

Mobile Phone Security

Dr. Digvijaysinh Rathod
Associate Professor
(Cyber Security and Digital Forensics)
Institute of Forensic Science
Gujarat Forensic Sciences University

digvijay.rathod@gfsu.edu.in

Session - I

Session – I

Introduction to Android

Android Architecture

Android Run Time

- ✓ Android Application Security Pen-Testing
- ✓iOS Application Security Pen-Testing

Reference

Mobile Operating System Market Share Worldwide

Ref: https://gs.statcounter.com/os-market-share/mobile/worldwide

Introduction to Android

- ✓ Android is an **open-source operating system** based on **Linux** with a **Java and kotlin** programming interface for mobile devices such as Smartphone (Touch Screen Devices who supports Android OS) as well for Tablets too.
- ✓ Android was developed by the Open Handset Alliance (**OHA**), which is led by **Google**.
- ✓The Open Handset Alliance (OHA) is a consortium of multiple companies like Samsung, Sony, Intel and many more to provide services and deploy handsets using the android platform.

Dr. Digvijaysinh Rathod

Introduction to Android

- ✓In 2007, Google released a first beta version of the Android Software Development Kit (SDK) and the first commercial version of Android 1.0 (with name Alpha), was released in September 2008.
- ✓In 2012, Google released another version of android, 4.1 Jelly Bean.
- ✓In 2014, Google announced another Latest Version, 5.0 Lollipop.
- ✓ Latest release 10/August 3, 2020 and on the way to release Android 11

- ✓ Any operating system (desktop or mobile) takes responsibility for managing the resources of the system and provides a way for applications to talk to hardware or physical components in order to accomplish certain tasks.
- ✓ OS manage mobile phones, manages **memory** and **processes, enforces security**, takes care of networking issues

✓ The Android operating system consists of a stack of layers running on top of each other.

✓The Linux kernel:

- ✓ Provides a level of **abstraction** between the device hardware and the upper layers.
- ✓ Kernel contains drivers to understand the hardware instruction.
- ✓ The drivers in the kernel control the underlying hardware.
- ✓ As shown in the preceding figure, the kernel contains drivers related to Wi-Fi, Bluetooth, USB, audio, display, and so on.
- ✓ Such as **process management, memory management, security, and networking, are managed** by Linux kernel

✓Libraries:

- ✓On top of Linux kernel are Android's native libraries.
- ✓It is with the help of these libraries that the device handles different types of data.
- ✓ These libraries are written in the **C** or **C++** programming languages and are specific to a particular hardware.
- ✓ For example, the media framework library supports the recording and playback of audio, video and picture formats.

The Android Run Time

✓ Dalvik virtual machine:

✓ Dalvik byte code :

- ✓ Dalvik byte code is an **optimized byte code** suitable for low-memory and low-processing environments.
- ✓ Also, note that JVM's byte code consists of **one or more .class files**, depending on the number of Java files that are present in an application,
- ✓but Dalvik byte code is composed of **only one** .dex file.

Android security

✓ Application sandboxing:

Two applications on different processes on with different UID's

Android security

✓ Application sandboxing :

- ✓In order to isolate applications from each other, Android takes advantage of the Linux user-based protection model.
- ✓In Linux systems, each user is assigned a unique user ID (UID) and users are segregated so that one user does not access the data of another user.
- ✓ All resources under a particular user are run with the same privileges. Similarly, each Android application is assigned a UID and is run as a separate process.
- **✓**This application sandboxing is done at the kernel level. it applies to both native applications and OS applications

Mobile Phone Security

Dr. Digvijaysinh Rathod
Associate Professor
(Cyber Security and Digital Forensics)
Institute of Forensic Science
Gujarat Forensic Sciences University

digvijay.rathod@gfsu.edu.in