אינפי 2מ'

מרצה אחראית: מיכל קליינשטרן

תוכן העניינים

5	1. טורי מספרים	פרק
5	טור של סדרת מספרים ממשיים	.1
8	. מבני התכנסות לטורים חיוביים	.2

פרק 1

טורי מספרים

המטרה: להגדיר סכום אינסופי:

$$a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$$

כמו באינטגרלים מוכללים, גם כאן המטרה שלנו תהיה בעיקר להבין האם הטורים הללו מתכנסים או לא.

לחלק מהסכומים יהיו נוסחאות, אבל לא נדע לחשב את רוב הסכומים הללו.

1. טור של סדרת מספרים ממשיים

הגדרה 1.1 (טור של סדרת מספרים ממשיים)

, $\{a_n\}_{n=1}^\infty$ של מספרים ממשיים (sequence) בהינתן בהינתן בהינתו (series) $\{a_n\}_{n=1}^\infty$ הטור של

$$a_1 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$$

דוגמה 1.1 (סוגים של טורים)

(1) הטור ההרמוני

$$1 + \frac{1}{2} + \frac{1}{3} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}$$

טור הנדסי (2)

$$\sum_{n=0}^{\infty} q^n$$

 $^{ au}$ אם q=1, נקבל q=1+1, כלומר אינסופי. q=1

$$-1+1-1+1+\dots$$
, נקבל, $q=-1$ אם $q=-1$

(3)

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{2 \cdot 3} + \dots$$

(4)

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + \dots$$

: נגדיר: מספרים. סור מספרים. יהא הגדרה טור) אור יהא חלקי של טור) יהא הגדרה סכום חלקי י-n

$$S_n = \sum_{k=1}^n a_n$$

בתור הסכום החלקי ה-n-י.

דוגמה 1.2 בדוגמאות:

(1)

$$S_1 = 1,$$
 $S_2 = 1 + \frac{1}{2}$
 $S_3 = 1 + \frac{1}{2} + \frac{1}{3}, \dots, S_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$

(2)

$$S_n = \frac{1 \cdot (1 - q^n)}{1 - q}$$

(3)

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{n \cdot (n+1)}$$

$$\underbrace{=}_{\text{OCIO Oddries}} \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n+1}\right) \underbrace{=}_{\text{OCIO Oddries}} 1 - \underbrace{\frac{1}{n+1}}_{n \to \infty} 1$$

 $S_n = 1 + 2 + \ldots + n = \frac{(n+1)n}{2} \underset{n \to \infty}{\longrightarrow} \infty$ (4)

. סדרת סכומים חלקיים היא סדרה הנקראת סדרת חלקיים חלקיים חלקיים החלקיים היא איא $\{S_n\}_{n=1}^\infty$

הסכומים סדרת מספרים) מתכנסות לאחר (התכנסות של טור מספרים) אור הסכומים מחכנסות של טור (התכנסות של טור מספרים) החלקיים S_n מתכנסת.

במקרה זה נגדיר:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n$$

 S_n אפשר להשתמש בכל מה שיודעים על סדרות עבור 1.1 הערה

דוגמה 1.3 למשל בדוגמה 5.2, סעיף 3, ניתן להגיד:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n(n+1)} = 1$$

, $\sum_{n=1}^{\infty}a_n=\pm\infty$ נסמן ו $\lim_{n\to\infty}S_n=\pm\infty$ אם 1.2 הערה 1.2 ונאמר שהטור מתכזר.

 $:\sum_{n=1}^{\infty}\left(-1
ight)^{n}$ נסתכל על הטור 1.4 נסתכל

$$S_1=-1$$
 $\Rightarrow S_n=egin{cases} -1 & ext{in} \ S_2=-1+1=0 \end{cases}$ $\Rightarrow S_n=egin{cases} -1 & 1 & 1 \ 0 & 1 & 1 \end{cases}$ n

אין גבול ל- S_n , ולכן הטור מתבדר.

