

ReCell – Refurbished Smartphones

Supervised Learning - Foundations

June 6, 2023

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

Executive Summary

- Summary of observations and conclusions
 - R-squared of the final model is 84.7%, indicates the model explains about 85% of the variation in the train data. Model also is not underfitted.
 - MAE and RMSE train and training sets are comparable, indicate model is not overfitting.
 - MAE able to predict normalized_used_price within a mean error of 0.18 euros difference on the test data. The model is a good prediction as well as inferences purposes

Business Problem Overview and Solution Approach

- Business problem overview:
 - Newly release refurbished phone has a higher price compared the older refurbished phone. It
 is important for company direction to decide whether it is worth to invest/refurbish/sell much
 older refurbished phone as the price may decrease quickly.
 - The company may need to focus more sales on the new release refurbished phone as it has higher re-sale value.
 - Smartphones brand Nokia, Samsung and Xiaomi give the high sale value compared with other brand.
 - Customer only looking for basic quality for refurbished smartphones, such as screen size, good quality of ram and internal memory, battery, camera quality and 4g technology availability, hence it is good to sell more of the excellent basic smartphones.

Business Problem Overview and Solution Approach

- Solution approach/business improvement/recommendation
 - The company needs to collect/perform research for more data on the age of customers, genders and occupation to increase more sales.
 - Since the newly release refurbished phone has a higher price compared the older phone, company staffs need to improve more skill on smartphones refurbishment for readiness on new/advanced smartphone technologies.

