Fonction In (TS2)

Initiation ln

Exercice 1

Ecrire plus simplement en un seul logarithme, chacune des expressions suivantes.

$$A = 3\ln 2 + \ln 5 - 2\ln 5$$
 $B = 2\ln 2 + 2\ln 5 + 1$

$$C = \frac{1}{2}\ln 3 + \ln e^2 - \ln \frac{2}{e} + 3$$
 $D = \ln(3 + \sqrt{5}) + \ln(3 - \sqrt{5})$

Exercice 2

Résoudre dans \mathbb{R} les équations suivantes.

1)
$$\ln(x-1) = \ln(2-x)$$

2)
$$\ln(x-2) - \ln(x+1) = 2\ln 2$$

3)
$$\ln(x-2) + \ln(x+3) = \ln(5x-9)$$

4)
$$\ln\left(\frac{x-1}{2x-1}\right) = 0$$

Exercice 3

Résoudre dans \mathbb{R} les inéquations suivantes.

1)
$$\ln(x-4) \le \ln(10-x)$$

3)
$$\ln(x-1) + \ln(x+2) \ge \ln(4x-8)$$

4)
$$\ln\left(\frac{x-1}{2x-1}\right) > 0$$

Exercice 4

On considère le polynôme $P(x) = 2x^3 - 9x^2 + x + 12$.

- 1. Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$.
- 2. En déduire les solutions de l'équation et l'inéquation suivantes.

a)
$$2\ln^3 x - 9\ln^2 x + \ln(x) + 12 = 0$$
.

b)
$$\ln(2x-3) + 2\ln(x-2) \le \ln(-2x^2 + 19x - 24)$$

Exercice 5

Résoudre dans \mathbb{R}^2 les systèmes suivants :

1)
$$\begin{cases} \ln(x+2) + 3\ln(y-1) = 4 \\ 2\ln(x+2) - \ln(y-1) = 2 \end{cases}$$
 2)
$$\begin{cases} x - y = \frac{3}{2} \\ \ln x + \ln y = 0 \end{cases}$$

Exercice 6

Déterminer les limites de f aux bornes de D_f puis calculer sa fonction dérivée f'.

1)
$$f(x) = \frac{\ln(x) + 1}{\ln(x) - 1}$$
 2) $f(x) = \frac{\ln(1 + 2x)}{x}$

$$2) f(x) = \frac{\ln(1+2x)}{x}$$

$$3) f(x) = \frac{x + \ln(x)}{2x}$$

3)
$$f(x) = \frac{x + \ln(x)}{2x}$$
 4) $f(x) = x \ln\left(1 + \frac{1}{x}\right)$

Exercice 7

Dresser le tableau de variations des fonctions suivantes.

1)
$$f(x) = \sqrt{3 - \ln(x)}$$

1)
$$f(x) = \sqrt{3 - \ln(x)}$$
 2) $f(x) = (\ln x)^2 - 2\ln x - 3$

3)
$$f(x) = \frac{\ln(x)}{1 - \ln(x)}$$
 4) $f(x) = \frac{\ln(x+1)}{x+1}$

4)
$$f(x) = \frac{\ln(x+1)}{x+1}$$

Exercice 8

Etudier le signe des expressions suivantes :

$$A(x) = \ln x (\ln x + 1)$$
 $B(x) = 1 - \ln(1 - x)$

$$B(x) = 1 - \ln(1 - x)$$

$$C(x) = 2\ln^2(x) - \ln(x) - 1$$
 $D(x) = \ln(x) - x + 1$

$$D(x) = \ln(x) - x + 1$$

Exercice 9

Soit
$$f(x) = x - 1 + \ln \left| \frac{x+1}{x-1} \right|$$

- 1. Déterminer les limites aux bornes de D_f .
- 2. Dresser le tableau de variations de f.
- 3. Montrer que le point I(0; 1) est à la fois centre de symétrie et point d'inflexion de la courbe de f.
- 4. Montrer que l'équation f(x) = 0 admet une unique solution α tel que $0 < \alpha < \frac{1}{2}$.
- 5. Représenter f.

Exercice 10

Soit $f(x) = \ln(-x^2 + 4x - 3)$.

- 1. (a) Étudier les variations de f.
 - (b) En déduire le signe de f(x) sur D_f .
- 2. Soit g la restriction de f à I = [2,3[.

Montrer que g est une bijection de [2,3] sur un intervalle J à déterminer.

Soit
$$F(x) = (x-1)\ln(x-1) - (3-x)\ln(3-x) - 2x$$

- 1. Montrer que F est une primitive sur I de f.
- 2. Etudier les variations de F et tracer C_F .