PS – Teste 2022.2 Resolução

Felipe B. Pinto 61387 – MIEQB

22 de maio de 2024

Conteúdo

Questão 1	2	Questão 3								8
Ougetão 2	7									

Questão 1

Extrai-se ácido acético de uma solução aguosa com 60% p/p em ácido usando para o efeito clorofórmio puro, de forma a obter um refinado final com uma concentração de ácido de 5% p/p. Para tal, usam-se dois andares de equilíbrio, com adição de solvente fresco em cada andar, para processar 1000 kg/h de solução aquosa. No primeiro andar de equilíbrio usa-se uma proporção entre solvente fresco e alimentação aquosa de 1:1. Calcule:

Q1 a.

as composições e caudais mássicos das correntes de saída em cada andar.

Q1 b.

a quantidade mínima de solvente que poderia usar no primeiro andar. Justifique a resposta.

01 c.

Q1 C

a percentagem total de extracção de ácido acético da solução aquosa original.

01 d.

Em que situações pensa que a extracção com solventes líquidos possa ser mais vantajosa que a destilação como processo de separação?

Questão 2

Pretende-se arrefecer água de 45°C a 25°C numa torre utilizando ar em contracorrente. O caudal de água é de $1500\,\mathrm{kg/m^2\,h}$ e o caudal de ar que entra a 25°C e com uma temperatura de termómetro húmido 21°C é de $1250\,\mathrm{kg/m^2\,h}$.

Dados:

•
$$K_H a = 0.5 \,\mathrm{kg/m^3}\,\mathrm{s}$$
 • $C_{p,agua} = 4.18 \,\mathrm{J/g}\,^\circ\mathrm{C}$

$$Z = rac{V'}{K_H\,a\,S} \int_{E_{G,1}}^{E_{G,2}} rac{\mathrm{d} E_G}{E_G^* - E_G}; \qquad rac{E_{G,2} - E_{G,1}}{T_{L_2} - T_{L_1}} = \left[rac{ar{L}\,c_{p,L}}{V'}
ight]$$

Q2 a.

Determine a humidade absoluta e relativa do ar à entrada da coluna e as entalpias do ar à entrada e à saída da coluna.

Q2 b.

Calcule $(E_G^*-E_G)^{-1}$ para a base e o topo da coluna. Comente.

Q2 c.

Se a coluna tiver 3 m de altura, qual o número de unidades de transferência necessárias neste processo?

Questão 3

Caracterize o processo de secagem considerando o seu modo de operação, o método de fornecimento de calor necessário e a natureza do material sólido.

A indústria PAPELIS SA, usa um secador de tabuleiros com dois conjuntos de tabuleiros. Na operação do secador, ar saturado a 22°C é previamente aquecido a 75°C, e em seguida feito passar pelo primeiro conjunto de tabuleiros. À saída desse 1º estágio, o ar sai com 60% de saturação, sendo depois de novo aquecido a 75°C antes de entrar no segundo conjunto de tabuleiros. À saída deste 2º estágio. o ar tem de novo 60% de saturação. Admitindo que o processo de secagem decorre de forma adiabática calcule a temperatura final do sólido em cada conjunto de tabuleiros.

03 c.

Calcule a quantidade total de água retirada ao sólido por kg de ar seco.

TABLE 4.8.1 Thermodynamic Properties of Water Vapor-Air Mixtures at 1 atm

		Specific Vo	lume, m³/kg		Enthalpy ^{a,b} kJ/k	g
Temp.,	Saturation		Saturated	Liquid		Saturated
°C	Mass Fraction	Dry Air	Air	Water	Dry Air	Air
10	0.007608	0.8018	0.8054	42.13	10.059	29.145
11	0.008136	0.8046	0.8086	46.32	11.065	31.481
12	0.008696	0.8075	0.8117	50.52	12.071	33.898
13	0.009289	0.8103	0.8148	54.71	13.077	36.401
14	0.009918	0.8131	0.8180	58.90	14.083	38.995
15	0.01058	0.8160	0.8212	63.08	15.089	41.684
16	0.01129	0.8188	0.8244	67.27	16.095	44.473
17	0 01204	0.8217	0.8276	71.45	17.101	47.367
18	0 01283	0.8245	0.8309	75.64	18.107	50.372
19	0.01366	0.8273	0.8341	79.82	19.113	53.493
20	0.01455	0.8302	0.8374	83.99	20.120	56.736
21	0.01548	0.8330	0.8408	88.17	21.128	60.107
22	0.01647	0.8359	0.8441	92.35	22.134	63.612
23	0.01751	0.8387	0.8475	96.53	23.140	67.259
24	0.01861	0.8415	0.8510	100.71	24.147	71.054
25	0.01978	0.8444	0.8544	104.89	25.153	75.004
26	0.02100	0.8472	0.8579	109.07	26.159	79.116
27	0.02229	0.8500	0.8615	113.25	27.166	83.400
28	0.02366	0.8529	0.8650	117.43	28.172	87.862
29	0.02509	0.8557	0.8686	121.61	29.178	92.511
30	0.02660	0.8586	0.8723	125.79	30.185	97.357
31	0.02820	0.8614	0.8760	129.97	31.191	102.408
32	0.02987	0.8642	0.8798	134.15	32.198	107.674
33	0.03164	0.8671	0.8836	138.32	33.204	113.166
34	0.03350	0.8699	0.8874	142.50	34.211	118.893
35	0.03545	0.8728	0.8914	146.68	35.218	124.868
36	0.03751	0.8756	0.8953	150.86	36.224	131.100
37	0.03967	0.8784	0.8994	155.04	37.231	137.604
38	0.04194	0.8813	0.9035	159.22	38.238	144.389
39	0.04432	0.8841	0.9077	163.40	39.245	151.471
40	0.04683	0.8870	0.9119	167.58	40.252	158.862
41	0.04946	0.8898	0.9162	171.76	41.259	166.577
42	0.05222	0.8926	0.9206	175.94	42.266	174.630
43	0.05512	0.8955	0.9251	180.12	43.273	183.037
44	0.05817	0.8983	0.9297	184.29	44.280	191.815
45	0.06137	0.9012	0.9343	188.47	45.287	200.980
46	0.06472	0.9040	0.9391	192.65	46.294	210.550
47	0.06842	0.9068	0.9439	196.83	47.301	220.543
48	0.07193	0.9097	0.9489	201.01	48.308	230.980
49	0.07580	0.9125	0.9539	205.19	49.316	241.881

² The enthalpies of dry air and liquid water are set equal to zero at a datum temperature of 0°C.

^b The enthalpy of an unsaturated water vapor-air mixture can be calculated as $h = h_{\text{dry air}} + (m_1/m_{1,\text{sat}})(h_{\text{sat}} - h_{\text{dry air}})$.

