

统计信号分析与处理

第3章 噪声中的信号检测

本章内容

- 3.1 引言
- 3.2 信号检测模型
- 3.3 统计判决准则
- 3.4 统计判决准则的推广
- 3.5 高斯白噪声中已知信号的检测
- 3.6 高斯色噪声中已知信号的检测
- 3.7 高斯白噪声中随机参量信号的检测
- 3.8 高斯色噪声中随机参量信号的检测

3.1 引言

几个概念

- 假设:对检验对象的所有可能的判决结果的陈述。
- 假设检验:基于观测信号在几个假设中选取一个的判决。
- 先验知识: 观测者事先具备的知识。
- 后验知识:对观测信号分析后重新形成的关于发送信号的知识。

3.2 信号检测模型

雷达检测系统对应的二元假设检验模型

$$H_0: x(t) = n(t)$$

 $H_1: x(t) = s(t) + n(t)$
 $0 \le t \le T$

二元通信系统对应的二元假设检验模型

$$H_0: x(t) = s_0(t) + n(t)$$

 $H_1: x(t) = s_1(t) + n(t)$ $0 \le t \le T$

统计判决的基本步骤

- (1) 做出合理假设
- (2) 确定判决所要遵循的最佳准则
- (3) 进行实验, 获取判决所需的先验知识
- (4) 形成判决规则,划分判决域
- (5) 设计最佳接收机, 计算统计性能

二元的信号检测模型

分类

- 二元假设检验
 - 二元简单假设检验
 - 二元复合假设检验
- M 元假设检验
- 连续信号的检测
- 离散信号的检测
- 单样本检测
- 多样本检测

3.3 统计判决准则

- 3.3.1 几个基本概念
- 3.3.2 最大后验概率准则
- 3.3.3 最小错误概率准则
- 3.3.4 贝叶斯准则
- 3.3.5 极小极大准则
- 3.3.6 纽曼-皮尔逊准则
- 3.3.7 似然比检验

3.3.1 几个基本概念

- $P(D_1|H_0)$ (第一类错误判决概率,即虚警概率,用 P_{fa} 或 α 表示): H_0 为真但判决为 H_1 的概率
- $P(D_0|H_1)$ (第二类错误判决概率,即漏警概率,用 β 表示): H_1 为真但判决为 H_0 的概率
- $P(D_0|H_0)$: H_0 为真也判决为 H_0 的概率
- $P(D_1|H_1)$ (检测概率,用 P_D 表示): H_1 为真也判为 H_1 的概率

$$P(D_{1}|H_{0}) = P(x \in R_{1}|H_{0}) = \int_{R_{1}} f(x|H_{0}) dx$$

$$P(D_{0}|H_{1}) = P(x \in R_{0}|H_{1}) = \int_{R_{0}} f(x|H_{1}) dx$$

$$P(D_{0}|H_{0}) = P(x \in R_{0}|H_{0}) = \int_{R_{0}} f(x|H_{0}) dx$$

$$P(D_{1}|H_{1}) = P(x \in R_{1}|H_{1}) = \int_{R_{1}} f(x|H_{1}) dx$$

$$\bar{P}_{e} = P(H_{0})P(D_{1}|H_{0}) + P(H_{1})P(D_{0}|H_{1})$$

例1:

目标回波信号 s(t)=1 ,噪声 $n(t)\sim N(0,1)$,利用单个观测样本进行检测。

$$H_0: x=n$$

$$H_1: x = 1 + n$$

$$f\left(x\middle|H_{1}\right) \underset{H_{0}}{\overset{H_{1}}{\geqslant}} f\left(x\middle|H_{0}\right)$$

$$x \underset{H_{0}}{\overset{H_{1}}{\geqslant}} \frac{1}{2}$$

四类判决概率

3.3.2 最大后验概率准则

二元假设检验模型

$$H_0: x = -A + n$$

$$H_1$$
: $x = A + n$

根据观测样本,选择最可能产生这种观测样本的那个信号 判断为信源输出的信号。

$$P(H_1 \mid x) \underset{H_0}{\overset{H_1}{\geqslant}} P(H_0 \mid x)$$

• 相应的判决规则为

$$\lambda(x) = \frac{f(x|H_1)}{f(x|H_0)} \underset{H_0}{\overset{H_1}{\geq}} \frac{P(H_0)}{P(H_1)} = th$$

推导过程:

$$\begin{split} &P\left(H_{i} \middle| x\right) = \lim_{\Delta x \to 0} P\left(H_{i} \middle| x \le X \le x + \Delta x\right) \\ &= \lim_{\Delta x \to 0} \frac{P\left(H_{i}\right) P\left(x \le X \le x + \Delta x \middle| H_{i}\right)}{P\left(x \le X \le x + \Delta x\right)} = \lim_{\Delta x \to 0} \frac{P\left(H_{i}\right) \int_{x}^{x + \Delta x} f\left(X \middle| H_{i}\right) dX}{\int_{x}^{x + \Delta x} f\left(X\right) dX} \\ &\approx \frac{P\left(H_{i}\right) f\left(x \middle| H_{i}\right) \Delta x}{f\left(x\right) \Delta x} = \frac{P\left(H_{i}\right) f\left(x \middle| H_{i}\right)}{f\left(x\right)} \end{split}$$

例1解

$$f(x|H_0) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$$

$$f(x|H_1) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-1)^2}{2}\right\}$$

$$\lambda(x) = \frac{f(x|H_1)}{f(x|H_0)} = \exp\left\{x - \frac{1}{2}\right\} \stackrel{H_1}{\underset{H_0}{\geq}} \frac{P(H_0)}{P(H_1)}$$

$$x \stackrel{H_1}{\underset{H_0}{\geq}} \frac{1}{2} + \ln\frac{P(H_0)}{P(H_1)} = th'$$

门限, 检验统计量

3.3.3 最小错误概率准则

寻找合适的判决门限 th' 使二元假设检验的统计平均错误概率

$$\overline{P}_{e} = P(H_{0})P(D_{1}|H_{0}) + P(H_{1})P(D_{0}|H_{1})$$

$$= P(H_{0})\int_{th'}^{+\infty} f(x|H_{0})dx + P(H_{1})\int_{-\infty}^{th'} f(x|H_{1})dx$$

达到最小。

即令
$$\frac{d\overline{P}_{e}}{dth'} = -P(H_{0})f(th'|H_{0}) + P(H_{1})f(th'|H_{1}) = 0$$

得判决规则为
$$\lambda(x) = \frac{f(x|H_1)}{f(x|H_0)} \stackrel{H_1}{\gtrless} \frac{P(H_0)}{P(H_1)} = th$$

例2

二元通信系统, 其单样本的二元假设检验为

$$H_0: x = -A + n$$

$$H_1: \quad x = A + n$$

其中A>0 ,噪声 $n \sim N(0,\sigma^2)$, $P(H_1)=P(H_0)=1/2$

求基于最小错误概率准则进行判决的判决规则和最小错误概率。

解

$$x|H_{0} \sim N(-A,\sigma^{2}) \quad x|H_{1} \sim N(A,\sigma^{2})$$

$$x \underset{H_{0}}{\overset{H_{1}}{\geq}} 0$$

$$\bar{P}_{e} = 0.5 \left[P(D_{1} | H_{0}) + P(D_{0} | H_{1}) \right]$$

$$= 0.5 \left[P(x > 0 | H_{0}) + P(x < 0 | H_{1}) \right]$$

$$= 1 - \Phi(A/\sigma)$$

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

3. 3. 4 贝叶斯准则

判决是需要付出代价的,引入代价函数 C_{ij} (i, j=0,1)

一般 $C_{10} \geq C_{00}, C_{01} \geq C_{11}$ 则判决所付的平均代价为

$$\bar{C} = P(H_0) \Big[C_{00} P(D_0 | H_0) + C_{10} P(D_1 | H_0) \Big]$$

$$+ P(H_1) \Big[C_{01} P(D_0 | H_1) + C_{11} P(D_1 | H_1) \Big]$$

目标: 寻找合适的判决门限 th', 使平均代价达到最小。

令
$$\frac{d\overline{C}}{dth'} = 0$$
 解得
$$\frac{f(th'|H_1)}{f(th'|H_0)} = \frac{P(H_0)(C_{10} - C_{00})}{P(H_1)(C_{01} - C_{11})}$$

则判决规则为

$$\lambda(x) = \frac{f(x|H_1)}{f(x|H_0)} \underset{H_0}{\overset{H_1}{\geq}} \frac{P(H_0)(C_{10} - C_{00})}{P(H_1)(C_{01} - C_{11})} = th$$

$$R = R_0 \bigcup R_1$$

$$\overline{C} = P(H_0) \left[C_{00} \int_{R_0} f(x|H_0) dx + C_{10} \int_{R_1} f(x|H_0) dx \right]
+ P(H_1) \left[C_{01} \int_{R_0} f(x|H_1) dx + C_{11} \int_{R_1} f(x|H_1) dx \right]
\exists \mathbb{H} \int_{R_0} f(x|H_0) dx = 1 - \int_{R_1} f(x|H_0) dx
\int_{R_0} f(x|H_1) dx = 1 - \int_{R_1} f(x|H_1) dx
\overline{C} = P(H_0) C_{00} + P(H_1) C_{01}
+ \int_{R_1} \left[P(H_0) \left(C_{10} - C_{00} \right) f(x|H_0) - P(H_1) \left(C_{01} - C_{11} \right) f(x|H_1) \right] dx
\rightarrow \min
R_1 = \left\{ x : P(H_0) \left(C_{10} - C_{00} \right) f(x|H_0) \le P(H_1) \left(C_{01} - C_{11} \right) f(x|H_1) \right\}$$

3. 3. 5 极小极大准则

• 贝叶斯准则要求已知先验概率和各种代价函数;极小极大准则应用于仅仅知道代价函数 C_{ij} (i,j=0,1),而先验概率 $P(H_i)$ (i=0,1) 未知的情况。

极小极大准则: 把使最小平均代价(贝叶斯代价)取得 最大值所对应的概率当作先验概率使用。

设先验概率 $P(H_0) = p$, 则贝叶斯判决规则为

$$\frac{f(x|H_1)}{f(x|H_0)} \underset{H_0}{\overset{H_1}{\geq}} \frac{p(C_{10} - C_{00})}{(1-p)(C_{01} - C_{11})}$$

贝叶斯代价为

$$\overline{C}_{\min}(p) = p \left\{ C_{00} \left[1 - \alpha(p) \right] + C_{10} \alpha(p) \right\} + (1 - p) \left\{ C_{01} \beta(p) + C_{11} \left[1 - \beta(p) \right] \right\} \\
= C_{00} p + C_{11} (1 - p) + (C_{10} - C_{00}) \alpha(p) p + (C_{01} - C_{11}) \beta(p) (1 - p)$$

当先验概率 p 未知时,按照推测的先验概率 $(p_1, 1-p_1)$ 来设计贝叶斯检验,判决规则为

$$\frac{f(x|H_1)}{f(x|H_0)} \underset{H_0}{\overset{H_1}{\geq}} \frac{p_1(C_{10} - C_{00})}{(1 - p_1)(C_{01} - C_{11})}$$

此时判决所付的平均代价

$$\overline{C}(p, p_1) = C_{00} p + C_{11}(1-p) + (C_{10} - C_{00})\alpha(p_1) p
+ (C_{01} - C_{11})\beta(p_1)(1-p)$$

\bar{C}_{\min} 以及 $\bar{C}(p,p_1)$ 与 p 的关系曲线

$$\bar{C}(p,p_1) \ge \bar{C}_{\min}(p)$$

推测值 p_0 的求解

• 方法一 贝叶斯曲线 $\bar{C}_{\min}(p)$ 取极大值: $\frac{dC_{\min}(p)}{dp}\bigg|_{p=p_o}=0$

• 方法二 直线 $\bar{C}(p,p_1)$ 斜率等于零: $\frac{\partial \bar{C}(p,p_1)}{\partial p}\bigg|_{p_1=p_0}=0$

得
$$C_{10}\alpha(p_0) + C_{00}\left[1 - \alpha(p_0)\right] = C_{01}\beta(p_0) + C_{11}\left[1 - \beta(p_0)\right]$$
 (极小极大方程)

3.3.6 纽曼-皮尔逊准则

纽曼-皮尔逊准则是在先验概率和代价都难以确定的情况下处理假设检验问题的有效准则。

• 在保证虚警概率小于等于某一给定值 $(P_{fa} \le \alpha_0)$ 的约束条件下,使检测概率 P_D 最大。其表示形式为

$$\max P(D_1 | H_1) \quad \text{s.t. } P(D_1 | H_0) = \alpha_0$$

采用拉格朗日待定系数法

$$\mathcal{L} = P(D_0 | H_1) + \mu P(D_1 | H_0)$$

类比平均代价,

$$\stackrel{\square}{=} \begin{cases} C_{00} = C_{11} = 0 \\ P(H_1)C_{01} = 1 \\ P(H_0)C_{10} = \mu \end{cases} \quad \overline{C} = L$$

可得相应的判决规则:

$$\frac{f\left(x\middle|H_{1}\right)}{f\left(x\middle|H_{0}\right)} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} \mu = th$$

门限 th 由 $P_{fa} = \alpha_0$ 确定。

例3

对于单样本的雷达检测问题,有

$$H_0: x=n$$

$$H_1: x = 1 + n$$

其中噪声 $n \sim N(0,1)$,给定虚警概率 $\alpha_0 = 10^{-3}$ 。请求纽曼 –皮尔逊准则的判决规则和检测概率。

解

$$x | H_{0} \sim N(0,1) \qquad x | H_{1} \sim N(1,1)$$

$$x \underset{H_{0}}{\stackrel{H_{1}}{\geq}} \ln(th) + \frac{1}{2} \stackrel{\triangle}{=} th'$$

$$P(D_{1} | H_{0}) = \int_{th'}^{+\infty} f(x | H_{0}) dx$$

$$= \int_{th'}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^{2}}{2}\right\} dx = 1 - \Phi(th') = \alpha$$

$$th' = \Phi^{-1}(1-\alpha)$$

$$P_{D} = P(D_{1} | H_{1}) = \int_{th'}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{(x-1)^{2}}{2}\right\} dx = 1 - \Phi(th'-1)$$

3. 3. 7 似然比检验

前面几种准则下的判决规则都具有如下形式:

$$\lambda(x) = \frac{f(x|H_1)}{f(x|H_0)} \underset{H_0}{\overset{H_1}{\geq}} th$$

其中判决门限由具体的判决准则来确定。

- 似然比 λ(x)
- 与门限作比较的变量称为检验统计量
- 似然比检验 $\lambda(x) \underset{H_0}{\overset{H_1}{\geq}} th$ 似然比检验的对数形式 $\ln \lambda(x) \underset{\overset{H_1}{\geq}}{\overset{H_1}{\geq}} \ln th$

几种判决准则的门限值

• 最大后验概率准则/最小错误概率准则: $th = P(H_0)/P(H_1)$

• 贝叶斯平均风险最小准则: $th = \frac{P(H_0)(C_{10} - C_{00})}{P(H_1)(C_{01} - C_{11})}$

• 极小极大准则: $th = \frac{p_0(C_{10} - C_{00})}{(1 - p_0)(C_{01} - C_{11})}$

• 纽曼-皮尔逊准则: th 由给定的虚警概率确定。

3.4 统计判决准则的推广

- 3. 4. 1 M元假设检验
- 3.4.2 多样本假设检验
- 3.4.3 序贯检验
- 3. 4. 4 复合假设检验

3. 4. 1 M元假设检验

M元假设下的贝叶斯检验

- M 种假设 H_0, H_1, \dots, H_{M-1} , 先验概率 $P(H_0), P(H_1), \dots, P(H_{M-1})$ 代价函数 C_{ij} $(i, j = 0, 1, \dots, M-1)$, 则统计判决付出的平均代价为: $\bar{C} = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} C_{ij} P(D_i | H_j) P(H_j)$
- M 元假设下的贝叶斯检验就是根据使平均风险最小的准则,将观测空间 \mathbb{R} 划分为互斥的 \mathbb{R}_i $(i=0,1,\cdots,M-1)$ 。
- 当 $x \in \mathbb{R}_i$,则判 H_i 为真。

$$\begin{split} & \bar{C} = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} C_{ij} P(D_i | H_j) P(H_j) \\ & = \sum_{i=0}^{M-1} P(H_i) C_{ii} \int_{R_i} f(x | H_i) dx + \sum_{i=0}^{M-1} \sum_{j=0, j \neq i}^{M-1} P(H_j) C_{ij} \int_{R_i} f(x | H_j) dx \\ & = \sum_{i=0}^{M-1} P(H_i) C_{ii} \left[1 - \sum_{j=0, j \neq i}^{M-1} \int_{R_j} f(x | H_i) dx \right] \\ & + \sum_{i=0}^{M-1} \sum_{j=0, j \neq i}^{M-1} P(H_j) C_{ij} \int_{R_i} f(x | H_j) dx \end{split}$$

