Effective QFT in A=1
Effective QFT in A=1 Lit's unada a theory of two red-volued fields x,y: S' -> IR on a civile of circumference T. As in A=0, we choose the action
As in d=0, we choose the action
giving the momentum space Feynman rules $\frac{z}{\sqrt{(k^2+m^2)}}$ $\frac{y}{\sqrt{(k^2+m^2)}}$
It we are only interested in correlatory involving x(t), we can integrate out the filly(t) first,
If we are only interview in consolation involving $x(t)$, we can interval and the fillight) full, => $\int Dxy \exp\left(-\frac{1}{2}\int_{S_1}y\left(-\frac{d^2}{dt^2}+\mu^{**}\right)+\frac{\lambda x^2(t)}{2}\right)y dt$ \(\right) \left(\rho_c, \gamma_1\hat{y}\right) = \gamma_1\hat{y}\right)
$= dt \left[-\frac{d^2}{4t^2} + H^2 + \frac{dx^2}{3} \right]^{\frac{1}{2}}$
Sulf x 1 thus contains atom
Sym[x] thus contains a term $S_{44}[x] = \int_{5}^{1} \frac{1}{2}(x^{2} + m^{2}x^{2}) dt + \frac{1}{2} \ln det \left[-\frac{d^{2}}{de^{2}} + M^{2} + \frac{\lambda x^{2}}{2} \right] + \frac{1}{2} \ln det \left[-\frac{d^{2}}{de^{2}} + M^{2} + \frac{\lambda x^{2}}{2} \right]$
We comexposed the first form using the fact that the Green's function for $(\frac{d^2}{dt^2} - H^2)^{-1} \times \frac{1}{2}$ We comexposed the first form using the fact that the Green's function for $(\frac{d^2}{dt^2} - H^2)$ on S' is
We comexposed the final term using the fact that the Green's function for (The - Me) eas 3' is
(The - M2) altit) = S(t-t) G(E,t) - IN LEW When B= 1/T
Henre we have (2) (4) (1) (1) (2) (4) (4) (6) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
to (1) -) G(E,C) = 2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /
There terms are non-local! We can also me this non-local arty + higher order
how the corresponding Feynman Abyrams: x(t')
There terms are non-local! We can also ree the non-local arty how the corresponding Feynman disgrams: x(t) (2) = -1 x(t) x(t)
x(t)
this is local this is non-local
this is hon-local Non-locality is bad news! To under progress, we note that if M is very longer, then G(t,t') could be represent for t \(\pm t'\), no we on try to expand \(\pm (t')\) around \(\pm t'-t\).
6(t, t) could be represent for t \$ t', no we on try to expand x(t') around 16t to.
[Lt Lt G(t,t') 2 x2 (t) x2 (t) = dtdt G(t,t') 2 x2(t) [x2(t) + 1 x(t) x(t) (t-t)]
Using the fact that G(t,t) depends on to only through M(t'-t), + (x2(t)+ 1x(t) x(t)) (t-t')2+
He dt $\frac{\alpha}{M} \times^{4}(t) + \frac{\beta}{M3} \left[\times^{2} \times^{2} + \frac{1}{2} \times \times \right] + \frac{\pi}{M5} \left[\text{four derivative towns} \right]$ where $\alpha_{1}p_{1}y_{1}$ are disables:

From dimensional analysis, every extra derivative is accompanied by a further power of 1/M. Thus, of provided x(t) is slowly verying on scales of order 1/M, we may hope to truncate => At low energies E 44 , our theory that looks approximately local. However, if we made with the humanted theory, we will get i'n consistent / non-unitary results if we fing to extrapolate own mades to reales E~M. In the theory of p-decay, the effective action contains an interaction 1 /4x Te u vep auc congling constant has more dimension (-2) At high energies, then 4-Firm: theory becomes non-unitary and from its nevertidas an approximation to $\frac{1}{L^2+M_W^2}$. W-boson projector. Quantum Growity in 1=1 In quantum grows ty, we also include a (puth) integral over all metrics on M, up to general co-put invariance. We also sum over the possible topologies of M. In d=1 (and d=2/4tings) In d=1 a meture $get(t)=e^2(t)$ is just a function of one variable. The only invariant of the meture is the total length $T=\int e(t) dt$, so the put integral over all parties which deflect is just on integral over $T \in (0,\infty)$. $\{\frac{m^2}{2}\}_0^T dt\}$ — cosmological metures $\int_0^\infty dT \int Dx e^{-5[x]}$ with $S[x]=\frac{1}{2}\int_0^T \dot{x}^2 dt$ $(p=\dot{x})$ = \int \cyle - HT \x > - \int \frac{A^n p d^n q}{(2\pi)^{n/2}} \cylq > \cqle - HT \lp > $= \int_{0}^{\infty} dt \ e^{i\rho \cdot x - iq \cdot y} \ e^{-\tau \rho^{2}/2} \ \delta^{\mu} \left(\rho - q\right) \ \frac{d^{\mu} \rho \ d^{\mu} q}{(2\pi)^{\mu}}$ $= \int_{0}^{\infty} d\tau \ e^{i\rho \cdot (x - y)} \ e^{-\tau \rho^{2}/2} \ d^{\mu} \rho = 2 \int_{0}^{\infty} \frac{d^{\mu} \rho \ d^{\mu} q}{(2\pi)^{\mu}} \ e^{i\rho \cdot (x - y)} \ \frac{1}{\rho^{2} + (m^{2})} = 2 \mathcal{D}(x - y)$ for a realor field on 12h

5 []= Jdhx 1/(20)2+ m2 02