國立虎尾科技大學協同產品設計實習期末

Final-Shootcar-Project

第四組

組員:

41223118 呂汶哲, 41223122 李詮聖, 4122313 曹祐豪 41223134 陳冠杰, 41223136 陳學儒, 41223158 廖尉博 中華民國 112 年 6 月 12 日

目錄

壹	`		摘	要	••••	••••	• • • • •	••••	••••	••••	• • • • •	••••	••••	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	.1
貳	`		研	究	動	機	••••	••••	••••	••••	••••	•••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	.1
參	`		主	題	與	課	程-	之木	目影	閣訪	兒明	月.	•••		• • • •	• • • •		• • • • •	••••	••••	••••	••••	2
肆	`	,	研	究	方	法	••••		••••	••••	••••	•••	••••	••••	••••	••••		••••	••••	••••	••••	••••	3
			. ,	砑	究	流	程	••••	••••	••••	••••	•••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	3
		=	. `	實	作	設	備	與	物品	品	、 木	材	料:	選	用.	••••	••••	••••	••••	••••	••••	••••	4
		Ξ	. `	框	脲	文	獻	探	討	••••	••••	•••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	4
		四	``	機	总械	泛設	:計	••••	••••	••••	••••	•••	••••	••••	••••	••••	••••		••••	••••	••••	••••	4
		五	. `	製	作	及	組	裝.	••••	••••	••••	•••	••••	••••	••••	••••	••••		••••	••••	••••	••••	.5
伍	`	,	研	究	結	果	••••	••••	••••	••••	••••	•••	••••		••••	••••		••••	••••	••••	••••	••••	10
陸	`		討	論	••••	••••	• • • • •	••••	••••	••••	••••	•••	••••		••••	••••		••••	••••	••••	••••	••••	.11
漆	`		結	論	••••	••••	• • • • •	••••	••••	••••	••••	•••	••••		••••	••••		••••	••••	••••	••••	••••	.11
捌	,		參	考	資	料				• • • • •									• • • • •				.11

壹、摘要

本課程最終目的是完成投籃機,運用 Webots 進行模擬。本次課程主要分為四連桿機構、投籃機、七段顯示器、底座車子模擬。本報告從學期初發想、設計方案多選擇、在要如何呈現報告成果、以及不斷修正機構與程式測試等過程,將遇到許許多多的困難,並也都讓我們一一解決。除了運用課程上的知識,也蒐集許多專業資料,並逐步完成報告製作,最終達到我們的預期結果。

貳、 研究動機

因應現代電腦以及 AI 越來越進步,現代電腦配有網路 ipv6 能設定個人網路進行協同模擬。所以本課程主要核心是以組為單位進行模擬投籃,利用 Webots 來進行。未來如果能製作出實體來,將會是一個小型投籃玩具。

本報告是由指導教授的網站給的資訊並進行研磨鑽研結合 GPT 來製作,目標要完成定位投籃。

參、主題與課程之相關說明

一、作品簡介

作品簡介

【期末報告-投籃機】

本報告為了利用 AI 及協同以及模擬軟體來製作出投籃機,運用繪圖軟體畫出主零件及結構。並運用 Webots 下去模擬

二、課程對應表

課程單元	作品內容對應
四連桿機構	第四週開始做四連桿,主要是以兩種方式。 Webots內部產生零件以及運用 Solvespace 繪 製零件再匯入 Webots 來模擬作動。
投籃機	第七週開始要繪製投籃機,並組合 stl 再進行程式切割。所需要的 obj 檔最後運用 Webots 組裝再進行簡單投籃模擬。
七段顯示器	第十五週製作七段顯示器,主要分為學號後 三碼以及學號八碼製作。在這次的報告之中 需要以組員全學號進行模擬顯示。

車子底座

第十六週因教授的籃框底盤作動不協調, 所以研究出定點投籃機制,運用四分點下去進 行模擬及投籃進行。

肆、研究方法

一、研究流程

(一)流程

1. 使用課程網站中, Final 頁面下 w17 週後的參考檔案下去做改良, 其本身已 具有了可移動且投球的功能, 而我們是在這基礎上去延伸, 參考了 w17 週檔案 裡其中一個檔案中其的繞者圓半徑 6.23 做圓周移動, 我原先也設想是者去製 作,卻發現車子在移動時會冒名的左右搖擺, 我們改以用參考檔案的 w17 週最 新的點位移動範例下去修改, 最終是達到我們所期望的結果。

為最一開始參考來自課程網站中

Final 頁面的

cd2025 final project w17.7z 檔案,在最開始我是直接去更改其 robot 的控制器想依此來直接設計成我們想要的專案,卻沒想發現還未完全了解其內的 webots 世界樹設定內容意思,就直接作修改,導致在製作上遭遇許多問題,所以才在之後以後續的參考檔案,慢慢研究理解下去做修正。

