Kapitola 2

Predikátová logika

2.1 Formule predikátové logiky

- **2.1.1 Příklad.** Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.
 - a) Někdo má hudební sluch (S) a někdo nemá hudební sluch.
 - b) Některé děti (D) nerady čokoládu (C).
 - c) Nikdo, kdo nebyl poučen o bezpečnosti práce (P), nesmí pracovat v laboratořích (L).
 - d) Ne každý talentovaný malíř (T) vystavuje obrazy v Národní galerii (G).
 - e) Pouze studenti (S) mají nárok na studené večeře (V).
 - f) Ne každý člověk (C), který má drahé lyže (D), je špatný lyžař (S).

```
 \begin{aligned} \mathbf{V\acute{y}sledky:} & \text{ a) } (\exists x \, S(x)) \wedge (\exists x \, \neg S(x)); \\ \text{ b) } & \exists x \, (D(x) \wedge \neg C(x)); \\ \text{ c) } & \forall x \, (\neg P(x) \Rightarrow \neg L(x)); \\ \text{ d) } & \neg (\forall x \, (T(x) \Rightarrow G(x))); \\ \text{ e) } & \forall x \, (V(x) \Rightarrow S(x)); \\ \text{ f) } & \neg [\forall x \, ((C(x) \wedge D(x)) \Rightarrow S(x))]. \end{aligned}
```

- **2.1.2 Příklad.** Pro následující věty uveďte predikáty, konstantní symboly a funkční symboly, které potřebujete k formalizaci a napište formule odpovídajících vět.
 - a) Karel viděl Shakespearovu hru Hamlet.
 - b) Karel viděl některou Shakespearovu hru.
 - c) Někdo viděl Shakespearovu hru Hamlet.
 - d) Někdo viděl některou Shakespearovu hru.
 - e) Ne každý viděl některou Shakespearovu hru.

- f) Karel viděl pouze hry od Shakespeara.
- g) Lucernu nenapsal Shakespeare.

 ${f V\acute{y}sledky:}$ Naše objekty jsou lidé a hry. Pro první čtyři věty by stačila tato formalizace: Máme jeden predikátový ternární symbol V(x,y,z), který má význam "osoba x viděla hru y od autora z". (Tj. na druhém místě trojice (x,y,z) musí být hra, na prvním a třetím musí být osoba.) Dále máme tři konstanty k pro osobu Karla, k pro hru Hamlet a k pro autora Shakespeara. Formule mají tvar:

```
a) V(k, h, s); b) \exists y V(k, y, s); c) \exists x V(x, h, s); d) \exists x \exists y V(x, y, s).
```

Chceme-li popsat všechny věty, zavedeme jiné predikátové symboly: Naše objekty jsou opět lidé a hry. Máme unární predikáty H "být hrou", O "být osobou", máme binární predikáty V(x,y) "osoba x viděla hru y" a N(x,y) "osoba x napsala hru y". Máme čtyři konstantní symboly k "Karel", h "Hamlet", s "Shakespeare" a l "Lucerna". Formule mají tvar:

```
a) N(s,h) \wedge V(k,h);
b) \exists x (H(x) \wedge V(k,x) \wedge N(s,x));
c) \exists x (O(x) \wedge V(x,h) \wedge N(s,h));
d) \exists x \exists y (O(x) \wedge H(y) \wedge V(x,y) \wedge N(s,y));
e) \neg [\forall x (O(x) \Rightarrow (\exists y (H(y) \wedge V(x,y) \wedge N(s,y)))];
f) \forall x [(H(x) \wedge V(k,x)) \Rightarrow N(s,x)];
g) \neg N(s,l).
```

- **2.1.3 Příklad.** Pro následující věty uveďte predikáty, konstantní symboly a funkční symboly, které potřebujete k formalizaci a napište formule odpovídajících vět.
 - a) Eva mluví anglicky i francouzsky.
 - b) Každý, kdo mluví německy, mluví i anglicky.
 - c) Každý mluví anglicky nebo německy.
 - d) Někdo mluví anglicky i německy.
 - e) Někteří studenti neumí ani německy ani anglicky.

