Оглавление

Введение	3
Краткое описание языка	3
Hello world	
Bash/Shell скрипты	4
Примеры	5
Блок операций	5
Коментарии к функции	6
Операции сравнения	6
Унарный минус	7
Умножение, сложение,	8
Логические операции	8
Присваивание	g
Проверка массивов	g
Определение переменной	10
Условный оператор	10
Цикл	10
Вызов функции	10
Вызов списка как функции	
Конвертирование в java примитивные типы (boolean, int,)	
Тестирование создания функций	12
Тестирование создания объектов	12
Цикл, рекурсия,	
Тестирование try / catch	
FOR Тестирование итераций	15
Конвертирование java чисел	
castTest1	16
mapExtender	16
listExtender	17
readJREProperties	
Взаимодествие с Java средой	18
Вызов из Java	
Передача переменных в L2Engine	
Передача функций в L2Engine	19
Передача объектов Java в L2Engine	
Регистрация стандартных функций	20
Создание Java объекта	21
Получение класса Java	
Создание Java массива	
Реализация интерфейса Runnable средствами L2	
Реализация интерфейса возвращающего значение	
Командная строка	25
Синтаксис	
Опции	25

Примеры	26
Интерактивный режим	26
Объекты командной строки	27
cli	
Грамматика lang2	27
Введение	27
Резюме	29
expressions	30
expression	30
varDefine	31
whileCycle	31
forCycle	32
assign	32
block	33
flow	33
or	35
xor	35
and	36
compare	36
addition	38
multiple	39
postfix	39
value	40
constPrimitive	40
functionDefine	42
arrayDefine	42
objectDefine	43
FUNCTION	44
NOT	44
ID	44
INT	44
FLOAT	45
COMMENT	45
WS	45
STRING	45
CHAR	46
EXPONENT	46
HEX_DIGIT	46
ESC_SEQ	46
OCTAL_ESC	46
UNICODE ESC	47

Введение

анный язык написан на Java, и многие конструкции позаимствованы из языка JavaScript. При описании работы я буду ссылаться на термины других языков и на особенности языка Java.

Краткое описание языка

Я зык lang2 по сути представляет небольшой простой язык с набором переменных:) не давай те не так, я опишу лучше тезисно:

- Типы данных в языке динамические
 - Имеются числовые типы данных
 - Логические типы
 - Строки
 - Списки
 - Объекты / карты
 - Функции
- Имеются основные конструкции общие для многих языков
 - Комментарии
 - Последовательный блок инструкций
 - Ветвление
 - ∘ Циклы
 - Функции
 - Объекты
- Память используемая для хранения значений
 - Является динамической и управляется сборщиком мусора
 - Все ссылки на объекты, списки и функции это именно ссылки

Hello world

```
C оздаем файл helloworld.l2:

# coding: utf-8

println( "Hello world!" );
```

Первая строка (# coding: utf-8) указывает на кодировку файла.

Строки в начале файла начинающие с символа решетки считаются комментариями, такие комментарии допускаются только в начале файла. В них допускается использовать после решетки любые символы. Эти комментарии могут носить служебный характер для загрузчика файла, в частности указывают на кодировку файла.

Далее из командной строки запускаем

```
[user@debian samples]$ ./lang2 helloworld.l2 Hello world!
```

Bash/Shell скрипты

труктура файлов позволяет использовать в качестве UNIX Shell Скриптов. Создадим файл printargs.l2 сj со следующим содержанием:

```
#!/bin/sh
exec lang2 -f "$0" -- "$@"
!#
# coding: utf-8
println( "print arguments" );
for( a in arguments ){
   println( a );
}
```

Выставим права на исполнение файла

```
chmod a+x printargs.12
```

После запустим на выполнение с парой аргументов

```
[user@debian samples]$ ./printargs.l2 "first argument" "second argument" print arguments ./printargs.l2 first argument second argument
```

Теперь рассмотрим подробнее исходный код.

```
#!/bin/sh
exec lang2 -f "$0" -- "$@"
!#
```

Эти первые три строки являются специальным UNIX заголовком, в котором объясняется как запускать файл.

• #!/bin/sh — указывает что должна использоваться программа /bin/sh, путь до программы sh должен быть указан абсолютно, на большинстве UNIX систем

программа sh располагается в каталоге /bin. В данном случаи программа sh построчно читает содержимое файла и выполняет прочитанное.

