MSLIB Fortran 90

CS

Nomenclature: M-MU-0-116-CIS

Edition: 05 Date: 27/05/2004 Révision: 01 Date: 15/02/2005

Volume U

Utilitaires mathématiques

Rédigé par : Guylaine PRAT	le : CS (SI/Espace/FDS)	
Validé par : Guylaine PRAT Anne MAZZIETTI-ERSA (ingénieur qualité)	le : CS (SI/Espace/FDS) CS (SI/Espace)	
Pour application : Franck REINQUIN Hervé MADIEU	le : CNES (DCT/SB/OI)	

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-116-CIS** Edition : 05 Date: 27/05/2004 Révision : 01 Date: 15/02/2005

Page: i.1

DIFFUSION INTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

DIFFUSION EXTERNE CNES

Observations

Voir la note nomenclaturée M-NT-0-18-CN: "Liste de diffusion de la documentation utilisateur MSLIB".

C.N.E.S.

MSLIB Fortran 90

Nomenclature : **M-MU-0-116-CIS**Edition : 05 Date: 27/05/2004
Révision : 01 Date: 15/02/2005

Page: i.2

BORDEREAU D'INDEXATION

CONFIDENTIALITE	: NC		MOTS-CLES:	
TITRE: Volume U	Utilitaires math	nématiques		
AUTEUR: Guylaine	PRAT			
RESUME:				
Ce document rasser	mble les notices	d'utilisation des rou	itines du thème "Utili	taires mathématiques".
SITUATION DU DOC	CUMENT : Créati	on		
VOLUME:	PAGES: 45	PLANCHES:	FIGURES:	LANGUES: F
CONTRAT: Marché	779/Cnes/2001	/8929 BC45000098	60	
SYSTEME HOTE : F	rame6/MSLIB			

MSLIB Fortran 90

Nomenclature : **M-MU-0-116-CIS** Edition : 05 Date: 27/05/2004 Révision : 01 Date: 15/02/2005

Page: i.3

MODIFICATION

ETAT DOCUMENT				PAGES REVISEES	
ED.	REV.	DATE	REFERENCE ORIGINE (pour chaque édition)	ETAT PAGE *	NUMERO DES PAGES
01 02	00 00	22/04/98 26/06/98	M-MU-0-116-CIS M-MU-0-116-CIS Rédacteur: V. Lépine avec la participation de G. Prat	M	Création Modification de toutes les pages.
03	00	19/10/00	M-MU-0-116-CIS Rédacteur: V. Lépine avec la participation de G. Prat	I	Ajout des pages liées aux nouvelles routines pour la MSLIB90 V3.0: mu_axe_angle_quat, mu_prod_quat, mu_quat_axe_angle, mu_quat_conjug, mu_quat_norme,
04	00	05/12/03	M-MU-0-116-CIS Rédacteur: V. Lépine avec la participation de G. Prat	I	mu_quat_rep Ajout des pages liées aux nouvelles routines pour la MSLIB90 V5.0 Création de l'introduction du
05	00	27/05/04	M-MU-0-116-CIS Rédacteur: V. Lépine avec la participation de G. Prat	I	thème Ajout des pages liées à la nouvelle routine pour la MSLIB90 V6.0
05	01	15/02/05	M-MU-0-116-CIS Rédacteur: G. Prat	M	Correction exemple de mu_mat_quat

^{*} I = Inséré

Sommaire

	fotations	_
1	Rotations	ıge
	1.1 Définition du quaternion pour la MSLIBpa	ıge
	1.2 Angles de Cardan et d'Euler pa	ıge
	1.2.1 Angles de Cardan	ıge
	1.2.2 Angles d'Euler	ıge

Liste des routines du thème U : voir pages suivantes du sommaire.

Liste des routines du thème U:

mu_3rot_quat :	page 7
"Calcul du quaternion associé à une rotation définie par 3 angles de Cardan ou d'Euler."	
mu_angle2:	page 10
mu_angle3:	page 12
mu_axe_angle_quat:	page 14
mu_compar_rot_quat :	page 16
mu_mat_quat :	page 18
mu_norme:	page 20
mu_prod_quat:	page 22
mu_prod_vect:	page 24
mu_quat_3rot:	page 26
mu_quat_axe_angle:	page 29
mu_quat_conjug:	page 31

mu_	_quat_mat :	page 33
	Calcul de la matrice de lotation associée à un quatermon.	
mu_	_quat_norme :	page 35
mu_	_quat_rep :	page 37

Présentation du thème U

Le thème "Utilitaires mathématiques" regroupe un ensemble de routines mathématiques.

Les routines de ce thème n'ont pas la prétention de constituer une bibliothèque mathématique générale. Leur but est de rendre la MSLIB autonome en terme de routines de type mathématiques par rapport à d'autres bibliothèques existantes (de type commerciales ou freewares). Leur présence dans la bibliothèque ne se justifie que par la notion d'utilitaires pour les routines appartenant aux autres thèmes.

