Data Science Fundamentals

Part I: Probability theory

ISEP 2nd year 2023-2024

Based on the course given by Nathalie Colin & Jean-Claude Guillerot

Probability theory

4th session (October 20th 2023):

Chapter 5 (bis): TRANSFORMATION OF A REAL-VALUED RANDOM VARIABLE

Chapter 6: TWO-DIMENSIONAL RANDOM VARIABLES

Chapter 5 (bis): TRANSFORMATION OF A REAL RANDOM VARIABLE

- Deterministic function of a random variable
 - Transformation of the density $f_X(x)$
 - Examples
 - Particular cases

Description of the problem

Let X be a random variable of density $f_X(x)$ and g a deterministic real function of the variable X.

Transformation: deterministic function, Y=g(X)

Examples of transformation : $Y = X^2$; Y = aX + B

Three situations can take place:

- One-to-one correspondance between X and Y y ← x
- Non-One-to-one correspondance $y \leftrightarrow (x_i)$ for i = 1, 2, ..., n
- Particular cases

Case 1: One-to-one correspondance between X and Y

Subcase 1.1:

If g is monotonic increasing

the event: is created by:

$$\left\{ y \leq Y \leq y + dy \right\} \Leftrightarrow \left\{ x \leq X \leq x + dx \right\}$$

Given the fact that:

y fixed has only one antecedent x

dy>0 and dx>0

$$P\{y \le Y \le y + dy\} = P\{x \le X \le x + dx\}$$

$$f_Y(y) \, dy = f_X(x) \, dx$$

Then, the density of Y is:

$$f_Y(y) = f_X(x) \frac{dx}{dy} = f_X(g^{-1}(y)) \frac{dx}{dy}$$

Where g^{-1} is the inverse function of g^{-5}

Case 1: One-to-one correspondance between X and Y

Subcase 1.2:

If g is monotonic decreasing

the event:

is created by:

$$\left\{ y \leq Y \leq y + dy \right\} \Leftrightarrow \left\{ x + dx \leq X \leq x \right\}$$

Given the fact that:

y fixed has only one antecedent x dy > 0 but dx < 0

$$P\{y \le Y \le y + dy\} = P\{x + dx \le X \le x\}$$

$$f_Y(y) \, dy = -f_X(x) \, dx$$

Then, the density of Y is:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

Case 2: the correspondance between X and Y is not one-to-one (1/2)

There might be more than one value x_i of X corresponding to the same value y

y can have more than one antecedent

$$y = g(x_i)$$
 $i = 1,2,...$

(for example (x_1, x_2, x_3)

dy>0 but $dx_1<0$, $dx_2>0$, $dx_3<0$

the event:

is created by:

$$\left\{y\leq Y\leq y+dy\right\} \Leftrightarrow \left\{x_1+dx_1\leq X\leq x_1\right\} or \left\{x_2\leq X\leq x_2+dx_2\right\} or \left\{x_3+dx_3\leq X\leq x_3\right\}$$

Case 2: the correspondance between X and Y is not one-to-one (2/2)

$$\left\{y\leq Y\leq y+dy\right\} \Leftrightarrow \left\{x_1+dx_1\leq X\leq x_1\right\} or \left\{x_2\leq X\leq x_2+dx_2\right\} or \left\{x_3+dx_3\leq X\leq x_3\right\}$$

Since the events

$$\left\{ x_{1}+dx_{1}\leq X\leq x_{1}\right\} ,\ \left\{ x_{2}\leq X\leq x_{2}+dx_{2}\right\} ,\ \left\{ x_{3}+dx_{3}\leq X\leq x_{3}\right\}$$

are disjoint
$$f_Y(y)|dy| = \sum_i f_X(x_i)|dx_i|$$

According to the axiom 3:

$$f_Y(y) = \sum_i f_X(x_i) \left| \frac{dx}{dy} \right|_{x = x_i}$$

where x_i are the solutions of the equation $x = g^{-1}(y)$ when y is fixed.

Example (1/2):

Let X a random variable with density $f_X(x)$ and the transformation $Y = X^2$. The aim is to calculate $f_Y(y)$?

