MA2101

Isomorphisms

Definitions Let F be a mapping $F: S \to T$.

- Surjection: $\forall t \in T, \exists s \in S \quad F(s) = t$
- Injection: $\forall s_1, s_2 \in S$ $F(s_1) = F(s_2) \Rightarrow s_1 = s_2$
- Bijection: Surjection and Injection

Homomorphism Let $\phi: U \to V$ be a mapping. It is a homomorphism if

$$\phi(u+v) = \phi(u) + \phi(v)$$
$$\phi(au) = a\phi(u)$$

If this homomorphism is <u>also</u> a bijection, then this is an isomorphism.

Linear mappings

Definition A mapping $T: V \to W$ is called a linear mapping if $\forall a \in \mathcal{F}, \forall u, v \in V$:

$$T(u+v) = T(u) + T(v)$$
$$T(au) = aT(u)$$

Set of linear mappings The set of all linear mappings from V to W is denoted $\mathcal{L}(V, W)$. It is a vector space.

Basis as a linear mapping Let B be a basis of V, where $\dim(V) = n$.

- Then $B \in \mathcal{L}(\mathcal{F}^n, V)$, i.e. it is a linear mapping from \mathcal{F}^n to V.
- However, some $x \in \mathcal{L}(\mathcal{F}^n, V)$ is not necessarily a basis, as it is not necessarily a bijection.

Change of basis Let y and z be basis of an n-dimensional vector space V.

- z has inverse z^{-1}
- Define $P = z^{-1} \circ y$, then $P : \mathcal{F}^n \to \mathcal{F}^n$, and since composition of bijections is a bijection, P is a bijection, so P is an isomorphism of F^n with itself.
- Hence, $y = z \circ P$, where P is an isomorphism of F^n with itself.

Kernel and range

Let $T \in \mathcal{L}(V, W)$.

Kernel

- The kernel of T, denoted Ker(T), is the set of elements in V that are mapped to the zero vector in W.
- The dimension of Ker(T) is called the nullity of T, denoted as Null(T).
- Ker(T) is a subspace of V.
- T is injective $\Leftrightarrow \operatorname{Ker}(T) = \{\vec{0}\}\$

Range

- The range of T, denoted Rang(T), is the set of vectors in W that can be expressed as Tvfor some $v \in V$.
- The dimension of Rang(T) is called the rank of T, denoted as Rank(T).
- Rang(T) is a subspace of W.
- T is surjective $\Leftrightarrow \operatorname{Rang}(T) = W$

Fundamental theorem

$$\dim(V) = \text{Null}(T) + \text{Rank}(T)$$

- Let $T \in \mathcal{L}(V, W)$ where $\dim(V) > \dim(W)$. Then T cannot be injective.
- Let $T \in \mathcal{L}(V, W)$ where $\dim(V) < \dim(W)$. Then T cannot be surjective.
- For linear maps from V to itself. bijectivity ⇔ injectivity ⇔ surjectivity

Duality

Dual space

Definition The dual space of a vector space V, is the set of all linear mappings from V to $\mathcal{F}, \mathcal{L}(V, \mathcal{F}).$

- We denote the dual space as \hat{V}
- If $\alpha \in \hat{V}$, then $\forall u \in V, \ \alpha(u) \in \mathcal{F}$

Example Let \mathcal{F}^n be the vector space of column vectors.

- The dual space of \mathcal{F}^n is the space of $1 \times n$ row vectors.
- Its canonical dual basis e^i are the row vectors $(1 \ 0 \ 0 \ \cdots), \ (0 \ 1 \ 0 \ \cdots), \ \cdots \ | \bullet$ Here, $\zeta p \in \hat{V}$, and $z\alpha \in V$.

Dual basis

Definition Let z_i be a basis for V.

- For any $v \in V$, write $v = \sum a^i z_i$.
- Denote the dual vectors as ζ^i . Define them as follows:

$$\zeta^i(v) = a^i$$

• Letting the ζ act on z, we have

$$\zeta^{i}(z_{j}) = I_{j}^{i} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

• The set of all $\zeta^i \in \hat{V}$ that satisfies $\zeta^i(z_i) = I_i^i$ is called the dual basis of z_i .

