Eine Woche, ein Beispiel 5.15 Category

Everybody knows a little about category theory, but nobody can conclude all the terms emerged in the category theory. In this document I try to collect the notations and basic examples used in the course "Condensed Mathematics and Complex Geometry". I'm sure that it won't be better than the wikipedia, I just collect results I'm happy with.

I have to divide it into two parts which interact with each other, but you can always jump through examples which you're not familiar. You can also find a "complete" list of categorys here: http://katmat.math.uni-bremen.de/acc/acc.pdf

e is always a category. ob(e) /Mor(X,Y) e Set e Set e Set e Large not set or not set

filtered:

```
Thm.

C is complete \( \iffty \) C has equalizers & products

C is cocomplete \( \iffty \) C has coequalizers & coproducts

C is finitely complete \( \iffty \) C has equalizers & finite products

C has equalizers & finite products

C has equalizers binary products & terminal obj

C has pullbacks & terminal obj

For small category C,

complete \( \iffty \) cocomplete

thin \( \pm \) Mov (X, Y) \( \iffty \) \( \iffty \)
```

Cartesian closed category / Closed category Def. C is Cartesian closed if C has terminal obj, binary product and exponential, where ie. Mor $(x \times Y, Z) \cong Mor(X, Z^{Y})$ C is loc. Cartesian closed if all its slice category is Cartesian closed. Rmk When E is loc Cartesian closed, e is Cartesian closed () e has a terminal object. But e is Cartesian closed * e is loc. Cartesian closed For the closed category, we use the definition in https://ncatlab.org/nlab/show/closed+category. A closed category is a category e together with the following data. Def -bifctor [-,-] · e°P× C→ e called internal hom-fctor - I e Ob(C) called unit object $-i. Id_{c} \xrightarrow{\cong} [I,-] \longrightarrow i_{A}. A \xrightarrow{\cong} [I,A]$ $-j \times 1 \longrightarrow [x,x]$ extranatural in X functorial in Yand Z $- L_{Y,Z}^{\times} : [Y,Z] \rightarrow [[x,Y],[x,Z]]$ extranatural in X. - Compatabilities $I \xrightarrow{j_{Y}} [Y,Y] \qquad [x,Y] \xrightarrow{L_{XY}^{X}} [[x,x],[x,Y]] \qquad [Y,Z] \xrightarrow{L_{YZ}^{I}} [[I,Y],[I,Z]]$ $\downarrow_{[x,Y]} \downarrow_{[x,Y]} \downarrow_{$ [[(\,u],[\,v]] [(x,u],(x,v)] $L_{[x,u][x,v]}^{[x,y]}$ $\int [1, L_{yv}^{x}]$ $\left[[(x,Y),(x,u)],[(x,Y),(x,v)] \right] \longrightarrow \left[(Y,u),[(x,Y),(x,v)] \right]$

 $Y: Mor(X,Y) \longrightarrow Mor(I,[X,Y])$ $f \longmapsto [1,f] \circ jx$

is an iso.

Monoidal category = Tensor category

Def A monoidal category is a category
$$C$$
 together with the following data.

- bifctor $-\otimes - : C \times C \to C$

- $I \in Ob(C)$

- $a_{A,B,C} : A \otimes (B \otimes C) \xrightarrow{\cong} (A \otimes B) \otimes C$

- $\lambda_{A} : I \otimes A \xrightarrow{\cong} A$

- $\lambda_{A} : I \otimes A \xrightarrow{\cong} A$

- $\lambda_{A} : A \otimes I \xrightarrow{\cong} A$

(ambda: left rho: right

- Compatabilities

For strict monoidal category, we require in addition that AA,B,C, AA,PA are identities.

Eg. Cartesian monoidal category C: category with finite products $\emptyset = \Pi$ I = terminal object e.g. Set. Cat.

Cocartesian monoidal category C: category with finite coproducts $\emptyset = \Pi$ I = initial object

Abelian category is monoidal.

Def (Specializations) Let e be a monoidal category. If in addition we have $Y_{A,B}$. $A \otimes B \longrightarrow B \otimes A$, then e is braided monoidal category if $(A \otimes B) \otimes C$ $(A \otimes B) \otimes C$ $A \otimes (B \otimes C)$ $A \otimes (B \otimes C)$ A@(B@C) $(B \otimes A) \otimes C$ V_{A,B}⊗c JaB'Y'C $1_{B} \otimes V_{A,C}$ $B \otimes (C \otimes A)$ $(B \otimes C) \otimes A$ $A_{B,C,A}$ B⊗(A⊗C) A⊗(c⊗B) DA,C,B $\gamma_{c,A} \otimes 1_{B}$ $(C \otimes A) \otimes B$ $(C \otimes A) \otimes B$ (A⊗C)⊗B e is symmetric monoidal category if VBA · VAB = 1AOB. + C is braided

closed monoidal category = closed category + monoidal category + compatabilite $-\otimes A - [A, -]$

A list of categories which I'm interested:

$$O: Ob(o) = \emptyset$$

1:
$$Ob(1) = \{*\}$$
 Mor $(*,*) = \{1_*\}$

$$\triangle: Ob(\triangle) = \{[n] = \{0,1,2,...n\} \mid n \ge 0\}$$

 $Mor([m],[n]) = \{\{meakly \text{ monotone maps}\}\}$

$$sSet: Ob(sSet) = \left\{X: \Delta^{op} \to Set\right\} \qquad Mor(X,Y) = \left\{\lambda: \Delta^{op} \xrightarrow{X} Set\right\}$$

Mor
$$(X,Y) = \{f: X \longrightarrow Y \mid f \text{ cont } \}$$

Met: full subcategory of CHaus whose objects are metric spaces.

To For the category of Graph, there're different realizations.

Quiv(e):
$$Ob(Quiv(e)) = \{fctor \ \Gamma, k(a) \rightarrow e\}$$

 $Mor(\Gamma_1, \Gamma_2) = \{a: k(a) \xrightarrow{\Gamma_2} e\}$

Cat = 5 the Category of small categories
$$f$$
 is a 2-category $Ob(Cat) = f$ small category ef
 $Mor(e, D)$ is a category by $Ob(Mor(e, D)) = f F : e \rightarrow Df$
 $Mor(F,G) = fa : e \xrightarrow{f} Df$

- Basic properties of Cat.

 1. Initial object 0, Terminal object 1
 - 2. Cat is loc small but not small
 - 3. Cat is bicomplete
 - 4 Cat is Cartesian closed but not loc Cartesian closed

5. Cat is loc. finitely presentable https://ncatlab.org/nlab/show/locally+finitely+presentable+category

6. Cat
$$free$$

T Quiv

e.g of "free"

forget

$$f G = free$$

1. C. $free$

2. $free$

1. C. $free$

2. $free$

1. C. $free$

2. $free$

3. $free$

4. $free$

2. $free$

3. $free$

4. $free$

4. $free$

4. $free$

5. $free$

6. $free$

7. $free$

6. $free$

7. $free$

8. $free$

8. $free$

9. $free$

10. $free$

10.

RECRing

Category Set Top Grp Ab Vect(K) Mod(R) Ring CRing Rng Field O	cpl fin cpl	cocpl fin cocpl	Cartesian clused X X X X	monoidal
K(2) S Set C Hans Met Quiv Cat CG Top CG Hans Prof	X	× × × ×	> >	>>