Обчислюваність

Андрій Фесенко

ullet \mathcal{D} — предметна область (об'єкти, правильно побудовані формули, ...)

- \mathcal{D} предметна область (об'єкти, правильно побудовані формули, ...)
- ullet $u:\mathcal{D} o \mathcal{N}$ кодування унікальним натуральним числом

- \mathcal{D} предметна область (об'єкти, правильно побудовані формули, . . .)
- ullet $u:\mathcal{D} o \mathcal{N}$ кодування унікальним натуральним числом
- ullet існує безліч нумерацій Геделя $(
 u(x_1,\dots,x_n)=2^{
 u(x_1)}\cdot\dots\cdot p_n^{
 u(x_n)})$

- \mathcal{D} предметна область (об'єкти, правильно побудовані формули, . . .)
- ullet $u:\mathcal{D} o\mathcal{N}$ кодування унікальним натуральним числом
- ullet існує безліч нумерацій Геделя $(
 u(x_1,\ldots,x_n)=2^{
 u(x_1)}\cdot\ldots\cdot p_n^{
 u(x_n)})$
- арифметизація довільної теорії

- \mathcal{D} предметна область (об'єкти, правильно побудовані формули, . . .)
- ullet $u:\mathcal{D} o \mathcal{N}$ кодування унікальним натуральним числом
- ullet існує безліч нумерацій Геделя $(
 u(x_1,\dots,x_n)=2^{
 u(x_1)}\cdot\dots\cdot p_n^{
 u(x_n)})$
- арифметизація довільної теорії
- часткова функція $f: \mathbb{N}^n \to \mathbb{N}, \ n \in \mathbb{N}, \ \varepsilon$ (алгоритмічно) обчислюваною тйттк існує МТ $M: M(x_1, \dots, x_n) \simeq f(x_1, \dots, x_n), \ \forall x_1, \dots, x_n \in \mathbb{N}$ (теза Тюрінга)

- \mathcal{D} предметна область (об'єкти, правильно побудовані формули, ...)
- ullet $u:\mathcal{D} o \mathcal{N}$ кодування унікальним натуральним числом
- ullet існує безліч нумерацій Геделя $(
 u(x_1,\dots,x_n)=2^{
 u(x_1)}\cdot\dots\cdot p_n^{
 u(x_n)})$
- арифметизація довільної теорії
- часткова функція $f: \mathbb{N}^n \to \mathbb{N}, \ n \in \mathbb{N}, \ \epsilon$ (алгоритмічно) обчислюваною тйттк існує МТ $M: M(x_1, \dots, x_n) \simeq f(x_1, \dots, x_n), \ \forall x_1, \dots, x_n \in \mathbb{N}$ (теза Тюрінга)
- множина (алгоритмічно) обчислюваних функцій збігається з множиною частково-рекурсивних функцій (*теза Черча*)

- \mathcal{D} предметна область (об'єкти, правильно побудовані формули, ...)
- ullet $u:\mathcal{D} o \mathcal{N}$ кодування унікальним натуральним числом
- ullet існує безліч нумерацій Геделя $(
 u(x_1,\dots,x_n)=2^{
 u(x_1)}\cdot\dots\cdot p_n^{
 u(x_n)})$
- арифметизація довільної теорії
- часткова функція $f: \mathbb{N}^n ound \mathbb{N}, \ n \in \mathbb{N}, \ \epsilon$ (алгоритмічно) обчислюваною тйттк існує МТ $M: M(x_1, \dots, x_n) \simeq f(x_1, \dots, x_n), \ \forall x_1, \dots, x_n \in \mathbb{N}$ (теза Тюрінга)
- множина (алгоритмічно) обчислюваних функцій збігається з множиною частково-рекурсивних функцій (*теза Черча*)
- ullet нумерація машин Тюрінга M_0, M_1, \dots

- \mathcal{D} предметна область (об'єкти, правильно побудовані формули, ...)
- ullet $u:\mathcal{D} o \mathcal{N}$ кодування унікальним натуральним числом
- ullet існує безліч нумерацій Геделя $(
 u(x_1,\dots,x_n)=2^{
 u(x_1)}\cdot\dots\cdot p_n^{
 u(x_n)})$
- арифметизація довільної теорії
- часткова функція $f: \mathbb{N}^n \to \mathbb{N}, n \in \mathbb{N}, \epsilon$ (алгоритмічно) обчислюваною тйттк існує МТ $M: M(x_1, \dots, x_n) \simeq f(x_1, \dots, x_n), \forall x_1, \dots, x_n \in \mathbb{N}$ (теза Тюрінга)
- множина (алгоритмічно) обчислюваних функцій збігається з множиною частково-рекурсивних функцій (теза Черча)
- ullet нумерація машин Тюрінга M_0, M_1, \dots
- ullet нумерація всіх (алгоритмічно) обчислюваних функцій $arphi_0, arphi_1, \dots$

Обчислювана функція

Приклад

Чи є обчислюваною функція

$$f(n) = egin{cases} 1, & ext{якщо через 10 років буде колонія на Місяці} \ 0, & ext{якщо через 10 років не буде колонії на Місяці} \end{cases} ?$$

Обчислювана функція

Приклад

Чи є обчислюваною функція

$$f(n) = \begin{cases} 1, & \text{якщо через 10 років буде колонія на Місяці} \\ 0, & \text{якщо через 10 років не буде колонії на Місяці} \end{cases}$$
 А функція

$$f(n) = egin{cases} 1, & \text{якщо точно через 5 млрд років Сонце погасне} \ 0, & \text{якщо через 5 млрд років Сонце не погасне} \end{cases}$$

Теорема

Існує необчислювана всюди визначена функція.

