Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 + \frac{1}{8} - \frac{1}{4} = \frac{7}{8}$	3p
	$\frac{7}{8}:\frac{7}{8}=1$	2 p
2.	f(1)=1+a, f(-1)=-1+a	2 p
	$f(1) + f(-1) = 2 \Leftrightarrow 2a = 2$, deci $a = 1$	3 p
3.	$x^2 + 2 = 3x \Leftrightarrow x^2 - 3x + 2 = 0$	3p
	x=1 sau $x=2$, care convin	2 p
4.	După prima ieftinire cu 10%, prețul obiectului este 300 – 10% · 300 = 270 de lei	3p
	După a doua ieftinire cu 10%, prețul obiectului este $270-10\% \cdot 270 = 243$ de lei	2 p
5.	M(0,2)	3 p
	OM = 2	2 p
6.	$\triangle ABC$ este dreptunghic în A , deci $\mathcal{A}_{\triangle ABC} = \frac{AB \cdot AC}{2} = \frac{2\sqrt{3} \cdot 2\sqrt{3}}{2} =$	3p
	= 6	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	6*0=6+0-6=	3р
	=6-6=0	2p
2.	x * y = x + y - 6 = y + x - 6 =	3 p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție "*" este comutativă	2 p
3.	x*6=x+6-6=x	2 p
	6*x=6+x-6=x=x*6, pentru orice număr real x, deci $e=6$ este elementul neutru al legii	3p
	de compoziție "*"	Эр
4.	x * x = 2x - 6, $x * x * x = 3x - 12$	2p
	$3x-12=x \Leftrightarrow x=6$	3 p
5.	(1*2)*(3*4)*(5*6)*(7*8)*(9*10)=(-3)*1*5*9*13=	3 p
	=(-8)*8*13=-6+13-6=1	2 p
6.	$\underbrace{n*n**n}_{}=6n-30$	2p
	de 6 ori <i>n</i>	- P
	$6n-30 < 6 \Rightarrow n < 6$ şi, cum n este număr natural par nenul, obținem $n=2$ sau $n=4$	3 p

SUBIECTUL al III-lea

(30 de puncte)

Varianta 2

1.
$$A(1) = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 2 \\ 4 & 3 \end{vmatrix} = 1 \cdot 3 - 4 \cdot 2 =$$

$$= 3 - 8 = -5$$
2p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

2.	$A(-a) = \begin{pmatrix} -a & 2 \\ 4 & 3 \end{pmatrix} \Rightarrow A(-a) + A(a) = \begin{pmatrix} 0 & 4 \\ 8 & 6 \end{pmatrix} =$	3p
	$= 2 \begin{pmatrix} 0 & 2 \\ 4 & 3 \end{pmatrix} = 2A(0)$, pentru orice număr real a	2p
3.	$A(3) \cdot \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 9-8 & -6+6 \\ 12-12 & -8+9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} \cdot A(3) = \begin{pmatrix} 9-8 & 6-6 \\ -12+12 & -8+9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2, \text{ deci matricea} \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} \text{ este inversa}$	3р
	matricei A(3)	
4.	$\det(A(a)) = \begin{vmatrix} a & 2 \\ 4 & 3 \end{vmatrix} = 3a - 8$	2p
	Matricea $A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0 \Leftrightarrow 3a - 8 \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \left\{\frac{8}{3}\right\}$	3р
5.	$A(a^{2}) = \begin{pmatrix} a^{2} & 2 \\ 4 & 3 \end{pmatrix} \Rightarrow A(a^{2}) - 4A(a) + 3A(1) = \begin{pmatrix} a^{2} - 4a + 3 & 0 \\ 0 & 0 \end{pmatrix}$	2p
	$ \begin{pmatrix} a^2 - 4a + 3 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow a^2 - 4a + 3 = 0, \text{ de unde obţinem } a = 1 \text{ sau } a = 3 $	3p
6.	$A(a) + A(2) = \begin{pmatrix} a+2 & 4 \\ 8 & 6 \end{pmatrix} \Rightarrow \det(A(a) + A(2)) = \begin{vmatrix} a+2 & 4 \\ 8 & 6 \end{vmatrix} = 6(a+2) - 32 = 6a - 20$	2p
	$6a-20=a^2-15 \Leftrightarrow a^2-6a+5=0$, de unde obţinem $a=1$ sau $a=5$	3p

Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_pedagogic*

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(1 + \left(\frac{1}{2}\right)^3 \frac{1}{4}\right) : \frac{7}{8} = 1$.
- **5p** 2. Determinați numărul real a pentru care f(1) + f(-1) = 2, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_6(x^2 + 2) = \log_6(3x)$.
- **5p 4.** Prețul unui obiect este 300 de lei. Determinați prețul obiectului după ce se ieftinește de două ori, succesiv, cu câte 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(-3,2) și B(3,2). Determinați distanța de la punctul O(0,0) la punctul O(0,0) este mijlocul segmentului O(0,0) la punctul O(0,0) la punctul O(0,0) este mijlocul segmentului O(0,0) la punctul O(0,0)

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = x + y - 6.

- **5p 1.** Arătați că 6*0=0.
- **5p 2.** Arătați că legea de compoziție "*" este comutativă.
- **5p 3.** Verificați dacă e = 6 este elementul neutru al legii de compoziție "*".
- **5p 4.** Determinați numerele reale x pentru care x * x * x = x.
- **5p 5.** Arătați că 1*2*3*4*5*6*7*8*9*10=1.
- **5p 6.** Determinați numerele naturale pare nenule n pentru care $\underbrace{n*n*...*n}_{\text{de 6 ori }n} < 6$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricea $A(a) = \begin{pmatrix} a & 2 \\ 4 & 3 \end{pmatrix}$, unde a este număr real.

- **5p 1.** Arătați că $\det(A(1)) = -5$.
- **5p** 2. Demonstrați că A(-a) + A(a) = 2A(0), pentru orice număr real a.
- **5p 3.** Arătați că inversa matricei A(3) este matricea $\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$.
- $\mathbf{5p}$ 4. Determinați valorile reale ale lui a pentru care matricea A(a) este inversabilă.
- **5p 5.** Determinați numerele reale a pentru care $A(a^2) 4A(a) + 3A(1) = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** | **6.** Determinați numerele reale a pentru care $\det(A(a) + A(2)) = a^2 15$.

