

UE19CS252

Dr. D. C. Kiran

Department of Computer Science and Engineering

Introduction to Pipeline Processor

Dr. D. C. Kiran

Department of Computer Science and Engineering

Syllabus

Unit 1: Basic Processor Architecture and Design

Unit 2: Pipelined Processor and Design

- 3-Stage ARM Processor
- 5-Stage Pipeline Processor
- Introduction to Pipeline Processor
- Understanding the Pipeline Execution

Unit 3: Memory Design

Unit 4: Input/Output Device Design

Unit 5: Advanced Architecture

Text 1: "Computer Organization and Design", Patterson, Hennessey, 5th Edition, Morgan Kaufmann, 2014.

Reference 1: "Computer Architecture: A Quantitative Approach", Hennessey, Patterson, 5th Edition, Morgan Kaufmann, 2011.

Pipelining: Basic and Intermediate Concepts Appendix C Introduction C-2 The Major Hurdle of Pipelining—Pipeline Hazards C-11 How Is Pipelining Implemented? C-30 **C.4** What Makes Pipelining Hard to Implement? C-43 Extending the MIPS Pipeline to Handle Multicycle Operations C-51 Putting It All Together: The MIPS R4000 Pipeline C-61 Crosscutting Issues C-70 C.8 Fallacies and Pitfalls C-80 Concluding Remarks C-81 **C.10** Historical Perspective and References C-81 Updated Exercises by Diana Franklin C-82

Single Cycle, Multiple Cycle, vs. Pipeline

K stage	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9
IF	l1	12	13	14	15				
ID		11	12	13	14	15			
EX			11	12	13	14	15		
MB				11	12	13	14	15	
WB					11	12	13	14	15

K stage	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9
IF	l1	12	13	14	15				
ID		I1	12	13	14	15			
EX			11	12	13	14	15		
MB				l1	12	13	14	15	
WB					I1	12	13	14	15

K stage	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9
IF	l1	12	13	14	15				
ID		I1	12	13	14	15			
EX			I1	12	13	14	15		
MB				I1	12	13	14	15	
WB					I1	12	13	14	15

K stage	T1	T2	Т3	T4	T5	Т6	Т7	T8	Т9
IF	l1	12	13	14	15				
ID		I1	12	13	14	15			
EX			I1	12	13	14	15		
MB				I1	12	13	14	15	
WB					I1	12	13	14	15

K stage	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9
IF	I1	12	13	14	15				
ID		I1	12	13	14	15			
EX			I1	12	13	14	15		
MB				11	12	13	14	15	
WB					I1	12	13	14	15

K stage	T1	T2	T3	T4	T5	Т6	T7	T8	Т9
IF	I1	12	13	14	15				
ID		11	12	13	14	15			
EX			I1	12	13	14	15		
МВ				I1	12	13	14	15	
WB					l1	12	13	14	15

K stage	T1	T2	T3	T4	T5	Т6	T7	T8	Т9
IF	I1	12	13	14	15				
ID		l1	12	13	14	15			
EX			\I1	12	13	14	15		
МВ				l1	12	13	14	15	
WB					l1	12	13	14	15

K stage	T1	T2	T3	T4	T5	Т6	T7	Т8	Т9
IF	I1	12	13	14	15				
ID		I1	12	13	14	15			
EX			l1	12	13	14	15		
МВ				11	12	13	14	15	
WB					I1	12	13	14	15

K stage	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9
IF	I1	12	13	14	15				
ID		I1	12	13	14	15			
EX			I1	12	13	14	15		
МВ				I1	12	13	14	15	
WB					11	12	13	14	15

K stage	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9
IF	l1	12	13	14	15				
ID		I1	12	13	14	15			
EX			I1	12	13	14	15		
MB				I1	12	13	14	15	
WB		5*1	*1		11	12	13	14	15
							(5-1)	*1	

- Rest will take 1 more than the previous instruction
- Execution time on pipeline processor: =Kstage * 1 instuction + (n-1) : = 5*1+4= 9 clocks
- Execution on a non-pipeline processor: =Kstage * n Instructions = 5*5= 25 clocks

Pipelined Execution

K stage	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9
IF	l1	12	13	14	15				
ID		I1	12	13	14	15			
EX			I1	12	13	14	15		
MB				I1	12	13	14	15	
WB		k*to	c*1		11	12	13	14	15
							(n-1)	*tc	

Number of stages= k Clock Cycle = tc Number of Instructions = n

- Execution time_{pipeline} = $k*tc*1 + (n-1)*tc=[k+(n-1)]t_c$
- ■Execution time_{unpipeline} = $n^* t_p = n^* k^* t_c$

Speedup vs # of Stages in Pipeline Processor

$$\frac{n\mathsf{t}_{\mathsf{p}}}{(k+n-1)\mathsf{t}c} \to \frac{n\mathsf{t}_{\mathsf{p}}}{(k-1+n)\mathsf{t}c}$$

If n is too big or as number of instructions increases n>k-1 will tend to n

Speedup (S) =
$$\frac{nt_p}{ntc}$$

Speedup (S)=
$$\frac{t_p}{tc}$$

Speedup (S) =
$$\frac{k*tc}{tc}$$
 Speedup (S) = k

Pipeline Execution

Compute the Execution time on 5 Stage processor (Pipeline vs Non Pipeline Processor):

Number of instructions = 100.

