Cognoms:	 Nom:	
DNI:		

EXAMEN PARCIAL D'EC 4 de novembre de 2021

- L'examen consta de 5 preguntes, que s'han de contestar als mateixos fulls de l'enunciat. No oblidis posar el teu nom i cognoms a tots els fulls.
- La durada de l'examen és de 1:30 hores (90 minuts)
- Les notes, la solució i el procediment de revisió es publicaran al Racó el dia 12 de novembre.

Pregunta 1 (2,50 punts)

Donades les següents declaracions de funcions en C:

```
int f(short *a, int *b, char c);
int g(int j, char *k) {
    short arr[3];
    int x, y;

    y = j + f(&arr[1], &x, *k);
    return y * 2;
}
```

a) Dibuixa el bloc d'activació (stack frame) de g, indicant a quina posició apunta el registre \$sp un cop reservat l'espai necessari a la pila, així com el nom de cada registre o variable que es guardi a la pila i la seva posició respecte a \$sp (\$sp + n bytes).

adueix el codi de la subrutina g.						

b)

Cognoms:	 Nom:	
DNI:		

Pregunta 2 (1. 75 punts)

Considera la següent subrutina programada en assemblador MIPS:

```
func:
            ble
                   $a2, $a1, et1
                   $a0, $a1, et2
            bgt
et1:
                   $a2, $zero, et4
            blt
et2:
            move
                   $v0, $a0
et3:
            b
                   et5
et4:
                   $v0, $a2
            move
et5:
             jr
                   $ra
```

Completa el següent codi escrit en C omplint les caselles en blanc perquè sigui equivalent a l'anterior codi en assemblador:

Pregunta 3 (1.75 punts)

Donat el següent codi en C que es tradueix a MIPS just a sota es demana que omplis les caselles buides del codi MIPS en funció de la constant N.

Codi C

```
#define N 1000
int m[N][N];

void main(){
  int i, suma=0;

  for (i=N-1; i>0; i-=2)
      suma += m[i][N-i];
}
```

Codi MIPS

```
move $t1, $zero
main:
        li
              $t0,
              $t2,
        la
              $t3, 0($t2)
for:
        lw
        addu $t1, $t1, $t3
        addiu $t0, $t0, -2
        addiu $t2, $t2,
              $t0, $zero, for
        bgt
        jr
              $ra
```

Pregunta 4 (2 punts)

Donada la següent declaració de variables globals, que s'ubica a memòria a partir de l'adreça 0x10010000:

```
.data
               '5'
a1:
      .byte
                                 # el codi ascii de '0' és 48
      .align
               2
a2:
      .space
a3:
      .asciiz "2026"
a4:
      .half
               1, 0x37, -5
a5:
      .word
               a3
a6:
      .half
               0x7fff
```

a) Omple la següent taula amb el contingut de memòria **en hexadecimal**. Les posicions de memòria sense inicialitzar es deixen en blanc.

@Memòria	Dada	@Memòria	Dada	@Memòria	Dada	@Memòria	Dada
0x10010000		0x10010008		0x10010010		0x10010018	
0x10010001		0x10010009		0x10010011		0x10010019	
0x10010002		0x1001000A		0x10010012		0x1001001A	
0x10010003		0x1001000B		0x10010013		0x1001001B	
0x10010004		0x1001000C		0x10010014		0x1001001C	
0x10010005		0x1001000D		0x10010015		0x1001001D	
0x10010006		0x1001000E		0x10010016		0x1001001E	
0x10010007		0x1001000F		0x10010017		0x1001001F	

b) Donat el següent codi que fa referència a l'anterior declaració:

```
main:
         $t0, a5
   la
         $t0,0($t0)
   lw
         $t1,3($t0)
   lb
         $t2, a4
   la
         $t2, 4($t2)
   lh
         $t1, $t1, $t2
   addu
         $t1,3($t0)
   sb
         $t3, $zero
   move
         $t4, 0x0a
   li
         $t0, a3
   la
         $t1, 3
   li
loop:
         $t3, $t4
   mult
   mflo
         $t3
         $t5, 0($t0)
   lb
   andi
         $t5, $t5, 0x0f
   addu
         $t3, $t3, $t5
   addiu $t1, $t1, -1
   addiu $t0, $t0, 1
   ble
         $zero, $t1, loop
   jr
```

Omple la següent taula amb el valor en decimal dels registres \$t1 i \$t3 just ABANS d'executar la instrucció en negreta (cal usar una fila de la taula per cada iteració que es faci) i els valors dels mateixos registres en sortir del bucle:

	\$t1	\$t3
<pre>1a iter.:</pre>		
2a iter.:		
• • •		
en sortir:		

Parcial EC				
Cognoms:		Nom:		
Pregunta 5 <i>(2 punts)</i> Hem executat un programa que estem programa té la següent distribució d'ins		u processador MIPS que funciona a una freqüència de 2 GHz. El u CPI:		
Tipus	СРІ	% Instruccions		
Accés a memòria (load/store)	8	20 %		
Aritmètiques (add/sub/)	2	50 %		
Branches	4	30 %		
Temps (s)				
Energia (J)				
Els nostres enginyers diuen que abans d d'instrucció a la meitat (CPI _{nou} = CPI _{vell} /		essador MIPS al mercat hi ha temps per reduir el CPI d'un dels tipus		
Quin CPI hauríem de reduir per obtenir el màxim speedup en l'execució del nostre programa? Quin speedup obtindríem (pots deixar-ho en format de fracció)?				
Instrucció a millorar				
Speedup obtingut				
Com a resultat de millorar el CPI, per ma del processador un 10%.	antenir la mateixa frec	qüència els enginyers han estimat que caldrà augmentar el voltatge		

c) Suposant que la potència estàtica que dissipa el processador és zero (abans i després de la millora), quina serà la nova

potència dissipada pel processador? Quanta energia consumirem ara en executar el nostre programa?

Potència (W)

Energia (J)