Tate normal form and level resolutions of the K(2)-local sphere

Kyle M. Ormsby

Massachusetts Institute of Technology

March 26, 2012

Current work with Mark Behrens, Nat Stapleton, and Vesna Stojanoska

Outline

- Resolutions via isogenies
- 2 Normal forms for level structures
- 3 Computations

Outline

- Resolutions via isogenies
- 2 Normal forms for level structures

3 Computations

Chromatic homotopy theory

Fix a rational prime p and an integer $n \ge 0$.

Morava *E*-theory
$$E(n)$$
 with $\pi_*E(n)=\mathbb{Z}_{(p)}[v_1,v_2,\ldots,v_n^\pm],$ Morava *K*-theory $K(n)$ with $\pi_*K(n)=\mathbb{F}_p[v_n^\pm]$

with
$$|v_i| = 2(p^i - 1)$$
.

The *chromatic tower*

$$X_{E(0)} \leftarrow X_{E(1)} \leftarrow X_{E(2)} \leftarrow \cdots$$

converges to X (when X is p-local finite).

Via the *chromatic fracture square*, we can build E(n)-localizations from K(n)-localizations.

The K(1)-local sphere

Lubin-Tate theory
$$E_n$$
 with $\pi_*E_n=\mathbb{W}(\mathbb{F}_{p^n})[[u_1,\ldots,u_{n-1}]][u^\pm].$

At the prime p, the first (extended) Morava stabilizer group is $\mathbb{G}_1 = \mathbb{Z}_p^{\times}$ and

$$S_{K(1)}=E_1^{h\mathbb{Z}_p^{\times}}.$$

If p>2, \mathbb{Z}_p^{\times} is topologically cyclic; choose a prime ℓ such that $\langle \ell \rangle$ is dense in \mathbb{Z}_p^{\times} . Then $S_{K(1)}$ fits in the fiber sequence

$$S_{K(1)} \rightarrow E_1 \xrightarrow{\psi^{\ell}-1} E_1.$$

We want to mimic this resolution for $S_{K(2)}$.

Behrens-Lawson $Q(\ell)$ via homotopy fixed points

Fix p and let C be a supersingular elliptic curve defined over \mathbb{F}_p .

Theorem (Behrens-Lawson)

For p > 2 the group

$$\Gamma := \{\ell \text{-power quasi-isogenies of } C\} \rtimes Gal$$

is dense in \mathbb{G}_2 . If p=2, Γ is dense in an index 2 subgroup of \mathbb{G}_2 .

We expect a close connection between $S_{K(2)} = E_2^{h\mathbb{G}_2}$ and $E_2^{h\Gamma}$.

$Q(\ell)$ via level structures

Definition (Behrens-Lawson)

$$Q(\ell) := \operatorname{\mathsf{holim}} \left(egin{array}{c} \mathit{TMF}_0(\ell) \ \mathit{TMF} & imes \ \mathit{TMF} \ \end{array}
ight)$$

By analyzing the building for $GL_2(\mathbb{Q}_\ell)$ we can prove the following.

Theorem (Behrens)

In the K(2)-local category

$$Q(\ell) = E_2^{h\Gamma}$$

$Q(\ell)$ and resolutions

Conjecture (Behrens-Lawson)

For p > 2, $Q(\ell)$ resolves "half" of the K(2)-local sphere in the sense that there is a K(2)-local fiber sequence

$$DQ(\ell) \rightarrow S \rightarrow Q(\ell)$$
.

For p=2, let $\tilde{S}=E_2^{h\mathbb{G}_2}$; then there is a K(2)-local fiber sequence

$$DQ(\ell)
ightarrow ilde{\mathcal{S}}
ightarrow Q(\ell).$$

For p=2, $\tilde{\mathbb{G}}_2=\bar{\Gamma}$ with index 2 in \mathbb{G}_2 .

