

| 1 | 1. A transformed lactic acid bacterium, the bacterium comprising a DNA molecule             |
|---|---------------------------------------------------------------------------------------------|
| 2 | that comprises (1) a nucleotide sequence that encodes a protein allergen and (2) a promoter |
| 3 | operably linked to the nucleotide sequence.                                                 |
|   |                                                                                             |
| 1 | 2. The bacterium of claim 1, wherein the bacterium is of the genus <i>Lactobacillus</i> .   |
|   |                                                                                             |
| 1 | 2. The bacterium of claim 2, wherein the bacterium is Lactobacillus acidophilus.            |
|   |                                                                                             |
| 1 | A. The bacterium of claim 1, wherein the bacterium is of the genus Streptococcus.           |
|   |                                                                                             |
| 1 | 5. The bacterium of claim 4, wherein the bacterium is Streptococcus thermophilus.           |
|   |                                                                                             |
| 1 | 6. The bacterium of claim 1, wherein the protein allergen a dust mite allergen.             |
|   |                                                                                             |
| 1 | 7. The bacterium of claim 6, wherein the dust mite is Dermatophagoides                      |
| 2 | pteronyssinus.                                                                              |
|   |                                                                                             |
| 1 | 8. The bacterium of dlaim 7, wherein the allergen is Der p 5.                               |
|   |                                                                                             |
| 1 | 7. The bacterium of claim 1, wherein the promoter is a bacterial erythromycin               |
| 2 | resistance gene promoter.                                                                   |
|   |                                                                                             |
| 1 | 10. A transformed Lactobacillus acidophilus bacterium comprising a DNA molecule             |
| 2 | that comprises a gene expressing Der p 5.                                                   |
|   |                                                                                             |
| 1 | 11. A transformed Streptococcus thermophilus bacterium comprising a DNA                     |
| 2 | molecule that comprises a gene expressing Der p 5.                                          |
|   |                                                                                             |
| 1 | 12. A method of decreasing the production of IgE in a subject exposed to an allergen,       |
| 2 | the method comprising                                                                       |
| 3 | administering to a subject the bacterium of claim 1; and                                    |
|   |                                                                                             |

4

5

6

1 2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

1

2

3

4



| 13. A method of decreasing the    | production of IgE in a subject exposed to a dust mite |
|-----------------------------------|-------------------------------------------------------|
| allergen, the method comprising   |                                                       |
| administering to a subject the ba | octerium of claim 10: and                             |

expressing the allergen in the subject in an amount sufficient to induce in the subject immunological tolerance to the allergen, wherein the tolerance includes suppression of allergen-specific IgE production in the subject upon subsequent exposure to the allergen.

14. A method of decreasing the production of IgE in a subject exposed to a dust mite allergen, the method comprising

administering to a subject the bacterium of claim 11;

expressing the allergen in the subject in an amount sufficient to induce in the subject immunological tolerance to the allergen, wherein the tolerance includes suppression of allergen-specific IgE production in the subject upon subsequent exposure to the allergen.

15. A method of relieving bronchopulmonary congestion in a subject exposed to an allergen, the method comprising

administering to a subject the bacterium of claim 1; and

expressing the allergen in the subject in an amount sufficient to relieve bronchopulmonary congestion in the subject upon subsequent exposure to the allergen.

16. A method of relieving bronchopulmonary congestion in a subject exposed to a dust thite allergen, the method comprising

administering to a subject the bacterium of claim 10; and

expressing the allergen in the subject in an amount sufficient to relieve

bronchopulmonary congestion in the subject upon subsequent exposure to the allergen. 5



| 1 | 17. A method of relieving bronchopulmonary congestion in a subject exposed to a      |
|---|--------------------------------------------------------------------------------------|
| 2 | dust mite allergen, the method comprising                                            |
| 3 | administering to a subject the bacterium of claim 11; and                            |
| 4 | expressing the allergen in the subject in an amount sufficient to relieve            |
| 5 | bronchopulmonary congestion in the subject upon subsequent exposure to the allergen. |
| 1 | 18. The method of claim 12, wherein the bacterium is orally administered to the      |
| 2 | subject.                                                                             |
| 1 | 19. The method of claim 13, wherein the bacterium is orally administered to the      |
| 2 | subject.                                                                             |
| 1 | 20. The thethod of claim 14, wherein the bacterium is orally administered to the     |
| 2 | subject.                                                                             |
| 1 | 21. The method of claim 15, wherein the bacterium is orally administered to the      |
| 2 | subject.                                                                             |
| 1 | 22 The method of claim 16, wherein the bacterium is orally administered to the       |
| 2 | subject.                                                                             |
| 1 | 23. The method of claim 17, wherein the bacterium is orally administered to the      |
| 2 | subject.                                                                             |
|   | add and                                                                              |