Par convention:

les angles utilisés dans les routines sont toujours exprimés en radians.

Notations

 $(O, \overrightarrow{i}, \overrightarrow{j})$ repère orthonormé du plan IR^2 d'origine O

 $\tilde{q} = (q_0, \vec{q})$ quaternion

 $(\alpha_1,\,\alpha_2,\,\alpha_3) \qquad \text{angles de Cardan ou d'Euler}$

Index

\mathbf{A}

angles d'Euler 5 angles de Cardan 4

Q

quaternion $\boldsymbol{4}$

1 Rotations

Les rotations en dimension 3 peuvent se représenter de différentes manières, par exemple: soit par des quaternions, soit par des angles de Cardan ou d'Euler, soit par des matrices de rotation. Il est donc nécessaire de préciser certaines de ces définitions et certaines conventions retenues par la MSLIB.

1.1 Définition du quaternion pour la MSLIB

Pour des définitions mathématiques liées aux quaternions se reporter à la note algorithmique: "Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS".

Plusieurs conventions existent pour la définition d'un *quaternion* d'axe \overrightarrow{u} et d'angle θ . La MSLIB a retenu la définition suivante:

$$\begin{cases} q_0 = \cos\frac{\theta}{2} \\ \overrightarrow{q} = \sin\frac{\theta}{2} \cdot \overrightarrow{u} \end{cases}$$

Cette définition peut différer selon les auteurs: voir par exemple [DR1] ou [DR2] où les formules font intervenir l'angle "-θ".

1.2 Angles de Cardan et d'Euler

Une rotation quelconque en dimension 3 peut être définie par la composition de trois rotations successives autour des axes canoniques (pour plus de détails se reporter à [DR1] ou [DR2]).

Notation:

nous noterons dans les paragraphes suivant la rotation YXZ telle que la première rotation est réalisée autour de Y, la deuxième rotation autour de X', et la troisième rotation autour de Z''.

1.2.1 Angles de Cardan

Lorsque les trois rotations s'effectuent autour des 3 axes canoniques, les angles associés s'appellent *angles de Cardan*.

Il existe alors 6 possibilités pour les angles de Cardan: XYZ, XZY, YXZ, YZX, ZXY, ZYX.

Il est à noter que si les angles $(\alpha_1, \alpha_2, \alpha_3)$ sont associés à une rotation définie par des angles de Cardan, alors on peut lui associer également les angles $(\pi + \alpha_1, \pi - \alpha_2, \pi + \alpha_3)$. Cette propriété permet de restreindre le domaine de définition de α_2 à l'intervalle $[-\frac{\pi}{2}, \frac{\pi}{2}]$, si besoin.

1.2.2 Angles d'Euler

Lorsque la première et la dernière rotation s'effectuent autour d'un même axe canonique, et que la deuxième rotation s'effectue autour d'un autre axe canonique, les angles associés s'appellent *angles d'Euler*.

Il existe alors 6 possibilités pour les angles d'Euler: XYX, XZX, YXY, YZY, ZXZ, ZYZ.

Il est à noter que si les angles $(\alpha_1, \alpha_2, \alpha_3)$ sont associés à une rotation définie par des angles d'Euler, alors on peut lui associer également les angles $(\pi + \alpha_1, 2\pi - \alpha_2, \pi + \alpha_3)$.

Cette propriété permet de restreindre le domaine de définition de α_2 à l'intervalle $[0,\pi]$, si besoin.

2 Documents de référence

DR1

L. MAISONOBE & G. FILAIRE: « MARMOTTES - documentation mathématiques », DTS/MPI/MS/AM/99-118; éd. 03 rév. 07

DR₂

L. MAISONOBE : « Principes de simulation générique d'attitude », Note technique N°3 du Centre de Compétence Technique "Mécanique Orbitale". Note technique CNES N°142 - Février 2001.

Routine mu_3rot_quat

Identification

"Calcul du <u>quat</u>ernion associé à une <u>rot</u>ation définie par <u>3</u> angles de Cardan ou d'Euler."

