

Conceitos sobre Banco de Dados

Curso de Gestão da Tecnologia da Informação

Professora: Esp. Sibele Mueller

Email: sibele.gti@seifai.edu.br

O que é Banco de Dados (BD)?

"Conjunto de dados inter-relacionados que objetivam atender as necessidades de um conjunto de usuários".

✓ Sinônimo: base de dados (database)

O que é Banco de Dados(BD)?

- Um banco de dados é uma coleção de dados ou registros relacionados. Esses registros ou dados são fatos que podem ser gravados e que possuem um significado implícito representando aspectos do mundo real.
- Um banco de dados é projetado, construído e povoado por dados atendendo a uma proposta específica, ou seja, segundo a necessidade do usuário ou de um grupo de usuários.

(GEREMIA, Juliana; 2010)

Contexto sem BD

Contexto sem BD

√ Características

- Cada aplicação descreve os seus dados
 - Nomes e formatos próprios;
 - Dados são particulares de cada aplicação;
- Manipulação de arquivos
 - Módulos implementados na própria aplicação ou softwares de gerenciamento de arquivos;
- Gerenciamento local
 - Cada aplicação controla o acesso aos seus dados.

Contexto sem BD

√ Problemas:

- Redundância não controlada;
- Difícil manutenção;
- Falta de padronização;
 - Dificuldade de integração e reutilização de programas (novas operações de manipulação de dados exigem mudança no código da aplicação);
- Falta de segurança;
 - Ex: falha de uma operação, problemas de atomicidade;
- Problemas de integridade.

Contexto com Banco de Dados

- √ Evita (ou minimiza) os problemas anteriores
- √ Um BD é melhor definido como:

"Uma coleção de dados operacionais inter-relacionados. Estes dados são gerenciados de forma independente dos programas que os utilizam, servido assim a múltiplas aplicações de uma organização"

Contexto com BD

Porque usar banco de dados?

- Facilita a vida das pessoas interessadas nos dados registrados no BD, pois:
 - Dados são compactados;
 - Acesso rápido aos dados;
 - Não necessita de tanto trabalho braçal;
 - Disponibilidade de acesso as informações corretas e atualizadas a qualquer momento;
 - Dados são todos armazenados digitalmente, não necessita de armazenamento em papel.

Objetivos de um Banco de Dados

- Acesso rápido aos dados
 - Basta escrever o programa necessário para realizar a consulta e obtém-se o resultado desejado em um tempo muito pequeno.
- Redução de redundância e inconsistência de dados
 - No armazenamento em papel as mesmas informações podem ser descritas em diferentes lugares. O uso de banco de dados tende a eliminar essa redundância e inconsistência de dados.
- Compartilhamento de dados
 - A partir de um banco de dados disponível em uma máquina, parcelas isoladas de dados podem ser acessadas por vários usuários simultaneamente.
- Aplicação de restrições de segurança
 - restringir o acesso aos dados de acordo com a necessidade de cada usuário.

Vantagens do uso de BD

- √ Dados armazenados em um único local;
 - √ Evita-se redefinições;
 - √ Minimiza-se a redundância;
- √ Dados compartilhados pela aplicações;
 - √ Evita redefinição de dados;
 - √ Facilita a integração de aplicações;
- √ Dados mais independentes das aplicações;
 - $\sqrt{}$ Novas aplicações não requerem mudança pesada de código;
 - √ As aplicações não se preocupam mais com o gerenciamento de dados;
- √ Maior flexibilidade de acesso (linguagens para BD).

Arquitetura de um BD

Sistema de Banco de Dados

- Sistema de banco de dados é composto por um BD e um software gerenciador de banco de dados:
- Sistema de Gerência de Banco de Dados (SGBD)
 - Software que auxilia na definição, carga, atualização e manutenção de um banco de dados
 - Database Management System (DBMS)

SGBD

- √ SGBD: Sistema de Gerência de Banco de Dados.
- √ Conceitos:
 - √ Coleção de dados inter-relacionados e um conjunto de programas para acessá-los [Korth & Silberchatz];
 - √ Software que manipula todos os acessos ao banco de dados;
 - ✓ Software que serve para armazenar e acessar dados em um banco de dados [Heuser];
- √ Funções Básicas
 - √ Métodos de acesso;
 - √ Integridade Semântica (Garantia que os dados estejam sempre corretos com relação ao domínio da aplicação);
 - √ Segurança;
 - √ Concorrência;
 - √ Independência.

