COMPUTATION OF THE TRUE MOON BY MĀDHAVA OF SANGAMA-GRĀMA

K CHANDRA HARI*

(Received 6 March, 2002)

Saṅgama-grāma Mādhava (1400 AD) was a great astronomer and mathematician of his times. A number of his works have failed to survive but in the ones that survived and the mathematical contributions that have come to light through the quotations in later works, we find the signature of his ingenuity. The present paper is a study on his astronomical treatises, Veṇvāroha and Sphuṭacandrāpti, which contain the true longitudes of Moon derived by Mādhava, in the light of modern astronomical computations. Mādhava's simplest techniques for computing true moon in his Veṇvāroha or (ascending the Bamboo) based on the anomalistic revolutions of Moon is illustrated with examples and the results have been compared with the computer-derived modern longitudes for Mādhava's epoch as well as for present times.

Key words: Anomalistic cycle, Dhruva, Kalidina, Khaṇḍa, Mādhava, Moon, *Veṇvāroha*.

INTRODUCTION

On account of historical reasons the originality in Hindu astronomical writings suffered a setback in northern India since thirteenth century AD. But there had been uninterrupted development thereof in remote corners like Kerala, which were far removed from the political turmoils of northern India as is evidenced by the work of K.V.Sarma who has traced out more than 1000 texts of Kerala origin on astronomy and mathematics and enabled the identification of more than 150 astronomers of the land. Sarma's D.Litt thesis¹ entitled "Contributions to the Study of the Kerala School of Hindu Astronomy and Mathematics" extending over 2034 pages is a magnum opus on history of science that incorporated 14 very important astronomical-cum-mathematical treatises of the period from tenth to nineteenth

^{*} Superintending Geophysicist (W), IRS, ONGC, Ahmedabad 380005

century AD. As has been observed by Sarma² in the aforementioned work astronomical and mathematical development in India of the period since Bhāskara II is not well known and many important works that attests the presence of many great astronomers and mathematicians of Kerala remain little known in the field of history of science. One such great astronomer and mathematicaian was Mādhava of Sangamāgrāma who wrote the work *Veṇvāroha* for the computation of true longitude of Moon, a study of which forms the content of the present paper. Mādhava was one of the great geniuses of the times before Kepler and Newton and he lived at Irññgālakhusḍa (Saṇgama-grāma: 10°22' N, 76°15' E, of Kerala in the fourteenth-fifteenth century A.D. and had been the Guru of Parameśvara of *Dṛggaṇita* fame. Sarma has identified him to be the author of the following works.³

- Golavāda
- 2. Madhyamānayanaprakāra
- 3. Lagnaprakarana
- 4. Venvāroha
- 5. Sphuţacandrāpti and
- 6. Agaņita-grahacāra

Among these *Golavāda* and *Madhyamānayanaprakāra* are known only through references in other works and only *Veṇvāroha* and *Sphuṭacandrāpti* are available in print. The rest is available in manuscript form. Mādhava's outstanding contributions to mathematics have come to light through the *uddhāranis* by the scholars who have come later in the tradition. Sarma has referred to two important anticipations of modern mathematical formulae by Mādhava, viz. the Taylor series approximation and Newton's Power Series for sine and cosine functions. A detailed account of the Taylor series approximation vis-à-vis Mādhava's formulation by R.C.Gupta⁴ is available at page 92 of the *Indian Journal of History of Science*, May-Nov. 1969. In contrast to the mathematical contributions, the merits of Mādhava's astronomical works remain to be explored and the present paper is an effort in this direction. We have very little or almost no information about Mādhava's innovations in spherical astronomy vis-a-vis computation of planetary positions as the work *Golavāda* is not available. Both *Veṇvāroha* and *Sphuṭacandrāpti* attempt the computation of the true longitude of moon by making use of the true motions rather than the epicyclic

astronomy of the Āryabhaṭan traditon. As such these texts offer us limited scope only to understand the ingenuity that a great mathematician like Mādhava's capability as an astronomer as well as mathematician. The present study makes use of <code>Venvārohas</code> (along with the Malayālam commentary by Acyuta Pisārati) critically edited with Introduction and appendix by K.V. Sarma. <code>Venvāroha</code>, the title, literally means 'Ascending the Bamboo' and as shown by Sarma this title is reflective of the moon's computation in 9 steps over a day. This treatise makes use of the anomalistic revolutions for computing the true moon using the successive true daily velocity of moon framed in <code>vākyas</code> for easy memorization and use.

THEORY BEHIND THE INGENIOUS USE OF ANOMALISTIC CYCLES

An anomalistic cycle consists of 27 days and 13^h18^m34^s.45. Therefore nine anomalistic cycles from a zero epoch will end respectively at:

Сус	le Days	h-	m-	S
1	27	13-	18-	34.45
2	55	02-	37-	08.90
3	82	15-	55-	43.35
4	110	05-	14-	17.79
5	137	18-	32-	52.24
6	165	07-	51-	26.69
7	192	21-	10-	01.14
8	220	10-	28-	35.59
9	247	23-	47-	10.04

Table 1

The nine cycles thus constitute nearly 248 days and the difference in longitudes of successive days ($\delta\lambda$) constitues the *candravākyas*. *Candravākyas* of Mādhava available in references (1) and (5) are reproduced in decimal notation as Appendix-1 of this paper. The series of *vākyas* begins from the moment when moon is at apogee and each *vākya* corresponds to the successive days' longitude of moon for the moment at which the anomaly was zero. It is apparent from column 3 that the end points of successive cycles render 9 gradations over a day. If we consider the cycles from a

day at which moon's anomaly was zero at sunrise, the nine gradations shall become fixed moments at which moon's anomaly had been zero in a previous cycle. *Vākyas* could then be applied from that day to find the moon for the gradations like 13^h18^m34^s.45 from sunrise.

1. Algorithm of Mādhava

The algorithm employed by Mādhava can be expressed in following steps:

- a) Computation of 9 Dhruvas (D1, D2,D9) using Mādhava's Constants and Kalidina [K]
- [K 1502008]*6845 \div 188611 \rightarrow agrimaphalam [A] and balance [B₁], where A is the integral number of anomalistic revolutions.

