## DC MACHINES

### Constructional details of a DC Machine:

- A DC machine can be used as a DC generator or a DC motor without any constructional changes. Thus, a DC generator or a DC motor can be broadly termed as a DC machine.
- when the machine is being assembled, we do not know whether it is a dc generator or motor. Any dc generator can be run as a dc motor and vice-versa.
- The following figure shows the constructional details of a simple **4-pole** DC machine



A DC machine consists of two basic parts, stator and rotor.

The other important parts are described below.

#### 1. Yoke:

- The outer frame of a D.C Machine (Generator or Motor) is called as yoke. Yoke is made up of cast iron or steel.
- Yoke provides mechanical strength for whole assembly of the D.C Machine
- It also carries the magnetic flux produced by the poles.

### 2. Poles:

- Poles are to support field windings or coils which are wound around it.
- Poles are joined to the yoke with the help of screws or welding.

N. Bharath Kumar Page **1** of **23** 

### 3. Pole shoe:

- Pole shoe is an extended part of the pole which serves two purposes,
  - (i) To prevent field coils from slipping and
  - (ii) To spread out the flux in air gap uniformly.

## 4. Field winding:

- Field winding is wound on poles and connected in series or parallel with armature winding.
- Field coils are mounted on the poles and carry the dc exciting current.
- The field coils are connected in such a way that adjacent poles have opposite polarity.

### 5. Armature core and Armature winding:

- Armature core is the rotor of a D.C Machine.
- Armature core is cylindrical in shape on which slots are provided to carry armature winding.
- The armature core is laminated to reduce the eddy current loss.
- Armature winding can be wound by one of the two methods known as

Lap winding (A=P) and Wave winging (A=2)

#### 6. Commutator:

- In DC Generator, commutator is a mechanical rectifier which converts the alternating voltage generated in the armature winding into direct voltage across the brushes.
- In DC Motor, commutator acts as mechanical inverter which converts direct voltage into alternating voltage.
- The commutator is made of copper segments insulated from each other by mica sheets and mounted on the shaft of the machine.

#### 7. Brushes:

- The purpose of brushes is to ensure electrical connections between the rotating commutator and stationary external load circuit.
- The brushes are made of carbon and rest on the commutator.
- Thus brushes are physically in contact with armature conductors hence wires can be connected to brushes.

N. Bharath Kumar Page **2** of **23** 

## D.C GENERATOR

An electrical Generator is a machine which converts mechanical energy (or power) into electrical energy (or power).

## **Principle of Operation of D.C Generator:**

According to Faraday's Laws of Electromagnetic Induction

"Whenever a conductor cuts magnetic flux, dynamically induced e.m.f. is produced in it".

The magnitude of the EMF is given by

E=Blv (Volts)

Where, B= Magnetic filed

1 = Effective length of conductor

v = Velocity of conductor in magnetic field

The direction of the induced emf / current is given by Fleming's Right Rule

## Fleming's Right Rule:

Stretch the thumb, fore finger and centre finger of Right hand in mutually perpendicular directions such that

#### When

- The Thumb represents the direction of the Motion of the Conductor (F).
- The Fore finger represents the direction of the magnetic Field (B).

#### Then

• The Centre finger represents the direction of the Current (I).



N. Bharath Kumar Page **3** of **23** 

## EMF Equation of D.C Generator:

Let P = Number of poles of the generator

 $\Phi$  = Flux produced by each pole in webers (Wb)

N = Speed of armature in r.p.m.

Z = Total Number of Armature Conductors

A = Number of parallel paths in which the 'Z' number of conductors are divided

So A = P for lap type of winding

A = 2 for wave type of winding

Now e.m.f. gets induced in the conductor according to Faraday's law of electromagnetic induction.

Hence average value of e.m.f. induced in each armature conductor is,

$$e =$$
Rate of cutting the flux  $= \frac{d\phi}{dt}$ 

Now consider one revolution of conductor.

