

Lagrange's method of Undertermined Multipliers

Dr. AnithaScience and Humanities

UNIT 2: Partial Differentiation

Session: 12

Sub Topic: Lagrange's Method of Undetermined Multipliers

Dr. Anitha

Department of Science and Humanities

Lagrange's Method of Undetermined Multipliers

Suppose we need to minimize or maximize a function f(x,y,z) subject to the constraint $\emptyset(x,y,z)$, then we can introduce an additional unknown constant λ known as Lagrange's multiplier to ease the process of finding the extrema's.

Working Procedure

Step 1: Form the auxiliary equation

$$F(x, y, z) = f(x, y, z) + \lambda \emptyset(x, y, z) \dots (1)$$

Step2: Partially differentiate F in (1)w.r.t x, y, z respectively

Step 3: Solve the four equations $F_x = 0$, $F_y = 0$, $F_z = 0$ and the constraint for the Lagrange multiplier λ and stationary values x, y, z

Lagrange's Method of Undetermined Multipliers

Advantages:

- 1. The stationary points of f(x, y, z) can be determined without determining x, y, z explicitly.
- 2. This method can be extended to function of several variables subject to many constraints.

Disadvantages:

- 1. Nature of the stationary points can not be determined.
- 2. Equations $F_x = 0$, $F_y = 0$, $F_z = 0$ are only necessary conditions.

Lagrange's Method of Undetermined Multipliers

1. Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube.

Solution:

Let the equation of the sphere be $x^2 + y^2 + z^2 = r^2$. Let 2x, 2y, 2z be the length, breadth and height of the rectangular solid so that its volume

$$v=f(x,y,z)=8xyz$$
 Let $\emptyset=x^2+y^2+z^2-r^2$ Form the auxiliary function $F=f+\lambda \Phi$

$$F = f + \lambda \phi$$

 $F = 8xyz + \lambda(x^2 + y^2 + z^2 - r^2)$

Lagrange's Method of Undetermined Multipliers

PES UNIVERSITY ONLINE

Contd.....

$$\frac{\partial F}{\partial x} = 0; \frac{\partial F}{\partial y} = 0; \frac{\partial F}{\partial z} = 0 \text{ gives}$$

$$8zy + 2x\lambda = 0 \text{ which implies } 8xzy + 2x^2\lambda = 0$$

$$8zx + 2y\lambda = 0$$
 which implies $8xzy + 2y^2\lambda = 0$

$$8xy + 2z\lambda = 0$$
 which implies $8xzy + 2y^2\lambda = 0$

$$2x^2\lambda = -8xyz = 2y^2\lambda = 2z^2\lambda$$

Thus for a maximum volume x = y = z. Therefore the rectangular solid is a cube.

Lagrange's Method of Undetermined Multipliers

2. Find the points closest to the origin on the hyperbolic cylinder $x^2 - z^2 = 1$.

Solution:

To find the points on the cylinder closest to the origin, imagine a small sphere centered at the origin expanding like a soap bubble until it just touches the cylinder $x^2 - z^2 - 1 = 0$.

Lagrange's Method of Undetermined Multipliers

PES UNIVERSITY ONLINE

Contd.....

Let
$$f(x, y, z) = x^2 + y^2 + z^2 - a^2$$
 and $\emptyset(x, y, z) = x^2 - z^2 - 1$.

Form the auxiliary function

Lagrange's Method of Undetermined Multipliers

Contd.....

From (2), y=0Form (1), $2x(1+\lambda)=0$ which gives x=0 or $\lambda=-1$ But x cannot be equal to 0 and hence $\lambda=-1$ From (3), we get z=0, $\lambda=1$ Substitute z=0 in (4), we get $x=\pm 1$. Therefore the points closest to the origin on the hyperbolic cylinder are $(\pm 1,0,0)$.

Dr. Anitha

Department of Science and Humanities

nanitha@pes.edu

Extn 730