Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko lehenengo zatia: AFD, AFED eta ε -AFED-en diseinua Bilboko Ingeniaritza Eskola (UPV/EHU) 1,6 puntu

2016-11-09

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 a sinboloaz hasi, gutxienez b bat, b denak elkarren jarraian eta c kopuru bikoitia duten hitzez eratutako L_1 lengoaia

Honako hiru baldintza hauek betetzen dituzten hitzez eratutako L_1 lengoaiari dagokion AFD bat eman:

- Hitzaren lehenengo sinboloa (ezkerreko ertzekoa) a izatea.
- Hitzak gutxienez b sinboloaren agerpen bat izatea eta b sinboloaren agerpen denak jarraian egotea.
- c sinboloaren agerpen kopurua bikoitia izatea.

Adibidez, accbbbcc, abb, abbbaacac eta accabbbb hitzak L_1 lengoaiakoak dira baina ε , a, aaa, b, accc, aabcbc, acbbbcc eta bcccc hitzak ez dira L_1 lengoaiakoak.

 L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land \exists u(u \in A^* \land w = au) \land \\ \exists u, v, x(u \in A^* \land v \in A^* \land x \in A^* \land |v|_b = |v| \land \\ |v| \ge 1 \land |u|_b = 0 \land |x|_b = 0 \land w = auvx) \land \\ |w|_c \bmod 2 = 0 \}$$

1.2 a sinboloaz hasi edo gutxienez b bat eduki eta b denak elkarren jarraian dituzten edo c kopuru bikoitia duten hitzez eratutako L_2 lengoaia

Honako hiru baldintza hauetakoren bat (gutxienez bat) betetzen duten hitzez eratutako L_2 lengoaiari dagokion AFD bat eman:

- Hitzaren lehenengo sinboloa (ezkerreko ertzekoa) a izatea.
- Hitzak gutxienez b sinboloaren agerpen bat izatea eta b sinboloaren agerpen denak jarraian egotea.
- c sinboloaren agerpen kopurua bikoitia izatea.

Adibidez, ε , accbbbcc, bbb, abcccb, ac eta cccbcc hitzak L_2 lengoaiakoak dira baina bbcbb, c, ccc, ccac eta babc hitzak ez dira L_2 lengoaiakoak.

 L_2 lengoaiaren definizio formala honako hau da:

$$\begin{array}{ll} L_2 = \{ w \mid w \in A^* \land & (\exists u(u \in A^* \land w = au) \lor \\ & \exists u, v, x(u \in A^* \land v \in A^* \land x \in A^* \land |v|_b = |v| \land \\ & |v| \ge 1 \land |u|_b = 0 \land |x|_b = 0 \land w = auvx) \lor \\ & |w|_c \bmod 2 = 0) \} \end{array}$$

2 Automata finitu ez-deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

3 ε trantsizioak dituzten automata finitu ez-deterministen (ε -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

4 Konputazio deterministen garapena (0,100 puntu)

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, baaa)$
- 2. $\delta^*(q_0, aaab)$
- 3. $\delta^*(q_0, aaba)$
- 4. $\delta^*(q_0, aaccc)$
- 5. $\delta^*(q_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

N

- 1. $\nu^*(r_0, aabcc)$
- 2. $\nu^*(r_0, acb)$
- 3. $\nu^*(r_0, bcbc)$
- 4. $\nu^*(r_0, bb)$
- 5. $\nu^*(r_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

6 ε trantsizioak dituzten konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\lambda^*(s_0, abca)$
- 2. $\lambda^*(s_0, aabc)$
- 3. $\lambda^*(s_0, babb)$
- 4. $\lambda^*(s_0, abc)$
- 5. $\lambda^*(s_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

AFD honi dagokion δ trantsizio funtzioa honako taula honen bidez adieraz daiteke:

δ	a	b	c
q_0	q_1	q_6	q_3
q_1	q_2	q_5	q_4
q_2	q_1	q_6	q_3
q_3	q_4	q_7	q_2
q_4	q_3	q_8	q_1
q_5	q_6	q_1	q_8
q_6	q_5	q_2	q_7
q_7	q_8	q_3	q_6
q_8	q_7	q_4	q_5