Rôle

Calcul du quaternion associé à une rotation définie par 3 angles de Cardan ou d'Euler

Séquence d'appel (voir explications dans le volume 3)

call mu_3rot_quat (def_3rot, angle1, angle2, angle3, quat, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

entier	def_3rot	Définition et ordre d'enchaînement des trois rotations
pm_reel	angle1	Valeur de l'angle α_1 associé à la première rotation (rad)
pm_reel	angle2	Valeur de l'angle α_2 associé à la deuxième rotation (rad)
pm_reel	angle3	Valeur de l'angle α_3 associé à la troisième rotation (rad)

• Sorties obligatoires

tm_quat quaternion
tm_code_retour code_retour

Conditions sur les arguments

- **def_3rot** correspond à un entier qui est défini par un paramètre associé à une rotation. Par exemple, la rotation XYZ (1^{ère} rotation autour de X, 2^{ième} rotation autour de Y', 3^{ième} rotation autour de Z") est associée au paramètre pm_1x_2y_3z donc **def_3rot** sera initialisée avec le paramètre pm_1x_2y_3z.
- Il existe 6 possibilités pour les angles de Cardan, et 6 possibilités pour les angles d'Euler:

Valeurs possibles de def_3rot		
Angles de Cardan	Angles d'Euler	
pm_1x_2y_3z	pm_1x_2y_3x	
pm_1x_2z_3y	pm_1x_2z_3x	
pm_1y_2x_3z	pm_1y_2x_3y	
pm_1y_2z_3x	pm_1y_2z_3y	
pm_1z_2x_3y	pm_1z_2x_3z	
pm_1z_2y_3x	pm_1z_2y_3z	

Notes d'utilisation

• La transformation inverse peut s'effectuer à l'aide de la routine **mu_quat_3rot**.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

Code retour

(voir explications dans le volume 3)

pm_OK

(0): Retour normal.

pm_err_clef_rot

(-1810) : La clef de rotation ne correspond pas à une rotation de Cardan ou d'Euler.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

end program MATH

Résultats attendus:

```
QUAT%q0 = 0.764
QUAT%q123(1) = -0.0694
QUAT%q123(2) = 0.633
QUAT%q123(3) = 0.102
CODE_RETOUR%valeur = 0
```

CODE_RETOUR%routine = 1145

Routine mu_angle2

Identification

"Dans le plan IR^2 , calcul de l'angle entre un vecteur et l'axe des abscisses."

Rôle

Dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, pour un vecteur $\overrightarrow{a}(x, y)$, calcul de l'angle $\theta = (\overrightarrow{i}, \overrightarrow{a}) \in [0, 2\pi[$.

Nota: x et y représentent les cosinus et sinus de l'angle.

Séquence d'appel (voir explications dans le volume 3)

call mu_angle2 (x , y , angle , code_retour)

Description des arguments (voir exp

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel \mathbf{x} coordonnée x du vecteur $\stackrel{\longrightarrow}{a}$.

pm_reel \mathbf{y} coordonnée y du vecteur $\stackrel{\longrightarrow}{a}$.

• Sorties obligatoires

pm_reel angle $\theta = (\vec{i}, \vec{a}) \in [0, 2\pi[$

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

Code retour (voir explications dans le volume 3)

```
pm_OK (0): Retour normal.
pm_err_vect_nul (-2001): Vecteur nul.
```

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

Résultats attendus:

end program MATH

```
ANGLE = .157 \cdot 10^{+1}
```

```
CODE_RETOUR% valeur = 0
CODE_RETOUR% routine = 1004
```

Routine mu_angle3

Identification

"Dans l'espace IR³, calcul de l'<u>angle</u> non orienté de deux vecteurs."

Rôle

Calcul de l'angle non orienté θ de deux vecteurs \overrightarrow{a} et \overrightarrow{b} de IR^3 . L'angle calculé est exprimé en radians, et $\theta \in [0, \pi]$.

Séquence d'appel (voir explications dans le volume 3)

call mu_angle3 (vect_a, vect_b, angle, code_retour)

Description des arguments (voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3) **vect_a** vecteur \overrightarrow{a} vecteur \overrightarrow{a} pm_reel(3) **vect_b** vecteur \overrightarrow{b}

code_retour

• Sorties obligatoires

tm_code_retour

pm_reel angle θ non orienté entre les vecteurs \overrightarrow{a} et \overrightarrow{b}

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour (voir explications dans le volume 3)
```

```
pm_OK (0): Retour normal.
pm_err_vect_nul (-2001): Vecteur nul.
```

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program MATH

use mslib

real(pm_reel), dimension(3) :: VECT_A, VECT_B
real(pm_reel) :: ANGLE
type(tm_code_retour) :: CODE_RETOUR

VECT_A(:) = 1._pm_reel
VECT_B(:) = -1._pm_reel

call mu_angle3 ( VECT_A, VECT_B, ANGLE, CODE_RETOUR)

! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (ANGLE, CODE_RETOUR)
```

end program MATH

Résultats attendus:

ANGLE = 3.14

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1009

Routine mu_axe_angle_quat

Identification

"Conversion d'une rotation définie par son <u>axe</u> et son <u>angle</u> en un <u>quat</u>ernion."

Rôle

Calcul du quaternion normé associé à une rotation définie par son axe et son angle de rotation.

Séquence d'appel (voir explications dans le volume 3)

call mu_axe_angle_quat (axe, angle, quat, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3) **axe** axe de rotation.

pm_reel angle de rotation (rad).

