

GM65 条码识读模块 用户设置手册

杭州城章科技有限公司 V1.3 2016 年 09

目 录

1	模块:	介绍	1
	1.1	简介	1
	1.2	技术参数	1
	1.3	模块尺寸图	3
	1.4	设置码开关	3
	1.5	恢复出厂设置	5
2	通讯	接口	6
	2.1	串行通讯接口	6
	2.2	USB 接口	7
	2.3	USB 虚拟串口	7
3	识读	模式	8
	3.1	连续模式	8
	3.2	感应模式	9
	3.3	手动模式	10
	3.4	命令触发模式	11
4	照明.	与瞄准	12
	4.1	照明	12
	4.2	瞄准	12
5	提示	输出	13
	5.1	所有提示音	13
	5.2	识读成功提示音	13
	5.3	解码状态提示符	14
	5.4	数据编码格式	14
	5.5	各国键盘设置	14
	5.6	图像翻转	15
	5.7	读取版本信息	15
6	数据	编辑	16
	6.1	前缀	16
	6.2	后缀	17
	6.3	CODE ID	17
	6.4	结束符	20
	6.5	Data 段截取	20
	6.6	RF 信息	22
7	条码	类型使能/禁止配置	24
	7.1	所有条码可解	
	7.2	条码旋转功能	
	7.3	EAN13	
	7.4	EAN8	
	7.5	UPCA	
	7.6	UPCE0	

	7.7	UPCE1	25
	7.8	Code128	25
	7.9	Code39	26
	7.10	Code93	27
	7.11	CodeBar	27
	7.12	QR	28
	7.13	Interleaved 2 of 5	28
	7.14	Industrial 25	29
	7.15	Matrix 2 of 5	29
	7.16	Code11	30
	7.17	MSI	30
	7.18	RSS	31
	7.19	DM	32
	7.20	PDF417	32
8	用串口	1命令	33
	8.1CR	C 算法	33
	8.2	读标志位操作	33
	8.3	写标志位操作	34
	8.4	标志位保存到 EEPROM 指令	35
	8.5	标志位列表	36
9 陈	∄ Α:	常用串口指令	49
10	附录 B:	Code ID 列表	50
11	附录 C:	ASCII 码表	51
12	附录 D:	数据码	56

1 模块介绍

1.1 简介

MG65 条码识读模块,一款性能优良的扫描引擎,不仅能够轻松 读取各类一维条码,而且可以高速读取二维条码,对线性条形码具有 非常高的扫描速率,针对纸质条码及显示屏上的条码,也都能轻松 扫描; GM65 条码识读模块是在图像智能识别算法及在此基础上开发 出先进的条码解码算法,可以非常容易且准确地识读条码符号,极大的简化了条码识读产品的开发难度。GM65 是建立在符合最苛刻的扫描要求,提供在完全黑暗的环境,以及过大的温度范围内相一致的 扫描性能。

1.2 技术参数

参数模式

默认识读模式		自动模式		
单次读码时间		3s	参数范围: 0.1-25.5 秒,步长为 0.1s; 0	
华 //			表示单次解码时间不限	
读码间隔		18	参数范围: 0.1-25.5 秒,步长为 0.1s; 0	
医阿미爾			表示单次解码时间不限	
输出编码		GBK 编码输出	GBK 编码、UNICODE 格式、 BIG5 格式	
挨口方式		标准 USB 键盘输出	USB 键盘输出、串口输出、USB 虚拟串	
接口方式		你任 USD 娃鈕襉山	口输出	
	波特率	9600	波特率可自行设置,详见 2.1 节	
当使用	校检	无校检		
TTL-232 接口	数据位	8位		
时	停止位	1位		
	硬件流控	无硬件流控		
串口触发模式	单次读码时间	5s	参数范围: 0.1-25.5 秒,步长为 0.1s; 0	
中口庶及疾入	平		表示单次解码时间不限	

电气特性

序号	项目	参数	备注
1	工作电压	DC 4.2 - 6.0V	
2	待机电流	30mA	
3	工作电流	160mA	
4	休眠电流	3mA	

工作特性

1	光源	白光
2	瞄准	红光瞄准
3	识读角度	旋转 360°,倾斜±65°,偏转±60°
4	分辨 率	648x 488
5	扫描角度	35°(水平),28°(垂直)

1.3 模块尺寸图(单位: mm)

电路板示意图

扫描区域分布(这些距离的测量都是在办公室环境里(250 lux))

条码类型	密度	最小距离	最大距离	
	0.125 mm	4.0 cm	9.0 cm	
Code 39	(5 mils)			
Code 39	0.375 mm	4.0 cm	25.0cm	
	(15 mils)	4.0 CIII		
UPC/EAN	0.375 mm	4.0 cm	25.0cm	
UPC/EAIN	(15 mils)	4.0 CIII		
Code93	0.254 mm	4.0 cm	21.0cm	
Codeas	(10 mils)	4.0 CIII	Z 1.00111	

1.4 设置码开关

通过开启设置码功能,可通过扫描设置码来进行识读模块的参数配置。

关闭设置码

输出设置码内容

输出设置码内容

1.5 保存和取消

读取数据码后要扫描"保存"设置码才能将读取到的数据保存下来。如果在读取数据码时出错,您可以取消读取错误的数据。

如读取某个设置码,并依次读取数据 "A"、"B"、"C"、"D",此时若读取 "取消前一次读的一位数据",将取消最后读的数字 "D",若读取 "取消前面读的一串数据"将取消读取到的数据 "ABCD",若读取 "取消修改设置"将取消读取到的数据 "ABCD"并退出该修改设置。

保存

取消前一次读的一位数据

取消前面读的一串数据

取消修改设置

1.6 恢复出厂设置

通过扫描"恢复出厂设置"条码,可将识读模块的所有参数恢复到出厂时的配置。

出厂设置

2 通讯接口

GM65 识读模块提供 TTL-232 串行通讯接口与主机进行通讯连接。经由通讯接口,可以接收识读数据、对识读模块发出指令进行控制,以及更改识读模块的功能参数等。

2.1 串行通讯接口

串行通讯接口是连接识读模块与主机设备(如 PC、POS 等设备)的一种常用方式。当识读模块与主机使用串口线连接时,系统默认采用串行通讯模式。使用串行通讯接口时,识读模块与主机设备间必须在通讯参数配置上完全匹配,才可以确保通讯顺畅和内容正确。

