$N(1440) 1/2^{+}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ****

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(1440) POLE POSITION

RFAI	PART
	· FAIL

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1360 to 1385 (≈ 1370) OUR ESTI	MATE			
1369± 3	SOKHOYAN	15A	DPWA	Multichannel
1363± 2±2	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1359	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
1385	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1375 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1386	SHKLYAR	13	DPWA	Multichannel
1370± 4	ANISOVICH	12A	DPWA	Multichannel
1370	SHRESTHA	12A	DPWA	Multichannel
1363 ± 11	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$
1383	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
160 to 195 (≈ 180) OUR ESTIMA	TE			
189± 5	SOKHOYAN	15A	DPWA	Multichannel
180± 4±5	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
162	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
164	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
180 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
277	SHKLYAR	13	DPWA	Multichannel
190± 7	ANISOVICH	12A	DPWA	Multichannel
214	SHRESTHA	12A	DPWA	Multichannel
151 ± 13	BATINIC	10	DPWA	$\pi N \rightarrow N \pi$, $N \eta$
316	VRANA	00	DPWA	Multichannel

N(1440) ELASTIC POLE RESIDUE

MODULUS |r|

<i>VALUE</i> (MeV)	DOCUMENT ID		TECN	COMMENT
40 to 52 (≈ 46) OUR ES	TIMATE			
49±3	SOKHOYAN	15A	DPWA	Multichannel
$50 \pm 1 \pm 2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
38	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
40	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
52 ± 5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Created: 5/30/2017 17:20

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

126	SHKLYAR	13	DPWA Multichannel
48±3	ANISOVICH	12A	DPWA Multichannel
44	BATINIC	10	DPWA $\pi N \rightarrow N\pi$. Nn

PHASE θ				
<i>VALUE</i> (°)	DOCUMENT ID		TECN	COMMENT
- 80 to $-$ 100 ($pprox$ $-$ 90) OUR ES	STIMATE			
$-$ 82 \pm 5	SOKHOYAN	15A	DPWA	Multichannel
$-88\pm1\pm2$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
– 98	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
-100 ± 35	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •
– 60	SHKLYAR	13	DPWA	Multichannel
-78 ± 4	ANISOVICH	12A	DPWA	Multichannel
- 88	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$

N(1440) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \to N(1440) \to \Delta \pi$, *P*-wave

MODULUS (%)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
27±2	38 ± 5	SOKHOYAN	15A	DPWA	Multichannel
• • • We do no	t use the following data	for averages, fits	s, lim	its, etc.	• • •
27 ± 2	40 ± 5	ANISOVICH	12 _^	ΠΡΙΛ/Δ	Multichannel

Normalized residue in $N\pi \to N(1440) \to N(\pi\pi)_{S-wave}^{I=0}$

MODULUS (%)	PHASE (°)	DOCUMENT ID	TECN	COMMENT
21 ± 4	-136 ± 4	SOKHOYAN 15	A DPWA	Multichannel
 ● ● We do no 	t use the following data	for averages, fits, I	imits, etc.	• • •
$21\!\pm\!5$	-135 ± 7	ANISOVICH 12	A DPWA	Multichannel

N(1440) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1410 to 1450 (≈ 1430) OUR EST	IMATE			
1430 ± 10	SOKHOYAN	15A	DPWA	Multichannel
1515 \pm 15	SHKLYAR	13	DPWA	Multichannel
1485.0 ± 1.2	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
1440 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1410 ± 12	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1430 ± 8	ANISOVICH	12A	DPWA	Multichannel
1412 ± 2	SHRESTHA	12A	DPWA	Multichannel
1439 ± 19	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1518 ± 5	PENNER	02 C	DPWA	Multichannel
1479 ± 80	VRANA	00	DPWA	Multichannel

Created: 5/30/2017 17:20

N(1440) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
250 to 450 (≈ 350) OUR ESTIMAT	E			
360± 30	SOKHOYAN	15A	DPWA	Multichannel
605± 90	SHKLYAR	13	DPWA	Multichannel
284± 18	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
340± 70	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
135 ± 10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •
365± 35	ANISOVICH	12A	DPWA	Multichannel
248± 5	SHRESTHA	12A	DPWA	Multichannel
437 ± 141	BATINIC	10	DPWA	π N $ ightarrow$ N π , N η
668± 41	PENNER	02 C	DPWA	Multichannel
490 ± 120	VRANA	00	DPWA	Multichannel

