Small Cap Value and Momentum

MGMT 638: Data-Driven Investments: Equity

Kerry Back, Rice University

Small Cap Value and Growth

- small cap \approx Russell 2000
- value usually measured by PB or PE
- some academic work (Fama-French) found PB is a better predictor of returns
- low PB = value, high PB = growth
- academics usually use BP instead of PB and call it book-to-market
- high BP = value, low BP = growth
- small-cap growth has historically had very poor returns

Value and Momentum Portfolios I

- get marketcap data in addition to prices
- calculate momentum
- keep stocks between 1,001 and 3,000 in market cap
- create 5x5 sort on value and momentum
- compute equally weighted portfolio returns

Value and Momentum Portfolios II

- rank each stock between 1,001 and 3,000 on value
 - low rank = best (low pb)
- rank each stock also on momentum
 - low rank = best (high momentum)
- add ranks to get a single combined rank
 - low combined rank = best
- go long best 50 and short worst 50

Value and Momentum Portfolios III

- For long only portfolio, choose best stocks in each sector and match sector weights to benchmark (e.g., Russell 2000).
- For long-short portfolio, match shorts and longs in each sector to get marketneutral and sector-neutral portfolio.

Value and Momentum Portfolios IV

- Use machine learning to find the optimal way to combine value and momentum
- And add other predictors (ROE, investment rate, short-term reversal, ...)

Data and Procedure

- Get sectors from tickers table
- Get marketcap and pb from weekly table
- Get closeadj and closeunadj from sep_weekly as before
- Calculate momentum as before
- Filter to 1,001-3,000 on marketcap each week
- Form portfolios

Create connection

Get data

Calculate momentum

Merge marketcap and pb

Save this week's data

In [7]: today = df[df.date==df.date.max()]
 today.head(3)

Out[7]:		ticker	date	ret	mom	closeunadj	marketcap	pb	sector
	668	А	2023- 10-27	-0.059141	-0.188863	102.77	30069.2	5.4	Healthcare
	981					23.51		0.9	Basic Materials
	1644			0.039120				0.8	Healthcare

Shift predictors and shift filtering variables to backtest


```
In [8]:
    df = df.set_index(["ticker", "date"])
    variables = ["mom", "pb", "marketcap", "closeunadj"]
    df[variables] = df.groupby("ticker", group_keys=False)[variables].shift()
    df = df.dropna()
    df.head(3)
```

rat

Out[8]:

		ret	mom	cioseunauj	тагкессар	рb	Sector
ticker	date						
Α	2011-01- 14	0.008130	0.199287	41.88	14557.7	4.5	Healthcare
	2011-01- 21	0.050456	0.270914	42.22	14675.8	4.5	Healthcare
	2011-01- 28	-0.075973	0.337839	44.35	15416.2	4.8	Healthcare

mom closeunadi marketsan nh

Filter out penny stocks and filter to small caps


```
In [9]: df = df[df.closeunadj>5]
        df["rnk"] = df.groupby("date").marketcap.rank(
             ascending=False,
            method="first"
        df = df[(df.rnk>1000) & (df.rnk<=3000)]
        df.reset_index().groupby("date").ticker.count()
Out[9]:
          date
          2011-01-14
                         2000
          2011-01-21
                         2000
          2011-01-28
                         2000
          2011-02-04
                         2000
          2011-02-11
                         2000
                         . . .
          2023-09-29
                        1865
          2023-10-06
                        1853
          2023-10-13
                        1837
          2023-10-20
                        1829
          2023-10-27
                        1802
          Name: ticker, Length: 668, dtype: int64
```