B ₁	÷	6845	\rightarrow	V_1	&	B_2
$(B_2 + 188611)$	÷	6845	\rightarrow	V_2	&	B_3
$(B_3 + 188611)$	÷	6845	\rightarrow	V_3	&	\mathbf{B}_{4}
$(B_4 + 188611)$	÷	6845	\rightarrow	V_4	&	\mathbf{B}_{5}
(B, + 188611)	÷	6845	→	V,	&	\mathbf{B}_{6}
$(B_6 + 188611)$	÷	6845	\rightarrow	V_6	&	B_7
$(B_7 + 188611)$	÷	6845	→	V_7	&	$\mathbf{B}_{\mathbf{s}}$
$(B_8 + 188611)$	÷	6845	\rightarrow	V_8	&	\mathbf{B}_{9}^{r}
$(B_9 + 188611)$	÷	6845	→	V_9		

Table 2

• V_1 , $\Sigma (V_1, V_2)$, $\Sigma (V_1, V_2, V_3)$, $\Sigma (V_1, V_2, V_3, V_4)$, $\Sigma (V_1, V_2, V_3, V_4, V_5)$, $\Sigma (V_1, V_2, V_3, V_4, V_5, V_6)$, $\Sigma (V_1, V_2, V_3, V_4, V_5, V_6, V_7)$, $\Sigma (V_1, V_2, V_3, V_4, V_5, V_6, V_7)$, $\Sigma (V_1, V_2, V_3, V_4, V_5, V_6, V_7)$, $\Sigma (V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_8, V_9)$ become the 9 $v\bar{a}kya$ numbers $(\Sigma_1$ to Σ_9). Illustration is provided in Table 3.

 $\mathbf{K} = 1642675 : [1642675 - 1502008] *6845/188611 \rightarrow agrimaphalam \mathbf{A}$ and balance $\mathbf{B}_1 = 6460$

						B ₁ =6460	
6460	÷	6845	\rightarrow	V ₁ =0	&	B ₂ =3411	$\Sigma_1 = 0$
(3411 +188611)	÷	6845	\rightarrow	V ₂ =28	&	$B_3 = 362$	$\Sigma_2 = 28$
(362 +188611)	+	6845	\rightarrow	V ₃ =28	&	$B_4 = 4158$	$\Sigma_3 = 56$
(4158 +188611)	÷	6845	\rightarrow	V ₄ =27	&	B ₅ =1109	$\Sigma_4 = 83$
(1109 +188611)	÷	6845	\rightarrow	V ₅ =28	&	$B_6 = 4905$	$\Sigma_{5}=111$
(4905 +188611)	÷	6845	\rightarrow	$V_6 = 27$	&	$B_{7}=1856$	$\Sigma_{6} = 138$
(1856 +188611)	÷	6845	\rightarrow	$V_{7} = 28$	&	$B_8 = 5652$	$\Sigma_{7}=166$
(5652 +188611)	÷	6845	\rightarrow	$V_8 = 27$	&	$B_9 = 2603$	$\Sigma_8 = 193$
(2603 +188611)	÷	6845	\rightarrow	$V_9 = 28$	&		$\Sigma_9 = 221$

Table 3

• Dhruvakālas $t_1 = (6845 - B_1) \div 6845$ days and dhruvas

For A = 5105 Mādhava give *dhruva* as $174^{\circ}27'$ and for the next 69 anomalistic revolutions the arc is $211^{\circ}44'$ followed by unit cycles of $03^{\circ}04'$ 6".956. Illustration is given in Table 4.

1	2	3	4	5	6
В	t, in days	t, in ghaṭikās	dhruva for A	vākyas	dhruvas D _i
6460	0.056245	3.374726	λ	$\delta\lambda$ of Σ	Col.4+ Col.5
3411	0.50168	30.1008	$\lambda - (i-1)*3.0686$	$\delta\lambda$ of Σ_2	Col.4+ Col.5
362	0.947115	56.82688	$\lambda - (i-1)*3.0686$	$\delta\lambda$ of Σ_3	Col.4+ Col.5
4158	0.392549	23.55296	λ-(i-1)* 3.0686	$\delta\lambda$ of $\Sigma_{_{A}}$	Col.4+ Col.5
1109	0.837984	50.27904	$\lambda - (i-1)*3.0686$	$\delta\lambda$ of Σ_s	Col.4+ Col.5
4905	0.283419	17.00511	$\lambda - (i-1)*3.0686$	$\delta\lambda$ of Σ_6	Col.4+ Col.5
1856	0.728853	43.73119	$\lambda - (i-1)*3.0686$	$\delta\lambda$ of Σ_7	Col.4+ Col.5
5652	0.174288	10.45727	λ-(i-1)* 3.0686	$\delta\lambda$ of $\Sigma_{8}^{'}$	Col.4+ Col.5
2603	0.619722	37.18335	λ-(i-1)* 3.0686	$δλ$ of $Σ_9$	Col.4+ Col.5

Table 4

b) Sorting t₁ of column-3 and D₁ of column-6 in the ascending order gives the true longitudes for the respective moments represented by Dhruvakālas on the previous day (Iṣṭapūrvadina) as the first vākya is zero. For Iṣṭadina the first vākyas is given.

c) Computed Results of Kalidina = 1642675 [13 July 1396 AD. mean sunrise 06.06 Ujjain Mean Time: JD (ZT): 22311140.7541666]

1	2	3	4	5				
Kalidina	<i>Dhruvakālas</i> & Moon	Vākyas & δλ No. δλ	9 dhruvas at expiry of cycles, Iṣṭapūvadina	9 <i>dhruvas</i> for the (+) 1 date				
1642675	03.3747 174°47' 30.1008 171°43' 56.8269 168°39' 23.5530 165°35' 50.2790 162°31' 17.0051 159°26' 43.7312 156°22' 10.4573 153°18' 37.1834 150°14'	0 0 28 8°26' 56 16°52' 83 13°15' 111 21°41' 138 18°05' 166 26°31' 193 22°54' 221 31°20'	174.783333 180.148064 185.512802 178.827536 184.192267 177.523639 182.871740 176.203141 181.567875	186.833333 192.198064 197.562802 190.877536 196.242267 189.573639 194.921740 188.253141 193.617875				