Теорема

Існує необчислювана всюди визначена функція.

Доведення.

ullet $\varphi_0^1, \varphi_1^1, \varphi_2^1, \ldots$ — всі обчислювані функції (арності 1)

Теорема

Існує необчислювана всюди визначена функція.

Доведення.

ullet $\varphi_0^1, \varphi_1^1, \varphi_2^1, \ldots$ всі обчислювані функції (арності 1)

•
$$f(n) = egin{cases} arphi_n^1(n) + 1, & \text{якщо } arphi_n^1(n)
eq \bot \\ 0, & \text{якщо } arphi_n^1(n) = \bot(\not \exists arphi_n^1), \ n \in \mathbb{N} \end{cases}$$

Теорема

Існує необчислювана всюди визначена функція.

Доведення.

- ullet $\varphi_0^1, \varphi_1^1, \varphi_2^1, \ldots$ всі обчислювані функції (арності 1)
- ullet $f(n)=egin{cases} arphi_n^1(n)+1, & ext{якщо } arphi_n^1(n)
 eq oxedown \ 0, & ext{якщо } arphi_n^1(n)=ot(
 otingarphi_n^1), \ n\in\mathbb{N} \end{cases}$
- $\forall k \in \mathbb{N} \ f \not\simeq \varphi_k^1 \colon f(k) \not\simeq \varphi_k^1(k)$

Теорема

Існує необчислювана всюди визначена функція.

Доведення.

- ullet $arphi_0^1,arphi_1^1,arphi_2^1,\ldots$ всі обчислювані функції (арності 1)
- ullet $f(n)=egin{cases} arphi_n^1(n)+1, & ext{якщо } arphi_n^1(n)
 eq oxedom \ 0, & ext{якщо } arphi_n^1(n)=ot(
 otingarphi_n^1), & n\in\mathbb{N} \end{cases}$
- $\forall k \in \mathbb{N} \ f \not\simeq \varphi_k^1 \colon f(k) \not\simeq \varphi_k^1(k)$
- метод діагоналізації (Кантора)

Теорема про параметризацію

Для довільної обчислюваної функції f(x,y) існує така всюди визначена обчислювана функція k(x), що $f(x,y)=\varphi_{k(x)}(y)$ для довільної нумерації Геделя $\varphi_0,\varphi_1,\ldots$ унарних обчислюваних функцій.

Теорема про параметризацію

Для довільної обчислюваної функції f(x,y) існує така всюди визначена обчислювана функція k(x), що $f(x,y)=\varphi_{k(x)}(y)$ для довільної нумерації Геделя $\varphi_0,\varphi_1,\ldots$ унарних обчислюваних функцій.

Доведення.

ullet f(x,y) — обчислювана $\Rightarrow \exists \ \mathsf{MT} \ \mathit{M} \colon \mathit{M}(x,y) \simeq f(x,y)$

Теорема про параметризацію

Для довільної обчислюваної функції f(x,y) існує така всюди визначена обчислювана функція k(x), що $f(x,y)=\varphi_{k(x)}(y)$ для довільної нумерації Геделя $\varphi_0,\varphi_1,\ldots$ унарних обчислюваних функцій.

Доведення.

- ullet f(x,y) обчислювана $\Rightarrow \exists \ \mathsf{MT} \ \mathit{M} \colon \mathit{M}(x,y) \simeq f(x,y)$
- $\forall a \in \mathbb{N} \exists MT M_a: M_a(y) \simeq f(a, y)$

J,

Теорема про параметризацію

Для довільної обчислюваної функції f(x,y) існує така всюди визначена обчислювана функція k(x), що $f(x,y)=\varphi_{k(x)}(y)$ для довільної нумерації Геделя $\varphi_0,\varphi_1,\ldots$ унарних обчислюваних функцій.

Доведення.

- ullet f(x,y) обчислювана $\Rightarrow \exists \ \mathsf{MT} \ \mathit{M} \colon \mathit{M}(x,y) \simeq f(x,y)$
- $\forall a \in \mathbb{N} \exists MT M_a: M_a(y) \simeq f(a, y)$
- композиція машин Тюрінга дописати аргумент a на вхідну (додаткову) стрічку та запустити МТ M

Теорема про параметризацію

Для довільної обчислюваної функції f(x,y) існує така всюди визначена обчислювана функція k(x), що $f(x,y)=\varphi_{k(x)}(y)$ для довільної нумерації Геделя $\varphi_0,\varphi_1,\ldots$ унарних обчислюваних функцій.

Доведення.

- ullet f(x,y) обчислювана $\Rightarrow \exists \ \mathsf{MT} \ \mathit{M} \colon \mathit{M}(x,y) \simeq f(x,y)$
- $\forall a \in \mathbb{N} \ \exists \ \mathsf{MT} \ M_a \colon M_a(y) \simeq f(a,y)$
- композиція машин Тюрінга— дописати аргумент *а* на вхідну (додаткову) стрічку та запустити МТ *М*
- ullet номер машини M_a ϵ значенням k(a)

Теорема про параметризацію

Для довільної обчислюваної функції f(x,y) існує така всюди визначена обчислювана функція k(x), що $f(x,y)=\varphi_{k(x)}(y)$ для довільної нумерації Геделя $\varphi_0,\varphi_1,\ldots$ унарних обчислюваних функцій.

