Contents

1	Firs	st Section	6
	1.1	First Subsection	6
		1.1.1 First Subsubsection	6
	1.2	Second Subsubsection	6
_		ond Section First Subsection	6
	2.1	First Subsection	

My First LATEX Document

Your Name

December 27, 2023

Hello! This is my \LaTeX document.

A rectangle has side length of (x + 1) and area of (x + 3). The equation $A(x) = x^2 + 2x + 1$ is the area of the rectangle.

superscripts

 $2x^3$

 $2x^{34}$

 $2x^{3x+4}$

 $2x^{3x^4+5}$

subscripts

 x_1

 x_{12}

 x_{1_2}

 $a_o, a_1, a_2, \ldots, a_{100}$

greek letters

 π

П

 α

 $A=\pi r^2$

trig functions

 $y = \sin x$

 $y = \cos x$

 $y = \tan x$

 $y = \csc \theta$

 $y = \sin^{-1} x$

 $y=\arcsin x$

log functions

 $y = \log x$

 $y = \log_5 x$

 $y = \ln x$

roots

 $\sqrt{2}$

 $\sqrt[3]{2}$

$$\sqrt{1+\sqrt{x}}$$

$$\frac{2}{3}$$

$$x$$

$$x^{2}+x+1$$

$$\frac{\sqrt{x+1}}{\sqrt{x-1}}$$

About $\frac{2}{3}$ of the glass is full.

About $\frac{2}{3}$ of the glass is full. The distributive law

$$a(b+c) = ab + ac$$

for all $a, b, c \in \mathbb{R}$.

The equivalence class of a is [a].

The set A is defined to be $[\{1, 2, 3\}]$

The movie ticker cost \$11.50 dollars.

$$2\left(\frac{1}{x^2 - 1}\right)$$

$$2\left[\frac{1}{x^2 - 1}\right]$$

$$2\left\{\frac{1}{x^2 - 1}\right\}$$

$$2\left\langle\frac{1}{x^2 - 1}\right\rangle$$

$$\frac{dy}{dx}\Big|_{x=1}$$

tables

x	1	2	3	4	5
f(x)	2	4	6	8	10

\boldsymbol{x}	1	2	3	4	5
f(x)	frac12	4	6	8	10

Table 1: A table of values for f(x) = 2x

Table 2: The relationship between f(x) and f'(x)

f(x)	f'(x)
x > 0	The function $f(x)$ is increasing.

arrays

$$5x^2 - 9 = x + 3$$
 place your words here (1)

$$5x^2 - 9 - x - 3 = 0 (2)$$

$$= 12 + x - 5x^2 \tag{3}$$

$$5x^2 - 9 = x + 3$$
 place your words here
$$5x^2 - 9 - x - 3 = 0$$

$$= 12 + x - 5x^2$$

lists

- 1. First item
- 2. Second item
- 3. Third item
- First item
 - 1. First subitem
 - 2. Second subitem
 - 3. Third subitem
- Second item
- Third item
- A. First item
- B. Second item
- C. Third item
 - 6. First item
 - 7. Second item
 - 8. Third item
 - First item

First subitem

a) Second subitem

Third subitem

- * First subsubitem
- * Second subsubitem
- * Third subsubitem
- Second item
- Third item

This is a **bold** word.

This is a *italic* word.

This is a <u>underlined</u> word.

This is a typewriter word.

This is a SMALL CAPS word.

This is a **bold** italic word.

This is a large word.

This is a Large word.

This is a $\underset{-}{\text{huge}}$ word.

 $\begin{array}{c} {\rm This~is~a} \ \underset{}{Huge} \ {\rm word}. \\ {\rm This~is~a~Normal~word}. \end{array}$

This is a small word.

This is a Script Size word.

This is a $_{\text{tiny}}$ word.

This is centered text.

This is left-aligned text.

This is right-aligned text.

Visit http://www.google.com for more information. Visit Google for more information.

First Section 1

- 1.1 First Subsection
- 1.1.1 First Subsubsection
- Second Subsubsection

Second Section 2

2.1 First Subsection

First Subsubsection

macros

 $y = \frac{x}{x^2 + 1}$

Figure 1: This is a caption.

calculus notation The function $f(x) = (x-3)^2 + \frac{1}{2}$ has a domain of $D_f: (-\infty, \infty)$ and the range of $R_f: [\frac{1}{2}, \infty)$.

$$\lim_{x \to a^{-}} \frac{f(x-a)}{x-a} = f'(a)$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{n=1}^{\infty} f(x_{i}^{*}) \Delta x$$

$$\vec{v} = v_{1}\vec{i} + v_{2}\vec{j} = \langle v_{1}, v_{2} \rangle$$