ICN WITH EDGE FOR 5G

Exploiting in-network caching in ICN-based edge computing for 5G networks

Luca Saverio Esposito

0334321

Mobile System and Applications

Indice

Suggerimento: clicca sul nome di una pagina per raggiungerla

INTRODUZIONE	ARCHITETTURA	PERFORMANCE	ANALISI	CONCLUSIONI
Introduzione	Architettura	Ambiente simulato	Adaptation managment	Possibili miglioramenti
ICN	Caching gerarchico	Criteri di valutazione	Adaptation implementation	Conclusioni
Edge computing	D2D communication	Risultati	Aspetti funzionali	
Problema	ICN implementation		Data staging	
Obiettivi e sfide	Content prefetching		Prefetching	
	Prefetching naming scheme		Surrogate provisioning	
	Prefetching strategies		Surrogate discovery	
			Aspetti non funzionali	

Introduzione

Combinare i paradigmi

- ICN (Information-centric Networking)
- Edge computing

Per sfruttare

- Meccanismi di caching
- Data locality

Col fine di migliorare le prestazioni del 5G riducendo gli accessi al core network.

ICN
Inormation-centric networking

Un nome per ogni dato/contenuto, senza sapere la locazione fisica del provider.

NDN (Name Data Networking) modello pull-based:

- Il consumer invia un Interest packet
- Se il dato è all'interno del PIT, scarta interest
- Altrimenti data-check su CS, in tal caso restituito
- Oppure inoltrata tramite interfacce salvate nel FIB, raggiunge data producer restituisce il datapacket, si salva nel CS e si aggiunge PIT entry

Edge computing

- Spostare i servizi cloud vicino agli end-user, per cercare di ridurre accessi al core-network
- MEC (Multi-access edge computing) è
 l'architettura di tipo edge utilizzata. Utilizza
 meccanismi di caching nei MEC server per
 ridurre tempo di accesso alle risorse

06

Internet è in continua evoluzione

- Quantità e diversità di device
- Tipologia di dati trasmessi
- Durata delle connessioni

- Smartphone, tablet, dispositivi IoT
- Multimediali
- Brevi e frequenti
- Circa 50 exabytes (10¹⁸) nel 2021

Obiettivi e sfide

Obiettivi	Sfide
 Sfruttare la capacita di caching di ICN a livello di device e a livello di base stations Portate i contenuti vicino agli end-user per ridurre gli accessi al core network 	 Compensare handoff delay prodotto da ICN quando viene abilitato a livello di device Gestione del contenuto dinamico, non adatto ai meccanismi di caching

Architettura

Un mobile user alla ricerca di un contenuto invia un interest request. Questa si propaga tra i vari livelli dell'architettura.

- Nearby mobile device
- Base Station
- ICN-enabled routers
- Cloud provider

La richiesta si ferma ad un livello intermedio non appena c'è una hit nella cache.

Torna all'indice

Architettura Caching gerarchico

Device

Il mobile user invia l'interest packet ai device vicini, cercano nella loro cache il contenuto. In caso positivo lo inoltrano altrimenti contattano la BS.

Base Station

La richiesta arriva alla base station, cerca nel suo CS per il contenuto. Se lo trova lo inoltra al mobile user, altrimenti, invia la richiesta agli ICN-routers.

ICN-router

Controllano nella loro cache se è presente il contenuto. Se lo trovano lo restituiscono al mobile user altrimenti contattano il provider/cloud via core network.

Architettura D2D Communication

La comunicazione avviene sotto due assunzioni.

- No privacy-issue: durante la trasmissione, tutti i device sono autenticati
- Friendly environment: risorse liberamente disponibili per gli altri device

Solo quando la risorsa non è disponibile tra i device si contatta la base station.

Architettura ICN implementation su BSs

Per utilizzare le strutture dati di ICN sulle base stations, implementazione su application layer. Composto da vari livelli.

- API layer
- CS implementation layer
- PIT entries layer
- Forwarding layer
- DAL (Data access layer)

Architettura

Content prefetching

I contenuti dinamici cambiano nel tempo, utilizzare caching non è l'approccio corretto. Strategia di **prefetching** su

- Base stations
- RCR (RAN content router) ossia ICN router connesso al core network

Basata sulla popolarità delle richieste.

Architettura

Prefetching naming scheme

Lo schema comprende diverse componenti.

- Provider name (univoco)
- Nome del contenuto
- Natura dei dati
- Entità coinvolte
- Time zone

ArchitetturaPrefetching strategies

Base station

Ogni edge node misura la frequenza delle richieste. Superata una certa threshold, esegue prefetch dell'ultima versione del contenuto. Questo viene salvato nel suo CS.

RAN content router

Anche il nodo RCR (RAN content router) misura la frequenza delle richieste. Tuttavia provengono da differenti BSs, quindi profili d'uso differenti e maggior traffico.

Le possibili politiche di aggiornamento.

- LRU (Least recently used)
- LFU (Least frequently used)

Performance

Ambiente simulato

L'ambiente è stato realizzato mediante

- ndnSIM per le richieste da mobile-device
- Edge node/base station
- ndnSIM per simulare ICN content router
- Microsoft Azure Cloud come provider Utilizzati cataloghi da 1000 a 5000 dati, su diverse threshold per un tempo di 120 sec.