Доведення.

- ullet f(x,y) обчислювана $\Rightarrow \exists \ \mathsf{MT} \ \mathit{M} \colon \mathit{M}(x,y) \simeq f(x,y)$
- $\forall a \in \mathbb{N} \exists MT M_a: M_a(y) \simeq f(a, y)$
- композиція машин Тюрінга дописати аргумент *а* на вхідну (додаткову) стрічку та запустити МТ *М*
- ullet номер машини M_a ϵ значенням k(a)

Наслідок

Номер функції k(x) залежить тільки від параметру x.

s_n^m теорема Кліні (s-m-n теорема)

Теорема

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ обчислюваних функцій існує така примітивно рекурсивна функція $s: \mathbb{N}^2 \to \mathbb{N}$ арності 2, що для довільного номера Геделя $p \in \mathbb{N}$ деякої часткової функції арності 2 виконується рівність Кліні $\varphi_{s(p,x)}(y) \simeq \varphi_p(x,y)$ для всіх натуральних чисел $x,y \in \mathbb{N}$.

s_n^m теорема Кліні (s-m-n теорема)

Теорема

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ обчислюваних функцій існує така примітивно рекурсивна функція $s: \mathbb{N}^2 \to \mathbb{N}$ арності 2, що для довільного номера Геделя $p \in \mathbb{N}$ деякої часткової функції арності 2 виконується рівність Кліні $\varphi_{s(p,x)}(y) \simeq \varphi_p(x,y)$ для всіх натуральних чисел $x,y \in \mathbb{N}$.

s_n^m теорема Кліні (s-m-n теорема, теорема про параметризацію)

Для довільних натуральних чисел m,n>0 та довільної нумерації Геделя $\varphi_0,\varphi_1,\dots$ обчислюваних функцій існує така примітивно рекурсивна функція $s_n^m:\mathbb{N}^{m+1}\to\mathbb{N}$ арності m+1, що для довільного номера Геделя $p\in\mathbb{N}$ деякої часткової функції арності m+n виконується рівність Кліні

$$arphi_{s_n^m(p,x_1,\ldots,x_m)}(y_1,\ldots,y_n)\simeq arphi_p(x_1,\ldots,x_m,y_1,\ldots,y_n)$$
 для всіх натуральних чисел $x_1,\ldots,x_m,y_1,\ldots,y_n\in\mathbb{N}.$

Означення

Для довільної множини часткових функцій $\mathcal{H}\subseteq\mathcal{F}_n$, арності n, $n\in\mathbb{N}_0$, функцію $f\in\mathcal{F}_{n+1}$ арності n+1 називають **універсальною** функцією множини функцій \mathcal{H} , якщо вона задовольняє дві вимоги:

- ullet для довільного числа $c\in\mathbb{N}_0$ функція $f(c,\cdot)$ арності n належить множині функцій \mathcal{H}
- ② для довільної функції h з множини функцій $\mathcal H$ існує таке число $c\in\mathbb N_0$, що $h(x_1,\dots,x_n)\simeq f(c,x_1,\dots,x_n)$ для довільних значень $x_1,\dots,x_n\in\mathbb N_0$

Означення

Для довільної множини часткових функцій $\mathcal{H} \subseteq \mathcal{F}_n$, арності n, $n \in \mathbb{N}_0$, функцію $f \in \mathcal{F}_{n+1}$ арності n+1 називають **універсальною** функцією множини функцій \mathcal{H} , якщо вона задовольняє дві вимоги:

- ullet для довільного числа $c\in\mathbb{N}_0$ функція $f(c,\cdot)$ арності n належить множині функцій \mathcal{H}
- $m{Q}$ для довільної функції h з множини функцій \mathcal{H} існує таке число $c\in\mathbb{N}_0$, що $h(x_1,\dots,x_n)\simeq f(c,x_1,\dots,x_n)$ для довільних значень $x_1,\dots,x_n\in\mathbb{N}_0$

Алгоритм, який обчислює універсальну функцію є універсальним.

Теорема (про нумерацію)

Для довільного числа $n\in\mathbb{N}_0$ існує універсальна функція множини всіх часткових обчислюваних функцій $\mathcal{H}_n\subseteq\mathcal{F}_n$ арності n.

Теорема (про нумерацію)

Для довільного числа $n \in \mathbb{N}_0$ існує універсальна функція множини всіх часткових обчислюваних функцій $\mathcal{H}_n \subseteq \mathcal{F}_n$ арності n.

Доведення.

ullet нехай $f(y,x_1,\ldots,x_n)\simeq arphi_y(x_1,\ldots,x_n)$ для довільних чисел $y,x_1,\ldots,x_n\in\mathbb{N}_0$

_

Теорема (про нумерацію)

Для довільного числа $n\in\mathbb{N}_0$ існує універсальна функція множини всіх часткових обчислюваних функцій $\mathcal{H}_n\subseteq\mathcal{F}_n$ арності n.

Доведення.

