Modélisation Transactionnelle des Systèmes sur Puces en SystemC Ensimag 3A — filière SLE Grenoble-INP

Introduction du cours

Matthieu Moy (transparents originaux : Jérôme Cornet)

Matthieu.Moy@imag.fr

2014-2015

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 1 / 79 >

Organisation concrète

EnsiWiki :

http://ensiwiki.ensimag.fr/index.php/TLM

Supports de cours sur GitHub :

http://github.com/moy/cours-tlm

- ▶ git clone (une fois, en début de cours)
- git pull (régulièrement)
- ► Possibilité de travailler à plusieurs sur les squelettes de code (cf. EnsiWiki)
- Contenu de l'archive Git :

 - Transparents (*.pdf)
 Exemples de code (code/*/*.cpp), à regarder en complément du cours
 - Squelettes de code pour les TPs (TPs/)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

Sommaire

- Systèmes sur Puce (SoC)
- Modélisation au niveau transactionnel

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 5 / 79 >

Quelques exemples

Lecteurs MP3

Besoins techniques

- Mini ordinateur (interface utilisateur)
- Codecs (décodage/encodage) audio (MP3, etc.)
- Pilotage de disque dur
- Périphériques (USB, IEEE 1394...)
- Autonomie

Objectifs et place du cours dans SLE

Cours lié

 Conception et exploration d'architectures, multi-coeurs, réseaux sur puces (F. Pétrot, S. Mancini)

Objectifs

- Une vue sur le haut du flot de conception
- Différents niveaux d'abstractions
- Exemple concret : modélisation transactionnelle (TLM)
- Pratique sur un outil utilisé par les industriels : SystemC
- Objectif détourné : culture générale sur les SoCs, révisions de concepts connus (cross-compilation, logiciel embarqué)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 2 / 79 >

Planning approximatif des séances

- 1 Introduction : les systèmes sur puce
- Introduction : modélisation au niveau transactionnel (TLM)
- Introduction au C++
- Présentation de SystemC, éléments de base
- Ommunications haut-niveau en SystemC
- Modélisation TLM en SystemC
- TP1: Première plateforme SystemC/TLM
- Utilisations des plateformes TLM
- TP2 (1/2): Utilisation de modules existants (affichage)
- TP2 (2/2): Utilisation de modules existants (affichage)
- Notions Avancé en SystemC/TLM
- TP3 (1/3): Intégration du logiciel embarqué
- 10 TP3 (2/3): Intégration du logiciel embarqué
- TP3 (3/3) : Intégration du logiciel embarqué Intervenant extérieur : ?
- Perspectives et conclusion

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

Évolution des besoins du grand public

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 7 / 79 >

Quelques exemples

Téléphones portables

Besoins techniques

- Mini ordinateur (interface utilisateur, applications embarquées)
- Traitement de Signal (technologie de transmission)
- Périphériques (USB, Capteur CCD)
- Autonomie

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

Quelques exemples

- Télévision numérique
 - ► Lecteurs/Enregistreurs DVD
 - Démodulateurs Satellite, Décodeurs TNT (set-top boxes)
 - ► Télévision Haute-définition (*HD-TV*)

Besoins techniques

- Mini ordinateur (interface utilisateur)
- Pilotage de disque dur, lecteur/graveur DVD
- Fonctions graphiques (compositions, zoom, curseur...)
- Encodage/décodage vidéo (MPEG2, MPEG2 HD, MPEG 4, H264...)
- Encodage/décodage audio (PCM, AC3, AAC, MP3...)
- Périphériques (IEEE 1394, S/PDIF, HDMI...)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 10 / 79 >

Évolutions techniques

• Évolution de la complexité des fonctions réalisables

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

Quelques utilisations des SoC

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 14 / 79 >

Décodeur Satellite CDVB2300B

• SoC: STi5518 (STMicroelectronics)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

< 16 / 79 >

Évolutions techniques Microprocessor Transistor Counts 1971-2011 & Moore's Law 2,600,000,000

< 11 / 79 >

Définition

(http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg)

Modélisation TLM

System-on-Chip (Système sur puce)

Matthieu Moy (Matthieu.Moy@imag.fr)

Puce regroupant tous les éléments électroniques (micro-processeur, composants spécifiques...) nécessaires à la réalisation d'un système (produit) complet.

