Digital Electronic Circuits Section 1 (EE, IE)

Lecture 26

Mod 5 Counter

C	В	A	Count
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
0	0	0	0

Count	0	1	2	3	4	0
Clock						
$J_A = C', K_A = 1 \Rightarrow A$	11	11	11	11	01	11
$J_B = 1, K_B = 1 \Rightarrow B$	1	.1	1	1		11
$J_C = AB, K_C = 1 \Rightarrow C$	01	01	01	11	01	01
	- !			1		

Flip-Flop *JK* inputs shown for each before clocking

Mod 10 Counter by Cascading

Bi-quinary (5-2)

IC 7490A

	Reset		Out	puts			
R0(1)	R0(2)	R9(1)	R9(2)	Q_D	Q _C	Q _B	Q_A
Н	Н	L	Х	L	L	L	L
Н	Н	X	L	L	L	L	L
Х	X	Н	Н	Н	L	L	Н
Х	L	X	L		COI	JNT	
L	X	L	X		COL	JNT	
L	X	X	L		COL	JNT	
Х	L	L	X		COL	JNT	

Mod 1000 Counter by Cascading

Divided by 10 by cascading $\div 5$ and $\div 2$

Counts from 0 to 999

Use of Asynchronous Reset

Clocking for BCD Counter

Clock	$Q_D Q_C Q_B Q_A$	Count
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	(0110)	(6)
	0000	0
7	0001	1

Mod 9: If Q_D and Q_A to $R_{0(1)}$ and $R_{0(2)}$

Mod 8: If Q_D to both $R_{0(1)}$ and $R_{0(2)}$

Mod 6

Glitch: For the
duration of internal

→ AND gate propagation
delay << T_{Clock}

Mod 7: Since $Q_CQ_BQ_A = 111$ to reset, 3-input gate (external)

Use of Asynchronous Fixed Preset

Clocking for BCD Counter

Clock	$Q_D Q_C Q_B Q_A$	Count
0	1001	9
1	0000	0
2	0001	1
3	0010	2
4	0011	3
5	0100	4
6	0101	5
7	(0 11 0) 1001	(6) 9
8	0000	0
9	0001	1

Mod 7

For the duration of internal AND gate propagation delay $<< T_{Clock}$

Synchronous Counter Design

Considered: *JK* Flip-Flop is used and the counter is initialized with one of the valid six states.

Q_n -	$\rightarrow Q_{n+1}$	J	K
0	0	0	×
0	$\stackrel{1}{0}$	X	1
1	1	×	0

000	
101	001
100	010
0	11

	C_n	B_n	A_n	C_{n+1}	B_{n+1}	A_{n+1}	J_C	K_C	J_B	K_B	J_A	K_A
ı	0	0	0	0	0	1	0	×	0	×	1	×
١	0	0	1	0	1	0	0	×	1	×	×	1
١	0	1	0	0	1	1	0	×	×	0	1	×
١	0	1	1	1	0	0	1	×	×	1	×	1
١	1	0	0	1	0	1	×	0	0	×	1	×
١	1	0	1	0	0	0	×	1	0	×	×	1

Design Equations from K-Map

$$J_A = K_A = 1$$

Logic Circuit

 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100$

Role of Invalid States CLK — Possibility of lock-in No lock-in but, not by design

Consideration of Unused States

To come from invalid state(s) to valid state(s) and to continue with the counting.

Example:

C_n B_n A_n	C_{n+1} B_{n+1} A_{n+1}	J_C K_C	J_B K_B	J_C K_C
1 1 0	0 0 0	× 1	× 1	0 ×
1 1 1	0 0 0	× 1	× 1	× 1

Design Equations from K-Map

$\setminus B_n A_n$								
C_n	0.0	0.1	11	1 0				
0	0	1	×	×				
1	0	0	×	×				
$J_B = \overline{C}_n A_n$								

$\setminus B_n A_n$								
C_n	0.0	0.1	11	1 0				
0	×	×	1	0				
1	×	×	1	1				
$K_B = A_n + C_n$								

Logic Circuit

Considering both the invalid states going to valid 000 at next clock trigger

Some Applications

C	В	A	Y	BA
0	0	0	0	00 01 11 10
0	0	1	1	C 0 0 1 0 0
0	1	0	0	1 1 1 0
0	1	1	0	
1	0	0	1	$Y = B'.A + C.B' + C.A \leftarrow C.L.$
1	0	1	1	
1	1	0	0	Mod 8
1	1	1	1	CLK Counter C. L.
0	0	0	0	

Sequence Generator

Moore Model

- Input effects internal state and not output directly.
- Output is generated solely from flip-flops / registers.
- Output is synchronized with clock.