Value and Momentum Portfolios I


```
In [10]:
         df["value_group"] = df.groupby("date", group_keys=False).pb.apply(
             lambda x: pd.qcut(x, 5, labels=range(1, 6))
          df["mom_group"] = df.groupby("date", group_keys=False).mom.apply(
             lambda x: pd.qcut(x, 5, labels=range(1, 6))
         rets = df.groupby(["date", "value group", "mom group"]).ret.mean()
          rets = rets.unstack().unstack()
          rets.head(3)
Out[10]: mom_group
                                         2
                                                   3
                                                                        5
         value_group
                              1
                                                              4
                date
          2011-01-14
                      -0.004985
                                           -0.008452
                                                      -0.006321
                                                                 -0.009538
                                                                           -0.006124
                                 -0.014070
                                                                                      -0.(
          2011-01-21
                       0.018622
                                  0.018095
                                            0.020878
                                                       0.013126
                                                                 0.003709
                                                                            0.013191
                                                                                      0.0
          2011-01-28 -0.026927
                                 -0.021369
                                           -0.030210
                                                      -0.027047
                                                                 -0.030028
                                                                           -0.010046
```

3 rows × 25 columns


```
In [11]: (52*rets.mean()).unstack().round(3)
Out[11]: value_group
                                           4
                                                  5
         mom_group
                  1 0.040
                           0.038 0.060 0.052
                                              -0.003
                  2 0.114 0.087 0.076 0.079
                                               0.066
                                 0.094 0.102
                  3 0.129
                           0.092
                                               0.097
                           0.095 0.094 0.117
                  4 0.143
                                               0.079
                  5 0.178 0.125 0.112 0.104
                                               0.138
```


How many stocks are in the groups?


```
counts = df.groupby(["date", "value_group", "mom_group"]).ret.count()
        counts = counts.unstack().unstack()
        counts.tail(3)
Out[12]: mom_group
                                                       2
        value_group
              date
                        74 61
                               57 45 103
                                           94 57 53 60
                                                            50 75 87 79 76
         2023-10-13
                    131
         2023-10-20
                    138
                        75
                            57 50 46
                                      108
                                           94 59 47
                                                      58
                                                            58 71
                                                                   80 66 91
         2023-10-27 144
                        63
                            54 52 48
                                      107 94 52 57
                                                      50
                                                         ... 62 80
```

3 rows × 25 columns

Value and Momentum Portfolios II

- Rank stocks on momentum each week: 1=best, 2=next best, etc. (best=high momentum)
- Rank stocks on pb each week: 1=best, 2=next best, etc. (best=low pb)
- Add momentum and pb ranks: lowest combined ranks are best stocks
- Test A: sort into deciles on combined ranks and compute equally weighted returns
- Test B: go long best 50 stocks and short worst 50 stocks and compute returns

Test A: Deciles


```
In [14]: df["decile"] = df.groupby("date", group_keys=False).combined_rnk.apply(
             lambda x: pd.qcut(x, 10, labels=range(1, 11))
         rets = df.groupby(["date", "decile"]).ret.mean()
         rets = rets.unstack()
         52*rets.mean()
Out[14]:
           decile
                 0.140782
                0.111245
               0.110181
                0.106055
               0.096709
               0.103076
               0.092262
               0.056943
                0.074983
                 0.034706
           10
           dtype: float64
```


Test B: Top 50 and Bottom 50

- rank at each date on combined_rnk
- put best 50 in long portfolio at each date
- put worst 50 in short portfolio at each date
- compute equally weighted returns in each portfolio
- calculate long minus short return


```
In [16]: print(f"annualized mean long return is {52*long_rets.mean():.2%}")
    print(f"annualized mean short return is {52*short_rets.mean():.2%}")
    annualized mean long return is 17.82%
    annualized mean short return is 0.23%
```



```
In [17]: (1+long_rets-short_rets).cumprod().plot(logy=True)
```

Out[17]: <Axes: xlabel='date'>

What are the top 50 and bottom 50 today?

