Lógica Aula 9

Leliane Nunes de Barros

2018

leliane@ime.usp.br

Prova da completude

A completude da LP diz que as regras da dedução natural são completas:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi \Longrightarrow \varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

"Sempre que $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vDash \psi$ for verdadeira, vai existir uma demonstração para o sequente $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$."

Combinando a completude com a correção temos a liberdade para escolher qual método utilizar:

- O 1o. envolve uma busca por uma demonstração e o 2o. envolve a computação da Tabela-Verdade.
- Ambos os métodos são intratáveis em geral, porém para problemas específicos, um método pode ser mais adequado que o outro.

Supondo que $\varphi_1,\varphi_2,\varphi_3,...,\varphi_n \vDash \psi$ é verdadeira, vamos dividir a prova da completude em 3 passos:

Supondo que $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$ é verdadeira, vamos dividir a prova da completude em 3 passos:

1.
$$\varphi_1, \varphi_2, ..., \varphi_n \models \psi \implies \qquad \models \varphi_1 \rightarrow (\varphi_2 \rightarrow ... (\varphi_n \rightarrow \psi)...))$$

Supondo que $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$ é verdadeira, vamos dividir a prova da completude em 3 passos:

1.
$$\varphi_1, \varphi_2, ..., \varphi_n \models \psi \implies \qquad \models \varphi_1 \rightarrow (\varphi_2 \rightarrow ... (\varphi_n \rightarrow \psi)...))$$

$$2. \models \chi \implies \vdash \chi$$

Supondo que $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \models \psi$ é verdadeira, vamos dividir a prova da completude em 3 passos:

1.
$$\varphi_1, \varphi_2, ..., \varphi_n \models \psi \implies \qquad \models \varphi_1 \rightarrow (\varphi_2 \rightarrow ... (\varphi_n \rightarrow \psi)...))$$

$$2. \models \chi \implies \vdash \chi$$

3.
$$\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow ... (\varphi_n \rightarrow \psi)...))$$
 \Longrightarrow $\varphi_1, \varphi_2, ..., \varphi_n \vdash \psi$

Prova da completude - Passo 1 (fácil!)

$$\varphi_1, \varphi_2, ..., \varphi_n \vDash \psi \implies \vDash \varphi_1 \rightarrow (\varphi_2 \rightarrow ...(\varphi_n \rightarrow \psi)...))$$

Prova da completude - Passo 1 (fácil!)

$$\varphi_1, \varphi_2, ..., \varphi_n \vDash \psi \implies \vDash \varphi_1 \rightarrow (\varphi_2 \rightarrow ... (\varphi_n \rightarrow \psi)...))$$

Supondo que a consequência lógica $\varphi_1, \varphi_2, ..., \varphi_n \models \psi$ seja verdadeira, queremos mostrar que $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow ... (\varphi_n \rightarrow \psi)...))$ é verdadeira, isto é, a fórmula é uma "tautologia".

Prova: Basta provar que a única valoração que a tornaria falsa, de acordo com a Tabela-Verdade da implicação, refutaria a suposição $\varphi_1, \varphi_2, ..., \varphi_n \models \psi$.

Análise da árvore!

Prova da completude - Passo 3 (fácil!)

$$\vdash \varphi_1 \to \big(\varphi_2 \to ... \big(\varphi_n \to \psi\big)...\big)\big) \quad \implies \quad \varphi_1, \varphi_2, ..., \varphi_n \vdash \psi$$

Prova da completude - Passo 3 (fácil!)

$$\vdash \varphi_1 \to (\varphi_2 \to ... (\varphi_n \to \psi)...)) \quad \implies \quad \varphi_1, \varphi_2, ..., \varphi_n \vdash \psi$$

Prova: Suponha que $\vdash \varphi_1 \to (\varphi_2 \to ... (\varphi_n \to \psi)...))$ seja verdadeira, i.e. existe uma demonstração Π usando a dedução natural. Então podemos aumentar essa demonstração adicionando as premissas $\varphi_1, \varphi_2, ..., \varphi_n$ no início e usar Modus Ponens até produzir ψ .

