Jamboree Education!


```
import pandas as pd
import numpy as np

df=pd.read_csv("/content/Jamboree_Admission.csv")
```

Observations on shape of data, data types of all the attributes, conversion of categorical attributes to 'category' (If required), missing value detection, statistical summary.

df.head()							
Serial CGPA \	No.	GRE Score TOE	FL Score Un	iversity Rati	.ng	SOP	LOR
0	1	337	118		4	4.5	4.5
9.65							
1	2	324	107		4	4.0	4.5
8.87 2	3	316	104		3	3.0	3.5
8.00	5	310	104		J	5.0	3.3
3	4	322	110		3	3.5	2.5
8.67	_						
4	5	314	103		2	2.0	3.0
8.21							
Research Chance of Admit							
0 1	1	0.92					
	1	0.76					
2	Т	0.72					

```
3
                          0.80
          1
4
          0
                          0.65
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):
#
     Column
                         Non-Null Count
                                          Dtype
- - -
0
     Serial No.
                         500 non-null
                                          int64
1
     GRE Score
                         500 non-null
                                          int64
 2
                         500 non-null
     TOEFL Score
                                          int64
 3
     University Rating
                         500 non-null
                                          int64
4
     S0P
                         500 non-null
                                          float64
5
     L0R
                         500 non-null
                                          float64
 6
     CGPA
                                          float64
                         500 non-null
7
     Research
                         500 non-null
                                          int64
                         500 non-null
                                          float64
8
     Chance of Admit
dtypes: float64(4), int64(5)
memory usage: 35.3 KB
df.isnull().sum()
Serial No.
                      0
                      0
GRE Score
TOEFL Score
                      0
University Rating
                      0
                      0
S<sub>0</sub>P
                      0
L0R
CGPA
                      0
Research
                      0
Chance of Admit
dtype: int64
df.shape
(500, 9)
```

Univariate Analysis (distribution plots of all the continuous variable(s)barplots/countplots of all the categorical variables

```
df.drop(columns= 'Serial No.', inplace= True)
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="whitegrid")
for column in df.columns:
    plt.figure(figsize=(6, 4))
    sns.histplot(df[column], kde=True, color='blue')
```

```
plt.title(f'Histogram of {column}', fontsize=14)
plt.xlabel(column, fontsize=12)
plt.ylabel('Frequency', fontsize=12)
plt.show()
```



```
for column in df.columns:
   plt.figure(figsize=(6, 4))
   sns.boxplot(df[column])
   plt.title(f'Boxplot of {column}', fontsize=14)
   plt.xlabel(column, fontsize=12)
   plt.ylabel('Frequency', fontsize=12)
   plt.show()
```


outliers found in LOR and ADMIT columns

Bivariate Analysis (Relationships between important variables

- Data Preprocessing (10 Points)
- a. Duplicate value check
- b. Missing value treatment
- c. Outlier treatment
- d. Feature engineering
- e. Data preparation for modeling

Model building:

- a. Build the Linear Regression model and comment on the model statistics
- b. Display model coefficients with column names

```
import statsmodels.api as sm
X_sm= sm.add_constant(X_train)
model= sm.OLS(Y_train, X_sm)
result= model.fit()
print(result.summary())

OLS Regression Results

========
Dep. Variable: Chance of Admit R-squared:
0.829
```

Model:			0LS	Adj. R-squa	red:	
0.826 Method:		Least	Squares	F-statistic:		
272.1 Date:		Sun, 07 J	an 2024	Prob (F-stat	cistic):	
3.33e-146 Time:		Θ	4:01:35	Log-Likeliho	ood:	
573.41 No. Observa	ations:		400	AIC:		
-1131. Df Residual	.S:		392	BIC:		
-1099. Df Model:			7			
Covariance	Type:	no	nrobust			
						=====
========		coef	std err	t	P> t	
[0.025	0.975]					
const		0.3450	0.010	34.259	0.000	
0.325 GRE Score	0.365	0.1067	0.027	3.893	0.000	
0.053 TOEFL Score	0.161	0.0826	0.027	3.024	0.003	
0.029 University	0.136	0.0194	0.016	1.185	0.237	_
0.013 SOP	0.052	0.0084	0.020	0.428	0.669	
0.030	0.047					-
LOR 0.039	0.110	0.0744	0.018	4.131	0.000	
CGPA 0.288	0.419	0.3537	0.033	10.633	0.000	
Research 0.011	0.039	0.0247	0.007	3.476	0.001	
=======						=====
Omnibus: 1.943			94.166	Durbin-Watso	on:	
Prob(Omnibu 231.309	ıs):		0.000	Jarque-Bera	(JB):	
Skew: 5.92e-51			-1.158	Prob(JB):		
Kurtosis:			5.918	Cond. No.		
========						

