Hyperparameter tuning

For the hyperparameter tuning i used the train.py internal optuna tuner. With it i had a bit troubles fixing the gamma, the arguments where always overwritten, so i hardcoded gamma inside of the python file. I let all other parameters get optimized. Below are the tables with each 50 different hyperparameter configurations. Somehow often a low update frequency lead to the best results, but when using the normal training script using these high update frequencies it didnt learn at all. Therefore i decided to use the update frequency as a changing hyperparameter for task 2.

DDPG:

#	value		buffer			tau freq
0	-149.07	100	10000	0.00938	medium 0.84308	0.02 8
1	-991.75	100		0.04090	small 0.62751	0.00116
2	-1048.55	128			medium 0.93268	0.0051
3	-147.42	32	1000000		medium 0.54894	
4	-1388.46		10000	0.01382	medium 0.72439	
5	-152.09	100	100000		medium 0.89335	
6	-152.34	128		5.35279e-05	•	0.01 32
7	-145.94	2048	100000	0.00131	medium0.11837	0.01 16
8	-145.55	64	1000000		medium0.85120	0.0054
9	-155.57		10000	0.00013	big 0.08706	0.0018
10	-153.47			0.00060	medium 0.86259	
11	-148.31		100000	0.00625	medium0.15197	
12	-1388.46		100000	0.01669	medium0.02364	0.08 16
13	-178.62	64		0.01916	small 0.96590	0.0054
14	-144.97	2048			medium0.25988	0.01 16
15	-149.52	256			medium0.10672	0.01 32
16	-1103.60	2048		1.06601e-05	•	0.01 1
17	-145.98	2048		3.54569e-05		0.00516
18	-1044.39	64	1000000	1.96854e-05	medium0.93222	0.02 4
19	-161.33	2048	1000000	0.00063	small 0.05293	0.00116
20	-147.23	64	1000000	0.00017	big 0.56401	0.05 64
21	-885.30	2048	1000000	1.50524e-05	medium0.16146	0.01 512
22	-145.56	16	100000	0.00030	medium0.11932	0.01 16
23	-149.01	16	100000	0.00250	medium0.28022	0.01 128
24	-148.17	512	100000	4.62270e-05	big 0.10201	0.01 512
25	-1663.22	64	100000	2.26828e-05	small 0.98099	0.0054
26	-708.34	2048	100000	2.33080e-05	medium0.10679	0.02 8
27	-147.00	32	10000	0.00030	medium0.20164	0.01 16
28	-145.91	64	1000000	0.00035	medium0.16233	0.02 16
29	-283.88	16	100000	0.00236	medium0.07124	0.00116
30	-149.98	128	100000	5.11322e-05	medium0.14509	0.01 16
31	-149.45	100	1000000	0.00153	medium0.13841	0.02 16
32	-144.32	64	1000000	0.00023	medium0.21531	0.02 256
33	-148.67	128	1000000	6.08258e-05	medium0.04498	0.02 256
34	-148.10	16	1000000	0.00122	medium0.83860	0.0054
35	-145.21	64	1000000	0.00042	medium0.39074	0.005256
36	-145.25	64	1000000	0.00020	big 0.38317	0.02 128
37	-832.40	64	10000	4.81671e-05	medium0.42022	0.005256
38	-145.75	64	1000000	0.00086	big 0.48914	0.02 128
39	-146.81	1024	1000000	0.00029	medium0.42362	0.00532
40	-904.72	64	1000000	2.81551e-05	medium0.27343	0.08 256
41	-154.61	64	1000000	0.00253	small 0.08582	0.005256
42	-764.91	32	10000	4.52014e-05	medium0.81281	0.005128
43	-397.65	100	100000	5.61820e-05	big 0.40044	0.02 256

#	value	batch	buffer	lr		ne	et n	oise_std	tau	freq
44	-147.79	2048	1000000	4.20083e-	-05	med	lium0	.12080	0.01	16
45	-145.18	64	10000	0.00030		big	j 0	.93422	0.005	54
46	-150.01	64	10000	0.00352		big	j 0	.98097	0.005	54
47	-145.25	64	1000000	0.00077		med	lium0	.42888	0.02	256
48	-149.58	2048	1000000	0.00151		med	dium0	.60592	0.02	256
49	-146.28	32	10000	0.00017		big	j 0	.74653	0.01	4
TD3:										
#	value	batch	buffer	lr	ar	ch	tau	freq		
0	-170.120	64	100000	0.001878			0.02	•		
1	-170.859		1000000		med	l	0.02			
2	-170.360	64	10000	0.002672	bio	1	0.08			
3	-185.345	128	10000	0.001514			0.08			
4	-192.407	128	10000	0.000144	med	ł	0.08	128		
5	-171.968	2048	10000	0.001408	med	l	0.08	64		

