

Sound Processor Series for Car Audio

Sound Processors with Built-in 2-band Equalizer

BD37513FS, BD37514FS, BD37515FS

No.10085EAT02

● Description

BD37513FS, BD37514FS, BD37515FS are sound processors built-in 2-band equalizer for car audio. The functions are stereo 4ch input selector, input-gain control, main volume, loudness, 5ch fader volume (About BD37513FS, 4ch fader volume are available). Moreover, "Advanced switch circuit", that is ROHM original technology, can reduce various switching noise (ex. No-signal, low frequency likes 20Hz & large signal inputs). "Advanced switch" makes control of microcomputer easier, and can construct high quality car audio system.

● Features

- 1) Reduce switching noise of input gain control, mute, main volume, fader volume, bass, treble, loudness by using advanced switch circuit [Possible to control all steps]
- 2) Built-in 1 differential input selector and 3 single-ended input selectors
- 3) Built-in ground isolation amplifier inputs, ideal for external stereo input.
- 4) Built-in input gain controller reduces switching noise for volume of a portable audio input.
- 5) Decrease the number of external components by built-in 2-band equalizer filter, LPF(BD37515FS) for subwoofer, loudness filter. And, possible to control Q(BD37514FS, BD37515FS), Gv, fo(BD37514FS, BD37515FS) of 2-band equalizer, fc of LPF(BD37515FS) for subwoofer and Gv of loudness by I²C BUS control
- 6) It is possible for the bass, treble to the gain adjustment quantity of ±20dB and 1 dB step gain adjustment.
- 7) It is equipped with output terminals of Subwoofer(BD37514FS, BD37515FS).
- 8) Bi-CMOS process is suitable for the design of low current and low energy. And it provides more quality for small scale regulator and heat in a set.
- 9) Package is SSOP-A20. Putting input-terminals together and output-terminals together can make PCB layout easier and can makes area of PCB smaller.
- 10) It is possible to control by 3.3V / 5V for I²C BUS.

● Applications

It is the optimal for the car audio. Besides, it is possible to use for the audio equipment of mini Compo, micro Compo, TV etc with all kinds.

●Line up matrix

Function	BD37513FS	BD37514FS	BD37515FS	Specifications
Input selector	○	○	○	<ul style="list-style-type: none"> Stereo 3 input Differential 1 input
Input gain	○	○	○	<ul style="list-style-type: none"> +20~0dB (1dB step) Possible to use "Advanced switch" for prevention of switching noise.
Mute	○	○	○	<ul style="list-style-type: none"> Possible to use "Advanced switch" for prevention of switching noise.
Volume	○	○	○	<ul style="list-style-type: none"> +15dB~-79dB (1dB step), -∞dB Possible to use "Advanced switch" for prevention of switching noise.
Bass	○	○	○	<ul style="list-style-type: none"> +20~-20dB (1dB step) Possible to use "Advanced switch" at changing gain Q=0.5, 1, 1.5, 2(BD37513FS:1) f_o=60, 80, 100, 120Hz(BD37513FS : 100Hz)
Treble	○	○	○	<ul style="list-style-type: none"> +20~-20dB (1dB step) Possible to use "Advanced switch" at changing gain Q=0.75, 1.25(BD37513FS : 1.25) f_o=7.5k, 10k, 12.5k, 15kHz(BD37513FS : 10kHz)
Fader	○	○	○	<ul style="list-style-type: none"> +15dB~-79dB(1dB step), -∞dB (BD37513FS,BD37514FS : 0dB~-79dB, -∞dB) Possible to use "Advanced switch" for prevention of switching noise.
Loudness	○	○	○	<ul style="list-style-type: none"> 20dB~0dB(1dB step) f_o=800Hz Possible to use "Advanced switch" for prevention of switching noise.
LPF	×	×	○	<ul style="list-style-type: none"> f_c=55/85/120/160Hz, pass Phase shift (0°/180°)

●Absolute maximum ratings (Ta=25°C)

Item	Symbol	Rating	Unit
Power supply Voltage	VCC	10.0	V
Input voltage	Vin	VCC+0.3~GND-0.3	V
Power Dissipation	Pd	940 ≈1	mW
Storage Temperature	Tastg	-55~+150	°C

※This value decreases 7.5mW/°C for Ta=25°C or more.

ROHM standard board shall be mounted.

Thermal resistance θ_{ja} = 133(°C/W)

ROHM Standard board

Size : 70x70x1.6(mm³)

Material : A FR4 glass epoxy board(3% or less of copper foil area)

●Operating conditions

Item	Symbol	MIN	TYP	MAX	Unit
Power supply Voltage	VCC	7.0	—	9.5	V
Temperature	Topr	-40	—	+85	V

● Electrical characteristics

(Unless specified particularly, Ta=25°C, VCC=8.5V, f=1kHz, Vin=1Vrms, Rg=600Ω, RL=10kΩ, A input, Input gain 0dB, Mute off, Volume 0dB, Tone control 0dB, Loudness 0dB, LPF OFF(BD37515FS), Fader 0dB)

