ALC-LTL Formula Generator

M.Fareed Arif

TU Dresden

May 18, 2011

- Preliminaries
- Motivation
- Generating Algorithms & Optimization
- Program Evaluation & Results
- Appendix

Description Logic \mathcal{ALC}

 \mathcal{ALC} [Schmidt-Schau 1991] is a DL with conjunction (\sqcap) , disjunction(\sqcup), negation(\neg), existential restriction (\exists) and value restriction (\forall) .

General Concept Inclusion (GCI):

A general concept inclusion (GCI) is of form $C \sqsubseteq D$ where C, D are \mathcal{ALC} -concept descriptions.

Assertion:

An assertion is of the form a: C or (a, b): r where C is an \mathcal{ALC} -concept description, $r \in \mathcal{N}_C$ and $a, b \in \mathcal{N}_I$.

Example:

Person □ ∃hasChild.Person

 $GermanCitizen \sqsubseteq \exists insured_by.HealthInsurance$

Germany : ∃winner.FIFA_WORLD_CUP

Temporalized DL \mathcal{ALC} -LTL

 $\mathcal{ALC}\text{-LTL}$ ([Franz Baader 2008]) is a temporalized extension of a logic-based knowledge representation formalism \mathcal{ALC} .

- If α is an \mathcal{ALC} -axiom (i.e., Both GCIs and Assertions are called \mathcal{ALC} -axioms), then α is an \mathcal{ALC} -LTL formula;
- If ϕ, ψ are \mathcal{ALC} -LTL formulas, then $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$, $\phi \lor \psi$ and $X\psi$ are \mathcal{ALC} -LTL formulas.

Example:

 $\Diamond \Box (PKCitizen \sqsubseteq \exists insured_by.HealthInsurance)$

Abbreviations: true $\equiv \phi \lor \neg \phi$, $\Diamond \phi \equiv true \cup \phi$ and $\Box \phi \equiv \neg (true \cup \phi)$.

Temporalized DL \mathcal{ALC} -LTL

The semantics of $\mathcal{ALC}\text{-LTL}$ are described in [Franz Baader 2008] by using an $\mathcal{ALC}\text{-LTL}$ structure.

ALC-LTL Structure:

An \mathcal{ALC} -LTL structure is a sequence $\mathfrak{I} = (\mathcal{I}_i)_{i=0,1,\dots}$ of \mathcal{ALC} interpretations $\mathcal{I}_i = (\Delta, \mathcal{I}_i)$.

$$\mathcal{I}_0 \Rightarrow \mathcal{I}_1 \Rightarrow \mathcal{I}_2 \Rightarrow \dots$$

Example:

 $\Diamond \Box (PKCitizen \sqsubseteq \exists insured_by.HealthInsurance)$

$$\mathcal{I}_0 \Rightarrow \mathcal{I}_1 \Rightarrow \mathcal{I}_2 \Rightarrow \mathcal{I}_3 \Rightarrow \dots$$

Temporalized DL \mathcal{ALC} -LTL

Example:

 \exists has_father. \forall has_father. \neg \forall Human

A concept is called a *rigid concept* if its interpretation does not change over time.

Rigid Concept: [Franz Baader 2008]

For any given \mathcal{ALC} -LTL structure $\mathfrak{I}=(\mathcal{I}_i)_{i=0,1,\dots}$, a concept $A\in N_C$ is a rigid concept iff for all $i,j\in\{0,1,2,\dots\}$ it holds that $A^{\mathcal{I}_i}=A^{\mathcal{I}_j}$.

A role is called *rigid role* if its interpretation does not change over time.

Rigid Role: [Franz Baader 2008]

For any given \mathcal{ALC} -LTL structure $\mathfrak{I}=(\mathcal{I}_i)_{i=0,1,\dots}$, a role $r\in N_R$ is a rigid role iff $r^{\mathcal{I}_i}=r^{\mathcal{I}_j}$ holds for all $i,j\in\{0,1,2,\dots\}$.

