2. Hypothesis Testing

Dave Goldsman

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

3/2/20

Outline

- Introduction to Hypothesis Testing
- The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- Two-Sample Normal Variances Test
- 11 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- 6 Goodness-of-Fit Tests: Honors Example

Lesson 2.1 — Introduction to Hypothesis Testing

Goal: In this module, we'll study a population by collecting data and making sound, statistically valid conclusions about that population based on data that we collect.

General Approach

- 1. State a hypothesis.
- 2. Select a test statistic (to test whether or not the hypothesis is true).
- 3. Evaluate (calculate) the test statistic based on observations that we take.
- 4. Interpret results does the test statistic suggest that you reject or fail to reject your hypothesis?

Details follow....

1. **Hypotheses** are simply statements or claims about parameter values.

You perform a **hypothesis test** to prove or disprove the claim.

Set up a **null hypothesis** (H_0) and an **alternative hypothesis** (H_1) to cover the entire parameter space. The null hypothesis sort of represents the "status quo." It's not necessarily true, but we will grudgingly stick with it until proven otherwise.

Example: We currently believe that the mean weight of a filled package of chicken is μ_0 ounces. (We specify μ_0 .) But we have our suspicions.

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

This is a **two-sided test**. We will reject the belief of the null hypothesis H_0 if $\hat{\mu}$ (an estimator of μ) is "too high" or "too small."

Example: We hope that a new brand of tires will last for a mean of more than μ_0 miles. (We specify μ_0 .) But we really need evidence before we can state that claim with reasonable certainty. Else, we'll stay with the old brand.

$$H_0: \mu \le \mu_0$$

$$H_1: \mu > \mu_0$$

This is a **one-sided test**. We'll reject H_0 only if $\hat{\mu}$ is "too large."

Example: We test to see if emissions from a certain type of car are less than a mean of μ_0 ppm. But we need evidence.

$$H_0: \mu \ge \mu_0$$

$$H_1: \mu < \mu_0$$

This is a **one-sided test**. We'll reject the null hypothesis if $\hat{\mu}$ is "too small," and only then will make the claim that the emissions are low.

Idea: H_0 is the old, conservative "status quo." H_1 is the new, radical hypothesis. Although you may not be tooooo sure about the truth of H_0 , you won't reject it in favor of H_1 unless you see substantial evidence in support of H_1 .

Think of H_0 as "Innocent until proven guilty."

If you get substantial evidence supporting H_1 , you'll decide to reject H_0 . Otherwise, you "fail to reject" H_0 . (This roughly means that you grudgingly accept H_0 .)

2. Select a **test statistic** (a random variable that we'll use to test if H_0 is true).

For instance, we could compare an estimator $\hat{\mu}$ with μ_0 . The comparison is accomplished using a known sampling distribution (aka "test statistic"), e.g.,

$$z_{\rm obs} = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$
 (if σ^2 is known) or

$$t_{
m obs} \, = \, rac{ar{X} - \mu_0}{S/\sqrt{n}} \quad \mbox{(if } \sigma^2 \mbox{ is unknown)}.$$

Lots more details later.

- 3. Evaluate the test statistic. Here's the logic of hypothesis testing:
 - (a) Collect sample data.
 - (b) Calculate the value of the test statistic based on the data.
 - (c) Assume H_0 (the "status quo") is true.
 - (d) Determine the probability of the sample result, assuming H_0 is true.
 - (e) Decide from (d) if H_0 is plausible:
 - If the probability from (d) is low, reject H_0 and select H_1 .
 - If the probability from (d) is high, fail to reject H_0 .

Example: Time to metabolize a drug. The current drug takes $\mu_0 = 15$ min. Is the new drug better?

Claim: Expected time for new drug is < 15 min.

$$H_0: \mu \ge 15$$

 $H_1: \mu < 15$

Data:
$$n = 20$$
, $\bar{X} = 14.88$, $S = 0.333$.

The test statistic is

$$t_{\text{obs}} = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = -1.61.$$

Now, if H_0 is actually the true state of things, then $\mu = \mu_0$, and from our discussion on CI's, we have

$$t_{\rm obs} = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1) \sim t(19).$$

What would cause us to reject H_0 ?

If $\bar{X} \ll \mu_0 (=15)$, this would indicate that H_0 is probably wrong.

Equivalently, I'd reject H_0 if $t_{\rm obs}$ is "significantly" $\ll 0$.

4. Interpret the Test Statistic.

So if H_0 is true, is it reasonable (or, at least, not outrageous) to have gotten $t_{\rm obs} = -1.61$?

If yes, then we we'll fail to reject ("grudgingly accept") H_0 .

If no, then we'll reject H_0 in favor of H_1 .

Let's see.... From the t table, we have

$$t_{0.95,19} = -t_{0.05,19} = -1.729$$
 and $t_{0.90,19} = -t_{0.10,19} = -1.328$,

i.e.,

$$P(t(19) < -1.729) = 0.05$$
 and

$$P(t(19) < -1.328) = 0.10.$$

This means that

$$0.05$$

In English: If H_0 were true, there's a 100p% chance that we'd see a value of $t_{\rm obs}$ that's ≤ -1.61 . That's not a real high probability, but it's not toooo small.

Formally, we'd **reject** H_0 at "level" 0.10, since $t_{\rm obs} = -1.61 < -t_{0.10,19} = -1.328$.

But, we'd fail to reject H_0 at level 0.05, since $t_{\rm obs} = -1.61 > -t_{0.05,19} = -1.729$.

More on this pretty soon! \Box

Outline

- Introduction to Hypothesis Testing
- The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.2 — The Errors of Our Ways

Where Can We Go Wrong? Four things can happen:

- If H_0 is actually true and we conclude that it's true good. \bigcirc
- If H_0 is actually false and we conclude that it's false good. \bigcirc
- If H_0 is actually true and we conclude that it's false bad. This is called **Type I error**. \bigotimes
- If H_0 is actually false and we conclude that it's true bad. This is called **Type II error**. \otimes

	Decision	
State of nature	Accept H_0	Reject H_0
H_0 true	Correct! ©	Type I error 🚫
H_0 false	Type II error 📀	Correct! ©

Example: We incorrectly conclude that a new, inferior drug is better than the drug currently on the market — Type I error.

Example: We incorrectly conclude that a new, superior drug is worse than the drug currently on the market — Type II error.

We want to keep:

$$P(\text{Type I error}) = P(\text{Reject } H_0 \mid H_0 \text{ true}) \leq \alpha.$$

 $P(\text{Type II error}) = P(\text{Fail to Rej } H_0 \mid H_0 \text{ false}) \leq \beta.$

We choose α and β . Of course, we need to have $\alpha + \beta < 1$.

Usually, Type I error is considered to be "worse" than Type II.

Definition: The probability of Type I error, α , is called the **size** or **level of significance** of the test.

Definition: The **power** of a hypothesis test is

$$1 - \beta = P(\text{Reject } H_0 \mid H_0 \text{ false}).$$

It's good to have high power.

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 🕕 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.3 — Normal Mean Test with Known Variance

We'll discuss hypothesis tests involving the mean(s) of normal distribution(s) under various scenarios, all of which involve *known variance(s)*.

Suppose that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Nor}(\mu, \sigma^2)$, where σ^2 is somehow *known* (which is not very realistic).

Two-sided test (also known as a simple test):

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$.

We'll use \bar{X} to estimate μ . If \bar{X} is "significantly different" than μ_0 , then we'll reject H_0 . But how much is "significantly different"?

To determine what "significantly different" means, first define

$$Z_0 \equiv \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}.$$

If H_0 is true, then $E[\bar{X}] = \mu_0$ and $Var(\bar{X}) = \sigma^2/n$; and so $Z_0 \sim Nor(0, 1)$.

Then we have

$$P(-z_{\alpha/2} \le Z_0 \le z_{\alpha/2}) = 1 - \alpha.$$

A value of Z_0 outside the interval $[-z_{\alpha/2},z_{\alpha/2}]$ is highly unlikely if H_0 is true.

Therefore,

Reject
$$H_0$$
 iff $|Z_0| > z_{\alpha/2}$.

This assures us that

$$\begin{array}{lcl} P(\text{Type I error}) & = & P(\text{Reject } H_0 \mid H_0 \text{ true}) \\ & = & P\big(|Z_0| > z_{\alpha/2} \mid Z_0 \sim \text{Nor}(0,1)\big) \\ & = & \alpha. \end{array}$$

If $|Z_0| > z_{\alpha/2}$, then we're in the **rejection region**. (This is also called the **critical region**.)

If $|Z_0| \leq z_{\alpha/2}$, then we're in the acceptance region.

