Introduction to Tensors

Transformation laws of tensors

- Through a tensor is invarient with respect to coordinate system, its components change if the coordinate system changes.
- Consider two coordinate system denoted by x_i and \bar{x}_i with base vectors e_i and \bar{e}_i , respectively.
- As shown in the figure the components of a vector \mathbf{v} are $v_i = \mathbf{e}_i \cdot \mathbf{v}$ in the first system, and $\bar{v}_i = \bar{e}_i \cdot \mathbf{v}$ in the second system.
- Similarly, the components of a tensor A is $A_{ij} = e_i \cdot Ae_j$ in the first system and \bar{A} is $\bar{A}_{ij} = \bar{e}_i \cdot A\bar{e}_j$ in the second system. We will derive the transformation laws for a tensor, i.e. the relationship between the components A_{ij} and \bar{A}_{ij} .

Transformation laws of tensors

Let Q be an orthogonal tensor and the components Q_{ii} of tensor are defined $Q = \cos(e_i, \bar{e}_i)$ as,

Tensor
$$Q$$
 transforms the basis vectors e_i to \bar{e}_i i.e., $\bar{e}_i = Qe_i$, and $e_i = Q^T\bar{e}_i$.

Consider a vector
$$\boldsymbol{u}$$
, which can be written as,

 $u = u_i e_i = \bar{u}_i \bar{e}_i$.

Using the relation between
$$e_i$$
 and \bar{e}_i , we can write, $\bar{u}_i = u \cdot \bar{e}_i = u \cdot Q e_i$

$$\Rightarrow u_k \mathbf{e}_k \cdot (Q_{mn} \mathbf{e}_m \mathbf{e}_n) \mathbf{e}_i$$

$$\Rightarrow u_k e_k \cdot Q_{mn} e_m \delta_{ni} = u_k e_k \cdot Q_{mi} e_m$$

$$\Rightarrow Q_{mi}u_k\delta_{km} = Q_{ki}u_k = \bar{u}_i$$

This is the transformation laws for vectors, which in vector notation can be written as,

$$\{ar{oldsymbol{u}}\}^T = [oldsymbol{Q}]^T \{oldsymbol{u}\}$$

Transformation laws of tensors

The transformation laws for vector can be used to derive the transformation laws for tensors. For a second order tensor, we can write,

which follows that,
$$A = A_{ij} \boldsymbol{e}_i \otimes \boldsymbol{e}_j = A_{ij} \bar{\boldsymbol{e}}_i \otimes \bar{\boldsymbol{e}}_j.$$

$$\bar{A}_{ij} = \bar{\boldsymbol{e}}_i \cdot \boldsymbol{A} \bar{\boldsymbol{e}}_j = \boldsymbol{Q} \boldsymbol{e}_i \cdot \boldsymbol{A} \left(\boldsymbol{Q} \boldsymbol{e}_j \right)$$

$$\Rightarrow Q_{mi} \boldsymbol{e}_m \cdot \boldsymbol{A} Q_{nj} \boldsymbol{e}_n = Q_{mi} Q_{nj} \boldsymbol{e}_m \cdot \boldsymbol{A} \boldsymbol{e}_n$$

$$\Rightarrow Q_{mi} Q_{nj} A_{mn}$$

Thus, $\bar{A}_{ij} = Q_{mi}Q_{nj}A_{mn}$ which is the transformation law for second order tensor. In the matrix form it can be written as

$$[ar{A}] = [oldsymbol{Q}]^T [oldsymbol{A}] [oldsymbol{Q}]$$

The transformation law can be generalized to a n^{th} order tensor \mathcal{A} as,

$$\bar{\mathcal{A}}_{i_1 i_2 i_3 \dots i_n} = Q_{m_1 i_1} Q_{m_2 i_2} Q_{m_3 i_3} \dots Q_{m_n i_n} \mathcal{A}_{m_1 m_2 m_3 \dots m_n}$$

Invariants of a tensor

For a second order tensor \boldsymbol{A} following can be defined,

$$I_1(\mathbf{A}) = \operatorname{tr} \mathbf{A} = A_{ii}$$

$$I_2(\mathbf{A}) = \frac{1}{2} \left[(\operatorname{tr} \mathbf{A})^2 - \operatorname{tr} \mathbf{A}^2 \right] = \frac{1}{2} (A_{ii} A_{jj} - A_{ij} A_{ji})$$

$$I_3(\mathbf{A}) = \det \mathbf{A} = e_{ijk} A_{1i} A_{2j} A_{3k}$$

 I_1 , I_2 , I_3 are three invarients of tensor \boldsymbol{A} , as they remain constant with transformation of tensor.