 $= \sum_{i=0}^{M-1} P(H_i) C_{ii} + \sum_{i=0}^{M-1} \int_{R_i} \sum_{i=0, i \neq i}^{M-1} P(H_j) (C_{ij} - C_{jj}) f(x|H_j) dx$

定义

$$I_{i}(x) = \sum_{j=0, j\neq i}^{M-1} P(H_{j})(C_{ij} - C_{jj}) f(x|H_{j})$$

则贝叶斯判决规则为

$$\mathbb{R}_{i} = \{x : I_{i}(x) \leq I_{k}(x), k = 0, 1, \dots, M - 1, k \neq i\}$$

$$I_i(x) \stackrel{H_i}{\leq} I_k(x), k = 0, 1, \dots, M-1, k \neq i$$

• 令 $C_{ii} = 0, C_{ij} = 1$,贝叶斯判决规则退化成最小错误概率准则或最大后验概率准则下的判决规则。

$$\begin{split} I_{i}(x) &= \sum_{j=0, j \neq i}^{M-1} P(H_{j}) f(x|H_{j}) = \sum_{j=0, j \neq i}^{M-1} P(H_{j}) \frac{P(H_{j}|x) f(x)}{P(H_{j})} \\ &= \sum_{j=0, j \neq i}^{M-1} P(H_{j}|x) f(x) = \left[1 - P(H_{i}|x)\right] f(x) \\ & \text{ P}\left(H_{i}|x\right)^{H_{i}} P(H_{k}|x), k = 0, 1, \dots, M-1, k \neq i \end{split}$$

• 进一步:
$$\lambda(x) = \frac{f(x|H_i)}{f(x|H_k)} \ge \frac{P(H_k)}{P(H_i)}, j = 0, 1, \dots, M-1, k \neq i$$

3.4.2 多样本假设检验

多样本假设检验模型

$$H_0: x_i = A_0 + n_i$$

 $H_1: x_i = A_1 + n_i$ $i = 1, 2, \dots, N$

• 记 $\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_N \end{bmatrix}^T$ 。 贝叶斯判决的目标是将N维观测空间划分为互斥的 $\mathbb{R}_0^N, \mathbb{R}_1^N$ 两个区域,使平均代价 \bar{C} 达到最小。

$$\begin{split} \overline{C} &= P(H_0) \left[C_{00} \int \cdots \int_{R_0^N} f(\mathbf{x} | H_0) d\mathbf{x} + C_{10} \int \cdots \int_{R_1^N} f(\mathbf{x} | H_0) d\mathbf{x} \right] \\ &+ P(H_1) \left[C_{01} \int \cdots \int_{R_0^N} f(\mathbf{x} | H_1) d\mathbf{x} + C_{11} \int \cdots \int_{R_1^N} f(\mathbf{x} | H_1) d\mathbf{x} \right] \\ &= C_{00} P(H_0) + C_{01} P(H_1) \\ &+ \int \cdots \int_{R_1^N} \left[P(H_0) \left(C_{10} - C_{00} \right) f(\mathbf{x} | H_0) - P(H_1) \left(C_{01} - C_{11} \right) f(\mathbf{x} | H_1) \right] d\mathbf{x} \end{split}$$

判决规则为

$$\lambda(\mathbf{x}) = \frac{f(\mathbf{x}|H_1)}{f(\mathbf{x}|H_0)} = \frac{f(x_1, x_2, \dots, x_N|H_1)}{f(x_1, x_2, \dots, x_N|H_0)} \underset{H_0}{\overset{H_1}{\geq}} = \frac{P(H_0)(C_{10} - C_{00})}{P(H_1)(C_{01} - C_{11})} = th$$

双样本检测下二维观测空间的判决域划分示意图

判决面的方程式为: $\lambda(\mathbf{x}) = th$

纽曼-皮尔逊准则 $\max P(D_1 | H_1)$ s.t. $P(D_1 | H_0) = \alpha_0$

即

$$\lambda(\mathbf{x}) = \frac{f(\mathbf{x}|H_1)}{f(\mathbf{x}|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \mu = th$$

门限 th 由下式确定

$$P(D_1 | H_0) = \int_{th} f(\lambda(\mathbf{x}) | H_0) d\lambda = \alpha_0$$

在N维观测空间中有一系列判决面可以满足虚警概率的约束条件,从众多的判决面中找出一个使检测概率达到最大值的判决面。

例4

对于二元通信系统中的多样本检测问题,有

$$H_0: x_i = -A + n_i$$

 $H_1: x_i = A + n_i$ $i = 1, 2, \dots, N$

假定 $P(H_0)=P(H_1)=1/2$,噪声 $n_i\sim N(0,\sigma^2)$ 且相互独立。

请分析基于最小平均错误概率准则下的系统检测性 能。

解

$$f(\mathbf{x}|H_{1}) = \prod_{i=1}^{N} f(x_{i}|H_{1}) = \frac{1}{(2\pi\sigma^{2})^{N/2}} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (x_{i} - A)^{2}\right\}$$

$$f(\mathbf{x}|H_{0}) = \prod_{i=1}^{N} f(x_{i}|H_{0}) = \frac{1}{(2\pi\sigma^{2})^{N/2}} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (x_{i} + A)^{2}\right\}$$

$$\frac{1}{(2\pi\sigma^{2})^{N/2}} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (x_{i} - A)^{2}\right\} \underset{H_{0}}{\overset{H_{1}}{=}} \frac{P(H_{0})}{P(H_{1})} = 1$$

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i} \underset{H_{0}}{\overset{H_{1}}{=}} 0$$

$$\overline{x} | H_1 \sim N\left(A, \frac{\sigma^2}{N}\right) \qquad \overline{x} | H_0 \sim N\left(-A, \frac{\sigma^2}{N}\right)$$

$$\overline{P}_e = \frac{1}{2} \left[P(D_1 | H_0) + P(D_0 | H_1) \right]$$

$$= \frac{1}{2} \left[P(\overline{x} > 0 | H_0) + P(\overline{x} < 0 | H_1) \right]$$

$$= \frac{1}{2} \left\{ \left[1 - \Phi\left(\frac{A}{\sqrt{\sigma^2/N}}\right) \right] + \Phi\left(\frac{-A}{\sqrt{\sigma^2/N}}\right) \right\} = 1 - \Phi\left(\sqrt{\frac{NA^2}{\sigma^2}}\right)$$

中国科学技术大学

多样本与单样本下的性能比较

增加观测样本数使得检验统计量中的信噪比增强, "累积"技术

例5

对于4元多样本检测问题:

$$H_0: x_i = -2 + n_i$$
 $H_1: x_i = -1 + n_i$
 $H_2: x_i = 1 + n_i$
 $i = 1, 2, \dots, N$
 $H_3: x_i = 2 + n_i$

其中 $n_i \sim N(0, \sigma^2)$ 且相互独立,各种假设出现的概率彼此相等。请分析基于最小平均错误概率准则下的检测性能。

解
$$f(\mathbf{x}|H_{k}) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{N/2} \exp\left\{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}(x_{i}-m_{k})^{2}\right\}$$

$$\frac{f(\mathbf{x}|H_{i})}{f(\mathbf{x}|H_{j})} \stackrel{H_{i}}{\geq} \frac{P(H_{j})}{P(H_{i})} = 1 \quad i, j = 0, 1, 2, 3 \quad j \neq i$$

$$f(\mathbf{x}|H_{i}) \stackrel{H_{i}}{\geq} f(\mathbf{x}|H_{j})$$

$$\exp\left\{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{N}(x_{i}-m_{k})^{2}\right\} = \exp\left\{-\frac{1}{2\sigma^{2}}\left(\sum_{i=1}^{N}x_{i}^{2}-2\sum_{i=1}^{N}x_{i}m_{k}+Nm_{k}^{2}\right)\right\}$$

判决规则:
$$\overline{x} < -1.5$$
判为 H_0 , $-1.5 \le \overline{x} < 0$ 判为 H_1 , $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

$$0 \le \overline{x} \le 1.5$$
判为 H_2 , $\overline{x} > 1.5$ 判为 H_3

$$\overline{x} \mid H_i \sim N(m_i, \sigma^2/N)$$

$$\overline{P}_e = \sum_{i, j \neq i} \sum_{i, j \neq i} P(D_i \mid H_i) / 4 = \sum_{i} \left[1 - P(D_i \mid H_i) \right] / 4$$

3.4.3 序贯检测

- 序贯检测: 事先不规定样本数而留待实验过程中确定的假设检验方法。
- 二元序贯假设检测:在虚警概率 $P_{fa} \leq \alpha$ 和漏警概率 $P_D \geq 1-\beta$ 的约束下,从所获得的第一个数据序列开始进行似然比检验,若能做出明确判决,检验结束;若不能做出判决,则采用新接收的数据与前面已有的数据按照同样的规则进行联合判决,直至能做出判决为止。

序贯检测的判决规则

$$\begin{cases} \lambda(\mathbf{x}_{i}) \geq th_{1} & \text{判为}H_{1} \\ \lambda(\mathbf{x}_{i}) \leq th_{0} & \text{判为}H_{0} \\ th_{0} < \lambda(\mathbf{x}_{i}) < th_{1} & \text{增加一个样本,重新判决} \end{cases}$$

 $\mathbf{x}_{i} = \begin{bmatrix} x_{1}, x_{2}, \cdots, x_{i} \end{bmatrix}^{T} (i = 1, 2, \cdots)$ 为观测样本矢量,i为观测样本数序号,随着判决过程进行不断增加,直至做出判决为止; th_{0}, th_{1} 由给定的虚警概率 α_{0} 和漏警概率 β_{0} 决定。

序贯检测 的判决域

$$R_{1} = \left\{ R_{1}^{1}, R_{1}^{2}, R_{1}^{3}, \cdots \right\}, \quad R_{1}^{i} = \left\{ \mathbf{x}_{i} : \frac{f(\mathbf{x}_{i} | H_{1})}{f(\mathbf{x}_{i} | H_{0})} \ge th_{1} \right\}$$

$$R_{0} = \left\{ R_{0}^{1}, R_{0}^{2}, R_{0}^{3}, \cdots \right\}, \quad R_{0}^{i} = \left\{ \mathbf{x}_{i} : \frac{f(\mathbf{x}_{i} | H_{1})}{f(\mathbf{x}_{i} | H_{0})} \le th_{0} \right\}$$

虚警概率

$$\alpha_{0} = P\left(\lambda\left(\mathbf{x}_{1}\right) \geq th_{1} \middle| H_{0}\right) + P\left(\left(th_{0} < \lambda\left(\mathbf{x}_{1}\right) < th_{1}, \lambda\left(\mathbf{x}_{2}\right) \geq th_{1}\right) \middle| H_{0}\right)$$
$$+ P\left(\left(th_{0} < \lambda\left(\mathbf{x}_{1}\right) < th_{1}, th_{0} < \lambda\left(\mathbf{x}_{2}\right) < th_{1}, \lambda\left(\mathbf{x}_{3}\right) \geq th_{1}\right) \middle| H_{0}\right) + \cdots$$

漏警概率

$$\beta_{0} = P((\lambda(\mathbf{x}_{1}) \leq th_{0})|H_{1}) + P((th_{0} < \lambda(\mathbf{x}_{1}) < th_{1}, \lambda(\mathbf{x}_{2}) \leq th_{0})|H_{1})$$

$$+P((th_{0} < \lambda(\mathbf{x}_{1}) < th_{1}, th_{0} < \lambda(\mathbf{x}_{2}) < th_{1}, \lambda(\mathbf{x}_{3}) \leq th_{0})|H_{1}) + \cdots$$

近似求解方法

$$P_{D} = P(D_{1}|H_{1}) = \int_{\mathbb{R}_{1}^{i}} f(\mathbf{x}_{i}|H_{1}) d\mathbf{x}_{i}$$

$$= \int_{\mathbb{R}_{1}^{i}} \lambda(\mathbf{x}_{i}) f(\mathbf{x}_{i}|H_{0}) d\mathbf{x}_{i} \qquad \rightarrow th_{1} \leq \frac{1 - \beta_{0}}{\alpha_{0}}$$

$$\geq th_{1} \int_{\mathbb{R}_{1}^{i}} f(\mathbf{x}_{i}|H_{0}) d\mathbf{x}_{i} = th_{1}\alpha_{0} \qquad \approx$$

$$\beta_{0} = P(D_{0}|H_{1}) = \int_{\mathbb{R}_{0}^{i}} f(\mathbf{x}_{i}|H_{1}) d\mathbf{x}_{i}$$

$$= \int_{\mathbb{R}_{0}^{i}} \lambda(\mathbf{x}_{i}) f(\mathbf{x}_{i}|H_{0}) d\mathbf{x}_{i} \qquad \rightarrow th_{0} \geq \frac{\beta_{0}}{1 - \alpha_{0}}$$

$$\leq th_{0} \int_{\mathbb{R}_{0}^{i}} f(\mathbf{x}_{i}|H_{0}) d\mathbf{x}_{i} = th_{0} P(D_{0}|H_{0}) \qquad \approx$$

序贯检测的判决门限

$$th_1 \approx \frac{1 - \beta_0}{\alpha_0} \qquad \text{$3 \over $} \ln th_1 \approx \ln \left(\frac{1 - \beta_0}{\alpha_0}\right)$$

$$th_0 \approx \frac{\beta_0}{1 - \alpha_0} \quad \vec{\mathbf{g}} \quad \ln th_0 \approx \ln \left(\frac{\beta_0}{1 - \alpha_0}\right)$$

结束判决所需的平均样本数

$$E\{N\} = E\{N|H_1\}P(H_1) + E\{N|H_0\}P(H_0)$$

其中

$$E\left\{\ln\lambda\left(\mathbf{x}_{N}\right)\middle|H_{0}\right\} = \int_{R_{1}^{N}+R_{0}^{N}}\ln\lambda\left(\mathbf{x}_{N}\right)f\left(\mathbf{x}_{N}\middle|H_{0}\right)d\mathbf{x}_{N}$$

$$\approx \alpha_{0}\ln th_{1} + \left(1-\alpha_{0}\right)\ln th_{0} \approx E\left\{N\middle|H_{0}\right\}E\left\{\ln\lambda\left(x\right)\middle|H_{0}\right\}$$

$$E\left\{\ln\lambda\left(\mathbf{x}_{N}\right)\middle|H_{1}\right\} \approx \left(1-\beta_{0}\right)\ln th_{1} + \beta_{0}\ln th_{0}$$

$$\approx E\left\{N\middle|H_{1}\right\}E\left\{\ln\lambda\left(x\right)\middle|H_{1}\right\}$$

$$E\left\{N\right\} = \frac{\alpha_{0}\ln th_{1} + \left(1-\alpha_{0}\right)\ln th_{0}}{E\left\{\ln\lambda\left(x\right)\middle|H_{0}\right\}}P\left(H_{0}\right) + \frac{\left(1-\beta_{0}\right)\ln th_{1} + \beta_{0}\ln th_{0}}{E\left\{\ln\lambda\left(x\right)\middle|H_{1}\right\}}P\left(H_{1}\right)$$

证明: 当观测样本数趋于无穷时判决一定结束。

假设判决在i 时刻没结束,定义 $C = |\ln th_1| + |\ln th_0|$

$$\begin{split} &P \Big(\ln t h_0 < \ln \lambda \big(x_1 \big) < \ln t h_1 \Big) \leq P \Big(-C < \ln \lambda \big(x_1 \big) < C \Big) \triangleq p \\ &P \Big(\ln t h_0 < \ln \lambda \big(x_1 \big) + \ln \lambda \big(x_2 \big) < \ln t h_1 \Big) \\ &= P \Big(\ln t h_0 < \ln \lambda \big(x_1 \big) < \ln t h_1, \ln t h_0 < \ln \lambda \big(x_1 \big) + \ln \lambda \big(x_2 \big) < \ln t h_1 \Big) \\ &\leq P \Big(-C < \ln \lambda \big(x_1 \big) < C, -C < \ln \lambda \big(x_2 \big) < C \Big) = p^2 \\ &\vdots \\ &P \Big(\ln t h_0 < \ln \lambda \big(x_1 \big) + \ln \lambda \big(x_2 \big) + \dots + \ln \lambda \big(x_i \big) < \ln t h_1 \Big) \leq p^i \xrightarrow{i \to \infty} 0 \end{split}$$

例6

二元假设检验

$$H_0: x_i = n_i$$

 $H_1: x_i = 0.6 + n_i$ $i = 1, 2, \dots$

其中 $n_i \sim N(0,1)$ 的白噪声。先验概率 $P(H_1) = P(H_0)$, 虚 警概率和漏警概率约束为 $\alpha_0 = \beta_0 = 0.05$ 。采用序贯似然比检测,求结束判决所需的平均样本数。

