Esercizio settimanale n. 7

Guglielmo Bordin 21 aprile 2023

La resistività dell'acqua di mare è di circa $0.25\,\Omega\mathrm{m}$. I portatori di carica sono principalmente ioni $\mathrm{Na^{+}}$ e $\mathrm{Cl^{-}}$, e di ciascuno di essi ce ne sono circa 3×10^{26} per $\mathrm{m^{3}}$. Se riempiamo un tubo di plastica lungo $2\,\mathrm{m}$ con acqua di mare e colleghiamo una batteria da $12\,\mathrm{V}$ a degli elettrodi presenti sulle due estremità, quale sarà la velocità di deriva degli ioni risultante?

Soluzione. Sappiamo che la densità di corrente equivale a

$$j = nev_{\rm d},$$
 (1)

dove $v_{\rm d}$ è la velocità di deriva che cerchiamo e n è la densità (numerica) di portatori di carica. Nel nostro caso i portatori di carica sono due, gli ioni sodio e gli ioni cloruro, ciascuno con concentrazione $3\times 10^{26}\,{\rm m}^{-3}$: dunque $n=6\times 10^{26}\,{\rm m}^{-3}$.

Cerchiamo dunque di ottenere un'altra espressione per j in base ai dati forniti. Conosciamo la lunghezza del tubo e la differenza di potenziale tra le due estremità, e dunque anche il campo elettrico. Possiamo perciò usare la legge di Ohm in versione microscopica,

$$j = \sigma E = \frac{1}{\rho} \frac{V}{L},\tag{2}$$

dove $L=2\,\mathrm{m}$ è la lunghezza del tubo.

Alternativamente, possiamo vedere j come l'intensità di corrente divisa per l'area del tubo, usare la legge di Ohm macroscopica e l'espressione per la resistenza di un tubo:

$$j = \frac{i}{A} = \frac{V/R}{A} = \frac{V}{A} \frac{A}{\rho L} = \frac{V}{\rho L}.$$
 (3)

Inserendo il risultato nell'equazione (1) otteniamo

$$v_{\rm d} = \frac{j}{ne} = \frac{V}{ne\rho L}$$

$$= \frac{12\,\mathrm{V}}{(6 \times 10^{26}\,\mathrm{m}^{-3})(1.6 \times 10^{-19}\,\mathrm{C})(0.25\,\Omega\mathrm{m})(2\,\mathrm{m})} = 2.5 \times 10^{-7}\,\mathrm{m/s}.$$
(4)