Introdução ao estudo da Física

Ciência Natural - CN

CN é o conjunto de conhecimentos usados para explicar fenômenos que ocorrem na natureza.

http://mundoeducacao.bol.uol.com.br/

http://www.efeitojoule.com

Ramos da CN

Química: se ocupa do estudo da matéria em uma escala molecular

Biologia: estuda fenômenos ligados aos organismos vivos

Física: aborda os aspectos mais simples e fundamentais da natureza, como o movimento, as forças, a energia, o calor, a luz, o som, etc.

MECÂNICA

Aborda os fenômenos ligados ao movimento e ao equilíbrio dos corpos.

Ramos da Física

ELETRICIDADE

Estuda os fenômenos elétricos

TERMODINÂMICA

Estuda os fenômenos térmicos

FÍSICA QUÂNTICA

Estuda os fundamentos físicos relacionados com o mundo atômico.

ONDULATÓRIA

Aborda os fenômenos relacionados a vibração de uma corda e o som.

RELATIVIDADE

Estuda o movimento dos corpos em altíssimas velocidades

ÓPTICA

É dedicada aos estudos dos fenômenos relacionados com a luz

O método Científico

O MC foi proposto por Galileu Galilei no fim do século XV.

MC consiste numa metodologia muito efetiva para estudar fenômenos naturais. 1. Identificar um problema.

Desprezar aspectos não essências ao problema.

Propor uma hipótese (explicação provisória) para o problema.

Realizar experimentos controlados e monitorados para medir as variáveis de interesse.

Verificar se a hipótese é confirmada pelos resultados experimentais.

Laboratório confirma? Ok.

Laboratório não confirma? Ok.

Domínio de validade de uma teoria

Quando uma nova teoria é elaborada para explicar fatos não previstos, ou não explicados por uma teoria antiga, ela deve explicar não apenas esses fatos, mas também as situações que foram vem explicadas pela antiga teoria. Em outras palavras, a nova teoria deve explicar os novos fatos e fornecer os mesmos resultados que a teoria antiga, no domínio em esta foi testada. (Bernoulli, EM 1, V. 1, p.7)

Ciência e tecnologia

Desde os primórdios da civilização, o homem se valeu do conhecimento científico, aplicando-o no desenvolvimento de ferramentas, máquinas e técnicas para melhorar suas condições de

vida. (Bernoulli, EM 1, V. 1, p.8)

Reservatório Linha de transmissã

Transformador

Água sob pressão

Michael Faraday

Lei da Indução Eletromagnética

http://www.izp.al.gov.br/

Em geral o conhecimento científico antecede as aplicações tecnológicas.

Grandezas físicas

Todas as coisas que podem ser medidas são chamadas de grandezas físicas.

- Algo mensurável -> composição química, velocidade, etc

Sistema Internacional de Medidas - SI

É o conjunto de unidades de medida usado pelos cientistas do mundo todo.

Sendo composto por grandezas fundamentais e grandezas derivadas.

Grandeza	Unidade	Símbolo	
Comprimento	metro	m	Grandezas fundamentais
Tempo	segundo	S	
Massa	quilograma	kg	
Frequência	Hertz	Hz	
Força	Newton	N	Grandezas derivadas
Energia	Joule	J	
Potência	Watt	W	

Conhecendo um pouco da Física

A Física é a ciência que estuda a natureza e seus fenômenos

INTERDISCIPLINARIDADE

TEMAS DE FÍSICA ABORDADOS NO ENSINO MÉDIO

- Mecânica
- ➤ Termodinâmica
- **≻**Ondulatória
- **≻**Óptica
- **≻**Eletricidade
- ➤ Magnetismo

MECÂNICA

Analisa os movimentos, as variações de energia e as forças que atuam sobre um corpo.

Grandezas: Tempo, Comprimento, Velocidade, Aceleração, Massa, Força, Energia

TERMODINÂMICA

Analisa as causas e os efeitos de mudanças na temperatura, pressão e volume, as relações de calor trocado e o trabalho realizado num sistema gasoso.

Grandezas: Temperatura, Calor, Pressão, Volume, Trabalho

ONDULATÓRIA

Analisa e estuda todos os tipos de ondas e as suas propriedades.

Grandezas: Frequência, Período, Comprimento de onda, Velocidade, Amplitude

ÓPTICA

>Analisa os fenômenos relacionados à luz.

Explicando os fenômenos da reflexão,

refração e difração.

