(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2000 年12 月28 日 (28.12.2000)

PCT

(10) 国際公開番号 WO 00/79682 A1

(51) 国際特許分類7:

PCT/JP00/03931

H03K 17/14

(21) 国際出願番号:

rC1/Jr00/03931

(22) 国際出願日:

2000年6月15日(15.06.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/172071 1999

1999年6月18日(18.06.1999) JP

- (71) 出願人 (米国を除く全ての指定国について): 松下電 器産業株式会社 (MATSUSHITA ELECTRIC INDUS-TRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市 大字門真1006番地 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 山本泰永 (YA-MAMOTO, Yasunori) [JP/JP]; 〒573-1153 大阪府枚方

市招提大谷3-30-19 Osaka (JP). 田中慎二 (TANAKA, Shinji) [JP/JP]; 〒567-0048 大阪府茨木市北春日丘3-7-13 Osaka (JP). 三宅 稔(MIYAKE, Minoru) [JP/JP]; 〒615-0873 京都府京都市右京区西京極浜ノ本町64 ハイラーク西京極404号 Kyoto (JP).

- (74) 代理人: 東島隆治(HIGASHIMA, Takaharu); 〒530-0001 大阪府大阪市北区梅田3丁目2-14 大弘ビル 東島 特許事務所 Osaka (JP).
- (81) 指定国 (国内): CN, JP, KR, US.
- (84) 指定国 *(*広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類:

- 国際調査報告書
- 補正書・説明書

/続葉有]

(54) Title: OUTPUT CONTROLLER

(54) 発明の名称: 出力制御装置

(57) Abstract: An output controller connected to an output circuit parallel and including an auxiliary circuit for controlling an adjusting current smaller than the output current at a substantially constant ratio, so as to perform control so that the potential of each terminal of the output circuit may be equal to that of the corresponding terminal of the auxiliary circuit and thereby to control the ratio between the output current and the adjusting current to be constant. The output controller is made up of a bridge having four arms including an output circuit, an auxiliary circuit, a load, and a current detecting circuit or current setting circuit respectively. The difference of potential between each of the terminal of the output circuit and the corresponding terminal of the auxiliary circuit are measured and fed back to change the equivalent impedance of one of the arms. Thus the bridge is controlled to balance.

/統葉有/

0.00/79682

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

明細書

出力制御装置

技術分野

本発明は電力用半導体装置に使用される出力制御装置に関する。

背景技術

モータ、アクチュエータ等の駆動回路や電源回路等に含まれる出力回路は、過電流から回路素子を保護し、 又は、出力電流を所定の値を超えないように制御する等の目的で、出力電流を遮断するための遮断回路を含む。

図13は遮断回路の一つの従来例である。出カトランジスタ1は負荷3を駆動するためのトランジスタである。出カトランジスタ1には電流検出用抵抗101が直列に接続されている。抵抗101の両端の電位差、すなわち、出カトランジスタ1を流れる電流(以下、出力電流という)による電圧降下量が差動アンプ103で基準電圧102と比較される。基準電圧102は制御目標量の出力電流による電圧降下量に等しくなるよう設定されている。

2

差動アンプ103の比較結果は制御回路へ出力される。制御回路は、出力電流が制御目標量より大きい場合、すなわち、差動アンプ16の出力が負の場合、出力トランジスタ1を遮断する。一旦遮断された出力トランジスタ1は制御回路によりその状態に保たれる。制御回路は、外部から導通を指示する信号を入力した場合、又は、所定の時間後に差動アンプ103の出力が正になっている場合、出力トランジスタ1を再び導通させる。こうして、出力電流は制御目標量を実質的に超えない。

しかし、図13の上記の従来例では抵抗101が出力トランジスタ1に対して直列に接続される。それ故、出力電圧の範囲が減少し、又は、余分な電力消費につながる、という問題点があった。

図14は遮断回路の他の従来例である。この従来例では上記の従来例の問題点が次のように改善される。

この二番目の従来例は、出カトランジスタ1に対して並列に補助トランジスタ2を接続し、補助トランジスタ2に対して直列に電流検出用抵抗101を接続している。補助トランジスタ2が出カする電流(以下、調整用電流という)I2は、共通の入力に対して出カトランジスタ1が出力する出力電流I1と比べて所定の比率だけ小さい。例えば、集積回路等のように出カトランジスタ1と補助トランジスタ2とをモノリシックに形成する場合、補助トランジスタ2は出カトランジスタ1とりじ構造であるが、そのサイズが出カトランジスタ1より

小さい。この場合、共通の入力電圧に対してそれぞれのトランジスタが出力する電流の比率は実質的にそのサイズ比になる。

電流検出用抵抗101を利用して、調整用電流12を最初の従来例同様に制御目標値を超えないように制御する。抵抗101による電圧降下量が出力トランジスタ1へ入力される電圧に比べて十分無視できるほど小かに比べて十分無視できるほど小がにたりが11人12はトランジスタのサイズとのサイズとののサイズとので実質的に決まり、電流11及び12は比例し、その必要ができる。には実質がはより上記の比ののは、ないので、最初の従来例に比べ知りの場合、抵抗101が出力トランジスタ1に対でので、最初の従来例に比べ知ので、最初の従来例に比べにの範囲を広くできると共に、余分な電力消費を抑えるとができる。

抵抗 101による電圧降下量が出カトランジスタ1へ入力される電圧に比べて無視できないほど大きい場合、出カトランジスタ1のゲート・ソース間電圧(以下、ゲート電圧という)が補助トランジスタ2のものより抵抗101による電圧降下量だけ大きい。これにより、出力電流 I1と調整用電流 I2との比率 I1/ I2が、トランジスタのサイズ比だけでなく、ソース・ドレイン間電圧又はゲート電圧、及び、ゲート電圧の閾値等のパラメータに依存

する。従って、出力電流 I1と調整用電流 I2とは一般に非線形な関係になる。特に、出力電流 I1が調整用電流 I2に 比べてトランジスタのサイズ比で決まる比率を超えて大きくなりやすく、ゲート電圧が大きい領域では電流の比率 I1/ I2がトランジスタのサイズ比の数倍以上大きくなる。

図 16Aは、二番目の従来例において、出カトランジ ス タ 1 の ゲ ー ト 電 圧 に 対 す る 出 力 電 流 I 1 及 び 調 整 用 電 流 I 2の変化を表すグラフを示す図である。但し、この図の 縦 軸 は 比 例 関 係 か ら の ズ レ を 見 や す く す る 目 的 で 規 格 化 されている。 つまり、出力電流 11に対応する曲線と調整 用電流 12に対応する曲線とが一致する場合、出力電流 11 及び調整用電流 I2は比例関係にある。 図 16Aが示すよう に、二番目の従来例では、出力電流11及び調整用電流12 が、特にゲート電圧が大きい領域で一致しない。更に、 上記の二つの曲線のズレは、ゲート電圧の閾値の温度変 動により大きく変動する。このように電流の比率 I1/I2 がゲート電圧や温度に依存して変動するので、調整用電 流 I 2 を 所 定 の 制 御 目 標 値 に 合 わ せ る よ う に 制 御 し て も 、 出力電流11が所定の値から変動してしまう。それ故、二 番目の従来例は出力電流I1の制御精度を十分に高くでき ず、十分な信頼性を確保できなかった。

図15は遮断回路の三番目の従来例である。この従来例は二番目の従来例と同様に出カトランジスタ1とそれに並列な補助トランジスタ2とを有する。三番目の従

来例は二番目の従来例とは異なり、出カトランジスタ1 及び補助トランジスタ2のゲート電圧が同一である一 方、ドレイン・ソース間電圧が異なる。特に出カトラン ジスタ1では、ドレイン・ソース間電圧が負荷3による 電圧降下により比較的大きく低下しやすい。

図16Bは、三番目の従来例において、ゲート電圧に対する出力電流I1及び調整用電流I2の変化を表すグラフを示す図である。図16Bの縦軸は図16A同様規格化されている。図16Bが示すように、三番目の従来例では、出力電流I1及び調整用電流I2が、ゲート電圧がある程度大きなると一致しなくなる。特に、出力電流I1はゲート電圧の増大に伴って飽和するような変化を示す。従って、三番目の従来例においても、電流の比率I1/I2がゲート電圧に依存して変動するので、二番目の従来例同様、出力電流I1の制御精度を十分に高くできなかった。

二番目の従来例では出カトランジスタ1と補助トランジスタ2とのゲート電圧が異なっていたことが、三番目の従来例ではドレイン・ソース間電圧が異なっていたことが、出力電流I1及び調整用電流I2の比率I1/I2を様々な変動因子に依存させる原因であった。そこで、本発明は、出カトランジスタ1と補助トランジスタ2との対応する三端子(ゲート、ソース、ドレイン)の電位を一致させるように制御して、出力電流I1と調整用電流I2との比率I1/I2を一定に補償する出力制御装置を提供する。これにより、出力の制御精度を、動作状態又は温度

の変動や製造時の誤差によるサイズ比等のばらつきに依存しないようにして、従来より装置の信頼性を高くする。

発明の開示

本発明の出力制御装置は、

第一の枝、第二の枝、第三の枝及び第四の枝から構成されたブリッジ回路であって、

前記第一から第四までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一の枝の第一の端子と前記第三の枝の第一の端子とが実質的に定電位の電源接続用の第一の端子に接続され、前記第二の枝の第二の端子と前記第四の枝の第二の端子とが実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、

前記第二の枝は負荷を含み、

前記第一の枝は前記負荷を駆動するための出力回路を含み、

前記第三の枝は、前記出力回路と実質的に同一の入

力電圧が印加された場合、前記出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、ブリッジ回路;

前記第一の節点と前記第二の節点との電位差を検出するための電位差検出回路;

並びに、

前記出力回路を前記補助回路と連動させて制御し、前記電位差検出回路の検出した前記電位差に基づいて前記出力回路及び前記補助回路を遮断するための制御回路・

を有する。

これにより、電位差検出回路で検出された電位される間位差検出回路で検出される方法、別がは、出力回路と補助回路とかり、路と前路の一部間がある。というのは、出力の間に対する。というのは、出力のは、がいるのは、は出力を範囲のは、は出力制御装置は出力を遮断させるようにできる。

上記のものとは別の観点による本発明の出力制御装置は、

第一の枝、第二の枝、第三の枝及び第四の枝から構成されたブリッジ回路であって、

前記第一から第四までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一の枝の第一の端子と前記第三の枝の第一の端子とが実質的に定電位の電源接続用の第一の端子に接続され、前記第二の枝の第二の端子と前記第四の枝の第二の端子とが実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、

前記第二の枝は負荷を含み、

前記第一の枝は前記負荷を駆動するための出力回路を含み、

前記第三の枝は、前記出力回路と実質的に同一の入力電圧が印加された場合、前記出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、プリッジ回路;

前記第一の節点と前記第二の節点との電位差を検出するための電位差検出回路;

前記出力回路を前記補助回路と連動させて制御するための制御回路;

並びに、

前記電位差検出回路が検出した前記電位差をフィー

ドバックして、前記ブリッジ回路がバランスして前記比率を実質的に一定に保つように、前記第一から第四までのいずれかの枝の、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路;

を有する。

上記の出力制御装置が、一つの観点から好ましい態様として、前記第四の枝に含まれて前記調整用電流を検出するための電流検出回路を有し、前記制御回路が前記電流検出回路の検出結果に基づいて前記補助回路を制御する。電流比補償回路によりブリッジ回路がバランスに保た状態では、出力電流と調整用電流との比率は一定に保

たれている。従って、調整用電流を電流検出回路により検出すれば、その結果から出力電流が検出できる。こうして、出力電流を制御回路へフィードバックできる。この場合、出力電流を直接測定する必要がないので、検出動作によって出力電圧の出力可能範囲を狭めるおそれがない。

力電流を遮断する。これにより、装置の素子等が過電流による破壊から保護される。

更にその場合、前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われても良い。これにより、上記のように過電流に対する保護回路としての機能と、ブリッジ回路をバランスすせるための補償回路としての機能とを、一つのスイッチ回路で兼用できる。

上記の出力制御装置の更に他の観点から好ましい態 様では、前記電流比補償回路による前記等価インといいが が前記出力回路に対して行われても良いはが れにより、負荷に対する駆動回路としての機能 と、ブリッジ回路をバランスさせるための補償回路と ての機能とを、一つの出力回路で兼用できる。

上記の出力制御装置を発展させたものの一つとして、一つの観点による本発明の出力制御装置は、

第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝及び第七の枝から構成された出力用回路網であって、

前記第一から第七までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三及び前記第五の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四及び前記第六の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子とが第二の節点で互いに接続され、前記第五の枝の第二の端子と前記第六の枝の第一の端子とが第三の節点で互いに接続され、

前記第七の枝の第一の端子が前記第一の節点へ、前記第七の枝の第二の端子が前記第二の節点へそれぞれ接続され、

前記第七の枝は負荷を含み、

前記第一の枝は前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝は前記負荷を駆動するための第二の出力回路を含み、

前記第二及び前記第四の枝のそれぞれはスイッチ回路を含み、

前記第五の枝は、前記第一又は前記第二の出力回路のいずれかと連動し、その連動する出力回路と実質的に同一の入力電圧が印加された場合、その連動する出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、出力用回路網;

前記第三の節点に対する前記第一の節点又は前記第

WO 00/79682 PCT/JP00/03931

二の節点の電位を検出するための電位差検出回路;

前記第一又は前記第二の出力回路を実質上交互に前記補助回路と連動させて制御するための制御回路:

前記制御回路の動作と同期して実質上交互に前記スイッチ回路のいずれかを導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝、前記第七の枝及び前記第四の枝を前記第一の出力回路からの出力電流が流れる場合、前記第一の枝、前記第七の枝と前記第四の枝との合成、前記第五の枝及び前記第六の枝から構成されるブリッジが、

前記第三の枝、前記第七の枝及び前記第二の枝を前記第二の出力回路からの出力電流が流れる場合、前記第三の枝、前記第七の枝と前記第二の枝との合成、前記第五の枝及び前記第六の枝から構成されるブリッジが、

それぞれバランスして前記比率を実質的に一定に保 つように、前記電位差検出回路が検出した前記電位差を フィードバックして、前記第一から第六までの枝のいず れかの、前記第一の端子と前記第二の端子との間の等価 インピーダンスを制御するための電流比補償回路;

を有する。

この出力制御装置は、二つの出力回路及びスイッチ回路を実質上交互に切り替えて導通させ又は遮断させることにより、負荷を流れる出力電流を反転できる。出力用回路網の導通している枝だけをつなげると、上記の出

力制御装置のブリッジ回路の構造と実質上同一になっているので、その作用も上記のものと同様である。

この出力制御装置の一つの観点から好ましいにはない。のは、前記第六の枝が前記調整用電流を実質的路を実質の四路により出力電流と間では、電流とので、電流とので、電流と回路により出力電流を一定にすれば、それにより出力電流を準静的に変化する。

上記の出力制御装置では、もう一つの観点から好ましくは、前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる。これにより、負荷を流れる電流を反転させるためのオ代回路を、ブリッジ回路をバランスさせるための補償回路として兼用できる。

上記の出力制御装置の更に他の観点から好ましい態を置の更に他の観点から好ましていました。これにより、自然に対する駆動しいない。これにより、自然に対する駆動しいない。これにより、自然に対するを対けるをいまった。というの機能と、ブリッジ回路をバランスで養しての機能とを、同じ出力回路で養用できる。

二番目に述べた本発明の出力制御装置を上記とは別の態様に発展させた本発明の出力制御装置は、

第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝、第八の枝及び第九の枝から構成された出力用回路網であって、

前記第一から第九までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五及び前記第七の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六及び前記第八の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、前記第七の枝の第二の端子と前記第八の枝の第一の端子とが第四の節点で互いに接続され、

前記第九の枝の第一の端子が前記第一の節点へ、前記第九の枝の第二の端子が前記第二の節点へそれぞれ接続され、

前記第九の枝が負荷を含み、

前記第一の枝が前記負荷を駆動するための第一の出

力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第二及び前記第四の枝のそれぞれがスイッチ回路を含み、

前記第五の枝が、前記第一の出力回路と連動し、前記第一の出力回路と実質的に同一の入力電圧が印加された場合、前記第一の出力回路から出力される第一の出力電流に対して実質的に所定の第一の比率だけ小さく調整された第一の調整用電流を出力するための第一の補助回路を含み、

前記第七の枝が、前記第二の出力回路と連動し、前記第二の出力回路と実質的に同一の入力電圧が印加された場合、前記第二の出力回路から出力される第二の出力電流に対して実質的に所定の第二の比率だけ小さく調整された第二の調整用電流を出力するための第二の補助回路を含む、出力用回路網;

前記第三の節点に対する前記第一の節点の電位を第一の電位差として、及び、前記第四の節点に対する前記第二の節点の電位を第二の電位差として、それぞれ検出するための電位差検出回路;

前記第一の出力回路と前記第一の補助回路との対、及び、第二の出力回路と前記第二の補助回路との対、のそれぞれを実質上交互に動作させて制御するための制御回路;

前記制御回路の動作と同期して実質上交互に前記スイッチ回路のいずれかを導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝、前記第七の枝及び前記第四の枝を前記第一の出力電流が流れる場合、前記第一の枝、前記第七の枝と前記第四の枝との合成、前記第五の枝及び前記第六の枝から構成されるブリッジがバランスして前記第一の比率を実質的に一定に保つように、

前記第三の枝、前記第七の枝及び前記第二の枝を前記第二の出力電流が流れる場合、前記第三の枝、前記第七の枝及が前記第二の枝との合成、前記第七の枝及び前記第八の枝から構成されるブリッジがバランスして前記第二の比率を実質的に一定に保つように、

前記電位差検出回路が検出した前記第一又は前記第二の電位差をフィードバックして、前記第一から第八までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路:

を有する。

この出力制御装置は、上記のものと同様、二つの出力回路及びスイッチ回路を実質上交互に切り替えて導通させ又は遮断させることにより、負荷を流れる出力電流を反転できる。出力用回路網の導通している枝だけをつなげると、二番目の本発明の出力制御装置のブリッジ回

路構造と実質上同一になっているので、その作用も二番目のものと同様である。

18

上記の出力制御装置が、一つの観点から好ましい態はとして、前記第六の枝では前記第一の調整用電流を得れるので、質に保ち又は準静的に変化させるための電流設定回路により出力電流と問題により出るので、電流設定回路により

調整用電流を一定にすれば、それにより出力電流も一定になる。又は、電流設定回路により調整用電流を準静的に変化させれば、それにより出力電流も同様に準静的に変化する。

上記の出力制御装置では、更に別の観点から好ましくは、前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる。これにより、負荷を流れる電流を反転させるためのスイッチ回路を、ブリッジ回路をバランスさせるための補償回路として兼用できる。

上記の出力制御装置の更に他の観点から好ましい態様として、前記電流比補償回路による前記等価インに対けての制御が前記第一又は前記第二の出力回路駆動に対する駆動により、負荷に対する駆動のおいたと、が回路に対けるといるとしての機能とを、同じ出力回路できる。

二番目に述べた本発明の出力制御装置を上記のものとは更に別の観点から発展させたものとして、本発明の出力制御装置は、

第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝及び第八の枝から構成された出 カ用回路網であって、

前記第一から第八までの枝のそれぞれは第一の端子

と第二の端子とを含み、

前記第一、前記第三、前記第五及び前記第七の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六及び前記第八の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の節点の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、前記第七の枝の第二の端子と前記第八の枝の第一の端子とが第四の節点で互いに接続され、

前記第一から第三までの節点へ、Y結線又はΔ結線 された三つの負荷の三つの端子のそれぞれが接続され、

前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第五の枝が前記負荷を駆動するための第三の出力回路を含み、

前記第二、前記第四及び前記第六の枝のそれぞれがスイッチ回路を含み、

前記第七の枝が、前記第一から第三までの出力回路・

のいずれかと連動して、その連動する出力回路と実質的に同一の入力電圧が印加された場合、その連動する出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、出力用回路網;

前記第四の節点に対する前記第一の節点、前記第二の節点又は前記第三の節点の電位を検出するための電位差検出回路;

前記第一から第三までの出力回路のそれぞれを所定の順に前記補助回路と連動させて制御するための制御回路;

前記制御回路の動作と同期して前記スイッチ回路のいずれか一つ又は二つを所定の順序及び組合せで導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝と、前記負荷と、前記第四又は前記第六の枝のいずれか又はその両方とを前記第一の出力回路からの出力電流が流れる場合、前記第一の枝、前記負荷と前記第四又は前記第六の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

前記第三の枝と、前記負荷と、前記第二又は前記第六の枝のいずれか又はその両方とを前記第二の出力回路からの出力電流が流れる場合、前記第三の枝、前記負荷と前記第二又は前記第六の枝のいずれか又はその両方と

の合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

前記第五の枝と、前記負荷と、前記第二又は前記第四の枝のいずれか又はその両方とを前記第三の出力回路からの出力電流が流れる場合、前記第五の枝、前記負荷と前記第二又は前記第四の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

それぞれバランスして前記比率を実質的に一定に保つように、

前記電位差検出回路が検出した前記電位差をフィードバックして、前記第一から第八までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路;

を有する。

この出力制御装置は、それぞれの出力回路及びスイッチ回路を所定のが組合せで切り替えて連流をもったより、それぞれの負荷を流れるというの出力制御装置が入れるの出力制御装置が入れるのはいるのがある。出力制御装置のが明めたけると上記のはあるのはのと同様である。

この出力制御装置の一つの観点から好ましい態様と

して、前記第八の枝が前記調整用電流を実質上一定に保ち又は準静的に変化させるための電流と回路を比った。電流とは補償回路により間でと回路により調整用電流を開発したれば、それにより間を用電流を準静的に変化すれば、それにより出力電流も同様に準静的に変化する。

上記の出力制御装置では、更に別の観点から好ましくは、前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる。これにより、負荷を流れる電流を転流させるためのスイッチ回路を、ブリッジ回路をバランスさせるための補償回路として兼用できる。

上記の出力制御装置の更に他の観点から好ましい態度の更に他の観点から好ましい。これによっての制御が前記第一から第三までの出力の問題がある。これによっておいている。これによってはいかがある。というの機能というというの機能というというので、できる。

二番目に述べた本発明の出力制御装置を上記のものとは更に別の態様に発展させた本発明の出力制御装置は、

第一の枝、第二の枝、第三の枝、第四の枝、第五の

枝、第六の枝、第七の枝、第八の枝、第九の枝、第十の枝、第十一の枝及び第十二の枝から構成された出カ用回路網であって、

前記第一から第十二までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五、前記第七、前記第九及び前記第十一の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六、前記第八、前記第十及び前記第十二の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一から第三までの節点へ、Y結線又はΔ結線 された三つの負荷の三つの端子のそれぞれが接続され、

前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第五の枝が前記負荷を駆動するための第三の出力回路を含み、

前記第二、前記第四及び前記第六の枝のそれぞれがスイッチ回路を含み、

前記第七の枝が、前記第一の出力回路と連動して、前記第一の出力回路と実質的に同一の入力電圧が印加された場合、前記第一の出力回路から出力される第一の出力電流に対して実質的に所定の第一の比率だけ小さく調整された第一の調整用電流を出力するための第一の補助回路を含み、

前記第九の枝が、前記第二の出力回路と連動して、前記第二の出力回路と実質的に同一の入力電圧が印加された場合、前記第二の出力回路から出力される第二の出力電流に対して実質的に所定の第二の比率だけ小さく調整された第二の調整用電流を出力するための第二の補助回路を含み、

前記第十一の枝が、前記第三の出力回路と連動して、前記第三の出力回路と実質的に同一の入力電圧が印かされた場合、前記第三の出力回路から出力される第三の出力電流に対して実質的に所定の第三の比率だけ小さく調整された第三の調整用電流を出力するための第三の補助回路を含む、出力用回路網;

前記第四の節点に対する前記第一の節点の電位を第

一の電位差として、前記第五の節点に対する前記第二の節点の電位を第二の電位差として、及び、前記第六の節点に対する前記第三の節点の電位を第三の電位差として、それぞれ検出するための電位差検出回路;

前記第一の出力回路と前記第一の補助回路との対、前記第二の出力回路と前記第二の補助回路との対、前記第三の出力回路と前記第三の補助回路と対、のそれぞれを所定の順に動作させて制御するための制御回路;

前記制御回路の動作と同期して前記スイッチ回路のいずれか一つ又は二つを所定の順序及び組合せで導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝と、前記負荷と、前記第四又は前記第六の枝のいずれか又はその両方とを前記第一の出力電流が流れる場合、前記電位差検出回路が検出した前記第一の電位差をフィードバックして、前記第一の枝、前記第一の枝のけれか又は前記第七の枝及び前記第一の比率を、るブリッジがバランスして前記第一の比率を、

前記第三の枝と、前記負荷と、前記第二又は前記第二の枝のいずれか又はその両方とを前記第二の出力電流が流れる場合、前記電位差検出回路が検出した前記第二の電位差をフィードバックして、前記第三の枝、前記第六の枝のいずれか又はその方と前記第二又は前記第十の枝から構成され

PCT/JP00/03931 WO 00/79682

るブリッジがバランスして前記第二の比率を、

前記第五の枝と、前記負荷と、前記第二又は前記第 四の枝のいずれか又はその両方とを前記第三の出力電流 が流れる場合、前記電位差検出回路が検出した前記第三 の電位差をフィードバックして、前記第五の枝、前記負 荷と前記第二又は前記第四の枝のいずれか又はその両方 との合成、前記第十一の枝及び前記第十二の枝から構成 されるプリッジがバランスして前記第三の比率を、

それぞれ実質的に一定に保つように、前記第一から 第十二までの枝のいずれかの、前記第一の端子と前記第 二 の 端 子 と の 間 の 等 価 イ ン ピ ー ダ ン ス を 制 御 す る た め の 電流比補償回路;

を有する。

この出力制御装置は上記のものと同様、それぞれの 出力回路及びスイッチ回路を所定の順序及び組合せで切 り替えて導通させ又は遮断させることにより、それぞれ の負荷を流れる出力電流を転流できる。それ故、例え ば 、 三 相 の 同 期 モ ー タ 又 は 誘 導 モ ー タ の ス テ ー タ 巻 線 に 対 す る 駆 動 回 路 と し て 用 い ら れ る 。 出 カ 用 回 路 網 の 導 通 している枝だけをつなげると二番目に述べた本発明の出 カ 制 御 装 置 の ブ リ ッ ジ 回 路 の 構 造 と 実 質 上 同 一 に な っ て い る の で 、 そ の 作 用 も 二 番 目 に 述 べ た も の と 同 様 で あ る。

この出力制御装置は上記のものと異なり、複数の出 カ 回 路 に 一 対 一 に 対 応 し て 補 助 回 路 を 複 数 有 す る 。 こ れ により、回路規模は上記のものより大きくなる。その反面、調整用電流と出力電流との比率を所定の値に精度良く設定する場合、上記のものでは補助回路が共通であるので複数の出力回路の構造的相違を極力抑える必要があるのに対し、この出力制御装置ではその必要がない。

する。

上記の出力制御装置では、更に別の観点から好ましくは、前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる。これにより、負荷を流れる電流を転流させるためのスイッチ回路を、ブリッジ回路をバランスさせるための補償回路として兼用できる。

上記の出力制御装置の更に他の観点から好ましいといい。として、前記第一から第三までの出力回路に出力回路により回路に対けるが前記がある。これによりによりに対ける駆動回路としての機能と、ブリッをできる。

更に上記のものとは別の観点による本発明の出力制

PCT/JP00/03931 WO 00/79682

30

御装置は、それぞれが先に述べた、負荷を流れる電流を 反転できる本発明の出力制御装置である少なくとも二つ の出力制御部、並びに、前記出力制御部のそれぞれにお ける前記調整用電流を制御して、それぞれの前記負荷を 流れる電流を制御するためのマイクロステップ制御回 路、を有する。

この出力制御回路は、それぞれの出力制御部が含む それぞれの負荷に流れる電流を互いに独立して制御でき る。この出力制御回路は、例えば、ステッピングモータ 等の駆動回路として用いられる。それぞれの出力制御部 は上記の負荷の電流を反転できるものと同じ構造である ので、その作用もそれらと同様である。

この出力制御部のそれぞれが、上記の出力制御装置 と同様に、前記調整用電流を実質的に一定に保ち又は準 静的に変化させるための電流設定回路を有しても良い。 この電流設定回路は、補助回路からの調整用電流が通る 枝に含まれる。更に、前記電流比補償回路による前記等 価インピーダンスの制御が前記スイッチ回路に対して行 われても、又は、前記出力回路に対して行われても良 い。以上の構成及び作用により、上記の出力制御装置と 同様に高精度の出力制御が行い得る。

以上述べた本発明の出力制御装置が、一つの観点か ら好ましくは、前記出力回路の周辺に存在する主抵抗、 及び、前記出力回路と連動する前記補助回路の周辺に存 在する補助抵抗が、前記出力回路からの前記出力電流と

例えば、出力回路を半導体素子として構成する場合、その構造上除くことのできない抵抗が必ず出力 四路の周辺に存在する。そこで、上記のような抵抗値を持つ補助抵抗を補助回路の周辺に配置する。そうするととを抑えることができる。それ故、出力制御の精度が主抵抗の存在によっては低下しない。

発明の新規な特徴は添付の請求の範囲に特に記載したものに他ならないが、構成及び内容の双方に関して本発明は、他の目的や特徴と合わせて図面と共に以下の詳細な説明を読むことにより、より良く理解され評価され

WO 00/79682

32

るであろう。

図面の簡単な説明

図1は、本発明の第1実施例による出力制御装置の 回路図である。

図2は、本発明の第2実施例による出力制御装置の 回路図である。

図 3 A は、本発明の第3実施例による出力制御装置 の回路図である。

図 3 B は、電流源 1 2 を構成する回路を表す図であ る。

図4は、本発明の第4実施例による出力制御装置の 回路図である。

図 5 A は、本発明の第5実施例による出力制御装置 の回路図である。

図 5 B は、本発明の第6実施例による出力制御装置 の回路図である。

図6は、本発明の第7実施例における出力トランジ スタ1と補助トランジスタ2との近傍だけを図示した部 分回路図である。

図7Aは、本発明の第8実施例による出力制御装置 の回路図である。

図 7 B は、本発明の第9実施例による出力制御装置

PCT/JP00/03931 WO 00/79682 33

の回路図である。

図8Aは、本発明の第10実施例による出力制御装 置の回路図である。

図8日は、本発明の第11実施例による出力制御装 置の回路図である。

図8Cは、本発明の第12実施例による出力制御装 置の回路図である。

図8Dは、本発明の第13実施例による出力制御装 置の回路図である。

図9Aは、本発明の第14実施例による出力制御装 置の回路図である。

図 9 B は、本発明の第15実施例による出力制御装 置の回路図である。

図 10 A は、本発明の第16実施例による出力制御装 置の回路図である。

図10Bは、本発明の第17実施例による出力制御装 置の回路図である。

図10 Cは、本発明の第18実施例による出力制御装 置の回路図である。

図 10 D は、本発明の第19実施例による出力制御装 置の回路図である。

図 11は、本発明の第20実施例による出力制御装 置の回路図である。

図 1 2 A は、本発明の第21実施例による出力制御装 置の回路図である。

図 1 2 B は、本発明の第22実施例による出力制御装置の回路図である。

図13は、最初の従来例による遮断回路の回路図である。

図14は、二番目の従来例による遮断回路の回路図である。

図15は、三番目の従来例による遮断回路の回路図である。

図 1 6 A は、二番目の従来例において、出カトランジスタ 1 のゲート電圧に対する出力電流 I 1 及び調整用電流 I 2 の変化を表すグラフを示す図である。

図 16 B は、三番目の従来例において、出力トランジスタ 1 のゲート電圧に対する出力電流 I 1 及び調整用電流 I 2 の変化を表すグラフを示す図である。

図面の一部又は全部は、図示を目的とした概要的表現により描かれており、必ずしもそこに示された要素の実際の相対的大きさや位置を忠実に描写しているとは限らないことは考慮願いたい。

発明を実施するための最良の形態

本発明の最良の実施形態について、好ましい実施例を以下に幾つか示し、図を参照しながら説明する。

《第1実施例》

図1は、本発明の第1実施例である出力制御装置の回路図である。

電極9は実質的に定電位である直流電源10に接続されている。

出力トランジスタ1は好ましくはnチャネル金属酸化膜電界効果トランジスタ(MOSFET)であり、ドレインを電極9へ、ソースを負荷3へそれぞれ接続されている。

負荷3は出カトランジスタ1とは逆側の端子で接地されている。

補助トランジスタ 2 は好ましくは n チャネル M O S F E T であり、ドレインを電極 9へ、ソースを補償トランジスタ 5のソースへそれぞれ接続されている。出力トランジスタ 1のソース電流 I1と補助トランジスタ 2のソース電流 I2との比率 I1/ I2は、ドレイン、ソース、ゲートの三端子の電位を両トランジスタで共通にした場合、三端子の電位に依らず実質上一定(以下、I1/ I2=nとする)になるように設計されている。これは例えば、第1 実施例を集積回路としてモノリシックに製造する場合、出力トランジスタ 1と補助トランジスタ 2とが同じ n チャネル M O S F E T なので、それぞれのサイズの比率をn:1にすれば実現可能である。

補償トランジスタ5は好ましくは p チャネル M O S F E T であり、ドレインを電流検出用抵抗 6へ接続されている。

電流検出用抵抗6は、補償トランジスタ5へ接続された端子とは逆側の端子で接地されている。

第一の差動アンプ4は、補助トランジスタ2と補償トランジスタ5との接続点すなわち節点Qに対する出力トランジスタ1と負荷3との接続点すなわち節点Pの電位を検出し、その電位差に比例した電圧を補償トランジスタ5のゲートへ出力する。

第二の差動アンプ 8は補償トランジスタ 5と電流検出用抵抗 6との接続点すなわち節点 Rの電位を基準電圧 7と比較し、その電位差に比例する電圧を制御回路 11へ出力する。

制御回路 11は第二の差動アンプ 8の出力電圧に基づいて、出力トランジスタ 1及び補助トランジスタ 2のゲートへ共通の制御信号を出力し、それらのドレイン・ソース間電圧を実質上同時にかつ同様に変化させる。以下、このような出力トランジスタ 1及び補助トランジスタ 2の動作を「連動」という。

以上の構成により、第1実施例は以下のようにして、負荷3への出力電流I1を制御する。

まず、第一の差動アンプ4と補償トランジスタ 5とにより、節点 Qに対する節点 Pの電位が正の向きに増大すると節点 Qの電位が上昇し、逆に負の向きに増大すると節点 Qの電位が下降する。こうして、出カトランジスタ 1のソース電位(節点 Pの電位)と補助トランジスタ 2のソース電位(節点 Qの電位)とが実質的に等しくな

WO 00/79682

る。つまり、出力トランジスタ1、負荷3、補助トランジスタ2、補償トランジスタ5及び電流検出用抵抗6は一つのブリッジを構成するとみなせる。そのようにみなした時、補償トランジスタ5が、第一の差動アンプ4がフィードバックする節点P及び節点Q間の電位差に基づいてドレイン・ソース間の等価インピーダンスを変化させて、節点P及び節点Q間の電位差を0に調節し、ブリッジをバランスさせる。

出カトランジスタ1と補助トランジスタ2とのドレイン電位及びゲート電位は、図1に示されている構成から明らかなようにそれぞれ実質的に等しい。それ故、上記のようにブリッジがバランスした状態では両トランジスタの三端子の電位がそれぞれ実質的に等しい。この場合、両トランジスタのソース電流の比率I1/I2が一定値nに保たれる。従って、ブリッジのバランスを保ったまま補助トランジスタ2のソース電流、すなわち、調整用電流I2を所定の目標値に一致するように制御され得る。がその目標値のn倍に一致するように制御され得る。

