

Ouick start

import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt

X = np.linspace(0, 2*np.pi, 100) Y = np.cos(X)

fig, ax = plt.subplots() ax.plot(X,Y,color='C1')

fig.savefig("figure.pdf") fig.show()

Anatomy of a figure

Subplots layout

subplot[s](cols,rows,...) fig, axs = plt.subplots(3,3)

G = gridspec(cols,rows,...) API ax = G[0,:]

Getting help

- matplotlib.org
- O discourse.matplotlib.org
- ₩ gitter.im/matplotlib
- Matplotlib users mailing list

Basic plots

API

X, Y, fmt, color, marker, linestyle

plot([X],Y,[fmt],...)

bar[h](x,height,...) x, height, width, bottom, align, color

X, Y1, Y2, color, where

Advanced plots

API

ax.set_[xy]scale(scale,...) MAMAMAMA linear log any values values > 0 logit symlog any values 0 < values < 1

Scales

Projections subplot(...,projection=p) p='3d' p='polar'

Colormaps

plt.get_cmap(name)

Tick locators

from matplotlib import ticker ax.[xy]axis.set [minor|major] locator(locator)

```
ticker.NullLocator()
ticker.MultipleLocator(0.5)
ticker.FixedLocator([0, 1, 5])
ticker.LinearLocator(numticks=3)
ticker.IndexLocator(base=0.5, offset=0.25)
 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25
ticker.AutoLocator()
ticker.MaxNLocator(n=4)
ticker.LogLocator(base=10, numticks=15)
```

Tick formatters

from matplotlib import ticker ax.[xy]axis.set_[minor|major]_formatter(formatter)

```
ticker.NullFormatter()
ticker.FixedFormatter(['', '0', '1', ...])
ticker.FuncFormatter(lambda x, pos: "[%.2f]" % x)
ticker.FormatStrFormatter('>%d<'
ticker.ScalarFormatter()
ticker.StrMethodFormatter('{x}')
ticker.PercentFormatter(xmax=5)
```

Ornaments

ax.legend(...) handles, labels, loc, title, frameon

Event handling

fig, ax = plt.subplots() def on_click(event): print(event) fig.canvas.mpl_connect('button_press_event', on_click)

Animation

import matplotlib.animation as mpla

```
T = np.linspace(0,2*np.pi,100)
S = np.sin(T)
line, = plt.plot(T, S)
def animate(i):
 line.set_ydata(np.sin(T+i/50))
anim = mpla.FuncAnimation(
  plt.gcf(), animate, interval=5)
plt.show()
```

Styles

API

plt.style.use(style)

Quick reminder

ax.grid() ax.patch.set_alpha(0) ax.set_[xy]lim(vmin, vmax) ax.set_[xy]label(label) ax.set_[xy]ticks(list) ax.set_[xy]ticklabels(list) ax.set_[sup]title(title) ax.tick_params(width=10, ...)

ax.set_axis_[on|off]() ax.tight_layout() plt.gcf(), plt.gca() mpl.rc('axes', linewidth=1, ...) fig.patch.set alpha(0) text=r'\$\frac{-e^{i\pi}}{2^n}\$'

Keyboard shortcuts

ctrl + s Save ctrl + w Close plot r Reset view f Fullscreen 0/1 b View back

f View forward p Pan view

O Zoom to rect x X pan/zoom y Y pan/zoom

g Minor grid 0/1

G Major grid 0/1 X axis log/linear L Y axis log/linear

Ten Simple Rules

1. Know Your Audience

2. Identify Your Message

3. Adapt the Figure

4. Captions Are Not Optional

5. Do Not Trust the Defaults

6. Use Color Effectively

7. Do Not Mislead the Reader

8. Avoid "Chartiunk"

9. Message Trumps Beauty

10. Get the Right Tool

Extent & origin

ax.imshow(extent=..., origin=...)

Text alignments

ax.text(..., ha=... , va=..., ...)

Text parameters

ax.text(..., family=..., size=..., weight = ...) ax.text(..., fontproperties = ...)