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 10

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{\frac{9}{25}} = \frac{3}{5}$	2p
	$\frac{3}{5} - \frac{33}{55} = \frac{3}{5} - \frac{3}{5} = 0$	3p
2.	$x-1<2 \Leftrightarrow x<3$	2p
	Cum x este număr natural nenul, obținem $x=1$ sau $x=2$	3 p
3.	$x^2 + 4x + 6 = 2 \Leftrightarrow x^2 + 4x + 4 = 0$	3 p
	x = -2, care convine	2p
4.	Cifra unităților poate fi aleasă în 3 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 5 moduri, deci se pot forma $3.5=15$ numere	3 p
5.	$MN = \sqrt{(4-1)^2 + (1-1)^2} = 3$	2p
	$NP = \sqrt{(4-4)^2 + (4-1)^2} = 3 \Rightarrow MN = NP$, deci $\triangle MNP$ este isoscel	3p
6.	$\sin C = \frac{AB}{BC} = \frac{6}{12} =$	2p
	$=\frac{1}{2}$ şi, cum $\angle C$ este ascuţit, obţinem $m(\angle C) = 30^\circ$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$\sqrt{2} * \left(-\sqrt{2}\right) = \sqrt{2} \cdot \left(-\sqrt{2}\right) + 7\left(\sqrt{2} + \left(-\sqrt{2}\right)\right) + 42 = -2 + 7 \cdot 0 + 42 =$	3p
	=-2+42=40	2p
2.	x * y = xy + 7x + 7y + 49 - 7 =	2p
	=x(y+7)+7(y+7)-7=(x+7)(y+7)-7, pentru orice numere reale x și y	3 p
3.	x*(-6)=(x+7)(-6+7)-7=x+7-7=x	2p
	(-6)*x = (-6+7)(x+7)-7 = x+7-7 = x = x*(-6), pentru orice număr real x, deci	3p
	e = -6 este elementul neutru al legii de compoziție "*"	Зþ
4.	2*a = (2+7)(a+7)-7=9a+63-7=9a+56	3 p
	$9a + 56 = 65 \Leftrightarrow a = 1$	2p
5.	$(\log_2 x + 7)^2 - 7 = 42 \Leftrightarrow (\log_2 x + 7)^2 = 49 \Leftrightarrow \log_2 x + 7 = -7 \text{ sau } \log_2 x + 7 = 7$	3 p
	$x = 2^{-14}$ sau $x = 1$, care convin	2 p
6.	$m*(2-m) = (m+7)(2-m+7)-7 = -m^2 + 2m + 56$	2p
	$-m^2 + 2m + 56 \ge 57 \Leftrightarrow -(m-1)^2 \ge 0$, de unde obţinem $m = 1$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det A = \begin{vmatrix} 6 & -5 \\ -1 & 1 \end{vmatrix} = 6 \cdot 1 - (-1) \cdot (-5) =$	3 p
	=6-5=1	2p
2.	$A \cdot B - B \cdot A = \begin{pmatrix} 6 & -5 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 5 \\ 1 & 6 \end{pmatrix} - \begin{pmatrix} 1 & 5 \\ 1 & 6 \end{pmatrix} \cdot \begin{pmatrix} 6 & -5 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
3.	$A + xB = \begin{pmatrix} 6+x & -5+5x \\ -1+x & 1+6x \end{pmatrix} \Rightarrow \det(A+xB) = \begin{vmatrix} 6+x & -5+5x \\ -1+x & 1+6x \end{vmatrix} = x^2 + 47x + 1$	2p
	$x^{2} + 47x + 1 = 1 - 3x \Leftrightarrow x^{2} + 50x = 0 \Leftrightarrow x = -50 \text{ sau } x = 0$	3р
4.	$\begin{pmatrix} 6 & -5 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \end{pmatrix} \Leftrightarrow \begin{cases} 6x - 5y = 7 \\ -x + y = -1 \end{cases}$	3p
	x=2 şi $y=1$	2p
5.	$A+B = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}, A-B = \begin{pmatrix} 5 & -10 \\ -2 & -5 \end{pmatrix}$	2p
	$\det(A+B) + \det(A-B) = \begin{vmatrix} 7 & 0 \\ 0 & 7 \end{vmatrix} + \begin{vmatrix} 5 & -10 \\ -2 & -5 \end{vmatrix} = 49 + (-45) = 4$	2p
	$2(\det A + \det B) = 2(1+1) = 4 = \det(A+B) + \det(A-B)$	1p
6.	$\det A \neq 0, \ A^{-1} = \begin{pmatrix} 1 & 5 \\ 1 & 6 \end{pmatrix}$	2p
	$A \cdot X - B = I_2 \Leftrightarrow X = A^{-1} \cdot (I_2 + B)$, de unde obţinem $X = \begin{pmatrix} 7 & 40 \\ 8 & 47 \end{pmatrix}$	3 p

Proba E. c)

Matematică *M_pedagogic*

Varianta 10

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **1.** Arătați că $\sqrt{\frac{9}{25}} \frac{33}{55} = 0$. 5p
- **2.** Rezolvați în mulțimea numerelor naturale nenule inecuația 3(x-1) < 6. 5p
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_4(x^2 + 4x + 6) = \log_4 2$. **5p**
- 5p 4. Determinați câte numere naturale impare de două cifre se pot forma cu cifrele 1, 2, 3, 4 și 5.
- 5. În reperul cartezian xOy se consideră punctele M(1,1), N(4,1) și P(4,4). Arătați că triunghiul **5p** MNP este isoscel.
- **6.** Se consideră triunghiul ABC dreptunghic în A, cu AB = 6 și BC = 12. Arătați că $m(< C) = 30^{\circ}$. 5p

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy + 7(x + y) + 42.

