

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I)

in which

A represents O (oxygen) or S (sulphur),

Hal represents halogen,

R represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R¹, -CONR²R³ or -CH₂NR⁴R⁵,

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ independently of one another each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains one or two further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶,

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶,

R⁶ represents hydrogen or C₁-C₆-alkyl,

M represents a phenyl which is monosubstituted by R⁷,

R⁷ represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

Z represents Z¹, Z², Z³ or Z⁴, in which

Z¹ represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents W¹,

W¹ represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl;

in each case straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulphanyl or alkylsulphonyl having in each case 1 to 8 carbon atoms;

in each case straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms;

in each case straight-chain or branched haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulphanyl or haloalkylsulphonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms;

in each case straight-chain or branched haloalkenyl or haloalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;

in each case straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxy carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chains, alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chains;

cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms;

doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl;

Z^2 represents bicycloalkyl or cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents,

Z^3 represents unsubstituted C₂-C₂₀-alkyl or represents C₁-C₂₀-alkyl which is mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,

Z^4 represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halo-dialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or C₁-C₆-haloalkyl,

R¹⁰ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₆-haloalkyl, C₂-

C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-cycloalkyl, or represents in each case optionally substituted phenyl or phenylalkyl.

2. (Currently amended) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 in which

A represents O (oxygen) or S (sulphur),

Hal represents fluorine, chlorine, bromine or iodine,

R represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine[-]and/or bromine atoms; (C₁-C₆-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-cycloalkyl)carbonyl; (C₁-C₄-haloalkyl)carbonyl, (C₁-C₄-haloalkoxy)carbonyl, (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, or -C(=O)C(=O)R¹, -CONR²R³ or -CH₂NR⁴R⁵,

R¹ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ independently of one another each represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R² and R³ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶,

R⁴ and R⁵ independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ and R⁵ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur and NR⁶,

R⁶ represents hydrogen or C₁-C₄-alkyl,

M represents

where the bond marked “*” is attached to the amide and the bond marked “#” is attached to the radical Z,

R⁷ represents hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

Z represents Z¹, Z², Z³ or Z⁴, where

Z¹ represents phenyl which is optionally mono- to pentasubstituted by identical or different substituents W¹,

W¹ represents halogen, cyano, nitro, amino, hydroxyl, formyl, carboxy, carbamoyl, thiocarbamoyl;

in each case straight-chain or branched alkyl, hydroxyalkyl, oxoalkyl, alkoxy, alkoxyalkyl, alkylthioalkyl, dialkoxyalkyl, alkylthio, alkylsulphanyl or alkylsulphonyl having in each case 1 to 8 carbon atoms;

in each case straight-chain or branched alkenyl or alkenyloxy having in each case 2 to 6 carbon atoms;

in each case straight-chain or branched haloalkyl, haloalkoxy, haloalkylthio, haloalkylsulphanyl or haloalkylsulphonyl having in each case 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms;

in each case straight-chain or branched haloalkenyl or haloalkenyloxy having in each case 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;

in each case straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxy carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylalkylaminocarbonyl, dialkylaminocarbonyloxy having 1 to 6 carbon atoms in the respective hydrocarbon chains, alkenylcarbonyl or alkynylcarbonyl having 2 to 6 carbon atoms in the respective hydrocarbon chains;

cycloalkyl or cycloalkyloxy having in each case 3 to 6 carbon atoms;

doubly attached alkylene having 3 or 4 carbon atoms, oxyalkylene having 2 or 3 carbon atoms, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, oxo, methyl, trifluoromethyl and ethyl;

Z^2 represents cycloalkyl or bicycloalkyl having in each case 3 to 10 carbon atoms and being in each case optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and/or C_1 - C_4 -alkyl,

Z^3 represents unsubstituted C_2 - C_{20} -alkyl or C_1 - C_{20} -alkyl which is mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkyl)amino, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkylsulphonyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylamino, halo-di(C_1 - C_6 -alkyl)amino, $-SiR^8R^9R^{10}$ and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl,

Z^4 represents C_2 - C_{20} -alkenyl or C_2 - C_{20} -alkynyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylamino, di(C_1 - C_6 -alkyl)amino, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkylsulphonyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylamino, halo-di(C_1 - C_6 -alkyl)amino, $-SiR^8R^9R^{10}$ and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety ~~for its part~~ is optionally mono- to tetrasubstituted by

identical or different substituents from the group consisting of fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl and C₁-C₄-haloalkyl,

R⁸ and R⁹ independently of one another represent C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl or C₁-C₃-alkylthio-C₁-C₃-alkyl,

R¹⁰ represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl, C₃-C₆-cycloalkyl, phenyl or benzyl.