Table 5

d) Comparison with Modern Longitudes

In making a contrast of the sidereal longitudes of Mādhava with the results of modern lunar theory we need to determine the *ayanāṃśa* of the epochs of which computations are presented. Mādhava has not spoken explicitly of the *ayanāṃśa* of his epoch and therefore we have to follow the Siddhāntic tradition of Kerala, which takes Kali 3623 or AD 522 as the coincidence of the vernal equinox with the zero point. The extra-long solar year of Siddhāntic astronomy necessitated a rate of precession of nearly one minute per year and this amounts to one degree in sixty years. *Ayanāṃśa* of any year Y can therefore be computed as (Y-522)/60 degrees. On this basis results of Mādhava are compared with modern longitudes for the day of expiry of anomalistic cycle, viz. 12 july 1396 A.D. at times of *Dhruvakālas* in Table 6 and for *Kalidina* of 1642675 or 13 July 1396 A.D. in Table 7.

The error has increased by about 10 minutes, as the precise variation in Moon's longitude is $11^{\circ}53'$ instead of $12^{\circ}05'$, which the $v\bar{a}kya$ (1) applies.

Table 6

1	2	3	4	5	6
Dhruvakālas in gh-vigh		3+ ayanāṃśa	Precise Julian dates for the moment:col.4 of Table.5	Modern true λ	Col. 3 -Col. 5
3.3747	174.7833	189.3503	2231139.810412	189°.00918	20'
10.45727	176.2031	190.7701	2231139.928454	190°.41153	22'
17.00511	177.5236	192.0906	2231140.037585	191°.70782	23'
23.55296	178.8275	193.3945	2231140.146716	193°.00401	23'
30.1008	180.1481	194.7151	2231140.255847	194°.30019	25'
37.18335	181.5679	196.1349	2231140.373889	195°.70231	26'
43.73119	182.8717	197.4387	2231140.483020	196°.99879	26'
50.27904	184.1923	198.7593	2231140.592151	198°.29556	28'
56.82688	185.5128	200.0798	2231140.701281	199°.59272	29'

Table 7

1	2	3	4	5	6
Dhruvakālas in gh-vigh	Dhruvas	2+ayanāṃśa	Precise Julian dates for the moment	Modern true λ	Col. 3 -5 Col. 5
3.3747	186.8333	201.3993	2231140.810412	200°.89036	31'
10.45727	188.2531	202.8191	2231140.928454	202°.29464	31'
17.00511	189.5736	204.1396	2231141.037585	203°.59364	33'
23.55296	190.8775	205.4435	2231141.146716	204°.89344	33'
30.1008	192.1981	206.7641	2231141.255847	206°.19414	34'
37.18335	193.6179	208.1839	2231141.373889	207°.60218	35'
43.73119	194.9217	209.4877	2231141.483020	208°.90508	35'
50.27904	196.2423	210.8083	2231141.592151	210°.20920	36'
56.82688	197.5628	212.1288	2231141.701281	211°.51462	37'

2. In terms of the Anomalistic Period of 27.5546538

Multipliers and divisors used in *Sphuṭacandrāpti* can be dispensed off in favour of the anomalistic period and the computation can be made more simple and algebraic as:

Let N be the number of days elapsed since the epoch at which anomaly was zero at sunrise. Number of anomalistic cycles (\mathbf{c}) contained in N be \mathbf{a} and the balance of days be \mathbf{b} . Expiry of the a cycles will mark the moment or *dhruva* from which the $v\bar{a}kya$ will be applied. The decimal part of \mathbf{a} , (\mathbf{a} -1), to (\mathbf{a} -8)

cycles [$\mathbf{c} = 27.5546538$] converted to hours or $n\bar{a}\alpha ik\bar{a}s$, shall successively be the gradations over the day. For these gradations the $v\bar{a}kya$ number can be obtained as \mathbf{b} , ($\mathbf{b}+\mathbf{c}$), ($\mathbf{b}+2\mathbf{c}$), ($\mathbf{b}+3\mathbf{c}$)... ($\mathbf{b}+8\mathbf{c}$). The respective *dhruvas* can be found by using the cumulative arcs given: $\mathbf{a} = 5105$: 174°27' and for the next 69 the arc is 211°44' followed by unit cycles of 03°04'6".956. Sum of the *dhruvas* and $v\bar{a}kyas$ give the true moon correct for the meridian of Ujjain. *Dhruvakālas* arranged in the ascending order completes the process. The prescribed corrections can be applied for adoption to other meridians.

Example: True Moon for Kalidina

For Kalidina of 1625680 or Julian date = 2214145.75416 :01 January 1350 AD, 06:06 Ujjain mean time we get:

- N = 123672: **a** to (a-8): 4488 to 4480
- *Dhruva* for a = 4488: 91°52' 21"
- Vākya numbers as: 7,34,62,89,117,144,172,199,227
- Tables 8 & 9 depict the results of computation as per *Venvāroha* compared to true Moon computed as per modern algorithms:

1	2	3	4	5
Dhruval	kāla Julian date	Moon	V <i>ākya</i> No. & δλ	Dhruva
00-27	2214145.761628	70°23'32"	199(97°09')	167°33'
07-00	2214145.870759	76°31 ' 46"	144(92°26')	168°58'
13-33	2214145.979889	82°40'00"	89(87°43')	170°23'
20-06	2214146.089020	88°48'14"	34(83°00')	171°48'
27-10	2214146.207062	67°19'25"	227(106°02')	173°21'
33-43	2214146.316193	73°27 ' 39"	172(101°19')	174°47'
40-16	2214146.425324	79°35'53"	117(96°37')	176°13'
46-49	2214146.534455	85°44'07"	62 (91°55')	177°39'
53-22	2214146.643585	91°52'21"	7 (87°13')	179°05'

Table 8

Table 9

1	2	3	4	5
Dhruva in sequ		Modern λ of Moon	Mādhava's Moon ÷ Ayanāṃ (13°48')	Difference Col.3-Col.4
00-27	2214145.761628	181°48'	181°21'	27'
07-00	2214145.870759	183°13'	182°46'	27'
13-33	2214145.979889	184°37'	184°11'	26'
20-06	2214146.089020	186°02'	185°36'	26'
27-10	2214146.207062	187°09'	187°09'	25'
33-43	2214146.316193	188°59'	188°35'	24'
40-16	2214146.425324	190°24'	190°01'	23'
46-49	2214146.534455	191°50'	191°27'	23'
53-22	2214146.643585	193°16'	192°53'	23'

