donor-akceptorová vazba je ekvivalentní kovalentní vazbě

VB teorie

$$NH_3$$
 + BF_3 \longrightarrow $H_3N \longrightarrow BF_3$

Donor-akceptorová vazba

MO teorie

N

15

VB teorie

 $[Co(NH_3)_6]^{3+}$

Každý ligand poskytne do vazby 2 elektrony

dsp² hybridní orbitaly elektrony z Cl⁻, čtvercový

$$Ni^{2+}$$
 [Ar] $3d^84s^0$ $NiCl_4^{2-}$

sp³ hybridní orbitaly elektrony z Cl⁻, tetraedrický

 Co^{3+} [Ar] $3d^64s^0$

sp³d² hybridní orbitaly elektrony z F⁻, oktaedrický

 $Co(NH_3)_6^{3+}$

d²sp³ hybridní orbitaly elektrony z NH₃, oktaedrický

Monodentátní ligandy

Ni(CO)₄, Fe(CO)₅, Mo(CO)₆

NH₃ amoniak

PPh₃ fosfan

H₂O voda

SR₂ thioether

Teorie ligandového pole

d-orbitaly v oktaedrickém poli ligandů

Rozštěpení d-hladin v O_h poli

Stabilizace 0.4 Δ_0

Stabilizační energie ligandového pole

(CFSE = Crystal Field Stabilization Energy)

Slabé pole

 Δ_0 < P (párovací energie)

Vysokospinové komplexy

Silné pole

 $\Delta_{0} > P$ (párovací energie)

Nízkospinové komplexy

Stabilizační energie ligandového pole, CFSE

Slabé pole

Silné pole

		e	CFSE		e	CFSE
d^1	t_{2g}^{-1}	1	0.4 Δ ₀	t_{2g}^{-1}	1	0.4 Δ _o
d^2	t _{2g} ²	2	$0.8\Delta_{ m o}$	t_{2g}^2	2	$0.8 \Delta_{ m o}$
d^3	t_{2g}^{3}	3	$1.2 \Delta_{o}$	t_{2g}^{3}	3	$1.2 \Delta_{o}$
d^4	$t_{2g}^{3} e_{g}^{1}$	4	$0.6\Delta_{ m o}$	t_{2g}^{4}	2	$1.6 \Delta_{ m o}$
d^5	$t_{2g}^{3} e_{g}^{2}$	5	$0.0~\Delta_{ m o}$	t_{2g}^{5}	1	$2.0~\Delta_{ m o}$
\mathbf{d}^6	$t_{2g}^{4} e_{g}^{2}$	4	$0.4~\Delta_{ m o}$	t _{2g} ⁶	0	$2.4~\Delta_{ m o}$
\mathbf{d}^7	$t_{2g}^{5}e_{g}^{2}$	3	$0.8\Delta_{ m o}$	$t_{2g}^{6} e_g^{1}$	1	$1.8\Delta_{ m o}$
\mathbf{d}^{8}	$t_{2g}^{6}e_{g}^{2}$	2	1.2 Δ _o	$t_{2g}^{6}e_{g}^{2}$	2	1.2 Δ ₀

CFSE =
$$(n t_{2g}) 0.4 \Delta_0 - (n e_g) 0.6 \Delta_0$$

e = počet nepárových elektronů

Rozštěpení d-hladin v O_h poli

Obsazení energetických hladin elektrony:

Výstavbový princip Hundovo pravidlo Pauliho princip

Ti^{3+} , a d^1 ion	V^{3+} , a d^2 ion	Cr^{3+} , a d^3 ion
1	1 1	1 1 1

Rozštěpení d-hladin v O_h poli

Stabilizační energie ligandového pole

Table 18.3 Crystal field stabilization energies (CFSE) for the dipositive, high spin ions of various Period 4 metals

Ion	Configuration	CFSE
Ca²⁺	20	-0.0 A _{oct}
_	.d ^C	−0.4 ∆ _{oct}
Tř ²⁺	£	−0.8 ∆ _{oct}
V^{2+}	As	−1.2 ∆ _{cet}
Cr2+	4	$-0.6 \Delta_{\text{oct}}$
Mn ²⁺	al ⁵	$-0.0 \Delta_{\text{oct}}$
Fe ²⁺	n ¹⁶	$-0.4 \Delta_{\rm oct}$
Co ²⁺	d?	$-0.8~\Delta_{\rm oct}$
Ni ²⁺	a2 ⁸⁵	−1.2 ∆ _{oct}
Cu^{2+}	al ^{r9}	-0.6 A
Zn ²⁺	al ^{©©}	−0.0 ∆ _{oct}

 d^0

 d^5

 d^{10}

Rozštěpení d-hladin v O_h poli

 $\begin{array}{l} [Ti(H_2O)_6]^{3^+} \\ d^1 \end{array}$

 $t_{2g}^{1}e_{g}^{0} \longrightarrow t_{2g}e_{g}^{1}$ růžový

243 kJ mol $^{-1}$ (Δ_0)

Rozštěpení d-hladin v T_d poli

$$\Delta_{\rm t} = 4/9 \, \Delta_{\rm o}$$

 T_d komplexy jsou vždy vysokospinové žádný d-orbital nemíří přímo k ligandům (jako u O_h) slabší interakce

d-orbitaly v tetraedrickém poli ligandů

Rozštěpení d-hladin v čtvercovém poli (d⁸)

18-ti elektronové pravidlo

Počet d-elektronů neutrálního kovu

- + 2 e neutrální ligandy

+ 1 e aniontové ligandy součet 18 pro stabilní komplexy

$$Cr(CO)_6$$
 Cr d^6 $6 \times CO$ $6 \times 2 = 12$ $celkem$ 18

[Co(NH₃)₃Cl₃] Co d⁹

$$3 \times NH_3 \ 3 \times 2 = 6$$

 $3 \times C1 \ 3 \times 1 = 3$
celkem 18

Vliv ligandů na vlastnosti komplexů

en = ethylendiammin

Vliv ligandů na vlastnosti komplexů

