

# Dimensionality Reduction

Pilsung Kang
School of Industrial Management Engineering
Korea University

# AGENDA

| 01 | Dimensionality Reduction   |
|----|----------------------------|
| 02 | Variable Selection Methods |
| 03 | Shrinkage Methods          |
| 04 | R Exercise                 |

### **Exhaustive Search**

- Exhaustive search
  - √ Search all possible combinations
    - Ex) 3 variables X<sub>1</sub>
- X<sub>1</sub> X<sub>2</sub> X<sub>3</sub>
  - A total of 7 possible subsets are tested



- ✓ Performance criteria for variable selection
  - Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Adjusted R<sup>2</sup>,
     Mallow's C<sub>p</sub>, etc.





### **Exhaustive Search**

- Exhaustive search
  - ✓ Assume that we have a computer that can evaluate 10,000 models/second







### Forward Selection

#### Forward selection

- √ From the model with no variable, significant variables are sequentially added
- ✓ Once the variable is selected, it will never be removed (The number of variables gradually increases)







### **Backward Elimination**

#### Backward Elimination

- √ From the model with all variables, irrelevant variables are sequentially removed.
- ✓ Once a variable is removed, it will never be selected (The number of variables gradually decreases)







### Stepwise Selection

#### • Stepwise Selection

- ✓ From the model with no variable, conduct the forward selection and backward elimination alternately
- ✓ Takes longer time than forward selection/backward elimination, but has more chances
  to find the optimal set of variables
- ✓ Variables that is either selected/removed can be reconsidered for selection/removal
- ✓ The number of variables increases in the early period, but it can either increase or decrease





## Stepwise Selection

Stepwise selection example



## Stepwise Selection

#### Stepwise Selection

- √ Stepwise selection process
  - Start with model with no predictors.
  - ▶ Add variable with largest *F*-statistic (provided *P* less than some cut-off).
  - ▶ Refit with this variable added. Recompute all F statistics for adding one of the remaining variables and add variable with largest F statistic.
  - ▶ At each step after adding a variable try to eliminate any variable not significant at some level (that is, do BACKWARD elimination till that stops).
  - After doing the backwards steps take another FORWARD step.
  - Continue until every remaining variable is significant at cut-off level and every excluded variable is insignificant OR until variable to be added is same as last deleted variable.





## Comparison among FS/BE/SS

Illustrative Example

#### **Forward Selection**



#### **Backward Elimination**



#### **Stepwise Selection**







#### Performance Metrics

Akaike Information Criteria (AIC)

✓ Sum of squared error (SSE) with the number of variables as a penalty term

$$AIC = n \cdot ln\left(\frac{SSE}{n}\right) + 2k$$

Bayesian Information Criteria (BIC)

✓ SSE, number of variables, standard deviation obtained by the model with all variables

$$BIC = n \cdot ln\left(\frac{SSE}{n}\right) + \frac{2(k+2)n\sigma^2}{SSE} - \frac{2n^2\sigma^4}{SSE^2}$$





### Performance Metrics

#### Adjusted R<sup>2</sup>

√ Simple R<sup>2</sup> increases when the number of variable increases

Model 1: 
$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$$
  
Model 2:  $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \ldots + \beta_{k+m} x_{k+m} \epsilon$   $R^2(M2) \ge R^2(M1)$ 

 $\checkmark$  Use the adjusted R<sup>2</sup> that account for the number of variables (k)

Adjusted 
$$R^2 = 1 - \left(\frac{n-1}{n-k-1}\right)(1-R^2) = 1 - \frac{n-1}{n-k-1}\frac{SSE}{SST}$$





- Limitations of the previous variable selection methods
  - ✓ Exhaustive search: guarantee the optimal subset, but takes too long time (practically impossible for many tasks)
  - ✓ Local search (forward/backward/stepwise): efficient search but the search space is very limited, which leads to a low probability of finding the optimal solution

- Idea
  - ✓ Improve the performance of local searches with a little additional computational time!





- Meta-Heuristic Approach
  - √ Solve a complex problem by doing trials and errors efficiently
  - ✓ Among the optimization algorithms, many of them mimic the way of a natural system works





Particle Swarm Optimization





- An Evolutionary Algorithm that mimics the Reproduction of Creatures
  - $\checkmark$  Find a superior solutions and preserve by repeating the reproduction process
    - Selection: Select a superior solution to improve the quality
    - Crossover: Search various alternatives based on the current solutions
    - Mutation: Give a chance to escape the local optima











(a)

Genetic Algorithm for Feature Selection





## GA Step 1: Initialization

#### Encoding Chromosomes

- ✓ Genetic algorithm can be used not only for variable selection, but for a wide range of optimization problems
- ✓ Encoding scheme can be different for different tasks
- ✓ Binary encoding is commonly used for variable selection

| Chromosome            |                |                       |                       | Gene                  |                       |                       |                       |                    |
|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|
| <b>X</b> <sub>1</sub> | x <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | <b>x</b> <sub>6</sub> | <b>x</b> <sub>7</sub> | <b>x</b> <sub>8</sub> | <br>x <sub>d</sub> |
| 1                     | 0              | 0                     | 1                     | 0                     | 1                     | 1                     | 0                     | <br>1              |
|                       |                |                       |                       |                       |                       |                       |                       |                    |

I: Use the corresponding variable in the modeling

0: Do not use the variable





## GA Step 1: Initialization

- Parameter Initialization
  - √ The number of chromosome (population)
  - √ Fitness function
  - √ Crossover mechanism
  - ✓ The rate of mutation
  - ✓ Stopping criteria
    - minimum fitness improvement
    - maximum iterations, etc.







## GA Step 3: Fitness Evaluation

#### Fitness Function

- ✓ A criterion that determines which chromosomes are better than others
- ✓ In general, the higher the fitness value, the better the chromosomes
- ✓ Common criteria that are embedded in the fitness function
  - If two chromosomes have the same fitness value, the one with fewer variables is preferred
  - If two chromosomes use the same number of variables, the one with higher predictive performance is preferred
- √ In case of multiple linear regression
  - Adjusted R2
  - Akaike information criterion (AIC)
  - Bayesian information criterion (BIC)







## **GA Step 4: Selection**

#### Selection

✓ Select superior chromosomes in the current population to reproduce the population
of the next generation

#### ✓ Deterministic selection

- Select only top N% of chromosomes
- Bottom (100-N)% chromosomes are never selected

#### ✓ Probabilistic selection

- Use the fitness value of each chromosome as the selection weight
- All chromosomes can be selected with different probabilities







## GA Step 5: Crossover & Mutation

- Crossover (Reproduction)
  - √ Two child chromosomes are produced from two parent chromosomes
  - ✓ The number of crossover points can vary from I to n (total number of genes)



Assume array: [0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36]





## GA Step 5: Crossover & Mutation

#### Mutation

- ✓ Genetic operator used to maintain diversity from one generation of a population of chromosomes to the next
- ✓ Alters one or more gene values in a chromosome from its initial state, which result in
  entirely new gene values being added to the gene pool
- ✓ By mutation, the current solution can have a chance to escape from the local optima
- $\checkmark$  A too mutation rate can increase the time to converge (0.01 can be a good choice)

Consider the two original off-springs selected for mutation.

Invert the value of the chosen gene as 0 to 1 and 1 to 0

The Mutated Off-spring produced are:





## GA Step 5: Find the Best Solution

- Find the best variable subset
  - ✓ Select the chromosome with the highest fitness value after the stopping criteria are satisfied.
  - ✓ Generally, significant fitness improvement occurs in the early stages, which becomes marginal after some generations











