SPRAWOZDANIE Z ĆWICZENIA 1:

Transformacja współrzędnych gwiazdy z układu równikowego do horyzontalnego

> Maja Kret 325693

Wydział Geodezji i Kartografii Politechnika Warszawska

Dane nr 15 - FK5 899 $\alpha = 23h \, 55m \, 34.219s$ $\delta = 57^{\circ} \, 37' \, 48.71''$

Spis treści

1	Cel	ćwiczenia	2							
2	Wstęp teoretyczny									
	2.1	Układ współrzędnych równikowych ekwinokcjalnych	2							
	2.2	Układ współrzędnych horyzontalnych	2							
3	Dane do ćwiczenia									
4	Przebieg ćwiczenia									
5	5 Warszawa									
	5.1	Ro Cassiopeiae i Słońce	4							
	5.2	Wielki Wóz	6							
6	Równik									
	6.1	Ro Cassiopeiae i Słońce	7							
	6.2	Wielki Wóz	10							
7	Koo	ł programu	11							

1 Cel ćwiczenia

Celem ćwiczenia jest transformacja współrzędnych gwiazdy FK5 899 - Ro Cassiopeiae z układu równkowego na horyzontalny oraz wizualizacja jej położenia z dwóch miejsc obserwacji w ciągu doby 1 lipca 2023.

2 Wstęp teoretyczny

2.1 Układ współrzędnych równikowych ekwinokcjalnych

Jest to globalny system współrzędnych, niezależny od lokalizacji obserwatora. Oparty jest na płaszczyźnie równika niebieskiego i służy do opisu położenia gwiazd na sferze niebieskiej. W tym układzie, deklinacja δ jest odpowiednikiem szerokości geograficznej, podczas gdy rektascenzja α odpowiada długości geograficznej. Punkt Barana, przez który Słońce przechodzi w dniu równonocy wiosennej, jest używany jako punkt odniesienia dla rektascenzji.

2.2 Układ współrzędnych horyzontalnych

Układ horyzontalny opiera się na lokalnym położeniu obserwatora. Najważniejszym punktem tego układu jest zenit - punkt na nieboskłonie dokładnie nad głową obserwatora. Oś horyzontalna, położona prostopadle do osi zenit-nadir, leży w płaszczyźnie horyzontu obserwatora. Współrzędne w tym układzie to azymut A oraz wysokość h. Azymut jest mierzony wzdłuż horyzontu zgodnie z kierunkiem ruchu wskazówek zegara, podczas gdy wysokość mierzona jest od horyzontu do gwiazdy. Mimo swojej użyteczności w praktyce obserwacyjnej, układ horyzontalny nie jest odpowiedni do katalogowania gwiazd z powodu jego zależności od czasu i miejsca obserwacji.

3 Dane do ćwiczenia

Nazwa	α			δ			CSE w Warszawie		
	h	m	s	0	,	,,	wsch.	górow.	zach.
FK5 899	23	55	34.219	57	37	48.71			
Słońce	6	37	43.973	23	8	11.85	3:19		20:00
Księżyc	16	9	45.978	-23	54	48.69	18:32	22:02	0:51

Tabela 1: Współrzędne badanych obiektów z Rocznika Astronomicznego na epokę 2023.5

Do danych zostały dodane czasy wschodu, górowania i zachodu Słońca oraz Księżyca w Warszawie. Powinny one ułatwić interpretację wyników oraz umożliwić sprawdzenie poprawności wykresów.

