# **Summary | Statics**

### Introduction

### **Centroid / Centre of area**

The point where the area of a figure is assumed to be concentrated.

Located on the axes of symmetry.

#### First moment of area

About x-axis = 
$$\int_A y dA$$

About y-axis = 
$$\int_A x dA$$

### Second moment of area

About x-axis 
$$=I_{xx}=I_x=\int_A y^2 \mathrm{d}A$$

About y-axis 
$$=I_{yy}=I_y=\int_A x^2\mathrm{d}A$$

## The product of moment of area about x,y axes

$$I_{xy} = \int_A xy \mathrm{d}A$$

# The polar moment of area about z axis

$$I_{zz}=J_0=\int_A r^2 \mathrm{d}A=I_{xx}+I_{yy}$$

# **Radius of gyration**

About x-axis 
$$= r_x^2 = rac{I_{xx}}{A}$$

$$ext{About y-axis} = r_y^2 = rac{I_{yy}}{A}$$

About z-axis 
$$= r_z^2 = rac{I_{zz}}{A}$$

# **Derived Formulas for Common Shapes**

| Shape         | Description                                                           | $I_{xx}$            |
|---------------|-----------------------------------------------------------------------|---------------------|
| Rectangle     | Base $m{b}$ . Height $m{h}$ . About centroidal axis parallel to base. | $rac{bh^3}{12}$    |
| Triangle      | Base $m{b}$ . Height $m{h}$ .<br>About base.                          | $rac{bh^3}{12}$    |
| Triangle      | Base $m{b}$ . Height $m{h}$ . About centroidal axis parallel to base. | $\frac{bh^3}{36}$   |
| Circle        | Diameter $oldsymbol{d}$ . About centroidal axis.                      | $rac{\pi d^4}{64}$ |
| Parallelogram | Base $m{b}$ . Height $m{h}$ . About centroidal axis parallel to base. | $rac{bh^3}{12}$    |

## **Parallel Axis Theorem**

$$I_x = I_{x_1} + Aar{y}^2$$

$$I_y = I_{y_1} + Aar{x}^2$$

$$I_{xy}=I_{x_1y_1}+Aar{x}ar{y}$$

Here

- On LHS, the moments of area are about some  $oldsymbol{x}$  ,  $oldsymbol{y}$  axes.
- On RHS, the moments of area are about centroidal axes  $oldsymbol{x_1}$  ,  $oldsymbol{y_1}$  parallel to x, y.
- $ar{x}$  is the distance between x and  $x_2$  axes.
- $ar{y}$  is the distance between y and  $y_1$  axes.

# **Perpendicular Axis Theorem**

$$I_{zz} = I_{xx} + I_{yy} = I_{mm} + I_{nn}$$

x, y, z are a set of axes. m, n, z are another set of axes.

If  $I_{xx}$  is at maximum,  $I_{yy}$  will be at minimum.

## **Transformation Law**

The 2 sets of axes must share the origin.

(i) Note

Don't have to memorize this. Will be given on exams, if required.



$$egin{align} I_{x_1x_1} &= rac{I_{xx}+I_{yy}}{2} + \left(rac{I_{xx}-I_{yy}}{2}
ight)cos2 heta - I_{xy}sin2 heta \ I_{y_1y_1} &= rac{I_{xx}+I_{yy}}{2} - \left(rac{I_{xx}-I_{yy}}{2}
ight)cos2 heta + I_{xy}sin2 heta \ I_{x_1y_1} &= \left(rac{I_{xx}-I_{yy}}{2}
ight)sin2 heta + I_{xy}cos2 heta \ \end{align}$$

# **Principal Axes**

The product of moment of area is zero about principal axes.

$$I_{xy}=0$$

There will be 2 directions of principal axes which are perpendicular to each other.

Any axis of symmetry is a principal axis. Any axis through centroid is a principal axis.

## Principal second moments of area

Second moments about the principal axes.

About principal axes second moments of area will be at minimum and maximum.