N(1440) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	$N\pi$	55–75 %	
Γ_2	$N\eta$	<1 %	
Γ_3	$N\pi\pi$	25–50 %	
Γ_4	$\Delta(1232)\pi$	20–30 %	
Γ_5	${\it \Delta}(1232)\pi$, $\it P$ -wave	13–27 %	
Γ_6	$N\sigma$	11–23 %	
Γ_7	$p\gamma$, helicity=1/2	0.035–0.048 %	
Γ ₈	$n\gamma$, helicity= $1/2$	0.02-0.04 %	

N(1440) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
55 to 75 (≈ 65) OUR ESTIMATE					
63 ±2	SOKHOYAN	15A	DPWA	Multichannel	
56 ±2	SHKLYAR	13	DPWA	Multichannel	
78.7 ± 1.6	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN	
68 ±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
51 ±5	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
62 ±3	ANISOVICH	12A	DPWA	Multichannel	
64.8 ± 0.9	SHRESTHA	12A	DPWA	Multichannel	
62 ±4	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
57 ±1	PENNER	02 C	DPWA	Multichannel	
72 ±5	VRANA	00	DPWA	Multichannel	

Created: 5/30/2017 17:20

$\Gamma(N\eta)/\Gamma_{ ext{total}}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	_
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
0±1	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi, P$ -wave $)/\Gamma_{total}$					Γ ₅ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
20 ±7	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
21 ±8	ANISOVICH	12A	DPWA	Multichannel	
6.5 ± 0.8	SHRESTHA	12A	DPWA	Multichannel	
16 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N\sigma)/\Gamma_{total}$					Γ ₆ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
17 ± 6	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
17±7	ANISOVICH	12A	DPWA	Multichannel	
27±1	SHRESTHA	12A	DPWA	Multichannel	
12±1	VRANA	00	DPWA	Multichannel	
			\		

N(1440) PHOTON DECAY AMPLITUDES AT THE POLE

$N(1440) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
-0.044 ± 0.005	-40 ± 8	SOKHOYAN	15A	DPWA	Multichannel
$-0.054 ^{+0.004}_{-0.003}$	5^{+2}_{-5}	ROENCHEN	14	DPWA	

N(1440) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(1440) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.060 ± 0.004 OUR ESTIMATE				
-0.061 ± 0.006	SOKHOYAN	15A	DPWA	Multichannel
-0.056 ± 0.001	WORKMAN	12A	DPWA	$\gamma N o N \pi$
-0.051 ± 0.002	DUGGER	07	DPWA	$\gamma {\sf N} ightarrow \pi {\sf N}$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
$-0.085\!\pm\!0.003$	SHKLYAR	13	DPWA	Multichannel
-0.061 ± 0.008	ANISOVICH	12A	DPWA	Multichannel
-0.084 ± 0.003	SHRESTHA	12A	DPWA	Multichannel
-0.061	DRECHSEL	07	DPWA	$\gamma {\sf N} ightarrow \pi {\sf N}$
-0.087	PENNER	02 D	DPWA	Multichannel

$N(1440) \rightarrow n\gamma$, helicity-1/2 amplitude A $_{1/2}$

$VALUE~({ m GeV}^{-1/2})$	DOCUMENT ID		TECN	COMMENT
$+0.040\pm0.010$ OUR ESTIMATE				
0.043 ± 0.012	ANISOVICH	13 B	DPWA	Multichannel
0.048 ± 0.004	CHEN	12A	DPWA	$\gamma {\sf N} ightarrow \pi {\sf N}$
• • • We do not use the following of	data for average	s, fits,	limits, e	etc. • • •
0.040 ± 0.005	SHRESTHA	12A	DPWA	Multichannel
0.054	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
0.121	PENNER	02 D	DPWA	Multichannel

N(1440) FOOTNOTES

N(1440) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan <i>et al.</i>	(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen et al.	,
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich et al.	
SHKLYAR	13	PR C87 015201	V. Shklyar, H. Lenske, U. Mosel	(GIES)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
CHEN	12A	PR C86 015206	W. Chen et al. (DUK	(E, GWU, MSST, ITEP+)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
WORKMAN	12A	PR C86 015202	R. Workman <i>et al.</i>	(ĠWU)
BATINIC	10	PR C82 038203	M. Batinic et al.	(ŻAGR)
DRECHSEL	07	EPJ A34 69	D. Drechsel, S.S. Kamalov, L. Tia	itor (MAINZ, JINR)
DUGGER	07	PR C76 025211	M. Dugger et al.	(JLab CLAS Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	(GWU)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	. Lee (PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
				,

 $^{^{1}\,\}mathrm{Fit}$ to the amplitudes of HOEHLER 79.