Statistics

Inferential Statistics

involves drawing conclusions about a population based on a sample, using probability theory and statistical methods like hypothesis testing. It allows for predictions and insights beyond observed data, serving as a crucial tool in decision-making and research.

Types of Data:

- Categorical Data: Represents categories or groups.
- Numerical Data:
 - Discrete: Countable, finite values.
 - Continuous: Infinite, measurable values.
- Ordinal Data: Follows a specific order or ranking.
- Nominal Data: Categories with no inherent order.
- Binary Data: Has only two possible outcomes.
- Interval Data: Numeric, with equal intervals, but lacks a true zero point.
- Ratio Data: Numeric, with equal intervals and a meaningful zero point.

Hypothesis Testing:

- Definition: A statistical method to make inferences about a population based on a sample.
- Steps:
 - a. Formulate Hypotheses:
 - Null Hypothesis (H₀): No effect or no difference.

- Alternative Hypothesis (H₁): The presence of an effect or a difference.
- b. Collect Data:
 - Gather and analyze a sample.
- c. Choose Significance Level (α):
 - Typically set at 0.05.
- d. Conduct Test:
 - Use statistical tests (t-test, chi-square, etc.) to assess evidence against the null hypothesis.
- e. Draw Conclusion:
 - Reject or fail to reject the null hypothesis based on the test results.

• Purpose:

- a. Determine if observed effects are statistically significant.
- b. Aid decision-making by providing evidence for or against a claim.

Confidence Intervals:

Definition: Statistical tool estimating a range within which a population parameter is likely to lie.

Construction:

Based on sample data and a chosen confidence level (usually 95%).

Formula: Point estimate ± Margin of error.

Components:

Point Estimate:

Single value derived from sample data (mean, proportion, etc.).

Margin of Error:

Reflects the precision of the estimate.

Confidence Level:

Percentage (e.g., 95%) indicating the probability that the interval contains the true parameter.

Interpretation:

A 95% confidence interval implies that if we were to draw numerous samples and construct intervals, about 95% of them would contain the true population parameter.

Application:

Provides a range for parameter estimation, enhancing the reliability and context of statistical results.

Use Cases:

Common in surveys, experiments, and various research fields for presenting the uncertainty associated with estimates.

Regression Analysis:

Purpose:

Examines relationships between variables to understand and predict outcomes.

Types:

Simple Regression:

Analyzes the relationship between two variables.

Multiple Regression:

Considers multiple predictors influencing a dependent variable.

Components:

Dependent Variable:

The outcome being predicted or explained.

Independent Variable(s):

Factors influencing the dependent variable.

Regression Equation:

Mathematical formula expressing the relationship.

Assumptions:

Assumes a linear relationship between variables.

Assumes independence of observations.

Assumes homoscedasticity (constant variance of errors).

Analysis:

Calculates coefficients to quantify the impact of predictors.

Assesses statistical significance and goodness-of-fit.

Interpretation:

Coefficients indicate the magnitude and direction of the relationship. R-squared measures the proportion of variance explained by the model.

Applications:

Widely used in economics, finance, biology, and social sciences for predictive modeling and understanding variable interactions.