4.3 How derivatives affect the shape of a graph

微分應用之四: 分析函數圖形.

(★ 授課順序與 §4.4 調換.)

- 1. the fist derivative 一階導數 f'
- 2. the second derivative 二階導數 f''

0.1 The fist derivative

Increasing/Decreasing Test: 增減測試

- (a) $f' > 0 \implies f$ increasing 遞增. (有些書上用 \nearrow 符號表示.)
- (b) $f' < 0 \implies f$ decreasing 遞減. (有些書上用 \searrow 符號表示.)

Proof. (a) ((b) is similar) f'(x) > 0 on (x_1, x_2) , By Mean Value Theorem, $\exists c \in (x_1, x_2) \ni f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0$, $f(x_2) > f(x_1)$.

Note: 遞增/遞減 的區間通常不含端點((a,b)).

The First Derivative Test: 一階導數測試

c is a **critical** number of a **continuous** function f

- (a) f' change from positive to negative at $c \implies f$ has local max at c.
- (b) f' change from negative to positive at $c \implies f$ has local min at c.
- (c) f' does **NOT** change sign at $c \implies f$ has **NO** local max/min at c.

Recall: critical number c: f'(c) = 0 or f'(c) 不存在.

Recall: Fermat's Theorem:

f has local max/min at $c \implies c$ is a critical number.

反向 (⇐) 不保證, 但是加上 The First Derivative Test 就能保證有沒有.

Example 0.1 Find where $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and decreasing, and its extreme values.

Example 0.2 Find where $g(x) = x + 2\sin x$, $0 \le x \le 2\pi$ is increasing and decreasing, and its extreme values.

$$g'(x) = 1 + 2\cos x$$
, $g'(x) = 0$ when $x = \frac{2}{3}\pi, \frac{4}{3}\pi$.

	Interval	g'(x)	g(x)
	$0 < x < \frac{2}{3}\pi$	+	increasing on $(0, \frac{2}{3}\pi)$
	$\frac{2}{3}\pi < x < \frac{4}{3}\pi$	_	decreasing on $(\frac{2}{3}\pi, \frac{4}{3}\pi)$
	$\frac{4}{3}\pi < x < 2\pi$	+	increasing on $(\frac{4}{3}\pi, 2\pi)$
Ĭ	7	2) 0	0.00

$$(g'(\frac{\pi}{2}) = 1 + 2(0) = 1)$$
$$(g'(\pi) = 1 + 2(-1) = -1)$$
$$(g'(\frac{3\pi}{2}) = 1 + 2(0) = 1)$$

abs. max
$$g(2\pi) = 2\pi \approx 6.28$$

abs. min $g(0) = 0$
local max $g(\frac{2}{3}\pi) = \frac{2}{3}\pi + \sqrt{3} \approx 3.83$
local min $g(\frac{4}{3}\pi) = \frac{4}{3}\pi - \sqrt{3} \approx 2.46$

0.2 The second derivative

Define:

f is **concave upward** on an interval I if f lies above all its tangent lines. f is **concave downward** on an interval I if f lies below all its tangent lines.

Concavity Test: 凹性測試

- (a) $f'' > 0 \implies f$ concave upward 凹向上.
- (b) $f'' < 0 \implies f$ concave downward 凹向下.

Define: (p, f(p)) is an *inflection point* 反曲點 if f *continuous* at p and f changes from CU to CD or from CD to CU at (p, f(p)). (凹性改變)

Note: 反曲點要連續. Ex: $f(x) = \frac{1}{x}$ at 0.

Note: 反曲點要用點座標寫 (···,···).

The Second Derivative Test 二階導數測試

f'' is **continuous** near c

- (a) f'(c) = 0 and $f''(c) > 0 \implies f$ has local min at c.
- (b) f'(c) = 0 and $f''(c) < 0 \implies f$ has local max at c.

