Soluzioni di

FONDAMENTI DI RICERCA OPERATIVA

Contents

1	Pro	grammazione Lineare
	1.1	Esercizio 1
	1.2	Esercizio 2
	1.3	Esercizio 3
	1.4	Esercizio 4
	1.5	Esercizio 5
	1.6	Esercizio 6
	1.7	Esercizio 7
	1.8	Esercizio 8
	1.9	Esercizio 9
	1.10	Esercizio 10
2	Gra	.fi
	2.1	Esercizio 1
	2.2	Esercizio 2
	2.3	Esercizio 3
	2.4	Esercizio 4
	2.5	Esercizio 5
	2.6	Esercizio 6
	2.7	Esercizio 7

Chapter 1

Programmazione Lineare

1.1 Esercizio 1

Parametri

P porti, i = 1, 2, 3

 c_i costo per porto per ogni vettura (150, 250, 200)

 t_i costo fisso porto

S centri di smistamento, $j=1,\ldots,4$

 k_i costo di invio dal porto ial km

 a_{ij} distanza dal porto i al centro j

 r_j richiesta del centro j

 d_i capacità del porto i

Variabili

 $x_{ij} \geq 0, x_{ij} \in \mathbb{Z}$ numero di automobili dal porto i al centro j

 $y_i \in \{0,1\}$, uguali a 1 se uso il porto i

 $z_{ij} \in \{0,1\},$ uguali a 1 se il porto irifornisce il centro j

Funzione obiettivo

$$\min \left\{ \underbrace{\sum_{ij} c_i x_{ij}}_{\text{auto}} + \underbrace{\sum_{i} t_i y_i}_{\text{porto}} + \underbrace{\sum_{ij} a_{ij} k_i x_{ij}}_{\text{trasporto}} \right\}$$

$$\sum_{i} x_{ij} \ge r_{j} \qquad \forall j \in S \qquad \qquad \text{richiesta}$$

$$\sum_{j} x_{ij} \le d_{i}y_{i} \qquad \forall i \in P \qquad \qquad \text{bigM + capacità}$$

$$\sum_{i} z_{i,3} = 1 \qquad \qquad \text{centro 3}$$

$$x_{ij} \le d_{i}z_{ij} \qquad \forall i \in P, \forall j \in S \qquad \qquad \text{bigM}$$

$$z_{22} \le z_{24} \qquad \qquad \text{logico}$$

1.2 Esercizio 2

Parametri

A aeroporti

H hangar

 c_j, s_j, t_j operatori $\forall j \in H$

 g_1 costo squadra 1

 g_2 costo squadra 2

 g_3 costo squadra 3

1c	1s	1t
3c	1s	X
3c	2s	2t

Variabili

 $x_j \geq 0, x_j \in \mathbb{Z}$ squadre tipo 1

 $y_j \geq 0, y_j \in \mathbb{Z}$ squadre tipo 2

 $z_j \geq 0, z_j \in \mathbb{Z}$ squadre tipo 3

 $\varphi \in \{0,1\},$ uguale a 1 se uso 3 squadre di tipo 2

 $w_{ij} \in \{0,1\}$, uguale a 1 se aereo i in hangar $j, \forall i \in A, \forall j \in H$

Funzione obiettivo

$$\min \sum_{j} (x_j g_1 + y_j g_2 + z_j g_3)$$

Vincoli

$$\sum_{j} w_{ij} = 1 \quad \forall i \in A$$
 assegnazione
$$x_{j} + 3y_{j} + 3z_{j} \geq \sum_{i} c_{j}w_{ij} \quad \forall j \in H$$
 operai
$$x_{j} + y_{j} + 2z_{j} \geq \sum_{i} s_{j}w_{ij} \quad \forall j \in H$$
 operai
$$\sum_{j} y_{j} - 2 \leq M\varphi$$
 (A)
$$2\varphi \leq \sum_{i} z_{j}$$
 (B)

Gli ultimi due vincoli servono per realizzare:

$$y_j \ge 3 \stackrel{\text{(A)}}{\Rightarrow} \varphi = 1 \stackrel{\text{(B)}}{\Rightarrow} z_j \ge 2$$

