Basic attacks against RSA with Python 3

CATALDO BASILE

< CATALDO.BASILE@ POLITO.IT >

POLITECNICO DI TORINO

Agenda

- learning objectives
 - RSA: understand and evaluate the impact on apparently minor decisions
 - on the overall security of entire cryptosystems
 - mathematical properties of asymmetric crypto allow attacks
 - mathematical properties may be used by attackers to their advantage
 - in crypto, also a single bit matters, so don't give any information outside
 - at the mathematical level, real-world attacks are becoming much more complex
 - remember that implementation can be the weakest link in crypto

- recall of some useful number theory functions
- RSA attacks
 - general factorization
 - fermat's factorization
 - common prime
 - common moduli
 - low public exponent
 - Hastad's broadcast
 - LSB Oracle
 - low private exponent
 - Wiener
 - Boneh Durfee
 - Coppermith's short pad
 - Franklin Reiter
 - implementation attacks

Number theory

Bézout identity

- given two integer numbers n₁, n₂
- then you can find two integer numbers *u* and *v* such that
 - $u*n_1 + v*n_2 = gcd(n_1, n_2)$
- NOTE: *u* and *v* can be either positive or negative numbers

it's even more useful when...

- if two numbers *a* and *m* are coprime
 - gcd(a,m) = 1
- then you can find two numbers
 - $ua + vm = 1 \rightarrow (working modulo m) \rightarrow ua + vm = 1 = ua (mod m)$
- in these cases, you can compute inverses easily with the Bézout identity
 - *u* is the inverse of *a mod m*

Extended Euclidean algorithm

an algorithm that computes

- the gcd and at the same time
- outputs the Bézout coefficients
- ∘ egcd(n1,n2) →
 - \circ $g \rightarrow gcd(n1,n2)$
 - o U
 - ° V
- such that
 - u*n1 + v*n2 = g

Integer roots (modulo m)

 k^{th} root of a number $x \mod m$ is the number r such that

 $\circ x = r^k \pmod{m}$

ad hoc implementations are needed

- don't use pow
 - it works for floating-point numbers!
- some efficient implementations are available based on Newton's methods
 - …already available in the libraries, web, etc.
- examples
 - isqrt
 - iroot

Evaluating attacks against RSA

factorization of the modulus

- obtain the primes p and $q \rightarrow$ then compute the private exponent d
- you can decrypt all the past and future messages and generate signatures

obtain the private exponent *d* (RSA problem)

- you can decrypt all the past and future messages and generate signatures
- happens if primes and exponents are not chosen properly
 - become vulnerable as specific theorems apply

decrypt selected messages

- happens if primes, public or private exponents are not selected properly, or
- if numbers are not padded properly before computing data
- too many data are encrypted with the same keys or encrypted data have specific mathematical properties
- weaker than the past two cases

some considerations on the performance

- every attack has a specific cost that needs to be considered before starting
- e.g., factorization easily becomes impractical

Factorize the modulus

- if you obtain *p* and *q* from *n*
 - you can compute *phi(n)* then you compute *d* from *e*
 - you win!
 - factorization is a more powerful tool
 - if you can factorize n → you solve the RSA problem
 - but not vice versa
- naive method
 - factorDB: https://github.com/ryosan-470/factordb-pycli
 - for small numbers + stored known decompositions
- General Number Field Sieve algorithm: needs very optimized code
 - yafu: https://github.com/DarkenCode/yafu/blob/master/docfile.txt

Fermat's factorization

works if p and q are close numbers

- p = a + b, q = a b
 - for some integer *a*, *b* with *b* small
- the modulus becomes

$$n = pq = (a+b)(a-b) = a^2 - b^2$$

fermat's factorization algorithm is based on an approximation cycle

- starts from the midpoint
 - the integer a = b = sqrt(n)
- increases a at each step and recomputes b
- stops when finds a and b such that b

Common prime (factorization)

if n_1, n_2 have a common prime

• ...it's too easy!!!

