

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170704302

FCC REPORT

(WIFI)

Applicant: Baicells Technologies Co., Ltd.

Address of Applicant: 3F, Hui Yuan Development Building, No.1 Shangdi Information

Industry Base, Haidian Dist., Beijing, China

Equipment Under Test (EUT)

Product Name: LTE Indoor CPE

Model No.: EG2030C-M1

Trade mark: BaiCells

FCC ID: 2AG32EG2030CM1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 26 Jun., 2017

Date of Test: 26 Jun., 2017 to 11 Jul., 2017

Date of report issued: 11 Jul., 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	11 Jul., 2017	Original

(grey (hen Test Engineer Tested by: Date: 11 Jul., 2017

Reviewed by: Date: 11 Jul., 2017

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	23
	6.5	POWER SPECTRAL DENSITY	41
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	81
7	TES	T SETUP PHOTO	91
8	EUT	CONSTRUCTIONAL DETAILS	92

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Baicells Technologies Co., Ltd.
Address of Applicant:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China
Manufacturer:	Baicells Technologies Co., Ltd.
Address of Manufacturer:	3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

5.2 General Description of E.U.T.

Product Name:	LTE Indoor CPE
Model No.:	EG2030C-M1
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11n(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	5dBi
Power supply:	DC 5V
AC adapter:	Model: ADS-12G-0605010EPCU Input: AC100-240V, 50/60Hz, 0.5 A Output: DC 5V, 2.0A

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCISE170704302

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	

Keep the EUT in continuous transmitting with modulation Operation mode

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax: +86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 92

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2017	08-22-2020		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018		
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2017	08-22-2020			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018			
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018			
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 5 dBi.

6.2 Conducted Emission

·- ·- · · · · · · · · · · · · · · · · ·						
Test Requirement:	FCC Part 15 C Section 1	5.207				
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz Class B					
Class / Severity:						
Receiver setup:	RBW=9 kHz, VBW=30 k	RBW=9 kHz, VBW=30 kHz Frequency range Limit (dBuV)				
Limit:	Frequency range					
2	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log	arithm of the frequency.				
Test procedure	 Test procedure The E.U.T and simulators are connected to the main power line impedance stabilization network (L.I.S.N.), which provid 50ohm/50uH coupling impedance for the measuring equipm The peripheral devices are also connected to the main power a LISN that provides a 50ohm/50uH coupling impedance with termination. (Please refer to the block diagram of the test see photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relapositions of equipment and all of the interface cables must be according to ANSI C63.4: 2014 on conducted measurement. 					
Test setup:	AUX Equipment Test table/Insula Remark E U.T: Equipment Under LISN Line Impedence St. Test table height=0 8m	E.U.T EMI Receiver	ilter — AC power			
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed	Passed				

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result
	Lowest	TX0	13.90	/	30	Pass
		TX1	14.23	1		
802.11b	Middle	TX0	13.51	,	30	Pass
002.110	Middle	TX1	13.97	/		
	Highest	TX0	13.12	,	30	Pass
	T lightest	TX1	14.16	,		rass
	Lowest	TX0	14.15	,	30	Pass
	LOWEST	TX1	14.38	,	30	
802.11g	Middle	TX0	13.75	/	30	Pass
002.119		TX1	14.12			
	Highest	TX0	13.41	/	30	Pass
		TX1	14.20			
	Lowest	TX0	14.16	17.21	30	Pass
		TX1	14.24			
802.11n(H20)	Middle Highest	TX0	13.94	17.19	30	Pass
002.1111(1120)		TX1	14.41	17.15		
		TX0	13.38	16.86	30	Pass
	riigiiest	TX1	14.27			
	Lowest	TX0	13.69	16.73	30	Pass
		TX1	13.75			
802.11n(H40)	Middle Highest	TX0	13.28	16.54	30	Pass
		TX1	13.76			
		TX0	13.18	16.51	30	Pass
		TX1	13.80			

Test plot as follows:

6.4 Occupy Bandwidth

1 7	
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Antenna port: TX0								
Toot CU		6dB Emission	i i+/ -	Dooult				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result		
Lowest	10.24	16.56	17.76	36.64	>500	Pass		
Middle	10.24	16.52	17.76	36.68				
Highest	10.24	16.56	17.76	36.64				
Test CH	99% Occupy Bandwidth (MHz)				Limit/kH=\	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result		
Lowest	12.32	16.56	17.60	36.32				
Middle	12.24	16.48	17.60	36.32	N/A	N/A		
Highest	12.32	16.56	17.60	36.32				

Antenna port: TX1								
Took CIII		6dB Emission	:: t/ -	Dooult				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result		
Lowest	10.24	16.56	17.76	36.64		Pass		
Middle	10.24	16.52	17.72	36.60	>500			
Highest	10.24	16.56	17.76	36.64				
Test CH	99% Occupy Bandwidth (MHz)				Limit/kU=\	Result		
Test Cn	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result		
Lowest	12.32	16.56	17.60	36.32				
Middle	12.32	16.48	17.60	36.32	N/A	N/A		
Highest	12.24	16.56	17.60	36.32				

Test plot as follows:

Date: 28.JUN.2017 21:55:45

Highest channel

Date: 28.JUN.2017 23:12:46

Highest channel

Highest channel

Date: 28.JUN.2017 23:20:28

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

weasurement Da			DCD	Total DCD	1 : :-	
Mode	Test Channel	Ant. Port	PSD (dBm)	Total PSD (dBm)	Limit (dBm)	Result
802.11b	Lowest	TX0	3.27	/	8.00	Pass
		TX1	3.27			
	Middle	TX0	2.97	/	8.00	Pass
		TX1	2.98			
		TX0	3.16	/	8.00	Pass
	Highest	TX1	3.17	/		
		TX0	1.86	,	8.00	Pass
	Lowest	TX1	1.91	/		
000.44		TX0	1.84	,	8.00	Pass
802.11g	Middle	TX1	1.81	1		
	18.1	TX0	1.80	1	8.00	Pass
	Highest	TX1	1.32			
802.11n(H20)	Lowest	TX0	1.74	4.67	8.00	Pass
		TX1	1.57			
	Middle	TX0	1.61	4.63	8.00	Pass
		TX1	1.63			
	Highest	TX0	1.65	4.71	8.00	Pass
		TX1	1.74			
	Lowest	TX0	-1.67	1.35	8.00	Pass
		TX1	-1.65			
802.11n(H40)	Middle	TX0	-1.61	1.33	8.00	Pass
		TX1	-1.76			
	Highest	TX0	-2.07	1.12	8.00	Pass
		TX1	-1.71			

Test plot as follows:

Date: 29.JUN.2017 00:36:11

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

- . -	T00 D 1/10 0 1/1 / 10 / 1/1		
Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

6.6.2 Radiated Emission Method

Test Method: ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidar						
section 12.1	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1					
Test Frequency Range: 2.3GHz to 2.5GHz						
Test site: Measurement Distance: 3m						
Receiver setup: Frequency Detector RBW VBW						
	Peak Value					
	verage Value					
	emark					
	Average Value					
	Peak Value					
to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-rantenna, which was mounted on the top of a variable-hetower. The antenna height is varied from one meter to four met the ground to determine the maximum value of the field Both horizontal and vertical polarizations of the antenna make the measurement. For each suspected emission, the EUT was arranged to case and then the antenna was tuned to heights from 1 meters and the rota table was turned from 0 degrees to to find the maximum reading. The test-receiver system was set to Peak Detect Function Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB the limit specified, then testing could be stopped and the of the EUT would be reported. Otherwise the emissions have 10dB margin would be re-tested one by one using peak or average method as specified and then reported sheet.	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 					
Test setup: AE EUT Horn Anlenna Tower						
Test Instruments: Refer to section 5.7 for details	Refer to section 5.7 for details					
	Refer to section 5.3 for details					
Test mode: Refer to section 5.3 for details						

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	ection 15	5.209 a	and 15.205			
Test Method:	ANSI C63.10:201	13					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3r	m				
Receiver setup:	Frequency	Detect	tor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-p	eak	120KHz	300)KHz	Quasi-peak Value
	Above 1GHz Peak 1MHz 3MHz						Peak Value
		RMS		1MHz		ЛHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @3	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MH			43.5			uasi-peak Value
	216MHz-960M			46.0			uasi-peak Value
	960MHz-1GH	Z		54.0 54.0			uasi-peak Value Average Value
	Above 1GHz	· -		74.0		,	Peak Value
Test Procedure:	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the means and the meters and to find the most of the EUT whave 10dB in the limit specified Barriage.	(above 10 as rotated ation. It is set 3 m ich was not a height is to determinatel and voe asurements and with a rota to aximum reiver systemowidth von level of cified, the would be margin wo	GHz) d 360 meters mount s varied in the vertical ent. emissing able was reading tem with Mof the en test report ould b	above the gradegrees to degrees to degrees to degrees to degree d	ound etermine into of a meter value s of the was a mode of the mode stopped the ne by	at a 3 sine the erferent variable to four of the enterent	meter chamber. e position of the nce-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 es to 360 degrees

Above 1GHz:

			Test mo	de: 802.11b	for TX0						
			Test char	nnel: Lowest	channel						
	Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	50.12	36.06	6.81	41.82	51.17	74.00	-22.83	Vertical			
4824.00	46.71	36.06	6.81	41.82	47.76	74.00	-26.24	Horizontal			
			А	verage Value	1						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4824.00	40.57	36.06	6.81	41.82	41.62	54.00	-12.38	Vertical			
4824.00	36.89	36.06	6.81	41.82	37.94	54.00	-16.06	Horizontal			

			Test cha	nnel: Middle	channel					
				Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	54.35	36.32	6.85	41.84	55.68	74.00	-18.32	Vertical		
4874.00	48.76	36.32	6.85	41.84	50.09	74.00	-23.91	Horizontal		
			А	verage Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4874.00	44.67	36.32	6.85	41.84	46.00	54.00	-8.00	Vertical		
4874.00	38.14	36.32	6.85	41.84	39.47	54.00	-14.53	Horizontal		

			Test char	nnel: Highest	channel					
				Peak Value						
Fraguenov	Read	Antenna	Cable	Preamp	Lovol	Level Limit Line				
Frequency Level	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.		
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubuv/III)	(dB)			
4924.00	52.07	36.58	6.89	41.86	53.68	74.00	-20.32	Vertical		
4924.00	48.68	36.58	6.89	41.86	50.29	74.00	-23.71	Horizontal		
			А	verage Value)					
Fraguenov	Read	Antenna	Cable	Preamp	Level	Limit Line	Over			
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.		
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(dBuV/m)	(dB)			
4924.00	42.64	36.58	6.89	41.86	44.25	54.00	-9.75	Vertical		
4924.00	38.67	36.58	6.89	41.86	40.28	54.00	-13.72	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11b for TX1										
			Test char	nnel: Lowest	channel					
Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	51.25	36.06	6.81	41.82	52.30	74.00	-21.70	Vertical		
4824.00	47.62	36.06	6.81	41.82	48.67	74.00	-25.33	Horizontal		
			А	verage Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	41.52	36.06	6.81	41.82	42.57	54.00	-11.43	Vertical		
4824.00	37.96	36.06	6.81	41.82	39.01	54.00	-14.99	Horizontal		
	192 1.00 07.00 0.01 11.00 14.0									

			Test cha	nnel: Middle	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	54.89	36.32	6.85	41.84	56.22	74.00	-17.78	Vertical
4874.00	48.63	36.32	6.85	41.84	49.96	74.00	-24.04	Horizontal
			Α	verage Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.55	36.32	6.85	41.84	45.88	54.00	-8.12	Vertical
4874.00	39.63	36.32	6.85	41.84	40.96	54.00	-13.04	Horizontal

			Test char	nnel: Highest	channel				
				Peak Value					
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	5 .	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(42417111)	(42417111)	(dB)		
4924.00	53.69	36.58	6.89	41.86	55.30	74.00	-18.70	Vertical	
4924.00	48.65	36.58	6.89	41.86	50.26	74.00	-23.74	Horizontal	
			А	verage Value)				
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
(IVITIZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubuv/III)	(dB)		
4924.00	42.85	36.58	6.89	41.86	44.46	54.00	-9.54	Vertical	
4924.00	37.28	36.58	6.89	41.86	38.89	54.00	-15.11	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test chann	iei: i owest ci	nannel			
				eak Value	iamioi			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Pola
4824.00	48.92	36.06	6.81	41.82	49.97	74.00	-24.03	Vertic
4824.00	46.87	36.06	6.81	41.82	47.92	74.00	-26.08	Horizoi
			Av	erage Value			•	•
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Pola
	20.46	36.06	6.81	41.82	39.21	54.00	-14.79	Vertic
4824.00	38.16	30.00					1	
4824.00 4824.00	36.63	36.06	6.81	41.82	37.68	54.00	-16.32	Horizo
			6.81 Test chan	nel: Middle ch		54.00	-16.32	Horizoi
	36.63	36.06	6.81 Test chann	nel: Middle ch		54.00		Horizoi
			6.81 Test chan	nel: Middle ch		Limit Line (dBuV/m)	Over Limit (dB)	
4824.00 Frequency	Read Level	Antenna Factor	Test channer P Cable Loss	nel: Middle ch eak Value Preamp Factor	nannel Level	Limit Line	Over Limit	Pola
4824.00 Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Test channer P Cable Loss (dB) 6.85 6.85	nel: Middle cheak Value Preamp Factor (dB) 41.84	Level	Limit Line (dBuV/m)	Over Limit (dB)	Pola Vertic
4824.00 Frequency (MHz) 4874.00	Read Level (dBuV) 48.53	Antenna Factor (dB/m) 36.32	Test change P Cable Loss (dB) 6.85 6.85	nel: Middle cheak Value Preamp Factor (dB) 41.84	Level (dBuV/)	Limit Line (dBuV/m) 74.00	Over Limit (dB) -24.14	Polar Vertic Horizon
4824.00 Frequency (MHz) 4874.00	Read Level (dBuV) 48.53	Antenna Factor (dB/m) 36.32	Test channer P Cable Loss (dB) 6.85 6.85	nel: Middle cheak Value Preamp Factor (dB) 41.84	Level (dBuV/)	Limit Line (dBuV/m) 74.00	Over Limit (dB) -24.14	Pola Vertic
Frequency (MHz) 4874.00 4874.00 Frequency	Read Level (dBuV) 48.53 48.94 Read Level	Antenna Factor (dB/m) 36.32 36.32 Antenna Factor	Test change P Cable Loss (dB) 6.85 6.85 Ave Cable Loss	nel: Middle cheak Value Preamp Factor (dB) 41.84 41.84 erage Value Preamp Factor	Level (dBuV/) 49.86 50.27	Limit Line (dBuV/m) 74.00 74.00 Limit Line	Over Limit (dB) -24.14 -23.73 Over Limit	Pola Vertic Horizoi

Test mode: 802.11g for TX0

		-	Test chann	el: Highest c	hannel			
			Р	eak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.94	36.58	6.89	41.86	50.55	74.00	-23.45	Vertical
4924.00	47.32	36.58	6.89	41.86	48.93	74.00	-25.07	Horizontal
			Ave	erage Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.69	36.58	6.89	41.86	40.30	54.00	-13.70	Vertical
4924.00	37.88	36.58	6.89	41.86	39.49	54.00	-14.51	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11g for TX1										
			Test chanr	nel: Lowest cl	nannel					
	Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	48.65	36.06	6.81	41.82	49.70	74.00	-24.30	Vertical		
4824.00	46.99	36.06	6.81	41.82	48.04	74.00	-25.96	Horizontal		
			Av	erage Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	37.89	36.06	6.81	41.82	38.94	54.00	-15.06	Vertical		
4824.00	37.98	36.06	6.81	41.82	39.03	54.00	-14.97	Horizontal		