识读模块的串行通讯接口使用 TTL 电平信号(TTL-232),此接口可适应大多数系统架构。如系统需要使用 RS-232 形式的架构,需要在外部增加转换电路。

识读模块默认的串行通讯参数如表 **2-1** 所示。其中识读模块的波特率可通过串口命令进行修改,但 其余参数不可修改。

表 2-1 默认的串行通讯参数

参数	默认
串行通讯类型	标准 TTL-232
波特率	9600
校验	无
数据位	8
停止位	1
硬件流控	无

波特率设置

14400bps

19200bps

38400bps

57600bps

115200bps

2.2 USB接口

当识读模块与主机使用 USB 线连接时,可通过扫描 USB PC 设置码将识读模块配置成标准键盘输入模式。

USB PC 键盘

2.3 USB 虚拟串口

当识读模块与主机使用 USB 线连接时,可通过扫描 USB 虚拟串口设置码将识读模块配置成虚拟串口输出模式。

USB 虚拟串口

3 识读模式

3.1 连续模式

设置完毕后,无需触发,识读模块立即开始读码,当读码成功输出信息或单次读码时间结束后,识读模块等待一段时间(可设置)会自动开始下一次读码。若未发生下述情况,识读模块将按以上方式循环工作:读码过程中用户也可单击触发键手动暂停读码。单击触发键识读模块将继续循环读码。

默认连续模式

单次读码时长

在连续识读模式下,该参数指在识读成功前允许识读模块持续进行采集识别的最大时长。识读成功或单次读码超时后,识读模块将进入不采集识读的间隔期。单次读码时长设置范围为 0.1~25.5 秒,步长为 0.1 秒; 当设置为 0 时,表示读码时间无限长。默认时长为 5.0 秒。

识读间隔时长

该参数指相邻两次识读的间隔时间,即识读模块在结束上一次读码后(不论识读成功与否),在设定的间隔时间内不进行采集识读,直到间隔时间结束后才进行下一次读码。识读间隔时长的设置范围为0~25.5 秒,步长为 0.1 秒。默认间隔时长为 1.0 秒。

默认 1000ms

3.2 感应模式

设置完毕后,无需触发,识读模块立即开始监测周围环境的亮度,在场景发生改变时,识读模块等待设定的稳像时间结束后才开始读码。在识读成功输出信息或单次读码超时后,识读模块需间隔一段时间(可设置)才重新进入监测状态。若未发生下述情况,识读模块将按以上方式循环工作:在单次读码时间内未扫描到条码,识读模块将自动暂停读码并且进入监测状态。在感应识读模式下,识读模块也可在按下触发键后开始读码,当读码成功输出信息或松开触发键后继续监测周围环境的亮度。

感应模式

单次读码时长

在感应识读模式下,该参数指在识读成功前允许识读模块持续进行采集识别的最大时长。识读成功或单次读码超时后,识读模块将进入不采集识读的间隔期。单次读码时长设置范围为 0.1~25.5 秒,步长为 0.1 秒。当设置为 0 时,表示读码时间无限长。默认时长为 5.0 秒。

识读间隔时长

在识读成功输出信息或单次读码超时后,识读模块需间隔一段时间(可设置)才重新进入监测状态。 识读间隔时长的设置范围为 0~25.5 秒,步长为 0.1 秒。默认间隔时长为 1.0 秒。

默认 1000ms

稳像时长

稳像时长指在感应识读模式下,侦测到场景变化的识读模块在读码之前需要等待图像稳定的时间。稳 像时长设置范围为 0~25.5 秒,步长为 0.1 秒。默认稳像时长为 0.4 秒。

3.3 手动模式

手动识读模式为默认识读模式。在此模式下,识读模块在按下触发键后开始读码,在读码成功输出信 息或松开触发键后停止读码。

手动模式

在此模式下, 识读模块默认空闲一定时间后, 自动进入休眠模式, 可通过如下设置码进行设置

启用休眠功能

禁用休眠功能

默认识读模块空闲 30 秒后自动进入休眠,可通过按键唤醒,退出休眠模式后设备会重启。

3.4 命令触发模式

在这种模式下,识读模块接收到主机发送的扫描命令(即标志位 0x0002 的 bit0 写入"1")时开始读码,在读码成功输出信息或单次读码时间结束后停止读码。

命令触发模式

注:在命令触发模式下,触发扫描的串口指令为: 7E 00 08 01 00 02 01 AB CD; 识读模块收到触发指令后,会先输出七个字节的回应信息并同步启动扫描(回应信息内容: 02 00 00 01 00 33 31)

单次读码时长

在命令触发识读模式下,该参数指在识读成功前允许识读模块持续进行采集识别的最大时长。单次读码时长设置范围为 0.1~25.5 秒,步长为 0.1 秒。当设置为 0 时,表示读码时间无限长。默认时长为 5.0 秒。

4 照明与瞄准

4.1 照明

照明灯可为拍摄识读提供辅助照明,光束照射在识读目标上,提高识读性能和弱环境光照时的适应能力。用户可根据应用环境将其设置为以下状态中的一种:

普通 (默认设置) : 照明灯在拍摄识读时亮起,其它时间熄灭。

常亮: 照明灯在识读模块开机后, 持续发光。

无照明: 在任何情况下照明灯都不亮起。

常亮

无照明

4.2 瞄准

GM65 投射的瞄准光束可帮助用户在拍摄识读时找到最佳识读距离。 用户可根据应用环境选择以下任一模式。

普通 (默认设置) : 识读模块只在拍摄识读时投射瞄准光束。

常亮: 识读模块上电后, 持续投射瞄准光束。

无瞄准: 在任何情况下瞄准光束都熄灭。

默认普通

常亭

无瞄准

5 提示输出

5.1 所有提示音

蜂鸣器声音

默认声音大

声音小

读取"启动静音"可关闭所有提示音。读取"关闭静音"即可取消静音设置。

启动静音

默认关闭静音

5.2 识读成功提示音

读取"关闭解码成功提示音"可以禁止条码识读成功提示音响起,读取"开启解码成功提示音"即可恢复条码识读成功提示。

默认开启识读成功提示音

关闭识读成功提示音

读取"提示音持续时间"可对识读成功提示音的持续时间进行设置。默认 60ms

提示音持续时间-30ms

默认提示音持续时间-60ms

提示音持续时间-90ms

提示音持续时间-120ms

5.3 解码状态提示符

为了让主机能快速了解当前解码是否成功,可以开启此功能。

读取"输出解码状态提示符"开启此功能后,若识读不成功,识读模块会发送提示字符"F";若识别成功则在解码数据前添加提示字符"S"。

默认不输出解码状态提示符

输出解码状态提示符

5.4 数据编码格式

为了让主机按照指定的编码格式打印中文数据,可以通过读取"数据编码格式"来进行设置。

注: GBK 格式可用于记事本, UNICODE 格式可用于 WORD 及常用聊天工具的输入框, BIG5 格式支持繁体中文。

默认数据编码格式 GBK

数据编码格式 UNICODE

数据编码格式 BIG5

5.5 各国键盘设置

为了让各国的主机均能使用设备,可以通过读取对应国家的"键盘"来进行设置。

默认键盘-美国

键盘-捷克

键盘-法国

键盘-德国

键盘-匈牙利

键盘-意大利

键盘-日本

键盘-西班牙

5.6 图像翻转

在实际应用中,我们会遇到镜像或者垂直翻转的图像,如下图所示

原始图像

镜像翻转

当条码出现翻转时,可通过扫描对应的设置码进入镜像翻转模式

进入镜像翻转模式

默认退出镜像翻转模式

注: 镜像翻转模式下, 仅可识别镜像翻转的条码, 如需识别正常条码或设置码, 请先退出镜像翻转模式。

5.7 读取版本信息

为了让主机能快速读取当前设备的版本信息,可以通过"读取版本信息"来进行确认。

读取版本信息

6 数据编辑

在实际应用中,我们有时需要对识读的数据进行编辑后再输出,方便数据区分和处理数据编辑包括:

