PATVIRTINTA

Nacionalinio egzaminų centro direktoriaus 2016 m. birželio 29 d. įsakymu Nr. 1.3.-V1-106

2016 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pakartotinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	D	В	A	C	C	D	В	D	В	A

II dalis

11.1	8	14.1	-1
11.2	8	14.2	$\frac{\pi}{}$
			6
11.3	$\frac{6}{31}$	15	10π
12.1	120 d. <i>arba</i> 120	16	0 $arba \ x = 0 \ arba \ (0;1)$
12.2	100 kg <i>arba</i> 100	17	1,5 arba $\frac{3}{2}$ arba $1\frac{1}{2}$
13.1	(-1; -2) arba		
	D(-1;-2)		
13.2	1		

[©] Nacionalinis egzaminų centras, 2016

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
18	·	5	
18.1		1	
	$\frac{18 + \frac{v^2}{200}}{v} = \frac{18}{v} + \frac{v}{200}$	1	Už teisingai gautą atsakymą.
18.2		4	
	I būdas $K'(v) = -\frac{18}{v^2} + \frac{1}{200}$	1	Už teisingai apskaičiuotą išvestinės reikšmę.
	$-\frac{18}{v^2} + \frac{1}{200} = 0 \Leftrightarrow v = \pm 60$ $v = -60 \text{ nepriklauso apibrėžimo sričiai.}$	1	Už teisingai sudarytą lygtį ir rastą tinkamą jos sprendinį.
	$K(10) = 1\frac{17}{20},$ $K(90) = \frac{13}{20},$ $K(60) = \frac{12}{20}$	1	Už apskaičiuotas funkcijos reikšmes kritiniame taške ir intervalo galuose.
	mažiausia $K(v)$ reikšmė lygi 0,6.	1	Už teisingai gautą atsakymą.
	II būdas $K'(v) = -\frac{18}{v^2} + \frac{1}{200}$	1	Už teisingai apskaičiuotą išvestinės reikšmę.
	$-\frac{18}{v^2} + \frac{1}{200} = 0 \Leftrightarrow v = \pm 60$ $v = -60 \text{ nepriklauso apibrėžimo sričiai.}$ $K'(10) = -\frac{18}{100} + \frac{1}{200} < 0,$	1	Už teisingai sudarytą lygtį ir rastą tinkamą jos sprendinį.
	$K'(90) = \frac{18}{8100} + \frac{1}{200} > 0,$ todėl taške $v = 60$ pasiekiamas minimumas.	1	Už parodymą, kad $v = 60$ yra minimumo taškas.
	$K(60) = \frac{18}{60} + \frac{60}{200} = 0.6.$	1	Už rastą mažiausią reikšmę.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19		5	
19.1		2	
	$S_{AOB} = \frac{1}{2} \cdot 6 \cdot 6 \cdot \sin 60^{\circ} = \frac{36\sqrt{3}}{4} = 9\sqrt{3}.$	1	Už teisingai apskaičiuotą vieno iš 6 trikampių, sudarančių pagrindą, plotą.
	$S_{ABCDEF} = 6 \cdot S_{AOB} = 6 \cdot 9\sqrt{3} = 54\sqrt{3}.$	1	Už teisingai apskaičiuotą pagrindo plotą.
19.2		3	
	OH = SO.	1	Už pastebėjimą, kad kiekvienos iš pagrindą sudarančių trikampių aukštinės ilgis lygus piramidės aukštinės ilgiui.
	$OH = \sqrt{AO^2 - \frac{AB^2}{2}} = \sqrt{6^2 - 3^2} = 3\sqrt{3}.$	1	Už teisingai gautą OH ilgio reikšmę.
	$V_{\text{piramidės}} = \frac{1}{3}SO \cdot S_{ABCDEF} = \frac{1}{3}3\sqrt{3} \cdot 54\sqrt{3} = 162.$	1	Už teisingai gautą piramidės tūrį.

