

作业 2

COMP9021, 第3学期, 2023年

1. 一般事项

- 1.1. 目的。这项任务的目的是
 - 根据应用程序的预期行为,设计并实现一个界面;
 - 练习使用 Python 语法;
 - 培养解决问题的能力。
- 1.2. **提交**。您的程序将保存在名为 polygons.py 的文件中。开发并测试完程序后,请使用 Ed 上传(除非您直接在 Ed 中工作)。作业可以多次提交;最后一个版本将被标记。作业截止日期为 11 月 20 日上午 10:00。
- 1.3. **评估。**这项作业占 13 分。将根据多个输入文件对程序进行测试。每次测试时,自动标记脚本会让你的程序运行 30 秒。

作业可在截止日期后 5 天内提交。每迟交一天,最高分数减少 5%,最多不超过 5 天。因此,如果学生 A 和 B 分别迟交了价值 12 分和 11 分的作业两天(即迟交超过 24 小时但不超过 48 小时),那么可获得的最高分是 11.7 分,因此 A 获得 $\min(11.7, 11) = 11$ 分,B 获得 $\min(11.7, 11) = 11$ 分。您的程序输出结果应与所示结果 完全一致。

1.4. **提醒您注意抄袭政策**。允许,甚至鼓励您与他人讨论解决作业的方法。这些讨论必须是算法方面的,而不是代码方面的。但您必须独立完成解决方案。当学生复制和修改他人的作业,或在一个实施方案上密切合作时,提交的作业会被例行扫描,以发现相似之处。违者将受到严厉处罚。

2. 一般介绍

您将设计并实施一项计划,该计划将

- 提取并分析(简单)*多边形*的各种特征,将其轮廓编码并存储在文件中,以及
- 或显示这些特征:周长、面积、凸度、保持多边形不变的旋转次数和深度(包围多边形的最长链的长度)
 - 或输出一些 Latex 代码,并将其存储到一个文件中,从中可以生成多边形的图形表示,其颜色与多边形的面积成正比。

将大小介于 2×2 和 50×50 之间(两个维度可以不同)、所有元素均为 0 或 1 的二维网格称为 *编码*网

格。

3. 实例

3.1. **第一个例子**文件 polys_1.txt 的内容如下:

111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111111
111111111111111111111111111111111111

下面是一种可能的互动:

```
$ python3
>>> 从多边形导入 *
>>> polys = Polygons('polys_1.txt')
>>> polys.analyse()
多边形 1:
   周长: 78.4
   面积384.16
   凸面:是
   Nb of invariant rotation: 4 深度
   : 0
多边形 2:
   周长: 75.2
   面积353.44
   凸面:是
   Nb of invariant rotations: 4 深
   度: 1
多边形 3:
   周长: 72.0
   面积324.00
   凸面:是
   Nb of invariant rotation: 4 深度
   : 2
多边形 4:
   周长: 68.8
   面积: 295.84
   凸面:是
   Nb of invariant rotation: 4 深度
   : 3
多边形 5:
   周长: 65.6
   面积: 268.96
   凸面:是
   Nb of invariant rotation: 4 深度
   : 4
多边形 6:
   周长: 62.4
   面积: 243.36
   凸面:是
   Nb of invariant rotations: 4 深
   度: 5
多边形 7:
   周长: 59.2
   面积: 219.04
   凸面: 是
   Nb of invariant rotation: 4 深度
   : 6
```

4

多边形 8:

周长: 56.0 面积196.00 凸面: 是

Nb 的不变旋转: 4

```
深度: 7
多边形 9:
   周长: 52.8
   面积174.24
   凸面:是
   Nb of invariant rotation: 4 深度
多边形 10:
   周长: 49.6
   面积153.76
   凸面:是
   Nb of invariant rotation: 4 深度
   : 9
多边形 11:
   周长: 46.4
   面积134.56
   凸面:是
   Nb of invariant rotations: 4 深
   度: 10
多边形 12:
   周长: 43.2
   面积116.64
   凸面:是
   Nb of invariant rotation: 4 深度
   : 11
多边形 13:
   周长: 40.0
   面积100.00
   凸面:是
   Nb of invariant rotation: 4 深度
   : 12
多边形 14:
   周长: 36.8
   面积84.64
   凸: 是
   Nb of invariant rotation: 4 深度
   : 13
多边形 15:
   周长: 33.6
   面积70.56
   凸: 是
   Nb of invariant rotation: 4 深度
   : 14
多边形 16:
   周长: 30.4
   面积57.76
   凸:是
   Nb of invariant rotation: 4 深度
```

: 15

多边形 17:

周长: 27.2 面积46.24

凸: 是

Nb 的不变旋转: 4

深度: 16 多边形 18: 周长: 24.0 面积36.00 凸面:是 Nb of invariant rotation: 4 深度 : 17 多边形 19: 周长: 20.8 面积: 27.04 凸面:是 Nb of invariant rotation: 4 深度 : 18 多边形 20: 周长: 17.6 面积19.36 凸: 是 Nb of invariant rotation: 4 深度 : 19 多边形 21: 周长: 14.4 面积12.96 凸: 是 Nb of invariant rotations: 4 深 度: 20 多边形 22: 周长: 11.2 面积7.84 凸 : 是 Nb of invariant rotation: 4 深度 : 21 多边形 23: 周长: 8.0 面积: 4.00 凸: 是 Nb of invariant rotation: 4 深度 : 22 多边形 24: 周长: 4.8 面积1.44 凸 : 是 Nb of invariant rotations: 4 深 度: 23 多边形 25:

周长: 1.6

```
8
```

```
面积:
0.160.16
凸: 是
Nb of invariant rotation: 4 深度
: 24
>>> polys.display()
```

执行 polys.display()的效果是生成一个名为 polys_1.tex 的文件,并将其作为 pdflatex 的参数,生成一个名为 polys_1.pdf 的文件,其视图如下。

3.2. **第二个示例。**文件 polys 2.txt 的内容如下:

下面是一种可能的互动:

```
$ python3
>>> 从多边形导入 *
>>> polys = Polygons('polys_2.txt')
>>> polys.analyse()
多边形 1:
   周长: 37.6 + 92*sqrt(.32) 面积:
   176.64
   凸面: 否
   Nb of invariant rotation: 2 深度
   : 0
多边形 2:
   周长: 17.6 + 42*sqrt(.32) 面积:
   73.92
   凸面:是
   Nb of invariant rotations: 1 深
   度:1
多边形 3:
   周长: 16.0 + 38*sqrt(.32) 面积:
   60.80
   凸面:是
   Nb of invariant rotation: 1 深度
   : 2
多边形 4:
   周长: 16.0 + 40*sqrt(.32) 面积:
   64.00
   凸面:是
   Nb of invariant rotation: 1 深度
   : 0
多边形 5:
   周长: 14.4 + 34*sqrt(.32) 面积
   : 48.96
   凸面:是
   Nb of invariant rotation: 1 深度
   : 3
多边形 6:
   周长: 16.0 + 40*sqrt(.32) 面积:
   64.00
   凸面:是
   Nb of invariant rotation: 1 深度
   : 0
多边形 7:
   周长: 12.8 + 30*sqrt(.32) 面积
   : 38.40
   凸面:是
```

Nb of invariant rotation: 1 深度

: 4

多边形 8:

周长: 14.4 + 36*sqrt(.32) 面积

: 51.84 凸面: 是 Nb 不变旋转1

```
深度: 1
多边形 9:
   周长: 11.2 + 26*sqrt(.32) 面积
   : 29.12
   凸面:是
   Nb of invariant rotation: 1 深度
多边形 10:
   周长: 14.4 + 36*sqrt(.32) 面积
   : 51.84
   凸面:是
   Nb of invariant rotations: 1 深
   度:1
多边形 11:
   周长: 9.6 + 22*sqrt(.32) 面积:
   21.12
   凸面:是
   Nb of invariant rotations: 1 深
   度: 6
多边形 12:
   周长: 12.8 + 32*sqrt(.32) 面积
   : 40.96
   凸面:是
   Nb of invariant rotations: 1 深
   度: 2
多边形 13:
   周长: 8.0 + 18*sqrt(.32) 面积:
   14.40
   凸面:是
   Nb of invariant rotation: 1 深度
   : 7
多边形 14:
   周长: 12.8 + 32*sqrt(.32) 面积
   : 40.96
   凸面:是
   Nb of invariant rotations: 1 深
   度: 2
多边形 15:
   周长: 6.4 + 14*sqrt(.32) 面积:
   8.96
   凸面:是
   Nb of invariant rotations: 1 深
   度:8
多边形 16:
   周长: 11.2 + 28*sqrt(.32) 面积
```

: 31.36

凸面:是

Nb of invariant rotation: 1 深度

: 3

多边形 17:

周长: 4.8 + 10*sqrt(.32) 面积:

4.80 凸面: 是 Nb 不变旋转1

```
深度: 9
多边形 18:
   周长: 11.2 + 28*sqrt(.32) 面积
   : 31.36
   凸面:是
   Nb of invariant rotation: 1 深度
   : 3
多边形 19:
   周长: 3.2 + 6*sqrt(.32) 面积:
   1.92
   凸面:是
   Nb of invariant rotations: 1 深
   度: 10
多边形 20:
   周长: 9.6 + 24*sqrt(.32) 面积:
   23.04
   凸面:是
   Nb of invariant rotation: 1 深度
多边形 21:
   周长: 1.6 + 2*sqrt(.32) 面积:
   0.32
   凸面:是
   Nb of invariant rotation: 1 深度
   : 11
多边形 22:
   周长: 9.6 + 24*sqrt(.32) 面积:
   23.04
   凸面: 是
   Nb of invariant rotation: 1 深度
   : 4
多边形 23:
   周长: 8.0 + 20*sqrt(.32) 面积:
   16.00
   凸面:是
   Nb of invariant rotations: 1 深
   度: 5
多边形 24:
   周长: 8.0 + 20*sqrt(.32) 面积:
   16.00
   凸面:是
   Nb of invariant rotations: 1 深
   度: 5
多边形 25:
   周长: 6.4 + 16*sqrt(.32) 面积:
   10.24
   凸面:是
```

Nb of invariant rotation: 1 深度

: 6

多边形 26:

周长: 6.4 + 16*sqrt(.32) 面积:

10.24 凸面: 是 Nb 不变旋转1

```
深度: 6
多边形 27:
   周长: 4.8 + 12*sqrt(.32) 面积:
   5.76
   凸面:是
   Nb of invariant rotation: 1 深度
   : 7
多边形 28:
   周长: 4.8 + 12*sqrt(.32) 面积:
   5.76
   凸面:是
   Nb of invariant rotation: 1 深度
   : 7
多边形 29:
   周长: 3.2 + 8*sqrt(.32) 面积:
   2.56
   凸面: 是
   Nb of invariant rotations: 1 深
   度: 8
多边形 30:
   周长: 3.2 + 8*sqrt(.32) 面积:
   2.56
   凸面: 是
   Nb of invariant rotations: 1 深
   度: 8
多边形 31:
   周长: 1.6 + 4*sqrt(.32) 面积:
   0.64
   凸面: 是
   Nb of invariant rotation: 1 深度
   : 9
多边形 32:
   周长: 1.6 + 4*sqrt(.32) 面积:
   0.64
   凸面:是
   Nb of invariant rotation: 1 深度
   : 9
多边形 33:
   周长: 17.6 + 42*sqrt(.32) 面积:
   73.92
   凸面:是
   Nb of invariant rotations: 1 深
   度:1
多边形 34:
   周长: 16.0 + 38*sqrt(.32) 面积:
   60.80
   凸面:是
```

