Extending class group action attacks via sesquilinear pairings

Joseph Macula Joint work with Katherine Stange

Overview

Prior Results and Motivation

Sesquilinear Pairings

Extending Scope of Prior Attacks

Modular Isogeny Problems and Improved Reductions

Conclusion

▶ E a supersingular elliptic curve over finite field \mathbb{F} , char(\mathbb{F}) = p, K an imaginary quadratic field, \mathcal{O} an order in K

- ▶ E a supersingular elliptic curve over finite field \mathbb{F} , char(\mathbb{F}) = p, K an imaginary quadratic field, \mathcal{O} an order in K
- ▶ A K-orientation of E is an embedding

$$\iota: K \hookrightarrow \mathsf{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} \cong B_{p,\infty}$$

If $\iota(\mathcal{O}) \subset \operatorname{End}(E)$, ι is an \mathcal{O} -orientation If $\iota(\mathcal{O}) = \iota(K) \cap \operatorname{End}(E)$, ι is a *primitive* \mathcal{O} -orientation

- ▶ E a supersingular elliptic curve over finite field \mathbb{F} , char(\mathbb{F}) = p, K an imaginary quadratic field, \mathcal{O} an order in K
- A K-orientation of E is an embedding

$$\iota: K \hookrightarrow \mathsf{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} \cong B_{p,\infty}$$

If $\iota(\mathcal{O}) \subset \operatorname{End}(E)$, ι is an \mathcal{O} -orientation If $\iota(\mathcal{O}) = \iota(K) \cap \operatorname{End}(E)$, ι is a *primitive* \mathcal{O} -orientation

• We denote a supersingular curve E with a K-orientation ι by (E, ι)

▶ $SS_{\mathcal{O}}^{pr} := \{(E, \iota) : \iota \text{ a primitive } \mathcal{O}\text{-orientation}\}/\sim$

- ► $SS_{\mathcal{O}}^{pr} := \{(E, \iota) : \iota \text{ a primitive } \mathcal{O}\text{-orientation}\}/\sim$
- $(E,\iota) \sim (E',\iota')$ if there exists $\phi: E \to E'$ an isomorphism with $\phi \circ \iota = \iota' \circ \phi$

- ► $SS_{\mathcal{O}}^{pr} := \{(E, \iota) : \iota \text{ a primitive } \mathcal{O}\text{-orientation}\}/\sim$
- ▶ $(E,\iota) \sim (E',\iota')$ if there exists $\phi : E \to E'$ an isomorphism with $\phi \circ \iota = \iota' \circ \phi$
- ▶ Given $(E, \iota) \in SS^{pr}_{\mathcal{O}}$, $[\mathfrak{a}] \in Cl(\mathcal{O})$, define

$$E[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha))$$

Then there exists K-oriented isogeny $\varphi_{\mathfrak{a}}$ with kernel $E[\mathfrak{a}]$. This gives an action of $Cl(\mathcal{O})$ on $SS_{\mathcal{O}}^{pr}$ by

$$[\mathfrak{a}] \cdot (E, \iota) = (E/E[\mathfrak{a}], \iota_{\mathfrak{a}}), \iota_{\mathfrak{a}} = \frac{1}{\deg \varphi_{\mathfrak{a}}} \varphi_{\mathfrak{a}} \circ \iota \circ \hat{\varphi}_{\mathfrak{a}}$$

► The class group action is free. In general, it is not transitive, but at worst there are two orbits (Onuki, 2021; ACL+ 2024)

- ► The class group action is free. In general, it is not transitive, but at worst there are two orbits (Onuki, 2021; ACL+ 2024)
- ► The vectorization problem:

Given a fixed orbit
$$X$$
 in $SS^{pr}_{\mathcal{O}}$, $(E,\iota),(E',\iota')\in X$, find $[\mathfrak{a}]\in Cl(\mathcal{O})$ such that $[\mathfrak{a}]\cdot(E,\iota)=(E',\iota')$

- ► The class group action is free. In general, it is not transitive, but at worst there are two orbits (Onuki, 2021; ACL+ 2024)
- ► The vectorization problem:

Given a fixed orbit
$$X$$
 in $SS_{\mathcal{O}}^{pr}$, (E, ι) , $(E', \iota') \in X$, find $[\mathfrak{a}] \in Cl(\mathcal{O})$ such that $[\mathfrak{a}] \cdot (E, \iota) = (E', \iota')$

Vectorization problems in the wild: e.g., the underlying hard problem in CSIDH

Motivating Question

➤ SIDH no longer secure, as shown by Castryck and Decru (2023), Robert (2023), Maino and Martindale, and Maino-Martindale-Panny-Pope-Wesolowski (2023)

Motivating Question

- ➤ SIDH no longer secure, as shown by Castryck and Decru (2023), Robert (2023), Maino and Martindale, and Maino-Martindale-Panny-Pope-Wesolowski (2023)
- ▶ The upshot: for a given secret isogeny $\phi: E \to E'$, once we know
 - (i) the degree, d, of ϕ
 - (ii) action of ϕ on E[m] for m sufficiently smooth and $m^2>4d$, we know ϕ

Motivating Question

- ➤ SIDH no longer secure, as shown by Castryck and Decru (2023), Robert (2023), Maino and Martindale, and Maino-Martindale-Panny-Pope-Wesolowski (2023)
- ▶ The upshot: for a given secret isogeny $\phi: E \to E'$, once we know
 - (i) the degree, d, of ϕ
 - (ii) action of ϕ on E[m] for m sufficiently smooth and $m^2>4d$, we know ϕ
- ▶ Question (CHM+23): Can this attack be applied to instances of the vectorization problem?

An Instructive Example (from CHM+ 23):

Assume: E, E' defined over \mathbb{F}_p , both with primitive orientation by $\mathbb{Z}[\sqrt{-p}]$; $\phi: E \to E'$ a secret \mathbb{F}_p -rational isogeny with $\ker \phi = E[\mathfrak{a}]$; $\deg phi = d$ known; $[\mathfrak{a}] \in \mathsf{Cl}(\mathbb{Z}[\sqrt{-p}])$. If we know ϕ , we can efficiently recover $[\mathfrak{a}]$.

▶ With $m = \ell^r$, $(\ell, d) = 1$, ℓ a small prime splitting in $\mathbb{Q}(\sqrt{-p})$, there are bases $\{P, Q\}, \{P', Q'\}$ for E[m], E'[m], respectively, and

$$P' = \lambda \phi(P), \quad Q' = \mu \phi(Q), \quad \lambda, \mu \in \mathbb{Z}/m\mathbb{Z}^*$$

An Instructive Example (from CHM+ 23):

Assume: E, E' defined over \mathbb{F}_p , both with primitive orientation by $\mathbb{Z}[\sqrt{-p}]$; $\phi: E \to E'$ a secret \mathbb{F}_p -rational isogeny with $\ker \phi = E[\mathfrak{a}]$; $\deg phi = d$ known; $[\mathfrak{a}] \in \mathsf{Cl}(\mathbb{Z}[\sqrt{-p}])$. If we know ϕ , we can efficiently recover $[\mathfrak{a}]$.

▶ With $m = \ell^r$, $(\ell, d) = 1$, ℓ a small prime splitting in $\mathbb{Q}(\sqrt{-p})$, there are bases $\{P, Q\}, \{P', Q'\}$ for E[m], E'[m], respectively, and

$$P' = \lambda \phi(P), \quad Q' = \mu \phi(Q), \quad \lambda, \mu \in \mathbb{Z}/m\mathbb{Z}^*$$

▶ Properties of the *m*-Weil pairing $e_m(\cdot, \cdot)$ imply

$$e_m(P',P')=e_m(P,P)^{\lambda^2 d}$$

An Instructive Example (from CHM+ 23):

Assume: E, E' defined over \mathbb{F}_p , both with primitive orientation by $\mathbb{Z}[\sqrt{-p}]$; $\phi: E \to E'$ a secret \mathbb{F}_p -rational isogeny with $\ker \phi = E[\mathfrak{a}]$; $\deg phi = d$ known; $[\mathfrak{a}] \in \mathsf{Cl}(\mathbb{Z}[\sqrt{-p}])$. If we know ϕ , we can efficiently recover $[\mathfrak{a}]$.

