Reporte de Actividades - Enero 2015 - Diciembre 2018

Jaime E. Forero Romero Profesor Asociado - Departamento de Física Universidad de los Andes

28 de enero de 2019

Índice

1.	Doc	encia	2
	1.1.	Cursos dictados	2
	1.2.	Desarrollo de nuevos cursos	2
			3
		Escuelas Internacionales	3
			3
		Aparición en medios de comunicación	3
		Dirección de monografía de pregrado	3
2.	Inve	estigación	5
	2.1.	Refereed Papers	5
	2.2.	Non-Refereed Papers	6
	2.3.	Conference Proceedings	6
	2.4.	Rankings de citaciones	8
	2.5.	Asesoría posgrado	0
			0
	2.7.	Financiación	0
	2.8.		0
	2.9.		1
	2.10		1
3.	Des	arrollo Institucional	.3
	3.1.	Comunidad Uniandes	.3
	3.2.	Comunidad Colombiana	13
	3 3	Comunidad Internacional	3

1. Docencia

1.1. Cursos dictados

Curso	Semestre	Inscritos	Calificación (sobre 4.0)
Física I	2018-10		
Métodos Computacionales	2018-10		
STAI	2017-20	-	-
Física II	2017-10	68	3.43
Métodos Computacionales Avanzados	2017-10	17	3.72
Taller de Astronomía	2017-10	19	4.00
Astronomía Popular (CBU)	2016-10	92	3.78
Métodos Computacionales	2016-20	20	3.77
Taller de Astronomía	2016-20	14	3.95
Física I	2016-10	80	3.68
Métodos Computacionales Avanzados	2016-10	9	3.83
Taller de Astronomía	2016-10	6	3.75
Astronomía Popular (CBU)	2015-20	91	3.75
Métodos Computacionales	2015-20	10	3.47
Taller de Astronomía	2015-20	70	3.92
Física I	2015-10	96	3.86
Electromagnetismo II	2015-10	6	3.65
Taller de Astronomía	2015-10	10	3.86
Total Estudiantes		608	

1.2. Desarrollo de nuevos cursos

• Construcción de un nuevo CBU: Astronomía Popular.

Programa:

https://github.com/forero/AstronomiaPopular/blob/master/syllabus/ProgramaCBU_AstronomiaPopular.pdf

 Construcción de un nuevo curso para pregrado avanzado y posgrado: Métodos Computacionales Avanzados.

Programa:

https://github.com/ComputoCienciasUniandes/MetodosComputacionalesAvanzados/blob/master/syllabus/syllabus.pdf

■ Re-estructuración del curso Herramientas Computacionales en una metodología flipped-classroom. Esto implicó la creación de una serie de 15 videos con una duración total cercana a las 5 horas de contenidos en reproducción continua. En promedio cada video ha sido visto 2000 veces en youtube. Con cerca de 30000 vistas en total, el curso estaría en el top 40 de videos con más vistas del canal institucional de Uniandes. Cada video tiene más vistas que el 80 % de todos los videos del canal institucional de Uniandes.

Programa:

https://github.com/ComputoCienciasUniandes/HerramientasComputacionales/blob/master/Syllabus/Syllabus.pdf

■ Re-estructuración de un curso para estudiantes de todas las carreras: *Taller de Astronomía*. Este curso de un crédito fue creado depués de detectar la necesidad de ofrecer un curso que diera una introducción a la astronomía. Durante el curso se balanceann charlas de

temas básicos de astronomía, explicación de noticias recientes relacionadas con astronomía y presentaciones de investigadores nacionales hechas a un nivel divulgativo.

1.3. Educación Continuada

- Abril 2017. Una adaptación del curso Herramientas Computacionales fué dictada como un curso abierto y gratuito para estudiantes de Uniandes y otras universidades. El evento se llamó Python Bootcamp y se dictó en 16 horas de clase en dos días. El curso contó con 100 asistentes. https://pythonbootcampuniandes.github.io/
- Agosto 2016. Una adaptación del CBU Astronomía Popular se dictó como curso de 16 horas a través de Educación Continuada de Uniandes. El curso contó con 10 asistentes.