BLOCK	Item	Symbol	Limit			Unit	Condition
			Min.	Typ.	Max.		
GENERAL	Current upon no signal	I _Q	—	38	48	mA	No signal
	Voltage gain	G _V	-1.5	0	+1.5	dB	G _V =20log(VOUT/VIN)
	Channel balance		-1.5	0	+1.5	dB	CB = GV1-GV2
	Total harmonic distortion 1 (FRONT,REAR)	THD+N1	—	0.001	0.05	%	VOUT=1Vrms BW=400-30KHz
	Total harmonic distortion 2 (SUBWOOFER) (BD37514FS, BD37515FS)	THD+N2	—	0.002	0.05	%	VOUT=1Vrms BW=400-30KHz
	Output noise voltage 1 (FRONT,REAR) *	V _{NO1}	—	3.8	15	µVrms	Rg = 0Ω BW = IHF-A
	Output noise voltage 2 (SUBWOOFER) * (BD37514FS, BD37515FS)	V _{NO2}	—	4.8	15	µVrms	Rg = 0Ω BW = IHF-A
	Residual output noise voltage *	V _{NOR}	—	1.8	10	µVrms	Fader = -∞dB Rg = 0Ω BW = IHF-A
	Cross-talk between channels *	CTC	—	-100	-90	dB	Rg = 0Ω CTC=20log(VOUT/VIN) BW = IHF-A
	Ripple rejection	RR	—	-70	-40	dB	f=1kHz VRR=100mVrms RR=20log(VCC IN/VOUT)
INPUT SELECTOR	Input impedance(A,B)	R _{IN_S}	70	100	130	kΩ	
	Input impedance (C,D)	R _{IN_D}	175	250	325	kΩ	
	Maximum input voltage	V _{IM}	2.1	2.3	—	Vrms	VIM at THD+N(VOUT)=1% BW=400-30KHz
	Cross-talk between selectors *	CTS	—	-100	-90	dB	Rg = 0Ω CTS=20log(VOUT/VIN) BW = IHF-A
	Common mode rejection ratio *	CMRR	50		—	dB	DP1 and DN input DP2 and DN input CMRR=20log(VIN/VOUT) BW = IHF-A
INPUT GAIN	Minimum input gain	G _{IN MIN}	-2	0	+2	dB	Input gain 0dB VIN=100mVrms Gin=20log(VOUT/VIN)
	Maximum input gain	G _{IN MAX}	+18	+20	+22	dB	Input gain 20dB VIN=100mVrms Gin=20log(VOUT/VIN)
	Gain set error	G _{IN ERR}	-2	0	+2	dB	GAIN=+20~+1dB
MUTE	Mute attenuation *	G _{MUTE}	—	-105	-85	dB	Mute ON Gmute=20log(VOUT/VIN) BW = IHF-A
VOLUME	Maximum gain	G _{V MAX}	+13	+15	+17	dB	Volume = 15dB VIN=100mVrms Gv=20log(VOUT/VIN)
	Maximum attenuation *	G _{V MIN}	—	-100	-85	dB	Volume = -∞dB Gv=20log(VOUT/VIN) BW = IHF-A
	Attenuation set error 1	G _{V ERR1}	-2	0	+2	dB	GAIN & ATT=+15dB~-15dB
	Attenuation set error 2	G _{V ERR2}	-3	0	+3	dB	ATT=-16dB~-47dB
	Attenuation set error 3	G _{V ERR3}	-4	0	+4	dB	ATT=-48dB~-79dB

BLOCK	Item	Symbol	Limit			Unit	Condition
			Min.	Typ.	Max.		
BASS	Maximum boost gain	$G_{B\text{ BST}}$	+18	+20	+22	dB	$\text{Gain}=+20\text{dB } f=100\text{Hz}$ $V_{IN}=100\text{mVrms}$ $G_B=20\log(V_{OUT}/V_{IN})$
	Maximum cut gain	$G_{B\text{ CUT}}$	-22	-20	-18	dB	$\text{Gain}=-20\text{dB } f=100\text{Hz}$ $V_{IN}=2\text{Vrms}$ $G_B=20\log(V_{OUT}/V_{IN})$
	Gain set error	$G_{B\text{ ERR}}$	-2	0	+2	dB	$\text{Gain}=+20 \sim -20\text{dB } f=100\text{Hz}$
TREBLE	Maximum boost gain	$G_{T\text{ BST}}$	+18	+20	+22	dB	$\text{Gain}=+20\text{dB } f=10\text{kHz}$ $V_{IN}=100\text{mVrms}$ $G_T=20\log(V_{OUT}/V_{IN})$
	Maximum cut gain	$G_{T\text{ CUT}}$	-23	-20	-17	dB	$\text{Gain}=-20\text{dB } f=10\text{kHz}$ $V_{IN}=2\text{Vrms}$ $G_T=20\log(V_{OUT}/V_{IN})$
	Gain set error	$G_{T\text{ ERR}}$	-2	0	+2	dB	$\text{Gain}=+20 \sim -20\text{dB } f=10\text{kHz}$
FADER / SUBWOOFER	Maximum boost gain (BD37515FS)	$G_{F\text{ BST}}$	+13	+15	+17	dB	Fader=15dB $V_{IN}=100\text{mVrms}$ $G_F=20\log(V_{OUT}/V_{IN})$
	Maximum attenuation*	$G_{F\text{ MIN}}$	—	-100	-90	dB	Fader = $-\infty\text{dB}$ $G_F=20\log(V_{OUT}/V_{IN})$ BW = IHF-A
	Gain set error (BD37515FS)	$G_{F\text{ ERR}}$	-2	0	+2	dB	$\text{Gain}=+1 \sim +15\text{dB}$
	Attenuation set error 1	$G_{F\text{ ERR1}}$	-2	0	+2	dB	ATT=0 $\sim -15\text{dB}$
	Attenuation set error 2	$G_{F\text{ ERR2}}$	-3	0	+3	dB	ATT=-16 $\sim -47\text{dB}$
	Attenuation set error 3	$G_{F\text{ ERR3}}$	-4	0	+4	dB	ATT=-48 $\sim -79\text{dB}$
LOUDNESS	Output impedance	R_{OUT}	-	—	50	Ω	$V_{IN}=100\text{mVrms}$
	Maximum output voltage	V_{OM}	2	2.2	—	Vrms	THD+N=1% BW=400-30KHz
	Maximum gain	$G_{L\text{ MAX}}$	+17	+20	+23	dB	Gain 20dB $V_{IN}=100\text{mVrms}$ $G_L=20\log(V_{OUT}/V_{IN})$
	Gain set error	$G_{L\text{ ERR}}$	-2	0	+2	dB	$\text{GAIN}=+20 \sim +1\text{dB}$

VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for * measurement.

