Ricerca di violazioni delle simmetrie di Lorentz e CPT nel decadimento doppio-beta $2\nu\beta\beta$ utilizzando i dati dell'esperimento GERDA

Luigi Pertoldi 18 Luglio 2017

Università degli Studi di Padova INFN – Sezione di Padova

The **GER**manium **Detector Array**

- GERDA: ricerca decadimento doppio-beta senza neutrini (0νββ) dell'isotopo ⁷⁶Ge
- Fase II
 - · aumento della quantità di ⁷⁶Ge
 - · aggiornamento della strumentazione
 - → migliore discriminazione del fondo.

The GERmanium Detector Array

Oltre il Modello Standard

- Molte teorie candidate a descrivere la Gravità Quantistica prevedono la rottura spontanea (alla scala di Planck) della simmetria di Lorentz → Standard Model Extension (SME).
- Questo tipo di rottura spontanea può essere studiata nel settore dei neutrini.

Proposta

È possibile ricercare effetti di violazione della simmetria di Lorentz nei dati di $2\nu\beta\beta$ (non $0\nu\beta\beta$!) raccolti da GERDA

Lorentz-violating $2\nu\beta\beta$ per l'isotopo ⁷⁶Ge

(Standard Model $2\nu\beta\beta$)

Lorentz-violating $2\nu\beta\beta$

Distorsione dello spettro in energia ($K = K_1 + K_2$) dei due elettroni in uscita.

Distorsione regolata dal coefficiente $\mathring{a}_{of}^{(3)}$

$$\frac{\mathrm{d}\Gamma_{TOT}}{\mathrm{d}K} = \frac{\mathrm{d}\Gamma}{\mathrm{d}K} + \frac{\mathrm{d}\delta\Gamma}{\mathrm{d}K}$$

Lo spettro in energia del $2\nu\beta\beta$

Standard-Model $2\nu\beta\beta$

$$\frac{d\Gamma}{dK} = C(K^5 + 10K^4 + 40K^3 + 60K^2 + 30)(Q_{\beta\beta} - K)^5$$

Lorentz-violating $2\nu\beta\beta$

$$\frac{d\delta\Gamma}{dK} = C(K^5 + 10K^4 + 40K^3 + 60K^2 + 30)10\delta_{\text{of}}^{(3)}(Q_{\beta\beta} - K)^4$$

Lo spettro in energia del $2\nu\beta\beta$

Standard-Model $2\nu\beta\beta$

$$\frac{d\Gamma}{dK} = C(K^5 + 10K^4 + 40K^3 + 60K^2 + 30)(Q_{\beta\beta} - K)^5$$

Lorentz-violating $2\nu\beta\beta$

$$\frac{d\delta\Gamma}{dK} = C(K^5 + 10K^4 + 40K^3 + 60K^2 + 30)10\mathring{a}_{of}^{(3)}(Q_{\beta\beta} - K)^4$$

Obiettivo

Estrarre una stima di $\mathring{a}_{of}^{(3)}$ dai dati di GERDA – Fase II tramite un'analisi statistica Bayesiana

Preparazione all'analisi statistica:

- · Applicazione dei tagli di qualità sui dati.
- Costruzione del modello di fondo: produzione delle simulazioni Monte Carlo.
- Costruzione del modello statistico utilizzato per interpolare i dati con le simulazioni.

Tagli di qualità

È possibile attuare i seguenti tagli di qualità sui dati: eventi corrispondenti a

- errori di acquisizione o di ricostruzione delle quantità fisiche associate a una forma d'onda
- rilascio di energia nell'acqua o negli scintillatori posti sopra l'apparato (muon veto)
- rilascio di energia in più rivelatori (coincidenze) → evento di fondo

sono esclusi dall'analisi.

Modello di fondo — simulazioni Monte Carlo

La costruzione di un modello di fondo è fondamentale per estrarre gli eventi $2\nu\beta\beta$ dai dati e studiarne lo spettro in energia.