	L		
Užd.	Sprendimas ir atsakymas		Vertinimas
20		8	
20.1		3	
	$y = a(x-3)^2,$	1	Už teisingai užrašytą parabolės lygtį
			skaičiavimams tinkama forma.
	$\frac{1}{2}$		
	$a(0-3)^2 = 3 \Rightarrow a = \frac{1}{3}.$	1	Už teisingai panaudotas parabolės
			viršūnės ir susikirtimo su apskritimu
	$\frac{1}{3}(x-3)^2 = \frac{1}{3}x^2 - 2x + 3 \Rightarrow$		koordinates.
	$\left \frac{3}{3}(x-3)^2\right = \frac{3}{3}x^2 - 2x + 3 \Rightarrow$		Roof diffaces.
	$(a,b,c) = (\frac{1}{2}; -2; 3).$	1	Už teisingai gautas <i>a, b, c</i> reikšmes.
	$\binom{(a,b,c)}{3}$	1	Oz teisingai gautas u, b, c teiksines.
20.2		3	
	$S_{aps} = \frac{1}{4} \pi \cdot 9 = \frac{9\pi}{4}.$	1	Už teisingai apskaičiuotą ketvirtadalio
	$S_{aps} = \frac{1}{4} \pi + 9 = \frac{1}{4}$.	_	apskritimo plotą.
	-2 / 2		aponitumo protą.
	$S_2 = \int_0^3 \left(\frac{x^2}{3} - 2x + 3\right) dx =$	1	Už teisingai užrašytą parabole
	$\int_0^{3} \int_0^{3} \left(3 - \frac{2\pi}{3} + 3\right) dx$	_	apribotos figūros plotą.
	_		aprilottos rigaros piotą.
	$\left \left(\frac{x^3}{9} - x^2 + 3x \right) \right _0^3 = (3 - 9 + 9) -$		
	(0 - 0 + 0) = 3.		
	0 =	1	Už teisingai gautą atsakymą.
	$S_{u\check{z}br\check{u}k\check{s}} = \frac{9\pi}{4} - 3.$	1	Oz teisingai gautą atsakymą.
20.3		2	
	$2S_3 = 2\left(\frac{9}{3} - 3\right) = 3$		Už teisingai apskaičiuotą dvigubą
	$\left(\frac{203}{2} - 2\left(\frac{2}{2} - 3\right) - 3\right)$	1	ploto tarp stygos ir parabolės reikšmę.
			r Purveous 15 monity.
	0.7		Už teisingą paaiškinimą, kad plotai
	$\left \frac{9\pi}{4} - 3 \approx 4{,}07 \neq 3 \right $, todėl plotai nelygūs.	1	nelygūs.
	•	1	nerygus.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		5	
	Tegul RK ir RM yra statmenys į kraštines CB ir AD .	1	Už teisingą sprendimo būdą.
	$\begin{cases} BR^2 - BK^2 = CR^2 - CK^2 \\ AR^2 - AM^2 = DR^2 - MD^2. \end{cases}$	1	Už teisingai sudarytą lygčių sistemą, remiantis Pitagoro teorema.
	$BK = AM \text{ ir } CK = MD. \Rightarrow$ $\begin{cases} BR^2 - BK^2 = CR^2 - CK^2 \\ AR^2 - BK^2 = DR^2 - CK^2. \end{cases}$	1	Už panaudotą faktą, kad <i>E</i> , <i>K</i> ir <i>M</i> yra vienoje tiesėje.
	$BR^{2} - AR^{2} = CR^{2} - DR^{2} \Leftrightarrow DR^{2} = CR^{2} - BR^{2} + AR^{2}.$ $DR^{2} = 10^{2} - 8,5^{2} + 4,5^{2} = 48.$	1	Už vienos lygties atėmimą iš kitos.
	$DR = 4\sqrt{3}$.	1	Už teisingai gautą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		4	
22.1		1	
	$10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 151200$	1	Už teisingai gautą atsakymą.
22.2		1	
	$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 = 20160$	1	Už teisingai gautą atsakymą.
22.3		3	
	I būdas Jei mokinys skaičiuodamas laikė, kad Tomo ir Kotrynos sėdėjimo tvarka yra nesvarbi.		
	$n = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{2} = 75600$		Už teisingą sprendimo būdą.
	$m = 9 \cdot A_8^4 = 15120$ $\mathbf{P}(A) = \frac{m}{n} = \frac{15120}{75600} = 0,2.$	1	Už apskaičiuotą palankių įvykių skaičių.
		1	Už apskaičiuotą klasikinę tikimybę.
	II būdas Jei mokinys skaičiuodamas laikė, kad Tomo ir Kotrynos sėdėjimo tvarka yra svarbi.		
	$n = 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 151200$	1	Už teisingą sprendimo būdą.
	$m = 2 \cdot 9 \cdot A_8^4 = 30240$	1	Už apskaičiuotą palankių įvykių skaičių.
	$\mathbf{P}(A) = \frac{m}{n} = \frac{30240}{151200} = 0,2.$	1	Už apskaičiuotą klasikinę tikimybę.

