Міністерство освіти і науки України Харківський національний університет радіоелектроніки

Факультет	Інфокомунікацій
•	(повна назва)
Кафедра	Інфокомунікаційної інженерії імені В.В. Поповського
1 1	(повна назва)

3ВІТ з практичної роботи №3

з дисципліни **Прогнозування та моделювання в соціальній сфері**

Варіант №10

Виконав:	
студент 2 курсу, групи _	КУІБ-19-2
Нестер	енко Є.В.
	е, ініціали)
Перевірив: завідувач каф	едри ІКІ ім. В.В. Поповсь-
<u>КОГО</u>	
Леме	шко О.В.
(посада, пр	ізвище, ініціали)

МЕТА РОБОТИ

Здобуття практичних навичок з побудови прогнозів на основі методу ковзаючих середніх (КС) та методу простих середніх. Оцінка точності побудови прогнозів за множиною показників. Проведення порівняльного аналізу ефективності досліджуваних методів прогнозування за якісними та кількісними критеріями.

ХІД ВИКОНАННЯ

Завдання 1. Отримання індивідуального варіанту завдань, представленого часовим рядом

Варіант завдання, представлений у вигляді часового ряду представлений.

Таблиця 1 – Індивідуальні значення для побудови прогнозу

Період	Завдання 10		
	Середня заробітна плата в Україні (екв.		
	дол.)		
на 31.12.2009	239,5		
на 31.12.2010	289,3		
на 31.12.2011	340,7		
на 31.12.2012	375,3		
на 31.12.2013	393,8		
на 31.12.2014	213,8		
на 31.12.2015	173,4		
на 31.12.2016	221,5		
на 31.12.2017	275,3		
на 31.12.2018	332,3		
на 31.12.2019	430,5		
на 31.12.2020	437,6		

Завдання 2. Опис методу

Метод ковзаючих середніх

На відміну від «наївної» моделі, якій відповідав принцип "завтра буде як сьогодні", цьому методу відповідає принцип "завтра буде як було в середньому за останній час". Такий метод, стійкіший до коливань, оскільки в ній згладжуються випадкові викиди щодо середнього. Кожне нове спостереження включається в середній по мірі його появи, а найбільш старі негайно виключаються. Швидкість реакції на зміни в структурі даних залежить від числа періодів k, що беруть участь в усередненні.

Метод ковзаючих середніх (МКС) має такий вигляд:

$$\hat{y}_{t+1} = \frac{(y_t + y_{t-1} + y_{t-2} + \dots + y_{t-k+1})}{k}.$$
(2.1)

Метод простих середніх

Як і в наївних моделях, як вихідні дані використовується значення величини в момент часу t, а в якості тестової частини інші. Нижче в рівнянні виконується усереднення (обчислюється середнє значення) початкових даних і будується прогноз на наступний період.

Як тільки нове спостереження стане доступним, для прогнозування на наступний період Y t+2 в рівнянні при обчисленні середнього слід врахувати і це спостереження. Якщо одночасно передбачається велика кількість рядів даних зберігання даних може стати серйозною проблемою. В цьому випадку можна зберігати в принципі тільки найбільш "свіжі" прогнози і спостереження:

Метод простих середніх прийнятний в тих випадках, коли процеси, що генерують тимчасові ряди, стабілізувалися, а оточення, в якому існують ці ряди, в основному, незмінно.

Завдання 3. Програмна реалізація моделей.

Реалізація методу ковзаючих середніх

На рис. 3.1, наведена ілюстрація програмної реалізації методу ковзаючих середніх, де Y – вхідні дані.

```
19

20 %метод ковзких середніх (k=3)

21 — for i=n:N-1

22 — Y_kovz(i+1) = mean(Y(i-k+1:i));

end;

24 — Y_kovz=Y_kovz(n+1:N);
```

Рисунок 3.1 — Програмна реалізація методу КС.

Реалізація методу простих середніх

На рис. 3.2, наведена ілюстрація програмної реалізації методу простих середніх, де Y – вхідні дані.

```
14 %метод простих середніх

15 — for i=n:N-1

16 — Y_sr(i+1)= mean(Y(1:i));

17 — end;

18 — Y_sr=Y_sr(n+1:N);
```

Рисунок 3.2 – Програмна реалізація методу ПС.