The difference is nearly 25 minutes of arc only when compared with the results of latest algorithm of mathematical astronomy. It must be noted here that the date is not one of anomalistic conjunction where the technique is expected to give maximum accuracy. This example worked out using the multipliers and divisors of Mādhava gives the results:

Table 9

	\mathbf{B}_{i}	V _i	Vākyas	Dhruvakālas: t _i	a	Fraction (a*c)*60
	48672	7	7	-6.11059		
	757	27	34	53.3645	4488	53.3644
Kalidina =	4553	28	62	20.0906	4487	20.0905
1625680	1504	27	89	46.8167	4486	46.8166
Khaṇḍaśeṣa =	5300	28	117	13.5427	4485	13.5427
123672	2251	27	144	40.2688	4484	40.2688
A=4488	6047	28	172	6.9949	4483	6.9948
	2998	27	199	33.7210	4482	33.7209
	6794	28	227	0.4470	4481	0.4470
	3745	28	255 or 7	27.1731	4480	27.1731

Dhruvakāla from the first balance (-) 6.11059 is the number of days at which the anomalistic cycle was complete. For *Kalidina* of 1625680. 7 days have passed in the new cycle and thus the $v\bar{a}kya$ 7 corrects *dhruva* of $\mathbf{a} = 4488$ to the true longitude of Moon.

3. Adapting Venvāroha for Recent Times

Mādhava's methodology, which he chose to describe as *Veṇvāroha*, can be applied to present times in a similar manner. Sidereal computation of Mādhava has to be dispensed with due to the difficulty in reconciling the siddhāntic and modern methods for computing *ayanāṃśa*. Epoch or the basement on which the *Veṇu* is planted needs to be modified to avoid cumulative error and also we shall use the tropical longitude of Moon in this exercise.

- Moon's anomalistic conjunction at Ujjain Mean sunrise [06:06: Zonal Time: ZT]
 →06 June 1951, 06:06 Ujjain Mean Time, JD [ZT] = 2433803.75434.
 Kalidina = 1845338 of Dhruva = 89°.27704427.
 - \rightarrow 24 March 1984, 06:02 Ujjain Mean Time, JD [ZT] = 2445844.751117. Kalidina = 1857379 of Dhruva = 347°.273803.
 - → 01 February 2000, 06:06 ZT, JD [ZT] = 2451575.75375. KD = 1863110[Kalikhaṇḍa]. Dhruva for this epoch = $262^{\circ}.068271$.
- → 17 April 2001, 06:06 ZT, JD [ZT] = 2452016.7543054. KD = 1863551[Kalikhaṇḍa]. Dhruva for this epoch = $312^{\circ}.24746374$.

Either of these epochs can be used as *dhruvadina or kalikhaṇḍa*. Modern Anomalistic period (c) of 27.5545486 days is very close to the value used by Mādhava, *viz.* 188611/6845 = 27.5546538 and as such the multiplier 6845 and divisor 188611 used by Mādhava can be retained.

Illustrations:

1. Kalidina = 1863551 which corresponds to Tuesday, 17 April 2001.

Dhruvadina is 1845338 where in Moon was at apogee at Ujjain mean sunrise. Wednesday, 6th June 1951. Dhruvasphuṭa = 89° 2770443. Khaṇḍaśeṣa = 18213, which gives dhruva of 314°.552311 and A = 660, b = 26.9871 and other computed results given in Table 10 and 11.

λ in sequence Dhruvakāla Vākyas Vākya δλ 9- Dhruvas Dhruvakāla in sequence 314°.552311 0.7740 26 344°.32567 0.774 298°.87787 27.5001 54 352°.7775 311°.48371 7.8567 301°.62543 54.2262 82 1°.216666 308°.41511 14.4045 302°.94346 20.9523 109 357°.5969 305°.34651 20.9523 304°.26121 47.6784 137 6°.038889 302°.27792 27.5001 305°.67252 14.4045 307°.00127 164 2°.416111 299°.20932 34.5828 41.1306 192 10°.86056 296°.14072 41.1306 308°.3168 7.8567 219 19°.29528 293°.07212 47.6784 309°.63178 34.5828 247 15°.669 290°.00352 54.2262 312°.3674

Table 10

Table 11

λ + 12°.5	Julian Date	Modern λs	Difference
310°.92787	2445844.768981	312°.3982	1°.47
313°.67543	2445844.878111	313°.7925	0°.12
314°.99346	2445844.987241	315°.0818	0°.09
316°.31121	2445845.105286	316°.3715	0°.06
317°.72252	2445845.214416	317°.6617	-0°.06
319°.05127	2445845.323546	319°.058	0°.01
320°.36680	2445845.432676	320°.3497	-0°.02
321°.68178	2445845.541806	321°.6422	-0°.04
324°.41740	2445845.659851	322°.9357	-1°.48

2. Kalidina = 1884857, which corresponds to Sunday, 17th August 2059 A.D.

Dhruvadina is 1845338 where in Moon was at apogee at Ujjain mean sunrise. Wednesday, 6^{th} June 1951. *Dhruvasphuṭa* = 89°2770443. *Khaṇḍaśeṣa* = 39519, which gives *dhruva* of 169°.647851 and A = 1434, b = 26.9871 and other computed results given in Table 12 and 13

28.4031

55.1292

21.8553

48.5814

143

171

198

226

79°.55500

88°.32833

84°.30194

93°.06333

1 2 3 5 4 6 7 Dhruvakāla 9- Dhruvas Vākvas Vākva δλ Col.3+Col.4 Dhruvakāla λ in sequence in sequence 14.7726 5 61°.62139 169°.64785 231°.26924 1.6770 228°.20346 70°.06972 41.4987 33 166°.57925 236°.64897 8.2248 229°.58482 8.2248 60 66°.07417 163°.51065 229°.58482 14.7726 231°.26924 34.9509 88 74°.81083 160°.44205 235°.25288 21.8553 232°.4696 1.6770 115 70°.83000 157°.37346| 228°.20346

