Statistic Machine Learning

Probability Inequality

Lecture Notes 9: Probability Inequality

Professor: Zhihua Zhang

Scribe:

9 Probability Inequality

9.1 Jensen Inequality

If g is convex, then $\mathbb{E}[g(X)] \ge g(\mathbb{E}X)$.

Proof. Since g is convex, we can find a linear function L(x) = a + bx such that the only intersection point is $\mathbb{E}X$ and $L'(\mathbb{E}X) = g'(\mathbb{E}X)$. So

$$g(x) \ge L(x)$$

$$\mathbb{E}[g(X)] \ge \mathbb{E}[L(X)]$$

$$= a + b\mathbb{E}X$$

$$= L(\mathbb{E}X)$$

$$= g(\mathbb{E}X)$$

9.2 Cauchy-Schwartz Inequality

If X and Y have finite variances, then

$$\mathbb{E}|XY| \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

Proof. Consider vector variable $\begin{bmatrix} X \\ Y \end{bmatrix}$, its variance is

$$var(\begin{bmatrix} X \\ Y \end{bmatrix}) = \begin{bmatrix} var(X) & cov(X,Y) \\ cov(Y,X) & var(Y) \end{bmatrix}$$

Since variance is semi-definite, so $var(X)var(Y) \geq cov(X,Y)cov(Y,X)$. Now let $\mathbb{E}X = \mathbb{E}Y = 0$, we can get the inequality.

9.3 Markov Inequality

For all t > 0,

$$Y1_{\{y \ge t\}} \ge t1_{\{y \ge t\}}$$

$$\mathbb{E}(Y1_{\{y \ge t\}}) \ge \mathbb{E}(t1_{\{y \ge t\}})$$

$$Pr(\{y \ge t\}) \le \frac{\mathbb{E}(Y1_{\{y \ge t\}})}{t}$$

If Y > 0, then $Pr(\{y \ge t\}) \le \frac{\mathbb{E}Y}{t}$

Corollary 9.1. Let $Y = |Z - \mathbb{E}Z|$, then $Pr(\{|Z - \mathbb{E}Z| \ge t\}) \le \frac{\mathbb{E}|Z - \mathbb{E}Z|}{t}$

Corollary 9.2. If ϕ denotes a nondecreasing and nonnegative function of Z on a (possibly infinite) interval $I \subset \mathbf{R}$. Let Y and t take values in I, $t \in \mathbb{R}$, then

$$\begin{split} Pr(\{Y \geq t\}) &\leq Pr(\{\phi(Y) \geq \phi(t)\}) \\ &\leq \frac{\mathbb{E}[\phi(Y)]}{\phi(t)} \end{split}$$

Example 9.1. Let $\phi(t) = t^2$, $I = (0, +\infty)$, $Y = |Z - \mathbb{E}Z|$. Then

$$Pr(\{|Z - \mathbb{E}Z| \ge t\}) \le \frac{var(Z)}{t^2}$$

which is called Chebyshev's inequality.

More generally, $\phi(t) = t^q$, then for some q > 0, we have

$$Pr(\{|Z - \mathbb{E}Z| \ge t\}) \ leq \frac{\mathbb{E}(\{||Z - \mathbb{E}Z||^q\})}{t^q}$$

Example 9.2. Z is a sum of independent of random variables $Z = X_1 + X_2 + ... + X_n$, so $var(Z) = \sum_{i=1}^n var(X_i)$. Then we have

$$Pr(\left\{\frac{1}{n}|\sum_{i=1}^{n}(X_i - \mathbb{E}X_i)| \ge t\right\}) \le \frac{\sigma^2}{nt^2}$$

where $\sigma^2 = \frac{1}{n} \sum_{i=1}^n var(X_i)$.

Let $\phi(t) = e^{\lambda t}$ where λ is a positive number, then we will get

$$Pr(\{Z \ge t\}) \le \frac{\mathbb{E}[e^{\lambda Z}]}{e^{\lambda t}}$$

Note: $M(\lambda) = \mathbb{E}e^{\lambda Z}$, $\lambda \in \mathbb{R}$ is called the moment generating function.

