Skaitļu teorijas formulu lapa (NMS)									
Algebriski pārv	veidojumi.								
$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$	Binomiālie koeficienti: $(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + b^n$, kur $\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$.	$(a+b+c+d)^4 = \dots + 12a^2bc + \dots, \text{ jo } \frac{4!}{2!1!1!} = 12.$	Polinomiālie koeficienti: $(a_1+a_2+\cdots+a_m)^n$ izvirzījums satur $a_1^{k_1}a_2^{k_2}\cdots a_m^{k_m}$ ar koeficientu $\frac{n!}{k_1!k_2!\cdots k_m!}$, ja $k_1+k_2+\cdots+k_m=n$.						
$a^3 + b^3 = (a + b)(a^2 - ab + b^2).$	Nepāru pakāpju summa: $a^{2n+1} + b^{2n+1} = (a+b)(a^{2n} - a^{2n-1}b + \cdots - ab^{2n-1} + b^{2n}).$	$a^3 - b^3 = (a - b)(a^2 + ab + b^2).$	Pakāpju starpība: $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}).$						
$ax^2 + bx + c = 0$ ir 3 saknes \Rightarrow $a = b = c = 0$	Identiski polinomi: Ja $P(x)$ un $Q(x)$ ir n -tās pakāpes polinomi un to vērtības sakrīt $n+1$ dažādiem x_i , tad $P(x) = Q(x)$.	$P(x) = 4x^3 - 3x^2 - 25x - 6$ dalās ar $(x-3)$.	Polinoms $P(x)$ dalās ar $(x-a)$ tad un tikai tad, ja a ir $P(x)$ sakne.						
$x^{4} + 4 = = (x^{2} - 2x + 2) \cdot \cdot (x^{2} + 2x + 2)$	Sofijas-Žermēnas identitāte: $a^4 + 4b^4 = ((a+b)^2 + b^2) \cdot ((a-b)^2 + b^2)$	3 kubu identitāte: $a^3 + b^3 + c^3 - 3abc = (a+b+c)\left(a^2 + b^2 + c^2 - ab - bc - ca\right).$ Sekas: $(x-y)^3 + (y-z)^3 + (z-x)^3 = 3(x-y)(y-z)(z-x).$							
Dalāmība un p	irmskaitļi: Veseliem a un d ($d \neq 0$) rakstām $d \mid a$,	ja a dalās ar d . At	clikums, a dalot ar b : $(a \mod b)$.						
skaits, tad p_1p_2 .	$5,\dots$ ir bezgalīgi daudz. (No pretējā: ja būtu galīgs $\cdots p_k+1$ nedalītos ne ar vienu no tiem.)	Eksistē cik patīk garas $\mathbb N$ apakšvirknes bez pirmskaitļiem. (Piemēram, $m!+2, m!+3, m!+m$ satur $m-1$ saliktu skaitli.)							
$2016 = 2^5 3^2 7.$ $2017 = 2017^1.$ $2018 = 2 \cdot 1009.$	Aritmētikas pamatteorēma: Katru $n \in \mathbb{N}$ var tieši vienā veidā izteikt kā pirmskaitļu pakāpju reizinājumu: $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$.	$60 = 2^2 \cdot 3^1 \cdot 5^1$ ir $3 \cdot 2 \cdot 2 = 12$ dalītāji.	Dalītāju skaits: Katram $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ pozitīvo dalītāju skaits, ieskaitot 1 un n , ir $d(n) = (a_1 + 1) \cdots (a_k + 1)$.						
