(19) World Intellectual Property Organization International Bureau

TIPO PMPI

| 1831 | 1110 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111

(43) International Publication Date 29 January 2004 (29.01.2004)

PCT

(10) International Publication Number WO 2004/009560 A1

(51) International Patent Classification⁷: C07D 239/30, 239/48, 239/42, 239/36, A61K 31/505, A61P 29/02

(21) International Application Number:

PCT/IB2003/002879

(22) International Filing Date:

21 July 2003 (21.07.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 548/MAS/2002

22 July 2002 (22.07.2002) IN

(71) Applicant (for all designated States except US): ORCHID CHEMICALS & PHARMACEUTICALS LTD [IN/IN]; Orchid Towers, 152 Village Road, Nungambakkam, 600 034 Chennai (IN).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AGARWAL, Shiv, Kumar [IN/IN]; 1A, Smrithi, No. 4, Beach Road, Kalakshetra Colony, Besant Nagar, 600 09 Chennai (IN). TADIPARTHI, Ravikumar [IN/IN]; F-3, Jayashree Flats, Opp.Perungudi panchayat office, Perungudi, 600 096 Chennai (IN). AGGARWAL, Pawan [IN/IN]; H-98/S-2, T.N.H.B Flats, First Seaward Road, Valmiki Nagar, Thiruvanmiyur, 600 041 Chennai (IN). SHIVAKUMAR, Savithiri [IN/IN]; Plot 55, Block B, First Main Road,

Thirumalai Nagar Annexe, Perugudi, 600 096 Chennai (IN).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published

- with international search report

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL BIO-ACTIVE MOLECULES

(57) Abstract: The present invention relates to novel derivatives of the general formula (I), their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts and pharmaceutically acceptable compositions containing them. The present invention more particularly provides novel pyrimidine derivatives of the general formula (I).

WO 2004/009560

1

NOVEL BIO-ACTIVE MOLECULES

Field of the Invention

The present invention relates to novel compounds of the general formula (I), their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts and pharmaceutically acceptable compositions containing them. The present invention more particularly provides novel pyrimidine derivatives of the general formula (I).

The present invention also provides a process for the preparation of the above said novel compounds of the formula (I) pharmaceutically acceptable salts, their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts, and pharmaceutical compositions containing them.

The novel compounds of the present invention are useful for the treatment of inflammation and immunological diseases. Particularly the compounds of the present invention are useful for the treatment of inflammation and immunological diseases those mediated by cytokines such as TNF- α , IL-1, IL-6, IL-1 β , IL-8 and cyclooxygenase such as COX-1, COX-2 and COX-3. The compounds of the present invention are also useful for the treatment of rheumatoid arthritis; osteoporosis; multiple myeloma; uveititis; acute and chronic myelogenous leukemia; ischemic heart disease, atherosclerosis, cancer, ischemic-induced cell damage, pancreatic β cell destruction; osteoarthritis; rheumatoid spondylitis; gouty arthritis; inflammatory bowel disease; adult respiratory distress syndrome (ARDS); psoriasis; Crohn's disease; allergic rhinitis; ulcerative colitis;

2

anaphylaxis; contact dermatitis; asthma; muscle degeneration; cachexia; type I and type II diabetes; bone resorption diseases; ischemia reperfusion injury; atherosclerosis; brain trauma; multiple sclerosis; cerebral malaria; sepsis; septic shock; toxic shock syndrome; fever and myalgias due to infection; and diseases mediated by HIV-1; HIV-2; HIV-3; cytomegalovirus (CMV); influenza; adenovirus; the herpes viruses (including HSV-1, HSV-2) and herpes zoster viruses.

Background of Invention

It has been reported that Cyclooxygenase enzyme exists in three isoforms, namely, COX-1, COX-2 and COX-3. COX-1 enzyme is essential and primarily responsible for the regulation of gastric fluids whereas COX-2 enzyme is present at the basal levels and is reported to have a major role in the prostaglandin synthesis for inflammatory response. These prostaglandins are known to cause inflammation in the body. Hence, if the synthesis of these prostaglandins is stopped by way of inhibiting COX-2 enzyme, inflammation and its related can be treated. COX-3 possesses glycosylation-dependent cyclooxygenase activity. Comparison of canine COX-3 activity with murine COX-1 and COX-2 demonstrated that this enzyme is selectively inhibited by analgesic/antipyretic drugs such as acetaminophen, phenacetin, antipyrine, and dipyrone, and is potently inhibited by some nonsteroidal antiinflammatory drugs. Thus, inhibition of COX-3 could represent a primary central mechanism by which these drugs decrease pain and possibly fever. Recent reports show that inhibitors of COX-1 enzyme causes gastric ulcers, where as selective COX-2 and COX-3 enzyme inhibitors are devoid of this function and hence are found to be safe.

The present invention is concerned with treatment of immunological diseases or inflammation, notably such diseases are mediated by cytokines or cyclooxygenase. The principal elements of the immune system are macrophages

3

or antigen-presenting cells, T cells and B cells. The role of other immune cells such as NK cells, basophils, mast cells and dendritic cells are known, but their role in primary immunologic disorders is uncertain. Macrophages are important mediators of both inflammation and providing the necessary "help" for T cell stimulation and proliferation. Most importantly macrophages make IL-1, IL-12 and TNF- α all of which are potent pro-inflammatory molecules and also provide help for T cells. In addition, activation of macrophages results in the induction of enzymes, such as cyclooxygenase-2 (COX-2) and cyclooxygenase-3 (COX-3), inducible nitric oxide synthase (iNOS) and production of free radicals capable of damaging normal cells. Many factors activate macrophages, including bacterial products, superantigens and interferon gamma (IFN γ). It is believed that phosphotyrosine kinases (PTKs) and other undefined cellular kinases are involved in the activation process.

Cytokines are molecules secreted by immune cells that are important in mediating immune responses. Cytokine production may lead to the secretion of other cytokines, altered cellular function, cell division or differentiation. Inflammation is the body's normal response to injury or infection. However, in inflammatory diseases such as rheumatoid arthritis, pathologic inflammatory processes can lead to morbidity and mortality. The cytokine tumor necrosis factor-alpha (TNF- α) plays a central role in the inflammatory response and has been targeted as a point of intervention in inflammatory disease. TNF- α is a polypeptide hormone released by activated macrophages and other cells. At low concentrations, TNF- α participates in the protective inflammatory response by activating leukocytes and promoting their migration to extravascular sites of inflammation (Moser et al., J.Clin.Invest., 83, 444-55,1989). At higher concentrations, TNF- α can act as a potent pyrogen and induce the production of other pro-inflammatory cytokines (Haworth et al., Eur.J.Immunol., 21, 2575-79,

4

1991; Brennan et al., Lancet, 2, 244-7, 1989). TNF-α also stimulates the synthesis of acute-phase proteins. In rheumatoid arthritis, a chronic and progressive inflammatory disease affecting about 1% of the adult U.S. population, TNF-α mediates the cytokine cascade that leads to joint damage and destruction (Arend et al., Arthritis Rheum., 38, 151-60,1995). Inhibitors of TNF-α, including soluble TNF receptors (etanercept) (Goldenberg, Clin Ther., 21, 75-87, 1999) and anti-TNF-α antibody (infliximab) (Luong et al., Ann Pharmacother., 34, 743-60, 2000), have recently been approved by the U.S. Food and Drug Administration (FDA) as agents for the treatment of rheumatoid arthritis.

Elevated levels of TNF-α have also been implicated in many other disorders and disease conditions, including cachexia, septic shock syndrome, osteoarthritis, inflammatory bowel disease such as Crohn's disease and ulcerative colitis etc.

Elevated levels of TNF-α and/or IL-1 over basal levels have been implicated in mediating or exacerbating a number of disease states including rheumatoid arthritis; osteoporosis; multiple myeloma; uveititis; acute and chronic myelogenous leukemia; pancreatic β cell destruction; osteoarthritis; rheumatoid spondylitis; gouty arthritis; inflammatory bowel disease; adult respiratory distress syndrome (ARDS); psoriasis; Crohn's disease; allergic rhinitis; ulcerative colitis; anaphylaxis; contact dermatitis; asthma; muscle degeneration; cachexia; type I and type II diabetes; bone resorption diseases; ischemia reperfusion injury; atherosclerosis; brain trauma; multiple sclerosis; cerebral malaria; sepsis; septic shock; toxic shock syndrome; fever, and myalgias due to infection. HIV-1, HIV-2, HIV-3, cytomegalovirus (CMV), influenza, adenovirus, the herpes viruses (including HSV-1, HSV-2), and herpes zoster are also exacerbated by TNF-α.

5

It can be seen that inhibitors of TNF- α are potentially useful in the treatment of a wide variety of diseases. Compounds that inhibit TNF- α have been described in several patents.

Excessive production of IL-6 is implicated in several disease states, it is highly desirable to develop compounds that inhibit IL-6 secretion. Compounds that inhibit IL-6 have been described in U.S. Pat. Nos. 6,004,813; 5,527,546 and 5,166,137.

The cytokine IL-1 β also participates in the inflammatory response. It stimulates thymocyte proliferation, fibroblast growth factor activity, and the release of prostaglandin from synovial cells. Elevated or unregulated levels of the cytokine IL-1 β have been associated with a number of inflammatory diseases and other disease states, including but not limited to adult respiratory distress syndrome, allergy, Alzheimer's disease etc. Since overproduction of IL-1 β is associated with numerous disease conditions, it is desirable to develop compounds that inhibit the production or activity of IL-1 β .

In rheumatoid arthritis models in animals, multiple intra-articular injections of IL-1 have led to an acute and destructive form of arthritis (Chandrasekhar et al., Clinical Immunol Immunopathol., 55, 382, 1990). In studies using cultured rheumatoid synovial cells, IL-1 is a more potent inducer of stromelysin than TNF-α. (Firestein, Am. J. Pathol., 140, 1309, 1992). At sites of local injection, neutrophil, lymphocyte, and monocyte emigration has been observed. The emigration is attributed to the induction of chemokines (e.g., IL-8), and the up-regulation of adhesion molecules (Dinarello, Eur. Cytokine Net., 5, 517-531, 1994).

In rheumatoid arthritis, both IL-1 and TNF-α induce synoviocytes and chondrocytes to produce collagenase and neutral proteases, which leads to tissue

destruction within the arthritic joints. In a model of arthritis (collagen-induced arthritis (CIA) in rats and mice) intra-articular administration of TNF-α either prior to or after the induction of CIA led to an accelerated onset of arthritis and a more severe course of the disease (Brahn et al., Lymphokine Cytokine Res., 11, 253, 1992; and Cooper, Clin. Exp. Immunol., 898, 244, 1992).

IL-8 has been implicated in exacerbating and/or causing many disease states in which massive neutrophil in filtration into sites of inlammation or injury (e.g., ischemia) is mediated chemotactic nature of IL-8, including, but not limited to, the following: asthma, inflammatory bowl disease, psoriasis, adult respiratory distress syndrome, cardiac and renal reperfusion injury, thrombosis and glomerulonephritis. In addition to the chemotaxis effect on neutrophils, IL-8 has also has ability to activate neutrophils. Thus, reduction in IL-8 levels may lead to diminished neutrophil infiltration.

Few prior art reference which disclose the closest pyrimidine compounds are given here:

i) US patent Nos. 6,420,385 discloses novel compounds of formula (IIa)

wherein

represents

X is O, S or NR₅; R_1 and R_2 each independently represent --Y or --Z--Y, and R_3 and R_4 each independently --Z--Y or R_3 is a hydrogen radical; provided that R_4 is other than a substituted-aryl, (substituted-aryl)methyl or (substituted-aryl)ethyl radical; wherein each Z is independently optionally substituted alkyl, alkenyl, alkynyl, heterocyclyl, aryl or heteroaryl; Y is independently a hydrogen; halo, cyano, nitro, etc., R_5 is independently a hydrogen, optionally substituted alkyl, alkenyl, alkynyl etc., R_{11} and R_{12} are each independently represent optionally substituted aryl or heteroaryl.

An example of these compounds is shown in formula (IIb)

ii) DE 2142317 discloses hypnotic uracil derivatives of formula (IIc)

wherein R₁ is H, alkyl, alkenyl, dialkylaminoalkyl, or aralkyl; R₂ is H, alkyl, aryl, or halogen; R₃ is alkyl, alkenyl, cycloalkyl, aralkyl, aralkyl, aralkyl, aralkyl, aryl, etc.

