	Surname	Type
Group Number	Name	Λ
List Number	e-mail	lacksquare
Student Number	Signature	

ATTENTION: Each question has only one correct answer and is worth one point. Be sure to fill in completely the circle that corresponds to your answer on the answer sheet. Use a pencil (not a pen). Only the answers on your answer sheet will be taken into account.

- 1. Which of the followings is/are true for any \vec{A} and \vec{B} vectors?
 - i. If these two vectors are perpendicular to each other, the magnitude of vector product is maximum value.
 - ii. If these two vectors are parallel to each other, scalar product gives the maximum value.
 - iii. The vector founded by the vector product of these vectors, is perpendicular to the plane constructed by these two vectors.
 - (a) i and ii (b) only i (c) All of them (d) i and iii (e) ii and iii
- **2.** Which of the followings is/are always true for any \vec{A} , \vec{B} and \vec{C} vectors?
 - i. $\vec{A} \times (\vec{B} \times \vec{C}) = 0$
 - ii. $\vec{A} \times (\vec{B} \times \vec{A}) = 0$
 - iii. $\vec{A} \cdot (\vec{B} \times \vec{A}) = 0$
 - (a) All of them (b) None of them (c) Only i (d) Only iii (e) Only ii

Questions 3-5

The position of a mouse and the acceleration of a cat are given as functions of time as $\vec{r}_{\text{mouse}} = At^2 \hat{i} + Bt \hat{j}$ and $\vec{a}_{\text{cat}} = C \hat{i} + Dt \hat{j}$. The constants are $A = 1 \text{ m/s}^2$, B = 2 m/s, $C = 2/3 \text{ m/s}^2$, $D = 2 \text{ m/s}^3$. The cat is initially at rest.

- **3.** What is the velocity of the mouse in (m/s) at t = 2 s?
 - (a) $4 \hat{i} + 2 \hat{j}$ (b) $8 \hat{i} + 2 \hat{j}$ (c) $8 \hat{i} + 8 \hat{j}$ (d) $2 \hat{i} + 8 \hat{j}$ (e) $2 \hat{i} + 2 \hat{j}$
- **4.** What is the velocity of the mouse in (m/s) relative to the cat at t = 2 s?
 - (a) $2/3 \hat{i} 6 \hat{j}$ (b) $8/3 \hat{i} 6 \hat{j}$ (c) $-2/3 \hat{i} + 6 \hat{j}$ (d) $8/3 \hat{i} 2 \hat{j}$ (e) $4 \hat{i} 2 \hat{j}$
- **5.** The cat catches the mouse at the position $\vec{r} = 9$ (m) $\hat{i} + 6$ (m) \hat{j} . Find the initial position of the cat in meters (m).
 - (a) $23/3 \hat{i} 2 \hat{j}$ (b) $8 \hat{i} 3 \hat{j}$ (c) $6 \hat{i} 3 \hat{j}$ (d) $19/3 \hat{i} 10 \hat{j}$ (e) $7 \hat{i} 10 \hat{j}$

Questions 6-10

A ball is thrown straight up in the air with an initial speed of 20 m/s. Ignore air resistance and take $q = 10 \text{m/s}^2$.

- **6.** What is the maximum height the ball can reach?
 - (a) 20 m (b) $5\sqrt{2}$ m (c) 5 m (d) 10 m (e) 400 m
- **7.** What is the speed of the ball when it reaches 5 m above the ground?
 - (a) 5 m/s (b) $10\sqrt{3} \text{ m/s}$ (c) 300 m/s (d) $5\sqrt{3} \text{ m/s}$ (e) $10\sqrt{5} \text{ m/s}$
- 8. How long will it take for the ball to reach 5 m above its initial position on the way up?
- (a) $(2+\sqrt{5})$ s (b) $(2-\sqrt{3})$ s (c) 2 s (d) $(5+\sqrt{2})$ s (e) $(5-\sqrt{2})$ s
- 9. How long will it take for the ball to reach 5 m above its initial position on the way down?
 - (a) 4s (b) $2\sqrt{3}$ s (c) $(\sqrt{3}+2)$ s (d) $2\sqrt{5}$ s (e) $(\sqrt{3}-2)$ s
- 10. What will be its final speed just before it hits the ground?
 - (a) $20 \,\mathrm{m/s}$ (b) $40 \,\mathrm{m/s}$ (c) $40 \,\sqrt{3} \,\mathrm{m/s}$ (d) $5 \,\mathrm{m/s}$ (e) $30 \,\mathrm{m/s}$
- 11. A particle with mass m is moving on a vertical circle with radius R under an external force F that keeps the particle speed v constant during the motion. What is the total (net) work done on the particle in completing one full revolution?
 - (a) mv^2/R (b) $2\pi RF$ (c) 2mqR (d) $mv^2/2$ (e) 0
- 12. You can build a windmill on one of the two hills A and B. On hill A, the wind blows with a constant speed v for 24 hours every day. On hill B, the wind blows with a constant speed v for 12 hours every day. What would you expect for the relation of daily average work of mill A to mill B?
 - (a) Work A > Work B (b) Work B > Work A (c) There is no difference (d) It depends on the direction of the wind
 - (e) The question can not be answered with available information

