Теми практичних занять з курсу

«Диференціальні рівняння» на 2020 – 2021 н.р. для студентів факультету комп'ютерних наук та кібернетики

(спеціальність «Системний аналіз» – напрям підготовки 6.040303 бакалавр, 56 год. лекцій, 56 год. практичних)

I семестр

Заняття 1. Тема: Диференціальні рівняння 1-го порядку, розв'язані відносно похідної. Рівняння з відокремлюваними змінними.

Рекомендовані приклади для аудиторної роботи

1.
$$(y^2-1)(x+2)dx-x^2ydy=0$$
.

3.
$$xy - (x^2 + 1)y' = 0$$
; $M(0;1)$.

5.
$$x^2 dx + y^3 e^{x+y} dy = 0$$
.

7.
$$\frac{e^x-1}{e^y}=e^{e^y}(1+e^x)y'$$
.

9.
$$x^2y' - \cos 2y = 1$$
; $y(+\infty) = 9\pi/4$.

2.
$$\sec^2 x \, tg \, y \, dx + \sec^2 y \, tg \, x \, dy = 0$$
.

4.
$$\frac{dy}{dx} + \frac{x^3(y-1)^3}{(x+1)y} = 0$$
.

6.
$$y^{-3} \ln \ln x dx + x e^{y^2} dy = 0$$
.

8.
$$y' - y = 2x - 3$$
.

10.
$$y' = \sqrt{4x + 2y - 1}$$
.

Рекомендовані приклади для домашнього завдання

1.
$$2x(1+y^2)dx + y(1+x^2)dy = 0$$
; $M(1,0)$.

3.
$$ydx + (\sqrt{xy} - \sqrt{x})dy = 0$$
; $M(1;1)$.

$$5. \left(\frac{\cos x}{\ln y}\right)^2 dx + \frac{y}{x^2} dy = 0.$$

7.
$$3y^2y' + 16x = 2xy^3$$
; $y(x)$ обмежене при $x \to \infty$.

2.
$$\frac{dy}{dx} = e^{x+y}$$
; $M(0;0)$.

4.
$$y' = \frac{\sin(\ln x)}{\cos(\ln y)}.$$

6.
$$\frac{1 - \ln^2 y}{x \ln y} dx + \frac{\sqrt{3 - \ln^2 x}}{y} dy = 0.$$

8.
$$y' = \cos(y - x)$$
.

Заняття 2, 3. Тема: Інтегровані типи диференціальних рівнянь 1-го порядку, розв'язані відносно похідної. Однорідні рівняння та зведені до них.

Рекомендовані приклади для аудиторної роботи

1.
$$(y + \sqrt{x^2 - y^2})dx - xdy = 0$$
.

3.
$$(2x+3y)dx + (x+2y)dy = 0$$
.

5.
$$(y^3 + 2x^2y)dx - (2x^3 + 2xy^2)dy = 0$$
.

7.
$$(x+y+1)dx + (2x+2y-1)dy = 0$$
.

9.
$$y(x^2y^2+1)dx+(x^2y^2-1)xdy=0$$
.

11.
$$(xy^2 - y)dx - (x^3y^2 - 3x^2y + 3x)dy = 0$$
.

2.
$$2xvdx + (v^2 - x^2)dv = 0$$
; $M(1;1)$

4.
$$xy' - x\cos\frac{y}{x} - y = 0$$
.

6.
$$(6x + y - 1)dx + (4x + y - 2)dy = 0$$
.

8.
$$\frac{dy}{dx} = 2(\frac{y+2}{x+y-1})^2$$
.

10.
$$xydx + (y^4 - x^2)dy = 0$$
.

12.
$$(y + y\sqrt{x^2y^4 - 1})dx + 2xdy = 0$$
.

Рекомендовані приклади для домашнього завдання

1.
$$xy' = y(1 + \ln y - \ln x)$$
.

2.
$$xdy - (\sqrt{x^2 + y^2} + y)dx = 0$$
.

3. $(xye^{\frac{x}{y}} + y^2)dx - x^2e^{\frac{x}{y}}dy = 0$.

5. $(x^3 + 3xy^2)dx + (2y^3 + 3x^2y)dy = 0$.

7. (x+2y+1)dx + (2x+4y+3)dy = 0.

9. $(xy^2 - y)dx - (x^3y^2 - 3x^2y + 3x)dy = 0$.

4. $(6xy + 5y^2)dx + (3x^2 + 10xy - y^2)dy = 0$.

6. (x-2)dx + (y-2x+1)dy = 0.

8. $y^3 dx + 2(x^2 - xy^2) dy = 0$.

10. $2(\sqrt{x^4y^2+1}-x^2y)dx-x^3dy=0$.

Заняття 4. Тема: Інтегровані типи диференціальних рівнянь 1-го порядку, розв'язані відносно похідної. Лінійні неоднорідні рівняння. Метод варіації довільної сталої. Рівняння Бернуллі.

Рекомендовані приклади для аудиторної роботи

 $1. \ \frac{dy}{dx} - 2xy = 1.$

3. $\frac{dy}{dx} - y = 2x - x^2$.

5. $y' \sin x - y = 2 \sin^2 \frac{x}{2}$.

7. $x\cos x \frac{dy}{dx} + y(x\sin x + \cos x) = 1.$

9. $y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$.

 $11. \cos x \frac{dy}{dx} - y \sin x = y^4.$

4. $xy' + y = x \cos x$; $M(\pi/2;1)$.

8. $\frac{1}{y}\frac{dy}{dx} + (2-x)\ln y = x(e^{-2x} + e^{\frac{x^2}{2}})$

10. y'(x + ctgy) = 1.

Рекомендовані приклади для домашнього завдання

1. $\frac{dy}{dx} - y = x - 1$; M(0;1).

3. $y' + ytgx = x\cos^2 x; M(0;1)$.

5. $(y^2 - 6x)y' + 2y = 0$; M(0;-1).

7. $dx + (x - e^{-y} \sec^2 y) dy = 0$; M(2;0).

 $9. \sec^2 y \frac{dy}{dx} + xtgy = x.$

11. $3\frac{dy}{dx} - y\sin x + 3y^4\sin x = 0$.

2. $x \ln x \frac{dy}{dx} - y = x(\ln x - 1)$.

4. $y' + y = \sin x + \cos x$.

6. $(y-y^3)dx + (2xy^2 - x - y^2)dy = 0$.

8. $y'(x + \ln y) = 1$.

10. 7. $y' + \frac{xy}{1-x^2} = x\sqrt{y}$.

12. $xy' + y = xy^2 \ln x$.

Заняття 5. Тема: Рівняння Ріккаті.

Рекомендовані приклади для аудиторної роботи

Знайти загальні розв'язки рівнянь:

1. $(x-x^4)y'-x^2-y+2xy^2=0$, $y_1(x)=x^2$.

2. $\frac{dy}{dx} = \frac{2y^2}{x^2} + \frac{y}{x} + x\cos x - 1 + \cos 2x$, $y_1 = x\sin x$.

3.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + \left(2 + \frac{1}{x}\right)y - e^{4x}, \quad y_1 = xe^{2x}.$$

4.
$$x^2y' + (xy - 2)^2 = 0$$
, $y_1(x)$ є функція вигляду $\frac{a}{x}$.

Знайти розв'язки рівнянь, підібравши спочатку частинні розв'язки:

5.
$$x^2 \frac{dy}{dx} - x^2 y^2 + 5xy - 3 = 0.$$

6.
$$\frac{dy}{dx} + xy^2 + \frac{y}{x} - x^3 - 2 = 0.$$

Рекомендовані приклади для домашнього завдання

Знайти загальні розв'язки рівнянь:

1.
$$y' = y^2 + \frac{y}{x} + \frac{1}{x^2}$$
, $y_1(x) = -\frac{1}{x}$.

2.
$$\frac{dy}{dx} = \frac{y^2}{x^2} + \frac{y}{x} - x \sin x - \cos^2 x$$
, $y_1 = x \cos x$.

3.
$$\frac{dy}{dx} = \frac{e^{-x}}{\sin x}y^2 + y + e^x(\cos x - \sin x), \quad y_1 = e^x \sin x.$$

4.
$$y' = \frac{y^2 - x^2y - 2x}{1 - x^3}$$
, $y_1(x)$ є функція вигляду ax^2 .

Знайти розв'язки рівнянь, підібравши спочатку частинні розв'язки:

5.
$$x^3 \frac{dy}{dx} - y^2 - x^2 y + x^2 = 0.$$

6.
$$\frac{dy}{dx} = y^2 - x^2 + 1$$
.

Заняття 6. Тема: Рівняння в повних диференціалах.

Інтегрувальний множник. Випадки знаходження інтегрувального множника.

Рекомендовані приклади для аудиторної роботи

Знайти розв'язки рівнянь в повних диференціалах:

1.
$$\left(2x\ln(x+y) + \frac{x^2+y}{x+y}\right)dx + \left(\ln(x+y) + \frac{x^2+y}{x+y}\right)dy = 0.$$

2.
$$(2x + x^2 - y^2x)dx - (2y + x^2y - y^2)dy = 0.$$

3.
$$(6xy + x^2 + 3)y' + 3y^2 + 2xy + 2x = 0$$
.

4.
$$(2x\sin y - y^2\sin x)dx + (x^2\cos y + 2y\cos x + 1)dy = 0$$
.

5.
$$\left(1 + \frac{y^2}{x^2}\right) dx - 2\frac{y}{x} dy = 0.$$

6.
$$(1+e^{\frac{x}{y}})dx + e^{\frac{x}{y}}(1-\frac{x}{y})dy = 0$$
.

Розв'язати диференціальні рівняння методом інтегрувального множника, знаючи, що вони мають вигляд $\mu = f(x)$ або $\mu = f(y)$:

3

7.
$$(2y + xy^3)dx + (x + x^2y^2)dy = 0$$
.

8.
$$y^2(x-3y)dx+(1-3xy^2)dy=0$$
.

9.
$$2ydx + (y^2 - 6x)dy = 0$$
.

Зінтегрувати рівняння за допомогою множників $\mu(x+y)$, $\mu(xy)$ або $\mu(x-y)$:

10.
$$\left(y - \frac{ay}{x} + x\right)dx + ady = 0.$$

11.
$$y^2 dx + (xy-1)dy = 0$$
.

12.
$$(2x^3y^2 - y)dx + (2x^2y^3 - x)dy = 0$$
.

Знайти розв'язки рівнянь в повних диференціалах:

1.
$$e^{-y}dx - (2y + xe^{-y})dy = 0$$

$$2. \ \frac{3x^2+y^2}{y^2}dx - \frac{2x^3}{y^3}dy = 0.$$

3.
$$\left(\frac{x}{\sin y} + 2\right) dx + \frac{(x^2 + 1)\cos y}{\cos 2y - 1} dy = 0.$$

4.
$$\frac{2x-y}{x^2+y^2}dx + \frac{2y+x}{x^2+y^2}dy = 0.$$

5.
$$(x \ln y - x^2 + \cos y) dy + (x^2 + y \ln y - y - 2xy) dx = 0$$
.

6.
$$(2x\cos y - y^2\sin x)dx + (2y\cos x - x^2\sin y)dy = 0.$$

Розв'язати диференціальні рівняння методом інтегрувального множника, знаючи, що вони мають вигляд $\mu = f(x)$ або $\mu = f(y)$:

7.
$$(1+x^2y)dx + x^2(x+y)dy = 0$$
.

8.
$$(2xy + ax)dx + dy = 0$$
.

9.
$$dx + (x + e^{-y}y^2)dy = 0.$$

Зінтегрувати рівняння за допомогою множників $\mu = (x + y)$, $\mu = f(xy)$ або $\mu = (x - y)$:

10.
$$dx + xctg(x + y)(dx + dy) = 0$$
.

11.
$$(2x^2y + x)dy + (y + 2xy^2 - x^2y^3)dx = 0$$
.

Заняття 7. Тема: Диференціальні рівняння 1-го порядку, не розв'язані відносно похідної. Метод параметризації

Рекомендовані приклади для аудиторної роботи

Знайти загальні розв'язки та загальні інтеграли рівнянь:

1.
$$y'^3 - 1 = 0$$
.

2.
$$\left(\frac{dy}{dx}\right)^2 + 5\frac{dy}{dx} + 6 = 0$$
.

$$3. \ {y'}^2 + 2xy' - 3x^2 = 0.$$

4.
$$y = y' \ln y'$$
.

5.
$$x(2+y'^2)=1$$
.

$$6. x = y' \sin y'$$

7.
$$x\sqrt{1+{y'}^2}-y'=0$$
.

8.
$$3y'^5 - yy' + 1 = 0$$
.

9.
$$xy'^2 - 2y' - y = 0$$
.

10.
$$y = 2xy' + \sqrt{1 + {y'}^2}$$
.

11.
$$x^3y'^2 + x^2yy' + a = 0$$
.

12.
$$x^3 + y'^3 - 3xy' = 0$$
.

