The State of the Art in Gradual Typing

Jeremy G. Siek Indiana University, Bloomington

SICSA Summer School on Practical Types University of St. Andrews August 2015

Integrating Static and Dynamic Typing

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - ► Gradual Type Safety
 - ► Space and Time Efficiency
- ► Mutable References
- ▶ Objects
- ► Parametric Polymorphism

Gradual typing includes dynamic typing

An untyped program:

```
let
f = \lambda y. 1 + y
h = \lambda g. g 3
in
h f
\longrightarrow
4
```

Gradual typing includes dynamic typing

A buggy untyped program:

```
\begin{array}{c} \text{let} \\ f = \lambda y. \, 1 + y \\ h = \lambda g. \, g \, \, \text{true} \\ \text{in} \\ h \, f \\ \longrightarrow \\ \text{blame} \, \ell_{\scriptscriptstyle 2} \end{array}
```

Just like dynamic typing, the error is caught at run time.

Gradual typing includes static typing

A typed program:

```
let
f = \lambda y : \text{int. } 1 + y
h = \lambda g : \text{int} \rightarrow \text{int. } g \text{ 3}
in
h f
\rightarrow
4
```

Gradual typing includes static typing

An ill-typed program:

```
let f = \lambda y : \texttt{int.} \ 1 + y h = \lambda g : \texttt{int} \rightarrow \texttt{int.} \ g \ \texttt{true} in h \ f
```

Just like static typing, the error is caught at compile time.

Gradual typing provides fine-grained mixing

A partially typed program:

```
let
f = \lambda y : \text{int. } 1 + y
h = \lambda g . g    3
in
h f
\longrightarrow
4
```

Gradual typing protects type invariants

A buggy, partially typed program:

```
let
f = \lambda y : \text{int. } 1 + y
h = \lambda g . g \text{ true}
in
h f
\longrightarrow
blame \ell_3
```

Gradual typing enables migration

$$P(T_{\scriptscriptstyle \rm I},T_{\scriptscriptstyle 2}) \equiv \begin{array}{c} \operatorname{let} \\ f = \lambda y : T_{\scriptscriptstyle \rm I}. \ 1 + y \\ h = \lambda g : T_{\scriptscriptstyle 2}. \ g \ 3 \\ \operatorname{in} \\ h \ f \\ \\ P(\star, \operatorname{int} \to \operatorname{int}) \\ P(\operatorname{int}, \star) \\ P(\operatorname{bool}, \star) \\ P(\star, \operatorname{int} \to \operatorname{bool}) \\ \\ P(\operatorname{int}, \operatorname{int} \to \operatorname{int}) \\ \end{array}$$

Why support static typing?

- ► Communication

 Machine-checked documentation of module interfaces.
- ► Reliability
 - ► Early error detection.
 - ▶ Protects abstractions and establishes invariants.
- ► Productivity
 Aids auto-completion and guides refactoring.
- ► Efficiency

Why support dynamic typing?

- ► Don't have to write type annotations.
- ► Expressiveness

 Sometimes the most elegant and reusable expression of a software component won't type check.
- Cognitive load
 Sometimes thinking about the type system distracts from the programmer's current task.
- ► Learning curve
 For the beginner programmer, learning a static type system adds a significant hurdle.

Alternatives to Gradual Typing

- ► Add a **dynamic** type and **typecase** to a typed language.
 - ► CPL (1960's)

 "There is also a type **general** which designates an item whose type is not fixed and may, therefore, vary at run time." D. W. Barron et al.
 - ► CLU (1970's)
 - ► Amber (1980's)
 - ► Modula-3 (1990's)
- ► Add an **object** type and subtyping (implicit upcast) to a typed language.

Alternatives to Gradual Typing, cont'd

- ► Type annotations trusted by an optimizing compiler.
 - ► Common LISP (1990)
 - ► Dylan (1996)
- ► Infer types (statically) from unannotated programs.
 - ► Hindley-Milner (1970's)
 - ► Soft Typing (1990's)
- ► Design a static type system for a dynamic language.
 - ► LISP (1970's)
 - ► Smalltalk (1980's and 1990's)
 - ► Erlang (1990's)
 - ► Scheme, Python, Ruby (2000's)

Integrating static & dynamic typing

Approach	Static	Dynamic	Migration
dynamic type & typecase	•	0	0
subtyping & downcast	•	\circ	\circ
type hints	0		\circ
soft typing	•	•	\circ
types for dyn. lang.	•	\circ	\circ
gradual typing	•	•	•

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - ► Gradual Type Safety
 - ► Space and Time Efficiency
- ▶ Mutable References
- ▶ Objects
- ► Parametric Polymorphism

A False Start

Notation: I write the **dynamic** type as *. Augment subtyping to allow implicit down-casts

$$T <: \star$$
 $\star <: T$...

- ► Quasi-static Typing. Satish Thatte. POPL 1990.
- ► Sage and Hybrid Typing. Gronski, Knowles, Tomb, Freund, and Flanagan. SFP 2006.

But subtyping is transitive, so int <: string!

- ► Thatte adds a "plausibility checking" post-processor.
- ► Gronski et al. specify a subtyping algorithm that differs from their declarative subtype relation.

Implementations, but no theory

Reflective method calls for receivers of type \star .

```
method m(x:\star){
x.move(5,3)
}
```

- ► Cecil. Chambers et al. Technical Report 2004.
- Visual Basic.NET. Meijer and Drayton. OOPSLA Workshop 2004.
- ► ProfessorJ. Gray, Findler, Flatt. OOPSLA 2005.

Gradual Type Systems

New "consistency" relation governs implicit casts involving *.

► For nominal type systems BabyJ. Anderson and Drossopoulou, WOOD 2003.

$$T_{\rm I} \sim T_{\rm 2}$$
 iff $T_{\rm I} = T_{\rm 2}, T_{\rm I} = \star$, or $T_{\rm 2} = \star$

► For structural type systems Gradually Typed Lambda Calculus (GTLC). Siek and Taha, SFP 2006.

$$T \sim \star$$
 $T \sim \star$ int \sim int \sim int \sim int \sim int \sim int $T_1 \sim T_3$ $T_2 \sim T_4$ $T_1 \rightarrow T_2 \sim T_3 \rightarrow T_4$

Consistency is symmetric but not transitive.

