DERWENT-ACC-NO:

1995-316647

DERWENT-WEEK:

199541

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Blow moulding method - involves

processing part of

blow-moulded prod. in mould by

cutting or fusing and

reducing pressure during at least

part of moulding

process

PATENT-ASSIGNEE: EXCEL CORP[EXCL]

PRIORITY-DATA: 1994JP-0012935 (February 4, 1994)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE PAGES

MAIN-IPC

JP 07214652 A

August 15, 1995

N/A

006

B29C 049/50

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 07214652A

N/A

1994JP-0012935

February 4, 1994

INT-CL (IPC): B29C049/50, B29L022:00

ABSTRACTED-PUB-NO: JP 07214652A

BASIC-ABSTRACT:

In a blow moulding method, the processing part of a .blow-moulded prod. in a blow-moulding mould during blow-moulding is processed by

cutting or fusing. At least a part of the processing part of the blow moulded

prod. is sucked in a pressure-reduced state in the blow-moulding mould during

blow-moulding. The part to be processed of the blow-moulded prod. is sepd. from the part not to be processed of the blow-moulded prod. in the blow-moulding mould during the blow-moulding. A cutting or fusing device for the blow-moulded prod. is formed in the shape of a cutting edge or in a heated cutting edge shape.

ADVANTAGE - In the structure of a plastic blow-moulded prod., there is no need for an after-processing jig for a processing part, such as cutting, and a jig and tool cost is saved. Since the processing part of the blow-moulded prod. is processed in a blow-moulding mould, after-processing cost is saved.

CHOSEN-DRAWING: Dwg.0/4

TITLE-TERMS: BLOW MOULD METHOD PROCESS PART BLOW MOULD PRODUCT MOULD CUT FUSE

REDUCE PRESSURE PART MOULD PROCESS

DERWENT-CLASS: A32

CPI-CODES: A11-B10;

ENHANCED-POLYMER-INDEXING:

Polymer Index [1.1]

017 ; P0000 ; S9999 S1434

Polymer Index [1.2]

017 ; ND07 ; N9999 N6451 N6440 ; K9949 ; N9999 N6279

N6268; N9999

N6166

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1995-140578

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-214652

(43)公開日 平成7年(1995)8月15日

(51) Int.CL.6

識別記号

庁内整理番号

7619-4F

FΙ

技術表示箇所

B29C 49/50 // B29L 22:00

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号

特願平6-12935

(71)出願人 000102393

エクセル株式会社

(22)出願日

平成6年(1994)2月4日

千葉県松戸市常盤平6丁目11番地の10

(72)発明者 森 瑞樹

群馬県渋川市石原209番地13

(74)代理人 弁理士 小橋 一男 (外1名)

(54) 【発明の名称】 プロー成形方法

(57)【要約】

【目的】 ブロー成形の加工プロセスを効率的なものとする。

【構成】 ブロー成形用の金型2内においてブロー成形 される中空成形体1の加工部分を切断又は溶断によって 加工する。

【特許請求の範囲】

【請求項1】 ブロー成形法において、ブロー成形時の ブロー成形金型内においてブロー成形中空成形体の加工 部分を切断もしくは溶断によって加工することを特徴と するプラスチック中空成形体の製造方法。

【請求項2】 請求項1において、該ブロー成形中空成 形体の被加工部分の少なくとも一部が減圧状態によっ て、ブロー成形時のブロー成形金型に吸引されているこ とを特徴とするプラスチック中空成形体の製造方法。

【請求項3】 請求項1において、該ブロー成形中空成 10 形体の被加工部分が、ブロー成形時のブロー成形金型内において該ブロー成形中空成形体の非加工部分と実質的に分離されることを特徴とするプラスチック中空成形体の製造方法。

【請求項4】 請求項1において、該ブロー成形中空成 形体の切断もしくは溶断手段が刃物形状もしくは加熱さ れている刃物形状を持つことを特徴とするプラスチック 中空成形体の製造方法。

