NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI

Faglig kontakt under eksamen: Institutt for materialteknologi, Gløshaugen Førsteamanuensis Hilde Lea Lein, tlf. 73 55 08 80

LØSNINGSFORSLAG FOR EKSAMEN I EMNE TMT4110 KJEMI

Oppgave 1.

Det er kun ett riktig svar for hver deloppgave. Sett derfor kun ett kryss. Dersom to eller flere svar avgis, bedømmes denne deloppgaven med null poeng.

i) Hva er elektronkonfigurasjonen til Mg ²⁺ ?	
a) [Ar]	
b) [Ar] 3s ²	. 🗆
c) [Ne]	
d) [Ne] 3s ²	
ii) Fra hvilken reaksjon beskrives gitterentalpien (ΔH_L^o) for et krystallsystem?	
a) $A^+(s) + B^-(s) \rightarrow AB(s)$. 🗆
b) $A(s) + B(s) \rightarrow AB(s)$	
c) $A(g) + B(g) \rightarrow AB(s)$. 🗆
d) $A^{+}(g) + B^{-}(g) \rightarrow AB(s)$. X
iii) Hva sier Hess lov?	
a) Summen av ΔH for et sett delreaksjoner = ΔH for totalreaksjonen	. X
b) Summen av partialtrykk til gassene i en gassblanding = totaltrykket	
c) Partialtrykket er lik molbrøk ganger totaltrykket	. 🗆
d) Aktiviteten er lik partialtrykket delt på et referansetrykk	П

iv) Et hypervalent atom er: a) et atom som oppfyller oktettregelen eksakt b) et atom som kan ha flere valenselektroner enn 8 c) en edelgass d) et atom som må bindes til et annet ved minst en dobbeltbinding	:]
v) En Brønsted –Lowry base er: a) et stoff som kan ta opp protoner (proton akseptor) x b) et stoff som kan gi fra seg protoner (proton donor) □ c) et stoff som kan ta opp elektroner (elektron akseptor) □ d) et stoff som kan gi fra seg elektroner (elektron donor) □]
vi) Hvilken reaksjon beskriver Haber-Bosch-prosessen? a) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$ \square b) $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$. \square c) $N_2(g) + O_2(g) \rightarrow 2 NO(g)$. \square d) $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ x]
vii) Saltet NaF(s) tilsettes i en vandig løsning av KF. Hvordan vil løseligheten til saltet væ sammenlignet med å løse det i rent vann? a) Løseligheten vil være større] :
viii) Hvordan kan Ni^{2+} bestemmes ved kvalitativ analyse? a) Ved utfelling med klorid (gruppe 1) \Box b) Ved utfelling med sulfid og lav pH (gruppe 2) \Box c) Ved utfelling med sulfid og høy pH (gruppe 3) \Box d) Ved utfelling med karbonat (gruppe 4) \Box]
ix) Hva sier termodynamikkens første lov? a) Energien i universet er konstant x b) Entropien til en perfekt krystall er null ved 0 K □ c) Entropien i universet er konstant □ d) Entropien i universet øker □]
x) Ved konstant volum; hvilket uttrykk er riktig? a) $\Delta E = q - P\Delta V$ b) $\Delta E = q$ c) $\Delta H = q$ d) Ingen av disse]
xi) Hvilken er ikke en tilstandsfunksjon? a) Gibbs fri energi. b) Entropi c) Entalpi d) Arbeid]

