Pulse Nuclear Magnetic Resonance Spin Echoes, Viscosity, and Paramagnetic Doping

Bhaskar Mookerji Charles Herder

8.13 Experimental Physics I MIT Department of Physics

19 November 2007

Outline

- 1 Introduction
 - Magnetic Resonance and Relaxation
 - Mechanisms of Transverse Decay & Spin Echoes
- 2 Experimental
 - Signal Chain and Sample Preparation
 - Calibration, △H Field Homogeneity, Timing Parameters
- 3 Results and Error Analysis
 - Random/Systematic Error Accounting
 - T_2^* from $\frac{\pi}{2}$ Pulse
 - T_2 from $\frac{\pi}{2} \tau \pi$
 - T₂ from Carr-Purcell Pulse Sequence
 - Relaxation from Viscosity in Glycerin
 - Relaxation of Paramagnetic Ion Doping with Fe(NO₃)·9H₂O

$$|\psi(t)\rangle = a_{+}(t)|\uparrow\rangle + a_{-}(t)|\downarrow\rangle$$
 (1)

¹http://qt.tn.tudelft.nl/research/qc/bloch.jpg

Energy of magnetic moment in field $\mathbf{B} = B_0 \hat{e}_z$

$$H = -\mu \cdot \mathbf{B},\tag{2}$$

Ehrenfest's Theorem, Larmor procession about mean moment:

$$\frac{\partial \langle \mu \rangle}{\partial t} = -\frac{i}{\hbar} \langle [\mu, H] \rangle = \gamma \langle \mu(t) \rangle \times \mathbf{B}(t). \tag{3}$$

Oscillating perpendicular field, $B_0 >> B_1$:

$$H = \frac{\hbar}{2} \begin{pmatrix} \omega_0 & \omega_1 e^{-i\omega t} \\ \omega_1 e^{i\omega t} & -\omega_0 \end{pmatrix} \tag{4}$$

Transformation via $|\phi(t)\rangle = e^{i\omega t S_z/\hbar} |\psi(t)\rangle$:

$$\tilde{H} = \frac{\hbar}{2} \begin{pmatrix} -\Delta\omega & \omega_1 \\ \omega_1 & \Delta\omega \end{pmatrix} \tag{5}$$

Driving at resonance $\Delta\omega\approx0$, Rabi oscillations occur:

$$|\left\langle \downarrow |\phi(t)\right\rangle|^2 = \frac{\omega_1^2}{\omega_1^2 + (\Delta\omega)^2} \sin^2\left[\frac{1}{2}\sqrt{(\Delta\omega)^2 + \omega_1^2}t\right]. \quad (6)$$

$$\pi$$
-pulse: $|\langle\downarrow|\phi(t)\rangle|^2 = 1 \rightarrow t = \pi/\gamma B_1$.

Relations to equilibrium Maxwell-Boltzmann distribution occurs in time \mathcal{T}_1

$$\mathbf{B}_{i} = \mathbf{B}_{0} + \mathbf{b}_{i} \rightarrow \mathbf{b}_{i} = \frac{\mu_{0}}{4\pi} \sum_{i} \left[\frac{\mu}{r_{ii}^{3}} - \frac{(\mu \cdot \mathbf{r}_{ij}) \mathbf{r}_{ij}}{r_{ii}^{5}} \right] \rightarrow M(2\tau) = M(0)$$
 (7)

Parameters:

- Pulse width calibration, matching capacitance, minimizing ΔH₀ from FID
- Maximum FID with $\frac{\pi}{2}$ -pulse $\rightarrow T_2^*$
- Carr-Purcell and $\frac{\pi}{2} \tau \pi$ for T_2

Figure: Caption of subfigures (a), (b) and (c)

Consider,

- Instrumental scope uncertainty: 1mV
- Statistical uncertainty (sampling error): 0.4mV
- Natural line width
- Inhomogeneity of $H \rightarrow \text{Extrapolated from } T_2, T_2^*$
- Pulse Angle and concentration
- Concentration from samples, contamination

FFT Resonance of 95% Glycerin Frequency (Hz)

$$V = V_0 \exp\left[-\frac{2\tau}{T_2^*}\right] \cos\left[\left(\Delta\omega\right)\left(t - t_0\right)\right] \qquad \tilde{V} = \tilde{V}_0 \frac{\sigma}{(f - f_0)^2 + \sigma^2} \qquad T_2^* = \frac{2}{\sigma} \quad (8)$$

$$\tilde{V} = \tilde{V}_0 \frac{\sigma}{(f - f_0)^2 + \sigma^2}$$
 $T_2^* = \frac{2}{\sigma}$ (8)

For both $T_2^* \approx 0.51$

 L_{7_2} from $\frac{\pi}{2} - \tau - \pi$

$$V = V_0 \exp \left[-\frac{2\tau}{T_2} - \frac{2}{3} \gamma^2 DG^2 \tau^3 \right] \cos \left[(\Delta \omega) \left(t - t_0 \right) \right]$$
 (9)

$$\pi/2 - \tau - \pi - 2\tau - \pi - 2\tau - \pi - \cdots$$

$$V = V_0 \exp\left[-\frac{2n\tau}{T_2}\right] \tag{10}$$

Table: Transverse relaxation time at $23.6\pm0.5^{\circ}$ C.

$\eta_{\mathrm{Glyc.}}$ (%)	T_2 (ms)	T_2^* (ms)	ΔH_0 (Gauss)
100	12.13 ± 0.82	0.44 ± 0.07	0.23 ± 0.08
95	18.50 ± 0.73	0.51 ± 0.07	0.24 ± 0.07
75	127.8 ± 1.23	0.99 ± 0.13	0.28 ± 0.03
60	128.0 ± 4.79	0.51 ± 0.08	0.53 ± 0.05
50	318.4 ± 5.52	0.74 ± 0.09	0.80 ± 0.10
25	410.6 ± 11.9	0.83 ± 0.10	0.14 ± 0.11

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \gamma \Delta H \tag{11}$$

Errors determined as 1σ from fits.

See K. Luszczyski, J. A. E. Kail and J.G. Powles. *Molecular Motion in Liquid Glycerol by Proton Magnetic Relaxation*, 1959.

Relaxation of Paramagnetic Ion Doping with Fe(NO₃)·9H₂O

Summary

- Qualitative agreement on viscosity and ion doping effects on relaxation.
- Magnetic field homogeneity determined from transverse decay constants.
- Problems: Beer's law for measuring concentration: Why doesn't 8.13 have a colorimeter?

Acknowledgements

- Charles Herder
- JLab staff: For being helpful despite knowing more than we do.
- E.M. Purcell: You can't spell NMR without "enema"+"r".