LA2 Komplexe Zahlen

Allgemein

Addition / Subtraktion:

$$z_1 = a_1 + b_1 i \quad z_2 = a_2 + b_2 i$$

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$$

Multiplikation / Division:

 $z_1 = a_1 + b_1 i$

$$z_2 = a_2 + b_2 i$$

$$z_1 \cdot z_2 = (a_1 \cdot a_2 - b_1 \cdot b_2) + (a_1 \cdot b_2 + a_2 \cdot b_1)i$$

Division
$$\rightarrow \frac{z_1}{z_2} = z_1 \cdot z_2^{-1} = \frac{1}{|z_2|^2} \cdot z_1 \cdot \overline{z_2}$$

Neuer Vektor ist um Summe der Winkel der beiden Vektoren rotiert

Betrag:

$$|z| = \sqrt{a^2 + b^2}$$

Inverse:

$$\alpha = \alpha + bi$$

$$z = a + bi$$

$$z^{-1} = \frac{1}{|z_1|^2} \cdot (a - bi)$$

Konjugiert #:

$$z = a + bi$$

$$\overline{z} = a - b$$

 $\rightarrow w = \frac{z}{v} \cdot \frac{\overline{v}}{v} = \frac{z \cdot \overline{v}}{|v|^2}$

$$z \cdot \overline{z} = |z|^2$$

Spiegelt Vektor an x-Achse

Polar Darstellung

$z = r(\cos(\varphi) + i \cdot \sin(\varphi))$ Addition / Subtraktion:

$$\begin{split} z_1 &= r_1 \cdot \left(\cos(\varphi_1) + i \cdot \sin(\varphi_1) \right) \ z_2 = r_2 \cdot \left(\cos(\varphi_2) + i \cdot \sin(\varphi_2) \right) \\ z_1 &\pm z_2 = r_1 (\cos(\varphi_1) + i \sin(\varphi_1)) \pm r_2 (\cos(\varphi_2) + i \sin(\varphi_2)) \\ &= r_1 \cos(\varphi_1) + i r_1 \sin(\varphi_1) \pm r_2 \cos(\varphi_2) \pm i r_2 \sin(\varphi_2) \\ &= r_1 \cos(\varphi_1) \pm r_2 \cos(\varphi_2) + i \left(r_1 \sin(\varphi_1) \pm r_2 \sin(\varphi_2) \right) \end{split}$$

Multiplikation / Division:

$$\begin{split} z_1 &= r_1 \cdot (\cos(\varphi_1) + i \cdot \sin(\varphi_1)) \ z_2 = r_2 \cdot (\cos(\varphi_2) + i \cdot \sin(\varphi_2)) \\ z_1 \cdot z_2 &= r_1 \cdot r_2 \cdot (\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2)) \\ \frac{z_1}{z_2} &= \frac{r_1}{r_2} \cdot (\cos(\varphi_1 - \varphi_2) + i \cdot \sin(\varphi_1 - \varphi_2)) \end{split}$$

Eulerische Darstellung

$$z = r(\cos(\varphi) + i \cdot \sin(\varphi)) = r \cdot e^{i \varphi}$$

Multiplikation/Division:

$$z_1 \cdot z_2 = r_1 r_2 \cdot e^{i (\varphi_1 + \varphi_2)}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot e^{i (\varphi_1 - \varphi_2)}$$

 $\rightarrow \varphi$ Winkel (Bogenmass)

$$\cos(\varphi) = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

$$\sin(\varphi) = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

Umrechnung Kartesisch, Polar, Euler

$\textbf{Kartesisch} \rightarrow \textbf{Polar:}$

Umrechnung (ohne $z = 0 \rightarrow z = 0/\{\}/\emptyset$)

$$F = \{z\} - \sqrt{\alpha^2 + b^2}$$
Polor: $z = \mathbf{r}(\cos(\rho) + i\sin(\rho)) - \frac{\mathbf{r}\cos(\rho) + i\mathbf{r}\sin(\rho)}{\alpha}$
Kortesisan: $z = \alpha + bi$

$$\cos(\varphi) = \tfrac{a}{\sqrt{a^2 + b^2}} \qquad \qquad \rightarrow \quad \varphi = \arccos(\tfrac{a}{\sqrt{a^2 + b^2}}) \in [0, \pi]$$

$$\begin{split} \sin(\varphi) &= \frac{b}{\sqrt{a^2 + b^2}} & \rightarrow & \varphi = \arcsin(\frac{b}{\sqrt{a^2 + b^2}}) \in [-\frac{\pi}{2}, \frac{\pi}{2}] \\ \tan(\varphi) &= \frac{b}{a} & \rightarrow & \varphi = \arctan(\frac{b}{a}) \in [-\frac{\pi}{2}, \frac{\pi}{2}] \end{split}$$

Polar → Euler:

$$z = r \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$$

$$z = r \cdot e^{i \cdot \varphi}$$
 Vorzeichen von i beachten!

