A WFC3 GRISM EMISSION LINE REDSHIFT CATALOG IN THE GOODS-SOUTH FIELD

AARON M. MORRIS¹, DALE D. KOCEVSKI¹, JONATHAN R. TRUMP^{2,3}, BENJAMIN J. WEINER⁴, NIMISH P. HATHI⁵, GUILLERMO BARRO⁶, TOMAS DAHLEN⁷, SANDRA M. FABER⁶, STEVEN L. FINKELSTEIN⁸, ADRIANO FONTANA⁹, HENRY C. FERGUSON⁷, NORMAN A. GROGIN⁷, RUTH GRÜTZBAUCH^{10,11}, YICHENG GUO^{6,12}, LI-TING HSU¹³, ANTON M. KOEKEMOER⁷, DAVID C. KOO⁶, BAHRAM MOBASHER¹⁴, JANINE PFORR^{15,16}, MARA SALVATO¹³, TOMMY WIKLIND⁷, STIJN WUYTS¹³

Draft version February 11, 2015

ABSTRACT

We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of $1.1 < \lambda < 1.7 \mu m$ with a resolving power of $R \sim 130$ for point sources, thus providing rest-frame optical spectra for galaxies out to $z \sim 3.5$. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H \leq 24 and a CANDELS photometric redshift $z_{phot} \geq 0.6$. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of $\sigma_{NMAD} = 0.0028$ for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 arcmin² and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of $0.677 \le z \le 3.456$ and have a median redshift of z = 1.282. The catalog contains a total of 234 new redshifts for galaxies at z > 1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at $z \sim 2$, nearly doubling the number of such pairs previously identified.

Subject headings: catalogs, galaxies: high-redshift, techniques:spectroscopic

1. INTRODUCTION

aaron.morris2@uky.edu

¹ Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506

² Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802

³ Hubble Fellow

⁴ Steward Observatory, 933 N. Cherry Street, University of Arizona, Tucson, AZ 85721, USA

⁵ Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13388, Marseille, France

⁶ UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 USA

 $^7\,\mathrm{Space}$ Telescope Science Institute, Baltimore, MD 21218, USA

⁸ The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, Texas 78712, USA

C1400, Austin, Texas 78712, USA

⁹ INAF Osservatorio Astronomico di Roma, Via Frascati 33,00040 Monteporzio (RM), Italy

 10 School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD

¹¹ Centre for Astronomy and Astrophysics, University of Lisbon, P-1349-018 Lisbon, Portugal

12 Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA

¹³ Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse D-85748 Garching, Germany

¹⁴ Department of Physics and Astronomy, Colby College, Waterville, ME, USA

¹⁵ Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, UK

¹⁶ NOAO, 950 N. Cherry Avenue, Tucson, AZ 85719, USA

Accurate galaxy redshifts are vital to studying how the physical properties and environments of galaxies evolve over cosmic time. While high resolution, ground-based spectroscopy has traditionally provided the most reliable redshifts, these observations are time consuming for faint sources and are subject to the limited wavelength sensitivity of optical spectrographs, making it difficult to extent large redshift surveys beyond $z \sim 1.2$ (Davis et al. 2007; Lilly et al. 2007). Near-infrared (NIR) spectrographs are now pushing the redshift frontier into the socalled redshift desert (Trump et al. 2013; Sanders et al. 2014; Silverman et al. 2014; Wisnioski et al. 2014), however at these wavelengths ground based observations are subject to contamination from atmospheric OH lines. Photometric redshift estimates, on the other hand, can provide redshifts for large samples of galaxies, including relatively faint systems, at a lower observational cost compared to spectroscopy. However, even the best photometric redshifts have errors of a few percent and are subject to catastrophic outliers for rare sources, such as active galactic nuclei (AGN), if their unique spectral energy distributions (SED) and/or strong emission lines are not properly modeled a priori (Salvato et al. 2009, 2011).

Slitless grism spectroscopy with the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) now provides a powerful alternative to ground-based spectroscopy and SED modeling for measuring distant redshifts. The slitless nature of the WFC3/IR grism offers the ability to obtain a spectrum of each galaxy in the detector's field-of-view, while the significantly reduced background levels compared to the ground means

Fig. 1.— Line luminosity limits for detecting the H α , H β , [OIII], and [OII] emission lines with 2 orbits of the HST/WFC3 G141 grism (corresponding to a line flux limit of $3\times 10^{-17} {\rm erg/s/cm^2}$). Dashed vertical lines indicate the redshift ranges at which various lines are visible in the G141 sensitivity window (1.1-1.7 μ m).

emission lines can be detected for relatively faint galaxies with modest exposure times (e.g. Trump et al. 2011; Brammer et al. 2012; Straughn et al. 2011; Atek et al. 2011; van der Wel et al. 2011). In addition, the nearinfrared sensitivity of WFC3 provides access to many important rest-frame optical emission lines over a wide range of redshifts, from $H\alpha$ down to z=0.7 to [OII] $\lambda 3727$ at z=3.4. Figure 1 shows the detectability of emission lines with 2-orbit depth G141 grism observations at various redshift ranges. Despite the low spectral resolution ($R \sim 130$) of the WFC3 grism, the resulting redshift accuracy is an order of magnitude better than typical photometric redshift errors (Brammer et al. 2012).

In this paper, we combine imaging and photometric redshifts from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011; Koekemoer et al. 2011) and WFC3/IR grism observations from the 3D-HST survey (Brammer et al. 2012) to produce a new grism spectroscopic redshift catalog for H-band selected galaxies in the GOODS-South field. The catalog contains emission-line redshifts for 608 sources which have no previously published spectroscopic redshifts and contains 234 new redshifts at z > 1.5. The paper is organized as follows: in Section 2 we introduce the datasets used in constructing the redshift catalog. In Section 3 we present the methodology used to inspect the grism spectra and measure redshifts. In Section 4 we present an overview of the redshift catalog and its key properties, provide an analysis of the accuracy of the redshift measurements, and use the new redshifts to identify close galaxy pair candidates. Finally, in Section 5 we summarize our work. Throughout this paper, we adopt the Chabrier IMF and the following cosmology: $H_0 = 70 \; km s^{-1} Mpc^{-1}, \; \Omega_M = 0.3, \; \Omega_{\Lambda} = 0.7.$ All magnitudes are in the AB system.

2. OBSERVATIONS AND SAMPLE SELECTION

2.1. Optical and Infrared Imaging

Our parent sample is drawn from the H-band selected photometric catalog of Guo et al. (2013), which made use of HST/WFC3 imaging of the GOODS-S field from three programs: CANDELS, the WFC3 Early Release

Fig. 2.— Layout in the GOODS-S field of the WFC3 F160W imaging and G141 grism observations used in this study. The imaging comes from the CANDELS, WFC3 ERS and HUDF09 programs, while the grism observations come from the 3D-HST (red) and WFC3 ERS programs (blue).

Science program (ERS; Windhorst et al. 2011), and the HUDF09 program (Bouwens et al. 2010). The location of the WFC3 imaging from these three programs is shown in Figure 2. CANDELS has observed GOODS-S using a two-tiered Wide+Deep strategy. The Deep region covers the central third of the GOODS-S area (55 arcmin²; Giavalisco et al. 2004) with 3, 4, and 6 orbits of F105W, F125W, and F160W imaging, respectively. The Wide region covers the southern third of the field with 2-orbit depth imaging in all three bands. The ERS program covers the northern third of GOODS-S with 2-orbit depth imaging in the F098M, F125W, and F160W bands. Finally, an area of 4.6 arcmin² in GOODS-S, the Hubble Ultra Deep Field, is covered by very deep 24, 34, and 53 orbits of F105W, F125W, and F160W imaging. The CANDELS team carried out a consistent reduction of the WFC3 imaging from all of these programs; for details we refer readers to Koekemoer et al. (2011).

The GOODS-S field has also been observed in the optical with the Advanced Camera for Survey (ACS) on HST as part of the GOODS Hubble Treasury Program (P.I. M. Giavalisco) in the B, v, i, and z bands with a total exposure time of 7200, 5450, 7028, and 18,232 seconds. For this study, we made use of the publicly available, version v3.0 mosaicked images from the GOODS Treasury Program. In the mid-infrared, we make use of Spitzer/IRAC 3.6 and 4.5 μ m imaging from the Spitzer Extended Deep Survey (SEDS; P.I. G. Fazio; Ashby et al. 2013), which reaches total 3σ depths of \sim 26 AB mag.

In addition to the observations described above, the GOODS-S region has been targeted for some of the deepest ground-based observations ever taken, ranging from the U band (Nonino et al. 2009) to the K band (Fontana et al. 2014). A detailed description of these datasets can be found in Grogin et al. (2011) and Guo et al. (2013).

2.2. Photometry and Photometric Redshifts

For this study, we make use of the CANDELS photometric catalog of Guo et al. (2013). The catalog is H-band selected using a "max-depth" image that combines all available F160W in the GOODS-S field. The catalog contains 34930 unique sources and is 50% complete at $H \sim 26$. Multiwavelength photometry is obtained for the available HST bands using a modified version of SExtractor (Bertin & Arnouts 1996; see Galametz et al. 2013) using the F160W observations as the detection image. For Spitzer/IRAC imaging and ground-based observations of mixed resolution, the TFIT software (Laidler et al. 2007) was employed to obtain PSF-matched photometry. Further details on the CANDELS multiwavelength photometry catalogs can be found in Guo et al. (2013) and Galametz et al. (2013).

Photometric redshifts for each source were generated from SED modeling using the photometry catalog of Guo et al. (2013). A hierarchical Bayesian approach was employed in which the full photometric redshift probability distribution from 11 independent CANDELS investigators are combined to produce a more accurate redshift estimate. The detailed description of this process can be found in Dahlen et al. (2013). The photometry used ranged from the U-band to the Spitzer/IRAC 4.5 μm filter; see Guo et al. (2013). The resulting photometric redshifts are found to be accurate to the 2.9% level and have an outlier fraction (OLF) of 9.1% when compared with a sample of available spectroscopic redshifts.

2.3. WFC3/IR Grism Data

GOODS-S contains near complete spectroscopic coverage in the NIR with 2-orbit depth HST/WFC3 G141 grism observations taken by the 3D-HST survey (PI: P. van Dokkum; Brammer et al. 2012) and the WFC3 ERS program (Straughn et al. 2011), corresponding to a limiting line flux of $3 \times 10^{-17} \text{erg/s/cm}^2$. The locations of the G141 observations in the GOODS-S field are shown in Figure 2. The publicly available data were reduced using the aXe software package (Kümmel et al. 2009) to produce two- and one-dimensional wavelengthand flux-calibrated spectra. Spectra were reduced using the default (V2.0) aXe parameters. This means we use a single sky background and do not account for the background fluctuations which typically affect the WFC3 grisms (Brammer et al. 2014). (The GOODS-S G141 observations have lower overall background than the other CANDELS / 3D-HST fields, although the GOODS-S background can vary from 1–2 e⁻/s within a single pointing, see Appendix B of Brammer et al. 2012.) The extraction window was set to be four times the object size projected perpendicular to the dispersion direction, where object size is measured from the F140W image using SExtractor. The spectra each cover a wavelength range of $1.1 \leq \lambda \leq 1.7 \mu m$ with a resolving power $R \sim 130$ (46.5Å/pixel) for point sources. For each observation with the grism, an accompanying direct F140W image is taken to determine the wavelength zero-point for each spectrum. The uncertainty in the zero-point and the dispersion are 8Å and 0.06Å/pixel respectively. The dispersion correlates to $\sim 1000 km s^{-1}$ for H α at z > 1. The total exposure time for each F140W direct image is 812 s and the total exposure time for each G141 grism image ranges between 4511 - 5111 s.

Finally, we registered the grism observations to the CANDELS imaging in the field by running SExtractor on the F140W direct images and cross-matched the resulting source catalog to the CANDELS F160W catalog of Guo et al. (2013). Through this cross-matching we derived an astrometric correction for each individual 3D-HST tile; the average derived correction was 0″.163 in $\Delta \alpha$ and 0″.248 in $\Delta \delta$.

2.4. Sample Selection

Our initial sample consists of 4511 sources selected from the catalog of Guo et al. (2013) based on the following criteria:

- *H*-band Magnitude: $H_{\rm F160W} \le 24$
- Photometric Redshift: $z_{phot} \ge 0.6$

These criteria are chosen such that prominent emission features fall within the sensitivity window of the G141 grism, but also such that the number of sources to be inspected does not become unmanageably large(e.g. increasing the magnitude cut to $H_{\rm F160W} \leq 25$ more than doubles the sample size.) It is worth noting that as a result of these selection criteria, sources that are continuum-faint but have high-equivalent width emission lines may be missed from our initial selection. The same is true for sources with catastrophic failures in their photometric redshift estimates.

To determine which sources in our initial sample have preexisting spectroscopic redshifts, we compared the sample against a recent compilation of published spectroscopic redshifts in the GOODS-S field (N. Hathi, private communication). This compilation contains redshifts from various sources including Balestra et al. (2010); Cooper et al. (2012); Croom et al. (2001); Daddi et al. (2004); Huang et al. (2009); Kriek et al. Kurk et al. (2012); Le Fèvre et al. (2004); Mignoli et al. (2005); Ravikumar et al. (2007); Silverman et al. (2010); Strolger et al. (2004); Szokoly et al. (2004); Trump et al. (2013); van der Wel et al. (2004); Vanzella et al. (2008, 2009); Wolf et al. (2004); Wuyts et al. (2009); Xue et al. (2011), and the ESO GOODS/CDF-S Master Catalog¹. We refer to this compilation as the Master Spectroscopic Catalog hereafter. Based on this comparison, we define two samples: a primary sample consisting of 3007 sources which do not appear in the master spectroscopic catalog and a secondary sample of 1504 sources which have published spectroscopic redshifts. In the following sections, we analyze the grism spectra of both samples in an identical manner (i.e., with no prior knowledge of any published spectroscopic redshift) and use the secondary sample to test the accuracy of our grism-derived redshifts (see §4.2).

Of the 4511 sources in the initial sample, 2314 sources in the primary sample and 1226 sources in the secondary sample fall within the 3D-HST G141 footprint and are detected in the F140W imaging. For the sources in the primary sample, we extracted 2723 unique grism spectra from the 36 individual 3D-HST and ERS pointings, with 343 sources being identified in multiple pointings. We

Available online at http://www.eso.org/sci/activities/garching/projects/goods/MasterSpectroscopy.html

Fig. 3.— Examples of G141 grism spectra with quality flags 4.0 (multiple high S/N emission lines), 3.0 (multiple, lower S/N emission lines), 2.5 (single emission feature; redshift agrees with photometric redshift), and 2.0 (single emission feature; redshift disagrees with photometric redshift). Vertical dashed lines indicate the location of major emission features.

Fig. 4.— Distribution of sources with new grism redshifts in GOODS-S. Grey points are all sources from the catalog of Guo et al. (2013) and filled circles are sources with grism redshifts, color coded according to their assigned quality; see §3 for details.

extracted 1464 unique spectra for the secondary sample, with 224 sources being identified in multiple pointings.

3. REDSHIFT MEASUREMENT

The extracted 2D and 1D spectra for each object in our samples were visually inspected using the SpecPro IDL software package Masters & Capak 2011. In addition to the spectrum of each source, SpecPro also provides the user with the ability to display thumbnail images of the source being inspected, a plot of available photometry with an accompanying SED fit, and the location and width of the extraction window. To aid in the identification of emission lines, SpecPro provides the predicted location of various emission and absorption features based on the input photometric redshift for the source. Source spectra were also inspected for contamination from overlapping spectra using an estimate supplied by aXe which is indicated atop the 1D spectrum. It should be noted that no attempt was made to model or subtract contamination from each spectrum, although emission lines from neighboring sources were identified using the photometric or spectroscopic redshift of the contaminating source and contamination from zeroth order spectra is indicated by the contamination estimate supplied by aXe. Any source which exhibited excessive contamination or had data quality issues (e.g. significantly incomplete spectrum due to the spectrum being dispersed off the edge of the detector or spectra which overlap with defective portions of the detector) were removed from the sample. These sources accounted for roughly 17% of all 4187 extracted spectra in the primary and secondary samples.

During inspection, any visible spectral features were roughly fit manually and subsequently fit via cross-correlation with spectral templates provided in the software to determine the redshift of the source. SpecPro's cross-correlation method is adapted from the cross-correlation routines originally written for the SDSS spectral reduction package, which follows the technique of Tonry & Davis 1979. When the automated

cross-correlation failed, the redshift was determined manually by fitting the peaks of the template emission features to those observed in the grism spectrum. This was done for less than 5% of sources. The templates used for cross-correlation are taken from the VVDS (Le Fèvre et al. 2005) and PEGASE Fioc & Rocca-Volmerange 1997 templates. The emission lines most often used for identification were $\text{H}\alpha/[\text{NII}]\lambda\lambda6550+6584$ and $[\text{SII}]\lambda\lambda6717+6731$, H β and $[\text{OIII}]\lambda\lambda4959+5007$, and $[\text{OIII}]\lambda3727$. The spectral resolution of the grism is such that the above sets and duplexes are not resolved, but it is enough to produce certain distinguishing profiles that aid in differentiating each from other strong lines (e.g. the asymmetric profile of $[\text{OIII}]\lambda\lambda4959+5007$.)

Upon inspection, the derived redshift of each source was assigned a quality flag based on the strength and number of the identified emission lines and the agreement with existing photometric redshift estimates. If a source was identified in multiple pointings and therefore assigned multiple redshifts, the higher quality redshift was always chosen. In the case where multiple redshifts of the same quality exist, the redshift of the source was taken to be the average of the individual redshifts. The quality scheme for the derived redshifts is as follows:

- 4.0: Multiple high S/N emission lines
- 3.0: Combination of high and low S/N emission lines.
- 2.5: Single high S/N emission line and redshift agrees with 68% confidence interval of photometric redshift
- 2.0: Single high S/N emission line and redshift does not agree with 68% confidence interval of photometric redshift

Examples of spectra correlating to each quality flag can be seen in Figure 3. While quality 3.0 and 4.0 redshifts are the most reliable, given the multiple emission lines identified, we show in $\S4.2$ that sources assigned a quality of 2.0 or 2.5 demonstrate excellent agreement with prior spectroscopic redshift measurements.

4. RESULTS

4.1. Catalog Properties

Upon inspection and classification of the 2411 grism spectra in the primary sample, we have identified 608 sources with visible emission lines for which redshifts could be measured. Of these, 45 exhibited multiple high S/N emission lines (quality 4.0), 181 exhibited multiple emission lines with some low S/N emission lines (quality 3.0), 293 exhibited a single high S/N emission line whose redshift agrees with the 68% confidence interval of the CANDELS photometric redshift estimate (quality 2.5), and 89 exhibited a single high S/N emission line which does not agree with the 68% confidence interval of the photometric redshift (quality 2.0). In the secondary sample, we have identified 411 sources with visible emission lines for which redshifts could be measured. Of these, 35 exhibited multiple high S/N emission lines (quality 4.0), 167 exhibited multiple emission lines with some low S/N emission lines (quality 3.0), 157 exhibited a single high S/N emission line whose redshift agrees with the 68% confidence interval of the CANDELS photometric redshift estimate (quality 2.5), and 52 exhibited a single high S/N emission line which does not agree with

Fig. 5.— Distribution of the 608 new grism redshifts in GOODS-S. The redshifts span a range of 0.677 $\leq z \leq$ 3.456 and have a median redshift of z=1.282. There are 234 sources with $z\geq1.5$

the 68% confidence interval of the photometric redshift (quality 2.0).

The final catalog contains 1019 grism redshifts for galaxies brighter than H = 24 in the GOODS-S field. Roughly 60% (608/1019) of the redshifts are new, in that these galaxies have no previously published spectroscopic redshift. The new redshifts span a range of $0.677 \leq z \leq 3.456$ and have a median redshift of z = 1.282. The catalog contains a total of 234 new redshifts for galaxies at $z \geq 1.5$. The spatial distribution of the 608 galaxies with new redshifts can be seen in Figure 4 and their redshift distribution is shown in Figure 5. In addition, the stellar mass distribution of these 608 galaxies is shown in Figure 6. Here masses are calculated by SED modeling using photometry from the Guo et al. (2013) catalog as described in Mobasher et al. (2014, in prep.). We find that galaxies with new grism redshifts in our catalog are, on average, three times less massive than their counterparts with literature redshifts at $z \sim 1-2$.

Over the magnitude range of our primary sample (H <24), we find that our ability to successfully measure a redshift is not strongly dependent on the H-band magnitude of the source. Figure 7 shows the magnitude distribution of sources in our primary sample along with the redshift success rate in each magnitude bin (defined as the ratio of the number of sources with grism redshifts of quality ≥ 2.0 to the number of all sources in our initial sample in a given bin). Over the magnitude range 22 < H < 24, our success rate ranges from 20 to 30\%, showing only a mild decrease for our faintest sources. Also shown in Figure 7 is our success rate as a function of redshift. Here we find a steady decrease from 35% to 10% in the redshift range 2.0 < z < 2.75. This is likely due to [OIII] and H β shifting beyond 1.7 μm at z=2.4and 2.5, respectively, leaving [OII] as the single emission line visible in the G141 sensitivity window at z > 2.5.

We have investigated the nature of the sources for which a grism redshift could not be determined due to the lack of visible emission lines and find them to be a combination of bright, quiescent galaxies and faint star-forming systems. In Figure 8, we show the location of these galaxies on a UVJ diagram (Williams et al. 2009). This phase-space separates blue, star forming galaxies from redder

FIG. 6.— Mass distribution as a function of spectroscopic redshift for galaxies in the GOODS-S field. Galaxies with new grism redshifts from this work are shown as red circles, while galaxies with previously published spectroscopic redshifts are shown as grey points.

systems that are heavily dust extinguished or passively evolving. For this analysis, rest-frame colors were determined with the EAZY code (Brammer et al. 2008) using the observed photometry from Guo et al. (2013) and the CANDELS photometric redshift catalog. Of the galaxies which lack visible emission lines, we find that 33.0% are dusty or quiescent $(U - V_{\text{rest}} > 1.3)$. This is nearly three times greater than the 12.4\% of galaxies with measured grism redshifts that have similar restframe colors. The remaining 67.0% are blue, star-forming systems $(U - V_{\text{rest}} < 1.3)$ that are predominately faint (64.5%) are fainter than $H \sim 23$; the same is true for only 23.7% of the passive/dusty population). We therefore conclude that objects which failed to yield a grism redshift are largely a combination of quiescent galaxies that lack emission lines and star-forming galaxies with emission lines fainter than the detection limit of the grism observations.

4.2. Redshift Accuracy

To evaluate the accuracy of our measured redshifts, we first examine the agreement of the new grism redshifts with the CANDELS photometric redshifts. This is shown in the left panel of Figure 9. We to quantify the accuracy of the catalog via the parameter σ_{NMAD} , defined as $1.48 \times median(|\Delta z|/(1+z_{phot}))$. The grism redshifts show good agreement with the photometric redshifts, with $\sigma_{NMAD} = 0.0236$ and an OLF $(|\Delta z|/(1 +$ $(z_{phot}) \geq 0.15$) of 0.0150. These values are comparable to the accuracy of the photometric redshifts when compared against ground-based spectroscopic redshifts, so we may reasonably assume that the majority of this scatter is due to the error in the photometric redshifts. We believe many of the outliers in this evaluation are sources with SEDs contaminated by strong emission lines. A comparison to the work of Hsu et al. (2014), which takes into account intermediate-band Subaru photometry (Cardamone et al. 2010) and the contribution of emission lines in addition to the photometry presented in Guo et al. (2013), reduces the number of outliers in the sample from 9 to just 2.

To further assess the accuracy of the grism redshifts,

Fig. 7.— (left) Magnitude distribution of sources with new grism redshifts. The dashed line represents the redshift "success" rate in each bin with error bars given by number statistics based on the number of sources in that bin. (right) Redshift distribution of sources with new grism redshifts.

we examine the agreement of the secondary sample with the redshifts conained within the master spectroscopic catalog. Each extracted spectrum was inspected using the same methods employed for the primary sample; i.e., we used the photometric redshifts to aid in our redshift determination but had no knowledge of the published spectroscopic redshifts. This process resulted in 411 successful grism redshift determinations. A comparison of the grism and ground-based spectroscopic redshifts is shown on the right panel of Figure 9. This comparison yields a scatter of $\sigma_{NMAD} = 0.0028$ with an OLF of 0.0098. Compared to the work of Brammer et al. (2012), we find excellent agreement with the accuracy reported by the 3D-HST team ($\sigma_{NMAD} = 0.0035$).

As a further test of the accuracy of our catalog, we have compared our grism redshifts to those obtained by the WFC3 ERS program. Straughn et al. obtained 48 redshifts via their G102 and G141 observations, of which ten sources with the highest quality redshifts meet our magnitude and redshift selection criteria and received quality flags of 2.0 or higher in our inspection. We see excellent agreement between our results and those of Straughn et al., with a comparison in the manner described above giving a result of $\sigma_{NMAD} = 0.0016$.

We find that the scatter between the grism and ground-based spectroscopic redshifts is not significantly increased ($\Delta\sigma_{NMAD}\approx 0.0001$) for those sources whose redshifts were fit manually versus those fit via the built-in cross-correlation routines in SpecPro. We also find that the scatter does not vary significantly with quality flag, ranging from $\sigma_{NMAD}=0.0026$ for quality 4 redshifts to $\sigma_{NMAD}=0.0033$ for quality 2 redshifts. We therefore propose quality 2.0 as the minimum reliable quality for this redshift catalog. In addition, we find no correlation between scatter and the effective radius of the sources as defined in van der Wel et al. (2014).

4.3. Redshift Catalog

Starting with a sample of 4511 sources, we have obtained a total of 1019 grism redshifts for galaxies brighter than H=24 in the GOODS-S field. Of these, 608 are new redshift measurements for galaxies in our primary

FIG. 8.— UVJ plot of rest-frame colors for all sources in both the primary and secondary samples. Blue points represent sources for which a grism redshift was successfully obtained and red sources represent sources for which a grism redshift was not obtained with point size scaled according to the source's H-band magnitude. The dashed line separates the star-forming "blue cloud" and the quiescent "red sequence". We find that sources without grism redshifts tend to be bright quiescent systems or faint star forming galaxies.

sample, which do not have previously published spectroscopic redshifts. The coordinates and redshifts of all 1019 galaxies are listed in Table 1. The details of the table columns are given below.

- 1. Source ID from Guo et al. (2013)
- 2. Right ascension (J2000)
- 3. Declination (J2000)
- 4. H-band magnitude (AB) from Guo et al. (2013)
- 5. Redshift derived from G141 grism spectrum
- 6. Redshift from Master Spectroscopic Catalog
- 7. Emission line(s) used for redshift determination
- 8. Redshift quality flag (see §3 for details)

4.4. Newly Identified Galaxy Pair Candidates

In this section, we highlight one of the potential uses for our redshift catalog, namely the identification of

Fig. 9.— (left) Grism redshifts from this work versus CANDELS photometric redshifts. The solid line represents $z_{grism} = z_{phot}$, while the dashed lines represent $\sigma_{\text{NMAD}} = 0.0236$. (right) Grism redshifts from this work versus ground-based spectroscopic redshifts, with $\sigma_{\text{NMAD}} = 0.0028$.

close galaxy pairs at z>1. Due to the slitless nature of the WFC3 grism, we can now dramatically increase the spectroscopic sampling of star forming galaxies at these redshifts. Even with a spectral resolution of $\delta v \sim 1000 km s^{-1}$, the redshift accuracy of the G141 grism spectra $(\sigma_z/(1+z)=0.3\%)$ is far better than typical photometric redshift errors (3%) and the accuracy of low-resolution prism spectroscopy (1.2%), which have been used in the past to study the merger rate and environments of galaxies at $z\sim 1$ and beyond i.e., Patel et al. 2011; Newman et al. 2012.

Combining the grism redshifts in our catalog with our master spectroscopic catalog, we have identified 20 galaxy pair candidates in GOODS-S with at least one member whose redshift comes from the new WFC3/G141 spectra. To identify galaxy pairs, we inspect the neighbors of each galaxy with a grism redshift of quality 2.0 or greater and define close companions as those that are 1) within a projected distance of 50 kpc, and 2) have a redshift difference of $\Delta z/(1+z) < 0.03$, or roughly $\delta v \sim 1000 km s^{-1}$ at z > 1. Based on these criteria, we find 20 galaxies with potential companions in the CANDELS/GOODS-S region. Five of the pairs are comprised of two galaxies with new grism redshifts and 15 are grism sources with companions that appear in our master spectroscopic catalog. The sample spans a redshift range of $0.787 \le z \le 2.33$, with four of the pairs identified at $z \sim 2$. This sample represents roughly a factor of two increase in the number of such pairs identified with the master spectroscopic catalog alone. On average, the new companions to sources with spectroscopic redshifts are nearly one magnitude fainter in the H-band, which highlights the ability of the grism to detect fainter objects than are usually seen via groundbased spectroscopy. In addition, the objects found in

these pairs are approximately ten times less massive than objects typically observed in pair studies at this redshift (López-Sanjuan et al. 2013; Tasca et al. 2014) The coordinates and redshifts of the newly detected pair candidates are listed in Table 2.

