Własności języków regularnych. Analiza leksykalna

Języki formalne i techniki translacji - Wykład 3

Maciek Gębala

16 października 2018

Maciek Gebala

asności języków regularnych. Analiza leksykalna

Własności języków regularnych

Lemat o pompowaniu

Niech L będzie językiem regularnym. Wtedy istnieje stała n t.że jeśli z jest dowolnym słowem z L oraz $|z|\geqslant n$, to z możemy przedstawić w postaci z=uvw, gdzie $|uv|\leqslant n$ i $|v|\geqslant 1$ oraz uv^iw należy do L dla każdego $i\geqslant 0$.

 \boldsymbol{n} jest nie większe niż liczba stanów najmniejszego DFA akceptującego $\boldsymbol{L}.$

Dowód

Na tablicy.

Własności języków regularnych. Analiza leksykaln

Wykorzystanie Lematu o pompowaniu

Dowodzenie że *L* nie jest regularny

- Załóż, że L jest regularny i istnieje odpowiednie n.
- Wybierz słowo z zgodnie z lematem (jego długość musi zależeć od n).
- Pokaż, że dla każdego podziału z zgodnego z lematem istnieje i takie, że uvⁱw ∉ L.

Przykład

$$L = \{ 0^{i^2} : i \in N \}$$

Załóżmy, że L jest regularny i weźmy n z Lematu o pompowaniu. Weźmy $z=0^{p^2}.$

z = uvw i $|uv| \le n$ oraz $|v| \ge 1$. Weźmy i = 2. Wtedy mamy

$$n^2 < |uv^2w| = |uvw| + |v| \le n^2 + n < (n+1)^2$$

czyli $uv^2w \notin L$. L nie jest regularny.

Maciek Gębala

Własności języków regularnych. Analiza leksykalr

Własności języków regularnych

Lemat. Klasa języków regularnych jest zamknięta na operację sumy, dopełnienia, przecięcia, złożenia i domknięcia Kleene'ego.

Dowód

Suma, złożenie i domknięcie Kleene'ego: z definicji RE. Dopełnienie: jeśli L akceptowany przez DFA $M=(Q,\Sigma,\delta,q_0,F)$ to \overline{L} akceptowany przez $M'=(Q,\Sigma,\delta,q_0,Q\setminus F)$. Przecięcie: Jeśli L_1 i L_2 akceptowane przez odpowiednie DFA $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ i $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, to $L_1\cap L_2$ akceptowany przez $M=(Q_1\times Q_2,\Sigma,\delta,(q_1,q_2),F_1\times F_2)$, gdzie $\delta((p,q),a)=(\delta_1(p,a),\delta_2(q,a))$. Suma: $M=(Q_1\times Q_2,\Sigma,\delta,(q_1,q_2),(Q_1\times Q_2)\setminus((Q_1\setminus F_1)\times (Q_2\setminus F_2)))$.

Notatki
Natali:
Notatki
Notatki

Własności języków regularnych

Lemat. Zbiór słów akceptowanych przez DFA M o n stanach jest

- niepusty ← M akceptuje słowo o długości mniejszej niż n;
- nieskończony jeśli M akceptuje słowo o długości I, dla

Lemat. Istnieje algorytm rozstrzygający czy dwa automaty skończone są równoważne (akceptują te same języki).

Dowód

Weźmy M_1 i M_2 DFA akceptujące odpowiednio języki L_1 i L_2 . Jeśli $L_1 \neq L_2$ to $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ niepusty.

Analiza leksykalna

Rozbicie ciągu znaków wejściowych na symbole leksykalne (wyrazy posiadające określone znaczenie). Ciąg symboli leksykalnych stanowi wejście dla analizatora składniowego.

Podstawowe pojęcia

- Symbol leksykalny (token)
- Leksem (symbol leksykalny może mieć wiele leksemów)

Przykład symboli leksykalnych

```
double sqr(double x)
   return x*x;
```

Identyfikator_typu double Identyfikator Identyfikator Token Leksem KW return return Operator binarny

Zapis wzorca

- Wzorce zapisujemy jako wyrażenia regularne.
- Składnia wyrażeń rozszerzona aby umożliwić zwięzły zapis.
- W opisie przez wyrażenia regularne używamy następujących priorytetów: gwiazdka Kleene'go, złożenie, suma.