$$n_1 = p_1 * p_2$$

$$n_2 = p_1 * p_3$$

find the gcd with the Euclidean algorithm

- it's very fast!
- gcd(n1,n2) = p1

$$p3 = n2 // p3$$

Common modulus (messages)

two public keys

$$k_1 = (e_1, n)$$
 and $k_2 = (e_2, n)$

encrypt the message m twice with different keys, e.g., with k_1 and k_2

$$\circ$$
 $c_1 = m^{e1} \mod n$

$$c_2 = m^{e2} \mod n$$

use Bézout to find

$$\circ e_1 * u + e_2 * v = gcd(e_1, e_2)$$

if
$$(e_1, e_2) = 1$$
 we can compute

$$c_1^u c_2^v = m^{e1*u+e2*v} = m \pmod{n}$$

decrypt all the messages that are encrypted with the keys with the same modulus

Low public exponent (message)

if e = 3 and the message m to encrypt is small

- that is if $c = m^e < n$
- ∘ *m***m***m* < *n*

when computing c we don't have overflow

no reminders are computed

than m it's just the integer cubic root of the ciphertext c

decrypt all the "small messages" encrypted with keys using 3 as public exponent

Hastad's broadcast (messages)

if the same message m is encrypted with e different public keys

- $k_i = (e, n_i)$
- $c_i = m^e \mod n_i$
- $gcd(n_i, n_i) = 1$ for all i, j (no common primes)

the CRT ensures that we can find a number

- $c = m^e \mod N$
- where $N = n_1 * n_2 * ... * n_e$
- in the field of size N the message m is a "small number" thus the other attack works

effective when e = 3

- reasonable with 17
- almost impossible with 65537
 - difficult finding a message encrypted with 65537 distinct keys

decrypt all the messages (regardless of the size) if they are encrypted for enough recipients

Basic solution...

for all i < e

- compute $N_i = N // n_i$
- find Bézout coefficients u_i, v_i
 - $N_i * u_i + n_i * v_i = 1$
- a solution is
 - \circ $c = c_1 * u_i * N_i + c_2 * u_2 * N_2 + ... + c_e * u_e * N_e$
 - there are better implementations though...

LSB Oracle attack (messages)

Target = decipher the original message

LSB Oracle attack

 $c = m^e \mod n$ and m < n

```
we send c' = 2^e c = 2^e m^e = (2m)^e
```

- if 2m < n the LSB is 0 [2m is a left shift e there is no overflow]
 - therefore m < n/2
 - m is in [0,n/2]
- if 2m > n the LSB is 1 [2m is a left shift, overflow]
 - there is an overflow
 - \circ 2m (mod n) = 2m n (mod n)
 - n is odd $\rightarrow 2m n$ is odd
 - \circ m > n/2 \rightarrow m is in [n/2,n]

send 4ec, 8ec, ..., 2e*nbitc and do the same interval shrinking

- n bit is the size (in bit) of the modulus
- log (n) requests to the oracle

Low exponent attacks (private exponent)

if the private exponent is "low"

• it can be recovered efficiently starting from the public key (e,n)

n = pq and p < q < 2p (have the same size in bits, approximately)

d is considered low when

- $n^{1/4} = n^{0.25}$
 - if we use the Wiener's attack
- $^{\circ}$ $n^{0.292}$
 - if we use the Boneh-Durfee attack

use approximations based on advanced number theory results

continuous fractions / lattices

Low exponent attacks

several implementations available

- pick the best for your purposes
- Wiener's attack implementations available both in python3 and Sage
 - https://github.com/pablocelayes/rsa-wiener-attack/blob/master/RSAwienerHacker.py
- Boneh-Durfee usually requires Sage
 - https://github.com/mimoo/RSA-and-LLL-attacks/blob/master/boneh_durfee.sage
 - https://latticehacks.cr.yp.to/rsa.html

Coppersmith's short pad (message)

given a message m, padded with two random values r_1 and r_2 composed of at most p bits

$$m_1 = m / r_1$$
 and $m_2 = m / r_2$

and encrypted as

- \circ c₁= m_1 e mod n
- \circ c₂= m_2 e mod n

an attacker accessing the public key (e,n) used to encrypt c₁ and c₂

- can efficiently recover m
- if $p < \lfloor n/e^2 \rfloor \rightarrow floor(n/e^2)$

based on the Franklin-Reiter attack on related messages

- $m_1 = f(m_2)$ and f is a linear function and c_1 , c_2 encryptions with the same key
- efficiently recover m₁ and m₂ from c₁ and c₂

Other tools for attacking RSA (for lazy people)

RsaCtfTool

https://github.com/Ganapati/RsaCtfTool

Cryptools

https://github.com/sonickun/cryptools

RSHack

https://github.com/zweisamkeit/RSHack

Implementation attacks

side channels

- timing attacks
 - guess the values of bits from the time needed to perform some operations
- power consumption
 - observes consumption diagrams and guesses bits

fault attacks

- force an error in an implementation of RSA decryption using the CRT
 - and recover one of the primes
 - the one not affected by the error

Further reading

An interesting old paper

http://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

Decimal class in Python

https://docs.python.org/3/library/decimal.html