- ullet нехай $f(y,x_1,\ldots,x_n)\simeq arphi_y(x_1,\ldots,x_n)$ для довільних чисел $y,x_1,\ldots,x_n\in\mathbb{N}_0$
- за значенням $y \in \mathbb{N}_0$ знаходимо алгоритм обчислення функції φ_y і обчислюємо значення $\varphi_y(x_1,\dots,x_n)$ за допомогою цього алгоритму

Теорема (про нумерацію)

Для довільного числа $n\in\mathbb{N}_0$ існує універсальна функція множини всіх часткових обчислюваних функцій $\mathcal{H}_n\subseteq\mathcal{F}_n$ арності n.

Доведення.

- ullet нехай $f(y,x_1,\ldots,x_n)\simeq arphi_y(x_1,\ldots,x_n)$ для довільних чисел $y,x_1,\ldots,x_n\in\mathbb{N}_0$
- за значенням $y \in \mathbb{N}_0$ знаходимо алгоритм обчислення функції φ_y і обчислюємо значення $\varphi_y(x_1,\dots,x_n)$ за допомогою цього алгоритму
- ullet \Rightarrow функція f ϵ обчислюваною

]

Теорема

Для довільного числа $n\in\mathbb{N}_0$ не існує універсальної функції множини всіх всюди визначених обчислюваних функцій $\mathcal{H}_n^{tot}\subseteq\mathcal{F}_n^{tot}\subset\mathcal{F}_n$ арності n.

Теорема

Для довільного числа $n\in\mathbb{N}_0$ не існує універсальної функції множини всіх всюди визначених обчислюваних функцій $\mathcal{H}_n^{tot}\subseteq\mathcal{F}_n^{tot}\subset\mathcal{F}_n$ арності n.

Доведення.

• нехай існує універсальна функція f множини функцій \mathcal{H}_n^{tot} : $f(y,x_1,\ldots,x_n)=\varphi_y(x_1,\ldots,x_n)$ для довільних чисел $y,x_1,\ldots,x_n\in\mathbb{N}_0$

Теорема

Для довільного числа $n\in\mathbb{N}_0$ не існує універсальної функції множини всіх всюди визначених обчислюваних функцій $\mathcal{H}_n^{tot}\subseteq\mathcal{F}_n^{tot}\subset\mathcal{F}_n$ арності n.

Доведення.

- нехай існує універсальна функція f множини функцій \mathcal{H}_n^{tot} : $f(y,x_1,\ldots,x_n)=\varphi_y(x_1,\ldots,x_n)$ для довільних чисел $y,x_1,\ldots,x_n\in\mathbb{N}_0$
- ullet нехай $h(x_1,\ldots,x_n)=f(x_1,x_1,\ldots,x_n)+1$ для довільних чисел $x_1,\ldots,x_n\in\mathbb{N}_0$

Теорема

Для довільного числа $n\in\mathbb{N}_0$ не існує універсальної функції множини всіх всюди визначених обчислюваних функцій $\mathcal{H}_n^{tot}\subseteq\mathcal{F}_n^{tot}\subset\mathcal{F}_n$ арності n.

Доведення.

- нехай існує універсальна функція f множини функцій \mathcal{H}_n^{tot} : $f(y,x_1,\ldots,x_n)=\varphi_y(x_1,\ldots,x_n)$ для довільних чисел $y,x_1,\ldots,x_n\in\mathbb{N}_0$
- ullet нехай $h(x_1,\ldots,x_n)=f(x_1,x_1,\ldots,x_n)+1$ для довільних чисел $x_1,\ldots,x_n\in\mathbb{N}_0$
- ullet $\Rightarrow h \in \mathcal{H}_n^{tot} \Rightarrow \exists c \in \mathbb{N}_0 \ f(c,x_1,\ldots,x_n) = h(x_1,\ldots,x_n)$ для довільних чисел $x_1,\ldots,x_n \in \mathbb{N}_0$

Теорема

Для довільного числа $n\in\mathbb{N}_0$ не існує універсальної функції множини всіх всюди визначених обчислюваних функцій $\mathcal{H}_n^{tot}\subseteq\mathcal{F}_n^{tot}\subset\mathcal{F}_n$ арності n.

Доведення.

- нехай існує універсальна функція f множини функцій \mathcal{H}_n^{tot} : $f(y,x_1,\ldots,x_n)=\varphi_y(x_1,\ldots,x_n)$ для довільних чисел $y,x_1,\ldots,x_n\in\mathbb{N}_0$
- ullet нехай $h(x_1,\dots,x_n)=f(x_1,x_1,\dots,x_n)+1$ для довільних чисел $x_1,\dots,x_n\in\mathbb{N}_0$
- ullet $\Rightarrow h \in \mathcal{H}_n^{tot} \Rightarrow \exists c \in \mathbb{N}_0 \ f(c,x_1,\ldots,x_n) = h(x_1,\ldots,x_n)$ для довільних чисел $x_1,\ldots,x_n \in \mathbb{N}_0$
- ullet з одного боку $h(c,\ldots,c)=f(c,\ldots,c)$, але $h(c,\ldots,c)=f(c,\ldots,c)+1$ за означенням функції $h\Rightarrow$ суперечність

ullet кожна універсальна функція множини унарних обчислюваних функцій визначає нумерацію $f(x,y) = arphi_x(y)$