SGBD – Funções Básicas

- √ Métodos de acesso
 - √ DDL (Data Definition Language): especificação do esquema do banco de dados
 - √ DML (*Data Manipulation Language*): manipulação de dados
 - ✓ Processamento eficaz de consultas. Ex: buscar todos os professores que ministram disciplinas no quarto andar => considerar relacionamentos, predicados de seleção, quantidade de dados, ...

SGBD – Funções Básicas

- √ Segurança
 - √ Evitar violação de consistência dos dados;
 - √ Segurança de acesso (usuários e aplicações);
 - Segurança contra falhas
 - √ Categorias de falhas (Transação, sistema e meio de armazenamento);
 - Manutenção de histórico de atualização (logs) e backups de banco de dados;
- √ Concorrência
 - √ Evitar conflitos de acesso simultâneo a dados por transações;
 - ✓ Principais soluções: técnicas de bloqueio.

Banco de Dados Centralizados

X

Banco de Dados Distribuídos

Banco de Dados Centralizados

- Os dados e o SGBD estão localizados em um único lugar;
- Todos os integrantes do sistema (dispositivos de armazenamento e o software) ficam em um mesmo computador ou site (um local onde algo se baseia).
- O banco de dados centralizado pode ser acessado por vários terminais diferentes conectados ao site ou computador.

Banco de Dados Centralizados

Vantagens

- Possui um único host que fornece alto grau de segurança, concorrência e controle de cópias de segurança e recuperação;
- não há necessidade de um diretório distribuído, já que todos os dados estão localizados em um único host.

Desvantagens

- alto custo de comunicação;
- Está sujeito a criar um "gargalo" (limita o desempenho do sistema), dependendo da quantidade de acessos simultâneos.
- Indisponibilidade dos dados, se o servidor sair do ar.

Banco de Dados Centralizados

- Vários bancos de dados em diferentes locais que estão interconectados por uma rede de computadores.
- Os dados ficam armazenados em diferentes locais;
- Cada um dos bancos distribuídos mantém um banco de dados local, porém trabalham em conjunto e cooperam na realização de tarefas a eles atribuídas;
- Atuam como um único sistema e cada banco de dados pode acessar dados locais ou acessar dados que estejam em outros nós (computadores) da rede;
- Em sistemas distribuídos a comunicação é feita por meio de diferentes meios de comunicação: como redes de alta velocidade, redes sem fio ou linhas telefônicas.

- Sistema Gerenciador de Banco de Dados Distribuído (SGBDD):
 - Faz o gerenciamento de todos os bancos de dados distribuídos;
 - Torna a distribuição transparente;
 - Controla todo o armazenamento e o processamento dos dados;
 - O SGBDD deve garantir que os usuários tenham uma visão integrada do banco.

Banco de Dados Distribuídos

Vantagens dos BDD

- Os dados ficam localizados próximos aos locais de maior demanda;
- Mais rapidez de processamento de dados pois um SGBDD divide a carga de trabalho do sistema, processando dados em vários locais;
- Facilidade de ampliação e expansão adicionando novos nós ao sistema sem afetar os que já estão em funcionamento;
- Menor risco de falha em ponto único, pois se um nó falha os demais continuam em funcionamento;
- Melhor desempenho, pois várias consultas podem ser feitas de modo paralelo;
- Mais confiabilidade, pois, com a réplica dos dados, pontos únicos de falhas são eliminados;
- Aumento da Produtividade.

