M3TM model concept

- decoupled systems of spinless electrons, phonons and localized spins in Mean field approximation (MFA)
- laser pulse heats electron system
- energy distribution to lattice and spins (for FGT: no remagnetization so energy flow $\dot{Q}_{\rm es}$ (see next slide) unidirectional ${\rm e} \to {\rm s}$)
- spin flips (/magnon excitations) upon e-p scattering event from Elliott-Yafet spin mixing
- implicit angular momentum exchange between spins and lattice

M3TM equations

Dynamics of electronic, lattice and spin subsystems⁶

$$\begin{aligned} C_{\mathbf{e}} \frac{dT_{\mathbf{e}}}{dt} &= g_{\mathbf{e}-\mathbf{p}} (T_{\mathbf{p}} - T_{\mathbf{e}}) + S_0 G(t, z)) + \dot{Q}_{\mathbf{e}\mathbf{s}} \\ \\ C_{\mathbf{p}} \frac{dT_{\mathbf{p}}}{dt} &= -g_{\mathbf{e}-\mathbf{p}} (T_{\mathbf{p}} - T_{\mathbf{e}}) \end{aligned}$$

$$\frac{dm}{dt} = Rm \frac{T_{\rm p}}{T_C} \left(1 - \frac{m}{B_{\rm S} \left(\frac{Jm}{k_B T_{\rm e}} \right)} \right)$$

$C_{e(p)}$ electron (phonon) heat capacity

gep electron phonon coupling

 $\dot{Q}_{es} = Jm\dot{m}/V_{at}$ energy exchange of spin-and electron system

$$R = 8 \frac{a_{sf} g_{ep} T_C V_{at}}{\mu_{at} k_B T_{Dob}^2}$$

magnetization rate parameter

 a_{sf} spin flip probability upon e-p-scattering event

 B_S Brillouin function for effective spin S

parameter impact

easy first attempt: take parameters used before for a very similar model

Model	symbol	meaning	estimate	unit
мзтм	_	Atomic magnetic moment a	1.47×10^{-23}	Am ²
	7	Electron heat capacity constant ^a	1561	$\rm Jm^{-3}K^{-2}$
	$V_{\rm at}$	Atom spin density volume ^a	1.68×10^{-29}	m^3
	$T_{\rm C}$	Curie temperature ^b	191	K
	σ	pulse width ^b	85	fs
	$g_{\rm ep}$	Electron-phonon relaxation rate ^c	1.33×10^6	$ m Jm^{-3}K^{-1}ps^{-1}$
	C_p	phonon heat capacity ^c	6.28×10^6	${ m Jm^{-3}K^{-1}}$
	E_{D}	Debeye energy ^c	6.49×10^{-21}	J
	$a_{\rm sf}$	Spin-flip probability	0.14	unity

Lichtenberg et al., arXiv:2206.01452v1

Fitting with literature parameters

- parameters used to fit magnetization dynamics in paper cited above
- good fit of mag dynamics
- electron dynamics ≈ 3 times slower than in experiment
- equilibrium temperature too high in simulations

first try of fit adjustment

- increase c_p by a factor of 1.5 to adjust equilibrium magnetization
- increase g_ep by a factor of 3 to speed up electron dynamics
- decrease spin flip probability by a factor of 3 to stabilize magnetization dynamcis
- → electron dynamics well reproduced
- magnetization rate after e-p-equilibration seems to fast
- next try: increase a_{sf} at the cost of pump power to match the magnetization behaviour for $t > \tau_{ep}$

Fitting irrespective of absorbed energies

- both T_e and m are nicely reproduced
- lattice dynamics data important to validate use of g_{ep}, c_p
- instead of rate parameter, also c_e can be changed to adapt peak of T_e and magnetization rate
- investigation for multiple fluences important (I'd like to talk again about the initial consitions and repetition rate/effective starting temperature)

New fits respecting absorbed energies

treating experimental absorbed

energies:

- XMCD/UED signals recorded in transmission, so average absorbed energy density can be directly used for monolayer simulations
- ARPES signal detected from hot surface of the sample, so that simulated absorbed energy adjusted by
- $E_{sim} = E_{exp} N/(\sum_{i=0}^{N} \exp(-\frac{idz}{\lambda}))$
- dz is unit cell thickness, λ is penetration depth of laser pulse, for N = 1 : E_{sim} = E_{exp}

Absorbed energy density $\left[\frac{J}{cm^3}\right]$	measurement
98	ARPES
250-380	UED
490	XMCD

New fits respecting absorbed energies

- fix absorbed energy for ARPES signal, then adjust C_e, g_{ep} and C_p to fit data
- increase pump power by factor of 5 and hope that adjusting spin-flip probability a_{sf} (mag. rate parameter R) fits XMCD signal

New fits respecting absorbed energies

parameter [units]	used	Fe for ref
$\gamma \left[\frac{kJ}{m^3K^2}\right]$	0.2	≈ 0.8
$C_{p,max} \left[\frac{MJ}{m^3 K} \right]$	4	3.4
$g_{\rm ep} \left[\frac{EW}{m^3 K} \right]$	0.44	≈ 1.5

Lattice response

- fitted is norm. $\Delta(C_pT_p)$ to norm. MSD
- above simulation parameters do not fit lattice response

Lattice response

- lattice equilibrates on similar timescale as electron temperature ≤ 1 ps
- lattice temperature descreases slighty over time due to $\dot{Q}_{\rm es} < 0$

Lattice relaxation times

 lattice equilibrates way slower than electrons

Multi-lattice modeling

- assume not the full lattice is coupled to electrons
- two subsystems of phonons coupled through phonon-phonon coupling

$$\begin{array}{rcl} C_{\rho,e}\,T_{\rho,e} & = & kC_{\rho}(T_{\rho,e})T_{\rho,e} \\ C_{\rho,\rho}\,T_{\rho,\rho} & = & (1-k)C_{\rho}(T_{\rho,\rho})T_{\rho,\rho} \\ C_{\rho,e}\,\frac{dT_{\rho,e}}{dt} & = & g_{ep}(T_{e}-T_{\rho,e})+g_{\rho\rho}(T_{\rho,\rho}-T_{\rho,e}) \\ C_{\rho,\rho}\,\frac{dT_{\rho,\rho}}{dr} & = & g_{\rho\rho}(T_{\rho,e}-T_{\rho,\rho}) \end{array}$$

$$k = 0.1$$

Magnetization and electron tempereature in multi-lattice approach

Lattice heat capacity

Distribution of lattice heat capacity

$$C_{po} = kC_p(T_{po})T_{po}$$

Lattice heat capacity

Distribution of lattice heat capacity

$$C_{po} = kC_p(T_{po})T_{po}$$

Band structure to density of states

$$DOS = \sum_{\mu,k} \frac{\delta k}{\Delta E} \ \delta(E - E_{\mu}(k))$$

 $\frac{\delta k}{10^{-4}}$ unitless, grainsize $\frac{10^{-4}}{0}$ on a range of [0,16]

 $\Delta E = 0.5 \text{ eV}$

 $\begin{array}{ll} \text{seperation} & \text{of phonon packages at} \\ & \text{the band gap at } 35 \\ & \text{meV} \end{array}$

From DOS to C_p

$$C_p = \frac{(2\pi)^3}{V_{UC}} \ \partial_{T_p} \int dE \ E \ f_{BE}(E, T_p) \ DOS(E)$$

V_{UC} Volume of the unit cell

 $f_{BE}(E, T_p)$ Bose Einstein distribution

total C_p agrees actually very well to what I used

ratio of C_p s fits to what I

total C_p reference I have not found any, there is this paper, where they claim to have measured it, but I cannot access it

From DOS to C_p