調整用電流 I2の制御は次のように行う。第二の差動アンプ 8が節点 Rの電位、すなわち、調整用電流 I2によって電流検出用抵抗 6の両端に生じる電圧降下の量を基準電圧 7と比較する。基準電圧 7の値は、制御目標値 Itに等しい調整用電流 I2による電流検出用抵抗 6の両端の電圧降下量に等しい。第二の差動アンプ 8の比較結果は符

号を含めて制御回路 11に出力される。制御回路 11はその比較結果に基づいて、調整用電流 12が制御目標値 Itより小さければ補助トランジスタ 2のゲート電位を高くし、逆に調整用電流 I2が制御目標値 Itより大きければゲート電位を全く同じように変化する。こうして、調整用電流 I2が制御目標値 Itに一致すると同時に、出力電流 I1が制御目標値 Itのn倍に一致するようになる。

以上述べたような出力電流 I1の制御では、電流検出用抵抗 6が出力トランジスタ 1と負荷 3とを含む主枝に含まれない。従って、出力電圧の範囲(ダイナミックレンジ)が最初の従来例に比べて広い。更に、二番目の従来例とは異なり、出力トランジスタ 1と補助トランジスタ 2とが互いの三端子の電位を共通に保つよう制御されている。それ故、互いのソース電流の比率 I1/ I2が温度及び三端子の電位に実質上依存せず一定である。従って電位の変化が出力制御の精度を低下させない。

上記の説明では、制御回路 11が第二の差動アンプ 8の出力に基づいて出力電流 I1を制御した。しかし、それに限らず、制御回路 11が出力電流 I1の制御には他の既に知られている手段を用い、その一方で、第二の差動アンプ 8の出力を、過電流から回路素子を保護する目的で出力トランジスタ 1と補助トランジスタ 2とを遮断するための条件判断に用いても良い。この場合、基準電圧 7

は、出力電流 I 1 に対する許容最大値の 1 / n に調整用電流 I 2 が等しい場合の節点 R の電位に設定される。

第1実施例において、制御回路11は入力電圧に基づいて所定の電圧を出力できるような回路であれば良い。このような回路は当業者であれば容易に設計できるであろう。

《第2 実施例》

図 2 は、本発明の第 2 実施例の回路図である。図 2 において図 1 のものと同様の構成要素には図 1 と同一の符号を付し、その説明は第 1 実施例のものを援用する。第 2 実施例は第 1 実施例において、出力トランジスタ 1 と補助トランジスタ 2 とをドレインとソースとを入れ替えて接続し、基準電圧 7 及び第二の差動アンプ 8 の極性を逆転させたものに相当する。第 2 実施例は図 2 に示されているように、第 1 実施例の接地側に相当する第一電極 9 a に直流電源 1 0 の高電位側を接続し、第二電極 9 を接地している。当業者であれば容易に理解できるように、第 2 実施例は、負荷 3 を流れる出力電流 I 1 が反転している点を除き、本質的に第 1 実施例と等価である。

《第3実施例》

図3Aは、本発明の第3実施例の回路図である。図3 Aにおいて図1のものと同様の構成要素には図1と同一の符号を付し、その説明は第1実施例のものを援用する。

第3実施例は第1実施例の電流検出用抵抗6(図1)に換えて、電流源12を有する。図3Bは電流源12を構成す

る回路を表す図である。電流源12は図3Bに示されているように複数の素子から成る回路を略記したものであり、トランジスタ12a、抵抗12b、差動アンプ12c、基準電圧12dを含む。

トランジスタ12aはnチャネルMOSFETであって、ドレインから調整用電流I2を入力する。抵抗12bはトランジスタ12aのソースと接地端子との間に接続されている。差動アンプ12cはトランジスタ12aのソース電流によって抵抗12bの両端に生じる電圧降下の量を基準電圧12dと比較し、実質的にそれ未満であるようにソース電流を制御する。基準電圧12dは、ソース電流が制御目標値Itに等しい時、抵抗12bの両端に生じる電圧降下の量に相当するように設定される。こうして、電流源12は調整用電流I2を実質上制御目標値Itに保つ。

図3Aにおいて、制御回路13は、差動アンプ4又は外部14からの入力に従ってオンレ又はオフすることにより、制御用電源15の電圧を出力トランジスタ1及び補助トランジスタ2のゲートへ伝え又は遮断するためのスイッチ回路である。制御用電源15の電圧は抵抗16a及び抵抗16bによって分圧されて、出力トランジスタ1と補助トランジスタ2とをオンさせるのに十分なゲート電圧となる。

ダイオード 17 はアノードで接地され、カソードを 節点 Pに接続されている。

以上の構成により、第3実施例は以下のように動作

する。出カトランジスタ1はゲート電位が一定の場合、 節点Pの電位が低いほど大きい出力電流I1を出力する。 差動アンプ4の出力が所定の閾値以上である場合、すな わち、節点Qに対する節点Pの電位が所定の許容下限値 (好ましくは負の値) より高い場合、制御回路13は外 部14からの入力に従って出カトランジスタ1及び補助ト ランジスタ2をオンし又はオフする。この時、電流源12 により調整用電流I2が制御目標値Itに保たれ、かつ、節 点Qに対する節点Pの電位が上記の許容下限値より高い ので、出力電流I1は実質上、節点Pと節点Qとの電位差 が0の時の値n×It以下である。

一方、差動アンプ4の出力が上記の閾値未満である場合、すなわち、節点Qに対する節点Pの電位が上記の許容下限値に達しない場合、制御回路13は外部14からの入力に関わらずオフする。それにより、それぞれのゲート電位が下がるので、出力トランジスタ1及び補助トランジスタ2が遮断される。従って、節点Pと節点Qとの電位差に対する許容下限値を出力電流I1の許容上限値に対応するように設定しておけば、過電流から回路素子を保護できる。

更に、負荷 3が誘導性リアクタンスを有する場合は、以下のようにして負荷 3を流れる負荷電流 ILを制御目標値 n×Itから実質上所定の制御範囲 Δ I1を超えて大きくならないように制御できる。

まず、節点Pと節点Qとの電位差に対する許容下限

値を、出力電流I1が制御目標値n×Itより Δ I1だけ大きい値である場合に対応するように、わずかに負の値に設定する。

出力電流 I1が制御目標値n×Itから Δ I1を超えて大 きくなると、節点 Pと節点 Qとの電位差が許容下限値よ り降下するので制御回路 13がオフし、出カトランジス タ1と補助トランジスタ2とをオフさせる。すると、出 力 電 流 I1は 急 激 に 0ま で 減 少 す る が 、 負 荷 電 流 ILは ダ イ オード 17を 通って 流れ 続けながら、 負荷 3のインダクタ ンスによりゆっくりと減少する。そこで、負荷電流IL があまり小さくならないうちに、外部14からの入力に より制御回路13をオンさせて、それにより出カトラン ジスタ1と補助トランジスタ2とをオンさせる。ここ で、制御回路13を外部14からの入力によりオンさせる 他に、制御回路13自体がオフした後所定の時間でオン するように設定されていても良い。負荷3へ再び直流電 源 10からの電圧が印加されて節点 Pの電位が高くなる と、出力電流I1、すなわち、負荷電流ILが負荷3のイン ダクタンスによりゆっくりと増大し、それに伴って節点 Pの電位が再び下降していく。

以上の動作が繰り返される結果、負荷電流ILは制御目標値n×Itから実質上 Δ I1を超えて大きくならない。更に、外部14からの入力により制御回路 13をオンさせるタイミングを調節することにより、負荷電流ILの時間平均値が制御目標値n×Itに一致するようにでき

る。

WO 00/79682

以上の説明では、補助トランジスタ 2がオンしている間、電流 12が調整用電流 I2を一定に保っている。しかし、そのように一定に保たれる時間は、上記のように出カトランジスタ 1がオンオフするスイッチング周期より長くても良い。つまり、電流源 12の基準電圧 12dを上記のスイッチングよりゆっくりと変化させることにより、調整用電流 I2の制御目標値 Itをゆっくりと変化させ、それにより出力電流 I1の制御目標値 n× Itを同様に変化させることもできる。本明細書では、このように出カトランジスタ 1のスイッチングよりゆっくりとした変化のことを、「準静的な変化」という。

第3実施例によれば、第1実施例同様、電流検出用抵抗を出力トランジスタ1及び負荷3を含む主枝に挿入する必要がないので、挿入した場合より出力電圧の範囲(ダイナミックレンジ)を広くすることができる。

更に、節点Pと節点Qとの電位差を所定の許容レベル以上相違させないようにできるので、温度変動や出力トランジスタ1の三端子の電位によって生じる出力電流I1、すなわち、負荷電流ILの制御目標値からの誤差を従来より小さく抑えることができる。

尚、出力トランジスタ1と補助トランジスタ2とが オフした時、負荷3に蓄えられたエネルギーをダイオー ド17を通して外部へ出力するようにしても良い。この 場合、第3実施例は外部に対する電源装置として機能す る。この電源装置としての機能は、第1実施例又は第2 実施例の構造にダイオード17に相当するダイオードを 付加しても実現可能である。

《第4実施例》

図4は、本発明の第4実施例の回路図である。図4において図3Aのものと同様の構成要素には図3と同一の符号を付し、その説明は第3実施例のものを援用する。第4実施例は第3実施例において、出カトランジスタ1と補助トランジスタ2とをドレインとソースとを入れ替えて接続し、差動アンプ4及びダイオード17の極性を逆転させたものに相当する。第4実施例は図4に示されているように、第3実施例の接地側に相当する第一電極9aに直流電源10の高電位側を接続し、第二電極9を接地している。当業者であれば容易に理解できるように、第4実施例は、負荷3を流れる出力電流ILが反転している点を除き、本質的に第3実施例と等価である。

《第5実施例》

図 5 A は、本発明の第 5 実施例の回路図である。図 5 A において図 3 A のものと同様の構成要素には図 3 と同一の符号を付し、その説明は第 3 実施例のものを援用する。

電流源 12 vは、図 3 Bに示されている電流源 12と同様の回路であり、基準電圧 12 dに相当する基準電圧を外部からの入力により所定の値に設定できるようにしたものである。従って、電流源 12 vは調整用電流 I2を制御目標

値 Itに保ち、制御目標値 Itは外部からの入力によって設定される。

図 5 A において、スイッチングトランジスタ 1 8 は n チャネル M O S F E T であって、ドレインを負荷 3 へ接 続し、ソースを接地している。

ダイオード 19はアノードを負荷 3とスイッチングトランジスタ 18のドレインとの間に接続され、カソードを電極 9へ接続されている。

制御回路 20は、外部 14からの入力に従って、出力トランジスタ 1と補助トランジスタ 2とのゲート電位を制御して、それにより出力電流 I1及び調整用電流 I2を制御する。更に、電流源 12vを制御して調整用電流 I2の制御目標値 Itを変化させる。

スイッチ制御回路 21は、差動アンプ 4からの入力に 従ってスイッチングトランジスタ 18のゲート電位を制 御し、それにより出力電流 I1を制御する。具体的には、 節点 Qに対する節点 Pの電位が正の向きに増大した場合、スイッチ制御回路 21はスイッチングトランジスタ 1 8のゲート電位を上昇させて出力電流 I1を増大させる。 一方、節点 Qに対する節点 Pの電位が負の向きに増大した場合、スイッチ制御回路 21はスイッチングトランジスタ 1 まる、スイッチ制御回路 21はスイッチングトランジスタ 18のゲート電位を下降させて出力電流 I1を減少させる。

以上の構成により、第5実施例は以下のように動作する。

まず、差動アンプ4、スイッチ制御回路21及びスイ ッ チ ン グ ト ラ ン ジ ス タ 18に よ り 、 節 点 Qに 対 す る 節 点 P の電位が正の向きに増大すると出力電流 I1が増大し、そ れに伴って節点Pの電位が下降する。逆に、節点Qに対 する節点Pの電位が負の向きに増大すると出力電流I1が 減少し、それに伴って節点Pの電位が上昇する。こうし て、出カトランジスタ1のソース電位(節点Pの電位) と 補 助 ト ラ ン ジ ス タ 2 の ソ ー ス 電 位 (節 点 Q の 電 位) と が実質的に等しくなる。つまり、出カトランジスタ1、 負 荷 3 及 び ス イ ッ チ ン グ ト ラ ン ジ ス タ 18、 補 助 ト ラ ン ジ スタ2、電流源12vをブリッジとみなすと、スイッチン グトランジスタ18が、 差動アンプ4がフィードバックす る節点P及び節点Q間の電位差に基づいてドレイン・ソ ース間の等価インピーダンスを変化させて、節点P及び 節点Q間の電位差を0に調節し、すなわち、ブリッジを バランスさせる。

出カトランジスタ1と補助トランジスタ2とのドレイン電位及びゲート電位は、図5Aに示されている構成から明らかなようにそれぞれ実質的に等しい。それ故、上記のようにブリッジがバランスした状態では両トランジスタの三端子の電位がそれぞれ実質的に等しい。この場合、出力電流 I1と調整用電流 I2との比率 I1/ I2が一定値nに保たれる。

ブリッジがバランスを保った状態で、電流源12vが 調整用電流I2を制御目標値Itに一致させるように制御す WO 00/79682

るので、出力電流 I1がその制御目標値 Itのn倍に一致するように制御される。こうして、出力電流 I1と調整用電流 I2との比率 I1/ I2が一定値 nに従来より精度良く保たれる。その結果、制御回路 20は、電流源 12vの制御目標値 Itを変化させて出力電流 I1を所定の値へ変化させる場合、又は、出力トランジスタ 1と補助トランジスタ 2とを連動してオンオフさせてパルス幅変調(PWM)された出力電流 I1を出力する場合、出力電流 I1を従来より精度良く制御できる。

差動アンプ4、スイッチ制御回路21及びスイッチン グトランジスタ18は、以下のように、過電流から回路 素 子 を 保 護 す る た め の 保 護 回 路 と し て の 機 能 を 持 た せ る こともできる。差動アンプ4の出力が所定の閾値以上で ある場合、すなわち、節点Qに対する節点Pの電位が所 定の許容下限値(好ましくは絶対値が十分大きい負の 値) より高い場合、スイッチ制御回路21は上記のよう にスイッチングトランジスタ18を制御する。一方、差 動 ア ン プ 4 の 出 力 が 上 記 の 閾 値 未 満 で あ る 場 合 、 す な わ ち、節点Qに対する節点Pの電位が上記の許容下限値に 達しない場合、スイッチ制御回路21はスイッチングト ランジスタ18を完全にオフする。それにより、出力電 流 I 1 が 遮 断 さ れ る 。 従 っ て 、 節 点 P と 節 点 Q と の 電 位 差 に 対 す る 許 容 下 限 値 を 出 力 電 流 11の 許 容 上 限 値 に 対 応 す るように設定しておけば、過電流から回路素子を保護で きる。

スイッチ制御回路 21は上記のようにスイッチングトランジスタ 18をアナログ制御する。しかしその他に、負荷 3が誘導性リアクタンスを有する場合、スイッチ制御回路 21は、以下のようにスイッチングトランジスタ 18をスイッチング制御することにより、ブリッジを実質的にバランスさせることができる。

まず、節点Pと節点Qとの電位差に対する許容下限値を、出力電流I1が制御目標値n×ItよりΔI1だけ大きい値である場合に対応するように、わずかに負の値に設定する。

出力電流 I1が制御目標値 n× Itから Δ I1を超えて大きくなると、節点 Pと節点 Qとの電位差が許容下限値より降下するので、スイッチ制御回路 21がスイッチングトランジスタ 18をオフさせる。すると、出力電流 I1はダイオード 19を通って流れ続けながら、負荷 3のインダクタンスによりゆっくりと減少する。そこで、出力電流 I1があまり小さくならないうちに、スイッチ制御回路 21はスイッチングトランジスタ 18を再びオンさせる。ここで、スイッチ制御回路 21はオフしたスイッチングトランジスタ 18が所定の時間でオンするように設定されている。負荷 3へ再び直流電源 10からの電圧が印加されて節点 Pの電位が高くなると、出力電流 I1が負荷 3のインダクタンスによりゆっくりと増大し、それに伴って節点 Pの電位が再び下降していく。

以上の動作が繰り返される結果、 出力電流 I1は制御

目標値 n× Itから実質上 Δ I1を超えて大きくならない。 更に、スイッチングトランジスタ 18がオフしている時間を調節することにより、出力電流 I1の時間平均値が制御目標値 n× Itに一致するようにできる。

以上述べたような出力電流 I1の制御では、電流検出用抵抗を出力トランジスタ 1と負荷 3とを含む主技 最初ので、その抵抗を挿入してンジカ電圧の範囲(ダイナミックレンジカ電圧の範囲(ダイナミックリンジカー電子の従来例とは異なり、出力の電子ので、二番目の従来例とが互いの三端子の電でスタ 1と補助トランジスタ 2とが 互いる。それでランジスタ 1と補助トランジスタ 2とが 互いの三端子の電位に実質上依存せずー定である。従って、端子の電位に実質上依存せずー定である。従って、端子の電位に、温度の変動及び三端子の電位の変化が出力の精度を低下させない。

以上の説明では、補助トランジスタ2がオンしている間、電流 12が調整用電流 I2を一定に保っている。しかし、そのように一定に保たれる時間は、上記のように出カトランジスタ1がオンオフするスイッチング周期程度の間で良い。つまり、電流 源 12vの基準電圧を上記のスイッチング周期よりゆっくりと変化させることにより、調整用電流 I2の制御目標値 Itをゆっくりと変化させる、それにより出力電流 I1の制御目標値 n× Itを同様に変化させることもできる。

