Kontrol Grafikleri (devam)

Hangi Kontrol Grafiği Uygundur?

EĞER;

- üretilen birimlerin niceliksel karakteristikleri ölçülüyor (boyut, ağırlık, vb.),
- kalite karakteristiklerinin dağılımı normal dağılıma uyuyor,
- tahribatsız muayene uygulanıyor
- muayene maliyeti yüksek değil
- muayene süresi uzun değil,
- üretim esnasında örnekleme yapılabiliyor,
- üretim sistemi sürekli

İSE,

Ortalama KG ve Değişim Aralığı-R KG

VEYA

Ortalama KG ve Standart Sapma-s KG

kullanılır.

(İkili kombinasyondan biri tercih edilmelidir. Yani Ortalama KG mutlaka olmalı yanında R veya s tercih edilmelidir.)

n>1 olmalı

Kontrol Grafikleri

27/10/21

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ

- Spesifikasyon Sınırları (ASS-ÜSS)
- Kontrol Sınırları (AKS-ÜKS)
- Doğal Tolerans Sınırları (ADTS-ÜDTS)
- Tolerans kavramı
- Üretici ve Tüketici Riski (α ve β)
- İşletim Karakteristiği Eğrisi
- Muayene ve Ölçme Kavramları

Prof. Dr. Ezgi A. Demirtaș

27/10/21

Spesifikasyon - Tolerans

- Spesifikasyon: Müşteri isteği ya da teknik şartname ile belirlenen üretim aralığı
- Çift yönlü spesifikasyon
 - Nominal ± Sapma ⇒ çift yönlü (μ±kσ)
 Örnek: Yemek masasının boyu
- Tek yönlü spesifikasyon
 - Nominal + Sapma ⇒ tek yönlü (μ+kσ)
 Örnek: Buzdolabının gürültü seviyesi
 - Nominal Sapma ⇒tek yönlü (μ-kσ) Örnek: Kopma mukavemeti
- Tolerans: izin verilen ± yöndeki sapma miktarı
 - Alt tolerans limiti; kσ
 - Üst tolerans limiti; + kσ

27/10/21 4

Kontrol Sınırları?

Orta Çizgi ilgilenilen kalite karakteristiğine (Y) ilişkin gözlemlerin ortalamasıdır.

Orta çizgiye 3o eklenip çıkarılarak Üst ve alt kontrol sınırları oluşturulur.

27/10/21

Kontrol Grafikleri?

Piston halkası üreten bir firmanın müşterisi, halkaların iç çap ölçüsünün 74±0,5 mm olmasını istiyor.

Firmanın üretim süreci ise μ =74 ve σ =0,01 olan normal dağılıma uyuyor (ilk çan eğrisi).

Üretim sürecinin kontrol altında olup olmadığını belirleyelim. Üretim sürecini yorumlayalım.

Kalite karakteristiği: Piston halkaları iç çap ölçüsü (mm) 5'er birimlik 15 örnek (n=5, m=15) alınmış.

■ Müşteri için kritik kalite özelliği iç çap ölçüsüdür. Müşteri tarafından arzu edilen üretim aralığı 73,95-74,05 mm'dir. Yani;

Alt Spesifikasyon Sınırı (ASS)=73,95

Üst Spesifikasyon Sınırı (ÜSS)=74,05

Tolerans=0,5 mm (çift yönlü)

Tolerans aralığı=2*0,5=1 mm.

73,95 mm'nin altındaki ve 74.95 mm'nin üstündeki üretim (non conforming-uygun olmayan) istenmez.

27/10/21 Burnak & Anagün&Demirtas

Soru ??

O halde halka üretim süreci için spesifikasyon dışı üretim oranını hesaplayınız.

İpucu: Standart normal dağılımdan yararlanınız.

X: iç çap ölçüsü (mm)

P(Uygun Olmayan Ürün)=

1-P(73,95 \leq X \leq 74,05 | μ =74 ve σ =0,01)=?