5. SUMMARY

We have constructed a redshift catalog for galaxies in the CANDELS/GOODS-S field using HST/WFC3 G141 grism observations from the 3D-HST survey and WFC3 ERS program. The G141 spectra cover a wavelength range of $1.1 < \lambda < 1.7 \mu m$, which allows for the detection of prominent emission lines over a wide redshift range, from $H\alpha$ at z=0.7 to [OII] $\lambda 3727$ at z=3.4. Our catalog is H-band selected based on the CANDELS photometry catalog of Guo et al. (2013). Spectra were extracted for all GOODS-S sources which are brighter than H=24and have a photometric redshift $z_{phot} \geq 0.6$. Each spectrum was visually inspected, emission lines were identified with the aid of CANDELS photometric redshifts, and redshifts were measured via cross-correlation with empirical spectral templates. Derived redshifts were assigned a quality ranging from 4.0 for sources with multiple strong emission lines, to 2.0 for sources with a single visible emission line. The resulting catalog contains new grism redshifts for 608 galaxies which have no previously published spectroscopic redshift in the GOODS-S field. These redshifts span a range of $0.677 \le z \le 3.456$ and include 234 new redshifts for galaxies at $z \ge 1.5$. The catalog also contains grism redshifts for 411 galaxies which have existing redshifts in the literature.

We find good agreement between our grism-derived redshifts and existing photometric redshifts from CAN-DELS ($\sigma_{NMAD} = 0.0236$). We've also tested the accuracy of our redshifts by extracting and inspecting the spectra of GOODS-S sources with published spectro-

scopic redshifts. This analysis was done blind, with only the photometric redshift of each source known during the inspection. Here we find excellent agreement between our redshifts and the published values ($\sigma_{NMAD}=0.0028$). This agreement holds even for redshifts measured with only a single emission line (quality 2.5 and 2.0 in the catalog).

Finally, we use our redshift catalog to identify 20 new galaxy pair candidates at z=1-2. These were chosen to have a projected separation of 50 kpc and a velocity offset of $\delta v \sim 1000 km s^{-1}$. Included in this sample are four new pairs identified at $z \sim 2$.

This work is based on observations taken by the CAN-DELS Multi-Cycle Treasury Program (GO 12177) and the 3D-HST Treasury Program (GO 12328) with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555 and by the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. We also acknowledge partial support from NSF 0808133 and HST-AR 12822.03-A.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5 2.0 2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0
173 03 32 25.39 -27 56 33.9 22.97 0.683 0.684 $\dot{H}\alpha$, [SIII] λ 9532 180 03 32 25.15 -27 56 34.3 23.53 1.332 - $\dot{H}\beta$, [OIII], $\dot{H}\alpha$	
180 03 32 25.15 -27 56 34.3 23.53 1.332 - $H\beta$, [OIII], $H\alpha$	
718 D3 37 25 56 27 56 28 5 22 87 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{3.0}{2.0}$
218 03 32 25.66 -27 56 28.5 22.87 1.112 - $H\alpha$ 244 03 32 25.18 -27 56 23.1 23.20 1.103 - $H\alpha$	2.5
267 03 32 25.84 -27 56 23.2 22.67 1.087 - Ha	2.5
287 03 32 24.08 -27 56 19.7 23.29 2.101 - $H\beta$, [OIII]	4.0
304 03 32 24.59 -27 56 15.9 23.20 1.267 - [OIII], $H\alpha$	4.0
371 03 32 22.01 -27 56 09.6 22.62 1.777 - $\dot{H}\beta$, [OIII]	3.0
394 03 32 27.39 -27 56 06.0 23.81 0.826 - H α 472 03 32 31.16 -27 55 57.2 23.20 0.836 0.841 H α	$ \begin{array}{c} 2.0 \\ 2.5 \end{array} $
472 03 32 31.16 -27 55 57.2 23.20 0.836 0.841 $H\alpha$ 482 03 32 24.84 -27 55 59.9 21.96 1.052 1.049 $H\alpha$	2.5
$483 03 32 35.20 -27 55 55.8 \qquad 22.93 \qquad 0.997 - H\alpha$	2.5
489 03 32 21.92 -27 55 55.0 23.36 3.064 3.071 [OII]	2.5
494 03 32 26.12 -27 55 53.9 23.20 2.101 - [OII], $H\beta$, [OIII]	[] 4.0
513 03 32 28.46 -27 55 54.3 22.55 1.090 1.090 $H\alpha$	2.5
528 03 32 27.23 -27 55 59.8 19.86 1.096 1.089 H α	2.0
540 03 32 26.45 -27 55 49.7 23.11 2.093 2.099 [OII], [OIII] 569 03 32 40.83 -27 55 46.7 23.23 3.393 1.221 [OII]	$\frac{3.0}{2.5}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2.5}{2.5}$
630 03 32 34.56 -27 55 43.5 21.77 0.996 0.983 $H\alpha$	2.0
715 03 32 26.39 -27 55 32.4 22.97 1.733 $-$ [OIII]	2.5
720 03 32 40.08 -27 55 32.6 22.61 1.472 1.461 [OIII], $H\alpha$	3.0
722 03 32 23.15 $-27.55 30.1$ 23.89 1.145 $ \text{H}\alpha$, [SII]	2.5
726 03 32 23.13 -27 55 33.4 21.40 1.147 1.146 $H\alpha$ 744 03 32 38.12 -27 55 30.8 21.79 1.023 - $H\alpha$	$2.5 \\ 2.5$
750 03 32 37.20 -27 55 28.3 23.57 2.543 2.543 [OII]	2.0
773 03 32 20.49 -27 55 28.2 22.56 1.378 - H α	2.5
780 03 32 20.37 -27 55 27.1 22.34 1.537 - $H\alpha$, [SII]	3.0
797 03 32 25.27 -27 55 24.1 21.74 1.021 1.017 $H\alpha$	2.5
834 03 32 21.83 -27 55 20.2 22.00 1.381 - Hα, [SII]	3.0
843 03 32 24.42 -27 55 21.0 22.90 1.268 - $H\alpha$, [SII] 854 03 32 37.66 -27 55 16.8 23.71 1.114 - $H\alpha$	$2.5 \\ 2.5$
854 03 32 37.66 -27 55 16.8 23.71 1.114 - H α 888 03 32 31.55 -27 55 17.3 22.51 1.142 1.134 H α	2.5
898 03 32 44.35 -27 55 13.5 21.85 0.956 0.953 Hα	2.5
912 03 32 42.90 -27 55 11.9 22.70 1.352 - [OIII], $H\alpha$, [SII	
946 03 32 34.95 -27 55 11.1 21.04 0.843 0.841 $H\alpha$, [SII]	4.0
957 03 32 23.27 -27 55 07.0 23.73 1.546 - [OIII], $\text{H}\alpha$	3.0
965 03 32 44.34 -27 55 06.4 23.59 1.307 1.305 H α , [SII]	3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3.0}{2.5}$
1026 05 32 36.54 127 55 00.0 23.16 1.210 11 α 1031 03 32 39.11 -27 55 00.7 23.16 2.132 2.126 [OII], H β , [OIII]	
1056 03 32 46.54 -27 54 58.3 23.82 1.432 1.425 [OIII], H α	3.0
$1065 \qquad 03 \ 32 \ 22.12 -27 \ 55 \ 01.6 \qquad 22.25 \qquad 1.163 1.160 H\alpha$	2.5
1140 03 32 30.46 -27 54 53.9 23.01 1.348 - [OIII]	2.5
1143 03 32 23.78 -27 54 53.0 23.36 1.389 - $H\beta$, [OIII], $H\alpha$	4.0
1152 03 32 28.77 -27 54 53.3 23.27 1.127 1.136 $H\alpha$ 1216 03 32 37.31 -27 54 48.2 23.20 1.339 1.341 $H\beta$, [OIII], $H\alpha$,	[SII] 2.5 3.0
1216 03 32 37.31 -27 54 48.2 23.20 1.339 1.341 $H\beta$, [OIII], $H\alpha$, 1237 03 32 27.72 -27 54 51.7 21.57 0.964 0.966 $H\alpha$	2.5
1244 03 32 46.89 -27 54 49.0 22.49 1.557 1.552 $H\beta$, [OIII]	3.0
1253 03 32 35.55 -27 54 47.0 22.02 1.302 - $H\alpha$, [SII]	3.0
1256 03 32 25.15 -27 54 50.1 20.12 1.094 1.090 $\text{H}\alpha$	2.5
1321 03 32 41.19 -27 54 38.0 23.13 0.961 - H α	2.5
1333 03 32 31.65 -27 54 37.0 23.79 0.987 - $H\alpha$ 1365 03 32 23.84 -27 54 34.1 24.00 1.407 - [OIII], $H\alpha$	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3.0}{2.5}$
1373 03 32 32.41 -27 34 34.5 22.43 1.113 - $H\alpha$ 1400 03 32 35.25 -27 54 32.5 22.88 1.414 - $H\beta$, [OIII], $H\alpha$,	
1404 03 32 42.69 -27 54 34.3 21.92 1.100 1.104 $H\alpha$, [SII]	3.0
1438 03 32 23.48 -27 54 28.8 23.74 2.324 - $H\beta$, [OIII]	3.0
1500 03 32 46.78 -27 54 25.1 22.97 1.472 1.457 $H\alpha$	2.0
1542 03 32 38.97 -27 54 22.8 23.87 2.101 - [OII]	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2.5}{2.0}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2.0}{2.5}$
1656 03 32 53.17 -27 54 15.4 23.46 0.864 $ H\alpha$, [SII]	2.5
1676 03 32 30.93 -27 54 13.2 23.74 3.112 - [OII]	2.0
1695 03 32 57.88 -27 54 11.7 23.50 1.047 1.045 $\text{H}\alpha$	2.5
1701 03 32 45.25 -27 54 14.8 21.89 1.384 1.378 [OIII], Hα, [SII	
1702 03 32 42.39 -27 54 13.4 22.56 1.187 - [OIII], $H\alpha$	3.0
1708 03 32 57.90 -27 54 12.6 22.69 1.050 - $\text{H}\alpha$, [SII] 1740 03 32 22.17 -27 54 09.7 23.13 1.406 - $\text{H}\beta$, [OIII], $\text{H}\alpha$,	2.5 [SII] 3.0
1740 03 32 22.17 -27 54 09.7 25.13 1.400 - 11 β , [OIII], 11α , 1820 03 32 20.86 -27 54 05.0 22.79 0.976 0.968 $H\alpha$, [SII]	3.0

TABLE 1 — Continued

Source ID	RA	Dec	AB(F160W)	z_{grism}	z_{spec}	Lines	Qual
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1845	$03\ 32\ 31.92$	-27 54 03.1	23.76	2.489	2.487	[OII]	2.5
1846	03 32 49.98	-27 54 05.3	22.65	0.971	_	$H\alpha$	2.0
1847	03 32 56.46	-27 54 03.8	23.21	1.663 1.076	1 000	[OIII]	$\frac{2.5}{2.5}$
$1848 \\ 1855$	03 32 34.42 03 32 19.29	-27 54 05.6 -27 54 03.3	$21.25 \\ 22.67$	0.969	$1.088 \\ 0.964$	$H\alpha$ $H\alpha$	$\frac{2.5}{2.5}$
1862	03 32 21.89	-27 54 03.1	22.16	1.010	1.001	$H\alpha$	2.5
1875	$03\ 32\ 33.40$	-27 54 01.5	23.56	1.334	_	$H\beta$, [OIII], $H\alpha$, [SII]	4.0
1907	03 32 45.74	-27 54 01.2	22.18	1.405	_	[OIII], $H\alpha$, [SII]	2.5
1938	03 32 19.26	-27 54 01.9	20.83	1.122	_	$H\alpha$	$\frac{2.5}{2.0}$
$1942 \\ 1977$	03 32 19.82 03 32 30.73	-27 53 58.3 -27 53 56.5	23.21 23.53	1.832 1.784	_	[OIII] Hβ, [OIII]	$\frac{2.0}{2.0}$
1981	03 33 00.48	-27 53 55.1	23.65	1.596	_	[OIII]	2.5
1993	03 32 17.16	-27 53 54.8	23.64	1.353	_	$OIII$, $H\alpha$, $OIII$	4.0
2029	$03\ 32\ 22.52$	-27 53 53.7	22.65	0.969	0.967	$H\alpha$	2.5
2042	03 32 17.35	-27 53 52.8	22.68	1.361	1.359	$H\beta$, [OIII], $H\alpha$, [SII]	4.0
$2096 \\ 2100$	03 32 44.57 03 32 37.51	-27 53 50.2 -27 53 50.6	23.69 23.30	1.090 1.009	_	$H\alpha$ $H\alpha$, [SII]	$\frac{2.5}{2.5}$
2192	03 32 37.51	-27 53 50.0	21.36	1.259	_	$[OIII], H\alpha$	3.0
2206	03 32 18.30	-27 53 43.9	23.91	1.219	_	$H\alpha$	2.5
2231	$03\ 32\ 30.79$	-27 53 44.5	22.98	1.784	_	$H\beta$, [OIII]	3.0
2265	03 32 40.80	-27 53 43.5	21.46	0.977	0.977	$H\alpha$, [SII]	4.0
2278	03 32 55.87	-27 53 40.7	22.87	1.962	_	$H\beta$, [OIII]	3.0
$\frac{2285}{2296}$	03 32 47.23 03 32 38.14	-27 53 39.8 -27 53 39.9	23.37 23.14	$2.161 \\ 2.814$	-2.811	[OIII]	$\frac{2.0}{2.5}$
2311	03 32 34.18	-27 53 39.0	23.88	2.108	_	$H\beta$, [OIII]	2.5
2320	03 32 20.95	-27 53 39.2	22.52	1.437	_	[OIII]	2.0
2349	$03\ 32\ 47.20$	-27 53 36.5	23.49	1.791	_	$H\beta$, [OIII]	3.0
2359	03 32 49.26	-27 53 37.3	22.66	1.183	_	$H\alpha$, [SII]	3.0
$2361 \\ 2362$	03 32 50.68	-27 53 37.1	22.47 23.55	1.786	_	$H\beta$, [OIII]	$\frac{3.0}{2.5}$
2364	03 32 28.80 03 32 53.12	-27 53 35.9 -27 53 36.1	23.88	$0.984 \\ 2.579$	_	$H\alpha$ [OII]	2.0
2413	03 32 33.36	-27 53 33.4	23.24	0.683	0.679	$H\alpha$, [SIII] λ 9532	3.0
2444	$03\ 32\ 30.07$	-27 53 32.0	22.74	1.220	_	$H\alpha$	2.5
2454	03 32 28.45	-27 53 31.0	23.65	0.989	_	$H\alpha$	2.5
2480	03 32 41.49	-27 53 31.0	23.95	1.276	_	[OIII], $H\alpha$	2.5
$\frac{2486}{2508}$	03 32 20.11 03 32 46.21	-27 53 29.7 -27 53 29.0	23.37 22.89	1.187 1.386	$\frac{-}{1.385}$	$H\alpha$ $H\alpha$	$\frac{2.0}{2.0}$
2513	03 32 22.85	-27 53 30.3	23.26	1.882	-	$H\beta$, [OIII]	3.0
2520	$03\ 32\ 30.64$	-27 53 27.6	23.83	1.729	-	[OIII]	2.5
2524	$03\ 32\ 43.77$	-27 53 27.5	23.61	1.458	_	$[OIII]$, $H\alpha$	3.0
2526	03 32 43.66	-27 53 28.0	23.46	1.465	_	[OIII], $H\alpha$	3.0
$2551 \\ 2583$	03 32 56.79 03 32 29.21	-27 53 29.3 -27 53 29.0	22.09 22.42	1.423 1.033	_	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
2590	03 32 48.37	-27 53 25.9	23.02	0.797	_	$H\alpha$	$\frac{2.5}{2.5}$
2614	03 32 47.31	-27 53 24.1	22.57	1.295	_	$_{ m Hlpha}$	2.0
2674	$03\ 32\ 34.60$	-27 53 24.4	21.36	1.105	1.107	$H\alpha$, [SII]	3.0
2697	03 32 57.98	-27 53 22.4	21.87	1.032	1.035	$H\alpha$, [SII]	3.0
$2724 \\ 2744$	03 32 53.64 03 32 50.55	-27 53 18.9 -27 53 18.1	23.29 22.54	$0.745 \\ 1.614$	_	$H\alpha$ [OIII]	$\frac{2.5}{2.5}$
2755	03 32 30.33	-27 53 18.1 -27 53 17.1	23.69	1.752	_	$H\beta$, [OIII]	$\frac{2.5}{3.0}$
2766	03 32 45.17	-27 53 19.1	22.47	1.783	-	[OIII]	2.0
2844	$03\ 32\ 42.56$	-27 53 13.5	23.32	1.312	1.296	[OIII], H α	3.0
2864	03 32 32.14	-27 53 11.9	23.28	0.981	_	Нα	2.5
$2887 \\ 2889$	03 32 54.60 03 32 50.94	-27 53 11.0 -27 53 11.9	23.76 23.09	$1.612 \\ 0.942$	_	$egin{array}{c} [{ m OIII}] \ { m H}lpha \end{array}$	$\frac{2.5}{2.5}$
2903	03 32 58.43	-27 53 11.9 -27 53 10.8	23.09 22.90	1.026	1.034	$H\alpha$	$\frac{2.5}{2.5}$
2909	03 32 33.34	-27 53 12.8	$\frac{22.30}{21.75}$	0.697	0.679	Нα	2.5
2923	$03\ 32\ 58.70$	-27 53 11.0	23.46	1.896	-	$H\beta$, [OIII]	3.0
2954	03 32 48.70	-27 53 08.6	23.20	1.975	_	$H\beta$, [OIII]	3.0
2976	03 32 18.26	-27 53 09.8 27 53 05 6	21.93	1.127	_	Нα	2.5
$3022 \\ 3052$	03 32 42.74 03 32 57.95	-27 53 05.6 -27 53 03.9	23.57 23.77	$0.858 \\ 1.366$	_	$H\alpha$ $H\beta$, [OIII], $H\alpha$	$\frac{2.5}{4.0}$
3081	03 32 43.01	-27 53 04.5	23.30	0.879	_	$H\alpha$	2.5
3107	$03\ 32\ 43.68$	-27 53 02.3	23.48	1.308	_	$H\alpha$, [SII]	3.0
3146	03 32 24.98	-27 53 01.8	23.28	1.120	_	$H\alpha$	2.5
3200	03 32 40.45	-27 52 59.2	23.00	1.795	_	[OIII]	2.5
$\frac{3251}{3279}$	03 32 58.82 03 32 24.06	-27 52 56.0 -27 52 57.2	$24.00 \\ 21.94$	1.905 1.132	_	$egin{array}{c} [{ m OIII}] \ { m H}lpha \end{array}$	$\frac{2.5}{2.5}$
3281	03 32 24.00	-27 52 57.2	23.92	1.132 1.624	_	$H\beta$, [OIII]	3.0
3315	03 32 38.01	-27 52 53.9	23.53	1.006	_	$H\alpha$	2.5
3344	$03\ 32\ 20.86$	-27 52 55.2	22.35	0.830	_	$_{ m Hlpha}$	2.5
3347	03 32 21.08	-27 52 52.6	23.22	2.801	2.807	[OII]	2.5
3380 3389	03 32 41.84 03 32 31.41	-27 52 53.8 27 52 51 8	23.28 23.78	1.095	1.102	$H\alpha$ $H\beta$, [OIII]	$\frac{2.5}{3.0}$
3432	03 32 31.41 03 32 19.05	-27 52 51.8 -27 52 48.3	23.78 23.98	$1.770 \\ 1.039$	_	$H\alpha$, [SII]	$\frac{3.0}{2.5}$
0402	00 02 10.00	2. 02 40.0	20.00	1.000		1100, [011]	2.0

TABLE 1 — Continued

			IABLE I -	Contin	aca		
Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	$z_{grism} $ (5)	z_{spec} (6)	Lines (7)	Qual (8)
3458	$03\ 32\ 38.07$	-27 52 48.6	22.87	1.038	_	$_{ m Hlpha}$	2.5
3488	$03\ 32\ 45.05$	-27 52 46.6	23.08	1.466	1.460	$H\beta$, [OIII], $H\alpha$, [SII]	4.0
3492	03 32 23.95	-27 52 47.3	22.87	1.137	1.126	$_{ m H}\alpha$	2.5
$3511 \\ 3561$	03 32 55.07 03 32 32.84	-27 52 48.0 -27 52 45.1	21.79 23.30	$0.840 \\ 1.406$	0.848	$H\alpha$ [OIII], $H\alpha$	$\frac{2.5}{2.0}$
3570	03 32 32.84	-27 52 43.1	21.92	0.993	_	$H\alpha$	$\frac{2.0}{2.5}$
3606	03 32 18.83	-27 52 43.1	23.15	0.987	_	$H\alpha$	$\frac{2.5}{2.5}$
3619	$03\ 32\ 21.86$	-27 52 43.1	23.33	0.722	_	$H\alpha$	2.5
3625	03 32 57.26	-27 52 41.9	23.74	3.071	1 0 40	[OII]	2.0
3639 3689	03 32 47.56 03 32 18.78	-27 52 43.2 -27 52 42.4	21.42 22.48	$1.255 \\ 0.979$	1.249 0.987	[OIII], $H\alpha$, [SII] $H\alpha$	$\frac{4.0}{2.0}$
3690	03 32 46.99	-27 52 42.4	23.90	2.249	-	$H\beta$, [OIII]	$\frac{2.0}{2.5}$
3694	03 32 31.49	-27 52 41.4	22.24	0.985	_	$H\alpha$, [SII]	2.5
3707	$03\ 32\ 17.13$	-27 52 38.8	23.37	1.099	_	$H\alpha$	2.5
3715	03 32 31.38	-27 52 40.1	22.29	1.107	_	$H\alpha$, [SII]	2.5
3817	03 32 49.94	-27 52 35.8	23.95	1.117	_	$H\alpha$, [SII]	$\frac{2.5}{2.5}$
$3876 \\ 3891$	03 32 41.96 03 32 15.79	-27 52 32.3 -27 52 32.0	23.66 23.35	1.122 1.540	_	$H\alpha$ $H\beta$, [OIII], $H\alpha$	$\frac{2.0}{3.0}$
3895	03 32 48.66	-27 52 32.0	23.97	1.515		[OIII]	2.0
3944	03 32 50.73	-27 52 29.9	23.78	1.238	_ _	$H\alpha$	2.0
3964	$03\ 32\ 39.87$	-27 52 28.7	23.71	2.125	_	$[OII], H\beta, [OIII]$	4.0
4001	03 32 44.73	-27 52 29.8	23.05	0.996	_	$H\alpha$	2.5
$4035 \\ 4037$	03 32 46.78 03 32 45.54	-27 52 29.7	$22.24 \\ 22.85$	1.236	1.227	$H\alpha$ $H\alpha$	$\frac{2.5}{2.0}$
4061	03 32 45.54	-27 52 28.1 -27 52 27.4	$\frac{22.85}{22.95}$	$1.105 \\ 1.568$	_	$H\beta$, [OIII]	$\frac{2.0}{4.0}$
4075	03 32 28.97	-27 52 26.0	23.28	1.891	_	$H\beta$, [OIII]	3.0
4103	$03\ 32\ 54.43$	-27 52 25.9	23.62	1.350	_	$H\alpha$	2.5
4127	03 32 34.29	-27 52 25.6	23.57	1.166	_	$H\alpha$	2.5
4187	03 32 39.64	-27 52 26.2	22.02	1.091	1.096	Hα, [SII]	3.0
$\frac{4210}{4216}$	03 32 18.25 03 32 17.61	-27 52 25.0 -27 52 28.4	21.49 20.11	$0.739 \\ 1.094$	$0.740 \\ 1.098$	$H\alpha$, [SII], [SIII] λ 9069, λ 9532 $H\alpha$	$\frac{4.0}{2.5}$
4246	03 32 17.01	-27 52 20.4	23.96	2.034	-	$H\beta$, [OIII]	3.0
4259	03 32 43.55	-27 52 20.9	23.35	1.369	_	$H\beta$, [OIII], $H\alpha$, [SII]	3.0
4263	$03\ 32\ 37.53$	-27 52 22.7	22.90	0.769	_	$H\alpha$	2.5
4275	03 32 43.09	-27 52 20.4	22.82	2.103	_	[OIII]	2.0
$4279 \\ 4297$	03 32 53.55 03 32 45.70	-27 52 19.8 -27 52 19.6	23.50 22.70	1.024 1.337	_	$H\alpha$ $H\beta$, $H\alpha$	$\frac{2.0}{2.0}$
4314	03 32 45.70	-27 52 19.5	21.98	0.989	0.976	$H\alpha$, [SII]	3.0
4326	03 32 39.37	-27 52 18.2	23.57	2.340		[OII], [OIII]	3.0
4331	$03\ 32\ 17.26$	-27 52 19.5	22.46	2.565	_ _	[OII]	2.5
4351	03 32 45.88	-27 52 22.5	21.83	0.986	-	$H\alpha$, [SII]	3.0
$4376 \\ 4388$	03 32 17.16 03 32 45.51	-27 52 20.8 -27 52 15.9	20.71 23.96	1.098 1.906	1.097	$H\alpha$, [SII]	$\frac{3.0}{2.5}$
4406	03 32 45.51	-27 52 13.9	23.98	1.157	_	[OIII] $Hlpha$	$\frac{2.5}{2.5}$
4460	03 32 38.98	-27 52 14.3	22.47	1.380	_	$H\alpha$, [SII]	2.5
4464	$03\ 32\ 35.89$	-27 52 13.3	23.87	2.560	_	[OII]	2.5
4488	03 32 25.48	-27 52 11.6	23.40	1.326	_	[OIII]	2.0
4505	03 32 25.38	-27 52 11.2	23.48	1.320	-1.610	[OIII]	2.5
$4526 \\ 4580$	03 32 37.76 03 32 54.08	-27 52 12.3 -27 52 09.0	21.44 22.65	$\frac{1.610}{2.600}$	-	$\hat{H}\beta$, [OIII] [OII]	$\frac{3.0}{2.5}$
4586	03 32 39.98	-27 52 08.2	23.69	1.415	1.414	$H\beta$, [OIII], $H\alpha$	4.0
4612	$03\ 32\ 52.84$	-27 52 07.8	22.24	0.687	0.684	$H\alpha$, [SIII] λ 9532	4.0
4644	03 32 39.15	-27 52 06.5	23.74	1.074	_	$H\alpha$	2.5
4656	03 32 25.53	-27 52 09.0	22.31	0.962	- 0.794	$H\alpha$ $H\alpha$, [SII]	2.5
$4701 \\ 4801$	03 32 36.74 03 32 43.63	-27 52 06.8 -27 52 00.6	$21.74 \\ 23.72$	$0.804 \\ 0.697$	0.784	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
4825	03 32 42.98	-27 51 59.6	23.69	0.887	_	$H\alpha$	$\frac{2.5}{2.5}$
4834	$03\ 32\ 42.95$	-27 52 00.7	23.01	1.708	_	[OIII]	2.5
4862	03 32 21.33	-27 52 05.1	21.16	1.120	1.101	$H\alpha$	2.5
4876	03 32 16.37	-27 52 01.2	22.38	1.971	1.972	$H\beta$, [OIII]	3.0
$4901 \\ 4932$	03 32 42.72 03 32 33.15	-27 51 59.2 -27 51 55.7	$21.76 \\ 23.67$	$\frac{1.121}{1.043}$	1.123	$H\alpha$, [SII] $H\beta$, [OIII]	$\frac{3.0}{3.0}$
4932 4945	03 32 33.13	-27 51 55.7 -27 51 55.3	23.30	$1.943 \\ 0.768$	0.762	Hs, [SII]	$\frac{3.0}{3.0}$
4992	03 32 55.07	-27 51 53.2	23.80	2.163	-	[OIII], [OII]	4.0
5022	$03\ 32\ 43.06$	$-27\ 51\ 55.2$	22.69	1.381	_	$H\alpha$	2.5
5032	03 32 55.06	-27 51 51.8	23.56	2.812	-	[OII]	2.5
5059	03 32 45.03	-27 51 51.8	23.99	1.398	- 0.000	[OIII], $H\alpha$	2.5
5067 5112	03 32 51.27	-27 51 52.0 27 51 48 3	22.78	0.983	0.980	$H\alpha$	2.0
$5112 \\ 5137$	03 32 46.05 03 32 47.89	-27 51 48.3 -27 51 47.6	23.89 23.87	$1.579 \\ 1.228$	_	$H\beta$, [OIII] [OIII], $H\alpha$	$\frac{3.0}{4.0}$
5155	03 32 40.82	-27 51 47.6	23.28	1.301	_	$[OIII]$, $H\alpha$	3.0
5157	03 32 21.44	-27 51 51.9	21.53	0.834	0.833	$H\alpha$	2.5
5158	03 32 33.66	-27 51 48.4	23.34	2.128	2.134	$H\beta$, [OIII]	3.0
5186	03 32 50.17	-27 51 45.6	23.89	1.843	_	[OIII]	2.0
5190	03 32 16.13	-27 51 46.5	23.73	1.797	_	[OIII]	2.5