1.4. Escuelas Internacionales

■ Junio 2015. Organizador de la una escuela Andina de Cosmología (1 mes de duración, 4 instructores internacionales, 20 estudiantes de la región andina).

http://www.astro4dev.org/blog/category/tf1/andean-cosmology-school/.

1.5. Presentaciones Divulgativas

Date	Country City	Venue	Title
3-02-2018	Colombia Santa Rosa	Minkalab	Ubicación espacial y tempo-
	de Cabal		ral en el Universo
27-01-2017	Colombia Bogotá	Liceo Francés	Generalidades de Astrofísica
			y Cosmología
19-02-2016	Colombia Medellín	Planetario de Medellín	Tiempos Cosmológicos
18-02-2016	Colombia Medellín	OPUS - Oficina de Arquitectura	Tiempos Cosmológicos
8-10-2015	Colombia Bogotá	Universidad Santo Tomás	Vida Cosmológica
21 - 05 - 2015	Colombia Bogotá	Conversatorio Maloka	De dónde vengo yo. Luz, es-
			trellas y galaxias.
11-03-2015	Colombia B/manga	Café Científico	Cielos Fluidos y Astronomía
			Periférica. Dos proyectos de
			Arte y Astronomía.

1.6. Aparición en medios de comunicación

 Noviembre 2018. Entrevista sobre el proyecto DESI publicada en El Tiempo: http://www.eltiempo.com/vida/ciencia/atlas-3d-mas-completo-del-universp-155450.

1.7. Dirección de monografía de pregrado

Pregrado:

- 10 Javier Acevedo, Simulating collisional dark matter using a Lattice Boltzmann method, 2018-20.
- 9 Sergio Lobo, Recovery of DESI BGS redshift measurements using Machine Learning. 2018-20
- 8 David Paipa, Supercluster characterization in cosmological simulations. 2018-20.
- 7 Sebastián Sanabria, Dark matter halo dynamics in the cosmic web. 2018-10.

- 6 Sebastian Franco Ulloa, Simulaciones de un fluido débilmente auto-interactuante con métodos Lattice-Boltzmann, 2017-10
- 5 Nicolás Romero, Observational evidence of star formation stochasticity in the CALIFA dataset, 2016-20.
- 4 David Bernal, Acotando las velocidades tangenciales de las galaxias satélites de Andrómeda utilizando optimización no lineal, 2016-20.
- 3 Sergio Hernandez Charpak, Laniakea in a Cosmological Context or Detection of Galaxy Superclusters in Simulated Cosmological Structures, 2016-10
- 2 María Camila Remolina Gutiérrez, Influence of galaxy rotation and outflows in the Lyman Alpha spectral line, 2015-20
- 1 Christian Poveda, A Semi-Analytic Approach to Formation Processes in Galaxies, 2015-10

2. Investigación

2.1. Refereed Papers

En subrayado sencillo se encuentran estudiantes de pregrado de Uniandes, en subrayado doble se encuentran postdocs de Uniandes.

- 10 Unbiased clustering estimates with the DESI fibre assignment.
 - D. Bianchi, A. Burden, W. J. Percival, D. Brooks, R. N. Cahn, J. E. Forero-Romero, M. Levi, A. J. Ross, G. Tarle.

Monthly Notices of the Royal Astronomical Society, Volume 481, Issue 2,

https://doi.org/10.1093/mnras/sty2377

9 We are not the 99 percent: quantifying asphericity in the distribution of Local Group satellites.

J. E. Forero-Romero, V. Arias.

Monthly Notices of the Royal Astronomical Society, Volume 478, Issue 4,

https://doi.org/10.1093/mnras/sty1349

- 8 Modelling the gas kinematics of an atypical Lyman alpha emitting compact dwarf galaxy.
 - **J. E. Forero-Romero**, M. Gronke, <u>M. C. Remolina-Gutiérrez</u>, N. Garavito-Camargo, M. Dijkstra.

Monthly Notices of the Royal Astronomical Society, Volume 474, Issue 1, 2018.

https://doi.org/10.1093/mnras/stx2699.