One-sided test:

$$H_0: \mu \le \mu_0$$

$$H_1: \mu > \mu_0$$

Again let

$$Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}.$$

A value of Z_0 outside the interval $(-\infty, z_\alpha]$ is highly unlikely if H_0 is true. Therefore,

Reject
$$H_0$$
 iff $Z_0 > z_{\alpha}$.

If $Z_0 > z_{\alpha}$, this suggests $\mu > \mu_0$.

Similarly, the other one-sided test:

$$H_0: \mu \ge \mu_0$$

 $H_1: \mu < \mu_0$

A value of Z_0 outside the interval $[-z_{\alpha}, \infty)$ is highly unlikely if H_0 is true. Therefore,

Reject
$$H_0$$
 iff $Z_0 < -z_\alpha$.

If $Z_0 < -z_{\alpha}$, this suggests $\mu < \mu_0$.

Example: We examine the weights of 25 nine-year-old kids.

Suppose we somehow know that the weights are normally distributed with $\sigma=4$. The sample mean of the 25 weights is 62.

Test the hypothesis that the mean weight is 60.

Keep the probability of Type I error = 0.05.

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$.

Here we have

$$Z_0 = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} = \frac{62 - 60}{4/\sqrt{25}} = 2.5.$$

Since $|Z_0| = 2.5 > z_{\alpha/2} = z_{0.025} = 1.96$, we reject H_0 .

Notice that a lower α results in a higher $z_{\alpha/2}$. Then it's "harder" to reject H_0 . For instance, if $\alpha=0.01$, then $z_{0.005}=2.58$, and we would *fail to reject* H_0 in this example.

Definition: The *p*-value of a test is the smallest level of significance α that would lead to rejection of H_0 .

Remark: Researchers often report the *p*-values of any tests that they conduct.

For the two-sided normal mean test with known variance, we reject H_0 iff

$$|Z_0| > z_{\alpha/2} = \Phi^{-1}(1 - \alpha/2)$$

iff $\Phi(|Z_0|) > 1 - \alpha/2$
iff $\alpha > 2(1 - \Phi(|Z_0|))$.

Thus, for the two-sided test

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$,

the p-value is
$$p = 2(1 - \Phi(|Z_0|))$$
. \square

Similarly, for the one-sided test

$$H_0: \mu \le \mu_0$$
 vs. $H_1: \mu > \mu_0$,

we have $p = 1 - \Phi(Z_0)$.

And for the other one-sided test

$$H_0: \mu \ge \mu_0$$
 vs. $H_1: \mu < \mu_0$,

we have $p = \Phi(Z_0)$.

Example: For the previous example,

$$p = 2(1 - \Phi(|Z_0|)) = 2(1 - \Phi(2.5)) = 0.0124.$$

Normal Mean Test with Known Variance: Design

- 1 Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 🕕 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- 15 Goodness-of-Fit Tests: Honors Example

Lesson 2.4 — Normal Mean Test with Known Variance: Design

Goal: Design a two-sided test with the following constraints on Type I and II errors:

$$P(\text{Type I error}) \leq \alpha \quad \text{and} \quad P(\text{Type II error} \mid \mu = \mu_1 > \mu_0) \leq \beta.$$

By "design," we mean how many observations n do we need for the two-sided test to satisfy a Type I error bound of α and a Type II error bound of β ?

Remark: The bound β is for the *special case* that the true mean μ happens to equal a *user-specified* value $\mu = \mu_1 > \mu_0$. In other words, we're trying to "protect" ourselves against the possibility that μ actually happens to equal μ_1 .

If we change the "protected" μ_1 , we'll need to change n. Generally, the closer μ_1 is to μ_0 , the more work we need to do (i.e., higher n) — because it's harder to distinguish between two close cases.

Theorem: Suppose the difference between the actual and hypothesized means is

$$\delta \equiv \mu - \mu_0 = \mu_1 - \mu_0.$$

(Without loss of generality, we'll assume $\mu_1 > \mu_0$.) Then the α and β design requirements can be achieved by taking a sample of size

$$n \doteq \sigma^2 (z_{\alpha/2} + z_{\beta})^2 / \delta^2.$$

Remark: In the proof that follows, we'll get an expression for β that involves the standard normal cdf evaluated at a mess that contains n. We'll then do an inversion to obtain the desired approximation for n.

Proof: Let's first look at the β value,

$$\beta = P(\text{Type II error } | \mu = \mu_1 > \mu_0)$$

$$= P(\text{Fail to Reject } H_0 | H_0 \text{ false } (\mu = \mu_1 > \mu_0))$$

$$= P(|Z_0| \le z_{\alpha/2} | \mu = \mu_1)$$

$$= P(-z_{\alpha/2} \le Z_0 \le z_{\alpha/2} | \mu = \mu_1)$$

$$= P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \le z_{\alpha/2} | \mu = \mu_1\right)$$

$$= P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu_1}{\sigma/\sqrt{n}} + \frac{\mu_1 - \mu_0}{\sigma/\sqrt{n}} \le z_{\alpha/2} | \mu = \mu_1\right).$$

Notice that

$$Z \equiv \frac{\bar{X} - \mu_1}{\sigma/\sqrt{n}} \sim \text{Nor}(0, 1).$$

This gives

$$\beta = P\left(-z_{\alpha/2} \le Z + \frac{\sqrt{n\delta}}{\sigma} \le z_{\alpha/2}\right)$$

$$= P\left(-z_{\alpha/2} - \frac{\sqrt{n\delta}}{\sigma} \le Z \le z_{\alpha/2} - \frac{\sqrt{n\delta}}{\sigma}\right)$$

$$= \Phi\left(z_{\alpha/2} - \frac{\sqrt{n\delta}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{\sqrt{n\delta}}{\sigma}\right).$$

Now, note that $-z_{\alpha/2} \ll 0$ and $-\sqrt{n}\delta/\sigma < 0$ (since $\delta > 0$).

These two facts imply that the second $\Phi(\cdot)$ is pretty much zero, so...

We only need to use the first term in the previous expression for β :

$$\beta \; \doteq \; \Phi \bigg(z_{\alpha/2} - \frac{\sqrt{n} \delta}{\sigma} \bigg)$$

iff

$$\Phi^{-1}(\beta) = -z_{\beta} \doteq z_{\alpha/2} - \frac{\sqrt{n}\delta}{\sigma}$$

iff

$$\frac{\sqrt{n}\delta}{\sigma} \doteq z_{\alpha/2} + z_{\beta}$$

iff

$$n \doteq \sigma^2(z_{\alpha/2} + z_{\beta})^2/\delta^2$$
. Done! Whew!

Recap: If you want to test $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$, and

- (1) You know σ^2 ,
- (2) You want $P(\text{Type I error}) = \alpha$, and
- (3) You want $P(\text{Type II error}) = \beta$ when $\mu = \mu_1 (\neq \mu_0)$, then you have to take $n \doteq \sigma^2 (z_{\alpha/2} + z_{\beta})^2 / \delta^2$ observations.

Similarly, if you're doing a *one-sided* test, it turns out that you need to take $n \doteq \sigma^2(z_{\alpha} + z_{\beta})^2/\delta^2$ observations.

Example: Weights of 9-year-old kids are normal with $\sigma=4$. How many observations should we take if we wish to test $H_0: \mu=60$ vs. $H_1: \mu\neq 60$, and we want $\alpha=0.05$ and $\beta=0.05$, if μ happens to actually equal $\mu_1=62$?

$$n \doteq \frac{\sigma^2}{\delta^2} (z_{\alpha/2} + z_{\beta})^2 = \frac{16}{4} (1.96 + 1.645)^2 = 51.98.$$

In other words, we need about 52 observations.

Two-Sample Normal Means Test with Known Variances

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 11 Bernoulli Proportion Test
- Two-Sample Bernoulli Proportions Test
- 13 Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.5 — Two-Sample Normal Means Test with Known Variances

Suppose we have the following set-up:

$$X_1, X_2, \dots, X_n \overset{\text{iid}}{\sim} \operatorname{Nor}(\mu_x, \sigma_x^2)$$
 and $Y_1, Y_2, \dots, Y_m \overset{\text{iid}}{\sim} \operatorname{Nor}(\mu_y, \sigma_y^2),$

where the samples are independent of each other, and σ_x^2 and σ_y^2 are somehow *known*.

Which of the two populations has the larger mean?

Here's the two-sided test to see if the means are different.

$$H_0: \mu_x = \mu_y$$
$$H_1: \mu_x \neq \mu_y$$

Define the test statistic

$$Z_0 = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}.$$

If H_0 is true (i.e., the means are equal), then

$$Z_0 = \frac{\bar{X} - \bar{Y}}{\sqrt{rac{\sigma_x^2}{n} + rac{\sigma_y^2}{m}}} \sim \operatorname{Nor}(0, 1).$$

Thus, as before,

Reject
$$H_0$$
 iff $|Z_0| > z_{\alpha/2}$.