• Sorties obligatoires

tm_quat quaternion (normé) associé à la rotation.

tm_code_retour code_retour

Conditions sur les arguments

• La norme de l'axe de rotation doit être strictement positive.

Notes d'utilisation

- Si l'angle n'appartient pas à $[0, 2\pi[$, alors il est ramené dans cet intervalle à l'aide d'un modulo 2π .
- La transformation inverse (quaternion → rotation) peut être effectuée par la routine mu_quat_axe_angle

Références documentaires

Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour (voir explications dans le volume 3)
```

```
pm_OK (0): Retour normal.

pm_err_axe_rot_nul (-2004): La norme de l'axe de rotation est nulle.
```

```
Exemple en Fortran 90 portable | (voir
```

(voir explications dans le volume 3)

```
program MATH
  use mslib
  real(pm_reel), dimension(3) :: AXE
  real(pm_reel)
                               :: ANGLE
  type(tm_quat)
                               :: QUAT
  type(tm_code_retour)
                               :: CODE_RETOUR
  AXE(1) = 1._pm_reel
  AXE(2) = 0._pm_reel
  AXE(3) = 2._pm_reel
  ANGLE = 1._pm_reel
  call mu_axe_angle_quat ( AXE, ANGLE, QUAT, CODE_RETOUR )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (QUAT, CODE_RETOUR)
```

end program MATH

<u>Résultats attendus</u>:

```
QUAT%q0 = .878

QUAT%q123(1) = .214

QUAT%q123(2) = 0.

QUAT%q123(3) = .429

CODE_RETOUR%valeur = 0

CODE_RETOUR%routine = 1123
```

Routine mu_compar_rot_quat

Identification

"Comparaison de rotations définies à l'aide de quaternions."

Rôle

Calcul de l'écart angulaire entre deux rotations, où les rotations sont définies par un quaternion.

Séquence d'appel (voir explications dans le volume 3)

call mu_compar_rot_quat (quat1, quat2, angle, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_quat quaternion $\tilde{q_1}$ associé à la 1^{ère} rotation

tm_quat quaternion \tilde{q}_2 associé à la $2^{\text{ième}}$ rotation

• Sorties obligatoires

pm_reel angle écart angulaire $\in [0,\pi]$ entre les rotations définies par

 \vec{q}_1 et \vec{q}_2 (rad)

tm_code_retour code_retour

Conditions sur les arguments

• La norme des quaternions doit être non nulle.

Notes d'utilisation

• Si l'angle appartient à $[\pi, 2\pi[$, il est ramené à son complément à 2π .

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal.

pm_err_quat_nul (-2005): La norme du quaternion est nulle.

Exemple de résultats

Pour la description des types dérivés, se reporter à la la documentation utilisateur MSLIB Fortran 90 :

- *Structuration des données pour la MSLIB Fortran 90* du volume 3 "Caractéristiques principales et conventions d'utilisation de la MSLIB Fortran 90; M-MU-0-103-CIS"

Entrées:

```
quat1%q0 = 2._pm_reel
quat1%q123(1) = 1._pm_reel
quat1%q123(2) = 0._pm_reel
quat1%q123(3) = -1._pm_reel
quat2%q0 = 3._pm_reel
quat2%q123(1) = 0._pm_reel
quat2%q123(2) = -2._pm_reel
quat2%q123(3) = -1._pm_reel
```

Résultats attendus:

code_retour%valeur

```
angle = 1.403
```

=0

Routine mu_mat_quat

Identification

"Calcul du quaternion associé à une matrice de rotation."

Rôle

A partir d'une matrice de rotation, calcul du quaternion (normé) associé.

Séquence d'appel (voir explications dans le volume 3)

call mu_mat_quat (mat, quat, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

 $pm_reel(3,3)$ mat matrice de rotation M

• Sorties obligatoires

tm_quat quaternion \tilde{q} correspondant à la matrice de rotation M

tm_code_retour code_retour

Conditions sur les arguments

• La matrice *M* est une matrice de rotation, et doit donc à ce titre être orthonormale et de déterminant = +1.

Notes d'utilisation

• La transformation inverse peut s'effectuer à l'aide de la routine **mu_quat_mat**...

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

CODE_RETOUR%routine = 1149