Рекомендовані приклади для домашнього завдання

Знайти загальні розв'язки і загальні інтеграли рівнянь:

1.
$$y'^2 + 2y' + 1 = 0$$
.

$$2. \ {y'}^2 + y' - 2 = 0.$$

$$3. v'^2 + xv' - x^2 = 0.$$

4.
$$y = xy' + \sin y'$$
.

$$5. \quad y = y' \sin y' + \cos y'.$$

6.
$$y - y' = \sqrt{1 + {y'}^2}$$
.

7.
$$x = ay' + b\sqrt{1 + {y'}^2}$$
.

8.
$$x(1+y'^2)=1$$
.

9.
$$x = y \left(\frac{1}{\sqrt{y'}} - \frac{1}{y'} \right)$$
.

10.
$$xy'^2 + yy' + a = 0$$
.

11.
$$9yy'^2 + 4x^3y' - 4x^2y = 0$$
.

Контрольна робота № 1 (на лекції).

Диференціальні рівняння першого порядку.

4

Заняття 8, 9. Тема: Інтегрування і пониження порядку диференціальних рівнянь із вищими похідними

Зінтегрувати диференціальні рівняння та відшукати частинні розв'язки там, де задані початкові умови:

Рекомендовані приклади для аудиторної роботи

1.
$$y''' = 0$$
, при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$, $y''_0 = 2$.

2.
$$v''' = x + \cos x$$
.

4.
$$y'' + y^{-3} = 0$$
, при $x_0 = 1$, $y_0 = 1$, $y_0' = 0$.

5.
$$y''' - y''^2 = 0$$
.

7.
$$y''^3 - 2y'' - x = 0$$
.

9.
$$x^2 v''' - v''^2 = 0$$
.

11.
$$v'' + v'^2 = 2e^{-y}$$
.

13.
$$xyy'' - xy'^2 - yy' + \frac{xy'^2}{\sqrt{1-x^2}} = 0.$$

3.
$$y'' = xe^x$$
, при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$.

6.
$$xy^{IV} + y''' = e^{2x}$$
.

8.
$$xy'' = y' \ln \frac{y'}{x}$$
.

10.
$$2yy'' - y'^2 = 1$$
.

12.
$$x^2yy'' = (y - xy')^2$$
.

14.
$$yy'' + y'^2 = \frac{yy'}{\sqrt{1+x^2}}$$

Рекомендовані приклади для домашнього завдання

1.
$$y^V = x - 1$$
.

2.
$$y''' = \frac{\ln x}{x^2}$$
.

3.
$$y'' + \ln y'' - x = 0$$
.

4.
$$xy'' + y' - x^2 - 1 = 0$$

$$5. \ 2yy'' - 3y'^2 = 4y^2.$$

6.
$$y'''y' - 3y''^2 = 0$$
.

4.
$$xy'' + y' - x^2 - 1 = 0$$
. **5.** $2yy'' - 3y'^2 = 4y$
7. $y(xy'' + y') = xy'^2(1 - x)$. **8.** $yy'' - y'^2 = y'$.
10. $y'' - 3yy' = 0$. **11.** $yy''' - y'y'' = 0$

8.
$$yy'' - y'^2 = y'$$

9.
$$xyy'' - xy'^2 = 2yy'$$
.

10.
$$y'' - 3yy' = 0$$

11.
$$yy''' - y'y'' = 0$$
.

12.
$$(x^2 + y^2)y'' - yy'^2 + xy'^3 + xy' - y = 0.$$

Заняття 10. Тема: Лінійні диференціальні рівняння вищих порядків зі сталими коефіцієнтами.

Рекомендовані приклади для аудиторної роботи

Знайти загальні розв'язки лінійних однорідних рівнянь, а також частинні там, де задані початкові умови:

1.
$$y'' + 5y' + 4y = 0$$
.

2.
$$y'' - 5y' + 4y = 0$$
, при $x_0 = 0$, $y_0 = 1$, $y'_0 = 0$.

3.
$$y'' - a^2 y = 0$$
.

4.
$$y'' + y = 0$$
, при $y\left(-\frac{\pi}{2}\right) = 1$, $y'\left(-\frac{\pi}{2}\right) = 0$.

5.
$$y''' + 8y = 0$$
.

6.
$$y^{(IV)} + 2y'' + y = 0$$
.

7.
$$y^V - 10y''' + 9y' = 0$$
.

8.
$$y^{(IV)} + a^4 y = 0.$$

9.
$$y^{(6)} + 64y = 0$$
.

Рекомендовані приклади для домашнього завдання

1.
$$y'' - 7y' + 10y = 0$$
.

2.
$$y'' + 9y = 0$$
.

3.
$$y'' + 3y' = 0$$
.

4.
$$y'' + 4y' + 13y = 0$$
.

5.
$$2y'' + y' - y = 0$$
, $y(0) = 3$, $y'(0) = 0$.

8.
$$v^{VI} + 2v^{V} = 0$$
.

7.
$$y^V - 4y^{IV} = 0$$
.

9
$$y'' - 4y' + 29y = 0$$
, $y(0) = 1$, $y'(0) = 7$.

10.
$$y^{IV} - 5y''' + 6y'' + 4y' - 8y = 0$$
.

Заняття 11, 12. Тема: Методи Лагранжа, Коші і невизначених коефіцієнтів для розв'язування неоднорідних рівнянь вищих порядків

Рекомендовані приклади для аудиторної роботи

1.
$$y'' - y = x^2 + 1$$
 (HK).

2.
$$y''' - 4y' = x^2$$
 (HK).

1.
$$y'' - y = x^2 + 1$$
 (HK). **2.** $y''' - 4y' = x^2$ (HK). **3.** $y'' + 4y' + 3y = x + e^{2x}$ (HK).

4.
$$y'' + 2y' - 3y = 2x - e^{3x}$$
 (HK).

5.
$$y'' + 2y' + y = e^{-x} \cos x + xe^{-x}$$
 (HK).

6.
$$y''' - 7y'' + 6y = x^2$$
 (Л).

7.
$$y'' + 4y = 4x \cos 2x$$
 (Π).

8.
$$y'' - 6y' + 9y = \frac{9x^2 + 6x + 2}{x^3}$$
 (Л).

9.
$$y'' + y = ctgx$$
 (K).

10.
$$y'' - 2y' + y = \frac{e^x}{x}$$
 (K).

11.
$$y''' - 3y'' + 3y' - y = 2e^x$$
 (K).

Рекомендовані варіанти домашнього завдання

1.
$$y'''-4y''+5y'-2y=2x+3$$
 (HK).

