生理学(PHYSIOLOGY)

冷晔

lengye@tongji.edu.cn

第一章 前言和绪论

第一节

• 生理学的研究对象和任务

第二节

• 生理学的常用研究方法

第三节

• 生命活动的基本特征

第四节

• 机体的内环境、稳态和生物节律

第五节

• 机体生理功能的调节

第六节

• 人体内自动控制系统

第七节

• 回顾和展望

第一节

• 生理学的研究对象和任务

生理学(Physiology):

在生物学、医学体系中,起承前启后的作用 定义:生物体(机体)生命活动各种现象及其功 能活动规律。

一、研究对象

不同分类:

- ❖ 研究对象:
 动物生理学(animal physiology)
 植物生理学(plant physiology)
 人体生理学(human physiology)
- ❖ 所处研究状态: 太空生理学(space physiology) 潜水生理学(diving physiology) 高原生理学(plateau physiology)
- ❖ 研究的器官、系统: 神经生理学、心血管生理学...

二、研究任务

- ❖ 阐明各种正常的生命现象、活动规律及其产生机制
- ❖ 机体内、外环境变化对这些功能性活动的影响 和机体所进行的相应调节。
- * 揭示各种生理功能在整体生命活动中的意义。

三、与医学的关系

- 生理学的知识是随人类社会的发展,特别是在医学实践、科学研究和技术发展的过程中不断积累起来的。
- 长期以来,医学中关于疾病的理论研究都以人体生理学为基础,反过来,临床实践也能检验生理学理论是否正确,并进一步丰富和发展生理学理论。
- 人体生理学是一门重要的基础医学理论课程。

1822年,在一次偶然的事故中, 位名叫阿列西斯·圣·马丁的加拿大探险 家不幸腹部被严重射伤. 他的伤口由 美国军医威廉·比蒙特治疗。枪伤虽然 治愈了, 但腹部外面的弹孔却未愈合, 胃上留下了一个洞! 在其后的七年中, 圣·马丁同意比蒙特医生通过这个弹孔在 胃中置入试管和衬垫, 以便采集胃液, 并研究胃液对食物的作用。比蒙特医 生把他的研究结果写成了一本书并发 表出来。 这本名为《胃液研究和消化机 理》的书极大地促进了医学研究。比蒙 特医生活到68岁时去世, 而圣·马丁 带着有洞的胃一直活到82岁。

William Harvey医生,血液循环的发现者,实验生理学的创始人之一。近代医学和生理学史上的伟人。《心与血的运动》发表于1628年,被誉为历史上最重要的著作,标志着现代生理学的开始,其意义并不在于直接应用,而是为人们探索人体生理功能的奥秘指明了正确方向,这就是通过实验来进行研究。

M. Malpighi (1628-1694)

An Italian physiologist who used a microscope to discover the capillaries, crowning Harvey's investigation

马尔比基用显微镜 看到了蛙肺部的毛细血 管和蝌尾部血液通过 毛细血管的循环过程, 血液循环学说最后被确 证。

<u>贝利斯</u>和E.H.<u>斯塔林</u>长期合作,对<u>生理学</u>有多方面开拓性贡献。其中影响最大的是1902年发现<u>促胰液素(secretin)。——第一个被认识的激素</u>,他们由此提出了机体功能受体液调节的<u>新概念</u>,开辟了内分泌学研究的新领域。

■ | ★ 收藏 | 105 | 2 4

巴里·马歇尔 🗸 🙀

巴里·马歇尔(Barry J. Marshall),1951年9月30日出生,澳大利亚科学家,与罗宾·沃伦(J. Robin Warren)发现了幽门螺杆 菌(Helicobacter pylori, Hp)以及这种细菌在胃炎和胃溃疡等疾病中的作用,被授与2005年诺贝尔生理或医学奖。2011年,被评 为中国工程院外籍院士。[1]

中文名	巴里? 马歇尔	出生日期	1951年9月30日
外文名	BarryJ.Marshall	電 业	医师
国 籍	澳大利亚	毕业院校	澳大利亚大学
出生地	澳大利亚西部城市卡尔古利	主要成就	获得诺贝尔生理或医学奖