:משפט (משפט קושי להתכנסות של טורים) הטור (משפט קושי להתכנסות של טורים) משפט 1.1 משפט אם התכנס אחרים (ב $\sum_{k=n+1}^m a_k \big| < \varepsilon$ מתקיים: $n>n>N_0$ כך שלכל לכל כל לכל היים

. מתכדר $\sum_{n=1}^{\infty} \frac{1}{n}$ מתכדר נראה שהטור 1.5

ביים: סך שמתקיים: m>n>N קיימים אלכל $\varepsilon>0$ כך שמתקיים:

$$\left| \sum_{k=n+1}^{m} \frac{1}{k} \right| \ge \varepsilon$$

 $m=oxed{2n}>n>N$ עבור $n=oxed{N+1}>N$ ניקח ניקח א לכל גיפור , $arepsilon=oxed{rac{1}{2}}$

$$\left| \sum_{k=n+1}^{m} \frac{1}{k} \right| = \frac{1}{n+1} + \ldots + \frac{1}{m} = \frac{1}{n+1} + \ldots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2} := \varepsilon$$

 $a_n \underset{n \to \infty}{\longrightarrow} 0$ מתכנס, מתכנס, משפט 1.2 (מנאי הכרחי להתכנסות טור מספרים) אם אזי 1.2 משפט 1.2 (תנאי הכרחי

מסקנה 1.1 אם $\sum_{n=1}^{\infty}a_n$ אזי ה a_n טתכזר.

הערה 1.4 נשים לב שזה **לא** תנאי מספיק!

, $a_n=rac{1}{n} \underset{n o \infty}{\longrightarrow} 0$ בדוגמה שעשינו מתקיים: $\sum_{n=1}^{\infty} rac{1}{n}$ אבל

 $.\sum_{n=1}^{\infty} rac{1}{\sqrt[n]{n}}$ של בדקו התכנסות בדקו 1.6 בדקו

. מתבדר אה מתבדר פי , $a_n=rac{1}{\sqrt[n]{n}} \underset{n \to \infty}{\longrightarrow} 1$ מאחר ש

מתכנס, $\sum_{n=1}^{\infty}a_n$ - מתכנס.

ולכן קיים S כך שמתקיים: $S_n = S$. $\lim_{n \to \infty} S_n = S$ ולכן קיים כך שמתקיים:

$$A_n = S_n - S_{n-1}$$
 ולכן , $S_n = S_{n-1} + a_n$ נקבל: S_n מהגדרת מהגדרת

 $a_n \underset{n \to \infty}{\longrightarrow} 0$ לפי אריתמטיקה של גבולות לפי

משפט 1.3 (אריתמטיקה של טורים) יהיו $\sum_{n=1}^\infty b_n$ ו יהיו יהיו (אריתמטיקה של טורים) אריתמטיקה של טורים יהיו $\sum_{n=1}^\infty a_n$ ייני פארס ארייני ארים ארייני (אריתמטיקה של טורים) יהייני ארייני

אזי הטור $\sum_{n=1}^{\infty}\left(lpha a_{n}+b_{n}
ight)$ מתכנס, ומתקיים:

$$\sum_{n=1}^{\infty} (\alpha a_n + b_n) = \alpha \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(נובע מיידית מאריתמטיקה עבור סדרות.)

דוגמה 1.7 בדקו התכנסות:

$$\sum_{n=1}^{\infty} \frac{(-1)^n + 2^{n+1}}{3^n} \stackrel{?}{=} \sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n + 2\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = \frac{-\frac{1}{3}}{1 - \left(-\frac{1}{3}\right)} + 2 \cdot \frac{\frac{2}{3}}{1 - \frac{2}{3}} = -\frac{1}{4} + 2 \cdot 2 = 3\frac{3}{4}$$

2. מבני התכנסות לטורים חיוביים

 $a_n \in \mathbb{N}$ לכל $a_n \geq 0$ נקרא חיוני, אם הגדרה נקרא מספרים חיובי) נור מספרים חיובי

הערה 1.5 בפועל מספיק לדרוש שזה יתקיים החל ממקום מסוים.

הערה 1.6 עבור טור אי-חיובי (לא משנה סימן), ניתן להתבונן על הטור האי-שלילי בעל סימן מינוס.

. חסומה (S_n) טור חיובי מתכנס, אם"ם סדרת הסכומים החלקיים (S_n) משפט 1.4 משפט

$$a_n \geq 0 \iff \sum_{n=1}^\infty a_n$$
 טור חיובי האמ

$$.S_{n+1} = S_n + a_n \ge S_n \iff$$

סדרת הסכומים החלקיים מונוטונית עולה.

