AMENDMENTS TO THE CLAIMS:

Please change the heading at page 82, line 1, from "Patent Claims" to --WHAT IS CLAIMED IS:--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-21 (canceled)

-- Claim 22 (new): A pyridinylanilide of formula (I)

in which

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

R¹, R², and R³ independently of one another represent hydrogen, halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represent straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6

CS8717 - 3 -

carbon atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represent the group -C(Q¹)=N-Q², wherein

- Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄-alkenyloxy or C₂-C₄-alkynyloxy;

represents phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy; or represents phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy;

or when R^2 and R^3 are attached to the pyridinyl moiety in an ortho position to each other, then R^1 is defined as above and R^2 and R^3 together further represent C_3 - C_4 -alkylene, C_3 - C_4 -alkenylene, C_2 - C_3 -oxyalkylene, or C_1 - C_2 -dioxyalkylene, each of which is optionally mono- to tetra-substituted, identically or differently, by fluorine, chlorine, oxo, methyl, ethyl, or trifluoromethyl;

R⁴ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl)carbonyl-

- C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)-carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹, represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰.
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms,

R¹¹ represents hydrogen or C₁-C₆-alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

R¹² represents hydrogen, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, or C₁-C₄-halogenoalkylthio each having 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

R¹³ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio, and

R¹⁴ represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl, or C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl each having 1 to 5 halogen atoms; or represents phenyl, or

(2) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

R¹⁵ and R¹⁶ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R¹⁷ represents halogen, cyano or C₁-C₄-alkyl; or represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, or

(3) a radical of formula (A3)

$$R^{19}$$
 (A3),

wherein

R¹⁸ and R¹⁹ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R²⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(4) a radical of formula (A4)

wherein R^{21} represents hydrogen, halogen, hydroxyl, cyano, or C_1 - C_6 -alkyl; or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio each having 1 to 5 halogen atoms, or

(5) a radical of formula (A5)

$$\mathbb{R}^{23}$$
 (A5),

wherein

R²² represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio, or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, and

R²³ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl, or

(6) a radical of formula (A6)

$$R^{25}_{p} = Q^{3}_{Q}$$
 (A6),

wherein

 R^{24} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms,

R²⁵ represents C₁-C₄-alkyl,

Q³ represents a sulphur or oxygen atom, SO, SO₂, or CH₂, and

p represents 0, 1, or 2, with the proviso that R²⁵ represents identical or different radicals if p represents 2, or

(7) a radical of formula (A7)

wherein R^{26} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(8) a radical of formula (A8)

wherein R^{27} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(9) a radical of formula (A9)

$$R^{29}$$
 (A9)

wherein

 $\ensuremath{\mathsf{R}}^{28}$ and $\ensuremath{\mathsf{R}}^{29}$ independently of one another represent hydrogen,

halogen, amino, or C_1 - C_4 -alkyl; or represent C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, and

R³⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(10) a radical of formula (A10)

$$R^{32}$$
 R^{33} (A10),

wherein

R³¹ and R³² independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³³ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(11) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(12) a radical of formula (A12)

wherein

R³⁶ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(13) a radical of formula (A13)

wherein R^{38} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(14) a radical of formula (A14)

wherein

 R^{39} represents hydrogen or C_1 - C_4 -alkyl, and

R⁴⁰ represents halogen or C₁-C₄-alkyl, or

(15) a radical of formula (A15)

$$\overbrace{Q} \qquad \qquad \text{(A15)},$$

wherein R^{41} represents $C_1\hbox{-} C_4\hbox{-}alkyl$ or $C_1\hbox{-} C_4\hbox{-}halogenoalkyl$ having 1 to 5 halogen atoms, or

(16) a radical of formula (A16)

$$(A16),$$

wherein R^{42} represents hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(17) a radical of formula (A17)

wherein R^{43} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio, or C_1 - C_4 -halogenoalkoxy each having 1 to 5 halogen atoms,

with the exception of pyridinylanilides of formula (I) in which

R represents hydrogen,

R¹, R², and R³ independently of one another each represents hydrogen; halogen; straight-chain or branched alkyl having 1 to 4 carbon atoms; or straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms,

R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1),

wherein

R¹² represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl,

R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 R^{15} and R^{16} independently of one another represent hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl},$ and

R¹⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(iii) a radical of formula (A4)

wherein R^{21} represents halogen, $C_1\text{-}C_4\text{-}$ alkyl, or $C_1\text{-}C_4\text{-}$ halogenoalkyl, or

(iv) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25}$$
 Q^{3} (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9)

wherein

R²⁸ and R²⁹ independently of one another each represent hydrogen or

C₁-C₄-alkyl, and

R³⁰ represents methyl, or

(vii) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(viii) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right) (A16),$$

wherein R⁴² represents halogen.

- Claim 23 (new): A pyridinylanilide of formula (I) according to Claim 22 in which represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;
- R¹, R² and R³ independently of one another represent hydrogen, halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straight-chain or branched alkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 4 carbon atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; or represent the group -C(Q¹)=N-Q², wherein
 - Q¹ represents hydrogen, hydroxyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms; or represents C₃-C₆-cycloalkyl, and
 - Q² represents hydroxyl, C₁-C₄-alkyl, or C₁-C₄-alkoxy; or represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 9 identical or different halogen atoms,

or when R^2 and R^3 are attached to the pyridinyl moiety in an ortho position to each other, then R^1 is defined as above and R^2 and R^3 together further represent -(CH₂)₃-, -(CH₂)₄-, -CH=CH-CH=CH-, -O(CH₂)₂-, -O(CH₂)₃-, -OCH₂O-, or -O(CH₂)₂O-, each of which is optionally mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, oxo, methyl, ethyl, or trifluoromethyl;

represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkyl)

alkoxy)carbonyl- C_1 - C_3 -alkyl; represents (C_1 - C_3 -halogenoalkyl)carbonyl- C_1 - C_3 -alkyl or (C_1 - C_3 -halogenoalkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -halogenoalkyl or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms; represents (C_1 - C_3 -halogenoalkyl)carbonyl- C_1 - C_3 -halogenoalkyl or (C_1 - C_3 -halogenoalkyl)carbonyl- C_1 - C_3 -halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents - COR^5 , - $CONR^6R^7$, or - $CH_2NR^8R^9$,

- R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, halogeno-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰.
- R^6 and R^7 independently of one another represent hydrogen, C_1 - C_6 -alkyl, or C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 -cycloalkyl; or represent C_1 - C_4 -halogenoalkyl, halogeno- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{11} , and wherein the heterocycle is optionally mono- to tetra-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represent C₁-C₄-halogenoalkyl, C₃-C₆-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to tetra-substituted, identically or differently, by halogen or C₁-C₄-alkyl,

- R¹⁰ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, halogeno-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms,
- R¹¹ represents hydrogen or C₁-C₄-alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

- R¹² represents hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, iso-propyl, methoxy, ethoxy, methylthio, ethylthio, or cyclopropyl; represents C₁-C₂-halogenoalkyl or C₁-C₂-halogenoalkoxy each having 1 to 5 fluorine, chlorine, and/or bromine atoms; or represents trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl, or aminocarbonylethyl,
- R¹³ represents hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio, or ethylthio, and
- R¹⁴ represents hydrogen, methyl, ethyl, n-propyl, iso-propyl, C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl, or
- (2) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

