

محتوى الدرس

المعادلات ، المتراجحات ، النظمات

- المعادلة من الدرجة الأولى بمجهول واحد
- المعادلة من الدرجة الثانية بمجهول واحد ، تعميل ثلاثية الحدود
 - إشارة ، المتراجحات من الدرجة الأولى بمجهول واحد
- متراجحات تؤول في حلها إلى متراجحات من الدرجة الأولى بمجهول واحد
 - المعادلات من الدرجة الأولى بمجهولين
 - نظمة معادلتين من الدرجة الأولى بمجهولين

طرق الحل: التعويض ، التأليفة الخطية والمحددات

الأهداف القدرات المنتظرة من الدرس:

- حل معادلات من الدرجة الأولى ومن الدرجة الثانية بمجهول واحد، ومعادلات تؤول في حلها إلى المعادلات السابقة.
 - تعميل ثلاثية الحدود من الدرجة الثانية باستعمال مختلف التقنيات.
- حل متراجحات من الدرجة الأولى بمجهول واحد، ومتراجحات تؤول في حلها إلى المتراجحات السابقة.
 - ، حل نظمة معادلتين من الدرجة الأولى بمجهولين.
 - ترييض وضعيات تؤول في حلها إلى المعادلات أو المتراجحات أو النظمات السابقة .

I. المعادلات من الدرجة الأولى بمجهول واحد:

تعریف: لیکن a و b عددین حقیقیین.

كل معادلة على الشكل ax + b = 0 تسمى معادلة من الدرجة الأولى بمجهول واحد, حيث x هو المجهول.

أمثلة : حل في آ المعادلات التالية :

$$3(2x+5) = 6x-1$$
 (2 $-2x + 22 = 0$ (1)

$$9x^2-16=0$$
 (4 $4(x-2)=6x-2(x+4)$ (3

$$(2x+3)(9x-3)\left(x-\frac{1}{2}\right)=0$$
 (5)

$$\frac{2x+2}{3} - \frac{1}{2} = \frac{5x-2}{2} + \frac{1}{3}$$
 (6)

$$x^3 - x = 0$$
 (7

$$-2x + 22 - 22 = -22$$
 يعني $-2x + 22 = 0$ (1:الجواب: 1) $-2x = -22$

$$-2x \times \left(\frac{1}{-2}\right) = -22 \times \left(\frac{1}{-2}\right)$$
 يعني

يعني x=11 ومنه: $S=\{11\}$ وتسمى مجموعة حلول المعادلة

$$6x+15=6x-1$$
 يعني $3(2x+5)=6x-1$ (2

$$0 = -16$$
 يعني $6x - 6x = -1 - 15$ يعني

$$S = \emptyset$$
: وهذا غير ممكن ومنه

$$4x-8=6x-2x-8$$
 يعني $4(x-2)=6x-2(x+4)$ (3

0 = 0 يعني 4x - 4x + 8 - 8 = 0

 $S = \mathbb{R}$: ومنه : كل عدد حقيقي هو حل لهذه المعادلة وبالتالي

4)أمامنا معادلة من الدرجة الثانية طريقة 1: (التعميل) $9x^2-16=0$ يعني $9x^2-4^2=0$

يعني 3x-4=0 يعني 3x+4=0 يعني 3x+4=0 أو

$$x = \frac{4}{3}$$
 يعني $x = \frac{-4}{3}$ أو $3x = 4$ يعني $3x = 4$

$$S = \left\{-\frac{4}{3}, \frac{4}{3}\right\} : \text{oth}$$

$$x^2 = \frac{16}{9}$$
 مطریقة $9x^2 = 16$ یعنی $9x^2 - 16 = 0$: طریقة

$$x = -\frac{4}{3}$$
 يعني $x = \frac{4}{3}$ رو $x = \sqrt{\frac{16}{9}}$ يعني $x = \sqrt{\frac{16}{9}}$

$$(2x+3)(9x-3)\left(x-\frac{1}{2}\right)=0$$
 (5)

$$2x+3=0$$
 يعني $x-\frac{1}{2}=0$ أو $x-\frac{1}{2}=0$

$$x = -\frac{1}{3}$$
 يعني $x = \frac{1}{2}$ أو $x = \frac{1}{3}$

$$S = \left\{-\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right\}$$
 :

(نوحد المقامات)
$$\frac{2x+2}{3} - \frac{1}{2} = \frac{5x-2}{2} + \frac{1}{3}$$
 (6