xii) Hvilken av følgende reaksjoner beskriver en elektrolysecelle?	
a) Fe + CuSO ₄ \rightarrow Cu + FeSO ₄	
b) $Pb^{2+} + MgCO_3 \rightarrow Mg^{2+} + PbCO_3$	
c) $2 \text{ Mg} + O_2 \rightarrow 2 \text{ MgO}$	
d) 2 Al ₂ O ₃ + 3C \rightarrow 4 Al + 3 CO ₂	
xiii) Grunnstoffet X danner eksplosive blandinger med halogengass og oksygengas	
selv ikke giftig, men inngår i svært mange giftige forbindelser. Finnes i tre natu	rlige isotopei
hvorav den ene er radioaktiv og en annen er brukt i atomkraftverk. Kan danne ione	ene X^+ og X^-
Oksidet har et mye høyere kokepunkt enn sulfidet, noe som forklares med spesie mellom molekylene. Hvilket grunnstoff er X?	elle bindinger
a) Cl	
b) H	
c) C	
,	
d) Na	
xiv) Den viktigste bruken av grunnstoffet X er i stållegeringer da det gir stålet er egenskap. Forbindelsene med dette grunnstoffet er oftest fargede, blant annet gir of fargen i Norges nasjonalstein. Det rene grunnstoffet fås fra reduksjon med C. XO2 oksidasjonsmiddel. Hvilket grunnstoff er X?	n helt spesiell det opphav til er et kraftig
xiv) Den viktigste bruken av grunnstoffet X er i stållegeringer da det gir stålet er egenskap. Forbindelsene med dette grunnstoffet er oftest fargede, blant annet gir of fargen i Norges nasjonalstein. Det rene grunnstoffet fås fra reduksjon med C. XOzoksidasjonsmiddel. Hvilket grunnstoff er X? a) Cr.	n helt spesiell det opphav til er et kraftig
d) Na	n helt spesiell det opphav til er et kraftig
d) Na	n helt spesiell det opphav til er et kraftig
d) Na	n helt spesiell det opphav til er et kraftig
d) Na	n helt spesiell det opphav til er et kraftig
d) Na	h helt spesiell det opphav til r er et kraftig
d) Na	n helt spesiell det opphav til det o
d) Na	n helt spesiell det opphav til a er et kraftig
d) Na	n helt spesiell det opphav til a er et kraftig

Oppgave 2

a) i)

ii)
$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$
 oksidasjon
 $Ag^{+} + e^{-} \longrightarrow Ag$ reduksjon
Totalrx: $2Ag^{+} + Cu \longrightarrow 2Ag + Cu^{2+}$

iii)
$$E^{\circ} = 0.80 \text{ V} - 0.34 \text{ V} = \underline{0.46 \text{ V}}$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ hvor } Q = \frac{\left[Cu^{2+}\right]}{\left[Ag^{+}\right]^{2}}$$

$$E = 0.46V - \frac{0.0592}{2} \log \frac{0.5}{0.1^{2}} = \underline{0.41V}$$

iv)
$$\Delta G^{\circ} = -nFE^{\circ} = -2.96485C / mol \cdot 0,46V = \underbrace{-88,8kJ / mol}_{\Delta G = -nFE = -2.96485C / mol \cdot 0,41V = \underbrace{-79,1kJ / mol}_{\Delta G = -79,1kJ / mol}_{\Delta G$$

b)
$$E = E^{o} - \frac{0,0592}{n} \log Q$$
Ved likevekt: E = 0 og Q = K
$$\Rightarrow 0 = E^{o} - \frac{0,0592}{n} \log K$$

$$\log K = \frac{E^{\circ} \cdot n}{0,0592} = \frac{0,46 \cdot 2}{0,0592} = 15,54$$

$$K = 3.5 \cdot 10^{15}$$

c) Celle med oksidasjon: Cu²⁺/Cu

Denne byttes ut med Ag⁺/Ag (0,5 M)

I:
$$Ag^+ + e^- \longrightarrow Ag = 0.5 \text{ M}$$

II:
$$Ag \longrightarrow Ag^+ + e^-$$
 0,1 M (prøver å utligne konsentrasjonsforskjellen)

Totalrx:
$$[Ag^+]_I \longrightarrow [Ag^+]_{II}$$

Standard cellepotensial: <u>0 V</u> (som alltid i en konsentrasjonscelle)

Cellepotensial:
$$E = E^o - \frac{0,0592}{n} \log Q = 0 - \frac{0,0592}{1} \log \frac{\left[Ag^+\right]_{II}}{\left[Ag^+\right]_{I}}$$

$$E = -\frac{0,0592}{1} \log \frac{0,1}{0,5} = \underbrace{0,04V}_{}$$

d) Ioneselektiv elektrode:

Glasselektrode som endrer potensial avhengig av konsentrasjonen av ioner i løsningen den dyppes i. Har en referanseelektrode og det måles spenningsforskjellen mellom referanseløsning og løsningen den dyppes i. Spenningen som måles er proporsjonal med konsentrasjonen i løsningen.