- **1.** Arătați că $\sqrt{2} * (-\sqrt{2}) = 40$. **5p**
- **2.** Arătați că x * y = (x+7)(y+7)-7, pentru orice numere reale x și y. **5p**
- 3. Verificați dacă e = -6 este elementul neutru al legii de compoziție "*". **5p**
- **4.** Determinați numărul real a pentru care 2*a = 65. 5p
- **5.** Determinați numerele reale x, x > 0 pentru care $(\log_2 x) * (\log_2 x) = 42$. 5p
- **6.** Determinați numerele întregi m pentru care $m*(2-m) \ge 57$. **5p**

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 6 & -5 \\ -1 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & 5 \\ 1 & 6 \end{pmatrix}$.

- **1.** Arătați că $\det A = 1$. **5**p
- **2.** Arătați că $A \cdot B B \cdot A = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. **5p**
- 3. Determinați numerele reale x pentru care $\det(A + xB) = 1 3x$. 5p
- **4.** Determinați numerele reale x și y pentru care $A \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$. 5p
- 5. Arătați că $\det(A+B) + \det(A-B) = 2(\det A + \det B)$. **5**p
- **6.** Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, astfel încât $A \cdot X B = I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. 5p

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{1}{3}\right)^2 + 3 = \frac{1}{9} + 3 = \frac{28}{9}$	3p
	$\frac{28}{9}:\frac{28}{9}=1$	2p
2.	f(1) = 2 + m	2p
	$f(-1) = -2 + m \Rightarrow f(1) - f(-1) = 2 + m - (-2 + m) = 4$, pentru orice număr real m	3 p
3.	$x^2 + 3 = 4x \Leftrightarrow x^2 - 4x + 3 = 0$	3 p
	x=1 sau $x=3$	2p
4.	După prima scumpire cu 5%, prețul obiectului este 1200 + 5% · 1200 = 1260 de lei	3p
	După a doua scumpire cu 5%, prețul obiectului este 1260 + 5% ·1260 = 1 323 de lei	2p
5.	C(2,0)	3 p
	OC = 2	2p
6.	$\triangle ABC$ este dreptunghic în A, deci $\mathcal{A}_{\triangle ABC} = \frac{AB \cdot AC}{2} = \frac{4 \cdot 4}{2} =$	3 p
	= 8	2p

SUBIECTUL al II-lea (30 de puncte)

