Design and Analysis of Hash Functions

Gaëtan Leurent

École normale supérieure Paris, France

Ph.D. Defense September 30, 2010

An Ideal Hash Function: the Random Oracle

- Public Random Oracle
- ▶ The output can be used as a fingerprint of the document

An Ideal Hash Function: the Random Oracle

0x1d66ca77ab361c6f

- Public Random Oracle
- ▶ The output can be used as a fingerprint of the document

A Concrete Hash Function

- A public function with no structural property.
 - Cryptographic strength without any key!
- ► $F: \{0,1\}^* \to \{0,1\}^n$

0x1d66ca77ab361c6f

A Concrete Hash Function

- A public function with no structural property.
 - Cryptographic strength without any key!
- $F: \{0,1\}^* \to \{0,1\}^n$

0x1d66ca77ab361c6f

Preimage attack

Introduction 0000000

Given F and \overline{H} , find M s.t. $F(M) = \overline{H}$.

Ideal security: 2^n .

Security goals

Second-preimage attack

Given F and M_1 , find $M_2 \neq M_1$ s.t. $F(M_1) = F(M_2)$. Ideal security: 2^n .

Security goals

Collision attack

Given F, find $M_1 \neq M_2$ s.t. $F(M_1) = F(M_2)$. Ideal security: $2^{n/2}$.

Using Hash Functions

Hash functions are used in many different contexts:

- To generate unique identifiers
 - Hash-and-sign signatures
 - Commitment schemes
- As a one-way function
 - One-Time-Passwords
 - Forward security
- To break the structure of the input
 - Entropy extractors
 - Key derivation
 - Pseudo-random number generator
- To build MACs
 - HMAC
 - Challenge/response authentication

Hash function design

- Build a small compression function, and iterate.
 - ▶ Cut the message in chunks $M_0, ...M_k$
 - $H_i = f(M_i, H_{-1})$
 - $F(M) = H_k$

Security proof (Merkle, Damgård)

Theorem

If one finds a collision in the hash function, then one has a collision in the compression function.

- ▶ If $|M| \neq |M'|$, collision in last block.
- ▶ Else, look for last block with $H_i = H'_i$.
- The converse is not true

Security proof (Merkle, Damgård)

Theorem

If one finds a collision in the hash function, then one has a collision in the compression function.

- ▶ If $|M| \neq |M'|$, collision in last block.
- ▶ Else, look for last block with $H_i = H'_i$.
- The converse is not true

Outline

Introduction

Hash Functions

Analysis of the MD4 family

Description of the MD4 family
Wang et al.'s attack
Key-recovery attack on HMAC/NMAC-MD4

The Design of SIMD

The SHA-3 Competition
Design choices
Description of SIMD
Security Analysis: Differential Paths

Attacks on New Hash Functions

The cancellation property Application to Lesamnta

Outline

Introduction

Hash Functions

Analysis of the MD4 family

Description of the MD4 family
Wang et al.'s attack
Key-recovery attack on HMAC/NMAC-MD4

The Design of SIMD

The SHA-3 Competition
Design choices
Description of SIMD
Security Analysis: Differential Paths

Attacks on New Hash Functions

The cancellation property Application to Lesamnta

MD family design

- MD4 was one of the first dedicated hash functions
- Most of the hash functions used today are derived from MD4
 - ► MD4, MD5, SHA-1, SHA-2, RIPEMD, ...
- ▶ It is important to study their security

MD family design

Input:

Output:

$$(A + A', B + B', C + C', D + D')$$

- 32/64-bit registers
- Simple operations
- Message expansion: permutation based for MD4/MD5

MD4 design

$$Q_i = (Q_{i-4} \boxplus m_i \boxplus k_i \boxplus \Phi_i(Q_{i-1}, Q_{i-2}, Q_{i-3}))^{\text{outs}_i}$$

- ▶ 48 steps (16 message words)
- Boolean functions: IF, MAJ, XOR

MD5 design

$$Q_i = (Q_{i-4} \boxplus m_i \boxplus k_i \boxplus \Phi_i(Q_{i-1}, Q_{i-2}, Q_{i-3}))^{\otimes s_i} \boxplus Q_{i-1}$$

- ▶ 64 steps (16 message words)
- ▶ Boolean functions: IF, MAJ, XOR, ONX

SHA-1 design

$$Q_i = Q_{i-5}^{\ll 30} \boxplus m_i \boxplus k_i \boxplus \Phi_i(Q_{i-2}, Q_{i-3}^{\ll 30}, Q_{i-4}^{\ll 30}) \boxplus Q_{i-1}^{\ll 5}$$

- ▶ 80 steps (16 message words)
- Boolean functions: IF, MAJ, XOR
- Stronger message expansion

$$m_i = (m_{i-3} \oplus m_{i-8} \oplus m_{i-14} \oplus m_{i-16})^{\infty 1}$$

SHA-2 design

- 64 steps for SHA-224/256; 80 steps for SHA-384/512
- \triangleright Σ functions: sum of three rotations
- Stronger message expansion: non-linear code

Attacks

► In 2005, a series of attacks against MD4, MD5, SHA-1, RIPEMD-0, ...

Main mistakes

MD4 Not enough rounds

MD5 A difference in the MSB can stay in the MSB

(Den Boer and Bosselaers, 1993)

$$Q_i' = Q_i \oplus 2^{31}$$

$$\overrightarrow{Q_i} = (\overrightarrow{Q_{i-4}} \boxplus m_i \boxplus k_i \boxplus \Phi_i(\overrightarrow{Q_{i-1}}, \overrightarrow{Q_{i-2}}, \overrightarrow{Q_{i-3}}))^{\ll s_i} \boxplus \overrightarrow{Q_{i-1}}$$

SHA-1 Message expansion is a cyclic linear code
It is possible to shift a difference pattern
Used to build local collisions

MD family status

Current status

Collision-resistance is seriously broken (MD4, MD5, SHA-1), but for most constructions, no real attacks are known:

- Key derivation
- Peer authentication
- ► HMAC
- **.**..

More in-depth study and improvement of Wang's attack are needed.

My contributions

▶ Improvements of Wang et al.'s attack, and new applications

Automatic Search of Differential Paths in MD4
P.-A. Fouque, G. Leurent, P. Nguyen [Hash Workshop '07]

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 P.-A. Fouque, G. Leurent, P. Nguyen [Crypto '07]

▶ The first preimage attack on a member of the MD4 family

MD4 is Not One-Way

G. Leurent [FSE '08]

A low-complexity side-channel attack on HMAC-SHA1

Practical Electromagnetic Template Attack on HMAC P.-A. Fouque, G. Leurent, D. Réal, F. Valette

[CHES '09]

Wang et. al's attacks

- Based on a differential attack:
 - Consider a pair of message with a small difference
 - Try to control the propagation of the differences
- New ideas:
 - Use a signed difference
 - Use a set of sufficient conditions
 - Some conditions are easy to satisfy: message modification

1 Precomputation:

- Choose a message difference.
- ▶ Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message check the conditions
- ▶ Use message modifications

Precomputation:

- Choose a message difference.
- ▶ Build a differential path.
- Derive a set of sufficient conditions

- Start with a random message check the conditions
- ▶ Use message modifications

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message check the conditions
- ▶ Use message modifications

Precomputation:

- Choose a message difference.
- ▶ Build a differential path.
- Derive a set of sufficient conditions

- Start with a random message check the conditions
- ▶ Use message modifications

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message check the conditions
 - ▶ Use message modifications

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

Precomputation:

- Choose a message difference.
- Build a differential path.
- Derive a set of sufficient conditions.