(prova alternativa: transformar suposições em premissas, abrir caixas e eliminar as fórmulas de introdução da implicação.)

$$\vdash (\neg p \to q) \to (\neg q \to p) \Longrightarrow \neg p \to q, \neg q \vdash p$$

Prova da completude - Passo 2 (mais difícil)

$$\vDash \chi \quad \implies \quad \vdash \chi$$

Prova da completude - Passo 2 (mais difícil)

$$\vDash \chi \implies \vdash \chi$$

(a) Para cada linha da tabela, um sequente: se p_i é T, $\overline{p_i} = p_i$, senão, $\neg p_i$.

$$\overline{p_1}, \overline{p_2}, ..., \overline{p_n} \vdash \chi$$

Prova da completude - Passo 2 (mais difícil)

$$\models \chi \implies \vdash \chi$$

(a) Para cada linha da tabela, um sequente: se p_i é T, $\overline{p_i} = p_i$, senão, $\neg p_i$.

$$\overline{p_1}, \overline{p_2}, ..., \overline{p_n} \vdash \chi$$

(b) Se todos os sequentes forem válidos então provamos:

$$\models \chi \implies \vdash \chi$$

Exemplo: $\vdash p \land q \rightarrow p$

Propriedades de fórmulas

Estudar outros métodos de prova (corretos) que utilizam fórmulas equivalentes mais simples.

Equivalência Lógica:

Definição

$$\varphi \equiv \psi \ \mathit{sse} \ \varphi \vDash \psi \ \mathit{e} \ \psi \vDash \varphi.$$

Equivalência Lógica:

Definição

$$\varphi \equiv \psi \text{ sse } \varphi \vDash \psi \text{ e } \psi \vDash \varphi.$$

•
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

Equivalência Lógica:

Definição

$$\varphi \equiv \psi \text{ sse } \varphi \vDash \psi \text{ e } \psi \vDash \varphi.$$

- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \land q \rightarrow r \equiv p \rightarrow (q \rightarrow r)$

Equivalência Lógica:

Definição

$$\varphi \equiv \psi \text{ sse } \varphi \vDash \psi \text{ e } \psi \vDash \varphi.$$

- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \land q \rightarrow r \equiv p \rightarrow (q \rightarrow r)$

Equivalência Lógica:

Definição

$$\varphi \equiv \psi \text{ sse } \varphi \vDash \psi \text{ e } \psi \vDash \varphi.$$

Exemplos:

- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \land q \rightarrow r \equiv p \rightarrow (q \rightarrow r)$

Pelo teorema da correção e completude:

Definição

$$\varphi \equiv \psi \ \mathit{sse} \ \varphi \vdash \psi \ \mathit{e} \ \psi \vdash \varphi.$$

Propriedade das fórmulas: Exemplos de Equivalência

Equivalences

Allow rewriting formulas to simplify reasoning.

Idempotence:
$$\phi \wedge \phi \equiv \phi$$
 $\phi \vee \phi \equiv \phi$

Commutativity:
$$\phi \wedge \psi \equiv \psi \wedge \phi$$
 $\phi \vee \psi \equiv \psi \vee \phi$

Associativity:
$$(\phi \wedge \psi) \wedge \eta \equiv \phi \wedge (\psi \wedge \eta)$$

$$(\phi \vee \psi) \vee \eta \equiv \phi \vee (\psi \vee \eta)$$

Absorption:
$$\phi \wedge (\phi \vee \eta) \equiv \phi \qquad \phi \vee (\phi \wedge \eta) \equiv \phi$$

Distributivity:
$$\phi \land (\psi \lor \eta) \equiv (\phi \land \psi) \lor (\phi \land \eta)$$

 $\phi \lor (\psi \land \eta) \equiv (\phi \lor \psi) \land (\phi \lor \eta)$

deMorgan Laws:
$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi$$

 $\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$

Miscellaneous:
$$\phi \rightarrow \psi \equiv \neg \phi \lor \psi \quad \neg \neg \phi \equiv \phi$$

Propriedade das fórmulas: Validade

Definição

$$\varphi$$
 é válida sse $\models \varphi$.

$$\varphi$$
 é válida $\Longleftrightarrow \varphi$ é uma tautologia

$$p \land q \rightarrow p \in r \lor \neg r$$

$$\varphi \lor p \lor \neg p \lor \psi$$
 (generalizando)

Propriedade das fórmulas: Satisfatibilidade

Satisfiabilidade: φ é satisfatível sse φ é verdadeira para algum valor verdade de seus átomos.

$$(\varphi$$
 é satisfatível sse $\neg \varphi$ não é válida)

Exemplo: $p \rightarrow q$ é satisfatível mas não é válida.

Propriedade das fórmulas: verificação

Objetivo: criar uma abordagem de prova mais mecânica (algoritmica).