An example of these compounds is shown in formula (IId)

iii) US patent Nos. 6,420,385 and 6,410,729 discloses novel compounds of formula (IIe)

wherein R_1 and R_2 are each independently -Z-Y, preferably, R_2 is a radical of hydrogen, C_1 - C_4 alkyl, halo, hydroxy, amino, etc., Z is independently a bond, alkyl, alkenyl etc., Y is independently a hydrogen radical, halo, nitro radical; R_{20} is independently (1) alkyl, alkenyl, heterocyclyl radical, aryl, heteroaryl; R_{21} is independently hydrogen radical, R_{20} ; R_{22} is independently hydrogen, heterocyclyl, aryl or heteroaryl

Objective of the Invention

We have focused our research to identify selective COX-1, COX-2 and COX-3 inhibitors, which are devoid of any side effects normally associated with anti-inflammatory agents. Our sustained efforts have resulted in novel compounds of the formula (I). The derivatives may be useful in the treatment of inflammation and immunological diseases. Particularly the compound of the present invention are useful for the treatment of inflammation and immunological diseases those mediated by cytokines such as TNF-α, IL-1, IL-6, IL-1β, IL-8 and cyclooxygenase such as COX-1, COX-2 and COX-3. The compound of the present invention are also useful for the treatment of rheumatoid arthritis; osteoporosis; multiple myeloma; uveititis; acute and chronic myelogenous leukemia; ischemic heart disease; atherosclerosis; cancer; ischemic-induced cell damage; pancreatic β cell destruction; osteoarthritis; rheumatoid spondylitis; gouty arthritis; inflammatory bowel disease; adult respiratory distress syndrome (ARDS); psoriasis; Crohn's disease; allergic rhinitis; ulcerative colitis; anaphylaxis; contact dermatitis; asthma; muscle degeneration; cachexia; type I and type II diabetes; bone resorption diseases; ischemia reperfusion injury;

atherosclerosis; brain trauma; multiple sclerosis; cerebral malaria; sepsis; septic shock; toxic shock syndrome; fever, and myalgias due to infection; and diseases mediated by HIV-1; HIV-2; HIV-3; cytomegalovirus (CMV); influenza; adenovirus; the herpes viruses (including HSV-1, HSV-2) and herpes zoster viruses.

Summary of the Invention

The present invention relates to novel pyrimidine derivatives of the formula (I)

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein R₅, R₆, R₇, may be same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from

10

alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfonyl, arylsulfonyl, alkoxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom.

Detailed Description of the Invention

Suitable groups represented by R₁, R₂, R₃, R₄, are selected from hydrogen, hydroxy, nitro, nitroso, formyl, azido, halogen atom such as fluorine, chlorine, bromine or iodine; or substituted or unsubstituted linear or branched (C1-C6) alkyl group, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, npentyl, isopentyl, hexyl and the like; haloalkyl such as chloromethyl, chloroethyl, trifluoromethyl, trifluoroethyl, dichloromethyl, dichloroethyl and the like, which may be substituted; aryl group such as phenyl or naphthyl, the aryl group may be substituted; cyclo (C3-C6) alkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, the cycloalkyl group may be substituted; acyl group such as $-C(=O)CH_3$, $-C(=O)C_2H_5$, $-C(=O)C_3H_7$, $-C(=O)C_6H_{13}$ $C(=S)CH_3$, $-C(=S)C_2H_5$, $-C(=S)C_3H_7$, $-C(=S)C_6H_{13}$, benzoyl and the like, which may be substituted; linear or branched (C1-C6) alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy and the like; aryloxy group such as phenoxy, napthoxy, the aryloxy group may be substituted; aralkoxy group such as benzyloxy, phenethyloxy and the like, which may be substituted; acyloxy group such as MeCOO-, EtCOO-, PhCOO- and the like, which may be substituted; heterocyclyl groups such as pyrrolidinyl, morpholinyl, thiomorpholinyl, piperidinyl, piperazinyl, and the like, the heterocyclyl group may be substituted; heteroaryl group may be mono or fused system such as pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazine, piperazine, benzopyranyl, benzofuranyl, benzimidazolyl,

11

benzoxazolyl, benzothiazolyl, benzothiadiazolyl, benzothiadiazolyl and the like, the heteroaryl group may be substituted; aralkyl group such as benzyl, phenylethyl, phenyl propyl and the like, which may be substituted; amino, which may be substituted: hydrazine, which may be substituted; monoalkylamino group such as -NHCH₃, -NHC₂H₅, -NHC₃H₇, -NHC₆H₁₃, and the which may be substituted; dialkylamino group such as -N(CH₃)₂, like, NCH₃(C₂H₅), -N(C₂H₅)₂ and the like, which may be substituted; acylamino group such as -NHC(=0)CH₃, -NHC(=0)C₂H₅, -NHC(=0)C₃H₇, -NHC(=0)C₆H₁₃, and which may be substituted; alkoxycarbonyl group such as the like. methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl and the like, the alkoxycarbonyl group may be substituted; aryloxycarbonyl group such as phenoxycarbonyl, napthoxycarbonyl, the aryloxycarbonyl group may be substituted; alkylsulfonyl group such as methylsulfonyl, ethylsulfonyl, npropylsulfonyl, iso-propylsulfonyl and the like, the alkylsulfonyl group may be substituted; arylsulfonyl group such as phenylsulfonyl or naphthylsulfonyl, the arylsulfonyl group may be substituted; alkylsulfinyl group such as methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, iso-propylsulfinyl and the like, the alkylsulfinyl group may be substituted; arylsulfinyl group such as phenylsulfinyl or naphthylsulfinyl, the arylsulfinyl group may be substituted; alkylthio group such as methylthio, ethylthio, n-propylthio, iso-propylthio and the like, the alkylthio group may be substituted; arylthio group such as phenylthio, or naphthylthio, the arylthio group may be substituted; alkoxyalkyl group such as methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl and the like, which may be substituted; sulfamoyl; carboxylic acid or its derivatives such as esters, amides and acid halides.

Suitable groups represented by R₅, R₆ and R₇ are selected from hydrogen, nitro, nitroso, formyl, azido, halo; substituted or unsubstituted linear or branched

(C1-C6) alkyl group, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; linear or branched (C1-C6) alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy and the like; acyl group such as $-C(=O)CH_3$, $-C(=O)C_2H_5$, $-C(=O)C_3H_{7,}$ $-C(=O)C_6H_{13}$, $-C(=S)CH_3$, $-C(=S)CH_{13}$ $C(=S)C_2H_5$, $-C(=S)C_3H_7$, $-C(=S)C_6H_{13}$, benzoyl and the like, which may be substituted; cyclo (C3-C6) alkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, the cycloalkyl group may be substituted; haloalkyl such as chloromethyl, chloroethyl, trifluoromethyl, trifluoroethyl, dichloromethyl, dichloroethyl and the like, which may be substituted; amino, which may be substituted; hydrazine, which may be substituted; alkoxyalkyl group such as methoxymethyl, ethoxymethyl, methoxyethyl, ethoxyethyl and the like, which may be substituted; monoalkylamino group such as -NHCH3, -NHC₂H₅, -NHC₃H₇, -NHC₆H₁₃, and the like, which may be substituted; dialkylamino group such as -N(CH₃)₂, -NCH₃(C₂H₅), -N(C₂H₅)₂ and the like, which may be substituted; acylamino group such as -NHC(=O)CH₃, -NHC(=O)C₂H₅, -NHC(=O)C₃H₇, -NHC(=O)C₆H₁₃, and the like, which may be substituted; alkylsulfonyl group such as methylsulfonyl, ethylsulfonyl, npropylsulfonyl, iso-propylsulfonyl and the like, the alkylsulfonyl group may be substituted; arylsulfonyl group such as phenylsulfonyl or naphthylsulfonyl, the arylsulfonyl group may be substituted; alkylsulfinyl group such as methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, iso-propylsulfinyl and the like, the alkylsulfinyl group may be substituted; arylsulfinyl group such as phenylsulfinyl or naphthylsulfinyl, the arylsulfinyl group may be substituted; alkylthio group such as methylthio, ethylthio, n-propylthio, iso-propylthio and the like, the alkylthio group may be substituted; arylthio group such as phenylthio, or naphthylthio, the arylthio group may be substituted; aryloxycarbonyl group phenoxycarbonyl, napthoxycarbonyl, the aryloxycarbonyl group may

substituted; alkoxycarbonyl group such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl and the like, the alkoxycarbonyl group may be substituted; sulfamoyl; carboxylic acid or its derivatives such as esters, amides and acid halides.

When the groups R₁, R₂, R₃, R₄, R₅, R₆ and R₇ are substituted, the substituents may be selected from halogen, hydroxy, nitro, cyano, azido, nitroso, amino, hydrazine, formyl, alkyl, aryl, cycloalkyl, alkoxy, aryloxy, acyl, acyloxyacyl, heterocyclyl, heteroaryl, monoalkylamino, dialkylamino, acylamino, alkoxycarbonyl, aryloxycarbonyl, alkylsulfonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, sulfamoyl, alkoxyalkyl groups or carboxylic acids or its derivatives and these substituents are as defined above.

Pharmaceutically acceptable salts of the present invention include alkali metal like Li, Na, and K, alkaline earth metal like Ca and Mg, salts of organic bases such as diethanolamine, α-phenylethylamine, benzylamine, piperidine, morpholine, pyridine, hydroxyethylpyrrolidine, hydroxyethylpiperidine, choline and the like, ammonium or substituted ammonium salts, aluminum salts. Salts also include amino acid salts such as glycine, alanine, cystine, cysteine, lysine, arginine, phenylalanine, guanidine etc. Salts may include acid addition salts where appropriate which are, sulphates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, succinates, palmoates, methanesulphonates, tosylates, benzoates, salicylates, hydroxynaphthoates, benzenesulfonates, ascorbates, glycerophosphates, ketoglutarates and the like. Pharmaceutically acceptable solvates may be hydrates or comprising other solvents of crystallization such as alcohols.

Representative compounds according to the present invention include:

- 4-Chloro-5,6-diphenyl-2-(trifluoromethyl)pyrimidine;
- 4-Chloro-6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine;

- 4-Chloro-6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl) pyrimidine;
- 4-Chloro-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine;
- 4-Chloro-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-

(trifluoromethyl)pyrimidine;

4-Chloro-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-

(trifluoromethyl)pyrimidine;

- 2,4-Dichloro-5,6-diphenylpyrimidine;
- 2,4-Dichloro-6-(4-methylphenyl)-5-phenylpyrimidine;
- 6-(4-Chlorophenyl)-2,4-dichloro-5-phenylpyrimidine;
- 5-(4-Chlorophenyl)-2,4-dichloro-6-phenylpyrimidine;
- 2,4-Dichloro-5-(4-methoxyphenyl)-6-phenylpyrimidine;
- 2,4-Dichloro-5-[4-(methylthio)phenyl]-6-phenylpyrimidine;
- 2,4-Dichloro-6-(4-chlorophenyl)-5-[4-(methylthio)phenyl] pyrimidine;
- 2,4-Dichloro-5-(4-chlorophenyl)-6-(4-methylphenyl)pyrimidine;
- 4-Azido-5,6-diphenyl-2-(trifluoromethyl)pyrimidine:
- 4-Azido-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine;
- 4-Azido-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-

(trifluoromethyl)pyrimidine;

4-Azido-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-

(trifluoromethyl)pyrimidine;

- 2,4-Diazido-5,6-diphenylpyrimidine;
- 2,4-Diazido-5-(4-chlorophenyl)-6-phenylpyrimidine;
- 4-Hydrazino-5,6-diphenyl-2-(trifluoromethyl)pyrimidine;
- 4-Hydrazino-6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine;
- 4-Hydrazino-6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine;
- 4-Hydrazino-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-

(trifluoromethyl)pyrimidine;

- 5-(4-Chlorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-
- (trifluoromethyl)pyrimidine;
- 5-(4-Fluorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-
- (trifluoromethyl)pyrimidine;
- 2-Chloro-5,6-diphenyl-4-hydrazinopyrimidine;
- 2-Chloro-4-hydrazino-5-[4-(methylthio)phenyl]-6-phenylpyrimidine;
- 2,4-Dihydrazino-5,6-diphenylpyrimidine;
- 2,4-Dihydrazino-5-[4-(methylthio)phenyl]-6-phenylpyrimidine;
- N'-[5,6-Diphenyl-2-(trifluoromethyl)pyrimidin-4-yl]acetohydrazide;
- N'-[6-(4-Methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4-
- yl]acetohydrazide;
- N'-[6-(4-Fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4-
- yl]acetohydrazide;
- N'-[6-[4-(Methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidin-4-
- yl]acetohydrazide;
- N'-[5-(4-Chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
- (trifluoromethyl)pyrimidin-4-yl]acetohydrazide;
- N'-[5-(6-Fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
- (trifluoromethyl)pyrimidin-4-yl]acetohydrazide;
- N'-[5-(4-Chlorophenyl)-[6-(4-methylsulfonyl)phenyl]-2-
- (trifluoromethyl)pyrimidin-4-yl]trifluoroacetohydrazide;
- 4-Chloro-1,6-diphenylpyrimidine-2(1H)-one;
- 4-Azido-6-[(4-methylthio)phenyl]-1-phenylpyrimidin-2(1H)-one;
- 4-[3-(4-Chlorophenyl)-2-oxo-6-trifluoromethyl-2,3-dihydro-pyrimidin-4-
- yl]benzenesulfonamide;
- 6-[(4-Methylsulfonyl)phenyl]-1-p-tolyl-4-(trifluoromethy)pyrimidin-2(1H)-one;
- 4-Azido-6-[(4-methylsulfonyl)phenyl]-1-p-tolyl-pyrimidin-2(1H)-one;

