Tema 2

Soluții

Exercițiul 1 (Metoda Box-Muller)

Fie $R = \sqrt{-2\log(U_2)}$ şi $\Theta = 2\pi U_1$, atunci $(X_1, X_2) = g(R, \Theta)$ cu $g(r, \theta) = (r\cos(\theta), r\sin(\theta)), g: [0, \infty) \times [0, 2\pi] \to \mathbb{R}^2$. Cum U_1 şi U_2 sunt independente obţinem că şi R şi Θ sunt independente (ca funcţii de v.a. independente). Mai mult, cum $U_1 \sim \mathcal{U}([0, 1])$ avem că $\Theta \sim \mathcal{U}([0, 2\pi])$ iar din $R = h(U_2)$ cu $h(u) = \sqrt{1 - 2\log(u)}$ rezultă

$$f_R(r) = f_{U_2}(h^{-1}(r)) \left| \frac{d}{dr} h^{-1}(r) \right| = |r|e^{-\frac{r^2}{2}}$$

Obţinem astfel că

$$\begin{split} f_{(X_1,X_2)}(x_1,x_2) &= f_{(R,\Theta)} \left(g^{-1}(x_1,x_2) \right) \left| \det J_{g^{-1}} \right| = f_{(R,\Theta)} \left(\sqrt{x_1^2 + x_2^2}, \arctan \frac{x_2}{x_1} \right) \frac{1}{\sqrt{x_1^2 + x_2^2}} \\ &= f_R \left(\sqrt{x_1^2 + x_2^2} \right) f_{\Theta} \left(\arctan \frac{x_2}{x_1} \right) \frac{1}{\sqrt{x_1^2 + x_2^2}} = \sqrt{x_1^2 + x_2^2} e^{-\frac{x_1^1 + x_2^2}{2}} \frac{1}{2\pi} \frac{1}{\sqrt{x_1^2 + x_2^2}} \\ &= \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x_1^2}{2}} \right) \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x_2^2}{2}} \right) \end{split}$$

unde am folosit faptul că determinantul Jacobian-ului este det $J_{g^{-1}} = \frac{1}{\sqrt{x_1^2 + x_2^2}}$. Astfel densitatea cuplului (X_1, X_2) se poate scrie ca un produs de densități care depind de x_1 și respectiv x_2 ceea ce conduce la concluzia problemei (densitățile din factorizare sunt tocmai densitățile normalei standard).

Grupele: 301, 311, 321 Pagina 1

Exercițiul 2

a) Pentru $M_n = \max(X_1, X_2, \dots, X_n)$ observăm că pentru $x \in (0, 1)$

$$F_{M_n}(x) = \mathbb{P}(M_n \le x) = \mathbb{P}(X_1 \le x, X_2 \le x, \dots, X_n \le x) \stackrel{indep.}{=} \prod_{i=1}^n \mathbb{P}(X_i \le x) = F(x)^n = x^n.$$

Dacă x<0 atunci $F_{M_n}(x)=0$ iar dacă $x\geq 1$ avem $F_{M_n}(x)=1$. In mod similar pentru $m_n=\min(X_1,X_2,\ldots,X_n)$ și $x\in(0,1)$ rezultă că

$$F_{m_n}(x) = \mathbb{P}(m_n \le x) = 1 - \mathbb{P}(m_n > x) = 1 - \mathbb{P}(X_1 > x, X_2 > x, \dots, X_n > x)$$

$$\stackrel{indep.}{=} 1 - \prod_{i=1}^n \mathbb{P}(X_i > x) = 1 - [1 - F(x)]^n = 1 - (1 - x)^n.$$

Pentru a calcula densitatea v.a. m_n și M_n este suficient să derivăm expresiile de mai sus și obținem $f_{m_n}(x) = n(1-x)^{n-1}$ și $f_{M_n}(x) = nx^{n-1}$ pentru $x \in [0,1]$ și 0 in rest.

b) Fie $Z_n = n(1 - M_n)$. Pentru calculul funcției de repartiție avem

$$F_{Z_n}(z) = \mathbb{P}(Z_n \le z) = \mathbb{P}\left(M_n \ge 1 - \frac{z}{n}\right) = 1 - \left(1 - \frac{z}{n}\right)^n, \ z > 0.$$

Cum $\left(1-\frac{z}{n}\right)^n \to e^{-z}$ pentru $n \to \infty$ rezultă că

$$\lim_{n\to\infty} F_{Z_n}(z) = 1 - e^{-z}$$

această limită reprezentand funcția de repartiție a unei v.a. repartizată exponențial de parametru 1.

