

Cryptography 3: Asymmetric Cryptography

Maria Eichlseder
Information Security – WT 2023/24

You Are Here

Recap of Last Week (1): Schemes for Encryption

Encryption schemes transform a plaintext Message $M \stackrel{\square}{=}$ of arbitrary length to a Ciphertext $C \stackrel{\square}{=}$ of about the same length based on a Key $K \stackrel{\square}{\triangleleft}$ of fixed length.

Schemes may accept additional inputs or produce an authentication Tag T \gg .

Recap of Last Week (2): Layers of the Symmetric Crypto Stack

= Outline

Background

- Motivation, Goals, Applications
- Modular Arithmetic and Hard Problems

Diffie-Hellman Key Exchange

- Trapdoor One-way Functions
- RSA Public-Key Encryption

RSA Signatures

Background

Introduction

Limitations of Symmetric Cryptography

- System with *n* users needs $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ key-pairs
- Adding new users is expensive and complicated
- How would this work for securing the internet?!

Symmetric Trust Relationships

- Assumes that users trust each other equally
- Does not support establishing new connections
- Does not support properties like non-repudiation

Asymmetric Crypto Schemes

to establish a new connection

to authenticate a new connection

Key Exchange

Asym. Encryption

Signature

Two Keypairs K_A , K_B

A and B communicate to agree on a new symmetric key

- A, B can influence key
- A, B can derive key

Asymmetric Keypair K_A

A receives confidential messages (usually an "encapsulated" key)

- Anyone can encrypt
- A can decrypt

Asymmetric Keypair K_A

A creates a signature to authenticate messages

- A can authenticate
- Everyone can verify

Applications of Digital Signatures

Applications of Key Exchange and Asymmetric Encryption

Key Exchange is used to agree on a session key to be used for a symmetrically protected communication channel

- Secure Communication via TLS
- **B** IPsec for protecting VPNs
- >_ SSH Secure Shell
- ..

Asymmetric Encryption is mostly used to send a session key for a symmetrically protected message ("key encapsulation")

- >_ SSH Secure Shell
- Email encryption with PGP or S/MIME
- ...

Recap: Modular Arithmetic and the Set \mathbb{Z}_n

We arrange integers in classes by their remainder after division by the modulus n (aka "modulo n", "reduce by n")

 $\mathbb{Z}_n = \{0, \dots, n-1\}$ is the set of all classes modulo n.

Integers a, b in the same class are "congruent mod n": " $a \equiv b \pmod{n}$ ".

П
p
0
\Box
ë.
d
\square
g
Ώ.

Clas	$s \in \mathbb{Z}_{11}$	$Integers \subseteq \mathbb{Z}$
	0	$\{\ldots, -11, 0, 11, 22, \ldots\}$
	1	$\{\ldots, -10, 1, 12, 23, \ldots\}$
	2	$\{\ldots, -9, 2, 13, 24, \ldots\}$
	÷	:
	10	$\{\ldots, -1, 10, 21, 32, \ldots\}$

Computing (mod n): The Additive Group (\mathbb{Z}_n , +)

The set \mathbb{Z}_n with the operation + (addition modulo n) is a group that satisfies:

- 1 Associativity: $\forall a, b, c \in \mathbb{Z}_n : a + (b + c) = (a + b) + c$
- **2** Commutativity: $\forall a, b \in \mathbb{Z}_n : a + b = b + a$
- 3 Neutral element 0: $\forall a \in \mathbb{Z}_n : a + 0 = a = 0 + a$
- 4 Inverse element -a for every element $a \in \mathbb{Z}_n$: a + (-a) = 0

+	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5				9		0
2	2		4	5	6	7	8	9	10	0	1
3	3	4	5	6	7	8	9	10	0	1	2
:	:	:	:	:	;	:	:	;	:	;	:
10	10	0	1	2	3	4	5	6	7	8	9

Example $(\mathbb{Z}_{11},+)$:

Computing (mod n): The Multiplicative Group (\mathbb{Z}_n^* , ·)

The set \mathbb{Z}_n with the operation \cdot (multiplication modulo n) is **not** a group: For example, 0 has no multiplicative inverse b such that $b \cdot 0 \equiv 1$.