3. (Withdrawn-Currently amended) Process for preparing the 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, characterized in that

a) carboxylic acid derivatives of the formula (II)

in which

A and Hal are as defined in Claim 1 and

X¹ represents halogen or hydroxyl

are reacted with aniline derivatives of the formula (III)

in which R, M and Z are as defined in Claim 1,

if appropriate optionally in the presence of a catalyst, if appropriate optionally in the presence of a condensing agent, if appropriate optionally in the presence of an acid binder and if appropriate optionally in the presence of a diluent, or

b) halocarboxamides of the formula (IV)

in which

A, Hal, R and M are as defined in Claim 1,

X² represents bromine, iodine or trifluoromethylsulphonate,

are reacted with boronic acid derivatives of the formula (V)

in which

Z¹ is as defined in Claim 1 and

G¹ and G² each represent hydrogen or together represent tetramethylethylene,

in the presence of a catalyst, if appropriate optionally in the presence of an acid binder and if appropriate optionally in the presence of a diluent, or

c) boronic acid derivatives of the formula (VI)

in which

A, Hal, R and M are as defined in Claim 1,

G³ and G⁴ each represent hydrogen or together represent tetramethylethylene

are reacted with phenyl derivatives of the formula (VII)

in which

Z^1 is as defined in Claim 1 and

X^3 represents chlorine, bromine, iodine or trifluoromethylsulphonate,

if appropriate optionally in the presence of a catalyst, if appropriate optionally in the presence of an acid binder and if appropriate optionally in the presence of a diluent, or

d) halocarboxamides of the formula (IV)

in which

A, Hal, R and M are as defined in Claim 1,

X^2 represents bromine, iodine or trifluoromethylsulphonate,

are reacted with phenyl derivatives of the formula (VII)

X^3-Z^1 (VII)

in which

Z^1 is as defined in Claim 1 and

X^3 represents chlorine, bromine, iodine or trifluoromethylsulphonate,

in the presence of a palladium or nickel catalyst and in the presence of 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bis-1,3,2-dioxaborolane, if appropriate optionally in the presence of an acid binder and if appropriate optionally in the presence of a diluent, or

e) 2-halofuryl/thienyl-3-carboxamides of the formula (I-a)

(I-a)

in which

A, Hal, R and M are as defined in Claim 1,

X⁴ represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl which are in each case optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, -SiR⁸R⁹R¹⁰ and C₃-C₆-cycloalkyl, where the cycloalkyl moiety ~~for its part may be~~ is optionally substituted by halogen and/or C₁-C₄ alkyl,

are hydrogenated, ~~if appropriate~~ optionally in the presence of a diluent and ~~if appropriate~~ optionally in the presence of a catalyst, or

f) hydroxyalkylcarboxamides of the formula (VIII)

(VIII)

in which

A, Hal, R and M are as defined in Claim 1,

X⁵ represents C₂-C₂₀-hydroxyalkyl which is optionally additionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino,

halodialkylamino, $-\text{SiR}^8\text{R}^9\text{R}^{10}$ and $\text{C}_3\text{-C}_6\text{-cycloalkyl}$, where the cycloalkyl moiety ~~for its~~
part may be substituted by halogen and/or $\text{C}_1\text{-C}_4\text{-alkyl}$,

are dehydrated, ~~if appropriate~~ optionally in the presence of a diluent and ~~if appropriate~~ optionally in the presence of an acid, or

g) halocarboxamides of the formula(IV)

in which

A, Hal, R and M are as defined in Claim 1,

X^2 represents bromine, iodine or trifluoromethylsulphonate,

are reacted with an alkyne of the formula (IX)

