

Workshop for Applied Nuclear Data Activities (WANDA)
United States Department of Energy, Virtual conference
Plenary Session

NUCLEAR DATA NEEDS FOR HUMAN SPACE RADIATION SHIELDING

John W. Norbury

NASA Langley Research Center, Hampton, Virginia, USA

February 28 - March 4, 2022

OUTLINE

- 1 INTRODUCTION
- 2 DOSE EQUIVALENT DOMINATED BY LIGHT IONS & NEUTRONS
- 3 TRANSPORT CODE COMPARISONS
- 4 CROSS SECTION MEASUREMENT DATABASE
- 5 CROSS SECTION MEASUREMENT RECOMMENDATIONS
- 6 SUMMARY & CONCLUSIONS

INTRODUCTION

- Sensitivity studies have been performed to quantify relative importance of specific ions and energies in the galactic cosmic ray (GCR) spectrum to exposure behind shielding and tissue

Slaba & Blattnig, Space Weather 12, 217, 2014

- 90% effective dose contributed from GCR energies $> 250 \text{ MeV/n}$
 - = Upper energy limit of Advanced Composition Explorer / Cosmic Ray Isotope Spectrometer (ACE/CRIS) satellite
 - = Most of the GCR data
- Higher energy data needed
 - Alpha Magnetic Spectrometer (AMS) measurements important
- Heavier GCR nuclei ($> {}^{16}\text{O}$) contribute less

INTRODUCTION

Effective dose contributions as a function of energy

Slaba & Blattnig, Space Weather 12, 217, 2014

INTRODUCTION

- Effective dose contributions

- Medium GCR energy (250 MeV/n – 3 GeV/n)
- Light GCR nuclei < ^{16}O
- Fe not very important

- MSLRAD spectra

- All GCR energies (higher)
- All GCR nuclei (heavier)

INTRODUCTION

- Light ions are isotopes of Hydrogen & Helium
 - proton = ^1H , deuteron = ^2H , triton = ^3H , helion = ^3He , alpha = ^4He
- Light ions & neutrons dominate dose equivalent for realistic shield thicknesses ($\geq 20 \text{ g/cm}^2$) [Norbury & Slaba, Life Sci. Space Res. 3, 90, 2014](#)
- Light ions & neutrons are scattered at large angles
 - Require 3-dimensional transport & nuclear physics
 - 3DHZETRN & double differential cross sections

INTRODUCTION - DISCREPANCIES

- **Transport codes** show largest differences for light ions
 - GEANT, FLUKA, MCNP, PHITS, HZETRN, SHIELD(Russia)
 - Due to uncertain light ion nuclear physics models (coalescence & heavy ion breakup) and lack of experimental data
- **Thick target** measurements show significant discrepancies compared to transport codes (MCNP, PHITS) for light ions
- **MSLRAD** light ion flux measurements highlight need for improved nuclear interaction models
 - Light ion model results show significant discrepancies over MSLRAD energy range
 - Model errors due to inaccurate light ion nuclear physics models
 - Discrepancies don't contribute significantly to dose equivalent, but improvements would yield better agreement with MSLRAD

INTRODUCTION

- Light ion cross sections
 - Largest physics uncertainty in space radiation
- Light ion cross section measurements
 - Largest gap in cross section database
Norbury et al., Rad. Meas. 47, 315, 2012
- Light ion cross section measurements needed
 - To improve inaccurate light ion nuclear physics models

INTRODUCTION - DOSE EQUIVALENT DOMINATED BY LIGHT IONS & NEUTRONS

Percent contribution to blood forming organ (BFO) dose equivalent by charge group

- The space age has coincided with the *Solar Modern Maximum*, which is a century long peak in solar activity

Walker, Townsend, Norbury, Adv. Space Res. 51, 1792, 2013

Percent contribution to organ dose equivalent by charge group

Slaba, Blattnig, Norbury, Rusek, La Tessa, Life Sci. Space Res. 8, 52, 2018

TRANSPORT CODE COMPARISONS

Fig. 2. GCR minimum spectra.

