You are encouraged to work on problems with other Math 136 students and to talk with Todd and our TA Wentao, but your answers should be in your own words.

A proper subset of the problems will be selected for grading.

To address some questions, here is the definition of *complex inner product space*.

Definition 1 [Complex (Hermetian) Inner Product Space] Let V be a vector space over the complex numbers and let $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ be a function.

Then, $\langle \cdot, \cdot \rangle$ is an inner product and $(V, \langle \cdot, \cdot \rangle)$ is an inner product space if the following properties hold. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be arbitrary vectors in V and let c be an arbitrary complex number.

- (a) Linearity in first argument: $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ and $\langle c\mathbf{u}, \mathbf{w} \rangle = c \langle \mathbf{u}, \mathbf{w} \rangle$.
- (b) Conjugate symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$.
- (c) Positive definiteness: $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

If $\langle \cdot, \cdot \rangle$ satisfies all of the properties above $except\ \langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = 0$, then it is called a *positive semidefinite* inner product. For $(V, \langle \cdot, \cdot \rangle)$ to be an inner product space, the inner product must be positive definite.

The product for $\mathcal{L}^2([a,b],\mathbb{C})$ is only positive semidefinite, so $\mathcal{L}^2([a,b],\mathbb{C})$ is not an inner product space.

Problems:

- 1. (30 points) Let $(V, \langle \cdot, \cdot \rangle)$ be a complex inner product space. Let $h \in V$ and define the function $\Lambda : V \to \mathbb{C}$ by $\Lambda(f) = \langle f, h \rangle$ for all $f \in V$.
 - (a) Prove that Λ is linear, that is if f and g are in V and $c \in \mathbb{C}$ then you need to prove: $\Lambda(f+g) = \Lambda(f) + \Lambda(g)$, and $\Lambda(cf) = c\Lambda(f)$. Solution: Since $\Lambda(f) = \langle f, h \rangle, \langle \cdot, \cdot \rangle$ is defined in terms of the inner product on V by Definition 1,(1),with given $h \in V$, $\langle f+g,h \rangle = \langle f,h \rangle + \langle g,h \rangle$ and $\langle cf,h \rangle = c\langle f,h \rangle$ for all $c \in \mathbb{C}$ and $\forall f,g \in V$; this gives linearity of Λ
 - (b) Show that Λ is continuous. HINT: It is easiest to prove Λ is Lipschitz, I.e., show there is a constant c>0 such that $|\Lambda(f-g)| \le c \|f-g\|$ for f and g in V.

 Solution: For f and g in V, by Λ 's linearity, $|\Lambda(f)-\Lambda(g)|=|\Lambda(f-g)|=|\langle f-g,h\rangle| \le \|f-g\| \|h\|$, the last inequality is by Cauchy-Schwartz inequality in inner product space. Taking $c=\|h\|$, this proves Λ is Lipschitz. (If $\|h\|=0$, then let c=1.)
- 2. (30 points) In this problem, you will show a couple of the properties of ℓ^2 , the set of all complex sequences $\mathbf{a} = (a_0, a_1, a_2, \dots)$ such that $\|\mathbf{a}\| = \sqrt{\sum_{j=0}^{\infty} |a_j|^2} < \infty$ (i.e., the sum converges). Let $\mathbf{a} = (a_0, a_1, a_2, \dots)$ and $\mathbf{b} = (b_0, b_1, b_2, \dots)$ be vectors in ℓ^2 .
 - (a) Prove that $\mathbf{a} + \mathbf{b} \in \ell^2$. That is, show that the $\sum_{j=0}^{\infty} |a_j + b_j|^2$ converges absolutely. HINT: Let a and b be complex numbers. Then, $|a+b|^2 \le 2(|a|^2 + |b|^2)$. Solution: Since $\mathbf{a}, \mathbf{b} \in \ell^2$, $\sum_{k=0}^{\infty} |a_k|^2$ and $\sum_{k=0}^{\infty} |b_k|^2$ converge so $\sum_{k=0}^{\infty} 2(|a_k|^2 + |b_k|^2)$ converges. Therefore, by inequality $\forall a_k, b_k \in \mathbb{C}$, $|a_k + b_k|^2 \le 2(|a_k|^2 + |b_k|^2)$, it yields $\sum_{k=0}^{\infty} |a_k + b_k|^2$ converges.
 - (b) Prove that $\langle a, b \rangle = \sum_{k=0}^{\infty} a_k \overline{b_k}$ converges absolutely. This shows that $\langle \mathbf{a}, \mathbf{b} \rangle \in \mathbb{C}$ so $\langle \cdot, \cdot \rangle : \ell^2 \times \ell^2 \to \mathbb{C}$. HINT: Let a and b be complex numbers. Then, $|ab| \leq \frac{1}{2}(|a|^2 + |b|^2)$. Solution: Since $\forall a_k, \overline{b_k} \in \mathbb{C}$, $|a_k \overline{b_k}| \leq \frac{1}{2}(|a_k|^2 + |\overline{b_k}|^2) = \frac{1}{2}(|a_k|^2 + |b_k|^2)$ and as a and b are in

Solution: Since $\forall a_k, \overline{b_k} \in \mathbb{C}$, $|a_k \overline{b_k}| \leq \frac{1}{2} (|a_k|^2 + |\overline{b_k}|^2) = \frac{1}{2} (|a_k|^2 + |b_k|^2)$ and as a and b are in ℓ^2 , $\sum_{k=0}^{\infty} |a_k|^2$ and $\sum_{k=0}^{\infty} |b_k|^2$ converge, so $\sum_{k=0}^{\infty} |a_k \overline{b_k}|$ converges. Thus $\langle a, b \rangle = \sum_{k=0}^{\infty} a_k \overline{b_k}$ converges absolutely.