Phase between input / output is same.

● Electrical characteristic curves (Reference data)

Fig.1 Iq vs Vcc

Fig.2 Thd vs Vo

Fig.3 Gain vs Freq

Fig.4 Bass Gain vs Freq

Fig.5 Bass fo vs Freq

Fig.6 B Bass Q vs Freq

Fig.7 Treble Gain vs Freq

Fig.8 Treble fo vs Freq

Fig.9 Treble Q vs Freq

Fig.10 Volume Gain vs Noise

Fig.11 Bass Gain vs Noise

Fig.12 Treble Gain vs Noise

Fig.5~6 : Bass fo/Q are changeable in only BD37514FS and BD37515FS. fo/Q=100Hz/1.0 and unchangeable in BD37513FS.
Fig.8~9 : Treble fo/Q are changeable in only BD37514FS and BD37515FS. fo/Q=10kHz/1.25 and unchangeable in BD37513FS.

Fig.13 CMRR vs Freq

Fig.14 Rload vs Vo

Fig.15 Advanced Switch 1

Fig.16 Advanced Switch 2

● Block diagram and pin configuration

Fig.17 BD37513FS

Descriptions of terminal

Terminal No.	Terminal Name	Description	Terminal No.	Terminal Name	Description
1	FIL	VCC/2 terminal	11	MUTE	External compulsory mute terminal
2	A1	A input terminal of 1ch	12	TEST1	Test Pin
3	A2	A input terminal of 2ch	13	OUTR2	Rear output terminal of 2ch
4	B1	B input terminal of 1ch	14	OUTR1	Rear output terminal of 1ch
5	B2	B input terminal of 2ch	15	OUTF2	Front output terminal of 2ch
6	C1	C input terminal of 1ch	16	OUTF1	Front output terminal of 1ch
7	C2	C input terminal of 2ch	17	VCC	Power supply terminal
8	DP1	D positive input terminal of 1ch	18	SCL	I ² C Communication clock terminal
9	DN	D negative input terminal	19	SDA	I ² C Communication data terminal
10	DP2	D positive input terminal of 2ch	20	GND	GND terminal

Fig.18 BD37514FS

Descriptions of terminal

Terminal No.	Terminal Name	Description	Terminal No.	Terminal Name	Description
1	FIL	VCC/2 terminal	11	MUTE	External compulsory mute terminal
2	A1	A input terminal of 1ch	12	OUTS	Subwoofer output terminal
3	A2	A input terminal of 2ch	13	OUTR2	Rear output terminal of 2ch
4	B1	B input terminal of 1ch	14	OUTR1	Rear output terminal of 1ch
5	B2	B input terminal of 2ch	15	OUTF2	Front output terminal of 2ch
6	C1	C input terminal of 1ch	16	OUTF1	Front output terminal of 1ch
7	C2	C input terminal of 2ch	17	VCC	Power supply terminal
8	DP1	D positive input terminal of 1ch	18	SCL	I ² C Communication clock terminal
9	DN	D negative input terminal	19	SDA	I ² C Communication data terminal
10	DP2	D positive input terminal of 2ch	20	GND	GND terminal

Fig.19 BD37515FS

Descriptions of terminal

Terminal No.	Terminal Name	Description	Terminal No.	Terminal Name	Description
1	FIL	VCC/2 terminal	11	MUTE	External compulsory mute terminal
2	A1	A input terminal of 1ch	12	OUTS	Subwoofer output terminal
3	A2	A input terminal of 2ch	13	OUTR2	Rear output terminal of 2ch
4	B1	B input terminal of 1ch	14	OUTR1	Rear output terminal of 1ch
5	B2	B input terminal of 2ch	15	OUTF2	Front output terminal of 2ch
6	C1	C input terminal of 1ch	16	OUTF1	Front output terminal of 1ch
7	C2	C input terminal of 2ch	17	VCC	Power supply terminal
8	DP1	D positive input terminal of 1ch	18	SCL	I ² C Communication clock terminal
9	DN	D negative input terminal	19	SDA	I ² C Communication data terminal
10	DP2	D positive input terminal of 2ch	20	GND	GND terminal

● Timming Chart

CONTROL SIGNAL SPECIFICATION

(1) Electrical specifications and timing for bus lines and I/O stage

Fig.20 Definition of timing on the I²C-bus

Table 1 Characteristics of the SDA and SCL bus lines for I²C-bus devices
(Unless specified particularly, Ta=25°C, VCC=8.5V)

Parameter	Symbol	Fast-mode I ² C-bus		Unit
		Min.	Max.	
1 SCL clock frequency	f _{SCL}	0	400	kHz
2 Bus free time between a STOP and START condition	t _{BUF}	1.3	—	μs
3 Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{HD,STA}	0.6	—	μs
4 LOW period of the SCL clock	t _{LOW}	1.3	—	μs
5 HIGH period of the SCL clock	t _{HIGH}	0.6	—	μs
6 Set-up time for a repeated START condition	t _{SU,STA}	0.6	—	μs
7 Data hold time:	t _{HD,DAT}	0.06*	—	μs
8 Data set-up time	t _{SU,DAT}	120	—	ns
9 Set-up time for STOP condition	t _{SU,STO}	0.6	—	μs

All values referred to VIH min. and VIL max. Levels (see Table 2).

* A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min. of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.

About 7(t_{HD,DAT}), 8(t_{SU,DAT}), make it the setup which a margin is fully in .

