9. Hausaufgabe – Theoretische Grundlagen der Informatik 3

WS 2012/2013

Stand: 20.12.2012

Abgabe: 10.1.2012 in der Vorlesung

Für alle Aufgaben gilt: Solange in der Aufgabenstellung nichts anderes steht, erwarten wir zu jeder Antwort eine Begründung. Es genügt nicht, nur eine Formel zu schreiben ohne Begründung.

Hausaufgabe 1 4 Punkte

Seien E,R 2-stellige Relationssymbole und f ein 2-stelliges Funktionssymbol. Formen Sie folgende Formeln in Negations- und Pränexnormalform um:

$$(i) \ \varphi_1 := \neg \big(\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z) \big) \to \exists x E(x,f(y,x)).$$

$$(ii) \ \varphi_2 := \exists y \forall z \big(E(x,z) \land (E(y,z) \rightarrow \forall x (E(f(x,y),z) \land \neg \forall y R(x,y))) \big).$$

Hausaufgabe 2 6 Punkte

Sei $\mathcal{N} = (\mathbb{N}, +, \cdot)$ die Struktur der natürlichen Zahlen mit der üblichen Addition und Multiplikation und sei $\mathcal{R} = (\mathbb{R}, +, \cdot)$ die Struktur der reellen Zahlen mit der üblichen Addition und Multiplikation. Geben Sie für $i \in \{1, \dots, 6\}$ Formeln φ_i an, sodass gilt:

- (i) $\varphi_1(\mathcal{N})$ ist die Menge der geraden Zahlen.
- (ii) $\varphi_2(\mathcal{N})$ ist die Menge der 2er-Potenzen.
- (iii) $\varphi_3(\mathcal{R})$ ist die Menge der Paare (x, \sqrt{x}) und $(x, -\sqrt{x})$ mit $x \in \mathbb{R}$ und $x \geq 0$.
- (iv) $\varphi_4(\mathcal{R})$ ist die Menge der Paare (x, -x) mit $x \in \mathbb{R}$.
- (v) $\varphi_5(\mathcal{R})$ ist die Menge der Paare (x, y) mit x < y.
- (vi) $\varphi_6(\mathcal{R})$ ist die Menge der 6-Tupel (u, v, u', v', u'', v''), sodass $u'' + v''i = (u + vi) \cdot (u' + v'i)$, wobei i die imaginäre Einheit der komplexen Zahlen ist, d.h. es gilt $i \cdot i = -1$.

Sie müssen Ihre Formeln in dieser Aufgabe nicht begründen.

Hausaufgabe 3 5 Punkte

Seien \mathcal{A}, \mathcal{B} σ -Strukturen und $\varphi(x_1, \ldots, x_k) \in FO(\sigma)$. Für eine Relation $R \subseteq A^k$ und eine Abbildung $f: A \to B$ schreiben wir f(R) für die Relation $\{(f(r_1), \ldots, f(r_k)) : (r_1, \ldots, r_k) \in R\}$.

- (i) Sei $\pi: A \to B$ ein Isomorphismus von \mathcal{A} auf \mathcal{B} . Zeigen Sie, dass $\pi(\varphi(\mathcal{A})) = \varphi(\mathcal{B})$.
- (ii) Sei $\mathcal{Z} = (\mathbb{Z}, <)$ die Struktur der ganzen Zahlen mit der üblichen 2-stelligen Ordnungsrelation. Zeigen Sie, dass es keine Formel φ gibt, sodass $\varphi(\mathcal{Z}) = \{0\}$ ist.

Hausaufgabe 4 5 Punkte

Sei σ eine endliche Signatur, die nur Relationssymbole enthält und sei $q \in \mathbb{N}$. Zeigen Sie, dass es bis auf logische Äquivalenz nur endlich viele Formeln der Prädikatenlogik ohne freie Variablen gibt, die maximal q Quantoren enthalten.

Hinweis: Sie dürfen ohne Beweis benutzen, dass es über einer festen Variablenmenge bis auf logische Äquivalenz nur endlich viele unterschiedliche aussagenlogische Formeln gibt.