- кожна універсальна функція множини унарних обчислюваних функцій визначає нумерацію $f(x,y) = \varphi_x(y)$
- бінарну функцію U називають головною універсальною функцією (головною нумерацією), якщо для будь-якої бінарної обчислюваної функції h існує всюди визначена обчислювана унарна функція g така, що h(x,y)=U(g(x),y) для всіх чисел $x,y\in\mathbb{N}_0$

- кожна універсальна функція множини унарних обчислюваних функцій визначає нумерацію $f(x,y) = \varphi_x(y)$
- бінарну функцію U називають головною універсальною функцією (головною нумерацією), якщо для будь-якої бінарної обчислюваної функції h існує всюди визначена обчислювана унарна функція g така, що h(x,y) = U(g(x),y) для всіх чисел $x,y \in \mathbb{N}_0$
- \Rightarrow існує головна універсальна функція множини всіх унарних обчислюваних функцій

- кожна універсальна функція множини унарних обчислюваних функцій визначає нумерацію $f(x,y) = \varphi_x(y)$
- бінарну функцію U називають головною універсальною функцією (головною нумерацією), якщо для будь-якої бінарної обчислюваної функції h існує всюди визначена обчислювана унарна функція g така, що h(x,y) = U(g(x),y) для всіх чисел $x,y \in \mathbb{N}_0$
- ullet \Rightarrow існує головна універсальна функція множини всіх унарних обчислюваних функцій
- ullet \Rightarrow $U_1(x,y) = U_2(c_1(x),y)$ і $U_2(x,y) = U_1(c_2(x),y)$ (теорема про ізоморфізм головних нумерацій)

- кожна універсальна функція множини унарних обчислюваних функцій визначає нумерацію $f(x,y) = \varphi_x(y)$
- бінарну функцію U називають головною універсальною функцією (головною нумерацією), якщо для будь-якої бінарної обчислюваної функції h існує всюди визначена обчислювана унарна функція g така, що h(x,y) = U(g(x),y) для всіх чисел $x,y \in \mathbb{N}_0$
- • ⇒ існує головна універсальна функція множини всіх унарних обчислюваних функцій
- ullet \Rightarrow $U_1(x,y)=U_2(c_1(x),y)$ і $U_2(x,y)=U_1(c_2(x),y)$ (теорема про ізоморфізм головних нумерацій)
- операції над обчислюваними функціями ⇔ операції над їх індексами

Теорема про нерухому точку (Роджерс, 1957р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної всюди визначеної унарної обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n \simeq \varphi_{f(n)}$.

Теорема про нерухому точку (Роджерс, 1957р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної всюди визначеної унарної обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n \simeq \varphi_{f(n)}$.

Доведення.

• розглянемо функцію $\varphi_{f(\varphi_x(x))}(y)$, $\varphi_{f(\varphi_x(x))}(y) \simeq \psi(f(\varphi_x(x)), y) \simeq g(x,y), \ \forall x,y \in \mathbb{N}_0$

Теорема про нерухому точку (Роджерс, 1957р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної всюди визначеної унарної обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n \simeq \varphi_{f(n)}$.

- розглянемо функцію $\varphi_{f(\varphi_x(x))}(y)$, $\varphi_{f(\varphi_x(x))}(y) \simeq \psi(f(\varphi_x(x)), y) \simeq g(x,y), \ \forall x,y \in \mathbb{N}_0$
- ullet з s_n^m теореми Кліні випливає, що існує така всюди визначена унарна функція h, що $\varphi_{f(\varphi_{\mathbf{x}}(\mathbf{x}))}(y)\simeq \varphi_{h(\mathbf{x})}(y)$, $orall x,y\in\mathbb{N}_0$

Теорема про нерухому точку (Роджерс, 1957р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної всюди визначеної унарної обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n \simeq \varphi_{f(n)}$.

- розглянемо функцію $\varphi_{f(\varphi_x(x))}(y)$, $\varphi_{f(\varphi_x(x))}(y) \simeq \psi(f(\varphi_x(x)), y) \simeq g(x,y), \ \forall x,y \in \mathbb{N}_0$
- з s_n^m теореми Кліні випливає, що існує така всюди визначена унарна функція h, що $\varphi_{f(\varphi_x(x))}(y) \simeq \varphi_{h(x)}(y), \, \forall x,y \in \mathbb{N}_0$
- ullet нехай $h\simeq arphi_m \Rightarrow arphi_{f(arphi_{\mathbf{x}}(\mathbf{x}))}(y)\simeq arphi_{arphi_{\mathbf{m}}(\mathbf{x})}(y)$, $orall x,y\in \mathbb{N}_0$

Теорема про нерухому точку (Роджерс, 1957р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної всюди визначеної унарної обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n \simeq \varphi_{f(n)}$.