▶ With $m = \ell^r$, $(\ell, d) = 1$, ℓ a small prime splitting in $\mathbb{Q}(\sqrt{-p})$, there are bases $\{P, Q\}, \{P', Q'\}$ for E[m], E'[m], respectively, and

$$P' = \lambda \phi(P), \quad Q' = \mu \phi(Q), \quad \lambda, \mu \in \mathbb{Z}/m\mathbb{Z}^*$$

▶ Properties of the *m*-Weil pairing $e_m(\cdot, \cdot)$ imply

$$e_m(P',P')=e_m(P,P)^{\lambda^2d}$$

▶ Unfortunately, $e_m(P, P) = 1$

Self-Pairings

Search for pairings non-degenerate on a cyclic subgroup of E compatible with oriented isogenies

Self-Pairings

- Search for pairings non-degenerate on a cyclic subgroup of E compatible with oriented isogenies
- ► CHM+ (2023) construct such pairings. This yields efficient attacks on the vectorization problem when
 - (i) The degree of the secret isogeny is known
 - (ii) The discriminant $\Delta_{\mathcal{O}}$ of the primitive order contains a large smooth square factor
 - (iii) To perform the necessary computations, may need to significantly extend the base field
 - (N.B. work in preparation by CDM+ appears to remove condition (ii))

Can be defined purely formally, thus even for curves without CM ("Sesquilinear Pairings on Elliptic Curves", Stange, 2024)

First steps

▶ Given an imaginary quadratic order $\mathcal{O} = \mathbb{Z}[\tau]$, let ρ be the left-regular representation of \mathcal{O} acting on basis $\{1, \tau\}$:

$$\rho(\alpha) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \iff \alpha = a + c\tau, \alpha\tau = b + d\tau$$

Can be defined purely formally, thus even for curves without CM ("Sesquilinear Pairings on Elliptic Curves", Stange, 2024)

First steps

▶ Given an imaginary quadratic order $\mathcal{O} = \mathbb{Z}[\tau]$, let ρ be the left-regular representation of \mathcal{O} acting on basis $\{1, \tau\}$:

$$\rho(\alpha) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \iff \alpha = a + c\tau, \alpha\tau = b + d\tau$$

▶ Define action of \mathcal{O} on $(\mathbb{F}^*)^{\times 2}$ by $(x,y)^{\alpha} = (x^a y^b, x^c y^d)$

Let E/\mathbb{F} have CM by \mathcal{O} . Given $\alpha \in \mathcal{O}$, we construct a pairing

$$\widehat{T}_{\alpha}^{\tau}: E[\overline{\alpha}](\mathbb{F}) \times E(\mathbb{F})/[\alpha]E(\mathbb{F}) \to (\mathbb{F}^*)^{\times 2}/((\mathbb{F}^*)^{\times 2})^{\alpha}$$

as follows:

With
$$\rho(\alpha) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,

$$\alpha = a + c\tau, \alpha\tau = b + d\tau, \overline{\alpha} = d - c\tau, \overline{\alpha}\tau = -b + a\tau$$

▶ Take $P \in E[\overline{\alpha}]$, define functions $f_{P,1}, f_{P,2}$ such that

$$\operatorname{div}(f_{P,1}) = a([-\tau]P) + b(P) - (a+b)(\infty)$$

$$div(f_{P,2}) = c([-\tau]P) + d(P) - (c+d)(\infty)$$

▶ Define for $Q \in E(\mathbb{F})$,

$$D_{Q,1} = ([-\tau]Q + [-\tau]R) - ([-\tau]R), \quad D_{Q,2} = (Q+R) - (R).$$

with R chosen so that the supports of $\operatorname{div}(f_{P,i})$ and $D_{Q,j}$ are disjoint for each pair i, j

