: -932.1921

iteration: 3 log likelihood: -932.0234

iteration: 4 log likelihood: -931.2587

iteration: 5 log likelihood: -927.8881

iteration: 6 log likelihood: -913.454

iteration: 7 log likelihood: -858.0583

iteration: 8 log likelihood: -709.6665

iteration: 9 log likelihood: -524.1097

iteration: 10 log likelihood: -433.1614

iteration: 11 log likelihood: -409.3331

iteration: 12 log likelihood: -405.2132

iteration: 13 log likelihood: -405.7233

iteration: 14 log likelihood: -407.1621

iteration: 15 log likelihood: -408.6475

iteration: 16 log likelihood: -409.9879

iteration: 17 log likelihood: -411.1645

iteration: 18 log likelihood: -412.1979

iteration: 19 log likelihood: -413.1139

iteration: 20 log likelihood: -413.934

iteration: 21 log likelihood: -414.675

iteration: 22 log likelihood: -415.3492

iteration: 23 log likelihood: -415.9659

iteration: 24 log likelihood: -416.532

iteration: 25 log likelihood: -417.0528

iteration: 26 log likelihood: -417.5328

iteration: 27 log likelihood: -417.9753

iteration: 28 log likelihood: -418.3836

iteration: 29 log likelihood: -418.7601

iteration: 30 log likelihood: -419.1074

iteration: 31 log likelihood: -419.4277

iteration: 32 log likelihood: -419.7229

iteration: 33 log likelihood: -419.995

iteration: 34 log likelihood: -420.2457

iteration: 35 log likelihood: -420.4767

iteration: 36 log likelihood: -420.6895

iteration: 37 log likelihood: -420.8856

iteration: 38 log likelihood: -421.0663

iteration: 39 log likelihood: -421.2329

iteration: 40 log likelihood: -421.3865

iteration: 41 log likelihood: -421.5282

iteration: 42 log likelihood: -421.659

iteration: 43 log likelihood: -421.7797

iteration: 44 log likelihood: -421.8913

iteration: 45 log likelihood: -421.9945

iteration: 46 log likelihood: -422.09

K = 4

myem(K=4)

