

GUÍA N°3 DE CÁLCULO I Derivada de funciones

I Concepto de la derivada como límite intuitivo

1. Un grupo de estudiantes participa de una cicletada que inicia en el centro de Santiago hacia el sur del país. La función $f(x) = 0.02x^2 + 5$ entrega la posición de un ciclista (en kilómetros) después de t minutos de su partida.

- a) ¿Cuál es su posición a los 30 minutos de su partida?
- b) ¿cuál es la velocidad promedio entre los 30 y 60 minutos?
- c) Determine mediante aproximaciones la Velocidad Instantánea a los 30 minutos de su partida. Utilizar la siguiente tabla de valores, redacte respuesta.

Intervalos de	Expresión Velocidad	Velocidad Promedio
Tiempo	Promedio	
$28 \le x \le 31$	$\frac{f(31) - f(28)}{31 - 28}$	
$29 \le x \le 30,5$	$\frac{f(30,5) - f(29)}{30,5 - 29}$	
$29.9 \le x \le 30.1$	$\frac{f(30,1) - f(29,9)}{30,1 - 29,9}$	
$29,99 \le x \le 30,01$	$\frac{f(30,01) - f(29,99)}{30,01 - 29,99}$	

2. Se espera que dentro de t años, la población de cierta comunidad viene dada por la función $p(t) = 0.005e^{0.75t} + 12$ (miles de habitantes)

- a) Dentro de 10 años ¿Cuántos habitantes tendrá la comunidad?
- b) ¿cuál es la Tasa de Crecimiento promedio entre el 6to y décimo año?
- c) Determine mediante aproximaciones la Tasa de Crecimiento Instantánea de la comunidad dentro de 10 años, para ello utilizar la siguiente tabla de valores. Redacte respuesta.

Intervalos de	Expresión Tasa de	Tasa de Crecimiento
Tiempo	Crecimiento Promedio	Promedio
$9,5 \le t \le 10,5$	$\frac{p(10,5) - p(9,5)}{10,5 - 9,5}$	
$9,9 \le t \le 10,1$	$\frac{p(10,1) - p(9,9)}{10,1-9,9}$	
$9,99 \le t \le 10,01$	$\frac{p(10,01) - p(9,99)}{10,01 - 9,99}$	
$9,999 \le t \le 10,001$	$\frac{p(10,001) - p(9,999)}{10,001 - 9,999}$	

II Derivadas de Funciones Elementales.

Definición de Derivadas:

La derivada de la función f(x) con respecto a $\mathfrak X$ es la función f'(x) dada por:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Notación:

Sea y = f(x), entonces la derivada de la función se puede denotar por:

$$f'(x) = y' = \frac{dy}{dx}$$

Tipo de Función	Expresión Algebraicas	Derivada
Constante	$f(x) = c$ donde $c \in \Re$	f'(x) = 0
Potencia	$f(x) = x^n donde n \in \Re$	$f'(x) = n \cdot x^{n-1}$
rotericia	$f(x) = x \ donde \ n = 1$	f'(x) = 1
Exponencial	$f(x) = a^x donde a > 0$	$f'(x) = a^x \cdot \ln(a)$
	$f(x) = e^x$	$f'(x) = e^x$
Logarítmica	$f(x) = \log_a(x)$	$f'(x) = \frac{1}{x \cdot \ln(a)}$
	$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$

Recordar:
$$\frac{1}{x} = x^{-1}$$
 $\sqrt[n]{x^y} = x^{y/n}$

3. Complete el siguiente cuadro

Función	Tipo de Función	Derivada
$a) \ f(x) = x^3$		$\frac{df}{dx} =$
b) $f(x) = 5$		$\frac{df}{dx} =$
$c) f(x) = 5^x$		f'(x) =
$d) g(x) = \log_5(x)$		g'(x) =
$e) y = e^x$		y' =
$f) f(x) = \log(x)$		f' =
$g) g(x) = \left(\frac{5}{3}\right)^x$		$\frac{dg}{dx} =$
h) $g(x) = x^{-5}$		g'(x) =
$h(x) = \frac{1}{x}$		h'(x) =
$j) h(x) = \frac{1}{\sqrt{x}}$		h'(x) =
k) f(x) = -4		$\frac{df}{dx} =$
$f(x) = \frac{1}{\sqrt{2}}$		$\frac{df}{dx} =$
$m) \ f(t) = \sqrt[3]{t}$		f'(t) =