The inverse function is: $x = \pm \sqrt{y}$ with y>0

Calculation of the derivative : $dy = 2 \cdot x \cdot dx$

$$\left[g_i^{-1}(y)\right]' = \frac{dx}{dy} = \pm \frac{1}{2\sqrt{y}}$$

The density $f_Y(y)$ will be :

$$f_Y(y) = \frac{1}{2\sqrt{y}} \cdot \left[f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right]$$

Example (2/2):

Application : $f_X(x)$ is a density of Rayleigh :

$$f_X(x) = \frac{x}{\sigma^2} \cdot \exp\left(-\frac{x^2}{2\sigma^2}\right) \qquad x \ge 0$$
$$f_X(x) = 0 \quad elsewhere$$

Warning : $x \ge 0$ only the positive root belongs to the domain of definition

$$f_{Y}(y) = \frac{1}{2\sqrt{y}} \cdot \frac{\sqrt{y}}{\sigma^{2}} \cdot \exp\left(-\frac{\left(\sqrt{y}\right)^{2}}{2\sigma^{2}}\right) = \frac{1}{2\sigma^{2}} \cdot \exp\left(-\frac{y}{2\sigma^{2}}\right)$$

with $y \ge 0$

It is an exponential distribution with parameter $\frac{1}{2\sigma^2}$

Particulier case 1: g(x) is constant in an interval

Let us suppose that g is continuous, non-decreasing for all x except in the interval $[x_1, x_2]$

All the values of x in the interval $[x_1,x_2]$ are transformed in a single value of $Y=g(x_1)$. And $P(Y=g(x_1)) \ge 0$ (probability that Y belongs to an interval of length 0). Therefore:

- ightharpoonup The density, $f_Y(y)$ is the Dirac distribution at point $y = g(x_1)$
- Discontinuity in the CDF, F_Y(y)

$$F_{Y} \{ y = g(x_{1}^{+}) \} = F_{Y} \{ y = g(x_{1}^{-}) \} + P\{ Y = g(x_{1}) \}$$

Example of the particular case (1/2)

The random variable X follows the uniform distribution in the interval [-1,1].

Consider the transformation
$$g(x) = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

For
$$x < 0$$
:
$$P(Y = 0) = P(X < 0) = \frac{1}{2} \int_{-1}^{0} dx = \frac{1}{2}$$
For $x \ge 0$
$$f_Y(y) = f_X(x) = \frac{1}{2}$$

Therefore, the probability density function of *Y* is:

$$f_Y(y) = \frac{1}{2}\delta(y) \iff P(Y = y) = \frac{1}{2}, \qquad y = 0$$

$$f_Y(y) = \frac{1}{2}, \quad 0 < y \le 1$$

And the CDF of Y is:

$$F_Y(y) = \frac{1}{2} + \frac{y}{2}, \ 0 \le y \le 1$$

Example of the particular case (2/2)

Chapter 6 (beggining): TWO-DIMENSIONAL RANDOM VARIABLES

- Two-dimensional discrete random variables
- Two-dimensional continuous random variables

Chapter 6 (beggining): TWO-DIMENSIONAL RANDOM VARIABLES

- Two-dimensional discrete random variables
- Two-dimensional continuous random variables

Reminder for a one-dimensional random variable

A one-dimensional random variable X is completely defined by one of the following data:

```
» Its Cumulative distribution function (CDF) F_x(x)
```

» Its probability density funcion
$$f_x(x)$$

» Its characteristic function
$$\varphi_{x}(x)$$

Described by its moments
$$m_n$$
, μ_n

Possibility of creation of new random variables via a transformation function.

All these notions will be extended for a couple of two random variables, (X, Y)

Example: experiment

Rolling two dice, a red one and a blue one

			0000			
	1	2	3	/ 4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)
	=					

- 36 possible outcomes
 : (numbers appearing on the upper face of each die)
- The dice are symmetric => equiprobability (all the outcomes have the same probability)

Red die (l=1,2,3,4,5,6), blue die (k=1,2,3,4,5,6)

$$P\{\omega_n\} = \frac{1}{36}, \ n = 1 \ ad 36$$

Definition of two-dimensional random variables (1/2)

To define the pair of random variables (X,Y), we define two mappings from Ω to the set of real numbers:

X (red die) Y (sum for the 2 dice)

$$X(\omega_n) = X(l,k) = l = x_i$$

$$Y(\omega_n) = Y(l,k) = l + k = y_i$$

Possible outcomes of the pair (X,Y):

		1	2	3	4	5	6			
	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)			
	2	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	(2,8)			
C	3	(3,4)	(3,5)	(3,6)	(3,7)	(3,8)	(3,9)			
1	4	(4,5)	(4,6)	(4,7)	(4,8)	(4,9)	(4,10)			
	5	(5,6)	(5,7)	(5,8)	(5,9)	(5,10)	(5,11)			
	6	(6,7)	(6,8)	(6,9)	(6,10)	(6,11)	(6,12)			
•										

Definition of two-dimensional random variables (2/2)

Possible outcomes of X : $x_i = 1,2,...6$ for i=1 to 6

Possible outcomes of Y: $y_j = 2,3,...12$ for j=1 to 11

The couple (X, Y) cannot take the values of any combination (x_i, y_j) . For example the values (4,3) or (2,10) will never occur!

Probability density of the pair (X,Y): $P(X=x_i \text{ and } Y=y_i)=P_{ij}$

The two mappings stablish a one-to-one relation (bijection) between the outcomes (ω_n) and the ordered pairs (x_i, y_j) .

	1	2	3	4	5	6
1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
2	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	(2,8)
3	(3,4)	(3,5)	(3,6)	(3,7)	(3,8)	(3,9)
4	(4,5)	(4,6)	(4,7)	(4,8)	(4,9)	(4,10)
5	(5,6)	(5,7)	(5,8)	(5,9)	(5,10)	(5,11)
6	(6,7)	(6,8)	(6,9)	(6,10)	(6,11)	(6,12)
		Š		4		

36 outcomes for each value of the couple:

$$(x_i, y_j)$$

$$p_{i,j} = P\{\omega_n\} = \frac{1}{36}, \text{ for } n=1 \text{ to } 36$$

Contingency table

A table that defines the probability distribution of the pair (X, Y)

	x1=1	x2=2	x3=3	x4=4	x5=5	x6=6		P Yj
Υ								
y1=2	1/36	0	0	0	0	0	П	1/36
y2=3	1/36	1/36	0	0	0	0	7	2/36
y3=4	1/36	1/36	1/36	0	0	0	П	3/36
y4=5	1/36	1/36	1/36	1/36	0	0	П	4/36
y5=6	1/36	1/36	1/36	1/36	1/36	0		5/36
y6=7	1/36	1/36	1/36	1/36	1/36	1/36		6/36
y7=8	0	1/36	1/36	1/36	1/36	1/36		5/36
y8=9	0	0	1/36	1/36	1/36	1/36		4/36
y9=10	0	0	0	1/36	1/36	1/36		3/36
y10=11	0	0	0	0	1/36	1/36		2/36
y11=12	0	0	0	0	0	1/36		1/36
P Xi	6/36	6/36	6/36	6/36	6/36	6/36		1 👢

joint law (X,Y)

$$P_{ij} \ge 0$$

$$\sum_{i} \sum_{j} P_{ij} = 1$$

Marginal law of Y

$$P(Y = y_j) = \sum_i P_{ij}$$

The sum of all the entries of the table must be <u>always</u> 1!

Marginal law of X
$$P(X = x_i) = \sum_{j} P_{ij}$$

Conditional distribution

Given X equal to a fixed value, for example $X = x_3 = 3$, we can calculate the conditional probability of Y if X takes the value of 3.

