4616 – Métodos Numéricos Computacionais

Larissa Oliveira oliveira.t.larissa@gmail.com

Na última aula...

Seja f(x) uma função contínua no intervalo [a,b] e tal que f(a)f(b) < 0.

V O MPF consiste em transformar uma equação $\underline{f}(x) = 0$ em uma equação equivalente $\underline{x} = \varphi(x)$ e a partir de uma aproximação inicial x_0 gerar uma sequência $\{x_k\}$ de aproximações para \overline{x} pela relação $x_{k+1} = \varphi(x_k)$, $x_k = 0, 1, 2, ...$ $(f(\overline{x}) = 0$ se, e somente se, $\varphi(\overline{x}) = \overline{x}$).

Assim, transformamos o problema de encontrar um zero de f(x) no problema de encontrar um ponto fixo de $\varphi(x)$.

Implicação do procedimento:

Seja a equação
$$(x^2) + x - 6 = 0$$
. $\chi = (-x)^2$

Funções de iteração possíveis:

Dada uma equação do tipo
$$f(x) = 0$$
, há para tal equação mais de uma função de iteração $g(x)$, tal que: $f(x) = 0 \Leftrightarrow x = g(x)$

A forma geral das funções de iteração $\varphi(x)$ é $\varphi(x) = x + A(x)$ f(x) com a condição de que em \bar{x} , ponto fixo de $\varphi(x)$, se tenha $A(\bar{x}) \neq 0$.

✓ Análise Gráfica da Convergência

Graficamente, uma raiz da equação x = g(x) é a abcissa do ponto de intersecção da reta y = x e da curva y = g(x)

✓ Análise Gráfica da Convergência

✓ Análise Gráfica da Convergência

✓ Análise Gráfica da Convergência

 $\{x_k\} \not\rightarrow \xi$ quando $k \rightarrow inf$

Teorema:

Sendo \overline{x} uma raiz de f(x) = 0, isolada em um intervalo I centrado em \bar{x} e g(x) uma função de iteração para f(x) = 0. Se

- (i.) g(x) e g'(x) são contínuas em (ii) $|g'(x)| \le M < 1$, $\forall x \in I e$ (iii) $x_0 \in I$

então a sequência $\{x_k\}$ gerada pelo processo iterativo $\overline{x_{k+1}} = g(x_k)$ convergirá para \overline{x} .

$$\frac{1}{X} = g(\overline{X})$$

Exemplo

Seja
$$x^2 + x - 6 = 0$$

Funções de iteração possíveis:

$$\checkmark g_1(x) = 6 - x^2 \checkmark$$

$$\checkmark g_2(x) = \sqrt{6-x}$$

- $g_1(x) \Rightarrow$ geração de uma sequência divergente de $\overline{x_2} = 2$
- $g_2(x) \Rightarrow$ geração de uma sequência convergente para $\overline{x_2} = 2$

Analisando g₁

$$y$$
 ii) $|g_1'(x)| < 1 \Leftrightarrow |-2x| < 1 \Leftrightarrow -\frac{1}{2} < x < \frac{1}{2}$

Não existe um intervalo I centrado em $\bar{x_2}$ = 2, tal que |g'(x)| < 1, $\forall x \in I \Rightarrow g_1(x)$ não satisfaz a condição 2 do Teorema com relação a $\bar{x_2}$ = 2.

Analisando g₂

✓i)
$$g_2(x) = \sqrt{6-x}$$
 e $g'_2(x) = -\frac{1}{2\sqrt{6-x}}$

⇒ $g_2(x)$ é contínua em $S = \{x \in R \mid x \le 6\}$

⇒ $g'_2(x)$ é contínua em $S' = \{x \in R \mid x < 6\}$

ii)
$$|g'_2(x)| \leqslant 1 \Leftrightarrow \left| -\frac{1}{2\sqrt{6-x}} \right| < 1 \Leftrightarrow x < 5.75$$

iii) É possível obter um intervalo I centrado em \bar{x}_2 = 2, tal que todas as condições do Teorema sejam satisfeitas.