2014-2015 Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM

S5PC110 (Samsung Galaxy S Smartphone)

834&partnum=S5PC110

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015

Brique lego NXT USB Display Source: http://iar.com/website1/1.0.1.0/1518/1/

Composants des SoC (non exhaustif)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 19 / 79 >

Microprocesseurs

Modélisation TLM

2014-2015 < 18 / 79 >

- CPU (Central Processing Unit) : processeur généraux
 - ► Fonctions : contrôle, interface utilisateur, traitements légers
 - ► Exemples : ARM9, ST20, SH4, Leon mais pas Intel core i7 !...
- DSP (Digital Signal Processor)

Matthieu Moy (Matthieu.Moy@imag.fr)

- ► Fonctions : Traitement du signal, calculs complexes ► Exemples : Ti TMS320C55x, etc.
- Processeurs VLIW (Very Long Instruction Word)
 - ► Fonctions : traitement multimédia
 - ► Exemples : ST210, Kalray...
- Supports de la partie logicielle du système

2014-2015 < 20 / 79 > Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM

Exemple: PDA GPS SoC : Atlas-M (Centrality)

Exemple: STi5518 Digital Video Out Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 24 / 79 >

Mémoires

- ROM, RAM, Flash...
 - ► Souvent hors du SoC
- Dans la puce :
 - ► Contrôleur(s) mémoires
 - ► Petites mémoires internes
 - ► Mémoires caches, « fifo » (tampons/files d'attente)
- Fonctions
 - Stockage temporaire (RAM)
 - ► Programme interne (ROM), possibilité de mise à jour (Flash)
 - ► Stockage (Flash)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 21 / 79 >

Composants utilitaires

- DMA (Direct Memory Access)
 - ► Transferts mémoires/mémoires, mémoires/périphériques
 - ► Décharge le CPU (pas d'attente liée aux transferts)
- Timer, RTC (Real-Time Clock)
 - ► Mesure de l'écoulement du temps
 - ► Utilisations :
 - - Contrôle du nb d'images par secondes
 Programmation de délais d'expiration
 Utilisation par OS Temps Réel
- Contrôleur d'interruptions (ITC)
 - ► Centralisation de tous les signaux d'interruptions
 - ► Informations sur l'émetteur de l'interruption

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

Exemple: STi5518 - CPU, Mémoires, Utilitaires

2014-2015 < 23 / 79 >

< 25 / 79 >

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015

Entrées/Sorties (1/2)

- GPIO (General Purpose Inputs/Outputs)

 - programmation/lectures de broches du circuit
 Utilisation : lectures de boutons, clavier simple
- Composants ports série
 - ► UART (Universal Asynchronous Receiver/Transmitter) : port
 - SSP (Synchronous Serial Port) : port série haute vitesse
 - Utilisation: branchement de composants externes, debuggage
- Contrôleurs LCD (numérique)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 26 / 79 >

Parties analogiques

- Générations d'horloges, reset...
- ADC, DAC (Analog/Digital Converter): entrées/sorties analogiques
 - Audio
 - Vidéo
 - Commandes d'actionneurs
 - Capteurs

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TI M

2014-2015

Composants dédiés

- Accélération d'une fonction particulière
 - Serait trop lent en logiciel!
 - Compromis
 - * Complexité
 - Accélération

 - ★ Consommation★ Flexibilité
- Plusieurs possibilités de réalisation :
 - ► 100% matérielle
 - * ex : Décodeurs Vidéos « câblés »
 - ► Semi-matérielle
 - ★ Utilisation d'un cœur de processeur pour simplifier le
 - * ex : Décodeurs audios, traitements plus difficiles à câbler

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 30 / 79 >

< 32 / 79 >

Réseau d'interconnection (interconnect)

- Principal moyen de communication entre composants
- Bus partagés
 - ► Communications par plages mémoires

 - Arbitrage des communications
 Un peu analogue aux bus « PC » actuels mais

 - ★ Pas de connectique★ Basse consommation

 - Paramètres : vitesse, largeur...exemple : AmbaBus (ARM) AHB, APB, AXI...
- Networks-on-Chip (NoC)
 - ▶ Réseau complexe construit en fonction des besoins du SoC
 - ► exemple : STBus

Entrées/Sorties (2/2)

- Pilotage de bus de périphériques
 - ► IDE/ATA...
 - ★ Disque dur interne★ DVD
 - ▶ USB
 - * Host : branchement de périphériques externes
 - * Peripheral : branchement à un ordinateur
 - ► IEEE 1394 aka FireWire (camescopes numériques, ...)
 - ★ Camescopes numériques
 ★ Liaisons haute vitesse
- Composants RF
 - ► Bluetooth

 - ► GPS
 - ► GSM..