Using more of the same reasoning as before, we get the following one-sided tests:

$$H_0: \mu_x \leq \mu_y \quad \text{vs.} \quad H_1: \mu_x > \mu_y.$$
 Reject $H_0 \quad \text{iff} \quad Z_0 \ > \ z_\alpha.$

$$H_0: \mu_x \geq \mu_y \quad \text{vs.} \quad H_1: \mu_x < \mu_y.$$
 Reject $H_0 \quad \text{iff} \quad Z_0 < -z_\alpha.$

It's so easy!! ©

Example: Suppose we want to test $H_0: \mu_x = \mu_y$ vs. $H_1: \mu_x \neq \mu_y$, and we have the following data:

$$n = 10, \quad \bar{X} = 824.9, \quad \sigma_x^2 = 40$$

 $m = 10, \quad \bar{Y} = 818.6, \quad \sigma_y^2 = 50,$

where the variances are somehow known.

Then

$$Z_0 = \frac{824.9 - 818.6}{\sqrt{\frac{40}{10} + \frac{50}{10}}} = 2.10.$$

If $\alpha = 0.05$, then $|Z_0| = 2.10 > z_{\alpha/2} = 1.96$, and so we reject H_0 . \square

- 1 Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 11 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- 6 Goodness-of-Fit Tests: Honors Example

Lesson 2.6 — Normal Mean Test with Unknown Variance

The next few lessons deal with the *unknown* variance case.

- Test the mean of a single normal distribution (here).
- Compare the means of two normal distributions when both variances are unknown (the following three lessons deal with different subcases).

Anyhow, it's time for t again!

Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Nor}(\mu, \sigma^2)$, where σ^2 is unknown.

Two-sided (aka simple) test for one normal population:

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$.

We'll use \bar{X} to estimate μ . If \bar{X} is "significantly different" than μ_0 , then we'll reject H_0 . For this purpose, we'll also need to estimate σ^2 .

Define the test statistic

$$T_0 \equiv \frac{\bar{X} - \mu_0}{S/\sqrt{n}},$$

where S^2 is our old friend, the sample variance,

$$S^{2} \equiv \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sim \frac{\sigma^{2} \chi^{2} (n-1)}{n-1}.$$

If H_0 is true, then

$$T_0 = \frac{\frac{\bar{X} - \mu_0}{\sqrt{\sigma^2/n}}}{\sqrt{S^2/\sigma^2}} \sim \frac{\text{Nor}(0, 1)}{\sqrt{\frac{\chi^2(n-1)}{n-1}}} \sim t(n-1).$$

So the two-sided test is:

Reject
$$H_0$$
 iff $|T_0| > t_{\alpha/2, n-1}$.

Using the same reasoning as in previous lessons, the **one-sided tests** are:

$$H_0: \mu \le \mu_0$$
 vs. $H_1: \mu > \mu_0$.

Reject
$$H_0$$
 iff $T_0 > t_{\alpha,n-1}$.

$$H_0: \mu \ge \mu_0$$
 vs. $H_1: \mu < \mu_0$.

Reject
$$H_0$$
 iff $T_0 < -t_{\alpha,n-1}$.

Recall: The *p*-value of a test is the smallest level of significance α that would lead to rejection of H_0 .

For this two-sided normal mean test with unknown variance, we reject H_0 iff

$$|T_0| > t_{\alpha/2,n-1} = F_{n-1}^{-1}(1 - \alpha/2),$$

where $F_{n-1}(t)$ is the cdf of the t(n-1) distribution (and $F_{n-1}^{-1}(\cdot)$ is the inverse). This relationship holds iff

$$F_{n-1}(|T_0|) > 1 - \alpha/2$$
 iff $\alpha > 2(1 - F_{n-1}(|T_0|))$.

Thus, for the two-sided test for the case of unknown variance,

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu \neq \mu_0$,

the *p*-value is $p = 2(1 - F_{n-1}(|T_0|))$.

Example: Suppose we want to test at level 0.05 whether or not the mean of some process is 150.

Data: n = 15, $\bar{X} = 152.18$, and $S^2 = 16.63$.

Then

$$T_0 \equiv \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = 2.07.$$

Let's do a two-sided test at level $\alpha = 0.05$. Since

$$|T_0| < t_{\alpha/2,n-1} = t_{0.025,14} = 2.145$$
, we (barely) fail to reject H_0 .

Alternatively, note that the p-value is $2(1 - F_{14}(2.07)) = 0.0574$, where the Excel function T.DIST can be used to evaluate the cdf $F_{14}(2.07)$. Since $p = 0.0574 > 0.05 = \alpha$, we didn't quite reject. \square

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 11 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- 13 Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.7 — Two-Sample Normal Means Tests with Unknown Variances

Suppose we have the following set-up:

$$X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Nor}(\mu_x, \sigma_x^2)$$

 $Y_1, Y_2, \dots, Y_m \stackrel{\text{iid}}{\sim} \operatorname{Nor}(\mu_y, \sigma_y^2),$

where the samples are independent of each other, and σ_x^2 and σ_y^2 are *unknown*.

Which population has the larger mean?

We'll look at three cases:

Pooled *t*-test:
$$\sigma_x^2 = \sigma_y^2 = \sigma^2$$
 (next, this lesson).

Approximate *t***-test:** $\sigma_x^2 \neq \sigma_y^2$ (later, this lesson).

Paired *t*-test: (X_i, Y_i) observations paired (next lesson).

Pooled *t*-Test

Suppose that $\sigma_x^2 = \sigma_y^2 = \sigma^2$ (unknown).

Consider the two-sided test to see if the means are different,

$$H_0: \mu_x = \mu_y$$
 vs. $H_1: \mu_x \neq \mu_y$.

Sample means and variances from the two populations,

$$\bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $\bar{Y} \equiv \frac{1}{m} \sum_{i=1}^{m} Y_i$

$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 and $S_y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y})^2$.

As in the previous module, define the **pooled variance estimator** by

$$S_p^2 \equiv \frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2}.$$

If H_0 is true, it can be shown that

$$S_p^2 \sim \frac{\sigma^2 \chi^2 (n+m-2)}{n+m-2},$$

and then the test statistic

$$T_0 \equiv \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n + m - 2).$$

Thus,

Reject
$$H_0$$
 iff $|T_0| > t_{\alpha/2,n+m-2}$.

One-Sided Tests:

$$H_0: \mu_x \le \mu_y \text{ vs. } H_1: \mu_x > \mu_y.$$

Reject
$$H_0$$
 iff $T_0 > t_{\alpha,n+m-2}$.

$$H_0: \mu_x \ge \mu_y \text{ vs. } H_1: \mu_x < \mu_y.$$

Reject
$$H_0$$
 iff $T_0 < -t_{\alpha,n+m-2}$.

Example: Catalyst X is currently used by a certain chemical process. If catalyst Y gives higher mean yield, we'll use it instead.

Thus, we want to test $H_0: \mu_x \ge \mu_y$ vs. $H_1: \mu_x < \mu_y$.

Suppose we have the following data:

$$n = 8, \ \bar{X} = 91.73, \ S_x^2 = 3.89$$

 $m = 8, \ \bar{Y} = 93.75, \ S_y^2 = 4.02.$

 S_x^2 is pretty close to S_y^2 , so we'll assume $\sigma_x^2 \doteq \sigma_y^2$.

This justifies the use of the pooled variance estimator

$$S_p^2 = \frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2} = 3.955,$$

so that

$$T_0 = \frac{X - Y}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = -2.03.$$

Let's test at level $\alpha = 0.05$. Then

$$t_{\alpha,n+m-2} = t_{0.05,14} = 1.761.$$

Since $T_0 < -t_{\alpha,n+m-2}$, we reject H_0 .

Thus, we should probably use catalyst Y. \Box

Approximate *t*-Test

Suppose that $\sigma_x^2 \neq \sigma_y^2$ (both unknown). As with our work with CIs, define

$$T_0^{\star} \equiv \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_x^2}{n} + \frac{S_y^2}{m}}} \approx t(\nu)$$
 (if H_0 true),

where the approximate degrees of freedom is given by

$$\nu \equiv \frac{\left(\frac{S_x^2}{n} + \frac{S_y^2}{m}\right)^2}{\frac{(S_x^2/n)^2}{n-1} + \frac{(S_y^2/m)^2}{m-1}}.$$

The following table summarizes how to carry out the various two- and one-sided tests.

two-sided	$H_0: \mu_x = \mu_y$ $H_1: \mu_x \neq \mu_y$	Reject H_0 iff $ T_0^{\star} > t_{\alpha/2,\nu}$
one-sided	$H_0: \mu_x \le \mu_y$ $H_1: \mu_x > \mu_y$	Reject H_0 iff $T_0^{\star} > t_{\alpha,\nu}$
one-sided	$H_0: \mu_x \ge \mu_y$ $H_1: \mu_x < \mu_y$	Reject H_0 iff $T_0^{\star} < -t_{\alpha,\nu}$

Example: Let's test $H_0: \mu_x = \mu_y$ vs. $H_1: \mu_x \neq \mu_y$ at level $\alpha = 0.10$.

