Imię i nazwisko : Kacper Kołodyński

Indeks: 249018

Prowadzący: dr inż. Marek Skowron

Grupa: Wtorek 17.05 TP

Ćwiczenie 2 – Przetworniki

4.1.1

b)

• Sensor type: J

• Connections: 2 przewodowe

• Units: °C

Range start value: 0 °CRange end value: 600 °C

Min output: 4mAMax output: 20mA

• Fault signal:

Czujnik rezystancyjny:

Gape 21mA

Short circuit 3.6 mA

Termopara:

Short circuit 3.6 mA

Charakterystyka $I_{wy}=f(T)$ jest niemalże liniowa, jedynie dla wartości 80 °C wynik odstaje on normy, odchylenie tego punktu możemy przypisać jako błąd pomiarowy. Tak jak oczekiwaliśmy charakterystyka mieści się w zakresie 4-20 mA. Zakres mierzonej temperatury to 0 – 600 °C tak jak to wcześniej ustawiliśmy. Wyniki pomiaru natężenia prądu odczytywaliśmy z multimetru a temperaturę z kalibratora.

g)

Charakterystyka $I_{wy} = f(R_{obc})$ jest zgodna ze wzorem na obciążenie

$$R = \frac{U_{zasilania} - 12V}{I}$$

Charakterystyka jest płaska do osiągnięcia maksymalnej wartości obciążenia dla przetwornika po czym wartość odczytu spada.

Dopuszczalna rezystancja obciążenie przetwornika zależy od jego sygnału wyjściowego i napięcia zasilającego.

Wartości obciążenia były odczytywane z rezystora dekadowego, a natężenie prądu z multimetru. Informacja o dopuszczalnym obciążeniu pozwala na znalezienie maksymalnej wartości obciążenia jaka jest dopuszczalna na wyjściu przetwornika co jest nam potrzebne w przypadku dodawania kolejnych urządzeń do układu.

Myślę, ze urządzenie odpowiedzialne za taki a nie inny wygląd charakterystyki to źródło prądowe znajdujące się w układzie wyjściowym ponieważ obciążenie również znajduje się w tym samym układzie a interesuje nas spadek napięcia na R_{obc} sprawiający że napięcie na przetworniku spada.

Według mnie, tak wyglądały by charakterystyki $I_{wy}=f(R_{obc})$ dla niskiej, średniej oraz wysokiej temperatury. Wykresy są do siebie podobne kształtem, największa różnica występuje po osiągnieciu maksymalnej wartości obciążenia.

h)

W celu rozwarcia układu powinniśmy odpiąć kalibrator.

W celu zwarcia układu wystarczy połączyć ze sobą przewody prowadzące do kalibratora. Gdy układ jest zwarty bądź rozwarty, oznacza to, że nastąpiła przerwa w obwodzie bądź czujnik jest zepsuty. Włącza się wtedy fault signal dla wartości większej równej 21mA (ponieważ tak skonfigurowaliśmy przetwornik w ćw 1) w przypadku rozwarcia oraz dla wartości mniejszej bądź równej 3.6 mA(ponieważ tak skonfigurowaliśmy przetwornik w ćw 1) w przypadku zwarcia. Przy zwarciu regulator widzi małą rezystancję (niską temperaturę) i włącza grzanie obiektu. Przy rozwarciu regulator widzie rezystancję nieskończenie dużą i wyłącza grzanie obiektu Zastosowanie praktycznie zwierania bądź rozwierania układu to sprawdzenie czy czujnik działa poprawnie czy też nie.

4.1.2) Wykonaj zadanie 4.1.2. używając zamiast przetwornika APT728 przetwornik TMP 111.

i)

Sensor type: Pt100

• Connections: 3 przewodowe

Units: °C

Range start value: 0 °C
Range end value: 600 °C

Min output: 4mAMax output: 20mA

• Fault signal:

Czujnik rezystancyjny:

Gape 21mA

Short circuit 3.6 mA

Termopara:

Short circuit3.6 mA

b)

Wyniki uzyskane z pomiaru powinny być takie same jak w zadaniu poprzednim ponieważ typ czujnika wejściowego nie wpływa na wartości wyjściowe.

Odczyt rezystancji – Rezystor dekadowy

Odczyt prądu - multimetr

Uzyskane charakterystyki byłyby takie same jak w przypadku poprzedniego zadania. Zmiana podłączenia przetwornika nie zmienia zasady jego działania. Odpowiedzi są analogiczne do poprzedniego zadania.

c)

Charakterystyki oraz odpowiedzi na pytania z podpunktu c) byłyby takie same jak z zadania poprzedniego.

d)

Rozwarcie polega na odpięciu trzech przewodów przetwornika z kalibratora. Zwarcie następuje gdy połączymy tym razem 3 przewody prowadzące do przetwornika. Zastosowanie praktyczne oraz wnioski nie różnią się od tych z zadania 1 podpunktu h), tutaj również pojawi się fault signal.

Pytania

- 1. W jaki sposób powinno się podłączać amperomierz wraz z zasilaczem do przetwornika? Amperomierz powinniśmy podłączyć szeregowo
- 2. Podaj najczęściej stosowane typy przetworników
 - A/C Analogowo cyfrowy
 - C/C Cyfrowo cyfrowe
 - A/A Analogowo analogowe
 - C/A Cyfrowo analogowe
- 3. Najczęściej spotykane sygnały standardowe?

Prądu stałego

- 0 ... 5 mA
- 0 ... 20mA
- 4 ... 20 mA

Napięcia stałego

0 ... 10 V

- 4. Jaką siłę wykorzystuje się w termoparach w termoogniwie pod wpływem różnic temperatur między jego końcami ? Siła elektromotoryczna.
- 5. Jakie czujniki podłącza się do wejść miliwoltowych?
 - -Sensory wykorzystujące efekt Halla
 - Czujniki tensometryczne
- 6. Jak zapewnić redundancję

Można ją uzyskać poprzez pomiar jednej wartości dwoma sensorami podłączonymi do dwóch niezależnych wejść.

- 7. W jakich warunkach lub kiedy nasila się dryft?
 - W wysokich temperaturach
 - Atmosferach o specyficznym składzie chemicznym
 - Gdy termopara zostaje szybko schłodzona
- 8. Przykładowe zastosowanie przetworników pomiarowych Pomiar różnicy temperatur oraz wyznaczanie temperatury średniej. Pomiar rozkładu temperatury w zbiorniku za pomocą kilku czujników
- 9. Sygnał wyjściowy przetwornika TMT111 Analogowy 4 ... 20 mA, 20 ... 4mA
- 10. Co na ogół umożliwiają przepływomierze ultradźwiękowe?
 - Pomiar przepływu objętościowego w standardowych jednostkach objętości
 - Zliczanie objętości
 - Pomiar przepływu masowego w standardowych jednostkach masy
 - Zliczanie masy
 - Pomiar prędkości fali dźwiękowej w ośrodku