Travaux dirigés

Convergences et approximations en probabilités

ECS2 – Lycée La Bruyère, Versailles

Année 2019/2020

Or, d'après l'inégalité de Bienaymé-Tchebychev,

$$\mathbb{P}(|X - \mathbb{E}(X)| \geqslant x) \leqslant \frac{\mathbb{V}(X)}{x^2},$$

ce qui donne ici :

$$\int_0^x \mathbf{e}^{-t^2/2} dt = \sqrt{\frac{\pi}{2}} \left(1 - \mathbb{P}(|X| > x) \right) \geqslant \sqrt{\frac{\pi}{2}} \left(1 - \frac{1}{x^2} \right).$$

Exercice 3

Question 2

L'inégalité de droite est l'inégalité de Markov appliquée à la variable aléatoire

$$\mathbb{P}(|X| \geqslant a) \leqslant \frac{\mathbb{E}(|X|)}{2}$$
.

 $\mathbb{P}(|X|\geqslant a)\leqslant \frac{\mathbb{E}(|X|)}{a}.$ Pour l'inégalité de gauche, on observe (en envisageant les deux cas de figure |X|< a et $|X|\geqslant a$) que :

$$X^2 \leqslant a^2 + M^2 \mathbb{1}_{[|X| \geqslant a]},$$

d'où l'on déduit par croissance de l'espérance que

$$\mathbb{E}(X^2) \leqslant a^2 + M^2 \, \mathbb{E}(\mathbb{1}_{[|X| \geqslant a]}) = a^2 + M^2 \, \mathbb{P}(|X| \geqslant a),$$

ce qui constitue le résultat à démontrer :

$$\frac{\mathbb{E}(X^2) - a^2}{M^2} \leqslant \mathbb{P}(|X| \geqslant a).$$

Pour conjecturer le comportement asymptotique de la suite (Y_n), on peut représenter graphiquement les fonctions f_n :

Exercice 1

Soit X une variable aléatoire suivant la loi normale centrée réduite. Elle a donc pour densité

$$f: x \in \mathbb{R} \longmapsto \frac{1}{\sqrt{2\pi}} \mathbf{e}^{-x^2/2}$$

 $f:x\in\mathbb{R}\longmapsto\frac{1}{\sqrt{2\pi}}\mathbf{e}^{-x^2/2},$ pour espérance $\mathbb{E}(X)=0$ et pour variance $\mathbb{V}(X)=1.$ Pour x>0, on a donc par parité de $f:f^x$

$$\int_0^x \mathbf{e}^{-t^2/2} \, \mathrm{d}t = \sqrt{2\pi} \int_0^x f(t) \, \mathrm{d}t = \frac{\sqrt{2\pi}}{2} \int_{-x}^x f(t) \, \mathrm{d}t$$
$$= \sqrt{\frac{\pi}{2}} \, \mathbb{P}(-x \leqslant X \leqslant x) = \sqrt{\frac{\pi}{2}} \, \mathbb{P}(|X| \leqslant x).$$

Exercice 3

Soit $r\in\mathbb{N}^*$. Par hypothèse, $|X'|\leqslant M'$ où la variable M', constante donc discrète finie, admet une espérance. On en déduit par domination que X' admet une espérance, i.e. que X admet un moment d'ordre r.

Soit ${\it F}$ la fonction de répartition commune aux variables ${\it X}_n$, donnée par :

$$F: x \in \mathbb{R} \longmapsto \int_{-\infty}^{x} f(t) \, \mathrm{d}t = \begin{cases} 0 & \text{si } x < \theta \\ 1 - \mathbf{e}^{-(x-\theta)} & \text{si } x \geqslant \theta \end{cases}.$$

 $F:x\in\mathbb{R}\longmapsto\int_{-\infty}^x f(t)\,\mathrm{d}t=\begin{cases} 0 & \text{si }x<\theta\\ 1-\mathbf{e}^{-(x-\theta)} & \text{si }x\geqslant\theta \end{cases}.$ On commence par déterminer, à $n\geqslant 1$ fixé, la loi de la variable aléatoire Y_n . Pour $x\in\mathbb{R}$, on a par indépendance mutuelle des variables X_1,\ldots,X_n :

$$\begin{split} \mathbb{P}\big(Y_n \leqslant x\big) &= 1 - \mathbb{P}\big(\text{min}(X_1, \dots, X_n) > x\big) = 1 - \mathbb{P}\big(X_1 > x, \dots, X_n > x\big) \\ &= 1 - \mathbb{P}\big(X_1 > x\big) \cdots \mathbb{P}\big(X_n > x\big) = 1 - \big(1 - F(x)\big)^n \\ &= \begin{cases} 0 & \text{si } x < \theta \\ 1 - \mathbf{e}^{-n(x - \theta)} & \text{si } x \geqslant \theta \end{cases}. \end{split}$$

La fonction de répartition F_n obtenue ci-dessus pour Y_n étant continue sur \mathbb{R} (même en θ) et de classe \mathscr{C}^1 sur $\mathbb{R}\setminus\{\theta\}$, la variable Y_n est à densité donnée par

$$f_n: x \in \mathbb{R} \longmapsto \begin{cases} 0 & \text{si } x < \theta \\ ne^{-n(x-\theta)} & \text{si } x \geqslant \theta \end{cases}$$

La convergence en probabilités de (Y_n) vers la variable certaine θ peut être établie par un calcul direct : puisque $Y_n\geqslant \theta$ presque sûrement, on a pour $\varepsilon>0$ donné,

$$\mathbb{P}(|Y_n - \theta| \ge \varepsilon) = \mathbb{P}(Y_n \ge \theta + \varepsilon) = 1 - F_n(\theta + \varepsilon) = e^{-n\varepsilon} \xrightarrow[n \to \infty]{} 0.$$

$$\lim_{n\to\infty} \mathbb{P}(|Y_n - \theta| \geqslant \varepsilon) = 0$$

pour tout $\varepsilon>0$, ce qui signifie que (Y_n) converge en probabilité vers la variable

$$\mathbb{E}(Y_n) = \int_{-\infty}^{+\infty} t f_n(t) \, \mathrm{d}t = \int_{\theta}^{+\infty} n t \mathbf{e}^{-n(t-\theta)} \, \mathrm{d}t = \frac{1}{n} + \theta.$$

On peut alors appliquer l'inégalité de Markov à la variable aléatoire $\,Y_n-\theta,\,$ presque sûrement positive :

$$\mathbb{P}(|Y_n - \theta| \geqslant \varepsilon) = \mathbb{P}(Y_n - \theta \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(Y_n - \theta)}{\varepsilon} = \frac{1}{n\varepsilon} \xrightarrow[n \to \infty]{} 0.$$

Par encadrement, on en déduit donc que :

$$\lim_{n\to\infty} \mathbb{P}(|Y_n - \theta| \geqslant \varepsilon) = 0,$$

ce qui signifie que (Y_n) converge en probabilité vers la variable certaine θ .