## **Centroidal principal axes**

Principal axes through the centroid.

### **Beams**



- long ( L>>B,D )
- · axis of the beam is straight
- · constant cross-section throughout its length

### Classified by supporting conditions

First 3 are the mandatory ones.

| Туре                  | Image                                                |
|-----------------------|------------------------------------------------------|
| Simply supported beam | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| Туре                      | Image                                                |
|---------------------------|------------------------------------------------------|
| Cantilevered beam         | u.d.l. W<br>↓ M                                      |
| Overhanging beam          | $\frac{\mathbf{w}_1}{\mathbf{w}_2}$                  |
| Propped cantilevered beam | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| Continuous beam           | $W_1$ $W_2$ $u.d.l.$                                 |
| Fixed beam                |                                                      |

# At a section



- $oldsymbol{\cdot}$  P Normal force / Axial force
- $S_y, S_y$  Shear forces along y and z axis
- $M_x$  Twisting moment / Torque
- $M_y, M_z$  Bending moments about  $\, y \,$  and  $\, z \,$  axis

### **Degress of freedom**

A plane member have 3 degress of freedom. Any of the 3 can be restrained.

- Displacement in x-direction
- Displacement in y-direction
- · Rotation about z-direction

#### SFD & BMD

#### Sign convention

- · Bending moment
  - Hogging (curves upwards) is (+)ve
  - Sagging (curves downwards) is (-)ve
- Shear force
  - Clockwise shear is (+)ve.
  - Counterclockwise shear is (-)ve.

#### (i) Note

A member is in pure bending when shear force is 0 and bending moment is a constant in a part of a beam.

# Distributed load, shear force & bending moment

When a beam is under a distributed load of w=f(x) per unit length.

$$\frac{\mathrm{d}S}{\mathrm{d}x} = -w$$

$$rac{\mathrm{d}M}{\mathrm{d}x} = -S \ ; rac{\mathrm{d}^2M}{\mathrm{d}x^2} = w$$

# **Principle of Superposition**

A beam with multiple loads can be split into multiple systems each with a single load. Reason for doing so is the ease of calculations.

Values will be the sum of each system's corresponding value.

## **Structural Elements**

3 types

- Bars (1D)
- Plates and Shells (2D)
- Blocks (3D)

Bar elements are only focused for 1st semester.

### **Pin Joint**

Doesn't exert a moment. Free rotations are allowed. When only pin joints are used, bars will have only axial forces.

#### **Bars**



Here

- N Axial force
- $S_x, S_y$  Shear force
- $M_x$

#### Types of bars

###### Axially loaded

Generally in trusses, **pin joints** are considered.

- Predominant tension Ties
- Predominant compression Struts

###### Flexural

• Predominant bending - beams

###### Torsional

• Predominant torque - shafts

### **Trusses**

Also known as Ties-Struts model.

#### **Definition**

An assembly of members used to span long distances. Idealized as

- Connected by **frictionless** pin joints at their ends
- · Developing axial forces

## **Types**

2 types

- Plane truss (2D)
- Space truss (3D)

A truss requires 3 external reactions for equilibrium.

Predominant force is axial force.

## **Advantages of truss**

- · High/length span
- Material efficiency

### **Triangulation**

- Start with a triangle (3 bars and 3 joints)
- Add 2 more bars and a joint repeatedly to create a truss

This type of truss is a **simple truss**.

## Simple (Closed) Truss

When a truss is pinned only made of bars and joints

## **Open Truss**

When a truss is pinned directly to a foundation. It has 1 member & 2 free joints less than a closed truss.

### Stability of trusses

When a truss is:

• unstable: it's called a mechanism

• stable: it's called a structure

#### Stable truss

When the shape cannot be altered, the structure is **internally stable**.

###### Stable & determinate (simply stiff)

**Determinate** means internal forces can be determined by laws of statics alone.

###### Stable & indeterminate

**Indeterminate** means laws of statics alone are not sufficient to determine forces; relative stiffness of members will influence the solution (Indeterminate trusses are safer)

#### **Unstable truss**

When the shape can be altered, the truss is called a mechanism.

