Macaron/Tonus retreat presentation

Mesh-based methods and physically informed learning

Authors: LECOURTIER Frédérique

Supervisors: DUPREZ Michel FRANCK Emmanuel LLERAS Vanessa

February 6-7, 2024

Introduction

Scientific context

Context: Create real-time digital twins of an organ (such as the liver).

 ϕ -**FEM Method :** New fictitious domain finite element method.

- ightharpoonup domain given by a level-set function \Rightarrow don't require a mesh fitting the boundary
- → allow to work on complex geometries
- → ensure geometric quality

Practical case: Real-time simulation, shape optimization...

Objective

Current Objective : Develop hybrid finite element / neural network methods.

Evolution:

- Geometry : 2D, simple, fixed (as circle, ellipse..) $\,
 ightarrow\,$ 3D / complex / variable
- PDE : simple, static (Poisson problem) $\, o \,$ complex / dynamic (elasticity, hyper-elasticity)
- Neural Network : simple and defined everywhere (PINNs) $\,
 ightarrow\,$ Neural Operator

Problem considered

Elliptic problem with Dirichlet conditions:

Find $u:\Omega\to\mathbb{R}^d(d=1,2,3)$ such that

$$\begin{cases} L(u) = -\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x) & \text{in } \Omega, \\ u(x) = g(x) & \text{on } \partial \Omega \end{cases} \tag{1}$$

with A a definite positive coercivity condition and c a scalar. We consider Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary.

Weak formulation:

Find
$$u \in V$$
 such that $a(u, v) = I(v) \forall v \in V$

with

$$a(u,v) = \int_{\Omega} (A(x)\nabla u(x)) \cdot \nabla v(x) + c(x)u(x)v(x) dx$$

$$I(v) = \int_{\Omega} f(x)v(x) dx$$

Remark: For simplicity, we will not consider 1st order terms.

Numerical methods

Objective: Show that the philosophy behind most ofd the methods are the same.

Mesh-based methods // Physically informed learning

Numerical methods: Discrete an infinite-dimensional problem (unknown = function) and solve it in a finite-dimensional space (unknown = vector).

- Encoding: we encode the problem in a finite-dimensional space
- Approximation: solve the problem in finite-dimensional space
- Decoding: bring the solution back into infinite dimensional space

Encoding	Approximation	Decoding	
$f o heta_f$	$ heta_f o heta_u$	$\theta_u \rightarrow u_\theta$	

Mesh-based methods

Encoding/Decoding Approximation

Mesh-based methods

Encoding/Decoding

Approximation

Encoding/Decoding-FEMs

• **Decoding :** Linear combination of piecewise polynomial function φ_i .

$$\mathcal{D}_{\theta_u}(x) = \sum_{i=1}^{N} (\theta_u)_i \varphi_i$$

 \Rightarrow linear decoding \Rightarrow approximation space V_N = vectorial space

• **Encoding**: Orthogonal projection on vector space V_N . Appendix 1 1

$$\theta_f = E(f) = M^{-1}b(f)$$

with
$$M_{ij} = \int_{\mathcal{O}} \varphi_i(x) \varphi_j(x)$$
 and $b_i(f) = \int_{\mathcal{O}} \varphi_i(x) f(x)$.

Mesh-based methods

Encoding/Decoding Approximation

Internship results

Correction Methods Results - with FNO Other results

Internship results

Correction Methods Results - with FNO Other results

Correction Methods

We are given u_{θ} the FNO prediction (for the problem under consideration). **By multiplying**:

By adding:

We will consider

$$\tilde{u}=u_{\theta}+\left|\tilde{c}\right|\approx0$$

We want $\tilde{C}:\Omega\to\mathbb{R}^d$ such that

$$\begin{cases} -\Delta \tilde{\mathbf{C}} = \tilde{\mathbf{f}}, & \text{in } \Omega, \\ \tilde{\mathbf{C}} = 0, & \text{on } \Gamma. \end{cases} \tag{\mathcal{C}_{+}}$$

We will consider

$$\tilde{u} = u_{\theta} \boxed{c} \approx 1$$

with $\tilde{f}=f+\Delta u_{\theta}$ and $\tilde{C}=\phi C$ for the ϕ -FEM method.

Remark : In practice, it may be useful to integrate by parts the term containing Δu_{θ} .

