Appello – Parte 1

06/07/2023 — versione 1 —

♦♥♣♠♦♠♣♥♠♣

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1 — 1 pt (***) No Multichance

Dato l'insieme dei numeri floating point $\mathbb{F}(2,3,-4,4)$, si calcolino i due numeri positivi più grandi appartenenti a tale insieme e se ne riportino i valori in base 10.

14, 12

2-1 pt

Si consideri il seguente algoritmo: dato $x_0 \in \mathbb{R}$ positivo, $x_{n+1} = (x_n + \alpha/x_n)/2$ per $n = 0, 1, \ldots$ fornisce un'approssimazione di $\sqrt{\alpha}$ per n "grande". Si calcoli l'approssimazione x_{10} di $\sqrt{107}$ utilizzando n = 10 passi dell'algoritmo partendo da $x_0 = 1$ e si riporti il numero di operazioni necessarie per ottenerla.

10.3441, 30

3-1 pt

Si considerino 20 sistemi lineari $A \mathbf{x}_j = \mathbf{b}_j$ per $j = 1, \dots, 20$, dove la matrice $A \in \mathbb{R}^{60 \times 60}$ è fissata, simmetrica e definita positiva, mentre i vettori $\mathbf{b}_j \in \mathbb{R}^{60}$ rappresentano diversi termini noti. Qual è il numero di operazioni stimato per la risoluzione di tali sistemi lineari per $j = 1, \dots, 20$ attraverso l'uso computazionalmente più efficiente di un metodo diretto?

216000

4 - 2 pt (***) No Multichance

Dato il sistema lineare
$$A \mathbf{x} = \mathbf{b}$$
, con $A = \begin{bmatrix} 4 & 6 & 2 & 1 \\ 2 & 3 & -1 & 1 \\ 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ e $\mathbf{b} = (1 \ 2 \ 3 \ 4)^T$, si

consideri la sua risoluzione tramite il metodo della fattorizzazione LU con pivoting per riga. Si riportino il valore dell'ultima componente della soluzione (\mathbf{x})₄ e gli indici delle righe di A che sono state permutate.

 $x_4 = 4.8182$; sono state permutate le righe 2 e 3

5-1 pt

Dato un sistema lineare $A\mathbf{x} = \mathbf{b}$ con A matrice quadrata e non singolare, quale o quali delle seguenti affermazioni sul metodo di Gauss–Seidel sono vere?

- 1. converge per ogni scelta dell'iterata iniziale
- 2. converge se il raggio spettrale di A è inferiore a 1
- 3. converge se A è a dominanza diagonale stretta per righe
- 4. converge se A è simmetrica definita positiva
- 5. converge sempre più velocemente del metodo di Jacobi

vere 3 e 4

6 — 2 pt

Si consideri la matrice $A=\begin{bmatrix}3&1\\2&8\end{bmatrix}$ e il metodo della fattorizzazione QR per l'approssimazione dei suoi autovalori λ_1 e λ_2 . Si applichino 3 iterazioni del metodo e si riportino le approssimazioni $\lambda_1^{(3)}$ e $\lambda_2^{(3)}$ così ottenute.

8.4155, 2.5845

7-1 pt

Si vuole approssimare lo zero $\alpha = 2$ della funzione $f(x) = \log(-x^2 + 4x - 3) \sin(\pi x)$. Scelto $x^{(0)}$ "sufficientemente" vicino ad α , per quale molteplicità m il metodo di Newton modificato converge quadraticamente ad $\alpha = 2$?

3

8-2 pt (***) No Multichance

Il metodo delle secanti approssima lo zero α di una funzione f(x) applicando la seguente iterata:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{q^{(k)}} \qquad \text{per } k \ge 1,$$

dati $x^{(0)}$, $x^{(1)}$ e $q^{(k)} = \frac{f(x^{(k)}) - f(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$. Posti $f(x) = 2\log(x^2 + 1) - 1$, $x^{(0)} = 0$ e $x^{(1)} = 2$, si riporti il valore dell'iterata $x^{(3)}$ ottenuta applicando il metodo.

