# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2001年 4月24日

出 願 番 号 Application Number:

特願2001-126415

出 願 人 opplicant(s):

セイコーインスツルメンツ株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2001年 5月18日

特許庁長官 Commissioner, Japan Patent Office





【書類名】

特許願

【整理番号】

01000635

【提出日】

平成13年 4月24日

【あて先】

特許庁長官

殿

【国際特許分類】 G01N 37/00

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】

新輪 降

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】

加藤 健二

【発明者】

【住所又は居所】

千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】

大海 学

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】

光岡 靖幸

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】

笠間 宣行

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】

前田 英孝

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】 篠原 陽子

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬1丁目8番地 株式会社エスア

イアイ・アールディセンター内

【氏名】 市原 進

【特許出願人】

【識別番号】 000002325

【氏名又は名称】 セイコーインスツルメンツ株式会社

【代表者】 服部 純一

【代理人】

【識別番号】 100096378

【弁理士】

【氏名又は名称】 坂上 正明

【先の出願に基づく優先権主張】

【出願番号】 特願2000-173852

【出願日】 平成12年 6月 9日

【整理番号】 00000428

【手数料の表示】

【予納台帳番号】 008246

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0103799

【プルーフの要否】 不要

【書類名】

明細書

【発明の名称】

光学的な開口の作製方法

【特許請求の範囲】

【請求項1】 錐状のチップと、前記チップと略同じ高さを有するストッパーと、前記チップ上に設けられた遮光膜とを有する被開口形成体に対して、

前記チップおよび前記ストッパーの少なくとも一部を覆うような略平面部を有する押し込み体を、前記チップに向かう成分を有する力によって変位させること によって、前記チップ先端に開口を形成することを特徴とする開口の作製方法。

【請求項2】 錐状のチップと、前記チップと略同じ高さを有するストッパーと、前記チップ上に設けられた遮光膜とを有する被開口形成体に対して、

前記チップ及び前記ストッパーの少なくとも一部と接触する平面部を有する押 し込み体を、前記チップに向かう方向に変位させることにより前記チップの先端 に開口を形成することを特徴とする開口の作製方法。

【請求項3】 前記錘状のチップと、前記ストッパーとを同時に形成することを特徴とする請求項1または請求項2に記載の光学的な開口の作製方法。

【請求項4】 前記被開口形成体が複数の前記チップを有し、複数の前記チップの先端に同時に開口を形成することを特徴とする請求項1から請求項3のいずれか一項に記載の開口の作製方法。

【請求項5】 前記被開口形成体が、複数個の前記ストッパーを備えることを特徴とする請求項1から請求項4のいずれか一項に記載の光学的な開口の作製方法。

【請求項6】 前記押し込み体が、前記遮光膜よりも堅く、前記チップおよび前記ストッパーよりも柔らかい材料であることを特徴とする請求項1から請求項5のいずれか一項に記載の光学的な開口の作製方法。

# 【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、光学的な開口の作製方法に関するものである。特に近視野光を照射・検出する近視野光デバイスに用いる開口の作製方法に関する。



## 【従来の技術】

試料表面においてナノメートルオーダの微小な領域を観察するために走査型トンネル顕微鏡(STM)や原子間力顕微鏡(AFM)に代表される走査型プローブ顕微鏡(SPM)が用いられている。SPMは、先端が先鋭化されたプローブを試料表面に走査させ、プローブと試料表面との間に生じるトンネル電流や原子間力などの相互作用を観察対象として、プローブ先端形状に依存した分解能の像を得ることができるが、比較的、観察する試料に対する制約が厳しい。

#### [0003]

そこでいま、試料表面に生成される近視野光とプローブとの間に生じる相互作用を観察対象とすることで、試料表面の微小な領域の観察を可能にした近視野光 学顕微鏡(SNOM)が注目されている。

近視野光学顕微鏡においては、先鋭化された光ファイバーの先端に設けられた開口から近視野光を試料の表面に照射する。開口は、光ファイバーに導入される光の波長の回折限界以下の大きさを有しており、たとえば、100nm程度の直径である。プローブ先端に形成された開口と試料間の距離は、SPMの技術によって制御され、その値は開口の大きさ以下である。このとき、試料上での近視野光のスポット径は、開口の大きさとほぼ同じである。したがって、試料表面に照射する近視野光を走査することで、微小領域における試料の光学物性の観測を可能としている。