2.
$$y^{IV} + 8y'' + 16y = \cos x$$
 (HK).

3.
$$y^V + y''' = x^2 - 1$$
 (HK).

4.
$$y^{IV} - y = xe^x + \cos x$$
 (HK).

5.
$$y'''-3y'+2y = e^{-x}(4x^2 + 4x - 10)$$
 (HK).

6.
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$
 (Л).

7.
$$y'' + 4y = \sec 2x$$
 (Л).

8.
$$y'' + y' = x^2 + \cos^2 x$$
 (Л).

9.
$$y'' + y = tgx$$
 (K).

9.
$$y'' + y = tgx$$
 (K). **10.** $y'' - y = \frac{1}{x}$ (K).

11.
$$y'' + \omega^2 y = \frac{1}{r+1}$$
; $y(1) = 2$, $y'(1) = -3$ (K).

Заняття 13. Тема: Лінійні диференціальні рівняння вищих порядків зі змінними коефіцієнтами. Рівняння, що зводяться до лінійних рівнянь зі сталими коефіцієнтами.

Рекомендовані приклади для аудиторної роботи

 x, x^2, x^3 справджують деяке однорідне лінійне диференціальне рівняння. **1.** Функції Переконатися, що вони утворюють фундаментальну систему, та скласти згадане рівняння.

Розв'язати лінійні рівняння зі змінними коефіцієнтами:

2.
$$(1+x^2)y'' - 2xy' + 2y = 0$$
, $y_1(x) = x$.

3.
$$y'' - (x^2 + 1)y = 0$$
, $y_1(x) = e^{\frac{x^2}{2}}$.

4.
$$xy'' + 2y' + xy = 0$$
, $y_1(x) = \frac{\sin x}{x}$ $(x \neq 0)$.

Скласти лінійне однорідне диференціальне рівняння (найменшого можливого порядку), яке має такі частинні розв'язки:

5.
$$y_1 = 1$$
, $y_2 = \cos x$.

6.
$$y_1 = xe^{-x}, \ y_2 = e^{-x}.$$

Розв'язати рівняння: 7. $x^3y''' + xy' - y = 0$.

8.
$$x^2y'' - xy' - 3y = 0$$
.

9.
$$x^2v'' + xv' + v = 0$$
.

10.
$$(2x+3)^2 y'' + (2x+3)y' - y = 0.$$

11.
$$2(2x+1)^2y'' - (2x+1)y' + 2y = 0$$
.

12.
$$x^2y'' + xy' + 4y = 10x$$
.

13.
$$y''' - \frac{3}{x}y'' + \frac{6y'}{x^2} - \frac{6y}{x^3} = \sqrt{x}$$
.

1. Побудувати диференціальне рівняння, що має таку фундаментальну систему функцій: 1, $\cos 2x$.

Розв'язати лінійні рівняння зі змінними коефіцієнтами:

2.
$$(1-x)y'' + xy' - y = 0$$
; $y_1(x) = e^x$

2.
$$(1-x)y'' + xy' - y = 0$$
; $y_1(x) = e^x$.
3. $(1+x^2)y'' + xy' - y = 0$; $y_1(x) = \sqrt{1+x^2}$.
4. $y'' - xy' + 2y = 0$; $y_1(x) = x^2 - 1$.
5. $x^2y'' + 2xy' - 6y = 0$.

4.
$$y'' - xy' + 2y = 0$$
; $y_1(x) = x^2 - 1$.

$$5. x^2 v'' + 2xv' - 6v = 0$$

6.
$$x^2y''' - 2y' = 0$$

7.
$$x^3y''' - xy' - 3y = 0$$
.

8.
$$x^2y'' - 4xy' + 6y = 0$$
.

6.
$$x^2y''' - 2y' = 0$$
.
7. $x^3y''' - xy' - 3y = 0$.
8. $x^2y'' - 4xy' + 6y = 0$.
9. $(x+1)^3y''' - 3(x+1)^2y'' + 4(x+1)y' - 4y = 0$.
10. $x^2y'' - xy' - 3y = 5x^4$.
11. $x^2y'' - xy' + y = 8x^3$.
12. $x^2y'' - 3xy' + 5y = 3x^2$.

10.
$$x^2y'' - xy' - 3y = 5x^4$$
.

11.
$$x^2v'' - xv' + v = 8x^3$$

12.
$$x^2y'' - 3xy' + 5y = 3x^2$$
.

Заняття 14. Контрольна робота № 2.

Диференціальні рівняння вищих порядків.

Заняття 15. Тема: *Крайові задачі. Задача Штурма – Ліувілля.* Побудова функції Гріна.

Рекомендовані приклади для аудиторної роботи

Яка з крайових задач має розв'язки:

1.
$$y'' - y = 0$$
; $y(0) = 0$, $y'(\pi/2) = 1$.

3.
$$y'' + y = 0$$
, $y(0) = 0$, $y'\left(\frac{\pi}{2}\right) = 1$.

Знайти власні значення і власні функції:

5.
$$y'' = \lambda y$$
; $y(0) = 0$, $y(b) = 0$.

7.
$$x^2y'' + \frac{1}{4}y = \lambda y$$
, $y(1) = y(b) = 0$.

Побудувати функції Гріна для крайових задач:

8.
$$y'' = f(x)$$
; $y(0) = 0$, $y(1) = 0$.

9.
$$y'' + y = f(x)$$
; $y(0) = y(\pi)$, $y'(0) = y'(\pi)$.

6. $v'' = \lambda v$; v(0) = v'(b) = 0.

2. v'' + v = 0; v(0) = 0, $v'(2\pi) = 1$.

4. y'' - y' - 2y = 0, y'(0) = 2, $y(\infty) = 0$.

10.
$$x^3y'' + 3x^2y' + xy = f(x)$$
; $y(1) = 0$, $y(2) + 2y'(2) = 0$.

11.
$$xy'' + y' = f(x)$$
; $y(1) = 0$, $y(x)$ обмежене при $x \to \infty$.

Рекомендовані приклади для домашнього завдання

Розв'язати крайову задачу:

1.
$$y'' + y = 1$$
; $y'(0) = 0$, $y(1) = 1$.

Знайти власні значення і власні функції:

3.
$$y'' = \lambda y$$
; $y'(0) = 0$, $y'(l) = 0$.

Побудувати функції Гріна для крайових задач:

5.
$$y'' + y = f(x)$$
; $y'(0) = 0$, $y(\pi) = 0$.

6.
$$xy'' - y' = f(x)$$
; $y'(1) = 0$, $y(2) = 0$.

2. y'' + y = 1; y(0) = 0, $y(\pi/2) = 0$.

