Tema 3. Ecuații cu variabile separabile

Exercițiul 1. Integrați următoarele ecuații diferențiale cu variabile separabile și comparați soluția găsită cu cea indicată¹

a)
$$tx' = x^3 + x$$
, $x^2 = Ct^2(x^2 + 1)$;

b)
$$3e^{t} \operatorname{tg} x dt + (1 - e^{t}) \operatorname{sec}^{2} x dx = 0,$$
 $C(e^{t} - 1)^{3} = \operatorname{tg} x;$

c)
$$x - tx' = a(1 + t^2x'), \ a \in \mathbb{R},$$
 $(x - a)(at + 1) = Ct;$

d)
$$x' \operatorname{tg} t - x = 0$$
, $x = C \sin t$;

e)
$$t^2(x+1)dt + (t^3-1)(x-1)dx = 0$$
, $C(t^3-1)e^{3x} = (x+1)^6$;

f)
$$(1+x^2)(e^{2t}dt - e^x dx) = (1+x)dx$$
, $C + \frac{1}{2}e^{2t} = e^x + \arctan x + \frac{1}{2}\ln(1+x^2)$;

g)
$$(t^2x - t^2 + x - 1)dt + (tx + 2t - 3x - 6)dx = 0$$
,

$$C = t^2/2 + 3t + x + \ln(t-3)^{10}(x-3)^3;$$

$$h) xdt - tdx = x^2dt, t = x(t+C);$$

Rezolvare. La punctul h) se scrie ecuația sub forma

$$d\left(\frac{t}{x}\right) = dt$$

și apoi se integrează; este o ecuație (EVS) în variabilele t și $y = \frac{t}{x}$.

Exercițiul 2. Rezolvați următoarele probleme Cauchy, comparați soluția găsită cu cea indicată:

a)
$$(1+e^t)xx' = e^t$$
, $x(0) = 1$, $2e^{x^2/2} = \sqrt{e}(1+e^t)$;

b)
$$(tx^2 + t)dt + (t^2x - x)dx = 0$$
, $x(0) = 1$, $(1 - t^2)(x^2 + 1) = 2$;

c)
$$x' \sin t - x \ln x = 0, x(\pi/2) = 1,$$
 $x(t) \equiv 1;$

d)
$$(1+x^2)dt + 2t\sqrt{t-t^2}dx = 0$$
, $x(\frac{1}{2}) = 0$, $x = \operatorname{tg}\left(\sqrt{\frac{1}{t}-1} - 1\right)$;

Exercițiul 3. Rezolvați problema Cauchy

$$\begin{cases} (\sqrt{1+t^2}+x)dt + (\sqrt{1+x^2}+t)dx = 0, \\ x(0) = 1. \end{cases}$$

Rezolvare. Aplicăm următorul calcul formal: scriem ecuația sub forma

$$\sqrt{1+t^2}dt + \sqrt{1+x^2}dx + d(tx) = 0,$$

o integrăm

$$\int \sqrt{1+t^2}dt + \int \sqrt{1+x^2}dx + \int d(tx) = \int 0,$$

și obținem soluția generală

$$\frac{1}{2}\left(t\sqrt{1+t^2} + \ln(t+\sqrt{1+t^2})\right) + \frac{1}{2}\left(x\sqrt{1+x^2} + \ln(x+\sqrt{1+x^2})\right) + tx = C.$$

Din condiția inițială rezultă $C = \frac{1}{2}(\sqrt{2} + \ln(1 + \sqrt{2}))$.

¹G. Micula, P. Pavel *Ecuații diferențiale și integrale prin probleme și exerciții*, Ed. Dacia, Cluj-Napoca 1989, pag 13.

Exercițiul 4. Reduceți la cazul (EVS) următoarele ecuații, efectând substituțiile indicate:

a)
$$x' = (t+x)^2$$
, \rightarrow $y = t+x$ \rightarrow $t+x = \operatorname{tg}(t+C)$;

b)
$$x' = (8t + 2x + 1)^2$$
, $\rightarrow y = 8t + 2x + 1 \rightarrow 8t + 2x + 1 = 2tg(4t + C)$;

c)
$$x' = \sin(t - x), \rightarrow y = t - x \rightarrow (t + C)\cos(t - x) = 1 + \sin(t - x);$$

d)
$$x'-1=e^{t+2x}$$
, \to $y=t+2x$ \to $3e^{-2x}+2e^t=Ce^{-2t}$.

Observație. Toate ecuațiile de mai sus au forma

$$x' = g(ax + bt + c)$$

și cu substituția y = ax + bt + c se obține y' = ax' + b iar ecuația devine

$$y' = ag(y) + b,$$

care este o ecuație cu variabile separabile.

Exercițiul 5. Integrați ecuația

$$x' = \frac{\sqrt{t^2 + x^2} - t}{x}.$$

Rezolvare. Observăm că ecuația poate fi pusă sub forma

$$\frac{1}{2}\frac{d}{dt}(t^2+x^2) = \sqrt{t^2+x^2}$$

și efectăm substituția

$$u = t^2 + x^2.$$

Obţinem soluţia generală $x^2 = 2Ct + C^2$.