מתכנסת (לגבול סופי) אם"ם חסומה (מאינפי 1מי). $S_n \ \Longleftarrow$

יים חסומה: בחלקיים החלקיים מתכנס, ולכן מתכנס, החלקיים חסומה: בהאלקיים החלקיים חסומה: אינו שהטור באינו שהטור בהאל

$$S_n = \frac{1}{1 \cdot 2} + \ldots + \frac{1}{n(n+1)}$$

 $:\sum_{n=1}^{\infty}rac{1}{n^2}$ ננסה לבדוק התכנסות של הטור נשים לב:

$$n^{2} > n^{2} - n$$

$$n^{2} > n (n - 1)$$

$$\underbrace{\frac{1}{n^{2}}}_{a_{n} \ge 0} < \underbrace{\frac{1}{n (n - 1)}}_{b_{n} > 0}$$

 $\sum_{n=2}^\infty \frac{1}{n(n-1)}$ מתכנס, ע"י הוזה של אינדקסים, נקבל שהטור ע"י הוזה של אינדקסים, נקבל שהטור אינדקסים. כך שלכל M>0 קיים ולכן קיים M>0

מתקיים:

$$T_n = \sum_{k=2}^{n} \frac{1}{k^2} < \sum_{k=2}^{n} \frac{1}{k(k-1)} = S_n < M$$

מתכנס. $\sum_{n=2}^{\infty} \frac{1}{n^2} \iff T_n \iff$

הגדרה 1.6 (טור חסום) אם סדרת הסכומים החלקיים חסומה, נאמר שהטור חסוס.

משפט 1.5 (מבחן השוואה לטורים חיוביים)

$$n\in\mathbb{N}$$
 יהיו $0\leq a_n\leq b_n$ לכל

 $n\in\mathbb{N}$ יהיו $0\leq a_n\leq b_n$ יהיו יהיו מתכנס. מתכנס, אז $\sum_{n=1}^\infty a_n$ מתכנס.

דוגמה 1.9 נבחין שבדוגמה (5.8), היה ניתן להימנע מהחישוב הארוך ולהשתמש במבחן זה במקום.

. מספיק מסוים מחל החל $0 \leq a_n \leq b_n$ מספיק לדרוש מסוים.

הערה 1.8 שקול לטענה:

אם
$$\displaystyle\sum_{n=1}^{\infty}a_n$$
 מתבדר. אז $\displaystyle\sum_{n=1}^{\infty}b_n$ אז

$$S_n=\sum_{k=1}^n b_k$$
 מתכנס, נסמן מתכנס. נתון הוכחת המשפט. נתון $S_n\}_{n=1}^\infty$ נתון מהמשפט הקודם כי $\{S_n\}_{n=1}^\infty$ חסומה כי $S>0$ כך שלכל $S>0$ מתקיים כי $S>0$

:נסמן $T_n = \sum_{k=1}^n a_k$ מתקיים:

$$T_n = \sum_{k=1}^n a_k$$
 \leq מהנתנו $\sum_{k \in \mathbb{N} \atop k \in \mathbb{N}} b_k = S_n \leq S$

. מתכנס. $\sum_{n=1}^{\infty} a_n$ חסומה, ולכן לפי המשפט הקודם הטור הסדרה הסדרה \leftarrow

הערה 1.9 (סימן להתכנסות טור חיובי) בטורים חיוביים מתכנסים, נהוג לסמן:

$$\sum_{n=1}^{\infty} a_n < \infty$$

וזה מכיוון שכאשר הטור חיובי סדרת הסכומים החלקיים היא מונוטונית עולה, ולכן גבולה יכול להיות רק מספר או ∞ .

דוגמה 1.10 בדקו התכנסות של:

(1)

$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$$

$$S_n = \sum_{k=1}^n \ln\left(1 + \frac{1}{n}\right) = \sum_{k=1}^n \ln\left(\frac{k+1}{k}\right) = \sum_{k=1}^n \left(\ln\left(k+1\right) - \ln k\right) \underbrace{=}_{\text{position prop}} \ln\left(n+1\right) - \ln\left(1\right) \xrightarrow[n \to \infty]{} \infty$$

ולכן הטור מתבדר.

כמו כן, ראינו (באינפי 1מ') (בעזרת טיילור):

$$0 \le \ln\left(1 + \frac{1}{n}\right) \le \frac{1}{n}$$

הוכחנו עכשיו ש- $\sum_{n=1}^\infty \ln\left(1+rac{1}{n}
ight)$ - מתבדר מכרו עכשיו ש- $\sum_{n=1}^\infty rac{1}{n}$ מתבדר לפי מבחן ההשוואה.

