Rozpoznawanie Liści

http://yesofcorsa.com/autumn-leaves/

Informatyka Medyczna

Jan Kosiński i Alicja Lewandowska Informatyka Medyczna

Program

Wymagania:

system operacyjny LINUX/MAC OS X

Python3 wraz z pakietami matplotlib, numpy, , open-cv,, scikit-image, scikit-learn

featureExctraction.py

Pierwszy z trzech skryptów wchodzących w skład narzędzia służy do ekstrakcji cech liści ze zdjęć służących do stworzenia i ewaluacji klasyfikatora. Skrypt jest kompatybilny z Pythonem 3. Pomoc w uruchomieniu można uzyskać poprzez wywołanie polecenia featureExctraction.py -h. Do uruchomienia skryptu niezbędne jest użycie parametrów -i/—input Katalog oraz -o/—output plik_wynikowy.csv. Katalog powinien zawierać tylko i wyłącznie katalogi reprezentujące poszczególne gatunki liści. W tych katalogach winny znajdować się zdjęcia liści (liść umiejscowiony na środku kadru na jasnym tle). Program ignoruje pliki ukryte (rozpoczynające się od ".").

Rysunek 1. Przykładowe zdjęcie liścia (Ginko biloba)

Cechy na podstawie których budowany jest klasyfikator:

- obwód konturu
- postrzępienie blaszki liściowej (kontur jest dopasowywany na dwóch poziomach szczegółowości, mierzony jest stosunek ich długości; wyższa wartość współczynnika oznacza bardziej postrzępione krawędzie; zakres wartości od 0 do 1)

- stosunek długości convex hull do długości konturu (pozwala zidentyfikować liście składających się z większej liczby podjednostek)
- stosunek długości i szerokości minimalnego opisujacego obiekt prostokata (rotacja mozliwa; parametr świadczy o proporcjach liścia)
- promień najmniejszego okręgu opisującego liść
- stosunek pola najmniejszego opisanego na liściu koła do najmniejszego opisanego na liściu prostokata (parametr świadczący o proporcjach)
- ◆ Parametry zaiplementowane w bibliotece scikit-image: eccentricity, major_axis_length, minor_axis_length, extent, solidity, filled-area, euler_number

leavesRecognition.py

Drugi z trzech skryptów wchodzących w skład narzędzia służy do stworzenia i ewaluacji klasyfikatora. Skrypt jest kompatybilny z Pythonem 3. Pomoc w uruchomieniu można uzyskać poprzez wywołanie polecenia leavesRecognition.py -h. Do uruchomienia skryptu niezbędne jest użycie parametrów -i/—input ścieżka_do_pliku_wynikowego_featureExctraction. Przy pomocy opcjonalnego parametru -s/—sep można zdefiniować separator pól w pliku csv. Domyslnie jest to znak \t.

Do klasyfikacji wykorzystany został algorytm Random Forest z pakietu scikit-learn, który charakteryzował się najwyższym % poprawnie zaklasyfikowanych przypadków spośród wszystkich przetestowanych algorytmów.

leavesClassification.py

Trzeci skrypt służy do rozpoznawania zadanych zdjęć liści przy pomocy utworzonego wcześniej klasyfikatora. Skrypt jest kompatybilny z Pythonem 3. Pomoc w uruchomieniu można uzyskać poprzez wywołanie polecenia leavesClassification.py -h. Do uruchomienia skryptu niezbędne jest użycie parametru -i/—input oraz podanie ścieżki do katalogu zawierającego zdjęcia liści do rozpoznania. Przy pomocy opcjonalnego parametru -d/—dir należy podać ścieżkę do katalogu zawierającego wszystkie skrypty wchodzące w skład narzędzia, jeżeli skrypt nie jest uruchamiany z tego właśnie katalogu.

Klasyfikator

Jako klasyfikator użyty do rozpoznawania gatunków liści wykorzystane zostały lasy losowe (RandomForestClassifier z biblioteki scikit-learn). Przetestowane zostały również inne klasyfikatory lecz wyniki otrzymywane przy pomocy wszystkich pozostałych metod mocno odstawały od wybranej.

Do wyboru cech użytych do klasyfikacji posłużyła funkcja SelectKBest (statystyka chi2) z biblioteki scikit-learn uruchomiona dla każdej możliwej liczby całkowitej z zakresu [1:12]. Najlepszy klasyfikator otrzymano przy użyciu wszystkich cech jako zbioru uczącego.

Liczba cech	1	2	3	4	5	6	7	8	9	10	11	12
Jakość klasyfikacji	0.20	0.39	0.53	0.56	0.56	0.56	0.66	0.65	0.66	0.77	0.77	0.78

Tabela 1. Jakość klasyfikacji dla nauczania klasyfikatora na bazie określonej liczby najlepszych cech wg funkcji SelectKBest dla przykładowego uruchomienia algorytmu.

Otrzymany klasyfikator:

max_depth=10, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',

n_estimators=171, n_jobs=1, oob_score=False, random_state=None,

{'n_estimators': 171, 'max_depth': 10, 'criterion': 'gini'}

verbose=0, warm_start=False)

Jakość klasyfikacji: 0.78375

Wpływ poszczególnych parametrów na jakość klasyfikacji

Ze względu na wysoką złożoność czasową funkcji testującej poszczególne parametry modelu przy użyciu 10-krotnej walidacji krzyżowej, w szczegółowy sposób zostały przetestowane kluczowe parametry klasyfikatora, tj. n_estimators (liczba drzew w lesie), criterion (funkcja mierząca jakość podziału) oraz max_depth (maksymalna głębokość drzew w lesie).

Wykres 1. Wpływ liczby drzew w lesie na jakość otrzymanego klasyfikatora.

Wykres 2. Wpływ maksymalnej głębokości drzewa w lesie na jakość otrzymanego klasyfikatora.