#### МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

### Дослідження ВАХ діодів

Виконала: Бабур В.М.

Студентка 5-Б групи

**ББК 73Ц** 

I-72

Укладачі: В. М. Бабур

І-72 Дослідження ВАХ діодів./ укл. В. М. Бабур.

- К.: КНУ ім. Т. Шевченка, 2021. – 14 с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних схем у програмі NI Multisim <sup>тм</sup>.

УДК 001.008 (002.21)

**ББК 73Ц** 

© Київський Національний Університет імені Тараса Шевченка, 2021

#### Зміст

| 1. Вступ                           | .4  |
|------------------------------------|-----|
| 2. Теоретичні відомості            | .5  |
| 3. Практична частина               | 6   |
| 4. Відповіді на контрольні питання | . 6 |
| Висновки                           | .13 |
| Використана література             | 14  |

#### 1. Вступ

**Об'єкт дослідження** – діоди: випрямлювальний, стабілітрон, світлодіод.

**Предмет** дослідження — теоретичні основи, принципи роботи, фізичний зміст і застосування діодів.

**Мета роботи** — навчитися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідити властивості p-n— переходів напівпровідникових діодів різних типів.

#### 2. Теоретичні відомості

- <u>Напівпровідниковий діод</u> (англ. semiconductor diode) це напівпровідниковий прилад з одним p-n—переходом і двома виводами.
- <u>p-n-перехід</u> (англ. p-n junction) перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша провідність p-типу.
- Вольт-амперна характеристика (ВАХ) діода (англ. current-voltage characteristic) це залежність сили струму Ід через p-n—перехід діода від величини і полярності прикладеної до діода напруги Uд.
- <u>Характериограф</u> електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будьяких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму Ід від напруги Uд.

#### 3.Практична частина

Усі дані, параметри та змодельована схема наявні у файлі '№3'. Відповідний діод ми досліджуємо вмиканням відповідного ключа із вимкненням усіх інших. Клікаючи на вікно 'Grapher' ми можемо побачити усі необхідні ВАХ для кожного діода.

#### 4. Відповіді на контрольні питання

1) Напівпровідники п— та р—типу. Основні та неосновні носії заряду в таких напівпровідниках.

Залежно від того, чи віддає домішковий атом електрон, чи захоплює, його називають донорним або акцепторним. Характер домішки може змінюватися залежно від того, який атом гратки вона заміщує, в яку кристалографічну площину вбудовується. Під час розриву зв'язку між електроном і ядром з'являється вільне місце в електронній оболонці атома. Це обумовлює перехід електрона з іншого атома на атом з вільним місцем. На атом, звідки перейшов електрон, входить інший електрон з іншого атома і т. обумовлюється ковалентними зв'язками атомів. чином, відбувається переміщення позитивного заряду без переміщення самого атома. Цей умовний позитивний заряд називають діркою. З ростом температури число вільних електронів і дірок збільшується, тому напівпровідник, що не містить домішок, має вищий питомий електричний опір, ніж з домішками. Умовно прийнято вважати напівпровідниками енергією зв'язку електронів меншою елементи 1,5...2 еВ. Електронно-дірковий механізм електричної

провідності проявляється у власних напівпровідників (тобто у хімічно чистих з ідеально правильними кристалічними Він провідністю гратками). власною називається напівпровідників. Згідно із зонною теорією твердих тіл власна провідність напівпровідника пов'язана з тим, що в результаті теплового збудження електронів частина перекидається з валентної зони Ев у зону провідності Еп. Ці електрони називають електронами провідності; під дією зовнішнього електричного поля набувають вони напівпровіднику впорядкованого руху (дрейфу), утворюючи електричний струм. Електрони в матеріалі п-типу називають основними носіями заряду, а дірки – неосновними носіями заряду. В матеріалі p-типу — навпаки: дірки  $\epsilon$  основними носіями заряду, а електрони – неосновними.

