Evaluating U.S. Public Pension Policy

Jordan Pandolfo and Kurt Winkelmann

University of Minnesota & HHEI

May 2020

Introduction

- US state pensions are underfunded
 - ▶ in aggregate, a \$1.5 trillion deficit [Pew, 2019]
 - mechanically, low returns + low savings
 - governance issues
- Reforms have been implemented
 - RI [2011], NJ [2011], OK [2015], MN [2018]
 - reform *levers*
 - accounting practices
 - 2. plan participant compensation
 - constituents
 - (i) current v retired workers
 - (ii) plan members v taxpayers

Research Question(s)

- ▶ Question: What is the welfare impact of pension reform on state constituents?
- Particularly:
 - 1. Oklahoma reform [2015] (Today)
 - 2. Rhode Island reform [2011]
- Policy experiments:
 - 1. Reforms applied to other states
 - 2. Discount rate reform
 - 3. Pension obligation bonds (POBs)

Preview of Results

- OK reform in OK:
 - (1) large welfare losses in public sector
 - cost-of-living-adjustment (COLA) freeze
 - (2) small welfare gains in private sector
 - reduced tax level & volatility
 - (3) young cohorts fare better
 - capture long-run benefits

Model Overview

- Agent lifecycle problem
 - working and retirement periods
 - private and public sector work
 - public workers receive pension
- Joint distribution of agents
 - (i) by age
 - (ii) by job sector
 - (iii) through time
- State fiscal authority
 - balanced budget rule and pension funding rule
 - ► limited commitment to pension funding → chronic underfundedness
- ► Contribution: comprehensive state-level welfare analysis

Agent Problem

- Workers live for ages t = 1, 2, ..., 80
 - ightharpoonup mortality risk p(t+1|t)
- CRRA preferences over consumption c
- ▶ Discount future with β
- ► For each age, choose
 - (i) consumption *c*
 - (ii) savings a
 - (iii) portfolio investment α subject to available wealth x

Agent Problem

Working, Retirement Stages

- ► Fixed retirement at age 45
- ▶ In working stage, receive exogenous wage $w(s, t, \epsilon, \eta)$:
 - (i) job sector $s \in \{pub, priv\}$
 - (ii) deterministic age trend
 - (iii) idiosyncratic, transitory shock ϵ
 - (iv) idiosyncratic, persistent shock η
- ▶ Wage tax $\tau(\chi, T)$:
 - (i) pension funded ratio χ
 - (ii) model time T = 1, 2, ...
- ightharpoonup In retirement, workers receive sector-specific annuity b^s

Agent Problem

- Worker state: $\varsigma = (x, t, s, \eta, \chi, T)$
- Agent solves:

$$\begin{split} V(\varsigma) &= \max_{c,a,\alpha} \ u(c) + \beta p(t+1|t) E\big[V(\varsigma')|\varsigma\big] \\ &\text{s.t.} \quad c+a=x \\ &\text{s.t.} \quad x' = \big[\alpha R' + (1-\alpha)R^f\big]a + \\ & \qquad \qquad \big(1-\tau(\chi',T+1)\big)w(s,t+1,\epsilon',\eta') \\ &\text{s.t.} \quad \chi' = \Gamma(\chi,R',T+1) \\ &\text{s.t.} \quad c \geq 0, \quad \alpha \in [0,1] \\ &\text{s.t.} \quad \text{exogenous processes } \{R',\eta',\epsilon'\} \end{split}$$

State Fiscal Environment

Balanced Budget Rule

- ▶ State populated by agent distribution $\Phi: s \times t \times T \rightarrow [0,1]$
 - lacktriangle Age cohort growth rates $\phi(t,T)$ induce demographic change
- ► Fiscal authority sets tax $\tau = \tau^w + \tau^p$ to balance budget:

$$\tau \underbrace{\sum_{s} \sum_{t} \Phi(s,t,T) w(s,t,0,0)}_{\text{tax base}} = \underbrace{C(\chi,T)}_{\text{pension contributions}} + \underbrace{\sum_{t} \Phi(pub,t,T) w(pub,t,0,0)}_{\text{public wages}}$$

for each year T, pension funded ratio χ

State Fiscal Environment

Funded Ratio

- Fixed investment portfolio α^p
- ightharpoonup Public workers receive \bar{b} in retirement
- ▶ Value of liabilities PVL(T) at time T
 - method: entry age normal
 - discount rate r^p

