1. Теория Рамсея

Предложение 1. Среди любых 6 человек либо некоторые 3 знакомы друг c другом, либо некоторые 3 попарно незнакомы.

Определение 1. Число Рамсея R(s,t), где $s,t\in\mathbb{N}$

 $R(s,t) = \min\{n \in N : \text{при } \forall \text{ раскраске ребер } K_n \text{ в красный и синий цвета либо } \exists K_s \subseteq K_n, \text{ у которого все ребра красные}, либо <math>\exists K_t \subseteq K_n$ у которого все ребра синие}

$$R(s,t) = \min\{n \in N \forall G = (V,E), |V| = n,$$
 либо $\alpha(G) \geq s,$ либо $\omega(G) \geq t\}$ $R(1,t) = 1$ $R(2,t) = t$

Теорема 1. (Рамсея) $R(s,t) \le R(s-1,t) + R(s,t-1), \forall s,t \ge 2.$

Доказательство. Пусть n=R(s-1,t)+R(s,t-1). Нам нужно доказать, что при любой раскраске либо есть красный K_s , либо есть синий K_t . Зафиксируем произвольную расраску ребер K_n в красный и синий цвета. Зафиксируем произвольную вершину графа $x\in K_n$. Либо красных ребер, выходящих из x не меньше R(s,t-1), либо синих ребер - не меньше R(s-1,t). Пусть красных ребер $\geq R(s-1,t)$. Рассмотрим множество вторых концов этих ребер. В K_n внутри K_n проведены тоже все возможные ребра. K_n в K_n в случае, если есть красная K_n можно легко достроить красную K_n в случае синей K_n все доказано.

Следствие 1. $R(s,t) \leq C_{s+t-2}^{s-1} = C_{s+t-2}^{t-1}$

Доказательство. По индукции по s и t.

База:
$$R(1,t) = 1, R(s,1) = 1$$

$$C_{1+t-2}^{1-1} = C_{t-1}^0 = 1$$

Шаг:

$$R(s,t) \le C_{s-1+t-2}^{s-2} + C_{s+t-1-2}^{s-1} = C_{s+t-2}^{s-1}$$

Следствие 2. (из следствия)

$$R(s,s) \le C_{2s-2}^{s-1}$$

Следствие 3. (из следствия из следствия)

$$R(s,s) \le \frac{4^{s-1}}{\sqrt{\pi(s-1)}}(1+o(1)) = (4+o(1))^s$$

Теорема 2. Пусть n u $s \in \mathbb{N}$ таковы, что $C_n^s 2^{q-C_s^2} < 1$. Тогда R(s,s) > n.

Доказательство. Нам нужно доказать существование раскраски ребер K_n в красный и синий цвета, при которой все $K_s \subset K_n$ неодноцветные. Рассмотрим случайную раскраску χ ребер у K_n . Всего ребебер $C_n^2 \Rightarrow$ есть различных раскрасок $2^{C_n^2}$

$$P(\chi) = 2^{-C_n^2}$$

$$(\Omega, \mathcal{F}, P)$$

$$\Omega = {\chi}, |\Omega| = 2^{C_n^2}, \mathcal{F} = 2^{\Omega}$$

 $S_1, \dots, S_{C_n^2}$ - все K_s в K_n $A_i = \{\chi \in \Omega : S_i \text{ одноцв. в } \chi\}, A_i \in F$

$$P(A_i) = \frac{2 * 2^{C_n^2 - C_s^2}}{2^{C_n^2}} = 2^{1 - C_s^2}$$

$$P(\bigcup_{i=1}^{C_n} A_i \le C_n^2 * 2^{1 - C_s^2} < 1)$$

$$P(\neg \cup A_i) > 0$$

Следствие 4. $R(s,s) \geq \frac{s}{e\sqrt{2}} 2^{s/2}$

Доказательство.