Norbury, Slaba, Sobolovsky, Reddell, Life Sci. Space Res. 14, 64, 2017

TRANSPORT CODE COMPARISONS

Norbury, Slaba, Sobolovsky, Reddell, Life Sci. Space Res. 14, 64, 2017

²H, np production discrepancies

TRANSPORT CODE COMPARISONS

Norbury, Slaba, Sobolovsky, Reddell, Life Sci. Space Res. 14, 64, 2017

⁴He, 2n2p production discrepancies

TRANSPORT CODE COMPARISONS

^3H and ^3He flux behind 60 g/cm² Al shield for GCR minimum spectrum - Thick targets

Slaba et al., Life Sci. Space Res. 12, 1, 2017

Significant discrepancies

MSLRAD COMPARISONS

^{4}He

Matthia et al., Life Sci. Space Res. 14, 18, 2017

Low energy discrepancies

MSLRAD COMPARISONS

^{3}He

Matthia et al., Life Sci. Space Res. 14, 18, 2017

Significant discrepancies

MSLRAD COMPARISONS

^3H

Matthia et al., Life Sci. Space Res. 14, 18, 2017

Significant discrepancies

MSLRAD COMPARISONS

^2H

Matthia et al., Life Sci. Space Res. 14, 18, 2017

Significant discrepancies

MSLRAD COMPARISONS

PROTONS

Matthia et al., Life Sci. Space Res. 14, 18, 2017

Low energy discrepancies

Matthia et al., Life Sci. Space Res. 14, 18, 2017

Significant discrepancies

SUMMARY

KE = kinetic energy, ED = effective dose, d = deuteron, t = triton, h = helion, p = proton, n = neutron, DD = double differential

Low Fragment KE < 100 MeV/n MSLRAD region; Small contribution to ED

- Light ion (d,t,h) fragments - nucleon (p,n) induced target frag.
 - Because many more protons (p) in GCR than heavier projectiles
 - neutrons (n) copiously produced as target thickness increases
- **DD cross sections needed**
 - Because low energy fragments scattered at large angles

High Fragment KE > 3 GeV/n Small contribution to ED

- Light ion fragments (d,t,h) come from heavier projectile breakup
 - High energy fragments scattered mainly at forward angles
 - seen in DD plots: 0° DD cross sections $>>$ 145° DD cross sections
 - DD cross sections not urgently needed for transport
 - but do provide **best validation of nuclear models**

Intermediate $100 \text{ MeV/n} < \text{KE} < 3 \text{ GeV/n}$ Large contribution to ED

- Mixture of both above
- **DD cross sections needed** for transport

CROSS SECTION MEASUREMENT DATABASE

GALACTIC COSMIC RAYS (GCR)

- Protons → Fe nuclei $\sim 100 \text{ MeV/n} - 50 \text{ GeV/n}$
- Peaks: H, He, C, O, Si, Fe $Z = 1, 2, 6, 8, 14, 26$

- NUCDAT (50,000 entries)

Norbury et al., Radiation Measurements 47, 315, 2012.

Health Physics 103, 640, 2013.

Journal of Physics (conf. ser.) 381, 012117, 2013.

Frontiers in Physics 8:565954, 2020.

"NASA has not made an adequate effort to collect, catalogue and categorize existing experimental data obtained by the worldwide heavy ion research community and make it available in appropriate form to the shielding engineering community."

National Research Council of the National Academy of Sciences, *Managing space radiation risk in the new era of space exploration*, The National Academies Press, Washington D.C. (2008).

Finding 5-6. Experimental data for designers.

Energy = 2 GeV/n, normalized to silicon = 10^6

CROSS SECTION MEASUREMENT DATABASE

- NUCDAT database: ~ 50,000 entries
 - ZP, AP, TP, ZT, AT, ZF, AF
 - Cross section type
 - total, differential, charge changing, elemental, isotopic, ...
 - Double differential most useful
 - Bibliography
 - Other
 - No actual data - only that data exists
- Energy regions:
 - Below pion threshold: $T < 280 \text{ MeV/n}$
 - Low: $280 \text{ MeV/n} \leq T < 3 \text{ GeV/n}$
 - Medium: $3 \text{ GeV/n} \leq T < 15 \text{ GeV/n}$
 - High: $T \geq 15 \text{ GeV/n}$
- Fragments:
 - Light (H, He) - TODAY ONLY
 - Medium-Light ($Z_F = 3 - 9$) (Li – F)
 - Medium ($Z_F = 10 - 19$) (Ne – K)
 - Heavy ($Z_F = 20 - 30$) (Ca – Zn)
 - Very Heavy ($Z_F > 30$)

$$1H \frac{d^2\sigma}{dEd\Omega}$$

GCR peaks Z = 1, 2, 6, 8, 14, 26

$$2H \frac{d^2\sigma}{dEd\Omega}$$

GCR peaks Z = 1, 2, 6, 8, 14, 26

$$3H \frac{d^2\sigma}{dEd\Omega}$$

GCR peaks Z = 1, 2, 6, 8, 14, 26

Isotopic, Double, T<280MeV/n

$$^3\text{He} \frac{d^2\sigma}{dEd\Omega}$$

GCR peaks $Z = 1, 2, 6, 8, 14, 26$

${}^4\text{He}$ $\frac{d^2\sigma}{dEd\Omega}$

GCR peaks Z = 1, 2, 6, 8, 14, 26

CROSS SECTION MEASUREMENT DATABASE

Additional measurements:

- M. Beach, L. Heilbronn et al. (unpublished)
NASA Space Radiation Lab at Brookhaven National Lab
 ^{16}O (300 MeV/n), ^{56}Fe (600 MeV/n) + Al, C, $\text{CH}_4 \rightarrow ^{1,2,3}\text{H}$, $^{3,4}\text{He}$
- data tables
- Toppi et al. (FIRST), Phys. Rev. C vol. 93, p. 064601, 2016
GSI
 ^{12}C (400 MeV/n) + Au $\rightarrow ^{1,2,3}\text{H}$, $^{3,4}\text{He}$, $^{6,7}\text{Li}$, $^{7,9,10}\text{Be}$, $^{10,11}\text{B}$
- data tables published

CROSS SECTION MEASUREMENT DATABASE - DETAILS

Details of light ion production double differential cross sections:

Proj.	KE MeV/n	Target	Fragment	Author	Note	Comments
^1H	100 - 200	Ni,Mo,Au	^1H	Richter 1982	$0^\circ - 140^\circ$	
^1H	500	^4He ,Ni,Ta	^1H	Roy 1981	$> 65^\circ$	
^1H	600	C, Al, Au,	$^{1,2,3}\text{H}$, $^{3,4}\text{He}$	Alard 1975	$> 30^\circ$	
^1H	660	B,Ni,Sn,Sm	$^{3,4}\text{He}$	Bogatin 1976	90°	
^1H	800	$^{1,2}\text{H}$,C,Ca,Pb	^1H	McGill 1984	$> 5^\circ$	
^1H	800	KCl	^1H	Nagamiya 1981	$> 10^\circ$	
^1H	1050, 2100	Au	^1H	Geaga 1980	$2.5^\circ, 180^\circ$	
^2H	1050	C	^1H	Anderson 1983	0°	Fig.7
^2H	2100	U	^4He	Gossett 1977	90°	Fig.6* (* only lines)

CROSS SECTION MEASUREMENT DATABASE - DETAILS

Proj.	KE MeV/n	Target	Fragment	Author	Note	Comments
³ He	33 (exception)	Ho	^{1,2,3} H	Motobayashi 1984		
³ He	67 (exception)	Ag	¹ H	Zhu 1991	> 33°	
⁴ He	27 (exception)	Ho	¹ H	Shibata 1985	15° - 150°	
⁴ He	180	Al, Ag, Ta	^{1,2,3} H, ^{3,4} He	Doering 1978	> 60°	
⁴ He	383	C	^{1,2,3} H, ³ He	Anderson LBL-6769	0°	Fig.24
⁴ He	250	U	^{1,2,3} H, ^{3,4} He	Gossett 1977	> 20°	Fig.10*
⁴ He	400	U	¹ H	Westfall 1976	> 30°	Fig.3
⁴ He	400	U	^{1,2,3} H, ^{3,4} He	Gossett 1977	> 20°	Fig.10*
⁴ He	400	U	¹ H, Li, ^{7,9,10} Be, B	Gossett 1977	> 30°	Fig.18*, 26
⁴ He	400	C	¹ H	Anderson 1983	0°	Fig.23 xF
⁴ He	1010	H	³ He	Bizard 1977	1 - 10°	
⁴ He	1050	² H, ^{3,4} He	⁴ He	Banaigs 1987	< 15°	Elastic & inelastic
⁴ He	1050	C	¹ H	Anderson 1983	0°	Fig.7
⁴ He	1050	C	⁴ He	Anderson 1983	pT	Fig.10
⁴ He	1050	C	^{1,2,3} H, ³ He	Anderson 1983	0°	Fig.3
⁴ He	1050, 2100	C	¹ H	Anderson 1983	0°	Fig.23 xF
⁴ He	1050, 2100	C	^{1,2,3} H, ³ He	Anderson LBL-6769	0°	Fig.25, 26
⁴ He	1050, 2100	C	¹ H	Anderson 1983	0°	Fig.21
⁴ He	2100	C	¹ H	Anderson 1983	pT	Fig.8
⁴ He	2100	H, C, Cu, Pb	⁴ He	Anderson 1983	pT	Fig.10
⁴ He	2100	C	¹ H	Anderson LBL-6769	pT	Fig.28
⁴ He	2100	U	⁴ He	Gossett 1977	90°	Fig.6*

