1

CSC230

Intro to C++ Lecture 26

Outline

- □ Priority Queue
- □ Heap

Stacks and Queues as Lists

- Stack (LIFO) implemented as list
- -push(), pop() from front of list
- Queue (FIFO) implemented as list
- -push() on back of list, pop() from front of list
- All operations are?

Priority Queue

- Data items are Comparable
- Each element has its priority
- pop() returns the element with the highest priority
- break ties arbitrarily

Priority Queue Examples

- Scheduling jobs to run on a computer
- default priority = arrival time
- priority can be changed by operator
- Scheduling events to be processed by an event handler
- priority = time of occurrence
- Airline check-in
- first class, business class, coach
- FIFO within each class

Difference between Queue and Priority Queue

Traditional Queue:

- Push to the back
- Pop from the front
- Push/Pop do not care about the values

Priority Queue:

- Data are ordered
 - Increasing or decreasing
 - Hospital ER service
- Items can arrive in arbitrary order
- When remove an item, we always get the minimum or maximum depending on the implementation

Traditional Queue

Priority Queue

STL Priority Queue

- Decreasing-order by default
- Methods:
 - push(new_item)
 - pop(): removes
 - top() return top item
 - size()
 - empty()

```
// priority_queue::push/pop
#include <iostream>
#include <queue>
using namespace std;
int main ()
priority_queue<int> myPQ;
myPQ.push(10);
myPQ.push(80);
myPQ.push(15);
myPQ.push(30);
cout << "Popping out elements...";
while (!myPQ.empty()) {
cout << myPQ.top() << endl;</pre>
myPQ.pop();
return 0;
```

How about increasing order?

```
// priority_queue::push/pop
#include <iostream>
#include <queue>
using namespace std;
int main ()
 priority_queue<int,vector<int>,greater<int> > myPQ;
 myPQ.push(30);
 myPQ.push(100);
 myPQ.push(25);
 cout << "Popping out elements..." << endl;
 while (!myPQ.empty()) {
  cout << myPQ.top() << endl;
  myPQ.pop();
```

Data type of inserted data

Data type used by priority queue to store data

> Increasing order (less denotes decreasing order)

List-based Priority Queue

Unsorted list implementation

 Store the items of the priority queue in a list-based sequence, in arbitrary order

Performance:

- insertItem takes O(1) time since we can insert the item at the beginning or end of the sequence
- removeMin, minKey and minElement take O(n) time since we have to traverse the entire sequence to find the smallest key

sorted list implementation

 Store the items of the priority queue in a sequence, sorted by key

Performance:

- insertItem takes O(n) time since we have to find the place where to insert the item
- removeMin, minKey and minElement take O(1) time since the smallest key is at the beginning of the sequence

Priority Queues as Lists

- Maintain as unordered list
- push() puts new element at front?
 O(1)
 pop() must search the list?
 O(n)
- Maintain as ordered list
- push() must search the list?
 O(n)
 pop() gets element at front?
 O(1)
- In either case, $O(n^2)$ to process n elements

Can we do better?

Important Special Case

- Fixed number of priority levels 0,...,p − 1
- FIFO within each level
- Example: airline check-in
- push()— insert in appropriate queue O(1)
- pop()— must find a nonempty queue O(p)
- How to implement Priority Queue?

Heaps

- A heap is a concrete data structure that can be used to implement priority queues
- Gives better complexity than either ordered or unordered list implementation:

```
push(): O(log n)pop(): O(log n)
```

- O(n log n) to process n elements
- Do not confuse with heap memory, where C++ dynamically allocates space – different usage of the word heap

Heaps

- Binary tree with data at each node
- Satisfies the Heap Order Invariant:

The least or highest priority element of any subtree is found at the root of that subtree

 Size of the heap is "fixed" at n. (But can usually double n if heap fills up)

What is a heap?

