

Università degli studi di Bari Dipartimento di Informati**C**a

TESI DI LAUREA IN
METODI PER IL RITROVAMENTO DELL'INFORMAZIONE

Riproducibilità della Valutazione nei Recommeder Systems: Esperimento in un Dominio Musicale

RELATORE:

Dott. Pasquale Lops

LAUREANDO: Mattia Menna

INTRODUZIONE

I Recommender Systems sono sistemi che producono consigli (Information Filtering)

- Amazon ha dichiarato che una percentuale compresa tra il 30 e il 70 percento delle sue vendite complessive è dovuta alla qualità delle raccomandazioni che offre
- L'obiettivo della ricerca sui recommender systems è quello di trovare algoritmi di raccomandazione che producano raccomandazioni di qualità, cioè che offrano contenuto *utile* ed *interessante* per l'utente

OBIETTIVI DELLA TESI

- Valutare un algoritmo di raccomandazione confrontandolo con la letteratura disponibile e alcune baselines
- Eseguire una sperimentazione che sia facilmente riproducibile tramite l'utilizzo di toolkit open-source e un data set liberamente scaricabile

DATA SET

 Il dataset utilizzato proviene dalla nota radio Internet LastFm che utilizza un recommender chiamato "AudioScrobbler" per generare consigli musicali

LastFm Data Set	
N° item	7000
N° utenti	1796
N° rating	66289
Media rating per utente	36,9
Deviazione standard	1,9

 I ratings sono delle preferenze binarie espresse dagli utenti per gli artisti

DATA SET

- Oltre l'insieme delle preferenze il data set è composto anche da un insieme di metadati per ogni artista che vengono utilizzati per generare la similarità del content tra item
- Ad ogni artista è assegnato un insieme di tag scaricati dalla pagina wiki del sito tramite le API messe a disposizione da LastFm

Content	Tag
Media tag per artista	4,7
Deviazione standard	0,8

Esempio:

ArtistId Name Tags

728 Eric Clapton classic rock, blues, rock, blues rock, guitar

LENSKIT

 Lenskit è un tool open-source interamente scritto in Java che si occupa di configurare e lanciare un recommender

 Le componenti del recommender sono istanziate automaticamente tramite la dependency injection

SEED RECOMMENDER

- Seed Recommender* è un algoritmo di tipo Item-Item ibrido che combina tre criteri di similarità differenti per ciascun livello di descrizione dell'item
- Ad ogni criterio è associato un peso

Co-occurrence Matrix

Rating Similarity

Content Similarity

UTENTI

get_recom m endation_list (user, n, seed_item set, activate_standard_seed)

Cold-start user

(profilo con meno di 20 voti)

?

No cold-start user (profilo con più di 20 voti)

SEED ITEM SET

Standard seed

- Item più popolare
- Item più popolare in un certo periodo di tempo
- Ultimo item votato positivamente
- Ultimo item inserito nella piattaforma

Seed esterni

- Ricerche e dati di navigazione su web
- Item visionati dall'utente

ORDINAMENTO

- Le raccomandazioni sono rappresentate da una tripla <item-scorematrice>
- L'ordinamento avviene utilizzando come primo criterio il numero di occorrenze dell'item e come secondo criterio lo score

PROTOCOLLO SPERIMENTALE

- Lo splitting è effettuato dividendo il data set in un training set e un test set
- Il training set è composto da una certa percentuale di utenti in cold start, con profile sizes scelte a caso in tre range equamente distribuiti: [0 5], [6 12], [13 19]
- Sono state effettuate quattro run con percentuali uguali a: 20%, 50%, 80% e 100%

RECOMMENDATION

- Item-Item Collaborative Filtering classico con cardinalità del vicinato pari a 30
- FunkSVD, l'algoritmo vincitore del Netflix Prize, implementato con l'utilizzo della Singolar Value Decomposition
- Popularity, semplice baseline che ordina gli item per popolarità e restituisce i primi n
- RandomPopularity, restituisce l'item più popolare più n-1 item scelti a caso
- Co-Coverage, infine restituisce gli n item più covotati tra gli utenti

VALUTAZIONE

• Precision: grado di accuratezza calcolato come il rapporto tra gli item rilevanti raccomandati e la dimensione della lista di raccomandazione

$$Precision = \frac{|I_{rel} \cap I_{rec}|}{|I_{rec}|}$$

 Recall: grado di accuratezza calcolato come il rapporto tra gli item rilevanti raccomandati e la cardinalità dell'insieme degli item rilevanti

$$Recall = \frac{|I_{rel} \cap I_{rec}|}{|I_{rel}|}$$

 Aggregate Diversity: grado di diversificazione delle raccomandazioni calcolato come il rapporto tra il numero di item diversi raccomandati e il numero totale di item nel sistema, in pratica il grado di copertura del catalogo

 $AggregateDiversity = \frac{|\bigcup_{u \in U} L_N(u)|}{|I_{tot}|}$

RIVAL

• Rival è un framework open-source implementato in Java che mette a disposizione classi per lo splitting del data set e per la valutazione

RISULTATI

RISULTATI

AggregateDiversity

CONCLUSIONI

- Le prestazioni dell'algoritmo non cambiano significativamente all'aumentare della percentuale di utenti in cold-start
- L'algoritmo ha prestazioni migliori se non si usa l'insieme di seed standard
- Il valore di diversificazione delle raccomandazioni offerte è molto alto, ciò significa che il grado di personalizzazione è adeguato

SVILUPPI FUTURI

- Provare a utilizzare l'insieme dei seed standard solo per utenti che hanno zero preferenze
- Eseguire l'esperimento modificando i pesi delle matrici
- Modificare l'insieme dei seed standard utilizzando altri criteri euristici

Riproducibilità della Valutazione nei Recommender Systems: Esperimento in un Dominio Musicale

GRAZIE PER L'ATTENZIONE!

