Лекция III

Предел числовой последовательности и его простейшие свойства

Определение 1. Функция натурального аргумента $f: \mathbb{N} \to \mathbb{R}$ называется *числовой последовательностью*. Значение $x_n := f(n)$ этой функции в $n \in \mathbb{N}$ называется *п-ым членом последовательности*. Саму последовательность при этом принято обозначать $\{x_n\}_{n=1}^{\infty}$ или просто $\{x_n\}$.

Определение 2. Вещественное число *а* называется *пределом*¹ числовой последовательности $\{x_n\}_{n=1}^{\infty}$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \,\exists N = N(\varepsilon) \in \mathbb{N} \,\forall n \ge N \Longrightarrow |x_n - a| < \varepsilon. \tag{1}$$

Обозначив ε -окрестность точки a через $V_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$, мы можем записать условие (1) в эквивалентном виде:

$$\forall V_{\varepsilon}(a) \,\exists N = N(\varepsilon) \in \mathbb{N} \,\forall n \ge N \Rightarrow x_n \in V_{\varepsilon}(a). \tag{1'}$$

Определим ε-окрестности

$$V_{\varepsilon}(\infty) = \left(-\infty, -\frac{1}{\varepsilon}\right) \cup \left(\frac{1}{\varepsilon}, +\infty\right), \ V_{\varepsilon}(-\infty) = \left(-\infty, -\frac{1}{\varepsilon}\right), \ V_{\varepsilon}(+\infty) = \left(\frac{1}{\varepsilon}, +\infty\right).$$

Тогда $a \in \mathbb{R} \cup \{\infty\} \cup \{+\infty\} \cup \{-\infty\}$ является пределом (конечным или бесконечным), если и только, если выполняется условие (1').

Естественно последовательность, имеющую конечный предел, называть *схо-* d*ящейся*, а последовательность, у которой предела не существует (в частности, он может быть бесконечным), — p*асходящейся*.

Заметив, что всякая окрестность V(a) содержит некоторую ε -окрестность точки a, мы получаем еще одно эквивалентное условие:

$$\forall V(a) \,\exists N \in \mathbb{N} \,\forall n \ge N \Rightarrow x_n \in V(a). \tag{1''}$$

Итак, $a \in \mathbb{R} \cup \{\infty\} \cup \{+\infty\} \cup \{-\infty\}$ является пределом последовательности $\{x_n\}$, если в любой окрестности V(a) содержится бесконечное число членов последовательности, а вне этой окрестности не более чем конечное число ее членов.

Пример 1. Рассмотрим последовательность $x_n = n^{(-1)^n}, n \in \mathbb{N}$. Для всякого $k \in \mathbb{N}$

$$x_{2k-1} = \frac{1}{2k-1}, \ x_{2k} = 2k.$$

 $^{^{1}}$ Пишут $a = \lim_{n \to \infty} x_n$ или $x_n \to a$ при $n \to \infty$.

Никакое ненулевое число a не может быть пределом последовательности, так как в окрестности $V(a)=(a-\frac{|a|}{2},a+\frac{|a|}{2})$ лежит конечное число точек вида x_{2k-1} , в то время как вне этой окрестности лежит бесконечное число таких точек. Точка a=0 не является пределом последовательности, поскольку все точки вида x_{2k} лежат вне окрестности $V(0)=(-\frac{1}{2},\frac{1}{2})$.

Исходя из определения предела, последовательность $\{x_n\}$ является расходящейся тогда и только тогда, когда

$$\forall a \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \geq N \Longrightarrow |x_n - a| \geq \varepsilon. \tag{2}$$

Докажем, что последовательность не может иметь двух пределов.

Теорема 1. Если числовая последовательность $\{x_n\}$ сходится, то ее предел является единственным.

Доказательство. Пусть $\{x_n\}$ – сходящаяся числовая последовательность. Предположим, что

$$a = \lim_{n \to \infty} x_n, \ b = \lim_{n \to \infty} x_n,$$

где $a, b \in \mathbb{R}$ такие, что $a \neq b$.

Положим $\varepsilon_0 = \frac{|b-a|}{3}$. С одной стороны, по определению предела последовательности мы получаем, что

$$\exists N_a \in \mathbb{N} \ \forall n \geq N_a \Longrightarrow x_n \in V_{\varepsilon_0}(a),$$

$$\exists N_b \in \mathbb{N} \ \forall n \geq N_b \Longrightarrow x_n \in V_{\varepsilon_0}(b).$$

Тогда для $n \ge \max\{N_a, N_b\}$ все члены последовательности x_n лежат в пересечении $V_{\varepsilon_0}(a) \cap V_{\varepsilon_0}(b)$. С другой стороны, так как |b-a| – это расстояние между точками a и b на прямой \mathbb{R} , окрестности $V_{\varepsilon_0}(a)$ и $V_{\varepsilon_0}(b)$ не пересекаются. Полученное противоречие доказывает теорему.

Теорема 2. Пусть $\{x_n\}$ – сходящаяся числовая последовательность. Тогда $\{x_n\}$ является ограниченной последовательностью².

Доказательство. Пусть $x_n \to a$ при $n \to \infty$, тогда для $\varepsilon=1$ существует натуральное число N_0 такое, что для всех $n \ge N_0$ выполняются неравенства

$$|x_n - a| < 1 \Leftrightarrow a - 1 < x_n < 1 + a.$$

Откуда следует, что $|x_n| < \max\{|a-1|, |1+a|\}$ при всех $n \ge N_0$. Приняв

$$C = \max\{|x_1|, \dots, |x_{N_2-1}|, |a-1|, |1+a|\},\$$

мы получим, что $|x_n| < C$ уже для всех $n \in \mathbb{N}$.