解
$$\ln th_1 \approx 2.944$$
, $\ln th_0 \approx -2.944$
 $\ln \lambda(x) = 0.6(x-0.3)$

$$E\{\ln \lambda(x) \mid H_0\} = \int_{-\infty}^{\infty} 2(x-1) \cdot \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} dx = -0.18$$

$$E\left\{\ln\lambda\left(x\right)|H_{1}\right\} = 0.18$$

$$E\{N|H_0\} \approx \frac{\alpha \ln t h_1 + (1-\alpha) \ln t h_0}{E\{\ln \lambda(x)|H_0\}} = 14.72$$

$$E\{N|H_1\} \approx \frac{(1-\beta)\ln th_1 + \beta \ln th_0}{E\{\ln \lambda(x)|H_1\}} = 14.72$$

$$E\{N\} = (14.72 + 14.72) \times 0.5 = 14.72$$

3.4.4 复合假设检验

信号检测中除了由于噪声对观测样本的影响使判决产生了不确定性以外,被检测的信号的一些参量还可能是随机的,称为随机参量信号,对应的检测称为复合假设检验。

二元复合假设检验

- 与 H_0 假设有关的随机参量矢量为 $\Phi = [\phi_1, \phi_2, ..., \phi_m]^T$,先验概率密度函数为 $f_0(\Phi)$,先验概率为 $P(H_0)$,代价函数为 $C_{00}(\Phi), C_{10}(\Phi)$ 。
- 与 H_1 假设有关的随机参量矢量为 $\mathbf{o} = [\theta_1, \theta_2, \cdots, \theta_n]^T$,先验概率密度函数为 $f_1(\mathbf{o})$,先验概率为 $P(H_1)$,代价函数为 $C_{11}(\mathbf{o}), C_{01}(\mathbf{o})$ 。

• 系统判决所付的平均代价:

$$\overline{C} = P(H_0) \int_{(\mathbf{\Phi})} \left[C_{00}(\mathbf{\Phi}) P(D_0 | \mathbf{\Phi}, H_0) + C_{10}(\mathbf{\Phi}) P(D_1 | \mathbf{\Phi}, H_0) \right] f_0(\mathbf{\Phi}) d\mathbf{\Phi}
+ P(H_1) \int_{(\mathbf{\Theta})} \left[C_{01}(\mathbf{\Theta}) P(D_0 | \mathbf{\Theta}, H_1) + C_{11}(\mathbf{\Theta}) P(D_1 | \mathbf{\Theta}, H_1) \right] f_1(\mathbf{\Theta}) d\mathbf{\Theta}
= P(H_0) \int_{(\mathbf{\Phi})} C_{00}(\mathbf{\Phi}) f_0(\mathbf{\Phi}) d\mathbf{\Phi} + P(H_1) \int_{(\mathbf{\Theta})} C_{01}(\mathbf{\Theta}) f_1(\mathbf{\Theta}) d\mathbf{\Theta}
+ \int_{x \in R_1^N} \int_{(\mathbf{\Phi})} P(H_0) \left[C_{10}(\mathbf{\Phi}) - C_{00}(\mathbf{\Phi}) \right] f(\mathbf{x} | \mathbf{\Phi}, H_0) f_0(\mathbf{\Phi}) d\mathbf{\Phi} dx
- \int_{x \in R_1^N} \int_{(\mathbf{\Theta})} P(H_1) \left[C_{01}(\mathbf{\Theta}) - C_{11}(\mathbf{\Theta}) \right] f(\mathbf{x} | \mathbf{\Theta}, H_1) f_1(\mathbf{\Theta}) d\mathbf{\Theta} dx$$

基于贝叶斯准则的判决规则:

$$\lambda\left(\mathbf{x}\right) = \frac{\int_{\left(\mathbf{\Theta}\right)} \left[C_{01}\left(\mathbf{\Theta}\right) - C_{11}\left(\mathbf{\Theta}\right)\right] f\left(\mathbf{x}\middle|\mathbf{\Theta}, H_{1}\right) f_{1}\left(\mathbf{\Theta}\right) d\mathbf{\Theta}}{\int_{\left(\mathbf{\Phi}\right)} \left[C_{10}\left(\mathbf{\Phi}\right) - C_{00}\left(\mathbf{\Phi}\right)\right] f\left(\mathbf{x}\middle|\mathbf{\Phi}, H_{0}\right) f_{0}\left(\mathbf{\Phi}\right) d\mathbf{\Phi}} \underset{H_{0}}{\overset{H_{1}}{\geq}} \frac{P\left(H_{0}\right)}{P\left(H_{1}\right)} = th$$

若各类代价函数 C_{ii} 与随机参量矢量 Φ 和 Θ 无关,则

$$\lambda\left(\mathbf{x}\right) = \frac{\int_{\left(\mathbf{\Theta}\right)} f\left(\mathbf{x}\middle|\mathbf{\Theta}, H_{1}\right) f_{1}\left(\mathbf{\Theta}\right) d\mathbf{\Theta}}{\int_{\left(\mathbf{\Phi}\right)} f\left(\mathbf{x}\middle|\mathbf{\Phi}, H_{0}\right) f_{0}\left(\mathbf{\Phi}\right) d\mathbf{\Phi}} \underset{H_{0}}{\overset{H_{1}}{\geq}} \frac{\left(C_{10} - C_{00}\right) P\left(H_{0}\right)}{\left(C_{01} - C_{11}\right) P\left(H_{1}\right)} = th$$

$$\lambda(\mathbf{x}) = \frac{f(\mathbf{x}|H_1)}{f(\mathbf{x}|H_0)} \underset{H_0}{\overset{H_1}{\geq}} th$$

• $C_{00} = C_{11} = 0$, $C_{10} = C_{01} = 1$,则基于最小错误概率准则和最大后验概率准则的判决规则:

$$\lambda\left(\mathbf{x}\right) = \frac{\int_{\left(\mathbf{\Theta}\right)} f\left(\mathbf{x}\middle|\mathbf{\Theta}, H_{1}\right) f_{1}\left(\mathbf{\Theta}\right) d\mathbf{\Theta}}{\int_{\left(\mathbf{\Phi}\right)} f\left(\mathbf{x}\middle|\mathbf{\Phi}, H_{1}\right) f_{0}\left(\mathbf{\Phi}\right) d\mathbf{\Phi}} \underset{H_{0}}{\overset{H_{1}}{\geq}} \frac{P(H_{0})}{P(H_{1})}$$

• $C_{00} = C_{11} = 0$, $P(H_1)C_{01} = 1$, $P(H_0)C_{10} = th$, 则基于纽曼-皮尔逊准则的判决规则:

$$\lambda(\mathbf{x}) = \frac{\int_{(\mathbf{\Theta})} f(\mathbf{x}|\mathbf{\Theta}, H_1) f_1(\mathbf{\Theta}) d\mathbf{\Theta}}{\int_{(\mathbf{\Phi})} f(\mathbf{x}|\mathbf{\Phi}, H_1) f_0(\mathbf{\Phi}) d\mathbf{\Phi}} \underset{H_0}{\overset{H_1}{\geq}} th$$

M元复合假设检验

• 与 H_i $(i=0,1,\cdots,M-1)$ 假设有关的随机参量矢量为 $\mathbf{\Theta}_i$,先验概率密度函数为 $f(\mathbf{\Theta}_i)$,先验概率为 $P(H_i)$,代价函数为 $C_{ij}(\mathbf{\Theta}_j)$

• 系统判决所付的平均代价:

$$\overline{C} = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} P(H_j) \int_{(\mathbf{\Theta}_j)} C_{ij} (\mathbf{\Theta}_j) P(D_i | \mathbf{\Theta}_j, H_j) f(\mathbf{\Theta}_j) d\mathbf{\Theta}_j$$

$$= \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} P(H_j) \int_{(\mathbf{\Theta}_j)} \left[\int_{\mathbf{x} \in \mathbb{R}_i^n} f(\mathbf{x} | \mathbf{\Theta}_j, H_j) C_{ij} (\mathbf{\Theta}_j) d\mathbf{x} \right] f(\mathbf{\Theta}_j) d\mathbf{\Theta}_j$$

定义

$$I_{i}(\mathbf{x}) = \sum_{j=0, j \neq i}^{M-1} P(H_{j}) \int_{(\mathbf{\Theta}_{j})} f(\mathbf{x} | \mathbf{\Theta}_{j}, H_{j}) \left(C_{ij}(\mathbf{\Theta}_{j}) - C_{jj}(\mathbf{\Theta}_{j}) \right) f(\mathbf{\Theta}_{j}) d\mathbf{\Theta}_{j}$$

基于贝叶斯准则的判决规则:

$$I_i(\mathbf{x}) \stackrel{H_i}{\leq} I_k(\mathbf{x}), k = 0, 1, \dots, M-1, k \neq i$$

即

$$\mathbb{R}_{i}^{N} = \left\{ \mathbf{x} : I_{i}(\mathbf{x}) \leq I_{k}(\mathbf{x}), k = 0, 1, \dots, M - 1, k \neq i \right\}$$

3.5 高斯白噪声中已知信号的检测

- 3.5.1 最佳接收机
- 3.5.2 通信接收机的性能
- 3.5.3 雷达系统的最佳接收机性能
- 3.5.4 匹配滤波器
- 3.5.5 M元通信系统
- 3.5.6 已知信号的分集接收

3.5.1 最佳接收机

二元假设检验问题:

$$H_0: x(t) = s_0(t) + n(t)$$

 $H_1: x(t) = s_1(t) + n(t)$ $0 \le t \le T$

其中 $s_0(t)$ 和 $s_1(t)$ 是确知信号,n(t) 是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声。在 [0,T] 内对接收信号采样,获得N个观测样本:

$$H_0: x_k = s_{0k} + n_k$$

 $H_1: x_k = s_{1k} + n_k$ $k = 1, 2, \dots, N$

记 $\mathbf{x} = [x_1, x_2, \dots, x_N]^T$, 其似然比检验为

$$\lambda(\mathbf{x}) = \frac{f(x_1, x_2, \dots, x_N | H_1)}{f(x_1, x_2, \dots, x_N | H_0)} \underset{H_0}{\overset{H_1}{\geq}} th$$

如果这N个样本统计独立,则

$$\lambda\left(\mathbf{x}\right) = \frac{\prod_{k=1}^{N} f\left(x_{k} \left| H_{1}\right)\right)_{H_{1}}}{\prod_{k=1}^{N} f\left(x_{k} \left| H_{0}\right)\right)^{H_{0}}} \gtrsim th$$

带限白噪声

$$R_n(\tau) = \frac{N_0 \Omega}{2\pi} \cdot \frac{\sin \Omega \tau}{\Omega \tau}$$

当假设为 $H_i(i=0,1)$ 时,样本 x_k 的似然函数为:

$$f\left(x_{k} \mid H_{i}\right) = \frac{1}{\sqrt{2\pi\sigma_{n}}} \exp \left[-\frac{\left(x_{k} - s_{ik}\right)^{2}}{2\sigma_{n}^{2}}\right], \quad \sigma_{n}^{2} = \frac{N_{0}\Omega}{2\pi} = \frac{N_{0}\Omega}{2\Delta t}$$

此时样本矢量的似然函数为:

$$f\left(\mathbf{x}\middle|H_{i}\right) = \prod_{k=1}^{N} f\left(x_{k}\middle|H_{i}\right) = \left(\frac{1}{2\pi\sigma_{n}^{2}}\right)^{N/2} \exp\left[-\sum_{k=1}^{N} \frac{\left(x_{k} - s_{ik}\right)^{2}}{2\sigma_{n}^{2}}\right], N = \frac{T}{\Delta t} = \frac{\Omega T}{\pi}$$

似然比判决规则为:

$$\mathbf{x}^{T} \left(\mathbf{s}_{1} - \mathbf{s}_{0} \right) \underset{H_{0}}{\overset{H_{1}}{\geq}} \sigma_{n}^{2} \ln \left(th \right) + \frac{1}{2} \left(\mathbf{s}_{1}^{T} \mathbf{s}_{1} - \mathbf{s}_{0}^{T} \mathbf{s}_{0} \right) = th'$$

$$\mathbf{s}_{1} = \left[s_{11}, s_{12}, \dots, s_{1N} \right]^{T}, \mathbf{s}_{0} = \left[s_{01}, s_{02}, \dots, s_{0N} \right]^{T}$$

其中

相关接收机

(b)

适合于连续信号检测的最佳接收机

在 H_i 假设下的似然函数

$$f\left(x(t)\middle|H_{i}\right) = \lim_{\substack{N \to +\infty \\ \Delta t \to 0}} f\left(\mathbf{x}\middle|H_{i}\right) = F \exp\left\{-\frac{1}{N_{0}} \int_{0}^{T} \left[x(t) - s_{i}(t)\right]^{2} dt\right\}$$

连续信号的似然比判决规则

相关接收机

(a)

(b)

3.5.2 通信接收机的性能

• 通常用平均错误概率来衡量,设计检验统计量

$$G = \int_0^T \left[s_1(t) - s_0(t) \right] x(t) dt + \frac{1}{2} \int_0^T \left[s_0^2(t) - s_1^2(t) \right] dt \underset{H_0}{\gtrless} \frac{N_0}{2} \ln \left| \frac{P(H_0)}{P(H_1)} \right|$$

H₀条件下

$$E\{G \mid H_{0}\} = E\left\{\int_{0}^{T} \left[s_{1}(t) - s_{0}(t)\right] \left[s_{0}(t) + n(t)\right] dt + \frac{1}{2} \int_{0}^{T} \left[s_{0}^{2}(t) - s_{1}^{2}(t)\right] dt\right\}$$

$$= -\frac{1}{2} \int_{0}^{T} \left[s_{0}(t) - s_{1}(t)\right]^{2} dt$$

$$Var\{G \mid H_{0}\} = E\left\{\left[G - E\{G \mid H_{0}\}\right]^{2} \mid H_{0}\right\}$$

$$= \int_{0}^{T} \int_{0}^{T} E\{n(t)n(\tau)\} \left[s_{0}(t) - s_{1}(t)\right] \left[s_{0}(\tau) - s_{1}(\tau)\right] dt d\tau$$

$$= \frac{N_{0}}{2} \int_{0}^{T} \left[s_{0}(t) - s_{1}(t)\right]^{2} dt$$

• *H*₁ 条件下

$$E\{G|H_{1}\} = E\left\{\int_{0}^{T} \left[s_{1}(t) - s_{0}(t)\right] \left[s_{1}(t) + n(t)\right] dt + \frac{1}{2} \int_{0}^{T} \left[s_{0}^{2}(t) - s_{1}^{2}(t)\right] dt\right\}$$

$$= \frac{1}{2} \int_{0}^{T} \left[s_{0}(t) - s_{1}(t)\right]^{2} dt$$

$$Var\{G|H_{1}\} = E\left\{\left[G - E\{G|H_{1}\}\right]^{2} \middle| H_{1}\right\}$$

$$= \int_{0}^{T} \int_{0}^{T} E\{n(t)n(\tau)\} \left[s_{0}(t) - s_{1}(t)\right] \left[s_{0}(\tau) - s_{1}(\tau)\right] dt d\tau$$

$$= \frac{N_{0}}{2} \int_{0}^{T} \left[s_{0}(t) - s_{1}(t)\right]^{2} dt$$

$$= Var\{G|H_{0}\}$$

定义参数:

$$E = \frac{1}{2} (E_0 + E_1) = \frac{1}{2} \left[\int_0^T s_0^2(t) dt + \int_0^T s_1^2(t) dt \right]$$

 E_0 和 E_1 分别表示信号 $s_0(t)$ 和 $s_1(t)$ 的能量, E 表示信号 $s_0(t)$ 和 $s_1(t)$ 的平均能量;

$$\rho = \frac{1}{E} \int_0^T s_0(t) s_1(t) dt$$

 ρ 表示 $s_0(t)$ 和 $s_1(t)$ 的时间互相关系数。

可证明: $|\rho| \le 1$

$$f(G|H_0) = \left[\frac{1}{2\pi N_0 E(1-\rho)}\right]^{1/2} \exp\left\{-\frac{\left[G + E(1-\rho)\right]^2}{2N_0 E(1-\rho)}\right\}$$

$$f(G|H_1) = \left[\frac{1}{2\pi N_0 E(1-\rho)}\right]^{1/2} \exp\left\{-\frac{\left[G - E(1-\rho)\right]^2}{2N_0 E(1-\rho)}\right\}$$

假定通信源的先验概率近似相等,即 $P(H_0) = P(H_1) = \frac{1}{2}$,

$$\overline{P}_{e} = P(D_{1}|H_{0}) = P(D_{0}|H_{1}) = \int_{\alpha/2}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx$$

$$= 1 - \Phi(\alpha/2) = 1 - \Phi\left(\sqrt{(1-\rho)E/N_{0}}\right)$$

最佳二元通信系统

相干相移键控系统(CPSK)

