Experimental Design Formulas

COMPLETELY RANDOMIZED DESIGN

Balanced:

$$Y_{ij} = \mu + \tau_i + R_{ij}$$

Unbalanced:

$$Y_{ij} = \mu + \tau_i + R_{ij}$$

where

•
$$i = 1, 2, \dots, t$$

•
$$j = 1, 2, \dots, r$$

•
$$R_{ij} \sim N(0, \sigma^2)$$

• The balanced design constraint is
$$\sum_{i=1}^t au_i = 0$$

where

•
$$i = 1, 2, \dots, t$$

•
$$j = 1, 2, \ldots, n_i$$

•
$$R_{ij} \sim N(0, \sigma^2)$$

• the unbalanced constraint is
$$\sum_{i=1}^t n_i au_i = 0$$

The pooled overall sample variance is:

$$\hat{\sigma}^2 = \frac{(n_1 - 1)\hat{\sigma}_1^2 + (n_2 - 1)\hat{\sigma}_2^2}{n_1 + n_2 - 2}$$

The test statistic for the difference between two treatments is:

$$\frac{(\hat{\tau}_1 - \hat{\tau}_2) - (\tau_1 - \tau_2)}{\hat{\sigma}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

where $\hat{\sigma}$ is the square root of the pooled variance estimate

The $(1-\alpha) \times 100\%$ confidence interval for the difference between two treatments:

$$\hat{ au}_1 - \hat{ au}_2 \pm c imes exttt{s.e.} (\hat{ au_1} - \hat{ au}_2)$$

where c is chosen such that

$$P(|T_{n_1+n_2-2}| \le c) = 1 - \alpha$$

and

$$\mathsf{s.e.}(\hat{\tau_1} - \hat{\tau_2}) = \hat{\sigma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

RANDOMIZED BLOCK DESIGN

$$Y_{ij} = \mu + \tau_i + \beta_j + R_{ij}$$
 $i = 1, 2, ..., t$ $j = 1, ..., b$

- μ: overall average across treatments and blocks.
- τ_i : treatment effect
- β_j: block effect
- $R_{ij} \sim N(0, \sigma^2)$
- Constraints: $\sum_{i=1}^{t} \tau_i = 0$ and $\sum_{j=1}^{b} \beta_j = 0$

For a contrast
$$\theta = \sum_i a_i \tau_i$$
 where $\sum_i a_i = 0$

$$\hat{\theta} = \sum_{i} a_i \hat{\tau}_i$$

and

$$s.e(\hat{\theta}) = \hat{\sigma}_R^2 \frac{\sum_i a_i^2}{b}$$

FACTORIAL DESIGN

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + R_{ijk}$$

where

- μ : overall mean effect
- τ_i : treatment effect of the *i*th level of the row factor A ($i = 1, \ldots, a$)
- β_i : is the effect of the *j*th level of column factor B $(j = 1, \dots, b)$
- $(\tau\beta)_{ij}$: is the effect of the interaction between i and j
- R_{ijk} : is a random error component (k = 1, ..., r)

Constraints:
$$\sum_{i=1}^{a} \tau_i = 0$$
, $\sum_{i=1}^{b} \beta_j = 0$ and $\sum_{i=1}^{a} \sum_{j=1}^{b} (\tau \beta)_{ij} = 0$.