p o q ، و تعـرف القضية q o p بأنها معكوس converse القضية p o q ، و تعـرف القضية q o p بأنهـا عكـس بأنهـا الوضـع العكسـي contra-positive للقضية p o q و تعـرف القضية p o q بأنهـا عكـس inverse القضية p o q .

يمكن ملاحظة أن جدول الصواب للقضية $q \to p \to q$ يتطابق مع جدول الصواب للقضية $p \to q$. كما يمكن ملاحظة أنه ليس لأيٍّ من القضيتين $q \to p$ و $q \to p \to q$ نفس جدول صواب القضية $p \to q$ (أثنت ذلك).

<u> جبر القضايا Algebra of Propositions</u>

الاسترسال والتناقض Tautologies and Contradictions

<u>تعريف:</u> يقال لقضية مركبة P(p,q,r,...) أنها استرسال Tautology إذا كانت دائماً صائبة بغض النظر عن عن القضايا المكونة لها، و يقال أنها تناقض Contradiction إذا كانت دائماً خاطئة بغض النظر عن القضايا المكونة لها.

مثال:ً القضية $p \wedge \sim p$ استرسال والقضية $p \wedge \sim p$ تناقض (برهن ذلك).

مبرهنة: إذا كانت القضية $P(p,q,r,\dots)$ استرسالاً فإن القضية $P(p,q,r,\dots)$ تكـون تناقضـاً والعكـس ايضاً صحيح.

جبر القضايا Algebra of Propositions

تعريف: القضية المركبة(Compound Proposition)

القضية المركبة هي القضية التي يتم إنشاؤها من عدد من القضايا باستخدام بعض أو كـلٍّ مـن مؤثر النفي و روابط الفصل و الضم و الاقتضاء و الاقتضاء المزدوج. و لما بداخل الأقواس أولوية التقييم على مؤثري الفصل و الضم (للفصل و الضم نفس الأولوية) كمـا أن للفصل و الضم أولوية على الإقتضاء الشرطي و الإقتضاء الشرطي المزدوج.

 $(p \lor \sim q) \to (p \land q)$ أنشئ جدول الصواب للقضية

p	q	~ q	$p \lor \sim q$	$p \wedge q$	$(p \lor \sim q) \to (p \land q)$
T	T	F	T	T	T
T	F	T	T	F	F
F	T	F	F	F	T
F	F	T	Т	F	F

<u>التكافؤ المنطقي Logical Equivalence</u>

Logically و Q(p,q,r,...) انهما متكافئتين منطقياً P(p,q,r,...) و P(p,q,r,...) و تكتب $Q(p,q,r,...) \equiv Q(p,q,r,...)$, is a full time.

أمثلة: اثبت ان:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \quad \textbf{(3)} \qquad p \to q \equiv \neg p \lor q \quad \textbf{(2)} \qquad \neg (p \land q) \equiv \neg p \lor \neg q \quad \textbf{(1)}$$

البرهان:

 $: {}^{\sim} p \wedge {}^{\sim} q$ و ${}^{\sim} (p \vee q)$ ننشئ جدول الصواب للقضيتين (1)

р	q	$p \lor q$	$\sim (p \lor q)$	~ <i>p</i>	~ q	$\sim p \land \sim q$
T	T	Т	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

(2) تمرین.

(3) : ($p \lor q$) \land ($p \lor r$) و $p \lor (q \land r)$ ننشئ جدول الصواب للقضيتين

p	q	r	q∧r	$p \wedge (q \wedge r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
T	Т	Т	Т	T	Т	Т	T
T	T	F	F	T	T	T	T
Т	F	T	F	T	T	Т	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

في الجدول أدناه، نورد قوانين التكافؤ المنطقية:

مسمى قانون التكافؤ	قانون التكافؤ
قوانين المحايد Identity laws	$p \lor F \equiv p, \ p \land T \equiv p$
قوانين الهيمنة Domination laws	$p \wedge F \equiv F$, $p \vee T \equiv T$
قوانين الجمود Idempotent laws	$p \land p \equiv p, \ p \lor p \equiv p$
قانون النفي المزدوج Double negation	$\sim (\sim p) \equiv p$
قوانين الإبدال Commutative laws	$p \land q \equiv q \land p, \ p \lor q \equiv q \lor p$
قوانين التجميع Associative laws	$p \lor (q \lor r) \equiv (p \lor q) \lor r$
	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
قوانین التوزیع Distributive laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
قوانین دي مورجان De Morgan's laws	$\sim (p \lor q) \equiv \sim p \land \sim q$
	$\sim (p \land q) \equiv \sim p \lor \sim q$
قوانين الامتصاص Absorption laws	$p \lor (p \land q) \equiv p, \ p \land (p \lor q) \equiv p$
قوانین المکمل Complement laws	$p \lor \sim p \equiv T, \ p \land \sim p \equiv F$

تمرين: برهن صحة قوانين التكافؤ في الجدول أعلاه.