Replace Equality with Consitency

Rule for application in STLC:

$$\frac{\Gamma \vdash e_{\scriptscriptstyle \text{I}} : T \rightarrow T' \qquad \Gamma \vdash e_{\scriptscriptstyle \text{2}} : T}{\Gamma \vdash e_{\scriptscriptstyle \text{I}} \quad e_{\scriptscriptstyle \text{2}} : T'}$$

Rules for application in the GTLC:

$$\begin{array}{c|c} \Gamma \vdash e_{\scriptscriptstyle \rm I}: T {\rightarrow} T' & \Gamma \vdash e_{\scriptscriptstyle \rm 2}: T_{\scriptscriptstyle \rm 2} \\ \hline T_{\scriptscriptstyle \rm 2} \sim T & \\ \hline \Gamma \vdash e_{\scriptscriptstyle \rm I} \ e_{\scriptscriptstyle \rm 2}: T' & \hline \Gamma \vdash e_{\scriptscriptstyle \rm I}: \star & \Gamma \vdash e_{\scriptscriptstyle \rm 2}: T_{\scriptscriptstyle \rm 2} \\ \hline \Gamma \vdash e_{\scriptscriptstyle \rm I} \ e_{\scriptscriptstyle \rm 2}: \star & \\ \end{array}$$

Exercise

Easier: What are the gradually typed versions of the typing rules for pairs?

$$\begin{array}{c|c} \Gamma \vdash e_{\scriptscriptstyle \rm I}: T_{\scriptscriptstyle \rm I} \\ \hline \Gamma \vdash e_{\scriptscriptstyle \rm 2}: T_{\scriptscriptstyle \rm 2} \\ \hline \Gamma \vdash (e_{\scriptscriptstyle \rm I}, e_{\scriptscriptstyle \rm 2}): T_{\scriptscriptstyle \rm I} \times T_{\scriptscriptstyle \rm 2} \\ \end{array} \quad \begin{array}{c|c} \Gamma \vdash e: T_{\scriptscriptstyle \rm I} \times T_{\scriptscriptstyle \rm 2} \\ \hline \Gamma \vdash \mathsf{fst} \, e: T_{\scriptscriptstyle \rm I} \end{array} \quad \begin{array}{c|c} \Gamma \vdash e: T_{\scriptscriptstyle \rm I} \times T_{\scriptscriptstyle \rm 2} \\ \hline \Gamma \vdash \mathsf{snd} \, e: T_{\scriptscriptstyle \rm 2} \end{array}$$

Harder: What is the gradually typed version of the typing rule for disjoint sum elimination?

$$\frac{\Gamma \vdash e_{\scriptscriptstyle \mathrm{I}} : T_{\scriptscriptstyle \mathrm{I}} + T_{\scriptscriptstyle 2}}{\Gamma, x : T_{\scriptscriptstyle \mathrm{I}} \vdash e_{\scriptscriptstyle 2} : T \quad \Gamma, x : T_{\scriptscriptstyle 2} \vdash e_{\scriptscriptstyle 3} : T}$$

$$\frac{\Gamma \vdash (\mathsf{case}\, e_{\scriptscriptstyle \mathrm{I}}\, \mathsf{of}\, \mathsf{inl}\, x \Rightarrow e_{\scriptscriptstyle 2} \,|\, \mathsf{inr}\, x \Rightarrow e_{\scriptscriptstyle 3}) : T}{}$$

Solution

Pairs:

$$\frac{\Gamma \vdash e : T \qquad T \triangleright T_{\scriptscriptstyle \rm I} \times T_{\scriptscriptstyle 2}}{\Gamma \vdash \mathsf{fst}\, e : T_{\scriptscriptstyle \rm I}} \qquad \frac{\Gamma \vdash e : T \qquad T \triangleright T_{\scriptscriptstyle \rm I} \times T_{\scriptscriptstyle 2}}{\Gamma \vdash \mathsf{snd}\, e : T_{\scriptscriptstyle 2}}$$

where

$$(T_{\scriptscriptstyle \rm I} \times T_{\scriptscriptstyle 2}) \triangleright (T_{\scriptscriptstyle \rm I} \times T_{\scriptscriptstyle 2}) \qquad \star \triangleright (\star \times \star)$$

Sums:

$$\Gamma \vdash e_{\scriptscriptstyle ext{ iny T}}: T_{\scriptscriptstyle ext{ iny A}} \qquad T_{\scriptscriptstyle ext{ iny A}}
ho T_{\scriptscriptstyle ext{ iny T}} + T_{\scriptscriptstyle ext{ iny 2}} \ \Gamma, x: T_{\scriptscriptstyle ext{ iny 1}} \vdash e_{\scriptscriptstyle ext{ iny 2}}: T' \qquad T = T' \sqcap T'' \ \Gamma \vdash (\mathsf{case}\, e_{\scriptscriptstyle ext{ iny 1}} \, \mathsf{of} \, \mathsf{inl}\, x \Rightarrow e_{\scriptscriptstyle ext{ iny 2}} \, |\, \mathsf{inr}\, x \Rightarrow e_{\scriptscriptstyle ext{ iny 3}}): T$$

Greatest lower bound with respect to the less dynamic (imprecision) relation (e.g., $T \sqsubseteq \star$).

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - ► Gradual Type Safety
 - ► Space and Time Efficiency
- ▶ Mutable References
- ▶ Objects
- ► Parametric Polymorphism

Protecting the Static from the Dynamic

Recall the following buggy, partially typed program:

```
\begin{array}{l} \texttt{let} \\ f = \lambda y : \texttt{int.} \ 1 + y \\ h = \lambda g . g \ \texttt{true} \\ \texttt{in} \\ h \ f \end{array}
```

The untyped code tries to pass the Boolean true to parameter *y* of type int.

Alternative ways to deal with this:

- ► Erase types.
- ► Insert casts.
- ► Limit interoperability.

Tensions in the Design Space

Approach	Sound	Efficient	Interoperability
Erase types	•	$lue{egin{array}{c}}$	•
Insert casts	•	\bigcirc	•
Limit interop.	•	•	\bigcirc

Approach: Insert Casts

Approach: Insert Casts

Compile the GTLC to STLC + casts (CC for Cast Calculus).

A cast has the form

$$e':T_{\scriptscriptstyle \rm I}\Rightarrow T_{\scriptscriptstyle \rm 2}$$

$$|\Gamma \vdash e \leadsto e' : T|$$

$$\frac{\Gamma \vdash e_{1} \leadsto e'_{1} : T \rightarrow T' \qquad \Gamma \vdash e_{2} \leadsto e'_{2} : T_{2}}{T_{2} \sim T}$$

$$\frac{T \vdash e_{1} e_{2} \leadsto e'_{1} \ \langle \langle e'_{2} : T_{2} \Rightarrow T \rangle \rangle : T'}{\Gamma \vdash e_{1} e_{2} \leadsto e'_{2} \ \langle \langle e'_{2} : T_{3} \Rightarrow T \rangle \rangle : T'}$$

$$\frac{\Gamma \vdash e_{\scriptscriptstyle \text{I}} \leadsto e'_{\scriptscriptstyle \text{I}} : \star \qquad \Gamma \vdash e_{\scriptscriptstyle \text{2}} \leadsto e'_{\scriptscriptstyle \text{2}} : T_{\scriptscriptstyle \text{2}}}{\Gamma \vdash \langle\!\langle e_{\scriptscriptstyle \text{I}} : \star \Rightarrow \star \to \star \rangle\!\rangle \; \langle\!\langle e_{\scriptscriptstyle \text{2}} : T_{\scriptscriptstyle \text{2}} \Rightarrow \star \rangle\!\rangle : \star}$$

where

$$\langle \langle e' : T_1 \Rightarrow T_2 \rangle \rangle = \begin{cases} e' & \text{if } T_1 = T_2 \\ e' : T_1 \Rightarrow T_2 & \text{otherwise} \end{cases}$$

