

⑨ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑫ Patentschrift
⑩ DE 199 44 688 C 2

⑪ Int. Cl.⁷:
B 09 B 5/00

⑪ Aktenzeichen: 199 44 688.1-44
⑫ Anmeldetag: 17. 9. 1999
⑬ Offenlegungstag: 27. 4. 2000
⑭ Veröffentlichungstag
der Patenterteilung: 31. 10. 2001

20 240 C

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑯ Unionspriorität:
10-264309 18. 09. 1998 JP

⑰ Patentinhaber:
Hitachi, Ltd., Tokio/Tokyo, JP

⑱ Vertreter:
v. Füner Ebbinghaus Finck Hano, 81541 München

⑲ Erfinder:
Sato, Eiji, Ibaraki, JP; Hayashi, Masakatsu, Ushiku, JP; Takagi, Takeo, Tsukuba, JP; Aoki, Toshiyuki, Ibaraki, JP; Takamura, Yoshiyuki, Kudamatsu, JP; Hasegawa, Tsutomu, Niiza, JP; Kunii, Shigeki, Chiba, JP

⑳ Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

EP 10 52 583 A2
= JP 73-34 583 A

㉑ Verfahren zum Recyclisieren von ausgemusterten Industrieprodukten

㉒ Verfahren zum Recyclisieren von ausgemusterten Industrieprodukten mit einem Transportprozeß für die ausgemusterten Industrieprodukte (6, 6a, 6b), die von einzelnen Ausmusterungsquellen (10) zu einem Entsorgungszentrum (13; 14) abgeführt werden, und mit einem Behandlungsprozeß für die ausgemusterten Industrieprodukte (6) an dem Entsorgungszentrum (13; 14), wobei für die Behandlung jedes der ausgemusterten Industrieprodukte (6) erforderliche Informationen in eine elektronische Marke (1) eingespeichert sind, die an jedem der ausgemusterten Industrieprodukte im Verlauf der Überführung der ausgemusterten Industrieprodukte (6) zum Entsorgungszentrum (13; 14) von den einzelnen Ausmusterungsquellen (10) aus befestigt ist, und wobei die an dem ausgemusterten Industrieprodukt (6) befestigte elektronische Marke (1) zusammen mit dem ausgemusterten Industrieprodukt (6) zu dem Entsorgungszentrum (13; 14) geschickt wird.

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Verfahren zum Recyclisieren von ausgemusterten Industrieprodukten. Auf das Industrieprodukt wird auch als der gefertigte Gegenstand oder einfach als der Gegenstand Bezug genommen. [0002] Beim Recyclisieren von ausgemusterten Industrieprodukten hat man bisher hauptsächlich Gewicht auf Behandlungen/Vorarbeiten, wie Schreddern oder Brechen und Aussortieren von Metallteilen zum Zwecke der Rückgewinnung von Metallen, wie Eisen, Kupfer, Aluminium und dergleichen gelegt. Neuerdings werden jedoch die Steigerung des Rückführverhältnisses und das sachgerechte Entsorgen von schädlichen Materialien und Substanzen als wesentliche Probleme angesehen, die vom Gesichtspunkt des globalen Umweltschutzes (Planetismus) zu lösen sind. Unter diesen Umständen gewinnen in den Fabriken zur Entsorgung von ausrangierten Gegenständen und Abfällen Vorgänge des Zerlegens zusätzlich zu den zum Schreddern oder Brechen gehörenden Vorgängen mehr und mehr Bedeutung. Bei der Entsorgung von ausgemusterten Industrieprodukten, bei der beispielsweise Wert auf das Zerlegen und Recyclisieren von Materialien gelegt wird, kann das Recyclisieren von Kunststoffen dadurch begünstigt werden, daß schädliche Materialien/Substanzen zwangsläufig entfernt und die sich bei der Zerlegung ergebenden Teile genau und richtig sortiert werden. Die ausgemusterten Industrieprodukte, die der Entsorgungsverarbeitung zugeführt werden, betreffen jedoch eine große Vielfalt von Gegenständen, Bauteilen und Materialien. Deshalb erfordert die Entsorgung der gefertigten Gegenstände ein sachgerechtes Sortieren der Gegenstände selbst und der Bestandteile sowie der eigentlichen sachgerechten Behandlungen der einzelnen Gegenstände. Zur Zeit gibt es viele Fälle, in denen die Kosten für die Entsorgung eines ausgemusterten Gegenstandes (Industrieprodukt) dem Ausmusterer belastet werden sollen (d. h. der Person, die den Gegenstand für die Entsorgung als ausrangiert anliefert). Man möchte deshalb, daß die Informationen, welche Datum und Ort betreffen, an denen der ausgemusterte Gegenstand entsorgt wurde, an den Ausmusterer weitergegeben werden.

[0003] Ein typisches Verfahren zum Recyclisieren von ausgemusterten Industrieprodukten ist in JP-A-7-334583 offenbart. Bei diesem Verfahren werden für den Gegenstand eine ID-(Identifizierungs-)Leseeinheit und eine Informations-/Datenspeichereinheit verwendet. In der Informations-/Datenspeichereinheit für den Gegenstand ist eine Gegenstandsdatenbank (-datenbank) gespeichert. Durch Lesen der ID-Information für den betreffenden Gegenstand mit Hilfe einer ID-Eingabeeinheit für den Gegenstand kann somit eine Bearbeitung/Behandlung des ausgemusterten Industrieprodukts dadurch effizient durchgeführt werden, daß die Gegenstandsdatenbank verwendet wird. Insbesondere wird die an dem betreffenden hergestellten Gegenstand festgelegte Information gelesen, und es wird alternativ eine entsprechende Information über ein Keyboard oder dergleichen eingegeben, wenn die Information nicht direkt von dem Gegenstand abgelesen werden kann, worauf die Bearbeitung auf der Basis der Eingabeinformation durch Bezugnahme auf die Gegenstandsdatenbank ausgeführt wird. In der Praxis trägt jedoch der ausgemusterte behandelte Gegenstand tatsächlich kaum nützliche Informationen. Außerdem ergeben sich beim Lesen der Information auch mit den heutigen Techniken große Schwierigkeiten. Zudem ist die Herstellung oder Strukturierung der Gegenstandsdatenbank sehr schwierig, da die Gegenstände einer gleichen Klasse von unterschiedlichen Fertigern (Herstellern) hergestellt werden, nacheinander neue Produkte für den Verkauf entwickelt

werden und die hergestellten Gegenstände bezüglich der Arten oder Sorten überreichlich vorhanden sind.

[0004] Bei einer solchen Recyclisierung von ausgemusterten Industrieprodukten ergeben sich, wie oben erwähnt, 5 viele Fälle, in denen die Kosten für die Entsorgung des ausgemusterten Gegenstands von der Person getragen werden sollen, die den Gegenstand zugebracht hat, d. h. von dem Ausmusterer. Es ist deshalb erforderlich, die Überführungswege zu erstellen oder zu kontrollieren, längs der der ausgemusterte Gegenstand behandelt wird, durch Aufzeichnen beispielsweise des Namens des Herstellers oder Anfertigers dieses Gegenstands, seines Modells oder Typs, des Entgegennahmedatums, des Namens der für die Entsorgung verantwortlichen Person und des Entsorgungsdatums. Außerdem muß bei der Entsorgung des Gegenstands entschieden werden, ob der für das Schreddern in Frage kommende oder der für das Zerkleinern zuständige Weg gewählt werden soll. Bei der hauptsächlich auf die Zerlegung gerichteten Bearbeitung muß das Sortieren der Bauteile richtig erfolgen, um abhängig von den Zuständen der ausgemusterten Industrieprodukte die Wiederverwendung der Bauteile, das Entfernen von schädlichen Materialien/Substanzen, das Recyclisieren oder Wiederverwenden von Materialien/Substanzen usw. zu verwirklichen. In Verbindung mit dem Aussortieren von zerlegten Teilen (d. h. Teilen, die sich aus der Zerlegung ergeben), möchte man eine Verbesserung der Genauigkeit und Richtigkeit der Sortierung sowie eine Steigerung der Behandlungsgeschwindigkeit haben, um die Kosten der Entsorgung zu verringern, während die Reinheit der Materialien und die Substanz, die man als wertvolle Stoffe erhalten möchte, gewährleistet wird. Insbesondere werden üblicherweise bei den ausgemusterten Industrieprodukten kastenartige Kunststoffgehäuse oder Behältnisse verwendet. Um also zu ermöglichen, daß Kunststoffe als Rohstoff wieder verwendet werden, ist es unerlässlich, das Sortieren derart durchzuführen, daß Kunststoffmaterialien hoher Qualität auf Sortenbasis erhalten werden können. Um eine solche Bearbeitung in der Praxis zu verwirklichen, müssen die für deren Verarbeitung erforderlichen Daten genau und richtig 30 für jeden der hergestellten Gegenstände verfügbar gemacht werden. Um die Bearbeitungs- oder Behandlungsrate zu erhöhen, sollte der Transfer sowie die Verarbeitung der relevanten Informationen bis zu einem möglichen maximalen Ausmaß automatisiert werden. 35 [0005] Die der Erfindung zugrundeliegende Aufgabe besteht darin, ein Verfahren zum Recyclisieren von ausgemusterten Industrieprodukten bereitzustellen, welches die Verarbeitungen und Behandlungen an ausgemusterten Industrieprodukten oder Gegenständen erleichtern kann, während es möglich ist, das Angewiesensein auf die Datenbank zu verringern. Dabei soll die Möglichkeit gegeben sein, die Arbeiten beim Aussortieren von Teilen und/oder Materialien, die sich aus der Zerlegung ergeben, zu vereinfachen. 40 [0006] Diese Aufgabe wird gemäß einem Aspekt der Erfindung durch ein Verfahren zum Recyclisieren von ausgemusterten Industrieprodukten gelöst, welches einen Überführungsprozeß von ausgemusterten Industrieprodukten, die von einzelnen Ausmusterern (sozusagen Ausmusterquellen) einem Entsorgungszentrum zugebracht werden, und einen Prozeß zur Verarbeitung der ausgemusterten Industrieprodukte in dem Entsorgungszentrum aufweist, wobei die für 45 die Bearbeitung jedes der ausgemusterten Industrieprodukte erforderlichen Informationen im Verlauf der Überführung der ausgemusterten Industrieprodukte von den einzelnen Ausmusterern zum Entsorgungszentrum in eine elektronische Marke eingespeichert werden, und wobei die elektronischen Marken zu dem Entsorgungszentrum zusammen mit den jeweils ausgemusterten Industrieprodukten geschickt

werden.