Table 2 Characteristics of the SDA and SCL I/O stages for I²C-bus devices

	Parameter	Symbol	Fast-mode devices		Unit
			Min.	Max.	
10	LOW level input voltage:	VIL	-0.3	1	V
11	HIGH level input voltage:	VIH	2.3	5	V
12	Pulse width of spikes which must be suppressed by the input filter.	tSP	0	50	ns
13	LOW level output voltage: at 3mA sink current	VOL1	0	0.4	V
14	Input current each I/O pin with an input voltage between 0.4V and 4.5V.	Ii	-10	10	μA

Fig.21 A command timing example in the I²C data transmission

(2) I²C BUS FORMAT

MSB	LSB	MSB	LSB	MSB	LSB		
S	Slave Address	A	Select Address	A	Data	A	P
1bit	8bit	1bit	8bit	1bit	8bit	1bit	1bit

S = Start conditions (Recognition of start bit)
 Slave Address = Recognition of slave address. 7 bits in upper order are voluntary.
 The least significant bit is "L" due to writing.
 A = ACKNOWLEDGE bit (Recognition of acknowledgement)
 Select Address = Select every of volume, bass and treble.
 Data = Data on every volume and tone.
 P = Stop condition (Recognition of stop bit)

(3) I²C BUS Interface Protocol

1) Basic form

S	Slave Address	A	Select Address	A	Data	A	P
MSB	LSB	MSB	LSB	MSB	LSB		

2) Automatic increment (Select Address increases (+1) according to the number of data.

S	Slave Address	A	Select Address	A	Data1	A	Data2	A	DataN	A	P
MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	

(Example) ①Data1 shall be set as data of address specified by Select Address.
 ②Data2 shall be set as data of address specified by Select Address +1.
 ③DataN shall be set as data of address specified by Select Address +N-1.

3) Configuration unavailable for transmission (In this case, only Select Address1 is set.

S	Slave Address	A	Select Address1	A	Data	A	Select Address 2	A	Data	A	P
MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB		
(Note) If any data is transmitted as Select Address 2 next to data, it is recognized as data, not as Select Address 2.											

(4) Slave address

LSB							
A6	A5	A4	A3	A2	A1	A0	R/W
1	0	0	0	0	0	0	0

80H

(5) Select Address & DataBD37513FS

Items	Select Address (hex)	MSB				Data				LSB								
		D7	D6	D5	D4	D3	D2	D1	D0									
Initial setup 1	01	Advanced switch ON/OFF	0	Advanced switch time of Input Gain/Volume Tone/Fader/Loudness		0	0	Advanced switch time of Mute										
Initial setup 2	02	0	0	0	0	0	0	0	0									
Initial setup 3	03	0	0	0	1	0	0	0	1									
Input Selector	05	0	0	0	Input selector													
Input gain	06	Mute ON/OFF	0	0	Input Gain													
Volume gain	20	Volume Gain / Attenuation																
Fader 1ch Front	28	Fader Attenuation																
Fader 2ch Front	29	Fader Attenuation																
Fader 1ch Rear	2A	Fader Attenuation																
Fader 2ch Rear	2B	Fader Attenuation																
Test mode 1	2C	1	1	1	1	1	1	1	1									
Test mode 2	41	0	0	1	0	0	0	0	1									
Test mode 3	44	0	0	0	0	0	0	0	0									
Test mode 4	47	0	0	0	1	0	0	0	1									
Bass gain	51	Bass Boost/Cut	0	0	Bass Gain													
Test mode 5	54	1	0	0	0	0	0	0	0									
Treble gain	57	Treble Boost/Cut	0	0	Treble Gain													
Loudness Gain	75	0	Loudness Hicut		Loudness Gain													
System Reset	FE	1	0	0	0	0	0	0	1									

 Advanced switch

Note

1. In function changing of the hatching part, it works Advanced switch.
2. Upon continuous data transfer, the Select Address is circulated by the automatic increment function, as shown below.


```

graph TD
    A[01→02→03→05→06→20→28→29→2A→2B→2C]
    B[41→44→47→51→54→57→75]
    A --> B
  
```
3. For the function of input selector etc, it is not corresponded for advanced switch. Therefore, please apply mute on the side of a set when changes these setting.
4. When using mute function of this IC at the time of changing input selector, please switch mute ON/OFF for waiting advanced-mute time.

BD37514FS

Items	Select Address (hex)	MSB				Data				LSB								
		D7	D6	D5	D4	D3	D2	D1	D0									
Initial setup 1	01	Advanced switch ON/OFF	0	Advanced switch time of Input Gain/Volume Tone/Fader/Loudness		0	0			Advanced switch time of Mute								
Initial setup 2	02	0	0	0	0	0	0	0	0									
Initial setup 3	03	0	0	0	1	0	0	0	1									
Input Selector	05	0	0	0	Input selector													
Input gain	06	Mute ON/OFF	0	0	Input Gain													
Volume gain	20	Volume Gain / Attenuation																
Fader 1ch Front	28	Fader / Attenuation																
Fader 2ch Front	29	Fader / Attenuation																
Fader 1ch Rear	2A	Fader / Attenuation																
Fader 2ch Rear	2B	Fader / Attenuation																
Fader Subwoofer	2C	Fader / Attenuation																
Bass setup	41	0	0	Bass fo		0	0	Bass Q										
Test mode 1	44	0	0	0	0	0	0	0	0									
Treble setup	47	0	0	Treble fo		0	0	0	0	Treble Q								
Bass gain	51	Bass Boost/Cut	0	0	Bass Gain													
Test mode 2	54	1	0	0	0	0	0	0	0									
Treble gain	57	Treble Boost/Cut	0	0	Treble Gain													
Loudness Gain	75	0	Loudness Hicut		Loudness Gain													
System Reset	FE	1	0	0	0	0	0	0	0		1							