d(100) = 9; d(1000) = 16.	Dalītāju skaita teorēma: $n \in \mathbb{N}$ ir pilns kvadrāts t.t.t., ja tam ir nepāru skaits pozitīvu dalītāju (visi pirmreizinātāji ir pāru pakāpēs).	n = 12: $(1, 12)$, $(2, 6)$ un $(3, 4)$.	Dalītāju pāri: Visus n dalītājus (izņemot \sqrt{n}) var grupēt pāros: $d_1 < \sqrt{n} < d_2$, kur $d_2 = n/d_1$.						
$\gcd(192, 78) = \gcd(78, 36) = \gcd(36, 6) = \gcd(6, 0) = 6.$	<pre>Eiklīda algoritms: function gcd(a, b) if (b == 0) { return a; } else { return gcd(b, a mod b); }</pre>	Piemērs polinomiem: $\gcd(n^2 + 3, n^2 + 2n + 4) = \gcd(n^2 + 3, 2n + 1) =$ = $\gcd(2n^2 + 6, 2n + 1) = \gcd(-n + 6, 2n + 1) = \gcd(n - 6, 13).$							
$a = 8, b = 13$ $\Rightarrow 5a - 3b = 1.$	Bezū lemma: Ja $a, b \in \mathbb{N}$ un $d = \gcd(a, b)$, tad eksistē $x, y \in \mathbb{Z}$, kam $ax + by = d$. Eiklīda lemma: Dots pirmskaitlis p un $a, b \in \mathbb{Z}$. Ja $p \mid ab$, tad $p \mid a$ vai $p \mid b$.	$(n_1, n_2, n_3) = (2, 3, 5),$ $(x_1, x_2, x_3) = (1, 2, 3) \Rightarrow x \equiv 23 \pmod{30}.$	Ķīniešu atlikumu teorēma: Ja n_1,\ldots,n_k ir naturāli skaitļi, $\gcd(n_i,n_j)=1$ visiem $i\neq j,$ tad visiem naturāliem x_1,\ldots,x_k eksistē tieši viena kongruenču klase x pēc moduļa $n=n_1\cdots n_k,$ kam $x\equiv x_i \pmod{n_i}$ visiem $i.$						
Kongruences: \	Veseliem a, b, m rakstām $a \equiv b \pmod{m}$, ja $a - b$ dal	$l\bar{a}s~ar~m.$							
Intuīcija: Ja ska ar sevi, iegūst atl	aitli a , kas nedalās ar p , pietiekami ilgi reizina pašu likumu 1 (mod p).	Intuīcija: Skaitli a , kam nav kopīgu dalītāju ar nepirmskaitli n , reizinot pašu ar sevi, arī kaut kad iegūst atlikumu $1 \pmod{n}$.							
$1^6 \equiv 2^6 \equiv 3^6 \equiv 4^6 \equiv 5^6 \equiv 6^6 \equiv 1 \pmod{7}.$	Mazā Fermā teorēma: Ja p ir pirmskaitlis un $gcd(a, p) = 1$, tad $a^{p-1} \equiv 1 \pmod{p}$.	$1^4 \equiv 3^4 \equiv 7^4 \equiv 9^4 \equiv 1 \pmod{10}$	Eilera teorēma: Katram naturālam n un katram a , kam $\gcd(a,n)=1$ izpildās $a^{\varphi(n)}\equiv 1\pmod{n}$.						
Valuācijas un p	pakāpes pacelšanas lemmas:								
Intuīcija: $x^n \pm $ precīzi atrodama	\boldsymbol{y}^n dalāmība ar nepāra pirmskaitļu pakāpēm ir (ar indukciju).	Intuīcija: $x^n \pm y^n$ dalāmība ar divnieka pakāpēm ir precīzi atrodama, bet citāda.							
$ \nu_3(999999999) = \nu_3(10^9 - 1^9) = = \nu_3(10 - 1) + \nu_3(9) = 2 + 2 = 4. $	Lemma 1: Ja x un y ir veseli skaitļi (ne obligāti pozitīvi), n ir naturāls skaitlis un p ir nepāru pirmskaitlis. Zināms, ka $x \not\equiv 0 \pmod p$, $y \not\equiv 0 \pmod p$, bet $x - y \equiv 0 \pmod p$. Tad $\nu_p(x^n - y^n) = \nu_p(x - y) + \nu_p(n)$. Der arī negatīvi x vai y . Piemēram, $\nu_{11}(10^{121} + 1) = \nu_{11}(10 + 1) + \nu_{11}(121) = 3$.	$ \nu_2(5^{128} - 1) = \nu_2(5 - 1) + \nu_2(5 + 1) + \nu_2(128) - 1 = 9. $	Lemma 2: Ja x un y ir divi nepāru veseli skait un n ir pāru naturāls skaitlis. Tādā gadījumā $\nu_2(x^n-y^n)=\nu_2(x-y)+\nu_2(x+y)+\nu_2(n)-1$						