Halka üretim süreci için alt-üst doğal tolerans sınırları ise;

ADTS=
$$\mu$$
-3 σ =74-3*0,01=73,97

ÜDTS=
$$\mu$$
+3 σ =74+3*0,01=74,03

şeklinde hesaplanır. µ ve σ bilinmiyor ise tahmincileri kullanılır.

ÖNEMLİ NOT:

- DTS'lerin SS'den daha geniş olması arzu edilmez. Bu durum spek.dışı üretim oranının fazla olacağı anlamına gelir. Bu örnekte DTS sınırları SS içerisinde kalmıştır. (Bulduğunuz olasılığa bakınız.)
- SS'ler Kontrol sınırları ile değil DTS ile kıyaslanmalıdır.

27/10/21 Burnak & Anagün&Demirtas 10

Halka üretim süreci için ortalama kontrol grafiği kullanıldığında alt-üst kontrol sınırları ise (ikinci çan eğrisi);

AKS=
$$\mu - 3\sigma_{\bar{X}} = \mu - 3\frac{\sigma}{\sqrt{n}} = 74 - 3*\frac{0,01}{\sqrt{5}} = 73,9865$$

ÜKS= $\mu + 3\sigma_{\bar{X}} = \mu + 3\frac{\sigma}{\sqrt{n}} = 74 + 3*\frac{0,01}{\sqrt{5}} = 74,0135$
şeklinde hesaplanır.

- Kontrol sınırları doğal tolerans sınırlarından dardır. Çünkü 15 gözlemden her biri aslında 5'er birimlik örneklerin ortalamasıdır. (Örnek ortalamalarının dağılımı için bkz. Merkezi Limit Teoremi)
- İkinci çan eğrisinde tüm ortalamalar sınırların içinde olduğundan ve özel bir düzen gözlemlenmediğinden sürecin kontrol altında olduğu söylenebilir.
- Tüm hesaplamalarda μ ve σ bilinmiyor ise örnekler yardımıyla hesaplanan tahmincileri kullanılır.

27/10/21 Burnak & Anagün&Demirtas

11

ÖNEMLİ NOT:

- Doğal tolerans sınırlarının spesifikasyon sınırlarından daha geniş olması arzu edilmez.
- Bu durum spek.dışı üretim oranının fazla olacağı anlamına gelir.
- Bu örnekte DTS sınırları SS içerisinde kalmıştır. (önceki slaytta bulduğunuz olasılığa bakınız.)
- SS'ler Kontrol sınırları ile değil DTS ile kıyaslanmalıdır.

27/10/21 Burnak & Anagün&Demirtas 12

■ Spesifikasyon sınırları genellikle μ±4σ şeklinde belirlenir.

Örneğimizde 74±0,05 idi.

Buna göre beklenen ortalama 74'tür. Sürecin üretim ortalaması da (gerçekleşen) 74'tür. Süreçte ortalamadan sapma söz konusu değildir.

Beklenen standart sapma 0,05/4=0,0125 iken gerçekleşen standart sapma 0,01'dir. Gerçek standart sapmanın daha küçük olması sürecin yeteneğini gösterir. Standart sapma 0,0125'ten büyük, ortalama 74'ten uzak olsaydı spesifikasyon dışı üretim oranı artacaktı.

27/10/21 Burnak & Anagün&Demirtas 13

Üretici-Tüketici Riski

Üretici riski:

I. Tip hata yapma olasılığı

$$\alpha = P(H_0 \text{ ret}/H_0 \text{ dogru})$$

Tüketici riski:

II. Tip hata yapma olasılığı

$$\beta = P(H_0 \text{ kabul}/H_0 \text{ yanlis})$$

Testin gücü:

$$(1-\beta) = P(H_0 \text{ ret}/H_0 \text{ yanlis})$$

Güven aralığı:

$$(1-\alpha) = P(H_0 \text{ kabul}/H_0 \text{ dogru})$$

Gerekli Örnek Büyüklüğü Nasıl Hesaplanır?