- After checking the data types and screen it, we may need to roughly screen all the information below into meaningful graphs.
- There is about 14 useful data to investigate the information.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3454 entries, 0 to 3453
Data columns (total 15 columns):
                         Non-Null Count Dtype
    Column
                     3454 non-null object
    brand name
                      3454 non-null object
    05
                      3454 non-null float64
    screen size
                      3454 non-null object
    4g
                      3454 non-null object
    5g
    main camera mp 3275 non-null float64
    selfie camera mp 3452 non-null float64
                    3450 non-null float64
3450 non-null float64
    int memory
    ram
                     3448 non-null float64
    battery
                    3447 non-null float64
    weight
11 release year 3454 non-null
                                       int64
                     3454 non-null
12 days used
                                       int64
13 normalized used price 3454 non-null float64
14 normalized new_price 3454 non-null float64
dtypes: float64(9), int64(2), object(4)
memory usage: 404.9+ KB
```


- Rough statistical summary for variables and categorical value as below:
 - Top famous refurbished smartphone is Android with brand_name Others
 - As 5g is probably quite new to the refurbished smartphones, 4g is the top requirement for market demand.
 - The maximum price for used_price is about 6.6 euros with maximum days 1094.

	count	mean	std	min	25%	50%	75%	max
screen_size	3454.0	13.713115	3.805280	5.080000	12.700000	12.830000	15.340000	30.710000
main_camera_mp	3275.0	9.460208	4.815461	0.080000	5.000000	8.000000	13.000000	48.000000
selfie_camera_mp	3452.0	6.554229	6.970372	0.000000	2.000000	5.000000	8.000000	32.000000
int_memory	3450.0	54.573099	84.972371	0.010000	16.000000	32.000000	64.000000	1024.000000
ram	3450.0	4.036122	1.365105	0.020000	4.000000	4.000000	4.000000	12.000000
battery	3448.0	3133.402697	1299.682844	500.000000	2100.000000	3000.000000	4000.000000	9720.000000
weight	3447.0	182.751871	88.413228	69.000000	142.000000	160.000000	185.000000	855.000000
release_year	3454.0	2015.965258	2.298455	2013.000000	2014.000000	2015.500000	2018.000000	2020.000000
days_used	3454.0	674.869716	248.580166	91.000000	533.500000	690.500000	868.750000	1094.000000
normalized_used_price	3454.0	4.364712	0.588914	1.536867	4.033931	4.405133	4.755700	6.619433
normalized_new_price	3454.0	5.233107	0.683637	2.901422	4.790342	5.245892	5.673718	7.847841

	count	unique	top	freq
brand_name	3454	34	Others	502
os	3454	4	Android	3214
4g	3454	2	yes	2335
5a	3454	2	no	3302

EDA Results – Univariate Analysis: 1. normalized_used_price O Learning

- Normalized_used_price has an outlier for both left and right.
- However, the histogram indicates quite good of bell shape curve and this is a good indication of data is normally distributed.

EDA Results – Univariate Analysis: 2. normalized_new_price POWER AHEAD

- Normalized_new_price also has an outlier for both left and right.
- Histogram also shows a good indication of data is normally distributed.

EDA Results – Univariate Analysis: 3. screen_size

- Screen_size also has an outlier for both left and right.
- The histogram shows data is sparse and widely distributed.

EDA Results – Univariate Analysis: 4. main_camera_mp

- Main_camera_mp has some outlier at the right side.
- The histogram shows data is widely distributed.

EDA Results – Univariate Analysis: 5. selfie_camera_mp

- Selfie_camera_mp also has some outlier at the right side.
- The histogram shows data is widely distributed and a little bit skewed at the right side.

EDA Results – Univariate Analysis: 6. int_memory

- Int_memory also has some outlier at the right side.
- The histogram shows data is a little bit skewed at the right side.

EDA Results – Univariate Analysis: 7. ram

- ram also has some outlier at the left and right side.
- The histogram shows data widely distributed, with 4GB is the highest frequency for ram.

- Smartphone weight has a lot of outlier at the right side.
- The histogram shows data is rightly skewed.

- Smartphone battery has a lot of outlier at the right side.
- The histogram shows data is rightly skewed.

EDA Results - Univariate Analysis: 10. days_used

- Smartphone days_used has no outlier but having a wide range of data with average 675 days
- The histogram shows data is widely distributed with slightly skewed to the left side.

EDA Results - Univariate Analysis: 11. release_year

 2014 release_year is the highest on refurbished smartphone with contribution of 18.6%, followed by 2013 (16.5%) and 2015 (14.9%)

EDA Results – Univariate Analysis: 12. brand_name

 Brand_name Others shows the highest contribution, estimated 14.5% of refurbished smartphones, followed by Samsung (9.9%) and Huawei (7.3%)

- Android dominates the most contributed os for refurbished smartphones, which is 93.1%, while other os may not give high contribution.
- Nevertheless, Others is contributed about 4% and Windows contributed about 1.9%

 Refurbished smartphones contains 4g function is having about 67.6% while 32.4% has no 4g function.

 Refurbished smartphones contains 5g function is dominates about 95.6% while 4.4% has no 5g function.

EDA Results – Bivariate Analysis: 1. Correlation check

screen_size	1.00	0.15	0.27	0.07	0.27	0.81	0.83	-0.29	0.61	0.46
main_camera_mp	0.15	1.00	0.43	0.02	0.26	0.25	-0.09	-0.14	0.59	0.54
selfie_camera_mp	0.27	0.43	1.00	0.30	0.48	0.37	-0.00	-0.55	0.61	0.48
int_memory	0.07	0.02	0.30	1.00	0.12	0.12	0.01	-0.24	0.19	0.20
ram	0.27	0.26	0.48	0.12	1.00	0.28	0.09	-0.28	0.52	0.53
battery	0.81	0.25	0.37	0.12	0.28	1.00	0.70	-0.37	0.61	0.47
weight	0.83	-0.09	-0.00	0.01	0.09	0.70	1.00	-0.07	0.38	0.27
days_used	-0.29	-0.14	-0.55	-0.24	-0.28	-0.37	-0.07	1.00	-0.36	-0.22
normalized_used_price	0.61	0.59	0.61	0.19	0.52	0.61	0.38	-0.36	1.00	0.83
normalized_new_price	0.46	0.54	0.48	0.20	0.53	0.47	0.27	-0.22	0.83	1.00
	screen_size	main_camera_mp	selfie_camera_mp	int_memory	ram	battery	weight	days_used	normalized_used_price	normalized_new_price

• Other high correlated item is smartphones battery and its weight.

EDA Results – Bivariate Analysis: 2. Amount of RAM varies across brands

- Most brands are concentrated on below of 4GB of ram, while some brand also shows they are also having more of 4GB of ram on refurbished smartphones.
- 3 brand_name is having minimum of 4GB of ram is OnePlus, Google and Sony.

EDA Results – Bivariate Analysis: 3. Devices which offer a large battery

- All brands are having around similar weight of smartphones, with frequency ranging 100-200g.
- However, some smartphones brand is seen having more outliers/more weight than 200g, with brand Apple is having a most wide range compared with other brands.

EDA Results – Bivariate Analysis: 4. Devices with large screen primarily Great Learning for entertainment

- Others smartphones dominate highest contribution with largest screen (14.5%).
- Samsung and Huawei is followed closely with each contribution is 9.9% and 7.3% respectively.

EDA Results – Bivariate Analysis: 5. Good front camera to click cool Great Learning selfies

Huawei becomes the highest contributor for good front camera, which is 13.3%, followed closely by Vivo (11.9%) and Oppo (11.5%)

EDA Results – Bivariate Analysis: 6. Good rear camera to click cool Great Learning

Sony becomes the highest contributor for good rear camera, which is 39.4%, followed with wide gap by Motorola (11.7%) and Others (9.6%)

EDA Results – Bivariate Analysis: 7. Price of used devices across the years

 Refurbished smartphones release_year is increasing with the increasing of normalized_used_price. It is keep increasing since the baseline of 2013.

EDA Results – Bivariate Analysis: 8. Phones and tablets offering 4G and 5G networks

- Normalized_used_price can be seen increasing with the adaptable of new technology on 4g and 5g.
- The average used price of smartphones having 4g is estimated about 4.6 euros while 5g is 5.2 euros.

Data Preprocessing – Check for duplicate and missing value POWER AHEA

Duplicate value check

data.duplicated().sum()

- No value was duplicated from data given
- Checking for missing value
 - Missing value from lowest to highest quantity:
 - Selfie_camera_mp, int_memory, ram, battery, weight, main_camera_mp

brand_name	0
os	0
screen_size	0
4g	0
5g	0
main_camera_mp	179
selfie_camera_mp	2
int_memory	4
ram	4
battery	6
weight	7
release_year	0
days_used	0
normalized_used_price	0
normalized_new_price	0
dtype: int64	

- Missing value treatment by using group median on release_year, brand_name and main_camera_mp
- Re-confirm missing value treatment after imputation with median treatment

brand_name	0
os	0
screen_size	0
4g	0
5g	0
main_camera_mp	0
selfie_camera_mp	0
int_memory	0
ram	0
battery	0
weight	0
release_year	0
days_used	0
normalized_used_price	0
normalized_new_price	0
dtype: int64	

No missing value after treatment

Data Preprocessing – Feature Engineering

Now we need to create new column for years_since_release column, and take 2021 year as baseline. df.head() as below:

	brand_ name	os	screen_ size	4g	5g	main_ca mera_mp	selfie_ca mera_mp	int_memo ry	ram	battery	weight	days_used	normalized_u sed_price	normalized _new_price	years_si nce_rele ase
0	Honor	Android	14.50	yes	no	13.0	5.0	64.0	3.0	3020.0	146.0	127	4.307572	4.715100	1
1	Honor	Android	17.30	yes	yes	13.0	16.0	128.0	8.0	4300.0	213.0	325	5.162097	5.519018	1
2	Honor	Android	16.69	yes	yes	13.0	8.0	128.0	8.0	4200.0	213.0	162	5.111084	5.884631	1
3	Honor	Android	25.50	yes	yes	13.0	8.0	64.0	6.0	7250.0	480.0	345	5.135387	5.630961	1
4	Honor	Android	15.32	yes	no	13.0	8.0	64.0	3.0	5000.0	185.0	293	4.389995	4.947837	1

3454.000000 count 5.034742 mean 2.298455 std min 1.000000 25% 3.000000 50% 5.500000 75% 7.000000 8.000000 max

Name: years_since_release, dtype: float64

Data Preprocessing – Outlier check

years_since_release

- There are a lot of outlier data can be found on the checked item.
- However, we will not remove it to prevent from information loss during predicting the model.

Data Preprocessing - Data preparation for modeling

- Output for prediction: normalized price of used device
 - Define dependant and independent variables, (data.head()) below
 - Encode categorical feature
 - Split the data into train and test data, by define the dependant and independent variable
 - Build linear regression using train data and check its performance