R¹⁵ and R¹⁶ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms and

R¹⁷ represents fluorine, chlorine, bromine, cyano, methyl, or ethyl, or represents C₁-C₂-halogenoalkyl or C₁-C₂-halogenoalkoxy each having 1 to 5 fluorine, chlorine, and/or bromine atoms, or

(3) a radical of formula (A3)

$$R^{19}$$
 (A3),

wherein

R¹⁸ and R¹⁹ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R²⁰ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, or

(4) a radical of formula (A4)

wherein R^{21} represents hydrogen, fluorine, chlorine, bromine, iodine, hydroxyl, cyano, or C_1 - C_4 -alkyl; or represents C_1 - C_2 -halogenoalkyl, C_1 - C_2 -halogenoalkoxy, or C_1 - C_2 -halogenoalkylthio each having 1 to 5 fluorine, chlorine, and/or bromine atoms, or

(5) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents fluorine, chlorine, bromine, iodine, hydroxyl, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, or trifluoromethylthio; or represents C₁-C₂-halogenoalkyl or C₁-C₂-halogenoalkoxy each having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R²³ represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, or ethylthio; represents

 C_1 - C_2 -halogenoalkyl or C_1 - C_2 -halogenoalkoxy each having 1 to 5 fluorine, chlorine, and/or bromine atoms; or represents C_1 - C_2 -alkylsulphinyl or C_1 - C_2 -alkylsulphonyl, or

(6) a radical of formula (A6)

$$R^{25}_{p} - Q^{3}_{R^{24}}$$
 (A6),

wherein

R²⁴ represents methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁵ represents methyl or ethyl,

Q³ represents a sulphur atom, SO₂, or CH₂, and

p represents 0 or 1, or

(7) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and represents hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, or

(8) a radical of formula (A10)

$$R^{32}$$
 R^{33} (A10),

wherein

R³¹ and R³² independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

CS8717 - 17 -

R³³ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, or

(9) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R³⁵ represents fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, or

(10) a radical of formula (A12)

$$R^{36}$$
 R^{37} (A12),

wherein

R³⁶ represents hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

represents fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, or

(11) a radical of formula (A17)

wherein R⁴³ represents fluorine, chlorine, bromine, iodine, hydroxyl, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio.

or trifluoromethylthio; or represents C_1 - C_2 -halogenoalkyl or C_1 - C_2 -halogenoalkoxy each having 1 to 5 fluorine, chlorine, and/or bromine atoms,

with the exception of pyridinylanilides of formula (I) in which

R represents hydrogen,

R¹, R², and R³ independently of one another represent hydrogen or halogen; represent straight-chain or branched alkyl having 1 to 4 carbon atoms; or represent straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms,

R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

R¹² represents fluorine, chlorine, bromine, iodine, methyl, ethyl, iso-propyl, or C₁-C₂-halogenoalkyl,

R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

R¹⁵ and R¹⁶ independently of one another each represent hydrogen, methyl, or ethyl, and

R¹⁷ represents fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl, or

(iii) a radical of formula (A4)

wherein R^{21} represents fluorine, chlorine, bromine, iodine, $C_1\text{-}C_4\text{-}alkyl$, or $C_1\text{-}C_2\text{-}halogenoalkyl}$, or

(iv) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents fluorine, chlorine, bromine, or iodine, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25}$$
 Q R^{24} (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another represent hydrogen, methyl.

or ethyl, and

R³⁰ represents methyl, or

(vii) a radical of formula (A11)

wherein

R³⁴ represents hydrogen, methyl, or ethyl, and

R³⁵ represents fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-halogenoalkyl.

Claim 24 (new): A pyridinylanilide of formula (I) according to Claim 22 in which R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

- R^1 , R^2 , and R^3 independently of one another represent hydrogen, fluorine, chlorine, bromine, cyano; methyl, ethyl, n- or iso-propyl, n-, iso-, sec-, or tert-butyl, methoxy, ethoxy, n- or iso-propoxy, n-, iso-, sec-, or tert-butylthio, methylthio, n- or iso-propylthio, n-, iso-, sec-, or tert-butylthio, trifluoromethyl, trifluoromethyl, difluoromethoxy, trifluoromethoxy, difluorochloromethoxy, trifluoroethoxy, cyclopropyl, cyclopentyl, or cyclohexyl, or represent the group $-C(Q^1)=N-Q^2$, wherein
 - Q¹ represents hydrogen, methyl, ethyl, trifluoromethyl, or cyclopropyl, and
 - Q² represents hydroxyl, methoxy, ethoxy, n-propoxy, or iso-propoxy,

or when R^2 and R^3 are attached to the pyridinyl moiety in an ortho position to each other, then R^1 is defined as above and R^2 and R^3 together further represent -(CH₂)₃-, -(CH₂)₄-, -CH=CH-CH=CH-, -OCH₂O-, -O(CH₂)₂O-, -OCF₂O-, or -O(CF₂)₂O-,

R⁴ represents hydrogen, methyl, ethyl, n- or iso-propyl, n-, iso-, sec-, or tert-butyl, pentyl, hexyl, methylsulfinyl, ethylsulfinyl, n- or iso-propylsulfinyl, n-, iso-, sec-, or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or iso-propylsulfonyl, n-, iso-, sec-, or tert-butylsulfonyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, trichloromethyl, trifluoromethyl, difluoromethylthio, difluorochloromethylthio, trifluoromethoxymethyl, -CH₂-CHO, -CH₂CH₂-CHO, -CH₂-CO-CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH₂CH₃, -CH₂-CO-CH₂CH₃,

- -CH₂CH₂-CO-CH(CH₃)₂, -CH₂-C(O)OCH₃, -CH₂-C(O)OCH₂CH₃,
- $-CH_2-C(O)OCH(CH_3)_2$, $-CH_2CH_2-C(O)OCH_3$, $-CH_2CH_2-C(O)OCH_2CH_3$,
- -CH₂CH₂-C(O)OCH(CH₃)₂, -CH₂-CO-CF₃, -CH₂-CO-CCI₃, -CH₂-CO-CH₂CF₃,

