DETEKCE ANOMÁLIÍ

Martin Chalupa, Vendavo CZ

VÝROBNÍ LINKA MOTORŮ

OBČAS VYPRODUKUJE PORUCHOVÝ MOTOR

KDO PLATÍ MOJÍ KARTOU?

JEDEN POČÍTAČ PŘESTAL FUNGOVAT

Neobvyklé Špatné Anomalní Obvyklé Chyné Odchýlené

JAK VYUŽÍT DETEKCI ANOMÁLIÍ VE VÝROBĚ MOTORŮ

JAK VYUŽÍT DETEKCI ANOMÁLIÍ VE VÝROBĚ MOTORŮ

- · U kažného motoru sledujeme jeho vlastnosti
 - Generované teplo
 - Úroveň vibrací

•

MATEMATICKÝ MODEL

Data (x_i je vektor): $\{x_1, x_2, x_3, x_4 \dots x_m\}$

Je x_{novy} anomalie?

p(x) p(x_{novy}) < ε Pokud ano tak x_{novy} je anomálie

NORMÁLNÍ DISTRIBUCE

NORMÁLNÍ DISTRIBUCE

$$p(x; \mu, \sigma) = \frac{e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}}$$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i \qquad \sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)^2$$

DEFINICE MODELU

$$p(x)=p(x_1; \mu_1, \sigma_1) p(x_2; \mu_2, \sigma_2) \dots p(x_n; \mu_n, \sigma_n)$$

CO NÁM CHYBÍ?

$$p(x) < \epsilon$$

Pokud ano tak x je anomálie

JAK NEJLÉPE NASTAVIT PARAMETER

- I. Stanovíme metriku hodnocení práce algoritmu
- 2. Máme data: 10000 dobrých motorů a 20 anomálních
- 3. Rozdělíme data na trénovací, validační, testovací

JAK NEJLÉPE NASTAVIT PARAMETER

- 4. Pomocí trénovacích dat vytvoříme model
- 5. Na základě výkonu na validačních datech volíme ε
- 6. Potvrdíme na testovacích datech výkon algoritmu.

METRIKY PRÁCE ALGORITMU

- True positive, false positive, false negative, true negative
- Precision/Recall
- F₁-score

OTÁZKY