154°.30486 233°.85986

239°.56459

232°.46960

238°.16239

151°.23626

148°.16766

145°.09906

28.4031

34.9509

41.4987

48.5814

55.1292

233°.85986

235°.25289

236°.64897

238°.16239

239°.56419

Table 12

Table 13

λ + 12°.5	Julian dates	Modern λs	Difference
240°.25346	2473322.782117	241°.01873	0°.77
241°.63482	2473322.891247	242°.40537	0°.77
243°.31924	2473323.000377	243°.79664	0°.48
244°.51960	2473323.118422	245°.30688	0°.79
245°.90986	2473323.227552	246°.70810	0°.80
247°.30289	2473323.336682	248°.11424	0°.81
248°.69897	2473323.445812	249°.52541	0°.83
250°.21239	2473323.563857	251°.05762	0°.85
251°.61459	2473323.672987	252°.47953	0°.86

Kalidina = 1874479, Thursday, March 20, 2031 AD 3. Dhruva of apogee conjunction of Moon: 1863551: $\lambda = 312^{\circ}.24746374$ [17 April 2001]

Table 14

1	2	3	4	5	6	7
Dhruvakāla	Vākya	s Vākya δλ	9- Dhruvas	Col. 3 +Col. 4	Dhruvakā in sequenc	la λ in ce sequence
36.4644	16	213°.600000	87°.412624	301°.012624	3.1905	293°.46069
3. 1905	43	209°.116667	84°.344025	293°.460692	10.2732	294°.76383
29.9166	71	218°.550000	81°.275426	299°.825426	16.8210	296°.53436
56.6427	99	227°.533333	78°.206827	305°.740160	23.3688	298°.53823
23.3688	126	223°.400000	75°.138228	298°.538228	29.9166	299°.82543
50.0949	154	232°.783333	72°.069629	304°.852963	36.4644	301°.01262
16.8210	181	227°.533333	69°.00103	296°.534364	43.5471	302°.8491
43.5471	209	236°.916667	65°.932432	302°.849098	50.0949	304°.85296
10.2732	236	231°.900000	62°.863833	294°.763833	56.6427	305°.74016
						·

Table 15

λ + 12°.5 Julian dates	Modern λs	Difference
305°.51069 2462944.807342	305°.51390	0°.00
306°.81483 2462944.925387	306°.19254	0°.38
308°.58436 2462945.034517	308°.74408	0°.16
310°.58823 2462945.143647	310°.29522	0°.29
311°.87543 2462945.252777	311°.84587	0°.03
313°.06262 2462945.361907	313°.39594	0°.33
314°.89910 2462945.479952	315°.07190	0°.17
316°.90296 2462945.589082	316°.62049	0°.28
317°.79016 2462945.698212	318°.16822	0°.38

4. K = 1857379, Middle of the Anomalistic Period

1	2	3	4	5
JD	Vākya + Dhruva	$\lambda = \text{Col.}2 + 12^{\circ}.5$	Modern λ	Difference
2445858.768981	171°.3076	168°.476499	171°.30760	2°.831101
2445858.878111	172°.862	170°.347030	172°.86200	2°.51497
2445858.987241	174°.417	171°.267561	174°.41700	3°.149439
2445859.096371	175°.971	173°.221426	175°.97104	2°.749617
2445859.214416	177°.652	175°.024567	177°.65238	2°.627816
2445859.323546	179°.207	176°.061764	179°.20659	3°.144826
2445859.432676	180°.761	178°.098962	180°.76060	2°.661634
2445859.541806	182°.314	179°.169493	182°.31434	3°.144851
2445859.659851	183°.995	186°.155968	183°.99466	-2°.1613

Table 16

These examples are illustrative of the salient features of Mādhava's method. Perturbations of the Moon's orbit are apparent across the four examples given above. Uniform accuracy is not apparent even for dates of anomalistic conjunction. In the fourth example that falls at the middle of the anomalistic period the error approaches 3°.0 due to perturbation terms. But still for an epoch such as 1400 AD when there was no lunar theory of more than four terms, accuracy such as above by so simple a method is really marvellous.

ACCURACY OF EPOCHAL POSITIONS OF MADHAVA

Mādhava employs two major epochs, viz., Dinakhaṇḍa of 1502008 and 1644740.649 for the computation of Moon and Mean Sun respectively. Bamboo stands footed on 1502008, which according to the treatise marks a conjunction of the moon with its Higher Apsis at mean sunrise of Ujjain. The latter, 1644740.649, is the epoch for the computation of mean sun. Astronomical analysis of these epochs are explored further below:

(a) Dinakhanda of 1502008

If we take the beginning of Kaliyuga as to have taken place on the mean sunrise of Friday 18.02.3102 BC at Ujjain (JD = 588465.75416667) the *Kalidina* of 1502008 shall find the following astronomical description:

(i)1011AD, May 29, Tuesday, 06:06 (mean sunrise); JD=2090473.75416 for LMT of Ujjain (Zonal Time): (TT=2090473.56186949) (True sunrise at Ujjain is 05:11:06 LMT and for Irinngalakkud 05:35 LMT).

According to Venvāroha: Mean moon = 349°35'09"10" (Sidereal)

Mean apogee = 349°35'07"57"

Modern algorithms give: Mean moon = 357°44′54" (Tropical longitude)

Mean apogee = 357°43'34" (true apogee = 356°31')

Ayanāṃśa for Mādhava's scheme would have been [(1011-522/60] = 8°.15. Therefore Mādhava's tropical mean longitudes would have been: Moon = 357°44'09" and Apogee = 357°44'. Note the striking accuracy of Mādhava's mean moon and moon's apogee with that of the latest modern algorithms.

(ii) True conjunction of Moon and apogee took place for JD (TT): 2090473.4332761, Tuesday, May 29,1011 AD, 03:00:48.96 Local time of Ujjain (JD: 2090473.6256661). Moon's true longitude was 356°31'. On comparing these values with those of Venvāroha, it becomes apparent that the choice of the epoch, Kalidina=1502008, superbly fitted the assumption of moon's conjunction with apogee even though it was 400 years earlier to his times and therefore could not have been observed. It is possible that the epoch may be of traditional origin and Mādhava might have only adopted it for his treatise.