Skaitli ar nepa	rastām īpašībām: Fermā skaitļi, Mersena skaitļi,	Viferiha skaitli. Ka	rmaikla skaitli.						
$F_{0,\dots,4} = 3, 5, 17, 257, 65537.$	Ja $2^n + 1$ ir pirmskaitlis, tad n jābūt 2^k . Skaitļus $F_n = 2^{2^k} + 1$ sauc par Fermā (Fermat) skaitļiem; pirmie pieci no tiem ir pirmskaitļi (nav zināms, vai ir vēl kāds pirmskaitlis F_k , $k > 4$).	$W_1 = 1093,$ $W_2 = 3511.$	Par Viferiha (<i>Wieferich</i>) pirmskaitļiem sauc pirmskaitļus p , kam 2^{p-1} dalās ne vien ar p (Mazā Fermā teorēma), bet uzreiz ar p^2 . Šobrīd zināmi tikai divi Viferiha pirmskaitļi.						
$M_{2,3,5,7,13} = 3,7,31,127,8191$	Ja $M_p=2^p-1$ ir pirmskaitlis, tad p jābūt pirmskaitlim. Pirmskaitļus šajā formā sauc par Mersena pirmskaitļiem. Bet $2^{11}=2047=23\cdot 89$, t.i. visi M_p nav pirmskaitļi.	$561 = 3 \cdot 11 \cdot 17$	Par Karmaikla (<i>Carmichael</i>) skaitļiem sauc liktus skaitļus n , kas apmierina Fermā teorēn līdzīgu apgalvojumu: Visiem b , kam nav kopā dalītāju ar n : $b^{n-1} \equiv 1 \pmod{n}$. 561 der, $(3-1) \mid 560, (10-1) \mid 560,$ and $16 \mid 560$ (K selta kritērijs).						
Multiplikatīvā	kārta un primitīvās saknes: Var viennozīmīgi pa	ateikt, kuriem kāpi	nātājiem k izpildās $a^k \equiv 1 \pmod{p}$.						
Intuīcija: Katra	m atlikumam a (ja $a \not\equiv 0 \pmod{p}$) var atrast visju, kuram a^k "ieciklojas" un atgriežas pie vērtības	Intuīcija: Eksistē skaitļi a , kuri izstaigā visas kongruenču klases (izņemot $0 \pmod p$), pirms atgriežas pie $1 \pmod p$.							
$\operatorname{ord}_{7}(1) = 1,$ $\operatorname{ord}_{7}(3) =$ $= \operatorname{ord}_{7}(5) = 6,$ $\operatorname{ord}_{7}(2) =$ $= \operatorname{ord}_{7}(4) = 3,$ $\operatorname{ord}_{7}(6) = 2.$	Definīcija: Par skaitļa a multiplikatīvo kārtu (multiplicative order) pēc p moduļa sauc mazāko kāpinātāju k , kuram $a^k \equiv 1 \pmod{p}$. Multiplikatīvo kārtu apzīmē $\operatorname{ord}_p(a)$.	$3^k \equiv 3, 2, 6, 4, 5, 1 \pmod{7}$ ja $k = 1, \dots, 6.$ Arī 5 ir primitīvā sakne (mod 7).	Primitīvā sakne: Katram pirmskaitlim p eksistē tāds a , kuram kongruenču klases $a^1, a^2, \ldots, a^{p-1}$ pieņem visas vērtības $1, 2, \ldots, p-1$ (sajauktā secībā).						