¹©Todd Quinto, and Tufts University

3. (40 points) Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be continuous, and assume $\frac{\partial f}{\partial u}(x,y)$ is defined on $(a,b)\times(c,d)$ and extends to a continuous function on $[a, b] \times [c, d]$.

For all $y \in [c,d]$, define $F(y) = \int_{r=a}^{b} f(x,y) dx$. You will prove that F is differentiable on (c,d) and

$$\frac{d}{dy} \int_{x=a}^{b} f(x,y) dx = \frac{dF}{dy}(y) = \int_{x=a}^{b} \frac{\partial f}{\partial y}(x,y) dx.$$
 (1)

That is, you can bring the derivative with respect to y inside this integral with respect to x.

First, define
$$g(y) = \int_{x=a}^{b} \frac{\partial f}{\partial y}(x,y) dx$$
 for $y \in (c,d)$.

You may assume g is continuous for $y \in [c,d]$ (the proof was problem 1 on HW 7). Now, use the following steps to show identity (1).

(a) (short answer) Let $y \in [c,d]$. Explain why $\int_{t=c}^{y} g(t) dt = \int_{t=c}^{y} \int_{x=a}^{b} \frac{\partial f}{\partial y}(x,t) dx dt$.

Solution: g is a continuous function on [c,d], so it is integrable, and $\int_{t=c}^{y} g(t)dt = \int_{t=c}^{y} \int_{x=a}^{b} \frac{\partial f}{\partial y}(x,t) dx dt \text{ by the definition of } g.$

(b) Justify why $\int_{t=c}^{y} \int_{x=a}^{b} \frac{\partial f}{\partial y}(x,t) dx dt = \int_{x=a}^{b} \int_{t=c}^{y} \frac{\partial f}{\partial y}(x,t) dt dx \text{ for each } y \in [c,d].$

Solution: We know that $\frac{\partial f}{\partial y}$ is defined on $(a,b) \times (c,d)$ and extends to a continuous function on $[a,b] \times [c,d]$. Therefore it is integrable on this rectangle and satisfies the hypothesis of Fubini's Theorem. So, we conclude that for each $y \in [c, d]$ we have:

$$\int_{t=c}^{y} \int_{x=a}^{b} \frac{\partial f}{\partial y}(x,t) \, dx \, dt = \int_{x=a}^{b} \int_{t=c}^{y} \frac{\partial f}{\partial y}(x,t) \, dt \, dx$$

(c) Now, justify why $\int_{t-c}^{y} g(t) dt = \int_{x-c}^{b} [f(x,y) - f(x,c)] dx$ for each $y \in [c,d]$.

Solution: For each fixed $x \in [a,b]$, we can apply the FTC to the continuous function $t \to \frac{\partial f}{\partial u}(x,t)$ whose antiderivative is the function $t \to f(x,t)$. It follows that for each $y \in [c,d]$ we have: $\int_{t=c}^{y} g(t) dt = \int_{x=a}^{b} \int_{t=c}^{y} \frac{\partial f}{\partial y}(x,t) dt dx = \int_{x=a}^{b} [f(x,y) - f(x,c)] dx.$

(d) Use the result of part (c) to prove (1)

Solution: By the FTC, it follows that:
$$g(y) = \int_{x=a}^{b} \frac{\partial f}{\partial y}(x,y) \, dx = g(y) = \frac{d}{dy} \int_{t=c}^{y} g(t) \, dt = \frac{d}{dy} \int_{x=a}^{b} f(x,y) \, dx - \frac{d}{dy} \int_{x=a}^{b} f(x,c) dx = \frac{d}{dy} \int_{x=a}^{b} f(x,y) \, dx$$

Here is an optional extra-credit challenge problem. Todd will grade it.

1. (2 points) Prove the inequalities in the hints for both parts of problem 2.

Solution: Let a and b be complex numbers. We now prove that $|a+b|^2 \le 2(|a|^2+|b|^2)$.

As an auxiliary calculation, we first note that

$$0 \le (|a| - |b|)^2 = |a|^2 - 2|a||b| + |b|^2.$$

Rearranging, we see

$$2|a||b| \le |a|^2 + |b|^2 \tag{2}$$

We now use the triangle inequality to prove the $|a + b| \le |a| + |b|$:

$$|a+b|^2 \le (|a|+|b|)^2 = |a|^2 + 2|a||b| + |b|^2$$

 $\le 2(|a|^2 + |b|^2)$

where we replaced 2|a||b| in the second line using (2).

To prove $|ab| \le \frac{1}{2}(|a|^2 + |b|^2)$, we just divide inequality (2) by two.