The quick brown lox jumps over the tazy dog	uttratignt (100)	
The quick brown fox jumps over the The quick brown fox jumps over the lazy dog The quick brown fox jumps over the lazy dog The quick brown fox jumps over the lazy dog	lazy dog monospace serif sans cursive	
The quick brown fox jumps over the lazy dog The quick brown fox jumps over the lazy dog	italic normal	

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

The quick brown fox jumps over the lazy dog

small-caps

Axes adjustements Uniform colormaps

Sequential colormaps

Diverging colormaps

Qualitative colormaps

Miscellaneous colormaps

Color names cadetblue powderblue lightblue darkgoldenrod goldenrod dimgray dimgrey gray cornsilk gold deepskyblue lemonchiffon khaki grey darkgray skyblue lightskyblue darkgrey palegoldenroc pa. darkkn. ivory beige lightyellow lightgoldenrodyellor oflive y yellow 'wedrab 'reer aliceblue lightgray lightgrey gainsboro whitesmoke dodgerblue lightslategray slategray slategray slategrey lightsteelblue cornflowerblue yellow olivedrab yellowgreen darkolivegree, greenyellow chartreuse lawngreen honeydew darkser white white snow rosybrowr lightcoral indianred brown firebrick maroon darkred cornflowerblu royalblue ghostwhite lavender midnightblue honeydew darkseagreer palegreen lightgreen forestgreen mistyrose salmon tomato darksalmon slateblue darkslateblue limegreen darkgreen mediumpurple rebeccapurple orangered green lime blueviolet lightsalmon indigo sienna seagreen mediumseagreen chocolate springgreen mintcream mediumorchid saddlebrown sandybrown mediumspringgreen plum peachpuff mediumaquama purple darkmagenta aguamarine turquoise lightseagreen mediumturquoise fuchsia darkorange burlywood antiquewhite tan navajowhite blanchedalmond azure lightcyan paleturquoise darkslategray darkslategrey magenta orchid mediumvioletred deeppink hotpink lavenderblush palevioletred crimson teal darkcyan aqua cyan

Image interpolation

mitchell

Legend placement

ax.legend(loc="string", bbox_to_anchor=(x,y))

1: lower left	2: lower center	3: lower right
4: left	5: center	6: right
7: upper left	8: upper center	9: upper right

upper right / (1,.9)	B: right / (1,.5)
lower right / (1,.1)	D: upper left / (1,1)
upper center / (.5,1)	F: upper right / (.9,1)
lower left / (1.1,.1)	H: left / (1.1,.5)
uppor loft / (1 1 0)	It lower right / (0.1.1)

I: upper left / (1.1,.9) J: lower right / (.9,1.1) K: lower center / (.5,1.1) L: lower left / (.1,1.1)

Annotation connection styles

A:

C:

E:

... get a reversed colormap?

Annotation arrow styles

fancy

lanczos

wedge

How do I ...

... resize a figure?

 \rightarrow fig.set_size_inches(w,h)

... save a figure?

→ fig.savefig("figure.pdf")

... save a transparent figure?

→ fig.savefig("figure.pdf", transparent=True)

... clear a figure?

→ ax.clear()

... close all figures? → plt.close("all")

... remove ticks?

→ ax.set xticks([])

... remove tick labels?

→ ax.set_[xv]ticklabels([])

... rotate tick labels?

 \rightarrow ax.set_[xv]ticks(rotation=90)

... hide top spine?

 \rightarrow ax.spines['top'].set_visible(False)

... hide legend border?

→ ax.legend(frameon=False)

... show error as shaded region?

 \rightarrow ax.fill_between(X, Y+error, Y-error)

... draw a rectangle?

 \rightarrow ax.add_patch(plt.Rectangle((0, 0),1,1)

... draw a vertical line?

 \rightarrow ax.axvline(x=0.5) ... draw outside frame?

 \rightarrow ax.plot(..., clip_on=False)

... use transparency?

 \rightarrow ax.plot(..., alpha=0.25)

... convert an RGB image into a gray image?

 \rightarrow grav = 0.2989*R+0.5870*G+0.1140*B

... set figure background color?

→ fig.patch.set_facecolor("grey")

→ plt.get_cmap("viridis_r")

... get a discrete colormap?

 \rightarrow plt.get_cmap("viridis", 10)

... show a figure for one second?

 \rightarrow fig.show(block=False), time.sleep(1)

Performance tips

scatter(X, Y)slow plot(X, Y, marker="o", ls="") fast for i in range(n): plot(X[i]) slow plot(sum([x+[None] for x in X],[]))fast cla(), imshow(...), canvas.draw() slow im.set_data(...), canvas.draw() fast

Beyond Matplotlib

Seaborn: Statistical Data Visualization Cartopy: Geospatial Data Processing vt: Volumetric data Visualization mpld3: Bringing Matplotlib to the browser Datashader: Large data processing pipeline plotnine: A Grammar of Graphics for Python

Matplotlib Cheatsheets (c) 2020 Nicolas P. Rougier Released under a CC-BY 4.0 International License

