Vector Field Visualization

Finding Eigenvalues

You can find the eigenvalues of a matrix M in 2D by finding the roots of the characteristic polynomial. The characteristic polynomial is formed from the determinant $|M - \lambda|$

For example:

If
$$M = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 then we have $|M - \lambda I| = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 3 - 4\lambda + \lambda^2$

Note that this is not a method you should implement in code to find eiegnvalues. It doesn't scale (why?). Alternatives include the QR method or Power Method.

1. Classifying Critical Points

Suppose we have a 2D vector field defined as $v(x) = \langle y^2 + y, x^2 + x \rangle$

- a. What is a critical point in the vector field? The point (0,0) since the magnitude of the field is 0 at that point $||0^2 + 0, 0^2 + 0|| = 0$
- **b.** What is the Jacobian of the vector field? Recall that in 2D it takes the form of the following matrix:

$$J = \begin{vmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{vmatrix} \begin{bmatrix} 0 & 2y+1 \\ 2x+1 & 0 \end{bmatrix}$$
Evaluate the Jacobian at the cr

c. Evaluate the Jacobian at the critical point.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- d. What are the eigenvalues of the Jacobian at the critical point? $\begin{vmatrix} 0 - \lambda & 1 \\ 1 & 0 - \lambda \end{vmatrix} = \lambda^2 - 1$, so the roots are +1 and -1
- e. Classify the critical point based on the eigenvalues. Is it a source, sink, saddle, center, or focus? Saddle

2. Displacement Surfaces

Suppose we place a sphere of radius 1 centered at the origin within a vector field defined by $v(x, y, z) = \langle x^2 + x, y^2 + x, z^2 + x \rangle$

1. If the surface of the sphere is displaced by the vector field using the formula

$$S_{displ} = \{ x + \mathbf{v}(x) \Delta t, \ \forall x \in S \}$$

where is the sphere surface point (1,0,0) moved to by the field if we use a timestep of $\frac{1}{2}$?

$$(1,0,0) + \frac{1}{2} < 2,1,1 > = (2,\frac{1}{2},\frac{1}{2})$$

2. We can limit displacement to non-tangential motion by calculating the following displacement

$$S_{displ} = \left\{ x + \left(\mathbf{v}(x) \mathbf{n}(x) \right) \mathbf{n}(x) \Delta t, \ \forall x \in S \right\}$$

Using that formula and the same values as part 1, to where is (1,0,0) displaced?

The normal is <1,0,0> since the tangent plane to the sphere is the x=1 plane.

$$(1,0,0) + (\langle 1,0,0 \rangle \cdot \langle 2,1,1 \rangle \frac{1}{2}) = (2,0,0)$$