Distributed Systems

Logical Clocks

Paul Krzyzanowski pxk@cs.rutgers.edu ds@pk.org

Logical clocks

Assign sequence numbers to messages

- All cooperating processes can agree on order of events
- vs. physical clocks: time of day

Assume no central time source

- Each system maintains its own local clock
- No total ordering of events
 - · No concept of happened-when

Happened-before

Lamport's "happened-before" notation

```
a \rightarrow b event a happened before event b
e.g.: a: message being sent, b: message receipt
```

Transitive:

if $a \rightarrow b$ and $b \rightarrow c$ then $a \rightarrow c$

Logical clocks & concurrency

Assign "clock" value to each event

- if $a \rightarrow b$ then clock(a) < clock(b)
- since time cannot run backwards

If a and b occur on different processes that do not exchange messages, then neither $a \rightarrow b$ nor $b \rightarrow a$ are true

- These events are concurrent

- · Three systems: P₀, P₁, P₂
- Events a, b, c, ...
- Local event counter on each system
- · Systems occasionally communicate

Bad ordering:

$$e \rightarrow h$$

$$f \rightarrow k$$

Lamport's algorithm

 Each message carries a timestamp of the sender's clock

- When a message arrives:
 - if receiver's clock < message timestamp set system clock to (message timestamp + 1)
 - else do nothing

 Clock must be advanced between any two events in the same process

Lamport's algorithm

Algorithm allows us to maintain time ordering among related events

- Partial ordering

Summary

- Algorithm needs monotonically increasing software counter
- Incremented at least when events that need to be timestamped occur
- Each event has a Lamport timestamp attached to it
- For any two events, where $a \rightarrow b$: L(a) < L(b)

Problem: Identical timestamps

 $a \rightarrow b$, $b \rightarrow c$, ...: local events sequenced $i \rightarrow c$, $f \rightarrow d$, $d \rightarrow g$, ...: Lamport imposes a $send \rightarrow receive$ relationship

Concurrent events (e.g., a & i) <u>may</u> have the same timestamp ... or not

Unique timestamps (total ordering)

We can force each timestamp to be unique

- Define global logical timestamp (Ti, i)
 - T_i represents local Lamport timestamp
 - i represents process number (globally unique)
 - E.g. (host address, process ID)
- Compare timestamps:

```
(T_i, i) < (T_j, j)
if and only if
T_i < T_j or
T_i = T_i and i < j
```

Does not relate to event ordering

Unique (totally ordered) timestamps

Problem: Detecting causal relations

If
$$L(e) < L(e')$$

- Cannot conclude that $e \rightarrow e'$

Looking at Lamport timestamps

- Cannot conclude which events are causally related

Solution: use a vector clock

Vector clocks

Rules:

- 1. Vector initialized to 0 at each process $V_{j}[j] = 0$ for i, j = 1, ..., N
- Process increments its element of the vector in local vector before timestamping event:
 V_i[i] = V_i[i] +1
- 3. Message is sent from process P_i with V_i attached to it
- 4. When P_j receives message, compares vectors element by element and sets local vector to higher of two values

$$V_j[i] = \max(V_i[i], V_j[i])$$
 for i=1, ..., N

Comparing vector timestamps

<u>Define</u>

if $e \rightarrow e'$ then V(e) < V(e')

Just like Lamport's algorithm

if V(e) < V(e') then $e \rightarrow e'$

Two events are concurrent if neither

$$V(e) \le V(e')$$
 nor $V(e') \le V(e)$

<u>Event</u>	timestamp
a	(1,0,0)

Event	timestamp
α	(1,0,0)
b	(2,0,0)

Event	timestamp
a	(1,0,0)
b	(2,0,0)
C	(2,1,0)

Event	timestamp
a	(1,0,0)
b	(2,0,0)
С	(2,1,0)
d	(2,2,0)

Event	timestamp
a	(1,0,0)
b	(2,0,0)
С	(2,1,0)
d	(2,2,0)
e	(0,0,1)

Event	timestamp
a	(1,0,0)
b	(2,0,0)
C	(2,1,0)
d	(2,2,0)
e	(0,0,1)
f	(2,2,2)

Event	timestamp	
a	(1,0,0)	
b	(2,0,0)	
C	(2,1,0) concurre	nt
d	(2,2,0) events	
e	(0,0,1)	
f	(2,2,2)	

<u>Event</u>	timestamp	
a	(1,0,0)	
b	(2,0,0)	
C	(2,1,0)	
d	(2,2,0)	concurrent
e	(0,0,1)	events
f	(2,2,2)	

Summary: Logical Clocks & Partial Ordering

- Causality
 - If a->b then event a can affect event b
- Concurrency
 - If neither a->b nor b->a then one event cannot affect the other
- Partial Ordering
 - Causal events are sequenced
- Total Ordering
 - All events are sequenced

The end.