Operational Semantics of Casts

Ground types

$$G ::= int \mid \star \rightarrow \star$$

Values

$$v := n \mid \lambda x : T.f \mid v : G \Rightarrow \star$$

Reduction rules

The Buggy Example Revisited

```
let
   f = \lambda y:int.1+y
    h = \lambda g: \star . (g: \star \Rightarrow \star \rightarrow \star) \text{ (true: bool} \Rightarrow \star)
in
    h(f: \mathtt{int} \rightarrow \mathtt{int} \Rightarrow \star)
(\lambda x : \star . (f (x : \star \Rightarrow int)) : int \Rightarrow \star) (true : bool \Rightarrow \star)
(f \text{ (true : bool } \Rightarrow \star \Rightarrow \text{int)} : \text{int } \Rightarrow \star
(f \text{ blame}): \text{int} \Rightarrow \star
blame
```

Gradual Typing Protects Static Types

Every expression in a gradually typed program evaluates to a value whose type is equal to the static type of the expression.

Let $\rho \vdash e \Downarrow v$ be the environment-passing big-step semantics of CC. Let $\Gamma \vdash \rho$ be well-typed environments.

Theorem (Type Soundness)

If $\Gamma \vdash e : T$, $\Gamma \vdash \rho$, and $\rho \vdash e \Downarrow v$, then $\emptyset \vdash v : T$.

Theorem (Canonical Forms)

Suppose $\emptyset \vdash v : T$.

- ▶ If T = int, then v = n for some integer n.
- If $T = T_1 \rightarrow T_2$, then $v = \langle \lambda x : T_1 . e, \rho \rangle$ for some x, e', and ρ .
- If $T = \star$, then $v = (v' : G \Rightarrow \star)$ for some v' and G.

Alternative: limit interoperability

A number of proposed designs place restrictions on passing values between static and dynamic regions.

- ► Siek and Taha. SFP 2006. (wrt. mutable references)
- ► Wrigstad et al. POPL 2010.
- ► Allende et al. OOPSLA 2014.
- ► Swamy et al. POPL 2014.

It's debatable whether these designs support gradual typing.

In particular, they do not satisfy the gradual guarantee.

Reminder: gradual typing enables migration

The Less Dynamic (Imprecision) Relation

Less Dynamic

$$T \sqsubseteq T$$

$$\mathtt{int} \sqsubseteq \mathtt{int} \quad T \sqsubseteq \star \quad \frac{T_{\scriptscriptstyle \mathrm{I}} \sqsubseteq T'_{\scriptscriptstyle \mathrm{I}} \quad T_{\scriptscriptstyle \mathrm{I}} \sqsubseteq T'_{\scriptscriptstyle \mathrm{I}}}{T_{\scriptscriptstyle \mathrm{I}} {\to} T_{\scriptscriptstyle \mathrm{I}} \sqsubseteq T'_{\scriptscriptstyle \mathrm{I}} {\to} T'_{\scriptscriptstyle \mathrm{I}}}$$

Less Dynamic on Term

$$e \sqsubseteq e$$

$$\frac{T \sqsubseteq T' \quad e_{\scriptscriptstyle I} \sqsubseteq e_{\scriptscriptstyle 2}}{\lambda x : T \cdot e_{\scriptscriptstyle I} \sqsubseteq \lambda x : T' \cdot e_{\scriptscriptstyle 2}} \quad \frac{e_{\scriptscriptstyle I} \sqsubseteq e_{\scriptscriptstyle 2} \quad e'_{\scriptscriptstyle 1} \sqsubseteq e'_{\scriptscriptstyle 2}}{(e_{\scriptscriptstyle I} \quad e'_{\scriptscriptstyle I})^{\ell} \sqsubseteq (e_{\scriptscriptstyle 2} \quad e'_{\scriptscriptstyle 2})^{\ell}} \quad \cdots$$

The Gradual Guarantee

Semantics of GTLC:

$$e \Downarrow v \equiv \exists e', T. \emptyset \vdash e \leadsto e' : T \text{ and } e' \longrightarrow^* v$$

Theorem (Gradual Guarantee)

Suppose $e \sqsubseteq e'$ *and* $\emptyset \vdash e : T$.

- ▶ $\emptyset \vdash e' : T'$ and $T \sqsubseteq T'$.
- ▶ If $e \Downarrow v$, then $e' \Downarrow v'$ and $v \sqsubseteq v'$. If e diverges then so does e'.
- ▶ If $e' \Downarrow v'$, then either $e \Downarrow v$ and $v \sqsubseteq v'$ or $e \Downarrow$ blame ℓ .

 If e' diverges, then either e diverges or $d \Downarrow$ blame ℓ .

Open problem: characterize when adding types is OK.

Exercise

What should the operational semantics for pairs look like?

- ▶ What should the ground types be?
- ► What should the values be?
- ► What are the reduction rules?

To get started, of course we need:

$$\mathsf{fst}\left(v_{\scriptscriptstyle \mathrm{I}},v_{\scriptscriptstyle 2}
ight) \longrightarrow v_{\scriptscriptstyle \mathrm{I}} \ \\ \mathsf{snd}\left(v_{\scriptscriptstyle \mathrm{I}},v_{\scriptscriptstyle 2}
ight) \longrightarrow v_{\scriptscriptstyle 2} \ \end{aligned}$$

Solutions

Solution 1:

$$G ::= \cdots \mid \star \times \star$$

$$v ::= \cdots \mid (v, v)$$

$$v:T_{\scriptscriptstyle \rm I}\times T_{\scriptscriptstyle \rm 2}\Rightarrow T'_{\scriptscriptstyle \rm I}\times T'_{\scriptscriptstyle \rm 2}\longrightarrow (({\sf fst}\,v):T_{\scriptscriptstyle \rm I}\Rightarrow T'_{\scriptscriptstyle \rm I},({\sf snd}\,v):T_{\scriptscriptstyle \rm 2}\Rightarrow T'_{\scriptscriptstyle \rm 2})$$

Solution 2:

$$G ::= \cdots \mid \star \times \star$$

$$v ::= \cdots \mid (v, v) \mid v : T \times T \Rightarrow T \times T$$

$$\operatorname{fst}(v:T_{\scriptscriptstyle \rm I}\times T_{\scriptscriptstyle \rm 2}\Rightarrow T'_{\scriptscriptstyle \rm I}\times T'_{\scriptscriptstyle \rm 2})\longrightarrow (\operatorname{fst} v):T_{\scriptscriptstyle \rm I}\Rightarrow T'_{\scriptscriptstyle \rm I}\\\operatorname{snd}(v:T_{\scriptscriptstyle \rm I}\times T_{\scriptscriptstyle \rm 2}\Rightarrow T'_{\scriptscriptstyle \rm I}\times T'_{\scriptscriptstyle \rm 2})\longrightarrow (\operatorname{snd} v):T_{\scriptscriptstyle \rm 2}\Rightarrow T'_{\scriptscriptstyle \rm 2}$$

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - Gradual Type Safety
 - ► Space and Time Efficiency
- ► Mutable References
- ▶ Objects
- ► Parametric Polymorphism

Type Safety for Gradual Typing

Is the following theorem precise enough?