Exercițiul 3

Pentru $\hat{\pi}_1$: observăm că v.a. X_i sunt v.a. de tip Bernoulli cu

$$\begin{split} \mathbb{P}(X_i = 1) &= \mathbb{P}\left(U_{i1}^2 + U_{i2}^2 < 1\right) = \iint_{\{u^2 + u^2 < 1\} \cap [0,1]^2} f_{(U_{i1},U_{i2})}(u,v) \, du dv \\ &\stackrel{indep.}{=} \iint_{\{u^2 + u^2 < 1\} \cap [0,1]^2} f_{U_{i1}}(u) f_{U_{i2}}(v) \, du dv = \int_0^1 \int_0^{\sqrt{1 - u^2}} 1 \, dv du = \int_0^1 \sqrt{1 - u^2} \, du \\ u &= \int_0^{\frac{\pi}{2}} \cos^2 \alpha \, d\alpha = \int_0^{\frac{\pi}{2}} \frac{\cos 2\alpha + 1}{2} \, d\alpha = \frac{\pi}{4} + \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos 2\alpha \, d\alpha = \frac{\pi}{4} \end{split}$$

O altă variantă de calcul pentru $\mathbb{P}(X_i=1)$ era să observam că această probabilitate se exprima și ca raportul dintre aria mulțimii $\{(u,v)\in[0,1]^2\,|\,u^2+u^2<1\}$ și cea a pătratului $[0,1]^2$, deci tot $\frac{\pi}{4}$.

Dacă $T=\sum_{i=1}^n X_i$ atunci $T\sim \mathcal{B}\left(n,\frac{\pi}{4}\right)$ de unde avem că media este $\mathbb{E}[T]=\frac{n\pi}{4}$ iar varianța

$$\mathbb{V}[T] = n\frac{\pi}{4} \left(1 - \frac{\pi}{4} \right).$$

Cum $\hat{\pi}_1 = \frac{4}{n}T$ deducem că $\mathbb{V}[\hat{\pi}_1] = \frac{4\pi - \pi^2}{n}$. Din Legea Numerelor Mari obținem că $\hat{\pi}_1 = \frac{4}{n}\sum_{i=1}^n X_i \overset{a.s.}{\to} 4\mathbb{E}[X_1] = 4\mathbb{P}(X_1 = 1) = \pi$.

Pentru $\hat{\pi}_2,$ să observăm pentru inceput că media lui Y_1 este

$$\mathbb{E}[Y_1] = \int_0^1 \sqrt{1 - u^2} \, du = \frac{\pi}{4}$$

iar varianța lui Y_1 este

$$\mathbb{V}[Y_1] = \mathbb{E}[Y_1^2] - \mathbb{E}^2[Y_1] = \int_0^1 1 - u^2 \, du - \frac{\pi^2}{16} = \frac{2}{3} - \frac{\pi^2}{16}.$$

Prin aplicarea Legii Numerelor Mari rezultă că

$$\hat{\pi}_2 = \frac{4}{n} \sum_{i=1}^n Y_i \overset{a.s.}{\to} 4\mathbb{E}[Y_1] = \pi$$

iar varianţa lui $\hat{\pi}_2$ este

$$\mathbb{V}[\hat{\pi}_2] = \frac{16}{n^2} \sum_{i=1}^n \mathbb{V}[Y_i] = \frac{16}{n} \left(\frac{2}{3} - \frac{\pi^2}{16} \right).$$

Pentru a vedea care dintre cei doi estimatori este mai eficient trebuie să verificăm care are varianța mai mică. Cum $\frac{32}{3} < 12 < 4\pi$ rezultă că $\mathbb{V}[\hat{\pi}_2] < \mathbb{V}[\hat{\pi}_1]$ deci al doilea estimator este mai eficient.

Exercițiul 4

a) Pentru a calcula probabilitatea $\mathbb{P}(S_k \leq t)$ cu 0 < t < 1 să ne reamintim că dacă X și Y sunt două variabile aleatoare independente cu densitățile f_X și f_Y atunci densitatea sumei Z = X + Y (convoluția) este dată de

$$f_Z(z) = \int f_X(z-t)f_Y(t) dt.$$

Fie f_n densitatea variabilei aleatoare S_n pentru $n \ge 1$. Avem, pentru 0 < x < 1, că $f_1(x) = 1$ și pentru a calcula densitatea f_{n+1} a variabilei aleatoare S_{n+1} să observăm că $S_{n+1} = S_n + U_{n+1}$ cu S_n și U_{n+1} variabile aleatoare independente, de unde aplicând formula pentru densitatea sumei deducem că

$$f_{n+1}(x) = \int_0^x f_n(t) dt, \quad n \ge 1.$$

Prin inducție rezultă că $f_n(x) = \frac{x^{n-1}}{(n-1)!}$ pentru 0 < x < 1 de unde

$$\mathbb{P}(S_n \le t) = \int_0^t f_n(x) \, dx = \int_0^t \frac{x^{n-1}}{(n-1)!} \, dx = \frac{t^n}{n!}.$$

b) Pentru $n \geq 2$ să observăm c
ă $\mathbb{P}(N=n) = \mathbb{P}(S_{n-1} < 1 \leq S_n)$ de unde

$$\mathbb{P}(N=n) = \mathbb{P}(S_{n-1} < 1) - \mathbb{P}(S_n < 1) = \frac{1}{(n-1)!} - \frac{1}{n!} = \frac{n-1}{n!}.$$