Oppgave 3

a)
$$C_3H_8(g) \longrightarrow C_3H_6(g) + H_2(g)$$

 $\Delta H^o/kJ$ -105 20 0
 $\Delta G^o/kJ$ -24 62 0
 S^o/J 270 267 131

i)
$$\Delta H^o = 20 + 0 + 105 = 125 \text{ kJ/mol}$$

 $\Delta S^o = 267 + 131 - 270 = 128 \text{ J/mol}$
 $\Delta G^o = 62 + 0 + 24 = 86 \text{ kJ/mol}$

- ii) $\Delta H^o > 0 =$ endoterm rx. LV forskyves mot høyre v/økende T => K blir større (dannes flere produkter
- iii) ΔS^o positiv da det blir dannet flere gassmolekyler enn det forbrukes => større uorden.

b)
$$\Delta G^{\circ} = -RT \ln K$$

$$\ln K = -\frac{\Delta G^{\circ}}{RT} = -\frac{86 \cdot 10^{3} \text{ J/mol}}{8,31451 \text{ J/Kmol} \cdot 298 \text{ K}} = -34,7$$

$$K = 8,43 \cdot 10^{-16}$$

c)
$$\Delta H^{\circ} - T\Delta S^{\circ} = \Delta G^{\circ} = -RT \ln K$$

 $\ln K = -\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT} = -\frac{125 \cdot 10^{3} J / mol - 1073 K \cdot 128 J / K}{3,31451 J / Kmol \cdot 1073 K} = 1,38$
 $\underline{K} = 3,99$

d) Fra ideell gasslov:
$$P_{C_3H_8,1073K} = \frac{T_{1073K} \cdot P_{298K}}{T_{298K}} = \frac{1073K \cdot 3,00atm}{298K} = 10,8atm$$

Dette er da ved 800°C, men før reaksjonen starter.

$$C_3H_8(g) \longrightarrow C_3H_6(g) + H_2(g)$$
 for 10,8 - - -

$$\Delta -x +x +x$$
 LV 10,8 - x x x

$$K_P = \frac{P_{C_3H_6} \cdot P_{H_2}}{P_{C_3H_8}} = \frac{x^2}{10.8 - x} = 3.99$$

x = 4.87

$$=> P_{C_3H_6} = P_{H_2} = \underbrace{4,87atm}_{}$$

=>
$$P_{C_{3H_6}} = P_{H_2} = \underline{4.87atm}$$

 $P_{C_{3H_8}} = 10.8 - 4.87 = \underline{5.93atm}$

Alternativt ved å bruke $K_p = 1.5$:

$$K_P = \frac{P_{C_3H_6} \cdot P_{H_2}}{P_{C_3H_8}} = \frac{x^2}{10.8 - x} = 1.5$$

$$x = 3,34$$

=>
$$P_{C_3H_6} = P_{H_2} = \underline{\underline{3,34atm}}$$

 $P_{C_3H_8} = 10,8 - \overline{3,34} = \underline{\underline{7,46atm}}$

For å få best mulig utbytte (mest mulig produkter) bør reaksjonen kjøres ved lavt trykk e) og høy temperatur, i henhold til Le Chateliers prinsipp.

Oppgave 4

Den integrerte hastighetsligning (2. ordens rx): a)

$$\frac{1}{[NO_2]} - \frac{1}{[NO_2]_a} = k \cdot t$$

Siden k er oppgitt i L mol⁻¹ s⁻¹ må trykket av NO₂ regnes om til konsentrasjon (via ideell b)

gasslov):

$$[NO_2] = \frac{n}{V} = \frac{P}{RT}$$

$$\begin{split} \left[NO_{2}\right]_{o} &= \frac{1,00atm}{8,31451J/Kmol\cdot\left(300+273\right)K} = 0,0213M \\ \left[NO_{2}\right]_{\frac{1}{2}} &= \frac{0,50atm}{8,31451J/Kmol\cdot\left(300+273\right)K} = 0,0106M \\ &\frac{1}{\left[NO_{2}\right]_{\frac{1}{2}}} - \frac{1}{\left[NO_{2}\right]_{o}} = k \cdot t_{\frac{1}{2}} \\ &\frac{1}{0,0106M} - \frac{1}{0,0217M} = 0,468Kmol^{-1}s^{-1} \cdot t_{\frac{1}{2}} \\ &t_{\frac{1}{2}} = \underline{100,5s} \end{split}$$

