三、多元线性回归模型

目录

- 多元线性回归模型的估计
- ② 多元线性回归模型的检验
- ③ 多元线性回归模型的预测
- 4 非线性回归模型
- 5 代码输出结果分析

- ▶ 总体与样本回归模型与方程与矩阵表示
 - 总体回归模型: $y_t = b_0 + b_1 x_{1t} + b_2 x_{2t} + \dots + b_k x_{kt} + u_t$, Y = XB + U
 - 总体回归方程: $E(y_t) = b_0 + b_1 x_{1t} + b_2 x_{2t} + \dots + b_k x_{kt}$, $E(\mathbf{Y}) = \mathbf{XB}$
 - 样本回归模型: $\hat{y}_t = \hat{b}_0 + \hat{b}_1 x_{1t} + \hat{b}_2 x_{2t} + \dots + \hat{b}_k x_{kt} + e_t$, $Y = X \hat{B} + e$
 - 样本回归方程: $\hat{y}_t = \hat{b}_0 + \hat{b}_1 x_{1t} + \hat{b}_2 x_{2t} + \dots + \hat{b}_k x_{kt}$, $\hat{Y} = X\hat{B}$
 - $\mathbf{Y} = (y_1, y_2, \dots, y_n)^{\mathrm{T}}$, $\mathbf{X} = (\mathbf{1}_{n \times 1}, x_{1j}, x_{2j}, \dots, x_{kj})$, $\mathbf{B} = (b_0, b_1, \dots, b_k)^{\mathrm{T}}$, $\mathbf{U} = (u_1, u_2, \dots, u_n)^{\mathrm{T}}$, $\mathbf{e} = (e_1, e_2, \dots, e_n)^{\mathrm{T}}$
 - 能够得出参数估计值要求 n > k+1

- ▶ 多元线性回归模型的基本假定
 - $E(u_t) = 0$, $E(\mathbf{U}) = 0$
 - $Cov(u_t, u_s) = 0$
 - $Var(u_t) = \sigma^2$, $E(\boldsymbol{U}\boldsymbol{U}^{\mathrm{T}}) = \sigma^2 I_n$
 - $Cov(x_{it}, u_t) = 0$, $E(X^TU) = 0$
 - $u_t \sim N(0, \sigma^2)$, $U \sim N(0, \sigma^2 I_n)$
 - 解释变量之间不存在多重共线性, $rank(\mathbf{X}) = rank(\mathbf{X}^T\mathbf{X}) = k+1$

- ▶ 多元线性回归模型的估计
 - 回归参数的最小二乘估计: $\hat{\mathbf{B}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$
 - 最小二乘估计量的性质:

线性:
$$\hat{\boldsymbol{B}} = \boldsymbol{B} + (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{U}$$
;

无偏性:
$$E(\hat{\boldsymbol{B}}) = \boldsymbol{B}$$
;

最小方差性:
$$Var(\hat{\boldsymbol{B}}) = \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$$
;

$$\hat{\boldsymbol{b}} \sim N(\boldsymbol{B}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1})$$
, $\hat{b}_j \sim N(b_j, \sigma^2 c_{jj})$ $(c_{jj}$ 为 $(\boldsymbol{X}^T\boldsymbol{X})^{-1}$ 的第 j 个主

对角元素)

• 随机误差项的方差:
$$\hat{\sigma}^2 = \frac{\sum e_t^2}{n-k-1}$$
, $E(\hat{\sigma}^2) = \sigma^2$, $s(\hat{b}_j) = \sqrt{\hat{\sigma}^2 c_{jj}}$

- ▶ 多元线性回归模型的估计
 - 极大似然估计法 (ML): 极大似然品数: $L(\theta) = \prod_{i=1}^{n} f(y_i, \theta)$; $\hat{\theta}_{ML}$ 使得 $\max L(\theta)$, 则 $p(\lim \hat{\theta}_{ML}) = \theta_0$, $\hat{\theta}_{ML} \sim N(\theta_0, V(\theta_0))$
 - ML 法得到的 $\hat{\sigma}^2$ 是 σ^2 的有偏、一致估计量
 - 对于线性回归模型,用极大似然估计法得到的系数估计值与用最小 二乘估计法得到的结果完全相同
 - 参数置信区间:

$$b_j$$
的置信区间: $[\hat{b}_j-t_{\alpha/2}(n-k-1)s(\hat{b}_j),\hat{b}_j+t_{\alpha/2}(n-k-1)s(\hat{b}_j)]$

多元线性回归模型的检验

- ▶ 多元线性回归模型的检验
 - 拟合优度检验:

TSS 的自由度为 n-1, RSS 的自由度为 n-k-1, ESS 的自由度为 k;

决定系数:
$$R^2 = \frac{\text{ESS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$
;
修正的决定系数: $\bar{R}^2 = \frac{\text{ESS}/k}{\text{TSS}/(n-1)} = 1 - \frac{\text{RSS}/(n-k-1)}{\text{TSS}/(n-1)}$;
 $\bar{R}^2 = 1 - \frac{n-1}{n-k-1}(1-R^2) = R^2 - \frac{k}{n-k-1}(1-R^2)$, $\bar{R}^2 < R^2$