[0007] Die Aufgabe wird gemäß einem weiteren Aspekt der Erfindung durch ein Verfahren zum Recyclisieren von ausgemusterten Industriprodukten gelöst, welches ein Rückgewinnungs- oder Sammelzentrum zum Sammeln der von Einzelpersonen, wie Ausmusterern, zugebrachten ausgemusterten Industriprodukten und ein Entsorgungszentrum zum Entsorgen der ausgemusterten Industriprodukte, die hauptsächlich aus dem Rückgewinnungszentrum erhalten werden, aufweist, wobei elektronische Marken (HF-ID-Marken), in die Daten eingespeichert und aus denen Daten ausgelesen werden können, an dem ausgemusterten Industriprodukt oder an seinem Hauptbauteil oder an einem Behälter, in welchem das ausgemusterte Industriprodukt aufgenommen ist, entweder im Wiedergewinnungszentrum oder im Entsorgungszentrum befestigt werden, und wobei die für die Bearbeitung erforderlichen Daten durch Lese-/Einspeichervorrichtungen in die elektronische Marke eingespeichert oder aus ihr gelesen werden.

[0008] Zur Vereinfachung der Aussortierarbeiten wird gemäß einem weiteren Aspekt der Erfindung ein Verfahren zum Recyclisieren von ausgemusterten Industriprodukten bereitgestellt, welches eine Vielzahl von Paletten, jeweils an den Paletten befestigte elektronische Marken, Förderer zum Transportieren dieser Paletten, eine Vielzahl von Abführkanälen zur Aufnahme der ihnen von den Förderern zugebrachten Paletten, eine Einspeichereinheit zum Einspeichern von Informationen in die elektronische Marke bezüglich eines Bestimmungsabführkanals der Palette, an der die elektronische Marke befestigt ist, und eine Einheit zum Lesen der Informationen bezüglich des Bestimmungsabführkanals der von der Fördereinrichtung transportierten Palette aus der an der Palette befestigten elektronischen Marke aufweist, um dadurch die Palette selektiv zu dem Bestimmungsabführkanal zu schicken, der durch die Bestimmungsinformationen bezeichnet ist.

[0009] Die genannte Aufgabe wird ferner gemäß einem weiteren Aspekt der Erfindung durch ein Verfahren zum Recyclisieren von ausgemusterten Industriprodukten gelöst, welches eine Vielzahl von Paletten, palettenorientierte elektronische Marken, die jeweils an den Paletten festzulegen sind, eine erste Lese-/Einspeichereinheit zum Einspeichern von Daten in die palettenorientierten elektronischen Marken, Abführkanäle, an denen die Paletten jeweils entladen werden, und zweite jeweils an den Abführkanälen angeordnete Lese-/Einspeichereinheiten zum Lesen der Daten aufweist, die jeweils in den palettenorientierten elektronischen Marken aufgezeichnet sind, wobei jeweils in die palettenorientierten elektronischen Marken Bestimmungscodes eingespeichert werden, welche die Bestimmungsabführkanäle angeben. Jede der Paletten wird zu den Abführkanälen transportiert, wo die in der palettenorientierten elektronischen Marke aufgezeichneten Daten durch die zweite Lese-/Einspeichereinheit gelesen werden. Wenn ein aus der palettenorientierten elektronischen Marke ausgelesener Code mit einem Code des Abführkanals übereinstimmt, werden Teile/Materialien auf der Palette in den Abgabekanal abgegeben, für den die Übereinstimmung zwischen den Codes festgestellt worden ist.

[0010] Das erfundungsgemäße Recyclisierungsverfahren für die ausgemusterten Industriprodukte hat die nachstehend erläuterten vorteilhaften Wirkungen und Effekte.

[0011] Da jeweils eine Einzuordnung zwischen den elektronischen Marken und den ausgemusterten Industriprodukten oder Paletten vorgesehen wird, können die für das Entsorgen des ausgemusterten Industriprodukts erforderlichen Informationen gleichzeitig mit der Überführung des Produkts überführt werden, wodurch eine Handhabung

der ausgemusterten Industriprodukte und Begleitzettel unnötig gemacht werden können. Da gelegentlich erforderlich werdende Daten zusätzlich im Verlauf der Überführung des ausgemusterten Industriprodukts aufgezeichnet werden können, können die für die Behandlung oder Bearbeitung erforderlichen Daten immer zusammen mit dem ausgemusterten Industriprodukt bewegt werden. Wenn die Speicherkapazität der elektronischen Marke gering ist, können die Informationen in codierter Form eingespeichert werden, so daß die codierten Daten durch Ausgabegeräte für das Entsorgungsbearbeitungssystem decodiert werden können, das von einem Computer gehandhabt wird. Dadurch ist es in dem Rückgewinnungszentrum oder dem Entsorgungszentrum möglich, den Namen des Ausmusterers, das Datum für die Entgegennahme des ausgemusterten Industriprodukts, den Namen des Herstellers, das Produktmodell, den Namen der für die Entsorgung verantwortlichen Person, das Datum der Entsorgung usw. eingespeichert werden, und es können die Gegenstände vorübergehend in dem Lager gelagert oder direkt weiter zur Bearbeitungs-/Behandlungsstraße geliefert werden. Zu dem Zeitpunkt, zu dem die Bearbeitung oder Behandlung an dem Entsorgungszentrum ausgeführt wird, können die Informationen, die in der elektronischen Marke aufgezeichnet sind, welche an dem ausgemusterten Industriprodukt befestigt ist, durch die Lese-/Einspeichereinheit gelesen werden, woraufhin die Daten zu dem Datenspeicher für ein Speichern des Entsorgungsdatums geschickt werden, oder alternativ wird das Entsorgungsdatum zusätzlich in der elektronischen Marke eingespeichert. Durch Lesen der in der abschließend wiedergewonnenen elektronischen Marke aufgezeichneten Informationen ist es möglich, den Fluß oder den Weg, längs dem das ausgemusterte Industriprodukt gehandhabt worden ist, beginnend von der Entgegnahme bis zur Entsorgung zu verwalten.

[0012] Für diejenigen ausgemusterten Industriprodukte, die kastenartige Elemente aus Kunststoff haben, werden die für die Bearbeitung/Behandlung oder ihre Entsorgung erforderlichen Daten in die elektronische Marke eingespeichert. Die Daten oder Informationen, die zusätzlich einzuspeichern sind, sind der Grad der Verschlechterung, die Qualität und die Farbe der kastenartigen Elemente aus Kunststoff, die durch Verwendung einer Vorrichtung oder von Vorrichtungen erhalten werden können, die zum Messen dieser Eigenschaften ausgelegt sind. Die als Meßergebnis erhaltenen Daten können zusätzlich in die elektronische Marke durch eine Lese-/Einspeichereinheit eingespeichert und für das selektive Sortieren der kastenartigen Elemente aus Kunststoff verwendet werden.

[0013] In Verbindung mit der Durchführung der Bearbeitung/Behandlung eines ausgemusterten Industriprodukts kann eine Sortierentscheidungseinrichtung vorgesehen werden, die Entscheidungen auf der Basis der Informationen trifft, die in der elektronischen Marke aufgezeichnet sind, welche an dem ausgemusterten Industriprodukt befestigt ist, und zwar dahingehend, ob das ausgemusterte Industriprodukt auf den Schredder-/Sortierweg oder auf den Zerlegungsweg geschickt wird, wodurch der Entsorgungsweg, der für das ausgemusterte Industriprodukt zutrifft oder optimal ist, wohlweise richtig bestimmt werden kann. In den meisten praktischen Fällen werden die das Aussortieren eines vorgegebenen ausgemusterten Industriprodukts betreffenden Daten vorher in der an ihm festgelegten elektronischen Marke gespeichert. Wenn jedoch eine die Sortierung betreffende, komplizierte Entscheidung erforderlich ist, kann die Entscheidung dadurch erfolgen, daß eine entsprechende Frage an das Entsorgungsvorarbeitungssystem gerichtet wird.

[0014] Durch Befestigen oder Festlegen der elektroni-

schen Marke (HF-ID-Marke) an dem ausgemusterten Industrieprodukt und durch Einspeichern von Grunddaten, wie den Namen des Ausmusterers und das Entgegennahmedatum sowie des ausgemusterten industriellen Gegenstandes durch die Lese-/Einspeichereinheit, können aufeinanderfolgend erhaltene Daten automatisch in die elektronische Marke eingespeichert werden. Dadurch kann die Betreibung des Gegenstandstransfers erleichtert werden, wodurch eine Arbeitseinsparung realisiert werden kann. Da der Aussortier-/Klassifizierprozeß der hergestellten Gegenstände und der zerkleinerten Teile im wesentlichen fehlerfrei ausgeführt werden kann, kann für jedes der ausgemusterten Industrieprodukte ein optimaler Entsorgungsweg ausgewählt werden. Auf diese Weise läßt sich die Materialrecyclisierung von kastenartigen Elementen aus Kunststoff und die Recyclisierung von Bauteilen äußerst effizient verwirklichen.

[0015] Beispieldweise Ausführungsformen der Erfindung werden anhand von Zeichnungen näher erläutert, in denen [0016] Fig. 1 eine schematische Darstellung zur Veranschaulichung von Überführungen oder Strömen von ausgemusterten Industrieprodukten und elektronischen Marken in einem Recyclisierungsverfahren für ausgemusterte Industrieprodukte gemäß einer Ausführungsform der vorliegenden Erfindung ist,

[0017] Fig. 2 eine bildliche Darstellung zur Veranschaulichung der Entgegennahmeanordnungen für einen ausgemusterten Gegenstand im Geschäft eines Händlers oder dergleichen ist,

[0018] Fig. 3 ein Schema zur Veranschaulichung der Daten ist, die in eine elektronische Marke im Geschäft eines Händlers erfindungsgemäß eingespeichert werden,

[0019] Fig. 4 eine Ansicht zur Darstellung von Entgegennahmeanordnungen für einen ausgemusterten Gegenstand in einem Wiedergewinnungszentrum oder dergleichen ist,

[0020] Fig. 5 ein Ablaufdiagramm zur Veranschaulichung eines Sortierprozesses von ausgemusterten Industrieprodukten ist,

[0021] Fig. 6 eine Darstellung zur Veranschaulichung der Zuweisung von ausgemusterten Gegenständen zu einem Zerkleinerungsweg oder einem Schredder-/Sortierweg ist,

[0022] Fig. 7 eine Darstellung zur Veranschaulichung von Daten ist, die in eine elektronische Marke in einem Wiedergewinnungszentrum erfindungsgemäß eingespeichert werden,

[0023] Fig. 8 eine Ansicht zur Darstellung von Bearbeitungsflüssen für ausgemusterte Gegenstände sowie für ihre Überführungen beim Entsorgungszentrum ist,

[0024] Fig. 9 eine Darstellung zur Veranschaulichung von Daten ist, die in eine elektronische Marke in dem Entsorgungszentrum eingespeichert werden,

[0025] Fig. 10 eine Darstellung zur Veranschaulichung der Zuweisung von Palettenentladungs-Bestimmungscodes ist,

[0026] Fig. 11 ein Zeitdiagramm zur Darstellung der auf einer Palette ausgeführten Operationen ist, die in der Nähe eines Zerlegungsarbeitsplatzes angeordnet ist,

[0027] Fig. 12 eine Darstellung zur Veranschaulichung der Aussortierung von Teilen ist, die sich bei der Zerlegung von ausgemusterten Gegenständen gemäß einer weiteren Ausgestaltung der Erfindung ergeben,

[0028] Fig. 13 eine Darstellung zur Veranschaulichung der Zuweisung von Palettenentladungs-Bestimmungscodes ist, und

[0029] Fig. 14 eine Bilddarstellung zur Veranschaulichung eines Inspektionsprozesses für die Wiederverwendung bestimmter Teile gemäß der Erfindung ist.