Here, we can introduce Cayley-Hamilton equation, which states every second order tensor \boldsymbol{A} will statisfy the following equation (called characteristic equation of \boldsymbol{A})

$$A^3 - I_1 A^2 + I_2 A - I_3 I = O.$$

Tensor functions

Tensor functions have one or more tensor variables as argument and their values are scalars, vectors or tensors.

For example: $\Phi(A)$, u(A), F(A) are scaler-valued, vector-valued and tensor-valued tensor functions of one tensor variable A, respectively.

Similarly, $\Phi(\mathbf{v})$, $\mathbf{u}(\mathbf{v})$, $\mathbf{F}(\mathbf{v})$ are scaler-valued, vector-valued and tensor-valued vector functions of one vector variable, respectively.

In general, we will call all those functions, whose arguments are tensors, vectors or scalers as tensor functions.

Tensor functions

Usual rules of differentiation apply to tensor function of one scaler variable For e.g. to find the derivative of A^{-1} , where A is a function of scaler variable t, we use the identity, $AA^{-1} = I$

$$\frac{D}{Dt}\mathbf{A}\mathbf{A}^{-1} = \frac{D}{Dt}\mathbf{I}$$

$$\Rightarrow \dot{\mathbf{A}}\mathbf{A}^{-1} + \mathbf{A}\dot{\mathbf{A}}^{-1} = 0$$

$$\Rightarrow \mathbf{A}\dot{\mathbf{A}}^{-1} = -\dot{\mathbf{A}}\mathbf{A}^{-1}$$

$$\Rightarrow \dot{\mathbf{A}}^{-1} = -\mathbf{A}^{-1}\dot{\mathbf{A}}\mathbf{A}^{-1}$$

Notice that usual chain rule of differentiation is applied in the above derivation.

Gradient of a scaler function of tensor variable can be obtained by realizing that $\phi(\mathbf{A}) = \phi(A_{11}, A_{12}, A_{13} \dots)$, so that the total derivation of ϕ is given as,

$$d\phi = \frac{\partial \phi}{\partial A_{11}} dA_{11} + \frac{\partial \phi}{\partial A_{12}} dA_{12} + \frac{\partial \phi}{\partial A_{13}} dA_{13} \dots$$

$$\Rightarrow \frac{\partial \phi}{\partial A_{ij}} dA_{ij}$$

$$\Rightarrow \frac{\partial \phi}{\partial \mathbf{A}} : d\mathbf{A}$$

$$\Rightarrow \dot{\phi} = \frac{\partial \phi}{\partial \mathbf{A}} : \dot{\mathbf{A}}$$

where, $\frac{\partial \phi}{\partial \mathbf{A}} = \frac{\partial \phi}{\partial A_{ii}} \mathbf{e}_i \mathbf{e}_j$ is a second order tensor called the gradient of ϕ .

Similarly for a tensor function of tensor variable, we can write,

$$dF_{ij} = \frac{\partial F_{ij}}{\partial A_{mn}} dA_{mn}$$

$$\Rightarrow \frac{\partial \mathbf{F}}{\partial \mathbf{A}} : d\mathbf{A}$$

$$\Rightarrow \dot{\mathbf{F}} = \frac{\partial \mathbf{F}}{\partial \mathbf{A}} : \dot{\mathbf{A}}$$

where, the gradient of \mathbf{F} , $\frac{\partial \mathbf{F}}{\partial \mathbf{A}} = \frac{\partial F_{ij}}{\partial A_{mn}} \mathbf{e}_i \mathbf{e}_j \mathbf{e}_m \mathbf{e}_m$ is a fourth order tensor.