in which

G^5 represents $\text{C}_2\text{-C}_{18}\text{-alkyl}$ which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, $-\text{SiR}^8\text{R}^9\text{R}^{10}$ and $\text{C}_3\text{-C}_6\text{-cycloalkyl}$, where the cycloalkyl moiety ~~for its~~
part may be substituted by halogen and/or $\text{C}_1\text{-C}_4\text{-alkyl}$,

or an alkene of the formula (X)

in which

G^6 , G^7 and G^8 independently of one another each represent hydrogen or alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, $-SiR^8R^9R^{10}$ and C_3-C_6 -cycloalkyl, where the cycloalkyl moiety ~~for its part may is~~ is optionally be substituted by halogen and/or C_1-C_4 -alkyl and the total number of carbon atoms of the open-chain molecular moiety (without substituents) does not exceed the number 20,

~~if appropriate~~ optionally in the presence of a diluent, ~~if appropriate~~ optionally in the presence of an acid binder and ~~if appropriate~~ optionally in the presence of one or more catalysts, or

h) ketones of the formula (XI)

in which

A, Hal, R and M are as defined in Claim 1,

G^9 represents hydrogen or C_1-C_{18} -alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, $-SiR^8R^9R^{10}$ and C_3-C_6 -cycloalkyl, where the cycloalkyl moiety ~~for its part may is~~ is optionally be substituted by halogen and/or C_1-C_4 -alkyl,

are reacted with a phosphorus compound of the general formula (XII)

$$G^{10} - Px \quad (XII)$$

in which

G^{10} represents C_1 - C_{18} -alkyl which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, alkylthio, alkylsulphinyl, alkylsulphonyl, alkoxy, alkylamino, dialkylamino, haloalkylthio, haloalkylsulphinyl, haloalkylsulphonyl, haloalkoxy, haloalkylamino, halodialkylamino, $-SiR^8R^9R^{10}$ and C_3 - C_6 -cycloalkyl, where the cycloalkyl moiety for its part may be substituted by halogen and/or C_1 - C_4 -alkyl,

Px represents a grouping $-P^+(C_6H_5)_3Cl^-$, $-P^+(C_6H_5)_3Br^-$, $-P^+(C_6H_5)_3I^-$, $-P(=O)(OCH_3)_3$ or $-P(=O)(OC_2H_5)_3$,

~~if appropriate~~ optionally in the presence of a diluent, or

i) 2-halofuryl/thienyl-3-carboxamides of the formula (I-b)

in which

A, Hal, R, M and Z are as defined in Claim 1

are reacted with halides of the formula (XIII)

$$R^a - X^6 \quad (XIII)$$

in which

^{R^a} represents C₁-C₈-alkyl, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-

halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R¹, -CONR²R³ or -CH₂NR⁴R⁵,

R¹, R², R³, R⁴ and R⁵ are as defined above,

X⁶ represents chlorine, bromine or iodine,

in the presence of a base and in the presence of a diluent.

4. (Currently amended) A composition ~~for controlling unwanted microorganisms~~, comprising at least one 2-halofuryl/thienyl-3-carboxamide of the formula (I) according to Claim 1, and one or more extenders and/or surfactants.

5. (Cancelled)

6. (Currently amended) Method A method for controlling fungi and bacteria in crop protection, unwanted microorganisms, characterized in that comprising applying at least one 2-halofuryl/thienyl-3-carboxamide 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 are applied to the microorganisms fungi, bacteria and/or their habitat.

7. (Currently amended) A process Process for preparing a composition compositions for controlling unwanted microorganisms according to Claim 4, characterized in that comprising mixing at least one 2-halofuryl/thienyl-3-carboxamide 2-halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.

8-11. (Cancelled)

12. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, in which

R represents hydrogen, and

Z represents Z¹.

13. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, in which

R represents hydrogen, and

Z represents Z³.

14. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, in which

R represents hydrogen, and

Z represents Z⁴.

15. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I) according to Claim 1, in which

R represents hydrogen,

R⁷ represents hydrogen or fluorine, and

Z represents Z³.

16. (Previously presented) 2-Halofuryl/thienyl-3-carboxamides of the formula (I)
according to Claim 15, in which

Z³ represents unsubstituted C₂-C₂₀-alkyl.

17. (Previously presented) N-[2-(1,3-dimethylbutyl)phenyl]-2-iodothiophene-3-carboxamide:

