МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Параллельные алгоритмы» Тема: Параллельное умножение матриц.

 Студент гр. 9304
 Борисовский В.Ю.

 Преподаватель
 Сергеева Е.И.

Санкт-Петербург 2022

Цель работы.

Реализовать параллельный алгоритм и алгоритм «быстрого» умножения матриц.

Задание.

- 4.1 Реализовать параллельный алгоритм умножения матриц. Исследовать масштабируемость выполненной реализации.
- 4.2 Реализовать параллельный алгоритм "быстрого" умножения матриц (Штрассена или его модификации).
 - •Проверить, что результаты вычислений реализаций 4.1 и 4.2 совпадают.
 - •Сравнить производительность с реализацией 4.1 на больших размерностях данных (порядка $10^4 10^6$).

Выполнение работы.

Было реализовано простое умножение матриц, в котором данные просто разбиваются на независимые части и считаются прараллельно, а также усовершенствованный метод перемножения матриц через алгоритм Штрассена. Данный алгоритм является рекурсивным и основывается на разбиении матрицы на 7 частей, до тех пор пока матрицу можно делить, а минимально возможные единицы перемножаются простым умножением.

Сравнение производительности простого умножение и алгоритма Штрассена.

В таблице 1 представлено время выполнения для каждого алгоритма, при разных размерах матрицы и параметрах:

Алгоритм	Параметры	Размер матрицы	Время, мк. с.
Простое	1 поток	8x8	216
умножение			
Простое	8 потоков	8x8	377
умножение			
Штрассен	Глубина 1	8x8	308

Простое	1 поток	64x64	7012
умножение			
Простое	8 потоков	64x64	1958
умножение			
Простое	32 потока	64x64	1926
умножение			
Штрассен	Глубина 1	64x64	3179
Штрассен	Глубина 2	64x64	2244
Штрассен	Глубина 4	64x64	2354
Штрассен	Глубина 16	64x64	3524
Простое	8 потоков	2048x2048	28666572
умножение			
Штрассен	Глубина 1	2048x2048	9752976
Штрассен	Глубина 2	2048x2048	9716799
Штрассен	Глубина 3	2048x2048	9852144
Штрассен	Глубина 4	2048x2048	10188230
Штрассен	Глубина 16	2048x2048	10152534

Таблица 1 – Зависимость времени выполнения от входных параметров.

Выводы.

На языке программирования C++ были реализованы параллельные алгоритмы умножения матриц. В результате сравнения было установлено, что первое разработанное решение успешно масштабируется при увеличении размеров матрицы и потоков, а также предложенная модификация алгоритма Штрассена в среднем быстрее первого алгоритма подхода. Масштабируется алгоритм Штрассена на тестовом окружении крайне плохо по причине недостаточного количества вычислительных ядер (4 физических ядер, 8 логических).