But the set $\mathbb{Z}_n^* := \{ a \in \mathbb{Z}_n \mid \exists \, b \in \mathbb{Z}_n : \, b \cdot a = 1 \}$ of invertible elements is a group.

Example $(\mathbb{Z}_{11}^*,\cdot)$:

	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
	2									
3	3	6	9	1	4	7	10	2	5	8
:	:									
10	10	9	8	7	6	5	4	3	2	1

Recap: Invertible Elements modulo *n* and Euler phi-Function

- **Definition**: Integers *a*, *b* are co-prime if they have no common prime factor.
- **Theorem**: Element *a* has a multiplicative inverse mod *n* iff *a*, *n* are co-prime. This inverse can be found with the Extended Euclidean Algorithm.
- **Definition**: The Euler phi-function $\varphi(n)$ gives the number of integers in the range $1, \ldots, n-1$ which are co-prime to the integer n.
 - m p prime: arphi(p)=p-1
 - \blacksquare $n = p \cdot q$ with p, q prime: $\varphi(n) = \varphi(p \cdot q) = (p-1) \cdot (q-1)$

Example:
$$\varphi(15) = (3-1) \cdot (5-1) = 8$$
: numbers $\{1, 2, 4, 7, 8, 11, 13, 14\}$

Recap: Generators and Euler's Theorem

- \mathbb{Z}_n^* contains exactly the $\varphi(n)$ elements in $1, \ldots, n-1$ that are co-prime to n.
- Euler's Theorem: For all integers a and n that are co-prime: $a^{\varphi(n)} \equiv 1 \pmod{n}$
- **Definition**: If $\varphi(n)$ is the smallest integer t > 1 such that $a^t \equiv 1 \pmod{n}$, then a is called a generator of \mathbb{Z}_n^* .

Example: a=2 is a generator of \mathbb{Z}_{11}^* , where $\varphi(11)=10$:

$$2^1 = 2$$

•
$$2^4 = 16 \equiv 5$$

•
$$2^4 = 16 \equiv 5$$
 • $2^7 \equiv 18 \equiv 7$

$$2^2 = 2 \cdot 2 = 4$$

$$2^5 \equiv 10$$

•
$$2^2 = 2 \cdot 2 = 4$$
 • $2^5 \equiv 10$ • $2^8 \equiv 14 \equiv 3$

■
$$2^3 = 2 \cdot 4 = 8$$
 ■ $2^6 \equiv 20 \equiv 9$ ■ $2^9 \equiv 6$

$$2^6 \equiv 20 \equiv 1$$

$$2^9 \equiv 6$$

$$2^{10} \equiv 12 \equiv 1$$

The Discrete Logarithm Problem (DLP)

Discrete Logarithm Problem

Given a prime number
$$p$$
, a generator $g \in \mathbb{Z}_p^*$, and an element $y \in \mathbb{Z}_p^*$, find the integer $x \in \{0, \dots, p-2\}$ such that $\underbrace{g \cdot g \cdots g}_{x \text{ times}} = g^x \equiv y \pmod{p}$.

The DLP is believed to be hard in the group (\mathbb{Z}_p^*, \cdot) for large primes p.

Example: Prime modulus p = 11, generator q = 2, and y = 10: 10

- $2^1 = 2$
- $2^3 = 8$
- $2^4 = 16 \equiv 5 \pmod{11}$
- $2^5 = 32 \equiv 10 \pmod{11}$

The Integer Factorization Problem (IFP)

Integer Factorization Problem

Given $n \in \mathbb{N}$, find primes p_i and exponents $e_i \in \mathbb{N}$ such that $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$

The IFP is believed to be hard if n is the product of two large primes: $n = p \cdot q$