- 4-(6-Azido-3-methoxyphenyl-2-oxo-2,3-dihydropyrimidin-4-yl)benzenesulfonamide;
- 4-(6-Azido-4-methoxyphenyl-2-oxo-2,3-dihydropyrimidin-4-yl)benzenesulfonamide;
 - 2-Chloro-5-(4-chlorophenyl)-4-methylthio-6-[(4-methylthio)phenyl]pyrimidine;
 - 6-[(4-Methylthio)phenyl]-1-phenyl-4-(trifluoromethyl)pyrimidin-2(1H)-one;
 - 4-(2-Oxo-3-phenyl-6-trifluoromethyl-2,3-dihydropyrimidin-4-yl)benzenesulfonamide;
- 4-Methylthio-5,6-bis(p-tolyl)pyrimidine;
 - 4-Methylthio-5,6-diphenyl-pyrimidin-2-ol;
- 1 1 4-Methylsulfonyl-5,6-bis(p-tolyl)pyrimidine;
 - 1,6-Diphenyl-4-(trifluoromethyl)pyrimidin-2(1H)-one;
- 1 3 4-(2-Hydroxy-6-methylthio-5-phenylpyrimidin-4-yl)benzenesulfonamide;
- 144-Methylthio-6-[(4-methylthio)phenyl]-5-phenylpyrimidine;
 - 2-Chloro-4-methylthio-5,6-bis(p-tolyl)pyrimidine;
 - 2-Chloro-4-methylthio-6-[(4-methylthio)phenyl]-5-p-tolyl-pyrimidine;
 - 5-(4-Bromophenyl)-2-chloro-4-methylthio-6-[(4-methylthio)phenyl]pyrimidine;
- 1 \$ 5-(2-Bromophenyl)-4-methylthio-6-[(4-methylthio)phenyl]pyrimidin-2-ol;
 - 4-(2-Chloro-6-methylthio-5-phenylpyrimidin-4-yl)benzenesulfonamide;
 - 2-Chloro-4,5-bis-(4-methoxyphenyl)-6-(methylthio)pyrimidine;
 - 2-Chloro-4-methylthio-6-[(4-methylthio)phenyl]-5-phenylpyrimidine;
 - 2,4-Diazido-6[(4-methylthio)phenyl)]-5-phenylpyrimidine;
 - 2,4-Diazido-5-(4-bromophenyl)-6-(4-methylthiophenyl)pyrimidine;
 - 4-Chloro-6-[(4-methylsulfonyl)phenyl]-1-phenylpyrimidin-2(1H)-one;
 - 4-Azido-1-(2-fluorophenyl)-6-[(4-methylthio)phenyl]-pyrimidin-2(1H)-one;
 - 2-[(4-Methylsulfonyl)phenyl]-6-trifluoromethyl-3-[(4-trifluoromethyl)phenyl]-
 - 3,4-dihydropyrimidin-4-ol;

17

5-(3-Fluorophenyl)-4-methylthio-6-[(4-methylthio)phenyl]pyrimidin-2-ol and 4-(6-Hydroxy-6-methyl-2-p-tolyl-4-trifluoromethyl-6H-pyrimidin-1-yl)benzenesulfonamide.

According to another embodiment of the present invention, there is provided a process for the preparation of novel compounds of the formula (I)

where all symbols are as defined earlier may be prepared by a process which comprises condensing a compound of formula (Ia)

wherein all symbols are as defined earlier with a compound of the formula (Ib)

where all symbols are as defined above.

The reaction of compound of formula (Ia) with compound of formula (Ib) may be carried out using appropriate solvents like toluene, xylene, tetrahydrofuran, dioxane, chloroform, dichloromethane, dichloroethane, o-dichlorobenzene, acetone, ethylacetate, acetonitrile, N,N-dimethylformamide,

dimethylsulfoxide, ethanol, methanol, isopropylalcohol, tert-butylalcohol, acetic acid, propionic acid etc., a mixture thereof or the like. The condensation reaction is carried out in acidic condition using mineral or organic acids, or basic conditions viz. carbonates, bicarbonates, hydrides, hydroxides, alkyls and alkoxides of alkali metals and alkaline earth metals or by neat reaction. The reaction is carried out using phase transfer catalysts viz. triethylbenzylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium hydrogensulphate, tricaprylylmethylammonium chloride (aliquat 336) and the like. The reaction is usually carried out under cooling to refluxing conditions. The final product purified by using chromatographic techniques or by recrystallization.

According to another embodiment of the present invention, there is provided a process for the preparation of novel compounds of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R4$
 $R3$

where A represents

wherein R⁶ represents halogen atom, R⁵ and R⁷ are as defined above may be prepared by converting the compound of formula (Ic)

wherein all symbols are as defined earlier.

The compound of formula (Ic) is prepared according to the procedure described in our PCT application Nos. PCT/IB03/01287 and PCT/IB03/01289.

The conversion of compound of formula (Ic) is carried out using reagents such as phosphorus oxychloride, thionyl chloride, phosphorus trichloride, phosphorus pentachloride, oxalyl chloride and the like in the presence or absence of solvents such as toluene, xylene, tetrahydrofuran, dioxane, chloroform, dichloromethane, dichloroethane, o-dichlorobenzene, diphenyl ether and the like or a mixture thereof, in presence or absence of dimethylformamide, N,N-dimethylaniline, N,N-diethylaniline and the like. The reaction is carried out at a temperature in the range of 20 °C to reflux temperatures for a period in the range of 2 to 12 h.

In yet another embodiment of the present invention, there is provided a process for the preparation of novel compounds of the formula (I)

wherein A represents

wherein any of R⁷ represents halogen atom and R⁶ is as defined earlier may be prepared by converting the compound of formula (Id)

wherein R⁶ is as defined earlier.

The compound of formula (Id) is prepared according to the procedure described in our PCT application No. PCT/IB03/01289.

The conversion of compound of formula (Id) is carried out using reagents such as phosphorusoxychloride, thionyl chloride, phosphorus trichloride, phosphorus pentachloride, oxalyl chloride and the like in the presence or absence of solvent such as toluene, xylene, tetrahydrofuran, dioxane, chloroform, dichloromethane, dichloroethane, o-dichlorobenzene, diphenyl ether and the like or a mixture thereof, in presence or absence of dimethylformamide, N,N-dimethylaniline, N,N-diethylaniline and the like. The reaction is carried out at a temperature in the range of 20 °C to reflux temperatures for a period in the range of 2 to 12 h.

In yet another embodiment of the present invention, there is provided a process for the preparation of novel compounds of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R4$
 $R3$

wherein A represents

wherein R⁶ represents azido, hydrazine or hydrazine derivatives, R⁵ and R⁷ are as defined above may be prepared by converting the compound of formula (Ie)

wherein R^6 represents halogen atom and all other symbols are as defined earlier.

The conversion of formula (Ie) may be carried out in the presence of one or more equivalents of metal azide such as LiN₃, NaN₃, trialkyl silylazide and the like or hydrazine hydrate or substituted hydrazine. The reaction may be carried out in the presence of solvent such as toluene, xylene, tetrahydrofuran, dioxane, chloroform, dichloromethane, dichloroethane, o-dichlorobenzene, acetone, ethylacetate, acetonitrile, N,N-dimethylformamide, dimethylsulfoxide, ethanol, methanol, isopropylalcohol, tert-butylalcohol, diphenyl ether and the like or a mixture thereof. The reaction may be carried out at a temperature in the range of ambient temperature to reflux temperature of the solvent, preferably at a temperature in the range of 80 °C to 100 °C. The reaction time may range from 0.5 to 18 h.

In yet another embodiment of the present invention, there is provided a process for the preparation of novel compounds of the formula (I)

$$R7$$
 $H0$
 $R6$
 $R7$
 $H0$
 $R6$
 $R7$
 $R1$
 $R1$
 $R3$
 $R2$
 $R3$
 $R3$
 $R4$
 $R3$
 $R4$
 $R4$
 $R3$
 $R4$
 $R4$
 $R5$
 $R4$
 $R5$
 $R6$
 $R7$
 $R7$
 $R8$
 $R1$
 $R1$
 $R2$
 $R3$
 $R2$
 $R4$
 $R3$
 $R2$

wherein all symbols are as defined earlier may be prepared by a process which comprises reacting a compound of the formula (If)

where all symbols are as defined earlier with a compound of formula (Ig)

22

where all symbols are as defined earlier.

The reaction of compound of formula (If) with compound of formula (Ig) may be carried out using appropriate solvents like toluene, xylene, tetrahydrofuran, dioxane, chloroform, dichloromethane, dichloroethane, odichlorobenzene, acetone, ethylacetate, acetonitrile, N,N-dimethylformamide, dimethylsulfoxide, ethanol, methanol, isopropylalcohol, tert-butylalcohol, acetic acid, propionic acid, diphenyl ether etc., a mixture thereof or the like. The condensation reaction is carried out using acidic condition: mineral or organic acids, or basic conditions viz. carbonates, bicarbonates, hydroxides, alkyls and alkoxides of alkali metals and alkaline earth metals or by neat reaction. The reaction is carried out using phase transfer catalysts viz. triethylbenzylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium hydrogensulphate, tricaprylylmethylammonium chloride (aliquat 336) and the like. The reaction is carried out using polyphosphoric acid, phosphorus pentoxide, sulphuric acid and the like. The reaction is usually carried out under cooling to refluxing conditions. The final product is purified by using chromatographic techniques or by recrystallization.

According to yet another embodiment of the present invention, there is provided a process for the preparation of novel compounds of the formula (I)

$$R3$$
 $R4$
 $R5$
 $R1$
 $R6$
(I)

wherein all symbols are as defined earlier, which comprises

i) reacting a compound of formula (Ih)

where all symbols are as defined earlier with a compound of formula (Ii)

where R⁶ is as defined earlier to produce compound of formula (Ij)

and

ii) converting the compound of formula (Ij) to produce compound of formula (I) where all symbols are as defined earlier by reacting with suitable nucleophilic reagent.

The reaction of compound of formula (Ii) with compound of formula (Ij) may be carried out using appropriate solvents like toluene, xylene, tetrahydrofuran, dioxane, chloroform, dichloromethane, dichloroethane, o-

dichlorobenzene, acetone, ethylacetate, acetonitrile, N,N-dimethylformamide, dimethylsulfoxide, ethanol, methanol, isopropylalcohol, tert-butylalcohol, acetic acid, propionic acid, diphenyl ether etc., a mixture thereof or the like. The condensation reaction is carried out using acidic condition: mineral or organic acids, or basic conditions viz. carbonates, bicarbonates, hydrides, hydroxides, alkyls and alkoxides of alkali metals and alkaline earth metals or by neat reaction. The reaction is carried out using phase transfer catalysts triethylbenzylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium hydrogensulphate, tricaprylylmethylammonium chloride (aliquat 336) and the like. The reaction is usually carried out under cooling to refluxing conditions. The final product is purified by using chromatographic techniques or by recrystallization.

The conversion of compound of formula (Ij) to compound of formula (I) may be carried out using conventional methods.

In yet another embodiment of the present invention, there is provided a process for the preparation of compounds of formula (I) wherein any of the groups R₁, R₂, R₃, R₄, R₅, R₆, R₇ represent hydrazine derivatives such as acylhydrazide may be prepared by reacting the compound of formula (I) wherein any of the groups R₁, R₂, R₃, R₄, R₅, R₆, R₇ represent hydrazine.

The reaction is carried out using reagents such as acetyl chloride, benzoyl chloride, acetic anhydride, trifluoroacetic anhydride, trichloroacetic anhydride and the like. The reaction may be carried out in the presence of solvent such as toluene, xylene, tetrahydrofuran, dioxane, chloroform, dichloromethane, dichloroethane, o-dichlorobenzene, acetonitrile, dimethylsulfoxide, diphenyl ether and the like or a mixture thereof in the presence of base such as carbonates, bicarbonates, hydrides, hydroxides, alkyls and alkoxides of alkali metals and

25

alkaline earth metals; organic bases such as pyridine, triethyl amine and the like; acids like perchloric acid etc. The reaction may be carried out at a temperature in the range of ambient temperature to reflux temperature of the solvent.

According to yet another embodiment of the present invention there is provided a process for the conversion of novel compounds of the formula (I) wherein the groups R₁, R₂, R₃, R₄, R₅, R₆ represent alkylthio or arylthio to compounds of formula (I) wherein R₁, R₂, R₃, R₄, R₅, R₆ represent alkylsulfonyl, alkylsulfinyl, aryl sulfinyl or arylsulfonyl using suitable oxidising reagent. The oxidizing may be selected from potassium peroxymonosulfate (Oxone), hydrogen peroxide, tert-butylperoxide, Jones reagent, peracid [e.g peracetic acid, perbenzoic acid, m-chloroperbenzoic acid etc], chromic acid, potassium permanganate, alkali metal periodate [e.g sodium periodate, etc], magnesium mono peroxypthalate, osmium tetroxide/N-methylmorpholine-N-oxide, sodium tungstate, and the like. The oxidation is usually carried out in a solvent which does not adversely influence the reaction such as acetic acid, dichloromethane, acetone, ethyl acetate, chloroform, water, an alcohol [eg. methanol, ethanol, etc.], a mixture thereof or the like. The reaction is usually carried out under cooling to refluxing conditions.

According to yet another embodiment of the present invention there is provided a process for the conversion of novel compounds of the formula (I) wherein any of the groups R₁, R₂, R₃, R₄, R₅, R₆ represent alkylsulfonyl may be converted to compounds of the formula (I) wherein R₁, R₂, R₃, R₄, R₅, R₆ represent sulfamoyl group using the procedure described in the literature (Huang et.al. Tetrahedron Lett. 1994, 39, 7201).

