Chapter 13

DESIGNING FEEDBACK CONTROLLERS FOR MOTOR DRIVES

13-1	Introduction
13-2	Control Objectives
13-3	Cascade Control Structure
13-4	Steps in Designing the Feedback Controller
13-5	System Representation for Small-Signal Analysis
13-6	Controller Design
13-7	Example of a Controller Design
	References
	Problems

Feedback Control Objectives

- ☐ Feedback control
 - makes system insensitive to disturbances and parameter variation
- Control Objectives
 - _ Zero steady-state error
 - _ Good dynamic response
 - fast
 - small overshoot

Definitions

Open loop

$$G_{OL}(s) = G_c(s)G_p(s)$$

Closed loop

$$G_{CL}(s) = G_{OL}(s)/(1 + G_{OL}(s))$$

Crossover frequency

$$f_c, \omega_c$$

- o Gain Margin
- Phase Margin
 45° for no oscillations
 60° preferable
- \circ Closed loop bandwidth $\Box f_c$ desired high for fast response

Example

$$G_{OL}(s) = K_{OL}/s$$
; $K_{OL} = 2 \times 10^3$

closed loop step response

Cascaded Control

- ☐ Torque loop: fastest
- ☐ Speed loop: slower
- ☐ Position loop: slowest

Steps in Designing the Controller

- □ Assume system is linear about the steady state operating point → design controller using Linear Control Theory
- ☐ Simulate design under large signal conditions and "tweak" controller as necessary

System representation for small signal analysis

- Assume
 - Steady state system operating point = 0
 - Highest bandwidth at least an order of magnitude lower than switching frequency neglect switching frequency components

Averaged Representation of the PPU

$$\overline{v}_a(t) = k_{PWM} v_c(t)$$

$$V_a(s) = k_{PWM} V_c(s)$$

Modeling of DC Machines and Mechanical Load Combinations

$$\overline{v}_{a}(t) = e_{a}(t) + R_{a}\overline{i}_{a}(t) + L_{a}\frac{d\overline{i}_{a}(t)}{dt}$$

$$e_{a}(t) = k_{E}\omega_{m}(t)$$

$$V_a(s) = E_a(s) + (R_a + sL_a)I_a(s)$$

$$\Rightarrow I_a(s) = \frac{V_a(s) - E_a(s)}{(R_a + s L_a)} \qquad ; E_a(s) = k_E \omega_m(s)$$

$$T_{em}(s) = k_T I_a(s)$$

$$\omega_m(s) = \frac{T_{em}(s)}{sJ_{eq}}$$

;
$$E_a(s) = k_E \omega_m(s)$$

PI Controller

$$\frac{v_c(s)}{E(s)} = k_p + \frac{k_i}{s} = \frac{k_i}{s} \left(1 + \frac{s}{k_i / k_p} \right)$$

- Proportional-Integral (PI) Controller
 - In the torque and speed loops, proportional control without integral control input leads to steady-state error

Controller Design

Procedure

- Design torque loop (fastest) first
- Design speed loop assuming torque loop to be ideal
- Design position loop (slowest) assuming speed loop to be ideal

 T_{em}

 $I_a(s)$

Design of the Torque (Current) Loop Simplifying assumptions

PI

o Interleaved $\frac{I_a(s)}{s}$ loops redrawn as nested loops

Assuming J high enough, inner loop can

be ignored

 $k_E k_T$

$$G_{I,OL}(s) = \underbrace{\frac{k_{iI}}{s} \left(1 + \frac{s}{k_{iI} / k_p} \right)}_{PPU} \underbrace{\frac{1 / R_a}{1 + s\tau_e}}_{motor}$$

Design of the Torque (Current) Loop Selecting Parameters

• Select zero of PI to cancel motor pole; $\frac{k_{pI}}{k_{iI}} = \tau_e$ $\Rightarrow G_{I,OL} = \frac{k_{I,OL}}{s}; \quad k_{i,OL} = \frac{k_{iI} k_{PWM}}{R_a}$

• Choose k_{iI} to achieve desired cross-over frequency $k_{I,OL} = \omega_{CI}$

Design of the Speed Loop

- Assume current loop to be ideal represent by unity
- Choose crossover frequency $\omega_{C\omega}$ an order of magnitude lower than ω_{CI}
- Choose a reasonable phase margin $\phi_{PM,\omega}$

Design of the Position Loop

- Assume speed loop to be ideal
- Proportional gain $(k_{P\theta})$ alone is adequate due to presence of pure integrator $k_{P\theta}$

pure integrator $G_{\theta,OL} = \frac{k_{P\theta}}{s}$

 $\Rightarrow k_{P\theta} = \omega_{CP}$