1.	2000 * 17 = 2000 + 17 - 2017 =	3 p
	=2017-2017=0	2p
2.	(x*y)*z = (x+y-2017)*z = (x+y-2017)+z-2017 = x+y+z-4034	2p
	x*(y*z) = x*(y+z-2017) = x+(y+z-2017)-2017 = x+y+z-4034 = (x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție ,,*" este asociativă	3 p
3.	a*(a+2017) = a+(a+2017)-2017 = 2a	2p
	(a+1009)*(a+1008)=(a+1009)+(a+1008)-2017=2a=a*(a+2017), pentru orice număr real a	3 p
4.	$4^{x} + 2^{x} - 2017 = -2011 \Leftrightarrow 4^{x} + 2^{x} - 6 = 0 \Leftrightarrow (2^{x} + 3)(2^{x} - 2) = 0$	3p
	Cum $2^x > 0$, obţinem $x = 1$	2p
5.	$n * n \le n \Leftrightarrow n + n - 2017 \le n \Leftrightarrow n \le 2017$	3p
	2017 este cel mai mare număr natural <i>n</i> pentru care are loc relația	2p
6.	$\frac{2}{3-\sqrt{5}} * \frac{2}{3+\sqrt{5}} = \frac{2}{3-\sqrt{5}} + \frac{2}{3+\sqrt{5}} - 2017 =$	2p
	$= \frac{2(3+\sqrt{5})+2(3-\sqrt{5})}{4} - 2017 = 3 - 2017 = -2014$, care este număr întreg	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det A = \begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix} = 1 \cdot 2 - 2 \cdot 2 =$	3p 2p
	= 2 - 4 = -2	2p
2.	$A \cdot \begin{pmatrix} -1 & 1 \\ 1 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 \cdot (-1) + 2 \cdot 1 & 1 \cdot 1 + 2 \cdot \left(-\frac{1}{2} \right) \\ 2 \cdot (-1) + 2 \cdot 1 & 2 \cdot 1 + 2 \cdot \left(-\frac{1}{2} \right) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
	$\begin{bmatrix} -1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix} \cdot A = \begin{bmatrix} (-1) \cdot 1 + 1 \cdot 2 & (-1) \cdot 2 + 1 \cdot 2 \\ 1 \cdot 1 + \left(-\frac{1}{2}\right) \cdot 2 & 1 \cdot 2 + \left(-\frac{1}{2}\right) \cdot 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2, \text{ deci matricea} \begin{bmatrix} -1 & 1 \\ 1 & -\frac{1}{2} \end{bmatrix}$ este inversa matricei A	3 p
3.	$A \cdot A = \begin{pmatrix} 5 & 6 \\ 6 & 8 \end{pmatrix}, \ 3A = \begin{pmatrix} 3 & 6 \\ 6 & 6 \end{pmatrix}$	3 p
	$A \cdot A - 3A = \begin{pmatrix} 5 & 6 \\ 6 & 8 \end{pmatrix} - \begin{pmatrix} 3 & 6 \\ 6 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I_2$	2p
4.	$A - xI_2 = \begin{pmatrix} 1 - x & 2 \\ 2 & 2 - x \end{pmatrix} \Rightarrow \det(A - xI_2) = \begin{vmatrix} 1 - x & 2 \\ 2 & 2 - x \end{vmatrix} = x^2 - 3x - 2$	3 p
	$x^2 - 3x - 2 = 2 \Leftrightarrow x^2 - 3x - 4 = 0 \Leftrightarrow x = -1 \text{ sau } x = 4$	2p
5.	$A \cdot A = 3A + 2I_2 \Rightarrow (A \cdot A) \cdot A = (3A + 2I_2) \cdot A = 3A \cdot A + 2A = 3(3A + 2I_2) + 2A = 11A + 6I_2$	3p
	Cum matricea A este nenulă, $11A + 6I_2 = aA + 6I_2 \Leftrightarrow a = 11$	2p
6.	$A \cdot X = \begin{pmatrix} 2 + 2p & 1 + 2q \\ 4 + 2p & 2 + 2q \end{pmatrix}, \ X \cdot A = \begin{pmatrix} 4 & 6 \\ p + 2q & 2p + 2q \end{pmatrix}$	2p
	Cum $\begin{pmatrix} 2+2p & 1+2q \\ 4+2p & 2+2q \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ p+2q & 2p+2q \end{pmatrix}$, obţinem $p=1$ şi $q=\frac{5}{2}$	3 p

Proba E. c)

Matematică *M_pedagogic*

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(\left(\frac{1}{3} \right)^2 + 3 \right) : \frac{28}{9} = 1$.
- **5p** 2. Arătați că f(1) f(-1) = 4 pentru orice număr real m, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + m.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{x^2+3} = 2^{4x}$.
- **5p 4.** Prețul unui obiect este 1200 de lei. Determinați prețul obiectului după ce se scumpește de două ori, succesiv, cu câte 5%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,6) și B(2,3). Determinați distanța de la punctul O la punctul C, unde C este simetricul punctului A față de punctul B.
- **5p** | **6.** Calculați aria triunghiului ABC, știind că $m(< B) = 45^{\circ}$ și AB = AC = 4.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definește legea de compoziție x * y = x + y - 2017.

- **5p 1.** Arătați că 2000*17=0.
- **5p 2.** Arătați că legea de compoziție "*" este asociativă.
- **5p 3.** Demonstrați că a*(a+2017)=(a+1009)*(a+1008), pentru orice număr real a.
- **5p 4.** Determinați numărul real x, știind că $4^x * 2^x = -2011$.
- **5p** | **5.** Determinați cel mai mare număr natural n, pentru care $n * n \le n$.
- **5p 6.** Arătați că numărul $\frac{2}{3-\sqrt{5}}*\frac{2}{3+\sqrt{5}}$ este întreg.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **5p 1.** Calculati $\det A$.
- **5p** 2. Demonstrați că inversa matricei A este matricea $\begin{pmatrix} -1 & 1 \\ 1 & -\frac{1}{2} \end{pmatrix}$.
- **5p** | **3.** Arătați că $A \cdot A 3A = 2I_2$.
- **5p 4.** Determinați numerele reale x, știind că $det(A xI_2) = 2$.
- **5p** | **5.** Determinați numărul real a, știind că $A \cdot A \cdot A = aA + 6I_2$.
- **5p 6.** Determinați numerele reale p și q, pentru care $A \cdot X = X \cdot A$, unde $X = \begin{pmatrix} 2 & 1 \\ p & q \end{pmatrix}$.

