Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

What is claimed is:

1. (Currently Amended) A compound of formula (I):

$$Ar - CHCH_2NHCR^4R^5(CH_2)_m - O - (CH_2)_n - R^3$$
 (I)

or a salt, solvate, or physiologically functional derivative thereof, wherein:

m is an integer of from 2 to 8; and n is an integer of from 3 to 11; with the proviso that m + n is 5 to 19;

R¹ is SR⁶, SOR⁶, or SO₂R⁶, wherein R⁶ is a C₃₋₇cycloalkyl or C₃₋₇cycloalkenyl group;

 R^2 and R^3 are independently selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, halo, phenyl, and C_{1-6} haloalkyl;

 R^4 and R^5 are independently selected from hydrogen and C_{1-4} alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4;

Ar is a group selected from

wherein R^8 represents hydrogen, halogen, -(CH₂)_qOR¹¹, -NR¹¹C(O)R¹², -NR¹¹SO₂R¹², -SO₂NR¹¹R¹², -NR¹¹R¹², -OC(O)R¹³ or OC(O)NR¹¹R¹², and R⁷ represents hydrogen, halogen, or C₁₋₄ alkyl;

or R⁸ represents –NHR¹⁴ and R⁷ and –NHR¹⁴ together form a 5- or 6-membered heterocyclic ring;

R⁹ represents hydrogen, halogen, -OR¹¹ or -NR¹¹R¹²;

 R^{10} represents hydrogen, halogen, halo C_{1-4} alkyl, $-OR^{11}$, $-NR^{11}$ R^{12} , $-OC(O)R^{13}$ or $OC(O)NR^{11}R^{12}$;

 R^{11} and R^{12} each independently represents hydrogen or C_{1-4} alkyl, or in the groups -NR¹¹R¹², -SO₂NR¹¹R¹² and -OC(O)NR¹¹R¹², R¹¹ and R¹²

independently represent hydrogen or C₁₋₄ alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,

 R^{13} represents an aryl (eg phenyl or naphthyl) group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy or halo C_{1-4} alkyl; and

q is zero or an integer from 1 to 4.

- 2. (Currently Amended) A compound <u>according to Claim 1</u> of formula (I) or a salt, solvate of physiologically functional derivative thereof, wherein formula (I) is as defined in claim, except that R⁸ is selected from the group consisting of halogen, -(CH₂)_qOR¹¹, -NR¹¹C(O)R¹², -NR¹¹SO₂R¹², -SO₂NR¹¹R¹², -NR¹¹R¹², -OC(O)R¹³ or OC(O)NR¹¹R¹², and -NHR¹⁴ and R⁷ and -NHR¹⁴ together form a 5- or 6- membered heterocyclic ring does not represent hydrogen.
- 3. (Currently Amended) A compound according to claim 1 or claim 2 wherein R¹ represents –SO₂R⁶.
- 4. (Currently Amended) A compound according to <u>claim 1</u> any of <u>claims 1 to 3</u> wherein R⁶ represents a C₃₋₇ cycloalkyl group.
- 5. (Currently Amended) A compound according to <u>claim 1</u> any of claims 1 to 4 wherein R² and R³ each represent hydrogen.
- 6. (Currently Amended) A compound according to <u>claim 1</u> any of claims 1 to 5 wherein R⁴ and R⁵ are independently selected from hydrogen and methyl.
- 7. (Currently Amended) A compound according to <u>claim 1</u> any of claims 1 to 6 wherein Ar is selected from a group (a) or (b):

$$R^{9}$$
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

8. (Original) A compound of formula (la):

or a salt, solvate, or physiologically functional derivative thereof, wherein:

m is an integer of from 2 to 8; and n is an integer of from 3 to 11; with the proviso that m + n is 5 to 19;

R¹ is SR⁶, SOR⁶, or SO₂R⁶, wherein R⁶ is a C₃₋₇cycloalkyl or C₃₋₇cycloalkenyl group;

 R^2 and R^3 are independently selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, halo, phenyl, and C_{1-6} haloalkyl; and

 R^4 and R^5 are independently selected from hydrogen and C_{1-4} alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4.

