

第2章 CNN卷积 神经网络 算法原理

全连接神经网络的整体结构

全连接神经网络的整体结构

全连接神经网络的结构单元

神经元的数学表达式如式所示:

$$a = h(w * x + b)$$

为什么要加入激活函数

这里我们考虑把线性函数h(x) = cx作为激活函数,把y(x) = h(h(h(x)))的运算对应3层神经网络,这个运算会进行y(x) = c * c * c * x的乘法运算,但是同样的处理可以由y(x) = ax(注意,这里a = c * * 3)一次乘法运算(既没有隐藏层的神经网络)来表示。

激活函数---Sigmoid函数

Sigmoid函数的公式和导数如式所示:

$$y = \frac{1}{1 + e^{-z}} \Longrightarrow y' = y(1 - y)$$

Sigmoid函数优点:

1、简单、非常适用分类任务;

Sigmoid函数缺点:

- 1、反向传播训练时有梯度消失的问题;
- 2、输出值区间为(0,1), 关于0不对称;
- 3、梯度更新在不同方向走得太远,使得优化难度增大,训练耗时

激活函数---Tanh函数

Tanh函数的公式和导数如式所示:

$$y = \frac{e^z - e^{-z}}{e^z + e^{-z}} \Longrightarrow y' = 1 - y^2$$

Tanh函数优点:

- 1、解决了Sigmoid函数输出值非0对称的问题
- 2、训练比Sigmoid函数快, 更容易收敛;

Tanh函数缺点:

- 1、反向传播训练时有梯度消失的问题;
- 2、Tanh函数和Sigmoid函数非常相似。

激活函数---ReLU函数

ReLU函数的公式和导数如式所示:

$$y =$$

$$\begin{cases} z & \text{if } z > 0 \\ 0 & \text{if } z <= 0 \end{cases} \Longrightarrow y' =$$

$$\begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{if } z <= 0 \end{cases}$$

ReLU函数优点:

- 1、解决了梯度消失的问题;
- 2、计算更为简单,没有Sigmoid函数和Tanh函数的指数运算;

ReLU函数缺点:

1、训练时可能出现神经元死亡;

激活函数---Leaky ReLU函数

Leaky ReLU函数的公式和导数如式所示:

$$\mathbf{y} = egin{cases} \mathbf{z} & ext{if } \mathbf{z} > 0 \ \mathbf{az} & ext{if } \mathbf{z} <= 0 \end{cases} \Longrightarrow \mathbf{y}' = egin{cases} 1 & ext{if } \mathbf{z} > 0 \ \mathbf{a} & ext{if } \mathbf{z} <= 0 \end{cases}$$

Leaky ReLU函数优点:

1、解决了ReLU的神经元死亡问题;

Leaky ReLU函数缺点:

1、无法为正负输入值提供一致的关系预测(不同 区间函数不同)

全连接神经网络前向传播

前向传播计算过程:

$$a_{11} = \operatorname{sigmoid}(x_1w_{11} + x_2w_{13} + b_1)$$

$$a_{12} = \operatorname{sigmoid}(x_1w_{12} + x_2w_{14} + b_2)$$

$$a_{21} = \operatorname{relu}(a_{11}w_{21} + a_{12}w_{22} + b_3)$$

$$y = a_{21}$$

前向传播具体计算过程

前向传播计算公式:

$$a_{11} = \text{sigmoid}(x_1w_{11} + b_1)$$

 $a_{21} = \text{relu}(a_{11}w_{21} + b_2)$
 $y = a_{21}$

具体计算过程:

初始化的值为
$$w_{11} = 0.5$$
, $w_{21} = 1$, $b_1 = 0.5$, $b_2 = 1$ 。初始化的值为 $w_{11} = 0.5$, $w_{21} = 1$, $b_1 = 0.5$, $b_2 = 1$, $x_1 = 1$, label=2。
$$a_{11} = \text{sigmoid}(1 \times 0.5 + 0.5)$$

$$= 0.731$$

$$a_{21} = \text{relu}(0.731 \times 1 + 1)$$

$$= 1.731$$

$$y = 1.731$$

神经网络的损失函数

均方误差的损失函数:

$$J(x) = \frac{1}{2m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

梯度下降法

场景:

在一个漆黑的夜晚,一个人要下山,但是他完全看不到周围的环境,只能通过手去感知。因此这个人就想到一个办法,朝着自己的四周去摸山体的坡度,如果摸到一个方法的坡度是向下的并且也是最陡峭的,那么就走到这个手摸到的位置,就是通过这样的方法不断一步一步的走,这个人终于走到了山底。具体可以想象成右图,那个黑点就是人。