- 7 Tracing the cosmic web.
 - N. I. Libeskind, R. van de Weygaert, M. Cautun, B. Falck, E. Tempel, T. Abel, M. Alpaslan,
 - M. A. Aragón-Calvo, J. E. Forero-Romero, R. Gonzalez, S. Gottlöber, O. Hahn 13, W.
 - A. Hellwing, Y. Hoffman, B. J. T. Jones, F. Kitaura, A. Knebe, S. Manti, M. Neyrinck,
 - S. E. Nuza, N. Padilla, E. Platen, N. Ramachandra, A. Robotham, E. Saar, S. Shandarin, M. Steinmetz, R. S. Stoica, Th. Sousbie, G. Yepes.

Monthly Notices of the Royal Astronomical Society, Volume 473, Issue 1, 2018.

https://doi.org/10.1093/mnras/stx1976.

- 6 Boosting Lya and HeII 1640A Line Fluxes from Pop III Galaxies: Stochastic IMF Sampling and Departures from Case-B.
 - L. Mas-Ribas, M. Dijkstra, J.E. Forero-Romero.

The Astrophysical Journal, Volume 833, Issue 1, 2016.

https://doi.org/10.3847/1538-4357/833/1/65.

5 Quantifying and controlling biases in dark matter halo concentration estimates,

C.N. Poveda-Ruiz, J.E. Forero-Romero, J.C. Muñoz-Cuartas.

The Astrophysical Journal, Volume 832, Issue 2, 2016.

https://doi.org/10.3847/0004-637X/832/2/169.

4 Impact of Cosmic Variance on the Galaxy-Halo Connection for Lyman- α emitters.

J.E. Mejía-Restrepo, J.E. Forero-Romero.

The Astrophysical Journal, Volume 828, Issue 1.

https://doi.org/10.3847/0004-637X/828/1/5.

3 SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys.

Nord, B.; Amara, A.; Réfrégier, A.; Gamper, La.; Gamper, Lu.; Hambrecht, B.; Chang, C.; Forero-Romero, J. E.; Serrano, S.; Cunha, C.; Coles, O.; Nicola, A.; Busha, M.; Bauer, A.; Saunders, W.; Jouvel, S.; Kirk, D.; Wechsler, R.

Astronomy and Computing, Volume 15, p. 1-15, 2016.

https://doi.org/10.1016/j.ascom.2016.02.001.

2 The Local Group in the Cosmic Web.

J.E. Forero-Romero, R. González.

The Astrophysical Journal, Volume 799, Issue 1, 2015.

https://doi.org/10.1088/0004-637X/799/1/45.

- 1 Tensor anisotropy as a tracer of cosmic voids.
 - S. Bustamante, J.E. Forero-Romero.

Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 1, 2015.

https://doi.org/10.1093/mnras/stv1637.

2.2. Non-Refereed Papers

2 The DESI Experiment Part II: Instrument Design.

The DESI Collaboration.

http://adsabs.harvard.edu/abs/2016arXiv161100037D.

1 The DESI Experiment Part I: Science, Targeting, and Survey Design.

The DESI Collaboration.

http://adsabs.harvard.edu/abs/2016arXiv161100036D.

2.3. Conference Proceedings

5 Looking for observational evidence of star formation stochasticity in the CALIFA dataset.

N. Romero-Díaz, J.E. Forero-Romero.

XV Latin American Regional IAU Meeting Cartagena 2016, Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) Vol. 49, pp. 110-110, 2017.

4 Cosmology with the cosmic web.

J.E. Forero-Romero.

XV Latin American Regional IAU Meeting Cartagena 2016, Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) Vol. 49, pp. 119-119, 2017.

3 Laniakea in a Cosmological Context.

S.D. Hernandez-Charpak, J.E. Forero-Romero.

XV Latin American Regional IAU Meeting Cartagena 2016, Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) Vol. 49, pp. 123-123, 2017.

2 The influence of environment on the HI mass functions in cosmological simulations.

J.D. Prada-Gonzalez, M. G. Jones, J.E. Forero-Romero, M.P. Haynes.

