

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ТЕХНОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Кафедра информационных технологий и электронного обучения

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Численное интегрирование»

По дисциплине: Вычислительная математика

(наименование учебной дисциплины согласно учебному плану)

Зав. кафедры ИТиЭО д-р пед.наук.:

Власова Е.З

Выполнили студенты 2 курса

Бережной М. Панасюженкова О. Вольных М. Щербинин А.

Постановка задачи: вычислить определенный интеграл, используя различные численные методы и алгоритмы их реализации. Провести сравнительный анализ полученных результатов. Сделать вывод.

Оборудование: ПК, язык программирования JavaScript, HTML, CSS.

Математическая модель:
$$\int_1^2 \frac{sin(x)}{x^\pi}$$

Часть 1. Разработать программный модуль «Меню», который включает в себя следующие методы вычисления определенных интегралов:

- 1) Метод прямоугольников левых частей
- 2) Метод прямоугольников правых частей
- 3) Метод трапеций
- 4) Метод парабол

Список идентификаторов:

Имя переменной	Тип	Значение
a	number	Нижний предел
		интегрирования
b	number	Верхний предел
		интегрирования
n	number	Кол-во разбиений
h	number	Значения шага
temp	number	Промежуточная
		переменная
F	Function	Функция вычисления
sum	number	Сумма вычислений
result1	number	Результат
temp_simps2	number	Промежуточная
		переменная
temp_simps2	number	Промежуточная
		переменная
i	number	Параметр цикла
j	number	Параметр цикла
Shag	text	Выбранный метод шага
Meth	text	Выбранный метод
		вычисления
ch	number	Промежуточная
		переменная
nch	number	Промежуточная
		переменная

IN	number	Промежуточная	
		переменная	
I2N	number	Промежуточная	
		переменная	
R	number	Точность вычисления	
E	Number	Вводимая точность	
		вычислений	
inst	text	Инструкция для	
		выполнения	
		вычислений	

Меню при прямом шаге:

Меню при переменном шаге:

Код меню (html):

```
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
  <style>

  </style>
</head>
```

```
<body>
 <link href='Vichis_int_Inst.css' rel='stylesheet' type='text/css'>
<h1>Введите интеграл</h1>
<h3><a href="..\menu.html" > Обратно в меню</a></h3>
<selection class="container">
 <div class="dropdown">
   <select class="dropdown" id="method">
     <option value="type left">Meтод левых прямоугольников</option>
     <option value="type_right">Метод правых прямоугольников
     <option value="type_trapez">Метод трапеций</option>
     <option value="type_simps">Метод симпсона</option>
   </select>
 </div>
 <div class="dropdown">
   <select class="dropdown" id="Shag">
     <option value="type pram">прямой шаг</option>
     <option value="type_poper">переменный шаг</option>
   </select>
 </div>
</selection>
<div class="calculator">
 <div class="calculator__integral integral">
   <div class="integral__title">Интеграл:</div>
   <input type="text" value="" id="inst" class="integral input">
 </div>
 <div class="calculator limits limits">
   <div class="limits lower lower-limit">
     <div class="lower-limit title">Нижний предел:</div>
     <input type="text" value = "" id="a" class="lower-limit__input"></input>
   </div>
   <div class="limits upper upper-limit">
     <div class="upper-limit title">Верхний предел:</div>
     <input type="text" value = "" id="b"></input>
   </div>
 </div>
 <div class="calculator__step step">
   <div class="step accuracy step-accuracy">
     <div class="step-accuracy title">Точность для переменного шага:</div>
     <input type="number" value="" id="E" class="step-accuracy__input">
   </div>
   <div class="step quantity step-quantity">
     <div class="step-quantity__title">Кол-во шагов:</div>
     <input type="number" value="" id="n" class="step-quantity input">
   </div>
 </div>
 <div class="calculator__answer answer">
   <div class="answer title">OTBeT:</div>
   <input type="number" value="" id="result1" class="answer__field">
```

```
</div>
  <button id="bt" class="calculator__calculate">Вычислить</button>
</div>
<script defer src="script.js"></script>
</body>
</html>
```

