Produit scalaire dans l'espace

I. Produit scalaire dans l'espace

1. <u>Différentes expressions du produit scalaire.</u>

Définition:

Soient \vec{u} et \vec{v} deux vecteurs de l'espace, et A,B et C trois points tels que:

 $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. Il existe au moins un plan P contenant les points A, B et C.

On appelle **produit scalaire** de \vec{u} et de \vec{v} le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} calculé dans le plan P.

Toutes les propriétés dans le plan vues en Première sont conservées dans l'espace.

<u>Définition 1:</u> (rappel)

Soient \vec{u} et \vec{v} deux vecteurs du plan. On appelle produit scalaire de \vec{u} et de \vec{v} , le nombre réel défini par: \vec{u} . $\vec{v} = \frac{1}{2}(\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$

d'où si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - CB^2)$.

<u>Définition 2:</u> (rappel)

Soient \vec{u} et \vec{v} deux vecteurs du plan.

- Si l'un des deux vecteurs est nul alors le produit scalaire est nul.
- Si les deux vecteurs sont non nuls alors $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v})$ d'où $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$

<u>Définition 3:</u> Avec des projections orthogonales. (rappel)

Soient A, B et C 3 points et H le projeté orthogonal de B sur (AC).

• $\overrightarrow{AB} \cdot \overrightarrow{AC} = AH \times AC$ Si \overrightarrow{AC} et \overrightarrow{AH} sont de même sens.

• $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AH \times AC$ Si \overrightarrow{AC} et \overrightarrow{AH} sont de sens contraires.

• $\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.\overrightarrow{HK}$ H étant le projeté orthogonal de C sur (AB) et K celui de D sur (AB)

Propriétés:

Pour tout vecteur \vec{u} , \vec{v} , et \vec{w} et pour tout réel k, on a:

- $\vec{u} \cdot \vec{u} = \vec{u}^2 = ||\vec{u}||^2$ est appelé carré scalaire de \vec{u} .
- $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- $(k\vec{u}) \cdot \vec{v} = k \times (\vec{u} \cdot \vec{v}) = \vec{u} \cdot (k\vec{v})$
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2$
- $\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$
- $\|\vec{u} \vec{v}\|^2 = (\vec{u} \vec{v})^2 = \vec{u}^2 2\vec{u} \cdot \vec{v} + \vec{v}^2$

Application 1:

On considère le tétraèdre ABCD, dans lequel la face ABC est un triangle équilatéral de côté 1, et les faces ACD et BCD sont des triangles isocèles rectangles en C.

- 1. Calculer les produits scalaires \overrightarrow{AD} . \overrightarrow{CB} , puis \overrightarrow{AD} . \overrightarrow{AB} .
- 2. Soit H le pied de la hauteur issue de B dans le triangle ABD. En exprimant d'une autre façon le produit scalaire \overrightarrow{AD} . \overrightarrow{AB} , déterminer la position de H sur le segment [AD].

2. Orthogonalité

Propriété:

- \vec{u} et \vec{v} deux vecteurs non nuls sont orthogonaux si, et seulement si, $\vec{u} \cdot \vec{v} = 0$
- Deux droites D et D' de vecteurs directeurs \vec{u} et $\vec{u'}$ sont orthogonales si, et seulement si, \vec{u} . $\vec{u'} = 0$

Application 2:

SABCD est une pyramide à base carrée de sommet S dont toutes les arêtes ont la même longueur a. Calculer, en fonction de a, les produits scalaires suivants:

$$\overrightarrow{\bullet SA}.\overrightarrow{SB}$$

•
$$\overrightarrow{SA}$$
. \overrightarrow{SC}

•
$$\overrightarrow{SA}$$
. \overrightarrow{AC}

•
$$\overrightarrow{SC}.\overrightarrow{AB}$$

Application 3:

Soit ABCD un tétraèdre régulier d'arête de longueur a.

- 1. Calculer les produits scalaires $\overrightarrow{AB}.\overrightarrow{AC}$ et $\overrightarrow{AB}.\overrightarrow{AD}$.
- 2. Calculer \overrightarrow{AB} . \overrightarrow{CD} . Que peut-on en déduire pour les droites (AB) et (CD)?
 - 3. Expression analytique du produit scalaire.

Propriété:

Dans un repère orthonormé $(O, \vec{\imath}, \vec{j}, \vec{k})$, si les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives (x; y; z) et (x'; y'; z') alors $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$.

En particulier \vec{u} . $\vec{u} = x^2 + y^2 + z^2$ et donc $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

Application 4:

L'espace est muni d'un repère orthonormé. On considère les points A(1;5;-3), B(3;9;3) et C(9;7;-7). Soit I le milieu de [BC].

