Ch. 3 Conditional Probability and Independence

EX - toss two dice

di	و	#	2
----	---	---	---

		- 1	2	3	-(5	6
	ļ	41,17	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
die#1	Z	(2,1)	12,2)	(2,3)	(2,4)	(2,5)	(2,6)
	3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
	4	(41)	(4,2)	(4,3)	(4,4)	(45)	(4,6)
	5	15,1)	(5,2)	L5,3)	(5,4)	(5,5)	(5,6)
		(6,1)	(6,2)	16,3)	16,4)	(4,5)	(6,6)
			•	•			

· Probabilities of comes of the two dice

(

to ku some 6 possible outeres

dice shows a 1, and agte you to give one the probabilities of these various sums (e.g. kelve showing you the second die)

6 Possible outcomes (1,1), (1,2), (1,3), (1,4), (1,5), (1,6)

$$S \supset P(sum=2) = \frac{1}{6} P(sum=5) = \frac{1}{6} P(sum=2) = 0$$

greathing $P(sum=3) = \frac{1}{6} P(sum=6) = \frac{1}{6} P(sum=6) = 0$

Prece of information $P(sum=4) = \frac{1}{6} P(sum=7) = \frac{1}{6} P(sum=12) = 0$

These new probabilities are called conditional probabilities.

Det:
Suppose E and F represent events. The
conditional probability that E occurs of the F
has occurred is denoted by P(E|F)Further, if P(F) > 0 then

- · Note: the denominator represents that our probabilities are measured relative to a new reduced, sample space
- · In our previous example denote

F= event that Great die # is a 1

E = event that the sum of the two dice is x (where x = 2,3,4,5,6,7,8,9,10,11,12)

×	2	3	4	5	6	17	18	9	01	1 (1)	12
()PLEF)	1			3	1						
•	36	36	36	36	36	136	0	D	0	0	0
50						 	+		1	-	
P(EIF)	36	1230	1	1	1		10	0	0	(2)	0
= PLEM	1 6	6 1	6	6	6	6					0
PLET	40			1							

probabilities is that with they
often mormation you can reduce Ple sern space 80 that The the atomes of the restricted space - in give in space they sould

Exemple 2c (p.58) (ord Grame of Bridge : (Uplayers) 52 cards dealt out - 13 to each player relled N,S,E,W. Suppose we are told that N and S have a total of 8 species What is the probability that E holds the remainly 5 species? (4 of the 501: work with reduced sample space 50fthe " Eard W hold Zle of the according cards. choose 3 of 5 spedes non-spedes -> conditional probability that East holds respect 3 of ~ 0.339 remaining 5 spaces (10) (352,716) R total # of 10,400,600 breduced out comes ho East's hand -> conditional probability that East holds of of the remainly 5 speaks 5. 293,930 10,400,600

-> condittual publishing that East holds 5 of the remaining 5 spedes = 0,01956 Note:

· The conditional probability P(E|F) = P(EF) P(F)

probability of with E and Foccurry, That is,

P(EF) = P(E/F) · P(F) · P(F)

more generally the "multiplication rule" her probability of the intersection of an arbitrary number of events is The all the set

> P(E, Ez ... En) = P(E,).P(Ez | E,).P(Ez | E, Ez).... P(En | El Ez ... En-1)

e.g. P(E,EzEz) = P(E) ·P(Ez[E]) ·P(Ez[Ez]) (different)

= P(Ez) · P(Ez[Ez]) · P(E|[EzEz]) (with)

P(EIF) = P(EF) # IN EF

e.g. start by considering

P(E, E2 -... En) . P(En | E, E2 -- En-1) . P(E, E2 -- En)

P(En-, | E, Ez ... En-z). P(E, ... Bn-z)

exc.

Pollen 311 (p.98)

Two cods are randomly chosen without replacement from a standard dech of 52 cards.

Let B = Execut that both cords are aces.

Let As = event that the Ace of Spedes in chusen.

Let A = event that at loast one ace is chosen.

a) Find P(B(As)

that one of the cods is
the Aze of Spedes.

- P(BAs)

P(As) (1) (51)

 $=\frac{2}{52}$ $\binom{52}{2}$ $\binom{3}{1}$

P(BAs) = 1.3 = 3 hands out of (52) hand have both aces manually As.

