ML FOR AUTONOMOUS ROBOTS

GRASP STABILITY ESTIMATION

Dr. Alexander Fabisch

AG Robotik, University of Bremen

Prof. Dr. Dr. h.c. Frank Kirchner AG Robotik, Universität Bremen https://robotik.dfki-bremen.de/robotik@dfki.de 23rd January, 2024 – Bremen, Deutschland

1 Grasp Stability Estimation

Dataset Recording

Available Features

Туре	Variable	Description
Joint angle	finger_angle_index	flexion of index finger
	finger_angle_mrl	flexion of middle finger
	finger_angle_thumb	flexion of thumb
Force	finger_tangential_mrl	Tangential, middle finger
	finger_normal_index	Normal, index finger
	finger_tangential_index	Tangential, index finger
	${\tt finger_tangential_thumb}$	Tangential, thumb
	finger_normal_thumb	Normal, thumb
	finger_normal_mrl	Normal, middle finger
Label	label: no_contact, failure, success, success_and_stable	Quality of grasp

Objects

Why is it difficult?

- ► All data is available as a time series (measurements during the grasp)
- One measurement is not sufficient to determine stability exactly; a better approach would be to use tactile sensors (expensive!)
- ► Transfer between hands might not be possible for small objects, because the calibration (joint angle measurement) is not precise

Machine Learning Pipeline

- ► Feature engineering: compute distance between finger tips from joint angles
- ▶ ML pipeline: manual feature selection + standard scaler + random forest
- Metric: balanced accuracy
- Validation: stratified 10-fold CV
- Various tests were performed with transfer between objects and hands (with different calibrations)
- We still needed fine-tuning for each object, hand, and grasp
- We will try that in the next tutorial

Learning Curve

Confusion Matrix

Framework

What should we do when the grasp is not stable?

- ▶ The grasp stability estimation module is embedded in the APRIL framework
- \blacktriangleright Main layers: high-level planning, behavior trees, low-level control (\leftarrow we are here)
- Behavior tree is able to trigger a fallback solution (regrasp)
- ▶ If that does not work, we have to go back and plan another grasp attempt

Thank You! Please feel free to ask questions in the

forums.