Theorem (Type Safety)

If $\emptyset \vdash e : T$, then either

- $e \longrightarrow^* v$ and $\emptyset \vdash v : T$ for some v, or
- $ightharpoonup e \longrightarrow^* {\tt blame}, or$
- ► e diverges.

No! This theorem is no stronger than a type safety theorem for a dynamically typed language. We want to know that

- "code in statically typed regions can't go wrong"
- Tobin-Hochstadt and Fellseisen. DLS 2006.

Blame Tracking

Attach a blame label to each cast

$$e:T_{\scriptscriptstyle \rm I}\stackrel{\ell}{\Rightarrow} T_{\scriptscriptstyle 2}$$

that represents source position information, for example

$$\frac{\Gamma \vdash e_{\scriptscriptstyle 1} \leadsto e'_{\scriptscriptstyle 1} : T \to T' \qquad \Gamma \vdash e_{\scriptscriptstyle 2} \leadsto e'_{\scriptscriptstyle 2} : T_{\scriptscriptstyle 2}}{T_{\scriptscriptstyle 2} \sim T}$$

$$\frac{\Gamma \vdash (e_{\scriptscriptstyle 1} \ e_{\scriptscriptstyle 2})^{\ell} \leadsto e'_{\scriptscriptstyle 1} \ (e'_{\scriptscriptstyle 2} : T_{\scriptscriptstyle 2} \stackrel{\ell}{\Rightarrow} T) : T'}{}$$

Contracts for Higher-Order Functions. Findler & Felleisen. ICFP 2002.

Blame Tracking

When a cast fails, include the label in the error report:

$$v:G\overset{\ell}{\Rightarrow}\star\overset{\ell'}{\Rightarrow}G'\longrightarrow \mathtt{blame}\,\ell'$$
 if $G\neq G'$

Propagate labels when reducing higher-order casts:

$$v: T_{1} \rightarrow T_{2} \stackrel{\ell}{\Rightarrow} T'_{1} \rightarrow T'_{2}$$

$$\rightarrow \lambda x: T'_{1}. (v (x: T'_{1} \stackrel{\ell}{\Rightarrow} T')): T_{2} \stackrel{\ell}{\Rightarrow} T'_{2}$$

Gradual Type Safety

Definition (Static Region)

An expression e' is a statically typed region of program e, written static(e', e), if e' is a subexpression of e and e' is typable in the STLC.

$$static(e', e) \equiv \exists C. \ e = C[e'] \ \text{and} \ \Gamma \vdash_{STLC} e' : T'$$

labels(e)

$$labels(x) = \emptyset$$
 $labels(n) = \emptyset$ $labels((e_1 e_2)^{\ell}) = \{\ell\} \cup labels(e_1) \cup labels(e_2)$ $labels(\lambda x: T. e) = labels(e)$

Theorem (Gradual Type Safety)

If $\emptyset \vdash e \leadsto e' : T$, then either

- $e' \longrightarrow^* v$ and $\emptyset \vdash_{CC} v : T$ for some v, or
- ▶ $e' \longrightarrow^*$ blame ℓ and $\forall e''$, static(e'', e) implies $\ell \notin labels(e'')$, or
- ► e' diverges.

Proof Sketch for Gradual Type Safety

Lemma (Static Regions Produce no Labels)

If
$$\Gamma \vdash_{STLC} e : T$$
 and $\Gamma \vdash e \leadsto e' : T$, then $labels(e') = \emptyset$.

Lemma (Monotonicity of Labels)

If
$$e'_1 \longrightarrow e'_2$$
, then $labels(e'_2) \subseteq labels(e'_1)$.

Blame-Subtyping Theorem

But even some partially-typed regions are safe: regions that only involve implicit up-casts.

$$\texttt{int} <: \texttt{int} \quad \star <: \star \quad \frac{T <: G}{T <: \star} \quad \frac{S_{\scriptscriptstyle \text{I}} <: T_{\scriptscriptstyle \text{I}} \quad T_{\scriptscriptstyle \text{2}} <: S_{\scriptscriptstyle \text{2}}}{T_{\scriptscriptstyle \text{I}} \rightarrow T_{\scriptscriptstyle \text{2}} <: S_{\scriptscriptstyle \text{I}} \rightarrow S_{\scriptscriptstyle \text{2}}}$$

$$\Gamma \vdash e : T \textit{ safe } \ell$$

$$\begin{array}{cccc} \Gamma \vdash e_{\scriptscriptstyle 1} : T {\rightarrow} T' \ \textit{safe} \ \ell & \Gamma \vdash e_{\scriptscriptstyle 2} : T_{\scriptscriptstyle 2} \ \textit{safe} \ \ell \\ (\ell \neq \ell' \ \text{and} \ T_{\scriptscriptstyle 2} \sim T) \ \text{or} \ (\ell = \ell' \ \text{and} \ T_{\scriptscriptstyle 2} <: T) \\ \hline \Gamma \vdash (e_{\scriptscriptstyle 1} \ e_{\scriptscriptstyle 2})^{\ell'} : T' \ \textit{safe} \ \ell \\ \vdots \end{array}$$

Theorem (Blame-Subtyping Theorem)

 $I\!\!f$

- ▶ $\emptyset \vdash e : T \text{ safe } \ell$,
- ▶ $\emptyset \vdash e \leadsto e' : T$, and
- $\blacktriangleright \ e' \longrightarrow^* \mathtt{blame} \ \ell',$

then $\ell \neq \ell'$.