 Advanced switch

Note

1. In function changing of the hatching part, it works Advanced switch.
2. Upon continuous data transfer, the Select Address is circulated by the automatic increment function, as shown below.


```

graph TD
    01[01] --> 02[02]
    02 --> 03[03]
    03 --> 05[05]
    05 --> 06[06]
    06 --> 20[20]
    20 --> 28[28]
    28 --> 29[29]
    29 --> 2A[2A]
    2A --> 2B[2B]
    2B --> 2C[2C]
    2C --> 41[41]
    41 --> 44[44]
    44 --> 47[47]
    47 --> 51[51]
    51 --> 54[54]
    54 --> 57[57]
    57 --> 75[75]
  
```
3. For the function of input selector etc, it is not corresponded for advanced switch. Therefore, please apply mute on the side of a set when changes these setting.
4. When using mute function of this IC at the time of changing input selector, please switch mute ON/OFF for waiting advanced-mute time.

BD37515FS

Items	Select Address (hex)	MSB				Data				LSB						
		D7	D6	D5	D4	D3	D2	D1	D0							
Initial setup 1	01	Advanced switch ON/OFF	0	Advanced switch time of Input Gain/Volume Tone/Fader/Loudness		0	0	Advanced switch time of Mute								
Initial setup 2	02	LPF Phase 0° /180°	0	0	0	0	0	Subwoofer LPF fc								
Initial setup 3	03	0	0	0	1	0	0	0	1							
Input Selector	05	0	0	0	Input selector											
Input gain	06	Mute ON/OFF	0	0	Input Gain											
Volume gain	20	Volume Gain / Attenuation														
Fader 1ch Front	28	Fader Gain / Attenuation														
Fader 2ch Front	29	Fader Gain / Attenuation														
Fader 1ch Rear	2A	Fader Gain / Attenuation														
Fader 2ch Rear	2B	Fader Gain / Attenuation														
Fader Subwoofer	2C	Fader Gain / Attenuation														
Bass setup	41	0	0	Bass fo		0	0	Bass Q								
Test mode 1	44	0	0	0	0	0	0	0	0							
Treble setup	47	0	0	Treble fo		0	0	0	0	Treble Q						
Bass gain	51	Bass Boost/Cut	0	0	Bass Gain											
Test mode 2	54	1	0	0	0	0	0	0	0							
Treble gain	57	Treble Boost/Cut	0	0	Treble Gain											
Loudness Gain	75	0	Loudness Hicut		Loudness Gain											
System Reset	FE	1	0	0	0	0	0	0	1							

 Advanced switch

Note

1. In function changing of the hatching part, it works Advanced switch.
2. Upon continuous data transfer, the Select Address is circulated by the automatic increment function, as shown below.


```

        →01→02→03→05→06→20→28→29→2A→2B→2C→
        ↓
        →41→44→47→51→54→57→75→
      
```
3. For the function of input selector etc, it is not corresponded for advanced switch. Therefore, please apply mute on the side of a set when changes these setting.
4. When using mute function of this IC at the time of changing input selector, please switch mute ON/OFF for waiting advanced-mute time.

Select address 01 (hex)

Time	MSB Advanced switch time of Mute LSB									
	D7	D6	D5	D4	D3	D2	D1	D0		
0. 6msec	Advanced Switch ON/OFF	0	Advanced switch time of Input gain/Volume Tone/Fader/Loudness			0	0	0		
1. 0msec			Advanced switch time of Input gain/Volume Tone/Fader/Loudness					0		
1. 4msec			Advanced switch time of Input gain/Volume Tone/Fader/Loudness					1		
3. 2msec			Advanced switch time of Input gain/Volume Tone/Fader/Loudness					1		

Time	MSB Advanced switch time of Input gain/Volume/Tone/Fader/Loudness LSB							
	D7	D6	D5	D4	D3	D2	D1	D0
4. 7 msec	Advanced Switch ON/OFF	0	0	0	0	0	Advanced switch Time of Mute	
7. 1 msec			0	1				
11. 2 msec			1	0				
14. 4 msec			1	1				

Mode	MSB Advanced switch ON/OFF LSB								
	D7	D6	D5	D4	D3	D2	D1	D0	
OFF	0	0	Advanced switch time of Input gain/Volume Tone/Fader/Loudness			0	0	Advanced switch Time of Mute	
ON	1		Advanced switch time of Input gain/Volume Tone/Fader/Loudness						

Select address 02 (hex)

fc	MSB Subwoofer LPF fc LSB							
	D7	D6	D5	D4	D3	D2	D1	D0
OFF	LPF Phase	0	0	0	0	0	0	0
55Hz						0	0	1
85Hz						0	1	0
120Hz						0	1	1
160Hz						1	0	0
Prohibition						Other setting		

(BD37515FS)

Phase	MSB LPF Phase LSB							
	D7	D6	D5	D4	D3	D2	D1	D0
0°	0	0	0	0	0	Subwoofer LPF fc		
180°	1		0	0				

(BD37515FS)

Select address 05 (hex)

Mode	OUT	OUT	MSB Input Selector LSB									
	F1/R1	F2/R2	D7	D6	D5	D4	D3	D2	D1	D0		
A	A1	A2	0	0	0	0	0	0	0	0		
B	B1	B2					0	0	0	1		
C	C1	C2					0	0	1	0		
D diff	DP1	DP2					0	1	1	0		
Input SHORT		0					1	0	0	1		
Prohibition			Other setting									

Input SHORT: The input impedance of each input terminal is lowered from 100kΩ (TYP) to 6 kΩ (TYP).
 (For quick charge of coupling capacitor)

 : Initial condition

Select address 06 (hex)

