KUAN-TING LEE

×50036744

- . In this question, we use W to denote the subset.
- Not a subspace. : Not closed under multiplication by a constant, such as -1
- (6) Is a subspace

Given two arbitrary elements
$$u, v \in W$$
. $u = \begin{cases} 0 \\ uz \\ \vdots \\ un \end{cases}$, $v = \begin{cases} 0 \\ vz \\ \vdots \\ vn \end{cases}$.

$$au+bv = \begin{bmatrix} au_2 + bv_2 \\ \vdots \\ au_n + bv_n \end{bmatrix} \in W \text{ for all } a_1b \in \mathbb{R}$$

Not a subspace . .. Not closed under vector addition

(d)

Is a subspace

Given two arbitrary elements
$$u, v \in W$$
. $u = \begin{cases} u, \\ \vdots \\ u_n \end{cases}$, $v = \begin{cases} v, \\ \vdots \\ v_n \end{cases}$, where $v = 0$ and $v \in V$ and $v \in V$

(e) Not a subspace : Not closed under vector addition

$$e \times : \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin W \quad (\pi_1 + \dots + \pi_h = 2 \neq 1)$$

(f) Not a subspace : Not closed under vector addition

$$e_{\kappa}$$
: $A u = b$, $A v = b$

To prove this, we must show that

 $span(S_1 \cup S_2) \subseteq span(S_1) + span(S_2)$ and $span(S_1) + span(S_2) \subseteq span(S_1 \cup S_2)$

For the first inclusion, let $V \in \text{span}(S_1 U S_2)$. This means that there exist $U_1 ... V_n \in S_1 U S_2$ and $a_1 ... a_n \in \mathbb{F}$ such that

V = a.v. + -- + anvn

For each i, we have $v_i \in S_1$ or $v_i \in S_2$. By relabeling the indices, we can assume for some $1 \le E \le R$ that $v_1, \dots, v_K \in S_1$ and $v_{k+1} \dots v_K \in S_2$. Then

W== a.v.+ ··· + arve & span(S1) and W== artiVeti + ··· + anve & span(S2)

so V = Withz & span(Si) + span(Sz) => Span(Si) & span(Si) + span(Sz)

For the second inclusion, let $V \in Span(S_1) + Span(S_2)$, so then $V = W_1 + W_2$ for $W_1 \in Span(S_1)$, and $W_2 \in Span(S_2)$. Then there exist $X_1, ..., X_n \in S_1$, $a_1, ..., a_n \in JF$ such that

We acket -- + Gaxa

and similarly, there exist $y_1 \cdots y_m \in S_2$ and $b_1, \cdots b_m \in I^m$ such that $W_2 = b_1 y_1 + \cdots + b_m y_m$

This gives us

V= WI +WE = a, x, + ... + aakn + biy + + ... + bmym

which is a linear combination of x... xu, y, ... ym & s. USz =) span(S1)+span(S2) & span(S1+S2)

*, * $span(S_1 \cup S_2) \subseteq span(S_1) + span(S_2)$ and $span(S_1) + span(S_2) \subseteq span(S_1 \cup S_2)$

,. Span (S.USz) = Span (Sr) + Span (Sz)

A finite set of vectors $x_1,\dots,x_k\in\mathcal{X}$ is **linearly dependent** if there exist scalars $\alpha_1,\dots,\alpha_k\in\mathcal{F}$, NOT ALL ZERO, such that $\alpha_1x_1+\alpha_2x_2+\dots+\alpha_kx_k=\mathbf{0}$.

$$(a)$$

$$\alpha_{1} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + d_{2} \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + d_{3} \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix} = 0$$

$$\begin{bmatrix} d_{1}+1d_{2}+d_{3} \\ 2A_{1}+a_{2}+5d_{3} \\ 3a_{1}+9A_{3} \end{bmatrix} = 0$$

There exist di=-3, az=1 d3=1 that schisfies the condition

=) linearly dependent

$$ex: \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$$

- $d_{1} \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \end{pmatrix} + d_{2} \begin{pmatrix} \frac{1}{0} \\ \frac{1}{0} \end{pmatrix} + d_{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{0} \end{pmatrix} = 0$ $\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{0} & \frac{1}{0} \\ \frac{1}{2} & \frac{1}{0} & \frac{1}{0} \end{pmatrix} = 0$ $A \begin{pmatrix} \frac{1}{0} \\ \frac{1}{0} \\ \frac{1}{0} \end{pmatrix} = 0$

det (A) = 3.0-1.1+2.0=-1 = 0

=) (meanly independent

$$\det(A) = (-(2) - 2 - 3 + 4 \cdot 1 = 0)$$

=) Linearly dependent

5.

 $S = \{u_1, u_2 \cdots u_n\}$, a finite set in a vector space X over IF $S pan(S) = \{u \in X : u = c_1 u_1 + \cdots + c_n u_n, c_1 \cdots c_n \in F, u_1 \cdots u_n \in S\}$

• First, we need to prove if $S_i \subset S_2$, then $Span(S_i) \subset Span(S_i)$. Let $U \in Span(S_i)$. Then there exist $V_1, \dots V_n \in S_i$ and $\alpha_i, \dots \alpha_n \in IF$ such that $V = \alpha_i V_1 + \dots + \alpha_n V_n$

Since $S_1 \subset S_2$, we have $V_1, \ldots V_n \in S_2$, So V is a linear combination of vectors in S_2 , Hence $V \in Span(S_2) = Span(S_1) \subset Span(S_2)$.

- · Second, we also know that a span of a subspace is the subspace itself. If S is a subspace, S is a closed sext under linear combination of elements in S. Since span(s) is also the set of all linear combination of elements in S. We derive span(s) = S if S is a subspace
 - Since we know $SCY = Span(S) \subset Span(Y)$ Also we know YTS a subspace, therefore Span(Y) = Y
 - =) Span { 5 } C Span { 7 } = 7
 - =) Span {5} < }.

 $(\alpha) = (b)$:

Let Y=V+W, for every $g\in Y$ there exist $U\in V$ and $W\in W$ such that y=V+W. Suppose there exists other vectors $\widetilde{V}\in V$ and $\widetilde{W}\in W$ such that $y=\widetilde{V}+\widetilde{W}$

Then, $0 = (v - \widetilde{v}) + (w - \widetilde{\omega}) <=> (v - \widetilde{v}) = -(\omega - \widetilde{\omega})$

Therefore $(V-\widetilde{V}) \in W$ and so $(V-\widetilde{V}) \in V \cap W$. Since $V \cap W = \{0\}$, we then conclude that V=V, which also says $w=\widetilde{w}$. Then we obtain that for every $x \in V + W$, there exist unique $v \in V$ and $w \in W$ such that x = v + w

(6) =) (a)

If for every $y \in V+W$, there exist unique $v \in V$ and $w \in W$ such that y = v+w. Suppose that $y \in V\wedge W$, then on the one hand, there exist $v \in V$ such that y = v+v; on the other hand, there is $w \in W$ such that y = v+w. V=v and v=v, so $V\wedge W=\{v\}$

After proving that (a) =) (b) and (b) => (a), We prove that (a) and (b) are equicalent.

In this assignment

F

I discussed with Wan-Yi Yu * 14732586.