S2k-Leitlinie 024-022 "Prophylaxe von Vitamin-K-Mangel-Blutungen (VKMB) bei Neugeborenen" aktueller Stand: 03/2016

AWMF-Register Nr.	024/022	Klasse:	S2k
triiii itegietei itii	V = V = =		 :

Gemeinsame Leitlinie der

Gesellschaft für Neonatologie und Pädiatrische Intensivmedizin (GNPI), Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG), Deutschen Gesellschaft für Perinatalmedizin (DGPM) Deutschen Gesellschaft für Kinder- und Jugendmedizin (DGKJ), des Berufsverbandes der Kinder- und Jugendärzte (BVKJ) und des Deutschen Hebammenverbandes

AWMF-Leitlinien-Register Nr. 024/022 Entwicklungsstufe: S2k

Prophylaxe von Vitamin-K-Mangel-Blutungen (VKMB) bei Neugeborenen

1. Abkürzungen und Erklärungen	2
2. Zielsetzung der Leitlinie	2
3. Geschichte der hämorrhagischen Erkrankung des Neugeborenen	2
4. Wesentliche Vitamin-K-Formen	3
5. Einteilung der VKMB bei Neugeborenen und Säuglingen	4
6. Vitamin-K-Konzentrationen beim Neugeborenen	5
7. Toxizität von Vitamin K $_1$	6
8. Diagnostik und Therapie einer VKMB	6
9. Prophylaxe von VKMB, Übersicht über die einschlägige Literatur	6
9.1. Parenterale Gabe Vitamin K_1 (i.m. oder i.v.)	
10. Empfehlungen für die Prophylaxe von VKMB bei Neugeborenen und	
Säuglingen	10
10.1. Medizinischer Standard – Grundsatz	
10.2. Empfehlungen für gesunde Neugeborene	11
Allgemeinzustand	12
10.4. Empfehlungen für Frühgeborene	
10.5. Empfehlung bei pränataler mütterlicher Medikation, die mit dem Vitamin-K-	
Stoffwechsel interferiert	12
11. Literaturverzeichnis	13

1. Abkürzungen und Erklärungen

ATP According to Protocol

ESPED Erhebungseinheit für seltene Erkrankungen in Deutschland

i.m. intramuskulär i.v. intravenös

PIVKA Proteins Induced by Vitamin-K-Absence

RDI recommended daily intake

Säuglingsnahrung hier als Überbegriff für Säuglingsanfangsnahrung und Folgenah-

rung im Sinne der Richtlinie 2006/141/EG der EU verwendet

VKMB Vitamin-K-Mangel-Blutungen

Wenn im Text bei der Beschreibung von Unterschieden das Wort "scheint" verwendet wird, soll damit angezeigt werden, dass hier allenfalls ein Trend vorliegt, dass die Unterschiede aber keine statistische Signifikanz erreichen.

2. Zielsetzung der Leitlinie

Gesunde Neugeborene und Säuglinge können durch physiologisch geringe Spiegel an Vitamin-K-abhängigen Gerinnungsfaktoren schwere Blutungen und insbesondere Gehirnblutungen entwickeln. Die Vitamin-K-Prophylaxe hat zum Ziel, diese Vitamin-K-Mangel-Blutungen (VKMB) zu verhindern.

3. Geschichte der hämorrhagischen Erkrankung des Neugeborenen

Hämorrhagische Erkrankungen der Neugeborenen¹ wurde erstmalig 1894 von Charles Townsend systematisch erfasst und beschrieben.² Er beschrieb eine Blutungserkrankung, die bei 0,6% der Neugeborenen am 2. oder 3. Lebenstag auftrat und somit der heute als klassischer VKMB definierten Erkrankung (siehe 4.) entsprach. Besonders waren die Haut, der Magen-Darm-Trakt und das Gehirn betroffen. Die Mortalität betrug 62%. Die überlebenden Kinder erholten sich innerhalb von ca. 5 Tagen. Damals war es noch nicht möglich, eine Blutung im Rahmen einer schweren Sepsis von einer reinen VKMB zu differenzieren.

Angaben zur Häufigkeit der VKMB streuen zwischen 0,25 %³, 0,33%⁴ bis zu 13,9% (sekundäre Blutungen nach Zirkumzision)⁵ der untersuchten Neugeborenen.

Die pathophysiologische Grundlage für das Verständnis der Erkrankung schuf der Biochemiker Hendrik Dam, der 1929 bei Hühnerküken erstmalig ein Koagulations-Vitamin (Vitamin K) beschrieb⁶. In der Folge wurde von mehreren Arbeitsgruppen der Prothrombinmangel bei Neugeborenen mit VKMB beschrieben.⁷⁻¹⁴ Waddell und Mitarbeiter zeigten, dass durch die Gabe von Vitamin K, ohne Angabe der Herkunft, die hämorrhagische Erkrankung des Neugeborenen verhindert werden konnte¹⁵. Die Synthese von Vitamin K gelang 1939¹⁶. Die Ernährungskommission der Amerikanischen Akademie für Kinderheilkunde empfahl erstmalig 1961 die postnatale Prophylaxe von klassischen VKMB mit 0,5-1,0 mg Vitamin K parenteral oder 1,0-2,0 mg oral für alle Neugeborenen¹⁷. Wichtig ist zu erwähnen, dass die Inzidenz von VKMB in

den USA in den Jahren vor dieser Empfehlung bereits deutlich gesunken war, möglicherweise durch den Rückgang des Stillens in der Zeit von 1930-1960, denn Kuhmilch und Flaschennahrung enthalten mehr Vitamin K als Frauenmilch und klassische VKMB treten überwiegend bei gestillten Kindern auf^{18,19}. Die Empfehlung von 1961 wurde 1993²⁰ bestätigt. Zuletzt wurde 2003 ausschließlich die intramuskuläre (i.m.) Prophylaxe mit 0,5-1mg Vitamin K empfohlen²¹.

