BIGTREETECH

Pi V1.2

使用说明

目录

日习	ζ
修订	「历史
– ,	产品简介
	1.1 产品特点
	1.2 产品参数
	1.3 尺寸图
二、	外设接口
	2.1 接线图6
三、	接口介绍7
	3.1 供电方式
	3.2 40 pin GPIO
	3.3 与 ADXL345 进行连接
	3.4 与 SPI 屏进行连接
	3.5 与 USB To CAN 模块进行连接10
	3.6 与风扇进行连接10
	3.7 与 HDMI 进行连接11
四、	烧录系统12
	4.1 下载系统镜像12
	4.2 下载并安装烧录软件12
	4.3 烧录系统12
	4.3.1 使用 Raspberry Pi Imager12
	4.3.2 使用 balenaEtcher14
五、	配置网络16
	5.1 使用网线16
	5.2 设置 WIFI16
六、	配置主板17

	6.1 ssh 软件连接设备	. 17
	6.2 编译 MCU 固件	. 18
七、	注意事项	. 20

修订历史

版本	修改说明	日期
01.00	初稿	2022/12/29
01.01	1. 增加 SPI 设备无法应用层(ADXL345)和内核层(TFT35 SPI / IO2CAN)同时使用的说明 2. 增加 U2C 占用的 USB 端口图片说明	2023/11/24
01.02	更新封面图片	2025/3/26

一、产品简介

BIGTREETECH Pi V1.2 是针对树莓派缺货问题推出的替代方案,与树莓派同板框,安装使用起来方便快捷,板载 2.4G WIFI。

1.1 产品特点

- 1. CPU: 全志 H616, 四核 Cortex-A53 @1.5GHz
- 2. GPU: Mali G31 MP2, 支持 OpenGL3.2
- 3. RAM: 1GB DDR3L SDRAM
- 4. 显示: HDMI2.0A 接口, 支持 4K 显示器
- 5. 4路 USB2.0 端口
- 6. 百兆以太网+百兆 WIFI
- 7. Audio 接口, 3.5mm
- 8. 40Pin GPIO
- 9. SPI 屏接口
- 10. ADXL345 加速度计接口
- 11. 预留 USB To CAN 模块接口
- 12. 板载红外接收头
- 13. 与树莓派相同的安装孔位置

1.2 产品参数

- 1. 板子外观尺寸: 85mm*56mm
- 2. 板子安装尺寸: 64mm*49.4mm
- 3. Type-C 输入电压: DC 5V±5%/2A
- 4. 接线端子输入电压: DC 12V-24V
- 5. 板子输出电压: 3.3V±2%/100mA
- 6. 板子 WIFI: 2.4G/802.11 b/g/n 无线标准

1.3 尺寸图

二、外设接口

2.1 接线图

三、接口介绍

3.1 供电方式

USB 供电: 当通过 USB 对 Pi 进行供电时,需使用跳线帽将下图中的红色位置进行短接;反之则不需要。其中 USB 为 SOC 的 UART 通过 WCH340E 转换为 USB 信号,通过该口与 PC 端连接,即可通过串口工具监控 Pi 启动的过程,一旦发生问题,能方便的判断那个部分出现问题。

USB-C 5V IN

DC12-24V 供电:

3.2 40 pin GPIO

40Pin-GPIO									
BTT Pi	CB1-e II C	CB1	CM4			CM4	CB1	CB1-e II C	BTT Pi
3. 3V	3. 3 v	3. 3 v	3. 3V	-		5 v	5 v	5 v	5 V
PC3	NC	NC	GPIO 2 (I2C1 SDA)	•	9	5 V	5 v	5 v	5 V
PC0	NC	NC	GPIO 3 (I2C1 SCL)	•	•	GND	GND	GND	GND
PC7	PI14	PC7	GPIO 4 (GPCLKO)	•	9	GPIO 14 (UART TX)	TX	TX	TX
GND	GND	GND	GND	•		GPIO 15 (UART RX)	RX	RX	RX
PC14	PI15	PC14	GPIO 17	•	-	GPIO 18 (PCM CLK)	PC13	P17	PC13
PC12	PI6	PC12	GPIO 27	•	•	GND	GND	GND	GND
PC10	PI4	PC10	GPIO 22	•	•	GPIO 23	PC11	P15	PC11
3. 3 v	3. 3 v	3. 3 v	3. 3 v	•	•	GPIO 24	PC9	PI3	PC9
PH7	PH7	PH7	GPIO 10 (SPIO MOSI)	•	•	GND	GND	GND	GND
РН8	РН8	РН8	GPIO 9 (SPIO MISO)	•	•	GPIO 25	NC	NC	PG13
РН6	РН6	РН6	GPIO 11 (SPIO SCLK)	•	•	GPIO 8 (SPIO CEO)	NC	NC	PG12
GND	GND	GND	GND	•	•	GPIO 7 (SPIO CE1)	PG8	PI11	PI9
PC2	NC	NC	GPIO O (EEPROM SDA)	•	•	GPIO 1 (EEPROW SCL)	PG7	PI10	PI10
PC4	NC	NC	GPIO 5	•	•	GND	GND	GND	GND
P15	P19	PG6	GPIO 6	•	•	GPIO 12 (PVEO)	PG9	PI12	PI6
PI14	NC	NC	GPIO 13 (PVII)	•	•	GND	GND	GND	GND
PC6	PI1	PC6	GPIO 19 (PCM FS)	•	•	GPIO 16	NC	NC	PG 1 1
PC15	PI13	PC15	GPIO 26	•	•	GPIO 20 (PCM DIN)	PH10	PH10	PH4
GND	GND	GND	GND	•	•	GPIO 21 (PCM DOUT)	PC8	PI2	PC8