【請求項5】 ブロー成形法において、ブロー成形時の ブロー成形金型内でブロー成形中空成形体の加工部分を 20 切断もしくは溶断によって加工する工程で、

- 1) 該ブロー成形金型内の該ブロー成形中空成形体の加工部分を該ブロー成形金型面に設けた減圧吸引手段によって減圧吸引し、該加工部分を該金型面に吸引する第一段階
- 2)該加工部分を該金型面に減圧吸引しつつ切断加工も しくは溶断加工し、該ブロー成形金型内において、該被 加工部分を該ブロー成形中空成形体の非加工部分と実質 的に分離する第二段階
- 3)該被加工部分を該ブロー成形金型内の減圧吸引手段 30 によって吸引しつつ型開し、該ブロー成形中空成形体の非加工部分体を該ブロー成形金型より取り出す第三段階 4)該ブロー成形金型内の減圧吸引手段によって吸引された該被加工部分を、該減圧吸引手段の停止もしくは加圧によって該ブロー成形金型内より分離する第四段階の各ステップを有することを特徴とするプラスチック中空成形体の製造方法。

【請求項6】 請求項5において、該減圧吸引手段は圧力交番可能な構造を有し、該被加工部分の減圧吸引および加圧分離が可能であることを特徴とするプラスチック中空成形体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ブロー成形法に関するもので、特にブロー成形体の加工に関するものである。 具体的には、ブロー成形金型内においてブロー成形体の加工部分を切断又は溶断する方法に関するもので、ブロー成形体の加工を効率良く効果的に行える方法として広く利用できる。

[0002]

2

【従来の技術】従来、ブロー成形法によって成形された プラスチック中空成形体は、ブロー成形金型から取り出 された後、回転ノコ刃・回転刃物やプレスあるいはナイ フなどの切断手段によって被加工部分(例えば、開口 部、取付け穴、ロス部分など)を加工している。このた め、金型内から取り出した後に、プラスチック中空成形 体を加工するための、それぞれの加工部分に応じた加工 治具や加工刃物が必要とされている。また、成形後に切 断加工等を実施するため、後加工工数がかかり効率的で ない。特に、自動車用等に用いられるプラスチック中空 成形体を例にとれば、車種・仕様に様々なバリエーショ ンがあるため、少量生産から大量生産までの要求に答え なければならない。また、形状においても、異形のもの が多く、加工形状もそれぞれの部品に応じたものとしな ければならない。この場合、様々なバリエーションと異 形形状に応じた数多くの加工治具を取り揃えなければな らず、加工治具コストも高くなり、さらに加工コストも 高くなっていた。このため、製造治工具コスト削減・加 エコスト削減が望まれる自動車部品等では、コスト削減 のための効率的な製造加工方法が求められている。

[0003]

【発明が解決しようとする課題】上記、従来の方法においては、図4に示すように、ブロー成形金型から取り出された後のプラスチック中空成形体は、ブロー成形によるロス部分や開口部・取付け穴等の被加工部分が未加工のままであるため、次工程で切断等の後加工を実施しなければ製品化されない。このため、加工治具も必要となり、さらに後加工工数もかかり、製造治具コスト削減・加工コスト削減ができなかった。従って、本発明の目的とするところは、従来の欠点を解消し、ブロー成形法によって成形するプラスチック中空成形体を安価に効率良く提供することにある。

[0004]

【課題を解決するための手段】本発明は、上記目的を達成するため、プラスチック中空成形体のプロー成形工程において、プロー成形金型内でブロー成形体の加工部分を切断又は溶断し、ブロー成形金型内で加工部分と非加工部分を実質的に分離し、且つ、ブロー成形されたプラスチック中空成形体をブロー成形金型内から取り出す時点においては、所望とする非加工部分体のみを取り出し、次いで加工部分をブロー成形金型内から排出し、必要部分のみ加工された所望のブロー成形によるプラスチック中空成形体を得ることを特徴とするものである。【0005】