▶ Define for $Q \in E(\mathbb{F})$,

$$D_{Q,1} = ([-\tau]Q + [-\tau]R) - ([-\tau]R), \quad D_{Q,2} = (Q+R) - (R).$$

with R chosen so that the supports of $div(f_{P,i})$ and $D_{Q,j}$ are disjoint for each pair i, j

▶ Then $\widehat{T}^{\tau}_{\alpha}(P,Q) =$

$$(f_{P,1}(D_{Q,1}), f_{P,2}(D_{Q,1})) (f_{P,1}(D_{Q,2}), f_{P,2}(D_{Q,2}))^{\overline{\tau}}$$

▶ Define for $Q \in E(\mathbb{F})$,

$$D_{Q,1} = ([-\tau]Q + [-\tau]R) - ([-\tau]R), \quad D_{Q,2} = (Q+R) - (R).$$

with R chosen so that the supports of $div(f_{P,i})$ and $D_{Q,j}$ are disjoint for each pair i, j

▶ Then $\widehat{T}^{\tau}_{\alpha}(P,Q) =$

$$(f_{P,1}(D_{Q,1}), f_{P,2}(D_{Q,1})) (f_{P,1}(D_{Q,2}), f_{P,2}(D_{Q,2}))^{\overline{\tau}}$$

▶ Unwinding the definitions, this turns out to be a somewhat natural extension of the Tate pairing; $\widehat{T}_{\alpha}^{\tau}(P,Q) = f_P(D_Q)$ for $f_P = f_{P,1}f_{P,2}^{\tau}$, $D_Q = D_{Q,1} + \tau \cdot D_{Q,2}$ (see Stange, 2024)

Theorem (Stange 2024):

The pairing above is well-defined and satisfies

▶ Sesquilinearity: For $P \in E[\overline{\alpha}](\mathbb{F})$ and $Q \in E(\mathbb{F})$,

$$\widehat{T}_{\alpha}^{\tau}([\gamma]P,[\delta]Q) = \widehat{T}_{\alpha}^{\tau}(P,Q)^{\overline{\gamma}\delta}.$$

Theorem (Stange 2024):

The pairing above is well-defined and satisfies

▶ Sesquilinearity: For $P \in E[\overline{\alpha}](\mathbb{F})$ and $Q \in E(\mathbb{F})$,

$$\widehat{T}_{\alpha}^{\tau}([\gamma]P,[\delta]Q) = \widehat{T}_{\alpha}^{\tau}(P,Q)^{\overline{\gamma}\delta}.$$

▶ **Compatibility:** Let $\phi: E \to E'$ be an isogeny between curves with CM by $\mathcal O$ and satisfying $[\alpha] \circ \phi = \phi \circ [\alpha]$. Then for $P \in E[\overline{\alpha}](\mathbb F)$ and $Q \in E(\mathbb F)$,

$$\widehat{T}_{\alpha}^{\tau}(\phi P, \phi Q) = \widehat{T}_{\alpha}^{\tau}(P, Q)^{\deg \phi}.$$

Theorem (continued):

▶ Non-degeneracy: Let $\alpha \in \mathcal{O}$ be coprime to char(\mathbb{F}) and the discriminant of \mathcal{O} . Let $N = N(\alpha)$. Suppose \mathbb{F} contains the N-th roots of unity. Suppose there exists $P \in E[N](\mathbb{F})$ such that $\mathcal{O}P = E[N] = E[N](\mathbb{F})$. Then

$$\widehat{T}_{\alpha}^{\tau}: E[\overline{\alpha}](\mathbb{F}) \times E(\mathbb{F})/[\alpha]E(\mathbb{F}) \to (\mathbb{F}^*)^{\times 2}/((\mathbb{F}^*)^{\times 2})^{\alpha},$$

is non-degenerate. Furthermore, if P has annihilator $\overline{\alpha}\mathcal{O}$, then $T_{\alpha}(P,\cdot)$ is surjective; and if Q has annihilator $\alpha\mathcal{O}$, then $T_{\alpha}(\cdot,Q)$ is surjective.

