- **1.** Which of the following series is convergent?
 - A) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$
 - B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
 - C) $\sum_{n=1}^{\infty} \frac{1}{n}$
 - D) $\sum_{n=1}^{\infty} \frac{1}{10n-1}$
 - E) $\sum_{n=1}^{\infty} \frac{2}{n^2 5}$
- 2. Which of the following series is divergent?
 - A) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
 - B) $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$
 - C) $\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$
 - $\mathsf{D)} \; \sum_{n=1}^{\infty} \frac{n}{\sqrt{4n^2 1}}$
 - E) None of these
- **3.** The position of a particle moving from the origin in the xy-plane at any time t is given by the vector $\mathbf{r} = \left(3\cos\frac{\pi t}{3}\right)\mathbf{i} + \left(2\sin\frac{2\pi}{3}\right)\mathbf{j}$. The magnitude of the acceleration when t = 3 is
 - **A)** 2
 - B) $\frac{\pi^2}{3}$
 - **C**) 3
 - D) $\frac{2\pi^2}{9}$
 - E) π

4. The series
$$(x-2) + \frac{(x-2)^2}{4} + \frac{(x-2)^3}{9} + \frac{(x-2)^4}{16} + \cdots$$
 converges for

A)
$$1 \le x \le 3$$

B)
$$1 \le x < 3$$

C)
$$1 < x \le 3$$

D)
$$0 \le x \le 4$$

5. Which of the following statements about series is false?

A)
$$\sum_{n=1}^{\infty} a_n = \sum_{n=k}^{\infty} a_n$$
 where k is any positive integer.

B) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then so does $\sum_{n=1}^{\infty} ca_n$ where $c \neq 0$.

C) If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ converge, then so does $\sum_{n=1}^{\infty} (ca_n + b_n)$ where $c \neq 0$.

- D) If 1000 terms are added to a convergent series, the new series also converges.
- E) Rearranging the terms of a positive convergent series will not affect its convergence or its sum.

6. Find the area inside the polar curve $r = 3\cos 3\theta$.

A)
$$\frac{7\pi}{4}$$

B)
$$2\pi$$

C)
$$\frac{9\pi}{4}$$

D)
$$\frac{5\pi}{2}$$

E)
$$\frac{11\pi}{4}$$

- 7. Above is the graph of f'(x), the derivative of f(x). The domain of f is the interval $-3 \le x \le 3$. Which of the following are true about the graph of f?
 - I. f is increasing on -3 < x < -2.
 - II. f is concave down on -3 < x < -1.
 - III. The maximum value of f(x) on -3 < x < 2 is f(-3).
 - A) I only
 - B) II only
 - C) III only
 - D) I and II only
 - E) II and III only
- **8.** The sales of a small company are expected to grow at a rate given by $\frac{dS}{dt} = 300t + t^{1/2} + t^{3/2}$, where S(t) is the sales in dollars in t days. The accumulated sales through the first 4 days is approximately
 - A) \$2202
 - B) \$2274
 - C) \$2346
 - D) \$2418
 - E) \$2490
- **9.** The radius of convergence of the series $\frac{x}{4} + \frac{x^2}{4^2} + \frac{x^3}{4^3} + \dots + \frac{x^n}{4^n} + \dots$ is
 - A) ∞
 - **B**) 0
 - **C**) 1
 - **D)** 2
 - E) 4

10. The position vector of a particle moving in the xy-plane at time t is given by

$$\mathbf{p} = (3t^2 - 4t)\mathbf{i} + (t^2 + 2t)\mathbf{j}.$$

The speed of the particle at t=2 is

- A) 2 units per second.
- B) $2\sqrt{10}$ units per second.
- C) 10 units per second.
- D) 14 units per second.
- E) 20 units per second.

11. The coefficient of x^3 in the Taylor series for e^{2x} at x=0 is

- A) $\frac{1}{6}$.
- B) $\frac{1}{3}$.
- C) $\frac{2}{3}$.
- D) $\frac{4}{3}$.
- E) $\frac{8}{3}$.

12. Which of the following is an equation for the line tangent to the curve with parametric equations

$$x = \frac{1}{t}$$
 and $y = \sqrt{t+1}$

at the point where t = 3?

A)
$$-\frac{4}{9}\left(x-\frac{1}{3}\right)=y-2$$

B)
$$\frac{1}{4} \left(x - \frac{1}{3} \right) = y - 2$$

C)
$$-\frac{9}{4}\left(x-\frac{1}{3}\right)=y-2$$

D)
$$-\frac{4}{9}(x+\frac{1}{9})=y-\frac{1}{4}$$

E)
$$-\frac{9}{4}(x+\frac{1}{9}) = y - \frac{1}{4}$$

13. The area inside the circle with polar equation $r = 2\sin\theta$ and above the lines with equations y = x and y = -x is given by

A)
$$\int_{-\pi/4}^{\pi/4} 2\sin^2\theta \ d\theta$$

$$\mathsf{B)} \ \int_{-1}^{1} 2\sin\theta \ d\theta$$

C)
$$\int_{-1}^{1} (2\sin^2\theta - 1) \ d\theta$$

D)
$$\int_{\pi/4}^{3\pi/4} \sin\theta \ d\theta$$

$$\mathsf{E)} \ \int_{\pi/4}^{3\pi/4} 2\sin^2\theta \ d\theta$$

14. What is the sum $\frac{5}{2} + \frac{5}{4} + \frac{5}{8} + \frac{5}{16} + \cdots$?

- **A)** 2
- B) $\frac{75}{16}$
- C) $\frac{315}{64}$
- **D**) 5
- E) This series diverges

15. Suppose f is a function whose nth derivative is $f^{(n)}(x) = (2^x + 1)(n + 1)!$ for all x and n. If f(3) = -2, what is the fourth-degree Taylor polynomial for f at x = 3?

A)
$$-2 + 18(x-3) + 27(x-3)^2 + 36(x-3)^3 + 45(x-3)^4$$

B)
$$-2 + 18x + 27x^2 + 36x^3 + 45x^4$$

C)
$$-2 + 18(x-3) + 54(x-3)^2 + 216(x-3)^3 + 1080(x-3)^4$$

D)
$$-2 + 18x + 54x^2 + 216x^3 + 1080x^4$$

E)
$$-2 + 18(x-3) + 27(x-3)^2 + 72(x-3)^3 + 270(x-3)^4$$