Nazwa	Nr w FK5		α	!	δ		
		h	m	s	0	,	"
Merak	416	11	3	14.669	56	15	21.18
Dubhe	417	11	5	9.530	61	37	24.44
Phecda	447	11	55	3.388	53	33	50.55
Megrez	456	12	16	34.755	56	54	7.80
Alioth	483	12	55	3.395	55	49	57.62
Mizar	497	13	24	52.075	54	48	11.50
Alkaid	509	13	48	27.861	49	11	48.04

Tabela 2: Współrzędne gwiazd Wielkiego Wozu na epokę 2023.5

	φ	λ
Warszawa	52°	21°
Równik	0°	21°

Tabela 3: Współrzędne obserwatora

4 Przebieg ćwiczenia

- Konwersja współrzędnych kątowych: Funkcje dms2deg i dms2rad z Kodu źródłowego 1 konwertują współrzędne gwiazd z formatu stopnie, minuty, sekundy (mds) na stopnie (deg) oraz radiany (rad).
- 2. **Obliczenie dnia juliańskiego:** Funkcja julday z Kodu 2 oblicza dzień juliański, co jest konieczne do późniejszego obliczenia Czasu Gwiazdowego (Greenwich Mean Sidereal Time).
- 3. Obliczenie Czasu Gwiazdowego: Funkcja GMST opisana w Kodzie 2 oblicza Czas Gwiazdowy w Greenwich na podstawie dnia juliańskiego i zwraca czas w godzinach. Jest to czas gwiazdowy w punkcie zerowym, czyli w Greenwich. Aby uzyskać czas lokalny, tzreba uwzględnić też długość geograficzną obserwatora.
- 4. Obliczenie współrzędnych horyzontalnych: Funkcja horizontal_coords zawarta w Kodzie źródłowym 2 przelicza współrzędne równikowe (deklinacja δ , rektascensja α) na współrzędne horyzontalne (wysokość h, azymut A), używając czasu gwiazdowego oraz współrzędnych geograficznych obserwatora (szerokość geograficzna φ , długość geograficzna λ). Wartość azymutu jest dostosowywana w zależności od położenia gwiazdy.

$$t = (GMST \cdot 15 + \lambda - \alpha \cdot 15) \mod 360$$

$$h = \arcsin(\sin(\delta)\sin(\varphi) + \cos(\delta)\cos(\varphi)\cos(t))$$

$$A = \arccos\left(\frac{\sin(\delta) - \sin(\varphi)\sin(h)}{\cos(\varphi)\cos(h)}\right)$$

5. **Interpolacja danych:** Funkcja interpolate z Kodu 2 używa funkcji make_interp_spline z biblioteki scipy do interpolacji danych o wysokości gwiazdy w ciągu dnia, aby uzyskać płynniejszy wykres.

6. Wizualizacja wyników: Używając biblioteki matplotlib, rysowane są różne wykresy, w tym:

- Sfera Niebieska: 3D wykres przedstawiający ruch gwiazdy i Słońca na sferze niebieskiej.
- Skyplot: Wykres polar, pokazujący ruch gwiazdy i Słońca na niebie.
- Wykres zależności azymutu od czasu.
- Wykres zależności wysokości od czasu z interpolacją.
- Panorama nieba: Wykres azymutu w funkcji wysokości.

Ich implementacje dla gwiazdy FK5 899 znajdują się w Kodzie źródłowym 4.

5 Warszawa

5.1 Ro Cassiopeiae i Słońce

Wykres 1: Położenia gwiazd w ciągu doby z punktu obserwacji Warszawa

Z wykresu 1 wynika, że gwiazda 899 jest widoczna przez całą dobę i nigdy nie zachodzi. Nie przechodzi też przez pierwszy wertykał. Słońce natomiast jest widoczne nad horyzontem aż 16h.

Do utworzenia wykresów wysokości 2 oraz 8 została użyta interpolacja, aby lepiej zobrazować faktyczne położenie gwiazd w ciągu doby.

Gwiazda 899 pozostaje na wykresie 2 powyżej 0° wysokości przez całą dobę, co potwierdza, że nie zachodzi poniżej horyzontu. Jej górowanie można odczytać - jest to około godziny 5:00.