- 增加前缀 Prefix
- 增加后缀 Suffix
- 解码信息 Data 段截取
- 输出条码类型 CodeID
- 解码失败输出特定 RF 信息字符
- 增加结束符 Tail

处理后的数据默认输出顺序如下

[Prefix] [CodeID] [Data] [Suffix] [Tail]

6.1 前缀

添加前缀

前缀是在解码信息前由用户自定义修改的字符串,可通过扫描"允许添加前缀"设置码进行添加

允许添加前缀

默认不添加前缀

修改前缀

扫描"修改前缀"设置码,并组合扫描数据设置码,用户可修改前缀内容,对每个前缀字符使用两个 16 进制值表示,前缀最多允许 15 个字符,字符值的 16 进制转换表可参考附录 C

修改前缀

示例:修改用户自定义前缀为"DATA"

- 1. 查字符表得到 "DATA" 四个字符的十六进制值为: "44"、"41"、"54"、"41"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码(见 1.4 章节)

- 3. 扫描"修改前缀"设置码
- 4. 依次扫描数据设置码 "4"、"4"、"4"、"1"、"5"、"4"、"4"、"1"
- 5. 扫描"保存"设置码

6.2 后缀

添加后缀

后缀是在解码信息后由用户自定义修改的字符串,可通过扫描"允许添加后缀"设置码进行添加

允许添加后领

默认不添加后领

修改后缀

扫描"修改后缀"设置码,并组合扫描数据设置码,用户可修改后缀内容,对每个后缀字符使用两个 16 进制值表示,后缀最多允许 15 个字符,字符值的 16 进制转换表可参考附录 C

修改后缀

示例:修改用户自定义后缀为"DATA"

- 1. 查字符表得到 "DATA" 四个字符的十六进制值为: "44"、"41"、"54"、"41"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码(见 1.4 章节)
- 3. 扫描"修改后缀"设置码
- 4. 依次扫描数据设置码 "4"、"4"、"4"、"1"、"5"、"4"、"4"、"1"
- 5. 扫描"保存"设置码

6.3 CODE ID

添加 CODE ID

用户可通过 CODE ID 来标识不同的条码类型,每种条码类型所对应的 CODE ID 用户可自由修改,CODE ID 使用一个字符进行标识。

允许添加 CODE ID

默认不添加 CODE ID

CODE ID 默认值

扫描"CODE ID 默认值"设置码,每个条码对应的 CODE ID 可恢复至默认值,默认 CODE ID 可参考附录 B

所有条码的 CODE ID 恢复默认值

修改 CODE ID

每种条码对应的 CODE ID 用户可自由修改,通过扫描对应的设置码,并组合扫描数据设置码来实现。每种条码对应的 CODE ID 字符使用一个 16 进制值表示,字符值的 16 进制转换表可参考附录 C

示例:修改 CODE 128 条码对应的 CODE ID 为 "A"

- 1. 查字符表得到 "A"字符的十六进制值为: "41"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码(见 1.5.2 章节)
- 3. 扫描 "修改 CODE 128 的 CODE ID"设置码
- 4. 依次扫描数据设置码 "4"、"1"
- 5. 扫描"保存"设置码

修改各条码类型的 CODE ID 设置码列表:

修改 EAN13 的 CODE ID

修改 EAN8 的 CODE ID

修改 UPCA 的 CODE ID

修改 UPCE0 的 CODE ID

修改 UPCE1 的 CODE ID

修改 CODE 128 的 CODE ID

修改 CODE 39 的 CODE ID

修改 CODE 93 的 CODE ID

修改 CODE BAR 的 CODE ID

修改 Interleaved 2 of 5 的 CODE ID

修改 Industrial 25 的 CODE ID

修改 Matrix 2 of 5 的 CODE ID

修改 CODE 11 的 CODE ID

修改 MSI 的 CODE ID

修改 RSS 的 CODE ID

修改限定式 RSS 的 CODE ID

修改扩展式 RSS 的 CODE ID

修改 QR CODE 的 CODE ID

修改限定式 PDF417 的 CODE ID

6.4 结束符

为了让主机能快速区分当前解码的结果,可以开启此功能。

读取"增加结束符"开启此功能后,若识读成功,识读模块则在解码数据后添加对应的结束符。

关闭结束符

增加结束符 CI

增加结束符 TAB

增加结束符 CRLF

6.5 Data 段截取

当用户只需要输出一部分解码信息的时候,可开启此功能。

我们将解码信息【Data】分为三部分:

[Start] [Center] [End]

其中 Start、End 段的字符长度可通过扫码控制。

用户通过扫码如下设置码,可选择输出相应位置的解码信息

传输整个 Data 段

仅传输 Start 段

仅传输 End 段

仅传输 Center 段

修改 Start 段长度 M

扫描"修改前截取长度 M",并组合扫描数据设置码,可修改 Start 段的长度大小,Start 段最多允许 255 个字符,

前截取长度 M 使用一个十六进制字符表示, 长度 M 对应的十六进制值转换表可参考附录 C

修改前截取长度 M

修改 End 段长度 N

扫描"修改后截取长度 N",并组合扫描数据设置码,可修改 End 段的长度大小, End 段最多允许 255 个字符,

后截取长度 N 使用一个十六进制字符表示, 长度 N 对应的十六进制值转换表可参考附录 C

修改后截取长度 N

仅传输 Start 段

示例: 当解码信息为 "1234567890123ABC"时,输出前十三个字节 "1234567890123"

- 1. 查字符表得到十进制数据"13"对应的十六进制字符为"0D"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码(见 1.4 章节)
- 3. 扫描"修改前截取长度 M"设置码
- 4. 依次扫描数据设置码 "0"、"D"
- 5. 扫描"保存"设置码
- 6. 扫描"仅传输 Start 段"设置码

仅传输 End 段

示例: 当解码信息为 "1234567890123ABC"时,输出后三个字节 "ABC"

