Basic Python Programing Chapter 1

Nachai Paramesthanakorn

What is Programing?

โปรแกรมคอมพิวเตอร์จะทำงานตามชุดคำสั่ง ซึ่งชุดคำสั่งต่างๆ คนต้องเขียนเพื่อ สั่งการคอมพิวเตอร์ให้ทำงานตามวัตถุประสงค์

การเขียนหนังสือ	การเขียนโปรแกรม
ได้ผลลัพธ์หนังสือ	ได้ผลลัพธ์เป็นโปรแกรม
เขียนให้คนอ่าน	เขียนให้คอมพิวเตอร์อ่าน
มีหลายภาษา เช่น ภาษาไทย, ภาษาอังกฤษ	มีหลายภาษา เช่น Python, C, C#, Java
ถ้าเขียนผิดไวยากรณ์ หรือเขียนคำผิดเล็กน้อย ยัง พอเข้าใจความหมาย	ถ้าเขียนผิดไวยากรณ์ โปรแกรมจะทำงานไม่ได้
หนังสือเล่มเดียวกัน บางครั้งคนอ่านอาจจะเข้าใจ ไปคนละอย่าง คนละความหมาย	โปรแกรมถูกเขียนขึ้นเพื่อให้คอมพิวเตอร์ทุก เครื่องอ่านแล้วเข้าใจเหมือนกันหมด

Level of programing language

Low-level programing language

- Machine code คนเข้าใจยาก แต่คอมพิวเตอร์เข้าใจง่าย
- Assembly ใช้ภาษาอังกฤษเขียน แล้วแปลงเป็นภาษาเครื่องภายหลัง

High-level programing language

ใช้ภาษาอังกฤษ ตัวเลข อักขระ ตาม syntax ของแต่ละภาษา ทำให้คนทั่วไปสามารถอ่านคำสั่งได้ แล้ว ใช้ตัวแปลภาษาให้เครื่องเข้าใจอีกทีหนึ่ง เช่น

- Python
- Java
- (

ตัวแปลภาษา

Compiler

แปลภาษาก่อนแล้วค่อยสั่งให้ทำงาน เช่น ไฟล์ .exe

Interpreter

แปลภาษาพร้อมกับสั่งให้ทำงานไปด้วย เช่น การรันคำสั่งบนเว็บไซต์

กระบวนการเขียนโปรแกรม

- การพิมพ์ข้อความบน keyboard
- การคลิกเม้าส์
- การพูดผ่านไมค์โครโฟน
- การถ่ายรูปจากกล้อง

- การแสดงผลข้อความบนหน้าจอ
- ทารส่งเสียงจากลำโพง
- **ทารส่งภาพ/วิดีโอบนหน้าจอ**

Install Python & IDE

- •ใช้ Python version 3.9 +
- •ใช้ IDE ชื่อ Visual Studio Code

โหมดการใช้งาน Python มี 2 โหมด

- โหมดสคริปต์ (Script mode) ต้องเขียนชุดคำสั่งทั้งหมดลงในไฟล์แล้วบันทึกไว้ เวลาสั่งรันโปรแกรมก็ให้ทำจาก ไฟล์ทีเดียวเลย ซึ่งข้อดีเราสามารถรันโปรแกรมได้ซ้ำๆ และแก้ไขเพิ่มเติมได้ภายหลัง
- อินเตอร์แอคทีฟโหมด (interactive mode) เป็นการเขียนชุดคำสั่งที่ละคำสั่ง แล้วรันทันทีละคำสั่งด้วยมือเรา เอง ไม่มีการบันทึกเป็นไฟล์ ข้อดีคือ เราสามารถตรวจสอบผลลัพธ์ได้ทีละ block

Flowchart คือ

แผนภาพที่ใช้ สำหรับเรียงลำดับขั้นตอนและวิธีการทำงานของโปรแกรม โดยการทำงานจะเริ่มจากจุดเริ่มต้น (Start) ไปยัง จุดสิ้นสุด (Stop) ของโปรแกรม

Symbols

หลักการเขียน Flowchart

- ต้องมี จุดเริ่มต้น (Start) และ จุดสิ้นสุด (Stop) เสมอ
- แต่ละสัญลักษณ์เชื่อมต่อกันด้วย เส้นเชื่อม (Flow Line) เสมอ เพื่อบอกทิศทางการทำงาน ไปยังคำสั่งต่อไป
- เมื่อทำการ ไล่ Flowchart ต้องเริ่มจากจุดเริ่มต้น (Start) และ สามารถไปยังจุดสิ้นสุด (Stop) ได้เสมอ