- 1. Démontrer que le triangle ABC est rectangle en A.
- 2. Déterminer une valeur approchée à 0,01 près de l'angle \widehat{BAI} en radians.

II. Vecteur normal, projeté orthogonal

1. Vecteur normal à un plan.

<u>Définition</u>: Un vecteur non nul \vec{n} de l'espace est **normal** à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P.

Propriété : - Soit un point A et un vecteur \vec{n} non nul de l'espace.

L'ensemble des points M tels que \overrightarrow{AM} . $\overrightarrow{n}=0$ est un plan de l'espace.

- Réciproquement, soit P un plan de l'espace. Pour tout point A de P et tout vecteur normal \vec{n} de P, P est l'ensemble des points tels que \overrightarrow{AM} . $\vec{n}=0$

<u>Théorème</u>: Un vecteur non nul \vec{n} de l'espace est normal à un plan P, s'il est orthogonal à deux vecteurs non colinéaires de P.

Méthode: Déterminer si un vecteur est normal à un plan

Il faut montrer qu'il est normal à 2 vecteurs non colinéaires du plan

Vidéo https://youtu.be/aAnz_cP72Q4

Application 5:

ABCDEFGH est un cube d'arête a.

- 1. Calculer \overrightarrow{AG} , \overrightarrow{FH} .
- 2. Démontrer que \overrightarrow{AG} est un vecteur normal au plan (FHC).

<u>Méthode</u>: Déterminer un vecteur normal à un plan défini par 2 vecteurs non colinéaires On doit résoudre $\begin{cases} \vec{n} \cdot \vec{u} = 0 \\ \vec{n} \cdot \vec{v} = 0 \end{cases}$

Vidéo https://youtu.be/IDBEI6thBPU

Application 6:

Soit $\vec{u}(1;2;-3)$ et $\vec{v}(-2;1;3)$ 2 vecteurs dirigeant un plan P. Déterminer $\vec{n}(a;b;c)$, un vecteur normal de P.

2. Projection orthogonale d'un point sur une droite

<u>Définition</u>: Soit un point A et une droite *d* de l'espace.

Le projeté orthogonal de A sur *d* est le point H appartenant à *d* tel que la droite (AH) soit perpendiculaire à la droite *d*

3. Projection orthogonale d'un point sur un plan

<u>Propriété</u>: Le projeté orthogonal d'un point M sur un plan P est le point de P le plus proche de M.

Démonstration au programme :

Soit H le projeté orthogonal du point M sur le plan P.

Supposons qu'il existe un point *K* du plan *P* plus proche de *M* que l'est le point *H*.

<u>Méthode</u>: Utiliser la projection orthogonale pour déterminer la distance d'un point à un plan

Vidéo https://youtu.be/1b9FtX4sCmQ

Application 7:

On considère un cube $\overrightarrow{ABCDEFGH}$ et le repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$. Calculer la distance du point G au plan BDE.

III. Equations cartésiennes d'un plan

Propriété: Caractérisation d'un plan par un point et un vecteur normal.

Soit \vec{n} un vecteur non nul et A un point de l'espace. L'unique plan P passant par A et de vecteur normal \vec{n} est l'ensemble des points M tels que \overrightarrow{AM} . $\vec{n}=0$

Propriété: Equation cartésienne d'un plan

- Dans un repère orthonormé, un plan P de vecteur normal $\vec{n}(a;b;c)$ a une équation de la forme ax + by + cz + d = 0
- Réciproquement, si a, b, et c ne sont pas tous trois nuls, l'ensemble des points M(x; y; z) tels que ax + by + cz + d = 0 est un plan de vecteur normal $\vec{n}(a; b; c)$.

Démonstration:

- Soit un point $A(x_A; y_A; z_A)$ de P.

$$M(x; y; z) \in P \iff$$

 \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux $\Leftrightarrow \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \Leftrightarrow$

$$a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$$

$$\Leftrightarrow ax + by + cz + d = 0$$

avec
$$d = -ax_A - by_A - cz_A$$
.

- Réciproquement, supposons par exemple que $a \neq 0$ (a, b et c sont non tous nuls). On note E l'ensemble des points M(x; y; z) vérifiant l'équation

$$ax + by + cz + d = 0$$

Alors le point $A\left(-\frac{d}{a};0;0\right)$ vérifie l'équation . ax + by + cz + d = 0

Et donc $A \in E$.

