Gil Baram

Stochastic Optimization problems

- 1. a. Any variable indexed by t is allowed to "see" any of the outcomes of our exogenous $process W_1, ..., W_t$, but is not allowed to see W_{t+1} . b. At time t.
- 2. p_t is the price at time t, $p_t(\omega)$ is price of a sample path ω at time t.
- 3. No. It must either be 0 or 1.
- 4. It's independent. Decision xt can "see" Wt but not Wt+1.
- 5. $\hat{F}(\omega^{n=1}) = 42.67 $\hat{F}(\omega^{n=2}) = 43.15 $\hat{F}(\omega^{n=3}) = 43.17 $\hat{F}(\omega^{n=4})=\$43.77$ $\hat{F}(\omega^{n=5}) = 41.53 $\hat{F}(\omega^{n=6}) = 43.77 $\hat{F}(\omega^{n=7}) = 43.67 $\hat{F}(\omega^{n=8}) = 43.68

$$\hat{F}(\omega^{n=9}) = $43.16$$

$$\hat{F}(\omega^{n=10})=\$42.08$$

$$\bar{F}^{\pi}$$
 = \$43.065
 $(\hat{\sigma}^{\pi})^2 = \frac{1}{9} \sum_{n=1}^{10} (\hat{F}^{\pi}(\omega^n) - \bar{F}^{\pi})^2 = 0.583117$