Tutorium zu Computer-Engineering im WS19

Termin 4

Jakob Otto

HAW Hamburg

3. November 2019

Ablauf

Praktikum

- ► Was ist zu tun?
- ► Was braucht ihr?
- Beispielcode
- ► Tipps

Ausblick (I)

Ablauf

- Trial-Subtraction Algorithmus
 - effizientes Wurzelziehen aus Samples
- OAC spielereien
 - Ausgabe von Sound lernen
- Flash-speicher lesen/schreiben
 - Samples lesen lernen
- Alles zusammensetzen
 - Kommunikation zwischen FPGA/STM-32
 - Ausgabe übr PWM
 - Musik abspielen

Ausblick (II)

Ausblick (III)

Aufgabenzettel 🖸

Praktikum (I)

Was ist das Ziel?

- DAC verstehen!
- Sinus/Sägezahnsignale ausgeben
- verschiedene Frequenzen darstellen
- verschiedene Amplituden darstellen

7 / 15

Schäfers Beispielcode 🗆

Praktikum (II)

Was Passiert da?

Zwei verschiedene Handlungsstränge!

- Hauptroutine
 - Pollt buttons
 - Füllt das fifo mit samples
 - Die main halt
- ISR
 - Wird durch Interrupts ausgelöst
 - Schreibt nächstes sample in DAC-Register

Praktikum (II)

Samples?

Für die Lookup-tables braucht ihr Samples.

- volle Periode des Signals berechnen
- Samples in einem Array hard-coden
- ullet Am besten ohne Offset speichern o Signal sollte um 0-pkt laufen.
- erst beim nutzen geeignet umformen.

Q-Format

Denkt an die Darstellung der samples im Q-Format

Praktikum (III)

11 / 15

Praktikum (IV)

Darstellung Verschiedener Amplituden

- Samples z.B. in +1/-1 Bereich generieren
- Beim nutzen dann geeignet verarbeiten

```
// darstellung +1V/-1V
fifo[index] = samples[sampleIndex] + offset;
// Darstellung +0.5V/-0.5V
fifo[index] = (samples[sampleIndex] >> 1) + offset;
```

Berechnungsbeispiel

Berechnung der Schrittweite

Zum Darstellen verschiedener Frequenzen benötigt ihr verschiedene Schrittweiten.

- ullet kleine Schrittweite o kleine Frequenz
- ullet große Schrittweite o große Frequenz

Berechnung:

```
delta_{freq} = ((((ANZ\_SAMPLES) * FREQ) << frac)/TIMER\_FREQ)
frac = fractional Anteil des Q-Formats
```


Schrittweite \rightarrow Q-Format?!

Für höchste genauigkeit Q-Format nutzen!

Schrittweite \rightarrow Q-Format?!

Für höchste genauigkeit Q-Format nutzen!

Bei 360 samples brauchen wir 9 Integer-bits \rightarrow 29 = 512

Qu9.23 ist also sinnvolles Format