0.000278 med

med

med

med

med

med

med

med

med

bia

med

med

med

med

med

med

med

med

med

big

med

med

med

med

med

med

med

med

med

0.000738 small 0.08 64

0.002469

0.000678

0.221319

0.000013

0.000244

0.000653

0.000079

0.037983

0.000276

0.002066

0.000241

0.013306

0.028433

0.001288

0.001614

0.002654 med

0.013388 big

1000000 0.003914

1000000 0.004700

1000000 0.001578

1000000 0.019616

1000000 0.007883

1000000 0.003275

1000000 0.000243

1000000 0.011211

1000000 0.000664

1000000 0.001113

1000000 0.001142

1000000 0.000135

1000000 0.000577

1000000 0.003390

1000000 0.042838

1000000 0.000448

1000000 0.065485

1000000 0.000838

1000000 0.010813

1000000 0.008827

0.05 16

0.05 64

0.0018

0.05 64

0.05 64

0.05 64

0.05 512

0.05 256

0.05 256

0.05 512

0.01 256

0.08 512

0.05 32

0.02 64

0.05 256

0.05 256

0.05 256

0.005256

0.05 512

0.08 512

0.0051

0.05 16

0.05 256

0.005256

0.08 256

0.005512

0.05 256

0.05 512

0.08 64

0.05 8

0.05 4

small 0.05 256

small 0.08 256

small 0.08 256

small 0.08 32

0.08 8

small 0.005128

small 0.00564

-192.055 128

-169.409 256

-169.663 512

-1366.389128

-1154.0091024

-176.221 512

-1366.389256

-168.197 64

17 -170.182 128

18 -1366.38932

19 -1498.50416

20 -170.925 64

23 -168.150 64

24 -1366.38964

25 -170.658 32

26 -1498.50464

28 -1498.504128

29 -171.030 1024

-167.129 64

64

-170.266

32 -442.073 64

33 -188.192 128

34 -170.077 128

35 -1366.389128

36 -171.219 100

37 -173.003 64

38 -1498.50464

39 -170.157 512

40 -1366.38964

41 -173.975 64

42 -169.295 64

43 -168.300 1024

44 -170.221 1024

31

-170.845 1024

-173.708 16

-169.252 64

-168.123 128

12 -168.527 64

13 -378.299 64

7

8

9

16

10000

100000

10000

10000

100000

10000

100000

100000

100000

100000

10000

10000

10000

10000

100000

10000

100000

100000

100000

#	value	batch	buffer	1r	arch	tau freq				
45	-170.193	256	1000000	0.003953	small	0.08 256				
46	-171.354	2048	100000	0.000519	med	0.08 64				
47	-167.360	1024	100000	0.002683	med	0.01 128				
48	-169.632	512	100000	0.000856	med	0.01 128				
49	-1498.504		100000	0.082599	med	0.01 128				
zac										
#	value	batch	buffer	lr	arch	tau freq				
0	value	128	1000000	0.742	med	0.08 4				
1	-1170.968		10000	0.000031	med	0.0054				
2	-199.828	2048	100000	0.015	big	0.05 512				
3		128	10000	0.304	small	0.01 256				
4	-206.143	1024	1000000	0.001	med	0.08 512				
5		64	100000	0.162	big	0.05 64				
6	-205.857	128	10000	0.000342	big	0.0054				
7	-720.322	1024	10000	0.00002	big	0.08 256				
8	-209.381	64	1000000	0.001	med	0.01 1				
9	-210.097	32	1000000	0.022	big	0.08 32				
10	-196.526	256	100000	0.002	big	0.05 512				
11	-211.748	16	100000	0.001	big	0.05 512				
12	100 701	2048	100000	0.917	big	0.05 32				
13	-198.721	256	100000	0.021	med	0.05 512				
14	-205.859	256	100000	0.040	med	0.005512				
15 16	-209.282 -949.106	256 256	100000 10000	0.00048 0.000018	med big	0.05 256 0.05 512				
17	-1351.721		10000	0.023	med	0.03 312				
18	1001.721	256	100000	0.318	med	0.05 128				
19	-203.517	512	100000	0.002	med	0.05 512				
20	-201.847	256	10000	0.003	big	0.05 8				
21	-1471.765		1000000	0.027	big	0.01 512				
22	-200.449		100000	0.005	small	0.05 512				
23	-213.592	128	100000	0.037	med	0.05 512				
24	-195.845	2048	100000	0.001	big	0.005512				
25	-197.281	2048	100000	0.001	big	0.005256				
26	-197.943	2048	100000	0.002	big	0.0051				
27	-203.756	128	10000	0.001	big	0.005256				
28	-203.392	256	100000	0.000164	•	0.00532				
29	-206.195		100000	0.000222		0.005512				
30	-1250.295		100000	0.000052	•	0.05 256				
31	-209.829		10000	0.001	big	0.005512				
32		16	100000	0.002	big	0.005128				
	-197.487		100000	0.001	big	0.08 512				
34	-199.714		100000	0.001	small					
35 36	-226.942 -210.248	64 2048	100000 100000	0.000142 0.002	big small	0.001512 0.08 512				
37	-210.246		100000	0.002		0.08 8				
38	-203.009		100000	0.006	big	0.08 16				
		64	100000	0.002	-	0.005512				
	-205.044		100000	0.00278		0.05 16				
41	-194.788	2048	100000	0.008	big	0.005256				
42	-196.498		100000	0.003	big	0.08 16				
	-197.321	2048	100000	0.001	big	0.00564				
44	-203.455	64	1000000	0.003	big	0.08 16				
45	-199.028	2048	100000	0.002	big	0.02 16				

