

トップエスイー ソフトウェア開発実践演習

Q学習による有向グラフ上の特定ノードの 利用効率最適化手法の検討

(株)日立ハイテクノロジーズ

森月 政博

masahiro.morizuki.wz@hitachi-high-tech.com

開発における問題点

有向グラフ上を移動するメッセージが、ある特 定のノード(処理ノード)上で処理されるモデルに おいて、処理ノードの利用効率を最大化する メッセージ移動経路を割り出す必要がある.し かしグラフが取り得る状態の数が膨大であるた め, 通常の最適化手法的アプローチでは状態 爆発が起こり、有限時間内の解の導出が困難、

手法・ツールの適用による解決

学習した状態の近似から解を予想する DQN(Deep Q-Network)を用いて、決められた ルールに従って広大な状態空間内での最適な 状態遷移を導くシステムを構築する。処理ノード の利用効率を最大化するための指標を選定し、 システムの構築・評価を行った。

モデルと構成

対象とする有向グラフ(ネットワーク)

- ◯ メッセージ供給/回収ノード ◯ メッセージ処理ノード
- メッセージ伝送ノード
- フォーマットノード
- 一般ノード

実験•評価

報酬の獲得ルール

処理ノード利用効率(%)	報酬	
40≦f(P, M)	+1.0	
30≦f(P, M)<40	-0.2	
f(P, M)<30	-0.6	
ルール違反等のエラー	-1.0	

$f(P,M) = \frac{\sum_{i=1}^{|P|} \sum_{j=1}^{|M(P_i)|} Pt(M(P_i)_j)}{|P| \times T}$ P: 使用した処理ノードの集合

M: 送信されたメッセージの集合 T: 算出基準時間

 $M(P_i)$: ノード P_i で処理したメッセージの集合 $Pt(M(P_i)_i)$: メッセージ $M(P_i)_i$ の処理時間

Experiment	F(P, M)	学習完了ステップ数
初回	24%	4500
ルール追加①(Environment変更)	24%	3200
ルール追加②(Environment変更)	33%	5500
行動追加(Agent変更)	42%	37600

評価

適切なルールを環境に設定することにより、処理ノー ド利用効率を改善するよう学習させることができた。

考察

Agentの変更は効果が大きいが、学習時間に与える 影響も大きい。

学習の効率は報酬の与え方に大きく左右されそう。

今後の取り組み

報酬の与え方の再検討

今回は学習をスタートさせてから5メッセージを送信 完了した時点での処理ノード利用効率を基に報酬 を与えることとしたが、報酬を得るまでの時間が長 く、初期状態に報酬が伝播するまでの学習時間が 長くなった。各ステップ毎に報酬を与えることを検 討する。

目的指標の見直し

今回は単位時間あたりの処理ノードの利用効率を 最大化する機械学習プログラムとしたが、これは ネットワーク全体のスループットを向上させることに 必ずしも寄与しない。今後はスループット向上を目 標とし、待ち行列中の在庫滞留を無くすよう個々の ノードの利用率を平準化する(利用率の差を最小化 する)等を指標とした機械学習も試行したい。