なぜ R?

Toshiki SHIBANO

2021-02-11

目次

データ分析とは	1
R 言語とは	2
なぜ R を使うのか	2
R Markdown のススメ	2
解析例	3
補足	11
文献	12

データ分析とは

私はデータ分析は大きく分けて次の6つから成り立っていると考えています.

- 1. 実験計画
- 2. データの取得
- 3. データの整理
- 4. データの可視化
- 5. 統計処理 (検定, モデリング)
- 6. 結果の吟味, 考察, 提案

1 と 6 に関しては解析ツールがほぼ必要なく,自分の頭とペンで行えます (実験計画における乱数などの例外 はありますが).

しかしながら $2 \sim 4$ に関しては,何かしらのツールが必須となっています.今の時代,グラフを手書きで描くなんてことはほぼ無いでしょう.そのツールとして 1 番に思い浮かぶのが,Excel (Microsoft) だと思います.有料ではありますが,非常に素晴らしいツールで世界中で使用されています.マウスでグラフを簡単に描くことができ,さらにピボットテーブルによる強力な集計も可能です.それ以外のツールとして挙げられるのが,SPSS (IBM) や JMP (SAS) といった非常に強力な有料ツール,プログラミング言語になりますが,R やPython なども有名だと思います.

R言語とは

Wikipedia (https://ja.wikipedia.org/wiki/R) をまとめますと

- 日本語対応
- 様々な OS に対応したオープンソース・**フリー**ソフトウェア
- 作図・統計解析に強い
- 世界中の様々な研究者・データ分析者が利用
- 他人が開発したパッケージ (便利なツール) を DL して使用可能であり、また自分が作って他人に配ることも可能

なぜ R を使うのか

- 無料だから
- バージョンさえ合わせれば、世界中の誰がしても同じ結果が得られるから(再現性)
- 自分で思うがままに高度なこと (データの整理, 作図, 統計解析) が出来るから
- 世界中の先駆者が便利な機能 (パッケージ) を開発していて、それを利用できるから
- Python と比較して使い始めるまでが簡単 (と思います)

R Markdown のススメ

R はスクリプトファイル (メモ帳みたいなもの) に書いて実行することが多いと思います。しかしながら、非常に便利な R Markdown というものがあります。私も最近使い始めました (これも R Markdown で書いてます)。なぜ便利なのか、一言でまとめるなら

(実験計画 \rightarrow データの取得 \rightarrow) データの処理 \rightarrow 可視化 \rightarrow 統計解析 \rightarrow 考察を一つのファイルで行える

に尽きると思います. Word などと行ったり来たりする必要がありませんし、解析したコードもそのまま載せることができます. パワーポイントもそのまま出力できるとか・・・? 初めは使い慣れるのに時間がかかるかもしれませんが、ぜひマスターしていただきたいです.

解析例

R で解析例を載せます. データは架空です.

内容ジャガイモ 3 品種 (A, B, C) の収量の差を調べたい.そこで研究室で管理している圃場を用いて,乱塊法 $(4 \, \nabla 2)$ で試験した.1 試験区あたりの面積は $10m^2$ である.その収量の結果を yield.csv にまとめた.

注意点: R でデータを読み込ませて扱う場合, tidy データが必要である場合が多いです. tidy データとは

- 各変数が独立したデータであること
- 観測した値は1行に記録される
- 観測データの集合はテーブルを表現する

わかりにくいと思いますが、すぐに慣れると思います

実際に行っていきます.

```
# ディレクトリの設定が必要なら行う
# getwd()
# setwd()
#もしくは Session → Set Worling Directory → Choose Directory
# 試験区設定
set.seed(seed = 0) # 乱数の固定
# それぞれのブロックで A, B, Cをランダムに配置する
b1 <- sample(x = c("A", "B", "C"), size = 3, replace = FALSE)
# 与えた条件 (x引数)の中から全てサンプリングするなら size 引数を与えなくて良い
b2 <- sample(c("A", "B", "C"), replace = FALSE)
b3 <- sample(c("A", "B", "C"), replace = FALSE)
b4 <- sample(c("A", "B", "C"), replace = FALSE)
# 行列をフィールドに見立てる
test_field \leftarrow matrix(c(b1, b2, b3, b4), ncol = 4)
colnames(test_field) <- c("b1", "b2", "b3", "b4" ) # 列の名前
rownames(test_field) <- c("", "", "") # 行の名前
# test_field
knitr::kable(test_field, format = "pandoc")
```

```
        b1
        b2
        b3
        b4

        B
        C
        A
        B

        A
        A
        C
        C

        C
        B
        B
        A
```

```
# データの読み込み
# OSによってコードが変わる
yield <- read.csv(file = "yield.csv", header = TRUE)
# データの表示
yield
```

variety	block	yield
A	1	312.6295
A	2	296.7377
A	3	313.2980
A	4	312.7243
В	1	264.1464
В	2	244.6005
В	3	250.7143
В	4	257.0528
\mathbf{C}	1	249.9423
\mathbf{C}	2	274.0465
\mathbf{C}	3	257.6359
\mathbf{C}	4	242.0099

```
# variety列と block列を character型から factor型に変更する
# 後の TukeyHSD を使った多重比較のため
yield$variety <- factor(yield$variety)
yield$block <- factor(yield$block)
```

```
# 作図
library(tidyverse)
```