1.3 Esercizio 3

Parametri

 $p_j, \ j=1,2$

 \boldsymbol{r}_j prezzo vendita

 d_i domanda

I materie prime $i \in I$

1.4. Esercizio 4

 c_i disponibilità

 g_i costo unitario materie prima

 g_{ji} materia i necessaria per j

 o_1 ore p_1 da materia prima

 o_2 ore p_2 da materia prima

oppure ottengo p_2 con

bunità di p_1 per p_2

 o_3 ore lavorazione $(p_2 da p_1)$

k costo fisso attivazione

O ore a disposizione

Variabili

 $x_j \geq 0, x_j \in \mathbb{Z}$ unità di prodotto j da materie prime

 $y \geq 0, y \in \mathbb{Z}$ unità di prodotto 2 da prodotto 1

 $z \in \{0,1\}$, uguale a 1 se attivo processo produttivo

Funzione obiettivo

$$\max \left\{ [r_1(x_1 - by) + r_2(x_2 + y)] - \left[\sum_{ij} g_i q_{ji} x_j + kz \right] \right\}$$

Vincoli

$$\begin{aligned} y & \leq Mz & \text{bigM} \\ (x_1 - by) & \geq d_1 & \text{richiesta} \\ (x_2 - y) & \geq d_2 & \text{richiesta} \\ \sum_j q_{ji} x_j & \leq c_i & \forall i \in I & \text{disponibilità} \\ o_1 x_1 + o_2 x_2 + o_3 y & \leq O & \text{disponibilità} \end{aligned}$$

1.4 Esercizio 4

Parametri

T gruppi $i \in T$

 p_i persone

J aerei $j \in J$

 c_i costo noleggio

 B_i capienza aereo

A aeroporto $k \in A$

 G_k max voli per aeroporto

 l_{jk} costo di far partire j da k

R sottoinsiemi di aeroporti vicini

 S_r con $r=1,\ldots,R$, al più un aeroporto

Variabili

 $x_{ij} \in \{0,1\}$, uguale a 1 se gruppo i ad aereo j

 $y_{jk} \in \{0,1\}$, uguale a 1 se aereo j parte da k $z_j \in \{0,1\}$, uguale a 1 se uso aereo j $w_k \in \{0,1\}$, uguale a 1 se uso aeroporto k

Funzione obiettivo

$$\min\left\{\sum_{j}c_{j}z_{j}+\sum_{jk}l_{jk}y_{jk}\right\}$$

Vincoli

$$\begin{split} &\sum_{i} x_{ij} \leq M z_{j} & \forall j \in J & \text{bigM} \\ &\sum_{i} p_{i} x_{ij} \leq B_{j} & \forall j \in J & \text{capacità} \\ &\sum_{j} y_{jk} \leq G_{k} w_{k} & \forall k \in K & \text{bigM} + \text{capienza voli} \\ &\sum_{k \in S_{r}} w_{k} \leq 1 & \forall r = 1, \dots, R & \text{no aeroporti vicini} \\ &\sum_{j} x_{ij} = 1 & \forall i \in I & \text{assegnamento} \\ &\sum_{k} y_{jk} = z_{j} & \forall j \in J & \text{un aereo per aeroporto, se usato} \end{split}$$

1.5 Esercizio 5

Parametri

P domande iscrizione $i \in P$

 $M \subset P, F \subset P$, uomini, donne $(M \cup F = P, M \cap F = \emptyset)$

n max persone per classe

d massimo classi ($D = 1, \ldots, d$ insieme classi)

 \boldsymbol{b}_i preparazione di i

q livello minimo per classe

C coppie formate $(i, j) \in C, i \in M, j \in F$

Variabili

 $x_{ik} \in \{0, 1\}$, uguale a 1 se persona i in classe k $y_i \in \{0, 1\}$, uguale a 1 se accetto domanda

Funzione obiettivo

$$\max \sum_{i} y_i$$

$$\sum_{i \in P} x_{ik} \le n \qquad \forall k \in D$$
 capacità classe
$$\sum_{i \in M} x_{ik} = \sum_{i \in F} x_{ik} \qquad \forall k \in D$$
 uguali M/F