======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Testing the assumptions of linear regression model (50 Points)

- a. Multicollinearity check by VIF score (variables are dropped one-by-one till none has VIF>5) (10 Points)
- b. Mean of residuals is nearly zero (10 Points)
- c. Linearity of variables (no pattern in residual plot) (10 Points)
- d. Test for Homoscedasticity (10 Points)
- e. Normality of residuals (almost bell-shaped curve in residuals distribution, points in QQ plot are almost all on the line) (10 Points)

```
from statsmodels.stats.outliers influence import
variance_inflation_factor
vif=pd.DataFrame()
vif["features"]= X sm.columns
vif['VIF score'] = [variance inflation factor(X sm, i) for i in
range(X sm.shape[1])]
vif["VIF score"]= round(vif["VIF score"], 2)
vif.sort values(by='VIF score', ascending=False)
            features VIF_score
0
                           11.94
               const
                            4.77
                CGPA
6
1
           GRE Score
                            4.24
2
         TOEFL Score
                            4.06
4
                 S0P
                            2.71
3
  University Rating
                           2.59
5
                            1.98
                L0R
7
            Research
                           1.47
```

Mean of residuals is nearly zero

On Test data

```
X_test_sm= sm.add_constant(X_test)
Y_test_pred= result.predict(X_test_sm)
error_test= Y_test-Y_test_pred
error_test.mean()
```

On train data(Mean of residuals)

```
Y_train_pred= result.predict(X_sm)
error_train= Y_train-Y_train_pred
error_train.mean()
```

-1.6597834218146091e-16

Linearity of variables (no pattern in residual plot)

```
sns.histplot(error_test)
<Axes: ylabel='Count'>
```


sns.histplot(error_train)

<Axes: ylabel='Count'>

plt.scatter(Y_train, Y_train_pred)
<matplotlib.collections.PathCollection at 0x7b86dbc57b80>

sns.scatterplot(x=Y_test, y=Y_test_pred)

<Axes: xlabel='Chance of Admit '>


```
sns.scatterplot(x= Y_test_pred,y=error_test)
plt.xlabel("predicted ")
plt.ylabel("Residuals")
plt.title("Predicted values vs Residuals")

Text(0.5, 1.0, 'Predicted values vs Residuals')
```


Q-Q plot (residuals on train data)

from statsmodels.graphics.gofplots import qqplot
qqplot(error_train, line='s')

Q-Q plot (residuals on test data)

qqplot(error_test, line='s')

Test for Homoscedasticity

- Null Hypothesis: Heteroscedasticity is not present.
- Alternate Hypothesis: Heteroscedasticity is present.

```
from statsmodels.compat import lzip
import statsmodels.stats.api as sms

name = ['F statistic', 'p-value']
test = sms.het_goldfeldquandt(Y_train, X_sm)
lzip(name, test)

[('F statistic', 1.0772994279987238), ('p-value', 0.30323276479815664)]
```

Model performance evaluation

Metrics checked - MAE, RMSE, R2, Adj R2

```
from sklearn.metrics import r2_score, mean_squared_error,
mean_absolute_error
```

For Test data

```
print("r2 score: ", r2_score(Y_test,Y_test_pred))
print("mean squared error: ", mean_squared_error(Y_test,Y_test_pred))
print("mean absolute error: ",
mean_absolute_error(Y_test,Y_test_pred))

r2 score: 0.7927524897595928
mean squared error: 0.004429285498957571
mean absolute error: 0.04730057428620608
```

