Data Code Book

SubjectCode = unique identifier for subject Activity = activity currently performed for data

Calculated data is the average of data columns 3:81 for each SubjectCode:Activity pairing.

Map of raw data names to tidy data column names:

	CodeNames	NewCodes			
1	SubjectCode	SubjectCode			
2	Activity	Activity			
3	tBodyAcc.meanX	tBodyAccmeanX			
4	tBodyAcc.meanY	tBodyAccmeanY			
5	tBodyAcc.meanZ	tBodyAccmeanZ			
6	tBodyAcc.stdX	tBodyAccstdX			
7	tBodyAcc.stdY	tBodyAccstdY			
8	tBodyAcc.stdZ	tBodyAccstdZ			
9	tGravityAcc.meanX	tGravityAccmeanX			
10	tGravityAcc.meanY	tGravityAccmeanY			
11	tGravityAcc.meanZ	tGravityAccmeanZ			
12	tGravityAcc.stdX	tGravityAccstdX			
13	tGravityAcc.stdY	tGravityAccstdY			
14	tGravityAcc.stdZ	tGravityAccstdZ			
15	tBodyAccJerk.meanX	tBodyAccJerkmeanX			
16	tBodyAccJerk.meanY	tBodyAccJerkmeanY			
17	tBodyAccJerk.meanZ	tBodyAccJerkmeanZ			
18	tBodyAccJerk.stdX	tBodyAccJerkstdX			
19	tBodyAccJerk.stdY	tBodyAccJerkstdY			
20	tBodyAccJerk.stdZ	tBodyAccJerkstdZ			
21	tBodyGyro.meanX	tBodyGyromeanX			
22	tBodyGyro.meanY	tBodyGyromeanY			
23	tBodyGyro.meanZ	tBodyGyromeanZ			
24	tBodyGyro.stdX	tBodyGyrostdX			
25	tBodyGyro.stdY	tBodyGyrostdY			

	+PodyCypo std 7	+DodyCynoc+d7		
26	tBodyGyro.stdZ	tBodyGyrostdZ		
27	tBodyGyroJerk.meanX	tBodyGyroJerkmeanX		
28	tBodyGyroJerk.meanY	tBodyGyroJerkmeanY		
29	tBodyGyroJerk.meanZ	tBodyGyroJerkmeanZ		
30	tBodyGyroJerk.stdX	tBodyGyroJerkstdX		
31	tBodyGyroJerk.stdY	tBodyGyroJerkstdY		
32	tBodyGyroJerk.stdZ	tBodyGyroJerkstdZ		
33	tBodyAccMag.mean	tBodyAccMagmean		
34	tBodyAccMag.std	tBodyAccMagstd		
35	tGravityAccMag.mean	tGravityAccMagmean		
36	tGravityAccMag.std	tGravityAccMagstd		
37	tBodyAccJerkMag.mean	tBodyAccJerkMagmean		
38	tBodyAccJerkMag.std	tBodyAccJerkMagstd		
39	tBodyGyroMag.mean	tBodyGyroMagmean		
40	tBodyGyroMag.std	tBodyGyroMagstd		
41	tBodyGyroJerkMag.mean	tBodyGyroJerkMagmean		
42	tBodyGyroJerkMag.std	tBodyGyroJerkMagstd		
43	fBodyAcc.meanX	fBodyAccmeanX		
44	fBodyAcc.meanY	fBodyAccmeanY		
45	fBodyAcc.meanZ	fBodyAccmeanZ		
46	fBodyAcc.stdX	fBodyAccstdX		
47	fBodyAcc.stdY	fBodyAccstdY		
48	fBodyAcc.stdZ	fBodyAccstdZ		
49	fBodyAcc.meanFreqX	fBodyAccmeanFreqX		
50	fBodyAcc.meanFreqY	fBodyAccmeanFreqY		
51	fBodyAcc.meanFreqZ	fBodyAccmeanFreqZ		
52	fBodyAccJerk.meanX	fBodyAccJerkmeanX		
53	fBodyAccJerk.meanY	fBodyAccJerkmeanY		
54	fBodyAccJerk.meanZ	fBodyAccJerkmeanZ		
55	fBodyAccJerk.stdX	fBodyAccJerkstdX		
56	fBodyAccJerk.stdY	fBodyAccJerkstdY		
57	fBodyAccJerk.stdZ	fBodyAccJerkstdZ		
58	fBodyAccJerk.meanFreqX	fBodyAccJerkmeanFreqX		

