

Bivariate and Spatial Smoothing

Seminar: Modern Regression Analysis

Sándor Daróczi

July 7, 2023

Agenda

- 1. Motivation
- 2. Bivariate Smoothing with P-Splines
- 3. Spatial Smoothing with Kriging
- 4. Spatial Smoothing for Discrete Locations

1. Motivation

1. Motivation

1.1 Bivariate Smoothing

Instead of just one, we have two continuous regressor variables which might interact with each other.

We assume that there is a smooth function f which describes the effect of the variables on the outcome as follows:

$$y_i = f(z_{1i}, z_{2i}) + \varepsilon_i$$

The function f is also called **interaction surface**.

1. Motivation

1.2 Spatial Smoothing

We have 2D spatial data with **spatially correlated** response y and coordinate values z_{1i} and z_{2i} (e.g. longitude, latitude). Data is missing at some locations, and the task is to predict these missing values using the model

$$y_i = f(z_{1i}, z_{2i}) + \varepsilon_i$$

where *f* is a smooth function.

Figure: map of DWD weather stations in Germany

2.1 One Dimensional Smoothing - Recap

In one dimensional smoothing, we would like to estimate f in the model $y = f(z) + \varepsilon$ using a linear combination of basis functions $B_1(z), B_2(z), ..., B_d(z)$:

$$y_i = \sum_{j=1}^d \gamma_j B_j(z_i) + \varepsilon_i,$$

where d = m + l - 1.

B-spline bases of degree l=3, with equidistant knots (left) and unevenly distributed knots (right)

2.1 One Dimensional Smoothing - Recap

With the design matrix defined as

$$\mathbf{Z} = \begin{pmatrix} B_1(z_1) & \cdots & B_d(z_1) \\ \vdots & \ddots & \vdots \\ B_1(z_n) & \cdots & B_d(z_n) \end{pmatrix}$$

we can write $y = Z\gamma + \varepsilon$, from which the least square estimate can be determined analogously to standard regression:

$$\widehat{\boldsymbol{\gamma}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

2.2 Tensor Product Bases

Now, in order to estimate the function f in the bivariate model $y = f(z_1, z_2) + \varepsilon$, we first construct the univariate bases

$$B_j^{(1)}(z_1)$$
, $j = 1, ..., d_1$ and $B_r^{(2)}(z_2)$, $j = 1, ..., d_2$

Then, the tensor product basis consists of all functions of the form

$$B_{jr}(z_1, z_2) = B_j^{(1)}(z_1) \cdot B_r^{(2)}(z_2), \quad j = 1, ..., d_1, r = 1, ..., d_2$$

The representation of f is

$$f(z_1, z_2) = \sum_{j=1}^{d_1} \sum_{r=1}^{d_2} \gamma_{jr} B_{jr}(z_1, z_2)$$

2.2 Tensor Product Bases

$$B_1^{(1)}(z_1) = 1,$$

 $B_2^{(1)}(z_1) = z_1,$
 $B_3^{(1)}(z_1) = (z_1 - \kappa_1)_+$

$$B_1^{(2)}(z_2) = 1,$$

 $B_2^{(2)}(z_2) = z_2,$
 $B_3^{(2)}(z_2) = (z_2 - \kappa_2)_+$

Example: Tensor product splines obtained from univariate TP bases

2.2 Tensor Product Bases

Another example: tensor product basis functions obtained from univariate B-splines of degrees l=0,1,2,3

2.2 Tensor Product Bases

The regression equation obtained from tensor product splines is

$$y = Z\gamma + \varepsilon$$
,

where the design matrix Z has rows

$$\mathbf{z}_{i}' = (B_{11}(z_{i1}, z_{i2}), \dots, B_{d_{1}1}(z_{i1}, z_{i2}), \dots, B_{1d_{2}}(z_{i1}, z_{i2}), \dots, B_{d_{1}d_{2}}(z_{i1}, z_{i2}))$$

and the vector of regression coefficients is $\gamma = (\gamma_{11}, ..., \gamma_{d_11}, ..., \gamma_{1d_2}, ..., \gamma_{d_1d_2})'$. The least square estimate is

$$\widehat{\boldsymbol{\gamma}} = (\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{y}$$

2.3 Bivariate Smoothing for the Spotify Dataset

Goal: Find two continuous variables from the Spotify dataset with possible nonlinear effects, and apply bivariate smoothing to predict popularity.