4. $x^2 y'' = \lambda y$; y(1) = 0, y(a) = 0.

7.
$$\cos^2 x \, y'' - \sin 2x \, y' = f(x); \quad y(0) = y'(0), \quad y\left(\frac{\pi}{4}\right) + y'\left(\frac{\pi}{4}\right) = 0.$$

Заняття 16, 17. Тема: Розв'язування однорідних лінійних систем з постійними коефіцієнтами.

Рекомендовані приклади для аудиторної роботи

Розв'язати системи, використовуючи матричний метод.

$$\mathbf{1.} \begin{cases} \dot{x} = x + y, \\ \dot{y} = 2x. \end{cases}$$

2.
$$\begin{cases} \dot{x} = x - 2y, \\ \dot{y} = 2x - 3y. \end{cases}$$

Розв'язати системи, використовуючи метод Ейлера.

4.
$$\begin{cases} \dot{x} = 2x + y, \\ \dot{y} = 3x + 4y. \end{cases}$$

$$(y - x - y = 0.$$

$$(\dot{x} = x - y - z, \lambda) = 0$$

7.
$$\begin{cases} \dot{x} - x + z - y, \ \lambda_1 - 1, \\ \dot{y} = x + y - z, \ \lambda_2 = 2, \\ \dot{z} = 2x - y, \ \lambda_3 = -1. \end{cases}$$

7.
$$\begin{cases} \dot{x} = x + z - y, \ \lambda_1 = 1, \\ \dot{y} = x + y - z, \ \lambda_2 = 2, \\ \dot{z} = 2x - y, \ \lambda_3 = -1. \end{cases}$$
8.
$$\begin{cases} \dot{x} = x - y - z, \ \lambda_1 = 1, \\ \dot{y} = x + y, \ \lambda_2 = 1 + 2i \\ \dot{z} = 3x + z, \ \lambda_3 = 1 - 2i \end{cases}$$
9.
$$\begin{cases} \dot{x} = 4x - y - z, \ \lambda_1 = 2, \\ \dot{y} = x + 2y - z, \ \lambda_2 = 3, \\ \dot{z} = x - y + 2z, \ \lambda_3 = 3. \end{cases}$$

3.
$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 4x - y. \end{cases}$$

$$\mathbf{6.} \begin{cases} \dot{x} = x - 3y, \\ \dot{y} = 3x + y. \end{cases}$$

9.
$$\begin{cases} x = 4x - y - z, & \lambda_1 = 2, \\ \dot{y} = x + 2y - z, & \lambda_2 = 3, \\ \dot{z} = x - y + 2z, & \lambda_3 = 3. \end{cases}$$

10.
$$\begin{cases} \dot{x} = x - y + z, & \lambda_1 = 1 \\ \dot{y} = x + y - z, & \lambda_2 = 1 \\ \dot{z} = 2z - y, & \lambda_3 = 2. \end{cases}$$

11.
$$\begin{cases} \dot{x} = 2x - y - z, & \lambda_1 = 1, \\ \dot{y} = 2x - y - 2z, & \lambda_2 = 1, \\ \dot{z} = 2z - x + y, & \lambda_3 = 1. \end{cases}$$

Розв'язати системи, використовуючи матричний метод.

1.
$$\begin{cases} \dot{x} - 5x - 3y = 0, \\ \dot{y} + 3x + y = 0. \end{cases}$$

2.
$$\begin{cases} \dot{x} = 2z - x - 2y, \\ \dot{y} = 2z - 2x - y, \\ \dot{z} = 3z - 3x - 2y. \end{cases}$$

Розв'язати системи, використовуючи метод Ейлера.

$$\mathbf{3.} \begin{cases} \dot{x} = x - y, \\ \dot{y} = y - 4x \end{cases}$$

$$\mathbf{4.} \begin{cases} \dot{x} = x + y, \\ \dot{y} = 3y - 2x. \end{cases}$$

5.
$$\begin{cases} \dot{x} + x + 5y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$

6.
$$\begin{cases} \dot{x} = x - 2y - z, & \lambda_1 = 0, \\ \dot{y} = y - x + z, & \lambda_2 = 2, \\ \dot{z} = x - z, & \lambda_3 = -1. \end{cases}$$

7.
$$\begin{cases} \dot{x} = 2x + y, & \lambda_1 = 2, \\ \dot{y} = x + 3y - z, & \lambda_2 = 3 + i \\ \dot{z} = 2y + 3z - x, & \lambda_3 = 3 - i. \end{cases}$$

8.
$$\begin{cases} \dot{x} = 2x - y - z, & \lambda_1 = 0, \\ \dot{y} = 3x - 2y - 3z, & \lambda_2 = 1, \\ \dot{z} = y + 2z - x, & \lambda_3 = 1. \end{cases}$$

9.
$$\begin{cases} \dot{x} = y - 2z - x, & \lambda_1 = 1, \\ \dot{y} = 4x + y, & \lambda_2 = -1, \\ \dot{z} = 2x + y - z, & \lambda_3 = -1 \end{cases}$$

Заняття 18, 19. Тема: Методи розв'язування неоднорідних систем з постійним коефіцієнтами.

Рекомендовані приклади для аудиторної роботи

1.
$$\begin{cases} \dot{x} = 3x + 2y + 4e^{5t} \\ \dot{y} = x + 2y. \end{cases}$$

2.
$$\begin{cases} \dot{x} = x - y + 8t \\ \dot{y} = 5x - y. \end{cases}$$

3.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = y - 2x + 18. \end{cases}$$
6.
$$\begin{cases} \dot{x} = y + 2e^t, \\ \dot{y} = x + t^2. \end{cases}$$

4.
$$\begin{cases} \dot{x} = 4x + y - e^{2t}, \\ \dot{y} = y - 2x. \end{cases}$$

1.
$$\begin{cases} \dot{x} = 3x + 2y + 4e^{5t}, \\ \dot{y} = x + 2y. \end{cases}$$
2.
$$\begin{cases} \dot{x} = x - y + 8t, \\ \dot{y} = 5x - y. \end{cases}$$
4.
$$\begin{cases} \dot{x} = 4x + y - e^{2t}, \\ \dot{y} = 2x - y - 2\cos t. \end{cases}$$
5.
$$\begin{cases} \dot{x} = 4x - 3y + \sin t, \\ \dot{y} = 2x - y - 2\cos t. \end{cases}$$

