Reaktor przepływowy

(zadanie 3)

$$\begin{cases} V \frac{dC_A}{dt} = F_{in} \cdot C_{Ain} - F \cdot C_A - V \cdot k_0 \cdot e^{-\frac{E}{R \cdot T}} \cdot C_A \\ V \cdot \rho \cdot c_p \frac{dT}{dt} = F_{in} \cdot \rho \cdot c_p \cdot T_{in} - F \cdot \rho \cdot c_p \cdot T + V \cdot h \cdot k_0 \cdot e^{-\frac{E}{R \cdot T}} \cdot C_A - \frac{a \cdot (F_C)^{b+1}}{2 \cdot \rho_c \cdot c_{pc}} (T - T_{Cin}) \end{cases}$$

Stałe:

$$\rho = \rho_c = 10^6 \frac{\text{g}}{\text{m}^3}, \ c_p = c_{pc} = 1 \frac{\text{cal}}{\text{g} \cdot \text{K}}, \ k_0 = 10^{10} \frac{1}{\text{min}}, \ \frac{E}{R} = 8330,1 \frac{1}{\text{K}},$$

$$h = 130 \cdot 10^6 \frac{\text{cal}}{\text{kmol}}, \ a = 0,516 \cdot 10^6 \frac{\text{cal}}{\text{K} \cdot \text{m}^3}, \ b = 0,5;$$

Punkt pracy:

$$V = 1 \text{ m}^3$$
, $F_{in} = F = 1 \text{ m}^3/\text{min}$, $C_{Ain} = 2 \text{ kmol/m}^3$, $F_C = 15 \text{ m}^3/\text{min}$, $T_{in} = 343 \text{ K}$, $T_{Cin} = 310 \text{ K}$, $C_A = 0.16 \text{ kmol/m}^3$, $T = 405 \text{ K}$;

Wielkości regulowane: C_A , T;

Wielkości sterujące: C_{Ain} , F_C .

Regulacja wokół punktu pracy, przy zmianach wartości zadanych i zakłóceń T_{in} i T_{Cin} .

Algorytm: MPCS