# Section 4.8 – Connectivity

#### **Paths**

A path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.

#### **Definitions**

Let G be a graph, and let v and w be vertices in G.

A *walk* from *v* to *w* is a finite alternating sequence of adjacent vertices and edges of *G*. Thus a walk has the form

$$v_0 e_1 v_1 e_2 \cdots v_{n-1} e_n v_n$$

Where the v's represent vertices, the e's represents edges,  $v_0 = v$ ,  $v_n = w$  and for all i = 1, 2, ..., n,  $v_{i-1}$  and  $v_i$  are the endpoints of  $e_i$ . The trivial walk from v to v consists of the single vertex v.

A *trail* from v to w is a walk from v to w that does not contain a repeated edge.

A *closed walk* is a walk that starts and ends at the same vertex.

A *circuit* is a closed walk that contains at least one edge and does not contain a repeated edge.

A simple circuit is a circuit that does not any other repeated vertex except first and last.

|                | Repeated Edge? | Repeated Vertex   | Starts & Ends at | Must Contain at |
|----------------|----------------|-------------------|------------------|-----------------|
|                |                |                   | Same Point?      | Least One Edge? |
| Walk           | Allowed        | Allowed           | Allowed          | No              |
| Trail          | No             | Allowed           | Allowed          | No              |
| Path           | No             | No                | No               | No              |
| Closed Walk    | Allowed        | Allowed           | Yes              | Yes             |
| Circuit        | No             | Allowed           | Yes              | Yes             |
| Simple Circuit | No             | First & last only | Yes              | Yes             |

#### **Notation for Walks**



The notation  $e_1e_2e_4e_3$  refers unambiguous to the following walk:  $v_1e_1v_2e_2e_4v_3e_3v_2$ . On the other hand, the notation  $e_1$  is ambiguous if used to refer to a walk. It could mean either  $v_1e_1v_1$  or  $v_2e_1v_1$ . The notation  $v_2v_3$  is ambiguous if used to refer to a walk. It could mean  $v_2e_2v_3$  or  $v_2e_3v_3$ . On the other hand,



The notation  $v_1v_2v_2v_3$  refers unambiguously to the walk  $v_1e_1v_2e_2v_2e_3v_3$ 

# Example

Determine which of the following walks are trails, paths, circuits, or simple circuits to the graph below.

a) 
$$v_1 e_1 v_2 e_3 v_3 e_4 v_3 e_5 v_4$$

b) 
$$e_1^{\phantom{1}}e_3^{\phantom{1}}e_5^{\phantom{1}}e_5^{\phantom{1}}e_6^{\phantom{1}}$$

c) 
$$v_2 v_3 v_4 v_5 v_3 v_6 v_2$$

$$d) v_2 v_3 v_4 v_5 v_6 v_2$$

$$e) v_1 e_1 v_2 e_1 v_1$$

$$f) v_1$$



### **Solution**

- a) This walk has a repeated vertex but does not have a repeated edge, so it is a trail from  $v_1$  to  $v_4$  but not a path.
- **b**) This is just a walk from  $v_1$  to  $v_5$ . It is not a trail because it has a repeated edge.
- c) This walk starts and ends at  $v_2$ , contains at least one edge, and does not have a repeated edge, so it is a circuit. Since the vertex  $v_3$  is repeated in the middle, it is not a simple circuit.
- d) This walk starts and ends at  $v_2$ , contains at least one edge, and does not have a repeated edge, and does not have a repeated vertex. Thus it is a simple circuit.
- e) This is just a closed walk starting and ending at  $v_1$ . It is not a circuit because edge  $e_1$  is repeated.
- f) The first vertex of this walk is the same as its last vertex, but it does not contain an edge, and so it is not a circuit, It is a closed walk from  $v_1$  to  $v_1$ . (It is also a trail from  $v_1$  to  $v_1$ )

### **Example**



The given graph, a, d, c, f, e is a simple path of length 4, because  $\{a, d\}$ ,  $\{d, c\}$ ,  $\{c, f\}$ , and  $\{f, e\}$  are all edges. However, d, e, c, a is not a path, because  $\{e, c\}$  is not an edge.

Note that b, c, f, e, b is a circuit of length 4 because  $\{b, c\}$ ,  $\{c, f\}$ ,  $\{f, e\}$ , and  $\{e, b\}$  are edges, and this path begins and ends at b. The path a, b, e, d, a, b, which is of length 5, is not simple because it contains the edge  $\{a, b\}$  twice.

