4-40

Vector optimization

general vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to
$$f_i(x) \leq 0, \quad i=1,\dots,m$$

$$h_i(x) \leq 0, \quad i=1,\dots,p$$

vector objective $f_0: \mathbf{R}^n o \mathbf{R}^q$, minimized w.r.t. proper cone $K \in \mathbf{R}^q$

convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,\dots,m$ $Ax=b$

with f_0 K-convex, f_1,\ldots,f_m convex

Optimal and Pareto optimal points

set of achievable objective values

$$\mathcal{O} = \{f_0(x) \mid x \text{ feasible}\}$$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of $\mathcal O$
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of $\mathcal O$

 $x^{
m po}$ is Pareto optimal

Multicriterion optimization

vector optimization problem with $K = \mathbf{R}_+^q$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^{\star} is optimal if

$$y \text{ feasible} \implies f_0(x^\star) \preceq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

ullet feasible x^{po} is Pareto optimal if

$$y ext{ feasible}, \quad f_0(y) \preceq f_0(x^{\mathrm{po}}) \implies f_0(x^{\mathrm{po}}) = f_0(y)$$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

Regularized least-squares

minimize (w.r.t. \mathbf{R}_{+}^{2}) $(\|Ax - b\|_{2}^{2}, \|x\|_{2}^{2})$

example for $A \in \mathbb{R}^{100 \times 10}$; heavy line is formed by Pareto optimal points

Risk return trade-off in portfolio optimization

minimize (w.r.t.
$${\bf R}_+^2$$
) $(-\bar{p}^Tx,x^T\Sigma x)$ subject to ${\bf 1}^Tx=1, \quad x\succeq 0$

- $x \in \mathbb{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- ullet $p \in \mathbf{R}^n$ is vector of relative asset price changes; modeled as a random variable with mean $ar{p}$, covariance Σ
- $\bar{p}^T x = \mathbf{E} r$ is expected return; $x^T \Sigma x = \mathbf{var} r$ is return variance

example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,n$ $h_i(x)=0, \quad i=1,\ldots,p$

if x is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

examples

regularized least-squares problem of page 4-43

$$\text{minimize} \quad \|Ax-b\|_2^2 + \gamma \|x\|_2^2$$

for fixed γ , a LS problem

risk-return trade-off of page 4-44

$$\label{eq:minimize} \begin{array}{ll} \text{minimize} & -\bar{p}^T x + \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^T x = 1, \quad x \succeq 0 \end{array}$$

for fixed $\gamma>0$, a quadratic program