Functions of Several Variables

Ch.13

econMath.namun+2016sp@gmail.com

April 22, 2016

1 Functions Between Euclidean Spaces

Definitions

Definition 1 (Function, Domain, Target, Image: General Definitions). <u>Function</u> $f: A \to B$ is a rule that assign each object of A (<u>domain</u>) to one object in B (<u>target space</u>). <u>Image</u> of f is $\{f(\mathbf{x})|\mathbf{x}\in A\}\in B$

Examples: $f: \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x}) = \bar{\mathbf{a}} \bullet \mathbf{x}$$
 (Linear)

$$f(\mathbf{x}) = \bar{k} \prod_{i} x_{i}^{\bar{b}_{i}}$$
 (Cobb-Douglas)

$$f(\mathbf{x}) = \bar{k} \left(\sum_{i} \bar{c}_{i} x_{i}^{-\bar{a}} \right)^{-\bar{b}/\bar{a}}$$
 (CES)

 $\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^m$

 $\mathbf{f}: \mathbb{R}^k o \mathbb{R}^m$

Let $f_i: \mathbb{R}^n \to \mathbb{R}$. Then $\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^m$ can be represented by f_i $(i = 1, 2, \dots, m)$

$$\mathbf{f}(\mathbf{x}) := (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))$$

Examples

- Production function with k input factors and m products
- Utility mapping $\mathbf{u}: \mathbb{R}^{km} \to \mathbb{R}^m$
 - $-u_i: \mathbb{R}^k \to \mathbb{R}$: Individual utility function of customer i
 - -k: # of goods
 - -m: # of consumers
 - $-\mathbf{x_i}$: consumption of customer i

$$\mathbf{u}(\mathbf{x_1},\cdots,\mathbf{x_m})=(u_1(\mathbf{x_1}),\cdots,u_m(\mathbf{x_m}))$$

 $\mathbf{f}:\mathbb{R}\to\mathbb{R}^m$

 $\mathbf{f}(t)$

$$\mathbf{f}(t) := (f_1(t), \cdots, f_m(t))$$

Geometrically, $\mathbf{f}(t)$ is a parametric curve on \mathbb{R}^m space (cf. parametric line)

2 Geometric Representation of Functions

Level Curves

Level Curves

Let $f: \mathbb{R}^2 \to \mathbb{R}^1$. Then level curves of f are curves on domain space with same $f(\mathbf{x})$. I.e.,

$$\{\mathbf{x}|f(\mathbf{x})=\bar{c}\}$$

- Isoquant: level curve of production function
- Indifference curve: level curve of utility function
- Generally, when $f: \mathbb{R}^k \to \mathbb{R}$ it is called level set and this is k dimensioal nonlinear object

3 Special Kinds of Functions

Linear Functions on \mathbb{R}^k

Definition 2 (Linear Function from \mathbb{R}^k to \mathbb{R}^m). **f** is a linear function when

1.
$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

2.
$$\mathbf{f}(r\mathbf{x}) = r\mathbf{f}(\mathbf{x})$$

Theorem 1 (13.1,2). • $f: \mathbb{R}^k \to \mathbb{R}$ is a linear function $\Rightarrow f(\mathbf{x}) = \bar{\mathbf{a}} \bullet \mathbf{x}, \ \mathbf{a} \in \mathbb{R}^k$

• $\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^m$ is a linear function $\Rightarrow \mathbf{f}(\mathbf{x}) = \bar{A} \bullet \mathbf{x}$, $A: m \times k$ matrix

Quadaratic Forms

Definition 3 (Quadratic Form on \mathbb{R}^k). $f: \mathbb{R}^k \to \mathbb{R}$ is of the quadratic form if:

$$f(\mathbf{x}) = \sum_{i,j}^{k} \bar{a}_{ij} x_i x_j$$

more elegantly,

$$f(\mathbf{x}) = \mathbf{x}^T \bar{A} \mathbf{x}$$

In this case, A can be always symmetric.

Monomial

Definition 4 (Monomials on \mathbb{R}^k). $f: \mathbb{R}^k \to \mathbb{R}$ is a monomial if:

$$f(\mathbf{x}) = \bar{c} \prod_{i}^{k} x_i^{\bar{a}_i}, \quad a_i \in \mathbb{N} + \{0\}$$

The <u>degree</u> of above monomial is $\sum_{i=1}^{k} a_i$

4 Continuous Functions

Continuous

Definition 5 (Continuous Function on \mathbb{R}^k). $\mathbf{f} = (f_1, \dots, f_m)$ is <u>continuous</u> at \mathbf{x} iff all f_i are continuous at \mathbf{x}