CROSS SECTION MEASUREMENT DATABASE - DETAILS

Proj.	KE MeV/n	Target	Fragment	Author	Note	Comments
¹² C	35 (exception)	Au	^{1,2,3} H, ^{3,4,6} He	Westfall 1984	> 40°	
¹² C	800	C, KCl	^{1,2,3} H, ^{3,4} He	Nagamiya 1981	> 10°	Lemaire supplement
¹² C	1050	C	^{1,2,3} H, ^{3,4,6,8} He	Anderson 1983	< 10°	Fig.4,7,10
¹² C	1050, 2100	Au	¹ H	Geaga 1980	2.5°, 180°	
¹² C	2100	U	⁴ He	Gossett 1977	90°	Fig.6*
¹⁶ O	52, 100, 147	Ni, Sn	^{1,2,3} H, ^{3,4} He	Auble 1983	> 6°	
¹⁶ O	300	Al	^{1,2,3} H, ^{3,4} He	Beach 2016	0° - 90°	Analysis in progress
¹⁶ O	2100	U	⁴ He	Gossett 1977	90°	Fig.6*
²⁰ Ne	100, 156		^{1,2} H, ⁴ He	Westfall 1982	> 50°	
²⁰ Ne	250, 400	U	^{1,2,3} H, ^{3,4} He	Gutbrod 1976	30° - 150°	Same as Gosset ???
²⁰ Ne	250, 400, 2100	U	¹ H	Westfall 1976	> 30°	Fig.3
²⁰ Ne	250, 400, 2100	U	^{1,2,3} H, ^{3,4} HeLi ^{7,9,10} BeBCNO	Gossett 1977	> 20°	
²⁰ Ne	250, 400, 2100	Al	^{1,2,3} H, ^{3,4} He	Gossett 1977	> 20°	Fig.7*,8*,9*,11*,26,29
²⁰ Ne	400, 2100	U	^{1,2,3} H, ^{3,4} He	Gossett 1978	> 30°	Fig.1,2,3,4,5
²⁰ Ne	800	NaF, Pb	¹ H	Gossett 1978		Fig.9,11 Rapidity
²⁰ Ne	2100	U	⁴ He	Gossett 1977	90°	Fig.6*
²⁰ Ne	2100	U	^{3,4,6} He, ^{6,7,8} Li, ^{7,9,10} Be	Gossett 1977	90°	Fig.5
⁴⁰ Ar	1050, 2100	Au	¹ H	Geaga 1980	2.5°, 180°	
⁴⁰ Ar	800	C, KCl	^{1,2,3} H, ^{3,4} He	Nagamiya 1981	> 10°	Lemaire supplement
⁴⁰ Ar	1800	Be, Cu	^{1,2,3} H	Gossett 1978	5°, 15°	Fig.6,7,8
⁴⁰ Ar	1800	Be, Cu	^{1,2,3} H	Gazzaly 1978	5° - 15°	
⁵⁶ Fe	400	CH ₂ , C, Al	^{1,2,3} H, ^{3,4} He	Beach 2017	0° - 90°	Analysis in progress

CROSS SECTION MEASUREMENT RECOMMENDATIONS

FINAL RECOMMENDED REACTIONS

Fe,Si,O,He + H,C,Al,Fe → $^{1,2,3}\text{H}$, $^{3,4}\text{He}$ (isotopic dd & total reaction σ)

1.5 GeV/n, 800 MeV/n, 400 MeV/n

dd = double differential

- Projectile priorities: 1) Fe 2) Si 3) O 4) He
- Targets: H, C, Al (all equal priority), Fe (lesser priority)
 - CH₂ target easier than H target - get H σ from CH₂ target by subtracting C σ
- Energy priorities: Span range of energies available above 300 MeV/n, with more emphasis on higher energies
 - 1) 1.5 GeV/n 2) 800 MeV/n 3) 400 MeV/n
 - based on contribution to effective dose & lack of high energy data
 - need all 3 energies to properly test models
 - Fe gap greater at higher energy
- BUT difficult to separate isotopes at higher energy, with present detectors
- Expect physics to change more as a function of projectile, rather than energy
 - varying projectiles more important than varying energy
- Have not discussed neutron cross section gaps
 - preliminary analysis reveals no data above 1 GeV/n

SUMMARY & CONCLUSIONS

- Light ions & neutrons make large contributions to dose equivalent
- Light ion cross sections
 - Largest physics uncertainty in space radiation
 - Large gap in measurement database
- Final recommended reactions at NSRL
 - Fe,Si,O,He + H,C,Al,Fe → $^{1,2,3}\text{H}$, $^{3,4}\text{He}$
 - Isotopic dd & total reaction σ
 - 1.5 GeV/n, 800 MeV/n, 400 MeV/n
- Neutron cross sections ~ Nothing above 1 GeV/n

john.w.norbury@nasa.gov

THE END