Grupele: 301, 311, 321

Pentru medie avem

$$\mathbb{E}[N] = \sum_{n=2}^{\infty} n \mathbb{P}(N=n) = \sum_{n=2}^{\infty} n \frac{n-1}{n!} = \sum_{n=2}^{\infty} \frac{1}{(n-2)!} = e.$$

În mod similar se poate arăta că $Var[N] = e(3 - e)^{1}$

Exercitiul 5

a) Pentru a determina repartiția lui S_n vom folosi noțiunea de funcție generatoare de moment², i.e. $M_E(t) = \mathbb{E}[e^{tE}]$.

Se poate calcula cu ușurință că

$$M_{E_i}(t) = \frac{\lambda}{\lambda - t}, \qquad t < \lambda$$

și cum variabilele aleatoare E_1,\dots,E_n sunt independente deducem că funcția generatoare de moment a sumei S_n este

¹ Această metodă de a estima e este discutată în lucrarea: Russell, K.G. *Estimating the value of e by simulation*, The American Statistician, Vol. 45, Nr. 1, pp 66-68, 1991.

²Problema se poate face și fără această noțiune, ținând seama de schimbarea de variabilă $\phi: (x_1, \ldots, x_n) \to (s_1, \ldots, s_n)$ cu $s_n = \sum_{k=1}^n x_k$ a cărei inversă ϕ^{-1} este dată prin $x_1 = s_1$ și $x_k = s_k - s_{k-1}$. Determinantul matricii Jacobiene asociate lui ϕ^{-1} este 1 iar imaginea $\phi([0, \infty)) = \{0 \le s_1 \le \cdots \le s_n\}$ ceea ce conduce la rezultatul dorit.

$$M_{S_n}(t) = \mathbb{E}[e^{tS_n}] = \prod_{i=1}^n M_{E_i}(t) = \left(\frac{\lambda}{\lambda - t}\right)^n, \quad t < \lambda.$$

Știm că dacă $X \sim Gamma(n, \lambda)$ atunci $f_X(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}$ iar funcția generatoare de moment este

$$M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^n, \quad t < \lambda.$$

Cum cele două funcții generatoare de moment sunt egale și ținând cont de faptul că funcția generatoare caracterizează repartiția, deducem că $S_n \sim Gamma(n, \lambda)$.

b) Pentru a demonstra că $N \sim Pois(\lambda)$ este suficient să calculă
m $\mathbb{P}(N=n).$ Avem

$$\mathbb{P}(N=n) = \mathbb{P}(S_n \le 1 < S_{n+1}) = \int_0^1 \mathbb{P}(E_{n+1} \ge 1 - u \mid S_n = u) f_{S_n}(u) \, du,$$

unde f_{S_n} este densitatea lui S_n de la punctul a). Ținând seama că E_{n+1} și S_n sunt independente și cum $\mathbb{P}(E_{n+1} \ge 1 - u) = e^{-\lambda(1-u)}$ avem că

$$\mathbb{P}(N=n) = \int_0^1 \mathbb{P}(E_{n+1} \ge 1 - u \mid S_n = u) f_{S_n}(u) du = \int_0^1 e^{-\lambda(1-u)} \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x} du$$
$$= \frac{e^{-\lambda} \lambda^n}{(n-1)!} \int_0^1 u^{n-1} du = \frac{e^{-\lambda} \lambda^n}{n!}.$$

Exercițiul 6

Cum variabilele aleatoare X_1, \ldots, X_n sunt independente avem că $\mathbb{E}[Y_n] = \mathbb{E}[X_1] \cdot \mathbb{E}[X_2] \cdots \mathbb{E}[X_n] = c^n$, $c \in (0,1)$. Aplicand inegalitatea lui Markov obținem, pentru $\varepsilon > 0$,

$$\mathbb{P}(|Y_n| > \varepsilon) \le \frac{\mathbb{E}[|Y_n|]}{\varepsilon} = \frac{c^n}{\varepsilon} \stackrel{n \to \infty}{\to} 0,$$

unde am ținut seama de faptul că v.a. sunt pozitive, deci $|Y_n|=Y_n$. Cum $\varepsilon>0$ a fost ales arbitrar rezultă că $Y_n\stackrel{\mathbb{P}}{\to} 0$.

Grupele: 301, 311, 321 Pagina 7