TABLE 1 — Continued

	Source ID	RA	Dec	AB(F160W)	z_{grism}	z_{spec}	Lines	Qual
Section Sect	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Sal								
5349 03 32 54.08 27 51 40.5 23.94 1.456								
5356 03 32 28.60 -27 51 40.1 23.39 2.562 -	5339	$03\ 32\ 54.68$	$-27\ 51\ 40.5$	23.29	2.341	_		2.0
S570								
$ \begin{array}{c} 5399 \\ 5471 \\ 5387 \\ 633 \\ 2346 \\ 9-27 \\ 51341 \\ 22.96 \\ 1.427 \\ -1 \\ 647 \\ 22.96 \\ 1.427 \\ -1 \\ 647 \\ -1 \\ 647 \\ -1 \\ 647 \\ -1 \\ 647 \\ -1 \\ 647 \\ -1 \\ 647 \\ -1 \\ -1 \\ 647 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$								
5487 03 32 46.49 -27 51 34.1 22.91 1.623 -								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
5537 03 32 52.44 -27 51 32.7 23.81 1.702 - H5, [OIII] 2.0 5624 03 32 24.562 -27 51 33.0 21.87 0.859 0.858 Inc., [SII] 3.0 5634 03 32 36.02 -27 51 29.0 22.79 1.614 - [OIII] 2.0 5693 03 32 94.86 -27 51 29.0 22.79 1.614 - [OIII] 2.0 5693 03 32 43.34 -27 51 25.1 23.69 1.657 - [OIII] 2.5 5728 03 32 21.40 -27 51 26.2 23.29 2.033 - [OIII] Hβ, [OIII] 4.0 5868 03 32 37.43 -27 51 21.1 22.84 3.063 - [OIII] Hβ, [OIII] 4.0 5868 03 32 37.43 -27 51 21.2 23.84 3.063 - [OIII] Hβ, [OIII] 2.5 5890 03 32 43.34 -27 51 21.1 22.77 1.758 1.101 0.101 2.5 5901 03 32 37.47 -27 51 28.0 23.59 1.130 - Hα, [SII] 3.0 5914 03 32 44.66 -27 51 19.2 23.25 1.130 - Hα, [SII] 3.0 5948 03 32 13.43 -27 51 18.7 22.67 1.100 - Hα 2.0 5985 03 32 23.91 -27 51 18.7 22.67 1.000 - Hα 2.0 5985 03 32 23.91 -27 51 18.7 22.67 1.000 - Hα 2.5 5980 03 32 39.30 -27 51 17.1 22.93 1.087 0.687 0.690 Hα 2.5 5980 03 32 33.37 -27 51 15.4 23.53 0.887 0.690 Hα 2.5 6007 03 32 39.30 -27 51 17.1 22.93 0.887 0.690 Hα 2.5 6009 03 32 45.20 -27 51 12.4 23.30 0.804 Hα 2.5 6129 03 32 24.08 -27 51 10.3 23.86 23.86 - Hα 2.5 6129 03 32 24.08 -27 51 10.3 23.86 23.86 - Hα 2.5 6227 03 32 50.82 -27 51 10.7 22.43 1.216 1.245 Hα, [SII] 3.0 6129 03 32 24.08 -27 51 10.3 23.86 23.86 - Hα 2.5 6227 03 32 24.08 -27 51 10.3 23.87 23.84 0.864 - Hα 2.5 6228 03 32 24.08 -27 51 10.3 23.84 0.864 Hα 2.5 6227 03 32 50.82 -27 51 10.7 22.23 0.804 Hα 2.5 6227 03 32 50.82 -27 51 10.0 23.91								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5537	$03\ 32\ 52.44$	-27 51 32.7	23.81	1.702	_	$H\beta$, [OIII]	2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.858		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.767		3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c} 5868 \\ 5890 \\ 33 \\ 32 \\ 37.14 \\ 37.7 \\ 27 \\ 51 \\ 22.0 \\ 22.0 \\ 27 \\ 51 \\ 22.17 \\ 22.77 \\ 27 \\ 17.08 \\ 22.17 \\ 1.758 \\ 1.101 \\ 1.100 \\ 1$								
$\begin{array}{c} 5890 & 03 \ 32 \ 37.17 & -27 \ 51 \ 28.0 & 20.31 & 1.013 & - & Ha^* & 2.5 \\ 5991 & 03 \ 32 \ 45.3 & -27 \ 51 \ 21.1 & 22.77 & 1.758 & 1.101 & OIIII & 2.5 \\ 5991 & 03 \ 32 \ 45.3 & -27 \ 51 \ 19.2 & 23.25 & 1.130 & - & Ha^* & OIIII & 3.0 \\ 5914 & 03 \ 32 \ 41.3 & -27 \ 51 \ 18.3 & 23.92 & 1.227 & - & Ha^* & 2.0 \\ 5950 & 03 \ 32 \ 31.3 \ 43 & -27 \ 51 \ 18.3 & 23.92 & 1.227 & - & Ha^* & 2.5 \\ 5983 & 03 \ 32 \ 13.48 & -27 \ 51 \ 19.3 & 22.46 & 1.227 & - & Ha^* & 2.5 \\ 6002 & 03 \ 32 \ 39.1 & -27 \ 51 \ 17.1 & 22.93 & 0.687 & 0.690 & Ha^* & 2.5 \\ 6059 & 03 \ 32 \ 48.95 & -27 \ 51 \ 15.6 & 23.15 & 1.379 & - & Ha^* & 2.5 \\ 6069 & 03 \ 32 \ 45.20 & -27 \ 51 \ 17.4 & 22.43 & 1.216 & 1.245 & Ha, SII] & 3.0 \\ 6129 & 03 \ 32 \ 45.20 & -27 \ 51 \ 12.7 & 22.43 & 1.216 & 1.245 & Ha, SII] & 2.5 \\ 6138 & 03 \ 32 \ 52.93 & -27 \ 51 \ 12.4 & 22.30 & 0.804 & - & Ha^* & 2.5 \\ 6233 & 03 \ 32 \ 42.08 & -27 \ 51 \ 03.2 & 22.72 & 1.228 & - & Ha^* & 2.6 \\ 6223 & 03 \ 32 \ 42.08 & -27 \ 51 \ 03.2 & 22.72 & 1.228 & - & Ha^* & 2.5 \\ 6223 & 03 \ 32 \ 42.08 & -27 \ 51 \ 03.2 & 22.72 & 0.977 & - & Ha^* & 2.5 \\ 6224 & 03 \ 32 \ 42.08 & -27 \ 51 \ 03.2 & 22.89 & 0.886 & - Ha^* & 2.5 \\ 6254 & 03 \ 32 \ 42.42 & -27 \ 51 \ 07.6 & 22.89 & 0.886 & - Ha^* & 2.5 \\ 62654 & 03 \ 32 \ 42.42 & -27 \ 51 \ 07.6 & 22.89 & 0.886 & - Ha^* & 2.5 \\ 6278 & 03 \ 32 \ 44.42 & -27 \ 51 \ 07.6 & 22.89 & 0.886 & - Ha^* & 2.5 \\ 6477 & 03 \ 32 \ 43.18 & -27 \ 51 \ 07.6 & 22.89 & 0.886 & - Ha^* & 2.5 \\ 6477 & 03 \ 32 \ 51.88 & -27 \ 51 \ 07.6 & 22.89 & 0.886 & - Ha^* & 2.5 \\ 6477 & 03 \ 32 \ 43.18 & -27 \ 51 \ 07.6 & 22.68 & 0.993 & 0.991 & Ha^* & 2.5 \\ 6477 & 03 \ 32 \ 43.18 & -27 \ 51 \ 00.0 & 23.31 & 1.384 & -24 & 1.24 \\ 6692 & 03 \ 32 \ 14.42 & -27 \ 51 \ 00.61 & 20.75 & 1.218 & -1.244 & -1.44 \\ 6300 & 03 \ 32 \ 43.18 & -27 \ 51 \ 00.0 & 23.31 & 1.385 & - Ha^* & $								
$\begin{array}{c} 5901 & 03 \ 32 \ 53.74 \ \ -27 \ 51 \ 19.0 \ \ 23.97 \ \ 1.736 \ \ - \ \ \ \ \ \ $	5890	$03\ 32\ 37.17$	-27 51 28.0	20.31	1.013	_	$H\alpha$	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								3.0 3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_		
$\begin{array}{c} 6002 \\ 6007 \\ 6047 \\ 03 & 32 & 48.93 \\ 0.27 & 51 & 15.16 \\ 0.32 & 24.89 \\ 0.27 & 51 & 15.6 \\ 0.33 & 23.937 \\ 0.27 & 51 & 15.6 \\ 0.32 & 24.59 \\ 0.27 & 51 & 15.6 \\ 0.32 & 24.59 \\ 0.27 & 51 & 15.6 \\ 0.32 & 24.59 \\ 0.27 & 51 & 15.6 \\ 0.32 & 24.50 \\ 0.27 & 51 & 15.6 \\ 0.32 & 24.50 \\ 0.27 & 51 & 10.8 \\ 0.32 & 25.5 \\ 0.32 & 25.5 \\ 0.32 & 25.23 \\ 0.27 & 51 & 10.8 \\ 0.23 & 86 \\ 0.243 \\ 0.80 \\ $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6059		-27 51 15.4	22.61	1.296	_		2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							$H\alpha$	2.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
6337 03 32 52.18 -27 51 04.2 23.90 1.994 $ Hβ, [OIII]$ 3.0 6390 03 32 47.17 -27 51 06.1 20.75 1.218 1.224 $Hα$ 2.5 6423 03 32 16.98 -27 51 02.4 22.68 0.993 0.991 $Hα$ 2.5 6477 03 32 43.73 -27 51 00.0 23.31 1.388 $ Hα, [OIII]$ 3.0 6517 03 32 25.19 -27 51 00.0 21.87 0.844 0.841 $Hα, [SII]$ 2.5 6692 03 32 49.67 -27 50 53.0 22.71 0.907 $ Hα, [SII]$ 3.0 6713 03 25.15 -27 50 50.0 23.96 1.036 $ Hα$ 2.0 6714 03 32 24.84 -27 50 52.5 22.32 1.320 1.329 $Hα$ 2.5 6749 03 32 50.58 -27 50 50.8 23.15 0.764 $ Hα$ 2.5 6752 03 32 18.33 -27 50 55.1 20.82 1.544 1.536 [OIII] 2.5 6808 03 32 24.84 -27 50 55.1 20.82 1.544 1.536 [OIII] 2.5 6808 03 32 24.84 -27 50 50.1 22.89 2.026 $ Hβ, [OIII]$ 3.0 6895 03 32 22.79 -27 50 44.8 23.46 1.553 $-$ [OIII] 2.5 6991 03 32 53.22 -27 50 44.6 23.60 1.466 $-$ [OIII], $Hα$ 3.0 6997 03 32 51.56 -27 50 44.2 22.05 1.046 1.044 $Hα$ 2.5 7011 03 32 46.43 -27 50 41.2 23.46 1.387 $ Hα$ 2.0 7057 03 24 6.52 -27 50 34.2 22.05 1.046 1.044 $Hα$ 2.0 7057 03 24 6.52 -27 50 34.2 22.05 1.046 1.044 $Hα$ 2.0 7057 03 24 6.52 -27 50 34.2 22.05 1.046 1.044 $Hα$ 2.0 7057 03 24 6.52 -27 50 36.6 23.75 2.003 $ Hβ, [OIII]$ 4.0 7129 03 32 54.65 -27 50 37.9 22.31 2.31 2.320 [OII] 4.0 7129 03 32 45.46 -27 50 37.9 22.31 2.31 2.320 [OIII] 4.0 7129 03 32 40.45 -27 50 37.9 22.31 0.740 0.733 $Hα, [SII], [SIII] λ9532 0.715 0.71$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6423	$03\ 32\ 16.98$	$-27\ 51\ 02.4$	22.68	0.993			2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-27 50 50.0			_		2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							<u> </u>	
7011 03 32 25.10 -27 50 43.2 22.05 1.046 1.044 $\text{H}\alpha$ 2.0 7051 03 32 46.43 -27 50 41.2 23.46 1.387 - $\text{H}\alpha$ 2.0 7057 03 32 46.52 -27 50 39.4 23.70 1.238 - [OIII], $\text{H}\alpha$, [SII] 4.0 7071 03 32 32.92 -27 50 40.7 22.32 2.031 - [OIII], $\text{H}\beta$, [OIII] 4.0 7129 03 32 46.45 -27 50 36.6 23.75 2.003 - $\text{H}\beta$, [OIII] 4.0 7143 03 32 30.20 -27 50 37.3 23.32 2.341 2.320 [OII] 2.5 7145 03 32 54.65 -27 50 37.2 22.70 1.416 - [OIII], $\text{H}\alpha$ 3.0 7153 03 32 43.12 -27 50 37.9 22.31 0.740 0.733 $\text{H}\alpha$, [SII], [SIII]λ9532 3.0 7172 03 32 46.54 -27 50 35.5 23.32 2.011 - $\text{H}\beta$, [OIIII] 3.0 7183 03 32 27.71 -27 50 40.7 20.44 1.097 1.097 $\text{H}\alpha$, [SII] 3.0 7185 03 32 31.21 -27 50 34.4 23.89 1.933 - [OIII] 2.5 7191 03 32 13.29 -27 50 37.9 22.40 1.292 - $\text{H}\alpha$ 2.5 7260 03 32 29.94 -27 50 32.0 23.31 1.385 1.389 [OIII], $\text{H}\alpha$, [SII] 3.0 7270 03 32 49.09 -27 50 32.7 23.54 0.869 - $\text{H}\alpha$ 2.5 7273 03 32 11.96 -27 50 33.8 21.96 0.999 0.981 $\text{H}\alpha$ 2.5 7371 03 32 23.97 -27 50 30.9 23.36 1.553 - [OIII] 2.0 7436 03 32 17.62 -27 50 26.6 23.35 1.099 - $\text{H}\alpha$ 2.0 7450 03 32 17.62 -27 50 26.6 23.35 1.099 - $\text{H}\alpha$ 2.0								
7051 03 32 46.43 -27 50 41.2 23.46 1.387 - $Hα$ 2.0 7057 03 32 46.52 -27 50 39.4 23.70 1.238 - $[OIII], Hα, [SII]$ 4.0 7071 03 32 32.92 -27 50 40.7 22.32 2.031 - $[OIII], Hβ, [OIII]$ 4.0 7129 03 32 46.45 -27 50 36.6 23.75 2.003 - $Hβ, [OIII]$ 4.0 7143 03 32 30.20 -27 50 37.3 23.32 2.341 2.320 $[OII], Hα, [OIII]$ 2.5 7145 03 32 54.65 -27 50 37.2 22.70 1.416 - $[OIII], Hα$ 3.0 7153 03 32 43.12 -27 50 37.9 22.31 0.740 0.733 $Hα, [SII], [SIII]λ9532$ 3.0 7172 03 32 46.54 -27 50 35.5 23.32 2.011 - $Hβ, [OIII]$ 3.0 7183 03 32 27.71 -27 50 40.7 20.44 1.097 1.097 $Hα, [SII]$ 3.0 7185 03 32 31.21 -27 50 34.4 23.89 1.933 - $[OIII]$ 2.5 7260 03 32 29.94 -27 50 37.9 22.40 1.292 - $Hα$ 2.5 7260 03 32 49.09 -27 50 32.0 23.31 1.385 1.389 $[OIII], Hα, [SII]$ 3.0 7270 03 32 49.09 -27 50 32.7 23.54 0.869 - $Hα$ 2.5 7273 03 32 11.96 -27 50 33.8 21.96 0.999 0.981 $Hα$ 2.5 7371 03 32 23.97 -27 50 30.9 23.36 1.553 - $[OIII], Hα$ 3.0 7415 03 32 13.03 -27 50 28.2 23.77 2.069 - $[OIII], Hα$ 3.0 7436 03 32 17.62 -27 50 26.6 23.35 1.099 - $Hα$ 2.0 7450 03 32 17.62 -27 50 26.6 23.35 1.099 - $Hα$ 2.0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7051	$03\ 32\ 46.43$	$-27\ 50\ 41.2$	23.46	1.387	_	$_{ m Hlpha}$	2.0
7129 03 32 46.45 -27 50 36.6 23.75 2.003 - H_{β} , [OIII] 4.0 7143 03 32 30.20 -27 50 37.3 23.32 2.341 2.320 [OII] 2.5 7145 03 32 54.65 -27 50 37.2 22.70 1.416 - [OIII], H_{α} 3.0 7153 03 32 43.12 -27 50 37.9 22.31 0.740 0.733 H_{α} , [SII], [SIII]λ9532 3.0 7172 03 32 46.54 -27 50 35.5 23.32 2.011 - H_{β} , [OIII] 3.0 7183 03 32 27.71 -27 50 40.7 20.44 1.097 1.097 H_{α} , [SII] 3.0 7185 03 32 31.21 -27 50 34.4 23.89 1.933 - [OIII] 2.5 7191 03 32 13.29 -27 50 37.9 22.40 1.292 - H_{α} 2.5 7260 03 32 29.94 -27 50 32.0 23.31 1.385 1.389 [OIII], H_{α} , [SII] 3.0 7270 03 32 49.09 -27 50 32.7 23.54 0.869 - H_{α} 2.5 7273 03 32 11.96 -27 50 33.8 21.96 0.999 0.981 H_{α} 2.5 7371 03 32 23.97 -27 50 30.9 23.36 1.553 - [OIII], H_{α} 2.5 7415 03 32 13.03 -27 50 28.2 23.77 2.069 - [OIII] 2.0 7436 03 32 17.62 -27 50 26.6 23.35 1.099 - H_{α}								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.733		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.097		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7185	$03\ 32\ 31.21$	-27 50 34.4	23.89	1.933	_	[OIII]	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7273	$03\ 32\ 11.96$	-27 50 33.8	21.96	0.999	0.981	$_{ m Hlpha}$	2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						_		
7450 03 32 17.62 -27 50 26.6 23.35 1.099 - $\dot{H}\alpha$ 2.0								
							$^{ m H}lpha$	
(465) U3 32 34.84 -27 5U 25.3	7485	03 32 34.84	-27 50 25.3	22.87	0.988		$H\alpha$, [SII]	3.0

TABLE 1 — Continued

Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	z_{grism} (5)	z_{spec} (6)	Lines (7)	Qual (8)
	(2)		. ,			(1)	
7489	03 32 44.85	-27 50 28.2	21.47	0.780	0.783	$H\alpha$	2.5
7490	03 32 28.57	-27 50 33.1	21.92	2.319	2.320	[OII]	2.0
7502	03 32 17.31	-27 50 25.0	23.00	1.563	1.612	$H\beta$, [OIII]	3.0
7559	03 32 34.78	-27 50 24.7	22.33	0.974	0.980	$H\alpha$, [SII]	3.0
$7564 \\ 7603$	03 32 38.12 03 32 29.86	-27 50 22.0 27 50 21 6	23.96 23.52	1.573	_	$H\beta$, [OIII]	$\frac{3.0}{2.5}$
7634	03 32 29.80	-27 50 21.6 -27 50 20.6	23.57	1.015 1.223	_	$H\alpha$ $H\alpha$, [SII]	$\frac{2.5}{2.5}$
7668	03 32 32.07	-27 50 20.5	22.80	1.309	_	$H\alpha$	2.5
7728	03 32 37.92	-27 50 18.2	22.91	1.231	_	$H\alpha$	2.5
7743	03 32 45.50	-27 50 18.2	22.50	1.176	1.572	$H\alpha$	2.0
7792	$03\ 32\ 30.54$	-27 50 18.9	22.04	1.004	-	$H\alpha$	2.5
7837	$03 \ 32 \ 25.86$	-27 50 19.7	20.96	1.079	1.095	$H\alpha$	2.5
7863	03 32 52.43	-27 50 13.1	22.49	1.124	1.123	$H\alpha$	2.0
7880	03 32 51.58	-27 50 17.6	20.82	0.854	0.853	$H\alpha$, [SII]	3.0
7907	03 32 37.37	-27 50 13.6	22.39	1.395	1.389	[OIII], $H\alpha$, [SII]	4.0
7930	03 32 37.07	-27 50 11.4	23.94	2.027	_	[OII], [OIII]	$\frac{3.0}{2.5}$
7935 7996	03 32 39.74 03 32 12.77	-27 50 12.5 -27 50 12.8	23.01 21.79	2.609 0.990	0.964	$[OII]$ $H\alpha$, $[SII]$	2.0
8038	03 32 12.77	-27 50 12.0	23.10	1.040	1.036	$H\alpha$	2.5
8089	03 32 11.44	-27 50 06.6	21.88	1.339		$H\beta$, [OIII], $H\alpha$	3.0
8094	03 32 11.55	-27 50 07.4	23.32	1.318	_	[OIII], Hα	3.0
8122	$03\ 32\ 44.95$	-27 50 05.3	22.88	1.303	_	OIII, H α	4.0
8124	$03\ 32\ 24.70$	-27 50 05.2	23.94	1.382	1.382	[OIII], $H\alpha$	3.0
8206	$03\ 32\ 34.46$	-27 50 04.9	22.66	1.987	_	$H\beta$, [OIII]	3.0
8283	03 32 40.73	-27 50 00.6	23.73	1.777	_	$H\beta$, [OIII]	3.0
8321	03 32 11.37	-27 50 03.4	22.12	1.443	_	[OIII]	2.0
8339	03 32 40.84	-27 50 00.0	23.42	3.456	_	[OII]	2.0
8368 8394	03 32 35.03 03 32 24.57	-27 49 57.6 -27 49 58.5	23.99 23.78	1.899 1.344	_	$H\beta$, [OIII] [OIII], $H\alpha$	$\frac{3.0}{2.5}$
8398	03 32 52.35	-27 49 38.3	21.11	0.858	0.853	$H\alpha$, [SII]	3.0
8402	03 32 35.08	-27 49 58.4	22.54	1.048	1.049	$H\alpha$	2.0
8462	03 32 11.24	-27 49 54.9	23.64	1.166	_	$H\alpha$	2.5
8470	$03\ 32\ 49.51$	-27 49 56.9	23.11	1.229	1.227	$H\alpha$	2.5
8472	$03 \ 32 \ 27.41$	-27 49 54.6	23.52	1.295	_	[OIII], $H\alpha$	3.0
8494	03 32 37.77	-27 49 55.3	23.05	0.900	_	$H\alpha$	2.5
8525	03 32 12.75	-27 49 54.1	23.15	1.244	_	$H\alpha$	2.5
8591 8606	03 32 45.82 03 32 24.95	-27 49 51.7 -27 49 52.5	22.98 23.59	1.230 1.954	_	$H\alpha$ [OIII]	$\frac{2.5}{2.5}$
8633	03 32 42.21	-27 49 53.8	23.16	1.369	1.377	$H\alpha$	2.5
8649	03 32 35.12	-27 49 49.2	23.56	2.322	2.314	$[OII], H\beta, [OIII]$	4.0
8721	$03\ 32\ 22.38$	-27 49 49.0	22.93	1.153	1.158	$H\alpha$	2.0
8730	$03 \ 32 \ 44.67$	-27 49 46.7	23.59	1.522	_	$H\alpha$	2.5
8759	03 32 48.20	-27 49 45.5	23.61	1.462		[OIII], $H\alpha$, [SII]	2.5
8760	03 32 51.72	-27 49 51.0	20.61	0.737	0.736	$H\alpha$	3.0
8799 8834	03 32 29.64 03 32 48.69	-27 49 45.4 -27 49 46.2	$22.96 \\ 22.01$	$1.204 \\ 1.226$	-1.220	m Hlpha $ m Hlpha$	$\frac{2.5}{2.0}$
8863	03 32 48.09	-27 49 40.2	23.73	1.460	-	[OIII], $H\alpha$	3.0
8868	03 32 18.12	-27 49 41.9	23.55	2.029	_	[OII], [OIII]	3.0
8946	03 32 21.57	-27 49 41.6	22.21	1.103	1.110	$H\alpha$	2.5
8970	$03\ 32\ 34.16$	-27 49 39.5	23.93	1.871	-	$H\beta$, [OIII]	3.0
9026	$03 \ 32 \ 44.45$	-27 49 40.2	21.45	1.016	1.016	$H\alpha$, [SII]	3.0
9027	03 32 11.11	-27 49 38.4	22.93	1.364	_	[OIII], $H\alpha$	3.0
9105	03 32 37.23	-27 49 35.3	23.28	2.314	_	[OII]	2.5
9123 9221	03 32 51.61 03 32 18.70	-27 49 33.8 -27 49 31.8	23.87 23.51	$1.785 \\ 0.956$	_	$H\beta$, [OIII] $H\alpha$	$\frac{3.0}{2.5}$
9242	03 32 48.56	-27 49 31.8	23.31 21.92	1.115	1.120	$H\alpha$	3.0
9245	03 32 22.53	-27 49 32.5	22.60	2.059	-	[OIII]	2.5
9278	03 32 33.07	-27 49 29.9	23.98	2.445	_	OII	2.5
9282	$03\ 32\ 36.34$	-27 49 33.1	22.11	1.417	_	[OIII]	2.5
9290	$03\ 32\ 44.69$	-27 49 30.7	22.74	1.974	_	[OIII]	2.5
9325	03 32 48.65	-27 49 30.9	22.60	1.499		$H\alpha$	2.5
9331	03 32 21.40	-27 49 29.5	23.83	2.070	_	$H\beta$, [OIII]	3.0
9383	03 32 15.21	-27 49 26.3	23.89	1.823	_	[OIII]	2.5
9392 9493	03 32 21.15 03 32 26.54	-27 49 25.7 -27 49 25.0	23.81 22.91	$\frac{2.057}{1.470}$	-1.468	$H\beta$, [OIII] $H\beta$, [OIII], $H\alpha$	$\frac{2.5}{3.0}$
9560	03 32 20.34	-27 49 27.6	19.87	0.733	0.732	$H\alpha$	2.5
9606	03 32 34.24	-27 49 19.2	23.94	0.927	_	$H\alpha$	2.5
9618	03 32 23.18	-27 49 21.4	23.23	1.103	_	$H\alpha$	2.5
9662	03 32 41.21	-27 49 18.4	22.99	0.930	_	$H\alpha$	2.5
9709	03 32 37.05	-27 49 17.3	23.64	1.139	1.145	Нα	2.0
9728	03 32 32.78	-27 49 17.2	23.87	1.816	_	$H\beta$, [OIII]	4.0
9765 9769	03 32 17.82 03 32 18.68	-27 49 15.9 -27 49 19.9	23.19 21.23	1.127 1.048	1.038	$H\alpha$, [SII] $H\alpha$	$\frac{2.5}{2.0}$
9770	03 32 14.15	-27 49 15.6	22.78	0.956	-	$H\alpha$, [SII]	3.0
9884	03 32 12.38	-27 49 12.6	22.27	1.046	1.048	$H\alpha$, [SII]	3.0
						7 E 3	