- Start with a random message, check the conditions
- Use message modifications

A Differential Path

$$Q_{i} = (Q_{i-4} \boxplus m_{i} \boxplus k_{i} \boxplus \Phi_{i}(Q_{i-1}, Q_{i-2}, Q_{i-3}))^{\ll s_{i}}$$

i	si	δm_i	$\partial \Phi_i$	∂Q _i	Φ -conditions
	_				
0	3				
1	7	⟨▲[31]⟩		⟨▲ ^[6] ⟩	
2	11	⟨ ▼ ^[28] , ▲ ^[31] ⟩		⟨▼[7],▲[10]⟩	$Q_0^{[6]} = Q_{-1}^{[6]}$
3	19				$Q_2^{[6]} = 0, Q_1^{[7]} = Q_0^{[7]}, Q_1^{[10]} = Q_0^{[10]}$
4	3		$\langle {\color{red} ullet}^{[6,7]} angle$	⟨▲▲▼ [911] ⟩	$Q_3^{[6]} = 0, Q_3^{[7]} = 1, Q_3^{[10]} = 0$
5	7			⟨▲[13]⟩	$Q_4^{[7]} = 1, Q_3^{[9]} = Q_2^{[9]}, Q_3^{[10]} = 0, Q_3^{[11]} = Q_2^{[11]}$
6	11		$\langle \blacktriangle \blacktriangledown^{[10,11]} \rangle$	⟨▼[18]⟩	$Q_5^{[9]} = 0, Q_5^{[10]} = 1, Q_5^{[11]} = 1, Q_4^{[13]} = Q_3^{[13]}$

A Differential Path

$$Q_{i} = (Q_{i-4} \boxplus m_{i} \boxplus k_{i} \boxplus \Phi_{i}(Q_{i-1}, Q_{i-2}, Q_{i-3}))^{\ll s_{i}}$$

i	si	δm_i	$\partial \Phi_i$	∂Qį	Φ -conditions
	-				
0	3				
1	7	⟨▲[31]⟩		⟨▲[6]⟩	
2	11	⟨ ▼ ^[28] , ▲ ^[31] ⟩		⟨ ▼ ^[7] , ▲ ^[10] ⟩	$Q_0^{[6]} = Q_{-1}^{[6]}$
3	19				$Q_2^{[6]} = 0, Q_1^{[7]} = Q_0^{[7]}, Q_1^{[10]} = Q_0^{[10]}$
4	3		$\langle \blacktriangle \blacktriangledown^{[6,7]} \rangle$	⟨▲▲▼ [911] ⟩	$Q_3^{[6]} = 0, Q_3^{[7]} = 1, Q_3^{[10]} = 0$
5	7			⟨▲[13]⟩	$Q_4^{[7]} = 1, Q_3^{[9]} = Q_2^{[9]}, Q_3^{[10]} = 0, Q_3^{[11]} = Q_2^{[11]}$
6	11		$\langle {f AV}^{[10,11]} angle$	⟨▼[18]⟩	$Q_5^{[9]} = 0, Q_5^{[10]} = 1, Q_5^{[11]} = 1, Q_4^{[13]} = Q_3^{[13]}$

$$Q_{i} = (\underbrace{Q_{i-4}} \boxplus m_{i} \boxplus k_{i} \boxplus \Phi_{i}(Q_{i-1}, Q_{i-2}, Q_{i-3}))^{\leqslant s_{i}}$$

i	si	δm_i	$\partial \Phi_i$	∂Qį	Φ -conditions
	-				
0	3				
1	7	⟨▲ ^[31] ⟩		⟨▲[6]⟩	
2	11	⟨ ▼ ^[28] , ▲ ^[31] ⟩		⟨ ▼ ^[7] , ▲ ^[10] ⟩	$Q_0^{[6]} = Q_{-1}^{[6]}$
3	19				$Q_2^{[6]} = 0, Q_1^{[7]} = Q_0^{[7]}, Q_1^{[10]} = Q_0^{[10]}$
4	3		$\langle \blacktriangle \blacktriangledown^{[6,7]} \rangle$	⟨▲▲▼ [911] ⟩	$Q_3^{[6]} = 0, Q_3^{[7]} = 1, Q_3^{[10]} = 0$
5	7			⟨▲[13]⟩	$Q_4^{[7]} = 1, Q_3^{[9]} = Q_2^{[9]}, Q_3^{[10]} = 0, Q_3^{[11]} = Q_2^{[11]}$
6	11		$\langle {f AV}^{[10,11]} angle$	⟨▼[18]⟩	$Q_5^{[9]} = 0, Q_5^{[10]} = 1, Q_5^{[11]} = 1, Q_4^{[13]} = Q_3^{[13]}$

$$Q_i = (Q_{i-4} \boxplus m_i \boxplus k_i \boxplus \Phi_i(Q_{i-1}, Q_{i-2}, Q_{i-3}))^{\ll s_i}$$

i	si	δm_i	$\partial \Phi_i$	∂Qį	Φ -conditions
	-				
0	3				
1	7	⟨▲ ^[31] ⟩		⟨▲[6]⟩	
2	11	⟨ ▼ ^[28] , ▲ ^[31] ⟩		⟨ ▽ ^[7] , ▲ ^[10] ⟩	$Q_0^{[6]} = Q_{-1}^{[6]}$
3	19				$Q_2^{[6]} = 0, Q_1^{[7]} = Q_0^{[7]}, Q_1^{[10]} = Q_0^{[10]}$
4	3		⟨▲▼[6,7]⟩	⟨▲▲▼ [911] ⟩	$Q_3^{[6]} = 0, Q_3^{[7]} = 1, Q_3^{[10]} = 0$
5	7			⟨▲[13]⟩	$Q_4^{[7]} = 1, Q_3^{[9]} = Q_2^{[9]}, Q_3^{[10]} = 0, Q_3^{[11]} = Q_2^{[11]}$
6	11		$\langle \Delta \mathbf{v}^{[10,11]} \rangle$	⟨▼[18]⟩	$Q_5^{[9]} = 0$, $Q_5^{[10]} = 1$, $Q_5^{[11]} = 1$, $Q_4^{[13]} = Q_3^{[13]}$

$$Q_{i} = \left(\underbrace{\mathsf{Q}_{i-4}}_{\mathsf{m}_{i}} \boxplus \mathsf{k}_{i} \boxplus \Phi_{i}(\mathsf{Q}_{i-1}, \mathsf{Q}_{i-2}, \mathsf{Q}_{i-3}) \right)^{\ll s_{i}}$$

i	si	δ m $_i$	$\partial \Phi_i$	∂Qį	Φ -conditions
0	3				
1	7	⟨▲[31]⟩		⟨▲[6]⟩	
2	11	⟨▼[28], ▲[31]⟩		⟨▼[7], ▲[10]⟩	$Q_0^{[6]} = Q_{-1}^{[6]}$
3	19			,	$Q_2^{[6]} = 0, Q_1^{[7]} = Q_0^{[7]}, Q_1^{[10]} = Q_0^{[10]}$
4	3		⟨▲▼[6,7]⟩	⟨▲▲▼ [911] ⟩	$Q_3^{[6]} = 0, Q_3^{[7]} = 1, Q_3^{[10]} = 0$
5	7		,	⟨▲[13]⟩	$Q_4^{[7]} = 1, Q_3^{[9]} = Q_2^{[9]}, Q_3^{[10]} = 0, Q_3^{[11]} = Q_2^{[11]}$
6	11		$\langle \blacktriangle \blacktriangledown^{[10,11]} \rangle$	⟨▼[18]⟩	$Q_5^{[9]} = 0, Q_5^{[10]} = 1, Q_5^{[11]} = 1, Q_4^{[13]} = Q_3^{[13]}$

$$Q_{i} = \left(\underbrace{\mathsf{Q}_{i-4}}_{\mathsf{m}_{i}} \boxplus \mathsf{k}_{i} \boxplus \Phi_{i}(\mathsf{Q}_{i-1}, \mathsf{Q}_{i-2}, \mathsf{Q}_{i-3}) \right)^{\ll s_{i}}$$

i	si	δm_i	$\partial \Phi_i$	∂Qį	Φ -conditions
0	3				
1	7	/▲[31] \		/ ▲ [6] \	
2	11	⟨ ▼ ^[28] , ▲ ^[31] ⟩		⟨▼[7] ▲[10] ⟩	$O_{6}^{[6]} = O_{6}^{[6]}$
3	19	(* ,= /		\ , _ /	$O_{1}^{[6]} = 0, O_{1}^{[7]} = O_{1}^{[7]}, O_{1}^{[10]} = O_{1}^{[10]}$
4	3		⟨▲▼[6,7]⟩	/ • • [911] \	$O_{2}^{[6]} = 0, O_{2}^{[7]} = 1, O_{2}^{[10]} = 0$
5	7		\ _ \-	⟨ ▲ [13] ⟩	
H	, -		/▲▼[10,11] \	(▼ [18] \	[0] [10] [11] [13]
6	11			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$Q_5^{[5]} = 0, Q_5^{[10]} = 1, Q_5^{[11]} = 1, Q_4^{[13]} = Q_3^{[13]}$

$$Q_{i} = \left(\begin{array}{c} \mathbf{Q}_{i-4} \boxplus \mathbf{m}_{i} \boxplus k_{i} \boxplus \Phi_{i}(\mathbf{Q}_{i-1}, \mathbf{Q}_{i-2}, \mathbf{Q}_{i-3}) \end{array} \right)^{\ll s_{i}}$$