- розглянемо функцію $\varphi_{f(\varphi_x(x))}(y)$, $\varphi_{f(\varphi_x(x))}(y) \simeq \psi(f(\varphi_x(x)), y) \simeq g(x,y), \ \forall x,y \in \mathbb{N}_0$
- з s_n^m теореми Кліні випливає, що існує така всюди визначена унарна функція h, що $\varphi_{f(\varphi_x(x))}(y) \simeq \varphi_{h(x)}(y)$, $\forall x,y \in \mathbb{N}_0$
- ullet нехай $h\simeq arphi_m\Rightarrow arphi_{f(arphi_{\mathbf{x}}(\mathbf{x}))}(y)\simeq arphi_{arphi_m(\mathbf{x})}(y)$, $orall x,y\in \mathbb{N}_0$
- ullet нехай $arphi_m(m)=n$ (всюди визначена) $\Rightarrow arphi_{f(n)}(y)\simeq arphi_n(y),$ $orall y\in \mathbb{N}_0$

Друга теорема про рекурсію (Кліні, 1938р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної бінарної часткової обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n(y) \simeq f(n,y)$ для всіх чисел $y \in \mathbb{N}_0$.

Друга теорема про рекурсію (Кліні, 1938р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної бінарної часткової обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n(y) \simeq f(n,y)$ для всіх чисел $y \in \mathbb{N}_0$.

Наслідок

Нехай функція $h - f(x, y) \simeq \varphi_{h(x)}(y)$ (s_n^m теорема).

Нехай число m ϵ нерухомою точкою функції h.

3 теореми про нерухому точку Роджерса випливає друга теорема про рекурсію ($n=m,\ \varphi_m(y)\simeq \varphi_{h(m)}(y)\simeq f(m,y)$ для всіх чисел $y\in \mathbb{N}_0$).

Друга теорема про рекурсію (Кліні, 1938р.)

Для довільної нумерації Геделя $\varphi_0, \varphi_1, \ldots$ унарних обчислюваних функцій і довільної бінарної часткової обчислюваної функції f існує таке натуральне число $n \in \mathbb{N}_0$, що $\varphi_n(y) \simeq f(n,y)$ для всіх чисел $y \in \mathbb{N}_0$.

Наслідок

Нехай функція $h-f(x,y)\simeq \varphi_{h(x)}(y)$ (s_n^m теорема).

Нехай число m ϵ нерухомою точкою функції h.

3 теореми про нерухому точку Роджерса випливає друга теорема про рекурсію ($n=m,\ \varphi_m(y)\simeq \varphi_{h(m)}(y)\simeq f(m,y)$ для всіх чисел $y\in \mathbb{N}_0$).

Наслідок

Нехай функція f — для довільного алгоритму \mathcal{A}_x алгоритм $\mathcal{A}_{f(x)}$ "друкує опис" алгоритму \mathcal{A}_x .

Функція $f \in \text{обчислюваною} \Rightarrow \text{за теоремою про нерухому точку існує алгоритм } \mathcal{A}$, який "друкує власний опис".

Чи може UTM обчислити довільну функцію $\{0,1\}^* o \{0,1\}^*$?

Чи може UTM обчислити довільну функцію $\{0,1\}^* o \{0,1\}^*$?

Теорема

Існує необчислювана функція $\mathit{UC}:\{0,1\}^* \to \{0,1\}$

Чи може UTM обчислити довільну функцію $\{0,1\}^* o \{0,1\}^*$?

Теорема

Існує необчислювана функція $\mathit{UC}:\{0,1\}^* \to \{0,1\}$

Доведення.

ullet нумерація машин Тюрінга за допомогою множини $\{0,1\}^*$, для довільного слова $x\in\{0,1\}^*$ відповідну машину Тюрінга позначають M_x або $M_{\lceil x \rceil}$

13

Чи може UTM обчислити довільну функцію $\{0,1\}^* o \{0,1\}^*$?

Теорема

Існує необчислювана функція $\mathit{UC}:\{0,1\}^* \to \{0,1\}$

- ullet нумерація машин Тюрінга за допомогою множини $\{0,1\}^*$, для довільного слова $x\in\{0,1\}^*$ відповідну машину Тюрінга позначають M_x або $M_{\lceil x \rceil}$
- ullet визначимо $\mathit{UC}(x) = egin{cases} 0, & \mathsf{якщо} \ M_{\mathsf{X}}(x) = 1 \ 1, & \mathsf{інакшe} \end{cases}$, $orall x \in \{0,1\}^*$

Чи може UTM обчислити довільну функцію $\{0,1\}^* o \{0,1\}^*$?

Теорема

Існує необчислювана функція $\mathit{UC}:\{0,1\}^* \to \{0,1\}$

- ullet нумерація машин Тюрінга за допомогою множини $\{0,1\}^*$, для довільного слова $x\in\{0,1\}^*$ відповідну машину Тюрінга позначають M_x або $M_{\lceil x \rceil}$
- ullet визначимо $\mathit{UC}(x) = egin{cases} 0, & \mathsf{якщо} \ \mathit{M}_x(x) = 1 \ 1, & \mathsf{інакшe} \end{cases}$, $orall x \in \{0,1\}^*$
- Нехай \exists МТ \widetilde{M} : $\forall x \in \{0,1\}^*$ $\widetilde{M}(x) = UC(x)$ $\widetilde{M}(\lfloor \widetilde{M} \rfloor) = ?$

Чи може UTM обчислити довільну функцію $\{0,1\}^* o \{0,1\}^*$?