 $\Delta = b^2 - 4ac$: 10 دينا: 3 ما b = -5 و b = -5 $\Delta = (-5)^2 - 4 \times 7 \times 3 = 25 - 84 = -59$ فأن: ملاحظة: الرمز ∆ يقرأ: دلتا delta. نعتبر المعادلة $a \neq 0$ نعتبر المعادلة $a \neq 0$ نعتبر المعادلة $a \neq 0$ \mathbb{R} المعادلة ليس لها حل في $\Delta \prec 0$ المعادلة ليس لها حل في $\Delta = 0$ فان المعادلة تقبل حلا وجيدا مزدوجا هو $\Delta = 0$ $\frac{-b+\sqrt{\Delta}}{2a}$ و $\frac{-b-\sqrt{\Delta}}{2a}$ هما: هما: مختلفین هما: $\Delta \succ 0$ فان المعادلة تقبل حلین مختلفین نرمز لمجموعة حلول المعادلة بالرمز S. \mathbb{R} مثال: المعادلة 2 = 0 + x + 2 = 0 ليس لها حلا في $\Delta = -23$ لأن $\Delta = -23$ و بالتالي مجموعة حلولها ($\Delta = -23 \times 3 \times 2 = -23$ $S = \phi$ هي مثال 2:المعادلة 2 = 25 + 10x لها حل وحيد مز دو ج $(\Delta=10^2-4\times25=0)$ \(\Delta=10^2-0\) $x = \frac{-b}{2} = 5$ حل هذه المعادلة هو و بالتالي مجموعة حلولها هي $S = \{5\}$. بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $S = \{1; 2\}$ و منه $x_2 = \frac{3+1}{2} = 2$ و $x_1 = \frac{3-1}{2} = 1$ \mathbb{R} المعادلات التالية \mathbb{R} $\Delta = 0$ $2x^2 - 2\sqrt{2}x + 1 = 0$ (2 $\Delta > 0$ $6x^2 - 7x - 5 = 0$ (1 $4x^2 - 8x + 3 = 0$ (4 $\Delta < 0$ $3x^2 + x + 2 = 0$ (3 $x^2 + 5x + 7 = 0$ (6 $x^2 - 4x + 2 = 0$ (5) $x^2 - 4x - 21 = 0$ (8) $2x^2 - 4x + 6 = 0$ (7) $3x^2 - 6x + 3 = 0$ (9) $6x^2 - 7x - 5 = 0$ الأجوبة: c = -5 b = -7 a = 6 $\Delta = b^2 - 4ac = (-7)^2 - 4 \times 6 \times (-5) = 49 + 120 = 169 = (13)^2 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ **9** $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ $x_1 = \frac{-(-7) + \sqrt{169}}{2 \times 6} = \frac{7 + 13}{12} = \frac{20}{12} = \frac{5}{3}$ $S = \left\{ \frac{5}{3}, -\frac{1}{2} \right\}$ call $x_2 = \frac{7-13}{12} = \frac{6}{12} = -\frac{1}{2}$ c=1 $b=-2\sqrt{2}$ a=2 $2x^2-2\sqrt{2}x+1=0$ (2) $\Delta = b^2 - 4ac = (-2\sqrt{2})^2 - 4 \times 2 \times 1 = 8 - 8 = 0$ بما أن $\Delta=0$ فان هذه المعادلة تقبل حلا وجيدا هو: $S = \left\{ \frac{\sqrt{2}}{2} \right\}$ each $x = \frac{-b}{2a} = \frac{-(-2\sqrt{2})}{2 \times 2} = \frac{\sqrt{2}}{2}$ $ax^2 + bx + c = 0$ العدد الحقيقي $b^2 - 4ac$ يسمى مميز المعادلة c = 2 b = 1 a = 3 $3x^2 + x + 2 = 0$ (3) $\Delta = b^2 - 4ac = (1)^2 - 4 \times 3 \times 2 = 1 - 24 = -23 < 0$ $S=\varnothing$ بما أن $\Delta \prec 0$ فان المعادلة ليس لها حل في $\mathbb R$ ومنه:

 $\frac{4x+4}{6} - \frac{3}{6} = \frac{15x-6}{6} + \frac{2}{6}$ يعني 4x+1=15x-4 يعني $\frac{4x+1}{6}=\frac{15x-4}{6}$ يعني $S = \left\{ \frac{5}{11} \right\}$ ومنه: $x = \frac{5}{11}$ ومنه: (التعميل) $x(x^2-1)=0$ يعني $x^3-x=0$ $x^2 = 1$ j x = 0 يعنى x = 0 و x = 0 $S = \{-1, 0, 1\}$ ومنه: $x = -\sqrt{1}$ ومنه: x = 0تمرین 1: حل فی $\mathbb R$ المعادلات التالیة : $\frac{x+1}{2} + 4 = \frac{2x-5}{10} + \frac{2(x+10)}{5}$ (1 $x^3 - 4x = 0$ (2) (5x-7)(3x-10)=0 (3 (نوحد المقامات) $\frac{x+1}{2}+4=\frac{2x-5}{10}+\frac{2(x+10)}{5}$ (1:المقامات $\frac{5x+5}{10} + \frac{40}{10} = \frac{2x-5}{10} + \frac{4x+40}{10}$ $\frac{5x+5+40}{10} = \frac{2x-5+4x+40}{10}$ -x = -10 يعني 5x + 5 + 40 = 2x - 5 + 4x + 40 $S = \{10\}$. ومنه: x = 10(النعميل) $x(x^2-4)=0$ يعني $x^3-4x=0$ $x^2 = 4$ أو x = 0 يعنى x = 0 أو x = 0 أو $S = \{-2,0,2\}$ ومنه: $x = -\sqrt{4}$ ومنه: x = 03x-10=0 يعني 5x-7=0 أو 5x-7=0 $S = \left\{ \frac{7}{5}, \frac{10}{3} \right\}$ each: $x = \frac{10}{3}$ if $x = \frac{7}{5}$ II. المعادلات من الدرجة الثانية بمجهول واحد: 1. تعاریف: a و المجهول و x حيث x هو المجهول و $ax^2 + bx + c = 0$ و b و c أعداد حقيقية معلومة $(a \neq 0)$ تسمى معادلة من الدرجة الثانية بمجهول واحد $3x^2 + 5x + 2 = 0$ مثال 1: العدد 1- حل للمعادلة $3(-1)^2 + 5(-1) + 2 = 0$: لأن $x^{2} + (1 - \sqrt{3})x - \sqrt{3} = 0$ مثال 2: العدد $\sqrt{3}$ حل للمعادلة $(\sqrt{3})^2 + (1 - \sqrt{3})\sqrt{3} - \sqrt{3} = 3 + \sqrt{3} - 3 - \sqrt{3} = 0$ $ax^2 + bx + c = 0$ ملاحظة: كل عدد حقيقي x_0 يحقق المتساوية $ax^2 + bx + c = 0$ هو حل للمعادلة $ax^2 + bx + c = 0$ تعریف 2:نعتبر المعادلة

 $(E): 3x^2 - 5x + 7 = 0$ مثال: نعتبر المعادلة

نرمز له بالرمز ∆.

(E) لنحسب مميز المعادلة

 $x^2 - 10x + 25 = a(x - x_1)^2 = 1(x - 5)^2$: equivalently $a = x^2 - 10x + 25 = a(x - x_1)^2 = 1$ c = 2 b = -3 a = 1 $x^2 - 3x + 2$ (2) $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times 2 = 9 - 8 = 1 = (1)^2 > 0$ بما أن $0 \prec \Delta$ فان هذه الحدودية لها جذرين هما: $x_2 = 1$ **9** $x_1 = 2$ يعني $x_2 = \frac{3 - \sqrt{1}}{2 \times 1}$ **9** $x_1 = \frac{3 + \sqrt{1}}{2 \times 1}$ $x^2-3x-2=a(x-x_1)(x-x_2)=1(x-2)(x-1)$:ادينا $3x^2 + x + 2$ (3 $\Delta = b^2 - 4ac = (1)^2 - 4 \times 3 \times 2 = 1 - 24 = -23 < 0$ ومنه فان هذه الحدودية لا يمكن تعميلها تمرين 3: عمل ثلاثيات الحدود التالية $3x^2-6x+3$ (3 $4x^2-8x+3$ (2 $2x^2-4x+6$ (1 c = 6 و b = -4 و $a = 2 : 2x^2 - 4x + 6 = 0$ و b = -4 $\Delta = b^2 - 4ac = (-4)^2 - 4 \times 2 \times (6) = 16 - 48 = -32 < 0$ ومنه فان هذه الحدودية لا يمكن تعميلها c = 3 g b = -8 g a = 4 $4x^2 - 8x + 3 = 0$ (2) $\Delta = b^2 - 4ac = (-8)^2 - 4 \times 4 \times 3 = 64 - 48 = 16 = (4)^2 > 0$ بما أن $0 \prec \Delta$ فان هذه الحدودية لها جذرين هما: $x_2 = \frac{4}{8} = \frac{1}{2}$ **9** $x_1 = \frac{8+4}{2\times4} = \frac{12}{8} = \frac{3}{2}$ $4x^2-8x+3=4\left(x-\frac{1}{2}\right)\left(x-\frac{3}{2}\right)=(4x-2)\left(x-\frac{3}{2}\right)$: ومنه التعميل بما أن $\Delta=0$ فان هذه الحدودية لها جذر وحيد $\Delta=0$

c = 25 و b = -10 و a = 1: $x^2 - 10x + 25$ (1)