```
Code retour
            (voir explications dans le volume 3)
pm_OK
                         (0): Retour normal.
pm_err_mat_non_rot (-2007): La matrice n'est pas une matrice de rotation.
                             (voir explications dans le volume 3)
Exemple en Fortran 90 portable
program MATH
  use mslib
  real(pm_reel)
                                        :: ANGLE
  real(pm_reel), dimension(3,3)
                                       :: MAT
  type(tm_quat)
                                       :: QUAT
  type(tm_code_retour)
                                       :: CODE_RETOUR
  intrinsic cos, sin
  ANGLE
                = pm_pi*0.33_pm_reel
  MAT(:,:)
               = 0._pm_reel
  MAT(1,1)
               = cos(ANGLE)
  MAT(1,2)
               = sin(ANGLE)
  MAT(2,1)
               =-sin(ANGLE)
  MAT(2,2)
               = cos(ANGLE)
  MAT(3,3)
                = 1._pm_reel
  call mu_mat_quat ( MAT, QUAT, CODE_RETOUR )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (QUAT, CODE_RETOUR)
end program MATH
Résultats attendus:
QUAT%q0
            = 0.869
QUAT\%q123(1) = 0.
QUAT\%q123(2) = 0.
QUAT\%q123(3) = 0.495
CODE_RETOUR\% valeur = 0
```

Routine mu_norme

Identification

"Calcul de la **norme** euclidienne d'un vecteur dans IR³."

Rôle

Calcul de la norme euclidienne d'un vecteur \overrightarrow{a} de IR^3 et, sur option, du vecteur normé associé.

Séquence d'appel

(voir explications dans le volume 3)

call mu_norme (vect, norme, code_retour [, vect_norme])

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3) **vect**

vecteur \overrightarrow{a}

• Sorties obligatoires

pm_reel

norme

norme de \overrightarrow{a} : $\|\overrightarrow{a}\|$

tm_code_retour

code_retour

• Sorties facultatives

pm_reel(3) [**vect_norme**] vecteur normé : $\frac{\overrightarrow{a}}{\|\overrightarrow{a}\|}$

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

Code retour

(voir explications dans le volume 3)

pm_OK (0): Retour normal. pm_err_vect_nul (-2001): Vecteur nul.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program MATH

```
use mslib
real(pm_reel), dimension(3)
                             :: VECT
                                                                &
     =(/-2.30770288_pm_reel,
                                                               &
      -1.723990551_pm_reel,
                                                               &
     -.83824649_pm_reel/)
real(pm_reel), dimension(3)
                                 :: VECT_NORME
real(pm_reel)
                                 :: NORME
type(tm_code_retour)
                                 :: CODE_RETOUR
call mu_norme ( VECT, NORME, CODE_RETOUR,
                                                                &
                       vect_norme = VECT_NORME )
! appel a la routine utilisateur d'ecriture des resultats
call WRITE_RESULTATS (NORME, VECT_NORME, CODE_RETOUR)
```

Résultats attendus:

end program MATH

NORME = 3.

VECT_NORME=
$$\begin{bmatrix} -0.769 \\ -0.575 \\ -0.279 \end{bmatrix}$$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1011

Routine mu_prod_quat

Identification

"Calcul du **prod**uit de deux **quat**ernions."

Rôle

Calcul du produit de deux quaternions.

Séquence d'appel

(voir explications dans le volume 3)

call mu_prod_quat (quat1, quat2, quat_prod, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_quat quat1 quaternion \tilde{q}_1 tm_quat quaternion \tilde{q}_2

• Sorties obligatoires

tm_quat quat_prod quaternion produit: $\tilde{q}_3 = \tilde{q}_1 * \tilde{q}_2$

tm_code_retour code_retour

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour
            (voir explications dans le volume 3)
pm_OK
                        (0): Retour normal.
Exemple en Fortran 90 portable
                            (voir explications dans le volume 3)
program MATH
  use mslib
  type(tm_quat)
                                  :: QUAT1, QUAT2
                                  :: QUAT PROD
  type(tm_quat)
                                  :: CODE RETOUR
  type(tm_code_retour)
  QUAT1%q0
              = 2._{pm\_reel}
  QUAT1%q123(1) = 1._pm_reel
  QUAT1%q123(2) = 0._pm_reel
  QUAT1%q123(3) = -1._pm_reel
              = 3._pm_reel
  QUAT2%q0
  QUAT2%q123(1) = 0._pm_reel
  QUAT2%q123(2) = -2._pm_reel
  QUAT2%q123(3) = -1._pm_reel
  call mu_prod_quat (QUAT1, QUAT2, QUAT_PROD, CODE_RETOUR)
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (QUAT_PROD, CODE_RETOUR)
end program MATH
```

Résultats attendus:

```
QUAT_PROD%q0 = 5.

QUAT_PROD%q123(1) = 1.

QUAT_PROD%q123(2) = -3.

QUAT_PROD%q123(3) = -7.

CODE_RETOUR%valeur = 0

CODE_RETOUR%routine = 1127
```

Routine mu_prod_vect

Identification

"Calcul du **prod**uit **vect**oriel de deux vecteurs dans *IR*³."

Rôle

Dans un repère orthonormé, calcul du produit vectoriel \overrightarrow{c} de deux vecteurs \overrightarrow{a} et \overrightarrow{b} .