مثال: بین أن $p \wedge (p \wedge q)) \equiv p \wedge p \wedge q$

 $\sim (p \lor (\sim p \land q)) \equiv \sim ((p \lor \sim p) \land (p \lor q))$ الحل: باستخدام قانون التوزيع

 $\equiv \sim (p \lor \sim p) \lor \sim (p \lor q))$ باستخدام قانون دي مورجان

باستخدام قانون النفي $= (T) \lor (p \lor q)$

باستخدام قانون النفي $F \lor \sim (p \lor q)$

باستخدام قانون المحايد والمحايد المحايد

باستخدام قانون دي مورجان $p \wedge q$

 $\sim (p \lor q)\lor (\sim p \land q)$ مثال: مستخدما قوانين جبر القضايا، بسط القضية التالية: $(p \lor q)\lor (\sim p \land q)$ الحل:

باستخدام قانون دي مورجان
$$(p \lor q) \lor (\sim p \land q) \equiv (\sim p \land q) \lor (\sim p \land q)$$
 باستخدام قانون التوزيع $p \land (\sim q \lor q) = p \land (T)$ باستخدام قانون المكمل $p \land p \land (T)$ باستخدام قانون المحايد $p \land q \rightarrow q$

. $p \rightarrow q \equiv \sim q \rightarrow \sim p$ برهن أن $q \rightarrow \sim q \rightarrow \sim q$

قواعد المنطق الاستدلالي Rules of Inferential Logic

تعریف: الحجة argument هي فئة من قضایا $p_1, p_2, ..., p_n$ و قضیة Q مرتبطة ببعضها البعض، بحیث تستخدم القضایا $p_1, p_2, ..., p_n$ و تسمى بالمقدمات premises لاس تنتاج القضیة Q و تسمى بالخلاصة conclusion. یمکن ان تکتب الحجة کالتالی:

 P_1 P_2 ... P_n $\therefore Q$

فمثلاً: القضايا: "برنامج الأطباء التلفزيوني ذو شعبيةٍ واسعة"، "التيار الكهربائي كثير الانقطاع" و "أفضل ماركات الحواسيب هي توشيبا" لا يمكن أن تشكل حجة لعدم ارتباط المقدمات و الخلاصة مع بعضها البعض منطقياً. في حين أن القضايا: "الأطباء خريجون من كليات الطب"، "سلمى طبيبة" و "س لمى خريجة كلية الطب" تشكل حجة لأن القضية الثالثة تم استنتاجها مباشرة من القضيتين الأولى و الثانية.

لنفرض أن جميع المقدمات صائبة. الخلاصة ربما تكون صائبة و ربمـا تكـون خاطئـة. عنـدما تكـون الخلاصـة صائبة نقول أن الحجة متحققة valid، و نقول أنها باطلة invalid إذا كانت الخلاصة خاطئة.

لمعرفة إذا ما كانت حجة ما متحققة أو باطلة يجب:

- (1) تحديد المقدمات و الخلاصة.
- (2) إنشاء جدول الصواب متضمناً المقدمات و الخلاصة.
- (3) تحديد الصفوف التي تكون عندها جميع المقدمات صائبة.
- (4) في كل صف من الخطوة (3)، إذا كانت الخلاصة صائبة تكون الحجة متحققة و فيمـا عـدا ذلـك تكون الحجة باطلة.

مثال: لتكن لدينا الحجة التالية: "اذا كانت لديك كلمة مرور، فانه يمكنك الدخول على الشبكة."

" لديك كلمة مرور."

" يمكنك الدخول على الشبكة."

بين ان الحجة اعلاه متحققة.

الحل:

لتكن p هي "لديك كلمة مرور "و p هي "يمكنك الدخول على الشبكة". عندئـذ يمكننـا كتابـة الحجـة اعلاه في الشكل التالي:

$$p \rightarrow q$$

$$p$$

$$\therefore q$$

يمكننا تكوين جدول الصواب للحجة اعلاه كالتالي:

p	q	$p \rightarrow q$
T	T	T
Т	F	F
F	T	T
F	F	T

بما ان المقـدمات p o q و p صـحيحة فـى السـطر الاول وكـذلك الخلاصـة p صـحيحة فـى هـذه الحالـة، فانالحجة اعلاه متحققة.

مثال: بين أن الحجة التالية باطلة:

$$p \rightarrow q$$

$$q \rightarrow p$$

$$\therefore p \lor q$$

الحل:

р	q	$p \rightarrow q$	$q \rightarrow p$	$p \lor q$
T	Т	T	T	T
T	F	F	Т	T
F	Т	T	F	T
F	F	T	T	F

بما ان المقدمات p o q و q o p صحيحة فى السطر الاخير ولكن الخلاصة p imes q خطأ فـى هـذه الحالـة، فانالحجة اعلاه باطلة.

مبرهنة: الحجة

$$P_1$$
 P_2
...
 P_n
 $\therefore Q$

.tautology استرسالاً valid اذا وفقط اذا كانت القضية $(P_1 \wedge P_2 \wedge \ \dots \ \wedge P_n) o Q$

مثال: المبدأ الاساسي للتعليل المنطقي Fundamental Principle of Logical Reasoning

اذا كانت p تقتضي p و كانت p تقتضي r، فإن p تقتضي r. اى ان الحجة التالية متحققة:

$$\begin{array}{c}
p \to q \\
q \to r \\
\therefore p \to r
\end{array}$$

البرهان: سنستخدم جدول الصواب لاثبات ان القضية $(p o q) \wedge (q o r)] o (p o r)$ استرسالاً.

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$(p \to q) \land (q \to r)$	$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$
T	Т	T	T	T	T	T	T
T	Т	F	Т	F	F	F	T
T	F	T	F	Т	T	F	T
T	F	F	F	Т	F	F	T
F	T	T	T	T	T	T	T
F	Т	F	T	F	T	F	T
F	F	T	Т	Т	T	T	T
F	F	F	Т	T	T	T	T

تمرين: بين أن الحجج التالية متحققة:

$$p \wedge q$$
 (3) $p \wedge q$ (2) $p \rightarrow q$ (1) $p \rightarrow q$ $p \rightarrow q$