[0030] Zur Durchführung des Verfahrens werden elektronische Marken, eine Hochfrequenz-Identifizierungsmarke

oder eine HF-ID-Marke an den ausgemusterten Industrieprodukten oder Gegenständen zu ihrer Bearbeitung oder Behandlung befestigt. Deshalb wird zunächst kurz die elektronische Marke beschrieben, ehe bevorzugte oder beispielweise Ausgestaltungen der Erfindung im einzelnen erläutert werden. Elektronische Marken werden in Kombination oder im Zusammenwirken mit einer Lese-/Einspeichereinheit verwendet. Mit Hilfe der Lese-/Einspeichereinheit werden Informationen in die elektronische Marke eingespeichert.

5 Insbesondere dann, wenn eine Funkwelle mit einer speziellen Frequenz an die elektronische Marke aus der Lese-/Einspeichereinheit gesendet wird, empfängt die elektronische Marke die Funkwelle und lädt intern elektrische Energie, um dadurch eine elektronische Schaltung zu aktivieren, die in der Marke eingeschlossen ist, wodurch die Funkwelle so moduliert wird, daß Daten erzeugt werden, die in einem Gedächtnis gespeichert werden, das einen Teil der elektronischen Schaltung bildet. Wenn andererseits die in die elektronische Marke eingespeicherten Daten daraus ausgelesen werden sollen, sendet die Lese-/Einspeichereinheit die Funkwelle einer spezifischen Frequenz zur elektronischen Marke, die darauf durch spontanes Laden von elektrischer Energie antwortet und dadurch die in der Marke enthaltene elektronische Schaltung aktiviert, wodurch eine mit den in der elektronischen Schaltung gespeicherten Daten modulierte Funkwelle von ihr gesendet wird. Nach Empfang der Funkwelle von der elektronischen Marke erhält die Lese-/Einspeichereinheit die Daten durch Demodulieren der Funkwelle. Die vorstehend erwähnte Datenlese-/Dateneinspeicheroperation erfolgt automatisch und aufeinanderfolgend zu einem Zeitpunkt, wenn die elektronische Marke in einen Kommunikationsabdeckbereich der Lese-/Einspeichereinheit eintritt. Die Kommunikationsdistanz zwischen der elektronischen Marke und der Lese-/Einspeichereinheit-

10 Welle ändert sich abhängig von der Größe der elektronischen Marke (Größe einer in die elektronische Marke eingeschlossenen Antenne). Im Fall der elektronischen Marke mit einer Größe, die mit einer IC-Karte vergleichbar ist, liegt die Distanz zwischen der elektronischen Marke und der Funkwelle, bei welcher eine drahtlose Kommunikation ausgeführt werden kann, üblicherweise in einem Bereich von 1 bis 2 m, während für eine elektronische Marke mit einer Größe, die annähernd gleich der Größe eines Halbleiterchips ist, die Kommunikationsdistanz in der Größenordnung von 10 cm liegt. In dieser Hinsicht kann die Größe der elektronischen Marke dadurch gewählt werden, daß die Anordnungen der jeweiligen Einrichtungen sowie die Umgebungsbedingungen in dem Arbeitsfeld in Betracht gezogen werden. Wenn also die elektronische Marke in den Kommunikationsabdeckbereich eintritt, kann die Datenlese-/Dateneinspeicheroperation frei ausgeführt werden.

15 [0031] Es wird nun eine beispielweise Ausgestaltung der vorliegenden Erfindung im einzelnen beschrieben. Fig. 1 zeigt Flüsse oder Überführungen von ausgemusterten Industrieprodukten und Flüsse von elektronischen Marken in einem Recyclisierungssystem für ausgemusterte Industrieprodukte gemäß einer Ausgestaltung der Erfindung. Üblicherweise wird ein ausgemustertes Industrieprodukt (beispielsweise ein auszumusternder hergestellter Gegenstand) von einem Ausmusterer (Auszusterquelle) 10 für eine Beförderung zu einem Rückgewinnungszentrum 12 über einen Händler 11 abgegeben, worauf er zu einem Entsorgungszentrum 13 geschickt wird. Auf dem oben genannten Weg kann das ausgemusterte Industrieprodukt direkt zu dem Entsorgungszentrum 13 geschickt werden. Beispieldweise können einige ausgemusterte Industrieprodukte von dem Ausmusterer 10 zum Entsorgungszentrum 12 geschickt werden, während einige ausgemusterte Industrieprodukte von dem

Händler 11 direkt zum Entsorgungszentrum 13 geschickt werden können. In dem Fall, in welchem der ausgemusterte Gegenstand von dem Ausmusterer 10 direkt zu dem Entsorgungszentrum 13 geschickt wird oder wenn das elektronische Markensystem weder bei dem Händler 11 noch an dem Rückgewinnungszentrum 12 installiert ist, wird eine elektronische Marke an dem ausgemusterten Industrieprodukt an dem Entgegennahmeabschnitt des Entsorgungszentrums 13 angebracht, worauf die für die Bearbeitung/Behandlung des ausgemusterten Industrieprodukts erforderlichen Daten in die elektronische Marke mit Hilfe einer Lese-/Einspeichereinheit eingespeichert werden, was im einzelnen später beschrieben wird.

[0032] Die ausgemusterten Industrieprodukte können der Bearbeitung-/Behandlung unmittelbar oder nachdem sie vorübergehend in einem Lager des Entsorgungszentrums 13 gespeichert wurden, unterworfen werden. Zur gleichen Zeit wird die elektronische Marke von dem zum Gegenstands-Entgegennahmeabschnitt des Entsorgungszentrums 13 zurückzuführenden ausgemusterten Gegenstands abgelöst. In dem Fall, in welchem der ausgemusterte Gegenstand von dem Händler 11 geliefert wird, kann die elektronische Marke an dem ausgemusterten Gegenstand an dem Händlergeschäft befestigt werden, worauf die für die Bearbeitung/Behandlung erforderlichen Daten in die elektronische Marke durch die Lese-/Einspeichereinheit eingespeichert werden.

[0033] Die an dem zum Entsorgungszentrum 13 geschickten, ausgemusterten Industrieprodukt befestigte elektronische Marke wird nach seiner Behandlung für die Rückführung zum Händler 11 abgelöst. Wenn andererseits das ausgemusterte Industrieprodukt von dem Rückgewinnungszentrum 12 zum Entsorgungszentrum 13 geschickt werden soll, wird die elektronische Marke an dem ausgemusterten Industrieprodukt an dem Rückgewinnungszentrum 12 befestigt. Nach der Bearbeitung/Behandlung an dem Entsorgungszentrum 13 wird die elektronische Marke zu dem Rückgewinnungszentrum 12 zurückgeführt, von wo aus sie zurück zum Händler 11 geschickt wird. Es kann sich der Fall ergeben, in welchem das ausgemusterte Industrieprodukt von dem Rückgewinnungszentrum 12 zu einem weiteren Entsorgungszentrum 14 geschickt wird. In diesem Fall wird die elektronische Marke zum Rückgewinnungszentrum 12 zurückgeführt. In vielen praktischen Fällen wird ein Entsorgungszentrum mit ausgemusterten Industrieprodukten von einer Anzahl von Rückgewinnungszentren aus versorgt. In diesen Fällen werden elektronische Marken an den Rückgewinnungszentren befestigt und zu den Rückgewinnungszentren nach dem Ablösen in dem Entsorgungszentrum zurückgeschickt.

[0034] Auf diese Weise werden die elektronischen Marken wiederholt innerhalb einer Schleife verwendet, die sich aus dem Händler 11, dem Rückgewinnungszentrum 12 und dem Entsorgungszentrum 13 oder 14 zusammensetzt. Dementsprechend kann die erforderliche Anzahl der elektronischen Marken verglichen mit der der ausgemusterten Industrieprodukte extrem klein gehalten werden.

[0035] Die Ansicht von Fig. 2 dient zur Veranschaulichung einer beispielweisen Entgegennahme des ausgemusterten Industrieprodukts hauptsächlich in dem Händlergeschäft 11. Zunächst werden die Daten in die elektronische Marke 1 eingespeichert. Sowohl die durch ein Keyboard oder mit einer Maus der Eingabeeinheit 2 eingegebenen Daten als auch die vorher in der Eingabeeinheit 2 gespeicherten Daten werden zu einer Lese-/Einspeichereinheit 3 für ein Senden zu einer elektronischen Marke 1 über eine Antenne 4 geschickt. Zusätzlich werden die unter Verwendung des Keyboards oder der Maus eingegebenen Daten in der Eingabe-

beeinheit 2 gespeichert und gleichzeitig zu einem Drucker 5 geschickt, wodurch ein mit den Daten bedruckter Bogen zu dem Ausmusterer als Bestätigung zugestellt wird. Elektronische Marken 1a und 1b, in die jeweils die Daten eingespeichert worden sind, werden an den ausgemusterten Industrieprodukten 6a bzw. 6b befestigt. In diesem Fall wird lediglich beispielsweise angenommen, daß das ausgemusterte Industrieprodukt ein Personalcomputer ist, wobei das Bezugszichen 6a einen Hauptkörper des Personalcomputers und 6b eine Bildschirmeinheit bezeichnet.