2.3 Bivariate Smoothing for the Spotify Dataset

Without interactions

```
> bivariate_model < lm(z \sim x + y, data = df)
> summary(bivariate_model)
Call:
lm(formula = z \sim x + y, data = df)
Residuals:
   Min
            10 Median
-54.291 -22.011 8.224 22.473 49.925
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         2.470 15.622 < 2e-16 ***
(Intercept)
             38.581
                         3.122 4.283 1.92e-05 ***
             13.373
х
              3.090
                         2.761 1.119
                                          0.263
У
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 26.87 on 2299 degrees of freedom
Multiple R-squared: 0.009041, Adjusted R-squared: 0.008179
F-statistic: 10.49 on 2 and 2299 DF, p-value: 2.923e-05
```

With interactions

```
> bivariate_model.inter < lm(z \sim x * y, data = df)
> summary(bivariate_model.inter)
Call:
lm(formula = z \sim x * y, data = df)
Residuals:
   Min
            10 Median
                                  Max
-54.106 -22.246 8.294 22.256 50.544
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.130
                        4.716 4.692 2.86e-06 ***
             46.215
                        8.613 5.365 8.88e-08 ***
             32.443
                        7.688 4.220 2.54e-05 ***
            -56.891
                       13.913 -4.089 4.48e-05 ***
x:y
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 26.78 on 2298 degrees of freedom Multiple R-squared: 0.0162, Adjusted R-squared: 0.01491 F-statistic: 12.61 on 3 and 2298 DF, p-value: 3.539e-08

2.3 Bivariate Smoothing for the Spotify Dataset

Fitting bivariate smoothing model with P-Splines

