

Introdução

Prof. Iális Cavalcante

O que você acha que é Computação Gráfica?

O que define a Computação Gráfica?

 Técnicas para a geração, exibição, manipulação e interpretação de modelos de objetos e imagens a partir do computador

 Modelos e imagens criada a partir de dados do mundo real -> converter dados em imagens

Usado em diversas área e com diferentes aplicações

Fundamentos da computação gráfica

Todas essas aplicações exigem teorias e sistemas sofisticados

Teoria

- Representações básicas (como você codifica digitalmente uma forma, um movimento?)
- Amostragem e aliasing (como você adquire e reproduz um sinal?)
- Métodos numéricos (como você manipula os sinais numericamente?)
- Radiometria e transporte de luz (como a luz se comporta?)
 - Percepção (como tudo isso se relaciona com os humanos?)

Fundamentos da computação gráfica

- Todas essas aplicações exigem teorias e sistemas sofisticados
- Sistemas
 - o processamento paralelo e heterogêneo
 - o linguagens de programação com especificações gráficas

Microsoft® DirectX®

→ THE PREMIER CONFERENCE & EXHIBITION IN COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

Reflita e defina... Como modelar um cubo?

- Suponha um cubo definido como...
 - Centralizado na origem (0,0,0)
 - Possui dimensões 2x2x2
 - Bordas alinhadas nos eixos x/y/z

Quais as coordenadas dos vértices dos cubos?

Quais os segmentos de reta que definem essas bordas?

Reflita e defina... Como desenhar este cubo?

Como desenhamos este cubo 3D como uma imagem 2D (plana)?

- Estratégia básica:
 - 1. mapeie vértices 3D para pontos 2D na imagem
 - 2. conecte pontos 2D com linhas retas
 - ...Ok mas como?

Projeção de Perspectiva

- Os objetos parecem menores à medida que se afastam ("perspectiva")
- O Por que isso acontece?

O Considere o modelo simples ("pinhole") de uma câmera:

Projeção em perspectiva: visão lateral

- Onde exatamente um ponto p = (x,y,z) termina na imagem?
- Vamos chamar o ponto da imagem q=(u,v)

Projeção em perspectiva: visão lateral

Observe dois triângulos semelhantes:

- Suponha que a câmera tenha tamanho unitário, a origem esteja no pinhole
 c
- Então v/1 = y/z, ou seja, a coordenada vertical é apenas a inclinação y/z
- Da mesma forma, a coordenada horizontal é u=x/z

Reflita e defina... Como desenhar este cubo?

- Repita o mesmo algoritmo simplesmente 12 vezes
 - Uma vez para cada aresta
 - Suponha que a câmera esteja em c=(2,3,5)
 - Converta (X,Y,Z) de ambos os terminais para (u,v):
 - 1. subtraia a câmera c do vértice (X,Y,Z) para obter (x,y,z)
 - 2. divida (x,y) por z para obter (u,v)—escreva como uma fração
 - Desenhe uma linha entre (u1,v1) e (u2,v2)

Dados do modelo

- Vértices
 - \circ A:(1,1,1) E:(1,1,-1)
 - B:(-1,1,1) F:(-1,1,-1)
 - C:(1,-1,1) G:(1,-1,-1)
 - O: (-1,-1, 1) H: (-1,-1,-1)
- Segmentos da borda
 - AB,CD,EF,GH,
 - AC,BD,EG,FH,
 - AE, CG, BF, DH

B: 3/4, 1/2 C: 1/4, 1D: 3/4, 1 E: 1/6, 1/3 F: 1/2, 1/3 G: 1/6, 2/3H: 1/2, 2/3

O que alcançamos?

Muito bom! Vocês transformaram informações puramente digitais em informações puramente visuais, usando um procedimento completamente algorítmico.

Como desenhamos linhas em um computador?

Saída para um display raster

- Abstração comum de uma exibição raster:
- Imagem representada como uma grade 2D de "pixels" (elementos de imagem) **
- Cada pixel pode assumir um valor de cor único

** Vamos desafiar fortemente essa noção de um pixel "como um pequeno quadrado" em breve. Mas vamos nessa ideia por enquanto.

Quais pixels devemos colorir para representar uma linha?

 "Rasterização": processo de conversão de um objeto contínuo em uma representação discreta em uma grade raster (grade de pixels)

Quais pixels devemos colorir para representar uma linha?

Destacar todos os pixels interceptados pela linha?

Quais pixels devemos colorir para representar uma linha?

Regra de diamante/losango (usada por GPUs modernas):
 Destacar pixel se a linha passar pelo diamante associado

Como encontramos os pixels que satisfazem uma regra de rasterização escolhida?

- Poderia verificar cada pixel na imagem para ver se atende à condição ...
 - O(n²) pixels na imagem vs. no máximo O(n) pixels "destacados"
 - Deve ser capaz de fazer melhor! (por exemplo, trabalho proporcional ao número de pixels no desenho da linha)

Rasterização de linha incremental

- Considere que uma linha seja representada com pontos finais (endpoints) inteiros: (u1,v1), (u2,v2)
- Inclinação da linha: s = (v2-v1) / (u2-u1)
- Considerando um caso especial simples:
 - u1 < u2, v1 < v2 (a linha aponta para o canto superior direito)
 - 0 < s < 1 (mais mudança em x do que em y)</pre>

Considerando que as coordenadas inteiras estejam nos centros dos pixels

```
v = v1;
for(u=u1; u<=u2; u++)
{
    v += s;
    draw(u, round(v))
}</pre>
```


Agora temos nosso primeiro algoritmo gráfico completo!

<u>Digital</u> information

VERTICES A: (1, 1, 1) B: (-1, 1, 1)C: (1,-1,1)D: (-1,-1, 1)E: (1, 1, -1)F: (-1, 1, -1)G: (1,-1,-1)H: (-1,-1,-1)**EDGES** AB, CD, EF, GH, AC, BD, EG, FH, AE, CG, BF, DH **CAMERA** C = (2,3,5)

computation

Até agora, apenas fiz um simples desenho de linha de um cubo.

- Para imagens mais realistas, será necessário um modelo muito mais rico do mundo:
 - GEOMETRIA
 - MATERIAIS
 - LUZES
 - CÂMERAS
 - MOVIMENTO ...
- Veremos esses e outros conteúdos ao longo do semestre.

Bibliografia

- Jonas Gomes, Luiz Velho. Fundamentos da Computação Gráfica. IMPA, 2008.
- Eduardo Azevedo, Aura Conci. Computação Gráfica Geração de imagem -Volume 1. GEN LTC, 2003.
- Aura Conci, Eduardo Azevedo, Fabiana R. Leta. Computação Gráfica Vol. 2 -Teoria e Prática: Volume 2. GEN LTC, 2007.