[0036] Als in die elektronische Marke 1 einzuspeichernde Daten sind beispielsweise der Name des Ausmusterers, die Adresse des Ausmusterers, die Telefonnummer des Ausmusterers, der Name des Herstellers des ausgemusterten Gegenstands, der Name des Gegenstands, das Produktmodell, das Herstellungsdatum (Jahr und Monat), das Gewicht, der Name des entgegennehmenden Händlers, das Entgegennahmedatum und die Entsorgungskosten zu nennen, wie es in Fig. 3 dargestellt ist. Von den oben erwähnten Daten werden der Name des Händlers, der den Gegenstand entgegengenommen hat, und das Entgegennahmedatum automatisch in die elektronische Marke von der Eingabeeinheit 2 eingespeichert, während die übrigen Daten durch Verwendung des Keyboards und/ oder der Maus eingegeben werden. In Fig. 3 stellen die Symbole ○○○ das Feld der elektronischen Marke dar, in welches die Daten eingespeichert worden sind, während die Symbole --- die Felder darstellen, in die noch keine Daten eingespeichert worden sind.

[0037] Die in dem Händlergeschäft entgegengenommenen ausgemusterten Industrieprodukte werden vorübergehend gelagert, bis die entgegengenommenen ausgemusterten Gegenstände sich zu einer vorgegebenen Menge aufsummieren, und dann zu dem Rückgewinnungszentrum geschickt. Zu diesem Zeitpunkt wird dafür gesorgt, daß die ausgemusterten Industrieprodukte an der Lese-/Einspeichereinheit 3 vorbei- oder durch sie hindurchlaufen. Nach einer Bestätigung, daß die an dem ausgemusterten Industrieprodukt befestigte elektronische Marke sich innerhalb des Kommunikationsabdeckbereichs der Lese-/Einspeichereinheit 3 befindet, werden das Datum der Absendung von dem Händler und der Name des Rückgewinnungszentrums, die Bestimmung, zu der das ausgemusterte Industrieprodukt zu schicken ist, in die elektronische Marke eingespeichert und gleichzeitig in der Eingabeeinheit abgespeichert. Um Fehler beim Einspeichern der Daten zu vermeiden, können beispielsweise Maßnahmen ergriffen werden, daß ein Summer aktiviert wird, wenn der Datenschreibvorgang korrekt ohne irgendeinen Fehler abgeschlossen worden ist, so daß dadurch der Händler den Abschluß des Einspeicherns der Daten bestätigen kann. Die Eingabeeinheit 2 ist elektrisch mit dem Rückgewinnungszentrum 12 und dem Entsorgungszentrum 13 über eine Telefonleitung 7 oder dergleichen so verbunden, daß die Daten in der Eingabeeinheit an dem Rückgewinnungszentrum und dem Entsorgungszentrum eingeschrieben oder geprüft werden können. Aufgrund dieser Anordnung kann der Lagerstatus der ausgemusterten Industrieprodukte bei den einzelnen Händlern überwacht oder an dem Rückgewinnungszentrum bestätigt werden, was wiederum bedeutet, daß Rückgewinnungszeitpläne für die ausgemusterten Industrieprodukte für die einzelnen Händler so geplant werden können, daß die ausgemusterten Industrieprodukte mit hohem Wirkungsgrad wiedergewonnen werden können. In diesem Zusammenhang ist auch zu erwähnen, daß die Entgegennahme der ausgemusterten Industrieprodukte an dem Rückgewinnungszentrum 12 betreffenden Daten und ihre Entsorgungsergebnisse an dem Entsorgungszentrum 13 in die in dem Händlergeschäft installierte Eingabeeinheit für die Telefonleitung 7 oder dergleichen geschrie-

ben werden können. Dadurch werden zum gleichen Zeitpunkt, zu dem die Bearbeitung/Behandlung oder Entsorgung des ausgemusterten Industrieprodukts abgeschlossen worden ist, die in die durch "___" in Fig. 3 bezeichneten Reihen zu schreibenden Daten abschließend in die in dem Händlergeschäft installierte Eingabeeinheit eingespeichert. Auf diese Weise kann der Händler das Entsorgungsdatum des ausgemusterten Industrieprodukts bestätigen und eine entsprechende Information an den betreffenden Lieferer geben.

[0038] Im Falle der oben beschriebenen Ausführungsform wird angenommen, daß die ausgemusterten Industrieprodukte in dem Händlergeschäft entgegengenommen wurden. Wenn die ausgemusterten Industrieprodukte in dem Rückgewinnungszentrum 12 oder dem Entsorgungszentrum 13 entgegengenommen werden, können die in Fig. 2 gezeigten Geräte und Anordnungen an dem Rückgewinnungszentrum 12 oder an dem Entsorgungszentrum 13 angeordnet werden. Wenn ferner die Anzahl der zu handhabenden ausgemusterten Industrieprodukte für mehrere Arten oder Sorten groß ist, können die ausgemusterten Industrieprodukte in Behältern geordnet nach Sorten aufgenommen werden. In diesem Fall können die elektronischen Marken an den Behältern einzeln befestigt werden. Auf diese Weise können Handhabung und Transport der ausgemusterten Industrieprodukte stark erleichtert werden.

[0039] Wie sich aus dem Vorstehenden ergibt, kann das Speichern der Daten in die elektronische Marke in dem Händlergeschäft oder in dem Rückgewinnungszentrum ohne Fehler ausgeführt werden. Da viele der einem Händler gelieferten ausgemusterten Industrieprodukte gewöhnlich solche sind, die einmal von dem gleichen Händler vermittelt oder verkauft wurden, kann der Händler beispielsweise feststellen, ob sich das ausgemusterte Industrieprodukt wie entgegengenommen in einem für die Wiederverwendung bereiten Zustand befindet oder nicht, oder die für die Entsorgung des ausgemusterten Gegenstands anfallenden Kosten mit hoher Genauigkeit schätzen. Da außerdem die Anzahl der vom Händler zu handhabenden ausgemusterten Industrieprodukte üblicherweise relativ klein ist, ergibt sich für den Angestellten nicht die Notwendigkeit, die Daten in die elektronischen Marken einzuspeichern. Da zusätzlich jedes der ausgemusterten Industrieprodukte mit der entsprechenden elektronischen Marke versehen ist, besteht keine Notwendigkeit, das ausgemusterte Industrieprodukt durch Befestigung eines entsprechenden Zettels oder einer Notiz zu kontrollieren. Die Entgegennahme und das Weitersenden der ausgemusterten Industrieprodukte kann somit problemlos ausgeführt werden.

[0040] Fig. 4 veranschaulicht die Entgegennahme von ausgemusterten Industrieprodukten hauptsächlich an dem Rückgewinnungszentrum 12. Dabei ist das ausgemusterte Industrieprodukt 6 in dem Händlergeschäft mit der elektronischen Marke 1 versehen worden, in welche die für die Bearbeitung/Behandlung oder die Entsorgung des ausgemusterten Gegenstands erforderlichen Daten in die elektronische Marke 1 eingespeichert worden sind, wie es in Fig. 3 gezeigt ist. Das ausgemusterte Industrieprodukt 6 wird durch einen Förderer zugeführt. Wenn der Gegenstand 6 in den Kommunikationsabdeckbereich einer Lese-/Einspeichereinheit 21 eintritt, liest diese die Daten aus der an dem Gegenstand 6 befestigten elektronischen Marke und prüft, ob in dem Dateninhalt Unvollständigkeiten oder Fehler vorhanden sind. Ferner speichert die Lese-/Einspeichereinheit 21 die Angaben zum Namen des Rückgewinnungszentrums und das Datum der Entgegennahme am Rückgewinnungszentrum in die elektronische Marke ein. Der Name des Rückgewinnungszentrums und das Entgegennahmedatum

können automatisch von einer Entgegennahme-Bearbeitungseinheit 22 erzeugt werden. Die aus der elektronischen Marke 1 gelesenen Daten werden in einem Datenspeicher 23 gespeichert. Die durch die Lese-/Einspeichereinheit 21 geführten ausgemusterten Gegenstände 6 werden an einem Aussortierabschnitt 24 für ausgemusterte Gegenstände in drei Klassen entsprechend drei verschiedenen Wegen in Übereinstimmung mit einem Bearbeitungsverfahren klassifiziert, das in dem Fließbild von Fig. 5 dargestellt ist. Gemäß 5 dieser Figur wird zunächst in einem Schritt 30 entschieden, ob die Entsorgungskosten weniger als "X" betragen oder nicht. Wenn die Entsorgungskosten kleiner als "X" sind (d. h. wenn der Entscheidungsschritt 30 die Bestätigung "ja" ergibt), wird ein Weg 34 für die Wiederverwendung (Wiederverwendungswege) gewählt. Der Grund dafür besteht darin, daß dem Ausmusterer bei Entgegennahme des Gegenstandes etwas Geld zu bezahlen ist, wenn der ausgemusterte Gegenstand, wie er entgegengenommen wurde, als wiederwendbar erkannt worden ist. Wenn im Gegensatz dazu 10 die Entsorgungskosten von dem Ausmusterer bezahlt werden sind, geht die Bearbeitung zu einem Schritt 31 weiter, in welchem unter Bezugnahme auf eine in Fig. 6 gezeigte Tabelle "Name des Gegenstands" entschieden wird, ob für den nun zu betrachtenden ausgemusterten Gegenstand bestimmt wird, daß er auf einen Schredder-/Sortierweg 32 oder alternativ auf einen Zerlegungsweg 33 geschickt wird. Die in Fig. 6 gezeigte Tabelle wird vorher angefertigt und in der Entgegennahme-Bearbeitungseinheit 22 oder in dem Datenspeicher 23 gespeichert. Die sortierten ausgemusterten Industrieprodukte werden entsprechend in einem Lager 25 für den Schredder-/Sortierweg, in einem Lager 26 für den Zerlegungsweg bzw. in einem Lager 27 für den Wiederverwendungswege gelagert. Wenn das ausgemusterte Industrieprodukt zum Entsorgungszentrum geschickt wird, werden das Abgabedatum und der Name des Bestimmungsentsorgungszentrums in die elektronische Marke durch eine der Abgabe zugeordnete Lese-/Einspeichereinheit 29 über eine Abgabebearbeitungseinheit 28 eingespeichert und gleichzeitig in dem Datenspeicher 23 gespeichert. Somit entsprechen die 15 Daten, die in diesem Stadium in die elektronische Marke eingespeichert sind, der Darstellung von Fig. 7.

