Bayesian Thinking: Fundamentals, Regression and Multilevel Modeling

Jim Albert and Jingchen (Monika) Hu

November 2020

Outline

- 1 Example: Expenditures in the CE and normal distribution
- $oldsymbol{2}$ Conjugate prior and posterior inferences for μ
- 3 Conjugate prior and posterior inferences for σ
- Recap

Section 1

Example: Expenditures in the CE and normal distribution

The Consumer Expenditure Surveys Data (CE)

- Conducted by the U.S. Census Bureau for the BLS.
- Contains data on expenditures, income, and tax statistics about consumer units (CU) across the country.
- Provides information on the buying habits of U.S. consumers.

The Consumer Expenditure Surveys Data (CE)

- Conducted by the U.S. Census Bureau for the BLS.
- Contains data on expenditures, income, and tax statistics about consumer units (CU) across the country.
- Provides information on the buying habits of U.S. consumers.
- We work with PUMD micro-level data, with the continuous variable TOTEXPPQ: CU total expenditures last quarter.
- We work with Q1 2017 sample: n = 6,208.

[1] 19341.25

The Total Expenditure variable

```
library(readr)
CEsample <- read csv("CEsample.csv")
summary(CEsample$TotalExpLastQ)
##
     Min. 1st Qu. Median
                            Mean 3rd Qu. Max.
                            9513 11450 1270598
##
       30 3522 6417
sd(CEsample$TotalExpLastQ)
```

The Total Expenditure variable cont'd

- Very skewed to the right.
- Take log and transform it to the log scale.

Log transformation of the Total Expenditure variable

CEsample \$LogTotalExpLastQ <- log(CEsample \$TotalExpLastQ)

The normal distribution

- The normal distribution is a symmetric, bell-shaped distribution.
- ullet It has two parameters: mean μ and standard deviation σ .
- The probability density function (pdf) of $Normal(\mu, \sigma)$ is:

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y-\mu)^2}{2\sigma^2}\right), -\infty < y < \infty.$$

The normal distribution cont'd

i.i.d. normals

- Suppose there are a sequence of *n* responses: Y_1, Y_2, \dots, Y_n .
- Further suppose each response independently and identically follows a normal distribution:

$$Y_i \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

• Then the joint probability density function (joint pdf) of y_1, \dots, y_n is:

$$f(y_1, \dots, y_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y_i - \mu)^2}{2\sigma^2}\right), -\infty < y_i < \infty. \quad (1)$$

Recap from beta-binomial

- Bayesian inference procedure:
 - The prior distribution: $p \sim \text{Beta}(\alpha, \beta)$
 - The sampling density: $Y \sim \text{Binomial}(N, p)$
 - The posterior distribution: $p \mid Y \sim \text{Beta}(a + Y, b + N Y)$

Recap from beta-binomial

- Bayesian inference procedure:
 - The prior distribution: $p \sim \text{Beta}(\alpha, \beta)$
 - The sampling density: $Y \sim \text{Binomial}(N, p)$
 - The posterior distribution: $p \mid Y \sim \text{Beta}(a + Y, b + N Y)$
- What to do for a normal model $Y_i \overset{i.i.d.}{\sim} \operatorname{Normal}(\mu, \sigma)$?
 - Data model/sampling density is chosen: normal.
 - What to do with two parameters μ and σ ?
 - How to specify priors?