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - ► Gradual Type Safety
 - ► Space and Time Efficiency
- ▶ Mutable References
- ▶ Objects
- ► Parametric Polymorphism

Space Consumption of Casts

```
let rec even(n:int) : \star =
if n = o then true else odd(n - 1)
let rec odd(n:int) : bool =
if n = o then false else even(n - 1)
```

Space Consumption of Casts

```
let rec even(n:int) : \star =
if n = o then true : bool \Rightarrow \star else odd(n - 1) : bool \Rightarrow \star
let rec odd(n:int) : bool =
if n = o then false else even(n - 1) : \star \Rightarrow bool
```

Space Consumption of Casts

```
\begin{array}{l} even(\mathfrak{Z}) \\ \longrightarrow odd(\mathfrak{Z}) : \mathsf{bool} \Rightarrow \star \\ \longrightarrow even(\mathfrak{Z}) : \star \Rightarrow \mathsf{bool} \Rightarrow \star \\ \longrightarrow odd(\mathfrak{O}) : \mathsf{bool} \Rightarrow \star \Rightarrow \mathsf{bool} \Rightarrow \star \end{array}
```

Coercion Calculus

Coercions

$$c,d ::= \operatorname{id}_T \mid G! \mid G?^\ell \mid c o d \mid c \, ; d \mid \perp^\ell$$

Terms

$$e ::= \cdots \mid e\langle c \rangle$$

Reduction

$$\begin{array}{c} v\langle \mathrm{id}_T\rangle \longrightarrow v \\ (v\langle c \to d\rangle) \ W \longrightarrow (v \ W\langle c\rangle)\langle d\rangle \\ v\langle G!\rangle\langle G?^\ell\rangle \longrightarrow v \\ v\langle G!\rangle\langle G'?^\ell\rangle \longrightarrow \mathrm{blame}\,\ell \qquad \qquad \mathrm{if}\ G \neq G' \\ v\langle c \ ; d\rangle \longrightarrow v\langle c\rangle\langle d\rangle \\ v\langle \bot^\ell\rangle \longrightarrow \mathrm{blame}\,\ell \end{array}$$

Dynamic Typing. Henglein. ESOP 1992 Blame and coercion ... Siek, Thiemann, Wadler. PLDI 2015.

Compile Casts to Coercions

$$\left| \langle \langle T \stackrel{\ell}{\Rightarrow} T \rangle \rangle = c \right|$$

$$\langle\!\langle \operatorname{int} \stackrel{\ell}{\Rightarrow} \operatorname{int} \rangle\!\rangle = \operatorname{id}_{\operatorname{int}}$$
 $\langle\!\langle T_1 \rightarrow T_2 \stackrel{\ell}{\Rightarrow} T_1' \rightarrow T_2' \rangle\!\rangle = \langle\!\langle T_1' \stackrel{\ell}{\Rightarrow} T_1 \rangle\!\rangle \rightarrow \langle\!\langle T_2 \stackrel{\ell}{\Rightarrow} T_2' \rangle\!\rangle$
 $\langle\!\langle \star \stackrel{\ell}{\Rightarrow} \star \rangle\!\rangle = \operatorname{id}_{\star}$
 $\langle\!\langle G \stackrel{\ell}{\Rightarrow} \star \rangle\!\rangle = G!$
 $\langle\!\langle T \stackrel{\ell}{\Rightarrow} \star \rangle\!\rangle = \langle\!\langle T \stackrel{\ell}{\Rightarrow} G \rangle\!\rangle ; G!$
 $\langle\!\langle \star \stackrel{\ell}{\Rightarrow} G \rangle\!\rangle = G?^{\ell}$
 $\langle\!\langle \star \stackrel{\ell}{\Rightarrow} T \rangle\!\rangle = G?^{\ell} ; \langle\!\langle G \stackrel{\ell}{\Rightarrow} T \rangle\!\rangle$
† if $T \neq \star, T \neq G, T \sim G$

Normalized Coercions

```
s,t ::= \mathrm{id}_{\star} \mid (G?^{\ell};i) \mid i
                       i ::= (g:G!) \mid g \mid \perp^{\ell}
                       g, h ::= id_{int} \mid (s \rightarrow t)
                                                                                         s \stackrel{\circ}{\circ} t = s
         idint % idint = idint
(s \rightarrow t) \circ (s' \rightarrow t') = (s' \circ s) \rightarrow (t \circ t')
                     id_{+} : t = t
         (g;G!) g id_{\star}=g;G!
            g \circ (h ; G!) = (g \circ h) ; G!
 (g:G!) \circ (G?^{\ell}:i) = g \circ i
(g; G!) \, {}^{\circ}_{\circ} \, (G'?^{\ell}; i) = \bot^{\ell}
                                                                        if G \neq G'
                      \perp^{\ell} \circ s = \perp^{\ell}
                     g : \perp^{\ell} = \perp^{\ell}
```

52/83

Normalize Adjacent Coercions

$$u ::= n \mid \lambda x : T \cdot e$$
 Uncoerced Values $v ::= u \mid u \langle s \to t \rangle \mid u \langle g ; G! \rangle$ Values $\mathcal{E} ::= \mathcal{F} \mid \mathcal{F}[\Box \langle c \rangle]$ Evaluation contexts $\mathcal{F} ::= \Box \mid \mathcal{E}[\Box \ e] \mid \mathcal{E}[v \ \Box]$ Cast-free contexts

$$\begin{split} \mathcal{E}[(u\langle s \to t \rangle) \ v] &\longrightarrow \mathcal{E}[(u \ v\langle s \rangle)\langle t \rangle] \\ &\mathcal{F}[u\langle \mathrm{id} \rangle] \longrightarrow \mathcal{F}[u] \\ &\mathcal{F}[e\langle s \rangle\langle t \rangle] \longrightarrow \mathcal{F}[e\langle s \ \mathring{\circ} \ t \rangle] \\ &\mathcal{F}[u\langle \perp^{\ell} \rangle] \longrightarrow \mathrm{blame} \, \ell \\ &\mathcal{E}[\mathrm{blame} \, \ell] \longrightarrow \mathrm{blame} \, \ell \qquad \mathrm{if} \, \mathcal{E} \neq \square \end{split}$$

Time Overhead in Function Application

Theorem (Canonical Forms)

Suppose $\emptyset \vdash v : T$.

▶ If $T = T_1 \rightarrow T_2$, then $v = \lambda x$: T_1 . e for some x and e'. or $v = u \langle s \rightarrow t \rangle$.

Compiler has to insert a branch to decide which of the following two reduction rules to apply.

$$\mathcal{E}[(\lambda x : T.e) \ v] \longrightarrow \mathcal{E}[[x \mapsto v]e]$$

$$\mathcal{E}[(u\langle s \to t \rangle) \ v] \longrightarrow \mathcal{E}[(u \ v\langle s \rangle)\langle t \rangle]$$

Hybrid Closure Representation

CEK Machine for the STLC

$$e ::= x \mid \lambda x : T \cdot e \mid e \cdot e$$

$$v ::= n \mid \langle \lambda x : T \cdot e, \rho \rangle$$

$$\langle x, \rho, \mathcal{E} \rangle \longmapsto \langle \rho(x), \rho, \mathcal{E} \rangle$$

$$\langle \lambda x : T \cdot e, \rho, \mathcal{E} \rangle \longmapsto \langle \langle \lambda x : T \cdot e, \rho \rangle, \rho, \mathcal{E} \rangle$$

$$\langle (e_1 \cdot e_2), \rho, \mathcal{E} \rangle \longmapsto \langle e_1, \rho, \mathcal{E} [\square \langle e_2, \rho \rangle] \rangle$$

$$\langle v, \rho, \mathcal{E} [\square \langle e, \rho' \rangle] \rangle \longmapsto \langle e, \rho', \mathcal{E} [v \square] \rangle$$

$$\langle v, \rho, \mathcal{E} [\langle \lambda x : T \cdot e, \rho' \rangle \square] \rangle \longmapsto \langle e, \rho' [x \mapsto v], \mathcal{E} \rangle$$

