# Geometría Analítica I

Notas

April 9, 2002

**Parábola** Es el conjunto  $\mathcal{P}$  de puntos en un plano  $\mathcal{XY}$  cuyas distancias a un punto  $\mathbf{f} \in \mathcal{XY}$  y a una recta  $\ell \in \mathcal{XY}$  coinciden. La ecuación

$$x^2 = 4py, (1)$$

con p>0, describe a todas las parábolas no degeneradas, que son las que corresponden al caso  $\mathbf{f}\notin\ell$ , módulo una traslación y/o rotación.



El punto  $\mathbf{f}$  y la recta  $\ell$  son el foco y la directriz de  $\mathcal{P}$ . El punto  $\mathbf{v} \in \mathcal{P}$  más cercano a la directriz de una parábola es su vértice. El eje de una parábola es la recta que pasa por su vértice y su foco, y es normal a la directriz. En la ecuación 1, el foco de la parábola es  $\mathbf{f} = (0, p)$ , el vértice  $\mathbf{v}$  es el origen, la ecuación de la directriz es y = -p y la ecuación del eje es x = 0.

**Elipse** Es el conjunto de puntos en un plano  $\mathcal{P}$  tal que la suma de sus distancias a dos puntos fijos  $\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{P}$  es una constante  $2a \geq d(\mathbf{f}_1, \mathbf{f}_2)$ . La ecuación

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (2)$$

con a > b > 0, describe a todas las elipses no degeneradas, que son las que corresponden al caso  $\mathbf{f}_1 \neq \mathbf{f}_2$  y  $2a > d(\mathbf{f}_1, \mathbf{f}_2)$ , módulo una traslación y/o rotación.



El punto medio  $\mathbf{c}$  de  $\mathbf{f}_1$  y  $\mathbf{f}_2$  es el centro de la elipse. Los vértices  $\mathbf{v}_1$  y  $\mathbf{v}_2$  son los puntos de la elipse en el eje principal, es decir, en la recta que pasa por  $\mathbf{f}_1$  y  $\mathbf{f}_2$ . El eje mayor es el segmento de recta determinado por los vértices de una elipse y el eje menor es el segmento determinado por los puntos de la elipse en la recta normal al eje principal que pasa por el centro. En la ecuación 2, si  $a^2 = b^2 + c^2$ , entonces los focos de la parábola son  $\mathbf{f}_1 = (c,0)$  y  $\mathbf{f}_2 = (-c,0)$ , los vértices son  $\mathbf{v}_1 = (a,0)$  y  $\mathbf{v}_2 = (-a,0)$ , el eje principal es la recta con ecuación y = 0 y el eje menor es el segmento de recta determinado por (0,b) y (0,-b).

**Hipérbola** Es el conjunto de puntos en un plano  $\mathcal{P}$  tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos  $\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{P}$  es una constante  $0 \le 2a \le d(\mathbf{f}_1, \mathbf{f}_2)$ . La ecuación

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (3)$$

con a, b > 0, describe a todas las hipérbolas no degeneradas, que son las que corresponden al caso  $0 < 2a < d(\mathbf{f}_1, \mathbf{f}_2)$ , módulo una traslación y/o rotación.



El punto medio  $\mathbf{c}$  de  $\mathbf{f}_1$  y  $\mathbf{f}_2$  es el centro de la hipérbola. Los vértices  $\mathbf{v}_1$  y  $\mathbf{v}_2$  son los puntos de la hipérbola en el eje principal, es decir, en la recta que pasa por  $\mathbf{f}_1$  y  $\mathbf{f}_2$ . En la ecuación 3, si  $c^2 = a^2 + b^2$ , entonces los focos de la hipérbola son  $\mathbf{f}_1 = (c,0)$  y  $\mathbf{f}_2 = (-c,0)$ , los vértices son  $\mathbf{v}_1 = (a,0)$  y  $\mathbf{v}_2 = (-a,0)$ , el eje es la recta con ecuación y = 0, el eje conjugado es el segmento de recta determinado por (0,b) y (0,-b) y, finalmente, las asíntotas son las rectas con ecuaciones

$$y = \pm \frac{b}{a}x.$$

# Traslación La sustitución

$$x' = x + h$$
  

$$y' = y + k$$
(4)

genera una traslación del sistema cartesiano  $\mathcal{XY}$  tal que el origen en el nuevo sistema  $\mathcal{X'Y'}$  tiene coordenadas (h,k) en el sistema  $\mathcal{XY}$ . La sustitución inversa es

$$\begin{aligned}
x &= x' - h \\
y &= y' - k
\end{aligned} \tag{5}$$



## Rotación La sustitución

$$x' = x \cos \theta + y \sin \theta$$
  

$$y' = -x \sin \theta + y \cos \theta$$
(6)

rota un ángulo  $\theta$  al sistema cartesiano  $\mathcal{XY}$ , generando un nuevo sistema cartesiano  $\mathcal{X'Y'}$ . La sustitución inversa es

$$x = x' \cos \theta - y' \sin \theta$$
  

$$y = x' \sin \theta + y' \cos \theta$$
(7)