9. (Currently Amended) A compound according to claim 1 any of claims

1 to 8 wherein m is 5 or 6 and n is 3 or 4.

```
    (Currently Amended) A compound of formula (I) or (Ia) selected from:

4-{(1R)-2-[(6-{4-[3-(Cyclopentylsulfinyl)phenyl]butoxy}hexyl)amino]-1-
hydroxyethyl}-2-(hydroxymethyl)phenol;
4-{(1R)-2-[(6-{4-[3-(Cyclopentylsulfinyl)phenyl]butoxy}hexyl)amino]-1-
hydroxyethyl}-2-(hydroxymethyl)phenol (Isomer 1);
4-{(1R)-2-[(6-{4-[3-(Cyclopentylsulfinyl)phenyl]butoxy}hexyl)amino]-1-
hydroxyethyl}-2-(hydroxymethyl)phenol (Isomer 2);
4-{(1R)-2-[(6-{4-[3-(Cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-
hydroxyethyl}-2-(hydroxymethyl)phenol;
4-{(1R)-2-[(6-{4-[4-(Cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-
hydroxyethyl}-2-(hydroxymethyl)phenol;
4-((1R)-2-{[6-({4-[3-(Cyclohexylsulfonyl)phenyl]butyl}oxy)hexyl]amino}-1-
hydroxyethyl)-2-(hydroxymethyl)phenol;
4-((1R)-2-{[6-({4-[3-(3-Cyclopenten-1-ylsulfonyl)phenyl]butyl}oxy)hexyl]amino}-
1-hydroxyethyl)-2-(hydroxymethyl)phenol;
4-((1R)-2-{[6-({5-[3-(Cyclopentylsulfonyl)phenyl]pentyl}oxy)hexyl]amino}-1-
hydroxyethyl)-2-(hydroxymethyl)phenol;
4-((1R)-2-{[7-({3-[3-(Cyclopentylsulfonyl)phenyl]propyl}oxy)heptyl]amino}-1-
hydroxyethyl)-2-(hydroxymethyl)phenol;
4-((1R)-2-{[6-({4-[3-(Cyclopentylsulfonyl)-5-
methylphenyl]butyl}oxy)hexyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;
N-[5-((1R)-2-{[6-({4-[3-(Cyclopentylsulfonyl)phenyl]butyl}oxy)hexyl]amino}-1-
hydroxyethyl)-2-hydroxyphenyl]methanesulfonamide;
4-((1R)-2-{[6-({4-[3-(Cyclopentylsulfonyl)phenyl]butyl}oxy)hexyl]amino}-1-
hydroxyethyl)-2-fluorophenol;
6-{2-[(6-{4-[3-(Cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-
2-(hydroxymethyl)pyridin-3-ol;
5-{(1R)-2-[(6-{4-[3-(Cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-
hydroxyethyl}-8-hydroxy-3,4-dihydroquinolin-2(1H)-one;
5-{(1R)-2-[(6-{4-[3-(Cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-
hydroxyethyl}-2-hydroxyphenylformamide;
```

Applicant Docket No.: PG4979 USw International Application No.: PCT/EP2003/012035

and salts, solvates, and physiologically functional derivatives thereof.

- 11. (Currently Amended) A compound according to claim 10 of formula (I) or (Ia) which is:
- 4-{(1*R*)-2-[(6-{4-[3-(Cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol; or a salt, solvate, or physiologically functional derivative thereof.
- 12. (Currently Amended) A compound according to <u>claim 1</u> any of <u>claims 1 to 11</u> in the form of a salt formed with an arylsulphonic acid.
- 13. (Currently Amended) A compound according to any of claim 8, claim 9 or claim 12 which is selected from:
- 4-{(1R)-2-[(6-{4-[3-(cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl) phenol 4-methylbenzenesulfonate; 4-{(1R)-2-[(6-{4-[3-(cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol 4-bromobenzene sulfonate; 4-{(1R)-2-[(6-{4-[3-(cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol 4-chlorobenzene sulfonate 4-{(1R)-2-[(6-{4-[3-(cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol 3-toluene sulfonate; 4-{(1R)-2-[(6-{4-[3-(cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl) phenol 4-biphenyl sulfonate; and 4-{(1R)-2-[(6-{4-[3-(cyclopentylsulfonyl)phenyl]butoxy}hexyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol, naphthalene-2-sulfonate.
- 14. (Original) A compound according to claim 13 wherein the salt is in crystalline form.
- 15. (Currently Amended) A method for the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective β₂-adrenoreceptor agonist is indicated, which comprises administering

administration of a therapeutically effective amount of a compound of formula (I) or (Ia) according to claim 1 any of claims 1 to 14 or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.

