I. Cell complexes iden: build topological spaces from simple pieces cell $\mathbb{D}^{n} = \{ x \in \mathbb{R}^{n} : |x| \leq 1 \}$ $= \{ |x| = 1 \} = \{ x \in \mathbb{R}^{n} : |x| \leq 1 \}$ consider partition on XUD" P: {x,f(x)} x & S"-1 fai aixif(s"") write Xuf 10° for Pw/quotient top. or 9 E D" 15".

Terminology f called attaching map

X ~ X y Dn. cell attachment

Ex.
$$X=S'$$
 Fix $m>1$ consider

 $f:S'\longrightarrow S'$ $f(e^{i\theta})=e^{im\theta}=(e^{i\theta})^m$

es $m=1$ $f=id$, $m=2$ f is $2-to-1$

$$m=1$$

$$m=2$$

$$m=2$$

$$= RP^2$$

Ex. X = S'vS'

 $T^2 = (S, \Lambda Z,) \cap^{t} D_{s}$

Cells.

Defn A cell complex Set by attacking is a space obtained from a discrete

Thin (later) Every surface is a cell complex Ex. RP" = { lines through 0 in R"+1 } (as before view RP" as a quatient space of IR" 1503 with quotient topology.)

The IRP" is a cey complex

Explain case h= 3.

Write pts of RP3 as [x:y:z:w]

Explain case n=3.

Write pts of RP3 as [x:y:z:w]

Observe RP3 = AUB

$$A = \{ w = 0 \}$$
 $B = \{ w \neq 0 \}.$

 $A \cong \mathbb{RP}^2$. Claim $B \cong \mathbb{R}^3 (\cong \text{interior of } \mathbb{D}^3)$

(check: these maps are continuous)

III Orbit space

Recall A group action is

(g x) -> g.x

GxX-X St. for ge 6 x mgx is a top equiv

 $\cdot (gh) \cdot x = g \cdot (h \cdot x)$

 $\underline{\mathsf{Ex}}$ $G = \mathbb{Z}^2$ acting on $X = \mathbb{R}^2$ (x,y) = (x+y,y+y)

Ex G = 7/12 acts in $X = S^2$ by antipodul map

Ex. G=7/22 acm on

Claim
$$RP^3 \cong RP^2 \vee_f D^3$$
 where

 $f: S^2 \longrightarrow RP^2$ is quatient map (last)

Idea $F: \times (x,y;t) \in R^3$ look at $(tx,ty,t;t)$ in B
 $(tx:ty;t;t) \longmapsto [tx:ty:t;t] \in B$
 $= [x:y:t:t]$

Converges to $[x:y:t:t]$
 $A = RP^2$
 $A = RP^2$
 RME This description of RP^3 as quatient of D^3

15 ampliques to $RP^3 = D^2/n$

Detn Gacts m X. For xe X the orbit of x is $O_x = \{gx \mid g \in G\}$

Note that or bits are either disjoint or equal.

if $O_{X} \cap O_{Y} + \emptyset$ then $O_{X} = O_{Y}$. (exercise) $\Rightarrow P = \{O_{X} : x \in X\} \text{ purtition } f(X).$

write X/G for this partition W quotient top.

Orbit space

$$Ex G = \mathbb{Z}^2$$
 acting on $X = \mathbb{R}^2$

$$(x,n) \cdot (x,y) = (x+n, y+m)$$

observe every or lift of form $Q_{X,y}$ where $(x,y) \in [0,1]^2$

$$X/G \cong T^2$$

$$Ex.$$
 $G=7/22$ and on $X=T^2$