Las ecuaciones en 6 se obtienen porque

$$x' = \overline{OB} + \overline{BQ} = \overline{OB} + \overline{CP} = \overline{OA}\cos\theta + \overline{AP}\sin\theta = x\cos\theta + y\sin\theta$$

$$y' = \overline{AC} - \overline{AB} = \overline{AP}\cos\theta - \overline{OA}\sin\theta = y\cos\theta - x\sin\theta.$$

### Eliminación del término xy

Considere la ecuación

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$
 (8)

Una rotación de un ángulo  $\theta$  del sistema cartesiano  $\mathcal{XY}$  en el sistema  $\mathcal{X'Y'}$  convierte la ecuación 8 en una ecuación de la forma

$$A'(x')^{2} + B'x'y' + C'(y')^{2} + D'x + E'y' + F' = 0,$$

y queremos determinar  $\theta$  de forma que B'=0. Sustituyendo 7 en 8 vemos que

$$B' = 2(C - A)\operatorname{sen}\theta \cos \theta + B\left(\cos^2 \theta - \sin^2 \theta\right)$$

y por lo tanto

$$B' = (C - A) \sin 2\theta + B \cos 2\theta.$$

Si B'=0, entonces

$$\tan 2\theta = \frac{B}{A - C}. (9)$$

Concluimos entonces que

$$\theta = \frac{1}{2} \tan^{-1} \left( \frac{B}{A - C} \right). \tag{10}$$

#### Ejemplo 1. Consideremos la ecuación

$$xy = 1. (11)$$

Entonces

$$\theta = \frac{1}{2}tan^{-1}\left(\infty\right) = \frac{\pi}{4}.$$

Sustituimos

$$x = \frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y$$
$$y = \frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y$$

en 11 y obtenemos

$$\left(\frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y\right)\left(\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y\right) = 1,$$

que se reduce a

$$\frac{(x')^2}{2} - \frac{(y')^2}{2} = 1.$$

Entonces la ecuación 11 representa una hipérbola con  $a^2 = b^2 = c = 2$ .

## $1 R^n$

Definimos el espacio Euclidiano de dimensión n como

$$\mathbf{R}^n = \{\mathbf{x} = (x_1, \dots, x_n) | x_i \in \mathbf{R} \text{ para toda } i = 1, \dots, n\}.$$

A los elementos de  $\mathbf{R}^n$  los llamamos puntos o vectores. La suma  $+: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n$  se define para cada  $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$  y  $\mathbf{y} = (y_1, \dots, y_n) \in \mathbf{R}^n$  como

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n) \in \mathbf{R}^n.$$

La multiplicación por un escalar (u homotesia) se define para cada  $\lambda \in \mathbf{R}$  y  $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$  como

$$\lambda \mathbf{x} = (\lambda x_1, \dots, \lambda x_n) \in \mathbf{R}^n.$$

La norma de un vector  $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$  es

$$||\mathbf{x}|| = \sqrt{x_1^2 + \dots + x_n^2}$$

y la distancia entre  $\mathbf{x}$  y  $\mathbf{y} = (y_1, \dots, y_n) \in \mathbf{R}^n$  es

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

El producto escalar (o producto punto) es la operación  $: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$  que se define para cada  $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$  y  $\mathbf{y} = (y_1, \dots, y_n) \in \mathbf{R}^n$  como

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n \in \mathbf{R}.$$

Teorema 1  $Si \mathbf{x}, \mathbf{y} \in \mathbf{R}$ , entonces

$$\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}||||\mathbf{y}|| \cos \theta,$$

donde  $\theta$  es el ángulo entre los vectores  $\mathbf{x}$  y  $\mathbf{y}$ .

#### Demostración Ejercicio.

La recta que pasa por el punto  $\mathbf{p} \in \mathbf{R}^n$  con dirección  $\mathbf{a} \in \mathbf{R}^n$  es

$$\mathcal{L}(\mathbf{p}, \mathbf{a}) = \{t\mathbf{a} + \mathbf{p} \in \mathbf{R}^n | t \in \mathbf{R}\}.$$



El (hiper)plano que pasa por  $\mathbf{p} \in \mathbf{R}^n$  y que es normal a  $\mathbf{n} \in \mathbf{R}$  es

$$\mathcal{P}\left(\mathbf{p},\mathbf{n}\right) = \left\{\mathbf{x} \in \mathbf{R}^{n} | \left(\mathbf{x} - \mathbf{p}\right) \cdot \mathbf{n} = 0\right\}.$$



La esfera con centro  $\mathbf{c} \in \mathbf{R}^n$  y radio  $r \in \mathbf{R}_+$ es

$$\mathcal{S}\left(\mathbf{c},r\right) = \left\{\mathbf{x} \in \mathbf{R}^{n} | d\left(\mathbf{x},\mathbf{c}\right) = r\right\}.$$