- 13. A father pulls his son, whose mass is m and who is sitting on a swing with ropes of length L, backward until the ropes make an angle of θ_0 with respect to the vertical. He then releases his son from rest. What is the speed of the son at the bottom of the swinging motion?
- (a) $\sqrt{mgL\cos\theta_0}$ (b) $\sqrt{2gL\cos\theta_0}$ (c) $\sqrt{mgL(1-\cos\theta_0)}$ (d) $\sqrt{gL(1-\cos\theta_0)}$ (e) $\sqrt{2gL(1-\cos\theta_0)}$

Questions 14-16

Three blocks (A, B, C) on a frictionless inclined plane are in contact with each other as shown in the figure. Assume that there is no friction between the blocks. A force \vec{F} parallel to the plane is applied to block A. The masses are $m_A=5$ kg, $m_B=2$ kg and $m_C=1$ kg. Take $g=10\text{m/s}^2$. $(\sin(37^\circ)=0.6,\cos(37^\circ)=0.8,\cos(30^\circ)=0.87,\sin(30^\circ)=0.5)$

- 14. What should be the magnitude of the force so that the objects remain motionless?
 - (a) 80 N
- (b) 35 N (c) 70 N (d) 40 N (e) 48 N

- 15. When the magnitude of the force is 36N, find the acceleration of the blocks.

- (a) 0.125 m/s^2 (b) -1.5 m/s^2 (c) -5.5 m/s^2 (d) -0.5 m/s^2 (e) -4.5 m/s^2
- 16. When the magnitude of the force is 36N, find the magnitude of the force on block A due to block E

 - (a) 16.5 N (b) 13.5 N (c) 8.5 N (d) 6.5 N (e) 15 N

Questions 17-19

A 7650-kg helicopter accelerates upward at $1.20~\mathrm{m/s^2}$ while lifting a 1250-kg frame at a construction site, shown in the figure at right. Take $g = 9.8 \text{ m/s}^2$.

- 17. What is the lift force exerted by the air on the helicopter rotors?

- (a) 9.80×10^3 N (b) 8.90×10^4 N (c) 9.87×10^4 N (d) 9.79×10^3 N (e) 9.79×10^4 N
- 18. What is the tension in the cable (ignore its mass) that connects the frame to the helicopter?
- (a) 1.33×10^4 N (b) 1.375×10^3 N (c) 1.375×10^4 N (d) 1.25×10^3 N (e) 1.25×10^4 N

- **19.** What force (and direction) does the cable exert on the helicopter?
 - (a) 1.25×10^3 N down (b) 1.375×10^4 N down (c) 1.33×10^4 N up (d) 1.25×10^4 N up (e) 1.375×10^4 N up

B

Questions 20-23

In order that two boxes, one on top of the other, are sliding down the ramp, together with the same constant speed, a force Fis applied to the box B in the opposite direction of the motion, as shown in the figure. The coefficient of static friction between the two boxes is μ_s and the coefficient of kinetic friction between the box B and the ramp is μ_k . $(m_A = 1 \text{ kg}, m_B = 9 \text{ kg},$ $\mu_k = 0.5, \, \mu_s = 0.9, \, g = 10 \, \text{m/s}^2, \, \cos(30^\circ) = 0.87, \, \sin(30^\circ) = 0.5$

- **20.** Find the kinetic friction force if the angle is $\alpha = 30^{\circ}$.

- (b) 10 N (c) 50 N (d) 43.5 N (e) 6.5 N
- **21.** Find the force F if the angle is $\alpha = 30^{\circ}$.

- (a) 50 N (b) 8 N (c) 6.5 N (d) 15 N (e) 11 N
- 22. Find the static friction force between the two boxes if the angle is $\alpha = 30^{\circ}$.
- (b) 45 N
- (c) 5.5 N (d) 2.4 N (e) 11 N

- 23. Find the maximum value of α such that the mass A does not move with respect to B.
 - (a) $\alpha_{max} = \tan^{-1}(\mu_s \cdot \mu_k)$ (b) $\alpha_{max} = \tan^{-1}(\mu_s/\mu_k)$ (c) $\alpha_{max} = \tan^{-1}(\mu_k^2/\mu_s)$

- (d) $\alpha_{max} = \tan^{-1}(\mu_k)$ (e) $\alpha_{max} = \tan^{-1}(\mu_s)$

Questions 24-25

The block of mass m shown in the figure lies on a horizontal frictionless surface, and the spring constant is k. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied constant force F pulls the block in the positive x-direction, stretching the spring until the block stops at position $x = x_{\rm M}$.

- **24.** What is the work done by the constant force F in the pulling process?

 - (a) 0 (b) $kx_{\rm M}^2$ (c) $2F^2/k$ (d) $2kx_{\rm M}^2$ (e) F^2/k
- 25. In the pulling process, kinetic energy of the block constantly changes. What is the maximal value of kinetic energy the block will have as it moves from x = 0 to $x = x_{\rm M}$?

- (a) $kx_{\rm M}^2/4$ (b) $kx_{\rm M}^2/2$ (c) $2F^2/k$ (d) $mgx_{\rm M}$ (e) $F^2/(2k)$