$$\begin{split} n := \left[\frac{s}{e\sqrt{2}}2^{s/2}\right]^n &\leq \frac{s}{e\sqrt{2}}2^{s/2} \\ C_n^s &\leq \frac{n^s}{s!} \leq \frac{s^s}{e^s2^{s/2}}\frac{2^{s^2/2}}{s!} \\ C_n^s2^{1-C_s^2} &\leq \frac{s^s2^{s^2/2}}{e^s2^{3/2}s!} * 2^{1-\frac{s^2-s}{2}} = \dots < 1 \end{split}$$

Самое лучшее, что известно:

1.
$$R(s,s) \geq \frac{s\sqrt{2}}{e} 2^{s/2} (1 + o(1))$$

2.
$$R(s,s) < 4^s e^{-\gamma \frac{\ln^2 s}{\ln \ln s}}$$

Теорема 3. (Франк, Уилсон) $R(s,s) \ge (e^{1/4} + o(1)) \frac{ln^2s}{lnlns} \approx e^{1/4} \frac{ln^2s}{lnlns}$

Доказательство. Хотим явно указать некоторую раскраску ребер K_n , $n=(e^1/4+o(1))^{\frac{ln^2s}{ln lns}}$, при которой все K_s не одноцвенты. Это эквивалентно желанию явно указать такой граф G=(V,E):|V|=n и $\alpha(G)< s, w(G)< s$.

$$V = \{ \neg x = (x_1, \dots, x_{p^3}) : x_i \in \{0, 1\}, x_1 + \dots + x_{p^3} = p^2 \}$$
$$E = \{ \{x, y\} : (x, y) \equiv 0(p) \}$$
$$|V| = C_{p^3}^{p^2}$$

Лемма 1. $\alpha(G) \leq (m+2)C_m^p, \ \omega(G) \leq (m+2)C_m^p$

Доказательство. Рассмотрим произвольное независимое множество вершин

$$W = \{x_1, \cdots, x_s\} : \forall i \neq j < x_i, x_j > \neq 0 \pmod{p}$$

Возьмем произвольный $x \in V$ и построим полином

$$F_{\bar{x}} \in \mathbb{Z}_p[y_1, \cdots, y_m]$$

$$F_{\bar{x}}(y_1, \dots, y_m) = F_x(y) = \prod_{i=1}^{p-1} (i - \langle x, y \rangle)$$

Свойство:

$$F_{\bar{x}}(\bar{y}) \equiv 0 \pmod{p} \Leftrightarrow \langle \bar{x}, \bar{y} \rangle \not\equiv 0 \pmod{p} \forall \bar{x}, \bar{y} \in V$$

Рассмторим многочлены F_{x_1}, \cdots, F_{x_s} (с волной). Эти многочлены линейно независимы над $(FIXME)Z_p$ $c_1F_{x_1}+\cdots+c_sF_{x_s}=0 \ \forall y\in Vc_1F_{x_1}(y)+\cdots+c_sF_{x_s}(y)=0$ Возьмем $y=x_1.\ F_{x_1}(x_1)\neq 0 (modp).$

 $< x_1, x_1 >= p^2 = 0 (modp) \ F_{x_i}(x_1) = 0 (modp) \ c_i = 0 (modp) \$ Стало быть, многочлены линейно независимы, а значит их количество не больше размерности пространства $< F_{x_1}, \dots, F_{x_s} >$. В этом пространстве мономы: $1, y_i, y_i y_j, \cdots, y_{i_1}, \cdots y_{i_p}$. $s \leq \sum_{k=0}^{p-1} C_m^k Докажем теперь, что <math>\omega(G) \leq (m+2) C_m^p$. Рассмотрим произвольную $W = x_1, \cdots, x_s$ - клику в G: $\forall i \neq j < x_i, x_j >= 0 (modp) < x_i, x_j >= 0, p, 2p, \dots, p^2 - p$, мощностью р. $x \in V \to F_x(FIXME)R[y_1, \cdots, y_m] \ F_x(y_=(< x, y >)(< x, y > -p)(< x, y > -2p) \cdots (< x, y > -(p^2 - p))$.