•

If **A** is a second order invertible tensor then show that, Example 10:

$$rac{\partial oldsymbol{A}^{-1}}{\partial oldsymbol{A}} \colon oldsymbol{B} = -oldsymbol{A}^{-1} oldsymbol{B} oldsymbol{A}^{-1}.$$

We start from the fact that,

$$AA^{-1} = I$$

$$\Rightarrow \frac{\partial (AA^{-1})}{\partial A} = \frac{\partial (A_{im}A_{mj}^{-1})}{\partial A_{kl}} = 0$$

$$\Rightarrow \frac{\partial A_{im}}{\partial A_{kl}}A_{mj}^{-1} + A_{im}\frac{\partial A_{mj}^{-1}}{\partial A_{kl}} = 0$$

$$\Rightarrow A_{im}\frac{\partial A_{mj}^{-1}}{\partial A_{kl}} = -\delta_{ik}\delta_{ml}A_{mj}^{-1}$$

Multiplying bothside by A_{ni}^{-1}

$$\Rightarrow A_{ni}^{-1} A_{im} \frac{\partial A_{mj}^{-1}}{\partial A_{kl}} = -A_{ni}^{-1} \delta_{ik} \delta_{ml} A_{mj}^{-1}$$

$$\Rightarrow \delta_{nm} \frac{\partial A_{mj}^{-1}}{\partial A_{kl}} = -A_{nk}^{-1} A_{lj}^{-1}$$

$$\Rightarrow \frac{\partial A_{nj}^{-1}}{\partial A_{kl}} = -A_{nk}^{-1} A_{lj}^{-1}$$

$$\Rightarrow \frac{\partial A_{nj}^{-1}}{\partial A_{kl}} B_{kl} = -A_{nk}^{-1} B_{kl} A_{lj}^{-1}$$

$$\Rightarrow \frac{\partial A^{-1}}{\partial A_{kl}} : \mathbf{B} = -\mathbf{A}^{-1} \mathbf{B} \mathbf{A}^{-1}$$

36

 $\frac{\partial \det \mathbf{A}}{\partial \mathbf{A}} = (\mathbf{A}^T)^2 - I_1 \mathbf{A}^T + I_2 \mathbf{I}.$

Example 11:

We first find,

also,

Show that,

 $I_1 = \operatorname{tr} \mathbf{A} = A_{ii}$

 $\frac{\partial I_1}{\partial A_{min}} = \frac{\partial A_{ii}}{\partial A_{min}} = \delta_{im}\delta_{in} = \delta_{mn} = \boldsymbol{I}$

 $\Rightarrow \frac{1}{2} \left(\delta_{im} \delta_{in} A_{jj} + A_{ii} \delta_{jm} \delta_{jn} - \delta_{im} \delta_{jn} A_{ji} - \delta_{jm} \delta_{in} A_{ij} \right)$ $\Rightarrow \frac{1}{2} \left(\delta_{mn} A_{jj} + A_{ii} \delta_{mn} - A_{nm} - A_{nm} \right) = A_{ii} \delta_{mn} - A_{nm} = I_1 \mathbf{I} - \mathbf{A}^T$

 $\frac{\partial I_2}{\partial A_{mn}} = \frac{1}{2} \left(\frac{\partial A_{ii}}{\partial A_{mn}} A_{jj} + A_{ii} \frac{\partial A_{jj}}{\partial A_{mn}} - \frac{\partial A_{ij}}{\partial A_{mn}} A_{ji} - \frac{\partial A_{ji}}{\partial A_{mn}} A_{ij} \right)$

 $I_2 = \frac{1}{2} \left[(\operatorname{tr} \mathbf{A})^2 - \operatorname{tr} \mathbf{A}^2 \right] = \frac{1}{2} (A_{ii} A_{jj} - A_{ij} A_{ji})$