- exec lang2 -f "\$0" -- "\$@" на этом шаге программа sh:
 - передает управление программе lang2 (exec), путь до которой прописан в переменных окружения и завершает свою работу
 - **-f** "**\$0**" указывает исполняемый файл, в данном случаи это будет сам исполняемый файл (./printargs.l2)
 - -- "\$0" передает принятые аргументы (first argument и second argument)
- !# это строка отмечает конец специального UNIX заголовка

Следующая строка # coding: utf-8 указывает программе lang2 кодировку файла (utf-8), а последующий текст представляет из себя исходный код программы, который интерпретируется движком L2.

Комментарии которые начинаются с решетки введены для совместимости с UNIX и должны быть расположены только в начале программы, в грамматике языка они не описаны.

Примеры

```
if( notExistsVar ){
   1;
} else {
   2;
}
```

2

Блок операций

```
{
1+2;
2+2
}
```

4

```
{
    var a=1;
    {
        var a=2
    }
    a
}
```

1

Коментарии к функции

```
var testFun = /** testFun comment */ function( a, b ){ a + b };
testFun.comment
```

testFun comment

```
var sumFun = /** sumFun comment */ function( a, b ){ a + b };
/** mulFun comment */ var mulFun = function( a, b ){ a * b };
sumFun.comment + mulFun.comment
```

sumFun commentmulFun comment

Операции сравнения

1==1

true

2<>1

true

2>1

true	
2<1	
•	
false	
•	
22-2	
2>=2	
In a second seco	
true	
2>=1	
true	
1<=2	
•	
true	
•	
1<=1	
1/-1	
truo	
true	
"abc" < "def"	
true	
"abc" == "def"	

false

Унарный минус

-1+1

0

Умножение, сложение, ...

(2+2-3)*4/2

2

"abc" + "def"

abcdef

13 % 10

3

Логические операции

true and true

true

true and false

false
true and not false
true
true or true
true
true or false
Luine.
true
true xor true
false
14250
true xor false
true
false xor true
true
false xor false

false

Присваивание

```
d = c = a * 3 + b
```

5.0

Проверка массивов

```
var lst = [ "str", "ing" ];
lst[0] + lst[1]
```

string

```
var lst = [ 1, 2 ];
lst.length
```

2

Определение переменной

```
var newVar = 1 + 2
```

3

Условный оператор

```
1<2 ? "yes"
```

yes

```
1>2 ? "yes" : "no"
```

no

Цикл

```
var i=0;
while( i<5 ) i=i+1;
i
```

5

Вызов функции

```
print( 1+2, "abc" )
```

null

```
summa( 1, 2, 3 )
```

6.0

```
external.add( 1, 2 )
```

3.0

```
external.add( "con", "cat" )
```

concat

Вызов списка как функции

```
var list = [ "a", "b", "c"];
list( 0 );
```

a

```
var list = [ "a", "b", "c"];
list( 1 );
b
```

```
var list = [
        [ "a", "a.1" ],
        [ "b", "b.1" ],
        [ "c", "c.1" ]
];
list( 0,1 );
```

a.1

```
var list = [
        [ "a", "a.1" ],
        [ "b", "b.1" ],
        [ "c", "c.1" ]
];
list( 1,1 );
```

b.1

Конвертирование в java примитивные типы (boolean, int, ...)

```
external.And( true, true )
```

true

```
external.summa( 1, 2, 3, 4, 5, 6 )

21.0

external.concat( "abc", "def" )

ad
```

Тестирование создания функций

```
var f1 = function( a, b ) a+b;
f1( 1,2 )

3

var f2 = function( a ) a > 2 ? recursion( a-1 ) * a : a;
f2( 4 )
```

Тестирование создания объектов

```
var obj = {
    a : 1+2,
    b : "aa",
    c : true,
    d : function ( a, b ) { a + b }
};
obj.a
```

3

```
var obj = {
    a : 1+2,
    b : "aa",
    c : true,
    d : function ( self, a, b ) { a + b }
};
obj.b
```

aa

```
var obj = {
    a : 1+2,
    b : "aa",
    c : true,
    d : function ( self, a, b ) { a + b }
};
obj.c
```

true

```
var obj = {
    a : 1+2,
    b : "aa",
    c : true,
    d : function ( self, a, b ) { a + b }
};
obj.d( 2, 3 )
```

5

string

Цикл, рекурсия, ...

```
var a = 1;
while( true ){
    a = a + 1;
    a > 5 ? break
}
a
```

6

```
var a = 1;
var b = [];
while( true ){
    a = a + 1;
    a > 20 ? break;
    a > 5 ? continue;
    b[b.length] = a
}
b
```