• 在 [0,T] 内可能发射信号

$$s_0(t) = A \sin \omega_c t$$

$$s_1(t) = A \sin (\omega_c t + \pi) = -A \sin \omega_c t$$

$$0 \le t \le T$$

• 判决规则

$$\int_0^T x(t) s_1(t) dt \underset{H_0}{\gtrless} 0$$

• 平均错误概率

$$\bar{P}_{e} = 1 - \Phi\left(\sqrt{2E/N_{0}}\right) = 1 - \Phi\left(\sqrt{2E_{1}/N_{0}}\right)$$

相干频移键控系统(CFSK)

• 在[0,T]内可能发射信号

$$s_0(t) = A \sin \omega_0 t$$

$$s_1(t) = A \sin \omega_1 t$$

$$0 \le t \le T$$

• 判决规则

$$\int_0^T \left[s_1(t) - s_0(t) \right] x(t) dt \underset{H_0}{\gtrless} 0$$

• 平均错误概率

$$\overline{P}_{e} = 1 - \Phi\left(\sqrt{E/N_{0}}\right) = 1 - \Phi\left(\sqrt{E_{1}/N_{0}}\right)$$

开关载波键控系统(OOK)

• 在 [0,T] 内可能发射信号

$$s_0(t) = 0$$

$$s_1(t) = B \sin \omega_c t$$

$$0 \le t \le T$$

• 判决规则

$$\int_{0}^{T} x(t) s_{1}(t) dt \underset{H_{0}}{\gtrless} \frac{1}{2} E_{1}$$

• 平均错误概率

$$\overline{P}_e = 1 - \Phi\left(\sqrt{E/N_0}\right) = 1 - \Phi\left(\sqrt{E_1/2N_0}\right)$$

3.5.3 雷达系统的最佳接收机性能

两种假设

$$H_0: x(t) = n(t)$$

$$H_1: x(t) = s(t) + n(t)$$

$$0 \le t \le T$$

其中 n(t) 是零均值,功率谱密度为 $N_0/2$ 的高斯白噪声。

• 判决规则

$$\int_0^T s(t)x(t)dt \underset{H_0}{\gtrless} th'$$

其中

$$th' = \frac{N_0}{2} \ln th + \frac{1}{2} \int_0^T s^2(t) dt$$

• 定义检验统计量

$$G = \int_0^T s(t)x(t)dt$$

$$G|H_0 \sim N\left(0, \frac{N_0 E_1}{2}\right), \quad G|H_1 \sim N\left(E_1, \frac{N_0 E_1}{2}\right)$$

虚警概率

$$P_{fa} = \int_{th'}^{\infty} \frac{1}{\sqrt{\pi N_0 E_1}} \exp\left(-\frac{G^2}{N_0 E_1}\right) dG = \int_{\eta}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx$$
$$= 1 - \Phi(\eta) = \alpha$$

检测概率

$$P_{D} = \int_{th'}^{\infty} \frac{1}{\sqrt{\pi N_{0} E_{1}}} \exp \left[-\frac{\left(G - E_{1}\right)^{2}}{N_{0} E_{1}} \right] dG = \int_{\eta - \sqrt{2E_{1}/N_{0}}}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^{2}}{2} \right) dx$$

$$= 1 - \Phi \left(\eta - \sqrt{2E_{1}/N_{0}} \right)$$

接收机工作特性(ROC)

3.5.4 匹配滤波器

- 匹配滤波器是基于最大输出信噪比准则的最佳接收机
- 最大输出信噪比准则就是输出信号峰值的瞬时功率与噪声的平均功率之比为最大的准则
- 线性滤波器的输入输出模型

输入:
$$x(t) = s(t) + n(t)$$

输出:
$$y(t) = s_o(t) + n_o(t)$$

其中 s(t) 是确知信号,n(t) 是功率谱密度为 $N_0/2$ 的广义 平稳白噪声。

定义系统输出的峰值信噪比为

$$SNR_{o} = \frac{s_{o}^{2}(t_{0})}{E\{n_{o}^{2}(t)\}} = \frac{\left|\frac{1}{2\pi}\int_{-\infty}^{+\infty}S(\omega)H(j\omega)e^{j\omega t_{0}}d\omega\right|^{2}}{\frac{N_{0}}{4\pi}\int_{-\infty}^{+\infty}\left|H(j\omega)\right|^{2}d\omega}$$

利用施瓦兹不等式

$$\left| \int_{-\infty}^{+\infty} F(t) Q(t) dt \right|^{2} \leq \int_{-\infty}^{+\infty} \left| F(t) \right|^{2} dt \cdot \int_{-\infty}^{+\infty} \left| Q(t) \right|^{2} dt$$

 $(只有当 F(t) = CQ^*(t), C$ 为任意常数,上式等式才成立)

可得信噪比

$$SNR_{o} \leq \frac{\left(\frac{1}{2\pi}\right)^{2} \int_{-\infty}^{\infty} \left|S(\omega)\right|^{2} d\omega \int_{-\infty}^{\infty} \left|H(j\omega)\right|^{2} d\omega}{\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{N_{0}}{2} \left|H(j\omega)\right|^{2} d\omega}$$
$$= \frac{\frac{1}{2\pi} \int_{-\infty}^{\infty} \left|S(\omega)\right|^{2} d\omega}{N_{0}/2} = \frac{E}{N_{0}/2}$$

当系统传输函数设计为 $H(j\omega)=CS^*(\omega)e^{-j\omega t_o}$ 且取 C=1 时,系统输出达到最大信噪比为 $\frac{E}{N_o/2}$ 。

匹配滤波器的时域特性

$$h(t) = \mathcal{F}^{-1}\left\{H(j\omega)\right\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S^*(\omega) e^{j\omega(t-t_0)} d\omega = s^*(t_0-t)$$

• 对于实信号 s(t) , 有 $h(t) = s(t_0 - t)$

图 3.15 匹配滤波器的冲激响应。

性质

(1) 在所有的线性滤波器中, 匹配滤波器输出信噪比最大,

$$SNR_{o\,\mathrm{max}} = E/(N_0/2)$$
 .

(2)
$$\begin{cases} |H(j\omega)| = |S(\omega)| \\ \varphi_h(\omega) = -\varphi_s(\omega) - \omega t_0 \end{cases}$$
$$s_o(t_0) = \int_{-\infty}^{\infty} S(\omega) H(j\omega) e^{j\omega t_0} d\omega / 2\pi = \int_{-\infty}^{\infty} |S(\omega)|^2 d\omega / 2\pi$$

- (3) 输出信噪比达到最大的时刻 $t_0 \ge T$
- (4) 与 s(t) 匹配的滤波器对 $s_1(t) = As(t-\tau)$ 同样匹配

$$H_1(j\omega) = S_1^*(\omega)e^{-j\omega t_0'} = AS^*(\omega)e^{-j\omega(t_0'-\tau)} = AH(j\omega)e^{-j\omega(t_0'-t_0-\tau)}$$

(5) 匹配滤波器对频移信号不再匹配

$$S_1(\omega) = S(\omega + \omega_0), \quad H_1(j\omega) = S_1^*(\omega)e^{-j\omega t_0}$$

(6) 匹配滤波器的输出信号是输入信号的时间自相关函数

$$s_o(t) = \int_0^T h(\tau) s(t-\tau) d\tau = \int_0^T s(T-\tau) s(t-\tau) d\tau = R_s(T-t)$$

(7) 匹配滤波器和相关器的等效性

$$y(t) = \int_0^T x(\tau)h(t-\tau)d\tau = \int_0^T x(\tau)s(T-t+\tau)d\tau$$
$$y(t=T) = \int_0^T x(\tau)s(\tau)d\tau$$

3.5.5 M元通信系统

• M元假设检验问题

$$H_i: x(t) = s_i(t) + n(t), \ 0 \le t \le T, \ i = 0, 1, \dots, M-1$$

其中 n(t) 是均值为0、功率谱密度为 $N_0/2$ 的高斯白噪声

$$\rho_{ij} = \int_{0}^{T} s_{i}(t) s_{j}(t) dt = \delta_{ij} \cdot E, \quad \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$P(H_{0}) = P(H_{1}) = \dots = P(H_{M-1}) = \frac{1}{M}$$

基于最小错误概率准则的判决规则为

$$\frac{f\left(x(t)\middle|H_{i}\right)}{f\left(x(t)\middle|H_{j}\right)} \stackrel{H_{i}}{\geq} 1, \quad j = 0, 1, \dots, M - 1, j \neq i$$

$$f\left(x(t)\middle|H_{j}\right) = F \exp\left\{-\frac{1}{N_{0}} \int_{0}^{T} \left[x(t) - s_{i}(t)\right]^{2} dt\right\}$$

$$\int_{0}^{T} s_{i}(t)x(t) dt \stackrel{H_{i}}{\geq} \int_{0}^{T} s_{j}(t)x(t) dt, \quad j = 0, 1, \dots, M - 1, j \neq i$$

相关接收机

匹配滤波器

M元系统的检测性能

• 以第*i*个相关器输出作为检验统计量

$$G_i = \int_0^T x(t) s_i(t) dt, \ i = 0, 1, \dots, M-1$$

• 平均错误概率为:

$$\begin{split} \overline{P}_{e} &= \sum_{j=0}^{M-1} P_{e} \left(H_{j} \right) P \left(H_{j} \right) = \sum_{i=0}^{M-1} \left(1 - P \left(D_{i} \middle| H_{i} \right) \right) P \left(H_{i} \right) \\ P \left(D_{i} \middle| H_{i} \right) &= P \left(G_{0} < G_{i}, \dots, G_{i-1} < G_{i}, G_{i+1} \leq G_{i}, \dots, G_{M-1} < G_{i} \middle| H_{i} \right) \\ &= \int_{-\infty}^{\infty} P \left(D_{i} \middle| G_{i} = g, H_{i} \right) f \left(G_{i} = g \middle| H_{i} \right) dg \\ P \left(D_{i} \middle| G_{i} = g, H_{i} \right) \\ &= P \left(G_{0} < g, \dots, G_{i-1} < g, G_{i+1} \leq g, \dots, G_{M-1} < g \middle| G_{i} = g, H_{i} \right) \end{split}$$

• G_i 的统计特性

$$G_i | H_j \sim N \left(E \delta_{ij}, \sigma^2 = \frac{N_0 E}{2} \right)$$

$$Cov \left\{ G_k, G_l | H_j \right\} = 0, \ k \neq l$$

所以

$$P(D_{i}|G_{i} = g, H_{i}) = \left[P(G_{j} < g|G_{i} = g, H_{i})\right]^{M-1}$$

$$= \left[\int_{-\infty}^{g} f(G_{j}|H_{i})dG_{j}\right]^{M-1}, j \neq i$$

• 推得平均错误概率为

$$\overline{P}_{e} = 1 - \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \left(\int_{-\infty}^{z + \sqrt{2E/N_{0}}} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du \right)^{M-1} dz$$

3.5.6 已知信号的分集接收

利用分集技术可以改善信号检测的性能

- 时间分集
- 频率分集
- 空间分集
- 极化分集

考虑一个多站雷达系统,M部特性一致的雷达接收机在观察时间T内接收信号,记为 $x_1(t), x_2(t), \dots, x_M(t)$,对应的二元假设检验问题为:

$$H_1: x_i(t) = s_i(t) + n_i(t)$$

 $H_0: x_i(t) = n_i(t)$
 $0 \le t \le T, i = 1, 2, \dots, M$

• 似然比判决规则为

$$\lambda\left(\mathbf{x}(t)\right) = \frac{f\left(x_1(t), \dots, x_M(t) \middle| H_1\right)}{f\left(x_1(t), \dots, x_M(t) \middle| H_0\right)} = \prod_{i=1}^{M} \frac{f\left(x_i(t) \middle| H_1\right)}{f\left(x_i(t) \middle| H_0\right)}$$

$$\lambda\left(\mathbf{x}(t)\right) = \prod_{i=1}^{M} \lambda\left(x_{i}(t)\right)$$

$$= \prod_{i=1}^{M} \exp\left(-\frac{E_{i}}{N_{0}}\right) \cdot \prod_{i=1}^{M} \exp\left[\frac{2}{N_{0}} \int_{0}^{T} x_{i}(t) s_{i}(t) dt\right]$$

$$\sum_{i=1}^{M} \int_{0}^{T} x_{i}(t) s_{i}(t) dt \underset{H_{0}}{\gtrless} \frac{N_{0}}{2} \left(\ln th + \frac{1}{N_{0}} \sum_{i=1}^{M} E_{i}\right) \stackrel{\triangle}{=} th'$$

相关接收机

• 选择检验统计量为

$$G = \sum_{i=1}^{M} \int_{0}^{T} x_{i}(t) s_{i}(t) dt$$

$$G|H_0 \sim N\left(0, rac{N_0 E_T}{2}
ight), \quad G|H_1 \sim N\left(E_T, rac{N_0 E_T}{2}
ight)$$

• 虚警概率和检测概率分别为:

$$P_{fa} = \int_{\eta}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = 1 - \Phi(\eta)$$

$$P_{D} = \int_{\eta - \sqrt{2E_{T}/N_{0}}}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right) dx = 1 - \Phi\left(\eta - \sqrt{2E_{T}/N_{0}}\right)$$

其中
$$E_T = \sum_{i=1}^{M} E_i$$
, $\eta = th'\sqrt{2/N_0 E_T}$

接收机工作特性(ROC)

3.6 高斯色噪中的已知信号的检测

- 3.6.1 预白化方法
- 3.5.2 广义匹配滤波
- 3.6.3 卡亨南-洛维展开
- 3.6.4 高斯色噪声中已知信号的检测
- 3.6.5 性能分析

3. 6. 1 预白化方法

- 将接收信号通过冲激响应为 h(t) 的白化滤波器。
- 问题转化为高斯白噪声中已知信号 $s_1(t)$ 的检测问题,可用相关接收机或匹配滤波器完成。
- 检测过程如下图所示

预白化滤波器 $h_1(t)$ 的构造

- 要使 $n_1(t)$ 为白噪声,要求 $|H_1(\omega)|^2 = \frac{1}{S_n(\omega)}$
- 若噪声的功率谱密度 $S_n(\omega)$ 是个有理函数

则有
$$S_n(s) = S_n^+(s) S_n^-(s)$$

其中 $S_n^+(s)$, $S_n^-(s)$ 分别表示所有零极点都在 s 平面的左半

平面(对应正时间函数)和右半平面(对应负时间函数)。

• 有
$$S_n^+(\omega) = S_n^-(-\omega)$$

- 选取 $H_1(\omega) = \frac{1}{S_n^+(\omega)}$,此时 $S_{n_1}(\omega) = S_n(\omega) |H_1(\omega)|^2 = 1$
- 该白化滤波器 $h_1(t)$ 是物理可实现的
- 噪声白化之后,再对信号 $s_1(t)$ 进行匹配滤波。匹配滤波器的传输函数为:

$$H_{2}(\omega) = S_{s_{1}}^{*}(\omega)e^{-j\omega T} = \frac{S^{*}(\omega)}{S_{n}^{-}(\omega)}e^{-j\omega T}$$

• 整个系统传输函数为:

$$H(\omega) = H_1(\omega)H_2(\omega) = \frac{S^*(\omega)}{S_n(\omega)}e^{-j\omega T}$$

3. 6. 2 广义匹配滤波

假定在 $t = t_0$ 时刻输出信号达到峰值,此时滤波器输出的信噪比为

$$SNR_{o} = \frac{s_{o}^{2}(t_{0})}{E\{n_{o}^{2}(t)\}} = \frac{\left|\frac{1}{2\pi}\int_{-\infty}^{+\infty}S(\omega)H(j\omega)e^{j\omega t_{0}}d\omega\right|^{2}}{\frac{1}{2\pi}\int_{-\infty}^{+\infty}S_{n}(\omega)|H(j\omega)|^{2}d\omega}$$

利用施瓦兹不等式

$$\left| \int_{-\infty}^{+\infty} F(t) Q(t) dt \right|^{2} \leq \int_{-\infty}^{+\infty} \left| F(t) \right|^{2} dt \cdot \int_{-\infty}^{+\infty} \left| Q(t) \right|^{2} dt$$

此时
$$SNR_{o} \leq \frac{\left(\frac{1}{2\pi}\right)^{2} \int_{-\infty}^{\infty} \frac{\left|S\left(\omega\right)\right|^{2}}{S_{n}\left(\omega\right)} d\omega \int_{-\infty}^{\infty} S_{n}\left(\omega\right) \left|H\left(j\omega\right)\right|^{2} d\omega}{\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{n}\left(\omega\right) \left|H\left(j\omega\right)\right|^{2} d\omega}$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\left|S\left(\omega\right)\right|^{2}}{S_{n}\left(\omega\right)} d\omega$$

当
$$H(j\omega) = c \frac{S^{r}(\omega)}{S_{n}(\omega)} e^{-j\omega t_{0}}$$
 时,等式成立。