**In one revolution**, conductor will cut total flux produced by all the poles i.e.  $\phi \times P$ 

While time required completing one revolution is  $\frac{60}{N}$  seconds as speed is N r.p.m.

$$\therefore \qquad e = \frac{\phi P}{\frac{60}{N}} = \phi P \frac{N}{60}$$
 This is the e.m.f. induced in one conductor.

Now the conductors in one parallel path are always in series.

There are total **Z** conductors with **A** parallel paths, hence  $\frac{Z}{A}$  number of conductors are always in series and e.m.f. remains same across all the parallel paths.

Total e.m.f. generated in d.c. generator is, 
$$\therefore$$
  $E = \phi P \frac{N}{60} \times \frac{Z}{A} \text{ Volts}$ 

The e.m.f. equation of d.c. generator is 
$$E = \frac{\phi P N Z}{60 A}$$
 Volts

$$E = \frac{\phi \ N \ Z}{60}$$
 Volts for Lap Type as  $A = P$ 

$$E = \frac{\phi \ P N Z}{120}$$
 Volts for Lap Type as  $A = 2$ 

Example: A **4 pole**, **lap** wound, d.c. generator has a useful flux of **0.07 Wb per pole**. Calculate the generated e.m.f. when it is rotated at a speed of **900 r.p.m**. with the help of prime mover. Armature consists of **440 number of conductors**. Also calculate the generated e.m.f. if **lap wound armature is replaced by wave** wound armature.

Solution:

Given that

Number of poles of the generator P = 4

Total Number of Armature Conductors Z = 440

Flux produced by each pole in webers  $\Phi = 0.07$  Wb

Speed of armature in r.p.m. N = 900 r.p.m.

The e.m.f. equation of d.c. generator 
$$E = \frac{\phi P N Z}{60 A}$$
 Volts

i) For lap wound, A = P = 4

$$E = \frac{\phi P N Z}{60 A} = \frac{0.07 \times 4 \times 900 \times 440}{60 \times 4} = 462 \text{ Volts}$$

ii) For wave wound A = 2

$$E = \frac{\phi P N Z}{60 A} = \frac{0.07 \times 4 \times 900 \times 440}{60 \times 2} = 924 \text{ Volts}$$

## Types of DC Generators:

Generators are generally classified according to the methods of field excitation.

1. Separately excited dc generators and 2.Self excited dc generators

## Separately excited dc generators:

A dc generator whose field winding is supplied from an independent external d.c. source (e.g., a battery etc.) is called a separately excited generator.



Armature current,  $I_a = I_L$ 

Terminal voltage,  $V = E_g - I_a R_a$ 

Electric power developed =  $E_g I_a$ 

### Self-Excited D.C. Generators:

A D.C. generator whose field magnet winding is supplied current from the output of the generator itself is called a self-excited generator.

There are three types of self-excited generators depending upon the manner in which the field winding is connected to the armature, namely;

- Series generator
- Shunt generator
- Compound generator

N. Bharath Kumar Page **6** of **23** 

### Series generator:

- In a series wound generator, the field winding is connected in series with armature winding so that whole armature current flows through the field winding as well as the load.
- Since the field winding carries the whole of load current, it has a few turns of thick wire having low resistance.
- Series generators are rarely used except for special purposes e.g., as boosters.



Armature current,  $I_a = I_{se} = I_L = I$ 

Terminal voltage,  $V = E_g - I(R_a + R_{se})$ 

Electric power developed =  $E_g I_a$ 

Power delivered to load =VI

## Shunt generator:

- In a shunt generator, the field winding is connected in parallel with the armature winding so that terminal voltage of the generator is applied across it.
- The shunt field winding has many turns of fine wire having high resistance.
- Therefore, only a part of armature current flows through shunt field winding and the rest flows through the load.