Grandezas: Velocidade de propagação da luz, índice de refração

ELETRICIDADE

> Analisa os fenômenos resultantes da presença e do fluxo de carga elétrica

Grandezas: Corrente Elétrica, Potência, Carga Elétrica, Tensão, Resistência, energia elétrica

MAGNETISMO

Analisa as propriedades magnéticas que alguns materiais tem.

Grandezas: Campo Magnético, Fluxo Magnético, Energia Magnética, Força magnética

E A FÍSICA NA ATUALIDADE...

NANOTECNOLOGIA

É o estudo de itens bem pequenos (Na escala nanômetrica) que são utilizados para a construção de componentes inteligentes e de alta

NANOTECNOLOGIA

Como funciona: durante a escovação, cristais em escala nano, adicionados à pasta, aderem aos dentes e ajudam na reposição do esmalte

Como funciona: durante a fabricação de algumas das matérias-primas dos brinquedos, como plástico ou borracha, adicionam-se nanopartículas de argila.

Como funciona: as nanopartículas são adicionadas às fibras durante a fabricação do tecido. Eles podem se tornar bacteriostáticos, repelentes a insetos ou impermeáveis

FÍSICA NUCLEAR

Física Nuclear é a área da física que estuda os constituintes e interações dos núcleos atômicos.

Principais aplicações

Produzem energia considera limpa, pois não polui o meio ambiente, porém o lixo radioativo deve ser armazenado em locais adequados, seguindo

É um dispositivo explosivo que deriva sua força destrutiva das reações nuclear

diversas normas rígidas de segurança.

UNIDADES DE MEDIDA

Grandezas físicas são aquelas grandezas que podem ser **medidas**, ou seja, que descrevem **qualitativamente** e **quantitativamente** as relações entre as propriedades observadas no estudo dos fenômenos físicos.

Em Física, elas podem ser vetoriais ou escalares.

Grandeza Física - ESCALAR

É aquela que precisa somente de um valor numérico e uma unidade para determinar uma grandeza física

Tempo

Temperatura

Energia

Grandeza Física - VETORIAL

As grandezas vetoriais necessitam, para sua perfeita caracterização, de uma representação mais precisa. Assim sendo, elas necessitam, além do valor numérico, que mostra a intensidade, de uma representação espacial que determine a direção e o sentido.

Força

Grandeza mensurável

 coisas ou fenômenos que podem ser medidos - massa, velocidade, tempo, comprimento etc. Portanto, quando algo é mensurável, existe por trás dele um padrão preestabelecido para medi-lo.

Grandeza incomensurável ou não mensurável

coisas que dificilmente encontraríamos um padrão de referência para medi-los.
 Por exemplo, perguntas baseadas em parâmetros pessoais como gosto, amor, estética.

Para medir comprimento, baseamo-nos numa referência padrão que é o metro, atualmente definido como o comprimento do trajeto percorrido pela luz no vácuo, durante um intervalo de tempo de 1/299792458 de segundo. Podemos também utilizar os múltiplos e submúltiplos desta unidade como o km ou cm.

Para medir tempo, temos um padrão que é o segundo, definido como a duração de 9192631770 períodos da radiação correspondente à transição entre os dois níveis hiper-finos do estado fundamental do átomo de Césio 133.

Grandeza física é diferente de unidade física.

Por exemplo:

"No Rio de Janeiro, no Observatório Nacional, a **aceleração da gravidade** vale 9,787899 **m/s²**, conforme registrado no livro das *Efemérides Astronômicas*, de 1999, publicado pelo próprio Observatório".

Unidade de medida

É uma quantidade específica de determinada grandeza física e que serve de padrão para eventuais comparações, e que serve de padrão para outras medidas.

Por exemplo:

"... o tempo gasto é de 20 segundos...", note que se não usássemos a unidade a grandeza perdia o sentido, veja: "... o tempo gasto é de 20...".

Sistema Internacional

É um "sistema coerente e prático de unidades de medida", adotado internacionalmente em 1948 na 9ª Conferência Geral de Pesos e Medidas.

A sua abreviatura é SI, aceita internacionalmente.

No SI as unidades de medida são agrupadas em três classes que são:

- Unidades básicas;
- Unidades derivadas;
- Unidades suplementares

Unidades básicas

São aquelas no qual se baseia o SI.

Crandara	Unidade		
Grandeza	Nome	Símbolo	
comprimento	metro	m	
massa	quilograma	kg	
tempo	segundo	S	
intensidade de corrente elétrica	Ampère	Α	
temperatura	kelvin	K	
quantidade de matéria	mol	mol	
intensidade luminosa	candela	cd	

Unidades derivadas

São formadas partindo-se das unidades básicas, por expressões algébricas, usando-se para isso símbolos matemáticos de multiplicação ou de divisão.

