Candidate's Name:	 	
Signature:	 	
P525/3		
CHEMISTRY		
(Practical)		
Paper 3		
Jul/Aug.2023		
3 ¼ hours		

WWEK PRACTICALS

Uganda Advanced Certificate of Education

CHEMISTRY-PRE MOCK SET7 (PRACTICAL)

Paper 3

3 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions. Use **blue** or **black** ball point pens. Any work done in pencil will **not** be marked except drawings.

Record your answers on this question paper in the spaces provided.

Mathematical tables and silent non-programmable scientific electronic calculator may be used.

Reference books (i.e. text books, booklets on qualitative analysis etc.) should **not** be used.

Candidates are not allowed to start working with the apparatus for the first 15 minutes. This is to enable candidates read the question paper and make sure they have all the apparatus and chemicals that they may need.

For Examiners' Use only

Q.1	Q.2	Q.3	TOTAL

1. You are provided with the following:

FAI, which is a solution containing 39.2 g per litre of ammonium ferrous sulphate (NH₄)₂SO₄.FeSO₄.6H₂O.

FA2, which is a solution of potassium manganate (VII) of unknown concentration.

2M sulphuric acid

Solid W

You are required to determine the;

- (i) Concentration of **FA2** in moles per litre
- (ii) Stoichiometric ratio of reaction between Fe²⁺ ions in **FA1** and **W**.

Manganate (VII) ions reacts with iron (II) ions in acidic medium according to the following equation.

$$5Fe^{2+}(aq) + MnO_4(aq) + 8H^+(aq) \longrightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(I)$$

PROCEDURE:

PART I:

Pipette 25.0 cm³ (or 20.0 cm³) of **FAI** into a conical flask, then add 20 cm³ sulphuric acid. Titrate the mixture with **FA2** from the burette until the end point. Repeat the titration until you obtain consistent results. Record your results in **Table 1**.

Results:

Table 1

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used (cm ³)		

(41/2 marks)

Titre values used to calculate average volume of FA2 used	(1/2 mark)
	cm ³
Average volume of FA2 used	(21/2 marks)
Questions:	
Calculate the concentration of manganate (VII) ions in FA2 p	per litre of solution. (H= 1, N= 14,
O= 16, S=32, Fe= 56)	(3 marks)

PART II:

Weigh accurately about 0.5g of **W** and place it in a beaker. Add to it about 50cm3 of distilled water and stir to dissolve. Transfer the contents of the beaker into a 250cm³ volumetric flask. Add exactly 150cm³ of **FA1** and top up with distilled water to the mark, heat the mixture for about 10 minutes. Shake and allow to stand for about 5 minutes. Label the resultant solution **FA3**.

Pipette 25.0cm³ (20.0cm³) of **FA3** into a conical flask followed by 10cm³ of 2M sulphuric acid and then titrate with **FA2** until the end point. Repeat the titration until you obtain consistent results. Record your results in **Table 2**.

Results:		
Mass of W and the weighing bottle.		g (1/2 mark)
Mass of empty weighing bottle		g (1/2 mark)
Mass of W used		g (1/2 mark)
Volume of pipette used	cm ³	(1/2 mark)
	Table 2	
Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used (cm ³)		
		(41/2 marks)
Titre values used to calculate averag	e volume of FA2 used	(1/2 mark)
		cm ³
Average volume of FA2 used		(21/2 marks)
Questions:		

- (a) Calculate the number of moles of;
 - (i) Excess iron (II) ions that reacted with manganate (VII) ions in **FA2**. (2 ½ marks)

•••••		
(ii)	Excess iron (II) ions contained in 250cm ³ in FA3 .	(2 marks)
•••••		
•••••		•••••
		•••••
(iii)	Iron (II) ions that reacted with W.	$(2 \frac{1}{2} marks)$
(b) Deter	rmine the reaction ratio between iron (II) ions and W . (Relative formular mass of
(b) Deter W =		Relative formular mass of (2 ½ marks)

2. You are provided with substance X which contains two cations and two anions. You are required
2. Tou are provided with substance A which contains two cations and two amons. Tou are required
to identify the ions in X. Carry out the following tests and identify any gas(es) evolved. Record
your observations and deductions in Table 3 . (30 marks)

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat X in a dry test tube gently		
then strongly and allow to cool.		
(b) To one spatula endful of X add		
concentrated sulphuric acid and		
warm.		