Výsledky: Naše objekty jsou lidé. Predikátové symboly: A "mluvit anglicky", N "mluvit německy", F "mluvit francouzsky", S "být studentem". Všechny jsou unární. Máme jeden konstantní symbol e "Eva".

```
a) A(e) \wedge F(e);
b) \forall x (N(x) \Rightarrow A(x));
c) \forall x (A(x) \vee N(x));
d) \exists x (A(x) \wedge N(x));
e) \exists x (S(x) \wedge \neg N(x) \wedge \neg A(x)).
```

- **2.1.4 Příklad.** Pro následující věty uveďte predikáty, konstantní symboly a funkční symboly, které potřebujete k formalizaci a napište formule odpovídajících vět.
 - a) Každé nezralé ovoce je nezdravé.
 - b) Žádné ovoce, které roste ve stínu, není zralé.

- c) Toto jablko rostlo ve stínu a je zralé.
- d) Matka Jany je malířka.
- e) Něčí matka je malířka.
- f) Existuje dívka, jejíž otec je hudebník a matka malířka.
- g) Každý nemá otce hudebníka.

Výsledky: Pro věty a) až c): Objekty jsou kusy ovoce. Predikátové symboly: Z "být zralé", S "růst ve stínu", D "být zdravé" (všechny unární); konstantní symbol j "toto jablko".

```
a) \forall x (\neg Z(x) \Rightarrow \neg D(x));
```

- b) $\forall x (S(x) \Rightarrow \neg Z(x));$
- c) $S(j) \wedge Z(j)$.

Pro věty d) až g): Objekty jsou lidé; unární predikáty M "být malířkou", H "být hudebníkem", D "být dívkou"; unární funkční symboly o(x) je otec osoby x, m(x) je matka osoby x; konstantní symbol j "Jana".

- d) M(m(j));
- e) $\exists x M(m(x));$
- f) $\exists x (D(x) \land H(o(x)) \land M(m(x)));$
- g) $\neg(\forall x \, H(o(x)))$, nebo též $\exists x \, \neg H(o(x))$.
- **2.1.5 Příklad.** Zaveďte predikátové symboly, funkční symboly a konstanty, které je třeba, abyste zformalisovali následující věty jako sentence predikátového počtu.
 - a) Čtverec lichého čísla je vždy liché číslo.
 - b) Je-li libovolné číslo dělitelné šesti, je dělitelné i třemi.
 - c) Existují čísla a, b, c taková, že součet čtverců a a b je roven čtverci c.
 - d) Každý čtyřúhelník, který má stejné úhlopříčky, je kosočtverec.

Výsledky:

- **2.1.6 Příklad.** V následujících formulích označte všechny vázané výskyty proměnných a všechny volné výskyty proměnných. V případě, že se nejedná o formuli s čistými proměnnými, napište stejnou formuli, která už čisté proměnné má. Které z formulí jsou sentence a které otevřené formule?
 - a) $\forall x \exists y Q(x,y)$;
 - b) $Q(f(a,b),y) \Rightarrow (\exists y P(s(y)));$
 - c) $Q(a,b) \vee (\forall x Q(a,x));$
 - d) $Q(x,y) \Rightarrow Q(y,x)$;
 - e) $Q(a,b) \wedge (\exists x \exists y Q(x,y));$
 - f) $(\forall x Q(a, x)) \Rightarrow (\forall x \exists y Q(y, x)).$

2.2 Sémantika predikátové logiky

- **2.2.1 Příklad.** Vyslovte výroky, které odpovídají negacím následujících výroků:
 - a) Každá ryba dýchá žábrami.
 - b) Každý sportovec má dobrou fyzickou kondici.
 - c) Někteří studenti nejsou pilní.
 - d) Žádné schody nevedou do nebe.
 - e) Každý se snaží dostudovat.
 - f) Každé liché číslo je prvočíslo.
 - g) Každý, kdo jede do Anglie, umí anglicky.
 - h) Není šprochu, aby na něm nebylo pravdy trochu.

Výsledky: a) Některé ryby nedýchají žábrami.

- b) Někteří sportovci nemají dobrou fyzickou kondici.
- c) Každý student je pilný.
- d) Některé schody vedou do nebe.
- e) Někdo se nesnaží dostudovat.
- f) Něk**Výsledky:**terá lichá čísla jsou složená (nejsou prvočísla).
- g) Někdo jede do Anglie i když anglicky neumí.
- **2.2.2 Příklad.** Speciální symboly jazyka predikátové logiky jsou tyto: predikátové symboly P, Q a funkční symbol f, g. Všechny symboly jsou unární.

