Optimization in Machine Learning

Mathematical Concepts Conditions for optimality

Learning goals

- Local and global optima
- First & second order conditions

DEFINITION LOCAL AND GLOBAL MINIMUM

Given $S \subseteq \mathbb{R}^d$, $f : S \to \mathbb{R}$:

- f has global minimum in $\mathbf{x}^* \in \mathcal{S}$, if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{S}$
- f has a **local minimum** in $\mathbf{x}^* \in \mathcal{S}$, if $\epsilon > 0$ exists s.t. $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in B_{\epsilon}(\mathbf{x}^*)$ (" ϵ "-ball around \mathbf{x}^*).

Source (left): https://en.wikipedia.org/wiki/Maxima_and_minima.

Source (right): https://wngaw.github.io/linear-regression/.

EXISTENCE OF OPTIMA

We regard the two main cases of $f: \mathcal{S} \to \mathbb{R}$:

- f continuous: If S is compact, f attains a minimum and a maximum (extreme value theorem).
- f discontinuous: No general statement possible about existence of optima.

Example: S = [0, 1] compact, f discontinuous with

$$f(x) = \begin{cases} 1/x & \text{if } x > 0, \\ 0 & \text{if } x = 0. \end{cases}$$

FIRST ORDER CONDITION FOR OPTIMALITY

Observation: At an interior local optimum of $f \in C^1$, first order Taylor approximation is flat, i.e., first order derivatives are zero.

This condition is therefore **necessary** and called **first order**.

Strictly convex functions (**left:** univariate, **right:** multivariate) with unique local minimum, which is the global one. Tangent (hyperplane) is perfectly flat at the optimum. (Source: Watt, *Machine Learning Refined*, 2020)

FIRST ORDER CONDITION FOR OPTIMALITY /2

First order condition: Gradient of f at local optimum $\mathbf{x}^* \in \mathcal{S}$ is zero:

$$\nabla f(\mathbf{x}^*) = (0,\ldots,0)^T$$

Points with zero first order derivative are called stationary.

Condition is **not sufficient**: Not all stationary points are local optima.

Left: Four points fulfill the necessary condition and are indeed optima.

Middle: One point fulfills the necessary condition but is not a local optimum.

Right: Multiple local minima and maxima.

(Source: Watt, 2020, Machine Learning Refined)

SECOND ORDER CONDITION FOR OPTIMALITY

Second order condition: Hessian of $f \in C^2$ at stationary point $\mathbf{x}^* \in S$ is positive or negative definite:

$$H(\mathbf{x}^*) \succ 0 \text{ or } H(\mathbf{x}^*) \prec 0$$

Interpretation: Curvature of *f* at local optimum is either positive in all directions or negative in all directions.

The second order condition is **sufficient** for a stationary point.

Proof: Later.

Let $f: \mathcal{S} \to \mathbb{R}$ be **convex**. Then:

- Any local minimum is also global minimum
- If f strictly convex, f has at most one local minimum which would also be unique global minimum on S

Three quadratic forms. Left: $H(\mathbf{x}^*)$ has two positive eigenvalues. Middle: $H(\mathbf{x}^*)$ has positive and negative eigenvalue. Right: $H(\mathbf{x}^*)$ has positive and a zero eigenvalue.

/ 2

Example: Branin function

Spectra of Hessians (numerically computed):

	λ_1	λ_2
Left	22.29	0.96
Middle	11.07	1.73
Right	11.33	1.69

/ 3

Definition: Saddle point at x

- x stationary (necessary)
- \bullet $H(\mathbf{x})$ indefinite, i.e., positive and negative eigenvalues (sufficient)

/ 4

Examples:

•
$$f(x,y) = x^2 - y^2$$
, $\nabla f(x,y) = (2x, -2y)^T$,
 $H_f(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$
 \implies Saddle point at $(0,0)$ (sufficient condition met)

•
$$g(x,y) = x^4 - y^4$$
, $\nabla g(x,y) = (4x^3, -4y^3)^T$,
 $H_g(x,y) = \begin{pmatrix} 12x^2 & 0 \\ 0 & -12y^2 \end{pmatrix}$
 \implies Saddle point at $(0,0)$ (sufficient condition **not** met)