[2, 3, 4, 5]

```
var f1 = function( a ){
   a > 5 ? return a + a;
   a < 0 ? return a - a;
   a * a
}
f1( 6 ) + f1( -2 ) + f1( 1 )</pre>
```

13

Tecmupoвание try / catch

```
try {
    error( "message" );
}
catch( e ) {
    print( e.getMessage() );
    e.getMessage();
}
```

message

```
try {
    throw "abc";
}
catch( e ) {
    print( e );
    "ok:"+e;
}
```

ok:abc

```
var fact = function( x ) {
   if ( x < 0 ) throw "factorial ("+x+") error";
   if ( x > 1 ) recursion( x-1 ) * x else 1;
};
try {
   fact( -2 );
}
catch( e ) {
   print( e );
   "ok";
}
```

ok

FOR Тестирование итераций

```
var src = [ 1 , 2 , 3 ];
var sum = 0;
for( v in src ) {
    sum = sum + v;
}
sum
```

6

```
var src = {
   idx : 0,
   hasNext : function( self ) { self.idx < 5 },
   next : function( self ) {
      self.idx = self.idx + 1;</pre>
```

```
self.idx
}
};
var sum = 0;
for( v in src ) {
   sum = sum + v;
}
sum
```

15

Конвертирование јача чисел

```
var a = 1;
a.intValue()
```

1

```
var a = 2;
a.doubleValue()
```

2.0

castTest1

```
var l = [ "a", "b", "c" ];
l.remove( 0 );
l.size;
```

2

mapExtender

```
var m = { a:1, b:2, c:3 };
m.size;
```

3

```
var m = { a:1, b:2, c:3 };
var k = m.keys;
k.size;

var m = { a:1, b:2, c:3 };
var k = m.keys;
k[0];

a

var m = { a:1, b:2, c:3 };
var k = m.keys;
k[1];

b

var m = { a:1, b:2, c:3 };
var k = m.keys;
k[2];
```

listExtender

```
var l = [ "a", "b", "c" ];
l.size;
```

readJREProperties

```
obj.field

123

obj.prop

abc

obj.prop = "12345";
obj.prop
```

Взаимодествие с Java средой

Вызов из Јача

Исходный код Java

Результат

```
source code:
1 + 2
result:
3
```

Передача переменных в L2Engine

Исходный код Java

```
public void passingVariables(){
   L2Engine scriptEngine = new L2Engine();

   scriptEngine.getMemory().put("name", "John");
   scriptEngine.getMemory().put("summ", 1200);

   String code = "\"Hello \" + name + \" you win \" + summ + \"$\"";
   Object result = scriptEngine.eval(code);

   System.out.println("source code:");
   System.out.println(code);
   System.out.println("result:");
   System.out.println(result);
}
```

Результат

```
source code:
"Hello " + name + " you win " + summ + "$"
result:
Hello John you win 1200$
```

Передача функций в L2Engine

```
return Math.sin(n);
               return null;
           }
       };
   scriptEngine.getMemory().put("num1", 0.5);
   scriptEngine.getMemory().put("sin", sinFn);
   String code = "sin( num1 )";
   Object result = scriptEngine.eval(code);
   System.out.println("source code:");
   System.out.println(code);
   System.out.println("result:");
   System.out.println(result);
source code:
sin( num1 )
result:
0.479425538604203
```

Передача объектов Java в L2Engine

```
public static class PassObject {
   public int numField = 100;
   protected String strProperty = "some text";
   public String getStrProperty() {
       return strProperty;
   public void setStrProperty(String strProperty) {
       this.strProperty = strProperty;
   public String concat( String arg1, String arg2 ){
       StringBuilder strBldr = new StringBuilder();
       strBldr.append(arg1);
       strBldr.append(arg2);
       return strBldr.toString();
public void passingObjects(){
   L2Engine scriptEngine = new L2Engine();
   PassObject passObj = new PassObject();
   scriptEngine.getMemory().put("inobj", passObj);
   String code = "inobj.concat( inobj.numField.toString(), inobj.strProperty )";
   Object result = scriptEngine.eval(code);
```

```
System.out.println("source code:");
System.out.println(code);
System.out.println("result:");
System.out.println(result);
}

source code:
inobj.concat( inobj.numField.toString(), inobj.strProperty )
result:
100some text
```

Регистрация стандартных функций

```
public void cliFunctions() {
    L2Engine scriptEngine = new L2Engine();

CLIFunctions cliFunctions = new CLIFunctions(scriptEngine);
    scriptEngine.getMemory().putAll(cliFunctions.getMemObjects());

String code = "println( \"test println function\" )";

System.out.println("source code:");
    System.out.println(code);
    System.out.println("output:");

scriptEngine.eval(code);
}
```

```
source code:

println( "test println function" )
output:
test println function
```