# 2) <u>р-п-перехід. Власне електричне поле переходу.</u> Контактна різниця потенціалів. Дифузійний та дрейфовий струми.

При встановленні контакту між двома напівпровідниковими матеріалами, матеріал n-типу буде втрачати негативний заряд і набувати позитивного заряду, а матеріал p-типу, навпаки, буде втрачати позитивний заряд і набувати негативного заряду. В результаті в області контакту буде виникати електричне поле, яке буде протидіяти подальшому переходу електронів в p-область та дірок в n-область, і між матеріалом n-типу і матеріалом p-типу виникатиме різниця потенціалів. Ця різниця потенціалів називається контактною різницею потенціалів  $\phi_{\rm K}$ , а вищезгадане електричне поле — полем p—n-переходу  $E_{\rm p-n}$ . В основі дифузійного струму лежить хаотичний рух носіїв заряду, при якому вони переходять із області, де їх більше у область, де їх менше.

Дрейфовий струм — електричний струм, зумовлений рухом носіїв електричного заряду під дією електричного поля.

3) Пряме та зворотне включення p—n-переходу. Рух основних та неосновних носіїв через p—n-перехід під дією прямої та зворотної напруги.

Якщо до р—n-переходу прикласти зовнішню напругу у зворотному напрямку (U < 0) і збільшувати її, то струм основних носіїв прямуватиме до нуля і при достатньо великих значеннях зворотної напруги повний струм І (його ще називають зворотним струмом) буде повністю визначатися струмом неосновних носіїв і перестане залежати від U.



**Рис. 4.** Вольт-амперні характеристики випрямлювальних діодів, виготовлених з германію і кремнію.

4) <u>Вольт-амперна характеристика (ВАХ)</u> випрямлювального діода, її залежність від температури. Застосування випрямлювальних діодів в техніці.

Струм I0 залежить від температури та ширини забороненої зони напівпровідника:

$$I_0 = I_{00}e^{-\frac{E_g}{kT}}$$

де  $I_{00}$  — множник, що слабко залежить від температури. Діоди, що мають таку ВАХ, називають випрямлювальними (англ. rectifier diode) і використовують у пристроях випрямлення, обмеження, детектування. Найпотужніші з них здатні працювати при значеннях прямого струму до кількох тисяч ампер і витримувати без пробою зворотні напруги в десятки кіловольт.

5) Оборотний та необоротний електричний пробій р—ппереходу. ВАХ стабілітрона. Застосування стабілітронів.

При зворотних напругах р-п-перехід великих "пробивається" і через нього протікає дуже великий струм. відновлюваним, Пробій доки потужність, теплова розсіювана на р-п-переході, не перевищує припустимої, при якій відбувається його руйнування. Ця ділянка ВАХ, що відповідає зворотній напрузі, використовується на практиці в пристроях стабілізації напруги, а діоди, що мають таку ділянку, називають стабілітронами (англ. Zener diode). Напругу пробою можна регулювати технологічно правило, варіюванням концентрації домішок в р- і побластях) в широких межах – від одиниць до сотень вольт. Для стабілізації напруги використовується і вертикальна ділянка ВАХ в прямому напрямку.

6) Тунельний ефект. Енергетична діаграма та ВАХ тунельного діода. Застосування тунельних діодів.

Якщо виготовити p—n-перехід з сильнолегованого напівпровідника (з великою концентрацією домішок), то перехід стане тонким і носії заряду зможуть "просочуватися"

(тунелювати) через область р-п-переходу при прикладанні невеликої як зворотної, так і прямої напруги. Діоди з таким p-n- переходом називаються тунельними (англ. tunnel diode). ВАХ таких діодів поблизу початку координат (U = 0) являє собою відрізок прямої, тобто подібна до ВАХ звичайного резистора. Важливою особливістю ВАХ тунельних діодів  $\epsilon$ прямій гілці ділянки від'ємним наявність <del>ii</del>i на диференціальним опором:  $r_{\mu u \varphi} = dU/dI < 0$  (пунктирна лінія на Рис. 9), що дозволяє використовувати їх як підсилювачі та генератори електричних коливань надвисокочастотного діапазону (до гігагерц). Такі лесятків діоди використовуються також як швидкодійні перемикачі, а також як елементи пам'яті в запам'ятовувальних пристроях з двійковим кодом.