0.8078

$$9-2$$
 pt

Si vuole calcolare l'intersezione tra le funzioni $f(x) = e^{-x^2/2}$ e $g(x) = \sin(x)$ per $x \in [0,2]$ utilizzando il metodo delle iterazioni di punto fisso con una tolleranza di 10^{-8} sul residuo. Si fornisca l'espressione di un'opportuna funzione di iterazione, l'iterata iniziale scelta, l'approssimazione del punto di intersezione ottenuto e il numero di iterazioni effetuate.

$$\phi(x) = f(x) - g(x) + x, x^{(0)} = 0, 0.8069, 15$$

Data la funzione di iterazione $\phi(x)=\frac{1}{2}e^{2x-1}-x+\frac{1}{2}$, si valuti l'approssimazione $x^{(3)}$ ottenuta applicando 3 passi del metodo delle iterazioni di punto fisso a partire da $x^{(0)}=1$ e si indichi qual è l'ordine di convergenza atteso per il metodo.

0.5310, 2

ESERCIZIO – 17 pt

Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ è una matrice non singolare, e $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$ per $n \geq 1$. In particolare, poniamo n = 100, A corrispondente alla seguente matrice pentadiagonale

$$A = \text{pentadiag}(1, -4, 21, -20, 2) \in \mathbb{R}^{100 \times 100},$$

 $\mathbf{b} \in \mathbb{R}^{100}$ tale per cui la soluzione esatta del sistema lineare è $\mathbf{x} = \mathbf{2} \in \mathbb{R}^{100}$.

Punto 1) — 2 pt

Si determini se i metodi di Jacobi e Gauss–Seidel convergono alla soluzione \mathbf{x} del sistema lineare $A\mathbf{x}=\mathbf{b}$ per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbf{R}^n$. Si giustifichi dal punto di vista teorico la risposta data, definendo tutta la notazione usata e riportando i comandi Matlab[®] .

$$\rho_J = 1.0536 > 1, \, \rho_{GS} = 0.5883 < 1$$

Spazio per risposta lunga

Punto 2) — 2 pt

Dopo aver risposto al Punto 1), si applichi il metodo convergente ed è implementato nella corrispondente funzione Matlab[®]. Si considerino la tolleranza sul criterio d'arresto basato sul residuo normalizzato $tol = 10^{-3}$, il numero massimo di iterazioni pari a 10^4 e l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$. Si riportino: il numero N di iterazioni effettuate, la prima componente della soluzione approssimata $x_1 = \left(\mathbf{x}^{(N)}\right)_1$,

il valore del residuo normalizzato $r_{norm}^{(N)} = \frac{\|\mathbf{r}^{(N)}\|}{\|\mathbf{b}\|}$ e tutti i comandi Matlab® usati.

$$N = 162, \ x_1 = 2.0002, \ r_{norm}^{(N)} = 7.6923e - 04$$

Spazio per risposta lunga

Punto 3) — 2 pt

Dopo aver risposto al Punto 2), si stimi l'errore relativo commesso al passo N applicando il metodo con i parametri indicati. Si definisca tutta la notazione utilizzata, si commenti il risultato e si riportino tutti i comandi Matlab $^{\circledR}$ usati.

$$e_{rel}^{(N)} = 0.1682$$

Spazio per risposta lunga

Punto 4) — 3 pt

Si consideri il seguente metodo iterativo dipendente dal parametro $\omega \in \mathbb{R}$, con $\omega > 0$: data l'iterata inziale $\mathbf{x}^{(0)} \in \mathbb{R}^n$

$$\frac{1}{\omega} T \mathbf{x}^{(k+1)} = \mathbf{b} - \left(A + \left(\frac{1}{\omega} - 2 \right) T \right) \mathbf{x}^{(k)} \qquad \text{per } k = 0, 1, \dots$$

dove $T \in \mathbb{R}^{n \times n}$ è la matrice triangolare inferiore estratta da A (non singolare).

Si riporti l'espressione della matrice di iterazione associata al metodo precedente in funzione di ω . Si applichi poi il metodo al sistema lineare assegnato determinando i valori di $\omega \in \mathbb{R}$ tale per cui la convergenza è garantita per ogni $\mathbf{x}^{(0)} \in \mathbb{R}^n$, oltre al valore ottimale ω_{opt} . Si giustifichi il risultato alla luce della teoria riportando tutti i comandi Matlab[®] usati.

$$B = (2\omega - 1)I - \omega T^{-1}A, \quad \omega \in (0, 1.2979), \quad \omega_{opt} \approx 0.7840 \ (\rho_{B_{opt}} \approx 0.34)$$