Etwa 1966 fielen in Thailand erstmals Kinder im 2. Lebensmonat mit einer späten Form der VKMB auf. Bhanchet und Mitarbeiter²² haben diese Fälle zusammengefasst und 93 überwiegend gestillte (93%) Säuglinge mit einer hohen Inzidenz an Gehirnblutungen (63%) beschrieben. Ohne Vitamin-K-Prophylaxe wurden in England, Deutschland und Thailand 4,4, 7,2 bzw. 72 späte Hirnblutungen pro 100.000 Säuglinge beschrieben²³. Die VKMB scheint bei asiatischen Populationen häufiger vorzukommen als bei Kaukasiern. Ursächlich hierfür könnte das häufigere Vorkommen einer Gallengangshypoplasie bzw. -atresie (1:3.100 in Asien gegenüber 1:18.000 in Westeuropa) sein²⁴.

Bei Neugeborenen von Müttern, die vorgeburtlich mit enzyminduzierenden Antiepileptika behandelten worden waren, fiel eine erhöhte Inzidenz von frühen VKMB innerhalb der ersten 24 Lebensstunden auf²⁵⁻²⁷. Auch wenn neuere Arbeiten diesen Zusammenhang kritisch hinterfragen, lässt er sich nicht ausschließen²⁸⁻³⁰. Die pränatale prophylaktische Vitamin-K-Gabe an die Mutter wurde 1982 als Prävention empfohlen³¹. Dieses Konzept ist aber umstritten, und es gibt keine Untersuchungen, die deren Wirksamkeit bestätigt³². Die beiden wesentlichen Arbeiten, die die Inzidenz früher VKMB bei Kindern von mit enzyminduzierenden Antiepileptika behandelten Müttern prospektiv untersuchten, beschrieben weder ein erhöhte Inzidenz an frühen VKMB, noch wurde pränatal Vitamin K eingesetzt. Alle Kinder erhielten postnatal 1 mg Vitamin K i.m. 29,30. Die orale Prophylaxe wurde bei diesen Kindern nicht systematisch untersucht. Die Amerikanische Akademie für Neurologie riet in ihrer Stellungnahme von 2009 von der pränatalen Vitamin-K-Gabe an die Mutter ab. da die Wirksamkeit nicht bewiesen wurde³³. Derzeit ist die sofortige postnatale i.m. Gabe von Vitamin K bei diesen Neugeborenen die einzige systematisch untersuchte Option, eine VKMB zu verhindern^{29,30}.

4. Wesentliche Vitamin-K-Formen

Vitamin K ist eine Familie fettlöslicher 2-Methyl-1,4-Naphthoquinone, die sich in einer Seitenkette unterscheiden 18,34 . Vitamin K ist essentieller Cofaktor der γ -Karboxylierung der Gerinnungsfaktoren Faktor II, VII, IX, X sowie von Protein C und Protein S. Glutamatreste werden hierbei in γ -Karboxyglutamat umgewandelt. Die Glutamat-Vorstufen der Vitamin-K-abhängigen Proteine fasst man unter dem Oberbegriff PIVKA (Proteins Induced by Vitamin-K-Absence) zusammen. Z.B. ist die Glutamat-Vorstufe von Prothrombin (Faktor II) PIVKA-II. Darüber hinaus gibt es noch andere Vitamin-K-abhängige Proteine, wie z.B. Osteokalzin oder Matrix Gla Protein, deren Funktion weniger klar ist.

Vitamin-K-Formen

Phylloquinon (Vitamin K₁), welches von Pflanzen synthetisiert wird,

- Menaquinone (Vitamin K₂), welche von Bakterien wie den Darmbakterien synthetisiert werden und z.B. in fermentiertem (reifem) Käse, Ei, Hühner- und Rindfleisch, Leber, aber auch in fermentiertem Gemüse wie Sauerkraut enthalten sind und
- das synthetisch hergestellte, wasserlösliche Menadion (Vitamin K₃), das nicht mehr zur oralen Vitamin-K-Prophylaxe verwendet wird, da hierunter hämolytische Anämien bei Glukose-6-Phosphat-Dehydrogenase-Mangel beschrieben wurden.

Mit der Nahrung wird im wesentlichen Phylloquinon (Vitamin K_1) aufgenommen, das zu 80% resorbiert wird und das wesentliche Vitamin K im Blut ist¹⁸. Im Blut findet man weiter in geringer Menge Menaquinone (Vitamin K_2). Unklar ist, wie viel davon über die Nahrung zugeführt und resorbiert wurde und wie viel von der Darmflora produziert wurde. Menaquinone sind die wesentliche hepatische Speicherform von Vitamin K bei Erwachsenen. Phylloquinon hat daran nur einen Anteil von etwa $10\%^{35}$. Funktionell scheinen Menaquinone für die Bildung von Gerinnungsfaktoren eine untergeordnete Rolle zu spielen, weil ein diätetischer Phylloquinonmangel ohne Änderung der hepatischen Menaquinone-Speicher zu klinischem Vitamin-K-Mangel führt³⁶. Eventuell können mikrosomale γ -Glutamyl-Karboxylasen auf subzellularer Ebene nicht auf den wesentlichen Teil der hepatischen Menaquinone zugreifen³⁵. Neugeborene weisen keine Menaquinone auf³⁷⁻³⁹. Noch mit einem Jahr liegen die Konzentrationen der Menaquinone in der Leber unter der des Erwachsenen^{37,39}.

Während der Schwangerschaft besteht ein hoher transplazentarer Vitamin-K-Gradient zwischen mütterlicher und fetaler Zirkulation¹⁸. Diese Plazentabarriere verursacht sehr niedrige Vitamin-K-Konzentrationen im Feten und in der Folge eine eingeschränkte Syntheseleistung von Vitamin-K-abhängigen Gerinnungsfaktoren durch die Leber bis zum Ende der Schwangerschaft. Zum Zeitpunkt der Geburt ist das plasmatische Hämostasepotential erniedrigt. So lassen sich bei 10-50% der gesunden Neu- und Frühgeborenen erhöhte PIVKA-II Spiegel (>10 ng/ml) im Nabelschnurblut nachweisen^{40,41} Durch Vitamin- K₁-Gabe an die Mutter lassen sich die fetalen Vitamin- K₁-Spiegel zumindest vorübergehend gering anheben, allerdings ohne Effekt auf die Vitamin-K-abhängigen Gerinnungsfaktoren. Eventuell liegt hier eine reduzierte mRNA-Transkription oder Translation vor¹⁸. Die pränatale Gabe von Vitamin K₁ an die Mutter eignet sich damit nicht zur Prävention von VKMB.

