Types, Arrays, Expressions in Our Programming Language

(Data types)

- Primitive data types are: int (integers) and bool (Boolean).
- Composite types: (multi-dimensional) Arrays of primitive types of values, with integer indices.
 - Our purpose is to learn about program verification, so we keep the programming language as simple as possible.

(Expressions)

- An **expression** is a piece of code who can be evaluated to some value. In our programming language, expressions have primitive type values. For example, you can consider some non-quantified predicate as an expression with Boolean value. Expressions in our programming language can be built from:
 - Expressions
 - \circ **Constants**: Integers $(0, 1, -1 \dots)$ and Boolean constants (T and F).
 - Variables of primitive types
 - o Functions that return primitive type values

Operations:

- On integers: +, -, *, /, %, =, \neq , <, \leq , >, \geq , sqrt()...
 - Note that, / and sqrt() round toward 0 to an integer. For example, 13/3 = 4, 13/(-3) = -4, and sqrt(17) = 4.
 - \bullet Division and mod by 0 and sqrt of negative values generate runtime errors.
- On Booleans: \neg , \land , \lor , \rightarrow , \leftrightarrow , =, \neq ...
- On arrays: size() and array element selection. For example, b = (0,3,4), then size(b) = 3.

Arrays:

- As usual, b[e] is array element selection. Note that, e is an expression evaluates to an integer.
- size(b) gives the length of b.
- In a multi-dimension array, $b[e_0][e_1] \dots [e_{n-1}]$ is selecting the element with index e_0 in the first dimension, e_1 in the second dimension $\dots e_{n-1}$ in the n^{th} dimension. Note that, n is not a variable but an integer constant here. ("…" is not understandable). For example, b = ((6,3), (2,5,8)), then b[1][2] = 8.
- Note that, we can never have an array appear by itself in an expression, it is always wrapped in some function, or we are selecting some element in the array.

\circ Conditional: if B then e_1 else e_2 fi

- Semantically, if B evaluates to true, then evaluate e_1 ; if B evaluates to false, then evaluate e_2 .
- Note that, e_1 and e_2 are expression and we require them to have the same type.
- There is also "if else if else" in our programing language, is written as "if B_1 then e_1 else B_2 then e_2 else e_3 fi".

Note that:

• We don't explicitly declare variables; we assume that we can infer the types. For example: to have expression $p \vee x > 0$, we don't need something like "create variable x of type int".

- O An expression must evaluate to a primitive type of value, so it cannot evaluate to an array. For example: (assuming a and b are two arrays) if b then b else b fi[0] is illegal. But if b then b then b legal.
- o Functions who return primitive type of values are allowed in an expression, but an expression cannot yield a function. For example: **if** B **then** f(x) **else** g(x) **fi** is legal; but **if** B **then** f **else** g **fi** (x) is not.
- 1. Are the following expressions legal?

a.	x % b[y]	Yes
b.	a[0:2]	No
c.	if $x < 0$ then $x * x$ else $sqrt(x)$ fi + y	Yes
d.	if $x < 0$ then p else T fi + y	No
e.	if $i < 0$ then $b[0]$ else $i \ge size(b)$ then $b[size(b) - 1]$ else $b[i]$ fi	Yes

(Notations)

• Most commonly, c and d are constants; e and s are general expressions; a and b are array names; and a, b, etc. are variables. Greek letters like a and b stand for semantic values.

(Evaluate an expression)

- In general, evaluation is a process to translate something "syntactic" to something "semantic".
- With a proper state, an expression can be evaluated to a value of primitive type.
 - ο For example: $\sigma = \{x = 5, y = 2\}$, then $\sigma(x * y) = 10$. Here, x * y is an expression that we want to evaluate, and σ is a state that's proper for x * y.
- The value of $\sigma(e)$ depends on what kind of expression e is, so we use recursion on the structure of e (the base cases are variables and constants, and we recursively evaluate sub-expressions).

```
o \sigma(x) = the value that \sigma binds variable x to. For example, if \sigma = \{x = 5\}, then \sigma(x) = 5
```