Shunt field current,  $I_{sh} = \frac{V}{R_{sh}}$ 

Armature current,  $I_a = I_L + I_{sh}$ 

Terminal voltage,  $V = E_g - I R_a$ 

Electric power developed =  $E_g I_a$ 

Power delivered to load = $VI_L$ 

### Compound generator:

- In a compound-wound generator, there are two sets of field windings on each pole
  one is in series and the other in parallel with the armature.
- A compound wound generator may be:

**Short Shunt** in which shunt field winding is in parallel only with the armature winding.



Series field current,  $I_{se} = I_L$ 

Terminal voltage,  $V = E_g - I_a R_a - I_{se} R_{se}$ 

Electric power developed =  $E_g I_a$ 

Power delivered to load = $VI_L$ 

**Long Shunt** in which shunt field winding is in parallel with both series field and armature winding. **Long shunt:** 



Series field current,  $I_{se} = I_a = I_L + I_{sh}$ 

Shunt field current,  $I_{sh} = \frac{V}{R_{sh}}$ 

Terminal voltage,  $V = E_g - I(R_a + R_{se})$ 

Electric power developed =  $E_g I_a$ 

Power delivered to load = $VI_L$ 

# **DC MOTORS**

A DC motor is a machine which converts electric energy into mechanical energy.

## **Principle of Operation DC Motor:**

The working of DC motor is based on the principle that "when a current-carrying conductor is placed in a magnetic field, it experiences a mechanical force".

The direction of mechanical force is given by Fleming's Left-hand Rule and its magnitude is given by

F = B I l Newton.

Where B = Magnetic field

I = Current flowing through the conductor

*l* = Effective length of conductor

## Fleming's Left-hand Rule:

Stretch the thumb, fore finger and centre finger of left hand in mutually perpendicular directions such that

### When

- The Fore finger represents the direction of the magnetic Field (B).
- The Centre finger represents the direction of the Current (I).

#### Then

• The Thumb represents the direction of the Motion of the Conductor (F).



N. Bharath Kumar Page **9** of **23** 

## Working of DC Motor

Consider a part of a D.C motor as shown in Figure below.



When the terminals of the motor are connected to an external source of d.c. supply:

- The field magnets are excited developing alternate N and S poles.
- The armature conductors carry currents.
- All conductors under N-pole carry currents in one direction while all the conductors under S-pole carry currents in the opposite direction.
- Suppose the conductors under N-pole carry currents into the plane of the paper and those under S-pole carry currents out of the plane of the paper as shown in Figure.
- Since each armature conductor is carrying current and is placed in the magnetic field, mechanical force acts on it.
- On applying Fleming's left hand rule, it is clear that force on each conductor is tending to rotate the armature in anticlockwise direction.
- All these forces add together to produce a driving torque which sets the armature rotating.

N. Bharath Kumar Page **10** of

## **Torque Equation of DC Motor:**

The mechanical power that is required to produce the desired torque of dc machine

is given by,

$$P_m = E_b I_a$$

The mechanical power  $P_m$  is related to the electromagnetic torque  $T_g$  as,

$$P_m = T_{\varrho} \omega$$

Where  $\omega$  is speed in rad/sec.

Now equating we get,  $E_b I_a = T_g \omega$ 

$$E_b I_a = T_g \alpha$$

Now for simplifying the torque equation of dc motor we substitute.

$$E_b = \frac{\phi P N Z}{60 A}$$
 Volts

Where,

P = Number of poles of the generator

 $\Phi$  = Flux produced by each pole in webers (Wb)

Z = Total Number of Armature Conductors

N = Speed of the D.C. motor in r.p.m.

A = Number of parallel paths in which the 'Z' number of conductors are divided

A = P for lap type of winding So

A = 2 for wave type of winding

From

$$E_b I_a = T_g \omega$$
  $T_g = \frac{E_b I_a}{\omega}$ , we know that  $\omega = \frac{2\pi N}{60}$  rad/sec

We get

$$T_{g} = \frac{\left(\frac{\phi P N Z}{60 A}\right) I_{a}}{\left(\frac{2\pi N}{60}\right)} = \frac{\phi P Z I_{a}}{2\pi A}$$

This is the torque equation of dc motor. It can be further simplified as:

$$T_g = k_a \phi I_a$$

Where

$$k_a = \frac{PZ}{2\pi A}$$

Which is constant for a motor and therefore the torque of dc motor varies with only flux  $\phi$  and armature current  $I_a$ 

## **Types of DC Motors:**

Like generators, there are three types of d.c. motors characterized by the connections of field winding in relation to the armature. They are

- 1. Shunt Wound DC Motor
- 2. Series Wound DC Motor
- 3. Compound Wound DC Motor
  - Short Shunt Connection
  - Long Shunt Connection

### **Shunt DC Motor**

Shunt-wound motor in which the field winding is connected in parallel with the armature.



