

DATA SCIENCE & MACHINE LEARNING COURSE

https://www.facebook.com/diceanalytics/ https://pk.linkedin.com/company/diceanalytics

Association Rule Mining

- An Association Rule is a pattern that states when Event A occurs, another Event B occurs with certain probability.
- These are if/then statements that help discover relationships between unrelated data in a data repository.
- Algorithms : Apriori, etc.
- <u>Example</u>: Market Basket Analysis

2)

- A is called L.H.S (Left Hand Side)
- B is called R.H.S (Right Hand Side)
- Used to show Association among two items
- If A is diaper and B is beer, it means when a customer buys diaper, he would buy beer too.

Support (A
$$\Longrightarrow$$
 B) = $\frac{\text{Freq (A and B)}}{\text{N}}$
= P (A & B)

- Support means the probability of the customer buying Item A and Item B together among all sales transactions.
- Range 0 to 1

Confidence (A
$$\Longrightarrow$$
 B) = $\frac{P (A \text{ and } B)}{P (A)}$
= $\frac{P (B | A)}{P (B)}$

- Confidence means that if a customer picks up Item A, how he is likely to buy Item B?.
- The maximum value of confidence has to be 1.

	Basketball	No basketball	Total
Cereal	2000	1750	3750
No Cereal	1000	250	1250
Total	3000	2000	5000

$$Sup(B \rightarrow C) = 40\%$$

$$P(B) = 60\%$$

$$Conf(B \rightarrow C) = 66.67\%$$

$$P(C) = 75\%$$

	Basketball	No basketball	Total
Cereal	2000	1750	3750
No Cereal	1000	250	1250
Total	3000	2000	5000

$$Sup(B\rightarrow nC) = 20\%$$

$$P(B) = 60\%$$

$$Conf(B \rightarrow nC) = 33.33\%$$

$$P(nC) = 25\%$$

	Basketball	No basketball	Total
Cereal	2000	1750	3750
No Cereal	1000	250	1250
Total	3000	2000	5000

 $Sup(B \rightarrow C) = 40\%$

P(B) = 60%

 $Conf(B \rightarrow C) = 66.67\%$

P(C) = 75%

 $Lift(B \rightarrow C) = 0.89$

	Basketball	No basketball	Total
Cereal	2000	1750	3750
No Cereal	1000	250	1250
Total	3000	2000	5000

 $Sup(B\rightarrow nC) = 20\%$

P(B) = 60%

 $Conf(B\rightarrow nC) = 33.33\%$

P(nC) = 25%

 $Lift(B \rightarrow nC) = 1.33$

Lift (A ===>B) =
$$\frac{P(A \text{ and } B)}{P(A) \times P(B)}$$

- Lift is a true comparison between naive model and our model.
- It means how more likely a customer buy both, compared to buy separately.
- Range can be from 0 to +inf

Association Rule Mining (Example)

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

Apriori Algorithm

- Find the frequent itemsets: the sets of items that have minimum support:
 - > A subset of a frequent itemset must also be a frequent itemset "
 - Generate length (k+1) candidate itemsets from length k frequent itemsets, and "
 - Test the candidates against DB to determine which are in fact frequent
- Use the frequent itemsets to generate association rules.

Convert DB to One-Hot Encoding

Transaction ID	Onion	Potato	Burger	Milk	Beer
t_1	1	1	1	0	0
t_2	0	1	1	1	0
t_3	0	0	0	1	1
t_4	1	1	0	1	0
t_5	1	1	1	0	0
t_6	1	1	1	1	1

TID	Items
t1	O, P, B
t2	P, B, M
t3	M, Br
t4	O, P, M
t5	O, P, B
t6	O, P, B, M, Br

Min Sup 50% for frequent itemsets (Pruning)

Itemsets
ОРВ
PBM
OPM

Itemsets	Sup
OP	4
ОВ	3
РВ	4
PM	3

Itemsets	Sup
OP	4
ОВ	3
ОМ	2
РВ	4
PM	3
BM	2

Itemsets
OP
ОВ
OM
PB
PM
BM

Itemsets	Sup
ОРВ	3

Final Frequent Items sets using algorithm

Itemsets	Support
0	4
Р	5
В	4
M	4
OP	4
ОВ	3
PB	4
PM	3
ОРВ	3

Association Rules will be made

Apriori Algorithm

> Challenges:

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support calculation for each candidate

>Improving of Apriori:

- Reduce number of transaction database scan
- Shrink number of candidates
- Facilitate support counting of candidates