Séquence d'appel (voir explications dans le volume 3)

call mu_prod_vect (vect_a, vect_b, vect_c, code_retour)

Description des arguments (voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3) **vect_a** vecteur \overrightarrow{a} vecteur \overrightarrow{b}

• Sorties obligatoires

pm_reel(3) **vect_c** produit vectoriel $\overrightarrow{c} = \overrightarrow{a} \wedge \overrightarrow{b}$

tm_code_retour code_retour

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

Code retour (voir explications dans le volume 3)

pm_OK

(0): Retour normal.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program MATH

call mu_prod_vect (VECT_A, VECT_B, VECT_C, CODE_RETOUR)

! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (VECT_C, CODE_RETOUR)

end program MATH

Résultats attendus:

$$VECT_C = \begin{bmatrix} 0.\\ -1.\\ 0. \end{bmatrix}$$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1010

Routine mu_quat_3rot

Identification

"Calcul des <u>3</u> angles de Cardan ou d'Euler associés à une <u>rot</u>ation définie par un <u>quat</u>ernion."

Rôle

Calcul des 3 angles de Cardan ou d'Euler associés à une rotation définie par un quaternion.

Séquence d'appel (voir explications dans le volume 3)

call mu_quat_3rot (def_3rot, quat, angle1, angle2, angle3, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

entier	def_3rot	Définition et ordre d'enchaînement des trois rotations
tm_quat	quat	quaternion

• Sorties obligatoires

pm_reel	angle1	Valeur de l'angle α_1 associé à la première rotation (rad)
pm_reel	angle2	Valeur de l'angle α_2 associé à la deuxième rotation (rad)
pm_reel	angle3	Valeur de l'angle α_3 associé à la troisième rotation (rad)
tm_code_retour	code_retour	

Conditions sur les arguments

- **def_3rot** correspond à un entier qui est défini par un paramètre associé à une rotation. Par exemple, la rotation XYZ (1^{ère} rotation autour de X, 2^{ième} rotation autour de Y', 3^{ième} rotation autour de Z'') est associée au paramètre pm_1x_2y_3z donc **def_3rot** sera initialisée avec le paramètre pm_1x_2y_3z.
- Il existe 6 possibilités pour les angles de Cardan, et 6 possibilités pour les angles d'Euler :

Valeurs possibles de def_3rot		
Angles de Cardan	Angles d'Euler	
pm_1x_2y_3z	pm_1x_2y_3x	
pm_1x_2z_3y	pm_1x_2z_3x	
pm_1y_2x_3z	pm_1y_2x_3y	
pm_1y_2z_3x	pm_1y_2z_3y	
pm_1z_2x_3y	pm_1z_2x_3z	
pm_1z_2y_3x	pm_1z_2y_3z	

Notes d'utilisation

 \bullet Pour les angles de Cardan et d'Euler, les angles α_1 et α_3 sont donnés dans l'intervalle $[0,2\pi[$.

Pour les angles de Cardan, l'angle α_2 est donné dans l'intervalle $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Pour les angles d'Euler, l'angle α_2 est donné dans l'intervalle $[0,\pi]$.

Pour plus d'explications: se reporter à l'introduction du thème, au paragraphe 1. Rotations

• La transformation inverse peut s'effectuer à l'aide de la routine mu_3rot_quat

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

Code retour (voir explications dans le volume 3)

pm OK (0): Retour normal.

pm_warn_angle1_ou_3_indef (+2001) :Infinité de solutions pour le premier et le troisième angle. Arbitrairement nous donnons la valeur 0 au premier angle pour le cas de Cardan ou au troisième angle pour le cas d'Euler.

pm_err_clef_rot (-1810) : La clef de rotation ne correspond pas à une rotation de Cardan ou d'Euler.

pm_err_quat_nul (-2005): La norme du quaternion est nulle.

Exemple en Fortran 90 portable

CODE RETOUR%routine = 1147

(voir explications dans le volume 3)

```
program MATH
  use mslib
  integer
                        :: DEF_3ROT
  type(tm_quat)
                       :: QUAT
                        :: ANGLE_SUR_2, ANGLE1, ANGLE2, ANGLE3
  real(pm_reel)
  type(tm_code_retour) :: CODE_RETOUR
  intrinsic cos, sin
  DEF_3ROT = pm_1x_2y_3z
  ANGLE_SUR_2 = 20._pm_reel*pm_deg_rad
  QUAT%q0 = cos(ANGLE_SUR_2)
  QUAT%q123(1) = sin(ANGLE_SUR_2)*0.3_pm_reel
  QUAT q123(2) = sin(ANGLE_SUR_2)*0.3_pm_reel
  QUAT%q123(3) = sin(ANGLE_SUR_2)*0.3_pm_reel
  call mu_quat_3rot ( DEF_3ROT, QUAT, ANGLE1, ANGLE2, ANGLE3,
  CODE_RETOUR )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (ANGLE1, ANGLE2, ANGLE3, CODE_RETOUR)
end program MATH
Résultats attendus:
ANGLE1 = 0.194
ANGLE2 = 0.236
ANGLE3 = 0.194
CODE_RETOUR\% valeur = 0
```

Routine mu_quat_axe_angle

Identification

"Conversion d'un quaternion en une rotation définie par son axe et son angle."

