ICE-3103, Microwave Engineering (Smith Chart)

Tanvir Zaman Khan

Assistant professor

Dept. of Information & Communication Engineering Noakhali Science and Technology University Noakhali-3814, Bangladesh

We have to find out using Smith chart

- $\stackrel{\checkmark}{a}$) Voltage reflection coefficient, Γ
- б) Voltage standing-wave ratio, VSWR
- \mathcal{E}) Finding input impedance, \mathbf{Z}_{in}
- d) Finding load impedance, Z_L
- e) the distances of the voltage maximum and voltage minimum, d_{max} , d_{min} OR l_{max} , l_{min}

Set: A1 Question

A 50- Ω lossless line is terminated in a load impedance,

 $Z_L = (25+j50)\Omega$. Use the smith chart to find

- a) voltage reflection coefficient,
- b) the voltage standing-wave ratio,
- c) the input impedance of the line, given the line is 0.14λ

Solution:

Normalized load impedance, $Z_L = \frac{25 \Omega}{50 \Omega} + j \frac{50 \Omega}{50 \Omega} = 0.5 + j1$

Ans: Normalized, $Z_L = 0.5 + j1$

- a) Γ = 0.62 ∠83°
- b) VSWR = 4.2
- c) Normalized $Z_{in} = 03 j1.8;$

VSWR = 4.2 Voltage reflection coefficient, Γ = 0.62 \angle 83°

S is numerically equal to the value of r_0 at P_{max} , the point at which the SWR circle intersects the real Γ axis to the right of the chart's center.

S= 4.2

At H=
$$3 - j1.8$$
 \downarrow
 \downarrow
 \downarrow
 \downarrow
 \downarrow
 \downarrow

So the input impedance,
$$Z_{in}$$
 at H = $(3-j1.8)Z_0\Omega$
= $(3-j1.8)50\Omega$
= $(150-j90)\Omega$

Set: A2 Question

A 50- Ω lossless line is terminated in a load impedance,

- $Z_L = (25+j50)\Omega$. Use the smith chart to find
- a) voltage reflection coefficient,
- b) the voltage standing-wave ratio,
- c) the input impedance of the line, given the line is 0.12λ

Solution:

Normalized load impedance,
$$Z_L = \frac{25 \Omega}{50 \Omega} + j \frac{50 \Omega}{50 \Omega} = 0.5 + j1$$

S is numerically equal to the value of r_0 at P_{max} , the point at which the SWR circle intersects the real Γ axis to the right of the chart's center.

$$S = 4.2$$

At D=
$$4.2 + j0$$

$$\downarrow \qquad \downarrow$$

$$R \qquad X$$

So the input impedance,
$$Z_{in}$$
 at D = $(4.2+j0)Z_0\Omega$
= $(4.2+j0)50\Omega$
= 210Ω

Set: B Question

A 50- Ω lossless line is terminated in a load impedance,

 $Z_L = (50+j100)\Omega$. Use the smith chart to find

- a) voltage reflection coefficient,
- b) the voltage standing-wave ratio,
- c) the input impedance of the line, given the line is 0.15λ

Normalized load impedance,
$$Z_L = \frac{50 \Omega}{50 \Omega} + j \frac{100 \Omega}{50 \Omega} = 1 + j2$$

Set: C Question

A lossless transmission line is terminated in a normalized load impedance, $Z_L = (2-j1)\Omega$. Use the smith chart to find

- a) voltage reflection coefficient,
- b) the voltage standing-wave ratio,
- c) the input impedance of the line, given the line is 0.1λ

Set: C Question

A lossless transmission line is terminated in a normalized load impedance, $Z_L = (2-j1)\Omega$. Use the smith chart to find

- a) voltage reflection coefficient,
- b) the voltage standing-wave ratio,
- c) the input impedance of the line, given the line is 0.1λ

Ans:

- a) voltage reflection coefficient= $0.45 \angle 26.6^{\circ}$
- b) the voltage satanding-wave ratio= 2.65
- c) the input impedance of the line, given the line is 0.1λ , = 0.6 j0.66

Finding Load Impedance, Z_L

Set: D Question

Finding Load Impedance, Z_L

Set: D Question

Solution:

Given:

$$Z_{in}$$
= (100 – j 100) Ω

So, Normalized input impedance,
$$Z_{in}=\frac{100~\Omega}{50~\Omega}-\mathrm{j}\,\frac{100~\Omega}{50~\Omega}$$
 = $2-j2$

Ans:
$$Z_L = (0.35 + j0.55) Z_0 \Omega$$

Maxima and Minima

Maxima and Minima

Practice:

Use the smith chart to find the distances of the first voltage maximum and first voltage minimum from the load

Ans:

first voltage maximum= 0.037λ first voltage minimum= 0.287λ

Figure 2-28: Point A represents a normalized load with $z_L = 2 + j1$. The standing wave ratio is S = 2.6 (at P_{max}), the distance between the load and the first voltage maximum is $d_{\text{max}} = (0.25 - 0.213)\lambda = 0.037\lambda$, and the distance between the load and the first voltage minimum is $d_{\text{min}} = (0.037 + 0.25)\lambda = 0.287\lambda$.

Practice:

A 50- Ω lossless line is terminated in a load $Z_L = (25+j50)\Omega$.

Use the smith chart to find

- a) voltage reflection coefficient,
- b) the voltage standing-wave ratio,
- c) the distances of the first voltage maximum and first voltage minimum from the load,
- d) the input impedance of the line, given the line is 3.3λ

Practice:

A 50- Ω lossless line is terminated in a load $Z_L = (25+j50)\Omega$.

Use the smith chart to find

- a) voltage reflection coefficient,
- b) the voltage standing-wave ratio,
- c) the distances of the first voltage maximum and first voltage minimum from the load,
- d) the input impedance of the line, given the line is 3.3λ

Ans: $Z_L = 0.5 + j1$

- a) $\Gamma = 0.62 \angle 83^{\circ}$
- b) VSWR = 4.26
- c) $d_{max} = 0.115 \lambda$, $d_{min} = 0.365 \lambda$
- d) Normalized $Z_{in} = 0.28 + j0.40$; $Z_{in} = (14-j20)\Omega$

Practice: Solution

A 50- Ω lossless transmission line of length 3.3 λ is terminated by a load impedance $Z_L = (25 + j50) \Omega$. Use the Smith

Smith Chart slotted line example:

Given:

 Z_0 = 50 Ω , SWR = 3, first voltage min, d_{min} is 5 cm from load and distance between adjacent minima, $\frac{\lambda}{2}$ = 20 cm. Find load impedance Z_L

Solution:

Find
$$d_{min}$$
 in wavelength format. $d_{min} = \frac{d_{min} \ value \ in \ cm}{\lambda \ value \ in \ cm} = \frac{5 \ cm}{40 \ cm} = 0.125 \ \lambda$

Smith Chart slotted line example.

Given:

 Z_0 = 50 Ω , SWR = 3, first voltage min, d_{min} is 5 cm from load and distance between adjacent minima, $\frac{\lambda}{2}$ = 20 cm. Find load

impedance Z_L $z_L = ?$

Solution:

Find
$$d_{min}$$
 in wavelength format. $d_{min} = \frac{d_{min} \ value \ in \ cm}{\lambda \ value \ in \ cm} = \frac{5 \ cm}{40 \ cm} = 0.125 \ \lambda$

If λ is given in 0.6m then it should be converted into cm, so λ = 60 cm

$$d_{min} = \frac{d_{min} \ value \ in \ cm}{\lambda \ value \ in \ cm} = \frac{14.2 \ cm}{40 \ cm} = 0.355 \ \lambda$$

$$d_{min} = \frac{d_{min} \ value \ in \ cm}{\lambda \ value \ in \ cm} = \frac{12 \ cm}{60 \ cm} = 0.2 \ \lambda$$

Smith Chart slotted line example.

Determination of Unknown Load Impedance from Standing Wave Data Given Zo = 50-2 SWR = 3.0 $\lambda/2 = 20 \text{ cm}$ dmin = 14.2 cm = 0.355) Find ZR.

 $\overline{Z}_{R} = 50(0.75 + j0.97) = (37.5 + j48.5) \Omega$