ATE/risk difference: E(Y(1)) - E(Y(0)), risk ratio: E(Y(1))/E(Y(0)), odds ratio: $\frac{E(Y(1))}{1-E(Y(0))}/\frac{E(Y(0))}{1-E(Y(0))}$

Assumptions: Consistence: well defined exposure (no differ in exposure) and no interference (subjects' outcomes are independent),

Exchangeability: $X \perp Y$, E(Y(x)|X=1) = E(Y(x)|X=0) = E(Y(x)), Positivity: P(X=x) > 0

				1011044			
Assumption	Eligibility Criteria	Exposure Definition	Assignment Procedures	up Period	Outcome Definition	Causal contrast	Analysi: Plan
Consistency (Well defined exposure)	✓	✓					
Consistency (No interference)		✓	✓		✓		✓
Positivity	✓		✓				✓
Exchangeability	✓		✓	✓			✓

Study design: randomized trials vs target trials (observational studies)
Observational studies: Cohort
studies/Prospective/X→Y vs Outcome based
sampling/ case-control studies/Retrospective/Y→X
Key elements in protocol: eligibility criteria, exposure
definition (intervention&control), assignment
procedures, follow-up period, outcome definition,
contrast of interest, analysis plan
PS aims: overlap between exposure groups, balance
the data
Propensity score: P(X = 1|C = c), package function:
svydesign, svyglm

d-separation: path p is d-separated by $\{Z\} \Leftrightarrow \text{chain in } \{Z\}/\text{fork in } \{Z\}/\text{collider and descendants not in } \{Z\}$

Backdoor criterion: adjustment set $\{Z\}$ to X on Y satisfies: descendants of X not in $\{Z\}$, $\{Z\}$ d-separates (blocks) all paths between X and Y that contain an arrow into X (backdoor paths). Distribution of PS in groups should overlap, no PS values close to 1 or 0.

G-computation: \bigcirc Model E(Y|C, X) \bigcirc Calculate for each individual: $\widehat{E}(Y_i|C = c_i, X = x)$ \bigcirc Estimate $E_cE(Y|C, X = x)$

$$E(Y(1)) = E(Y|do(X = 1)) = E(Y|C = 0, X = 1)P(C = 0) + E(Y|C = 1, X = 1)P(C = 1), ATE = E(Y(1)) - E(Y(0))$$

$$E(Y(0)) = E(Y|do(X = 0)) = E(Y|C = 0, X = 0)P(C = 0) + E(Y|C = 1, X = 0)P(C = 1), ATT = E(Y(1)|X = 1) - E(Y(0)|X = 1)$$

$$E(Y(1)|X=1) = E(Y|X=1, do(X=1)) = E(Y|X=1, C=0)P(C=0|X=1) + E(Y|X=1, C=1)P(C=1|X=1)$$

$$E(Y(0)|X=1) = E(Y|X=1, do(X=0)) = E(Y|X=0, C=0)P(C=0|X=1) + E(Y|X=0, C=1)P(C=1|X=1)$$

Variables: outReg: confounders, var only \sim Y, no mediators, no var only \sim X, PSM: confounders, var only \sim Y, no var only \sim X

Weights: ATE: $1/P(X = 1|C_i)$ if exposed, $1/P(X = 0|C_i)$ if unexposed; ATT: 1 if exposed, $P(X = 1|C_i)/P(X = 0|C_i)$ if unexposed MCAR: $P(M = 1|Y_{obs}, Y_{mis}) = P(M = 1)$, estimates consistent, se larger, imputation valid (consider only for efficiency gain)

MCAR: $P(M = 1|Y_{obs}, Y_{mis}) = P(M = 1)$, estimates consistent, se larger, imputation valid (consider only for end). MAR: $P(M = 1|Y_{obs}, Y_{mis}) = P(M = 1|Y_{obs})$, estimates consistent, se larger, imputation valid

MNAR: $P(M = 1|Y_{obs}, Y_{mis})$, $P(M = 1|Y_{mis})$, estimates inconsist, se larger, imputation invalid

MAR/MNAR but not dependent on outcome: complete cases may still be unbiased for some analyses, consider multiple imputation for efficiency gain

MAR with dependency on outcome: multiple imputation; MNAR with dependency on outcome: sensitivity analysis