```
0 4.307572
1 5.162097
```

2 5.111084

3 5.135387

4 4.389995

Name: normalized_used_price, dtype: float64

Data Preprocessing – Creating dummy variables

• data.head() – contains 5 rows, 89 columns

	const	scree n_siz e	selfie _cam era_ mp	int_m emor y	ram	batter y	weig ht	days _use d	norm alized _new _pric e	years _sinc e_rel ease	 main _cam era_ mp_2 0.1	main _cam era_ mp_1 2.6	main _cam era_ mp_1 6.3	main _cam era_ mp_2 2.6	era_	main _cam era_ mp_2 1.5	era_	main _cam era_ mp_8 .1		main _cam era_ mp_2 2.5
0	1.0	14.50	5.0	64.0	3.0	3020. 0	146.0	127	4.715 100	1	 0	0	0	0	0	0	0	0	0	0
1	1.0	17.30	16.0	128.0	8.0	4300. 0	213.0	325	5.519 018	1	 0	0	0	0	0	0	0	0	0	0
2	1.0	16.69	8.0	128.0	8.0	4200. 0	213.0	162	5.884 631	1	 0	0	0	0	0	0	0	0	0	0
3	1.0	25.50	8.0	64.0	6.0	7250. 0	480.0	345	5.630 961	1	 0	0	0	0	0	0	0	0	0	0
4	1.0	15.32	8.0	64.0	3.0	5000. 0	185.0	293	4.947 837	1	 0	0	0	0	0	0	0	0	0	0

Data Preprocessing – splitting test and train data

• Split data into 70:30 ratio

```
print("Number of rows in train data =", x_train.shape[0])
print("Number of rows in test data =", x_test.shape[0])

Number of rows in train data = 2417
Number of rows in test data = 1037
```

Data Preprocessing – Building linear regression

Result

	OLS Regress		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	normalized_used_price OLS Least Squares Wed, 31 May 2023 11:35:56 2417	Adj. R-squared:	0.850 0.845 159.2 0.00 163.90 -159.8 326.6
coef std err	t P> t	[0.025 0.975]	
const 1.6815 0.080 screen size	20.959 0.000	1.524 1.839	
0.0238 0.003	6.865 0.000	0.017 0.031	
selfie_camera_mp 0.0137 0.001 int memory	12.146 0.000	0.012 0.016	
0.0002 7.09e-05	2.259 0.024	2.11e-05 0.000	
0.0223 0.005	4.274 0.000	0.012 0.032	

Training performance

	RMSE	MAE	R-squared	Adj. R-squared	MAPE
0	0.226107	0.17736	0.849942	0.844202	4.247918

Testing performance

	RMSE	MAE	R-squared	Adj. R-squared	MAPE
0	0.226107	0.17736	0.849942	0.844202	4.247918

• Both data on training and testing is comparable. Data is not overfitting.

Checking Linear Regression Assumptions – 1. Checking multicollinearity

- Checking for VIF
 - Found more than 80 data of VIF, 10 of them is higher than 5 and some of them contain NaN os_iOS, brand_name_Others, brand_name_Huawei, brand_name_Apple, main_camera_mp_1.0, main_camera_mp_41.0, main_camera_mp_20.1, main_camera_mp_12.6, brand_name_Infinix and brand_name_Samsung

	feature	VIF	11	brand_name_Apple	13.339101	23	brand_name_LG 4.949061	35	brand_name_Realme 1.983867	
0	const	293.713519	12	brand_name_Asus	3.377646	24	brand_name_Lava 1.738618	36	brand_name_Samsung 7.745273	
1	screen_size	8.072753	13	brand_name_BlackBerry	1.748348	25	brand_name_Lenovo 4.646126	37	brand_name_Sony 3.584545	
2	selfie_camera_mp	2.897750	14	brand_name_Celkon	1.835217	26	brand_name_Meizu 2.224413	38	brand_name_Spice 1.719226	
3	int_memory	1.434004	15	brand_name_Coolpad	1.481877	27	brand_name_Micromax 3.411905	39	brand_name_Vivo 3.725951	
4	ram	2.375248	16	brand_name_Gionee	1.978906	28	brand_name_Microsoft 1.941682	40	brand_name_XOLO 2.168078	
5	battery	4.285870	17	brand_name_Google	4.619072	29	brand_name_Motorola 3.387973	41	brand_name_Xiaomi 3.838877	
6	weight	6.972076	18	brand_name_HTC	3.562150	30	brand_name_Nokia 3.587112	42	brand_name_ZTE 3.967755	
7	days_used	2.751173	19	brand_name_Honor	3.410125	31	brand_name_OnePlus 1.451525	43	os_Others 2.183287	
8	normalized_new_price	3.464667	20	brand_name_Huawei	6.200095	32	brand_name_Oppo 4.054459	44	os_Windows 1.808120	
9	years_since_release	5.260309	21	brand_name_Infinix	inf	33	brand_name_Others 9.908586	45	os_iOS 11.918108	
10	brand_name_Alcatel	3.436328	22	brand_name_Karbonn	1.588284	34	brand_name_Panasonic 2.143026	_ 46	4g_yes 2.593308 _	
48	main_camera_mp_8.0	1.762953	60	main_camera_mp_21.0	1.063097	72	main_camera_mp_20.2	1.015961	84 main_camera_mp_21.5	1.033344
49	main_camera_mp_5.0	2.175234	61	main_camera_mp_1.3	1.406044	73	main_camera_mp_4.0	1.094703	85 main_camera_mp_21.2	1.059116
50	main_camera_mp_10.5	1.241867	62	main_camera_mp_13.1	1.028512	74	main_camera_mp_12.5	1.034819	86 main_camera_mp_8.1	1.137137
51	main_camera_mp_3.15	1.559747	63	main_camera_mp_24.0	1.022395	75	main_camera_mp_10.0	1.066051		1.043345
52 main_camera_mp_	<bound method="" ndframeadd_nume<="" p=""></bound>	inf	64	main_camera_mp_0.08	1.037308	76	main_camera_mp_6.5	1.019133		
53	main_camera_mp_2.0	1.793736	65	main_camera_mp_20.7	1.156673	77	main_camera_mp_6.7	1.227826	oo main_camera_mp_22.5	1.013937
54	main_camera_mp_16.0	1.174057	66	main_camera_mp_23.0	1.192150	78		NaN		
55	main_camera_mp_0.3	1.687279	67	main_camera_mp_1.0	NaN		main_camera_mp_41.0			
56	main_camera_mp_12.0	1.363908	68	main_camera_mp_18.0	1.067228	79	main_camera_mp_20.1	NaN		
57	main_camera_mp_14.5	1.140618	69	main_camera_mp_12.2	4.057327	80	main_camera_mp_12.6	NaN		
58	main_camera_mp_48.0	1.043227	70	main_camera_mp_12.3	1.320221	81	main_camera_mp_16.3	1.021789		
59	main_camera_mp_3.0	1.047813	71	main_camera_mp_20.0	1.052247	82	main_camera_mp_22.6	1.011516		
			72	main_camera_mp_20.2	1.015961	83	main_camera_mp_19.0	1.176157	ibution prohibited	
						n _			ribution prohibited.	

Checking Linear Regression Assumptions – 2. Removing multicollinearity

10 with high VIF – drop os_iOS

	col	Adj. R-squared after_dropping col	RMSE after dropping col
0	os_iOS	0.844667	0.230093
1	brand_name_Others	0.844664	0.230096
2	brand_name_Huawei	0.844653	0.230104
3	brand_name_Apple	0.844631	0.230121
4	main_camera_mp_1.0	0.844603	0.230141
5	main_camera_mp_41.0	0.844603	0.230141
6	main_camera_mp_20.1	0.844603	0.230141
7	main_camera_mp_12.6	0.844603	0.230141
8	brand_name_Infinix	0.844603	0.230141
9	brand_name_Samsung	0.844589	0.230151

Checking Linear Regression Assumptions – 3. Reconfirm multicollinearity

brand_name_Samsung

brand_name_Sony brand_name_Spice

brand name Vivo brand name XOLO brand_name_Xiaomi brand_name_ZTE

> os_Others os Windows

5g_yes main camera mp 8.0 main camera mp 5.0 2.174966

3.584325

1.718615 3.725889

3.967182 2.031078

1.926578

Duplicate value check

main_camera_mp_13.1 1.028511

74

	feature	VIF 11	brand_name_Apple	2.202002	23	brand_name_LG 4.948910	36
0	const 293.2°	19202 12	brand_name_Asus	3.377637	24	brand_name_Lava 1.738443	37
1	screen_size 8.00	03282 13	brand_name_BlackBerry	1.743071	25	brand_name_Lenovo 4.646126	38
2	selfie_camera_mp 2.88	89453 14	brand_name_Celkon		26	brand_name_Meizu 2.224413	39
3		33948 15	brand_name_Coolpad		27	brand_name_Micromax 3.411482	40
4	- '	62290 16	brand_name_Gionee		28	brand_name_Microsoft 1.941576	41
5		81403 17			29	brand_name_Motorola 3.387969	42
6		56962 18	brand_name_Google		30	brand_name_Nokia 3.583185	43
7	-		brand_name_HTC		31	brand_name_OnePlus 1.451477	44
0			brand_name_Honor		32	brand_name_Oppo 4.054341	45
8		20	brand_name_Huawei		33	brand_name_Others 9.908202	46
9		59441 21	brand_name_Infinix	inf inf	34	brand_name_Panasonic 2.142948	47
10	brand_name_Alcatel 3.43	36325 22	brand_name_Karbonn	1.588028	35	brand_name_Realme 1.983694	48
49	main_camera_mp_10.5 1.241863	62	main_camera_mp_24.0 1.0	022394	75	main_camera_mp_6.5 1.019125	
50	main_camera_mp_3.15 1.559727	63	main_camera_mp_0.08 1.0	036240	76	main_camera_mp_6.5 1.019125 main_camera_mp_6.7 1.227689	
51 main_camera_mp_<	<bound inf<="" method="" ndframeadd_nume="" p=""></bound>	64	main_camera_mp_20.7 1.	156651	77	main_camera_mp_41.0 NaN	
52	main_camera_mp_2.0 1.790517	65	main_camera_mp_23.0 1.1	192129	78	main_camera_mp_20.1 NaN	
53	main_camera_mp_16.0 1.173522	66	main_camera_mp_1.0	NaN	79	main_camera_mp_12.6 NaN	
54	main_camera_mp_0.3 1.677736	67	=	066858	80	main_camera_mp_16.3 1.021683	
55	main_camera_mp_12.0 1.362789	68		057217	81	main_camera_mp_22.6 1.011503	
56	main_camera_mp_14.5 1.140377	69	= = :=	320106	82	main_camera_mp_19.0 1.176141	
57	main_camera_mp_48.0 1.043162	70	= =	052235	83	main_camera_mp_21.5 1.033341	
58	main_camera_mp_3.0 1.047747	71		015957	84	main_camera_mp_21.2 1.059108	
59	main_camera_mp_21.0 1.063045 main_camera_mp_1.3 1.400436	72 73		094701 034751	85	main_camera_mp_8.1 1.136492	
60	main_camera_mp_1.3 1.400436	13	main_camera_mp_12.5 1.0	034731	86	main_camera_mp_1.2 1.043312	

main_camera_mp_10.0 1.066001

87

main camera mp 22.5 1.013923

Checking Linear Regression Assumptions – 4. Dropping high P-value

- High P-value after dropping, as below:
 - 'screen_size', 'selfie_camera_mp', 'int_memory', 'ram', 'battery', 'weight',
 'normalized_new_price', 'years_since_release', 'brand_name_Nokia', 'brand_name_Samsung',
 'brand_name_Xiaomi', '4g_yes', 'main_camera_mp_8.0', 'main_camera_mp_5.0',
 'main_camera_mp_3.15', 'main_camera_mp_2.0', 'main_camera_mp_16.0',
 'main_camera_mp_0.3', 'main_camera_mp_48.0', 'main_camera_mp_1.3',
 'main_camera_mp_0.08', 'main_camera_mp_23.0', 'main_camera_mp_4.0',
 'main_camera_mp_10.0', 'main_camera_mp_6.7', 'main_camera_mp_8.1'

Checking Linear Regression Assumptions – 5. Re-check Modeling and its performance

Re-build a new model, and re-check its training and test performance

OLS Regression Results

Dep. Variable:	normalized_used_price	R-squared:	0.847
Model:	OLS	Adj. R-squared:	0.846
Method:	Least Squares	F-statistic:	509.9
Date:	Wed, 31 May 2023	Prob (F-statistic):	0.00
Time:	13:20:56	Log-Likelihood:	142.48
No. Observations:	2417	AIC:	-231.0
Df Residuals:	2390	BIC:	-74.61
Df Model:	26		
Covariance Type:	nonrobust		

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	coef	std err	t	P> t	[0.025	0.975]
const	1.7385	0.058	29.979	0.000	1.625	1.852
screen_size	0.0240	0.003	7.635	0.000	0.018	0.030
selfie_camera_mp	0.0140	0.001	13.088	0.000	0.012	0.016
int_memory	0.0001	6.77e-05	2.023	0.043	4.17e-06	0.000
ram	0.0182	0.004	4.104	0.000	0.009	0.027
battery	-1.493e-05	7.05e-06	-2.118	0.034	-2.87e-05	-1.11e-06
weight	0.0011	0.000	8.331	0.000	0.001	0.001
normalized_new_price	0.4031	0.011	35.417	0.000	0.381	0.425
years_since_release	-0.0157	0.004	-4.258	0.000	-0.023	-0.008
brand_name_Nokia	0.0909	0.031	2.938	0.003	0.030	0.152
brand_name_Samsung	-0.0356	0.016	-2.199	0.028	-0.067	-0.004
brand_name_Xiaomi	0.0690	0.025	2.718	0.007	0.019	0.119
4g_yes	0.0495	0.015	3.291	0.001	0.020	0.079
main_camera_mp_8.0	-0.1172	0.014	-8.636	0.000	-0.144	-0.091

-11 056

0 000

A A18

main camera mn 5 0

-A 1937

Training performance

	RMSE	MAE	R-squared	Adj. R- squared	MAPE
0	0.22812	0.179195	0.847258	0.845532	4.289722

Testing performance

	RMSE	MAE	R-squared	Adj. R- squared	MAPE
0	0.238456	0.184816	0.842349	0.83813	4.488782

-0 159

-A 228

Checking Linear Regression Assumptions – 6. Test for linearity and independence

- Plot fitted values vs residuals below indicates no specific pattern of residuals were observed.
- Therefore, the assumptions of linearity and independence are met.

	Actual Values	Fitted Values	Residuals
3026	4.087488	3.873294	0.214194
1525	4.448399	4.597455	-0.149055
1128	4.315353	4.303790	0.011563
3003	4.282068	4.209339	0.072729
2907	4.456438	4.484329	-0.027891

Checking Linear Regression Assumptions – 7. Test for normality Learn

Great Learning

- Plot q-q graph and test its normality using Shapiro-Wilk's test
 - H₀: Residuals are follow normal distribution
 H_a: Residuals are not follow normal distribution
- Shapiro result (statistic = 0.9729295969009399, P-value = 5.526429619280507e-21)
- Based on the result, the residuals have formed some of bell shape curve pattern. P-value<0.05, the residuals are not normal and looking at plot, it is not normal at the tail only. We can accept it as being close to normal distribution.

Checking Linear Regression Assumptions – 8. Test for homoscedasticity

- Test using goldfeldquandt test
 - #H₀: Residuals are homoscedastic

#H_a: Residuals are heteroscedastic

- F statistic, 1.0621029651017098, P-value = 0.1502301471062937
- Based on the result, P-value>0.05, and therefore, the residuals are homoscedastic.

	Actual Values	Residuals
1995	4.566741	4.437539
2341	3.696103	3.982614
1913	3.592093	3.702040
688	4.306495	4.134388
650	4.522115	5.145306
2291	4.259294	4.411313
40	4.997685	5.458849
1884	3.875359	4.066433
2538	4.206631	4.006378
45	5.380450	5.270153

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Final Model – 9. Modeling and its performance

 Overview of final ML model and its parameters – training and performance data is comparable, data is not suffering from overfitting

OLS Regression Results

						===	
Dep. Variable:	normalized_us	ed_price	R-squared:		0.	. 847	
Model:		OLS	Adj. R-squar	0.	.846		
Method:	Least	Squares	F-statistic:		509.9		
Date:	Wed, 31	May 2023	Prob (F-stat	istic):	(9.00	
Time:		13:38:43	Log-Likeliho	od:	142	2.48	
No. Observations:		2417	AIC:		-23	31.0	
Df Residuals:		2390	BIC:		-74	1.61	
Df Model:		26					
Covariance Type:	n	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	1.7385	0.058	29.979	0.000	1.625	1.852	
screen_size	0.0240	0.003	7.635	0.000	0.018	0.030	
selfie_camera_mp	0.0140	0.001	13.088	0.000	0.012	0.016	
int_memory	0.0001	6.77e-05	2.023	0.043	4.17e-06	0.000	
ram	0.0182	0.004	4.104	0.000	0.009	0.027	
battery	-1.493e-05	7.05e-06	-2.118	0.034	-2.87e-05	-1.11e-06	
weight	0.0011	0.000	8.331	0.000	0.001	0.001	
normalized_new_pric		0.011	35.417	0.000	0.381	0.425	
years_since_release	-0.0157	0.004	-4.258	0.000	-0.023	-0.008	
brand_name_Nokia		0.031	2.938	0.003	0.030	0.152	
brand_name_Samsung		0.016	-2.199	0.028	-0.067	-0.004	
brand_name_Xiaomi	0.0690	0.025	2.718	0.007	0.019	0.119	
4g_yes	0.0495	0.015	3.291	0.001	0.020	0.079	
main_camera_mp_8.0		0.014	-8.636	0.000	-0.144	-0.091	
main_camera_mp_5.0	-0.1937	0.018	-11.056	0.000	-0.228	-0.159	
main_camera_mp_3.15	-0.2646	0.030	-8.716	0.000	-0.324	-0.205	

0.027

-10.711

-0.2889

main camera mp 2.0

Training performance

	RMSE	MAE	R-squared	Adj. R- squared	MAPE
0	0.22812	0.179195	0.847258	0.845532	4.289722

Testing performance

	RMSE	MAE	R-squared	Adj. R- squared	MAPE
0	0.238456	0.184816	0.842349	0.83813	4.488782

-0.342

0.000

-0.236

Model Performance Summary

- Comparing both training and testing parameters, all of them are similar.
- Final equation listed as below:

normalized_used_price =