5. Einteilung der VKMB bei Neugeborenen und Säuglingen

Bei VKMB werden entsprechend dem Zeitpunkt der klinischen Symptomatik 3 Formen unterschieden 18,42, die 1999 vom Paediatric and Perinatal Subcommittee der International Society on Thrombosis and Haemostasis so übernommen wurden 43. Es gibt keine Arbeiten, die Angaben machen zur relativen Häufigkeiten früher, klassischer und später VKMB ohne Vitamin K Prophylaxe. Eine regionale Kohortenstudie der 90er Jahre aus Malaysia beschrieb 42 Kinder, die in einem 2-Jahres-Zeitraum in die einzige vorhandene Universitätskinderklinik eingeliefert wurden und so eine untere Abschätzung der Häufigkeiten zuließ 44. Bei gestillten Kindern ohne Vitamin-K-Prophylaxe betrug die Inzidenz von frühen, klassischen und späten VKMB mindestens 1/7000, 1/4000 und 1/8000, so dass sich die relativen Häufigkeiten 8:14:7 verteilen.

Klassifikation der VKMB bei Säuglingen⁴⁵

Form	Zeitpunkt des Auftretens	Lokalisation der Blu- tungen ^{31,42,46}	Ursachen
Frühe VKMB	0-24 Stunden	Schädelknochen sub- periostal (Kephalhäma- tom), Hirnhäute, Ge- hirn, intrathorakal, int- raabdominell	Im Wesentlichen mütterl. Medikamente (z.B. en- zyminduzierende Anti- epileptika, Cumarine, Tu- berkulostatika) ^{27,31,47-49}
Klassische VKMB	27. Lebenstag ²	Gastrointestinaltrakt, Haut, Nebennieren, Nase, Wunde nach Zirkumzision, intrakra- nial	Überwiegend idiopa- thisch, mütterliche Medi- kamente ^{17,46,50,51}
Späte VKMB	212. Lebenswo- che ^{23,52-55}	Intrakranial, gastroin- testinal	Idiopathisch, Erkrankungen, die mit einer Cholestase einhergehen können (α-1-Antitrypsin Mangel, Mukoviszidose, Gallengangsatresie)

6. Vitamin-K-Konzentrationen beim Neugeborenen

Während die Vitamin- K_1 -Serumkonzentration bei Geburt noch sehr gering ist, liegt sie schon ab dem 3.-4. Lebenstag im Bereich des Erwachsenen 56,57 . Im Unterschied zu gestillten Kindern weisen mit Säuglingsnahrung ernährte Kinder mit 3-4 Tagen signifikant höhere Vitamin- K_1 -Spiegel auf. Die Vitamin- K_1 -Konzentration in Frauenmilch ist im Mittel mit 2.5 μ g/l (0,85-9,2) deutlich geringer als in Säuglingsnahrungen 58,59 . Im Durchschnitt liegt die Zufuhr von Vitamin- K_1 bei gestillten Kindern innerhalb der ersten 6 Monate unter 1μ g pro Tag. Sie war damit etwa 100-fach geringer als bei mit Säuglingsnahrung ernährten Kindern 60 . Die deutlich unterschiedlichen Vitamin- K_1 -Spiegel zwischen gestillten und nicht gestillten Kindern machen sich nicht bei der Untersuchung globaler Gerinnungsparameter bemerkbar 56,60 . Gestillte Kinder wiesen aber signifikant häufiger PIVKA auf 57,61 . Säuglingsnahrungen enthalten durch Supplementierung mehr Vitamin K als Frauenmilch, so dass die angestrebte Zufuhr (RDI) von 1 μ g/kg/Tag 34 erreicht bzw. deutlich überschritten wird. Durch Stillen kann diese Zufuhr nicht generell sichergestellt werden.

Frühe VKMB treten, wie oben beschrieben, im Wesentlichen bei mütterlicher vorgeburtlicher Therapie mit den Vitamin-K₁-Metabolismus beeinträchtigender Medikation wie z.B. mit enzyminduzierenden Antiepileptika auf. Der wesentliche Risikofaktor für die klassische VKMB ist eine niedrige Vitamin-K-Konzentration im Blut. Ursächlich dafür ist meist eine inadäquat niedrige Aufnahme von Vitamin K bei ausschließlicher Ernährung mit Frauenmilch. Wie bereits ausgeführt, ist zum Zeitpunkt der Geburt das plasmatische Hämostasepotential erniedrigt. Im Nabelschnurblut lassen sich bei 10 bis 50% der gesunden Neu- und Frühgeborenen erhöhte PIVKA II Spiegel (>10 ng/ml) nachweisen^{40,41} Mit 4-5 Tagen weisen dann bis zu 70% der gestillten Kinder PIVKA auf⁶². Kinder, die darüber hinaus auch noch eine geringe Faktor II- und VII-Aktivität aufwiesen, hatten bis zum 3.-4. Lebenstag noch keine Stillmenge von 100

ml/kg/Tag erreicht⁶². Nach oraler oder intramuskulärer Gabe von 1 mg Vitamin K direkt postnatal kommt es zu einem raschen Abfall der PIVKA-Spiegel in den ersten Lebenstagen⁶³⁻⁶⁵.