尚、出カトランジスタ1と補助トランジスタ2とが

オフした時、負荷 3に蓄えられたエネルギーをダイオード 19を通して外部へ出力するようにしても良い。この場合、第 5 実施例は外部に対する電源装置として機能する。

《第6実施例》

図 5 B は、本発明の第 6 実施例の回路図である。図 5 B において図 5 A のものと同様の構成要素には図 5 A と同一の符号を付し、その説明は第 5 実施例のものを援用する。第 6 実施例は第 5 実施例において、出力トランジスタ 1 と補助トランジスタ 2 とをドレインとソースとを入れ替えて接続し、差動アンプ 4 及びダイオード 1 9の極性を逆転させたものに相当する。第 6 実施例は図 5 B に示されているように、第 5 実施例の接地側に相当する第一の電極 9 a に直流電源 1 0 の高電位側を接続し、第二の電極 9 を接地している。当業者であれば容易に理解できるように、第 6 実施例は、負荷 3 を流れる出力電流 I 1 が反転している点を除き、本質的に第 5 実施例と等価である。

《第7実施例》

図 6 は、第 7 実施例の出力トランジスタ 1 と補助トランジスタ 2 との近傍だけを図示した部分回路図である。第 7 実施例は、上記の第 1 から第 6 までの実施例のいずれかと同様の回路であって、出力トランジスタ 1 及び補助トランジスタ 2のドレイン端子と電極 9 との間、及び、ソース端子と節点 P 又は節点 Q との間に、それぞ

れ抵抗 R1から R4が 挿入 されている。この内、抵抗 R1及び R2は、実質上出カトランジスタ1の寄生抵抗を表す。

第1から第6までの実施例の回路を示す図1から図5Bまでには図示されてはいないが、厳密には出力トランジスタ1及び補助トランジスタ2のドレイン及びソースにはそれぞれ寄生抵抗が含まれている。出力トランジスタ1を流れる出力電流I1は通常かなり大きいので、上記の寄生抵抗によって生じる電圧降下が出力トランジスタ1に印加される電圧に比べて一般に無視できない。出力トランジスタ1に含まれる寄生抵抗は出力トランジスタ1の構造上必ず存在し、完全に除くことはできない。従って、上記の電圧降下が出力電流I1と調整用電流I2との比率I1/I2へ無視できない誤差を与える。

そこで、補助トランジスタ2のドレイン及びソースへ抵抗R3及びR4を図6のように接続する。ここで、補助トランジスタ2のドレインに接続される抵抗R3は出力トランジスタ1のドレインに接続される抵抗R1のn倍に、補助トランジスタ2のソースに接続される抵抗R4は出力トランジスタ1のソースに接続される抵抗R2のn倍に、それぞれ設定されている。これにより、抵抗R3及びR4を挿入しない場合より、出力電流I1と調整用電流I2との比率I1/I2を一定値nに精度良く制御できる。

以下の実施例においても、補助トランジスタへ第7 実施例と同様な抵抗を付加し、出カトランジスタの寄生 抵抗による出力制御の誤差を抑えることができる。

《第8実施例》

図7Aは、本発明の第8実施例の回路図である。図7Aにおいて図5Aのものと同様の構成要素には図5Aと同一の符号を付し、その説明は第5実施例のものを援用する。

第8実施例は、第5実施例における出力トランジスタ1、スイッチングトランジスタ18及び差動アンプ4に相当する素子を二対有し、それらが次のように構成されている。

第一出カトランジスタ1a及び第二出カトランジス タ 1bは い ず れ も 第 5 実 施 例 の 出 カ ト ラ ン ジ ス タ 1に 相 当 し、負荷3への出力を調節するためのものである。第一 出 カ ト ラ ン ジ ス タ 1a及 び 第 二 出 カ ト ラ ン ジ ス タ 1bは、 好 ま し く は n チャ ネ ル 金 属 酸 化 膜 電 界 効 果 ト ラ ン ジ ス タ (MOSFET) であり、ドレインを電 極 9へ、ソース を 負 荷 3 へ そ れ ぞ れ 接 続 さ れ て い る 。 こ の 時 、 負 荷 3 は そ れ ぞ れ 別 の 端 子 を 第 一 出 力 ト ラ ン ジ ス タ 1a及 び 第 二 出カトランジスタ1bへ接続されている。更に、第一フ ライホイールダイオード25a及び第二フライホイールダ イ オ ー ド 25bが 、 第 一 出 カ ト ラ ン ジ ス タ 1a及 び 第 二 出 カ トランジスタ1bのソースにアノードを、ドレインにカ ソードを、それぞれ接続されている。第一フライホイー ル ダ イ オ ー ド 25a及 び 第 二 フ ラ イ ホ イ ー ル ダ イ オ ー ド 25 bは 、 好 ま し く は 、 第 一 出 カ ト ラ ン ジ ス タ 1 a 及 び 第 二 出 カトランジスタ 1bのそれぞれのボディダイオードであ

る。その他に、独立したダイオード素子であっても良い。

補助トランジスタ2のソース電流I2に対する第一出カトランジスタ1aのソース電流I1aの比率I1a/I2、及び、第二出カトランジスタ1bのソース電流I1bの比率I1b/I2は、ドレイン、ソース、ゲートの三端子の電位を両トランジスタで共通にした場合、三端子の電位に依らず実質上一定(以下、I1a/I2=I1b/I2=nとする)になるように設定されている。

第 一 ス イ ッ チ ン グ ト ラ ン ジ ス タ 18a及 び 第 二 ス イ ッ チングトランジスタ18bはいずれも第5実施例のスイッ チングトランジスタ18に相当し、好ましくは n チャネ ル M O S F E T で あ る 。 第 一 ス イ ッ チ ン グ ト ラ ン ジ ス タ 18a及び第二スイッチングトランジスタ18bは、それぞ れのドレインを第一出カトランジスタ1a及び第二出カ トランジスタ1bのソースのそれぞれへ接続し、ソース を接地している。更に、第三フライホイールダイオード 26a及び第四フライホイールダイオード 26bが、第一ス イッチングトランジスタ18a及び第二スイッチングトラ ン ジ ス タ 18bの ソ ー ス に ア ノ ー ド を 、 ド レ イ ン に カ ソ ー ドを、それぞれ接続されている。第三フライホイールダ イオード 26a及び第四フライホイールダイオード 26b は、好ましくは、第一スイッチングトランジスタ18a及 び 第 二 ス イ ッ チ ン グ ト ラ ン ジ ス タ 18bの そ れ ぞ れ の ボ デ ィダイオードである。その他に、独立したダイオード素

子であっても良い。

第一出力トランジスタ1aのドレイン及びソースにそれぞれ接続された抵抗 R1a及び R2a、第二出力トランジスタ1bのドレイン及びソースにそれぞれ接続された抵抗 R1b及び R2b、補助トランジスタ 2のドレイン及びソースにそれぞれ接続された抵抗 R3及び R4は、第7 実施例(図6)における抵抗 R1、R2、R3、R4に相当する。好ましくは、抵抗 R3の抵抗値は抵抗 R1a及び R1bの n倍、抵抗 R4の抵抗値は抵抗 R2a及び R2bの n倍にそれぞれ設定される。

第一の差動アンプ4aは節点Qに対する第一出カトランジスタ1aと負荷3との節点Paの電位を、第二の差動アンプ4bは節点Qに対する第二出カトランジスタ1bと負荷3との節点Pbの電位をそれぞれ検出し、それぞれの電位差に比例した電圧を出力する。

制御回路 20Aは、外部 14からの入力に従って、第一出力トランジスタ 1a又は第二出力トランジスタ 1bのいずれか一方のゲート電位と、補助トランジスタ 2のゲート電位とを一致させて制御し、それにより第一の出力電流 I1a又は第二の出力電流 I1b、及び、調整用電流 I2を制御する。更に、電流源 12vを制御して調整用電流 I2の制御目標値 Itを変化させる。

スイッチ制御回路 21Aは、制御回路 20Aの動作と同期して第一スイッチングトランジスタ 18a又は第二スイッチングトランジスタ 18bをオンし又はオフする。具体

的には、制御回路 20Aが第一出カトランジスタ 1aをオンし、第二出カトランジスタ 1bをオフした時は、スイッチ制御回路 21Aは第一スイッチングトランジスタ 18aをオフし、第二スイッチングトランジスタ 18bをオンする。この時、負荷 3には第一出カトランジスタ 18aからの第一の出力電流 I1aが流れる。

一方、制御回路 20Aが第一出カトランジスタ 1aをオフし、第二出カトランジスタ 1bをオンした時は、スイッチ制御回路 21Aは第一スイッチングトランジスタ 18aをオンし、第二スイッチングトランジスタ 18bをオフする。この時、負荷 3には第二出カトランジスタ 18bからの第二の出力電流 I1bが流れる。このようにして、負荷3を流れる電流が反転する。

スイッチ制御回路 21Aは上記のスイッチング動作と同期して、第一の差動アンプ 4a又は第二の差動アンプ 4bのいずれか一方の出力を選択して入力する。スイッチ制御回路 21Aは、それらの差動アンプからの入力に従って、第一スイッチングトランジスタ 18a又は第二スイッチングトランジスタ 18bのそれぞれのゲート電位を制御する。それにより、第一の出力電流 I1a又は第二の出力電流 I1bが制御される。

具体的には、第一出カトランジスタ 1 aがオンした時、スイッチ制御回路 21 Aは第一の差動アンプ 4 aの出力を入力する。その入力が節点 Qに対する節点 P aの電位の正の向きの増大を示す場合、スイッチ制御回路 21 Aは第

ニスイッチングトランジスタ18bのゲート電位を上昇させて第一の出力電流I1aを増大させる。一方、第一の差動アンプ4aからの入力が節点Qに対する節点Paの電位の負の向きの増大を示す場合、スイッチ制御回路21Aは第一スイッチングトランジスタ18aのゲート電位を下降させて第一の出力電流I1aを減少させる。

一方、第二出カトランジスタ1bがオンした時、スイッチ制御回路 21Aは第二の差動アンプ4bの出力を入力する。その入力が節点 Qに対する節点 Pbの電位の正の向きの増大を示す場合、スイッチ制御回路 21Aは第一スイッチングトランジスタ18aのゲート電位を上昇させて第二の出力電流 I1bを増大させる。一方、第二の差動アンプ4bからの入力が節点 Qに対する節点 Pbの電位の負の向きの増大を示す場合、スイッチ制御回路 21Aは第二スイッチングトランジスタ18bのゲート電位を下降させて第二の出力電流 I1bを減少させる。

上記のように制御回路 20A及びスイッチ制御回路 21 Aにより導通した素子だけをみると、その構成は第 5 実施例(図 5 A)と全く同様である。具体的には以下のように同一視される:第一出カトランジスタ 1 a と第二スイッチングトランジスタ 1 8 b とがオンし、第二出カトランジスタ 1 b と第一スイッチングトランジスタ 1 8 b とがオフした場合、第一出カトランジスタ 1 a が 第 5 実施例の出カトランジスタ 1 と、第二スイッチングトランジスタ 1 8 b が 第 5 実施 例のスイッチングトランジスタ 1 8 b と、第

一の差動アンプ 4 a が 第 5 実 施 例 の 差 動 アンプ 4 と、 それ ぞれみなせる。 逆に第一出カトランジスタ 1 a と 第二ス イッチングトランジスタ 1 8 b と が オ フ し、 第二出カトランジスタ 1 b と 第一スイッチングトランジスタ 1 8 b と が オ ン した 場 合、 第二出カトランジスタ 1 b が 第 5 実 施 例 の 出カトランジスタ 1 と、 第一スイッチングトランジスタ 1 8 a が 第 5 実 施 例 の ス イッチングトランジスタ 1 8 a が 第 5 実 施 例 の 差 動 アンプ 4 b が 第 5 実 施 例 の 差 動 アンプ 4 b が 第 5 実 施 例 の 差 動 アンプ 4 と、 それ ぞれ の 場 合 に お け る 出 カ 制 御 の 動 作 及 び そ の 効果に つ い て は、 第 5 実 施 例 の 説 明 を 援用できる。

第 5 実施例のダイオード 19と同様に、第一スイッチングトランジスタ 18 a 又は第二スイッチングトランジスタ 18 bがオフした場合、第一フライホイールダイオード 25 bがオンする。それと同時に第四フライホイールダイオード 26 b 又は第三フライホイールダイオード 26 a も オンするので、電極 9を通して直流電源 10へ電力が回生される。この回生時に第二スイッチングトランジスタ 18 bのオフと同期して第二出カトランジスタ 1bをオンしても良い。それにより、出カトランジスタのオン電圧はフライホイールダイオードよりも一般に低いので、出力制御時の消費電力を削減できる。

第8実施例の構成において各トランジスタのドレイン及びソースを入れ替えて各差動アンプ及び各フライホ

イールダイオードの極性を逆にしたものは、第 6 実施例の構成を上記の第 5 実施例のように含んだものと実質上等価である。

尚、制御回路 20 A及びスイッチ制御回路 21 Aの動作は厳密に同時である必要はない。例えば、第一出カトランジスタ 1 aがオンした状態から第二出カトランジスタ 1 bがオンした状態へ移行する間に、第一出カトランジスタ 1 a及び第二出カトランジスタ 1 bが共にオフする期間(デッドタイム)が設けられても良い。それにより、発生を抑えることができる。更に、上記のデッドタイムではより、第一スイッチングトランジスタ 18 a 又は第二スイッチングトランジスタ 18 bが共にオンする期間を設けても良い。その間に負荷 3 に蓄えられたエネルギーを外部へ取り出すことができる。但し、このデッドタイムでは上記の出力制御は行われない。

《第9実施例》

図7Bは、本発明の第9実施例の回路図である。図7Bにおいて図7Aのものと同様の構成要素には図7Aと同一の符号を付し、その説明は第8実施例のものを援用する。

第9実施例は、第8実施例に比べ、次の構成及び動作が異なる。

スイッチ制御回路 24は、制御回路 20Aと同期して第 ースイッチングトランジスタ 18a又は第二スイッチング トランジスタ 18bのいずれかを選択する。選択された方のスイッチングトランジスタのゲートへは、抵抗 29a及び 29b、又は、抵抗 30a及び 30bによりその選択されたスイッチングトランジスタをオンできる程度に分圧された電源 28の電圧が印加される。

電流比補償回路 27は、制御回路 20Aから第一出カトランジスタ 1a及び第二出カトランジスタ 1bへ出力される制御信号を入力する。入力された制御信号は、第一の差動アンプ 4a又は第二の差動アンプ 4bの出力のいずれかに基づいて以下のように変換されて、第一出カトランジスタ 1a及び第二出カトランジスタ 1bへ出力される:

第一出カトランジスタ1aがオンしている場合、電流比補償回路27は第一の差動アンプ4aの出力を入力する。その入力が節点Qに対する節点Paの電位の正の向きの増大を示す場合、電流比補償回路27は第一出力電流I1aを増大させるように、第一出力トランプ4aから制御信号を変換する。一方、第一の出力電流I1aを減少させるように、第一出力トランジスタ1aへの制たで示す場合、電流比補償回路27は第一出力に対する節点Paの電位の負の向きの増大を示す場合、電流比補償回路27は第一出力電流I1aを減少させるように、第一出力トランジスタ1aへの制御信号を変換する。

第二出カトランジスタ1bがオンしている場合、電流比補償回路27は第二の差動アンプ4bの出力を入力す

る。その入力が節点 Qに対する節点 Pbの電位の正の向きの増大を示す場合、電流比補償回路 27は第二出力トランジスタ 1bのゲート電位を上昇させて第二の出力電流 I 1bを増大させるように、第二出力トランジスタ 1bへの制御信号を変換する。一方、第二の意動アンプ 4bからの入力が節点 Qに対する節点 Pbの電位の負の向きの増大を示す場合、電流比補償回路 27は第二出力トランジスタ 1bのゲート電位を下降させて第二の出力電流 I 1bを減少させるように、第二出力トランジスタ 1bへの制御信号を変換する。

第9実施例は以上の構成及び動作について第8実施例と異なるが、次に述べるように、第8実施例と同様に 出力制御を精度良く行うことができる。

第9実施例において、制御回路20A及びスイッチ制御回路24により導通している回路素子だけをみると、第8実施例同様に、第5実施例(図5A)と同じ構成のブリッジを有する。電流比補償回路27は、上記のように第一出カトランジスタ1a又は第二出カトランジスタ1bのゲート電位を変化させて、節点Pa又は節点Pbと節点Qとの電位差を実質的に0にするように制御する。この制御は、第5実施例(図5A)においてスイッチ制御回路21がスイッチングトランジスタ18に対して行ったものと全く同様である。特に、その制御が、パルス幅変調(PWM)制御等のスイッチング制御による場合、上記の節点Pa又は節点Pbと節点Qとの電位差が実質的に0と

なる時の電流値が、時間平均的に維持されるように制御される。上記のような電流比補償回路 27の制御により、上記のブリッジがバランスする。従って、第 5 実施例と全く同様に、第 9 実施例ではブリッジがバランスとができる。それ故、第 9 実施例の出力制御の精度が従来よりも良くなる。

《第10実施例》

図8Aは、本発明の第10実施例の回路図である。 図8Aにおいて図7Aのものと同様の構成要素には図7Aと 同一の符号を付し、その説明は第8実施例のものを援用 する。

第10実施例は、第8実施例の構成の他に、第一出カトランジスタ1a及び第二出カトランジスタ1bのそれぞれと連動する第一補助トランジスタ2a及び第二補助トランジスタ2bを有する。更に、共通の電流源12vを切り替えて使用するための第四スイッチ31、第一補助スイッチングトランジスタ32a及び第二補助スイッチングトランジスタ32bを有する。

第一補助トランジスタ2a及び第二補助トランジスタ2bは、好ましくはnチャネルMOSFETであり、ドレインを電極9へ、ソースを第一補助スイッチングトランジスタ32a及び第二補助スイッチングトランジスタ 32bのドレインへそれぞれ接続されている。第一補助スイッチングトランジスタ 32bは、好ましくはn チャネル MOSFE

