Elementary Graph Algorithms (1)

Konigsberg City

Definitions

- A graph G = (V, E)
 - $V \Rightarrow$ set of vertices (singular: vertex) {node}
 - $E \Rightarrow set of edges$

• **Directed Graph** (digraph)

- Edge (u,v) incident from (leaves) vertex u and is incident to (enter) vertex v
- Self-loops—edges from a vertex to itself— are possible
- If (u,v) is an edge in G, v is adjacent to vertex u $(u\rightarrow v)$ \checkmark Adjacency relation is not necessarily symmetric
- A vertex *out-degree* → number of edges leaving it
- A vertex *in-degree* → number of edges entering it
- A vertex *degree* ← in-degree + out-degree

Undirected Graph

- Edge (u,v) and (v,u) are considered to be the same edge and is called incident on vertices u and v
- No self-loops
- If (u,v) is an edge in G, v is adjacent to vertex u
 ✓ Adjacency relation is symmetric
- A vertex *degree* → number of edges incident on it

- A *path* of *length* k from vertex u to a vertex u' in G(V,E) is a sequence $\langle v_0, v_1, v_2, ..., v_k \rangle$ such that $u = v_0$, $u' = v_k$ and $(v_{i-1}, v_i) \in E$ for i=0,1,2,...,k.
- A path *length* is number of edges in a path.
- u' is **reachable** from u if there is a path from u to u'
- A path is *simple* if all vertices are distinct

- A *path* $\langle v_0, v_1, v_2, ..., v_k \rangle$ form a *cycle* if $v_0 = v_k$ and the path contains at least one edge.
- A *cycle* is simple if $\langle v_0, v_1, v_2, \dots, v_k \rangle$ are distinct.
- A self-loop is a cycle of length 1
- A digraph is *simple* if it doesn't contains any self-loop

Trees

- A tree is a connected, acyclic, undirected graph.
- A *forest* is a disconnected, acyclic, undirected graph

Connectivity

- Undirected Graph
 - Every pairs of vertices is connected by a path.
 - Connected components: classes of vertices under the "is reachable from" relation
- Directed graph
 - Strongly connected if every two vertices are reachable from each other.
 - Strongly connected components: classes of vertices under the "are mutually reachable" relation

Isomorphism

• For any two graphs G=(V,E) and G'=(V',E'), if there exists a bijection $f: V \rightarrow V'$ such that $(u,v) \in E$ iff $(f(u), f(v)) \in E'$

Special Names Graphs

- A *Complete Graph*: is an undirected graph in which every pairs of vertices is adjacent.
- A *Bipartite Graph*: is an undirected graph G=(V,E) in which V can be partitioned into two sets V1 and V2 such that $(u,v) \in E$ implies either $u \in V_1$ and $v \in V_2$ or $v \in V_1$ and $u \in V_2$
- A Weighted Graph: associates weights with either the edges or the vertices

Representation of Graphs

