Linear Algebra and its Applications

Assignment 5

Name - Anjan Mondal

Roll Number- MDS202208

Import all prerequisites

```
In [1]: from helper_functions import *
   import time
   import scipy as sp
   import pandas as pd
   import scipy.linalg
   from scipy.linalg import cho_factor, cho_solve, cholesky
   import matplotlib.pyplot as plt
```

Initialization

Initialization of all data structures for storing the following:

- Running time of both solvers
- Solutions L, U, P, x or P, G, x and the chosen A and b for both solvers

```
In [2]: n_list=[2,5,9,10,12,13,14,15,16,30,50,90,100]
        scipy_LU_rt={} #Running times by scipy's LU factorization algorithm
        my_LU_rt_gepp={} # Running times by my implementation LU factorization algorithm
        my_LU_rt_gerp={}
        my_LU_rt_gecp={}
        my_cholesky_rt={}
        scipy_cholesky_rt={}
        scipy_cholesky_rt={}
        scipy_LU_subst_rt={} #Running times by scipy's Substitution algorithm
        # Running times by my implementation of Substitution algorithm
        my_subst_rt_gepp={}
        my_subst_rt_gerp={}
        my_subst_rt_gecp={}
        my_cholesky_subst_rt={}
        scipy_LU_solutions={}
        scipy_cholesky_solutions={}
        my_solutions_gepp={}
        my_solutions_gerp={}
        my_solutions_gecp={}
        my_cholesky_solutions={}
```

Execution

Execute the solvers and record the running times

```
In [5]: import warnings
        warnings.filterwarnings("ignore")
        for n in n_list:
            A=np.zeros((n,n))
            for i in range(n):
                for j in range(n):
                    A[i,j]=1/(i+j+1)
            b=np.random.rand(n)
            #Partial Pivoting
            start_time = time.time()
            L,U,P,Q=LU_factorize_partial(A)
            my_LU_rt_gepp[n]=time.time()-start_time
            start time=time.time()
            x=substitution(L,U,P,Q,b)
            my_subst_rt_gepp[n]=time.time()-start_time
            my_solutions_gepp[n]=(L,U,P,Q,x,A,b)
            #Rook Pivoting
            start time = time.time()
            L,U,P,Q=LU_factorize_rook(A)
            my_LU_rt_gerp[n]=time.time()-start_time
            start_time=time.time()
            x=substitution(L,U,P,Q,b)
            my_subst_rt_gerp[n]=time.time()-start_time
            my_solutions_gerp[n]=(L,U,P,Q,x,A,b)
            #Complete Pivoting
            start_time = time.time()
            L,U,P,Q=LU_factorize_complete(A)
            my_LU_rt_gecp[n]=time.time()-start_time
            start_time=time.time()
            x=substitution(L,U,P,Q,b)
            my_subst_rt_gecp[n]=time.time()-start_time
            my_solutions_gecp[n]=(L,U,P,Q,x,A,b)
            #My Cholesky LU Solver
            start_time = time.time()
            G,P=my_cholesky(A)
            my_cholesky_rt[n]=time.time()-start_time
```

```
start_time=time.time()
x=substitution(G,G.transpose(),P,P.transpose(),b)
my_cholesky_subst_rt[n]=time.time()-start_time
my_cholesky_solutions[n]=(G,P,x,A,b)
#Scipy LU Solver
start_time=time.time()
p, l, u = sp.linalg.lu(A) # The decomposition is A=plu
scipy_LU_rt[n]=time.time()-start_time
lu, piv = sp.linalg.lu_factor(A)
start time=time.time()
x2 = sp.linalg.lu_solve((lu, piv), b)
scipy_LU_subst_rt[n]=time.time()-start_time
scipy_LU_solutions[n]=(1,u,p,x2,A,b)
#Scipy Cholesky Solver
start_time=time.time()
try:
    L = cholesky(A, lower=True)
    scipy_cholesky_rt[n]=time.time()-start_time
except:
   L=np.NaN
try:
    c, low = cho_factor(A)
   x = cho_solve((c, low), b)
except:
   x=np.NaN
scipy_cholesky_solutions[n]=(L,x,A,b)
```

