plt.imshow plt.show() plt.close(Most of the code In [4]: for i in range	de for the preprocessing comes from the website https://hadrienj.github.io/posts/Preprocessing-for-deep-learning/ e(len(images)): e(images, i)
<pre>newX = X - return new print("### CEN centered = np. for i in range PlotSample def standardiz</pre>	<pre>rnp.mean(X, axis = 0) WX ITERED IMAGES ###") array([center(i) for i in images]) e(len(images)): e(centered, i) re(X):</pre>
standardized = for i in range	ANDARDIZED IMAGES ###") = np.array([standardize(i) for i in centered]) e(len(images)): e(standardized, i) Index O
20 -	
0 10	0 20 30 40 Index 1
10 - 20 - 30 - 40 -	
0 10	0 20 30 40 Index 2
10 - 20 - 30 - 40 -	
0 10	0 20 30 40 Index 3
20 - 30 - 40 -	
0 10	0 20 30 40 Index 4
20 - 30 - 40 -	
0 10	0 20 30 40 Index 5
20 - 30 - 40 -	
0 10	0 20 30 40 Index 6
20 - 30 - 40 -	
0 10	0 20 30 40 Index 7
30 - 40 - 50 -	
Clipping input ## CENTERED IM 0 -	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). MAGES ### Index 0
20 - 30 - 40 -	
0 -	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 1
20 - 30 - 40 -	
0 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 2
20 - 1 1 1 1 1 1 1 1 1 1	
O 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 3
20 - 30 - 40 -	
0 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 4
20 - 30 - 40 -	
0 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 5
20 - 30 - 40 -	
0 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 6
20 - 30 - 40 -	
0 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 7
20 - 30 - 40 -	
	data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). ED IMAGES ### Index 0
20 - 30 - 40 -	
	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 1
20 -	
0 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 2
20 -	
0 10	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 3
20 -	
	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 4
20 -	
	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 5
20 -	
50 - 10 Clipping input	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 6
10 - 20 - 30 - 40 -	
50 - 10 Clipping input	0 20 30 40 data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Index 7
10 - 20 - 30 - 40 -	
in [5]: # To preproces	wing the paper from Pal & Sudeep (2016) (Zero Component Analysis) as the images, we first have to flatten our array, this will make the preprocessing easier
<pre>X.shape Out[5]: (8, 8100) in [6]: def plotImage(plt.figure</pre>	e(figsize=(1.5, 1.5)) u(X.reshape(images[0].shape))
0 20 40 0 25 25 25 25 27 27 27 27 27	255.
<pre>print('X.max() # All values a (.min() 0.0 (.max() 1.0 in [8]: # Per pixel me X_norm = X_nor</pre>	255. '', X_norm.min()) '', X_norm.max()) are contained between 0 and 1 can substraction cm - X_norm.mean(axis=0) (_norm, rowvar=False)
U,S,V = np.lin epsilon = 0.1 X_ZCA = U.dot(X_ZCA_rescaled in []: for i in range plotImage(<pre>nalg.svd(cov) (np.diag(1.0/np.sqrt(S + epsilon))).dot(U.T).dot(X_norm.T).T d = (X_ZCA - X_ZCA.min()) / (X_ZCA.max() - X_ZCA.min()) e(len(images)):</pre>
fin [2]: start = time.t x = np.load("v labels = np.em embeddings = n positions = np #Looping throw	<pre>vecs.npy", allow_pickle=True).tolist() npty(0) np.empty((0, 1024)) o.empty(0) ugh the dictionnary</pre>
for position i for digit embedd labels positi	<pre>in x.keys(): in x[position].keys(): dings = np.vstack([embeddings, x[position][digit]]) s = np.hstack([labels, np.repeat(digit, len(x[position][digit]))]) dons = np.hstack([positions, np.repeat(position, len(x[position][digit]))]) ta is in contained in labels and</pre>

In [7]:

(Xtr, Ltr), (X_test, L_test)=mnist.load_data()

LAB 1: Fundamentals of Machine Learning

Group 30: Nicolas Scheidler (nicsch-3) and Sergio Serrano Hernández (serser-1)