Suppose we have the following data:

$$n = 15, \ \bar{X} = 24.2, \ S_x^2 = 10$$

$$m = 10, \ \bar{Y} = 23.9, \ S_y^2 = 20.$$

 S_x^2 isn't very close to S_y^2 , so we'll assume $\sigma_x^2 \neq \sigma_y^2$.

Plug-and-chug to get

$$T_0^\star = 0.184, \quad \nu = 14.9 \, \doteq \, 15, \quad {\rm and} \quad t_{\alpha/2,\nu} \, = \, t_{0.05,15} \, = \, 1.753.$$

Since $|T_0^{\star}| < t_{\alpha/2,\nu}$, we fail to reject (i.e., grudgingly accept) H_0 . Actually, since T_0^{\star} was so close to 0, we didn't really need the tables.

Two-Sample Normal Means Test with Paired Observations

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- 13 Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.8 — Two-Sample Normal Means Test with Paired Observations

Again consider two competing normal populations. Suppose we collect observations from the two populations in *pairs*.

The RV's between *different* pairs are *independent*. The two observations within the *same* pair may *not* be independent — in fact, it's often good for them to be positively correlated (as explained in the previous module)!

Example: One twin takes a new drug, the other takes a placebo.

$$\text{independent} \left\{ \begin{array}{ll} \text{Pair 1}: & (X_1,Y_1) \\ \text{Pair 2}: & (X_2,Y_2) \\ \vdots & & \vdots \\ \text{Pair } n: & \underbrace{(X_n,Y_n)}_{\text{not indep}} \end{array} \right.$$

Define the pair-wise differences,

$$D_i \equiv X_i - Y_i, \quad i = 1, 2, \dots, n.$$

Note that $D_1, D_2, \dots, D_n \stackrel{\text{iid}}{\sim} \text{Nor}(\mu_d, \sigma_d^2)$, where

$$\mu_d \equiv \mu_x - \mu_y$$
 and $\sigma_d^2 \equiv \sigma_x^2 + \sigma_y^2 - 2\text{Cov}(X_i, Y_i)$.

Define the sample mean and variance of the differences,

$$\bar{D} \equiv \sum_{i=1}^{n} D_i/n \sim \text{Nor}(\mu_d, \sigma_d^2/n)$$

$$S_d^2 \equiv \frac{1}{n-1} \sum_{i=1}^n (D_i - \bar{D})^2 \sim \frac{\sigma_d^2 \chi^2 (n-1)}{n-1}.$$

Then the test statistic is (assuming $\mu_d = \mu_x - \mu_y = 0$)

$$T_0 \equiv \frac{D}{\sqrt{S_d^2/n}} \sim t(n-1).$$

Using the exact same manipulations as in the single-sample normal mean problem with unknown variance, we get the following....

two-sided	$H_0: \mu_d = 0$	Reject H_0 iff $ T_0 > t_{\alpha/2, n-1}$
	$H_1: \mu_d \neq 0$	
one-sided	$H_0: \mu_d \le 0$	Reject H_0 iff $T_0 > t_{\alpha,n-1}$
	$H_0: \mu_d \le 0$ $H_1: \mu_d > 0$	
one-sided	$H_0: \mu_d \ge 0$	Reject H_0 iff $T_0 < -t_{\alpha,n-1}$
	$H_0: \mu_d \ge 0$ $H_1: \mu_d < 0$	

Example: Times for (the same) people to parallel park two cars.

Person	Park Honda	Park Cadillac	Difference
1	10	20	-10
2	25	40	-15
3	5	5	0
4	20	35	-15
5	15	20	-5

Let's test H_0 : $\mu_h = \mu_c$ at level $\alpha = 0.10$.

We see that n = 5, $\bar{D} = -9$, $S_d^2 = 42.5$. This gives $|T_0| = 3.087$.

Meanwhile, $t_{0.05,4}=2.13$, so we reject H_0 . We conclude that $\mu_h \neq \mu_c$ (and it's probably the case that Hondas are easier to park).

Normal Variance Test

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- 7 Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 🕕 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- 13 Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.9 — Normal Variance Test

What's Coming Up in the Next Few Lessons: We'll look at a variety of tests for parameters other than the mean.

- The variance σ^2 of a normal distribution (this lesson).
- The ratio of variances σ_x^2/σ_y^2 from two normals.
- The Bernoulli success parameter p.
- The difference of success parameters, $p_x p_y$, from two Bernoullis.

Set-up for the Normal Variance Test:

Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Nor}(\mu, \sigma^2)$, where μ and σ^2 are unknown.

Consider the two-sided test (where you specify the hypothesized σ_0^2):

$$H_0: \sigma^2 = \sigma_0^2$$
 vs. $H_1: \sigma^2 \neq \sigma_0^2$.

Recall (yet again) that the sample variance

$$S^{2} \equiv \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sim \frac{\sigma^{2} \chi^{2} (n-1)}{n-1}.$$

We'll use the test statistic

$$\chi_0^2 \equiv \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$$
 (if H_0 is true).

The two-sided test rejects H_0 iff

$$\chi_0^2 < \chi_{1-\alpha/2,n-1}^2$$
 or $\chi_0^2 > \chi_{\alpha/2,n-1}^2$.

One-Sided Tests:

$$H_0: \sigma^2 \le \sigma_0^2 \text{ vs. } H_1: \sigma^2 > \sigma_0^2.$$

Reject
$$H_0$$
 iff $\chi_0^2 > \chi_{\alpha,n-1}^2$.

$$H_0: \sigma^2 \ge \sigma_0^2$$
 vs. $H_1: \sigma^2 < \sigma_0^2$.

Reject
$$H_0$$
 iff $\chi_0^2 < \chi_{1-\alpha,n-1}^2$.

Example: Suppose we want to test at level 0.05, whether or not the variance of a certain process is ≤ 0.02 , specifically,

$$H_0: \sigma^2 \le 0.02$$
 vs. $H_1: \sigma^2 > 0.02$.

If the sample variance is "too high," we'll reject H_0 .

Suppose we have n = 20, $\bar{X} = 125.12$, and $S^2 = 0.0225$.

Then the test statistic $\chi_0^2=(n-1)S^2/\sigma_0^2=21.375$ (and isn't explicitly dependent on \bar{X}).

Further,
$$\chi^2_{\alpha,n-1} = \chi^2_{0.05,19} = 30.14$$
.

So we fail to reject H_0 . \square

Two-Sample Normal Variances Test

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- Two-Sample Normal Variances Test
- 🕕 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- 13 Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.10 — Two-Sample Normal Variances Test

Do the two populations have the same variance?

The usual set-up:

$$X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Nor}(\mu_x, \sigma_x^2)$$

 $Y_1, Y_2, \dots, Y_m \stackrel{\text{iid}}{\sim} \text{Nor}(\mu_y, \sigma_y^2).$

Assume all X's and Y's are independent.

We'll estimate the variances σ_x^2 and σ_y^2 by the sample variances S_x^2 and S_y^2 .

Two-sided test: $H_0: \sigma_x^2 = \sigma_y^2$ (or $H_0: \sigma_x^2/\sigma_y^2 = 1$) vs. $H_1: \sigma_x^2 \neq \sigma_y^2$.

We'll use the test statistic

$$F_0 \equiv \frac{S_x^2}{S_y^2} \sim F(n-1, m-1)$$
 (if H_0 is true).

Thus, we reject H_0 iff

$$F_0 < F_{1-\alpha/2,n-1,m-1}$$
 or $F_0 > F_{\alpha/2,n-1,m-1}$.

iff (because of a property of the F distribution discussed earlier)

$$F_0 < \frac{1}{F_{\alpha/2,m-1,n-1}}$$
 or $F_0 > F_{\alpha/2,n-1,m-1}$.

One-Sided Tests:

$$H_0: \sigma_x^2 \le \sigma_y^2$$
 vs. $H_1: \sigma_x^2 > \sigma_y^2$.

Reject
$$H_0$$
 iff $F_0 > F_{\alpha,n-1,m-1}$.

$$H_0: \sigma_x^2 \ge \sigma_y^2$$
 vs. $H_1: \sigma_x^2 < \sigma_y^2$.

Reject
$$H_0$$
 iff $F_0 < F_{1-\alpha,n-1,m-1} = 1/F_{\alpha,m-1,n-1}$.