- 2. 將課程網站中 Final 頁面 <u>cd2025_w17_rotate_angle.7z</u> <u>cd2025_w17_move_and_face.7z</u> 做修改及統整成一體,分別叫出雨台車。
- 一台作為投手除了一般的移動控制外,新增了四個點位移動及最終面向的控制器、而另一台車-籃框,使用除了一般方向控制外新增一個原點賦歸鍵及 V、B 控制轉 90 度快捷。
- 3. 在後續調整控制器參數下已經車子移動座標及移動點位控制鍵、轉向功能鍵 一一新增上,並在已新增至製作者個人網站-<u>w17-two-car-move.7z</u>,以及團隊群 組專案中以做接下來進一步的流程。
- 4. 將場地環境重新定義後,發現參考範例的自動叫球控制器在模擬上的問題,因每一個球都是一個獨立存在有其物理特性都需個別計算,其 在模擬上的負荷極大,會造成軟體閃退問題,所以將其內容作修正, 將球設定為投出固定球數後會依序消失已減少計算負荷量。

5. 持續在分組專案網站中第二版 w17-final-project.7z,修改投手車控制器新增{Y 鍵和 P 鍵,P 為顯示目前座標,Y 為開始移動到下一個點位},以上功能並測試,雖在結果上還未達成目標,但最後也在與 41223118 製作部分統整後,最終完成了專案預計完成目標。

(二)問題探討

二、實作設備與物品、材料選用

本專題研究討論後整理了以使用元件與材料表格。

項	品名	型號與版本	數量
1	Solvespace (2D 繪圖 軟體)	-	1
2	Solvespace (3D 繪圖 軟體)	-	1
3	Webots(3D 模擬軟體)	2025a	1
4	Webots(3D 模擬軟體)	2023b	1

三、相關文獻探討

mde.tw 網站,網站內有一到十八週的內容,裡面有老師以及各組學生的個人網站。裡面有程式檔案以及概念圖來輔助我們更知道哪裡可能出問題。

四、機械設計

(一)、人工計算點位和動作軌跡探討

五、應用組件

投籃機可以透過M鍵控制擊球、K鍵收回機構,方向鍵控制前後左右移動,UIOP鍵可讓投籃機自動導航到四個點位後轉正(朝向籃框),Z鍵為取代UIOP的功能全自動導航投球。也有Receiver接收器能接收到Emitter傳來訊號後做R-M-K的循環投球指令。

籃球框架具有 Emitter 的訊 號發訊功能,當投球機讓球 投進時於籃框時,於其上的 感應器會傳輸訊號到計分板 的 robot 控制器(Receiver)。 機器人手動控制為 W:往前 進;S:往後退;A:向左轉; D:向右轉操控。

F、G鍵可將籃框分別執行 +-90度的角度轉動,C鍵設 置了當籃框位置離開的原始 位置後的自動賦歸功能。

計分板顯示是以二進位顯示 數字,顏色是以程式的 Green 來改變顯示器的顏 色。分數是由 Receiver 感應 接收是由 Emitter,當球觸 碰到感應器即可得分,加兩 分。

利用 supervisor 功能執行程 式時叫出的物件,分別在 R 鍵叫出時為靜態不動的鋼 體,M 鍵擊球時除了會控制 投球機擊出球外,此物件也 會透過 Emitter 傳來的訊號 變為動態物件。 設定球上限為保證模擬時不

設定球上限為保證模擬時不 會超負荷,設定為當球數 >=5 時將依需刪除最早叫出 的物件。

伍、製作結果

我們先將兩部車子進行各自的移動,確定是否不會被影響,之後再進行點位的計算,當我按下某按鍵時,他就會準確移動到那個點位,並且設置好籃框所需的旋轉角度和返回起始點,在依點位計算投籃機到籃框的距離,並精準的投進籃框內。

陸、反思

一開始把她想得太複雜,就一直更改程式,越後面錯誤越多,但我們直接重新將車子解開並且只要可以單獨運作個體,有基本架構之後後續的步驟就會上手許多,但現在還沒辦法準確投進籃框,因為那碰撞紅外線在籃框下中心,因沒有碰撞體積所以會直接穿過去,就會碰不到紅外線感測,所以還需要再將物體碰撞距離和投球速度再做更改。

柒、結論

捌、參考資料

- 1、課程網站:
 - (1)https://mdecd2025.github.io/hw-scrum-1/content/index.html
 - (2) https://mde.tw/cd2025/content/index.html
- 2、GPT 軟體上資訊
- 3、參考檔案:

https://mdecd2025.github.io/hw-scrum-1/downloads/cd2025_w17_rotate_angle.7z

(按下 a 旋轉 -30 deg, 按下 z 旋轉 30 deg)

https://localhost:9448/downloads/cd2025 w17 move and face.7z

(按下 m 先轉向 (3, 3), 前進至 (3, 3) 後面向 (0, 0))

https://mdecd2025.github.io/hw-scrum-1/downloads/cd2025_w18_move_and_face.7z

(按下 j 或 k 可側向移動)