• 广义匹配滤波器等价于白化滤波器和匹配滤波器的级联。

3.5.3 卡亨南-洛维(K-L)展开

• 归一化正交函数集: 定义域为[0,T] 的函数集

$$\left\{f_{k}\left(t\right),\ k=1,2,\cdots\right\}$$
 ,满足 $\int_{0}^{T}f_{i}\left(t\right)f_{j}^{*}\left(t\right)dt=\delta_{ij}$

• 完备的归一化正交函数集:在 [0,T] 区间内,对任意平方可积函数 g(t),均有

$$\lim_{N \to +\infty} \int_0^T \left| g(t) - \sum_{k=1}^N a_k f_k(t) \right|^2 dt = 0$$

或者记为:
$$g(t) = \lim_{N \to +\infty} \sum_{k=1}^{N} a_k f_k(t)$$
, $a_k = \int_0^T g(t) f_k^*(t) dt$

- 接收信号模型 x(t) = s(t) + n(t) 其中 n(t) 为零均值相关函数为 $R_n(\tau)$ 的广义平稳高斯噪声。
- 将x(t) 在完备的归一化正交函数集上展开

$$x(t) = \sum_{k} x_k f_k(t), \quad x_k = \int_0^T x(t) f_k^*(t) dt$$

• 系数 x_k 是高斯随机变量,若它们互不相关(即统计独立),可将它们视为观测样本进行信号检测。

$$E\{x_{k}\} = E\{\int_{0}^{T} x(t) f_{k}^{*}(t) dt\} = E\{\int_{0}^{T} s(t) f_{k}^{*}(t) dt\}$$

$$E\{(x_{i} - E\{x_{i}\})(x_{j} - E\{x_{j}\})^{*}\} = \int_{0}^{T} \int_{0}^{T} R_{n}(t_{1} - t_{2}) f_{i}^{*}(t_{1}) f_{j}(t_{2}) dt_{1} dt_{2}$$

$$\stackrel{\text{def}}{=} \int_{0}^{T} R_{n}(t_{1} - t_{2}) f_{j}(t_{2}) dt_{2} = \lambda_{j} f_{j}(t_{1}), \quad 0 \le t_{1} \le T$$

$$E\{(x_{i} - E\{x_{i}\})(x_{j} - E\{x_{j}\})^{*}\} = \lambda_{j} \delta_{ij}$$

将接收信号 x(t) 按一组满足上述积分方程的完备归一化正交函数集 $\{f_k(t)\}$ 进行展开,称为卡亨南-洛维展开,其系 x_k 数称为卡亨南-洛维展开系数。

卡亨南-洛维展开系数 $x_k(k=1,2,\cdots)$ 的获取(相关器)

性质

- (1) 齐次积分方程,核函数,本征值,本征函数,厄米特核,对称核,(半)正定核
- (2) 厄米特核对应的本征值是实数
- (3) 实对称核对应的本征函数是个实函数
- (4) 正定核对应的本征值是个正数
- (5) 反核 $\int_0^T R_n^{-1}(t_1-t_2)R_n(t_2-t_3)dt_2 = \delta(t_1-t_3), \quad 0 \le t_1, t_3 \le T$

相关证明

$$(1) R_{n}(t_{1}-t_{2}) = R_{n}^{*}(t_{2}-t_{1})$$

$$\int_{0}^{T} \int_{0}^{T} g^{*}(t_{1})g(t_{2})R_{n}(t_{1}-t_{2})dt_{1}dt_{2} \geq 0$$

$$(2) \int_{0}^{T} R_{n}^{*}(t_{1}-t_{2})f_{j}^{*}(t_{2})dt_{2} = \lambda_{j}^{*}f_{j}^{*}(t_{1}) = \int_{0}^{T} R_{n}(t_{2}-t_{1})f_{j}^{*}(t_{2})dt_{2}$$

$$\int_{0}^{T} \lambda_{j}^{*}f_{j}^{*}(t_{2})f_{i}(t_{2})dt_{2} = \int_{0}^{T} \int_{0}^{T} f_{i}(t_{2})R_{n}(t_{1}-t_{2})f_{j}^{*}(t_{1})dt_{1}dt_{2}$$

$$\int_{0}^{T} \int_{0}^{T} R_{n}(t_{1}-t_{2})f_{i}(t_{2})f_{j}^{*}(t_{1})dt_{2}dt_{1} = \int_{0}^{T} \lambda_{i}f_{i}(t_{1})f_{j}^{*}(t_{1})dt_{1}$$

$$(\lambda_{j}^{*}-\lambda_{i})\int_{0}^{T} f_{j}^{*}(t)f_{i}(t)dt = 0$$

$$(3) \int_{0}^{T} R_{n}(t_{1}-t_{2})f_{j}^{*}(t_{2})dt_{2} = \lambda_{j}f_{j}^{*}(t_{1})$$

$$(4) \int_{0}^{T} \int_{0}^{T} R_{n}(t_{1} - t_{2}) f_{j}(t_{2}) f_{j}^{*}(t_{1}) dt_{2} dt_{1} = \int_{0}^{T} \lambda_{j} f_{j}(t_{1}) f_{j}^{*}(t_{1}) dt_{1} = \lambda_{j}$$

(5)
$$R_n^{-1}(t_1 - t_2) = \sum_{i=1}^{\infty} \lambda_i^{-1} f_i(t_1) f_i^*(t_2)$$

齐次积分的求解:
$$\int_0^T R_n(t-\tau)f_i(\tau)d\tau = \lambda_i f_i(t), 0 \le t \le T$$

假设
$$S_n(\omega) = \frac{N(\omega^2)}{D(\omega^2)}$$

$$\delta(t-\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp[j\omega(t-\tau)] d\omega$$

对t求二次导:
$$-p^2\delta(t-\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \omega^2 \exp[j\omega(t-\tau)]d\omega$$

$$N(-p^{2})\delta(t-\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} N(\omega^{2}) \exp[j\omega(t-\tau)] d\omega$$

$$R_{n}(t-\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{n}(\omega) \exp[j\omega(t-\tau)] d\omega$$

$$D(-p^{2})R_{n}(t-\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} D(\omega^{2})S_{n}(\omega) \exp[j\omega(t-\tau)]d\omega$$

$$N(-p^2)\delta(t-\tau) = D(-p^2)R_n(t-\tau)$$

对齐次积分方程两边求导:

$$\lambda_{i}D(-p^{2})f_{i}(t) = \int_{0}^{T}D(-p^{2})R_{n}(t-\tau)f_{i}(\tau)d\tau$$

$$= \int_{0}^{T}N(-p^{2})\delta(t-\tau)f_{i}(\tau)d\tau = N(-p^{2})f_{i}(t)$$

$$\left[N(-p^{2})-\lambda_{i}D(-p^{2})\right]f_{i}(t) = 0, \quad 0 \le t \le T$$

例7

假设噪声的相关函数为 $R_n(\tau) = \sigma^2 \exp(-k|\tau|)$, $-\infty < \tau < \infty$ 对应的谱密度为 $S_n(\omega) = \frac{2k\sigma^2}{\omega^2 + k^2}$ 。求该有理核的本征值和本征函数。

$$N(-p^{2}) = 2k\sigma^{2}, \quad D(-p^{2}) = k^{2} - \frac{d^{2}}{dt^{2}}$$

$$\frac{1}{\lambda_{i}} \left(2k\sigma^{2} - \lambda_{i}k^{2}\right) f_{i}(t) + \frac{d^{2}}{dt^{2}} f_{i}(t) = 0$$

3.6.4 高斯色噪声中已知信号的检测

二元假设检验问题:

$$H_0: x(t) = s_0(t) + n(t)$$

 $H_1: x(t) = s_1(t) + n(t)$ $0 \le t \le T$

其中 $s_0(t)$ 和 $s_1(t)$ 是已知信号,n(t)是均值为零、自相关函数为 $R_n(\tau)$ 的高斯色噪声。

采用K-L展开系数作为接收信号样本:

$$x(t) = \sum_{k} x_k f_k(t), \quad x_k = \int_0^T x(t) f_k(t) dt$$

其中
$$\int_0^T R_n(t-\tau) f_k(\tau) d\tau = \lambda_k f_k(t), \quad 0 \le t \le T$$

此时的似然比检验为:

$$\lambda(x_{1}, x_{2}, \dots, x_{+\infty}) = \frac{f(x_{1}, x_{2}, \dots, x_{+\infty} | H_{1})}{f(x_{1}, x_{2}, \dots, x_{+\infty} | H_{0})} \underset{H_{0}}{\overset{H_{1}}{\geq}} th$$

$$E\left\{x_{k} \middle| H_{i}\right\} = E\left\{\int_{0}^{T} x(t) f_{k}(t) dt \middle| H_{i}\right\}$$

$$= E\left\{\int_{0}^{T} \left[s_{i}(t) + n(t)\right] f_{k}(t) dt\right\} = \int_{0}^{T} s_{i}(t) f_{k}(t) dt \triangleq s_{ik}$$

$$Cov\left\{x_{k}, x_{j} \middle| H_{i}\right\} = \lambda_{k} \delta_{kj}$$

样本 x_k 的似然函数为:

$$f(x_k | H_i) = \frac{1}{\sqrt{2\pi\lambda_k}} \exp \left[-\frac{(x_k - s_{ik})^2}{2\lambda_k} \right]$$

N个样本的对数似然比为:

$$\ln \lambda(\mathbf{x}) = \ln \prod_{k=1}^{N} \lambda(x_k) = \sum_{k=1}^{N} \frac{1}{2\lambda_k} \left[s_{1k} \left(2x_k - s_{1k} \right) - s_{0k} \left(2x_k - s_{0k} \right) \right]$$

$$\triangleq G_1(N) - G_0(N)$$

$$G_{i} = \lim_{N \to +\infty} G_{i}(N) = \sum_{k=1}^{\infty} \frac{1}{2\lambda_{k}} s_{ik} \left(2x_{k} - s_{ik}\right)$$

$$= \sum_{k=1}^{\infty} \frac{s_{ik}}{2\lambda_{k}} \left(2\int_{0}^{T} x(t) f_{k}(t) dt - \int_{0}^{T} s_{i}(t) f_{k}(t) dt \right) = \int_{0}^{T} \left[x(t) - \frac{1}{2} s_{i}(t) \right] \eta_{i}(t) dt$$

$$\eta_i(t) \stackrel{\triangle}{=} \sum_{k=1}^{+\infty} \frac{S_{ik}}{\lambda_k} f_k(t)$$

对上式两边乘以 $R_n(t-\tau)$ 并积分

$$\int_{0}^{T} \eta_{i}(\tau) R_{n}(t-\tau) d\tau = \int_{0}^{T} \sum_{k=1}^{\infty} \frac{S_{ik}}{\lambda_{k}} f_{k}(\tau) R_{n}(t-\tau) d\tau = \sum_{k=1}^{\infty} S_{ik} f_{k}(t) = S_{i}(t)$$

两边乘以
$$R_n^{-1}(z-t)$$
并积分,可得 $\eta_i(z) = \int_0^T s_i(t) R_n^{-1}(z-t) dt$

似然比判决规则为 $G_1-G_0 \mathop{\gtrless}_{H_0}^{H_1} \ln th$

$$\iint_0^T x(t)\eta_1(t)dt - \int_0^T x(t)\eta_0(t)dt \underset{H_0}{\gtrless} th'$$

其中
$$th' = \ln th + \frac{1}{2} \int_0^T s_1(t) \eta_1(t) dt - \frac{1}{2} \int_0^T s_0(t) \eta_0(t) dt$$

最佳接收机

3.6.5 性能分析

选择检验统计量:

$$G = \int_{0}^{T} \left[x(t) - \frac{1}{2} s_{1}(t) \right] \eta_{1}(t) dt - \int_{0}^{T} \left[x(t) - \frac{1}{2} s_{0}(t) \right] \eta_{0}(t) dt$$

$$E \left\{ G \middle| H_{1} \right\} = \frac{1}{2} \int_{0}^{T} s_{1}(t) \eta_{1}(t) dt - \frac{1}{2} \int_{0}^{T} \left[2s_{1}(t) - s_{0}(t) \right] \eta_{0}(t) dt$$

$$= \frac{1}{2} \int_{0}^{T} \int_{0}^{T} \left[s_{1}(t) - s_{0}(t) \right] R_{n}^{-1}(t - x) \left[s_{1}(x) - s_{0}(x) \right] dt dx \triangleq \frac{1}{2} \sigma_{G}^{2}$$

$$G \middle| H_{0} \sim N \left(-\frac{1}{2} \sigma_{G}^{2}, \sigma_{G}^{2} \right), \quad G \middle| H_{1} \sim N \left(\frac{1}{2} \sigma_{G}^{2}, \sigma_{G}^{2} \right)$$

$$\exists A : C \neq A : C \neq$$

基于最小错误概率准则,判决规则为: $G\geqslant 0$

平均错误概率:

$$\bar{P}_{e} = \int_{\frac{\sigma_{G}}{2}}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) dz = 1 - \Phi\left(\frac{\sigma_{G}}{2}\right)$$

$$\sigma_{G}^{2} = \int_{0}^{T} \int_{0}^{T} \left[s_{1}(t) - s_{0}(t)\right] R_{n}^{-1}(t - x) \left[s_{1}(x) - s_{0}(x)\right] dt dx$$

广义匹配滤波器满足的积分方程

输入 $x(t) = s(t) + n(t), 0 \le t \le T$, 其中是 s(t) 已知信号, n(t) 是均值为0、自相关函数为 $R_n(\tau)$ 的色噪声。考虑物理可实现的滤波器,其输出

$$y(T) = \int_0^T h(\tau) x(T - \tau) d\tau = \int_0^T h(\tau) s(T - \tau) d\tau + \int_0^T h(\tau) n(T - \tau) d\tau$$

$$\stackrel{\triangle}{=} s_o(T) + n_o(T)$$

$$\left(\frac{S}{N}\right)_o = \frac{s_o^2(T)}{E\left\{n_o^2(T)\right\}} \xrightarrow{h(t)} \max$$

$$Q = E\left\{n_o^2(T)\right\} - \mu \ s_o(T)$$

$$= \int_0^T \int_0^T h(z) h(\tau) R_n(\tau - z) d\tau dz - \mu \int_0^T h(\tau) s(T - \tau) d\tau \xrightarrow{h(t)} \min$$

用变分法求解,设 α 为任意乘子, $\xi(x)$ 为定义在 $0 \le t \le T$ 上的任意函数。

$$\begin{split} Q(\alpha) &= \int_0^T \int_0^T \left[h_0(z) + \alpha \, \xi(z)\right] \left[h_0(\tau) + \alpha \, \xi(\tau)\right] R_n(\tau - z) d\tau dz \\ &- \mu \int_0^T \left[h_0(\tau) + \alpha \, \xi(\tau)\right] s \left(T - \tau\right) d\tau \\ &\frac{dQ(\alpha)}{d \, \alpha} = \int_0^T \int_0^T \left[\xi(\tau) \, h_0(z) + \xi(z) \, h_0(\tau) + 2 \, \alpha \, \xi(\tau) \, \xi(z)\right] R_n(\tau - z) d\tau dz \\ &- \mu \int_0^T \xi(\tau) \, s \left(T - \tau\right) d\tau \\ &\frac{dQ(\alpha)}{d \, \alpha} \bigg|_{\alpha = 0} = \int_0^T \int_0^T \left[\xi(\tau) \, h_0(z) + \xi(z) \, h_0(\tau)\right] R_n(\tau - z) d\tau dz - \mu \int_0^T \xi(\tau) \, s \left(T - \tau\right) d\tau = 0 \\ &\int_0^T \xi(\tau) \left[\int_0^T h_0(z) \, R_n(\tau - z) \, dz - \frac{\mu}{2} \, s \left(T - \tau\right)\right] d\tau = 0 \\ &\int_0^T h_0(z) \, R_n(\tau - z) \, dz = \frac{\mu}{2} \, s \left(T - \tau\right), \quad 0 \le \tau \le T \end{split}$$

3.7 高斯白噪声中随机参量信号的检测

- 3.7.1 随机相位信号
- 3.7.2 随机相位、随机振幅信号
- 3.7.3 随机相位、随机频率信号
- 3.7.4 随机相位、随机到达时间信号
- 3.7.5 非相干频移键控信号
- 3.7.6 分集信号
- 3.7.7 本征滤波器