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_pedagogic*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + (a_1 + r) + (a_1 + 2r) + (a_1 + 3r) = 14 \Leftrightarrow 4a_1 + 6r = 14$	3p
	r=1	2 p
2.	$f(x) = 0 \Leftrightarrow x^2 - 5x + 4 = 0$	2 p
	x=1 sau $x=4$, deci distanța dintre punctele de intersecție a graficului funcției f cu axa Ox	3р
	este egală cu 3	•
3.	$2^{x}(2^{2}+2^{1}+1)=7 \Leftrightarrow 2^{x}=1$	3 p
	x = 0	2 p
4.	$\left(p + \frac{10}{100} \cdot p\right) + \frac{10}{100} \cdot \left(p + \frac{10}{100} \cdot p\right) = 242, \text{ unde } p \text{ este prețul produsului înainte de cele două}$	3p
	scumpiri	
	p = 200 de lei	2p
5.	$\frac{m}{2} = \frac{6}{3}$	3р
	2 3	ър
	m=4	2 p
6.	$BC = \sqrt{5^2 - 3^2} = 4$ $A_{ABCD} = 3 \cdot 4 = 12$	3 p
	$\mathcal{A}_{ABCD} = 3 \cdot 4 = 12$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1)*1 = -1 + 1 - (-1)\cdot 1 =$	3p
	=1	2 p
2.	x * y = x + y - xy = y + x - yx =	3p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea ",*" este comutativă	2 p
3.	x * y = -xy + x + y - 1 + 1 =	2p
	=-x(y-1)+(y-1)+1=-(x-1)(y-1)+1, pentru orice numere reale x şi y	3p
4.	$-(x-1)(x-1)+1=0 \Leftrightarrow (x-1)^2=1$	3p
	x = 0 sau $x = 2$	2 p
5.	$-(a-1)(a-1)+1 \ge 1 \Leftrightarrow (a-1)^2 \le 0$	3p
	a=1	2p
6.	x*1=1*y=1, pentru x și y numere reale	2p
	$\left(\left(\frac{1}{2016} * \frac{2}{2016} * \frac{3}{2016} * \dots * \frac{2015}{2016} \right) * \frac{2016}{2016} \right) * \frac{2017}{2016} = 1 * \frac{2017}{2016} = 1$	3р

SUBIECTUL al III-lea (30 de puncte)

1.	$A(2017) = \begin{pmatrix} 1 & 2017 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(2017)) = \begin{vmatrix} 1 & 2017 \\ 0 & 1 \end{vmatrix} =$	2p
	=1	3 p
2.	$A(-2017) + A(2017) = \begin{pmatrix} 1 & -2017 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2017 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} =$	3р
	$=2\begin{pmatrix}1&0\\0&1\end{pmatrix}=2I_2$	2p
3.	$A(m) \cdot A(n) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n+m \\ 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & m+n \\ 0 & 1 \end{pmatrix} = A(m+n), \text{ pentru orice numere întregi } m \text{ şi } n$	2p
4.	$B = A(0) + A(1) + A(2) + A(3) + A(4) + A(5) + A(6) = \begin{pmatrix} 7 & 0 + 1 + 2 + \dots + 6 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 7 & 21 \\ 0 & 7 \end{pmatrix}$	3p
	Suma elementelor matricei B este egală cu 35, care este un număr divizibil cu 7	2p
5.	$\det(A(n)) = \begin{vmatrix} 1 & n \\ 0 & 1 \end{vmatrix} = 1$	2p
	$\det(A(n)) \neq 0$, deci $A(n)$ este inversabilă pentru orice număr întreg n	3 p
6.	Cum $A(2017) \cdot A(-2017) = A(0) = I_2$, obţinem $(A(2017))^{-1} = A(-2017)$	2p
	$X = (A(2017))^{-1} \cdot A(2018) \Leftrightarrow X = A(-2017) \cdot A(2018) \Leftrightarrow X = A(1) \Leftrightarrow X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	3p