Show basis

- 1. (Show that they belong to \hat{V}) Show that each ζ^i is a linear mapping from V to \mathcal{F} .
- 2. (Show they are linearly independent) Consider $\sum p_i \zeta^i = \vec{0}$, and let it act on z_i .

$$0 = p_i \zeta^i(z_j) = p_i I_j^i = p_j$$

- 3. (Show that they span) We do not know the dimension of \hat{V} . Thus, we show that every element of \hat{V} can be expressed as a linear combination of ζ^i .
 - Let $\beta = (\alpha z_i)\zeta^i$ for some dual vector α .

$$\beta(z_j) = \alpha(z_i)\zeta^i(z_j) = \alpha(z_i)I_j^i = \alpha(z_j)$$

- Hence, any dual vector β can be expressed as a linear combination of ζ^i , where the components are $\alpha(z_i)$.
- 4. This implies $\dim(\hat{V}) = \dim(V)$.
- 5. Since in our definition, a^i is unique to v, so the dual basis is also unique.

Alternative definition

- Let z be a basis for V, so $z \in \mathcal{L}(\mathcal{F}^n, V)$.
- Let $\alpha \in \mathcal{F}^n$. Let $p \in \hat{\mathcal{F}}^n$.
- Define $\zeta \in \mathcal{L}(\hat{\mathcal{F}}^n, \hat{V})$ as follows:

$$\zeta p(z\alpha) = pa$$

Why duality?

- $v \in V$ is linear when acting on $\alpha \in \hat{V}$.
- We claim that α is the dual vector of v, but we can also regard v as the dual vector of α .

Transpose mapping

Let $\alpha \in \hat{V}$ and let $v \in V$. For each LT $T: V \to V$, define $\hat{T}: \hat{V} \to \hat{V}$ as follows:

$$\hat{T}(\alpha)(v) = \alpha(Tv)$$

Then \hat{T} is the transpose of T. Since \hat{T} is linear. so $\hat{T} \in \mathcal{L}(\hat{V}, \hat{V})$.

Dual of the dual space

Dual of dual space of V is isomorphic to V.

Tensor products

Definition

- Let V be a vector space. Let \hat{V} be its dual.
- For each $v \in V$ and $\alpha \in \hat{V}$, define their tensor product $v \otimes \alpha$ to be the element of $\mathcal{L}(V,V)$ as follows:

$$(v \otimes \alpha)(w) = \alpha(w)v$$

where $w \in V$.

• The tensor product is linear in both ways.

$$(u+v) \otimes \alpha = u \otimes \alpha + v \otimes \alpha$$
$$v \otimes (\alpha + \beta) = v \otimes \alpha + v \otimes \beta$$

• Let β be a dual vector.

$$\beta \circ (v \otimes \alpha) = \beta(v)\alpha$$

Basis

Let z_i be a basis of V and let ζ^j be the dual basis.

- For the following, consider $V = \mathcal{F}^n$ and $z_i = e_i$ for a concrete example.
- For each pair of (i, j), $z_i \otimes \zeta^j \in \mathcal{L}(V, V)$.
- The full set of $z_i \otimes \zeta^j$ is a basis for $\mathcal{L}(V,V)$.
- $\dim(\mathcal{L}(V,V)) = \dim(V)^2$
- Define T_i^i as follows:

$$T(z_i) = T_i^i(z_i)$$

Show span

- Let $T \in \mathcal{L}(V, V)$.
- Since $T(z_i) \in V$, then express it as a linear combination as follows, where := removes the summations

$$T(z_i) = \sum_j T_i^j(z_j) := T_i^j(z_j)$$

 Next, define S in the following way, where := removes the summations.

$$S = \sum_i \left(\left(\sum_j T_i^j z_j \right) \otimes \zeta^i \right) := T_i^j z_j \otimes \zeta^i$$

S is a linear combination of things in $\mathcal{L}(V, V)$, so $S \in \mathcal{L}(V, V)$.

