Contents

1	Introduction	2
2	Theory	2
3	Methodology	2
4	Analysis of Numerical Results	2
5	Appendix	2
	5.1 Non-Dimensionalization	2
	5.2 Programs	2
	5.3 Contributions	2

1 Introduction

2 Theory

Identical infinitely-long metal plates $A_1, A_2, A_3, B_1, B_2, B_3$ and B_4 are placed in an *interleaved* arrangement as dipicted in fig1. Group of plates A_i and B_i are connected to the terminal A and B, respectively, by means of gold wires. which are maintained at constant electric potentials U_A and U_B respectively.

Our goal will be to approximate the potential distribution inside the capacitor at steady state with,

$$U_A = 5V$$

 $U_B = -5V$
 $d = 0.5\mu m$
 $Dimensions: 4 \times 4.4\mu m$

Mathematical Formulation:

Figure 1: Diagram dipciting the arrangement of plates in a interleaved fashion.

We introduce new variables

$$\frac{\partial^2 U'}{\partial x'^2} + \frac{\partial^2 U'}{\partial y'^2} = f(x', y') \tag{2.1}$$

- 3 Methodology
- 4 Analysis of Numerical Results
- 5 Appendix
- 5.1 Non-Dimensionalization
- 5.2 Programs
- 5.3 Contributions