PerformanceCriteri di valutazione

Metriche

Per valutare il framework sono state utilizzate

- Average Cache Hit Ratio (CHR)
 misura quanti interest-packets una
 cache soddisfa su quanti sono inviati
- Average latency il tempo consumato dai vari dispositivi per adempiere ai data-exchanges

Confronto

Sono state confrontate le metriche nelle due situazioni

- Prefetching disabilitato
- Prefetching abilitato

1000 1500 2000 2500 3000 3500 4000 4500 5000

Catalogue size (no. of contents)

17

Risultati

I risultati della simulazione mostrano una riduzione del traffico nel core network, fino ad un 26% con prefetching attivo. Infatti, aumenta la CHR sia sulle BSs sia sugli ICN-router, mentre diminuisce nel Cloud.

Sono state confrontate anche le metriche ottenute su due sistemi esistenti

- ECCN
- MEC

I risultati ottenuti dalla soluzione proposta sono migliori rispetto ad essi.

Si evince un'inversa proporzionalità tra cache hit ratio e latenza.

Adaptation management ("intelligence")

- □ Category: Locus of responsibility
 - (from the application level viewpoint)
- □ Tactics :
 - total transparency
 - total responsibility
 - application-aware
- □ Category: Type of control
- □ Tactics :
 - Top-down (explicit feedback loop)
 - Bottom-up (emergent behavior)
- □ Category: Control architecture
- □ Tactics:
 - decentralized control
 - hierarchical control

Analisi

Adaptation managment

- locus of responsibility → application-aware
 Sia l'applicazione che il sistema sottostante collaborano
 per garantire l'adattamento. Es. ICN application layer su
 BSs, mentre nativo su ICN routers.
 - type of control → top-down

Feedback control loop parzialmente-decentralizzato

• control architecture → hierarchical control pattern Approccio gerarchico, loop a basso livello operano su una scala limitata di richieste rispetto ai layer superiori.

Adaptation implementation ("toolset")

- □ Category: Malleability
- □ Tactics :
 - variable data fidelity
 - loosely coupled architecture
 - loose connectors
 - loose components
 - loose deployment monitor
- □ Category: Cyber foraging
- □ Tactics :
 - computation offload
 - data staging
 - ...

Analisi

Adaptation implementation

malleability → loosely coupled architecture

L'approccio è di tipo loose connectors.

Request-Response è la soluzione utilizzata.

- cyber foraging → funzionali
 - Data staging
 - Surrogate provisioning
 - Surrogate discovery
- cyber foraging → non funzionali

Alcuni di questi aspetti sono trattati come future challenges da realizzare.

Analisi

Aspetti funzionali

E' possibile identificare le soluzioni utilizzate per

- Data staging
- Surrogate provisioning
- Surrogate discovery

Mentre, fa parte degli aspetti lasciati in sospeso la possibilità di eseguire **computation offload**.

Analisi

Data staging decisions

Analisi Data staging

L'obiettivo cardine del sistema è proprio quello di ridurre gli accessi al core network, utilizzando meccanismi di caching e **prefetching**. I dati dinamici vengono pre-caricati sia sui BSs che

sul RAN content router, in modo tale da limitare il numero di richieste verso il cloud-provider.

Questo implica la presenza di

- surrogate provisioning
- surrogate discovery

Pre-Fetch Algorithm

Surrogate provisioning tactics: Pre-provisioned Surrogate

Analisi

Surrogate provisioning

La struttura del sistema è ben definita. BSs e RCR sono predisposti in anticipo e sono in costante ascolto delle richieste per i vari contenuti. Stesso vale per il cloud provider. Per questo si identifica una soluzione **pre-provisioned surrogate**.

Analisi

Surrogate discovery

Nell'ambiente di setup, per semplicità, viene utilizzato il paradigma local surrogate directory. Ogni dispositivo conosce "staticamente" i device di "livello superiore", ossia i surrogati da contattare. Tra le challenge aperte, identificare quale sia la soluzione più efficiente da utilizzare.

Analisi

Aspetti non funzionali

Riguardo **Fault tolerance** si utilizzano meccanismi di caching su ogni layer della struttura.

Invece, gli aspetti lasciati in sospeso sono

- Resource optimization
- Scalability/Elasticity
- Security

Questi infatti sono trattati nel paragrafo finale del paper come possibili sviluppi della ricerca.

Non è possibile individuare una tattica ad essi associata.

Possibili miglioramenti Security: trusted surrogates

In un contesto realistico è impossibile assumere che tutti dispositivi siano trusted, è necessaria l'autenticazione.

- Realizzare mutual authentication tra i vari device
- Oppure, usare un **certification authority** Inoltre, alcuni dati potrebbero esser sensibili, salvarli nelle cache potrebbe esporli a pericoli.
- Utilizzo di **tecniche di cifratura** sui dati nella cache Questi miglioramenti aggiungerebbero complessità al sistema, quindi un calo di prestazione da quantificare.

Conclusioni

La soluzione proposta risulta esser efficace, al passo con il paradigma attuale di continuum computing.

Alcuni degli aspetti tralasciati andrebbero maggiormente approfonditi per validare ulteriormente i risultati ottenuti.

ICN e Edge computing si sono rivelate tecniche promettenti per ridurre latenza e migliorare prestazioni nelle reti 5G.

Grazie!

Ci sono domande?