Lukion matematiikkakilpailu loppukilpailu 2017, tehtävien ratkaisuja

1. Tehtävän mukaan

$$\frac{m}{n} = 22 + \frac{5}{n} = \frac{220}{10} + \frac{50}{10n}$$

ja, koska seuraavassa jakolaskun vaiheessa jaetaan edellisestä jaosta yli jääneitä 50:tä kymmenesosaa,

$$\frac{50}{n} = 4 + \frac{2}{n}.$$

Jälkimmäinen yhtälö antaa heti n=12, ja kun tämä sijoitetaan ensimmäiseen yhtälöön, saadaan m=269.

2. Tehtävän ehtojen perusteella

$$1 = (x+y)^3 = x^3 + y^3 + 3xy(x+y) = 2 + 3xy,$$

joten $xy = -\frac{1}{3}$. Siis

$$1 = (x+y)^2 = x^2 + y^2 + 2xy = x^2 + y^2 - \frac{2}{3}.$$

Tästä ratkaistaan $x^2 + y^2 = \frac{5}{3}$. Mutta nyt

$$\frac{25}{9} = (x^2 + y^2)^2 = x^4 + y^4 + 2x^2y^2 = x^4 + y^4 + \frac{2}{9}.$$

Siis
$$x^4 + y^4 = \frac{23}{9}$$
.

- 3. Koska luku $x=22220038^m-22220038^n=22220038^n$ (22220038^{m-n} 1) päättyy kahdeksaan nollaan, se on jaollinen luvulla 10^8 ja siis luvulla 2^8 . Sulkeissa oleva erotus on pariton, joten luvun 22220038^n on oltava jaollinen luvulla 2^8 . Mutta $22220038^n=2^n\cdot 11110019^n$, ja koska jälkimmäinen potenssi on pariton, jaollisuus 2^8 :lla voi toteutua vain, jos $n\geq 8$. [Voi kysyä, onko sellaisia lukuja m ja n, joille x on jaollinen 10^8 :lla. Kun tarkastellaan lukuja 22220038^k , $1\leq k\leq 10^8+1$, niin jollain kahdella luvulla on välttämättä samat kahdeksan viimeistä numeroa. Niiden erotus kelpaa luvuksi x.]
- 4. [Tehtävän tekstistä oli jäänyt pois oletus m > 1.] Jompikumpi pelaajista voittaa aina. On mahdollista, että Akselilla on voittostrategia, jossa hänen ensimmäinen valintansa on m. Ellei näin ole, Elina voi valita jonkin m:n tekijän k ensimmäiseksi valinnakseen, ja voittaa. Mutta nyt Akseli voikin ensimmäiseksi valinnakseen ottaa k:n ja pelata niin kuin Elina olisi pelannut voittaakseen. Akselilla on siis voittostrategia.

5. Piirretään T-keskinen ympyrä A:n kautta. Tangenttien leikkauspisteestä sivuamispisteisiin piirretyt janat ovat tunnetusti yhtä pitkät, joten B on myös tällä ympyrällä. Koska TAB on tasakylkinen kolmio, $\angle TAB = \angle TBA$. Olkoon AP piirretyn ympyrän halkaisija. Piste Q on ympyrällä Γ , jos AQBP on jännenelikulmio. Tähän riittää, että $\angle APB$ ja kulman $\angle AQB$ vieruskulma eli $\angle BQX$ ovat yhtä suuret. Koska kulmat $\angle QBX = \angle YBX$ ja $\angle ABP$ ovat suoria, riittää, että osoitetaan kulmat $\angle PAB$ ja $\angle BXQ = \angle BXA$ yhtä suuriksi. Mutta $\angle BXA = \angle TBA$, koska BT on tangentti, ja $\angle TBA = \angle TAB = \angle PAB$, koska TAB on tasakylkinen kolmio. Väite on siis todistettu.

