Sprawozdanie projektu Programowania Komputerów

Temat: Symulator Układu Automatycznej Regulacji

IPpp sem. III 2024/2025

grupa5

sekcja:

Bartłomiej Wojciechowski

Paweł Tatara

Podział Pracy:

Paweł Tatara	Bartłomiej Wojciechowski
Zaprogramowanie klasy PID	Zaprogramowanie klasy ARX
Zaprogramowanie funktorów sygnałów wejściowych	Funkcjonalność generatora wartości zadanej, ARX, PID w GUI
Wyświetlanie wykresów w GUI wraz z skalowaniem się osi	Zaprojektowanie skalowalnego layoutu aplikacji

Historia zmian projektu:

- Zmiana relacji klas w warstwie Back-End (zastosowanie kompozycji)
- Zmiana podziału pracy przy tworzeniu GUI
- Zmiana sposobu wyświetlania wykresów w GUI (wyświetlanie kilku wykresów na wspólnych układach współrzędnych)
- Ograniczenie interfejsu graficznego aplikacji do możliwości zadania trzech współczynników wielomianów A i B modelu ARX.
- Dodanie kontrolki do sterowania długością interwału kroków symulacji w GUI.
- Przyciski Start i Stop złączone w jeden przycisk sterujący.

Napotkane trudności:

- Działanie na kolejkach w klasie modelu ARX Rozwiązanie: Przed obliczeniami dodanie nowej próbki sygnału sterującego na koniec buforu opóźnienia i dodanie pierwszego elementu buforu opóźnienia na początek kolejki sygnałów sterujących. Po wykonaniu obliczeń w kroku symulacji usunięcie pierwszego elementu buforu opóźnienia, ostatniego elementu kolejki sygnałów oraz ustawienie nowej wartości sterowanej na początek kolejki wartości sterowanych i usunięcie ostatniej wartości tej kolejki.
- Po resecie symulacji trzeba było dwukrotnie kliknąć przycisk start/stop aby symulacja ponownie ruszyła - Rozwiązanie: Po kliknięciu resetu przed wyczyszczeniem wszystkich danych należało wykonać te same operacje co po kliknięciu start/stop w wypadku gdy symulator "jest w stanie pracy"

- Dostosowywanie zakresów osi wyświetlanego wykresu- Rozwiązanie: zastosowanie pól w klasie MainWindow przechowujących dotychczasowe najniższe i najwyższe wartości symulacji.

Czego się nauczyliśmy:

Paweł Tatara	Bartłomiej Wojciechowski
Tworzenie wykresów w QtZasada działania Regulatora PID	Praca z buforemTworzenie skalowalnego GUIUżywanie timera w Qt
 Praca nad projektem w zespole Tworzenie aplikacji w architekturze dwuwarstwowej Zarządzanie czasem Szersze poznanie dokumentacji Qt 	