- 1. 查字符表得到十进制数据"3"对应的十六进制字符为"03"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码(见 1.4 章节)
- 3. 扫描"修改后截取长度 N"设置码
- 4. 依次扫描数据设置码 "0"、"3"
- 5. 扫描"保存"设置码
- 6. 扫描"仅传输 End 段"设置码

仅传输 Center 段

示例: 当解码信息为 "12345678900123ABC"时,输出中间四个字节 "0123"

- 1. 查字符表得到十进制数据"10"、"3"对应的十六进制字符分别为"0A"、"03"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码(见 1.5.2 章节)
- 3. 扫描"修改后截取长度 N"设置码
- 4. 依次扫描数据设置码 "0"、"3"
- 5. 扫描"保存"设置码
- 6. 扫描"修改前截取长度 M"设置码
- 7. 依次扫描数据设置码 "0"、"A"
- 8. 扫描"保存"设置码
- 9. 扫描"仅传输 Center 段"设置码

6.6 RF 信息

RF(Read Fail)信息是指识读模块在某些模式下,希望在读码不成功时,输出用户自由定义的一些信息,用户或程序检测到这段信息后进行相应的调整或操作

发送 RF 信息

野认不发送

修改 RF 信息

扫描"修改 RF 信息"设置码,并组合扫描数据设置码,用户可修改 RF 信息内容,对每个 RF 字符使用两个 16 进制值表示, RF 最多允许 15 个字符,字符值的 16 进制转换表可参考附录 C

修改 RF 信息

示例:修改用户自定义 RF 信息为 "FAIL"

- 1. 查字符表得到 "FAIL" 四个字符的十六进制值为: "46"、"41"、"49"、"4C"
- 2. 确认设置码是否开启,若未开启,请扫描"开启设置码"设置码(见 1.5.2 章节)
- 3. 扫描"修改 RF 信息"设置码
- 4. 依次扫描数据设置码 "4"、"6"、"4"、"1"、"4"、"9"、"4"、"C"
- 5. 扫描"保存"设置码

