If $f:A\to B$ is invertible, what is the composition $f^{-1}\circ f:A\to A$? It takes each point of A to itself.

Definition: If A is a non-empty set we define the identity function

$$id_A: A \to A: a \mapsto a$$

that is, the function which takes each element to itself.

Proposition: (a) If $f: A \to B$ then

$$id_B \circ f = f = f \circ id_A.$$

(b) If, furthermore, f is invertible, then

$$f^{-1} \circ f = \mathrm{id}_A$$
 and $f \circ f^{-1} = \mathrm{id}_B$.

Definition: The absolute value function |x| has domain \mathbb{R} and codomain \mathbb{R} and is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Examples: |45| = 45, |-3| = 3.

Note: $|x| = \sqrt{x^2}$.

Note: |x| measures the distance on the real line from x to 0. |x-y| measures the distance on the real line from x to y.

$$f(x) = |x|$$

Example: Solve |x+2|=3. Since |y|=3 implies y=3 or y=-3, we get x+2=3 or x+2=-3. This is equivalent to x=1 or x=-5. This is what we expect: 1 and -5 are the two numbers which are distance 3 from -2. (|x+2|=|x-(-2)|.)

Definition: The floor function $\lfloor x \rfloor$ has domain $\mathbb R$ and codomain $\mathbb Z$ and is defined by

$$\lfloor x \rfloor = \text{largest integer} \le x$$

Examples: |5.7| = 5, |-3.4| = -4.

Note: $\lfloor x \rfloor$ rounds x down to the nearest integer. What does $(1/10)\lfloor 10x \rfloor$ do? (It rounds down to first decimal place.)

$$f(x) = \lfloor x \rfloor$$

Pigeonhole principle

It is intuitively clear that, when we try to put more than n objects (pigeons) into n containers (pigeonholes) then there will be at least one container with more than one object.

Proposition: Suppose A and B are finite sets and $f: A \to B$ is injective. Then $|B| \ge |A|$.

Proof: Let the elements of A be a_1, a_2, \ldots, a_n . Since f is injective the elements $f(a_1), f(a_2), \ldots, f(a_n)$ are distinct in B. So B contains at least |A| elements.

Corollary: (Pigeonhole principle) Suppose A and B are finite sets with |B| < |A| and $f: A \to B$ is a function. Then f cannot be injective.

Example: An extended family of 14 people are gathered for a function. Show that at least two have birthdays in the same month of the year.

Here the set A is the set of family members, the set B is the set of months and the function $f:A\to B$ takes each family member to his/her birth month. Since |A|=14>12=|B|, f cannot be injective and two members have the same birth month.

Example: How big does a crowd have to be to ensure that two people from it share a birthday?

Here the set A is the set of people in the crowd, the set B is the set of days in the year and the function $f: A \to B$ takes each person to his/her birth day. Since we want |A| > 366 = |B| (possible leap year), f will not be injective and two people have the same birthday provided |A| > 366.

Example: How many different surnames must be in a telephone directory in order to ensure that at least two surnames have the same first and the same second letter?

Here the set A is the set of names in the directory, L is the set of letters of the alphabet, the set B is $L \times L$, the set of pairs of letters of the alphabet and the function $f: A \to B$ takes each surname to the pair (first letter, second letter). Since we want $|A| > 26^2 = |B|$, f will not be injective and two surnames have the same first and second letter provided |A| > 676.