i	si	δm_i	$\partial \Phi_i$	∂Qį	Φ -conditions
	-				
0	3				
1	7	⟨▲ ^[31] ⟩		⟨▲ ^[6] ⟩	
2	11	⟨ ▼ ^[28] , ▲ ^[31] ⟩		⟨ ▽ ^[7] , ▲ ^[10] ⟩	$Q_0^{[6]} = Q_{-1}^{[6]}$
3	19				$Q_2^{[6]} = 0, Q_1^{[7]} = Q_0^{[7]}, Q_1^{[10]} = Q_0^{[10]}$
4	3		$\langle {\color{red} ullet}^{[6,7]} angle$	⟨▲▲▼ [911] ⟩	$Q_3^{[6]} = 0, Q_3^{[7]} = 1, Q_3^{[10]} = 0$
5	7			⟨▲[13]⟩	$Q_4^{[7]} = 1, Q_3^{[9]} = Q_2^{[9]}, Q_3^{[10]} = 0, Q_3^{[11]} = Q_2^{[11]}$
6	11		$\langle \Delta \mathbf{v}^{[10,11]} \rangle$	⟨▼[18]⟩	$Q_5^{[9]} = 0, Q_5^{[10]} = 1, Q_5^{[11]} = 1, Q_4^{[13]} = Q_3^{[13]}$

- Cannot use message modification because of the key
- ▶ Put a difference Δ in m_2
- ▶ With some probability it collides in x_2 and in the MAC (2⁻⁵⁸)
- ► The collision reveals some key information
 - Contini and Yin proposed a way to extract key information using message modifications.

- Cannot use message modification because of the key
- ▶ Put a difference Δ in m_2
- ▶ With some probability it collides in x_2 and in the MAC (2⁻⁵⁸)
- ► The collision reveals some key information
 - Contini and Yin proposed a way to extract key information using message modifications.

- Cannot use message modification because of the key
- ▶ Put a difference Δ in m_2
- ▶ With some probability it collides in x_2 and in the MAC (2⁻⁵⁸)
- ► The collision reveals some key information
 - Contini and Yin proposed a way to extract key information using message modifications.

- We can recover k_2 using m_0
- ▶ But we don't have control over $x_1 = H_{k_2}(M)$ to recover k_1

- We can recover k_2 using m_0
- ▶ But we don't have control over $x_1 = H_{k_2}(M)$ to recover k_1

A New IV-recovery Attack

- We want to avoid the need for related messages.
- We look for paths where the existence of collision discloses information about the key.

Advantage

- ▶ In attack of Contini and Yin attack, one needs to control a lot of bits of $H_{k_2}(M)$ (related messages).
- We only need to choose differences in $H_{k_2}(M)$.

Using IV-dependent paths

- ▶ Use a differential path with $\delta m_0 \neq 0$.
- ► The beginning of the path depends on a condition (X) of the IV:
 - $\Pr_M[H(M) = H(M + \Delta)|X] \gg 2^{-128}$.

step	δm_i	$\partial \Phi_i$	∂Qį	conditions
0	⟨ ▲ ^[0] ⟩		$\langle \blacktriangle^{[3]} \rangle$	
1				$Q_{-1}^{[3]} = Q_{-2}^{[3]} (X)$

 $Pr_{M}[H(M) = H(M + \Delta)|\neg X] \approx 2^{-128}.$

step	δm_i	$\partial \Phi_i$	∂Qį	conditions
0	⟨▲[0]⟩		⟨▲[3]⟩	
1		⟨▲[3]⟩	⟨▲[10]⟩	$Q_{-1}^{[3]} \neq Q_{-2}^{[3]} (\neg X)$

- We try $2/p_X$ pairs:
 - ▶ If we have a collision then (X) is satisfied.
 - Otherwise, (X) is not satisfied.

Efficient computation of message pairs

To recover the outer key, we need $2/p_X$ message pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$

- ▶ We start with *one* message pair (R_1, R_2) such that $H_{k_2}(R_2) = H_{k_2}(R_1) + \Delta$ (birthday paradox).
- We compute second blocks (N_1, N_2) such that $H_{k_2}(R_2||N_2) = H_{k_2}(R_1||N_1) + \Delta$
- ► This is essentially a collision search with the padding inside the block.

New outer key recovery

- 1 Recover k_2 .
- 2 Generate pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- 3 Learn bits of k_1 by observing collisions.

New outer key recovery

- 1 Recover k_2 .
- 2 Generate pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- 3 Learn bits of k_1 by observing collisions.

New outer key recovery

- 1 Recover k_2 .
- **2** Generate pairs with $H_{k_2}(M_2) = H_{k_2}(M_1) + \Delta$.
- Learn bits of k_1 by observing collisions.

Results

Attac	Data	Time	Mem	Remark	
	E-Forgery	$2^{n/2}$	-	$2^{n/2}$	Collision based
Generic	U-Forgery	$2^{n/2}$	2 ⁿ⁺¹	$2^{n/2}$	Collision based
		1	$2^{2n/3}$	$2^{2n/3}$	TM tradeoff, 2 ⁿ precpu
	E-Forgery	2 ⁵⁸	-	-	[Contini-Yin]
NMAC-MD4	Partial-KR	2 ⁶³	2 ⁴⁰	-	[Contini-Yin]
HMAC-MD4	U-Forgery	2 ⁸⁸	2 ⁹⁵	-	Our result
		2 ⁷²	2 ⁷⁷	-	[L.Wang et al.]

Outline

Introduction

Hash Functions

Analysis of the MD4 family

Description of the MD4 family Wang et al.'s attack Key-recovery attack on HMAC/NMAC-MD4

The Design of SIMD

The SHA-3 Competition
Design choices
Description of SIMD
Security Analysis: Differential Paths

Attacks on New Hash Functions

The cancellation property Application to *Lesamnta*

The SHA-3 competition

After the attacks on the MD4 family, we need new hash functions

The SHA-3 competition

- Organized by NIST
- Similar to the AES competition
- Submission deadline was October 2008: 64 candidiates
- 51 valid submissions
- ▶ 14 in the second round (July 2009)
- 5 finalists in November 2010?
- ▶ Winner in 2012?

Design Choices

SIMD is designed to be:

- Vectorisable
- With a strong message expansion
- Wide-pipe

G. Leurent, C. Bouillaguet, P.-A. Fouque

Security Analysis of SIMD

C. Bouillaguet, P.-A. Fouque, G. Leurent

[SHA-3 submission]

[SAC '10]

Speed vs Security

NIST wants SHA-3 to be faster and more secure than SHA-2.

- ▶ More secure: more operations
- ► Faster: less time
- We need to cheat (use the hardware more efficiently)

Use multiple cores

Use AES instructions

Use 64-bit integers

Use vector instructions

e.g. MD6)

e.g. ECHO, SHAvite-3)

(e.g. Skein, BMW-512

(e.g. Blake, CubeHash, Hamsi,

- ► Vector instructions are more widely available than
 - ▶ SSE2 on x86, AltiVec on PowerPC, IwMMXt or NEON on ARM, ...

Speed vs Security

NIST wants SHA-3 to be faster and more secure than SHA-2.

- ▶ More secure: more operations
- ► Faster: less time
- We need to cheat (use the hardware more efficiently)

Use multiple cores

Use AES instructions

Use 64-bit integers

Use vector instructions

(e.g. MD6)

(e.g. ECHO, SHAvite-3)

(e.g. Skein, BMW-512)

(e.g. Blake, CubeHash, Hamsi, JH, Keccak, Luffa, SIMD)

- Vector instructions are more widely available than 64-bit integers or AES instructions.
 - ▶ SSE2 on x86, AltiVec on PowerPC, IwMMXt or NEON on ARM, ...

Speed vs Security

NIST wants SHA-3 to be faster and more secure than SHA-2.

- More secure: more operations
- ► Faster: less time
- We need to cheat (use the hardware more efficiently)

Use multiple cores

Use AES instructions

Use 64-bit integers

Use vector instructions

(e.g. MD6)

(e.g. ECHO, SHAvite-3)

(e.g. Skein, BMW-512)

(e.g. Blake, CubeHash, Hamsi,

JH, Keccak, Luffa, SIMD)

- Vector instructions are more widely available than 64-bit integers or AES instructions.
 - SSE2 on x86, AltiVec on PowerPC, IwMMXt or NEON on ARM, ...