Each year, pre-contribution funded ratio defined as

$$\chi = \frac{\text{Return on Assets} - \text{Distributions}}{\textit{PVL}(\textit{T})}$$

implies unfunded liability $UFL = (1 - \chi)PVL(T)$

State Fiscal Environment

Pension Funding Rule

- ► Annual Required Contribution (ARC): contribution such that pension fully funded in long run
- ► ARC composed of
 - (1) Normal Cost (newly accrued benefits)
 - (2) Amortized Unfunded Liability
- ▶ **Limited commitment** $\theta \le 1$ to pension funding
- Contributions set as

$$C(\chi, T) = \theta \bigg[\mathsf{Normal\ Cost}(T) + \mathsf{AUFL}(\chi, T) \bigg]$$

Normal Cost Formula

Amortization Formula

Equilibrium

Definition

An equilibrium is defined as a set of stochastic processes $\{R',\epsilon',\eta'\}$, and deterministic aggregates $\{\Phi(s,t,T)\}$ such that for periods T=1,2,...

- 1. Agents solve their lifecycle problem
- 2. Fiscal authority sets τ to balance budget
- 3. Pension policy rules induce the law of motion

$$\chi' = \Gamma(\chi, R', T+1)$$

Calibration

- Pension data: annual public plan financial reports
- Model parameters split into
 - (1) universal
 - preferences, prices, wage process
 - (2) state-specific
 - fiscal policy, demographic distribution
- ▶ Model time T = 1, 2, ..., 45
 - reforms affect current workers, only
- Consumption-equivalent welfare (averaged across wealth distribution)

- Two components
 - (1) Close plan to new entrants
 - (2) Freeze cost-of-living-adjustments (COLAs)¹
- ► Assume 1.6% annual inflation²
- Procedure
 - for all working cohorts at date T=0
 - solve no-reform model
 - solve reform model
 - lacktriangle simulate both models o wealth distribution o welfare
 - compare fiscal aggregates, welfare metrics

Apply COLA freezes only to future annuitants.

²Source: Navega Strategies

Pension Balance Sheet: Significant Impact on PVL

OK Pension Assets and Liabilities

Tax Policy: Reduction in Level and Vol

OK Tax Policy

Welfare Gains: Large Losses in Public Sector

OK CE Welfare Gains from Reform, by Sector

	Public Sector	Private Sector	Statewide
Baseline Δ Welfare	-2.46%	0.04%	-0.27%
No COLA Freeze Δ Welfare	.01%	.01%	.01%

Next Steps

Reform counterfactuals in other states

OK Reform

- New entrant welfare
 - model focuses on
 - 1. transitional features of reform
 - 2. welfare impact on current workers
 - consider welfare of new entrants
- Labor market indifference
 - model: no labor/leisure or employment decision
 - pros: tractability
 - half-step: : set wage volatility such that age 1 workers indifferent between public/private sector

Thank You!

Aggregate Funded Ratios

Annual Required Contributions

Target Returns and Investment Performance

U.S. Pension Target Portfolio and Actual Portfolio

Valuing Pension Liabilities

► At time *T*,

$$PVL(T) = \sum_{j=0}^{\infty} \frac{c_{T+j}}{(1+r^p)^j}$$
$$= \sum_{j=0}^{\infty} \frac{1}{(1+r^p)^j} \sum_{k=45}^{80} \Phi(pub, k, T+j) \alpha(T+j, k) \bar{b}$$

with Entry Age Normal (EAN) accrual factor

$$\alpha(T+j,k) = \begin{cases} 1, & \text{if } k-j \ge 45\\ \frac{\sum_{k=1}^{k-j} w_k}{\sum_{k=1}^{45} w_k}, & \text{if } k-j < 45 \end{cases}$$