I cambiamenti apportati in GERDA — Fase II richiedono un modello di fondo aggiornato rispetto ai modelli preesistenti.

- il $2\nu\beta\beta$, Standard-Model e Lorentz-violating, simulato nei rivelatori al Germanio
- · misure di screening dei materiali → gli isotopi

sono stati simulati all'interno delle varie componenti di GERDA

• Le sorgenti di particelle α simulate sulla superficie dei rivelatori $\longmapsto \alpha$ -model

Modello di fondo — simulazioni Monte Carlo

La costruzione di un modello di fondo è fondamentale per estrarre gli eventi $2\nu\beta\beta$ dai dati e studiarne lo spettro in energia.

I cambiamenti apportati in GERDA — Fase II richiedono un modello di fondo aggiornato rispetto ai modelli preesistenti.

- il $2\nu\beta\beta$, Standard-Model e Lorentz-violating, simulato nei rivelatori al Germanio
- misure di screening dei materiali → gli isotopi

$$^{212}\mathrm{Bi}, ^{214}\mathrm{Bi}, ^{208}\mathrm{Tl}, ^{214}\mathrm{Pb}, ^{40}\mathrm{K}, ^{42}\mathrm{K}, ^{60}\mathrm{Co}, ^{228}\mathrm{Ac}, ^{234}\mathrm{Pa}, ^{207}\mathrm{Bi},$$

sono stati simulati all'interno delle varie componenti di GERDA

• Le sorgenti di particelle α simulate sulla superficie dei rivelatori $\mapsto \alpha$ -model

Modello statistico

La presenza delle varie componenti simulate è stata indagata con un'analisi statistica di tipo Bayesiano (librerie software BAT¹).

- · Intervallo di Fit: [570, 5300] keV
- gli spettri in energia sommati sui due tipi di rivelatori (BEGe e EnrCoax) mantenuti separati nell'analisi ($\mathcal{L} = \mathcal{L}_1 \cdot \mathcal{L}_2$)
- binning variabile in larghezza studiato per ovviare alle incertezze sulla calibrazione in energia attorno alle linee γ più evidenti
- · prior distributions per le attività di alcune sorgenti
- · p-value per stimare il grado di goodness-of-fit

¹basate su metodi MCMC. https://wwwold.mppmu.mpg.de/bat/

Analisi

- 1. Modello con il solo $2\nu\beta\beta$ del Modello Standard
 - 1.1 Modello massimale con tutte le sorgenti di fondo in tutte le posizioni possibili
 - 1.2 Modello minimale con sorgenti ad attività non nulla
 - 1.3 Modello minimale con l'aggiunta delle prior distributions
- \longmapsto Stima della vita media $T_{1/2}^{2\nu}$ dello Standard-Model $2\nu\beta\beta$
 - 2. Modello di cui al punto (1.3) con l'aggiunta del canale Lorentz-violating del $2\nu\beta\beta$
- \longmapsto Stima del parametero $\mathring{a}_{ ext{of}}^{(3)}$ del Lorentz-violating $2
 ueta_{eta}$

Analisi

- 1. Modello con il solo $2\nu\beta\beta$ del Modello Standard
 - 1.1 Modello massimale con tutte le sorgenti di fondo in tutte le posizioni possibili
 - 1.2 Modello minimale con sorgenti ad attività non nulla
 - 1.3 Modello minimale con l'aggiunta delle prior distributions
- \longmapsto Stima della vita media $T_{1/2}^{2\nu}$ dello Standard-Model $2\nu\beta\beta$
 - 2. Modello di cui al punto (1.3) con l'aggiunta del canale Lorentz-violating del $2\nu\beta\beta$
- \mapsto Stima del parametero $\mathring{a}_{\mathrm{of}}^{(3)}$ del *Lorentz-violating* $2\nu\beta\beta$

Risultati

Risultati — $T_{1/2}^{2\nu}$

$$T_{1/2}^{2\nu} = (1.984 \begin{array}{c} +0.020 \\ -0.020 \end{array}) + \begin{array}{c} +0.098 \\ -0.075 \end{array}) \cdot 10^{21} \text{ yr}$$