Strong Message Expansion

- ► The inputs of a compression function have different roles:
 - The message is controlled by the adversary
 - The chaining value is only known
- Use a strong transformation on the message.
 - Trade-off: spend more time where it matters.
- ▶ In Davies-Meyer mode, we have a message expansion.
 - Davies-Meyer:

$$H_i = E_M(H_{i-1}) \oplus H_{i-1}$$

▶ differential attack on C
 ~→ related key attack on E

Matyas-Meyer-Oseas:

$$H_i = E_{H_{i-1}}(M) \oplus M$$

▶ differential attack on C
 ~→ differential attacks E

SIMD Message Expansion

Code with large minimal distance:

	Msg. block	Expanded msg.	Min. distance
SIMD-256	512 bits	4096 bits	520 bits
SIMD-512	1024 bits	8192 bits	1032 bits

- Concatenated code
 - Outer code gives a high word distance
 - ► Reed-Solomon code over F₂₅₇
 - Inner code gives a high bit distance
 - Multiplication by a constant (185 / 233)
- ► We can derive bounds for differential paths.

SIMD Compression Function

- Block cipher based
 - Well understood
- Davies-Meyer
 - Allows a strong message expansion
- Add the message at the start
 - Prevents some message modifications
- Modified feed-forward: Feistel rounds instead of XOR
 - Avoids some fixed point and multi-block attacks

SIMD Feistel Rounds

- Follows the SHA/MD legacy
 - Additions, rotations, boolean functions
 - Well understood
- 4 Parallel lanes for SIMD-256, 8 for SIMD-512
- ▶ Parallel Feistel rounds allow vectorized implementation

Performance

- Vectorized implementations for SSE2, Altivec, and IwMMXt
 - Gives an idea of performances for a generic CPU with SIMD unit

Processor	Core 2	Atom	PowerPC G4	ARM Xscale
SHA-1	1	1	1	1
SHA-256	0.55	0.55	0.55	0.60
SHA-512	0.70	0.20	0.15	0.15
SIMD256	0.85	0.95	0.75	0.45
SIMD512	0.75	0.75	0.55	

Normalized speed

- Vector units are available on all desktop/laptop/netbook and becoming available on embedded machines
- They will get more powerful: AVX on Intel (Q4 2010), AVX+XOP on AMD (2011)

Security Analysis: Differential Attacks

- We assume that the adversary builds a differential path with a signed difference.
- ► We consider paths with a non-zero message difference
 - paths with no message difference only give free-start attacks
- ► Each active state bit lowers the probability
 - Minimize active state bits
- The message expansion gives many message differences
 - 520 for SIMD-256
 - ▶ 1032 for SIMD-512

Local Collisions

A single active state bit

- ▶ Introduced by a difference in m₄
- Cancelled by a difference in m₈
- Cancelled on the neighbour lane
- ► At least 3 active messages
- ► At most 6 active messages
- ▶ 3 ϕ -conditions + 1 carry condition

Local Collisions

A single active state bit

- Introduced by a difference in m_4
- ► Cancelled by a difference in *m*₈
- Cancelled on the neighbour lane
- ► At least 3 active messages
- ► At most 6 active messages
- ▶ 3 ϕ -conditions + 1 carry condition

Local Collisions

A single active state bit

- ▶ Introduced by a difference in *m*₄
- ► Cancelled by a difference in *m*₈
- Cancelled on the neighbour lane
- At least 3 active messages
- At most 6 active messages
- ▶ 3 ϕ -conditions + 1 carry condition

Heuristic

Heuristic

The adversary can build an expanded message of minimal weight

- such that the differences create local collisions
- but without any extra property

- Optimal path: all Boolean function transmit differences
 - Minimizes the number of active state bits
- 6 active message bits per active state bit
 - 87 active state bits for SIMD-256 / 172 for SIMD-512
- 4 conditions per active state bit
 - ▶ 348 conditions for SIMD-256 / 688 for SIMD-512

Outline

Introduction

Hash Functions

Analysis of the MD4 family

Description of the MD4 family Wang et al.'s attack Key-recovery attack on HMAC/NMAC-MD4

The Design of SIMD

The SHA-3 Competition
Design choices
Description of SIMD
Security Analysis: Differential Paths

Attacks on New Hash Functions

The cancellation property Application to Lesamnta

My contributions I

Attacks on SHA-3 candidates

[CT-RSA '10]

Another Look at the Complementation Property
C. Bouillaguet, O. Dunkelman, P.-A. Fouque, G. Leurent

[FSE '10]

Cryptanalysis of ESSENCE

M. Naya-Plasencia, A. Röck, J.-P. Aumasson, Y. Laigle-Chapuy, G. Leurent, W. Meier, T. Peyrin [FSE '10]

C. Bouillaguet, O. Dunkelman, P.-A. Fouque, G. Leurent

Cryptanalysis of the 10-Round Hash and Full Compression Function of SHAvite-3₅₁₂

P. Gauravaram, G. Leurent, F. Mendel, M. Naya-Plasencia, T. Peyrin, C. Rechberger, M. Schläffer [Africacrypt '10]

Other results

P.-A. Fouque et G. Leurent

How risky is the Random-Oracle Model?

G. Leurent et P. Q. Nguyen

[Crypto '09]

[CT-RSA '08]

Generalized Feistel schemes

▶ Build a 4*n*-bit hash function out of an *n*-bit function:

- ▶ Ideal: each F; is an independent ideal function/permutation
- ▶ In practice: $F_i(x) = F(k_i \oplus x)$ with a fixed F

Generalized Feistel schemes

▶ Build a 4n-bit hash function out of an n-bit function:

SHAvite-3₅₁₂ structure

- ▶ Ideal: each F_i is an independent ideal function/permutation
- ▶ In practice: $F_i(x) = F(k_i \oplus x)$ with a fixed F

Cancellation Cryptanalysis

Main idea

Cancel the effect of non-linear components by using the same input pairs twice

- Generalized Feistel with slow diffusion
- Hash function setting

$$F_i(x) = F(k_i \oplus x)$$

$$F_i(x) = F_i(x) \oplus F_i(x) \oplus F_i(x)$$

$$F_i(x) = F_i(x) \oplus F_i(x)$$

Cancellation Cryptanalysis

Main idea

Cancel the effect of non-linear components by using the same input pairs twice

- ► Generalized Feistel with slow diffusion
- Hash function setting

$$ightharpoonup F_i(x) = F(k_i \oplus x)$$

$$\exists c_{i,j} : \forall x, \ F_i(x \oplus c_{i,j}) = F_i(x)$$

$$ightharpoonup c_{ii} = k_i \oplus k_i$$

The Cancellation Property

- Full diffusion after 9 rounds
- ▶ If $y_1 = y_2 = y$,
- Use constraints

i	S_i	T_i	Ui	V_i	
0	Х	-	-		
1	-	X	-	-	
2	-	-	X	-	
3	<i>y</i> 1	-	-	X	$x \rightarrow y_1$
4	X	<i>y</i> 1	-	-	
5	-		<i>y</i> 1	-	
6	Z	-	X	<i>y</i> 1	$y_1 \rightarrow z$
7	y'	Z	-	X	$x \rightarrow y_2, y' = y_1 \oplus y_2$
8	X	y'	Z	-	
9	W	X	y'	Z	z o w

- Full diffusion after 9 rounds
- ▶ If $y_1 = y_2 = y$, the differences cancel out

i	S_i	T_i	Ui	V_i	
0	Х	-	-		
1	-	X	-	-	
2	-	-	X	-	
3	<i>y</i> 1	-	-	X	$x \rightarrow y_1$
4	X	<i>y</i> 1	-	-	
5	-		<i>y</i> 1	-	
6	Z	-	X	<i>y</i> 1	$y_1 \rightarrow z$
7					$x \rightarrow y_2, y' = y_1 \oplus y_2$
8	X	y'	Z	-	
9	W	X	y'	Z	z o w

The Cancellation Property

- Full diffusion after 9 rounds
- ▶ If $y_1 = y_2 = y$, the differences cancel out

i	Si	T_i	Ui	V_i	
0	X	-	-	-	
1	-	X	-	-	
2	-	-	X	-	
3	у	-	-	X	$x \rightarrow y$
4	X	у	-	-	
5	-	X	у	-	
6	Z	-	X	У	$y_1 \rightarrow z$
7	-	z	-	X	
8	X	-	Z	-	
9	W	X	-	Z	$z \rightarrow w$