[0041] Die aus dem Lager 25 für den Schredder-/Sortierweg abgeschickten Gegenstände werden zu dem Entsorgungszentrum geschickt, das hauptsächlich für das Schreddern ausgelegt ist, während die aus dem Lager 26 für den Verkleinerungsweg abgeschickten ausgemusterten Industrieprodukte dem Entsorgungszentrum zugeführt werden, das hauptsächlich für die Demontage ausgelegt ist. Ferner werden die von dem Lager 27 für den Wiederverwendungswege abgeschickten ausgemusterten Industrieprodukte an Gebrauchtwarenläden oder dergleichen geliefert. Wenn die Gegenstände in dieser Weise sortiert werden, kann ihre Bearbeitung/Behandlung oder Entsorgung effektiv ausgeführt werden.

[0042] Wenn alle Behandlungen/Bearbeitungen, wie sie erforderlich werden, an einem Entsorgungszentrum ausgeführt werden, ist in diesem einen Entsorgungszentrum ein Gegenstands-Aussortierabschnitt vorgesehen, wie er in Fig. 4 gezeigt ist.

[0043] Fig. 8 zeigt einen Fluß der Bearbeitungen am Entsorgungszentrum, das hauptsächlich für die Zerlegung von Personalcomputern, Druckern und dergleichen und zusätzlich für die Bearbeitung oder Behandlung zum Recyclisieren von Kunststoffen von kastenförmigen Gehäusen oder Behältnissen ausgelegt ist. Es wird nun ein Fluß von Behandlungen/Bearbeitungen der ausgemusterten Industrieprodukte beschrieben, wobei als Beispiele die Hauptkörper von Personalcomputern benutzt werden. Die Daten der elekt-

tronischen Marke 1, die an dem ausgemusterten Industrieprodukt 6 (Hauptgehäuse eines Personalcomputers) befestigt ist, werden von einer Lese-/Einspeichereinheit 41 über eine Entgegennahme-Bearbeitungseinheit 40 gelesen, um dadurch zu entscheiden, ob das ausgemusterte Industrieprodukt ein kastenartiges Gehäuse aus Kunststoff hat oder nicht, und zwar aufgrund der Basis des Herstelleramens, des Namens des Gegenstandes und seines Produktmodells. Es wird angenommen, daß die das Vorhandensein oder das Fehlen von kastenartigen Elementen aus Kunststoff entsprechend den Gegenständen und ihren Produktmodellen betreffenden Daten vorher in einen Datenspeicher 87 eingespeichert worden sind. Wenn jedoch die oben erwähnten Daten nicht in den Datenspeicher 87 eingespeichert worden sind, muß die zuständige Bedienungsperson über das Vorhandensein oder Fehlen von kastenartigen Elementen aus Kunststoff durch visuelle Betrachtung oder Messung entscheiden und so seine Ergebnisse über die Entgegennahme-Bearbeitungseinheit 40 oder eine Gesamtbearbeitungs-/Gesamtsteuervorrichtung 88 eingeben. Für den Datenspeicher 87 wird eine Wiederauffindoperation durch die Entgegennahme-Bearbeitungseinheit 40 ausgeführt, und wenn entschieden ist, daß das ausgemusterte Industrieprodukt die kastenartigen Elemente aus Kunststoff aufweist, wird das betreffende ausgemusterte Industrieprodukt zu einer Kunststoffmeßstraße überführt. Wenn andererseits das ausgemusterte Industrieprodukt kaum kastenartige Elemente aus Kunststoff aufweist, wird es direkt zu einem Lager 44 überführt.

[0044] In der Kunststoffmeßstraße wird durch eine Meßeinheit 42 eine Messung bezüglich Zersetzunggrad, Qualität und Farbe durchgeführt, deren Ergebnisse zusätzlich in der elektronischen Marke mittels einer Lese-/Einspeichereinheit 43 eingespeichert werden, woraufhin der ausgemusterte Gegenstand, der der Vermessung unterworfen wurde, zu dem Lager 44 überführt wird. In diesem Stadium sind die Daten der elektronischen Marke so gespeichert, wie es in Fig. 9 dargestellt ist.

[0045] Die von dem Lager abgeschickten ausgemusterten Industrieprodukte sind in solche, die zu Arbeitstischen 45 und 46 zum Zerlegen geschickt werden, und in solche sortiert, die über einen Förderer 47 zu einem Zerkleinerungs-/Sortierprozeßförderer 48 geschickt werden. Beispielsweise werden Personalcomputer, Fernsehgeräte und dergleichen zu den Arbcitsüschen 45, 46 geschickt, während Kühlschränke, Waschmaschinen und dergleichen zu dem Schredder-/Sortierprozeßförderer 48 über den Förderer 49 geschickt werden.

[0046] Am Arbeitstisch 45 werden die Daten, die in der an dem ausgemusterten Industrieprodukt befestigten elektronischen Marke gespeichert sind, durch eine Lese-/Einspeichereinheit 50 gelesen, worauf die Entsorgungsdaten dieses ausgemusterten Gegenstands den Markendaten mittels einer Zerkleinerungs-Bearbeitungseinheit 67 hinzugefügt werden. Die Markendaten, die mit den Entsorgungsdaten des ausgemusterten Gegenstands ergänzt sind, werden dann in einem Entsorgungszentrumsspeicher 87 gespeichert. Der Datenspeicher 87 und die Gesamtbearbeitungs-/Gesamtsteuervorrichtung sind elektrisch mit den Händlergeschäften und dem Rückgewinnungszentrum bzw. den Rückgewinnungszentren durch die Telefonleitung 7 oder dergleichen verbunden, so daß die in der elektronischen Marke aufgezeichneten Daten für das Entsorgungsdatum dem Händler und dem Rückgewinnungszentrum übermittelt werden können. Auf diese Weise können der Händler und das Personal dem Rückgewinnungszentrum von den Entsorgungsdaten für die ausgemusterten, von ihnen gehandhabten Industrieprodukte Kenntnis erlangen. Die Gesamtbearbeitungs-/Gesamtsteuervorrichtung 88 ist andererseits so ausgelegt, daß

sie die Daten erkennen kann, die den Händler und das Rückgewinnungszentrum betreffen, und zur Bearbeitung oder Steuerung des Entsorgungszentrums als Ganzes dienen. Die Hauptrollen der Gesamtbearbeitungs-/Gesamtsteuervorrichtung 88 bestehen darin, die Inhalte des Datenspeichers 87 dadurch zu bearbeiten, daß Daten modifiziert oder hinzugefügt und Datenüberführungen mit den Händlern und dem Rückgewinnungszentrum bzw. den Rückgewinnungszentren über die Telefonleitung 7 oder dergleichen ausgeführt werden.

[0047] In Zuordnung zu dem Arbeitstisch 45 sind eine Lese-/Einspeichereinheit 50 und fünf Paletten 52, ..., 56 vorgesehen, wobei an diesen Paletten jeweils Paletten zugeordnete elektronische Marken 57 bis 61 festgelegt sind. Ferner sind Lese-/Einspeichereinheiten 62 bis 66 jeweils für die Paletten zugeordnete elektronischen Marken 57 bis 61 vorgesehen. Die Zerlegungs-Bearbeitungseinheit 67 ist elektrisch mit den Lese-/Einspeichereinheiten 50 und 62 bis 66 und einer Palettensteuereinheit 51 verbunden und kann die Verarbeitung und Steuerung des Datenaustausches mit ihnen und/oder unter ihnen ausführen. Die an der Palette befestigte elektronische Marke bleibt dauernd befestigt. Die Daten, die von den elektronischen Marken getragen werden, die an den ausgemusterten Industrieprodukten jeweils befestigt sind, werden von der Lese-/Einspeichereinheit 50 gelesen, wodurch Bestimmungen der einzelnen Paletten auf der Basis der aus den elektronischen Marken gelesenen Daten bestimmt werden, wobei entsprechende Bestimmungscodenummern in den jeweils an den Paletten befestigten elektronischen Marken eingespeichert werden. Ein diensttuender Arbeiter demonstriert oder zerlegt das ausgemusterte Industrieprodukt. Die sich aus der Zerlegung ergebenden Teile werden auf den Paletten angeordnet. Die mit diesen zerlegten Teilen beladenen Paletten werden zu einer Transferstraße 68 unter Steuerung der Palettensteuereinheit 51 für den Transport längs der Transferstraße 68 geschickt, um so die zerlegten Teile zu den zugehörigen Abführkanälen 78 bis 86 jeweils entsprechend den Codenummern abzuführen.

[0048] Die vorstehend kurz erwähnten Operationen oder Maßnahmen werden im einzelnen unter Bezug auf Fig. 10 unter der lediglich beispielswise Annahme beschrieben, daß das betreffende ausgemusterte Industrieprodukt ein Personalcomputer in Form eines Notebooks ist. Ein Personalcomputer in Notebook-Bauweise kann gewöhnlich in etwa zehn Bauteile 90 zerlegt werden. Die Paletten sind jeweils mit den ID-Nummern bezeichnet. Insbesondere ist die Palette 52 mit "Nr. 1", die Palette 53 mit "Nr. 2", ... und die Palette 56 mit "Nr. 5" (siehe Fig. 8) bezeichnet. Entsprechende Beziehungen zwischen den einzelnen Paletten und den darauf zu ladenden Bauteilen sind vorher festgelegt. Insbesondere wird im Falle des Darstellungsbeispiels angenommen, daß die Palette "Nr. 1" für die Aufnahme gedruckter Schaltkarten, die Palette "Nr. 2" für kastenartige Elemente oder dergleichen aus Kunststoff, die Palette "Nr. 3" für Flüssigkristall-Glasplatten, die Palette "Nr. 4" für Kabel und die Palette "Nr. 5" für die Aufnahme von für die Wiederverwendung vorgeschenen Teilen bestimmt sind. Die durch andere Einrichtungen als durch die Paletten abzuführenden Bauteile sind in solche, die zu dem Schredder-/Sortierprozeß zu schicken sind, und in solche klassifiziert, die in einer an der Seite des Arbeitstisches angeordneten Wiedergewinnungsbox 91 für schädliches Material/Substanz aufgenommen sind. Bei dem vorliegenden Beispiel werden Tastenfelder, Disketten, Metallteile auf einem Förderer 49 angeordnet, der zu dem Schredder-/Sortierprozeß führt. Batterien und Leuchtstoffröhren werden andererseits in die vorstehend erwähnte Rückgewinnungsbox 91 für schädliches Material/Substanz gelegt. Die anderen Bauteile werden auf

