Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий и анализа данных

	наименование института		
Отделение прикл	падной математик	и и информат	ики
A	наименование отделения	T - T - T - T - T - T - T - T - T - T -	
0	тчет по дисциплин	ie.	
	слительная матем		
мынал»		атика»	
	по теме:		
«Решение систем ли	неиных алгеораг	ических урав	внении»
Зыполнил студент группы	АСУб-20-2		Арбакова А.В.
	Шифр группы	Подпись	И.О. Фамилия
Троверил преподаватель			И.А. Огнёв
		Подпись	И.О. Фамилия
Отчет по НИР защищен с оцен	ткой		

Вариант 6

Задание:

$$\begin{pmatrix} 0,30 & -1,20 & -0,20 \\ -0,10 & -0,20 & 1,60 \\ 0,05 & 0,34 & 0,10 \end{pmatrix} \qquad \begin{pmatrix} -0,60 \\ 0,30 \\ 0,32 \end{pmatrix}$$

Исходные данные:

x_1	x_2	X ₃	b
0,30	-1,20	-0,20	-0,60
-0,10	-0,20	1,60	0,30
0,05	0,34	0,10	0,32

Решение методом итерации:

Для применения метода итерации необходимо, чтобы диагональные компоненты матрицы А были больше суммы остальных компонентов той же строки. Заданная система не обладает таким свойством, поэтому выполняю предварительные преобразования.

Выделение наибольших диагональных элементов						
0,45	-0,18	0,1	0,36			
-0,7	2,2	2	1,5			
-0,05	0,14	1,7	0,62			

Делю каждый элемент в матрице на наибольший в строке.

Приведение диагональных элементов к единице						
1	-0,4	0,222222	0,8			
-0,31818	1	0,909091	0,681818			
-0,02941	0,082353	1	0,364706			

Создаем матрицу.

Перенос элементов						
0	0,4	-0,22222				
0,318182	0	-0,90909				
0,029412	-0,08235	0				

Создаем таблицу итераций.

				Метод и	тераций		Точность 10 ⁻²		
:		4			A-1	42	42	:- A	
ı		x1	x2	х3	Δ1	Δ2	Δ3	min∆	условие
	0	0	0	0					
	1	0,8	0,68	0,36	0,8	0,681818	0,364705882	0,364706	не выполнено
	2	0,99	0,60	0,33	0,191682	0,077005	0,032620321	0,03262	не выполнено
	3	0,97	0,70	0,34	0,023553	0,090644	0,011979309	0,011979	не выполнено
	4	1,00	0,68	0,34	0,033596	0,018384	0,008157574	0,008158	выполнено

По методу итераций получается $x1=1{,}00$ $x2=0{,}68$ $x3=0{,}34$. Производим проверку.

1 1 2			
		Пров	верка
			разница
x1	1,00	-0,58	-0,02
x2	0,68	0,30	0,00
x3	0,34	0,31	0,01

Решение методом Зейделя:

x1	x2	х3	b			
Выделение	Выделение наибольших диагональных элементов			A^{T}		
0,45	-0,18	0,1	0,36	0,45	-0,7	-0,05
-0,7	2,2	2	1,5	-0,18	2,2	0,14
-0,05	0,14	1,7	0,62	0,1	2	1,7

Метод Зейделя является модификацией метода итераций. Отличие от метода итераций заключается в вычислительной процедуре нахождения приближения на i+1 итерации. В отличии от метода простых итераций, где для отыскания i+1 приближения используется i - ое приближение неизвестных x i j, в методе Зейделя используются уже вычисленные i+1 значения x.

Нормализованная система						
0,695	-1,628	-1,44	-0,919			
-1,628	4,892	4,62	3,322			
-1,44	4,62	6,9	4,09			

Приведени	Приведение диагональных элементов к единице				ренас элемент	108
1	-2,34245	-2,07194	-1,3223	0	2,3424	2,0719
-0,3328	1	0,9444	0,6791	0,3328	0	-0,9444
-0,2087	0,6696	1	0,5928	0,2087	-0,6696	0
				Матриц	ца модулей эле	эментов
				0	2,3424	2,0719
				0,3328	0	0,9444
				0,2087	0,6696	0

Строим итерационную таблицу по методу Зейделя.

		Метод 3	Зейделя		Точность 10 ⁻²	
i	x1	x2	х3	Δ1	Δ2	Δ3
0	0	0	0			
1	-2,0000	1,2353	0,2169	2	1,235294118	0,216912
2	3,0858	0,4236	0,4333	3,085784	0,423587082	0,43331
3	-0,0168	0,8162	0,2885	0,016778	0,816199793	0,288476
4	1,4571	0,6420	0,3588	1,457117	0,642048622	0,358826
5	0,8074	0,7169	0,3276	0,807412	0,716902429	0,327576
6	1,0860	0,6851	0,3410	1,085994	0,685125615	0,341015
7	0,9678	0,6985	0,3353	0,967846	0,698547555	0,335309
8	1,0177	0,6929	0,3377	1,017729	0,692890136	0,337719

Производим проверку.

		Пров	ерка
			разница
x1	1,02	-0,59	-0,01
x2	0,69	0,30	0,00
x3	0,34	0,32	0,00

Решение обратной матрицы:

Метод обратной матрицы (матричный метод) используется для квадратных матрицы, чей определитель равен нулю. Для того, чтобы найти корни уравнения этим способом, в первую очередь необходимо найти обратную матрицу, которую перемножают на свободные коэффициенты.

x1	x2	х3	b	
0,3	-1,2	-0,2	-0,6	
-0,1	-0,2	1,6	0,3	
0,05	0,34	0,1	0,32	

Обратная матрица		Значения х		
2,070485	-0,1909	7,195301	x ₁	1,00
-0,3304	-0,14684	1,688693	х2	0,69
0,088106	0,594714	0,660793	Х3	0,34

Произведем проверку.

3
.o
-0,2
1,6
0,1
_

Вывод по проделанной работе:

Был реализован алгоритм вычисления системы линейных алгебраических уравнений точностью 10-2 с помощью табличного редактора Excel.

Вычисления были произведены тремя способами для приближения к значениям корней и их дальнейшего нахождения. Самым универсальным способом вычисления можно считать простой метод итераций, он имеет среднюю скорость сходимости. О методе Зейделя можно сказать, что скорость его сходимости значительно меньше и сам метод более трудоемкий для решения данной задачи. Самое точное приближение к значению корня имеет метод обратной матрицы.