```
> model.te1 <- gam(z \sim te(x, y, bs = 'ps', sp = c(0.05, 0.05)),
                   family=gaussian,
                  method = "REML",
                   data=df)
> summary(model.te1)
Family: gaussian
Link function: identity
Formula:
z \sim te(x, y, bs = "ps", sp = c(0.05, 0.05))
Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        0.5547 87.52 <2e-16 ***
(Intercept) 48.5456
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
          edf Ref.df
                        F p-value
te(x,y) 22.35 23.26 3.683 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
R-sq.(adj) = 0.0272 Deviance explained = 3.66%
-REML = 10852 Scale est. = 708.29
                                     n = 2302
```

x: danceability

y: energy

z: popularity

sp: penalization coefficients

2.3 Bivariate Smoothing for the Spotify Dataset

Predictions of the linear models (without and with interaction term)

2.3 Bivariate Smoothing for the Spotify Dataset

Predictions of the P-Spline smoothers on $[0,1]^2$ with sp=0.05, sp=1 and sp=10

2.3 Bivariate Smoothing for the Spotify Dataset

	sp = 0.05	sp = 1	sp = 10	$lm(z \sim x * y)$
Deviance explained	3.66%	3.57%	3.37%	1.62%
R-sq. (adj)	0.0272	0.0282	0.0286	0.01491

Smoothing results in a more increased fit compared to linear models

Drawback: difficult interpretability

3.1 Radial Basis Functions

Radial basis functions are scalar valued functions $B_{\kappa} \colon \mathbb{R}^2 \to \mathbb{R}$ such that there is a $B \colon \mathbb{R}^+ \to \mathbb{R}$ with

$$B_{\kappa}(z) = B(\|z - \kappa\|) = B(r),$$

where $r := ||z - \kappa||$. I.e. the value of B_{κ} only depends on the distance from the knot $\kappa = (\kappa_1, \kappa_2)$.

Typically, we choose each knot κ_j from the set of all observation points $\{z_1, \dots, z_n\}$

Distribution adapts better to the data

3.1 Radial Basis Functions

Most well-known example: Thin plate splines

$$f(z_1, z_2) = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \sum_{j=1}^n \gamma_j B_j(z_1, z_2),$$

where

$$B_j(z_1, z_2) = ||z - z_j||^2 \log(||z - z_j||)$$

The corresponding radial basis function is

$$B(r) = r^2 \log(r) .$$

3.1 Radial Basis Functions

Thin plate splines are obtained via minimizing the bivariate analogue of the integrated square second derivative penalty:

$$\int \int \left[\left(\frac{\partial^2}{\partial^2 z_1} + 2 \frac{\partial^2}{\partial z_1 \partial z_2} + \frac{\partial^2}{\partial^2 z_2} \right) f(z_1, z_2) \right]^2 dz_1 dz_2$$

In this sense, thin plate splines are generalizations of natural cubic splines to the bivariate case.

3.1 Radial Basis Functions

Other examples:

$$B(r) = r^{l},$$
 $l odd$
 $B(r) = \sqrt{r^{2} + c^{2}},$ $c > 0 constant$

3.2 Classical Geostatistical Model

We would like to define a smoothing approach for modelling interaction surfaces which have spatial correlations and spatial trends.

Example: the *meuse* dataset contains measurements of four heavy metals sampled from the top soil in a flood plain along the river Meuse. The goal is to model the spatial distribution of zinc concentration values for locations with no data.

>	head(mo	euse)												
	x	У	cadmium	copper	lead	zinc	elev	dist	om	ffreq	soil	lime	landuse	dist.m
1	181072	333611	11.7	85	299	1022	7.909	0.00135803	13.6	1	1	1	Ah	50
2	181025	333558	8.6	81	277	1141	6.983	0.01222430	14.0	1	1	1	Ah	30
3	181165	333537	6.5	68	199	640	7.800	0.10302900	13.0	1	1	1	Ah	150
4	181298	333484	2.6	81	116	257	7.655	0.19009400	8.0	1	2	0	Ga	270
5	181307	333330	2.8	48	117	269	7.480	0.27709000	8.7	1	2	0	Ah	380
6	181390	333260	3.0	61	137	281	7.791	0.36406700	7.8	1	2	0	Ga	470

3.2 Classical Geostatistical Model

The classical geostatistical model is for this purpose and has the form

$$y(s) = \mu(s) + \gamma(s) + \varepsilon(s), \qquad s \in \mathbb{R}^2$$

where

- 1) $\mu(s) = x(s)'\beta$ is the spatial trend for covariates x
- 2) $\gamma(s)$ is a stationary Gaussian field with $E(\gamma(s)) = 0$, $Var(\gamma(s)) = \tau^2$ and $Corr(\gamma(s), \gamma(t)) = \rho(s, t) = \rho(||s t||) = \rho(h)$
- 3) $\varepsilon(s) \sim N(0, \sigma^2)$ is an i.i.d. error term

3.2 Classical Geostatistical Model

1) The spatial trend $\mu(s) = x(s)'\beta$ can be for example the distance from the river:

2) Some possible plots of the Gaussian field $\gamma(s)$:

3.2 Classical Geostatistical Model

In matrix notation, we can write

$$y = X\beta + Z\gamma + \varepsilon$$

where $\gamma = (\gamma(s_{(1)}), ..., \gamma(s_{(d)}))'$ are the values of the Gaussian process at the d unique observed locations, and

$$\mathbf{Z}[i,j] = \begin{cases} 1 & \text{if } y_i \text{ is observed at point } s_{(j)} \\ 0 & \text{otherwise} \end{cases}$$

3.3 Kriging as a Basis Function Approach

To obtain a compact form that can be used for predictions, we can use a different parametrization of the model using the basis functions $B_j(s) = \rho(s, s_{(j)})$. The reparametrized model is defined as

$$y = X\beta + \widetilde{Z}\widetilde{\gamma} + \varepsilon,$$

where the design matrix is

$$\widetilde{\mathbf{Z}}[i,j] = B_j(s_i) = \rho(s_i, s_{(j)})$$

3.3 Kriging as a Basis Function Approach

For a single observation, this corresponds to

$$y(s) = x(s)'\beta + f_{geo}(s) + \varepsilon(s), \qquad f_{geo}(s) = \sum_{j=1}^{d} \tilde{\gamma}_j \, \rho(s, s_{(j)})$$

To penalize $\tilde{\gamma}$, we can define $R[i,j] = \rho(s_{(i)},s_{(j)})$ and use the penalty function

$$\lambda \widetilde{\boldsymbol{\gamma}}' \boldsymbol{K} \widetilde{\boldsymbol{\gamma}} = \frac{\sigma^2}{\tau^2} \widetilde{\boldsymbol{\gamma}}' \boldsymbol{R} \widetilde{\boldsymbol{\gamma}}$$

From this, the least square estimate can be easily computed.

3.4 Kriging in R

In order to perform kriging using R, one first has to fit a variogram to model the variability between points with respect to the distance between them.

