

- Цель: Прогнозирование конечных свойств новых материалов (композиционных материалов).
- На входе имеются данные о начальных свойствах компонентов композиционных материалов (количество связующего, наполнителя, температурный режим отверждения и т.д.). На выходе необходимо спрогнозировать ряд конечных свойств получаемых композиционных материалов.

РАЗВЕДОЧНЫЙ АНАЛИЗ ДАННЫХ

Гистограммы распределения

Ящики с усами

РАЗВЕДОЧНЫЙ АНАЛИЗ ДАННЫХ

Тепловая карта корреляции

ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ДАННЫХ

• Удаление выбросов

Соотношение матрица-наполнитель	6
Плотность, кг/м3	9
Модуль упругости, Гпа	2
Количество отвердителя, м.%	14
Содержание эпоксидных групп,%_2	2
Температура вспышки, С_2	8
Поверхностная плотность, г/м2	2
Модуль упругости при растяжении, Гпа	6
Прочность при растяжении, Мпа	11
Потребление смолы, г/м2	8
Угол нашивки, град	0
Шаг нашивки	4
Плотность нашивки	21

• Нормализация

ПОСТРОЕНИЕ МОДЕЛЕЙ РЕГРЕССИИ

Разделение выборки на обучающую и тестовую:

X_tr_ypr, X_test_ypr, y_tr_ypr, y_test_ypr = train_test_split(X_ypr, y_ypr, test_size=0.3)

X_tr_pr, X_test_pr, y_tr_pr, y_test_pr = train_test_split(X_pr, y_pr, test_size=0.3)

- LinearRegression
- RandomForestRegressor
- RandomForestRegressor + GSCV

ПОСТРОЕНИЕ МОДЕЛЕЙ РЕГРЕССИИ

МОДЕЛЬ УПРУГОСТИ ПРИ РАСТЯЖЕНИИ

param_grid = {'n_estimators': [30, 40, 50],

'max_features': [1, sqrt', 'log2'],

'min_samples_leaf':(10,20],

'min_samples_split': [2, 4])

GSCVypr = GridSearchCV(model_RFypr, param_grid, cv=10)

ПРОЧНОСТЬ ПРИ РАСТЯЖЕНИИ

param_grid = {'n_estimators': (30) 40, 50],

'max_features':[1, sqrt', log2'],

'min_samples_leaf':[10, 20],

'min_samples_split': [2,4]}

GSCVpr = GridSearchCV(model_RFpr, param_grid, cv=10)

ОЦЕНКА КАЧЕСТВА МОДЕЛЕЙ

Модель регрессии	R2	MSE	MAE
Линейная регрессия МУ	-0.015054	0.037863	0.158564
Случайный лес МУ	-0.045591	0.039002	0.161022
Случайный лес + GSCV МУ	-0.019642	0.038034	0.158036
Линейная регрессия ПР	0.010451	0.035203	0.147578
Случайный лес ПР	-0.024529	0.036448	0.150568
Случайный лес + GSCV ПР	0.000855	0.035545	0.148622

НЕЙРОННЫЕ СЕТИ

OPTIMIZER=TF.KERAS.OPTIMIZERS.ADAM(0.001))

LINEAR_MODEL = TF.KERAS.SEQUENTIAL([

NORMALIZER,

LAYERS.DENSE(UNITS=1)
])

LINEAR_MODEL.COMPILE(

OPTIMIZER=TF.OPTIMIZERS.ADAM(LEARNING_RATE=0.1),

LOSS='MEAN_ABSOLUTE_ERROR')

DNN_MODEL = TF.KERAS.SEQUENTIAL([
 NORMALIZER,
 LAYERS.DENSE(18, ACTIVATION='RELU'),
 LAYERS.DENSE(1)
])
DNN_MODEL.COMPILE(LOSS='MEAN_ABSOLUTE_ERROR',

DNNN_MODEL = TF.KERAS.SEQUENTIAL([

NORMALIZER,

LAYERS.DENSE(18, ACTIVATION='RELU'),

LAYERS.DENSE(18, ACTIVATION='RELU'),

LAYERS.DENSE(1)

])

DNNN_MODEL.COMPILE(LOSS='MEAN_ABSOLUTE_ERROR',
OPTIMIZER=TF.KERAS.OPTIMIZERS.ADAM(0.001))

ОЦЕНКА КАЧЕСТВА МОДЕЛИ

	Mean absolute error [Соотношение матрица-наполнитель]
linear_model	0.7213618755340576
DNN_model	0.8182805776596069
DNNN_model	0.8055660128593445

ПРИЛОЖЕНИЕ ДЛЯ РЕКОМЕНДАТЕЛЬНОЙ СИСТЕМЫ

УДАЛЕННЫЙ РЕПОЗИТОРИЙ НА GITHUB

СПАСИБО ЗА ВНИМАНИЕ!