The Cancellation Property

- Full diffusion after 9 rounds
- ▶ If $y_1 = y_2 = y$, the differences cancel out
- Use constraints on the state

i	Si	T_i	Ui	V_i	
0	Х	-	-		
1	-	X	-	-	
2	-	-	X	-	
3	у	-	-	X	$x \rightarrow y$
4	X	у	-	-	
5	-	X	у	-	
6	z	-	X	У	$y_1 \rightarrow z$
7	-	Z	-	X	$x \rightarrow y$
8	X	-	Z	-	
9	W	X	_	Z	$z \rightarrow w$

The Cancellation Property: Looking at the Values

We study values, starting at round 2:

i	Si	T _i	Ui	Vi
2	a	Ь	с	d
3	$F_2(c) \oplus d$	а	Ь	С
4	$F_3(b) \oplus c$	$F_2(c) \oplus d$	a	Ь
5	$F_{4}(a) \oplus b$	$F_3(b) \oplus c$	$F_2(c) \oplus d$	a
6	$F_5(F_2(c) \oplus d) \oplus a$	$F_4(a) \oplus b$	$F_3(b) \oplus c$	$F_2(c) \oplus d$
7	$F_6(F_3(b) \oplus \underline{c}) \oplus F_2(\underline{c}) \oplus d$	$F_5(F_2(c)\oplus d)\oplus a$	$F_4(a) \oplus b$	$F_3(b) \oplus c$

Round 7:
$$F_6(F_3(b) \oplus \underline{c}) \oplus F_2(\underline{c})$$
. They cancel if: $F_3(b) = c_{2,6} = K_2 \oplus K_6$
i.e. $b = F_3^{-1}(K_2 \oplus K_6)$

Attack Overview

- Partial preimage: Choose one part of the output
 - Gives preimage and collision attacks.
- Hash function setting: no key.
- ► Mostly generic in the round function.

Attack Strategy

- Set parts of the state to satisfy the cancellation conditions.
- The truncated differential path describes how the output depends on the remaining degrees of freedom
- Compute the required value

Result Overview

Attacks on reduced Lesamnta

- 24 rounds out of 32: collision and preimage
- previous attacks: 16 rounds

Attacks on reduced SHAvite-3₅₁₂

- ▶ 10 rounds out of 14: preimage
- ▶ 14 rounds out of 14: chosen-salt pseudo-preimage
- previous attacks: 8 rounds

Lesamnta (cont.)

$$X_{i+4} = X_i \oplus F(X_{i+1} \oplus K_{i+3})$$

$$K_{i+4} = K_i \oplus G(K_{i+1} \oplus R_{i+3}).$$

- ▶ Chaining value loaded to K_{-3} , K_{-2} , K_{-1} , K_0
- ▶ Message loaded to $X_{-3}, X_{-2}, X_{-1}, X_0$
- ► F and G AES-based

Lesamnta: Truncated Differential

Si	T _i	Ui	V_i
Х	-	-	-
-	X	-	-
-	-	х	-
	(x -		
<i>x</i> ₁	?	?	r
?	<i>x</i> ₁	?	?
?	?	<i>x</i> ₁	?
?	?	?	<i>x</i> ₁
?	?	?	<i>x</i> ₁
	x X1 ? ? ?	x - x - x - (x - x1 ? ? ? ? ?	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

i	Si	T _i	Ui	V_i	
2	-	-	Х	-	
3	у	-	-	X	$x \rightarrow y$
4	X	у	-	-	
5	-	X	у	-	
6	Z	-	X	у	$y \rightarrow z$
7	-	Z	-	X	$x \rightarrow y$
8	X	-	Z	-	
9	W	X	-	Z	$z \rightarrow w$
10	Z	W	X	-	
11	<i>x</i> ₁	Z	W	X	$x \rightarrow x_1$
12	r	<i>X</i> 1	Z	W	$w \rightarrow x \oplus t$
13	-	r	<i>X</i> ₁	Z	$z \rightarrow w$
14	?	-	r	<i>x</i> ₁	
15	$x_1 + t$?	-	r	$r \rightarrow t$
16	r	$x_1 + t$?	-	
17	?	r	$x_1 + t$?	
18	?	?	r	$x_1 + t$	
19	<i>x</i> ₁	?	?	r	$r \rightarrow t$

Lesamnta: Truncated Differential

i	Si	T_i	Ui	V_i
0	х	-	-	-
1	-	X	-	-
2	-	-	х	-
÷		(x -	$\rightarrow x_1$)	
19	<i>x</i> ₁	?	?	r
20	?	<i>x</i> ₁	?	?
21	?	?	<i>x</i> ₁	?
22	?	?	?	<i>x</i> ₁
FF	?	?	?	<i>x</i> ₁

Properties

- Using conditions on the state, probability 1.
- ▶ The transition $x \rightarrow x_1$ is known.

How to use it

- ► Start with a random message
- ► x₁ is the difference between the output and the target value
- ightharpoonup Compute x from x_1
- \triangleright Use M + (x, 0, 0, 0)

Lesamnta: Truncated Differential

i	Si	T_i	Ui	V_i
0	Х	-	-	-
1	-	X	-	-
2	-	-	Х	-
÷		(x -	$\rightarrow x_1$)	
19	<i>x</i> ₁	?	?	r
20	?	<i>x</i> ₁	?	?
21	?	?	<i>x</i> ₁	?
22	?	?	?	<i>x</i> ₁
FF	?	?	?	<i>x</i> ₁

Properties

- Using conditions on the state, probability 1.
- ▶ The transition $x \rightarrow x_1$ is known.

How to use it

- ► Start with a random message
- ➤ x₁ is the difference between the output and the target value
- Compute x from x₁
- Use M + (x, 0, 0, 0)

Lesamnta: Values

```
X_i (= S_i)
          А
 0
          Ь
          а
          F_2(c) \oplus d
 4
          F_3(b) \oplus c
          F_4(a) \oplus b
 6
          F_5(F_2(c) \oplus d) \oplus a
          F_6(E_3(b) \oplus c) \oplus F_2(c) \oplus d
 8
          F_7(F_4(a) \oplus \overline{b}) \oplus F_3(\overline{b}) \oplus c
 9
          F_8(F_5(F_2(c) \oplus d) \oplus a) \oplus F_4(a) \oplus b
          F_9(d) \oplus F_5(F_2(c) \oplus d) \oplus a
10
11
          F_{10}(F_7(F_4(a) \oplus b) \oplus F_3(b) \oplus c) \oplus d
12
          F_{11}(F_8(F_5(F_2(c) \oplus d) \oplus a) \oplus F_4(a) \oplus b) \oplus F_7(F_4(a) \oplus b) \oplus F_3(b) \oplus c
13
          F_{12}(F_9(d) \oplus F_5(F_2(c) \oplus d) \oplus a) \oplus F_8(F_5(F_2(c) \oplus d) \oplus a) \oplus F_4(a) \oplus b
15
          F_{14}(X_{12}) \oplus F_{10}(F_7(F_4(a) \oplus b) \oplus F_3(b) \oplus c) \oplus d
16
          F_{15}(F_4(a) \oplus b) \oplus X_{12}
          F_{18}(F_{15}(F_4(a) \oplus b) \oplus X_{12}) \oplus F_{14}(X_{12}) \oplus F_{10}(F_7(F_4(a) \oplus b) \oplus F_3(b) \oplus c) \oplus d
19
```

Lesamnta Cancellation Conditions

- Round 7: $F_6(F_3(b) \oplus \underline{c}) \oplus F_2(\underline{c})$. They cancel if: $F_3(b) = c_{2,6} = K_2 \oplus K_6$ i.e. $b = F_3^{-1}(K_2 \oplus K_6)$
- Round 13: $F_{12}(F_9(d) \oplus F_5(F_2(c) \oplus d) \oplus a) \oplus F_8(F_5(F_2(c) \oplus d) \oplus a)$. They cancel if: $F_9(d) = c_{8,12} = K_8 \oplus K_{12}$ i.e. $d = F_9^{-1}(K_8 \oplus K_{12})$
- Round 19: $F_{18}(F_{15}(F_4(a) \oplus b) \oplus \underline{X_{12}}) \oplus F_{14}(\underline{X_{12}}).$ They cancel if: $F_{15}(F_4(a) \oplus b) = c_{14,18} = K_{14} \oplus K_{18}$ i.e. $a = F_4^{-1}(F_{15}^{-1}(K_{14} \oplus K_{18}) \oplus b)$

