CSE 574 – Introduction to Machine Learning Project 3.0 – Classification

Asish Kakumanu

UB Person No :50288695 asishkak@buffalo.edu

Abstract

The Abstract of the project is to develop different classifier models and evaluate the models. The Machine Learning models used to classify digits in this exercise are Logistic Regression, Multi-Layer Perceptron, Convolutional Neural Network, Deep Neural Network, Random Forest and Support Vector Machines.

1 Problem Description

The problem of classifying digits is to be solved using different classification Models.

- 1. Logistic Regression.
- 2. Multi-Layer Perceptron.
- 3. CNN & DNN.
- 4 Random Forest.
- 5. Support Vector Machines.

Input: The input is the set of features from images.

Output: A number class which is any integer between 0 to 9.

The Task is to recognize a 28 x 28 grayscale handwritten digit image and identify the class. We use MNIST dataset to train our models and also test models along with USPS Dataset which is solely used to test the models.

2 Overview of Dataset

2.1 MNIST Dataset

It is a collection of handwritten digits used for training and testing in various fields of machine learning and image processing. The overall size of the dataset is of 70000 images, which is divided into three parts i.e., 50000 for training, 10000 for validation, 10000 for testing. Each image has 28 x 28 viz., 784 features

The target value is of dimensions 70000 x 1 which corresponds to the labels associated with each digit.

2.2 USPS Dataset

The USPS datasets consist of images of digits in folders marked from 0 to 9. The dataset is processed and loaded using the Python imaging library (PIL). There are totally 2000 images in the collection. This dataset is solely used for testing the performance of MNIST-trained dataset on it. This test dataset is of the size 19999 x 784.

2.3 Processing of the Datasets

The Dataset are partitioned as below.

MNIST Dataset

70000 images in total

Training -50000 (80%)

Validation – 10000 (10%)

Testing – 10000 (10%)

USPS Dataset

19999 images in total

Entire Dataset is used for testing the Classification Models we design in this project.

3 Implementation

3.1 Logistic Regression

The task of classifying 10 classes using Logistic regression can be represented by

$$p(C_k|\mathbf{x}) = y_k(\mathbf{x}) = \frac{exp(a_k)}{\sum_j exp(a_j)},$$

Where a_k is the activation function $a_k = \mathbf{w} \top \mathbf{x} + b_k$. Here w^T are the weights

$$\boldsymbol{w_k} = [w_{k,1}, ..., w_{k,10}]^{\mathrm{T}}$$

Here, the cross-entropy function for the multiclass function in terms of training samples is

$$E(\mathbf{x}) = -\sum_{k=1}^{K} t_k \ln y_k,$$

Where $y_k = y_{k(x)}$. The gradient of the error function which would be,

$$\nabla_{w_j} E(\mathbf{x}) = (y_j - t_j)\mathbf{x}.$$

And to find the optimum of the error function and the solution of w_j . We use the below

$$\mathbf{w}_j^{t+1} = \mathbf{w}_j^t - \eta \bigtriangledown_{w_j} E(\mathbf{x}).$$

3.1.1 Logistic Regression: Experiments

From the graph above, it is clear that accuracy increased with the increase of learning rate. During this experiment, we gradually increased the learning rate starting from 0.001 to 0.5 and also the number of epochs which increased the accuracy of the model.

Testing on MNIST Dataset

Experiment 1:

Epochs - 1

Learning Rate – 0.001 Accuracy: 0.8462

11ccu1 ucy : 0.0 102

Experiment 2:

Epochs - 2

Learning Rate – 0.01 **Accuracy:** 0.896

Experiment 3:

Epoch - 3

Learning Rate – 0.5 **Accuracy:** 0.9277

Testing on USPS Dataset

Similarly, we tested the model using USPS Dataset and the below are the observations gathered.