 ${\tt TABLE~1~--Continued}$

Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	z_{grism} (5)	z_{spec} (6)	Lines (7)	Qual (8)
9950	03 32 15.22	-27 49 10.9	23.13	1.005	_	Нα	2.0
9951	03 32 44.35	-27 49 11.2	23.05	1.986	_	$[OII], H\beta, [OIII]$	3.0
10057	03 32 50.81	-27 49 07.8	22.40	0.680	0.681	$H\alpha$, [SIII] λ 9532	3.0
$10090 \\ 10274$	03 32 34.09 03 32 22.25	-27 49 11.7 -27 49 01.2	22.19 22.89	1.855 1.110	1.899	$[ext{OIII}]$ $ ext{H}lpha$	$\frac{2.5}{2.0}$
10274	03 32 49.31	-27 48 59.9	23.23	1.605	_	$H\beta$, [OIII]	3.0
10300	03 32 45.21	-27 48 57.9	23.40	1.456	1.463	[OIII], $H\alpha$	3.0
10326	03 32 22.40	-27 48 57.9	23.36	1.384	1.383	$[OIII]$, $H\alpha$, $[SII]$	3.0
10338	03 32 48.81 03 32 16.02	-27 48 57.6	22.89	1.988	2.001	$[OII], H\beta, [OIII]$	3.0
$10348 \\ 10372$	03 32 10.02	-27 48 59.7 -27 49 01.8	$22.12 \\ 21.27$	$\frac{1.411}{0.753}$	$1.413 \\ 0.736$	$H\alpha$, $[SII]$ $H\alpha$, $[SII]$	$\frac{3.0}{3.0}$
10404	03 32 51.72	-27 48 55.0	23.51	1.367	-	[OIII], $H\alpha$, [SII]	4.0
10442	03 32 17.19	-27 48 53.5	23.54	1.721		$[OIII]$, H β	4.0
10446	03 32 21.94	-27 48 55.6	22.73	2.013	2.007	[OII]	2.5
$10487 \\ 10510$	03 32 32.47 03 32 26.48	-27 48 52.1 -27 48 51.5	23.89 23.14	$\frac{2.845}{0.764}$	_	$[ext{OII}]$ $ ext{H}lpha$	$\frac{2.0}{2.5}$
10650	03 32 35.97	-27 48 50.3	21.12	1.311	1.307	$H\beta$, [OIII], $H\alpha$	3.0
10665	03 32 46.51	-27 48 46.3	23.16	0.835	0.833	$H\alpha$	2.5
10767	03 32 43.04	-27 48 45.0 -27 48 43.1	22.29	1.768	1.771 2.351	$H\beta$, [OIII]	$\frac{3.0}{3.0}$
10769 10790	03 32 50.37 03 32 44.97	-27 48 44.0	23.64 22.75	$\frac{2.344}{1.768}$	2.331 -	$[OII]$, $H\beta$, $[OIII]$	2.0
10878	03 32 09.26	-27 48 39.3	23.31	1.215	_	OIII	2.5
10916	$03\ 32\ 19.78$	-27 48 39.2	22.70	1.359	1.357	$H\beta$, [OIII]	3.0
10951	03 32 39.43	-27 48 38.9	22.60	0.737	0.735	$H\alpha$, [SII]	3.0
10987 11032	03 32 22.44 03 32 34.82	-27 48 34.9 -27 48 35.4	23.98 22.18	2.327 1.247	-1.245	$H\beta$, [OIII] $H\alpha$, [SII]	$\frac{3.0}{3.0}$
11122	03 32 09.37	-27 48 34.1	22.07	1.222	-	$H\alpha$	2.5
11156	$03\ 32\ 18.51$	-27 48 30.6	23.29	1.008	_	$H\alpha$	2.5
11160	03 32 25.42	-27 48 30.2	22.45	2.014	_	$[OII], H\beta, [OIII]$	4.0
$\frac{11203}{11218}$	03 32 32.09 03 32 25.44	-27 48 28.3 -27 48 28.6	23.74 23.50	$1.958 \\ 2.020$	_	$H\beta$, [OIII] [OII], $H\beta$, [OIII]	$\frac{3.0}{4.0}$
11398	03 32 20.44	-27 48 22.4	23.16	1.731	1.736	$H\beta$, [OIII]	3.0
11527	$03\ 32\ 27.72$	-27 48 18.5	23.89	2.093	_	$H\beta$, [OIII]	3.0
11532	03 32 10.73	-27 48 19.3	22.07	1.556	_	$H\beta$, [OIII]	3.0
11539 11592	03 32 10.53 03 32 12.39	-27 48 17.5 -27 48 16.5	$23.75 \\ 23.50$	$1.575 \\ 2.822$	-2.812	$H\beta$, [OIII] [OII]	$\frac{3.0}{2.5}$
11620	03 32 12.39	-27 48 15.4	24.00	0.906		$H\alpha$	$\frac{2.5}{2.5}$
11664	$03\ 32\ 22.40$	-27 48 15.4	23.28	2.164	_	[OIII]	2.5
11674	03 32 14.92	-27 48 15.6	22.67	0.705	1 200	$H\alpha$, [SIII] λ 9532	2.5
11686 11833	03 32 33.98 03 32 17.62	-27 48 14.6 -27 48 11.8	23.12 21.36	$\frac{1.381}{0.890}$	$\frac{1.382}{0.735}$	$H\alpha$ $H\alpha$	$\frac{2.5}{2.5}$
11886	03 32 12.28	-27 48 07.8	23.38	0.969	-	$H\alpha$	$\frac{2.5}{2.5}$
11923	$03\ 32\ 22.10$	-27 48 06.6	23.50	1.776	1.774	$H\beta$, [OIII]	4.0
11959	03 32 07.41	-27 48 05.9	23.45	1.765	_	[OIII]	2.5
$11977 \\ 12002$	03 32 13.00 03 32 35.93	-27 48 05.3 -27 48 04.2	$23.45 \\ 23.62$	$1.195 \\ 1.806$	_	$H\alpha$ [OIII]	$\frac{2.5}{2.0}$
12002	03 32 23.56	-27 48 02.5	23.47	1.406	1.508	$H\alpha$, [SII]	3.0
12145	$03\ 32\ 14.91$	-27 48 00.3	22.66	0.962	_	$H\alpha$, [SII]	2.5
12184	03 32 07.49	-27 48 00.7	22.64	0.860	0.864	Ηα	2.5
$\begin{array}{c} 12207 \\ 12216 \end{array}$	03 32 13.61 03 32 18.93	-27 47 59.3 -27 47 58.7	23.17 23.03	1.558 1.084	_	[OIII] $H\alpha$, [SII]	$\frac{2.0}{3.0}$
12268	03 32 36.37	-27 47 58.5	23.94	1.313	_	$H\alpha$	2.5
12304	$03\ 32\ 18.45$	-27 47 57.1	22.64	1.085	1.079	$H\alpha$, [SII]	3.0
12451 12473	03 32 37.83	-27 47 56.4	22.96	1.997	1 202	[OIII]	$\frac{2.0}{2.5}$
$\frac{12473}{12487}$	03 32 28.76 03 32 36.28	-27 47 55.4 -27 47 55.3	21.82 23.51	$1.381 \\ 0.706$	1.383	$H\alpha$ $H\alpha$	$\frac{2.5}{2.0}$
12511	03 32 12.23	-27 47 50.4	23.33	1.862	_	[OIII]	$\frac{2.0}{2.5}$
12516	$03\ 32\ 06.80$	-27 47 51.2	22.81	1.910	_	$H\beta$, [OIII]	2.5
12522	03 32 08.23	-27 47 55.4	21.21	0.846	0.841	$H\alpha$	2.5
12532 12550	03 32 14.09 03 32 20.43	-27 47 51.1 -27 47 49.0	22.89 23.61	$1.005 \\ 2.048$	0.999	$H\alpha$ $H\beta$, [OIII]	$\frac{2.5}{3.0}$
12574	03 32 40.04	-27 47 51.7	23.71	0.995	_	$H\alpha$	2.5
12611	$03\ 32\ 08.20$	$-27\ 47\ 52.1$	20.71	0.853	0.840	$_{ m Hlpha}$	2.0
12665	03 32 05.66	-27 47 49.0	22.16	0.895	- 1 765	$H\alpha$, [SII]	4.0
$12670 \\ 12713$	03 32 35.64 03 32 05.47	-27 47 48.8 -27 47 46.8	23.02 22.11	$1.768 \\ 0.899$	$1.765 \\ 0.897$	$H\beta$, [OIII] $H\alpha$, [SII]	$\frac{3.0}{3.0}$
12716	03 32 03.47	-27 47 48.0	$\frac{22.11}{22.78}$	1.186	-	$H\alpha$	$\frac{3.0}{2.5}$
12751	$03\ 32\ 38.11$	-27 47 49.7	22.18	1.904	1.921	[OIII]	2.5
12770	03 32 33.74	-27 47 44.2	23.26	1.905	1.909	$H\beta$, [OIII]	3.0
$\begin{array}{c} 12775 \\ 12787 \end{array}$	03 32 14.64 03 32 26.21	-27 47 44.4 -27 47 42.9	23.78 23.84	$1.164 \\ 1.414$	_	Hα [OIII], $Hα$	$\frac{2.5}{4.0}$
12839	03 32 40.19	-27 47 42.9	23.94 23.94	1.414 1.685	_	[OIII], H α	$\frac{4.0}{2.5}$
12841	$03\ 32\ 30.66$	-27 47 42.2	23.21	1.304	_	$H\alpha$	2.5
12858	03 32 36.38	-27 47 47.1	22.33	1.601	1.767	[OIII]	2.0
12864	03 32 10.93	-27 47 45.9	22.34	1.225	_	[OIII], $H\alpha$	4.0

TABLE 1 — Continued

			TABLE 1	Contin	wcw		
Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	$z_{grism} $ (5)	$z_{spec} $ (6)	Lines (7)	Qual (8)
12880	03 32 38.71	-27 47 44.8	23.17	1.491	_	$H\beta$, [OIII], $H\alpha$	4.0
12887	$03\ 32\ 42.28$	-27 47 46.0	20.70	1.041	0.997	$H\alpha$	2.0
12988	$03\ 32\ 13.96$	-27 47 37.8	23.64	1.845	-	$H\beta$, [OIII]	3.0
12997	03 32 37.40	-27 47 41.6	22.73	1.098		$H\alpha$	2.0
13097	03 32 37.61	-27 47 44.0	21.35	1.097	1.097	$H\alpha$	2.5
13159	03 32 46.52	-27 47 35.8	22.56	0.710	0.706	$H\alpha$	2.5
13165	03 32 21.69 03 32 25.19	-27 47 34.1 -27 47 35.3	23.81 23.02	2.155	_	$[ext{OIII}]$ $ ext{H}lpha$	$\frac{2.5}{2.0}$
13172 13242	03 32 25.19	-27 47 33.3	23.51	1.017 0.987	_	$H\alpha$	$\frac{2.0}{2.5}$
13263	03 32 42.73	-27 47 34.9	$\frac{23.31}{22.77}$	1.435	1.427	$H\alpha$	$\frac{2.5}{2.5}$
13271	03 32 36.30	-27 47 32.6	23.97	1.847	_	$H\beta$, [OIII]	4.0
13295	03 32 10.48	-27 47 32.4	23.26	2.064	_	$[OII]$, $H\beta$, $[OIII]$	3.0
13322	$03\ 32\ 34.86$	-27 47 30.7	23.96	1.314	-	$H\alpha$	2.5
13337	03 32 44.19	-27 47 33.4	21.12	0.740	0.737	$H\alpha$, [SII], [SIII] λ 9069, λ 9532	4.0
13381	03 32 35.79	-27 47 34.7	22.17	1.223	1.223	[OIII], $H\alpha$, [SII]	3.0
13432	03 32 17.52	-27 47 28.0	22.83	0.866	1 417	Hα	2.0
13444	03 32 34.67	-27 47 27.9	23.50	1.427	1.417	$H\beta$, [OIII], $H\alpha$, [SII]	4.0
$13472 \\ 13552$	03 32 06.15 03 32 38.49	-27 47 25.8	23.70 23.35	$1.360 \\ 1.612$	_	$H\alpha$	$\frac{2.5}{3.0}$
13583	03 32 36.49	-27 47 25.3 -27 47 23.8	23.72	1.968	_	$H\beta$, [OIII] $H\beta$, [OIII]	3.0
13601	03 32 11.03	-27 47 28.7	20.18	1.024	1.022	$H\alpha$	2.0
13607	03 32 44.35	-27 47 23.7	$\frac{20.16}{22.74}$	0.962	0.953	$H\alpha$	2.0
13620	03 32 21.75	-27 47 24.6	22.06	0.996	1.000	$H\alpha$, [SII]	3.0
13674	$03\ 32\ 10.41$	-27 47 22.7	22.65	1.355	_	$H\alpha$	2.5
13680	$03\ 32\ 05.08$	$-27\ 47\ 20.5$	23.81	1.212	-	$H\alpha$, [SII]	3.0
13788	$03 \ 32 \ 07.05$	-27 47 19.4	22.86	1.895	-	$H\beta$, [OIII]	3.0
13817	03 32 34.63	-27 47 20.8	23.44	1.313		$\mathrm{H}\beta$, [OIII], $\mathrm{H}\alpha$	3.0
13837	03 32 25.03	-27 47 18.1	22.89	1.355	1.357	Hα	2.0
13859	03 32 34.81	-27 47 21.9	22.54 21.17	1.332	1.318	$[OIII], H\alpha, [SII]$	$\frac{3.0}{3.0}$
13942 13966	03 32 14.23 03 32 26.29	-27 47 21.4 -27 47 17.5	$\frac{21.17}{21.65}$	$1.067 \\ 0.992$	-0.995	$H\alpha$, [SII] $H\alpha$, [SII]	3.0
13995	03 32 20.29	-27 47 17.3	23.90	1.097	-	$H\alpha$, [SII]	3.0
14042	03 32 35.82	-27 47 14.2	22.46	1.906	1.906	$H\beta$, [OIII]	3.0
14064	03 32 41.85	-27 47 21.8	23.71	1.318	-	[OIII], H α	3.0
14099	03 32 46.09	-27 47 13.8	22.13	1.104	_	$H\alpha$	2.5
14106	$03\ 32\ 10.66$	-27 47 12.3	23.78	1.553	_	[OIII]	2.5
14114	$03\ 32\ 28.30$	-27 47 11.5	23.92	2.220	-	$H\beta$, [OIII]	3.0
14207	$03\ 32\ 33.45$	-27 47 12.3	23.06	1.299	-	$H\alpha$, [SII]	3.0
14222	03 32 31.56	-27 47 11.1	23.56	0.974	-	$H\alpha$	2.0
14267	03 32 38.62	-27 47 11.4	23.07	1.142	1.135	Hα	2.5
14288	03 32 43.47	-27 47 12.8	23.26 23.45	$1.263 \\ 2.622$	_	$[OIII], H\alpha, [SII]$	$\frac{2.0}{2.5}$
14329 14341	03 32 13.56 03 32 23.44	-27 47 07.6 -27 47 09.0	$\frac{23.45}{22.38}$	1.421	1.423	[OII] $H\beta$, [OIII], $H\alpha$, [SII]	$\frac{2.3}{3.0}$
14341	03 32 23.44	-27 47 05.0	23.86	1.355	-	$H\beta$, [OIII]	3.0
14400	03 32 17.03	-27 47 09.1	21.36	0.762	0.763	$H\alpha$	2.5
14410	03 32 05.66	-27 47 05.6	23.14	1.157	-	$H\alpha$, [SII]	3.0
14458	03 32 18.23	-27 47 08.9	22.17	1.503	1.379	[OIII]	2.5
14505	$03\ 32\ 17.71$	-27 47 02.9	23.44	1.613	1.607	$H\beta$, [OIII]	3.0
14515	03 32 18.60	-27 47 05.0	22.36	1.382	1.379	$H\alpha$	2.5
14582	03 32 16.45	-27 47 02.3	22.66	1.223	1.217	$H\alpha$, [SII]	3.0
14601	03 32 16.25	-27 47 03.1	22.88	1.220	1.219	Hα	2.5
14602	03 32 14.66 03 32 10.57	-27 47 02.6	22.55	1.674	1.045	[OIII]	2.5
14637 14638	03 32 42.37	-27 47 06.1 -27 47 07.6	21.48 21.46	1.041 1.311	1.045	$H\alpha$ $H\alpha$	$\frac{2.5}{2.5}$
14650	03 32 42.37	-27 46 59.7	23.97	1.043	_	$H\alpha$	$\frac{2.5}{2.5}$
14692	03 32 09.91	-27 46 59.4	22.98	1.053	_	$H\alpha$, [SII]	3.0
14704	03 32 14.93	-27 46 59.7	23.10	1.727	_	$H\beta$, [OIII]	3.0
14707	03 32 28.42	-27 47 00.1	22.98	1.889	_	OIII	2.5
14781	$03\ 32\ 07.99$	-27 46 57.2	23.54	2.617	2.619	[OII]	2.5
14817	$03\ 32\ 36.43$	-27 46 58.3	23.08	0.841	_	$H\alpha$	2.5
14826	03 32 32.43	-27 46 56.4	23.66	1.436	_	$H\alpha$	2.5
14831	03 32 06.21	-27 46 56.1	22.78	1.169	1.173	$H\alpha$	2.5
14867	03 32 42.77	-27 46 59.0	22.71	1.123	1.119	$H\alpha$, [SII]	3.0
14878	03 32 11.58	-27 46 59.1	21.19	0.818	0.814	$H\alpha$, [SII]	4.0
14897 14919	03 32 36.18 03 32 45.68	-27 46 57.2 -27 46 55.1	23.75 23.06	1.332 1.293	_	$H\beta$, [OIII] $H\alpha$	$\frac{3.0}{2.5}$
14919	03 32 38.96	-27 46 56.3 -27 46 56.3	23.62	1.407	$\frac{-}{1.415}$	$[OIII], H\alpha, [SII]$	$\frac{2.0}{3.0}$
14949	03 32 36.30	-27 46 55.0	22.97	1.946	1.940	$H\beta$, [OIII]	4.0
14956	03 32 32.45	-27 46 54.0	22.63	1.435	1.438	$H\beta$, [OIII], $H\alpha$, [SII]	3.0
15018	03 32 18.25	-27 46 51.9	23.67	1.238	-	[OIII], $H\alpha$, [SII]	4.0
15025	$03\ 32\ 36.44$	-27 46 55.0	22.99	0.888	_	$H\alpha$	2.5
15028	$03\ 32\ 19.59$	-27 46 53.0	22.53	0.738	_	$H\alpha$	2.5
15066	03 32 40.96	-27 46 55.0	22.82	0.769	_	$H\alpha$	2.0
15076	03 32 47.27	-27 46 50.1	23.68	0.737	1.010	$H\alpha$	2.5
15114	03 32 21.69	-27 46 50.5	22.63	1.025	1.018	$H\alpha$, [SII]	3.0

TABLE 1 — Continued

Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	$z_{grism} $ (5)	z_{spec} (6)	Lines (7)	Qual (8)
15122	03 32 39.81	-27 46 53.5	22.08	1.101	_	$H\alpha$	2.5
15211	03 32 10.80	-27 46 47.5 -27 46 48.5	23.21	1.180	- 1 179	Hα	2.5
$15216 \\ 15222$	03 32 30.83 03 32 18.58	-27 46 48.7	$22.78 \\ 21.94$	$1.173 \\ 0.740$	$1.173 \\ 0.741$	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
15237	$03\ 32\ 31.32$	-27 46 46.8	23.72	2.125	2.134	[OII], [OIII]	3.0
15263 15293	03 32 30.91 03 32 37.08	-27 46 49.5 -27 46 46.9	$22.03 \\ 23.62$	$1.174 \\ 1.837$	1.173 1.849	$H\alpha$ [OIII]	$\frac{2.5}{2.5}$
15295 15297	03 32 43.68	-27 46 46.3	23.63	2.479	$\frac{1.649}{2.468}$	[OII]	$\frac{2.5}{2.5}$
15336	$03\ 32\ 42.98$	-27 46 49.9	21.86	1.038	1.036	$\mathrm{H}\alpha$, [SII]	3.0
15397	03 32 09.23	-27 46 43.4	22.99	1.900	- 0.252	$H\beta$, [OIII]	3.0
$15430 \\ 15431$	03 32 09.68 03 32 20.41	-27 46 42.5 -27 46 41.6	23.77 23.79	2.354 1.230	2.353 1.227	[OII], [OIII] $[OIII], H\alpha$	$\frac{3.0}{3.0}$
15501	03 32 37.72	-27 46 42.6	23.76	1.305	1.307	[OIII], $H\alpha$, [SII]	3.0
15518	03 32 34.67	-27 46 44.5	22.99	1.536	- 1 001	[OIII]	2.5
15523 15570	03 32 11.93 03 32 23.82	-27 46 44.6 -27 46 39.3	21.47 22.88	$1.225 \\ 1.224$	1.221	m Hlpha $ m Hlpha$	$\frac{2.5}{2.0}$
15586	03 32 12.86	-27 46 40.9	23.25	1.791	_	$H\beta$, [OIII]	3.0
15614	03 32 35.73	-27 46 39.0	23.87	2.067	_	$_{\rm H}\beta$, [OIII]	3.0
15704 15753	03 32 41.51 03 32 35.46	-27 46 40.2 -27 46 37.0	22.96 22.96	1.087 1.093	-1.086	$H\alpha$ $H\alpha$, [SII]	$\frac{2.5}{3.0}$
15766	03 32 44.00	-27 46 33.9	24.00	1.547	-	$H\beta$, [OIII]	3.0
15769	03 32 35.38	-27 46 39.3	22.71	1.824	_	[OIII]	2.5
15775 15787	03 32 34.85 03 32 14.01	-27 46 40.4 -27 46 34.2	21.69 21.81	$1.098 \\ 0.837$	$1.099 \\ 0.837$	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
15863	03 32 32.73	-27 46 29.9	23.80	1.310	1.309	[OIII], $H\alpha$	3.0
15870	03 32 15.80	-27 46 30.4	22.35	1.026	1.023	$H\alpha$	2.5
15892 15898	03 32 43.97 03 32 44.61	-27 46 32.5 -27 46 32.1	23.54 22.33	1.603 1.422	-1.426	$H\beta$, [OIII] [OIII], $H\alpha$, [SII]	$\frac{3.0}{3.0}$
15901	03 32 44.01	-27 46 32.1	22.64	1.422 1.219	1.420 1.220	[OIII], $H\alpha$, [SII]	3.0
15955	$03\ 32\ 11.77$	$-27\ 46\ 28.1$	23.24	1.605	= -	[OIII]	2.5
15959	03 32 09.94 03 32 08.88	-27 46 29.3 -27 46 29.0	22.62 22.20	1.021	-1.032	$H\alpha$ $H\alpha$, [SII]	$\frac{2.5}{3.0}$
15967 15991	03 32 08.88	-27 46 29.0 -27 46 27.5	23.82	1.038 1.033	1.052	$H\alpha$, [S11] $H\alpha$	$\frac{3.0}{2.5}$
16018	$03\ 32\ 28.86$	-27 46 28.4	23.52	1.868	_	$H\beta$, [OIII]	2.0
16048	03 32 16.12	-27 46 27.6	22.25	1.045	1.033 1.221	Hα	$\frac{2.0}{3.0}$
$16073 \\ 16085$	03 32 21.21 03 32 36.66	-27 46 25.9 -27 46 31.0	$22.90 \\ 21.48$	$\frac{1.224}{0.998}$	0.999	[OIII], $H\alpha$ $H\alpha$	2.0
16101	$03\ 32\ 38.24$	-27 46 30.1	23.02	1.219	1.216	$H\alpha$	2.0
16113 16122	03 32 24.13 03 32 20.73	-27 46 25.1 -27 46 24.4	23.90 23.60	$1.014 \\ 1.271$	_	$H\alpha$	$\frac{2.5}{4.0}$
16123	03 32 20.73	-27 46 24.4	$\frac{23.00}{22.97}$	1.043	_	[OIII], $H\alpha$, [SII] $H\alpha$, [SII]	3.0
16132	$03\ 32\ 34.60$	-27 46 24.7	23.51	1.900	_	$H\beta$, [OIII]	4.0
16139	03 32 29.06	-27 46 28.5	22.23	2.210	2.227	$[OII], H\beta, [OIII]$	$\frac{4.0}{3.0}$
$16209 \\ 16255$	03 32 15.81 03 32 18.21	-27 46 22.3 -27 46 21.5	23.58 22.41	1.324 1.433	-1.435	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
16268	$03\ 32\ 11.57$	-27 46 22.9	21.54	1.215	1.221	$_{ m H}\alpha$	2.5
16274	03 32 31.45 03 32 24.31	-27 46 23.1	21.35	2.197	2.225	[OIII]	$\frac{2.0}{2.5}$
16275 16320	03 32 24.51	-27 46 21.8 -27 46 18.8	23.29 23.70	1.016 1.119	_	$H\alpha$ $H\alpha$	$\frac{2.5}{2.5}$
16358		-27 46 19.8	22.67	1.517	_	[OIII]	2.5
16377	03 32 18.57	-27 46 19.0	22.74	1.433	1.436	$H\alpha$, [SII]	3.0
16396 16406	03 32 22.99 03 32 17.10	-27 46 18.1 -27 46 19.0	23.74 23.92	1.555 2.285	_	[OIII]	$\frac{2.5}{2.5}$
16440	03 32 12.22	-27 46 20.6	20.82	1.033	1.033	$H\alpha$	2.5
16474	03 32 24.60	-27 46 20.2	21.45	1.225	1.221	$H\alpha$	2.0
$16490 \\ 16548$	03 32 31.58 03 32 35.08	-27 46 15.1 -27 46 15.7	23.58 22.43	3.411 1.321	-1.316	[OII] $H\alpha$, [SII]	$\frac{2.0}{3.0}$
16579	03 32 48.25	-27 46 13.8	23.35	2.691	2.708	[OII]	2.5
16586	03 32 11.26	-27 46 14.5	22.69	2.193		$H\beta$, [OIII]	3.0
16593 16600	03 32 28.98 03 32 30.71	-27 46 23.5 -27 46 17.1	$20.66 \\ 21.25$	$0.779 \\ 1.312$	0.737 1.307	$H\alpha$ $H\alpha$	$\frac{2.5}{2.0}$
16601	03 32 27.24	-27 46 12.0	23.93	1.891	-	$H\beta$, [OIII]	3.0
16604	03 32 17.53	-27 46 13.6	22.33	1.619	1.610	$H\beta$, [OIII]	3.0
16617 16629	03 32 25.42 03 32 37.07	-27 46 17.0 -27 46 17.1	20.97 22.71	$0.900 \\ 2.224$	0.896 2.213	$H\alpha$, [SII] [OII], $H\beta$, [OIII]	$\frac{3.0}{4.0}$
16658	03 32 31.04	-27 46 10.2	23.96	1.125		$H\alpha$	2.0
16697	03 32 11.52	-27 46 13.4	22.24	0.904	1.039	$H\alpha$, [OII]	2.0
$16714 \\ 16718$	03 32 23.49 03 32 18.48	-27 46 12.2 -27 46 09.3	$22.88 \\ 23.12$	$\frac{1.026}{0.734}$	_	Hα $Hα$, [SIII] $λ9532$	$\frac{2.5}{3.0}$
16719	03 32 18.48	-27 46 13.8	22.06	1.000	_	$H\alpha$	$\frac{3.0}{2.5}$
16732	$03\ 32\ 36.54$	-27 46 12.3	23.14	1.852	_	$H\beta$, [OIII]	3.0
$16754 \\ 16767$	03 32 19.79 03 32 14.36	-27 46 10.0 -27 46 06.9	$22.15 \\ 23.56$	$\frac{1.220}{0.699}$	1.221	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
16813	03 32 14.30	-27 46 05.8 -27 46 05.8	22.78	0.033 0.972	0.965	$H\alpha$, [SII]	3.0
16841	03 32 46.92	-27 46 04.8	23.77	2.851	2.865	[OII] '	2.5