$n) f(t) = t^{\frac{3}{4}}$	f'(t) =
$o) f(x) = 2^x$	$\frac{df}{dx} =$
$p) h(x) = \log_e(x)$	h'(x) =
q) $f(x) = \sqrt[5]{x^2}$	$\frac{df}{dx} =$
$f(x) = x^{\frac{1}{2}}$	f'(x) =
$s) f(x) = \frac{5}{2}$	f'(x) =

4. A continuación identifique el tipo de función y luego calcule su derivada.

a)
$$f(x) = x^{12}$$

a)
$$f(x) = x^{12}$$
 b) $f(x) = x^{-11}$ c) $f(x) = \sqrt[3]{x}$ d) $f(x) = x$ e) $m(x) = \sqrt{x}$ f) $h(x) = 9^x$

c)
$$f(x) = \sqrt[3]{x^5}$$

d)
$$f(x) = x$$

e)
$$m(x) = \sqrt{x}$$

f)
$$h(x) = 9^{x}$$

g)
$$g(x) = \log_3(x)$$
 h) $g(x) = \frac{4}{5}$ i) $g(x) = \ln(x)$

h)
$$g(x) = \frac{4}{5}$$

$$i) \quad g(x) = \ln(x)$$

III Álgebra de derivadas.

Operación de Funciones Elementales		Derivada
Multiplicación por una constante	$h(x) = c \cdot f(x)$	$h'(x) = c \cdot f'$
suma o resta	$h(x) = f(x) \pm g(x)$	$h'(x) = f' \pm g'$
multiplicación de dos funciones	$h(x) = f(x) \cdot g(x)$	$h'(x) = f' \cdot g + f \cdot g'$
división de dos funciones	$h(x) = \frac{f(x)}{g(x)}$ $g(x) \neq 0$	$h'(x) = \frac{f' \cdot g - f \cdot g'}{(g)^2}$

5. Complete el siguiente cuadro:

	Funciones	Operación	Derivada
a)	$f(x) = 5$ $g(x) = x^6$	$h(x) = f \cdot g$ $h(x) =$	h'(x) =
b)	$f(x) = x$ $g(x) = x^2$	h(x) = f + g $h(x) =$	h'(x) =
c)	$f(x) = x^5$ $g(x) = e^x$	h(x) = f - g $h(x) =$	h'(x) =
d)	$f(x) = x$ $g(x) = e^x$	$h(x) = f \cdot g$ $h(x) =$	h'(x) =
e)	$f(x) = x^2$ $g(x) = 2^x$	$h(x) = f \cdot g$ $h(x) =$	h'(x) =
f)	$f(x) = x^4$ $g(x) = e^x$	$h(x) = \frac{f}{g}$ $h(x) =$	h'(x) =
g)	$f(x) = x^2 + 1$ $g(x) = x$	$h(x) = \frac{f}{g}$ $h(x) =$	h'(x) =

6. Derive las siguientes funciones:

a)
$$h(x) = 7 \cdot \log(x)$$

b)
$$g(x) = 2 \cdot \sqrt{x}$$

c)
$$f(x) = 140x + 28x^2 - 7$$

d)
$$f(x) = x^2 \cdot \ln(x)$$

e)
$$g(x) = (x^2 + 5)e^x$$

f)
$$Q(p) = e^p + 5\ln(p) - 19$$

g)
$$f(x) = \frac{\ln(x)}{x}$$

$$h) f(x) = \frac{e^x}{\ln(x)}$$

i)
$$h(t) = 9t - 0.9t^2 - \frac{10}{t}$$

7. Determina la derivada de las siguientes funciones

a)
$$g(x) = 2x^3 - 53x^2 + 160x + 3.500$$

b)
$$f(x) = \frac{x^2 - 3x}{e^x}$$

c)
$$f(x) = e^x \cdot \log(x)$$

d)
$$f(x) = \frac{\log_s(x)}{x^2}$$

e)
$$d(t) = \frac{2}{3}t^3 - \frac{3}{4}t^2 + 12t - \frac{20}{t^2}$$

f)
$$f(x) = \log(x) \cdot (2x+3)$$

IV Regla de la Cadena para Derivar una Función Compuesta

Si f(x) es una función compuesta, es decir $f(x) = (h \circ g)(x)$ entonces su derivada