Soit un vecteur \vec{n} (a; b; c). Pour tout point M(x; y; z), on a:

$$\overrightarrow{AM} \cdot \overrightarrow{n} = a\left(x + \frac{d}{a}\right) + b(y - 0) + c(z - 0) = ax + by + cz + d = 0.$$

E est donc l'ensemble des points M(x; y; z) tels que \overrightarrow{AM} . $\overrightarrow{n} = 0$.

Donc l'ensemble E est le plan passant par A et de vecteur normal \vec{n} .

<u>Méthode</u>: Déterminer une équation cartésienne de plan On utilise un vecteur normal au plan et un point du plan

Vidéo https://youtu.be/s4xqI6IPQBY

Application 8:

L'espace est muni d'un repère orthonormé.

Donner une équation cartésienne du plan P passant par le point A (-2; 1; 3) et orthogonal à (BC) avec B(1; -2; 2) et C(4; 1; -1).

Application 9:

L'espace est muni d'un repère orthonormé.

- 1. Justifier que les points A (3; 1; 2) , B(5; 1; -4) et C(-1; 0; 3) déterminent un plan
- 2. Déterminer une équation cartésienne de ce plan . (on déterminera un vecteur normal au plan)

IV. <u>Intersection de droites et de plans</u>

1. <u>Intersection de deux droites de l'espace</u>

Des droites de l'espace peuvent être :

Méthode : Déterminer la position de 2 droites

Soient \vec{u} et \vec{v} vecteurs directeurs respectifs de d et d'.

- Si \vec{u} et \vec{v} sont colinéaires les droites peuvent être
 - parallèles confondues. Dans ce cas un point quelconque de d appartiendra à d'.
 - > strictement parallèles. Un point de d n'appartiendra pas à d'.
- Si \vec{u} et \vec{v} ne sont pas colinéaires les droites peuvent être
 - > sécantes. On détermine leur point d'intersection. S'il n'existe pas, elles sont
 - > non coplanaires.

Il y a donc 4 cas.

Vidéo

https://www.bing.com/videos/search?q=droites+paralleles+dans+l%27espace&&view =detail&mid=D08980A8DA396EDEF89AD08980A8DA396EDEF89A&&FORM=V RDGAR&ru=%2Fvideos%2Fsearch%3Fq%3Ddroites%2Bparalleles%2Bdans%2Bl%2527espace%26FORM%3DHDRSC3

- Vidéo https://www.youtube.com/watch?v=MG2HiGfRzPU
- Vidéo https://www.youtube.com/watch?v=6k9_kIVlwgw
- Vidéo https://www.youtube.com/watch?v=4eWgwFBjOzA

Application 10:

Dans chacun des cas suivants, déterminer la position relative des droites d et d'.

a)
$$d \begin{cases} x = 3t + 1 \\ y = 4t \quad t \in \mathbb{R} \\ z = -t + 1 \end{cases}$$
 et
$$d' \begin{cases} x = -9s + 4 \\ y = -12s + 4 \quad s \in \mathbb{R} \\ z = 3s \end{cases}$$

b)
$$\operatorname{d} \begin{cases} x = t+1 \\ y = -3t+2 & t \in \mathbb{R} \\ z = -3t+3 \end{cases} \quad \operatorname{et} \quad \operatorname{d'} \begin{cases} x = s \\ y = -3s-3 & s \in \mathbb{R} \end{cases}$$

c) d
$$\begin{cases} x = 2t - 1 \\ y = t \\ z = -3t + 1 \end{cases}$$
 et d'
$$\begin{cases} x = -6s + 3 \\ y = -3s + 2 \\ z = -6 + 9s \end{cases}$$

d)
$$d \begin{cases} x = t+1 \\ y = 2t-3 & t \in \mathbb{R} \\ z = -t+2 \end{cases}$$
 et $d' \begin{cases} x = 3s+2 \\ y = -s-1 & s \in \mathbb{R} \\ z = s+1 \end{cases}$

Application 11:

Dans un repère orthonormé, on considère les droites d et d' d'équations paramétriques:

$$\mathbf{d} \begin{cases} x = 3t + 1 \\ y = 2t \\ z = -t + 1 \end{cases} \quad \text{et} \quad \mathbf{d}' \begin{cases} x = 2 + s \\ y = 1 \\ z = 1 + 3s \end{cases} \quad \mathbf{s} \in \mathbb{R}$$

Montrer que d et d' sont orthogonales. Sont- elles perpendiculaires?

2. Intersection de deux plans.

Des plans de l'espace peuvent être:

Méthode : Déterminer la position de 2 plans

Soient \vec{n} et $\vec{n'}$ des vecteurs normaux respectifs de P et P'.