Nb of invariant rotations: 1 深

度: 2

多边形 35:

周长: 14.4 + 34*sqrt(.32) 面积

: 48.96 凸面: 是

Nb 不变旋转1

```
深度: 3
多边形 36:
   周长: 12.8 + 30*sqrt(.32) 面积
   : 38.40
   凸面:是
   Nb of invariant rotation: 1 深度
   : 4
多边形 37:
   周长: 11.2 + 26*sqrt(.32) 面积
   : 29.12
   凸面:是
   Nb of invariant rotation: 1 深度
多边形 38:
   周长: 9.6 + 22*sqrt(.32) 面积:
   21.12
   凸面:是
   Nb of invariant rotation: 1 深度
   : 6
多边形 39:
   周长: 8.0 + 18*sqrt(.32) 面积:
   14.40
   凸面:是
   Nb of invariant rotation: 1 深度
   : 7
多边形 40
   周长: 6.4 + 14*sqrt(.32) 面积:
   8.96
   凸面:是
   Nb of invariant rotation: 1 深度
   : 8
多边形 41:
   周长: 4.8 + 10*sqrt(.32) 面积:
   4.80
   凸面:是
   Nb of invariant rotation: 1 深度
   : 9
多边形 42:
   周长: 3.2 + 6*sqrt(.32) 面积:
   1.92
   凸面:是
   Nb of invariant rotations: 1 深
   度: 10
多边形 43:
   周长: 1.6 + 2*sqrt(.32) 面积:
   0.32
```

凸面:是

Nb of invariant rotation: 1 深度

: 11

>>> polys.display()

执行 polys.display()的效果是生成一个名为 polys_2.tex 的文件,并将其作为 pdflatex 的参数,生成一个名为 polys_2.pdf 的文件,其视图如下。

3.3. **第三个示例。**文件 polys_3.txt 的内容如下:

下面是一种可能的互动:

```
$ python3
>>> 从多边形导入 *
>>> polys = Polygons('polys_3.txt')
>>> polys.analyse()
多边形 1:
   周长: 2.4 + 9*sqrt(.32) 面积:
   2.80
   凸面: 否
   Nb of invariant rotations: 1 深
   度: 0
多边形 2:
   周长: 51.2 + 4*sqrt(.32) 面积:
   117.28
   凸面: 否
   Nb of invariant rotations: 2 深
   度: 0
多边形 3:
   周长: 2.4 + 9*sqrt(.32) 面积:
   2.80
   凸面: 否
   Nb of invariant rotation: 1 深度
   : 0
多边形 4:
   周长: 17.6 + 40*sqrt(.32) 面积:
   59.04
   凸面: 否
   Nb of invariant rotations: 2 深
   度:1
多边形 5:
   周长: 3.2 + 28*sqrt(.32) 面积:
   9.76
   凸面: 否
   Nb of invariant rotation: 1 深度
多边形 6:
   周长: 27.2 + 6*sqrt(.32) 面积:
   5.76
   凸面: 否
   Nb of invariant rotation: 1 深度
   : 2
多边形 7:
   周长: 4.8 + 14*sqrt(.32) 面积:
   6.72
   凸面: 否
```

Nb of invariant rotations: 1 深

度: 1

多边形 8:

周长: 4.8 + 14*sqrt(.32) 面积:

6.72 凸面: 否 Nb 不变旋转1

```
深度: 1
多边形 9:
   周长: 3.2 + 2*sqrt(.32) 面积:
   1.12
   凸面:是
   Nb of invariant rotations: 1 深
   度: 2
多边形 10:
   周长: 3.2 + 2*sqrt(.32) 面积:
   1.12
   凸面:是
   Nb of invariant rotations: 1 深
   度: 2
多边形 11:
   周长: 2.4 + 9*sqrt(.32) 面积:
   2.80
   凸面: 否
   Nb of invariant rotation: 1 深度
   : 0
多边形 12:
   周长: 2.4 + 9*sqrt(.32) 面积:
   2.80
   凸面: 否
   Nb of invariant rotation: 1 深度
   : 0
>>> polys.display()
```