Exercice 6

- Si $|n-m|\geqslant 2$ alors $\{n,n+1\}\cap \{m,m+1\}=\emptyset$ et $(X_n,X_{n+1},X_m,X_{m+1})$ est donc une famille de variables aléatoires mutuellement indépendantes. Comme Y_n est fonction de (X_n, X_{n+1}) (i.e. $\mathcal{A}_{Y_n} \subset \mathcal{A}_{(X_n, X_{n+1})})$ et Y_m de (X_m, X_{m+1}) (de même), le théorème des coalitions assure que (les tribus $\mathcal{A}_{(X_n, X_{n+1})}$ et $\mathcal{A}_{(X_m, X_{m+1})}$ sont indépendantes donc que) Y_n et Y_m sont indépendantes.
- ullet En revanche si $|n-m|\leqslant 1$ les variables Y_n et Y_m sont dépendantes. En effet, c'est évident si n=m et si (par exemple) m=n+1, alors

$$\operatorname{cov}(Y_n, Y_{n+1}) = \mathbb{E}(Y_n Y_{n+1}) - \mathbb{E}(Y_n) \mathbb{E}(Y_{n+1}) = \rho^3 - \rho^4 = \rho^3 (1 - \rho) \neq 0$$

car la variable $Y_n Y_{n+1} = X_n X_{n+1}^2 X_{n+2}$ suit une loi de Bernoulli de paramètre

$$\begin{split} \mathbb{P}\big(Y_nY_{n+1} = 1\big) &= \mathbb{P}\big(X_n = 1, X_{n+1} = 1, X_{n+2} = 1\big) \\ &= \mathbb{P}\big(X_n = 1\big)\,\mathbb{P}\big(X_{n+1} = 1\big)\,\mathbb{P}\big(X_{n+2} = 1\big) = \rho^3. \end{split}$$

Puisque Z_n admet une variance, l'inégalité de Bienaymé-Tchebychev s'applique à la variable Z_n d'espérance p^2 :

$$0 \leq \mathbb{P}(|Z_n - p^2| \geq \varepsilon) \leq \frac{\mathbb{V}(Z_n)}{\varepsilon^2} \xrightarrow[n \to \infty]{} 0.$$

On en déduit par encadrement que

$$\lim \mathbb{P}(|Z_n - p^2| \geqslant \varepsilon) = 0$$

pour tout $\varepsilon>0$, ce qui signifie que la suite (Z_n) converge en probabilité vers la variable constante égale à p^2 .

Finalement.

$$\mathbb{P}(|X_n - m| \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(X_n) + (\mathbb{E}(X_n) - m)^2}{\varepsilon^2} \xrightarrow[n \to \infty]{} 0.$$

Il en résulte par encadrement que :

$$\lim_{n\to\infty} \mathbb{P}(|X_n - m| \ge \varepsilon) = 0,$$

ce qui établit la convergence en probabilité de (X_n) vers m

Exercice 6

Question 1

Pour $n\in \mathbb{N}^*$, la variable aléatoire $Y_n=X_nX_{n+1}$ ne prend que les valeurs 0 et 1donc suit une loi de Bernoulli de paramètre

$$\mathbb{P}(Y_n = 1) = \mathbb{P}(X_n = 1, X_{n+1} = 1) = \mathbb{P}(X_n = 1) \mathbb{P}(X_{n+1} = 1) = p^2$$

par indépendance de X_n et X_{n+1} . Elle admet donc espérance et variance données

$$\mathbb{E}(Y_n) = p^2$$
 et $\mathbb{V}(Y_n) = p^2(1 - p^2)$.

Exercice 6

La linéarité de l'espérance donne :
$$\forall n \in \mathbb{N}^*, \quad \mathbb{E}(Z_n) = \mathbb{E}\Big(\frac{1}{n}\sum_{k=1}^n Y_k\Big) = \frac{1}{n}\sum_{k=1}^n \mathbb{E}(Y_k) = \rho^2$$
 et il s'arit dons de justifica la paragraphic

et il s'agit donc de justifier la convergence en probabilité de la suite (Z_n) vers l'espérance commune des variables aléatoires Z_n . Dans l'optique de conclure par l'inégalité de Bienaymé-Tchebychev, on calcule

$$\begin{split} \mathbb{V}(Z_n) &= \mathbb{V}\left(\frac{1}{n}\sum_{k=1}^n Y_k\right) = \frac{1}{n^2} \left(\sum_{k=1}^n \mathbb{V}(Y_k) + 2\sum_{1 \leqslant k < l \leqslant n} \mathsf{cov}(Y_k, Y_l)\right) \\ &= \frac{1}{n^2} \left(\sum_{k=1}^n \mathbb{V}(Y_k) + 2\sum_{k=1}^{n-1} \mathsf{cov}(Y_k, Y_{k+1})\right) \\ &= \frac{1}{n^2} (np^2(1-p^2) + 2(n-1)p^3(1-p)) = \frac{p^2(1-p)}{n^2} ((1+3p)n - 2p). \end{split}$$

On observe que $\mathbb{V}(Z_n)$ tend vers 0 lorsque $n \to \infty$.

Exercice 7

Question 1

En appliquant l'inégalité de Markov à la variable positive $(X_n-m)^2$ (qui admet une espérance comme X_n^2 et X_n), il vient, pour $\varepsilon>0$ donné :

$$\mathbb{P}(|X_n - m| \geqslant \varepsilon) = \mathbb{P}((X_n - m)^2 \geqslant \varepsilon^2) \leqslant \frac{\mathbb{E}((X_n - m)^2)}{\varepsilon^2}$$

$$(X_n-m)^2=\big(X_n-\mathbb{E}(X_n)\big)^2+2\big(X_n-\mathbb{E}(X_n)\big)\big(\mathbb{E}(X_n)-m\big)+\big(\mathbb{E}(X_n)-m\big)^2$$
 où la variable $X_n-\mathbb{E}(X_n)$ est centrée, d'où :

$$\mathbb{E}\big((X_n-m)^2\big)=\mathbb{V}(X_n)+\big(\mathbb{E}(X_n)-m\big)^2.$$

Exercice 7

La variable X_n donne le nombre de succès (apparition de pile) dans une succession d'épreuves de Bernoulli indépendantes et de même paramètre p. Elle suit donc la

loi binomiale $\mathcal{B}(n,p)$. D'après le théorème de transfert appliqué à la variable finie X_n , on a donc :

$$\mathbb{E}(Y_n) = \mathbb{E}(\mathbf{e}^{X_n/n}) = \sum_{k=0}^{n} \mathbf{e}^{k/n} \mathbb{P}(X_n = k) = \sum_{k=0}^{n} \binom{n}{k} (\rho \mathbf{e}^{1/n})^k (1 - \rho)^{n-k}$$
$$= (\rho \mathbf{e}^{1/n} + 1 - \rho)^n = (1 + \rho (\mathbf{e}^{1/n} - 1))^n$$

οù

$$n\ln \left(1+p(\mathbf{e}^{1/n}-1)
ight)\sim np(\mathbf{e}^{1/n}-1)\sim p
ightarrow p,\quad n
ightarrow \infty,$$

$$\mathbb{E}(Y_n) \xrightarrow[n \to \infty]{} \mathbf{e}^{\rho}.$$

 $\mathbb{E}(Y_n^2) = \sum_{k=0}^n e^{2k/n} \binom{n}{k} p^k (1-p)^{n-k} = \left(1 + \rho(e^{2/n} - 1)\right)^n \xrightarrow[n \to \infty]{} e^{2p}$

$$\mathbb{V}(Y_n) = \mathbb{E}(Y_n^2) - \mathbb{E}(Y_n)^2 \xrightarrow[n \to \infty]{} 0.$$

Le résultat obtenu en 1. s'applique donc à la suite (Y_n) : celle-ci converge en

Remarque. On peut conclure plus directement en remarquant que, d'après la loi des grands nombres appliquée à la suite de variables aléatoires

$$Z_n = \begin{cases} 1 & \text{si le } n\text{-ième lancer renvoie pile} \\ 0 & \text{sinon} \end{cases}$$

indépendantes et de même loi de Bernoulli $\mathcal{B}(p)$ admettant espérance et variance, la suite de terme général $\overline{Z}_n = \frac{1}{n} X_n$ converge en probabilité vers $\mathbb{E}(Z_1) = p$. Dans ces conditions, la suite $(Y_n)_{n \in \mathbb{N}^*} = (\mathbf{e}^{X_n/n})_{n \in \mathbb{N}^*}$ converge en probabilité vers \mathbf{e}^p puisque la fonction exponentielle est continue.