Calculate Norms

Calculate the norms of PA - LU and $Ax_0 - b$ using all solvers.

```
In [6]: my_PA_LU_norms_gepp={}
    my_PA_LU_norms_gerp={}
    my_PA_LU_norms_gecp={}
    my_cholesky_GG_norms={}
    scipy_PA_LU_norms={}
    scipy_cholesky_GG_norms={}

    my_Ax_b_norms_gepp={}
    my_Ax_b_norms_gerp={}
    my_Ax_b_norms_gecp={}
    my_ax_b_norms_gecp={}
    scipy_Ax_b_norms={}
    scipy_Ax_b_norms={}
```

```
scipy_cholesky_AX_b_norms={}
for n in n list:
   #Partial Pivoting Norms
   L,U,P,Q,x,A,b=my_solutions_gepp[n]
   my_PA_LU_norms_gepp[n]=np.linalg.norm(np.matmul(P,A@Q)-np.matmul(L,U),ord=2)
   my_Ax_b_norms_gepp[n]=np.linalg.norm(np.matmul(A,x)-b)
   #Rook Pivoting Norms
   L,U,P,Q,x,A,b=my_solutions_gerp[n]
   my_PA_LU_norms_gerp[n]=np.linalg.norm(np.matmul(P,A@Q)-np.matmul(L,U),ord=2)
   my_Ax_b_norms_gerp[n]=np.linalg.norm(np.matmul(A,x)-b,ord=2)
   #Complete Pivoting Norms
   L,U,P,Q,x,A,b=my_solutions_gecp[n]
   my_PA_LU_norms_gecp[n]=np.linalg.norm(np.matmul(P,A@Q)-np.matmul(L,U),ord=2)
   my_Ax_b_norms_gecp[n]=np.linalg.norm(np.matmul(A,x)-b,ord=2)
   #Cholesky Norms
   G,P,x,A,b=my_cholesky_solutions[n]
       my_cholesky_GG_norms[n]=np.linalg.norm(G@(G.transpose())-P@A@(P.transpose())
       my_cholesky_AX_b_norms[n]=np.linalg.norm(np.matmul(A,x)-b,ord=2)
   except:
       my_cholesky_GG_norms[n]=np.NaN
        my_cholesky_AX_b_norms[n]=np.NaN
   #Scipy LU Norms
   L,U,P,x,A,b=scipy_LU_solutions[n]
   scipy_PA_LU_norms[n]=np.linalg.norm(A-np.matmul(P,np.matmul(L,U)),ord=2)
   scipy Ax b norms[n]=np.linalg.norm(np.matmul(A,x)-b,ord=2)
   #Scipy Cholesky Norm
   G,x,A,b=scipy_cholesky_solutions[n]
        scipy_cholesky_GG_norms[n]=np.linalg.norm(G@(G.transpose())-A,ord=2)
        scipy cholesky AX b norms[n]=np.linalg.norm(np.matmul(A,x)-b,ord=2)
   except:
        scipy_cholesky_GG_norms[n]=np.NaN
        scipy_cholesky_AX_b_norms[n]=np.NaN
```

Norms Table

This table gives us the the matrix norms of PA-LU (or PAP^T-GG^T) and Ax_0-b for both solvers.

The columns labels are set as n for an $n \times n$ matrix

scipy_cholesky_GG_norms[n],my_Ax_b_norms_gepp[n],my_Ax_b_norms
my_Ax_b_norms_gecp[n],my_cholesky_AX_b_norms[n],scipy_Ax_b_nor
scipy_cholesky_AX_b_norms[n]]
norm_table=pd.DataFrame(matrix_norms, index=col_names)

In [8]: display(norm_table.iloc[:,:6])

	2	5	9	10	12	13
PA-LU gepp	0.000000	2.775558e-17	5.173899e- 17	4.913042e- 17	6.261478e- 17	5.871185e-17
PA-LU gerp	0.000000	2.775558e-17	5.173899e- 17	4.913042e- 17	6.261478e- 17	5.871185e-17
PA-LU gecp	0.000000	4.490946e-17	5.973831e- 17	5.093450e- 17	6.702340e- 17	4.303850e-17
Cholesky GG(t)- PAP(t)	0.000000	1.340158e-16	6.700789e- 17	1.190237e- 16	2.262175e- 16	NaN
PA-LU SciPy	0.000000	2.775558e-17	4.033996e- 17	1.962616e- 17	5.160349e- 17	5.722031e-17
Cholesky Scipy	0.000000	0.000000e+00	2.504924e- 17	2.715048e- 17	3.359559e- 17	3.301474e-17
Ax-b gepp	0.000000	1.901657e-12	3.618864e- 06	2.965031e- 05	8.466475e- 03	9.488734e-01
Ax-b gerp	0.000000	1.901657e-12	3.618864e- 06	2.965031e- 05	8.466475e- 03	9.488734e-01
Ax-b gecp	0.000000	4.623118e-12	5.181760e- 06	2.286102e- 05	5.828233e- 03	1.272643e+00
Ax-b Cholesky	0.105849	8.178088e-02	2.998494e- 01	6.461434e- 01	7.405266e- 01	NaN
Ax-b SciPy(LU)	0.000000	3.631007e-12	6.229130e- 06	2.720404e- 05	6.879998e- 03	7.823553e-01
Ax-b Scipy(Cholesky)	0.000000	4.543342e-12	5.865915e- 06	2.327277e- 05	4.451865e- 03	1.515401e+00