- o $\sigma(c)$ = the value of the constant c. For example, $\sigma(5) = 5$. (σ is irrelevant here.)
- o $\sigma(e_1 + e_2)$ = the value of $\sigma(e_1)$ plus the value of $\sigma(e_2)$ [and similar for -, *, / etc.].
- o $\sigma(e_1 < e_2) = T$ iff the value of $\sigma(e_1)$ is less than the value of $\sigma(e_2)$ [similar for \leq , =, etc].
- o $\sigma(e_1 \land e_2) = T$ iff the value of $\sigma(e_1)$ and the value of $\sigma(e_2)$ are both T [similar for \lor , $\to etc$].
- o $\sigma(\mathbf{if} B \mathbf{then} e_1 \mathbf{else} e_2 \mathbf{fi}) = \sigma(e_1)$ if the value of $\sigma(B) = T$; it $\sigma(e_2)$ if the value of $\sigma(B) = T$.
- As an aside, here we have a question, when we evaluate an expression, how does something "syntactic" become something "semantic"? In other words, how is a piece of code compiled into something meaningful to us? In this small section, to make this clear, I will use highlights to show the values (which are something semantic).
- 2. Let $z \equiv 2 + 3$, evaluate $\sigma(z)$. $\sigma(2 + 3) = \sigma(2) + \sigma(3) = 2 + 3 = 2 + 3 = 5$
- 3. Let $\sigma = \{x = 1\}$, let $\tau = \sigma \cup \{y = 1\}$, and let $e \equiv (x = \text{if } y > 0 \text{ then } 17 \text{ else } y \text{ fi})$, evaluate $\tau(e)$. $\tau(x = \text{if } y > 0 \text{ then } 17 \text{ else } y \text{ fi})$ $= (\tau(x) = \tau(\text{if } y > 0 \text{ then } 17 \text{ else } y \text{ fi}))$ $= (1 = \tau(\text{if } 1 > 0 \text{ then } 17 \text{ else } y \text{ fi}))$ $= (1 = \tau(17))$ = (1 = 17) = (1 = 17) = F

(Arrays and their values)

4. How to write the following state τ in our language?

- $\tau = \{b[0] = 1, b[1] = 5, b[2] = 9, x = 5\}$ We take the **value of an array** to be a **function** from index values to stored values.
- $\tau = \{b = \beta, x = 5\}$ where $\beta(0) = 1$, $\beta(1) = 5$, $\beta(2) = 9$ If we give the function a name β , then we can write τ like this.
- $\tau = \{b = \beta, x = 5\}$ where $\beta = \{(0, 1), (1, 5), (2, 9)\}$ The function β can also be expressed as a collection of tuples (index, stored value).
- $\tau = \{b = \beta, x = 5\}$ where $\beta = (1, 5, 9)$ The function β can also be simplified to a sequence of values.
- 5. Let $\sigma = \{x = 1, b = \beta\}$ where $\beta = (2, 0, 4)$, evaluate $\sigma(b[x + 1] 2)$. $\sigma(b[x + 1] 2) = \sigma(b[x + 1]) \sigma(2)$ $= \sigma(b)(\sigma(x + 1)) 2$ $= \sigma(b)(\sigma(x) + \sigma(1)) 2$ $= \sigma(b)(1 + 1) 2$ $= \beta(2) 2$ = 4 2 = 2

Updating a State

- For any state σ , variable x, and value α , the "update" of σ at x with α , written $\sigma[x \mapsto \alpha]$, is the state that is a copy of σ except that it binds variable x to value α .
 - Note that, we are not really updating σ itself (although that is the traditional way to call this operation), that's why we quote the word "update": $\sigma[x \mapsto \alpha]$ is a new state and σ is not changed.
- We can give $\sigma[x \mapsto \alpha]$ a new name but we don't have to. We read $\sigma[x \mapsto \alpha](v)$ left-to-right we're taking the function $\sigma[x \mapsto \alpha]$ and applying it to variable v.
- 6. Let $\sigma = \{x = 1, y = 2\}$, answer the following questions about state τ .
 - a. Let $\tau = \sigma[x \mapsto 3]$, then $\tau = \{x = 3, y = 2\}$.
 - b. Let $\tau = \sigma[z \mapsto 3]$, then $\tau = \{x = 1, y = 2, z = 3\}$.
 - $\sigma(z)$ doesn't need to be defined (z is bind with a variable in σ) before updating σ .

- c. Let $\tau = \sigma[x \mapsto 1]$, then $\tau = \{x = 1, y = 2\}$.
 - τ and σ are consist of the same bindings, they are not syntactically equivalent though (they are not the same state).