```
lzn.vgm <- variogram(log(zinc)~1, meuse) # calculates sample variogram values
lzn.fit <- fit.variogram(lzn.vgm, model=vgm(1, "Sph", 900, 1)) # fit model

plot(lzn.vgm, lzn.fit) # plot the sample values, along with the fit model</pre>
```


3.4 Kriging in R

Then, we take our datapoints, the grid which we would like to predict, and the variogram, and use the *krige* function of the *gstat* library to compute our predictions.

lzn.kriged <- krige(log(zinc) ~ 1, meuse, meuse.grid, model=lzn.fit)</pre>

4.1 Motivation

Sometimes, spatial information is only available at discrete locations / regions. Methods for continuous spatial data cannot always be applied in this case.

Prevalence of sleeping < 7 hours in the city of Boston. Data obtained from the 500 cities dataset.

4.2 500 cities dataset

The Spotify dataset alone is not adapted for investigating discrete spatial smoothing algorithms. Therefore, we are going to use the <u>500 cities dataset</u> containing health-related statistics at the city level for the 500 largest cities in the US.

4.2 500 cities dataset

- The full dataset has 27,210 rows and 63 columns
- Most important features: Geolocation, StateAbbr, PlaceName, Place_TractID, Population
- Health-related prevalence statistics, including smoking, stroke, cancer, high blood pressure, ...
- Data aggregated for small area levels (census tracts)
- Data contains model-based estimates

4.2 500 cities dataset

- In this example we are looking at the prevalence of stroke for the city of Atlanta, Georgia.
- Data has been collected over 137 different census areas.
- Out of this, 7 contain missing data for stroke prevalence, the geolocations of the remaining 130 are plotted below.

Goal: Apply smoothing on the data in order to obtain more robust predictions and clearly visible trends.

4.3 Smoothing with Spatial Neighbourhoods

In case of discrete spatial data, it is not that straightforward to calculate distances between two locations compared to continuous data. Therefore, we use the **neighbourhood structure** of the regions to assign a spatial structure to our model.

Notation: $s \sim r$ or $r \in N(s)$ if the regions s and r are neighbours.

4.3 Smoothing with Spatial Neighbourhoods

Every region is assigned its own regression coefficient

$$f_{geo}(s) = \gamma_s, \qquad s = 1, ..., d.$$

Our model is obtained by minimizing the following PLS criterion:

$$PLS(\lambda) = \sum_{i=1}^{n} (y_i - f_{geo}(s_i))^2 + \lambda \sum_{s=2}^{d} \sum_{\substack{r \in N(s) \\ r < s}} (\gamma_r - \gamma_s)^2$$

4.3 Smoothing with Spatial Neighbourhoods

In compact form, we can write

$$y = Z\gamma + \varepsilon$$
,

where $Z[i, s] = I(y_i \text{ was observed in region } s)$, and $\gamma = (f_{geo}(s_1), ..., f_{geo}(s_d))'$. Moreover, the penalty term can be written as $\lambda \gamma' K \gamma$, where

$$K[s,r] = \begin{cases} -1 & s \neq r, r \in N(s) \\ 0 & s \neq r, r \notin N(s) \\ |N(s)| & s = r \end{cases}$$

From this, we obtain the PLS estimate $\hat{\gamma} = (Z'Z + \lambda K)^{-1}Z'y$.

4.4 Markov Random Fields

The smoothing model based on spatial neighbourhoods can be also interpreted in a Bayesian context Markov Random Fields (RMFs).

The base idea is that the conditional distribution of γ_s given all other effects $\gamma_r, r \neq s$ should **only depend on its neighbours**. If we assume that all conditional distributions are normal, we arrive at the following formulation:

$$\gamma_s \mid \gamma_r \sim N\left(\frac{1}{|N(s)|} \sum_{r:r \sim s} \gamma_r, \frac{\tau^2}{|N(s)|}\right)$$
 for $r \sim N(s)$

From this, we obtain

$$p(\gamma|\tau^2) \propto \left(\frac{1}{\tau^2}\right)^{(d-1)/2} \exp\left(-\frac{1}{2\tau^2}\gamma'K\gamma\right)$$

4.4 R Code for MRFs

- Recap: we would like to apply smoothing on the data containing prevalence of stroke for the city of Atlanta, Georgia.
- 137 different census areas, 130 with actual data.

Detailed spatial information about the regions are contained in the **map** object.

> glimpse(map)