 $\Delta = b^2 - 4ac = (-10)^2 - 4 \times 1 \times (25) = 100 - 100 = 0$

بما أن $\Delta = 0$ فان هذه الحدودية لها جذر وحيد هو:

 $x_1 = \frac{-(-10)}{2 \times 1} = \frac{10}{2} = 5$

 $x_1 = \frac{-(-8)}{2 \times 4} = 1$ $3x^2-6x+3=a(x-x_1)^2=3(x-1)^2$: each literally equation III. المتراجحات من الدرجة الأولى بمجهول واحد ax + b إشارة الحداثية

х	-8	<u>b</u>	+∞
		a	
ax + b	a عكس إشارة	0	a إشارة

مثال 1: لنحدد إشارة 1+ 2x $x = -\frac{1}{2}$ يكافئ 2x + 1 = 0

و بما أن a>0 و a>0 هو كالتالى:

x	-8	$-\frac{1}{2}$	+∞
2x + 1	1	0	+

c = 3 gb = -8 ga = 4 $4x^2 - 8x + 3 = 0$ $\Delta = b^2 - 4ac = (-8)^2 - 4 \times 3 \times (4) = 84 - 8 = 16 = (4)^2 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $x_2 = \frac{-(-8) - \sqrt{16}}{2 \times 4}$ **9** $x_1 = \frac{-(-8) + \sqrt{16}}{2 \times 4}$ $S = \left\{ \frac{3}{2}, \frac{1}{2} \right\}$: $x_2 = \frac{8-4}{8} = \frac{4}{8} = \frac{1}{2}$ **9** $x_1 = \frac{8+4}{8} = \frac{12}{8} = \frac{3}{2}$ c = 2 gb = -4 ga = 1 $x^2 - 4x + 2 = 0$ (5 $\Delta = b^2 - 4ac = (-4)^2 - 4 \times 2 \times (1) = 16 - 8 = 8 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما: $x_2 = \frac{-(-4) - \sqrt{8}}{2 \times 1}$ **9** $x_1 = \frac{-(-4) + \sqrt{8}}{2 \times 1}$ $x_1 = \frac{4+2\sqrt{2}}{2} = \frac{2(2+\sqrt{2})}{2} = 2+\sqrt{2}$ $S = \left\{2 - \sqrt{2}, 2 + \sqrt{2}\right\}$ $x_2 = \frac{4 - 2\sqrt{2}}{2} = \frac{2(2 - \sqrt{2})}{2} = 2 - \sqrt{2}$ c = 7 $_{9}b = 5$ $_{9}a = 1$ $x^{2} + 5x + 7 = 0$ (6 $\Delta = b^2 - 4ac = 5^2 - 4 \times 1 \times 7 = 25 - 28 = -3 < 0$ $S = \emptyset$ بما أن $\Delta \prec 0$ فان المعادلة ليس لها حل في \mathbb{R} ومنه: c = 6 g b = -4 g a = 2 $2x^2 - 4x + 6 = 0$ (7)

 $\Delta = b^2 - 4ac = (-4)^2 - 4 \times 2 \times 6 = 16 - 48 = -32 < 0$ $S=\emptyset$ بما أن $\Delta \prec 0$ فان المعادلة ليس لها حل في c = -21 b = -4 a = 1 $x^2 - 4x - 21 = 0$ (8) $\Delta = b^2 - 4ac = (-4)^2 - 4 \times 1 \times (-21) = 16 + 84 = 100 = (10)^2 > 0$ بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما:

 $x_2 = \frac{-(-4) - \sqrt{100}}{2 \times 1}$ **9** $x_1 = \frac{-(-4) + \sqrt{100}}{2 \times 1}$ $S = \{-3,7\}$: $x_2 = \frac{4-10}{2} = \frac{-6}{2} = -3$ **9** $x_1 = \frac{4+10}{2} = \frac{14}{2} = 7$ c = 3 b = -6 a = 3 $3x^2 - 6x + 3 = 0$ (9)

 $\Delta = b^2 - 4ac = (-6)^2 - 4 \times 3 \times 3 = 36 - 36 = 0$

بما أن $\Delta=0$ فان هذه المعادلة تقبل حلا وحيدا مز دوجا هو:

 $S = \{1\}$ each: $x = \frac{-(-6)}{2 \times 3} = \frac{6}{6} = 1$ each: $x = \frac{-b}{2a}$

 $ax^2 + bx + c$. $ax^2 + bx + c$

خاصية: نعتبر ثلاثية الحدود $ax^2 + bx + c$ و ليكن Δ مميزها.

