Logic (PH133): Lecture 7

s.butterfill@warwick.ac.uk

Readings refer to sections of the course textbook, *Language, Proof and Logic.*

1. ∃Intro

Reading: §13.2

Disjunction Introduction (∨ Intro)

$$\begin{vmatrix} P_i \\ \vdots \\ P_1 \lor \dots \lor P_i \lor \dots \lor P_n \end{vmatrix}$$

YelBk(a)
∃x YelBk(x)

2. ∃Elim

Reading: §12.2, §13.2

Existential Elimination (\exists Elim)

where c does not occur outside the subproof where it is introduced.

1. $\exists x (Blue(x) \land Square(x))$ 2. $Blue(b) \land Square(b)$ 3. $Blue(b) \land Elim: 2$ 4. $\exists x Blue(x) \exists Intro: 3$ 3. $\exists x Blue(x) \exists Elim: 2-4, 1$

Note this restriction on the use of ∃Elim:

3. Translation with Quantifiers

Reading: §9.5, §9.6

All discordians weep:

 $\forall x (Dscrdn(x) \rightarrow Wps(x))$

All French discordians weep:

 $\forall x ((Frnch(x) \land Dscrdn(x)) \rightarrow Wps(x))$

All French discordians weep and wail:

 $\forall x ((Frnch(x) \land Dscrdn(x)) \xrightarrow{-} (Wps(x) \land Wls(x)))$

All French discordians weep and wail **except** Gillian Deleude:

 $\forall x ((Frnch(x) \land Dscrdn(x) \land \neg(x=a)) \rightarrow (Wps(x) \land Wls(x)))$

4. Scope and Quantifiers

Reading: §9.5, §9.6

Underlining shows the scope of the quantifiers:

"All squares are blue" $\forall x \text{ (Square(x))} \rightarrow \text{Blue(x))}$

"If everything is square, everything is blue" $\forall x \; Square(x) \rightarrow \forall x \; Blue(x)$

∀Elim

If it's true of everything it's true of Baudrillard

∃Intro

If it's true of Baudrillard it's true of something

∃Elim

If it's true of something and Q follows no matter which something it is, then Q

∀Intro

If it's true of an arbitrary thing, then it's true of everything.

7. Something Is Above Something

Reading: §11.1

Something is above something:

 $\exists x \exists y \ Above(x,y)$

5. ∀Intro

Reading: §12.1, §12.3, §13.1

Universal Introduction $(\forall Intro)$

where c does not occur outside the subproof where it is introduced.

Why is this proof incorrect?

8. There Is Exactly One

There is one creator (at least one, maybe more).

∃x Creator(x)

Ahura Mazda is the one and only creator.

Creator(a) $\land \forall x (Creator(x) \rightarrow x=a)$

All squares are broken.

 $\forall x (Sqr(x) \rightarrow Brkn(x))$

There is one and only one creator.

 $\exists y (Creator(y) \land \forall x (Creator(x) \rightarrow x=y))$

or:

 $\exists y \ \forall x (\ Creator(x) \leftrightarrow x = y)$

6. Summary of Quantifier Rules

Reading: §13.1, §13.2