XV Latin American Regional IAU Meeting Cartagena 2016, Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) Vol. 49, pp. 132-132, 2017.

 $1\ \ \textit{Influence of galaxy rotation and outflows on the Lyman Alpha spectral line}.$

M.C. Remolina-Gutiérrez, J.E. Forero-Romero, J.N. Garavito-Camargo.

XV Latin American Regional IAU Meeting Cartagena 2016, Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) Vol. 49, pp. 135-135, 2017.

2.4. Rankings de citaciones

Profesor	Citas	H-index	Años con Citaciones
Andres Florez	157528	165	11
Juan Carlos Sanabria	71577	111	8
Carlos Arturo Avila	22935	22	19
Yenny R Hernandez	7969	22	11
Jaime E. Forero-Romero	831	15	11
Marek Nowakowski	617	14	29
Alejandra Valencia	789	13	16
Manu Forero Shelton	1332	12	19
Juan Gabriel Ramírez	621	12	13
Chad Leidy	375	12	19
Neelima Kelkar	418	11	27
Gabriel Tellez	269	11	23
Luis Quiroga	446	10	28
Juan Manuel Pedraza	700	9	15
Pedro Bargueño	262	9	12
Alonso Botero	307	7	19
Mayerlin Nuñez Portela	102	6	9
Edgar Patino	102	6	17
Beatriz Eugenia Sabogal Martínez	77	6	17
José Alejandro García Varela	105	5	17
Andrés F. Reyes-Lega	96	2	14

Figura 1: El impacto de mi producción investigativa se clasifica en el cuartil superior de los profesores de planta del departamento de Física en un ranking decreciente por H-index. En esta clasificación se toman en cuenta los resultados de perfiles públicos de Google Scholar para los últimos cinco años de citaciones solamente, esto con el interés de descontar el efecto de investigadores con más años de actividad y comparar con mejor paridad la productividad reciente. Esta tabla se encuentra en: https://github.com/forero/gsc/blob/master/info/fisica_uniandes.md

Nombre	Institucion	H-index	Citations	Años con Citaciones
Luis A Núñez	UIS	17	1447	29
Jaime E. Forero-Romero	Uniandes	15	849	11
Yeinzon Rodriguez	UIS	15	719	14
Esteban Silva-Villa	UdeA	14	596	9
Santiago Vargas Domínguez	OAN	13	577	11
José David Sanabria-Gómez	UIS	12	773	19
Luis Granda	Univalle	11	604	21
Ignacio Ferrin	UdeA	10	339	41
Fabio Duvan Lora Clavijo	UIS	10	268	9
Jorge Zuluaga	UdeA	9	332	19
Guillermo A González	UIS	9	269	19
CESAR A. VALENZUELA-TOLEDO	Univalle	9	182	12
Juan Carlos Muñoz Cuartas	UdeA	6	311	9
PABLO CUARTAS RESTREPO	UdeA	6	101	7
Beatriz Eugenia Sabogal Martínez	Uniandes	6	80	17
Giovanni Pinzón	OAN	5	885	10
Rigoberto Angel Casas Miranda	UNAL	5	108	17
José Alejandro García Varela	Uniandes	5	106	17
Fredy L. Dubeibe	Unillanos	4	58	12
Germán Chaparro Molano	ECCI	3	25	9
Mario-Armando Higuera-Garzón	OAN	2	6	22
Julian Rodriguez-Ferreira	UIS	1	6	4

Figura 2: El impacto de mi producción investigativa se clasifica en el cuartil superior de todos los investigadores colombianos en el área de astronomía y astrofísica en un ranking decreciente por H-index. En esta clasificación se toman en cuenta los resultados de perfiles públicos de Google Scholar para los últimos cinco años de citaciones solamente, esto con el interés de descontar el efecto de investigadores con más años de actividad y comparar con mejor paridad la productividad reciente. Esta tabla se encuentra en: https://github.com/ColombianAstronomy/ProductividadAstronomica/blob/master/google_scholar.md

2.5. Asesoría posgrado

Doctorado:

- 1 Diego Barbosa. Presentará examen de candidatura a finales 2019-10.
- 2 John Fredy Suárez. Ya vió materias. Presentará examen de conocimientos en 2019-20.
- 3 Yeimy Camargo, Galaxy Formation Bias in the Cosmic Web. En curso. Estudiante de doctorado en la Universidad Nacional de Colombia Sede Bogotá. Soy su co-director.