Example:
$$n = 143 \Rightarrow n = p \cdot q = 11 \cdot 13$$

Key Exchange

Establishing Secure Communication

Diffie-Hellman (DH) Key Exchange

- In 1976, Diffie and Hellman proposed the first asymmetric cryptosystem.
- The protocols. They allow Alice and Bob to derive a new shared secret key.
- ▼ Turing Award 2015
 Sometimes called Diffie-Hellman-Merkle (Merkle invented asymmetric crypto)

Whitfield Diffie

Martin Hellman

Ralph Merkle

Diffie-Hellman (DH) Key Exchange - Goal

Solves the key distribution problem

If Alice and Bob want to start communicating, they exchange a few message to generate a shared secret key *K* to use for AEAD:

- Key agreement Asymmetric crypto
- Actual communication Symmetric crypto

Diffie-Hellman (DH) Key Exchange - Definition

Diffie-Hellman Key Exchange Choose a large prime p and a generator α of \mathbb{Z}_p^* (public system parameters). $a \in \{2, \dots, p-2\} \qquad \frac{\alpha^a \pmod{p}}{\alpha^b \pmod{p}} \qquad b \in \{2, \dots, p-2\}$ $K_{RA} \equiv (\alpha^a)^b \pmod{p}$ $K_{AB} \equiv (\alpha^b)^a \pmod{p}$

- Correctness: $K_{AB} \equiv (\alpha^b)^a \equiv (\alpha)^{b \cdot a} = (\alpha)^{a \cdot b} \equiv (\alpha^a)^b \equiv K_{BA}$, so both Alice and Bob derive the same key $K \equiv K_{AB} \equiv K_{BA}$
- We call α Alice's private key and α^a her public key (same for Bob's b and α^b)

Diffie-Hellman (DH) Key Exchange - Example

Diffie-Hellman Key Exchange Choose a large prime p=11 and a generator $\alpha=2$ of \mathbb{Z}_p^* (public parameters). $\alpha^b \equiv 10$ $b = 5 \in \{2, \dots, p-2\}$ $K_{AB} = (\alpha^b)^a \equiv 10^3 = 1000 \equiv 10$ $K_{BA} = (\alpha^a)^b \equiv 8^5 = 32768 \equiv 10$

Diffie-Hellman (DH) Key Exchange - Security

Alice and Bob have no previous shared secrets. Eve knows all exchanged info:

- Parameters p and α
- Alice's public key $\alpha^a \pmod{p}$
- Bob's public key α^b (mod p)

Eve would like to know the secret $K_{AB} \equiv (\alpha^a)^b \equiv (\alpha^a)^b \equiv \alpha^{a \cdot b}$. This looks easy, but is generally believed to be a hard problem for large p.

Diffie-Hellman Problem (DHP)

Given generator $\alpha \in \mathbb{Z}_p^*$ and $\alpha^a \pmod{p}$, $\alpha^b \pmod{p}$, find $K_{AB} = \alpha^{a \cdot b}$.

Best known solution to DHP: find α from α^a , or b from α^b (= solve DLP in \mathbb{Z}_p^*).

Recommended key size: For 128-bit security, *p* should be about **3072 bits** long.

Diffie-Hellman (DH) Key Exchange - Remarks

• The prime p and generator $\alpha \in \mathbb{Z}_p^*$ are public system parameters that can be the same for all users.

- Standards (NIST, ISO, ...) define parameters p, α for different security levels, how to encode values, how to use the resulting key K by hashing it to a suitable size, ...
- Modern protocols use ephemeral Diffie-Hellman (DHE) with temporary keypairs for forward secrecy.

Asymmetric Encryption

Confidentiality

Asymmetric Encryption using Trapdoor One-way Functions

Asymmetric cryptography makes extensive use of "one-way functions":

easy to compute, hard to invert.

A "trapdoor one-way function" is a one-way function which can be inverted with an additional piece of information, the trapdoor information.

Asymmetric Encryption – Algorithms and Keys

Key Generation

Alice generates a private key $\stackrel{\triangleleft}{\sim}$ and corresponding public key $\stackrel{\triangleleft}{\sim}$. She distributes $\stackrel{\triangleleft}{\sim}$ publicly and keeps $\stackrel{\triangleleft}{\sim}$ safe.

