Solvent Effect: S_N2

✓ Typical choices: a less polar solvent for the S_N2 reaction (just polar enough to dissolve the

- ✓ The most common S_N 2 reactions use an anion as the nucleophile and the transition state is less polar than the localized anion as the charge is spread between two atoms
- ✓ A polar solvent solvates the anionic nucleophile and slows the reaction down
- ✓ A nonpolar solvent destabilizes the starting materials more than it destabilizes the transition state and speeds up the reaction

The following table presents rate data for the reactions of CH_3I with azide ion:

Solvent	Relative Rate	Dielectric Constant
Methanol	1)	33
DMF	4.5 X 10 ⁴	37

Polar protic solvents: H₂O, ROH, RCO₂H

- ✓ Are able to form hydrogen bonds (hydroxylic solvents)
- ✓ They solvate both cations and anions well

Polar aprotic solvents:

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3

- ✓ Polar aprotic solvents, on the other hand, have dipole moments and are still able to solvate cations by electron donation from an oxygen atom
- ✓ They don't solvate the anions

shown for each ion

cation solvated by electron-donation from oxygen atom

anion solvated by electron-acceptance through hydrogen bonding

solvation of salts by polar aprotic solvents

cation solvated by electron-donation from oxygen atom

anion not solvated no hydrogen bonding is possible the anion is "naked" and hence more nucleophilic

✓ Can we rationalize the solvent effects based on the following equation?

ΔE (interaction energy) : Σ sterics – Σ orbital overlap/(E_{LUMO} – E_{HOMO}) + Σ charge interaction

$$|CH_3TU + GHOI \rightarrow CH_3OH + UO)$$

$$\rightarrow CH_3OH \rightarrow D$$

$$\rightarrow DNF \rightarrow D$$

Solvent Effect: S_N1

- ✓ The transition state is more polar than the starting materials and so is stabilized by the polar solvent
- ✓ A polar protic solvent for the S_N 1 reaction.
- ✓ The rate-determining step usually involves the formation of ions and the rate of this process will be increased by a polar solvent

We have covered so far:

- 1. Structural factors (sterics)
- 2. Solvent effects

We will now look at two other factors:

Leaving groups

The Leaving Group

Table 17.4 Halide leaving groups in the S _N 2 reaction
--

Halide X in MeX	pK_a of conjugate acid HX	Rate of reaction with NaOH
F	+3	very slow indeed
CI	-7	moderate
Br	-9	fast
1	-1 0	very fast

Halide (X)	Streng kJ mo	-
fluorine	118	(-t
chlorine	81	
bromine	67	
iodine	54	(-1

✓ In the Ethyl halide series, the rate follows the order:

Relative Rate: $CH_3CH_2I > CH_3CH_2Br > CH_3CH_2CI >> CH_3CH_2F$

✓ It is clearly easiest to break a C-I bond and most difficult to break a C-F bond. Iodide sounds like the best leaving group

ΔE (interaction energy) : Σ sterics – Σ orbital overlap/(E_{LUMO} – E_{HOMO}) + Σ charge interaction