37

Now, We start with the Cayley- Hamilton equation,

$$\begin{split} &A^3 - I_1 A^2 + I_2 A - I_3 \mathbf{I} = \mathbf{O} \\ &A_{ip} A_{pq} A_{qj} - I_1 A_{ip} A_{pj} + I_2 A_{ij} - I_3 \delta_{ij} = 0 \\ &\Rightarrow (A_{ip} A_{pq} A_{qj} - I_1 A_{ip} A_{pj} + I_2 A_{ij} - I_3 \delta_{ij}) \, \delta_{ij} = 0 \\ &\Rightarrow A_{ip} A_{pq} A_{qi} - I_1 A_{ip} A_{pi} + I_2 A_{ii} - I_3 \delta_{ii} = 0 \\ &\Rightarrow 3I_3 = A_{ip} A_{pq} A_{qi} - I_1 A_{ip} A_{pi} + I_2 I_1 \\ &\Rightarrow 3 \frac{\partial I_3}{\partial A_{mn}} = \delta_{im} \delta_{pn} A_{pq} A_{qi} + \delta_{pm} \delta_{qn} A_{ip} A_{qi} + \delta_{qm} \delta_{in} A_{ip} A_{pq} - \\ &\frac{\partial I_1}{\partial A_{mn}} A_{ip} A_{pi} - I_1 \delta_{im} \delta_{pn} A_{pi} - I_1 \delta_{pm} \delta_{in} A_{ip} + \frac{I_2}{\partial A_{mn}} I_1 + I_2 \frac{\partial I_1}{\partial A_{mn}} \\ &\Rightarrow 3 \frac{\partial I_3}{\partial A_{mn}} = A_{nq} A_{qm} + A_{im} A_{ni} + A_{np} A_{pm} - \delta_{mn} A_{ip} A_{pi} - I_1 A_{nm} - I_1 A_{nm} + \frac{I_2}{\partial A_{mn}} I_1 + I_2 \delta_{mn} \\ &\Rightarrow 3 \frac{\partial I_3}{\partial A_{mn}} = A_{qm} A_{nq} + A_{im} A_{ni} + A_{pm} A_{np} - \delta_{mn} A_{ip} A_{pi} - 2I_1 A_{nm} + \frac{\partial I_2}{\partial A_{mn}} I_1 + I_2 \delta_{mn} \\ &\Rightarrow 3 \frac{\partial I_3}{\partial A_{mn}} = 3A_{qm} A_{nq} - \delta_{mn} \text{tr} \mathbf{A}^2 - 2I_1 A_{nm} + (I_1 \delta_{mn} - A_{nm}) I_1 + I_2 \delta_{mn} \\ &\Rightarrow 3 \frac{\partial I_3}{\partial A_{mn}} = 3A_{qm} A_{nq} + \delta_{mn} (I_1^2 - \text{tr} \mathbf{A}^2) - 2I_1 A_{nm} - A_{nm} I_1 + I_2 \delta_{mn} \\ &\Rightarrow 3 \frac{\partial I_3}{\partial A_{mn}} = 3A_{qm} A_{nq} + 2I_2 \delta_{mn} - 3I_1 A_{nm} + I_2 \delta_{mn} = 3(A_{qm} A_{nq} + I_2 \delta_{mn} - I_1 A_{nm}) \\ &\Rightarrow \frac{\partial I_3}{\partial A_{mn}} = 3A_{qm} A_{nq} + 2I_2 \delta_{mn} - 3I_1 A_{nm} + I_2 \delta_{mn} = 3(A_{qm} A_{nq} + I_2 \delta_{mn} - I_1 A_{nm}) \\ &\Rightarrow \frac{\partial I_3}{\partial A_{mn}} = 3A_{qm} A_{nq} + 2I_2 \delta_{mn} - 3I_1 A_{nm} + I_2 \delta_{mn} = 3(A_{qm} A_{nq} + I_2 \delta_{mn} - I_1 A_{nm}) \\ &\Rightarrow \frac{\partial I_3}{\partial A} = (\mathbf{A}^T)^2 + 2I_2 \mathbf{I} - I_1 \mathbf{A}^T \end{split}$$

Gradient, Curl and Divergence of a vector field

Different operation of ∇ operator are governed by following rules:

$$abla \cdot (ullet) = rac{\partial (ullet)}{\partial x_i} \cdot e_i, \quad \nabla \times (ullet) = e_i imes rac{\partial (ullet)}{\partial x_i}, \quad \nabla \otimes (ullet) = rac{\partial (ullet)}{\partial x_i} \otimes e_i.$$

Following above rules, following are defined.