目录

- 1 个人经历
- 2 发现过程
- 3 所获奖项
- 4 主要贡献

个人经历

1951年9月30日,出生于西澳大利亚州卡尔古利市。

1968-1974年,获西澳大利亚大学硕士学位。

1977-1984年,成为珀斯皇家医院注册医师。

1985-1986年,成为珀斯皇家医院肠胃病学研究人员。

● 编辑

"幽门螺杆菌之父"现任东方医院消化疾病诊疗中心主任

细胞培养室

马歇尔消化疾病国际诊疗中心候诊区域

马歇尔教授

办公室

马歇尔消化疾病国际诊疗中心病房

拥有国际最先进的EVIS LUCERA ELITE内镜系 统的内镜室

四、生理学的认识层次

生理学研究的 不同水平

- ❖ 器官和系统水平:器官生理学 心脏射血,肺呼吸,小肠消化吸收,
- ❖ 细胞和分子水平:细胞生理学/ 普通生理学 肌丝滑行,离子通道开放及离子跨膜运动,神 经肌肉接头 生理基因组学(功能基因组学)
- *整体水平:整体的共性,个体的特性;自然环境-社会-人的关系;现代生物-心理-社会-环境新型医学模式

第二节

• 生理学的研究方法

- 一: 动物实验
- ❖ 急性动物实验:
 在体实验:

颈动脉插管记录血压

一只头上插着微电极的大白鼠通过 在计算机上发出的指令,正确地完 成了前进、后退及左右转的任务。

离体实验:

家兔离体小肠平滑肌生理特性

蟾蜍离体心脏灌流

优点:实验条件简单,易控制,可直接观察,可深入 到细胞、分子水平,揭示本质规律

缺点:环境发生改变,结果有差异

❖ 慢性动物实验:观察某一器官、组织在正常情况下的功能及在整体中的地位。干扰多,条件不易控制。

伊凡·彼德罗维奇·巴甫洛夫和他的狗 巴甫洛夫: 1904 年第四屆諾貝爾生理醫學獎得主

狗的非条件反射示意图

在非条件反射的基础上去 建立条件反射示意图

狗对无关刺激无进食 反应示意图

在非条件反射的基础上建 立了条件反射示意图

条件反射研究

条件反射实验装置图解

1913年,做实验

巴甫洛夫在学术上的贡献,主要在于三方面:

- ❖1、心脏的神经功能;
- *2、<u>消化腺</u>的生理机制(获1904<u>诺贝尔奖</u>, 第一个获得诺贝尔奖的生理学家);
- ❖ 3、条件反射研究

二: 人体实验

早期: 伦理学限制,人群资料调查

中国人平均正常血压参考值

年龄	收缩压 (男)	舒张压 (男)	收缩压 (女)	舒张压 (女)
16—20	115	73	110	70
21—25	115	73	110	71
26—30	115	75	112	73
31—35	117	76	114	74
36—40	120	80	116	777/
41—45	124	81	122	78
46—50	128	82	128	79
51—55	134	84	134	80
56—60	137	84	139	82
61—65	148	86	145	83

血糖值的正常范围

一、人的血糖正常值为 3.6-6.1mmol/L

糖尿病的诊断标准为:空腹血糖≥ 7.0 mmol/L,或餐后 2小时血糖≥11.0、葡萄糖耐量试验 2小时≥11.0

如空腹血糖>6.0 <7.0 mmol/L, 为空腹血糖损害; 餐后 2小时血糖或葡萄糖耐量试验 2小时≥7.8 < 11.0 , 为糖耐量 损害。二者均为糖稳定损害。相当于过去的隐性糖尿病或糖尿病 早期改变。

中老年人,如血糖在6~7之间,这个值介于正常与糖尿病 诊断标准之间,属于糖稳定损害阶段,但还不足于诊断为糖尿 病,相当于隐性糖尿病或糖尿病早期改变。 当今:科技发展(影像技术、心电图、脑电图、超声、生物芯片、生物信息技术、大数据挖掘、基因图谱解码破译等等)

对原有生理学认知不断深化、个体化生理功能研究成为可能。

DNA 芯片荧光扫描分析图

PET/CT 正电子发射计算机断层显像

第三节

• 生命活动的基本特征

一、新陈代谢(metabolism)