# [0004]

顕微鏡としての利用だけでなく、光ファイバープローブを通して試料に向けて 比較的強度の大きな光を導入させることにより、光ファイバープローブの開口に エネルギー密度の高い近視野光を生成し、その近視野光によって試料表面の構造 または物性を局所的に変更させる高密度な光メモリ記録としての応用も可能であ る。強度の大きな近視野光を得るために、プローブ先端の先端角を大きくするこ とが試みられている。

#### [0005]

これら近視野光を利用したデバイスにおいて、開口の形成が最も重要である。

開口の作製方法の一つとして、特公平5-21201号公報に開示されている方法が知られている。特公平5-21201号公報に開示された開口作製方法においては、開口を形成するための試料として、先鋭化した光波ガイドに遮光膜を堆積したものを用いている。そして、遮光膜付きの先鋭化した光波ガイドを圧電アクチュエータによって良好に制御された非常に小さな押しつけ量で硬い平板に押しつけることによって、先端の遮光膜を塑性変形させて開口を作製している。

## [0006]

また、開口の形成方法として、特開平11-265520号公報に開示されている方法がある。特開平11-265520号公報に記載されたの開口の作製方法において、開口を形成する対象は、平板上に集束イオンビーム(FIB)によって形成された突起先端である。開口の形成方法は、突起先端の遮光膜に、側面からFIBを照射し、突起先端の遮光膜を除去することによって行っている。

## [0007]

# 【発明が解決しようとする課題】

しかしながら、特公平5-21201号公報の方法によれば、光波ガイドー本ずつしか開口を形成する事ができない。また、移動分解能が数nmの圧電アクチュエータによって押し込み量を制御する必要があるため、開口形成装置をその他の装置や空気などの振動による影響が少ない環境におかなくてはならない。さらに、光伝搬体ロッドが平板に対して垂直に当たるように調整する時間がかかってしまう。また、移動量の小さな圧電アクチュエータの他に、移動量の大きな機械的並進台が必要となる。さらに、移動分解能が小さな圧電アクチュエータをもちいて、押し込み量を制御するさいに、制御装置が必要であり、かつ、制御して開口を形成するためには数分の時間がかかる。したがって、開口作製のために、高電圧電源やフィードバック回路などの大がかりな装置が必要となる。また、開口形成にかかるコストが高くなる問題があった。

# [0008]

また、特開平11-265520号公報の方法によれば、加工対象は平板上の 突起であるが、FIBを用いて開口を形成しているため、一つの開口の形成にか かる時間が10分程度と長い。また、FIBを用いるために、試料を真空中にお かなければならない。従って、開口作製にかかる作製コストが高くなる問題があった。

[0009]

# 【課題を解決するための手段】

本発明は、上記の問題に鑑みてなされたものであり、錐状のチップと、前記チップの近傍に配置され、前記チップと略同じ高さを有するストッパーと、少なくとも前記チップ上に形成された遮光膜を有する被開口形成体に対して、前記チップおよび前記ストッパーの少なくとも一部を覆うよう略平面を、前記チップに向かう成分を有する力によって変位させることによって、前記チップ先端に光学的な開口を形成することを特徴とする光学的な開口の作製方法とした。

## [0010]

すなわち、錐状のチップと、前記チップと略同じ高さを有するストッパーと、 前記チップ上に設けられた遮光膜とを有する被開口形成体に対して、前記チップ および前記ストッパーの少なくとも一部を覆うような略平面部を有する押し込み 体を、前記チップに向かう成分を有する力によって変位させることによって、前 記チップ先端に開口を形成することとした。あるいは、錐状のチップと、前記チ ップと略同じ高さを有するストッパーと、前記チップ上に設けられた遮光膜とを 有する被開口形成体に対して、前記チップ及び前記ストッパーの少なくとも一部 と接触する平面部を有する押し込み体を、前記チップに向かう方向に変位させる ことにより前記チップの先端に開口を形成することとした。

#### [0011]

このような方法によれば、チップと略同じ高さを有するストッパーによって、 平面の変位が制御されるため、所定の力で平面を押すだけで簡単に光学的な開口 を作製する事ができる。また、真空中、液中、大気中など様々な環境下で開口を 作製することができる。また、光学的な開口を作製する際に特別な制御装置を必 要としないため、光学的な開口を作製するための装置を単純化する事ができる。 また、所定の力を与える時間を非常に短くすることが容易であり、開口作製にか かる時間を短くすることができるため、開口作製にかかるコストを低くすること ができる。