Wesentlicher Risikofaktor für die späte VKMB ist wiederum eine inadäquat niedrige Aufnahme von Vitamin K₁ bei ausschließlicher Ernährung mit Frauenmilch gemeinsam mit einer zumindest transienten cholestatischen Lebererkrankung^{66,67}. Die Cholestase kann dabei gering, subklinisch und selbst limitierend verlaufen⁶⁷. Eine regionale Fall-Kontroll-Studie aus Ägypten suchte nach weiteren Risikofaktoren, um die trotz i.m. Prophylaxe lokal sehr hohe Inzidenz an späten intrazerebralen VKMB von 13,24/100.000 erklären zu können. Die Kinder waren beim Auftreten der Blutung im Durchschnitt 42 Tage alt. Späte intrazerebrale VKMB nach i.m. Vitamin-K-Prophylaxe waren mit Gastroenteritiden, die über 1 Woche dauerten, oder antibiotischer Behandlung assoziiert⁶⁸. Es ist unklar, welche Schlussfolgerungen aus diesen Daten für Mitteleuropa gezogen werden müssen. Weiter ist unklar, ob ein orales Prophylaxe-Regime diese Blutungen verhindern hätte können.

7. Toxizität von Vitamin K₁

In-vitro-Untersuchungen im Tiermodell ergaben Hinweise, dass hohe fetale Vitamin-K₁-Konzentrationen beim Feten mit einer erhöhten Rate von DNA-Veränderungen und chromosomalen Schäden einhergehen können. Somit wird dem relativen Vitamin-K-Mangel des sich entwickelnden Feten eine natürliche, protektive Bedeutung zugesprochen. Golding und Mitarbeitern publizierten 1992 Hinweise für eine Assoziation zwischen intramuskulärer Vitamin-K₁-Gabe und der Entwicklung von Leukämien bzw. soliden Tumoren im Kindesalter⁶⁹. Sie haben dadurch die Entwicklung oraler Alternativkonzepte nachhaltig angeregt. Später konnte diese Assoziation in großen epidemiologischen Studien und in einer Metaanalyse weder bestätigt noch eindeutig widerlegt werden^{70,71}.

8. Diagnostik und Therapie einer VKMB

Die Diagnostik der VKMB erfolgt in der Regel im Rahmen eines typischen Blutungsereignisses (s. o.). Niedriger Quick-Wert, normale Thrombozytenzahl, normales Fibrinogen, Nachweis von PIVKA und Anstieg des Quickwertes innerhalb von 30 Minuten bis zwei Stunden nach intravenöser (i.v.) Injektion von Vitamin K₁^{72,73}, sind diagnostisch wegweisend, so dass auf die Gabe von Frischplasma im Allgemeinen verzichtet werden kann⁴⁵. Bei bedrohlichen Blutungen bei Neugeborenen oder Säuglingen mit schwerem Vitamin-K-Mangel ist die sofortige Gabe von Prothrombinkomplexkonzentrat PPSB angezeigt⁷⁴.

9. Prophylaxe von VKMB, Übersicht über die einschlägige Literatur

9.1. Parenterale Gabe Vitamin K₁ (i.m. oder i.v.)

Seit 1961 wird von der American Academy of Pediatrics die frühe postnatale Vitamin-K-Prophylaxe empfohlen¹⁷. 2003 wurde in den USA die postnatale Gabe von 1 mg Vitamin K₁ i.m. als Standard definiert²¹. Die Ernährungskommission der DGKJ hat sie 2013 als wirksamste Form der Vitamin K Prophylaxe eingestuft⁷⁵. Epidemiologische

Studien zeigten, dass die unmittelbar postnatale Injektion von 1 mg Vitamin K₁ i.m. die klassische und auch die späte Form der VKMB des Neugeborenen fast vollkommen verhinderte (Risiko < 0.2/100.000)^{23,76-78}. In Einzelfällen treten unter diesem Regime dennoch VKMB auf^{45,79,80}. Eine Kohortenstudie aus Thailand zeigt anschaulich, wie unter zunehmend flächendeckender Vitamin-K₁-Prophylaxe die Inzidenz an VKMB abnimmt. Im weiteren Verlauf traten aber sowohl nach oraler als auch nach i.m. Injektion weiter VKMB in geringer Inzidenz (4,2-7,8 pro 1.000.000 Geburten) auf⁸¹. In einer großen Fallsammlung später VKMB (n=120, 1990-2006) wurde nicht beschrieben, wie geprüft wurde, wie und ob die Neugeborenen Vitamin K erhalten hatten⁸². Die Autoren gingen davon aus, dass alle 81 Kinder, die im Krankenhaus geborenen worden waren, Vitamin K i.m. erhalten hatten, wie es in der Türkei Praxis sei. Wegen dieses methodischen Mangels eignet sich diese Arbeit nicht als Beweis dafür, dass nach i.m. Applikation von Vitamin K viele späte Blutungen auftreten. Zudem ist nicht bekannt, auf welche Zahl von Neugeborenen die Fallzahl von 120 bezogen werden muss.

Bezüglich einer intravenösen Applikation verweisen wir auf die Kapitel 10.3. und 10.4..

9.2. Orale Gabe von Vitamin K₁

Die Entwicklung oraler Alternativkonzepte wurde nachhaltig durch die von Golding und Mitarbeitern 1992 publizierte Assoziation zwischen intramuskulärer Vitamin-K₁-Gabe und der Entwicklung von Leukämien bzw. soliden Tumoren im Kindesalter⁶⁹ angeregt. Später konnte diese Assoziation nicht bestätigt werden^{70,71}.

Orale Vitamin- K_1 -Applikationsschemata wie 1-2 x 1-2 mg oder 3x1 mg können die klassische VKMB erfolgreich verhindern. Im Vergleich zur einmaligen 1 mg i.m. Injektion scheinen sie späte VKMB nicht so zuverlässig zu verhindern^{23,77,83,84}.

In Europa haben sich drei Formen der Vitamin-K-Prophylaxe etabliert. Keine wurde in randomisierten Studien untersucht, so dass bezüglich der Effektivität auf Surveillanceuntersuchungen zurückgegriffen werden muss. Die folgende Tabelle beschreibt die Inzidenz von VKMB bei Kindern, die die jeweilige Prophylaxe tatsächlich und vollständig erhalten haben (Therapieversager). Das entspricht einer Auswertung According to Protocol (ATP). Kinder mit VKMB ohne Vitamin-K-Prophylaxe wurden nicht erfasst.

