Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: BC is the only one that can be computed, and

$$BC = \begin{bmatrix} 0 & -3 & 7 & -8 \\ 8 & 4 & -4 & 8 \\ 5 & -2 & 8 & -7 \end{bmatrix}$$

Standard M2. $\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix}$ is invertible.

Solution: The second column is a multiple of the first, so it is not invertible.

Standard M3.

Mark:

Find the inverse of the matrix $\begin{bmatrix} 1 & -4 & 5 \\ -5 & 24 & -28 \\ 1 & -5 & 6 \end{bmatrix}$.

Solution: $\begin{bmatrix} 1 & -4 & 5 & 1 & 0 & 0 \\ -5 & 24 & -28 & 0 & 1 & 0 \\ 1 & -5 & 6 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 4 & -1 & -8 \\ 0 & 1 & 0 & 2 & 1 & 3 \\ 0 & 0 & 1 & 1 & 1 & 4 \end{bmatrix}.$ Thus the inverse is $\begin{bmatrix} 4 & -1 & -8 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}.$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -11 & 4 & -2 \end{bmatrix}$.

Solution: 1 (with algebraic multiplicity 2), and -1 (with algebraic multiplicity 1).

Standard G3.

Find the eigenspace associated to the eigenvalue 1 in the matrix $A = \begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -11 & 4 & -2 \end{bmatrix}$

Solution: The eigenspace is spanned by $\begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: BC is the only one that can be computed, and

$$BC = \begin{bmatrix} 0 & -3 & 7 & -8 \\ 8 & 4 & -4 & 8 \\ 5 & -2 & 8 & -7 \end{bmatrix}$$

Solution:

RREF
$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 3 & 1 \\ 3 & 2 & -1 & 7 \\ 4 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since it is not row equivalent to the identity matrix, it is not invertible.

 Solution: $\begin{bmatrix} 3 & 1 & 3 & 1 & 0 & 0 \\ 2 & -1 & -6 & 0 & 1 & 0 \\ 1 & 1 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 & -1 & -3 \\ 0 & 1 & 0 & -14 & 9 & 24 \\ 0 & 0 & 1 & 3 & -2 & -5 \end{bmatrix}.$ Thus the inverse is $\begin{bmatrix} 2 & -1 & -3 \\ -14 & 9 & 24 \\ 3 & -2 & -5 \end{bmatrix}.$

Standard G2.

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & 2 \\ 15 & -5 & 5 \\ -3 & 2 & 1 \end{bmatrix}$.

Solution: The eigenvalues are 0 (with algebraic multiplicity 1), and 2 (with algebraic multiplicity 2).

Standard G3.

Find the eigenspace associated to the eigenvalue 3 in the matrix $A = \begin{bmatrix} 1 & -2 & -1 & 0 \\ -4 & -1 & -2 & 0 \\ 14 & 12 & 11 & 2 \\ -14 & -10 & -9 & -1 \end{bmatrix}$.

Solution: The eigenspace is spanned by $\begin{bmatrix} -1\\ \frac{1}{2}\\ 1\\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1\\ 1\\ 0\\ 1 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: BC is the only one that can be computed, and

$$BC = \begin{bmatrix} 0 & -3 & 7 & -8 \\ 8 & 4 & -4 & 8 \\ 5 & -2 & 8 & -7 \end{bmatrix}$$

Standard M2.

Mark:

Determine if the matrix $\begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & 0 \\ -1 & -1 & 5 \end{bmatrix}$ is invertible.

Solution:

RREF
$$\begin{bmatrix} 1 & 3 & -1 \\ 2 & 7 & 0 \\ -1 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Since it is not equivalent to the identity matrix, it is not invertible.

Standard M3. Mark: $\begin{bmatrix} 2 & -1 & -3 \\ -14 & 9 & 24 \\ 3 & -2 & -5 \end{bmatrix}$.

Solution:
$$\begin{bmatrix} 2 & -1 & -3 & 1 & 0 & 0 \\ -14 & 9 & 24 & 0 & 1 & 0 \\ 3 & -2 & -5 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 & 1 & 3 \\ 0 & 1 & 0 & 2 & -1 & -6 \\ 0 & 0 & 1 & 1 & 1 & 4 \end{bmatrix}.$$
 Thus the inverse is
$$\begin{bmatrix} 3 & 1 & 3 \\ 2 & -1 & -6 \\ 1 & 1 & 4 \end{bmatrix}.$$

Standard G2.

Mark:

Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$. List the eigenvalues of A along with their algebraic multiplicities.

