MinAvgTwoSlice

Minh Tran Dao

August 27, 2016

Problem. See https://codility.com/programmers/task/min_avg_two_slice/

Martin Kysel claimed that we only need to check slices of size 2 and 3 as the min average should be in the sub-slices.¹ In this note, I just want to give a formal proof for this observation.

Without loss of generality, consider a non-empty array $A = A_1, A_2, \ldots, A_N$ and an interger 1 < i < N. We consider the average of A and its two sub-arrays A_1, \ldots, A_i and A_{i+1}, \ldots, A_N . Let

$$B = \frac{A_1 + \ldots + A_N}{N}$$
 $C = \frac{A_1 + \ldots + A_i}{i}$ $D = \frac{A_{i+1} + \ldots + A_N}{N - i}$.

We claim that either $C \leq B$ or $D \leq B$ (*). Indeed, assume the opposite, that is, B < C and B < D. We have that:

$$B < C \Leftrightarrow \frac{A_1 + \ldots + A_N}{N} < \frac{A_1 + \ldots + A_i}{i}$$

$$\Leftrightarrow i \times (A_1 + \ldots + A_N) < N \times (A_1 + \ldots + A_i)$$

$$\Leftrightarrow i \times (A_{i+1} + \ldots + A_N) < (N - i) \times (A_1 + \ldots + A_i)$$

$$\Leftrightarrow \frac{A_{i+1} + \ldots + A_N}{N - i} < \frac{A_1 + \ldots + A_i}{i}$$

$$\Leftrightarrow D < C$$

Similarly, $B < D \Leftrightarrow C < D$.

Then B < C and B < D means D < C and C < D, a contradiction! Therefore, claim (\star) holds. What follows is simple, since a slice of size bigger than 3 is composed of sub-slices of size 2 or 3.

¹https://www.martinkysel.com/codility-minavgtwoslice-solution/