Создание Java объекта

```
public void createJavaObj() {
   L2Engine scriptEngine = new L2Engine();

CLIFunctions cliFunctions = new CLIFunctions(scriptEngine);
   scriptEngine.getMemory().putAll(cliFunctions.getMemObjects());

String code =
        "var file = java( \"java.io.File\", \".\" );\n"
        + "println( file.getAbsolutePath() );\n"
        + "file";

System.out.println("source code:");
   System.out.println(code);
```

```
System.out.println("output:");
Object result = scriptEngine.eval(code);
System.out.println("result:");
System.out.println(result);
System.out.println("result instanceof java.io.File = "+(result instanceof java.io.File));
}
source code:
```

```
source code:
var file = java( "java.io.File", "." );
println( file.getAbsolutePath() );
file
output:
/home/user/code/dev/proj/lang2/.
result:
.
result instanceof java.io.File = true
```

Получение класса Java

```
public void getJavaType(){
   L2Engine scriptEngine = new L2Engine();
   CLIFunctions cliFunctions = new CLIFunctions(scriptEngine);
   scriptEngine.getMemory().putAll(cliFunctions.getMemObjects());
   String code =
           "var clzfile = java.type( \"java.io.File\", \".\" );\n"
          "println( clzfile );\n"
          "clzfile";
   System.out.println("source code:");
   System.out.println(code);
   System.out.println("output:");
   Object result = scriptEngine.eval(code);
   System.out.println("result:");
   System.out.println(result);
   if( result instanceof Class ){
       Class cls = (Class)result;
       System.out.println("class name: "+cls.getName());
   }
}
```

```
source code:
var clzfile = java.type( "java.io.File", "." );
println( clzfile );
clzfile
```

```
output:
class java.io.File
result:
class java.io.File
class java.io.File
class name: java.io.File
```

Создание Јача массива

```
public void getJavaArray(){
   L2Engine scriptEngine = new L2Engine();
   CLIFunctions cliFunctions = new CLIFunctions(scriptEngine);
   scriptEngine.getMemory().putAll(cliFunctions.getMemObjects());
   String code =
           "var arr = java.array( \"java.lang.String\", 3 );\n"
          "arr[0] = \"first\";\n"
          "arr[1] = \"second\";\n"
          "arr[2] = \"thrid\";\n"
          "println( arr );\n"
          "arr";
   System.out.println("source code:");
   System.out.println(code);
   System.out.println("output:");
   Object result = scriptEngine.eval(code);
   System.out.println("result:");
   System.out.println(result);
   if( result!=null && result.getClass().isArray() ){
       int arrLen = Array.getLength(result);
       System.out.println("array length: "+arrLen);
   }
}
```

```
source code:
var arr = java.array( "java.lang.String", 3 );
arr[0] = "first";
arr[1] = "second";
arr[2] = "thrid";
println( arr );
arr
output:
[ first, second, thrid ]
result:
[Ljava.lang.String;@5749b290
array length: 3
```

Реализация интерфейса Runnable средствами L2

```
public void implementInterface(){
   L2Engine scriptEngine = new L2Engine();
   CLIFunctions cliFunctions = new CLIFunctions(scriptEngine);
   scriptEngine.getMemory().putAll(cliFunctions.getMemObjects());
   String code =
           "var obj = {"
          " a : \"message\", \n"
" run : function( self ){\n"
                println( self.a )\n"
          " }\n"
          "};\n"
           "java.implement( java.type( \"java.lang.Runnable\" ), obj )";
   System.out.println("source code:");
   System.out.println(code);
   System.out.println("output:");
   Object result = scriptEngine.eval(code);
   System.out.println("result:");
   System.out.println(result);
   if( result!=null && result instanceof Runnable ){
       Runnable run = (Runnable)result;
       System.out.println("run:");
       run.run();
   }
```

```
source code:
var obj = { a : "message",
    run : function( self ) {
        println( self.a )
    };
java.implement( java.type( "java.lang.Runnable" ), obj )
output:
result:
xyz.cofe.lang2.lib.gen.java_lang_Runnable@4929b0e1
run:
message
```

