

Human Gender and Age Estimation on Real-time Video

End Semester Presentation

Subject: CSP523- Machine Learning Guided by: Dr. Mehul Raval Date: April 16, 2018 Presented by: Group 08

Divya Dass (1744001) Parth Gadoya (1744002) Happy Snehal (1744003) Charmi Chokshi (201501021)

Introduction

- Human faces, convey a significant amount of nonverbal information to facilitate the real-world human-to-human communication
- Facial attributes, such as identity, age, gender, expression, and ethnic origin, play a crucial role in real facial image analysis

Applications:

- Age specific human computer interaction (ASHCI) system ensures young kids have no access to internet pages with adult materials
- Vending machine can refuse to sell alcohol or cigarettes to the underage people
- Ad-agency can find out what kind of scroll advertisements can attract the potential customers in what age ranges using a latent computer vision system

Problem Statement

Human Gender and Age Estimation on Real-time Video via KPLS Regression

Literature Reviews

Age Estimation using Active Appearance Models and Support Vector Machine Regression [1]	Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression [2]	Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression [3]	A hierarchical approach for human age estimation [4]	
 Extract feature using AAM (Active Appearance Models) Classify images in different age groups using SVM (Support vector machine) Use SVR (Support vector regression) for estimating age 	 Normalize images Apply Age manifold learning for dimensionality reduction (OLPP) Apply Robust Regression using Non-linear SVR (Gaussian kernel). 	Feature Extraction Use Kernel-PLS (Partial least square) to predict age	 Extract feature using AAM (Active Appearance Models) Classify images in different age groups by majority vote from result of different classifiers Use RVM (Relevance vector machine) for estimating age 	

Implementation

- Implemented Biologically Inspired Features for feature extraction from FG-NET dataset (1002 images)
- Kernel Partial Least Square Regression for age and gender estimation
- Viola-Jones algorithm for face detection for tracking on real-time video in MATLAB
- K Nearest Neighbour for age group classification (very young, young, middle, old age)

Results

- Data set contains 1002 images from age 0 to 69
- Considering images only of 21-30 age group, model gives best MAE of 2.43 years and Gender Accuracy 85.36%
- MAE: Average of absolute errors between true age and estimated age
- Excluding images of 0-15 age group, model gives MAE of 7.79 years which is near to the ideal MAE for age estimation and Gender Accuracy 74.14%
- Age Group Classification:
 - Age groups are: very young (0-12), young(13-35), middle age(36-55), old age(56-above)
 - Classifier: k-Nearest Neighbors algorithm
 - Classification accuracy: 56%

Results

Input

Output

Discussions

Case	Dimension	MAE (in Years)	Gender Accuracy (%)	Component
Age group:0-15 Training: 432 Testing: 150	100	2.71	51	25
Age group:11-20 Training: 255 Testing: 65	100	2.55	64.62	25
Age group: 21-30 Training: 100 Testing: 40	100	2.43	85.36	25
Age group: 31-above Training: 82 Testing: 15	100	7.59	80.00	25
Age group: ALL Training: 752 Testing: 250	100	8.64	54.80	20
Age group: Above 14 Training: 342 Testing: 116 R = 12, B = 8	100	7.79	74.14	20

Conclusion

- The PLS approach is evaluated based on MAE Metric. Lower MAE implies better accuracy of algorithm
- Approach perform dimensionality reduction and estimating age simultaneously, no need to perform these steps separately
- It can even deal with age, gender, and ethnicity altogether within a single learning step
- The very small FG-NET database (1002 images) is not good enough to fully explore the advantages on PLS
- KNN algorithm is a lazy learner and it is not robust to noisy data

Future Work

- Training set needs to be enhanced with different ethnicity and more number of images
- Thresholding in the system which restricts assigning age and gender to an unknown image (outlier detection)
- Accuracy can be increased by using different kernel function
- Different classifiers can be used for age categorization like SVM
- Age estimation with GPU (more computational power)
- Create threads by exploiting multiple cores

References

- 1. Luu, Khoa, et al. "Age estimation using active appearance models and support vector machine regression." Biometrics: Theory, Applications, and Systems, 2009. BTAS'09. IEEE 3rd International Conference on. IEEE, 2009.
- 2. G. Guo, Y. Fu, C. R. Dyer and T. S. Huang, "Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression," in *IEEE Transactions on Image Processing*, vol. 17, no. 7, pp. 1178-1188, July 2008.
- 3. G. Guo and G. Mu, "Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression," *CVPR* 2011, Providence, RI, 2011, pp. 657-664.
- 4. Thukral, Pavleen, Kaushik Mitra, and Rama Chellappa. "A hierarchical approach for human age estimation." Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012.

Thank you!