1
-
0
Ó
H
0
Z
H
U
H
H
2
0
1
0
Z
1
5
S
FT.
7
-
×
5
2
T
5
-
Z
7
2
HAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY
L
0
~
Y

Fifth Semester of B. Tech (CE) Examination November 2017 CE315 Design and Analysis of Algorithm

	Date	Date: 23.11.2017, Thursday Time: 10.00 a.m. To 01.00 p.m.	Maximum Marks: 70
	Instr		
		The question paper comprises two sections. Section I and II must be attempted in separate answer sheets	
	3. N	Make suitable assumptions and draw neat figures wherever required. Use of scientific calculator is allowed.	
		SECTION-I	
	0-1	Answer the questions below.	
((i)	Write recurrence relation of Quick sort for Best and Worst case.	[02]
	(ii)	What is the complexity of two-way and three-way Merge sort?	[02]
	(iii)	Define: Average case, Worst case and Best case complexity.	[03]
	Q-2(a)	Solve the following using Master's Theorem.(Any two)	[90]
	(I)	$T(n)=4T(n/2)+n^2$	
	(II)	$T(n)=2T(n/4)+n^{1/2}+42$	
	(iii)	T(n)=3T(n/2)+3/4n+1	
	(b)	Write and explain exponential algorithm for x^{27} .	[04]
	(0)	Solve the recurrence relation using iteration method: 2T(n-1)+1	[04]
		OR	
	(c)	Solve the recurrence relation using recurrence tree method: 3T(n/4)+cn ²	[04]
	0-3	Answer the questions below.	
	(E)	Find out complexity of following codes with explanation.	[04]
		(I) for (i=1;i<=n;i++)	
		for(j=1;j<=i;j++)	
		for (k=1; k<=100; k++)	
		<pre>printf("All the best for exam!");</pre>	

Page 1 of 4

```
(2) void summation(int n)
{
    int i=1,s=1;
    while(s<=n)
    {
        i++;
        s=s+i;
        printf("Find the complexity of this code");
    }
}</pre>
```

(ii) What is feasible and optimal solution? Find the optimal solution for the following [05] knapsack using fractional approach. Capacity of knapsack is 50.

Item No.	Weights	Values
1	10	60
2	20	100
3	30	120

(iii) Compare Kruskal's and Prim's algorithm.

[05]

OR

Q-3 Answer the questions below.

(i) Match the following:

[04]

Problem

Techniques

- (1) Minimum spanning trees
- (p) Divide and Conquer
- (2) N-queens problem
- (q) Greedy

(3) Quick Sort

- (r) Dynamic Programming
- (4) Assembly-line scheduling
- (s) Backtracking

(ii) There are 4 jobs to execute, each of which takes unit time. Job i earns profit g_i>0, if it is executed no later than time d_i. Find out optimal sequence of jobs.

Consider the following values:

i	1	2	3	4
gi	50	10	15	30
di	2	1	2	1

Page 2 of 4

Candidate Seat no....

(iii) For the given Graph, find at least two sequences in which edges are added to minimum [95]

SECTION - II

Q-4 Answer the questions below.

(i) Which graph traversal technique is used by Backtracking approach? [01] (ii) State True or False: [82] (i) BFS cannot be used to check for cycles in an undirected graph. (ii) The time complexity of Dijkstra's algorithm while using array as the data structure is $O(V^2)$. (iii) What are the drawbacks of Dynamic Programming? [02] (iv) Define the following terms: (i) Back edge (ii) Articulation Point [02] Q-5(a) Show how DFS is used to find connected components of an undirected graph. [05] Q-5(b) Solve the following using Large Interger Multiplication: 5678*4321 [05] Q-5 (c) Define the following: (i) NP Hard problem (ii) NP Complete problem [04]

Page 3 of 4

Solve the Assignment Problem with the following cost matrix using Branch & Bound [05] Q-5(a)Technique.

	T1	T2	Т3	T4
A	11	12	18	40
В	14	15	13	22
C	11	17	19	23
D	17	14	20	28

Q-5 (b) Find the optimal cost and optimal sequence of parenthesization for the given matrices: A=13*5, B=5*89, C=89*3, D=3*34

[05] at

ENC

Exar

of Al

sof .00 p

> she erev

> > -I

WO

mp

ami

; th

OV

Q-5 (c) Derive at least two possible solutions for 4-queen problem.

[04]

Attempt the following: (Any Two) 0 - 6

[14]

- Compare traditional method of Matrix Multiplication and Strassen's Matrix (i) Multiplication.
- Find the Longest common subsequence from following two strings using Dynamic (ii) Programming.

S1= AAACCGTGATG S2=CACCCCTAGT

Explain Naive and Rabin Karp String matching algorithms. (iii)