Je dána interpretace D, I, kde D je množina všech lidí,

f odpovídá otci, tj. I(f) přiřazuje osobě x jejího otce,

godpovídá matce, tj. I(g)přiřazuje osobě \boldsymbol{x} její matku,

P odpovídá vlastnosti "hrát na piano", Q odpovídá vlastnosti "hrát na kytaru". Napište věty, kterým v této interpretaci odpovídají následující formule:

- a) $\forall x (P(f(x)) \lor Q(g(x)));$
- b) $\exists x (P(g(x)) \land Q(f(x)));$
- c) $\forall x ((P(f(x)) \lor Q(g(x))) \Rightarrow (P(x) \lor Q(x)));$
- d) $\exists x (P(g(f(x)));$
- e) $\exists y (P(y) \land \neg Q(f(g(y))));$

Výsledky: a) Každý měl otce pianistu nebo matku kytaristku.

- b) Někdo měl matku pianistku a otce kytaristu.
- c) Jestliže měl někdo otce pianistu nebo matku kytaristku, pak sám hraje na piano nebo na kytaru.

(Uvědomte si, že tady má slovo "někdo" význam "každý".)

- d) Něčí babička z otcovy strany je kytaristka.
- e) Někdo je sám pianista navzdory tomu, že jeho dědeček z matčiny strany si na klavír ani nebrnkl.

2.2.3 Příklad. Speciální symboly jazyka predikátové logiky jsou tyto: predikátové symboly P a Q, funkční symboly f, g a konstantní symboly a,b,c, kde P a f jsou unární a Q a g binární.

Je dána interpretace $D,\ I,$ kde D je množina přirozených čísel; I(a)=0, $I(b)=1,\ I(c)=3,$

- $I(f): n \mapsto n^2$, tj. f odpovídá povýšení na druhou,
- $I(g): (m, n) \mapsto m + n$, tj. g odpovídá součtu,
- $I(P) = \{2n \mid n \in \mathbb{N}\}, tj. P odpovídá vlastnosti "být sudým",$
- $I(Q) = \{(m, n) \mid m$ je dělitelem $n\}$, tj. Q odpovídá relaci "dělitelnosti". Rozhodněte o pravdivosti nebo nepravdivosti následujících sentencí:
 - a) P(c);
 - b) P(f(a));
 - c) P(g(a, f(b)));
 - d) Q(a, f(b));
 - e) Q(f(b), a);
 - f) $\forall x Q(x,x)$;
 - g) $\exists x \, Q(f(x), x);$
 - h) $\forall x (Q(c,x) \Rightarrow Q(b,x));$
 - i) $\forall x (Q(b, x) \Rightarrow Q(c, x));$
 - j) $\exists x (P(f(x)) \land P(x));$
 - k) $\exists x \,\exists y \, (P(x) \land P(y) \land P(g(x,y)));$
 - 1) $\exists x \exists y (\neg P(x) \land \neg P(y) \land P(g(x,y))).$

Výsledky: a) Nepravdivá; b) pravdivá; c) nepravdivá; d) nepravdivá; e) pravdivá; f) nepravdivá (protože 0 nedělí 0); g) pravdivá; h) pravdivá; i) nepravdivá; j) pravdivá; k) pravdivá; l) pravdivá.

- **2.2.4 Příklad.** Pro následující sentence rozhodněte, zda se jedná o tautologie, kontradikce nebo splnitelné sentence, které nejsou tautologie. (P je binární predikátový symbol.)
 - a) $(\exists x P(x)) \lor (\exists x \neg P(x));$
 - b) $\forall x (P(x) \vee \neg P(x));$
 - c) $(\exists x P(x)) \Rightarrow (\forall x P(x));$
 - d) $(\forall x P(x)) \land (\exists x \neg P(x));$
 - e) $\forall x [\exists y Q(x, y) \lor \forall z \neg Q(x, z)].$

Výsledky: a) Tautologie. b) Tautologie.

