Make Buzzwords Great Again

Data Mining, "Big Data", and Machine Learning for Security and DFIR

Slides: https://github.com/Dioberne/ConferenceTalks/tree/master/BloomCon/2019

Goal: Give you an understanding of the subject matter that will allow you to cut through vendor nonsense and get stuff

done

curl http://169.254.169.254/latest/meta-data/hostname

Btice

- BU Alumnus
 - Digital Forensics
 - Anthropology
- Geeks Hard
 - python -c "import antigravity"
 - o emerge --sync
- Now Blue Team
 - "Full-stack" == "Doing the job of 3-7 people"
 - "Purple-ish-team" == "Know thyself, know thy enemy. A thousand battles, a thousand victories"
 --Sun Tzu

Tell Them What You Are Going To Tell Them

- Formalities ← You are here
- What is N?
 - Data mining
 - o Big Data
 - Machine Learning
- Demos!
 - Data mining with ELK
 - Looking at data with Jupyter and Python ("Exploratory data analysis")
 - Anomaly Detection
 - DNS Traffic Classification
 - Hunting lateral movement with graph / link analysis
- Questions?
 - Also links

What is Data Mining?

- Almost useful definition: "The practice of examining large databases in order to generate new information" --Google
- A process for looking through large amount of data
 - Ingest
 - Standardize
 - Enrich (Add new fields)
 - Measure Statistically (Top N, average/min/max/stddev, frequency etc.)
 - Vizualize
 - Search, filter
 - o (Optional) Use Algorithms on
 - Clustering
 - Classification
 - Anomaly Detection
 - Shopping cart analysis
 - And many more...

Data Mining Tools-to-Know

- Things I will show today:
 - RITA (<u>https://qithub.com/activecm/rita</u>)
 - Does statistical analysis of network logs to aid hunting
 - NetworkX (<u>https://networkx.github.io/</u>)
 - Graph analysis in Python
- Other data mining tools that don't overlap with Big Data...
 - Logon Tracer (https://github.com/JPCERTCC/LogonTracer)
 - Hunt for lateral movement using graph theory and Windows Event Logs
 - o ...

What is "Big Data"?

- Not useful definition: "Extremely large data sets that may be analyzed computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions." --Google
- Data that can't be stored or processed by a single machine
- Ben's rule of thumb for when to use big data tools: The data is too big to open in Excel
 - "big data" with a little "b"
- Big Data concerns itself with...
 - Amount of data (Cluster required)
 - Speed of data (24x7 streaming)
 - Diversity of data (Many input formats)

Big Data Tools-to-Know

- Things I will show today:
 - ELK (<u>https://www.elastic.co/elk-stack</u>)
 - Elasticsearch (Storage, search, filter)
 - Logstash (Ingest, normalization, enrichment)
 - Kibana (Visualize, basic stats)
- Things to look up later:
 - Spark (<u>https://spark.apache.org/</u>)
 - Lets you run code on a cluster (and on clustered data)
 - Supports HDFS natively but can be used on Elasticsearch with a plugin
 - https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
 - https://www.elastic.co/products/hadoop
 - Bundled along with ELK and ES-Hadoop in Hunting ELK
 - https://github.com/Cyb3rWard0g/HELK
 - Kafka (<u>https://kafka.apache.org/</u>)
 - Distributed data plumbing (boring but necessary)

What is Machine Learning?

- Actually useful definition: "Machine learning is a subfield of computer science and statistics that deals with the construction and study of systems that can learn from data, rather than follow only explicitly programmed instructions" --https://github.com/CICCIOSGAMINO/machine_learnig
- Statistics + Algorithms (that learn thresholds for decisions, multipliers etc.)
- Machine learning only learns numbers and only operates on numbers
 - Using ML on something that isn't a number requires you to turn it into a number using ("Featurization")
- I believe we should leverage ML algorithms as grey boxes
 - Black boxes give the power to sell us "magic" to vendors
 - White box level of understanding is overkill for getting work done
 - o Goldilocks: Know your inputs, outputs, and gotchas then move on