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

< 27 / 79 >

Exemple: STi5518 - Composants dédiés SDRAM Audio MP3 Digital Video Out YUV, S-Video Analog Video Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 31 / 79 >

Le logiciel (embarqué)

- Plusieurs logiciels sur architectures différentes
 - ► Mélange SH4, ARM, ST...
 - ► Endianess différentes
 - ▶ Problèmes techniques d'ordre de boot
 - ▶ Problèmes de synchronisations
- Communications de base : accès au bus et interruptions
- Partie génie logiciel
 - ► Utilisation d'OS multitâche/temps réel : Linux, OS/20, Windows CE.
 - ► Factorisation du code bas niveau dans des pilotes (drivers)
 - ► Couche supplémentaire au dessus de l'OS : le middleware

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 34 / 79 >

Exemple de structure logicielle (Android)

Source: http://en.wikipedia.org/wiki/File:Android-System-Architecture.sv

Matthieu Moy (Matthieu.Moy@imag.fr)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 36 / 79 N

Complexité croissante de conception

- Nombre de transistors : + 50% par an (Moore)
- Productivité en conception : + 30% par an ⇒ « Design Gap »
- Besoin incessant de nouvelles techniques de conception

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 38 / 79 >

Hardware/Software Design Flow

Modélisation TLM

< 40 / 79 >

2014-2015

Exemple de structure logicielle (set-top-box)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

< 35 / 79 >

Problèmes de conception

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TI M

2014-2015

< 37 / 79 >

Complexité croissante de conception

- Circuits à assembler énormes
 - ► Multiples éléments complexes : processeurs, réseau d'interconnection..
 - ► Parfois plusieurs mini-SoC dans le SoC (sous-ensembles simples CPU+DMA+Mémoire)
 - ► Évolution possible vers le massivement multiprocesseur
- VHDL/Verilog suffisent difficilement...
- ullet Pas de révolution type « niveau porte ightarrow RTL » pour l'instant

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

 $2014\text{-}2015 \qquad < 39 \, / \, 79 >$

Durée du cycle de développement

- Évolution rapide
- Dates à ne pas manquer (Noël, nouvel an chinois, Consumer Electronics Show...)
- ⇒ Un produit prêt 6 mois trop tard est difficilement vendable!
- ullet \Rightarrow Le « Time to market » est aussi important que la main d'œuvre totale.

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 41 / 79 >

Coût d'une erreur

Bug dans le logiciel

- Mise à jour du firmware
- Pas forcément acceptable partout... (difficulté pour l'utilisateur, systèmes critiques)

Bug dans le matériel

- Fabrication de nouveaux masques
- Exemple de coût :

Finesse de gravure	0.25 μm	0.13 μm	65 nm
Coût masque 1 couche	10 000 \$	30 000 \$	75 000 \$
Nb de couches	12	25	40
Coût total	120 000 \$	750 000 \$	3 M\$
			source EETimes

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 42 / 79 >

Problèmes de conception

- Vitesse de simulation
 - ▶ Simulation du SoC niveau RTL : plusieurs heures, voire iours...
 - ex : Encodage et décodage d'une image en MPEG 4 = 1 h en simulation RTL
 - ► Impossibilité de tester le(s) logiciel(s) embarqué(s) à ce niveau
 - Moins de temps disponible pour valider le système...
 Développement séparé des différents blocs
 Quelques solutions couramment pratiquées :

 - - ★ Cosimulation
 - * Émulation matérielle

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TI M

2014-2015 < 44 / 79 >

Problèmes de validation

- Conformité du système à la spécification ?
- Spécification de plus en plus complexes
 - ► Normes MPEG x, H264, HEVC ...
 - Formats informatiques divers
 - Interprétation parfois erronée
- Volumes de données de plus en plus gros (vidéo HD, FHD, 4K, bientôt 8K)
- Format de la spécification?

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 46 / 79 >

Niveau supérieur : Cycle Accurate (1/2)

- Objectif : simulation rapide
- Caractéristiques
 - Précis au cycle d'horloge près
 - Précis au niveau données (bit true)
 - Écriture libre du modèle interne des composants (C, C++...)