Le placement d'une boule donnée étant uniforme entre toutes les urnes, on a par ailleurs $\mathbb{P}(X_j\neq i)=\frac{n-1}{n}=1-\frac{1}{n}$ pour tout $j\in [\![1,n]\!]$, d'où :

$$\mathbb{P}(T_i = 1) = \left(1 - \frac{1}{n}\right)^N$$

 $\mathbb{P}(T_i=1)=\left(1-\frac{1}{n}\right)^N,$ qui constitue le paramètre de la loi de Bernoulli suivie par $T_i.$ Celle-ci admet donc

$$\mathbb{E}(T_i) = \mathbb{P}(T_i = 1) = \left(1 - \frac{1}{n}\right)^N$$

 $\mathbb{E}(T_i)=\mathbb{P}(T_i=1)=\left(1-\frac{1}{n}\right)^N.$ Remarque. Cette espérance est commune à toutes les variables $T_i,\,1\leqslant i\leqslant n.$

Exercice 8

Question 3

On a $Y_n = \mathcal{T}_1 + \cdots + \mathcal{T}_n$ donc, par linéarité de l'espérance et vu la question $\mathbf{1}$., on

$$\mathbb{E}(S_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(T_i) = \mathbb{E}(T_1) = \left(1 - \frac{1}{n}\right)^N = \exp\left(an \ln\left(1 - \frac{1}{n}\right)\right)$$

$$\operatorname{an} \ln \left(1 - \frac{1}{n}\right) \sim \operatorname{an} \times \frac{-1}{n} = -\operatorname{a} \to -\operatorname{a}, \quad \operatorname{n} \to \infty.$$

Par suite,

$$\mathbb{E}(S_n) \xrightarrow[n \to \infty]{} \mathbf{e}^{-a}$$
.

Exercice 8

C'est une application directe de l'inégalité triangulaire :

$$\begin{aligned} \left| S_n - \mathbf{e}^{-a} \right| &= \left| \left(S_n - \mathbb{E}(S_n) \right) + \left(\mathbb{E}(S_n) - \mathbf{e}^{-a} \right) \right| \\ &\leqslant \left| S_n - \mathbb{E}(S_n) \right| + \left| \mathbb{E}(S_n) - \mathbf{e}^{-a} \right|. \end{aligned}$$

Exercice 8

Question 1

Soit $i \in [\![1,n]\!]$. La variable aléatoire T_i ne prend que les valeurs 0 et 1, elle suit une loi de Bernoulli dont il s'agit de déterminer le paramètre $\mathbb{P}(T_i=1)$. Les placements des différentes boules dans les urnes étant indépendants, les variables aléatoires X_1,\dots,X_N donnant le numéro de l'urne dans laquelle on place chacune des boules sont mutuellement indépendantes.

$$\mathbb{P}(T_i=1)=\mathbb{P}(X_1\neq i,\ldots,X_N\neq i)=\mathbb{P}(X_1\neq i)\cdots\mathbb{P}(X_N\neq i).$$

Exercice 8

$$\mathsf{cov}(T_i, T_j) = \mathbb{V}(T_i) = \left(1 - \frac{1}{n}\right)^N \left[1 - \left(1 - \frac{1}{n}\right)^N\right].$$

Pour $i \neq j$, T_iT_j est une variable de Bernoulli qui admet donc pour espérance, par un argument similaire à celui employé en 1. :

$$\begin{split} \mathbb{E}(T_iT_j) &= \mathbb{P}(T_iT_j = 1) = \mathbb{P}(T_i = 1, T_j = 1) \\ &= \mathbb{P}(X_1, \dots, X_N \not\in \{i, j\}) = \left(\frac{n-2}{n}\right)^N = \left(1 - \frac{2}{n}\right)^N. \end{split}$$

Par suite, d'après la formule de Huygens,

$$\operatorname{cov}(T_i, T_j) = \mathbb{E}(T_i T_j) - \mathbb{E}(T_i) \mathbb{E}(T_j) = \left(1 - \frac{2}{n}\right)^N - \left(1 - \frac{1}{n}\right)^{2N}.$$

Remarque. Cette covariance est commune à tous les couples (T_i, T_i) ,

Exercice 8

Question 4

$$\begin{split} \mathbb{V}(S_n) &= \frac{1}{n^2} \Big(\sum_{i=1}^n \mathbb{V}(T_i) + 2 \sum_{1 \leqslant i \leqslant j \leqslant n} \mathsf{cov}(T_i, T_j) \Big) \\ &= \frac{1}{n^2} \Big(n \mathbb{V}(T_1) + 2 \binom{n}{2} \mathsf{cov}(T_1, T_2) \Big) \\ &= \frac{1}{n} \Big(1 - \frac{1}{n} \Big)^{an} \Big(1 - \Big(1 - \frac{1}{n} \Big)^{an} \Big) - \frac{n-1}{n} \Big(\Big(1 - \frac{2}{n} \Big)^{an} - \Big(1 - \frac{1}{n} \Big)^{2an} \Big) \end{split}$$
 où, par des arguments similaires à celui employé en **3.**,

$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{an} = \mathbf{e}^{-a}, \quad \lim_{n\to\infty} \left(1-\frac{2}{n}\right)^{an} = \mathbf{e}^{-2a} \quad \text{et} \quad \lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{2an} = \mathbf{e}^{-2a}.$$
 Par opérations sur les limites finies, on en déduit que :

$$\lim_{n\to\infty} V(S_n) = 0.$$

Exercice 8

Soit $\varepsilon>0$ donné. Compte-tenu de ce que $\mathbb{E}(S_n)$ converge vers \mathbf{e}^{-a} lorsque $n
ightarrow \infty$ d'après **3.**, il existe un entier n_0 tel que :

$$\forall n \geqslant n_0, \quad \left| \mathbb{E}(S_n) - \mathbf{e}^{-a} \right| \leqslant \frac{\varepsilon}{2}.$$

On a alors pour $n\geqslant n_0$, d'après ${\bf a.}$,

$$\left|S_n - \mathbf{e}^{-a}\right| \leqslant \left|S_n - \mathbb{E}(S_n)\right| + \frac{\varepsilon}{2}$$

$$|S_n - \mathbb{E}(S_n)| \leqslant \frac{\varepsilon}{2} \implies |S_n - \mathbf{e}^{-a}| \leqslant \varepsilon$$

c'est-à-dire, par contraposée :

$$\left|S_n-\mathbf{e}^{-a}\right|\geqslant \varepsilon \implies \left|S_n-\mathbb{E}(S_n)\right|\geqslant \frac{\varepsilon}{2}$$

ou encore en termes d'événements :

$$\left[\left|S_n-\mathbf{e}^{-s}\right|\geqslant\varepsilon\right]\subset\left[\left|S_n-\mathbb{E}(S_n)\right|\geqslant\frac{\varepsilon}{2}\right].$$

