Universidade Federal de Pernambuco (UFPE) Centro Acadêmico do Agreste Núcleo de Tecnologia Lista 1 de Álgebra Linear Prof. Fernando RL Contreras

Sejam os seguintes problemas

- 1. Sejam $V = \mathbb{R}^2$ e o corpo \mathbb{R} . Determine se as seguintes operações definem sobre V uma estrutura de espaço vetorial. $(a,b) + (a_1,b_1) = (0.5a + 0.5a_1, 0.5b + 0.5b_1)$ e $\alpha(a,b) = (\alpha a, \alpha b)$
- 2. considerando $V = \mathbb{R}$, ou seja, o conjunto de funções reais com variável real, investigar se V são espaços vetoriais:
 - O conjunto de funções pares, ou seja, as funções $f \in \mathbb{R}$ tais que f(x) = f(-x).
 - O conjunto de funções impares, ou seja, as funções $f \in \mathbb{R}$ tais que f(x) = -f(-x).
- 3. Considerando o espaço vetorial $(\mathbb{R}^3,+,\cdot,\mathbb{R})$, investigar se o seguintes conjuntos são subespaços de \mathbb{R}^3

-
$$S = \{(a_1, a_2, a_3) \in \mathbb{R}^3 / a_1 + a_3 = 0\}$$

$$- S = \{(a_1, a_2, a_3) \in \mathbb{R}^3 / |a_1| = |a_2| \}.$$

-
$$S = \{(a_1, a_2, a_3) \in \mathbb{R}^3 / a_3 = a_1 + 2\}.$$

4. Seja o espaço vetorial $(\mathbb{R}^n, +, \cdot, \mathbb{R})$. Determinar se os seguintes conjuntos são subespaços de \mathbb{R}^n

-
$$S = \{(a_1, a_2, ..., a_n) \in \mathbb{R}^n / a_n \in \mathbb{Z}\}.$$

-
$$S = \{(a_1, a_2, ..., a_n) \in \mathbb{R}^3 / \sum_{i=1}^n \alpha_i a_i = 0\}.$$

- 5. Considere [a, -a] um intervalo simétrico e $C^1[-a, a]$ o conjunto das funções reais definidas no intervalo [-a, a] que possuem derivadas continuas no intervalo. Seja ainda os subconjuntos $V_1 = \{f(x) \in C^1[-a, a] | f(-x) = f(x)\}$ e $V_2 = \{f(x) \in C^1[-a, a] | f(-x) = -f(x)\}$. Mostre que $V_1 \oplus V_2 = C^1[-a, a]$.
- 6. Mostre que os polinômios $1-t^3$, $(1-t)^2$, 1-t e 1 geram o espaço dos polinômios de grau ≤ 3 .
- 7. No espaço vetorial de funções reais definidas em \mathbb{R} , se consideram as funções f,g e h, definidas por $f(t) = t^2 + 2t 1$, $g(t) = t^2 + 1$, $h(t) = t^2 + t$, demostrar que são LI.
- 8. Sejam $W_1 = \{(x, y, z) \in \mathbb{R}^4 | x + y = 0 \quad e \quad z t = 0\}$ e $W_2 = \{(x, y, z) \in \mathbb{R}^4 | x y z + t = 0\}$ subespaços de \mathbb{R}^4
 - Determine W_1 ∩ W_2 .
 - Exiba uma base para $W_1 \cap W_2$.
 - Determine $W_1 + W_2$.
 - $W_1 + W_2$ é direta? Justifique.
- 9. Seja U subespaço gerado de \mathbb{R}^3 , gerado por (1,0,0) e W o subespaço de \mathbb{R}^3 , gerado por (1,1,0) e (0,1,1). Mostre que $\mathbb{R}^3 = U \oplus W$.

- 10. Comprovar que os vetores de \mathbb{R}^3 , $v_1 = (-1, 3, 1)$, $v_2 = (3, -1, 1)$ e $v_3 = (4, 0, 2)$ são LD e expressar a v_3 como combinação linear de v_1 e v_2 .
- 11. Sabendo que v_1 , v_2 e v_3 são vetores linearmente independentes do espaço vetorial V. Investigar a dependência ou independência linear dos seguintes vetores

-
$$\{v_1 + av_2 + bv_3, v_2 + cv_3, v_3\}$$

-
$$\{v_1, v_2 + av_3, v_3 + bv_2\}$$

- 12. Determinar o subespaço de \mathbb{R}^3 gerado pelos vetores $v_1 = (1, -1, 2)$, $v_2 = (0, -1, 1)$ e $v_3 = (1, 1, 0)$. obter uma base para aquele subespaço.
- 13. Sejam $\beta = \{(1,0),(0,1)\}, \beta_1 = \{(-1,1),(1,1)\}, \beta_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\} \text{ e } \beta_3 = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 . Ache as matrizes de mudança de base: (a) $[I]_{\beta_1}^{\beta_1}$, (b) $[I]_{\beta_2}^{\beta}$ e (d) $[I]_{\beta_3}^{\beta}$.
- 14. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ uma reflexão, através da reta y=3x. (a) Encontre T(x,y) e (b) encontre a base α de \mathbb{R}^2 , tal que $[T]_{\alpha}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- 15. Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por T(x,y,z) = (z,x-y,-z). (a) Determine uma base do núcleo de T, (b) Dê a dimensão da imagem de T e (c) T é sobrejetora ?.
- 16. Sejam $\alpha = \{(1, -1), (0, 2)\}$ e $\beta = \}(1, 0, -1), (0, 1, 2), (1, 2, 0)\}$ bases de \mathbb{R}^2 e \mathbb{R}^3 respectivamente e $[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$. (a) Ache T e (b) se S(x, y) = (2y, x y, x), ache $[S]^{\alpha}_{\beta}$.
- 17. Se R(x,y) = (2x, x y, y) e S(x,y,z) = (y z, z x). Ache $[R \circ S]$ e $[S \circ R]$
- 18. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $[T] = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$. Ache os vetores u e v tal que (a) T(u) = u e (b) T(v) = -v
- 19. Dados $T: U \longrightarrow V$ linear e injetora e $u_1, u_2, ..., u_n$, vetores LI em U, mostre que $\{T(u_1), T(u_2), ..., T(u_n)\}$
- 20. Seja $T: V \longrightarrow W$ uma função. mostre que: (a) Se T é uma transformação linear, então $T(\mathbf{0}) = \mathbf{0}$. (b) Se $T(\mathbf{0}) \neq \mathbf{0}$, então T não é transformação linear.