Tである。

第一補助トランジスタ 2aのソース電流 I 2aに対する第一出カトランジスタ 1aのソース電流 I 1aの比率 I 1a/ I 2a、及び、第二補助トランジスタ 2bのソース電流 I 2bに対する第二出カトランジスタ 1bのソース電流 I 1bの比率 I 1b/ I 2bは、ドレイン、ソース、ゲートの三端子の電位を両トランジスタで共通にした場合、三端子の電位に依らず実質上一定(以下、I 1a/ I 2a = I 1b/ I 2b = nとする)になるように設定されている。

第8実施例の制御回路20Aは共通の補助トランジスタ2のゲート電位と、第一出カトランジスタ1a又は第二出カトランジスタ1bのいずれかのゲート電位とを一致させて制御した。それに対して、第10実施例では、第一出カトランジスタ1aのゲートは第一補助トランジスタ2aのゲートと、第二出カトランジスタ1bのゲートは第二補助トランジスタ2bのゲートと、それぞれ接続されている。従って、制御回路20Bは、第8実施例の制御回路20Aに比べて、それぞれのゲート電位を一致させる動作をする必要がない。

スイッチ 31は、制御回路 20Bの動作と同期して、第一出カトランジスタ 1aがオンした時は第一補助スイッチングトランジスタ 32aへ、第二出カトランジスタ 1bがオンした時は第二補助スイッチングトランジスタ 32bへ、それぞれ電源 33の電圧を出力する。出力された電源 33の電圧は、抵抗 34a及び 34b、又は、抵抗 35a及び 35

bにより分圧されて、第一補助スイッチングトランジスタ 32 a 及び第二補助スイッチングトランジスタ 32 b をそれぞれオンするだけの電圧となって印加される。 こうして、電流源 12 v は、第一出カトランジスタ 1 a がオンした時は第一補助トランジスタ 2 a からの調整用電流 I 2 a を、第二出カトランジスタ 1 b がオンした時は第二補助トランジスタ 2 b からの調整用電流 I 2 b を、それぞれ制御目標値 I t に保つよう制御する。この制御目標値 I t は制御回路 2 0 からの制御信号によって変化する。

第一出カトランジスタ1aのドレイン及びソースにそれぞれ接続された抵抗R1a及びR2a、第二出カトランジスタ1bのドレイン及びソースにそれぞれ接続された抵抗R1b及びR2b、第一補助トランジスタ2aのドレイン及びソースにそれぞれ接続された抵抗R3a及びR4a、第二補助トランジスタ2bのドレイン及びソースにそれぞれ接続された抵抗R3b及びR4bは、第7実施例(図6)における抵抗R1、R2、R3、R4に相当する。好ましくは、抵抗R3aの抵抗値は抵抗R1aのn倍、抵抗R3bの抵抗値は抵抗R1bのn倍、抵抗R2aのn倍、抵抗R4aの抵抗値は抵抗R2aのn倍、抵抗R4bの抵抗値は抵抗R2bのn倍にそれぞれ設定される。

第8実施例では、二つの異なる出カトランジスタの ソース電位(節点 Pa及び接点 Pbの電位)が共通の補助 トランジスタのソース電位(節点 Qの電位)と実質的に 一致する時の値に出力電流が維持されるように、出力ト ランジスタが例えばPWM制御により制御される。一方、第10実施例では、二つの異なる出カトランジスタのソース電位(節点Pa及び接点Pbの電位)がそれぞれ別の補助トランジスタのソース電位(節点Qa及び接点Qbの電位)と実質的に一致する時の値にそれぞれの出力電流が維持されるように、出カトランジスタが例えばPWM制御により制御される。

制御回路 20B及びスイッチ制御回路 21Aにより導通した素子だけをみると、その構成は第 5 実施例(図 5 A)と全く同様である。例えば、第一出カトランジスタ1aと第一補助トランジスタ 2aと第二スイッチングトランジスタ 18bとがオンし、第二出カトランジスタ 1bと第二補助トランジスタ 2bと第一スイッチングトランジスタ 1aが第 5 実施例の出カトランジスタ 1と、第一補助トランジスタ 1aが第 5 実施例の補助トランジスタ 2と、第二スイッチングトランジスタ 18bが第 5 実施例のスイッチングトランジスタ 18c、それぞれみなせる。従って、上記の各スイッチが選択した状態における出力制御の動作及びその効果については、第 5 実施例の説明を援用できる。

第10実施例の回路規模は、補助トランジスタの数が増えているので、第8実施例よりかなり大きくなる。 しかし、第10実施例では、集積回路としてモノリシックに製造する場合、出カトランジスタと補助トランジスタとをウェハ上で互いにごく近い位置に製造しやすい。 つまり、いわゆる素子の整合性においては第10実施例の方が第8実施例より優れている。つまり、出力制御において、ウエハ上の場所による温度や構造の不均一性による誤差を無視できる。

《第11実施例》

図8Bは、本発明の第11実施例の回路図である。 図8Bにおいて図8Aのものと同様の構成要素には図8Aと 同一の符号を付し、その説明は第10実施例のものを援 用する。

第11実施例は第10実施例のように一つの電流源12vを共通に用いるのではなく、補助トランジスタのそれぞれに対して別の電流源12va及び12vbを用いるようにしたものである。その二つの電流源の切換は、スイッチ31bによって制御回路20Bの動作と同期して行われる。それ以外の動作及び効果については第10実施例と全く同様である。

《第12実施例》

図8Cは、本発明の第12実施例の回路図である。 図8Cにおいて図7B又は図8Aのものと同様の構成要素には図7B又は図8Aと同一の符号を付し、その説明は第9 実施例又は第10実施例のものを援用する。

第12実施例は、電流比補償回路27により出力トランジスタのゲート電位を第9実施例と同様に制御して、第10実施例と同じ構成のブリッジをバランスさせている。それ以外の出力制御の動作及び効果については

第10実施例と全く同様である。

《第13実施例》

図8Dは、本発明の第13実施例の回路図である。 図8Dにおいて図7B又は図8Bのものと同様の構成要素には図7B又は図8Bと同一の符号を付し、その説明は第9 実施例又は第11実施例のものを援用する。

第13実施例は、電流比補償回路27により出力トランジスタのゲート電位を第9実施例と同様に制御して、第11実施例と同じ構成のブリッジをバランスさせている。それ以外の出力制御の動作及び効果については第11実施例と全く同様である。

《第14実施例》

図 9 A は、本発明の第 1 4 実施例の回路図である。 図 9 A において図 7 A のものと同様の構成要素には図 7 A と同一の符号を付し、その説明は第 8 実施例のものを援用する。

第14実施例は、第5実施例(図5A)における出 カトランジスタ1、スイッチングトランジスタ18及び差 動アンプ4に相当する素子を三対有し、例えば三相モー タの駆動回路として用いられる。それらは次のように構 成されている。

u 相負荷 3 u、 v 相負荷 3 v及 び w 相負荷 3 w は 一端 を 共有し、いわゆる Y 結線を形成している。これらの負荷 は例えば三相モータのステータ巻線に相当する。

第一出カトランジスタ1a、第二出カトランジスタ1

b及び第三出カトランジスタ1cはいずれも第5実施例の出カトランジスタ1に相当し、好ましくは n チャネルMOSFETであり、ドレインを電極 9へ、ソースを u 相負荷 3 w へそれぞれ接続されている。更に、第一フライホイールダイオード 25 a、第二フライホイールダイオード 25 b及び第三フライホイールダイオード 25 cが、第一出カトランジスタ1 a、第二出カトランジスタ1 cのソースタ1b及び第三出カトランジスタ1 cのソースにアソードを、ドレインにカソードを、それぞれをおける。各フライホイールダイオードは、ケッボディダイオードである。その他に、独立したダイオード素子であっても良い。

補助トランジスタ 2のソース電流 I2に対する第一出カトランジスタ 1aのソース電流 I1aの比率 I1a/ I2、第二出カトランジスタ 1bのソース電流 I1bの比率 I1b/ I2、及び、第三出カトランジスタ 1cのソース電流 I1cの比率 I1c/ I2は、ドレイン、ソース、ゲートの三端子の電位を各トランジスタで共通にした場合、三端子の電位に依らず実質上一定(以下、I1a/ I2= I1b/ I2= I1c/ I2=nとする)になるように設計されている。

第一スイッチングトランジスタ 18a、 第二スイッチングトランジスタ 18b及び第三スイッチングトランジスタ 18cはいずれも第 5 実施例のスイッチングトランジスタ 18c 相当し、好ましくは n チャネル M O S F E T で

ある。第一スイッチングトランジスタ18a、第二スイッチングトランジスタ18b及び第三スイッチングトランジスタ18cは、それぞれのドレインを第一出カトランジスタ1a、第二出カトランジスタ1b及び第三出カトランジスタ1cのソースのそれぞれへ接続し、ソースを接地している。更に、第四フライホイールダイオード26a、第二スイッチングトランジスタ18a、第二スイッチングトランジスタ18a、第二スイッチングトランジスタ18b及び第三スイッチングトランジスタ18cのソースにアノードを、ドレインにカソードを、それぞれ接続されている。各フライホイールダイオードは、好ましくは、並列に接続されている名スイッチングトランジスタのそれぞれのボディダイオードである。その他に、独立したダイオードである。その他に、独立したダイオードである。その他に、独立したダイオードである。

第一出カトランジスタ1aのドレイン及びソースに それぞれ接続された抵抗 R1a及び R2a、第二出カトラン ジスタ1bのドレイン及びソースにそれぞれ接続された 抵抗 R1b及び R2b、第三出カトランジスタ1cのドレイン 及びソースにそれぞれ接続された抵抗 R1c及び R2c、補 助トランジスタ2のドレイン及びソースにそれぞれ接続 された抵抗 R3及び R4は、第7実施例(図6)における抵 抗 R1、R2、R3、R4に相当する。好ましくは、抵抗 R3の 抵抗 値は抵抗 R1a、R1b及び R1cの n倍、抵抗 R4の抵抗値 は抵抗 R2a、R2b及び R2cの n倍にそれぞれ設定される。 第一の差動アンプ4aは節点 Qに対する第一出カトランジスタ1aと u 相負荷 3uとの節点 Paの電位を、第二の差動アンプ4bは節点 Qに対する第二出カトランジスタ1bと v 相負荷 3vとの節点 Pbの電位を、第三差動アンプ4cは節点 Qに対する第三出カトランジスタ1cと w 相負荷 3wとの節点 Pcの電位をそれぞれ検出し、それぞれの電位差に、その符号を含めて比例した電圧を出力する。ここで、出力される電圧は単に上記の電位差の正負だけに基づいた二値的なものでも良い。

制御回路 3 6 は外部 1 4 から入力される u 相、 v 相、 w 相の位相情報に基づいて、三つの出力トランジスタのうちいずれか一つのみをオンし、残りをオフするように、各出力トランジスタのゲートへ制御信号を出力する。

制御回路 3 6 は、外部 1 4 からの入力に基づいて電流源 1 2 v を制御し、調整用電流 I 2 の制御目標値を設定する。

更に、制御回路 36は、三つのスイッチングトランジスタのオン又はオフをそれぞれ指示する制御信号をスイッチ制御回路 37Aに出力する。ここで、三つのスイッチングトランジスタのオン及びオフの制御は、例えば、三相モータの駆動回路として用いる場合、通電角が 120°以上では三つのスイッチングトランジスタの内二つがオンするように、通電角が 120°以下では常に一つしかオンしないように行われる。更に、例えば、第一出カト

ランジスタ1aがオンしている u 相駆動の場合、第二スイッチングトランジスタ18bと第三スイッチングトランジスタ18cとをそれぞれ実質的に流れる電流の配分が、通電角、ロータの回転方向及び位相に依存して設定される。

ス イ ッ チ 制 御 回 路 3 7 A は 、 三 つ の 差 動 ア ン プ 4 a 、 4 b、及び4cからの入力に基づいて、オンしている出力ト ランジスタのソース電位が補助トランジスタ2のソース 電位より下がった時にオンしているスイッチングトラン ジスタをオフするように、制御回路36からの制御信号 を 変 換 し 、 各 ス イ ッ チ ン グ ト ラ ン ジ ス タ ヘ 出 カ す る 。 こ こで、上記の制御信号の変換の仕方は、以下に述べるよ うに、第5実施例と同様にできる:例えば、第一出カト ランジスタlaだけがオンしているu相駆動時では、負 荷 3 u - 負 荷 3 v - 第 二 ス イ ッ チ ン グ ト ラ ン ジ ス タ 18 b 、 又 は、 負 荷 3 u - 負 荷 3 w - 第 三 ス イ ッ チ ン グ ト ラ ン ジ ス タ 1 8cのいずれか又はその両方を出力電流が流れる。この場 合、 第 一 出 カ ト ラ ン ジ ス タ 1 a が 第 5 実 施 例 (図 5 A) の 出 カ ト ラ ン ジ ス タ 1 と 、 負 荷 3 u と 負 荷 3 v と 負 荷 3 w と の 合 成が第5実施例の負荷3と、第二スイッチングトランジ ス タ 18b及 び 第 三 ス イ ッ チ ン グ ト ラ ン ジ ス タ 18cの 合 成 が 第 5 実 施 例 の ス イ ッ チ ン グ ト ラ ン ジ ス タ 18 と 、 そ れ ぞれみなせる。従って、第一出カトランジスタ1a、補 助 ト ラ ン ジ ス タ 2 、 電 流 源 12 v 、 三 つ の 負 荷 と 二 つ の ス イッチングトランジスタとの合成、の四つが構成するブ リッジは、第5実施例のブリッジと全く同様の構成である。そこで、第5実施例と同様に、二つのスイッチントランジスタのオン及びオフを制御して、その合成り、質的な等価インピーダンスを変化させる。これにより、第5実施例同様、節点Paと節点Qとの電位差を実質的に0となる時の値に出力電流を時間平均的に維持して、上記のブリッジをバランスとせることができる。更にですることができる。更にですり、ジャジ回路がバランスした後の出力制御についても第5実施例の説明を援用できる。

但し、第8実施例と同様に、例えば、 u 相駆動時において第二スイッチングトランジスタ18b及び第三スイッチングトランジスタ18b及び第三スイッチングトランジスタ18cが共にオフした場合、第四フライホイールダイオード25cもオンする。そして、電極9を通して直流電源10へ電力が回生される。この回生時に第二スイッチングトランジスタ18cのオフと同期して、第二出カトランジスタ1b又は第三出カトランジスタ1cをオンしても良い。それにより、出カトランジスタのオン電圧はフライホイールダイオードよりもに低いので、出力制御時の消費電力を削減できる。

第二出カトランジスタ 1bだけがオンしている v 相 駆動時では、負荷 3v - 負荷 3u - 第一スイッチングトラ ンジスタ 18a、又は、負荷 3v - 負荷 3w - 第三スイッチン グトランジスタ18cのいずれか又はその両方を出力電流が流れる。この場合、第二出カトランジスタ1bが第5実施例(図5A)の出カトランジスタ1と、負荷3uと負荷3vと負荷3wとの合成が第5実施例の負荷3と、第一スイッチングトランジスタ18a及び第三スイッチングトランジスタ18cの合成が第5実施例のスイッチングトランジスタ18と、それぞれみなせる。従って、第二出カトランジスタ1b、補助トランジスタ2、電流源12v、三つの負荷と二つのスイッチングトランジスタとの合成、第5実施例のプリッジは、第5実施例のプリッジは、第5実施例のプリッジは、第二の差動でとつが構成である。このブリッジは、第二の差動でとでするように第一スイッチングトランジスタ18cを制御することによりバランスする。

第三出カトランジスタ1cだけがオンしているw相駆動時では、負荷3w-負荷3u-第一スイッチングトランジスタ18a、又は、負荷3w-負荷3v-第二スイッチングトランジスタ18bのいずれか又はその両方を出力電流が流れる。この場合、第三出カトランジスタ1cが第5実施例(図5A)の出カトランジスタ1と、負荷3uと負荷3vと負荷3wとの合成が第5実施例の負荷3と、第一スイッチングトランジスタ18a及び第二スイッチングトランジスタ18bの合成が第5実施例のスイッチングトランジスタ18bの合成が第5実施例のスイッチングトランジスタ

スタ1c、補助トランジスタ2、電流源12v、三つの負荷と二つのスイッチングトランジスタとの合成、の四つが構成するブリッジは、第5実施例のブリッジと全く同様の構成である。

このブリッジは、第三の差動アンプ4cの出力に基づいて、節点Pcと節点Qとの間の電位差を0とするように第 ースイッチングトランジスタ18a又は第二スイッチングトランジスタ18bを制御することによりバランスする。

以上のように、u相、v相、w相いずれの駆動時においても、第5実施例と同様の出力制御が可能である。

《第15実施例》

図 9 B は、本発明の第 1 5 実施例の回路図である。 図 9 B において図 9 A のものと同様の構成要素には図 9 A と同一の符号を付し、その説明は第 1 4 実施例のものを援用する。

第15実施例は、第14実施例のスイッチ制御回路 37Aを、制御回路36から各出カトランジスタへの出力を 変換するためのスイッチ制御回路37Bに置き換えている 点だけが第14実施例と異なる。

電流比補償回路 37Bは、三つの差動アンプ4a、4b、 及び4cからの入力に基づいて、オンしている出力トランジスタのソース電位が補助トランジスタ 2のソース電位 より下がった時にオンしているスイッチングトランジスタをオフするように、制御回路 36からの制御信号を変換し、各出カトランジスタへ出力する。ここで、制御信