```
1.738545028306485 + 0.024049975384125753 * (screen_size) + 0.013989086272071936 * (selfie_camera_mp) + 0.00013694306297642295 * (int_memory) + 0.01816562860308736 * (ram) + -1.4925025305305476e-05 * (battery) + 0.0010752501859532682 * (weight) + 0.40307398052427745 * (normalized_new_price) + - 0.015711837734562098 * (years_since_release) + 0.09093570766879824 * (brand_name_Nokia) + - 0.035603489917088366 * (brand_name_Samsung) + 0.06895891693898151 * (brand_name_Xiaomi) + 0.049523278235525756 * (4g_yes) + -0.11718247339081946 * (main_camera_mp_8.0) + -0.1936561415392915 * (main_camera_mp_5.0) + -0.2646330074418731 * (main_camera_mp_3.15) + -0.2888872520038558 * (main_camera_mp_2.0) + 0.1044097032237572 * (main_camera_mp_16.0) + -0.4966417366223834 * (main_camera_mp_0.3) + 0.2914834717876478 * (main_camera_mp_48.0) + -0.5172022623394124 * (main_camera_mp_1.3) + -0.48259611555877635 * (main_camera_mp_0.08) + 0.2391718880381255 * (main_camera_mp_10.0) + -0.30885878430487645 * (main_camera_mp_4.0) + -0.238554776149014 * (main_camera_mp_10.0) + -0.3081639343426148 * (main_camera_mp_6.7) + -0.24584064612219225 * (main_camera_mp_8.1)
```

Model Performance Summary

- Both of training and performance data is comparable, thus we can conclude our final model is able to predict 84.7% of the variation in the train data.
- RMSE value for both training and performance data is comparable, so our model is not suffering from overfitting.
- MAE value indicates that our current model is able to predict normalized_used_price within a mean error 0.18 euros on the test data.
- Therefore, we can conclude our final model is a good prediction as well as inferences purposes.

APPENDIX

Data Background and Contents

data.head()

		orand_ name	os	screen _size	4g	5g	main_camera _mp	selfie_camera _mp	int_m emory	ram	battery	weight	release_ year	days_us ed	HOHHAUZE	normalized _new_price
(0	Honor	Android	14.50	yes	no	13.0	5.0	64.0	3.0	3020.0	146.0	2020	127	4.307572	4.715100
:	1	Honor	Android	17.30	yes	yes	13.0	16.0	128.0	8.0	4300.0	213.0	2020	325	5.162097	5.519018
:	2	Honor	Android	16.69	yes	yes	13.0	8.0	128.0	8.0	4200.0	213.0	2020	162	5.111084	5.884631
:	3	Honor	Android	25.50	yes	yes	13.0	8.0	64.0	6.0	7250.0	480.0	2020	345	5.135387	5.630961
	4	Honor	Android	15.32	yes	no	13.0	8.0	64.0	3.0	5000.0	185.0	2020	293	4.389995	4.947837
!	5	Honor	Android	16.23	yes	no	13.0	8.0	64.0	4.0	4000.0	176.0	2020	223	4.413889	5.060694
(6	Honor	Android	13.84	yes	no	8.0	5.0	32.0	2.0	3020.0	144.0	2020	234	3.878259	4.518958
	7	Honor	Android	15.77	yes	no	13.0	8.0	64.0	4.0	3400.0	164.0	2020	219	4.729421	5.188726
	В	Honor	Android	15.32	yes	no	13.0	16.0	128.0	6.0	4000.0	165.0	2020	161	4.886054	5.299916
!	9	Honor	Android	16.23	yes	no	13.0	8.0	128.0	6.0	4000.0	176.0	2020	327	4.773224	5.073610

- data.shape 3454 rows, 15 columns
- data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3454 entries, 0 to 3453
Data columns (total 15 columns):
    Column
                          Non-Null Count Dtype
    brand name
                          3454 non-null
                                         object
                         3454 non-null
                                         object
    os
                                        float64
    screen size
                         3454 non-null
                         3454 non-null
                                         object
    4g
    5g
                         3454 non-null
                                         object
                                         float64
    main camera mp
                         3275 non-null
    selfie camera mp
                         3452 non-null
                                         float64
    int memory
                          3450 non-null
                                         float64
    ram
                       3450 non-null
                                        float64
                       3448 non-null
    battery
                                        float64
    weight
                         3447 non-null
                                        float64
11 release year
                         3454 non-null
                                         int64
12 days used
                          3454 non-null
                                         int64
13 normalized used price 3454 non-null
                                        float64
14 normalized new price 3454 non-null
                                         float64
dtypes: float64(9), int64(2), object(4)
memory usage: 404.9+ KB
```