Desvantagens dos BDD

- Complexidade de gerenciamento e controle As aplicações devem reconhecer a localização dos dados e ter a capacidade de integrá-los a partir de vários locais.
- Dificuldade tecnológica É necessário tratar e solucionar a integridade de dados, o gerenciamento de transações, controle de concorrência, backup, recuperação, a otimização de consultas, a seleção do caminho de acesso, etc;
- Segurança Como os dados estão em diferentes nós e compartilhada por diversas pessoas é necessário cuidado para não perder os dados;
- Falta de padrões Não há protocolos de comunicação padronizado no nível de BD. Cada um pode utilizar técnicas diferentes;
- Ampliação das necessidades de armazenamento e infraestrutura Como são armazenadas réplicas dos dados em vários nós é necessário um espaço maior para armazenamento;
- Maiores Custos o SBDD exigem uma infraestrutura maior para operar (localização física, ambiente, pessoal, software, licenciamento, etc).

Como são armazenados os dados nos BDD?

- Uma tabela num banco de dados distribuído pode ser armazenada de diferentes formas:
 - Replicação;
 - Fragmentação e;
 - Replicação e Fragmentação.

Replicação

- São réplicas idênticas de um determinado objeto de dados lógico que são armazenados em nós diferentes.
- Existe uma cópia dos dados em cada nó, tornando as bases iguais.
- A replicação dos dados pode se dar de maneira:
 - síncrona (cada transação é dada como concluída quando todos os nós confirmam que a transação local foi bem-sucedida);
 - assíncrona (o nó principal executa a transação enviando confirmação ao solicitante e então encaminha a transação aos demais nós).

- É o particionamento de uma relação em vários fragmentos que são armazenados em nós diferentes, e cada fragmento possui informações suficientes para permitir que a relação original seja reconstruída.
- Em cada nó existe uma base de dados diferente, porém se olharmos como um todo, esses dados são vistos de uma forma única.
- Existem duas formas de fazer a fragmentação:
 - horizontal onde os fragmentos são definidos por seleção de tuplas;
 - vertical onde os fragmentos são definidos por projeção de atributos.

Replicação e Fragmentação

- A relação pode ser particionada em vários segmentos, e o sistema mantém diversas réplicas de cada fragmento.
- Dificuldade de garantir que todas as réplicas e fragmentos daquele dado sejam atualizados, pois todos devem ser atualizados para evitar incoerências entre os dados e não sejam apresentadas consultas "sujas".
- Obs: Essa transparência é mais difícil de ser realizada quando são feitas atualizações em objetos do banco de dados do que quando são feitas consultas somente de leitura.

BDD Homogêneos

 São compostos por vários sites (nós) distribuídos em uma rede e estes possuem a mesma arquitetura. Cada nó possui um SGBD idêntico.

BDD Heterogêneos

 Cada nó pode implementar e possuir seu próprio banco de dados e esquemas conceituais diferentes, sendo a integração considerada e tratada posteriormente.

BDD Homogêneos

- Elmasri e Navathe destacam que neste modelo de banco de dados todos os servidores, ou SGBDs locais individuais, usam um software idêntico e todos os usuários, clientes, também usam um software idêntico.
- Um SGBD distribuído é homogêneo se todos os seus SGBDs locais:
 - oferecem interfaces idênticas ou, pelo menos, da mesma família;
 - fornecem os mesmos serviços aos usuários em diferentes nós.

BDD Homogêneos

*DD – Dados Distribuídos

Esp. Sibele Mueller

Fonte: CASANOVA, 2012, p. 13

BDD Hererogêneos

- Cada nó pode utilizar diferentes SGBDs, cada um essencialmente autônomo.
- Sites diferentes podem usar esquemas e software diferentes;
- Os sites podem não estar conscientes uns dos outros e poderão fornecer apenas capacidades limitadas para cooperação no processamento de transações;
- Necessita de software que faça a tradução dos diferentes modelos, linguagens e hardware utilizados;
- São mais complexos de serem implementados.