16. (Canceled)

- 17. (Currently Amended) A pharmaceutical formulation comprising a compound according to claim 1 of formula (I) or (Ia) according to any of claims 1 to 14 or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.
- 18. (Currently Amended) A combination comprising a compound <u>according</u> to claim 1 of formula (I) or (Ia) according to any of claims 1 to 14 or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and one or more other therapeutic ingredients.
 - 19. (Canceled).
- 20. (Currently Amended) A process for the preparation of a compound of formula (I) or (Ia) according to claim 1 any of claims 1 to 14 or a salt, solvate, or physiologically functional derivative thereof, which comprises:
- (a) <u>deprotecting</u> deprotection of a protected intermediate, for example of formula (II):

$$R^{19}$$
— $CHCH_2NR^{20}CR^4R^5(CH_2)_m$ — O — $(CH_2)_n$ — R^3 (II)

or a salt or solvate thereof, wherein R¹, R², R³, R⁴, R⁵, m, and n are as defined for the compound of formula (I), R¹⁹ represents an optionally protected form of

Ar; and R²⁰ and R²¹ are each independently either hydrogen or a protecting group, provided that the compound of formula (II) contains at least one protecting group;

(a) reaction of a compound of formula (X):

$$R^{19} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{19} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{m}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{m}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{m}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{m}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{m}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{m}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{m}$$

$$R^{3} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m}$$

wherein R², R³, R⁴, R⁵, R¹⁹, R²⁰, R²⁴, m and n are as defined for formula (II) each R²⁶-independently represents hydrogen or C₄₋₄alkyl, and x and y each represent 0, 1 or 2; to effect ring closure;

(c) alkylation of an amine of formula (XIII):

wherein R²², R²³, R²⁰-and R²¹-are each independently either hydrogen or a pretecting group with a compound of formula (XVII):

wherein R¹, R², R³, R⁴, R⁵, m, and n are as defined for the compound of formula (I) and L¹ is a leaving group;

(d) reduction of a compound of formula (XIX):

Wherein R¹, R², R³, R⁴, R⁵, m and n are as defined for formula (I), R¹⁹ represents an optionally protected form of Ar and R²⁰ and R²¹ are each independently hydrogen or a protecting group as defined above.

(e) reacting a compound of formula (XXIII):

wherein R^{49} is as hereinbefore defined and L^3 is a leaving group as defined above for L^4 or L^2 :

or a compound of formula (XXIV):

wherein R¹⁹ is as hereinbefore defined with an amine of formula (XXV):

$$R^{20}$$
HNCR 4 R 5 (CH $_2$)_m—O—(CH $_2$)_n R^2 (XXV)

wherein R¹, R², R³, R⁴, R⁵, R²⁰, m and n are as defined for formula (II); or

-----(f) removal of a chiral auxiliary from a compound of folrmula (IIa)

$$R^{19}CHCH_2NR^{27}CR^4R^5(CH_2)_m -O-(CH_2)_n$$
 R^2
 R^1
 R^3
 R^3
(IIa)

wherein R¹— R⁵, m and n are as defined for formula (I), R¹⁹-represents an optionally protected form of Ar, R²¹-represent hydrogen or a protecting group and R²⁷-represents a chiral auxiliary.

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing optional removal of any protecting groups;
- (ii) <u>separating</u> optional separation of an enantiomer from a mixture of enantiomers:
 - (iii) <u>converting</u> optional conversion of one compound of formula (I) to a different compound of formula (I) og. conversion of a compound wherein R¹ is SR⁶ to a compound wherein R¹ is SOR⁶ or SO₂R⁶, or conversion of a compound wherein R¹ is SOR⁶ to a compound wherein R¹ is SO₂R⁶;

Applicant Docket No.: PG4979 USw International Application No.: PCT/EP2003/012035

- (iv) converting optional conversion of a compound wherein R⁶ represents cycloalkenyl to a compound wherein R⁶ represents cycloalkyl, eg. by hydrogenation; and
- (v) converting optional conversion of the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 21. (Canceled)
- 22. (New) A compound according to claim 1, wherein R¹³ is a phenyl group.
- 23. (New) A compound according to claim 1, wherein R¹³ is a naphthyl group.
- 24. (New) A method according to claim 15, wherein the mammal is a human.
- 25. (New) A process for the preparation of a compound according to claim 1 or a salt, solvate, or physiologically functional derivative thereof, which comprises:

reacting a compound of formula (X):

$$R^{19} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n} - CHCH_{2}N_{n} - CHCH$$

wherein R¹, R², R³, R⁴, R⁵, m, and n are as defined for the compound of formula (I), R¹⁹ represents an optionally protected form of Ar; and R²⁰ and R²¹ are each independently either hydrogen or a protecting group, each R²⁶ independently represents hydrogen or C₁₋₄alkyl, and x and y each represent 0, 1 or 2; to effect ring closure;

