Figuring out Back-propagation

July 1, 2016

1 Conventions

- \bullet Weight from node j to node i in the l layer : $W_{ij}^{(l)}$
- \bullet Bias to node i in the l layer : $b_i^{(l)}$
- j-th input of layer l : $x_j^{(l)}$
- \bullet Activation of node i in the layer l : $a_i^{(l)}$ r,c
- \bullet Total weighted sum including the bias : $z_i^{(l)}$ r,c
- \bullet Hypothesis or output i of the network : $h_i^{r,c}(x_i^{r,c}) = a_i^{(out)\ r,c}$
- Target i of the network : y_i
- \bullet "Error term" of node i in layer l : $\delta_i^{(l)}$ r,c
- \bullet Derivative of the activation function : $f'(z_i^{(l)} \ ^{r,c}) = \mathrm{sech}(z_i^{(l)} \ ^{r,c})^2$
- Activation function of the output layer $f^{(out)}$: $h_i^{r,c}(x_i^{r,c}) = f^{(out)}(z_i^{(out)}) = z_i^{(l)}$:
- Derivative of the activation function : $f'(z_i^{(out) r,c}) = 1$
- Cost function, here we use the Sum Square Bias : $J(W,b) = \frac{1}{2} \sum_i \sum_c \left(\frac{\sum_r h_i^{r,c}}{\#r} y_i \right)^2$
- \bullet r denotes the realization and c the case

2 Adapting back-propagation to our case

The goal is to change our weights so that we lower the value of the cost function. This can be done by gradient descent:

$$\Delta W_{ij}^{(l)} = -\eta \frac{\partial J(W, b)}{\partial W_{ij}^{(l)}} , \qquad (1)$$

where $\Delta W_{ij}^{(l)}$ is the amount by which we want to change the weight $W_{ij}^{(l)}$, and where η is an arbitrarily chosen parameter (ideally this won't be the case) and is generally $\sim 10^{-3}$. Back-propagation is a way of calculating $\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}}$.

Using the chain rule we have:

$$\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} = \sum_{r,c} \frac{\partial J(W,b)}{\partial z_i^{(l)}} \frac{\partial z_i^{(l)}}{\partial W_{ij}^{(l)}} = \sum_{r,c} \frac{\partial J(W,b)}{\partial z_i^{(l)}} x_j^{(l)} x_j^{(l)} . \tag{2}$$

Let's define the "error terms" by : $\delta_i^{(l)} = \frac{\partial J(W,b)}{\partial z_i^{(l)} r,c} = \frac{\partial J(W,b)}{\partial z_i^{(l)} r,c}$.

Thus we can rewrite eq.2 as follows:

$$\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} = \sum_{r,c} \delta_i^{(l)} x_j^{(l)} x_j^{(l)} . \tag{3}$$

Let's now find an easy way to calculate the "error terms", starting by the output layer:

$$\delta_i^{(out)} r,c} = \frac{\partial J(W,b)}{\partial z_i^{(out)} r,c} = \frac{\partial J(W,b)}{\partial a_i^{(out)} r,c} \frac{\partial a_i^{(out)} r,c}{\partial z_i^{(out)} r,c} = \frac{\partial J(W,b)}{\partial a_i^{(out)} r,c} f'^{(out)}(z_i^{(out)} r,c) = \frac{\partial J(W,b)}{\partial h_i^{r,c}},$$

$$(4)$$

because the activation function for the output layer is the identity function (derivative of 1) and $a_i^{(out)}$ $r,c = h_i^{r,c}$ by definition.

Using the definition of the cost function we obtain:

$$\frac{\partial J(W,b)}{\partial h_i^{r,c}} = \frac{1}{\#r} \left(\frac{\sum_r h_i^{r,c}}{\#r} - y_i \right) . \tag{5}$$

Thus we can rewrite eq.4 as follows:

$$\delta_i^{(out) r,c} = \frac{1}{\#r} \left(\frac{\sum_r h_i^{r,c}}{\#r} - y_i \right) . \tag{6}$$

And now for the deltas of the other layers we have

$$\delta_{i}^{(l) r,c} = \frac{\partial J(W,b)}{\partial z_{i}^{(l) r,c}} = \sum_{k} \frac{\partial J(W,b)}{\partial z_{k}^{(l+1) r,c}} \frac{\partial z_{k}^{(l+1) r,c}}{\partial z_{i}^{(l) r,c}} = \frac{\partial J(W,b)}{\partial z_{k}^{(l+1) r,c}} \frac{\partial z_{k}^{(l+1) r,c}}{\partial a_{i}^{(l) r,c}} \frac{\partial a_{i}^{(l) r,c}}{\partial z_{i}^{(l) r,c}} = f'(z_{i}^{(l) r,c}) \sum_{k} \delta_{k}^{(l+1) r,c} W_{ki}^{(l+1)},$$

$$(7)$$

where k denote the indices of the nodes in layer (l+1).

3 Implementing the BFGS algorithm

Th idea of the BFGS algorithm is to add the matrix B_k which is an approximation of the Hessian matrix of the cost function. The BFGS algorithm includes a smart way to calculate this matrix with no need for intermediate matrices to be stored. Usually if we don't have a better hypothesis B_0 is defined as the identity matrix I. We can define W_k as the vector containing all the weights at iteration k. So W_0 is our initial guess for the weights.

First we want to find the direction of the update of the weights $\mathbf{p_k}$ by solving the following equation :

$$B_k \mathbf{p_k} = -\nabla \mathbf{J}(\mathbf{W_k}) \ . \tag{8}$$

Then we perform a dichotomy in order to find an appropriate learning rate η_k such that the following update is sensible:

$$\mathbf{W_{k+1}} = \mathbf{W_k} + \eta_k \mathbf{p_k} \ . \tag{9}$$

To simplify the notation we can define : $\mathbf{s_k} = \eta_k \mathbf{p_k}$. We also define the vector $\mathbf{y_k}$ by : $\mathbf{y_k} = \nabla \mathbf{J}(\mathbf{W_{k+1}}) - \nabla \mathbf{J}(\mathbf{W_k})$. Finally update the matrix $|B_k|$ as follows :

$$\boldsymbol{B_{k+1}} = \boldsymbol{B_k} + \frac{\mathbf{y_k} \mathbf{y_k^T}}{\mathbf{y_k^T} \mathbf{s_k}} - \frac{\boldsymbol{B_k} \mathbf{s_k} \mathbf{s_k^T} \boldsymbol{B_k}}{\mathbf{s_k^T} \boldsymbol{B_k} \mathbf{s_k}}.$$
 (10)

Note that the gradients $\nabla J(W_k)$ are obtained using the back-propagation algorithm specified above. And also note that for the implementation of this algorithm we only need to store the inverse of the matrix $B_k : B_k^{-1}$. So that trivially B_0^{-1} and applying the Sherman-Morrison formula to the equation regarding the update of B_k we find this update relation for its inverse:

$$B_{k+1}^{-1} = B_k^{-1} + \frac{(\mathbf{s}_k^T \mathbf{y}_k + \mathbf{y}_k^T B_k^{-1} \mathbf{y}_k)(\mathbf{s}_k \mathbf{s}_k^T)}{(\mathbf{s}_k^T \mathbf{y}_k)^2} - \frac{B_k^{-1} \mathbf{y}_k \mathbf{s}_k^T - \mathbf{s}_k \mathbf{y}_k^T B_k^{-1}}{\mathbf{s}_k^T \mathbf{y}_k}, \quad (11)$$

which can be computed quite easily.