- -CH₂-CO-CH₂CCl₃, -CH₂CH₂-CO-CH₂CF₃, -CH₂CH₂-CO-CH₂CCl₃,
- -CH₂-C(O)OCH₂CF₃, -CH₂-C(O)OCF₂CF₃, -CH₂-C(O)OCH₂CCl₃,
- -CH₂-C(O)OCCl₂CCl₃, -CH₂CH₂-C(O)OCH₂CF₃, -CH₂CH₂-C(O)OCF₂CF₃,
- -CH₂CH₂-C(O)OCH₂CCl₃, -CH₂CH₂-C(O)O-CCl₂CCl₃; -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,
- R⁵ represents hydrogen, methyl, ethyl, n- or iso-propyl, tert-butyl, methoxy, ethoxy, tert-butoxy, cyclopropyl, trifluoromethyl, trifluoromethoxy, or -COR¹⁰,
- R⁶ and R⁷ independently of one another represent hydrogen, methyl, ethyl, n- or iso-propyl, n-, iso-, sec-, or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, or trifluoromethoxymethyl; or R⁶ and R⁷ together with the nitrogen atom to which they are attached, represent a saturated heterocycle selected from the group consisting of morpholine, thiomorpholine, and piperazine, wherein the heterocycle is optionally mono- to tetra-substituted, identically or differently, by fluorine, chlorine, bromine, or methyl, and wherein the piperazine additionally at the second nitrogen atom is optionally substituted by R¹¹,
- R⁸ and R⁹ independently of one another represent hydrogen, methyl, ethyl, n- or iso-propyl, n-, iso-, sec- or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, or trifluoromethoxymethyl; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated heterocycle selected from the group consisting of morpholine, thiomorpholine, and piperazine, wherein the heterocycle is optionally mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, or methyl and wherein the piperazine additionally at the second nitrogen atom is optionally substituted by R¹¹,
- R¹⁰ represents hydrogen, methyl, ethyl, n- or iso-propyl, tert-butyl, methoxy, ethoxy, n- or iso-propoxy, tert-butoxy, cyclopropyl; trifluoromethyl, or trifluoromethoxy,
- R¹¹ represents hydrogen, methyl, ethyl, n- or iso-propyl, or n-, iso-, sec-, or tert-butyl,

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
 R^{14}
(A1),

wherein

R¹² represents hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, iso-propyl, monofluoromethyl, monofluoroethyl, difluoromethyl, trifluoromethyl, difluorochloromethyl, trichloromethyl, dichloromethyl, cyclopropyl, methoxy, ethoxy, trifluoromethoxy, trichloromethoxy, methylthio, ethylthio, trifluoromethylthio, or difluoromethylthio,

R¹³ represents hydrogen, fluorine, chlorine, bromine, iodine, or methyl, and

R¹⁴ represents hydrogen, methyl, ethyl, iso-propyl, trifluoromethyl, difluoromethyl, hydroxymethyl, hydroxyethyl, or phenyl, or

(2) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

R¹⁵ and R¹⁶ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, difluoromethyl, trifluoromethyl, difluorochloromethyl, or trichloromethyl, and

R¹⁷ represents fluorine, chlorine, bromine, cyano, methyl, trifluoromethyl, trifluoromethoxy, difluoromethoxy, difluorochloromethoxy, or trichloromethoxy, or

(3) a radical of formula (A4)

wherein R²¹ represents hydrogen, fluorine, chlorine, bromine, iodine, hydroxyl, cyano, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, difluoromethyl, trifluoromethyl, difluorochloromethyl, trichloromethyl, trifluoromethoxy, difluorochloromethoxy, trichloromethoxy, trifluoromethylthio, difluoromethylthio, difluorochloromethylthio, or trichloromethylthio, or

(4) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents fluorine, chlorine, bromine, iodine, hydroxyl, cyano, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, trifluoromethyl, difluoromethyl, difluorochloromethyl, trichloromethyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethyl, difluoromethoxy, difluoromethoxy, difluoromethoxy, difluoromethoxy, and

R²³ represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, trifluoromethyl, difluoromethyl, difluorochloromethyl, trichloromethyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethoxy, difluoromethoxy, difluorochloromethoxy, trichloromethoxy, methylsulphinyl, or methylsulphonyl, or

(5) a radical of formula (A6)

$$R^{25}$$
 Q^{3} (A6),

wherein

R²⁴ represents methyl, ethyl, trifluoromethyl, difluoromethyl, difluoromethyl, or trichloromethyl,

R²⁵ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(6) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, difluoromethyl, difluorochloromethyl, or trichloromethyl, and

R³⁰ represents hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, trifluoromethyl, difluoromethyl, difluorochloromethyl, or trichloromethyl, or

(7) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, fluorine, chlorine, bromine, amino, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, difluoromethyl, difluoromethyl, or trichloromethyl, and
 R³⁵ represents fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, difluoromethyl, difluorochloromethyl, or trichloromethyl, or

(8) a radical of formula (A17)

wherein R⁴³ represents fluorine, chlorine, bromine, iodine, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, trifluoromethyl, difluoromethyl, difluorochloromethyl, or trichloromethyl, with the exception of pyridinylanilides of formula (I) in which

R represents hydrogen,

- R¹, R², and R³ independently of one another represent hydrogen, fluorine, chlorine, bromine; methyl, ethyl, n- or iso-propyl, n-, iso-, sec-, or tert-butyl, trifluoromethyl, or trifluoroethyl;
- R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1),

wherein

R¹² represents fluorine, chlorine, bromine, iodine, methyl, ethyl, iso-propyl, monofluoromethyl, monofluoroethyl, difluoromethyl, trifluoromethyl, difluorochloromethyl, trichloromethyl, or dichloromethyl,

R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

R¹⁵ and R¹⁶ independently of one another represent hydrogen, methyl, or ethyl, and

R¹⁷ represents fluorine, chlorine, bromine, methyl, ethyl, or trifluoromethyl, or

(iii) a radical of formula (A4)

wherein R²¹ represents fluorine, chlorine, bromine, iodine, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, difluoromethyl, trifluoromethyl, difluorochloromethyl, or trichloromethyl, or

(iv) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents fluorine, chlorine, bromine, or iodine, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25}$$
 Q^{3} Q^{3} (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another represent hydrogen, methyl, or ethyl, and

R³⁰ represents methyl, or

(vii) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, methyl, or ethyl, and

R³⁵ represents fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, difluoromethyl, difluorochloromethyl, or trichloromethyl.

Claim 25 (new): A pyridinylanilide of formula (I) according to Claim 22 in which R⁴ represents hydrogen.

Claim 26 (new): A pyridinylanilide of formula (I) according to Claim 22 in which R represents hydrogen.

Claim 27 (new): A pyridinylanilide of formula (I-12)

$$\begin{array}{c|c}
O & & \\
R^4 & & \\
R^{1a} & & \\
\end{array}$$
(I-12)

in which

 R^{1a}

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represents straight-chain or branched alkyl. hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represents straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represents straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represents straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represents straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represents alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represents cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represents the group -C(Q1)=N-Q2, wherein

CS8717 - 28 -

- Q¹ represents hydrogen, hydroxyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms; or represents C₃-C₆-cycloalkyl, and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄-alkenyloxy or C₂-C₄-alkynyloxy;

represents phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represents phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

- represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)-carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰.

- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms,
- R^{11} represents hydrogen or C_1 - C_6 -alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1),

wherein

R¹² represents hydrogen, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; represents C₁-C₄-

halogenoalkyl, C_1 - C_4 -halogenoalkoxy, or C_1 - C_4 -halogenoalkylthio each having 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl- C_1 - C_4 -alkyl,

- R^{13} represents hydrogen, halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, and
- R¹⁴ represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl, or C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl each having 1 to 5 halogen atoms; or represents phenyl, or
- (2) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 R^{15} and R^{16} independently of one another represent hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, and

R¹⁷ represents halogen, cyano or C₁-C₄-alkyl; or represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, or

(3) a radical of formula (A3)

$$R^{19}$$
 (A3),

wherein

R¹⁸ and R¹⁹ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R²⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(4) a radical of formula (A4)

wherein R^{21} represents hydrogen, halogen, hydroxyl, cyano, or C_1 - C_6 -alkyl; or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio each having 1 to 5 halogen atoms, or

(5) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio, or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, and

R²³ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl, or

(6) a radical of formula (A6)

$$R^{25}$$
 Q^{3} Q^{3} (A6),

wherein

 R^{24} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms,

R²⁵ represents C₁-C₄-alkyl,

Q³ represents a sulphur or oxygen atom, SO, SO₂, or CH₂, and

p represents 0, 1, or 2, with the proviso that R²⁵ represents identical or different radicals if p represents 2, or

(7) a radical of formula (A7)

wherein R^{26} represents $C_1\text{-}C_4\text{-}$ alkyl or $C_1\text{-}C_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, or

(8) a radical of formula (A8)

wherein R^{27} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(9) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another represent hydrogen, halogen, amino, or C₁-C₄-alkyl; or represent C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(10) a radical of formula (A10)

$$R^{32}$$
 R^{33} (A10),

wherein

R³¹ and R³² independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³³ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(11) a radical of formula (A11)

wherein

R³⁴ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(12) a radical of formula (A12)

$$R^{36}$$
 R^{37} (A12),

wherein

R³⁶ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(13) a radical of formula (A13)

wherein R^{38} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(14) a radical of formula (A14)

$$R^{39}$$
 (A14),

wherein

R³⁹ represents hydrogen or C₁-C₄-alkyl, and

R⁴⁰ represents halogen or C₁-C₄-alkyl, or

(15) a radical of formula (A15)

$$R^{41}$$
 (A15),

wherein R^{41} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(16) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right)$$
(A16),

wherein R^{42} represents hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(17) a radical of formula (A17)

wherein R⁴³ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio, or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkyl, or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, with the exception of pyridinylanilides of formula (I-12) in which

R represents hydrogen,

R^{1a} represents halogen; straight-chain or branched alkyl having 1 to 4 carbon atoms; or straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms,

R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

R¹² represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 \mbox{R}^{15} and \mbox{R}^{16} independently of one another represent hydrogen or $\mbox{C}_{1}\mbox{-}\mbox{C}_{4}\mbox{-}\mbox{alkyl},$ and

R¹⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(iii) a radical of formula (A4)

wherein R^{21} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl, or

(iv) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25}_{p}$$
 Q R^{24} (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another each represent hydrogen or C₁-C₄-alkyl, and

 R^{30} represents methyl, or

(vii) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

 R^{34} represents hydrogen or C1-C4-alkyl, and

 R^{35} represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(viii) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right) (A16),$$

wherein R⁴² represents halogen.

Claim 28 (new): A pyridinylanilide of formula (I-13)

in which

 R^{1a}

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represents straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represents straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represents straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and CS8717 - 37 -

1 to 13 identical or different halogen atoms; represents straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represents straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represents alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represents cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represents the grouping -C(Q¹)=N-Q², wherein

- Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄-alkenyloxy or C₂-C₄-alkynyloxy;

represents phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represents phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C₁-C₄-alkyl or C₁-C₄-alkoxy;

R⁴ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in

- each case 1 to 6 fluorine-, chlorine- ,and/or bromine atoms represents (C_1 - C_3 -halogenoalkyl)carbonyl- C_1 - C_3 -halogenoalkyl, (C_1 - C_3 -halogenoalkoxy)-carbonyl- C_1 - C_3 -halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR 5 , -CONR 6 R 7 , or -CH $_2$ NR 8 R 9 ,
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or
 C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰,
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms,
- R^{11} represents hydrogen or C_1 - C_6 -alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

- R¹² represents hydrogen, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, or C₁-C₄-halogenoalkylthio each having 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,
- R^{13} represents hydrogen, halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, and
- R¹⁴ represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl, or C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl each having 1 to 5 halogen atoms; or represents phenyl, or
- (2) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

- R¹⁵ and R¹⁶ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and
- R¹⁷ represents halogen, cyano or C₁-C₄-alkyl; or represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, or

(3) a radical of formula (A3)

$$R^{18}$$
 R^{20} (A3),

wherein

R¹⁸ and R¹⁹ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R²⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(4) a radical of formula (A4)

wherein R^{21} represents hydrogen, halogen, hydroxyl, cyano, or C_1 - C_6 -alkyl; or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio each having 1 to 5 halogen atoms, or

(5) a radical of formula (A5)

$$\mathbb{R}^{23}$$
 (A5),

wherein

R²² represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio, or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, and

R²³ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl, or

(6) a radical of formula (A6)

$$R^{25}$$
 Q^{3} Q^{3} Q^{24} (A6),

wherein

R²⁴ represents C₁-C₄-alkyl or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms,

R²⁵ represents C₁-C₄-alkyl,

Q³ represents a sulphur or oxygen atom, SO, SO₂, or CH₂, and

p represents 0, 1, or 2, with the proviso that R²⁵ represents identical or different radicals if p represents 2, or

(7) a radical of formula (A7)

wherein R^{26} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(8) a radical of formula (A8)

wherein R^{27} represents $C_1\text{-}C_4\text{-}$ alkyl or $C_1\text{-}C_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, or

(9) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another represent hydrogen,

halogen, amino, or C_1 - C_4 -alkyl; or represent C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, and

R³⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(10) a radical of formula (A10)

$$R^{32}$$
 R^{33} (A10),

wherein

R³¹ and R³² independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³³ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(11) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(12) a radical of formula (A12)

$$R^{36}$$
 R^{37} (A12),

wherein

R³⁶ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(13) a radical of formula (A13)

wherein R^{38} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(14) a radical of formula (A14)

wherein

 R^{39} represents hydrogen or $C_1\text{-}C_4\text{-alkyl}$, and

R⁴⁰ represents halogen or C₁-C₄-alkyl, or

(15) a radical of formula (A15)

$$(A15),$$

wherein R^{41} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(16) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
N
\end{array}\right)$$
(A16),

wherein R^{42} represents hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(17) a radical of formula (A17)

wherein R^{43} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio, or C_1 - C_4 -halogenoalkoxy each having 1 to 5 halogen atoms,

with the exception of pyridinylanilides of formula (I-13) in which

R represents hydrogen,

R^{1a} represents halogen; straight-chain or branched alkyl having 1 to 4 carbon atoms; or straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms,

R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1),

wherein

R¹² represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl,

R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 R^{15} and R^{16} independently of one another represent hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl},$ and

R¹⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(iii) a radical of formula (A4)

wherein R^{21} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl, or

(iv) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25}$$
 Q^{3} Q^{24} (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

 \mbox{R}^{28} and \mbox{R}^{29} independently of one another each represent hydrogen or $\mbox{C}_{1}\mbox{-}\mbox{C}_{4}\mbox{-}\mbox{alkyl},$ and

R³⁰ represents methyl, or

(vii) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(viii) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right) (A16),$$

wherein R⁴² represents halogen.

