



## Laboratório 6

**1.** Rotação binária é uma operação que consiste em, dado uma palavra de n bits, fazer um reposicionamento dos bits na palavra de maneira circular, mantendo a ordem. Isto é, quando o reposicionamento é diferente de um múltiplo de n, o bit mais significativo da palavra rotacionada é aquele de posição anterior, no vetor original, ao bit menos significativo. Ex.:  $x_3$   $x_2$   $x_1$   $x_0$ , rotacionado em 2 é  $x_1$   $x_0$   $x_3$   $x_2$ .

Uma forma de implementar essa operação em *hardware* é através do circuito chamado *barrel shifter*. Dados uma palavra binária  $W = w_3 \ w_2 \ w_1 \ w_0$ , um valor de rotacionamento  $S = s_1 \ s_0$ , a saída  $Y = y_3 \ y_2 \ y_1 \ y_0$  será conforme a tabela verdade mostrada abaixo:

| S1 | S0 | <b>y</b> 3     | <b>y</b> 2 | <b>y</b> 1 | <b>y</b> 0 |
|----|----|----------------|------------|------------|------------|
| 0  | 0  | <b>W</b> 3     | W2         | W1         | <b>W</b> 0 |
| 0  | 1  | W0             | <b>W</b> 3 | W2         | W1         |
| 1  | 0  | W0<br>W1<br>W2 | <b>W</b> 0 | <b>W</b> 3 | W2         |
| 1  | 1  | W2             | W1         | <b>W</b> 0 | <b>W</b> 3 |

- a) Implemente em VHDL um barrel shifter de 4 bits a partir da tabela verdade acima.
  Simule seu funcionamento. Dica: utilize multiplexadores 4:1. [Entregar barrelShifter4.vhd]
- **b)** Utilizando o demo\_setup, **teste** sua implementação na DE1, utilizando as *switches* como entradas e os *LEDs* como saídas.

2.

- a) Implemente em VHDL um somador carry look-ahead (CLA) de 4 bits. Verifique sua implementação simulando. Compare, usando o analisador de tempo, o caminho crítico e seu tempo dessa implementação com a do laboratório anterior (somador ripple-carry de 4 bits). Qual tem o menor tempo? [Entregar CLA4.vhd] Utilizando o demo\_setup, teste sua implementação na DE1, utilizando as switches como entradas e os LEDs como saídas.
- b) Implemente em VHDL um somador de 8 bits com CLA parcial, utilizando dois somadores CLA de 4 bits, interconectados em cascata (carry-out o CLA menos significativo conectado ao carry-in do CLA mais significativo. Compare, usando o analisador de tempo, o caminho crítico e seu tempo dessa implementação com a do laboratório anterior (somador ripple-carry de 8 bits). Qual tem o menor tempo? [Entregar CLAParcial8.vhd]
- c) Implemente em VHDL um somador carry look-ahead (CLA puro) 8 bits, sem nenhuma ligação em cascata ou do tipo ripple carry. Para isto, você terá que estender as equações de CLA de 4 bits (dadas em aula) para 8 bits. Compare, usando o analisador de tempo, o caminho crítico e seu tempo dessa implementação com as implementações anteriores de 8 (ripple carry, CLA parcial). Qual tem o menor tempo? [Entregar CLA8.vhd e Relatorio.txt com as análises dos tempos dos itens a, b, c]

## MC613





## 3. [Opcional]

a) Baixe o arquivo CLA\_test\_8bits.zip em material complementar no site da disciplina. Crie um projeto com CLA\_test\_8bits.bdf como top-level na pasta e adicione seu somador CLA de 8 bits do item b). Execute o analisador de timing. Grave o valor de frequência máxima obtida. Repita os passos deste item com o somador do item c). Houve diferença nos valores encontrados? Quais são essas frequências máximas? Qual das implementações tem maior frequência?

Observação.: Essa análise permite definir, por exemplo, qual a frequência máxima de um processador. Nas próximas aulas essas questões serão aprofundadas.