Gain	MSB			Input Gain				LSB	
	D7	D6	D5	D4	D3	D2	D1	D0	
0dB	Mute ON/OFF	0	0	0	0	0	0	0	
1dB				0	0	0	0	1	
2dB				0	0	0	1	0	
3dB				0	0	0	1	1	
4dB				0	0	1	0	0	
5dB				0	0	1	0	1	
6dB				0	0	1	1	0	
7dB				0	0	1	1	1	
8dB				0	1	0	0	0	
9dB				0	1	0	0	1	
10dB				0	1	0	1	0	
11dB				0	1	0	1	1	
12dB				0	1	1	0	0	
13dB				0	1	1	0	1	
14dB				0	1	1	1	0	
15dB				0	1	1	1	1	
16dB				1	0	0	0	0	
17dB				1	0	0	0	1	
18dB				1	0	0	1	0	
19dB				1	0	0	1	1	
20dB				1	0	1	0	0	
Prohibition				1	1	0	1	1	
				:	:	:	:	:	
				1	1	1	1	1	

Mode	MSB			Mute ON/OFF				LSB	
	D7	D6	D5	D4	D3	D2	D1	D0	
OFF	0								
ON	1		0						

Select address 20, 28, 29, 2A, 2B (hex)

Gain & ATT	MSB Vol, Fader Gain / Attenuation						LSB		
	D7	D6	D5	D4	D3	D2	D1	D0	
Prohibition	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	1	
	:	:	:	:	:	:	:	:	
	0	1	1	1	0	0	0	0	
15dB	0	1	1	1	0	0	0	1	
14dB	0	1	1	1	0	0	1	0	
13dB	0	1	1	1	0	0	1	1	
:	:	:	:	:	:	:	:	:	
-77dB	1	1	0	0	1	1	0	1	
-78dB	1	1	0	0	1	1	1	0	
-79dB	1	1	0	0	1	1	1	1	
Prohibition	1	1	0	1	0	0	0	0	
	:	:	:	:	:	:	:	:	
	1	1	1	1	1	1	1	0	
-∞dB	1	1	1	1	1	1	1	1	

(Address 2C is available only BD37514FS, BD37515FS)

(About BD37513FS, BD37514FS, only 0dB~-∞dB are available at address 28, 29, 2A, 2B.)

Initial condition

Select address 41 (hex)

Q factor	MSB		Bass Q factor			LSB		
	D7	D6	D5	D4	D3	D2	D1	D0
0.5	0	0	Bass fo	0	0	0	0	0
1.0							0	1
1.5							1	0
2.0							1	1

(BD37513FS : 1.0 unchangeable)

Q factor	MSB		Middle Q factor			LSB		
	D7	D6	D5	D4	D3	D2	D1	D0
0.75	0	0	Middle fo	0	0	0	0	0
1.0							0	1
1.25							1	0
1.5							1	1

(BD37513FS : 100Hz unchangeable)

Select address 47 (hex)

Q factor	MSB		Treble Q factor			LSB		
	D7	D6	D5	D4	D3	D2	D1	D0
0.75	0	0	Treble fo	0	0	0	0	0
1.25							0	1

(BD37513FS:1.25 unchangeable)

fo	MSB		Treble fo			LSB		
	D7	D6	D5	D4	D3	D2	D1	D0
7.5kHz	0	0	0	0	0	0	0	Treble Q factor
10kHz			0	1				
12.5kHz			1	0				
15kHz			1	1				

(BD37513FS:10kHz unchangeable)

 : Initial condition

Select address 51, 57 (hex)

Gain	Bass/ Treble Gain							LSB
	D7	D6	D5	D4	D3	D2	D1	
0dB	Bass/ Treble Boost /cut	0	0	0	0	0	0	0
1dB				0	0	0	0	1
2dB				0	0	0	1	0
3dB				0	0	0	1	1
4dB				0	0	1	0	0
5dB				0	0	1	0	1
6dB				0	0	1	1	0
7dB				0	0	1	1	1
8dB				0	1	0	0	0
9dB				0	1	0	0	1
10dB				0	1	0	1	0
11dB				0	1	0	1	1
12dB				0	1	1	0	0
13dB				0	1	1	0	1
14dB				0	1	1	1	0
15dB				0	1	1	1	1
16dB				1	0	0	0	0
17dB				1	0	0	0	1
18dB				1	0	0	1	0
19dB				1	0	0	1	1
20dB				1	0	1	0	0
Prohibition				:	:	:	:	:
				1	1	1	1	0
				1	1	1	1	1

Mode	Bass/ Treble Boost/Cut							LSB	
	D7	D6	D5	D4	D3	D2	D1		
Boost	0	0	0	Bass/Treble Gain					
Cut	1								

 : Initial condition

Select address 75 (hex)

Mode	MSB				Loudness	Hicut	LSB		
	D7	D6	D5	D4	D3	D2	D1	D0	
Hicut1	0	0	0						
Hicut2		0	1						
Hicut3		1	0						
Hicut4		1	1						

Gain	MSB				Loudness	Gain	LSB		
	D7	D6	D5	D4	D3	D2	D1	D0	
0dB	0			0	0	0	0	0	
1dB				0	0	0	0	1	
2dB				0	0	0	1	0	
3dB				0	0	0	1	1	
4dB				0	0	1	0	0	
5dB				0	0	1	0	1	
6dB				0	0	1	1	0	
7dB				0	0	1	1	1	
8dB				0	1	0	0	0	
9dB				0	1	0	0	1	
10dB				0	1	0	1	0	
11dB				0	1	0	1	1	
12dB				0	1	1	0	0	
13dB				0	1	1	0	1	
14dB				0	1	1	1	0	
15dB				0	1	1	1	1	
16dB				1	0	0	0	0	
17dB				1	0	0	0	1	
18dB				1	0	0	1	0	
19dB				1	0	0	1	1	
20dB				1	0	1	0	0	
Prohibition				:	:	:	:	:	
				1	1	1	1	1	

 : Initial condition

(6) About power on reset

At on of supply voltage circuit made initialization inside IC is built-in. Please send data to all address as initial data at supply voltage on. And please supply mute at set side until this initial data is sent.