Web Ontology Language (OWL)

OWL: ([Michael K. Smith 2003])

OWL provides a family of languages (i.e., OWL Lite, OWL DL and OWL Full) which are used to author OWL Ontologies. OWL provides a common standard for representing, exchanging and deriving logical consequences from different domains. Thus, providing machine-processable descriptions of domains including World Wide Web.

The OWL API: ([Sean Bechhofer 2003])

The OWL API is a programming interface to access and manupulate OWL Ontologies.

The OWL API & Descripton Logic \mathcal{ALC}

The OWL API provides appropriate data structure to deal with the description logic \mathcal{ALC} .

ALC	OWL API	
$a \in N_I$	OWLIndividual	
$A \in N_C$	OWLClass	
$r \in N_R$	OWLObjectProperty	
П	OWLObjectIntersectionOf	
Ш	OWLObjectUnionOf	
¬	OWLObjectComplementOf	
3	∃ OWLObjectSomeValuesFrom	
\forall	OWLObjectAllValuesFrom	

Motivation

- Generated formulae help to test and measure performance of $\mathcal{ALC}\text{-}\mathsf{LTL}$ related systems.
 - ▶ Generate Random Sets $(N_C, N_R \text{ and } N_I)$,
 - ► Generate ALC-axioms,
 - ► Generate ALC-LTL formulae,
 - Load generated formulae.
- ② The OWL API is insufficient to deal with \mathcal{ALC} -LTL.
- Appropriate data structures are required to represent ALC-LTL formulae.

• ALC-LTL formulae:

- **1** \mathcal{ALC} -LTL formulae:
 - ► *ALC*-LTL formulae Algorithm (#3).
- **2** \mathcal{ALC} -axioms:

- **1** \mathcal{ALC} -LTL formulae:
 - ► *ALC*-LTL formulae Algorithm (#3).
- \bigcirc \mathcal{ALC} -axioms:
 - \mathcal{ALC} -axioms Algorithm (#2)
- **3** \mathcal{ALC} -concept descriptions:

- **1** \mathcal{ALC} -LTL formulae:
 - ► *ALC*-LTL formulae Algorithm (#3).
- **2** \mathcal{ALC} -axioms:
 - \blacktriangleright \mathcal{ALC} -axioms Algorithm (#2)
- **3** \mathcal{ALC} -concept descriptions:
 - ► ALC-concept descriptions Algorithm (#1).

\mathcal{ALC} -concept descriptions Algorithm (#1)

Algorithm Signature:

function alc_cd(n:Integer): \mathcal{ALC} -concept description begin

. . .

end function

Termination:

The procedure $alc_cd(n)$ always terminates where $n \ge 1$.

Soundness:

The generated \mathcal{ALC} -concept description is always a well-formed \mathcal{ALC} -concept description.

Completeness:

The procedure $alc_cd(I)$ returns all \mathcal{ALC} -concept descriptions of length I.

\mathcal{ALC} -axioms Algorithm (#2)

Algorithm Signature:

```
function alc_axiom(m:Integer):\mathcal{ALC}-axiom begin
```

end function

Termination:

The procedure $alc_axiom(m)$ always terminates where $m \ge 1$.

Soundness:

The generated $\mathcal{ALC}\text{-axiom}$ is always a well-formed $\mathcal{ALC}\text{-assertion}$ axiom.

Completeness:

The procedure $alc_axiom(m)$ returns all \mathcal{ALC} -axioms of length m.

ALC-LTL formulae Algorithm (#3)

Algorithm Signature:

```
function alc_ltl_fm(m:Integer, n:Integer):\mathcal{ALC}\text{-LTL} formula begin
```

. . .

end function

Termination:

The procedure $alc_ltl_fm(m,n)$ always terminates where $m, n \ge 1$.

Soundness:

The generated formula is always a well-formed $\mathcal{ALC} ext{-LTL}$ formula.

Completeness:

The procedure alc_ltl_fm(m, 1) returns all \mathcal{ALC} -LTL formulae of length I.

Optimization

In order to generate more compact and meaningful data following are some proposed optimizations

- Eliminate multiple negation case.
- User defined random sampling procedure.

