

Safe Landings In Deep Space Using RL Techniques

RL 3547 – University Of Toronto – December 2019

THE TEAM

Adnan Lanewala

Naresh Patel

Nisarg Patel

AGENDA

Problem Solution

Key Findings

Problem Statement

USD
$$\$10-400^*$$
 million

Problem Statement

Open Al Gym – Lunar Lander (v2) Environment

Action Space

Reward

Crash - 100 points

Come to Rest + 100 points

Leg Contact + 10 points

Zero Speed Touchdown + (100 - 140) points

Solved + 200 points

Firing Main Engine - 0.3 points per frame

Firing Side Engine - 0.03 points per frame

Fuel Supply Unlimited

Solution - Algorithm

Comparison of reinforcement learning algorithms

Algorithm	Description	Model	Policy	Action Space	State Space	Operator
Monte Carlo	Every visit to Monte Carlo	Model-Free	Off-policy	Discrete	Discrete	Sample-means
Q-learning	State-action-reward-state	Model-Free	Off-policy	Discrete	Discrete	Q-value
SARSA	State-action-reward-state-action	Model-Free	On-policy	Discrete	Discrete	Q-value
Q-learning - Lambda	State-action-reward-state with eligibility traces	Model-Free	Off-policy	Discrete	Discrete	Q-value
SARSA - Lambda	State-action-reward-state-action with eligibility traces	Model-Free	On-policy	Discrete	Discrete	Q-value
DQN	Deep Q Network	Model-Free	Off-policy	Discrete	Continuous	Q-value
DDPG	Deep Deterministic Policy Gradient	Model-Free	Off-policy	Continuous	Continuous	Q-value
A3C	Asynchronous Advantage Actor-Critic Algorithm	Model-Free	On-policy	Continuous	Continuous	Advantage
NAF	Q-Learning with Normalized Advantage Functions	Model-Free	Off-policy	Continuous	Continuous	Advantage
TRPO	Trust Region Policy Optimization	Model-Free	On-policy	Continuous	Continuous	Advantage
PPO	Proximal Policy Optimization	Model-Free	On-policy	Continuous	Continuous	Advantage
TD3	Twin Delayed Deep Deterministic Policy Gradient	Model-Free	Off-policy	Continuous	Continuous	Q-value
SAC	Soft Actor-Critic	Model-Free	Off-policy	Continuous	Continuous	Advantage

Solution – DQN

Solution – Network

Solution – Parameters

Discount Rate – long term reward	$\gamma = 0.99$		
Exploration Rate at Start	$\epsilon_{max} = 1.0$		
Exploration Rate min. value	ϵ_{min} = 0.01		
Exploration Rate decay rate	ϵ_{decay} = 0.997		
Learning Rate	$\alpha = 0.001$		
Score Threshold	+ 50 points		
# of Episodes for Avg Score	100 episodes		
Early Stopping	Yes		
Batch Size	64		
Max Steps	2,000		
Max Episodes	500		

Episode = 0

Solution – Outcome

Key Outcomes

Produced a generalized model that safely lands the satellite with good landing principles (approach)

+50 points
Average Score

100 Episodes

of Episodes

Test Results

Thank You

https://github.com/nishp763/SCS-RL-3547-Final-Project

Appendix – Next Steps

Multi-agent & Collaboration

Different Algorithms (SARSA, Policy Iteration, RL techniques, Genetic mutations)

More Training with Higher Score threshold

Failure Simulation & Auto-correction (Engine Failure, Crosswind, Tumbling, Loss of Control)

Work with Limited Fuel Supply

Appendix – Keras