CEK Machine for the CC

$$v ::= u \mid u \langle G! \rangle$$

$$\langle \lambda x : T. e, \rho, \mathcal{E} \rangle \longmapsto \langle \langle \lambda x : T. e, \rho, () \rangle, \rho, \mathcal{E} \rangle$$

$$\langle v, \rho, \mathcal{E} [\langle \lambda x : T. e, \rho', \mathbf{c} \rangle \ \Box] \rangle \longmapsto \langle e, \rho' [x \mapsto v, \mathbf{c} \mapsto \mathbf{c}], \mathcal{E} \rangle$$

$$\langle e : T_1 \stackrel{\ell}{\Rightarrow} T_2, \rho, \mathcal{E} \rangle \longmapsto \langle e, \rho, \mathcal{E} [\Box \langle \langle T_1 \stackrel{\ell}{\Rightarrow} T_2 \rangle \rangle] \rangle$$

$$\langle e, \rho, \mathcal{F} [\Box \langle c_1 \rangle] [\Box \langle c_2 \rangle] \rangle \longmapsto \langle e, \rho, \mathcal{F} [\Box \langle c_1 \stackrel{\circ}{\circ} c_2 \rangle] \rangle$$

$$\langle v, \rho, \mathcal{F} [\Box \langle c \rangle] \rangle \longmapsto \langle v', \rho, \mathcal{F} \rangle \quad \text{if } cast(v, c) = v'$$

$$\langle v, \rho, \mathcal{F} [\Box \langle c \rangle] \rangle \longmapsto \text{blame } \ell \quad \text{if } cast(v, c) = \text{blame } \ell$$

 $e := x \mid \lambda x : T \cdot e \mid e \mid e \mid e \mid T \stackrel{\ell}{\Rightarrow} T$

 $u := n \mid \langle \lambda x : T. e, \rho, [c] \rangle \mid$

Apply Cast to Value

cast(v,c) = r

$$\begin{aligned} \operatorname{cast}(u,G!) &= u \langle G! \rangle \\ \operatorname{cast}(u \langle G! \rangle, G'?^{\ell}) &= \begin{cases} u & \text{if } G = G' \\ \operatorname{blame} \ell & \text{otherwise} \end{cases} \\ \operatorname{cast}(\langle \lambda x. e, \rho, () \rangle, c_2) &= \langle \lambda y. e', \rho, c_2 \rangle \\ & \text{where } e' \equiv \operatorname{let} x = y \langle \operatorname{dom}(\rho(\mathtt{c})) \rangle \operatorname{in} e \langle \operatorname{rng}(\rho(\mathtt{c})) \rangle \\ \operatorname{cast}(\langle \lambda x. e, \rho, c_1 \rangle, c_2) &= \langle \lambda x. e, \rho, c_1 \, \mathring{\varsigma} \, c_2 \rangle \\ \operatorname{cast}(v, \operatorname{id}) &= v \end{aligned}$$

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - ► Gradual Type Safety
 - ► Space and Time Efficiency
- ► Mutable References
- ▶ Objects
- ► Parametric Polymorphism

Mutable References

GTLC + mutable references

$$T ::= \cdots \mid \operatorname{Ref} T$$
 $e ::= \cdots \mid \operatorname{ref} e \mid !^{\ell}e \mid e :=^{\ell} e$

Consistency

$$T \sim T$$

$$\cdots \qquad rac{T_{\scriptscriptstyle \mathrm{I}} \sim T_{\scriptscriptstyle \mathrm{2}}}{\operatorname{\mathsf{Ref}} \, T_{\scriptscriptstyle \mathrm{I}} \sim \operatorname{\mathsf{Ref}} \, T_{\scriptscriptstyle \mathrm{2}}}$$

Coercions

$$c ::= \ldots \mid \operatorname{Ref} c, c,$$

Compile Casts to Coercions

$$\langle\!\langle \operatorname{Ref} T_{\scriptscriptstyle \rm I} \stackrel{\ell}{\Rightarrow} \operatorname{Ref} T_{\scriptscriptstyle \rm 2} \rangle\!\rangle = \operatorname{Ref} \langle\!\langle T_{\scriptscriptstyle \rm I} \stackrel{\ell}{\Rightarrow} T_{\scriptscriptstyle \rm 2} \rangle\!\rangle \, \langle\!\langle T_{\scriptscriptstyle \rm 2} \stackrel{\ell}{\Rightarrow} T_{\scriptscriptstyle \rm I} \rangle\!\rangle$$

Space-Efficient Gradual Typing. Herman, Tomb, Flanagan. TFP 2006.

Example of overhead in reference access

```
p1=
fun f(p3:int ref, p4:int ref)
    !p3 + !p4;
val p1 = ref 5;
                                                   T_0
val p2 = ref (6<int!>);
f(p1, p2<ref(int?,int!)>);
ref(int?,int!)
                                    !p3
  : dyn ref \Rightarrow int ref
                                                   T_2
                                    !p4
```

Problem: generated code for !p3 and !p4 must branch at runtime for the two kinds of references.

The Root of the Problem

Theorem (Canonical Forms)

Suppose $\emptyset \vdash v : T$.

▶ If T = Ref T, then v = a for some address a, or $v = a \langle \text{Ref } c_1 c_2 \rangle$.

Two rules for dereference

$$!a, \mu \longrightarrow \mu(a), \mu$$
$$!(a\langle \operatorname{Ref} c_1 c_2 \rangle), \mu \longrightarrow (!a)\langle c_1 \rangle, \mu$$

Two rules for update

$$\begin{split} a &:= v, \mu \longrightarrow a, \mu(a \mapsto v) \\ a &\langle \operatorname{Ref} c_{\scriptscriptstyle 1} c_{\scriptscriptstyle 2} \rangle := v, \mu \longrightarrow a := v \langle c_{\scriptscriptstyle 2} \rangle, \mu \end{split}$$

Monotonic References

```
fun f(p3:int ref, p4:int ref)=
                                                 int
    !p3 + !p4;
                                                 dyn
val p1 = ref 5;
val p2 = ref (6<int!>);
                                                 int
f(p1, p2<ref(int)>);
                                                 int
                                                     T_1
                                          (5)
                                      !p3
                                      !p4
                                                     T_2
```

Update the reference cell to the <u>meet</u> of the current RTTI and the target of the cast.

Aliasing and Static vs. Dynamic Dereference

```
fun f(x:int ref, y:* ref) =
   !x + !y0*;

p = ref (2<int!>);
f(p, p);
```

Compile-time choice:

- ► Fast static deref.
- ► Slow dynamic dereference

The Monotonic Invariant

- ► The RTTI of a cell may become more precise.
- ► Every reference is less or equally precise as the RTTI.
- ► If a reference is fully static (e.g. w), then so is the cell.

