Bail:

- O Đối tường: Hệ bong vã thanh
 - t) Tin hiệu vào: gọc leih ở cuả thanh
 - 4) Tin hilu va: vị hí x mư bong hin thanh.
- =) (aí biến vai, va chủ bộ điểu Khiến.
 - +) 2 biến vao: Vị trí (x) cuả bong và vấn toc (x) cuả bong hàn thronh.
 - +) Biến va : Gor lãh & cua thanh.
- so do Khối của hệ thống điều Khiến:

dVI.

Aller Man Ex bill of the

- O Chuẩn hou biến vao/ra cưa bộ chiến khiến:
 - 4) Vi tri': $-0.6 \le x \le 0.6 \text{ (m)} =) K_1 = \frac{4}{0.6}$
 - 1) Vận tấ: $-1 \leqslant \dot{x} \leqslant 1 (m/s) \implies K_2 = 1$
 - +) Goc ligh $\theta: -\frac{\pi}{3} \leq \theta \leq \frac{\pi}{3} \; (rad) =) \; K_{\theta} = \frac{\pi}{3}$.
- @ Định nghiữ cai gia thị ngôn ngư cho các biến vac/ra

1 Qui tài diễn khiến mẽ được dưa ra chứa vac kinh nghiệm

3

$$x = 2E$$

$$\dot{x} = 2E$$

$$\theta = 2E$$

$$x = NS$$

 $\dot{x} = 2E$ $\Rightarrow 0 = 1S$

$$x = N.B$$
 $(=) \theta =$

$$\dot{x} = N.B$$
 $\Rightarrow \theta = 18$

O Bang qui tài dieu khiển.

u		×						
		NB	NS	2E	PS	LB		
ż	NE	LB	P M	PS	2E	NS		
	ZE	РМ	13	2E	NS	NM		
	PO	ls	2E	NS	MM	NB		

1) Chan LP suy Lucin MAX-PROD, LP giai mã thung binh có thong số.

Bài 1:

2. Mô phỏng hệ thống điều khiển mờ dùng Simulink.

- Khối Pendulum:

- Các thông số bộ điều khiển:

K ₁	K ₂	K _{Theta}	c1	c2	c3	c4	c5
1/0.6	1	pi/3	0.4	0.8	0.5	0.4	0.7

- Kết quả mô phỏng:

+ **TH1:**
$$x_0 = 0.2$$
 (m), $x dot_0 = 0$ (m/s)

Nhận xét: Hệ thống đáp ứng khoảng 2.1s và không có dao động.

+ **TH2:** $x_0 = 0.2$ (m), $xdot_0 = 0.4$ (m/s)

Nhận xét: Hệ thống đáp ứng khoảng 2.2s và không có dao động.

+ **TH3:** $x_0 = 0.55$ (m), $xdot_0 = 0.8$ (m/s)

Nhận xét: Hệ thống đáp ứng khoảng 2.4s và không có dao động.

Nhận xét: Hệ thống đáp ứng khoảng 2s và không có dao động.

+ **TH5:** $x_0 = -0.6$ (m), $x dot_0 = 0$ (m/s)

Nhận xét: Hệ thống đáp ứng khoảng 2.1s và không có dao động.

+ **TH6:** $x_0 = -0.6$ (m), $xdot_0 = 0.6$ (m/s)

Nhận xét: Hệ thống đáp ứng khoảng 2s và không có dao động.

Bài 2:

1. Mô hình Simulink mô phỏng hệ thống điều khiển hệ con lắc ngược

- Khối Pendulum:

- Các thông số bộ điều khiển:

K ₁	K_2	K ₃	K ₄	Ku
1/0.3	1	1/3	1/3	40

- Kết quả mô phỏng:

+ **TH1:** $x_0 = 0$, $xdot_0 = 0.1$, Theta $_0 = 0.1$, Theta $dot_0 = 0$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau.

Nhận xét: Bộ điều khiển mờ có thể giữ cân bằng hệ con lắc ngược khi vị trí của xe thay đổi từ 1 về 0. Hệ thống đáp ứng khoảng 6s.

+ **TH2:** $x_0 = 3$, $xdot_0 = -0.5$, Theta $_0 = 0.2$, Theta $dot_0 = -0.4$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau.

Nhận xét: Bộ điều khiển mờ có thể giữ cân bằng hệ con lắc ngược khi vị trí của xe thay đổi từ 1 về 0. Hệ thống đáp ứng khoảng 6s.

+ **TH3:** $x_0 = -2$, $xdot_0 = 1.5$, Theta $_0 = 0.3$, Theta $dot_0 = -0.8$. Setpoint = 2 trong 10s đầu và Setpoint = 0 trong 10s sau.

Nhận xét: Bộ điều khiển mờ có thể giữ cân bằng hệ con lắc ngược khi vị trí của xe thay đổi từ 2 về 0. Hệ thống đáp ứng khoảng 6s.

Kết luận: Sau khi thực hiện mô phỏng 3 trường hợp từ các trạng thái đầu khác 0 thì bộ điều khiển mờ có thể giữ cần bằng hệ con lắc ngược.

2. Thay đổi thông số hệ thống: M=5kg; m=3kg; l=1m.

Vì trong lượng xe, trọng lượng con lắc và chiều dài con lắc tăng lên rất nhiều lần, nên cần tăng lực tác động vào xe (K_u) lên nhiều lần.

+ **TH1:** Khảo sát tại trạng thái ban đầu $x_0 = -0.5$, $x dot_0 = 0$, Theta $_0 = 0.15$, Theta $dot_0 = 0$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau. Giữ nguyên các giá trị K_1 , K_2 , K_3 , K_4 .

• $K_u = 150$

Nhận xét: Ta thấy đáp ứng của hệ thống vẫn còn dao động xung quanh giá trị Setpoint.

• $K_u = 200$

Nhận xét: Đáp ứng của hệ thống ổn định trong khoảng 6s.

• $K_u = 250$

Nhận xét: Đáp ứng của hệ thống ổn định trong khoảng 5s.

+ **TH2:** Khảo sát tại trạng thái ban đầu $x_0 = 1$, $x dot_0 = -1$, Theta $_0 = -0.2$, Thetadot $_0 = -0.2$. Setpoint = 1 trong 10s đầu và Setpoint = 0 trong 10s sau. Giữ nguyên các giá trị K_1 , K_2 , K_3 và $K_4 = 1/2$.

• $K_u = 400$

• $K_u = 600$

Nhận xét: Đáp ứng của hệ thống ổn định trong khoảng 4s.