Cycle Time Tc= 60

Solution:

Execution Time on Pipeline Processor: =
$$K_{stage} * 1$$
 instruction *Tc + $(n-1)*$ Tc :
= $(5*1*60)+(99*60)=300+5940=6240$ clocks

Speedup vs # of Stages in Pipeline Processor

$$Speedup(S) = \frac{Execution Time on Unpipelined}{Execution Time on Pipelined}$$

$$Speedup(S) = \frac{30000}{6240}$$

$$\blacksquare Speedup(S) = 4.8 \approx 5$$

Theoretical Claim

Time taken
$$_{pipeline} = \frac{Time \ taken \ on \ unpipelined}{No.of \ pipeline \ stages}$$

Design issue 1

Clock Cycle Time of all the stages cannot be same!

Example

IF	ID	EXE	MEM	WB
300 ps	400 ps	350 ps	550 ps	100 ps
200 ps	150 ps	100 ps	190 ps	140 ps

Leads to imbalance latency

Solution:

Make Length of each stage equal to Length of Longest stage or slowest Stage

PIPELINE THROUGHPUT AND LATENCY

Uneven latency and Throughput= 1180

PIPELINE THROUGHPUT AND LATENCY

Evaluating 5-Stage Pipeline Processor

A 5 stage pipeline processor has stage delays as 150, 120, 160, 140 and 130 ns.

What is the time taken to execute 100 instructions.

What is the Speed up of pipeline processor?

Solution:

Execution on a non-pipeline processor: (150+120+160+140+130) * 100= 700*100=70000ns

Execution on a pipeline processor:

Slowest stage: Max(150,120,160,140,130)= 160ns Clock time Tc of each stage = 160 ns

> =(1*Tc*#stages)+((IC-1)*Tc) =(1*160*5)+(99*160) = 800+15840 = 16640 ns

Performance of 5-Stage Pipeline Processor

Execution on a non-pipeline processor

(150+120+160+140+130) * 100= 362*100=70000ns

Execution on a pipeline processor:

(1*160*5)+(99*160)= 800+15840= 16640ns

Speedup(S): 70000/16640= 4.2

Theoretical Claim

Time taken
$$_{pipeline} = \frac{Time \ taken \ on \ unpipelined}{No.of \ pipeline \ stages}$$

Performance of 5-Stage Pipeline Processor

$$16640 = \underline{(160*5*100)} = \underline{80000} \approx 16000$$
5

Design issue 2: Pipeline Register Overhead

- We shall refer to the pipeline registers that are set between two stages with the names of the stages. So, we will have IF/ID, ID/EX, EX/MEM and MEM/WB registers.
- They serve the purpose of transferring outputs produced in a phase to the subsequent phase in the multi-cycle implementation.
- These registers must be large enough to contain all data moving from one phase to the following one

Design issue 2: Pipeline Register Overhead

Pipeline overhead: combination of pipeline register delay and the clock skew.

- Pipeline registers delay: Setup time that triggers a write or when data input changes and propagation delay to the clock.
- Clock skew: Maximum delay between when the clock arrives at any two registers.

Evaluating 5-Stage Pipeline Processor With Register Overhead

A 5 stage pipeline processor has stage delays as 150, 120, 160, 140 and 130 ns.

The register overhead is 5 ns each.

What is the time taken to execute 100 instructions.

What is the Speed up of pipeline processor?

Solution:

Execution on a non-pipeline processor: (150+120+160+140+130) * 100= 700*100=70000ns

Execution on a pipeline processor:

Slowest stage: Max(150,120,160,140,130)= 160ns

Clock time Tc of each stage = 160 ns

Register overhead of each stage= 5ns

Clock time Tc of each stage = 165 ns

Execution on a pipeline processor: =(1*Tc*#stages)+((IC-1)*Tc) =(1*165*5)+(99*165) = 825+16335 = 17160 ns

Performance of 5-Stage Pipeline Processor

Execution on a non-pipeline processor

(150+120+160+140+130) * 100= 362*100=70000ns

Execution on a pipeline processor:

(1*165*5)+(99*165)= 825+15840= 17160ns

Speedup(S): 70000/171600= 4.07

Theoretical Claim

Time taken
$$_{pipeline} = \frac{Time \ taken \ on \ unpipelined}{No.of \ pipeline \ stages}$$

Performance of 5-Stage Pipeline Processor

$$17160 = (165*5*100) = 82500 \approx 16500$$
5

Next Session

What Else May Go Wrong?

THANK YOU

Dr. D. C. Kiran

Department of Computer Science and Engineering

dckiran@pes.edu

9829935135