Rôle

Conversion d'un quaternion en une rotation définie par son axe et son angle (dans $[0, 2\pi]$).

Séquence d'appel (voir explications dans le volume 3)

call mu_quat_axe_angle (quat, axe, angle, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_quat quaternion.

• Sorties obligatoires

pm_reel(3) **axe** axe de rotation normé.

pm_reel angle de rotation (rad).

tm_code_retour code_retour

Conditions sur les arguments

- La norme du quaternion doit être non nulle.
- La première composante du quaternion normé doit être différente de +/- 1 pour pouvoir déterminer l'axe de rotation.

Notes d'utilisation

 La transformation inverse (rotation → quaternion) peut être effectuée par la routine mu_axe_angle_quat

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour (voir explications dans le volume 3)
```

```
pm_OK (0): Retour normal.

pm_err_quat_nul (-2005): La norme du quaternion est nulle.

pm_err_axe_rot_indef (-2006): La première composante du quaternion normé vaut 1 ou -1:

l'axe de rotation est indéfini.
```

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program MATH
  use mslib
  type(tm_quat)
                                :: QUAT
  real(pm_reel), dimension(3) :: AXE
  real(pm_reel)
                                :: ANGLE
  type(tm_code_retour)
                                :: CODE RETOUR
  QUAT%q0
                  2._pm_reel
  QUAT%q123(1) =
                  1._pm_reel
  QUAT%q123(2) =
                  0._pm_reel
  QUAT%q123(3) = -1._pm_reel
  call mu_quat_axe_angle ( QUAT, AXE, ANGLE, CODE_RETOUR )
  ! appel a la routine utilisateur d'ecriture des resultats
  call WRITE_RESULTATS (AXE, ANGLE, CODE_RETOUR)
```

end program MATH

Résultats attendus:

```
AXE(1) = .707

AXE(2) = 0.

AXE(3) = -.707

ANGLE = .123 10<sup>+1</sup>

CODE_RETOUR% valeur = 0

CODE_RETOUR% routine = 1124
```

Routine mu_quat_conjug

Identification

"Calcul du quaternion conjugué d'un quaternion donné."

Rôle

Calcul du quaternion conjugué d'un quaternion donné.

Séquence d'appel

(voir explications dans le volume 3)

call mu_quat_conjug (quat, quat_conjug, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_quat

quat

quaternion.

• Sorties obligatoires

tm_quat

quat_conjug

quaternion conjugué.

tm_code_retour

code_retour

Conditions sur les arguments

Sans objet.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour (voir explications dans le volume 3)
```

pm_OK (0): Retour normal.

```
Exemple en Fortran 90 portable (voir explications dans le volume 3)
```

```
program MATH

use mslib

type(tm_quat) :: QUAT
type(tm_quat) :: QUAT_CONJUG
type(tm_code_retour) :: CODE_RETOUR

QUAT%q0 = 2._pm_reel
```

QUAT%q123(1) = 1._pm_reel QUAT%q123(2) = 0._pm_reel QUAT%q123(3) = -1._pm_reel

call mu_quat_conjug (QUAT, QUAT_CONJUG, CODE_RETOUR)
! Le code retour de mu_quat_conjug est = 0

! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (QUAT_CONJUG, CODE_RETOUR)

end program MATH

Résultats attendus:

 $\begin{array}{lll} \text{QUAT_CONJUG\%q0} &=& 2.\\ \text{QUAT_CONJUG\%q123(1)} &=& -1.\\ \text{QUAT_CONJUG\%q123(2)} &=& 0.\\ \text{QUAT_CONJUG\%q123(3)} &=& 1. \end{array}$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1126

Routine mu_quat_mat

Identification

"Calcul de la **mat**rice de rotation associée à un **quat**ernion."

Rôle

Calcul, à partir d'un quaternion (normé ou non), de la matrice de rotation associée.

Séquence d'appel (voir explications dans le volume 3)

call mu_quat_mat (quat, mat, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_quat quaternion q correspondant à la matrice de rotation M

• Sorties obligatoires

 $pm_reel(3,3)$ mat matrice de rotation M

tm_code_retour code_retour

Conditions sur les arguments

• Le quaternion \tilde{q} en entrée doit être non nul.

Notes d'utilisation

• La transformation inverse peut s'effectuer à l'aide de la routine **mu_mat_quat**..

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour (voir explications dans le volume 3)
```

```
pm_OK (0): Retour normal.

pm_err_quat_nul (-2005): La norme du quaternion est nulle.
```

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

end program MATH

Résultats attendus:

```
MAT(1, 1) = 0.509

MAT(2, 1) = -0.861

MAT(3, 1) = 0.

MAT(1, 2) = 0.861

MAT(2, 2) = 0.509

MAT(3, 2) = 0.

MAT(1, 3) = 0.

MAT(2, 3) = 0.

MAT(3, 3) = 1.

CODE_RETOUR% valeur = 0

CODE_RETOUR% routine = 1148
```

Routine mu_quat_norme

Identification

"Normalisation d'un quaternion après calcul de sa norme."