Ben's Machine Learning Rules of Thumb

- General Principles Useful as a Guide:
 - Good candidates for machine learning are tasks that humans complete near instantly (after loading the data into their head)
 - Can a machine learning algorithm make decisions with the "intuition, expertise, and tribal knowledge of Tier 3 security analysts"?
 - If a human can't reliably solve the problem with the data presented a machine learning model won't be able to either
 - Example: Age from a photograph
 - Example: RITA Beacon Analysis
 - And if it can then it isn't solving the problem the same way a human would
 - Example: Byte histogram in ML-AV
 - Algorithms should be the easiest part of machine learning
 - Using an off-the-shelf algorithm is just 4 lines of Python
 - Expect most of your brain-power to go to featurization
 - Expect most of your code to be boilerplate and data wrangling

Machine Learning Tools-to-Know

- Things I will show today:
 - Sklearn (<u>https://scikit-learn.org/</u>)
 - Usually the only library you need, has one of almost everything
 - Jupyter (<u>https://jupyter.org/</u>)
 - Lets you run Python code and see the output in a web browser
- Things to look up later:
 - Spark-ML (https://spark.apache.org/docs/latest/ml-guide.html)
 - Lets you run common ML algorithms on a Spark cluster
 - Robust Cut Random Forests (https://github.com/kLabUM/rrcf)
 - Like an Isolation Forest but for streams
 - Python Outlier Detection (<u>https://github.com/yzhao062/pyod</u>)
 - More anomaly detection algorithms than you will ever need
 - Includes PCA based anomaly detection
 - Ember Dataset (https://github.com/endgameinc/ember/blob/master/ember/features.py)
 - Malware classification dataset. Contains example of featurization

Demo: Data mining with ELK

- What: Network flow log review
- Data: Bro Conn log
- Tool: ELK stack

Enrichment With Logstash

```
geoip {
   source => "id_orig_h"
   target => "[@meta][geoip_orig]"
geoip {
   source => "id_resp_h"
   target => "[@meta][geoip_resp]"
```

Demo: Looking at data with Jupyter and Python

- What: "Exploratory data analysis" (Looking at data)
- Data: RITA Beacon analysis report
- Tool: Jupyter + Python + Sklearn
- Algorithm(s): PCA, K-means

Demo: GeoIP Anomaly Detection

- What: Detect network traffic to unusual locations
- Data: Bro Conn Log
- Tool: Jupyter + Python + Sklearn
- Algorithm(s): DBSCAN

Demo: DNS Traffic Classification

- What: Classify domain names as malware or benign
- Data: Bro DNS log
- Tool: Jupyter + Python + Sklearn
- Algorithm(s): Random Forest

Pre-demo: Can humans classify DNS?

- A. r5---sn-8xgp1vo-p5qe.googlevideo.com
- B. tfydfxlideir.info
- C. wrzkjtqumhygulergpttjzojmeduwn.sandbox.alphasoc.xyz
- D. 58701c8b2469e1404298a38dfbcfdb03b69f4a6d.malware.hash.cymru.com

Demo: Hunting lateral movement with graphs

- What: Identify hosts that may be involved in a lateral movement chain
- Data: Bro conn log
- Tool: Jupyter + Python + NetworkX
- Algorithm(s): PageRank

Tell them what you told them

- Data Mining is a process for looking through large amount of data
- Big Data is data that can't be stored or processed by a single machine
- Machine learning is the combination of statistics and algorithms for learning from example data
- The barrier to entry in machine learning is pretty low but you still want to know your inputs, outputs, and gotchas
- We can leverage these things to get more stuff done
- Taking a peak under the hood can cut through vendor malarkey

Questions?

- Concerns?
 - o Dreams?
 - Fears?
 - Aspirations?
 - o Snide remarks?

Linkapalooza

- "Using isolation forests to detect bot matches in dota2"
 - https://towardsdatascience.com/detecting-bot-matches-in-dota-2-using-isolation-forests-a17 c34f60923
 - https://github.com/zhilingc/anomdota
- Bro Analysis Tool
 - https://github.com/SuperCowPowers/bat
- "In-Depth Data Stacking"
 - https://www.fireeye.com/blog/threat-research/2012/11/indepth-data-stacking.html
- "Building Machine Learning Models for the SOC"
 - https://www.fireeye.com/blog/threat-research/2018/06/build-machine-learning-models-for-thee-soc.html
- "Your Model Isn't Special"
 - https://github.com/endgameinc/youarespecial
- "Getting Started With Machine Learning for Incident Detection"
 - https://www.youtube.com/watch?v=2FvP7nwb2UE
 - https://github.com/DavidJBianco/Clearcut