Control Statement

- โครงสร้างควบคุม การทำงานแบบ **เป็นลำดับ** (Sequence Control Statement)
- โครงสร้างควบคุม การทำงานแบบ **ทางเลือก** (Selection Control Statement)
- โครงสร้างควบคุม การทำงานแบบ **วนซ้ำ** (Repetition Control Statement)

Sequence Control Statement

- 1. Start เริ่มต้นโปรแกรม
- 2. ประกาศตัวแปร ชื่อ a เป็น ประเภทจำนวนเต็ม (int) และ กำหนดค่าเริ่มต้นเป็น 1
- 3. ประกาศตัวแปร ชื่อ b เป็น ประเภทจำนวนเต็ม (int) และ กำหนดค่าเริ่มต้นเป็น 5
- 4. แสดงผล ข้อมูลที่เก็บไว้ใน ตัวแปร a
- 5. คำนวณ ค่าในตัวแปร a + ค่าในตัวแปร b + 1 แล้วเก็บผลลัพธ์ลงใน ตัวแปร b
- 6. แสดงผล ข้อมูลที่เก็บไว้ใน ตัวแปร b
- 7. Stop จบการทำงานของโปรแกรม

Exercises ให้เขียน flowchart ของโปรแกรม

```
เขียนโปรแกรมสำหรับ แปลงอุณหภูมิ
กำหนดค่าข้อมูลอุณหภูมิ (องศาเซลเซียส)
คำนวณหาค่า อุณหภูมิ (องศาฟาเรนไฮต์)
คำนวณหาค่า อุณหภูมิ (เคลวิน)
ด้วยสมการ
F = 9/5 * C + 32
K = C + 273.15
กำหนดให้
C คือ องศาเซลเซียส
F คือ องศาฟาเรนไฮต์
K คือ เคลวิน
ตัวอย่าง
กำหนด
C = 39.85 # อุณหภูมิหน่วยองศาเซลเซียส
จะได้ Output คือ
103.73 F
313.0 K
Output บรรทัดแรกคือค่า F บรรทัดที่สองคือค่า K
```

เฉลย

เขียนโปรแกรมสำหรับ แปลงอุณหภูมิ

กำหนดค่าข้อมูลอุณหภูมิ (องศาเซลเซียส) คำนวณหาค่า อุณหภูมิ (องศาฟาเรนไฮต์) คำนวณหาค่า อุณหภูมิ (เคลวิน)

ด้วยสมการ

F = 9/5 * C + 32

K = C + 273.15

กำหนดให้

C คือ องศาเซลเซียส

F คือ องศาฟาเรนไฮต์

K คือ เคลวิน

ตัวอย่าง

กำหนด

C = 39.85 # อุณหภูมิหน่วยองศาเซลเซียส

จะได้ Output คือ

103.73 F 313.0 K

Output บรรทัดแรกคือค่า F บรรทัดที่สองคือค่า K

Selection Control Statement

หลักการทำงาน

ถ้าเงื่อนไขเป็นจริง (True) จะไปทำงานทาง ฝั่งจริง (True) แต่ถ้าเงื่อนไขเป็นเท็จ (False) ก็จะไปทำงานทางเท็จ (False)

จากภาพ

ถ้า age มีค่าน้อยกว่า 18
จะแสดงผลลัพธ์ฝั่ง TRUE คือ "You're not adult"
แต่ ถ้า age มีค่าตั้งแต่ 18 ขึ้นไป
จะแสดงผลลัพธ์ฝั่ง FALSE คือ "You're adult"

Repetition Control Statement

หลักการทำงาน

ทำงานวนซ้ำกระบวนจนกว่าเงื่อนไขจะเป็นเท็จ (False)

จากภาพ

ประกาศตัวแปร counter เป็นจำนวนจริง มีค่าเริ่มต้นเท่ากับ 0 ถ้า counter มีค่าน้อยกว่า 10

> จะแสดงผลลัพธ์ คือ ค่าในตัวแปร counter (ฝั่ง TRUE) แล้วนำค่าในตัวแปร counter + 1 เก็บผลลัพธ์ในตัวแปร

counter

แล้วทำซ้ำขั้นตอนการตรวจสอบค่า counter แต่ ถ้า counter มีค่าตั้งแต่ 10 ขึ้นไป จะจบการทำงาน