(b) Epoch of Mean Sun

Epoch of mean sun according to the text is, Kalidina of 1502008 + 5180 anomalistic revolutions of sun [5180 (18861/6845) = 5180*27.554565538 = 142732.6487] = 1644740.649 Kalidina. This will correspond to Ujjain sunrise on 10^{th} March 1402 AD, (06:06) JD(ZT = Zonal time = Local Mean Time of Ujjain) = 2233206.75420778. (TT = 2233206.54819792).

Modern algorithm gives Sāyana Mean sun = 355°45'28"

Venvāroha gives Sidereal Mean Sun = 341°05'11" (6)

Ayanāmśa of Mādhava = $[(1402-522/60] = 14^{\circ}40'$

Mādhava's Sāyana sun = $[341^{\circ}05'11" + 14^{\circ}40'] = 355^{\circ}45'11"$

This data is illustrative of the extreme accuracy of Mādhava in computing the mean sun.

(c) Data of Moon

Venvāroha contains two other epochs for which the moon's true longitude has been given:

1. [1502008 + 5174 anomalistic revolutions) = (1502008+142567.3213) = 1644575.3213 Kalidina = JD(ZT) = 2233041.07546; (TT = 2233040.86964056).

This corresponds to Sunday 25th September 1401 AD, 13:48:39.74 Ujjain LMT.

True $S\bar{a}yana$ moon = $40^{\circ}41'45''$

 $Ayan\bar{a}m\dot{s}a = [(1401-522)/60] = 14°39'.$

Sidereal Moon = 26°02'45" (modern)

Mādhava's value for true moon = 26°31'

In this case the *sāyana* mean longitude of moon is 41°11'14" and the sidereal value of mean moon is 26°32'14".

2.[(1502008 + 5105 anom. rev (=140666.056245)] = 1642674.05624*kalidinam.* $This corresponds to <math>12^{th}$ July 1396: 07:26:58.56, JD (ZT) = 2231139.8104:

True $S\bar{a}yana$ moon = 189°00'33"; $Ayan\bar{a}m\dot{s}a$ = 14°34'

True sidereal moon = 174°26'33"

Mādhava's moon = 174°47'

The true longitudes of Moon given by Mādhava are in remarkable agreement with those of modern algorithms. In this case the sāyana mean moon is $189^{\circ}21'51''$ and the sidereal mean moon is $174^{\circ}47'51''$. In both the above cases, which mark the apogee conjunctions of moon. Mādhava's moon is exactly the same as the modern mean moon accounted for *ayanāṃśa*. It must be noted here that the modern mean moon has been computed as per the latest polynomial expression $^{(8)}$ L = $218.3164591 + 481267.881342T - 0.0013268T^2 + 0.000001855835T^3 - 0.00001533883 T^4$ where T = [(JD (TDT) - 2451545)/36525]. In the absence of this 4th order polynomial and the time correction δT (=400 seconds for 1400 AD) for the secular variation in earth's rotation perhaps we would not have been able to appreciate the accuracy of Mādhava. The true moon has been computed as per the Lunar solution ELP2000-82B for the apparent geocentric coordinate referred to the date ecliptic.

COMPARISON OF THE TRUE VELOCITIES

Mādhava has adopted 10^{th} March 1402 Ujjayini mean sunrise 06:06 as the epoch for mean sun used in correcting the moon. The Table 17 gives the successive true longitudes of moon (λ), moon's speed in a day $\delta\lambda$, as well as $\delta\lambda$ computed from Mādhava's *candravākyas* beginning with *śīlam rājñaḥ śriye* which are provided in decimal notation at Appendix - 1.

Table 17

March 51°10'39" 11°54'18" — 09 63°03'23" 11°51'49" 12 10 74°55'41" 11°53'30" 12 11 86°51'54" 11°59'42" 12 12 98°56'38" 12°10'32" 12 13 111°14'29" 12°25'53" 12 14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14°	ādhava <i>ākya</i>
06:06 ELP2000-82B V. March 51°10'39" 11°54'18" — 09 63°03'23" 11°51'49" 12 10 74°55'41" 11°53'30" 12 11 86°51'54" 11°59'42" 12 12 98°56'38" 12°10'32" 12 13 111°14'29" 12°25'53" 12 14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14°	
March 51°10'39" 11°54'18" — 09 63°03'23" 11°51'49" 12 10 74°55'41" 11°53'30" 12 11 86°51'54" 11°59'42" 12 12 98°56'38" 12°10'32" 12 13 111°14'29" 12°25'53" 12 14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	ākya
09 63°03'23" 11°51'49" 12 10 74°55'41" 11°53'30" 12 11 86°51'54" 11°59'42" 12 12 98°56'38" 12°10'32" 12 13 111°14'29" 12°25'53" 12 14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	
09 63°03'23" 11°51'49" 12 10 74°55'41" 11°53'30" 12 11 86°51'54" 11°59'42" 12 12 98°56'38" 12°10'32" 12 13 111°14'29" 12°25'53" 12 14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	
10 74°55'41" 11°53'30" 12 11 86°51'54" 11°59'42" 12 12 98°56'38" 12°10'32" 12 13 111°14'29" 12°25'53" 12 14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	2°02'04"
11 86°51'54" 11°59'42" 12 12 98°56'38" 12°10'32" 12 13 111°14'29" 12°25'53" 12 14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14°	.º12 ['] 54"
13	.°22 ' 43"
14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	2°35'01"
14 123°49'44" 12°45'15" 13 15 136°46'01" 13°07'43" 13 16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	2°49'11"
16 150°05'45" 13°31'53" 13 17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	3°04 ['] 31"
17 163°49'44" 13°55'54" 13 18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	3°20 ' 07"
18 177°56'45" 14°17'32" 14 19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	3°35 ' 15"
19 192°23'15" 14°34'33" 14 20 207°03'40" 14°45'05" 14	°49'04"
20 207°03'40" 14°45'05" 14	1°03'53"
20 207°03'40" 14°45'05" 14 21 221°50'54" 14°48'07" 14	l°10'03"
21 221050'54" 14048'07" 14	l°16 ' 10"
21 221 30 34 14 40 07 14	l°23 ['] 54"
	l°13'05"
23 251°16′10" 14°32′56" 14	l°13'51"
	<u>1º06'20"</u>
	3°55 ' 54"
	3°43 ' 07"
	3°28'38"
	3°13'11"
	2°57 ['] 35"
	2°42'42"
	2°29'16"
	2°18'05"
1 23°27'14" 12°10'04" 12	2°09'23"
	<u>2°04'05"</u>
	2°02'09"
	2°03'43"
6 83°11'19" 11°52'56" —	2°03'43" 2°08 ' 43"
7 95°06'35" 11°58'16" —	

It is apparent from the above comparison that the profile of modern true motion of moon per day over an anomalistic revolution is in agreement with that of Mādhava's Vākyas.

