- 1. Consider the problem [Vanderbei 5th edition, Exercise 1.1]. Write this as a Linear Programming problem (in the standard inequality form). You must explain your notation and variables.
- 2. Consider the problem [Vanderbei. 5th edition, Exercise 1.2].

Write this as a Linear Programming problem (in the standard inequality form). You must explain your notation and variables.

3. For a nonempty set $S \subset \mathbf{R}^n$ and a positive real number $r \in \mathbf{R}$ (and r > 0), define the set rS as follows:

$$rS := \{ z \in \mathbf{R}^n \mid z = rx, \, x \in S \}.$$

Here rx is the multiplication of the vector $x \in \mathbf{R}^n$ by the scalar $r \in \mathbf{R}$; in your more familiar notation, $r\vec{x}$. The set rS is the set of all points that are obtained by multiplying r with the vectors $x \in S$.

For a given nonempty set $S \subset \mathbf{R}^n$ and a given positive number r > 0, prove that if S is a convex set then rS is a convex set as well.

4. For given two nonempty sets $S_1, S_2 \subset \mathbf{R}^n$, define the operation $S_1 + S_2$ as follows:

$$S_1 + S_2 := \{z \in \mathbf{R}^n \mid \text{ there exist some } x \in S_1 \text{ and some } y \in S_2 \text{ such that } z = x + y \}$$

that is, each point $z \in S_1 + S_2$ is the one that can be expressed as the sum x + y for some $x \in S_1$, and $y \in S_2$; here the sum x + y is the vector sum between the two vectors. One does this for all $x \in S_1$ and $y \in S_2$ and get the set $S_1 + S_2$.

- (a) Consider $S_1 = \{(x_1, x_2) \in \mathbf{R}^2 \mid |x_1 1| \le 1 \& |x_2 2| \le 1\}$ and $S_2 = \{(x_1, x_2) \in \mathbf{R}^2 \mid |x_1| \le 2 \& |x_2| \le 1\}$. Sketch the set $S_1 + S_2$. You do not need to explain your solution for this question. But, your sketch should be neat and very clear, indicating all the relevant coordinate values.
- (b) Is it true that $S_1 + S_2$ must be convex for **any** nonempty convex sets S_1 and S_2 in \mathbb{R}^n ? Justify your answer carefully. [This problem is independent of part (a). The sets S_1, S_2 are arbitrary convex sets in this question, not the particular example given in part (a). If you do this problem only for the sets of part (a) or a particular example, you will get zero mark.]