3.7.1 随机相位信号

二元假设检验问题:

$$H_0: x(t) = n(t)$$

$$H_1: x(t) = A \sin(\omega_c t + \theta) + n(t)$$

$$0 \le t \le T$$

其中 n(t) 是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号幅度A和中心频率 ω_c 是常数,且 $2\pi/\omega_c \ll T$,信号相位 Θ 是均匀分布的随机变量。

$$f(\theta) = \frac{1}{2\pi}, \quad 0 \le \theta < 2\pi$$

似然比检验为

$$\lambda(x(t)) = \frac{\int_0^{2\pi} f(x(t)|\theta, H_1) f(\theta) d\theta}{f(x(t)|H_0)} \underset{H_0}{\overset{H_1}{\geq}} th$$

$$\lambda(x(t)) = \frac{\frac{1}{2\pi} \int_0^{2\pi} \exp\left\{-\frac{1}{N_0} \int_0^T \left[x(t) - A\sin\left(\omega_c t + \theta\right)\right]^2 dt\right\} d\theta}{\exp\left[-\frac{1}{N_0} \int_0^T x(t)^2 dt\right]}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \exp\left\{-\frac{1}{N_0} \int_0^T \left[A^2 \sin^2\left(\omega_c t + \theta\right) - 2x(t) A\sin\left(\omega_c t + \theta\right)\right] dt\right\} d\theta}$$

$$= \exp\left(-\frac{A^2 T}{2N_0}\right) \int_0^{2\pi} \exp\left[\frac{2A}{N_0} \int_0^T x(t) \sin\left(\omega_c t + \theta\right) dt\right] \frac{d\theta}{2\pi}$$

$$\int_{0}^{T} x(t) \sin(\omega_{c}t + \theta) dt = \int_{0}^{T} x(t) [\sin \omega_{c}t \cos \theta + \cos \omega_{c}t \sin \theta] dt$$

$$= \cos \theta \int_{0}^{T} x(t) \sin \omega_{c}t dt + \sin \theta \int_{0}^{T} x(t) \cos \omega_{c}t dt$$

$$\Leftrightarrow a = q \sin \theta_{0} = \int_{0}^{T} x(t) \cos \omega_{c}t dt$$

$$b = q \cos \theta_{0} = \int_{0}^{T} x(t) \sin \omega_{c}t dt$$

$$q^{2} = \left[\int_{0}^{T} x(t) \sin \omega_{c}t dt\right]^{2} + \left[\int_{0}^{T} x(t) \cos \omega_{c}t dt\right]^{2}$$

$$\lambda(x(t)) = \exp\left(-\frac{A^{2}T}{2N_{0}}\right) \int_{0}^{2\pi} \exp\left[\frac{2Aq}{N_{0}} \cos(\theta - \theta_{0})\right] \frac{d\theta}{2\pi} = \exp\left(-\frac{A^{2}T}{2N_{0}}\right) I_{0}\left(\frac{2Aq}{N_{0}}\right)$$

等效的判决规则为

$$I_0 \left(\frac{2Aq}{N_0} \right)_{H_0}^{H_1} th \cdot \exp \left(\frac{A^2T}{2N_0} \right)$$

进一步简化为

$$q \underset{H_0}{\gtrless} th' \quad or \quad q^2 \underset{H_0}{\gtrless} th'^2$$

$$\exp\left(-\frac{A^2T}{2N_0}\right) I_0\left(\frac{2Ath'}{N_0}\right) = th$$

最佳接收机——正交接收机

等效形式——非相干匹配滤波器

将信号通过与 $A\sin(\omega_c t + \theta)$ 相匹配的滤波器, 其输出包络为 A(t)

$$h(t) = A \sin\left[\omega_c(T - t) + \theta\right]$$

$$y(t) = \int_0^t x(\tau)h(t - \tau)d\tau = \int_0^t x(\tau)\sin\left[\omega_c(T - t + \tau) + \theta\right]d\tau$$

$$= \sin\left[\omega_c(T - t) + \theta\right]\int_0^t x(\tau)\cos\omega_c\tau d\tau + \cos\left[\omega_c(T - t) + \theta\right]\int_0^t x(\tau)\sin\omega_c\tau d\tau$$

$$A(T) = \sqrt{\left[\int_0^T x(t)\sin\omega_ct dt\right]^2 + \left[\int_0^T x(t)\cos\omega_ct dt\right]^2} = q$$

正交接收机的性能分析

$$q = \sqrt{a^2 + b^2} \mathop{\gtrless}_{H_0}^{H_1} th'$$

$$E\{a|\theta, H_1\} = E\{\int_0^T \left[A\sin(\omega_c t + \theta) + n(t)\right]\cos(\omega_c t) dt\} \approx \frac{AT}{2}\sin\theta$$

$$E\{b|\theta, H_1\} = E\{\int_0^T \left[A\sin\left(\omega_c t + \theta\right) + n(t)\right] \sin\omega_c t dt\} \approx \frac{AT}{2}\cos\theta$$

$$Var\left\{a\middle|\theta,H_{1}\right\} = E\left\{\int_{0}^{T} \int_{0}^{T} n(t)n(\tau)\cos\omega_{c}t\cos\omega_{c}\tau dt d\tau\right\} = \frac{N_{0}}{2} \int_{0}^{T} \cos^{2}\omega_{c}t dt$$

$$\approx \frac{N_0 T}{4} = Var\{b|\theta, H_1\}$$

$$Cov\{a,b|\theta,H_1\} = E\{\int_0^T n(t)\cos\omega_c t dt \cdot \int_0^T n(\tau)\sin\omega_c \tau d\tau\} \approx 0$$

$$a|\theta, H_1 \sim N\left(\frac{AT}{2}\sin\theta, \sigma_T^2 \triangleq \frac{N_0T}{4}\right)$$
 $b|\theta, H_1 \sim N\left(\frac{AT}{2}\cos\theta, \sigma_T^2\right)$
 $f(a,b|\theta, H_1) = f(a|\theta, H_1)f(b|\theta, H_1)$

定义:
$$q = \sqrt{a^2 + b^2}$$
 $q > 0$

$$\theta_0 = \tan^{-1}\left(\frac{a}{b}\right) \quad 0 \le \theta_0 < 2\pi$$

$$f\left(q, \theta_0 \middle| \theta, H_1\right) = f\left(a, b \middle| \theta, H_1\right) \middle| J \middle| = f\left(a, b \middle| \theta, H_1\right) q$$

$$f\left(q \middle| \theta, H_1\right) = \int_0^{2\pi} f\left(q, \theta_0 \middle| \theta, H_1\right) d\theta_0$$

可得:
$$f(q|H_1) = \int_0^{2\pi} f(q|\theta, H_1) f(\theta) d\theta$$
$$= \frac{q}{\sigma_T^2} \exp\left[-\frac{1}{2\sigma_T^2} \left(q^2 + \frac{A^2 T^2}{4}\right)\right] I_0\left(\frac{qAT}{2\sigma_T^2}\right)$$
$$f(q|H_0) = f(q|H_1)|_{A=0} = \frac{q}{\sigma_T^2} \exp\left(-\frac{q^2}{2\sigma_T^2}\right)$$

即 $q|H_1$ 服从莱斯分布, $q|H_0$ 服从瑞利分布。

$$P_{fa} = \int_{th'}^{+\infty} f(q|H_0) dq = \exp\left(-\frac{th'^2}{2\sigma_T^2}\right), \quad \beta = \frac{th'}{\sigma_T}$$

$$P_D = \int_{th'}^{+\infty} f(q|H_1) dq = \int_{\beta}^{+\infty} z \exp\left(-\frac{z^2 + \gamma^2}{2}\right) I_0(\gamma z) dz, \quad \gamma^2 = \frac{2E}{N_0}$$

性能比较

3.7.2 随机相位、随机振幅信号

二元假设检验问题:

$$H_0: x(t) = n(t)$$

$$H_1: x(t) = A \sin(\omega_c t + \theta) + n(t)$$

$$0 \le t \le T$$

其中n(t)是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号中心频率 ω_c 是常数且 $2\pi/\omega_c \ll T$, 振幅 A 是瑞利分布随机变量,相位 Θ 是均匀分布随机变量。

$$f(A) = \frac{A}{A_0^2} \exp\left(-\frac{A^2}{2A_0^2}\right), A \ge 0$$
 $f(\theta) = \frac{1}{2\pi}, 0 \le \theta < 2\pi$

在振幅A给定时的条件似然比为:

$$\lambda \left(x(t) \middle| A \right) = \exp \left(-\frac{A^2 T}{2N_0} \right) I_0 \left(\frac{2Aq}{N_0} \right)$$

似然比为:

$$\lambda (x(t)) = \int_0^{+\infty} \lambda (x(t)|A) f(A) dA$$

$$= \frac{N_0}{N_0 + TA_0^2} \exp \left[\frac{2A_0^2 q^2}{N_0 (N_0 + TA_0^2)} \right]_{H_0}^{H_1} th$$

则判决规则为:

$$q \underset{H_0}{\overset{H_1}{\gtrless}} th'$$
 or $q^2 \underset{H_0}{\overset{H_1}{\gtrless}} th'^2$

接收机性能分析

虚警概率和检测概率分别为:

$$P_{fa} = \int_{th'}^{+\infty} f(q|H_0) dq = \exp\left(-\frac{th'^2}{2\sigma_T^2}\right)$$

$$P_{D} = \int_{0}^{+\infty} P_{D}(D_{1} | H_{1}, A) f(A) dA = \exp \left[-\frac{2th'^{2}}{T(N_{0} + TA_{0}^{2})} \right]$$

性能比较

3.7.3 随机相位、随机频率信号

二元假设检验问题:

$$H_0: x(t) = n(t)$$

$$H_1: x(t) = A \sin(\omega t + \theta) + n(t)$$

$$0 \le t \le T$$

其中n(t)是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号幅度A、中心频率 ω_c 和带宽 $B = \omega_U - \omega_L$ 是常数,信号相位 Θ 是在 $[0,2\pi)$ 内均匀分布的随机变量,频率 ω 的概率密度函数为 $f(\omega)(\omega_L \le \omega \le \omega_U)$

在频率 ω 给定时的条件似然比为:

$$\lambda \left(x(t) \middle| \omega \right) = \exp \left(-\frac{A^2 T}{2N_0} \right) I_0 \left(\frac{2Aq}{N_0} \right)$$

似然比为:

$$\lambda\left(x(t)\right) = \int_{\omega_{t}}^{\omega_{U}} \lambda\left(x(t)|\omega\right) f\left(\omega\right) d\omega$$

将区间 $[\alpha_L, \alpha_U]$ 划分为M个子区间,对其作离散化近似:

$$\lambda(x(t)) = \Delta\omega \cdot \exp\left(-\frac{A^2T}{2N_0}\right) \sum_{i=1}^{M} f(\omega_i) I_0\left(\frac{2Aq_i}{N_0}\right)$$

其中 $\Delta \omega = (\omega_U - \omega_L)/M$, ω_i 为各个子区间的中心频率,

$$q_i^2 = \left[\int_0^T x(t)\sin\omega_i t dt\right]^2 + \left[\int_0^T x(t)\cos\omega_i t dt\right]^2$$

最佳接收机

当 x 很小时: $I_0(x) \approx 1 + x^2 / 4$

当信噪比
$$(A/N_0)$$
 很小时: $I_0\left(\frac{2Aq_i}{N_0}\right) \approx 1 + \left(\frac{Aq_i}{N_0}\right)^2$

进一步假设频率为均匀分布,即 $f(\omega_i) \triangle \omega = 1/M$,有:

$$\lambda(x(t)) = \frac{1}{M} \exp\left(-\frac{A^2T}{2N_0}\right) \sum_{i=1}^{M} \left[1 + \left(\frac{Aq_i}{N_0}\right)^2\right]$$

则判决规则为:

$$\sum_{i=1}^M q_i^2 \underset{H_0}{\overset{H_1}{\geqslant}} th'$$

多元近似:

$$H_{0}: x(t) = n(t)$$

$$H_{1}: x(t) = A \sin(\omega_{1}t + \theta) + n(t)$$

$$H_{2}: x(t) = A \sin(\omega_{2}t + \theta) + n(t)$$

$$\vdots$$

$$H_{M}: x(t) = A \sin(\omega_{M}t + \theta) + n(t)$$

$$\lambda_{i}(x(t)) = \frac{f(x(t)|H_{i})}{f(x(t)|H_{0})} = \exp\left(-\frac{A^{2}T}{2N_{0}}\right) I_{0}\left(\frac{2Aq_{i}}{N_{0}}\right)$$

与门限比较

3.7.4 随机相位、随机到达时间信号

二元假设检验问题:

$$H_0: x(t) = n(t)$$

$$H_1: x(t) = s(t-\tau) + n(t)$$

其中n(t)是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号 $s(t) = A \sin(\omega t + \theta)(0 \le t \le T)$,信号振幅A和频率 ω 是确知的,相位 Θ 是在 $[0,2\pi)$ 内均匀分布的随机变量,延时 τ 是随机变量,概率密度函数 $f(\tau)$ 定义在 $[0,\tau_m]$ 内。

在时延 τ 给定时的条件似然比为:

$$\lambda(x(t)|\tau) = \exp\left(-\frac{A^2T}{2N_0}\right)I_0\left(\frac{2Aq(\tau)}{N_0}\right)$$

$$q^2(\tau) = \left[\int_{\tau}^{\tau+T} x(t)\sin\omega(t-\tau)dt\right]^2 + \left[\int_{\tau}^{\tau+T} x(t)\cos\omega(t-\tau)dt\right]^2$$

$$= \left[\int_0^T x(t+\tau)\sin\omega tdt\right]^2 + \left[\int_0^T x(t+\tau)\cos\omega tdt\right]^2$$
似然比为:

$$\lambda(x(t)) = \int_0^{\tau_m} \lambda(x(t)|\tau) f(\tau) d\tau$$

$$= \int_0^{\tau_m} \exp\left(-\frac{A^2 T}{2N_0}\right) I_0\left(\frac{2Aq(\tau)}{N_0}\right) f(\tau) d\tau$$

判决规则为:

$$\int_{0}^{\tau_{m}} I_{0}\left(\frac{2Aq(\tau)}{N_{0}}\right) f(\tau) d\tau \underset{H_{0}}{\gtrless} th \cdot \exp\left(\frac{A^{2}T}{2N_{0}}\right)$$

最佳接收机

3.7.5 非相干频移键控信号

1. 随机相位信号

$$H_0: x(t) = A \sin(\omega_0 t + \phi) + n(t)$$

$$H_1: x(t) = A \sin(\omega_1 t + \theta) + n(t)$$

$$0 \le t \le T$$

其中n(t) 是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号振幅 A 和中心频率 ω_0, ω_1 是常数,且 $2\pi/\omega_0 \ll T, 2\pi/\omega_1 \ll T$,相位 ϕ, θ 都是均匀分布的随机变量。 $f(\phi) = \frac{1}{2\pi}, 0 \leq \phi < 2\pi; \quad f(\theta) = \frac{1}{2\pi}, 0 \leq \theta < 2\pi$

基于最小错误概率准则, 判决规则为:

$$\lambda(x(t)) = \frac{f(x(t)|H_1)}{f(x(t)|H_0)} = \frac{\int_0^{2\pi} f(x(t)|\theta, H_1) f(\theta) d\theta}{\int_0^{2\pi} f(x(t)|\phi, H_0) f(\phi) d\phi} = \frac{I_0\left(\frac{2Aq_1}{N_0}\right)}{I_0\left(\frac{2Aq_0}{N_0}\right)^{H_1}} \underset{H_0}{\overset{H_1}{\geq}} 1$$

$$q_{i} = \left[\left(\int_{0}^{T} x(t) \sin \omega_{i} t \, dt \right)^{2} + \left(\int_{0}^{T} x(t) \cos \omega_{i} t \, dt \right)^{2} \right]^{\frac{1}{2}}, \quad i = 1, 2, \quad q_{i} > 0$$

简化成:
$$q_1 \underset{H_0}{\gtrless} q_0$$

最佳接收机

平均错误概率

$$\bar{P}_{e} = \frac{1}{2} \Big[P(D_{1} | H_{0}) + P(D_{0} | H_{1}) \Big] = P(D_{0} | H_{1})$$

$$P(D_{0} | H_{1}) = P(q_{0} \ge q_{1} | H_{1}) = \int_{0}^{\infty} f(q_{1} | H_{1}) \int_{q_{1}}^{\infty} f(q_{0} | q_{1}, H_{1}) dq_{0} dq_{1}$$

$$f(q_{1} | H_{1}) = \frac{q_{1}}{2} \exp \left[-\frac{1}{2} \left(q_{1}^{2} + \frac{A^{2}T^{2}}{2} \right) \right] I_{0} \left(\frac{q_{1}AT}{2} \right)$$

$$f(q_1|H_1) = \frac{q_1}{\sigma_T^2} \exp \left[-\frac{1}{2\sigma_T^2} \left(q_1^2 + \frac{A^2 T^2}{4} \right) \right] I_0 \left(\frac{q_1 A T}{2\sigma_T^2} \right)$$

当 $|\omega_1 - \omega_0|$ 很大

$$f(q_0|q_1, H_1) = f(q_0|H_1) = \frac{q_0}{\sigma_T^2} \exp\left(-\frac{q_0^2}{2\sigma_T^2}\right)$$
$$\bar{P}_e = \frac{1}{2} \exp\left(-\frac{A^2T}{4N_0}\right) = \frac{1}{2} \exp\left(-\frac{E}{2N_0}\right)$$