Proba E. c) Matematică *M_pedagogic*

Clasa a XII-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați rația progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1 + a_2 + a_3 + a_4 = 14$ și $a_1 = 2$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 5x + 4$. Determinați distanța dintre punctele de intersecție a graficului funcției f cu axa Ox.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{x+2} + 2^{x+1} + 2^x = 7$.
- **5p 4.** După două creșteri succesive cu câte 10%, un produs costă 242 de lei. Calculați prețul produsului înainte de cele două scumpiri.
- **5p** | **5.** Determinați numărul real m pentru care vectorii $\vec{v_1} = m\vec{i} + 6\vec{j}$ și $\vec{v_2} = 2\vec{i} + 3\vec{j}$ sunt coliniari.
- **5p 6.** Calculați aria dreptunghiului ABCD, știind că AB = 3 și AC = 5.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = x + y - xy.

- **5p 1.** Calculați (-1)*1.
- **5p 2.** Verificați dacă legea de compoziție "*" este comutativă.
- **5p 3.** Arătați că x * y = -(x-1)(y-1)+1, pentru orice numere reale x și y.
- **5p** | **4.** Determinați numerele reale x, pentru care x * x = 0.
- **5p** | **5.** Determinați numărul real a, pentru care $a * a \ge 1$.
- **5p 6.** Calculați $\frac{1}{2016} * \frac{2}{2016} * \frac{3}{2016} * \dots * \frac{2017}{2016}$

SUBIECTUL al III-lea

(30 de puncte)

Se consideră matricea $A(n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, unde n este număr întreg.

- **5p 1.** Calculați $\det(A(2017))$.
- **5p** 2. Arătați că $A(-2017) + A(2017) = 2I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** 3. Arătați că $A(m) \cdot A(n) = A(m+n)$, pentru orice numere întregi m și n.
- **5p 4.** Se consideră matricea B = A(0) + A(1) + A(2) + A(3) + A(4) + A(5) + A(6). Arătați că suma elementelor matricei B este divizibilă cu 7.
- **5p 5.** Arătați că matricea A(n) este inversabilă pentru orice număr întreg n.
- **5p 6.** Determinați matricea $X \in \mathcal{M}_2(\mathbb{Z})$ pentru care $A(2017) \cdot X = A(2018)$.

Proba E. c)

Matematică *M_pedagogic*

Clasa a XI-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1,75 = \frac{7}{4}, \sqrt{\frac{1}{16}} = \frac{1}{4}, \frac{2^{2017}}{2^{2016}} = 2$	3 p
	$\frac{7}{4} + \frac{1}{4} - 2 = 2 - 2 = 0$	2p
2.	$-x^2 + 4 = 3 \Leftrightarrow x^2 = 1$	3p
	x = -1 sau $x = 1$	2p
3.	$x+1=2^3$	2p
	x = 7, care verifică ecuația	3 p
4.	$44^2 < 2017 < 45^2$	2 p
	În mulțimea $\{1,2,3,,2017\}$ sunt 44 de pătrate perfecte	3 p
5.	$A \in d \Leftrightarrow 4a - 3a + 12 = 0$	3p
	a = -12	2p
6.	$\frac{AC}{20} = \frac{3}{5} \Rightarrow AC = 12$	2p
	$AB = \sqrt{400 - 144} = 16$, de unde obţinem $P_{\Delta ABC} = 16 + 12 + 20 = 48$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	0*8=0-0-56+56=	3p
	=0	2p
2.	x * y = xy - 7x - 7y + 49 + 7 =	2p
	= x(y-7)-7(y-7)+7=(x-7)(y-7)+7, pentru orice numere reale x şi y	3 p
3.	x*7 = (x-7)(7-7)+7 =	3 p
	=0+7=7, pentru orice număr real x	2p
4.	7 * x = 7, pentru x număr real	2p
	0*1*2**2017 = ((0*1*2**6)*7)*8*9**2017 = 7*(8*9**2017) = 7	3 p
5.	$(x-7)(x-7)+7=8 \Leftrightarrow (x-7)^2=1$	3p
	x = 6 sau $x = 8$	2 p
6.	$(m-7)(n-7)+7=6 \Leftrightarrow (m-7)(n-7)=-1$	3p
	Cum $m \neq n$ sunt numere naturale, obținem $m = 8$, $n = 6$ sau $m = 6$, $n = 8$	2p

