紅

阵 4

福建省部分达标学校 2024—2025 学年第一学期期中 高二生物学质量监测

本试卷满分100分,考试用时75分钟。

注意事项:

- 1. 答题前, 考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑。如需改动,用橡皮擦干净后,再洗涂其他答案标号。回答非选择题时,将答案写在 答题卡上。写在本试卷上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。
 - 4. 本试卷主要考试内容:人教版必修2第6章,选择性必修1第1章~第4章。
- 一、单项选择题:本题共 15 小题,其中, $1\sim10$ 小题,每题 2 分: $11\sim15$ 小题,每题 4 分,共 40 分。 在每小题给出的四个选项中,只有一项是最符合题目要求的。
- 1. 机体的多种生理生化反应都是在内环境中进行的。下列反应发生于内环境中的是
- A. 甲状腺激素通过体液运输。

B. 氧气与血红蛋白的结合

C. 葡萄糖分解成丙酮酸

- D. 胰蛋白酶催化蛋白质水解
- 2. 突触是两个神经元之间或神经元与效应器细胞之间相互接触, 并借以传递信息的结构,突触的亚显微结构如图所示,其中 M
- 表示神经元的局部结构。下列相关叙述错误的是 A. M 的外表大都套有一层髓鞘
- B. ③中含有神经递质, ④是突触前膜
- C. ⑤是神经元的树突膜或胞体膜
- D. 一个神经元往往有多个突触小体
- 3. 某小组制作了如图所示的坐骨神经一腓肠肌标本,将一电表的两个电极置于坐骨神经表面 Ⅱ、Ⅲ两处,在坐骨神经Ⅰ处、腓肠肌处分别给予一个适当强度的电刺激,观察指针的偏转情 况。下列叙述正确的是

- A. 刺激坐骨神经 I 处, 钾离子通过主动运输进入神经元导致电位发生逆转
- B. 刺激坐骨神经 I 处, 电表发生两次方向相反的偏转, 说明兴奋可双向传导
- C. 刺激坐骨神经和腓肠肌均会引起腓肠肌收缩,两者引起的变化都属于反射
- D. 刺激腓肠肌,因兴奋在突触处的传递是单向的,故电表的指针不发生偏转
- 4. B淋巴细胞和 T淋巴细胞是重要的淋巴细胞, 二者共有的特点是
- A. 均参与特异性免疫

B. 均在骨髓中成熟

C. 均能识别并裂解靶细胞

D. 均能吞噬病原体

· 25 - 137B

- 5. 免疫系统对于人体内环境稳态的维持具有重要作用。下列有关叙述错误的是
- A. 皮肤、黏膜是保卫人体的第一道防线
- B. 机体通过免疫监视功能清除体内的肿瘤细胞
- C. 多数情况下,病原体与细胞因子结合形成沉淀
- D. 免疫活性物质主要是由免疫细胞合成和分泌的
- 6, 下列免疫细胞中, 在机体内不能识别"非己"的是
- A. 浆细胞

B. 辅助性 T 细胞

C. 巨噬细胞

- D. 记忆 T 细胞
- 7. 人体激素调节的模式如图所示,其中 a、c 分别表示分泌细胞、靶细胞, b.表示血管。下列选项 的设置与该模型不符的是
- A. 若 c 为性腺细胞,则 a 可能是垂体细胞
- B. 若 a 为骨骼肌细胞,则 c 可能是胰岛 B 细胞
- C. 若 a 为下丘脑细胞,则 c 可能是肾小管细胞
- D. 若 c 为垂体细胞,则 a 可能是甲状腺上皮细胞
- 8. 某同学早餐过后血糖浓度发生波动,如图所示。在9─11 时,发挥调节作用的主要激素是

A. 胰高血糖素

C. 肾上腺素

D. 甲状腺激素

9. 大雪纷飞的冬天,室外人员的体温仍能保持相对稳定,其体温调节过程如图所示。下列叙述 正确的是

- A. 寒冷刺激下,皮肤血管收缩以减少散热
- B. 图中下丘脑体温调节中枢发出信息减少甲状腺激素分泌
- C. 图中寒冷刺激到产生寒冷感觉的过程属于非条件反射
- D. 寒冷刺激下, 机体增加产热是通过激素调节实现的
- 10. 蚜虫具有发达的腺体,可以分泌甜蜜的汁液吸引蚂蚁来取食,而蚂蚁取食汁液时,可以防止 蚜虫被其他昆虫捕食。下列叙述错误的是
- A. 蚜虫具有发达的腺体是对环境的一种适应
- B. 蚜虫与蚂蚁的关系是协同进化的结果
- C. 蚜虫分泌的汁液对蚂蚁有利,对蚜虫天敌不利
- D. 蚂蚁对蚜虫种群的发展有利,蚜虫天敌对蚜虫种群的发展不利

· 25 - 137B

11. 某市为了控制蚊蝇的数量, 拟对甲、乙、丙三个地区喷洒菊酯类杀虫剂。为了预先评估杀虫 剂的使用效果,统计三个地区某种蚊蝇抗性个体所占比例及抗性基因(显性)频率,其结果如 表所示。下列分析错误的是

蚁蝇种群来源	抗性个体所占比例/%	抗性基因(显性)频率/%	
甲地区	22	12. 0	
乙地区	36	20, 0	
丙地区	16	8, 5	

- A. 抗性基因的产生是基因突变的结果
- B. 抗性个体的分布受自然选择的影响
- C. 与乙地区相比,甲地区杂合子所占比例更高
- D. 预测使用杀虫剂后,杀虫效果最好的是丙地区
- 12. 研究表明, 抑郁症的发生与 5-HT 的含量降低有关, 5-HT 是一种能使人产生愉悦情绪的信 号分子。SSRI 是一种抗抑郁药物,其作用机制如图所示。下列分析错误的是
- A. 图中结构存在电信号到化学信号再到电信号的转变
- B. SSRI作用于 5-HT 转运体,可能通过促进 5-HT 的回收来 治疗抑郁症
- C. SSRI 能有效治疗抑郁症,但长期服用 SSRI 可能会危害身
- D. 情绪属于人脑的高级功能,消极情绪的不断累积可能会导致抑郁症
- 13. 尿崩症患者可能会出现多饮、多尿、脱水等症状,尿崩症根据致病机理可分为中枢性尿崩症 (抗利尿激素缺乏)和肾性尿崩症(肾细胞表面相应受体缺乏)。下图是抗利尿激素的作用模 式图,下列相关叙述正确的是
- A. 抗利尿激素由垂体合成并释放
- B. 尿崩症患者渴觉的产生来自下丘脑
- C. P 蛋白和靶蛋白相当于受体蛋白,缺乏会引起 中枢性尿崩症
- D. 可采用抗利尿激素类似物来缓解中枢性尿 崩症
- 14. 抗利尿激素(ADH)与集合管上皮细胞的受体 X 结合后, 经一系列信号转导, 管腔膜上水通 道蛋白的数量增加,从而促进对水的重吸收,过程如图所示。下列说法正确的是

A. ADH 由下丘脑合成并分泌,定向运输至肾小管和集合管细胞

【高二生物学 第3页(共6页)】

• 25 - 137B

生现效应

5-J-IT转运体

【高二生物学 第1页(共6页)】

【高二生物学 第2页(共6页)】

- B. ADH 与受体 X 结合可使管腔膜上水通道蛋白的数量减少
- C. 水通道蛋白以囊泡的形式被转运至管腔膜,从而加快对水的重吸收
- D. 受体 X 不敏感或受损时,尿量会减少,细胞外液渗透压会增加
- 15. 研究人员发现病原体 X 感染机体后,会导致白色脂肪组织中储存大量记忆 T 细胞,下图表 示实验过程。下列相关叙述错误的是