Example: Suppose we want to test at level 0.05 whether or not two processes have the same variance.

$$H_0: \sigma_x^2 = \sigma_y^2$$
 vs. $H_1: \sigma_x^2 \neq \sigma_y^2$.

If the ratio of the sample variances is "too high" or "too low," reject H_0 .

Data: n = 7 observations with $S_x^2 = 7.78$; and m = 8 with $S_y^2 = 12.04$.

Then
$$F_0 = S_x^2 / S_y^2 = 0.646$$
,

$$F_{1-\alpha/2,n-1,m-1} = \frac{1}{F_{\alpha/2,m-1,n-1}} = \frac{1}{F_{0.025,7,6}} = 1/5.695 = 0.176$$
, and

$$F_{\alpha/2,n-1,m-1} = F_{0.025,6,7} = 5.119.$$

Since $F_{1-\alpha/2,n-1,m-1} \leq F_0 \leq F_{\alpha/2,n-1,m-1}$, we fail to reject H_0 .

Bernoulli Proportion Test

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- 7 Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 11 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.11 — Bernoulli Proportion Test

Suppose that $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bern}(p)$.

We're interested in testing hypotheses about the success parameter p.

Two-sided test (you specify the hypothesized p_0):

$$H_0: p = p_0$$
 vs. $H_1: p \neq p_0$.

Let
$$Y = \sum_{i=1}^{n} X_i \sim \text{Bin}(n, p)$$
.

We'll use the test statistic

$$Z_0 \equiv \frac{Y - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{X - p_0}{\sqrt{p_0(1 - p_0)/n}}.$$

If H_0 is true, the central limit theorem implies that

$$Z_0 \approx \text{Nor}(0,1).$$

Thus, for the two-sided test, we reject H_0 iff $|Z_0| > z_{\alpha/2}$.

Remark: In order for the CLT to work, you need n large (say at least 30), and both $np \ge 5$ and $nq \ge 5$ (so that p isn't too close to 0 or 1).

Remark: If n isn't very big, you may have to use Binomial tables (instead of the normal approximation). This gets tedious, and I won't go into it here!

One-Sided Tests:

$$H_0: p \le p_0 \quad \text{vs.} \quad H_1: p > p_0.$$
 Reject $H_0: \text{iff} \quad Z_0 > z_{\alpha}.$

$$H_0: p \ge p_0$$
 vs. $H_1: p < p_0$.

Reject
$$H_0$$
 iff $Z_0 < -z_{\alpha}$.

Example: In 200 samples of a certain semiconductor, there were only 4 defectives. We're interested in proving "beyond a shadow of a doubt" that the probability of a defective is less than 0.06. Let's conduct the test at level 0.05.

$$H_0: p \ge 0.06$$
 vs. $H_1: p < 0.06$.

(Since p is close to 0, we really did need to take a lot of observations — 200 in this case — in order for the CLT to work.)

We have n = 200, Y = 4 defectives, and $p_0 = 0.06$.

The test statistic is

$$Z_0 = \frac{Y - np_0}{\sqrt{np_0(1 - p_0)}} = -2.357.$$

Since $-z_{\alpha} = -1.645$, we reject H_0 ; so it seems p really is < 0.06.

Sample-Size Selection

Can we **design** a two-sided test $H_0: p = p_0$ vs. $H_1: p \neq p_0$ such that

$$P(\text{Type I error}) = \alpha \text{ and } P(\text{Type II error} | p \neq p_0) = \beta$$
?

Yes! We'll now show that the necessary sample size is

$$n \approx \left[\frac{z_{\alpha/2}\sqrt{p_0q_0} + z_{\beta}\sqrt{pq}}{p - p_0} \right]^2,$$

where, to save space, we let $q \equiv 1 - p$ and $q_0 \equiv 1 - p_0$.

Note that n is a function of the unknown p. In practice, we'll choose some $p=p_1$ and ask "How many observations should I take if p happens to equal p_1 instead of p_0 " (where you pick p_1)? Thus, we guard against the scenario in which p actually equals p_1 .

Proof (similar to normal mean design proof):

$$\beta = P(\text{Type II error})$$

$$= P(\text{Fail to Reject } H_0 \mid H_0 \text{ false})$$

$$\stackrel{:}{=} P(|Z_0| \leq z_{\alpha/2} \mid p \neq p_0) \text{ (by the CLT)}$$

$$= P(-z_{\alpha/2} \leq Z_0 \leq z_{\alpha/2} \mid p \neq p_0)$$

$$= P\left(-z_{\alpha/2} \leq \frac{Y - np_0}{\sqrt{np_0(1 - p_0)}} \leq z_{\alpha/2} \mid p \neq p_0\right)$$

$$= P\left(-z_{\alpha/2}\sqrt{\frac{p_0q_0}{pq}} \leq \frac{Y - np_0}{\sqrt{npq}} \leq z_{\alpha/2}\sqrt{\frac{p_0q_0}{pq}} \mid p \neq p_0\right)$$

$$= P\left(-c \leq \frac{Y - np}{\sqrt{npq}} + \frac{n(p - p_0)}{\sqrt{npq}} \leq c \mid p \neq p_0\right),$$

where

$$c \equiv z_{\alpha/2} \sqrt{\frac{p_0 q_0}{pq}}.$$

Now notice that (since p is the true success probability),

$$Z \equiv \frac{Y - np}{\sqrt{npq}} \approx \text{Nor}(0, 1).$$

This gives

$$\beta \doteq P\left(-c \leq Z + \frac{n(p-p_0)}{\sqrt{npq}} \leq c\right)$$

$$= P\left(-c - \frac{\sqrt{n}(p-p_0)}{\sqrt{pq}} \leq Z \leq c - \frac{\sqrt{n}(p-p_0)}{\sqrt{pq}}\right)$$

$$= P(-c - d \leq Z \leq c - d)$$

$$= \Phi(c - d) - \Phi(-c - d),$$

where

$$d \equiv \frac{\sqrt{n}(p-p_0)}{\sqrt{pq}}.$$

Also notice that

$$-c - d = -z_{\alpha/2} \sqrt{\frac{p_0 q_0}{pq}} - \frac{\sqrt{n(p - p_0)}}{\sqrt{pq}} \ll 0.$$

This implies $\Phi(-c-d) \doteq 0$, and so $\beta \doteq \Phi(c-d)$. Thus,

$$-z_{\beta} \equiv \Phi^{-1}(\beta) \doteq c - d = z_{\alpha/2} \sqrt{\frac{p_0 q_0}{pq}} - \frac{\sqrt{n}(p - p_0)}{\sqrt{pq}}.$$

After a little algebra, we finally(!) get

$$n \doteq \left[\frac{z_{\alpha/2} \sqrt{p_0 q_0} + z_{\beta} \sqrt{pq}}{p - p_0} \right]^2.$$

Similarly, the sample size for the corresponding one-sided test is

$$n \doteq \left[\frac{z_{\alpha}\sqrt{p_0q_0} + z_{\beta}\sqrt{pq}}{p - p_0}\right]^2$$
. Whew!

Example: We're conducting a study on whether or not a particular allergy medication works effectively. We'll assume that the drug either clearly works or doesn't work for each independent subject, so that we'll have legitimate Bernoulli trials. Our hypothesis is $H_0: p = p_0 = 0.8$ vs. $H_1: p \neq 0.8$.

In order to design our test (i.e., determine its sample size), let's set our Type I error probability to $\alpha=0.05$.

We'd like to protect against goofing up on the poor performance side, so let's set our Type II to error to $\beta=0.10$ in the special case that $p=p_1=0.7$. Then

$$n \doteq \left[\frac{z_{\alpha/2}\sqrt{p_0q_0} + z_{\beta}\sqrt{p_1q_1}}{p_1 - p_0} \right]^2$$

$$= \left[\frac{1.96\sqrt{(0.8)(0.2)} + 1.28\sqrt{(0.7)(0.3)}}{0.7 - 0.8} \right]^2$$

$$= 187.8 \rightarrow 188. \quad \Box$$

Two-Sample Bernoulli Proportions Test

- Introduction to Hypothesis Testing
- The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- 13 Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- Goodness-of-Fit Tests: Honors Example

Lesson 2.12 — Two-Sample Bernoulli Proportions Test

Suppose that $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Bern}(p_x)$ and $Y_1, Y_2, \ldots, Y_m \stackrel{\text{iid}}{\sim} \operatorname{Bern}(p_y)$ are two independent Bernoulli samples.

Now we're interested in testing hypotheses about the difference in the success parameters, p_x-p_y .

Two-sided test:

$$H_0: p_x = p_y$$
 vs. $H_1: p_x \neq p_y$.

