- (a) Introduction
 - (i) What is it? Diagram!
- (b) Finite Kinematic Analysis
 - (i) Method 1: D-H Formulation
 - i. Derive kinematic equation using D-H matrices, present Table of D-H parameters
 - (ii) Method 2: Derive Shape/Joint Matrices
 - i. Solution for the direct and inverse kinematic
 - (iii) Numerical Example
- (c) Differential Kinematic Analysis
 - (i) Derive the Jacobian using two methods
 - (ii) Write velocity equation
- (d) Conclusions
- (e) References

0.1 Introduction

We're going to play with a shoulder roll locked SSRMS.

0.2 Finite Kinematic Analysis

0.2.1 Denavit-Hartenberg Parameters

i	$ heta_i$	α_i	a_i	d_i
1	θ_1	90	0	d_1
2	$ heta_2$	90	0	d_2
3	θ_3	0	a_3	d_3
4	$ heta_4$	0	a_4	0
5	$ heta_5$	90	0	0
6	θ_6	90	0	d_6
7	θ_7	90	0	d_7

Table 1: The Denavit-Hartenberg parameters for the SSRMS. These parameters are the joint angle, θ , the link twist angle, α , the link length, a, and the joint offset, d.

Inverse Kinematics Solution 0.2.2

In general we can define

$$T_{07} = \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= T_{01}T_{12}T_{23}T_{34}T_{45}T_{56}T_{67}$$

Premultiplying both sides by T_{01}^{-1} yields,

$$T_{01}^{-1}T_{07} = T_{12}T_{23}T_{34}T_{45}T_{56}T_{67}$$

Equating each element (i, j) on both the left and right hand sides yields:

$$(1,1) \quad n_x c_1 + n_y s_1 \qquad = (s_2 s_6 + c_2 c_6 c_{345}) c_7 + s_7 s_{345} c_2$$

$$(1,2) \quad o_x c_1 + o_y s_1 \qquad = -s_2 c_6 + s_6 c_2 c_{345}$$

$$(1,3) \quad a_x c_1 + a_y s_1 \qquad = (s_2 s_6 + c_2 c_6 c_{345}) s_7 - s_{345} c_2 c_7$$

$$(1,3) \quad a_x c_1 + a_y s_1 \qquad = (s_2 s_6 + c_2 c_6 c_{345}) \, s_7 - s_{345} c_2 c_7$$

$$(1,4) \quad p_x c_1 + p_y s_1 \qquad = a_3 c_2 c_3 + a_4 c_2 c_{34} + d_3 s_2 + d_6 s_{345} c_2 - d_7 s_2 c_6 + d_7 s_6 c_2 c_{345}$$

$$(2,1) \quad n_z = (s_2c_6c_{345} - s_6c_2)c_7 + s_2s_7s_{345}$$

$$(2,2) \quad o_z \qquad = s_2 s_6 c_{345} + c_2 c_6$$

$$(2,3) \quad a_z \qquad = (s_2c_6c_{345} - s_6c_2)s_7 - s_2s_{345}c_7$$

$$(2,4) -d_1 + p_z = a_3 s_2 c_3 + a_4 s_2 c_{34} - d_3 c_2 + d_6 s_2 s_{345} + d_7 s_2 s_6 c_{345} + d_7 c_2 c_6$$

$$(3,1) \quad n_x s_1 - n_y c_1 \qquad = -s_7 c_{345} + s_{345} c_6 c_7$$

$$(3,2) \quad o_x s_1 - o_y c_1 \qquad = s_6 s_{345}$$

$$(3,3) \quad a_x s_1 - a_y c_1 \qquad = s_7 s_{345} c_6 + c_7 c_{345}$$

$$(3,4) p_x s_1 - p_y c_1 = a_3 s_3 + a_4 s_{34} + d_2 - d_6 c_{345} + d_7 s_6 s_{345}$$

$$(4,1) \quad 0 = 0$$

$$(4,2) \quad 0 = 0$$

$$(4,3) \quad 0 = 0$$

$$(4,4)$$
 1 = 1

where I have defined $s_i = \sin i$, $c_i = \cos i$, $s_{ij} = \sin i + j$, $c_{ij} = \cos i + j$, $s_{ijk} = \sin i + j + k$ and $c_{ijk} = \cos i + j + k$.