import os
import time

import numpy as np
from skimage import io

<pre>#Traing phase num_sample=500 Tr_set=Xtr[:num_sample,:,:] Ltr_set=Ltr[:num_sample] Tr_set=Tr_set.reshape(num_sample,Tr_set.shape[1]*Tr_set.shape[2]) Tr_set.shape Dut[13]: (500, 784)</pre> Task 2.1 In [10]:	
<pre>def normL1(X): num_test=X.shape[0] Lpred=np.zeros(num_test, dtype=Ltr_set.dtype) for i in range(num_test): distances=np.sum(np.abs(Tr_set-X[i,:]),axis=1) min_index= np.argmin(distances) Lpred[i]=Ltr_set[min_index] return Lpred In [11]: def predict(X, norm=normL1): return norm(X)</pre>	
<pre>In [14]: Test_images=X_test.reshape(X_test.shape[0],X_test.shape[1]* X_test.shape[2]) Labels_predicted=predict(Test_images) print("Accuracy:", np.mean(Labels_predicted==L_test)) Accuracy: 0.2649 In [15]: def normL2(X): num_test=X.shape[0] Lpred=np.zeros(num_test, dtype=Ltr_set.dtype) for i in range(num_test): distances np_cont(np_sum(np_set_X))</pre>	
<pre>distances=np.sqrt(np.sum(np.square(Tr_set-X[i,:]),axis=1)) min_index= np.argmin(distances) Lpred[i]=Ltr_set[min_index] return Lpred In [16]: Test_images=X_test.reshape(X_test.shape[0],X_test.shape[1]* X_test.shape[2]) Labels_predicted=predict(Test_images, normL2) print("Accuracy:", np.mean(Labels_predicted==L_test)) Accuracy: 0.19 We can see that the accuracy is very low. By checking why, we can notice that the computed distances are wrong: uint8 doesn't</pre>	
sufficient range of values and struggles to work with negatives which is problematic when deducting values. Instead, the data so be stored using more bits. We will then use int32 In [17]: #Traing phase Tr_set=Xtr[:num_sample,:,:] Ltr_set=Ltr[:num_sample] Tr_set=Tr_set.reshape(num_sample,Tr_set.shape[1]*Tr_set.shape[2]).astype(np.int32) In [18]: Test_images=X_test.reshape(X_test.shape[0],X_test.shape[1]* X_test.shape[2]).astype(np.int32) Labels_predicted=predict(Test_images, normL1)	hould
<pre>print("NormL1 Accuracy:", np.mean(Labels_predicted==L_test)) Labels_predicted=predict(Test_images, normL2) print("NormL2 Accuracy:", np.mean(Labels_predicted==L_test)) NormL1 Accuracy: 0.811 NormL2 Accuracy: 0.8294 The accuracy is better now that this error has been fixed. In [19]: def normL1(X, Y): return np.sum(np.abs(X-Y),axis=1) def normL2(X, Y):</pre>	
<pre>def normL2(X, Y): return np.sqrt(np.sum(np.square(X-Y),axis=1)) In [20]: class KNN: definit(self, k, norm=normL1): self.k = k self.norm = norm def train(self, Tr_set, Ltr_set): self.X = Tr_set self.y = Ltr_set def predict(self, X): num_test=X.shape[0]</pre>	
<pre>Lpred=np.zeros(num_test, dtype=Ltr_set.dtype) for i in range(num_test):</pre>	
<pre>In [23]: print("KNN Accuracy:", np.mean(Labels_predicted==L_test)) KNN Accuracy: 0.8294 Task 2.2, Hyperparameter cross-validation In [24]: from sklearn.model_selection import KFold kf = KFold(n_splits=3) In [25]: results = {}</pre>	
<pre>for k in [1,3,5,7,9,11]: print(f"Cross validation with k={k}, ", end="") accuracies = [] for i, (train_index, test_index) in enumerate(kf.split(Tr_set)): print(".", end="") classifier = KNN(k, normL2) classifier.train(Tr_set[train_index], Ltr_set[train_index]) accuracies.append(np.mean(classifier.predict(Tr_set[test_index])==Ltr_set[test_index])) results[k] = np.mean(accuracies) print(", accuracy = {:.4f}".format(np.mean(accuracies))) Cross validation with k=1,, accuracy = 0.8320 Cross validation with k=3,, accuracy = 0.8240</pre>	
Cross validation with k=5,, accuracy = 0.8160 Cross validation with k=7,, accuracy = 0.7980 Cross validation with k=9,, accuracy = 0.8000 Cross validation with k=11,, accuracy = 0.7860 In [26]: results = [] K = [1,3,5,7,9,11] for k in K: print(f"Cross validation with k={k}, ", end="") accuracies = [] for i, (train_index, test_index) in enumerate(kf.split(Tr_set)): print(".", end="") classifier = KNN(k, normL2) classifier.train(Tr_set[train_index], Ltr_set[train_index])	