Exercise Q 5

On a donc, pour $n\geqslant n_0$,

$$\mathbb{P}(|S_n - \mathbf{e}^{-a}| \geqslant \varepsilon) \leqslant \mathbb{P}(|S_n - \mathbb{E}(S_n)| \geqslant \frac{\varepsilon}{2}).$$

Exercice 8

Question 5.c

Pour $\varepsilon>0$ donné, l'inégalité de Bienaymé-Tchebychev appliquée à la variable aléatoire S_n donne :

$$\mathbb{P}\Big(|S_n - \mathbb{E}(S_n)| \geqslant \frac{\varepsilon}{2}\Big) \leqslant \frac{4}{\varepsilon^2} \mathbb{V}(S_n)$$

d'où, d'après 4. et b.,

$$\mathbb{P}(\left|S_n - \mathbf{e}^{-a}\right| \geqslant \varepsilon) \leqslant \frac{4}{\varepsilon^2} \, \mathbb{V}(S_n) \xrightarrow[n \to \infty]{} 0.$$

Il en résulte par encadrement que :

$$\lim_{n\to\infty} \mathbb{P}(|S_n - \mathbf{e}^{-a}| \ge \varepsilon) = 0.$$

Exercice 8

On vient de démontrer que (S_n) converge en probabilité vers la variable certaine égale à ${\bf e}^{-a}$.

Exercice 9

Question

Pour $\varepsilon > 0$ donné et $n \in \mathbb{N}$,

$$|(X_n + Y_n) - (X + Y)| \le |X_n - X| + |Y_n - Y|$$

d'où

$$\left[\left|\left(X_{n}+Y_{n}\right)-\left(X+Y\right)\right|\geqslant\varepsilon\right]\subset\left[\left|X_{n}-X\right|\geqslant\frac{\varepsilon}{2}\right]\cup\left[\left|Y_{n}-Y\right|\geqslant\frac{\varepsilon}{2}\right].$$

Il en résulte que

$$\begin{split} \mathbb{P}\big(|(X_n + Y_n) - (X + Y)| \geqslant \varepsilon\big) \leqslant \mathbb{P}\Big(\Big[|X_n - X| \geqslant \frac{\varepsilon}{2}\Big] \cup \Big[|Y_n - Y| \geqslant \frac{\varepsilon}{2}\Big]\Big) \\ \leqslant \mathbb{P}\Big(|X_n - X| \geqslant \frac{\varepsilon}{2}\Big) + \Big(|Y_n - Y| \geqslant \frac{\varepsilon}{2}\Big) \xrightarrow[n \to \infty]{} 0 \end{split}$$

d'où, par encadrement,

$$\lim_{n\to\infty} \mathbb{P}\big(|(X_n+Y_n)-(X+Y)|\geqslant \varepsilon\big)=0,$$

ce qui établit la convergence en probabilité de $(X_n + Y_n)$ vers X + Y.

Exercice 9

Question 2

Si (X_n) converge en probabilité vers X et Y, on vérifie aisément que $(-X_n)$ converge en probabilité vers -Y ce qui implique, d'après $\mathbf{1}$., la convergence en probabilité de la suite de terme général $X_n-X_n=0$ vers X-Y:

$$\forall \varepsilon > 0$$
, $\mathbb{P}(|X - Y| \ge \varepsilon) = \lim_{n \to \infty} \mathbb{P}(|X - Y| \ge \varepsilon) = 0$.

Puisque

$$[X \neq Y] = [|X - Y| > 0] = \bigcup_{n > 1} [|X - Y| \geqslant \frac{1}{n}]$$

où l'union est croissante, le théorème de la limite monotone donne :

$$\mathbb{P}(X \neq Y) = \lim_{n \to \infty} \mathbb{P}\left(|X - Y| \geqslant \frac{1}{n}\right) = 0$$

d'où X = Y presque sûrement.

Exercice 11

Question 1

On suppose que (X_n) converge en moyenne vers X. Soit $\varepsilon>0$ donné. Par application de l'inégalité de Markov à la variable aléatoire $|X_n-X|$ positive qui, pour n assez grand, admet une espérance par hypothèse, on obtient :

$$\mathbb{P}(|X_n - X| \ge \varepsilon) \le \frac{\mathbb{E}(|X_n - X|)}{\varepsilon} \xrightarrow[n \to \infty]{} 0.$$

On en déduit par encadrement que

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| \geqslant \varepsilon) = 0$$

et, ce résultat étant acquis pour tout $\varepsilon>0$, la suite (X_n) converge donc en probabilité vers X.

Exercice 11

Question 2.a

Soit $n \in \mathbb{N}^*$. On a :

$$\begin{split} \mathbb{P}(X_n \neq 0) &= \mathbb{P}(Y_1 \cdots Y_n \neq 0) = \mathbb{P}(Y_1 \neq 0, \dots, Y_n \neq 0) \\ &= \mathbb{P}(Y_1 \neq 0) \cdots \mathbb{P}(Y_n \neq 0) = (1 - e^{-\lambda})^n \end{split}$$

par indépendance mutuelle des variables Y_1, \ldots, Y_n .

Exercice 11

Pour $\varepsilon>0$ donné, on a :

$$\forall n \in \mathbb{N}^*, \quad \mathbb{P}(|X_n - X| \geqslant \varepsilon) = \mathbb{P}(|X_n| \geqslant \varepsilon) \leqslant \mathbb{P}(X_n \neq 0)$$

d'où, d'après a. :

$$\forall n \in \mathbb{N}^*, \quad 0 \leqslant \mathbb{P}(|X_n - X| \geqslant \varepsilon) \leqslant (1 - \mathbf{e}^{-\lambda})^n \xrightarrow[n \to \infty]{} 0.$$

Il en résulte par encadrement que :

$$\lim_{n\to\infty} \mathbb{P}(|X_n - X| \geqslant \varepsilon) = 0$$

et la convergence en probabilité de (X_n) vers X est donc établie.

Exercice 11

Question 2.c

Soit $n \in \mathbb{N}^*.$ Toujours par indépendance mutuelle des variables Y_1, \dots, Y_n , il

$$\mathbb{E}(X_n) = \mathbb{E}\left(\prod_{k=1}^n Y_k\right) = \prod_{k=1}^n \mathbb{E}(Y_k) = \lambda^n \xrightarrow[n \to \infty]{} +\infty$$

compte-tenu de $\lambda>1$.

Si la suite (X_n) convergeait en moyenne vers une variable L, alors compte-tenu de

$$X_n \leqslant L + |X_n - L|$$
,

on aurait par croissance de l'espérance :

$$\mathbb{E}(X_n) \leqslant \mathbb{E}(L) + \mathbb{E}(|X_n - L|) \xrightarrow[n \to \infty]{} \mathbb{E}(L)$$

et la suite de terme général $\mathbb{E}(X_n),\ n\geqslant 1$, serait majorée, ce qui n'est pas le cas d'après le calcul effectué plus haut.

Ainsi la suite (X_n) ne converge pas en moyenne.

