Intro Formulation Results Idea

PPI Networks and Gene Expression

Adrin Jalali

July 7, 2013

Microarray Gene Expression

credit: en.wikipedia.org

Van't Veer breast-cancer data

Yeast Protein Interaction Network

credit:

Intro Formulation Results Idea

JOURNAL OF COMPUTATIONAL BIOLOGY Volume 19, Number 6, 2012 © Mary Ann Liebert, Inc. Pp. 694–709 DOI: 10.1089/cmb.2012.0065

Network-Induced Classification Kernels for Gene Expression Profile Analysis

OFER LAVI.1-3 GIDEON DROR.2 and RON SHAMIR

ABSTRACT

Computational classification of gene expression profiles into distinct discuse phenotypes has been highly succeeding to date. Still, robotates, accuracy, and bloigical interpretation of boars highly succeeding to date. Still, robotates, accuracy, and bloigical interpretation of mustion juility with the expression profiles can improve the results. Here, we thus, the transcent in section of the expression profiles can improve the results. Here, we thus, the materiation are indeed relevant by showing that on expressed gene tend to be close in the network of infraredistion. Second, we show that the occupancy of the expression of the control of the expression of the expressi

Key word: algorithms

1. INTRODUCTION

It was not stated in the contract and th

We would like then to develop methods for detecting sets of biomarkers that (1) are more meaningful biologically and (2) are more stable across different studies. Such sets would be more useful for downstream biological research. The two goals do not always go hand in hand; for example, Hwang et al. (2008)

³IBM Haifa Research Lab, Haifa, Israel.

694

³Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
²Valvat Research Huifu Israel

NICK

1. SVM modified objective function

$$\min_{\mathbf{w},w_0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2}\beta \sum_{(j,k) \in E} (w_j - w_k)^2 \right\}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : (\mathbf{wx}_i + w_0)y_i \ge 1$$

3. Dual to Primal

$$\mathbf{w} = (\mathbf{I} + \beta \mathbf{B})^{-1} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

2. Dual problem

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{L}) (\mathbf{L}^{T} \mathbf{x}_{j}) \right\}$$

$$\mathsf{LL}^T = (\mathsf{I} + \beta \mathsf{B})^{-1}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\forall i \in \{1, \cdots, n\} : \alpha_i \geq 0$$

credit: Ofer Lavi, et.al., Journal of Computational Biology, (2012)

NICK Performance Summary

credit: Ofer Lavi, et.al., Journal of Computational Biology, (2012)

Synthesize data

- A random graph
- Signal nodes:

$$f(n) = \begin{cases} N(-\mu, 1) & \text{if } n \text{ is in class } 1\\ N(\mu, 1) & \text{if } n \text{ is in class } 2 \end{cases}$$

Random nodes:

$$f(n)=N(0,1)$$

Pathway: 2, 3, or 4 connected signal nodes.

Synthesized data

Synthesized data easy scenario

Synthesized data easy scenario

X196	X196
X196	X133
X133	X133
X133	X116
X116	X116
X240	X240
X196	X116
X125	X125
X240	X243
X125	X82
X243	X243
X82	X82
X243	X150
X82	X113
X150	X150
X113	X113
X113	X193
X193	X193
X113	X110
X150	X138
X193	X122
X240	X150
X125	X113

X233

X110

X110

X267

X82

X122

X95

X233

X110

X267 X267

X193

X122

X95

Synthesized data medium scenario

Synthesized data medium scenario

X240

X125

X243

X82

X243

X82

X150

X113

X150

X113

X193

X193

X110

X138 X122

X150

X110

X113

X267

X190

X267

X233

X272

X272

X193

X205

X138

X122

X205

X110

Synthesized data hard scenario

Synthesized data hard scenario

	X190
	X190
	X272
	X272
	X190 X272 X272 X205
	X233
	X190
	X272
	X272
	X40
	X40
	X228
	X228
	X90
	X40
'	X228
	X40
	X69
	X228
	X112
	X148 X245
	X245
	X236
	X69
	X138
	X257
	X148
	X69

X219

X54

X190

X272

X272 X205

X205

X233

X127

X69

X22

X40

X228

X228

X90 X90

X245

X236

X138

X69

X219 X112

X148 X245

X236

X219

X138

X257 X127

X211

X219

X54

Results

- Extract pairs of genes with mutual absolute large w
- Synthesized easy: all implanted pathways come on top of the list
- Synthesized hard: they are vanished

Results

- Extract pairs of genes with mutual absolute large w
- Synthesized easy: all implanted pathways come on top of the list
- Synthesized hard: they are vanished
- Van't veer:
 - Slightly better performance, although not necessarily as reported.
 - 2 You find even better genes in w/o network scenario.
 - Well known genes are of very high degree in the network.

• Estimate density distribution of each gene for class A.

- Estimate density distribution of each gene for class A.
- For each sample:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)

- Estimate density distribution of each gene for class A.
- For each sample:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)
- Use a graph kernel for labeled graphs to classify extracted graphs.

- Estimate density distribution of each gene for class A.
- ② For each sample:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)
- Use a graph kernel for labeled graphs to classify extracted graphs.
- Extract common sub-graphs from individual graphs that seem to be helping the classification.

Intro Formulation Results Idea

Why it doesn't work

Intro Formulation Results Idea

Weighted idea

Finished!

Thank You!