 Let S act on z_k. Summations are not present here, but use the above definitions to confirm that they work:

$$S(z_k) = T_i^j z_j \otimes \zeta^i(z_k) = \zeta^i(z_k) T_i^j z_j$$
$$= I_k^i T_i^j z_j = T_k^j z_j = T(z_k)$$

By linearity, we have S(v) = T(v) for all $v \in V$. Hence

$$T = S = T_i^j z_j \otimes \zeta^i = T_i^j \left(z_j \otimes \zeta^i \right)$$

and any arbitrary T can be expressed as a linear combination of $z_j \otimes \zeta^i$. Hence, $z_i \otimes \zeta^j$ forms a basis for $\mathcal{L}(V, V)$.

Extracting components Let ζ^i be the dual basis of z_i .

$$\zeta^{i}\Big(T(z_{j})\Big) = \zeta^{i}\Big(T_{j}^{k}(z_{k})\Big) = T_{j}^{k}I_{k}^{i} = T_{j}^{i}$$

In particular,

$$\epsilon^{i}\Big(T(e_{j})\Big) = \epsilon^{i}\Big(T_{j}^{k}(e_{k})\Big) = T_{j}^{k}I_{k}^{i} = T_{j}^{i}$$

where e_j are the canonical basis vectors of \hat{V} and ϵ^i are the canonical basis vectors of \hat{V} .

Transpose of tensor product The transpose of $v \otimes \alpha$ is $\alpha \otimes v$.

Trace of tensor product The trace of $v \otimes \alpha$ is $\alpha(v)$. That is, the trace of the outer product is the inner product.

Matrices

Definition A $n \times m$ matrix is just a list of m vectors belonging to \mathcal{F}^n .

Convention We may refer to the elements of a matrix in the following way:

$$\begin{pmatrix} M_1^1 & M_2^1 & M_3^1 \\ M_1^2 & M_2^2 & M_3^2 \\ M_1^3 & M_2^3 & M_3^3 \end{pmatrix}$$

- Subscripts: which column vector from the list you are referring to
- Superscripts: which component of a given vector you are referring to
- M_j^i is the (i, j)-entry in a given matrix

Vector space The set $\mathcal{M}_{n \times m}$ of $n \times m$ matrices is a vector space, with usual matrix addition, and scalar multiplication.

Matrix of a linear transformation From the tensor products section,

$$T = T_i^j \left(z_j \otimes \zeta^i \right)$$

where $z_j \otimes \zeta^i$ is a basis for $\mathcal{L}(V, V)$. Then T_i^j is the matrix of T relative to the basis z_i .

Transpose of $T: V \to V$ From the transpose mapping section, we have define the transpose mapping as follows:

$$\hat{T}(\alpha)(v) = \alpha(Tv)$$

where $\alpha \in \hat{V}$ and $v \in V$. Let $\alpha = \zeta^i$ and $v = z_j$. Then

$$\zeta^{i}(Tz_{j}) = z_{j}(\hat{T}\zeta^{i})$$
$$\zeta^{i}(T_{j}^{i}z_{i}) = z_{j}(\hat{T}_{i}^{j}\zeta^{j})$$
$$T_{j}^{i} = \hat{T}_{j}^{j}$$

Hence the transpose matrix is obtained by flipping along the diagonal.

Transpose of $T: V \to W$ The transpose of $T: V \to W$ is $\hat{T}: \hat{W} \to \hat{V}$.

Trace is zero on commutators

$$\operatorname{tr}(MN) = \sum_{i} M_k^i N_i^k = N_i^k M_k^i = \operatorname{tr}(NM)$$

$$\mathcal{L}(V, W)$$
 for $V \neq W$

Let $\dim(V) = n$ and $\dim(W) = m$.