On a:

 $\forall n \in \mathbb{N}^*, \quad \mathbb{P}(Y_n \in [p - \varepsilon, p + \varepsilon]) = \mathbb{P}(|Y_n - p| \leqslant \varepsilon) = 1 - \mathbb{P}(|Y_n - p| > \varepsilon)$

si bien que la condition de l'énoncé s'écrit : $\forall \varepsilon > 0, \quad \forall \alpha \in]0,1[, \quad \exists N \in \mathbb{N}^*, \quad \forall n \geqslant N, \quad \mathbb{P}(|Y_n - p| > \varepsilon) \leqslant \alpha$

c'est-à-dire, d'après la définition quantifiée de la limite :

$$\forall \varepsilon > 0$$
, $\lim_{n \to \infty} \mathbb{P}(|Y_n - p| > \varepsilon) = 0$

et signifie 1 que (Y_n) converge en probabilité vers p.

Les variables aléatoires $X_n,\ n\in\mathbb{N}^*$, étant indépendantes et admettant une espérance et une variance communes, la loi des grands nombres s'applique et garantit que le réel $p = \mathbb{E}(X_1) = \frac{1}{3}$ convient puisque

$$\forall n \in \mathbb{N}^*, \quad Y_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

1. L'inégalité stricte plutôt que large n'est pas un obstacle d'après la chaîne d'inégalités :

$$\forall n \in \mathbb{N}^*, \quad \mathbb{P}\big(|Y_n - p| \geqslant 2\varepsilon\big) \geqslant \mathbb{P}\big(|Y_n - p| > \varepsilon\big) \geqslant \mathbb{P}\big(|Y_n - p| \geqslant \varepsilon\big).$$

Pour avoir $\mathbb{P}(Y_n \geqslant s) \geqslant 1 - \alpha$, il suffit donc d'avoir

$$\frac{\sigma^2}{n(p-s)^2} \leq \alpha$$
,

c'est-à-dire

$$n \geqslant \frac{\sigma^2}{\alpha(p-s)^2}$$
.

Pour $\alpha=0.01$ et s=0 puis $s=\frac{p}{2}=\frac{1}{6}$, on obtient respectivement N=400 puis

Tout cela n'est guère engageant...

La fonction Φ étant continue et strictement croissante sur \mathbb{R} , elle réalise une bijection de $\mathbb R$ sur]0,1[. Il existe donc un unique réel z_{α} tel que $\Phi(z_{\alpha})=\alpha$. On choisit alors n tel que

$$\frac{\sqrt{n}}{\sigma}(s-p) \leqslant z_{\alpha}$$
 i.e. $n \geqslant z_{\alpha}^2 \frac{\sigma^2}{(p-s)^2}$

$$\mathbb{P}(Y_n \geqslant s) \simeq 1 - \Phi\left(\frac{\sqrt{n}}{\sigma}(s-p)\right) \geqslant 1 - \alpha.$$

Pour $\alpha=$ 0,01 et s= 0 puis $s=\frac{p}{2}$, on obtient $z_{1-\alpha}\simeq$ 2,326, N= 22 puis

Cependant, n = 22 est peut-être trop petit pour que l'approximation (\star) soit valable, et il faudrait pouvoir estimer l'erreur d'approximation (\star) dans le cas n=87 pour énoncer une conclusion précise... Une vérification informatique est Exercice 12

En notant H la variable aléatoire égale à la note obtenue à une question par un candidat qui répondrait au hasard, on a :

$$0 = \mathbb{E}(H) = 1 \cdot \frac{1}{4} + b \cdot \frac{3}{4},$$

d'où l'on déduit la valeur de $b = -\frac{1}{3}$.

On considère à présent un candidat au comportement décrit dans l'énoncé. Pour tout $n\in\mathbb{N}^*$, on note X_n la variable aléatoire égale à la note obtenue par le candidat à la *n*-ième question. Il s'agit d'une variable aléatoire finie d'espérance

$$\mathbb{E}(X_n) = \frac{1+b}{2} = \frac{1}{3}$$

et de variance

$$V(X_n) = \frac{(1-b)^2}{4} = \frac{4}{9} = \sigma^2.$$

Exercice 12

Plus précisément, l'inégalité de Bienaymé-Tchebychev appliquée à la variable aléatoire Y_n fournit (cf. énoncé de la loi des grands nombres), pour $\varepsilon>0$:

$$\mathbb{P}(|Y_n - p| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$$
.

Puisque $[Y_n \geqslant s] = [Y_n - p \geqslant s - p] \supset [|Y_n - p| , on a par ailleurs :$

$$\mathbb{P}(Y_n \geqslant s) \geqslant \mathbb{P}(|Y_n - p|$$

Il en ressort que :

$$\mathbb{P}(Y_n \geqslant s) \geqslant 1 - \frac{\sigma^2}{n(p-s)^2}.$$

Exercice 12

On obtient un bien meilleur résultat en travaillant sur la loi de la variable aléatoire Y_n . Les variables X_1,\ldots,X_n étant indépendantes de même loi, admettant un moment d'ordre 2, le théorème limite central s'applique et donne la convergence en loi de la suite de terme général

$$Y_n^* = \frac{\sqrt{n}}{\sigma}(Y_n - p), \quad n \in \mathbb{N}^*,$$

converge en loi vers la loi normale $\mathcal{N}(0,1)$. Pour n assez grand, on peut donc s'attendre à ce que :

$$\mathbb{P}(Y_n \geqslant s) = \mathbb{P}\left(Y_n^* \geqslant \frac{\sqrt{n}}{\sigma}(s-p)\right) \simeq 1 - \Phi\left(\frac{\sqrt{n}}{\sigma}(s-p)\right), \tag{\star}$$

en désignant par Φ la fonction de répartition de la loi normale centrée réduite.

Exercice 13

On remarque pour commencer que l'intégrale $I=\int_0^1g(t)\,\mathrm{d}t$ est bien définie puisque la fonction g est par hypothèse continue sur le segment [0,1].

Les variables aléatoires $X_n=g(\mathit{U}_n),\ n\in\mathbb{N}^*$, sont indépendantes et admettent

$$\mathbb{E}(X_n) = \int_{-\infty}^{+\infty} g(t) f_{U_n}(t) \, \mathrm{d}t = \int_0^1 g(t) \, \mathrm{d}t = I$$

d'après le théorème de transfert, puisque l'intégrale ci-dessous converge absolument. Elles admettent de même un moment d'ordre 2

$$\mathbb{E}(X_n^2) = \int_0^1 g(t)^2 dt$$

et donc une variance commune :

$$\mathbb{V}(X_n) = \mathbb{E}(X_n^2) - \mathbb{E}(X_n)^2 = \int_0^1 g(t)^2 dt - \left(\int_0^1 g(t) dt\right)^2.$$

La loi des grands nombres s'applique donc à la suite (X_n) : la suite de terme

$$\overline{X}_n = \frac{1}{n}\sum_{k=1}^n X_k = \frac{1}{n}\sum_{k=1}^n g(U_k) = S_n$$
 converge en probabilité vers $\mathbb{E}(X_1) = I$:

$$\forall \varepsilon > 0$$
, $\lim_{n \to \infty} \mathbb{P}(|S_n - I| \ge \varepsilon) = 0$.

Exercice 13 Question 2.a

D'après la question 1., le code ci-dessous :

function y=g(t)
 y=sqrt(1-t.^2);
endfunction
function S=approxI(n)

U=rand(1,n); S=sum(g(U))/n; endfunction

Exercice 15

définit une fonction Scilab approxI qui renvoie avec une forte probabilité, pour n assez grand, une valeur proche de $I=\int_0^1 \sqrt{1-t^2}\,\mathrm{d}t$.

