Exam Scheduling using Local Search Roll 1805093

Introduction:

In this problem we were supposed to schedule examinations with least possible penalty using local search. The data in use was <u>Toronto Dataset</u>.

Our scope was specified within these benchmarks -

- Car-f-92
- Car-s-91
- Kfu-s-93
- Tre-s-92
- Yor-f-83

Constraints:

- **Hard**: No two exams of one student can overlap (happening in same day) each other. Every exam of a student must be scheduled on different day.
- **Soft**: Exams should be placed in such a way that a student can get the maximum day difference between any two exams

Penalty Strategy:

Linear Strategy: Let, n gap between any two exams

- If (n <= 5) penalty = 2 * (5-n)
- Else penalty = 0

Exponential Strategy: Let, n = gap between any two exams

- If (n <= 5) penalty = 2 ^ (5-n)
- Else penalty = 0

Heuristics:

- Constructive:
 - Largest degree: The node with the largest number of edges (conflicting examinations) is scheduled first. Tie break randomly.
 - Saturation degree: The well-known Brelaz heuristic (used in DSatur algorithm) provides dynamic variable (or node) ordering. (Refer to the wiki link for the algo)
 - Largest enrollment: The largest number of students registered for the examinations is scheduled first.

 Random ordering: One randomly picked node (course) will be colored (scheduled). Nevertheless, you are free to devise any creative heuristic here instead of randomly picking up any node.

• Perturbative:

- Kempe chain Interchange: A Kempe chain is defined as a connected subgraph that contains v, and that only comprises vertices colored with colors i and j. Take a particular Kempe chain and swap the colors of all vertices.
- Pair swap Operator: A pair swap is the simultaneous application of two Kempe chain interchanges applied to Kempe (v, c(v), c(u)) and Kempe (u, c(u),c(v)).
 - Let the Kempe chains KEMPE (u, i, j) and KEMPE (v, j, i) both contain just one vertex each (therefore implying that u and v are nonadjacent.) A pair swap involves swapping the colors of u and v. Used for building a feasible solution (non conflicting exam scheduling).

Results:

We ran every Constructive Heuristic followed by both of the Perturbative Heuristics with Exponential Penalty Strategy. After these 4 schemes, we ran Largest Degree Heuristic with both Perturbative Heuristics again but with Linear Penalty Strategy this time.

• Exponential Penalty

Benchmark	Known Best Solution		Largest-Degree + Kempe + Pairswap			
	Timeslots	Penalty	Timeslots	Penalty [After]		
				Largest-Degree	Kempe	Pairswap
car-f-92	32	3.74	32	10.38	6.94	6.87
car-s-91	35	4.42	35	11.6	9	8.95
kfu-93	20	12.96	20	46.5	35.84	26.54
tre-92	23	7.75	23	10.21	8.73	8.71
yor-83	21	34.84	23	65.53	49.15	48.56

Benchmark	Known Best Solution		Saturation Degree + Kempe + Pairswap			
	Timeslots	Penalty	Timeslots	Penalty [After]		
				Saturation Degree	Kempe	Pairswap
car-f-92	32	3.74	29	6.66	5.54	5.5
car-s-91	35	4.42	31	8.12	6.57	6.54
kfu-93	20	12.96	20	46.55	25.87	24.94
tre-92	23	7.75	22	16.01	13.83	13.81
yor-83	21	34.84	21	60.82	58.07	58.07

Benchmark	Known Best Solution		Largest Enrollment + Kempe + Pairswap			
	Timeslots	Penalty	Timeslots	Penalty [After]		
				.argest Enrollmen	Kempe	Pairswap
car-f-92	32	3.74	35	10.67	6.78	6.76
car-s-91	35	4.42	36	13.78	8.33	8.32
kfu-93	20	12.96	21	54.52	25.76	23.75
tre-92	23	7.75	22	16.41	13.85	13.68
yor-83	21	34.84	23	40.69	31.55	31.24

Benchmark	Known Best Solution		Random Ordering + Kempe + Pairswap			
	Timeslots	Penalty	Timeslots	Penalty [After]		
				Random Ordering	Kempe	Pairswap
car-f-92	32	3.74	45	4.77	3.83	3.79
car-s-91	35	4.42	46	6.29	4.26	4.24
kfu-93	20	12.96	26	20.59	14.1	12.86
tre-92	23	7.75	28	8.46	7.28	7.06
yor-83	21	34.84	28	49.83	42.39	41.99

• Linear Penalty

Benchmark	Known Best Solution		Largest-Degree + Kempe + Pairswap			
	Timeslots	Penalty	Timeslots	Penalty [After]		
				Largest-Degree	Kempe	Pairswap
car-f-92	32	3.74	32	6.67	4.52	4.52
car-s-91	35	4.42	35	7.49	5.47	5.46
kfu-93	20	12.96	20	28.67	15.48	15.48
tre-92	23	7.75	24	10.12	8.97	8.33
yor-83	21	34.84	23	4.51	30.9	30.9

Discussion:

These heuristics were good to get closed to benchmarked values sometimes but the problem with them are none of them are consistent enough to give good results every time.