2. 随机相位、随机振幅信号

$$H_1: x(t) = A \sin(\omega_1 t + \theta) + n(t)$$

$$H_0: x(t) = B \sin(\omega_0 t + \phi) + n(t)$$

$$0 \le t \le T$$

其中 n(t) 是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号中心频率 ω_0 , ω_1 是常数且 $2\pi/\omega_0 \ll T$, $2\pi/\omega_1 \ll T$,振幅 A,B 是瑞利分布随机变量,相位 ϕ , θ 是均匀分布随机变量,相互统计独立。

$$f(A) = \frac{A}{A_0^2} \exp\left(-\frac{A^2}{2A_0^2}\right), A \ge 0 \qquad f(\theta) = \frac{1}{2\pi}, 0 \le \theta < 2\pi$$
$$f(B) = \frac{B}{A_0^2} \exp\left(-\frac{B^2}{2A_0^2}\right), B \ge 0 \qquad f(\phi) = \frac{1}{2\pi}, 0 \le \phi < 2\pi$$

基于最小错误概率准则, 判决规则为:

$$\lambda(x(t)) = \frac{f(x(t)|H_1)}{f(x(t)|H_0)} = \frac{\frac{N_0}{N_0 + TA_0^2} \exp\left[\frac{2A_0^2 q_1^2}{N_0 (N_0 + TA_0^2)}\right]}{\frac{N_0}{N_0 + TA_0^2} \exp\left[\frac{2A_0^2 q_0^2}{N_0 (N_0 + TA_0^2)}\right]} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

$$q_{i} = \left[\left(\int_{0}^{T} x(t) \sin \omega_{i} t \, dt \right)^{2} + \left(\int_{0}^{T} x(t) \cos \omega_{i} t \, dt \right)^{2} \right]^{\frac{1}{2}}, \quad i = 1, 2, \quad q_{i} > 0$$

简化成:
$$q_1 \underset{H_0}{\gtrless} q_0$$

平均错误概率

$$\begin{split} \overline{P}_{e} &= \frac{1}{2} \Big[P(D_{1} | H_{0}) + P(D_{0} | H_{1}) \Big] = P(D_{0} | H_{1}) \\ P(D_{0} | A, H_{1}) &= \frac{1}{2} \exp \left(-\frac{A^{2}T}{4N_{0}} \right) \\ \overline{P}_{e} &= \int_{0}^{\infty} P(D_{0} | A, H_{1}) f(A) dA = \frac{1}{2 + \frac{A_{0}^{2}T}{N_{0}}} = \frac{1}{2 + \frac{E_{av}}{N_{0}}} \end{split}$$

性能比较

3.7.6 分集信号

1. 多脉冲雷达信号

$$H_0: x_i(t) = n_i(t)$$

$$H_1: x_i(t) = A_i \sin(\omega_c t + \theta_i) + n_i(t)$$

$$0 \le t \le T, i = 1, 2, \dots, M$$

其中 $n_i(t)$ 是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号频率 ω_c 是确知的,信号振幅 A_i 和相位 θ_i 都是随机变量,

$$f(A_i) = \frac{A_i}{A_0^2} \exp\left(-\frac{A_i^2}{2A_0^2}\right), \quad A_i \ge 0, A_0 > 0$$
$$f(\theta_i) = \frac{1}{2\pi}, \quad 0 \le \theta_i < 2\pi$$

假设M个脉冲回波信号独立同分布。第i个脉冲接收信号的似

然比为:

$$\lambda(x_i(t)) = \frac{N_0}{N_0 + TA_0^2} \exp\left[\frac{2A_0^2 q_i^2}{N_0(N_0 + TA_0^2)}\right]$$

$$q_i = \left[\left(\int_0^T x_i(t) \sin \omega_c t \, dt \right)^2 + \left(\int_0^T x_i(t) \cos \omega_c t \, dt \right)^2 \right]^{\frac{1}{2}}$$

M个脉冲接收信号的似然比为:

$$\lambda(\mathbf{x}(t)) = \prod_{i=1}^{M} \lambda(x_i(t)) = \left(\frac{N_0}{N_0 + TA_0^2}\right)^M \exp \left[\frac{2A_0^2 \sum_{i=1}^{M} q_i^2}{N_0(N_0 + TA_0^2)}\right]$$

判决规则:

$$\sum_{i=1}^{M} q_i^2 \underset{H_0}{\overset{H_1}{\gtrless}} th'$$

最佳接收机

检波后积累或视频积累

接收机性能分析

采用归一化检验统计量

$$G = \sum_{i=1}^{M} \frac{q_i^2}{\sigma_T^2} = \sum_{i=1}^{M} \frac{a_i^2 + b_i^2}{\sigma_T^2}, \quad \sigma_T^2 = \frac{N_0 T}{4}$$

$$a_i | A_i, \theta_i, H_1 \sim N\left(\frac{A_i T}{2} \sin \theta_i, \sigma_T^2\right)$$

$$b_i | A_i, \theta_i, H_1 \sim N\left(\frac{A_i T}{2} \cos \theta_i, \sigma_T^2\right)$$

$$a_i, b_i | H_0 \sim N\left(0, \sigma_T^2\right)$$

性质

$$f(y) = \frac{1}{\left(2\sigma^2\right)^{n/2} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} \exp\left(-\frac{y}{2\sigma^2}\right), \quad y \ge 0$$

当 $\sigma^2 = 1$,则称为n个自由度的 χ^2 分布。

(2) 若 $x_i \sim N(0, \sigma^2)$, n 个独立同分布的高斯变量构成新的变量 $y = \sum_{i=1}^{n} (A + x_i)^2$, 则y 服从n个自由度的非中心非归一化 χ^2 分布,非中心参量为 $v = nA^2$ 。

$$f(y) = \frac{1}{2\sigma^2} \left(\frac{y}{v}\right)^{\frac{n-2}{4}} \exp\left(-\frac{v+y}{2\sigma^2}\right) I_{\frac{n}{2}-1}\left(\frac{\sqrt{vy}}{\sigma^2}\right), y \ge 0$$

当 $\sigma^2 = 1$, 则称为n个自由度的非中心 χ^2 分布。

(3) 对于非归一化的两个独立的 χ^2 分布的变量 y_1, y_2 ,自由度分别为 n_1, n_2 ,非中心参量分别为 v_1, v_2 。 只有当 $\sigma_1^2 = \sigma_2^2$, $y_1 + y_2$ 才是 χ^2 分布的变量,自由度为 $n_1 + n_2$,非中心参量为 $v_1 + v_2$ 。

利用上述性质,可知:

 $G|A_i,\theta_i,H_1$ 是自由度为 2M 的非中心 χ^2 分布,非中心参量为

$$v = \sum_{i=1}^{M} \left(\frac{A_i T}{2\sigma_T} \cos \theta_i \right)^2 + \sum_{i=1}^{M} \left(\frac{A_i T}{2\sigma_T} \sin \theta_i \right)^2 = \frac{T}{N_0} \sum_{i=1}^{M} A_i^2$$

$$f(G|v, H_1) = \frac{1}{2} \left(\frac{G}{v}\right)^{\frac{M-1}{2}} \exp\left(-\frac{G}{2} - \frac{v}{2}\right) I_{M-1}\left((Gv)^{\frac{1}{2}}\right), G \ge 0$$

 $G|H_0$ 是自由度为2M 的 χ^2 分布。

$$f(G|H_0) = \frac{1}{2^M \Gamma(M)} G^{M-1} e^{-G/2}, G \ge 0$$

虚警概率为

$$P_{fa} = \int_{th'}^{+\infty} f(G|H_0) dG = \int_{th'}^{+\infty} \frac{G^{M-1}e^{-G/2}}{2^M \Gamma(M)} dG$$
$$= 1 - \int_0^{th'} \frac{G^{M-1}e^{-G/2}}{2^M \Gamma(M)} dG = 1 - I\left(\frac{th'}{2M^{1/2}}, M - 1\right)$$

非中心参量 ν 是自由度为2M的非归一化 χ^2 分布

检测概率为

$$P_{D} = \int_{th'}^{+\infty} \int_{0}^{+\infty} f(G|v, H_{1}) f(v) dv dG$$

$$= \int_{th'}^{+\infty} \frac{G^{M-1} \exp\left[-G/2(1+\varepsilon)\right]}{\left[2(1+\varepsilon)\right]^{M} \Gamma(M)} dG$$

$$= 1 - I\left(\frac{th'}{2M^{1/2}(1+\varepsilon)}, M-1\right), \qquad \varepsilon = \frac{A_{0}^{2}T}{N_{0}}$$

单脉冲下慢瑞利衰落信号的检测性能

128个脉冲下慢瑞利衰落信号的检测性能

2. 空间分集的频移键控信号

$$H_1: x_i(t) = A_i \sin(\omega_1 t + \theta_i) + n_i(t)$$

$$H_0: x_i(t) = B_i \sin(\omega_0 t + \phi_i) + n_i(t)$$

$$0 \le t \le T, i = 1, 2, \dots, M$$

其中 $n_i(t)$ 是均值为零、功率谱密度为 $N_0/2$ 的高斯白噪声,信号中心频率 ω_0, ω_1 是常数,信号振幅 A_i, B_i 和相位 θ_i, ϕ_i 都是随机变量,相互统计独立。

$$f(A_{i}) = \frac{A_{i}}{A_{0}^{2}} \exp\left(-\frac{A_{i}^{2}}{2A_{0}^{2}}\right), A_{i} \ge 0 \qquad f(\theta_{i}) = \frac{1}{2\pi}, 0 \le \theta_{i} < 2\pi$$
$$f(B_{i}) = \frac{B_{i}}{A_{0}^{2}} \exp\left(-\frac{B_{i}^{2}}{2A_{0}^{2}}\right), B_{i} \ge 0 \qquad f(\phi_{i}) = \frac{1}{2\pi}, 0 \le \phi_{i} < 2\pi$$

假设M个接收信号独立同分布。第i个接收信号的似然比为:

$$\lambda(x_{i}(t)) = \frac{\frac{N_{0}}{N_{0} + TA_{0}^{2}} \exp\left[\frac{2A_{0}^{2}q_{i,1}^{2}}{N_{0}(N_{0} + TA_{0}^{2})}\right]}{\frac{N_{0}}{N_{0} + TA_{0}^{2}} \exp\left[\frac{2A_{0}^{2}q_{i,0}^{2}}{N_{0}(N_{0} + TA_{0}^{2})}\right]} = \exp\left[\frac{2A_{0}^{2}(q_{i,1}^{2} - q_{i,0}^{2})}{N_{0}(N_{0} + TA_{0}^{2})}\right]$$

$$q_{i,1} = \left[\left(\int_{0}^{T} x_{i}(t)\sin\omega_{1}t \, dt\right)^{2} + \left(\int_{0}^{T} x_{i}(t)\cos\omega_{1}t \, dt\right)^{2}\right]^{\frac{1}{2}}$$

$$q_{i,0} = \left[\left(\int_{0}^{T} x_{i}(t)\sin\omega_{0}t \, dt\right)^{2} + \left(\int_{0}^{T} x_{i}(t)\cos\omega_{0}t \, dt\right)^{2}\right]^{\frac{1}{2}}$$

M个接收信号的似然比为:

$$\lambda(\mathbf{x}(t)) = \prod_{i=1}^{M} \lambda(x_i(t)) = \prod_{i=1}^{M} \exp\left[\frac{2A_0^2(q_{i,1}^2 - q_{i,0}^2)}{N_0(N_0 + TA_0^2)}\right]$$

$$\ln \lambda \left(\mathbf{x}(t) \right) = \frac{2A_0^2}{N_0 \left(N_0 + TA_0^2 \right)} \sum_{i=1}^{M} \left(q_{i,1}^2 - q_{i,0}^2 \right)$$

基于最小错误概率准则, 判决规则:

$$\sum_{i=1}^{M} q_{i,1}^2 \mathop{\gtrless}\limits_{H_0}^{H_1} \sum_{i=1}^{M} q_{i,0}^2$$

采用归一化检验统计量

$$G_1 = \sum_{i=1}^{M} \frac{q_{i,1}^2}{\sigma_T^2}, \quad G_0 = \sum_{i=1}^{M} \frac{q_{i,0}^2}{\sigma_T^2}, \quad \sigma_T^2 = \frac{N_0 T}{4}$$

当 $|\omega_1 - \omega_0|$ 很大时

 $G_1|v_1,H_1$ 是自由度为2M的非中心 χ^2 分布,非中心参量为

$$v_1 = \frac{T}{N_0} \sum_{i=1}^{M} A_i^2$$

非中心参量 v_1 是自由度为2M的非归一化 χ^2 分布。

 $G_0|H_1$ 是自由度为2M的 χ^2 分布。

 $G_0|_{V_0}, H_0$ 是自由度为2M的非中心 χ^2 分布,非中心参量为

$$v_0 = \frac{T}{N_0} \sum_{i=1}^{M} B_i^2$$

非中心参量 v_0 是自由度为2M的非归一化 χ^2 分布。

 $G_1|H_0$ 是自由度为2M的 χ^2 分布。

$$\begin{split} & \overline{P}_{e} = P(D_{0} | H_{1}) = P(G_{0} \geq G_{1} | H_{1}) = \int_{0}^{\infty} f(G_{1} | H_{1}) \int_{G_{1}}^{\infty} f(G_{0} | G_{1}, H_{1}) dG_{0} dG_{1} \\ & = \int_{0}^{\infty} f(G_{1} | H_{1}) \int_{G_{1}}^{\infty} f(G_{0} | H_{1}) dG_{0} dG_{1} \\ & = \int_{0}^{\infty} \int_{0}^{\infty} f(G_{1} | v_{1}, H_{1}) f(v_{1}) dv_{1} \int_{G_{1}}^{\infty} f(G_{0} | H_{1}) dG_{0} dG_{1} \end{split} \qquad \qquad \varepsilon = \frac{A_{0}^{2} T}{N_{0}} \\ & = \frac{1}{(2+\varepsilon)^{M}} \sum_{k=0}^{M-1} \binom{M+k-1}{k} \left(\frac{1+\varepsilon}{2+\varepsilon} \right)^{k} \end{split}$$

性能比较

3.7.7 本征滤波器

对在时间间隔[0,T]内的观测信号采样,获得N个样本

$$x_k = s_k + n_k, \quad k = 1, 2, \dots, N$$

 S_k 是平稳随机信号。将观测样本 X_k 通过滤波器 $\mathbf{h} = [h_0, h_1, \dots, h_{P-1}]^T$,

其输出的信噪比为

$$SNR_o = \frac{E\left\{\left|\mathbf{h}^T\mathbf{s}_k\right|^2\right\}}{E\left\{\left|\mathbf{h}^T\mathbf{n}_k\right|^2\right\}} = \frac{\mathbf{h}^T\mathbf{R}_s\mathbf{h}^*}{\mathbf{h}^T\mathbf{R}_n\mathbf{h}^*}$$

使输出信噪比达到最大的滤波器称为本证滤波器。其中

$$\mathbf{x}_{k} = [x_{k}, x_{k-1}, \dots, x_{k-P+1}]^{T}, \mathbf{s}_{k} = [s_{k}, s_{k-1}, \dots, s_{k-P+1}]^{T}, \mathbf{n}_{k} = [n_{k}, n_{k-1}, \dots, n_{k-P+1}]^{T}$$

$$\mathbf{R}_{s} = E\{\mathbf{s}_{k}\mathbf{s}_{k}^{H}\} = \begin{bmatrix} r_{s}(0) & r_{s}(1) & \cdots & r_{s}(P-1) \\ r_{s}(-1) & r_{s}(0) & \cdots & r_{s}(P-2) \\ \cdots & \cdots & \cdots \\ r_{s}(1-P) & r_{s}(2-P) & \cdots & r_{s}(0) \end{bmatrix}$$

$$\mathbf{R}_{n} = E\{\mathbf{n}_{k}\mathbf{n}_{k}^{H}\} = \begin{bmatrix} r_{n}(0) & r_{n}(1) & \cdots & r_{n}(P-1) \\ r_{n}(-1) & r_{n}(0) & \cdots & r_{n}(P-2) \\ \cdots & \cdots & \cdots \\ r_{n}(1-P) & r_{n}(2-P) & \cdots & r_{n}(0) \end{bmatrix}$$

下面我们分两种情况讨论本证滤波器。

1. 白噪声背景

对于白噪声, $\mathbf{R}_n = \sigma_n^2 \mathbf{I}$, 此时输出信噪比为

$$SNR_o = \frac{\mathbf{h}^T \mathbf{R}_s \mathbf{h}^*}{\sigma_n^2 \mathbf{h}^T \mathbf{h}^*}$$

将R。进行特征分解

$$\mathbf{R}_{s} = \mathbf{Q} \Lambda \mathbf{Q}^{H}$$

对任何正定矩阵R_e, Rayleigh商和特征值有如下关系

$$\lambda_{\min} \leq \frac{\mathbf{h}^T \mathbf{R}_s \mathbf{h}^*}{\mathbf{h}^T \mathbf{h}^*} \leq \lambda_{\max}$$