será
$$f'(x) = (h \circ g)'(x) = h'[g(x)] \cdot g'(x)$$

Generalmente se trabaja con las siguientes funciones compuestas:

$$\Rightarrow e^{g(x)}$$
 su derivada será $e^{g(x)} \cdot g'$

$$\Rightarrow$$
 g^n su derivada será $n \cdot g^{(n-1)} \cdot g'$

$$\Rightarrow \log_a(g) \text{ su derivada será } \left[\log_a(g)\right] \cdot (g) \Rightarrow \frac{1}{g \cdot \ln(a)} \cdot \left(g\right)'$$

8. Complete el siguiente cuadro

	Funciones	Determinar $f(x)$	Derivada
a)	$f(g) = e^g$ $g(x) = 4x$	f(x) =	f'(x) =
b)	$f(g) = g^{13}$ $g(x) = 8x^5 - 3x^3 - 15$	f(x) =	f'(x) =
c)	$f(g) = \log(g)$ $g(x) = 2x + 5$	f(x) =	f'(x) =
d)	$f(g) = 125e^g$ $g(x) = 0.8x$	f(x) =	f'(x) =

9. Aplique la regla de la cadena y propiedades de las derivadas para calcular la derivada de las siguientes funciones.

a)
$$f(x) = (3x^4 - 2x^{-2})^5$$
 b) $y = \ln(3x^2 + 2x)$ c) $f(x) = \log(x^2 + 3x)$

b)
$$y = \ln(3x^2 + 2x)$$

c)
$$f(x) = \log(x^2 + 3x)$$

d)
$$f(x) = 8(2x+6)^7 - 3\ln(2x)$$
 e) $y = (x^2 - 3x)^2$ f) $y = e^{(2x^2-5)}$

e)
$$y = (x^2 - 3x)^2$$

f)
$$y = e^{(2x^2-5)}$$

10. Calcule $\frac{dy}{dx}$ en las siguientes funciones.

a)
$$y = e^{x^2}$$

a)
$$y = e^{x^2}$$
 b) $y = 3 + e^{-x}$

c)
$$y = \ln(x^3)$$

d)
$$y = \log(x^2 + 1)$$

d)
$$y = \log(x^2 + 1)$$
 e) $y = (5x + 7x^2)^3$

f)
$$y = 7^{5x}$$

SIGUE PRACTICANDO:

11. Determina la derivada de las siguientes funciones

a)
$$I(x) = 10x^2 + 70x + 500$$
 b) $d(t) = 10t^2 - 38t + 56$

b)
$$d(t) = 10t^2 - 38t + 56$$

c)
$$f(x) = \frac{2x}{x-1}$$

d)
$$f(w) = 2w \cdot 2^{6w}$$

e)
$$f(x) = \frac{7x^2 + 5}{x^2}$$

$$f) \quad f(x) = \ln(x) \cdot 3^x$$

g)
$$V(t) = 125e^{0.8t}$$

h)
$$p(t) = e^{0.75 t} + 28.000$$

i)
$$R = \frac{40 + 24x^{0.4}}{1 + 4x^{0.4}}$$

j)
$$V(t) = 100.000 \left(1 - \frac{t}{60}\right)^2$$
 k) $V = 500.000 \cdot \left(1 - \frac{x}{40}\right)$ l) $p(t) = \frac{1}{1 + 10e^{-0.5t}}$

k)
$$V = 500.000 \cdot \left(1 - \frac{x}{40}\right)$$

$$p(t) = \frac{1}{1 + 10e^{-0.5t}}$$

m)
$$g(x) = x^{-5} - 6^x + \frac{1}{x^5}$$
 n) $f(x) = (2x^3 + 3) \cdot 2^x$ o) $f(x) = \frac{\log(x)}{5^x}$

n)
$$f(x) = (2x^3 + 3) \cdot 2^3$$

$$o) f(x) = \frac{\log(x)}{5^x}$$

p)
$$f(x) = (x+1)^2$$

q)
$$N(t) = \frac{2.000}{1 + 1999e^{-0.895t}}$$
 r) $P(t) = 1.500e^{kt}$

r)
$$P(t) = 1.500e^{kt}$$