11-05-2023

Paper/Subject Code: 41222/Fluid Mechanics S.E. Sem IV (C. Scheme, R. 2019) Mechanical May 2023

		Duration: 3hrs [Max Marks: 80]	
Ŋ	.B.:	(1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five. (3) All questions carry equal marks. (4) Assume suitable data, if required and state it clearly.	
1	я	Attempt any FOUR A 120 mm disc rotates on a table separated by an oil film of 1.8 mm thickness. Find the viscosity of oil if the torque required to rotate the disc at 60 r.p.m is 3.6 x 10 ⁻⁴ Nm. Assume	[20] [5]
		the velocity gradient in the oil film to be linear. Explain Lagrangian and Eulerian method of representing fluid flow.	[5]
	b	A 3 m long wooden stick of cross section area 0.01 m ² is made to float vertically in water	[5]
	d	with 0.6 m length above the water surface by attaching a lead piece at the total the stick. Find out the weight of the lead piece to be attached if the specific weight of wood is 6 kN/m ³ and that of lead is 120 kN/m ³ Explain Hydraulic gradient line and Energy gradient line in detail. Define drag and lift and explain types of drag.	[5] [5]
2	e a	Define drag and fitt and explain specific potential exist for two dimensional, incompressible flow prescribed by Does the velocity potential exist for two dimensional, incompressible flow prescribed by $u = x - 4y$ and $v = -(y + 4x)$? If so, determine its form as well as that of stream function.	[10]
	b	A cylindrical gate of 4 m diameter 2 m long has water on its both sides. Determine the magnitude and direction of the resultant force exerted by the water on the gate.	[10]
3	a	The pressure difference Δp in a pipe of diameter D and length l due to viscous flow depends on the velocity V, viscosity μ and density ρ . Using Buckingham's π -theorem,	[10]
		obtain the expression for Δp . On an inequality obtain the expression for Δp . On an inequality of the expression for Δp . On an inequality of the expression for Δp .	[10]
		The diameter of a pipe bend 30 cm at inlet and 15 cm at outlet and flow is turned and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and outlet) in a vertical plane. The axis at inlet is horizontal and the centre of the outlet section outlet) in a vertical plane. The axis at inlet is horizontal and the centre of the outlet section outlet) in a vertical plane. The axis at inlet is horizontal and the centre of the outlet section outlet) in a vertical plane. The axis at inlet is horizontal and the centre of the outlet section outlet) in a vertical plane. The axis at inlet and outlet and the centre of the outlet section outlet) in a vertical plane. The axis at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet and 120° (angle measured in clockwise direction between direction of fluid flow at inlet an	

Paper / Subject Code: 41222 / Fluid Mechanics

- a An oil of viscosity 1 poise and relative density 0.9 is flowing through a circular pipe of [10]diameter 50 mm and of length 300 m. The rate of fluid through the pipe is 3.5 litres/s.
 - (i) Is the flow laminar?
 - (ii) the pressure drop in a length of 300 m
 - (iii) shear stress at the pipe wall
- 5 a Derive the expression for velocity distribution, discharge per unit width and shear stress distribution when flow of viscous fluid between two parallel plates in which one plate
 - b A venturimeter is to be fitted in a pipe 0.25 m diameter where the pressure head is 7.6 m of flowing liquid and the maximum flow is 8.1 m³ per minute. Find the least diameter of the throat to ensure that the pressure head does not become negative. Take $C_{\text{d}} = 0.96$
- a Three pipes with details as following are connected in parallel between two points. Pipe 1: length = 1000 m diameter = 20 cm coefficient of friction f = 0.02Pipe 2: length = 1200 m diameter = 30 cm coefficient of friction f = 0.015Pipe 3: length = 800 m diameter = 15 cm coefficient of friction f = 0.02When the total discharge of 0.30 m³/sec flows through the system, calculate distribution of discharge and head loss between the junctions.
 - b The velocity distribution in the boundary layer is given by

$$\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$

- Calculate the following (i) Displacement thickness (ii) Momentum thickness (iii) Energy thickness
- (iv) Check whether the boundary layer separation occurs or not

[10]

[10]

[10]

[10]

[10]

26724