The group G is isomorphic to the group 2.PSL(2,3). Ordinary character table of $G \cong 2.PSL(2,3) \cong SL(2,7)$:

	1a	2a	4a	3a	6a	8a	8b	7a	14a	7b	14b
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	3	3	-1	0	0	1	1	$E(7) + E(7)^2 + E(7)^4$	$E(7) + E(7)^2 + E(7)^4$	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7)^3 + E(7)^5 + E(7)^6$
χ_3	3	3	-1	0	0	1	1	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7)^3 + E(7)^5 + E(7)^6$	$E(7) + E(7)^2 + E(7)^4$	$E(7) + E(7)^2 + E(7)^4$
χ_4	6	6	2	0	0	0	0	-1	-1	-1	-1
χ_5	7	7	-1	1	1	-1	-1	0	0	0	0
χ_6	8	8	0	-1	-1	0	0	1	1	1	1
χ_7	4	-4	0	1	-1	0	0	$-E(7) - E(7)^2 - E(7)^4$		$-E(7)^3 - E(7)^5 - E(7)^6$	
χ_8	4	-4	0	1	-1	0	0	$-E(7)^3 - E(7)^5 - E(7)^6$	$E(7)^3 + E(7)^5 + E(7)^6$	$-E(7) - E(7)^2 - E(7)^4$	$E(7) + E(7)^2 + E(7)^4$
χ_9	6	-6	0	0	0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	-1	1	-1	1
χ_{10}	6	-6	0	0	0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	-1	1	-1	1
χ_{11}	8	-8	0	-1	1	0	0	1	-1	1	-1

Trivial source character table of $G \cong 2.PSL(2,3) \cong SL(2,7)$ at p = 7:

The source of a subsection $C = 2 \cdot 1 \cdot SL(2,0) = SL(2,1) \cdot C \cdot P$														
Normalisers N_i		N_1							N_2					
p-subgroups of G up to conjugacy in G		P_1							P_2					
Representatives $n_j \in N_i$	1a	3a	4a	6a	8a	8 <i>b</i>	2a	1a	6b	3b	6a	3a	2a	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	7	1	3	1	1	1	7	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	14	-1	-2	-1	2	2	14	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	14	-1	2	-1	0	0	14	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	7	1	-1	1	-1	-1	7	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	14	-1	0	1	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	-14	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	14	2	0	-2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	-14	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11}$	14	-1	0	1	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	-14	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	1	1	1	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	8	-1	0	-1	0	0	8	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	8	-1	0	-1	0	0	8	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	8	2	0	-2	0	0	-8	1	-1	1	-1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11}$	8	-1	0	1	0	0	-8	1	$-E(3)^2$	$E(3)^{2}$	-E(3)	E(3)	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11}$	8	-1	0	1	0	0	-8	1	-E(3)	E(3)	$-E(3)^2$	$E(3)^{2}$	-1	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(2, 6, 9, 5, 13, 14, 12)(3, 8, 10, 7, 15, 16, 11)]) \cong C7$

 $N_1 = Group([(1,2,4,3)(5,9,7,10)(6,11,8,12)(13,16,15,14),(2,5,6)(3,7,8)(9,13,14)(10,15,16)]) \cong SL(2,7)$ $N_2 = Group([(2,6,9,5,13,14,12)(3,8,10,7,15,16,11),(5,14,12)(6,13,9)(7,16,11)(8,15,10),(1,4)(2,3)(5,16,12,7,14,11)(6,15,9,8,13,10)]) \cong C2 \times (C7 : C3)$