Chapitre 4: Les applications

Définition : Soient E et F deux ensembles.

On appelle application de E vers F, toute relation \mathcal{R} de E vers F qui associe à chaque élément x de E, un élément unique y dans F.

On note cette relation par f et on écrit :

$$f: E \to F$$

 $x \mapsto f(x) = y \Leftrightarrow x \mathcal{R} y$

On dit que f est une application de E vers F ou bien f est une application de E dans F.

E est l'ensemble de départ de l'application f

F est l'ensemble d'arrivé de l'application f

x est dit antécédent de y par f

y est dit l'image de x par f

Caractérisation : Soient E et F deux ensembles, alors on peut écrire :

f est une application de E vers F si et seulement si $\forall x, x' \in E$, $[x = x' \Longrightarrow f(x) = f(x')]$

Exemple : Soit \mathcal{R} la relation de $]0, +\infty[$ vers \mathbb{R} définie par :

$$x \mathcal{R} y \iff y = \ln x$$

Cette relation \mathcal{R} définie une application de $]0, +\infty[$ vers \mathbb{R} et on écrit :

$$f: \]0, +\infty[\longrightarrow \mathbb{R}$$
 $x \mapsto f(x) = y = \ln x$ est une application

Et on a par exemple : $f(1) = \ln 1 = 0$

$$f(2) = \ln 2$$

Par contre la relation \mathcal{R}_1 de \mathbb{R} vers \mathbb{R} définie par :

$$x \mathcal{R}_1 y \iff y = \ln x$$
, n'est pas une application.

Notation: Soit f une application d'un ensemble $E = E_1 \times E_2 \times \cdots \times E_n$ vers un ensemble F (× est le produit cartésien de plusieurs ensembles, déjà définit dans le chapitre des relations), alors pour un élément $(x_1, x_2, \cdots x_n)$ de E, on peut écrire simplement

$$f((x_1, x_2, \dots, x_n)) = f(x_1, x_2, \dots, x_n).$$

Application identité : Soit E un ensemble, l'application f définie par :

$$f: E \longrightarrow E$$

 $x \mapsto f(x) = x$, est dite application identité dans E, on note le f(x) par $Id_E(x)$

ou bien on note $f = Id_E$

 Id_E est dite application identité dans E.

Composée d'applications : Soient E, F et G trois ensembles,

f et g deux applications définies par :

$$f: E \to F$$

$$x \mapsto f(x) = y$$

$$g: F \to G$$

$$y' \mapsto g(y') = z$$

L'application composée de f et g notée $g \circ f$ est définie par :

$$g \circ f : E \to G$$

 $x \mapsto (g \circ f)(x) = g(f(x))$

• est le symbole de composition des applications.

Exemple:

Soit
$$f: \]0, +\infty[\to \mathbb{R}$$

$$x \mapsto f(x) = y = \ln x \quad \text{ et}$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto g(x) = e^x$$
Pour $x \in \]0, +\infty[$

$$(g \circ f)(x) = g(f(x)) = g(\ln x) = e^{\ln x} = x \quad \text{donc}:$$

$$g \circ f: \]0, +\infty[\to \mathbb{R}$$

$$x \mapsto (g \circ f)(x) = x$$

Définition : On définit par récurrence la composition d'un nombre fini quelconque d'applications. D'après la définition même, on peut voir que la composition d'applications est associative. On notera $f \circ g \circ h$

L'application $(f \circ g) \circ h = f \circ (g \circ h)$

(f, g et h sont trois applications)

La relation signifie que o est associative

Applications injectives : Soit f une application de E vers F

L'application f est injective $\Leftrightarrow \forall x, x' \in E$, $[f(x) = f(x') \Rightarrow x = x']$

Et on peut écrire :

L'application f est injective \Leftrightarrow tout élément y de F à au plus un antécédent x.

Applications surjectives : Soit f une application de E vers F

L'application f est surjective $\Leftrightarrow \forall y \in F, \exists x \in E, y = f(x)$

Et on peut écrire :

L'application f est surjective \Leftrightarrow tout élément y de F à au moins un antécédent x.

Exemple:

1) Soit l'application $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = x^2$$

f n'est pas injective car : $\exists x, x' \in \mathbb{R}$ tel que $x \neq x'$ et f(x) = f(x')

Par exemple x = -1 et x' = 1

f n'est pas surjective car : pour y < 0, on peut pas trouver $x \in \mathbb{R}$ tel que $x^2 = y$

2) Soit l'application $g: \mathbb{R}_+ \to \mathbb{R}_+$

$$x \mapsto g(x) = x^2$$

g est une application injective et surjective.

Applications bijectives : Soit f une application de E vers F

L'application f est bijective $\Leftrightarrow f$ est injective et f est surjective.

Et on peut écrire :

L'application f est bijective $\Leftrightarrow \forall y \in F$, $\exists ! x \in E, y = f(x)$

Exemple: L'application $g: \mathbb{R}_+ \to \mathbb{R}_+$

$$x \mapsto g(x) = x^2$$

est une application bijective car elle est injective et surjective.