c)
$$k = A \cdot e^{-\frac{E_a}{RT}}$$

$$\frac{k_{T1}}{k_{T2}} = \frac{e^{-\frac{E_a}{RT_1}}}{e^{-\frac{E_a}{RT_2}}}$$

$$\ln\left(\frac{k_{T1}}{k_{T2}}\right) = -\frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$E_a = -\ln\left(\frac{k_{T1}}{k_{T2}}\right) \frac{R}{\left(\frac{1}{T_1} - \frac{1}{T_2}\right)} = -\ln\left(\frac{0,468}{3,975}\right) \frac{8,31451J/Kmol}{\left(\frac{1}{(300 + 273)K} - \frac{1}{(485 + 273)K}\right)}$$

$$E_a = 41760J/mol = 41,8kJ/mol$$

- d) 1) Energien til kolliderende molekyler er større enn aktiveringsenergien for reaksjonen (må overvinne aktiveringsbarrieren)
 - 2) Molekylgeometrien til de to molekylene som kolliderer må være slik at en reaksjon kan skje
- e) i) Vil motvirke tilsatsen av NO og derfor forskyve rx mot venstre
 - ii) Trykket vil øke og rx vil forskyves slik at trykket reduseres, dvs mot venstre
 - iii) Ingen innvirkning.
- f) Katalysator: Deltar i rx ved at totalrx kan deles opp i andre reaksjonstrinn enn vanlig (andre delreaksjoner) => nye reaksjonsmekanismer som har <u>lavere aktiveringsenergi</u> enn opprinnelig rx.
 - ⇒ rx vil gå fortere, evt v/ lavere T
 - ⇒ forbrukes ikke selv

Oppgave 5

- A: Ren syre, ingen base tilsatt ennå og dermed ingen rx. Syra bestemmer pH. a) B: En del base er tilsatt og denne har reagert med den svake syra og dannet en korresponderende base. Bufferen HA/A. bestemmer pH.
 - C: Ekvivalenspunkt. All syra har reagert med tilsatt base. Saltet NaA (A⁻) bestemmer pH
 - D: Titrering over ekvivalenspkt. Tilsatt base blir liggende i løsning. Tilsatt base bestemmer pH
- i) $HCOOH \longrightarrow HCOO^- + H^+$ $pK_a = 3.74$ b)

$$K_a = \frac{[H^+][HCOO^-]}{[HCOOH]} = \frac{x \cdot x}{0, 1 - x} = 10^{-3,74}$$

$$x^2 \approx 10^{3.74} \cdot 0.1 = 1.82 \cdot 10^{-5}$$

 $x = 4.27 \cdot 10^{-3}$ (5% regel ok; 4.3%)

pH =-
$$\log[4,27\cdot10^{-3}] = 2,37$$

ii)
$$HCOOH + OH^- \longrightarrow HCOO^- + H_2O$$

$$n_{syre} = c \cdot V = 0.1M \cdot 25 \cdot 10^{-3} L = 2.5 \cdot 10^{-3} mol$$

 $n_{base} = n_{syre} = 2.5 \cdot 10^{-3} mol$ ved ekvivalenspunkt

$$V_{base} = \frac{n_{base}}{C_{base}} = \frac{2.5 \cdot 10^{-3} mol}{0.15M} = 16.67 \cdot 10^{-3} L$$

$$V_{tot} = V_{syre} + V_{base} = 25ml + 16,67ml = 41,67ml$$

$$C_{HCOO^{-}} = \frac{n}{V} = \frac{2.5 \cdot 10^{-3} mol}{41.67 \cdot 10^{-3} L} = 0.0600 M$$

$$HCOO^- + H_2O \longrightarrow HCOOH + OH^-$$

$$K_b = \frac{[OH^-][HCOOH]}{[HCOO^-]} = \frac{x \cdot x}{0,0600 - x} = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-3.74}} = 5,495 \cdot 10^{-11}$$
$$x^2 \approx 5,495 \cdot 10^{-11} \cdot 0,0600 = 3,30 \cdot 10^{-12}$$

