Características de algunas redes de transporte

PDH

Se trata del primer estándar de transmisión digital conocido como Jerarquía Digital Plesiócrona (abreviada como PDH del inglés Plesiochronous Digital Hierarchy), tradicionalmente se utiliza para telefonía, ya que permite enviar varios canales telefónicos sobre un mismo medio (ya sea cable coaxial, radio o microondas) usando técnicas de multiplexación por división de tiempo y equipos digitales de transmisión.

También puede enviarse sobre fibra óptica, aunque no está diseñado para ello.

PDH se basa en canales de 64 kbps. Sin embargo, tiene un par de inconvenientes: existen tres tecnologías que no son interoperables entre sí, y en la demultiplexación, no es posible extraer un tributario concreto sin demultiplexar completamente la señal

Tabla 1. Tasas de transmisión PDH, bajo sus tres tecnologías

Nivel	Norteamérica		Europa			Japón			
	Circuitos	kbit/s	Denominación	Circuitos	kbit/s	Denominación	Circuitos	kbit/s	Denominació n
1	24	1544	(T1)	30	2048	(E1)	24	1544	(וכ)
2	96	6312	(T2)	120	8448	(E2)	96	6312	(J2)
3	3	672	44 736	(T3)	480	34 368	(E3)	480	32 064
4	4	4032	274 176	(T4)	1920	139 264	(E4)	1440	97 728

SDH

SDH es un tecnología conocida en Europa como JDS (Jerarquía Digital Síncrona) o SONET (Red Óptica Síncrona) en Norte América, se trata de un conjunto de protocolos de transmisión de datos, donde se soporta un ancho de banda elevado.

La trama básica de SDH se denomina STM-1, con una velocidad de 155 Mbps donde ingresan más canales de información; STM-4 (622,08 Mbps), STM-16 (2488,32 Mbps), STM-64 (9.953,28 Mbps). Por su parte, SONET parte de una velocidad de 51.84Mbps.

Esta tecnología trabaja realizando multiplexación por división del tiempo, toma ranuras de tiempo y las ubica de forma ordenada en una ranura más grande, esta sucesión se denomina trama.

Las tasas que caracterizan este protocolo, las puedes observar en la siguiente tabla:

Tabla 1. Tasas de transmisión PDH, bajo sus tres tecnologías

Nivel Optico	Nivel Eléctrico	Velocidad de transmisión	Velocidad de transmisión la carga útil	Velocidad de la transmisión de la sobrecarga	Equivalente SDH
OC-1	STS-1	51.840	50.112	1.728	Ninguno
OC-3	STS-3	155.520	150.336	5.184	STM-1
OC-9	STS-9	466.560	451.008	15.552	STM-3
OC-12	STS-12	622.080	601.344	20.736	STM-4
OC-18	STS-18	933.120	902.016	31.104	STM-6
OC-24	STS-24	1244.160	1202.688	41.472	STM-8
OC-36	STS-36	1866.240	1804.032	62.208	STM-13
OC-48	STS-48	2488.320	2405.376	82.944	STM-16
OC-96	STS-96	4976.640	4810.752	165.888	STM-32
OC-192	STS-192	9953.280	9621.504	331.776	STM-64
OC-768	STS-768	39813.120	38486.016	1327.104	STM-256

Ethernet

Creada en 1973 por Bob Metcalfe, fue inspirada en un experimento previo llamado la red Aloha.Ethernet y fue estandarizado por el *IEEE* 802.3 desde 1985.

La red aloha era una red de radio en la cual, cualquier estación podría enviar información en el momento que quisiera, y en caso de no detectar la señal de retorno, asumía que otra estación había transmitido información simultáneamente, creando una colisión. Luego de detectar la colisión, la estación esperaba un tiempo aleatorio para volver a transmitir.

Metcalfe desarrolló un sistema que detectaba fallas, donde la estación verifica el estado del canal antes de transmitir, este método fue llamado CSMA/CD (por sus siglas en inglés Carrier Sense Multiple Access with Collision Detection).

En la siguiente tabla, puedes detallar la información sobre la tasa de transmisión que comienza con 10 Base, que significa 10 Mbps y va aumentando su capacidad hasta llegar a 100 Gbase, es decir, 100 Gbps. También, se puede identificar el medio de transmisión, pudiendo emplearse el par trenzado y las fibras ópticas, con alcances supeditados al tipo de medio de transmisión. Ethernet es más apropiado como técnica de acceso al medio en entornos de redes de área local, en redes de computadoras.