≜ Encrypt

With the public key \bigcirc , Bob (or anyone) encrypts a message $M \supseteq$ to a ciphertext $C \supseteq$ using $C = \mathcal{E}_{\bigcirc}(M)$ and sends C to Alice.

■ Decrypt

With her private key \P , Alice decrypts the ciphertext $C \boxtimes$ to recover the message $M \cong \text{using } \mathcal{D}_{\P}(C) = M$

RSA (Rivest-Shamir-Adleman) Public-Key Encryption

- In 1977, Rivest, Shamir, and Adleman proposed one of the first public-key encryption schemes.
- RSA encryption as well as the related signature scheme are widely used.
- Turing Award 2002

Ron Rivest

Adi Shamir

Leonard Adleman

RSA Encryption (Rivest–Shamir–Adleman 1977)

- Key Generation Euler function: $\varphi(pq) = (p-1)(q-1)$
- Choose 2 large, random primes p, qCompute modulus $n = p \cdot q$
- Choose public exponent e co-prime to $\varphi(n)$
- **Q** Compute private exponent $d \equiv e^{-1} \pmod{\varphi(n)}$
 - \bigcirc public key = (e, n)

 $\mathbf{Q}_{\mathbf{k}}$ private key = (d, n)

if a, n are coprime, then

 $a^{\varphi(n)} \equiv 1 \pmod{n}$

\triangle Encrypt $\mathcal{E}(M)$

Encrypt message M:

$$C \equiv M^e \pmod{n}$$

\blacksquare Decrypt $\mathcal{D}(C)$

Decrypt ciphertext C:

$$M \equiv C^d \pmod{n} \equiv M^{e \cdot d} \equiv M^{1 + k\varphi(n)} \equiv M$$

RSA Encryption – Example

Q Key Generation

- **Choose** 2 tiny, random primes p = 3, q = 11Compute modulus $n = p \cdot q = 33$
- \bigcirc Choose public exponent e=3 co-prime to $\varphi(n) = (p-1)(q-1) = 2 \cdot 10 = 20$
- \sim Compute private exponent $d \equiv e^{-1} \pmod{\varphi(n)} \equiv 7 \pmod{20}$ since $d \cdot e = 3 \cdot 7 = 21 = 20 + 1 \equiv 1 \pmod{20}$

$$\triangle$$
 Encrypt $\mathcal{E}(M=4)$

$$C \equiv M^e \pmod{n}$$
$$= 4^3 \equiv 31 \pmod{33}$$

Euler function:
$$\varphi(pq) = (p-1)(q-1)$$

Euler theorem:

if a, n are coprime, then $a^{\varphi(n)} \equiv 1 \pmod{n}$

$$ightharpoonup$$
 Decrypt $\mathcal{D}(C=31)$

$$M \equiv C^d \pmod{n} \equiv M^{e \cdot d} \equiv M^{1+k\varphi(n)} \equiv M$$

= $31^7 \equiv 4 \pmod{33}$

RSA Encryption – Security

RSA Problem (RSAP)

Given modulus n, exponent e, ciphertext C: find M such that $M^e \equiv C \pmod{n}$.

- If we can solve factorization (IFP), we can recover p, q from n and break RSA
- The RSAP is believed to be as hard as the IFP and infeasible for large *n*.
- The modulus n must be large enough so that the runtime of the best factoring algorithms is not feasible for any attacker.
 - Factoring record 2009: 768-bit modulus (pprox 2000 CPU years)
- "Security level of k bits" = we estimate that factoring n takes more than 2^k time

Recommended key size: For 128-bit security, *n* should be about **3072 bits** long.

