PR homework11

李逸思 自动化系 2016310707

Clustering algorithm

算法描述

K means

1. 随机初始化样本中心点 重复以下步骤,迭代直至收敛:

Step1

$$c^{(i)} = \arg\min_{j} \|x^{(i)} - \mu_{j}\|^{2}$$

Step2

$$\mu_{j} = \frac{\sum_{i=1}^{m} I(c^{(i)} = j)x^{(i)}}{\sum_{i=1}^{m} I(c^{(i)} = j)}$$

Hierarchical clustering

- 1. 初始情况下,每个样本点为一个类别,计算类类之间的相似度
- 2. 在各类之间找到最近的两个类,把它们归为一类(总类别数减少一)
- 3. 重新计算新生成的类与原有旧的类别之间的相似度
- 4. 重复 2、3 步骤直至所有样本被归为一类

Spectral clustering

- 1. 输入待分类数据和类别数 k
- 2. 对待分类数据计算两两间欧氏距离,构造相似性图,得到加权邻接矩阵 W,计算度矩阵 D

$$D = diag(d_1, d_2, ...d_n)$$
,其中 $d_i = \sum_{i=1}^n w_{ij}$

3. 计算 Graph Lapacian 矩阵

未归一化: L=D-W 归一化: $L=I-D^{-1}W$

- 4. 计算 L 的前 k 个特征向量 $u_1, u_2, ... u_k$,并由列向量 $u_1, u_2, ... u_k$ 构成矩阵 U
- 5. 设 y_i 是 U 的第 i 行构成的向量,使用 kmeans 聚类方法将点 y_i 聚为 k 类,C₁,.. C_k
- 6. 输出最终聚类 A₁,.. A_k,其中

$$A_i = \{ j | \mathbf{y}_i \in \mathbf{C}_i \}$$

仿真实验

三种算法的 matlab 实现见附件代码。从 MNIST 数据集中取 1000 条数据(包含 0-9 每种手写数字各 100 条数据),对三种聚类算法进行测试。

2.1 三种算法时间复杂度分析如下:

Algorithm	Time complexity	
k-means	对 $c^{(i)} = \arg\min_{j} \left\ x^{(i)} - \mu_{j} \right\ ^{2}$ 的优化是 NP-	
	hard 问题,但是对于给定的迭代次数 i,设	
	将n个待分类样本点分为k类,则算法复杂	
	度为 O(nki)	
Hierarchical clustering	$O\!\left(n^2\log\left(n ight) ight)$	
Spectral clustering	计算特征向量算法复杂度为 $O(n^3)$,调用	
	kmeans 算法复杂度为 O(nki),则总体算法	
	复杂度为 $O(n^3)$	

由以上时间复杂度可知, Hierarchical clustering 和 Spectral clustering 时间复杂度较高, 大样本数据下运行较慢。

Matlab 仿真测试,采用相同数据,相同类别参数,三种算法运行时间如下:

	k-means	Hierarchical clustering	Spectral clustering
运行时间(s)	1.244538	4.318186	1.792931

- 2.2 将类别参数设为实际类别数 C=10, 进行仿真, 有:
- 2.2.1 对于 kmeans ,初始化结果会影响聚类结果,这是因为 kmeans 是一种局部寻优的贪婪 算法,我们应采用多次试验取最优的方法来避免算法陷入局部最优。仿真 10 次,得到 J_e 和 NMI 如下:

可以看到,总体而言, J_e 越大,NMI 越小。这是因为 NMI 越大说明聚类结果和实际越接近, J_e 越小说明目标函数优化情况越好,也说明了聚类结果更好,因此 J_e 和 NMI 呈负相关关系