iteration: 1 log likelihood: -800.5436

iteration: 2 log likelihood: -842.949

iteration: 3 log likelihood: -842.6806

iteration: 4 log likelihood: -841.7499

iteration: 5 log likelihood: -838.7414

iteration: 6 log likelihood: -829.4624

iteration: 7 log likelihood: -803.3592

iteration: 8 log likelihood: -744.3623

iteration: 9 log likelihood: -658.0191

iteration: 10 log likelihood: -588.2999

iteration: 11 log likelihood: -553.5615

iteration: 12 log likelihood: -538.8823

iteration: 13 log likelihood: -531.9182

iteration: 14 log likelihood: -527.7567

iteration: 15 log likelihood: -524.8526

iteration: 16 log likelihood: -522.7751

iteration: 17 log likelihood: -521.3929

iteration: 18 log likelihood: -520.6263

iteration: 19 log likelihood: -520.391

iteration: 20 log likelihood: -520.5983

iteration: 21 log likelihood: -521.1652

iteration: 22 log likelihood: -522.0204

iteration: 23 log likelihood: -523.1059

iteration: 24 log likelihood: -524.3754

iteration: 25 log likelihood: -525.7912

iteration: 26 log likelihood: -527.3207

iteration: 27 log likelihood: -528.9346

iteration: 28 log likelihood: -530.6046

iteration: 29 log likelihood: -532.304

iteration: 30 log likelihood: -534.0069

iteration: 31 log likelihood: -535.6895

iteration: 32 log likelihood: -537.3305

iteration: 33 log likelihood: -538.912

iteration: 34 log likelihood: -540.4198

iteration: 35 log likelihood: -541.8433

iteration: 36 log likelihood: -543.1756

iteration: 37 log likelihood: -544.4133

iteration: 38 log likelihood: -545.5555

iteration: 39 log likelihood: -546.6036

iteration: 40 log likelihood: -547.5609

iteration: 41 log likelihood: -548.4315

iteration: 42 log likelihood: -549.2208

iteration: 43 log likelihood: -549.9344

iteration: 44 log likelihood: -550.5781

iteration: 45 log likelihood: -551.1577

iteration: 46 log likelihood: -551.6789

iteration: 47 log likelihood: -552.1471

iteration: 48 log likelihood: -552.5674

iteration: 49 log likelihood: -552.9443

iteration: 50 log likelihood: -553.2824

iteration: 51 log likelihood: -553.5855

iteration: 52 log likelihood: -553.8573

iteration: 53 log likelihood: -554.101

iteration: 54 log likelihood: -554.3194

iteration: 55 log likelihood: -554.5153

iteration: 56 log likelihood: -554.691

iteration: 57 log likelihood: -554.8485

iteration: 58 log likelihood: -554.9898

iteration: 59 log likelihood: -555.1165

iteration: 60 log likelihood: -555.2301

iteration: 61 log likelihood: -555.3319

iteration: 62 log likelihood: -555.4231


```
## [[1]]
## [1] 0.0681207107 0.7239375809 0.1144285078 0.0935132006 0.3956837783
## [6] 0.4293539072 0.4323432998 0.3929703185 0.4162506305 0.5547107213
## [11] 0.4023142592 0.4174015318 0.5420279926 0.4599340095 0.6093481972
## [16] 0.5388153590 0.3444983068 0.6261407708 0.3315033116 0.3455369524
## [21] 0.6696117509 0.4227075553 0.6799271777 0.6690887905 0.2251983009
## [26] 0.5941304803 0.1244291484 0.2278577477 0.7389032359 0.3920562642
## [31] 0.7312641782 0.7396138061 0.1989570475 0.6376090927 0.0220675386
## [36] 0.2067362122 0.7733978028 0.3148516085 0.7696255465 0.7733194550
## [41] 0.0036278205 0.6703401502 0.0000374818 0.0049635197
```

Appendix

```
knitr::opts_chunk$set(echo = TRUE)
if (!require("pacman")) install.packages("pacman")
pacman::p_load(mboost, randomForest, dplyr, ggplot2)

options(scipen = 999)

spam_data <- read.csv(file = "spambase.data", header = FALSE)
colnames(spam_data)[58] <- "Spam"
spam_data$Spam <- factor(spam_data$Spam, levels = c(0,1), labels = c("0", "1"))
set.seed(12345)
n = NROW(spam_data)</pre>
```

```
id = sample(1:n, floor(n*(2/3)))
train = spam_data[id,]
test = spam_data[-id,]
final_result <- NULL</pre>
for(i in seq(from = 10, to = 100, by = 10)){
ada model <- mboost::blackboost(Spam~.,
                                   data = train,
                                   family = AdaExp(),
                                 control=boost_control(mstop=i))
forest_model <- randomForest(Spam~., data = train, ntree = i)</pre>
prediction_function <- function(model, data){</pre>
  predicted <- predict(model, newdata = data, type = c("class"))</pre>
  predict_correct <- ifelse(data$Spam == predicted, 1, 0)</pre>
  score <- sum(predict_correct)/NROW(data)</pre>
  return(score)
}
train_ada_model_predict <- predict(ada_model, newdata = train, type = c("class"))</pre>
test_ada_model_predict <- predict(ada_model, newdata = test, type = c("class"))</pre>
train_forest_model_predict <- predict(forest_model, newdata = train, type = c("class"))</pre>
test_forest_model_predict <- predict(forest_model, newdata = test, type = c("class"))</pre>
test_predict_correct <- ifelse(test$Spam == test_forest_model_predict, 1, 0)</pre>
train_predict_correct <- ifelse(train$Spam == train_forest_model_predict, 1, 0)</pre>
train_ada_score <- prediction_function(ada_model, train)</pre>
test_ada_score <- prediction_function(ada_model, test)</pre>
train_forest_score <- prediction_function(forest_model, train)</pre>
test_forest_score <- prediction_function(forest_model, test)</pre>
iteration_result <- data.frame(number_of_trees = i,</pre>
                                 accuracy = c(train_ada_score,
                                               test_ada_score,
                                              train_forest_score,
                                              test_forest_score),
                                 type = c("train", "test", "train", "test"),
                                 model = c("ADA", "ADA", "Forest", "Forest"))
final_result <- rbind(iteration_result, final_result)</pre>
final_result$error_rate_percentage <- 100*(1 - final_result$accuracy)
ggplot(data = final_result, aes(x = number_of_trees,
                                  y = error_rate_percentage,
                                  group = type, color = type)) +
```

```
geom_point() +
  geom_line() +
  ggtitle("Error Rate vs. increase in trees") + facet_grid(rows = vars(model))
myem <- function(K){</pre>
  set.seed(1234567890)
max it <- 100 # max number of EM iterations</pre>
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions
x <- matrix(nrow=N, ncol=D) # training data
true_pi <- vector(length = K) # true mixing coefficients</pre>
true_mu <- matrix(nrow=K, ncol=D) # true conditional distributions</pre>
true_pi=c(rep(1/3, K))
if(K == 2){
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
  true mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
else if(K == 3){
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true_mu[2,], type="o", col="red")
    points(true_mu[3,], type="o", col="green")
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
}else {
    plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
    points(true_mu[2,], type="o", col="red")
    points(true_mu[3,], type="o", col="green")
    points(true_mu[4,], type="o", col="yellow")
    true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
    true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
    true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
    true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.4,0.5)}
# Producing the training data
for(n in 1:N) {
k <- sample(1:K,1,prob=true_pi)</pre>
for(d in 1:D) {
x[n,d] <- rbinom(1,1,true_mu[k,d])</pre>
}
}
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
```

```
# Random initialization of the paramters
pi <- runif(K,0.49,0.51)</pre>
pi <- pi / sum(pi)
for(k in 1:K) {
mu[k,] <- runif(D,0.49,0.51)
}
for(it in 1:max_it) {
if(K == 2){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
}else if(K == 3){
  plot(mu[1,], type="o", col="blue", ylim=c(0,1))
  points(mu[2,], type="o", col="red")
  points(mu[3,], type="o", col="green")
}else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")}
Sys.sleep(0.5)
# E-step: Computation of the fractional component assignments
for(k in 1:K)
prod <- \exp(x %*% \log(t(mu))) * \exp((1-x) %*% t(1-mu))
num = matrix(rep(pi,N), ncol = K, byrow = TRUE) * prod
dem = rowSums(num)
poster = num/dem
#Log likelihood computation.
llik[it] = sum(log(dem))
# Your code here
cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
flush.console()
# Stop if the lok likelihood has not changed significantly
if( it != 1){
if(abs(llik[it] - llik[it-1]) < min_change){break}</pre>