It is appreciated that in any of the above-mentioned reactions, any reactive group in the substrate molecule may be protected according to conventional

26

chemical practice. Suitable protecting groups in any of the above-mentioned reactions are those used conventionally in the art. The methods of formation and removal of such protecting groups are those conventional methods appropriate to the molecule being protected.

The pharmaceutically acceptable salts are prepared by reacting the compound of formula (I) with 1 to 4 equivalents of a base such as sodium hydroxide, sodium methoxide, sodium isopropoxide, sodium hydride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like, in solvents like ether, tetrahydrofuran, methanol, t-butanol, dioxane, isopropanol, ethanol etc. Mixture of solvents may be used. Organic bases such as diethanolamine, α phenylethylamine, benzylamine, piperidine, morpholine. pyridine. hydroxyethylpyrrolidine, hydroxyethylpiperidine, guanidine, choline and the like, ammonium or substituted ammonium salts, aluminum salts. Amino acid such as glycine, alanine, cystine, cysteine, lysine, arginine, phenylalanine, etc may be used for the preparation of amino acid salts. Alternatively, acid addition salts wherever applicable are prepared by the treatment with acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, ptoluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid, salicylic acid, hydroxynaphthoic acid, ascorbic acid, palmitic acid, succinic acid, benzoic acid, benzenesulfonic acid, tartaric acid and in solvents like ethyl acetate, ether, alcohols, acetone, tetrahydrofuran, dioxane etc. Mixture of solvents may also be used.

The stereoisomers of the compounds forming part of this invention may be prepared by using reactants in their single enantiomeric form in the process wherever possible or by conducting the reaction in the presence of reagents or catalysts in their single enantiomer form or by resolving the mixture of stereoisomers by conventional methods. Some of the preferred methods include

27

use of microbial resolution, resolving the diastereomeric salts formed with chiral acids such as mandelic acid, camphorsulfonic acid, tartaric acid, lactic acid, and the like wherever applicable or chiral bases such as brucine, cinchona alkaloids and their derivatives and the like. Commonly used methods are compiled by Jaques et al in "Enantiomers, Racemates and Resolution" (Wiley Interscience, 1981). More specifically the compound of formula (I) may be converted to a 1:1 mixture of diastereomeric amides by treating with chiral amines, aminoacids, aminoalcohols derived from aminoacids; conventional reaction conditions may be employed to convert acid into an amide; the diastereomers may be separated either by fractional crystallization or chromatography and the stereoisomers of compound of formula (I) may be prepared by hydrolysing the pure diastereomeric amide.

Various polymorphs of compound of general formula (I) forming part of this invention may be prepared by crystallization of compound of formula (I) under different conditions. For example, using different solvents commonly used or their mixtures for recrystallization; crystallizations at different temperatures; various modes of cooling, ranging from very fast to very slow cooling during crystallizations. Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling. The presence of polymorphs may be determined by solid probe NMR spectroscopy, IR spectroscopy, differential scanning calorimetry, powder X-ray diffraction or such other techniques.

Pharmaceutically acceptable solvates of the compounds of formula (I) forming part of this invention may be prepared by conventional methods such as dissolving the compounds of formula (I) in solvents such as water, methanol, ethanol, mixture of solvents such as acetone:water, dioxane:water, N,N-dimethylformamide:water and the like, preferably water and recrystallizing by using different crystallization techniques.

28

The novel compounds of the present invention are useful for the treatment of inflammation and immunological diseases. Particularly the compound of the present invention are useful for the treatment of inflammation and immunological diseases those mediated by cytokines such as TNF-α, IL-1, IL-6, IL-1β, IL-8 and cyclooxygenase such as COX-1, COX-2 and COX-3. The compounds of the present invention are also useful for the treatment of rheumatoid arthritis; osteoporosis; multiple myeloma; uveititis; acute and chronic myelogenous leukemia; ischemic heart disease; atherosclerosis; cancer; ischemic-induced cell damage; pancreatic \(\beta \) cell destruction; osteoarthritis; rheumatoid spondylitis; gouty arthritis; inflammatory bowel disease; adult respiratory distress syndrome (ARDS); psoriasis; Crohn's disease; allergic rhinitis; ulcerative colitis: anaphylaxis; contact dermatitis; asthma; muscle degeneration; cachexia; type I and type II diabetes; bone resorption diseases; ischemia reperfusion injury; atherosclerosis; brain trauma; multiple sclerosis; cerebral malaria; sepsis; septic shock; toxic shock syndrome; fever and myalgias due to infection; and the diseases mediated by HIV-1; HIV-2; HIV-3; cytomegalovirus (CMV); influenza; adenovirus; the herpes viruses (including HSV-1, HSV-2) and herpes zoster viruses.

The compounds of the present invention also may possess analgesic properties and may be useful for the treatment of pain disorders, such as hyperalgesia due to excessive IL-1. The compounds of the present invention may also prevent the production of prostaglandins by inhibition of enzymes in the human arachidonic acid/prostaglandin pathway, including cyclooxygenase.

The pharmaceutically active compounds of this invention can be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals.

29

The present invention provides a pharmaceutical composition, containing the compounds of the general formula (I) as defined above, their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable hydrates and solvates in combination with the usual pharmaceutically employed carriers, diluents and the like, useful for the treatment of arthritis, pain, fever, psoriasis, allergic diseases, asthma, inflammatory bowel syndrome, gastro-intestinal ulcers, cardiovascular disorders including ischemic heart disease, atherosclerosis, cancer, ischemic-induced cell damage, particularly brain damage caused by stroke, other pathological disorders associated with free radicals. The pharmaceutical composition of the present invention are effective in the treatment of inflammation and immunological diseases, particularly those mediated by cytokines such as TNF-α, IL-1, IL-6, IL-8 and cyclooxygenase such as COX-1, COX-2 and COX-3.

The pharmaceutical composition may be in the forms normally employed, such as tablets, capsules, powders, syrups, solutions, aerosols, suspensions and the like, may contain flavoring agents, sweeteners etc. in suitable solid or liquid carriers or diluents, or in suitable sterile media to form injectable solutions or suspensions. Such compositions typically contain from 1 to 20 %, preferably 1 to 10 % by weight of active compound, the remainder of the composition being pharmaceutically acceptable carriers, diluents or solvents.

The present invention is provided by the examples given below, which are provided by way of illustration only and should not be considered to limit the scope of the invention.

Example 1

Synthesis of 4-chloro-5,6-diphenyl-2-(trifluoromethyl)pyrimidine

30

5,6-Diphenyl-2-(trifluoromethyl)pyrimidin-4(3H)-one (8.0g, 25mmol) (synthesized according to the procedure described in our PCT application No. IB03/01289) was refluxed in phosphorus oxychloride (15ml) for 5 hours and allowed to cool to room temperature. The reaction mixture was poured onto icewater mixture and neutralised with saturated sodium bicarbonate solution. The solid thus separated was extracted with dichloromethane. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to give crude product, which was purified by column chromatography to afford the title compound (6.5g, 76.6%, HPLC purity 99.8%), mp: 105 – 107 °C.

¹H-NMR (CDCl₃): δ 7.19 – 7.41 (m, 10H). MS m/z: 335.1(M[†]).

Example 2

Synthesis of 4-chloro-6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4(3H)-one (1.4g, 4.2mmol) by following the

procedure described in example 1 (0.68g, 46 %, HPLC purity 99.6%), mp: 97 - 100 °C.

¹H-NMR (CDCl₃): δ 2.30 (s, 3H), 7.03 – 7.05 (d, 2H), 7.22 – 7.30 (m, 4H), 7.41 – 7.42 (m, 3H). MS m/z: 349.2 (M⁺).

Example 3

Synthesis of 4-chloro-6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl) pyrimidine

The title compound was prepared from 6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4(3H)-one (3.2g, 9.57mmol) by following the procedure described in example 1 (3.3g, 97.7%, HPLC purity 99.5%), mp: 67 – 68 °C.

¹H-NMR (CDCl₃): δ 6.90 – 6.95 (m, 2H), 7.19 – 7.26 (m, 2H), 7.39 – 7.44 (m, 5H). MS m/z: 353.2 (M⁺).

Example 4

 $Synthesis \qquad \text{of} \qquad \text{4-chloro-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-} \\ (trifluoromethyl) pyrimidine$

The title compound was prepared from 6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidin-4(3H)-one (3.3g, 8.3mmol) by following the procedure described in example 1 (2.6g, 76%, HPLC purity 98.1%), mp: 156 – 159°C.

¹H-NMR (CDCl₃): δ 3.02 (s, 3H), 7.18 - 7.21(d, 2H), 7.42 - 7.45 (m, 3H), 7.56 - 7.58 (d, 2H), 7.81 - 7.83 (d, 2H). MS m/z: 413.1(M⁺). IR (KBr) cm⁻¹: 1138 (-SO₂-).

Example 5

Synthesis of 4-chloro-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidin-4(3H)-one (10.5g, 24.4mmol) by following the procedure described in example 1 (9.3g, 85.32%, HPLC purity 98.92%), mp: 188 – 190 °C.

¹H-NMR (CDCl₃): δ 3.04 (s, 3H), 7.14 - 7.16 (d, 2H), 7.41 - 7.43 (d, 2H), 7.57 - 7.59 (d, 2H), 7.86 - 7.88 (d, 2H). IR (KBr) cm⁻¹: 1135 (-SO₂-).

Example 6

Synthesis of 4-chloro-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidin-4(3H)-one (0.35g, 0.85mmol) by following the procedure described in example 1 (0.25g, 68.4%, HPLC purity 99.6%), mp: 195 – 197°C.

¹H-NMR (CDCl₃): δ 3.04 (s, 3H), 7.11 - 7.21 (m, 4H), 7.56 - 7.58 (d, 2H), 7.85 - 7.87 (d, 2H). MS m/z: 431.2 (M⁺). IR (KBr) cm⁻¹: 1136 (-SO₂-).

Example 7

Synthesis of 2,4-dichloro-5,6-diphenylpyrimidine

5,6-Diphenyl-uracil (0.21g, 0.8mmol) was refluxed in phosphorus oxychloride (3ml) for 3 hours and allowed to cool to room temperature. The reaction mixture was poured onto ice-water mixture and neutralised with saturated sodium bicarbonate solution. The solid thus separated was extracted with dichloromethane. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the title compound (0.08 g, 34%, HPLC purity 96.9%), mp: 144 – 146°C.

¹H-NMR (CDCl₃): δ 7.16 – 7.39 (m, 10H). MS m/z: 301.1(M⁺).

Example 8

Synthesis of 2,4-dichloro-6-(4-methylphenyl)-5-phenylpyrimidine

The title compound was prepared from 6-(4-methylphenyl)-5-phenyl-uracil (0.87g, 3.1mmol) by following the procedure described in example 7(0.38g, 38.6%, HPLC purity 100%), mp: 130 - 132°C.

¹H-NMR (CDCl₃): δ 2.29 (s, 3H), 7.01 – 7.17 (d, 2H), 7.19 – 7.26 (m, 4H), 7.38 – 7.40 (d, 3H). MS m/z: 316.8 (M⁺).

Example 9

Synthesis of 6-(4-chlorophenyl)-2,4-dichloro-5-phenylpyrimidine

The title compound was prepared from 6-(4-chlorophenyl)-5-phenyl-uracil (0.4g, 1.33mmol) by following the procedure described in example 7 (0.28g, 62.4%, HPLC purity 98.4%), mp: 129-131°C.

¹H-NMR (CDCl₃): δ 7.15 – 7.21 (m, 4H), 7.28 – 7.39 (m, 2H), 7.40 – 7.41 (m, 3H). MS m/z: 336.9 (M⁺).

Example 10

Synthesis of 5-(4-chlorophenyl)-2,4-dichloro-6-phenylpyrimidine

The title compound was prepared from 5-(4-chlorophenyl)-6-phenyl-uracil (0.59g, 2mmol) by following the procedure described in example 7 (0.43g, 65.2%, HPLC purity 100%), mp: 123 – 125°C.

¹H-NMR (CDCl₃): δ 7.10 – 7.13 (d, 2H), 7.24 – 7.36 (m, 7H). MS m/z: 336.9 (M⁺).

Example 11

Synthesis of 2,4-dichloro-5-(4-methoxyphenyl)-6-phenylpyrimidine

The title compound was prepared from 5-(4-methoxyphenyl)-6-phenyl-uracil (1.5g, 5.1mmol) by following the procedure described in example 7 (1g, 59.2%, HPLC purity 99.4%), mp: 132 – 134°C.

¹H-NMR (CDCl₃): δ 3.82 (s, 3H), 6.87 – 6.9 (d, 2H), 7.07–7.09 (d, 2H), 7.26 – 7.36 (m, 5H). MS m/z: 332.9 (M⁺).

Example 12

Synthesis of 2,4-dichloro-5-[4-(methylthio)phenyl]-6-phenylpyrimidine

The title compound was prepared from 5-[4-(methylthio)phenyl]-6-phenyl-uracil (0.28g, 2.6mmol) by following the procedure described in example 7 (0.22g, 68.6%, HPLC purity 100%), mp: $88-90^{\circ}$ C.

¹H-NMR (CDCl₃): δ 2.49 (s, 3H), 7.06 – 7.08 (d, 2H), 7.2 –7.36 (m, 7H). MS m/z: 349 (M⁺).

