# CMSC216: Binary Floating Point Numbers

Chris Kauffman

Last Updated: Fri Feb 28 02:49:46 PM EST 2025

## Logistics

### Reading Bryant/O'Hallaron

- ► Ch 2.1-3: Integers
- ► Ch 2.4-5: Floats (Optional)
- Quick Guide to GDB

#### Goals

- Finish Ints / Bitwise Ops
- Brief: Floating Point layout
- Thu: Assembly

### Assignments

- ► Lab05: Bits and GDB
- ► HW05: Assembly Intro
- Project 2: Bitwise Ops, GDB, C Application

P2 will go up within the next day

Grading on Exam 1 / Project 1 ongoing, release grades towards end of week

#### Announcements

### Midterm Feedback Survey

- Available on Canvas; Anonymous Feedback
- Worth 1 Full Engagement Point (like labs)
- ▶ Due 11:59pm Fri 07-Mar-2025

### Exam 1 Makeup

- Prof K has emailed all students with permission to make up exam 1 about scheduling
- ▶ If you expected to take the makeup exam and have not heard from Prof K email him ASAP

# Don't Give Up, Stay Determined!



- ▶ If Project 1 / Exam 1 went awesome, count yourself lucky
- ► If things did not go well, Don't Give Up
- ➤ Spend some time contemplating why things didn't go well, talk to course staff about it, learn from mistakes
- There is a LOT of semester left and plenty of time to recover from a bad start

4

# Note on Float Coverage

- ▶ Floating point layout is complex and interesting but. . .
- It's not a core topic that will appear on any exams, only tangentially on assignments
- Our coverage will be brief, examine slides / textbook if you want more depth
- ▶ **GOAL:** Demonstrate that (1) Real numbers can be approximated and (2) doing so uses bits in a very different way than integer representations

5

### Parts of a Fractional Number

The meaning of the "decimal point" is as follows:

$$123.406_{10} = 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + 123 = 100 + 20 + 3$$
$$4 \times 10^{-1} + 0 \times 10^{-2} + 6 \times 10^{-3} \quad 0.406 = \frac{4}{10} + \frac{6}{1000}$$
$$= 123.406_{10}$$

Changing to base 2 induces a "binary point" with similar meaning:

$$110.101_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 6 = 4 + 2$$
$$1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} \qquad 0.625 = \frac{1}{2} + \frac{1}{8}$$
$$= 6.625_{10}$$

One could represent fractional numbers with a fixed point e.g.

- ▶ 32 bit fractional number with
- ▶ 10 bits left of Binary Point (integer part)
- ▶ 22 bits right of Binary Point (fractional part)

**BUT** most applications require a more flexible scheme

#### Scientific Notation for Numbers

"Scientific" or "Engineering" notation for numbers with a fractional part is

| Standard | Scientific              | printf("%.4e",x); |
|----------|-------------------------|-------------------|
| 123.456  | $1.23456 \times 10^{2}$ | 1.2346e+02        |
| 50.01    | $5.001 \times 10^{1}$   | 5.0010e+01        |
| 3.14159  | $3.14159 \times 10^{0}$ | 3.1416e+00        |
| 0.54321  | $5.4321 \times 10^{-1}$ | 5.4321e-01        |
| 0.00789  | $7.89 \times 10^{-3}$   | 7.8900e-03        |

- Always includes one non-zero digit left of decimal place
- Has some significant digits after the decimal place
- Multiplies by a power of 10 to get actual number

## Binary Floating Point Layout Uses Scientific Convention

- ► Some bits for integer/fractional part
- Some bits for exponent part
- ▶ All in base 2: 1's and 0's, powers of 2

## Conversion Example

Below steps convert a decimal number to a fractional binary number equivalent then adjusts to scientific representation.

float fl = 
$$-248.75$$
;

 $Mantissa \equiv Significand \equiv Fractional Part$ 

# Principle and Practice of Binary Floating Point Numbers

- In early computing, computer manufacturers used similar principles for floating point numbers but varied specifics
- Example of Early float data/hardware
  - ▶ Univac: 36 bits, 1-bit sign, 8-bit exponent, 27-bit significand¹
  - ► IBM: 32 bits, 1-bit sign, 7-bit exponent, 24-bit significand<sup>2</sup>
- Manufacturers implemented circuits with different rounding behavior, with/without infinity, and other inconsistencies
- Troublesome for reliability: code produced different results on different machines
- ► This was resolved with the adoption of the IEEE 754 Floating Point Standard which specifies
  - ▶ Bit layout of 32-bit float and 64-bit double
  - Rounding behavior, special values like Infinity
- ► Turing Award to William Kahan for his work on the standard

<sup>&</sup>lt;sup>1</sup>Floating Point Arithmetic

<sup>&</sup>lt;sup>2</sup>IBM Hexadecimal Floats

# IEEE 754 Format: The Standard for Floating Point

| float | double | Property                                  |
|-------|--------|-------------------------------------------|
| 32    | 64     | Total bits                                |
| 1     | 1      | Bits for sign (1 neg / 0 pos)             |
| 8     | 11     | Bits for Exponent multiplier (power of 2) |
| 23    | 52     | Bits for Fractional part or mantissa      |
| 7.22  | 15.95  | Decimal digits of accuracy <sup>3</sup>   |