Tabla 3. Tasas de transmisión Ethernet.

Especificación	Medio de TX	Alcance	Especificación	Medio de TX	Alcance
10BASE-T	Par Trenzado	100m	10GBASE-LX4	Fibra óptica MM Fibra óptica SM	300m 10km
100BASE-TX	Par Trenzado	100m	10GBASE-LR/LW	Fibra óptica SM	10km
100BASE-FX	Fibra óptica MM	2km	10GBASE-ER/EW	Fibra óptica SM	40km
1000BASE-T	Par Trenzado	100m	40GBASE-SR4	Fibra óptica MM	150m
1000BASE-SX	Fibra óptica MM	220m	40GBASE-LR4	Fibra óptica SM	10km
1000BASE-LX	Fibra óptica SM	5km	100GBASE-SR10	Fibra óptica MM	150m
10GBASE-T	Par Trenzado	100m	100GBASE-LR4	Fibra óptica SM	10km
10GBASE-SR	Fibra óptica MM	100m	100GBASE-ER4	Fibra óptica SM	40km

OTN

La tecnología *DWDM* (*Multiplexación por división de longitud de onda densa*) permite a los proveedores de servicio, implementar redes ópticas capaces de transportar múltiples protocolos de manera transparente como, por ejemplo, Ethernet, SDH, Fibre Channel y protocolos de video, gracias al uso de múltiples longitudes de onda enviados a través de un hilo de fibra óptica.

Sin embargo, esta ventaja de la tecnología DWDM requiere que el proveedor implemente múltiples sistemas de gestión para cada uno de los protocolos a transportar.

Por esta y otras razones, como la necesidad de usar protocolos de corrección de error más robustos, se hizo necesario desarrollar un protocolo estándar para transmisión de señales de cualquier clase y tasa de bits en redes ópticas. El protocolo *OTN* (por sus siglas en inglés Optical Transport Network) fue desarrollado para este fin. Las interfaces y tasas OTN las podemos detallar en la tabla siguiente, pudiendo observar capacidades desde 1,244 Gbps hasta 111,81 Gbps.

Tabla 4. Tasas de transmisión OTN

Interface ONT	Velocidad de Línea	Servicios Correspondientes
ODUO (Virtual)	1.244 Gbits/s	Gig-E OC-3/STM-1 OC-12/STM-4
OTUI	2.666 Gbits/s	OC-48/STM-16
OTU2	10.709 Gbits/1s	OC-192/STM-64 10 GigE LAN (using GFP-F)
OTUle	11.0491 Gbits/s (Sin bits de relleno)	10 GigE LAN (Mapeo directo sobre OTN)
OTU2e	11.0957 Gbits/s (Sin bits de relleno)	10 GigE LAN (Mapeo directo sobre OTN)

OTUlf	11.27 Gbits/s (Sin bits de relleno)	10 G Canal de fibra
OTU2f	11.3 Gbits/s (Sin bits de relleno)	10 G Canal de fibra
OTU3	43.018 Gbits/s	OC-768/STM-256 40GE
OTU3e1	44.57 Gbits/s	4X ODU2e (Uso 2.56 TS; total de 16)
OTU3e2	44.58 Gbits/s	4X ODU2e (Uso 1.25G TS; total de 32)
OTU4	111.81 Gbits/s	100GE

Desarrollo de contenidos

Ana María Cárdenas

Experto Temático

Producción de contenidos

Asesoría pedagógica y diseño instruccional Corrección de estilo

Diseño gráfico Producción audiovisual Integración de contenidos Carolina Llanos Danleibi Molina

Inesly Vega Fernanda Álvarez Santiago Bernal

Gestión técnica y administrativa

Este recurso educativo ha sido elaborado y producido bajo una Licencia

<u>Creative Commons Atribución 4.0 Internacional</u>

Se atribuye a la Universidad de Medellín y BambuCo S.A.S. y versiones anteriores pueden encontrarse en

<u>https://uvirtual.udem.edu.co/</u> | https://nuestroscursos.net/

Derechos reservados ©