Basic Mathematical Logic

ประพจน์ (Proposition) คือ ประโยคหรือข้อความ ที่สามารถบอกค่าความจริงว่าเป็นจริงหรือเท็จอย่าง ใดอย่างหนึ่งเท่านั้น

เช่น นาย A มีอายุ 20 ปี

ประพจน์นี้จะเป็นจริง ก็ต่อเมื่อนาย A มีอายุ<u>**เท่ากับ**</u> 20 ปีเท่านั้น

ประพจน์นี้จะเป็นเท็จ ก็ต่อเมื่อนาย A มีอายุ**ไม่เท่ากับ** 20 ปี (มากกว่าหรือน้อยกว่า 20)

การเชื่อมประพจน์ จะกล่าวถึง 2 ตัวเชื่อม คือ "And" (และ), "Or" (หรือ)

AND Connection

เช่น A มีอายุ 20 ปี **และ** มีอาชีพโปรแกรมเมอร์ มี 2 ประพจน์ย่อย คือ

- 1. A มีอายุ<u>**เท่ากับ**</u> 20 ปี
- 2. A เป็นโปรแกรมเมอร์

ประพจน์นี้จะเป็นจริง ก็ต่อเมื่อ ประพจน์ย่อยทั้งหมดเป็นจริง ประพจน์นี้จะเป็นเท็จ ก็ต่อเมื่อ ประพจน์ใดประพจน์หนึ่งเป็นเท็จ

OR Connection

เช่น A มีอายุ 20 ปี **หรือ** มีอาชีพโปรแกรมเมอร์ มี 2 ประพจน์ย่อย คือ

- 1. A มีอายุ<u>**เท่ากับ**</u> 20 ปี
- 2. A เป็นโปรแกรมเมอร์

ประพจน์นี้จะเป็นจริง ก็ต่อเมื่อ ประพจน์ใดประพจน์หนึ่งเป็นจริง ประพจน์นี้จะเป็นเท็จ ก็ต่อเมื่อ ประพจน์ย่อยทั้งหมดเป็นเท็จ

Negation (นิเสธ)

นิเสธ คือ การเปลี่ยนค่าความจริงเป็นค่าตรงกันข้าม

เช่น นาย A มีอายุ 20 ปี

ถ้าประพจน์นี้เป็นจริง

นิเสธของประพจน์นี้จะเป็นเท็จ

ถ้าประพจน์นี้เป็นเท็จ

นิเสธของประพจน์นี้จะเป็นจริง

Expression (นิพจน์)

นิพจน์หมายถึงการนำตัวแปร ค่าคงที่มากระทำต่อกันโดยใช้ *ตัวดำเนินการคำนวณ ตัวดำเนินการสัมพันธ์* หรือ*ตัวดำเนินการตรรกะ* มี 3 ชนิด คือ

- นิพจน์คำนวณ (Arithmetic Expressions)
- นิพจน์เชิงสัมพันธ์ (Relational Expressions)
- นิพจน์ตรรกะ (Logical Expressions)

ในการเขียนโปรแกรม เราจะใช้ *นิพจน์เชิงสัมพันธ์* และ *นิพจน์ตรรกะ* เป็นตัวกำหนดค่าความจริงแทน ประพจน์

Arithmetic Expressions (นิพจน์คำนวณ)

นิพจน์คำนวณเป็นนิพจน์ที่ใช้ตัวดำเนินการดำเนินการคณิตศาสตร์เป็นตัวกระทำ ใน Python มีตัวดำเนินการพื้นฐาน คือ

- การบวก (+)
- การลบ (-)
- การคูณ (*)
- การยกกำลัง (**)
- การหาร (/)
- การหารปัดเศษ (//)
- การหาเศษจากการหาร (%)

Relational Expressions (นิพจน์เชิงสัมพันธ์)

เป็นนิพจน์ที่ใช้ตัวดำเนินการเป็นตัวดำเนินการสัมพันธ์

ใน Python มีตัวดำเนินการพื้นฐาน คือ

- น้อยกว่า (<)
- มากกว่า (>)
- เท่ากับ (==)
- น้อยกว่าหรือเท่ากับ (<=)
- มากกว่าหรือเท่ากับ (>=)
- ไม่เท่ากับ (!=)

Logical Expressions (นิพจน์ตรรกะ)

เป็นนิพจน์ที่ใช้ตัวดำเนินการเป็นตัวดำเนินการตรรกะ ใน Python มีตัวดำเนินการพื้นฐาน คือ

- and (และ)
- or (หรือ)
- ! (นิเสธ หรือ not)