Experiment 1:

Epochs – 1

Learning Rate – 0.001 Accuracy: 0.3183

Experiment 2:

Epochs – 2

Learning Rate – 0.01 **Accuracy:** 0.36125

Experiment 3:

Epoch – 3

Learning Rate – 0.5 **Accuracy:** 0.35205

We have observed a decrease of the accuracy as the learning rate and the number of epochs increased.

Accuracies on MNIST Datasets

Accuracy- Training set 0.91954 Accuracy - Validation set 0.9208 Accuracy - Testing set 0.9125

3.1.2 Confusion Matrix

Cor	nfus:	ion Ma	atrix	for	_ogis	tic R	egres	sion:	Valid	lation_MNIS	Т
13	926		14			33		22		11]	
Ε		1019	22		16	24	16	39	47	19]	
Ε			828	27			16			10]	
Ε			15	886		119			58	17]	
Ε			16		842					47]	
				20		600			13	4]	
[24		30			27	902			0]	
[22					953	14	43]	
[21	32		16	32			807	8]	
Ε			10	17		30		34	31	802]]	
Cor	nfus:	ion Ma	atrix	for	ogis	tic R	egres:	sion:	Testi	ng_MNIST	
0.0	938		18			33	21			16]	
Ε		1089	34		12			44	26	15]	
]			827					23	15	12]	ч
]			27	880		130			56	13]	ч
Ε			21		840	26	12	14	11	60]	ч
Ε				20		560	17			9]	ч
			31		21	33	871		20	3]	
			22	20		11		885		36]	
		27	48	31	14	46		11	783	11]	
Ε				16	85	20		43	22	834]]	
				for Logistic Regression:							
11	766			207		287	626	228	312	130]	
[294	47		102	23	16	260		246]	
1	409		1110	147	41	262	377	381	228	185]	
1	52	216		1109		279	85	336	204	397]	
[368	266	76		1079	64	122	67	195	208]	ч
Ε	24	26	30	155	69	714		66	323	38]	
Ε	70	43	102	50	26	138	604	56	144		
	35	331	100	79	135	87	23	282	42	361]	Г
	68	315	84	131	219	107	55	289	428		Г
	201	16	14	62	83	39		35	71	103]]	Γ

3.2 Random Forest

Random forests are an ensemble learning method for classification, regression tasks, that operate by constructing a multitude of decision trees at training time and output the class that is the mode of the classes or mean prediction of the individual trees.

We have used a library function from Sklearn to solve this problem. The parameters used in this problem are *n_estimators*, *criterion*, *random_state* and *max depth*, *verbose* etc.,

```
By keeping the below constant
verbose = 0,
random_state = None,
max_features = auto and
max_depth = None
```

We change a couple of parameters like *n* estimator and *n* jobs.

By keeping everything constant, we changed parameters like $n_{estimator}$ and n_{jobs} , criterion.

3.2.1 Random Forest: Experiments

Experiment 1:

```
n_estimators = 10
n_jobs = 2
criterion: 'entropy'
```

Validation Results :: MNIST Dataset ...

Precision: 0.9525066177792418

Recall: 0.9525

F1 Score: 0.9523923341326412

Accuracy: 0.9525 Mean Accuracy: 0.9525

Testing Results :: MNIST Dataset ...

Precision: 0.9466675310394334

Recall: 0.9466

F1 Score: 0.9464681342532542

Accuracy: 0.9466 Mean Accuracy: 0.9466

Testing Results :: USPS Dataset ...

Precision: 0.31865230768854325 Recall: 0.30591529576478826 F1 Score: 0.2874935094293345 Accuracy: 0.30591529576478826

Mean Accuracy: 0.30591529576478826

Experiment 2:

By changing the **n_estimators** to 100. We have observed the accuracy to be 0.97 (approx) for the **MNIST Dataset**.

0.34 for **USPS Dataset**.