Exercice 13

Question 2.b

$$I = \int_0^1 \sqrt{1 - t^2} \, dt = \int_0^{\pi/2} \sin^2 t \, dt = \int_0^{\pi/2} \frac{1 - \cos(2t)}{2} \, dt = \frac{\pi}{4}.$$

Le changement de variable $t=\cos x$ permet de calculer $I=\int_0^1 \sqrt{1-t^2}\,\mathrm{d}t=\int_0^{\pi/2}\sin^2t\,\mathrm{d}t=\int_0^{\pi/2}\frac{1-\cos(2t)}{2}\,\mathrm{d}t=\frac{\pi}{4}.$ On constate que les valeurs renvoyées par Scilab à l'appel approxI (1000) sont proches de $\frac{\pi}{4}$.

Soit $n \in \mathbb{N}^*$. Pour $x \in \mathbb{R}$, on a :

$$\mathbb{P}(Y_n \leqslant x) = \mathbb{P}(X_n \leqslant nx) = \sum_{k \in \mathbb{N}^*} \mathbb{P}(X_n = k) = \sum_{1 \leqslant k \leqslant \lfloor nx \rfloor} p_n (1 - p_n)^{k-1}$$

en convenant que la somme est nulle si $\lfloor nx \rfloor < 1$. On a donc pour x>0 (même si $\lfloor nx \rfloor = 0$):

$$\begin{split} \mathbb{P}(Y_n \leqslant x) &= \rho_n \frac{1 - (1 - \rho_n)^{\lfloor nx \rfloor}}{1 - (1 - \rho_n)} = 1 - (1 - \rho_n)^{\lfloor nx \rfloor} \\ &= 1 - \exp(\lfloor nx \rfloor \ln(1 - \rho_n)). \end{split}$$

Pour x > 0 fixé, on a par ailleurs

$$1 - \frac{1}{nx} \leqslant \frac{\lfloor nx \rfloor}{nx} \leqslant 1$$

donc, par encadrement, $\lfloor nx \rfloor \sim nx$ lorsque $n \to \infty$, et

$$\lfloor nx \rfloor \ln(1-p_n) \sim -nxp_n \xrightarrow[n \to \infty]{} -\theta x.$$

Ainsi, on a pour tout $x \in \mathbb{R}$:

$$\lim_{n\to\infty} F_{Y_n}(x) = \begin{cases} 0 & \text{si } x\leqslant 0\\ 1-\mathbf{e}^{-\theta x} & \text{si } x>0 \end{cases} = F_Y(x)$$

ce qui signifie que la suite (Y_n) converge en loi vers une variable Y de loi exponentielle de paramètre θ

Exercice 16

Pour $n\geqslant 2$, la variable X_n admet pour fonction de répartition

$$F_{X_n}: x \in \mathbb{R} \longmapsto \begin{cases} 0 & \text{si } x < \frac{1}{n} \\ 1 - \frac{1}{n} & \text{si } \frac{1}{n} \leqslant x < n \\ 1 & \text{si } x \geqslant n \end{cases}.$$

La variable certaine X=0, quant à elle, admet pour fonction de répartition

$$F_X: x \in \mathbb{R} \longmapsto \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \geqslant 0 \end{cases}$$
.

Pour x < 0, on a

$$F_{X_n}(x) = 0 \xrightarrow[n \to \infty]{} 0 = F_X(x).$$

Pour x > 0 et $n > \max(x, 1/x)$,

$$F_{X_n}(x) = 1 - \frac{1}{n} \xrightarrow[n \to \infty]{} 1 = F_X(x).$$

Ainsi

$$\forall x \in \mathbb{R}^*, \quad \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

et comme 0 est un point de discontinuité de F_X , cela suffit pour conclure que (X_n) converge en loi vers X.

Et ce, bien que

$$\mathbb{E}(X_n)=\frac{1}{n}\,\mathbb{P}\Big(X_n=\frac{1}{n}\Big)+n\,\mathbb{P}(X_n=n)=1+\frac{1}{n}-\frac{1}{n^2}$$
 ne converge pas vers $\mathbb{E}(X)=0$ lorsque $n\to\infty$.

Exercice 18

On note tout d'abord que X_n est à valeurs dans $\{0,1,2\}$ pour tout $n\in\mathbb{N}^*$. Pour $n\geqslant 2$, les probabilités de transition $p_{i,j}$, $0\leqslant i,j\leqslant 2$, sont données 2 dans le diagramme ci-dessous :

Pour le justifier on introduit, étant donné $n\in\mathbb{N}$, les événements

- A_1 : « un jeton marqué 1 est tiré de l'urne A (pour le n-ième échange) » ;
- B₁ : « un jeton marqué 1 est tiré de l'urne B (pour le *n*-ième échange) ».

2. Elles sont en particulier bien définies car il va ressortir de l'analyse à venir que $X_n(\Omega)=\{0,1,2\}$ pour tout $n\geqslant 2$, ce que l'on pourrait établir par récurrence.

Par symétrie du rôle des urnes, on a tout d'abord $p_{2-i,2-j}=p_{i,j}$ pour tous $i, j \in \{0, 1, 2\}.$

- ullet Si $X_n=0$ alors le jeton tiré dans A est marqué 0 et celui tiré dans B est marqué 1 si bien que $X_{n+1}=1$. On a donc $p_{0,0}=p_{2,0}=0$ et $p_{1,0}=1$.
- Si $X_n = 1$ est réalisé, chacune des urnes contient un jeton 0 et un jeton 1 avant le n-ième échange de sorte que
 - ▶ l'événement $[X_{n+1}=0]$ se réalise si, et seulement si, on tire un jeton marqué 1 dans l'urne A et un jeton marqué 0 dans l'urne B :

$$\rho_{0,1} = \mathbb{P}_{[X_n = 1]}(A_1 \cap \overline{B_1}) = \mathbb{P}_{[X_n = 1]}(A_1)\,\mathbb{P}_{[X_n = 1]}(\overline{B_1}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

par indépendance des tirages conditionnellement à $[X_n=1]$ (donc connaissant la composition des urnes); • sur le même principe,

$$\begin{split} \rho_{1,1} &= \mathbb{P}_{[X_n=1]}\big((A_1 \cap B_1) \cup \big(\overline{A_1} \cap \overline{B_1}\big) \big) \\ &= \mathbb{P}_{[X_n=1]}(A_1 \cap B_1) + \mathbb{P}_{[X_n=1]}(\overline{A_1} \cap \overline{B_1}) = \frac{1}{2} \end{split}$$

par incompatibilité puis indépendance.

Exercice 18

Question 2

D'après l'étude menée à la question $\mathbf{1}$., (X_n) est une chaîne de Markov.

Pour $n \in \mathbb{N}$ donné, la formule des probabilités totales appliquée au SCE associé à X_n donne³, pour tout $i \in \{0, 1, 2\}$:

$$\mathbb{P}(X_{n+1}=i) = \sum_{j=0}^2 \mathbb{P}_{[X_n=j]}(X_{n+1}=i) \, \mathbb{P}(X_n=j) = \sum_{j=0}^2 p_{i,j} \, \mathbb{P}(X_n=j)$$
 et l'on constate que la loi de X_{n+1} est déterminée à partir de celle de X_n et des probabilités de transition de X_n et déterminée à

Puisque les variables X_n prennent leurs valeurs dans $\{0,1,2\}\subset \mathbb{Z}$, l'étude de la convergence en loi de la suite $(X_n)_{n\in\mathbb{N}}$ se rapporte à celle de la convergence des suites de termes généraux $a_n=\mathbb{P}(X_n=0)$, $b_n=\mathbb{P}(X_n=1)$ et $c_n=\mathbb{P}(X_n=2)$, $n \in \mathbb{N}$. On peut envisager pour cela deux méthodes.

