Applied Statistical Analysis I Multiple linear regression

Hannah Frank frankh@tcd.ie

Department of Political Science Trinity College Dublin

November 22, 2023

Today's Agenda

- (1) Lecture recap
- (2) Tutorial exercises: What is the relationship between education and Euroscepticism?

Regime type and environmental protection

Categorical independent variables

How to include categorical independent variables with more than two levels?

Environmental performance; = $\alpha + \beta_1 * Income_i + \beta_2 * Region_i + \epsilon_i$

```
## table(qog_data$ht_region)
##
##
                       Eastern Europe (1)
                                                          Latin America(2)
##
                                  28
                                                                      20
##
      North Africa & the Middle East (3)
                                                   Sub-Saharan Africa (4)
                                                                      49
##
                                  20
##
                                                             East Asia (6)
    Western Europe and North America (5)
                                  27
                                                                       6
##
                      South-East Asia (7)
##
                                                            South Asia (8)
##
                                  11
                                                                       8
                          The Pacific (9)
                                                       The Caribbean (10)
##
##
                                  12
                                                                      13
```

0000000

Categorical independent variables

```
# Load package
   library (fast Dummies)
   # Create dummy variables for categorical variable
   qog_data <- dummy_cols(qog_data,
 6
                           select_columns = c("ht_region"))
   # Print first 5 rows in dataset
   head (qog_data [c("ht_region_1",
               "ht_region_2",
              "ht_region_3",
               "ht_region_4",
13
              "ht_region_5",
14
              "ht_region_6".
15
              "ht_region_7",
16
              "ht_region_8",
              "ht_region_9".
18
               "ht_region_10")], 5)
```

```
ht_region_1 ht_region_2 ht_region_3 ht_region_4 ht_region_5
   ht_region_6 ht_region_7 ht_region_8 ht_region_9 ht_region_10
## 5
```

000000

Categorical independent variables

```
# Run regression model
  m2 <- Im(epi_epi ~ income +
             ht_region_1 + ht_region_2 + ht_region_3 +
4
             # no region 4 (Sub-Saharan Africa) = reference category.
5
             ht_region_5 + ht_region_6 + ht_region_7 + ht_region_8 + ht_region_9 +
6
             ht_region_10, data = qog_data)
  # Print results
  summary (m2)
```

```
Coefficients: (1 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.3992 1.1296 28.683 < 2e-16 ***
income
            1.7410 0.4061 4.287 3.23e-05 ***
ht_region_1 18.4245 1.8769 9.817 < 2e-16 ***
ht_region_2 11.6208 2.0362 5.707 6.01e-08 ***
ht region 3 9.4434
                       2.4665 3.829 0.000189 ***
ht_region_5
            35.2532
                       2.4854 14.184 < 2e-16 ***
ht_region_6 16.2287
                     3.6737 4.418 1.91e-05 ***
ht_region_7 4.1247
                       2.7820 1.483 0.140281
ht_region_8 -2.1694
                        3.2676 -0.664 0.507774
ht_region_9
                 NA
                           NΑ
                                   NA
                                           NA
                                3.108 0.002257 **
ht_region_10 11.0665
                       3.5607
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 7.528 on 149 degrees of freedom
  (35 observations deleted due to missingness)
Multiple R-squared: 0.7897, Adjusted R-squared: 0.777
F-statistic: 62.16 on 9 and 149 DF. p-value: < 2.2e-16
```

```
1 # Use relevel to code dummy variables on the fly
2 # specify region 4 (Sub-Saharan Africa) = reference category
3 m3 <- Im(epi_epi ~ income + relevel(as.factor(ht_region), ref = "4"),
              data = qog_data)
5
  # Print results
  summary (m3)
```

Estimate Std. Error t value Pr(>|t|)

```
(Intercept)
                                          32.3992
                                                      1.1296 28.683 < 2e-16 ***
income
                                           1.7410
                                                      0.4061 4.287 3.23e-05 ***
relevel(as.factor(ht region), ref = "4")1
                                          18.4245
                                                      1.8769 9.817 < 2e-16 ***
relevel(as.factor(ht_region), ref = "4")2
                                          11.6208
                                                      2.0362 5.707 6.01e-08 ***
relevel(as.factor(ht_region), ref = "4")3
                                           9.4434
                                                      2.4665 3.829 0.000189 ***
relevel(as.factor(ht_region), ref = "4")5
                                          35.2532
                                                      2 4854 14 184 < 2e-16 ***
relevel(as.factor(ht_region), ref = "4")6
                                          16.2287
                                                      3.6737 4.418 1.91e-05 ***
relevel(as.factor(ht_region), ref = "4")7
                                           4.1247
                                                      2.7820 1.483 0.140281
relevel(as.factor(ht region), ref = "4")8
                                          -2.1694
                                                      3 2676 -0 664 0 507774
relevel(as.factor(ht region), ref = "4")10 11.0665
                                                      3.5607
                                                               3.108 0.002257 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.528 on 149 degrees of freedom
  (35 observations deleted due to missingness)
Multiple R-squared: 0.7897.Adjusted R-squared: 0.777
F-statistic: 62.16 on 9 and 149 DF, p-value: < 2.2e-16
```

Under control of income, Eastern Europe has an Environmental Performance Index score of 18.4245 scale points higher than Sub-Saharan Africa.