Mealy Model

- Input effects internal state and output directly.
- Output is generated from flip-flops / registers and input.
- Output is not synchronized with clock, may change if the input changes during a clock period.
- Input transients / glitches may affect the output

Synthesis with Moore Model

Problem Statement:

A sequence detector for '110' from a binary data stream is to be designed.

Y is 1 if in the binary data stream, X a sequence 110 is detected else, Y is 0.

State definition:

a: No bit is correctly decoded (initial state)

b: 1 bit is correctly decoded

c: 2 bits are correctly decoded

d: 3 bits are correctly decoded

State transition diagram

Example:

CLK	0	1	2	3	4	5	6	7	8	9	10	
Input	0	1	0	1	1	1	0	1	1	0	0	
State	а	а	b	а	b	С	С	d	b	С	d	
Output	0	0	0	0	0	0	0	1	0	0	1	

Synthesis with Mealy Model

State definition:

a: No bit is correctly decoded (initial state)

b: 1 bit is correctly decoded

c: 2 bits are correctly decoded

Example:

CLK	0	1	2	3	4	5	6	7	8	9	10
Input	0	1	0	1	1	1	0	1	1	0	0
State	а	а	b	а	b	С	С	а	b	С	а
Output	0	0	0	0	0	0	1	0	0	1	0

State transition diagram

Problem Statement:

A sequence detector for '110' from a binary data stream is to be designed.

Moore Model: State Assignment

State transition diagram

State assignment:

For N states, number of flip-flops required = $\lceil \log_2 N \rceil$ i.e. $ceiling(\log_2 N)$

Flip-Flop

State	В	A
а	0	0
b	0	1
С	1	0
d	1	1

Alternate assignment (one FF value changes!!)

State		В	A	
4	а		0	0
	b		0	1
	С		1	1
	d		1	0

Problem Statement:

A sequence detector for '110' from a binary data stream is to be designed.

Moore Model: State Table

ſ	Presen	t State	Present Input	Next S	State	Output				
l	B_{n}	A_{n}	X_{n}	B_{n+1}	A_{n+1}	Y_n	$J_{_{B}}$	$K_{_{B}}$	$J_{_{A}}$	$K_{_{\!A}}$
ı	0	0	0	0	0	0	0	×	0	×
ı	0	0	1	0	1	0	0	×	1	×
ı	0	1	0	0	0	0	0	×	×	1
ı	0	1	1	1	0	0	1	×	×	1
ı	1	0	0	1	1	0	×	0	1	×
ı	1	0	1	1	0	0	×	0	0	×
ı	1	1	0	0	0	1	×	1	×	1
ı	1	1	1	0	1	1	×	1	×	0

Q_n -	$\rightarrow Q_{n+1}$	J	K
0	0	0	×
0	1	1	\times
1	0	X	1
1	1	×	0

State table

Moore Model: Design Equations

Design Equations

Moore Model: Circuit Realization

$$J_{B} = XA_{n}$$

$$K_{B} = A_{n}$$

$$J_{A} = \overline{X}B_{n} + X\overline{B}_{n}$$

$$K_{A} = \overline{X} + \overline{B}_{n}$$

$$Y = A_{n}B_{n}$$

Mealy Model: State Assignment & State Table

Continuing with the same design problem: A sequence detector for '110' from a binary data stream is to be designed. Required, $\lceil \log_2 3 \rceil = \lceil 1.585 \rceil = 2$ Flip-Flops

State	В	A
а	0	0
b	0	1
С	1	0

Present	t State	Present Input	Next S	State	Present Output				
B_{n}	A_{n}	X_{n}	B_{n+1}	A_{n+1}	Y_n	$J_{_B}$	$K_{\!\scriptscriptstyle B}$	$J_{_A}$	$K_{_{\!A}}$
0	0	0	0	0	0	0	×	0	×
0	0	1	0	1	0	0	×	1	×
0	1	0	0	0	0	0	×	×	1
0	1	1	1	0	0	1	×	X	1
1	0	0	0	0	1	×	1	0	×
1	0	1	1	0	0	×	0	0	×

Q_n	$\rightarrow Q_{n+1}$	J	K
0	0	0	×
0	1	1	X
1	0	×	1
1	1	×	0

Mealy Model: Design Equations

Mealy Model: Circuit Realization

$$J_{B} = XA_{n}$$

$$K_{B} = \overline{X}$$

$$J_{A} = X\overline{B}_{n}$$

$$K_{A} = 1$$

$$Y = \overline{X}B_{n}$$

Less complex compared to Moore Model based circuit.

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ Texas Instrument's Digital Logic Pocket Data Book (2007)