MA0505 - Análisis I

Lección XX: La Integral de Lebesgue III

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- La Integral de Lebesgue
 - Resta de Integrales
 - El Lema de Fatou
 - Convergencia Dominada

Si $f, g : E \to [0, \infty]$ son medibles tales que $0 \leqslant g \leqslant f$, entonces

$$\int_{E} f(x)dx = \int_{E} ((f(x) - g(x)) + g(x)) dx$$
$$= \int_{E} (f(x) - g(x)) dx + \int_{E} g(x) dx.$$

Luego si $\int_{F} g(x) dx < \infty$, entonces

$$\int_{E} (f(x) - g(x)) dx = \int_{E} f(x) dx - \int_{E} g(x) dx$$

Un Ejemplo

Sean $f_k : E \to [0, \infty]$ medibles para $1 \le k$. Entonces si llamamos

$$g_m = \sum_{k=1}^m f_k,$$

tenemos que $0 \leqslant g_m \leqslant g_{m+1}$. Y luego

$$\int_{E} \left(\sum_{k=1}^{\infty} f_{k}\right) dx = \int_{E} \lim_{m \to \infty} g_{m}(x) dx = \lim_{m \to \infty} \int_{E} \sum_{k=1}^{m} f_{k}(x) dx$$
$$= \lim_{m \to \infty} \sum_{k=1}^{m} \int_{E} f_{k}(x) dx = \sum_{k=1}^{\infty} \int_{E} f_{k}(x) dx.$$

Sea E = [0, 1], definimos

$$f_k(x) = \begin{cases} k & \text{si } 0 \leqslant x \leqslant \frac{1}{k}. \\ 0 & \text{si } \frac{1}{k} \leqslant x \leqslant 1. \end{cases}$$

Entonces vale que $\int\limits_E f_k(x)\mathrm{d}x=1$, pero lím $_{k\to\infty}f_k=0$. Nos preguntamos:

¿Cuándo
$$\lim_{k\to\infty}\int\limits_E f_k(x)\mathrm{d}x=\int\limits_E \lim_{k\to\infty} f_k(x)\mathrm{d}x$$
?

Fatou

Teorema (Fatou)

Sea $f_k: E \to [0,\infty]$ una sucesión de funciones no negativas. Entonces

$$\int\limits_{E} \liminf_{k\to\infty} f_k \mathrm{d}x \leqslant \liminf_{k\to\infty} \int\limits_{E} f_k \mathrm{d}x.$$

Recordemos que

$$\liminf_{k\to\infty} f_k = \sup_{k\geqslant 1} \inf_{m\geqslant k} f_m = \lim_{k\to\infty} \inf_{m\geqslant k} f_m.$$

Como $g_k = \inf_{m \geqslant k} f_m$ es creciente, entonces

$$\int\limits_{F} (\liminf_{k\to\infty} f_k) \mathrm{d}x = \lim_{k\to\infty} \int\limits_{F} \inf_{m\geqslant k} f_m \mathrm{d}x.$$

Prueba de Fatou

Note que $\inf_{m \geqslant k} f_m \leqslant f_k$ para $k \geqslant 1$. Entonces para $k \geqslant m$

$$\int\limits_{E} (\inf_{m\geqslant k} f_m(x)) \mathrm{d}x \leqslant \int\limits_{E} f_k(x) \mathrm{d}x.$$

Entonces

$$\liminf_{k\to\infty}\int\limits_{E}(\inf_{m\geqslant k}f_m(x))\mathrm{d}x\leqslant \liminf_{k\to\infty}\int\limits_{E}f_k(x)\mathrm{d}x.$$

Por monotonía vale lím $\inf_{k\to\infty}\int\limits_E g_k\mathrm{d}x=\lim_{k\to\infty}\int_E g_k\mathrm{d}x.$

Entonces concluimos que

$$\int\limits_{E} \liminf_{k \to \infty} f_k \mathrm{d}x \leqslant \liminf_{k \to \infty} \int\limits_{E} f_k \mathrm{d}x.$$

Note que si $f_k : E \to [0, \infty]$ es medible y $\int_E f_k(x) dx \leq M$, entonces $\int_E f(x) dx \leq M$.

Teorema (Convergencia Dominada)

Sea $\{f_k\}_{k=1}^{\infty}$ una sucesión de funciones medibles no negativas. Si valen

- 1. $\lim_{k\to\infty} f_k = f$ c.p.d. en E.
- 2. Si $0 \leqslant f_k \leqslant \phi$ c.p.d. para $k \geqslant 0$ y $\int_E \phi(x) dx < \infty$.

Entonces

$$\lim_{k\to\infty}\int\limits_E f_k(x)\mathrm{d}x=\int\limits_E f(x)\mathrm{d}x.$$

Prueba TCD

- Primero por Fatou: $\int_E f(x) dx \leq \liminf_{k \to \infty} \int_E f_k dx$.
- Considere así $h_k = \phi f_k$, entonces

$$\int_{E} \liminf_{k\to\infty} (\phi - f_k) \mathrm{d}x \leqslant \liminf_{k\to\infty} \int (\phi - f_k) \mathrm{d}x.$$

■ Note que $\liminf_{k\to\infty} (\phi - f_k) = \phi - f$.

Continuamos la Prueba

Por otro lado tenemos que

$$\lim_{k \to \infty} \inf_{E} \int_{E} (\phi - f_{k})(x) dx = \lim_{k \to \infty} \inf_{k \to \infty} \left(\int_{E} \phi(x) dx - \int_{E} f_{k}(x) dx \right) \\
= \int_{E} \phi(x) dx - \lim_{k \to \infty} \int_{E} f_{k}(x) dx.$$

¿Por qué vale la última igualdad? Así concluimos que

$$\limsup_{k\to\infty}\int\limits_E f_k(x)\mathrm{d}x\leqslant\int\limits_E f(x)\mathrm{d}x.$$

Resumen

- La linealidad de la integral con restas.
- El lema 1 de Fatou.
- El teorema 2 de Convergencia Dominada.

Ejercicios

- Lista 20
 - El detalle en la prueba del teorema 2 de Convergencia Dominada.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.