<pre>accuracies.append(np.mean(classifier.predict(Tr_set[test_index])==Ltr_set[test_index])) results.append(np.mean(accuracies)) print(", accuracy = {:.4f}".format(np.mean(accuracies))) print("best k = {}".format(K[np.argmax(results)])) Cross validation with k=1,, accuracy = 0.8320 Cross validation with k=5,, accuracy = 0.8240 Cross validation with k=5,, accuracy = 0.8160 Cross validation with k=7,, accuracy = 0.7880 Cross validation with k=9,, accuracy = 0.7860 Dross validation with k=11,, accuracy = 0.7860 Dest k = 1 In [27]: k = K[np.argmax(results)] classifier = KNN(k, normL2) classifier.train(Tr_set, Ltr_set) Labels_predicted = classifier.predict(Test_images) print(f"{k}-NN Accuracy:", np.mean(Labels_predicted==L_test)) 1-NN Accuracy: 0.8294</pre>	
Support Vector Machines Below you can see a demonstration of what is coded in the website and how you can see separation planes in 3 dimensions In [28]: iris = datasets.load_iris() X = iris.data[:, :3] # we only take the first three features. Y = iris.target #make it binary classification problem X = X[np.logical_or(Y==0,Y==1)] Y = Y[np.logical_or(Y==0,Y==1)] model = svm.SVC(kernel='linear') clf = model.fit(X, Y)	
<pre># The equation of the separating plane is given by all x so that np.dot(svc.coef_[0], x) + b = 0. # Solve for w3 (z) z = lambda x,y: (-clf.intercept_[0]-clf.coef_[0][0]*x -clf.coef_[0][1]*y) / clf.coef_[0][2] tmp = np.linspace(-5,5,30) x,y = np.meshgrid(tmp,tmp) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot3D(X[Y==0,0], X[Y==0,1], X[Y==0,2], 'ob') ax.plot3D(X[Y==1,0], X[Y==1,1], X[Y==1,2], 'sr') ax.plot_surface(x, y, z(x,y)) ax.view_init(30, 60) plt.show()</pre>	
In [29]: np.random.seed(2) # we create 40 linearly separable points X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear', C=1) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1]	
<pre>xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy - np.sqrt(1 + a ** 2) * margin yy_up = yy + np.sqrt(1 + a ** 2) * margin plt.figure(1, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, "k-") plt.plot(xx, yy_down, "k-") plt.plot(xx, yy_up, "k-") plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:,1], s=80, facecolors="none", zorder=10, edgecolors="k") plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors="k")</pre>	
plt.xlabel("x1") plt.ylabel("x2") plt.show() A -2 -4 -4 -2 0 2 4 X1 Task 3.1	
<pre>Idsk 5.1 In [33]: # import some data to play with iris = datasets.load_iris() X = iris.data #All features y = iris.target feature_names = iris.feature_names[:4] classes = iris.target_names X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.2, train_size=0.8) print(X_train.shape) print(X_test.shape) print(Y_train.shape) print(Y_test.shape) [120, 4) [30, 4]</pre>	
Test the different options for the SVM classifiers and do their confusion matrices: This belongs to tasks 3.1.1 and 3.1.2 Below we can see the results of using SVM with different configurations including: 1. Linear Kernel and One vs One training Approach. 2. Polynomial Kernel and One vs One training Approach. 3. RBF Kernel and One vs One training Approach.	l
4. Linear Kernel and One vs Rest training Approach. 5. Polynomial Kernel and One vs Rest training Approach. 6. RBF Kernel and One vs Rest training Approach. We can observe that the polynomial kernel returned perfect results for both ways of training [34]: classifiers = [['linear','ovo'],['poly','ovo'],['rbf','ovo'],['linear','ovr'],['poly','ovr'],['rbf','ovr']] classifier = [] for params in classifiers: Classifier = svm.SVC(kernel = params[0], decision_function_shape = params[1]).fit(X_train, Y_train) classifier_params = classifier.get_params() y_pred = Classifier.predict(X_test) accuracy = np.mean(y_pred == Y_test) f1 = f1_score(Y_test, y_pred, average='weighted') # 'weighted' takes class imbalance into account conf_matrix = confusion_matrix(Y_test, y_pred) print(f"we obtain a F1 Score of: {f1} and an accuracy of: {accuracy} with the SVM classifier with {params print(conf_matrix)} we obtain a F1 Score of: 0.9671094244149273 and an accuracy of: 0.96666666666666667 with the SVM classifier with sernel using the ovo training approach [16 0 0 0]	