Effektivität aktueller Schemata zur VKMB-Prophylaxe (Therapieversager, entspricht einer ATP Auswertung)

Schema	Praktiziert in	N	Risiko für klassische und
			späte VKMB (pro 100.000)
3 x 2mg oral	Deutschland	1.817.769	0,44 (95% CI 0,19-0,87) ⁸⁵ ;
(postnatal, am 310.			berücksichtigt man die mittle-
Lebenstag und mit 4-6			re ESPED Erfassungsquote
Wochen)			von 57% (38%-76%) ⁸⁶ liegt
			das Risiko bei etwa 0,77
			(95%CI 0,37-1,17)
	Schweiz	458.184	0,0 (95% CI 0,00-0,81) ⁸⁷
Metaanalyse für		2.275.953	0,35 (95% CI 0,16-0,69) ^{85,87}

3 x 2 mg oral			
			70
1 mg i.m. postnatal	Neuseeland	ca. 654.000	0,16 (95% CI 0-0,46) ⁷⁸
Kein einheitliches Schema, Überwiegend 1 mg i.m. ^{79,88-91}	Großbritannien	1.700.000	0,24 (95% CI 0-0,35) ⁷⁹
Metaanalyse für		2.354.000	0,21 (95% CI 0,06-0,5) ^{78,79}
1 mg i.m.			
Nicht mehr verwende-			
te Schemata			
1 mg oral postnatal; 25	Niederlande	187.910	3,2 (95% CI 1,2-6,9) ⁹³
μg/d oral Woche 2-13	(bis 2011) ⁹²		
2 mg oral postnatal; 1	Dänemark	400.000	0 (95% CI 0-0,9) ⁹⁶
mg/Wo oral für 3 Mo	(bis 2000) ^{94,95}		

In Deutschland wurde unter der oralen Gabe von 3 x 2 mg Vitamin K₁ in der ESPED Erhebung der Jahre 1997-2002 eine Inzidenz später VKMB von 0,44/100.000 (95% CI 0,19-0,87/100.000) beschrieben⁸⁵. Berücksichtigt man allerdings eine mittlere ESPED Erfassungsquote von 57% (38%-76%)⁸⁶, errechnet sich ein Risiko von etwa 0,77/100.000 (95% CI 0,37-1,17). In der Schweiz wurden bei 458.184 Neugeborenen in den Jahren 2005-11 eine frühe (Alter 18 Stunden) und 4 späte VKMB beobachtet⁸⁷. Alle Kinder wurden gestillt. Die Vitamin-K-Prophylaxe war in allen Fällen verweigert worden, oder, bei einem Kind mit später VKMB unvollständig (nur erste beiden Dosen gegeben). Alle Kinder mit später VKMB wiesen eine Cholestase auf. Auf Grundlage von 458.184 Neugeborenen in diesem Zeitraum errechnet sich bei vollständig applizierter oraler Vitamin-K-Prophylaxe ein Risiko für klassische und späte VKMB von 0/100.000 (95% CI 0-0,81/100.000)⁸⁷. Die mittlere Erfassungsquote ist nicht bekannt. Bei einem weiteren voll gestillten Kind trat im Alter von 24 Wochen eine sehr späte intestinale VKMB auf, ohne dass eine Cholestase vorlag. In der Summe haben 8 von 2.275.953 Kindern unter oraler Prophylaxe mit 3x2 mg Vitamin K eine VKMB entwickelt. Bei allen Fällen, die unter diesem oralen Regime eine späte Blutung erlitten hatten, bestand die Kombination von unentdeckter Cholestase und Frauenmilchernährung. Bei Kindern mit Cholestase (konjugierter Hyperbilirubinämie) kann die Resorption von Vitamin K₁ ungenügend sein⁹⁷.

Das Vorgehen in den Niederlanden bis 2011 (1 mg postnatal; 25 μ g/d für 3 Mo) scheint entgegen früherer Annahmen^{77,98} im Vergleich zum Vorgehen in Deutschland oder dem früheren Vorgehen in Dänemark mit einer höheren Inzidenz von VKMB assoziiert zu sein.⁹³ Vier der sechs in dieser Erhebung betroffenen Kinder wiesen eine Gallengangsatresie auf, alle waren gestillt, eines hatte einen Frauenmilchikterus. Dieses Schema sah vor, etwa die Hälfte der Dosis, die mit Säuglingsnahrung ernährte Kinder über die Milch täglich erhalten, gestillten Kindern in einer Dosis täglich zu geben und hohe Spitzenspiegel, wie sie nach i.m. Injektion regelmäßig auftreten, zu vermeiden. Nachdem in den weiteren Jahren etwa 5 gestillte Kinder pro Jahr mit cholestatischen Erkrankungen in den Niederlanden schwerwiegende Blutungen entwickelten, wurde die täglich empfohlen Zufuhr von 25 μ g auf 150 μ g von Woche 2 bis 13 angehoben⁹². Dieses Vorgehen wurde aber noch nicht systematisch evaluiert.

Unter einer wöchentlichen oralen Prophylaxe mit 2 mg bei Geburt und dann 1 mg/Woche wurde in Dänemark⁹⁹ bei insgesamt 400.000 Neugeborenen im Zeitraum von 9 Jahren keine späte VKMB beobachtet (Inzidenz 0/100.000)96. Auch bei Kindern mit unerkannter Gallengangsatresie scheint dieses Vorgehen ähnlich effektiv wie die unmittelbar postnatale i.m. Gabe von 1 mg Vitamin K₁ zu sein¹⁰⁰. Allerdings war die Fallzahl dieser Erhebung mit 400.000 deutlich geringer als die der Deutschen ESPED Erhebung mit 1.8 Millionen, so dass nicht gefolgert werden kann, dass dieses Vorgehen effektiver ist als die orale Prophylaxe mit 3 x 2 mg Vitamin K₁. Die wöchentlichen Gaben über 3 Monate erfordern eine höhere Compliance der Eltern als das gegenwärtige Vorgehen in Deutschland (U1, U2, U3). Am 23. Mai 2000 empfahl das Dänische Gesundheitsministerium nach Evaluation der Literatur, zur alten Empfehlung, postnatal 1 mg Vitamin K₁ i.m. zu geben, zurückzukehren⁹⁴. Wesentliche Argumente waren, dass die i.m. Injektion sicherer vor Spätblutungen schützt und dass sich die vermutete Assoziation der i.m. Gabe mit kindlichen Tumoren nicht belegen ließ. Weiter scheint eine mangelnde Verfügbarkeit eines geeigneten Präparates eine Rolle gespielt zu haben⁷⁹. Im Jahr 2011 wurde diese Empfehlung noch einmal bestätigt⁹⁵.