Теорема

Існує необчислювана функція $\mathit{UC}:\{0,1\}^* \to \{0,1\}$

- ullet нумерація машин Тюрінга за допомогою множини $\{0,1\}^*$, для довільного слова $x\in\{0,1\}^*$ відповідну машину Тюрінга позначають M_x або $M_{\lceil x \rceil}$
- ullet визначимо $\mathit{UC}(x) = egin{cases} 0, & \mathsf{якщо} \ \mathit{M}_x(x) = 1 \ 1, & \mathsf{інакшe} \end{cases}$, $orall x \in \{0,1\}^*$
- Нехай \exists МТ \widetilde{M} : $\forall x \in \{0,1\}^*$ $\widetilde{M}(x) = UC(x)$ $\widetilde{M}(\lfloor \widetilde{M} \rfloor) = ?$
- ullet якщо $\widetilde{M}(\lfloor \widetilde{M}
 floor) = 1$, то $\mathit{UC}(\lfloor \widetilde{M}
 floor) = 0$, і навпаки

Задача розпізнавання \Leftrightarrow всюди визначена функція $\{0,1\}^* \to \{0,1\}$

Задача розпізнавання \Leftrightarrow всюди визначена функція $\{0,1\}^* o \{0,1\}$

Означення (багатострічкова машина Тюрінга)

- $k \in \mathbb{N}^+$ кількість стрічок;
- Г непорожня скінченна множина, яку називають **алфавітом** машини **Тюрінга** *М* або **алфавітом стрічки**;
- \bullet # \in Γ порожній символ;
- {0,1} вхідний алфавіт;
- Q непорожня скінченна множина внутрішніх станів;
- ullet $q_0 \in Q$ початковий (внутрішній) стан;
- $ullet \ q_{acc} \in Q$ кінцевий стан, що приймає вхідне слово;
- $\delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma^k \rightarrow Q \times \Gamma^{k-1} \times \{L, S, R\}^k$ (часткова) функція переходів.

Зауваження

 $q_{acc}, q_{rej} \in Q, \ q_{acc} \neq q_{rej}$, інших завершальних конфігурацій немає ($\Sigma = \{0,1\}, \ q_{acc} \equiv q_{accept} \equiv q_{v} \equiv q_{yes}, \ q_{rej} \equiv q_{reject} \equiv q_{n} \equiv q_{no}$)

Зауваження

 $q_{acc}, q_{rej} \in Q$, $q_{acc} \neq q_{rej}$, інших завершальних конфігурацій немає ($\Sigma = \{0,1\}$, $q_{acc} \equiv q_{accept} \equiv q_y \equiv q_{yes}$, $q_{rej} \equiv q_{reject} \equiv q_n \equiv q_{no}$)

Означення

Завершальну конфігурацію машини Тюрінга називають **позитивною** (**негативною**), якщо її стан є кінцевим станом, що приймає (відхиляє) вхідне слово.

Зауваження

 $q_{acc}, q_{rej} \in Q$, $q_{acc} \neq q_{rej}$, інших завершальних конфігурацій немає ($\Sigma = \{0,1\}$, $q_{acc} \equiv q_{accept} \equiv q_y \equiv q_{yes}$, $q_{rej} \equiv q_{reject} \equiv q_n \equiv q_{no}$)

Означення

Завершальну конфігурацію машини Тюрінга називають **позитивною** (**негативною**), якщо її стан є кінцевим станом, що приймає (відхиляє) вхідне слово.

Означення

машина Тюрінга M вхідне слово x

- ullet прийма $oldsymbol{\epsilon}$, якщо M(x)=1 $(q_{acc},$ позитивна конфігурація)
- ullet відхиля $oldsymbol{\epsilon}$, якщо M(x)=0 (q_{rej} , негативна конфігурація)
- ullet не прийма $oldsymbol{\epsilon}$, якщо M(x)=0 або $M(x)=oldsymbol{\perp}$
- ullet не відхиля $oldsymbol{arepsilon}$, якщо M(x)=1 або $M(x)=oldsymbol{\perp}$

Розпізнавання мов

Означення

машина Тюрінга M вирішу $\pmb{\varepsilon}$ (розв'язу $\pmb{\varepsilon}$) (decide) мову $L\subseteq\{0,1\}^*$

- ullet якщо $x\in L$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L$, то M(x)=0 (q_{rej})

Розпізнавання мов

Означення

машина Тюрінга M вирішує (розв'язує) (decide) мову $L\subseteq\{0,1\}^*$

- ullet якщо $x\in L$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L$, то M(x)=0 (q_{rej})

Означення

машина Тюрінга M **розпізнає** (recognize) мову $L\subseteq\{0,1\}^*$

- ullet якщо $x\in L$, то M(x)=1 (q_{acc})
- ullet якщо $x
 ot\in L$, то M(x)=0 (q_{rej}) або M(x)=ot

Розпізнавання мов

Означення

машина Тюрінга M вирішує (розв'язує) (decide) мову $L\subseteq\{0,1\}^*$

- ullet якщо $x \in L$, то $M(x) = 1 \; (\; q_{acc} \;)$
- ullet якщо $x
 ot\in L$, то M(x)=0 (q_{rej})

Означення

машина Тюрінга M **розпізнає** (recognize) мову $L\subseteq\{0,1\}^*$

- якщо $x \in L$, то $M(x) = 1 \; (q_{acc})$
- ullet якщо $x
 ot\in L$, то M(x)=0 (q_{rej}) або M(x)=ot

Означення

Мови — вирішувані (рекурсивні) або напіввирішувані (рекурсивно злічені)

мова L(M) (L_M) машини Тюрінга M — всі слова, які вона приймає

Невирішуваність

Означення

Машини Тюрінга M_1 і M_2 є

- однаковими, якщо існує перестановка внутрішніх станів та/або зміна напрямків 'ліворуч' та 'праворуч', інакше принципово різними
- ullet еквівалентними, якщо $M_1 = M_2 \; (M_1 \simeq M_2)$
- ullet з однією мовою, якщо $L(M_1) = L(M_2)$

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x. (Розв'язати мову L_{HALT} .)

