Volúmenes mediante cascarones cilíndricos

determinar el volumen del sólido que se obtiene al hacer girar la región acotada por MAX $y = 5 FN(X^2)$ E = XV $y = \text{sen}(x^2)$ y y = 0 alrededor del eje y V = (NAX) $V = (re^2 - r_i)dy$

TAREA ESCRIBIR LA INTEGRAL. DE VOLUMEN. determinar el volumen del sólido que se obtiene al hacer girar la región acotada por $y = \text{sen}(x^2)$ y y = 0 alrededor del eje y

$$V = \int_{a}^{b} 2\pi r h dx, \quad \alpha \leq x \leq b$$

$$\int = \int_{a}^{b} 2\pi \times \Re d \times = \int_{a}^{b} 2\pi \times \Re (x^{2}) dx$$

$$V = \int_{0}^{2\pi r} x SEN(x^{2}) dx$$

Volumen cascarón cilíndrico

3–7 Utilice el método de los cascarones cilíndricos para determinar el volumen que se genera al hacer girar alrededor del eje *y*, a región acotada por las curvas dadas.

3–7 Utilice el método de los cascarones cilíndricos para determinar el volumen que se genera al hacer girar alrededor del eje *y*, la región acotada por las curvas dadas.

9–14 Utilice el método de los cascarones cilíndricos para determinar el volumen de cada uno de los sólidos siguientes que se obtienen al hacer girar alrededor del eje x la región acotada por las curvas dadas.

$$y = x^{3/2}, \quad y = 8, \quad x = 0$$

$$V = \int_{C}^{3} \pi y \times dy$$

$$V = \int_{0}^{8} \pi y \cdot y \, dy = \int_{0}^{8} 2\pi y \, dy$$

9–14 Utilice el método de los cascarones cilíndricos para determinar el volumen de cada uno de los sólidos siguientes que se obtienen al hacer girar alrededor del eje <u>x</u> la región acotada por las curvas dadas.

$$x + y = 4$$
, $x = y^2 - 4y + 4$