= $(1.98 \begin{array}{c} +0.10 \\ -0.08 \end{array}) \cdot 10^{21} \text{ yr}$

Risultati — $a_{\sf of}^{(3)}$

- La moda è compatibile con zero al 90% C.I.
- Convoluzione con la distribuzione delle incertezze sistematiche.

$$a_{\rm of}^{(3)} < 7.5 \cdot 10^{-8} \text{ GeV (90% C.I.)}$$

Risultati — $2\nu\beta\beta$

Risultati — $2\nu \beta \beta$

Precedenti stime

$$T_{1/2}^{2\nu} = (1.98 \ ^{+0.10}_{-0.08}) \cdot 10^{21} \, \mathrm{yr}$$

• **GERDA – Fase I:** (1.926 ± 0.094) • 10²¹ yr Agostini M. et al. *Eur. Phys. J. C75*(9):416, 2015

$$\mathring{a}_{\text{of}}^{(3)} < 7.5 \cdot 10^{-8} \text{ GeV (90% C.I.)}$$

- Analisi a posteriori su decadimento- β : $\mathring{a}_{of}^{(3)}\lesssim 1\cdot 10^{-9}$ GeV Díaz J.S. et al. *Phys. Rev. D88*(7):071902, 2013
- EXO-200: $\mathring{a}_{of}^{(3)} \lesssim 7.6 \cdot 10^{-6} \text{ GeV}$ Albert J.B. et al. *Phys. Rev. D. 93:072001*, 2016

Conclusioni

Obiettivo

Ricerca di effetti *Lorentz-violating* nei dati $2\nu\beta\beta$ di GERDA \longrightarrow valutazione della distorsione dello spettro in energia regolata da $\mathring{a}_{\rm of}^{(3)}$.

Tramite:

- · un modello di fondo aggiornato alla Fase II di GERDA;
- · l'implementazione di un'analisi statistica Bayesiana.

Risultati (comprensivi delle incertezze sistematiche):

$$T_{1/2}^{2\nu} = (1.98 \ ^{+0.10}_{-0.08}) \cdot 10^{21} \ \text{yr} , \qquad \mathring{a}_{\text{of}}^{(3)} < 7.5 \cdot 10^{-8} \ \text{GeV} \ (90\% \ \text{C.I.})$$

confrontati con precedenti stime presenti in letteratura.

Binning

Source	Line [keV]	bin size [keV]
⁴² K	1461	12
⁴⁰ K	1525	12
²⁰⁸ Tl	2614	12
²¹⁴ Bi	609	12
	1764	8
	2204	8
	2247	12
else		4

Sistematiche

Singoli contributi alle incertezze sistematiche su $T_{1/2}^{2\nu}$ e sul 90° quantile della posterior distribution di $\mathring{a}_{\rm of}^{(3)}$

Contributo	$T_{1/2}^{2\nu}$ [%]	å _{of} [%]	
Binning	±1.2	±14.3	
MC geometria	±1.0		
MC GEANT4	±2.0		
Frazione di massa attiva	+3.9 -2.5	+3.8 -1.7	
Frazione di arricchimento	+2.0 -1.6	+2.0 -1.8	
Acquisizione e selezione dati	±0.5		
Totale	+5.1 -3.9	+15.1 -14.7	

Simulazioni Monte Carlo — Volumi

Simulazioni Monte Carlo — Summary

	Holders	Cables	Mini-shroud	Fibers	Contacts	LAr	Ge
							√
2 uetaetaLV							\checkmark
⁴² K					\checkmark	\checkmark	
⁴⁰ K		\checkmark	\checkmark	\checkmark	\checkmark		
²¹⁴ Bi	\checkmark	\checkmark	✓	\checkmark			
²¹⁴ Pb	\checkmark	\checkmark	✓	\checkmark			
^{234m} Pa	\checkmark		\checkmark		\checkmark		
²¹² Bi	\checkmark	\checkmark	\checkmark	\checkmark			
²⁰⁸ Tl	\checkmark	\checkmark	\checkmark	\checkmark			
²²⁸ Ac	\checkmark						
⁶⁰ Co	\checkmark						
²⁰⁷ Bi	\checkmark	\checkmark	\checkmark				
lpha-model						\checkmark	

