꼼꼼한 딥러닝 논문 리뷰와 코드 실습

Deep Learning Paper Review and Code Practice

나동빈(dongbinna@postech.ac.kr)

Pohang University of Science and Technology

Shadow Attack (ICLR 2020)

- 본 논문은 뉴럴 네트워크를 공격하는 새로운 공격 유형인 Shadow attack(그림자 공격)을 제안합니다.
- Shadow attack의 특징은 무엇인가요?
 - 1. Imperceptibility: 정상적인 이미지처럼 보입니다.
 - 2. Misclassification: 타겟 클래스로 잘못 분류하도록 유도합니다.
 - 3. Strongly certified: 높은 인증 반경(certificate radius)를 가집니다.

연구 배경: 적대적 예제 (Adversarial Examples)

- Adversarial examples
 - 인간의 눈에 띄지 않게 약간 변형된 데이터로, 뉴럴 네트워크의 부정확한 결과를 유도합니다.

연구 배경: 적대적 학습 (Adversarial Training)

- Adversarial training
 - 뉴럴 네트워크를 강건하게 만들기 위해 adversarial example을 학습 데이터로 이용하는 방법입니다.

$$\min_{\theta} E_{(x,y)\in\mathcal{X}} \left[\max_{\delta \in S} L(x+\delta; y; \theta) \right]$$

How to solve the inner problem?

Can be calucated by PGD : Local solution
: Global solution
하지만, 더 강한 공격이 등장한다면?

연구 배경: 인증된 적대적 강건성 (Certified Adversarial Robustness)

- Certified adversarial robustness
 - 입력 이미지가 주어졌을 때 특정한 크기의 L_p -boundary 안에서 adversarial example이 만들어질 수 없도록 수학적으로 보장하는(guaranteeing) 방어 기법 유형입니다.

연구 배경: Randomized Smoothing

- Randomized smoothing is a provable adversarial defense in L_2 norm which scales to ImageNet.
- In training time, it trains a neural network f with Gaussian data augmentation at variance σ^2 .

^{*}Certified Adversarial Robustness via Randomized Smoothing, Jeremy M Cohen, ICML 2019.

연구 배경: Randomized Smoothing (cont'd)

- g(x) returns the class which f is most likely to return when x is corrupted by isotropic Gaussian noise with variance σ^2 .
- In inference time, it uses g(x) by the *Monte Carlo* algorithm.
- g is provably robust within an L_2 radius of $\sigma \cdot \Phi^{-1}(p)$.
 - Φ^{-1} : A inverse CDF of the standard normal distribution.
- e.g., p = 0.8, $\sigma = 0.5 \rightarrow \sigma \cdot \Phi^{-1}(p) \approx 0.5 \cdot 0.842 = 0.421$

ℓ_2 RADIUS	BEST σ	CERT. ACC (%)	STD. ACC(%)
0.5	0.25	49	67
1.0	0.50	37	57
2.0	0.50	19	57
3.0	1.00	12	44

: 80% (*p*)

: 20%

나동빈

본 논문의 핵심 아이디어

• 어떠한 이미지가 **결정 경계(decision boundary)로부터 멀리 떨어져 있다면**, 분류기(classifier)는 이미지에 노이즈를 섞은 이미지에 대해서도 같은 레이블로 분류하게 됩니다.