#	value	batch	buffer	lr	arch	tau	freq
46	-195.788	2048	100000	0.016	big	0.08	256
47	-211.911	16	100000	0.009	big	0.08	256
48	-202.569	512	100000	0.018	med	0.08	16
49		1024	100000	0.376	big	0.08	256

Task 2

I experimented with changing both the update frequency and the learning rate. For plotting this part i wrote a custom script, since i couldnt find my way with the plot_train.py script. Somehow i was not able to find detailed documentation and therefore failed to set the timestamp range.

I let the n_timestamps on all three experiments at 25000, even though td3 and sac with good parameters learned way faster. I did that to also catch the slower learning settings. This shows, that in sac the good configurations learn super fast, but the worse configurations are about as slow as they are in td3. While in td3 the difference between good and bad configurations is lower, but overall slower.

Since higher learning rates looked generally better did another run with 0.1 lr, but there already no one learned anything.

LR from 0.01 to 0.0001

The plots also have a running average running, to make the results a bit more readable.

DDPG

Task 3

DDPG

It seems to generally learn slower, but there are 5 variations that do almost as well as all the others. Therefore it seems to handle worse hyperparameters quite well.

TD3

There are more configurations that learn, with a total of 6, but the worse configurations where noticable slower than good ones.

Zac

The good configurations learned really fast, but compared to the fast learning speed, the worse configurations learned significantly slower. Still there where a total of 6 configurations that learned.

Comparison:

Sac seems to learn the fastest with good parameters, with worse parameters it does similar to TD3. DDPG is the slowest, but with relatively similar speed between good and bad configurations. Therefore my ranking would be:

- 1. SAC
- 2. TD3
- 3. DDPG

Appendix

```
Hyperparameter tuning commands:
python train.py --algo ddpg --env Pendulum-v1 -n 25000 -optimize --optimization-log-path logs-opt
python train.py --algo td3 --env Pendulum-v1 -n 25000 -optimize --optimization-log-path logs-opt-
python train.py --algo sac --env Pendulum-v1 -n 25000 -optimize --optimization-log-path logs-opt-
Training with variations script:
#!/bin/bash
learning rates=(0.1 1 10)
train freq=(1 8 32 128)
for lr in "${learning rates[@]}"; do
  for freq in "${train freq[@]}"; do
    python train.py --algo ddpg --env Pendulum-v1 -n 25000 --eval-freq 1000 --save-freq 50 --log-
    mv ./ddpg_train/ddpg/Pendulum-v1_1 ./ddpg_train/ddpg/lr${lr}freq${freq}
    python train.py --algo td3 --env Pendulum-v1 -n 25000 --eval-freq 1000 --save-freq 50 --log-fr
    mv ./td3_train/td3/Pendulum-v1_1 ./td3_train/td3/lr${lr}freq${freq}
    python train.py --algo sac --env Pendulum-v1 -n 25000 --eval-freq 1000 --save-freq 50 --log-fr
    mv ./sac train/sac/Pendulum-v1 1 ./sac train/sac/lr${lr}freg${freq}
  done
done
Plot script
import pandas as pd
import matplotlib.pyplot as plt
import glob
import os
def plot monitor files(directory, window size=10):
    # Find all 0.monitor.csv files in the directory
    file_paths = glob.glob(os.path.join(directory, "**", "0.monitor.csv"), recursive=True)
    plt.figure(figsize=(10, 6))
    for file path in file paths:
        df = pd.read csv(file path, skiprows=1)
        df["r"] = pd.to numeric(df["r"], errors="coerce") # Convert 'r' column to numeric
        df["r avg"] = df["r"].rolling(window=window_size).mean()
        plt.plot(df.index * 200, df["r avg"], label=os.path.basename(os.path.dirname(file path)))
    plt.xlabel("Timesteps")
    plt.ylabel("Reward")
    plt.title("Reward with Running Average")
    plt.legend()
```

```
plt.show()
```

```
# Example usage
```

directory = "/home/fabian/github/advancedML/Exercise2/rl-baselines3-zoo/ddpg_train"

plot_monitor_files(directory)
directory = "/home/fabian/github/advancedML/Exercise2/rl-baselines3-zoo/td3_train"
plot_monitor_files(directory)
directory = "/home/fabian/github/advancedML/Exercise2/rl-baselines3-zoo/sac_train"
plot_monitor_files(directory)