【実施例】以下、この発明の実施例を図面に基づいて詳 細に説明する。

【0006】図1A~Eは、本発明による実施第1例で、プロー成形金型内でプロー成形体の加工部分を切断 又は溶断し、加工部分と非加工部分を分離し、プロー成 50 形後の非加工部分体の取り出し、及び加工部分を金型内 から排出する各工程を示す略図である。

【0007】図1Aは、ブロー成形金型内でブロー成形されたプラスチック中空体1の金型内加工前の状態を示す略図である。プラスチック中空体1は、通常の方法によりブロー成形金型2内でブロー成形され、金型壁面2a、2bに接している。金型壁面2aは、プラスチック中空体1の加工部分1aを形成する金型壁面で、減圧吸引手段3に減圧吸引通路3bを介し連結された減圧吸引口3aが設けられ、プラスチック中空体1の加工部分1aを金型壁面2aに吸引可能な構造を持つ。金型壁面2 10a、2bとの間には、加工部分1aの形状に応じた刃物手段4が設けられ、金型に設けた刃物可動手段5によって金型キャビティ内への刃物手段4の前進後退が可能な構造となっている。

【0008】図1Bは、刃物手段4が刃物可動手段5によって金型キャビディ内に前進し、プラスチック中空体1の加工部分1aを切断している状態を示す略図である。プラスチック中空体1の加工部分1aは、減圧吸引手段3の減圧によって金型壁面2aの減圧吸引口3aに吸引され、刃物手段4の金型キャビディ内への前進状態20においても金型壁面2aに付き、脱落しない。

【0009】図1 Cは、刃物手段4によるプラスチック中空体1の加工部分1 aを切断した後の状態を示す略図である。刃物手段4は刃物可動手段5によって金型キャビティ内から後退し、図1 Aの位置に戻り、プラスチック中空体1の加工部分1 aと非加工部分1 bは切断分離される。

【0010】図1Dは、加工されたプラスチック中空体 1をプロー成形金型2より取り出す状態を示す略図である。プラスチック中空体1の加工部分1aは、減圧吸引 30 手段3の減圧によって金型壁面2aに吸引され、ブロー 成形金型2内に残る。

【0011】図1Eは、ブロー成形金型2内に残ったアラスチック中空体1の加工部分1aがブロー成形金型2内から排出される状態を示す略図である。ブロー成形金型2内に残ったアラスチック中空体1の加工部分1aは、圧力交番可能な減圧吸引手段3の加圧によって金型壁面2aの減圧吸引口3aから吹き出す加圧気体が、アラスチック中空体1の加工部分1aを金型壁面2aから引き離し、ブロー成形金型2内からの加工部分1aの排40出を可能にする。

【0012】図2A~Eは、本発明による実施第2例で、ブロー成形金型内でブロー成形体の加工部分を切断 又は溶断する形状の別の例で、ブロー成形体の加工部分 が袋状になっている場合の一例である。

【0013】図2Aは、プロー成形金型内でプロー成形されたプラスチック中空体1′の金型内加工前の状態を示す略図である。プラスチック中空体1′は、通常の方法によりプロー成形金型2′内でブロー成形され、金型壁面2a′、2b′に接している。金型壁面2a′は、

プラスチック中空体1′の加工部分1 a′を形成する金型壁面で、減圧吸引手段3(図不示)に減圧吸引通路3 b′を介し連結された減圧吸引口3 a′が設けられ、プラスチック中空体1′の加工部分1 a′を金型壁面2 a′に吸引可能な構造を持つ。金型壁面2 a′, 2 b′ との間には、加工部分1 a′の形状に応じた刃物手段

4 ´ が設けられ、金型に設けた刃物可動手段 5 ´ によっ

て金型キャビティ内への刃物手段4.前進後退が可能な

【0014】図2Bは、刃物手段4′が刃物可動手段 5′によって金型キャビティ内に前進し、プラスチック 中空体1′の加工部分1a′を切断している状態を示す 略図である。

