Computer Science & IT

Discrete Mathematics

Mathematical Logic

Lecture No. 02

Recap of Previous Lecture

Topic

Propositions and their types Topic

Connectives Topic

Tautology, Contradiction Topic

Contingency and Satisfiable propositional functions

Topics to be Covered

Slide

Topic: Logical Implication / Implication

Let P and Q are any two propositional functions.

Whenever P is true if Q is also true then P logically implies Q. is true. If there exist any cone for which P is true but Q is Palze, then P logically implies Q P logically implies Q if and only if P \rightarrow Q is a tautology. Is invalid

is. P does not ? logically implied

Topic: Logical Equivalence / Equivalence

- If P and Q are any two propositional functions, then P equivalent to Q is written as P≡Q. or P≅Q
- P and Q are said to be equivalent if and only if they have same truth table. $P = \sim 0 \lor b$ $Q = 0 \rightarrow b$
- P≡Q if and only if P↔Q is a tautology.
- · P=Q if and only if. P logically implies Q and Q logically implies P.
- * P > Q is a tautology if and only if P > Q is a tautology.

Topic: Some important equivalences

(Prg)
$$r = Pr(grr)$$
 | Associative}
(Prg) $r = Pr(grr)$ | Associative}

Topic: Some important equivalences

(4)
$$P \wedge (g \vee R) \equiv (P \wedge g) \vee (P \wedge R)$$
 Pistributive.
 $P \vee (g \wedge R) \equiv (P \vee g) \wedge (P \vee R)$

(5)
$$\sim (P \land Q) \equiv \sim P \land \sim Q$$
 De' Morganix $\sim (P \lor Q) \equiv \sim P \land \sim Q$

Topic: Some important equivalences

*6
$$P \wedge (P \vee Q) \equiv P$$
 $P \vee (P \wedge Q) \equiv P$

$$\begin{array}{c}
\hline{\text{P}} & P \wedge P = P \\
P \vee P = P
\end{array}$$

$$9 P \times F = P$$

Some important Équivalences:

- $0 \quad P \rightarrow Q = -P \vee Q$

Topic: Some important statements

1. Pimplies
$$Q = P \rightarrow Q$$

2. If P then
$$Q = P \rightarrow Q$$

*3. Ponly if
$$Q = P \rightarrow Q$$

- 4. P is sufficient condition for $Q = P \rightarrow Q$
- 5. Q is necessary condition for $P = P \rightarrow Q$ Continuity is necessary for differentiability = Differentiability = Continuity

* 9 follows from P = P -> 9

Topic: Some important statements

7. P when
$$Q = Q \rightarrow P$$

8. P follows from
$$Q = Q \rightarrow P$$

9. Punless
$$\sim Q = \sim (\sim Q) \rightarrow P = Q \rightarrow P$$

Simply deplace unless by $V = PV \sim Q = \sim QVP = Q \rightarrow P$

can not crack gate unless Jou appear If you do not appear prigate then you can not crack gate Punless 9 = ~ 9 -> P

you can not crock got unless you appear for goto = ~ ? ~ ? ~ ?

Topic: Argument / Inference

The statement that,
"A set of premises { P1, P2, P3,.....,Pn}
yields another proposition Q" is called
an argument.

Q is called conclusion of the argument.

given afatements (i) If today is Sujay's B'day then today is 13th Aug. (ii) Today is 13th Aug. i. Today is Sujay's B'day Conclusion Argument { it may be a valid argument? an invalid argument

Topic: Argument / Inference

- Argument may be valid or invalid.
- The process of reasoning whether the argument is valid or invalid is called inference.

If conclusion Q can be inferred from the set of premises by applying some rules of inference and equivalences, then argument is said to be valid otherwise invalid.

Topic: Argument / Inference

Following statements are equivalent,

- Argument {P1, P2, P3,....,Pn} $\vdash Q$ is valid.
- P1, P2, P3,.....,Pn} Logically implies Q is true/valid.
- $\{P1 \land P2 \land P3 \land \land Pn\} \rightarrow Q$ is a tautology.

Any valid reasoning is rule of inference.

1. Simplification

2. Addition

3. Conjunction

4. Disjunctive Syllogism

5. Conjunctive Syllogism

6. Modus Ponens

7. Fallacy of affirming the consequent

8. Modus Tollen's

9. Fallacy of denying the antecedent

10. Transitivity

11. Dilemma

12. Constructive Dilemma

13. Destructive Dilemma

14. Resolution

 $p \vee q$

 $\sim p \vee r$

15. Non Sequitur

2 mins Summary

Topic Logical implications and logical equivalences

Topic Important equivalences

Topic Important statements

Topic Argument / Inference

Topic Rules of inference

THANK - YOU