

An Overview of CS4824/ECE4424: Machine Learning @Spring 2021

Lifu Huang

Computer Science, Virginia Tech

January 19, 2021

Topic Coverage

Basic Machine Learning Concepts

What's learning, Supervised learning, Semi-supervised learning, Unsupervised learning,
 Reinforcement learning

Machine Learning Algorithms

 Decision trees, Logistic regression, Linear regression, K Nearest Neighbors (KNN), Naïve Bayes, SVM, Perceptron, Clustering (K-means, EM), Principal Component Analysis (PCA), Topic Modeling

Advanced Machine Learning

- Deep neural networks: Feedforward Neural Networks, Back Propagation, Auto-encoder, Convolutional Neural Networks, Recurrent Neural Networks, Graph Neural Networks
- Reinforcement Learning
- Downstream applications in Natural Language Processing, Computer Vision,
-

Class Information

- Instructor: Lifu Huang (https://wilburone.github.io/)
 - Class Meets: 8:00-9:15am, Tuesday and Thursday
 - Lectures: will be posted a day in advance on the Canvas Page
 - Office Hours: 9:00 10:00 AM, Monday and Friday
 - Class & Office Hours Zoom: https://virginiatech.zoom.us/j/5961845863

Teaching Assistants

- Matt Harrington (GTA), Email: mattaharrington@vt.edu
 Office hours: 1:00 2:00 PM, Tuesday and Thursday (https://virginiatech.zoom.us/s/4668844593)
- Haider Ali (GTA), Email: haiderali@vt.edu
 Office hours: 6:30 7:30 PM, Wednesday and Friday
 (https://virginiatech.zoom.us/j/8693837076?pwd=RXQ1VmRaVVdLMUtpcGNhRjFhMDNXdz09)
- Yash Mahajan (GTA), Email: yashmahajan@vt.edu
 Office hours: 11:00 12:00 AM, Monday, 10:00 11:00 AM, Wednesday (https://virginiatech.zoom.us/j/7404528495)
- Yifan Chu (UTA), Email: <u>yifan19@vt.edu</u>
 Office hours: 9:30 10:30 AM, Tuesday and Thursday (https://virginiatech.zoom.us/my/yifanc)

Schedule Overview

Class and Office Hours

	Monday	Tuesday	Wednesday	Thursday	Friday
Class		8:00 - 9:15 AM		8:00 - 9:15 AM	
OH1	9:00-10:00 AM (Lifu)	9:30-10:30 AM (Yifan)	10:00-11:00AM (Yash)	9:30-10:30 AM (Yifan)	9:00-10:00 AM (Lifu)
OH2	11:00-12:00 AM (Yash)	1:00-2:00 PM (Matt)	6:30-7:30 PM (Haider)	1:00-2:00 PM (Matt)	6:30-7:30 PM (Haider)

Class Information

Prerequisites

- Linear Algebra
- Basic concepts of probability and statistics
- Programming skills, especially Python

Course Website

- CS 4824: https://canvas.vt.edu/courses/125186/pages/machine-learning-spring-2021
- ECE 4424: https://canvas.vt.edu/courses/125557/pages/machine-learning-spring-2021
- Content of the two websites will be identical

Discussion Forum

• Canvas v.s. Piazza ??

Textbooks & Recommended References

Textbook Options

- Machine Learning: a Probabilistic perspective. (Digital copy available for free from http://noiselab.ucsd.edu/ECE228/Murphy_Machine_Learning.pdf)
- Pattern Recognition and Machine Learning (Digital copy available for free from http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-
 %20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
- Understanding Machine Learning: From Theory to Algorithms (Digital copy available for free from https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/)

Other recommended resources

- Deep Learning (https://www.deeplearningbook.org/)
- Online Course: *Machine Learning* by *Andrew Ng* (https://www.coursera.org/learn/machine-learning)
- Github: https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93
- Conferences: ICML, NeurIPS, ICLR, ACL, EMNLP, KDD, CVPR

Course Work: Assignments, Exams and Course Project

- Assignments (60%)
 - Four Assignments, equal weight (4 * 15%)
 - Each assignment will include both written and programming portions
 - Both written and programming assignments will be submitted electronically
 - Programming assignments will be in Python
 - Homework assignments will be posted on Canvas
- Midterm Exam (20%)
- Final Project (20%)
 - Include programming, report, and presentation
 - Evaluate by class (10%) and TA + Instructor (10%) collectively

Tentative Schedule

Week	Dates	Topics & Lectures	Readings	Homework / Exam
1	Jan. 19, 21	Overview, Basic understanding of ML		
2	Jan. 26, 28	Decision trees, Naive Bayes		HW1-release
3	Feb. 2, 4	Numpy Tutorial (Haider), Linear Regression		
4	Feb. 9, 11	KNN, Logistic Regression		HW1-due, HW2-release
5	Feb. 16, 18	Perceptron, SVM,		
6	Feb. 23	Kernel		HW2-due, HW3-release
7	Mar. 2, 4	Midterm		
8	Mar. 9, 11	Clustering, Kmeans		
9	Mar. 16, 18	EM		
10	Mar. 23, 25	PCA, LDA		HW3-due, HW4-release
11	Mar. 30, Apr. 1	Neural networks, Feedforward NN, Backpropagation		
12	Apr. 8	Pytorch Tutorial (Matt)		HW4-due
13	Apr. 13, 15	Auto-encoder, CNN		
14	Apr. 20, 22	RNN, Reinforcement Learning		
15	Apr. 27, 29	Project Presentation		
16	May 4	Project Presentation		

Other Policies

Regrading Requests

• Requests for regrading due to grading errors must be submitted in writing to the TA within one week of the release of grades.

Late Homework Policy

- Penalization: (Penalized score) = (Your raw score) * (1 0.1 * (# of days past deadline))
- Formula will apply for up to three days. After that, 0 grading!!

Final Letter Grade

Academic Integrity

No cheating, no copy code from others or online

Questions for Short Discussion

- What's the difference between this course and previous/other ML courses?
 - Applied Machine Learning
 - Not much theoretical proof / derivation
 - Cover all the basic machine learning algorithms

Questions for Short Discussion

- What's the difference between this course and previous/other ML courses?
 - Applied Machine Learning
 - Not much theoretical proof / derivation
 - Cover all the basic machine learning algorithms
- What to do after finishing this course?
 - pick a task/research project, and apply ML algorithms to solve the problems
 - read papers to learn more advanced algorithms, applications
 - Machine Learning, Deep Learning, Natural Language Processing, Data Mining, Computer Vision, etc. (https://aideadlin.es/?sub=ML,CV,NLP,DM)

Questions for Short Discussion

- What's the difference between this course and previous/other ML courses?
 - Applied Machine Learning
 - Not much theoretical proof / derivation
 - Cover all the basic machine learning algorithms
- What to do after finishing this course?
 - pick a task/research project, and apply ML algorithms to solve the problems
 - read papers to learn more advanced algorithms, applications
 - Machine Learning, Deep Learning, Natural Language Processing, Data Mining, Computer Vision, etc. (https://aideadlin.es/?sub=ML,CV,NLP,DM)
- Other questions??