SUBIECTUL al III-lea

(30 de puncte)

Simulare pentru clasa a XI-a

1.
$$\hat{0} + \hat{1} + \hat{2} + \hat{3} = (\hat{0} + \hat{1}) + \hat{2} + \hat{3} = \hat{1} + \hat{2} + \hat{3} =$$

$$= (\hat{1} + \hat{2}) + \hat{3} = \hat{3} + \hat{3} = \hat{2}$$
2p
$$3p$$

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

2.	$2 \cdot 3 = 6$	2p
	$\hat{2}\cdot\hat{3}=\hat{2}$	3 p
3.	$\hat{0}$ și $\hat{2}$ sunt soluții ale ecuației	3 p
	Celelalte elemente ale lui \mathbb{Z}_4 nu sunt soluții ale ecuației	2p
4.	$\hat{1} + \hat{3} = \hat{0}$	2p
	$\hat{3}+\hat{1}=\hat{0}$, deci $\hat{3}$ este simetricul elementului $\hat{1}$ în raport cu operația de adunare în \mathbb{Z}_4	3 p
5.	\hat{a} este element simetrizabil în raport cu înmulțirea în $\mathbb{Z}_4 \Leftrightarrow (a,4)=1$	3 p
	Elementele simetrizabile în raport cu înmulțirea în \mathbb{Z}_4 sunt $\hat{1}$ și $\hat{3}$	2p
6.	$\hat{0}^2 = \hat{0}, \ \hat{1}^2 = \hat{1}, \ \hat{2}^2 = \hat{0}, \ \hat{3}^2 = \hat{1}$	3 p
	$H = \left\{\hat{0}, \hat{1}\right\}$	2p

Proba E. c)

Matematică M pedagogic

Clasa a XI-a

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 1,75 + $\sqrt{\frac{1}{16}} \frac{2^{2017}}{2^{2016}} = 0$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 4$. Determinați numerele reale x pentru care f(x) = 3.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(x+1) = 3$.
- **5p 4.** Determinați numărul pătratelor perfecte din mulțimea $\{1, 2, 3, ..., 2017\}$.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație 4x-3y+12=0. Determinați numărul real a, știind că punctul A(a,a) aparține dreptei d.
- **5p** 6. Calculați perimetrul triunghiului ABC, știind că $m(\not < A) = 90^\circ$, $\sin B = \frac{3}{5}$ și BC = 20.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy - 7x - 7y + 56.

- **5p 1.** Calculați 0*8.
- **5p** 2. Arătați că x * y = (x-7)(y-7)+7, pentru orice numere reale x și y.
- **5p 3.** Arătați că x*7=7, pentru orice număr real x.
- **5p | 4.** Calculați 0*1*2*...*2017.
- **5p 5.** Determinați numerele reale x pentru care x * x = 8.
- **5p 6.** Determinați numerele naturale m și n pentru care m * n = 6.

SUBIECTUL al III-lea (30 de puncte)

Se consideră $\mathbb{Z}_4 = \left\{\hat{0}, \hat{1}, \hat{2}, \hat{3}\right\}$, mulțimea claselor de resturi modulo 4.

- **5p 1.** Calculați $\hat{0}+\hat{1}+\hat{2}+\hat{3}$ în \mathbb{Z}_4 .
- **5p 2.** Calculați $\hat{2} \cdot \hat{3}$ în \mathbb{Z}_4 .
- **5p 3.** Rezolvați în \mathbb{Z}_4 ecuația $\hat{2} \cdot x = \hat{0}$.
- **5p 4.** Determinați simetricul elementului $\hat{1}$ în raport cu operația de adunare în \mathbb{Z}_4 .
- **5p 5.** Determinați elementele simetrizabile în raport cu operația de înmulțire în \mathbb{Z}_4 .
- **5p 6.** Determinați mulțimea $H = \{x \in \mathbb{Z}_4 | x^2 = x\}$.