We want $\mathit{C}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} -\Delta(u_{\theta}C) = f, & \text{on } \Omega, \\ C = 1, & \text{on } \Gamma. \end{cases}$$

MIM-SIS

Correction Methods

We are given u_{θ} the FNO prediction (for the problem under consideration).

By adding:

We will consider

$$\tilde{u} = u_{\theta} + \tilde{C}$$

We want $\tilde{C}:\Omega\to\mathbb{R}^d$ such that

$$\begin{cases} -\Delta \tilde{\mathbf{C}} = \tilde{\mathbf{f}}, & \text{ in } \Omega, \\ \tilde{\mathbf{C}} = 0, & \text{ on } \Gamma. \end{cases} \tag{\mathcal{C}_{+}} \label{eq:constraints}$$

with $\tilde{f}=f+\Delta u_{\theta}$ and $\tilde{\textit{C}}=\phi\textit{C}$ for the ϕ -FEM method.

Remark: In practice, it may be useful to integrate by parts the term containing Δu_{θ} .

By multiplying - elevated problem :

Find $\hat{u}:\Omega\to\mathbb{R}^d$ such that

$$\begin{cases} -\Delta \hat{u} = f, & \text{in } \Omega, \\ \hat{u} = g + m, & \text{on } \Gamma, \end{cases}$$
 $(\mathcal{P}^{\mathcal{M}})$

with $\hat{u} = u + m$ (m a constant).

We will consider

$$\tilde{u} = u_{\theta} C$$

with $\hat{u_{\theta}} = u_{\theta} + m$.

We want $\mathit{C}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} -\Delta(\hat{u_{\theta}}C) = f, & \text{in } \Omega, \\ C = 1, & \text{on } \Gamma. \end{cases}$$

Internship results

Correction Methods Results - with FNO

Explanation

Train a FNO:

Correct the predictions of the FNO:

Some important points on the FNO:

- → widely used in PDE solving and constitute an active field of research
- → FNO are Neural Operator networks: Unlike standard neural networks, which learn using inputs and outputs of fixed dimensions, neural operators learn operators, which are mappings between spaces of functions.
- → **Mesh resolution independent :** can be evaluated at almost any data resolution without the need for retraining

Correction on a FNO prediction - ϕ -FEM

We consider an unknown solution on the circle with f Gaussian (??), $n_{vert} = 63$, $n_{data} = 1000$ (including validation sample) and $n_{test} = 100$.

Correction with the different methods:

Remark: We should try to reduce the resolution for correction, maybe we will gain in the time-to-error ratio.

Internship results

Correction Methods Results - with FNO

Other results

Precision of the prediction - FEM

We consider the trigonometric solution on the circle (??) with

$$u_{ex}(x,y) = S \sin (8\pi f ((x-0.5)^2 + (y-0.5)^2) + \varphi)$$

with ${\it S}=0.5$ and $\varphi=0$.

Exact solution: Testing different correction methods for different frequencies.

$$u_{\theta} = u_{\text{ex}} \in \mathbb{P}^{10} \ o \ \tilde{u} \in \mathbb{P}^1$$

Correction with FEM ($n_{vert} = 100$):

	fem	Corr_add	Corr_add_IPP	Corr_mult	
f = 1	2.10e-03	2.44e-10	1.29e-13	2.97e-13	
f = 2	6.62e-03	1.53e-10	1.28e-13	2.80e-13	
f = 3	1.41e-02	8.86e-11	1.27e-13	2.68e-13	
f = 4	2.42e-02	9.52e-11	1.26e-13	2.61e-13	

Precision of the prediction - FEM

We consider $(S, f, \varphi) = (0.5, 1, 0)$.

Disturbed solution : Testing different ϵ and different degree k.

$$u_{\theta} = u_{ex} + \epsilon P \in \mathbb{P}^k \ o \ \tilde{u} \in \mathbb{P}^1$$

with ϵ a real number and P a perturbation. Correction (C_+) with FEM ($n_{vert}=32$):

Results for
$$k = 10$$
: corr_add 1.00e+00 6.57e-02 1.00e-01 6.57e-04 1.00e-02 6.57e-05 1.00e-04 6.57e-06 0.00e+00 2.44e-11

Remark :
$$P(x,y) = S_p \sin \left(8\pi f_p \left((x-0.5)^2 + (y-0.5)^2\right) + \varphi_p\right)$$
 with $(S_p, f_p, \varphi_p) = (0.5, 2, 0)$