Item	Symbol	Limit			Unit	Condition
		Min.	Typ.	Max.		
Rise time of VCC	Trise	33	—	—	usec	VCC rise time from 0V to 5V
VCC voltage of release power on reset	Vpor	—	4.1	—	V	

(7) About external compulsory mute terminal

Mute is possible forcibly than the outside after input again department, by the setting of the MUTE terminal.

Mute Voltage Condition	Mode
GND~1.0V	MUTE ON
2.3V~VCC	MUTE OFF

Establish the voltage of MUTE in the condition to have been defined.

Volume / Fader volume attenuation of the details

(dB)	D7	D6	D5	D4	D3	D2	D1	D0
+15	0	1	1	1	0	0	0	1
+14	0	1	1	1	0	0	1	0
+13	0	1	1	1	0	0	1	1
+12	0	1	1	1	0	1	0	0
+11	0	1	1	1	0	1	0	1
+10	0	1	1	1	0	1	1	0
+9	0	1	1	1	0	1	1	1
+8	0	1	1	1	1	0	0	0
+7	0	1	1	1	1	0	0	1
+6	0	1	1	1	1	0	1	0
+5	0	1	1	1	1	0	1	1
+4	0	1	1	1	1	1	0	0
+3	0	1	1	1	1	1	0	1
+2	0	1	1	1	1	1	1	0
+1	0	1	1	1	1	1	1	1
0	1	0	0	0	0	0	0	0
-1	1	0	0	0	0	0	0	1
-2	1	0	0	0	0	0	1	0
-3	1	0	0	0	0	0	1	1
-4	1	0	0	0	0	1	0	0
-5	1	0	0	0	0	1	0	1
-6	1	0	0	0	0	1	1	0
-7	1	0	0	0	0	1	1	1
-8	1	0	0	0	1	0	0	0
-9	1	0	0	0	1	0	0	1
-10	1	0	0	0	1	0	1	0
-11	1	0	0	0	1	0	1	1
-12	1	0	0	0	1	1	0	0
-13	1	0	0	0	1	1	0	1
-14	1	0	0	0	1	1	1	0
-15	1	0	0	0	1	1	1	1
-16	1	0	0	1	0	0	0	0
-17	1	0	0	1	0	0	0	1
-18	1	0	0	1	0	0	1	0
-19	1	0	0	1	0	0	1	1
-20	1	0	0	1	0	1	0	0
-21	1	0	0	1	0	1	0	1
-22	1	0	0	1	0	1	1	0
-23	1	0	0	1	0	1	1	1
-24	1	0	0	1	1	0	0	0
-25	1	0	0	1	1	0	0	1
-26	1	0	0	1	1	0	1	0
-27	1	0	0	1	1	0	1	1
-28	1	0	0	1	1	1	0	0
-29	1	0	0	1	1	1	0	1
-30	1	0	0	1	1	1	1	0
-31	1	0	0	1	1	1	1	1
-32	1	0	1	0	0	0	0	0

(dB)	D7	D6	D5	D4	D3	D2	D1	D0
-33	1	0	1	0	0	0	0	1
-34	1	0	1	0	0	0	1	0
-35	1	0	1	0	0	0	1	1
-36	1	0	1	0	0	1	0	0
-37	1	0	1	0	0	1	0	1
-38	1	0	1	0	0	1	1	0
-39	1	0	1	0	0	1	1	1
-40	1	0	1	0	1	0	0	0
-41	1	0	1	0	1	0	0	1
-42	1	0	1	0	1	0	1	0
-43	1	0	1	0	1	0	1	1
-44	1	0	1	0	1	1	0	0
-45	1	0	1	0	1	1	0	1
-46	1	0	1	0	1	1	1	0
-47	1	0	1	0	1	1	1	1
-48	1	0	1	1	0	0	0	0
-49	1	0	1	1	0	0	0	1
-50	1	0	1	1	0	0	1	0
-51	1	0	1	1	0	0	1	1
-52	1	0	1	1	0	1	0	0
-53	1	0	1	1	0	1	0	1
-54	1	0	1	1	0	1	1	0
-55	1	0	1	1	0	1	1	1
-56	1	0	1	1	1	0	0	0
-57	1	0	1	1	1	0	0	1
-58	1	0	1	1	1	0	1	0
-59	1	0	1	1	1	0	1	1
-60	1	0	1	1	1	1	0	0
-61	1	0	1	1	1	1	0	1
-62	1	0	1	1	1	1	1	0
-63	1	0	1	1	1	1	1	1
-64	1	1	0	0	0	0	0	0
-65	1	1	0	0	0	0	0	1
-66	1	1	0	0	0	0	0	1
-67	1	1	0	0	0	0	1	1
-68	1	1	0	0	0	1	0	0
-69	1	1	0	0	0	0	1	0
-70	1	1	0	0	0	0	1	1
-71	1	1	0	0	0	1	1	1
-72	1	1	0	0	1	0	0	0
-73	1	1	0	0	1	0	0	1
-74	1	1	0	0	1	0	1	0
-75	1	1	0	0	1	0	1	1
-76	1	1	0	0	1	1	0	0
-77	1	1	0	0	1	1	0	1
-78	1	1	0	0	1	1	1	0
-79	1	1	0	0	1	1	1	1
-∞	1	1	1	1	1	1	1	1

About BD37513FS and BD37514FS, Fader Volume only 0dB~−∞dB are available.