3. La première égalité ne vaut que pour $n \geqslant 2$, mais les deux membres extrémaux égaux pour n = 0 et n = 1.

Les suites (a_n) , (b_n) et (c_n) vérifient donc les relations de récurrence simultanées suivantes

$$\forall n \in \mathbb{N}, \quad \begin{cases} a_{n+1} = \frac{1}{4}b_n \\ b_{n+1} = a_n + \frac{1}{2}b_n + c_n \\ c_{n+1} = \frac{1}{4}b_n \end{cases}$$

On en déduit une relation de récurrence sur deux rangs pour la suite (b_n) :

$$\forall n \in \mathbb{N}, \quad b_{n+2} = a_{n+1} + \frac{1}{2}b_{n+1} + c_{n+1} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n.$$

La résolution de l'équation récurrente linéaire d'ordre 2 à coefficients constants ci-dessus conduit à l'existence de deux réels λ,μ tels que :

$$\forall n \in \mathbb{N}, \quad b_n = \lambda + \mu \left(-\frac{1}{2}\right)^n.$$

On détermine les réels λ et μ grâce aux conditions initiales :

$$\begin{cases} \lambda + \mu = b_0 = 0 \\ \lambda - \frac{1}{2}\mu = b_1 = 1 \end{cases} \iff \begin{cases} \lambda = \frac{2}{3} \\ \mu = -\frac{2}{3} \end{cases}$$

On obtient :

$$\forall n \in \mathbb{N}, \quad b_n = \frac{2}{3} \left(1 - \left(-\frac{1}{2} \right)^n \right)$$

$$\forall n \in \mathbb{N}, \quad a_n = c_n = \frac{1}{6} + \frac{1}{3} \Big(-\frac{1}{2} \Big)^n.$$

On observe à présent que :

$$P(X_n = 0) = a_n \xrightarrow[n \to \infty]{} \frac{1}{6} = P(Y = 0),$$

$$P(X_n = 1) = b_n \xrightarrow[n \to \infty]{} \frac{2}{3} = P(Y = 1),$$

$$P(X_n = 2) = c_n \xrightarrow[n \to \infty]{} \frac{1}{6} = P(Y = 2).$$

D'après la caractérisation de la convergence en loi pour des suites de variables discrètes à valeurs entières, on en déduit que (X_n) converge en loi vers Y. Remarque. En utilisant la relation $a_n+b_n+c_n=1$, on peut établir la relation de récurrence

$$\forall n \in \mathbb{N}, \quad b_{n+1} = 1 - \frac{1}{2}b_n$$

et étudier (b_n) comme une suite arithmético-géométrique.

Deuxième méthode

Une méthode plus systématique pour l'étude des chaînes de Markov consiste à introduire le vecteur (stochastique, i.e. à coefficients positifs de somme 1) $U_n = {}^t (a_n \quad b_n \quad c_n)$ donnant la loi de X_n . En notant

$$Q = (p_{i,j})_{0 \leqslant i,j \leqslant 2} = \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ 1 & \frac{1}{2} & 1 \\ 0 & \frac{1}{4} & 0 \end{pmatrix}$$

la matrice de transition (stochastique par colonnes), les relations précédentes s'écrivent matriciellement :

$$\forall n \in \mathbb{N}, \quad U_{n+1} = QU_n.$$

Dans ces conditions, $U_n = Q^n U_0$ pour tout $n \in \mathbb{N}$ où $U_0 = {}^t (1 \quad 0 \quad 0)$. Le calcul Danis ees contonsis, $Q_n = Q$ op point of the PLO of $Q_n = (1 - Q)$ of $Q_n = Q$ of $Q_n = Q$ nécessaire d'aller aussi loin.

On détermine les valeurs propres de Q : pour $\lambda \in \mathbb{R}$,

$$\begin{split} \operatorname{rg}(Q - \lambda I_3) &= \operatorname{rg} \begin{pmatrix} -\lambda & \frac{1}{4} & 0 \\ 1 & \frac{1}{2} - \lambda & 1 \\ 0 & \frac{1}{4} & -\lambda \end{pmatrix} \underset{L_1 \leftarrow L_1 + \lambda L_2}{=} \operatorname{rg} \begin{pmatrix} 0 & \frac{1}{4} + \frac{\lambda}{2} - \lambda^2 & \lambda \\ 1 & \frac{1}{2} - \lambda & 1 \\ 0 & \frac{1}{4} & -\lambda \end{pmatrix} \\ &= \underset{L_1 \leftarrow L_2 + L_2}{=} \operatorname{rg} \begin{pmatrix} 0 & \frac{1}{2} + \frac{\lambda}{2} - \lambda^2 & 0 \\ 1 & \frac{1}{2} - \lambda & 1 \\ 0 & \frac{1}{4} & -\lambda \end{pmatrix} \\ &= \underset{L_2 \rightarrow L_2 \rightarrow L_$$

Les valeurs propres de Q sont les réels pour lesquels $\operatorname{rg}(Q-\lambda I_3)<3$, i.e. $-\frac{1}{2}$, 0

La matrice Q est donc diagonalisable car elle admet 3 valeurs propres distinctes : il existe $P \in \mathbf{M}_3(\mathbb{R})$ inversible (qu'il n'est pas nécessaire de déterminer) telle que $Q = PDP^{-1}$ où $D = \operatorname{diag}(1,0,-\frac{1}{2})$. Dans ces conditions,

$$Q^{n} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \left(-\frac{1}{2}\right)^{n} \end{pmatrix} P^{-1}$$

converge lorsque $n \to \infty$ car $\left|-\frac{1}{2}\right| < 1$ et il en va donc de même de $U_n = Q^n U_0$. En passant à la limite dans les relations

$$U_{n+1}=QU_n,\quad a_n+b_n+c_n=1,\quad a_n\geqslant 0,\quad b_n\geqslant 0,\quad c_n\geqslant 0,$$

on en déduit que $\Pi=\lim_{n\to\infty}U_n$ est un vecteur stochastique tel que $Q\Pi=\Pi.$ La résolution du système QX=X conduit au vecteur Π :

$$U_n \xrightarrow[n \to \infty]{} \Pi = \begin{pmatrix} \frac{1}{6} \\ \frac{2}{3} \\ \frac{1}{6} \end{pmatrix}$$

et l'on retrouve la conclusion obtenue par la première méthode.

Exercice 20

Soit F la fonction de répartition de X.

Pour $n \in \mathbb{N}^*$ donné, la variable X_n prend ses valeurs dans l'ensemble $\{k/n\}_{k \in \mathbb{N}}.$ Elle est donc discrète et sa loi est donnée par :

$$\forall k \in \mathbb{N}, \quad \mathbb{P}\left(X_n = \frac{k}{n}\right) = \mathbb{P}\left(\lfloor nX \rfloor = k\right) = \mathbb{P}\left(k \leqslant nX < k+1\right)$$
$$= \mathbb{P}\left(\frac{k}{n} \leqslant X < \frac{k+1}{n}\right) = F\left(\frac{k+1}{n}\right) - F\left(\frac{k}{n}\right).$$

Pour x < 0 tout d'abord, on a :

$$F_{X_n}(x) = 0 \xrightarrow[n \to \infty]{} 0 = F_X(x)$$

car X_n et X sont à valeurs positives.