Shunt field current, 
$$I_{sh} = \frac{V}{R_{sh}}$$

Armature current,  $I_L = I_a + I_{sh}$ 

Terminal voltage,  $V = E_b + I_a R_a$ 

Electric power developed =  $E_b I_a$ 

Power delivered to load  $=VI_L$ 

### **Series DC Motor**

Series-wound motor in which the field winding is connected in series with the armature.



Armature current, 
$$I_a = I_{se} = I_L = I$$

Terminal voltage, 
$$V = E_b + I(R_a + R_{se})$$

Electric power developed = 
$$E_b I_a$$

Power delivered to load = 
$$VI$$

## **Compound Wound DC Motor**

Compound-wound motor which has two field windings; one connected in parallel with the armature and the other in series with it.

There are two types of compound motor connections (like generators).

**Short Shunt** in which shunt field winding is in parallel only with the armature winding.



Series field current,  $I_{se} = I_L$ 

Terminal voltage,  $V = E_b + I_a R_a + I_L R_{se}$ 

Electric power developed =  $E_b I_a$ 

Power delivered to load = $VI_L$ 

**Long Shunt** in which shunt field winding is in parallel with both series field and armature winding.



Series field current,  $I_{se} = I_a = I_L - I_{sh}$ 

Shunt field current,  $I_{sh} = \frac{V}{R_{sh}}$ 

Terminal voltage,  $V = E_b + I_a (R_a + R_{se})$ 

Electric power developed =  $E_b I_a$ 

Power delivered to load  $=VI_L$ 

### THREE PHASE INDUCTION MOTOR

**Introduction:** Three-phase induction motors are the most widely used electric motors in industry. Speed of this motors are frequency dependent. The induction motor may be considered to be a **transformer with a rotating secondary** 

### **Advantages**

- It has simple and rugged construction.
- It is relatively cheap.
- It requires little maintenance.
- It has high efficiency and reasonably good power factor.
- It has self starting torque.

## **Disadvantages**

- It is essentially a constant speed motor and its speed cannot be changed easily.
- Its starting torque is inferior to d.c. shunt motor.

### **Constructional Details of A Three Phase Induction Motor**

A typical motor consists of two parts namely stator and rotor like other type of motors.

- 1. **Stator:** An outside stationary stator having coils supplied with AC current to produce a rotating magnetic field
- 2. **Rotor:** An inside rotor attached to the output shaft that is given a torque by the rotating field.



N. Bharath Kumar Page **14** of

### Stator:

- It consists of a steel frame which encloses a hollow, cylindrical core made up of thin laminations of silicon steel
- A number of evenly spaced slots are provided on the inner periphery of the laminations for providing 3 phase winding.
- The 3-phase stator winding is wound for a definite number of poles as per requirement of speed.
- When 3-phase supply is given to the stator winding, a rotating magnetic field of constant magnitude (1.5  $\phi_m$ ) is produced.

This rotating field induces currents in the rotor by electromagnetic induction



### **Rotor:**

- The rotor, mounted on a shaft, is a hollow laminated core having slots on its outer periphery.
- The winding placed in these slots (called rotor winding) may be one of the following two types:
  - (i) Squirrel cage type
- (ii) Wound type

N. Bharath Kumar Page **15** of

## Squirrel cage type

- Most of 3-phase induction motors use squirrel cage rotor.
- It has a remarkably simple and robust construction.
- The rotor winding consists of single copper or aluminum bars placed in the slots and short-circuited by end-rings on both sides of the rotor.
- It suffers from the disadvantage of a low starting torque.