These pairings are efficiently computable via a Miller-style algorithm (Algorithm 5.7, Stange, 2024)

Similar to the Tate pairing, a final exponentiation gives values in the roots of unity:

$$(\overline{\mathbb{F}}^*)/(\overline{\mathbb{F}}^*)^{\alpha} \to \mu_{\mathcal{N}(\alpha)}^{\times 2} \subseteq (\overline{\mathbb{F}}^*)^{\times 2}, \quad x \mapsto x^{(q-1)\alpha^{-1}}.$$

Key idea:

Sesquilinear pairings respect \mathcal{O} -module structure, not merely \mathbb{Z} -module structure. This yields new instances of non-trivial self-pairings.

Recall that in the statement of non-degeneracy of $\widehat{T}_{\alpha}^{\tau}$, one condition is that E[N] is a cyclic \mathcal{O} -module, where $N=N(\alpha)$.

► The following is a straightforward extension of results of (Lenstra, 1996)

Recall that in the statement of non-degeneracy of $\widehat{T}_{\alpha}^{\tau}$, one condition is that E[N] is a cyclic \mathcal{O} -module, where $N=N(\alpha)$.

- ► The following is a straightforward extension of results of (Lenstra, 1996)
- ▶ Theorem (M., Stange): E/\mathbb{F} , K imaginary quadratic, $\mathcal{O} \subset K$, E \mathcal{O} -oriented, $f = [\mathcal{O}' : \mathcal{O}]$, \mathcal{O}' primitive orientation. E[m] cyclic \mathcal{O} -module iff (m, f) = 1.

So, there many instances where $\widehat{T}^{\tau}_{\alpha}$ is non-degenerate. This in turn yields non-degenerate self-pairings.

Theorem (M., Stange):

Let E be an elliptic curve oriented by $\mathcal{O}=\mathbb{Z}[\tau]$. Let m be coprime to the discriminant $\Delta_{\mathcal{O}}$. Let \mathbb{F} be a finite field containing the m-th roots of unity. Suppose $E[m]=E[m](\mathbb{F})$. Let P have order m. Let s be the maximal divisor of m such that $E[s]\subseteq \mathcal{O}P$. Then the multiplicative order m' of $\widehat{T}_m^{\tau}(P,P)$ satisfies $s\mid m'\mid 2s^2$.

In particular, if $\mathcal{O}P = E[m]$, then s = m and the self-pairing has order m. If $\mathcal{O}P = \mathbb{Z}P$, then s = 1, and in fact, in this case, the self-pairing is trivial.

Proof (Sketch):

Properties of the sesquilinear pairing and assumptions on s imply

$$\widehat{T}_m^{\tau}([s]P,[s]P)^{k^2} = \widehat{T}_m^{\tau}([s]P,[s]P)^{N(\lambda)}$$

so $N(\lambda)$ a square modulo order of $\widehat{T}_m^{\tau}([s]P,[s]P)$ for all $\lambda \in \mathcal{O}$. Coprimality of m with $\Delta_{\mathcal{O}}$ then implies order at most $2s^2$. Conversely, for t=m/s,

$$\widehat{T}_m^{\tau}(P,Q)^t = \widehat{T}_m^{\tau}(P,P)^{ta+b\lambda}$$

for an appropriate choice for Q. So order of the self-pairing is at least s.

Even when $m \mid \Delta_{\mathcal{O}}$, the sesquilinear pairing remains non-degenerate provided m is not a divisor of the relative conductor:

$$\widehat{T}_{m}^{\tau} = (f_{P,1}(D_{Q,1}), f_{P,2}(D_{Q,1})) (f_{P,1}(D_{Q,2}), f_{P,2}(D_{Q,2}))^{\overline{\tau}} =$$

$$\left(f_{P,1}(D_{Q,1})f_{P,1}(D_{Q,2})^{Tr(\tau)}f_{P,2}(D_{Q,2})^{N(\tau)},f_{P,2}(D_{Q,1})f_{P,1}(D_{Q,2})^{-1}\right) =$$

$$\left(t_m(P,Q)^{2N(\tau)}t_m([-\tau]P,Q)^{Tr(\tau)},\ t_m([\tau-\overline{\tau}]P,Q)\right)$$

with $t_m(P,Q)$ the m-Tate-Lichtenbaum pairing. Choosing $\tau=f\sqrt{d_K}$, non-degeneracy follows from non-degeneracy of the m-Tate-Lichtenbaum pairing.