Ortalamadan delta kadar sapmış bir süreçte, sürecin kontrol altındaymış gibi değerlendirilmesi yani sapmayı yakalayamama olasılığı β 'dır (Yanlış alarm-false alarm). Seçilen α ve β olasılıklarına bağlı olarak alınması gereken örnek büyüklüğü formülü ise en altta görülmektedir.

$$H_0: \mu = \mu_0$$

$$H_a: \mu \neq \mu_0 \quad (\mu = \mu_0 + \delta)$$

$$\beta = P(-z_{\alpha/2} \le Z_0 \le z_{\alpha/2} / H_a \text{ dogru}; \mu = \mu_0 + \delta)$$

$$\beta = \Phi(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}) - \Phi(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma})$$

$$n = \frac{\left(z_{\alpha/2} + z_{\beta}\right)^{2} \cdot \sigma^{2}}{\delta^{2}}$$

Örnek

 α =0,05; β =0,10 σ =6 ve δ =1 için gerekli örnek büyüklüğü;

$$n = \frac{(z_{\alpha/2} + z_{\beta})^{2} \cdot \sigma^{2}}{\delta^{2}}$$
$$= \frac{(1,96 + 1,285)^{2} \cdot 6^{2}}{1^{2}} \approx 379$$

Aynı koşullarda δ=2 için gerekli örnek büyüklüğü;

Büyük sapmalar küçük örnekle bile yakalanabilir.

$$n = \frac{(z_{\alpha/2} + z_{\beta})^{2} \cdot \sigma^{2}}{\delta^{2}}$$
$$= \frac{(1,96 + 1,285)^{2} \cdot 6^{2}}{2^{2}} \approx 95$$

İşletim Karakteristiği Eğrisi

Bkz. Burnak, Demirtaş; 2019

$$\beta = P(AKS_Y \le \overline{Y} \le \ddot{U}KS_Y / \mu = \mu_0 + k\sigma)\delta = k\sigma$$

$$\ddot{U}KS_{Y} = \mu_{0} + 3\sigma/\sqrt{n}$$

$$AKS_{y} = \mu_{0} - 3\sigma / \sqrt{n}$$

$$\beta = P \left(\frac{AKS_Y - \mu}{\sigma / \sqrt{n}} \le \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \le \frac{\ddot{U}KS_Y - \mu}{\sigma / \sqrt{n}} \right)$$

$$\beta = \Phi(3 - k\sqrt{n}) - \Phi(-3 - k\sqrt{n})$$

İşletim Karakteristiği Eğrisi

n=5

Birikimli Olasılıklar Bkz. Normal Dağılım Tablosu

				-			
k	(3-k√n)	(-3-k√n)	F(3-k√n)	F(-3-k√n)	Beta	(1-Beta)	OÇS=1/(1-Beta)
-3	9,71	3,71	1,00	1,00	0,0001	1,00	1
-2,5	8,59	2,59	1,00	1,00	0,0048	1,00	1
-2	7,47	1,47	1,00	0,93	0,0705	0,93	1
-1,5	6,35	0,35	1,00	0,64	0,3616	0,64	2
-1	5,24	-0,76	1,00	0,22	0,7775	0,22	4
-0,5	4,12	-1,88	1,00	0,03	0,9701	0,03	33
0	3,00	-3,00	1,00	0,00	0,9973	0,00	370
0,5	1,88	-4,12	0,97	0,00	0,9701	0,03	33
1	0,76	-5,24	0,78	0,00	0,7775	0,22	4
1,5	-0,35	-6,35	0,36	0,00	0,3616	0,64	2
2	-1,47	-7,47	0,07	0,00	0,0705	0,93	1
2,5	-2,59	-8,59	0,00	0,00	0,0048	1,00	1
3	-3,71	-9,71	0,00	0,00	0,0001	1,00	1

İşletim Karakteristiği Eğrisi

Üretici-Tüketici Riski Örnek Büyüklüğü

Verilen parametreler için gerekli örnek büyüklüğü İşletim Karakteristiği Eğrisi (OCC-Operating Characteristic Curve) ile de bulunabilir.

27/10/21

Muayene (inspection) hammadde, yarımamul ya da mamul biriminin ölçülmesi, denenmesi, sınanması ya da karşılaştırılması işlemidir (Bkz. Burnak & Demirtaş, 2019).