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
 - (iii) converting one compound of formula (I) to a different compound of formula wherein R¹ is SR⁶ to a compound wherein R¹ is SOR⁶ or SO₂R⁶, or conversion of a compound wherein R¹ is SOR⁶ to a compound wherein R¹ is SO₂R⁶;
 - (iv) converting a compound wherein R⁶ represents cycloalkenyl to a compound wherein R⁶ represents cycloalkyl, eg. by hydrogenation; and
- (v) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 26. (New) A process for the preparation of a compound according to claim 1 or a salt, solvate, or physiologically functional derivative thereof, which comprises:

alkylating an amine of formula (XIII):

wherein R²², R²³, R²⁰ and R²¹ are each independently either hydrogen or a protecting group with a compound of formula (XVII):

$$L^{1}CR^{4}R^{5}(CH_{2})_{m}-O-(CH_{2})_{n}$$
(XVII)

wherein R¹, R², R³, R⁴, R⁵, m, and n are as defined for the compound of formula (I) and L¹ is a leaving group;

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
 - (iii) converting one compound of formula (I) to a different compound of formula (I) wherein R¹ is SR⁶ to a compound wherein R¹ is SOR⁶ or SO₂R⁶, or conversion of a compound wherein R¹ is SOR⁶ to a compound wherein R¹ is SO₂R⁶;
 - (iv) converting a compound wherein R⁶ represents cycloalkenyl to a compound wherein R⁶ represents cycloalkyl, eg. by hydrogenation; and
- (v) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 27. (New) A process for the preparation of a compound according to claim 1 or a salt, solvate, or physiologically functional derivative thereof, which comprises:

reducing a compound of formula (XIX):

Wherein R¹, R², R³, R⁴, R⁵, m and n are as defined for formula (I), R¹⁹ represents an optionally protected form of Ar and R²⁰ and R²¹ are each independently hydrogen or a protecting group

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
 - (iii) converting one compound of formula (I) to a different compound of formula (I) wherein R¹ is SR⁶ to a compound wherein R¹ is SOR⁶ or SO₂R⁶, or conversion of a compound wherein R¹ is SOR⁶ to a compound wherein R¹ is SO₂R⁶;
 - (iv) converting a compound wherein R⁶ represents cycloalkenyl to a compound wherein R⁶ represents cycloalkyl, eg. by hydrogenation; and
- (v) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 28. (New) A process for the preparation of a compound according to claim 1 or a salt, solvate, or physiologically functional derivative thereof, which comprises:

reacting a compound of formula (XXIII):

Applicant Docket No.: PG4979 USw International Application No.: PCT/EP2003/012035

wherein R^{19} is as hereinbefore defined and L^3 is a leaving group as defined above for

$$L^1$$
 or L^2 ;

or a compound of formula (XXIV):

with an amine of formula (XXV):

wherein R¹, R², R³, R⁴, R⁵, m, and n are as defined for the compound of formula (I), R¹⁹ represents an optionally protected form of Ar; and R²⁰ and R²¹ are each independently either hydrogen or a protecting group

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
 - (iii) converting one compound of formula (I) to a different compound of formula (I) wherein R¹ is SR⁶ to a compound wherein R¹ is SOR⁶ or SO₂R⁶, or conversion of a compound wherein R¹ is SOR⁶ to a compound wherein R¹ is SO₂R⁶;
 - (iv) converting a compound wherein R⁶ represents cycloalkenyl to a compound wherein R⁶ represents cycloalkyl, eg. by hydrogenation; and
- (v) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 29. (New) A process for the preparation of a compound according to claim 1 or a salt, solvate, or physiologically functional derivative thereof, which comprises:

removing a chiral auxiliary from a compound of folrmula (IIa)

Applicant Docket No.: PG4979 USw International Application No.: PCT/EP2003/012035

$$R^{19}CHCH_2NR^{27}CR^4R^5(CH_2)_m -O-(CH_2)_n$$
 R^2
 R^1
 R^3
 R^3
(IIa)

wherein $R^1 - R^5$, m and n are as defined for formula (I), R^{19} represents an optionally protected form of Ar, R^{21} represent hydrogen or a protecting group and R^{27} represents a chiral auxiliary