ال حلين $ax^2 + bx + c = 0$ نقبل حلين $\Delta > 0$ نقبل حلين .1 x_2 و x_1 مختلفین

 $ax^{2}+bx+c=a(x-x_{1})(x-x_{2})$ و لدينا:

 $ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2}$ فان: $\Delta = 0$ فان: .2

ليمكن تعميلها إلى ax^2+bx+c فان: $\Delta \prec 0$ إذا كان: Δ حدوديتين من الدرجة الأولى.

أمثلة : عمل ثلاثيات الحدود التالية :

$$3x^2 + x + 2$$
 (3 $x^2 - 3x + 2$ (2 $x^2 - 10x + 25$ (1

-x + 2 مثال 2: لنحدد إشارة

x=2 يكافئ $-x+2=\overline{0}$

و بما أن: a = 0 و a < 0 فان جدول إشارة a + 2 هو كالتالي:

<u> </u>	, , , , , ,	cı	1034
X	-8	2	**
-x + 2		0	+

 $3x + 6 \ge 0$: حل في \mathbb{R} المتراجحة التالية

x = -2 يكافئ 3x + 6 = 0

و بما أن: $0 \le 3x + 6 \ge 0$ و الإشارة هو كالتالى:

و منه فان -2+∞ 3x + 60

 $S = [-2; +\infty[$:

-3x + 9: حدد إشارة: 9 + 3x + 9

 $-3x + 9 \prec 0$ المتراجحة: \mathbb{R}

تمرين 4: حل في مجموعة الأعداد الحقيقية المتراجحات التالية:

 $5x-15 \le 0$ (2 -2x+12 > 0 (1

و بما أن: a = 0 و a < 0 فان جدول الإشارة هو كالتالى:

х		6	+∞
-2x+12	+	0	_

 $S =]-\infty; 6[$: و منه فان

x = 3 يكافئ 5x - 15 = 0 $5x - 15 \le 0$ (2)

و بما أن: a > 0 و a > 0 فان جدول الإشارة هو كالتالى:

X		3	+∞
5x - 15 = 0	_	0	+

 $S =]-\infty;3]$: 0

IV. متراجحات تؤول في حلها الى متراجحات من الدرجة الأولى بمجهول واحد:

1) حل متراجحات تؤول في حلها الى متراجحات من الدرجة الأولى بمجهول واحد:

مثال 1:أو تمرين 5:حل في $\mathbb R$ المتراجحات التالية:

 $4x^2 - 9 \ge 0$ (1-x)(2x+4) > 0(2

 $4x^2 - 9 \ge 0$ (1: أجوبة

(2x-3)(2x+3)=0 يعني $3^2-3^2=0$ يعني $4x^2-9=0$

 $x = \frac{3}{2}$ يعني $x = \frac{-3}{2}$ أو 2x - 3 = 0 يعني x = 3

الطريقة :في جدول نعطي إشارة كل عامل على الشكل ax + b ثم استنتج إشارة

الجداء أو الخارج مع ترتيب تزايدي للقيم التي ينعدم فيها كل عامل.

х		$-\frac{3}{2}$	$\frac{3}{2}$	+∞
				-∞
2x + 3	_	0	+	+
2x - 3	_		- 0	+
(2x-3)(2x+3)	+	0	- 0	+

 $S = \left] -\infty; -\frac{3}{2} \right] \cup \left[\frac{3}{2}; +\infty \right]$: و منه فان (1-x)(2x+4) > 0 (2

يعني 1-x=0 أو 2x+4=0 يعني (1-x)(2x+4)=0

x = 1 أو x = -2

-∞	-2		1	+∞
_	0	+		+
+		+	0	_
_	0	+	0	_
	-∞ - + -	$ \begin{array}{c cccc} -\infty & -2 \\ \hline - & 0 \\ + & \\ \hline - & 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

S =]-2;1[: و منه فان

 $9x^2 - 25 \prec 0$ المتراجحة: $0 \rightarrow 25 \prec 0$

إشارة ثلاثية الحدود $ax^2 + bx + c$ وحل متر اجحات من

الدرجة الثانية:

الحالة 1: إذا كان 0 > 0 و x_1 و x_2 هما جذري ثلاثية الحدود فان:

X	-8	x_1	x_2	+∞
$P(x) = ax^2 + bx + c$	اشارةa	شارةa 0	0 عكس ا	aاشارة

الحالة 2: إذا كان $\Delta = 0$: و x_1 هو الجذر الوحيد المزدوج فان:

X		x_1	+∞
$P(x) = ax^2 + bx + c$	اشارةa	0	اشارةa

الحالة 3: إذا كان $\Delta \prec 0$ فان إشارة P(x) هي إشارة العدد $\Delta \to 0$

Ī	x		+∞
Ī	$P(x) = ax^2 + bx + c$	a اشارة	

 $P(x) = 2x^2 - 3x + 1$ 1. أدرس إشارة الحدودية

 $2x^2 - 3x + 1 \ge 0$: المتراجحة \mathbb{R} على في

 $P(x) = 2x^2 - 3x + 1(1: 4)$

 $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$

بما أن $0 \prec \Delta$ فان للحدودية جذرين هما:

 $x_1 = \frac{3-1}{4} = \frac{1}{2}$ ومنه: $x_1 = \frac{-(-3) + \sqrt{1}}{2} = \frac{3+1}{4} = 1$

x	-8	$\frac{1}{2}$		1	+∞
P(x)	+	0	_	0	+

 $S = \left[-\infty, \frac{1}{2}\right] \cup \left[1, +\infty\right[$: المتراجحة (2

 $P(x) = -2x^2 + 4x - 2$ أدرس إشارة الحدودية. 1 $-2x^2 + 4x - 2 > 0$: المتراجحة \mathbb{R} المتراجحة .2

a = -2 $P(x) = -2x^2 + 4x - 2$ (1: 4.2)

 $\Delta = b^2 - 4ac = (4)^2 - 4 \times (-2) \times (-2) = 16 - 16 = 0$

 $x_1 = \frac{-(4)}{2 \times (-2)} = 1$ فان هذه الحدودية لها جذر وحيد هو: $\Delta = 0$ بما أن $\Delta = 0$

X		1	+∞
$P(x) = -2x^2 + 4x - 2$	_	0	_

2)حل المتراجحة: $S = \mathbb{R}$

 $P(x) = 3x^2 + 6x + 5$ 1. 1. 1. 1. 1.

 $3x^2 + 6x + 5 < 0$ المتراجحة: \mathbb{R}

a = 3 > 0 $P(x) = 3x^2 + 6x + 5$ (1: أجوبة

ومنه: $\Delta = b^2 - 4ac = (6)^2 - 4 \times 3 \times 5 = 36 - 60 = -24 < 0$

х	-∞	+∞
$P(x) = 3x^2 + 6x + 5$	+	

2)حل المتراجحة: $S = \emptyset$

\mathbb{R} المتراجحات التالية : \mathbb{R} المتراجحات التالية :

 $(3 \ 4x^2 - 8x + 3 \le 0 \ (2 \ 2x^2 - 4x + 6 \ge 0 \ (1$

 $x^2 - 3x - 10 < 0$

 $2x^2 - 4x + 6 \ge 0$ (1: أجوبة a = 3 > 0

 $\Delta = b^2 - 4ac = 16 - 48 = -32 < 0$

x		+∞
$P(x) = 3x^2 + 6x + 5$	+	

 $S=\mathbb{R}$:ومنه

a = 4 $4x^2 - 8x + 3 \le 0$ (2)

 $\Delta = b^2 - 4ac = (-8)^2 - 4 \times 4 \times 3 = 64 - 48 = 16 > 0$

بما أن $0 \prec \Delta$ فان للحدودية جذرين هما:

 $x_2 = \frac{8-4}{8} = \frac{1}{2}$ ومنه: $x_1 = \frac{8+4}{2\times4} = \frac{12}{8} = \frac{3}{2}$

х	-∞	$\frac{1}{2}$		$\frac{3}{2}$	+∞
$4x^2 - 8x + 3$	+	0	_	0	+

a = 4 $x^2 - 3x - 10 < 0$ (3)

 $\Delta = b^2 - 4ac = 49 > 0$

بما أن $0 \prec \Delta$ فان للحدودية جذرين هما:

 $x_1 = -2$ ومنه:

X	-8	-2		5	+∞
$x^2 - 3x - 10$	+	0	_	0	+

S =]-2,5[

V. النظمات:

1. معادلات من الدرجة الأولى بمجهولين:

مثال و أنشطة:

 $y \in \mathbb{R}$ هي مجموعة الأزواج (x,y) حيث $x \in \mathbb{R}$ و \mathbb{R}^2

2x+3y=2 : المعادلة \mathbb{R}^2 المجموعة المجموع

$$2x+3y=2$$
 تأكد أن الزوج $\left(0,\frac{2}{3}\right)$ حل للمعادلة: (1

2x+3y=2 اعط ثلاث أزواج حلول للمعادلة: (2

2x+3y=2 : المعادلة \mathbb{R}^2 حل في (3

أجوبة: 1) $2 \times 0 + 3 \times \frac{2}{3} = 2$ اذن : $(0, \frac{2}{3})$ حل للمعادلة

 $\left(2, -\frac{2}{3}\right) \in S$ اذن $y = -\frac{2}{3}$: يعني $2 \times 2 + 3 \times y = 2$ اذن x = 2

 $\left(3, -\frac{4}{3}\right) \in S$: اذن $y = -\frac{4}{3}$: يعني $2 \times 3 + 3 \times y = 2$: اذن x = 3