BDD Heterogêneos

Fonte: CASANOVA, 2012, p. 13

Exemplos de SGBD

- IBM Informix;
- PostgreSQL;
- Firebird;
- HSQLDB;
- IBM DB2;
- mSQL;
- MySQL;

- Oracle;
- SQL-Server;
- TinySQL;
- JADE;
- ZODB;
- Sybase;
- Microsoft Access;
- Microsoft Visual Foxpro

MySQL

- Banco de dados relacional e multiusuário, compatível com o padrão SQL.
- Possui sistema de senhas criptografadas, é fácil de ser integrado com servidor Web e possui suporte para múltiplos processadores.
- Ele possui recursos sofisticados como:
 - transações (COMMIT e ROLLBACK);
 - Triggers;
 - Stored Procedures;
 - Views;
 - lock line (bloqueio em nível de linha) e;
 - constraints.

Características MySQL

- Velocidade de acesso muito rápido;
- Baixa exigência de processamento em comparação a outros SGBD;
- Bastante robusto e de fácil uso;
- Disponível em diversas plataformas.

Quando usar MySQL?

- Em aplicações onde a velocidade é importante;
- Aplicações que fazem grandes quantidades de consultas e inclusão de dados;
- Por ser otimizado para aplicações Web, é muito escolhido para ser utilizado na internet.

PostgreSQL

PostgreSQL

- O PostgreSQL é um SGBD objeto-relacional de código aberto;
- É robusto e confiável;
- Extremamente flexível;
- Rico em recursos e de baixo custo;
- Além das características de um SGBD relacional, ele possui algumas características de orientação a objetos.

- O PostreSQL comporta base de dados de tamanho ilimitado, tabelas com tamanho de até 32 TB(Terrabyte) e campos de até 1GB (Gigabyte).
- Suporta armazenamento de objetos binários, incluindo figuras, sons ou vídeos.
- Ele possui funcionalidades modernas, como:
 - comandos complexos;
 - chaves estrangeiras;
 - Junções;
 - Gatilhos;
 - Visões;
 - integridade transacional;
 - controle de simultaneidade multiversão;
 - inclusão de uma grande variedade de tipos de dados;
 - entre outras.

Funcionalidades PostgreSQL

- Conformidade com o padrão ISSO (permite que os dados transitem de uma banco para o outro sem maiores problemas);
- Ele é compatível com as normas ACID(acrônimo de Atomicidade, Consistência, Isolamento e Durabilidade) que permite que seja sempre retornado o mesmo resultado sem falhas;
- Permite que o usuário possa estendê-lo de diferentes maneiras, como por exemplo: adicionando novos tipos de dado, funções, operadores, funções de agregação, métodos de índice, linguagens procedurais entre outros;
- O PostgreSQL suporta praticamente todos os construtores da linguagem SQL, incluindo subconsultas, transações e funções;
- Possui o mecanismo de bloqueio MVCC (controle de concorrência de multiversão – consistência dos dados);
- Possui mecanismo de FAILSAVE (segurança contra falhas, em caso de desligamento repentino do sistema, por exemplo);
- Sofisticado otimizador de consultas e registro de transações sequencial;
- entre outros.

Quando utilizar o PostgreSQL?

- O PostgreSQL é recomendado:
 - para bases de dados muito grandes e complexas.

- sistemas que exigem escalabilidade (PostgreSQL consegue gerenciar grandes quantidades de dados e acomodar inúmeros usuários concorrentes);
- para projetos orientados a objetos;
- aplicações que necessitam trabalhar com tipos de dados especializados, como Sistemas de Informações Geográficas (SIG) e repositórios de meta-dados.

Referências

- ELMASRI, Ramez; NAVATHE, Shamkant B. Sistemas de Banco de Dados. 6ª ed.
 São Paulo: Pearson, 2011.
- KORTH, H. F.; SILBERSCHATZ, A.; SUDARSHAN, S.. **Sistema de Banco de Dados**. 5a ed., Campus, 2006.
- HEUSER, Carlos Alberto. **Projeto de Banco de Dados**. 6a Ed., Bookman, 2008.
- GEREMIA, Juliana. Tutorial de Introdução a Banco de Dados. 2010. Disponível em:

http://www.telecom.uff.br/pet/petws/downloads/tutoriais/db/Tut_DB.pdf> Acesso em: 21 ago. 2016