In Großbritannien wurde 2006 für gesunde reife Neugeborene die unmittelbare postnatale Gabe von 1 mg Vitamin K₁ i.m. zur Prophylaxe der VKMB als effektiver und kostengünstiger im Vergleich mit oralen Applikationsschemata bewertet⁹¹. Alternativ wird eine orale Prophylaxe entweder durch 2 Gaben von Vitamin K₁ (je 2mg Konakion® MM) in der ersten Lebenswoche (Geburt, Tag 4-7) und eine 3. Gabe (2mg Konakion® MM) bei mit Frauenmilch ernährten Kindern am Ende des ersten Lebensmonats oder entsprechend dem in Dänemark untersuchten Schema (1mg Vitamin K₁ oral nach Geburt und wöchentliche Wiederholung bis zur 12. Woche) empfohlen ^{101,102}. Der überwiegende Teil der Kliniken in Großbritannien empfiehlt die i.m. Prophylaxe (ca. 72%) oder stellt sie zur Wahl (ca. 20%).⁷⁹ Da nur 2 der 4 in die oben genannte Berechnung (siehe Tabelle) eingegangenen Kinder mit VKMB eine i.m. Prophylaxe erhalten haben, wird ihre Versagerquote somit überschätzt⁷⁹. In Neuseeland lag die Inzidenz von VKMB unter i.m. Prophylaxe bei 0,16 pro 100.000. Zusammen haben 5 von 2.354.000 Neugeborene in diesen Ländern mit i.m. Prophylaxe eine VKMB entwickelt.

Aktuelle Empfehlungen in Deutschland, Österreich und der Schweiz

- In der Schweiz wurde 2002 die VKMB Prophylaxe mit 3 x 2 mg Vitamin K oral empfohlen¹⁰³. Andererseits urteilten die Autoren, dass die i.m. Prophylaxe praktisch zu 100% schützt und dass dagegen das in Deutschland übliche Vorgehen (3 x 2 mg oral) die Inzidenz von Spätblutungen nicht völlig eliminieren kann.⁸⁵ Sie beriefen sich auf die Druckfahne der 2003 publizierten deutschen ESPED Erhebung.
- Die Ernährungskommission der Deutschen Gesellschaft für Kinder- und Jugendmedizin kam zu dem eindeutigen Urteil, dass die wirksamste Form der Vitamin K-Prophylaxe die einmalige i.m. Gabe von 1 mg Vitamin K rasch nach der Geburt ist⁷⁵. Sie empfahl dennoch die orale Prophylaxe mit 3 x 2 mg, da sie effektiv sei, ohne diese Entscheidung näher zu begründen.

• Die Ernährungskommission der Österreichischen Gesellschaft für Kinder- und Jugendmedizin empfahl zuletzt 2014 die orale Prophylaxe mit 3 x 2 mg Vitamin K und bewertete die Evidenz folgendermaßen: "Nach wie vor gilt die i.m. Vitamin-K- Prophylaxe mit 1 mg Vitamin K nach der Geburt als Goldstandard, da sie praktisch alle Fälle einer späten Vitamin-K-Mangel-Blutung verhindern dürfte. Dies ist aus epidemiologischen Studien gut belegt^{76,77}, wurde aber nie in einer kontrollierten, randomisierten Studie untersucht."¹⁰⁴ Als gravierende Nachteile der i.m. Prophylaxe werden die geringere Akzeptanz bei den Eltern, die Gefahr eines lokalen Traumas und einer Infektion und die hohen Vitamin-K-Plasmaspiegel mit potentiell toxischen Effekten angeführt, ohne dass diese Argumente anhand epidemiologischer Studien belegt werden¹⁰⁴.

Alle 3 Gesellschaften empfehlen die orale Prophylaxe, obwohl sie die i.m. Prophylaxe übereinstimmend als wirksamer einstufen, ohne dass dazu evidenzbasierte Daten vorliegen.

Nur 2 der in obiger Tabelle zitierten Schemata werden für die Prophylaxe von VKMB in Europa derzeit noch empfohlen: 1 x 1 mg i.m. und 3 x 2 mg oral. VKMB traten bei 8 von 2.275 Mio. Kindern unter Prophylaxe mit 3 x 2 mg oral und bei 5 von 2,354 Mio. Kindern unter Prophylaxe mit 1 i.m. auf. Dieser nicht signifikante epidemiologische Trend zugunsten der i.m. Prophylaxe wurde auch von anderen Autoren beschrieben 10 und fiel auch in großen britischen Erhebungen auf 10 Bisher wurde nicht in randomisierten kontrollierten Studien geprüft, welches der verschiedenen Prophylaxeregime in Bezug auf die Häufigkeit der späten Form der VKMB am wirksamsten ist. Aufgrund der geringen Inzidenz der VKMB unter den aktuellen Regimen wird es diese Studien wahrscheinlich auch in Zukunft nicht geben. Zusammenfassend lassen die verfügbaren Daten keine valide Aussage zu, welcher Form der Vitamin-K-Prophylaxe der Vorzug gegeben werden soll. Sowohl 3 x 2 mg oral als auch 1 mg i.m. sind nach derzeitigem Kenntnisstand gleichwertige, gangbare Alternativen für gesunde Neugeborene.

