Physical Layer

Presented by Hung Ba Ngo

Objectives

- Present core components of a data transmission network
- Identify issues related to a computer based data transmission network
- Introduce methods of digitization
- Present characteristics of communication channels and cable features
- Introduce line coding methods

Requisites

- Learners have to be able to
 - List the issues related to a computer-based data transmission network
 - Describe different digitization methods
 - Differentiate and calculate parameters of a channel such as Bandwidth, Baud rate, Data rate, Bruits, Channel Capacity, Traffic
 - Encoding data using different line coding methods

A basic data transmission model

- Issues related to data transmission systems:
 - How to digitize information
 - Types of channel can be used for data transmission
 - Connection schema of communication devices
 - Methods for transmitting raw bit from hosts to hosts

Model for digitization

Digitization of text

		000	001	010	011	100	101	110	111
poids faibles	0000	NUL	DLE	SP	0	(0)	Р	١	P
	0001	SOH	DCI	ļ	1	Α	Q	a	q
	0010	STX	DC2	"	2	В	R	ь	r
	0011	ETX	DC3	#	3	С	S	С	3
	0100	EOT	DC4	\$	4	D	T	d	t
	0101	ENQ	NAK	%	5	Е	U	е	u
	0110	ACK	SYN	&	6	F	γ	f	٧
	0111	BEL	ETB		7	G	W	g	W
	1000	BS	CAN	(8	Н	Χ	h	X
	1001	HT	EM)	9	I	Υ	i	ų
	1010	LF	SUB	¥	:	J	Z	j	Z
	1011	ΥT	ESC	+	;	K	[k	{
	1100	FF	FS	'	<	L	Ç	1	ù
	1101	CR	GS	-	=	M]	m	}
	1110	S0	RS		>	N	1	n	×
	1111	SI	US	- /	?	0	<	0	DEL

poids forts

code ASCII

- 8 bits code:
 - ASCII American Standard Code for Informatics Interchange
 - Mã EBCDIC Extended Binary-Coded Decimal Interchange Code
- 16 bits code: Unicode

Digitization of text

- 8 bits code:
 - ASCII American Standard Code for Informatics Interchange
 - Mã EBCDIC Extended Binary-Coded Decimal Interchange Code
- 16 bits code: Unicode

Digitization of images

- Black & White images : 0: Black, 1: White
- Images for 256 gray level: 8 bits / pixel
- Color images: 1 pixel = aR + bG +cB

Digitization of sound and movie

2.Qualifying

3. Digitizing

 Volume of result file depends on sampling frequency f and the number of bits p used to represent value of amplitude

Communication Channels

Wired communication media

- 3 popular cables:
 - Twisted pair cable
 - Coax cable
 - Fiber optic cable
- Factors for choosing cable
 - Price
 - Network diameter
 - Number of hosts in network
 - Requirement of bit rate
 - Requirement of bandwidth

Coaxial Cable

Thick coaxial cable (RG11)

Thin coaxial cable (RG58)

Twisted - pair cable

STP (Shielded Twisted Pair)

Unshielded Twisted Pair (UTP)

Twisted - pair cable

```
CAT 1, 2: 1Mbps (Telephone)
```

CAT 3: 10Mbps (10BaseT)

CAT 5: 100MBps (100BaseT)

CAT 5E,6: 1000MBps (1000 BaseT)

Fiber optic cable

Wireless communication media

- c : Speed of light
- f: Frequency of wave
- λ: Length of wave
- Therefore $c = \lambda f$

Wireless channel

Analog signal & Digital signal

 Data (bits 0, 1) are transmitted from one device to another using analog signals or digital signals.

Analog signal & Digital signal

Analog signal

Sine wave

- Sine wave, none terminated or none deduced after a period of time, is an analog signal that can be created simply and easily
- Any wave can be represented by a set of Sine waves → This feature is used to defined characteristics of communication channel

Sine wave

- Peak Amplitude (A)
 - maximum strength of signal, typically measured in volts
- Frequency f = 1/T
 - T = time for one repetition
 - rate of change of signal, measured in hertz (Hz) or cycles per second
- Phase (φ)
 - relative position in time
- Wavelength = λ is a distance occupied by one cycle
 - Assuming signal velocity v, then $\lambda = v \times T$ or $\lambda \times f = v$
 - speed of light in free space $c = 3 \times 10^8$ m/s

Characteristics of communication channel

Modeling a communication channel

- $v_{in}(t) = V_{in} \sin wt$
 - **V**_{in}: Amplitude of voltage in input
 - w : nhip ; f = w/2pi : Frequency;
 - T = 2pi/w = 1/f : Cycle.
- $v_{out}(t) = V_{out} \sin(wt + F)$
 - V_{out}: Amplitude of voltage in output
 - F : Phase deviation

Characteristics of communication channel

- According to Electromagnetism law:
 - $V_{out}/V_{in} = (1 + R^2C^2W^2)^{-1/2}$
 - F = atan(-RC w)

Characteristics of communication channel

- Loss of signal = P_{in}/P_{out}
- Calculated in decibel:
 - $A(w) = 10 \log 10(Pin/Pout)$

The nearer to f₀ the frequency of the signal is, the less the loss of signal is

Signal Characteristics

- It can be shown (by Fourier analysis) that any signal is made up (i.e. composed) of a number (possible an infinite number) of components and each signal component is a sine wave.
- Component sine waves are of different frequencies, amplitudes and phases.
- Any periodic signal consists of discrete frequency components, i.e. its components have frequencies that are multiple of one base frequency.
- Any aperiodic signal consists of continuum of frequencies.