Reduction Rules for Casting References

Casting References

$$\mu(a) = cv : T_{\scriptscriptstyle \rm I}$$

$$\begin{split} & T_3 = T_1 \sqcap T_2 \quad T_3 \neq T_1 \\ & a \langle \operatorname{ref}(T_2) \rangle, \mu \longrightarrow a, \mu (a \mapsto (cv \langle \llbracket T_1 \Rightarrow T_3 \rrbracket) \rangle) : T_3) \\ & \frac{T_3 = T_1 \sqcap T_2 \quad T_3 = T_1}{a \langle \operatorname{ref}(T_2) \rangle, \mu \longrightarrow a, \mu} \\ & \frac{T_1 \sqcap T_2 = \bot}{a \langle \operatorname{ref}(T_2) \rangle, \mu \longrightarrow \operatorname{error}, \mu} \end{split}$$

Reduction Rules for Accessing References

Deference

$$\mu(a) = v : T$$

$$\begin{split} & !a, \mu \longrightarrow v, \mu \\ & !a@T', \mu \longrightarrow v \langle \llbracket T \Rightarrow T' \rrbracket \rangle, \mu \end{split}$$

Update

$$a := v', \mu \longrightarrow a, \mu(a \mapsto v' : T)$$

$$a := v'@T', \mu \longrightarrow a, \mu(a \mapsto (v'\langle \llbracket T' \Rightarrow T \rrbracket \rangle) : T)$$

Reduction Rules for Heap Quiescence

Casted Values
$$cv ::= v \mid cv \langle c \rangle$$

Heap $\mu ::= \emptyset \mid \mu(a \mapsto v : T)$
Evolving Heap $\nu ::= \emptyset \mid \nu(a \mapsto cv : T)$

$$\begin{array}{c|cccc} \nu(a) = cv: T & cv, \nu \longrightarrow cv', \nu' & \nu'(a)_{\mathsf{rtti}} = T \\ \hline e, \nu \longrightarrow e, \nu'(a \mapsto cv': T) \\ \hline \nu(a) = cv: T & cv, \nu \longrightarrow cv', \nu' & \nu'(a)_{\mathsf{rtti}} \neq T \\ \hline e, \nu \longrightarrow e, \nu' \end{array}$$

(omitted error handling rules)

Stay tuned...

- ► ... for performance evaluations.
- ► We are developing a compiler for the GTLC in which to empirically test these solutions.
- ► The PLT folks are evaluating and improving the efficiency of contracts.

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - ► Gradual Type Safety
 - ► Space and Time Efficiency
- ► Mutable References
- Objects
- ► Parametric Polymorphism

Gradual Typing and Objects

$$e ::= \cdots \mid [m_i:T_i = \varsigma(x_i)e_i^{i \in \iota...n}] \mid e.m(e) \mid e.m_T := \varsigma(x)e$$

- ► Recall that we use *consistency* for implicit casts to and from *, not *subtyping*.
- ► But what if we want subtyping for other reasons?
- ► How can consistency and subtyping co-exist?

Answer: treat * like a basic type (e.g. int), not as the "top" type. Add subtyping and subsumption to your gradually typed language to make it object oriented.

$$\star <: \star$$

$$\frac{\Gamma \vdash e : T_{\scriptscriptstyle \rm I} \qquad T_{\scriptscriptstyle \rm I} <: T_{\scriptscriptstyle \rm 2}}{\Gamma \vdash e : T_{\scriptscriptstyle \rm 2}}$$

Challenge: Algorithm Type Checking

- ► The subsumption rule is not syntax directed.
- ► So one has to remove it and use subtyping in place of type equality.

Example: STLC with subtyping:

$$\frac{\Gamma \vdash e_{\scriptscriptstyle 1} : T {\rightarrow} T' \qquad \Gamma \vdash e_{\scriptscriptstyle 2} : T}{\Gamma \vdash e_{\scriptscriptstyle 1} \; e_{\scriptscriptstyle 2} : T'}$$

becomes

$$\frac{\Gamma \vdash e_{\scriptscriptstyle 1} : T \rightarrow T' \qquad \Gamma \vdash e_{\scriptscriptstyle 2} : T_{\scriptscriptstyle 2} \qquad T_{\scriptscriptstyle 2} <: T}{\Gamma \vdash e_{\scriptscriptstyle 1} \; e_{\scriptscriptstyle 2} : T'}$$

Types and Programming Languages. Pierce 2002

Algorithm Type Checking: First Attempt

For the GTLC:

$$\frac{\Gamma \vdash e_{\scriptscriptstyle 1} : T {\rightarrow} T' \qquad \Gamma \vdash e_{\scriptscriptstyle 2} : T_{\scriptscriptstyle 2} \qquad T_{\scriptscriptstyle 2} \sim T}{\Gamma \vdash e_{\scriptscriptstyle 1} \; e_{\scriptscriptstyle 2} : T'}$$

becomes

$$\frac{\Gamma \vdash e_{\scriptscriptstyle 1}: T \rightarrow T' \qquad \Gamma \vdash e_{\scriptscriptstyle 2}: T_{\scriptscriptstyle 2} \qquad T_{\scriptscriptstyle 2} \sim T'_{\scriptscriptstyle 2}}{\Gamma \vdash e_{\scriptscriptstyle 1}\; e_{\scriptscriptstyle 2}: T'} <: T$$

- ▶ But this rule is still not syntax directed!
- $ightharpoonup T_1'$ comes out of nowhere.

The Consistent-Subtyping Relation

Can we create a decision procedure, $T_1 \lesssim T_3$, for

$$\exists T_2. T_1 \sim T_2 \text{ and } T_2 <: T_3$$

Yes, take a syntax-directed definition of a subtype relation and add these two axioms for \star :

$$T \lesssim \star$$
 $\star \lesssim T$

Example of a Consistent-Subtyping Relation

$$egin{array}{c|cccc} \overline{T\lesssim\star} & \overline{\star\lesssim T} & \overline{ ext{int}\lesssim ext{int}} \ \hline T_{\scriptscriptstyle \rm I}'\lesssim T_{\scriptscriptstyle \rm I} & T_{\scriptscriptstyle \rm 2}\lesssim T_{\scriptscriptstyle \rm 2}' \ \hline T_{\scriptscriptstyle \rm I}\!
ightarrow\!T_{\scriptscriptstyle \rm 2}\lesssim T_{\scriptscriptstyle \rm I}'\!
ightarrow\!T_{\scriptscriptstyle \rm 2}' & \overline{T_{\scriptscriptstyle \rm I}}\lesssim T_{\scriptscriptstyle \rm I}' & T_{\scriptscriptstyle \rm 2}\lesssim T_{\scriptscriptstyle \rm 2}' \ \hline T_{\scriptscriptstyle \rm I}\!
ightarrow\!T_{\scriptscriptstyle \rm 2}\lesssim T_{\scriptscriptstyle \rm I}'\!
ightarrow\!T_{\scriptscriptstyle \rm 2}' & \overline{T_{\scriptscriptstyle \rm I}}
ightarrow\!T_{\scriptscriptstyle \rm 2}\lesssim T_{\scriptscriptstyle \rm I}'\times T_{\scriptscriptstyle \rm 2}' \end{array}$$

Abadi-Cardelli object types:

$$\frac{T_i \sim T_i' \quad \forall i \in \text{i..n}}{[m_i: T_i^{i \in \text{i..n}+m}] \lesssim [m_i: T_i'^{i \in \text{i..n}}]}$$

(No depth subtyping, Abadi-Cardelli objects can be updated.)