構造となっている。

【0015】図2Cは、刃物手段4′によるプラスチック中空体1′の加工部分1 a′を切断した後の状態を示す略図である。刃物手段4′は刃物可動手段5′によって金型キャビティ内から後退し、図2Aの位置に戻り、プラスチック中空体1′の加工部分1 a′と非加工部分1 b′は切断分離される。

0 【0016】図2Dは、加工されたプラスチック中空体 1′をブロー成形金型2′より取り出す状態を示す略図 である。プラスチック中空体1の加工部分1a′は、減 圧吸引手段3の減圧によって金型壁面2a′に吸引され、ブロー成形金型2′内に残る。

【0017】図2Eは、ブロー成形金型2′内に残ったプラスチック中空体1′の加工部分1a′がブロー成形金型2′内から排出される状態を示す略図である。ブロー成形金型2′内に残ったプラスチック中空体1′の加工部分1a′は、圧力交番可能な減圧吸引手段3の加圧によって金型壁面2a′の減圧吸引口3a′から吹き出す加圧気体が、プラスチック中空体1′の加工部分1a′を金型壁面2a′から引き離し、ブロー成形金型2′内からの加工部分1a′の排出を可能にする。図3は、本発明による実施第3例で、ブロー成形金型内でブロー成形体の加工部分を溶断する場合の例で、刃物部分を加温する構造を有する例である。

【0018】ブロー成形金型2″内に設けられた刃物手段4″は、加温手段部6を有し、金型に設けた刃物可動手段5″によって金型キャビティ内への刃物手段4″の前進後退が可能な構造をもつ。加温手段は、電気的なヒーターなどによって構成され、刃物手段4″を加温することによってブロー成形体の加工部分を溶断するものである。

【0019】本発明は、前記実施例で示したように、プラスチック中空成形体のプロー成形工程において、プロー成形金型内でプロー成形体の加工部分を切断又は溶断し、プロー成形金型内で加工部分と非加工部分を実質的に分離し、且つ、プロー成形されたプラスチック中空成形体をプロー成形金型内から取り出す時点においては、50 所望とする非加工部分体のみを取り出し、次いで加工部

分ブロー成形金型内から排出し、必要部分のみ加工され た所望のブロー成形によるプラスチック中空成形体を得 ることを特徴とするものであるが、前記実施例は、本発 明の実施の態様の一例であり、前記実施例のほかに、刃 物手段を回転しつつ切断するなどの様々な構成を有する 態様が可能なことはもちろんである。

[0020]

【発明の効果】本発明により奏せられる効果は次の通り である。

【0021】ブロー成形法によって成形するプラスチッ 10 体の製造方法の1段階における状態を示した概略図。 ク中空成形体の構造において、

(1)切断等の加工部分の後加工治工具が不要となり、 治工具コストが削減できる。

【0022】(2)ブロー成形金型内でブロー成形体の 加工部分を加工するので、後加工コストが削減できる。 【図面の簡単な説明】

【図1A】 第1実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図18】 第1実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図1C】 第1実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図10】 第1実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図1日】 第1実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図2A】 第2実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図2B】 第2実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図2C】 第2実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図2D】 第2実施例に基づくプラスチック中空成形 体の製造方法の1段階における状態を示した概略図。

【図2E】 第2実施例に基づくプラスチック中空成形

【図3】 第3実施例の刃物の加温構造を示す略図。

【図4】 従来例を示す説明図。

【符号の説明】

- 1 プラスチック中空体
- 2 金型
- 2a, 2b 金型壁面
- 3 減圧吸引手段
- 3a 減圧吸引口
- 3b 減圧吸引通路
- 20 4 刃物
 - 5 刃物可動手段
 - 6 加温手段
 - 41 プラスチック中空体
 - 42 ロス部分
 - 43 開口部
 - 44 取付穴

【図1A】

【図1B】

05/26/2004, EAST Version: 1.4.1