22-round Attacks

- Compute a, b, d, to satisfy the cancellation conditions.
- ▶ Set the state at round 2 to (a, b, c, d).
- Express the output as a function of c
- $V_0 = \eta$

$$\qquad \qquad \eta = b \oplus F_0(a \oplus F_3(d))$$

- $V_{22} = F(c \oplus \alpha) \oplus \beta$
 - $\alpha = K_{11} \oplus F_8(F_5(a) \oplus b) \oplus F_4(b)$
 - $\beta = d$
- ▶ For a target value \overline{H} , set $c = F^{-1}(\overline{H} \oplus \eta \oplus \beta) \oplus \alpha$
- ▶ This gives $V_0 \oplus V_{22} = \overline{H}$

22-round Attacks

- Compute a, b, d, to satisfy the cancellation conditions.
- ▶ Set the state at round 2 to (a, b, c, d).
- Express the output as a function of c
- $V_0 = \eta$
 - $\qquad \qquad \eta = b \oplus F_0(a \oplus F_3(d))$
- $V_{22} = F(c \oplus \alpha) \oplus \beta$

 - $\beta = d$
- ▶ For a target value \overline{H} , set $c = F^{-1}(\overline{H} \oplus \eta \oplus \beta) \oplus \alpha$
- ▶ This gives $V_0 \oplus V_{22} = \overline{H}$

22-round Attacks

- Compute a, b, d, to satisfy the cancellation conditions.
- ▶ Set the state at round 2 to (a, b, c, d).
- Express the output as a function of c
- $V_0 = \eta$
- $V_{22} = F(c \oplus \alpha) \oplus \beta$
 - $\qquad \qquad \alpha = K_{11} \oplus F_8(F_5(a) \oplus b) \oplus F_4(b)$
 - $\beta = d$
- ► For a target value \overline{H} , set $c = F^{-1}(\overline{H} \oplus \eta \oplus \beta) \oplus \alpha$
- ▶ This gives $V_0 \oplus V_{22} = \overline{H}$

Results: Lesamnta

			Lesar	Lesamnta-256		nnta-512
	Attack	Rounds	Time	Memory	Time	Memory
Generic	Collision	22	2 ⁹⁶	-	2 ¹⁹²	-
	2 nd Preimage	22	2^{192}	-	2^{384}	-
	Collision	24	2^{96}	2^{64}	2^{192}	2^{128}
	2 nd Preimage	24	2^{192}	2^{64}	2^{384}	2 ¹²⁸
Specific	Collision	24	2 ¹¹²	-	2 ²²⁴	-
	2 nd Preimage	24	2 ²⁴⁰	-	I	N/A

*Results: SHAvite-3*₅₁₂

		Com	Comp. Fun.		n Fun.
Attack	Rounds	Time	Mem.	Time	Mem.
2 nd Preimage	9	2 ³⁸⁴	-	2 ⁴⁴⁸	2 ⁶⁴
2 nd Preimage	10	2^{448}	-	2^{480}	2^{32}
2 nd Preimage	10	2 ⁴¹⁶	2^{64}	2 ⁴⁶⁴	2 ⁶⁴
2 nd Preimage	10	2^{384}	2 ¹²⁸	2 ⁴⁴⁸	2 ¹²⁸
Collision ¹	14	2 ¹⁹²	2^{128}	Ν	/A
Preimage ¹	14	2^{384}	2^{128}	Ν	/A
Preimage ¹	14	2 ⁴⁴⁸	-	Ν	/A

¹ Chosen salt attacks

Conclusion

Coin Flipping

- Alice and Bob pick each pick a random number
- ▶ They commit to it, and reveal it afterwards

One-Time-Password

- ▶ Alice choose a secret k, and the server stores $y = F^{(n)}(k)$
- ► For each identification, Alice send a preimage of the value stored and the server stores the new value.

Bibliography I

Message Freedom in MD4 and MD5 Collisions: Application to APOP

G. Leurent [FSE '07 + IIACT]

Automatic Search of Differential Paths in MD4

P.-A. Fouque, G. Leurent, P. Nguyen

[Hash Workshop '07]

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

P.-A. Fouque, G. Leurent, P. Nguyen

[Crypto '07]

MD4 is Not One-Way

G. Leurent

[FSE '08]

SIMD is a Message Digest

G. Leurent, C. Bouillaguet, P.-A. Fouque

[SHA-3 submission]

Security Analysis of SIMD

C. Bouillaguet, P.-A. Fouque, G. Leurent

[SAC '10]

Bibliography II

Another Look at the Complementation Property
C. Bouillaguet, O. Dunkelman, P.-A. Fouque, G. Leurent

[FSE '10]

M. Naya-Plasencia, A. Röck, J.-P. Aumasson, Y. Laigle-Chapuy, G. Leurent, W. Meier, T. Peyrin

[FSE '10]

G. Leurent

[CT-RSA '10]

Attacks on Hash Functions based on Generalized Feistel - Application to Reduced-Round Lesamnta and *SHAvite-3*₅₁₂

C. Bouillaguet, O. Dunkelman, P.-A. Fouque, G. Leurent

[SAC '10]

P. Gauravaram, G. Leurent, F. Mendel, M. Naya-Plasencia, T. Peyrin, C. Rechberger, M. Schläffer [Africacrypt '10]

Bibliography III

G. Leurent et P. Q. Nguyen [Crypto '09]

[CHES '09]

Contini-Yin NMAC Attack

- Find a collision:
 - Use random messages
- 2 Use message modifications:
 - Instead of $M/M \boxplus \Delta$, use $M \boxplus \delta/M \boxplus \delta \boxplus \Delta$
 - Use carries to recover state hits

Contini-Yin NMAC Attack

- 1 Find a collision:
 - Use random messages
- Use message modifications:
 - ► Instead of $M/M \boxplus \Delta$, use $M \boxplus \delta/M \boxplus \delta \boxplus \Delta$
 - Use carries to recover state bits

Contini-Yin NMAC Attack

- 1 Find a collision:
- Use random messages
- Use message modifications:
 - ► Instead of $M/M \boxplus \Delta$, use $M \boxplus \delta/M \boxplus \delta \boxplus \Delta$
 - Use carries to recover state bits

Differential paths

We need very constrained paths:

- ▶ At least one difference in m_0 .
- ▶ No difference in $m_4...m_{15}$.
- High probability.
- Many paths (each one gives only one bit of the key).

Differential path algorithm

- We use an algorithm to find a differential path from the message difference Δ .
- We found 22 paths with $p_X \approx 2^{-79}$.
- ► Attack complexity: 2⁸⁸ data, 2¹⁰⁵ time.

Differential paths

We need very constrained paths:

- ▶ At least one difference in m_0 .
- ▶ No difference in $m_4...m_{15}$.
- High probability.
- ▶ Many paths (each one gives only one bit of the key).

Differential path algorithm

- We use an algorithm to find a differential path from the message difference Δ .
- We found 22 paths with $p_X \approx 2^{-79}$.
- ► Attack complexity: 2⁸⁸ data, 2¹⁰⁵ time.

SIMD

Wide pipe

- Avoid generic attacks on SHA-2
 - Length-extension attack
 - ▶ MAC forgery in $2^{n/2}$
 - Multicollisions
 - Nostradamus attack (herding)
 - Second-preimage for long messages
 - Various theoretical weaknesses
- Good degradation of security:
 - Several results show that indifferentiability proofs are quite resilient In a wide-pipe design, indifferentiability implies all security notions.
 - Most distinguishers on the compression function do not weaken the iterated function.

SIMD ••••

- Finalisation function
- ▶ Use only the message length as input in the last block
 - Acts as a kind of blank round
 - Can break unexpected properties

SIMD

Weaker assumptions

Strong adversary

The adversary can build an expanded message with any difference pattern

- If active state words are adjacent, some ϕ conditions disappear
 - ▶ If two inputs of the MAJ function are active we know the output
- 1 active state bit gives
 - 4.5 active message bits
 - 1 conditions
- SIMD-256: 116 conditions
- ► SIMD-512: 230 conditions

Modeling Differential Paths

- ▶ Impossible to have two active inputs for all active function
- ▶ Hard to proof any useful bound...
- ▶ We model the this problem as an Integer Linear Program
 - ▶ about 30,000 variables, 80,000 equations
- Solver computes a lower bound, and tries to improve the lower bound

```
SIMD-256 p \le 2^{-132}
SIMD-512 p < 2^{-253}
```

(several weeks of computation)

SHAvite-3₅₁₂

- ▶ 14 rounds
- Davies-Meyer (message is the key)
- ► $F_i(x) = AES(AES(AES(AES(x \oplus k_i^0) \oplus k_i^1) \oplus k_i^2) \oplus k_i^3)$
- F is one AES round.
- Key schedule mixes linear operations and AES rounds.