Таким образом, $\{x_n\}$ является ограниченной последовательностью.

 $^{^2}$ Напомним, что последовательность $\{x_n\}$ называется *ограниченной*, если существует константа C>0 такая, что для всех $n\in\mathbb{N}$ выполняется $|x_n|< C.$

2 Арифметические свойства предела числовой последовательности

Отметим, что для последовательностей $\{x_n\}$ и $\{y_n\}$ мы можем определить новые последовательности $\{x_n+y_n\}$ и $\{x_n\cdot y_n\}$, которые называются *суммой* и *произведением* последовательностей $\{x_n\}$ и $\{y_n\}$, соответственно. Если $y_n\neq 0$ для всех $n\in\mathbb{N}$, то можно определить и *частное* $\{x_n/y_n\}$.

Теорема 3. Пусть $\{x_n\}$, $\{y_n\}$ – сходящиеся числовые последовательности, при этом $\lim_{n\to\infty} x_n = a \ u \lim_{n\to\infty} x_n = b$. Тогда

1. Последовательность $\{x_n + y_n\}$ сходится, и

$$\lim_{n \to \infty} (x_n + y_n) = a + b.$$

2. Последовательность $\{x_n \cdot y_n\}$ сходится, и

$$\lim_{n\to\infty}(x_n\cdot y_n)=a\cdot b.$$

3. Последовательность $\{x_n/y_n\}$ сходится, и

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b},$$

если $b \neq 0$ и $\gamma_n \neq 0$ для всех $n \in \mathbb{N}$.

Доказательство. Докажем первый пункт теоремы. По определению,

$$\lim_{n\to\infty} x_n = a \Longrightarrow \left(\forall \varepsilon > 0 \ \exists N_a \in \mathbb{N} \ \forall n \geq N_a \Longrightarrow |x_n - a| < \frac{\varepsilon}{2}\right),$$

$$\lim_{n\to\infty} y_n = b \Longrightarrow \left(\forall \varepsilon > 0 \,\exists N_b \in \mathbb{N} \, \forall n \ge N_b \Longrightarrow |y_n - b| < \frac{\varepsilon}{2} \right).$$

Поэтому при любом $\varepsilon > 0$ для $n \ge N = \max\{N_a, N_b\}$ мы будем иметь

$$|(x_n + y_n) - (a + b)| = |(x_n - a) + (y_n - b)| \le |x_n - a| + |y_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

По определению это означает, что $\lim_{n \to \infty} (x_n + y_n) = a + b$.

3 Предельный переход и неравенства

Теорема 4. Пусть $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ – числовые последовательности такие, что $\lim_{n\to\infty} x_n = a \ u \lim_{n\to\infty} y_n = b$, где a < b. Тогда существует $N \in \mathbb{N}$ такой, что для всех $n \ge N$ выполняется $x_n < y_n$.

Доказательство. По аксиоме о полноте (лекция I аксиома VII) найдется $c \in \mathbb{R}$ такое, что a < c < b. Для b - c > 0 и c - a > 0 по определению предела последовательности существуют номера $N' \in \mathbb{N}$ и $N'' \in \mathbb{N}$, для которых

$$a - (c - a) < x_n < a + (c - a) = c \text{ при } n \ge N',$$

И

$$c = b - (b - c) < y_n < b + (b - c)$$
 при $n \ge N''$.

Поэтому для $n \ge N \coloneqq \max\{N', N''\}$ выполняется неравенство

$$x_n < c < y_n$$
.

Следствие 1. Пусть $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ – числовые последовательности такие, что $\lim_{n\to\infty} x_n = a \ u \lim_{n\to\infty} y_n = b$. Тогда

- 1. Если $x_n > y_n$ для $n \in \mathbb{N}$, то $a \ge b$.
- 2. Если $x_n \ge y_n$ для $n \in \mathbb{N}$, то $a \ge b$.

Доказательство. Пусть $x_n > y_n$ или $x_n \ge y_n$. Если a < b, то по теореме $x_n < y_n$, начиная с некоторого номера. Противоречие доказывает следствие.

Теорема 5 (лемма о двух милиционерах). Пусть $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$, $\{z_n\}_{n=1}^{\infty}$ – числовые последовательности такие, что

$$x_n \le y_n \le z_n$$

для всех $n \in \mathbb{N}$, $\lim_{n \to \infty} x_n = a u \lim_{n \to \infty} z_n = a$. Тогда $\lim_{n \to \infty} y_n = a$.

Доказательство. По определению предела последовательности выполняются условия

$$\forall \varepsilon > 0 \, \exists N' \in \mathbb{N} \, \forall n \geq N' \Longrightarrow a - \varepsilon < x_n < a + \varepsilon,$$

$$\forall \varepsilon > 0 \ \exists N'' \in \mathbb{N} \ \forall n \ge N'' \implies a - \varepsilon < z_n < a + \varepsilon.$$

Тогда при любом $\varepsilon > 0$ для $n \ge N \coloneqq \max\{N', N''\}$ имеем неравенство

$$a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon,$$

которое влечет $|y_n - a| < \varepsilon$. Таким образом $\lim_{n \to \infty} y_n = a$.