- A. 病原体 X 是能够引发实验鼠免疫反应的抗原
- B. 实验鼠 A 能够识别和清除病原体 X,这体现了免疫防御功能
- C. 病原体 X 会引起实验鼠产生体液免疫和细胞免疫
- D. 病原体 X 感染图示中的实验鼠 B 后,记忆 T 细胞会识别并裂解被病原体 X 感染的靶细胞 二、非选择题:本题共5小题,共60分。
- 16. (12分)急性肠炎通常需要通过注射头孢类药物来治疗以消除炎症。使用头孢类药物期间 及用药后 1~2 周内不能饮酒。①~③为人体细胞生活的内环境,它们之间的关系如图 1 所 示。回答下列问题:

(1)肌肉注射和静脉滴注	主头孢类药物治	疗炎症时,药物首先分别进入的体	1 2
液为图 1 中的	和	;图 1 中蛋白质含量最高的是	
。(填序	号)		3
(2)严重腹泻时,如果只	喝水,不补充盐	上,血浆渗透压可能会。	图 1
血浆渗透压的大小量	主要与	的含量有关。	

(3)肝脏是酒精代谢的主要场所,图 2 为酒精代谢示意图。已知头孢类分子可抑制乙醛脱氢 酶的活性。

7.醇—乙醇脱氢酶 乙醛—→乙醛——→乙酸——→分解为 CO₂、H₂O

简述使用头孢类药物需要忌酒的原因:

17. (12分)乙酰胆碱(ACh)是一种重要的神经递质,对神经元主要起到兴奋作用,能在神经一 肌肉接头处传递信号,引起肌肉收缩。重症肌无力患者体内肌肉的该过程出现异常,其发病 和珊加图能录 同效下剂问题

700年8月日7月7小。同省十万月月越:
思者胸腺 分泌 物质a 抗a抗体与ACh竞争 肌样细胞
(1)在中枢神经系统中,ACh 与突触后膜的受体结合后,膜的通透性发生改变,引起
大量内流而出现动作电位。ACh 发挥作用后即被。与正常人相比,经
予电刺激后,重症肌无力患者肌细胞动作电位的峰值会。
(2)重症肌无力患者的胸腺中存在肌样细胞,肌样细胞受损后会分泌物质 a。物质 a 会作为
刺激机体产生抗体。抗 a 抗体与 ACh 竞争 AChR,使 ACh 的作用效果
。从免疫学的角度分析,这种疾病被称为。
(3)结合以上信息,试提出缓解重症肌无力症状的1点措施:

【高二生物学 第4页(共6页)】

• 25 - 137B •

18. (12分)科研人员在某转入光敏蛋白基因的小鼠下丘脑中埋置光纤,通过特定的光刺激下丘 脑 CRH 神经元,在脾神经纤维上记录到相应的电信号,从而发现下丘脑 CRH 神经元与脾 脏之间存在神经联系,即脑一脾神经通路。图 1 为该小鼠 CRH 神经元细胞膜相关结构示 意图,图 2 为脑一脚神经通路调节体液免疫的途径。回答下列问题:

- (2) 脾神经纤维上记录到电信号, 其传导特点是 (填"单向传导"或"双向传导")。去 甲肾上腺素作为一种神经递质,能作用于辅助性 T 细胞的原因是
- (3)研究上述信号通路的过程中,科研人员切除了小鼠的脾神经并对小鼠接种疫苗,一段时 间后检测到小鼠产生的浆细胞和抗体数量明显减少。该实验采用 "减法")原理控制变量,检测浆细胞和抗体数量的目的是____。该实验结果说明 脑—脾神经通路对 B 细胞的应答具有
- 19. (14分)糖皮质激素(GC)是由肾上腺皮质分泌的类固醇激素。下图为 GC 分泌调节及作用 机制示意图,其中 CRH 和 ACTH 分别为下丘脑和垂体分泌的相应激素,GR 为 GC 的受 体。GRE 是 DNA 分子上 GR 结合的 DNA 序列。回答下列问题:

(1) 局面的 使免疫力量	<i>1</i> 1. → 12		
(1)惊吓等应激刺激通过	信号从感受	是器传递至下丘脑,从而使下丘脑释放	
CRH 作用于垂体,垂体分泌的 ACTI	I 通过	运输至肾上腺皮质,与相应的受体	
结合。			
(2)图示讨程中,GC的分泌调节机制既有	·利王	(增"放卡"武"嫁水")源季药用共效	

(2)图示过程中,GC的分泌	必调节机制既有利于	(填"放大"或"缩小	")激素的调节效
应,又有利于机体内的	GC 维持正常水平。GC	受体的分布场所是	. G(
主要调控靶基因的	过程,从而影响靶细	 胞的代谢。	

【高二生物学 第5页(共6页)】

· 25 - 137B ·

(3)甲状腺功能亢进(甲亢)患者主要与体内的 TSH 受体抗体(TRAb)、甲状腺刺激性抗体 (TSAb)水平升高有关。甲巯咪唑是治疗甲亢的一种药物,泼尼松龙是一种 GC 类药物, 具有抗炎、抗过敏等作用。为研究泼尼松龙片辅助甲巯咪唑片治疗甲亢的效果,医务人 员收治70例甲亢患者,分为人数相同且性别比例、年龄、病程无明显差异的Ⅰ、Ⅱ两组。 Ⅰ组:服用适量甲巯咪唑片,Ⅱ组:服用

连续治疗2个月后检测患者相应的生理指标。结果如表所示:

结果组别		游离甲状腺激素水平		相关抗体水平/(IU·mL ⁻¹)	
		$F\Gamma_3/(mmol \cdot L^{-1})$	$FT_4/(mmol \cdot L^{-1})$	TSAb	TRAb
I组	治疗前	8, 78	41. 25	55, 71	28, 31
	治疗后	5, 29	33, 19	40. 16	23, 85
Ⅱ组	治疗前	8, 72	41.18	55. 34	28, 67
11/41	治疗后	3. 47	20. 64	28, 23	19.13

注:FT3和FT4是血液中游离形式的甲状腺激素。

由实验结果推测,泼尼松龙片可通过 来增强甲巯咪唑片治疗甲亢的效果。

20. (10 分)丙型肝炎病毒(HCV)属于 RNA 病毒,是肝硬化和肝细胞癌的元凶之一,血源传播 是其主要传播途径,在世界范围内每年有100多万人因 HCV 感染而死亡。图1是 HCV 的 结构模式图,部分感染机制如图 2 所示。回答下列问题:

的核糖体合成的。

- (1)图 1 中 HCV 的衣壳蛋白是由
- (2)在 HCV 感染的急性期, HCV 的抗原刺激人体免疫系统, 使 B 细胞增殖分化为 细胞,进而产生特异性抗体,这属于 (填"体液免疫"或"细胞免疫")。
- (3)尽早检测诊断是防治丙肝的关键。根据所学知识,尝试简要写出可适用于临床检测是否 感染 HCV 的思路: (写出 1 种, 具体技术不做要求)。
- (4)研究发现,HCV 在肝细胞中表达的 NS3-4A 蛋白既能促进③过程(病毒 RNA 的复制), 也能促进病毒颗粒的形成,还能降解线粒体外膜蛋白(MAVS);而 MAVS 则是诱导肝细 胞抗病毒因子基因表达的关键因子,如图 2 所示。假设某患者临床检测结果为 HCV 阳 性,现有分别抑制②③④过程的药物,试根据题图分析,从理论上推断现有比较彻底的治 疗方案是

【高二生物学 第6页(共6页)】