SHAvite-3₅₁₂: Truncated Differential

i	S_i	T_i U_i		V_i	
0	?	<i>x</i> ₂	?	Х	
1	X	-	x_2	<i>x</i> ₁	
2	<i>x</i> ₁	X	-	-	
3	-	-	X	-	
4	-	-			
5	X	-	-	У	
6	у	X	-	Z	
7	Z	-	X	W	
8	W	Z	-	?	
9	?	-	Z	?	
FF	?	<i>x</i> ₂	?	?	

$x_1 \rightarrow x_2$ $x \rightarrow x_1$ $x \rightarrow y$ $y \rightarrow z$ $x \to y, z \to w$ Problem $z \rightarrow w$

Properties

- Using conditions on the state, probability 1.
- ▶ The transitions $x \rightarrow x_1$ and $x_1 \rightarrow x_2$ are known.
- Compute x from x₂

F has many keys

SHAvite-3₅₁₂: Truncated Differential

i	S_i	T_i U_i		V_i	
0	?	<i>x</i> ₂	?	Х	
1	X	- x ₂		<i>x</i> ₁	
2	<i>x</i> ₁	X	-	-	
3	-	-	X	-	
4	-	-	-	X	
5	X	-	-	у	
6	у	X	-	z	
7	Z	-	X	W	
8	W	Z	-	?	
9	?	-	Z	?	
FF	?	<i>x</i> ₂	?	?	

$x_1 \to x_2$ $x \to x_1$ $x \to y$ $y \to z$ $x \to y, z \to w$ $z \to w$

Properties

- Using conditions on the state, probability 1.
- ► The transitions $x \to x_1$ and $x_1 \to x_2$ are known.
- ightharpoonup Compute x from x_2

Problem

► F has many keys

SHAvite-3₅₁₂: Values

```
X_i/Y_i
          b \oplus F_3(c) \oplus F'_1(c \oplus F_2(d \oplus F'_3(a)))
X_{\cap}
          d \oplus F_3'(a) \oplus F_1(a \oplus F_2'(b \oplus F_3(c)))
          a \oplus F_2'(b \oplus F_3(c))
X_1
          c \oplus F_2(d \oplus F_3(a))
X_2
          d \oplus F_3'(a)
 Y_2
          b \oplus F_3(c)
X_3
          C
 Y_3
          а
X_4
          Ь
 Y_4
          d
X_5
          a \oplus F_4(b)
 Y_5
          c \oplus F'_{A}(d)
          d \oplus F_5(a \oplus F_4(b))
X_6
 Y_6
          b \oplus F'_5(c \oplus F'_4(d))
X_7
          c \oplus F_4(d) \oplus F_6(d \oplus F_5(a \oplus F_4(b)))
 Y_7
          a \oplus F_4(b) \oplus F'_6(b \oplus F'_5(c \oplus F'_4(d)))
          b \oplus F_5'(c \oplus F_4'(d)) \oplus F_7(c)
X_8
 Y_8
          d \oplus F_5(a \oplus F_4(b)) \oplus F'_7(a \oplus F_4(b) \oplus F'_6(b \oplus F'_5(c \oplus F'_4(d))))
X_9
          a \oplus F_4(b) \oplus F'_c(b \oplus F'_c(c \oplus F'_d(d))) \oplus F_8(b \oplus F'_c(c \oplus F'_d(d)) \oplus F_7(c))
```

*Message Conditions: SHAvite-3*₅₁₂

Round 7 $F'_4(\underline{d}) \oplus F_6(\underline{d} \oplus F_5(a \oplus F_4(b)))$. They cancel if: $F_5(a \oplus F_4(b)) = k_{1,4}^0 \oplus k_{0,6}^0$ and $(k_{1,4}^1, k_{1,4}^2, k_{1,4}^3) = (k_{0,6}^1, k_{0,6}^2, k_{0,6}^3)$.

Round 9 $F'_{6}(\underline{b \oplus F'_{5}(c \oplus F'_{4}(d))}) \oplus F_{8}(\underline{b \oplus F'_{5}(c \oplus F'_{4}(d))} \oplus F_{7}(c)).$ They cancel if: $F_{7}(c) = k_{1,6}^{0} \oplus k_{0,8}^{0}$ and $(k_{1,6}^{1}, k_{1,6}^{2}, k_{1,6}^{3}) = (k_{0,8}^{1}, k_{0,8}^{2}, k_{0,8}^{3}).$

*Message Conditions: SHAvite-3*₅₁₂

Round 7 $F'_4(\underline{d}) \oplus F_6(\underline{d} \oplus F_5(a \oplus F_4(b)))$. They cancel if: $F_5(a \oplus F_4(b)) = k_{1,4}^0 \oplus k_{0,6}^0$ and $(k_{1,4}^1, k_{1,4}^2, k_{1,4}^3) = (k_{0,6}^1, k_{0,6}^2, k_{0,6}^3)$.

Round 9 $F'_{6}(\underline{b \oplus F'_{5}(c \oplus F'_{4}(d))}) \oplus F_{8}(\underline{b \oplus F'_{5}(c \oplus F'_{4}(d))} \oplus F_{7}(c)).$ They cancel if: $F_{7}(c) = k_{1,6}^{0} \oplus k_{0,8}^{0}$ and $(k_{1,6}^{1}, k_{1,6}^{2}, k_{1,6}^{3}) = (k_{0,8}^{1}, k_{0,8}^{2}, k_{0,8}^{3}).$

rk[128...131,132...135,136...139,140...143,144...147,148...151,152...155,156...159]AES AES AES tk[128...131,132...135,136...139,140...143,144...147,148...151,152...155,156...159] LFSR1: $rk[i]=tk[i-32]\oplus rk[i-4]$ rk[160...163,164...167,168...171,172...175,176...179,180...183,184...187,188...191LFSR2. $rk[i]=rk[i-32]\oplus rk[i-7]$ rk[192...195,196...199,200...203,204...207,208...211,212...215,216...219,220...223]AES AES AES tk[192...195,196...199,200...203,204...207,208...211,212...215,216...219,220...223 LFSR1: $rk[i]=tk[i-32]\oplus rk[i-4]$ rk[224...227,228...231,232...235,236...239,240...243,244...247,248...251,252...255]LFSR2. $rk[i]=rk[i-32]\oplus rk[i-7]$ *rk*[256...259,<mark>260...263,264...267,268...271</mark>,272...275,276...279,280...283,284...287]

Propagate constraints

Propagate constraints

Propagate constraints

Quess values

3 Compute the missing values; check coherence

Solving the Conditions

- ▶ We can build a chaining value satisfying the 6 conditions with cost 2⁹⁶.
- ► Each chaining value can be used 2¹²⁸ times to fix 128 bits of the output.
 - Cost of finding a good message is amortized.
- ▶ Attacks on 9-round *SHAvite-3*₅₁₂:
 - Free-start preimage with complexity 2³⁸⁴
 - Second-Preimage with complexity 2⁴⁴⁸.

Extension to 10 rounds

- We only use two cancellation: two conditions on the state
- ▶ We still have two degrees of freedom
- ▶ We change the variables, with u, v degrees of freedom, and z, w fixed by the cancellation conditions

$$H = z \oplus F_{2}(u) \oplus F'_{0}(u \oplus F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z)))) \oplus w$$

$$z \oplus F_{2}(u) \oplus F'_{0}(u \oplus F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z)))) \oplus w = H$$

$$F'_{0}(u \oplus F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z)))) = H \oplus z \oplus F_{2}(u) \oplus w$$

$$F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z))) = u \oplus F'_{0}^{-1}(H \oplus z \oplus F_{2}(u) \oplus w)$$

► We have *u* on one side and *v* on the other side: we can solve with cost 2⁶⁴ by the birthday paradox