# [0012]

さらに、前記錘状のチップと、前記チップの近傍に配置されたストッパーを同時に形成し、前記被開口形成体とすることを特徴とする光学的な開口の作製方法とした。したがって、前記チップおよび前記ストッパーの高さの差を制御でき、かつ、高さの差を非常に小さくできるため、大きさが均一で、かつ、微小な光学的な開口を簡単に作製する事ができ、光学的な開口の作製歩留まりを向上させることが容易である。

# [0013]

また、前記被開口形成体が、複数個の前記チップおよび前記ストッパーからなることを特徴とする光学的な開口の作製方法とした。したがって、前記チップおよび前記ストッパーからなる前記被開口形成体に、一括で前記力を加えることによって、一度に複数の前記チップに光学的な開口を形成することが可能であり、開口一つあたりの加工時間を非常に短くすることができ、結果として光学的な開口の作製コストを低くすることができる。

# [0014]

#### 【発明の実施の形態】

以下、本発明の開口の形成方法について、添付の図面を参照して詳細に説明する。

#### (実施の形態1)

図1から図3は、本発明の実施の形態1に係る開口の形成方法について説明した図である。図1に示す、ワーク1000は、基板4上に形成された透明層5、透明層5の上に形成された錘状のチップ1および尾根状のストッパー2、チップ1、ストッパー2および透明層5の上に形成された遮光膜3からなる。なお、ワーク1000において、透明層5は必ずしも必要ではなく、その場合、遮光膜3は、チップ1、ストッパー2および基板4上に形成される。また、遮光膜3はチップ1にだけ堆積されていてもよい。

# [0015]

チップ1の高さH1は、数mm以下であり、ストッパー2の高さH2は、数mm以下である。高さH1と高さH2の差は、1000nm以下である。チップ1とストッパー2の間

隔は、数mm以下である。また、遮光膜3の厚さは、遮光膜3の材質によって異なるが、数10nmから数100nmである。

## [0016]

チップ1、ストッパー2および透明層5は、二酸化ケイ素やダイヤモンドなどの可視光領域において透過率の高い誘電体や、ジンクセレンやシリコンなどの赤外光領域において透過率の高い誘電体や、フッ化マグネシウムやフッ化カルシウムなどの紫外光領域において透過率の高い材料を用いる。また、チップ1の材料は、開口を通過する光の波長帯において少しでもチップ1を透過する材料であれば用いることができる。また、チップ1、ストッパー2および透明層5は、同一の材料で構成されても良いし、別々の材料で構成されても良い。遮光膜3は、たとえば、アルミニウム、クロム、金、白金、銀、銅、チタン、タングステン、ニッケル、コバルトなどの金属や、それらの合金を用いる。

#### [0017]

図2は、開口を形成する方法において、チップ1上の遮光膜3を塑性変形させ ている状態を示した図である。図1で示したワーク1000の上に、チップ1お よび少なくともストッパー2の一部を覆い、かつ、少なくともチップ1およびス トッパー2側が平面である板6を載せ、さらに板6の上には、押し込み用具7を 載せる。押し込み用具7にチップ1の中心軸方向にカFを加えることによって、 板6がチップ1に向かって移動する。チップ1と板6との接触面積に比べて、ス トッパー2と板6との接触面積は、数100~数万倍も大きい。したがって、与 えられた力Fは、ストッパー2によって分散され、結果として板6の変位量は小 さくなる。板6の変位量が小さいため、遮光膜3が受ける塑性変形量は非常に小 さい。また、チップ1およびストッパー2は、非常に小さな弾性変形を受けるの みである。カFの加え方は、所定の重さのおもりを所定の距離だけ持ち上げて自 由落下させる方法や、所定のバネ定数のバネを押し込み用具7に取り付け、所定 の距離だけバネを押し込む方法などがある。板6が、遮光膜よりも堅く、チップ 1およびストッパー2よりも柔らかい材料である場合、チップ1およびストッパ - 2 が受ける力は、板6によって吸収されるため、板6の変位量がより小さくな り、遮光膜3の塑性変形量を小さくすることが容易となる。