执行 polys.display()的效果是生成一个名为 polys_3.tex 的文件,并将其作为 pdflatex 的参数

3.4. **第四个示例**。文件 polys_4.txt 的内容如下:

11	10111 0 1	11 0	1	1 1011	101 1 1 0	0001 1 1	000 1 001 11 1
01 010001000	10001000100100		110010010101001				
100 0010	00	100 0 1 0 00	100		0100010	00 0 1 01 0001011	1
010001000100	.10101010001001010 .01000100001000101 .001 0 0		00 01	010 000	00000	0 0 000 01	11
11101 00000000000000000000000000000000	1101110 000000000000110000	00011000100	1 1 1		1110111011000000011 0	111000	
110 01 001 1000011	0 1 1 0	00000000	11111	10111111 111111111111	00011111100000000000	001000	00

下面是一种可能的互动:

```
$ python3
>>> 从多边形导入 *
>>> polys = Polygons('polys_4.txt')
>>> polys.analyse()
多边形 1:
   周长: 11.2 + 28*sqrt(.32) 面积
   : 18.88
   凸面: 否
   Nb of invariant rotations: 2 深
   度: 0
多边形 2:
   周长: 3.2 + 5*sqrt(.32) 面积:
   2.00
   凸面: 否
   Nb of invariant rotations: 1 深
   度: 0
多边形 3:
   周长: 1.6 + 6*sqrt(.32) 面积:
   1.76
   凸面: 是
   Nb of invariant rotations: 1 深
   度: 0
多边形 4:
   周长: 3.2 + 1*sqrt(.32) 面积:
   0.88
   凸面:是
   Nb of invariant rotations: 1 深
   度: 0
多边形 5:
   周长: 4*sqrt(.32) 面积:
   0.32
   凸面:是
   Nb of invariant rotations: 4 深
   度: 1
多边形 6:
   周长: 4*sqrt(.32) 面积:
   0.32
   凸面:是
   Nb of invariant rotations: 4 深
   度: 1
多边形 7:
   周长: 4*sqrt(.32) 面积:
   0.32
   凸面:是
```

Nb of invariant rotations: 4 深

度: 1

多边形 8:

周长: 4*sqrt(.32) 面积:

0.32 凸面: 是

Nb 的不变旋转: 4

```
深度: 1
多边形 9:
   周长: 1.6 + 1*sqrt(.32) 面积:
   0.24
   凸面:是
   Nb of invariant rotation: 1 深度
多边形 10:
   周长: 0.8 + 2*sqrt(.32) 面积:
   0.16
   凸面:是
   Nb of invariant rotation: 2 深度
   : 0
多边形 11:
   周长: 12.0 + 7*sqrt(.32) 面积:
   5.68
   凸面: 否
   Nb of invariant rotation: 1 深度
   : 0
多边形 12:
   周长: 2.4 + 3*sqrt(.32) 面积:
   0.88
   凸面: 否
   Nb of invariant rotation: 1 深度
   : 0
多边形 13:
   周长: 1.6
   面积:
   0.160.16
   凸: 是
   Nb of invariant rotation: 4 深度
   : 0
多边形 14:
   周长: 5.6 + 3*sqrt(.32) 面积:
   1.36
   凸面: 否
   Nb of invariant rotation: 1 深度
   : 0
>>> polys.display()
```

执行 polys.display()的效果是生成一个名为 polys_4.tex 的文件,并将其作为 pdflatex 的参数,生成一个名为 polys_4.pdf 的文件,其视图如下。