Код меню (css):

```
@import
url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro&display=swap');
body {
   margin: 0;
   width: 100vw;
   height: 100vh;
    font-family: 'Source Sans Pro', sans-serif;
    background: url("фон.jpg");
.container {
    display: flex;
    flex-direction: row;
.dropdown {
   margin-right: 0.5rem;
.function-input, .parameter-select, .precision-input {
    display: flex;
   flex-direction: row;
    width: 100%;
    justify-content: space-between;
.function-input {
    font-size: 1.5rem;
.calculator {
    width: 30vw;
    margin-top: 1rem;
.calculator__integral, .limits__lower, .limits__upper, .step__quantity,
.calculator__answer {
   display: flex;
   flex-direction: row;
    justify-content: space-between;
```

```
.step__accuracy {
   display: none;
   flex-direction: row;
   justify-content: space-between;
.calculator__limits, .calculator__step {
   display: flex;
   flex-direction: column;
   margin-top: 1rem;
   gap: 0.3rem;
.calculator__answer {
   display: flex;
   flex-direction: row;
   justify-content: space-between;
   margin-top: 1rem;
.calculator__calculate {
   width: 100%;
   padding: 0.5rem;
   margin-top: 0.5rem;
   appearance: none;
   border-style: solid;
   border-color: hsl(123, 65%, 50%);
   border-width: 0.2rem;
   border-radius: 1rem;
   background-color: hsla(0, 0%, 0%, 0);
.calculator calculate:hover {
   background-color: hsl(123, 65%, 50%);
.calculator__calculate:active {
   background-color: hsl(347, 65%, 50%);
.answer {
   display: flex;
   flex-direction: row;
   align-items: center;
.answer__title {
   margin-right: 0.5rem;
```

Код вычисления интеграла при прямом шаге методом левых частей прямоугольника:

```
if(Shag === "type_pram"){
    if(Meth==="type_left"){
        const h = (b - a) / n;
        let sum = 0;
        for(let i = 0; i < (n-1); i++) {
            const temp = F(a + (h * i))
            sum += temp
        }
        const result1 = sum * h;
        document.querySelector('#result1').value = result1;
    }
}</pre>
```

Код вычисления интеграла при прямом шаге методом правых частей прямоугольника:

```
else{
    if(Meth==="type_right"){
        const h = (b - a) / n;
        let sum = 0;
        for(let i = 1; i < n; i++) {
            const temp = F(a + (h * i))
            sum += temp
        }
        const result1 = sum * h;
        document.querySelector('#result1').value = result1;
    }
}</pre>
```

Код вычисления интеграла при прямом шаге методом трапеций:

```
else{
    if(Meth==="type_trapez"){
        const h = (b - a) / n;
        let sum = (F(a)+F(b))/2;
        for(let i = 1; i < (n-1); i++) {
            const temp = F(a + (h * i))
            sum += temp
        }
        const result1 = sum * h;
        document.querySelector('#result1').value = result1;
    }</pre>
```

Код вычисления интеграла при прямом шаге методом сипсона:

```
else{
   if(Meth==="type_simps"){
   const h = (b - a) / n;
    let sum = F(a)+F(b);
   let nch = 0;
   let ch = 0;
```

```
let i = a + h;
do {
    const temp_simps1 = F(i)
    nch += temp_simps1
    i += 2 * h
} while(i < (b - h))
let j = a + 2 * h;
do {
    const temp_simps2 = F(j)
    ch += temp_simps2
    j += 2 * h
} while(j < (b - h))

const result1 = (sum + 2 * ch + 4 * nch) * h / 3;
document.querySelector('#result1').value = result1;
}
}</pre>
```

