Norges teknisk-naturvitenskapelige universitet Institutt for kjemisk prosessteknologi

TKP4120

Prosessteknikk Vår 2013

Løsningsforslag — Øving 9

- 1 Antar for alle deloppgaver at gassen kan beskrives ved ideell gasslov og at varmekapasiteten er konstant på temperaturintervallet.
 - a) For isoterm kompresjon ved $T = 300 \,\mathrm{K}$ beregnes det teoretiske arbeidet som gitt i ligning (1).

$$W_s^{\text{rev}} = \int_{p_o}^{p_f} \hat{V} dp = \hat{n}RT \ln \left(\frac{p_f}{p_o}\right)$$
 (1)

Her er \hat{n} molar strømningsrate, R [kJ mol⁻¹ K⁻¹] er gasskonstanten, T [K] er temperatur, p_f [Pa] er trykket ved sluttilstand og p_{\circ} er trykket ved starttilstand. Det virkelige arbeidet bestemmes ved å dividere reversibelt arbeid på virkningsgraden.

$$W_s = \frac{W_s^{\text{rev}}}{\eta} \tag{2}$$

Setter inn $\hat{n} = 50 \, \text{mol s}^{-1}$, $c_p = 30 \, \text{J mol}^{-1} \, \text{K}^{-1}$, $p_o = 3 \, \text{bar}$, $p_f = 30 \, \text{bar}$, $\eta = 0.7 \, \text{og} \, T = 300 \, \text{K}$ for uttrykkene i ligning (1) og (2) og finner $W_s^{\text{rev}} = 287.0 \, \text{kW}$ og $W_s = 410.0 \, \text{kW}$.

- b) Isoterm komporesjon ved $T=400\,\mathrm{K}$ beregnes på tilsvarende måte som i a), og resultatet er $W_s^\mathrm{rev}=382,7\,\mathrm{kW}$ og $W_s=546,7\,\mathrm{kW}$.
- c) Et flytskjema for prosessen er gitt i figur 1.

Figur 1: Et flytskjema for stegvis kompresjon av gass med mellomkjøling.

For en adiabatisk, reversibel tilstandsendring for en ideell gass er pV^{γ} konstant. Et ekvivalent uttrykk er gitt i ligning (3).

$$\frac{T_f}{T_o} = \left(\frac{p_f}{p_o}\right)^{\frac{\gamma - 1}{\gamma}} \tag{3}$$

hvor eksponenten kan skrives $(\gamma - 1)/\gamma = R/c_p$. Beregner først de «reversible» temperaturene, $T_{\hat{n}_2}^{\text{rev}}$ og $T_{\hat{n}_4}^{\text{rev}}$, og bestemmer tilhørende reversibelt arbeid $W_{s,1}^{\text{rev}}$ og $W_{s,2}^{\text{rev}}$ fra energibalansen, gitt i ligning (4).

$$W_{s}^{\text{rev}} = \hat{n}c_{p}\Delta T \tag{4}$$

Deretter kan de virkelige arbeidene bestemmes ut i fra virkningsgraden, η , og de virkelige utgangstemperaturene, $T_{\hat{n}_2}$ og $T_{\hat{n}_4}$, fra energibalansen. Eksponentuttrykket er $(\gamma - 1)/\gamma = R/c_p = 0.277$. Resultatene er presentert i tabell 1.

Tabell 1: «Reversible» temperaturer, reversibelt arbeid og virkelig arbeid for prosessen vist i figur 1.

Beskrivelse	Variabel	Verdi
Temperaturer	$T_{\hat{m}_2}^{\mathrm{rev}}$	558,3 K
	$T_{\hat{m}_4}^{ m rev}$	$542,3\mathrm{K}$
Reversibelt arbeid	$W_{s,1}^{ m rev}$	$237,5\mathrm{kW}$
	$W_{s,2}^{ m rev}$	$213,\!4\mathrm{kW}$
Arbeid	$W_{s,1}$	$339,3\mathrm{kW}$
	$W_{s,2}$	$304,9\mathrm{kW}$
Totalt	W_s	$644,2\mathrm{kW}$

d) For å beregne utgangstemperaturen $T_{\hat{m}_4}$ benyttes energibalansen. Endringen i indre energi er som kjent gitt fra d $U = \delta Q + \delta W$. Ved å benytte ligning A.40 fra Appendiks A.13 i Skogestad (2003) kan entalpibalansen uttrykkes som gitt i ligning (5).

$$\Delta \hat{H} = \hat{Q} + W_s = \hat{n} \int_{T_o}^T c_p(\tau) d\tau$$
 (5)

Varmekapasiteten er antatt konstant. Integralet reduseres til $W_{s,2} = \hat{n}c_p\Delta T$ hvor $\Delta T = (T_{\hat{m}_4} - T_{\hat{m}_3})$ som løses for temperaturen til strøm 4. Resultatet er $T_{\hat{m}_4} = 603,3$ K.

e) Fluidet beskrives med ideell gasslov og fluidets temperatur etter varmeveksleren er lik temperaturen før første kompresjonstrinn. Dermed skal entalpiendringen fra \hat{n}_1 til \hat{n}_3 totalt være null. Kjølebehovet blir dermed lik det virkelige arbeidet $W_{s,1}$.

Behovet for vanntilførsel er gitt ved:

$$\hat{Q} = \hat{m}_{\mathrm{H_2O}} \int_{T_0}^T c_{p,\mathrm{H_2O}}(\tau) \mathrm{d}\tau \tag{6}$$

hvor det antas at vannets spesifikke varmekapasitet, $c_{p,\mathrm{H}_2\mathrm{O}}$, er konstant over temperaturintervallet, T_\circ er innløpstemperaturen til kjølevannet og T er utløpstemperaturen til kjølevannet. Setter inn $c_{p,\mathrm{H}_2\mathrm{O}} = 4.18\,\mathrm{kJ\,kg^{-1}\,K^{-1}}$, $T_\circ = 300\,\mathrm{K}$, $T = 400\,\mathrm{K}$ og finner $\hat{m}_{\mathrm{H}_2\mathrm{O}} = 0.812\,\mathrm{kg\,s^{-1}}$.

Varmevekslerens areal bestemmes fra designligningen, ligning (7), hvor det antas ideell, motstrøms varmeveksler.

$$\hat{Q} = UA\Delta T_{lm} \tag{7}$$

For å bestemme logratimisk midlere temperaturdifferanse må $T_{\hat{m}_2}$ beregnes. Følger samme argumentasjonsrekke som i punkt d) og finner $T_{\hat{m}_2} = 626.2 \,\mathrm{K}$. Innsatt i uttrykket for logaritmisk midlere temperaturdifferanse, ligning (8), beregnes $\Delta T_{lm} = 154.6 \,\mathrm{K}$.

$$\Delta T_{lm} = \frac{\Delta T_2 - \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)} \tag{8}$$

Her er $\Delta T_1 = T_{\rm ut}^{\rm H_2O} - T_{\rm inn}^{\rm H_2O}$ er temperaturdifferansen på kald side av varmeveksleren (kjølevannet) og $\Delta T_2 = T_{\hat{m}_3} - T_{\hat{m}_2}$ er temperaturdifferansen på varm side av varmeveksleren (fluidet).

Varmevekslerens areal beregnes fra ligning (7). Innsatt $\hat{Q} = W_{s,1} = 339.4 \,\mathrm{kJ \, s^{-1}}, \, U = 200 \,\mathrm{W \, K^{-1} \, m^{-2}}$ og $\Delta T_{lm} = 154.6 \,\mathrm{K}$ gir $A = 10.97 \,\mathrm{m^2}$.