

Calcolo differenziale — Scheda di esercizi n. 1 2 Ottobre 2023 — Compito n. 00106

 $\label{eq:caselle} \textbf{Istruzioni} : \text{le prime due caselle } (\mathbf{V} \ / \ \mathbf{F}) \\ \text{permettono di selezionare la risposta vero/falso.} \\ \text{La casella "C" serve a correggere eventuali errori invertendo la risposta data.}$

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:				
Cognome:				
Cognome.				
Matricola:				

	1A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4B	4C	4D
\mathbf{V}																
\mathbf{F}																
\mathbf{C}																

1) Sia

 $E = \{ \text{multipli interi di 5} \}.$

- **1A)** Il numero x = 26 appartiene ad E.
- **1B)** Se x appartiene ad E, allora x+35 appartiene ad E.
- **1C)** Esiste il minimo di E.
- **1D)** L'insieme $\mathbb{N} \setminus E$ non è limitato superiormente.
- **2)** Sia

$$E = \{x \in \mathbb{R} : |x - 6| \le 6\} \setminus \{0\}.$$

- **2A)** L'insieme E è un intervallo.
- **2B)** Il numero reale x = 7 non appartiene ad E.
- **2C)** L'insieme E è limitato superiormente.
- **2D)** L'insieme E ha massimo.

3) Sia

$$E = \{x \in \mathbb{R} : x^2 - 16x + 60 \le 0\}.$$

- **3A)** L'insieme E non è vuoto.
- **3B)** L'insieme E non è un intervallo.
- **3C)** L'insieme $E \setminus \{8\}$ non è un intervallo.
- **3D)** L'insieme E non ha massimo.
- **4)** Sia

$$E = \{ x \in \mathbb{Q} : |x| \le \sqrt{3} \}.$$

- **4A)** Il numero $x = \sqrt{3}$ appartiene ad E.
- **4B)** Il numero x = -1 appartiene ad E.
- **4C)** L'insieme E è limitato.
- **4D)** Non esiste il massimo di E.

_					
,	\sim	-	10	+ ~	
	,,,	CE	, , ,	1.←	•

 \square Garroni [A, F] \square Orsina [G, Z]

Cognome	Nome	Matricola	Compito 00106
---------	------	-----------	---------------

$$E = \{x \in \mathbb{R} : -6 \le x \le 4\} \setminus \{0\}.$$

- a) Dimostrare che l'insieme E non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E. c) Dimostrare che non esiste il minimo di $E \cap [0,2]$.
- \mathbf{d}) Dimostrare che non esiste il minimo dell'insieme

$$F=\{x^2,\ x\in E\}\,.$$

Cognome	Nome	Matricola	Compito 00106
---------	------	-----------	---------------

$$E = \{x \in \mathbb{R} : (x - 9)(x - 10)(x - 11) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli. c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E\cap \mathbb{Q}$ ha massimo, e che l'insieme $E\cap \mathbb{N}$ ha minimo.

Soluzioni del compito 00106

1) Sia

$$E = \{ \text{multipli interi di 5} \}.$$

1A) Il numero x = 26 appartiene ad E.

Falso: Il numero x = 26 non appartiene ad E dato che non è un multiplo di 5; infatti, dividendo x per 5 si ottiene come resto 1 (e non 0).

1B) Se x appartiene ad E, allora x + 35 appartiene ad E.

Vero: Se x appartiene ad E, x è un multiplo intero di 5; esiste quindi un intero k tale che x = 5k. Dato che $35 = 7 \cdot 5$, si ha quindi

$$x + 35 = 5k + 7 \cdot 5 = (k+7) \cdot 5$$

e quindi x + 35 appartiene ad E perché è un multiplo intero di 5.

1C) Esiste il minimo di E.

Vero: Dato che E è un sottoinsieme non vuoto di \mathbb{N} , E ammette minimo per il principio di buon ordinamento. Un altro modo per dimostrare che E ha minimo è osservare che

$$E = \{0, 5, 10, 15, 20, \ldots\},\$$

e quindi il minimo di E esiste ed è 0.

1D) L'insieme $\mathbb{N} \setminus E$ non è limitato superiormente.

Vero: Se $\mathbb{N} \setminus E$ fosse limitato superiormente, esisterebbe N in \mathbb{N} tale che se x appartiene a $\mathbb{N} \setminus E$, allora x < N. Pertanto, x = N appartiene ad E. Ma se N appartiene ad E, allora N + 1 non vi appartiene (perché dividendo N per 5 si ottiene come resto 1, e quindi N + 1 non è divisibile per 5). Abbiamo dunque un assurdo: tutti i numeri di $\mathbb{N} \setminus E$ sono strettamente minori di N, ma N + 1 > N appartiene a $\mathbb{N} \setminus E$. Ne segue quindi che $\mathbb{N} \setminus E$ non è limitato.

$$E = \{x \in \mathbb{R} : |x - 6| \le 6\} \setminus \{0\}.$$

Si ha

$$|x-6| \le 6 \iff -6 \le x-6 \le 6 \iff 0 \le x \le 12$$
,

cosicché

$$E = [0, 12] \setminus \{0\} = (0, 12].$$

2A) L'insieme E è un intervallo.

Vero: Per la (1), si ha che E = (0, 12] è un intervallo.

2B) Il numero reale x = 7 non appartiene ad E.

Falso: Dalla (1) segue che x = 7 appartiene ad E.

2C) L'insieme E è limitato superiormente.

Vero: Per la (1), l'insieme E è limitato superiormente.

2D) L'insieme E ha massimo.