TABLE 1 — Continued

			TABLE 1	Contin	wcw		
Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	$z_{grism} $ (5)	$z_{spec} $ (6)	Lines (7)	Qual (8)
16844	03 32 10.89	-27 46 05.3	22.97	2.302	-	$H\beta$, [OIII]	3.0
16848	$03\ 32\ 14.00$	$-27\ 46\ 05.1$	23.52	0.727	_	$H\alpha$, $[SIII]\lambda 9532$	3.0
16865	03 32 28.07	-27 46 06.0	22.35	1.113	1.109	Hα	2.5
16881	03 32 26.17	-27 46 03.5	23.48	1.220	1.221 1.378	$H\alpha$, [SII]	$3.0 \\ 2.5$
16897 16905	03 32 12.60 03 32 15.74	-27 46 05.0 -27 46 04.3	23.29 22.19	$1.365 \\ 1.532$	1.578 1.537	$H\alpha$ $H\alpha$	$\frac{2.5}{2.5}$
16936	03 32 25.99	-27 46 04.1	22.97	1.003		$H\alpha$, [SII]	3.0
16937	03 32 08.24	-27 46 02.5	23.34	1.084	_	$H\alpha$	2.5
16958	$03\ 32\ 31.38$	-27 46 04.3	23.07	2.089	_	$H\beta$, [OIII]	3.0
16970	03 32 26.82	-27 46 01.8	23.67	2.074	-	$[OII]$, $H\beta$, $[OIII]$	4.0
16985 17006	03 32 22.54	-27 46 03.7	22.77 22.86	1.727	1.727	[OIII]	2.0 3.0
17000	03 32 24.15 03 32 36.91	-27 46 00.2 -27 46 02.3	23.56	0.893 2.308	0.893 2.321	$H\alpha$, [SII] [OII], $H\beta$, [OIII]	3.0
17069	03 32 32.54	-27 45 59.8	22.78	0.969		$H\alpha$	2.0
17071	03 32 06.98	-27 45 59.9	22.37	1.327	_	$H\alpha$	2.5
17073	$03\ 32\ 09.45$	-27 45 58.4	23.47	2.318	_	$H\beta$, [OIII]	3.0
17151	03 32 09.14	-27 45 56.9	23.17	2.331	-	[OIII]	2.5
17165	03 32 36.32	-27 46 00.0	22.30	0.899	0.895	$H\alpha$, [SII]	3.0
$17172 \\ 17213$	03 32 35.46 03 32 21.23	-27 45 56.2 -27 45 54.8	23.72 23.40	$\frac{2.318}{1.223}$	2.325 1.224	[OII], $H\beta$, [OIII] [OIII], $H\alpha$, [SII]	3.0 3.0
17214	03 32 21.23	-27 45 54.8	22.43	1.099	1.096	$H\alpha$	$\frac{3.0}{2.5}$
17221	03 32 21.31	-27 45 54.6	23.61	1.222	1.223	[OIII], $H\alpha$	3.0
17233	03 32 25.66	-27 45 55.5	22.78	1.032	1.040	$H\alpha$, [SII]	3.0
17235	$03\ 32\ 05.45$	-27 45 54.0	23.09	1.160	_	$H\alpha$, [SII]	3.0
17244	03 32 22.70	-27 45 54.6	22.90	0.846	_	$H\alpha$, [SII]	3.0
17251	03 32 48.67	-27 45 53.9	22.95	1.305	- 1 990	$H\alpha$	2.5
17259	03 32 06.40	-27 45 54.7	21.74 21.92	1.332	1.329	$H\alpha$ $H\alpha$	2.5
17265 17290	03 32 04.72 03 32 14.99	-27 45 54.9 -27 45 53.4	$\frac{21.92}{22.92}$	$1.076 \\ 1.235$	1.079 -	$[OIII], H\alpha, [SII]$	$\frac{2.5}{4.0}$
17297	03 32 14.95	-27 45 54.4	22.80	1.230		$H\alpha$, [SII]	3.0
17316	03 32 43.48	-27 45 56.4	21.32	1.219	1.220	$H\alpha$	2.0
17376	$03\ 32\ 12.20$	-27 45 54.3	21.34	1.033	1.038	$H\alpha$	2.5
17386	$03\ 32\ 23.15$	-27 45 54.6	21.31	1.226	1.223	$H\alpha$	2.5
17415	03 32 21.39	-27 45 50.5	23.64	1.916	1.010	$H\beta$, [OIII]	2.5
$17422 \\ 17472$	03 32 16.84 03 32 27.39	-27 45 51.0 -27 45 49.5	$\frac{22.80}{22.48}$	$\frac{1.032}{0.724}$	$1.018 \\ 0.727$	$H\alpha$ $H\alpha$	$2.5 \\ 2.5$
17472	03 32 27.39	-27 45 49.5	21.27	0.724	0.727	$H\alpha$	$\frac{2.5}{2.5}$
17488	03 32 20.17	-27 45 49.3	23.20	1.614	1.611	$H\beta$, [OIII]	3.0
17500	$03\ 32\ 08.42$	-27 45 46.8	23.50	1.609	_	[OIII]	2.5
17509	$03\ 32\ 35.79$	-27 45 49.0	22.70	0.749	0.738	$H\alpha$	2.5
17528	03 32 22.24	-27 45 50.3	21.84	0.730	0.726	$H\alpha$, [SII]	3.0
17593 17594	03 32 17.75 03 32 13.58	-27 45 47.6 -27 45 43.7	21.60 23.99	$0.736 \\ 0.721$	0.735	$H\alpha$ $H\alpha$	$\frac{2.0}{2.5}$
17605	03 32 13.38	-27 45 46.7	22.15	0.721	0.840	$H\alpha$	2.5
17608	03 32 13.44	-27 45 43.4	23.56	0.843	-	$H\alpha$, [SII]	3.0
17612	$03\ 32\ 10.77$	-27 45 43.8	23.93	0.729	_	$H\alpha$	2.5
17617	$03\ 32\ 08.36$	-27 45 42.8	23.76	1.222	_	$H\alpha$, [SII]	2.5
17652	03 32 10.94	-27 45 44.5	22.25	1.033	1.039	$H\alpha$, [SII]	4.0
17655	03 32 28.59	-27 45 42.0	23.58	1.824	1.611	$H\beta$, [OIII]	3.0
$17698 \\ 17705$	03 32 36.40 03 32 26.73	-27 45 40.6 -27 45 39.9	23.29 23.42	$0.996 \\ 2.010$	-2.006	$H\alpha$, [SII] $H\beta$, [OIII]	3.0 3.0
17757	03 32 07.48	-27 45 38.4	23.76	2.631		[OII]	2.0
17824	03 32 41.34	-27 45 38.2	21.80	1.540	1.539	$H\beta$, [OIII], $H\alpha$	3.0
17843	$03\ 32\ 12.93$	-27 45 38.6	22.30	1.053	_	$H\alpha$	2.0
17849	03 32 13.93	-27 45 37.2	22.10	0.844	0.841	$H\alpha$, [SII]	3.0
17932	03 32 16.54	-27 45 34.2	23.35	0.893	- 0.210	$H\alpha$	2.5
17937 17043	03 32 24.66 03 32 47.13	-27 45 33.6 27 45 31 0	23.07	2.318	2.312	$[OII]$, $H\beta$, $[OIII]$	4.0 3.0
17943 17973	03 32 47.13	-27 45 31.9 -27 45 30.6	23.59 23.92	1.304 1.435	_	[OIII], $H\alpha$, [SII] [OIII], $H\alpha$, [SII]	3.0
17994	03 32 26.77	-27 45 30.5	23.79	1.122	1.122	$H\alpha$	2.0
18023	03 32 21.72	-27 45 29.7	23.46	2.076	2.080	$H\beta$, [OIII]	3.0
18068	$03\ 32\ 22.78$	-27 45 28.1	23.43	1.987	_	[OIII]	2.5
18085	03 32 03.37	-27 45 25.4	25.27	2.318	0.316	$H\beta$, [OIII]	3.0
18095	03 32 08.97	-27 45 26.3	23.57	2.025	_	$[OII]$, $H\beta$, $[OIII]$	3.0
18109	03 32 08.90	-27 45 26.0 27 45 28 2	23.95	$\frac{2.017}{1.042}$		[OIII]	2.5
$18132 \\ 18160$	03 32 17.49 03 32 39.26	-27 45 28.2 -27 45 32.2	$21.72 \\ 20.67$	$1.042 \\ 1.118$	1.039 1.095	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
18177	03 32 39.20	-27 45 32.2	21.91	1.372	1.375	$H\alpha$, [SII]	3.0
18213	03 32 33.15	-27 45 22.7	23.92	1.930	1.918	[OIII]	2.5
18240	$03\ 32\ 28.90$	$-27\ 45\ 25.2$	22.50	0.978	0.952	$H\alpha$	2.0
18243	03 32 05.49	-27 45 25.2	21.52	1.191	1.189	$H\alpha$	2.5
18315	03 32 33.84	-27 45 20.5	23.50	2.310	_	[OII], [OIII]	3.0
18334 18343	03 32 36.07 03 32 05.95	-27 45 19.7 -27 45 20.4	23.49 22.40	$\frac{2.302}{0.978}$	-0.974	[OII], [OIII] $H\alpha$	$\frac{3.0}{2.5}$
18343	03 32 05.95	-27 45 20.4 -27 45 18.7	$\frac{22.40}{23.27}$	0.978 0.910	0.974 0.906	$H\alpha$	2.5 2.0
10009	00 04 01.00	-21 40 10.7	20.21	0.010	0.000	1111	۷.0

