penIPE: An Extensible Memory Isolation Framework for Microcontrollers

Marton Bognar, Jo Van Bulck

DistriNet, KU Leuven, Belgium

marton.bognar@kuleuven.be jo.vanbulck@kuleuven.be

Texas Instruments IPE

- MSP430: Low-power microcontrollers
- FRAM edition (2014) with security features:
 - Physical tamper protection
 - Hardware AES cryptographic unit
 - Memory protection unit (MPU)
 - Intellectual Property Encapsulation (IPE)

The openIPE architecture

Goal: extensible IPE-compatible memory isolation with a flexible trusted firmware layer

Access control matrix

From \ To	rom \ To Untrusted		IPE	IPE entry	
Untrusted	rwx	r		x	
Firmware	rxw	rwx	rwx	rwx	
IPE + entry	rwx	r	rwx	rwx	
DMA	rw-	r			
Debug unit	rw-	r			

Hardware cost

Design	LUTs	Δ LUTs	FFs	Δ FFs
openMSP430 (baseline)	2,311	-	1,110	-
IPE specification openIPE	2,510 2,582	+8.6% +11.7%	1,162 1,191	+4.7% +7.3%

Case study: Secure interrupts

Approach	Secure scheduling	Architectural protection	Interrupt latency mitigation	Untrusted interrupts	
Software disable	0	•	•	0	
Hardware disable	0	•	•	0	
SW-IRQ (de Clercq, 2014)	0	•	0	•	
FW-IRQ (our proposal)	•	•	•	•	

FW-IRQ using the trusted firmware

- FW-IRQ offers the **strongest** guarantees
 - Software-based padding for interrupt-latency attacks
- Other hardware-based approaches are more expensive:
 - o de Clercq, 2014: +186 LUTs and +34 FFs (only architectural)
 - Sancus_v: +142 LUTs and +260 FFs

penIPE (baseline)	
penife (basenne)	_
Software disable Hardware disable SW-IRQ	8 bytes / 6 cycles - 282 bytes / 198 cycles
	282 bytes / 198 cy 674 bytes / 417 cy

MSP430 in research

	name	year	venue	2 code	• data	dyn. 🏖	extension	untr. ISR	open src.	ind. spec.	attacks
	SMART [3] 🛣	2012	NDSS	0	•	0	Hybrid	0	0	0	[4], [56], [57]
	\rightarrow ERASMUS [58]	2018	DATE	0	•	\circ	Hybrid			\circ	_
	Sancus 1.0 [59]	2013	USENIX	0			Hardware	0		\bigcirc	_
	→ Soteria [60]	2015	ACSAC	•			Hardware			0	_
	→ Towards Availability [11]	2016	MASS	0	•		Hardware		0	0	_
	\hookrightarrow Sancus 2.0 [2] \Re	2017	TOPS				Hardware				[21], [22]
	→ Sancus _V [33] 🛣	2020	CSF				Hardware			0	[23], [34], [35]
	\hookrightarrow Aion [8]	2021	CCS				Hybrid			0	
30	→ Authentic Execution [61]	2023	TOPS	•	•		Hybrid	0		0	_
P4	de Clercq et al. [7]	2014	ASAP	0			Hybrid		0	0	-
ISI	VRASED [4] 🛣	2019	USENIX	0		0	Hybrid	0		0	[23]
openMSP430	\rightarrow APEX [57] $\mathbf{\hat{\pi}}$	2020	USENIX	0	•	0	Hybrid	0	•	0	[23]
obo	\hookrightarrow ASAP [62]	2022	DAC	0	•		Hybrid			0	
	\hookrightarrow RARES [63]	2023	arXiv	0	•	0	Hybrid	0	0	\circ	_
	\hookrightarrow RATA [64]	2021	CCS	0	•	0	Hybrid	0		\circ	-
	\rightarrow CASU [65]	2022	ICCAD	0		0	Hybrid			0	_
	\rightarrow VERSA [66]	2022	S&P	0		0	Hybrid	0		0	_
	\hookrightarrow ACFA [67]	2023	USENIX	0		0	Hybrid	0		0	_
	GAROTA [68]	2022	USENIX	0	0	0	Hybrid	0		0	_
	IDA [10]	2024	NDSS	0		0	Hybrid	•	0	0	-
	UCCA [69]	2024	TCAD	•	•	0	Hardware	•	•	0	_
	openIPE (this work)	2025	EuroS&P	•	•	•	Hybrid	•	•	•	-
0	IPE [46] 兼	2014	_	•	•		Hardware	0	0	•	[19], [20]
	\hookrightarrow SIA [70]	2019	HOST	•	•	•	Software	0	0	•	
43(\hookrightarrow SICP [71]	2020	JHSS	0			Software	0	0	•	
SP	→ Optimized SICP [72]	2022	TECS	0			Software	0		•	-
II MSP430	\rightarrow IPE Exposure [19] $\mathbf{\hat{\pi}}$	2024	USENIX				Software	0	•	•	§4.2
II	Hardin et al. [73]	2018	ATC		•	0	Software	0	0	•	_
	PISTIS [74]	2022	USENIX				Software	•		•	
	\hookrightarrow FLAShadow [75]	2024	TIOT	•	•		Software	•	•	•	-

- Many architectures building on openMSP430
- Building custom memory isolation primitives
- Overlapping vulnerabilities
- Cannot prototype hardware changes on TI microcontrollers

Security testing

Unit testing

- Functional and security unit tests
- Backwards compatibility for (future) extensions

Symbolic execution

- Applied to firmware and IPE code
- Based on Pandora (Alder, 2024)
- Intuitive reports
- **Tested functionality** IPE boundary setup Modification of boundary registers Protection from untrusted code Protection from the debugger Protection from DMA Normal access from inside the IPE region Protection from known attacks Protection of the firmware region Case study behavior

Resources

openIPE: An Extensible Memory **Isolation Framework for** Microcontrollers

https://github.com/martonbognar/openipe

R. de Clercq et al., "Secure interrupts on low-end microcontrollers". In IEEE International Conference on

Application-Specific Systems, Architectures and Processors (ASAP), 2014. F. Alder et al., "Pandora: Principled symbolic validation of Intel SGX enclave runtimes". In IEEE Symposium on Security and Privacy (S&P), 2024.

M. Busi et al., "Provably secure isolation for interruptible enclaved execution on small microprocessors". In IEEE Computer Security Foundations Symposium (CSF), 2020.

M. Bognar et al., "Intellectual property exposure: Subverting and securing intellectual property encapsulation in Texas Instruments microcontrollers". In USENIX Security Symposium, 2024.