Z wykresu 2 położenia Słońca można odczytać przybliżone godziny wschodu i zachodu. Wartości te zgadzają się z danymi podanymi w Roczniku Astronomicznym na dzień 1 lipca 2023 - wschód o 3:19 i zachód o 20:00. Górowanie z Słońca przypada w okolicach godziny 12:00, co jest zgodne z oczekiwaniami. Osiąga ono wtedy wysokość około 60°.

Wykres 2: Wykres wysokości gwiazd od godziny z punktu obserwacji Warszawa

Wykres 3: Wykres azymutu gwiazd od godziny z punktu obserwacji Warszawa

Przełamania na wykresie 3 odpowiadają godzinom, w których gwiazdy osiągają najmniejszą oraz największą wysokość. Są one spowodowane tym, że gwiazdy przechodzą przez punkt północy i zmieniają swoją wartość z 360° na 0° .

Wykres 4: Panorama nieba z punktu obserwacji Warszawa

5.2 Wielki Wóz

Wykres 5: Położenie gwiazd Wielkiego Wozu o godzinie 0:00 z punktu obserwacji Warszawa

Wykres 5 obrazuje położenie gwiazd o godzinie 0:00. Ta reprezentacja pokazuje z nam charakterystyczny kształt Wielkiego Wozu, którego można się spodziewać.

Załączony do sprawozdania Kod źródłowy 4 służy do animacji cogodzinnego położenia gwiazd Wielkiego Wozu na sferze niebieskiej. Jej efekty przedstawiają filmy wielkiwoz_warszawa.mp4 oraz wielkiwoz_rownik.mp4, które zawierają animację odpowiednio z Warszawy i Równika. Pomimo, że położenia poszczególnych

gwiazd się zmieniają, kształt Wielkiego Wozu pozostaje niezmienny oraz widoczny z Warszawy przez całą dobę. Można spostrzec, że gwiazda Alkaid jako jedyna przechodzi przez Pierwszy Wertykał o godzinie 18:00 oraz 21:00.

Wykres 6: Położenie gwiazd Wielkiego Wozu w ciągu doby z punktu obserwacji Warszawa

Wizualizacja całodobowa na wykresie 6 potwierdza, że gwiazdy Wielkiego Wozu są w Warszawie widoczne przez całą dobę.

6 Równik

6.1 Ro Cassiopeiae i Słońce

Na wykresie 8 gwiazdy możemy zauważyć, że Ro Cassiopeiae zachodzi około godziny 11:00 i nie jest widoczna aż do 23:00. Jej górowanie przypada na godzinę 5:00, tak samo jak w przypadku Warszawy.

Słońce na Równiku w tym dniu widoczne jest około 12h. Góruje wysoko nad horyzontem przed godziną 12:00, i osiąga wysokość ponad 60°. Jego wykres jest symetryczny względem godzin południowych.

Wykres 7: Położenia gwiazd w ciągu doby z punktu obserwacji Równik

Wykres 8: Wykres wysokości gwiazd od godziny z punktu obserwacji Równik

Wykres 9: Wykres azymutu gwiazd od godziny z punktu obserwacji Równik

Wykres 10: Panorama nieba z punktu obserwacji Równik

6.2 Wielki Wóz

Wykres 11: Położenie Wielkiego Wozu o godzinie 18:00 z punktu obserwacji Równik

Wykres 12: Położenie Wielkiego Wozu w ciągu doby z punktu obserwacji Równik

Z punktu widzenia obserwatora na Równiku, wszystkie gwiazdy Wielkiego Wozu wschodzą i zachodzą. Są widoczne przez około 13h, a ich położenie na sferze niebieskiej jest podobne do analizowanej gwiazdy FK5 899.