# [0018]

図3は、力Fを加えた後に、板6および押し込み用具7を取り除いた状態を示した図である。遮光膜3の塑性変形量が非常に小さく、チップ1およびストッパー2が弾性変形領域でのみ変位しているため、チップ1の先端に開口8が形成される。開口8の大きさは、数nmからチップ1を通過する光の波長の回折限界程度の大きさである。なお、上記では、押し込み用具7とワーク1000の間に板6が挿入されていたが、板6を除去して直接押し込み用具7で押し込むことによっても同様に開口8を形成できることは、いうまでもない。開口8に光を導入するために、基板4をチップ1の形成面と反対側からエッチングすることによって透明体5またはチップ1の少なくとも一部を露出させて、開口8への光の導入口を形成する。また、基板4を透明材料103で構成することによって、光の導入口を形成する工程を省くことができるのは言うまでもない。

# [0019]

上述の方法で開口を形成するためには、図1で示した高さH1と高さH2の差を1000nm以下にすればよい。すなわち、チップ1がストッパー2より高くても、また、ストッパー2がチップ1より高くても良い。さらに、チップ1とストッパー2の高さが同じでもよい。また、チップ1やストッパー2の破壊を防ぐためには、力Fを小さくすればよい。小さな力Fによって開口を形成するためには、高さH1と高さH2の差は100nm以下がよい。このとき、ストッパー2がチップより高い方がより好ましい。

#### [0020]

以上説明したように、本発明の開口作製方法によれば、ストッパー2によって板6の変位量を良好に制御することができ、かつ、板6の変位量を非常に小さくできるため、大きさが均一で小さな開口8をチップ1先端に容易に作製することができる。また、基板側から光を照射して、開口8から近視野光を発生させることができる。

### [0021]

次に、ワーク1000の製造方法を図4から図5を用いて説明する。図4は、 基板材料104上に透明材料103を形成したのち、チップ用マスク101およ びストッパー用マスク102を形成した状態を示している。図4(a)は上面図を示しており、図4(b)は、図4(a)のA-A'で示す位置における断面図を示している。透明材料103は、気相化学堆積法(CVD)やスピンコートによって基板材料104上に形成する。また、透明材料103は、固相接合や接着などの方法によっても基板材料104上に形成することができる。次に、透明材料103上にフォトリソグラフィ工程によって、チップ用マスク101及びストッパー用マスク102を形成する。チップ用マスク101とストッパー用マスク102は、同時に形成しても良いし、別々に形成しても良い。

# [0022]

チップ用マスク101およびストッパー用マスク102は、透明材料103の 材質と次工程で用いるエッチャントによるが、フォトレジストや窒化膜などを用いる。透明材料103は、二酸化ケイ素やダイヤモンドなどの可視光領域において透過率の高い誘電体や、ジンクセレンやシリコンなどの赤外光領域において透過率の高い誘電体や、フッ化マグネシウムやフッ化カルシウムなどの紫外光領域において透過率の高い材料を用いる。

#### [0023]

チップ用マスク101の直径は、例えば数mm以下である。ストッパー用マスク102の幅W1は、例えば、チップ用マスク101の直径と同じかそれよりも数10nm~数μmだけ小さい。また、ストッパー用マスク102の幅W1は、チップ用マスク101の直径よりも数10nm~数μmだけ大きくてもよい。また、ストッパー用マスク102の長さは、数10μm以上である。

#### [0024]

図5はチップ1およびストッパー2を形成した状態を示している。図5 (a) は上面図であり、図5 (b) は、図5 (a) のA-A'で示す位置の断面図である。チップ用マスク101およびストッパー用マスク102を形成した後、ウエットエッチングによる等方性エッチングによってチップ1およびストッパー2を形成する。

# [0025]

透明材料103の厚さとチップ1およびストッパー2の高さの関係を調整する

ことによって、図1に示す透明層5が形成されたり、形成されなかったりする。 チップ1の先端半径は、数nmから数100nmである。この後、遮光膜をスパッタや真空蒸着などの方法で堆積する事によって、図1に示すワーク1000を 形成する事ができる。また、遮光膜3をチップ1にだけ堆積する場合、遮光膜3 の堆積工程において、チップ1上に遮光膜が堆積するような形状を有するメタル マスクを乗せてスパッタや真空蒸着などを行う。また、ワーク1000のチップ が形成された面の全面に遮光膜3を堆積した後、チップ1にだけ遮光膜3が残る ようなフォトリソグラフィ工程を用いても、チップ1上にだけ遮光膜3を形成する事ができることは言うまでもない。

# [0026]

図6および図7は、上記で説明したワーク1000の作製方法におけるチップ1とストッパー2の高さの関係を説明する図である。なお、以下では、チップ用マスク101の直径が、ストッパー用マスク102の幅よりも小さい場合について説明する。図6は、図5(a)で説明した工程において、チップ1とストッパー2だけを示した図であり、図7は、図6中B-B'で示す位置のチップ1と、図6中C-C'で示す位置のストッパー2の断面図である。