Intuīcija: Dažām $a \not\equiv 0$ vērtībām vienādojumu $x^2 \equiv a \pmod{p}$ var atrisināt (un tad tam ir tieši divas saknes x_1, x_2 , kam $x_2 \equiv -x_2$); citām a vērtībām šim "kongruenču kvadrātvienādojumam" nav nevienas saknes. (Ja $a \equiv 0$, tad ir tieši viena sakne $x \equiv 0$.)

Definīcija: Skaitli $a \not\equiv 0$ sauc par kvadrātisko atlikumu (quadratic residue), ja kongruenču vienādojumu $x^2 \equiv a \pmod{p}$ var atrisināt. Definīciju sk. https://bit.ly/3sFNqsh

Pirmskaitlim p = 7 skaitli a = 1, 2, 4 ir kvadrātiskie atlikumi, bet a = 3, 5, 6 nav kvadrātiskie atlikumi.

Intuīcija: No visiem atlikumiem (izņemot atlikumu 0) būs tieši puse tādu, kuri atgriežas pie $1 \pmod{p}$ jau divreiz ātrāk nekā pēc p-1 soliem.

Definīcija: Par skaitļa a Ležandra simbolu ($Legendre\ symbol$) pēc p moduļa sauc lielumu $\binom{a}{m} = a^{\frac{p-1}{2}}$. Teorēma (Eilera kritērijs): Skaitlis a

ir kvadrātisks atlikums tad un tikai tad, ja $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

Secinājums: Ja $\binom{a}{m} = 1$, tad vienādojumu $x^2 \equiv a \pmod{p}$ var atrisināt,

bet ja $\binom{a}{p} = -1$, tad nevar atrisināt.

Definīciju un vērtību tabulu sk. https://bit.ly/3qFKHOm.

$$\left(\begin{array}{c} 0 \\ \hline 7 \end{array}\right) = 0.$$

$$\binom{1}{7} = \binom{2}{7} = \binom{4}{7} = 1.$$

$$\left(\frac{3}{7}\right) = \left(\frac{5}{7}\right) = \left(\frac{6}{7}\right) = -1.$$

a	1	2	3	4	5	6
$a^2 \pmod{7}$	1	4	2	2	4	1
$a^3 \pmod{7}$	1	1	6	1	6	6
$a^4 \pmod{7}$	1	2	4	4	2	1
$a^5 \pmod{7}$	1	4	5	2	3	6
$a^6 \pmod{7}$	1	1	1	1	1	1
$\operatorname{ord}_7(a)$	1	3	6	3	6	2
$\binom{a}{7}$	1	1	-1	1	-1	-1

- Ležandra simbols $\left(\frac{a}{7}\right)$ ir atkarīgs no šīs pakāpju tabulas vidējās jeb 3.rindas (sarkana), kas atbilst kāpinātājam $\frac{p-1}{2} = 3$.
- Pēdējā, 6.rindā visas pakāpes a^6 atgriežas pie vērtības 1 (Mazā Fermā teorēma (zila).
- Katrā vertikālē var noskaidrot mazāko k, kuram a^k ir kongruents 1 (tā ir multiplikatīvā kārta).
- Pirmskaitļa p=7 primitīvās saknes a=3 un a=5 nevar būt kvadrātiskie atlikumi. Arī a=6 nevar būt kvadrātiskais atlikums, jo šī skaitļa pakāpes veic nepāra skaitu ciklu (tieši trīs ciklus) līdzkamēr tiek līdz a^6 . Bet kvadrātiskajam atlikumam (piemēram a=1, a=2, vai a=4) savā stabiņā jāveic pāra skaits ciklu: $(p-1)/\operatorname{ord}_p(a)$ jābūt pāru skaitlim.

Intuīcija: No Ležandra simbola definīcijas (tā ir skaitļa a pakāpe) seko vairākas vienkāršas īpašības:

Apgalvojums #3: Ja $a \equiv b \pmod{p}$, tad $\binom{a}{p} = \binom{b}{p}$, jeb Ležandra simbols ir periodisks ar periodu p (vienāds kongruentiem a, b).

Apgalvojums #4: $\binom{-1}{p} = 1$ tad un tikai tad, ja p = 4k + 1.

Apgalvojums #5: $\binom{2}{p} = 1$ tad un tikai tad, ja p = 8k+1 vai p = 8k+7.

Apgalvojums #6: $\begin{pmatrix} a \cdot b \\ \cdots \\ n \end{pmatrix} = \begin{pmatrix} a \\ \cdots \\ n \end{pmatrix} \cdot \begin{pmatrix} b \\ \cdots \\ n \end{pmatrix}$.

Kongruenci $x^2 + 1 \equiv 0 \pmod{p}$ var atrisināt pirmskaitļiem $p = 5, 13, 17, 29, \ldots$, bet nevar atrisināt pirmskaitļiem $p=3,7,11,19,23,\ldots$, jo tiem

$$\left(\frac{-1}{p}\right) = -1$$