U3 Image Filtering: Spatial Domain

SJK002 Computer Vision

Master in Intelligent Sytems

- Filtering in the the image spatial domain
 - Linear filters. Convolution
 - Noise types
 - Mean filter
 - Dealing with image boundaries
 - Gaussian filters
 - Median filter

Image filtering

Image filtering cosists of eliminating certain elements of the image

- There are two image filtering types:
 - Filtering in the spatial domain
 - Filtering in the frequency domain

Linear filters

Many image processing operations can be modelled as a linear system

Superposition principle:

$$T[a_1f_1(x,y) + a_2f_2(x,y)] = a_1T[f_1(x,y)] + a_2T[f_2(x,y)]$$

Convolution

In a linear system, the convolution can be defined as:
+∞

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(\alpha)g(x - \alpha)d\alpha$$

In the discrete case:

$$(f * g)(i) = \sum_{k=-\infty}^{+\infty} f(k)g(i-k)$$

Convolution

$$(K*I)(x,y) = \sum_{i} \sum_{j} K(i,j)I(x-i,y-j)$$

2D discrete case: images

Kernel center is placed over the source pixel. (0 x 0) (0 x 0) (0 x 0) (0 x 1)

 (4×0)

Source pixel

(0 x 1) (0 x 0) (0 x 1)

+ (-4 × 2) -8

Source pixel value is replaced by the weighted sum of the neighbourhood defined by the kernel size.

Kernel

Output value

Noise types

- Noise: Non desirable information that contaminates the image
- Some noise types:
 - Salt and pepper / Random
 - Impulse noise
 - Gaussian noise

Mean filter

- Linear filter
- The output value is the mean of the pixels in the neighbourhood

$$h[i, j] = \frac{1}{M} \sum_{(k,l) \in N} f[k,l]$$

(N: window size, M: nº pixels in N)

<u>1</u> ×	1	1	1
	1	1	1
	1	1	1

- 3x3 neighbourhood:
- Normalize coefficients to 1 → Smoothing filter
- Output: reduce contrast
- Drawback: looses border information

Mean filter

Mean filter transfer function k(x,y)

original

disk: radius=1

disk: radius=10

Dealing with image boundaries

Extend the image

- Use the nearest neighbour value.
- Other complex models:
 - Interpolation.
 - Average:

Gaussian filters

- Linear filters with weights from a Gaussian function
- Very much used
- Good to eliminate Guassian noise
- Used in border detection as a pre-filtering step

Gaussian filters

One-dimensional Gaussian function:

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

zero mean and standard deviation σ .

2D Gaussian function for image processing:

$$g[x, y] = e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Gaussian filters

Example:

- Window size 5x5
- Standard deviation σ=1 pixel
- Window center represents (x,y)=(0,0)
- Sample the Gaussian function at each kernel (window) element.
- Normalize kernel to 1

Gaussian filters. Properties

- Rotational symmetry: same effect in any direction
- Single lobe (peak/maximum)
 - Pixel weights decrease with distance to the center
 - The farer the pixel, the less significant weight is
- Preserve low spatial frequencies and tend to eliminate high frequencies: low pass filter.
- The filtering "degree"/intensity is controlled by σ

Linear filters comparison

Mean filter Gaussian filter Image with Gaussian noise Image with random noise

U3. Image Filering: Spatial Domain

Median filter

- Pixel output value is calculated as:
 - Sort the N pixel values of the neighbourhood
 - Select the value which is in the middle of the sorted list
- It is not a linear filter.

Median filter

- Better option for salt-and-pepper and impulse noise
- Preserves better objects border information

Image with Gaussian noise

Image with

random noise

Median filter

Mean filter

U3. Image Filering: Spatial Domain

Filters comparison

Image with noise

Mean

Gaussian

Median

Anisotropic