10. Empfehlungen für die Prophylaxe von VKMB bei Neugeborenen und Säuglingen

10.1. Medizinischer Standard – Grundsatz

Zur Vermeidung von lebensbedrohlichen Blutungen durch Vitamin-K-Mangel ist es im Sinne der vorbeugenden Gesundheitsfürsorge unabdingbar, dass alle Neugeborenen so bald wie möglich nach der Geburt, also noch im Kreißsaal, Vitamin K_1 erhalten.

Die Einzelheiten der Prophylaxe sind in der Klinik von der/dem verantwortlichen Ärztin/Arzt in einer Dienstanweisung zu bestimmen. Freiberuflichen Ärztinnen, Ärzten und Hebammen wird empfohlen, für sich einen Standard oder eine Selbstverpflichtung zu formulieren. Folgende Punkte sollten geregelt werden: Individuelles Vorgehen, Aufklärung, Einverständniserklärung der Eltern und Dokumentation. Die Dokumentation der Vitamin-K-Prophylaxe und deren Applikation (oral oder parenteral) im gelben Kinder-Untersuchungsheft ist erforderlich. Eine umfassende, dokumentierte

Aufklärung der Eltern ist bei nicht erteilter Einwilligung zweckmäßig, da immer wieder Spätblutungen beschrieben werden 105.

In Deutschland stehen für die Prophylaxe gegenwärtig 2 Präparate zur Verfügung. Konakion® MM (Roche Pharma AG, 79639 Grenzach-Wyhlen), ein mischmizelläres Präparat, kann oral, i.m. oder i.v. gegeben werden. Ka-Vit® Tropfen (Infectopharm. 64646 Heppenheim) sind für die orale Gabe zugelassen. Der theoretische Vorteil einer Mischmizellenpräparation von Vitamin K₁ (Konakion® MM, Roche) in der enteralen Resorption gegenüber herkömmlichen Tropfenzubereitung (Ka-Vit®) konnte bisher nicht in Studien bewiesen werden⁸³. Pharmakokinetische Daten sprechen für eine bessere orale Bioverfügbarkeit, es wurden aber nur 3 Kinder mit Cholestase untersucht¹⁰⁶. In einer randomisierten Studie an156 Neugeboren war die orale Gabe von 3 x 2mg Konakion MM^R der einmaligen i.m. Applikation eines herkömmlichen Vitamin K₁ Präparates bezüglich Plasmaspiegel, Quick-Wert und PIVKA II nicht unterlegen⁴¹. In den ESPED-Erhebungen zum Auftreten von späten VKMB der Jahre 1997-2000 zeigte sich ein Trend zugunsten des mischmizellären Präparates (RR 0,58; 95% CI 0,23-1,47)⁸⁵. Aufgrund der Seltenheit von späten VKMB (18 Fälle) reichte selbst die Fallzahl von knapp 3.2 Millionen Kindern nicht aus, um einen signifikanten Unterschied zu finden⁸⁵.

Bei der Wahl der Applikation (i.m. oder oral oder i.v.) ist neben der Wirksamkeit auch zu berücksichtigen, dass die i.m. Injektion von Vitamin K₁ schmerzhaft ist und keine systematisch erhobenen Daten zu möglichen Nebenwirkungen vorliegen. Im Gegensatz zur i.m. Applikation ist die Akzeptanz der oralen Gabe bei Eltern und Ärzten vermutlich höher, weil sie nicht invasiv ist. Risiken der oralen Prophylaxe sind:

- mögliche Resorptionsstörung bei gastrointestinalen Fehlbildungen,
- cholestatische Erkrankung oder andere Gründe für eine unzureichende enterale Resorption fettlöslicher Vitamine,
- eine unklare Compliance (repetitive Gaben erforderlich),
- eventuell unvollständige Gaben (Spucken der Kinder erfordert eine Wiederholung der Gabe),
- ein nicht sicherer Zugang zum Gesundheitssystem (z.B.: ist bei Kindern von Asyl suchenden oder sozial benachteiligten Eltern und Flüchtlingen unklar, ob 3 zeitgerechte orale Gaben sichergestellt werden können).
- eine mütterliche pränatale Therapie mit Medikamenten, die den Vitamin K Metabolismus beeinträchtigen (da hier nur Daten zur i.m. Prophylaxe vorliegen).

In Bezug auf die Effizienz (Kosten und Aufwand) ist die i.m. Prophylaxe (1 x 1 mg) der oralen (3 x 2 mg) überlegen⁹¹.

10.2. Empfehlungen für gesunde Neugeborene

Aufgrund der Datenlage und der oben diskutierten Argumente ergeben sich für das lokal festzulegende Vorgehen bei gesunden Neugeborenen (Leitlinie, Dienstanweisung, Standard oder Selbstverpflichtung) unter Berücksichtigung medizinischer und sozialer Faktoren, sowie der Akzeptanz seitens der Sorgeberechtigten folgende gleichwertige Alternativen:

- a) Verabreichung von Vitamin K p.o. jeweils 2 mg unmittelbar postnatal sowie bei U2 und U3 und parallel Definition von Ausnahmen, die von einer i.m. Applikation profitieren könnten.
- b) Verabreichung von 1 mg Vitamin K i.m. unmittelbar postnatal.
- Individuelle Aufklärung der Eltern über beide Möglichkeiten und Entscheidung über die Form der Prophylaxe (p.o. oder i.m.) durch die Eltern (vermutlich die zeitaufwändigste Lösung).

10.3. Empfehlung für kranke Neugeborene und Neugeborene in schlechtem Allgemeinzustand

- Mangels epidemiologischer oder randomisierter kontrollierter Studien zur Prophylaxe von VKMB bei kranken Neugeborenen können für diese Kinder keine evidenzbasierten Empfehlungen gegeben werden.
- Bei Kindern ohne venösen Zugang scheint die einmalige i.m. Injektion von 1 mg Vitamin K₁ unmittelbar postnatal die Methode der Wahl zu sein.