最佳滤波器系数 \mathbf{h}_{opt}^* 为 \mathbf{R}_s 的最大特征值对应的特征向量 \mathbf{q}_{max} 即:

$$\mathbf{h}_{opt} = \mathbf{q}_{max}^* \qquad SNR_{omax} = \frac{\lambda_{max}}{\sigma_n^2}$$

2. 色噪声背景

对噪声自相关矩阵做Cholesky分解

$$\mathbf{R}_{n} = \mathbf{L}\mathbf{L}^{H}$$

对观测信号 \mathbf{x}_k 做预白化处理

$$\tilde{\mathbf{x}}_k \triangleq \mathbf{L}^{-1}\mathbf{x}_k = \mathbf{L}^{-1}\mathbf{s}_k + \mathbf{L}^{-1}\mathbf{n}_k = \tilde{\mathbf{s}}_k + \tilde{\mathbf{n}}_k$$

可以看到 $\tilde{\mathbf{n}}_k$ 变成了白噪声,其自相关矩阵 $\mathbf{R}_{\tilde{n}} = E\left\{\tilde{\mathbf{n}}_k\tilde{\mathbf{n}}_k^H\right\} = \mathbf{I}$ 。 变换后信号 $\tilde{\mathbf{s}}_k$ 的自相关矩阵为 $\mathbf{R}_{\tilde{s}} = E\left\{\tilde{\mathbf{s}}_k\tilde{\mathbf{s}}_k^H\right\} = \mathbf{L}^{-1}\mathbf{R}_s\mathbf{L}^{-H}$ 。 此时最佳滤波器的系数 \mathbf{h}_{opt}^* 是 $\mathbf{R}_{\tilde{s}}$ 的最大特征值所对应的特征矢量。

3.8 高斯色噪声中随机参量信号的检测

- 3.8.1 似然函数
- 3.8.2 非相干频移键控系统
- 3.8.3 雷达系统

3.8.1 似然函数

考虑窄带信号情况:

$$x(t) = \operatorname{Re}\left\{\tilde{x}(t)e^{j\omega_{c}t}\right\}, \quad 0 \le t \le T$$

$$\tilde{x}(t) = \tilde{A}(t)e^{j\theta} + \tilde{n}(t)$$

其中 $\tilde{A}(t)e^{j\theta}$ 是有用信号成分的复包络, $\tilde{A}(t)$ 是已知函数,相位 Θ 是均匀分布的随机变量, $\tilde{n}(t)$ 是均值为零、自相关函数为 $R_n(\tau)$ 的高斯色噪声的复包络。

$$f(\theta) = \frac{1}{2\pi}, \quad 0 \le \theta < 2\pi$$

复包络 $\tilde{x}(t)$ 的K-L展开为

$$\tilde{x}(t) = \sum_{k} x_{k} f_{k}(t), \quad x_{k} = \int_{0}^{T} \tilde{x}(t) f_{k}^{*}(t) dt \triangleq \alpha_{k} + j\beta_{k}$$

其中

$$\int_{0}^{T} \tilde{R}_{n}(t-\tau) f_{k}(\tau) d\tau = \lambda_{k} f_{k}(t), \quad 0 \le t \le T$$

核函数 $\tilde{R}_n(t-\tau)$ 为噪声自相互函数的复包络。此时,可

以证明

$$E\left\{\left(x_{k} - E\left\{x_{k}\right\}\right)\left(x_{m} - E\left\{x_{m}\right\}\right)^{*} \middle| \theta\right\} = 2\lambda_{k}\delta_{km}$$

$$E\left\{\tilde{n}\left(t\right)\tilde{n}^{*}\left(t - \tau\right)\right\} = R_{\tilde{n}}\left(\tau\right) = 2\tilde{R}\left(\tau\right)$$

$$R_{n}\left(\tau\right) = \operatorname{Re}\left\{\tilde{R}\left(\tau\right)e^{j\omega_{c}t}\right\}$$

在相位 Θ 一定下,每个系数 X_k 是个复高斯变量,其实

部 α_k 和虚部 β_k 均为高斯变量,系数之间统计独立。

$$\begin{split} &E\Big\{\big|x_{k}-E\big\{x_{k}\big\}\big|^{2}\Big|\theta\Big\} = E\Big\{\Big(\alpha_{k}-E\big\{\alpha_{k}\big\}\Big)^{2} + \Big(\beta_{k}-E\big\{\beta_{k}\big\}\Big)^{2}\Big\} = 2\lambda_{k} \\ &E\Big\{\tilde{n}(t)\tilde{n}(t-\tau)\Big\} = 0 \\ &E\Big\{\Big(x_{k}-E\big\{x_{k}\big\}\Big)\Big(x_{m}-E\big\{x_{m}\big\}\Big)\Big|\theta\Big\} \\ &= \int_{0}^{T} \int_{0}^{T} E\Big\{\tilde{n}(t_{1})\tilde{n}(t_{2})\Big\} f_{k}^{*}(t_{1})f_{m}^{*}(t_{2})dt_{1}dt_{2} = 0 \\ &\mathbb{E}\Big\{\Big(x_{k}-E\big\{x_{k}\big\}\Big)^{2}\Big|\theta\Big\} = E\Big\{\Big[\Big(\alpha_{k}-E\big\{\alpha_{k}\big\}\Big) + j\Big(\beta_{k}-E\big\{\beta_{k}\big\}\Big)\Big]^{2}\Big\} = 0 \\ &E\Big\{\Big(\alpha_{k}-E\big\{\alpha_{k}\big\}\Big)^{2} - \Big(\beta_{k}-E\big\{\beta_{k}\big\}\Big)^{2}\Big\} = 0 \\ &E\Big\{\Big(\alpha_{k}-E\big\{\alpha_{k}\big\}\Big)\Big(\beta_{k}-E\big\{\beta_{k}\big\}\Big)\Big\} = 0 \end{split}$$

解得

$$Var\{\alpha_k\} = Var\{\beta_k\} = \lambda_k$$
$$Cov\{\alpha_k, \beta_k\} = 0$$

进一步

$$E\{x_{k}|\theta\} = E\{\alpha_{k} + j\beta_{k}|\theta\} = E\{\int_{0}^{T} \left[\tilde{A}(t)e^{j\theta} + \tilde{n}(t)\right]f_{k}^{*}(t)dt\}$$

$$= \int_{0}^{T} \tilde{A}(t)e^{j\theta}f_{k}^{*}(t)dt \triangleq a_{k}e^{j\theta}$$

$$E\{\alpha_{k}|\theta\} = \operatorname{Re}\{a_{k}e^{j\theta}\}, \quad E\{\beta_{k}|\theta\} = \operatorname{Im}\{a_{k}e^{j\theta}\}$$

$$\alpha_{k}|\theta \sim N\left(\operatorname{Re}\{a_{k}e^{j\theta}\}, \lambda_{k}\right), \quad \beta_{k}|\theta \sim N\left(\operatorname{Im}\{a_{k}e^{j\theta}\}, \lambda_{k}\right)$$

$$f(x_{k}|\theta) = f(\alpha_{k}, \beta_{k}|\theta) = f(\alpha_{k}|\theta)f(\beta_{k}|\theta)$$

$$f\left(\mathbf{x}\middle|\theta\right) = f\left(x_{1}, x_{2}, \dots, x_{+\infty}\middle|\theta\right) = \prod_{k=1}^{+\infty} f\left(x_{k}\middle|\theta\right)$$

$$= \prod_{k=1}^{+\infty} \frac{1}{2\pi\lambda_k} \exp\left\{-\frac{\left(\alpha_k - \operatorname{Re}\left\{a_k e^{j\theta}\right\}\right)^2 + \left(\beta_k - \operatorname{Im}\left\{a_k e^{j\theta}\right\}\right)^2}{2\lambda_k}\right\}$$

$$= \prod_{k=1}^{+\infty} \frac{1}{2\pi\lambda_k} \exp\left\{-\frac{\left|x_k - a_k e^{j\theta}\right|^2}{2\lambda_k}\right\} \triangleq C \exp\left\{-\sum_{k=1}^{+\infty} \frac{\left|x_k - a_k e^{j\theta}\right|^2}{2\lambda_k}\right\}$$

$$= C \exp \left\{-\sum_{k=1}^{+\infty} \frac{\left|x_{k}\right|^{2} + \left|a_{k}\right|^{2}}{2\lambda_{k}}\right\} \exp \left\{\sum_{k=1}^{+\infty} \operatorname{Re} \left\{\frac{x_{k} a_{k}^{*} e^{-j\theta}}{\lambda_{k}}\right\}\right\}$$

$$U = De^{j\eta} = \sum_{k=1}^{+\infty} \frac{x_k a_k^*}{\lambda_k}$$

$$f\left(\mathbf{x}\middle|\theta\right) = C \exp\left\{-\sum_{k=1}^{+\infty} \frac{\left|x_{k}\right|^{2} + \left|a_{k}\right|^{2}}{2\lambda_{k}}\right\} \exp\left\{\operatorname{Re}\left\{De^{j(\eta-\theta)}\right\}\right\}$$

$$= C \exp \left\{-\sum_{k=1}^{+\infty} \frac{\left|x_{k}\right|^{2} + \left|a_{k}\right|^{2}}{2\lambda_{k}}\right\} \exp \left\{D \cos \left(\eta - \theta\right)\right\}$$

$$f(\mathbf{x}) = \frac{1}{2\pi} \int_0^{2\pi} f(\mathbf{x}|\theta) d\theta = C \exp\left\{-\sum_{k=1}^{+\infty} \frac{\left|x_k\right|^2 + \left|a_k\right|^2}{2\lambda_k}\right\} I_0(D)$$

$$U = \sum_{k=1}^{+\infty} \frac{x_k a_k^*}{\lambda_k} = \int_0^T \tilde{x}(t) \sum_{k=1}^{+\infty} \frac{a_k^* f_k^*(t)}{\lambda_k} dt \triangleq \int_0^T \tilde{x}(t) \tilde{g}^*(t) dt$$

$$\tilde{g}\left(t\right) = \sum_{k=1}^{+\infty} \frac{a_k}{\lambda_k} f_k\left(t\right)$$

$$\int_{0}^{T} \tilde{R}_{n}(t-\tau)\tilde{g}(\tau)d\tau = \sum_{k=1}^{+\infty} \frac{a_{k}}{\lambda_{k}} \int_{0}^{T} \tilde{R}_{n}(t-\tau)f_{k}(\tau)d\tau$$

$$= \sum_{k=1}^{+\infty} a_{k}f_{k}(t) = \tilde{A}(t), \quad 0 \le t \le T$$

$$D = \left| \int_{0}^{T} \tilde{x}(t)\tilde{g}^{*}(t)dt \right|$$

由相关器与匹配滤波器之间的等效性,D可以由将接收信号复包络 $\tilde{x}(t)$ 通过低通冲击响应为 $\tilde{g}^*(T-t)$ 滤波器输出包络在T时刻的采样得到。

定义窄带滤波器的冲击响应:

$$g(t) = 2\operatorname{Re}\left\{\tilde{g}(t)e^{j\omega_{c}t}\right\}$$

3.8.2 非相干频移键控系统

二元假设检验问题:

$$H_{1}: x(t) = s_{1}(t) + n(t) = a(t)\cos(\omega_{1}t + \theta) + n(t) H_{0}: x(t) = s_{0}(t) + n(t) = b(t)\cos(\omega_{0}t + \phi) + n(t) 0 \le t \le T$$

其中振幅 a(t),b(t) 是已知的实函数,相位 θ,ϕ 都是均匀分布的随机变量,彼此统计独立,n(t) 是均值为零、自相关函数为 $R_n(\tau)$ 的窄带高斯色噪声。假定接收信号为窄带信号。 $f(\theta) = \frac{1}{2\pi}, \ 0 \le \theta < 2\pi \qquad f(\phi) = \frac{1}{2\pi}, \ 0 \le \phi < 2\pi$

http://issp.ustc.edu.cn/

有用信号可以进一步表示成

$$s_{1}(t) = \operatorname{Re}\left\{a(t)e^{j(\omega_{1}-\omega_{c})t}e^{j\theta}e^{j\omega_{c}t}\right\} \triangleq \operatorname{Re}\left\{\tilde{A}(t)e^{j\theta}e^{j\omega_{c}t}\right\}$$
$$s_{0}(t) = \operatorname{Re}\left\{b(t)e^{j(\omega_{0}-\omega_{c})t}e^{j\phi}e^{j\omega_{c}t}\right\} \triangleq \operatorname{Re}\left\{\tilde{B}(t)e^{j\phi}e^{j\omega_{c}t}\right\}$$

假设频差很小, $\tilde{A}(t)$, $\tilde{B}(t)$ 都是时间慢变函数。

$$f\left(\mathbf{x}\middle|H_{1}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} f\left(\mathbf{x}\middle|\theta\right) d\theta = C \exp\left\{-\sum_{k=1}^{+\infty} \frac{\left|x_{k}\right|^{2} + \left|a_{k}\right|^{2}}{2\lambda_{k}}\right\} I_{0}\left(D_{1}\right)$$

$$f(\mathbf{x}|H_0) = \frac{1}{2\pi} \int_0^{2\pi} f(\mathbf{x}|\theta) d\theta = C \exp\left\{-\sum_{k=1}^{+\infty} \frac{\left|x_k\right|^2 + \left|b_k\right|^2}{2\lambda_k}\right\} I_0(D_0)$$

$$D_{1} = \left| \int_{0}^{T} \tilde{x}(t) \, \tilde{g}_{1}^{*}(t) \, dt \right|, \quad D_{0} = \left| \int_{0}^{T} \tilde{x}(t) \, \tilde{g}_{0}^{*}(t) \, dt \right|$$

其中 $\tilde{g}_1(t)$ 和 $\tilde{g}_0(t)$ 分别是下列积分方程的解

$$\int_{0}^{T} \tilde{R}_{n}(t-\tau) \tilde{g}_{1}(\tau) d\tau = \tilde{A}(t), \quad 0 \le t \le T$$

$$\int_{0}^{T} \tilde{R}_{n}(t-\tau) \tilde{g}_{0}(\tau) d\tau = \tilde{B}(t), \quad 0 \le t \le T$$

$$\ln \lambda(\mathbf{x}) = \gamma + \ln I_0(D_1) - \ln I_0(D_0) \underset{H_0}{\gtrless} \ln th$$

$$\gamma = \sum_{k=1}^{+\infty} \frac{|b_k|^2 - |a_k|^2}{2\lambda_k} = \frac{1}{2} \int_0^T \tilde{B}(t) \, \tilde{g}_0^*(t) \, dt - \frac{1}{2} \int_0^T \tilde{A}(t) \, \tilde{g}_1^*(t) \, dt$$

$$\ln I_0(D_1) - \ln I_0(D_0) \underset{H_0}{\overset{H_1}{\gtrless}} \ln th - \gamma$$

$$g_1(t) = 2 \operatorname{Re} \left\{ \tilde{g}_1(t) e^{j\omega_c t} \right\}$$
$$g_0(t) = 2 \operatorname{Re} \left\{ \tilde{g}_0(t) e^{j\omega_c t} \right\}$$

3.8.3 雷达系统

二元假设检验问题:

$$H_1: x(t) = A(t)\cos(\omega_c t + \theta) + n(t)$$

$$H_0: x(t) = n(t)$$

$$0 \le t \le T$$

其中振幅 A(t) 是已知的实函数,相位 θ 是均匀分布的随机变量,n(t) 是均值为零、自相关函数为 $R_n(\tau)$ 的窄带高斯色噪声。假定接收信号为窄带信号。

$$f(\theta) = \frac{1}{2\pi}, \quad 0 \le \theta < 2\pi$$

有用信号可以进一步表示成

$$A(t)\cos(\omega_c t + \theta) = \text{Re}\{A(t)e^{j\theta}e^{j\omega_c t}\}$$

$$f(\mathbf{x}|H_1) = C \exp \left\{ -\sum_{k=1}^{+\infty} \frac{|x_k|^2 + |a_k|^2}{2\lambda_k} \right\} I_0(D)$$

$$f(\mathbf{x}|H_0) = C \exp \left\{-\sum_{k=1}^{+\infty} \frac{|x_k|^2}{2\lambda_k}\right\}$$

$$D = \left| \int_0^T \tilde{x}(t) \, \tilde{g}^*(t) \, dt \right|, \quad \int_0^T \tilde{R}_n(t-\tau) \, \tilde{g}(\tau) \, d\tau = A(t), \quad 0 \le t \le T$$

$$\lambda(\mathbf{x}) = I_0(D) \underset{H_0}{\overset{H_1}{\geqslant}} th \cdot e^{\gamma}, \quad \gamma = \sum_{k=1}^{+\infty} \frac{\left|a_k\right|^2}{2\lambda_k} = \frac{1}{2} \int_0^T A(t) \, \tilde{g}^*(t) \, dt$$