強化学習

松吉 俊

複雑な迷路を解く

● アルゴリズムをさらに汎用化し、 map4.txtとmap5.txtとmap6.txtも解くことが できるように改良したい

自律移動ロボット

1.1

どんな迷路でも 自律的にゴールに ↑ 移動したい

新しい迷路が追加される度に、 人間が、その都度、方法を 指示しないような状態

自律移動ロボット

機械学習によって 任意の迷路の最適経路 を獲得する!

- ヒトや動物の学習機構を真似る!
 - 試行錯誤 (下手な鉄砲を目一杯打つ)
 - 古典的条件付け (パブロフの犬)

試行錯誤でゴールに到る経路を探索

- ヒトや動物の学習機構を真似る!
 - 試行錯誤 (下手な鉄砲を目一杯打つ)
 - 古典的条件付け (パブロフの犬)

試行錯誤でゴールに到る経路を探索

そのうち経路が見つかるはず (最適な経路かどうかは気にしない)

この経路をとても褒める

- ヒトや動物の学習機構を真似る!
 - 試行錯誤 (下手な鉄砲を目一杯打つ)
 - 古典的条件付け (パブロフの犬)

試行錯誤だが今度は<u>見つかっている</u> 経路周辺を重点的に探し出す (また褒めてもらえそうなので)

- ヒトや動物の学習機構を真似る!
 - 試行錯誤 (下手な鉄砲を目一杯打つ)
 - 古典的条件付け (パブロフの犬)

試行錯誤だが今度は見つかっている 経路周辺を重点的に探し出す

そのうち最適経路が見つかるはず

強化学習

- 目的
- 政策
- 報酬関数
- 行動の評価値: Q値

- 強化学習アルゴリズムの例
 - Q学習のアルゴリズム

強化学習の目的

(状態遷移確率付)有限オートマトンにおいて 目標状態に到達するような政策を学習したい!

強化学習の目的

(状態遷移確率付)有限オートマトンにおいて 目標状態に到達するような政策を学習したい!

政策

(本によっては「方策」と呼ぶこともある)

🏓 状態から行動への写像 π

般的に、遷移関係は未知

ある状態である行動を実行したときに その結果、どの状態に遷移するかは不明

求めたい政策

$$\pi(s_1) = a$$

$$\pi(s_2) = b$$

$$\pi(s_1) = a$$

遷移関係は不明!

政策を学習するために

報酬関数の導入

- 報酬関数 r(s)
 - 強化学習問題において目標を定義する
 - $^{\circ}$ 状態 s を 1 個の数字である報酬(reward)に写像する
 - 報酬はその状態の望ましさを表す

強化学習では、最終的に受け取る総報酬を 最大化するような政策を学習する

報酬関数の例1

報酬関数の例1

報酬関数はユーザが適切に定義する

目標に到達できないので負の報酬(ペナルティ)

報酬関数の例2

例えば、目標状態のみに報酬を定義しても良い ただし、学習がうまくいかない場合は、 より良い報酬関数を定義する必要がある

政策と報酬の関係(1)

政策と報酬の関係(2)

政策と報酬の関係(1')

政策と報酬の関係(2')

政策と報酬の関係(3)

政策と報酬の関係(4)

- 状態 s で行動 a を実行した結果…
 - もし正の報酬が得られるなら、状態 s で行動 a を選択 することを強化する
 - 逆に負の報酬であれば、状態 s において行動 a が選択 されにくくする

ある状態において、どの行動を選択するのが良いのか を表す行動の評価値を導入する

行動の評価値: Q値

- $\bigcirc Q(s,a)$
 - [●] 状態 S における行動 a の評価値
 - 正確には、状態 S で行動 a を実行することにより、 今後獲得可能な報酬の総量の期待値 (まさに行動の「良さ」を表している)

強化学習では、この Q 値を徐々に学習していく

Q値のテーブル:初期状態

Q(s,a)

状態 S で行動 a を実行する ことにより、今後獲得可能な 報酬の総量の期待値

初期状態では、 $Q(s_i, a_j) = 0$ (つまり Q 値は不明)

Q 値のテーブル: 最終状態

Q(s,a)

状態 S で行動 a を実行する ことにより、今後獲得可能な 報酬の総量の期待値

- 例えば Q(s₁, a₃) は、状態 s₁ で 行動 a₃ を実行すると、今後報 酬を平均して 87 獲得可能であ ることを表す
- 学習完了後は、各状態において 最大の報酬が得られる行動(赤 色のマス)を実行すればよい

Q 学習のアルゴリズム

- (1) 全ての状態 s と行動 a に対して、Q(s,a) の値を 0 で初期化
- (2) 現在の状態が s であるとき、 ϵ -greedy 戦略で行動 a を選択し、それを実行する
- (3) 遷移先の状態 s'を観測し、Q(s,a) の値を次式で更新する

$$Q(s,a) \leftarrow Q(s,a) + \alpha[(r(s') + \gamma \max_{a'} Q(s',a')) - Q(s,a)]$$

(4) s' を s としてステップ (2) へ戻る

Q 学習のアルゴリズム

- (1) 全ての状態 s と行動 a に対して、Q(s,a) の値を 0 で初期化
- (2) 現在の状態が s であるとき、 ϵ -greedy 戦略で行動 a を選択し、それを実行する
- (3) 遷
- ε-greedy 戦略
- Q(s)
- ightharpoonup 確率 ε (0.0 \leq ε \leq 1.0)でランダムに行動を選択する
- ➤ それ以外では、Q 値が最大の行動を選択する. もしそのような 行動が複数あるならば、それらからランダムに選択する
- (4) s'
- Q テーブルの各マスを埋めるためにもある程度のランダム性は必要

0 値の時間差分方程式

学習率 α $(0.0 \le \alpha \le 1.0)$ ·

> α = 0.0: 学習しない

α = 1.0: 新しい評価値を信じる

割引率 γ $(0.0 \le \gamma \le 1.0)$ -

▶ y = 0.0: 目先の利益を追求

> γ = 1.0: 将来性も考慮

状態 s で行動 a を実行する ことにより、今後獲得可能な 総報酬の新しい期待値

新しい期待値と古い期待値との誤差

a'の評価値

最適政策

最終的に受け取る 総報酬の期待値が最大となる政策

Q 学習では、十分に学習を行ったのちに、 各状態においてもっとも大きい Q 値を とるような行動を選択することで最適政策となる

これを greedy 戦略という

最適政策

最終的に受け取る 総報酬の期待値が最大となる政策

	a_1	a_2	a_3	a_4	••••	a_m
S_{I}	10	3	87	-5		17
S_2	32	5	2	78		0
S_3	67	13	23	9		20
S_4	0	-5	94	43		2
i						
S_n	17	42	8	32		102

● 学習完了後は、各状態において最大 の報酬が得られる行動(赤色のマス) を実行すればよい

強化学習で迷路を解く

● 次回

Special thanks:

- 山本 泰生先生
- 鍋島 英知先生