Interactions

What are interactions?

Categorical independent variables

Interactions

The association between X on Y might vary depending on the value of a third variable M (=Moderator):

$$\hat{Y}_i = \alpha + \beta_1 X_i + \beta_2 M_i + \beta_3 (X_i M_i) + \epsilon_i$$

The interpretation of the regression coefficients changes:

- α is the expected value of Y when X=0 and M=0
- β_1 is the change in Y when X increases by one unit, when M=0
- β_2 is the change in Y when M increases by one unit, when X=0
- β_3 is the interaction term of X and M

Rearrange terms:

$$\hat{Y}_i = \alpha + \beta_2 M_i + (\beta_1 + \beta_3 M_i) X_i + \epsilon_i$$

 β_3 is the added increase in β_1 , if M increases by one unit.

Coefficients:

Categorical by continuous interaction

Environmental Performance: $= \alpha + \beta_1 \operatorname{Income}_i + \beta_2 \operatorname{Regime Type}_i + \beta_3 \operatorname{Income}_i * \operatorname{Regime Type}_i + \epsilon_i$

```
# Run regression model with interaction term
int_m2 <- Im(epi_epi ~ income + democracy + income*democracy, data = qog_data)
# Print results
summary (int_m2)
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             37.1474
                                        1.0684 34.768 < 2e-16 ***
                              2.1902
                                        0.4532
                                                 4 833 3 24e-06 ***
## income
## democracyDemocracy
                            3.4490
                                        2 7819 1 240
                                                          0.217
## income:democracyDemocracy 5.1029
                                        0.8686
                                                 5.875 2.55e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.046 on 153 degrees of freedom
    (37 observations deleted due to missingness)
## Multiple R-squared: 0.6879, Adjusted R-squared: 0.6818
## F-statistic: 112.4 on 3 and 153 DF, p-value: < 2.2e-16
```

Categorical by continuous interaction

```
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                                      1.0684 34.768 < 2e-16 ***
## (Intercept)
                           37.1474
## income
                            2 1902
                                       0.4532 4.833 3.24e-06 ***
                         3.4490
## democracyDemocracy
                                       2.7819 1.240
                                                        0.217
## income:democracyDemocracy 5.1029
                                       0.8686 5.875 2.55e-08 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 9.046 on 153 degrees of freedom
    (37 observations deleted due to missingness)
## Multiple R-squared: 0.6879, Adjusted R-squared: 0.6818
## F-statistic: 112.4 on 3 and 153 DF, p-value: < 2.2e-16
```

- The average Environmental Protection Index (EPI) for poor (Income=0) autocracies is 37.1474 scale points (α).
- For autocracies, with every additional 10,000 USD of income, the EPI increases by 2.1902 scale points (β_1) . \rightarrow Income effect for autocracies
- For poor democracies, the EPI is 3.4490 scale points higher, in comparison to poor autocracies (β_2) .
- For democracies, with every additional 10,000 USD of income, the EPI increases by 7.2931 scale points $(\beta_1 + \beta_3 = 2.1902 + 5.1029 = 7.2931)$. \rightarrow Income effect for democracies

Categorical by continuous interaction

```
Model for Autocracies (democracy = 0)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * Regime Type_i) +
(5.1029 * Income_i * Regime Type_i)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * 0) + (5.1029 * Income_i * 0)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i)
Model for Democracies (democracy = 1)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * Regime Type_i) +
(5.1029 * Income_i * Regime Type_i)
\hat{Y}_i = 37.1474 + (2.1902 * Income_i) + (3.4490 * 1) + (5.1029 * Income_i * 1)
\hat{Y}_i = 40.5964 + (7.2931 * Income_i)
```

Categorical by continuous interaction

Non-linear effects

Non-linear effects

Model a curvilinear (=curved lines) relationship between an independent variable and the dependent variable.

Include X and the square of X:

$$\hat{Y}_i = \alpha + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

Non-linear effects

"U-shaped" relationship between democracy and environment protection?

Non-linear effects

What is the relationship between education and Euroscepticism?

- H_1 : The higher the years of education, the lower the level of Euroscepticism.
- H_2 : The higher the income, the lower the level of Euroscepticism.
- H_3 : The higher the trust in politics, the lower the level of Euroscepticism.
- H_4 : The more positive attitudes towards immigration, the lower the level of Euroscepticism.

Does gender influence the effect of attitudes towards immigration on Euroscepticism?

Does whether the person was born in the country influence the effect of education on Euroscepticism?

Is the effect of income on Euroscepticism U-shaped?