Claim 29 (new): A pyridinylanilide of formula (I-14)

$$A \xrightarrow{N} R^{4} R^{1a}$$

$$R^{2a}$$

$$(I-14)$$

in which

represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl; R

R^{1a} and R^{2a} independently of one another represent halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straightchain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represent straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represents the group $-C(Q^1)=N-Q^2$, wherein Q^1 represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and

 Q^2 represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio,

CS8717 - 47 - C_1 - C_4 -alkylamino, di(C_1 - C_4 -alkyl)amino, or phenyl; or represents C_2 - C_4 -alkenyloxy or C_2 - C_4 -alkynyloxy;

represent phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represent phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C₁-C₄-alkyl or C₁-C₄-alkoxy;

- R^4 represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkyl, or C_3-C_8 -cycloalkyl; represents C_1-C_6 -halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃alkoxy)carbonyl-C₁-C₃-alkyl; (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C₁-C₃halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹, represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰,
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally

has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{11} , and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,

- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms,
- R¹¹ represents hydrogen or C₁-C₆-alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1),

wherein

- R¹² represents hydrogen, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, or C₁-C₄-halogenoalkylthio each having 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,
- R^{13} represents hydrogen, halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, and

- R¹⁴ represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl, or C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl each having 1 to 5 halogen atoms; or represents phenyl, or
- (2) a radical of formula (A2)

wherein

 R^{15} and R^{16} independently of one another represent hydrogen, halogen, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, and

R¹⁷ represents halogen, cyano or C₁-C₄-alkyl; or represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, or

(3) a radical of formula (A3)

$$R^{19}$$
 (A3),

wherein

 R^{18} and R^{19} independently of one another represent hydrogen, halogen, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, and

R²⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(4) a radical of formula (A4)

wherein R^{21} represents hydrogen, halogen, hydroxyl, cyano, or C_1 - C_6 -alkyl; or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio each having 1 to 5 halogen atoms, or

(5) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio, or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, and

R²³ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl, or

(6) a radical of formula (A6)

$$R^{25}_{p} - Q^{3}_{p}$$
 (A6),

wherein

 R^{24} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms,

 R^{25} represents C_1 - C_4 -alkyl,

Q³ represents a sulphur or oxygen atom, SO, SO₂, or CH₂, and

p represents 0, 1, or 2, with the proviso that R²⁵ represents identical or different radicals if p represents 2, or

(7) a radical of formula (A7)

wherein R^{26} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(8) a radical of formula (A8)

wherein R^{27} represents $C_1\text{-}C_4\text{-}$ alkyl or $C_1\text{-}C_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, or

(9) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

R²⁸ and R²⁹ independently of one another represent hydrogen, halogen, amino, or C₁-C₄-alkyl; or represent C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(10) a radical of formula (A10)

$$R^{32}$$
 R^{33} (A10),

wherein

 R^{31} and R^{32} independently of one another represent hydrogen, halogen, amino, nitro, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, and

R³³ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(11) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(12) a radical of formula (A12)

$$R^{36}$$
 R^{37} (A12),

wherein

R³⁶ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(13) a radical of formula (A13)

wherein R^{38} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(14) a radical of formula (A14)

wherein

R³⁹ represents hydrogen or C₁-C₄-alkyl, and

R⁴⁰ represents halogen or C₁-C₄-alkyl, or

(15) a radical of formula (A15)

$$R^{41}$$
 (A15),

wherein R^{41} represents $C_1\hbox{-} C_4\hbox{-}alkyl$ or $C_1\hbox{-} C_4\hbox{-}halogenoalkyl$ having 1 to 5 halogen atoms, or

(16) a radical of formula (A16)

wherein R^{42} represents hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(17) a radical of formula (A17)

wherein R^{43} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio, or C_1 - C_4 -halogenoalkoxy each having 1 to 5 halogen atoms,

with the exception of pyridinylanilides of formula (I-14) in which

R represents hydrogen,

R^{1a} and R^{2a} independently of one another each represents halogen; straight-chain or branched alkyl having 1 to 4 carbon atoms; or straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms,

R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

R¹² represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl,

R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 R^{15} and R^{16} independently of one another represent hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, and

R¹⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(iii) a radical of formula (A4)

wherein R^{21} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl, or

(iv) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25}$$
 Q^{3} R^{24} (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

 R^{28} and R^{29} independently of one another each represent hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl}$, and

R³⁰ represents methyl, or

(vii) a radical of formula (A11)

wherein

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

 R^{35} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl, or (viii) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
N
\end{array}\right)$$
(A16),

wherein R⁴² represents halogen.

Claim 30 (new): A pyridinylanilide of formula (I-15)

in which

represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl; R R^{1a} and R^{2a} independently of one another represent halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straightchain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represent straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon

CS8717 - 56 -

atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represent the group -C(Q¹)=N-Q², wherein

- Q^1 represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and
- Q^2 represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄alkenyloxy or C₂-C₄-alkynyloxy;

represent phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represent phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C₁-C₄-alkyl or C₁-C₄-alkoxy;

 R^4 represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃alkoxy)carbonyl-C₁-C₃-alkyl; (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C₁-C₃halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹, represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or

 R^5 C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰.

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,

 R^8 and R^9 independently of one another represent hydrogen, C_1 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -halogenoalkyl, C_3 - C_8 -halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R^8 and R^9 together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{11} , and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms.

R¹¹ represents hydrogen or C₁-C₆-alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

- R¹² represents hydrogen, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, or C₁-C₄-halogenoalkylthio each having 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,
- R^{13} represents hydrogen, halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, and
- R¹⁴ represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl, or C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl each having 1 to 5 halogen atoms; or represents phenyl, or

(2) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

- R^{15} and R^{16} independently of one another represent hydrogen, halogen, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, and
- R¹⁷ represents halogen, cyano or C₁-C₄-alkyl; or represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, or

(3) a radical of formula (A3)

$$R^{19}$$
 (A3),

wherein

- R¹⁸ and R¹⁹ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and
- R²⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(4) a radical of formula (A4)

wherein R^{21} represents hydrogen, halogen, hydroxyl, cyano, or C_1 - C_6 -alkyl; or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio each having 1 to 5 halogen atoms, or

(5) a radical of formula (A5)

$$R^{23}$$
 R^{22} (A5),

wherein

R²² represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio, or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, and

represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl, or

(6) a radical of formula (A6)

$$R^{25}$$
 Q^{3} Q^{3} (A6),

wherein

R²⁴ represents C₁-C₄-alkyl or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms,

R²⁵ represents C₁-C₄-alkyl,

Q³ represents a sulphur or oxygen atom, SO, SO₂, or CH₂, and

p represents 0, 1, or 2, with the proviso that R²⁵ represents identical or different radicals if p represents 2, or

(7) a radical of formula (A7)

wherein R^{26} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(8) a radical of formula (A8)

wherein R^{27} represents $C_1\hbox{-} C_4\hbox{-}alkyl$ or $C_1\hbox{-} C_4\hbox{-}halogenoalkyl$ having 1 to 5 halogen atoms, or

(9) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

 ${\sf R}^{28}$ and ${\sf R}^{29}$ independently of one another represent hydrogen,

halogen, amino, or $C_1\text{-}C_4\text{-}alkyl;$ or represent $C_1\text{-}C_4\text{-}halogenoalkyl}$ having 1 to 5 halogen atoms, and