 $(4,-2) \in S$: اذن y = -2: يعني $2 \times 4 + 3 \times y = 2$: اذن x = 4

 $y = \frac{-2x+2}{2}$ يعني 3y = -2x+2 يعني 2x+3y=2(3)

 $S = \left\{ \left(x; \frac{-2}{3} x + \frac{2}{3} \right) / x \in \mathbb{R} \right\}$: اذن $y = -\frac{2}{3} x + \frac{2}{3}$

تمرین 8: حل في \mathbb{R}^2 المعادلات التالیة : -3x+12y-2=0 (2 2x-8y+10=0 (1 7x-14y+1=0 (3)

 $y = \frac{8x - 10}{2}$ يعني 2y = 8x - 10 يعني 2x - 8y + 10 = 0 (1:

 $S = \{(x; 4x - 5) / x \in \mathbb{R}\}$: اذن y = 4x - 5

 $y = \frac{3x+2}{12}$ يعني 12y = 3x+2 يعني -3x+12y-2=0 (2)

 $S = \left\{ \left(x; \frac{1}{4}x + \frac{1}{6} \right) / x \in \mathbb{R} \right\}$: نذن $y = \frac{1}{4}x + \frac{1}{6}$

 $x = \frac{14y-1}{7}$ يعني 7x = 14y-1يعني 7x-14y+1=0 (3

 $S = \left\{ \left(2y - \frac{1}{7}; y \right) / y \in \mathbb{R} \right\}$: اذن $x = 2y - \frac{1}{7}$

2. نظمة معادلتين:

c' نعتبر النظمة: $\begin{cases} ax + by = c \\ a'x + b'y = c \end{cases}$ نعتبر النظمة:

هناك عدة طرق لحل نظمة سبق أن درست طريقتين هما طريقة التعويض و التأليفة الخطية طبعا هناك طريقة أخرى انتبه a. طريقة التعويض:

4x + y = 10: حل في $\mathbb{R} imes\mathbb{R}$ النظمة التالية -5x + 2y = -19

الجواب:

نبحث عن y في المعادلة الأولى مثلا

y = 10 - 4x يعنى 4x + y = 10

ونعوض y بقيمتها في المعادلة الثانية

-5x+2(10-4x)=-19 يعني -5x+2y=-19

x=3 يعني -3x=-39 يعني -5x-8x=-19-20y=-2 فنجد y=10-4x فنجد ونعوض ب ونعوض $S = \{(3,-2)\}$

b. طريقة التأليفة الخطية

4x + y = 10 $\mathbb{R} imes\mathbb{R}$ النظمة التالية : $\mathbb{R} imes\mathbb{R}$ $\int -5x + 2y = -19$

نضرب المعادلة الأولى في العدد (2) فنحصل على :

وبجمع المعادلتين طرف لطرف نجد: $\begin{cases} -8x - 2y = -20 \\ -5x + 2y = -19 \end{cases}$

x=3 يعني -3x=-39 يعني -8x-2y-5x+2y=-20-19

y=-2 ونعوض x+y=10 في المعادلة ونعوض x ب $S = \{(3,-2)\}$

c. طريقة المحددة:

تعريف و خاصية: العدد الحقيقي ab'-a'b يسمى محددة النظمة $\Delta = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix}$:فكتب (S)

- إذا كان $\Delta=0$ فان النظمة (S) قد لا يكون لها أي حل و قد يكون لها عدد لا منته من الحلول.
 - إذا كان $0 \pm \Delta$ فان النظمة (S) تسمى نظمة كرامر و تقبل حلا وحيدا هو الزوج (x,y)حيث:

هذه الطريقة تسمى طريقة المحددة.

مثال: طريقة المحددة:

(1) $\begin{cases} x + 2y = 4 \\ -x + 4y = 2 \end{cases}$: النظمة \mathbb{R}^2 النظمة

الجواب: محددة النظمة (1) هي: $0 \neq 0 = \Delta = \Delta$ و منه النظمة النظمة (1) الجواب تقىل

: تمرين $\mathbf{9}_{-}$ حل في $\mathbb{R} imes \mathbb{R}$ النظمات التالية

 $\begin{cases} 2x - y = -1 \\ 3x + 2y = 9 \end{cases}$ (1)

 $\begin{cases} x - 2y = -4 \\ -2x + 3y = 5 \end{cases} (2$ $\begin{cases} -7x - 3y = 4\\ 4x + 5y = -2 \end{cases} (3$

