2 Теория колец

2.3 Идеалы и фактор-кольца

Простые и тах идеалы

Определение 1. Простым идеалом A коммутативного кольца R называется собственный идеал в R| для $a,b\in R$ и $ab\in A\Rightarrow \left[\begin{array}{c} a\in A\\ b\in A \end{array} \right.$

Определение 2. Максимальным идеалом A коммутативного кольца R называется собственный идеал в $R|\nexists$ идеала B в $R|A\subset B\subset R$

Теорема 1. Пусть R - коммутативное кольцо c единицей; A - идеал в $R.^R/_A$ - кольцо целостности тогда и только тогда, когда A - простой идеал.

Рассмотрим $ab \in A$, где $a,b \in R$

Так как $a, b \in R \Rightarrow a + A, b + A \in {}^R/_A$

Рассмотрим (a+A)(b+a)=ab+A=A - нулевой элемент кольца $^R/_A$ Так как $^R/_A$ - кольцо целостности

и
$$(a+A)(b+a)=A\Rightarrow \left[egin{array}{c} a+A=A \\ b+A=A \end{array}
ight. \Rightarrow \left[egin{array}{c} a\in A \\ b\in A \end{array}
ight. \Rightarrow A$$
 - простой идеал $\ \Box$

Теорема 2. Пусть R - коммутативное кольцо c единицей, A - идеал в R. $^R/_A$ - поле $\Leftrightarrow A$ - тах.

Доказательство. Необходимость Пусть $^R/_A$ - поле

Рассмотрим B - идеал в $R|A \subset B$

 $\Rightarrow \exists b \in B$ и $b \notin A \Rightarrow b+A$ - ненулевой элемент в $^R/_A \Rightarrow$ так как $^R/_A$ - поле, то $\exists c+A \in ^R/_A \big| (b+A)(c+A) = 1+A = bc+A$

 $1-bc\in A\subset B\Rightarrow 1-bc\in B\Rightarrow 1\in B\Rightarrow B=R$ Таким образом $A\subset B\subseteq R\Rightarrow A$ - max

Достаточность

Пусть A - max. Рассмотрим $b \in R | b \notin A$

Рассмотрим $B = \{br + a | r \in R, a \in A\}$ - идеал в R и $A \subset B$

$$\Rightarrow B = R \Rightarrow 1 \in B \Rightarrow 1 = bc + a'$$
, где $a' \in A, c \in R$

 $1 + A = bc + a' + A = bc + A = (b + A)(c + A) \Rightarrow$ для класса $b + A \exists$ обратный класс c + A | (b + A)(c + A) = 1 + A, тое сть b + A - обратим $\Rightarrow {}^R/_A$ - поле