МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Организация ЭВМ и систем»

Тема: Обработка вещественных чисел. Программирование математического сопроцессора.

Студент гр. 1303	Насонов Я.К.
Преподаватель	Ефремов М.А

Санкт-Петербург 2022 Цель работы.

Получить навыки программирования на языке Ассемблера. Изучить работу с вещественными числами на языке Ассемблера.

Задание.

Разработать подпрограмму на языке Ассемблера, обеспечивающую вычисление заданной математической функции cиспользованием математического сопроцессора. Подпрограмма должна вызываться из головной программы, разработанной на языке С. При этом должны быть обеспечены заданный способ вызова и обмен параметрами. Альтернативный вариант реализации: разработать на языке Ассемблера фрагмент программы, обеспечивающий вычисление заданной математической функции использованием математического сопроцессора, который включается по принципу in-line в программу, разработанную на языке C.

Выполнить трансляцию программы с подготовкой ее ассемблерной версии и отладочной информации. Для выбранного контрольного набора исходных данных прогнать программу под управлением отладчика. При этом для каждой команды сопроцессора следует фиксировать содержимое используемых ячеек памяти, регистров ЦП и численных регистров сопроцессора до и после выполнения этой команды. Проверить корректность выполнения вычислений для нескольких наборов исходных данных.

Вариант 15:

* function

Name poly - generates a polynomial from arguments

Usage double poly(double x, int n, double c []);

Prototype in math.h

Description poly generates a polynomial in x, of degree n, with coefficients c[0], c[1], ..., c[n].

For example, if n=4 the generated polynomial is $c[4].x^4$

$$+c[3].x^3+c[2].x^2]+c[1].x+c[0]$$

The polynomial is calculated using Horner's method:

polynom =
$$(..((x.c[n] + c[n-1]).x + c[n-2])..).x + c[0]$$

Return value poly returns the value of the polynomial as evaluated for the given x.

Выполнение работы.

На языке Си была разработана программа, в которой сначала происходит считывание необходимых данных от пользователя (значения х, значения массива констант coefficients[]). Далее на языке Ассемблера был разработан фрагмент программы, обеспечивающий вычисление заданной математической функции с использованием математического сопроцессора, который включается по принципу in-line в программу.

Сначала на вершину математического стека кладем значение x. Далее в цикле по количеству констант по методу Горнера вычисляем значение полинома: значение вершины математического стека (st(0)) умножается на следующий за ним элемент в стеке (st(1)) с помощью инструкции fmul. С помощью инструкции fadd складываем значение вершины математического стека с текущей константой (это значение присваивается вершине математического стека). Далее из верхушки стека записываем значение в переменную result с помощью инструкции fst.

Входные данные: x = 1.1 n = 3 constants = 1.1, 1.2, 1.3

Таблица 1 – результат прогона ассемблерного модуля в отладчике

Символический код команды	Содержимое регистров и ячеек памяти		
коминды	До выполнения	После выполнения	
fld qword ptr x	EIP = 005126C0 ST0 = +0.0000000000000000e+0000	EIP = 005126C3 ST0 = +1.1000000000000000e+0000	
	STAT = 0000 TAGS = FFFF	STAT = 3800 TAGS = 3FFF	
fldz	EIP = 005126C3	EIP = 005126C5	
		ST0 = +0.00000000000000000e+0000 ST1 = +1.1000000000000000e+0000	

		<u> </u>	
	STAT = 3800	STAT = 3000	
	TAGS = 3FFF	TAGS = 1FFF	
mov edi, amount	EDI = 00B6F5E0	EDI = 00000003	
	EIP = 005126C3	EIP = 005126C8	
mov esi, coefficients	ESI = 00B6F5F8	ESI = 00EB1280	
	EIP = 005126C8	EIP = 005126CB	
test edi, edi	EIP = 005126CB	EIP = 005126CD	
je skip	EIP = 005126CD	EIP = 005126CF	
mov ecx, edi	ECX = 00000000	ECX = 00000003	
fmul st(0), st(1)	EIP = 005126D1	EIP = 005126D3	
fadd qword ptr[esi + ecx * 8 -	EIP = 005126D3	EIP = 005126D7	
8]	TAGS = 1FFF	TAGS = 0FFF	
	ST0 = +0.000000000000000000000000000000000	ST0 = +1.300000000000000e+0000	
loop poly	EIP = 005126D7	EIP = 005126D1	
	ECX = 00000003	ECX = 00000002	
fmul st(0), st(1)	EIP = 005126D1	EIP = 005126D3	
	ST0 = +1.3000000000000000000e +00000	ST0 = +1.43000000000001e+0000	
	STAT = 3000	STAT = 3020	
fadd qword ptr[esi + ecx * 8 -	EIP = 005126D3	EIP = 005126D7	
8]	ST0 = +1.430000000000001e+0000	ST0 = +2.62999999999998e+0000	
loop poly	EIP = 005126D7	EIP = 005126D1	
	ECX = 00000002	ECX = 00000001	
fmul st(0), st(1)	EIP = 005126D1	EIP = 005126D3	
	ST0 = +2.629999999999998e+0000	ST0 = +2.893000000000002e+0000	
	STAT = 3020	STAT = 3220	
fadd qword ptr[esi + ecx * 8 -	EIP = 005126D3	EIP = 005126D7	
8]	ST0 = +2.893000000000002e+0000	ST0 = +3.993000000000003e+0000	
	STAT = 3220	STAT = 3020	
loop poly	EIP = 005126D7	EIP = 005126D9	
	ECX = 00000002	ECX = 00000000	

fst qword ptr result	EIP = 005126D9	EIP = 005126DC

Исходный код программы см. в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

1 4031	<u> Гаолица 2 — Результ</u> аты тестирования			
№	Входные данные	Выходные данные	Комментарии	
Π/Π				
1.	5	-807.1		
	4			
	1.4			
	4.8			
	2.7 -7.2			
2.	2	-6.3		
	2			
	9.9			
	-8.1			
3.	9.1	3281.91		
	4			
	1			
	2			
	3			
	4			

Выводы.

В ходе выполнения лабораторной работы были получены навыки программирования на языке Ассемблера.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab8.cpp

```
#include <iostream>
#include <stdlib.h>
using namespace std;
int main() {
double x;
cout << "Enter x:\n";</pre>
cin >> x;
int amount;
cout << "Enter amount of coefficients:\n";</pre>
cin >> amount;
double* coefficients = new double[amount];
cout << "Enter coefficients:\n";</pre>
for (int i = 0; i < amount; ++i) {
  cout << i + 1 << ") ";
  cin >> coefficients[i];
double result = 0;
__asm {
  fld qword ptr x; load a real number into the stack FPU
  fldz; load the +0.0 into the stack FPU
  mov edi, amount
  mov esi, coefficients
  test edi, edi
 je skip; amount = 0
  mov ecx, edi
  poly:
          fmul st(0), st(1)
          fadd qword ptr[esi + ecx * 8 - 8]
          loop poly
  skip:
          fst qword ptr result
};
cout << "Result: " << result;</pre>
delete[] coefficients;
return 0;
```