Modelos estadísticos de medición:

Teoría clásica del test

Dr. Héctor Nájera PUED-UNAM

¿Cómo llegamos aquí?

Progresión no lineal de la historia, acuerdos y desacuerdos de lo que significa medir en ciencias

- Siglo XX: Teoría representacional
- Siglo XXI: Medición basada en modelos

Mientras tanto...

La clase pasada Medición basada en modelos

Medición basada en modelos

Fenómenos (ante los ojos)

¥

Objetos científicos

Resultados de Medición

Fenómenos (ante los ojos)

¥

Observación (codificada)

Datos

Estimadores

Puntajes (scores)

Puntajes

Objetos científicos

Modelo de medición

- Una representación abstracta y local construida a partir de supuestos simplificadores
- Hipótesis teóricas sobre las relaciones que guardan los instrumentos con aquello que se quiere medir y con el ambiente ([DAG] sobre cómo fueron producidos los datos)
- Modelo teórico y estadístico del proceso de medición mismo
- Permite la rastreabilidad/trazabilidad de la generación de los resultados de la medición (a lo largo de cada eslabón de la cadena) en su relación con aquello que se quiere medir
- Establece relaciones cuantitativas entre aquello que se quiere medir y el resultado de su medición
- Generativos: genera instancias de datos (inputoutput de acuerdo con el proceso de medición idealizado)

Modelo de medición

Sólo bajo el modelo es posible evaluar la *interpretabilidad representacional* de los puntajes (su validez)

- Coherencia de los supuestos con las teorías contextuales relevantes
- Consistencia mutua de resultados con diferentes instrumentos, ambientes y modelos

Sin modelo no hay medición

Modelo teórico

Definición

Relación con otros conceptos

Hipótesis

Modelo estadístico

Hipótesis pasadas a parámetros

Métodos

Orígenes de la teoría clásica como modelo estadístico de medición

La historia de esta teoría comienza a la vuelta del siglo XX (1904)

- Spearman, C. (1904). "General Intelligence," objectively determined and measured. *The American Journal of Psychology*, 15(2), 201-292.
- Spearman, C. (1904). The proof and measurement of association between two things. *American journal of Psychology*, 15(1), 72-101.

Charles Edward Spearman 1863-1945

15,000 citas en GS!

Origen la teoría clásica del test y SEM como modelos estadísticos de medición

Tres ideas

- Atenuación de correlación por error
- El error como variable aletoria

 Distinción entre variables observables (con error) y variable latente Pilares de Teoría clásica del test y eventualmente de ecuaciones estructurales

Si las respuestas rastrean/son causa de la misma "señal", deberían estar correlacionadas "intra-sujetos"

Si las respuestas rastrean/son causa de la misma "señal", deberían estar correlacionadas "intra-sujetos" pero también "inter-sujetos"

Introducción de la idea de variable latente

Suponemos que b y c son consecuencias/reflejo/pr

oducto/resultado de T

Teoría clásica del test

Score verdadero: Lo que quisieras medir/representar bajo un modelo/Resultado

$$X_1 = T + e_1$$

Score observado:

Indicaciones

Indicadores

Lo que no te interesa y distorsiona lo que concluyes a partir de y

Teoría clásica del test

Score verdadero: Lo que quisieras medir/representar bajo un modelo/Resultado

$$X_1 = T + e_1$$

Score observado:

Indicaciones

Indicadores

Lo que no te interesa y distorsiona lo que

concluyes a partir de

¿De qué forma añade esa variabilidad?

Segun la TCT se traduce en lo siguiente

Para la primera medida tenemos poco error:

$$e_1 \sim N(0,.1)$$

$$X_1 = T + e_1$$

Las respuestas de la estudiante "A" tienen poca variabilidad.

Es muy consistente

Si esto se extiende al resto del grupo, estamos haciendo una buena medición

Si graficamos: $X_1 = T + e_1$

- I. XI yT ya no forman una línea recta
- 2. El error mueve los puntos en torno a la recta "latente" (o sea T)
- 3. Pero al ser el pequeño, los movimientos no son tan bruscos
- 4. La posición relativa de la persona/país/hogar con mayor score se mantiene

Error de medición

- I. X2 yT no parecen moverse igual
- 2. El error mueve mucho los puntos en torno a la recta "latente" (o sea T)
- 3. Pero al ser e2 grande, los movimientos son bruscos
- 4. La posición relativa de la persona/país/hogar con mayor score NO se mantiene

¿Qué diría Spearman de lo siguiente?

Persona, hogar, estado, país	Score verdadero	ΧI	X 2
I	-4.4	-4.2	-3.5
2	-10.8	-11.2	-12
3	1.1	0.8	-0.3
4	2.1	2.3	-2.I
5	-6.6	-6.6	-3
6			

Atenuación de coeficientes de correlación

Cuadro 1.5. Preguntas de acceso a la alimentación en los hogares, ENIGH 2008

Acceso a la alimentación en los nogares			
1. En los últimos tres meses, por falta de dinero o recursos ¿alguna	Si en el hogar no hay personas menores de 18 años pase a la sección V. Equipamiento del hogar		
vez usted o algún adulto en su hogar tuvo una alimentación basada	7. En los últimos tres meses, por falta de dinero o recursos ¿alguna		
en muy poca variedad de alimentos?	vez algún menor de 18 años en su hogar tuvo una alimentación		
Sí[1]	basada en muy poca variedad de alimentos?		
No[2]	Sí 1		
	No[2]		
2. En los últimos tres meses, por falta de dinero o recursos ¿alguna	110		
vez usted o algún adulto en su hogar dejó de desayunar, comer o	8. En los últimos tres meses, por falta de dinero o recursos ¿alguna		
cenar?	vez algún menor de 18 años en su hogar comió menos de lo que		
Sí 1	debía?		
No[2]	Sí 1		
110	No		
3. En los últimos tres meses, por falta de dinero o recursos ¿alguna	110		
vez usted o algún adulto en su hogar comió menos de lo que usted	9. En los últimos tres meses, por falta de dinero o recursos ¿alguna		
piensa debía comer	vez tuvieron que disminuir la cantidad servida en la comida a algún		
Sí 1	menor de 18 años del hogar?		
No[2]	Sí		
110	No		
4. En los últimos tres meses, por falta de dinero o recursos ¿alguna	110		
vez se quedaron sin comida?	10. En los últimos tres meses, por falta de dinero o recursos ¿alguna		
Sí 1	vez algún menor de 18 años sintió hambre pero no comió?		
No[2]	Sí 1		
	No		
5. En los últimos tres meses, por falta de dinero o recursos ¿alguna			
vez usted o algún adulto de este hogar sintió hambre pero no comió?	11. En los últimos tres meses, por falta de dinero o recursos ¿algún		
Sí 1	menor de 18 años se acostó con hambre?		
No[2]	Sí 1		
	No[2]		
6. En los últimos tres meses, por falta de dinero o recursos ¿alguna	· · · · · · · · · · · · · · · · · · ·		
vez usted o algún adulto en su hogar sólo comió una vez al día o dejó	12. En los últimos tres meses, por falta de dinero o recursos ¿alguna		
de comer todo un día?	vez algún menor de 18 años comió una vez al día o dejó de comer		
Sí 1	todo un día?		
No[2]	Sí 1		
• •	No[2]		

Como en un examen, lo que esperamos es que las respuestas sean un reflejo de inseguridad alimentaria.

Si las respuestas (1, 0) no reflejan el fenómeno, entonces los resultados serán aleatorios.

Si son aleatorios, la correlación se atenúa por el "ruido" en la medición

De nuevo

Mismo nivel latente

Persona A

 \equiv

Persona B

Ítems

Score observado A

Score observado

Componentes del modelo

Sin el modelo teórico las correlaciones (parámetro) pierden sentido y utilidad

¿Cómo saber que dos correlaciones rastrean la misma señal?

Sin modelo NO hay medición

Consecuencias de la falta de confiabilidad (i.e. alto error de medición)

Clasificación

Clasificación ideal

Grupo A

Grupo B

Clasificación factible

Ideal en medición: Tiempo 1

Ideal en medición: Tiempo 2

Lejos del ideal en medición: Tiempo 1

Lejos del ideal en medición: Tiempo 2

Error de medición y confiabilidad

FIGURE 7.1. The distribution of observed scores around the true score.

Como decrece la confiabilidad de nuestras medidas y la suerte se vuelve más importante, las magnitudes de los coeficientes de correlación se acercan a cero (las correlaciones positivas se vuelven menos positivas y las correlaciones negativas se vuelven menos negativas)

$$R_{XY} = \frac{r_{XY}}{\sqrt{reliability_X reliability_Y}}$$

 $\cite{confiable} \approx aleatorio^{-1}$?

Confiabilidad (reliability)

• Implicaciones de un concepto relativo de confiabilidad para la lógica de la medición.

$$Confiabilidad = \frac{Variabilidad\ individual}{Variabilidad\ individual + Error\ de\ medici\'on} = \frac{\sigma_{\theta}^2}{\sigma_{\theta}^2 + \sigma_{\varepsilon}^2}$$

- El coeficiente de confiabilidad refleja el grado en que un instrumento (artefacto) de medición es capaz de diferenciar entre individuos/objetos de estudio/unidades de observación (sujetos/hogares/familias/familias/escuelas/municipios/países/estados de la naturaleza).
- La confiabilidad de una medida está intimamente ligada a la población sobre la cual se quiere aplicar la medición.
 - No existe tal cosa como la confiabilidad de un instrumento/artefacto (a secas); el coeficiente sólo tiene significado cuando es aplicado a poblaciones específicas.
 - Es más difícil distinguir entre estados de la naturaleza (personas/hogares/municipios) si éstos son relativamente homogéneos que si éstos son muy diferentes.

Confiabilidad (reliability)

- Confiabilidad es un término relativo (¿confiable para qué?)
 - Nuestra comodidad con un determinado error de medición depende de que éste sea una fracción pequeña del rango en las observaciones
 - Para proveer información útil acerca de un error de medición, siempre debe contrastarse con la variación esperada entre las observaciones a llevar a cabo.
 - Una función del cociente entre la señal y el ruido.
 - La proporción entre lo relevante y lo irrelevante de nuestras observaciones empíricas (puntajes observados o medidas).
 - La fracción de nuestras mediciones que **no** es irrelevante.
 - La razón entre la varianza de nuestro interés y la varianza total de nuestras mediciones.
 - El porcentaje de la variación de nuestras mediciones que no es error.
 - La proporción de la varianza de nuestras mediciones que se debe a diferencias entre los individuos/objetos de estudio ("el-mundo-allá-afuera").

Confiabilidad (reliability)

- No tiene sentido hablar de la confiabilidad (a secas) de un termómetro sin saber el rango de las temperaturas para las que va a ser utilizado.
- ES UN ERROR HABLAR DE LA CONFIABILIDAD DE UN TEST (ARTEFACTO).
 - L a confiabilidad NO es una propiedad inherente e inmutable de una escala.
 - la confiabilidad se refiere al RESULTADO obtenido con un instrumento (artefacto) y no al instrumento (artefacto) mismo.
 - La confiabilidad ES el resultado de la interacción entre el instrumento/artefacto y el sistema empírico al que éste es aplicado (objetos/individuos y su situación).

¿Cómo se estima la confiabilidad?

Teoría clásica del test

Scores verdaderos

Usar la información que tenemos para poder estimar el error

La gran dificultad

Esto está muy bien porque conocemos el valor del score verdadero.

Pero nunca lo conocemos

Sólo tenemos X1 y X2.

¿Cómo sabemos cuál tiene menos ruido respecto al valor verdadero?

Información y supuestos de la TCT

	Matriz de c	orrelació	า	
	Verdadero	X1	X2	
Verdadero		1	0.9	0.4
X1	0.	9	1	0.4
X2	0.	4	0.4	1

El cálculo de confiabilidad en la TCT gira en torno a los supuestos que nos permiten utilizar los valores de X1 y X2 (*Test paralelos*, equivalencia tau, ..., half-Split reliability)

¿Cómo estimar confiabilidad?

$$Confiabilidad = \frac{Variabilidad\ individual}{Variabilidad\ individual + Error\ de\ medición} = \frac{\sigma_s^2}{\sigma_s^2 + \sigma_e^2}$$

Desafortunadamente, todo lo discutido hasta ahora no sirve de nada si no podemos estimar σ_s^2 y σ_e^2

¿Cómo estimar confiabilidad?

• ¿Es possible deducir la composición de señal y ruido a partir de UNA observación (por objeto de estudio)?

Supuestos

- Test paralelos: Primera mitad del Siglo XX
- Equivalencia Tau: Mitad del Siglo XX
- Medidas congéneres: Finales del XX
- Ecuaciones estructurales y variables latentes: Presente

Pensemos estos supuestos

	Cuadro C.1. Porc	entaje de no	especificad	los por ent	idad federa	tiva según i	indicador so	cioeconóm	nico, 2015	
Clave de la entidad federativa	Entidad federativa	% Población de 15 años o más analfabeta	% Población de 15 años o más sin primaria completa	% Ocupantes en viviendas sin drenaje ni sanitario	% Ocupantes en viviendas sin energía eléctrica	% Ocupantes en viviendas sin agua entubada	% Viviendas con algún nivel de hacinamiento	% Ocupantes en viviendas con piso de tierra	% Población en localidades con menos de 5 000 habitantes	% Población ocupada con ingreso de hasta 2 salarios mínimos
	Nacional	0.90	0.41	0.36	0.24	0.30	0.31	0.57	_	9.69
01	Aguascalientes	0.38	0.12	0.04	0.03	0.05	0.05	0.09	_	7.28
02	Baja California	0.47	0.26	0.07	0.02	0.05	0.06	0.16	_	10.89
03	Baja California Sur	0.72	0.28	0.22	0.14	0.17	0.17	0.54	_	10.06
04	Campeche	0.47	0.14	0.04	0.03	0.02	0.07	0.18	_	6.83
05	Coahuila de Zaragoza	0.93	0.44	0.22	0.05	0.14	0.11	0.32	_	9.01
06	Colima	0.54	0.12	0.09	0.05	0.07	0.06	0.26	_	6.85
07	Chiapas	0.96	0.19	0.18	0.13	0.11	0.22	0.36	_	9.85
80	Chihuahua	2.41	2.08	2.02	1.90	1.93	1.97	2.07	_	9.74

Partimos de que son tests del mismos fenómeno... ¿Estas 8 variables se relacionarán de igual manera con la marginación? ¿Tendrán la misma varianza?

¿Si ninguna de esas condiciones se cumple, puedo estimar el error?

Lenguaje SEM

Paralelas, tau-equivalent and congeneric

• Si los indicadores son reflejo del mismo fenómeno, estos pueden clasificarse de acuerdo a su grado de similaridad:

BOX 7.1 Properties of Parallel, Tau-Equivalent, Essentially Tau-Equivalent, and Congeneric Measures							
Type of							Relationship between
measure	μ_{X}	σ_{x}^{2}	σ_{\uparrow}^2	$\sigma_{\scriptscriptstyle E}^2$	$\sigma_{\chi_1\chi_2}$	$\rho_{X_1X_2}$	true scores
Parallel	Must be equal	Must be equal	Must be equal	Must be equal	Must be equal	Must be equal	$t_i = O + 1 \star t_j$
Tau-equivalent	Must be equal	May be equal or unequal	Must be equal	May be equal or unequal	Must be equal	May be equalor unequal	$t_i = O + 1 * t_j$
Essentially tau-equivalent	May be equal or unequal	May be equal or unequal	Must be equal	May be equal or unequal	Must be equal	May be equal or unequal	$t_i = a_{ij} + 1 * t_j$
Congeneric	May be equal or unequal	May be equal or unequal	May be equal or unequal	May be equal or unequal	May be equal or unequal	May be equal or unequal	$t_i = a_{ij} + b_{ij} * t_j$

En los tres primeros casos la relación con la variable latente (t) es igual

Es factible estimar la confiabilidiad como vimos ayer (una de las x juega el papel de t). (Bandalos p. 167)

Noten que las condiciones van de más estrictas a menos estrictas

¿Cómo podemos saber que esto esta pasando?

Supuestos:

- Test paralelos: Primera mitad del Siglo XX
- Equivalencia Tau: Mitad del Siglo XX
- Medidas congéneres: Finales del XX
- Ecuaciones estructurales y variables latentes: Presente

BOX 7.1 Properties of Parallel, Tau-Equivalent, Essentially Tau-Equivalent, and Congeneric Measures Relationship between Type of true scores measure μ_{X} σ_1^2 $\sigma_{\chi_1\chi_2}$ $\rho_{X_1X_2}$ Parallel Must be Must be Must be Must be Must be Must be $t_i = 0 + 1 * t_i$ equal equal equal equal equal equal May be May be Must be Tau-equivalent Must be Must be May be $t_i = 0 + 1 * t_i$ equal or equal equal equal or equal equalor unequal unequal unequal May be Essentially May be Must be May be Must be May be $t_i = a_{ii} + 1 * t_i$ ta u-eq uivale nt equal or equal or equal equal or equalor equal unequal unequal unequal unequal Congeneric May be May be May be May be May be May be $t_i = a_{ii} + b_{ii} * t_i$ equal or equal or equal or equal or equal or equal or unequal unequal unequal unequal unequal unequal

 $Y_1=0+1*Y_2$

La medias son iguales

Las varianzas tambien

Tests (medidas/indicadores) paralelos

No siempre puedo repetir y además en medición derivada busco ampliar el espectro de información

Incluyo más ítems y supongo que son paralelos

```
load("Data")
head(D)
```

```
## X1 X2 X3 X4

## 1 0.1079993 0.1263256 0.1835274 0.1068131

## 2 -2.1913068 -2.4435596 -2.0918066 -2.3461443

## 3 -0.7024488 -0.6761810 -0.8373665 -0.5846087

## 4 -0.4593898 -0.6938371 -0.3483979 -0.2026447

## 5 0.6445464 0.5939276 0.9114592 0.4786136

## 6 -0.9880279 -0.8805711 -0.9995512 -1.1631823
```


Tests (medidas/indicadores) paralelos

```
## X1 X2 X3 X4
## X1 1.0000000 0.9836211 0.9837738 0.9834104
## X2 0.9836211 1.0000000 0.9676541 0.9673263
## X3 0.9837738 0.9676541 1.0000000 0.9670745
## X4 0.9834104 0.9673263 0.9670745 1.0000000
```


¿Cómo podemos saber que esto esta pasando?

Supuestos:

- Test paralelos: Primera mitad del Siglo XX
- Equivalencia Tau: Mitad del Siglo XX
- Medidas congéneres: Finales del XX
- Ecuaciones estructurales y variables latentes: Presente

BOX 7.1
Properties of Parallel, Tau-Equivalent, Essentially Tau-Equivalent, and Congeneric Measures

Type of							Relationship between
measure	μ_{X}	σ_{x}^{2}	$\sigma_{\rm f}^2$	$\sigma_{\scriptscriptstyle E}^2$	$\sigma_{_{oldsymbol{\chi_1}oldsymbol{\chi_2}}}$	$\rho_{X_1X_2}$	true scores
Parallel	Must be equal	Must be equal	Must be equal	Must be equal	Must be equal	Must be equal	$t_i = O + 1 * t_j$
Tau-equivalent	Must be equal	May be equal or unequal	Must be equal	May be equal or unequal	Must be equal	May be equalor unequal	$t_i = O + 1 * t_j$
Essentially tau-equivalent	May be equal or unequal	May be equal or unequal	Must be equal	May be equal or unequal	Must be equal	May be equal or unequal	$t_i = o_{ij} + 1 * t_j$
Congeneric	May be equal or unequal	May be equal or unequal	May be equal or unequal	May be equal or unequal	May be equal or unequal	May be equal or unequal	$t_i = a_{ij} + b_{ij} * t_j$

$$Y_1 = a + 1 * Y_2$$

La medias no tienen que ser iguales

