GRAN SASSO SCIENCE INSTITUTE XXVI Cycle - A.Y. 2020-2021

LE-6 Exam Report

Monte Carlo Techniques

Stefano Ghislandi

Preface

This report presents the exam exercises solutions of the course "LE-6 Monte Carlo Techniques" for the academic year 2020/2021. C++ programming language together with ROOT framework classes have been employed. The codes written to obtain the results presented throughout the document are reported in a public GitHub repository at the link https://github.com/sghislandi/GSSI_LE-6_Exam.

1	Uniform Random Sampling 1.1 MINSTD algorithm	2
2	Random Sampling from other distributions 2.1 Inverse method	3 3
3	Numerical estimate of π 3.1 Uncertainty evaluation	4
4	A toy Monte Carlo, RisiKo! 4.1 Basic probability	
5	Monte Carlo integration5.1 Unidimensional integration5.2 Integration in N dimensions5.3 Extra exercise	6666
6	Truncation errors	7
7	Tracking algorithms	8
8	Sampling of an interaction 8.1 Photo-electron	9 9

- 1 Uniform Random Sampling
- 1.1 MINSTD algorithm

- 2 Random Sampling from other distributions
- 2.1 Inverse method
- 2.2 Inversion and rejection

- 3 Numerical estimate of π
- 3.1 Uncertainty evaluation

- 4 A toy Monte Carlo, RisiKo!
- 4.1 Basic probability
- 4.2 Planning an attack

- 5 Monte Carlo integration
- 5.1 Unidimensional integration
- 5.2 Integration in N dimensions
- 5.3 Extra exercise

6 Truncation errors

7 Tracking algorithms

- 8 Sampling of an interaction
- 8.1 Photo-electron
- 8.2 Fluorescence