

Introduction

 A digital forensic investigation might deal with an examination of numerous number of pictures.

For example:

- · Finding, or find traces of, illicit images;
- Case specific images:
 - Non-disclosable prints (even harder as no reference database can be built);
 - · Finger prints;
 - Foot and tire prints;
 - Face recognition;
 - · Location finder;
 - · Injuries.
- Scope of this session:
 - Number of images in a data store might be large;
 - Images can be stored in personal devices (PC, smart phones etc.), company's hardware, cloud storage, and ISP.
 - The security of the reference database is usually of very high requirement.

J Vella - Digital Forensics

Image Processing

Image forgery

J Vella - Digital Forensics

Image Processing

Design Requirements

- Performance:
 - Quick response and good levels of performance.
 - What is a good match?

DEFINITION: **Rank** of an input image, is the ordinal number of the first image hit. In many practices it's labelled a good hitter if it finds a corresponding image in the first 100.

- Scalability
 - To photo size, photo colour depth, etc.
- Security
 - Most datasets are confidential. Query response might need to be rethought – i.e. not necessary an image is returned.
- Flexible deployment
 - Image capture, image format, subject content, query definition (by example, by labels, by a sketch)

J Vella - Digital Forensics

Image Processing

Image histograms

J Vella - Digital Forensics

Image Processing

Similarity measures

- Calculated on whole picture, as in histogram matching, or part of picture, as in object decomposition.
- Major issue with histogram matching is its sensitivity colour intensity, colour distortions and cropping of images.
 - Also histogram slippage ...
- An advantage of decomposed methods is that one can get good hits, high similarity, on a fragment rather than average the similarities across the whole picture.
 - In such segmentation process one must balance the texture effectiveness vs computation.
 - · Large segments compute quick, but lose texture signature.

J Vella - Digital Forensics

Image Processing

DECOMPOSITION METHOD

J Vella - Digital Forensics

Image Processing

Similarity measure in SIMPLicity

- A pioneering approach (in SIMPLicity, Wang et al 1998).
- First it computes six features:
 - three average colour values (ie LUV luminance and chrominance), and
 - other three from the energy in high frequency of the wavelet transform these are known to represent image texture.
 - The wavelet transform allows for directional texture capture horizontal (increasing and decreasing), and vertical (increasing and decreasing).
- Then the k-means algorithm is used to cluster the feature vectors.
 The system loops upwards on k until a criterion is reached.
 - When the criterion is met, k's 6 dim vectors are calculated from the k's centroids.
- After clustering, three extra features are added (ie called inertia of orders I to 3) to describe shape properties.
- The similarity is computed for two images is defined by a weighted sum of distances in the feature space and between each images regions.

J Vella - Digital Forensics

Image Processing

The QBIC color histogram distance is:

 $dhist(I,Q) = (h(I) - h(Q)) \land (h(I) - h(Q))$

- h(I) is a K-bin histogram of a database image
- h(Q) is a K-bin histogram of the query image
- A is a K x K similarity matrix

J Vella - Digital Forensics

Image Processing

Image retrieval in digital forensics General cases

- Particular investigations
 - Twirl paedophile

J Vella - Digital Forensics

Image Processing