- Tabelas-Verdade são muito custosas: 2^n linhas para n átomos.
- Dedução Natiural: a escolha de regras não é trivial.

Como verificar propriedades de fórmulas usando métodos mais simples do que o método de dedução natural?

Uso de equivalências para transformar fbfs em uma forma mais conveniente.

Literal: um átomo ou sua negação.

$$L ::= p | \neg p$$

Literal: um átomo ou sua negação.

Cláusula: disjunção de literais.

$$L := p | \neg p$$

$$D ::= L \big| L \vee D$$

Literal: um átomo ou sua negação.

 $L ::= p | \neg p$

Cláusula: disjunção de literais.

 $D ::= L \big| L \vee D$

CNF: conjunção de cláusulas.

 $C ::= D \big| D \wedge C$

Literal: um átomo ou sua negação.

 $L ::= p | \neg p$

Cláusula: disjunção de literais.

 $D ::= L \big| L \vee D$

CNF: conjunção de cláusulas.

 $C := D|D \wedge C$

•
$$(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$$
 (CNF)

Literal: um átomo ou sua negação.

 $L ::= p | \neg p$

Cláusula: disjunção de literais.

 $D ::= L \big| L \vee D$

CNF: conjunção de cláusulas.

 $C := D|D \wedge C$

•
$$(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$$
 (CNF)

•
$$(p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$$
 (CNF)

$$L ::= p | \neg p$$

$$D ::= L|L \vee D$$

CNF: conjunção de cláusulas.

$$C := D|D \wedge C$$

•
$$(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$$
 (CNF)

•
$$(p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$$
 (CNF)

•
$$(\neg(p \lor q) \lor r) \land (q \lor r)$$
 (não é uma CNF)

Literal: um átomo ou sua negação.

$$L ::= p | \neg p$$

Cláusula: disjunção de literais.

 $D ::= L|L \vee D$

CNF: conjunção de cláusulas.

 $C := D|D \wedge C$

- $(\neg q \lor p \lor r) \land (\neg p \lor r) \land q$ (CNF)
- $(p \lor r) \land (\neg p \lor r) \land (p \lor \neg r)$ (CNF)
- $(\neg(p \lor q) \lor r) \land (q \lor r)$ (não é uma CNF)
- $\neg(\varphi \rightarrow \psi)$ (não é uma CNF)

Por que CNF?

1. Uma fórmula em CNF é válida sse todas as suas cláusulas são válidas.

Por que CNF?

- 1. Uma fórmula em CNF é válida sse todas as suas cláusulas são válidas.
- 2. Uma cláusula é válida sse ela contém um átomo e sua negação.

Transformar em CNF - Tabela Verdade

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \vee \neg p$	$(p \to \neg q) \to (q \vee \neg p)$
T	T	F	F	F	T	T
T	F	F	T	T	F	F
F	T	T	F	T T	T	T
F	F	T	T	T	T	Τ

Transformar em CNF - Tabela Verdade

p	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$q \vee \neg p$	$(p \to \neg q) \to (q \vee \neg p)$
T	T	F	F	F	T	Т
T	F	F	T	T	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	Т

$$v((p \rightarrow \neg q) \rightarrow (q \lor \neg p) = F$$
 apenas quando $v(p) = T$ e $v(q) = F$

Transformar em CNF - Tabela Verdade

						$(p \to \neg q) \to (q \vee \neg p)$
T	T	F	F	F	T	T
T	F	F	T	T	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

$$v((p \to \neg q) \to (q \lor \neg p) = F$$
 apenas quando $v(p) = T$ e $v(q) = F$
$$(p \to \neg q) \to (q \lor \neg p) \equiv \neg p \lor q$$

1. Eliminar \rightarrow : $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$

- 1. Eliminar \rightarrow : $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$
- 2. Mover ¬ para dentro: ¬ $(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$ e ¬ $(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$

- 1. Eliminar \rightarrow : $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$
- 2. Mover para dentro: $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$ e $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- 3. Eliminar dupla negação: $\neg\neg\varphi\equiv\varphi$

- 1. Eliminar \rightarrow : $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$
- 2. Mover ¬ para dentro: ¬ $(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$ e ¬ $(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- 3. Eliminar dupla negação: $\neg\neg\varphi \equiv \varphi$
- 4. Distribuir \vee e \wedge : $\varphi \vee (\psi \wedge \chi) \equiv (\varphi \vee \psi) \wedge (\varphi \vee \chi)$