Section 2

Conjugate prior and posterior inferences for μ

Overview

• The data model/sampling density for N observations:

$$Y_i \overset{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

- There are two parameters μ and σ in the normal model.
- Need a joint prior distribution (if both μ and σ are unknown):

$$g(\mu, \sigma)$$
. (2)

• Bayes' rule will help us derive a joint posterior:

$$g(\mu, \sigma \mid y_1, \cdots, y_n) \propto g(\mu, \sigma) f(Y_1, \cdots, Y_N \mid \mu, \sigma)$$
 (3)

If only mean μ is unknown

- Special case: μ is unknown, σ is known.
- There is only one parameter μ in $Y_i \overset{i.i.d.}{\sim} \operatorname{Normal}(\mu, \sigma)$.
- The Bayesian inference procedure simplifies to:
 - The data model for N observations with σ known:

$$Y_i \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

• Need a prior distribution for μ :

$$g(\mu \mid \sigma).$$
 (4)

• Bayes' rule will help us derive a posterior for μ :

$$g(\mu \mid Y_1, \cdots, Y_N, \sigma) \propto g(\mu \mid \sigma) f(Y_1, \cdots, Y_N \mid \mu, \sigma).$$
 (5)

Normal conjugate prior

- ullet For this special case, normal prior for μ is a conjugate prior:
 - The prior distribution:

$$\mu \mid \sigma \sim \text{Normal}(\mu_0, \sigma_0).$$
 (6)

• The sampling density:

$$Y_1, \dots, Y_N \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (7)

Normal conjugate prior

- ullet For this special case, normal prior for μ is a conjugate prior:
 - The prior distribution:

$$\mu \mid \sigma \sim \text{Normal}(\mu_0, \sigma_0).$$
 (6)

The sampling density:

$$Y_1, \dots, Y_N \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (7)

The posterior distribution:

$$\mu \mid Y_1, \cdots, Y_N, \phi \sim \text{Normal}\left(\frac{\phi_0 \mu_0 + N \phi \bar{Y}}{\phi_0 + N \phi}, \sqrt{\frac{1}{\phi_0 + N \phi}}\right),$$
 (8)

where $\phi=\frac{1}{\sigma^2}$ (and $\phi_0=\frac{1}{\sigma_0^2}$), the precision. Since σ (and σ_0) is known, ϕ (and ϕ_0) is known too.

Normal conjugate prior cont'd

• The posterior distribution:

$$\mu \mid Y_1, \cdots, Y_N, \phi \sim \text{Normal}\left(\frac{\phi_0 \mu_0 + N \phi \bar{Y}}{\phi_0 + N \phi}, \sqrt{\frac{1}{\phi_0 + N \phi}}\right).$$
 (9)

• We can then use the rnorm() R function to sample posterior draws of μ from Equation (9). Known quantities: $\phi_0, \mu_0, N, \overline{Y}, \phi$

Example on log(Total Expenditure)

- Prior for μ is $\mu \sim \text{Normal}(5,1)$, i.e. $\mu_0 = 5, \phi_0 = 1$
- Our log(Total Expenditure): N = 6208, $\bar{Y} = 8.75$
- Assume $\phi = 1.25$, i.e. $\sigma = \sqrt{1/1.25}$
- Use these quantities to obtain posterior for μ :

$$\mu \mid Y_1, \cdots, Y_N, \phi \sim \text{Normal}\left(\frac{\phi_0 \mu_0 + N \phi \bar{Y}}{\phi_0 + N \phi}, \sqrt{\frac{1}{\phi_0 + N \phi}}\right).$$
 (10)

Posterior for μ

[1] 0.01135118

```
mu_0 < -5
sigma_0 <- 1
phi_0 <- 1/sigma_0^2
ybar <- mean(CEsample$LogTotalExpLastQ)</pre>
phi <- 1.25
n <- dim(CEsample)[1]</pre>
mu_n \leftarrow (phi_0*mu_0+n*ybar*phi)/(phi_0+n*phi)
sd_n <- sqrt(1/(phi_0+n*phi))</pre>
mu_n
## [1] 8.747753
sd_n
```

Posterior for μ cont'd

Bayesian inferences: hypothesis testing

```
mu_0 <- 5
set.seed(123)
S <- 1000
mu_post <- rnorm(S, mean = mu_n, sd = sd_n)</pre>
```