6.
$$\begin{cases} \dot{x} = y + 2e^t, \\ \dot{y} = x + t^2. \end{cases}$$

7.
$$\begin{cases} \dot{x} = y + tg^2 t - 1 \\ \dot{y} = -x + tg t \end{cases}$$

7.
$$\begin{cases} \dot{x} = y + \lg^2 t - 1, \\ \dot{y} = -x + \lg t. \end{cases}$$
 8.
$$\begin{cases} \dot{x} = -4x - 2y + \frac{2}{e^t - 1}, \\ \dot{y} = 6x + 3y - \frac{3}{e^t - 1}. \end{cases}$$

9.
$$\begin{cases} \dot{x} = 3x + y + \frac{1}{t} - 4 \ln t, \\ \dot{y} = -x + y + \frac{1}{t}. \end{cases}$$

Рекомендовані приклади для домашнього завдання

1.
$$\begin{cases} \dot{x} = y - 5 \cos t \\ \dot{y} = 2x + y. \end{cases}$$

1.
$$\begin{cases} \dot{x} = y - 5\cos t, \\ \dot{y} = 2x + y. \end{cases}$$
 2.
$$\begin{cases} \dot{x} = 2x - 4y + 4e^{-2t}, \\ \dot{y} = 2x - 2y. \end{cases}$$

4.
$$\begin{cases} \dot{x} = 2y - x + 1 \\ \dot{y} = 3y - 2x. \end{cases}$$

5.
$$\begin{cases} \dot{x} = x + 2y + 16te^t, \\ \dot{y} = 2x - 2y \end{cases}$$

7.
$$\begin{cases} \dot{x} = 2y - x, \\ \dot{y} = 4y - 3x + \frac{e^{3t}}{e^{2t} + 1}. \end{cases}$$
 8.
$$\begin{cases} \dot{x} = 2y - x + \frac{1}{\sin t}, \\ \dot{y} = y - x. \end{cases}$$

3.
$$\begin{cases} \dot{x} = 5x - 3y + 2e^{3t}, \\ \dot{y} = x + y + 5e^{-t}. \end{cases}$$

4.
$$\begin{cases} \dot{x} = 2y - x + 1, \\ \dot{y} = 3y - 2x. \end{cases}$$
5.
$$\begin{cases} \dot{x} = x + 2y + 16te^t, \\ \dot{y} = 2x - 2y. \end{cases}$$
6.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = 2y - x - 5e^t \sin t. \end{cases}$$

8.
$$\begin{cases} \dot{x} = 2y - x + \frac{1}{\sin t} \\ \dot{y} = y - x. \end{cases}$$

Заняття 20. Тема: Розв'язування лінійних рівнянь першого порядку з частинними похідними. Задача Коші.

Рекомендовані приклади для аудиторної роботи

1.
$$y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = 0$$
.

2.
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$$
.

$$3. \ y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = x - y.$$

4.
$$(z-y)^2 \frac{\partial z}{\partial x} + xz \frac{\partial z}{\partial y} = xy$$
.

5.
$$\cos y \frac{\partial z}{\partial x} + \cos x \frac{\partial z}{\partial y} = \cos x \cos y$$
.

Знайти розв'язки рівняння, що задовольняє вказаним умовам.

6.
$$x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0$$
, $z = 2x$ при $y = 1$.

7.
$$(1+x^2)\frac{\partial z}{\partial x} + xy\frac{\partial z}{\partial y} = 0$$
, $x = 0$, $z = y^2$.

8.
$$xz\frac{\partial z}{\partial x} + yz\frac{\partial z}{\partial y} + xy = 0$$
, $y = x^2$, $z = x^3$. **9.** $y^2\frac{\partial z}{\partial x} + xy\frac{\partial z}{\partial y} = x$; $x = 0$, $z = y^2$.

9.
$$y^2 \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial y} = x$$
; $x = 0$, $z = y^2$

10.
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z - xy$$
, $x = 2$, $z = y^2 + 1$.

Рекомендовані приклади для домашнього завдання

1.
$$(x+2y)\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = 0.$$

2.
$$(x-z)\frac{\partial u}{\partial x} + (y-z)\frac{\partial u}{\partial y} + 2z\frac{\partial u}{\partial z} = 0$$
.

3.
$$e^x \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = ye^x$$
.

4.
$$xy \frac{\partial z}{\partial x} + (x - 2z) \frac{\partial z}{\partial y} = yz$$
.

3найти розв'язок рівняння, що задовольня ϵ вказаним умовам.

5.
$$\frac{\partial z}{\partial x} - (2e^x - y)\frac{\partial z}{\partial y} = 0$$
, $z = y$ при $x = 0$. 6. $x\frac{\partial z}{\partial x} - 2y\frac{\partial z}{\partial y} = x^2 + y^2$; $y = 1$, $z = x^2$.

6.
$$x \frac{\partial z}{\partial x} - 2y \frac{\partial z}{\partial y} = x^2 + y^2; \quad y = 1, \quad z = x^2$$

7.
$$x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = z^2(x - 3y)$$
, $x = 1$, $yz + 1 = 0$.

8.
$$z \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} = 2xz$$
, $x + y = 2$, $yz = 1$.

Заняття 21. Контрольна робота № 3.

Крайова задача. Інтегрування систем звичайних диференціальних рівнянь.

Заняття 22. Тема: Поле напрямів. Інтегральні криві.

Рекомендовані приклади для аудиторної роботи

Побудувати поле напрямів та накреслити схематично поведінку інтегральних кривих таких диференціальних рівнянь:

3.
$$\frac{dy}{dx} = y - x^2$$
.

5.
$$\frac{dy}{dx} = x^2 + 2x - y$$
.

10

6.
$$\frac{dy}{dx} = x^2 + y^2$$
. Побудувати ізокліни $y' = 0$, $y' = \frac{1}{\sqrt{3}}$, $y' = 1$, $y' = \sqrt{3}$.

7.
$$\frac{dy}{dx} = \frac{y}{x+y}$$
.

8.
$$\frac{dy}{dx} = -2xy$$
.

Побудувати поле напрямів та накреслити схематично поведінку інтегральних кривих таких диференціальних рівнянь:

1.
$$\frac{dy}{dx} = y + x$$
.

$$2. \ \frac{dy}{dx} = -\frac{x}{y}.$$

4.
$$\frac{dy}{dx} = y - 3x$$
.

5.
$$\frac{dy}{dx} = (y-1)^2$$
.

6.
$$\frac{dy}{dx} = x^2 - y^2$$
. Побудувати ізокліни $y' = 0$, $y' = \pm 1$, $y' = \pm 2$, $y' = \pm 3$.

$$7. \ \frac{dy}{dx} = \frac{y - 3x}{x + 3y}.$$

$$8. \quad y \left(\frac{dy}{dx} + x \right) = 1.$$

Заняття 23. Тема: Особливі точки диференціальних рівнянь на площині.