(тут было много текста...)

 $R_k(s,t) = \min\{n \in N \text{ при лююбой раскраске полного } k$ -однородного гиперграфа на n вершинах в красный и синий цвета. либо найдется s-клика, в которой все ребра красны, либо t - синие $\}$

Теорема 4.
$$R_k(s,t) \leq R_{k-1}(R_k(s-1,t),R_k(s,t-1))+1$$

Доказательство. Возьмем $n = R_{k-1}(R_k(s-1,t),R_k(s,t-1)) + 1$. Рассмотрим k-однородные гиперграфы на n вершинах. Зафиксируем раскраску ϕ . Раскраска ξ индуцирует раскарску ξ' ребер полного (k-1) - однородного гиперграфа $H'\{x\}$ У H' не меньше n-1 вершин \Rightarrow по определению чисел Рамсея либо \exists множество $A, x \notin A$: все (k-1)-ребра в нем красные в ξ' и $|A| \geq R_k(s-1,t)$, либо \exists множество $B, x \notin B \cdots$ Случаи аналогичные, рассмотрим только для A.

 $|A| \ge R_k(s-1,t) \Rightarrow$ по определению числа Рамсея либо $\exists A_1 \subset A, |A_1| = s-1$, в котором все k-ребра красные в ξ , либо $\exists A_2 \subset A, |A_2| = t, \cdots$.

Все k-ребра красные в ξ , все k-1-ребра в A_1 красные в $\xi' \Rightarrow$ все k-ребра, получаемые из (k-1)-ребер в A_1 , объединенных с x, кравсное в ξ . Других ребер не бывает.

2. Двудольные числа Рамсея

b(k,k) - диагональное число Рамсея

$$b(k,k) \ge \frac{1}{e}k2^{k/2}(1+o(1))$$

Теорема 5. $b(m,k) \leq (1+o(1))2^{k+1} \log k$

Определение 2. Пусть $G \subset H$. Плотностью G в H называется $\frac{|E(G)|}{|E(H)|}$

Вопрос: Пусть даны некоторые $m, n \in \mathbb{N}$. Расммотрим $K_{m,n}$ и возьмем некоторое $p \in (0,1)$. При каких условиях на $r, s \in \mathbb{N}$ мы можем гарантировать, что в \forall подграфе G графа $K_{m,n}$, имеющем плотность не менее p, содержащимся $K_{r,s}$.

Лемма 2. (псевдо-)

Если m значительно больше, чем r^2 , а n чуть больше, чем $p^{-r}(s-1)$, то ответ на поставленный вопрос положительный.

Лемма 3. Пусть $\omega(n)$ - произвольная функция: $\omega(r) \to \infty (r \to \infty)$. Пусть $\epsilon \in (0,1)$. Тогда $\exists \phi = \phi(r,\omega,\epsilon)$.

$$\phi \to 0 (r \to 0) \forall r, s, p \in (\epsilon, 1) \forall m \ge r^2 \omega(r) \forall n \ge (1 + \phi) p^{-r} (s - 1).$$

$$\forall G \subset K_{m,n} : G \ge p \text{ } G \text{ } ecm_b \text{ } K_{r,s}.$$

Доказательство. Зафиксируем $\omega, \epsilon \in (0,1), r, s, p, m \ge r^2 \omega(r)$. Нам нужно доказать, что для наличия $K_{r,s}$ в произвольном G плотности $\ge p$ достаточно, чтобы $n \ge (1+\phi)p^{-r}(s-1)$ с некоторым $\phi \to 0(r \to 0)$. Предположим на минуту, что в G нет $K_{r,s}$. Подсчитаем, сколько в этом графе $K_{r,1}$. Это число $< C_m^r(s-1)$.

Через d_1, \cdots, d_n обозначим степени вершин в нижней грани G. Количество $K_{r,1}$ в G равно $\sum_{i=1}^n C_{d_i}^r$. Итак, $\sum_{i=1}^n C_{d_i}^r \leq C_m^r(s-1)$. Если же $\sum_{i=1}^n C_{d_i}^r > C_m^r(s-1)$, то $K_{r,s}$ есть в G.