```
Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots
                :'data.frame': 137 obs. of 6 variables:
  ..@ data
  ....$ place2010 : chr [1:137] "1304000" "1304000" "1304000" "1304000" ...
  ....$ tract2010 : chr [1:137] "13089020100" "13089020200" "13089020300" "13089020400" ...
                   : chr [1:137] "13" "13" "13" "13" ...
  ....$ PlaceName : chr [1:137] "Atlanta" "Atlanta" "Atlanta" "Atlanta" ...
  ....$ plctract10: chr [1:137] "1304000-13089020100" "1304000-13089020200" "1304000-13089020300"
  ....$ PlcTrPop10: chr Γ1:1377 "1492" "1943" "3574" "2376" ...
  ..@ polygons
                :List of 137
  ....$ :Formal class 'Polygons' [package "sp"] with 5 slots
  ....$ :Formal class 'Polygons' [package "sp"] with 5 slots
  ....$ :Formal class 'Polygons' [package "sp"] with 5 slots
  ....$ :Formal class 'Polygons' [package "sp"] with 5 slots
  ....$ :Formal class 'Polygons' [package "sp"] with 5 slots
  ....$ :Formal class 'Polygons' [package "sp"] with 5 slots
```


Detailed spatial information about the regions are contained in the map object.

> plot(map)

Defining and plotting the neighbourhood graph of the areas.

```
> nb <- poly2nb(map, row.names = 1:N_original)
> coords <- coordinates(map)
> plot(nb, coords=coords, col="blue")
> plot(map, add=TRUE)
```


4.5 R Code for MRFs

Fitting MRF using the *gam* function of the *mgcv* library.

```
> library(mgcv)
> mrf.ml <- gam(response ~ s(id, bs = 'mrf', xt = list(nb = nb), sp = 1), # define MRF smooth
+ data = df_joined_aggr,
+ method = 'REML')
> mrf.ml

Coefficient of penalty term in

Family: gaussian
Link function: identity

PLS(\lambda) = \sum_{i=1}^{n} (y_i - f_{geo}(s_i))^2 + \lambda \sum_{s=2}^{d} \sum_{r \in N(s)} (\gamma_r - \gamma_s)^2
Formula:
response ~ s(id, bs = "mrf", xt = list(nb = nb), sp = 1)

Estimated degrees of freedom:
104 \text{ total} = 105.21

REML score: 203.8385
```


4.5 R Code for MRFs


```
> summary(mrf.m1)
Family: gaussian
Link function: identity
Formula:
response \sim s(id, bs = "mrf", xt = list(nb = nb), sp = 1)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.75149 0.03428 109.4 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
       edf Ref.df F p-value
s(id) 104.2 129 29.48 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.967 Deviance explained = 99.3%
-REML = 203.84 Scale est. = 0.15749 n = 134
```


MRF smoothing using the *sp* parameter:

MRF smoothing using the *k* parameter:

4.5 R Code for MRFs

sp parameter

k parameter

	sp = 1	sp = 10	sp = 100
df	104	44.8	9.46
Deviance explained	99.3%	90.3%	67.2%
R-sq. (adj)	0.967	0.854	0.646
	k = 80	k = 30	k = 10
df	58.6	23.8	8.6
Deviance explained	94.2%	84.8%	78.3%
R-sq. (adj)	0.895	0.815	0.768

Literature

- [1] L. Fahrmeir et.al (2013). Regression Models, Methods and Applications. Springer Berlin Heidelberg
- [2] Earl Duncan (2020). Publicly Available Spatial Data Sets in Health Research, v1.2 (29 March 2020), https://rpubs.com/Earlien/Publicly_Available_Spatial_Data_Sets
- [3] Centers for Disease Control and Prevention. Share 500 Cities: Census Tract-level Data (GIS Friendly Format), 2019 release, https://chronicdata.cdc.gov/500-Cities-Places/500-Cities-Census-Tract-level-Data-GIS-Friendly-Fo/k86t-wghb
- [4] Spatial interpolation in R, Humboldt-Universität zu Berlin, Geography Department. https://pages.cms.hu-berlin.de/EOL/gcg_quantitative-methods/Lab14_Kriging.html
- [5] https://rpubs.com/nabilabd/118172
- [6] Nikolaou et.al (2023). High-resolution spatiotemporal modeling of daily near-surface air temperature in Germany over the period 2000–2020, Environmental Research, Volume 219, 2023, 115062, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2022.115062. Figure 1
- [7] Powell, C.E. (2013). Generating Realisations of Stationary Gaussian Random Fields by Circulant Embedding. Figure 3
- [8] First steps with MRF smooths. Gavin Simpson, 19 October 2017. https://fromthebottomoftheheap.net/2017/10/19/first-steps-with-mrf-smooths/