1.6. Esercizio 6 5

$$\begin{split} \sum_{i \in P} x_{ik} b_i &\geq q \sum_{i \in P} x_{ik} & \forall k \in D & \text{preparazione} \\ y_i &\leq \sum_{k \in D} x_{ik} & \forall i \in P & \text{bigM} \\ \sum_{k \in D} x_{ik} &\leq 1 & \forall i \in P & \text{massimo 1 corso per persona} \\ x_{ik} &= x_{jk} & \forall (i,j) \in C, \forall k \in D & \text{coppie} \end{split}$$

1.6 Esercizio 6

Parametri

A insieme altiforni $i=1\ldots N, i\in A$

 m_i max quintali per altiforno

P prodotti $j \in P$

 q_{1j} prodotto j da 1 quintale di materia prime con processo 1 (prodotto/quintale)

 q_{2j} prodotto j da 1 quintale di materia prime con processo 2 (prodotto/quintale)

 r_j richiesto prodotto

 c_{1i} costo lavorazione al quintale in altiforno i con processo 1 (euro/quintale)

 c_{2i} costo lavorazione al quintale in altiforno i con processo 2 (euro/quintale)

 f_i costo attivazione processo 2 in altiforno i

Variabili

 $w_i \in \{0,1\}$, uguale a 1 se lavoro più di q

 $y_i \in \{0,1\}$, uguale a 1 se uso processo 2

 $x_{ij1} \geq 0, x_{ij1} \in \mathbb{Z}$ prodotto j con processo 1 in altiforno i

 $x_{ij2} \geq 0, x_{ij2} \in \mathbb{Z}$ prodotto j con processo 2 in altiforno i

Funzione obiettivo

$$\min \left\{ \sum_{i} y_i f_i + \sum_{ij} \left[c_{1i} \frac{x_{ij1}}{q_{1j}} + c_{2i} \frac{x_{ij2}}{q_{2j}} \right] \right\}$$

$$\begin{split} \sum_{j} x_{ij2} & \leq My_i & \forall i \in A & \text{bigM} \\ \sum_{j} \left[\frac{x_{ij1}}{q_{1j}} + \frac{x_{ij2}}{q_{2j}} \right] & \leq m_i & \forall i \in A & \text{capacità} \\ \sum_{i} [x_{ij1} + x_{ij2}] & \geq r_j & \forall j \in P & \text{richiesta} \\ \sum_{i} y_i & \leq N - 1 & \text{no processo 2 su tutti gli altiforni} \\ \sum_{i} w_i & \geq 1 & \text{almeno 1 usa più di } q \text{ quintali} \\ qw_i & \leq \sum_{ij} \left[\frac{x_{ij1}}{q_{1j}} + \frac{x_{ij2}}{q_{2j}} \right] & \forall i \in A & \text{vincolo logico} \end{split}$$

1.7 Esercizio 7

Parametri

Ccioccolatini $i \in C$

S confezioni regalo $j \in S$

 r_{ij} richieste cioccolatini i in confezione j

 g_i costo cioccolatino

 m_i max produzione

 p_i vendita cioccolatino sfuso i

 d_i vendita confezione j

 b_j costo scatola j

Variabili

 $x_i \geq 0, x_i \in \mathbb{Z}$ numero cioccolatini i prodotti

 $y_j \geq 0, y_j \in \mathbb{Z}$ numero confezionij prodotte

 $z \in \{0,1\}$, uguale a 1 se acquisto almeno q scatole

Funzione obiettivo

$$\max \left\{ \underbrace{\sum_{j} d_{j} y_{j}}_{\text{confezioni}} + \underbrace{\sum_{i} p_{i} \bigg(x_{i} - \sum_{j} r_{ij} y_{j} \bigg)}_{\text{sfusi}} - \underbrace{\sum_{i} g_{i} x_{i}}_{\text{costo prod.}} - \underbrace{\sum_{j} b_{j} y_{j}}_{\text{costo scatole}} + \underbrace{zB}_{\text{sconto}} \right\}$$