7 Kod programu

Kod źródłowy 1: Funkcje udostępnione przez prowadzącego

```
def dms2deg(dms):
   d = dms[0]
   m = dms[1]
   s = dms[2]
   deg = d+m/60+s/3600
   return deg
def dms2rad(dms):
    d = dms[0]
   m = dms[1]
   s = dms[2]
    deg = d+m/60+s/3600
   rad = np.deg2rad(deg)
   return rad
def julday(y, m, d, h):
   if m <= 2:
       y = y - 1
       m = m + 12
    jd = np.floor(365.25*(y+4716))+np.floor(30.6001*(m+1))+d+h/24-1537.5
   return jd
def GMST(jd):
   T = (jd - 2451545) / 36525
    Tu = jd - 2451545
    g = 280.46061837 + 360.98564736629*(jd - 2451545.0) + 0.000387933*T**2-T
       **3/38710000
    g = (g\%360) / 15
    return g
```

Kod źródłowy 2: Funkcje własne

```
def horizontal_coords(alpha, delta, phi, L, gmst):
    H = (gmst * 15 + L - alpha * 15) % 360
   H = np.radians(H)
   phi = np.radians(phi)
    delta = np.radians(delta)
   h = np.arcsin(np.sin(delta)*np.sin(phi) + np.cos(delta)*np.cos(phi)*np.cos(H))
   A = np.arccos((np.sin(delta) - np.sin(phi)*np.sin(h)) / (np.cos(phi)*np.cos(h)))
   h = np.degrees(h)
    A = np.degrees(A)
   H = np.degrees(H)
    A = np.where(H > 180, 360 - A, A)
    return h, A
def interpolate(hours, h_values, label, color):
    xnew = np.linspace(min(hours), max(hours), 300)
    spl = make_interp_spline(hours, h_values, k=3)
    ynew = spl(xnew)
    # plt.fill_between(xnew, 0, ynew, where=(ynew > 0), color=color, alpha=1, label =
        label)
```

```
# Współrzędne gwiazd
alpha_hms = [23, 55, 34.219]
delta_hms = [57, 37, 48.71]
alpha = dms2deg(alpha_hms)
delta = dms2deg(delta_hms)
# Słońce
alpha_s = dms2deg([6, 37, 43.973])
delta_s = dms2deg([23, 8, 11.85])
# Współrzędne obserwatorów
locations = {
    'Warszawy': {'phi': 52, 'L': 21},
    'Równika': {'phi': 0, 'L': 21},
}
if __name__ == '__main__':
# Tworzenie wykresów
    for location, coords in locations.items():
        phi = coords['phi']
        L = coords['L']
        # Obliczanie lokalnych współrzędnych horyzontalnych co godzinę
        hours = np.arange(0, 25, 1)
        h_values = []
        A_values = []
        # Te same obliczenia zostały wykonane dla Słońca i Księżyca
        for hour in hours:
            jd = julday(2023, 7, 1, hour - 1) # UTC+2 dla Polski
            gmst = GMST(jd)
            h, A = horizontal_coords(alpha, delta, phi, L, gmst)
            h_values.append(h)
            A_values.append(A)
        h_values = np.array(h_values)
        A_values = np.array(A_values)
        # Sfera Niebieska
        fig = plt.figure(figsize=(10, 10))
        ax = fig.add_subplot(121, projection='3d')
        u, v = np.mgrid[0:(2 * np.pi):0.01, 0:np.pi:0.01]
        x = np.cos(u) * np.sin(v)
        y = np.sin(u) * np.sin(v)
        z = np.cos(v)
        z[z < 0] = 0
        ax.plot_surface(x, y, z, alpha=0.1, color='b')
        gx = np.sin(np.radians(A_values)) * np.cos(np.radians(h_values))
        gy = np.cos(np.radians(A_values)) * np.cos(np.radians(h_values))
        gz = np.sin(np.radians(h_values))
        ax.scatter(gx, gy, gz, c=hours, cmap='viridis', label = 'FK5 899')
        ax.set_title(f'Sfera Niebieska dla {location}')
        # Skyplot
```

```
ax = plt.subplot(122, polar=True)
ax.set_theta_zero_location('N')
ax.set_theta_direction(-1)
ax.set_yticks(range(0, 90+10, 10))
yLabel = ['90', '', '', '60', '', '', '30', '', '', '']
ax.set_yticklabels(yLabel)
ax.set_rlim(0, 90)
ax.scatter(np.radians(A_values), 90 - h_values, c=hours, cmap='viridis', label
    = 'FK5 899')
ax.set_title(f'Skyplot dla {location}')
ax.legend()
# Wykresy zależności wysokości i azymutu od czasu
plt.figure(figsize=(10, 5))
plt.plot(hours, A_values, label='FK5 899', color = 'navy')
plt.xticks(range(25))
plt.xlabel('Godzina [h UTC+2]')
plt.ylabel('Azymut [\degree]')
plt.yticks(np.arange(0, 361, 60))
plt.legend()
plt.grid()
plt.title(f'Azymut gwiazd w ciągu doby dla {location}')
# Wysokość
plt.figure(figsize=(10, 5))
plt.plot(hours, h_values, label='FK5 899', color = 'navy')
plt.xticks(range(25))