<pre>[0 8 0] [0 1 15]] we obtain a F1 Score of: 1.0 and an accuracy of: 1.0 with the SVM classifier with poly kernel using the ovo troroach [[6 0 0] [0 8 0] [0 0 16]] we obtain a F1 Score of: 0.9671094244149273 and an accuracy of: 0.966666666666666667 with the SVM classifier with the using the ovo training approach [[6 0 0] [0 8 0] [0 1 15]] we obtain a F1 Score of: 0.9671094244149273 and an accuracy of: 0.9666666666666667 with the SVM classifier with the standard process of the standard process o</pre>	ch rbf ker
<pre>[0 8 0] [0 1 15]] we obtain a F1 Score of: 1.0 and an accuracy of: 1.0 with the SVM classifier with poly kernel using the ovr tropoach [6 0 0] [0 8 0] [0 0 16]] we obtain a F1 Score of: 0.9671094244149273 and an accuracy of: 0.9666666666666667 with the SVM classifier with rel using the ovr training approach [6 0 0] [0 8 0] [0 1 15]] Task 3.1.3: Extract the support vectors for each class in ovr training case In [35]: Classifier = svm.SVC(kernel = 'linear', decision_function_shape = 'ovr').fit(X_train, Y_train) support_vectors = Classifier.support_vectors_ i = 0 print("class 1") for j in range(Classifier.n_support_[0]): print("class 2") for j in range(Classifier.support_vectors_[i]) i += 1 print("class 2") for j in range(Classifier.support_vectors_[i]): print(Classifier.support_vectors_[i])</pre>	
<pre>i += 1 print("class 3") for j in range(Classifier.n_support_[2]): print(Classifier.support_vectors_[i]) i += 1 class 1 [5.1 3.3 1.7 0.5] [4.5 2.3 1.3 0.3] [4.8 3.4 1.9 0.2] class 2 [6.8 2.8 4.8 1.4] [5.6 3. 4.5 1.5] [5.9 3.2 4.8 1.8] [6.7 3. 5. 1.7] [5.4 3. 4.5 1.5]</pre>	
[6.9 3.1 4.9 1.5] [5.1 2.5 3.	
<pre>[6.5 3.2 5.1 2.] In [36]: print((X_train[:,0].min(), X_train[:,0].max())) (4.3, 7.7) Task 3.1.4: Plot the decision boundary for features 2 vs. 3 and 3 vs. 4. Now we are going to print the decision boundaries for features 2 vs 3 and 3 vs 4: In [37]: coefs = Classifier.coef_ w = Classifier.coef_[0] #0 corresponds to class 1vs2</pre>	
<pre>x_points = np.linspace(X_train[:,1].min(), X_train[:,1].max()) y_points = (-w[1]/w[2]) * x_points - (Classifier.intercept_[0]) /w[2] margin = 1/np.sqrt(np.sum(coefs**2)) aux_coef = np.sqrt(1+(-w[1]/w[2])**2) upper_boundary = y_points + aux_coef*margin lower_boundary = y_points - aux_coef*margin # plot the line, the points, and the nearest vectors to the plane plt.figure(1, figsize=(4, 3)) plt.clf() plt.plot(x_points, y_points, "k-") plt.plot(x_points, lower_boundary, "k") plt.plot(x_points, upper_boundary, "k") plt.scatter(X_train[:, 1], X_train[:, 2], c=Y_train, zorder=10, cmap=plt.cm.Paired,</pre>	
edgecolors="k") plt.xlabel("x1") plt.ylabel("x2") Dut[37]: Text(0, 0.5, 'x2') 7 6 5 2 4	
Now we will do the same with features 3 and 4 In [38]: coefs = Classifier coef_ w = Classifier coef [9] #8 corresponds to class [ws2]	
<pre>w = Classifier.coef_[0] #0 corresponds to class 1vs2 x_points = np.linspace(X_train[:,2].min(), X_train[:,2].max()) y_points = (-w[2]/w[3]) * x_points - (Classifier.intercept_[0]) /w[3] margin = 1/np.sqrt(np.sum(coefs**2)) aux_coef = np.sqrt(1+(-w[2]/w[3])**2) upper_boundary = y_points + aux_coef*margin lower_boundary = y_points - aux_coef*margin # plot the line, the points, and the nearest vectors to the plane plt.figure(1, figsize=(4, 3)) plt.clf() plt.plot(x_points, y_points, "k-") plt.plot(x_points, lower_boundary, "k") plt.plot(x_points, upper_boundary, "k")</pre>	
plt.scatter(X_train[:, 2], X_train[:, 3], c=Y_train, zorder=10, cmap=plt.cm.Paired, edgecolors="k") plt.xlabel("x1") plt.ylabel("x2") Dut[38]: Text(0, 0.5, 'x2') 2.5 -2.5	
2 -5.0 -7.5 -10.0 -12.5 1 2 3 4 5 6 7	

In [8]:

Image=Xtr[0,:,:]
Label=Ltr[0]

plt.imshow(Image)

plt.show()
plt.close()

0 -

5 -

10 -

plt.title('Label is {Label}'.format(Label=Label))

Label is 5