Vincoli

$$x_i \geq \sum_j r_{ij} y_j \quad \forall i \in I$$
 richiesta
$$x_i \leq m_i \quad \forall i \in I$$
 capacità
$$\sum_j y_j \geq Qz$$
 sconto
$$x_1 \geq 0.2 \cdot \sum_i x_i$$
 qualità

1.8 Esercizio 8

Parametri

D difensori

A attaccanti

G giocatori $i \in G$

 $r_i \in \{0, 1\}$, uguale a 1 se giocatore i è attaccante

 v_i valore giocatore

B valore complessivo formazione

q giocatori non giocanti

K formazioni |K|=2

Variabili

 $z \geq 0, z \in \mathbb{Z}$ valore formazione di minimo valore

 $x_{ik} \in \{0,1\}$, uguale a 1 se giocatore i è nelle formazione k

1.9. Esercizio 9

 $y_i \in \{0,1\}$, uguale a 1 se i gioca in entrambe

Funzione obiettivo

 $\max z$

Vincoli

$$\sum_{i} r_{i}x_{ik} = A \qquad \forall k \in K$$

$$\sum_{i} (1 - r_{i})x_{ik} = D \qquad \forall k \in K$$

$$\sum_{i} v_{i}x_{ik} \geq B \qquad \forall k \in K$$
 minimo valore richiesto
$$\left(|G| - \sum_{i} y_{i}\right) \geq q \qquad \qquad \text{almeno } q \text{ non giocanti entrambe}$$

$$\left(\sum_{k} x_{ik} - 1\right) \leq My_{i} \qquad \forall i \in I \qquad \qquad \text{bigM}$$

$$z \leq \sum_{i} v_{i}x_{ik} \qquad \forall k \in K \qquad \qquad \text{bottleneck}$$

1.9 Esercizio 9

Parametri

B beni $i \in B$

M magazzino $j \in M$

A luoghi distribuzione $k \in A$

 c_i costo bene i

 v_i spazio occupato da i in magazzino

 b_i capacità

 f_j costo fisso magazzino se usato

 g_{jk} costo trasporto bene da ja k

 d_{ik} richiesta beneia k

Variabili

 $y_j \in \{0,1\}$, uguale a 1 se uso j

 $z_{ijk} \geq 0, z_{ijk} \in \mathbb{Z}$ numero di benii da ja k

Funzione obiettivo

$$\min \left\{ \sum_{ijk} c_i z_{ijk} + \sum_j f_j y_j + \sum_{ijk} z_{ijk} g_{jk} \right\}$$

$$\sum_{j} z_{ijk} \geq d_{ik} \qquad \forall i \in I, \forall k \in K$$
richiesta
$$\sum_{jk} v_i z_{ijk} \leq b_j y_j \qquad \forall j \in J$$
big
M e capacità

1.10 Esercizio 10

Parametri

C analisi $i \in C, i = 1, \dots, 4$

Oospedali $j \in O, j = 1, \dots, 5$

 d_{ij} tempo da i a j

 \boldsymbol{r}_j richieste analisi

 b_i max analisi nel centro i

Variabili

 $x_{ij} \geq 0, x_{ij} \in \mathbb{Z}$ numero analisi al centro i per ospedale j

 $z_{2i} \in \{0,1\},$ uguale a 1 se 2 si serve da i

Funzione obiettivo

$$\min \sum_{ij} a_{ij} x_{ij}$$

$$\begin{split} \sum_{j} x_{1j} &\leq 0.8 \cdot \left(\sum_{j} x_{2j} + x_{3j}\right) & \text{qualità} \\ \sum_{j} x_{2j} &\leq 0.6 \cdot \left(\sum_{j} x_{ij} + x_{3j}\right) & \text{qualità} \\ \sum_{j} (x_{3j} + x_{4j}) &\leq 0.5 \cdot \sum_{ij} x_{ij} & \text{qualità} \\ \sum_{j} x_{ij} &= r_{j} \quad \forall j \in J & \text{richiesta} \\ \sum_{j} x_{ij} &\leq b_{i} \quad \forall i \in I & \text{capacità} \\ \sum_{j} z_{2i} &= 1 & \text{un solo centro per 2} \\ x_{i2} &\leq b_{i} z_{2i} & \forall i \in I & \text{bigM} \end{split}$$