den entsprechenden Paletten angeordnet, wie es in Fig. 10 gezeigt ist. In die an den einzelnen Paletten "Nr. 1" bis "Nr. 5" befestigten, palettenorientierten elektronischen Marken werden Abführbestimmungscodenummern jeweils durch die Lese-/Einspeichereinheiten 62 bis 66 eingespeichert. Es sind acht Abführbestimmungscodenummern W1 bis W8 jeweils entsprechend den Abführkanälen 79 bis 86 vorgesehen. Eine Wahleinheit 92 für die Abführbestimmungs-Codenummern weist Codeselektoren auf, die jeweils den Paletten "Nrn." entsprechen. Die den palettenorientierten, elektronischen Marken entsprechenden Abführbestimmungs-Codenummern werden aus den Abführbestimmungs-Codenummern W1 bis W8 ausgewählt. Die Auswahl der Codenummern erfolgt durch die Zerkleinerungsbearbeitungseinheit 67 auf der Basis der Daten (beispielsweise Herstellername, Produktmodell und kastenartige Elemente aus Kunststoff), die in der an dem ausgemusterten Industrieprodukt befestigten elektronischen Marke gespeichert sind. Beispielsweise wird für die Palette "Nr. 1" die Abführbestimmungs-Codenummer W1 gewählt. Für die Palette "Nr. 2" wird die Abführbestimmungs-Codenummer W3 gewählt. Für die Palette "Nr. 3" wird die Abführbestimmungs-Codenummer W5 gewählt. Für die Palette "Nr. 4" wird die Abführbestimmungs-Codenummer W7 gewählt. Schließlich wird für die Palette "Nr. 5" die Abführbestimmungs-Codenummer W8 gewählt. Für die Palette "Nr. 2" wird die Abführbestimmungs-Codenummer W2 oder W3 auf der Basis der Daten gewählt, die die kastenartigen Elemente aus Kunststoff betreffen. Weiterhin wird für die Palette "Nr. 3" die Abführbestimmungs-Codenummer W4 oder W5 auf der Basis des Herstellernamens und des Produktmodells gewählt.

[0049] Obwohl angenommen wird, daß zwei Arten (W2, W3) von Abführkanälen für Kunststoffmaterialien vorhanden sind, gilt dies nur für die Zwecke der Beschreibung. Die Sorten der Kunststoffmaterialien können erhöht werden. Außerdem können mehr als zwei Abführkanäle für die Kunststoffmaterialien auf Herstellerbasis vorgesehen werden. Für die Kathodenstrahlröhre W6 kann eine in Zuordnung zu dem Arbeitstisch 46 vorgesehene Palette verwendet werden. Auf diese Weise können die Codenummern jeweils entsprechend den Abführbestimmungen erstellt werden.

[0050] Als nächstes werden unter Bezugnahme auf das in Fig. 11 gezeigte Zeitdiagramm die Ströme der Bauteile beschrieben, die sich aus der Demontage um den Arbeitstisch herum ergeben. In Fig. 11 ist die Datenleseoperation der Lese-/Einspeichereinheit 50 in der unteren Reihe A dargestellt. Die Operation der Palettensteuereinheit ist bei B veranschaulicht, während die Dateneinspeicheroperation der Lese-/Einspeichereinheiten 62 bis 66 bei C dargestellt sind. Wenn eine an einem ausgemusterten Industrieprodukt befestigte elektronische Marke in den Kommunikationsbereich der Lese-/Einspeichereinheit 50 eintritt, erfolgt die Datenleseoperation durch die Lese-/Einspeichereinheit 50. Nach Abschluß der Datenleseoperation, die für eine Zeitspanne T1 durchgeführt wird, empfängt die Palettensteuereinheit 51 ein Signal, welches den Abschluß der Datenleseoperation anzeigt, woraufhin die Paletten 52 bis 56 auf die Transferstraße 68 abgeschickt werden. Nach dem Abschicken der einzelnen Paletten werden andere Paletten empfangen, die längs der Transferstraße 68 ankommen. Diese Operation wird während eines Zeitraums T2 ausgeführt. Ansprechend auf ein Signal, welches den Abschluß des Palettenaufnahmevergangs anzeigt, speichern die Lese-/Einspeichereinheiten 62 bis 66, die jeweils in der Nähe der einzelnen Paletten angeordnet sind, die Abführkanal-Codenummern in die elektronischen Marken ein, die jeweils an den einzelnen Paletten befestigt sind. In diesem Zusammenhang können die Abführkanal-Codenummern entsprechend dem vorher unter

Bezug auf Fig. 10 beschriebenen Verfahren bestimmt werden.

[0051] Nachdem die elektronische Marke von dem ausgemusterten Industrieprodukt abgenommen worden ist, wird diese demontiert, und die abgenommenen Bauteile werden jeweils in die vorherbestimmten Paletten gelegt. Die elektronische Marke wird über einen anderen Prozeß für ihre Rücksendung zum Rückgewinnungszentrum, zum Händler usw. wiedergewonnen. Wenn jedoch ein für die Wiederbenutzung bestimmtes Teil vorhanden ist, wird die elektronische Marke an dem für die Wiederverwendung bestimmten Teil befestigt, ehe es auf die entsprechende Palette gelegt wird. Wenn eine Vielzahl von für die Wiederverwendung bestimmten Teilen vorhanden ist, wird zusätzlich eine Anzahl von elektronischen Marken vorbereitet, und die Daten des jeweiligen ausgemusterten Gegenstandes werden durch die Lese-/Einspeichereinheit 50 in diesen elektronischen Marken eingespeichert, worauf die elektronischen Marken jeweils an den für die Wiederverwendung bestimmten Teilen befestigt werden. Nach Abschluß der vorstehend beschriebenen Arbeit setzt der Arbeiter ein darauffolgendes ausgemustertes Industrieprodukt auf den Arbeitstisch. Wenn das ausgemusterte Industrieprodukt in den Kommunikationsabdeckbereich der Lese-/Einspeichereinheit 50 eintritt, wird der Inhalt oder werden die Daten, der bzw. die in der elektronischen Marke aufgezeichnet sind, automatisch von der Lese-/Einspeichereinheit 50 gelesen. Zu diesem Zeitpunkt ist seit dem vorhergehenden Lesevorgang einer elektronischen Marke, wie er in Fig. 11 bei A dargestellt ist, eine Zeit T3 vergangen. Das heißt mit anderen Worten, daß die Zeitspanne T3 die Zeit darstellt, die für das Zerlegen eines ausgemusterten Industrieprodukts und zum Sortieren der ausgemusterten Teile benötigt wird. Die Zeit für die Zerkleinerung wird in den Datenspeicher 87 für jedes ausgemusterte Industrieprodukt eingespeichert. Durch sequentielles und akkumulatives Speichern der Demontagezeiten für die ausgemusterten Industrieprodukte jeder Art in dem Datenspeicher 87 können die Arten von Gegenständen statistisch ermittelt werden, die schwierig zu demontieren sind. Die auf diese Weise gesammelten statistischen Daten können einem entsprechenden Konstruktionsingenieur mit dem Ziel zurückgemeldet werden, ihn bei der Auslegung des Gegenstandes mit einem Aufbau zu unterstützen, der einfach zu demontieren ist. Eine solche Sammelspeicherung von statistischen Daten kann nicht nur für die Demontagezeit, sondern auch für Gegenstände ausgeführt werden, die kastenartige Teile aus Kunststoff aufweisen, welche leicht einer Materialrecyclisierung unterworfen werden können.

[0052] Die einzelnen, auf die Transferstraße 68 abgeschickten Paletten werden zu den Lese-/Einspeichereinheiten 70, . . . , 77 geführt, die jeweils an den Abführkanälen 78, . . . , 86 angeordnet sind. Die Lese-/Einspeichereinheiten 70, . . . , 77 lesen die Daten (Codenummern), die jeweils von den an den Paletten befestigten elektronischen Marken transportiert werden, wobei die Teile, die von der Palette getragen werden, für die eine Übereinstimmung bezüglich der Codenummern gefunden wird, in den richtigen Abführkanal abgeführt werden, der dieser Codenummer zugeordnet ist. Wenn gesehen in Transportrichtung der Transportstraße 68 von keiner der Lese-/Einspeichereinheiten 77 bis 70 eine Übereinstimmung der Codenummern gefunden wird, werden die von der Palette getragenen Teile in den Abführkanal 78 abgegeben. Dadurch ist gewährleistet, daß keine Bauteile auf der Palette auch dann bleiben, wenn ein Lesefehler vorliegen sollte. In diesem Zusammenhang sollte der Abführkanal 78 vorzugsweise so ausgelegt sein, daß er die Teile sammelt, die reichlich mit Staubkomponenten versehen sind.