- c) Splnitelná formule, která není tautologie. Zdůvodnění: Sentence $(\exists x\,P(x))\Rightarrow (\forall x\,P(x))$ je pravdivá kdykoli je nepravdivá sentence $\exists x\,P(x)$. Uvažujme interpretaci: D je množina reálných čísel, predikátový symbol P odpovídá vlastnosti "být odmocninou z -1". Protože žádné reálné číslo vlastnost I(P) nemá, je naše sentence pravdivá v D,I. Na druhé straně uvažujme interpretaci: D' je množina přirozených čísel, P odpovídá vlastnosti "být sudý". Pak formule $\exists x\,P(x)$ je pravdivá v D',I', protože existuje sudé přirozené číslo. Formule $\forall x\,P(x)$ ovšem pravdivá není, protože ne všechna přirozená čísla jsou sudá. Tedy formule $(\exists x\,P(x))\Rightarrow (\forall x\,P(x))$ není pravdivá v D',I'.
- d) Kontradikce. e) Tautologie.
- **2.2.5 Příklad.** K formuli φ nalezněte formuli ψ tautologicky ekvivalentní s formulí $\neg \varphi$ a takovou, že ψ má negace pouze těsně před atomickými formulemi. (P je unární predikátový symbol, R je binární predikátový symbol a a je konstantní symbol.)

```
a) \forall x [P(x) \Rightarrow (\exists y (P(y) \land R(x,y)))];
```

b)
$$P(a) \vee [\exists z (P(z) \land \forall y (R(y, z) \Rightarrow \neg P(y)))].$$

Výsledky: a)
$$\exists x [P(x) \land \forall y (\neg P(y) \lor \neg R(x, y))];$$
 b) $\neg P(a) \land [\forall z (\neg P(z) \lor (\exists y (R(y, z) \land P(y))))].$

- **2.2.6 Příklad.** Rozhodněte, zda následující množiny sentencí jsou splnitelné nebo nesplnitelné. Zdůvodněte. (P a R jsou unární predikátové symboly, Q je binární predikátový symbol.)
 - a) $S = \{ \forall x \,\exists y \, Q(x, y), \forall x \,\neg Q(x, x) \};$
 - b) $S = \{\exists x \, \forall y \, Q(x, y), \forall x \, \neg Q(x, x)\};$
 - c) $S = \{ \forall x (P(x) \lor R(x)), \neg \exists x R(x), \neg P(a) \}.$

Výsledky: a) S je splnitelná. Její model je např. tato interpretace: $D=\mathbb{N}$, I(Q) je relace < na množině \mathbb{N} , tj. $I(Q)=\{(m,n)\mid m< n\}$. Pak pro každé přirozené číslo n existuje číslo větší (např. n+1) a žádné přirozené číslo není větší než ono samo.

b) S je nesplnitelná. "Přečtěme si" první formuli: "Existuje prvek, řekněme d, takový, že pro každý prvek y dvojice (d,y) má vlastnost Q." Dosadíme-li za y prvek d, má dvojice (d,d) také vlastnost Q. Tudíž nemůže být pravdivá druhá formule množiny S, která říká: "Pro žádný prvek x dvojice (x,x) nemá vlastnost Q."

Formálně: Vezměme libovolnou interpretaci $D,\ I,\ v$ níž je pravdivá formule $\exists x\, \forall y\, Q(x,y)$. Pak existuje prvek $d\in D,\$ tak, že pro každý prvek $d'\in D$ dvojice $(d,d')\in I(Q).$ Proto také $(d,d)\in I(Q).$ To ovšem znamená, že sentence $\forall x\, \neg Q(x,x)$ není pravdivá v $D,\ I.$

c) S je nesplnitelná. "Přečtěme si" první a třetí sentenci: "Každý prvek má vlastnost P nebo vlastnost R." "Prvek a nemá vlastnost P." Jsou-li obě tyto sentence pravdivé v některé interpretaci, pak v této interpretaci musí prvek a mít vlastnost R. To ovšem znamená, že není pravdivá druhá sentence: "Žádný prvek nemá vlasntost R."

Formálně: Vezměme libovolnou interpretaci $D,\ I,\ v$ níž je pravdivá první a třetí sentence. Pak existuje prvek $d\in D\ (d=I(a))$ takový, že $d\not\in I(P)$. Protože je pravdivá sentence $\forall x\,(P(x)\vee R(x)),\$ musí být pravdivá sentence $P(a)\vee R(a).$ To ale znamená, že je pravdivá R(a) a tudíž $d=I(a)\in I(Q).$ Tedy sentence $\forall x\,\neg R(x)$ je nepravdivá v $D,\ I.$