Algumas recebem **nome** e **símbolo especiais**. Outras, ainda, utilizam a **primeira letra** do **nome** do cientista que realizou os estudos.

Unidades derivadas

Grandeza	Unidade				
Grandeza	Nome	Símbolo	Sindética	Básicas	
área	-	m^2	-	-	
volume	-	m^3	-	-	
massa específica	-	kg/m³	-	-	
força	Newton	N	-	kg.m/s ²	
energia	Joule	J	N.m	kg.m2/s ²	
pressão	Pascal	Pa	N/m ²	$kg/(m.s^2)$	
carga elétrica	Coulomb	С	-	A.s	
potência	Watt	W	J/s	kg.m ² /s ³	

Unidades suplementares

Esta categoria comporta só duas unidades puramente geométricas.

Grandeza	Unidade		
	Nome	Símbolo	
ângulo plano	radiano	rd	
ângulo sólido	esterradiano	sd	

Prefixos das Potências de 10

Múltiplo	Prefixo	Símbolo	Múltiplo	Prefixo	Símbolo
10 ¹⁸	exa	E	10 ⁻¹	deci	d
10 ¹⁵	peta	Р	10 ⁻²	centi	С
10 ¹²	tera	Т	10 -3	mili	m
10 ⁹	giga	G	10 ⁻⁶	micro	μ
10 ⁶	mega	M	10 -9	nano	n
10 ³	quilo	K	10 ⁻¹²	pico	р
10 ²	hecto	h	10 ⁻¹⁵	femto	f
10 ¹	deca	da	10 ⁻¹⁸	atto	a

Dimensões das Grandezas Físicas

As dimensões das grandezas física dependem das dimensões das grandezas fundamentais envolvidas.

Grandeza	Símbolo	Dimensão	Unidade
Área	А	L ²	m ²
Volume	V	L ³	m^3
Velocidade	V	L/T	m/s
Aceleração	a	L/T ²	m/s ²
Força	F	ML/T ²	kg.m/s ²
Pressão (F/A)	р	M/LT^2	kg/m.s ²
Densidade (M/V)	ρ	M/L^3	kg/m³
Energia	Е	ML^2/T^2	kg.m ² /s ²
Potência (E/T)	Р	ML^2/T^3	kg.m ² /s ³

Cinemática

Cinemática

Parte da Física que estuda o movimento sem preocupar-se com as causas que deram origem ou interferem no movimento.

Ponto material ou partícula

Dizemos que um corpo é uma partícula quando suas dimensões são muito pequenas em comparação com as demais dimensões que participam do fenômeno.

Corpo extenso

É quando suas dimensões não são pequenas em comparação com as demais dimensões que participam do fenômeno.

O que é movimento?

Movimento é quando a posição entre o corpo e o referencial variar com o tempo.

 Note que o passageiro no interior do ônibus está em movimento em relação ao observador fixo na Terra, porque sua posição muda com o decorrer do tempo.

E repouso?

Repouso é quando a posição entre o corpo e o referencial não variar no decorrer do tempo.

 Note que o passageiro no interior do ônibus está em repouso em relação ao ônibus e ao motorista, porque a sua posição em relação a eles é sempre a mesma.

Enquanto o professor escreve na lousa:

a) o giz está em repouso ou em movimento em relação á lousa? Justifique.

Enquanto o professor está escrevendo, o giz muda de posição em relação à lousa, estando, portanto, *em movimento* em relação a ela.

b) a lousa está em repouso ou em movimento em relação ao chão? Justifique.

A lousa não muda de posição em relação ao chão, estando, portanto, em repouso em relação a ele.

c) a lousa está em repouso ou em movimento em relação ao giz? Justifique.

Os conceitos de movimento e de repouso são simétricos, isto é, se um corpo está em movimento (ou repouso) em relação a outro, esta também está em movimento (ou repouso) em relação ao primeiro. Assim, a lousa está em movimento em relação ao giz. De fato, se houver um inseto pousado no giz, por exemplo, o inseto verá a lousa passando por ele.

Você sabe o que é trajetória?

Trajetória

☐A trajetória de um corpo é definida como o lugar geométrico das sucessivas posições ocupadas pelo corpo no decorrer do tempo

Resumindo

é o caminho percorrido pelo corpo em seu movimento em relação a um dado referencial

Trajetória

Para o referencial (um observador) no avião, a trajetória da bomba será um segmento de reta vertical.