Denote the respective sample means by

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i \sim rac{\mathrm{Bin}(n,p_x)}{n} \quad ext{and} \quad ar{Y} \sim rac{\mathrm{Bin}(m,p_y)}{m}.$$

By the CLT and our confidence interval work from the previous module, we know that for large n and m,

$$ar{X} pprox \operatorname{Nor}\left(p_x, rac{p_x(1-p_x)}{n}
ight) \quad ext{and} \quad ar{Y} pprox \operatorname{Nor}\left(p_y, rac{p_y(1-p_y)}{m}
ight).$$

Then

$$\frac{X - Y - (p_x - p_y)}{\sqrt{\frac{p_x(1 - p_x)}{n} + \frac{p_y(1 - p_y)}{m}}} \approx \text{Nor}(0, 1).$$

Moreover, under the null hypothesis, we have $p \equiv p_x = p_y$, in which case

$$\frac{\bar{X} - \bar{Y}}{\sqrt{p(1-p)\left[\frac{1}{n} + \frac{1}{m}\right]}} \approx \text{Nor}(0,1).$$

Of course, p in the above equation is unknown. But if H_0 is true, then $p = p_x = p_y$, so let's estimate p by the pooled estimator,

$$\hat{p} \equiv \frac{\sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j}{n+m}.$$

Now plug this into the previous equation to get one last approximation — the test statistic that we can finally work with:

$$Z_0 \; \equiv \; \frac{\bar{X} - \bar{Y}}{\sqrt{\hat{p}(1-\hat{p})\left[\frac{1}{n} + \frac{1}{m}\right]}} \; \approx \; \operatorname{Nor}(0,1) \quad \text{(under H_0)}.$$

Thus, for the two-sided test, we reject H_0 iff $|Z_0| > z_{\alpha/2}$.

One-Sided Tests:

$$\begin{array}{lll} H_0: p_x \leq p_y \text{ vs. } H_1: p_x > p_y & \Rightarrow & \text{reject } H_0 \text{ iff } Z_0 > z_\alpha. \\ H_0: p_x \geq p_y \text{ vs. } H_1: p_x < p_y & \Rightarrow & \text{reject } H_0 \text{ iff } Z_0 < -z_\alpha. \end{array}$$

Example: Compare two restaurants based on customer reviews (either yummy or nasty). Burger Fil-A got 178 yummies out of n=260 reviews (+82 nasties), while McWendy's got 250 yummies (+50 nasties) out of m=300 reviews.

Test $H_0: p_b = p_m$ vs. $H_1: p_b \neq p_m$ at level $\alpha = 0.05$. We have

$$\bar{B} = \frac{178}{260} = 0.6846, \quad \bar{M} = \frac{250}{300} = 0.8333, \quad \text{and} \quad \hat{p} = \frac{178 + 250}{260 + 300} = 0.7643.$$

This gives us

$$Z_0 = \frac{\bar{B} - \bar{M}}{\sqrt{\hat{p}(1-\hat{p})\left[\frac{1}{n} + \frac{1}{m}\right]}} = \frac{0.6846 - 0.8333}{\sqrt{0.7643(0.2357)\left[\frac{1}{260} + \frac{1}{300}\right]}} = -4.135.$$

Since $|Z_0| > z_{0.025} = 1.96$, we easily reject H_0 , and informally declare McWendy's the winner. \Box

Goodness-of-Fit Tests: Introduction

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 🕕 Bernoulli Proportion Test
- Two-Sample Bernoulli Proportions Test
- 13 Goodness-of-Fit Tests: Introduction
- 14 Goodness-of-Fit Tests: Examples
- 15 Goodness-of-Fit Tests: Honors Example

Lesson 2.13 — Goodness-of-Fit Tests: Introduction

At this point, let's suppose that we've guessed a reasonable distribution and then estimated the relevant parameters. Now let's conduct a formal test to see just how successful our toils have been — in other words, is our hypothesized distribution + relevant parameters acceptable?

In particular, we'll carry out a **goodness-of-fit test**,

$$H_0: X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{pmf / pdf } f(x).$$

What's Coming Up:

- Introduction (this lesson)
- Various examples (next lesson)
- A tough honors example (final lesson)

High-level view of a goodness-of-fit test procedure:

- 1. Divide the domain of f(x) into k sets, say, A_1, A_2, \ldots, A_k (distinct points if X is discrete, or intervals if X is continuous).
- 2. Tally the actual number of observations O_i that fall in set A_i , $i=1,2,\ldots,k$. Define $p_i\equiv P(X\in A_i)$, so $O_i\sim \mathrm{Bin}(n,p_i)$.
- 3. Determine the expected number of observations that would fall in each set if H_0 were true, say, $E_i = E[O_i] = np_i$, i = 1, 2, ..., k.
- 4. Calculate a test statistic based on the differences between the E_i 's and O_i 's. The **chi-squared g-o-f test** statistic is

$$\chi_0^2 \equiv \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}.$$

(Why does the above test statistic remind me of Old McDonald's Farm? \bigcirc

5. A large value of χ_0^2 indicates a bad fit (so just do one-sided test).

We reject H_0 if $\chi_0^2 > \chi_{\alpha,k-1-s}^2$, where

- s is the number of unknown parameters from f(x) that have to be estimated. E.g., if $X \sim \text{Nor}(\mu, \sigma^2)$, then s = 2.
- $\chi^2_{\alpha,\nu}$ is the $(1-\alpha)$ quantile of the $\chi^2(\nu)$ distribution, i.e., $P(\chi^2(\nu) < \chi^2_{\alpha,\nu}) = 1 \alpha$.

If $\chi_0^2 \leq \chi_{\alpha,k-1-s}^2$, we fail to reject (grudgingly accept) H_0 .

Remarks:

- Usual recommendation: For the χ^2 g-o-f test to work, pick k, n such that $E_i \geq 5$ for all i, and n is at least 30.
- If the df $\nu = k 1 s$ happens to be very big, then

$$\chi^2_{\alpha,\nu} \approx \nu \left[1 - \frac{2}{9\nu} + z_\alpha \sqrt{\frac{2}{9\nu}} \right]^3,$$

where z_{α} is the appropriate standard normal quantile.

• Other g-o-f tests: Kolmogorov–Smirnov, Anderson–Darling, Shapiro–Wilk, etc.

Baby Example: Test H_0 : X_i 's are Unif(0,1), with $\alpha = 0.05$.

Suppose we have n=1000 observations divided into k=5 equal-length intervals.

interval	[0,0.2]	(0.2,0.4]	(0.4,0.6]	(0.6,0.8]	(0.8,1.0]
p_i	0.2	0.2	0.2	0.2	0.2
$E_i = np_i$	200	200	200	200	200
	ı	208	222	199	192

It turns out that $\chi_0^2 \equiv \sum_{i=1}^k (O_i - E_i)^2 / E_i = 5.27$.

No unknown parameters, so s=0. Then $\chi^2_{\alpha,k-1-s}=\chi^2_{0.05,4}=9.49$.

Since $\chi_0^2 \leq \chi_{\alpha,k-1-s}^2$, we fail to reject H_0 . So we'll grudgingly pretend that the numbers are uniform. \Box

Goodness-of-Fit Tests: Examples

- Introduction to Hypothesis Testing
- The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- 15 Goodness-of-Fit Tests: Honors Example

Lesson 2.14 — Goodness-of-Fit Tests: Examples

We'll do a couple of detailed examples in this lesson.

Discrete Example: The number of defects in printed circuit boards is hypothesized to follow a Geometric(p) distribution. We collect a random sample of n=70 printed boards, and we observe the number of defects in each.

# defects	frequency
1	34
2	18
3	2
4	9
5	7
	70

Start by getting the maximum likelihood estimator for the geometric parameter p. The likelihood function is

$$L(p) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} (1-p)^{x_i-1} p = (1-p)^{\sum_{i=1}^{n} x_i - n} p^n$$

$$\ell n(L(p)) = \left(\sum_{i=1}^{n} x_i - n\right) \ell n(1-p) + n \ell n(p)$$

$$\frac{d \ell n(L(p))}{dp} = \frac{-\sum_{i=1}^{n} x_i + n}{1-p} + \frac{n}{p} = 0.$$

Solving for p gives the MLE,

$$\hat{p} = \frac{1}{\bar{X}} = \frac{70}{1(34) + 2(18) + 3(2) + 4(9) + 5(7)} = 0.4762.$$

Let's get the g-o-f test statistic, χ_0^2 . We'll make a little table, assuming $\hat{p}=0.4762$ is correct. By the Invariance Property of MLEs (this is why we learned it!), the expected number of boards having a certain value x is $E_x=nP(X=x)=n(1-\hat{p})^{x-1}\hat{p}$ (assuming \hat{p} is actually p).

x	P(X=x)	E_x	O_x
1	0.4762	33.33	34
2	0.2494	17.46	18
3	0.1307	9.15	2
4	0.0684	4.79	9
$\geq 5^{\star}$	0.0753	5.27	7
	1.0000	70	70

^{*}Combine the entries in the last row (>5) so the probabilities sum to one.