2=2 x3=3	x4=4	x5=5	x6=6	5.77
		^5	20-0	P Yj
	_			
0 0	0	0	0	1/36
/36 ,-0-	0	0	0	2/36
/36 / 1/36	0	0	0	3/36
/36 1/36	1/36	0	0	4/36
/36 1/36	1/36	1/36	0	5/36
/36 1/36	1/36	1/36	1/36	6/36
/36 \ 1/36	1/36	1/36	1/36	5/36
0 1/36	1/36	- 4/36	_1/36	4/36
0 0	1/36	1/36	1/36	3/36
0 0	0	-1/36-	1/36	2/36
0 0	0	0	1/36	1/36
/36 6/36	6/36	6/36	6/36	1
_	/36	/36 0 0 /36 1/36 0 /36 1/36 1/36 /36 1/36 1/36 /36 1/36 1/36 /36 1/36 1/36 0 1/36 1/36 0 0 1/36 0 0 0 0 0 0 0 0 0	/36 0 0 0 /36 1/36 0 0 /36 1/36 1/36 0 /36 1/36 1/36 1/36 /36 1/36 1/36 1/36 /36 1/36 1/36 1/36 0 1/36 1/36 1/36 0 0 1/36 1/36 0 0 1/36 1/36 0 0 0 0 0 0 0 0	/36 .0 0 0 0 /36 /1/36 0 0 0 /36 1/36 1/36 0 0 /36 1/36 1/36 1/36 0 /36 1/36 1/36 1/36 1/36 /36 1/36 1/36 1/36 1/36 /36 1/36 1/36 1/36 1/36 0 1/36 1/36 1/36 1/36 0 0 1/36 1/36 1/36 0 0 0 1/36 1/36 0 0 0 1/36 1/36

Conditional probability of X given Y fixed

Conditional probability of Y given X

$$P(Y = y_j | X = x_i) = \frac{P_{ij}}{P_{X_i}} = ...\frac{1}{6}$$

$$P(X = x_i | Y = y_j) = \frac{P_{ij}}{P_{Y_j}} = ...\frac{1}{3}$$

In summary for a couple of discrete random variables (X,Y)

The pair (X,Y) having the following outcomes:

$$X = x_i, \qquad i = 1, 2, ...$$

$$Y = y_i, \quad j = 1,2,...$$

Joint probability function

$$P(X = x_i \text{ and } Y = y_j) = p_{i,j}$$

Marginal distribution of X

$$P(X = x_i) = \sum_{i} p_{i,j} = PX_i$$

Marginal distribution of Y

$$P(Y = y_j) = \sum_{i} p_{i,j} = PY_j$$

Conditional distribution of X given Y

$$P(X = x_i | Y = y_j) = \frac{p_{i,j}}{\sum_i p_{i,j}} = \frac{p_{i,j}}{PY_i}$$

Conditional distribution of Y given X
$$P(Y = y_j \mid X = x_i) = \frac{p_{i,j}}{\sum_j p_{i,j}} = \frac{p_{i,j}}{PX_i}$$

Independance

The 2 variables X and Y are independent if for any i, j:

$$P(X = x_i \cap Y = y_j) = P(X = x_i)P(Y = y_j)$$
 or $p_{ij} = PX_iPY_j \ \forall i, j$

If they are independent the conditional distributions are identical to the marginal distributions.

$$P(X = x_i \mid Y = y_j) = PX_i$$
, $\forall y_j$

$$P(Y = y_i \mid X = x_i) = PY_i$$
, $\forall x_i$

Chapter 6 (beggining): TWO-DIMENSIONAL RANDOM VARIABLES

- Two-dimensional discrete random variables
- Two-dimensional continuous random variables

Cumulative distribution function (CDF)

Definition:

Reminder for one-dimensional variable: $F_X(x) = P(X \le x)$

For two-dimensional random variables (X,Y), the CDF is the probability of the intersection of the events : $\{X \le x\}$ and $\{Y \le y\}$

$$F_{X,Y}(x,y) = P(\{X \le x\} \cap \{Y \le y\})$$

Notation

F: Joint cumulative distribution function

X, Y: random variables

x, y : real thresholds

P: Probability

<u>Graphical represention (very useful!)</u>:

Representation in the cartesian coordinate system

 $F_{XY}(x, y)$: Probability that the pair $(X,Y) \in D$

Marginal cumulative distribution functions

Marginal cumulative distribution function of X

It is the cumulative distribution function of X only

$$F_X(x) = P(\{X \le x\}) = P(\{X \le x\}, \forall Y)$$

Just consider the two-dimensional cumulative distribution function and set:

$$y = + \infty$$
 (or $y = y_{max}$ in the domain $D_{x,y}$)

$$F_X(x) = P(\{X \le x, \forall Y < +\infty\}) = F_{X,Y}(x, +\infty)$$

Marginal cumulative distribution function of Y

$$F_Y(y) = F_{X,Y}(+\infty, y)$$

Calculation of the probability of a rectangle (two-dimension interval)