Rôle

Calcul de la norme et normalisation d'un quaternion.

Séquence d'appel (voir explications dans le volume 3)

call mu_quat_norme (quat, quat_norme, norme, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

tm_quat quaternion.

• Sorties obligatoires

tm_quat quat_norme quaternion normé.

pm_reel **norme** norme du quaternion.

tm_code_retour code_retour

Conditions sur les arguments

• La norme du quaternion doit être strictement positive.

Notes d'utilisation

Sans objet.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour (voir explications dans le volume 3)
```

pm_OK (0): Retour normal.

pm_err_quat_nul (-2005): La norme du quaternion est nulle.

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

program MATH

use mslib

type(tm_quat) :: QUAT

type(tm_quat) :: QUAT_NORME

real(pm_reel) :: NORME

type(tm_code_retour) :: CODE_RETOUR

QUAT%q0 = 2._pm_reel QUAT%q123(1) = 1._pm_reel QUAT%q123(2) = 0._pm_reel QUAT%q123(3) = -1._pm_reel

call mu_quat_norme (QUAT, QUAT_NORME, NORME, CODE_RETOUR)

! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (QUAT_NORME, NORME, CODE_RETOUR)

end program MATH

Résultats attendus:

 $\begin{array}{ll} QUAT_NORME\%q0 &= .816 \\ QUAT_NORME\%q123(1) = .408 \\ QUAT_NORME\%q123(2) = 0. \\ QUAT_NORME\%q123(3) = -.408 \\ NORME &= .245 \ 10^{+1} \end{array}$

CODE_RETOUR% valeur = 0 CODE_RETOUR% routine = 1125

Routine mu_quat_rep

Identification

"A l'aide d'un **quat**ernion, calcul de changement de **rep**ère."

Rôle

A l'aide du quaternion de passage d'un repère R_1 vers un repère R_2 , on exprime dans R_2 un vecteur initialement exprimé dans R_1 .

Séquence d'appel

(voir explications dans le volume 3)

call mu_quat_rep (vect1, quat, vect2, code_retour)

Description des arguments

(voir explications dans le volume 3)

• Entrées obligatoires

pm_reel(3) vect1 coordonnées du vecteur dans le repère R₁

tm_quat quaternion de passage du repère R_1 au repère R_2

• Sorties obligatoires

pm_reel(3) vect2 coordonnées du vecteur dans le repère R₂

tm_code_retour code_retour

Conditions sur les arguments

• Le quaternion de passage ne doit pas être nul.

Notes d'utilisation

• Les deux vecteurs sont identiques, ils sont juste exprimés dans deux repères différents.

Références documentaires

• Algorithmes des routines du thème "Utilitaires mathématiques" de la MSLIB; G. Prat, avec la participation de L. Maisonobe (CS SI); référence MSLIB: M-NT-0-96-CIS.

```
Code retour
                 (voir explications dans le volume 3)
```

pm_OK (0): Retour normal.

(-2005): La norme du quaternion est nulle. pm_err_quat_nul

Exemple en Fortran 90 portable

(voir explications dans le volume 3)

```
program MATH
  use mslib
  real(pm_reel), dimension(3) :: VECT1
                               :: QUAT
  type(tm_quat)
  real(pm_reel), dimension(3) :: VECT2
  type(tm_code_retour)
                               :: CODE_RETOUR
  VECT1(1) = 1._pm_reel
  VECT1(2) = 0._pm_reel
  VECT1(3) = 0.\_pm\_reel
                  2._pm_reel
  QUAT%q0
               =
  QUAT^{q123(1)} = 1._pm_reel
  QUAT%q123(2) = 0._pm_reel
  QUAT%q123(3) = -1._pm_reel
  ! Passage du vecteur vect1 de R1 a R2
```

call mu_quat_rep (VECT1, QUAT, VECT2, CODE_RETOUR)

! appel a la routine utilisateur d'ecriture des resultats call WRITE_RESULTATS (VECT2, CODE_RETOUR)

end program MATH

Résultats attendus:

VECT2(1) = .667 VECT2(2) = .667 VECT2(3) = -.3333

 $CODE_RETOUR\%$ valeur = 0 CODE_RETOUR%routine = 1128