Pour $x\geqslant 0$ ensuite, en notant $k_n=\lfloor nx\rfloor$ pour tout $n\geqslant 1$, on a :

$$\frac{k_n}{n} \leqslant x < \frac{k_n + 1}{n} \tag{(*)}$$

$$\begin{split} \mathbb{P}(X_n \leqslant x) &= \sum_{j=0}^{k_n} \mathbb{P}\left(X_n = \frac{j}{n}\right) = \sum_{j=0}^{k_n} \left(F\left(\frac{j+1}{n}\right) - F\left(\frac{j}{n}\right)\right) \\ &= F\left(\frac{k_n + 1}{n}\right) - F(0) = F\left(\frac{k_n + 1}{n}\right). \end{split}$$

Or, d'après (*),

$$x<\frac{k_n+1}{n}\leqslant x+\frac{1}{n},$$

et donc, par encadrement,

$$\frac{k_n+1}{n} \xrightarrow[n\to\infty]{} x.$$

 $\frac{k_n+1}{n}\xrightarrow[n\to\infty]{}x.$ Par suite, F étant continue en x car X est à densité,

$$F_{X_n}(x) = F\left(\frac{k_n+1}{n}\right) \xrightarrow[n\to\infty]{} F(x).$$

$$\forall x \in \mathbb{R}, \quad F_{X_n}(x) \xrightarrow[n \to \infty]{} F(x)$$

et la suite (X_n) converge en loi vers X.

Exercice 23

Les variables X_1, \ldots, X_n étant mutuellement indépendantes et suivant toutes des lois de Poisson $\mathcal{P}(1)$, leur somme S_n suit aussi une loi de Poisson de paramètre $1+\cdots+1=$ n. Elle a pour espérance et pour variance :

$$\mathbb{E}(S_n) = n$$
 et $\mathbb{V}(S_n) = n$.

Exercice 23

Le théorème limite central s'applique à la suite (X_n) de variables aléatoires mutuellement indépendantes de même loi. Il énonce que

$$\overline{X}_n^* = S_n^* = \frac{S_n - n}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1)$$

donc en particulier :

$$\mathbb{P}(S_n^* \leqslant 0) = F_{S_n^*}(0) \xrightarrow[n \to \infty]{} \Phi(0)$$

c'est-à-dire :

$$\mathbb{P}(S_n \leqslant n) \xrightarrow[n \to \infty]{} \frac{1}{2}$$
.

Exercice 23

Question 3

Comme S_n suit une loi $\mathcal{P}(n)$, on a :

$$\mathbb{P}(S_n \leqslant n) = \sum_{k=0}^n \mathbb{P}(S_n = k) = \mathbf{e}^{-n} \sum_{k=0}^n \frac{n^k}{k!}$$

d'où, d'après la question 2.,

$$\sum_{k=0}^{n} \frac{n^{k}}{k!} = \mathbf{e}^{n} \, \mathbb{P}(S_{n} \leqslant n) \sim \frac{\mathbf{e}^{n}}{2}, \quad n \to \infty.$$

Exercice 25

Le nombre \boldsymbol{X} de fautes dans un devoir de 1500 mots peut être interprété comme le nombre de succès (faire une faute dans un mot) au cours d'une succession de n=1500 épreuves de Bernoulli (écrire un mot) indépendantes et de même

has 1500 epictures de Berndum (ectrife un inder) independantes et de menie paramètre $p=\frac{1}{500}$. Ainsi X suit une loi binomiale $\mathcal{B}(n,p)$. Comme $n\geqslant 30,\ p\leqslant 0,1$ et $np\leqslant 15$, on peut approcher la loi $\mathcal{B}(n,p)$ par la loi de Poisson $\mathcal{P}(np)=\mathcal{P}(3)$. Ainsi la probabilité de faire plus de 5 fautes dans un devoir de 1500 mots vaut

approximativement

$$\mathbb{P}(X \geqslant 5) \simeq 1 - \mathbf{e}^{-3} \left(1 + \frac{3}{1!} + \frac{3^2}{2!} + \frac{3^3}{3!} + \frac{3^4}{4!} \right) \simeq 0.1847.$$

Exercice 26

Pour tout $i \in [\![1,22]\!]$, soit X_i la variable aléatoire donnant le nombre de clients fréquentant le magasin durant le i-ième jour ouvrable du mois considéré. Par hypothèse, X_1,\ldots,X_{22} sont mutuellement indépendantes et suivent toutes la loi de Poisson $\mathcal{P}(12)$. Par conséquent, la variable aléatoire

$$S = \sum_{i=1}^{22} X$$

qui donne le nombre de clients fréquentant le magasin au cours du mois, suit une loi de Poisson de paramètre $\lambda=22\times12=264$.

ion de l'oissoir de paramierte $A = 2\lambda + 12 = 20$. Comme $\lambda \geq 18$, on peut approcher cette loi par la loi normale $\mathcal{N}(\lambda,\lambda)$, sans oublier d'effectuer une correction de continuité puisqu'on approche une loi discrète par une loi continue.

Ainsi, si N suit une loi $\mathcal{N}(\lambda,\lambda)$, alors $N^*=\frac{N-264}{\sqrt{264}}$ suit la loi $\mathcal{N}(0,1)$ et la probabilité d'avoir au moins 250 clients durant le mois vaut donc

$$\begin{split} \mathbb{P}(S \geqslant 250) &\simeq \mathbb{P}(N \geqslant 249,5) = \mathbb{P}\left(N^* \geqslant \frac{249,5-264}{\sqrt{264}}\right) \\ &= 1 - \Phi\left(\frac{249,5-264}{\sqrt{264}}\right) \simeq 1 - \Phi(-0.892) \\ &= \Phi(0.892) \simeq \Phi(0.89) + 0.2 \cdot \left(\Phi(0,90) - \Phi(0.89)\right) \\ &\simeq 0.8138. \end{split}$$

Exercice 27

En notant X_k la variable aléatoire égale à 1 si le k-ième salarié est au téléphone à un instant t donné et 0 sinon pour tout $k \in [\![1,n]\!]$ avec n=300, la variable donnant le nombre de lignes nécessaires à l'instant t est $S=X_1+\cdots+X_n$. Comme les variables X_k sont indépendantes et suivent une loi de Bernoulli de paramètre $p=\frac{1}{10}$, la variable S suit la loi binomiale B(n,p). Puisque $n\geqslant 30$, $np\geqslant 5$ et $n(1-p)\geqslant 5$, on peut approcher la loi de S par celle de la variable gaussienne $N\sim \mathcal{N}(np,np(1-p))=\mathcal{N}(30,27)$. Pour $n\in\mathbb{N}$ donné, on a donc

on a donc
$$\mathbb{P}(X\geqslant n)\simeq \mathbb{P}(N\geqslant n)=\mathbb{P}\Big(N^*\geqslant \frac{n-30}{\sqrt{27}}\Big)=1-\Phi\Big(\frac{n-30}{\sqrt{27}}\Big).$$
 On prendra donc un nombre n de lignes téléphoniques tel que

$$\frac{n-30}{\sqrt{27}} \geqslant \Phi^{-1}(0.975) \simeq 1.96 \iff n \geqslant 41$$

pour que la probabilité que toutes les lignes soient utilisées au même instant soit inférieure à 0.025.