Divergence of a vector field **u**,

$$\nabla \cdot \boldsymbol{u} = \frac{\partial \boldsymbol{u}}{\partial x_i} \cdot \boldsymbol{e}_i = \frac{\partial u_m}{\partial x_i} \boldsymbol{e}_m \cdot \boldsymbol{e}_i = \frac{\partial u_m}{\partial x_i} \delta_{mi} = \frac{\partial u_i}{\partial x_i}.$$

Curl of a vector field **u**,

$$\mathbf{\nabla} \times \mathbf{u} = \mathbf{e}_i \times \frac{\partial \mathbf{u}}{\partial x_i} = \mathbf{e}_i \times \frac{\partial u_m}{\partial x_i} \mathbf{e}_m = \frac{\partial u_m}{\partial x_i} \mathbf{e}_i \times \mathbf{e}_m.$$

39

Gradient, Curl and Divergence of a vector field

Gradient of a vector field **u**,

$$oldsymbol{
abla} oldsymbol{u} \otimes oldsymbol{u} = rac{\partial oldsymbol{u}}{\partial x_i} \otimes oldsymbol{e}_i = rac{\partial u_m}{\partial x_i} oldsymbol{e}_m \otimes oldsymbol{e}_i.$$

In matrix notations,

$$\left[oldsymbol{
abla}\otimesoldsymbol{u}
ight] = egin{bmatrix} rac{\partial u_1}{\partial x_1} & rac{\partial u_1}{\partial x_2} & rac{\partial u_1}{\partial x_3} \ rac{\partial u_2}{\partial x_1} & rac{\partial u_2}{\partial x_2} & rac{\partial u_2}{\partial x_3} \ rac{\partial u_3}{\partial x_1} & rac{\partial u_3}{\partial x_2} & rac{\partial u_3}{\partial x_3} \end{bmatrix}$$

Transposed gradient of a vector field **u**,

$$oldsymbol{u}\otimes oldsymbol{
abla}=oldsymbol{e}_i\otimes rac{\partial oldsymbol{u}}{\partial x_i}=rac{\partial u_m}{\partial x_i}oldsymbol{e}_i\otimes oldsymbol{e}_m.$$

Laplacian and Hessian

 ∇ operator dotted with itself gives Laplacian as,

$$\nabla \cdot \nabla(\bullet) = \frac{\partial}{\partial x_i} e_i \cdot \frac{\partial(\bullet)}{\partial x_i} e_j = \frac{\partial}{\partial x_i} \frac{\partial(\bullet)}{\partial x_i} \delta_{ij} = \frac{\partial^2(\bullet)}{\partial x_i^2} = \nabla^2(\bullet).$$

Similarly, $\nabla \otimes \nabla$ gives Hessian as,

$$\nabla \otimes \nabla (\bullet) = \frac{\partial}{\partial x_i} e_i \otimes \frac{\partial (\bullet)}{\partial x_j} e_j = \frac{\partial}{\partial x_i} \frac{\partial (\bullet)}{\partial x_j} e_i \otimes e_j = \frac{\partial^2 (\bullet)}{\partial x_i \partial x_j} e_i \otimes e_j.$$

An important concept of directinal derivative can be introduced here. $\nabla \phi \cdot \boldsymbol{u}$ is the directinal derivative of ϕ with respect to \boldsymbol{x} in the direction of vector \boldsymbol{u} .

Example 12:

If
$$\mathbf{u}(\mathbf{x}) = x_1 x_2 x_3 \mathbf{e}_1 + x_1 x_2 \mathbf{e}_2 + x_1 \mathbf{e}_3$$
, then determine $\nabla \mathbf{u}, \nabla \cdot \mathbf{u}$, and $\nabla^2 \mathbf{u}$.

$$\nabla \cdot \boldsymbol{u} = \frac{\partial \boldsymbol{u}}{\partial x_i} \cdot \boldsymbol{e}_i$$

$$\Rightarrow (x_2 x_3 \boldsymbol{e}_1 + x_2 \boldsymbol{e}_2 + \boldsymbol{e}_3) \cdot \boldsymbol{e}_1 + (x_1 x_3 \boldsymbol{e}_1 + x_1 \boldsymbol{e}_2) \cdot \boldsymbol{e}_2 + (x_1 x_2 \boldsymbol{e}_1) \cdot \boldsymbol{e}_3$$

$$\Rightarrow x_2 x_3 + x_1$$

$$\nabla \boldsymbol{u} = \frac{\partial u_i}{\partial x_j} \boldsymbol{e}_i \boldsymbol{e}_j$$