Вольт-амперна характеристика тунельного діода. Пунктирною лінією показано ділянку ВАХ з від'ємним диференціальним опором.



Енергетична діаграма тунельного діода

# 7) Випромінювальна рекомбінація носіїв заряду в напівпровідниках. Принцип роботи і застосування світлодіодів.

У будь-якому прямозміщеному (включеному в прямому напрямку) р-ппереході при протіканні струму має місце рекомбінація носіїв заряду, в тому числі й випромінювальна, тобто з народженям фотонів. Випромінювально рекомбінує лише частина носіїв. І лише частина фотонів, уникнувши самому діоді, може вийти назовні. В поглинання створення практично придатного світловипромінювального діода (світлодіода) (англ. light-emitting diode, LED) необхідні матеріали імовірністю випромінювальної високою рекомбінації. Якшо випрямлювальних діодів ДЛЯ використовуються переважно германій Ge і кремній Si, то матеріалом для світлодіодів  $\epsilon$  арсенід галію GaAs, фосфід галію GaP і потрійні напівпровідникові сполуки на їх основі, а також карбід кремнію SiC. Сьогодні більш ефективними  $\epsilon$ світлодіоди, у яких використовуються не р-п-переходи, а так гетеропереходи Жім зван1 переходи двома матеріалами напівпровідниковими 3 різною шириною забороненої зони. Оскільки енергія фотонів випромінювання

(колір свічення) близька до ширини забороненої зони напівпровідника, то на основі перелічених напівпровідникових матеріалів були створені світлодіоди, що випромінюють у всій видимій, інфрачервоній та ближній ультрафіолетовій областях спектра.



**Рис. 6.** Принцип дії фотодіода: а) поглинання фотона в області p–n-переходу й утворення електронно-діркової пари, б) рознесення електрона й дірки в різні боки елекричним полем p–n-переходу (виникнення струму).

### 8) Внутрішній фотоефект у напівпровідниках. Принцип роботи і застосування фотодіодів. Сонячні батареї.

Внутрішній фотоефект — перерозподіл електронів по енергетичних рівнях у діелектриках я напівпровідниках (але не в металах) під дією світла. Якщо енергія кванта hv падаючого світла перевищує ширину забороненої зони в діелектрику або напівпровіднику, то електрон, що поглинув квант, переходить із валентної зони в зону провідності. У результаті цього переходу утворюється пара носіїв: у зоні провідності електрон, а у валентній зоні — дірка. Таким чином, у зоні провідності з'являються носії заряду, і при включенні напівпровідника в ланцюг по ній буде протікати струм або при додатку зовнішнього електричного поля буде протікати струм, що змінюється залежно від освітленості. Фотовольтаїчний модуль — це спеціальна конструкція, яка складається з набору взаємозв'язаних фотоелектричних

комірок. Кожна з цих комірок, або селів (cell – анг. комірка), виготовлена з певного напівпровідника, наприклад кремнію, який в переважній більшості застосовується для створення сонячних панелей, оскільки демонструє наразі найвищі продуктивності. Коли промені сонячні показники потрапляють цей напівпровідник, на почина€ TO B1H нагріватися, частково поглинаючи виділену від променів енергію. Фотони світла «вибивають» електрони з загальної атомної структури напівпровідника, і вільні електрони формують заряд.

#### Висновки

У ході даної лабораторної роботи ми навчилися одержувати зображення діодів BAX двоканального на екрані дослідили осцилографа, властивості р-п-переходів Ми одержали напівпровідникових діодів різних типів. зображення діодів BAX екрані двоканального на осцилографа, який працює в режимі характериографа, і таким чином наочно побачили відмінності між різними типами діодів, що дає уявлення про їх можливе застосування.

#### Використана література

1. Методичні вказівки до практикуму «Основи радіоелектроніки» для

студентів фізичного факультету / Упоряд. О.В.Слободянюк,

2. Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт

лайн», 2007.- 120 с.

3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання":

Методичне видання. – K.: 2006.- c.

4.https://kpfu.ru/staff\_files/F1700343876/SPEKTRY\_02.01.15.pdf