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
 - (iii) converting one compound of formula (I) to a different compound of formula (I) eg. conversion of a compound wherein R¹ is SR⁶ to a compound wherein R¹ is SOR⁶ or SO₂R⁶, or conversion of a compound wherein R¹ is SOR⁶ to a compound wherein R¹ is SO₂R⁶:
 - (iv) converting a compound wherein R⁶ represents cycloalkenyl to a compound wherein R⁶ represents cycloalkyl, eg. by hydrogenation; and
- (v) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 30. (New) A compound of the formula (II):

$$R^{19}$$
— $CHCH_2NR^{20}CR^4R^5(CH_2)_m$ — O — $(CH_2)_n$ — R^2 (II)

wherein m is an integer of from 2 to 8; and n is an integer of from 3 to 11; with the proviso that m + n is 5 to 19;

R¹ is SR⁶, SOR⁶, or SO₂R⁶, wherein R⁶ is a C₃₋₇cycloalkyl or C₃₋₇cycloalkenyl group;

R² and R³ are independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, halo, phenyl, and C₁₋₆haloalkyl;

R⁴ and R⁵ are independently selected from hydrogen and C₁₋₄alkyl with the proviso that the total number of carbon atoms in R⁴ and R⁵ is not more than 4; R¹⁹ represents an optionally protected form of Ar; and R²⁰ and R²¹ are each independently either hydrogen or a protecting group:

31. (New) A compound of the formula (III):

or a salt or solvate thereof, wherein m is an integer of from 2 to 8; and n is an integer of from 3 to 11; with the proviso that m + n is 5 to 19;

R¹ is SR⁶, SOR⁶, or SO₂R⁶, wherein R⁶ is a C₃₋₇cycloalkyl or C₃₋₇cycloalkenyl group;

 R^2 and R^3 are independently selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, halo, phenyl, and C_{1-6} haloalkyl;

R⁴ and R⁵ are independently selected from hydrogen and C₁₋₄alkyl with the proviso that the total number of carbon atoms in R⁴ and R⁵ is not more than 4;

Applicant Docket No.: PG4979 USw International Application No.: PCT/EP2003/012035

 R^{19} represents an optionally protected form of Ar; R^{20} and R^{21} are each independently either hydrogen or a protecting group. and R^{24} and R^{25} are independently selected from hydrogen, C_{1-6} alkyl, or aryl or R^{24} and R^{25} together form a C_{3-7} alkyl group.

32. (New) A compound of the formula (IV):

$$R^{19}$$
 $CR^4R^5 - (CH_2)_m - O - (CH_2)_n$
 R^3
(IV)

or a salt or solvate thereof, wherein wherein m is an integer of from 2 to 8; and n is an integer of from 3 to 11; with the proviso that m + n is 5 to 19;

R¹ is SR⁶, SOR⁶, or SO₂R⁶, wherein R⁶ is a C₃₋₇cycloalkyl or C₃₋₇cycloalkenyl group;

R² and R³ are independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, halo, phenyl, and C₁₋₆haloalkyl;

 R^4 and R^5 are independently selected from hydrogen and C_{1-4} alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4; and R^{19} represents an optionally protected form of Ar.

33. (New) A compound of formula (X):

$$R^{19} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_{n} - CHCH_{2}NR^{20}CR^{4}R^{5} - (CH_{2})_{m} - O - (CH_{2})_$$

(X)

wherein m is an integer of from 2 to 8; and n is an integer of from 3 to 11; with the proviso that m + n is 5 to 19;

R¹ is SR⁶, SOR⁶, or SO₂R⁶, wherein R⁶ is a C₃₋₇cycloalkyl or C₃₋₇cycloalkenyl group;

R² and R³ are independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, halo, phenyl, and C₁₋₆haloalkyl;

 R^4 and R^5 are independently selected from hydrogen and C_{1-4} alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4; R^{19} represents an optionally protected form of Ar; R^{20} and R^{21} are each independently either hydrogen or a protecting group. and each R^{26} independently represents hydrogen or C_{1-4} alkyl, and x and y each represent 0, 1 or 2; by effecting ring closure to form a cycloalkenyl group.

34. (New) A compound of the formula (XIX):

$$R^{19}CHCH_2NR^{20}CR^4R^5(CH_2)_m$$
— O — $(CH_2)_{n-2}$ R^2
 R^3
(XIX)

wherein m is an integer of from 2 to 8; and n is an integer of from 3 to 11; with the proviso that m + n is 5 to 19;

R¹ is SR⁶, SOR⁶, or SO₂R⁶, wherein R⁶ is a C₃₋₇cycloalkyl or C₃₋₇cycloalkenyl group;

 R^2 and R^3 are independently selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, halo, phenyl, and C_{1-6} haloalkyl;

 R^4 and R^5 are independently selected from hydrogen and C_{1-4} alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4; R^{19} represents an optionally protected form of Ar; R^{20} and R^{21} are each independently either hydrogen or a protecting group.