Bayesian inferences: credible interval

Bayesian inferences: prediction

Using Stan

Section 3

Conjugate prior and posterior inferences for σ

If only standard deviation σ is unknown

- Special case: μ is known, σ is unknown.
- There is only one parameter μ in $Y_i \overset{i.i.d.}{\sim} \operatorname{Normal}(\mu, \sigma)$.
- The Bayesian inference procedure simplifies to:
 - The data model/sampling density for n observations with μ known:

$$Y_i \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

• The likelihood is in terms of unknown parameter σ :

$$f(y_1,\cdots,y_n)=L(\sigma). \tag{11}$$

• Need a prior distribution for σ :

$$\pi(\sigma \mid \mu).$$
 (12)

• Bayes' rule will help us derive a posterior for σ :

$$\pi(\sigma \mid y_1, \cdots, y_n, \underline{\mu}). \tag{13}$$

If only standard deviation σ is unknown: Gamma conjugate prior for $1/\sigma^2$

- For this special case, Gamma prior for $1/\sigma^2$ is a conjugate prior:
 - The prior distribution:

$$1/\sigma^2 \mid \mu \sim \text{Gamma}(\alpha, \beta).$$
 (14)

The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (15)

If only standard deviation σ is unknown: Gamma conjugate prior for $1/\sigma^2$

- For this special case, Gamma prior for $1/\sigma^2$ is a conjugate prior:
 - The prior distribution:

$$1/\sigma^2 \mid \mu \sim \text{Gamma}(\alpha, \beta).$$
 (14)

The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (15)

• The posterior distribution:

$$1/\sigma^2 \mid y_1, \dots, y_n, \mu \sim \text{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^n (y_i - \mu)^2\right)$$
 (16)

If only standard deviation σ is unknown: Gamma conjugate prior for $1/\sigma^2$

- For this special case, Gamma prior for $1/\sigma^2$ is a conjugate prior:
 - The prior distribution:

$$1/\sigma^2 \mid \mu \sim \text{Gamma}(\alpha, \beta).$$
 (14)

The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (15)

The posterior distribution:

$$1/\sigma^2 \mid y_1, \cdots, y_n, \mu \sim \text{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^n (y_i - \mu)^2\right)$$
 (16)

• We can then use rgamma() R function to sample posterior draws of σ from Equation (16). Known quantities: α , n, β , $\{y_i\}$, μ

Simulate posterior draws of σ

```
alpha <- 1
beta <- 1
mu <- 8
n <- dim(CEsample)[1]
alpha_n <- alpha+n/2
beta_n <- beta+1/2*sum((CEsample$LogTotalExpLastQ-mu)^2)

set.seed(123)
S <- 1000
invsigma2_post <- rgamma(S, shape=alpha_n, rate=beta_n)
df <- as.data.frame(invsigma2_post)</pre>
```

Simulate posterior draws of σ cont'd

```
ggplot(data = df, aes(invsigma2_post)) +
  geom_density(color = crcblue, size = 1) +
  labs(title = "Posterior density") +
  xlab(expression(1/sigma^2)) +
  theme_grey(base_size = 8, base_family = "")
```

Posterior density

Section 4

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).
- For Normal data/likelihood, Normal distributions are conjugate priors for μ , and Gamma distributions are conjugate priors for ϕ .

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).
- For Normal data/likelihood, Normal distributions are conjugate priors for μ , and Gamma distributions are conjugate priors for ϕ .
- Bayesian inference
 - Bayesian hypothesis testing
 - Bayesian credible interval
 - Bayesian prediction
 - Posterior predictive checking

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).
- For Normal data/likelihood, Normal distributions are conjugate priors for μ , and Gamma distributions are conjugate priors for ϕ .
- Bayesian inference
 - Bayesian hypothesis testing
 - Bayesian credible interval
 - Bayesian prediction
 - Posterior predictive checking
- What if we want to use a different prior for μ ? What if both μ and σ are unknown?