Möglich ist auch die intravenöse oder intramuskuläre Injektion von 0,1-0,2 mg/kg Vitamin K_1 (maximal 1 mg) unmittelbar postnatal, gefolgt von einer ausreichenden täglichen Vitamin K_1 Zufuhr (enteral/parenteral ca. 0,008-0,01 mg/kg/d) bis zur Gesundung. Die vom Hersteller empfohlene Initialdosis von 0,4 mg/kg i.v. erscheint, gemessen am Plasmaspiegel, den Bedarf zu übersteigen 107 . Die orale Folgegabe von 2 mg Vitamin K zur U2 kann bei obigem Vorgehen entfallen. Sofern die Initialdosis nicht 1 mg i.m. war, hat zum Zeitpunkt der U3, eine weitere Gabe von Vitamin K (z.B. 2 mg oral) zu erfolgen. Anzumerken ist, dass Konakion MM gemäß Herstellerangabe nicht verdünnt werden sollte/darf (siehe Fachinformation).

10.4. Empfehlungen für Frühgeborene

- Für Frühgeborene gibt es ebenfalls keine kontrollierten randomisierten Studien zur VKMB Prophylaxe.
- Bei vollständig enteral ernährten Frühgeborenen wird ein Vorgehen wie bei reifen Neugeborenen empfohlen.
- Bei kranken Frühgeborenen, Frühgeborenen mit Blutungsrisiko und Kindern mit einem Geburtsgewicht unter 1500g reicht postnatal eine Dosis von 200 μg/kg^{108,109} Vitamin K₁ i.m. oder i.v. aus, gefolgt von ausreichender weiterer Zufuhr (enteral 1 mg/Woche oder parenteral ca. 0,008-0,01 mg/kg/d)¹¹⁰. Mindestens aber ist im Alter von 1 Monat (U3) eine Ergänzung durch eine orale Vitamin-K-Gabe erforderlich¹⁰⁹. Anzumerken ist, dass Konakion^R MM gemäß Herstellerangabe nicht verdünnt werden sollte/darf (siehe Fachinformation).

10.5. Empfehlung bei pränataler mütterlicher Medikation, die mit dem Vitamin-K-Stoffwechsel interferiert

Betroffen sind im Wesentlichen enzyminduzierende Antikonvulsiva, orale Antikoagulantien (Warfarin oder Phenprocoumon – sie werden in den letzten Schwangerschaftsmonaten im Allgemeinen nicht mehr gegeben) und einzelne Tuberkulostatika

(Rifampicin, Isoniazid). Bezüglich der einzelnen Präparate muss auf die einschlägige Literatur verwiesen werden. Zu den betroffenen enzyminduzierenden Antikonvulsiva gehören u.a. Phenytoin, Carbamazepin, Ethosuximid, Oxcarbazepin, Phenobarbital, Primidon, Topiramat, Vigabatrin und Zonisamid (Rückfrage Embryotox.org Stand 5/2015); nicht aber z.B. Lamotrigin.

 Bei gesunden Neugeborenen einmalige i.m. Injektion von 1 mg Vitamin K₁ unmittelbar postnatal. Im weiteren Verlauf ist die orale Gabe von jeweils 2 mg Vitamin K₁ zwischen dem 3.-10. Lebenstag und mit 4-6 Wochen zu empfehlen.

11. Literaturverzeichnis

- 1. McNinch A. Vitamin K deficiency bleeding: early history and recent trends in the United Kingdom. Early Hum Dev 2010;86 Suppl 1:63-5.
- 2. Townsend CW. The haemorrhagic disease of the newborn. Arch Paediatr 1894;11:652-3.
- 3. Smith CH. Blood Diseases of Infancy and Childhood. St. Louis: Mosby; 1960.
- 4. Aballi AJ, Lopez Banus V, De Lamerens S, Rozengvaig S. Coagulation studies in the newborn period; alterations of thromboplastin generation and effects of vitamin K in full-term and premature infants. AMA J Dis Child 1957;94:589-600.
- 5. Vietti TJ, Murphy TP, James JA, Pritchard JA. Observations on the prophylactic use of vitamin K in the newborn infant. J Pediatr 1960;56:343-6.
- 6. Dam H, Schönheyder F, Tage-Hansen H. Cholesterolstoffwechsel in Hühnereiern und Hühnchen. Biochem Z 1929;215:475-92.
- 7. Brinkhous KM, Smith BK, Warner BW. Plasmaprotein level in normal infancy and hemorrhagic disease of the newborn. Am J Med Sci 1937;193:475-80.
- 8. Dam H, Schonheyder F, Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J 1936;30:1075-9.
- 9. Dam H, Dyggve H, Larsen H, Plum P. The relation of vitamin K deficiency to hemorrhagic disease of the newborn. Adv Pediatr 1952;5:129-53.
- 10. Dam H, Tage-Hansen E. Vitamin-K lack in normal and sick infants. Lancet 1939;2:1157-62.
- 11. Hellmann LM, Shettles LB. Factors influencing plasma prothrombon in the newborn infant I. Prematurity and Vitamin K. Bull Hopkins Hosp 1939;65:138-41.
- 12. Owen A. Blood coagulation during infancy. Proc Soc Exp Biol Med 1939;41:181-8.
- 13. Shettles LB, Delfs E, Hellmann LM. Facrors influencing plasma prothrombin in newborn infants. II. Antepartum and neonatal ingestion of Vitamin K concentrate. Bull Hopkins Hosp 1939;65:419-26.
- 14. Quick AJ, Grossmann AM. The nature of the hemorrhagic disease of the newborn: Delayed restoration of the prothormbin level. Am J Med Sci 1940;199:1-9.
- 15. Waddell WW, Guerry D, Bray WE, LKelley OR. Possible effectis of Vitamin K on prothrombin and clotting time in newly-born infants. J Path and Bact 1937;44.
- 16. Almquist HJ, Close AA. Synthetic and natural antihemorrhagic compounds. Am J Chem Soc 1939;61.
- 17. American Academy of Pediatrics. Report of the comittee on nutrition: Vitamin K compounds and the water-soluble analogues. Pediatrics 1961;28:501-6.
- 18. Shearer MJ. Vitamin K metabolism and nutriture. Blood Rev 1992;6:92-104.
- 19. McNinch AW, Orme RL, Tripp JH. Haemorrhagic disease of the newborn returns. Lancet 1983;1:1089-90.