#### **Connectedness**

### **Definition**

Let G be a graph. Two vertices v and w of G are **connected** if, and only if, there is a walk from v to w. The graph G is connected if, and only if, given any two vertices v and w in G, there is a walk from v to w. Symbolically,

G is connected  $\Leftrightarrow \forall \text{ vertices } v, w \in V(G), \exists \text{ a walk from } v \text{ to } w.$ 

# Definition

An undirected graph is called *connected* if there is a path between every pair of distinct vertices of the graph. An undirected graph that is not *connected* is called *disconnected*. We say that we *disconnect* a graph when we remove vertices or edges, or both, to produce a disconnected subgraph.

# Example



The graph  $G_1$  is connected, because for every pair of distinct vertices there is a path between them.

However, the graph  $G_2$  is not connected. For instance, there is no path in  $G_2$  between vertices a and b.

### **Connected and Disconnected Graphs**

### **Example**

Which of the following graphs are connected?



#### **Solution**

The graph represented in (a) is connected, whereas those of (b) and (c) are not.

To understand why (c) is not connected, two edges may cross at a point that is not a vertex.

Thus the graph in (c) can be drawn as follows:



#### **Theorem**

There is a simple path between every pair distinct vertices of a connected undirected graph.

# **Proof**

Let u and v be two distinct vertices of the connected undirected graph G = (V, E). Because G is connected, there is at least one path between u and v. Let  $x_0, x_1, ..., x_n$  where  $x_0 = u$  and  $x_n = v$ , be the vertex sequence of a path of least length. This path of least length is simple. To see this, suppose it is not simple. Then  $x_i = x_j$  for some i and j with  $0 \le i < j$ . This means that there is a path from u to v of shorter length with vertex sequence  $x_0, x_1, ..., x_{i-1}, x_j, ..., x_n$  obtained by deleting the edges corresponding to the vertex sequence  $x_i, ..., x_{j-1}$ 

# Definition

A graph H is a connected component of a graph G if, and only if,

- *H* is subgraph of *G*;
- *H* is connected; and
- No connected subgraph of *G* has *H* as a subgraph and contains vertices or edges that are not in *H*.

### **Example**

What are the connected components of the graph H shown below?



### **Solution**

The graph H is the union of the three disjoint connected subgraphs  $H_1$ ,  $H_2$ , and  $H_3$ . These three subgraphs are the connected components of H.

# **Example**

Find all connected components of the following graph G.



#### Solution

G has three connected components:  $H_1$ ,  $H_2$ , and  $H_3$  with vertex sets  $V_1$ ,  $V_2$ , and  $V_3$  and edges

$$E_1$$
,  $E_2$ , and  $E_3$ , where

$$\begin{split} V_1 &= \left\{ v_1, \, v_2, \, v_3 \right\} & E_1 &= \left\{ e_1, \, e_2 \right\} \\ V_2 &= \left\{ v_4 \right\} & E_2 &= \varnothing \\ V_3 &= \left\{ v_5, \, v_6, \, v_7, \, v_8 \right\} & E_3 &= \left\{ e_3, \, e_4, \, e_5 \right\} \end{split}$$

# Example

Find the cut vertices and cut edges in the graph G.



#### **Solution**

The cut vertices of G are b, c, and e. The removal of one of these vertices (and its adjacent edges) disconnects the graph. The cut edges are  $\{a, b\}$  and  $\{c, e\}$ . Removing either one of these edges disconnects G.

# **Definition**

A directed graph is weakly connected of there is a path between every two vertices in the underlying undirected graph.

### Example

Are the directed graphs G and H shown below strongly connected? Are they weakly connected?



#### **Solution**

*G* is strongly connected because there is a path between any two vertices in this directed graph. Hence, *G* is also weakly connected.

The graph H is not strongly connected. There is no directed path from a to b in this graph. However, H is weakly connected, because there is a path between any 2 vertices in the underlying undirected graph of H.

# Exercises Section 4.8 - Connectivity

1. Does each of these lists of vertices form a path in the following graph? Which paths are simple? Which are circuits? Which are the lengths of those that are paths?



- **a**) a, e, b, c, b
- **b**) a, e, a, d, b, c, a
- **c**) e, b, a, d, b, e **d**) c, b, d, a, e, c
- Does each of these lists of vertices form a path in the following graph? Which paths are simple? 2. Which are circuits? Which are the lengths of those that are paths?



- **a**) a, b, e, c, b
- **b**) a, d, a, d, a
- c) a, d, b, e, a
- **d**) a, b, e, c, b, d, a
- **3.** Determine whether of the following walks are trails, paths, circuits, or simple circuits or just walk to the graph below.



- $b)\ v_4^{}e_7^{}v_2^{}e_9^{}v_5^{}e_{10}^{}v_1^{}e_3^{}v_2^{}e_9^{}v_5^{}$

- 4. Determine whether of the following walks are trails, paths, circuits, or simple circuits or just walk to the graph below.



- a)  $v_1 e_2 v_2 e_3 v_3 e_4 v_4 e_5 v_2 e_2 v_1 e_1 v_0$