Para o referencial (um observador) no solo terrestre, a trajetória da bomba será um arco de hipérbole.

Trajetória

Instante e intervalo de tempo

■ Notação:

□ t_o = origem dos tempos⁻

Instante e intervalo de tempo

A duração definida por dois instantes de tempo é chamada **intervalo de tempo**.

Unidade de tempo

Nome	Símbolo
segundo	S
minuto	min
hora	h

$$1 \min = 60 s$$

$$1 h = 3600 s$$

- A unidade de tempo no Sistema Internacional SI
 - é o **SEGUNDO**.

Espaço

Determina a posição da partícula na trajetória.

Posição essa dada pelo comprimento do trecho de trajetória compreendido entre a partícula e o ponto *O* (*origem dos espaços*).

Podendo ter sinal positivo ou negativo, conforme a região em que ela se encontra.

Deslocamento escalar

É a diferença entre os pontos finais e iniciais de um espaço na trajetória

Um homem fez uma caminhada partindo do marco 10km e chegando ao marco 50km. Qual é a variação de espaço que o homem percorreu?

$$\Delta s = s - s_o$$

$$\Delta s = 50 - 10$$

$$\Delta s = 40 \text{ km}$$

Assim:

$$s_o = 10 \text{ km}$$

$$s = 50 \text{ km}$$

Então, o homem percorreu durante a caminhada 40km sendo este valor a variação de espaço ΔS.

O Bob esponja dos desenhos animados sabia que o Patrique estava a 50km de distancia, Bob Esponja quer saber qual é sua posição inicial se o Patrique esta sobre o marco 50km.

$$\Delta s = s - s_o$$

$$50 = 50 - s_0$$

$$s_0 = 50 - 50$$

$$s_0 = 0 \text{ km}$$

Assim:

$$s_0 = ?$$

$$\Delta s = 50 \text{ km}$$

A posição inicial do Bob Esponja é o 0 km.

Distância percorrida

É a grandeza que informa quanto à partícula efetivamente percorreu entre dois instantes.

Calculada sempre em valor absoluto.

A distância percorrida seguindo diferentes trajetórias é habitualmente diferente, no entanto, o deslocamento efetuado é sempre o mesmo.

Distância percorrida

Um automóvel deslocou-se do km 20 até o km 65 de uma rodovia, sempre no mesmo sentido. Determine o deslocamento e a distância percorrida pelo automóvel.

Neste caso em que a partícula desloca-se sempre em um mesmo sentido, a distância percorrida será igual ao deslocamento

$$d = \Delta s$$

$$s_o = 20 \text{ km}$$
 $\Delta s = s - s_o$ $d = \Delta s$

$$s = 65 \text{ km}$$
 $\Delta s = 65 - 20$ $d = 45 \text{ km}$

$$\Delta s = ?$$
 $\Delta s = 45 \text{ km}$

Um boi sai da posição zero da estrada, vai até a posição 5m e depois retorna para a posição zero. Qual foi o seu deslocamento? E a sua distância percorrida?

Neste caso em que a partícula inverte o sentido do movimento, a distância percorrida será igual ao deslocamento da ida mais o deslocamento da volta, em módulo.

$$d = |\Delta s_{ida}| + |\Delta s_{volta}|$$

$$s_{o} = 0 \text{ m}$$
 $\Delta s = s - s_{o}$ $d = |\Delta s_{ida}| + |\Delta s_{ida}|$
 $s = 0 \text{ m}$ $\Delta s = 0 - 0$ $d = |5| + |-5|$
 $\Delta s = ?$ $\Delta s = 0 \text{ m}$ $d = 5 + 5$

Unidade de distância

Nome	Símbolo
quilômetro	km
metro	m
centímetro	cm
milímetro	mm

$$1 \text{ km} = 1 000 \text{ m}$$

$$1 \text{ m} = 100 \text{ cm}$$

$$1 cm = 10 mm$$

- □ A unidade de distância no Sistema Internacional SI
 - é o **METRO**.

