#### UE 23.2

Matériaux pour l'Ingénieur Mini-projet

# Titanate de baryum et ses alliages, propriétés piézoélectriques

Projet N°9

Parrain: Karim Inal

Hadrien GOUX, Lucille LACOSTE, Nathan LINÉ, Pierre SION





€€€

1880 : découverte de la piézoélectricité par les frères Curie

WWI: utilisation du quartz pour les sonars

Fin WWII: céramiques ferroélectriques à structure pérovskite (BaTiO3, PZT, ...)

€ 🐼

Années 1980 : monocristaux de synthèse PZN-PT et PMN-PT

Aujourd'hui : PZT, PVDF (santé), ...

## Enjeux

#### Des matériaux indispensables dans de nombreux appareils







# Transition énergétique



#### Santé



#### Piézoélectricité: de la mécanique aux propriétés physiques

Cristaux anisotropes (hexagonales ou pérovskite) avec des éléments électronégatifs

• Effet direct : compression et traction induisent une polarisation de la maille.



C : tenseur de rigidité

 $\sigma$ : tenseur des contraintes

 $\varepsilon$ : tenseur des déformations

D: champ déplacement électrique



E: champ électrique

e: tenseur piézoélectrique

 $\kappa$ : constantes diélectriques



 Effet indirect : la polarisation induit une déformation de la maille

Equations de couplage mécano-physique :

 $\begin{cases} \sigma_{ij} = C_{ijkl}.\varepsilon_{kl} - e_{kij}.E_k \\ D_i = e_{ikl}.\varepsilon_{kl} + \kappa_{ik}^{\varepsilon}.E_k \end{cases}$ 

#### Le titanate de baryum

Structure pérovskite Cubique à haute température Tétragonale pour T < T<sub>c</sub> = 120 °C



Titanate de baryum : BaTiO<sub>3</sub>

#### Autres propriétés du titanate de baryum

Ferromagnétisme → polarisation permanente



Cycle d'hystérésis de matériau ferroélectrique.

#### Simplification cas film mince



Cas film mince:  $\varepsilon_{33} \neq 0$ , autres termes nuls  $\sigma_{11} = \sigma_{22}$ , autres termes nuls

Les équations se simplifient alors en :  $= C_{1133}.\varepsilon - \sum e_{k11}E_k$  $D_i = e_{i33}.\varepsilon + \sum \kappa_{ik}^{\varepsilon} E_k$ 

### Vers les applications : Mode 33 et 31



Matériau piézo utilisé dans les modes 33 et 31

pplications

#### Harvesting

Principe: récupération de l'énergie disponible dans l'environnement, pour la convertir en énergie électrique pour l'utilisation.

3 types de transducteurs :







\_\_\_\_ piézoélectrique

électrostatique

électromagnétique

piézo: architecture simple, haute densité d'énergie, flexibilité.

#### Exemples

#### Vibro-wind:

Nouveau type d'éolienne, récupération de l'énergie du vent

 vitesse minimale de vents : 2-3m.s<sup>-1</sup> (< 9m.s<sup>-1</sup> éolienne classique) Production: 54W (1m<sup>2</sup>, vents à 10m.s<sup>-1</sup>) ← même OG panneaux solaires

zones urbaines.

Fonctionne la nuit et dans les



(3) Mines Paristech. Matériaux pour l'ingénieur, chapitre 7. 2020.



#### **Moteurs tournants:**

Récupération de l'énergie de vibration des roues tournantes 2.10<sup>16</sup> kJ d'énergie perdue estimée chaque année aux EU Gamme de fréquences faible : 1-100 Hz

Rendement de 40% à 14mW

(2) Philippe Papet. Matériaux piézoélectriques: les céramiques oxydes à base de métaux de transition. 2012, Techniques de l'ingénieur. (6) JM Kluger, FC Moon, RH Rand. Shape optimization of a blunt body Vibro-wind galloping oscillator. 2013.

Mais fréquences trop basses par rapport à la bande passante des piézo → mécanismes pour améliorer le rendement : multi-DOF, harvesters non linéaires, ...

Sources: (1) Gaël Sebald. Nouveaux monocristaux à forte conversion piézoélectrique : croissance, modélisation et caractérisation. 2004.

#### Santé

Utilisation de la piézoélectricité dans le domaine de la santé. Autre types de matériaux que le BaTiO<sub>3</sub> : PZT et PVDF.

#### Capteurs :

Batteries :

(5) Claire Jean-Mistral, Skandar Basrour. Récupération de l'énergie des vibrations mécaniques pour récupérer de l'électricité. 2010.

Capteurs extérieurs pour mesurer des constantes vitales (pression artérielle, rythme cardiaque)

• nouveaux systèmes légers et de faible taille :

Batterie génératrice piézo, qui fournit elle-même l'

→ moins d'opérations du patient pour

en combinant avec une batterie piézo

→ dispositifs mixtes de capteurs auto-suffisants,

énergie requise en faisant du harvesting.

changer la batterie, + de confort

(4) Huicong Liu et al. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. 2018, https://aip.scitation.org/doi/10.1063/1.5074184

(7) Camille Thevenot. Elaboration de membrane polymères piézoélectriques souples en vue d'applications biomédicales. 2017, https://tel.archives-ouvertes.fr/tel-01807762

- patchs de PZT ou de PVDF
- films très fins : jusqu'à 400 nm









Capteurs *in vivo* pour cibler et contrôler un organe en particulier.

- Membranes fine de PVDF piézo → grande flexibilité requise
- Dispositif potentiellement très précis
- Compatible avec les paramètres physiologiques





Ces innovations sont très actuelles et encore majoritairement à l'état de recherche