- We want to predict the normalized_price of the used smartphones
- Below is after we treated all missing value.
- We need to encode the categorical features and split data into train and test data
- x.head()

	brand_ name	os	screen _size	4g	5g	main_ca mera_m p	selfie_cam era_mp	int_me mory	ram	battery	weight	days_ used	normaliz ed_new_ price	years_si nce_rele ase
0	Honor	Android	14.50	yes	no	13.0	5.0	64.0	3.0	3020.0	146.0	127	4.71510 0	1
1	Honor	Android	17.30	yes	yes	13.0	16.0	128.0	8.0	4300.0	213.0	325	5.51901 8	1
2	Honor	Android	16.69	yes	yes	13.0	8.0	128.0	8.0	4200.0	213.0	162	5.88463 1	1
3	Honor	Android	25.50	yes	yes	13.0	8.0	64.0	6.0	7250.0	480.0	345	5.63096 1	1
4	Honor	Android	15.32	yes	no	13.0	8.0	64.0	3.0	5000.0	185.0	293	4.94783 7	1

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

First Model

• First model after perform all initial necessary treatments

	0	LS Regress	ion Results					
Dep. Variable:	normalized_u	sed_price	R-squared:		0.850			
Model:		OLS	Adj. R-squ	Adj. R-squared:				
Method:	Leas	t Squares	F-statisti	c:	159.2			
Date:			Prob (F-st		0.00			
Time:			Log-Likeli		163.90			
No. Observations:		2417	AIC:		-159.8			
Df Residuals:		2333	BIC:		326.6			
Df Model:		83						
Covariance Type:		nonrobust						
coef std err	t	D\ +	[A A25	0 0751				
		12[6]	[0.023					
const								
1.6815 0.080	20.959	0.000	1.524	1.839				
	20.959	0.000	1.524	1.859				
screen_size	6 065	0.000	0.047	0.034				
0.0238 0.003	6.865	0.000	0.017	0.031				
selfie_camera_mp								
0.0137 0.001	12.146	0.000	0.012	0.016				
int_memory								
0.0002 7.09e-05	2.259	0.024	2.11e-05	0.000				
ram								
0.0223 0.005	4.274	0.000	0.012	0.032				

battery						brand_name	e_Huawei				
-1.753e-05	7.39e-06	-2.373	0.018	-3.2e-05	-3.04e-06	-0.0225	0.045	-0.502	0.616	-0.110	0.065
weight						brand_name	e_Infinix				
0.0011	0.000	7.982	0.000	0.001	0.001	0.0192	0.046	0.413	0.680	-0.072	0.110
days_used						brand_name					
2.496e-05	3.11e-05	0.803	0.422	-3.6e-05	8.6e-05	0.0772	0.067	1.155	0.248	-0.054	0.208
normalized						brand_name					
0.4146	0.013	32.372	0.000	0.390	0.440	-0.0206	0.045	-0.455	0.649	-0.110	0.068
years since		32.372	0.000	0.550	0.440	brand_name					
-0.0213	0.005	-4.560	0.000	-0.031	-0.012	0.0197	0.062	0.317	0.752	-0.102	0.142
		-4.500	0.000	-0.031	-0.012	brand_name					
brand_name_						0.0340	0.045	0.751	0.453	-0.055	0.123
0.0093	0.047	0.196	0.844	-0.084	0.102	brand_name					
brand_name_						-0.0198	0.056	-0.353	0.724	-0.130	0.090
-0.1129	0.147	-0.766	0.444	-0.402	0.176	brand_name	e_Micromax				
brand_name_	_Asus					-0.0254	0.048	-0.533	0.594	-0.119	0.068
0.0033	0.048	0.070	0.944	-0.090	0.097	brand_name	e_Microsoft				
brand name	BlackBerry					0.0642	0.089	0.720	0.472	-0.111	0.239
-0.0768	0.072	-1.067	0.286	-0.218	0.064	brand_name	e_Motorola				
brand name	Celkon					-0.0037	0.050	-0.074	0.941	-0.102	0.094
-0.0499	0.067	-0.747	0.455	-0.181	0.081	brand_name	e_Nokia				
brand name		01747	0.455	0.101	0.001	0.0781	0.052	1.498	0.134	-0.024	0.180
0.0089	0.073	0.123	0.902	-0.133	0.151	brand_name	e_OnePlus				
		0.125	0.902	-0.155	0.151	0.0680	0.077	0.881	0.378	-0.083	0.219
brand_name_	-				0.455	brand_name	e_Oppo				
0.0425	0.058	0.738	0.461	-0.070	0.155	0.0051	0.048	0.107	0.915	-0.089	0.099
brand_name_						brand_name	e_Others				
0.0562	0.157	0.359	0.720	-0.251	0.364	-0.0125	0.042	-0.297	0.767	-0.095	0.070
brand_name_	HTC					brand_name	e_Panasonic				
-0.0112	0.049	-0.230	0.818	-0.107	0.084	0.0428	0.056	0.768	0.443	-0.067	0.152
							-				

