LABORATOR#7

EX#1 (a) Scrieţi o funcţie în Python care are ca dată de intrare matricea $\mathbf{A} \in \mathscr{M}_n(\mathbb{R})$ şi ca date de ieşire matricea inferior triunghulară $\mathbf{L} \in \mathscr{M}_n(\mathbb{R})$ şi matricea superior triunghulară $\mathbf{U} \in \mathscr{M}_n(\mathbb{R})$ corespunzătoare factorizării LU fără pivotare a matricei \mathbf{A} .

 $\underline{Indicație:}$ În prealabil, trebuie verificate condițiile necesare și suficiente pentru factorizarea LU fără pivotare a matricei \mathbf{A} .

(b) Testați funcția de la punctul (a) pentru

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix} \tag{1}$$

- (c) Calculați det(A) folosind factorizarea LU a matricei A.
- (d) Determinați soluția sistemului de ecuații liniare $\mathbf{A} \mathbf{x} = \mathbf{b}$ pentru matricea \mathbf{A} dată de (1) și vectorul $\mathbf{b} = \begin{bmatrix} 8 \ 7 \ 14 \ -7 \end{bmatrix}^\mathsf{T}$ folosind (a) și metodele substituției ascendente și descendente.
- **EX#2** (a) Scrieţi o funcţie în Python care are ca dată de intrare matricea $\mathbf{A} \in \mathscr{M}_n(\mathbb{R})$ şi ca date de ieşire matricea inferior triunghulară $\mathbf{L} \in \mathscr{M}_n(\mathbb{R})$, matricea diagonală $\mathbf{D} \in \mathscr{M}_n(\mathbb{R})$ şi matricea superior triunghulară $\mathbf{U} \in \mathscr{M}_n(\mathbb{R})$ corespunzătoare factorizării LDU a matricei \mathbf{A} .

 $\underline{Indicație:}$ În prealabil, trebuie verificate condițiile necesare și suficiente pentru factorizarea LDU a matricei \mathbf{A} .

- (b) Testați funcția de la punctul (a) pentru matricea A dată de relația (1).
- (c) Calculați $\det(\mathbf{A})$ folosind factorizarea LDU a matricei \mathbf{A} .
- **EX#3** (a) Scrieţi o funcţie în Python care are ca dată de intrare matricea $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ şi ca date de ieşire matricea permutare $\mathbf{P} \in \mathcal{M}_n(\mathbb{R})$, matricea inferior triunghulară $\mathbf{L} \in \mathcal{M}_n(\mathbb{R})$ şi matricea superior triunghulară $\mathbf{U} \in \mathcal{M}_n(\mathbb{R})$ corespunzătoare factorizării LU cu pivotare (PLU) a matricei \mathbf{A} .

 $\underline{Indicație:}$ În prealabil, trebuie verificate condițiile necesare și suficiente pentru factorizarea LU cu pivotare a matricei \mathbf{A} .

(b) Testați funcția de la punctul (a) pentru

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & 4 & 5 \\ 1 & -1 & 1 & 7 \\ 2 & 3 & 4 & 6 \end{bmatrix} \tag{2}$$

- (c) Calculați $\det(\mathbf{A})$ folosind factorizarea PLU a matricei \mathbf{A} .
- (d) Determinați soluția sistemului de ecuații liniare $\mathbf{A} \mathbf{x} = \mathbf{b}$ pentru matricea \mathbf{A} dată de (2) și vectorul $\mathbf{b} = \begin{bmatrix} -3 & -1 & -4 & -3 \end{bmatrix}^\mathsf{T}$ folosind (a) și metodele substituției ascendente și descendente.