Application Layer

Application Layer

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System: DNS
- P2P applications
- Video streaming, CDNs
- Socket programming

Video Streaming and CDNs: context

- video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
 - ~1B YouTube users, ~75M Netflix users
- challenge: scale how to reach ~1B users?
 - single mega-video server won't work (why?)
- challenge: heterogeneity
 - different users have different capabilities (e.g., wired versus mobile; bandwidth rich versus bandwidth poor)
- solution: distributed, application-level infrastructure

Multimedia: video

- video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Multimedia: video

- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate):
 video encoding rate changes
 as amount of spatial,
 temporal coding changes
- examples:
 - MPEG I (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, 64 kbps - 12 Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Streaming stored video:

simple scenario:

Main challenges:

- server-to-client bandwidth will vary over time, with changing network congestion levels (in house, access network, network core, video server)
- packet loss, delay due to congestion will delay playout, or result in poor video quality

Application Layer 2-6

Streaming stored video

Streaming stored video: challenges

- continuous playout constraint: during client video playout, playout timing must match original timing
 - ... but network delays are variable (jitter), so will need client-side buffer to match continuous playout constraint

- other challenges:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - video packets may be lost, retransmitted

Streaming stored video: playout buffering

client-side buffering and playout delay: compensate for network-added delay, delay jitter

Streaming multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- server:
 - divides video file into multiple chunks
 - each chunk stored, encoded at different rates
 - manifest file: provides URLs for different chunks

client:

- periodically measures server-to-client bandwidth
- consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)

Streaming multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- "intelligence" at client: client determines
 - when to request chunk (so that buffer starvation, or overflow does not occur)
 - what encoding rate to request (higher quality when more bandwidth available)
 - where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)

Streaming video = encoding + DASH + playout buffering

Content distribution networks

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 1: single, large "mega-server"
 - single point of failure
 - point of network congestion
 - long path to distant clients
 - multiple copies of video sent over outgoing link

....quite simply: this solution doesn't scale

Content distribution networks

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
 - enter deep: push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
 - bring home: smaller number (10's) of larger clusters in POPs near (but not within) access networks
 - used by Limelight

Content Distribution Networks (CDNs)

- CDN: stores copies of content (e.g. Madmen) at CDN nodes
- subscriber requests content, service providers return manifest
 - Using manifest, client retrieves content at highest supportable rate
 - may choose different copy if network path congested

Content Distribution Networks (CDNs)

OTT challenges: coping with a congested Internet

- from which CDN node to retrieve content?
- what content to place in which CDN node?

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V

video stored in CDN at http://KingCDN.com/NetC6y&B23V

Case study: Netflix

Application Layer

- Principles of network applications
- Web and HTTP
- * E-mail, SMTP, IMAP
- * The Domain Name System: DNS
- P2P applications
- Video streaming, CDNs
- Socket programming