SPARC-cyclix

User guide

Material Physics & Mechanics Group, Georgia Tech
PI: Phanish Suryanarayana
Contributors
Citation
Acknowledgements

Contributors

- Phanish Suryanarayana (PI)
 - **Abhiraj Sharma**: Code infrastructure, CheFSI, PBE, Energy, Force, Stress, atomic & cell relaxation
 - Qimen Xu: Code infrastructure
 - Xin Jing: Code infrastructure, Spin, SOC
 - Arpit Bhardwaj: Spin, SOC

Citation

If you publish work using/regarding SPARC-cyclix, please cite the following article, in addition to SPARC citations:

- https://doi.org/10.1103/PhysRevB.103.035101
- Additional references for initial developments:

```
https://doi.org/10.1016/j.jmps.2016.08.007,
https://doi.org/10.1103/PhysRevB.100.125143
```

Acknowledgements

• U.S. National Science Foundation: 1553212

Input file options

Input file options for SPARC-cyclix, in addition to SPARC:

Cyclix

```
TWIST_ANGLE | BC | CELL | COORD | COORD_FRAC | EXCHANGE_CORRELATION | KPOINT_GRID |
```

TWIST_ANGLE

Type Double

Unit

Default

Example

rad/Bohr

0

TWIST_ANGLE: 0.0045

Description

External twist per unit length applied on the nanotube.

Remark

If using helical symmetry (D C H), we also have to add the intrinsic twist.

Type
Character

Unit
No Unit

Default
None

Example
BC: D C P

Description

A set of three whitespace delimited characters specifying the boundary conditions in the lattice vector directions, respectively. P represents periodic boundary conditions, D represents Dirichlet boundary conditions, C represents cyclic boundary conditions and H represents helical boundary conditions.

BC

Remark

BC: D C P and BC: D C H are the cyclix cases where the former uses only cyclic boundary condition and latter uses both cyclic and helical boundary conditions.

CELL

Type Double

PC

uble Bohr

Default

None

Example

Unit

CELL: 30.3498 0.2991 3.1359

Description

A set of three whitespace delimited values specifying the cell lengths in the radial, angular and periodic/helical directions, respectively.

Remark

Angular direction length is equal to $2\pi/\Gamma$, where Γ is the group order in the cyclic direction.

COORD

Туре	Unit
Double	Bohr
Default	Example
None	COORD:
	0 0 0
	2.5 2.5 2.5

Description

The Cartesian coordinates of atoms of a ATOM_TYPE specified before this variable. If the coordinates are outside the fundamental domain (see CELL) in the periodic and cyclic/helical directions (see BC), it will be automatically mapped back to the domain.

COORD

Remark

For a system with different types of atoms, one has to specify the coordinates for every ATOM_TYPE. One can also specify the coordinates of the atoms using COORD_FRAC.

COORD_FRAC

Type

Double

Unit

None

Default

None

Example

COORD_FRAC:

0 0 0

2.1 0.5 0.5

Description

The fractional coordinates of atoms of a ATOM_TYPE specified before this variable. COORD_FRAC $(i,j) \times \text{CELL}(j), (j=1,2,3)$ gives the coordinate of the i^{th} atom along the j^{th} direction. j=1 is along radial, j=2 is along angular and j=3 is along periodic/helical direction.

COORD_FRAC

Remark

For a system with different types of atoms, one has to specify the coordinates for every ATOM_TYPE. One can also specify the coordinates of the atoms using COORD.

EXCHANGE_CORRELATION

Type

String

Default

No Default

Unit

No unit

Example

EXCHANGE_CORRELATION: LDA_PW

Description

Choice of exchange-correlation functional. Options are LDA_PW (Perdew-Wang LDA), LDA_PZ (Purdew-Zunger LDA) and GGA_PBE (PBE GGA)

EXCHANGE_CORRELATION

Remark

For spin-polarized calculation (SPIN_TYP = 1), LDA_PW (Perdew-Wang LDA) and GGA_PBE (PBE GGA) are available.

KPOINT_GRID

Type

Integer array

Default

1 1 1

Unit

No unit

Example

KPOINT_GRID: 1 5 10

Description

Number of k-points in each direction of the Monkhorst-Pack grid for Brillouin zone integration. In SPARC-cyclix, we don't have any k-points along the radial direction as it is vaccuum. The angular k-point is reffered as ν point and the periodic/helical k-point is called η point.

Remark

 ν point should be an integer factor of the group order Γ .

FAQs

Q: How can SCF convergence be made better in SPARC-cyclix calculations?

A: In cases of smaller radius and finer mesh, we need to use higher Chebyshev Degree. Increasing the option CHEB_DEGREE should help with the SCF convergence.

Q: Are pseudopotentials with non-linear core corrections and relativistic effect supported by SPARC-cyclix?

A: Yes.

Q: Is non-collinear spin calculation supported by SPARC-cyclix?

A: No, currently we only have the collinear spin calculations available in SPARC-cyclix.