Maestría:

- 3 Felipe Gómez, A Large Scale Structure Void Identifier based on β -Skeleton, en curso.
- 2 Jesús Prada, The shape of the Milky Way Dark Matter Halo, 2018-10.
- 1 Juan Nicolás Garavito, The effect of gas bulk rotation on the morphology of the Lyman alpha line, 2015-20.

2.6. Asesoría de postdocs

 Verónica Arias. 2015-2016. Como resultado principal tenemos una publicación que se encuentra actualmente en revisión:

https://github.com/astroandes/SatelliteShapeLG

2.7. Financiación

N^o	Fecha	Duración	Institución	Proyecto	Monto
1	1.10.2016	36 meses	COLCIENCIAS	Simulaciones y Observa-	200 Millones COP
				ciones del Universo a Gran	
				Escala	
2	1.03.2017	48 meses	Unión Europea	Latin-American Ga-	1.4 Millones EURO
				laxy Formation	
				Network https:	
				//www.lacegal.com/	
3	1.10.2017	24 meses	Uniandes	Spatio-Temporal Tran-	84 Millones COP
				sient Object Localization	
				in Astronomical Image	
				Sequences Using Machine	
				Learning	

2.8. Visitas de investigación

Date	Duration	Country	City	Institute
18-11-2017	2 weeks	USA	Berkeley	Lawrence Berkeley National Laboratory
4-11-2017	2 weeks	USA	Honolulu	Institute for Astronomy
1-10-2017	5 weeks	South Korea	Daejeon	Korea Astronomy and Space Science Institute
26-09-2017	5 weeks	Germany	Heidelberg	Heidelberg Institute for Theoretical Studies
1-07-2017	5 weeks	UK	Durham	Institute for Computational Cosmology
25 - 07 - 2016	1 week	USA	Berkeley	Lawrence Berkeley National Laboratory
4-07-2016	1 week	Germany	Heidelberg	Heidelberg Institute for Theoretical Studies
27-06-2016	1 week	Germany	Potsdam	Leibniz Institute for Astrophysics
14-12-2015	1 week	Chile	Santiago	Pontificia Universidad Católica
25 - 10 - 2015	1 week	USA	Berkeley	Lawrence Berkeley National Laboratory
12 - 07 - 2015	2 weeks	UK	Durham	Durham University

2.9. Charlas y presentaciones en congresos

2017

Date	Country	City	Venue	Title
15-12-2017	Argentina	Bariloche	Meeting Distant Galaxies from	Boosting the Lyman-alpha line
			the Far South	from stochastic IMF sampling
13 - 11 - 2017	USA	Honolulu	Extragalactic Astronomy Semi-	We are not the 99% : the Local
			nar at the Institute for Astro-	Group in a Cosmological Con-
			nomy	text
19-10-2017	South	Daejeon	Cosmology Group Seminar at	Simulating the Dark Energy
	Korea		KASI	Spectroscopic Instrument
10-02-2017	Colombia	Bogotá	Pycon 2017 Colombia	Mapping the Universe with Pyt-
				hon

2016

Date	Country	City	Venue	Title
3-10-2016	Colombia	Cartagena	XV Latinamerican Regional IAU	Cosmology with the Cosmic Web
			Meeting	
29-06-2016	Germany	Potsdam	Cosmology Group Seminar at	- 7
			the Leibniz Institute for As-	Cosmic Web
			trophysics	
20-06-2016	UK	Durham	DESI collaboration meeting	How to simulate DESI with Pyt-
				hon
19-02-2016	Colombia	Medellín	Universidad de Antioquia	Galaxias y la red cósmica
2015				

Date	Country	City	Venue	Title
18-12-2015	Chile	Santiago	Pontificia Universidad Católica	Galaxias y la red cósmica

2.10. Colaboraciones Internacionales de Alto Impacto

■ Dark Energy Spectroscopic Instrument (DESI).