TABLE 1 — Continued

Source ID RA Dec AB(F160W) z_{grism} z_{gasc} Lines Qual R371 03 32 1.36 274 51 1.6 22.60 1.210 1.213 Ha, SII 3.0 1.8715 03 22 2.82 274 51 8.3 22.66 1.210 1.213 Ha, SII 3.0 1.8715 03 32 2.83 274 51 8.3 22.82 1.084 1.087 Ha, SII 3.0 1.8303 03 32 2.84 274 51 8.1 22.88 2.130								
18371 03 32 12.36 27 48 18.6 22.80 1.210 1.213 h_{α} $ K_{\alpha} $ 1875 03 29.66 0.77 0.71 0.82 0.83 0.81								
18375 03 32 29.60 -27 45 20.1 23.66 1.077 -	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
18380 03 32 22.82 -27 45 18.3 22.82 1.084 1.087 10.5 10.						1.213		
18933 03 32 24.67 -27 45 12.7 22.44 1.883 -						1.007		
18402 03 32 33.84 -27 45 18.1 22.88 2.130 -								
18413 03 32 23.60 -27 45 17.0 23.89 1.040 -								
18420 03 32 04.89 -27 45 18.2 22.87 1.337 -				22.23				
18443 03 32 30.97 27 45 16.3 23.20 1.084 - H α 2.5 18445 03 32 17.11 27 45 17.4 23.32 1.300 - H α 2.5 18486 03 32 19.82 27 45 16.8 23.27 1.300 - H α 2.5 18486 03 22 19.82 27 45 16.8 22.51 1.300 - H α 2.5 18486 03 22 18.73 - 27 45 14.4 22.60 1.877 1.876 H β , [SII] 3.0 18509 03 32 18.73 - 27 45 12.6 22.52 0.841 0.839 H α , [SII] 3.0 18509 03 32 216.3 - 27 45 12.6 22.52 0.841 0.837 H α , [SII] 3.0 18509 03 32 216.3 - 27 45 10.3 23.32 1.033 1.033 1.033 H α , [SII] 3.0 18732 03 32 25.63 - 27 45 10.8 23.344 1.016 - H α , [SII] 2.5 18750 03 32 25.63 - 27 45 08.0 23.444 1.016 - H α , [SII] 2.5 18804 03 32 15.35 - 27 45 06.6 21.72 0.861 0.861 H α 2.5 18804 03 32 15.35 - 27 45 06.9 21.72 0.861 0.861 H α 2.5 18804 03 32 15.35 - 27 45 08.0 21.13 1.296 1.296 H α 2.5 18813 0.33 20.868 - 27 45 08.0 21.13 1.296 1.296 H α 2.5 18845 03 32 24.02 - 27 45 07.2 21.86 0.741 0.736 H α 2.5 18845 03 32 24.02 - 27 45 07.2 21.86 0.741 0.736 H α 2.5 18845 03 32 24.02 - 27 45 07.2 22.40 1.115 1.110 H α 2.0 18851 03 32 24.097 - 27 45 07.2 22.40 1.115 1.110 H α 2.5 18894 03 24 0.97 - 27 45 07.2 22.40 0.873 0.875 0.828 H α 2.5 18904 03 32 25.35 - 27 45 02.8 2.266 0.973 0.975 H α , [SII] 3.0 18955 03 32 34.56 - 27 45 04.6 20.85 1.107 1.113 H α 2.5 18904 03 32 25.27 27 45 04.6 20.85 1.107 1.113 H α 2.5 1.9029 03 32 34.56 - 27 45 04.6 20.85 1.107 1.113 H α 2.5 1.9029 03 32 24.02 - 27 45 45.8 22.10 0.855 1.077 1.113 H α 2.5 1.9029 03 32 34.56 - 27 45 04.6 20.85 1.107 1.113 H α 2.5 1.9029 03 32 24.02 - 27 45 45.8 22.10 0.855 1.107 1.113 H α 2.5 1.9029 03 32 24.02 - 27 44 50.8 23.50 0.856 0.858 H α 1.00 1.								
18457 03 32 17.11 -27 45 17.4 23.32 1.368 -								
18486 03 32 46.58 -27 45 16.2 22.51 0.841 0.839 Ha, SII 3.0 18509 03 32 18.73 -27 45 14.4 22.60 0.841 0.876 H α 0.III 3.0 18540 03 32 31.48 -27 45 13.7 23.45 0.971 -1 Ha 2.5 18585 03 32 46.00 -27 45 12.6 22.52 0.841 0.837 Ha, SII 3.0 18619 03 32 29.63 -27 45 11.3 23.23 1.033 1.033 1.033 Ha, SII 2.5 18732 03 32 23.09 -27 45 09.1 22.12 1.020 0.995 Ha 2.5 18732 03 32 23.09 -27 45 09.1 22.12 1.020 0.995 Ha 2.5 18810 03 32 00.25 -27 45 05.0 22.62 1.305 -1 Ha 2.0 2.5 18811 03 32 00.25 -27 45 06.0 22.62 1.305 -1 Ha 2.0 2.5 18822 03 32 08.68 -27 45 07.4 21.11 1.069 1.068 Ha 2.5 18841 03 32 20.99 -27 45 07.0 22.80 0.7410 1.177 1.111 Ha 2.2 2.5 1.8841 03 22 40.6 -27 45 07.0 22.80 0.7410 1.177 1.111 Ha 2.2 2.5 1.8841 03 22 40.6 -27 45 07.0 22.80 0.7410 1.177 1.111 Ha 2.2 2.5 1.8960 0.3 32 15.35 -27 45 07.4 22.13 0.837 0.837 0.838 Ha 2.5 1.8960 0.3 32 15.35 -27 45 07.4 22.13 0.837 0.838 Ha 2.5 1.8960 0.3 32 15.35 -27 45 07.4 0.458 2.266 0.973 0.838 Ha 2.25 1.8960 0.3 32 15.15 -27 45 01.1 23.44 1.131 Ha 2.25 1.8960 0.3 32 15.15 -27 45 01.1 23.44 1.141 1.111 Ha 2.25 1.8960 0.3 32 15.10 -27 45 01.4 22.13 0.837 0.838 Ha 2.5 1.9926 0.3 32 11.04 -27 44 56.8 23.55 0.828 0.838 0.838 Ha 2.5 1.9926 0.3 32 11.04 -27 44 56.8 23.55 0.828 0.838 0.838 Ha 2.5 1.9926 0.3 32 11.04 -27 44 57.6 2.13 2.244 0.836 0.833 Ha 1.102 1.098 Ha 2.5 1.9926 0.3 32 11.04 -27 44 56.8 2.355 0.828 0.838 0.838 Ha 2.5 1.9926 0.3 32 14.40 -27 44 57.6 2.13 0.836 0.833 Ha 1.91 0.98 Ha 2.5 1.9926 0.3 32 14.40 -27 44 56.8 2.356 0.838 0.832 Ha 2.244 Ha 2.25 1.9926 0.3 32 1.75 -27 44 50.8 2.245 -2 0.616 0.973			-27 45 17.4			_	[OIII], $H\alpha$	
18509 03 32 18.73 -27 45 14.4 22.60 1.877 1.876 $H\beta_{c}$ [OIII] 3.0 18540 03 32 14.60 -27 45 12.6 22.52 0.841 0.837 $H\alpha_{c}$ [SII] 2.5 18575 03 32 46.00 -27 45 01.3 23.33 1.033 1.033 $H\alpha_{c}$ [SII] 2.5 18750 03 32 23.68 -27 45 01.3 23.24 1.016 $H\alpha_{c}$ $H\alpha_{c}$ 2.5 18750 03 32 23.58 -27 45 06.9 21.72 0.861 0.861 $H\alpha_{c}$ 2.5 18810 03 32 15.35 -27 45 06.9 21.72 0.861 0.861 $H\alpha_{c}$ 2.5 18810 03 32 05.59 -27 45 07.4 21.11 1.009 1.068 $H\alpha_{c}$ 2.5 18821 03 32 05.59 -27 45 07.4 21.11 1.009 1.068 $H\alpha_{c}$ 2.5 18844 03 32 29.70 -27 45 07.4 21.86 0.741 0.736 $H\alpha_{c}$ 2.5 18845 03 32 29.70 -27 45 07.4 22.13 0.837 0.887 0.828 $H\alpha_{c}$ 2.0 18851 03 32 27.66 -27 45 07.4 22.13 0.887 0.882 $H\alpha_{c}$ 2.0 18851 03 32 27.66 -27 45 01.4 22.13 0.887 0.882 $H\alpha_{c}$ 2.1 1.896 0.3 32 13.15 -27 45 01.1 23.44 1.841 -4 $H\alpha_{c}$ 2.0 18896 03 32 30.21 -27 45 01.5 23.46 1.905 -1 11.13 $H\alpha_{c}$ 2.0 1.8969 03 32 25.55 -27 45 01.5 23.46 1.905 -1 $H\alpha_{c}$ 2.0 1.8969 03 32 25.77 -27 45 01.5 23.46 1.905 -1 $H\alpha_{c}$ 2.0 1.8969 03 32 25.77 -27 45 01.5 23.46 1.905 -1 $H\alpha_{c}$ 2.0 1.8969 03 32 30.21 -27 45 01.5 23.46 1.905 -1 $H\alpha_{c}$ 2.0 1.8969 03 32 48.56 -27 45 01.5 23.46 1.905 -1 $H\alpha_{c}$ 2.0 1.9026 03 32 11.04 -27 44 50.8 23.46 1.905 -1 $H\alpha_{c}$ 2.0 1.9026 03 32 11.04 -27 44 50.8 23.46 1.905 -1 $H\alpha_{c}$ 2.0 1.9026 03 32 11.04 -27 44 50.8 23.46 1.905 -1 $H\alpha_{c}$ 2.1 $H\alpha_{c}$ 2.5 1.9039 03 32 11.60 -27 44 55.1 23.49 1.905 1.209 $H\alpha_{c}$ $H\alpha_{c}$ 2.5 1.9039 03 32 11.60 -27 44 55.1 23.49 1.905 1.209 $H\alpha_{c}$ $H\alpha_{c}$ 2.5 1.9039 03 32 14.60 -27 44 55.1 23.40 1.905 1.209 $H\alpha_{c}$ 1.909 1.903 2.0 2.74 45 5.1 2.30 2.30 1.905 2.205			-27 45 14.8					
18540 03 32 31.48 -27 45 13.7 23.45 0.971 - H α 2.5 18555 03 32 40.00 -27 45 12.6 22.52 0.841 0.331 0.331 1.033 1.03								
18585 03 32 46.00 -27 45 11.3 23.23 1.033 1.033 1.03 1.								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$03\ 32\ 46.00$	-27 45 12.6	22.52			$H\alpha$, [SII]	3.0
$ \begin{array}{c} 18750 & 03 \ 32 \ 23.09 & -277 \ 45 \ 09.1 & 22.12 & 1.020 & 0.995 & H\alpha & 2.5 \\ 18811 & 03 \ 32 \ 09.25 & -277 \ 45 \ 05.0 & 21.72 & 0.861 & 0.861 & H\alpha & 2.5 \\ 18811 & 03 \ 32 \ 09.25 & -277 \ 45 \ 05.0 & 22.62 & 1.305 & - & H\alpha & 2.0 \\ 18822 & 03 \ 32 \ 08.68 & -277 \ 45 \ 05.0 & 21.13 & 1.296 & 1.296 & H\alpha & 2.0 \\ 18845 & 03 \ 32 \ 24.02 & -277 \ 45 \ 04.0 & 23.04 & 1.117 & 1.110 & H\alpha & 2.0 \\ 18844 & 03 \ 32 \ 24.02 & -277 \ 45 \ 04.0 & 23.04 & 1.117 & 1.110 & H\alpha & 2.0 \\ 18884 & 03 \ 32 \ 24.02 & -277 \ 45 \ 04.0 & 23.04 & 1.117 & 1.110 & H\alpha & 2.0 \\ 18884 & 03 \ 32 \ 40.97 & -277 \ 45 \ 04.1 & 22.13 & 0.837 & 0.828 & H\alpha & 2.5 \\ 18904 & 03 \ 32 \ 23.15 & -277 \ 45 \ 04.1 & 22.13 & 0.837 & 0.828 & H\alpha & 2.5 \\ 18905 & 03 \ 32 \ 31.15 & -277 \ 45 \ 04.1 & 23.44 & 1.841 & - & H\beta, [OIII] & 3.0 \\ 18959 & 03 \ 32 \ 345.6 & -274 \ 50.45 & 21.10 & 0.743 & 0.738 & H\alpha & 2.5 \\ 18967 & 03 \ 32 \ 31.29 & -277 \ 45 \ 04.6 & 20.85 & 1.107 & 1.113 & H\alpha & 2.5 \\ 18969 & 03 \ 32 \ 12.91 & -274 \ 45 \ 0.8 & 22.84 & 1.193 & - & & & & & & & & & & & & & & & & & $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.5 2.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c} 18832 03 \ 32 \ 08.68 27 \ 45 \ 08.0 21.13 1.296 1.296 1.296 1.06$				22.62				
$ \begin{array}{c} 18844 & 03 \ 32 \ 29.70 \ - 27 \ 45 \ 07.2 & 21.86 \ \\ 0.3 \ 22 \ 40.2 \ - 27 \ 45 \ 04.0 & 23.04 \ \ 1.117 \ \ 1.110 \ \ H\alpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $								
$ \begin{array}{c} 18845 03 \ 32 \ 24.02 -27 \ 45 \ 04.0 23.04 1.117 1.110 H\alpha \\ 03 \ 22 \ 0.07 -27 \ 45 \ 04.1 22.13 0.837 0.828 H\alpha \\ 03 \ 32 \ 40.97 -27 \ 45 \ 04.1 22.13 0.837 0.828 H\alpha \\ 03 \ 32 \ 25.55 -27 \ 45 \ 02.8 22.66 0.973 0.975 H\alpha \\ 18936 03 \ 32 \ 13.15 -27 \ 45 \ 04.5 22.10 0.743 0.738 H\alpha \\ 2.0 18955 03 \ 32 \ 30.21 -27 \ 45 \ 04.5 21.10 0.743 0.738 H\alpha \\ 2.0 18959 03 \ 32 \ 48.56 -27 \ 45 \ 04.6 20.85 1.107 1.113 H\alpha \\ 2.5 18967 03 \ 32 \ 24.56 -27 \ 45 \ 02.7 23.46 1.605 - [OIII] 2.0 \\ 18960 03 \ 32 \ 12.91 -27 \ 44 \ 59.8 22.84 1.193 - H\alpha \\ 2.5 19079 03 \ 32 \ 31.04 -27 \ 44 \ 59.8 22.84 1.193 - H\alpha \\ 2.5 19079 03 \ 32 \ 31.04 -27 \ 44 \ 59.8 22.84 1.193 - H\alpha \\ 2.5 19081 03 \ 32 \ 25.77 -27 \ 44 \ 59.2 22.24 0.836 0.828 0.828 H\alpha \\ 03 \ 32 \ 42.09 -27 \ 44 \ 57.4 23.65 1.228 1.224 H\alpha \\ 19138 03 \ 32 \ 41.00 -27 \ 44 \ 57.6 21.90 1.209 1.209 1.202 H\alpha, \ [SII] 3.0 \\ 19143 03 \ 32 \ 0.67 -27 \ 44 \ 55.1 23.09 2.245 - [OIII] 2.0 \\ 19176 03 \ 32 \ 29.92 -27 \ 44 \ 54.2 23.67 0.976 - H\alpha \\ 2.0 19178 03 \ 32 \ 41.50 -27 \ 44 \ 52.7 23.69 1.209 1.209 H\alpha, \ [SII] 3.0 \\ 19202 03 \ 32 \ 41.56 -27 \ 44 \ 51.2 23.67 0.976 - H\alpha \\ 2.0 19178 03 \ 32 \ 24.52 -27 \ 44 \ 52.7 23.69 1.351 1.353 [OIII] H\beta \\ 3.0 3.0 19202 03 \ 32 \ 47.89 -27 \ 44 \ 52.7 23.69 1.351 1.353 [OIII] H\beta \\ 3.0 3.0 32.4 32.99 -27 \ 44 \ 52.7 23.69 1.351 1.353 [OIII] 1.96 2.5 \\ 19206 03 \ 32 \ 47.48 -27 \ 44 \ 51.2 23.67 0.976 - H\alpha \\ 19206 03 \ 32 \ 47.89 -27 \ 44 \ 51.2 23.67 0.976 - H\alpha \\ 19207 03 \ 32 \ 24.73 -27 \ 44 \ 52.7 23.69 1.351 1.353 [OIII] H\beta \\ 3.0 3.0 31.40 0.27 44 45.2 23.67 0.976 - H\alpha \\ 19206 03 \ 32 \ 47.89 -27 \ 44 \ 51.3 33.0 32.5 -27 0.731 - (IIII) 3.0 \\ 19314 03 \ 32 \ 24.52 -27 $								$\frac{2.0}{2.5}$
$ \begin{array}{c} 18884 & 03 & 32 & 40.97 & -27 & 45 & 0.41 & 22.13 & 0.837 & 0.828 & H\alpha & 2.5 \\ 18904 & 03 & 32 & 23.55 & -27 & 45 & 0.1.1 & 23.44 & 1.841 & - & H\beta, [OIII] & 3.0 \\ 18955 & 03 & 32 & 30.21 & -27 & 45 & 04.5 & 21.10 & 0.743 & 0.738 & H\alpha & 2.0 \\ 18957 & 03 & 32 & 45.56 & -27 & 45 & 04.5 & 21.10 & 0.743 & 0.738 & H\alpha & 2.5 \\ 18967 & 03 & 32 & 17.57 & -27 & 45 & 02.7 & 23.46 & 1.605 & - & [OIII] & 2.0 \\ 19029 & 03 & 32 & 11.04 & -27 & 44 & 56.8 & 23.50 & 0.828 & 0.832 & H\alpha & 2.5 \\ 19029 & 03 & 32 & 11.04 & -27 & 44 & 56.8 & 23.50 & 0.828 & 0.832 & H\alpha & 2.5 \\ 19079 & 03 & 32 & 11.04 & -27 & 44 & 56.8 & 23.50 & 0.828 & 0.832 & H\alpha & 2.5 \\ 19081 & 03 & 32 & 24.09 & -27 & 44 & 56.8 & 22.13 & 1.102 & 1.098 & H\alpha & 2.5 \\ 19138 & 03 & 32 & 41.40 & -27 & 44 & 57.6 & 21.90 & 1.209 & 1.202 & H\alpha, [SII] & 3.0 \\ 19143 & 03 & 32 & 41.40 & -27 & 44 & 57.6 & 21.90 & 1.209 & 1.202 & H\alpha, [SII] & 3.0 \\ 19178 & 03 & 32 & 11.50 & -27 & 44 & 54.2 & 23.67 & 0.976 & -H\alpha & 2.0 \\ 19178 & 03 & 32 & 12.50 & -27 & 44 & 54.8 & 22.75 & 0.733 & 0.732 & H\alpha, [SII] & 3.0 \\ 19206 & 03 & 32 & 41.56 & -27 & 44 & 57.3 & 23.69 & 1.351 & 1.353 & [OIII] & H\beta & 3.0 \\ 19235 & 03 & 32 & 47.48 & -27 & 44 & 53.3 & 23.05 & 0.971 & -H\alpha, [SII] & 2.5 \\ 19265 & 03 & 32 & 28.42 & -27 & 44 & 53.3 & 23.05 & 0.971 & -H\alpha, [SII] & 3.0 \\ 19236 & 03 & 32 & 24.74 & -27 & 44 & 53.3 & 23.05 & 0.971 & -H\alpha, [SII] & 3.0 \\ 19236 & 03 & 32 & 27.44 & -27 & 44 & 54.3 & 23.09 & 2.327 & -[OIII] & 2.5 \\ 19400 & 03 & 32 & 16.49 & -27 & 44 & 54.3 & 23.30 & 2.327 & -[OIII] & 2.5 \\ 19606 & 03 & 32 & 28.42 & -27 & 44 & 53.5 & 23.71 & 2.103 & -H\beta, [OIII] & 3.0 \\ 19316 & 03 & 32 & 28.42 & -27 & 44 & 53.5 & 23.71 & 2.103 & -H\beta, [OIII] & 3.0 \\ 19416 & 03 & 32 & 27.75 & -27 & 44 & 40.9 & 21.38 & 0.978 & 0.976 & -H\alpha & 2.5 \\ 19608 & 03 & 32 & 16.49 & -27 & 44 & 44.8 & 23.56 & 1.205 & -[OIII] & H\alpha, [SII] & 3.0 \\ 19416 & 03 & 32 & 27.51 & -27 & 44 & 44.8 & 23.56 & 1.205 & -[OIII] & H\alpha, [SII] & 3.0 \\ 19460 & 03 & 32 & 16.40 & -27 & 44 & 43.8 & 22.56 & 1.205 & -[OIII] & 1.25 \\ 19630 & 03 & 32 & 16.6$								2.0
18904 03 32 25.35 - 27 45 02.8 22.66 0.973 0.975 $Hα$, $[SII]$ 3.0 18936 03 32 13.15 - 27 45 01.1 23.44 1.841 - $Hβ$, $[OIII]$ 3.0 18955 03 32 30.21 - 27 45 04.5 21.10 0.743 0.738 $Hα$ 2.0 18959 03 32 48.56 - 27 45 04.6 20.85 1.107 1.113 $Hα$ 2.5 18967 03 32 37.57 - 27 45 92.7 23.46 1.605 - $[OIIII]$ 2.0 19026 03 32 11.04 - 27 44 50.8 22.84 1.193 - $Hα$ 2.5 19029 03 32 11.04 - 27 44 50.8 22.84 1.193 - $Hα$ 2.5 19029 03 32 11.04 - 27 44 50.8 22.84 1.193 - $Hα$ 2.5 19039 03 32 11.04 - 27 44 57.4 23.65 1.228 1.224 $Hα$ 2.5 19081 03 32 25.77 - 27 44 59.2 22.24 0.836 0.833 $Hα$, $[SII]$ 3.0 19136 03 32 42.09 - 27 44 58.3 22.13 1.102 1.098 $Hα$ 2.5 19138 03 32 41.00 - 27 44 57.6 21.90 1.209 1.209 $Hα$, $[SII]$ 3.0 19143 03 32 $Gα$ 2.7 44 55.1 23.49 2.452 - $[OIII]$ 2.0 19178 03 32 25.5 27 44 54.2 23.67 0.976 - $Hα$ 2.0 19178 03 32 25.5 27 44 54.8 22.75 0.733 0.732 $Hα$, $[SII]$ 3.0 19202 03 32 47.29 - 27 44 53.2 23.82 1.074 - $Hα$, $[SII]$ 3.0 19205 03 32 47.89 - 27 44 53.3 23.90 2.327 - $[OIII]$ 2.5 19266 03 32 24.73 - 27 44 51.3 23.90 2.327 - $[OIII]$ 2.5 19266 03 32 24.73 - 27 44 51.3 23.90 2.327 - $[OIII]$ 2.5 19267 03 32 24.73 - 27 44 51.3 23.90 2.327 - $[OIII]$ 3.0 19314 03 32 06.24 -27 44 51.3 23.90 2.327 - $[OIII]$ 3.0 19316 03 32 14.56 - 27 44 52.7 23.69 1.351 1.353 $[OIII]$ 1.30 19316 03 32 24.73 - 27 44 50.2 23.41 2.015 2.025 $Hβ$, $[OIII]$ 3.0 19316 03 32 44.74 - 27 44 40.0 21.38 0.979 0.976 $Hα$ 2.0 1978 03 22 24.73 - 27 44 50.2 23.41 2.015 2.025 $Hβ$, $[OIII]$ 3.0 19416 03 32 14.74 - 27 44 44.9 20.5 3.77 1.28 $Hα$ 2.10 $Hα$ 2.5 19400 03 32 14.50 - 27 44 49.0 21.38 0.978 0.976 $Hα$ 2.5 19400 03 32 14.74 - 27 44 43.9 20.5 3.77 1.28 $Hβ$, $[OIII]$ 3.0 19416 03 32 17.51 - 27 44 45.1 22.25 $Hβ$, $[OIII]$ 3.0 19416 03 32 14.50 - 27 44 49.0 21.38 0.978 0.976 $Hα$ 1.2 2.5 19590 03 32 14.60 - 27 44 49.0 21.38 0.978 0.976 $Hα$ 1.2 2.5 19630 03 32 14.60 - 27 44 49.0 21.38 0.978 0.976 $Hα$ 1.2 2.5 19630 03 32 14.60 - 27 44 43.5 23.9 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c} 18967 03 32 37.57 -27 45 02.7 23.46 1.605 - \text{OIII} 2.0 \\ 19026 03 32 12.91 -27 44 59.8 22.84 1.193 - \text{H}\alpha 2.5 \\ 19029 03 32 11.04 -27 44 59.8 22.84 1.193 - \text{H}\alpha 2.5 \\ 19079 03 32 31.46 -27 44 57.4 23.65 1.228 1.224 H\alpha 2.5 \\ 19081 03 32 25.77 -27 44 59.2 22.24 0.836 0.832 H\alpha 2.5 \\ 19081 03 32 25.77 -27 44 59.2 22.24 0.836 0.833 H\alpha \text{SII} 3.0 \\ 19136 03 32 42.09 -27 44 58.3 22.13 1.102 1.098 H\alpha 2.5 \\ 19138 03 32 41.40 -27 44 57.6 21.90 1.209 12.020 H\alpha \text{SII} 3.0 \\ 19143 03 32 06.70 -27 44 55.1 23.49 2.452 - \text{OII} 2.0 \\ 19176 03 32 29.92 -27 44 54.8 22.75 0.733 0.732 H\alpha \text{SII} 3.0 \\ 19202 03 32 47.29 -27 44 53.2 23.82 1.074 - H\alpha \text{SII} 2.5 \\ 19206 03 32 47.29 -27 44 53.2 23.82 1.074 - H\alpha \text{SII} 2.5 \\ 19205 03 32 47.48 -27 44 53.3 23.05 0.971 - H\alpha \text{SII} 2.5 \\ 19265 03 32 24.72 -27 44 51.5 23.71 2.103 - H\alpha \text{OIII} H\beta 3.0 \\ 19314 03 32 24.72 -27 44 51.5 23.71 2.103 - H\alpha \text{OIII} 3.0 \\ 19314 03 32 24.73 -27 44 51.5 23.71 2.103 - H\alpha \text{OIII} 3.0 \\ 19416 03 32 17.51 -27 44 49.0 21.38 0.978 0.976 H\alpha \text{SII} 3.0 \\ 19416 03 32 17.51 -27 44 49.0 21.38 0.978 0.976 H\alpha \text{SII} 3.0 \\ 19416 03 32 17.51 -27 44 49.9 23.85 2.318 2.324 \text{OIII} H\alpha \text{OIII} 3.0 \\ 19416 03 32 17.51 -27 44 49.0 21.38 0.978 0.976 H\alpha \text{SII} 3.0 \\ 19416 03 32 17.51 -27 44 49.9 23.85 2.318 2.324 \text{OIII} H\alpha \text{OIII} 3.0 \\ 19416 03 32 15.51 -27 44 49.9 23.85 2.318 2.324 \text{OIII} 1.09 \text{OIII} 3.0 \\ 19416 03 32 15.07 -27 44 49.9 22.03 0.970 0.977 H\alpha 2.5 \\ 19630 03 32 16.69 $	18955	$03\ 32\ 30.21$	-27 45 04.5	21.10	0.743	0.738	$H\alpha$	2.0
$\begin{array}{c} 19026 03 32 12.91 -27 44 50.8 22.84 1.193 - \dot{H}\alpha 2.5 \\ 19079 03 32 11.04 -27 44 56.8 23.50 0.828 0.832 H\alpha 2.5 \\ 19079 03 32 31.46 -27 44 57.4 23.65 1.228 1.224 H\alpha 2.5 \\ 19081 03 32 24.09 -27 44 59.2 22.24 0.836 0.833 H\alpha, [SII] 3.0 \\ 19136 03 32 24.09 -27 44 57.6 21.90 1.209 1.202 H\alpha, [SII] 3.0 \\ 19138 03 32 41.40 -27 44 57.6 21.90 1.209 1.202 H\alpha, [SII] 3.0 \\ 19143 03 32 05.70 -27 44 54.5 23.49 2.452 - [OII] 2.0 \\ 19176 03 32 29.92 -27 44 54.8 22.75 0.733 0.732 H\alpha, [SII] 3.0 \\ 19178 03 32 12.50 -27 44 54.8 22.75 0.733 0.732 H\alpha, [SII] 3.0 \\ 19200 03 32 47.29 -27 44 53.2 23.82 1.074 - H\alpha, [SII] 2.5 \\ 19206 03 32 47.29 -27 44 54.3 23.90 2.327 - [OIII] 2.5 \\ 19235 03 32 24.48 -27 44 54.3 23.90 2.327 - [OIII] 2.5 \\ 19265 03 32 24.48 -27 44 53.3 23.05 0.971 - H\alpha 2.0 \\ 19274 03 32 24.73 -27 44 50.2 23.41 2.015 - H\beta, [OIII] 3.0 \\ 19316 03 32 16.34 -27 44 49.0 21.38 0.978 0.976 H\alpha, [SII] 3.0 \\ 19416 03 32 17.51 -27 44 48.6 23.76 0.969 - H\alpha 2.5 \\ 19400 03 32 17.51 -27 44 48.9 20.53 0.745 - [OIII], H\alpha, [SII] 3.0 \\ 19446 03 32 17.51 -27 44 48.9 20.53 0.745 - [OIII], [OIII] 3.0 \\ 19476 03 32 10.49 -27 44 49.9 21.38 0.978 0.976 H\alpha, [SII] 3.0 \\ 19476 03 32 10.54 -27 44 49.9 20.53 0.745 - [OIII], [OIII] 3.0 \\ 19476 03 32 10.51 -27 44 44.9 20.53 0.745 - [OIII], [OIII] 3.0 \\ 19460 03 32 17.51 -27 44 44.9 20.53 0.745 - [OIII], [OIII] 3.0 \\ 19476 03 32 16.31 -27 44 49.9 20.53 0.745 - [OIII], [OIII] 3.0 \\ 19460 03 32 15.51 -27 44 49.9 20.53 0.745 - [OIII], [OIII] 3.0 \\ 1959$								
$\begin{array}{c} 19029 & 03 & 32 & 11.04 & -27 & 44 & 56.8 & 23.50 & 0.828 & 0.832 & H\alpha & 2.5 \\ 19081 & 03 & 32 & 14.6 & -27 & 44 & 57.4 & 23.65 & 1.228 & 1.224 & H\alpha & 2.5 \\ 19081 & 03 & 32 & 42.09 & -27 & 44 & 59.2 & 22.24 & 0.836 & 0.833 & H\alpha, [SII] & 3.0 \\ 19136 & 03 & 32 & 42.09 & -27 & 44 & 58.3 & 22.13 & 1.102 & 1.098 & H\alpha & 2.5 \\ 19138 & 03 & 32 & 41.40 & -27 & 44 & 57.6 & 21.90 & 1.209 & H\alpha, [SII] & 3.0 \\ 19143 & 03 & 32 & 06.70 & -27 & 44 & 55.1 & 23.49 & 2.452 & - & [OII] & 2.0 \\ 19176 & 03 & 32 & 29.92 & -27 & 44 & 54.2 & 23.67 & 0.976 & - & H\alpha & 2.0 \\ 19178 & 03 & 32 & 12.50 & -27 & 44 & 54.3 & 22.75 & 0.733 & 0.732 & H\alpha, [SII] & 3.0 \\ 19202 & 03 & 32 & 47.29 & -27 & 44 & 53.2 & 23.82 & 1.074 & - & H\alpha, [SII] & 2.5 \\ 19206 & 03 & 32 & 41.56 & -27 & 44 & 52.7 & 23.69 & 1.351 & 1.353 & [OIII], H\beta & 3.0 \\ 19235 & 03 & 32 & 47.48 & -27 & 44 & 53.3 & 23.05 & 0.971 & - & H\alpha & 2.0 \\ 19247 & 03 & 32 & 24.92 & -27 & 44 & 51.5 & 23.71 & 2.103 & - & H\beta, [OIII] & 3.0 \\ 19314 & 03 & 32 & 24.92 & -27 & 44 & 50.2 & 23.41 & 2.015 & 2.025 & H\beta, [OIII] & 3.0 \\ 19314 & 03 & 32 & 24.73 & -27 & 44 & 50.2 & 23.41 & 2.015 & 2.025 & H\beta, [OIII] & 3.0 \\ 19314 & 03 & 32 & 24.92 & -27 & 44 & 48.6 & 23.76 & 0.969 & - & H\alpha & 2.5 \\ 19400 & 03 & 32 & 16.49 & -27 & 44 & 49.0 & 21.38 & 0.978 & 0.976 & H\alpha, [SII] & 3.0 \\ 19416 & 03 & 32 & 17.51 & -27 & 44 & 49.0 & 21.38 & 0.978 & 0.976 & H\alpha, [SII] & 3.0 \\ 19441 & 03 & 32 & 13.83 & 7.27 & 44 & 49.9 & 20.53 & 0.745 & 0.735 & H\alpha, [SII] & 3.0 \\ 19460 & 03 & 32 & 17.51 & -27 & 44 & 49.9 & 20.53 & 0.745 & 0.735 & H\alpha, [SII] & 3.0 \\ 19460 & 03 & 32 & 17.51 & -27 & 44 & 49.9 & 20.53 & 0.745 & 0.735 & H\alpha, [SII] & 3.0 \\ 19460 & 03 & 32 & 11.71 & -27 & 44 & 43.9 & 23.85 & 2.318 & 2.324 & [OIII], [OIII] & 2.5 \\ 19530 & 03 & 32 & 16.31 & -27 & 44 & 49.0 & 23.66 & 1.265 & - & [OIII], [OIII] & 2.0 \\ 19646 & 03 & 32 & 3.09.70 & -27 & 44 & 39.9 & 23.63 & 2.596 & 2.616 & [OIII] & 2.5 \\ 19630 & 03 & 32 & 14.09 & -27 & 44 & 39.9 & 2.30 & 0.970 & 0.967 & H\alpha & 2.5 \\ 19630 & 03 & 32 & 14.09 & -27 & 44 & 39.5 & 21.91 & $								
$\begin{array}{c} 19081 03 \ 32 \ 25.77 -27 \ 44 \ 59.2 22.24 0.836 0.833 H\alpha, \\ [SII] 3.0 \\ 19136 03 \ 32 \ 42.09 -27 \ 44 \ 58.3 22.13 1.102 1.098 H\alpha, \\ [SII] 3.0 \\ 19138 03 \ 32 \ 41.40 -27 \ 44 \ 57.6 21.90 1.209 1.202 H\alpha, \\ [SII] 3.0 \\ 19176 03 \ 32 \ 9.92 -27 \ 44 \ 54.5 23.49 2.452 - [OII] 2.0 \\ 19178 03 \ 32 \ 12.50 -27 \ 44 \ 54.8 22.75 0.733 0.732 H\alpha, \\ [SII] 3.0 \\ 19202 03 \ 22 \ 47.29 -27 \ 44 \ 54.8 22.75 0.733 0.732 H\alpha, \\ [SII] 3.0 \\ 19206 03 \ 32 \ 47.48 -27 \ 44 \ 53.2 23.82 1.074 - H\alpha, \\ [SII] 2.5 \\ 19266 03 \ 32 \ 47.48 -27 \ 44 \ 52.3 23.90 2.327 - [OIII] H\beta, \\ [SII] 2.5 \\ 19265 03 \ 32 \ 44.48 -27 \ 44 \ 51.3 23.90 2.327 - [OIIII] 4B, \\ [SII] 3.0 \\ 19274 03 \ 32 \ 24.92 -27 \ 44 \ 51.5 23.71 2.103 - H\beta, \\ [OIII] 3.0 \\ 19314 03 \ 32 \ 24.73 -27 \ 44 \ 50.2 23.41 2.015 2.025 H\beta, \\ [OIII] 3.0 \\ 19326 03 \ 20 \ 6.24 -27 \ 44 \ 49.0 21.38 0.978 0.976 H\alpha, \\ [SII] 3.0 \\ 19410 03 \ 21 \ 1.51 -27 \ 44 \ 46.4 23.26 1.265 - [OIII], H\alpha, \\ [SII] 3.0 \\ 194410 03 \ 22 \ 27.11 -27 \ 44 \ 44.9 20.53 0.745 0.735 H\alpha, \\ [SII] 3.0 \\ 19431 03 \ 22 \ 38.78 -27 \ 44 \ 49.9 23.85 2.318 2.324 [OIII], [OIII] 3.0 \\ 19431 03 \ 22 \ 38.78 -27 \ 44 \ 49.9 23.85 2.318 2.324 [OIII], [OIII] 3.0 \\ 19556 03 \ 22 \ 16.31 -27 \ 44 \ 44.8 22.56 1.100 - H\alpha \\ 2.5 \ 19500 03 \ 22 \ 16.31 -27 \ 44 \ 49.0 23.63 2.596 2.616 [OIII] 2.5 \\ 19630 03 \ 23 \ 16.90 -27 \ 44 \ 39.9 23.63 2.596 2.616 [OIII] 2.5 \\ 19630 03 \ 23 \ 16.90 -27 \ 44 \ 31.8 22.56 1.100 - H\alpha, \\ [SII] 3.0 \\ 19646 03 \ 32 \ 30.90 -27 \ 44 \ 31.8 22.56 1.100 - H\alpha, \\ [SII] 3.0 \\ 19638 03 \ 21 \ 16.90 -27 \ 44 \ 31.8 22.56 1.100 - H\alpha, \\ [SII] 2.5 \\ 19630 03 \ 21 \ 16.90 -27 \ 44 \ 31.8 22.56 1.100 - H\alpha, \\ [SII] 2.5 \\ 19630 03 \ 21 \ 16.90 -27 \ 44 \ 31.8 22.56 $								
$\begin{array}{c} 19136 & 03 & 32 & 42.09 & -27 & 44 & 58.3 & 22.13 & 1.102 & 1.098 & H\alpha \\ 19138 & 03 & 32 & 41.40 & -27 & 44 & 57.6 & 21.90 & 1.209 & 1.202 & H\alpha \\ 19143 & 03 & 32 & 06.70 & -27 & 44 & 55.1 & 23.49 & 2.452 & - \\ 19176 & 03 & 32 & 29.92 & -27 & 44 & 54.2 & 23.67 & 0.976 & - \\ 19178 & 03 & 32 & 12.50 & -27 & 44 & 53.2 & 23.82 & 1.074 & - \\ 19202 & 03 & 32 & 47.29 & -27 & 44 & 53.2 & 23.82 & 1.074 & - \\ 19205 & 03 & 32 & 47.48 & -27 & 44 & 53.2 & 23.82 & 1.074 & - \\ 19235 & 03 & 32 & 47.48 & -27 & 44 & 53.3 & 23.05 & 0.971 & - \\ 19265 & 03 & 32 & 24.92 & -27 & 44 & 51.5 & 23.71 & 2.103 & - \\ 19265 & 03 & 32 & 24.92 & -27 & 44 & 51.5 & 23.71 & 2.103 & - \\ 19314 & 03 & 32 & 24.73 & -27 & 44 & 56.2 & 23.41 & 2.015 & 2.025 \\ 19400 & 03 & 32 & 16.49 & -27 & 44 & 49.0 & 21.38 & 0.978 & 0.976 & H\alpha, \\ 19416 & 03 & 32 & 17.51 & -27 & 44 & 48.9 & 20.53 & 0.745 & 0.765 & H\alpha, \\ 19431 & 03 & 32 & 38.78 & -27 & 44 & 43.9 & 23.85 & 2.318 & 2.324 & [OIII] & 3.0 \\ 19460 & 03 & 32 & 11.71 & -27 & 44 & 44.2 & 22.26 & 1.865 & - \\ 19549 & 03 & 32 & 11.71 & -27 & 44 & 44.2 & 22.26 & 1.885 & 1.877 & H\beta, \\ 19590 & 03 & 32 & 14.60 & -27 & 44 & 39.9 & 23.68 & 1.801 & - \\ 19633 & 03 & 23 & 15.97 & -27 & 44 & 39.9 & 23.68 & 1.801 & - \\ 19633 & 03 & 23 & 15.81 & -27 & 44 & 39.9 & 23.63 & 2.596 & 2.616 & [OIII] & 2.5 \\ 19630 & 03 & 32 & 15.09 & -27 & 44 & 39.9 & 22.03 & 0.970 & 0.967 & H\alpha, \\ 19638 & 03 & 21 & 15.07 & -27 & 44 & 39.9 & 22.03 & 0.970 & 0.967 & H\alpha, \\ 19772 & 03 & 32 & 15.80 & -27 & 44 & 31.5 & 23.19 & 1.107 & - \\ 19638 & 03 & 21 & 15.09 & -27 & 44 & 31.2 & 2.25 & 1.100 & - \\ 19638 & 03 & 21 & 15.09 & -27 & 44 & 31.2 & 2.25 & 1.100 & - \\ 19639 & 03 & 21 & 15.09 & -27 & 44 & 31.2 & 2.25 & 1.202 & - \\ 19630 & 03 & 21 & 15.09 & -27 & 44 & 31.2 & 2.25 & 1.202 & - \\ 19630 & 03 & 21 & 15.09 & -27 & 44 & 31.2 & 2.25 & 1.202 & - \\ 19630 & 03 & 21 & 15.09 & -27 & 44 & 31.2 & 2.25 & 1.202 & - \\ 19630 & 03 & 21 & 15.09 & -27 & 44 & 31.2 & 2.25 & 1.205 & - \\ 19646 & 03 & 23 & 18.89 & -27 & 44 & 31.2 & 2.25 & 1.205 & - \\ 19772 & 03 & 21 &$								2.5
$\begin{array}{c} 19138 & 03 & 32 & 41.40 & -27 & 44 & 57.6 & 21.90 & 1.209 & 1.202 & H\alpha, [SII] & 3.0 \\ 19176 & 03 & 32 & 29.92 & -27 & 44 & 55.1 & 23.49 & 2.452 & - & [OII] & 2.0 \\ 19178 & 03 & 32 & 12.50 & -27 & 44 & 54.8 & 22.75 & 0.733 & 0.732 & H\alpha, [SII] & 3.0 \\ 19202 & 03 & 32 & 47.29 & -27 & 44 & 53.2 & 23.82 & 1.074 & - & H\alpha, [SII] & 3.0 \\ 19206 & 03 & 32 & 47.48 & -27 & 44 & 53.2 & 23.82 & 1.074 & - & H\alpha, [SII] & 3.0 \\ 19235 & 03 & 32 & 47.48 & -27 & 44 & 54.3 & 23.90 & 2.327 & - & [OIII], H\eta] & 3.0 \\ 19265 & 03 & 32 & 28.42 & -27 & 44 & 53.3 & 23.05 & 0.971 & - & H\alpha & 2.0 \\ 19274 & 03 & 32 & 24.92 & -27 & 44 & 51.5 & 23.71 & 2.103 & - & H\eta], [OIII] & 3.0 \\ 19314 & 03 & 32 & 24.73 & -27 & 44 & 50.2 & 23.41 & 2.015 & 2.025 & H\eta], [OIII] & 3.0 \\ 19326 & 03 & 32 & 16.49 & -27 & 44 & 49.0 & 21.38 & 0.978 & 0.976 & H\alpha & [SII] & 3.0 \\ 19416 & 03 & 32 & 17.51 & -27 & 44 & 46.4 & 23.26 & 1.265 & - & [OIII], H\alpha, [SII] & 3.0 \\ 19446 & 03 & 32 & 27.11 & -27 & 44 & 48.9 & 20.53 & 0.745 & 0.735 & H\alpha, [SII] & 3.0 \\ 19460 & 03 & 32 & 27.11 & -27 & 44 & 44.2 & 22.23 & 1.894 & 1.897 & [OIII] & 3.0 \\ 19476 & 03 & 32 & 20.04 & -27 & 44 & 41.1 & 22.23 & 1.894 & 1.897 & [OIII] & 3.0 \\ 19476 & 03 & 32 & 16.69 & -27 & 44 & 40.1 & 23.68 & 1.801 & - & [OIII], H\alpha, [SII] & 3.0 \\ 19556 & 03 & 32 & 16.60 & -27 & 44 & 40.1 & 23.68 & 1.801 & - & [OIII] & 2.5 \\ 19630 & 03 & 32 & 16.60 & -27 & 44 & 39.9 & 23.63 & 2.596 & 2.616 & [OII] & 2.5 \\ 19633 & 03 & 32 & 15.80 & -27 & 44 & 39.9 & 22.03 & 0.970 & 0.967 & H\alpha & 2.5 \\ 19638 & 03 & 32 & 16.60 & -27 & 44 & 39.9 & 22.03 & 0.970 & 0.967 & H\alpha & 2.5 \\ 19638 & 03 & 32 & 15.80 & -27 & 44 & 33.2 & 23.31 & 1.107 & - & H\alpha & 2.5 \\ 19772 & 03 & 32 & 15.80 & -27 & 44 & 31.5 & 23.39 & 1.898 & 1.883 & [OIII] & 2.5 \\ 19777 & 03 & 32 & 26.16 & -27 & 44 & 33.2 & 23.33 & 1.613 & 1.609 & H\alpha, [SII] & 3.0 \\ 19841 & 03 & 32 & 15.80 & -27 & 44 & 31.7 & 23.31 & 3.470 & 3.462 & [OII] & 4.0 \\ 19820 & 03 & 32 & 15.80 & -27 & 44 & 33.2 & 23.50 & 0.377 & - & H\alpha, [SI$								
$\begin{array}{c} 19143 & 03 & 32 & 06.70 & -27 & 44 & 55.1 & 23.49 & 2.452 & - & [OII] \\ 19176 & 03 & 32 & 29.92 & -27 & 44 & 54.2 & 23.67 & 0.976 & - & H\alpha \\ 0.9178 & 03 & 32 & 12.50 & -27 & 44 & 54.8 & 22.75 & 0.733 & 0.732 & H\alpha, [SII] & 3.0 \\ 19202 & 03 & 32 & 47.29 & -27 & 44 & 53.2 & 23.82 & 1.074 & - & H\alpha, [SII] & 2.5 \\ 19206 & 03 & 32 & 47.56 & -27 & 44 & 52.7 & 23.69 & 1.351 & 1.353 & [OIII], H\beta & 3.0 \\ 19235 & 03 & 32 & 47.48 & -27 & 44 & 53.3 & 23.90 & 2.327 & - & [OIII] & 2.5 \\ 19265 & 03 & 32 & 28.42 & -27 & 44 & 53.3 & 23.05 & 0.971 & - & H\alpha & 2.0 \\ 19274 & 03 & 32 & 24.92 & -27 & 44 & 51.5 & 23.71 & 2.103 & - & H\beta, [OIII] & 3.0 \\ 19314 & 03 & 32 & 24.73 & -27 & 44 & 50.2 & 23.41 & 2.015 & 2.025 & H\beta, [OIII] & 3.0 \\ 19326 & 03 & 32 & 06.24 & -27 & 44 & 48.6 & 23.76 & 0.969 & - & H\alpha & 2.5 \\ 19400 & 03 & 32 & 16.49 & -27 & 44 & 40.0 & 21.38 & 0.978 & 0.976 & H\alpha, [SII] & 3.0 \\ 19416 & 03 & 32 & 17.51 & -27 & 44 & 46.4 & 23.26 & 1.265 & - & [OIII], H\alpha, [SII] & 3.0 \\ 19431 & 03 & 32 & 38.78 & -27 & 44 & 49.9 & 20.53 & 0.745 & 0.735 & H\alpha, [SII] & 3.0 \\ 19460 & 03 & 32 & 27.11 & -27 & 44 & 44.2 & 22.26 & 1.265 & - & [OIII], H\alpha, [SII] & 3.0 \\ 19476 & 03 & 32 & 27.11 & -27 & 44 & 44.2 & 22.26 & 1.885 & 1.877 & H\beta, [OIII] & 3.0 \\ 19556 & 03 & 32 & 16.31 & -27 & 44 & 41.8 & 22.56 & 1.120 & - & H\alpha & 2.5 \\ 19590 & 03 & 32 & 11.71 & -27 & 44 & 40.1 & 23.68 & 1.801 & - & [OIII] & 2.5 \\ 19630 & 03 & 32 & 10.07 & -27 & 44 & 39.9 & 23.63 & 2.596 & 2.616 & [OII] & 2.5 \\ 19633 & 03 & 32 & 35.12 & -27 & 44 & 39.9 & 22.03 & 0.970 & 0.967 & H\alpha & 2.5 \\ 19638 & 03 & 32 & 16.69 & -27 & 44 & 39.9 & 22.03 & 0.970 & 0.967 & H\alpha & 2.5 \\ 19772 & 03 & 32 & 15.80 & -27 & 44 & 31.4 & 22.56 & 1.110 & - & H\alpha & 2.5 \\ 19772 & 03 & 32 & 15.80 & -27 & 44 & 31.4 & 22.50 & 1.377 & - & H\beta, [OIII] & 2.5 \\ 19820 & 03 & 32 & 15.80 & -27 & 44 & 31.4 & 22.50 & 1.377 & - & H\beta, [OIII] & 2.5 \\ 19820 & 03 & 32 & 15.80 & -27 & 44 & 31.7 & 22.21 & 1.205 & - & H\alpha, [SII] & 3.0 \\ 19841 & 03 & 32 & 15.80 & -27 & 44 & 31.7 & 22.31 & 3.470 & 3.462 & [OII], H\alpha, [SII] & $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	[OII]	2.0
$\begin{array}{c} 19202 03 \ 32 \ 47.29 -27 \ 44 \ 53.2 23 \ 82 \\ 19206 03 \ 32 \ 47.48 -27 \ 44 \ 52.7 23.69 \\ 19235 03 \ 32 \ 47.48 -27 \ 44 \ 54.3 23.90 \\ 19235 03 \ 32 \ 47.48 -27 \ 44 \ 54.3 23.90 \\ 19265 03 \ 32 \ 28.42 -27 \ 44 \ 53.3 23.05 \\ 19265 03 \ 32 \ 28.42 -27 \ 44 \ 51.5 23.71 2.103 - H_{\alpha} \\ 19274 03 \ 32 \ 24.73 -27 \ 44 \ 51.5 23.71 2.103 - H_{\beta}, \left[\text{OIIII} \right] \\ 3.0 19314 03 \ 32 \ 24.73 -27 \ 44 \ 50.2 23.41 2.015 2.025 H_{\beta}, \left[\text{OIIII} \right] \\ 3.0 19326 03 \ 32 \ 06.24 -27 \ 44 \ 48.6 23.76 0.969 - H_{\alpha} \\ 19416 03 \ 32 \ 16.49 -27 \ 44 \ 48.6 23.76 0.969 - H_{\alpha} \\ 19416 03 \ 32 \ 17.51 -27 \ 44 \ 48.9 20.53 0.745 0.735 H_{\alpha}, \left[\text{SII} \right] \\ 3.0 19431 03 \ 32 \ 38.78 -27 \ 44 \ 48.9 20.53 0.745 0.735 H_{\alpha}, \left[\text{SII} \right] \\ 3.0 19460 03 \ 32 \ 27.11 -27 \ 44 \ 44.9 23.85 2.318 2.324 \left[\text{OIII} \right], \left[\text{OIIII} \right] 3.0 \\ 19476 03 \ 32 \ 20.04 -27 \ 44 \ 47.1 22.23 1.894 1.897 \left[\text{OIIII} \right] 3.0 \\ 19549 03 \ 32 \ 11.71 -27 \ 44 \ 44.2 22.76 1.885 1.877 H_{\beta}, \left[\text{OIIII} \right] 3.0 \\ 19550 03 \ 32 \ 14.60 -27 \ 44 \ 40.1 23.68 1.801 - \left[\text{OIIII} \right] 2.5 \\ 19630 03 \ 32 \ 14.60 -27 \ 44 \ 39.0 23.63 2.596 2.616 \left[\text{OIII} \right] 2.5 \\ 19633 03 \ 32 \ 16.69 -27 \ 44 \ 39.5 21.91 1.039 1.038 H_{\alpha}, \left[\text{SII} \right] 3.0 \\ 19646 03 \ 32 \ 39.49 -27 \ 44 \ 39.5 21.91 1.039 1.038 H_{\alpha}, \left[\text{SIII} \right] 3.0 \\ 19741 03 \ 32 \ 31.83 -27 \ 44 \ 35.3 23.39 1.898 1.883 \left[\text{OIII} \right] 4.0 \\ 19820 03 \ 32 \ 18.07 -27 \ 44 \ 33.4 22.50 1.377 - H_{\alpha}, \left[\text{OIIII} \right] 4.0 \\ 19820 03 \ 32 \ 15.50 -27 \ 44 \ 33.4 22.50 1.377 - H_{\alpha}, \left[\text{OIIII} \right] 4.0 \\ 19820 03 \ 32 \ 15.50 -27 \ 44 \ 33.4 22.50 1.377 - H_{\alpha}, \left[\text{OIIII} \right] 4.0 \\ 19820 03 \ 32 \ 15.80 -27 \ 44 \ 33.4 22.50 1.377 - H_{\alpha}, \left[\text{OIIII} \right] 4.0 \\ 19820 03 \ 32 \ 15.52 -27 \ 44 \ 33.4 22$						- 0.722		2.0
$\begin{array}{c} 19206 & 03 & 32 & 41.56 & -27 & 44 & 52.7 \\ 19235 & 03 & 32 & 47.48 & -27 & 44 & 54.3 \\ 19265 & 03 & 32 & 24.48 & -27 & 44 & 53.3 \\ 23.00 & 2.327 & - & OIII \\ - & & & & & & & & & & & & & & & & & &$								
$\begin{array}{c} 19265 03 \ 32 \ 28.42 -27 \ 44 \ 53.3 23.05 0.971 - \dot{H}\alpha \\ 19274 03 \ 32 \ 24.92 -27 \ 44 \ 51.5 23.71 2.103 - H\beta, \ [OIII] \\ 3.0 19314 03 \ 32 \ 24.73 -27 \ 44 \ 50.2 23.41 2.015 2.025 H\beta, \ [OIII] \\ 3.0 19326 03 \ 32 \ 06.24 -27 \ 44 \ 48.6 23.76 0.969 - H\alpha \\ 2.5 19400 03 \ 32 \ 16.49 -27 \ 44 \ 48.6 23.76 0.969 - H\alpha \\ 19416 03 \ 32 \ 17.51 -27 \ 44 \ 46.4 23.26 1.265 - [OIII], \ H\alpha, \ [SII] 3.0 \\ 19431 03 \ 32 \ 38.78 -27 \ 44 \ 48.9 20.53 0.745 0.735 H\alpha, \ [SII] 3.0 \\ 19460 03 \ 32 \ 27.11 -27 \ 44 \ 43.9 23.85 2.318 2.324 [OII], \ [OIII] 3.0 \\ 19476 03 \ 32 \ 20.04 -27 \ 44 \ 47.1 22.23 1.894 1.897 [OIII] 2.0 \\ 19549 03 \ 32 \ 11.71 -27 \ 44 \ 44.2 22.76 1.885 1.877 H\beta, \ [OIII] 3.0 \\ 19556 03 \ 32 \ 16.31 -27 \ 44 \ 41.8 22.56 1.120 - H\alpha 2.5 \\ 19590 03 \ 32 \ 14.60 -27 \ 44 \ 40.1 23.68 1.801 - [OIII] 2.5 \\ 19630 03 \ 32 \ 35.12 -27 \ 44 \ 39.9 23.63 2.596 2.616 [OII] 2.5 \\ 19638 03 \ 32 \ 35.12 -27 \ 44 \ 39.9 22.03 0.970 0.967 H\alpha 2.5 \\ 19646 03 \ 32 \ 31.83 -27 \ 44 \ 34.5 23.39 1.898 1.883 [OIII] 3.0 \\ 19772 03 \ 32 \ 15.80 -27 \ 44 \ 33.2 23.33 1.613 1.609 H\beta, \ [OIII] 3.0 \\ 19818 03 \ 32 \ 15.80 -27 \ 44 \ 31.7 23.31 3.470 - H\alpha, \ [SII] 3.0 \\ 19820 03 \ 32 \ 15.80 -27 \ 44 \ 31.7 23.31 3.470 3.462 [OIII] H\alpha, \ [SII] 3.0 \\ 19824 03 \ 32 \ 15.80 -27 \ 44 \ 31.7 23.31 3.470 3.462 [OIII] 4.0 \\ 19829 03 \ 32 \ 15.52 -27 \ 44 \ 32.8 23.27 1.205 - H\alpha, \ [SII] 3.0 \\ 19841 03 \ 32 \ 15.80 -27 \ 44 \ 31.7 23.31 3.470 3.462 [OIII] H\alpha, \ [SII] 3.0 \\ 19841 03 \ 32 \ 15.80 -27 \ 44 \ 31.4 22.50 1.377 - H\beta, \ [OIII] H\alpha, \ [SII] 3.0 \\ 19840 03 \ 32 \ 15.80 -27 \ 44 \ 31.7 23.31 3.470 3.462 [OIII] H\alpha, \ [SII] 3.0 \\ 19866 03 \ 32 \ 15.80 -27 \ 44 \ 31.7 23.31 3.470 3.462 [OIII] $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	$H\alpha$	2.5
19431 03 32 38.78 -27 44 48.9 20.53 0.745 0.735 $\dot{H}\alpha$, [SII] 3.0 19460 03 32 27.11 -27 44 43.9 23.85 2.318 2.324 [OII], [OIII] 3.0 19476 03 32 20.04 -27 44 47.1 22.23 1.894 1.897 [OIII] 2.0 19549 03 32 11.71 -27 44 44.2 22.76 1.885 1.877 $\dot{H}\beta$, [OIII] 3.0 19556 03 32 16.31 -27 44 41.8 22.56 1.120 - $\dot{H}\alpha$ 2.5 19590 03 32 14.60 -27 44 40.1 23.68 1.801 - [OIII] 2.5 19630 03 32 19.07 -27 44 39.0 23.63 2.596 2.616 [OII] 2.5 19633 03 32 35.12 -27 44 39.5 21.91 1.039 1.038 $\dot{H}\alpha$, [SII] 3.0 19638 03 32 16.69 -27 44 39.9 22.03 0.970 0.967 $\dot{H}\alpha$ 2.5 19640 03 32 39.49 -27 44 40.0 23.66 0.677 - $\dot{H}\alpha$, [SIII] 3.0 19741 03 32 31.83 -27 44 35.3 23.39 1.898 1.883 [OIII] 2.5 19772 03 32 15.80 -27 44 34.5 23.19 1.107 - $\dot{H}\alpha$ 2.5 19797 03 32 26.16 -27 44 33.4 22.50 1.377 - $\dot{H}\beta$, [OIII] 3.0 19818 03 32 18.07 -27 44 37.9 22.26 1.113 1.609 $\dot{H}\beta$, [OIII] 3.0 19820 03 32 15.23 -27 44 37.9 22.26 1.113 1.109 $\dot{H}\alpha$, [SII] 4.0 19820 03 32 15.23 -27 44 31.7 23.31 3.470 3.462 [OII] 2.5 19829 03 32 15.52 -27 44 33.1 21.57 0.737 0.736 $\dot{H}\alpha$ 2.0 19866 03 32 31.08 -27 44 33.1 21.57 0.737 0.736 $\dot{H}\alpha$ 2.0 19866 03 32 31.08 -27 44 33.2 22.74 1.222 1.223 [OIII], $\dot{H}\alpha$ 3.0 19866 03 32 18.04 -27 44 31.4 23.00 1.376 1.227 $\dot{H}\alpha$ 2.5						0.976		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						- 0.735		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							[OII], [OIII]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
19590 03 32 14.60 -27 44 40.1 23.68 1.801 - [OIII] 2.5 19630 03 32 19.07 -27 44 39.0 23.63 2.596 2.616 [OII] 2.5 19633 03 22 35.12 -27 44 39.5 21.91 1.039 1.038 $H\alpha$, [SII] 3.0 19638 03 32 16.69 -27 44 39.9 22.03 0.970 0.967 $H\alpha$ 2.5 19646 03 32 39.49 -27 44 40.0 23.66 0.677 - $H\alpha$, [SIII] $H\alpha$, [SIII] 2.5 19772 03 32 15.80 -27 44 35.3 23.39 1.898 1.883 [OIII] 2.5 19772 03 32 15.80 -27 44 34.5 23.19 1.107 - $H\alpha$ 2.5 19797 03 32 26.16 -27 44 33.2 23.33 1.613 1.609 $H\beta$, [OIII] 3.0 19818 03 32 18.07 -27 44 37.9 22.26 1.113 1.109 $H\alpha$, [SII] 4.0 19820 03 32 15.23 -27 44 31.7 23.31 3.470 3.462 [OIII] 2.5 19829 03 32 15.52 -27 44 33.2 23.27 1.205 - $H\alpha$, [SII] 3.0 19841 03 32 14.78 -27 44 33.1 21.57 0.737 0.736 $H\alpha$ 2.0 19866 03 32 31.08 -27 44 33.1 21.57 0.737 0.736 $H\alpha$ 2.0 19866 03 32 31.08 -27 44 33.2 22.74 1.222 1.223 [OIII], $H\alpha$ 3.0 19905 03 32 18.04 -27 44 31.4 23.00 1.376 1.227 $H\alpha$ 2.5								
19630 03 32 19.07 -27 44 39.0 23.63 2.596 2.616 OIII 2.5 19633 03 32 35.12 -27 44 39.5 21.91 1.039 1.038 Hα, [SII] 3.0 19638 03 32 16.69 -27 44 39.9 22.03 0.970 0.967 Hα 2.5 19646 03 32 39.49 -27 44 40.0 23.66 0.677 - Hα, [SIII]λ9532 3.0 19741 03 32 31.83 -27 44 35.3 23.39 1.898 1.883 [OIII] 2.5 19772 03 32 15.80 -27 44 34.5 23.19 1.107 - Hα 2.5 19797 03 32 26.16 -27 44 33.2 23.33 1.613 1.609 Hβ, [OIII] 3.0 19818 03 32 18.07 -27 44 33.4 22.50 1.377 - Hβ, [OIII], Hα, [SII] 4.0 19820 03 32 15.23 -27 44 31.7 23.31 3.470 3.462 [OII] 2.5 19829 03 32 15.52 -27 44 32.8 23.27 1.205 - Hα, [SII] 3.0 19841 03 32						_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$03\ 32\ 19.07$	-27 44 39.0	23.63	2.596	2.616	[OII]	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							[OII]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
19905 03 32 18.04 -27 44 31.4 23.00 1.376 1.227 $\text{H}\alpha$ 2.5								
	19908	$03\ 32\ 47.88$	-27 44 33.2	22.60	2.067	_	[OIII]	2.5
19914 03 32 17.95 -27 44 31.4 22.34 1.228 1.223 $\text{H}\alpha$ 2.5								
19959 03 32 25.76 -27 44 30.8 21.23 0.895 0.891 Hα 2.0 19962 03 32 05.39 -27 44 29.2 22.52 1.052 0.910 Hα 2.5								
20061 03 32 41.40 -27 44 23.8 23.94 2.000 - [OII], [OIII] 2.5								
20168 03 32 36.03 -27 44 23.7 21.54 1.056 1.038 $\text{H}\alpha$ 2.5	20168	03 32 36.03	-27 44 23.7	21.54	1.056	1.038	$H\alpha$	2.5