RSA Encryption – Implementation: Square-and-Multiply

- Initialize result to 1
- Scan exponent e bit by bit
 - If bit is 0: square result
 - If bit is 1: square result, then multiply by M

RSA Encryption – Semantic Security

- There is a huge problem with this "textbook RSA": It is deterministic.
- If the message has low entropy (e.g., $M \in \{\text{yes}, \text{no}, \text{maybe}\}\)$, the attacker can intercept C, guess M and verify if C = RSA(M)!
- We need a padding scheme to make RSA "semantically secure":

Indistinguishability (under Adaptive Chosen-Ciphertext Attack)

An attacker who knows the public key, chooses 2 messages M_0 , M_1 , and gets ciphertext C can not distinguish whether $C = E(M_0)$ or $C = E(M_1)$, even if they can ask for decryption of any $C^* \neq C$.

RSA Encryption – Padding for Semantic Security

PKCS #1 (Public-Key Cryptography Standard) defines 2 RSA Encryption Schemes (RSAES):

A

RSAES-PKCS1-v1_5 (deprecated):

RSAES-OAEP ("optimal asymmetric encryption padding")

Signatures

Authenticity

Signatures – Algorithms in a Signature Scheme

Key Generation

Alice generates a private key $ext{\@alice}$ and corresponding public key $ext{\@alice}$. She distributes $ext{\@alice}$ publicly and keeps $ext{\@alice}$ safe.

Sign

With her private key \mathfrak{A} , Alice computes the signature $\mathfrak{S}_{\mathfrak{A}}(M) = S \#$ of a message $M \blacksquare$. She transmits \blacksquare , # to the recipient(s).

Verify

With the public key \triangleleft , Bob (or anyone) can verify the signature: $\mathcal{V}_{\triangleleft}(M,S) \in \{\checkmark, \mathbf{x}\}$

Signatures – Definition and Application

Signatures: private key K 🔦 and public key P 🔕

Digital signatures ensure

- Sender authentication
- Message integrity
- Non-repudiation

Signatures - Security

- It must be easy to compute S using the private key 4
- It must be easy to verify S using the public key <a>
- It must be hard to compute S without the private key (forgery)
 even if the attacker chooses the message and knows previous signatures

This is achieved using complexity-theoretically hard problems such as

- IFP: Integer factorization problem
- DLP: Discrete logarithm problem

RSA Signatures (Rivest-Shamir-Adleman 1977)

Key Generation

- \bigcirc Choose 2 large, random primes p, qCompute modulus $n = p \cdot q$
- \bigcirc Choose public exponent e co-prime to $\varphi(n)$
- \triangleleft Compute private exponent $d \equiv e^{-1} \pmod{\varphi(n)}$

$$\bigcirc$$
 public key = (e, n)

Euler function: $\varphi(pq)=(p-1)(q-1)$

Euler theorem:

if a, n are coprime, then $a^{\varphi(n)} \equiv 1 \pmod{n}$

$$\mathbf{Q}_{\mathbf{v}}$$
 private key = (d, n)

$\overline{\mathscr{E}}$ Sign $\mathcal{S}(M)$

Compute signature S:

$$S \equiv M^d \pmod{n}$$

\checkmark Verify $\mathcal{V}(M,S)$

Verify that

$$M \stackrel{?}{\equiv} S^e \pmod{n} \equiv M^{d \cdot e} \equiv M^{1 + k\varphi(n)} \equiv M$$

RSA Signatures - Security

Solution: Sign the hash of the message ("signature with appendix")

PKCS #1 defines 2 RSA Signature Schemes with Appendix (RSASSA):

- RSASSA-PKCS1-v1_5 (legacy):
 - 1. Compute **hash**(*M*)
 - 2. $S = RSA-Sign(00 01 | FF \cdots F | 00 | hash(M))$
- RSASSA-PSS (provably secure "probabilistic signature scheme")

Conclusion

Conclusion

- Establishing a secure communication channel
 - Authentication ② Asymmetric crypto
 - Key agreement Asymmetric crypto
 - Actual communication Symmetric crypto
- Important asymmetric schemes (key sizes: 3072+ bits)
 - Diffie-Hellman (DH) key exchange
 - RSA encryption
 - RSA signatures
 - DSA signatures