Multi-row Partitions

Paul O'Fallon

@paulofallon

Multi-row Partitions

Composite Keys Static Columns Time Series Data

So Far...

```
CREATE TABLE courses (
  id varchar PRIMARY KEY
);
```



```
CREATE TABLE courses (
  id varchar,
  PRIMARY KEY (id)
);
```

Keys, Keys and More Keys!

PRIMARY KEY (id)

PRIMARY KEY (partition key)

PRIMARY KEY

(partition_key, clustering_key)

composite key

Composite Primary Keys

```
PRIMARY KEY (p_key, c_key)
```

PRIMARY KEY
$$(p_key, c_key_l, ... c_key_N)$$

Composite Primary Keys

```
PRIMARY KEY (p_key, c_key)

PRIMARY KEY (p_key, c_key_1, ... c_key_N)

PRIMARY KEY ((p_key_1, ... p_key_N), c_key_1, ... c_key_N)
```

Composite Primary Keys

```
PRIMARY KEY (p_key, c_key)

PRIMARY KEY (p_key, c_key_1, ... c_key_N)

PRIMARY KEY ((p_key_1, ... p_key_N), c_key_1, ... c_key_N)

PRIMARY KEY ((p_key_1, ... p_key_N))
```

Courses, Now with Modules!

Introduction to Node.js

In this course we provide an overview of Node.js, including writing asynchronous code with callbacks and streams, and modularizing your application with NPM and require(). We also look at built-in API's for building and scaling web applications as well as a few key third party modules.

by Paul O'Fallon Table of contents Expand all ▶ Getting Started with Node.js 36:14 Modules, require() and NPM 17:43 **Events and Streams** 26:35 ▶ Accessing the Local System 17:20 Interacting with the Web 21:40 ▶ Testing and Debugging 27:38 Scaling Your Node Application 20:57

Course content	
► Table of contents	
## Description	1
Exercise file	ès
Assessmen	t
Discussion	
More info	
Level	Intermediate
Rating	****
Duration	2h 48m

Revisiting Our Courses Schema

```
CREATE TABLE courses (
id varchar,
name varchar,

PRIMARY KEY (id)

module_id int,
module_name varchar,

PRIMARY KEY (id, module_id)

PRIMARY KEY (id, module_id)
```

Revisiting Our Courses Schema

Inserting

```
INSERT INTO courses (id, name, module_id, module_name)
VALUES (
   'node-intro','Introduction to Node.js', 1,
   'Getting Started with Node.js');

INSERT INTO courses (id, name, module_id, module_name)
VALUES (
   'node-intro','Introduction to Node.js', 2,
   'Node.js Background');
```

Revisiting Our Courses Schema

Selecting

Ordering By Clustering Key

id='node-intro' module_id=1 Introduction to Node.js name module_name Getting Started with Node.js module_id=2 Introduction to Node.js name Node.js Background module_name

Static Columns

```
CREATE TABLE courses (
  id varchar,
  name varchar STATIC,
  module_id int,
  module_name varchar,
  PRIMARY KEY (id, module_id)
);
```

Without Static Columns

id='node-intro' module_id=1 Introduction to Node.js name module_name Getting Started with Node.js module_id=2 Introduction to Node.js name module_name Node.js Background

Static Columns

Adding Data with Static Columns

```
INSERT INTO courses (id, name)
VALUES ('node-intro', 'Introduction to Node.js');
INSERT INTO courses (id, module id, module name)
VALUES ('node-intro', 1, 'Getting Started with Node.js');
UPDATE courses
SET module name='Node.js Background'
                                        RIMAINS
WHERE id='node-intro' AND module id=2;
                                        THE SAME
```

Time Series Data

TimeUUID Data Type

45b94a50-12e5-11e5-9114-091830ac5256

Version 1 UUID comprised of:

- The number of 100 ns intervals since UUID epoch
- MAC address
- Clock sequence number to prevent duplicates

TimeUUID Use Case

TimeUUID Use Case

```
CREATE TABLE course_page_views (
    course_id text,
    view_id timeuuid,
    PRIMARY KEY (course_id, view_id)
) WITH CLUSTERING ORDER BY (view_id DESC);
```

TimeUUID Functions

now

```
INSERT INTO course_page_views (course_id, view_id)
VALUES ('node-intro', now());
```

dateOf / unixTimestampOf

```
SELECT course_id, dateOf(view_id)
FROM course page views WHERE course id = 'node-intro';
```

TimeUUID Functions

minTimeuuid / maxTimeuuid

```
SELECT dateOf(view_id)
FROM course_page_views
WHERE course_id = 'node-intro'
AND view_id >= maxTimeuuid('2015-01-01 00:00+0000')
AND view_id < minTimeuuid('2015-02-01 00:00+0000')</pre>
```


course_id='node-intro' view_id='ece41c60-13bc-11e5-b559-4b636433f200'

e-intro′	view_id='f60b6730-13bc-11e5-b559-4b636433f200'
course_id='node-intro'	
course	view_id='ece41c60-13bc-11e5-b559-4b636433f200'

course_id='node-intro' view_id='f60b6730-13bc-11e5-b559-4b636433f200' view_id='f208cab0-13bc-11e5-b559-4b636433f200' view_id='ece41c60-13bc-11e5-b559-4b636433f200'

Bucketing Time Series Data

A maximum of 2 billion cells (rows x columns)

Must fit on a single node

Bucketing Time Series Data

Bucketing Use Case

```
CREATE TABLE clickstream (
    year int,
    month int,
    click_id timeuuid,
    ip inet,
    url text,
    PRIMARY KEY ((year, month), click_id)
) WITH CLUSTERING ORDER BY (click_id DESC);
```

```
INSERT INTO clickstream
  (year, month, click_id, ip, url)
VALUES
  (2015, 6, now(), '98.203.153.64',
  'http://www.pluralsight.com');
```

year=2015, month=5 click_id='f208cab0-13bc-11e5-b559-4b636433f200' 98.203.153.64 http://www.pluralsight.com/signup url

Selecting Bucketed Data

```
SELECT * FROM clickstream
WHERE year=2015 AND month IN (6, 5)
LIMIT 100;
```

Selecting Bucketed Data

Conclusion

- Clustering Keys and Composite Primary Keys
- Static Columns
- Time Series Data
- TimeUUID Data Type
- TTL vs. Bucketing