Рекомендовані приклади для аудиторної роботи

Дослідити особливі точки для поданих нижче рівнянь та систем. Дати схематичний малюнок розміщення інтегральних кривих на площині (x, y).

1.
$$y' = \frac{y}{x}$$
. 2.
$$\begin{cases} \frac{dx}{dt} = x + 3y, \\ \frac{dy}{dt} = -6x - 5y. \end{cases}$$
 3.
$$\begin{cases} \frac{dx}{dt} = -2x - 5y, \\ \frac{dy}{dt} = 2x + 2y. \end{cases}$$
 4. $y' = \frac{2x + y}{3x + 4y}$. 5. $y' = \frac{y - 2x}{2y - 3x}$.

3.
$$\begin{cases} \frac{dx}{dt} = -2x - 5y \\ \frac{dy}{dt} = 2x + 2y. \end{cases}$$

4.
$$y' = \frac{2x + y}{3x + 4y}$$

$$5. \ \ y' = \frac{y - 2x}{2y - 3x}$$

Знайти та дослідити особливі точки систем.

6.
$$y' = \frac{2y - x}{3x + 6}$$
.

7.
$$y' = \frac{4y^2 - x^2}{2xy - 4y - 8}$$
.

Рекомендовані приклади для домашнього завдання

Дослідити особливі точки для поданих нижче рівнянь та систем. Дати схематичний малюнок розміщення інтегральних кривих на площині (x, y).

1.
$$y' = \frac{4x - y}{3x - 2y}$$
.

2.
$$y' = \frac{x - 4y}{2y - 3x}$$

$$\mathbf{3.} \quad \begin{cases} \dot{x} = x, \\ \dot{y} = 2x - y. \end{cases}$$

11

1.
$$y' = \frac{4x - y}{3x - 2y}$$
. **2.** $y' = \frac{x - 4y}{2y - 3x}$. **3.** $\begin{cases} \dot{x} = x, \\ \dot{y} = 2x - y. \end{cases}$ **4.** $y' = \frac{4y - 2x}{x + y}$. **5.** $\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = y - x. \end{cases}$

$$\mathbf{5.} \begin{cases} \dot{x} = 3x + y \\ \dot{y} = y - x. \end{cases}$$

Знайти та дослідити особливі точки систем.

6.
$$y' = \frac{2x + y}{x - 2y - 5}$$

6.
$$y' = \frac{2x + y}{x - 2y - 5}$$
. **7.** $y' = \frac{2y}{x^2 - y^2 - 1}$.

Заняття 24, 25. Тема: Стійкість за Ляпуновим. Методи Ляпунова. Критерій Гурвіца. Побудова функції Ляпунова.

Рекомендовані приклади для аудиторної роботи

- **1.** Дослідити стійкість розв'язків з вказаними початковими умовами: $\dot{x} = 4x t^2x$, x(0) = 0.
- 2. Дослідити стійкість нульового розв'язку, якщо відомо загальний розв'язок системи:

$$x_1(t) = C_1 \cos^2 t - C_2 e^{-t}, \quad x_2(t) = C_1 t^4 e^{-t} + 2C_2.$$

3. Знайти стан рівноваги даної системи і дослідити його на стійкість

$$\begin{cases} \dot{x} = y - x^2 - x, \\ \dot{y} = 3x - x^2 - y. \end{cases}$$

4. Дослідити, при яких значеннях параметра a буде асимптотично стійким нульовий розв'язок

$$\begin{cases} \dot{x} = ax - 2y + x^2, \\ \dot{y} = x + y + xy. \end{cases}$$

При яких значеннях параметрів a і b ϵ асимптотично стійким нульовий розв'язок системи звичайних диференціальних рівнянь

5.
$$\begin{cases} \dot{x} = y + \sin x, \\ \dot{y} = ax + by. \end{cases}$$
 6.
$$\begin{cases} \dot{x} = \ln(e + ax) - e^{y}, \\ \dot{y} = bx + \lg y. \end{cases}$$

7. Знайти всі положення рівноваги системи звичайних диференціальних рівнянь та дослідити їх на стійкість

$$\begin{cases} \dot{x} = \ln(y^2 - x), \\ \dot{y} = x - y - 1. \end{cases}$$

8. За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити на стійкість нульовий розв'язок

$$\begin{cases} \dot{x} = e^{x+2y} - \cos 3x, \\ \dot{y} = \sqrt{4+8x} - 2e^y. \end{cases}$$

Дослідити стійкість нульового розв'язку, користуючись відомими критеріями.

9.
$$y''' + y'' + y' + 2y = 0$$
. **10.** $y^{IV} + 3.1y''' + 5.2y'' + 9.8y' + 5.8y = 0$.

11. Дослідити, при яких значеннях параметрів a і b нульовий розв'язок буде асимптотично стійким

$$y''' + ay'' + by' + 2y = 0.$$

12. Побудувати функцію Ляпунова у вигляді квадратичної форми: $V(x) = x^T B x$, $x = (x_1, x_2)^T$,

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
, для системи

$$\begin{cases} \dot{x}_1 = -2x_1 + x_2 \\ \dot{x}_2 = 2x_1 - 3x_2 \end{cases}$$
 (*)

таким чином, щоб $\left(\frac{dV}{dt}\right)_{\binom{*}{2}} = -x_{_{1}}^{2} - x_{_{2}}^{2}$.

Дослідити стійкість нульового розв'язку, побудувавши функцію Ляпунова.

13.
$$\begin{cases} \dot{x} = y - x + xy, \\ \dot{y} = x - y - x^2 - y^3. \end{cases}$$
14.
$$\begin{cases} \dot{x} = y - 3x - x^3, \\ \dot{y} = 6x - 2y. \end{cases}$$

- **1.** Дослідити стійкість розв'язків з вказаними початковими умовами $3(t-1)\dot{x} = x$, x(2) = 0.
- 2. Знайти стан рівноваги даної системи і дослідити його на стійкість

$$\begin{cases} \dot{x} = (x-1)(y-1), \\ \dot{y} = xy - 2. \end{cases}$$

За допомогою теореми Ляпунова про стійкість за першим наближенням дослідити на стійкість нульовий розв'язок

3.
$$\begin{cases} \dot{x} = x^2 + y^2 - 2x, \\ \dot{y} = 3x^2 - x + 3y. \end{cases}$$

4.
$$\begin{cases} \dot{x} = \ln(4y + e^{-3x}), \\ \dot{y} = 2y - 1 + \sqrt[3]{1 - 6x}. \end{cases}$$

5. Знайти всі стани рівноваги системи звичайних диференціальних рівнянь та дослідити їх на стійкість

$$\begin{cases} \dot{x} = y, \\ \dot{y} = \sin(x + y). \end{cases}$$

 $\begin{cases} \dot{x} = y, \\ \dot{y} = \sin(x + y). \end{cases}$ **6.** Дослідити, при яких значеннях параметра a буде асимптотично стійким нульовий розв'язок

$$\begin{cases} \dot{x} = ax + y + x^2, \\ \dot{y} = x + ay + y^2. \end{cases}$$

Дослідити стійкість нульового розв'язку, користуючись відомими критеріями.