نبحث عن y في المعادلة الأولى مثلا $\begin{cases} 2x - y = -1 \end{cases}$ $\int_{0}^{3x+2y=9} (1$

y = 2x + 1 يعنى 2x - y = -1

ونعوض y بقيمتها في المعادلة الثانية

3x + 2(2x + 1) = 9 يعنى -5x + 2y = -19

x=1 يعني 7x=7 يعني 7x+2=9

y=3 فنجد y=2x+1 ونعوض y=1 فنجد $S = \{(1,3)\}$

 $\begin{cases} x - 2y = -4 \\ -2x + 3y = 5 \end{cases} (2$

نضرب المعادلة الأولى في العدد (2) فنحصل على:

وبجمع المعادلتين طرف لطرف نجد: $\begin{cases} 2x - 4y = -8 \end{cases}$ |-2x + 3y = 5|

y = 3 y = -3 y = -3 y = -3 y = -2x + 3y = -8 + 5x=2 فنجد x-2y=-4 فنجد ونعوض y ب 3 فنجد $S = \{(2,3)\}$

 $\Delta = \begin{vmatrix} -7 & -3 \\ 4 & 5 \end{vmatrix} = -35 + 12 = -23 \neq 0$ (2) محددة النظمة (1) هي:

و منه النظمة تقبل حلا وحيدا: $S = \left\{ \left(\frac{-14}{23}, \frac{2}{23} \right) \right\} \quad \text{e. } y = \frac{\begin{vmatrix} -7 & 4 \\ 4 & -2 \\ \Delta \end{vmatrix}}{\Delta} = \frac{2}{23} \quad \text{e. } x = \frac{\begin{vmatrix} 4 & -3 \\ -2 & 5 \end{vmatrix}}{\Delta} = \frac{14}{23}$

تمارين للبحث

تمرين 1 : حل في $\mathbb R$ المعادلات التالية :

 $2x^2 - 4x + 6 = 0$ (1) $4x^2 - 8x + 3 = 0$ (2)

 $2x^{2}-2\sqrt{2}x+1=0$ (4 $3x^2 - 6x + 3 = 0$ (3)

 $x^2 + 5x + 7 = 0$ (6 $x^2 - 4x + 2 = 0$ (5)

 $\begin{cases} 5x + 3y = 50 \end{cases}$: 1)حل جبريا النظمة التالية

2) ملأ شخص أربع عشرة قنينة بخمس لترات من عصير فواكه . إذا علمت أن القنينات نوعان: قنينات سعة كل واحدة منها 0,5 لترا و قنينات سعة كـل واحدة

منها 0,3 لترا، حدد عدد القنينات من كل نوع.

<u>تمرين 3</u> :

. (2x-3)(4-3x)=0 : على المعادلة (1

. 5x-2 < 2(x+5) : عـل المتراجحة (2

3) اشترى شخص محسبة و كتابا بثمن 153 در هما.

إذا علمت أن نصف ثمن المحسبة ينقص بثمانية عشر در هما عن ثلثي ثمن الكتاب، أحسب ثمن المحسبة

<u>تمرين 4</u> :

 $\int x + y = 20$ 1) حل النظمة 2x + 5y = 61

2) يتوفر أحمد على 61 درهما موزعة على 20 قطعة نقدية بعضها من فئة در همين ، والبعض الآخر

من فئة خمسة در اهم أحسب عدد القطع النقدية من كل فئة

. $\frac{2x}{3} - \frac{5}{6} = x - \frac{3}{2}$: (1)

2-3x > x+7 : المتراجحة التالية

(3x + 5y = 72) : النظمة (2) $\int x + y = 20$

ب) واجب زيارة أحد المتاحف هو 3 دراهم للأطفال و 5 دراهم

أدى فوج من 20 زائر مبلغ 72 درهما لزيارة هذا المتحف. حدد عدد الأطفال و عدد الكبار في هذا الفوج.

[2x - 5y = -13] $\begin{cases} x - 2y = 1 \\ -2x + 4y = -2 \end{cases} (2$ [x - 2y = 1]3x + 2y = 9

ترييض وضعيات:

نشاط

2cm أحسب طول عرض مستطيل اذا علمت أن طوله يزيد عن عرضه ب أحسب طول عرض مستطيل اذا $15cm^2$

ليكن xوعرض مستطيل اذن طوله هو : x+2 ومنه مساحته هي : S = x(x+2) = 15

ومنه نحصل عن معادلة من الدرجة الثانية:

$$b=2$$
 $g = -15$ $g = a = 1$ $f =$

بما أن $0 \prec \Delta$ فان هذه المعادلة تقبل حلين هما:

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} \quad \mathbf{g} \quad x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-2 - 8}{2 \times 1} = -5 < 0$$
 9 $x_1 = \frac{-2 + 8}{2 \times 1} = 3$

ومنه: بما أن عرض مستطيل لا يمكن أن يكون سالبا:

x=3 نأخذ

5cm : وبالتالي طوله هو