Chapter 2

Grafi

2.1 Esercizio 1

$$s = 1, t = 6.$$

 $N_s = \{1, 2, 5\}, N_t = \{3, 4, 6\}.$

$$(1) - (2) - (3) - (4) - (6)$$

$$(1,2) \lambda^{+} = 4$$

$$(2,3) \lambda^{-} = 3$$

$$(3,4) \lambda^{+} = 7$$

$$(4,6) \lambda^{+} = 10$$

$$\lambda_{\min} = 3$$

$$\sharp$$
 cammino aumentante $v = 9 + 15 = 14$

10 Chapter 2. Grafi

2.2 Esercizio 2

Lato	Costo	Accettato	T
(5, 6)	1	✓	1
(3, 6)	3	✓	2
(2, 4)	3	✓	3
(4, 6)	4	✓	4
(1,6)	5	✓	5
(3, 5)	5	×	
(1, 2)	7	×	
(1, 3)	7	×	
(4,7)	8	✓	6
(5,7)	9		
(1, 4)	9		
(6,7)	10		

2.3 Esercizio 3

Enumerazione topologica.

Nodo	Etichet
(1)	1
(3)	2
(4)	3
(2)	4
(5)	5
(6)	6

2.4. Esercizio 411

 ${\bf SPT\text{-}aciclico}.$

\overline{i}	d, P	d, P	d, P	d, P	d, P	d, P
$\frac{1}{2}$	0, 1					
2	M, 1	10, 1	5,3			
3	M, 1	3, 1				
4	M, 1		6, 3			
5	M, 1		13, 3	11, 4	7, 2	
6	M, 1			11, 4		
i	1	3	4	2	5	6

Esercizio 4 2.4

 $N_s = \{1, 3\}, N_t = \{2, 4, 5, 6, 7\}, U(N_s, N_t) = 16 = v.$

$$(1) - (3) - (5) - (2) - (4) - (6) - (7)$$

$$(1,3) \lambda^{+} = 7$$

$$(3,5) \lambda^{+} = 1$$

$$(5,2) \lambda^{-} = 9$$

 $(5,5) \lambda^{+} = 1$ $(5,2) \lambda^{-} = 9$ $(2,4) \lambda^{+} = 12$ $(4,6) \lambda^{+} = 8$ $(6,7) \lambda^{+} = 10$

 $\lambda_{\min} = 1$

Esercizio 5 2.5

Chapter 2. Grafi

Lato	Costo	Accettato	T
(3, 4)	1	✓	1
(4, 5)	1	✓	2
(3, 6)	2	✓	3
(5,7)	3	✓	4
(5,6)	3	×	
(3,7)	4	×	
(6,7)	5	X	
(2,5)	6	✓	5
(3, 2)	7	×	
(1, 2)	8	✓	6
(1,3)	9		

2.6 Esercizio 6

Dijkstra.

i	d, P	d, P	d, P	d, P	d, P	d, P
1	0, 1					
2	M, 1	11, 1				
3	M, 1	19, 1	18, 4			
4	M, 1	8,1				
5	M, 1			37, 3	29,6	
6	M, 1		23, 4			
7	M, 1				42,6	32, 5
\overline{Q}	1	2, 3, 4	2, 3, 6	5,6	5, 7	7
i	1	4	2,3	6	5	7

2.7. Esercizio 7

2.7 Esercizio 7

Lato	Costo	Accettato	T
(1,7)	1	/ / /	1
(2,6)	1	√	$\overset{1}{2}$
(4,9)	1	1	3
(4,6)	$\frac{1}{2}$	√	4
(5,9)	$\frac{2}{2}$	√	5
(8,9)	$\frac{2}{2}$	✓	6
(7,8)	2	√	7
(8,4)	3	X	•
(3, 10)	3	3	8
(1,4)	4	XX	_
(2,1)	$\overline{4}$	XX	
(5, 10)	4	3	9 (stop!)
(2,3)	4	1	8
(4, 10)	5		
(7,4)	5		
(2,4)	5		
(4,5)	7		
(6,3)	7		
(4,3)	8		
(3,5)	9		
` ' /			