- A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - Heap-Order: for every internal node v other than the root,
 key(v) ≥ key(parent(v))
 - Complete Binary Tree: let h be the height of the heap
 - for *i* = 0, ..., *h* 1, there are 2ⁱ nodes of depth *i*
 - at depth h 1, the internal nodes
 are to the left of the leaf nodes

 The last node of a heap is the rightmost internal node of depth h - 1

Height of a Heap

- Theorem: A heap storing n keys has height $O(\log n)$
- Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h-2 and at least one key at depth h-1, we have $n \ge 1+2+4+...+2^{h-2}+1$
 - Thus, $n \ge 2^{h-1}$, i.e., $h \le \log n + 1$

Heaps

Note: 19, 20 < 35: we can often find smaller elements deeper in the tree!

Examples of Heaps

- Ages of people in family tree
- parent is always older than children, but you can have an uncle who is younger than you (larger number will be on the root)
- Salaries of employees of a company
- bosses generally make more than subordinates, but a VP in one subdivision may
 make less than a Project Supervisor in a different subdivision

Balanced Heaps

These add two restrictions:

- 1. Any node of depth < d 1 has **exactly** 2 children, where d is the height of the tree
- implies that any two maximal paths (path from a root to a leaf) are of length d or d-1, and the tree has at least 2^d nodes
- All maximal paths of length d are to the left of those of length d – 1

Example of a Balanced Heap

Store in an Array or Vector

- Elements of the heap are stored in the array in order, going across each level from left to right, top to bottom
- The children of the node at array index n are found at 2n + 1 and 2n + 2
- The parent of node n is found at (n-1)/2

Store in an Array or Vector

children of node n are found at 2n + 1 and 2n + 2

Store in an Array or Vector

children of node n are found at 2n + 1 and 2n + 2

- Put the new element at the end of the array
- If this violates heap order because it is smaller than its parent, swap it with its parent
- Continue swapping it up until it finds its rightful place
- The heap invariant is maintained!

- Time is O(log n), since the tree is balanced
- size of tree is exponential as a function of depth
- depth of tree is logarithmic as a function of size

```
void ArrayMinHeap<T>::push(const T& item)
items_.push(item); rotateUp(items_.size()-1);
void rotateUp(int loc)
// could be implemented recursively
int parent = loc/2;
while(parent \geq 1 \&\&
items_[loc] < items_[parent] )</pre>
       swap(items_[parent], items_[loc]);
        loc = parent;
        parent = loc/2;
```

pop() (downheap)

- Remove the least element it is at the root
- This leaves a hole at the root fill it in with the last element of the array
- If this violates heap order because the root element is too big, swap it down with the smaller of its children
- Continue swapping it down until it finds its rightful place
- The heap invariant is maintained!

• Time is O(log n), since the tree is balanced

```
void ArrayMinHeap<T>::pop()
{ items_[1] = items_.back();
rotateDown(1);
}
```

```
void ArrayMinHeap<T>::rotateDown(int idx)
{
  if(idx == leaf node) return;
  int smallerChild = 2*idx; // start w/ left
  if(right child exists) {
  int rChild = smallerChild+1; if(items_[rChild]
  < items_[smallerChild])
  smallerChild = rChild;
} }
if(items_[idx] > items_[smallerChild]
) { swap(items_[idx], items_[smallerChild]);
  heapify(smallerChild);
} }
```


Bottom-up Heap Construction

- We can construct a
 heap storing n given
 keys in using a bottom up construction with
 log n phases
- In phase i, pairs of heaps with 2ⁱ-1 keys are merged into heaps with 2ⁱ⁺¹-1 keys

Heap-Sort

- Consider a priority queue with *n* items implemented by means of a heap
 - the space used is O(n)
 - methods push and pop take
 O(log n) time
 - methods size, isEmpty,
 minKey, and minElement take
 time O(1) time

- Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selectionsort

Exercise: Heap-Sort

 Heap-sort is the variation of PQ-sort where the priority queue is implemented with a heap

- Illustrate the performance of heap-sort on the following input sequence:
 - (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)

Priority Queue Sort Summary

PQ-Sort consists of n insertions followed by n removeMin ops

	Insert	RemoveMin	PQ-Sort Total
Insertion Sort (ordered sequence)	O(n)	O(1)	O(n ²)
Selection Sort (unordered sequence)	O(1)	O(n)	O(n ²)
Heap Sort (binary heap, vector-based implementation)	O(logn)	O(logn)	O(n logn)