Note: 二階導數測試只能針對 f'(c) = 0 的臨界值, f'(c) 不存在的不能用.

4

Example 0.3 Sketch f:

- 1. f'(x) > 0 on $(-\infty, 1)$, f'(x) < 0 on $(1, \infty)$.
- 2. f''(x) > 0 on $(-\infty, -2)$ and $(2, \infty)$, f''(x) < 0 on (-2, 2).
- 3. $\lim_{x \to -\infty} f(x) = -2, \lim_{x \to \infty} f(x) = 0$

Additional:

?: 可能有反曲無極值: x^3 $-x^3$

可能有極值無反曲: x^4 ______, $-x^4$ ________ (二階導數測不到, 要用一階測.)

Example 0.4 Discuss $y = x^4 - 4x^3$ w.r.t. concavity, inflection point, local max/min and Sketch y.

Example 0.5 Sketch $f(x) = x^{2/3}(6-x)^{1/3}$.

$$f'(x) = \frac{4 - x}{x^{1/3}(6 - x)^{2/3}},$$

$$f'(x) = \frac{4 - x}{x^{1/3}(6 - x)^{2/3}},$$

$$f'(x) = 0 \text{ when } x = 4, f'(x) \text{ does not exist when } x = 0, 6.$$

$$f''(x) = \frac{-8}{x^{4/3}(6 - x)^{5/3}}, f''(x) \text{ does not exist when } x = 0, 6.$$

	< 0	0	0 < x < 4	4	4 < x < 6	6	6 <
f'	_	∄	+	0	_	∄	_
f''	_	∄		_		#	+
		igg min		max		IP	
$\begin{array}{c c} & f(x) \\ \hline local\ max & f(4) = 2^{5/3} \end{array}$							

f(0) = 0local min CU $(6,\infty)$ CD $(-\infty, 0), (0, 6)$

IP(6,0)

Attention: $(-\infty,0),(0,6)$ 不可以改用 $(-\infty,6)$, 因爲 x=0 時不對.

Example 0.6 (Need asymptote.) Sketch $f(x) = e^{1/x}$ with asymptote.

$$f'(x) = -\frac{e^{1/x}}{x^2} < 0 \text{ for } x \neq 0, \ f'(x) \text{ does not exist when } x = 0.$$

$$f'(x) = -\frac{e^{1/x}}{x^2} < 0 \text{ for } x \neq 0, \ f'(x) \text{ does not exist when } x = 0.$$

$$f''(x) = \frac{e^{1/x}(2x+1)}{x^4}, \ f'' = 0 \text{ when } x = -\frac{1}{2}, \text{ does not exist when } x = 0.$$

$$\lim_{x \to 0^+} f(x) = \infty, \lim_{x \to 0^-} f(x) = 0, \implies v.a. \ x = 0;$$

$$\lim_{x \to \infty} f(x) = 1, \lim_{x \to -\infty} f(x) = 1, \implies h.a. \ y = 1.$$

$$\lim_{x \to 0^+} f(x) = \infty$$
, $\lim_{x \to 0^-} f(x) = 0$, $\implies v.a. \ x = 0$

$$\lim_{x \to \infty} f(x) = 1, \lim_{x \to -\infty} f(x) = 1, \implies h.a. \ y = 1.$$

$x \rightarrow \infty$		$x \rightarrow -$	\sim		
	$<-\frac{1}{2}$	$\left -\frac{1}{2} \right $	$\left -\frac{1}{2} < x < 0 \right $	0	0 <
f'		_		∄	_
f''	_	0	+	∄	+
		IP	f(n)	no	

	f(x)
local max	no
local min	no
CU	$\left(-\frac{1}{2},0\right)\cup\left(0,\infty\right)$
CD	$\left(-\infty,-\frac{1}{2}\right)$
IP	$\left(-\frac{1}{2}, e^{-2}\right)$

Note: 沒有漸進線, 不知道怎麼畫。