

FACULTAD DE CS. EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPTO DE MATEMÁTICA. SEGUNDO CUATRIMESTRE DE 2015 CÁLCULO VARIACIONES

Ejercicio 1 Sea I=(-1,1) y sea $u(x)=\frac{1}{2}(|x|+x)$. Verificar que $u\in W^{1,p}(I)$ para todo $1\leq p\leq \infty$ con u'=H siendo

PRÁCTICA 3: ESPACIOS DE SOBOLEV.

$$H(x) = \left\{ \begin{array}{ll} 1 & si & 0 < x < 1 \\ 0 & si & -1 < x < 0 \end{array} \right.$$

Justificar que $H \notin W^{1,p}$ para $1 \le p \le \infty$.

Ejercicio 2 Sea G función de Lipschitz tal que G(0)=0 y sea $u\in W^{1,p}$. Entonces $G\circ u\in W^{1,p}$ y $(G\circ u)(\dot{G}\circ u)\dot{u}$.

Ejercicio 3 Considerar la función $u : \mathbb{R} \to \mathbb{R}$ dada por

$$u(x) = \frac{1}{(1+x^2)^{\alpha/2}\ln(2+x^2)}.$$

Demostrar que $u \in W^{1,p}(\mathbb{R})$ si $p \geq 1/\alpha$ y que $u \notin L^p(\mathbb{R})$ si $1 \leq p < 1/\alpha$.

Ejercicio 4 Sea $\{u_n\}_{n\in\mathbb{N}}$ una sucesión acotada de $W^{1,p}(I)$ con 1 .

- a. Utilizar el Teorema de Arzela-Ascoli para demostrar que existe una subsucesión $\{u_{n_k}\}_{k\in\mathbb{N}}$ y $u\in W^{1,p}(I)$ tal que $\|u_{n_k}-u\|_{L^\infty}\to 0$.
- b. Si $1 podemos asumir además que <math>u'_{n_k} \rightharpoonup u'$ debilmente en $L^p(I)$
- c. Si, en cambio, $p=\infty$ podemos asumir que $u'_{n_k}\stackrel{*}{\rightharpoonup} u'$ en $\sigma(L^\infty,L^1)$.

Ejercicio 5 Sea $\varphi \in C_c^{\infty}(\mathbb{R})$ con $\varphi \not\equiv 0$. Definimos $u_n(x) = \varphi(x+n)$. Supongamos $1 \leq p \leq \infty$. Demostrar que

- a. $\{u_n\}_{n\in\mathbb{N}}$ es acotada en $W^{1,p}(\mathbb{R})$.
- b. No exixte subsucesión que converge en la topología fuerte en $L^q(\mathbb{R})$ para ningun $1 \leq q \leq \infty$.
- c. $u'_n \rightharpoonup 0$ debilmente en $W^{1,p}(\mathbb{R})$.

Ejercicio 6 Sea $1 \le p < \infty$ y $u \in W^{1,p}(\mathbb{R})$. Escribamos

$$D_h u(x) = \frac{u(x+h) - u(x)}{h}, \quad \text{para } h \neq 0, x \in \mathbb{R}.$$

Usar el hecho que $C^1_c(\mathbb{R})$ es denso en $W^{1,p}(\mathbb{R})$ para demostrar que $D_h u \to u'$ en $L^p(\mathbb{R})$ cuando $h \to 0$.