$\textbf{Kartesisch} \rightarrow \textbf{Euler:}$

Gleich wie Kartesisch \rightarrow Polar, dann Polar \rightarrow Euler

Korrektur Winkel (Umrechnung in Polar/Euler):

$$\begin{array}{lll} z \in Q_1: & \varphi = 0^\circ & + |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \\ z \in Q_2: & \varphi = 180^\circ - |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \\ z \in Q_3: & \varphi = 180^\circ + |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \\ z \in Q_4: & \varphi = 360^\circ - |(\arctan / \arccos / \arcsin)| & \to \mathsf{Betrag} \end{array}$$

Bogenmass: $rad = deg \cdot \frac{\pi}{180^{\circ}}$

Pi Anteil: $\frac{bogen}{\pi} = \frac{1}{x} \cdot \pi$

Vektor & Kartesische Darstellung

$$\vec{z} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

Vektor

 z_1 : Realteil z_2 : Imaginärteil

$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = z_1 + z_2 \cdot i$$

Kartesisch

 z_1 : Realteil

$$z_2$$
: Imaginärteil

Satz von Moivre

Eulerische Form: Polar Form: Kartesische Form:

$$z^{n} = r^{n} \cdot e^{i n\varphi}$$

$$z^{n} = r^{n} \cdot (\cos(n\varphi) + i \cdot \sin(n\varphi))$$

$$z^{n} = (a + i \cdot b)^{n}$$

Wurzeln

 $z^{\frac{1}{n}} = \sqrt[n]{x}$ n-Lösungen: mit Polar/Euler Form rechnen!

 $az^2 + bz + c = 0$

$$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = b^2 - 4ac$$

Normaler Ansatz:

$$z^n = a \cdot e^{i \varphi}$$
 $a_0 = a \quad \alpha = \varphi \quad \rightarrow \quad r = \sqrt[n]{a_0}$

Lösungen: $\varphi_k = \frac{\alpha + k \cdot 360^{\circ}}{k}$ k = 0, 1, 2, ..., n - 1

$$\begin{array}{lll} k=0: & z_0=r\cdot e^{i\;\varphi_k}=r(\cos(\varphi_k)+i\cdot\sin(\varphi_k))\\ k=1: & z_1=r\cdot e^{i\;\varphi_k}=r(\cos(\varphi_k)+i\cdot\sin(\varphi_k))\\ \vdots & & \end{array}$$

Fundamentalsatz Algebra in C:

Jedes Polynom *n*-ten Grades mit komplexen Koeffizienten hat genau n komplexe Nullstellen (mit Vielfachheit gezählt).

Beispiel:

$$x^3 + 4z^2 + 7z + 6 = 0$$
 \rightarrow hat eine Wurzel: -2

Beweis (für geratene Nullstelle -2): $(-2)^3 + 4(-2)^2 + 7(-2) + 6 = 0$

$$(z^3 + 4z^2 + 7z + 6) : (z+2) \rightarrow (z+2)(z^2 + 2z + 3)$$

Nullstellen mit Mitternachtsformel:

$$z_{1,2} = \frac{-2 \pm \sqrt{4 - 12}}{2} = \frac{-2 \pm 2\sqrt{2} \cdot i}{2} = -1 \pm \sqrt{2} \cdot i$$

$$z_0 = -2$$
 $z_1 = -1 + \sqrt{2} \cdot i$ $z_2 = -1 - \sqrt{2} \cdot i$

Sinus/Cosinus Cheatsheet

$arphi_{Deg}$	0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°	195°	210°	225°	240°	255°	270°	285°	300°	315°	330°	345°	360°
φ_{Rad}	0π	$\frac{1}{12}\pi$	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{5}{12}\pi$	$\frac{1}{2}\pi$	$\frac{7}{12}\pi$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	$\frac{11}{12}\pi$	π	$\frac{13}{12}\pi$	$\frac{7}{6}\pi$	$\frac{5}{4}\pi$	$\frac{4}{3}\pi$	$\frac{17}{12}\pi$	$\frac{3}{2}\pi$	$\frac{19}{12}\pi$	$\frac{5}{3}\pi$	$\frac{7}{4}\pi$	$\frac{11}{6}\pi$	$\frac{23}{12}\pi$	2π
sin	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	1	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	0	$-\frac{\sqrt{6}-\sqrt{2}}{4}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	-1	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{6}-\sqrt{2}}{4}$	0
cos	1	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	0	$-\frac{\sqrt{6}-\sqrt{2}}{4}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	-1	$-\frac{\sqrt{6}+\sqrt{2}}{4}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{6}-\sqrt{2}}{4}$	0	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	1
tan	0	$2 - \sqrt{3}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\sqrt{3} + 2$	-	$-(\sqrt{3} + 2)$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	$\sqrt{3}-2$	0	$-(\sqrt{3}-2)$	$\frac{\sqrt{3}}{3}$	1	√3	$\sqrt{3} + 2$	-	$-(\sqrt{3} + 2)$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	$\sqrt{3} - 2$	0