Propriétés : Soient f et g deux applications définies par :

 $f: E \to F$ et $g: F \to G$ alors on a les implications suivantes :

- f est injective et g est injective $\Rightarrow g \circ f$ est injective.
- f est surjective et g est surjective $\Rightarrow g \circ f$ est surjective.
- f est bijective et g est bijective $\Rightarrow g \circ f$ est bijective

Applications réciproques :

Soit
$$f: E \longrightarrow F$$

$$x \mapsto f(x) = y$$

une application bijective, l'application notée f^{-1} définie par :

$$f^{-1}: F \to E$$

 $y \mapsto f^{-1}(y) = x$

est appelée application réciproque de f ou bien la réciproque de l'application f.

Exemple:

Soit l'application $f: \mathbb{R} \to \mathbb{R}_+^*$

$$x \mapsto f(x) = e^x = y$$

L'application f est une application injective car :

Pour deux éléments x et x' dans \mathbb{R} tels que $e^x = e^{x'}$, on peut déduire que x = x'

L'application f est une application surjective car :

Pour un élément y de \mathbb{R}_+^* on peut trouver $x = \ln y$, de \mathbb{R} tel que $e^x = y$

Donc l'application f est bijective. On peut chercher alors l'application f^{-1}

 f^{-1} est une application définie de \mathbb{R}_+^* vers \mathbb{R} satisfait la relation suivante :

$$f^{-1}(y) = x$$

$$e^x = y \Longrightarrow \ln(e^x) = \ln y \Longrightarrow x = \ln y$$

Donc $f^{-1}: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$

$$y \mapsto f^{-1}(y) = \ln y$$

Propriété: Soit f une application bijective, alors La réciproque f^{-1} de f est une application bijective.

Conséquences:

1) Si f et g sont deux applications bijectives définies sur les ensembles comme suit : $f: E \to F$, $g: F \to G$

Donc on a l'égalité $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

et $(g \circ f)^{-1}$ est bijective.

- 2) Soit f une application bijective de E vers F alors :
 - $f \circ f^{-1} = Id_F$ $f^{-1} \circ f = Id_E$
- 3) Si f est une application de E vers F et g est une application de F vers E telles que :

$$\begin{cases} g \circ f = Id_E \\ f \circ g = Id_F \end{cases}$$

alors f et g sont des applications bijectives réciproques l'une de l'autre c'est-à-dire f et gsont bijectives et $f = g^{-1}$ et $g = f^{-1}$

Image directe d'un ensemble par une application :

Définition : Soient E et F deux ensembles, A un sous- ensemble de E et f une application de E vers F.

On appelle image de A par f notée f(A) le sous- ensemble de F défini par :

$$f(A) = \{f(x), x \in A\} = \{y \in F, \exists x \in A, y = f(x)\}\$$

Image réciproque d'un ensemble par une application : Soient E et F deux ensembles, B un sous- ensemble de F et f une application de E vers F.

On appelle image réciproque de B par f notée $f^{-1}(B)$ le sous- ensemble de E défini par :

$$f^{-1}(B) = \{x \in E, f(x) \in B\}$$

Exemple: Soit l'application f définie par

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x) = x + 1$$

Calculer $f(\{1,2,3\})$ et $f^{-1}(\{2\})$

$$f({1,2,3}) = {f(1), f(2), f(3)} = {2,3,4}$$

$$f^{-1}(\{2\}) = \{x \in \mathbb{R}, \ f(x) \in \{2\}\}$$
$$= \{x \in \mathbb{R}, \ f(x) = 2\}$$
$$= \{x \in \mathbb{R}, \ x + 1 = 2\} = \{1\}$$

On peut démontrer facilement quelques propriétés de l'image directe et l'image réciproque

Proposition : Soit f une application de E vers F,

Soient A et B deux parties de E, A' et B' deux parties de F, alors

- $A \subseteq B \Longrightarrow f(A) \subseteq f(B)$
- $f(A \cup B) = f(A) \cup f(B)$
- $A' \subseteq B' \Longrightarrow f^{-1}(A') \subseteq f^{-1}(B')$
- $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$

Remarque: On peut trouver d'autres relations.

Prolongement et restriction d'une application :

Définition : Soient f et g deux applications telles que

$$f: E \longrightarrow F$$
 et $g: E' \longrightarrow F'$

On dit que g est un prolongement de f et f est une restriction de g si et seulement si

les trois conditions suivantes sont vérifiées :

- $E \subset E'$
- $F \subset F'$
- $\forall x \in E : g(x) = f(x)$

Exemple : Soient f et g deux applications définies par :

$$f: \mathbb{R}_+ \to \mathbb{R}_+$$

$$x \mapsto f(x) = x$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto g(x) = |x|$$

Puisque $\mathbb{R}_+ \subset \mathbb{R}$ et $\forall x \in \mathbb{R}_+$: g(x) = f(x) donc g est un prolongement de f et f est une restriction de g.