#### [0027]

図7(a)は、チップ1がちょうど形成された状態を示した図である。ストッパー用マスク102の幅は、チップ用マスク101の直径よりも大きいため、図7(a)の状態では、ストッパー2の上面には、平らな部分が残り、この平らな部分上にストッパー用マスク102が残っている。しかしながら、チップ用マスク101は、チップ1との接触面積が非常に小さくなるため、はずれてしまう。図7(a)の状態では、チップ1の高さH11とストッパー2の高さH22は、同じである。

### [0028]

図7(b)は、図7(a)の状態からさらにエッチングを進め、ストッパー2 上面の平らな部分がちょうどなくなった状態を示している。図7(a)の状態からさらにエッチングを行うと、チップ用マスク101が無いチップ1の高さH11 1は、徐々に低くなっていく。一方、ストッパー用マスクが残っているストッパ -2の高さH222は、H22と同じままである。ストッパー2の上面の平らな部分の幅は、徐々に狭くなり、断面形状は図7(b)に示すように三角形になる。このときのチップ1とストッパー2の高さの差ΔHは、チップ用マスク101の直径とストッパー用マスク102の幅の差、および、チップ1とストッパー2の先端角によって異なるが、おおよそ1000m以下程度である。

## [0029]

図7(c)は、図7(b)の状態からさらにエッチングを進めた状態を示している。チップ1の高さH1111は、高さH111よりも低くなる。同様に、ストッパーH2222の高さも、高さH222よりも小さくなる。しかし、高さH111と高さH222の減少量は同じであるため、チップ1とストッパー2の高さの差ΔHは変化しない。なお、ストッパー用マスク102の幅が、チップ用マスク101よりも小さい場合は、チップ1とストッパー2の高さの関係が逆になるだけである。また、チップ用マスク101とストッパー用マスク102が等しい場合は、チップ1とストッパー2の高さが等しくなることは言うまでもない。

#### [0030]

本発明のワーク1000の作製方法によれば、フォトリソグラフィ工程によってチップ1とストッパー2の高さの差ΔHを良好に制御することができる。したがって、図1から図3で説明した開口作製方法において、板6の変位量を良好に制御することができる。

#### [0031]

また、フォトリソグラフィ工程によって作製されるワーク1000は、ウエハなどの大面積を有する試料に複数個形成することが容易である。この場合、それぞれの開口径を均一にするためには、それぞれのワーク1000における $\Delta$ Hのばらつきを、1000m以下にすればよい。また、開口の大きさを精度よく制御するためには、 $\Delta$ Hのばらつきは、100m以下がよい。

#### [0032]

以上説明したように、本発明の実施の形態1によれば、チップ1とストッパー 2の高さを良好に制御することができ、かつ、ストッパー2を設けることによっ て板6の変位量を小さくすることができるため、分解能の高いアクチュエータを用いなくても、大きさが均一で微小な開口8をチップ1先端に形成する事が容易である。我々の実験では、手に持ったハンマーなどで、押し込み用具7を叩くだけで直径100nm以下の開口8を形成する事ができた。また、チップ1とストッパー2の高さが良好に制御されるため、開口8の作製歩留まりが向上した。また、本発明の実施の形態1で説明したワーク1000は、フォトリソグラフィエ程によって作製可能なため、ウエハなどの大きな面積を有する試料に、複数個作製することが可能であり、カFを一定にすることによって複数個作製されたワーク1000それぞれに対して均一な開口径の開口8を形成することができる。また、カFの大きさを変えることが非常に簡単なため、複数個作製されたワーク1000に対して個別に開口径の異なる開口8を形成する事が可能である。また、単純にカFを加えるだけで開口8が形成されるため、開口作製にかかる時間は数秒から数10秒と非常に短い。また、本発明の実施の形態1によれば、加工雰囲気を問わない。

### [0033]

従って、大気中で加工する事が可能でありすぐに光学顕微鏡などで加工状態を 観察できる。また、走査型電子顕微鏡中で加工することによって、光学顕微鏡よ りも高い分解能で加工状態を観察することも可能である。また、液体中で加工す ることによって、液体がダンパーの役目をするため、より制御性の向上した加工 条件が得られる。

