ĐẠI HỌC QUỐC GIA TP. HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA KHOA HỌC VÀ KỸ THUẬT MÁY TÍNH

BÀI THÍ NGHIỆM 1 MÔN HỌC: HỆ THỐNG SỐ

LỚP DT01--- NHÓM 04 --- HK243 NGÀY NỘP 08/07/2025

GVHD: Thầy Đoàn Minh Vững

Họ và tên	MSSV
Phạm Công Võ	2313946
Trần Đăng Tiến	2033766
Nguyễn Thái Nhật Huy	2433144

TP. Hồ Chí Minh – Tháng 7/2025

Câu 1: Trình bày quy trình sử dụng test board kết hợp KIT để kiểm tra mạch logic

1. Chuẩn bị dụng cụ và linh kiện

- Trước khi tiến hành lắp ráp và kiểm tra mạch, cần chuẩn bị đầy đủ các thiết bị và linh kiện sau:
 - Test board (breadboard) để lắp ráp mạch thử nghiệm.
 - KIT thực hành số dùng để cung cấp nguồn và tín hiệu đầu vào/đầu ra.
- IC số thuộc họ 74-Series, ví dụ: 74LS08 (AND), 74LS32 (OR), 74LS00 (NAND), v.v.
 - LED và điện trở hạn dòng $(220\Omega 330\Omega)$ để hiển thị kết quả đầu ra.
 - Dây nối (jumper wires) để kết nối các điểm mạch.
 - Công tắc (switch) hoặc jumper để tạo các mức logic cho đầu vào.
 - VOM (đồng hồ vạn năng) để đo điện áp kiểm tra khi cần thiết.

2. Kết nối và lắp ráp mạch

- Cắm IC vào giữa breadboard sao cho mỗi chân IC nằm trên một hàng riêng biệt để dễ thao tác.
 - Cấp nguồn cho IC từ KIT:
 - Chân VCC (chân 14) của IC nối với nguồn 5V từ KIT.
 - Chân GND (chân 7) của IC nối với mass (GND) từ KIT.
- Kết nối các đầu vào của mạch (A, B, C,...) với các công tắc trên KIT hoặc dùng jumper để thiết lập mức logic 0 hoặc 1.
- Kết nối đầu ra Z của mạch với một LED thông qua điện trở hạn dòng, sau đó nối về GND để quan sát trạng thái logic.

3. Thực hiện kiểm tra hoạt động mạch

- Thay đổi tổ hợp đầu vào bằng cách gạt công tắc trên KIT hoặc điều chỉnh jumper để kiểm tra toàn bộ các trường hợp đầu vào.

- Quan sát sự thay đổi của LED tương ứng với đầu ra:
 - Nếu LED sáng, đầu ra Z = 1.
 - Nếu LED tắt, đầu ra Z = 0.
- So sánh kết quả thu được với bảng chân lý (truth table) đã thiết lập để xác minh tính chính xác của mạch.

4. Các lưu ý kỹ thuật

- Đảm bảo IC được cắm đúng chiều và đúng chân nguồn.
- Kiểm tra chắc chắn các điểm nối dây để tránh lỏng hoặc sai vị trí.
- Kiểm tra cực của LED trước khi nối (chân dài là cực dương anode).

Câu 2: Thiết kế và hiện thực mạch logic sau.

Cho biểu thức logic sau: Z = A khi B = 0 và C = 1; còn lại Z = 0

- 1. Thiết lập bảng sự thật (truth table) cho hàm Z theo 3 biến A, B, C.
- 2. Biểu diễn hàm Z theo hai dạng chuẩn:
 - o SOP (Sum of Products)
 - POS (Product of Sums)
- 3. Hiện thực mạch trên breadboard hoặc phần mềm mô phỏng.

Trình Bày:

1. Lập Bảng Thực Trị (Truth Table):

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

2. Biểu diễn hàm Z theo dạng:

a. Dang SOP (Sum of Products)

Dạng SOP là tổng của các tích (AND) tương ứng với các dòng có đầu ra F = 1.

Từ bảng, chỉ có một dòng có F = 1:

Vậy biểu thức SOP là:

$$F = A\bar{B}C$$

b. Dang POS (Product of Sums)

Dạng POS là tích của các tổng (OR) tương ứng với các dòng có đầu ra F = 0.

Các dòng có F=0 là 7 dòng còn lại. Ta viết biểu thức cho từng dòng như sau (đảo chiều từng biến nếu nó = 1):

Biểu thức POS là:

$$F = (A + B + C)(A + B + \bar{C})(A + \bar{B} + C)(A + \bar{B} + \bar{C})(\bar{A} + \bar{B} + C)(\bar{A} + \bar{B} + \bar{C})$$

2. Rút Gọn Bằng Bìa K:

a. Dạng SOP

$$F(A,B,C) = \Sigma m(5)$$

b. Dang POS

$$F(A,B,C) = \Pi M(0,1,2,3,4,6,7)$$

3. Mô Phông Biểu Thức

a. Cổng Logic

b. Sơ đồ nối dây

Để hiện thực biểu thức logic $F = A\bar{B}C$, ta sử dụng các cổng logic cơ bản bao gồm cổng NOT và cổng AND. Trong quá trình hiện thực, các IC được sử dụng như sau:

- IC 7404: dùng để tạo tín hiệu đảo B⁻\overline{B}B từ B. IC này chứa 6 cổng NOT độc lập.
- IC 7408: dùng để thực hiện phép nhân logic (AND). IC này gồm 4 cổng AND hai ngõ vào.