-- Attaching packages ------

v ggplot2 3.3.2 v purrr 0.3.4

```
## v tibble 3.0.1 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
                  v forcats 0.5.0
## v readr 1.3.1
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
# 日本語フォントを表示出来るように設定
theme_set(theme_gray(base_family = "HiraMinProN-W3"))
# ポストフォントスクリプトのデータベースにフォントファミリ"HiraMinProN-W3"が見つかりません
# という警告が出てるけど, いけてるからヨシ!
# 原因が分からないので調べておきます.
# な軸に品種, y 軸に収量
p <- ggplot(data = yield,</pre>
          mapping = aes(x = variety, y = yield))
p1 <- p + geom_point(mapping = aes(color = block)) +
   labs(title = "Fig.1 各品種の収量")
p1
```

Fig.1 各品種の収量


```
# データの集計
# 品種ごとに平均および標準偏差を求める
yield_by_variety <-
yield %>%
group_by(variety) %>%
summarise(N = n(),
mean = mean(yield),
sd = sd(yield),
.groups = "drop")

yield_by_variety
```

variety	N	mean	sd
A	4	308.8474	8.078538
В	4	254.1285	8.393439
\mathbf{C}	4	255.9087	13.671605

variety	N	mean	sd
A	4	308.8474	8.078538
В	4	254.1285	8.393439
\mathbf{C}	4	255.9087	13.671605

- 収量の軸が 0 スタートでないことに注意.
- Fig.1, 2 より品種間に差はありそう. A が一番大きくてついで B, C か.
- Fig.3 より反復間で大きなばらつきはなさそう. \rightarrow 環境要因の差は少ないか.

実際に検定をかけよう. 乱塊法を使ってるので分散分析を行う

乱塊法を行う

交互作用は考えない

anova_RB <- aov(yield ~ variety + block, data = yield)</pre>

- # R Markdown で出力を整えるためのコード
- # anova_RB
- # でよい

res_RB <- broom::tidy(anova_RB)</pre>

res_RB

term	df	sumsq	meansq	statistic	p.value
variety	2	7733.10504	3866.55252	25.107495	0.0012159
block	3	43.87657	14.62552	0.094971	0.9600323

term	df	sumsq	meansq	statistic	p.value
Residuals	6	923.99960	153.99993	NA	NA

```
res_tukey <- TukeyHSD(aov(yield$yield ~ yield$variety))
res_tukey$`yield$variety`</pre>
```

```
## diff lwr upr p adj

## B-A -54.718864 -75.19226 -34.24547 0.0001018444

## C-A -52.938698 -73.41210 -32.46530 0.0001317481

## C-B 1.780166 -18.69323 22.25356 0.9681473384
```

AとB, AとCに有意差があり、BとCには有意差がなかった.

今回のような圃場条件では, A が一番取れる品種だろう.

有意差の結果を踏まえてもう一度グラフを描く.

箱ひげ図

Fig. 各品種の平均収量(±SD)

補足

今回のデータは R を使って作成しました.

品種 A, B, C について

- A: 平均 300,標準偏差 10 の正規分布
- B: 平均 260, 標準偏差 10 の正規分布
- C: 平均 250, 標準偏差 10 の正規分布

です. ブロック間で変動はありません.

"yield" = c(va, vb, vc))

df

variety	block	yield
A	1	312.6295
A	2	296.7377
A	3	313.2980
A	4	312.7243
В	1	264.1464
В	2	244.6005
В	3	250.7143
В	4	257.0528
\mathbf{C}	1	249.9423
\mathbf{C}	2	274.0465
\mathbf{C}	3	257.6359
\mathbf{C}	4	242.0099

csvファイルに書き出し

write.csv(df, "yield.csv", row.names = FALSE)

文献

おそらくネットを調べればたくさん出てくると思います. 以下私が読んだ, もしくは流し見をして良かった印象がある本をあげます.

R と統計の本

- R によるやさしい統計学 by 山田剛史・杉澤武俊・村井潤一郎
- R による統計解析 by 青木繁伸
- データ解析のための統計モデリング入門一般化線形モデル・階層ベイズモデル・MCMC by 久保拓哉
- RとStanではじめるベイズ統計モデリングによるデータ分析入門 by 馬場真哉

可視化

- データ分析のためのデータ可視化入門 (原文: Data Visualization: A Practical Introduction) by キーラン・ヒーリー (訳: 瓜生真也・江口哲史・三村喬生)
- Google 流資料作成術 (R は使ってない) by コール・ヌッスバウマー・ナフリック (訳: 村井瑞枝)

実験計画法など

- 入門実験計画法 by 永田靖
- 統計的多重比較法の基礎 by 永田靖

インターネットサイト

- R Tips (http://cse.naro.affrc.go.jp/takezawa/r-tips/r.html)
- biostatistics (https://stats.biopapyrus.jp)
- Qiita (エラーで困った時やこのグラフどうやって描くんや?って時に行きつくことが多い)

文献などは別の機会にきちんとまとめたいです.