Amaçları:

- Ürünlerin spesifikasyonları sağlayıp sağlamadıklarının belirlenmesi,
- Spesifikasyonları sağlamayan birimlerin tanımlanması ve ayıklanması,
- Sapmaların raporlanması

- Kalite Karakteristiği ✓ Kullanılan ölçme cihazı
 - ✓ Kullanım Yönergeleri
 - √ Kullanan Kişiler
- DOĞRULUK (ACCURACY)
- HASSASİYET (PRECISION)

DOĞRULUK: Yapılan bir dizi ölçüm değerlerinin ölçülen kalite karakteristiğine gösterdiği uyum (ölçüm değerlerinin ortalaması ile ölçülen kalite karakteristiğinin gerçek değeri arasındaki fark)

Doğruluğu etkileyen başlıca nedenler:

Cihazın aşınması, Ayar hatası, Operatör tarafından yanlış kullanım

HASSASİYET: Bir kalite karakteristiği üzerinde yapılan bir dizi tekrarlı ölçümlerin birbirleri ile gösterdiği uyum

Hassasiyetin belirlenmesinde önemli iki kavram:

- Tekrar Edebilme (repeatability),
- Yeniden üretebilme (reproducibility)

Spesifikasyon-Tolerans Örnek 1

 Özellikleri aşağıda verilen dört parçanın montajı sonrasında elde edilen ürünün spesifikasyonunu belirleyiniz.

- $X_1 \sim N(2.0; 0.0004)$
- $X_2 \sim N(4.5; 0.0009)$
- $-X_3 \sim N(3.0; 0.0004)$
- $X_4 \sim N(2.5; 0.0001)$

■ B[Y]=B[
$$X_1+X_2+X_3+X_4$$
]= $\mu_1+\mu_2+\mu_3+\mu_4$
=2.0+4.5+3.0+2.5=12.0

$$V(Y) = V(X_1 + X_2 + X_3 + X_4) = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2$$

$$= 0.0004 + 0.0009 + 0.0004 + 0.0001 = 0.0018$$

- $\sigma = 0.042$
- Spesifikasyon: $12.0\pm4(0.042)$
- 12 ±0.168 → 11.832≤Y≤12.168

Tasarım spesifikasyonu 12.0 ± 0.10 olsaydı...

■
$$P(11.90 \le Y \le 12.10) = P(Y \le 12.10) - P(Y \le 11.90)$$

= $\Phi(2.36) - \Phi(-2.36)$
= $0.99086 - 0.00914$
= 0.98172

- Üretilenlerin %98.172'si spesifikasyon limitleri içinde kalmaktadır.
- P(Y < 11.90) \Rightarrow iskarta orani
- P(Y > 12.10) \Rightarrow yeniden işleme oranı

Spesifikasyon-Tolerans Örnek 2

■ Spesifikasyonu 6.00±0.06 cm olan bir ürün; ortalamaları aşağıda verilen ve varyansları eşit olan üç parçanın montajıyla elde edilmektedir. Montajda kullanılan parçaların toleranslarını belirleyiniz.

•
$$\mu_1 = 1.0$$

•
$$\mu_2$$
=3.0

•
$$\mu_3 = 2.0$$

Spesifikasyon - Tolerans

- \blacksquare $\mu_Y \pm 4\sigma_Y$
- $\mu_{Y} = \mu_{1} + \mu_{2} + \mu_{3}$ = 1.0 + 3.0 + 2.0 = 6.0
- $\sigma_{\rm Y} = 0.06/4 = 0.015$
- $\sigma_{Y}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} = (0.015)^{2} = 0.000225$ $= 3 \sigma^{2}$
- $\sigma^2 = \sigma_Y^2 / 3 = 0.000075$
- X_1 : 1.0 $\pm 4\sqrt{0.000075}$ =1.0 ± 0.0346
- X_2 : 3.0 $\pm 4\sqrt{0.000075}$ =3.0 ± 0.0346
- X_3 : 2.0 $\pm 4\sqrt{0.000075}$ =2.0 ± 0.0346