CS316 Lab 2: Preprocessing and cleaning the abalone dataset

Author:

Name: Huu Khang NguyenStudent Number: 7402909

Import relevant libraries

In[]:import pandas as pd

Load & Initial exploration for the abalone Dataset

abalone_dataset = pd.read_csv('./data/abalone.data', names=columns_name)
In[]:abalone dataset.head()

Out[]:

. J·	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	
4	ı	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	

In[]:abalone_dataset.shape
Out[]:(4177, 9)

(1) Z-score normalization for Length

```
In[]:mean = abalone dataset['Length'].mean()
   std = abalone dataset['Length'].std()
   var = abalone dataset['Length'].var()
   print("Mean: {}".format(mean))
   print("Standard deviation: {}".format(std))
   print("Variance: {}".format(var))
Mean: 0.5239920995930094
Standard deviation: 0.12009291256479956
Variance: 0.014422307648296592
In[]:# Z score normalisation
    abalone dataset['Normalized Length'] = (abalone dataset['Length'] - mean) / std
In[]:abalone dataset['Normalized Length'].head()
Out[]:0 -0.574489
    1 -1.448812
    2 0.050027
    3 -0.699393
    4 -1.615350
    Name: Normalized Length, dtype: float64
In[]:print("Normalized Length Mean: {}".format(abalone dataset['Normalized Length'].mean()))
   print("Normalized Length Standard deviation: {}".format(abalone_dataset['Normalized Length'].std()))
   print("Normalized Length Variance: {}".format(abalone dataset['Normalized Length'].var()))
Normalized Length Mean: -5.919771894769329e-16
```

(2) Create five bins for the attribute Diameter

Normalized Length Standard deviation: 1.0

Normalized Length Variance: 1.0

```
Using qcut() for the appoximately same number of sample each bins, bins number ( q parameter) will equal to 5 In []:binned_diameter = pd.qcut(abalone_dataset['Diameter'], q=5)
```

```
binned diameter.value counts()
Out[]:(0.395, 0.45] 902
     (0.054, 0.325] 863
     (0.325, 0.395] 820
     (0.45, 0.495] 803
     (0.495, 0.65] 789
     Name: Diameter, dtype: int64
In [\ ]: abalone\_dataset['Diameter Binned'] = binned\_diameter
In[]:abalone_dataset['Diameter Binned']
Out[]:0
          (0.325, 0.395]
          (0.054, 0.325]
     2
           (0.395, 0.45]
     3
         (0.325, 0.395]
     4
          (0.054, 0.325]
     4172 (0.395, 0.45]
     4173 (0.395, 0.45]
     4174
            (0.45, 0.495]
     4175
            (0.45, 0.495]
     4176 (0.495, 0.65]
     Name: Diameter Binned, Length: 4177, dtype: category
     Categories \ (5, interval[float64, right]): \ [(0.054, 0.325] < (0.325, 0.395] < (0.395, 0.45] < (0.45, 0.495] < (0.495, 0.65]]
```

(3) One-hot-encoding the Sex attribute

```
In[]:encoded_sex = pd.get_dummies(abalone_dataset['Sex'], prefix="Sex")
In[]:abalone_dataset = abalone_dataset.join(encoded_sex)
In[]:abalone_dataset.head()
```

Out[]:

[]:	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Normalized Length	Diameter Binned	Sex_F	Sex_I	Sex_M
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	-0.574489	(0.325, 0.395]	0	0	1
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	-1.448812	(0.054, 0.325]	0	0	1
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	0.050027	(0.395, 0.45]	1	0	0
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	-0.699393	(0.325, 0.395]	0	0	1
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	-1.615350	(0.054, 0.325]	0	1	0

Show the unique one_hot_encoding values of the Sex attribute by dropping duplicate rows in the dataset

2 1 0 0 **4** 0 1 0

(4) find and rank correlations between Rings with other continous values

- Rank 1. Correlation between Rings and Shell weight 0.6275740445103217
- Rank 2. Correlation between Rings and Diameter 0.5746598513059187
- Rank 3. Correlation between Rings and Height 0.5574673244580373
- Rank 4. Correlation between Rings and Length 0.5567195769296177
- Rank 5. Correlation between Rings and Whole weight 0.5403896769239008
- Rank 6. Correlation between Rings and Viscera weight 0.5038192487597712
- Rank 7. Correlation between Rings and Shucked weight 0.42088365794521454

(5) Define 1 new attribute into the dataframe

I defined a variable $\,$ Age $\,$ here as this attribute can be calculated by number of rings + 1.5 $\,$

 $\label{ln[]:abalone_dataset['Age'] = abalone_dataset['Rings'] + 1.5} $$ \ln[]:abalone_dataset.head() $$$

Out[]:

]:	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Normalized Length	Diameter Binned	Sex_F	Sex_I	Sex_M	Age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	-0.574489	(0.325, 0.395]	0	0	1	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	-1.448812	(0.054, 0.325]	0	0	1	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	0.050027	(0.395, 0.45]	1	0	0	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	-0.699393	(0.325, 0.395]	0	0	1	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	-1.615350	(0.054, 0.325]	0	1	0	8.5

Perfect correlation, Age goes up if Rings goes up and vice-versa

In[]:abalone_dataset['Rings'].corr(abalone_dataset['Age'])

Out[]:1.0

In []: