### Chemistry 231 Week 7 Review Sheet

### Empirical Formulas, Elemental Composition, VSEPR Theory

Determine the empirical and molecular formula for chrysotile asbestos. Chrysotile has the following percent composition: 28.03% Mg, 21.60% Si, 1.16% H, and 49.21% O. The molar mass for chrysotile is 520.8 g/mol.

Determine empirical formula for Saran; 24.8% C, 2.0% H, 73.1% Cl

### Calculate the mola

r mass of a metal that forms an oxide having the empirical formula  $M_2O_3$  and contains 68.04% of the metal by mass. Identify the metal.

To find the formula of a compound composed of iron and carbon monoxide,  $Fe_x(CO)_y$ , the compound is burned in pure oxygen, an reaction that proceeds according to the following unbalanced equation.

$$Fe_x(CO)_y + O_2 --> Fe_2O_3 + CO_2$$

If you burn 1.959 g of  $Fe_x(CO)_y$  and obtain 0.799 g of  $Fe_2O_3$  and 2.200 g of  $CO_2$ , what is the empirical formula of  $Fe_x(CO)_y$ ?

Pure oxygen can be made by heating a compound containing potassium, chlorine and oxygen. What is the empirical formula of this compound, if a 3.22 g sample decomposes to give gaseous oxygen ( $O_2$ ) and 1.96 g KCl?

# Chemistry 231 Week 7 Review Sheet

Fill out the table. For each box where possible, provide the electron geometry, molecular geometry, bond angle(s), and hybridization.

| Regions of Electron Densities | 0 lone pairs | 1 lone pair | 2 lone pairs | 3 lone pairs | 4 lone pairs |
|-------------------------------|--------------|-------------|--------------|--------------|--------------|
| 2                             |              |             |              |              |              |
| 3                             |              |             |              |              |              |
| 4                             |              |             |              |              |              |
| 5                             |              |             |              |              |              |
| 6                             |              |             |              |              |              |

|                               | ollowing, provide the Lewis Str<br>lectron and molecular geomet | ,      | ,                                       |
|-------------------------------|-----------------------------------------------------------------|--------|-----------------------------------------|
| ,                             | er it is polar or non-polar.                                    | .,,    | , , , , , , , , , , , , , , , , , , , , |
| CIF <sub>4</sub> <sup>+</sup> | BeF <sub>2</sub>                                                | $N_2O$ | C <sub>2</sub> H <sub>6</sub> O         |

## Concept questions:

Which of the following are correct resonance structures for SO₃?



What is the formal charge on each atom in dichloromethane, CH<sub>2</sub>Cl<sub>2</sub>?

Draw the most stable Lewis Structure of OCN<sup>-</sup>

Use VSEPR theory to predict the molecular geometry of BH<sub>3</sub> and ICl<sub>3</sub>

What is the hybridization of the carbon atoms in benzene, C<sub>6</sub>H<sub>6</sub>?

GeF<sub>4</sub>

How many sigma and pi bonds are present in the following molecule:

Which of the following molecules is polar? BF<sub>3</sub> H<sub>2</sub>Se N<sub>2</sub>

According to molecular orbital theory, which of the following species is the most likely to exist?

 $H_2^{2-}$   $He_2$   $Li_2$   $Li_2^{2-}$   $Be_2$ 

For  $N_2^+$ , determine the bond order, number of antibonding, its magnetic properties, and its likelihood of existing.