Proyecto de última generación de cosmología observacional. El proyecto tiene un costo de hardware de 50 millones de dólares y empezará a tomar mediciones en el periodo 2019-2024. El proyecto es liderado por Lawrence Berkeley National Laboratory (Berkeley Lab). La colaboración incluye cerca de 465 investigadores de 70 instituciones diferentes en todo el mundo. Uniandes hace parte formal de la colaboración desde el 2014 a través de mis contactos desde la época en la que fuí postdoc en Berkeley. Es la primera vez que Colombia hace parte de un proyecto internacional de frontera en cosmología observacional.

El más reciente press release de Berkeley Lab dice¹:

"Installing DESI on the Mayall will put the telescope at the heart of the next decade of discoveries in cosmology," said Risa Wechsler, DESI Collaboration Co-Spokesperson and associate professor of physics and astrophysics at SLAC National Accelerator Laboratory and Stanford University. "The amazing 3-D map it will measure may solve some of the biggest outstanding questions in cosmology, or surprise us and bring up new ones."

 $^{^1}$ https://newscenter.lbl.gov/2018/02/12/solving-the-dark-energy-mystery-a-new-assignment-for-a-45-year-old-telescope/

■ Latinamerican Chinese European Galaxy Formation Network (LACEGAL).

Red de investigación en Formación de Galaxias financiada por la Unión Europea con el programa Horizon 2020 bajo el esquema MSCA-RISE - Marie Sklodowska-Curie Research and Innovation Staff Exchange (RISE). El projecto tiene un financiamiento por un monto total de 1.4 Millones de Euro y se implementará durante el período 2017-2021 Esta es la **primera vez que alguien en toda Uniandes** logra participar en una convocatoria ganadora de intercambios de este monto de la Unión Europea.

Esta es una breve descripción tomada de la página de LACEGAL²:

Spectacular breakthroughs in astronomy have been driven by a combination of observational advances and groundbreaking computer simulations. Simulations are now accepted as being essential for the interpretation and exploitation of data. Europe is a world leader in this area. Our aim is to build on the highly successful FP7 LACEGAL IRSES to avoid fragmentation of expertise and concentration of supercomputer resources in a few groups. The expansion of LACEGAL will build new research collaborations between Europe and the main centres in Latin America and China, and enhance those established under IRSES. The bulk of exchanges will be undertaken by Early Stage Researchers, who will gain access to unique training in high performance computing, equipping them with skills which are much sought after in academia and industry. We also plan network-wide workshops to share knowledge and provide specialized training, disseminating project results and expertise beyond the membership of LACEGAL.

²https://www.lacegal.com/about

3. Desarrollo Institucional

3.1. Comunidad Uniandes

- Desde 2016-10. Coordinador de los cursos computacionales de la carrera de Física: Herramientas Computacionales, Métodos Computacionales y Métodos Computacionales avanzados.
- 2015-10. Representante del Departamento de Física en el comité de cómputo de alto rendimiento de la facultad de ciencias.

3.2. Comunidad Colombiana

- 2017-20. Universidad de Antioquia (Colombia). Evaluador de una tesis de maestría.
- 2017-10. Miembro del SOC del quinto Congreso Colombiano de Astronomía y Astrofísica.

3.3. Comunidad Internacional

Como evaluador:

- 2018-20. CONICTY (Chile). Evaluador de una propuesta de investigación para convocatoria FONDECYT.
- 2017-20. CONICTY (Chile). Evaluador de una propuesta de investigación para convocatoria FONDECYT.
- Desde el 2015-10. Referee para Monthly Notices of the Royal Astronomical Society. (Reino Unido). Evaluador de tres artículos.

Como organizador:

- Julio 2015. Co-organizador del segundo workshop Astronomía en los Andes (cerca de 100 asistentes)
- Desde Julio 2015. Coordinador de la Oficina Regional de Astronomía para el Desarrollo.
 Esta Oficina es una red colaboración entre Colombia, Venezuela, Ecuador, Perú y Chile con el patrocinio de la Unión Astronómica Internacional. http://andean.astro4dev.org/