3.2.2 Confusion Matrix

Con	fus	ion Ma	atrix	for F	Randon	ı Fore	est: '	Valida	ation_	_MNIST
[[:	978									5]
[1050								3]
[962							3]
[996		15				8]
[954					8]
[11		867				6]
[12	958			0]
[1061		8]
[974	6]
[18			11		914]]
Con		ion Ma	atrix	for F	Randon		est: ˈ	Testi	U-	EST
[[:	968									6]
[1124								5]
[997	10				19		0]
[973		12				9]
[952					11]
[859				4]
[937			1]
[10				985		5]
[929	8]
[21			11		960]]
Con			atrix		Randon			Testir	<u>-</u>	
	621	22	73	31		131	306	28	50	18]
[12	597	47	10	211	36	75	356	70	297]
[:	230	85	1217	82	55	125	197	335	162	211]
[48	98	73	1265	24	83	25	226	193	279]
[·	471	54	45	62	1068	34	96	30	116	253]
[.	142	79	164	282	148	1395	327	241	1075	112]
[60	18	19		13	18	781	26	64	13]
[.	167	1033	356	242	444	166	183	748	118	680]
[13			13				129	59]
[:	248	1	3	19	17	4	9	7	23	78]]

3.3 Multi Layer Perceptron

A multilayer perceptron (MLP) is a class of feedforward artificial neural network. An MLP consists of, at least, three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function.

The Parameters that we use in this model are as following hidden layer sizes=(100,)

hidden_layer_sizes=(100,)
max_iter=50,
alpha=1e-4,
solver='sgd',
verbose=10,
tol=1e-4,
random_state=1,
learning_rate_init=.1

We have kept few as constant while changing the solver, hidden layer sizes, max_iterations, activation and learning rate.

Solvers used are **sgd**, **adam**.
Activation functions used are **tanh**, **relu**.
Learning Rates used are **Adaptive** and **Constant**.
Alpha to be **0.01** and **0.05**.

3.3.1 Multi Layer Perceptron

Best Settings:

Solver : sgd

Activation Function : relu Learning Rate : Adaptive

Alpha: 0.05

Init_learning Rate: 0.1

Validation :: MNIST		
	C1	

pre	precision		f1-score	support	
0	0.99	0.99	0.99	991	
1	0.99	0.99	0.99	1064	
2	0.99	0.98	0.98	990	
3	0.97	0.98	0.98	1030	
4	0.99	0.97	0.98	983	
5	0.98	0.96	0.97	915	
6	0.98	0.99	0.99	967	
7	0.98	0.99	0.99	1090	
8	0.97	0.98	0.97	1009	
9	0.96	0.97	0.97	961	
za / total	0.08	0.09	2 0 02	10000	

 $avg \ / \ total \qquad 0.98 \qquad 0.98 \qquad 0.98 \qquad 10000$

Accuracy: **0.9804** Testing:: MNIST

	precis	sion 1	ecall	f1-score	support
0	0.	.99	0.99	0.99	980
1	0.	.99	0.99	0.99	1135
2	0.	.98	0.97	0.98	1032
3	0.	.97	0.98	0.97	1010
4	0.	.98	0.98	0.98	982
5	0.	.99	0.97	0.98	892
6	0.	.98	0.98	0.98	958
7	0.	.98	0.98	0.98	1028
8	0.	.97	0.98	0.97	974
9	0.	.98	0.97	0.97	1009
avg / to	tal	0.98	0.98	0.98	10000

Accuracy : **0.9792**

Testing :: USPS

\mathcal{C}				
	precision	recall	f1-score	support
0	0.55	0.27	0.37	2000
1	0.62	0.24	0.35	2000
2	0.48	0.77	0.59	1999
3	0.52	0.73	0.61	2000
4	0.51	0.53	0.52	2000
5	0.58	0.70	0.63	2000
6	0.78	0.53	0.63	2000
7	0.32	0.45	0.37	2000
8	0.34	0.40	0.37	2000

```
9 0.23 0.14 0.17 2000
```

avg / total 0.49 0.48 0.46 19999

Accuracy: 0.47657382869143455

3.4 SVM (Support Vector Machine)

Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. In two dimensional space this hyperplane is a line dividing a plane in two parts where in each class lay in either side.