- Most commonly implemented format for floating point numbers in hardware to do arithmetic: processor has physical circuits to add/mult/etc. for this bit layout of floats
- Numbers/Bit Patterns divided into three categories

| Category     | Description                                           | Exponent  |
|--------------|-------------------------------------------------------|-----------|
| Normalized   | most common like 1.0 and -9.56e37                     | mixed 0/1 |
| Denormalized | very close to zero and 0.0                            | all 0's   |
| Special      | extreme/error values like ${\tt Inf}$ and ${\tt NaN}$ | all 1's   |

<sup>&</sup>lt;sup>3</sup>Wikipedia: IEEE 754

# Example float Layout of -248.75: float\_examples.c



Source: IEEE-754 Tutorial, www.puntoflotante.net

Color: 8-bit blocks, Negative: highest bit, leading 1

```
Exponent: high 8 bits, 2<sup>7</sup> encoded with
bias of -127

1000_0110 - 0111_1111

= 128+4+2 - 127

= 134 - 127

= 7
```

```
Fractional/Mantissa portion is
1.111100011...

    ||||||||
| explicit low 23 bits
|
implied leading 1
not in binary layout
```

## Normalized Floating Point: General Case

- ➤ A "normalized" floating point number is in the standard range for float/double, bit layout follows previous slide
- ► Example: -248.75 = -1.111100011 \* 2^7

### Exponent is in **Bias Form** (not Two's Complement)

- ▶ Unsigned positive integer minus constant bias number
- ► **Consequence**: exponent of 0 is not bitstring of 0's
- ➤ **Consequence**: tiny exponents like -125 close to bitstring of 0's; this makes resulting number close to 0
- ▶ 8-bit exponent 1000 0110 = 128+4+2 = 134 so exponent value is 134 127 = 7

### Integer and Mantissa Parts

- ► The leading 1 before the binary point is **implied** so does not show up in the bit string
- Remaining fractional/mantissa portion shows up in the low-order bits

#### Sidebar: The Weird and Wonderful Union

- Bitwise operations like & are not valid for float/double
- ► Can use pointers/casting to get around this OR...
- Use a union: somewhat unique construct to C
- Defined like a struct with several fields
- ► BUT fields occupy the same memory location (!?!)
- Allows one to treat a byte position as multiple different types, ex: int / float / char[]
- Memory size of the union is the max of its fields

```
// union.c
typedef union { // shared memory
  float fl; // float 4 bytes
  int in; // int 4 bytes
  char ch[4]; // array 4 bytes
} flint t;
               // 4 bytes total (?!)
// all fields are in the same memory
// so max of (4,4,4) rather than sum
int main(){
  flint t flint;
  flint.in = 0xC378C000;
  printf("%.4f\n", flint.fl);
  printf("%08x %d\n",flint.in,flint.in);
  for(int i=0; i<4; i++){</pre>
    unsigned char c = flint.ch[i];
    printf("%d: %02x '%c'\n",i,c,c);
 Symbol
                  | Mem
 flint.ch[3]
                  I #1027
 flint.ch[2]
                  I #1026
 flint.ch[1]
                   #1025
 flint.in/fl/ch[0] | #1024
                  I #1020
```

#### ====== OPTIONAL MATERIAL ======

The remaining material will be discussed time permitting but is oriented towards those with deeper curiosity and will not feature in assignments / exams

# Fixed Bit Standards for Floating Point

#### **IEEE Standard Layouts**

| Kind   | Sign   | Exponent        |       |                  | Mantissa       |
|--------|--------|-----------------|-------|------------------|----------------|
|        | Bit    | Bits            | Bias  | Exp Range        | Bits           |
| float  | 31 (1) | 30-23 (8 bits)  | -127  | -126 to +127     | 22-0 (23 bits) |
| double | 63 (1) | 62-52 (11 bits) | -1023 | -1022 to $+1023$ | 51-0 (52 bits) |

Standard allows hardware to be created that is as efficient as possible to do calculation on these numbers

#### Consequences of Fixed Bits

- ➤ Since a fixed # of bit is used, some numbers cannot be exactly represented, happens in any numbering system:
- ▶ Base 10 and Base 2 cannot represent  $\frac{1}{3}$  in finite digits
- ▶ Base 2 cannot represent  $\frac{1}{10}$  in finite digits

```
float f = 0.1;
printf("0.1 = %.20e\n",f);
0.1 = 1.00000001490116119385e-01
```

Try show\_float.c to see this in action

## Exercise: Quick Checks

- 1. What distinct parts are represented by bits in a floating point number (according to IEEE)
- 2. What is the "bias" of the exponent for 32-bit floats
- 3. Represent 7.125 in binary using "binary point" notation
- 4. Lay out 7.125 in IEEE-754 format
- 5. What does the number 1.0 look like as a float?



Source: IEEE-754 Tutorial, www.puntoflotante.net

The diagram above may help in recalling IEEE 754 layout