Реализация интерфейса возвращающего значение

```
public void implementInterface2(){
   L2Engine scriptEngine = new L2Engine();
   CLIFunctions cliFunctions = new CLIFunctions(scriptEngine);
   scriptEngine.getMemory().putAll(cliFunctions.getMemObjects());
   String interfaceName = SumItf.class.getName();
   String code =
           "var obj = {"
          " summa : function( self, a, b ){\n"
              a + b\n"
          " }\n"
          "};\n"
          "java.implement( java.type( \""+interfaceName+"\" ), obj )";
   System.out.println("source code:");
   System.out.println(code);
   System.out.println("output:");
   Object result = scriptEngine.eval(code);
   System.out.println("result:");
   System.out.println(result);
   if( result!=null && result instanceof SumItf ){
       SumItf sum = (SumItf)result;
       System.out.println("summa( 3, 4 ):");
       System.out.println(sum.summa(3, 4));
   }
```

```
source code:
var obj = { summa : function( self, a, b ){
    a + b
  }
};
java.implement( java.type( "xyz.cofe.lang2.samples.SumItf" ), obj )
output:
result:
xyz.cofe.lang2.lib.gen.xyz_cofe_lang2_samples_SumItf@26b496d
summa( 3, 4 ):
7
```

Командная строка

В месте с языком идут программы для работы из командной строки, в частности lang2 и lang2.bat, первая для запуска в ОС LINUX (bash скрипт), вторая в WINDOWS, для запуска необходима установленная JAVA версии 1.6 или выше. Ниже дается описание как запускать.

Синтаксис

Onyuu

-h -help	Выводит справку по запуску
-е <i>Код</i> ехр= <i>Код</i>	Выражение которое необходимо выполнить
-f Файл file=Файл	Файл с исходным кодом который необходимо выполнить
-1 Файл log=Файл	Файл куда будет записан лог
cs=Кодировка	Указывает кодировку которая используется для чтения файлов со скриптами и записи лог файлов
charsets	Выводит список доступных кодировок
end1=default windows linux mac other	Указывает символы перевода строк (CR+LF¹) используемые при выводе на консоль (STDIO) и в лог. Возможны следующие значения: windows, linux, mac, other, default
-i interactive	Интерактивный режим работы
skipHello	Отключает вывод подсказки в интерактивном режиме

¹ Символы обозначающие перевод строк, обычно \n на unix системах, и \r\n на windows. см. http://ru.wikipedia.org/wiki/Перевод строки

```
--DynamicCL=true | false
```

--AddDynCP=Путь

```
-с Файл
```

--config=Файл

--userInitScripts=true|false

--consoleClass=java_класс

Опции можно не указывать, после опций можно указать файл со скриптом что бы его запустить на исполнение.

Примеры

Интерактивный режим

```
[user@debian samples]$ lang2 -i
Для завершения работы наберите exit() и нажмите ENTER
Для справки наберите help( "help" ) и нажмите ENTER
```

L2> 1 + 2

3

L2> exit()

null

Объекты командной строки

cli

Свойство	Тип	Описание
evalCommand	Строка	Указывает строку после введения которой начнется исполнение, либо null для немедленного выполнения введенного кода.
prompt	Строка	Подсказка отображаемая при введение кода,

		обычно это «L2> »
--	--	-------------------

Грамматика lang2

Введение

 Γ рамматика языка lang2 представлена в формальном виде, используемом в средстве antlr².

Грамматика используется для сопоставления текущего набора символов с набором шаблонов/правил по которым пишется программа, и если есть сопоставление, то этот набор символов считается программой.

Грамматика представлена в виде именованных набора правил разбора последовательности символов.

Для пример возьмем правило expressions:

```
expressions
: expression
( ';' expression ) *
( ';' ) ?
;
```

Сначала идет название правила (expressions), потом двоеточие (:), потом описание и заканчивается точкой с запятой (;). Символы перевода и пробелы в описании правила не играют роль (за исключением описания текстовых констант).

В описании правила возможно **ссылаться на другие правила**, в примере есть две ссылки на правило expression, и на непосредственно ожидаемую последовательность символов заключенную в одинарные кавычки, в примере это точка с запятой ';'.

Последовательность разбора начинается слева на право, так если в описании будет встречено 'while' '(' expression ')' expression ;

- 1. то сначала будет проверено совпадение слова while;
- 2. затем открывающей круглой скобки после совпадения while;
- 3. затем совпадение согласно правилу expression, после предыдущего пункта;
- 4. затем закрывающей круглой скобки, после предыдущего пункта;
- 5. затем совпадение согласно правилу expression, после предыдущего пункта;
- 2 <u>ANTLR</u> генератор парсеров, позволяющий автоматически создавать программу-парсер.

6. точка с запятой в конце описания завершает проверку, и если все пункты последовательно совпадают, то данная часть символов будет отнесена к определенному правилу.