$$x = 1,816 \cdot 10^{-6}$$
 (5% regel ok)
pOH =-log[1,816·10⁻⁶] = 5,74
pH = 41 - 5374 = 8,26

iii) Cresol-rød, omr: $7,2-8,8, pK_a = 8,3$

iv) CO₂ tilstede:

$$CO_2(aq) + H_2O \longrightarrow H_2CO_3(aq)$$

$$H_2CO_3 + OH^- \longrightarrow HCO_3^- + H_2O$$

Hvis basisk omslagspunkt:

$$HCO_3^- + OH^- \longrightarrow CO_3^{2-} + H_2O$$

- ⇒ trenger "ekstra titrervolum" av OH fordi det også må reagere med karbonsyre
- ⇒ også mindre skarpt omslagspunkt
- c) Buffer er en løsning av en syre og en korresponderende base som motvirker store pHendringer ved tilsats av sterke syrer eller baser. Best bufferkapasitet: Halvveis til ekvivalenspunkt fordi her er det like mye syre og korr. base, dvs pkt B.

Oppgave 6

- a) i) Kovalente bindinger: To atomer deler elektroner og bindes sammen ved dette elektronparet som dannes.
 - Ionebindinger: Ioner er dannet ved fullstendig elektronoverføring (valenselektroner fra ett element til et annet. De ionene som dannes (kationer og anioner) bindes sammen med elektrostatiske tiltrekningskrefter.
 - ii) Elektronegativitet er evnen til å trekke på et elektronpar. Noen elementer trekker mer på elektroner enn andre.
 - iii) Hvis man ser på tallverdiene for elektronegativiteten til grunnstoffene som inngår i forbindelsen, vil store forskjeller i elektronegativitet (> 1,5) kunne forutsi ionebinding, men små forskjeller i elektronegativitet vil gi kovalent binding.
- b) i) I et molekyl vil elektronparene rundt sentralatomet være anordnet i rommet slik at vi minimaliserer frastøtningen mellom dem. Antallet elektronpar rundt sentralatomet vil da bestemme hva slags geometrisk anordning de vil få. Ledige elektronpar og dobbelt-(trippelt-) bindinger vil kreve større plass på sentralatomet og perturbere molekylstrukturen slik at bindingsvinkler mellom bindende elektronpar blir mindre enn forventet.

ii)

iii) HOCl₃

iv) ICl₂: Trigonal bipyramidalt utgangspunkt. Tre lonepairs i de ekvatorielle posisjonene => lineært molekyl, 180° bindingsvinkel

HClO₃: Tetraedrisk utgangspunkt. Ett lonepair gir trigonal pyramide-formet molekyl. Vinkel O-Cl-O < 109° pga dobbeltbinding krever mer plass.

SO₃: Trigonalt plant molekyl. 120°.

- c) Ustøkiometrisk forbindelse: En forbindelse hvor elementene ikke inngår i konstante forhold. Vanlig blant oksider og sulfider av overgangsmetall. Eks: Cu_xS hvor x altså ikke er et heltall, men for eksempel 0,85.
- i) Alkoholer: R-OH. aldehyder: R-C(=O)-H med O dobbeltbinding til C og H enkeltbinding til C. Ketoner: R-C(=O)-R'. Etere: R-O-R'.
 - ii) Sykliske hydrokarboner har en (eller flere) ringer av C hvor det er enkeltbindinger mellom hvert av C-atomene. Aromatiske hydrokarboner har en 6-ring av C med "vekselvis enkelt- og dobbeltbindinger" i ringen, eller mer korrekt resonans-struktur mellom C-atomene.

e) Kolorimetri: En del av spektrofotometri hvor man bruker stråling fra den synlige delen av spekteret til å måle mengden stråling som absorberes av at stoff ved forskjellige bølgelengder. Konsentrasjon til et ion i en løsning kan bestemmes ved at man måler hvor mye hver av (de fargede) løsningene absorberer av en gitt bølgelengde. Ved å også måle et par løsninger med kjent konsentrasjon, kan konsentrasjon av en gitt ukjent bestemmes.