Wrappers and Object Identity

$$u ::= \cdots \mid [m_i: T_i = \varsigma(x_i)e_i^{i \in 1..n}]$$
 Uncoerced Values $v ::= u \mid \cdots \mid u \langle [m_i: s_i, t_i^{i \in 1..n}] \rangle$ Values

Naively, wrapped object has different identity (address) than the underlying object.

- ► Change *identity* to make the wrappers transparent. (Handling foreign functions is hard, Python ↔ C.)
- ► Change the semantics to avoid wrappers:
 - Monotonic Casts
 - ► Transient Casts

Transparent Object Proxies in JS. Keil and Thiemann. ECOOP 2015 Design and Eval. of Grad. Typing for Python. Vitousek et al. DLS 2014

State of the Art in Gradual Typing

Outline:

- ► Functions
 - ► Type System
 - ► Operational Semantics
 - ► Gradual Type Safety
 - ► Space and Time Efficiency
- Mutable References
- ► Objects
- ► Parametric Polymorphism

Gradual Typing and Parametric Polymorphism

Extend the Cast Calculus with type abstraction and application:

$$e ::= \cdots \mid \Lambda X. e \mid e T$$

Allow casts between \star and $\forall X$. T:

$$v: T_{\scriptscriptstyle \rm I} \stackrel{\ell}{\Rightarrow} (\forall X. T_{\scriptscriptstyle \rm 2}) \longrightarrow \Lambda X. (v: T_{\scriptscriptstyle \rm I} \stackrel{\ell}{\Rightarrow} T_{\scriptscriptstyle \rm 2}) \qquad \text{(GENERALIZE)}$$

$$\text{if } X \notin \text{ftv}(T_{\scriptscriptstyle \rm I})$$

$$v: (\forall X. T_1) \stackrel{\ell}{\Rightarrow} T_2 \longrightarrow (v \star): T_1[X \mapsto \star] \stackrel{\ell}{\Rightarrow} T_2$$

(Instantiate)

if $T_2 \neq \star$ and $T_2 \neq \forall X'$. T'_2 for any X', T'_2

The Problem with Type Substition

Recall the traditional reduction rule:

$$(\Lambda X. e) \ T \longrightarrow [X \mapsto T]e$$

Consider casting the constant function

$$K^* = \lambda x : \star . \lambda y : \star . x$$

to the following polymorphic types.

$$K^{\star} : \star \stackrel{\ell}{\Rightarrow} \forall X. \forall Y. X \rightarrow Y \rightarrow X$$
$$K^{\star} : \star \stackrel{\ell}{\Rightarrow} \forall X. \forall Y. X \rightarrow Y \rightarrow Y$$

The first cast should succeed. The second should fail because of parametricity.

The Problem with Type Substition

```
(K^{\star}:\star\overset{\ell}{\Rightarrow}\forall X.\forall Y.X{\rightarrow}Y{\rightarrow}X) \text{ int int 2 3}
\longrightarrow^{*}(K^{\star}:\star\overset{\ell}{\Rightarrow}\text{int}{\rightarrow}\text{int}{\rightarrow}\text{int}) \text{ 2 3}
\longrightarrow^{*}2
(K^{\star}:\star\overset{\ell}{\Rightarrow}\forall X.\forall Y.X{\rightarrow}Y{\rightarrow}Y) \text{ int int 2 3}
\longrightarrow^{*}(K^{\star}:\star\overset{\ell}{\Rightarrow}\text{int}{\rightarrow}\text{int}{\rightarrow}\text{int}) \text{ 2 3}
\longrightarrow^{*}2
```

Explicit Binding

$$(\Lambda X. v) \ T \longrightarrow \nu X \mapsto T. v$$
 (TYBETA)

Values pass through the ν binder:

$$\begin{array}{c} \nu X \mapsto T. \ (n) \longrightarrow n & \text{(NUINT)} \\ \nu X \mapsto T_{\scriptscriptstyle \rm I}. \ (\lambda y {:} T_{\scriptscriptstyle 2}. e) \longrightarrow \lambda y {:} [X \mapsto T_{\scriptscriptstyle \rm I}] T_{\scriptscriptstyle 2}. \ (\nu X \mapsto T_{\scriptscriptstyle \rm I}. e) \\ \text{(NUABS)} \\ \nu X \mapsto T. \ (\Lambda Y. v) \longrightarrow \Lambda Y. \ (\nu X \mapsto T. v) & \text{(NUTYABS)} \\ \text{if} \ Y \neq X \ \text{and} \ Y \notin \text{ftv}(T) \\ \nu X \mapsto A. \ (v : G \Rightarrow \star) \longrightarrow (\nu X \mapsto A. \ v) : G \Rightarrow \star \ \text{(NUDYN)} \\ \text{if} \ G \neq X \\ \nu X \mapsto A. \ (v : X \Rightarrow \star) \longrightarrow \text{blame} \ p_{\nu} & \text{(NUERR)} \end{array}$$

Properties of the Polymorphic Blame Calculus

- ✓ Type Safety
- ✓ Blame Theorem (weak subtyping)

$$\frac{[X \mapsto \star] T_{\scriptscriptstyle \rm I} <: T_{\scriptscriptstyle 2}}{(\forall X. T_{\scriptscriptstyle \rm I}) <: T_{\scriptscriptstyle 2}}$$

☐ Blame Theorem (strong subtyping)

$$\frac{[X \mapsto T]T_{\scriptscriptstyle \rm I} <: T_{\scriptscriptstyle 2}}{(\forall X. T_{\scriptscriptstyle \rm I}) <: T_{\scriptscriptstyle 2}}$$

(Incorrect proof in POPL 2011.)

□ Parametricity

Conclusion

- ► We have just scratched the surface of the recent work. See Sam Tobin-Hochstadt's online bibliography.
- ► The "typing" part of gradual typing is relatively easy.
- ► The runtime behavior has been much more challenging.
- ► Is it possible for a gradually typed language to be efficient?
- ► Have we got the blame tracking right?
- ► How does gradual typing interact with other features such as:
 - ► recursive types
 - ► type operators
 - ► dependent types (some partial answers here)