R³⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(10) a radical of formula (A10)

$$R^{32}$$
 R^{33} (A10),

wherein

 $\ensuremath{\mathsf{R}}^{31}$ and $\ensuremath{\mathsf{R}}^{32}$ independently of one another represent hydrogen,

halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl

having 1 to 5 halogen atoms, and

R³³ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(11) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(12) a radical of formula (A12)

wherein

R³⁶ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(13) a radical of formula (A13)

wherein R^{38} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(14) a radical of formula (A14)

$$R^{39}$$
 (A14),

wherein

 R^{39} represents hydrogen or C_1 - C_4 -alkyl, and

R⁴⁰ represents halogen or C₁-C₄-alkyl, or

(15) a radical of formula (A15)

wherein R^{41} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(16) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right) (A16),$$

wherein R^{42} represents hydrogen, halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(17) a radical of formula (A17)

wherein R^{43} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio, or C_1 - C_4 -halogenoalkoxy each having 1 to 5 halogen atoms.

with the exception of pyridinylanilides of formula (I-15) in which

R represents hydrogen,

R^{1a} and R^{2a} independently of one another each represents halogen; straight-chain or branched alkyl having 1 to 4 carbon atoms; or straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms,

R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1),

wherein

R¹² represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl,

R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 R^{15} and R^{16} independently of one another represent hydrogen or $$C_1\hbox{-}C_4\hbox{-alkyl},$ and$

R¹⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(iii) a radical of formula (A4)

wherein R^{21} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl, or

(iv) a radical of formula (A5)

$$R^{23}$$
 R^{22} (A5),

wherein

R²² represents halogen, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25}$$
 Q^{3} Q^{3} (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9)

wherein

 R^{28} and R^{29} independently of one another each represent hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl},$ and

R³⁰ represents methyl, or

(vii) a radical of formula (A11)

wherein

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(viii) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right) (A16),$$

wherein R⁴² represents halogen.

Claim 31 (new): A pyridinylanilide of formula (I-16)

$$A \xrightarrow{N} R^{4} R^{1a}$$

$$R^{2a}$$

$$R^{3a}$$
(I-16)

in which

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

R^{1a}, R^{2a}, and R^{3a} independently of one another each represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy,

alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represent straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl. halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represent the group -C(Q1)=N-Q2, wherein

- Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄-alkenyloxy or C₂-C₄-alkynyloxy;

represent phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represent phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

 $R^4 \qquad \text{represents hydrogen, C_1-C_8-alkyl, C_1-C_6-alkylsulfinyl, C_1-C_6-alkylsulfonyl,} \\ C_1$-$C_4$-alkoxy$-C_1-C_4-alkyl, or C_3-C_8-cycloalkyl; represents C_1-C_6-halogenoalkyl,} \\ C_1$-$C_4$-halogenoalkylthio, C_1-C_4-halogenoalkylsulfinyl, C_1-C_4-halogenoalkylsulfonyl, halogeno$-$C_1$-$C_4$-alkoxy$-C_1-C_4-alkyl, or C_3-C_8-halogenocycloalkyl$

having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl) having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C_1 - C_3 -alkyl) carbonyl- C_1 - C_3 -halogenoalkyl or (C_1 - C_3 -alkoxy) carbonyl- C_1 - C_3 -halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C_1 - C_3 -halogenoalkyl) carbonyl- C_1 - C_3 -halogenoalkyl, (C_1 - C_3 -halogenoalkyl) carbonyl- C_1 - C_3 -halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents - COR^5 , - $CONR^6R^7$, or - $CH_2NR^8R^9$, represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -halogenoalkyl, C_1 - C_6 -halogenoalkoxy,

- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰,
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is

optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms.

R¹¹ represents hydrogen or C₁-C₆-alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1),

wherein

R¹² represents hydrogen, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, or C₁-C₄-halogenoalkylthio each having 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

 R^{13} represents hydrogen, halogen, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, and

R¹⁴ represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio-C₁-C₄-alkyl, or C₁-C₄-halogenoalkoxy-C₁-C₄-alkyl each having 1 to 5 halogen atoms; or represents phenyl, or

(2) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 R^{15} and R^{16} independently of one another represent hydrogen, halogen, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ alkyl, or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}$ halogenoalkyl having 1 to 5 halogen atoms, and

R¹⁷ represents halogen, cyano or C₁-C₄-alkyl; or represents C₁-C₄-halogenoalkyl or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, or

(3) a radical of formula (A3)

$$R^{19}$$
 (A3),

wherein

R¹⁸ and R¹⁹ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R²⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(4) a radical of formula (A4)

wherein R^{21} represents hydrogen, halogen, hydroxyl, cyano, or C_1 - C_6 -alkyl; or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio each having 1 to 5 halogen atoms, or

(5) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkylthio, or C₁-C₄-halogenoalkoxy each having 1 to 5 halogen atoms, and

R²³ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-halogenoalkyl or C₁-C₄-

halogenoalkoxy each having 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl, or

(6) a radical of formula (A6)

$$R^{25}_{p} - Q^{3}_{R^{24}}$$
 (A6),

wherein

 R^{24} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms,

 R^{25} represents C_1 - C_4 -alkyl,

Q³ represents a sulphur or oxygen atom, SO, SO₂, or CH₂, and

p represents 0, 1, or 2, with the proviso that R²⁵ represents identical or different radicals if p represents 2, or

(7) a radical of formula (A7)

wherein R^{26} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(8) a radical of formula (A8)

wherein R^{27} represents $C_1\hbox{-} C_4\hbox{-}alkyl$ or $C_1\hbox{-} C_4\hbox{-}halogenoalkyl$ having 1 to 5 halogen atoms, or

(9) a radical of formula (A9)

$$R^{29}$$
 (A9),

wherein

 R^{28} and R^{29} independently of one another represent hydrogen, halogen, amino, or C_1 - C_4 -alkyl; or represent C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, and

R³⁰ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(10) a radical of formula (A10)

$$R^{32}$$
 R^{33} (A10),

wherein

R³¹ and R³² independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³³ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(11) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(12) a radical of formula (A12)

wherein

R³⁶ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, and

R³⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(13) a radical of formula (A13)

wherein R^{38} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(14) a radical of formula (A14)

wherein

R³⁹ represents hydrogen or C₁-C₄-alkyl, and R⁴⁰ represents halogen or C₁-C₄-alkyl, or

(15) a radical of formula (A15)

$$(A15),$$

wherein R^{41} represents C_1 - C_4 -alkyl or C_1 - C_4 -halogenoalkyl having 1 to 5 halogen atoms, or

(16) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right) (A16),$$

wherein R⁴² represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl having 1 to 5 halogen atoms, or

(17) a radical of formula (A17)

wherein R^{43} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio, or represents C_1 - C_4 -halogenoalkyl, C_1 - C_4 -halogenoalkylthio, or C_1 - C_4 -halogenoalkoxy each having 1 to 5 halogen atoms,

with the exception of pyridinylanilides of formula (I-16) in which

R represents hydrogen,

R^{1a}, R^{2a}, and R^{3a} independently of one another each represents halogen; straight-chain or branched alkyl having 1 to 4 carbon atoms; or straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms,

R⁴ represents hydrogen, and

A represents

(i) a radical of formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{13}
(A1),

wherein

R¹² represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl,

R¹³ represents hydrogen, and

R¹⁴ represents methyl, or

(ii) a radical of formula (A2)

$$R^{16}$$
 R^{17} (A2),

wherein

 R^{15} and R^{16} independently of one another represent hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}\mathsf{alkyl},$ and