Solution:

$$\det(A - \lambda I) = \det \begin{bmatrix} -3 - \lambda & 1 & 0 \\ -8 & 2 - \lambda & -1 \\ 0 & 2 & 3 - \lambda \end{bmatrix}$$

$$= (-3 - \lambda) \det \begin{bmatrix} 2 - \lambda & -1 \\ 2 & 3 - \lambda \end{bmatrix} - (1) \det \begin{bmatrix} -8 & -1 \\ 0 & 3 - \lambda \end{bmatrix}$$

$$= (-3 - \lambda) ((2 - \lambda)(3 - \lambda) + 2) - (-8(3 - \lambda))$$

$$= (-3 - \lambda)(8 - 5\lambda + \lambda^2) + 24 - 8\lambda$$

$$= -\lambda^3 + 2\lambda^2 + 7\lambda - 24 + 24 - 8\lambda$$

$$= -\lambda^3 + 2\lambda^2 - \lambda$$

$$= -\lambda(\lambda^2 - 2\lambda + 1)$$

$$= -\lambda(\lambda - 1)^2$$

So A has eigenvalues 0 (with multiplicity 1) and 1 (with algebraic multiplicity 2).

Standard G3.

Mark:

Find the eigenspace associated to the eigenvalue -1 in the matrix $A = \begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -11 & 4 & -2 \end{bmatrix}$

Solution: The eigenspace is spanned by $\begin{bmatrix} -\frac{5}{7} \\ -\frac{12}{7} \\ 1 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 0 & 0 & -1 & -1 \\ 1 & 3 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: CA is the only one that can be computed, and

$$CA = \begin{bmatrix} 2 & 6 & 11 & 1 \\ 1 & 3 & 7 & 2 \\ -1 & -3 & -5 & 0 \end{bmatrix}$$

Standard M2.

Mark:

Determine if the matrix $\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$ is invertible.

Solution:

RREF
$$\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since it is not equivalent to the identity matrix, it is not invertible.

Standard M3.

Mark:

Compute the inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$

Solution:

$$RREF(A|I) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & -11 & 37 \\ 0 & 1 & 0 & 0 & 0 & -1 & 4 & -14 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

So the inverse is $\begin{bmatrix} 1 & 2 & -11 & 37 \\ 0 & -1 & 4 & -14 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 2 & -3 & 2 \\ 8 & -9 & 5 \\ 8 & -7 & 3 \end{bmatrix}.$

Solution: The eigenvalues are 0 (with algebraic multiplicity 1) and -2 (with algebraic multiplicity 2).

Standard G3.

Mark:

Find the eigenspace associated to the eigenvalue 1 in the matrix $A = \begin{bmatrix} 8 & -3 & -1 \\ 21 & -8 & -3 \\ -7 & 3 & 2 \end{bmatrix}$

Solution: The eigenspace is spanned by $\begin{bmatrix} \frac{3}{7} \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{7} \\ 0 \\ 1 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 0 & -1 & 4 \\ 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: AC is the only one that can be computed, and

$$AC = \begin{bmatrix} 3 & -5 & 11 \\ 1 & -1 & 2 \end{bmatrix}$$

Standard M2. $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 3 \end{bmatrix}$ is invertible.

Solution:

RREF
$$\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This matrix is not row equivalent to the identity matrix, so it is not invertible.

Standard M3. $\begin{bmatrix} & & & \\ & & &$

Solution:

$$\begin{bmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -1 & \frac{3}{2} & -\frac{3}{2} \\ 1 & -\frac{3}{2} & \frac{5}{2} \end{bmatrix}$$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & 2 \\ 23 & -9 & 5 \\ -7 & 2 & -3 \end{bmatrix}$.

Solution: The eigenvalues are 0 (with algebraic multiplicity 1) and -2 (with algebraic multiplicity 2).

Standard G3.

Mark:

Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 0 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: AB is the only ones that can be computed, and

$$AB = \begin{bmatrix} -3 & -5 & 6 & 14 \\ 0 & 0 & 7 & 35 \end{bmatrix}$$

Standard M2. $\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 0 & 1 \\ 3 & 2 & -1 & 7 \\ 4 & 1 & 2 & 0 \end{bmatrix}$ is invertible.

Solution:

RREF
$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 0 & 1 \\ 3 & 2 & -1 & 7 \\ 4 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since it is row equivalent to the identity matrix, it is invertible.

Standard M3. Mark: $\begin{bmatrix} 6 & 0 & 1 \\ -14 & 3 & -4 \\ -23 & 4 & -6 \end{bmatrix}.$ Find the inverse of the matrix $\begin{bmatrix} 6 & 0 & 1 \\ -14 & 3 & -4 \\ -23 & 4 & -6 \end{bmatrix}.$

Solution:

$$\begin{bmatrix} 6 & 0 & 1 \\ -14 & 3 & -4 \\ -23 & 4 & -6 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 4 & -3 \\ 8 & -13 & 10 \\ 13 & -24 & 18 \end{bmatrix}$$

Standard G2.

Mark:

Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -11 & 4 & -2 \end{bmatrix}$.

Solution: 1 (with algebraic multiplicity 2), and -1 (with algebraic multiplicity 1).

Standard G3.

Mark:

Find the eigenspace associated to the eigenvalue 2 in the matrix $A = \begin{bmatrix} 8 & -3 & 2 \\ 15 & -5 & 5 \\ -3 & 2 & 1 \end{bmatrix}$

Solution: The eigenspace is spanned by $\begin{bmatrix} -\frac{1}{3} \\ 0 \\ 1 \end{bmatrix}$.