USE OF ANOMALISTIC REVOLUTIONS

Mādhava's computations stems from 1011 AD, May 29, Tuesday, 06:06 (mean sunrise), JD = 2090473.75416. This matched well with the moon's transit over apogee on May 29, 03:00:48.96 LMT of Ujjain (2233206.75420778), as can be expected from the use of anomalistic revolutions, very nearly coincided the apogee transit of moon for JD of 2233206.73153396 corresponding to Friday, 12th March, 1402 AD, 05:33:24.53 LMT of Ujjain. The other two epochs depict the following features:

- (i) 25th September 1401 AD, 13:48:39.74 Ujjain LMT, JD = 2233041.07546; Apogee transit: 25th September 1401 23:42:28.82 LMT (Ujjain), JD = 2233041.48783354.
- (ii) 12th July 1396, 07:26:58.56, Ujjain LMT, JD (ZT) = 2231139.8104; Apogee transit: 12 July, 1396, 10:24:36.18 LMT (Ujjain), JD = 2231139. 9337526.

Mādhava's choice of the expiry of 5180 anomalistic revolutions at sunrise of 12th March 1402 AD as the epoch was closer to the apogee of moon than others, i.e., 5105 or 5174 revolutions.

APOGEE OF SUN

Mādhava gives: solar apogee = 78°, perigee = 258°

 1° motion for $\lambda = 327^{\circ}03'10''$ and $188^{\circ}56'50''$

In the epochal year of 1402 AD, modern astronomy gives apogee at sāyana 93°01'32" (sidereal position will be 78°21'32") on 16th June 22:54. Sun had 1° motion on 17th February 1402 1200 LMT for λ = 337°02'46"(sidereally 332°22'46") and 13 October 1402, 1200 LMT for λ = 208°07'51" (sidereally 193°28'). It is evident that the apogee is very accurate but the solar positions for 1° daily motion has got a displacement by (+) 5° and (-)5° respectively.

SPHUTACANDRĀPTI

Sphuṭacandrāpti⁷ contains the same method of computation of moon as well as candravākyas except for some minor details. But one of the appendices to the edition contains valuable data of Mādhava's true moon longitudes given as the dhruva for different lumps of kalidina:

1 3 4 5 6 Tropical λ, Kalidinam Date: UMT Julian Date Sidereal \(\lambda_{\pi}\) Modern λ, 151°37'34" 166°19'34" 166°55'40" 1645705 29.10.1404, Wed.06:06 2234170.54828 213°49'24" 227°57[']24" 228°36'33" 1633333 15.12.1370,Sun.06:06 221798.54909 2209426.54997 276°01'14" 289°35'14" 290 08 45" 1620961 31.01.1337.Thu.06:06 351°14'04" 351°19'06" 1608589 18.03.1303.Mon.06:06 2197054.55092 338°13'04" 53°35'56" 62 039 56" 62 943 25" 1521985 06.02.1066,Mon.06:06 2110450.55944

Table 18

The Table 18 gives Mādhava's sidereal longitudes in column (4) which have been converted to the respective tropical values of column (5) using ayanāṃśa of 14°42', 14°08', 13°35', 13°01' and 09°04' for AD 1404, 1307, 1337, 1303 and 1066 respectively. Among these five epochs the last two results of Mādhava differ from the ELP2000-82B⁸ value only by (-) 5 minutes of arc as the mean sunrise of Ujjain very nearly coincided with moon's apogee transit (18.03.1303, 02:19 and 06.02.1066, 05:35 respectively). Even in the first three cases Mādhava's longitudes differ by roughly (-) 40 minutes of arc only. The remarkable agreement for distant epochs such as 1303 AD and 1066 AD is suggestive of the observational origin of the data.

Conclusions

The above analysis conveys the realization that not only Mādhava's method was simple but also the most accurate one. Even under a comparison with the modern computer derived longitudes Mādhava's accuracy is amazing and this is true not only about moon but also of other parameters such as mean sun, apogee conjunction of moon etc. Of course, Mādhava was one of the greatest mathematicians of his times and as such this achievement is not surprising. Sarma has referred to Mādhava's appellation as *golavid* and in the light of the above analysis it appears very appropriate. Mādhava's genius reflected in *Veṇvāroha* is an indirect pointer towards the sound astronomical tradition of Kerala that pre-dates even Aryabhata. *Vakya* computation of moon can be traced back to the times of Vararuci, who lived around 3rd -4th century AD.9

APPENDIX- I

śīlam rājñaśriyetyādi candravākyas of Mādhava

1.	12.043056	31.	44.918611	61.	78.867222
2.	24.144167	32.	57.384167	62.	91.919889
3.	36.359167	33.	70.069722	63.	105.221111
4.	48.737778	34.	83.001667	64.	118.781667
5.	61.321389	35.	96.193056	65.	132.575833
6.	74.141111	36.	109.642500	66.	146.571111
7.	87.216389	37.	123.335833	67.	160.724444
8.	100.551667	38.	137.246389	68.	174.985278
9.	114.139167	39.	151.335000	69.	189.298056
10.	127.956944	40.	165.554722	70.	203.603889
11.	141.971667	41.	179.851389	71.	217.845278
12.	156.139167	42.	194.167500	72.	231.966667
13.	170.408611	43.	208.444722	73.	245.919722
14.	184.723611	44.	222.626111	74.	259.663333
15.	199.025000	45.	236.659722	75.	273.167500
16.	213.255833	46.	250.500833	76.	286.415556
17.	227.361389	47.	264.114722	77.	299.403889
18.	241.293056	48.	277.478333	78.	312.141389
19.	255.011667	49.	290.581667	79.	324.652222
20.	268.488889	50.	303.428889	80.	336.970833
21.	281.708611	51.	316.036944	81.	349.141667
22.	294.668333	52.	328.435833	82.	1.216667
23.	307.380000	53.	340.666389	83.	13.253056
24.	319.867778	54.	352.777500	84.	25.309167
25.	332.169167	55.	4.823889	85.	37.442778
26.	344.325556	56.	16.864167	86.	49.707500
27.	356.393611	57.	28.956389	87.	62.150833
28.	8.429444	58.	41.156389	88.	74.810833
29.	20.491389	59.	53.514722	89.	87.715278
30.	32.636667	60.	66.074167	90.	100.877778