- Apply penny stock and size filters to today dataframe
- Rank on momentum (low rank = high momentum = best)
- Rank on value (low rank = low pb = best)
- Add ranks
- Find best 50 and worst 50 stocks today

In [20]: long

Out[20]:

		ticker	sector	mom_rnk	pb_rnk	combined_rnk	closeunadj
	772871	EHTH	Financial Services	26	32	58	7.860
	427948	CBUS	Healthcare	30	69	99	10.270
	2367118	TRML	Healthcare	78	53	131	14.000
	1429651	LSEA	Real Estate	97	39	136	7.240
-	2197648	SPHR	Communication Services	100	51	151	33.470
	387833	BZH	Consumer Cyclical	48	221	269	23.430
	2449388	USAP	Basic Materials	102	197	299	14.020
	1761051	OPRT	Financial Services	272	44	316	5.510
	1597522	MUX	Basic Materials	99	267	366	7.090
	1488461	MDV	Real Estate	125	260	385	15.210
_	1139786	HOV	Consumer Cyclical	29	362	391	66.360
	1593141 MTW Industrials		128	266	394	12.320	
	050525	EDD	Dania Matariala	276	1.47	422	0.710

In [21]: short

Out[21]:

•	ticker se		mom_rnk	pb_rnk	combined_rnk	closeunadj
2425203	UG	Consumer Defensive	1664	1382	3046	6.180
1121494	HLIT	Technology	1596	1456	3052	9.890
1570573	MRVI	Healthcare	1623	1431	3054	6.220
124978	AMLX	Healthcare	1701	1354	3055	15.740
1869626	PLMR	Financial Services	1625	1433	3058	49.360
229881	AUID	Technology	1460	1599	3059	6.000
291701	BE	Industrials	1409	1654	3063	9.780
1903132	PRCT	PRCT Healthcare AYX Technology	1393	1678	3071	26.090
260770	AYX		1304	1767	3071	31.460
244448		Healthcare	1685	1399	3084	5.200
1447625		1387	1701	3088	9.260	
1217100	IMXI	Technology	1566	1524	3090	16.200
1253736	IRTC	Healthcare	1378	1716	3094	78.190
2107199	SEMR	Technology	1463	1635	3098	8.050
		Consumer				

Sector weights


```
short.groupby("sector").ticker.count()
In [23]:
Out[23]:
           sector
           Basic Materials
           Communication Services
           Consumer Cyclical
           Consumer Defensive
           Energy
           Financial Services
                                      19
           Healthcare
           Industrials
           Technology
                                      15
           Utilities
           Name: ticker, dtype: int64
```


Value and Momentum Portfolios III

- Rank on combined rank separately in each sector
- Do that by grouping by date and sector instead of just date
- Go long best 5 and short worst 5 in each sector to get sector neutrality
- Compute equally weighted returns for long and short portfolios
- Compute long minus short return


```
In [25]: print(f"annualized mean long return is {52*long_rets.mean():.2%}")
    print(f"annualized mean short return is {52*short_rets.mean():.2%}")
    annualized mean long return is 15.07%
    annualized mean short return is 1.82%
```



```
In [26]: (1+long_rets-short_rets).cumprod().plot(logy=True)
```

Out[26]: <Axes: xlabel='date'>

Best and worst stocks today in sector-neutral strategy

- Just group by sector when ranking
- Choose top 5 and bottom 5 in each sector

In [28]: long_neutral

Out[28]:

	ticker	sector	mom_rnk	pb_rnk	combined_rnk	closeunadj	
2449388	USAP	Basic Materials	102	197	299	14.020	
1597522	MUX	Basic Materials	99	267	366	7.090	
950535	FRD	Basic Materials	276	147	423	9.710	
2638060	2638060 ZEUS	Basic Materials	47	636	683	49.430	
986128	GATO	Basic Materials	182	579	761	5.010	
2197648	SPHR	Communication Services	100	51	151	33.470	
2300744	TDS	Communication Services	504	24	528	17.800	
2455127	USM	Communication Services	274	430	704	41.390	
1177442	IAC	Communication Services	704	159	863	41.840	
2116089	SGA	Communication Services	751	195	946	19.150	
387833	BZH	Consumer Cyclical	48	221	269	23.430	
		Consumer					

