EE3220 System-on-Chip Design

Tutorial 2: Hello World!

ARM Project Creation and Configuration

Objective:

- To get familiar with the usage of ARM Mbed.
- To set up and run your first project.
- To learn how to write a C/C++ program for ARM.

In this tutorial, you will learn how to set up and run a new project for an ARM Mbed board. During this process, you will learn the required settings and finally run the compiled code on the targeted device (NUCLEO-F401RE ARM board). At the end of this tutorial, you will learn the basic usage and functions of the ARM Mbed platform.

Step 1:

Please complete the steps in **Tutorial 1** and register an ARM Mbed account. Now you need to log in to the website.

- Go to the Mbed platform website https://os.mbed.com/account/login
- Click **Compiler** button at the top right hand side of the page.

Step 2: Create your project with template.

• Click New -> New program

 Select NUCLEO-F401RE as Platform, click the Template and select the mbed OS Blinky LED HelloWorld, and leave the program name as mbedos-example-mbed5-blinky.

- Click OK, the program will be created.
- Open the project folder and observe the main.cpp and the mbed OS libraries imported.

• Have a glance at the libraries contained in mbed-os.

Open the README.md file and know more about this program.

```
| Making No. | README ind X | Alternatively X | BilinearInterpolate X | CMSIS_Core_FunctionInterface X | CONTRIBUTING.ind X | Besh X | Besh X | Besh X | Cophech X | Analogin X | Respectively a state of a digital output connected to an IEO on the board.
```

 Now open the main.cpp, the snapshot below contains the meaning of the instructions used.

```
main.cpp X
 6 #include "mbed.h"
                                      // add the mbed header file
 7 #include "platform/mbed thread.h"
                                     // add header for thread
10 // Blinking rate in milliseconds
                                    // define BLINKING_RATE_MS as 500
11 #define BLINKING_RATE_MS
                              500
13
14 int main()
15 {
       // Initialise the digital pin LED1 as an output
16
      DigitalOut led(LED1);
                                     // set led as a digital output
                                     // connected to the LED1 pin
                                     // Loop forever
19
     while (true)
20
          led = !led:
                                      // Toggle LED
21
22
          thread_sleep_for(BLINKING_RATE_MS); // Delay 500MS
23
24 }
```

• Now click Compile Tab to compile and generate a binary file.

• Connect the board, a new drive (NODE_F401RE) will be appeared. Copy the generated binary file to the new drive.

• Observe the LED blinking on the board.

Step 3: Make your own hello word project.

• Click New -> New program

• Select Empty Project as the template and enter the program name. (Ensure that the Platform is set to **Nucleo-F401RE**)

• Right click the project folder and select Import Library -> From Import Wizard to import **Mbed library.**

 Click on the search button (with empty text) and double click **Mbed** among the given libraries. Now the Mbed library will be imported into your project.

To create a source code, right click the project and click New File.

• Name the source file as hello_word.cpp and click OK.

• Open the source file, write the program attached.

```
hello_word.cpp X

1 #include "mbed.h"
2 int main()
3 {
4    printf("hello world!\n");
5 }
```

 Save the file and click Compile button on the menu bar. The program will be now compiled.

• After compiling the program, the binary created will be required to be saved.

• Click OK to save the binary to your download folder.

Step 4: Loading and running the program on the board.

• Go to device manager from Control Panel -> System

• Check Ports and make sure STLink Virtual COM Port is shown. Write down the Port number.

• Start Serial Communication with Putty.

• Open the NODE_F401RE() drive. Remember it was opened earlier when the board is ON. A Google chrome browser and a file named "DETAILS" will be found in the drive.

• To load the binary file onto the board, copy the saved binary file **serial_interrupt.bin** to the **NODE_F401RE**() drive.

• Open Putty terminal and see the printed hello world!

Reference book for ARM Mbed

Fast and Effective Embedded System Design: Applying the ARM mbed. Second Edition

Book support material website

http://www.embedded-knowhow.co.uk/Book 3 Ed2.htm

Instructor Support				
The mbed allows a ne	ew style of teaching about embe	edded systems and microcontro	ollers in university and colleg	e courses. Support n
Powerpoint slides:	These are directly linked to the b	book content. There is one slide	e presentation for each book	chapter. PDFs are a
Chapter 1	Chapter 4	Chapter 7	Chapter 10	Chapter13
Chapter 2	Chapter 5	<u>Chapter 8</u>	Chapter 11	Chapter14
Chapter 3	Chapter 6	Chapter 9	Chapter 12	Chapter 15
Solutions to Quiz qu				mail please give brief
Solutions to Quiz qu	uestions. Lecture Note powerpoints, plea			nail please give brief
Solutions to Quiz questions or Quiz solutions or Code Examples.	uestions. Lecture Note powerpoints, plea	se <u>email</u> from a university/colle	ege email address. In your er	mail please give brief
Solutions to Quiz questions or Quiz solutions or Code Examples.	uestions. Lecture Note powerpoints, plea	se <u>email</u> from a university/colle	ege email address. In your er I compiler.	mail please give brief
Solutions to Quiz que For Quiz solutions or Code Examples. These are available be	uestions. Lecture Note powerpoints, plea	se email from a university/colle	ege email address. In your er I compiler.	

END