7 条码类型使能/禁止配置

7.1 所有条码可解

读取以下设置码,将对所有支持的条码类型进行允许识读或禁止识读的操作。禁止识读所有类型后, 仅允许识读设置码

允许识读所有类型

禁止识读所有类型

打开默认识读类型

7.2 条码旋转功能

读取以下设置码,将对所有支持的条码类型进行允许或禁止 360° 旋转识读的操作。禁止 360° 旋转 功能将会提高解码速度。

默认允许 360° 旋转识读

禁止 360° 旋转识读

7.3 EAN13

读取以下设置码,将对 EAN13 条码允许/禁止识读进行设置

允许识读 EAN13

禁止识读 EAN13

7.4 EAN8

读取以下设置码,将对 EAN8 条码允许/禁止识读进行设置

允许识读 EAN8

禁止识读 EAN8

7.5 UPCA

读取以下设置码,将对 UPCA 条码允许/禁止识读进行设置

允许识读 UPCA

禁止识读 UPCA

7.6 UPCE0

读取以下设置码,将对 UPCEO 条码允许/禁止识读进行设置

允许识读 UPCE0

禁止识读 UPCE0

7.7 UPCE1

读取以下设置码,将对 UPCE1 条码允许/禁止识读进行设置

允许识读 UPCE1

7.8 Code128

读取以下设置码,将对 Code128 条码允许/禁止识读进行设置

允许识读 Code128

禁止识读 Code128

读取以下设置码,将对 Code128 条码最短识读长度进行设置

Code128 信息最短长度为 0

Code128 信息最短长度为 4

读取以下设置码,将对 Code128 条码最长识读长度进行设置

Code128 信息最短长度为 32

Code128 信息最短长度为 255

7.9 Code39

读取以下设置码,将对 Code39 条码允许/禁止识读进行设置

允许识读 Code39

禁止识读 Code39

读取以下设置码,将对 Code39 条码最短识读长度进行设置

Code39 信息最短长度为 0

*Code39 信息最短长度为 4

读取以下设置码,将对 Code39 条码最长识读长度进行设置

Code39 信息最短长度为 32

Code39 信息最短长度为 255

7.10 Code93

读取以下设置码,将对 Code93 条码允许/禁止识读进行设置

允许识读 Code93

禁止识读 Code93

读取以下设置码,将对 Code93 条码最短识读长度进行设置

Code93 信息最短长度为 0

Code93 信息最短长度为 4

读取以下设置码,将对 Code93 条码最长识读长度进行设置

Code93 信息最短长度为 32

Code93 信息最短长度为 255

7.11 CodeBar

读取以下设置码,将对 CodeBar 条码允许/禁止识读进行设置

允许识读 CodeBar

禁止识读 CodeBar

读取以下设置码,将对 CodeBar 条码允许/禁止发送起止符进行设置

发送 CodeBar 起止符

不发送 CodeBar 起止符

读取以下设置码,将对 CodeBar 条码最短识读长度进行设置

CodeBar 信息最短长度为 0

CodeBar 信息最短长度为 4

读取以下设置码,将对 CodeBar 条码最长识读长度进行设置

CodeBar 信息最短长度为 32

CodeBar 信息最短长度为 255

7.12QR

读取以下设置码,将对QR条码允许/禁止识读进行设置

允许识读 QR

禁止识读 QR

7.13 Interleaved 2 of 5

读取以下设置码,将对 Interleaved 2 of 5 条码允许/禁止识读进行设置

允许识读 Interleaved 2 of 5

默认禁止识读 Interleaved 2 of 5

读取以下设置码,将对 Interleaved 2 of 5 条码最短识读长度进行设置

Interleaved 2 of 5 信息最短长度为 0

默认 Interleaved 2 of 5 信息最短长度为 4

读取以下设置码,将对 Interleaved 2 of 5 条码最长识读长度进行设置

7.14 Industrial 25

读取以下设置码,将对 Industrial 25 条码允许/禁止识读进行设置

允许识读 Industrial 25

禁止识读 Industrial 2

读取以下设置码,将对 Industrial 25 条码最短识读长度进行设置

Industrial 25 信息最短长度为 0

Industrial 25 信息最短长度为 4

读取以下设置码,将对 Industrial 25 条码最长识读长度进行设置

Industrial 25 信息最短长度为 32

Industrial 25 信息最短长度为 255

7.15 Matrix 2 of 5

读取以下设置码,将对 Matrix 2 of 5 条码允许/禁止识读进行设置

允许识读 Matrix 2 of 5

禁止识读 Matrix 2 of 5

读取以下设置码,将对 Matrix 2 of 5 条码最短识读长度进行设置

Matrix 2 of 5 信息最短长度为 0

Matrix 2 of 5 信息最短长度为 4

读取以下设置码,将对 Matrix 2 of 5 条码最长识读长度进行设置

Matrix 2 of 5 信息最短长度为 255

7.16 Code11

读取以下设置码,将对 Code11 条码允许/禁止识读进行设置

允许识读 Code11

禁止识读 Code11

读取以下设置码,将对 Code11 条码最短识读长度进行设置

Code11 信息最短长度为 0

Code11 信息最短长度为 4

读取以下设置码,将对 Code11 条码最长识读长度进行设置

Code11 信息最短长度为 32

Code11 信息最短长度为 255

7.17 MSI

读取以下设置码,将对 MSI 条码允许/禁止识读进行设置

允许识读 MSI

禁止识读 MSI

读取以下设置码,将对 MSI 条码最短识读长度进行设置

MSI 信息最短长度为 0

*MSI 信息最短长度为 4

读取以下设置码,将对 MSI 条码最长识读长度进行设置

MSI 信息最短长度为 32

MSI 信息最短长度为 255

7.18 RSS

读取以下设置码,将对 RSS-14 条码允许/禁止识读进行设置

允许识读 RSS-14

禁止识读 RSS-14

读取以下设置码,将对限定式 RSS 条码允许/禁止识读进行设置

允许识读限定式 RSS

禁止识读限定式 RSS

读取以下设置码,将对扩展式 RSS 条码允许/禁止识读进行设置

允许识读扩展式 RSS

禁止识读扩展式 RSS

读取以下设置码,将对 RSS 条码最短识读长度进行设置

RSS 信息最短长度为 0

RSS 信息最短长度为 4

读取以下设置码,将对 RSS 条码最长识读长度进行设置

*RSS 信息最短长度为 32

RSS 信息最短长度为 255

7.19 DM

读取以下设置码,将对 DM 条码允许/禁止识读进行设置

允许识读 DM

禁止识读 DM

7.20 PDF417

读取以下设置码,将对 PDF417 条码允许/禁止识读进行设置

允许识读 PDF417

禁止识读 PDF417

8 用串口命令

用户可从主机发送串口指令对识读模块进行设置。识读模块与主机设备间必须在通讯参数配置完全 匹配时才能实现正常通讯。识读模块默认的串行通讯参数:波特率 9600bps,无校验,8 位数据位,1 位 停止位,无流控。

8.1CRC 算法

校验和 CRC 计算: CRC_CCITT 校验值(2 bytes)。计算的范围: Types、Lens、Address、Datas 计算的方法为 CRC_CCITT,特征多项式: X16+X12+X5+1,即多项式系数为 0x1021,初始值为全 0,对于单个字节来说最高位先计算,不需要取反直接输出。C 的参考代码如下:

```
unsigned int crc_cal_by_bit(unsigned char* ptr, unsigned int len)
{
    unsigned int crc = 0;
    while(len-- != 0)
{
        for(unsigned char i = 0x80; i != 0; i /= 2)
        {
            crc *= 2;
            if((crc&0x10000) !=0) //上一位 CRC 乘 2 后,若首位是 1,则除以 0x11021
            crc ^= 0x11021;
            if((*ptr&i) != 0) //如果本位是 1,那么 CRC = 上一位的 CRC + 本位/CRC_CCITT
            crc ^= 0x1021;
        }
        ptr++;
      }
      return crc;
}
```

注: 当用户不需要 CRC 校验功能时,可在 CRC 字节处填写 0xAB 0xCD,免校验。

8.2 读标志位操作

对于设备标志位的读操作,最多可一次读取 **256** 个字节的标志位。 发送命令格式:

字节数	2bytes	1byte	1byte	2bytes	1byte	2bytes
名称	Head	Types	Lens	Address	Datas	CRC
内容	0x7E00	07H	01H	xxH	xxH	xxH

注: Address : 0x0000~0x00FF(2 bytes),表示要读取的标志位的起始地址。

Datas : 0x00~0xFF (1 byte) , 表示要连续读取的标志位的字节数, 0x00 表示 256 个字节。

接收数据格式

字节数	2bytes	1byte	1byte	1byte	2bytes
名称	Head	Types	Lens	Datas	CRC
内容	0x0200	00H	xxH	xxH	xxH

注: Types : 0x00 表示读成功

Lens: 表示上传的 Datas 的字节个数, 0x00 表示 256 个

Datas: 0x00~0xFF, 表示读上来的数据

如果 CRC 校验错误 , 无返回数据

如果格式或者数据错误,则当成未知命令处理,无返回数据

示例:

对标志位中地址为 0x000A 的 1 个地址进行读操作

1) 读成功并返回数据,返回的数据为 0x3E

输入: 0x7E 0x00 0x07 0x01 0x00 0x0A 0x01 0xEE 0x8A

返回: 0x02 0x00 0x00 0x01 0x3E 0xE4 0xAC

2) CRC 错误

输入: 0x7E 0x00 0x07 0x01 0x00 0x0A 0x01 0x11 0x22

返回:无

3) 当发送的指令长度不够或发送 0x7e 0x00 后等待时间超过 400ms 时, 当成未知命令处理

输入: 0x7E 0x00 0x07 0x01 0x00 0x0A 0x01

返回: 无

8.3 写标志位操作

对于设备标志位的写操作最多可一次写入 256 个字节的标志位。

发送命令格式:

字节数	2bytes	1byte	1byte	2bytes	1byte	2bytes
名称	Head	Types	Lens	Address	Datas	CRC
内容	0x7E00	08H	01H	xxH	xxH	xxH

注: Lens: 0x00~0xFF(1 byte),表示该命令中 Datas 字段的字节数,同时也表示要进行连续写操作的次数,而 0x00 表示有 256 个字节

Address: 0x0000~0xFFFF(2 bytes),表示要写入的标志位的起始地址

Datas : 0x00~0xFF(1~256 bytes),表示写入标志位的数据

接收数据格式

字节数	2bytes	1byte	1byte	1byte	2bytes
名称	Head	Types	Lens	Datas	CRC
内容	0x0200	00H	01H	00H	0x3331

注: Types: 0x00 表示操作成功

如果 CRC 校验错误 , 无返回数据

如果格式或者数据错误,则当成未知命令处理,无返回数据

示例:

向地址为 0x000A 的标志位写入 0x3E

1) 设置成功

输入: 0x7E 0x00 0x08 0x01 0x00 0x0A 0x3E 0x4C 0xCF

返回: 0x02 0x00 0x00 0x01 0x00 0x33 0x31

2) CRC 错误

输入: 0x7E 0x00 0x08 0x01 0x00 0x0A 0x3E 0x11 0x22

返回: 无

3) 当发送的指令长度不够或发送 0x7e 0x00 后等待时间超过 400ms 时, 当成未知命令处理

输入: 0x7E 0x00 0x08 0x01 0x00 0x0A 0x3E

返回:无

8.4 标志位保存到 EEPROM 指令

若要将设备标志位的内容保存到模块 EERPOM 中则需要发送保存命令。

发送命令格式:

字节数	2bytes	1byte	1byte	2bytes	1byte	2bytes
名称	Head	Types	Lens	Address	Datas	CRC
内容	0x7E00	09H	01H	0x0000	00H	0xDEC8

接收数据格式:

字节数	2bytes	1byte	1byte	1byte	2bytes
名称	Head	Types	Lens	Datas	CRC
内容	0x0200	00H	01H	00H	0x3331

注: Types : 0x00 表示操作成功

如果 CRC 校验错误 , 无返回数据

如果格式或者数据错误,则当成未知命令处理,无返回数据

8.5 标志位列表

标志位	0x0000
数据位	功能
Bit 7	1: 开启解码成功 LED 提示 0: 关闭解码成功 LED 提示
Bit 6	1: 关闭静音 0: 启动静音
Bit 5-4	00: 无瞄准
Bit 3-2	00: 无照明 01: 普通 10/11: 常亮
Bit 1-0	00: 手动模式 01: 命令触发模式 10: 连续模式 11: 感应模式
标志位	0x0002
数据位	功能
Bit 7	保留
Bit 6	1: 输出解码状态提示符 0: 不输出解码状态提示符
Bit5-1	保留
Bit0	保留
标志位	0x0003
数据位	功能
Bit 7-2	保留

Bit 1	1: 关闭设置码 0: 开启设置码
Bit0	1: 输出设置码内容 0: 不输出设置码内容
标志位	0x0004
数据位	功能
Bit 7-0	稳像时长 0x00-0xFF: 0.0-25.5s
标志位	0x0005
数据位	功能
Bit 7-0	识读间隔时长 0x00-0xFF: 0.0-25.5s
标志位	0x0006
数据位	功能
Bit 7-0	单次读码时长 0x00-0xFF: 0.0-25.5s
标志位	0x0007
数据位	功能
数据位 Bit 7	功能 自动休眠功能 1: 启用 0: 不启用
	自动休眠功能
Bit 7	自动休眠功能 1: 启用 0: 不启用 空闲时长(高位Bit14-8)
Bit 7	自动休眠功能 1: 启用 0: 不启用 空闲时长(高位Bit14-8) 单位: 100ms
Bit 7 Bit6-0 标志位	自动休眠功能 1: 启用
Bit 7 Bit6-0 标志位 数据位	自动休眠功能 1: 启用
Bit 7 Bit6-0 标志位 数据位 Bit 7-0	自动休眠功能 1: 启用
Bit 7 Bit6-0 标志位 数据位 Bit 7-0	自动休眠功能 1: 启用
Bit 7 Bit6-0 标志位 数据位 Bit 7-0 标志位 数据位	自动休眠功能 1: 启用

Bit 7-0	识读成功提示音持续时间 0x00-0xFF; 0-255ms
标志位	0x000C
数据位	功能
Bit 7-1	保留
Bit0	有源蜂鸣器模式下默认电平 0:蜂鸣器空闲高电平,忙碌低电平 1:蜂鸣器空闲低电平,忙碌高电平
标志位	0x000D
数据位	功能
Bit 7-4	保留
Bit 3-2	数据编码格式 00: GBK
Bit1-0	00: 串口输出 01: USB PC键盘 10: 保留 11: USB 虚 拟串口
标志位	0x000E
数据位	功能
Bit 7-3	保留
Bit2	1: 开启解码成功提示音 0: 关闭解码成功提示音
Bit1-0	保留
标志位	0x002B, 0x2A
数据位	功能
Bit 15-13	保留
Bit 12-0	0x09C4: 串口波特率为1200 bps 0x0271: 串口波特率为4800 bps 0x0139: 串口波特率为9600 bps 0x00D0: 串口波特率为14400 bps 0x009C: 串口波特率为19200 bps 0x004E: 串口波特率为38400 bps 0x0034: 串口波特率为175200bps

标志位	0x002C
数据位	功能
Bit 7-3	保留
Bit 2-1	条码总开关 00: 禁止识读所有条码; 01: 允许识读所有条码; 10/11: 打开默认可识读条码
Bit 0	360° 旋转条码可识读 0: 关闭旋转功能; 1: 打开旋转功能
标志位	0x002E
数据位	功能
Bit 7-1	保留
Bit0	识读EAN13码 0:禁止识读EAN13码 1:允许识读EAN13码
标志位	0x002F
数据位	功能
Bit 7-1	保留
Bit0	识读EAN8码 0: 禁止识读EAN8码 1: 允许识读EAN8码
标志位	0x0030
数据位	功能
Bit 7-1	保留
Bit0	识读UPCA码 0:禁止识读UPCA码 1:允许识读UPCA码
标志位	0x0031
数据位	功能
Bit 7-1	保留
Bit0	识读UPCE0码 0:禁止识读UPCE0码 1:允许识读UPCE0码
标志位	0x0032

数据位	功能
Bit 7-1	保留
Bit0	识读UPCE1码 0:禁止识读UPCE1码 1:允许识读UPCE1码
标志位	0x0033
数据位	功能
Bit 7-1	保留
Bit0	识读Code128码 0: 禁止识读Code128码 1: 允许识读Code128码
标志位	0x0034
数据位	功能
Bit 7-0	Code128信息最短长度设置 0x00-0xFF: 0-255Byte
标志位	0x0035
数据位	功能
Bit 7-0	Code128信息最长长度设置 0x00-0xFF: 0-255Byte
标志位	0x0036
数据位	功能
Bit 7-1	保留
Bit0	识读Code39码 0: 禁止识读Code39码
标志位	0x0037
数据位	功能
Bit 7-0	Code39信息最短长度设置 0x00-0xFF: 0-255Byte
标志位	0x0038
数据位	功能

Bit 7-0	Code39信息最长长度设置 0x00-0xFF: 0-255Byte
标志位	0x0039
数据位	功能
Bit 7-1	保留
Bit0	识读Code93码 0: 禁止识读Code93码
标志位	0x003A
数据位	功能
Bit 7-0	Code93信息最短长度设置 0x00-0xFF: 0-255Byte
标志位	0x003B
数据位	功能
Bit 7-0	Code93信息最长长度设置 0x00-0xFF: 0-255Byte
标志位	0x003C
数据位	功能
Bit 7-2	保留
Bit1	CodeBar码发送起始符/结束符
1	0:禁止发送起始符/结束符 1:允许发送起始符/结束符
Bit0	0: 禁止发送起始符/结束符 1: 允许发送起始符/结束符 识读CodeBar码 1: 允许识读CodeBar码
Bit0 标志位	识读CodeBar码
	识读CodeBar码 0: 禁止识读CodeBar码 1: 允许识读CodeBar码
标志位	识读CodeBar码 0:禁止识读CodeBar码 0x003D
标志位 数据位	识读CodeBar码 0: 禁止识读CodeBar码 1: 允许识读CodeBar码 0x003D 功能 CodeBar信息最短长度设置
标志位 数据位 Bit 7-0	识读CodeBar码 0: 禁止识读CodeBar码 1: 允许识读CodeBar码 0x003D 功能 CodeBar信息最短长度设置 0x00-0xFF: 0-255Byte
标志位 数据位 Bit 7-0 标志位	识读CodeBar码 0: 禁止识读CodeBar码 1: 允许识读CodeBar码 0x003D 功能 CodeBar信息最短长度设置 0x00-0xFF: 0-255Byte 0x003E