R¹⁷ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(iii) a radical of formula (A4)

wherein R^{21} represents halogen, C_1 - C_4 -alkyl, or C_1 - C_4 -halogenoalkyl, or

(iv) a radical of formula (A5)

$$R^{23}$$
 N R^{22} (A5),

wherein

R²² represents halogen, and

R²³ represents hydrogen, or

(v) a radical of formula (A6)

$$R^{25} \longrightarrow Q^{3} \longrightarrow R^{24}$$
 (A6),

wherein

R²⁴ represents methyl,

Q³ represents a sulphur atom or CH₂, and

p represents 0, or

(vi) a radical of formula (A9)

$$R^{29}$$
 (A9)

wherein

 $\ensuremath{\mathsf{R}}^{28}$ and $\ensuremath{\mathsf{R}}^{29}$ independently of one another each represent hydrogen or

C₁-C₄-alkyl, and

R³⁰ represents methyl, or

(vii) a radical of formula (A11)

$$R^{34}$$
 (A11),

wherein

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen, C₁-C₄-alkyl, or C₁-C₄-halogenoalkyl, or

(viii) a radical of formula (A16)

$$\left(\begin{array}{c}
N \\
R^{42}
\end{array}\right) (A16),$$

wherein R⁴² represents halogen.

Claim 32 (new): A process for preparing pyridinylanilides of formula (I) according to Claim 22 comprising

(a) reacting a carboxylic acid derivative of formula (II)

$$A \xrightarrow{X^1} \qquad (II)$$

in which

X¹ represents halogen or hydroxyl, and

A is as defined for formula (I) in Claim 22,

with an amine of formula (III)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in which R, R¹, R², R³, and R⁴ are as defined for formula (I) in Claim 22, optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binder, and optionally in the presence of a diluent,

or

(b) reacting a halogeno-carboxamide of formula (IV)

in which

R, R⁴, and A are as defined for formula (I) in Claim 22, and

X² represents bromine or iodine,

with a boronic acid derivative of formula (V)

$$A^1-O_B O-A^2$$

$$N + R^1$$

$$R^3 - R^2$$
(V

in which

R¹, R², and R³ are as defined for formula (I) in Claim 22, and

A¹ and A² each represent hydrogen or A¹ and A² together represent tetramethylethylene,

in the presence of a catalyst, optionally in the presence of an acid binder, and optionally in the presence of a diluent,

or

(c) reacting a carboxamide boronic acid derivative of formula (VI)

in which

R, R⁴, and A are as defined for formula (I) in Claim 22, and A³ and A⁴ each represent hydrogen or A³ and A⁴ together represent tetramethylethylene,

with a pyridinyl derivative of formula (VII)

in which R^1 , R^2 , and R^3 are as defined for formula (I) in Claim 22, in the presence of a catalyst, optionally in the presence of an acid binder, and optionally in the presence of a diluent,

or

(d) reacting a halogeno-carboxamide of formula (IV)

in which

R, R^4 , and A are as defined for formula (I) in Claim 22, and X^2 represents bromine or iodine,

with a pyridinyl derivative of formula (VII)

in which R¹, R², and R³ are as defined for formula (I) in Claim 22, in the presence of a palladium or platinum catalyst and in the presence of 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bis-1,3,2-dioxaborolane [bis(pinacolato)-diboron], optionally in the presence of an acid binder, and optionally in the presence of a diluent,

or

(e) reacting a pyridinylanilide of formula (I-1)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in which R, R¹, R², R³, and A are as defined for formula (I) in Claim 22, with a halogenide of formula (VIII)

$$R^{4a} - X^3$$
 (VIII)

in which

X³ represents chlorine, bromine, or iodine,

R^{4a} represents C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)-carbonyl-C₁-C₃-alkyl; represents (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-alkyl or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or

 $(C_1-C_3-alkoxy)$ carbonyl- C_1-C_3 -halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms; represents $(C_1-C_3-halogenoalkyl)$ carbonyl- C_1-C_3 -halogenoalkyl or $(C_1-C_3-halogenoalkoxy)$ carbonyl- C_1-C_3 -halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents $-COR^5$, $-CONR^6R^7$, or $-CH_2NR^8R^9$; and

R⁵, R⁶, R⁷, R⁸, and R⁹ are as defined for formula (I) in Claim 22, in the presence of a base and in the presence of a diluent.

Claim 33 (new): A composition for controlling unwanted microorganisms comprising one or more pyridinylanilides of formula (I) according to Claim 22 and one or more extenders and/or surfactants.

Claim 34 (new): A method for controlling unwanted microorganisms comprising applying an effective amount of one or more pyridinylanilides of formula (I) according to Claim 22 to the microorganisms and/or their habitats.

Claim 35 (new): A process for preparing compositions for controlling unwanted microorganisms comprising mixing one or more pyridinylanilides of formula (I) according to Claim 22 with one or more extenders and/or surfactants.

Claim 36 (new): An amine of formula (III)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in which

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

R¹, R², and R³ independently of one another represent hydrogen, halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety;

represent straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represent the group $-C(Q^1)=N-Q^2$, wherein

- Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; represents C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino, di(C_1 - C_4 -alkyl)amino, or phenyl; or represents C_2 - C_4 -alkenyloxy or C_2 - C_4 -alkynyloxy;

represents phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy; or represents phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C_1 - C_4 -alkyl and C_1 - C_4 -alkoxy:

or when R^2 and R^3 are attached to the pyridinyl moiety in an ortho position to each other, then R^1 is defined as above and R^2 and R^3 together further represent C_3 - C_4 -alkylene, C_3 - C_4 -alkenylene, C_2 - C_3 -oxyalkylene, or C_1 - C_2 -dioxyalkylene, each of which is optionally mono- to tetra-substituted,

CS8717 - 79 -

identically or differently, by fluorine, chlorine, oxo, methyl, ethyl, or trifluoromethyl;

 R^4 represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl. C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃alkoxy)carbonyl-C₁-C₃-alkyl; (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C1-C3halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-. and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹. R^5 represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 bis 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having

-COR¹⁰,

in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R^8 and R^9 together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{11} , and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms, and

 R^{11} represents hydrogen or C_1 - C_6 -alkyl,

with the exception of amines of formula (III) in which

R represents hydrogen, and

R¹, R², and R³ independently of one another represent hydrogen, halogen, straight-chain or branched alkyl having 1 to 4 carbon atoms, or straight-chain or branched halogenoalkyl having 1 to 4 carbon atoms; and R⁴ represents hydrogen.

