s18: EXP LOG (SLTN v320)

1. (10 pts) Graph $y = 2^{x-4} + 2$ and $y = \log_2(x-5) + 3$ on the grids below. Also, draw any asymptotes with dashed lines.

Somewhat useful hint: $2^3 = 8$, and thus $\log_2(8) = 3$.

2. (10 pts) Write (but do not evaluate) the solution to the equation below by writing a logarithmic expression. Please do not do any arithmetic; just move numbers around.

$$-13 = \left(\frac{-3}{5}\right) \cdot 10^{-7t/4}$$

Divide both sides by $\frac{-3}{5}$.

$$\frac{13 \cdot 5}{3} = 10^{-7t/4}$$

Take log, base 10, of both sides.

$$\log_{10}\left(\frac{13\cdot 5}{3}\right) = \frac{-7t}{4}$$

Divide both sides by $\frac{-7}{4}$.

$$\frac{-4}{7} \cdot \log_{10} \left(\frac{13 \cdot 5}{3} \right) = t$$

Switch sides.

$$t = \frac{-4}{7} \cdot \log_{10} \left(\frac{13 \cdot 5}{3} \right)$$

3. (10 pts) An exponential function $f(x) = 9.05 \cdot e^{2.97x}$ is graphed below on a semi-log plot.

a. Using the plot above, evaluate f(-2.7).

$$f(-2.7) = 0.003$$

b. The inverse function is logarithmic.

$$f^{-1}(x) = \frac{1}{2.97} \cdot \ln\left(\frac{x}{9.05}\right)$$

Using the plot above, evaluate $f^{-1}(5)$.

$$f^{-1}(5) = -0.2$$