(c) Shake two spatula endfuls of X	
with 5cm ³ of water. Divide the	
resultant solution into three parts.	
(i) To the first part, add 3-4	
drops of ethanol followed	
by 2-3 drops of	
concentrated sulphuric	
acid and heat.	
(ii) To the second part, add	
Iron (III) chloride	
solution and heat.	
(iii) To the third part add	
ammonia solution	
dropwise until in excess.	
Filter, keep both the	
filtrate and residue.	
(d) To the filtrate from (c iii), add	
dilute hydrochloric drop wise	
until the solution is just acidic.	
Divide the resultant solution into	
five parts.	
(i) To the first part of the	
acidic solution, add	
sodium hydroxide	
solution dropwise until in	
excess.	
(ii) To the second part of the	
acidic solution, add	
ammonia solution	
dropwise until in excess.	

("") II d dl l . C d	
(iii) Use the third part of the	
acidic solution to	
carryout a test of your	
choice to confirm the first	
cation in X .	
<u>Test:</u>	
(iv) To the fourth part of the	
acidic solution, add 2-3	
drops of lead (II) nitrate	
solution.	
(v) To the fifth part of the	
acidic solution, add 2-3	
drops of barium chloride	
solution.	
(e) Wash the residue from (c iii)	
with ammonia solution once then	
dissolve it in dilute sulphuric	
acid. Divide the resultant	
solution into three parts.	
(i) To the first part add sodium	
hydroxide solution dropwise	
until in excess.	
(ii) To the second part add	
ammonia solution dropwise	
until in excess.	

(iii)	To the third	d part add li	tmus		
	solution	followed	by		
	ammonia so	olution.			
Cation	s in X are			and	
Anion	s in X	are		and	

You are provided with substance M which is an organic compound. You are required to determine the nature of M. Carry out the following tests and identify any gas(es) evolved.
 Record your observations and deductions in Table 4. (20 marks)

Table 4.

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a small amount of M on		
a spatula end		
(b) To 2cm3 of M , add 3cm3 of		
water and shake. Divide the		
mixture into three parts.		
(i) To the first part of the		
solution add 2-3 drops of		
Iron (III) chloride		
solution.		
Solution.		

(ii)	To the second part of the	
	solution add 2-3 drops of	
	sodium carbonate	
	solution.	
(iii)	To the third part of the	
(111)	solution add 2-3 drops of	
	acidified potassium	
	manganate (VII) solution	
	and heat.	
(c) To 0.5cm ³ of M in a test tube,		
add 2-3 drops of 2,4- dinitrophenyl		
hydrazine solution (Brady's reagent)		
(d) To 1cm ³ of M , add 2cm3 of		
ethanol followed 2-3 drops of		
concentrated sulphuric acid and heat.		
Pour the products in a beaker of cold		
water and	stir.	
(e) To 1cr	m ³ of M , add 2-3 drops of	
Tollen's re	eagent and heat.	
Des	scribe the nature of M.	

••••		
••••	•••••	

CONFIDENTIAL

Each student is to be provided with;

120 cm3 of FA1			
60cm ³ of FA2			
1.0 g of solid W			
60cm ³ 2M Sulphuric acid			
Weighing scale			
100 ml measuring cylinder			
3 beakers (250ml each)			
Volumetric flask (250ml)			
Distilled water Pipettes (25.0cm ³ /20.0cm ³)			
2 conical flasks			
Burette			
Droppers			
Source of heat			
A spatula			
3 g of substance X			
6 test tubes			
2 filter papers			
Litmus papers			
FA1 is made by dissolving 39.2g of Ammonium ferrous sulphate in 1 litre			
FA2 is 0.02M Potassium manganate (VII) solution			
Solid W is Potassium chlorate.			

X is a mixture of Zinc acetate and Aluminium sulphate in a ratio 3:2

3g of substance **W**.

M is Methanoic acid/Formic acid.