梯度下降法

梯度下降法参数更新的计算公式就如下所示:

$$w = w - a \frac{\partial J(w)}{\partial w}$$

反向传播---案例

案例

从图中可以看到该神经网络链一共有4个参数,分别为 w_{11} , w_{21} , b_1 , b_2 , 同时4个参数和输入值 x_1 分别有对应的初始值,分别为 $w_{11}=0.5$, $w_{21}=1$, $b_1=0.5$, $b_2=1$, $x_1=1$ 。同时通过前向传播计算出来的y=1.731, label值为2。现在利用神经网络的前向传播计算出来的输出值和真实值label之间的误差进行反传播进行梯度更新。

反向传播---求解参数梯度

参数 w_{21} 、 b_2 的求解:

$$\begin{split} \frac{\partial J(w_{21})}{\partial w_{21}} &= \frac{\partial J(w_{21})}{\partial y} \cdot \frac{\partial y}{\partial a_{21}} \cdot \frac{\partial a_{21}}{\partial w_{21}} \\ &= \frac{\partial \frac{1}{2} (y - 2)^2}{\partial y} \cdot \frac{\partial a_{21}}{\partial a_{21}} \cdot \frac{\partial relu(a_{11}w_{21} + b_1)}{\partial w_{21}} \\ &= (y - 2) \times 1 \cdot \frac{\partial relu(a_{11}w_{21} + b_1)}{\partial (a_{11}w_{21} + b_1)} \cdot \frac{\partial (a_{11}w_{21} + b_1)}{\partial w_{21}} \\ &= (y - 2) \times a_{11} \times \frac{\partial relu(a_{11}w_{21} + b_1)}{\partial (a_{11}w_{21} + b_1)} \end{split}$$

因为:

$$a_{11}w_{21} + b_1 = 1.731 > 0$$

所以:

$$\frac{\partial relu(a_{11}w_{21} + b_1)}{\partial (a_{11}w_{21} + b_1)} = 1$$

最终:

$$\frac{\partial J(w_{21})}{\partial w_{21}} = (y - 2) \times a_{11}$$
$$= (1.731 - 2) \times 0.731 = -0.196639$$

同理可以得出:

$$\frac{\partial J(b_2)}{\partial b_2} = -0.269$$

反向传播---求解参数梯度

参数 w_{11} 、 b_1 的求解: 反向传播---求解参数梯度

$$\frac{\partial J(w_{11})}{\partial w_{11}} = \frac{\partial J(w_{11})}{\partial y} \cdot \frac{\partial y}{\partial a_{21}} \cdot \frac{\partial a_{21}}{\partial a_{11}} \cdot \frac{\partial a_{11}}{\partial w_{11}}$$

$$= \frac{\partial \frac{1}{2} (y-2)^2}{\partial y} \cdot \frac{\partial a_{21}}{\partial a_{21}} \cdot \frac{\partial relu(a_{11}w_{21}+b_1)}{\partial a_{11}} \cdot \frac{\partial \text{sigmoid}(x_1w_{11}+b_1)}{\partial w_{11}}$$

$$= (y-2) \times 1 \times \frac{\partial relu(a_{11}w_{21} + b_1)}{\partial (a_{11}w_{21} + b_1)} \cdot \frac{\partial (a_{11}w_{21} + b_1)}{\partial a_{11}} \cdot \frac{\partial \text{sigmoid}(x_1w_{11} + b_1)}{\partial w_{11}}$$

$$= (y-2) \times w_{21} \cdot \frac{\partial \operatorname{sigmoid}(x_1 w_{11} + b_1)}{\partial w_{11}}$$

$$= (y-2) \times w_{21} \times \text{sigmoid}(x_1w_{11} + b_1)(1 - \text{sigmoid}(x_1w_{11} + b_1)x_1$$

$$= (1.731 - 2) \times 1 \times 0.731 \times (1 - 0.731) \times 1$$

$$= -0.269 \times 0.731 \times 0.269 \times 1$$

同理可以得出:

$$\frac{\partial J(b_1)}{\partial b_1} = -0.052895$$

反向传播---利用梯度参数更新

对应参数的梯度:

$$\frac{\partial J(w_{21})}{\partial w_{21}} = -0.196639, \quad \frac{\partial J(b_2)}{\partial b_2} = -0.269,
\frac{\partial J(w_{11})}{\partial w_{11}} = -0.052895, \quad \frac{\partial J(b_1)}{\partial b_1} = -0.052895$$

保留3位小数方便计算:

$$\frac{\partial J(w_{21})}{\partial w_{21}} = -0.197, \quad \frac{\partial J(b_2)}{\partial b_2} = -0.269,$$

$$\frac{\partial J(w_{11})}{\partial w_{11}} = -0.053, \quad \frac{\partial J(b_1)}{\partial b_1} = -0.053$$