- Si \vec{n} et $\vec{n'}$ sont colinéaires les plans peuvent être
 - > parallèles confondus. Dans ce cas un point quelconque de P appartiendra à
 - > strictement parallèles. Un point de P n'appartiendra pas à P'.
- Si \vec{n} et $\vec{n'}$ ne sont pas colinéaires les plans sont sécants suivant une droite dont on détermine une équation paramétrique.

	P_1 et P_2 parallèles	P_1 et P_2 sécants	
Positions relatives - Plan P_I de	$\sqrt{n_2}$	P_2 $\overrightarrow{n_2}$	P_1 et P_2 perpendiculaires P_2
vecteur normal $\overrightarrow{n_1}$ - Plan P_2 de vecteur normal $\overrightarrow{n_2}$	P_2 $\overrightarrow{n_1}$	$\overline{n_1}$	$\overrightarrow{n_2}$ $\overrightarrow{n_1}$
Vecteurs	$\vec{n_1}$ et $\vec{n_2}$ colinéaires	\vec{n}_1 et \vec{n}_2 non colinéaires	$\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ orthogonaux $\overrightarrow{n_1}$. $\overrightarrow{n_2} = 0$

Vidéo https://youtu.be/4dkZ0OQQwaQ

Application 12:

On considère les plans P et P' d'équations respectives:

$$P: 2x + y - 2 = 0$$

P':
$$x + 3y + 7z - 11 = 0$$

- 1. Démontrer que les deux plans sont sécants.
- 2. Déterminer une équation paramétrique de la droite d, intersection de P et Ρ'.

Application 13:

Soient trois plans P, Q et R d'équations respectives:

$$P: x + y + z + 3 = 0$$

Q:
$$2x + 2y + 2z + 7 = 0$$
 R: $3x + y + 2 = 0$

$$R: 3x + y + 2 = 0$$

- 1. Déterminer un vecteur normal à chaque plan.
- 2. Etudier l'intersection des plans P et Q.
- 3. Etudier l'intersection des plans P et R.

Propriété:

Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal à un vecteur normal de l'autre.

Méthode : Démontrer que deux plans sont perpendiculaires

On montre que leurs vecteurs normaux sont orthogonaux

Vidéo https://youtu.be/okvo1SUtHUc

Application 14:

Dans un repère orthonormé, les plans P et P' ont pour équations respectives 2x + 4y + 4z - 3 = 0 et 2x - 5y + 4z - 1 = 0.

Démontrer que les plans P et P' sont perpendiculaires.

4. <u>Intersection d'une droite et d'un plan.</u>

Un plan et une droite de l'espace peuvent être:

d est contenue dans P

d est parallèle à P

d et P sont sécants

Méthode : Déterminer la position d'une droite et d'un plan

Soit \vec{u} un vecteur directeur de d et \vec{n} un vecteur normal de P.

- Si $\vec{u} \cdot \vec{n} = 0$ alors la droite d peut être
 - contenue dans le plan P . Dans ce cas, tout point de d est contenue dans P.
 - > strictement parallèle à P.
- Si $\vec{u} \cdot \vec{n} \neq 0$ alors la droite d est sécante à P en un point dont on détermine les coordonnées.

	d et P sécants	d et P parallèles	
Positions relatives	\vec{n}	d et P strictement parallèles → Å	d incluse dans P
- Droite d de	\overrightarrow{u}	\vec{n}	\vec{n}
vecteur directeur <i>u</i> - Plan <i>P</i> de	P	d	P
vecteur normal \vec{n}			\overrightarrow{u}
voctour morman		P	
Vecteurs	\vec{u} et \vec{n} non orthogonaux	\vec{u} et \vec{n} orthogonaux	
Produit scalaire	$\vec{u}.\vec{n} \neq 0$	$\vec{u}.\vec{n}=0$	

Vidéo https://youtu.be/BYBMauyizhE

Application 15:

Soient A (2; 1; -2) et B (-1; 2; 1). P le plan d'équation: 2x + 2y + z - 2 = 0 Prouver que (AB) et P sont sécants et déterminer les coordonnées de leur point d'intersection.

Application 16:

L'espace est muni d'un repère orthonormé $(0, \vec{l}, \vec{j}, \vec{k})$.

Soit le plan P d'équation 4x - 2y + 6z = 1 et d la droite dirigée par le vecteur

 $\vec{u} = \vec{i} + 5\vec{j} + \vec{k}$ passant par A (-1; 1; 2).

Prouver que P et d sont strictement parallèles.