Завдання 4. Отримання результатів досліджень

Результати досліджень наведені на рис. 4.1.

Рисунок 4.1 – Графічна ілюстрація заданого часового ряду та прогнозування, створеного на основі КС та Π С

Завдання 5. Оцінка точності побудованого прогнозу за множиною показників. Занесення отриманих результатів розрахунку в порівняльну таблицю.

Оцінка точності прогнозів проводиться за такими ознаками:

1. Помилка прогнозу:

$$e_j = y_j - \hat{y}_j. \tag{5.1}$$

2. Абсолютна помилка прогнозу:

$$\Delta_j = |y_j - \hat{y}_j|. \tag{5.2}$$

3. Середня абсолютна помилка прогнозу:

$$MAE = \left(\frac{\sum_{j=1}^{N} |y_j - \hat{y}_j|}{N}\right). \tag{5.3}$$

4. Відносна похибка прогнозу:

$$\varepsilon_{j} = \left(\frac{|y_{j} - \hat{y}_{j}|}{y_{j}}\right) \cdot 100. \tag{5.4}$$

5. Середня абсолютна відсоткова помилка:

$$MAPE = \frac{1}{N} \cdot \left(\sum_{j=1}^{N} \frac{\left| y_j - \hat{y}_j \right|}{y_j} \right) \cdot 100\%.$$
 (5.5)

6. Середня відсоткова помилка:

MPE =
$$\frac{1}{N} \cdot \left(\sum_{j=1}^{N} \frac{(y_j - \hat{y}_j)}{y_j} \right) \cdot 100\%.$$
 (5.6)

7. Коефіцієнт детермінації:

$$R^{2} = 1 - \frac{\sum_{t=1}^{N} (e_{t}^{2})}{\sum_{t=1}^{N} (y_{t} - \bar{y}_{t})^{2}}.$$
 (5.7)

Таблиця 2 – Отримані у результаті розрахунків дані

Метод прогнозу /показник точності прогнозу	Прогноз (на один часовий інтервал вперед)	Помилка прогнозу	Абсол. помилка прогнозу	Відн. помилка прогнозу	Сер. абс. помилка прогнозу	Сер. абс. відсоткова помилка прогнозу	Сер. відсотк. помилка прогнозу	Коеф. детерм.
Метод крайніх точок	208,6600	-35,26	35,26	0,2033	127,71	35,4561	28,678	0,22
Метод середніх точок	310,5028	-137,1028	137,1028	0,7907	87,6083	32,4343	-11,7763	0,0133
ЛМ	327,5562	-154,1562	154,1562	0,8890	84,6940	34,5528	34,5528	0,0631
ПМ	188,4434	-15,0434	15,0434	0,0868	788,6305	217,8830	217,8830	- 64,347
EM	313,1069	-139,7069	139,7069	0,8057	82,0277	31,8018	31,8018	0,0844
НМ	213,8	-40,4	40,4	0,233	50,7667	17,6905	9,9243	-4,1575
HMM1	33,8	139,6	139,6	0,8051	61,55	25,6474	18,708	-0,8708
HMM2	116,0753	57,3247	57,3247	0,3306	50,8698	18,2653	7,2002	-1,3474
KC	327,6333	-154,2333	154,2333	0,8895	10334	37,0461	1,5533	0,0985
ПС	308,7333	-135,3333	135,3333	0,7805	9079,9	31,9706	-4,9428	0,0683

ВИСНОВКИ

Середня абсолютна відсоткова помилка прогнозу КС дорівнює 37,0461%, що знаходиться у проміжку між 20 та 50 відсотками і є задовільним результатом. Помилка прогнозу на 1 крок вперед склала 154,2333.

Середня абсолютна відсоткова помилка прогнозу ПС дорівнює 31,9706%, що знаходиться у проміжку між 20 та 50 відсотками і ϵ задовільним результатом. Помилка прогнозу на 1 крок вперед склала 135,3333.

Для заданого часового ряду метод ΠC має кращі показники точності як при прогнозуванні на 1 крок, так і при подальшому прогнозуванні.

Отже, метод ковзаючих середніх та метод простих середніх не ε найгіршими методами для заданого часово ряду, але вони не мають настільки ж гарної точності як наївні моделі.