Topological modular forms

There is an étale sheaf of E_{∞} rings \mathcal{O}^{top} on the stack of generalized elliptic curves \mathcal{M} due to Goerss-Hopkins-Lurie-Miller.

$$\begin{pmatrix} \operatorname{Spec} R \\ E/R \leftrightarrow & \downarrow \\ \mathcal{M} \end{pmatrix} \mapsto \operatorname{C.O.C.T.} \text{ for } \hat{E}$$

The 576-periodic cohomology theory *TMF* is defined as

$$TMF := \mathcal{O}^{\mathsf{top}}(\mathcal{M}).$$

The "level structure" TMFs are constructed by applying \mathcal{O}^{top} to interesting étale covers of \mathcal{M} .

Elliptic curves with level structures

Definition

$$\{\Gamma_1(n)\text{-structures}\} := \left\{ (E, P) : \begin{array}{l} E \text{ elliptic curve} \\ P \in E \text{ of order } n \end{array} \right\}$$
$$\{\Gamma_0(n)\text{-structures}\} := \left\{ (E, H) : \begin{array}{l} E \text{ elliptic curve} \\ H \subset E \text{ cyclic of order } n \end{array} \right\}$$

The moduli spaces of $\Gamma_1(n)$ - and $\Gamma_0(n)$ -structures are denoted $\mathcal{M}_1(n)$ and $\mathcal{M}_0(n)$.

The "level structure TMFs" we study are

$$TMF_i(n) := \mathcal{O}^{\mathsf{top}}(\mathcal{M}_i(n))$$

for i = 0, 1.

Constructing $Q(\ell)$

We get $Q(\ell)$ by applying the *TMF* sheaf \mathcal{O}^{top} to a semi-simplicial stack \mathcal{M}_{\bullet} :

Maps in the simplicial stack

$$\mathcal{M} \xleftarrow{q} \mathcal{M}_0(\ell) \xleftarrow{t} \mathcal{M}_0(\ell)$$

$$\mathcal{M} \xleftarrow{\psi^{\ell}} \coprod \mathcal{M} \xrightarrow{f} \mathcal{M}_0(\ell)$$

$$egin{array}{cccc} \mathcal{M}_0(\ell) \stackrel{f}{
ightarrow} \mathcal{M} & \mathcal{M}_0(\ell) \stackrel{q}{
ightarrow} \mathcal{M} \ (E,H) \mapsto E & (E,H) \mapsto E/H \ \\ \mathcal{M} \stackrel{\psi^\ell}{
ightarrow} \mathcal{M} & \mathcal{M}_0(\ell) \stackrel{t}{
ightarrow} \mathcal{M}_0(\ell) \ E \mapsto E/E[\ell] & \phi \mapsto \hat{\phi} \end{array}$$

Goals

Project goals:

- Understand Q(ℓ) and the Behrens-Lawson conjecture at p = 2 for ℓ ≥ 5.
 - Mahowald-Rezk have studied Q(3) at p = 2.
 - We should find different "K(2)-local semi-hemispheres" at varying ℓ .
- Shed conceptual light on the difficult computations of Shimomura-Wang.
- Connect to the group-theoretic K(2)-local resolutions of Goerss-Henn-Mahowald-Rezk.

Talk goals:

- Describe models for M₀(ℓ) that permit computations on the Hopf algebroid level.
- See how the divided β -family sits in Q(5).

$TMF_0(5)$ and the Kervaire invariant

image: Hill-Hopkins-Ravenel

Outline

- Resolutions via isogenies
- 2 Normal forms for level structures

3 Computations

Elliptic curves

Recall that every elliptic curve has a Weierstrass form

$$C_{\mathbf{a}}: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where $\mathbf{a} = (a_1, a_2, a_3, a_4, a_6)$ and $\Delta(\mathbf{a})$ is invertible. There's an associated Weierstrass Hopf algebroid

$$(A,\Gamma)=(\mathbb{Z}[\mathbf{a},\Delta^{-1}],A[r,s,t,\lambda^{\pm}])$$

where the automorphisms are

$$C_{\mathbf{a}'} \xrightarrow{\varphi_{r,s,t,\lambda}} C_{\mathbf{a}}$$

$$x \mapsto \lambda^{-2}x + r$$

$$y \mapsto \lambda^{-3}y + \lambda^{-2}sx + t.$$

Tate normal form for $\Gamma_1(\ell)$ -structures

Apply coordinate transforms to $(C_{\mathbf{a}''}, P) \in \mathcal{M}_1(\ell), \ell \geq 5$:

Relations from torsion

Since (0,0) has order ℓ ,

$$\left[\frac{\ell+1}{2}\right](0,0)=\left[\frac{1-\ell}{2}\right](0,0).$$

We get polynomials encoding the fact that (0,0) is ℓ -torsion.

ℓ	$g_\ell(a_1,a_2,a_3)$	$f_\ell(b,c)$
5	$-a_1a_2a_3+a_2^3+a_3^2$	-b+c
7	$a_1^3 a_2^3 a_3 - 3 a_1^2 a_2^2 a_3^2 + \cdots$	b^2-bc-c^3
11	$-a_1^7 a_2^{\bar{1}0} a_3 + 10 a_1^{\bar{6}} a_2^{\bar{9}} a_3^2 + \cdots$	$b^5 - 3b^4c - 4b^3c^3 + \cdots$
13	$-a_1^{10}a_2^{10}a_3^4 - a_1^9a_2^{15}a_3 + \cdots$	$-b^7 + 6b^6c - 4b^5c^3 + \cdots$
17	$a_1^{18}a_2^{21}a_3^{4} - 21a_1^{17}a_2^{20}a_3^{5} + \cdots$	$-b^{12}+10b^{11}c-10b^{10}c^3+\cdots$

Associated Hopf algebroids

The moduli space $\mathcal{M}_1^{tan}(\ell)$ of $\Gamma_1(\ell)$ -structures (E,P)+a tangent vector at P is represented by

$$\mathbb{Z}[a_1, a_2, a_3, \Delta^{-1}]/g_{\ell}(a_1, a_2, a_3)$$

[To get a Hopf algebroid stackifying to $\mathcal{M}_1(\ell)$ we just need to add in a \mathbb{G}_m worth of automorphisms (they scale the tangent vector but retain homogeneous Tate normal form).]

Passing to non-homogeneous Tate normal form we also have that $\mathcal{M}_1(\ell)$ is represented by

$$\mathbb{Z}[b, c, \Delta^{-1}]/f_{\ell}(b, c).$$

Immediate corollaries of Tate normal form

The 2-series for E(b, c) is

$$[2]_T(z) = 2z - (1-c)z^2 + 2bz^3 + \cdots$$

Thus we see the supersingular locus at p = 2 of $\mathcal{M}_1(\ell)$ by computing $f_{\ell}(b, 1) \pmod{2}$.

Corollary (O.-Stapleton-Stojanoska)

ℓ	$f_{\ell}(b,1) \pmod{2}$	$TMF_1(\ell)_{K(2)}$
5	<i>b</i> + 1	$E_2(\mathbb{F}_2)$
7	$b^2 + b + 1$	$ extstyle E_2(\mathbb{F}_{2^2})$
11	$b^5 + b^4 + b^3 + b^2 + 1$	$E_2(\mathbb{F}_{2^5})$
13	$(b^4+b+1)(b^3+b+1)$	$E_2(\mathbb{F}_{2^4}) \times E_2(\mathbb{F}_{2^3})$
17	$(b^8 + b^7 + b^6 + b^5 + b^4 + b^3 + 1)$	$E_2(\mathbb{F}_{2^8}) \times E_2(\mathbb{F}_{2^4})$
	$(b^4+b^3+b^2+b+1)$, = , , , ,