- .P>0 עבור $\sum_{n=1}^{\infty} rac{1}{n^P}$ עבור (2)
 - עבור P=1 מתכדר. (ראינו) •
 - עבור P=2 מתכנס. (ראינו) •
- נסתכל על 2: P>2 נסתכל על $\frac{1}{n^P}\leq \frac{1}{n^2}$ כלומר $n^P>n^2$ מתקיים $\sum_{n=1}^{\infty}\frac{1}{n^P}$ מתכנס לפי מבחן השוואה.
- $.\frac{1}{n}<\frac{1}{n^P}$ כלומר $n^P< n$ מתקיים :0< P< 1 שבור 0< N מתבדר. מתבדר, ולכן $\sum_{n=1}^\infty \frac{1}{n^P}$ מתבדר.

מסקנה:

אם
$$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^P}$$
 אז $P \leq 1$ מתבדר.

אם
$$\sum_{n=1}^{\infty} \frac{1}{n^P}$$
 אז $P \geq 2$ מתכנס.

משפט 1.6 (מבחן ההשוואה הגבולי לטורים חיוביים) יהיו יהיו לטורים הגבולי לטורים אבולי כך ממתקיים:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$

- . אם אח מתכנסים או $\sum_{n=1}^\infty b_n$ ו- ו $\sum_{n=1}^\infty a_n$ הטורים אז הטורים אם ס
 $L<\infty$
 - . מתכנס $\sum_{n=1}^{\infty}a_n$ אם היא הא מתכנס מתכנס $\sum_{n=1}^{\infty}b_n$ מתכנס L=0
 - . מתכנס $\sum_{n=1}^\infty b_n$ אם מתכנס אז $\sum_{n=1}^\infty a_n$ מתכנס \star

 $0 < L < \infty$ הוכחת המבחן. עבור

:מתקיים $n>N_0$ כך שלכל N_0 מתקיים

$$L - \frac{L}{2} < \frac{a_n}{b_n} < L + \frac{L}{2}$$

$$\frac{L}{2} < \frac{a_n}{b_n} < \frac{3L}{2} \iff$$

 $\frac{a_n}{b_n} \le \frac{3L}{2} \bullet$

, $a_n < rac{3L}{2} b_n$ נקבל

מתכנס, מתכנס אז $\sum_{n=1}^{\infty} \frac{3L}{2} b_n$ מתכנס מהריתמטיקה, אם $\sum_{n=1}^{\infty} b_n$ מתכנס

. ולפי מבחן השוואה נובע ש $\sum_{n=1}^\infty a_n$ מתכנס

 $\frac{L}{2} \le \frac{a_n}{b_n} \bullet$

$$.b_n \leq rac{2}{L}a_n$$
 נקבל

מתכנס, $\sum_{n=1}^\infty \frac{2}{L}a_n$ מתכנס, אז $\sum_{n=1}^\infty a_n$ מתכנס, אז מאריתמטיקה, אם $\sum_{n=1}^\infty b_n$ מתכנס.

(הוכיחו לבד עבור מקרי הקצה האחרים)

דוגמה 1.11 בדקו התכנסות של הטור:

$$\sum_{n=1}^{\infty} \left(\underbrace{\frac{1}{n} - \sin\left(\frac{1}{n}\right)}_{a_n} \right)$$

 $a_n \geq 0$ ולכן, $\sin x \leq x$ ראינו

ניזכר:

$$\sin x = x - \frac{x^3}{3!} + o(x^3) \implies x - \sin x = \frac{x^3}{3!} + o(x^3)$$

 $:b_n=rac{1}{n^3}$ ל- a_n נשווה את

$$\lim_{n\to\infty}\frac{\frac{1}{n}-\sin\left(\frac{1}{n}\right)}{\frac{1}{n^3}}$$

נחשב:

$$\lim_{x\to 0}\frac{x-\sin x}{x^3} \underbrace{=}_{\text{dieord}} \lim_{x\to 0}\frac{1-\cos x}{3x^2} \underbrace{=}_{\text{dieord}} \lim_{x\to 0}\frac{\sin x}{6x} = \frac{1}{6} = L$$

לפי היינה, עבור $x_n=rac{1}{n}\longrightarrow 0$ מתקיים:

$$\lim_{n\to\infty}\frac{\frac{1}{n}-\sin\left(\frac{1}{n}\right)}{\frac{1}{n^3}}=\frac{1}{6}=L$$

 $0 < L < \infty$ קיבלנו

. מתכנס, שלנו מתכנס מתכנס, מתכנס $\sum_{n=1}^{\infty} rac{1}{n^3}$