9.4 The Cramer-Chernoff Method

Let Z be a real-valued random variable. For all $\lambda \geq 0$, we have

$$Pr(\{Z \ge t\}) \le e^{-\lambda t} \mathbb{E}[e^{\lambda Z}]$$

We want to minimize the upper bound, so

$$\inf_{\lambda \geq 0} e^{-\lambda t} \mathbb{E}[e^{\lambda Z}]$$

$$\Leftrightarrow \inf_{\lambda > 0} -\lambda t + \log \mathbb{E}[e^{\lambda Z}]$$

Define $\psi_Z(\lambda) = \log \mathbb{E} e^{\lambda Z}$. Let $\psi_Z^*(t) \triangleq \sup_{\lambda \geq 0} \lambda t - \psi_Z(\lambda)$, which is called the cramer transform of Z.

If $\lambda = 0$, then $\psi_Z(0) = \log \mathbb{E} e^0 = 0$. So we can get $\psi_Z^* \ge 0$.

1. $\mathbb{E}Z \leq t \leq +\infty$.

$$\psi_Z(\lambda) = \log \mathbb{E}(e^{\lambda Z})$$

$$\geq \log e^{\lambda \mathbb{E}Z}$$

$$= \lambda \mathbb{E}Z.$$

If
$$\lambda < 0$$
, then $\lambda t - \psi_Z(\lambda) \le 0$. So $\sup_{\lambda \ge 0} \lambda t - \psi_Z(\lambda) = \sup_{\lambda \in \mathbb{R}} \lambda t - \psi_Z(\lambda)$.

Note: $\psi_Z^*(t) = \sup_{\lambda \in \mathbb{R}} \lambda t - \psi_Z(\lambda)$ is called Fenchel-Legendre dual function and convex conjugate.

SO if $t \geq \mathbb{E}Z$, we only need to compute the dual function.

2. $t \leq \mathbb{E}Z$, To get the maximum value of $\lambda t - \psi_Z(\lambda)$, we compute its deriatives.

$$\psi_Z'(\lambda) = \frac{\mathbb{E}[Ze^{\lambda Z}]}{\mathbb{E}e^{\lambda Z}}$$

$$\psi_Z''(\lambda) = \frac{\mathbb{E}[Z^2 e^{\lambda Z}] \mathbb{E}[e^{\lambda Z}] - \mathbb{E}[Z e^{\lambda Z}] \mathbb{E}[Z e^{\lambda Z}]}{(\mathbb{E}[e^{\lambda Z}])^2}$$

According to Cauchy-Schwartz inequality, $\psi_Z''(\lambda) \geq 0$. So,

$$\psi_Z'(\lambda) \ge \psi_Z'(0) = \mathbb{E}Z$$

$$t - \psi_Z'(\lambda) \le t - \mathbb{E}Z \le 0$$

Then $\lambda t - \psi_Z(\lambda)$ gets its maximum value at $\lambda = 0$. In this case, we will get $\psi_Z^*(t) = 0$, which means $Pr(Z \ge t) \le 1$.

In the following, we only care about $t \geq \mathbb{E}Z$. We will get

$$\psi_Z^*(t) = \lambda_t t - \psi_Z(\lambda_t)$$

where λ_t is the solution of $t - \psi_Z'(\lambda) = 0$, i.e. $\lambda_t = ({\psi_Z'}^{-1})(t)$.

Example 9.3. Let $Z \sim N(0, \sigma^2)$, then we have

$$\psi_{Z}(\lambda) = \log \int e^{\lambda z} \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} \exp(-\frac{z^{2}}{2\sigma^{2}}) dz$$

$$= \log \int \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} \exp(-\frac{z^{2} - 2\lambda\sigma^{2}z}{2\sigma^{2}}) dz$$

$$= \log \int \frac{1}{(2\pi\sigma^{2})^{\frac{1}{2}}} \exp(-\frac{(z - \lambda z^{2})^{2} - \lambda^{2}\sigma^{4}}{2\sigma^{2}})$$

$$= \frac{\lambda^{2}\sigma^{2}}{2}$$

$$\psi_Z^*(t) = \sup_{\lambda} \lambda t - \psi_Z(\lambda)$$

$$t - \lambda \sigma^2 = 0 \Rightarrow \lambda_t = \frac{t}{\sigma^2}$$
, so

$$Pr(Z \ge t) \le \exp(-\frac{t^2}{2\sigma^2})$$

, where $t \geq \mathbb{E}Z = 0$.

Note: If $\psi_Y(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$, then we call Y is sub-Gaussian. **Homework:** Given that $\psi_Y(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$, prove $var(Y) \leq \sigma^2$.

Example 9.4. A random variable Y has Poisson distribution with parameter ν .

$$Pr(Y = k) = \frac{e^{-\nu}\nu^k}{k!}$$

 $where \ k=0,1,2....$

Let $Z = Y - \nu$, then $\mathbb{E}Z = 0$.

$$\mathbb{E}e^{\lambda Z} = e^{-\lambda \nu} \sum_{k=0}^{\infty} e^{\lambda k} e^{-\nu} \frac{\nu^k}{k!}$$
$$= e^{-\lambda \nu - \nu} \sum_{k=0}^{\infty} \frac{(\nu e^{\lambda})^k}{k!}$$
$$= e^{-\lambda \nu - \nu} e^{\nu e^{\lambda}}$$

Then $\psi(\lambda) = \nu(e^{\lambda} - \lambda - 1)$. So

$$t - \psi'(\lambda) = 0$$
$$\Rightarrow \lambda_t = \log(1 + \frac{t}{\nu})$$

So
$$\psi^*(t) = \nu[(1 + \frac{t}{\nu})\log(1 + \frac{t}{\nu}) - \frac{t}{\nu}]$$

Example 9.5. A random variable Y has Bernoulli distribution with parameter p.

$$Pr(Y = 1) = 1 - Pr(Y = 0) = p.$$

Let Z = Y - p.

$$\psi_Z(\lambda) = \log \mathbb{E}e^{\lambda Z}$$

$$= \log(pe^{\lambda(1-p)} + (1-p)e^{-\lambda p})$$

$$= -\lambda p + \log(pe^{\lambda} + 1 - p)$$

Since $(\lambda t - \psi_Z(\lambda))' = 0$, so $pe^{\lambda}(1 - t - p) = (t + p)(1 - p)$. Then $0 \le 1 - t - p$. So $0 \le t \le 1 - p$.

$$\psi_Z^*(t) = (1 - p - t) \log \frac{1 - p - t}{1 - p} + (p + t) \log \frac{p + t}{p}$$

Let a = p + t, $p \le a \le 1$, then we get

$$\psi_Z^*(t) = (1 - a) \log \frac{1 - a}{1 - p} + a \log \frac{a}{p}$$
$$= D(P_a||P_p)$$

 $D(P_a||P_p)$ is the KL-Divergence between P_a and P_p , P_a means the Bernoulli distribution with parameter a, P_p means the Bernoulli distribution with parameter p.

Example 9.6. Let $Y \sim Binomial(n, p)$, so $Y = Z_1 + Z_2 + ... + Z_n$, and $Z_i \sim Bernoulli(p)$ and Z_i 's are independent.

$$\psi_Y(\lambda) = \log \mathbb{E} e^{\lambda \sum_{i=1}^n Z_i}$$

$$= \log \prod_{i=1}^n \mathbb{E} e^{\lambda Z_i}$$

$$= \sum_{i=1}^n \log \mathbb{E} e^{\lambda Z_i}$$

$$= n\psi_Z(\lambda)$$

$$\lambda t - \psi_Y(\lambda) = \lambda t - n\psi_Z(\lambda)$$
$$= n(\frac{\lambda t}{den} - \psi_Z(\lambda))$$

So, $\psi_Y^*(t) = n\psi_Z^*(\frac{t}{n})$

9.5 Hoeffding's Inequality

If $X_1, X_2, ... X_n$ are independent random variables with a finite mean value such that for some non-empty interval I, $\mathbb{E}e^{\lambda X_i}$ is finite, then define

$$S = \sum_{i=1}^{n} (X_i - \mathbb{E}X_i)$$

. And assume that X_i takes its values in a bounded interval $[a_i, b_i]$. Then

$$Pr(S \ge t) \le \exp(-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2})$$

for all t > 0.

Definition 9.1. If $Pr(\epsilon_i = 1) = Pr(\epsilon_i = -1) = \frac{1}{2}$, then we call ϵ_i Rademacher random variable.

Let $X_i = \epsilon_i a_i$, a_i is a real number. Then we will get $X_i \in [\min\{-a_i, a_i\}, \max\{-a_i, a_i\}]$. So the inequality above will be

$$Pr(S \ge t) \le \exp(-\frac{t^2}{2\sum_{i=1}^n a_i^2})$$