4. Netlist

a. IC 7404

STT	Đầu thứ nhất	Đầu còn lại
1	5V KTN	Cổng 14 của IC 7404
2	GND KTN	Chân 7 của IC 7404
4	SW1(B)	Chân 1 của IC 7404
5	Chân 2 của IC 7404	Chân 1 của IC 748

b. IC 7408

STT	Đầu thứ nhất	Đầu còn lại
1	5V KTN	Chân 14 của IC 7408
2	GND KTN	Chân 7 của IC 7408
3	SW0(A)	Chân 2 của IC 7408
4	Chân 3 của IC 7408	Chân 4 của IC 7408
5	SW3(C)	Chân 5 của IC 7408
6	Chân 6 của IC 7408	LED0 (X)

Câu 3: Vẽ và hiện thực mạch phát Po=f(A,B,C)

Xác định biểu thức logic của Po từ bảng chân lý.

- Vẽ sơ đồ mạch logic tương ứng.
- Hiện thực mạch trên test board hoặc KIT thực hành.
- Sử dụng LED để hiển thị đầu ra.
- Kiểm tra và xác minh hoạt động mạch theo các tổ hợp đầu vào.

1. Lập Bảng Thực Trị (Truth Table):

A	В	С	Po
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

2. Lập Bìa K

$$P_0(A, B, C) = \sum m(0, 3, 5, 6)$$

Ta có:

$$F = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

$$= \overline{A}(\overline{B}\overline{C} + BC) + A(\overline{B}C + B\overline{C}) = \overline{A}(\overline{B} \oplus \overline{C}) + A(B \oplus C)$$

$$= \overline{A} \oplus \overline{B} \oplus \overline{C}$$

3. Mô Phỏng a. Mạch Logic

b. Sơ Đồ Mạch

Hiện thực mạch Po sử dụng các IC 7404 (NOT) và 7486 (XOR).

4. Netlist

c. IC 7486

STT	Đầu thứ nhất	Đầu còn lại
1	5V KTN	Cổng 14 của IC 7486
2	GND KTN	Chân 7 của IC 7486
4	SW0(A)	Chân 1 của IC 7486
5	SW1(B)	Chân 2 của IC 7486
6	Chân 3 của IC 7486	Chân 4 của IC 7486
7	SW2(C)	Chân 5 của IC 7486
5	Chân 6 của IC 7486	Chân 1 của IC 7404

d. IC 7404

STT	Đầu thứ nhất	Đầu còn lại
1	5V KTN	Chân 14 của IC 7404
2	GND KTN	Chân 7 của IC 7404
4	Chân 2 của IC 7404	LED0 (X)

Câu 4: Thiết kế mạch logic F = MN + MQ chỉ dung 1 loại

- a) Chỉ sử dụng cổng NAND.
- b) Chỉ sử dụng cổng NOR.

1. Bảng thực trị (F = MN + MQ)

M	N	Q	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0

1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. Biến đổi biểu thức:

2.1. Chỉ dung cổng NAND:

$$F = MN + MQ = \overline{\overline{MN + MQ}} = \overline{\overline{MN}} \, \overline{\overline{MQ}}$$

Mô Phỏng

a. Mạch logic chỉ dùng công NAND:

b. Sơ đồ mạch: (IC 7400)

2.2. Chỉ dung cổng NOR:

$$F = MN + MQ = M(N + Q) = \overline{M(N + Q)} = \overline{M + (N + Q)}$$
$$= \overline{(M + M) + (N + Q)}$$

Mô Phỏng

a. Mạch logic chỉ dùng công NOR:

b. Sơ đồ mạch: (IC 7402)

5. Netlist

e. IC 7400

STT	Đầu thứ nhất	Đầu còn lại
1	5V KTN	Cổng 14 của IC 7400
2	GND KTN	Chân 7 của IC 7400
3	SW0(M)	Chân 1 của IC 7400
4	SW1(N)	Chân 2 của IC 7400
5	Chân 3 của IC 7400	Chân 13 của IC 7400
6	SW0(M)	Chân 4 của IC 7400
7	SW2(Q)	Chân 5 của IC 7400
8	Chân 6 của IC 7400	Chân 12 của IC 7400
9	Chân 11 của IC 7400	LED0 (X)

f. IC 7402

STT	Đầu thứ nhất	Đầu còn lại
1	5V KTN	Chân 14 của IC 7402
2	GND KTN	Chân 7 của IC 7402
3	SW0(M)	Chân 3 của IC 7402
4	SW0(M)	Chân 2 của IC 7402
5	Chân 1 của IC 7402	Chân 12 của IC 7402
6	SW1(N)	Chân 6 của IC 7402
7	SW2(Q)	Chân 5 của IC 7402
8	Chân 4 của IC 7402	Chân 11 của IC 7402
9	Chân 13 của IC 7402	LED0 (X)