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x. (Розв'язати мову L_{HALT} .)

Теорема

Задача HALT ϵ невирішуваною.

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x. (Розв'язати мову L_{HALT} .)

Теорема

Задача *HALT* є невирішуваною.

Доведення.

• нехай існує М_{НАLТ}

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x. (Розв'язати мову L_{HALT} .)

Теорема

Задача *HALT* є невирішуваною.

- нехай існує *М_{НАLТ}*
- $\bullet \ M_{diag}(x) = M_{HALT}(x,x)$

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x. (Розв'язати мову L_{HALT} .)

Теорема

Задача *HALT* є невирішуваною.

- нехай існує *М_{НАLТ}*
- $M_{diag}(x) = M_{HALT}(x, x)$
- $\bullet \ M^{co}(x) = \left\{ \begin{array}{l} \textit{cycle}, \textit{M}_{\textit{diag}}(x) = 1 \\ \textit{stop}, \textit{M}_{\textit{diag}}(x) = 0 \end{array} \right. ,$

Задача HALT

Визначити за двійковим представленням машини Тюрінга M та вхідним словом $x \in \{0,1\}^*$, чи зупиниться машина Тюрінга M на вхідному слові x. (Розв'язати мову L_{HALT} .)

Теорема

Задача *HALT* є невирішуваною.

- нехай існує M_{HALT}
- $M_{diag}(x) = M_{HALT}(x, x)$
- $M^{co}(x) = \begin{cases} cycle, M_{diag}(x) = 1 \\ stop, M_{diag}(x) = 0 \end{cases}$
- M^{co}([M^{co}]) ?

3адача $HALT_{arepsilon}$

Задача HALT =

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. (Розв'язати мову L_{HALT_s} .)

3адача $HALT_{arepsilon}$

3адача $HALT_{\varepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. (Розв'язати мову $L_{HALT_{\varepsilon}}$.)

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

3адача $HALT_{arepsilon}$

3адача $HALT_{\varepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. (Розв'язати мову L_{HALT_s} .)

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

Доведення.

ullet для довільної пари МТ $ilde{M}$ та вхідного слова x існує МТ $ilde{M}_{\!\scriptscriptstyle X}$

$\mathsf{3}$ адача $\mathit{HALT}_arepsilon$

3адача $HALT_{arepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. (Розв'язати мову L_{HALT_a} .)

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

- ullet для довільної пари МТ $ilde{M}$ та вхідного слова x існує МТ $ilde{M}_{\!\scriptscriptstyle X}$
- якщо існує машина Тюрінга, яка розв'язує задачу $HALT_{\varepsilon}$, то вона розв'язує задачу HALT

$\mathsf{3}$ адача $\mathit{HALT}_arepsilon$

3адача $HALT_{arepsilon}$

Визначити за двійковим представленням машини Тюрінга M, чи зупиниться машина Тюрінга M на порожньому вхідному слові. (Розв'язати мову L_{HALT_a} .)

Теорема

Задача $HALT_{\varepsilon}$ є невирішуваною.

- ullet для довільної пари МТ $ilde{M}$ та вхідного слова x існує МТ $ilde{M}_{\!\scriptscriptstyle X}$
- якщо існує машина Тюрінга, яка розв'язує задачу $HALT_{\varepsilon}$, то вона розв'язує задачу HALT
- суперечність

Означення

Числову множину $S\subseteq \mathbb{N}$ називають **інваріантною**, якщо представлення будь-яких двох еквівалентних МТ одночасно належать або одночасно не належать множині S.

Означення

Числову множину $S\subseteq \mathbb{N}$ називають **інваріантною**, якщо представлення будь-яких двох еквівалентних МТ одночасно належать або одночасно не належать множині S.

Приклади

• всі МТ, які приймають вхідне слово 11

Означення

Числову множину $S\subseteq\mathbb{N}$ називають **інваріантною**, якщо представлення будь-яких двох еквівалентних МТ одночасно належать або одночасно не належать множині S.

Приклади

- всі МТ, які приймають вхідне слово 11
- всі МТ, які приймають хоч одне вхідне слово

Означення

Числову множину $S\subseteq \mathbb{N}$ називають **інваріантною**, якщо представлення будь-яких двох еквівалентних МТ одночасно належать або одночасно не належать множині S.

Приклади

- всі МТ, які приймають вхідне слово 11
- всі МТ, які приймають хоч одне вхідне слово
- всі МТ, які ніколи не зациклюються

Означення

Числову множину $S\subseteq\mathbb{N}$ називають **інваріантною**, якщо представлення будь-яких двох еквівалентних МТ одночасно належать або одночасно не належать множині S.

Приклади

- всі МТ, які приймають вхідне слово 11
- всі МТ, які приймають хоч одне вхідне слово
- всі МТ, які ніколи не зациклюються
- всі МТ, які зупиняться через 15 тактів з вхідним словом 1