В описании можно использовать группировку — это круглые скобки.

Если встречается **символ звездочка** *, то считается что последнее правило, группа или текстовая константа — то она может быть повторена 0 или более раз.

Если встречается **символ вопроса** ?, то считается что последнее правило, группа или текстовая константа — может быть отсутствовать.

Так на примере правила expressions, его можно описать словами так:

Сначала должно следовать символы удовлетворяющие правилу expression, затем через точку с запятой могут несколько раз следовать символы согласно правилу expression, и за последним expression может присуствовать символ точка с запятой.

А если встречается **вертикальная черта**, то это обозначается что возможен другой вариант. Например в описании правила block возможны несколько вариантов, пример:

```
block
   : '{' ( block | expressions ) '}'
   ;
```

Описывая словами это правило получается следующее:

- 1. Сначала следует символ открывающей фигурной скобки
- 2. Затем
 - 1. Либо еще раз правило block т. е. Еще одна фигурная скобка '{'
 - 2. Либо набор выражений соответ. expressions (т. е. Возможно там будет, block или другие
- 3. Заканчивается правило символом закрывающей фигурной скобки '}'.

В описании лексем вам может встретиться еще два специальных символа: тильда ~ и две точки подряд. Тильда используется для обозначения, что следующие символы не должны совпадать следующему правилу, если будет совпадение, то всё правило не будет примнено. Пример правило STRING:

```
STRING
: '"'
( ESC_SEQ
| ~ ( '\\' | '"' )
) *
```

;

здесь тильда указывает что должны за ней следовать символы кроме косой черты или двойных кавычек.

Две точки подряд используется что бы сократить перечисление символов, пример правило HEX_DIGIT:

```
HEX_DIGIT
: '0' .. '9'
| 'a' .. 'f'
| 'A' .. 'F'
;
```

Так '0' .. '9' соответственно обозначает вот такое выражение: '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'.

Резюме

1. Любое правило начинается с идентификатора, затем двоеточие отделяется от описания и заканчивается точкой с запятой;

Пример: expression : varDefine | whileCycle | forCycle | assign | block | flow ;

- 2. **Последовательность** (что за чем следует) определяется также как она зада в описании правила;
- 3. Если встречается **символ звездочка** *, то считается что последнее правило, группа или текстовая константа то она может быть повторена 0 или более раз;
- 4. Если встречается **символ вопроса** ?, то считается что последнее правило, группа или текстовая константа может быть отсутствовать;
- 5. **Вертикальная черта** обозначает наличие альтернативного описания правила;
- 6. **Круглые скобки** используются для группировки ;
- 7. **Одинарные кавычки** используются для определения какие символы ожидать;
- 8. Если между двумя последовательностями символов заданных одинарными кавычками находятся **две точки подряд** это обозначает последовательность возможных вариантов. Пример:
 - Так '0' .. '9' соответственно обозначает вот такое выражение: '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'.

9. Символ **тильда** — обозначает правило отрицания следующего правила, пример:

```
~('\\'|'"')
```

Указывает что должны за ней следовать символы кроме косой черты или двойных кавычек.

10. Ссылка на правило задается простым написанием его идентификатора;

expressions

```
expressions
: expression
( ';' expression ) *
( ';' ) ?
;
```

Это начальное правило описывающее всю грамматику языка lang2, т. е. весь язык. Так любая программа (lang2) состоит из набора выражений разделенных точкой с запятой.

Результатом вычисления этого набора выражений является последний вычисленный результат, в данном случаи подразумеваться последнее выражение (expression), но не обязательно, возможно в процессе вычислений появится внештатная ситуация, например конструкция return, throw см. flow.

expression

```
expression
: varDefine
| whileCycle
| forCycle
| assign
| block
| flow
;
```

Эта конструкция описывает класс основных выражений языка как определение переменной, цикл, присваивание и т.д.

varDefine

varDefine

```
: 'var' ID ( '=' expression ) ? ;
```

Эта конструкция определяет переменную в памяти.

whileCycle

```
whileCycle
    : 'while' '(' expression ')' expression ;
```

Эта конструкция определяет обычный цикл с условием. Цикл будет выполняться пока первое выражение возвращает значение Истина в первом выражении. Сначала вычисляется выражение в скобках, и если оно истинно, то вычисляет второе выражение, затем снова происходит повтор.