号の変換の仕方は、以下に述べるように行う:例えば、 第一出カトランジスタ1aだけがオンしている u 相駆動 時では、負荷3u-負荷3v-第二スイッチングトランジ スタ18b、又は、負荷3u-負荷3w-第三スイッチングト ランジスタ18cのいずれか又はその両方を出力電流が流 れる。この時、第一出カトランジスタ1a、補助トラン ジスタ2、電流源12v、三つの負荷と二つのスイッチン グトランジスタとの合成、の四つがブリッジを構成す る。そこで、第一出カトランジスタ1aのオン及びオフ を電流比補償回路37Bにより制御して、その合成の等価 インピーダンスを変化させる。 これにより、 節 点 Paと 節点Qとの電位差が実質的に0となる時の値に出力電流 を時間平均的に維持して、上記のブリッジをバランスさ せることができる。そのようにしてブリッジがバランス した後は、第一出カトランジスタ1aから出力される第 一の出力電流 I1aと補助回路 2から出力される調整用電 流 I 2 と の 比 率 I 1 a / I 2 が 、 温 度 変 動 及 び 第 一 出 カ ト ラ ン ジスタ1aの三端子の電位等に実質的に依存せずに一定 で あ る 。 従 っ て 、 制 御 回 路 36が 補 助 ト ラ ン ジ ス タ 2を 用 いて調整用電流 12を精度良く制御すると、第一の出力電 流Ilaも同様に精度良く制御できる。

第8実施例と同様に、例えば、 u 相駆動時において 第二スイッチングトランジスタ18b及び第三スイッチン グトランジスタ18cが共にオフした場合、第四フライホ イールダイオード26a、第二フライホイールダイオード 25b及び第三フライホイールダイオード 25cもオンする。そして、電極 9を通して直流電源 10へ電力が回生される。この回生時に第二スイッチングトランジスタ 18b 又は第三スイッチングトランジスタ 16cをオンしても良い。それにより、出力トランジスタのオン電圧はフライホイールダイオードよりも一般に低いので、出力制御時の消費電力を削減できる。

第二出カトランジスタ1bだけがオンしているv相駆動時では、負荷3v-負荷3u-第一スイッチングトランジスタ18a、又は、負荷3v-負荷3w-第三スイッチングトランジスタ18cのいずれか又はその両方を出力電流が流れる。この場合、第二出カトランジスタ1b、補助トランジスタ2、電流源12v、三つの負荷と二つのスイッチングトランジスタとの合成、の四つが構成するブリッジは、第二の差動アンプ4bの出力に基づいて、節点Pbと節点Qとの間の電位差を0とするように第二出カトランジスタ1bを制御することによりバランスする。

第三出カトランジスタ1cだけがオンしているw相駆動時では、負荷3w-負荷3u-第一スイッチングトランジスタ18a、又は、負荷3w-負荷3v-第二スイッチングトランジスタ18bのいずれか又はその両方を出力電流が流れる。この場合、第三出カトランジスタ1c、補助トランジスタ2、電流源12v、三つの負荷と二つのスイッチングトランジスタとの合成、の四つが構成するブリッジ

は、第三の差動アンプ4cの出力に基づいて、節点Pcと 節点Qとの間の電位差を0とするように第三出カトラン ジスタ1cを制御することによりバランスする。

以上のように、u相、v相、w相いずれの駆動時に おいても、温度変動及び各出カトランジスタの三端子の 電位によらず、上記のブリッジをバランスさせることが できる。それ故、出力電流と調整用電流との比率が一定 に制御されるので、従来より高精度の出力制御が可能で ある。

《第16実施例》

図10Aは、本発明の第16実施例の回路図である。 図10Aにおいて図9Aのものと同様の構成要素には図9Aと同一の符号を付し、その説明は第14実施例のものを 援用する。

第16実施例は、第14実施例の構成に加えて、第一出カトランジスタ1a、第二出カトランジスタ1b及び第三出カトランジスタ1cのそれぞれと連動する第一補助トランジスタ2cを有する。更に、共通の電流源12vを切り替えて使用するための第一補助スイッチングトランジスタ32a、第二補助スイッチングトランジスタ32cを有する。び第三補助スイッチングトランジスタ32cを有する。

第一補助トランジスタ2a、第二補助トランジスタ2b及び第三補助トランジスタ2cは、好ましくは n チャネル M O S F E T であり、ドレインを電極 9へ、ソースを

第一補助スイッチングトランジスタ 32a、第二補助スイッチングトランジスタ 32b及び第三補助スイッチングトランジスタ 32cのドレインへそれぞれ接続されている。第一補助スイッチングトランジスタ 32a、第二補助スイッチングトランジスタ 32b及び第三補助スイッチングトランジスタ 32cは、好ましくは n チャネル M O S F E T である。各補助スイッチングトランジスタのソースは電流源 12vへ接続されている。

第一補助トランジスタ 2 a のソース電流 I 2 a に対する第一出カトランジスタ 1 a のソース電流 I 1 a の比率 I 1 a / I 2 a 、第二補助トランジスタ 2 b のソース電流 I 2 b に対する第二出カトランジスタ 1 b のソース電流 I 1 b の比率 I 1 b / I 2 b 、及び、第三補助トランジスタ 2 c のソース電流 I 2 c に対する第三出カトランジスタ 1 c のソース電流 I 1 c の比率 I 1 c / I 2 c は、ドレイン、ソース、ゲートの三端子の電位をそれぞれの出カトランジスタ及び補助トランジスタで共通にした場合、三端子の電位に依らず実質上一定(以下、I 1 a / I 2 a = I 1 b / I 2 b = I 1 c / I 2 c = n とする)になるように設定されている。

各補助スイッチングトランジスタは制御回路 38からの制御信号に従ってオンし及びオフして、それぞれの調整用電流を電流源 12 vへ導通する。電流源 12 vは、第一出カトランジスタ 1aがオンする時は第一補助トランジスタ 2aからの調整用電流 I2 aを、第二出カトランジスタ 1bがオンする時は第二補助トランジスタ 2bからの調

整用電流 I 2 b を、第三出カトランジスタ 1 c がオンする時は第三補助トランジスタ 2 c からの調整用電流 I 2 c を、それぞれ制御目標値 I t に保つよう制御する。この制御目標値 I t は制御回路 38からの制御信号によって変化する。

第一出カトランジスタ1aのドレイン及びソースに それぞれ接続された抵抗 R1a及び R2a、第二出カトラン ジスタ1bのドレイン及びソースにそれぞれ接続された 抵 抗 R1b及 び R2b、 第 三 出 カ ト ラ ン ジ ス タ 1cの ド レ イ ン 及びソースにそれぞれ接続された抵抗 R1c及びR2c、第 ー補助トランジスタ 2aのドレイン及びソースにそれぞ れ接続された抵抗 R3a及び R4a、 第二補助トランジスタ2 bのドレイン及びソースにそれぞれ接続された抵抗 R3b 及び R 4 b 、 第 三 補 助 ト ラ ン ジ ス タ 2 c の ド レ イ ン 及 び ソ ー ス に そ れ ぞ れ 接 続 さ れ た 抵 抗 R3c及 び R4cは 、 第 7 実 施 例 (図 6) における抵抗 R1、R2、R3、R4に相当する。 好ましくは、 更に、 抵抗 R3aの抵抗値は抵抗 R1aの n 倍、抵抗 R3bの抵抗値は抵抗 R1bのn倍、抵抗 R3cの抵抗 値は抵抗 R1cのn倍、抵抗 R4aの抵抗値は抵抗 R2aのn 倍、抵抗 R4bの抵抗値は抵抗 R2bのn倍、抵抗 R4cの抵抗 値 は抵抗 R2cの n倍にそれぞれ設定される。

制御回路 38は、第14実施例の制御回路 36の機能に加えて、三つの補助スイッチングトランジスタのオン及びオフをそれぞれ指示する制御信号を出力する。この制御信号は、 u 相駆動時は第一補助スイッチングトランジスタ 32aを、 v 相駆動時は第二補助スイッチングトラ

ンジスタ 3 2 b を、 w 相 駆 動 時 は 第 三 補 助 ス イ ッ チ ン グ ト ラ ン ジ ス タ 3 2 c を 、 そ れ ぞ れ オ ン し 、 他 の 二 つ は オ フ さ せ る よ う に 指 示 す る。

第14実施例では、三つの異なる出力トランジスタのソース電位(節点Pa、Pb及びPcの電位)を、共通の補助トランジスタのソース電位(節点Qの電位)へ一致させるように制御する。一方、第16実施例では、三つの異なる出力トランジスタのソース電位(節点Pa、Pb及びPcの電位)をそれぞれ別の補助トランジスタのソース電位(節点Qa、Qb及びQcの電位)へ一致させるように制御する。

第14実施例同様に導通した素子だけをみると、その構成は第5実施例(図5A)と全く同様である。従って、上記の各スイッチが選択した状態における出力制御の動作及びその効果については、第5実施例の説明を授用できる。

《第17実施例》

図10Bは、本発明の第17実施例の回路図である。 図10Bにおいて図10Aのものと同様の構成要素には図10 Aと同一の符号を付し、その説明は第16実施例のもの を援用する。

第17実施例は第16実施例のように一つの電流源12vを共通に用いるのではなく、補助トランジスタのそれぞれに対して別の電流源12va、12vb及び12vcを用いるようにしたものである。但し、制御回路39は、それぞれの電流源に対してそれぞれの制御目標値を設定するための制御信号を出力する。制御回路39は、三つの補助スイッチングトランジスタを制御する必要がない点、及び、三つの電流源へそれぞれ制御信号を出力する。除き、第16実施例の制御回路38と同じ構成である。

第17実施例の上記以外の動作及び効果については 第16実施例と全く同様である。

《第18実施例》

図10Cは、本発明の第18実施例の回路図である。 図10Cにおいて図10Aのものと同様の構成要素には図10 Aと同一の符号を付し、その説明は第16実施例のもの を援用する。

第18実施例は第16実施例と同じ構成のブリッジを、出カトランジスタのドレイン・ソース間の等価インピーダンスを変化させてバランスさせている。それ以外の出力制御の動作及び効果については第16実施例と全

81

く同様である。

《第19実施例》

図10Dは、本発明の第19実施例の回路図である。 図10Dにおいて図10Bのものと同様の構成要素には図10 Bと同一の符号を付し、その説明は第17実施例のもの を援用する。

第19実施例は第17実施例と同じ構成のブリッジを、出力トランジスタのドレイン・ソース間の等価インピーダンスを変化させてバランスさせている。それ以外の出力制御の動作及び効果については第17実施例と全く同様である。

以上の実施例からわかるように、第5実施例の構成を二対にすると第6人のとなり、更に対して第5年が例の構成のとなり、更施例の構成の数を増えているとは第5年が例のである。はなるのを対して第14から第1年での実施例を利用できるように本発明の実施形態を拡張することも可能である。

《第20実施例》

図11は、本発明の第20実施例の回路図である。

第20実施例は、二つの第8実施例同様の回路をマイクロステップ制御回路40で制御することにより、マイクロステッパドライバを構成する。図11において破線で囲われた回路ブロックX及びYがそれぞれ第8実施

例の回路に相当する。回路ブロック X及び Yにおいて、図7Aのものと同様の構成要素には、図7Aと同一の符号にそれが属する回路ブロックを示す「x」又は「y」を付加したものを付し、その説明は第8実施例のものを授用する。

負荷 3x及び 3yは例えばモータのロータ 41を駆動させるためのステータ巻線である。電流 12vx及び 12vyのそれぞれの制御目標値は、マイクロステップ制御回路 40によって、互いに位相の異なる正弦波マイクロステップ制御回路 40は、第 8 実施例における外部 14として、各回路ブロックの制御回路及び各スイッチ(図7A)を制御する。これにより、負荷 3x及び 3yにそれぞれ流れる電流が、電流源 12vx及び 12vyのそれぞれの制御目標値に従って時間的に変動するように制御される。それぞれの回路 プロックによる負荷 3x及び 3yの制御については、第 8 実施例と全く同様に行えるので、その説明は第 8 実施例のものを援用する。

第20実施例は二相のステッパドライバである。 更に、第20実施例の構成に別の回路ブロックを追加すると三相以上の多相のステッパドライバへ拡張できることは、当業者には容易に理解されるであろう。

《第21実施例》

図 1 2 A は、本発明の第 2 1 実施例の回路図である。 第 2 1 実施例は、二つの第 1 1 実施例同様の回路を マイクロステップ制御回路 42で制御することにより、マイクロステッパドライバを構成する。図 12Aにおいて破線で囲われた回路ブロック X及び Yがそれぞれ第 1 1 実施例の回路に相当する。回路ブロック X及び Yにおいて、図 8Aのものと同様の構成要素には、図 8Aと同一の符号にそれが属する回路ブロックを示す「x」又は「y」を付加したものを付し、その説明は第 1 1 実施例のものを援用する。更に、図 11のものと同様の構成要素には図 11と同一の符号を付し、その説明は第 2 0 実施例のものを援用する。

電流源12vax、12vbx、12vay及び12vbyのそれぞれの制御目標値は、マイクロステップ制御回路42によって、互いに位相の異なる正弦波マイクロステップ制御回路42は、第11実施例における外部14として、各回路プロックの制御回路及び各スイッチ(図8B)を制御する。これにより、負荷3x及び3yにそれぞれ流れる電流が、各電流源の制御目標値に従って時間的に変動するように制御される。それぞれの回路プロックによる負荷3x及び3yの制御については、第11実施例と全く同様に行えるので、その説明は第11実施例のものを援用する。

第21実施例は二相のステッパドライバである。更に、第21実施例の構成に別の回路ブロックを追加する と三相以上の多相のステッパドライバへ拡張できること 84

は、当業者には容易に理解されるであろう。

《第22実施例》

図12Bは、本発明の第22実施例の回路図である。

第22実施例は、第21実施例の各回路ブロックが 二つの電流源ではなく、共通の電流源12vx及び12vyを マイクロステップ制御回路42からの制御信号によって 切り替えて使用する点だけが、第21実施例と異なる。 その他の構成及び動作は第21実施例と全く同様であ る。

以上の実施例では、各回路に含まれるトランジスタはnチャネル又はpチャネルMOSFETであった。しかし本発明はこれに限られず、電源等の極性を入れ換えて各々を逆のチャネルMOSFETでも同様な効果が得られる。更に、MOSFETの他に、バイポーラトランジスタ又は絶縁ゲートバイポーラトランジスタスは絶縁ゲートバイポーラトランジスタスは絶縁ゲートバイポーラトランジスタスは

本発明は、上記の実施例のようにモータ等駆動用出力制御装置としての実施に限られるものではない。その他に、リニア方式及びスイッチング方式の電源用IC、ソレノイド駆動回路、又は、通信系回線ドライバ回路として応用できる。

以上の実施例はいずれも、従来の出力制御装置より、温度の変動、動作状態及び製品ごとのパラメータのバラツキによる誤差を抑えて、精度良く行うことができ

る。その結果、出力されるエネルギーが従来より出力制御によって損なわれにくい。 つまり、 出力制御装置のエネルギー効率が従来より優れている。

発明をある程度の詳細さをもって好適な形態について説明したが、この好適形態の現開示内容は構成の細部において変化してしかるべきものであり、各要素の組合せや順序の変化は請求された発明の範囲及び思想を逸脱することなく実現し得るものである。

産業上の利用の可能性

本発明の出力制御装置によれば、主電流回路の出力電圧範囲を従来より広くできると共に、エネルギー効率を高く保ち、高精度かつ高信頼性の電流駆動システムを実現できる。それ故、本発明における産業上の利用の可能性は極めて高い。

請求の範囲

第一の枝、第二の枝、第三の枝及び第四の枝から構成されたブリッジ回路であって、

前記第一から第四までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一の枝の第一の端子と前記第三の枝の第一の端子とが実質的に定電位の電源接続用の第一の端子に接続され、前記第二の枝の第二の端子と前記第四の枝の第二の端子とが実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、

前記第二の枝は負荷を含み、

前記第一の枝は前記負荷を駆動するための出力回路を含み、

前記第三の枝は、前記出力回路と実質的に同一の入力電圧が印加された場合、前記出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、ブリッジ回路;

前記第一の節点と前記第二の節点との電位差を検出するための電位差検出回路;

前記出力回路を前記補助回路と連動させて制御する ための制御回路;

並びに、

前記電位差検出回路が検出した前記電位差をフィー ドバックして、前記ブリッジ回路がバランスして前記比 率を実質的に一定に保つように、前記第一から第四まで のいずれかの枝の、前記第一の端子と前記第二の端子と の間の等価インピーダンスを制御するための電流比補償 回路;

を有する出力制御装置。

前記第四の枝が前記調整用電流を検出するための電 2. 流検出回路を含み、

前記制御回路が前記電流検出回路の検出結果に基づ いて前記補助回路を制御する、

請求項1.記載の出力制御装置。

- 前記第四の枝が前記調整用電流を実質的に一定に保 ち又は準静的に変化させるための電流設定回路を含む請 求項1.記載の出力制御装置。
- 前記第二の枝が、前記負荷と前記電源接続用の第二 の端子との間に直列に接続されて、前記電位差に基づい て 前 記 出 力 電 流 を 導 通 し 又 は 遮 断 す る た め の ス イ ッ チ 回 路を含む、請求項1.記載の出力制御装置。
- 前記電流比補償回路による前記等価インピーダンス の 制 御 が 前 記 ス イ ッ チ 回 路 に 対 し て 行 わ れ る 請 求 項 4 .記 載の出力制御装置。

- 6. 前記電流比補償回路による前記等価インピーダンスの制御が前記出力回路に対して行われる請求項1.又は請求項5.記載の出力制御装置。
- 7. 第一の枝、第二の枝、第三の枝及び第四の枝から構成されたブリッジ回路であって、

前記第一から第四までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一の枝の第一の端子と前記第三の枝の第一の端子とが実質的に定電位の電源接続用の第一の端子に接続され、前記第二の枝の第二の端子と前記第四の枝の第二の端子とが実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、

前記第二の枝は負荷を含み、

前記第一の枝は前記負荷を駆動するための出力回路を含み、

前記第三の枝は、前記出力回路と実質的に同一の入力電圧が印加された場合、前記出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、ブリッジ回路;

