Problem Set 1 (for Lectures 1 and 2) Solutions

April 7, 2017

- A1. For $(\phi \wedge \psi) \wedge \theta$ to be true, all of the symbols must be true. Thus, it is necessarily so that $\phi \wedge (\psi \wedge \theta)$ is also true, and so, the associative property holds for conjunction.
- A2. For $(\phi \lor \psi) \lor \theta$ to be true, at least one of the symbols must be true. If at least one of the symbols must be true, then $\phi \lor (\psi \lor \theta)$ must also be true. Thus, the associative property holds for disjunction as well.
- A3. For $\phi \wedge (\psi \vee \theta)$ to be true, ϕ must be true and at least one, ψ or θ , must be true. If this is the case, then either $\phi \wedge \psi$ or $\phi \wedge \theta$ or both are true. Thus, $(\phi \wedge \psi) \vee (\phi \wedge \theta)$ must be true.
- A4. For $\phi \lor (\psi \land \theta)$ to be true, either ϕ or $\psi \land \theta$ or both are true. Suppose ϕ is true. Then we have $(\phi \lor \psi) \land (\phi \lor \theta)$ is true. Suppose $\psi \land \theta$ is true. Then both ψ and θ are true. If this is the case, then we have $(\phi \lor \psi) \land (\phi \lor \theta)$ is true. If both are true, then we can choose either of the cases.
- A5. Showing $\neg \phi$ is true is *indeed* equivalent to showing ϕ is false.
- A6. Choice (e) is the most likely because it is the least restrictive condition.
- A7. Choice (a) is the most likely because it is the more expansive condition.
- A8.
- (a) This is false because x is strictly greater than 0.
- (b) True.
- (c) True.
- (d) True.
- (e) True.
- (f) True.

- (g) True, as $x \in \mathbb{R}$.
- (h) True.
- (i) True.
- (j) True.