设置学习率大小为0.1:

$$w_{11} = 0.5 - 0.1 \times (-0.053) = 0.505$$

 $w_{21} = 1 - 0.1 \times (-0.197) = 1.020$
 $b_1 = 0.5 - 0.1 \times (-0.053) = 0.505$
 $b_2 = 1 - 0.1 \times (-0.269) = 1.027$

整理一下:

$$w_{11} = 0.505$$

 $w_{21} = 1.020$
 $b_1 = 0.505$
 $b_2 = 1.027$

反向传播---新参数前向传播

新参数:

$$w_{11} = 0.505$$

 $w_{21} = 1.020$
 $b_1 = 0.505$
 $b_2 = 1.027$

前向传播:

$$a_{11} = \text{sigmoid}(1 \times 0.505 + 0.505)$$

= 0.733
 $a_{21} = \text{relu}(0.733 \times 1.02 + 1.027)$
= 1.775
 $y = 1.775$

结论:

此时最终的输出结果是 y = 1.775,可以看出这个数值比之前的前向传播输出值1.731要更加接近真实值27

图像在计算机中的的本质是什么?

彩色图像在计算机中是什么样子的?

全连接神经网络存在的问题

卷积层---卷积运算

输入			核			输出		
0	1	2		0	1		19	25
3	4	5	*	2	3	=	37	43
6	7	8		_			0.	.6

卷积层---卷积运算过程

0	1	2
3	4	5
6	7	8

0	1	
2	3	

19	

0	1	2
3	4	5
6	7	8

19	25

19	25
37	

0	1	2
3	4	5
6	7	8

19	25
37	43

卷积层---加入偏置的卷积运算

	输入			杉	亥		偏置		输	出
0	1	2		0	1				21	27
3	4	5	*			+	2	=	39	45
6	7	8		2	3				39	45

卷积层---填充

0	0	0	0	0
0	0	1	2	0
0	3	4	5	0
0	6	7	8	0
0	0	0	0	0

0	1
2	3

0	3	8	4
9	19	25	10
21	37	43	16
6	7	8	0

卷积层---步幅

1	2	3	4
5	9	6	7
9	0	3	2
1	2	3	4

1	2
3	4

56	

1	2	3	4
5	9	6	7
9	0	3	2
1	2	3	4

56	57
20	

卷积层---经过卷积运算后的特征图大小

计算公式:

$$OH = \frac{H + 2P - FH}{S} + 1$$

$$OW = \frac{W + 2P - FW}{S} + 1 \leftarrow$$

0	0	0	0	0
0	0	1	2	0
0	3	4	5	0
0	6	7	8	0
0	0	0	0	0

0	3	8	4	
9	19	25	10	
21	37	43	16	
6 7		8	0	

$$OH = \frac{3 + 2 * 1 - 2}{1} + 1 = 4 \leftarrow$$

$$OW = \frac{3+2*1-2}{1} + 1 = 4 \leftarrow$$

卷积层---经过卷积运算后的特征图大小

计算公式:

$$OH = \frac{H + 2P - FH}{S} + 1$$

$$OW = \frac{W + 2P - FW}{S} + 1 \leftarrow$$

1	2	3	4
5	9	6	7
9	0	3	2
1	2	3	4

56	57
20	32

$$OH = \frac{4+2*0-2}{2} + 1 = 2 \leftarrow$$

$$OW = \frac{4+2*0-2}{2} + 1 = 2 \leftarrow$$

卷积层---多通道数据卷积运算

池化层---最大池化运算

1	2	3	3		
0	1	1	5	2	
3	0	1	0		
1	4	1	2		

1	2	3	3		
0	1	1	5	2	5
3	0	1	0		
1	4	1	2		

1	2	3	3		
0	1	1	5	2	5
3	0	1	0	4	
1	4	1	2		

1	2	3	3
0	1	1	5
3	0	1	0
1	4	1	2

池化层---平均池化运算

1	2	3	3		
0	1	1	5	1	
3	0	1	0		
1	4	1	2		

1	2	3	3		
0	1	1	5	1	3
3	0	1	0		
1	4	1	2		

1	2	3	3		
0	1	1	5	1	3
3	0	1	0	2	
1	4	1	2		

1	2	3	3
0	1	1	5
3	0	1	0
1	4	1	2

池化层---经过池化层后的特征图大小

计算公式:

$$OH = \frac{H + 2P - FH}{S} + 1 \leftarrow$$

$$OW = \frac{W + 2P - FW}{S} + 1$$

$$OH = \frac{4 + 2 * 0 - 2}{2} + 1 = 2 \leftarrow$$

$$OW = \frac{4+2*0-2}{2} + 1 = 2 \leftarrow$$

卷积神经网络整体结构