TABLE 1 — Continued

			TABLE 1	Contin	aca		
Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	z_{grism} (5)	z_{spec} (6)	Lines (7)	Qual (8)
20180	03 32 35.70	-27 44 19.9	23.19	0.936	_	$H\alpha$, [SII]	3.0
20189	$03\ 32\ 09.85$	-27 44 19.1	23.82	2.172	_	$H\beta$, [OIII]	3.0
20213	03 32 26.13	-27 44 18.8	23.22	2.030	2.021	_ TT	2.0
20219	03 32 22.58	-27 44 25.8	19.48	0.743	0.738	$H\alpha$	$\frac{2.5}{3.0}$
20237 20239	03 32 20.11 03 32 42.05	-27 44 22.4 -27 44 21.2	21.09 21.90	$1.210 \\ 1.150$	1.217 1.152	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
20242	03 32 47.28	-27 44 21.2	23.90	2.149	-	[OII], [OIII]	2.5
20299	03 32 35.34	-27 44 19.2	22.42	1.232	1.224	$H\alpha$	2.5
20341	03 32 35.32	-27 44 17.2	23.58	1.331		$H\alpha$	2.5
20343	03 32 10.18	-27 44 16.3	22.66	2.309	2.304	[OIII]	2.5
20357 20403	03 32 37.69	-27 44 16.1	22.15 22.18	1.214	-1.299	$H\alpha$, [SII]	$\frac{3.0}{2.5}$
20403	03 32 33.77 03 32 10.91	-27 44 17.4 -27 44 14.9	21.54	$\frac{1.309}{2.506}$	1.299 1.613	$H\alpha$ [OII]	$\frac{2.5}{2.5}$
20482	03 32 46.18	-27 44 09.5	23.69	1.963	-	$H\beta$, [OIII]	3.0
20495	03 32 11.86	-27 44 13.3	21.40	1.282	1.325	$_{ m Hlpha}$	2.5
20522	$03\ 32\ 09.77$	-27 44 08.8	23.45	0.859	_	$H\alpha$	2.0
20534	03 32 45.74	-27 44 09.7	23.49	1.144	1.142	$H\alpha$	2.5
20540	03 32 24.01	-27 44 08.2	23.48	1.614	1.610	$H\beta$, [OIII]	3.0
$20579 \\ 20587$	03 32 14.28 03 32 14.98	-27 44 09.7 -27 44 08.1	23.26 23.51	$0.970 \\ 2.637$	-2.673	$H\alpha$ [OII]	$2.5 \\ 2.5$
20628	03 32 14.98	-27 44 03.1	$\frac{23.31}{21.97}$	$\frac{2.037}{1.617}$	1.901	$H\beta$, [OIII]	3.0
20636	03 32 46.91	-27 44 06.8	21.69	1.141	1.146	$H\alpha$, [SII]	3.0
20639	03 32 37.40	-27 44 06.9	21.43	1.024	1.017	$H\alpha$	2.5
20694	$03\ 32\ 34.57$	-27 44 04.5	22.70	0.933	_	$_{ m H}\alpha$	2.0
20742	$03\ 32\ 12.15$	-27 44 02.6	23.67	1.250	_	$H\alpha$, [SII]	3.0
20780	03 32 05.41	-27 44 01.6	22.48	0.790	_	$H\alpha$	2.5
20795	03 32 16.52	-27 44 00.4	23.25	1.260	_	$H\alpha$, [SII]	3.0
$20831 \\ 20834$	03 32 08.27	-27 44 00.4	23.24 23.31	1.600	- 1 062	[OIII]	$\frac{2.5}{2.5}$
20861	03 32 45.18 03 32 41.11	-27 44 01.3 -27 43 58.5	23.31 23.27	1.925 2.191	1.962	$[OIII]$ $[OIII]$ $H\beta$, $[OIII]$	3.0
20920	03 32 46.34	-27 43 56.5	22.96	0.984	0.979	$H\alpha$, [SII]	4.0
20927	03 32 03.79	-27 43 56.1	23.07	0.956	-	$H\alpha$	2.5
21004	$03\ 32\ 11.82$	-27 43 55.2	23.17	1.231	_	[OIII], $H\alpha$	3.0
21056	03 32 21.80	-27 43 52.3	23.92	1.309	_	$H\alpha$	2.5
21098	03 32 31.52	-27 43 50.8	23.41	2.189	2.193	$[OII], H\beta, [OIII]$	4.0
21112	03 32 34.13	-27 43 50.3	23.75 22.18	1.992	-0.807	$[OII], H\beta, [OIII]$	$\frac{4.0}{2.0}$
$21118 \\ 21123$	03 32 05.12 03 32 32.14	-27 43 51.0 -27 43 49.8	$\frac{22.18}{22.58}$	$0.809 \\ 0.980$	0.807 0.973	$H\alpha$, [SII] $H\alpha$	$\frac{2.0}{2.0}$
21133	03 32 07.16	-27 43 55.9	20.97	1.217	-	$H\alpha$	2.5
21162	$03\ 32\ 23.95$	-27 43 49.0	22.22	1.310	1.311	[OIII], $H\alpha$, [SII]	4.0
21226	03 32 32.33	-27 43 45.8	23.37	1.022		$H\alpha$	2.5
21236	03 32 43.63	-27 43 47.7	22.80	2.316	2.313	[OII], [OIII]	3.0
$21258 \\ 21282$	03 32 30.74 03 32 10.69	-27 43 45.3	23.30 22.43	$1.434 \\ 1.356$	-1.327	$H\beta$, [OIII], $H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
21299	03 32 41.34	-27 43 46.9 -27 43 44.1	23.02	0.984	-	$H\alpha$, [SII]	$\frac{2.5}{2.5}$
21307	03 32 31.50	-27 43 42.7	23.87	2.097	_	[OIII]	2.5
21321	03 32 38.83	-27 43 44.9	22.47	1.227	_	$H\alpha$	2.5
21329	$03 \ 32 \ 24.53$	-27 43 42.3	23.02	1.088	_	$H\alpha$	2.5
21354	03 32 08.10	-27 43 44.1	21.74	1.211	- 0.100	$H\alpha$	2.0
$21398 \\ 21464$	03 32 03.49 03 32 47.02	-27 43 40.5 -27 43 46.4	23.88 21.00	$3.129 \\ 1.179$	$3.132 \\ 1.178$	$[OII]$ $H\alpha$	$\frac{2.5}{2.5}$
21527	03 32 47.02	-27 43 40.4	23.21	1.179	-	$[OII]$, $H\beta$, $[OIII]$	4.0
21564	03 32 43.46	-27 43 36.5	23.45	2.078	_	$H\beta$, [OIII]	3.0
21568	03 32 17.51	-27 43 36.5	23.41	1.610	1.608	[OIII]	2.5
21579	$03\ 32\ 33.96$	-27 43 36.7	23.27	1.352	_	$H\alpha$	2.5
21594	03 32 14.68	-27 43 37.0	22.42	0.979	_	$H\alpha$, [SII]	3.0
21612	03 32 44.30	-27 43 35.7	23.69	1.430	_	$H\beta$, [OIII]	3.0
21616	03 32 15.41	-27 43 39.4 -27 43 34.5	22.03	1.563	_	[OIII] Hβ, [OIII]	2.5
$21624 \\ 21679$	03 32 21.65 03 32 43.41	-27 43 34.5 -27 43 34.6	$23.89 \\ 23.52$	$2.036 \\ 2.172$	_	$H\beta$, [OIII] $H\beta$, [OIII]	$\frac{3.0}{3.0}$
21681	03 32 49.24	-27 43 33.6	22.78	1.169	_	$H\alpha$	2.5
21688	03 32 03.98	-27 43 37.4	20.60	0.969	_	$H\alpha$	2.0
21699	$03\ 32\ 46.98$	-27 43 34.4	22.35	1.259	-	[OIII], $H\alpha$, [SII]	3.0
21786	03 32 04.37	-27 43 31.1	22.49	2.267	2.256	$[OII]$, $H\beta$, $[OIII]$	4.0
21792	03 32 17.27	-27 43 29.7	23.25	1.896	1.905	[OIII]	2.5
21826 21839	03 32 15.21 03 32 34.01	-27 43 30.0 -27 43 28.2	$22.88 \\ 23.63$	$0.747 \\ 1.602$	_	$H\alpha$ $H\beta$, [OIII]	$\frac{2.5}{3.0}$
21885	03 32 34.01	-27 43 26.2 -27 43 26.8	23.03 23.11	0.734	_	$H\alpha$, [OIII]	$\frac{3.0}{2.5}$
21888	03 32 10.97	-27 43 20.8	21.38	1.216	1.215	$H\alpha$, [SII]	3.0
21923	03 32 46.24	-27 43 26.3	23.61	1.247	-	$H\alpha$	2.5
21932	$03\ 32\ 40.40$	$-27\ 43\ 25.4$	23.99	1.248	_	[OIII]	2.5
21933	03 32 41.96	-27 43 27.0	23.17	0.778	0.767	$H\alpha$, [SII]	2.5
21963	03 32 38.60	-27 43 24.6	23.28	1.043	1 007	$H\alpha$, [SII]	3.0
21985	03 32 13.34	-27 43 24.3	23.34	1.296	1.297	[OIII], $H\alpha$	3.0
22005	03 32 40.33	-27 43 24.6	22.32	1.254	1.245	[OIII], $H\alpha$, [SII]	4.0

