

Bioinformática

Taller Lab Genómica y Biodiversidad: Día1

Fabiola León Miranda

GENÓMICA

Jerarquía de habilidades previas al ensamblaje

Terminal

- Qué es la Terminal Linux/OX
- Navegar por stmas de directorios
- Interactuar con archivos
- Descargar y editar archivos
- Mover, copiar y borrar archivos

Terminal LINUX

- La "shell" es una interfaz gráfica
- Opera a través de líneas de comando
- Los comandos son programas
- Actúan como interlocutor o intérprete entre sistemas complejos y nosotros

Multitarea Multiusuario

```
fabiola@Lafabi: ~/Documentos/.
                         grams/frontend$ ls
             ladf-f5ad-4d45-bc52-ab524cfb6a09-1.pdf
          9de1062-9e2f-41c8-82f4-045afb12755a.pdf
exo 1 del pingüino de Humboldt (Reparado).docx'
EXO 3 INFORME DE ACTIVIDADES.pdf
   484489-70.pdf
    rafía pingüinos de HUmboldt.docx'
             09_2022-09-07-120718.pdf
             9<sup>-</sup>2022-09-16-135110.pdf
                    5041264-2023.pdf
                     cia.arriendo Octubre.pdf'
                         pdf.pdf
```

Navegar entre stmas de archivos

pwd

Print working directory

Permite saber dónde estás.

cd

Change directory

Cambia el directorio actual

mkdir

Make directory

Crea un directorio

ls

list

Lista los archivos en el directorio actual

Interactuar con archivos.

Ahora tenemos herramientas poderosas

Editemos archivos

wget y curl

Descarga remota de archivos.

nano

Editor de texto plano.

Transferencias de archivos

scp, rsync. sftp

Descarga remota de archivos.

md5sum

Verificador de calidad de transferencia

Jerarquía de Directorios

https://www.gutenberg.org/ebooks/43

NCBI

• National Center for Biotecnology Information

https://www.ncbi.nlm.nih.gov/

Genomas de referencia para especies no modelo

Características

Pudú

Pudu puda

Tamaño del genoma?

Anotación

Skua

Stercorarius spp

Cobertura de secuenciación?

Tecnología

Ranita de Darwin Rhinoderma darwini Número de Scaffolds o Chromosomas?

Consideraciones para escoger Genoma de referencia

Scaffolds vs Cromosomas	Número de Cromosomas parecido al modelo?
Cobertura de Secuenciación	Qué tan lejanos son de nuestro modelo (filogenia)
Formato GenBank vs RefSeq	Tecnología de secuenciación

Elaboración de scripts.

Frontend Backend?

qsub

nohup./

```
source activate samtools
samtools view -q 20 -f 0x2 -bSh -@ 20 /data6/testacc/fabiola/10ADI_Enovo.sam > /data6/testacc/fabiola/10ADI_Enovo.bam
samtools view -q 20 -f 0x2 -bSh -@ 20 /data6/testacc/fabiola/10ADYI_Enovo.sam > /data6/testacc/fabiola/10ADYI_Enovo.bam
```

```
#!/bin/bash
#PBS -V
#PBS -N sorted_prueba_nuevaREF_Enovo
#PBS -k eo
#PBS -l nodes=1:ppn=40
#PBS -l walltime=02:00:00
#### Switch to the working directory;
cd $PBS_O_WORKDIR
### Run:
date +"%T"
source activate samtools
samtools sort -o /data6/testacc/fabiola/10ADI_sorted_Enovo.bam -@ 40 /data6/testacc/fabiola/10ADI_Enovo.bam
samtools sort -o /data6/testacc/fabiola/10ADYI_sorted_Enovo.bam -@ 40 /data6/testacc/fabiola/10ADYI_Enovo.bam
qstat -f $PBS_JOBID
```


Bioinformática

Taller Lab Genómica y Biodiversidad: Día2

Fabiola León Miranda

GENÓMICA

Workflow del ensamblaje

Conoce y ajusta a tu proyecto

- El trabajo de ensamblaje debe ajustarse a las preguntas y particularidades de cada genoma.
- Es muy importante **NO** replicar scripts a la ligera.
- Se recomienda estudiar las funciones de cada uno de los programas que se utilizan y ajustar los parámetros según el proyecto

FASTQC y MULTIQC

- Es una herramienta de control de calidad para datos de secuencias NGS
- Posee interfaz grafica amigable o terminal
- Proporciona un conjunto modular de análisispara saber si los datos tienen algún problema que deba tener en cuenta antes de rcontinuar con el ensamblaje
- Entrega archivos htlm de fácil visualización

FASTQC

Programas amigable

Entrega un resumen de un sólo genoma

MULTIQC

Programas amigable

General Statistics

S Copy table ■	Configure Columns	↓₹ Sort by highlig	ght Plot	Showing 8/8 rows and	d ⁹ / ₁₁ columns.				
Sample Name	5'-3' bias	M Aligned	% Aligned	M Aligned	% Aligned	M Aligned	% Dups	% GC	M Seqs
Irrel_kd_1	1.18	35.6	86.4%	31.2	92.1%	33.2	55.9%	47%	36.1
Irrel_kd_2	1.14	30.4	86.0%	26.5	92.2%	28.4	53.6%	47%	30.8
Irrel_kd_3	1.19	23.6	85.7%	20.5	92.0%	22.0	50.1%	48%	23.9
Mov10_kd_2	1.13	51.9	86.0%	45.3	91.6%	48.3	60.5%	48%	52.7
Mov10_kd_3	1.13	30.7	86.0%	26.8	91.6%	28.5	54.6%	47%	31.1
Mov10_oe_1	1.09	38.1	80.2%	32.1	88.9%	35.5	56.5%	47%	40.0
Mov10_oe_2	1.18	35.4	81.0%	30.0	88.8%	33.0	55.9%	48%	37.1
Mov10_oe_3		20.3	81.5%	17.3	90.0%	19.1	50.1%	47%	21.2

Entrega un resumen de varios genomas

Burrows Wheeler Aligner (BWA)

Es un programa para alinear las lecturas o reads de secuenciación contra un genoma de referencia

Indexar REF

BWA index

Crea un índice de genoma de REF

.amb .ann .pac .bwt .sa

Alinear

BWA MEM

Alineamientos de short reads >>> contra genoma de REF

Archivos BAM Samtools

Samtools es un conjunto de programas para interactuar con datos NGS.

samtools view – convierte archivos SAM/BAM >>> .bam

samtools sort – ordena archivos SAM/BAM

Sección de recursos

Usa estos recursos de diseño en tu presentación de Canva. ¡Que lo pases bien diseñando! Elimina esta página antes de la presentación.

Sección de recursos

Usa estos recursos de diseño en tu presentación de Canva. ¡Que lo pases bien diseñando!