The Hopf algebroid for $\mathcal{M}_0(5)$

Specializing to the case $\ell = 5$ we can compute

$$g_5(a_1, a_2, a_3) = a_2^3 + a_3^2 - a_1 a_2 a_3.$$

This allows us to put the universal elliptic curve $T(\mathbf{a})$ in the form

$$y^2 + a_1xy + u^2(a_1 - u)y = x^3 + u(a_1 - u)x^2$$

with u invertible. Hence

$$\mathcal{M}_1^{tan}(5) = \operatorname{Spec} \mathbb{Z}[a_1, u^{\pm}, \Delta^{-1}].$$

The Hopf algebroid for $\Gamma_0(5)$ -structures is then

$$(B,\Lambda)=(\mathbb{Z}[a_1,u^{\pm},\Delta^{-1}],\operatorname{Map}(\mathbb{Z}/5^{\times},B)).$$

Maps between Hopf algebroids

On the Hopf algebroid level, the forgetful map f in the cosimplicial is represented by

$$(A,\Gamma) \xrightarrow{f} (B,\Lambda)$$

 $a_i \mapsto a_i, i = 1,2,3$
 $a_4, a_6 \mapsto 0$

We see the quotient map q as

$$(A,\Gamma) \xrightarrow{q} (B,\Lambda)$$

 $a_i \mapsto a_i, \ i = 1,2,3$
 $a_4 \mapsto 5a_1^2 a_2 - 10a_1 a_3 - 10a_2^2$
 $a_6 \mapsto a_1^4 a_2 - 2a_1^3 a_3 - 12a_1^2 a_2^2 + 19a_2^3 - a_3^2$

via Vélu's formulae.

The Atkin-Lehner dual

We can lift the map

$$\phi \mapsto \widehat{\phi}$$

to $\Gamma_1(5)$ -structures via the Weil pairing

$$\langle \; , \; \rangle_{\phi} : \ker \phi \times \ker \widehat{\phi} \to \mu_5$$

after adjoining a fifth root of unity ζ . On the level of Hopf algebroids, we find

$$a_1 \mapsto \frac{1}{5}(-8\zeta^3 - 6\zeta^2 - 14\zeta - 7)a_1 + \frac{1}{5}(14\zeta^3 - 2\zeta^2 + 12\zeta + 6)u,$$

$$u \mapsto \frac{1}{5}(-\zeta^3 - 7\zeta^2 - 8\zeta - 4)a_1 + \frac{1}{5}(8\zeta^3 + 6\zeta^2 + 14\zeta + 7)u.$$

The Atkin-Lehner dual on modular forms

Let $b_1 := a_1 - u$. Then

$$MF_*(\Gamma_0(5)) = \frac{\mathbb{Z}[1/5, b_2, b_4, \Delta^{\pm 1/3}, D^{\pm}]}{(b_4^2 = b_2 \Delta^{1/3} - 4\Delta^{2/3}, D = 11(\Delta^{1/3})^3 + \Delta^{2/3}b_4)}$$

where

$$b_2 := (u^2 + b_1^2)^2,$$

 $b_4 := u^3 b_1 - u b_1^3,$
 $\Delta^{1/3} := u^2 b_1^2.$

On $MF_*(\Gamma_0(5))$, t^* takes the form

$$t^*(b_2) = -5b_2,$$

$$t^*(b_4) = \frac{1}{5}(11b_2^2 - 117b_4 - 88\Delta^{1/3}),$$

$$t^*(\Delta^{1/3}) = \frac{1}{5}(b_2^2 - 22b_4 + 117\Delta^{1/3}).$$

Outline

- Resolutions via isogenies
- 2 Normal forms for level structures
- 3 Computations

The double complex for $H^*(Q(\ell); \omega^{\otimes *})$

There are spectral sequences

$$H^* \left\{ egin{aligned} C^*(\Gamma) \ C^*(\Lambda) \end{aligned}
ight\} = H^* \left(\left\{ egin{aligned} \mathcal{M} \ \mathcal{M}_0(5) \end{aligned}
ight\}; \omega^{\otimes *}
ight) \implies \pi_* \left\{ egin{aligned} \mathit{TMF} \ \mathit{TMF}_0(5) \end{aligned}
ight\}.$$