- 赤池信息准则: AIC = $\ln \frac{\sum e_t^2}{n} + \frac{2(k+1)}{n}$, 值越小, 拟合优度越好
- 施瓦兹准则: $SC = \ln \frac{\sum e_t^2}{n} + \frac{k}{n} \ln n$, 值越小, 拟合优度越好

多元线性回归模型的检验

▶ 多元线性回归模型的检验

• 回归方程的 F 检验: $H_0: b_1 = b_2 = \cdots = b_k = 0, H_1: b_j$ 不全为 0 ESS $\sim \chi^2(k)$, RSS $\sim \chi^2(n-k-1)$; $F = \frac{\text{ESS}/k}{\text{RSS}/(n-k-1)}$; $F > F_{\alpha}(k, n-k-1)$, 拒绝 H_0 , 回归方程显著; $F < F_{\alpha}(k, n-k-1)$, 接受 H_0 , 回归方程不显著;

$$R^2 = \frac{kF}{(n-k-1)+kF}, \bar{R}^2 = 1 - \frac{n-1}{(n-k-1)+kF}$$

• 回归参数的 t 检验: $H_0: b_j = 0, H_1: b_j \neq 0$ $t = \frac{\hat{b}_j}{\hat{\sigma}\sqrt{c_{jj}}} \sim t(n-k-1);$

 $|t| \ge t_{\alpha/2}(n-k-1)$, 拒绝 H_0 , x_j 对 y 的影响是显著的;

$$|t| < t_{\alpha/2}(n-k-1)$$
,接受 H_0 , x_j 对 y 的影响是不显著的;

一元情况下,
$$F=t^2$$

多元线性回归模型的预测

- ▶ 多元线性回归模型的预测
 - 点预测: 给定 X_f , 代入样本回归方程, 求得 \hat{y}_f
 - 区间预测:

总体均值:
$$E(y_f) = \hat{y}_f \pm t_{\alpha/2} \hat{\sigma} \sqrt{\boldsymbol{X}_f (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}_f^T};$$
样本预测值: $y_f = \hat{y}_f \pm t_{\alpha/2} s(\hat{y}_f)$, 其中 $s(\hat{y}_f) = \hat{\sigma} \sqrt{1 + \boldsymbol{X}_f (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}_f^T}$

多元线性回归模型的预测

- ▶ 多元线性回归模型的预测
 - 预测评价:

平均绝对误差:
$$\text{MAE} = \frac{1}{n} \sum |\hat{y}_t - y_t|$$
; 均方根误差: $\text{RMSE} = \sqrt{\frac{1}{n} \sum (\hat{y}_t - y_t)^2}$; 平均相对误差: $\text{MPE} = \frac{1}{n} \sum \left| \frac{\hat{y}_t - y_t}{y_t} \right|$, 值低于 10, 预测精度较高;

Theil 不等系数: Theil IC =
$$\frac{\sqrt{\frac{1}{n}\Sigma(\hat{y}_t - y_t)^2}}{\sqrt{\frac{1}{n}\Sigma\hat{y}_t^2} + \sqrt{\frac{1}{n}\Sigma y_t^2}}$$
, Theil IC \in [0,1],值

越小,预测精度越高

非线性回归模型

▶ 可线性化模型

- 对数模型: $\ln y = b_0 + b_1 \ln x + u$, 令 $y^* = \ln y, x^* = \ln x$, 则 $y^* = b_0 + b_1 x^* + u$, $b_1 \neq y \neq f$ 5 分弹性 (xy'/y);
- 半对数模型: $y = b_0 + b_1 \ln x + u$ 或 $\ln y = b_0 + b_1 x + u$, 令 $y^* = \ln y$ 或 $x^* = \ln x$ 即可, b_1 是 x 的相对 (绝对) 变化引起 y 的期望值绝对 (相 对) 变化;
- 倒数模型: $y = b_0 + b_1 \frac{1}{x} + u$ 或 $\frac{1}{y} = b_0 + b_1 x + u$, 令 $y^* = \frac{1}{y}$ 或 $x^* = \frac{1}{x}$ 即可;
- 多项式模型: $y = b_0 + b_1 x + b_2 x^2 + \dots + b_k x^k + u$, 设 $x_t = x^t$ 即可;
- 逻辑成长曲线模型: $y_t = \frac{K}{1 + h_{oe} b_1}$, 两边取倒数, 再取 \ln 即可;
- 龚珀兹成长曲线: $y_t = e^{K+b_0b_1}$, 两边取两次 \ln 即可

代码输出结果分析

▶ 代码输出结果分析

同第二章:

常数和解释变量	参数估计值	参数标准误差	t统计量	双侧概率
$C(b_0)$	331.5264	57.16954	5.799003	0.0000
$PI(b_1)$	0.692812	0.006279	110.3337	0.0000
决定系数	0.997297	被解释变量均值		4662.514
调整的决定系数	0.997215	被解释变量标准差		4659.100
回归标准误差	245.8925	赤池信息准则		13.90311
残差平方和	1995283.	施瓦兹信息准则		13.99199
对数似然函数	-241.3044	汉南准则		13.93379
F统计量	12173.53	DW统计量		0.180221
F统计量的概率	0.000000			