Velocidade Média (V_M)

$$V_M = \frac{\Delta S}{\Delta t} = \frac{S - S_O}{t - t_O}$$

onde:

ΔS = variação da posição

S_o = posição inicial

S = posição final

Δt = variação do tempo

 t_0 = instante inicial

t = instante final

Exemplo 06

Uma tartaruga consegue percorrer a distância de 4m em 200s. Qual sua velocidade média em m/s?

$$\Delta s = 4 \text{ m}$$

$$\Delta t = 200 \text{ s}$$

$$v = \Delta s$$

$$\Delta t$$

$$v = 4$$

$$200$$

$$v = 0.02 \text{ m/s}$$

Unidade de velocidade

Exemplo 07

Faça as seguintes conversões:

a) 10 m/s em km/h

$$10 \times 3,6 = 36 \text{ km/h}$$

Assim 10 m/s é equivalente a 36 km/h

b) 108 km/h em m/s

$$108 \div 3,6 = 30 \text{ m/s}$$

Assim 108 km/h é equivalente a 30 m/s

Cinemática

Movimento Retilíneo Uniforme - MRU

 Caracteriza-se por percorrer distâncias iguais em intervalos de tempos iguais, ou seja, o módulo do vetor velocidade é constante e diferente de zero.

A aceleração do móvel é nula.

 $V \neq 0$, constante e a = 0

Classificação

Progressivo

☐ Retrógrado

Equação Horária das posições

$$s = S_o + V.t$$

Sorvete ou Sempre sonhei em ver-te

onde:

S = posição final

 S_0 = posição inicial

t = instante final

GRÁFICOS DO MRU

1° velocidade x tempo

2° Posição x tempo

• Movimento progressivo: Velocidade positiva, isto é, o móvel deslocase no sentido positivo da trajetória.

• Movimento retrógrado: Velocidade negativa, isto é, o móvel deslocase no sentido negativo da trajetória.

Exercício

A função horária de um carro que faz uma viagem

entre duas cidades é dada por S = 100 + 20t (SI).

Determine em unidades do sistema internacional.

- a) a posição inicial;
- b) a velocidade;
- c) a posição final em 30 s.

$$s = \begin{vmatrix} 100 \\ S_o \end{vmatrix} + \begin{vmatrix} 20t \\ Vt \end{vmatrix}$$

a)
$$S_0 = 100 \text{ m}$$

b)
$$V = 20 \text{ m/s}$$

c)
$$S = 100 + 20 \cdot 30 = 100 + 600 = 700 \text{ m}$$

Propriedades nos gráficos do MRU

1° Velocidade x tempo

A área de um retângulo:	A = b . H
Aplicando em nosso caso, temos:	A = V . Δt
Sendo V . $\Delta t = \Delta S$:	$\Delta S \equiv A$

2° posição x tempo

A definição de tangente:	tg β = <u>cateto oposto</u> cateto adjacente
Aplicando a definição de tangente no nosso caso, temos:	$tg \beta = \Delta S \Delta t$
Sabendo que $V = \Delta S$, temos então: Δt	V = tg β

Aplicações do MU

AULA EXPLORATÓRIA

(UFPE) Um caminhão se desloca com velocidade constante de 144 km/h. Suponha que o motorista cochile durante 1,0 s. Qual o espaço, em metros, percorrido pelo caminhão nesse intervalo de tempo se ele não colidir com algum obstáculo?

Um carro percorre a primeira metade de um percurso com velocidade escalar média de 40 km/h e a segunda metade com velocidade escalar média de 60 km/h. Determine a velocidade escalar média do carro no percurso todo.

Os móveis A e B percorrem a mesma trajetória em movimento retilíneos uniformes, e suas posições são mostradas no instante t = 0. Suas velocidades escalares em módulo são respectivamente iguais a 8 m/s e 10 m/s.

- a) Quais as funções horárias das posições de cada um dos móveis?
- b) Qual o instante em que a distância entre eles é 100 m?

No exercício anterior, qual o instante em que a distância entre os móveis é 100 m, se o móvel A estiver se movimentando no sentido contrário ao de B?

Um ciclista A tem velocidade escalar constante Va = 36 km/h, e outro ciclista B persegue A com velocidade escalar constante Vb = 38 km/h. Num certo instante, a distância que os separa é de 80 m.

- a) A partir desse instante, quanto tempo o ciclista B levará para alcançar o ciclista A?
- b) Determine a posição dos ciclista quando se encontraram.
- c) Calcule quanto espaço percorreu cada ciclista até se encontrarem.

Quanto tempo gasta um trem com 400 m de comprimento e velocidade escalar constante de 20 m/s, para atravessar um túnel de 1800 m de comprimento?

Dois trens, A e B, de 200 m de comprimento cada um, caminham paralelamente e no mesmo sentido, num trecho retilíneo, com velocidades escalares constantes respectivamente iguais a 30 m/s e 20 m/s. Determine:

- a) o intervalo de tempo para que o trem A ultrapasse o trem B.
- b) o espaço percorrido pelo trem B nesse intervalo de tempo.