7.
$$y''' + 2y'' + 2y' + 3y = 0$$
.

8.
$$v^V + 2v^{IV} + 4v''' + 6v'' + 5v' + 4v = 0$$
.

При яких значеннях параметрів a i b нульовий розв'язок ϵ асимптотично стійким?

9.
$$y''' + 3y'' + ay' + by = 0$$
.

10.
$$y^{IV} + y''' + ay'' + y' + by = 0$$
.

11. Побудувати функцію Ляпунова у вигляді квадратичної форми: $V(x) = x^T B x$, $x = (x_1, x_2)^T$,

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
, для системи

$$\begin{cases} \dot{x}_1 = -3x_1 + 3x_2 \\ \dot{x}_2 = 2x_1 - 4x_2 \end{cases}$$
 (**)

таким чином, щоб $\left(\frac{dV}{dt}\right)_{(**)} = -x_1^2 - x_2^2$.

12. Дослідити стійкість нульового розв'язку, побудувавши функцію Ляпунова.

$$\begin{cases} \dot{x} = x^3 - y, \\ \dot{y} = x + y^3. \end{cases}$$

Заняття 26, 27. Тема: Варіаційне числення.

Рекомендовані приклади для аудиторної роботи

Знайти екстремалі таких функціоналів:

1.
$$I[y(x)] = \int_{-1}^{0} (12xy - y'^2) dx$$
; $y(-1) = 1$, $y(0) = 0$.

2.
$$I[y(x)] = \int_0^{\frac{\pi}{2}} (y'^2 - y^2) dx$$
, $y(0) = 1$, $y(\frac{\pi}{2}) = -1$.

3.
$$I[y(x)] = \int_0^1 y y'^2 dx$$
, $y(0) = 1$, $y(1) = \sqrt[3]{4}$

3.
$$I[y(x)] = \int_0^1 y y'^2 dx$$
, $y(0) = 1$, $y(1) = \sqrt[3]{4}$.
5. $I[y(x)] = \int_0^1 (y'^2 + y''^2) dx$, $y(0) = 0$, $y(1) = sh1$, $y'(0) = 1$, $y'(1) = ch1$.

4.
$$I[y(x)] = \int_{0}^{1} (y^2 + 2y'^2 + y''^2) dx; \quad y(0) = 0, \ y(1) = 0, \ y'(0) = 1, \ y'(1) = -sh1.$$

7.
$$I[y(x), z(x)] = \int_{0}^{\pi/4} (2z - 4y^2 + y'^2 - z'^2) dx; \ y(0) = 0, \ y\left(\frac{\pi}{4}\right) = 1, \ z(0) = 0, z\left(\frac{\pi}{4}\right) = 1.$$

8.
$$I[y(x), z(x)] = \int_{0}^{\pi/2} (y'^2 + z'^2 - 2yz) dx; \ y(0) = 0, \ y\left(\frac{\pi}{2}\right) = 1, \quad z(0) = 0, z\left(\frac{\pi}{2}\right) = 1.$$

Дослідити на екстремум функціонали:

9.
$$I[y(x)] = \int_{0}^{1} (y'^3 + y') dx$$
; $y(0) = 0$, $y(1) = 2$.

10.
$$I[y(x)] = \int_0^1 (1+x){y'}^2 dx$$
, $y(0) = 0$, $y(1) = 1$.

11.
$$I[y(x), z(x)] = \int_{0}^{1} (y'^2 + z'^2) dx$$
; $y(0) = 0$, $y(1) = 1$, $z(0) = 0$, $z(1) = 2$.

Рекомендовані приклади для домашнього завдання

Знайти екстремалі таких функціоналів:

1.
$$I[y(x)] = \int_{-1}^{1} (y'^2 - 2xy) dx$$
; $y(-1) = -1$, $y(1) = 1$.

2.
$$I[y(x)] = \int_{0}^{1} \sqrt{y(1+y'^{2})} dx$$
; $y(0) = y(1) = \frac{1}{\sqrt{2}}$.

3.
$$I[y(x)] = \int_0^1 (240y - y'''^2) dx$$
, $y(-1) = 1$, $y(0) = 0$, $y'(-1) = -4.5$, $y'(0) = 0$, $y''(-1) = 16$, $y''(0) = 0$.

5.
$$I[y(x)] = \frac{1}{2} \int_{0}^{1} (y'')^2 dx$$
; $y(0) = 0, y(1) = 1, y'(0) = 0, y'(1) = 1.$

6.
$$I[y(x), z(x)] = \int_{-1}^{1} (2xy - {y'}^2 + {z'}^3 \over 3) dx$$
, $y(1) = 0$, $y(-1) = 2$, $z(1) = 1$, $z(-1) = -1$.
7. $I[y(x), z(x)] = \int_{0}^{1} ({y'}^2 + {z'}^2 + 2y) dx$, $y(0) = 1$, $y(1) = \frac{3}{2}$, $z(0) = 0$, $z(1) = 1$.

7.
$$I[y(x), z(x)] = \int_0^1 (y'^2 + z'^2 + 2y) dx$$
, $y(0) = 1$, $y(1) = \frac{3}{2}$, $z(0) = 0$, $z(1) = 1$.

Дослідити на екстремум функціонали:

8.
$$I[y(x)] = \int_{0}^{1} (x + 2y + \frac{1}{2}y'^{2})dx$$
, $y(0) = 0$, $y'(0) = 0$.

9.
$$I[y] = \int_1^2 \frac{x^3}{{v'}^2} dx$$
, $y(1) = 1$, $y(2) = 4$.

10.
$$I[y(x), z(x)] = \int_{0}^{1} (y'^{2} + z'^{2} + 4z)dx; \quad y(0) = 0, \quad y(1) = 1, \quad z(0) = 0, \quad z(1) = 0.$$

Заняття 28. Контрольна робота № 4.

Якісні методи дослідження розв'язків диференціальних рівнянь. Варіаційне числення.