EE5184 機器學習 Machine Learning 2021 Fall

吳沛遠 Pei-Yuan Wu (主授) 李宏毅 Hung-Yi Lee 林宗男 Tsungnan Lin

National Taiwan University

EE5184 Machine Learning Syllabus (2021 Fall)

General Information

- 09:10-13:10, Friday, 博理113
 - ☐ Course Website (ppt slides/course videos) https://ntueeml.github.io/ml-website/
 - ☐ Facebook group: Machine Learning (2021, fall) https://www.facebook.com/groups/1029900681122058

□ Instructors

- 吳沛遠 (Pei-Yuan Wu) (主授)
 - Office: EE2-234
 - Email: peiyuanwu@ntu.edu.tw
 - Phone: (02)3366-4687
 - Office hours: 14:00-15:30 Friday
- 李宏毅 (Hung-Yi Lee)
- 林宗男 (Tsungnan Lin)

■ Teaching Assistants

- 李吉昌 r08922a27@ntu.edu.tw
- 李宗倫 b06901188@ntu.edu.tw
- 李彥儒 <u>b07901075@ntu.edu.tw</u>
- 舒泓諭 <u>r09943021@ntu.edu.tw</u>

Grading (Tentative)

- Programming Assignments 7% x 5
- Written Assignments 3% x 5
- Final project 20%
- Final exam 30%

Course Outline

- 1. Regression; Bias and Variance Errors
- 2. Probabilistic Generative Model; Logistic Regression
- 3. Dimensionality Reduction: Principle Component Analysis; Auto-Encoder; Neighbor Embedding
- 4. Semi-Supervised Learning
- 5. Neural Network Introduction: Gradient Decent; Back Propagation
- 6. Convolutional/Recurrent Neural Network
- 7. Ensemble
- 8. Support Vector Machine; Lagrange Duality
- 9. Expectation Maximization
- 10. Probably Approximately Correct Learning

■ Reference Books:

- Introduction to Machine Learning, Ethem Alpaydin, 2009, MIT Press
- Pattern Recognition and Machine Learning, Christopher M. Bishop, 2006, Springer
- Foundations of Machine Learning, M. Mohri, A. Rostamizadeh, and A. Talwalkar, MIT Press

Schedule (Tentative)

Week	Date	Lecture	Assignments
1	09/24	Introduction; Regression; Bias and Variance Errors	
2	10/01	Linear Model Classification: Probabilistic Generative Model, Logistic Regression	
3	10/08	Neural Networks: Introduction, Gradient Decent and Back Propagation, Tips, Implementation	HW1 out
4	10/15	Convolutional Neural Network (CNN) (看李宏毅教授教學影片) Dimensionality Reduction: Principle Component Analysis	HW1 due HW2 out
5	10/22	Auto encoder, Neighbor Embedding	
6	10/29	Ensemble: Random forest, AdaBoost	HW2 due HW3 out
7	11/05	Recurrent Neural Network	Final Project out
8	11/12	Expectation Maximization	HW3 due HW4 out
9	11/19	Semi-Supervised Learning	
10	11/26	Variational Auto-Encoder Support Vector Machine - Introduction	Final Proposal due
11	12/03	全校運動會停課	
12	12/10	Support Vector Machine - Optimization and Kernel Duality Theory of Constrained Optimization - Introduction	HW4 due HW5 out
13	12/17	Strong Duality Theorem Support Vector Machine: Formal dual form	
14	12/24	Probably Approximately Correct Learning	HW5 due
15	12/31	開國紀念日遇例假日補假	
16	01/07	期末考	
17	01/14	彈性教學 – 期末專題報告	
18	01/21	彈性教學 - 外賓演講	

評量方式 - 作業 (10% x 5)

- •沒有分組、每個人都要繳交。
- •繳交程式碼:
 - □ <u>程式碼須嚴格符合指定格式、套件、版本</u> 方可被助教順利執行。若經助教要求修改 後方能執行將被扣分甚至不予計分。
 - □以程式執行結果所達正確率為給分依據。

•課堂內競賽:

- □同學上傳程式執行結果到競賽專用平台 Kaggle, 以即時得知成果。
- □課堂內競賽成績優異的同學會被邀請在 課堂上發表,會有額外的加分。
- □課堂內競賽視同考試, 嚴禁任何作弊行為 , 例如:
 - ✔ 在機器學習過程中使用禁止使用的資料 ,如測試資料(視同考試攜帶小抄)
- ✔ 註冊多重分身參加比賽(視同考試請人 代考)

•繳交報告:

- □包含手寫作業、與程式作業問題。
- □繳交PDF電子檔。

• 嚴禁抄襲:

- □程式碼及報告均需獨力完成。若曾與人 討論需註明討論者(姓名、學號、參考資 料出處),否則需註明無討論者。
- □老師與助教若對程式碼或報告有抄襲疑 慮,將請作者親自解釋程式碼。
- □抄襲情節嚴重者將依校規處置。

• 助教時間:

- □由各作業負責助教於公布作業時宣布
- □由助教示範、講解作業實作方式
- □不一定要參加

• 負責助教:

- □ HW1: Linear regression (李宗倫、李彥儒)
- ☐ HW2: Logistic regression/
 Generative Model for Classification

(李宗倫、李彥儒)

- □ HW3: CNN (李宗倫、李吉昌)
- □ HW4: RNN (李吉昌、舒泓諭)
- □ HW5: PCA, Autoencoder (李吉昌、舒泓論)

□ Final: (李彥儒、舒泓諭)

助教信箱: ntueemlta2021@gmail.com

李吉昌

5

李宗倫

李彥儒

舒泓諭

評量方式 - 期末專題 (30%)

- •分組進行: 2~4人一組 □找不到隊友也沒關係, 會幫忙配對
- •11/05 公告數個題目給同學們選擇, 其餘規定同作業。
- •01/14 專題成果發表
- •個人成績將參考組內互評

評量方式 - 期末考 (30%)

• 日期: 01/07

•範圍: 本學期課程網站之所有教材

•實施方式: 筆試

•註: 若(因疫情影響)學校要求考試需以遠距方式進行, 本課程「可能」將期末考改為報告、作業、或競賽等方式進行(由老師決定)。

Facebook 社團

- •社團: "Machine Learning (2021, fall)"
 - https://www.facebook.com/groups/1029900681122058
 - 口有問題可以直接在 FB社團上發問
 - □ 如果有同學知道答案請幫忙回答
 - □ 請尊重助教個人臉書社交空間。除非助教允許,勿私訊助教。
- •有想法也可以在 FB社團上發言

競賽資訊

- <u>科技大擂台 測試資料集 Formosa Language Understanding Dataset</u> (FLUD)(1/2) 資料集 國網中心資料集平台 (nchc.org.tw)
- Kaggle
- Speech processing Universal PERformance Benchmark

SUPERB (superbbenchmark.org)