Claim 37 (new): An amine of the formula

in which

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

R^{1a} represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represents straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represents straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represents straight-chain

or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represents straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represents straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represents alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represents cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represents the group -C(Q¹)=N-Q², wherein

- Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄-alkenyloxy or C₂-C₄-alkynyloxy;

represents phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represents phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy;

represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl, or (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7

- 82 -

fluorine-, chlorine-, and/or bromine atoms; represents $(C_1-C_3-alkyl)$ carbonyl- C_1-C_3 -halogenoalkyl or $(C_1-C_3-alkoxy)$ carbonyl- C_1-C_3 -halogenoalkyl having in each case 1 to 6 fluorine-, chlorine- ,and/or bromine atoms represents $(C_1-C_3-alkoxy)$ -carbonyl- C_1-C_3 -halogenoalkyl, $(C_1-C_3-alkoxy)$ -carbonyl- C_1-C_3 -halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents $-COR^5$, $-CONR^6R^7$, or $-CH_2NR^8R^9$, represents hydrogen, C_1-C_8 -alkyl, C_1-C_8 -alkoxy, C_1-C_4 -alkoxy- C_1-C_4 -alkyl, or

- represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰,
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 bis 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R^8 and R^9 independently of one another represent hydrogen, C_1 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -halogenoalkyl, C_3 - C_8 -halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R^8 and R^9 together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{11} , and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,
- R¹⁰ represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_6 -halogenoalkyl, C_1 - C_6 -halogenoalkoxy,

halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms, and represents hydrogen or C₁-C₆-alkyl.

Claim 38 (new): An amine of the formula

in which

 R^{1a}

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represents straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represents straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represents straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represents straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represents straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represents alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represents cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represents the group -C(Q1)=N-Q2, wherein

Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and

CS8717 - 84 -

Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄-alkenyloxy or C₂-C₄-alkynyloxy;

represents phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represents phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C₁-C₄-alkyl or C₁-C₄-alkoxy;

- represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)-carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹,
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰.
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in

- 85 **-**

each case 1 bis 9 fluorine-, chlorine-, and/or bromine atoms; or R^6 and R^7 together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{11} , and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms, and R¹¹ represents hydrogen or C₁-C₆-alkyl.

Claim 39 (new): An amine of the formula

in which

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

R¹a and R²a independently of one another represent halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straight-

CS8717 - 86 -

chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represent straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represents the group -C(Q1)=N-Q2, wherein

- Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino, di(C_1 - C_4 -alkyl)amino, or phenyl; or represents C_2 - C_4 -alkenyloxy or C_2 - C_4 -alkynyloxy,

represents phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represents phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C₁-C₄-alkyl or C₁-C₄-alkoxy;

represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkyl-

sulfonyl, halogeno- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl), carbonyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl, or (C_1 - C_3 -alkyl, in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C_1 - C_3 -alkyl) carbonyl- C_1 - C_3 -alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -halogenoalkyl or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C_1 - C_3 -halogenoalkyl)carbonyl- C_1 - C_3 -halogenoalkyl, (C_1 - C_3 -halogenoalkoxy)-carbonyl- C_1 - C_3 -halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents - COR^5 , - $CONR^6R^7$, or - $CH_2NR^8R^9$, represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_8 -halogenoalkyl, C_1 - C_8 -halogenoalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 bis 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is

CS8717

 R^5

-COR¹⁰.

optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms, and R¹¹ represents hydrogen or C₁-C₆-alkyl.

Claim 40 (new): an amine of the formula

in which

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl; R^{1a} and R^{2a} independently of one another represent halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straightchain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represent straightchain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino. dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain: represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in

the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; or represent the group $-C(Q^1)=N-Q^2$, wherein

- Q^1 represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and
- Q^2 represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or phenyl; or represents C₂-C₄alkenyloxy or C₂-C₄-alkynyloxy;

represent phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represent phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C₁-C₄-alkyl or C₁-C₄-alkoxy;

- R^4 represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkyl, or C_3-C_8 -cycloalkyl; represents C_1-C_6 -halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃alkoxy)carbonyl-C₁-C₃-alkyl; (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-alkyl, or $(C_1-C_3$ -halogenoalkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C₁-C₃halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹, R^5 represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or
- C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in

- each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰,
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 bis 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms, and
- R¹¹ represents hydrogen or C₁-C₆-alkyl.

Claim 41 (new): an amine of the formula

$$R^{1a}$$
 R^{1a}
 R^{2a}

in which

R represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl;

R^{1a}, R^{2a}, and R^{3a} independently of one another represent halogen, cyano, nitro, amino, hydroxyl, formyl, carboxyl, carbamoyl, or thiocarbamoyl; represent straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulfinyl, or alkylsulfonyl having in each case 1 to 8 carbon atoms in the respective alkyl moiety; represent straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms; represent straight-chain or branched halogenoalkyl, halogenoalkoxy, halogenoalkylthio, halogenoalkylsulfinyl, or halogenoalkylsulfonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; represent straight-chain or branched halogenoalkenyl or halogenoalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms; represent straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, or dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chain; represent alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chain; represent cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms; represents the group -C(Q¹)=N-Q², wherein

- Q¹ represents hydrogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl having 1 to 9 identical or different halogen atoms, or C₃-C₆-cycloalkyl, and
- Q² represents hydroxyl, amino, methylamino, phenyl, or benzyl; or represents C₁-C₄-alkyl or C₁-C₄-alkoxy, each of which is optionally substituted by halogen, cyano, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio,

CS8717 - 92 -

 C_1 - C_4 -alkylamino, di(C_1 - C_4 -alkyl)amino, or phenyl; or represents C_2 - C_4 -alkenyloxy or C_2 - C_4 -alkynyloxy;

represent phenyl, phenoxy, phenylthio, benzoyl, benzoylethenyl, cinnamoyl, or heterocyclyl; or represent phenylalkyl, phenylalkyloxy, phenylalkylthio, or heterocyclylalkyl having in each case 1 to 3 carbon atoms in the respective alkyl moieties, each of which is optionally mono- to tri-substituted, identically or differently, in the ring moiety by halogen or straight-chain or branched C₁-C₄-alkyl or C₁-C₄-alkoxy;

- R^4 represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₄-halogenoalkylthio, C₁-C₄-halogenoalkylsulfinyl, C₁-C₄-halogenoalkylsulfonyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃alkoxy)carbonyl-C₁-C₃-alkyl; (C₁-C₃-halogenoalkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine-, chlorine-, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-halogenoalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 6 fluorine-, chlorine-, and/or bromine atoms represents (C1-C3halogenoalkyl)carbonyl-C₁-C₃-halogenoalkyl, (C₁-C₃-halogenoalkoxy)carbonyl-C₁-C₃-halogenoalkyl having in each case 1 to 13 fluorine-, chlorine-, and/or bromine atoms; or represents -COR⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹. R^5 represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or
- represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms; or represents -COR¹⁰,
- R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 bis 9 fluorine-, chlorine-, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally

has 1 or 2 additional non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{11} , and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C_1 - C_4 -alkyl,

- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-halogenoalkyl, C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine- and/or bromine atoms; or R⁸ and R⁹ together with the nitrogen atom to which they are attached, represent a saturated 5- to 8-membered heterocycle, wherein the heterocycle optionally has 1 or 2 additional, non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹¹, and wherein the heterocycle is optionally mono- to poly-substituted, identically or differently, by halogen or C₁-C₄-alkyl,
- R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-halogenoalkyl, C₁-C₆-halogenoalkoxy, halogeno-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halogenocycloalkyl having in each case 1 to 9 fluorine-, chlorine-, and/or bromine atoms, and
- R¹¹ represents hydrogen or C₁-C₆-alkyl. --