Extension to 10 rounds

- We only use two cancellation: two conditions on the state
- ▶ We still have two degrees of freedom
- ► We change the variables, with *u*, *v* degrees of freedom, and *z*, *w* fixed by the cancellation conditions

$$\begin{split} H &= z \oplus F_2(u) \oplus F_0'(u \oplus F_1(w \oplus F_4(v) \oplus F_2'(v \oplus F_3(z)))) \oplus w \\ z \oplus F_2(u) \oplus F_0'(u \oplus F_1(w \oplus F_4(v) \oplus F_2'(v \oplus F_3(z)))) \oplus w &= H \\ F_0'(u \oplus F_1(w \oplus F_4(v) \oplus F_2'(v \oplus F_3(z)))) &= H \oplus z \oplus F_2(u) \oplus w \\ F_1(w \oplus F_4(v) \oplus F_2'(v \oplus F_3(z))) &= u \oplus F_0'^{-1}(H \oplus z \oplus F_2(u) \oplus w) \end{split}$$

We have u on one side and v on the other side: we can solve with cost 2⁶⁴ by the birthday paradox

Extension to 10 rounds

- We only use two cancellation: two conditions on the state
- We still have two degrees of freedom
- ▶ We change the variables, with u, v degrees of freedom, and z, w fixed by the cancellation conditions

$$H = z \oplus F_{2}(u) \oplus F'_{0}(u \oplus F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z)))) \oplus w$$

$$z \oplus F_{2}(u) \oplus F'_{0}(u \oplus F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z)))) \oplus w = H$$

$$F'_{0}(u \oplus F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z)))) = H \oplus z \oplus F_{2}(u) \oplus w$$

$$F_{1}(w \oplus F_{4}(v) \oplus F'_{2}(v \oplus F_{3}(z))) = u \oplus F'_{0}^{-1}(H \oplus z \oplus F_{2}(u) \oplus w)$$

We have u on one side and v on the other side: we can solve with cost 2^{64} by the birthday paradox

Extension to 14 rounds

i	Xi	Y _i
0	$v \oplus F_3(z) \oplus F'_1(z \oplus F_2(u))$	$u \oplus F_1(w \oplus F_4(v) \oplus F'_2(v \oplus F_3(z)))$
1	$w \oplus F_4(v) \oplus F_2'(v \oplus F_3(z))$	$z \oplus F_2(u)$
2	u	$v \oplus F_3(z)$
3	Z	$w \oplus F_4(v)$
4	V	$u \oplus F_3'(Y_3)$
5	W	$z \oplus F_4'(Y_4)$
6	$Y_4 \oplus F_5(w)$	$v \oplus F_5'(Y_5)$
7	$z \oplus F_4(Y_4) \oplus F_6(Y_4 \oplus F_5(w))$	$w \oplus F_6'(Y_6)$
8	$Y_6 \oplus F_7(z)$	$Y_4 \oplus \check{F}_5(w) \oplus F'_7(Y_7)$
9	$w \oplus F_6'(Y_6) \oplus F_8(Y_6 \oplus F_7(z))$	$z \oplus F_8'(Y_8)$
10	$Y_8 \oplus F_9(w)$	$Y_6 \oplus F_7(z) \oplus F_9'(Y_9)$
11	$z \oplus F_8(Y_8) \oplus F_{10}(Y_8 \oplus F_9(w))$	$w \oplus F'_{10}(Y_{10})$
12	$Y_{10} \oplus F_{11}(z)$	$Y_8 \oplus F_9(w) \oplus F'_{11}(Y_{11})$
13	$w \oplus F'_{10}(Y_{10}) \oplus F_{12}(Y_{10} \oplus F_{11}(z))$	$z \oplus F'_{12}(Y_{12})$

- *Round* 7 $F'_4(Y_4) \oplus F_6(Y_4 \oplus F_5(w))$.
 - They cancel if: $F_5(w) = k_{1.4}^0 \oplus k_{0.6}^0$ and $(k_{14}^{1}, k_{14}^{2}, k_{14}^{3}) = (k_{06}^{1}, k_{06}^{2}, k_{06}^{3}).$
- *Round* 9 $F'_{6}(Y_{6}) \oplus F_{8}(Y_{6} \oplus F_{7}(z))$. They cancel if: $F_7(z) = k_{1.6}^0 \oplus k_{0.8}^0$ and $(k_{1.6}^1, k_{1.6}^2, k_{1.6}^3) = (k_{0.8}^1, k_{0.8}^2, k_{0.8}^3).$
- Round 11 $F'_{8}(Y_{8}) \oplus F_{10}(Y_{8} \oplus F_{9}(w))$. They cancel if: $F_9(w) = k_{1.8}^0 \oplus k_{0.10}^0$ and $(k_{1,8}^1, k_{1,8}^2, k_{1,8}^3) = (k_{0,10}^1, k_{0,10}^2, k_{0,10}^3).$ Since w is fixed: $F_5^{-1}(k_{1.4}^0 \oplus k_{0.6}^0) = F_9^{-1}(k_{1.8}^0 \oplus k_{0.10}^0)$
- Round 13 $F'_{10}(Y_{10}) \oplus F_{12}(Y_{10} \oplus F_{11}(z))$. They cancel if: $F_{11}(z) = k_{1,10}^0 \oplus k_{0,12}^0$ and $(k_{110}^1, k_{110}^2, k_{110}^3) = (k_{012}^1, k_{012}^2, k_{012}^3).$ Since z is fixed: $F_7^{-1}(k_{1.6}^0 \oplus k_{0.8}^0) = F_{11}^{-1}(k_{1.10}^0 \oplus k_{0.12}^0)$

14-round cancellation conditions

- 256-bit condition on the state
- ▶ 1792-bit condition on the expanded message

$$F_{5}(w) = k_{1,4}^{0} \oplus k_{0,6}^{0}$$

$$F_{7}(z) = k_{1,6}^{0} \oplus k_{0,8}^{0}$$

$$(k_{1,4}^{1}, k_{1,4}^{2}, k_{1,4}^{3}) = (k_{0,6}^{1}, k_{0,6}^{2}, k_{0,6}^{3})$$

$$(k_{1,6}^{1}, k_{1,6}^{2}, k_{1,6}^{3}) = (k_{0,8}^{1}, k_{0,8}^{2}, k_{0,8}^{3})$$

$$(k_{1,8}^{1}, k_{1,8}^{2}, k_{1,8}^{3}) = (k_{0,10}^{1}, k_{0,10}^{2}, k_{0,10}^{3})$$

$$(k_{1,10}^{1}, k_{1,10}^{2}, k_{1,10}^{3}) = (k_{0,12}^{1}, k_{0,12}^{2}, k_{0,12}^{3})$$

$$F_{5}^{-1}(k_{1,4}^{0} \oplus k_{0,6}^{0}) = F_{9}^{-1}(k_{1,8}^{0} \oplus k_{0,10}^{0})$$

$$F_{7}^{-1}(k_{1,6}^{0} \oplus k_{0,8}^{0}) = F_{11}^{-1}(k_{1,10}^{0} \oplus k_{0,12}^{0})$$

- Take the zero counter;
- ► Take the salt that sends zero to zero:
- Use the zero message: all the subkeys are zero.

- ► Take the zero counter;
- ► Take the salt that sends zero to zero;
- Use the zero message: all the subkeys are zero.

- Take the zero counter;
- ► Take the salt that sends zero to zero;
- Use the zero message: all the subkeys are zero.

- Take the zero counter;
- Take the salt that sends zero to zero;
- Use the zero message: all the subkeys are zero.

- ► Cancel one counter in the middle;
- Take the salt that sends zero to zero;
- Use the zero subkey in the middle.

- Cancel one counter in the middle;
- Take the salt that sends zero to zero;
- Use the zero subkey in the middle.

- Cancel one counter in the middle;
- Take the salt that sends zero to zero;
- Use the zero subkey in the middle.

Weak salt for Round-2 SHAvite-3₅₁₂

i	RK_i			RK'_i					
	$k_{0,i}^{0}$	$k_{0,i}^{1}$	$k_{0,i}^{2}$	$k_{0,i}^{3}$	$k_{1,i}^{0}$	$k_{1,i}^{1}$	$k_{1,i}^2$	$k_{1,i}^{3}$	r
0	?	?	?	?	?	?	?	?	М
1	ś¥	?	?	?	?	?	?	0	-1
2	0	?	?	?	?	0	0	0	l
3	0	?	?	?	0	0	0	0	2
4	0	?	0	0	0	0	0	0	2
5	0	0★	0	0	0	0	0	0	,
6	0	0	0	0	0	0	0	0	3
7	0	0	0	0	0	0	0	0	4
8	0	0	0	0	0	0	0	0	4
9	0	0	0	0★	0	0	0	0	_
10	0	0	0	0	0	0	0	0	5
11	0	0	0	0	0	0	0	0	_
12	0	0	0	0	0	0	0	0	6
13	0	0	0	0	0	0	ś¥	?	7