Condições de Parada

$$|x_{k+1}| - |x_k| < \varepsilon$$

$$|x_{k+1}| < \varepsilon$$

$$|x_k| < \varepsilon$$

Exemplo:

Utilizando o MPF, determine a raiz positiva e diferente de zero da equação x^2 – sen (x) = 0, com ϵ = 0.004

$$\varphi'(x) = \frac{x \cos(x) - \sin(x)}{x^2}$$

$$x^{2} - Sun(x) = 0$$

$$x^{2} = Sun(x)$$

$$x = sun(x)$$

$$x = Sun(x)$$

$$x = Sun(x)$$

$$\frac{\sin(x)}{x}$$

$$\frac{x\cos(x) - \sin(x)}{x^2}$$

$$y'(0.5) = -0.1625$$
,
 $y'(1.3) = -0.3644$

$$\chi_{0}=1$$

$$\chi_1 = f(\chi_0) = 0.8415$$

$$\times_3 = \Upsilon(\chi_2) = 0.87.8$$

$$X_{4} = Y(x_{3}) = 987.99$$
 ETRRO = $\frac{|0,8749|}{|0,8749|}$ pare

RELATIVO ERRO ABSOL.

Hoje...

Ideia de aproximantes

Seja \bar{x} a raiz da equação f(x) = 0, tal que $\bar{x} \in [a, b]$, finito e que f'(x) e f''(x) sejam funções contínuas que preservam o sinal em [a,b]. Seja x_k , tal que $x_k \approx \bar{x}$, $x_k \in [a,b]$ e h_k uma pequena tolerância positiva tal que:

$$\bar{x} = x_k + h_k$$

Aplicando a fórmula de Taylor em torno de \bar{x} temos:

$$f(\bar{x}) = f(x_k + h_k) = f(x_k) + h_k f'(x_k) + \frac{(h_k)^2}{2!} f''(x_k) + \dots + Erro$$

Truncando-se a série no termo de ordem 2 obtemos uma aproximação linear para $f(\bar{x})$:

$$f(\bar{x}) = f(x_k) + h_k f'(x_k)$$

Como
$$f(\bar{x}) = 0$$
, temos que $f(x_k) + h_k f'(x_k) \cong 0$ e daí $h_k \cong \frac{-f(x_k)}{f'(x_k)}$

Ao usarmos
$$\bar{x} = x_k + h_k$$
 temos que:
$$\bar{x} - x_k = \frac{f(x_k)}{f'(x_k)}$$

$$\bar{x} - x_k \cong \frac{-f(x_k)}{f'(x_k)}$$

Se substituirmos \bar{x} por um novo valor x_{k+1} temos:

Convergência

Seja f(x), f'(x) e f''(x) contínuas num intervalo I que contém a raiz de f(x). Se $f'(\bar{x}) \neq 0$ e $f''(x) \neq 0$, então o Método de Newton converge, sendo sua convergência de <u>ordem quadrática.</u>

critério de parada

✓ A cada iteração, testa-se se a aproximação encontrada poderá ser considerada como a solução do problema.

MOD.
MOD.

Vantagens:

- ✓ Rapidez processo de convergência;
- ✓ Desempenho elevado.

Desvantagens:

- \checkmark Necessidade da obtenção de f'(x);
- \checkmark O cálculo do valor numérico de f'(x) a cada iteração;

Exemplo

Utilizando o método de Newton, determine a raiz positiva da função $f(x) = 4\cos(x) - e^x = 0$ com $\varepsilon = 10^{-2}$.

$$f(x) = 4\cos(x) - e^{x}$$
 $f(x) = -4\sin(x) - e^{x}$
 $f'(x) = -4\sin(x) - e^{x}$
 $f'(x) = -4\sin(x) - e^{x}$
 $f'(x) = -4\sin(x) - e^{x}$

$$\chi_1 = \chi_0 - \frac{f(\chi_0)}{f'(\chi_0)} = 0.5 - \frac{1.8616}{(-3.5664)} = 1.0220$$

ERRO =
$$\frac{1}{10220} - 0.51 = 0.508 7 = 0.01$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1,0220 - \frac{(-0,6921)}{(-6,1914)} = 0,9102$$

$$\chi_{3}=\chi_{2}-\frac{f(\chi_{2})}{f(\chi_{2})}=0.9102-\frac{(-0.03c5)}{(-5.6933)}=0.9048$$

$$ERRO=\frac{|0.9048-0.9102|}{|0.9048|}=0.906 \angle E$$

$$|0.9048|$$

PARE

Exercício para presença

Utilizando o método de Newton, resolva a equação ln(x) + x - 4 = 0, com $\varepsilon = 0,0001$ e $x_0 = 1,5$. Apresente os valores com 4 casas decimais.