plt.yticks(np.arange(-90, 91, 30))
plt.xlabel('Godzina [h UTC+2]')
plt.ylabel('Wysokość [\degree]')
plt.legend()
plt.grid()
plt.title(f'Wysokośc gwiazd w ciągu doby dla {location}')
# Panorama
plt.figure(figsize=(10, 5))
plt.plot(A_values, h_values, label = 'Wysokość', color = 'navy')
plt.ylim(0, 90)
plt.title(f'Panorama nieba dla {location}')
plt.xlabel('Azymut [\degree]')
plt.ylabel('Wysokość [\degree]')
plt.legend()
plt.show()
```

```
# Współrzędne gwiazd
FK5 = {
    'Merak' : {'alpha' : [11, 3, 14.669], 'delta' : [56, 15, 21.18]}, #416
    'Dubhe ': {'alpha': [11, 5, 9.530], 'delta': [61, 37, 24.44]}, #417
    'Phecda ': {'alpha': [11, 55, 3.388], 'delta': [53, 33, 50.55]}, #447
    'Megrez': {'alpha': [12, 16, 34.755], 'delta': [56, 54, 7.8]}, #456
    'Alioth' : {'alpha' : [12, 55, 3.395], 'delta' : [55, 49, 57.62]}, #483
    'Mizar' : {'alpha' : [13, 24, 52.075], 'delta' : [54, 48, 11.5]}, #497
    'Alkaid': {'alpha': [13, 48, 27.861], 'delta': [49, 11, 48.04]}, #509
}
colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple', 'pink']
color_index = 0
# Współrzędne obserwatorów
locations = {
    'Warszawy': {'phi': 52, 'L': 21},
    'Równika': {'phi': 0, 'L': 21},
}
for location, coords in locations.items():
    # Sfera Niebieska
   fig = plt.figure(figsize=(10, 10))
   ax = fig.add_subplot(121, projection='3d')
   u, v = np.mgrid[0:(2 * np.pi):0.01, 0:np.pi:0.01]
   x = np.cos(u) * np.sin(v)
   y = np.sin(u) * np.sin(v)
   z = np.cos(v)
   z[z < 0] = 0
   ax.plot_surface(x, y, z, alpha=0.1, color='b')
    # Skyplot
    ax2 = plt.subplot(122, polar=True)
    ax2.set_theta_zero_location('N')
   ax2.set_theta_direction(-1)
    ax2.set_yticks(range(0, 90+10, 10))
    yLabel = ['90', '', '', '60', '', '', '30', '', '', '']
    ax2.set_yticklabels(yLabel)
    ax2.set_rlim(0, 90)
   color index = 0
    phi = coords['phi']
    L = coords['L']
    ax.set_title(f'Sfera Niebieska dla {location}')
    ax2.set_title(f'Skyplot dla {location}')
    lines_sfera = []
    lines_skyplot = []
    # Pobranie danych o gwiazdach
    for star_name, star_coords in FK5.items():
        alpha = dms2deg(star_coords['alpha'])
        delta = dms2deg(star_coords['delta'])
        color = colors[color_index]
```

```
line_sfera, = ax.plot([], [], 'o-', color=color, label=star_name)
        line_skyplot, = ax2.plot([], [], 'o-', color=color, label=star_name)
        lines_sfera.append(line_sfera)
        lines_skyplot.append(line_skyplot)
        color_index = (color_index + 1) % len(colors)
    ax.legend(loc = 'upper right')
    ax2.legend(loc = 'upper right')
    # Obliczanie lokalnych współrzędnych horyzontalnych co godzinę
    for hour in np.arange(0, 24, 1):
        h_values_all = []
        A_values_all = []
        gx_all = []
        gy_all = []
        gz_all = []
        for star_coords in FK5.values():
            h_values = []
            A_values = []
            alpha = dms2deg(star_coords['alpha'])
            delta = dms2deg(star_coords['delta'])
            jd = julday(2023, 7, 1, hour - 1)
            gmst = GMST(jd)
            h, A = horizontal_coords(alpha, delta, phi, L, gmst)
            h_values.append(h)
            A_{values.append(A)
            h_values = np.array(h_values)
            A_values = np.array(A_values)
            gx = np.sin(np.radians(A_values)) * np.cos(np.radians(h_values))
            gy = np.cos(np.radians(A_values)) * np.cos(np.radians(h_values))
            gz = np.sin(np.radians(h_values))
            gx_all.append(gx)
            gy_all.append(gy)
            gz_all.append(gz)
            h_values_all.append(h_values)
            A_values_all.append(A_values)
        # Zaktualizowanie danych na wykresach
        for i in range(len(FK5)):
            lines_sfera[i].set_data(gx_all[i], gy_all[i])
            lines_sfera[i].set_3d_properties(gz_all[i])
            lines_skyplot[i].set_data(np.radians(A_values_all[i]), 90 - h_values_all[i])
        plt.draw()
        plt.pause(0.5)
plt.show()
```