Well, we really ought to combine the last two cells too, since $E_4 = 4.79 < 5$. Let's do so to get the following "improved" table.

x	P(X=x)	E_x	O_x
1	0.4762	33.33	34
2	0.2494	17.46	18
3	0.1307	9.15	2
≥ 4	0.1437	10.06	16
	1.0000	70	70

Thus, the test statistic is

$$\chi_0^2 = \sum_{x=1}^4 \frac{(E_x - O_x)^2}{E_x} = \frac{(33.33 - 34)^2}{33.33} + \dots = 9.12.$$

Let k=4 denote the number of cells (that we ultimately ended up with), and let s=1 denote the number of parameters we had to estimate.

Suppose the level $\alpha = 0.05$.

Then we compare
$$\chi^2_0 = 9.12$$
 against $\chi^2_{\alpha,k-1-s} = \chi^2_{0.05,2} = 5.99$.

Since
$$\chi_0^2 > \chi_{\alpha,k-1-s}^2$$
, we reject H_0 .

This means that the number of defects probably isn't geometric. \Box

Continuous Distributions: For the continuous case, let's denote the intervals $A_i \equiv (a_{i-1}, a_i], i = 1, 2, ..., k$. For convenience, we choose the a_i 's to ensure that we have **equal-probability intervals**, i.e.,

$$p_i = P(X \in A_i) = P(a_{i-1} < X \le a_i) = 1/k$$
 for all i.

In this case, we immediately have $E_i = n/k$ for all i, and then

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - (n/k))^2}{n/k}.$$

The issue is that the a_i 's might depend on unknown parameters.

Example: Suppose that we're interested in fitting a distribution to a series of interarrival times. Could they be *Exponential*?

$$H_0: X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Exp}(\lambda).$$

Let's do a χ^2 g-o-f test with equal-probability intervals.

This amounts to choosing a_i 's such that the cdf

$$F(a_i) = P(X \le a_i) = 1 - e^{-\lambda a_i} = \frac{i}{k}, \quad i = 0, 1, 2, \dots, k.$$

That is, after a wee bit of algebra,

$$a_i = -\frac{1}{\lambda} \ln \left(1 - \frac{i}{k} \right), \quad i = 0, 1, 2, \dots, k.$$

Great, but λ is unknown (so we'll need to estimate s=1 parameter).

Good News: We know that the MLE is $\hat{\lambda} = 1/\bar{X}$. Thus, by the Invariance Property, the MLEs of the a_i 's are

$$\widehat{a}_i = -\frac{1}{\widehat{\lambda}} \ln \left(1 - \frac{i}{k} \right) = -\overline{X} \ln \left(1 - \frac{i}{k} \right), \quad i = 0, 1, 2, \dots, k.$$

Continue the Example: We take n=100 observations and divide them into k=10 equal-probability intervals, so that $E_i=n/k=10$ for all i. Suppose that the sample mean based on the 100 observations is $\bar{X}=0.8778$. Then

$$\hat{a}_i = -0.8778 \ln(1 - 0.1i), \quad i = 0, 1, 2, \dots, 10.$$

Further suppose we determine which interval each of the 100 observations belongs to and tally them up to get the O_i 's....

interval $(\hat{a}_{i-1}, \hat{a}_i]$	O_i	$E_i = n/k$
[0, 0.092]	0	10
(0.092, 0.196]	1	10
(0.196, 0.313]	1	10
(0.313, 0.448]	6	10
(0.448, 0.608]	17	10
(0.608, 0.804]	21	10
(0.804, 1.057]	23	10
(1.057, 1.413]	24	10
(1.413, 2.021]	7	10
$(2.021, \infty)$	0	10
	100	100

$$\chi_0^2 = \sum_{i=1}^k (O_i - E_i)^2 / E_i = 92.2$$
 and $\chi_{\alpha,k-1-s}^2 = \chi_{0.05,8}^2 = 15.51$.

So reject H_0 . These guys ain't Expo. No way, no how.

Goodness-of-Fit Tests: Honors Example

- Introduction to Hypothesis Testing
- 2 The Errors of Our Ways
- 3 Normal Mean Test with Known Variance
- 4 Normal Mean Test with Known Variance: Design
- 5 Two-Sample Normal Means Test with Known Variances
- 6 Normal Mean Test with Unknown Variance
- Two-Sample Normal Means Tests with Unknown Variances
- 8 Two-Sample Normal Means Test with Paired Observations
- Normal Variance Test
- 10 Two-Sample Normal Variances Test
- 🕕 Bernoulli Proportion Test
- 12 Two-Sample Bernoulli Proportions Test
- Goodness-of-Fit Tests: Introduction
- Goodness-of-Fit Tests: Examples
- 6 Goodness-of-Fit Tests: Honors Example

Lesson 2.15 — Goodness-of-Fit Tests: Honors Example

Let's make things more interesting with an extended example / mini-project.

We consider the same sample of 100 iid observations from the end of the last lesson, now with some more details.

0.9448

0.8332

 $0.6811 \cdots$

0.5635

The sample mean for this data set is $\bar{X} = 0.8778$, and the sample standard deviation is S = 0.3347. Here's what the little fella looks like:

In this lesson, we'll do various goodness-of-fit tests to determine which distribution(s) the data could come from.

$$H_0: X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} f(x),$$

where we'll consider the following possibilities:

- Exponential (rejected in the previous lesson).
- Gamma (which generalizes the exponential).
- Weibull (which generalizes the exponential in a different way).

In each case, we'll divide the data into k=10 equal-probability intervals and perform a χ^2 g-o-f test at level $\alpha=0.05$.

Along the way, we'll encounter a number of interesting issues that we'll need to deal with; but it'll all work out in the end.

Exponential: In the previous lesson, we tested the null hypothesis that

$$H_0: X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\lambda).$$

Recall that we failed miserably.

But, in retrospect, this makes sense in light of the facts that:

- The graph doesn't look anywhere near exponential.
- The expected value and standard deviation of an $\operatorname{Exp}(\lambda)$ random variable are both $1/\lambda$; yet the sample mean $\bar{X}=0.8778$ is \gg the sample standard deviation S=0.3347.

So this motivates our need to look at other distributions in our quest to find a good data fit.

Gamma: The Gamma distribution with parameters r and λ has pdf

$$f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}, \quad x > 0.$$

Note that r = 1 yields the $Exp(\lambda)$ as a special case. We'll test

$$H_0: X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Gam}(r, \lambda).$$

Way back in the good old days, we found the MLEs for r and λ :

$$\hat{\lambda} = \hat{r}/\bar{X},$$

where \hat{r} solves

$$g(r) \equiv n \ln(r/\bar{X}) - n\Psi(r) + \ln\left(\prod_{i=1}^{n} X_i\right) = 0,$$

and where $\Psi(r) \equiv \Gamma'(r)/\Gamma(r)$ is the digamma function.

Since the digamma is sometimes a little hard to find in the usual software packages, we'll incorporate the approximation

$$\Gamma'(r) \ \doteq \ \frac{\Gamma(r+h) - \Gamma(r)}{h}$$
 (for any small h of your choosing).

So we need to find \hat{r} that solves

$$g(r) \doteq n \ln(r) - n \ln(\bar{X}) - \frac{n}{h} \left(\frac{\Gamma(r+h)}{\Gamma(r)} - 1 \right) + \ln\left(\prod_{i=1}^{n} X_i\right) = 0.$$
 (1)

How to solve for a zero?

- trial-and-error or by some sort of linear search that's for losers!
- bisection method let's try it here!
- Newton's method stay tuned!

Bisection is an easy way to find a zero of any continuous function g(r). It relies on the **Intermediate Value Theorem** (IVT), which states that if $g(\ell)g(u) < 0$, then there is a zero $r^* \in [\ell, u]$. Using this fact, it's easy to hone in on a zero via sequential bisecting:

- Initialization: Find lower and upper bounds $\ell_0 < u_0$ such that $g(\ell_0)g(u_0) < 0$. Then the IVT implies that $r^\star \in [\ell_0, u_0]$.
- For j = 0, 1, 2, ...,
 - Let the midpoint of the current interval be $r_j \leftarrow (\ell_j + u_j)/2$.
 - If $g(r_j)$ is sufficiently close to 0, or the interval width $u_j \ell_j$ is sufficiently small, or your iteration budget is exceeded, then set $r^* \leftarrow r_j$ and STOP.
 - If the sign of $g(r_j)$ matches that of $g(\ell_j)$, this means that $r^* \in [r_j, u_j]$; so set $\ell_{j+1} \leftarrow r_j$ and $u_{j+1} \leftarrow u_j$. Otherwise, $r^* \in [\ell_j, r_j]$; so set $\ell_{j+1} \leftarrow \ell_j$ and $u_{j+1} \leftarrow r_j$.