Przykład	
Symbol leksykalny	Wyrażenie regularne
Identyfikator	[a-zA-Z_][a-zA-Z0-9]*
'('	\(
'{'	\{
Operator_binarny	\ <u>`</u> *
KW_return	return

Notatki
Notatki
Notatki
Totalia
Notatki

Implementacja analizatora leksykalnego

- Wykorzystanie generatorów analizatorów leksykalnych (np. LEX, FLEX).
- Napisanie analizatora bezpośrednio w jakimś języku programowania.

Złożoność pamięciowa i czasowa automatów skończonych

Automat	Pamięć	Czas
DFA	$O(2^{ r })$	O(x)
NFA	O(r)	$O(x \cdot r)$

gdzie |r| - długość wyrażenia regularnego, |x| - długość łańcucha wejściowego.

Jednak implementacja DFA jest dużo łatwiejsza, a wielkość zmniejsza się w trakcie minimalizacji.

Maciek Gębala Własności języków regularn

Koncepcja FLEX-a

- Generowanie kodu analizatora na podstawie zadanej
- Domyślnie analizator jest w języku C.
- Wygenerowany kod źródłowy kompilujemy jako samodzielny program lub moduł programu.
- yylex() funkcja wygenerowana przez LEX-a odpowiedzialna za działanie leksera (można ją wykorzystać w innej aplikacji).

 $\mathtt{scan.l} \to \mathsf{flex} \to \mathtt{scan.c} \to \mathsf{gcc} \to \mathtt{scan} \texttt{[.exe]}$

Specyfikacja pliku źródłowego

Specyfikacja składa się z 3 części:

- Sekcja definicji.
- Sekcja reguł przetwarzania, gdzie reguła składa się z dwóch części
 - Wzorca (wyrażenia regularnego)
 - Operacji (zapisanej w C)
- Sekcja podprogramów.

Podstawowe reguły działania

- Niedopasowane znaki są przepisywane na wyjście.
- Można definiować operacje puste (wzorzec bez reguły
- Znaki specjalne poprzedzamy znakiem \.
- Wzorce zawierające spacje ujmujemy w cudzysłów podwójny.

Notatki
Natural d
Notatki
Notatki
Notatki
Notatki

Przykład

```
#include < stdio.h>
      int yywrap();
int yylex();
int NL=0;
 3
4
 6
     %}
    %%
%%
^[[:blank:]]*register[[:blank:]]+
long[[:blank:]]+int printf("long");
unsigned[[:blank:]]+int printf("unsigned_int");
signed[[:blank:]]+int printf("int");
\n { printf("\n"); NL++; }
10
11
12
13
     %%
14
15
     int yywrap() {
    printf("---\n\%d\n",NL);
16
               return 1;
17
     }
18
      int main() {
19
              return yylex();
20
```

Maciek Gęba

Własności języków regularnych. Analiza leksykalna

Wyrażenia regularne w FLEX-ie

Wyrażenie	Opis
^x	Wzorzec od początku linii
x\$	Wzorzec do końca linii
хy	Konkatenacja wzorców
х у	alternatywa wzorców
x*	domknięcie zwrotne
x +	domkniecie dodatnie
x?	opcjonalność (występuje 0 lub 1 raz)
x{3}	trzykrotne powtórzenie wzorca
x{2,4}	od dwóch do czterech powtórzeń
x{2,}	co najmniej dwa powtórzenia
(x y)z	nawiasy wyrażają priorytet
[a-z]	klasa znaków, jeden znak ze zbioru od a do z
[^a-z]	dowolny znak spoza klasy
	dowolny znak (ale nie \n)

Maciek Gębala

Własności języków regularnych. Analiza leksykaln

Zmienne wbudowane

- yytext wskaźnik na ostatnio rozpoznany (dopasowany) leksem;
- yyleng długość dopasowanego leksema;

Maciek Gebala

lasności języków regularnych. Analiza leksykaln

Zasady dopasowywania

Co zrobi LEX jeśli tekst może się dopasować do kilku wzorców?

Niejednoznaczność w LEX-ie rozstrzygana jest według 2 zasad:

- Zasada najdłuższego dopasowania.
- Zasada wcześniejszego dopasowania.

Notatki
Notatki
Notatki
Notatki