Donations raising campaign 2023

Sebastián Cabrera

Content

- 1. Business Problem
- 2. Methodology
- 3. Key findings and insights
- 4. Model performance metrics
- 5. Instructions for running the code

1. Business Problem

- A Charity Company currently has **1.000.000 members** subscribed to their annual newsletter.
- In 2022, the management team decided to call 100.000 members and ask them to donate for a new campaign for the children. Each call had a cost of \$13.
- Results were positive but not as expected as only 14.719 members donated a total amount of \$1,6 million. The net amount collected was \$390k

	Contacted_2022	Potential_Donors	Real_Donors	Donations	Avg_Donations	Cost	Net_Collected
	No	900.000	109.965	5.735.855	52,16	0	5.735.855
*	Yes	100.000	14.719	1.690.630	114,86	1.300.000	390.630
	Total	1.000.000	124.684	7.426.485	59,56	1.300.000	6.126.485

- \$5.7 million of the total collected, came from donors that we didn't call.

How can we better select the members to call for the upcoming 2023 campaign?

2. Methodology

3. Key findings and insights

Group	Min	Max	Members	Donated in 2022	%	Lift
0	0.006017	0.030590	2000	29	1.45	0.098639
1	0.030622	0.046198	2000	74	3.70	0.251701
2	0.046234	0.061354	2000	91	4.55	0.309524
3	0.061357	0.079561	2000	134	6.70	0.455782
4	0.079572	0.100424	2000	204	10.20	0.693878
5	0.100426	0.127963	2000	236	11.80	0.802721
6	0.127968	0.162264	2000	284	14.20	0.965986
7	0.162283	0.224331	2000	374	18.70	1.272109
88	0.224402	0.332871	2000	560	28.00	1.904762
9	0.332983	0.936550	2000	954	47.70	3.244898
	Total		20,000	2,940	1 4,7%	1

In the testing set, we found that the members with the highest probability had a **Conversion rate of 47,7%**

3.2 higher than the campaign from 2022

If we now use the model to select 100.000 members to call, and have a similar conversion, we expect \$5,3 collected for a net of \$4.0 after calling costs

^{*100.000 * 47% * 114.8 = 5,39} million; \$114.8 was the avg collected by the Members that were called in 2022 and donated.

4. Model performance metrics

While training each model, we assessed two key metrics:

(1) the AUC, which is preferred over accuracy, as the dataset is imbalanced (% of donors is 14%)

It behaves reasonably well, outperforming the commonly used logistic regression as benchmark

(2) The Lift of the 10 decile in the testing set for each model.

For both Random Forest and Xgboost exceeded 3.0, which means the model in the individuals with identifies with highest probability expects a conversion rate 3 times higher than the average.

5. Instructions for running the code

Running main.py, will start the procedure to merge the different data sources, activates the training, and lastly generates the csv with the 100.000 donors to be used in the 2023 campaign.