}
#M-step: ML parameter estimation from the data and fractional component assignments
# Your code here
num_pi = colSums(poster)
pi = num_pi/N
mu = (t(poster) %*% x)/num_pi
}
```

```
a <- pi
b <- mu
c <- plot(llik[1:it], type="o")</pre>
result <- list(c(a,b,c))
return(result)
myem_loop <- function(K){</pre>
# 2 - Mixture Models ####
set.seed(1234567890)
max_it <- 100 # max number of EM iterations</pre>
min_change <- 0.1 # min change in log likelihood between two consecutive EM iterations
N=1000 # number of training points
D=10 # number of dimensions
x <- matrix(nrow=N, ncol=D) # training data
true_pi <- vector(length = K) # true mixing coefficients</pre>
true_mu <- matrix(nrow=K, ncol=D) # true conditional distributions</pre>
true_pi=c(rep(1/3, K))
if (K == 2){
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
}else if (K == 3){
  true_mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
  true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
  true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
  plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
  points(true_mu[2,], type="o", col="red")
  points(true_mu[3,], type="o", col="green")
}else{
true mu[1,]=c(0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,1)
true_mu[2,]=c(0.5,0.4,0.6,0.3,0.7,0.2,0.8,0.1,0.9,0)
true_mu[3,]=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)
true_mu[4,]=c(0.3,0.5,0.5,0.7,0.5,0.5,0.5,0.5,0.5,0.4,0.5)
plot(true_mu[1,], type="o", col="blue", ylim=c(0,1))
points(true_mu[2,], type="o", col="red")
points(true_mu[3,], type="o", col="green")
points(true_mu[4,], type="o", col="yellow")
}
# Producing the training data
for(n in 1:N) {
  k <- sample(1:K,1,prob=true_pi)</pre>
  for(d in 1:D) {
    x[n,d] \leftarrow rbinom(1,1,true_mu[k,d])
  }
}
```

```
# number of guessed components
z <- matrix(nrow=N, ncol=K) # fractional component assignments
pi <- vector(length = K) # mixing coefficients</pre>
mu <- matrix(nrow=K, ncol=D) # conditional distributions</pre>
llik <- vector(length = max_it) # log likelihood of the EM iterations</pre>
# Random initialization of the paramters
pi <- runif(K,0.49,0.51)</pre>
pi <- pi / sum(pi)
for(k in 1:K) {
  mu[k,] \leftarrow runif(D,0.49,0.51)
}
рi
mu
for(it in 1:max_it) {
  if (K == 2){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
  else if (K == 3){
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
  }else{
    plot(mu[1,], type="o", col="blue", ylim=c(0,1))
    points(mu[2,], type="o", col="red")
    points(mu[3,], type="o", col="green")
    points(mu[4,], type="o", col="yellow")
  }
  Sys.sleep(0.5)
  # E-step: Computation of the fractional component assignments
  m <- matrix(NA, nrow = 1000, ncol = k)
  #Here I create the Bernouilli probabilities, lecture 1b, slide 7. I use 3 loops to do it for the thre
  # not very efficient, but it works.
  for (j in 1:k){
    for(each in 1:nrow(x)){
      row <- x[each,]</pre>
      vec <- c()
      for (i in 1:10) {
        a <- mu[j,i]^row[i]
        b \leftarrow a * ((1-mu[j,i])^(1-row[i]))
        vec[i] <- b
        c <- prod(vec)
      m[each, j] <- c
    }
  }
  # Here I create a empty matrix, to store all values for the numerator of the formula on the bottom of
  # slide 9, lecture 1b.
  m2 \leftarrow matrix(NA, ncol = k, nrow = 1000)
  # m2 stores all the values for the numerator of the formula on the bottom of slide 9, lecture 1b.
  for (i in 1:1000){
```

```
a <- pi * m[i,]
    m2[i,] <- a
  # Sum m2 to get the denominator of the formula on the bottom of slide 9, lecture 1b.
  m2_sum <- rowSums(m2)</pre>
  m_final <- m2 / m2_sum</pre>
  #Log likelihood computation.
  11 <- matrix(nrow = 1000, ncol = K)</pre>
  for (j in 1:K){
    for (i in 1:1000){
      11[i, j] <- sum(((x[i,] * log(mu[j,])) + (1 - x[i,])*log(1-mu[j,])))
  }
  11 <- 11 + pi
  llnew <- m_final * 11</pre>
  llik[it] <- sum(rowSums(llnew))</pre>
  cat("iteration: ", it, "log likelihood: ", llik[it], "\n")
  flush.console()
  # Stop if the lok likelihood has not changed significantly
  if (it != 1){
  if (abs(llik[it] - llik[it-1]) < min_change) {break}</pre>
  #M-step: ML parameter estimation from the data and fractional component assignments
  # Create the numerator for pi, slide 9, lecture 1b.
  numerator_pi <- colSums(m_final)</pre>
  # Create new values for pi, stored in the vector pi_new
  pi_new <- numerator_pi / N</pre>
  mnew <- matrix(NA, nrow = 1000, ncol = 10)</pre>
  mu_new <- matrix(NA, nrow = K, ncol = 10)</pre>
  for (j in 1:k){
   for (i in 1:1000){
      row <- x[i,] * m_final[i,j]
      mnew[i,] <- row</pre>
    mnewsum <- colSums(mnew)/numerator_pi[j]</pre>
    mu_new[j,] <- mnewsum</pre>
  }
  # Now, to create the iterations, I have to run the code again and again, and specifying mu as new the
  # created for mu. Same goes for the other variables.
  mu <- mu_new
  pi <- pi_new
z <- m_final
output1 <- pi
```

```
output2 <- mu
output3 <- plot(llik[1:it], type="o")

result <- list(c(output1, output2, output3))
return(result)
}
myem_loop(K=3)

myem(K=2)
myem(K=3)
myem(K=4)</pre>
```