前記第一の節点と前記第二の節点との電位差を検出

するための電位差検出回路;

並びに、

前記出力回路を前記補助回路と連動させて制御し、前記電位差検出回路の検出した前記電位差に基づいて前記出力回路及び前記補助回路を遮断するための制御回路

を有する出力制御装置。

8. 第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝及び第七の枝から構成された出力用回路網であって、

前記第一から第七までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三及び前記第五の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四及び前記第六の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、方の枝の第一の端子とが第三の節点で互いに接続され、

前記第七の枝の第一の端子が前記第一の節点へ、前記第七の枝の第二の端子が前記第二の節点へそれぞれ接

続され、

前記第七の枝は負荷を含み、

前記第一の枝は前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝は前記負荷を駆動するための第二の出力回路を含み、

前記第二及び前記第四の枝のそれぞれはスイッチ回路を含み、

前記第五の枝は、前記第一又は前記第二の出力回路のいずれかと連動し、その連動する出力回路と実質的に同一の入力電圧が印加された場合、その連動する出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、出力用回路網;

前記第三の節点に対する前記第一の節点又は前記第二の節点の電位を検出するための電位差検出回路;

前記第一又は前記第二の出力回路を実質上交互に前記補助回路と連動させて制御するための制御回路;

前記制御回路の動作と同期して実質上交互に前記スイッチ回路のいずれかを導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝、前記第七の枝及び前記第四の枝を前記第一の出力回路からの出力電流が流れる場合、前記第一の枝、前記第七の枝と前記第四の枝との合成、前記第

五の枝及び前記第六の枝から構成されるブリッジが、

前記第三の枝、前記第七の枝及び前記第二の枝を前記第二の出力回路からの出力電流が流れる場合、前記第三の枝、前記第七の枝と前記第二の枝との合成、前記第五の枝及び前記第六の枝から構成されるブリッジが、

それぞれバランスして前記比率を実質的に一定に保 つように、前記電位差検出回路が検出した前記電位差を フィードバックして、前記第一から第六までの枝のいず れかの、前記第一の端子と前記第二の端子との間の等価 インピーダンスを制御するための電流比補償回路;

を有する出力制御装置。

- 9. 前記第六の枝が前記調整用電流を実質的に一定に保ち又は準静的に変化させるための電流設定回路を含む、請求項8.記載の出力制御装置。
- 10. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項8.記載の出力制御装置。
- 11. 前記電流比補償回路による前記等価インピーダンスの制御が前記第一又は前記第二の出力回路に対して行われる、請求項8.記載の出力制御装置。
- 12. 第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝、第八の枝及び第九の枝から構成された出力用回路網であって、

前記第一から第九までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五及び前記第七の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六及び前記第八の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、前記第七の枝の第二の端子と前記第八の枝の第一の端子とが第四の節点で互いに接続され、

前記第九の枝の第一の端子が前記第一の節点へ、前記第九の枝の第二の端子が前記第二の節点へそれぞれ接続され、

前記第九の枝が負荷を含み、

前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第二及び前記第四の枝のそれぞれがスイッチ回路を含み、

前記第五の枝が、前記第一の出力回路と連動し、前記第一の出力回路と実質的に同一の入力電圧が印加され

た場合、前記第一の出力回路から出力される第一の出力電流に対して実質的に所定の第一の比率だけ小さく調整された第一の調整用電流を出力するための第一の補助回路を含み、

前記第七の枝が、前記第二の出力回路と連動し、前記第二の出力回路と実質的に同一の入力電圧が印加された場合、前記第二の出力回路から出力される第二の出力電流に対して実質的に所定の第二の比率だけ小さく調整された第二の調整用電流を出力するための第二の補助回路を含む、出力用回路網;

前記第三の節点に対する前記第一の節点の電位を第一の電位差として、及び、前記第四の節点に対する前記第二の節点の電位を第二の電位差として、それぞれ検出するための電位差検出回路;

前記第一の出力回路と前記第一の補助回路との対、及び、第二の出力回路と前記第二の補助回路との対を実質上交互に動作させて制御するための制御回路;

前記制御回路の動作と同期して実質上交互に前記スイッチ回路のいずれかを導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝、前記第七の枝及び前記第四の枝を前記第一の出力電流が流れる場合、前記第一の枝、前記第七の枝と前記第四の枝との合成、前記第五の枝及び前記第六の枝から構成されるブリッジがバランスして前記第

一の比率を実質的に一定に保つように、

前記第三の枝、前記第七の枝及び前記第二の枝を前記第二の出力電流が流れる場合、前記第三の枝、前記第七の枝及が前記第七の枝及が前記第七の枝及が前記第八の枝から構成されるブリッジがバランスして前記第二の比率を実質的に一定に保つように、

前記電位差検出回路が検出した前記第一又は前記第二の電位差をフィードバックして、前記第一から第八までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路:

を有する出力制御装置。

- 13. 前記第六の枝では前記第一の調整用電流を、前記第八の枝では前記第二の調整用電流をそれぞれ実質上一定に保ち又は準静的に変化させるための電流設定回路を有する請求項12.記載の出力制御装置。
- 14. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項12.記載の出力制御装置。
- 15. 前記電流比補償回路による前記等価インピーダンスの制御が前記第一又は前記第二の出カ回路に対して行われる、請求項12.又は請求項15.記載の出力制御装置。
- 16. 第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝及び第八の枝から構成された出力用回路網であって、

前記第一から第八までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五及び前記第七の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六及び前記第八の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の節点の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、前記第七の枝の第二の端子と前記第八の枝の第一の端子とが第四の節点で互いに接続され、

前記第一から第三までの節点へ、Y結線又はΔ結線 された三つの負荷の三つの端子のそれぞれが接続され、

前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第五の枝が前記負荷を駆動するための第三の出力回路を含み、

前記第二、前記第四及び前記第六の枝のそれぞれがスイッチ回路を含み、

前記第七の枝が、前記第一から第三までの出力回路のいずれかと連動して、その連動する出力回路と実質的に同一の入力電圧が印加された場合、その連動する出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、出力用回路網;

前記第四の節点に対する前記第一の節点、前記第二の節点又は前記第三の節点の電位を検出するための電位差検出回路;

前記第一から第三までの出力回路のそれぞれを所定の順に前記補助回路と連動させて制御するための制御回路;

前記制御回路の動作と同期して前記スイッチ回路のいずれか一つ又は二つを所定の順序及び組合せで導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝と、前記負荷と、前記第四又は前記第六の枝のいずれか又はその両方とを前記第一の出力回路からの出力電流が流れる場合、前記第一の枝、前記負荷と前記第四又は前記第六の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

前記第三の枝と、前記負荷と、前記第二又は前記第六の枝のいずれか又はその両方とを前記第二の出力回路からの出力電流が流れる場合、前記第三の枝、前記負荷

と前記第二又は前記第六の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

前記第五の枝と、前記負荷と、前記第二又は前記第四の枝のいずれか又はその両方とを前記第三の出力回路からの出力電流が流れる場合、前記第五の枝、前記負荷と前記第二又は前記第四の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

それぞれバランスして前記比率を実質的に一定に保つように、

前記電位差検出回路が検出した前記電位差をフィードバックして、前記第一から第八までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路;

を有する出力制御装置。

- 17. 前記第八の枝が前記調整用電流を実質的に一定に保ち又は準静的に変化させるための電流設定回路を有する請求項16.記載の出力制御装置。
- 18. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項1 6.記載の出力制御装置。
- 19. 前記電流比補償回路による前記等価インピーダンスの制御が前記第一から第三までの出力回路のいずれかに対して行われる、請求項16.又は請求項18.記載の出力制

御装置。

20. 第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝、第八の枝、第九の枝、第十の枝、第十の枝、第十一の枝及び第十二の枝から構成された回路網であって、

前記第一から第十二までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五、前記第七、前記第九及び前記第十一の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六、前記第八、前記第十及び前記第十二の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三のの節二のが第二のが第二のが第二のが第二のが第二のが第二のが第三のが第三のが第三のが第二の枝の第二のが第二の枝の第二の枝の第一の枝の第一の横子とが第六の節点で互いに接続され、の枝の第一の端子とが第六の節点で互いに接続され、の枝の第一の端子とが第六の節点で互いに接続され、の枝の第一の端子とが第六の節点で互いに接続され、の枝の第一の端子とが第六の節点で互いに接続され、の枝の第一の端子とが第六の節点で互いに接続され、の枝の第一の端子とが第六の節記第二の枝の第一の端子とが第六の節記第二の枝の第一の端子とが第六の節記第二の枝の第一の端子とが第六の節記で互いに接続され、

前記第一から第三までの節点へ、Y結線又はΔ結線 された三つの負荷の三つの端子のそれぞれが接続され 前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第五の枝が前記負荷を駆動するための第三の出力回路を含み、

前記第二、前記第四及び前記第六の枝のそれぞれがスイッチ回路を含み、

前記第七の枝が、前記第一の出力回路と連動して、前記第一の出力回路と実質的に同一の入力電圧が印加された場合、前記第一の出力回路から出力される第一の出力電流に対して実質的に所定の第一の比率だけ小さく調整された第一の調整用電流を出力するための第一の補助回路を含み、

前記第九の枝が、前記第二の出力回路と連動して、前記第二の出力回路と実質的に同一の入力電圧が印加された場合、前記第二の出力回路から出力される第二の出力電流に対して実質的に所定の第二の比率だけ小さく調整された第二の調整用電流を出力するための第二の補助回路を含み、

前記第十一の枝が、前記第三の出力回路と連動して、前記第三の出力回路と実質的に同一の入力電圧が印加された場合、前記第三の出力回路から出力される第三の出力電流に対して実質的に所定の第三の比率だけ小さく調整された第三の調整用電流を出力するための第三の

補助回路を含む、出力用回路網;

前記第四の節点に対する前記第一の節点の電位を第一の電位差として、前記第五の節点に対する前記第二の節点の電位を第二の電位差として、及び、前記第六の節点に対する前記第三の節点の電位を第三の電位差として、それぞれ検出するための電位差検出回路;

前記第一の出力回路と前記第一の補助回路との対、前記第二の出力回路と前記第二の補助回路との対、前記第三の出力回路と前記第三の補助回路との対、のそれぞれを所定の順に動作させて制御するための制御回路;

前記制御回路の動作と同期して前記スイッチ回路のいずれか一つ又は二つを所定の順序及び組合せで導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝と、前記負荷と、前記第四又は前記第
六の枝のいずれか又はその両方とを前記第一の出力電流が流れる場合、前記電位差検出回路が検出した前記第一の電位差をフィードバックして、前記第一の枝、前記第一の枝のけずれか又はその方との合成、前記第七の枝及び前記第一の比率を、

前記第三の枝と、前記負荷と、前記第二又は前記第六の枝のいずれか又はその両方とを前記第二の出力電流が流れる場合、前記電位差検出回路が検出した前記第二の電位差をフィードバックして、前記第三の枝、前記負

荷と前記第二又は前記第六の枝のいずれか又はその両方との合成、前記第九の枝及び前記第十の枝から構成されるブリッジがバランスして前記第二の比率を、

前記第五の枝と、前記負荷と、前記第二又は前記第四の枝のいずれか又はその両方とを前記第三の出力電流が流れる場合、前記電位差検出回路が検出した前記第三の電位差をフィードバックして、前記第五の枝、前記第二又は前記第四の枝のいずれか又はその両方との合成、前記第十一の枝及び前記第十二の枝から構成されるブリッジがバランスして前記第三の比率を、

それぞれ実質的に一定に保つように、前記第一から第十二までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路;

を有する出力制御装置。

- 21. 前記第八の枝では前記第一の調整用電流を、前記第十の枝では前記第二の調整用電流を、前記第十二の枝では前記第三の調整用電流を、それぞれ実質的に一定に保ち又は準静的に変化させるための電流設定回路を有する請求項20.記載の出力制御装置。
- 22. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項 2 0.記載の出力制御装置。
- 23. 前記電流比補償回路による前記等価インピーダンスの制御が前記第一から第三までの出力回路のいずれかに

対して行われる、請求項20.又は請求項22.記載の出力制御装置。

24. それぞれが請求項13.記載の出力制御装置である少なくとも二つの出力制御回路;並びに、

前記出力制御回路のそれぞれにおける前記調整用電流を制御して、それぞれの前記負荷を流れる電流を制御するためのマイクロステップ制御回路;

を有する出力制御装置。

25. それぞれが請求項 17.記載の出力制御装置である少なくとも二つの出力制御回路;並びに、

前記出力制御回路のそれぞれにおける前記第一及び第二の調整用電流を制御して、それぞれの前記負荷を流れる電流を制御するためのマイクロステップ制御回路;

を有する出力制御装置。

- 26. 前記出力回路の周辺に存在する主抵抗、及び、前記出力回路と連動する前記補助回路の周辺に存在する補助抵抗が、前記出力回路からの前記出力電流と前記補助回路からの前記調整用電流との実質的な比例関係を満たすように配慮されている、請求項1.から請求項25.までのいずれか一項に記載の出力制御装置。
- 27. 前記主抵抗が前記出力回路と直列に接続され、前記補助抵抗が前記補助回路と直列に接続されて前記主抵抗の抵抗値に対して実質的に前記比例関係の比例係数の逆数倍の抵抗値を持つ、請求項26.記載の出力制御装置。

補正書の請求の範囲

[2000年11月30日(30.11.00) 国際事務局受理:出願当初の請求の範囲1,5,15,19,20,23及び26は補正された; 出願当初の請求の範囲2,3,4,7及び25は取り下げられた; 他の請求の範囲は変更なし。(17頁)]

1. (補正後) 第一の枝、第二の枝、第三の枝及び第四の枝から構成されたブリッジ回路であって、

前記第一から第四までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一の枝の第一の端子と前記第三の枝の第一の端子とが実質的に定電位の電源接続用の第一の端子に接続され、前記第二の枝の第二の端子と前記第四の枝の第二の端子とが実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、

前記第二の枝は負荷及び前記負荷と直列に接続されたスイッチ回路を含み、

前記第一の枝は前記負荷を駆動するための出力回路を含み、

前記第三の枝は、前記出力回路と実質的に同一の入力電圧が印加された場合、前記出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含み、

前記第四の枝が前記調整用電流を実質的に一定に保ち又は準静的に変化させるための電流設定回路を含む、ブリッジ回路:

前記第一の節点と前記第二の節点との電位差を検出するための電位差検出回路;

104

前記出力回路を前記補助回路と連動させて制御するための制御回路:

前記制御回路の動作と同期して前記スイッチ回路を導通又は遮断させるためのスイッチ制御回路;

並びに、

前記電位差検出回路が検出した前記電位差をフィードバックして、前記ブリッジ回路がバランスして前記比率を実質的に一定に保つように、前記第一から第四までのいずれかの枝の、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路:

を有する出力制御装置。

- 2. (削除)
- 3. (削除)
- 4. (削除)
- 5. (補正後) 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる請求項1.記載の出力制御装置。

105

- 6. (補正後) 前記電流比補償回路による前記等価インピーダンスの制御が前記出力回路及び前記スイッチ回路に対して行われる請求項1.記載の出力制御装置。
- 7. (削除)

8. 第一の枝、第二の枝、第三の枝、第四の枝、第 五の枝、第六の枝及び第七の枝から構成された出力用回 路網であって、

前記第一から第七までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三及び前記第五の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四及び前記第六の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の枝の第二の端子と前記第四の枝の第一の端子とが第二の節点で互いに接続され、前記第五の枝の第一の端子とが第三の節点で互いに接続され、

前記第七の枝の第一の端子が前記第一の節点へ、前記第七の枝の第二の端子が前記第二の節点へそれぞれ接

107

続され、

前記第七の枝は負荷を含み、

前記第一の枝は前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝は前記負荷を駆動するための第二の出力回路を含み、

前記第二及び前記第四の枝のそれぞれはスイッチ回路を含み、

前記第五の枝は、前記第一又は前記第二の出力回路のいずれかと連動し、その連動する出力回路と実質的に同一の入力電圧が印加された場合、その連動する出出の回路から出力された調整用電流を出力するための補助回路を含む、出力用回路網:

前記第三の節点に対する前記第一の節点又は前記第二の節点の電位を検出するための電位差検出回路;

前記第一又は前記第二の出力回路を実質上交互に前記補助回路と連動させて制御するための制御回路;

前記制御回路の動作と同期して実質上交互に前記スイッチ回路のいずれかを導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝、前記第七の枝及び前記第四の枝を前記第一の出力回路からの出力電流が流れる場合、前記第一の枝、前記第七の枝と前記第四の枝との合成、前記第

108

五の枝及び前記第六の枝から構成されるブリッジが、

前記第三の枝、前記第七の枝及び前記第二の枝を前記第二の出力回路からの出力電流が流れる場合、前記第三の枝、前記第七の枝と前記第二の枝との合成、前記第五の枝及び前記第六の枝から構成されるブリッジが、

それぞれバランスして前記比率を実質的に一定に保 つように、前記電位差検出回路が検出した前記電位差を フィードバックして、前記第一から第六までの枝のいず れかの、前記第一の端子と前記第二の端子との間の等価 インピーダンスを制御するための電流比補償回路;

を有する出力制御装置。

- 9. 前記第六の枝が前記調整用電流を実質的に一定に保ち又は準静的に変化させるための電流設定回路を含む、請求項8.記載の出力制御装置。
- 10. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項8.記載の出力制御装置。
- 11. 前記電流比補償回路による前記等価インピーダンスの制御が前記第一又は前記第二の出力回路に対して行われる、請求項8.記載の出力制御装置。
- 12. 第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝、第八の枝及び第九の枝から構成された出力用回路網であって、

前記第一から第九までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五及び前記第七の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六及び前記第八の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の節第二の節第二の節第二の節第二の節点で互いに接続され、前記第三の節点で互いに接続され、前記第七の枝の第二の端子と前記第八の枝の第一の端子とが第四の節点で互いに接続され、

