

An HPC Framework for

Multi-Modal Plant Phenotyping Integrating Controlled Environment & Open Field Studies

Sun Oh, Libo Zhang, Yang Yang, Mitch Tuinstra Institute for Plant Sciences

Plant Phenotyping

Phenotype

• Imaging sensors, high-throughput

Phenotyping Research

Treatment

- Data collection
- Measurements

G	ExM	Msmt 1	Msmt 2	Msmt 3
А	Control	0.1	0.5	1.5
А	Treatment	0.2	0.5	1.8
В	Control	0.2	1.0	3.0
В	Treatment	0.4	1.1	3.6

Data analysis

- Modeling
- Interpretation

Phenotyping Facilities: Open-field & Indoor

Objectives

1. Multi-modal sensor data workflows

2. Node-level, thread-level parallelization

Data Workflows (1/2, PC-based)

Input Data

Radius (mm) Indoor - 0.6 - 0.4 UAV

Data Workflows (2/2)

Processing Bottlenecks

Source	Sensor	Input data (GB)	RAM req. (GB)	Bottlenecks
Indoor	Hyperspectral	1-12	4-64	Band-wise transform, band algebra
Indoor	X-ray	~ 20	32-64	Graph optimization
Open-field	Aerial image	1-8	4-32	Band algebra
Open-field	Point cloud	~ 0.1	4-32	Nearest-neighbor search, Data cropping (w/ boundary)

Parallelization (Single Data Multi Instruction)

Parallelization (Multi Data Single Instruction)

Constraints

- HPC usage rules
 - No. of cores
 - Automatic scaling

- Inherent mem inefficiency
 - Python array
 - Dependencies

Results

Conclusions

• Comprehensive workflow for HTP, integrating indoor and UAV sensors

HPC node- and thread-level parallelization

Some data pipelines still limited by licensed SW and OS

 Our long-term goal is to extend the processing limits and work directly with raw data HARVEST 2025

INTERNATIONAL
CONFERENCE ON
PARALLEL
PROCESSING

Thank you

github.itap.purdue.edu/plantscience