3.3 与 ADXL345 进行连接

注意: 当使用 TFT35 SPI 屏幕或者 IO2CAN(MCP2515 SPI 转 CAN)时,此 SPI 总线被 Linux 内核占用,应用层无法使用,所以无法同时使用 ADXL345。

3.4 与 SPI 屏进行连接

注意: 当使用 TFT35 SPI 屏幕或者 IO2CAN (MCP2515 SPI 转 CAN)时,此 SPI 总线被 Linux 内核占用, 应用层无法使用,所以无法同时使用 ADXL345 等应用层设备。

9 / 21

3.5 与 USB To CAN 模块进行连接

注意:使用 U2C 模块时,采用的是 SOC 的 USB2 接口进行通讯,此时 USB2 端口不能再接其他的 USB 设备。U2C 模块与 PI 使用标准的 USB 协议通信,所以无需像 IO2CAN (MCP2515) 那样设置系统,即插即用,只需按照 github 上常规的 USB U2C 模块第 5.3 节中的说明即可完成 klipper 设置。https://github.com/bigtreetech/U2C

3.6与风扇进行连接

3.7与 HDMI 进行连接

四、烧录系统

4.1 下载系统镜像

只能下载安装我们提供的系统镜像: https://github.com/bigtreetech/CB1/releases

4.2 下载并安装烧录软件

下载并安装烧录软件

树莓派官方的 Raspberry Pi Imager: https://www.raspberrypi.com/software/

balenaEtcher: https://www.balena.io/etcher/

以上两种软件都可以使用,任选一种下载安装即可。

4.3 烧录系统

4.3.1 使用 Raspberry Pi Imager

- 1. 将 Micro SD 卡通过读卡器插入到电脑。
- 2. 选择系统

3. 选择"用户自定义",然后选择下载到电脑中的镜像

4. 选择待烧录的 Micro SD 卡(烧录镜像会将 Micro SD 卡格式化,千万注意不要选错盘符,否则 会将其他存储上的数据格式化),点击"烧录"

5. 等待烧录完成

4.3.2 使用 balenaEtcher

- 1. 将 Micro SD 卡通过读卡器插入到电脑。
- 2. 选择下载到电脑中的镜像

3. 选择待烧录的 Micro SD 卡 (烧录镜像会将 Micro SD 卡格式化,千万注意不要选错盘符,否则 会将其他存储上的数据格式化),点击"烧录"

4. 等待烧录完成

五、配置网络

5.1 使用网线

网线即插即用,不需要额外的设置

5.2 设置 WIFI

系统镜像烧录完成后,Micro SD 卡会有一个被电脑识别的 FAT32 分区,此分区下有个名为 "system. cfg" 的配置文件

用记事本打开,将 WIFI-SSID 替换为实际的 WIFI 名称,PASSWORD 替换为实际的密码

六、配置主板

6.1 ssh 软件连接设备

- 1. 安装 ssh 软件 Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. 将 MicroSD 卡插到主板上,通电后等待系统启动,大概 1~2 分钟
- 3. 设备连上 WIFI 或者插上网线后,会被自动分配一个 IP
- 4. 进入路由器管理界面找到设备的 IP

5. 打开已经安装的 Mobaxterm 软件,点击 "Session",在弹出的窗口中点击"SSH",在 Remote host 一栏中输入设备的 IP 地址,点击"OK"(注意:电脑和设备必须要在同一个局域网下)

6. 输入登录名和登录密码进入 SSH 终端界面

登录名 login as: biqu

密码: biqu

6.2 编译 MCU 固件

1. ssh 连接到设备后,在命令行输入:

cd ~/klipper/

make menuconfig

使用对应的主板配置编译固件,此处以 Manta M4P 为例

- * [*] Enable extra low-level configuration options
- * Micro-controller Architecture (STMicroelectronics STM32) --->
- * Processor model (STM32G0B1) --->
- * Bootloader offset (8KiB bootloader) --->
- * Clock Reference (8 MHz crystal) --->
- * Communication interface (USB (on PA11/PA12)) --->

2. 配置选择完成后,输入 `q` 退出配置界面,当询问是否保存配置是选择 "Yes"

3. 输入 make 编译固件,当 make 执行完成后会在设备的 home/pi/klipper/out 文件夹中生成我们所需要的`klipper.bin`固件,在 ssh 软件左侧可以直接下载到电脑中

七、注意事项

1. 注意 PI 的散热问题。如果运行的应用消耗的系统资源过多,发热会比较严重

如果您还需要此产品的其他资源,可以到 https://github.com/bigtreetech/ 上自行查找,如果无法找到您所需的资源,可以联系我们的售后支持(service005@biqu3d.com)。

若您使用中还遇到别的问题,欢迎您联系我们,我们定会细心为您解答;若您对我们的产品有什么好的意见或建议,也欢迎您回馈给我们,我们也会仔细斟酌您的意见或建议,感谢您选择BIGTREETECH 制品,谢谢!