Example 13

Synthesis of 2,4-dichloro-6-(4-chlorophenyl)-5-[4-(methylthio)phenyl] pyrimidine

The title compound was prepared from 6-(4-chlorophenyl)-5-[4-(methylthio)phenyl]uracil (0.4g, 1.1mmol) by following the procedure described in example 7 (0.23g, 52%, HPLC purity 99.7%), mp: 144 - 146°C. ¹H-NMR (CDCl₃): δ 2.51 (s, 3H), 7.06 - 7.08 (d, 2H), 7.21 - 7.29 (m, 4H), 7.30 - 7.32 (d, 2H). MS m/z: 381.9 (M⁺).

Example 14

Synthesis of 2,4-dichloro-5-(4-chlorophenyl)-6-(4-methylphenyl)pyrimidine

WO 2004/009560 PCT/IB2003/002879

37

The title compound was prepared from 5-(4-chlorophenyl)-6-(4-methylphenyl)-uracil (0.34g, 1.1mmol) by following the procedure described in example 7 (0.25g, 65.8%, HPLC purity 97.6%), mp: 223 – 225°C.

¹H-NMR (DMSO-d₆): δ 2.26 (s, 3H), 7.10 - 7.12 (d, 2H), 7.19 - 7.21 (d, 2H), 7.32 - 7.34 (d, 2H), 7.47 - 7.57 (d, 2H). MS m/z: 350.9 (M⁺).

Example 15

Synthesis of 4-azido-5,6-diphenyl-2-(trifluoromethyl)pyrimidine

4-Chloro-5,6-diphenyl-2-(trifluoromethyl)pyrimidine (0.5g, 1.5mmol) (synthesized according to the procedure described in example 1) was refluxed in ethanol (10ml) containing sodium azide (0.1g, 1.5mmol) for 8 hours and allowed to cool to room temperature. The reaction mixture was poured onto ice-water mixture. The solid thus separated was extracted with ethyl acetate. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the title compound (0.45g, 88.3%, HPLC purity 98.5%), mp: 126-128°C.

¹H-NMR (CDCl₃): δ 7.15 – 7.17 (d, 2H), 7.23 – 7.38 (m, 8H). MS m/z: 342.1(M⁺).

Example 16

Synthesis of 4-azido-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine (0.5g, 1.2mmol) (synthesized according to the procedure described in example 4) by following the procedure described in example 15 (0.38g, 74.2%, HPLC purity 98%), mp: 172 – 175°C.

¹H-NMR (DMSO-d₆): δ 3.21 (s, 3H), 7.27 - 7.3(d, 2H), 7.38 - 7.39 (d, 3H), 7.54 - 7.56 (d, 2H), 7.84 - 7.86 (d, 2H). MS m/z: 420.1(M⁺). IR (KBr) cm⁻¹: 1151 (SO₂-).

Example 17

Synthesis of 4-azido-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine (0.75g, 1.68mmol) (synthesized according to the procedure described in example 5) by following the

procedure described in example 15 (0.6g, 79%, HPLC purity 99%), mp: 317 – 320 °C.

¹H-NMR (CDCl₃): δ 3.03(s, 3H), 7.08 – 7.10 (d, 2H), 7.36 – 7.38 (d, 2H), 7.56 – 7.58 (d, 2H), 7.85 – 7.87 (d, 2H). MS m/z: 454 (M⁺). IR (KBr) cm⁻¹: 1148 (-SO₂-).

Example 18

Synthesis of 4-azido-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine (0.75g, 1.74mmol) (synthesized according to the procedure described in example 6) by following the procedure described in example 15 (0.53g, 70%, HPLC purity 99.38%), mp:285 – 288°C.

¹H-NMR (CDCl₃): δ 3.03(s, 3H), 7.06 – 7.15 (m, 4H), 7.55 – 7.57 (d, 2H), 7.84 – 7.86 (d, 2H). MS m/z: 438.1(M⁺). IR (KBr) cm⁻¹: 1149 (-SO₂-).

Example 19

Synthesis of 2,4-diazido-5,6-diphenylpyrimidine

$$\bigvee_{N_3}^{N_3}$$

2,4-Dichloro-5,6-diphenylpyrimidine (0.5g, 1.7mmol) (synthesized according to the procedure described for example 7) was refluxed with sodium azide (0.24g, 3.65 mmol) in ethanol (10ml) under stirring for 8 hours. The reaction mixture was poured onto ice-water mixture. The solid thus separated was extracted with ethyl acetate. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to give crude product, which was purified by column chromatography to afford the title compound (0.21g, 40.8%), mp: 132 – 136°C.

 1 H-NMR (CDCl₃): δ 7.10 – 7.11(m, 2H), 7.20 – 7.22 (m, 2H), 7.25 – 7.35 (m, 6H). MS m/z: 315.1 (M 4).

Example 20

Synthesis of 2,4-diazido-5-(4-chlorophenyl)-6-phenylpyrimidine

The title compound was prepared from 2,4-dichloro-5-(4-chlorophenyl)-6-phenylpyrimidine (0.3g, 0.89mmol) (obtained according to the procedure described in example 10) by following the procedure described in example 19 (0.15g, 48.2%), mp: 105 – 109°C.

¹H-NMR (CDCl₃): δ 7.04 – 7.07 (d, 2H), 7.24 – 7.34 (m, 7H). MS m/z: 349.1 (M⁺).

Example 21

Synthesis of 4-hydrazino-5,6-diphenyl-2-(trifluoromethyl)pyrimidine

4-Chloro-5,6-diphenyl-2-(trifluoromethyl)pyrimidine (1.8g, 5.3mmol) (synthesized according to the procedure described in example 1) was stirred in ethanol (10 ml) containing hydrazine hydrate (0.64g, 12.8mmol) for 2 hours at 35°C. The crystals thus obtained in the reaction mixture was filtered under vacuum, washed with ethanol (5 ml) and dried to yield the title compound (1.7g, 95.7%, HPLC purity 99.2%), mp: 182 – 186°C.

¹H-NMR (CDCl₃): δ 4.0 (bs, 2H, D₂O exchangeable), 6.20 (s, 1H, D₂O exchangeable), 7.15 – 7.41 (m, 10H). MS m/z: 331.2 (M⁺). IR (KBr) cm⁻¹: 3328, 3271, 3029 (-NH-).

Example 22

Synthesis of

4-hydrazino-6-(4-methylphenyl)-5-phenyl-2-

(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine (0.55g, 1.6mmol) (synthesized according to the procedure described in example 2) by following the procedure described in example 21 (0.54g, 99.4%, HPLC purity 99.7%), mp: 188 – 191°C.

 1 H-NMR (CDCl₃): δ 2.27 (s, 3H), 4.0 (bs, 1H, D₂O exchangeable), 6.2 (s, 1H, D₂O exchangeable), 6.98 – 7.0 (d, 2H), 7.15 – 7.18 (d, 2H), 7.22 – 7.26 (m, 3H), 7.4 – 7.42 (m, 3H). MS m/z: 345.2 (M⁺). IR (KBr) cm⁻¹: 3313, 3203, 3046 (-NH-).

Example 23

Synthesis of

4-hydrazino-6-(4-fluorophenyl)-5-phenyl-2-

(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine (2.8g, 7.9mmol) (synthesized according to the procedure described in example 3) by following the procedure described in example 21 (2.3g, 83.3%, HPLC purity 99.4%), mp: 175 – 177 °C.

 1 H-NMR (CDCl₃): δ 4.0 (bs, 2H, D₂O exchangeable), 6.2 (s, 1H, D₂O exchangeable), 6.85 – 6.90 (m, 2H), 7.14 – 7.16 (m, 2H), 7.32 – 7.43 (m, 5H). MS m/z: 349.2 (M⁺). IR (KBr) cm⁻¹: 3327, 3270 (-NH-).

Example 24

Synthesis of 4-hydrazino-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine (0.41g, 1mmol) (synthesized according to the procedure described in example 4) by following the procedure described in example 21 (0.37g, 91.1%, HPLC purity 97.5%), mp: 272 – 275°C.

¹H-NMR (CDCl₃): δ 2.99 (s, 3H), 4.09 (bs, 2H, D₂O exchangeable), 6.31 (s, 1H, D₂O exchangeable), 7.14 – 7.16 (d, 2H), 7.42 – 7.43 (d, 3H), 7.52 – 7.54 (d, 2H), 7.76 – 7.78 (d, 2H). MS m/z: 408.41 (M⁺). IR (KBr) cm⁻¹: 3330, 3246 (-NH-), 1149 (- SO₂-).

Example 25

Synthesis of 5-(4-chlorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine (5.9g, 13.2mmol)

(synthesized according to the procedure described in example 5) by following the procedure described in example 21 (5.11g, 87.5%, HPLC purity 99.51%), mp: 266 – 269 °C.

¹H-NMR (CDCl₃): δ 3.01 (s, 3H), 4.0 (bs, 2H, D₂O exchangeable), 6.25 (s, 1H, D₂O exchangeable), 7.09 – 7.11 (d, 2H), 7.42 – 7.44 (d, 2H), 7.50 – 7.53 (d, 2H), 7.80 – 7.82 (d, 2H). MS m/z: 443.1 (M⁺). IR (KBr) cm⁻¹: 3333, 3235 (-NH-), 1144(-SO₂-).

Example 26

Synthesis of 5-(4-fluorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine

The title compound was prepared from 4-chloro-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine (0.4g, 0.93mmol) (synthesized according to the procedure described in example 6) by following the procedure described in example 21 (0.25g, 63%, HPLC purity 97.7%), mp: 286 – 290°C.

¹H-NMR (DMSO-d₆): δ 3.18 (s, 3H), 4.54 (bs, 2H, D₂O exchangeable), 7.21 – 7.25 (m, 4H), 7.45 – 7.47 (d, 2H), 7.78 – 7.80 (d, 2H), 8.2 (s, 1H, D₂O exchangeable). MS m/z: 427.1 (M⁺). IR (KBr) cm⁻¹: 3327, 3242 (-NH-), 1149 (-SO₂-).

Example 27

Synthesis of 2-chloro-5,6-diphenyl-4-hydrazinopyrimidine

2,4-Dichloro-5,6-diphenylpyrimidine (2.0g, 6.6mmol) (synthesized according to the procedure described in example 7) was treated with hydrazine hydrate (0.73g, 14.6mmol) in ethanol (10ml) under stirring for 5 hours at room temperature. The reaction mixture was poured onto ice-water mixture. The solid thus separated was extracted with diethylether. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the title compound (0.64g, 32.5%).

¹H-NMR (CDCl₃): δ 4.0 (bs, 2H, D₂O exchangeable), 6.2 (s, 1H, D₂O exchangeable), 7.12 – 7.38 (m, 10H). MS m/z: 297.3 (M⁺).

Example 28

Synthesis of 2-chloro-4-hydrazino-5-[4-(methylthio)phenyl]-6-phenylpyrimidine

The title compound was prepared from 2,4-dichloro-5-[4-(methylthio)phenyl]-6-phenylpyrimidine (1.0g, 2.9mmol) (obtained according to the procedure described in example 12) by following the procedure described in example 27 (0.33g, 33.4%, HPLC purity 98.6%), mp: 272 – 274 °C.

¹H-NMR (CDCl₃): δ 2.48 (s, 3H), 3.99 (bs, 2H, D₂O exchangeable), 6.15 (s, 1H, D₂O exchangeable), 7.02 – 7.04 (d, 2H), 7.19 – 7.31 (m, 7H). MS m/z: 343.1 (M⁺). IR (KBr) cm⁻¹: 3272 (-NH-).

Example 29

Synthesis of 2,4-dihydrazino-5,6-diphenylpyrimidine

2,4-Dichloro-5,6-diphenylpyrimidine (0.5g, 1.7mmol) (synthesized according to the procedure described in example 7) was refluxed with hydrazine hydrate (0.18g, 3.6mmol) in ethanol (10ml) under stirring for 6 hours. The reaction mixture was poured onto ice-water mixture. The solid thus separated was extracted with dichloromethane. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the title compound (0.12g, 25%).

¹H-NMR (CDCl₃): δ 3.96 (bs, 3H, D₂O exchangeable), 5.93 (s, 1H, D₂O exchangeable), 6.34 (s, 1H, D₂O exchangeable), 7.08 – 7.18 (m, 5H), 7.28 – 7.32 (m, 5H). MS m/z: 293.2 (M⁺).

Example 30

Synthesis of 2,4-dihydrazino-5-[4-(methylthio)phenyl]-6-phenylpyrimidine

WO 2004/009560 PCT/IB2003/002879

47

The title compound was prepared from 2,4-dichloro-5-[4-(methylthio)phenyl]-6-phenylpyrimidine (0.32g, 0.93mmol) (synthesized according to the procedure described in example 12) by following the procedure described in example 29 (0.26g, 81.2%, HPLC purity 95.8%), mp: 207 – 210 °C.

¹H-NMR (CDCl₃): δ 2.46 (s, 3H), 4.0 (bs, 4H, D₂O exchangeable), 5.91 (s, 1H, D₂O exchangeable), 6.35 (s, 1H, D₂O exchangeable), 7.0 – 7.02 (d, 2H), 7.16 – 7.31 (m, 7H). MS m/z: 339.2 (M⁺). IR (KBr) cm⁻¹: 3308, 3257 (-NH-).