First Model

brand name Realme					main_camera_mp_10.5							main camer	a mp 13.1				
0.0156 0.062	0.253	0.800	-0.105	0.136	0.0275 0.055 main camera mp 3.15	0.501	0.616	-0.080	0.135			0.1410	0.165	0.854	0.393	-0.183	0.465
brand_name_Samsun	g				-0.2440 0.032	-7.688	0.000	-0.306	-0.182			main camer	a mp 24.0				
-0.0477 0.04	3 -1.098	0.272	-0.133	0.037	main_camera_mp_ <bound 1 13.0</bound 	d method N	IDFrameadd_	numeric_ope	rations. <loc< td=""><td>als>.media</td><td>n of 0</td><td>0.0398</td><td>0.134</td><td>0.296</td><td>0.767</td><td>-0.224</td><td>0.303</td></loc<>	als>.media	n of 0	0.0398	0.134	0.296	0.767	-0.224	0.303
brand_name_Sony					2 13.0							main camer					
-0.0476 0.05	5 -0.862	0.389	-0.156	0.061	3 13.0 4 13.0							-0.4712	0.234	-2.010	0.045	-0.931	-0.011
brand_name_Spice					4 13.0							main camer		2.010	0.043	0.551	0.011
-0.0184 0.06	3 -0.291	0.771	-0.142	0.106	3449 13.0							0.1023	0.083	1.237	0.216	-0.060	0.264
brand_name_Vivo					3450 13.0 3451 13.0							main camer		1.23/	0.210	-0.000	0.204
-0.0279 0.04	9 -0.575	0.565	-0.123	0.067	3452 13.0							0.2705	0.073	3.720	0.000	0.128	0.413
brand_name_XOLO					3453 13.0 Name: main camera mp,	Longth	2454 dtupo:	float645	0.0192	0.046	0.413			5.720	0.000	0.128	0.415
	.055 -0.003	0.999	-0.107	0.107	main_camera_mp_2.0	_				0.040	0.413	main_camer		4 057		2 24- 46	7 00 47
brand_name_Xiaomi					-0.2751 0.029	-9.569	0.000	-0.331	-0.219				1.01e-16	-1.257	0.209	-3.24e-16	7.09e-17
0.0650 0.048	1.342	0.180	-0.030	0.160	main_camera_mp_16.0 0.1076 0.025	4.345	0.000	0.059	0.156			main_camer					
brand_name_ZTE					main_camera_mp_0.3							0.0682	0.238	0.287	0.774	-0.398	0.535
-0.0027 0.04	8 -0.057	0.955	-0.097	0.091	-0.4714 0.044 main camera mp 12.0	-10.704	0.000	-0.558	-0.385			main_camer					
os_Others	0.603	0.405	0.045	0.003	0.0076 0.024	0.319	0.750	-0.039	0.055			-0.1628	0.175	-0.928	0.354	-0.507	0.181
0.0241 0.035	0.683	0.495	-0.045	0.093	main_camera_mp_14.5 -0.0145 0.078	-0.187	0.852	-0.167	0.138			main_camer	a_mp_12.3				
os_Windows -2.594e-05 0	.048 -0.003	1 1.000	-0.093	0.093	main_camera_mp_48.0							0.0540	0.108	0.500	0.617	-0.158	0.266
os_iOS	.048 -0.00.	1.000	-0.093	0.093	0.2757 0.118 main camera mp 3.0	2.344	0.019	0.045	0.506			main_camer	a_mp_20.0				
0.0272 0.146	0.186	0.852	-0.259	0.313	-0.1121 0.136	-0.824	0.410	-0.379	0.155			0.1257	0.096	1.303	0.193	-0.064	0.315
4g_yes	0.100	0.032	-0.239	0.515								main_camer	a_mp_20.2				
0.0479 0.016	2.975	0.003	0.016	0.080								0.0289	0.232	0.125	0.901	-0.426	0.484
5g_yes	2.575	0.003	0.010	0.000								main camer	a mp 4.0				
-0.0665 0.03	2 -2.065	0.039	-0.130	-0.003								-0.2934	0.098	-2.981	0.003	-0.486	-0.100
main camera mp 8.		0.033	0.150	0.005								main camer	a mp 12.5				
-0.1088 0.01		0.000	-0.138	-0.080								0.1250	0.117	1.067	0.286	-0.105	0.355
main camera mp 5.												main camer					
-0.1803 0.01		0.000	-0.217	-0.143								-0.2221	0.119	-1.868	0.062	-0.455	0.011
												0.2221	0.115	1.000	0.002	0.433	0.011

First Model

main_camera_	mp_6.5					
-0.0930	0.164	-0.566	0.572	-0.415	0.229	
main_camera_	mp_6.7					
-0.2939	0.128	-2.303	0.023	l -0.544	-0.044	
main_camera_	mp_41.0					
2.739e-17	2.24e-17	1.225	0.2	221 -1.65e-17	7.12e-17	
main_camera_	mp_20.1					
-3.054e-17	9.68e-17	-0.315	0.	.752 -2.2e-1	l6 1.59e-16	
main_camera_	mp_12.6					
7.875e-17	4.99e-17	1.577	0.1	l15 -1.91e-17	7 1.77e-16	
main_camera_	mp_16.3					
0.3742	0.233	1.608	0.108	-0.082	0.830	
main_camera_	mp_22.6					
-0.1479		-0.639	0.52	-0.602	0.306	
main_camera_						
-0.0679		-0.666	0.500	-0.268	0.132	
main_camera_						
0.1234		0.527	0.598	-0.335	0.582	
main_camera_						
	0.168	1.233	0.218	-0.122	0.535	
main_camera_						
-0.1930		-1.572	0.116	-0.434	0.048	
main_camera_						
-0.1055		-0.449	0.654	4 -0.567	0.356	
main_camera_						
0.1759	0.232	0.759	0.448	-0.279	0.630	
Omnibus:				Durbin-Watson:		1.906
Prob(Omnibus	5):			Jarque-Bera (J	JB):	389.471
Skew:				Prob(JB):		2.68e-85
Kurtosis:		4	.591	Cond. No.		4.21e+19