4. 详细说明

- 4.1. **输入。**预期输入将由 x_{dim} 0 和 1 的 y_{dim} 行组成,其中 x_{dim} 和 y_{dim} 至少等于 2,最多等于 50,只有空格的行可能被忽略,有数字的行上任何地方可能有空格。如果 n 是带有数字的 y^{th} 行的 x^{th} 位数, $0 \le x < x_{dim}$, $0 \le y < y_{dim}$,那么 n 将与位于原点右侧 $x \times 0.4$ 厘米和原点下方 $y \times 0.4$ 厘米处的一个点相关联。
- 4.2. **输出**。考虑在 Python 提示符下执行语句 from polygons import *,然后执行语句 polys = Polygons ($some_filename$) 。 如果工作目录中不存在 $some_filename$,那么 Python 将引发 FileNotFoundError 异常,这个异常不需要捕获。假设 $some_filename$ 确实存在(在工作目录中)。如果输入不正确,即除了空格以外不只包含 0 和 1,或者包含的数字行太少或太多,或者某一行数字包含的数字太多或太少,或者其中两行数字包含的数字太多或太少,或者其中两行数字包含的数字不相同,那么执行 polys = Polygons ($some_filename$) 的结果应该是产生一个 Polygons Error 异常,其内容为

回溯(最近一次调用):

. .

polygons.PolygonsError:输入不正确。

如果前面的条件成立,但无法使用输入中的所有 1,并使它们成为深度为 d 的多边形轮廓(对于任意自然数 d,如一般介绍中定义的那样),那么执行 polys = Polygons ($some_filename$) 的结果应该是产生一个 PolygonsError 异常,其内容为

回溯(最近一次调用):

. .

polygons.PolygonsError:无法按预期获取多边形。

如果输入是正确的,而且可以使用输入中的所有 1,并使它们成为深度为 d 的多边形轮廓(对于任意自然数 d,如一般演示文稿中的定义),那么执行 polys = Polygons ($some_filename$) 语句,然后执行 polys.analyse(),输出的第一行内容应该是

多边形 N:

N 是一个适当的整数,至少等于 1,指的是按照从 y 的最小值到 y 的最大值的顺序排列的第 N 个最高点的多边形,对于给定的 y 值,从 x 的最小值到 x 的最大值,第二行读取以下内容之一

周长: a + b*sgrt(.32) 周长: a

周长: b*sqrt(.32)

a 是小数点后一位数的严格意义上的正浮点数,b 是严格意义上的正整数,第三行写道

区域:a

在小数点后加两位数的适当浮点数,第四行读取以下内容之一

凸面: 是 凸面: 否

第五行如下

Nb 不变旋转N

N 是一个适当的整数,至少等于1,第六行写道

深度N

N 为适当的正整数(可能为 0)。

注意预期格式,包括空格。

如果输入是正确的,而且可以使用输入中的所有 1,并使它们成为深度为 d 的多边形的轮廓(对于任意自然数 d,如一般演示文稿中所定义),那么执行 polys = Polygons($some_filename$) 后的 polys.display() 状态应该会产生一个名为 $some_filename$.tex 的文件,并将其作为 pdflatex 的参数,生成名为 $some_filename$.pdf 的文件。所提供的示例将向您展示 $some_filename$.tex 应包含的内容。

- 多边形从最低深度到最高深度绘制,对于给定深度,采用与前面所述相同的排序。
- 确定多边形索引的点是顺时针绘制多边形线段的起点。
- 多边形的颜色由其面积决定。最大的多边形是黄色的。最小的多边形是橙色。介于两者之间的多边形按面积比例混合橙色和黄色。例如,如果一个多边形的面积是最大多边形和最小多边形面积之差的 25%,那么它将获得 25% 的橙色(和 75% 的黄色)。该比例以整数计算。如果数值不是整数,则四舍五入为最接近的整数,z.5 形式的数值四舍五入为 z + 1。

注意预期格式,包括空格和空行。以 % 开头的行为注释。重定向到文件中的程序输出将使用 diff 命令与保存在文件(当然是不同名称的文件)中的预期输出进行比较。要使程序通过相关测试,diff 命令应静默退出,这就要求两个文件的内容完全一致,包括空格和空行。在提供的示例中使用相关的 .tex 文件检查你的程序,重命名它们,使其与你的程序预期生成的文件名一致。