Cortex M0+

Figure 1: ARM processor family

Features

A low gate count processor that features:

- —The ARMv6-M Thumb® instruction set.
- —Thumb-2 technology
- —Optionally, an ARMv6-M compliant 24-bit SysTick timer.
- —A 32-bit hardware multiplier. This can be the standard single-cycle multiplier, or a 32-cycle multiplier that has a lower area and performance Implementation.
- —Low power sleep-mode entry

Features

- —The system interface supports either little-endian or byte invariant big-endian data accesses.
- —The ability to have deterministic, fixed-latency, interrupt handling.
- —Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling.
- —C Application Binary Interface compliant exception model.

Features

NVIC that features:

- —1, 2, 4, 8, 16, 24, or 32 external interrupt inputs, each with four levels of priority
- —dedicated Non-Maskable Interrupt (NMI) input
- —support for both level-sensitive and pulse-sensitive interrupt lines
- —optional Wake-up Interrupt Controller (WIC), providing ultra-low power sleep mode support.

Programmers Model

Operation Modes and States

- 1. Privileged Mode
 - a. Access to all part of the memories
- 2. Unprivileged access level
 - Access to restricted parts of the memories

3.

Figure 3. Pipeline stages in the Cortex-M0 processor

Register Bank

Register Bank

- → R0-R12
 - Registers R0-R12 are for general uses.
- → R13, Stack Pointer
 - ♠ R13 is the Stack Pointer. It is used for accessing the stack memory via PUSH and POP operations.
 - ◆ The Main Stack Pointer (MSP, or SP_main in ARM documentation) is the default Stack Pointer after reset, and is used when running exception handlers.
 - ◆ The Process Stack Pointer (PSP, or SP_process in ARM documentation) can only be used in Thread mode (when not handling exceptions).

Register Bank

- → R14, Link Register
 - ♦ R14 is the Link Register (LR). The LR is used for storing the return address of a subroutine or function call.
- → R15, Program Counter
 - ◆ R15 is the PC. It is readable and writeable. A read returns the current instruction address plus four (this is caused by the pipeline nature of the design).
- → PRIMASK Interrupt Mask Special Register
 - ◆ The PRIMASK register is a 1-bit wide interrupt mask register. When set, it blocks all interrupts apart from the Non-Maskable Interrupt (NMI) and the HardFault exception.
- → CONTROL Special Register
 - ◆ The stack pointer selection is determined by the processor mode as well as the configuration of the CONTROL register

xPSR, Combined Program Status Register

- → The APSR contains the ALU flags: N (negative flag), Z (zero flag), C (carry or borrow flag), and V (overflow flag). These bits are at the top 4 bits of the APSR.
- → The IPSR contains the current executing ISR (Interrupt Service Routine) number. Each exception on the Cortex-M0/M0+ processor has a unique associated ISR number
- → The EPSR on the Cortex-M0/M0b processor contains the T bit which indicates that the processor is in the Thumb state.

Memory System

Exceptions and Interrupts

Exception type	Exception number	Description		
Reset	1	Power on reset or system reset.		
NMI	2	Non-Maskable interrupt—highest priority exception that cannot be disabled. For safety critical events.		
HardFault	3	For fault handling-activated when a system error is detected.		
SVCall	11	Supervisor call—activated when SVC instruction is executed. Primarily for OS applications.		
PendSV	14	Pendable service (system) call—activate by writing to an interrupt control and status register. Primarily for OS applications.		
SysTick	15	System Tick timer exception — typically used by an OS for a regular system tick exception. The system tick timer (SysTick) is an optional timer unit inside the Cortex®-M processor.		
IRQ0 to IRQ31 ^b	16-47	Interrupts—can be from external sources or from on-chip peripherals.		

Exceptions and Interrupts

- Exceptions are events that cause changes to program control: when an exception occurred,
- Instead of continuing program execution, the processor suspends the current executing task
- and executes a part of the program code called the exception handler.
- After the exception handler is completed, it will then resume the normal program execution.

Nested Vectored Interrupt Controller

Flexible Interrupt Management

 In the Cortex-M processors, each external interrupt can be enabled, disabled, and can have its pending status set or clear by software.

Nested Interrupt Support

- When an exception occurs such as an external interrupt, the NVIC will compare the priority of this exception to the current level.
- o If the new exception has a higher priority, the current running task will be suspended
- Some of the registers will be stored on to the stack memory and the processor will start executing the exception handler of the new exception. This process is called "preemption."

Vectored Exception Entry

- When an exception occurs, the processor will need to locate the starting point of the corresponding exception handler.
- Interrupt Masking

ADC	ADD	ADR AND	ASR	B	CLZ
BFC	BFI	BIC CDP	CLREX	CBNZ CBZ	CMN
CMP			DBG	EOR	LDC
LDMIA	BKPT BLX	(ADC) (ADD) (ADR)	LDMDB	LDR	LDRB
LDRBT	BX CPS	(AND) (ASR) (B)	LDRD	LDREX	LDREXB
LDREXH	DMB	BL BIC	LDRH	LDRHT	LDRSB
LDRSBT	DSB	CMN CMP EOR	LDRSHT	LDRSH	LDRT
MCR	ISB	LDR (LDRB) (LDM)	LSL	LSR	MLS
MCRR	MRS	(LDRH) (LDRSB) (LDRSH)	MLA	MOV	MOVT
MRC	MSR	LSL LSR MOV	MRRC	MUL	MVN
NOP	NOP REV	(MUL) (MVN) (ORR)	ORN	ORR	PLD
PLDW	REV16 REVSH	POP PUSH ROR	PLI	POP	PUSH
RBIT	SEV SXTB	RSB SBC STM	REV	REV16	REVSH
ROR	SXTH UXTB	STR STRB STRH	RRX	RSB	SBC
SBFX	UXTH WFE	SUB SVC TST	SDIV	SEV	SMLAL
SMULL	WFI YIELD	CORTEX-M0	SSAT	STC	STMIA
STMDB		CONTEXTIO	STR	STRB	STRBT
STRD	STREX	STREXB STREXH	STRH	STRHT	STRT
SUB	SXTB	SXTH TBB	ТВН	TEQ	TST
UBFX	UDIV	UMLAL UMULL	USAT	UXTB	UXTH
WFE	WFI	YIELD IT		С	ORTEX-N