 : Initial condition

● Application circuit

Fig. 22 BD37513FS Application Circuit Diagram

Notes on wiring

- ① Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.
- ② Lines of GND shall be one-point connected.
- ③ Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
- ④ Lines of SCL and SDA of I²C BUS shall not be parallel if possible.
The lines shall be shielded, if they are adjacent to each other.
- ⑤ Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.
- ⑥ About TEST pin(12pin), please use with OPEN.

Fig. 23 BD37514FS

Notes on wiring

- ① Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.
- ② Lines of GND shall be one-point connected.
- ③ Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
- ④ Lines of SCL and SDA of I²C BUS shall not be parallel if possible.
The lines shall be shielded, if they are adjacent to each other.
- ⑤ Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.

Fig. 24 BD37515FS

Notes on wiring

- ① Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.
- ② Lines of GND shall be one-point connected.
- ③ Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
- ④ Lines of SCL and SDA of I²C BUS shall not be parallel if possible.
The lines shall be shielded, if they are adjacent to each other.
- ⑤ Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.

● Interfaces

Terminal No.	Terminal Name	Terminal voltage	Equivalent Circuit	Terminal Description
2 3 4 5	A1 A2 B1 B2	4.25		A terminal for signal input. The input impedance is 100kΩ (typ).
6 7	C1 C2	4.25		A terminal for signal input. The input impedance is 250kΩ (typ).
8 9 10	DP1 DN DP2	4.25		Input terminal available to Single/Differential mode. The input impedance is 250kΩ (typ).
11	MUTE	—		A terminal for external compulsory mute. If terminal voltage is High level, the mute is off. And if the terminal voltage is Low level, the mute is on.
12 13 14 15 16	OUTS OUTR2 OUTR1 OUTF2 OUTF1	4.25		A terminal for fader and Subwoofer output. (12pin:OUTS is only in BD37514FS, BD37515FS)

The figure in the pin explanation and input/output equivalent circuit is reference value, it doesn't guarantee the value.

Terminal No.	Terminal Name	Terminal voltage	Equivalent Circuit	Terminal Description
17	VCC	8.5		Power supply terminal.
18	SCL	-	<p>The diagram shows the SCL pin connected to Vcc through a diode. The output stage consists of two transistors in series. The first transistor's collector is connected to GND via a diode. The second transistor's collector is connected to GND via a 1.65V zener diode. The base of the second transistor is connected to the collector of the first transistor.</p>	A terminal for clock input of I ² C BUS communication.
19	SDA	-	<p>The diagram shows the SDA pin connected to Vcc through a diode. The output stage consists of two transistors in series. The first transistor's collector is connected to GND via a diode. The second transistor's collector is connected to GND via a 1.65V zener diode. The base of the second transistor is connected to the collector of the first transistor.</p>	A terminal for data input of I ² C BUS communication.
20	GND	0		Ground terminal.
1	FIL	4.25	<p>The diagram shows the FIL pin connected to Vcc through a diode. The circuit includes two 50k resistors and two transistors. The top branch has a 50k resistor from Vcc to the collector of a transistor, whose emitter is connected to GND via a diode. The bottom branch has a 50k resistor from Vcc to the collector of another transistor, whose emitter is connected to GND via a diode. The bases of both transistors are connected together and to the output node.</p>	1/2 VCC terminal. Voltage for reference bias of analog signal system. The simple precharge circuit and simple discharge circuit for an external capacitor are built in.
12	TEST	-		TEST terminal (BD37513FS)

The figure in the pin explanation and input/output equivalent circuit is reference value, it doesn't guarantee the value.

●Notes for use

1. Absolute maximum rating voltage

When it impressed the voltage on VCC more than the absolute maximum rating voltage, circuit currents increase rapidly, and there is absolutely a case to reach characteristic deterioration and destruction of a device. In particular in a surge examination of a set, when it is expected the impressing surge at VCC terminal (17pin), please do not impress the large and over the absolute maximum rating voltage (including a operating voltage + surge ingredient (around 14V)).

2. About a signal input part

1) About constant set up of input coupling capacitor

In the signal input terminal, the constant setting of input coupling capacitor C(F) be sufficient input impedance $R_{IN}(\Omega)$ inside IC and please decide. The first HPF characteristic of RC is composed.

$$A(f) = \sqrt{\frac{(2\pi f C R_{IN})^2}{1 + (2\pi f C R_{IN})^2}}$$

2) About the input selector SHORT

SHORT mode is the command which makes switch S_{SH} =ON an input selector part and input impedance R_{IN} of all terminals, and makes resistance small. Switch S_{SH} is OFF when not choosing a SHORT command.

A constant time becomes small at the time of this command twisting to the resistance inside the capacitor connected outside and LSI. The charge time of a capacitor becomes short.

Since SHORT mode turns ON the switch of S_{SH} and makes it low impedance, please use it at the time of a non-signal.

3. About Mute terminal (11pin) when power supply is off

Any voltage shall not be supplied to Mute terminal (11pin) when power-supply is off.

Please insert a resistor (about $2.2k\Omega$) to Mute terminal in series, if voltage is supplied to mute terminal in case. (Please refer Application Circuit Diagram.)

4. About TEST Pin

About TEST Pin, please use with OPEN.

About BD37513FS, 12pin is TEST Pin.

● Thermal Derating Curve

About the thermal design by the IC

Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two standpoints of immediate damage and long-term reliability of operation.

Fig.25 Temperature Derating Curve

Note) Values are actual measurements and are not guaranteed.

Power dissipation values vary according to the board on which the IC is mounted.

● Ordering part number

B	D
---	---

Part No.

3	7	5	1	3
---	---	---	---	---

Part No.

37513

37514

37515

F	S
---	---

Package
FS : SSOP-A20

E	2
---	---

Packaging and forming specification
E2: Embossed tape and reel

SSOP-A20

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

<http://www.rohm.com/contact/>

