PHIL 112 Homework 1

Hardy Jones 999397426 Dr. Landry Winter 2014

1. Define

(a) Quantificational truth

There are three values for quantificational truth. Sentences of Pl can be: quantificationally true, quantificationally false, or quantificationally indeterminate

- A sentence **P** of PL is quantificationally true if and only if **P** is true for all interpretations.
- A sentence **P** of PL is quantificationally false if and only if **P** is false for all interpretations.
- A sentence **P** of PL is quantificationally indeterminate if and only if **P** is neither quantificationally true nor quantificationally false.
- (b) Quantificational equivalence

Two sentences \mathbf{P} and \mathbf{Q} of PL are quantificationally equivalent if and only if there is no interpretation on which \mathbf{P} and \mathbf{Q} have different quantificational truth values.

- 2. Symbolize the following sentences, using the symbolization key given. UD: Everything Ixy: x is identitical to y Mx: x is a math problem Lx: x is a logic problem Sxy: x is easier to solve than is y
 - (a) Math problems are easier to solve than logic problems.
 - (b) Some logic problems are easier to solve than are others.
- 3. Determine the truth values of the following with the given interpretation. UD: Set of people and planets Hx: x is a human being Lxy: x lives on y Px: x is a planet Sx: x is in the solar system e: earth
 - (a) $(\exists x)(\forall y)[Hx \land (Py \supset Lxy)]$
 - (b) $(Pe \wedge Se) \wedge (\exists w)(Hw \wedge Lwe)$
 - (c) $(\exists x)(Hx \land Lxe) \equiv Se$
 - (d) $(\forall x)(\forall y)[(Hx \land Py) \supset \neg x \equiv y]$
- 4. Determine the truth values for the following with the given interpretation. UD: Set of people Mx: x is a male Sx: x is a scientist Oxy: x is older than y a: Albert Einstein

(a)
$$(\forall x)(Mx \land Sx) \supset \neg Sa$$

- (b) $(\forall x)[(Mx \land Sx) \supset \neg Sa]$
- (c) $(\forall x)(\forall y)(Oxy \supset \neg Oyx)$
- (d) $(\forall y)[\neg y \equiv [a \land (My \land Sy)]]$
- 5. Construct an expansion of each of the following sentences for the set of constants $\{a, s\}$
 - (a) $(\forall x)(\exists y)Sxy \wedge D$
 - (b) $(\exists x)Fx \equiv \neg(\forall y)Gsy$
- 6. Show that the following argument is not quantificationally valid. Use both the interpretation method and the truth-functional expansion method.

$$\frac{(\forall y)(\exists x)(Py \supset Cyx)}{(\exists x)Cxx}$$
$$\frac{(\exists x)\neg Cxx}{(\exists x)\neg Cxx}$$

7. Are the sentences $(\forall y)Fy$ and $\neg(\exists y)\neg Fy$ quantificationally equivalent?