CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 22, 2022

Today

Homework 02

Review about facts used in proof techniques

Proof exercises for clarification (if time allows)

• To finish by 4h25

```
* Exercise 1 (score = 20)
Use truth tables to determine whether the argument form below is valid
(1)
- premises: p -> q, q
- conclusion: p
(2)
- premises: p-> q, ~p
- conclusion: ~q
(3)
- premises: p-> q, p
- conclusion: q
(4)
− premises: p-> q, ~q
- conclusion: ~p
```

(1)

• premises: p -> q, q

• conclusion: p

Not valid

р	q	p->q	q	р
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	F	F

(2)

premises: p-> q, ~p

• conclusion: ~q

Not valid

р	q	p->q	~p	~q
Т	Т	Т	F	F
Т	F	F	F	Т
F	Т	Т	Т	F
F	F	Т	Т	Т

(3)

• premises: p-> q, p

• conclusion: q

Valid

р	q	p->q	р	q
Т	Т	Т	Т	Т
Т	F	F T		F
F	Т	Т	F	Т
F	F	Т	F	F

(4)

• premises: p-> q, ~q

• conclusion: ~p

Valid

р	q	p->q	~q	~p
Т	Т	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	Т
F	F	Т	Т	Т

```
* Exercise 2 (score = 60)
Use truth tables to determine whether the argument form below is valid
(1)
- Premises: p \rightarrow q, \sim p \rightarrow \sim q
- Conclusion: p \/ q
(2)
- Premises: p \/ q, p → ~q, ~r → ~p
- Conclusion: r
(3)
− Premises: p, ~q -> ~p, ~q \/ r
- Conclusion r
(4)
- Premises: p/q \rightarrow r, p / q, q \rightarrow p
- Conclusion: ~r
(5)
- Premises: p -> r, q -> r
- Conclusion: (p \ \ q) - r
(6)
- Premises: p → (q \/ r), ~q \/ ~r
- Conclusion: ~p \ / ~r
```

(1)

• Premises: p -> q, ~p -> ~q

Conclusion: p ∨ q

Not valid

р	q	~p	~q	p->q	~p->~q	p∨q
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	F

(2)

• Premises: p V q, p -> ~q, ~r -> ~p

Conclusion: rNot valid

р	q	r	~p	~q	~r	p V q	p->~q	~r->~p	r
Т	Т	Т	F	F	F	Т	F	Т	Т
Т	Т	F	F	F	Т	Т	F	F	F
Т	F	Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т	F	F
F	Т	Т	Т	F	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т	Т	Т	F
F	F	Т	Т	Т	F	F	Т	Т	Т
F	F	F	Т	Т	Т	F	Т	Т	F

(3)

• Premises: p, ~q -> ~p, ~q \text{\ti}\text{\ti}\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\ti}\text{\text{\ti}\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\texi}\tilit{\text{\text{\texi}\texi{\texi{\texi{\texi{\texi}\texi{\texi{\tii}\til\tiit\til\til\tii}\\tii}\\tii}\\tii}\tiitx{\tiit}\tiittt{\texi{\texi{\ti

• Conclusion: r

Valid

р	q	r	~q	~p	~q->~p	~q V r	р	r
Т	Т	Т	F	F	Т	Т	Т	Т
Т	Т	F	F	F	Т	F	Т	F
Т	F	Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	F	Т	Т	F
F	Т	Т	F	Т	Т	Т	F	Т
F	Т	F	F	Т	Т	F	F	F
F	F	Т	Т	Т	Т	Т	F	Т
F	F	F	Т	Т	Т	Т	F	F

(4)

Premises: p/\q -> ~r, p V ~q, ~q -> p

• Conclusion: ~r

Not valid

р	q	r	~q	~r	р∧q	p/\q ->~r	pV~q	~q->p	~r
Т	Т	Т	F	F	Т	F	Т	Т	F
Т	Т	F	F	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F	Т	Т	Т	F
Т	F	F	Т	Т	F	Т	Т	Т	Т
F	Т	Т	F	F	F	Т	F	Т	F
F	Т	F	F	Т	F	Т	F	Т	Т
F	F	Т	Т	F	F	Т	Т	F	F
F	F	F	Т	Т	F	Т	Т	F	Т

(5)

Premises: p -> r, q -> rConclusion: (p V q) -> r

Valid

р	q	r	p V q	p -> r	q -> r	p V q -> r
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	F
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	F
F	F	Т	F	Т	Т	Т
F	F	F	F	Т	Т	Т

(6)

• Premises: p -> (q \lor r), \sim q \lor \sim r

• Conclusion: ~p V ~r

Not valid

р	q	r	~p	~q	~r	qVr	p->(qVr)	~q V ~r	~p \/ ~r
Т	Т	Т	F	F	F	Т	Т	F	F
Т	Т	F	F	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F	Т	Т	Т	F
Т	F	F	F	Т	Т	F	F	Т	Т
F	Т	Т	Т	F	F	Т	Т	F	Т
F	Т	F	Т	F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	F	Т	Т	Т	Т
F	F	F	Т	Т	Т	F	Т	Т	Т

* Exercise 3 (score = 20)

Check if the two statement form are equivalent, and expaian why:

- (p -> q)/(q -> r)/(r -> p)
- p /\ q /\ r

 Intuition: #1 = p, q, r have the same truth value, either true, or false

Solution 3

р	q	r	~p	~q	~r	p->q	q->r	r->p	(p->q)/\(q->r)/\(r->p)	p∧q∧r
Т	Т	Т	F	F	F	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	Т	F	Т	F	F
Т	F	Т	F	Т	F	F	Т	Т	F	F
Т	F	F	F	Т	Т	F	Т	Т	F	F
F	Т	Т	Т	F	F	Т	Т	F	F	F
F	Т	F	Т	F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	F	Т	Т	F	F	F
F	F	F	Т	Т	Т	Т	Т	Т	Т	F

```
* Exercise 4 (points = 20)
```

Use inference rules to show the following argument is valid

Premises - p V q - q -> r - p Λ s -> t - ~r - ~q → u Λ s Conclusion

– t

```
* Exercise 4 (points = 20)

Use inference rules to show the following argument is valid

Premises
- p V q
- q -> r
- p \lambda s -> t
- \simp r
- \simp q \to u \lambda s

Conclusion
- t
```

- From premises ~r and q->r, we have ~q using Modus Tollens
- From ~q and premise ~q -> u/\s, we have u and s following Modus Pollens and Conjunction
- From ~q and premise p\/q, we have p following Elimination
- From p, s, and p/\ s->t, we have t following conjunction and Modus Pollens

Proof techniques review

To finish by 4h25

Define numbers precisely

- A number n is odd if ____
- A number r is rational if ____
- A number r is irrational if ____
- A number p is prime if ____
- A number p is composite if ____

expand-factorize

- Expand (x+1)^2
- Expand (x-1)^2
- Expand (x+y)^2
- Expand (x+a)(x+b)
- Factorize x^2+2x+1
- Factorize x^2+3x+2
- Factorize x^2+4x+3
- Solve this equation of real numbers: $x^2 2x + 1 = 0$
- Solve this equation of real numbers: $x^2 3x + 2 = 0$

True or false: odd, even, prime, composite

- if a and b are integers, is 10a^2+64b+7 is odd
- if a and b are integers, is a^2+64b+7 is even
- Write the first five prime numbers

True or false

- If a is odd and b is even, then, 2a+3b is even.
- For any nonnegative real numbers x, we have $x^2 > x$.
- For all integers m and n, if mn = 1 then m = n = 1.
- For all integers m and n, if m + n is even then m and n are both even.
- There exists an integer n such that 6n² + 27 is prime
- There exists an integer m>=3 such that m^2-1 is prime
- composite + composite = composite

Two proof exercises (if time allows)

- 1. How to write a proof
- 2. Different ways to address a proof

Solution: How to write a proof: Prove rational + rational = rational

- Check whether the proposition is correct with intuition and examples.
- Begin a proof with "Proof."
- State the proposition formally.
- Which type is the proposition existential, universal?
- Which type of proof will you write? In particular, If existential, find an example; if universal, first fixing an arbitrary element in the domain set. Write "Suppose/Let..." to get started.
- Write the proof like an argument in an English essay; convince with rigor.
- End a proof with "QED."

How to write a proof: Prove rational + rational = rational

- Proof.
 - We want to prove: for any rational numbers x and y, x+y is a rational number.
 - Suppose x and y are rational numbers. Then x can be written as a/b, and y can be written as c/d, and x+y=(ad+bc)/bd
 - Therefore x+y is a rational number
- QED

Problem 6. [5 points]

Prove that if $n^2 + 8n + 20$ is odd, then n is odd for natural numbers n.

SBU 2021 Final

Solution method 1

Problem 6. [5 points]

Prove that if $n^2 + 8n + 20$ is odd, then n is odd for natural numbers n.

- Proof.
 - Proof by contraposition.
 - Instead of proving $n^2+8n+20$ is odd => n is even. We prove
 - (G) n is even => $n^2+8n+20$ is odd
 - That is,
 - for any natural number n, if n is even, then n^2+8n+20 is even
 - Suppose n is a natural number and n is even, we can immediately show
 n^2+8n+20 is even since it is a sum of three even numbers. Thus, (G) is proved.
- QED

Solution method 2

Problem 6. [5 points]

Prove that if $n^2 + 8n + 20$ is odd, then n is odd for natural numbers n.

- Proof.
 - We want to prove
 - (G) for any natural number n, if n^2 + 8n + 20 is odd, then n is odd
 - Proof by contradiction. Namely, We negate (G) above, obtaining
 - (~G) there exists a natural number n, such that n^2+8n+20 is odd, and n is even.
 - The above (~G) is a contradiction since for any natural number n, n^2+8n+20 even whenever n is even. In other words, (~G) is false. Thus (G) is proved.
- QED

Solution method 3

Problem 6. [5 points]

Prove that if $n^2 + 8n + 20$ is odd, then n is odd for natural numbers n.

- Proof.
 - We want to prove
 - for any natural number n, if n^2 + 8n + 20 is odd, then n is odd
 - Suppose n is a natural number and n^2+8n+20 is odd. We need to prove
 - (G) n is odd
 - Proof by contradiction. Suppose n is even. Then n^2+8n+20 must be even, which contradicts with the assumption that n^2+8n+20 is odd. In other words, (~G) -> False. Thus (G) must be true.
- QED

That is all for today

- Homework 02
- Exercises on numbers
- Exercises on proof

Thank you for your attention!