Computational Assumptions

▶ Efficient = polynomial in size of input, i.e., polynomial in $\log m$ (the torsion) and $\log q$ (q the cardinality of base field where E[m] fully rational)

Computational Assumptions

- ▶ Efficient = polynomial in size of input, i.e., polynomial in $\log m$ (the torsion) and $\log q$ (q the cardinality of base field where E[m] fully rational)
- ▶ Having an \mathcal{O} -oriented curve means having an explicit orientation; given $\alpha \in \mathcal{O}$, can compute its action $[\alpha]$ on a point P on E efficiently

Computational Assumptions

- ▶ Efficient = polynomial in size of input, i.e., polynomial in $\log m$ (the torsion) and $\log q$ (q the cardinality of base field where E[m] fully rational)
- ▶ Having an \mathcal{O} -oriented curve means having an explicit orientation; given $\alpha \in \mathcal{O}$, can compute its action $[\alpha]$ on a point P on E efficiently
- ▶ Degree d of hidden isogeny ϕ is known

Computational Assumptions

- ▶ Efficient = polynomial in size of input, i.e., polynomial in $\log m$ (the torsion) and $\log q$ (q the cardinality of base field where E[m] fully rational)
- ▶ Having an \mathcal{O} -oriented curve means having an explicit orientation; given $\alpha \in \mathcal{O}$, can compute its action $[\alpha]$ on a point P on E efficiently
- ▶ Degree d of hidden isogeny ϕ is known
- ▶ m is coprime to the characteristic p of the given field \mathbb{F} , and m is smooth, meaning that its factors are polynomial in size, so that discrete logarithms in μ_m or E[m] are computable in polynomial time. In particular, we can efficiently write any element of E[m] in terms of a given basis

A slight modification of the sesquilinear pairing:

$$T'_m(P,Q) = (t_m([\tau]P,Q), t_m(P,Q))$$

This pairing remains non-degenerate whenever E[m] is a cyclic \mathcal{O} -module, bilinear, compatible with \mathcal{O} -oriented isogenies. It yields the following result

Theorem (M., Stange):

Suppose $\phi: E \to E'$ of degree $d, m \mid \Delta_{\mathcal{O}}$, coprime to d, and chosen so that there are only polynomially many square roots of 1 modulo m. Suppose $P \in E[m]$ and $P' \in E'[m]$ such that $\mathcal{O}P = E[m]$, $\mathcal{O}P' = E'[m]$. Then there exists an efficiently computable point $Q \in E[m]$ of order m such that a subset $S \subset E'[m]$ of polynomial size containing $\phi(Q)$ can be computed in polynomially many operations in the field of definition of E[m].

▶ With knowledge of $\phi(Q)$ for an order m point Q, \mathcal{O} -module structure of E[m] and ϕ an \mathcal{O} -oriented isogeny yield knowledge of ϕ on E[m].

- ▶ With knowledge of $\phi(Q)$ for an order m point Q, \mathcal{O} -module structure of E[m] and ϕ an \mathcal{O} -oriented isogeny yield knowledge of ϕ on E[m].
- ▶ If m a smooth square with m > 4d, reduces to SIDH attack.

- ▶ With knowledge of $\phi(Q)$ for an order m point Q, \mathcal{O} -module structure of E[m] and ϕ an \mathcal{O} -oriented isogeny yield knowledge of ϕ on E[m].
- ▶ If m a smooth square with m > 4d, reduces to SIDH attack.
- Work in preparation (CDM+24) appears to remove restriction that m be a square.