Coût d'une erreur

Bug dans le matériel (suite)

- Circuit déjà fabriqué : recherche d'un contournement (workaround)
- Valable en technologie ASIC
- SoC FPGA
 - ARM Excalibur: ARM 922 (200 MHz) + FPGA APEX 20KE
 - Xilinx Virtex 4 : PowerPC 405 (450 MHz) + FPGA +
 - Ethernet MAC
 - Là encore, mise à jour limitée

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

< 43 / 79 >

Problèmes d'intégration

- Fonctionnelle
 - ▶ Développement séparé des composants, réutilisation
 - Aucune garantie de fonctionnement
 - ▶ Problèmes de compatibilité plus complexes qu'électroniques
- Performances
 - Adéquation d'un ensemble de composants pour réaliser une tâche dans un temps donné
 - ► Dépendences non fonctionnelles complexes

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

< 45 / 79 N

Retour sur le flot de conception

• Bas du flot de conception (vu en 2A) 3 principaux niveaux d'abstraction

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

 $2014\text{-}2015 \qquad < 48 \, / \, 79 >$

Cycle Accurate: exemple

void my_function() // pseudo-code tres approximatif ... Ra = a;Rb = b;Rc = c; wait(clk, 2); s = (Ra+Rb)*Rc;

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

< 50 / 79 >

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015

< 49 / 79 >

Niveau « Algorithmique » AL • Programme décrivant la fonctionnalité (C, Matlab, etc.) Souvent séquentiel • Ex : algorithme de référence décodage MPEG CA • Écriture non ambiguë d'une portion de la spécification RTI • Pas de référence au matériel : ► Pas de partitionnement Gate level hard/soft Partie contrôle absente Layout Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 52 / 79 >

Éléments nécessaires

- Possibilité d'actions lectures/écritures
- Plages d'adresses
- Mémoires
- Bancs de registres
- Interruptions

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 58 / 79 >

Idée principale

- Actions de lectures/écritures = transactions sur le réseau d'interconnexion
- Correspondance avec les opérations logiques effectuées sur le bus

Informations minimales contenues dans une transaction

- Type : lecture ou écriture
- Adresse de base
- Données
- Taille (nb de données)
- État : OK, Erreur, Temps dépassé...
- Implicite : taille d'une donnée élémentaire, taille d'une adresse

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 59 / 79 >

Composants

- Séparation en fonction des communications
 - Fusion de composants communiquant en dehors du réseau d'interconnection
 - Règle non absolue (fonction des besoins et des types de communications disponibles)
- Possibilité de hiérarchie
- Simulation indépendante de chaque composant :
 - → concurrence

Protocole (1/2)

- Ensemble des actions possibles au niveau des ports (lecture, écriture, ...)
- Protocoles bloquants

Canal de communication (1/2)

- Abstrait les différents éléments du bus
 - Décodage
 - Multiplexage
 - ► Signaux...
- Fonctionnalité principale : routage des transactions
- Connaissance des plages d'adresses des composants
- Ports de communications spéciaux

(cible: plusieurs-vers-un, initiateur: un-vers-plusieurs)

Ex: lectures successives sur bus AHB

Abstraction des communications sur bus

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 60 / 79 >

Ports de communication (transactions)

- Deux types de ports (de façon générale)
 Initiateurs (initiator, master)
 * « Émetteurs » des transactions

 - Cible (target, slave)

 * « Répondent » aux transactions
 - Partie passive d'un composant
 ★ Association port cible ↔ plage d'adresse
- Analogie avec le réseau
 - ► initiateur ≈ client
 - $\qquad \qquad \textbf{cible} \approx \textbf{serveur} \\$
 - ⚠ Rien à voir avec la distinction lecture/écriture!
- Exemple :

Protocole (2/2)

- Protocoles non bloquants
 - ► Ne bloquent pas l'initiateur
 - ► Deux canaux de communication : requête et réponse

< 65 / 79 >

Interruptions (1/2)

- Qu'est-ce que c'est?
 - Connection directe entre composants par un fil
 - Unidirectionnel

- À quoi ça sert?
 - Processeurs
 - * Déclenchement immédiat de routines en cours d'exécution du code normal
 - ex : Interruption Souris, traitement terminé par un autre composant..
 - * Économies d'énergies (HLT sur Pentium, ...)
 - Autres composants matériels
 - * Synchronisation
 - * « Arrêt d'urgence » d'un composant

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 67 / 79 >

Modélisation interne d'un composant

• Liberté de codage... mais respect du niveau d'abstraction!

Partie « initiateur »

- Transactions générées réalistes
 - Mêmes adresses
 - Données précises

Partie « cible »

- Mémoires
 - Respect de la taille du données
- Bancs de registres
 - Adresses relatives des différents registres
 - Actions associées
 - → Contrat d'utilisation du composant

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TI M

2014-2015 < 69 / 79 >

Exemple de mode d'emploi de registre (DMAC ARM)

3.4.10 Software Single Request Register

The read/write DMACSoftSReq Register, with address offset of $\theta x \theta 24$, enables DMA single requests to be generated by software. You can generate a DMA request for each source by writing a 1 to the corresponding register bit. A register bit is cleared when the transaction has completed. Writing 0 to this register has no effect. Reading the register indicates the sources that are requesting single DMA transfers. You can generate a request from either a peripheral or the software request register. Figure 3-10 shows the bit assignments for this register.