Train data

```
print(result.summary())
                           OLS Regression Results
                    Chance of Admit
Dep. Variable:
                                       R-squared:
0.829
Model:
                                 0LS
                                       Adj. R-squared:
0.826
Method:
                       Least Squares F-statistic:
272.1
Date:
                    Sun, 07 Jan 2024 Prob (F-statistic):
3.33e-146
Time:
                            04:48:29 Log-Likelihood:
573.41
No. Observations:
                                       AIC:
                                 400
-1131.
Df Residuals:
                                       BIC:
                                 392
-1099.
Df Model:
                                   7
Covariance Type:
                           nonrobust
_____
_____
                       coef std err
                                                       P>|t|
                                              t
[0.025
           0.975]
const
                     0.3450
                                 0.010
                                           34.259
                                                       0.000
           0.365
0.325
GRE Score
                     0.1067
                                 0.027
                                            3.893
                                                       0.000
0.053
           0.161
TOEFL Score
                                                       0.003
                     0.0826
                                 0.027
                                            3.024
```

0.029	0.136					
University		0.0194	0.016	1.185	0.237 -	
0.013	0.052	0 0004	0 020	0 420	0.660	
SOP 0.030	0.047	0.0084	0.020	0.428	0.669 -	
LOR	0.047	0.0744	0.018	4.131	0.000	
0.039	0.110					
CGPA		0.3537	0.033	10.633	0.000	
0.288	0.419	0.0247	0 007	2 476	0.001	
Research 0.011	0.039	0.0247	0.007	3.476	0.001	
0.011 ========	=======		=======	.========	=============	
======						
Omnibus:			94.166	Durbin-Watsor	1:	
1.943	,					
Prob(Omnibu	ıs):		0.000	Jarque-Bera (JB):	
231.309 Skew:			-1.158	<pre>Prob(JB):</pre>		
5.92e-51			-1.130	1100(30).		
Kurtosis:			5.918	Cond. No.		
23.4						
========	-=====		======			
======						
Notes:						
[1] Standard Errors assume that the covariance matrix of the errors is						
correctly specified.						

Based on significance level we can drop SOP and University rating

```
X_sm_SOP_Urating= X_sm.drop(columns=["SOP", "University Rating"])
model1= sm.OLS(Y_train, X_sm_SOP_Urating)
result1=model1.fit()
print(result1.summary())
                           OLS Regression Results
                    Chance of Admit R-squared:
Dep. Variable:
0.828
Model:
                                 OLS Adj. R-squared:
0.826
Method:
                       Least Squares F-statistic:
380.3
                    Sun, 07 Jan 2024 Prob (F-statistic):
Date:
2.65e-148
Time:
                            04:58:07 Log-Likelihood:
572,28
```

No. Observation	ons:	400	AIC:				
-1133.							
Df Residuals:		394	BIC:				
-1109.		-					
Df Model:		5					
Covariance Type:		nonrobust					
=======================================							
=======	coef	std err	t	P> t	[0.025		
0.975]				' '			
const	0.3425	0.010	34.923	0.000	0.323		
0.362	015425	0.010	541525	0.000	0.323		
GRE Score	0.1086	0.027	3.970	0.000	0.055		
0.162							
TOEFL Score	0.0887	0.027	3.298	0.001	0.036		
0.142 LOR	0.0836	0.017	5.050	0.000	0.051		
0.116	010030	0.017	3.030	0.000	0.031		
CGPA	0.3667	0.032	11.465	0.000	0.304		
0.430	0 0054	0.007	2 572	0.000	0.011		
Research 0.039	0.0254	0.007	3.573	0.000	0.011		
0.039							
======							
Omnibus:		90.913	Durbin-	Watson:			
1.941	_	0.000	100000	De 22 (1D).			
Prob(Omnibus) 218.765	:	0.000	Jarque-	Bera (JB):			
Skew:		-1.127	Prob(JB	;):			
3.13e-48			`				
Kurtosis:		5.837	Cond. N	0.			
20.6							
======							
Notes:							
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.							
correctly specified.							

Metric values after dropping SOP and University rating

```
Y_pred_new= result1.predict(X_sm_SOP_Urating)
print("r2 score: ", r2_score(Y_train,Y_pred_new))
print("mean squared error: ", mean_squared_error(Y_train,Y_pred_new))
```

```
print("mean absolute error: ",
mean_absolute_error(Y_train,Y_pred_new))

r2 score: 0.8283544154206002
mean squared error: 0.003348330647824238
mean absolute error: 0.04166067850716051
```

Recommendations

- Important features to increase chances of admit are a good CGPA, GRE, TOEFL score respectively
- The model predicts with an accurancy of 82%
- University rating and SOP are insignificant features