2.2.2 对于 Hierarchical clustering,如何度量类类之间的相似度是一个关键问题,常见的度量方法有,

最近距离(single linkage):
$$\Delta\left(\Gamma_{i},\Gamma_{j}\right) = \min_{\substack{y \in \Gamma_{i} \\ y \in \Gamma_{j}}} \delta\left(y,\tilde{y}\right)$$
 最远距离(complete linkage): $\Delta\left(\Gamma_{i},\Gamma_{j}\right) = \max_{\substack{y \in \Gamma_{i} \\ y \in \Gamma_{j}}} \delta\left(y,\tilde{y}\right)$ 均值距离(group average): $\Delta\left(\Gamma_{i},\Gamma_{j}\right) = \min \delta\left(m_{i},m_{j}\right)$

其中,single linkage 由于用两类中点的最近距离衡量两个类别的相似度,导致两个类可能整体相距较远,但个别点相距较近从而被合并,最终会得到较为松散的 cluster; complete linkage 由于用两类中点的最近距离衡量两个类别的相似度,导致两个类可能整体非常相似,但个别点相距较远从而不能被合并; group average 对两个类中点的两两距离取平均,得到的结果相对 single linkage complete linkage 和不那么极端,但计算量较前两者大。三种度量方法各有优劣,依据不同问题选择不同度量方法会有不同效果。

这里用最近距离、最远距离和均值距离分别对测试数据进行聚类,得到三种方法的 NMI 值如下:

	Single linkage	Complete linkage	Group linkage
NMI	0.0517	0.3057	0.2235

可以看到,以 NMI 作为评价指标, complete linkage 最优。

2.2.3 分别采用 "euclidean", "cityblock", "minkowski" 三种距离来度量相似性, 计算 Graph Lapacian 矩阵 L 时分别采用归一化的计算方法和未归一化的计算方法, 得到 NMI 值如下:

	euclidean	cityblock	minkowski
未归一化的 L	0.0271	0.0276	0.0303
归一化的 L	0.3592	0.3606	0.3352

以 NMI 值作为聚类结果评价指标,以上度量中,采用归一化的 L 并采用 cityblock distance 度量相似性得到的聚类结果最好。

2.3 实际情况下,我们不知道数据的实际类别数,这时可以将类别数 C 从小到大取值,考察不同取值下的分类情况。

以 kmeans 为例, 取类别数 1~20 时, 考察 Je 随类别数 C 的变化如下图:

分类类别数越多则平方误差越小,但是过大的 C 值使得聚类没有实际意义,因此我们引入对过大 C 值的惩罚项,定义 $L=J_e+exp(aC)$ (其中 a 为常系数项),考察 L 随类别数 C 的变化,例如取 a=1 时,得到 L 随类别数 C 的变化如下图:

从图中看到当 a 取 1 时,类别数取 16 是最优选择。

对于上述的确定类别数的方法,常系数项 a 的选择对类别数的确定有着重要影响,为了找出合适的 a 的取值,在有训练数据的情况下,可以先根据已知类别数的训练数据确定 a 的取值,然后由此 a 值对测试数据确定类别数。

2.4 三种聚类方法的聚类结果和理论聚类结果分别如下:

聚类算法		NMI	运行时间
实际情况		1	~
k-means		0.4487	0.8s
Hierarchical clustering	Group linkage	0.2235	8.9s
	Single linkage	0.0517	4.4s
	Complete linkage	0.3057	4.3s
Spectral clustering	euclidean	0.4086	1.7s
	cityblock	0.3926	1.5s
	minkowski	0.3743	1.6s

图 2.4.1 理论聚类结果

图 2.4.2 k-means 聚类结果

图 2.4.3 hierarchical clustering 聚类结果

图 2.4.4 spectral clustering 聚类结果

综合聚类结果与实际情况的接近程度以及算法运行时间,我认为 k-means 是一种很好的分类算法,算法实现复杂度较低,算法时间复杂度也较低,聚类结果也较好。此外,谱聚类也是一种很好的聚类方法,从算法实现难度、算法时间复杂度和聚类结果上都有较好的性能。