TABLE 1 — Continued

Source ID	RA	Dec	AB(F160W)	z_{grism}	z_{spec}	Lines	Qual
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
22007	03 32 22.73	-27 43 24.9	21.95	0.739	_	$H\alpha$, [SIII] λ 9532	3.0
$22048 \\ 22051$	03 32 46.14 03 32 12.48	-27 43 23.5 -27 43 21.4	$22.87 \\ 23.59$	1.262 1.288	_	$H\alpha$ $H\alpha$	$\frac{2.5}{2.5}$
22101	$03\ 32\ 26.38$	-27 43 21.5	23.02	1.112	1.110	$H\alpha$, [SII]	3.0
22123	03 32 29.47	-27 43 22.0	22.05	1.612	1.609	[OIII]	$\frac{2.5}{2.5}$
$ \begin{array}{r} 22219 \\ 22233 \end{array} $	03 32 38.29 03 32 43.04	-27 43 18.1 -27 43 19.3	23.13 21.21	$\frac{1.419}{0.756}$	-0.743	$egin{array}{c} H lpha \ H lpha \end{array}$	$\frac{2.5}{2.5}$
22246	$03\ 32\ 39.64$	-27 43 14.8	23.97	1.354	_	[OIII], $H\alpha$, [SII]	4.0
$\frac{22263}{22279}$	03 32 37.32 03 32 29.87	-27 43 14.9 -27 43 17.7	23.28 21.71	0.897 1.093	_	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.0}$
22304	03 32 45.71	-27 43 17.7	23.64	1.248	_	[OIII], $H\alpha$	3.0
22334	03 32 39.48	-27 43 14.1	22.55	1.174	-	$H\alpha$	2.5
22343 22350	03 32 09.55 03 32 43.82	-27 43 13.8 -27 43 12.6	$22.38 \\ 23.22$	1.017 1.342	1.017	$H\alpha$ [OIII], $H\alpha$	$\frac{2.5}{2.5}$
22354	$03\ 32\ 13.65$	-27 43 13.0	22.53	1.478	1.467	[OIII], $H\alpha$	3.0
22371	03 32 30.06	-27 43 18.9	20.65	1.102	1.098	$H\alpha$	2.0
$22376 \\ 22408$	03 32 15.76 03 32 27.09	-27 43 13.3 -27 43 11.6	23.04 22.30	1.738 1.111	_	$H\beta$, [OIII] $H\alpha$, [SII]	$\frac{3.0}{3.0}$
22428	$03\ 32\ 46.34$	-27 43 10.6	22.80	0.730	_	$H\alpha$	2.5
22435 22459	03 32 13.88 03 32 23.68	-27 43 12.3 -27 43 08.7	21.96 23.22	$\frac{2.030}{0.979}$	1.898	[OII], [OIII] Hα, [SII]	3.0 3.0
$\frac{22469}{22467}$	03 32 43.66	-27 43 08.1	23.79	2.100	_	$H\beta$, [OIII]	3.0
22470	03 32 41.24	-27 43 09.7	22.70	1.375	1.222	$H\alpha$	2.5
$ \begin{array}{r} 22511 \\ 22517 \end{array} $	03 32 30.75 03 32 20.95	-27 43 06.8 -27 43 06.4	$22.82 \\ 23.87$	$0.858 \\ 1.309$	$0.860 \\ 1.308$	$H\alpha$ $H\beta$, [OIII], $H\alpha$	$\frac{2.0}{3.0}$
22541	03 32 10.93	-27 43 09.9	21.70	1.012	1.016	$H\alpha$	2.5
22574	03 32 30.59	-27 43 05.9	23.52	1.376	_ 1 995	Нα	2.0
22593 22602	03 32 40.63 03 32 39.67	-27 43 08.3 -27 43 06.7	21.46 22.36	1.223 1.966	1.225 1.965	$H\alpha$ $H\beta$, [OIII]	$\frac{2.5}{3.0}$
22608	$03\ 32\ 22.45$	-27 43 03.8	23.42	2.292	_	$[OII]$, $H\beta$, $[OIII]$	3.0
$ \begin{array}{r} 22611 \\ 22621 \end{array} $	03 32 14.06 03 32 17.55	-27 43 03.7 -27 43 05.4	23.51 23.60	3.143 1.187	_	$egin{array}{l} [{ m OII}] \\ { m H}lpha \end{array}$	$\frac{2.0}{2.5}$
22641	03 32 17.33	-27 43 04.3	23.04	1.137	_	Ηα	$\frac{2.5}{2.5}$
22654	03 32 19.75	-27 43 08.7	23.03	1.486	-	$H\alpha$, [SII]	3.0
$22702 \\ 22775$	03 32 09.79 03 32 15.44	-27 43 08.6 -27 43 03.6	22.19 22.11	2.299 1.217	2.302	[OII], $H\beta$, [OIII] $H\alpha$	$\frac{4.0}{2.5}$
22794	$03\ 32\ 37.90$	-27 42 58.5	23.98	2.134	_	[OIII]	2.5
22795 22804	03 32 14.08 03 32 19.14	-27 42 58.8 -27 42 58.3	23.24 23.24	1.023 1.021	_	Hα Hα [SII]	$\frac{2.5}{3.0}$
22833	03 32 43.39	-27 42 58.3	$\frac{23.24}{22.93}$	0.980	_	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
22849	03 32 16.92	-27 41 44.3	23.55	1.671	-	[OIII]	2.5
22851 22855	03 32 17.17 03 32 35.84	-27 42 02.6 -27 40 59.4	23.65 20.38	$\frac{2.301}{0.738}$	-0.735	$H\beta$, [OIII] $H\alpha$, [SII], [SIII] λ 9532	$\frac{3.0}{4.0}$
$\frac{22857}{22857}$	03 32 18.86	-27 42 26.7	22.09	1.087	-	$H\alpha$	2.5
22889	03 32 39.12	-27 42 21.8	23.47	1.772	- 0.045	$H\beta$, [OIII]	3.0
$ \begin{array}{r} 22917 \\ 22934 \end{array} $	03 32 07.57 03 32 19.12	-27 42 26.1 -27 42 28.1	$22.53 \\ 23.92$	2.049 1.217	2.045	$H\beta$, [OIII] $H\alpha$	$\frac{3.0}{2.5}$
23028	$03\ 32\ 38.11$	-27 42 18.3	22.74	0.868	0.863	$_{ m Hlpha}$	2.5
23053	03 32 28.64	-27 42 33.5 -27 42 34.3	21.53 23.90	$1.035 \\ 0.748$	- 0.745	$H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
$23138 \\ 23170$	03 32 30.49 03 32 37.78	-27 42 34.3	23.31	2.976	$0.745 \\ 2.975$	[OII]	$\frac{2.5}{2.5}$
23187	03 32 31.63	-27 42 35.0	23.61	0.820	-	Hα	2.5
23207 23246	03 32 32.41 03 32 38.59	-27 41 50.1 -27 42 37.0	21.61 22.81	$1.300 \\ 1.250$	1.297 1.246	$H\beta$, [OIII], $H\alpha$, [SII] [OIII], $H\alpha$, [SII]	$\frac{3.0}{3.0}$
23311	$03\ 32\ 21.93$	-27 42 35.8	23.90	1.974	-	$H\beta$, [OIII]	3.0
23312	03 32 26.92	-27 42 39.7	21.92	1.597	_	$H\beta$, [OIII]	$\frac{2.5}{2.5}$
23341 23373	03 32 24.80 03 32 22.01	-27 42 40.6 -27 42 43.3	23.77 22.33	2.044 1.749	1.613	[OIII]	2.0
23375	$03\ 32\ 28.17$	-27 42 38.8	23.16	1.606	_	[OIII]	2.5
23381 23397	03 32 07.47 03 32 29.64	-27 42 36.1 -27 42 42.5	23.87 20.08	$\frac{2.055}{0.670}$	-0.668	[OII], [OIII] [SIII] λ 9069, λ 9532	$\frac{3.0}{3.0}$
23427	03 32 29.04	-27 42 42.5	23.62	1.228	-	$H\alpha$	$\frac{3.0}{2.5}$
23441	03 32 29.29	-27 42 44.8	22.25	1.040	1.040	$H\alpha$, [SII]	3.0
23451 23453	03 32 26.61 03 32 19.95	-27 42 41.1 -27 42 43.1	23.24 23.95	1.019 2.200	_	$H\alpha$ [OIII]	$\frac{2.5}{2.5}$
23465	03 32 19.93	-27 42 40.4	22.23	2.263	_	[OII], [OIII]	3.0
23486	03 32 28.41	-27 42 46.5	22.75	2.141	_	$[OII]$, $H\beta$, $[OIII]$	4.0
$23491 \\ 23514$	03 32 25.77 03 32 18.55	-27 42 47.6 -27 42 47.2	23.03 23.46	1.033 1.217	_	$egin{array}{c} H lpha \ H lpha \end{array}$	$\frac{2.0}{2.5}$
23565	$03\ 32\ 08.66$	-27 42 50.1	23.23	2.065	_	$H\beta$, [OIII]	3.0
23567 23583	03 32 32.88 03 32 25.88	-27 42 46.2 -27 42 38.3	23.48 23.73	$2.054 \\ 1.617$	_	[OIII]	$\frac{2.5}{2.0}$
23600	03 32 25.88	-27 42 38.3 -27 42 48.9	23.73 19.96	0.739	0.734	$H\alpha$, [SII]	$\frac{2.0}{3.0}$
23618	$03\ 32\ 19.70$	-27 42 49.4	23.46	2.067	_	$[OII]$, $H\beta$, $[OIII]$	3.0
23631	03 32 24.89	-27 42 50.7	23.54	2.249		$[OII], H\beta, [OIII]$	4.0

TABLE 1 — Continued

			TABLE 1	Contin	aca		
Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	$z_{grism} $ (5)	z_{spec} (6)	Lines (7)	Qual (8)
23632	$03\ 32\ 28.12$	-27 42 48.2	23.41	1.618	_	$H\beta$, [OIII]	3.0
23665	03 32 34.88	-27 42 45.4	23.83	1.361	_	[OIII], $H\alpha$, [SII]	3.0
23714	03 32 02.49	-27 42 50.6	22.80	2.081	2.078	$[OII]$, $H\beta$, $[OIII]$	4.0
23771 23810	03 32 29.01 03 32 14.63	-27 42 55.4 -27 42 56.1	20.56 23.46	$1.036 \\ 1.159$	_	$egin{array}{c} \mathrm{H}lpha \ \mathrm{H}lpha \end{array}$	$\frac{2.5}{2.0}$
23811	03 32 11.85	-27 42 54.9	23.74	$\frac{1.139}{2.327}$	_	[OII]	$\frac{2.0}{2.5}$
23817	03 32 07.87	-27 42 55.4	23.33	1.013	_	$H\alpha$	2.5
23845	$03\ 32\ 23.43$	-27 42 55.0	22.44	2.134	2.118	$H\beta$, [OIII]	3.0
23851	03 32 29.99	-27 42 52.5	23.95	1.043	_	$H\alpha$	2.5
23855	03 32 13.56	-27 42 56.4	22.68	1.018	1.018	$H\alpha$, [SII]	3.0
$23856 \\ 23862$	03 32 05.67 03 32 45.33	-27 42 53.5 -27 42 52.4	21.43 23.53	1.293 1.222	1.296	$H\beta$, [OIII], $H\alpha$, [SII] $H\alpha$	$\frac{3.0}{2.5}$
23917	03 32 45.33	-27 42 52.4	$\frac{23.93}{22.92}$	1.415	_	$H\alpha$, [SII]	$\frac{2.5}{2.5}$
23927	03 32 45.10	-27 42 55.7	21.94	1.037	_	$H\alpha$	2.0
23948	$03\ 32\ 29.92$	-27 42 58.5	22.82	1.493	_	$H\alpha$	2.0
23970	03 32 14.36	-27 42 58.6	22.18	1.021	_	$H\alpha$	2.0
23988	03 32 21.72	-27 42 55.0	23.51	2.289	_ _	$[OII], H\beta, [OIII]$	3.0
24020	03 32 28.76	-27 42 53.2	23.73	1.935		$H\beta$, [OIII]	$\frac{3.0}{2.5}$
$24042 \\ 24152$	03 32 27.02 03 32 38.82	-27 42 56.3 -27 40 22.8	$22.92 \\ 23.26$	$0.942 \\ 0.759$	_	$egin{array}{c} \mathrm{H}lpha \ \mathrm{H}lpha \end{array}$	$\frac{2.5}{2.5}$
24180	03 32 33.89	-27 40 25.9	23.41	0.993	_	$H\alpha$	2.5
24192	03 32 29.94	-27 43 01.5	21.34	1.348	1.356	$H\alpha$, [SII]	3.0
24204	$03\ 32\ 14.26$	-27 42 54.2	22.68	0.813	0.814	$H\alpha$, [SII]	3.0
24259	$03\ 32\ 33.81$	-27 40 23.3	23.96	1.871	_	[OIII]	2.5
24270	03 32 39.16	-27 40 26.5	20.42	0.776	0.771	$H\alpha$	2.5
24274	03 32 27.93	-27 42 45.7	21.91	1.490	1.610	[OIII]	2.5
24282	03 32 34.73	-27 40 26.5	23.54	1.511	_	$H\alpha$, [OIII]	$\frac{3.0}{2.0}$
$24358 \\ 24443$	03 32 37.93 03 32 31.22	-27 40 25.5 -27 40 52.1	$22.70 \\ 22.01$	$\frac{2.150}{1.330}$	_	$^{-}$ $^{\mathrm{H}\alpha}$, [SII]	3.0
24494	03 32 37.34	-27 40 41.9	23.63	1.360	_	$H\alpha$	$\frac{3.0}{2.5}$
24564	03 32 32.55	-27 40 58.2	22.18	0.787	_	$H\alpha$	2.0
24649	$03\ 32\ 31.83$	-27 40 53.4	23.25	1.226	-	$H\alpha$, [SII]	3.0
24682	$03\ 32\ 24.98$	-27 41 01.5	20.21	0.735	0.733	$\underline{\mathrm{H}}\alpha$, [SII]	3.0
24720	03 32 26.56	-27 41 01.5	23.12	1.164		$H\alpha$	2.0
24738	03 32 30.92	-27 40 58.3	21.47	0.747	0.742	Hα	2.5
$24740 \\ 24785$	03 32 34.75 03 32 33.03	-27 40 56.8 -27 40 48.0	22.30 23.69	2.227 1.138	_	$egin{array}{l} ext{OIII} \ ext{H} lpha \end{array}$	$\frac{2.5}{2.5}$
24796	03 32 21.15	-27 41 06.6	20.36	1.117	1.110	$H\alpha$, [SII]	3.0
24814	03 32 26.17	-27 41 00.9	22.99	1.046	_	$H\alpha$, [SII]	3.0
24844	$03\ 32\ 35.51$	-27 41 01.2	23.58	1.148	_	$H\alpha$	2.0
24851	03 32 25.61	-27 41 11.8	23.93	1.042	_	$H\alpha$, [SII]	3.0
24854	03 32 25.30	-27 41 12.7	22.59	2.625	_	[OII]	2.5
24884 24896	03 32 37.65 03 32 34.94	-27 40 51.5	$22.00 \\ 23.71$	$1.539 \\ 2.775$	-2.771	[OIII], $H\beta$ [OII]	$\frac{3.0}{2.5}$
24911	03 32 35.94	-27 41 06.8 -27 41 07.7	22.09	1.265	1.257	[OIII], $H\alpha$, [SII]	3.0
24927	03 32 29.29	-27 41 12.8	22.20	0.853	0.839	$H\alpha$	2.5
24943	$03\ 32\ 31.77$	-27 41 12.6	21.67	1.037	_	$H\alpha$	2.5
24985	$03\ 32\ 19.59$	-27 41 17.2	21.53	1.312	-	$H\beta$, $H\alpha$	2.5
24987	03 32 32.46	-27 40 56.5	21.42	1.261	-	$H\alpha$, [OIII], [SII]	4.0
24991	03 32 20.59	-27 41 12.2	22.59	2.047	2.040	$[OII]$, $H\beta$, $[OIII]$	3.0
$25090 \\ 25151$	03 32 23.72 03 32 34.39	-27 41 11.5 -27 41 24.3	23.87 23.85	$2.154 \\ 3.419$	_	$H\beta$, [OIII] [OII]	$\frac{3.0}{2.5}$
25187	03 32 34.68	-27 41 24.3	23.97	1.600	_	[OIII]	2.5
25199	03 32 33.24	-27 41 25.7	23.08	0.878	0.827	$H\alpha$, [SII]	3.0
25239	$03\ 32\ 34.88$	-27 41 24.8	23.61	2.308	_	$[OII]$, $H\beta$, $[OIII]$	3.0
25285	$03\ 32\ 32.29$	-27 41 26.3	22.67	2.333	2.320	$[OII], H\beta, [OIII]$	4.0
25341	03 32 34.39	-27 41 26.9	23.59	1.040	-	$H\alpha$, [SII]	3.0
25373	03 32 33.08	-27 41 28.4	22.83	1.048	1.044	$H\alpha$	2.5
$25380 \\ 25381$	03 32 36.88 03 32 16.68	-27 41 34.0 -27 41 33.0	23.15 23.92	2.318 2.079	_	[OIII]	$\frac{2.5}{2.0}$
25391	03 32 10.08	-27 41 33.0	23.28	1.419	_	$H\beta$, [OIII], $H\alpha$, [SII]	3.0
25421	03 32 29.73	-27 41 34.3	23.55	1.235	_	$H\alpha$	2.5
25463	03 32 39.55	-27 41 38.8	23.97	1.383	_	$H\alpha$, [OIII]	3.0
25464	$03\ 32\ 39.04$	-27 41 32.4	21.73	0.737	_	$H\alpha$	2.5
25466	03 32 14.64	-27 41 36.5	21.34	1.354	_	$H\alpha$	2.5
25478	03 32 26.79	-27 41 29.5	23.22	2.430	_	[OII]	2.5
$25508 \\ 25514$	03 32 37.20 03 32 38.73	-27 41 39.3 -27 41 39.6	$22.72 \\ 23.07$	1.243 2.313	_	$H\alpha$ [OII], $H\beta$, [OIII]	$\frac{2.5}{4.0}$
25514 25521	03 32 38.73	-27 41 39.0	23.88	1.326	$\frac{-}{1.325}$	$H\beta$, [OIII], $H\alpha$	3.0
25573	03 32 33.40	-27 41 38.9	20.73	1.042	1.045	$H\alpha$, [SII]	3.0
25602	$03\ 32\ 17.77$	-27 41 40.4	21.89	1.328	1.326	$H\alpha$	2.0
25651	$03\ 32\ 15.12$	-27 41 43.8	22.44	1.418	_	$H\alpha$, [SII]	2.5
25716	03 32 25.57	-27 41 44.0	23.17	1.236	_	$H\alpha$, [SII]	2.5
25759	03 32 35.24	-27 41 41.7	23.71	1.427	1 206	[OIII], $H\alpha$	3.0
25784	03 32 32.46	-27 41 51.4	22.77	1.292	1.296	[OIII], $H\alpha$, [SII]	3.0

TABLE 1 — Continued

Source ID (1)	RA (2)	Dec (3)	AB(F160W) (4)	$z_{grism} $ (5)	z_{spec} (6)	Lines (7)	Qual (8)
25793	03 32 28.38	-27 41 49.9	22.76	1.767	_	$H\beta$, [OIII]	3.0
25833	$03\ 32\ 11.54$	-27 41 46.7	22.65	1.489	_	[OIII]	2.0
25839	$03\ 32\ 18.91$	-27 41 37.4	23.98	2.300	2.306	$[OII]$, $H\beta$	3.0
25841	$03\ 32\ 16.88$	-27 41 47.4	23.98	1.526	_	[OIII]	2.5
25850	$03 \ 32 \ 18.64$	-27 41 44.4	23.00	1.330	_	$H\alpha$	2.5
25870	$03 \ 32 \ 27.25$	-27 41 25.7	23.33	2.457	_	[OII]	2.0
25878	$03 \ 32 \ 18.94$	-27 41 51.8	21.08	0.978	0.976	$H\alpha$, [SII]	3.0
25888	$03 \ 32 \ 27.43$	-27 41 54.4	23.05	0.958	0.968	$H\alpha$	2.5
25896	$03 \ 32 \ 14.14$	-27 41 52.1	23.12	2.320	_	$[OII], H\beta, [OIII]$	4.0
25915	$03 \ 32 \ 26.47$	-27 41 53.0	23.43	1.295	_	$H\alpha$, [SII]	2.5
25966	$03\ 32\ 33.32$	-27 42 03.9	23.69	1.709	_	[OIII]	2.5
26050	$03 \ 32 \ 13.89$	-27 41 58.2	22.62	1.313	_	$H\alpha$	2.5
26068	03 32 13.19	-27 41 58.0	22.37	1.302	_	$H\alpha$	2.5
26085	$03\ 32\ 17.77$	-27 42 00.4	23.52	1.740	_	$H\beta$, [OIII]	4.0
26110	$03\ 32\ 32.85$	-27 41 55.7	23.32	0.953	0.951	$H\alpha$	2.5
26134	$03\ 32\ 20.92$	-27 42 00.8	23.76	1.705	_	[OIII]	2.5
26135	$03\ 32\ 31.75$	-27 41 57.4	22.00	1.962	_	OIII	2.0
26136	03 32 34.90	-27 41 52.8	23.45	2.306	2.313	OII , $H\beta$, $OIII$	3.0
26185	03 32 35.29	-27 42 01.8	22.35	1.086		$H\alpha$	2.5
26209	03 32 33.12	-27 41 54.9	22.39	0.956	_	$H\alpha$, [SII]	3.0
26213	$03\ 32\ 18.27$	-27 42 04.1	22.51	0.850	0.848	$H\alpha$, SII	3.0
26222	03 32 26.80	-27 41 56.3	22.18	1.617	1.614	[OIII]	2.5
26255	03 32 34.60	-27 42 01.2	21.81	1.046	1.042	$H\alpha$, [SII]	3.0
26294	03 32 22.42	-27 42 08.9	23.70	1.217	_	[OIII], $H\alpha$, [SII]	4.0
26300	03 32 33.83	-27 41 36.8	22.30	1.051	_	$H\alpha$	2.5
26301	03 32 26.33	-27 42 09.6	22.41	0.936	0.938	$H\alpha$, [SII]	4.0
26306	03 32 20.58	-27 42 02.7	23.77	1.336		$H\alpha$	2.5
26330	$03\ 32\ 37.67$	-27 42 06.6	22.68	0.850	_	$H\alpha$	2.0
26364	03 32 26.48	-27 42 02.2	23.77	1.769	_	$H\beta$, [OIII]	3.0
26491	03 32 21.84	-27 42 13.8	23.56	1.019	_	$H\alpha$	2.5
26518	$03\ 32\ 22.51$	-27 42 12.0	23.54	1.312	_	[OIII], $H\alpha$	3.0
26552	03 32 17.67	-27 42 08.8	22.54	1.187	1.188	$H\alpha$	2.5
26554	03 32 33.87	-27 42 03.9	21.38	1.607	1.604	$H\beta$, [OIII]	3.0
26629	03 32 39.26	-27 42 19.2	22.28	1.770	1.764	$H\beta$, OIII	4.0
26637	03 32 25.16	-27 42 18.7	21.43	1.610	1.617	$H\beta$, OIII	4.0
26699	03 32 38.75	-27 42 18.3	22.79	1.433	_	$H\beta$, $H\alpha$	3.0
26704	03 32 29.56	-27 42 24.7	22.80	0.969	_	$H\alpha$	2.5
26751	03 32 37.68	-27 42 19.3	22.19	1.437	1.436	$H\alpha$, [SII]	3.0
26755	03 32 34.28	-27 42 24.9	20.20	1.090	1.088	$H\alpha$	2.5
26788	03 32 23.88	-27 42 22.1	23.15	1.420	_	$H\alpha$, [SII]	3.0
26801	03 32 21.60	-27 42 33.2	23.56	1.768	_	[OIII]	2.5
26823	03 32 16.03	-27 42 27.7	23.69	2.022	_	$H\beta$, [OIII]	3.0
26829	03 32 12.19	-27 42 27.0	22.55	0.734	_	$H\alpha$	2.0
26833	03 32 13.75	-27 42 55.8	23.98	2.638	_	[OII]	2.5

Note. — [OII] and [OIII] in column 7 above refer always to the [OII] $\lambda\lambda3727+3729$ and [OIII] $\lambda\lambda4959+5007$ emission line doublets.

TABLE 2 GRISM-IDENTIFIED PAIRS IN GOODS-S

Source ID 1 (Guo+ 2013)	Source ID 2 (Guo+ 2013)	RA Source 1	Dec Source 1	RA Source 2	Dec Source 2	z_1	z_2	Angular Sep. (arcsec)	Proj. Sep. (kpc)	Mass Ratio M_1/M_2
722	726	53.096496	-27.925050	53.096385	-27.925972	1.145	1.146	3.338	27.48	0.847
1708	1695	53.241265	-27.903526	53.241173	-27.903265	1.050	1.045	0.984	7.963	1.086
2524	2526	53.182411	-27.890996	53.181927	-27.891138	1.458	1.465	1.623	13.72	0.974
3606	3689	53.078473	-27.878643	53.078256	-27.878455	0.987	0.987	0.967	7.720	0.981
3707	3952	53.071376	-27.877464	53.072763	-27.876321	1.099	1.100	6.034	49.31	0.845
5948	5983	53.055988	-27.855096	53.056169	-27.855367	1.227	1.226	1.133	9.426	0.948
6223	6195	53.173546	-27.852423	53.175354	-27.852610	0.967	0.962	5.794	45.99	0.971
7129	7172	53.193578	-27.843512	53.193960	-27.843195	2.003	2.011	1.668	13.96	1.011
8472	8452	53.114217	-27.831856	53.113214	-27.832735	1.295	1.293	4.495	37.64	0.951
10987	11071	53.093517	-27.809712	53.093552	-27.809287	2.327	2.334	1.534	12.56	0.963
11160	11218	53.105939	-27.808401	53.106022	-27.807946	2.014	2.020	1.659	13.87	1.007
16113	16275	53.100546	-27.773643	53.101308	-27.772737	1.014	1.016	4.066	32.68	0.952
18095	18109	53.037376	-27.757329	53.037104	-27.757242	2.025	2.017	0.921	7.701	1.044
18967	18795	53.156543	-27.750777	53.157256	-27.751523	1.605	1.607	3.517	29.80	0.908
21681	21576	53.205173	-27.726024	53.205371	-27.726181	1.169	1.163	0.847	6.994	1.091
21839	21897	53.141731	-27.724507	53.142011	-27.724565	1.602	1.602	0.916	7.761	0.956
21932	22005	53.168360	-27.723737	53.168083	-27.723513	1.248	1.245	1.196	9.971	0.949
22795	23970	53.058673	-27.716358	53.059861	-27.716288	1.023	1.022	3.794	30.54	0.979
23632	24274	53.117190	-27.713409	53.116405	-27.712703	1.618	1.610	3.566	30.21	0.868
24564	24904	53.135636	-27.682839	53.136296	-27.683073	0.787	0.787	2.266	16.92	0.974

REFERENCES

- Ashby, M. L. N., Willner, S. P., Fazio, G. G., et al. 2013, ApJ, 769, 80
- Atek, H., Siana, B., Scarlata, C., et al. 2011, ApJ, 743, 121
- Balestra, I., Mainieri, V., Popesso, P., et al. 2010, A&A, 512, A12 Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
- Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2010, ApJ, 709, L133
- Brammer, G., Pirzkal, N., McCullough, P., & MacKenty, J. 2014, Time-varying Excess Earth-glow Backgrounds in the WFC3/IR Channel, Tech. rep.
- Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503
- Brammer, G. B., van Dokkum, P. G., Franx, M., et al. 2012, ApJS, 200, 13
- Cardamone, C. N., van Dokkum, P. G., Urry, C. M., et al. 2010, ApJS, 189, 270
- Cooper, M. C., Yan, R., Dickinson, M., et al. 2012, MNRAS, 425, 2116
- Croom, S. M., Warren, S. J., & Glazebrook, K. 2001, MNRAS, 328, 150
- Daddi, E., Cimatti, A., Renzini, A., et al. 2004, ApJ, 600, L127 Dahlen, T., Mobasher, B., Faber, S. M., et al. 2013, ApJ, 775, 93
- Davis, M., Guhathakurta, P., Konidaris, N. P., et al. 2007, ApJ, 660, L1
- Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950
- Fontana, A., Dunlop, J. S., Paris, D., et al. 2014, ArXiv e-prints, arXiv:1409.7082
- Galametz, A., Grazian, A., Fontana, A., et al. 2013, ApJS, 206, 10Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ, 600, L93
- Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35
- Guo, Y., Ferguson, H. C., Giavalisco, M., et al. 2013, ApJS, 207, 24
- Hsu, L.-T., Salvato, M., Nandra, K., et al. 2014, ArXiv e-prints, arXiv:1409.7119
- Huang, J.-S., Faber, S. M., Daddi, E., et al. 2009, ApJ, 700, 183
 Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011,
 ApJS, 197, 36
- Kriek, M., van Dokkum, P. G., Franx, M., et al. 2007, ApJ, 669, 776
- Kümmel, M., Walsh, J. R., Pirzkal, N., Kuntschner, H., & Pasquali, A. 2009, PASP, 121, 59
- Kurk, J., Cimatti, A., Daddi, E., et al. 2012, VizieR Online Data Catalog, 354, 99063
- Laidler, V. G., Papovich, C., Grogin, N. A., et al. 2007, PASP, 119, 1325
- Le Fèvre, O., Vettolani, G., Paltani, S., et al. 2004, A&A, 428, 1043
- Le Fèvre, O., Guzzo, L., Meneux, B., et al. 2005, A&A, 439, 877
 Lilly, S. J., Le Fèvre, O., Renzini, A., et al. 2007, ApJS, 172, 70
 López-Sanjuan, C., Le Fèvre, O., Tasca, L. A. M., et al. 2013, A&A, 553, A78
- Masters, D., & Capak, P. 2011, PASP, 123, 638

- Mignoli, M., Cimatti, A., Zamorani, G., et al. 2005, A&A, 437, 883
- Newman, A. B., Ellis, R. S., Bundy, K., & Treu, T. 2012, ApJ, 746, 162
- Nonino, M., Dickinson, M., Rosati, P., et al. 2009, ApJS, 183, 244
 Patel, S. G., Kelson, D. D., Holden, B. P., Franx, M., & Illingworth, G. D. 2011, ApJ, 735, 53
- Ravikumar, C. D., Puech, M., Flores, H., et al. 2007, A&A, 465, 1099
- Salvato, M., Hasinger, G., Ilbert, O., et al. 2009, ApJ, 690, 1250 Salvato, M., Ilbert, O., Hasinger, G., et al. 2011, ApJ, 742, 61
- Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2014, ArXiv e-prints, arXiv:1408.2521
- Silverman, J. D., Mainieri, V., Salvato, M., et al. 2010, ApJS, 191, 124
- Silverman, J. D., Kashino, D., Arimoto, N., et al. 2014, ArXiv e-prints, arXiv:1409.0447
- Straughn, A. N., Kuntschner, H., Kümmel, M., et al. 2011, AJ, 141, 14
- Strolger, L.-G., Riess, A. G., Dahlen, T., et al. 2004, ApJ, 613, 200
- Szokoly, G. P., Bergeron, J., Hasinger, G., et al. 2004, ApJS, 155, $271\,$
- Tasca, L. A. M., Le Fèvre, O., López-Sanjuan, C., et al. 2014, A&A, 565, A10
- Tonry, J., & Davis, M. 1979, AJ, 84, 1511
- Trump, J. R., Weiner, B. J., Scarlata, C., et al. 2011, ApJ, 743, $144\,$
- Trump, J. R., Konidaris, N. P., Barro, G., et al. 2013, ApJ, 763, L6
- van der Wel, A., Franx, M., van Dokkum, P. G., & Rix, H.-W. 2004, ApJ, 601, L5
- van der Wel, A., Straughn, A. N., Rix, H.-W., et al. 2011, ApJ, 742, 111
- van der Wel, A., Franx, M., van Dokkum, P. G., et al. 2014, ApJ, 788, 28
- Vanzella, E., Cristiani, S., Dickinson, M., et al. 2008, A&A, 478,
- Vanzella, E., Giavalisco, M., Dickinson, M., et al. 2009, ApJ, 695, 1163
- Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., & Labbé, I. 2009, ApJ, 691, 1879
- Windhorst, R. A., Cohen, S. H., Hathi, N. P., et al. 2011, ApJS, 193, 27
- Wisnioski, E., Förster Schreiber, N. M., Wuyts, S., et al. 2014, ArXiv e-prints, arXiv:1409.6791
- Wolf, C., Meisenheimer, K., Kleinheinrich, M., et al. 2004, A&A, 421, 913
- Wuyts, S., van Dokkum, P. G., Franx, M., et al. 2009, ApJ, 706, 885
- Xue, Y. Q., Luo, B., Brandt, W. N., et al. 2011, ApJS, 195, 10