Each iteration of the algorithm chops the search area in two and therefore converges to r^* pretty quickly.

Let's try bisection out on our dataset of n=100 observations, where we recall that the sample mean is $\bar{x}=0.8778$. And trust me that $\ln\left(\prod_{i=1}^n x_i\right)=-21.5623$.

Let's take the approximate differentiation term h=0.01. Then here's what Equation (1) simplifies to:

$$\begin{split} g(r) & \doteq 100 \, \ell \mathrm{n}(r) - 100 \, \ell \mathrm{n}(0.8778) - \frac{100}{0.01} \Big(\frac{\Gamma(r+0.01)}{\Gamma(r)} - 1 \Big) - 21.5623 \\ & = 100 \, \ell \mathrm{n}(r) - \frac{10000 \, \Gamma(r+0.01)}{\Gamma(r)} + 9991.47 \, = \, 0. \end{split}$$

In order to initialize the bisection algorithm, we note that g(5) = 0.5506 and g(7) = -3.0595. So there's a zero in there somewhere just itching to be found!

The algorithm is depicted in all of its glory in the next table.

step	$ig \ell_j$	$g(\ell_j)$	u_j	$g(u_j)$	r_j	$g(r_j)$
0	5.0000	0.5506	7.0000	-3.0595	6.0000	-1.5210
1	5.0000	0.5506	6.0000	-1.5210	5.5000	-0.5698
2	5.0000	0.5506	5.5000	-0.5698	5.2500	-0.0338
3	5.0000	0.5506	5.2500	-0.0338	5.1250	0.2519
4	5.1250	0.2519	5.2500	-0.0338	5.1875	0.1075
5	5.1875	0.1075	5.2500	-0.0338	5.2188	0.0365
6	5.2188	0.0365	5.2500	-0.0338	5.2344	0.0013
7	5.2344	0.0013	5.2500	-0.0338	5.2422	-0.0163
÷						
14	5.2349	0.0000	5.2349	0.0000	$r^\star = 5.2349$	0.0000

We see that the algorithm eventually gives $\hat{r}=r^\star=5.2349$; and then $\hat{\lambda}=\hat{r}/\bar{X}=5.9637$.

So now we can start our χ^2 goodness-of-fit toils, noting that we have s=2 unknown parameters.

We take the n=100 observations and divide them into k=10 equal-probability intervals, so that $E_i=n/k=10$ for all i.

The (approximate) endpoints of the intervals are implicitly given by $\widehat{F}(\hat{a}_i) = i/k, i = 0, 1, 2, \dots, k$, where $\widehat{F}(x)$ is the cdf of the $\operatorname{Gam}(\hat{r}, \hat{\lambda})$ distribution.

Sadly, gamma distribution's cdf doesn't have a closed-form. But that's why we have Excel (or its friends) around, e.g.,

$$\hat{a}_i = \hat{F}^{-1}(i/k) = \text{GAMMAINV}(i/k, \hat{r}, \hat{\lambda}).$$

interval $(\hat{a}_{i-1}, \hat{a}_i]$	O_i	$E_i = n/k$
[0.000, 0.436]	8	10
(0.436, 0.550]	12	10
(0.550, 0.644]	6	10
(0.644, 0.733]	9	10
(0.733, 0.823]	12	10
(0.823, 0.920]	8	10
(0.920, 1.032]	13	10
(1.032, 1.174]	14	10
(1.174, 1.391]	10	10
$(1.391, \infty)$	8	10
	100	100

$$\chi_0^2 = \sum_{i=1}^k (O_i - E_i)^2 / E_i = 6.2$$
 and $\chi_{\alpha,k-1-s}^2 = \chi_{0.05,7}^2 = 14.07$. So fail to reject H_0 . These may indeed be gamma!

Weibull: The Weibull distribution has cdf $F(x) = 1 - \exp[-(\lambda x)^r]$, for $x \ge 0$. Note that r = 1 yields the $\text{Exp}(\lambda)$ as a special case.

Let's get MLEs for the s=2 unknown parameters (r and λ). After a little algebra (a couple of chain rules), the pdf is

$$f(x) = \lambda r(\lambda x)^{r-1} e^{-(\lambda x)^r}, \quad x \ge 0.$$

So the likelihood function for an iid sample of size n is

$$L(r,\lambda) = \prod_{i=1}^{n} f(x_i) = \lambda^{nr} r^n \Big(\prod_{i=1}^{n} x_i \Big)^{r-1} \exp \Big[-\lambda^r \sum_{i=1}^{n} x_i^r \Big].$$

$$\ln(L) = nr \ln(\lambda) + n \ln(r) + (r-1) \ln\left(\prod_{i=1}^{n} x_i\right) - \lambda^r \sum_{i=1}^{n} x_i^r.$$

At this point, maximize with respect to r and λ by setting

$$\frac{\partial}{\partial r} \ln(L) \ = \ 0 \quad \text{and} \quad \frac{\partial}{\partial \lambda} \ln(L) \ = \ 0.$$

After more algebra — including the fact that $\frac{d}{dx}\,c^x=c^x\ell{\bf n}(c)$ — we get the simultaneous equations

$$\lambda \ = \ \left(\frac{1}{n}\sum_{i=1}^n x_i^r\right)^{-1/r} \quad \text{and} \quad$$

$$g(r) = \frac{n}{r} + \ln \left(\prod_{i=1}^{n} x_i \right) - \frac{n \sum_{i} x_i^r \ln(x_i)}{\sum_{i} x_i^r} = 0.$$

The equation for λ looks easy enough, if only we could solve for r!

But we can! Let's use **Newton's method**. It's usually a lot faster than bisection. Here's a reasonable implementation of Newton.

- ① Initialize $r_0 = \bar{X}/S$, where \bar{X} is the sample mean and S^2 is the sample variance. Set $j \leftarrow 0$.
- 2 Update $r_{j+1} \leftarrow r_j g(r_j)/g'(r_j)$.
- ③ If $|g(r_{j+1})|$ or $|r_{j+1} r_j|$ or your budget is suitably small, then STOP and set the MLE $\hat{r} \leftarrow r_{j+1}$. Otherwise, let $j \leftarrow j+1$ and goto Step 2.

To use Newton, we need (after yet more algebra)

$$g'(r) = -\frac{n}{r^2} - \frac{n \sum_{i} x_i^r [\ell n(x_i)]^2}{\sum_{i} x_i^r} + \frac{n \left[\sum_{i} x_i^r \ell n(x_i)\right]^2}{\left[\sum_{i} x_i^r\right]^2}.$$

Let's try Newton on our dataset of n=100 observations, where $r_0 = \bar{X}/S = 0.8778/0.3347 = 2.6227$. This results in....

step	$ r_i $	$g(r_i)$	$g'(r_i)$
0	2.6227	5.0896	-25.0848
1	2.8224	0.7748	-23.8654
2	2.8549	0.1170	-23.6493
3	2.8598	0.0178	-23.6174
4	2.8606	0.0027	-23.6126
5	2.8607		

Hence, $\hat{r} = r_5 = 2.8607$, and thus,

$$\hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^{\hat{r}}\right)^{-1/\hat{r}} = 1.0148.$$

Again do a χ^2 g-o-f test with equal-probability intervals. To get the endpoints, we note that $F(a_i)=i/k$; and then some algebra fun + the MLE Invariance Property yield

$$\hat{a}_{i} = \frac{1}{\widehat{\lambda}} \left[-\ell n \left(1 - \frac{i}{k} \right) \right]^{1/\widehat{r}}$$

$$= 0.9854 \left[-\ell n (1 - 0.1 i) \right]^{0.3496}, \quad i = 0, 1, 2, \dots, 10.$$

Moreover, it turns out (see the next table) that

$$\chi_0^2 = \sum_{i=1}^k (O_i - E_i)^2 / E_i = 5.0$$
 and $\chi_{\alpha,k-1-s}^2 = \chi_{0.05,7}^2 = 14.07$.

So we fail to reject H_0 , and we'll grudgingly pretend that these observations are Weibull. \Box

interval $(\hat{a}_{i-1}, \hat{a}_i]$	O_i	$E_i = n/k$
[0, 0.4487]	8	10
(0.4487, 0.5833]	15	10
(0.5833, 0.6872]	9	10
(0.6872, 0.7792]	11	10
(0.7792, 0.8669]	8	10
(0.8669, 0.9557]	7	10
(0.9557, 1.0514]	10	10
(1.0514, 1.1637]	12	10
(1.1637, 1.3189]	11	10
$(1.3189, \infty]$	9	10
	100	100

The Big Reveal: I actually generated the observations from a Weibull distribution with parameters r=3 and $\lambda=1$. So we did pretty well!