Пример

```
var a=1;
while( true ){
    a = a + 1;
    a > 5 ? break
}
a
```

6

В данном примере цикл выполняется столько раз, пока переменная а не достигает значения 6.

```
var a=1;
var b=[];
while( true ){
    a = a + 1;
    a > 20 ? break;
    a > 5 ? continue;
    b[b.length]=a
}
b
```

```
[2, 3, 4, 5]
```

В данном случаи определяется 2 переменных а и b. И выполняется цикл. Цикл выполняется пока переменная а не достигнет значения 21, после чего выполнение цикла завершается. Переменная b, объявленная как массив заполняется значениями от 2 до 5.

forCycle

```
forCycle
    : 'for' '(' ID 'in' expression ')' expression ;

Пример

var src = [ 1 , 2 , 3 ];
var sum = 0;
for( v in src ) {
    sum = sum + v;
}
sum
```

6

Пример

```
var src = {
   idx : 0,
   hasNext : function() {
      this.idx < 5
   },
   next : function(){
      this.idx = this.idx + 1;
      this.idx
   }
};
var sum = 0;
for( v in src ) {
   sum = sum + v;
}
sum</pre>
```

15

assign

```
assign
  : or
  ( '=' expression
  | '?' expression ( ':' expression ) ?
  ) ?
  ;
```

block

```
block
   : '{' ( block | expressions ) '}'
   ;
```

Пример

```
{
1+2;
2+2
}
```

4

```
{
    var a=1;
    {
        var a=2
    }
    a
}
```

1

flow

```
flow
   : 'if' '(' expression ')' expression ( 'else' expression ) ?
   | 'return' ( expression ) ?
   | 'break' ( expression ) ?
   | 'continue' ( expression ) ?
   | 'throw' expression
   | 'try' expression 'catch' '(' ID ')' expression
   ;
}
```

Приостановка или изменение последовательности исполнения программы:

- return завершение выполнения функции.
- break завершение выполнения цикла.
- continue завершение выполнения итерации цикла, и переход к следующей итерации.

- throw генерация исключения.
- try .. catch «отлов» исключения.

Пример

```
var a=1;
while( true ){
    a = a + 1;
    a > 5 ? break
}
a
```

6

```
var a=1;
var b=[];
while( true ){
    a = a + 1;
    a > 20 ? break;
    a > 5 ? continue;
    b[b.length]=a
}
b
```

[2, 3, 4, 5]

```
var f1 = function( a ){
   a > 5 ? return a + a;
   a < 0 ? return a - a;
   a * a
}
f1( 6 ) + f1( -2 ) + f1( 1 )</pre>
```

13

```
try {
   throw "abc";
}
catch( e ) {
   "ok:"+e;
}
```

ok:abc

or

```
or
: xor ( ( '|' | 'or' ) xor ) *
;
```

Логическая операция ИЛИ.

Примеры логической операции ИЛИ

true or true

true

true or false

true

xor

```
xor
: and ( ( '^' | 'xor' ) and ) *
;
```

Логическая операция НЕ ИЛИ.

Примеры логической операции НЕ ИЛИ

true xor true

false

true xor false

true

true

```
false xor true
true
false xor false
false
and
  : compare ( ( '&' | 'and' ) compare ) *;
Логическая операция И.
Примеры логической операции И
true and true
true and false
false
true and not false
```

compare

```
compare
   : addition
( ( '<>' | '!=' ) addition
| '<=' addition
     '>=' addition
      '==' addition
      '<' addition
      '>' addition
```

Операция сравнения.

Примеры сравнения

```
1==1
```

true

2<>1

true

2>1

true

2<1

false

2>=2

```
true
2>=1
true
1<=2
true
1<=1
true
"abc" < "def"
true
"abc" == "def"
false
```

addition

Сложение.

Примеры

```
(2+2-3)*4/2
```

2.0

```
"abc" + "def"
```

abcdef

-1+1

0

multiple

```
multiple
    : postfix ( '*' postfix | '/' postfix | '%' postfix ) *
    ;
```

Умножение.

Примеры

```
(2+2-3)*4/2
```

2.0

postfix

```
postfix
   : value
   ( '.' ID
   | '[' expression ']'
   | '(' ( expression ( ',' expression ) * ) ? ')'
```

```
) *
;;

.ID - Доступ к элементу массива/объекта.

[ expression ] - Доступ к элементу массива/символу в строке.

( expression (, expression)* ) - Вызов функции/метода.

Пример

var lst = [ "str", "ing" ];
lst[0] + lst[1]
```

string

```
var obj = {
   a : 1+2,
   b : "aa",
   c : true,
   d : function ( self, a, b ) { a + b }
};
obj.a
```

3.0

```
var obj = {
    a : 1+2,
    b : "aa",
    c : true,
    d : function ( self, a, b ) { a + b }
};
obj.d( 2, 3 )
```

5.0

value

```
value
: constPrimitive
| ID
| NOT expression
| '(' expression ')'
```

```
| functionDefine
| objectDefine
| arrayDefine
;
```

Указывает на значение, как то число, объект, функцию ...

constPrimitive

```
constPrimitive
   : 'true'
   | 'false'
   | 'null'
   | FLOAT
   | INT
   | STRING
   ;
```

Объявление константы.