数据位	功能		
Bit 7-1	保留		
Bit0	识读 QR 码 0:禁止识读 QR 码 1:允许识读 QR 码		
标志位	0x0040		
数据位	功能		
Bit 7-1	保留		
Bit0	识读Interleaved 2 of 5码 0: 禁止识读Interleaved 2 of 5码 1: 允许识读Interleaved 2 of 5码		
标志位	0x0041		
数据位	功能		
Bit 7-0	Interleaved 2 of 5信息最短长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0042		
数据位	功能		
Bit 7-0	Interleaved 2 of 5信息最长长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0043		
数据位	功能		
Bit 7-1	保留		
Bit0	识读Industrial 25码 0:禁止识读Industrial 25码 1:允许识读Industrial 25码		
标志位	0x0044		
数据位	功能		
Bit 7-0	Industrial 25信息最短长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0045		
数据位	功能		

Bit 7-0	Industrial 25信息最长长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0046		
数据位	功能		
Bit 7-1	保留		
Bit0	识读Matrix 2 of 5码 0:禁止识读Matrix 2 of 5码 1:允许识读Matrix 2 of 5码		
标志位	0x0047		
数据位	功能		
Bit 7-0	Matrix 2 of 5信息最短长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0048		
数据位	功能		
Bit 7-0	Matrix 2 of 5信息最长长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0049		
数据位	功能		
数据位 Bit 7-1	功能 保留		
Bit 7-1	保留 识读Code11码		
Bit 7-1 Bit0	保留 识读Code11码 0:禁止识读Code11码 1:允许识读Code11码		
Bit 7-1 Bit0 标志位	保留 识读Code11码 0: 禁止识读Code11码 0x004A		
Bit 7-1 Bit0 标志位 数据位	保留 识读Code11码 0: 禁止识读Code11码 1: 允许识读Code11码 0x004A 功能 Code11信息最短长度设置		
Bit 7-1 Bit0 标志位 数据位 Bit 7-0	保留 识读Code11码 0: 禁止识读Code11码 1: 允许识读Code11码 0x004A 功能 Code11信息最短长度设置 0x00-0xFF: 0-255Byte		
Bit 7-1 Bit0 标志位 数据位 Bit 7-0	保留 识读Code11码 0: 禁止识读Code11码 1: 允许识读Code11码 0x004A 功能 Code11信息最短长度设置 0x00-0xFF: 0-255Byte 0x004B		
Bit 7-1 Bit0 标志位 数据位 Bit 7-0 标志位 数据位	保留 识读Code11码 0: 禁止识读Code11码 1: 允许识读Code11码		

Bit 7-1	保留		
Bit0	识读MSI码 0:禁止识读MSI码 1:允许识读MSI码		
标志位	0x004D		
数据位	功能		
Bit 7-0	MSI信息最短长度设置 0x00-0xFF: 0-255Byte		
标志位	0x004E		
数据位	功能		
Bit 7-0	MSI信息最长长度设置 0x00-0xFF: 0-255Byte		
标志位	0x004F		
数据位	功能		
Bit 7-1	保留		
Bit0	识读RSS-14码 0: 禁止识读RSS-14码 1: 允许识读RSS-14码		
标志位	0x0050		
数据位	功能		
Bit 7-1	保留		
Bit0	识读限定式RSS码 0:禁止识读限定式RSS码 1:允许识读限定式RSS码		
标志位	0x0051		
数据位	功能		
Bit 7-1	保留		
Bit0	识读扩展式RSS码 0:禁止识读扩展式RSS码 1:允许识读扩展式识读RSS码		
标志位	0x0052		
数据位	功能		

Bit 7-0	RSS信息最短长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0053		
数据位	功能		
Bit 7-0	RSS信息最长长度设置 0x00-0xFF: 0-255Byte		
标志位	0x0054		
数据位	功能		
Bit 7-1	保留		
Bit0	识读DM码 0: 禁止识读DM码		
标志位	0x0055		
数据位	功能		
Bit 7-1	保留		
Bit0	识读PDF417码 0: 禁止识读PDF417码 1: 允许识读PDF417码		
标志位	0x0060		
数据位	功能		
Bit 7	保留		
Bit6-5	结束符后缀类型 00: CR(0x0D)		
Bit4	1.允许添加RF信息 0: 禁止添加RF信息		
Bit3	1: 允许添加前缀 0: 禁止添加前缀		
Bit2	1: 允许添加Code ID 0: 禁止添加Code ID		
Bit1	1: 允许添加后缀 0: 禁止添加后缀		
Bit0	1: 允许添加结束符 0: 禁止添加结束符		
标志位	0x0061		

数据位	功能		
Bit 7-0	各国键盘设置 00: 美国		
标志位	0x0062		
数据位	功能		
Bit 7-4	前缀字符长度 0x00-0x0F: 前缀字符长度		
Bit3-0	后缀字符长度 0x00-0x0F: 后缀字符长度		
标志位	0x0063 – 0x0071		
数据位	功能		
Bit 7-0	前缀 0x00-0xFF: 前缀字符值,最多15Byte		
标志位	0x0072 - 0x0080		
数据位	功能		
Bit 7-0	后缀 0x00-0xFF: 后缀字符值,最多15Byte		
标志位	0x0081		
数据位	功能		
Bit 7-4	保留		
Bit3-0	RF信息长度 0x00-0x0F: RF信息长度		
标志位	0x0082- 0x0081		
数据位	功能		
Bit 7-0	RF信息 0x00-0xFF: RF信息字符,最多15Byte		
标志位	0x0091 – 0x00A4		
数据位	功能		
Bit 7-0	Code ID字符设置 0x41-0x5a & 0x61-0x7a (A-Z,a-z):各码制对应Code ID字符 (详见附录		