We have used a library function from Sklearn to solve this problem. The Parameters we use to tune the model are C, kernel, gamma.

Gamma

When Gamma is high, Nearby points are considered. When it is low, Farther points are also considered.

C (Regularization Parameter)

When C is high, it accepts zero tolerance. When C is low, it accepts tolerance.

Left: low regularization value, right: high regularization value

Kernel

The learning of the hyperplane in linear SVM is done by transforming the problem using some linear algebra. This is where the kernel plays role.

Linear Kernel

For linear kernel the equation for prediction for a new input using the dot product between the input (x) and each support vector (xi) is calculated as follows:

$$f(x) = B(0) + Sum(a_i * (x, x_i))$$

Radial Basis Function Kernel

The RBF kernel on two samples x and x', represented as feature vectors in some input space, is defined as

$$K(\mathbf{x},\mathbf{x}') = \exp\!\left(-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}
ight)$$

3.4.1 Experiments

Best Parameters

C:5

Kernel: Linear **Gamma**: 0.01

Validation :: MNIST

Accuracy: 0.9828

Testing :: MNIST

Accuracy: 0.982

Testing :: USPS

Accuracy: 0.41527076353817693

3.4.2 Confusion Matrix

Con	fus ⁻	ion Ma	atrix	for S	SVM: \	/alida	ation.	_MNIS	Γ	
[[:	972									5]
[1049						10	25	6]
[929	13				13		4]
[949		27			16	14]
[10		944			11		21]
[34		830			20	4]
[12			20	950			0]
[1034		21]
[11	17		11			911	6]
[19			16	11	880]]
Con	fus	ion Ma	atrix	for S	SVM: 7	Γestir	ng_MN:	IST		
[[:	967						10			10]
[1120						13		6]
[962	14				22		0]
[950		33			14	12]
[10		937					33]
[17		808	10		24	5]
[13			11	924		10	1]
[11	10				954		14]
[16	11		10			891	6]
[25			20		922]]
		ion Ma	atrix	for S	SVM: 7		ng_USI	PS .		
[[:		110	128	76	18		197			26]
[429	18		67	17		225	25	166]
[·	428		1402	186	91	257	489	457	209	228]
[19	137	59	1123	14	102	24	265	193	278]
_	285	273	39		1167	25		57	87	213]
	248	180	198	483	267			416		165]
	73	46	61		22	60	748	15		8]
[44	501	57	70	194	43	13	452		499]
		22	23	27	69	15		41		
	322	17	14	16	91		23	22	27	203]]

4 Conclusion

As per the observations made on the classifiers post tuning the parameters for each model. The results observed were as below

Model	USPS Testing Accuracy	MNIST Test Accuracy
CNN	0.49	0.9885
SVM	0.415	0.982
DNN	0.47	0.9875
MLP	0.47	0.97
Random Forest	0.305	0.94
Logistic	0.307	0.91

4.1.1 Questions

4.1.1.1 No Free Lunch Theorem

No Free lunch theorem states that there is no universal model/ algorithm which fits perfectly to all the problems. By looking at the accuracy results for each model clearly explains the No Free Lunch Theorem.

4.1.2 Confusion Matrix

Coi	nfusi	ion Ma	atrix	for l	JSPS a	after	major	ity v	oting	
]]	683	129	185	107	49	171	416	114	155	59]
[6	468	32	3	120	22	19	287	43	234]
[372	230	1347	157	65	231	410	416	232	199]
	40	179	82	1347	36	168	50	344	225	387]
[367	245	54	24	1178	46	111	51	130	190]
[128	123	114	244	157	1226	233	231	797	96]
[52	35	51	6	14	50	708	22	89	10]
	52	520	100	74	194	63	19	444	49	482]
[16	66	24	27	107	17	16	76	250	215]
	284	5	10	11	80	6	18	15	30	128]]

4.1.3 Majority Voting

Post the Majority Voting, the accuracy is 0.55. Which is very much less than the individual models.