			Test chani	nel: Middle ch	nannel			
			Р	eak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	48.65	36.32	6.85	41.84	49.98	74.00	-24.02	Vertical
4874.00	49.36	36.32	6.85	41.84	50.69	74.00	-23.31	Horizontal
			Av	erage Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.65	36.32	6.85	41.84	39.98	54.00	-14.02	Vertical
4874.00	38.77	36.32	6.85	41.84	40.10	54.00	-13.90	Horizontal

			Test chann	nel: Highest c	hannel						
	Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4924.00	48.56	36.58	6.89	41.86	50.17	74.00	-23.83	Vertical			
4924.00	48.77	36.58	6.89	41.86	50.38	74.00	-23.62	Horizontal			
			Av	erage Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4924.00	38.65	36.58	6.89	41.86	40.26	54.00	-13.74	Vertical			
4924.00	37.28	36.58	6.89	41.86	38.89	54.00	-15.11	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		Te	est mode:	802.11n(H20) for MIMO							
			Test chai	nnel: Lowest	channel							
				Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	48.41	36.06	6.81	41.82	49.46	74.00	-24.54	Vertical				
4824.00	46.14	36.06	6.81	41.82	47.19	74.00	-26.81	Horizontal				
Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	48.74	36.06	6.81	41.82	49.79	54.00	-4.21	Vertical				
4824.00	46.82	36.06	6.81	41.82	47.87	54.00	-6.13	Horizontal				
	Test channel: Middle channel											
				Peak Value	T.		1	1				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	48.94	36.32	6.85	41.84	50.27	74.00	-23.73	Vertical				
4874.00	47.39	36.32	6.85	41.84	48.72	74.00	-25.28	Horizontal				
			А	verage Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	38.62	36.32	6.85	41.84	39.95	54.00	-14.05	Vertical				
4874.00	37.34	36.32	6.85	41.84	38.67	54.00	-15.33	Horizontal				
				nnel: Highest Peak Value	channel							
	Read	Antenna	Cable	Preamp			Over					
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polar.				
4924.00	47.48	36.58	6.89	41.86	49.09	74.00	-24.91	Vertical				
4924.00	47.92	36.58	6.89	41.86	49.53	74.00	-24.47	Horizontal				
				verage Value)		T -	1				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				

4924.00

4924.00

(dBuV)

37.41

37.16

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

(dB)

6.89

6.89

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

(dB)

41.86

41.86

39.02

38.77

(dB/m)

36.58

36.58

Vertical

Horizontal

54.00

54.00

(dB)

-14.98

-15.23

		Te	est mode:	802.11n(H40) for MIMO							
			Test char	nnel: Lowest	channel							
				Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4844.00	48.44	36.06	6.81	41.82	49.49	74.00	-24.51	Vertical				
4844.00	48.14	36.06	6.81	41.82	49.19	74.00	-24.81	Horizontal				
Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4844.00	38.68	36.06	6.81	41.82	39.73	54.00	-14.27	Vertical				
4844.00	38.49	36.06	6.81	41.82	39.54	54.00	-14.46	Horizontal				
	Test channel: Middle channel											
				Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	48.38	36.32	6.85	41.84	49.71	74.00	-24.29	Vertical				
4874.00	47.53	36.32	6.85	41.84	48.86	74.00	-25.14	Horizontal				
			А	verage Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	38.94	36.32	6.85	41.84	40.27	54.00	-13.73	Vertical				
4874.00	38.34	36.32	6.85	41.84	39.67	54.00	-14.33	Horizontal				
				nnel: Highest	channel							
				Peak Value	T							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4904.00	47.38	36.45	6.87	41.85	48.85	74.00	-25.15	Vertical				
4904.00	47.46	36.45	6.87	41.85	48.93	74.00	-25.07	Horizontal				
			А	verage Value								
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.				

(MHz)

4904.00

4904.00

Level

(dBuV)

37.38

37.28

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

(dB)

6.87

6.87

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Factor

(dB)

41.85

41.85

(dBuV/m)

38.85

38.75

(dB/m)

36.45

36.45

Vertical

Horizontal

(dB)

-15.15

-15.25

Project No.: CCISE1707043

(dBuV/m)

54.00

54.00