定义:活的机体在适宜的环境中,总是不断地重新建造自身的特殊结构,同时又在不断地破坏自身已衰老的结构。

同化: 机体从外界环境中摄取营养物质,并使其合成转化为机体自身物质的过程。

异化: 机体把自身物质进行分解,同时释放能量以供生命活动和合成物质的需要,并把分解的产物排出体外的过程。

分解时释放能量 合成时吸收能量

新陈代谢包括物质代谢和能量代谢,是生物体最基本特征,它结束,生命便结束。

二、兴奋性

定义: 组织细胞受到刺激时产生动作电位的能力叫兴奋性。

动作电位与兴奋性变化的时间关系

刺激:能被生物体感受而引起生物体发生反应的环境 起生物体发生反应的环境 变化(包括内、外环境) 如声、光、电、温度、压力及化学等因素。

可兴奋组织:感受器细胞、 各种肌细胞、神经细胞、 腺细胞可在受到刺激时产 生特殊的生物电反应。这 类组织称为可兴奋组织。

反应: 当生物体所处的环境发生变化时,常引起生物体内部的代谢过程及其外表活动发生改变,这种改变称为反应。反应可分为兴奋、抑制。

兴奋: 由相对静止状态变为显著运动,或活动由弱变强。 组织或细胞受到刺激后产生动作电位的现象。

抑制:由运动变为相对静止状态,或活动由强变弱。

突触处通过神经递质可使下一个神经元兴奋或者抑制

三、适应性

适应(adaptation): 机体按环境变化调整自

身生理功能的 过程。

适应

生理性适应

行为性适应

非洲小女孩

爱斯基摩人与野生动物

四、生殖遗传(reproduction)

遗传:各种生物通过生殖产 生的子代与其亲代之间不论 在形态结构上,还是在功能 活动上都很相似,称遗传。

变异:子代与亲代之间,又总是存在一些差异,叫变异。

人类辅助生殖技术

五、其他生物特征

1生长发育

生长: 形体生长,细胞数量增加,细胞间质增加,各器官组织大小,长短,重量增加,生长过程中伴随发育,新陈代谢是同化作用大于异化作用。

发育: 指从两性生殖细胞的结合 到生后个体的性成熟,包括胚 胎发育和个体发育,基因表达 引导和调控整个发育过程。

一哭二笑三咿呀 四月哈哈望妈妈 五抓六坐握足玩 七翻八爬九叫爸 十站对指十二走 看图说话在十八 两岁能用勺吃饭 喜怒分明命令发 三岁学穿鞋和袜 长成大娃别娇他

2 衰老

定义: 生命周期中随时间进展功能活动不断减退、衰弱,直至死亡的过程。

表现:

- ✓ 人体结构成分的衰老变化: 水分减少脂肪增多
- ✓ 细胞数量减少
- ✓ 全身器官功能下降
- ✓ 机能改变 对内外环境适应能力下降

人体器官衰老有"日程表"

人体几个主要器官的衰老变化

泌尿生殖系统

更年期之后, 女性卵巢萎缩 并硬化,男性 睾丸也渐趋萎 缩并纤维化

消化系统

老人各种消化 功能减退。75 岁老人与儿童 比较,味觉感 受器丧失80%

神经系统

40岁时开始神经传导速度减慢,到80岁时减慢15~30个百分点

衰老开始

女子 21岁 男子 24岁

50岁之后

老化速度加快, 变化明显

心脏与血管

心脏潜力成年时最强,70岁时为40岁时的50%

运动系统

中年人每过10年,肌肉递减5~10个百分点。75岁时的握力只相当于35岁时的75%

呼吸系统

25岁青年每分钟可向组织输氧4升,70岁老人只能输氧两升

第四节

• 机体的内环境、稳态和生物节律

一、内环境

内环境(internal environment):细胞的生活环境,细胞外液,提供细胞物质交换的场所,提供稳定适宜的理化环境,保障细胞正常代谢和功能活动。

理解机体生存的内环境和外环境的区别

体液

细胞内液:约2/3,占体重40%

细胞外液:约1/3,占体重20%

组织液:占体重15%

血浆:占体重5%

淋巴液 脑脊液

胸膜腔及关节腔内液体

Distribution & transfusion of body fluid

二、内环境的稳态

- 自稳态(homestasis): 机体通过自动调控所维持的其内环境理 化性质相对稳定的状态。由机体各种调节机制共同维持,一 方面代谢不断破坏这些相对稳定,另一方面又提供各种调节 恢复平衡,机体处于这种动态平衡之中。
- 稳态的维持:通过多个系统和器官的活动,使遭受破坏的 内环境及时得到恢复,从而维持其相对稳定。
- ✓ 稳态的生理意义:维持机体的正常功能,是生命活动的必要条件。
- 稳态概念的扩展:不局限于内环境,扩大到三大不同水平的各种生理功能活动在神经/体液调节下保持相对稳定的状态。

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exchanges of matter

三、生物节律(biorhythm)