# [0034]

また、ワーク1000が複数個作製された試料に対して、一括で力Fを加えることによって、開口径のそろった開口8を一度に複数個作製することも可能である。一括で加工する場合、ウエハー枚あたりのワーク1000の数にもよるが、開口1個あたりの加工時間は、数100ミリ秒以下と非常に短くなる。

# [0035]

#### 【発明の効果】

チップ1とストッパー2の高さ、および、カFを制御する事によって、分解能 の高いアクチュエータを用いなくても、簡単に開口8を形成する事ができる。ま た、チップ1とストッパー2の高さが良好に制御されるため、開口8の作製歩留まりが向上した。また、本発明の実施の形態1で説明したワーク1000は、フォトリソグラフィ工程によって作製可能なため、ウエハなどの大きな面積を有する試料に、複数個作製することが可能であり、カFを一定にすることによって複数個作製されたワーク1000それぞれに対して均一な開口径の開口8を形成する事ができる。また、カFの大きさを変えることが非常に簡単なため、複数個作製されたワーク1000に対して個別に開口径の異なる開口8を形成する事が可能である。また、単純にカFを加えるだけで開口が形成されるため、開口作製にかかる時間は数10秒以下と非常に短い。また、本発明の実施の形態1によれば加工雰囲気を問わない。従って、大気中で加工する事が可能でありすぐに光学顕微鏡などで加工状態を観察できる。また、走査型電子顕微鏡中で加工することによって、光学顕微鏡よりも高い分解能で加工状態を観察することも可能である。

[0036]

また、液体中で加工することによって、液体がダンパーの役目をするため、より制御性の向上した加工条件が得られる。

[0037]

また、ワーク1000が複数個作製された試料に対して、一括で力Fを加えることによって、開口径のそろった開口8を一度に複数個作製することも可能である。一括で加工する場合、ウエハー枚あたりのワーク1000の数にもよるが、開口1個あたりの加工時間は、数100ミリ秒以下と非常に短くなる。

#### 【図面の簡単な説明】

【図1】

本発明の実施の形態1に係る開口の形成方法について説明した図である。

【図2】

本発明の実施の形態1に係る開口の形成方法について説明した図である。

【図3】

本発明の実施の形態1に係る開口の形成方法について説明した図である。

【図4】

ワーク1000の製造方法について説明した図である。

# 【図5】

ワーク1000の製造方法について説明した図である。

# 【図6】

ワーク1000の作製方法におけるチップ1とストッパー2の高さの関係を説明する図である。

## 【図7】

ワーク1000の作製方法におけるチップ1とストッパー2の高さの関係を説明する図である。

# 【符号の説明】

- 1 チップ
- 2 ストッパー
- 3 遮光膜
- 4 基板
- 5 透明層
- 6 板
- 7 押し込み用具
- 8 開口
- 101 チップ用マスク
- 102 ストッパー用マスク
- 103 透明材料
- 104 基板材料
- 1000 ワーク
  - F 力
  - H1 チップの高さ
  - H2 ストッパーの高さ

【書類名】

図面

【図1】



【図2】



【図3】



【図4】



【図5】



【図6】



# 【図7】







【書類名】 要約書

【要約】

【課題】 本発明の課題は、簡便な方法で均一な開口径を有する微小開口を形成す

る方法を提供することである。

【解決手段】 錐状のチップ1と前記チップの近傍に配置され、前記チップと略同

じ高さを有するストッパー2と、少なくとも前記チップ上に形成された遮光膜3からなる被開口形成体に対して、少なくとも前記チップ1および前記ストッパー2の少なくとも一部を覆うような略平面を有する押し込み体7を、前記チップに向かう成分を有する力によって変位させることによって、前記チップ先端に光学的な開口を形成する。

【選択図】 図2

# 認定・付加情報

特許出願の番号

特願2001-126415

受付番号

50100601742

書類名

特許願

担当官

第一担当上席

0090

作成日

平成13年 4月27日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000002325

【住所又は居所】

千葉県千葉市美浜区中瀬1丁目8番地

【氏名又は名称】

セイコーインスツルメンツ株式会社

【代理人】

申請人

【識別番号】

100096378

【住所又は居所】

千葉県千葉市美浜区中瀬1丁目8番地 セイコー

インスツルメンツ株式会社 知的財産部

【氏名又は名称】

坂上 正明

# 特2001-126415

# 出願人履歴情報

識別番号

[000002325]

1. 変更年月日

1997年 7月23日

[変更理由]

名称変更

住 所 千葉県千葉市美浜区中瀬1丁目8番地

氏 名 セイコーインスツルメンツ株式会社