[0053] Bei der in Fig. 8 gezeigten Systemanordnung kön-

nen die Paletten zu vorgegebenen oder gewünschten Abführkanälen transportiert werden. Wenn jedoch die Anzahl der Arbeitstische zunimmt, kann sich sozusagen auf der Transferstraße 68 eine Verkehrsüberfüllung oder ein Stau ergeben. Fig. 12 zeigt eine Anordnung gemäß einer weiteren Ausgestaltung der Erfindung, die vorzugsweise für den Fall ausgclegt ist, daß eine große Anzahl von Arbeitstischen vorgesehen sind. Wie aus dieser Figur zu sehen ist, ist in Zuordnung zu einem Arbeitstisch 45 eine Transferstraße 68 vorgesehen, wobei eine Vielzahl von Paletten 52, ..., 56 zur Verfügung steht. Längs der Transferstraße 68 sind jeweils in Zuordnung zu Abführkanälen 79, ..., 86 Schalter 100, ..., 107 vorgesehen. Jede der Paletten 52, ..., 56 ist mit einem Nocken 108 zum Aktivieren der Schalter 100, ..., 107 versehen. Wenn ein ausgemustertes Industrieprodukt in den Kommunikationsabdeckbereich der Lese-/Einspeichereinheit 50 eintritt, werden die Daten gelesen, die in der elektronischen Marke aufgezeichnet sind, die an dem ausgemusterten Industrieprodukt befestigt ist. Auf der Basis der aus der elektronischen Marke gelesenen Daten bestimmt die Zerlegungsbearbeitungseinheit 67 jeweils die Bestimmungen für die einzelnen Paletten 52, ..., 56. In diesem Fall werden die einzelnen Paletten jeweils für sich unter Steuerung der Palettensteuereinheit 51 für den Transport angetrieben, wenn nacheinander die Schalter 100, ..., 107 aktiviert werden. Der Transport der Palette wird an einer vorgegebenen Position unterbrochen, die durch eine vorher festgelegte Anzahl von Schaltern 100, ..., 107 vorher festgelegt ist, die durch den an der Palette angebrachten Nocken betätigt wurde. Dies wird anhand von Fig. 13 unter der Annahme beschrieben, daß die Teilesortierung genauso wie in Fig. 10 dargestellt erfolgt. Fig. 13 zeigt insbesondere Beziehungen zwischen den Palette-ID-Nummern (Nos.) und den Bestimmungen der Paletten in Kombination mit Aktivierungen der einzelnen Schalter 100, ..., 107. Beispielsweise wird angenommen, daß die mit "No. 3" identifizierte Palette bis zu der Abführbestimmung transportiert wird, der die Codenummer W5 zugewiesen ist. Für diesen Zweck müssen die Schalter, die an den Abführbestimmungen vorgesehen sind, denen jeweils die Codenummern W1 bis W5 zugeordnet sind, von dem an der Palette "No. 3" angebrachten Nocken betätigt werden sein. Eine Aktivierung der Schalter, die an den Abführbestimmungen vorgesehen sind, denen die Codenummern W1, ..., W8 zugewiesen sind, und die erforderlich ist, daß die einzelnen Paletten die jeweiligen Bestimmungen erreichen und dort anhalten, sind durch "1" bezeichnet, während die Schalter, die nicht aktiviert werden müssen, in Fig. 13 mit "0" bezeichnet sind. Die oben erwähnte entsprechende Einstellung kann durch die Zerlegungsbearbeitungseinheit 67 auf der Basis der Daten verwirklicht werden, die in den elektronischen Marken aufgezeichnet sind, welche jeweils an den Paletten festgelegt sind. Andererseits ist die Palettensteuereinheit 51 so ausgelegt, daß sie die Palette zu dem Zeitpunkt anhält, wenn eine Aktivierung einer vorgegebenen Anzahl von Schaltern festgestellt worden ist (beispielsweise der Schalter mit den Abführbestimmungscodenummern W1 bis W5 für die Palette "No. 3"). Die Palette kann somit an ihrem richtigen Bestimmungsabführkanal angehalten werden. Danach werden die Bauteile auf der Palette auf einen entsprechenden Förderer 109, ..., oder 117 abgeführt. Der Förderer 109 kann als Schredder-/Sortierprozeßförderer dienen.

[0054] Bei der oben beschriebenen Anordnung können die auf den Paletten getragenen Bauteile jeweils zu den sachgerechten Abführbestimmungen transportiert werden, und die an den Abführkanälen gesammelten Bauteile sind somit mit hoher Zuverlässigkeit oder fehlerfrei auseinandersortiert. Das Sammeln der kastenartigen Elemente aus Kunststoff

kann außerdem die Verfügbarkeit von hochreinen Kunststoffen gewährleisten, die kaum eine Verschlechterung erlitten haben. Die Kunststoffteile werden von einem Schredder geschreddert (oder von einem Brecher gebrochen) auf eine Größe, die als Rohmaterial für Formwaren geeignet ist und nach dem Reinigen zu einem entsprechenden Händler transportiert wird. Auf diese Weise kann die Materialrecyclisierung der Kunststoffe verbessert werden. Da die gedruckten Schaltungskarten Blei enthalten, werden sie von einer Vorrichtung behandelt, die für ein Behandeln der gedruckten Schaltungskarten ausgelegt ist, oder sie können zu einem Fachbetrieb für eine geeignete Behandlung überführt werden. Das gleiche gilt für Batterien und Leuchtstoffröhren. Sodaglas und Hartglas werden gewöhnlich für Flüssigkristall-Glasplatten verwendet. Sie sollten vorzugsweise für die Wiederverwendung in Sodaglas und Hartglas sortiert werden. Die vorstehend unter Bezeichnung auf Fig. 12 beschriebene Anordnung läßt sich im zufriedenstellender Weise bei der vorstehend erläuterten Sortierung einsetzen. [0055] Fig. 14 zeigt ein Überprüfungsverfahren für die Wiederverwendung bestimmte Teile. Die für die Wiederverwendung bestimmten Teile werden zu einem Gebrauchtwarenhändler oder dergleichen von dem Rückgewinnungszentrum aus geschickt und werden von dem Gebrauchtwarenhändler einer Prüfung unterworfen oder können alternativ an dem Entsorgungszentrum inspiziert, getestet oder geprüft werden. Wie vorher erwähnt, ist der für die Wiederverwendung bestimmte Teil mit der elektronischen Marke versehen, in welcher das entsprechende ausgemusterte Industrieprodukt betreffende Daten eingespeichert oder aufgezeichnet sind. Die Daten der elektronischen Marke werden in eine Inspektionsbearbeitungseinheit 121 über eine Lese-/Einspeichereinheit 120 geholt.

[0056] Gemäß Fig. 14 speichert der Datenspeicher 87 einen Inspektionsvorgang ab, auf dessen Basis eine Überprüfung der für die Wiederverwendung bestimmten Teile durchgeführt wird. Als typische, für die Wiederverwendung bestimmte Teile sind Stromquelleneinheiten, Festplatten und dergleichen zu erwähnen. In der folgenden Beschreibung wird beispielsweise angenommen, daß das für die Wiederverwendung bestimmte Teil eine Festplatte ist. Die Inspektionsverarbeitungseinheit 121 holt die den Inspektionsvorgang betreffenden Daten aus dem Datenspeicher 87. Da die den jeweiligen Gegenstand betreffenden Daten von der Lese-/Einspeichereinheit 120 gelesen worden sind, werden die Daten für den Inspektionsvorgang aus den gegenstandsbezogenen Daten gewonnen, die anschließend auf einer Anzeigeeinheit 123 für einen Teile-Inspektionsvorgang angezeigt werden. Mit der Inspektionsbearbeitungseinheit 121 ist ein inspektionsorientierter Personalcomputer 122 verbunden, mit dem eine der Inspektion zu unterziehende Festplatte verbunden ist. Durch Zugang zu der Inspektionsbearbeitungseinheit 121 wird der Inspektionsvorgang auf der Anzeigeeinheit 123 für den Teile-Inspektionsvorgang angezeigt. Entsprechend dem angezeigten Inspektionsvorgang zeichnet der Arbeiter Testdaten auf der Festplatte auf und gibt sie davon wieder mit Hilfe des inspektionsorientierten Personalcomputers 122 durch Verwendung eines Schallpegelmessers und einer Schwingungsaufnahmeverrichtung. Zu diesem Zeitpunkt prüft der Arbeiter oder die Bedienungsperson das Vorhandensein oder das Fehlen einer Abnormalität in dem Ergebnis der Aufzeichnung/Wiedergabe und das Vorhandensein oder das Fehlen von Abnormalitäten in der Schwingung oder dem Schallpegel. Wenn keine Abnormalität festgestellt wird, wird entschieden, daß das betreffende Teil (d. h. im vorliegenden Fall die Festplatte) passieren kann. Die Ergebnisse der Untersuchung oder der Überprüfung werden in den Datenspeicher 87 ohne

17

Berücksichtigung des Vorhandenseins oder Fehlens der Abnormalität automatisch in Kombination mit den Daten für den hergestellten Gegenstand eingespeichert, die in der elektronischen Marke aufgezeichnet sind. Die Ergebnisse der Inspektion/des Tests können je nach Fall ausgedruckt und als Daten für die Inspektions-/Testergebnisspezifikation beim Versenden der Teile (in diesem Fall Festplatten) verwendet werden. Die Anordnung kann auch so getroffen werden, daß die Testdaten für den Konstruktionsingenieur für den Gegenstand über die Telefonleitung 7 oder dergleichen verfügbar sind, was für ihn bei der Konstruktion des Gegenstands oder Produkts in der Zukunft hilfreich ist. Durch Sammeln von Schwierigkeiten anzeigen den Informationen kann das Inspektionsverfahren verbessert werden.

[0057] Da die Daten des ausgemusterten Industriprodukts in der elektronischen Marke aufgezeichnet sind, die an den für die Wiederverwendung bestimmten Teilen befestigt ist, können die Inspektionsmaßnahmen für die Wiederverwendung bestimmten Teile so erzeugt werden, daß sie angezeigt werden, während das Ergebnis der Inspektion oder der Überprüfung in Kombination mit den den jeweiligen Gegenstand betreffenden Daten verarbeitet werden kann. So können die für die Wiederverwendung bestimmten Teile problemlos mit hoher Genauigkeit inspiziert oder geprüft werden, wodurch die Wiederverwendung der Bauteile des ausgemusterten Industriprodukts mit hoher Betriebssicherheit gewährleistet werden kann. Die Anzeigefunktion für die Inspektionsmaßnahmen kann in gleicher Weise in die Anzeigeeinheit für die Zerlegungsmaßnahmen integriert werden, da die in der elektronischen Marke aufgezeichneten Daten zur Verfügung stehen.

Patentansprüche

1. Verfahren zum Recycelisieren von ausgemusterten Industriprodukten

mit einem Transportprozeß für die ausgemusterten Industriprodukte (6, 6a, 6b), die von einzelnen Ausmusterungsquellen (10) zu einem Entsorgungszentrum (13; 14) abgeführt werden, und

mit einem Behandlungsprozeß für die ausgemusterten Industriprodukte (6) an dem Entsorgungszentrum (13; 14)

wobei für die Behandlung jedes der ausgemusterten Industriprodukte (6) erforderliche Informationen in eine elektronische Marke (1) eingespeichert sind, die an jedem der ausgemusterten Industriprodukte im Verlauf der Überführung der ausgemusterten Industriprodukte (6) zum Entsorgungszentrum (13; 14) von den einzelnen Ausmusterungsquellen (10) aus befestigt ist, und wobei die an dem ausgemusterten Industriprodukt (6) befestigte elektronische Marke (1) zusammen mit dem ausgemusterten Industriprodukt (6) zu dem Entsorgungszentrum (13; 14) geschickt wird.

2. Verfahren nach Anspruch 1, bei welchem die an dem ausgemusterten Industriprodukt (6) festgelegte elektronische Marke (1), die zu dem Entsorgungszentrum (13; 14) für ausgemusterte Industriprodukte geschickt wird, zu der Stelle zurückgeschickt wird, an der die Informationen in die elektronische Marke (1) eingespeichert worden sind.