A double complex computes $E_2(Q(5)) = \mathbb{H}^*(\mathcal{M}_{\bullet}; \omega^{\otimes *})$:

$$C^{0}(\Gamma) - d^{e} \rightarrow C^{0}(\Lambda) \oplus C^{0}(\Gamma) - d^{e} \rightarrow C^{0}(\Lambda)$$

$$\downarrow^{i} \qquad \qquad \downarrow^{i} \qquad \qquad \downarrow^{i}$$

$$C^{1}(\Gamma) - d^{e} \rightarrow C^{1}(\Lambda) \oplus C^{1}(\Gamma) - d^{e} \rightarrow C^{1}(\Lambda)$$

$$\downarrow^{i} \qquad \qquad \downarrow^{i} \qquad \qquad \downarrow^{i}$$

$$C^{2}(\Gamma) - d^{e} \rightarrow C^{2}(\Lambda) \oplus C^{2}(\Gamma) - d^{e} \rightarrow C^{0}(\Lambda)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Accessing the second monochromatic layer

If N is a BP_*BP -comodule, then

$$M_2^0 N := v_2^{-1} N/v_0, v_1, \quad M_1^1 N := v_2^{-1} N/v_0, v_1^{\infty},$$

$$M_0^2 N := v_2^{-1} N/v_0^{\infty}, v_1^{\infty}.$$

There are Bockstein spectral sequences

$$\operatorname{Ext}^{*,*} M_2^0 N \otimes \frac{\mathbb{F}_2[v_0, v_1]}{v_0^{\infty}, v_1^{\infty}} \implies \operatorname{Ext}^{*,*} M_1^1 N \otimes \frac{\mathbb{F}_2[v_0]}{v_0^{\infty}} \implies \operatorname{Ext}^{*,*} M_0^2 N.$$

If $N = BP_*X$ we also have the monochromatic Adams-Novikov spectral sequence

$$\operatorname{Ext}^{*,*} M_0^2 N \implies \pi_* M_2 X$$

If X = S, this is the strategy of Miller-Ravenel-Wilson and $\operatorname{Ext}^{0,*} M_0^2 BP_*$ detects the β -family.

The β -family in $Q(\ell)$

Let $C^{\bullet}_{tot}(Q(\ell))$ denote the totalization of the double complex.

Theorem (Behrens-O)

The map

$$\operatorname{Ext}^{0,*} M_0^2 BP_* \to H^{0,*} M_0^2 C_{tot}^{\bullet} Q(3)$$

is an isomorphism.

Surprise (Behrens-O)

The map

$$\operatorname{Ext}^{0,*} M_0^2 BP_* \to H^{0,*} M_0^2 C_{tot}^{\bullet} Q(5)$$

is not.

S and Q(3) see only up to $\beta_{4/6}$ while Q(5) sees $\beta_{4/7}$.

Symmetry breaking in the $Q(\ell)$ spectra

Let $\mathbb{S}_2^{(\ell)}$ denote the preimage of $\ell^\mathbb{Z}$ under the reduced norm

$$\mathbb{S}_2 \xrightarrow{N} \mathbb{Z}_2^{\times}$$
.

If $\ell^{\mathbb{Z}}$ is dense in an index 2 subgroup of $\mathbb{Z}_2^{\times}=\pm 1 \times (1+4\mathbb{Z}_2)$, then $[\mathbb{S}_2:\mathbb{S}_2^{(\ell)}]=2$.

Projecting out the Galois part, Γ_{ℓ} is dense in $\mathbb{S}_{2}^{(\ell)}$.

On the level of second monochromatic layers, the $\mathbb{S}_2^{(3)}$ -invariants of π_*E_2 match the \mathbb{S}_2 -invariants, but there are more $\mathbb{S}_2^{(5)}$ -invariants!