## Wound type

- In the wound rotor, an insulated 3-phase winding similar to the stator winding wound for the same number of poles as stator, is placed in the rotor slots.
- The ends of the star-connected rotor winding are brought to three slip rings on the shaft so that a connection can be made to it for starting or speed control.
- At the time of starting, the external resistances are included in the rotor circuit to give a large starting torque.
- These resistances are gradually reduced to zero as the motor runs up to speed.



N. Bharath Kumar Page **16** of







N. Bharath Kumar Page **17** of

## Principle of operation of three phase induction motors

- When a 3-phase winding is energized from a 3-phase supply, a rotating magnetic field is produced.
- The speed at which stator magnetic field rotates is called **synchronous speed** (Ns).
- Magnitude of this rotating magnetic field is constant and is equal to 1.5  $\varphi_{\scriptscriptstyle m}$
- The rotating field passes through the air gap and cuts the rotor conductors, which as yet, are stationary.
- According to Faraday's laws of electromagnetic induction current flows through the short circuited conductors.
- The interaction of the rotating flux and the rotor current generates a force that drives the motor and a torque is developed consequently.
- Mechanical force acts on the rotor conductors and rotor start to rotate in the direction of rotating magnetic field.
- The torque is proportional with the flux density and the rotor
- The motor speed is less than the synchronous speed.
- The direction of the rotation of the rotor is the same as the direction of the rotation of the revolving magnetic field in the air gap



N. Bharath Kumar Page **18** of

## Slip (s)

- In practice, the rotor can never reach the speed of stator flux ,Because of friction and windage losses makes the rotor to slow down.
- Hence, the rotor speed (N<sub>r</sub>) is always less than the stator flux speed (N<sub>s</sub>).
- The difference between the synchronous speed Ns of the rotating stator field and the actual rotor speed Nr is called slip.

It is usually expressed as a percentage of synchronous speed i.e., The quantity  $N_s$  -  $N_r$  is called slip speed.

When the rotor is stationary (i.e.,  $N_r = 0$ ), slip, s = 1 or 100 %

% 
$$Slip = \frac{N_s - N_r}{N_s} * 100 \%$$

## Rotor Frequency( $f_r$ )

 The frequency of a voltage or current induced due to the relative speed between rotor conductor and rotating magnetic field can be calculated by

$$f_r = \frac{(N_s - N_r) P}{120}$$

where  $(N_s - N_r)$  = Relative speed between magnetic field and the armature winding P = Number of poles

• For a rotor speed  $(N_r)$ , the relative speed between the rotating flux  $(N_s)$  and the rotor is  $(N_s - N_r)$ .

The frequency of supply voltage (stator rotating flux) is  $f = \frac{N_s P}{120}$ 

$$\frac{f_r}{f} = \frac{\frac{(N_s - N_r) P}{120}}{\frac{N_s P}{120}} = \frac{N_s - N_r}{N_s} = s f$$

#### Problems:

- 1. A three phase induction motor is wound for 4 poles and is supplied from 50Hz system. Calculate (i) the synchronous speed (ii) the speed of the motor when slip is 4% and (iii) the motor rotor current frequency when the motor runs at 600 r.p.m.
- 2. A 6 pole, 3phase, 50 Hz induction motor is running at full load with a slip of 4%. The rotor is star connected and its resistance and stand still reactance are  $0.25 \Omega$  and  $1.5 \Omega$  per phase. The e.m.f between slip rings is 100V. Find the rotor current per phase and power factor, assuming the slip rings are short circuited.