Užd.	Canadimas in atsalarmas	Tažkai	Vortinimas
-	Sprendimas ir atsakymas	+	Vertinimas
23		5	
23.1		3	
	Tarkime miške buvo x medžių, o iškirsta y medžių. Eglių buvo $0.01x$.	1	Už teisingą sprendimo būdą.
	$\frac{0.01x}{x-y} = 0.02 \Rightarrow$	1	Už sudarytą lygtį.
	y = 0.5x, t. y. 50 % miško.	1	Už teisingai gautą atsakymą.
23.2		2	
	$\frac{\text{I būdas}}{\frac{0,01x + 500}{0,5x + 500}} = 0,51 \Rightarrow$	1	Už sudarytą lygtį.
	$x = 1000 \text{ med}\check{z}i\psi.$	1	Už teisingai gautą atsakymą.
	II būdas		
	Pušų $0.98 \cdot \frac{1}{2}x - 49 \%$.		
	Eglių $0.02 \cdot \frac{1}{2}x + 500 - 51\%$.		
	$0.98 \cdot \frac{1}{2}x \cdot 51 = \left(0.02 \cdot \frac{1}{2}x + 500\right) \cdot 49$	1	Už sudarytą lygtį.
	x = 1000 medžių.	1	Už teisingai gautą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24		5	
	I būdas Tarkime, $m > n$ yra ieškomi dydžiai.	1	Už teisingą sprendimo būdą.
	Siurbliai per valandą pripildo $\frac{1}{n}$ ir $\frac{1}{m}$ baseino. $\frac{1}{n} + \frac{1}{m} = \frac{1}{5} \iff$	1	Už teisingai sudarytą lygtį.
	$m = 5 + \frac{25}{n-5}$	1	Už išreikštą vieną iš kintamųjų.
	n=6, tai $m=30n=10$, tai $m=10$ netinka.	1	Už lygties sprendimą sveikaisiais skaičiais, t. y. perranką.
	Ats.: $m = 30 \text{ ir } n = 6.$	1	Už teisingai gautą atsakymą.
	II būdas Tarkime, $m > n$ yra ieškomi dydžiai.	1	Už teisingą sprendimo būdą.
	Siurbliai per valandą pripildo $\frac{1}{n}$ ir $\frac{1}{m}$ baseino. $\frac{1}{n} + \frac{1}{m} = \frac{1}{5} \iff$	1	Už teisingai sudarytą lygtį.
	$(m-5)(n-5) = 25 \Rightarrow$	1	Už išskaidymą dauginamaisiais.
	$m-5=25 \text{ ir } n-5=1 \Rightarrow$	1	Už lygties sprendimą sveikaisiais skaičiais.
	Ats.: $m = 30 \text{ ir } n = 6.$	1	Už teisingai gautą atsakymą.