

INTERNATIONAL QUALIFICATIONS

Please write clearly ir	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Thursday 4 January 2024 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the OxfordAQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

FOI Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
TOTAL		

For Evaminer's Use

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

Answer all questions in the spaces provided.

1 The function f is defined by

$$f(x) = 2x^2 - 14x + 8$$

- 1 (a) It is given that f(x) can be expressed in the form $2(x+a)^2+b$ where a and b are constants.
- 1 (a) (i) Find the value of a

Circle your answer.

[1 mark]

-7

 $-\frac{7}{2}$

 $\frac{7}{2}$

7

1 (a) (ii) Find the value of b

Circle your answer.

[1 mark]

-41

 $-\frac{33}{2}$

 $-\frac{33}{4}$

 $-\frac{17}{4}$

5

1 (b) Sketch the curve with equation y = f(x) on the axes below, showing the coordinates of the *y*-intercept and the coordinates of the vertex.

[3 marks]

Turn over for the next question

2 The diagram shows the lines l_1 and l_2 and the points P and Q

The line l_1 has equation 3x+2y-66=0 and intersects the x-axis at P. The line l_2 intersects the x-axis at Q.

2 (a) Find the coordinates of P

[1 mark]

Answer

2 (b) The line l_2 is parallel to the line l_1 and intersects the *y*-axis at the point (0,-6)

Find the coordinates of Q

[2 marks]

Answer

2	(c)	The point R lies on l_1 such that the s	he line segment	QR is perpendicular to	l_1	bo
2	(c) (i)	Find the coordinates of R			[4 marks]	
		Ansv	ver			
2	(c) (ii)	Find the area of the triangle PQR			[2 marks]	
		Ansv	ver			9

[3 marks]

is
;

$$y = kx^{\frac{1}{2}} - 12x^{-\frac{3}{2}}$$

where x > 0 and k is a constant.

The curve passes through the point $\left(2p, \ \frac{8}{p}\sqrt{2p}\right)$ where p is a positive constant.

Show that $k = \frac{mp+n}{p^2}$ where m and n are integers.

-		

3	(b)	It is given that
		$10t^2 + 29t - 28 + 2w = w\sqrt{5t} + 2t \qquad \text{for } t \neq 0.8$
		Show that
		$w = (at + b)(\sqrt{ct} + d)$
		where $a,\ b,\ c$ and d are integers.
		[4 marks]

4		The n th term of a sequence is u_n
		The sequence is defined by
		$u_{n+1} = k - \frac{18}{u_n}$
		The first term $u_1 = 2$
		It is given that $u_3 = 5u_2 - 9$
4	(a)	Show that one possible value of k is 12 and find the other possible value. [5 marks]
		Answer

4 (b)	In the case when $k=$ 12 $$ find the exact value of u_4	[2 marks]	
			ı
	Answer_		
	Turn over for the next question		

5 The graph with equation y = f(x) where

$$f(x) = x^3 + bx^2 + cx + 18$$

and $\,b\,$ and $\,c\,$ are constants is shown in the diagram below.

The graph:

intersects the *x*-axis at the point $\left(-\frac{d}{6},0\right)$ where d is a positive constant

touches the *x*-axis at the point $\left(\frac{d}{4}, 0\right)$

intersects the y-axis at the point (0,18)

5	(a)	Show that $d = 12$	
			[2 marks]

b)	By writing $f(x)$ as a product of linear factors prove that $f(x) = x^3 - 4x^2 - 3x + 18$	[3 mar
	Question 5 continues on the next page	

5	(c)	The graph with equation $y = x^3 - 4x^2 - 3x + 18$ is mapped onto the graph with
		equation $y = g(x)$ by the translation $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$
		Find an expression for $g(x)$
		Give your answer in the form
		$g(x) = x^3 + px^2 + qx + r$
		where $p,\ q$ and r are non-zero integers. [3 marks]
		g(x) =
		5(**)

5	(d)	Use the Factor Theorem to determine whether $(x-5)$ is a factor of $g(x)$		outside ti box
			[2 marks]	
				10

Turn over for the next question

The diagram shows a rectangle ABCD and a triangle AEF where $AB = 6 \, \text{cm}$, $AD = 8 \, \text{cm}$, $BE = x \, \text{cm}$ and $DF = y \, \text{cm}$

The point B lies on AE, the point C lies on EF and the point D lies on AF

6 (a) Show that the area $T \text{ cm}^2$ of the triangle AEF is given by

$$T = 48 + 4x + \frac{144}{x}$$

[3 marks]

-		

6	(b) (i)	Use the result given in part (a) to find the minimum value of \ensuremath{T}	[4 marks]
		$T = \underline{\hspace{1cm}}$	
_	a > a>	d^2T	
6	(b) (ii)	Use $\frac{d^2T}{dx^2}$ to prove that your value of T is a minimum.	[2 marks]

7 The curve C and the line l are shown in the diagram below.

The line $\,l\,$ intersects $\,C\,$ at the points $\,P\,$ and $\,Q\,$

The equation of C is $y = 35 + 4x - \frac{1}{4}x^2$

7 (a) The tangent to C at the point where x = 4 is parallel to l

The line $\,l\,$ passes through the point $\,\left(5,24\right)\,$

Show that the x-coordinates of P and Q satisfy the equation

$$x^2 - 8x - 84 = 0$$

[5 marks]

Do not write outside the box

7 (b)		
7 (b)	Find the values of x for which the curve C is above the line l	2 marks]
	Answer	
	AnswerQuestion 7 continues on the next page	

Do not write outside the box

	(C) (I)	Find $\int \left(35 + 4x - \frac{1}{4}x^2\right) dx$	[2 marks]
		Answer	
7	(c) (ii)	Find the area of the finite region bounded by $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
		Show clearly each step of your working.	[5 marks]
			[3 Illai k3]
			[5 marks]

	Do not write outside the box
	ЫОХ
Answer	14
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	
Turn over for the next question	

8	(a)	Expand $(1-w)^3$	
		·	[1 mark]
		_	
			_
		Answer	
•	(ls)	Cla avvi thant	
8	(b)	Show that	
		$4(1-\sqrt{x})^3 +$	$(4 + \sqrt{3})^3$
		$4(1-\sqrt{x})$	$(1 + \sqrt{x})$
		can be expressed as	
		$5 + a\sqrt{x} + 15$	$x + hx \sqrt{x}$
		$3 + u \gamma x + 13$	
		where a and b are integers	
		where a and b are integers.	[4 marks]
			[+ marko]
		_	

s (c)	The curve C is such that any point (x, y) on C satisfies the equation	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\left(1 - \sqrt{x}\right)^3 + \left(1 + \sqrt{x}\right)^3$	
	The curve C passes through the point $(4,20)$	
	Find the equation of C	
	Give your answer in the form $y = f(x)$	
		[5 marks]
	-	
	Answer	

10

9 (a)	The first three terms of a geometric series are	
	$a,\ b$ and c	
	where a , b and c are real numbers.	
	It is given that $b = 27c^2$	
	Find b in terms of a	
		[4 marks]
	Answer	

9	(b)	It is given that $k > 3$
		Show that
		$\sum_{n=1}^{\infty} \frac{5 - 4 \times (-3)^{n-1}}{k^n} = \frac{(k+p)}{(k+q)(k+r)}$
		where $p,\ q$ and r are integers. [5 marks]

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page

Do not write outside the box

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqa.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and OxfordAQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