We aim to calculate in terms of $F_{X,Y}(x,y)$ the probability of the pair (X,Y) to belong to the rectangle D:

$$D: \{X \in [x_1, x_2] \text{ and } Y \in [y_1, y_2]\}$$

$$P(\{x_1 < X \le x_2, y_1 < Y \le y_2\})$$

$$= F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) - F_{X,Y}(x_2, y_1) + F_{X,Y}(x_1, y_1)$$

Joint probability density function

The one-dimensional case:

$$f_X(x) = \frac{dF_X(x)}{dx}$$

The two-dimensional case:

$$f_{X,Y}(x,y) = \frac{\partial}{\partial y} \left(\frac{\partial F_{X,Y}(x,y)}{\partial x} \right) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial y \partial x}$$

Notation:

f: probability density function

X, Y: random Variables

x, y/. real thresholds

 $\frac{\partial^2}{\partial y \partial x}$ derivatives with respect to x (threshold), then y (threshold)

Infinitesimal interpretation of the probability density

Let us calculate the integral over the domain D (rectangle):

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} f_{X,Y}(x,y) dxdy = F_{X,Y}(x_2,y_2) - F_{X,Y}(x_1,y_2) - F_{X,Y}(x_2,y_1) + F_{X,Y}(x_1,y_1)$$

$$P(\{x_1 < X \le x_2, y_1 < Y \le y_2\})$$

In the infinitesimal domain dS=dxdy the density can be considered constant

$$x_1 = x, \ x_2 = x + dx$$

$$y_1 = y, \ y_2 = y + dy$$

$$P(\{x < X \le x + dx, y < Y \le y + dy\}) = f_{X,Y}(x,y) dx dy$$

<u>Interpretation</u>: the probability of the pair (X, Y) of belonging to dS at the neighborhood of the point (x, y) is <u>proportional</u> to the value of the joint density function at that point.

<u>Conclusion</u>: for a continuous random variable, the probability of having $\{X = x, Y = y\}$ is zero because dS is considered zero.

Use of the density:

The density allows to calculate the probability for a couple of random variables (X, Y) to belong to any domain D

$$P(\{(X,Y) \in D\}) = \int_D f_{X,Y}(x,y) dxdy$$

Just decompose D into disjoint elements and apply the axiom 3 of probabilities.

The integral represents the volume between the surface defined by the joint probability density function and the domain D.

Relation with the cumulative distribution function:

$$\int_{-\infty}^{x_2} \int_{-\infty}^{y_2} f_{X,Y}(x,y) dxdy = F_{X,Y}(x_2,y_2)$$

By taking $x_2 = +\infty$, $y_2 = +\infty$, we obtain :

$$\int_{-\infty-\infty}^{+\infty+\infty} f_{X,Y}(x,y) dxdy = F_{X,Y}(+\infty,+\infty) = 1$$

Properties:

- the volume under the surface is 1.
- The density is non-negative.

$$f_{X,Y}(x,y) \ge 0$$

Marginal densities of X and Y:

Marginal density of X

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$$

Marginal density of Y

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dx$$

Hint: calculate the integral over the definition domain of the other variable to make it disappear

Conditional distributions

Conditional distribution of Y given X

$$f_{Y}(y|X=x) = \frac{f_{X,Y}(x,y)}{\int_{-\infty}^{+\infty} f_{X,Y}(x,y)dy} = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$$

Conditional distribution of X given Y

$$f_X(x|Y=y) = \frac{f_{X,Y}(x,y)}{\int_{-\infty}^{+\infty} f_{X,Y}(x,y)dx} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

What happens if X and Y are independent?

Reminder: If the events A and B are independent:

$$P(A \cap B) = P(A)P(B)$$

If A = $\{X \le x\}$ and B = $\{Y \le y\}$ then $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$:

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

The joint cumulative distribution function of the couple is equal to the product of the marginal cumulative distribution functions.

What about the density?

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

The joint density is also the product of the marginal densities.