定义:生物体内的各种活动按一定时间顺序变化,并呈节律性周而复始。

高频节律: T <1d 如心电和呼吸节律。

低频节律: T>1d 如月经周期和侯鸟迁徙周期

中频节律: 日周期,最多,最重要,如血球,体温,血压和尿

成分。

2017年诺贝尔生理学或医学奖授予Jeffrey C. Hall, Michael Rosbash和 Michael W. Young, 奖励他们的发现"昼夜节律控制分子机制"。

第五节

• 机体生理功能的调节

机体环境变化作适应性反应时,要进行调节活动,维持自稳态,调节机制有:

一、神经调节(neuroregulation):

定义: 通过神经系统的活动而影响机体生理功能的一种调节方式。

基本方式: 反射

结构基础: 反射弧(reflex arc)

(感受器--传入神经--反射中枢--传出神经--效应器)

特点:迅速、局限、准确、短暂

反射弧

条件反射(conditioned reflex): 后天获得。

非条件反射(unconditional reflex): 先天遗传,如膝反射。

条件反射与非条件反射的比较

	非条件反射	条件反射
形成时间	生来就有	后天获得
神经中枢	大脑皮层以下中枢	大脑皮层
神经联系、 维持时间	反射弧及神经联 系永久、固定, 反射不消退	反射弧及神经联系 暂时、可变, 反射 易消退, 需强化
意义	完成机体基本 的生命活动	大大提高了人和动物 适应复杂环境的能力
举例	缩手反射、 眨眼反射	望梅止渴、谈虎色变

二、体液调节(humoral regulation):

定义: 机体的某些细胞所分泌的某些特殊的化学物质,通过体液途径被运送到全身各处靶细胞,调节机体的新陈代谢,生

长,发育等生理功能。

远距分泌(telecrine): 体液途径为血液循环

局部性体液调节,或称旁分泌(paracrine):

除激素外,某些组织细胞可产生一些化 学物质在局部的组织液内扩散,改变周 围细胞的活动,称局部性体液调节。

如:胰岛内,胰岛素和胰高血糖素之间的相互作用。

自分泌 (autocrine):

特点:缓慢、广泛、持久

神经分泌:神经元合成神经激素释放入血,作用于靶细胞。

如血管升压素(下丘脑 释放)经血液作用于肾 小管上皮细胞和血管平 滑肌细胞。

神经一体液调节:有些内分泌腺本身直接或间接受神经系统的调节,体液调节成了神经调节的一个传出环节,相当与反射弧传出道路的延伸。

如交感神经兴奋可引起肾上腺髓质释放肾上腺素和去甲肾上腺素

三、自身调节(autoregulation):

定义: 指当内外环境方式变化时,组织或细胞不依赖于神经和体液调节,而自行产生的适应性反应。

如心肌细胞的收缩与收缩前心肌纤维长度成正比。

特点:调节强度弱,范围小,灵敏度低,局限。

第六节

• 人体内自动控制系统

任何控制系统都由控制部分和受控部分组成。

从控制论的观点来分析,控制系统可分为:

反馈控制系统

前馈控制系统

电脑控制自动空调系统

图 1-1 微电脑控制自动空调系统图

一、反馈控制系统

人体生理功能的调节与工程技术的控制调节具有相同规律。

- ✓ 自动控制系统:人体的各种功能调节系统。
- ✓ 控制部分: 反射中枢或内分泌腺。
- ✓ 受控部分:效应器或靶细胞。
- ✓ 输出变量: 受控部分的状态或所产生的效应。
- ✓ 反馈信息:来自受控部分的反应输出变量变化情况的信息,分为正反馈和负反馈。

负反馈(negative feedback):指从受控部分发出的反馈信息抑制或减弱了控制部分的活动,如体温调节。它是维持机体稳态的一种重要调节方式,但有滞后。

负反馈: 体温调节

* 负反馈调节特点:

多见。闭合回路,反馈反复进行多次往返缩小偏差,调节精确。

缺点:波动性和滞后性

作用: 维持系统的稳态

正反馈(positive feedback): 指从受控部分发出的反馈信息促进与加强控制部分的活动。

血液凝固过程示意图

分娩过程示意图

正反馈调节特点:

- * 不如负反馈多见;
- * 常在局部短时发挥作用;
- ❖ 滚雪球效应,促进生理活动很快达到高潮 ,发挥最大效应;
- * 无纠正偏差的作用
- * 病理情况下常发生正反馈:心衰

前馈(feed-forward contral): 干扰信息对控

制系统的直接调控作用成为前馈。

作用: 预先监测干扰。

第七节

• 回顾和展望

回顾:课外自我学习

展望: 课外自我学习