	B)		
标志位	0x00B0		
数据位	功能		
Bit 7-2	保留		
Bit 1-0	Data字符截取设置 00: 传送所有Data字符 01: 仅传送前M个Data字符 10: 仅传送后N个Data字符 11: 不传送前M+后N个Data字符		
标志位	0x00B1		
数据位	功能		
Bit 7-0	前截取长度M 0x00-0xFF: 0-255个字符		
标志位	0x00B2		
数据位	功能		
Bit 7-0	后截取长度N 0x00-0xFF: 0-255个字符		
标志位	0x00D9(只写标志位)		
14.404	0.0000		
数据位	功能		
数据位	功能 功能标志位 0x55:恢复出厂设置 0xA0:轻度休眠,可通过串口中断唤醒,该条串口命令有效;休眠功耗28mA 0xA5:深度休眠,可通过串口中断唤醒,唤醒后设备重启,该条串口命令 无效;休眠功耗3mA		
数据位 Bit 7-0	功能 功能标志位 0x55:恢复出厂设置 0xA0:轻度休眠,可通过串口中断唤醒,该条串口命令有效;休眠功耗28mA 0xA5:深度休眠,可通过串口中断唤醒,唤醒后设备重启,该条串口命令 无效;休眠功耗3mA 0x00:可通过写0进行设备休眠唤醒。		
数据位 Bit 7-0 标志位	功能标志位 0x55:恢复出厂设置 0xA0:轻度休眠,可通过串口中断唤醒,该条串口命令有效;休眠功耗28mA 0xA5:深度休眠,可通过串口中断唤醒,唤醒后设备重启,该条串口命令无效;休眠功耗3mA 0x00:可通过写0进行设备休眠唤醒。 0x00E0 (只读标志位)		
数据位 Bit 7-0 标志位 数据位	功能标志位 0x55:恢复出厂设置 0xA0:轻度休眠,可通过串口中断唤醒,该条串口命令有效;休眠功耗28mA 0xA5:深度休眠,可通过串口中断唤醒,唤醒后设备重启,该条串口命令无效;休眠功耗3mA 0x00:可通过写0进行设备休眠唤醒。 0x00E0 (只读标志位) 功能 产品型号		
数据位 Bit 7-0 标志位 数据位 Bit 7-0	功能标志位 0x55:恢复出厂设置 0xA0:轻度休眠,可通过串口中断唤醒,该条串口命令有效;休眠功耗28mA 0xA5:深度休眠,可通过串口中断唤醒,唤醒后设备重启,该条串口命令无效;休眠功耗3mA 0x00:可通过写0进行设备休眠唤醒。 0x00E0 (只读标志位) 功能 产品型号 0x05: GM65模块		

	0x78: V1.20
	0x82: V1.30
	0x8C: V1.40
标志位	0x00E2 (只读标志位)
数据位	功能
Bit 7-0	软件版本 0x64: V1.00 0x6E: V1.10 0x78: V1.20 0x82: V1.30 0x8C: V1.40
标志位	0x00E3 (只读标志位)
数据位	功能
Bit 7-0	软件年份(该值的基础上加2000表示年份) 0x0F: 2015 0x10: 2016 0x11: 2017
标志位	0x00E4 (只读标志位)
数据位	功能
	软件月份(该值表示月份)
Bit 7-0	0x09: 9月 0x0A: 10月 0x0B: 11月
Bit 7-0 标志位	0x0A: 10月 0x0B: 11月
	0x0A: 10月 0x0B: 11月

9 附录 A: 常用串口指令

功能	串口指令
设置波特率为 9600	7E 00 08 01 00 D9 D3 20 38
将设置保存到 EEPROM	7E 00 09 01 00 00 DE C8
查询波特率	7E 00 07 01 00 2A 02 D8 0F

主机发送查询波特率的串口指令后,识读模块会回复下列信息:

返回信息	对应的波特率
02 00 00 02 C4 09 SS SS	1200
02 00 00 02 71 02 SS SS	4800
02 00 00 02 39 01 SS SS	9600
02 00 00 02 D0 00 SS SS	14400
02 00 00 02 9C 00 SS SS	19200
02 00 00 02 4E 00 SS SS	38400
02 00 00 02 34 00 SS SS	57600

注: SS SS 为校验值。

10 附录 B: Code ID 列表

条码类型	对应字符	标志位地址
EAN-13	d	0x91
EAN-8	d	0x92
UPC-A	С	0x93
UPC-E0	С	0x94
UPC-E1	С	0x95
Code 128	j	0x96
Code 39	b	0x97
Code 93	i	0x98
Codabar	а	0x99
Interleaved 2 of 5	е	0x9A
Industrial 2 of 5	D	0x9B
Matrix 2 of 5	V	0x9C
Code 11	Н	0x9D
MSI-Plessey	m	0x9E
GS1 Databar(RSS-14)	R	0x9F
GS1 Databar Limited(RSS)	R	0xA0
GS1 Databar Expanded(RSS)	R	0xA1
QR Code	Q	0xA2
Data Matrix	u	0xA3
PDF 417	r	0xA4

11 附录 C: ASCII 码表

十六进制	十进制	字符
00	0	NUL
01	1	SOH
02	2	STX
03	3	ETX
04	4	EOT
05	5	ENQ
06	6	ACK
07	7	BEL
08	8	BS
09	9	HT
0a	10	LF
0b	11	VT
0c	12	FF
0d	13	CR
0e	14	SO
Of	15	SI
10	16	DLE
11	17	DC1
12	18	DC2
13	19	DC3
14	20	DC4
15	21	NAK
16	22	SYN
17	23	ETB
18	24	CAN
19	25	EM
1a	26	SUB
1b	27	ESC

十六进制	十进制	字符
1c	28	FS
1d	29	GS
1e	30	RS
1f	31	US
20	32	SP
21	33	!
22	34	Ш
23	35	#
24	36	\$
25	37	%
26	38	&
27	39	•
28	40	(
29	41)
2a	42	*
2b	43	+
2c	44	,
2d	45	-
2e	46	
2f	47	1
30	48	0
31	49	1
32	50	2
33	51	3
34	52	4
35	53	5
36	54	6
37	55	7
38	56	8
39	57	9
3a	58	:

十六进制	十进制	字符
3b	59	,
3c	60	<
3d	61	=
3e	62	>
3f	63	?
40	64	@
41	65	A
42	66	В
43	67	С
44	68	D
45	69	Е
46	70	F
47	71	G
48	72	Н
49	73	I
4a	74	J
4b	75	К
4c	76	L
4d	77	М
4e	78	N
4f	79	0
50	80	Р
51	81	Q
52	82	R
53	83	S
54	84	Т
55	85	U
56	86	V
57	87	W
58	88	X
59	89	Υ

十六进制	十进制	字符
5a	90	Z
5b	91	[
5c	92	\
5d	93]
5e	94	٨
5f	95	_
60	96	1
61	97	а
62	98	b
63	99	С
64	100	d
65	101	е
66	102	f
67	103	g
68	104	h
69	105	i
6a	106	j
6b	107	k
6c	108	I
6d	109	m
6e	110	n
6f	111	0
70	112	p
71	113	q
72	114	r
73	115	s
74	116	t
75	117	u
76	118	v
77	119	w
78	120	х

十六进制	十进制	字符
79	121	у
7a	122	Z
7b	123	{
7c	124	
7d	125	}
7e	126	~
7f	127	DEL

12 附录 D: 数据码