91.	114.299722	126. 222.433056	161. 325.578333
92.	127.967778	127. 236.570278	162. 338.020000
93.	141.856111	128. 250.543611	163. 350.283333
94.	155.927500	129. 264.311667	164. 2.416111
95.	170.135556	130. 277.843611	165. 14.471667
96.	184.426389	131. 291.120000	166. 26.508333
97.	198.743333	132. 304.136111	167. 38.584167
98.	213.027500	133. 316.900000	168. 50.755833
99.	227.221944	134. 329.433889	169. 63.075833
100.	241.273889	135. 341.771389	170. 75.588333
101.	255.138056	136. 353.955833	171. 88.328333
102.	268.777778	137. 6.038889	172. 101.318611
103.	282.169722	138. 18.076667	173. 114.568889
104.	295.301389	139. 30.128056	174. 128.070278
105.	308.176111	140. 42.250278	175. 141.821389
106.	320.808889	141. 54.498333	176. 155.775833
107.	333.228889	142. 66.920000	177. 169.898611
108.	345.475556	143. 79.555000	178. 184.140833
109.	357.596944	144. 92.431667	179. 198.446944
110.	9.648056	145. 105.565833	180. 212.759444
111.	21.685833	146. 118.960000	181. 227.008889
112.	33.769444	147. 132.601944	182. 241.171944
113.	45.955278	148. 146.467778	183. 255.165278
114.	58.294167	149. 160.521389	184. 268.957222
115.	70.830000	150. 174.716944	185. 282.515833
116.	83.596111	151. 189.001667	186. 295.820833
117.	96.614722	152. 203.318611	187. 308.865278
118.	109.893333	153. 217.608889	188. 321.656111
119.	123.427500	154. 231.816389	189. 334.213889
120.	137.197500	155. 245.885833	190. 346.570556
121.	151.172500	156. 259.772500	191. 358.769167
122.	165.310833	157. 273.438333	192. 10.860556
123.	179.562778	158. 286.858056	193. 22.900556
124.	193872500	159. 300.018333	194. 34.947500
125.	208.182222	160. 312.920278	195. 47.056667

196. 59.291111	223. 55.558611
197. 71.691944	224. 67.860000
198. 84.301944	225. 80.349722
199. 97.151389	226. 93.063333
200. 110.257222	227. 106.025556
201. 123.623056	228. 119.247500
202. 137.239167	229. 132.726944
203. 151.082222	230. 146.447500
204. 165.117222	231. 160.381111
205. 179.299444	232. 24.487778
206. 193.577222	233. 188.719444
207. 207.893611	234. 208.023056
208. 222.189722	235. 217.336111
209. 236.408611	236. 231.605000
210. 250.495833	237. 245.771389
211. 264.404444	238. 259.784444
212. 278.095833	
213. 291.543056	239. 273.600278
214. 304.732222	240. 287.185556
215. 317.661667	241. 300.518611
216. 330.345556	242. 313.590556
217. 342.808889	243. 326.409167
218. 355.089444	244. 338.990833
219. 7.233889	245. 351.367778
220. 19.295278	246. 3.581667
221. 31.331111	247. 15.681944
222 42 200722	240 27 724722

222. 43.399722 248. 27.724722

NOTES AND REFERENCES

- Sarma, K.V., Contributions to the Study of the Kerala School of Hindu Astronomy and Mathematics, VVRI, Hoshiarpur, 1977. See also his later work, Science texts in Sanskrit in the manuscript repositories of Kerala and Tamilnadu - A documented survey which identifies 2420 texts and above 1500 authors. Rashtriya Sanskrit Sansthan, New Delhi 2002.
- 2. Ibid. Ch. IV. p 11
- 3. Ibid. Ch. II. p 71
- 4. Gupta, R.C. 'Second Order Interpolation in Indian Mathematics up to the Fifteenth century', IJHS, 4.1-2 (1969) 93.
- 5. *Veṇvāroha* ed by K.V.Sarma, Sri Ravi Varma Sanskrit series no. 7, The Sanskrit College Committee, Tripunithura, 1956.
- 6. Vākya computation of moon, which makes use of the anomalistic revolutions, pre-dates even Āryabhaṭa and the originator of the method Vararuci supposedly belonged to the 3rd/4th century AD. So it is quite likely that the epoch of *Kalidina* = 1502008 at which the moon conjoined apogee at sunrise is of traditional origin rather than arising from back computation by Mādhava. It is quite unlikely that the back computation over 400 years would have given so much accuracy for the moon's apogee conjunction.
- 7. Critically Edited and translated, Introduction and Appendices by K.V.Sarma, Visheshvaranand Institute, Hoshiarpur, 1973. See ref. 1, 4.1255
- 8. Lunar solution ELP2000-82B, Bureau des longitudes, Paris
- 9. K.V.Sarma has given the Kali chronograms, which according to the tradition marked the birth and death of his son Melattol Agnihotri as 1257921 and 1270701 respectively. These chronograms correspond to Wednesday, 18th February 343 AD and 14th February 378 AD, Friday, respectively. On the latter epoch at mean sunrise of Ujjain, moon was having an almost perfect conjunction with the perigee and can therefore be an ancient astronomical chronogram employed in the *vākya* process of Vararuci. But as there is no history of the use of perigee in the history of Hindu astronomy, this may be an accident.