- ▶ With knowledge of $\phi(Q)$ for an order m point Q, \mathcal{O} -module structure of E[m] and ϕ an \mathcal{O} -oriented isogeny yield knowledge of ϕ on E[m].
- ▶ If m a smooth square with m > 4d, reduces to SIDH attack.
- Work in preparation (CDM+24) appears to remove restriction that m be a square.
- ▶ By exploiting \mathcal{O} -module structure, computations take place over field of definition of E[m] instead of $E[m^2]$. This yields polynomial-time attacks on additional instances of the vectorization problem.

Proof (Sketch, for *m* odd):

▶ $\exists \tau \in \mathcal{O}$ s.t. $\mathbb{Z}[\tau] \equiv \mathcal{O}$ modulo m; $Tr(\tau) \equiv N(\tau) \equiv 0$ (mod m)

Proof (Sketch, for *m* odd):

- ▶ $\exists \tau \in \mathcal{O}$ s.t. $\mathbb{Z}[\tau] \equiv \mathcal{O}$ modulo m; $Tr(\tau) \equiv N(\tau) \equiv 0$ (mod m)
- $T'_m(P,P)^{\deg \phi} = T'_m(P',P')^{N(\lambda)}$

Proof (Sketch, for *m* odd):

- ▶ $\exists \tau \in \mathcal{O}$ s.t. $\mathbb{Z}[\tau] \equiv \mathcal{O}$ modulo m; $Tr(\tau) \equiv N(\tau) \equiv 0$ (mod m)
- $T'_m(P,P)^{\deg \phi} = T'_m(P',P')^{N(\lambda)}$
- ▶ $\lambda \equiv a + b\tau$ modulo m, $N(\lambda) \equiv a^2 \pmod{m'}$, so $\phi[\tau]P = [a]\tau P'$ for some a

Proof (Sketch, for *m* odd):

- ▶ $\exists \tau \in \mathcal{O}$ s.t. $\mathbb{Z}[\tau] \equiv \mathcal{O}$ modulo m; $Tr(\tau) \equiv N(\tau) \equiv 0$ (mod m)
- $T'_m(P,P)^{\deg \phi} = T'_m(P',P')^{N(\lambda)}$
- ▶ $\lambda \equiv a + b\tau$ modulo m, $N(\lambda) \equiv a^2 \pmod{m'}$, so $\phi[\tau]P = [a]\tau P'$ for some a
- Our assumptions imply set of possible values of a is efficiently computable and of polynomial size

Example (adapted from Castryck):

 $E: y^2 = x^3 + x$, $p = 4 \cdot 3^r - 1$. Then j(E) = 1728 and E is supersingular. With π_p the Frobenius endomorphism, $[i]: (x,y) \mapsto (-x,iy)$,

$$\tau:=\frac{i+\pi_p}{2}\in \operatorname{End}(E).$$

 $N(\tau)=3^r$ and $Tr(\tau)=0$. Let $\mathcal{O}=\mathbb{Z}[\tau]$, having $N(\tau)\mid\Delta_{\mathcal{O}}$. Let $m=3^r$. Then $m\mid\Delta_{\mathcal{O}}$. $E(\mathbb{F}_{p^2})\cong(\mathbb{Z}/4\cdot 3^r\mathbb{Z})^2$, so $E[3^r]\subset E(\mathbb{F}_{p^2})$. Provided m>4d, all pairings computations take place in $E(\mathbb{F}_{p^2})$.

▶ This is in contrast to methods of CHM+23, where a base change to field of definition of $E[3^{2r}]$ is required.

- ▶ This is in contrast to methods of CHM+23, where a base change to field of definition of $E[3^{2r}]$ is required.
- ▶ This degree grows exponentially with r (recall that polynomial runtime means polynomial in $\log m$ and $\log q$, q cardinality of the field of definition of E[m]).

▶ Definition (FFP, 2024): Let E be an elliptic curve over a finite field \mathbb{F} of characteristic p and m be a positive integer coprime to p. Let Γ be a subgroup of $GL_2(\mathbb{Z}/m\mathbb{Z})$. A Γ -level structure of level m on E is a Γ -orbit of a basis of E[m].

