EDS222 Week 6

Modeling binary responses with logistic regression

how

November 5, 2024

Modeling the unobserved

Modeling the unobserved

Modeling the unobserved

Property that the line satisfies (that ols was violating) is that it stay between zero and one

Link functions (logit)

Link functions (logit)

Logistic regression:

```
Y ~ Bernoulli (p)

Logit(p) = B0 + B1x  OLS-ish

*there is still uncertainty in Bernoulli (p)
```

"Normal" regression:

```
Y ~ normal (mu, Sigma)
Mu = B0 + B1x
(we ignored sigma)
Y = B0 + B1x + u
```

"Is distributed as"

Likelihood = PDF in reverse

 $-e+ \nu = 2.$

Banoulli(p) P=0.5

Coefficient estimation

Review

1. Modeling the unobserved

Model the *underlying probability*, not the data directly

2. Link functions

Use a *link function* (logit) to transform the parameters of a non-normal distribution (Bernoulli)

3. Coefficient estimation

Say goodbye to SSE, embrace the power of likelihood for coefficient estimation