Spis tabel

	Т	wspoirzędne badanych obiektow z rocznika Astronomicznego na epokę 2025.5	2
	2	Współrzędne gwiazd Wielkiego Wozu na epokę 2023.5	3
	3	Współrzędne obserwatora	3
\mathbf{S}	pis	rysunków	
	1	Położenia gwiazd w ciągu doby z punktu obserwacji Warszawa	4
	2	Wykres wysokości gwiazd od godziny z punktu obserwacji Warszawa	5
	3	Wykres azymutu gwiazd od godziny z punktu obserwacji Warszawa	5
	4	Panorama nieba z punktu obserwacji Warszawa	6
	5	Położenie gwiazd Wielkiego Wozu o godzinie $0{:}00$ z punktu obserwacji Warszawa	6
	6	Położenie gwiazd Wielkiego Wozu w ciągu doby z punktu obserwacji Warszawa	7
	7	Położenia gwiazd w ciągu doby z punktu obserwacji Równik	8
	8	Wykres wysokości gwiazd od godziny z punktu obserwacji Równik	8
	9	Wykres azymutu gwiazd od godziny z punktu obserwacji Równik	9
	10	Panorama nieba z punktu obserwacji Równik	9
	11	Położenie Wielkiego Wozu o godzinie 18:00 z punktu obserwacji Równik	10
	12	Położenie Wielkiego Wozu w ciągu doby z punktu obserwacji Równik	10
~			
S	pis	kodów źródłowych	
	1	Funkcje udostępnione przez prowadzącego	11
	2	Funkcje własne	12
	3	Implementacja wykresów położenia gwiazdy FK5 899	13
	1	Animacia położenia gwiazd Wielkiego Wozu	15