#### Necessary condition for a 2D simple (closed) truss

m=2j-3 is a necessary but not sufficient condition being simply stiff.

- m < 2j 3 truss is unstable
- $oldsymbol{\cdot} \quad m=2j-3$  truss is determinate if stable
- $oldsymbol{\cdot} m>2j-3$  truss is indeterminate if stable

#### Necessary condition for a 2D open truss

m=2j is a necessary but not sufficient condition being simply stiff.

- m < 2j truss is unstable
- $oldsymbol{\cdot} \quad m=2j$  truss is determinate if stable
- $oldsymbol{\cdot} m>2j$  truss is indeterminate if stable

#### Necessary condition for a 3D simple (closed) truss

m=3j-6 is a necessary but not sufficient condition for being simply stiff.

#### **Necessary condition for a 3D open truss**

m=3j is a necessary but not sufficient condition for being simply stiff.

# **Analysis of Trusses**

Deviations from the ideal in real trusses

- · Loads are not applied only at joints; hence there is bending in members
- · Joints are not perfectly pinned, so moments can be developed at joints

## **Method of Joints**

#### **Principle**

Since the truss is in equilibrium, each pin joint must be in equilibrium.

(i) Note

2 equilibrium equations can be written at each joint - vertical & horizontal

#### Sign convention

Tensile forces are positive. Compressive forces are negative.

#### Method

- Find external reactions using equilibrium using equilibrium equations for the entire truss.
- Start with a joint with only 2 unknown joint forces.
- Mark the tensile forces (consider all forces are tensile) acting on the join.
- Find the unknown forces at the selected joint, using 2 equilibrium equations for the joint.
- Go to all other joints in turn and find forces in all the members.

### **Special cases**

| Case      | Description                                          |
|-----------|------------------------------------------------------|
| D B       | $F_{ m AX} = F_{ m XB} \wedge F_{ m DX} = F_{ m XC}$ |
| D $D$ $B$ | $F_{ m AX} = F_{ m XB} \wedge F_{ m DX} = F_{ m XC}$ |
| C B       | $F_{	ext{XB}} = 0 \wedge F_{	ext{DX}} = F_{XC}$      |

| Case  | Description             |
|-------|-------------------------|
| X (d) | $F_{ m DX} = F_{ m XC}$ |
| C (e) | $F_{ m DX}=F_{ m XC}=0$ |

### **Method of Sections**

### **Principle**

Since the truss is in equilibrium, each part of it must be in equilibrium in stable equilibrium.

#### Method

- Decide on which member's internal force must be calculated.
- Cut the truss **3 or less** members including the target member.
- Internal forces in cut members become external forces. Can be represented as tensile forces.
- Use equilibrium equations for RHS or LHS section to find the internal forces.

# **Beam Analogy (Approximate) method**

We find the internal forces assuming the elongated truss is a beam.

### (i) For a simply supported beam

- Maximum bending moment is at mid-span:  $M_{
  m max}=rac{wL^2}{8}$
- Maximum shear force is at the supports:  $\frac{wL}{2}$



#### Here:

- Chord members horizontal members
- Web members diagonal members
- $m{d}$  truss depth

#### In the truss.

• Bending moment is carried by chord members.

Bending moment = 
$$F_{\mathrm{chord}} \times d$$

• Shear force is carried by vertical component of web member force

### (i) Pratt & Howe type trusses

Above-mentioned truss is **Pratt type**.

**Howe type truss** is a similar structure.



In pratt type truss, internal force in web members are tensile. In howe type trusses, internal force in web members are compressive. Usually **Pratt type** is cost-efficient. To make sure a howe type truss is strong enough like pratt type, web members must be shorter and thicker.

## **Indeterminate Trusses**

When a truss is indeterminate, one or more compatibility equations (related to truss deformation) must be used.

This PDF is saved from https://s1.sahithyan.dev