#### **Rotor Current**

### Unit-4

## **Basics of Electrical and Electronics Engineering**



- The e.m.f induced in rotor windings at standstill (s=1) is  $E_2 = \sqrt{2} \pi f N_2 \phi_m$
- The e.m.f induced in rotor windings under running condition is

$$E_2' = \sqrt{2} \pi f_r N_2 \phi_m = \sqrt{2} \pi (s \ f) N_2 \phi_m = s E_2$$

## **Torque Equation of 3-Phase Induction Motor**

Rotor equivalent circuit diagram for a 3-ph induction motor

Rotor Current induced / phase 
$$I_2 = \frac{e.m.f induced / phase}{Z_2}$$

Rotor power factor =  $Cos \ \phi_2 = \frac{R_2}{Z_2}$ 



# At standstill Slip s=1

Rotor Current / phase 
$$I_2 = \frac{E_2}{Z_2} = \frac{E_2}{\sqrt{R_2^2 + X_2^2}}$$

# When running at slip s

Rotor Current / phase 
$$I_2' = \frac{E_2'}{Z_2} = \frac{s E_2}{Z_2} = \frac{s E_2}{\sqrt{R_2^2 + (s X_2)^2}}$$
 and  $\cos \phi_2 = \frac{R_2}{Z_2} = \frac{R_2}{\sqrt{R_2^2 + (s X_2)^2}}$ 

Torque T developed is directly proportional to rotor flux , rotor current and power factor  $\ensuremath{\mathsf{T}}$ 

$$T \ \alpha \ \phi_2 \ I_2' \cos \ \phi_2 \quad \text{and} \quad \phi_2 \ \alpha \ E_2$$

$$\therefore \quad T \ \alpha \ E_2 \ I_2' \cos \ \phi_2 = k \ E_2 \ I_2' \cos \ \phi_2$$

$$T = k \ E_2 \frac{s \ E_2}{\sqrt{R_2^2 + (s \ X_2)^2}} \frac{R_2}{\sqrt{R_2^2 + (s \ X_2)^2}} \qquad T = k \ \frac{s \ E_2^2}{R_2^2 + (s \ X_2)^2}$$
Starting torque  $\mathbf{s=1}$ 

$$T = k \ \frac{E_2^2}{R_2^2 + X_2^2}$$

# **Torque Slip Characteristics**

If a curve is drawn between the torque and slip for a particular value of rotor resistance  $R_2$ , the graph thus obtained is called torque-slip characteristic.

At s = 0, T = 0 so that torque-slip curve starts from the origin

**At normal speed**, slip is small so that  $sX_2$  is negligible  $T \alpha s$  and the torque increases and becomes maximum at  $s = \frac{R_2}{X_2}$ 

**For high values of slip** R<sub>2</sub> value is less compared to sX<sub>2</sub> value so R<sub>2</sub><sup>2</sup>≈0 and  $T \alpha \frac{1}{s}$ 



### SYNCHRONOUS MACHINES

#### Introduction

- Rotates at synchronous speed.
- The machine which produces 3-phase power from mechanical power is called an alternator or synchronous generator.
- An alternator has 3-phase winding on the stator and a d.c. field winding on the rotor. They convert mechanical energy into a.c. energy.

## Constructional details of synchronous machines

Like any machine a synchronous machine has two parts. a) Stator b) Rotor



#### Stator

- It is the stationary part of the machine and is built up of sheet-steel laminations having slots on its inner periphery
- A 3-phase winding is placed in these slots and serves as the armature winding of the alternator
- The armature winding is always connected in star and the neutral is connected to ground.

#### **Rotor**

- The rotor carries a field winding which is supplied with direct current through two slip rings by a separate d.c. source.
- Rotor construction is of two types,
  - (i) Salient (or projecting) pole type (ii) Non-salient (or cylindrical) pole type

## Salient pole type

N. Bharath Kumar Page **22** of

- Salient or projecting poles are mounted on a large circular steel
   Frame which is fixed to the shaft of the alternator
- These are used in Low and mediumspeed alternators (120-400 r.p.m.)
- Due to excessive windage loss if driven at high speed and would tend to produce noise.
- At higher speeds they may be subjected to Mechanical stresses



## Non-salient pole type (cylindrical type)

- In this type, the rotor is made of smooth solid forged-steel radial cylinder having a number of slots along the outer periphery.
- The field windings are embedded in these slots and are connected in series to the slip rings through which they are energized by the d.c. exciter.
- These are used in High-speed alternators



Page 23 of

N. Bharath Kumar