Implicit Differentiation: tutorial, and application to BirdFlow

Jacob Epstein

Lasso Regression

$$w^* \in \operatorname{argmin}_w rac{1}{2n} \mid\mid X_{tr}w - y_{tr}\mid\mid_2^2 + lpha \mid\mid w\mid\mid_1$$

 $g(w^*) = rac{1}{2k} \mid\mid X_{val}w - y_{val}\mid\mid_2^2$

How do we pick α to minimize $g(w^*)$?

Methods of hyperparameter selection

- Manual
 - o By-Hand
 - o Grid Search
- Black-box
 - o Bayesian optimization
- Differentiable
 - Unrolling
 - Implicit differentiation

Solving, with implicit differentiation

$$w^* \in \operatorname{argmin}_w rac{1}{2n} \mid\mid X_{tr}w - y_{tr}\mid\mid_2^2 + lpha \mid\mid w\mid\mid_1$$

$$g(w^*) = rac{1}{2k} \mid\mid X_{val}w - y_{val}\mid\mid_2^2$$

- From implicit function theorem: $w^* = f(\alpha)$, for differentiable f
- Run gradient descent on the function $g(f(\alpha))$

Deriving Implicit Differentiation

$$w^* \in \operatorname{argmin}_w \mathcal{L}^{in}(w, heta)$$

$$\min_{ heta} \mathcal{L}^{out}(w^*, heta) = ?$$

 \mathcal{L}^{in} - inner loss, \mathcal{L}^{out} - outer loss, $w^* \in \mathbb{R}^n$ - optimal parameters, $heta \in \mathbb{R}^m$ - hyperparameters

$$\partial_w \mathcal{L}^{in}(w^*, heta) = 0$$

By the implicit function theorem, there exists a function f defined near θ that satisfies:

- $f(\theta) = w^*$
- $\partial_w \mathcal{L}^{in}(f(\alpha), \alpha) = 0$ for all α

 \mathcal{L}^{in} - inner loss, \mathcal{L}^{out} - outer loss, $w^* \in \mathbb{R}^n$ - optimal parameters, $\theta \in \mathbb{R}^m$ - hyperparameters

By the chain rule:

$$0 = rac{d}{d heta} \mathcal{L}^{in}(f(heta), heta) = \partial_w^2 \mathcal{L}^{in}(f(heta), heta) \cdot f'(heta) + \partial_{ heta w} \mathcal{L}^{in}(f(heta), heta)$$

$$A = \partial_w^2 \mathcal{L}^{in}(f(heta), heta) \in \mathbb{R}^{n imes n}, B = \partial_{ heta w} \mathcal{L}^{in}(f(heta), heta) \in \mathbb{R}^{n imes m}$$

$$\implies -Af'(heta) = B$$

In practice, this linear system is solved for $f'(\theta)$

 \mathcal{L}^{in} - inner loss, \mathcal{L}^{out} - outer loss, $w^* \in \mathbb{R}^n$ - optimal parameters, $\theta \in \mathbb{R}^m$ - hyperparameters

Finally, applying the chain rule again yields:

$$abla_{ heta} := rac{d}{d heta} \mathcal{L}^{out}(f(heta), heta) = \partial_w \mathcal{L}^{out}(f(heta), heta) f'(heta) + \partial_ heta \mathcal{L}^{out}(f(heta), heta)$$

ADAM can be used with ∇_{θ} to find $\min_{\theta} \mathcal{L}^{out}(f(\theta), \theta)$

Live Demo - Implicit differentiation toy example

Ebird weekly abundances for Barn Swallow

Can we learn a generative model for yearly flightpaths from weekly abundances?

BirdFlow

Model migration as a <u>markov</u> process, over a discrete sample space. Learn parameters θ , of a Markov chain.

From θ , we can compute weekly marginals μ_t (which should line up with the abundances), and pairwise marginals $\mu_{t,t+1}(i,j)$,

- $\mu_t(i)$ is the probability a bird is in grid cell i in week t
- $\mu_{t,t+1}(i,j)$ is the probability a bird is in grid cell i in week t, and in grid cell j in week t+1
- ullet Assuming a discrete sample space of n grid cells, we can consider $\mu_t \in \mathbb{R}^n$, and $\mu_{t,t+1} \in \mathbb{R}^{n imes n}$

How do we define a loss function of θ ?