Example 31

Synthesis of N'-[5,6-diphenyl-2-(trifluoromethyl)pyrimidin-4-yl]acetohydrazide

4-Hydrazino-5,6-diphenyl-2-(trifluoromethyl)pyrimidine (0.7g, 2.1mmol) (synthesized according to the procedure described in example 21) in pyridine (10 ml) was added acetylchloride (0.17g, 2.2mmol) dropwise at 20 °C under stirring for 10 minutes. After 30 minutes of stirring, the reaction mixture was poured onto ice-water mixture, acidified to pH 4 using hydrochloric acid and extracted with ethyl acetate. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the crude product, which was purified by column chromatography to furnish the title compound (0.2g, 25.4%, HPLC purity 99.4%), mp: 113 – 116°C.

¹H-NMR (CDCl₃): δ 2.12 (s, 3H), 7.19 – 7.22 (m, 3H, 1H is D₂O exchangeable), 7.26 – 7.45 (m, 8H), 8.0 – 8.2 (s, 1H, D₂O exchangeable). MS m/z: 373.2 (M⁺). IR (KBr) cm⁻¹: 3330, 3268 (-NH-), 1686 (-C=O).

Example 32

Synthesis of N'-[6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4-yl]acetohydrazide

To a solution of 4-hydrazino-6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine (0.23g, 0.66mmol) (synthesized according to the procedure described in example 22) in dichloromethane (5 ml) and pyridine (0.06g, 0.8mmol), acetyl chloride (0.6g, 0.7mmol) was added dropwise at room temperature over a period of ten minutes under stirring. Stirring was continued for two hours and the resultant reaction mass was poured onto ice-water mixture and neutralised with hydrochloric acid. The reaction mixture was extracted with dichloromethane. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the title compound (0.2g, 77.9%, HPLC purity 99.4%), mp: 147 – 152°C.

 1 H-NMR (CDCl₃): δ 2.11 (s, 3H), 2.27 (s, 3H), 6.99 – 7.01 (d, 2H), 7.22 – 7.28 (m, 5H, 1H is D₂O exchangeable), 7.42 – 7.44 (m, 3H), 8.0 (d, 1H, D₂O exchangeable). MS m/z: 387.2 (M⁺). IR (KBr) cm⁻¹: 3287(-NH-), 1670 (-C=O).

Example 33

Synthesis of N'-[6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4-yl]acetohydrazide

The title compound was prepared from 4-hydrazino-6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine (0.8g, 2.3mmol) (synthesized according to the procedure described in example 23) by following the procedure described in example 32 (0.84g, 93.5%, HPLC purity 97.9%), mp: 149-153 °C.

¹H-NMR (CDCl₃): δ 2.1 (s, 3H), 6.87 - 6.91 (m, 2H), 7.26 - 7.27 (m, 1H, D₂O exchangeable), 7.32 - 7.46 (m, 7H), 8.0 (d, 1H, D₂O exchangeable). MS m/z: 391.1 (M⁺). IR (KBr) cm⁻¹: 3376,3261 (-NH-), 1669 (-C=O).

Example 34

 $Synthesis \qquad of \qquad N'-[6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-\\ (trifluoromethyl)pyrimidin-4-yl]acetohydrazide$

The title compound was prepared from 4-hydrazino-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine (0.45g, 1.1mmol) (synthesized according to the procedure described in example in 24) by

following the procedure described in example 32 (0.29g, 58.5%, HPLC purity 99.6%), mp: 265 – 268 °C.

¹H-NMR (CDCl₃): δ 1.9 (s, 3H), 3.18 (s, 3H), 7.24 – 7.26 (d, 2H), 7.39 – 7.48 (m, 5H), 7.76 – 7.86 (d, 2H), 8.7 (s, 1H, D_2O exchangeable), 10 (s, 1H, D_2O exchangeable). MS m/z: 451.2 (M⁺). IR (KBr) cm⁻¹: 3331 (-NH-), 1693 (-C=O), 1148(-SO₂-).

Example 35

Synthesis of N'-[5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidin-4-yl]acetohydrazide

The title compound was prepared from 5-(4-chlorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine (1.0g, 2.2mmol) (synthesized according to the procedure described in example 25) by following the procedure described in example 32 (0.8g, 73.2%, HPLC purity 99.8%), mp: 254 – 256 °C.

¹H-NMR (DMSO-d₆): δ 1.9 (s, 3H), 3.2 (s, 3H), 7.27 – 7.29 (m, 2H), 7.46 – 7.51 (m, 4H), 7.81 – 7.83 (d, 2H), 8.75 (s, 1H, D₂O exchangeable), 10 (s, 1H, D₂O exchangeable). MS m/z: 485.2 (M⁺). IR (KBr) cm⁻¹: 3317 (-NH-), 1695 (-C=O), 1152 (-SO₂).

Example 36

Synthesis of N'-[5-(6-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidin-4-yl]acetohydrazide

The title compound was prepared from 5-(4-fluorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine (0.75g, 1.7mmol) (synthesized according to the procedure described in example 26) by following the procedure described in example 32 (0.7g, 83.7%, HPLC purity 98.4%), mp: 281 – 283 °C.

 1 H-NMR (DMSO-d₆): δ 1.9 (s, 3H), 3.2 (s, 3H), 7.24 – 7.30 (m, 2H), 7.48 – 7.50 (m, 4H), 7.80 – 7.82 (d, 2H), 8.75 (s, 1H, D₂O exchangeable), 10 (s, 1H, D₂O exchangeable). MS m/z: 469.1 (M⁺). IR (KBr) cm⁻¹: 3381,3325 (-NH-), 1694 (-C=O), 1146 (-SO₂).

Example 37

Synthesis of N'-[5-(4-chlorophenyl)-[6-(4-methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidin-4-yl]trifluoroacetohydrazide

To a solution of 5-(4-chlorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine (0.5g, 1.1mmol) (synthesized according to the

procedure described in example 25) in dichloromethane (5 ml) and pyridine (0.1g, 1.2mmol), trifluoroacetic anhydride (0.24g, 1.2mmol) was added dropwise at 0 °C to 10 °C over a period of ten minutes under stirring. Stirring was continued for 0.5 hr and the resultant reaction mass was poured onto ice-water mixture and extracted with dichloromethane. The organic extract was washed with water, dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the title compound (0.3g, 49.3%, HPLC purity 97.6%), mp: 307 – 309 °C.

¹H-NMR (DMSO-d₆): δ 3.21 (s, 3H), 7.32 – 7.34 (d, 2H), 7.5 – 7.55 (m, 4H), 7.83 – 7.85 (d, 2H), 9.3 (s, 1H, D₂O exchangeable), 11.75 (s, 1H, D₂O exchangeable). MS m/z: 539.2 (M[†]). IR (KBr) cm⁻¹: 3404, 3255 (-NH-), 1762 (-C=O), 1153 (-SO₂).

Example 38

Synthesis of 4-chloro-1,6-diphenylpyrimidine-2(1H)-one

Oxalyl chloride (3.1g, 24.4mmol) was added to a mixture of N,N-dimethylformamide (1.8g, 24.6mmol) in dichloromethane (30ml) at -5 °C to 0 °C under stirring. After the completion of addition the reaction temperature was allowed to reach 20 °C to 25 °C. 1,6-Diphenyluracil (4.0g, 15.2 mmol) was added in portions to the resulted suspension for 2.5 hrs. The reaction mixture was heated to reflux for 4 hours under stirring and continued stirring for 12 hours at room temperature. The reaction mass was poured onto sodium hydroxide solution

WO 2004/009560 PCT/IB2003/002879

53

(150ml, 0.25 N) and collected the dichloromethane layer. The dichloromethane layer was washed with hydrochloric acid (200ml, 0.025N), water and saturated sodium chloride solution successively. The organic extract was dried over anhydrous sodium sulphate and concentrated under reduced pressure to afford the title compound (1.5g, 35%, HPLC purity 99.8%), mp: 141 – 143 °C.

¹H-NMR (CDCl₃): δ 7.09 – 7.11 (m, 1H), 7.19 (s, 1H), 7.36 – 7.40 (m, 2H), 7.50 – 7.53 (m, 3H), 7.68 – 7.7 (d, 2H), 8.03 – 8.06 (d, 2H). MS m/z: 283.9 (M⁺). IR (KBr) cm⁻¹: 1596 (-C=O).

Described below are the examples of pharmacological assays used for finding out the efficacy of the compounds of the present invention wherein their protocols and results are provided.

Rat Carrageenan Paw Edema Test

The carrageenan paw edema test was performed as described by Winter et al (Proc.Soc.Exp.Biol.Me., 111, 544, 1962). Male Wistar rats were selected and the body weight were equivalent within each group. The rats were fasted for eighteen hours with free access to water. The rats were dosed orally with the test compound suspended in vehicle containing 0.5% methylcellulose. The control rats were administered the vehicle alone. After one hour the rats were injected with 0.1 ml of 1% Carrageenan solution in 0.9% saline into the sub plantar surface of the right hind paw. Paw thickness was measured using vernier calipers at 0 time, after 2 and 3 hours. The average of foot swelling in drug treated animals was compared with that of control animals. Anti-inflammatory activity was expressed as the percentage inhibition of edema compared with control group [Arzneim-Forsch/Drug Res., 43(I), 1, 44-50,1993; Otterness and Bliven, Laboratory Models for Testing NSAIDs, In Non-Steroidal Anti-Inflammatory Drugs, (J. Lombardino, ed.1985)]. The data of the selected compounds in this

invention are summarized in Table I. In order to evaluate their role on the ulcer formation, the animals were sacrificed by cervical dislocation, the stomach removed and flushed with 1% formalin (10ml). The stomach was opened along the greater curvature. The haemorrhagic puncta and sulci were identified macroscopically. The presence or absence of stomach lesions was scored. The incidence of ulceration was calculated from the number of rats that showed atleast one gastric ulcer or haemorrhagic erosion.

Table I

Example	Rat Paw Edema model
No.	% Inhibition
	(10mg/kg body weight)
6	64
7	60.9
9	42.8
13	47.8
20	39.4

In vitro evaluation of Cycloxygenase-2 (COX-2) inhibition activity

The compounds of this invention exhibited *in vitro* inhibition of COX-2. The COX-2 inhibition activity of the compounds illustrated in the examples was determined by the following method.

Human Whole Blood Assay

Human whole blood provides a protein and cell rich milieu appropriate for the study of biochemical efficacy of anti-inflammatory compounds such as selective COX-2 inhibitors. Studies have shown that normal human blood does not contain COX-2 enzyme. This is correlating with the observation that COX-2 inhibitors have no effect on prostaglandin E₂ (PGE2) production in normal blood. These inhibitors are active only after incubation of human blood with lipopolysaccharide (LPS), which induces COX-2 production in the blood.

Method

Fresh blood was collected in tubes containing potassium EDTA by vein puncture from male volunteers. The subjects should have no apparent inflammatory conditions and not taken NSAIDs for atleast 7 days prior to blood collection. Blood was treated with aspirin in vitro (10µg/ml, at time zero) to inactivate COX-1, and then with LPS (10µg/ml) along with test agents or vehicle. The blood was incubated for 24 h at 37 °C, after which the tubes were centrifuged, the plasma was separated and stored at -80 $^{\circ}C$ (J.Pharmacol.Exp.Ther., 271, 1705, 1994; Proc.Natl.Acad.Sci. USA., 96, 7563, 1999). The plasma was assayed for PGE2 using Cayman ELISA kit as per the procedure outlined by the manufacturer (Cayman Chemicals, Ann Arbor, USA). The plasma was also tested for TNF- α , IL-1 β , and IL-6 using appropriate human ELISA kit as per the procedure of manufacturer (Cayman Chemicals, Ann Arbor, USA). Representative results of COX-2 inhibition are shown in Table II.

Table II

Example		COX-2 Inhibition
No.	Conc. (µM)	(%)
6 .	0.1	51.94
9	0.1	60.47
13	0.1	45.67

Tumor Necrosis Factor Alpha (TNF-α)

This assay determines the effect of test compounds on the production of TNF- α from human monocytes. Compounds were tested for their ability to downregulate the production of TNF- α in activated monocytes. Test compounds were incubated for three, six and twenty four hours with human monocytes. Lipopolysaccharide was used to stimulate the monocytes. The level of TNF- α was quantitated using Enzyme-Linked Immunosorbent assay performed in a 96 well format. Representative results of TNF- α inhibition are shown in Table III.

Table III

Example No.	Conc. (µM)	TNF-α Inhibition (%)
4	10	55.41
6	1	51.48
11	1	29.2
19	10	69.43
20	1	26.34

Interleukin-6(IL-6)

This assay determines the effect of test compounds on the production of IL-6 from human monocytes. Compounds are tested for their ability to downregulate the production of IL-6 in activated monocytes. Test compounds were incubated for three, six and twenty four hours with human monocytes. Lipopolysaccharide was used to stimulate the monocytes. The level of Interleukin-6 is quantitated using Enzyme-Linked Immunosorbent assay

WO 2004/009560 PCT/IB2003/002879

57

performed in a 96 well format. Representative results of IL-6 inhibition are shown in Table IV.

Table IV

Example		
No.	Conc. (µM)	IL-6 Inhibition (%)
1	1	62.52
2	1	62.34
21	1	67.47
22	1	52.28 ·
24	10	66.01
32	10	53.33

Inhibitory Action on Adjuvant Arthritis

Compounds were assayed for their activity on rat adjuvant induced arthritis according to Theisen-Popp et al., (Agents Actions, 42, 50-55,1994). Six to seven weeks old, Wistar rats were weighed, marked and assigned to groups [a negative control group in which arthritis was not induced (non-adjuvant control), a vehicle-treated arthritis control group, test substance treated arthritis group]. Adjuvant induced arthritis was induced by an injection of *Mycobacterium butyricum* (Difco) suspended in liquid paraffin into the sub-plantar region of the right hind paw (J.Pharmacol.Exp.Ther., 284, 714, 1998). Body weight, contralateral paw volumes were determined at various days (0, 4, 14, 21) for all the groups. The test compound or vehicle was administered orally beginning post injection of adjuvant and continued for 21 days. On day 21, body weight and paw volume of both right and left hind paw, spleen, and thymus weights were determined. In addition, the radiograph of both hind paws was taken to assess the

WO 2004/009560 PCT/IB2003/002879

58

tibio-tarsal joint integrity. Hind limb below the stifle joint was removed and fixed in 1% formalin saline. At the end of the experiment, plasma samples were analysed for cytokines, interleukins and prostaglandins. The presence or absence of lesions in the stomachs was also observed.

Two-factor ('treatment' and 'time') Analysis of Variance with repeated measures on 'time' were applied to the % changes for body weight and foot volumes. A post hoc Dunnett's test was conducted to compare the effect of treatments to vehicle. A one-way Analysis of Variance was applied to the thymus and spleen weights followed by the Dunnett's test to compare the effect of treatments to vehicle. Dose-response curves for % inhibition in foot volumes on days 4, 14 and 21 were fitted by a 4-parameter logistic function using a nonlinear Least Squares' regression. ID₅₀ was defined as the dose corresponding to a 50% reduction from the vehicle and was derived by interpolation from the fitted 4-parameter equation.

DTP Human Tumor Cell Line Screen

Methodology Of The In Vitro Cancer Screen

The three cell line, one-dose prescreen carried out which identifies a large proportion of the compounds that would be inactive in multi-dose 60 cell line screening. The current assay utilizes a 384 well plate format and fluorescent staining technologies resulting in greater screening capacity for testing of synthetic samples.

Cell Lines

The cell lines of the cancer screening panel are grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine. For a typical screening experiment, cells are inoculated into 96 well microtiter plates in 100

μL. After cell inoculation, the microtiter plates are incubated at 37° C, 5 % CO₂, 95 % air and 100 % relative humidity for 24 h prior to addition of experimental drugs. The cells are plated a densities of 5000 cells/well (MCF7), 1000 cells/well (NCI-H460), and 7500 cells/well (SF-268) to allow for varying doubling time of the cell lines. Each plate contains all three cell lines, a series of dilutions of standard agents, total kill wells and appropriate controls. Plates are incubated under standard conditions for 24 hours prior to addition of experimental compounds or extracts.

Addition of Experimental Agents (Pure Compounds)

Experimental compounds are solubilized in dimethyl sulfoxide (DMSO) at 400-times the desired maximum test concentration (maximum final DMSO concentration of 0.25%) and stored frozen. Compounds are then diluted with complete media with 0.1% gentamicin sulfate (5 μ l of test sample in 100% DMSO is added to 565 μ l of complete medium). 20 μ l of this solution is then dispensed into test wells containing 50 μ l of cell suspension to yield a test concentration of 1.00E-04M.

Two standard drugs, meaning that their activities against the cell lines are well documented, are tested against each cell line: NSC 19893 (5-FU) and NSC 123127 (Adriamycin).

Endpoint Measurement

After compound addition, plates are incubated at standard conditions for 48 hours, 10 µl/well Alamar Blue is added and the plates are incubated for an additional 4 hours. Fluorescence is measured using an excitation wavelength of 530 nm and an emission wavelength of 590 nm.

Calculation of Percent Test Cell Growth/Control (untreated) Cell Growth (T/C)

Calculation of Percent Test Cell Growth/Control (untreated) Cell Growth (T/C)

Percent growth is calculated on a plate-by-plate basis for test wells relative to control wells. Percent Growth is expressed as the ratio of fluorescence of the test well to the average fluorescence of the control wells x 100. The results are shown in table V.

Table V

	Concentration (100 μm) Percentage Growth			
Example No.				
	Lung NCI-H460	Breast MCF7	CNS SF-268	
				4
6	0	0	12	
8	1	5	6	
9	0	1	1	
10	0	. 0	0	
11	0	5	2	
12	0	-1	4	

Claims:

1. Novel pyrimidine derivatives of the formula (I)

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein R₅, R₆, R₇, may be same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom.

2. Novel pyrimidine derivatives as claimed in claim 1, selected from:

```
4-Chloro-5,6-diphenyl-2-(trifluoromethyl)pyrimidine;
4-Chloro-6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine;
4-Chloro-6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl) pyrimidine;
4-Chloro-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine;
4-Chloro-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
 (trifluoromethyl)pyrimidine;
4-Chloro-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
(trifluoromethyl)pyrimidine;
2,4-Dichloro-5,6-diphenylpyrimidine;
2,4-Dichloro-6-(4-methylphenyl)-5-phenylpyrimidine;
6-(4-Chlorophenyl)-2,4-dichloro-5-phenylpyrimidine;
5-(4-Chlorophenyl)-2,4-dichloro-6-phenylpyrimidine;
2,4-Dichloro-5-(4-methoxyphenyl)-6-phenylpyrimidine;
2,4-Dichloro-5-[4-(methylthio)phenyl]-6-phenylpyrimidine;
2,4-Dichloro-6-(4-chlorophenyl)-5-[4-(methylthio)phenyl] pyrimidine;
2,4-Dichloro-5-(4-chlorophenyl)-6-(4-methylphenyl)pyrimidine;
4-Azido-5,6-diphenyl-2-(trifluoromethyl)pyrimidine;
4-Azido-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidine;
4-Azido-5-(4-chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
(trifluoromethyl)pyrimidine:
4-Azido-5-(4-fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
(trifluoromethyl)pyrimidine;
2,4-Diazido-5,6-diphenylpyrimidine;
2,4-Diazido-5-(4-chlorophenyl)-6-phenylpyrimidine;
4-Hydrazino-5,6-diphenyl-2-(trifluoromethyl)pyrimidine;
4-Hydrazino-6-(4-methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine;
4-Hydrazino-6-(4-fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidine;
```

```
4-Hydrazino-6-[4-(methylsulfonyl)phenyl]-5-phenyl-2-
 (trifluoromethyl)pyrimidine;
 5-(4-Chlorophenyl)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-
 (trifluoromethyl)pyrimidine;
 5-(4-F)-4-hydrazino-6-[4-(methylsulfonyl)phenyl]-2-(trifluoromethyl)pyrimidine
2-Chloro-5,6-diphenyl-4-hydrazinopyrimidine;
2-Chloro-4-hydrazino-5-[4-(methylthio)phenyl]-6-phenylpyrimidine;
2,4-Dihydrazino-5,6-diphenylpyrimidine;
2,4-Dihydrazino-5-[4-(methylthio)phenyl]-6-phenylpyrimidine;
N-[5,6-Diphenyl-2-(trifluoromethyl)pyrimidin-4-yl]acetohydrazide;
N-[6-(4-Methylphenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4-
yl]acetohydrazide;
N-[6-(4-Fluorophenyl)-5-phenyl-2-(trifluoromethyl)pyrimidin-4-
yl]acetohydrazide:
N'-[6-[4-(Methylsulfonyl)phenyl]-5-phenyl-2-(trifluoromethyl)pyrimidin-4-
yl]acetohydrazide;
N-[5-(4-Chlorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
(trifluoromethyl)pyrimidin-4-yl]acetohydrazide;
N-[5-(6-Fluorophenyl)-6-[4-(methylsulfonyl)phenyl]-2-
(trifluoromethyl)pyrimidin-4-yl]acetohydrazide;
N-[5-(4-Chlorophenyl)-[6-(4-methylsulfonyl)phenyl]-2-
(trifluoromethyl)pyrimidin-4-yl]trifluoroacetohydrazide;
4-Chloro-1,6-diphenylpyrimidine-2(1H)-one;
4-Azido-6-[(4-methylthio)phenyl]-1-phenylpyrimidin-2(1H)-one;
4-[3-(4-Chlorophenyl)-2-oxo-6-trifluoromethyl-2,3-dihydro-pyrimidin-4-
yl]benzenesulfonamide;
```

- 6-(4-Methylsulfonylphenyl)-1-p-tolyl-4-(trifluoromethy)pyrimidin-2(1H)-one;
- 4-Azido-6-(4-methylsulfonylphenyl)-1-p-tolyl-pyrimidin-2(1H)-one;
- 4-(6-Azido-3-methoxyphenyl-2-oxo-2,3-dihydropyrimidin-4-
- yl)benzenesulfonamide;
- 4-(6-Azido-4-methoxyphenyl-2-oxo-2,3-dihydropyrimidin-4-
- yl)benzenesulfonamide;
- 2-Chloro-5-(4-chlorophenyl)-4-methylthio-6-[(4-methylthio)phenyl]pyrimidine;
- 6-[(4-Methylthio)phenyl]-1-phenyl-4-(trifluoromethyl)pyrimidin-2(1H)-one;
- 4-(2-Oxo-3-phenyl-6-trifluoromethyl-2,3-dihydropyrimidin-4-
- yl)benzenesulfonamide;
- 4-Methylthio-5,6-bis(p-tolyl)pyrimidine;
- 4-Methylthio-5,6-diphenyl-pyrimidin-2-ol;
- 4-Methylsulfonyl-5,6-bis(p-tolyl)pyrimidine;
- 1,6-Diphenyl-4-(trifluoromethyl)pyrimidin-2(1H)-one;
- 4-(2-Hydroxy-6-methylthio-5-phenylpyrimidin-4-yl)benzenesulfonamide;
- 4-Methylthio-6-[(4-methylthio)phenyl]-5-phenylpyrimidine;
- 2-Chloro-4-methylthio-5,6-bis(p-tolyl)pyrimidine;
- 2-Chloro-4-methylthio-6-[(4-methylthio)phenyl]-5-p-tolyl-pyrimidine;
- 5-(4-Bromophenyl)-2-chloro-4-methylthio-6-[(4-methylthio)phenyl]pyrimidine;
- 5-(2-Bromophenyl)-4-methylthio-6-[(4-methylthio)phenyl]pyrimidin-2-ol;
- 4-(2-Chloro-6-methylthio-5-phenylpyrimidin-4-yl)benzenesulfonamide;
- 2-Chloro-4,5-bis-(4-methoxyphenyl)-6-(methylthio)pyrimidine;
- 2-Chloro-4-methylthio-6-[(4-methylthio)phenyl]-5-phenylpyrimidine;
- 2,4-Diazido-6[(4-methylthio)phenyl)]-5-phenylpyrimidine;
- 2,4-Diazido-5-(4-bromophenyl)-6-(4-methylthiophenyl)pyrimidine;
- 4-Chloro-6-[(4-methylsulfonyl)phenyl]-1-phenylpyrimidin-2(1H)-one;
- 4-Azido-1-(2-fluorophenyl)-6-[(4-methylthio)phenyl]-pyrimidin-2(1H)-one;

WO 2004/009560 PCT/IB2003/002879

65

2-[(4-Methylsulfonyl)phenyl]-6-trifluoromethyl-3-[(4-trifluoromethyl)phenyl]-3,4-dihydropyrimidin-4-ol;

5-(3-Fluorophenyl)-4-methylthio-6-[(4-methylthio)phenyl]pyrimidin-2-ol and 4-(6-Hydroxy-6-methyl-2-p-tolyl-4-trifluoromethyl-6H-pyrimidin-1-yl)benzenesulfonamide.

3. A process for the preparation of novel pyrimidine derivatives of the formula (I)

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, cycloalkyl, amino, hydrazine, monoalkylamino, acyloxy, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; R₅, R₆, may be same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino. dialkylamino, acylamino, alkylsufonyl. alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl,

alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; which comprises condensing a compound of formula (Ia)

wherein all symbols are as defined above with a compound of the formula (Ib)

where all symbols are as defined above.

4. A process for the preparation of novel pyrimidine derivatives of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R4$
 $R3$

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio,

arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein R⁶ represents halogen atom, R₅, R₇, may be same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom; comprising converting the compound of formula (Ic)

$$R1$$
 O $R4$ $R2$ N O $R3$ $R4$

wherein all symbols are as defined earlier.

5. A process for the preparation of novel pyrimidine derivatives of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R3$

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso,

formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein any of R⁷ represents halogen atom and R⁶ represents hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom; comprising converting the compound of formula (Id)

$$R1$$
 $R2$
 N
 $R6$
 $R3$
 $R4$
 $R3$

wherein R⁶ is as defined above.

6. A process for the preparation of novel pyrimidine derivatives of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R4$
 $R3$

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula wherein A represents

wherein R⁶ represents azido, hydrazine or hydrazine derivatives, R⁵ and R⁷ are same or different and represent hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom; comprising converting the compound of formula (Ie)

wherein R⁶ represents halogen atom and all other symbols are as defined above.