Предложение 2.

$$\frac{C_{d_i}x + \dots + C_{d_n}^x}{n} \ge C_{\frac{d_1 + \dots + d_n}{n}}^x$$

Следовательно,

$$\begin{split} nC_{\frac{d_1+\cdots+d_n}{n}}^r &> C_m^r(s-1)\\ nC_{mp}^r &> C_m^r(s-1)\\ n &> \frac{c_m^r}{c_{mn}r}(s-1) \end{split}$$

$$\begin{split} K^2 &= o(n) \Rightarrow C_n^k \, \frac{n^k}{k!}. \\ C_m^r &\sim \frac{m^r}{r!}; p \geq \epsilon \Rightarrow mp \geq r^2 w'(r) \rightarrow \infty \\ C_{mp}^r &\sim \frac{(mp)^r}{r!} \end{split}$$

Доказательство. (теоремы)

 $n=(1+o(1))2^{k+1}\log k$. Нужно доказать, что $b(k,k)\leq n$. Рассмотрим $K_{n,n}$ и зафиксируем раскраску χ его ребер в красный и синий цвета. Докажем, что в этой раскраске есть одноцветный $K_{k,k}$ (ка-ка-ка!). В соотвествии с этой раскраской покрасим вершины из нижней доли - каждую вершину красим в тот цвет, в которой окрашено не менее половины выходящих из этой вершины ребер. При равенстве синих и красных красим в красный.

M - верхняя доля, N - нижняя. N_R,N_B - красные и синие вершины из N соответственно.

Предположим, что $|N_R| \ge |N_B|$ (второй случай аналогично. В этом случае ищем красный $K_{k,k}$).

 $m_l = n, \, M_l = M$. Индекс l - отсылка к лемме.

 $n_l = |N_R| \ge n/2, \, N_l = N_R$

 $K_{m_l,n_l},\,G_l$ - подграф, состоящий из всех красных ребер в раскраске $\chi.$

 $p_l \ge 1/2$.

 $r_l = k - 2\log k, \, s_l = k^2 \log k.$

Чтобы лемма была применима, надо:

- 1. $m_l \leq r_l^2 w \omega(r_l)$
- 2. $n_l \ge (1 + o(1))p_l^{-r_l}(s_l 1)$

Для первого условия: $n = (1 + o(1))2^{k+1} \log k \ge (k - 2 \log k)^2 \omega(r_l)$.

Для второго: $2^k(\log k)(1+o(1)) \geq (1+o(1))2^{r_l}(k^2\log k-1)$, равное $2^k(\log k)(1+o(1)) \geq (1+o(1))2^{k-2\log k}(k^2\log k-1)$

Раз оба условия выполнены, по лемме следует, что G_l содержит K_{r_l,s_l} .

Когда лемму будем применять второй раз, будем юзать индекс ll.

$$m_{ll} = k^2 \log k, \ M_{ll} = S_l, \ N_{ll} = M$$

{ верхние вершины K_{r_l,s_l} }, $n_{ll}=n-(k-2\log k)$, G_{ll} - подграф, состояния из красных ребер, $p_{ll}\geq \frac{1}{2}-\frac{k}{2^k},\ r_{ll}=K,\ s_{ll}=2\log k.$

Лемма применима, если

- 1. $m_{ll} \geq r_{ll}^2 \omega(r_{ll})$,
- 2. $n_{ll} \ge (1 + o(1))p_{ll}^{-r_{ll}}(s_{ll} 1)$

Проверка первого: $k^2 \log k \ge k^2 \omega(r_{ll})$

Проверка второго: $n-k+2\log k \geq (1+o(1))(\frac{1}{2}-\frac{k}{2^k})^{-k}(2\log k-1)$. Правая часть $\sim 2^k 2\log k = 2^{k+1}\log k$, а левая $\sim n$.