Model loss is defined in terms of the marginals

The loss on the marginals of θ is a weighted sum of the **location loss**, plus a distance (depends on 2-way marginals) and entropy term

$$\mathcal{L}(\mu(heta)) = \mathcal{L}_{loc}(\mu) + \mathcal{L}_{dist}(\mu) + \mathcal{L}_{ent}(\mu)$$

where $\mu = (\mu_1, \dots, \mu_T, \mu_{1,2}, \dots, \mu_{T-1,T})$, the vector of all 1 and 2-way marginals concatenated together. I'll be focusing on the location loss.

Location Loss

Makes rigorous the idea that model marginals should align with abundance estimates.

$$\mathcal{L}_{loc}(\mu) = \sum_{t=1}^{T} \mid\mid \mu_t - \mu_t^{ST} \mid\mid_2^2$$

Use l^2 norm to compare model marginals μ_t with ebird status & trends marginals μ_t^{ST} .

Question - is it wise to use the I² norm for location loss comparison? We are comparing probability distributions. What if we used a transport-based metric instead?

I² norm is the same in both cases! Not so for W₂ ...

2-Wasserstein Location Loss

2-Wasserstein distance is at a high level, the cost of transporting one probability distribution to another.

Rigorously, define a coupling of two distributions $\mu, \nu \in \mathbb{R}^n$ over n grid cells to be a matrix $\gamma \in \mathbb{R}^{n \times n}$ which satisfies:

- Elements of γ are positive, and sum to one
- $ullet \sum_{j=1}^n \gamma_{ij} = \mu_i$
- $\sum_{i=1}^n \gamma_{ij} = \nu_j$

Let $\Gamma(\mu,\nu)$ be the set of all couplings between μ,ν . Then,

$$W_2^2(\mu,
u) = \inf_{\gamma \in \Gamma(\mu,
u)} \sum_{i=1}^n \sum_{j=1}^n ||\ i-j\ ||_2^2 \ \gamma_{ij} |$$

 $W_2(\mu,\nu)$ is the minimum expected "transport distance" of any coupling of μ,ν .

Idea: modify \mathcal{L}^{loc} to use W_2^2 instead of $||\cdot||_2^2$

$$\mathcal{L}^{loc}(\mu) = \sum_{t=1}^T W_2^2(\mu_t, \mu_t^{ST})$$

Note that computing $L^{loc}(\mu)$ now requires an inner (constrained) optimization process. We can do this efficiently with implicit differentiation...

Planned work for Spring '25

- Investigate to what extent a 2-Wasserstein location loss is helpful for birdflow
 - Train markov chains with original and 2-Wasserstein losses, evaluate validation metrics on each

- Interesting tidbits
 - Implicit differentiation and W₂ distance in a 'learn from marginals' setup
 - Applying implicit differentiation at scale, on a real-world problem

Questions?

asked ChatGPT to generate image of "implicit differentiation and bird migration" —---->

Outline

- Part 1 motivation
 - Automatic hyperparameter tuning
 - Suppose you are doing LASSO regression on some dataset, and wish to tune the regularization parameter, lambda
 - o Options: tune by hand, grid search, bayesian optimization, unrolling, implicit differentiation
 - implicit differentiation exploits the fact that the computation of validation score from hyperparameters is end-to-end differentiable (assuming that the validation metric is suff. nice), allows gradient descent solvers to be leveraged to use gradient descent to find optimal hyperparameters.
- Part 2 overview of implicit differentiation
 - Derivation
 - Live demo on toy example
- Part 3 proposed application to BirdFlow
 - o Background / motivation: replace euclidean-distance based distance loss with the W2 distance loss
 - W2 distance loss: requires an optimization problem to be solved as a step in computation. Now, we use implicit differentiation to get gradients with respect to parameters of birdflow
 - Plan for experiments: compare original and W2 models