- ▶ Definition (FFP, 2024): Let E be an elliptic curve over a finite field \mathbb{F} of characteristic p and m be a positive integer coprime to p. Let Γ be a subgroup of $GL_2(\mathbb{Z}/m\mathbb{Z})$. A Γ -level structure of level m on E is a Γ -orbit of a basis of E[m].
- For elliptic curves E, E' with Γ -level structures of level m, $\phi: E \to E'$ respects the level structure if ϕ maps the specified Γ -orbit for E[m] to the specified Γ -orbit for E'[m].

- ▶ Definition (FFP, 2024): Let E be an elliptic curve over a finite field \mathbb{F} of characteristic p and m be a positive integer coprime to p. Let Γ be a subgroup of $GL_2(\mathbb{Z}/m\mathbb{Z})$. A Γ -level structure of level m on E is a Γ -orbit of a basis of E[m].
- For elliptic curves E, E' with Γ -level structures of level m, $\phi: E \to E'$ respects the level structure if ϕ maps the specified Γ -orbit for E[m] to the specified Γ -orbit for E'[m].
- Many proposed isogeny-based protocols are instances of a modular isogeny problem: given an isogeny $\phi : E \to E'$ that respects a known Γ-level structure of level m, determine ϕ .

Examples:

▶ SIDH: $\Gamma = \{1\}$, so image of ϕ on a basis $\{P, Q\}$ for E[m] is known.

Examples:

- ▶ SIDH: $\Gamma = \{1\}$, so image of ϕ on a basis $\{P, Q\}$ for E[m] is known.
- ► SIDH₁:

$$\Gamma = \left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\},$$

so image of ϕ on single basis point P is known

Examples:

- ▶ SIDH: $\Gamma = \{1\}$, so image of ϕ on a basis $\{P, Q\}$ for E[m] is known.
- ► SIDH₁:

$$\Gamma = \left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\},\,$$

so image of ϕ on single basis point P is known

Diagonal SIDH:

$$\Gamma = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\},\,$$

so image of subgroups $\langle P \rangle, \langle Q \rangle$ are known, $\{P,Q\}$ a basis for E[m]

Work of De Feo, Fouotsa, and Panny (2024) categorizes many current isogeny-based protocols by their implicit level structure.

- Work of De Feo, Fouotsa, and Panny (2024) categorizes many current isogeny-based protocols by their implicit level structure.
- ► The authors establish several reductions between various modular isogeny problems, including the following:

- Work of De Feo, Fouotsa, and Panny (2024) categorizes many current isogeny-based protocols by their implicit level structure.
- ► The authors establish several reductions between various modular isogeny problems, including the following:
- ▶ Theorem (FFP, 2024): With the degree d of $\phi: E \to E'$ known and $m \in \mathbb{Z}$ such that m has a large smooth square factor, the modular isogeny problem SIDH $_1$ of level m reduces to the modular isogeny problem SIDH of level $O(\sqrt{m})$

Theorem (M., Stange):

Let E and E' be \mathcal{O} -oriented supersingular curves over $\overline{\mathbb{F}}_p$, upon which we can efficiently compute the action of endomorphisms from \mathcal{O} . Assume that m coprime to the discriminant. Assume also that E[m] is a cyclic \mathcal{O} -module, and that the hidden isogeny $\phi: E \to E'$ has known degree d coprime to m and is compatible with the \mathcal{O} -orientations. Then the problem SIDH $_1$ of level m to find ϕ reduces, in a polynomial number of operations in the field of definition of E[m], to SIDH of level m on the same curve E and same ϕ .

Theorem (M., Stange):

Suppose E and E' are \mathcal{O} -oriented. Let $m>4\deg\phi$ be a smooth integer such that modulo m, 1 has polynomially many square roots. Then Diagonal SIDH with known degree for an oriented isogeny $\phi: E \to E'$ is solvable in polynomial time, provided $\mathcal{O}P = E[m]$ or $\mathcal{O}Q = E[m]$.

Thank you!