Theoretical results - FEM

Correction by multiplication on the elevated problem: We consider

- $\hat{u}_{ex} = u_{ex} + m$: the exact solution of $(\mathcal{P}^{\mathcal{M}})$
- $\hat{u_{\theta}} = u_{\theta} + m$: a disturbed solution of $(\mathcal{P}^{\mathcal{M}})$.
- $\tilde{u_h} = \hat{u_\theta} C_h$: the approximate solution of $(C_{\times}^{\mathcal{M}})$
- 1. When m tends to infinity:

solution of
$$(\mathcal{C}^{\mathcal{M}}_{\vee}) \rightarrow \text{solution of } (\mathcal{C}_{+})$$

Results:
$$n_{vert} = 32$$
, $\epsilon = 0.001$

2. For *m* sufficiently large : $C_{ex} = \hat{u_{ex}}/\hat{u_{\theta}}$

$$||C_{ex} - C_h||_{0,\Omega} \le ch^{k+1} \epsilon ||P''||_{0,\Omega}$$

Results : $n_{\text{vert}} = 32$, $\epsilon = 0.001$, $f_p = 2$

PhD results

Explanation

Context : Need $u_{\theta} \in \mathbb{P}^k$ with k of high degree

FNO

(on a regular grid)

Solutions:

1. MLP - Multi-Layer Perceptron (= Fully connected)

Problem : As the prediction is injected into an FEM solver, the accuracy of the derivatives is very important.

NN which can predict solution at any point

2. PINNs - MLP with a physical loss

$$loss = mse(\Delta(\phi(x_i, y_i)w_{\theta,i}) + f_i)$$

$$inputs = \{(x_i, y_i)\}$$

$$outputs = \{u_i\}$$

$$i=1,...,n_{pe}$$

$$u = \phi(x_i, y_i)w_i(x_i, y_i)$$

with $(x_i, y_i) \in \mathcal{O}$.

Remark: We impose exact boundary conditions.

PINNs Training

We consider the solution on the circle defined in (??) and defined by

$$u_{ex}(x,y) = \phi(x,y)\sin(x)\exp(y)$$

We train a PINNs with 4 layers of 20 neurons over 10000 epochs (with $n_{
m pts}=2000$ points selected uniformly over ${\cal O}$).

 $\underline{\wedge}$ We consider a single problem (f fixed) on a single geometry (ϕ fixed).

$$||u_{\rm ex} - u_{\theta}||_{0,\Omega}^{(rel)} \approx 2.81e - 3$$

Derivatives

Correction by addition

$$u_{\theta} \in \mathbb{P}^{10} \rightarrow \tilde{u} \in \mathbb{P}^1$$

FEM / $\phi\text{-FEM}$: $\textit{n}_{\textit{vert}} \in \{8, 16, 32, 64, 128\}$

Corr: $n_{vert} \in \{5, 10, 15, 20, 25, 30\}$

Remark : The stabilisation parameter σ of the ϕ -FEM method has a major impact on the error obtained.

Calculation time (to reach an error of 1e-4)

		mesh	u_PINNs	assemble	solve	TOTAL
	FEM	0,08832		29,55516	0,07272	29,71621
	PhiFEM	0,33222		1,86924	0,00391	2,20537
	Corr_add_FEM	0,00183	0,11187	0,46195	0,00061	0,57626
	Corr_add_PhiFEM	0,03213	0,05351	0,22006	0,00040	0,30609

mesh - FEM : construct the mesh
 (φ-FEM : construct cell/facet sets)

- **u_PINNs** get $u_{ heta}$ in \mathbb{P}^{10} freedom degrees
- assemble assemble the FE matrix
- solve resolve the linear system

Conclusion

Conclusion

Observations:

- **1.** Correction by addition seems to be the best choice (based on theoretical results obtained with FEM)
- **2.** We need a high degree prediction ($u_{\theta} \in \mathbb{P}^{10}$)
- ⇒ no longer use FNO (needs NN defined at any point)
- **3.** We need to approximate the derivatives of the solution precisely
- \Rightarrow no longer use simple MLP, replaced by a PINNs

What's next?

- **1.** Consider multiple problems (varying *f*)
- **2.** Consider multiple and more complex geometry (varying ϕ)
- **3.** Replace PINNs with a Neural Operator

Bibliography

Bibliography

Appendix 1: Encoding - FEMs

Pourquoi?

