DATA:05/02/2018 CLASSE:4E

ALLIEVO: Grossi Marco

I.I.S. "Luigi Galvani" Milano MI

Sez. I.T. - A.S. 2018-2019

RELAZIONE DI LABORATORIO 4

OGGETTO: I CONDENSATORI IN A.C.

SCHEMA ELETTRICO:

ELENCO STRUMENTI

/

ELENCO COMPONENTI

- Generatore di segnale a.c
- Un DMM
- Alimentatore variabile a bassa tensione
- Un resistore da 1000 Ω
- Switch
- Condensatori da $0.01\mu F$ $0.1\mu F$ $1\mu F$ $10\mu F$ $100\mu F$
- Oscilloscopio

OBIETTIVI

- Usare un condensatore per bloccare il passaggio di componenti d.c.
- Usare un condensatore come un corto circuito per le altre frequenze.

CALCOLI - TABELLA DELLE MISURE - GRAFICI

			f=1kHz		f = 100 kHz	
С	VT = 4 V	VT = 8 V	VT = 4 Vp-p	VT = 8 Vp-p	VT = 4 Vp-p	VT = 8 Vp-p
0.01	4	8	1,417	2,823	0,222	0,444
0.1	4	8	1,157	2,395	0,022	0,044
1	4	8	0,222	0,444	0,002	0,004
10	4	8	0,022	0,044	0,222	0,444 uV
100	4	8	0,002	0,004	0,022 uV	0,044 uV

QUESITO:

La tensione sul condensatore aumenta all'incremento della frequenza del generatore di segnale.

TEORIA

Oscilloscopio:

Strumento per l'osservazione diretta e la misurazione di grandezze elettriche oscillanti (correnti e tensioni) o, più in generale, variabili nel tempo, o di altre grandezze fisiche, che tramite opportuni trasduttori vengano convertite in segnali elettrici.

Condensatore:

Noto anche come **capacitore** è un componente elettrico che immagazzina l'energia in un campo elettrostatico, che crea una differenza di potenziale.

RELAZIONE

- Realizzo il circuito in figura, mettendo un generatore di corrente continua con Vt a 4V, uno switch, una resistenza da $1k\Omega$ e un condensatore da $0.1\mu F$. Posizionare un voltometro in parallelo con il condensatore.
- Accendo il circuito e leggo la misurazione del voltometro e riporto il valore in tabella.
- Spengo il circuito e sostituisco il condensatore da 0.01µF con uno da 0.1F. Accendo nuovamente il circuito e leggo le misurazioni e riporto i valori in tabella.
- Proseguo nello stesso modo cambiando ogni volta il valore del condensatore, con i valori di 1μF, 10μF, 100μF.
- Successivamente modifico la Vt a 8V e misuro nuovamente tramite il voltometro le varie Vdc dei vari condensatori da 0.01μF, 0.1μF, 1μF, 10μF, 100μF.
- In seguito modifico il circuito posizionando un generatore di corrente alternata al posto del generatore a corrente continua.
- Setto la frequenza del generatore a 1kHz e Vt a 4 Vp-p, in oltre modifico i settaggi del voltometro da corrente continua a corrente alternata.
- Rilevo il valore della Vp-p sul condensatore da 0.01μF. Ripeto le misurazioni anche con gli altri condensatori da 0.1μF, 1μF, 10μF, 100μF.
- Poi modifico la Vt del generatore a 8Vp-p e ripeto le misurazioni utilizzando i vari condensatori.
- -Successivamente modifico il valore della frequenza del generatore e lo setto a 100kHz e quindi ripeto nuovamente le misurazioni per i vari valori dei condensatori sia con la Vt del generatore settato a 4Vp-p che con la Vt settata a 8Vp-p.
- Inoltre ai fini dell'esperienza è consigliabile collegare in parallelo, rispetto al condensatore, un oscilloscopio che ci permette di verificare le curve di carica e scarica del condensatore e anche le onde che rispecchieranno la frequenza con cui la corrente viene emessa.