

Database Systems Lecture09 – Database Design Using the E-R Model

Beomseok Nam (남범석) bnam@skku.edu

Modeling

- A database can be modeled as:
 - a collection of entities,
 - relationship among entities.
- An entity is an object that exists and is distinguishable from other objects.
 - Example: specific student, e,g., Williams
- Entities have attributes
 - Example: students have names and phone numbers
- An entity set is a set of entities of the same type that share the same properties.
 - Example: set of all students, departments, etc

Entity Sets instructor and student

instructor_ID instructor_name

76766	Crick
45565	Katz
10101	Srinivasan
98345	Kim
76543	Singh
22222	Einstein

instructor

student-ID student_name

98988	Tanaka
12345	Shankar
00128	Zhang
76543	Brown
76653	Aoi
23121	Chavez
44553	Peltier

student

Relationship Sets

A relationship is an association among several entities

Example:

■ A relationship set is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \dots e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n\}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

• Example:

 $(44553,22222) \in advisor$

Relationship Set advisor

Relationship Sets (Cont.)

- An attribute can also be property of a relationship set.
 - For instance, the advisor relationship set between instructor and student may have the attribute <u>date</u> which tracks when the student started being associated with the advisor

Degree of a Relationship Set

binary relationship

- involve two entity sets (or degree two).
- Most relationships are binary.
 - Relationships between more than two entity sets are rare.
 - Example: students work on research projects under the guidance of an instructor.
 - ▶ relationship *proj_guide* is a ternary relationship between *instructor*, *student*, and *project*

Attributes

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
 - Example:

```
instructor = (ID, name, street, city, salary )
course= (course id, title, credits)
```

- Domain the set of permitted values for each attribute
- Attribute types:
 - Simple and composite attributes.
 - Single-valued and multivalued attributes
 - Example: multivalued attribute: phone_numbers
 - a person can have more than one phone number.
 - Derived attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth

Composite Attributes

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - · Many to one
 - Many to many

Mapping Cardinalities

One to one

One to many

Note: Some elements in *A* and *B* may not be mapped to any elements in the other set

Mapping Cardinalities

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Keys

- Key (an attribute or composite attrs) is a unique identifier of a record.
 - Super key is a set of attributes that uniquely determines each entity.
 - (ID, name) is a super key of instructor
 - A candidate key is a minimal super key
 - ID is a candidate key of instructor
 - course_id is a candidate key of course
 - Several candidate keys may exist
 - One of the candidate keys is selected to be the primary key.

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - E.g.)
 s_id is the primary key of student
 ID is the primary key of instructor
 → (s id, i id) is the super key of advisor

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Attributes listed inside entity rectangle
- Underline indicates primary key attributes

Entity With Composite, Multivalued, and Derived Attributes

instructor

```
ID
name
  first_name
  middle_initial
  last name
address
  street
     street number
     street_name
     apt_number
  city
  state
  zip
{ phone_number }
date_of_birth
age()
```

- Composite attributes are flattened out by creating a separate attribute for each component attribute
- Ignoring multivalued attributes, extended instructor schema is
 - instructor(ID, first_name, middle_initial, last_name, street_number, street_name, apt_number, city, state, zip_code, date of birth)

Relationship Sets with Attributes

Roles

- Entity sets of a relationship need not be distinct
 - Each occurrence of an entity set plays a "role" in the relationship
- The labels "course_id" and "prereq_id" are called roles.

Cardinality Constraints

- We express cardinality constraints by line types
 - directed line (\rightarrow) , signifying "one"
 - undirected line (—), signifying "many,"
- One-to-one relationship:
 - A student is associated with at most one instructor via the relationship advisor
 - A student is associated with at most one department via stud_dept

One-to-One Relationship

- one-to-one relationship between an instructor and a student
 - an instructor is associated with at most one student via advisor
 - and a student is associated with at most one instructor via advisor

One-to-Many Relationship

- one-to-many relationship between an instructor and a student
 - an instructor is associated with several (including 0) students via advisor
 - a student is associated with at most one instructor via advisor,

Many-to-One Relationships

- In a many-to-one relationship between an instructor and a student,
 - an instructor is associated with at most one student via *advisor*,
 - and a student is associated with several (including 0) instructors via advisor

Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor

Participation of an Entity Set in a Relationship Set

- Total participation (indicated by double line):
 - every entity in the entity set participates in at least one relationship
 - E.g., participation of section in sec_course is total
 - every section must have an associated course
 - Partial participation: The opposite of total participation

Alternative Notation for Cardinality Limits

Cardinality limits can express participation constraints

E-R Diagram with a Ternary Relationship

Cardinality Constraints on Ternary Relationship

- We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality constraint
 - E.g., an arrow from *proj_guide* to *instructor* indicates each student has at most one guide for a project
- If there is more than one arrow, there are two confusing ways of defining the meaning.
 - E.g., a ternary relationship R between A, B and C with arrows to B and C could mean
 - 1. each A entity is associated with a unique entity from B and C or
 - 2. each pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C) is associated with a unique B
 - Each alternative has been used in different formalisms
 - To avoid confusion we outlaw more than one arrow

Weak Entity Sets

- An entity set that does not have a primary key is a weak entity set.
- Weak entity set depends on identifying entity set
 - It relates to the identifying entity set via a total, one-to-many relationship set
 - Identifying relationship depicted using a double diamond
- The discriminator (or partial key) of a weak entity set is the set of attributes that distinguishes an entity of a weak entity set.
- The primary key of a weak entity set is formed by the primary key of the identifying entity set plus the weak entity set's discriminator.

Weak Entity Sets (Cont.)

- We underline the discriminator of a weak entity set with a dashed line.
- We put the identifying relationship of a weak entity in a double diamond.
- Primary key for section
 - (course_id, sec_id, semester, year)

Weak Entity Sets (Cont.)

- Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it is implicit in the identifying relationship.
- If course_id were explicitly stored, section could be made a strong entity, but then the relationship between section and course would be duplicated by an implicit relationship defined by the attribute course_id common to course and section

E-R Diagram for a University Enterprise