7. True or False

- a. If $\sigma(x)$ is not defined, then $\sigma[x \mapsto 0] = \sigma \cup \{x = 0\}$. True
- b. If $\sigma(x)$ is defined and $\sigma(x) \neq 0$, then $\sigma(x \mapsto 0) = \sigma \cup \{x = 0\}$. False, $\sigma \cup \{x = 0\}$ becomes ill-formed since x appears twice.
- c. Let $\sigma = \{x = 5\}$, then $\sigma[x \mapsto 0] \models x \ge x^2$. Ture
- d. Let $x \not\equiv y$ be both bound in σ , then $\sigma[x \mapsto 0](y) = \sigma(y)$ True.
- e. Let $\sigma = \{x = 5\}$, then $\sigma[x \mapsto x + 1] = \{x = 6\}$ False, we cannot bind a variable with an expression (something syntactic), it becomes ill-formed.
- f. Let $\sigma = \{x = 5\}$, then $\sigma[x \mapsto 2 + 1] = \{x = 3\}$ True, 2 + 1 is a semantic value. Remember that a function who returns a primitive type is also semantic.
- g. Let $\sigma = \{x = 5\}, \, \sigma[x \mapsto \sigma(x + 1)] = \{x = 6\}$ True.
- We can do a sequence of updates on a state, such as $\sigma[x \mapsto 0]$ [$y \mapsto 8$]. Here, we read it left-to-right.
 - For example, let $\sigma = \{x = 2, y = 6\}$, then $\sigma[x \mapsto 0][y \mapsto 8] = \{x = 0, y = 6\}[y \mapsto 8] = \{x = 0, y = 8\}$.
- 8. True or False
 - a. Let $x \not\equiv y$, then $\sigma[x \mapsto 0][y \mapsto 8] = \sigma[y \mapsto 8][x \mapsto 0]$ True. The order of update doesn't matter if we have two different variables.
 - b. Let $x \not\equiv y$, then $\sigma[x \mapsto 0][y \mapsto 8] \equiv \sigma[y \mapsto 8][x \mapsto 0]$ False. Although they give the same state, the updating procedures are different.
 - c. $\sigma[x \mapsto 0][x \mapsto 8] = \sigma[x \mapsto 8]$ True. The second update supersedes the first.
 - d. $\sigma[x \mapsto 0][x \mapsto 8] \equiv \sigma[x \mapsto 8]$ False. Although they give the same state, the updating procedures are different.

9. Let
$$\sigma = \{x = 1\}$$
, then what is $\sigma[x \mapsto 2][z \mapsto \sigma[x \mapsto 3](x) + 10]$?
$$\sigma[x \mapsto 2][z \mapsto \sigma[x \mapsto 3](x) + 10] = \{x = 2\}[z \mapsto \sigma[x \mapsto 3](x) + 10]$$

$$= \{x = 2\}[z \mapsto \{x = 3\}(x) + 10]$$

$$= \{x = 2\}[z \mapsto 13]$$

$$= \{x = 2, z = 13\}$$

- How to update a value in an array? What do we do if we want to update the value in b[0]? Since we handle array as a function from an index to the value stored, here let's expand the notion of updating states to updating functions.
- If δ is a function and α and β are valid elements of the domain and range of δ respectively, then the update of δ at α with β , written δ [$\alpha \mapsto \beta$], is the function defined by δ [$\alpha \mapsto \beta$](γ) = β if $\gamma = \alpha$ and δ [$\alpha \mapsto \beta$](γ) = δ (γ) if $\gamma \neq \alpha$.
 - Note that, if we consider state as a function, then the definition of updating a state follows the above definition as well. The only difference is that the α and γ here are values.

For example, let function $\delta = \{(4,6), (3,7), (2,5)\}$, then $\delta[2 \mapsto 3] = \{(4,6), (3,7), (2,3)\}$. Also, $\delta[2 \mapsto 3](2) = 3$, $\delta[2 \mapsto 6](3) = 7$.

- Say σ is a (proper) state with an array b, with η = the function $\sigma(b)$. If α is a valid index value for b, then $\sigma[b[\alpha] \mapsto \beta]$ means $\sigma[b \mapsto \eta[\alpha \mapsto \beta]]$. So, updating σ at $b[\alpha]$ with β involves updating σ with an updated version of η , namely $\eta[\alpha \mapsto \beta]$, as the value of b.
 - For example, $\sigma = \{x = 3, b = (2, 4, 6)\}$, then $\sigma[b[0] \mapsto 8] = \{x = 3, b = (8, 4, 6)\}$. Here, $\sigma(b)$ is (2, 4, 6) as a function (which can also be written $\{(0, 2), (1, 4), (2, 6)\}$, so $\sigma(b)[0 \mapsto 8]$ is the function $(2, 4, 6)[0 \mapsto 8] = (8, 4, 6)$.