59	fBodyAccJerk.meanFreqY	fBodyAccJerkmeanFreqY		
60	fBodyAccJerk.meanFreqZ	fBodyAccJerkmeanFreqZ		
61	fBodyGyro.meanX	fBodyGyromeanX		
62	fBodyGyro.meanY	fBodyGyromeanY		
63	fBodyGyro.meanZ	fBodyGyromeanZ		
64	fBodyGyro.stdX	fBodyGyrostdX		
65	fBodyGyro.stdY	fBodyGyrostdY		
66	fBodyGyro.stdZ	fBodyGyrostdZ		
67	fBodyGyro.meanFreqX	fBodyGyromeanFreqX		
68	fBodyGyro.meanFreqY	fBodyGyromeanFreqY		
69	fBodyGyro.meanFreqZ	fBodyGyromeanFreqZ		
70	fBodyAccMag.mean	fBodyAccMagmean		
71	fBodyAccMag.std	fBodyAccMagstd		
72	fBodyAccMag.meanFreq	fBodyAccMagmeanFreq		
73	fBodyBodyAccJerkMag.mean	fBodyBodyAccJerkMagmean		
74	fBodyBodyAccJerkMag.std	fBodyBodyAccJerkMagstd		
75	fBodyBodyAccJerkMag.meanFreq	fBodyBodyAccJerkMagmeanFreq		
76	fBodyBodyGyroMag.mean	fBodyBodyGyroMagmean		
77	fBodyBodyGyroMag.std	fBodyBodyGyroMagstd		
78	fBodyBodyGyroMag.meanFreq	fBodyBodyGyroMagmeanFreq		
79	fBodyBodyGyroJerkMag.mean	fBodyBodyGyroJerkMagmean		
80	fBodyBodyGyroJerkMag.std	fBodyBodyGyroJerkMagstd		
81	fBodyBodyGyroJerkMag.meanFreq.	fBodyBodyGyroJerkMagmeanFre q		

original code book:

Human Activity Recognition Using Smartphones Dataset Version 1.0

Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto. Smartlab - Non Linear Complex Systems Laboratory DITEN - Universit<E0> degli Studi di Genova. Via Opera Pia 11A, I-16145, Genoa, Italy. activityrecognition@smartlab.ws www.smartlab.ws

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.

	For	each	record	it is	provided	1:
--	-----	------	--------	-------	----------	----

- Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.

- Triaxial Angular velocity from the gyroscope.
- A 561-feature vector with time and frequency domain variables.
- Its activity label.
- An identifier of the subject who carried out the experiment.

The dataset includes the following files:

- 'README.txt'
- 'features_info.txt': Shows information about the variables used on the feature vector.
- 'features.txt': List of all features.
- 'activity_labels.txt': Links the class labels with their activity name.
- 'train/X_train.txt': Training set.
- 'train/y_train.txt': Training labels.
- 'test/X test.txt': Test set.

- 'test/y_test.txt': Test labels.

The following files are available for the train and test data. Their descriptions are equivalent.

- 'train/subject_train.txt': Each row identifies the subject who performed the activity for each window sample. Its range is from 1 to 30.
- 'train/Inertial Signals/total_acc_x_train.txt': The acceleration signal from the smartphone accelerometer X axis in standard gravity units 'g'. Every row shows a 128 element vector. The same description applies for the 'total_acc_x_train.txt' and 'total_acc_z_train.txt' files for the Y and Z axis.
- 'train/Inertial Signals/body_acc_x_train.txt': The body acceleration signal obtained by subtracting the gravity from the total acceleration.
- 'train/Inertial Signals/body_gyro_x_train.txt': The angular velocity vector measured by the gyroscope for each window sample. The units are radians/second.

Notes:

=====

- Features are normalized and bounded within [-1,1].
- Each feature vector is a row on the text file.

For more information about this dataset contact: activityrecognition@smartlab.ws

License:

Use of this dataset in publications must be acknowledged by referencing the following publication [1]

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.

Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita. November 2012.