DS 3 : Chimie & Lois du frottement solide & Thermodynamique des systèmes ouvert Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-07	Chimie		
01-03	Structure du silicium		
1	électron de cœur : $1s^22s^22p^6$ électron de valence : $3s^23p^2$	1	
2	n=3 donc 3ieme période, 4 électrons de valence donc colonne IV	1	
	ou $4+10 = 14$		
	Le carbone C qui a 4 électron de valence. C est plus électronégatif		
	car au dessus.		
3	le nombre d'oxydation est à chaque fois $+IV$	1	
04-07	Production du nitrure de silicium		
4	$2N_2(g) + 3 \operatorname{Si}(s) = \operatorname{Si}(s)$	1	
5	Elles sont nulles car il s'agit de corps pur dans leur état standard	1	
	de référence. On utilise la loi de Hess $\Delta_r H^{\circ} = \Delta_f H^{\circ}(Si_3N_4)$ –		
	$2 \times 0 - 3 \times 0 = -744 \text{ kJ.K}^{-1}.\text{mol}^{-1}$		
6	transformation adiabatique et isobare donc $\Delta H = 0$ donc	1	
	$\xi_f \Delta_r H^{\circ}(T_i) + \sum_{\text{especes}} n_f c_p^{\circ}(T_f - T_i) = 0$ on fait un tableau		
	d'avancement aux proportions stœchiométriques donc à l'état ini-		
	$ \text{tial } n_i(N_2) = 2\xi_f, \ n_i(Si) = 3\xi_f \text{ et } n_i(Si_3N_4) = 0, \ \text{à l'état}$		
	final $n_i(N_2)=0,\ n_i(Si)=0$ et $n_i(Si_3N_4)=\xi_f$. On en dé-		
	duit $\xi_f \Delta_r H^{\circ}(T_i) + \xi_f c_p^{\circ}(Si_3N_4)(T_f - T_i) = 0$ donc $T_f = T_i -$		
	$\frac{\Delta_r H^{\circ}}{c_n^{\circ}(Si_3N_4)} = 8130 \text{ K. Cette température ne peut être atteinte}$		
	$\frac{1}{c_p^{\circ}(Si_3N_4)}$ – 3150 K. Cettle temperature ne peut etre attente		
	dans une enceinte car les matériaux fondent.		

7	On refait un tableau d'avancement avec $n_f(N_2) = 0, 9n_i(N_2)$ donc	1	
	$n_i(N_2) - 2\xi_f = 0,9n_i(N_2)$ d'où $n_f(N_2) = 0,9n_i(N_2) = 0,9 \times$		
	$\frac{2}{0.1}\xi_f = 18\xi_f$ et on ajoute le réactif restant à la somme sur les		
	espèces d'où $\xi_f \Delta_r H^{\circ}(T_i) + \xi_f c_p^{\circ}(S_{i3}N_4)(T_f - T_i) + 18\xi_f c_p^{\circ}(N_2)(T_f - T_i)$		
	$T_i = 0$ d'où $T_f = T_i - \frac{\Delta_r H^{\circ}}{c_p^{\circ}(Si_3N_4) + 18c_p^{\circ}(N_2)} = 1543 \text{ K}$		

08-22	Machine de Wehner et Schulze		
8		1	
9		1	
10		1	
11		1	
12		1	
13		1	
14		1	
15		1	
16		1	
17		1	
18		1	
19		1	
20		1	
21		1	
22		1	

23-30	Propulsion par un réacteur d'avion		
23-25	Premier principe pour un système ouvert		
23		1	
24		1	
25		1	
26-30	Force de poussée du réacteur - Étude de la tuyère		
26		1	
27		1	
28		1	
29		1	
30		1	