Код вычисления интеграла при переменном шаге методом левых частей прямоугольника:

```
else{
        if(Meth === "type_left"){
          let IN = 0
          let I2N = 0
          let R = 1
          let h = (b - a) / n;
          while(R > E){
            let sum = 0;
            let x = a
          while(x <= b - h) {
            const temp = F(x)
            sum += temp
            x += h
            I2N = h * sum
            R = Math.abs(I2N - IN)
            IN = I2N
            h = h / 2
        const result1 = I2N;
        document.querySelector('#result1').value = result1;
```

Код вычисления интеграла при переменном шаге методом левых частей прямоугольника:

```
if(Meth === "type_right"){
```

```
let IN = 0
let I2N = 0
let R = 1
let h = (b - a) / n;
while(R > E){
 let sum = 0;
 let x = a + h
while(x <= b) {
 const temp = F(x)
 sum += temp
  x += h
 I2N = h * sum
  R = Math.abs(I2N - IN)
 IN = I2N
const result1 = I2N;
document.querySelector('#result1').value = result1;
```

Результат работы программы:

Метод левых прямоугольников 🗸 прямой шаг	•
Интеграл:	sin(x)/x^pi
Нижний предел:	1
Верхний предел:	2
Кол-во шагов:	1000
Ответ:	0,3384655095821232
Вычислить	

Метод трапеций	∨ прямой шаг	~
Интеграл:		sin(x)/x^pi
Нижний предел:		1
Верхний предел:		2
Кол-во шагов:		1000
Ответ:		0,3380962924869686
	Вычислить	
Метод левых прямоугольнико	рв 🕶 переменный шаг	v
Метод левых прямоугольнико	рв 🕶 переменный шаг	v
	ов 🕶 переменный шаг	sin(x)/x^pi
Интеграл:	ов 🕶 переменный шаг	
Интеграл: Нижний предел:	ов ✔ переменный шаг	sin(x)/x^pi
Интеграл: Нижний предел: Верхний предел:		sin(x)/x^pi
Метод левых прямоугольнико Интеграл: Нижний предел: Верхний предел: Точность для переменного Кол-во шагов:		sin(x)/x^pi 1 2
Интеграл: Нижний предел: Верхний предел: Точность для переменного		sin(x)/x^pi 1 2 0.0001

	10	100	500	1000		
Прямоугол.	0,36409799482362204	0,3408558766876671	0,3387315350959998	0,3384655095821232		
лев. пост.						
шаг						
Прямоугол.	0,29254880965007657	0,3334926267791458	0,33725550426009077	0,33772728458746376		
прав. Пост.						
шаг						
Трапеции	0,32717628530817144	0,33716370573612203	0,3379931009056908	0,3380962924869686		
пост. шаг						
Симпсон	0,32141663110412527	0,33679743553752894	0,33792349911366676	0,3380617193028261		
пост. шаг						
Прямоугол.	0,3382026298856429	0,33820659195469094	0,33821091881180176	0,33821091881180176		
лев. перем.	Точность e=10^(-5)	Точность e=10^(-5)	Точность e=10^(-5)	Точность e=10^(-5)		
шаг						
Прямоугол.	0,33818785108012767	0,33819216941191144	0,33819200169326535	0,33819200169326535		
прав.	Точность e=10^(-5)	Точность e=10^(-5)	Точность e=10^(-5)	Точность e=10^(-5)		
перем. шаг						

Выводы: в ходе выполнения лабораторной работы были реализованы алгоритмы для нахождения значения определенного интеграла различными численными методами. Результат вычисления изменяется в зависимости от заданного количества разбиения. При увеличении количества разбиений результат вычисления будет более точным. Алгоритм с переменным шагом, не смотря на свою высокую точность с маленьким кол-вом разбиений выдает все более точный результат с увеличением числа разбиений, аналогично ранее изученным алгоритмам.