Семинар 17

Задачи:

- 1. Задачник. §39, задача 39.16.
- 2. Задачник. §39, задача 39.15 (и).
- 3. Пусть $V=\mathbb{R}^3$ и $\phi\colon V\to V$ линейное отображение.
 - (а) Пусть в стандартном базисе ϕ задано матрицей $\begin{pmatrix} 3 & 5 & -4 \\ 2 & 4 & -6 \\ 11 & 17 & -8 \end{pmatrix}$. Найти матрицу линейного отображения $\psi \colon V \to V$ такого, что $\ker \phi = \operatorname{Im} \psi$.
 - (b) Пусть в стандартном базисе ϕ задано матрицей $\begin{pmatrix} -6 & 3 & 2 \\ -2 & 5 & 4 \\ -4 & 4 & 3 \end{pmatrix}$. Найти матрицу линейного отображения $\psi \colon V \to V$ такого, что $\operatorname{Im} \phi = \ker \psi$.
- 4. Пусть $\phi: V \to V$ линейное отображение векторного пространства V в себя.
 - (а) Докажите, эквивалентность следующих условий:
 - i. Im $\phi \cap \ker \phi = 0$
 - ii. $\operatorname{Im} \phi + \ker \phi = V$
 - ііі. В некотором базисе пространства V отображение ϕ имеет блочный вид $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$, где A невырожденная матрица
 - (b) Докажите, эквивалентность следующих условий:
 - i. Im $\phi \subseteq \ker \phi$
 - ii. $\phi^2 = 0$
- 5. Привести пример или доказать, что такого примера не существует:
 - (a) $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ такой, что $\operatorname{Im} \phi = \ker \phi$
 - (b) $\phi \colon \mathbb{R}^4 \to \mathbb{R}^4$ такой, что $\operatorname{Im} \phi = \ker \phi$
- 6. Найти матрицу линейного оператора $\phi\colon\mathbb{R}^n\to\mathbb{R}^n$ со следующими условиями:
 - (a) n = 3, $\ker \phi = \langle \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \rangle$, $\operatorname{Im} \phi = \langle \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \rangle$
 - (b) n=4, $\ker \phi = \langle \begin{pmatrix} 1\\2\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} \rangle$, $\operatorname{Im} \phi = \langle \begin{pmatrix} 0\\1\\1\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \rangle$
- 7. Докажите, что для любых подпространств $U, V \subseteq \mathbb{R}^n$ таких, что $\dim U + \dim V = n$ существует $\phi \colon \mathbb{R}^n \to \mathbb{R}^n$ с условиями $\ker \phi = U$ и $\operatorname{Im} \phi = V$.
- 8. Пусть $U,V\subseteq\mathbb{R}^n$ подпространства.
 - (а) Покажите, что множество

$$\{\phi \colon \mathbb{R}^n \to \mathbb{R}^n \mid U \subseteq \ker \phi, \operatorname{Im} \phi \subseteq V\}$$

является векторным подпространством в пространстве всех линейных отображений из \mathbb{R}^n в себя.

- (b) Найдите размерность этого подпространства.
- 9. Пусть $A \in \mathcal{M}_{k,n}(\mathbb{R})$, $B \in \mathcal{M}_{n,m}(\mathbb{R})$ такие, что AB = 0. Докажите, что $\mathrm{rk}\,A + \mathrm{rk}\,B \leqslant n$.
- 10. Пусть

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 2 & 1 & -1 & 0 \\ -1 & 0 & 2 & 1 \\ 0 & -1 & 1 & 2 \end{pmatrix}$$

1

Найдите базисы подпространств $\operatorname{Im} A^{10^{10^{10}}}$ и $\ker A^{10^{10^{10}}}$.

11. Пусть

$$A = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 3 & 1 & -1 & -3 \\ 0 & -2 & 2 & 0 \\ 3 & -3 & 3 & -3 \end{pmatrix} \text{ M } B = \begin{pmatrix} 2 & -2 & -2 & 2 \\ -2 & 2 & 2 & -2 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{pmatrix},$$

Найдутся ли такие числа $\lambda, \mu \in \mathbb{R},$ что $\lambda A + \mu B$ – невырожденная матрица?