HW#08: Convolutional Neural Network for Super-resolution, Reference Software

Satyam(2023-81784)

All the codes can be found in Code/ folder.

Problem 1 (10p): Convolutional Layer

- a. Completed codes in convol2.m and test_SR.m
- b. Output of the feature maps of all three layers.

c. Number of multiplication operations for a pixel:

Layer	Filter size	Number of input channels	Number of output channels	Input	Output	num_ops
1	3x3	1	16	128x128x1	128x128x16	3x3=9
2	3x3	16	16	128x128x16	128x128x16	3x3x16 = 144
3	3x3	16	4	128x128x16	128x128x4	3x3x16 = 144

Calculate the total number of multiplication operations.

Layer n: One pixel operations x output pixels

Layer 1: (3x3)x(128x128x16) = 2359296

Layer 2: (3x3)x(128x128x16) = 37748736

Layer 1: (3x3)x(128x128x16) = 9437184

Therefore, Total number of multiplication operations= 49545216

Problem 2 (10p): Quantization

- a. Completed code in uniform_quantize.m, hwu_relu_quantize.v, hwu_linear_quantize and and test_SR_quant.m.
- **b.** Output the feature maps of all three layers.

Problem 3 (10p): Dual port block ram for CNN

- a) Completed code in dual_port_block_ram_tb.v to load 16 conv. filters (simSR.hex).
- b) Capture the simulation result.

Problem 4: (Optional) SRNPU (2p)

Explain the purposes of using bias_shift and act_shift.

bias_shift - the amount of decimal moved in the output of the convolutional bias.

act_shift - the difference between the bias's decimal part and activation's decimal part.