0.1 Blatt 2. Aufgabe 3

Der L^p isometrisch-isomorph zum ℓ^p , d.h., dass wesentliche Struktur und Eigenschaften äquivalent zwischen beiden Räumen erhalten bleibt ist. Damit sollten sich die Beweise für die folgenden Eigenschaften für ℓ^1 automatisch auch auf L^1 auswirken.

1)
$$(f * g) * h = f * (g * h)$$

2)
$$f * g = g * f$$
.

3)
$$f \in \ell^(\mathbb{Z}), g \in \ell^q(\mathbb{Z})$$
. Dann ist $f * g \in \ell^r(Z)$ mit $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}, p, q, r \geq 1$ und

$$||f*g||_{L^r} \leq ||f||_{L^p} \cdot ||g||_{L^q}$$

4)
$$\tilde{f} * \tilde{g} = \tilde{f} * g$$