Teichmuller Theory in Outer Space (Maden Bestvina)
Fn: Free group of rank n
Out (Fn) = Aut (Fn) / Inn (Fn)
$MCG(\Sigma)$ a
hyperbolic surface
T(Z) := Teichmuller Space
CVn ConT(Z) where
CVn={(g, T) T is a metric graph,
vol(Γ)=1, g.Rn~Γ?
Note: g is a marking that we can
homotope around.
CVn := "Outer space"
n=2, collapse Dy ~
2 ways

C>> { Minimal Fn - R tree}

where R trees: any two points have a unique arc isometric to an interval.

The CVn (the closure) is compact

Minimal Fn - R tree?

I (X) = tr. length of X on T

So CVn C> P^{\infty}

Ex: Z

Take universal cover = H

Take dual tree: pt for each complementary component, edge across each sep. I:ne

Can equip Z with a measure and lift triangles to yield a foliation (measurable arcs) Not every Te 2CVn comes from such a construction on some Z. Why? 1) IT dual to measured laminations on a finite 2-complex See Rips machine, Kaizy induction. 2) IT not dual to any such complex This happens generically.

Lipschitz metric on CVn & Teichmoller distance, Thurston dist, WP

Given
$$(g,\Gamma)$$
, (g',Γ')
 $f:\Gamma \to \Gamma'$ st. $\Gamma \to \Gamma'$
 $\sigma(\Gamma,\Gamma'):=\min_{f} L:p(f)$ g'
 $Civen$ g'
 Civ

$$d(\Gamma_{\epsilon}',\Gamma) \approx \frac{1}{2\epsilon} \rightarrow \infty$$

$$d(\Gamma, \Gamma_{\epsilon}') \leq \log 2$$

Yields geodesics

Non-	positive	curvature	and	Artin	Groups	(linavin	Huang)
14011	POSICIVE	carvacarc	arra	/ \i Cii i	CIGGPS	,,,,,,	i idaiig,

Let Γ be a finite simple graph, with integer edge lengths. Define a group $A_{\Gamma} = \langle V(\Gamma) | \{ (ab)^{\alpha} = (ba)^{\alpha} : (a,b) \in E(\Gamma) \} \rangle$

Don't know much about it generally; center, homology, etc = 2.

 $C_{\Gamma} = \langle V(\Gamma) | \Re(A_{\Gamma}) \cup \{v_i^2 = e^2\} \rangle$ the Coxeter group

Ex B3 = (a, b) aba = bab)

$$a=\left\{ \left\{ \right\} \right\} ,\ b=\left\{ \right\} \right\}$$

Note B3 -53

Conjecture: Artin groups are non-positively curved

(Known in special cases)

Can construct a CW complex X with $T_1(X) = B_3$; want to put a metric on X.

X yields a tiling

by "hexagons"
but really rectangles
after identification

So declare right angles & straight lines... naive method yields a conflict. How to resolve? Restrict to planar regions.

Appel - Schop

Define area = # of two cells; fix boundary and take min. Can produce a non-positively curved metric on D

Thm (Pride 1986) If I does not have triangles, then

$$X_{\Gamma} = C(4) - T(4)$$

What if there are triangles?

Some blocks will be C(4)-T(4) in the disc diagram

Cone them off, put a metric on what remains

Yields an immersion F: Y->X

Take X LIFCY, giveS TT=B3

 $Z = X \coprod_{f_i} Y_i$

Thm (Appel-Schop)

If Ap is of large type (m; >3) then Z is C(6).

Another class of Artin groups: "2 dim"

Thm TFAE

- · For every my CP, L+1+1=1
- · Cohomological dim (P) < 2
- · ZZ3 < Ap

A a similar coning procedure, modified Deligne complex

Start with P= ?g{e}, g2Av(p), gAe:eeP} a poset, take geom. realization

Simplex in IPI Chain in P C1 < C2 < C3

Thm: IPI admits a CAT(0) metric.

Allows coning off NPC' blocks, left with something ????

Question: Is Ap non-positively curved?

The Cohomology of the mapping class group (Andrew Putman)

Let Ig be a closed gunus g surface $Modg = D:FF(\Sigma_g)/isotopy$ Topic: H'(Modg) = H'(BModg)? Thm (Milnor): For any g there is a principal G-bundle EG -> BG s.t. { p. G-bundles/X} ~ [X, BG] $f^*(EG) \leftarrow f$ Ex BG/nR = Grn (R°) Ex G discrete: G-bundles = regular G-covers Th (G)= [S, BG] = G-covers of Sn = SG, n=1 O, else (Sn) simply connected) S. BG ~ K(G,1).

Recognizing BG: Unique bundle (up to hty) EG→BG with EG contractible

Thm (Earle-Eells): For $g \ge 2$, Diffo(Σ_g)~*
So Modg-Bundles = Diff'(Σ_g -bundles) $= \{\Sigma_g \to E \text{ oriented } \}$ Surface bundles

Constructing BD:FF^{*}(Σ_g)
By Whitney, the space $\operatorname{Emb}(\Sigma_g, \mathbb{R}^{\omega}) \simeq \mathbb{X}$ D:FF^{*}(Σ_g) $\hookrightarrow \operatorname{Emb}(\Sigma_g, \mathbb{R}^{\omega})$ Free + proper
Define $\operatorname{Gr}(\Sigma_g, \mathbb{R}^{\omega}) = \operatorname{Emb}(\sim)/\operatorname{D:FF}^{\dagger}(\sim)$

Not much cohom. is known

MMM- classes $Xi \in H^{2i}(Modq) = H^{2i}(Gr(\Sigma_g, \mathbb{R}^n))$ Make the tautological $\Upsilon = \{(S,p) \in Gr(\Sigma_q, \mathbb{R}) \times \mathbb{R}^q | p \in S\}$ $\Sigma_g \hookrightarrow \Upsilon$ Can take vertical tangent bundle R2 Whire V(SIP) = TPS and its Euler class e(V) ∈ H'(T) There is an Umkehr map since the fibers are surfs. TI: $H(\Upsilon) \rightarrow H(Cr(\Sigma_g, R^{\infty}))$ "integrate along Fibers" So define Ki:= TT! (e(V)) EH2(~)

Ex Zg -> M⁴ ∑h Classified by $[\Sigma_h, BD:FF\Sigma_g]$ Pull back x, to get F*(x) <f*(x), [Zn]>=3. Signature(M4) As always, look at Hirzebirch Signature formula $TM = VM \oplus \pi T Z'h$ $\rightarrow Sig(M^4) = \langle P, VM, [M] \rangle + \langle P, \pi^*, \dots \rangle$ = <eVM, [M]> $=t_{\star}(X)[\Sigma^{\nu}]$ so x, ≠0 iff ∃ Zg bundle/surface with nonzero signature (existence of some 4-mfd) Thm. Q[xi] -> H (Modg) is an iso in deg = 2/3 g (Stable Cohomology)

Q. Unstable H.Z. Thm: H* (Modg) = O for deg > 4g-5 (VCd (Modg) = 4g-5) Thm: X (Modg) is huge (exponential or super ing)
and often (O ... I huge odd-dim classes Cor: I a huge amount of unstable cohom What is known? Thm (Church-Farb-P, Morita-Sakosai-Suzaki) H^{4g-5} = 0 (nunzero with some complicated local coefsystem) Thm (Chan-Galatius-Payne) H4g-6 + 0, but not enough to account for largeness. Open question: What else is there? (Dark Matter problem)