Etude d'une famille de suites récurrentes

Dans tout ce problème a désigne un réel.

On se propose d'étudier les suites réelles $(u_n)_{n\in\mathbb{N}}$ vérifiant une relation de récurrence du type :

Pour tout
$$n$$
 de \mathbb{N} , $u_{n+1} = au_n + P(n)$

où P est un polynôme.

Le \mathbb{R} - espace vectoriel des suites réelles est noté $\mathbb{R}^{\mathbb{N}}$.

Un élément de $\,\mathbb{R}^{\,\mathbb{N}}\,$ est noté indifféremment $\,(u_n)_{n\in\mathbb{N}}\,$ ou $\,u$.

La partie I étudie le cas où P est constant.

La partie II étudie le cas où $a \neq 1$.

La partie III étudie le cas où a = 1.

Partie I

Dans cette partie, on pose $E_a^{(0)} = \left\{ u \in \mathbb{R}^{\mathbb{N}}; \exists b \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+1} = au_n + b \right\}$.

- 1. Soit $u\in E_a^{(0)}$. Il existe donc b réel tel que pour tout n de $\mathbb N$: $u_{n+1}=au_n+b$. Montrer l'unicité de b. On notera $b=b_u$ pour $u\in E_a^{(0)}$.
- 2.a Déterminer $E_1^{(0)}$.
- 2.b Déterminer $E_0^{(0)}$.

Dans le reste de cette partie, a est supposé différent de 1.

- 3. Montrer que $E_a^{(0)}$ est un \mathbb{R} espace vectoriel.
- 4. Soit x la suite constante égale à 1 (pour tout n de $\mathbb N$, $x_n=1$) et soit y la suite définie, pour tout n de $\mathbb N$, par : $y_n=a^n$.

Montrer que (x,y) est une famille libre de $E_a^{(0)}$. On précisera les valeurs de b_x et b_y .

- 5. Soit $u \in E_a^{(0)}$.
- 5.a Montrer qu'il existe $(\lambda,\mu)\in\mathbb{R}^2$ unique tel que $\begin{cases} \lambda x_0 + \mu y_0 = u_0 \\ \lambda x_1 + \mu y_1 = u_1 \end{cases}.$
- 5.b Montrer que pour λ et μ définis à la question précédente, pour tout n de $\mathbb N$, $u_n=\lambda x_n+\mu y_n\,.$
- 5.c Que peut-on en conclure ?
- 6. Déterminer $E_a^{(0)}$. On donnera en particulier la dimension de $E_a^{(0)}$.

Partie II

Dans cette partie, on suppose $a \neq 1$.

On fixe un entier naturel p. On note $\mathbb{R}_p[X]$ le \mathbb{R} - espace vectoriel des polynômes à coefficients réels de degrés inférieurs ou égaux à p.

On pourra confondre polynôme et fonction polynomiale.

On pose
$$E_a^{(p)} = \left\{u \in \mathbb{R}^{\mathbb{N}}; \exists P \in \mathbb{R}_p[X], \forall n \in \mathbb{N}, u_{n+1} = au_n + P(n)\right\}$$

- 1.a On considère l'application φ de $\mathbb{R}_p[X]$ dans \mathbb{R}^{p+1} définie par : $\varphi(P) = (P(0), P(1), ..., P(p))$). Montrer que φ est un isomorphisme de \mathbb{R} espaces vectoriels.
- $\begin{array}{ll} \text{1.b} & \text{Soit } u \in E_a^{(p)} \text{. Il existe } P \in \mathbb{R}_{\ p}\big[X\big] \text{ tel que}: \ \forall n \in \mathbb{N}, u_{n+1} = au_n + P(n) \text{ .} \\ & \text{Montrer l'unicité de } P \text{. On notera } P = P_u \text{ pour } u \in E_a^{(p)} \text{.} \end{array}$
- 2. Montrer que $E_a^{(p)}$ est un \mathbb{R} espace vectoriel.

- 3. Montrer que l'application θ définie sur $E_a^{(p)}$ par $\theta(u) = P_u$ est une application linéaire de $E_a^{(p)}$ dans $\mathbb{R}_p[X]$.
- 4. Déterminer $\ker \theta$ (noyau de θ).
- 5. Pour $k \in \mathbb{N}$, on pose $Q_k = (X+1)^k aX^k$.
- 5.a Quel est le degré de Q_k ?
- 5.b Montrer que la famille $(Q_0, Q_1, ..., Q_p)$ est une base de $\mathbb{R}_p[X]$.
- 6.a Montrer que pour tout k dans $\{0,1,...,p\}$, Q_k est dans l'image de θ , notée ${\rm Im}\,\theta$.
- 6.b Que peut-on en conclure?
- 7. Déduire des questions précédentes la dimension de $E_a^{(p)}$.
- 8. Pour $k \in \left\{0,1,\ldots,p\right\}$, on pose $x^{(k)}$ la suite définie, pour tout n de \mathbb{N} , par : $x_n^{(k)} = n^k$. On rappelle que y est la suite définie, pour tout n de \mathbb{N} , par : $y_n = a^n$. Montrer que $(x^{(0)},\ldots,x^{(p)},y)$ est une base de $E_a^{(p)}$.
- 9. Application : déterminer la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant : $\begin{cases} \forall n\in\mathbb{N}, u_{n+1}=2u_n-2n+5\\ u_0=-2 \end{cases}.$

Partie III

Dans cette partie, on suppose que a = 1.

- 1. En adaptant les résultats obtenus à la partie précédente, déterminer : $E_1^{(p)} = \left\{u \in \mathbb{R}^{\mathbb{N}}; \exists P \in \mathbb{R}_p[X], \forall n \in \mathbb{N}, u_{n+1} = u_n + P(n)\right\}.$
- 2. Application : déterminer la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant : $\begin{cases} \forall n\in\mathbb{N}, u_{n+1}=u_n-6n+1\\ u_0=-2 \end{cases}$