Gravity Fields Past Paper Questions Jan 2002—Jan 2010 (old spec)

Communications satellites are usually placed in a geo-synchronous orbit. State two features of a geo-synchronous orbit. Q2 Jun 2003 (a) (2 marks) Given that the mass of the Earth is 6.00×10^{24} kg and its mean radius is 6.40×10^6 m, show that the radius of a geo-synchronous orbit must be 4.23×10^7 m, calculate the increase in potential energy of a satellite of mass 750 kg when it is raised from the Earth's surface into a geo-synchronous orbit.

(6 marks)

2007	may be awarded marks for the quality of written communication provided in Q4 Jun 20	
•••••		
•••••		••••••
•••••		
		(3 mark
Give	an example of a situation where a body	
(i)	travels at constant speed but experiences a continuous acceleration,	
(ii)	experiences a maximum acceleration when its speed is zero.	
()		
		• • • • • • • • • • • • • • • • • • • •

The Moon's orbit around the Earth may be assumed to be circular. Explain why no work is done

4

		Q3 Jan 200	5
			···········
			(2 mc
(b)	Use the following data to calculate the gravita	itional potential at the surface of the	e Moon.
	mass of Earth $= 81 \times \text{mass of Moon}$		
	radius of Earth = $3.7 \times \text{radius of Moon}$	(2) M.H	
	gravitational potential at surface of the Earth	$= -63 \mathrm{MJkg}^{-1}$	
			••••••
			•••••••
			(3 m
(c)	Sketch a graph on the axes below to indicate he	now the gravitational potential varies. Earth to the surface of the Moon.	s with dist
grav	ritational	surface of Moon	
grav	ritational	surface of Moon	
grav	ritational	surface	
grav	ritational	surface of Moon	
grav	ritational	surface of Moon	
grav	ritational	surface of Moon	
grav	ritational	surface of Moon	
grav	ritational	surface of Moon	

(a)			04 Jun 2005
	•••••		
	•••••		
	•••••		
	•••••		(3 marks)
(b)		considering the centripetal force which acts on a planet in a circle T is the time taken for one orbit around the Sun and R is the	
	•••••		
	•••••		
	•••••		
	•••••		(3 marks)
(c)	The l	Earth's orbit is of mean radius 1.50×10^{11} m and the Earth's year	ear is 365 days long.
	(i)	The mean radius of the orbit of Mercury is 5.79×10^{10} Mercury's year.	m. Calculate the length of

	atio distance from Sun to Neptune distance from Sun to Earth	Calculate the ratio
(4 marks		

(ii) Neptune orbits the Sun once every 165 Earth years.

4	(a)	and f	for communications. Such satellites may be placed in a <i>geo-synchronous</i> orbit or low polar orbit. Q4 Jan 2006
			ribe the properties of the geo-synchronous orbit and the advantages it offers when ellite is used for communications.
		You	may be awarded marks for the quality of written communication in your answer.
		•••••	
		•••••	(3 marks)
	(b)		tellite of mass m travels at angular speed ω in a circular orbit at a height h above urface of a planet of mass M and radius R .
		(i)	Using these symbols, give an equation that relates the gravitational force on the satellite to the centripetal force.
		(;;)	Use your equation from part (b)(i) to show that the arbital paried T of the
		(ii)	Use your equation from part (b)(i) to show that the orbital period, T , of the satellite is given by
			$T^2 = \frac{4\pi^2 (R+h)^3}{GM}.$

	(iii)	Explain why the period of a satellite in orbit around the Earth cannot be less than 85 minutes. Your answer should include a calculation to justify this value.
		mass of the Earth = 6.00×10^{24} kg radius of the Earth = 6.40×10^6 m
		(6 marks)
(c)		ribe and explain what happens to the speed of a satellite when it moves to an orbit is closer to the Earth.
		(2 marks)

4	(a)		what is meant by <i>gravitational field strength</i> at a point in a gravitational and state whether it is a scalar or vector quantity.
			Q4 Jan 2007
		•••••	
	(b)		tellite of mass 2.5×10^3 kg is to be moved from the surface of the Earth orbit of radius 1.6×10^7 m around the Earth.
		(i)	Calculate the gravitational force acting on the satellite when in orbit.
		(ii)	Given that the gravitational potential at the surface of the Earth (due to the Earth) is $-63 \mathrm{MJ kg^{-1}}$, calculate the increase in the gravitational potential energy of the satellite when it is placed in the orbit.
			(5 marks)

(c) Draw a graph on the axes below to show how the gravitational potential due to the Earth varies with distance, *r*, measured from the centre of the Earth, for points outside the Earth. On the horizontal axis, *R* is the radius of the Earth.

(3 marks)

5	(a)	arou	onsidering the force equation for a satellite of mass m in an orbit of radius r and a planet of mass M , show that the orbital time period T of the satellite does not not upon m . Q5 Jan 2008	
		•••••		
			(3 marks)	
	(b)	Its o	of the moons of Jupiter, Ganymede, is the largest satellite in the solar system. rbital period is equal to 7.15 Earth days and the radius of its orbit is $\times 10^6$ km.	
		Calculate		
		(i)	the angular speed of Ganymede in its orbit,	
		(ii)	the centripetal acceleration of Ganymede in its orbit,	

(iii)	the mass of Jupiter.
	(5 marks)

3 (a) The graph shows how the gravitational force F between a $1000 \, \text{kg}$ mass and the Moon varies with the distance r from the centre of the Moon for points outside its surface.

Q3 Jun 2008

3 (a) (i) Explain why the graph has this shape for points outside the surface.

	•••••	•••••	•••••	•••••
	•••••		•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••

3 (a) (ii) Use data from the graph to determine the mass of the Moon.

 •••••	•••••	•••••

(4 marks)

3	(b)	(i)	From the graph, estimate the potential energy lost by the 1000 kg mass as it falls to the surface of the Moon from a very large distance above it. Explain how you arrive at your estimate.
3	(b)	(ii)	By considering the 1000 kg mass as a projectile, calculate the speed at which it should it be thrown vertically upwards from the surface of the Moon if it is to escape from the Moon's gravitational field.
			(5 marks)

3 (a) For a satellite in orbit around a planet, theory shows that the relationship between the mean orbital radius, R, and the orbital period, T, is

$$R^3 = \frac{GMT^2}{4\pi^2}$$
, where *M* is the mass of the planet. **Q3 Jun 2009**

The graph in **Figure 3**, which is constructed from measurements based on observations, shows how R varies with $T^{2/3}$ for five of the inner satellites of the planet Saturn, named Mimas, Enceladus, Tethys, Dione and Rhea.

Figure 3

3	(a)	(i)	Determine the gradient of the graph in Figure 3 in m s ^{-2/3} .
3	(a)	(ii)	Explain how the relationship between R and T in the equation given in part (a) is supported by this graph.
3	(a)	(iii)	Use your value for the gradient, together with any other necessary data, to calculate the mass of Saturn.
			(6 marks)
3	(b)	It is j Sun.	possible to plot a graph of R against $T^{2/3}$ for the orbits of the planets around the
		State and explain one similarity, and one difference, between the properties of this graph and the graph shown in Figure 3 .	
		Simil	'arity:
		Diffe	rence:
			(2 marks)