Homework 4, due 16:00 Monday, 15 April 2019 to Dr. Pang's mailbox

You must justify your answers to receive full credit.

1. Consider

$$\mathscr{A} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

You are given that \mathscr{A} is a basis of \mathbb{R}^3 .

- a) Find the dual basis $\hat{\mathscr{A}} = \{\phi_1, \phi_2, \phi_3\} \subseteq \mathbb{R}^3$ (i.e. for each element in $\hat{\mathscr{A}}$, write out what it does to $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$).
- b) Let $\phi \in \mathbb{R}^3$ be defined by $\phi \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x + 2y$. Express ϕ as a linear combination of the elements in $\hat{\mathscr{A}}$.
- c) Now consider $\sigma: P_{<2}(\mathbb{R}) \to \mathbb{R}^3$ given by $\sigma(f) = \begin{pmatrix} f(0) \\ 2f(0) \\ -f(1) \end{pmatrix}$. If $\psi \in \mathbb{R}^3$ is given by $\psi \begin{pmatrix} x \\ y \\ z \end{pmatrix} = ax + by + cz$, then what is $\hat{\sigma}(\psi)$?
- 2. (Lagrange Interpolation) Let $V = P_{<3}(\mathbb{R})$ be the vector space of polynomials over \mathbb{R} of degree less than 3, with some basis $\mathscr{A} = \{\alpha_1, \alpha_2, \alpha_3\}$. Suppose the dual basis $\mathring{\mathscr{A}} = \{\phi_1, \phi_2, \phi_3\}$ of \mathring{V} is given by

$$\phi_1(f) = f(1), \quad \phi_2(f) = f(2), \quad \phi_3(f) = f(3).$$

a) Check that $\alpha_1 = \frac{(x-2)(x-3)}{(1-2)(1-3)}$.

By the same argument, $\alpha_2 = \frac{(x-1)(x-3)}{(2-1)(2-3)}$.

- b) Write down, without explanation, α_3 .
- c) Suppose $f \in V$ satisfies f(1) = 6, f(2) = 5, f(3) = 10. By writing f as a linear combination of α_i , find f. (Click here for a hint)

Homework 4, due 16:00 Monday, 15 April 2019 to Dr. Pang's mailbox

- 3. Let V be a finite-dimensional vector space over \mathbb{F} .
 - a) Let W be a subspace of V, and $\alpha \in V, \alpha \notin W$. By considering dual bases, or otherwise, show that there is a $\phi \in \hat{V}$ such that $\phi(\alpha) = 1$ and $\phi(\beta) = 0$ for all $\beta \in W$.
 - b) Let α, β be linearly independent vectors in V. Using part a or otherwise, show that there is a $\phi \in \hat{V}$ such that $\phi(\alpha) = 1$ and $\phi(\beta) = 0$.
 - c) Now suppose $\alpha, \beta \in V$ has the property that, given any $\phi \in \hat{V}$ with $\phi(\beta) = 0$, then $\phi(\alpha) = 0$. Show that α is a multiple of β . (Hint: you may wish to use a proof by contradition, using parts a and b.)
- 4. Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 10 \end{pmatrix}$$

- a) Find a matrix P and a diagonal matrix D such that $P^TAP = D$.
- b) What is the rank of A?
- c) What is the signature of A?
- d) What is the definiteness of A?
- 5. Let $V = P_{<3}(\mathbb{R})$ be the vector space of polynomials over \mathbb{R} of degree less than 3. Define a quadratic form on V by

$$q(p) = p(1)p'(1) + \int_0^1 p'(t)^2 dt.$$

- a) Find the symmetric bilinear form f such that q(p) = f(p, p).
- b) Consider the basis $\mathscr{A} = \{1, 2 x, x^2\}$ of V. Find the matrix $\{f\}_{\mathscr{A}}$.
- c) Let $\mathscr{B} = \{3, 2-x, 4-2x+x^2\}$ of V. Find the matrix $\{f\}_{\mathscr{B}}$. You may give your answer as a product of matrices and/or their inverses.
- 6. a) Let V be a vector space over \mathbb{F} . Recall from class that, given $\alpha \in V$, we can define a function f on \hat{V} by "evaluation at α ", i.e. $f(\phi) = \phi(\alpha)$, for each $\phi \in \hat{V}$. Show that f is linear (in its input in \hat{V}).
 - b) Let A be a positive definite matrix over \mathbb{R} . Show that det A > 0. (Hint: Let $D = P^T A P$, and consider det D.)

Homework 4, due 16:00 Monday, 15 April 2019 to Dr. Pang's mailbox

The following two questions are to prepare you for upcoming classes, and is unrelated to the material from recent classes.

7. Let
$$W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ -2 \end{pmatrix} \right\} \subseteq \mathbb{R}^4$$
.

- a) Calculate the orthogonal projection of $\begin{pmatrix} 0\\1\\-1\\1 \end{pmatrix}$ onto W.
- b) Find the closest point in W to $\begin{pmatrix} 0\\3\\-3\\3 \end{pmatrix}$.
- c) Find the distance from $\begin{pmatrix} 0\\3\\-3\\3 \end{pmatrix}$ to W.
- 8. Consider (over \mathbb{R})

$$A = \begin{pmatrix} 8 & 4 & -1 \\ 4 & -7 & 4 \\ -1 & 4 & 8 \end{pmatrix}, \quad \alpha_1 = \begin{pmatrix} 1 \\ -4 \\ -17 \end{pmatrix}, \, \alpha_2 = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}.$$

- a) By stating an appropriate theorem (no calculation!), explain why A is diagonalisable.
- b) It is known that α_1, α_2 are eigenvectors of A, and that A has another eigenvector β whose eigenvalue is different from that of α_1 and α_2 . By using an appropriate theorem, and without finding any eigenvalues, find one such β .

Optional questions If you attempted seriously all the above questions, then your scores for the following questions may replace any lower scores for two of the above questions.

- 9. Let U, V be finite-dimensional vector spaces over \mathbb{F} . Suppose $\sigma \in L(U, V)$ is surjective. Show, without using matrices, that its dual map $\hat{\sigma} \in L(\hat{V}, \hat{U})$ is injective.
- 10. True or false: A is positive definite if and only if all entries of A are positive.