Funded Ratio Formula

▶ Given (χ, T) today,

$$\begin{split} \chi' = & \frac{\text{Return on Assets} - \text{Distributions}}{PVL(T+1)} \\ = & \frac{[\alpha^p R' + (1-\alpha^p)R^f]\tilde{\chi}PVL(T) - \bar{b}\sum_{k=45}^{80}\Phi(pub,k,T+1)}{PVL(T+1)} \end{split}$$

where $\tilde{\chi}$ is post-contribution funded ratio

Return

Normal Cost

Define normal cost NC(T) at time T as

$$NC(T) = \sum_{k=1}^{45} \Phi(pub, k, T) \sum_{m=1}^{35} \frac{p(45 + m|k)}{(1 + r^p)^{45 - k + m}} \frac{w_k}{\sum_{l=1}^{45} w_l} \bar{b}$$

$$= \sum_{k=1}^{45} \Phi(pub, k, T) \underbrace{\tilde{\beta}(k)}_{\text{discount factor}} \underbrace{\tilde{b}(k)}_{\text{accrued benefit}}$$

Return

Amortized Unfunded Liability

► The unfunded liability (UFL) is the difference between liabilities and assets:

$$UFL = (1 - \chi)PVL$$

given pension liabilities PVL

▶ Given amortization period \bar{T} , the amortized UFL is

$$AUFL = UFL \frac{r^p}{1 - (1 + r^p)^{-\bar{T}}}$$

Universal Calibration

Table 1: Universal Parameters

Parameter	Label	Value	Source/Target
β	Discount Factor	0.96	Standard
γ	Risk Aversion	10	CGM [2005]
r_f	Risk-free Rate	.02	Navega
μ_r	Equity Premium	.04	Navega
σ_r	Equity Vol	.157	Navega
$\{f(t)\}$	age wage trend	_	CGM [2005], PSID
σ^{ϵ}	Transitory Vol	.074	CGM [2005], PSID
$\sigma^{ u}$	Persistent Vol	.011	CGM [2005], PSID
$\{p(t+1 t)\}$	Mortality Risk	_	NCHS
$\lambda(pub)$	Sector Wage Gap	.91	BEA

State-Specific Calibration

 ${\bf Table~2:~State\text{-}Specific~Parameters}$

Parameter	Label	Source/Target
\bar{b}	Pension Benefit	State Reports
$\{b^s\}$	Social Security	SSA
r^p	Stat Discount Factor	State Reports
χ^0	Initial Funded RAtio	State Reports
θ	Contribution Commitment	NASRA
α^p	Pension Portfolio	State Reports
Φ	Agent Distribution	UVA Weldon Cooper, NASRA, BEA
M	Total Population	2019 PVL
\bar{T}	Amortization Window	State Reports

Consumption-Equivalent Welfare

▶ Given utility V^* , CE \bar{c}^* defined as

$$V^* = \sum_{t=1}^{80} \beta^t \left(\prod_{j=1}^t \rho(j+1|j) \right) \frac{\bar{c}^{*(1-\gamma)}}{1-\gamma}$$

- $ightharpoonup V^*$ a function of endogenous agent wealth x
- For each sector s,
 - 1. simulate baseline w/o demographic change
 - 2. for each age, collect cross-section of CE values $\bar{c}_s^*(t,x)$
 - 3. compute average age-specific CE value

$$\bar{c}_s^*(t) = \int \bar{c}_s^*(t,x) dF(x|s,t)$$

Oklahoma Reform

Funded Ratios

Oklahoma Reform

Normal Cost and Ufunded Liability

Applied to Other States

- ► Consider OK reform w/o COLA freeze
- For each state of interest,
 - 1. re-calibrate model
 - 2. re-run reform experiment

Applied to Other States