Vero: Per la (1), l'insieme E ha M=12 come massimo.

$$E = \{x \in \mathbb{R} : x^2 - 16x + 60 \le 0\}.$$

Si ha

$$x^2 - 16x + 60 = 0$$
 \iff $x = 6, 10.$

Pertanto,

$$x^2 - 16x + 60 \le 0$$
 \iff $6 \le x \le 10$ \iff $x \in [6, 10]$.

Si ha quindi

(1)
$$E = [6, 10].$$

3A) L'insieme E non è vuoto.

Vero: Per la (1), l'insieme E non è vuoto.

3B) L'insieme E non è un intervallo.

Falso: Per la (1), l'insieme E è un intervallo.

3C) L'insieme $E \setminus \{8\}$ non è un intervallo.

Vero: Per la (1) si ha

$$E \setminus \{8\} = [6, 8) \cup (8, 10],$$

che non è un intervallo.

3D) L'insieme E non ha massimo.

Falso: Per la (1), l'insieme E ha M=10 come massimo.

$$E=\left\{ x\in\mathbb{Q}:\left|x\right|\leq\sqrt{3}\right\} .$$

Sia ha

$$|x| \le \sqrt{3}$$
 \iff $-\sqrt{3} \le x \le \sqrt{3}$ \iff $x \in [-\sqrt{3}, \sqrt{3}],$

da cui segue che

$$(1) E = [-\sqrt{3}, \sqrt{3}] \cap \mathbb{Q}.$$

4A) Il numero $x = \sqrt{3}$ appartiene ad E.

Falso: Dato che $x = \sqrt{3}$ non è un numero razionale, x non appartiene ad E.

4B) Il numero x = -1 appartiene ad E.

Vero: Dato che x = -1 è un numero razionale, e che si ha

$$-\sqrt{3} \le -1 \le \sqrt{3} \,,$$

il numero x = 1 appartiene ad E.

4C) L'insieme E è limitato.

Vero: Dalla (1) segue che

$$E \subset [-\sqrt{3}, \sqrt{3}],$$

e quindi E è un insieme limitato dato che è contenuto in un insieme limitato.

4D) Non esiste il massimo di E.

Vero: Il "candidato massimo" di E è $x=\sqrt{3}$, che però non appartiene ad E dato che non è un numero razionale. Ne segue che non esiste il massimo di E.

$$E = \{x \in \mathbb{R} : -6 \le x \le 4\} \setminus \{0\}.$$

- a) Dimostrare che l'insieme E non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E.
- c) Dimostrare che non esiste il minimo di $E \cap [0, 2]$.
- d) Dimostrare che non esiste il minimo dell'insieme

$$F = \{x^2, x \in E\}.$$

Soluzione:

a) Si ha

(1)
$$E = [-6, 4] \setminus \{0\} = [-6, 0) \cup (0, 4],$$

che non è un intervallo.

b) Dalla (1) segue che (ad esempio) x = 4 è un maggiorante di E, e che (ad esempio) x = -6 è un minorante di E. Si ha infatti che

$$\overline{M}(E) = \{x \in \mathbb{R} : x \ge 4\} = [4, +\infty), \qquad \underline{m}(E) = \{x \in \mathbb{R} : x \le -6\} = (-\infty, -6].$$

c) Si ha, per la (1),

$$E \cap [0,2] = ([-6,0) \cup (0,4]) \cap [0,2] = (0,2],$$

che è un insieme che non ha minimo.

d) Se x appartiene ad E, allora

$$-6 \le x \le 4$$
, $x \ne 0$.

Se x > 0, si ha

$$0 < x \le 4 \qquad \Longrightarrow \qquad 0 < x^2 \le 16 \,,$$

mentre se x < 0, si ha

$$-6 \le x < 0 \qquad \Longrightarrow \qquad 0 < x^2 \le 36.$$

Si ha quindi che se x appartiene ad E, allora

$$0 < x \le \max(36, 16) = 36$$
,

e quindi

$$F = \{ y \in \mathbb{R} : 0 < y \le 36 \} = (0, 36],$$

che è un insieme che non ha minimo.

$$E = \{x \in \mathbb{R} : (x - 9)(x - 10)(x - 11) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli.
- c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E \cap \mathbb{Q}$ ha massimo, e che l'insieme $E \cap \mathbb{N}$ ha minimo.

Soluzione:

a) Se x=0, si ha

$$(x-9)(x-10)(x-11) = (0-9)(0-10)(0-11) = -990 \le 0$$

e quindi (per definizione) x = 0 appartiene ad E.

b) Consideriamo i segni dei tre fattori che determinano la disequazione che definisce E; si ha

$$x-9 \ge 0 \quad \iff \quad x \ge 9, \qquad x-10 \ge 0 \quad \iff \quad x \ge 10,$$

 \mathbf{e}

$$x - 11 \ge 0 \iff x \ge 11$$
.

Graficamente, quindi, si ha

9) 1	0 1	1	
 	+	+	+	
 	_	+	+	
 	_	_	+	
 _	+	_	+	
	1	1	1	

e quindi

c) Dalla (1) si ha che

$$E \cap [0, +\infty) = [0, 9] \cup [10, 11],$$

 $E = (-\infty, 9] \cup [10, 11]$.

che è un insieme limitato (superiormente da 11 e inferiormente da 0).

d) Dato che dalla (1) segue che il massimo di $E \ ensuremath{\`{e}} M = 11$, che $\ ensuremath{\`{e}}$ anche un numero razionale, allora il massimo di $E \cap \mathbb{Q} \ ensuremath{\`{e}} M = 11$. Sempre dalla (1) segue che

$$E \cap \mathbb{N} = \{0, 1, \dots, 9, 10, 11\},\$$

che ha come minimo m=0.