Spazio per risposta lunga

Punto 5) — 3 pt (***) No Multichance

Si approssimi il numero di condizionamento $K_2(A)$ della matrice A partendo dalla sua definizione e applicando opportunamente i metodi delle potenze dirette e inverse. Si illustri dettagliatamente la procedura, la si motivi, si riportino i comandi Matlab® usati e si riporti il risultato ottenuto.

$$K_2(A) = 218.7074$$

Spazio per risposta lunga

Punto 6) — 2 pt (***) No Multichance

Si consideri il sistema lineare sovradeterminato $C \mathbf{z} = \mathbf{b}$, dove $C \in \mathbb{R}^{n \times m}$ è tale che $(C)_{i,j} = (A)_{i,j}$ per $i = 1, \dots, n$ e $j = 1, \dots, m$, essendo $A \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$ e n stati assegnati in precedenza, mentre m = n - 2.

Si risolva il sistema $C \mathbf{z} = \mathbf{b}$ tramite il metodo della fattorizzazione QR. Si illustri la procedura seguita per applicare tale metodo, si riportino i comandi Matlab[®] usati e la prima componente della soluzione normale così calcolata $z_1^* = (\mathbf{z}^*)_1$.

$$z_1^* = 0.3684$$

Spazio per risposta lunga

Punto 7) — 3 pt

Dato un generico sistema di equazioni non lineari $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, dove $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ per $n \ge 1$, si può approssimare lo zero $\boldsymbol{\alpha} \in \mathbb{R}^n$ tramite il metodo seguente.

Algorithm 1: Metodo BFGS Dato $\mathbf{x}^{(0)} \in \mathbb{R}^{n}$; Assegnata la matrice $B_{0} \in \mathbb{R}^{n \times n}$; for k = 0, 1, 2, ..., fino a che un criterio d'arresto è soddisfatto do risolvere il sistema lineare $B_{k} \delta^{(k)} = -\mathbf{F}\left(\mathbf{x}^{(k)}\right)$; $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \delta^{(k)};$ $\mathbf{y}^{(k+1)} = \mathbf{F}\left(\mathbf{x}^{(k+1)}\right) - \mathbf{F}\left(\mathbf{x}^{(k)}\right)$;

 $\mathbf{y}^{(k+1)} = \mathbf{F} \left(\mathbf{x}^{(k+1)} \right) - \mathbf{F} \left(\mathbf{x}^{(k)} \right);$ $B_{k+1} = B_k + \frac{\mathbf{y}^{(k+1)} \left(\mathbf{y}^{(k+1)} \right)^T}{\mathbf{y}^{(k+1)} \cdot \boldsymbol{\delta}^{(k)}} - \frac{B_k \, \boldsymbol{\delta}^{(k)} \, \left(B_k \, \boldsymbol{\delta}^{(k)} \right)^T}{\boldsymbol{\delta}^{(k)} \cdot \left(B_k \, \boldsymbol{\delta}^{(k)} \right)};$

Si implementi l'algoritmo in una funzione Matlab[®] bfgs.m, dove $\mathbf{x}^{(k)}$ approssima $\boldsymbol{\alpha}$, mentre B_k è un'approssimazione della matrice Jacobiana di $\mathbf{F}\left(\mathbf{x}^{(k)}\right)$.

Si consideri ora il seguente sistema di equazioni non lineari $\mathbf{F}:\mathbb{R}^n\to\mathbb{R}^n$

$$\mathbf{F}(\mathbf{x}) = A\mathbf{x} + e^{-\mathbf{x}/10} - \mathbf{b} - \mathbf{1} = \mathbf{0},$$

dove A, \mathbf{b} ed n sono stati definiti precedentemente. Si approssimi lo zero $\boldsymbol{\alpha} \in \mathbb{R}^n$ usando la funzione Matlab® bfgs.m implementata, scegliendo $\mathbf{x}^{(0)} = \mathbf{b} \in \mathbb{R}^n$ e $B_0 = A$. Si riportino i valori delle approssimazioni $\left(\mathbf{x}^{(1)}\right)_1$, $\left(\mathbf{x}^{(2)}\right)_1$, $\left(\mathbf{x}^{(3)}\right)_1$, oltre a tutti i comandi Matlab® usati.

 $2.0344,\ 3.1631,\ 3.5759$

Spazio per risposta lunga