Discussion 10

Heaps, Advanced Trees, Exam Review

Priority Queues

- Abstract Data Type
 - add(Item x)
 - getSmallest()
 - removeSmallest()

Heaps

Heaps are one implementation of a Priority Queue

• 2 important properties for min heap

Every node is ≤ its children

Heap is "complete"

Heap Demo: https://goo.gl/wBKdFQ

Heaps as Arrays

- leftChild(k) = k*2
- rightChild(k) = k*2 + 1
- parent(k) = k/2

Heaps (Runtime)

Operation	Runtime
add(Item x)	Θ(logN)
getSmallest()	Θ(1)
removeSmallest()	Θ(logN)

Tree Traversals

- Level Order (DBFACEG)
- Depth First
 - Preorder (DBACFEG)
 - Inorder (ABCDEFG)
 - Postorder (ACBEGFD)


```
Heap h = new Heap();
h.insert(5);
h.insert(7);
h.insert(3);
h.insert(1);
h.insert(2);
h.removeMin();
h.removeMin();
```


Your friend Sahil Finn-Garng challenges you to quickly implement an integer maxheap data structure. "Hah! I'll just use my min-heap implementation as a template to write MaxHeap.java," you think to yourself. Unfortunately, two Destroyer Penguins manage to delete your MinHeap.java file. You notice that you still have MinHeap.class. Can you still complete the challenge before time runs out?

Hint: You can still use methods from MinHeap.

Pre-Order?

In-Order?

Post-Order?

Level-Order (BFS)?

Pre-order: 10 3 1 7 12 11 14 13 15

In-order: 1 3 7 10 11 12 13 14 15

Post-order: 1 7 3 11 13 15 14 12 10

Level-order (BFS): 10 3 12 1 7 11 14 13 15

```
Draw the quadtree built by inserting the following nodes with the given coordinates.

insert A (2, 3);
insert B (-1, 1);
insert C (3, 2);
insert D (0, 0);
insert E (4, 4);
insert F (-3, 2);
```