In [29]: short_neutral

Out[29]:

	ticker	sector	mom_rnk	pb_rnk	combined_rnk	closeunadj
1433593	LTHM	Basic Materials	1633	986	2619	15.110
1573351	1573351 MSB Basic Mate	Basic Materials	950	1725	2675	20.170
	Basic Materials	1242	1447	2689	19.366	
	Basic Materials	1572	1207	2779	16.500	
2379344	TSE	Basic Materials	1735	1708	3443	5.990
1195703	IDT	Communication Services	1159	1501	2660	27.790
1755960	OOMA	Communication Services	1203	1535	2738	10.740
934187	FNGR	Communication Services	1019	1749	2768	5.650
1042555	GOGO	Communication Services	1113	1776	2889	10.650
2388282	TTGT	Communication Services	1732	1497	3229	25.260
425453	CBRL	Consumer Cyclical	1611	1418	3029	64.620
4.440.00		Consumer				

```
In [30]:
         long_neutral.groupby("sector").ticker.count()
Out[30]:
           sector
           Basic Materials
           Communication Services
           Consumer Cyclical
           Consumer Defensive
           Energy
           Financial Services
           Healthcare
           Industrials
           Real Estate
           Technology
           Utilities
           Name: ticker, dtype: int64
```



```
In [31]:
         short_neutral.groupby("sector").ticker.count()
Out[31]:
           sector
           Basic Materials
           Communication Services
           Consumer Cyclical
           Consumer Defensive
           Energy
           Financial Services
           Healthcare
           Industrials
           Real Estate
           Technology
           Utilities
           Name: ticker, dtype: int64
```


How many shares to buy/sell?

- Can do this either for long and short or long_neutral and short_neutral
- \$1,000,000 to invest long and short
- Divide by number of stocks to get \$ per stock
- Divide by price to get shares per stock

Long side

In [32]: long_neutral["shares"] = (1000000/long_neutral.shape[0])/long_neutral.closeun; long_neutral["shares"] = long_neutral.shares.round(0).astype(int) long_neutral

Out[32]:		ticker	sector	mom_rnk	pb_rnk	combined_rnk	closeunadj
	2449388	USAP	Basic Materials	102	197	299	14.020
	1597522	MUX	Basic Materials	99	267	366	7.090
	950535	FRD	Basic Materials	276	147	423	9.710
	2638060	ZEUS	Basic Materials	47	636	683	49.430
	986128	GATO	Basic Materials	182	579	761	5.010
	2197648	SPHR	Communication Services	100	51	151	33.470
	2300744	TDS	Communication Services	504	24	528	17.800
	2455127	USM	Communication Services	274	430	704	41.390
	1177442	IAC	Communication Services	704	159	863	41.840
	2116089	SGA	Communication Services	751	195	946	19.150
	387833	BZH	Consumer	48	221	269	23.430

Short side

In [33]:

short_neutral["shares"] = (1000000/short_neutral.shape[0])/short_neutral.close
short_neutral["shares"] = short_neutral.shares.round(0).astype(int)
short_neutral

Out[33]:

		ticker	sector	mom_rnk	pb_rnk	combined_rnk	closeunadj
	1433593	LTHM	Basic Materials	1633	986	2619	15.110
	1573351	MSB	Basic Materials	950	1725	2675	20.170
	2165284	SMID	Basic Materials	1242	1447	2689	19.366
	1555752	MP	Basic Materials	1572	1207	2779	16.500
·	2379344	TSE	Basic Materials	1735	1708	3443	5.990
	1195703	IDT	Communication Services	1159	1501	2660	27.790
	1755960	OOMA	Communication Services	1203	1535	2738	10.740
	934187	FNGR	Communication Services	1019	1749	2768	5.650
	1042555	GOGO	Communication Services	1113	1776	2889	10.650
	2388282	TTGT	Communication Services	1732	1497	3229	25.260
•	425453	CBRL	Consumer	1611	1418	3029	64.620

```
in [35]: with pd.ExcelWriter("portfolios 2023-11-01.xlsx") as writer:
    long.to_excel(writer, "long", index=False)
    short.to_excel(writer, "short", index=False)
    long_neutral.to_excel(writer, "long neutral", index=False)
    short_neutral.to_excel(writer, "short neutral", index=False)
    today.to_excel(writer, "today", index=False)
```

