Es)
$$Z = \{a, b, c\}$$

$$L_1 = \{w \mid X_N Y_V = Z, X_1 Y_1 \neq e Z, v, v \in Z^* \}$$

$$X = \frac{2}{2}, |v| = |v| \}$$

$$XY_2 = OD^{\circ}CD^{\circ}O$$

$$= \{OD_{-}, b \in D^{\circ}O\}$$

$$= \{OD_{-}, b \in D^{\circ$$

Ro =
$$(a+b+c)$$

RI = RoRoRo $(l_0R_0)^*$

RI = $aR_0^*a + bR_0^*b + cR_0^*c$

RI OR generates LI

OR old lingth

R = $aR_0(l_0R_0)^*a + bR_0(l_0R_0)^*b + cR_0(l_0R_0)^*c$

linst = lost

LI $\in R \in Q$

Automata, Languages and Computation

Chapter 9: Undecidability

Master Degree in Computer Engineering
University of Padua
Lecturer: Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University

Undecidability

Recursively enumerable languages

From now onward : Modern computers = Turing machines

A language L is recursively enumerable (RE) if L = L(M) for some TM M

Given an input string w, M halts if $w \in L(M)$, but M may not halt if $w \notin L(M)$

Recursive languages

A language L is **recursive** (REC) or, equivalently, the decision problem L represents is **decidable**, if L = L(M) for a TM M that halts for every input

A recursive/decidable language corresponds to the definition of algorithm, for which we impose that computation halts both for positive and negative instances of the problem

String indexing

Let us sort all strings in $\{0,1\}^*$:

- by length
- lexicografically, for strings of the same length

i	string
1	ϵ
2	0
3	1
4	00
5	01
:	:

We associate with each string a positive integer *i* called **index**

String indexing

We write w_i to denote the i-th string

We can easily verify that, for each $w \in \{0,1\}^*$, we have

$$w = w_i \Leftrightarrow i = 1w$$

Encoding of TM

We now want to encode a TM with binary input alphabet $M = (Q, \{0,1\}, \Gamma, \delta, q_1, B, F)$ by means of a binary string, which we denote enc(M)

We need to assign integers to each state, tape symbol, and symbols L and R indicating directions

We rename the states as q_1, q_2, \ldots, q_r . Initial state: q_1 , final state: q_2 (unique)

We rename the tape symbols as $X_1, X_2, ..., X_s$. Also: $0 = X_1$, $1 = X_2$, $B = X_3$

$$L = D_1$$
 and $R = D_2$

Encoding of TM

For the transition function, if

$$\delta(q_i, X_j) = (q_k, X_l, D_m)$$

the binary code C for the transition is (we use unary notation for i, j, k, l, m)

$$0^{i}10^{j}10^{k}10^{l}10^{m}$$

Note: We never have two consecutive occurrences of 1, since $i, j, k, l, m \ge 1$ is always satisfied

Encoding of TM

For a TM, we concatenate the codes C_i for all transitions, separated by 11

There are several codes for *M*, obtained by indexing the symbols and/or listing the transitions in different orders

Many binary strings do not correspond to a TM

Example: 11001 or 001110

Note: In the following we write enc(M) to denote a generic code for M; keep in mind that enc() is not a function.

Try to draw a map between set of all TMs and set of binary strings, representing the encoding relation

Example

Let
$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_2\})$$
, where δ is defined as
$$\delta(q_1, 1) = (q_3, 0, R) \cdot \delta(q_3, 0) = (q_1, 1, R)$$

$$\delta(q_1, 1) = (q_3, 0, R) \delta(q_3, 0) = (q_1, 1, R)$$

$$\delta(q_3, 1) = (q_2, 0, R) \delta(q_3, B) = (q_3, 1, L)$$

Transition encodings C_i

TM encoding enc(M)

TM indexing

1234567890

We can now enumerate all TM (with repetition) using positive integers as indices and using our string indexing

For $i \ge 1$, the *i*-th TM M_i is defined as follows

- if w_i is a valid encoding representing TM M, then $M_i = M$
- if w_i is not a valid encoding, then M_i is the TM that halts immediately for any input (only one state and no transition, $L(M_i) = \emptyset$)

Diagonalization language

The following table reports whether M_i accepts (1) or