Probability Sampling

Туре	Operators	Probability Value
ALC-concept description	П	0.3f
	Ш	0.5f
	3	0.2f
	\forall	0.6f
	\neg	0.1f
\mathcal{ALC} -axiom	CLASS_ASSERTION	0.4f
	ROLE_ASSERTION	0.1f
	NEG_ROLE_ASSERTION	0.1f
		0.4f
ALC-LTL Formula		0.5f
	X	0.5f
	\wedge	0.5f
	V	0.5f
	U	0.5f

Structure of ALC-LTL formulae XML File

 \mathcal{ALC} -axioms are stored in an OWL ontology file. We store \mathcal{ALC} -LTL formulae in an XML file using the following mapping.

ALC-LTL XML mapping:

Operators	XML Mapping
	$\langle NegationOf \rangle \dots \langle /NegationOf \rangle$
П	$\langle ConjunctionOf \rangle \dots \langle /ConjunctionOf \rangle$
	$\langle DisjunctionOf \rangle \dots \langle / DisjunctionOf \rangle$
X	$\langle NextOf \rangle \dots \langle /NextOf \rangle$
U	$\langle UntilOf \rangle \langle LeftOf \rangle \dots \langle / LeftOf \rangle$
	$\langle RightOf \rangle \dots \langle / RightOf \rangle \langle / UntilOf \rangle$

Program Demo

Performance Measures for ALC-LTL Formulae Generator

For Further Reading

- Manfred Schmidt-Schauß and Gert Smolka. 1991
 Attributive Concept Descriptions with Complements.
- Franz Baader, Silvio Ghilardi and Carsten Lutz. 2008 LTL over Description Logic Axioms.
 - Franz Baader, Ian Horrocks and Ulrike Sattler. 2008
 Handbook of Knowledge Representation, "Description Logics".
- Michael K. Smith, Chris Welty and Deborah L. McGuinness. 2003 OWL Web Ontology Language Guide
- Sean Bechhofer, Rapheal Volz and Phillip Lord. 2003 Cooking the Semantic Web with the OWL API

Thank You

Appendix I

Length of ALC-concept description:

For an arbitrary \mathcal{ALC} -concept description C, its length |C| is computed inductively:

- If $C \in N_C$, then |C| := 1,
- If C is of form $\neg D$ for some \mathcal{ALC} -concept description D, then |C|:=|D|+1,
- If C is of form $D \sqcap E$ for \mathcal{ALC} -concept descriptions D and E, then |C| := |D| + |E| + 1,
- If C is of form $D \sqcup E$ for \mathcal{ALC} -concept descriptions D and E, then |C| := |D| + |E| + 1,
- If C is of form $\exists r.D$ for some \mathcal{ALC} -concept description D and role $r \in N_R$, then |C| := |D| + 1,
- If C is of form $\forall r.D$ for some \mathcal{ALC} -concept description D and role $r \in N_R$, then |C| := |D| + 1,

Appendix II

Length of \mathcal{ALC} -LTL formulae:

For an arbitrary $\mathcal{ALC}\text{-LTL }\phi$, its length $|\phi|$ is inductively computed in the following way.

- ullet If ϕ is an \mathcal{ALC} -assertion axiom, then |arphi|:=1,
- ullet If ϕ is of form $eg \psi$ for some $\mathcal{ALC} ext{-LTL}$ formula ψ , then $|\phi|:=|\psi|+1$,
- If ϕ is of form $\varphi \wedge \psi$ for \mathcal{ALC} -LTL formulae φ and ψ , then $|\phi|:=|\varphi|+|\psi|+1$,
- If ϕ is of form $\varphi \lor \psi$ for $\mathcal{ALC}\text{-LTL}$ formulae φ and ψ , then $|\phi|:=|\varphi|+|\psi|+1$,
- If ϕ is of form $\varphi U \psi$ for \mathcal{ALC} -LTL formulae φ and ψ , then $|\phi| := |\varphi| + |\psi| + 1$.