Bandwidth

- A₀,: Threshold of hearing
 - Sine waves which frequencies are lower than f1 or grater than f2 are considered as lost
 - Sine waves which frequencies are between f1 and f2 can be received at output
 - Range of frequencies from f1 to f2 is called bandwidth of a physical channel.

Example: Bandwidth of a telephone channel is about 3100 Hz because frequencies of voice that people can hear are in range from 300 Hz to 3400 Hz

Baud rate and Data rate

- Baud rate R: the number of distinct symbol changes (signaling events) made to the transmission medium per second
 - R = 1/t (bauds),
 - t: length of signal
- Data rate/bit rate D: the rate at which data can be communicated, in bits per second
 - Each signal carries n bit
 - D = nR (bits/s)
- Example: Given a transmission systems
 - R = 1200 bauds và D = 1200 bits/s.
 - → each signal carriers only one bit

Example of baud rate & data rate

Bài tập

Vẽ hình các sóng truyền đi trên kênh truyền để truyền đi ký tự 'A' sử dụng 3 loại tín hiệu trên.

Increase data rate

- D = n R
- To increase D:
 - Increase n (number of bits carried by one signal), limited by noise.
 - Or increase R(baud rate), limited by Rmax
- Nyquist (1928):
 - In theory: Rmax = 2 W,
 - In practical Rmax = 1,25 W

Noise and channel capacity

- Three kinds of noise
 - Determined noise: depended on channel characteristics
 - Undetermined noise
 - Thermal noise: from the electron motion

Noise and channel capacity

- Rate between power of signal P_s and power of noise P_B is calculated in decibel
 - $S/B = 10log_{10}(P_S(Watt)/P_B(Watt))$
- Shannon Theorem (1948) determined the maximum number of bits carried by a signal $n_{max} = \log_2 \sqrt{1 + \frac{P_S}{P_E}}$

Channel capacity

• From Nyquist and Shannon:

$$C = D_{\text{max}} = R_{\text{max}} n_{\text{max}} = 2W \log_2 \sqrt{1 + \frac{P_S}{P_B}} = W \log_2 \left[1 + \frac{P_S}{P_B}\right]$$

 C is capacity of a channel, determines the maximum bit rate supported by a channel

Channel capacity

- Example : Telephone channel
 - Bandwidth W = 3100 Hz
 - Rate signal/noise S/B = 20 dB.
 - What is channel capacity C = ?
- We have:

$$C = D_{\text{max}} = R_{\text{max}} n_{\text{max}} = 2W \log_2 \sqrt{1 + \frac{P_S}{P_B}} = W \log_2 \left[1 + \frac{P_S}{P_B}\right]$$

- $S/B = 10log_{10}(P_S/P_B)$
- => P_S/P_B = 10 ((S/B) / 10) = 10 ((20) / 10) = 10 2
- => C = W $\log_2(1+P_S/P_B)$ = 3100 * $\log_2(1+100)$ = 20600 b/s

- Traffic is the amount of data moving across a network at a given point of time
- Traffic presents efficiency of channel usage, a base for choosing a appropriate channel (bandwidth)
- A communication is session having average duration T(s)
- Nc is the average number of session per hour
- E is traffic density, used to measure the usage of channel in one second :
 - E = T Nc / 3600

- A session is composed from many transactions having the average duration p bits, and separated by silences.
- Supposing that Nt is the average number of transactions per session.
- D is data bit of the channel, then the real data bit d in this situation is:

$$d = \frac{N_t p}{T}$$

• **D** is data bit of the channel, then the real data bit **d** in this situation is:

$$d = \frac{N_t p}{T}$$

• Efficiiency of channel usage $\theta = \frac{d}{D}$

- Example: In a science computing, a user connects to a remote Host.
- Given that:
 - p = 900 bits, Nt = 200, T = 2700 s, Nc = 0.8, D = 1200 b/s.
 - Then
 - Traffic density of channel E = 0.6
 - Efficiency of channel usage $\theta = 0.05$

What is line code

 Using signal (analog or digital) to transmit bits "0" and "1" over a communication channel

Line code using digital signal

- a) NRZ : A zero voltage represents a bit 0, a positive voltage represents a bit "1"
- b) RZ : A bit "1" is represented by a transmission from voltage V0 to 0.
- c) Bipolar NRZ: A bit "1" is presented by a positive voltage, then a negative voltage and repeatedly
- d) Bipolar RZ: A bit "1" is represented by a transmission from a non zero voltage to zero. First value of none zero voltage is positive, then a negative voltage and repeatedly

Line code using digital signal

- Biphase
- a) Manchester: A bit "0" is represented by a transition from high to low and a bit "1" is represented by a transition from low to high
- b) Differential Manchester: Jump a phase 0 to represent a bit 0,Jump a phase 180 to represent a bit 1,

Line code using analog signal

- a) NRZ
- b) Amplitude modulation
- c) Frequency modulation
- d) Phase modulation
- e) Bi-phase modulation

Bài tập

- ADSL sử dụng phương pháp mã hóa đường truyền nào ?
 - http://www.vicomsoft.com/learningcenter/dsl-part-2/

Bài tập

Viết chương trình nhận vào một đoạn văn bản và in ra màn hình các tín hiệu mã hóa các văn bản này theo các phương pháp sau:

- Tín hiệu số: NRZ, Manchester
- Tín hiệu tuần tự: Biến điệu cường độ, biến điệu tần số, biến điệu pha