前記第九の枝の第一の端子が前記第一の節点へ、前記第九の枝の第二の端子が前記第二の節点へそれぞれ接続され、

前記第九の枝が負荷を含み、

前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第二及び前記第四の枝のそれぞれがスイッチ回路を含み、

前記第五の枝が、前記第一の出力回路と連動し、前記第一の出力回路と実質的に同一の入力電圧が印加され

た場合、前記第一の出力回路から出力される第一の出力電流に対して実質的に所定の第一の比率だけ小さく調整された第一の調整用電流を出力するための第一の補助回路を含み、

前記第七の枝が、前記第二の出力回路と連動し、前記第二の出力回路と連動し、前記第二の出力電圧が印加された場合、前記第二の出力回路から出力される第二の出力電流に対して実質的に所定の第二の比率だけ小さく調整された第二の調整用電流を出力するための第二の補助回路を含む、出力用回路網:

前記第三の節点に対する前記第一の節点の電位を第一の電位差として、及び、前記第四の節点に対する前記第二の節点の電位を第二の電位差として、それぞれ検出するための電位差検出回路:

前記第一の出力回路と前記第一の補助回路との対、及び、第二の出力回路と前記第二の補助回路との対を実質上交互に動作させて制御するための制御回路;

前記制御回路の動作と同期して実質上交互に前記スイッチ回路のいずれかを導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝、前記第七の枝及び前記第四の枝を前記第一の出力電流が流れる場合、前記第一の枝、前記第 七の枝と前部の枝との右成、前記第五の枝及び前記 第六の枝から構成されるブリッジがバランスして前記第 111

一の比率を実質的に一定に保つように、

前記第三の枝、前記第七の枝及び前記第二の枝を前記第二の出力電流が流れる場合、前記第三の枝、前記第七の枝及び前記第二の枝の部部第七の枝と前記第二の枝との合成、前記第七の枝及び前記第二の比率を実質的に一定に保つように、

前記電位差検出回路が検出した前記第一又は前記第二の電位差をフィードバックして、前記第一から第八までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路;

を有する出力制御装置。

- 13. 前記第六の枝では前記第一の調整用電流を、前記第八の枝では前記第二の調整用電流をそれぞれ実質上一定に保ち又は準静的に変化させるための電流設定回路を有する請求項12.記載の出力制御装置。
- 14. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項12.記載の出力制御装置。
- 15. (補正後) 前記電流比補償回路による前記等価インピーダンスの制御が前記第一又は前記第二の出力回路に対して行われる、請求項12.記載の出力制御装置。
- 16. 第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝及び第八の枝から構成された出力用回路網であって、

前記第一から第八までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五及び前記第七の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六及び前記第八の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝の第一の端子とが第一の節点で互いに接続され、前記第三の節第二の節第二の節第二の節の第二の描字と前記第二の枝の第二の端子と前記第二の枝の第二の端子と前記第八の枝の第一の端子とが第四の節点で互いに接続され、

前記第一から第三までの節点へ、Y結線又はΔ結線 された三つの負荷の三つの端子のそれぞれが接続され、

前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第五の枝が前記負荷を駆動するための第三の出力回路を含み、

前記第二、前記第四及び前記第六の枝のそれぞれがスイッチ回路を含み、

前記第七の枝が、前記第一から第三までの出力回路のいずれかと連動して、その連動する出力回路と実質的に同一の入力電圧が印加された場合、その連動する出力回路から出力される出力電流に対して実質的に所定の比率だけ小さく調整された調整用電流を出力するための補助回路を含む、出力用回路網;

前記第四の節点に対する前記第一の節点、前記第二の節点又は前記第三の節点の電位を検出するための電位差検出回路;

前記第一から第三までの出力回路のそれぞれを所定の順に前記補助回路と連動させて制御するための制御回路;

前記制御回路の動作と同期して前記スイッチ回路のいずれか一つ又は二つを所定の順序及び組合せで導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝と、前記負荷と、前記第四又は前記第六の枝のいずれか又はその両方とを前記第一の出力回路からの出力電流が流れる場合、前記第一の枝、前記負荷と前記第四又は前記第六の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

前記第三の枝と、前記負荷と、前記第二又は前記第六の枝のいずれか又はその両方とを前記第二の出力回路からの出力電流が流れる場合、前記第三の枝、前記負荷

114

と前記第二又は前記第六の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

前記第五の枝と、前記負荷と、前記第二又は前記第四の枝のいずれか又はその両方とを前記第三の出力回路からの出力電流が流れる場合、前記第五の枝、前記第四の枝のいずれか又はその両方と前記第二又は前記第四の枝のいずれか又はその両方との合成、前記第七の枝及び前記第八の枝から構成されるブリッジが、

それぞれバランスして前記比率を実質的に一定に保つように、

前記電位差検出回路が検出した前記電位差をフィードバックして、前記第一から第八までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路;

を有する出力制御装置。

- 17. 前記第八の枝が前記調整用電流を実質的に一定に保ち又は準静的に変化させるための電流設定回路を有する請求項16.記載の出力制御装置。
- 18. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項16.記載の出力制御装置。
- 19. (補正後) 前記電流比補貸回路による前記等価インピーダンスの制御が前記第一から第三までの出力回路のいずれかに対して行われる、請求項16.記載の出力制

WO 00/79682

115

御装置。

20. (補正後) 第一の枝、第二の枝、第三の枝、第四の枝、第五の枝、第六の枝、第七の枝、第八の枝、第九の枝、第十の枝、第十一の枝及び第十二の枝から構成された出力用回路網であって、

前記第一から第十二までの枝のそれぞれは第一の端子と第二の端子とを含み、

前記第一、前記第三、前記第五、前記第七、前記第九及び前記第十一の枝のそれぞれの第一の端子が実質的に定電位の電源接続用の第一の端子に接続され、

前記第二、前記第四、前記第六、前記第八、前記第十及び前記第十二の枝のそれぞれの第二の端子が実質的に定電位の電源接続用の第二の端子に接続され、

前記第一の枝の第二の端子と前記第二の枝のの筋にある。の端子と続いている。のがはいる。

前記第一から第三までの節点へ、 Y 結線 Z は Δ 結線 された三つの負荷の三つの端子のそれぞれが接続され 前記第一の枝が前記負荷を駆動するための第一の出力回路を含み、

前記第三の枝が前記負荷を駆動するための第二の出力回路を含み、

前記第五の枝が前記負荷を駆動するための第三の出力回路を含み、

前記第二、前記第四及び前記第六の枝のそれぞれがスイッチ回路を含み、

前記第七の枝が、前記第一の出力回路と連動して、前記第一の出力回路と実質的に同一の入力電圧が印加された場合、前記第一の出力回路から出力される第一の出力電流に対して実質的に所定の第一の比率だけ小さく調整された第一の調整用電流を出力するための第一の補助回路を含み、

前記第九の枝が、前記第二の出力回路と連動して、前記第二の出力回路と実質的に同一の入力電圧が印加された場合、前記第二の出力回路から出力される第二の出力電流に対して実質的に所定の第二の比率だけ小さく調整された第二の調整用電流を出力するための第二の補助回路を含み、

前記第十一の枝が、前記第三の出力回路と連動して、前記第三の出力回路と実質的に同一の入力電圧が印加された場合、前記第三の出力回路から出力される第三の出力電流に対して実質的に所定の第三の比率だけ小さく調整された第三の調整用電流を出力するための第三の

補助回路を含む、出力用回路網;

前記第四の節点に対する前記第一の節点の電位を第一の電位差として、前記第五の節点に対する前記第二の節点の電位を第二の電位差として、及び、前記第六の節点に対する前記第三の節点の電位を第三の電位差として、それぞれ検出するための電位差検出回路:

前記第一の出力回路と前記第一の補助回路との対、前記第二の出力回路と前記第二の補助回路との対、前記第三の出力回路と前記第三の補助回路との対、のそれぞれを所定の順に動作させて制御するための制御回路:

前記制御回路の動作と同期して前記スイッチ回路のいずれか一つ又は二つを所定の順序及び組合せで導通させ又は遮断させるためのスイッチ制御回路;

並びに、

前記第一の枝と、前記負荷と、前記第四又は前記第四又は一の枝のいずれか又はその両方とを前記第一の出出記第一の大流れる場合、前記電位差検出回路が検出した前記第一の種位差をフィードバックして、前記第一の枝のいずれの枝のは前記第一の枝の合成、前記第一の比率を、

前記第三の枝と、前記負荷と、前記第二又は前記第六の枝のいずれか又はその両方とを前記第二の出力電流が流れる場合、前記電位差検出回路が検出した前記第二の電位差をフィードバックして、前記第三の枝、前記負

荷と前記第二又は前記第六の枝のいずれか又はその両方との合成、前記第九の枝及び前記第十の枝から構成されるブリッジがバランスして前記第二の比率を、

前記第五の枝と、前記第二又は前記第二の枝のいずれか又はその両方とを前記第三の出力の間のおり、前記でを検出回路が検出した。前記の様との電位を検出回路が検出の枝の前記第三の枝のは前記第二の枝及び前記第十二の枝及が前記第三の比率を、されるブリッジがバランスして前記第三の比率を、

それぞれ実質的に一定に保つように、前記第一から第十二までの枝のいずれかの、前記第一の端子と前記第二の端子との間の等価インピーダンスを制御するための電流比補償回路:

を有する出力制御装置。

- 21. 前記第八の枝では前記第一の調整用電流を、前記第十の枝では前記第二の調整用電流を、前記第十二の枝では前記第三の調整用電流を、それぞれ実質的に一定に保ち又は準静的に変化させるための電流設定回路を有する請求項20.記載の出力制御装置。
- 22. 前記電流比補償回路による前記等価インピーダンスの制御が前記スイッチ回路に対して行われる、請求項20.記載の出力制御装置。
- 23. (補正後) 前記電流比補償回路による前記等価インピーダンスの制御が前記第一から第三までの出力回路のいずれかに

119

対して行われる、請求項20.記載の出力制御装置。

24. それぞれが請求項13.記載の出力制御装置である少なくとも二つの出力制御回路;並びに、

前記出力制御回路のそれぞれにおける前記調整用電流を制御して、それぞれの前記負荷を流れる電流を制御するためのマイクロステップ制御回路;

を有する出力制御装置。

25. (削除)

26. (補正後) 前記出力回路の周辺に存在する主抵抗、及び、前記出力回路と連動する前記補助回路の周辺に存在する補助抵抗が、前記出力回路からの前記出力電流と前記補助回路からの前記調整用電流との実質的な比例関係を満たすように配慮されている、請求項1.、8.、12.、16.又は20.のいずれか一項に記載の出力制御装置。

27. 前記主抵抗が前記出力回路と直列に接続され、前記補助抵抗が前記補助回路と直列に接続されて前記主抵抗の抵抗値に対して実質的に前記比例関係の比例係数の逆数倍の抵抗値を持つ、請求項26.記載の出力制御装置。

120 条 約 第 19条 (1)に 基 づ く 説 明 書

[1] 請求の範囲第1項では、出力制御回路がブリッジ回路の第二の枝にスイッチ回路を、第四の枝に電流設定回路を、更にスイッチ制御回路を含むことを明確にした。

本発明では、電流比補償回路がブラッとには、電流と対し、電流を一定にが調整用電流を一定にはははいる。更に、スターの路ができまれた。の動作と同期はなる。更に、スターのは、カーののより出する。ブラッをというの路をは、カーの路とである。地位の変別には、カーのの路のでは、カーのののののでは、動作状態、カーののののでは、大きののでは、大きののでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのでは、大きのである。

いずれの引用例にも、電流設定回路、スイッチ回路 及びスイッチ制御回路を含む出力制御回路の構成及び上 記の効果は記載されていない。

[2] 請求の範囲第6項では、電流比補償回路による 等価インピーダンスの制御が出力回路だけでなく、スイッチ回路に対しても行われることを明確にした。

本発明では、電流比補償回路が出力回路及びスイッチ回路の等価インピーダンスを制御する。従って、出力回路とスイッチ回路とがスイッチング制御により出力電流を制御すると共に、ブリッジ回路をバランスさせる。

[3] 請求の範囲第6項、第15項、第19項、第2 3項及び第26項は、引用している請求の範囲の中に多数従属請求の範囲を含まないことを明確にした。

図1

図2

3/27

図3A

4/27

図3 B

WO 00/79682

図4

図5A

図5B

8/27

図 6

図7A

※8 A

図 8 C

図9 A

17/27

図10A

図10B

図10C

図10回

<u>図</u> 11

図12A

図12B

図13

図14

図15

図16A

図16B

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/03931

A CLASS	OTELO A TEON OF OUR TOTAL MATTER					
A. CLASS Int.	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H03K17/14					
According t	to International Patent Classification (IPC) or to both na	ational classification and IPC				
B. FIELD	S SEARCHED					
Minimum d	locumentation searched (classification system followed) . Cl ⁷ H03K17/00-17/70	by classification symbols)				
Jits Koka	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1940-2000 Kokai Jitsuyo Shinan Koho 1971-2000					
Electronic d	data base consulted during the international search (name	e of data base and, where practicable, sear	rch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
Y	JP, 1-227520, A (Nippon Denso C 11 September, 1989 (11.09.89),	Co., Ltd.),	1-7			
	page 3; upper right column, line	8 to lower right column,	1			
A	line 3 (Family: none)	_	8-27			
Y	JP, 3-262209, A (NEC Kansai, Lt 21 November, 1991 (21.11.91),	:d.),	1-7			
A	page 2; lower right column, line column, line 2 (Family: none)		8-27			
Y	JP, 4-134271, A (NEC Corporation 08 May, 1992 (08.05.92),		1-7			
A	page 2; upper right column, lines		8-27			
A	JP, 5-291918, A (Mitsubishi Ele 05 November, 1993 (05.11.93), page 3, Par. No. [0015] (Fami	_	8-15,24			
A	JP, 4-211200, A (Mitsubishi Ele		16-23,25			
	03 August, 1992 (03.08.92) & US, 5077595, A1 & US, 5296					
	& DE, 4034674, A & DE, 4124	757, C	<u> </u>			
	er documents are listed in the continuation of Box C.	See patent family annex.				
"A" docum	al categories of cited documents: nent defining the general state of the art which is not lered to be of particular relevance	"T" later document published after the inter priority date and not in conflict with the understand the principle or theory under	e application but cited to			
"E" carlier	r document but published on or after the international filing	"X" document of particular relevance; the c	claimed invention cannot be			
	nent which may throw doubts on priority claim(s) or which is	considered novel or cannot be consider step when the document is taken alone "Y" document of particular relevance: the c				
specia	to establish the publication date of another citation or other al reason (as specified) nent referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the c considered to involve an inventive step combined with one or more other such	when the document is			
means		combination being obvious to a person "&" document member of the same patent f	skilled in the art			
Date of the	actual completion of the international search October, 2000 (02.10.00)	Date of mailing of the international seam 10 October, 2000 (10				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				
L westillie 140.		Telephone 140.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/03931

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
Category*	Citation of document, with indication, where appropriate, of the relevant passages 5. FR, 2658003, A	ACTIVATION TO CHARTE 170.			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

			, , , , , , , , , , , , , , , , , , , ,	
	属する分野の分類(国際特許分類(IPC)) Cl' H03K17/14			
D 5844	- L () 672			
B. 調査を行った。	Tった分野 ない限資料(国際特許分類(IPC))			
Int. (Cl ⁷ H03K17/00-17/70			
最小明容料以4	トの資料で調査を行った分野に含まれるもの			
日本国実用	新案公報 1940-2000			
日本国公開	実用新案公報 1971-2000		•	
国際調査で使用	用した電子データベース(データベースの名称、	調査に使用した用語)		
			<u>·</u>	
C. 関連する	ると認められる文献			
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	関連する 請求の範囲の番号	
Y	JP, 1-227520, A (日本電		1-7	
_	1989 (11.09.89),第		† '	
	3行 (ファミリーなし)	OR, HILLIANS		
A			8-27	
Y	JP, 3-262209, A (関西)	日本電気株式会社)、21.1	1-7	
	1月. 1991 (21. 11. 91)			
	第3頁、左上欄第2行(ファミリーク			
A			8 - 2.7	
	<u> </u>			
x C欄の続き	きにも文献が列挙されている。 	□ パテントファミリーに関する別	紙を参照。	
* 引用文献		の日の後に公表された文献		
「A」特に関連 もの	車のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	された文献であって	
	顕日前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、そ の理解のために引用するもの	69の原理又は理論	
以後に	公表されたもの	「X」特に関連のある文献であって、	当該文献のみで発明	
「L」優先権:	主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え	えられるもの	
	日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに			
	全田を刊り) よる開示、使用、展示等に言及する文献	上の文献との、当業者にとって! よって進歩性がないと考えられる		
「P」国際出	類日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献		
国際調査を完了した日 国際調査報告の発送日				
	02.10.00	10.10	0.0 0	
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	5X 8523	
日本国特許庁(ISA/JP)		官島郁美		
	郵便番号100-8915 駅手代田区露が関三丁日4番3号	新新春号 03-3581-1101	5/ ## 2.5.5.	
1 果尿4	RD T 1、CD 以解邓明 → 1 月 4 茶 3 骨	に前続後分 リスースカストー・「リー	P1882 3 5 4 5	

国際出願番号 PCT/JP00/03931

C(続き).	関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
Y	JP, 4-134271, A (日本電気株式会社), 8.5月.1 992(08.05.92), 第2頁, 右上欄第3行-第18行 (ファミリーなし)	T			
A		8 – 2 7			
A	JP, 5-291918, A (三菱電機株式会社), 5.11月. 1993 (05.11.93), 第3頁【0015】 (ファミリーなし)	8-15, 24			
A	JP, 4-211200, A (三菱電機株式会社), 3.8月. 1992 (03.08.92) & US, 5077595, A1& US, 5296735, A1&DE, 4034674, A&DE, 4124757, C&FR, 2658003, A	16-23,			
	·				
	·				