Булево

```
true
false
```

Нулевая ссылка

null

Плавующее число

12.34

Целое число

56

Строка

```
"Последовательность символов"
"Перевод\пстроки"
```

Возможны следующие экранированные символы:

\n \r \b \f \" \'

А также использование UNICODE значений:

"\u0411\u0443\u043A\u0432\u0430"

Буква

И использование 8-ричных значений:

"\0117\0143\0164\0141\0154"

0ctal

functionDefine

```
functionDefine
   :
   FUNCTION
   '(' ( ID ( ',' ID ) * ) ? ')'
   expression
   ;
```

Объявление функции.

Пример

```
var f1 = function( a, b ) a+b; f1( 1,2 )
```

3.0

```
var f2 = function( a ) a > 2 ? recursion( a-1 ) * a : a; f2( 4 )
24.0
```

arrayDefine

```
arrayDefine
:
  '['
  ( expression ( ',' expression ) * ) ?
  ']'
;
```

Объявление массива.

Пример

```
var lst = [ "str", "ing" ];
lst[0] + lst[1]
```

string

```
var lst = [ 1, 2 ];
lst.length
```

2

objectDefine

```
objectDefine
:
  '{'
  ID ':' expression ( ',' ID ':' expression ) *
  '}'
;
```

Объявление объекта.

Пример

```
var obj = {
   a : 1+2,
   b : "aa",
   c : true,
   d : function ( self, a, b ) { a + b }
};
obj.a
```

3

```
var obj = {
   a : 1+2,
   b : "aa",
   c : true,
   d : function ( self, a, b ) { a + b }
};
obj.b
```

aa

```
var obj = {
    a : 1+2,
    b : "aa",
    c : true,
    d : function ( self, a, b ) { a + b }
};
obj.c
```

true

```
var obj = {
    a : 1+2,
    b : "aa",
    c : true,
    d : function ( self, a, b ) { a + b }
};
obj.d( 2, 3 )
```

5

```
var obj = {
    a : "str",
    b : function ( self, c ) {
        self.a + c
    }
};
obj.b( "ing" )
```

string

FUNCTION

```
FUNCTION : 'function' ;
```

NOT

```
NOT : '!' | 'not' ;
```

ID

```
ID

:

( 'a' .. 'z' | 'A' .. 'Z' | '_' )

( 'a' .. 'z' | 'A' .. 'Z' | '0' .. '9' | '_' ) *

;
```

Идентификатор, используется в качестве имен переменных и тд....

INT

```
INT : ( '0' .. '9' ) + ;
```

Целое число.

FLOAT

```
FLOAT
:
```

```
( '0' .. '9' ) +
'.' ( '0' .. '9' ) *
;
```

Рациональное число

COMMENT

```
COMMENT
:
'//' ~ ( '\n' | '\r' ) * '\r' ? '\n'
| '/*' ( . ) * '*/'
```

// - Однострочный комментарий.

/* ... */ - Многострочный комментарий.

WS

```
| ws
| '\t'
| '\r'
| '\n'
```

STRING

```
STRING
: '"'
( ESC_SEQ
| ~ ( '\\' | '"' )
) *
'"'
;
```

Строковая константа

CHAR

```
CHAR
: '\''
```

```
( ESC_SEQ
| ~ ( '\'' | '\\' )
)
'\''
;
```

EXPONENT

```
EXPONENT
: ( 'e' | 'E' ) ( '+' | '-' ) ? ( '0' .. '9' ) +
;
```

HEX_DIGIT

```
HEX_DIGIT
: '0' .. '9'
| 'a' .. 'f'
| 'A' .. 'F'
;
```

ESC_SEQ

OCTAL_ESC

```
OCTAL_ESC
: '\\' ( '0' .. '3' ) ( '0' .. '7' ) ( '0' .. '7' )
| '\\' ( '0' .. '7' ) ( '0' .. '7' )
| '\\' ( '0' .. '7' )
;
```

UNICODE_ESC

UNICODE_ESC

```
: '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT;
```