In [9]: display(norm_table.iloc[:,6:])

	14	15	16	30	50	
PA-LU gepp	5.330853e-17	6.062295e-17	5.949965e-17	6.744857e-17	7.113867e-17	7.323909
PA-LU gerp	5.330853e-17	6.062295e-17	5.949965e-17	6.720375e-17	7.103216e-17	7.328106
PA-LU gecp	4.908086e-17	4.865046e-17	5.244584e-17	7.322928e-17	7.438936e-17	8.073525
Cholesky GG(t)- PAP(t)	NaN	NaN	NaN	NaN	NaN	
PA-LU SciPy	5.481817e-17	5.934849e-17	6.081652e-17	6.448746e-17	6.896413e-17	7.237879
Cholesky Scipy	3.184169e-17	NaN	NaN	NaN	NaN	
Ax-b gepp	1.418014e+01	1.395668e+00	6.353899e+00	3.087226e+01	3.828336e+01	3.342325
Ax-b gerp	1.418014e+01	1.395668e+00	6.353899e+00	3.991581e+01	3.926930e+01	4.062674
Ax-b gecp	5.594126e+01	2.096839e+00	4.985956e+00	1.357073e+02	6.260920e+01	4.531907
Ax-b Cholesky	NaN	NaN	NaN	NaN	NaN	
Ax-b SciPy(LU)	4.907927e+00	1.332972e+00	2.507493e+00	3.268468e+02	1.179363e+02	6.532960
Ax-b Scipy(Cholesky)	2.841543e+00	NaN	NaN	NaN	NaN	

A is a Hilbert matrix and it ceases to be positive definite after n=14. Thus, after n=14, Cholesky decompositon doesn't work on A and we get NaN values.

Condition Number

```
In [10]: conds=[]
         bounds=[]
         n_list=np.arange(1,40)
         for n in n_list:
             A=np.zeros((n,n))
             for i in range(n):
                 for j in range(n):
                     A[i,j]=1/(i+j+1)
             cond=np.linalg.norm(A)*np.linalg.norm(np.linalg.inv(A))
             conds.append(cond)
             bounds.append(((1+np.sqrt(2))**(4*n))/np.sqrt(n))
         import matplotlib.pyplot as plt
         plt.figure(figsize=(10, 8))
         plt.plot(n_list,np.log(conds),label ='Experimental Condition Numbers')
         plt.plot(n_list,np.log(bounds),label =r'$\frac{(1+\sqrt{2})^{4N}}{\sqrt{N}}$')
         plt.xlabel('N')
         plt.ylabel('log ($\kappa (A)$)')
         plt.xticks(2*n_list[:int(n/2)])
         plt.legend()
         plt.grid()
```


In the above graph, we plot the experimental condition number along with the value $\frac{(1+\sqrt{2})^{4N}}{\sqrt{N}}$.

We can say that the for upto n=14, the condition number has the bound $O\left(\frac{(1+\sqrt{2})^{4N}}{\sqrt{N}}\right)$ but beyond n=14 calculating the condition numbers involves a lot of round off errors and thus stagnates.

Still we can say, that $O\left(\frac{(1+\sqrt{2})^{4N}}{\sqrt{N}}\right)$ is a resaonable bound on the condition number as the experimental values are below the curve.

References

- 1. Beckermann, B. (2000). The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numerische Mathematik, 85(4), 553–577. doi:10.1007/pl00005392
- 2. Todd, J. "The condition of the finite segments of the Hilbert matrix, NBS Appl." Math. Ser 39 (1954): 109-116.