Training performance

	RMSE	MAE	R-squared	Adj. R-squared	MAPE
0	0.226107	0.17736	0.849942	0.844202	4.247918

Testing performance

	RMSE	MAE	R-squared	Adj. R-squared	MAPE
0	0.226107	0.17736	0.849942	0.844202	4.247918

Final Model

- Final model establish after we complete checking and qualify for all assumptions:
 - No multicollinearity remove multicollinearity (VIF>10)
 - Dropping high P-value>0.05
 - Check for linearity and test for independence
 - Test for normality
 - Test for homosdecascity

Final Model

POWER	AHEAD

	OL	S Regressi	on Results			
			R-squared:		0.847	
Model:	OLS		Adj. R-squared:		0.846	
Method:			F-statistic:		509.9	
Date:	Wed, 07 Jun 2023		Prob (F-statistic):		0.00	
Time:	09:26:13		Log-Likelihood:		142.48	
No. Observations:	2417		AIC:		-231.0	
Df Residuals:	2390		BIC:		-74.61	
Df Model:		26				
Covariance Type:		onrobust				
	coef	std err	t	P> t	[0.025	0.975
const	1.7385	0.058	29.979	0.000	1.625	1.85
screen size	0.0240	0.003	7.635	0.000	0.018	0.03
selfie camera mp	0.0140	0.001	13.088	0.000	0.012	0.01
int memory	0.0001	6.77e-05	2.023	0.043	4.17e-06	0.00
ram	0.0182	0.004	4.104	0.000	0.009	0.02
battery	-1.493e-05	7.05e-06	-2.118	0.034	-2.87e-05	-1.11e-0
weight	0.0011	0.000	8.331	0.000	0.001	0.00
normalized new pric	e 0.4031	0.011	35.417	0.000	0.381	0.42
years since release	-0.0157	0.004	-4.258	0.000	-0.023	-0.00
brand_name_Nokia	0.0909	0.031	2.938	0.003	0.030	0.15
brand_name_Samsung	-0.0356	0.016	-2.199	0.028	-0.067	-0.00
brand_name_Xiaomi	0.0690	0.025	2.718	0.007	0.019	0.11
4g_yes	0.0495	0.015	3.291	0.001	0.020	0.07
main_camera_mp_8.0	-0.1172	0.014	-8.636	0.000	-0.144	-0.09
main_camera_mp_5.0	-0.1937	0.018	-11.056	0.000	-0.228	-0.15
main_camera_mp_3.15	-0.2646	0.030	-8.716	0.000	-0.324	-0.20
main_camera_mp_2.0	-0.2889	0.027	-10.711	0.000	-0.342	-0.23
main camera mp 16.0	0.1044	0.024	4.360	0.000	0.057	0.15

main_camera_mp_0.3	-0.4966	0.040	-12.287	0.000	-0.576	-0.417
main_camera_mp_48.0	0.2915	0.115	2.529	0.012	0.065	0.518
main_camera_mp_1.3	-0.5172	0.062	-8.331	0.000	-0.639	-0.395
main_camera_mp_0.08	-0.4826	0.231	-2.086	0.037	-0.936	-0.029
main_camera_mp_23.0	0.2392	0.067	3.581	0.000	0.108	0.370
main_camera_mp_4.0	-0.3089	0.094	-3.271	0.001	-0.494	-0.124
main_camera_mp_10.0	-0.2386	0.116	-2.060	0.040	-0.466	-0.011
main_camera_mp_6.7	-0.3082	0.120	-2.564	0.010	-0.544	-0.072
main_camera_mp_8.1	-0.2458	0.116	-2.113	0.035	-0.474	-0.018
Omnibus:	208.9	965 Durb	in-Watson:		1.911	
Prob(Omnibus):	0.6	900 Jarq	ue-Bera (JB)	:	394.419	
Skew:	-0.5	86 Prob	(JB):		2.25e-86	
Kurtosis:	4.5	594 Cond	. No.		1.69e+05	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.69e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Training performance

	RMSE MAE		R-squared	Adj. R- squared	MAPE	
0	0.22812	0.179195	0.847258	0.845532	4.289722	

Testing performance

	RMSE	MAE	R-squared	Adj. R- squared	MAPE
0	0.238456	0.18481 6	0.842349	0.83813	4.48878 2

Final Equation

normalized_used_price =

```
1.738545028306485 + 0.024049975384125753 * (screen\_size) + 0.013989086272071936 * (selfie\_camera\_mp) + 0.00013694306297642295 * (int\_memory) + 0.01816562860308736 * (ram) + - 1.4925025305305476e-05 * (battery) + 0.0010752501859532682 * (weight) + 0.40307398052427745 * (normalized\_new\_price) + -0.015711837734562098 * (years\_since\_release) + 0.09093570766879824 * (brand\_name\_Nokia) + -0.035603489917088366 * (brand\_name\_Samsung) + 0.06895891693898151 * (brand\_name\_Xiaomi) + 0.049523278235525756 * (4g\_yes) + -0.11718247339081946 * (main\_camera\_mp\_8.0) + -0.1936561415392915 * (main\_camera\_mp_5.0) + -0.2646330074418731 * (main\_camera\_mp_3.15) + -0.2888872520038558 * (main\_camera\_mp_2.0) + 0.1044097032237572 * (main\_camera\_mp_16.0) + -0.4966417366223834 * (main\_camera\_mp_0.3) + 0.2914834717876478 * (main\_camera\_mp_4.0) + -0.5172022623394124 * (main\_camera\_mp_1.3) + -0.48259611555877635 * (main\_camera\_mp_0.08) + 0.2391718880381255 * (main\_camera\_mp_23.0) + -0.30885878430487645 * (main\_camera\_mp_4.0) + -0.238554776149014 * (main\_camera\_mp_10.0) + -0.3081639343426148 * (main\_camera\_mp_6.7) + -0.24584064612219225 * (main\_camera\_mp_8.1)
```


Happy Learning!