7. A process for the preparation of novel pyrimidine derivatives of the formula (I)

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein R₅, R₆, R₇, may be same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl,

PCT/IB2003/002879

carboxylic acid or its derivatives; which comprises reacting a compound of the formula (If)

where all symbols are as defined above with a compound of formula (Ig)

where all symbols are as defined above.

8. A process for the preparation of novel pyrimidine derivatives of the formula (I)

$$R3$$
 $R4$
 $R5$
 $R6$
 $R1$
 $R6$
 $R1$

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein R₅, R₆, are same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; which comprises:

i) reacting a compound of formula (Ih)

where all symbols are as defined earlier with a compound of formula (Ii)

where R⁶ is as defined earlier to produce compound of formula (Ij)

and

73

ii) converting the compound of formula (Ij) to produce compound of formula (I) where all symbols are as defined earlier by reacting with suitable nucleophilic reagent.

9. A process for the preparation of novel pyrimidine derivatives of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R4$
 $R3$

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein R₁, R₂, R₃ and R₄ may be same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein any one of R₅, R₆, R₇, represent hydrazine derivatives and the other R₅, R₆, R₇, are same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfinyl, arylsulfinyl, alkylthio,

arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom, prepared by reacting the compound of formula (I) wherein any one of R_5 , R_6 , R_7 represent hydrazine.

10. A process for the preparation of novel pyrimidine derivatives of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R4$
 $R3$

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein any one of R₁, R₂, R₃ and R₄ represent alkylsulfonyl, alkylsulfinyl, aryl sulfinyl or arylsulfonyl and the other R₁, R₂, R₃ and R₄ are same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsulfonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

wherein any one of R₅, R₆, R₇, represent alkylsulfonyl, alkylsulfinyl, aryl sulfinyl or arylsulfonyl and the other R₅, R₆, R₇, are same or different and represent,

hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom, prepared by reacting wherein the groups any of the groups R₁, R₂, R₃, R₄, R₅, R₆ represent alkylthio or arylthio and all other symbols are as defined above.

11. A process for the preparation of novel pyrimidine derivatives of the formula (I)

$$R1$$
 $R2$
 A
 $R3$
 $R4$
 $R3$

their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their solvates, their pharmaceutically acceptable salts and their pharmaceutically acceptable compositions, wherein any one of R₁, R₂, R₃ and R₄ represent sulfamoyl and the other R₁, R₂, R₃ and R₄ are same or different and independently represent hydrogen, hydroxy, nitro, nitroso, formyl, azido, halo or substituted or unsubstituted groups selected from alkyl, haloalkyl, alkoxy, aryl, aryloxy, aralkyl, aralkoxy, heteroaryl, heterocyclyl, acyl, acyloxy, cycloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; A represents pyrimidine derivative of the formula

WO 2004/009560

wherein any one of R₅, R₆, R₇, represent sulfamoyl and the other R₅, R₆, R₇, are same or different and represent, hydrogen, nitro, nitroso, formyl, azido, halo, or substituted or unsubstituted groups selected from alkyl, alkoxy, acyl, cycloalkyl, haloalkyl, amino, hydrazine, monoalkylamino, dialkylamino, acylamino, alkylsufonyl, alkylsulfinyl, arylsulfonyl, arylsulfinyl, alkylthio, arylthio, alkoxycarbonyl, aryloxycarbonyl, alkoxyalkyl, sulfamoyl, carboxylic acid or its derivatives; the pyrimidine group may be attached to the phenyl through carbon or nitrogen atom, prepared by reacting wherein the groups any of the groups R₁, R₂, R₃, R₄, R₅, R₆ represent alkylsulfonyl and all other symbols are as defined above.

12. A pharmaceutical composition, which comprises a compound of formula (I)

as defined in claim 1 and a pharmaceutically acceptable carrier, diluent, excipient or solvate.

- 13. A pharmaceutical composition as claimed in claim 12, in the form of a tablet, capsule, powder, syrup, solution, aerosol or suspension.
- 14. A pharmaceutical composition which comprises a compound as claimed in claim 2 and a pharmaceutically acceptable carrier, diluent, excipient or solvate.
- 15. A pharmaceutical composition as claimed in claim 12, in the form of a tablet, capsule, powder, syrup, solution, aerosol or suspension.
- 16. Use of a compound of formula (I) as claimed in claim 1, for the prophylaxis or treatment of rheumatoid arthritis; osteophorosis; multiple myeloma; uveititis; acute and chronic myelogenous leukemia; ischemic heart

WO 2004/009560

disease, atherosclerosis, cancer, ischemic-induced cell damage, pancreatic β cell destruction; osteoarthritis; rheumatoid spondylitis; gouty arthritis; inflammatory bowel disease; adult respiratory distress syndrome (ARDS); psoriasis; Crohn's disease; allergic rhinitis; ulcerative colitis; anaphylaxis; contact dermatitis; asthma; muscle degeneration; cachexia; type I and type II diabetes; bone resorption diseases; ischemia reperfusion injury; atherosclerosis; brain trauma; multiple sclerosis; cerebral malaria; sepsis; septic shock; toxic shock syndrome; fever, and myalgias due to infection. HIV-1, HIV-2, HIV-3, cytomegalovirus (CMV), influenza, adenovirus, the herpes viruses (including HSV-1, HSV-2), and herpes zoster infection.

- 17. Use of a compound as claimed in claim 2, for the prophylaxis or treatment of rheumatoid arthritis; osteophorosis; multiple myeloma; uveititis; acute and chronic myelogenous leukemia; ischemic heart disease, atherosclerosis, cancer, ischemic-induced cell damage, pancreatic β cell destruction; osteoarthritis; rheumatoid spondylitis; gouty arthritis; inflammatory bowel disease; adult respiratory distress syndrome (ARDS); psoriasis; Crohn's disease; allergic rhinitis; ulcerative colitis; anaphylaxis; contact dermatitis; asthma; muscle degeneration; cachexia; type I and type II diabetes; bone resorption diseases; ischemia reperfusion injury; atherosclerosis; brain trauma; multiple sclerosis; cerebral malaria; sepsis; septic shock; toxic shock syndrome; fever, and myalgias due to infection. HIV-1, HIV-2, HIV-3, cytomegalovirus (CMV), influenza, adenovirus, the herpes viruses (including HSV-1, HSV-2), and herpes zoster infection.
- 18. Use of a composition as claimed in claim 12, for the prophylaxis or treatment of rheumatoid arthritis, Pagets disease, osteophorosis, multiple myeloma, uveititis, acute or chronic myelogenous leukemia, pancreatic β cell destruction, osteoarthritis, rheumatoid spondylitis, gouty arthritis, inflammatory

WO 2004/009560 PCT/IB2003/002879

bowel disease, adult respiratory distress syndrome (ARDS), psoriasis, Crohn's disease, allergic rhinitis, ulcerative colitis, anaphylaxis, contact dermatitis, asthma, muscle degeneration, cachexia, Reiter's syndrome, type I diabetes, type II diabetes, bone resorption diseases, graft vs. host reaction, Alzheimer's disease, stroke, myocardial infarction, ischemia reperfusion injury, atherosclerosis, brain trauma, multiple sclerosis, cerebral malaria, sepsis, septic shock, toxic shock syndrome, fever, myalgias due to HIV-1, HIV-2, HIV-3, cytomegalovirus (CMV), influenza, adenovirus, the herpes viruses or herpes zoster infection.

- 19. Use of a compound of formula (I) as claimed in claim 1 for lowering plasma concentrations of either or both TNF- α and IL-1.
- 20. Use of a compound as claimed in claim 2 for lowering plasma concentrations of either or both TNF- α and IL-1.
- 21. Use of a composition as claimed in claim 12 for lowering plasma concentrations of either or both TNF-α and IL-1.
- 22. Use of a compound of formula (I) as claimed in claim 1 for lowering plasma concentrations of either or both IL-6 and IL-8.
- 23. Use of a compound as claimed in claim 2 for lowering plasma concentrations of either or both IL-6 and IL-8.
- 24. Use of a composition as claimed in claim 12 for lowering plasma concentrations of either or both IL-6 and IL-8.
- 25. Use of a compound of formula (I) as claimed in claim 1 for the prophylaxis or treatment of a pain disorder.
- 26. Use of a compound as claimed in claim 2 for the prophylaxis or treatment of a pain disorder.
- 27. Use of a composition as claimed in claim 12 for the prophylaxis or treatment of a pain disorder.

WO 2004/009560 PCT/IB2003/002879

79

- 28. Use of a compound of formula (I) as claimed in claim 1 for decreasing prostaglandin production.
- 29. Use of a compound as claimed in claim 2 for decreasing prostaglandin production.
- 30. Use of a composition as claimed in claim 12 for decreasing prostaglandin production.
- 31. Use of a compound of formula (I) as claimed in claim 1 for decreasing cyclooxygenase enzyme activity.
- 32. Use of a compound according to claim 31, wherein the cyclooxygenase enzyme is COX-2 or COX-3.
- 33. Use of a compound as claimed in claim 2 for decreasing cyclooxygenase enzyme activity.
- 34. Use of a compound according to claim 33, wherein the cyclooxygenase enzyme is COX-2 or COX-3.

INTERNATIONAL SEARCH REPORT

PCT/IB 03/02879

A. CLASSIFICATION OF SI IPC 7 CO7D239 A61P29/	/30 C07D239/48 C07D239	/42 C07D239/36	A61K31/505
B. FIELDS SEARCHED	tent Classification (IPC) or to both national classific rched (classification system followed by classification		
	er than minimum documentation to the extent that	such documents are included in	n the fields searched
	ed during the international search (name of data b EILSTEIN Data, CHEM ABS Da		h terms used)
C. DOCUMENTS CONSIDER	RED TO BE RELEVANT		
Category • Citation of doc	iment, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.
20 Feb	02513 A (FUJISAWA PHARMACE ruary 1992 (1992-02-20) le 15	UTICAL CO)	1,3-27
13 Nov	72 288 A (HARDTMANN G ET A ember 1973 (1973–11–13) s 4,5; examples 1–10	L)	1,3-27
20 Mar	38 117 A (CHERKOFSKY SAUL ch 1984 (1984-03-20) les 9,10,14	C)	1,3-27
2 Janu	30 046 A (LILLY CO ELI) ary 1985 (1985-01-02) de 4; table 1		1,3-27
			-
Further documents a	re listed in the continuation of box C.	X Patent family member	ers are listed in annex.
considered to be of paid "E" earlier document but pure filing date "L" document which may the which is cited to estable citation or other special "O" document referring to a other means	eneral state of the art which is not	or priority date and not in cited to understand the p invention "X" document of particular ret cannot be considered no involve an inventive step "Y" document of particular ret cannot be considered to document is combined w	after the International filing date in conflict with the application but winciple or theory underlying the evance; the claimed invention well or cannot be considered to when the document is taken alone evance; the claimed invention involve an inventive step when the rith one or more other such docunties.
later than the priority d	ate claimed	*&* document member of the Date of mailing of the Into	
3 December		11/12/2003	
Name and mailing address of European F		Authorized officer	
	70) 340–3016	Menegaki,	t

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1(part),3(part)-27(part)

Present claims 1, 3-27 relate to an extremely large number of possible compounds. In fact, the-claims contain so many options and variables that a lack of clarity (and/or conciseness) within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear (and/or concise), namely Claim 2 and the examples.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

PCT/IB 03/02879

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)							
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:							
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:							
Although claims 16-34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compounds/composition.							
2. X Claims Nos.: 1(part), 3(part)-27(part) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:							
see FURTHER INFORMATION sheet PCT/ISA/210							
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).							
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)							
This International Searching Authority found multiple inventions in this international application, as follows:							
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.							
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.							
•							
3. As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:							
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.:							
Remark on Protest The additional search fees were accompanied by the applicant's protest.							
No protest accompanied the payment of additional search fees.							

INTERNATIONAL SEARCH REPORT

PCT/IB 03/02879

					, 15 10, 120, 5	
Patent document cited in search report		Publication date		Patent family member(s)	Publication date	
WO 9202513	A	20-02-1992	WO	9202513 A1	20-02-1992	
			JP	6501926 T	03-03-1994	
US 3772288	Α	13-11-1973	BE	759123 A1	18-05-1971	
			BE	759176 A1	19-05-1971	
			CA	962272 A1	04-02-1975	
			DE	2056406 A1	27-05-1971	
			DE	2056407 A1	27-05-1971	
			FR	2077528 A5	29-10-1971	
			FR	2073390 A1	01-10-1971	
			GB	1328857 A	05-09-1973	
			NL	7016942 A	24-05-1971	
•			NL	7016977 A	24-05-1971	
			OA	3525 A	30-03-1971	
			CH	539047 A	15-07-1973	
			DK	126042 B	04-06-1973	
		•	ES	385691 A1	01-10-1973	
			JP	49011391 B	16-03-1974	
US 4438117	A	20-03-1984	NONE			
EP 0130046	Α	02-01-1985	US	4500533 A	19-02-1985.	
			DK	300884 A	23-12-1984	
			EP	0130046 A1	02-01-1985	
			GB	2142025 A ,B	09-01-1985	
			GR	82683 A1	17-05-1985	
			HU	34962 A2	28-05-1985	
			JP	60013767 A	24-01-1985	
			KR	8601764 B1	21-10-1986	