 $P(B|A_5) = \frac{3/(52)}{51/(52)} = \frac{3}{51} = \frac{1}{17} = P(B|A_5)$

≈0.0588.

b) P(B|A) = P(BA)
P(A)

• $P(A) = \binom{4}{1} \binom{48}{1} + \binom{4}{2} + \binom{48}{2} + \binom{52}{152} + \binom{52}{152}$

me ace (2) (2) two aces (2) (2)

$$P(A) = {52 \choose 2} - {48 \choose 2}$$

$$(52)$$

Also

20,14932

Them

(-

$$\frac{(52)}{198} = \frac{(52)}{198} = \frac{1}{33} - P(B1A)$$

$$\frac{(52)}{(52)}$$

$$\approx 0.03030...$$

buth cords are acos greathant of the at legist one of the cords is an ace.

Exemple 2d (p. 58)

Celine needs to decide on which course to the this semester; French or Chemistry.

- . She estimates her probability of getting and in French is 1/2 and of getting and in Chamistry is 2/3.
- · Celine likes probability too and so will cet her decish be based on the flip of a feir coin.
- Q: What is the probability that she gets an A inchemistry
- A: Note: the event of getting an It in chumistry uneans that the had to take chemistry and that she had to get an A mit.

tet C= event she thes churishy

A = event she gets an A in whatever course she teles.

P(CA) - probability the thes Chem and gets and init.

$$= P(A|C)P(C)$$

$$= \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{3} - P(CA)$$

Some other veriting/computations:

Let F - event she takes French

Note: A = event she does not get an A in whotever course she teles

•
$$P(FA) - P(A|F)P(F)$$
 = $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{4} = P(FA)$

P(FAC) = P(AC|F)P(F)

$$=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}=P(FA^c)$$

P(CA°) = P(A°(C).P(c)=

$$\frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} = P(CA^c)$$

P(CA) + P(CA) + P(FA) + P(FA) = 1

C= CAUCA with cA and CA mutually exclusive

P(c) = P(cA) + P(cA)

F = FAUFA° with FA and FA° mutually exclusive

P(F) ~P(FA) +P(FAC)

TO TO THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OW

· P(C) + P(F) = 1 · CUF = S = entire semple space MANNE

er cej folgotesto

Bessed on these computations, what is the probability that Celme got an A this semester?

P(A) = P(CA) = P(FA) = Sunst Anotherilitres

of Ain Chemor

Ain French

 $-\frac{4}{12} + \frac{3}{12} \times \left(\frac{7}{12}\right)$

We can think of this another way, startwith A use aroun3 .

5 D

A = CAUFA where CA and FA are

mutually exclusive

P(A) = P(CA) + P(FA) by Aroun3

= P(ALC)P(C) + P(ALF)P(F)

 $\frac{7}{2} \cdot \frac{1}{7} + \frac{1}{2} \cdot \frac{1}{2} = \frac{7}{6} + \frac{7}{12}$

Comment: This is the idea of Beyes's Formula, which we'll hitroduce shortly ... (note here C = F)

THE REST OF STREET

The Edge of Agricing

200 miles p. 67

- - - - '27#**##W#T_I

9 	(63)
Celène her te to choose 1 of 6 disses, Ci, i=	1,2,3,4,5,6
Her Probability of getting an Aira C, is P,	
Co Po	
She'll rolla feir die to decide which class to tel	ue?
Q: What is the probability that she gets an Ai.	n Ci.
P(CiA) = P(A(Ci). P(Ci)	
= Pi · 6	
Q: what is the probability that she gets and there semester? Next A = CANDON Where C.A. where C.A.	A one CjA
$P(A) - \sum_{i=1}^{6} P(C_iA)$ $= \sum_{i=1}^{6} P(C_iA)$ $= \sum_{i=1}^{6} P(C_iA)$	
i=1 = \(\frac{6}{2} \rightarrow P(C_i) \) = \(\frac{5}{2} \rightarrow P(C_i) \) = \(\frac{5}{2} \rightarrow \frac{1}{6} \) = \(\frac{1}{2} \rightarrow P(C_i) \) = \(\frac{5}{6} \) = \(\frac{1}{6} \)	P(A)