3. Verfahren zum Recycelisieren von ausgemusterten Industriprodukten

mit einzelnen Ausmusterungsquellen (10), von denen aus die Industriprodukte als ausgemusterte Industriprodukte (6) abgeführt werden,

mit Händleragenturen, Leasing-Agenturen und Vermietungsagenturen (11) zum Sammeln von ausgemu-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

sterten Industriprodukten hauptsächlich von den einzelnen Ausmusterungsquellen (10) aus, mit wenigstens einem Rückgewinnungszentrum zum Sammeln der ausgemusterten Industriprodukte hauptsächlich von den Händleragenturen, den Leasing-Agenturen und den Vermietungsagenturen, und mit einem Entsorgungszentrum (13; 14) zum Behandeln der ausgemusterten Industriprodukte (6), die hauptsächlich von dem Rückgewinnungszentrum (12) erhalten werden,

wobei eine elektronische Marke (1), in welche Daten eingespeichert und aus welcher Daten gelesen werden können, an dem ausgemusterten Industriprodukt (6) oder alternativ an einem Hauptbauteil von ihm oder alternativ an einem Behälter, in dem das ausgemusterte Industriprodukt (6) aufgenommen ist, an einer der Händleragenturen, der Leasing-Agenturen, der Mietagenturen, an dem Rückgewinnungszentrum (12) oder an dem Entsorgungszentrum (13; 14) befestigt wird, und

wobei für die Recyclisierung erforderliche Daten durch Lese-/Einspeichereinrichtungen (21; 29) in die elektronische Marke (1) eingespeichert und aus ihr gelesen werden.

4. Verfahren nach Anspruch 3, bei welchem die Daten von den Lese-/Einspeichereinrichtungen (41; 43; 50; 62, ..., 66; 70, ..., 77) gelesen werden, um dadurch selektiv die ausgemusterten industriellen Produkte dadurch zu sortieren, daß auf der Basis der aus der elektronischen Marke (1) gelesenen Daten entschieden wird, ob das ausgemusterte Industriprodukt (6) auf einen Schredder-/Sortierweg (32), einen Zerkleinerungsweg (33) oder einen für die Wiederverwendung bestimmten Weg (34) geschickt werden soll.

5. Verfahren nach Anspruch 3, bei welchem für das ausgemusterte Industriprodukt (6), welches kastenartige Elemente aus Kunststoff aufweist, der Grad der Verschlechterung, die Qualität und die Farbe des kastenartigen Elements aus Kunststoff gemessen und die Ergebnisse davon zusätzlich durch Lese-/Einspeichereinrichtungen (71; 72) in die elektronische Marke eingespeichert werden.

6. Verfahren nach einem der Ansprüche 3 bis 5, mit Sortiereinrichtungen (24), die in dem Entsorgungszentrum (13; 14) zum Sortieren/Klassifizieren demonterter Teile angeordnet sind,

wobei die Sortiereinrichtungen (24) eine Vielzahl von Paletten (62, ..., 56) aufweisen, die auf einer Überführungsstraße (68) für die Aufnahme demonterter Teile angeordnet sind, die sich durch die Zerlegung der ausgemusterten Industriprodukte (6) ergeben, und mit Abführkanälen (78, ..., 86) für das Abführen der Bauteile auf den Paletten (52, ..., 56),

wobei die in den elektronischen Marken (57, ..., 61), die jeweils an den ausgemusterten industriellen Produkten befestigt sind, aufgezeichneten Daten von den Lese-/Einspeichereinrichtungen (50; 70, ..., 86) gelesen werden, wodurch jeweils Bestimmungen der Paletten (52, ..., 56) auf der Basis der jeweils von den elektronischen Marken (57, ..., 61) gelesenen Daten festgelegt werden, damit die demonterten Teile zu den Abführkanälen (78, ..., 86) geschickt werden können, während sie voneinander sortiert sind.

7. Verfahren zum Recycelisieren von ausgemusterten Industriprodukten, mit einer Vielzahl von Paletten (52, ..., 56), mit elektronischen Marken (57, ..., 61), die jeweils an den Paletten befestigt sind,

19

20

- mit Fördereinrichtungen (47, 48, 49) zum Tragen der Paletten (52, . . . , 56),
 - mit einer Vielzahl von Abführkanälen (78, . . . , 86) für die Aufnahme der zu ihres durch Fördereinrichtungen (47, 48, 49) getragenen Paletten,
 - mit Einspeichereinrichtungen (62, . . . , 66) zum Einspeichern von Informationen bezüglich eines Bestimmungsabführkanals (78, . . . , 86) der Palette, an der die elektronischen Marke (57, . . . , 61) befestigt ist, in der elektronischen Marke, und
 - mit Leseeinrichtungen (70, . . . , 77) zum Auslesen der Informationen bezüglich des Bestimmungsabführkanals (78, . . . , 86) der von den Fördereinrichtungen (47, 48, 49) transportierten Palette aus der an der Palette befestigten elektronischen Marke, um dadurch die Palette selektiv zu dem Bestimmungsabführkanal (78, . . . , 86) zu schicken, der durch die Bestimmungsinformationen aufgezeigt ist.
3. Verfahren zum Recyclisieren von ausgemusterten Industrieprodukten
- mit einer Vielzahl von Paletten (52, . . . , 56),
 - mit palettenorientierten elektronischen Marken (57, . . . , 61), die jeweils an den Paletten befestigt sind,
 - mit ersten Lese-/Einspeichereinrichtungen (62, . . . , 66) zum Einspeichern von Daten in den palettenorientierten Marken (57, . . . , 61),
 - mit Abführkanälen (78, . . . , 86), an denen die Paletten jeweils entladen werden, und
 - mit zweiten Lese-/Einspeichereinrichtungen (70, . . . , 77), die jeweils an den Abführkanälen (78, . . . , 86) angeordnet sind, zum Lesen der jeweiligen Daten, die in den palettenorientierten elektronischen Marken (57, . . . , 61) aufgezeichnet sind,
 - wobei jeweils in die palettenorientierten elektronischen Marken (57, . . . , 61) Lieferbestimmungscodes gespeichert sind, welche die Bestimmungsabgabekanäle (78, . . . , 86) angeben, wobei jede der Paletten zu den Abgabekanälen transportiert wird, bei denen die in den palettenorientierten elektronischen Marken (57, . . . , 61) aufgezeichneten Daten von den zweiten Lese-/Einspeichereinrichtungen (70, . . . , 77) gelesen werden, und wobei dann, wenn ein Code der palettenorientierten elektronischen Marke (57, . . . , 61) mit einem Code des Abführkanals (78, . . . , 86) übereinstimmt, Bauteile auf der mit dem übereinstimmenden Code versehenen Palette in den Abführkanal abgegeben werden, für den die Codeübereinstimmung festgestellt worden ist.

Hierzu 10 Seite(n) Zeichnungen

50

55

60

65

2003年12月 5日 14時23分

ASAMURA 81-332705076

NO. 7120 P. 13

- Leerseite -

FIG. 2

FIG. 3

Name des Ausmusterers :	○○○
Adresse des Ausmusterers :	○○○
Telefonnummer des Ausmusterers :	○○○
Herstellername :	○○○
Name des Gegenstands	○○○
Produktmodell :	○○○
Fertigungsdatum :	○○○
Gewicht :	○○○
Name des entgegennehmenden Händlers :	○○○
Entgegennahmedatum beim Händler :	○○○
Entsorgungskosten :	○○○
Datum der Abgabe seitens des Händlers :	---
Name des Rückgewinnungszentrums:	---
Entgegennahmedatum am Rückgewinnungszentrum :	---
Datum der Abgabe vom Rückgewinnungszentrum :	---
Name des Entsorgungszentrums :	---
Entgegennahmedatum am Entsorgungszentrum :	---
Datum der Entsorgung :	---

FIG. 5

FIG. 6

Name des Gegenstandes	Schreddern Sortieren	Zerlegen
Kühlschrank	○	—
Waschmaschine	○	—
Klimaanlage	○	—
Fernseher	—	○
Personal Computer	—	○
Drucker	—	○
⋮	⋮	⋮

FIG. 7

Name des Ausmusters : 000	
Adresse des Ausmusters : 000	
Telefonnummer des Ausmusters : 000	
Herstellermann : 000	
Name des Gegenstands : 000	
Produktmodell : 000	
Fertigungsdatum : 000	
Gewicht : 000	
Name des entgegennehmenden Händlers : 000	
Entgegennahmedatum beim Händler : 000	
Entsorgungskosten : 000	
Datum der Abgabe seitens des Händlers : 000	
Name des Rückgewinnungs- zentrums : 000	
Entgegennahmedatum am Rückgewinnungszentrum : 000	
Datum der Abgabe vom Rückgewinnungszentrum : 000	
Name des Entsorgungs- zentrums : 000	
Entgegennahmedatum am Entsorgungszentrum : 000	
Datum der Entsorgung : ---	
Kunststoffverschleißfestigkeit : 000	
Qualität des Kunststoffs : 000	
Farbe des Kunststoffs : 000	

FIG. 9

Name des Ausmusters : 000	
Adresse des Ausmusters : 000	
Telefonnummer des Ausmusters : 000	
Herstellermann : 000	
Name des Gegenstands : 000	
Produktmodell : 000	
Fertigungsdatum : 000	
Bewicht : 000	
Name des entgegennehmenden Händlers : 000	
Entgegennahmedatum beim Händler : 000	
Entsorgungskosten : 000	
Datum der Abgabe seitens des Händlers : 000	
Name des Rückgewinnungs- zentrums : 000	
Entgegennahmedatum am Rückgewinnungszentrum : 000	
Datum der Abgabe vom Rückgewinnungszentrum : 000	
Name des Entsorgungs- zentrums : 000	
Entgegennahmedatum am Entsorgungszentrum : 000	
Datum der Entsorgung : ---	
Kunststoffverschleißfestigkeit : 000	
Qualität des Kunststoffs : 000	
Farbe des Kunststoffs : 000	

Zerkleinerte Teile

FIG. 10

PALETTE

VERMERK:

PALETTE NO. 1: Gedruckte Schaltungsplatte

PALETTE NO.: 2: KUNSTSTOFF 3: Gedrucktes Flüssigkeitsskristall

PALETTE NO. 4 : Kabel

PALETTE NO. 5: Für die Wiederverwendung bestimmte Teile

FIG. 11

FIG. 13

PALETTE ID NUMMER	Abführbestimmungs-Codenummer							
	W1	W2	W3	W4	W5	W6	W7	W8
NO. 5	1	1	1	1	1	1	1	1
NO. 4	1	1	1	1	1	1	1	0
NO. 3	1	1	1	1	1	0	0	0
NO. 2	1	1	1	0	0	0	0	0
NO. 1	1	0	0	0	0	0	0	0

FIG. 12

FIG. 14

FIG. 1