Statistica Bayesiana

Learning from experiment:

$$P_{i+1}(\vec{\lambda}, \vec{\nu}, M \mid \vec{D}) = \frac{f(\vec{x} = \vec{D} \mid \vec{\lambda}, \vec{\nu}, M)P_i(\vec{\lambda}, \vec{\nu}, M)}{\sum_{M} \int f(\vec{x} = \vec{D} \mid \vec{\lambda}, \vec{\nu}, M)P_i(\vec{\lambda}, \vec{\nu}, M)}$$

Parameter estimation:

$$P(\vec{\lambda}, \vec{\nu} \mid \vec{D}, M) = \frac{P(\vec{x} = \vec{D} \mid \vec{\lambda}, \vec{\nu}, M) P_0(\vec{\lambda}, \vec{\nu} \mid M)}{\int P(\vec{x} = \vec{D} \mid \vec{\lambda}, \vec{\nu}, M) P_0(\vec{\lambda}, \vec{\nu} \mid M)}$$

Marginalized posterior:

$$P(\lambda_i \mid \vec{D}, M) = \int P(\vec{\lambda}, \vec{\nu} \mid \vec{D}, M) d\vec{\lambda}_{i \neq j} d\vec{\nu}$$

Likelihood

$$P(\vec{D} \mid \vec{\lambda}) = P_{\text{BEGe}}(\vec{D} \mid \vec{\lambda}) P_{\text{COAX}}(\vec{D} \mid \vec{\lambda}) = \prod_{i}^{N} \left[\frac{e^{-\mu_{i}} \mu_{i}^{n_{i}}}{n_{i}!} \right]_{\text{BEGe}} \prod_{j}^{N} \left[\frac{e^{-\mu_{j}} \mu_{j}^{n_{j}}}{n_{j}!} \right]_{\text{COAX}}$$

Risultati

Source	Global [mBq/kg]	Marg. [mBq/kg]	1σ [mBq/kg]	BI [BEGe] [10 ⁻² cts/(BI [COAX] keV·kg·yr)]
$T_{1/2}^{2\nu}$ [10 ²¹ yr] (†)	1.984	1.980	±0.020	0.001	0.001
FIBERS 40K	00.74	00.65	+11		
²¹² Bi + ²⁰⁸ Tl (†)	89.71 0.0583	88.65 0.0595	±0.012	0.002	0.002
²¹⁴ Pb + ²¹⁴ Bi	2.08	2.13	+0.64 -0.77	0.149	0.169
HOLDERS					
⁴⁰ K (†)	4.00	4.17	0.83	-	-
²¹⁴ Pb + ²¹⁴ Bi	0.064	0.052	+0.065 -0.052	0.086	0.062
²²⁸ Ac	0.315	0.305	± 0.075	0.005	0.005
⁶⁰ Co	0.086	0.099	± 0.025	0.053	0.042
CABLES					
⁴⁰ K	79	46	+89 -63	-	-
²¹² Bi + ²⁰⁸ Tl	12.1	11.9	±1.6	0.285	0.226
^{234m} Pa	7.2	6.0	+4.3 -3.8	0.002	0.002

Risultati

MINI-SHROUD ²⁰⁷ Bi	0.50	0.56	+0.44 -0.37	0.001	0.003
OTHER					
⁴² K in LAr	0.2019	0.2004	± 0.0038	0.377	0.471
⁴² K on coax n ⁺ [cts]	660	630	±170	_	0.379
lpha-model BEGe [cts]	1343	1332	±50	0.416	-
lpha-model COAX [cts]	2955	2962	±78	-	0.470
TOTAL				1.38 ± 0.20	1.83 ± 0.25
p-value					0.94