Figure 3-10 DMACSoftSReq Register bit assignments

Table 3-11 lists the bit assignments for this register.

Table 3-11 DMACSoftSReq Register bit assig

Bits	Name	Function	
[31:16]	-	Read undefined. Write as zero.	
[15:0]	SoftSReq	Software single request.	

Matthieu Moy (Matthieu.Moy@imag.fr)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 71 / 79 >

2014-2015

< 73 / 79 >

Insertion du logiciel embarqué (2/2)

Modélisation TLM

Interruptions (2/2)

- Modélisation non standardisée...
- Une solution : signaux booléens (RTL)
 - Sensibilité sur fronts (montants, descendants)
 - Entrées, sorties de signaux (idem RTL)
 Connections point à point

 - ▶ Principal moyen de synchronisation pour les cibles

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 68 / 79 >

Exemple de bancs de registres (DMAC ARM)

Name	Address (base+)	Туре	Reset value	Description	
DMACIntStatus	0x000	RO	0x00	See Interrupt Status Register on page 3-10	
DMACIntTCStatus	0x004	RO	0x00	See Interrupt Terminal Count Status Register on page 3-10	
DMACIntTCClear	0x008	WO	-	See Interrupt Terminal Count Clear Register on page 3-11	
DMACIntErrorStatus	0x00C	RO	0x00	See Interrupt Error Status Register on page 3-11	
DMACIntErrClr	0x010	WO	-	See Interrupt Error Clear Register on page 3-12	
DMACRawIntTCStatus	0x014	RO	-	See Raw Interrupt Terminal Count Status Register of page 3-13	
DMACRawIntErrorStatus	0x018	RO	-	See Raw Error Interrupt Status Register on page 3-1:	
DMACEnbldChns	0x01C	RO	0x00	See Enabled Channel Register on page 3-14	
DMACSoftBReq	0x020	R/W	0x0000	See Software Burst Request Register on page 3-14	
DMACSoftSReq	0x024	R/W	0x0000	See Software Single Request Register on page 3-15	

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015

Insertion du logiciel embarqué (1/2)

- « Emballage » autour du code (wrapper)
- Interface
 - Accès mémoire via un bus de données
 - → port initiateur
 - ► Entrée(s) interruptions
 - ► Dépendant du modèle de processeur...
- Mise en correspondance interruptions ↔ code de traitement

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM $2014\text{-}2015 \qquad < 72 \, / \, 79 >$

Question

• Communication d'une valeur entière x entre les processeurs ?

Question

Comment faire? Faut-il ajouter des composants?

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 74 / 79 >

Comparaison avec les autres niveaux (1/2)

TLM vs. Algorithmique

- Découpage de l'algorithme en blocs indépendants
- Validation du fonctionnement en parallèle
- Aspect composant
 - Réutilisation
 - Hiérarchie de composants
- Partitionnement

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 75 / 79 >

Vitesse de simulation RTL + cosimulation 3 minutes 1 seconde 1 seconde 1 nounce of the condition of the

Synthèse

- Synthèse comportementale : peu en industrie
 - $\,\blacktriangleright\,$ Quelques essais : MathLab/Simulink \to RTL, C \to RTL, ...
 - Nécessité d'un niveau d'abstraction bien défini
- TLM
 - ► Précision des communications uniquement
 - Intérieur du composant : aucune règle (pointeurs, bibliothèque, etc.)
 - Synthèse éventuelle :
 - * Partie connection au bus
 - Réseau d'interconnexion
 - ★ Portions de code avec algorithmique simple

 \Rightarrow en général, RTL et TLM sont écrits à la main et indépendemment.

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2014-2015 < 79 / 79 >

Comparaison avec les autres niveaux (2/2)

TLM vs. Cycle accurate

- Vitesse de simulation
 - Écriture libre de l'intérieur du composant
 - Communications abstraites
 - Comportement asynchrone
 - Dépend de l'implémentation!
- Précision des données
- Modélisation facile : réutilisation du code de niveau AL

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2014-2015 < 76 / 79 >

Apports de TLM

- Écriture du code embarqué possible en avance de phase!
 - ▶ Vitesse de simulation
 - ► Facilité de modélisation
- Debuggage de l'intégration des composants
- Nouveau niveau de référence
 - Moyen de communications entre monde du hard et monde du soft...

Modélisation TLM

2014-2015 < 78 / 79 >

- ► Référence disponible en avance de phase
- Analyse d'architecture

Matthieu Moy (Matthieu.Moy@imag.fr)