Tensor product For each $x \in W$ and $\alpha \in \hat{V}$, define their tensor product $x \otimes \alpha$ to be the element of $\mathcal{L}(V, W)$ as follows, where $v \in V$:

$$(x \otimes \alpha)(v) = \alpha(v)x$$

Basis

- Let x_i be a basis of W, and let ζ^j be a dual basis for V.
- Then the full set $x_i \otimes \zeta^j$ is a set of $n \times m$ elements of $\mathcal{L}(V, W)$ which forms a basis.

LT Any $T \in \mathcal{L}(V, W)$ can be expressed as $T_j^i(x_i \otimes \zeta^j)$, where the T_j^i can be assembled into a $m \times n$ matrix.

Note

- Given bases for V and W, we can map any LT in $\mathcal{L}(V,W)$ to a matrix.
- This mapping is a linear mapping from $\mathcal{L}(V,W)$ to $\mathcal{M}_{m\times n}$.

Matrix of a product

$$M_i^i N_k^j = M_1^i N_k^1 + M_2^i N_k^2 + \cdots$$

Multiplying transformations Definition

- Let U, V, W be vector spaces such that $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$.
- Then $T \circ S \in \mathcal{L}(U, W)$ and
- $\mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S)$

Example Let $v, w \in V$ and $\alpha, \beta \in \hat{V}$. Then

$$(v \otimes \alpha) \circ (w \otimes \beta) = \alpha(w)v \otimes \beta$$

Matrix of the tensor product Since

$$v \otimes \alpha = (v^i z_i) \otimes (p_j \zeta^j) = v^i p_j (z_i \otimes \zeta^j)$$

So the matrix is just $v^i p_j$. For example, when $\dim(V) = \dim(\hat{V}) = 3$,

$$\begin{pmatrix} v^1 p_1 & v^1 p_2 & v^1 p_3 \\ v^2 p_1 & v^2 p_2 & v^2 p_3 \\ v^3 p_1 & v^3 p_2 & v^3 p_3 \end{pmatrix} = \begin{pmatrix} v^1 \\ v^2 \\ v^3 \end{pmatrix} \begin{pmatrix} p_1 & p_2 & p_3 \end{pmatrix}$$

Sometimes, the tensor product is also called the outer product of a column vector with a row vector.

Change of basis

Dual basis ζ Let ζ^j be the dual basis to z_i . Let ϵ^j be the dual canonical basis for \mathcal{F}^n . Then we have

$$\zeta^j = \epsilon^j \circ z^{-1}$$

Linear map T Let $T: V \to V$. Then $\mathcal{M}(T)$ relative to basis z is the same as the matrix of

$$z^{-1} \circ T \circ z$$

relative to the canonical basis of \mathcal{F}^n , because

$$\epsilon^j z^{-1} T z e_i = \zeta^j z_i = T_i^j$$

Then, consider $y = z \circ P$. Note that $y^{-1} = P^{-1} \circ z^{-1}$. Then $\mathcal{M}(T)$ relative to basis y is

$$y^{-1} \circ T \circ y = (P^{-1} \circ z^{-1}) \circ T \circ (z \circ P)$$

= $P^{-1}(z^{-1}Tz)P$

Viewing this as a product of transformations, then the matrix is also the product of

- Matrix of P^{-1} rel. to canonical basis of \mathcal{F}^n
- ullet Matrix of T rel. to the basis z of V
- Matrix of P rel. to the canonical basis of \mathcal{F}^n

Components Let z be a basis of V, let $v \in V$, let $a = z^{-1}v$, so a is a column vector of the components of v. The components relative to another basis $y = z \circ P$ is:

$$y^{-1}v = (P^{-1}z^{-1})v = P^{-1}a$$

Alternative dual basis definition We may define a dual basis in the following way:

$$(\zeta p)(za) = pa$$

where $p \in \hat{\mathcal{F}}^n$. Since pa is a scalar, its value should not depend on the choice of basis. Then obviously $pa = pPP^{-1}a$. From the previous section, then the components of a dual vector will change from p to pP.