#### /dev/tbo

Langues du site [fr] français

<u>Accueil</u> > <u>GNU/LINUX & RASPBERRY PI</u> > Raspberry & BME280 : mesure de température, pression et humidité (...)

# Raspberry & BME280 : mesure de température, pression et humidité relative

dimanche 6 novembre 2016, par thebault

## Caractéristiques du capteur



- documentation constructeur <a href="https://ae-bst.resource.bosch.com/media/\_tech/media/datasheets/BST-BMP280-DS001-12.pdf">https://ae-bst.resource.bosch.com/media/\_tech/media/datasheets/BST-BMP280-DS001-12.pdf</a>
- alimentation maxi: 3,6V
- mesure de la température de -40°C à 85°C avec une précision de +/- 1°C
- mesure de la pression de 300hPa à 1100 hPa avec une précision de +/- 1hPa (de 0°C à 65°C) ou +/1hPa (de -40°C à 0°C)
- mesure d'humidité relative de 0% à 100%
- sortie numérique sur bus I2C ou bus SPI

Remarque : dans la suite, nous allons utiliser le bus I2C pour communiquer avec le capteur.

Rôle des broches.

| Broche | fonction                                                                                                                        |
|--------|---------------------------------------------------------------------------------------------------------------------------------|
| Vcc    | alimentation ( 3.6V max)                                                                                                        |
| GND    | masse                                                                                                                           |
| SDI    | Données. A relier à SDA dans le cas du bus I2C                                                                                  |
| SCK    | Horloge (clock). A relier à SCL dans le cas du bus I2C                                                                          |
| CSB    | permet de passer du mode SPI au mode I2C. Par défaut, CSB=1 donc mode I2C. Si CSB=0 au démarrage, alors le mode SPI est utilisé |

| Broche | fonction                                                                                       |
|--------|------------------------------------------------------------------------------------------------|
| SD0    | choix de l'adresse I2C. Si SD0=0, alors l'adresse est 0x76, si SD0=1, alors l'adresse est 0x77 |

#### **Branchements**

Dans les branchements suisvants, SD0=0 donc l'adresse du capteur sur le bus I2C sera 0x76



#### Installation sur debian Jessie

• activer le support i2c via raspi-config sur le raspberry Pi dans un terminal : sudo raspi-config

Aller dans "9 Advanced Options" puis "A6 I2C" puis "back" et "Finish" pour activer le support au niveau du noyau.



• installer les outils i2c pour la ligne de commande

I2ctools n'est pas indispensable mais il permet de vérifier la présence du capteur en ligne de commande

```
sudo apt-get install python-smbus
sudo apt-get install i2c-tools
```

• tester la présence du capteur

```
sudo i2cdetect -y 1
```

On obtient le résultat suivant, ce qui montre que l'adresse est bien 0x76 lorsque SD0=0 (relié à GND).

Si on avait relié SD0 à 3.3V (SD0=1), on aurait eu 0x77 pour adresse du capteur :

• installer le programme de test

On va utiliser le programme développée par Matt Hawkins <a href="http://www.raspberrypi-spy.co.uk/2016/07/using-bme280-i2c-temperature-pressure-sensor-in-python/">http://www.raspberrypi-spy.co.uk/2016/07/using-bme280-i2c-temperature-pressure-sensor-in-python/</a>

```
wget https://bitbucket.org/MattHawkinsUK/rpispy-misc/raw/master/python/bme280.py
```

Pour tester le programme (si le capteur est bien à l'adresse 0x76) avec 1 seule mesure. python bme280.py

```
pi@raspberrypi:~/BME280 $ python bme280.py
Chip ID : 96
Version : 0
Temperature : 20.83 C
Pressure : 998.730443848 hPa
Humidity : 58.7355708868 %
```

Si on souhaite utiliser l'adresse 0x77, il faut modifier la ligne suivante du programme bme.py :"DEVICE = 0x77 # Default device I2C address"

## **Programme python**

On va utiliser le programme précédent comme une bibliothèque.

Il faudra placer notre programme python dans le même répertoire que le fichier "bme.py" que l'on a téléchargé.

Pour cela, on ajoute "import bme280" dans notre programme.

Le programme suivant permet la mesure de la pression, température et humidité relative toute les 2 secondes.

```
1. # -*- coding: utf-8 -*-
2. import bme280
3. import time
4.
5. while True:
6. temperature, pression, humidite = bme280.readBME280All()
```

```
7. print "Temp: ", temperature, "°C \t P: ", pression, "hPa \t HR: ", humidite, "%" time.sleep(2)
```

<u>Télécharger</u>

```
pi@raspberrypi:~/BME280 $ python mesure1.py
Temp : 20.82 °C
Temp : 20.61 °C
                              P: 998.759280066 hPa
P: 998.940587896 hPa
                                                                     HR : 58.7352075611 %
HR : 58.7251281566 %
         20.62 °C
20.61 °C
                                    999.02495243 hPa
                                                         HR : 58.7256040683 %
                                                                     HR: 58.725249471 %
HR: 58.7254920924 %
                              P: 998.944659852 hPa
                                    998.952803786 hPa
         20.62 °C
20.63 °C
                                    998.939125873 hPa
                                                                             58.7254920924 %
                                                                            58.7259679753 %
                                    998,996134792 hPa
                                    999.00020691 hPa
                                                            HR : 58.7260892728 %
```

# **Rubriques**

- ARDUINO
- DIVERS
- DIY Amps & fx
- GNU/LINUX & RASPBERRY PI
- MICROPYTHON

Rechercher: >>

# Dans la même rubrique

- Utiliser la raspicam avec le raspberry PI
- Commande d'un servo moteur avec raspberry pi et la bibliothèque WiringPi-python
- Raspberry & BME280 : mesure de température, pression et humidité relative
- Raspberry et carte PCA9685 16 sorties PWM
- Utilisation du GPIO avec Wiringpi-python
- un système GNU/Linux minimal sur RASPBERRY
- <u>2ème partie. Commande PIFACE DIGITAL via interface web [Raspberry PI + lighttpd + fastcgi + python]</u>
- <u>1ère partie. Commande PIFACE DIGITAL via interface web [Raspberry PI + lighttpd + CGI + python]</u>
- Raspi & Driver POLOLU DRV8835 Moteur à Courant Continu

| Seconnecter | Plan du site | RSS 2.0 | Habillage visuel © digitalnature sous Licence GPL