$$\Rightarrow x_2 x_3 \boldsymbol{e}_1 \boldsymbol{e}_1 + x_1 x_3 \boldsymbol{e}_1 \boldsymbol{e}_2 + x_1 x_2 \boldsymbol{e}_1 \boldsymbol{e}_3$$

$$+ x_2 \boldsymbol{e}_2 \boldsymbol{e}_1 + x_1 \boldsymbol{e}_2 \boldsymbol{e}_2 + \boldsymbol{e}_3 \boldsymbol{e}_1$$

$$[\nabla \boldsymbol{u}] = \begin{bmatrix} x_2 x_3 & x_1 x_3 & x_1 x_2 \\ x_2 & x_1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\nabla^{2} \boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \boldsymbol{u} = \frac{\partial \boldsymbol{\nabla} \boldsymbol{u}}{\partial x_{i}} \cdot \boldsymbol{e}_{i}$$

$$\Rightarrow (x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{2} + x_{2} \boldsymbol{e}_{1} \boldsymbol{e}_{3} + \boldsymbol{e}_{2} \boldsymbol{e}_{2}) \cdot \boldsymbol{e}_{1} + (x_{3} \boldsymbol{e}_{1} \boldsymbol{e}_{1} + x_{1} \boldsymbol{e}_{1} \boldsymbol{e}_{3} + \boldsymbol{e}_{2} \boldsymbol{e}_{1}) \cdot \boldsymbol{e}_{2}$$

$$+ (x_{2} \boldsymbol{e}_{1} \boldsymbol{e}_{1} + x_{1} \boldsymbol{e}_{1} \boldsymbol{e}_{2}) \cdot \boldsymbol{e}_{3}$$

$$\Rightarrow 0$$

Problem Set

Problem 1: Given that
$$T_{ij} = 2\mu E_{ij} + \delta_{ij} E_{kk}$$
. Find $T_{mn} E_{mn}$.

Problem 2: Show that (i)
$$e_{ijk}e_{ijk} = 6$$
, (ii) $e_{ijp}e_{ijq} = 2\delta_{pq}$.

Using the properties of
$$\nabla$$
 operator, prove that

$$\mathbf{v} \cdot (\mathbf{A}^T \mathbf{u}) = \mathbf{\nabla} \cdot \mathbf{A} \cdot \mathbf{u} + \mathbf{A} \cdot \mathbf{\nabla} \mathbf{u}$$

(ii)
$$\nabla (\phi \boldsymbol{u}) = \boldsymbol{u} \otimes \nabla \phi + \phi \nabla u$$

Problem 3:

Problem 4:

$$\int_{S} \boldsymbol{u} \cdot \boldsymbol{A} \boldsymbol{n} \ dS = \int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{A}^{T} \boldsymbol{u} \ dV$$

Problem 5: The most general form of a fourth-order isotropic tensor can be expressed by
$$\alpha \delta_{ij} \delta_{kl} + \beta \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk}$$

where α , β , and γ are arbitrary constants. Verify that this form remains the same under the general transformation.

Problem Set

Problem 6:

Provided that T is symmetric, show that $\operatorname{tr}(\nabla \times T) = 0$.

Problem 7:

Let a new right-handed Cartesian coordinate system be represented by the set $\{\bar{e}_i\}$ of basis vectors with transformation law, $\bar{e}_2 = -\sin\theta e_1 + \cos\theta e_2$ and $\bar{e}_3 = e_3$.

The origin of the new coordinate system coincides with the old origin.

- (a) Find in terms of the old set $\{\bar{e}_i\}$ of basis vectors.
- (b) Find the orthogonal matrix [$m{Q}$] and express the new coordinates in terms of the old one.
- (c) Express the vector $\mathbf{u} = -6\mathbf{e}_1 3\mathbf{e}_2 + \mathbf{e}_3$ in terms of the new set $\{\bar{\mathbf{e}}_i\}$ of basis vectors.

Problem 8:

Proof that $\nabla \times (\boldsymbol{u} \times \boldsymbol{v}) = u(\nabla \cdot \boldsymbol{v}) - v(\nabla \cdot \boldsymbol{u}) + (\nabla \boldsymbol{u})\boldsymbol{v} - (\nabla \boldsymbol{v})\boldsymbol{u}$.