1 Исчисление высказываний

1.1 Предметный язык и язык исследователя (метаязык). Соглашения об обозначениях. Схемы формул.

Высказывание — это строка, сформированная по следующим правилам.

1.2 Язык исчисления высказываний.

Определение. Высказывание — это строка, сформированная по следующим правилам.

- 1. Атомарное высказывание пропозициональная переменная: A, B', C_{1234}
- 2. Составное высказывание: если α и β высказывания, то высказываниями являются:
 - (a) Отрицание: $(\neg \alpha)$
 - (b) Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - (c) Дизъюнкция: $(\alpha \lor \beta)$
 - (d) Импликация: $(\alpha \to \beta)$ или $(\alpha \supset \beta)$

Пример.

$$(((A \rightarrow B) \lor (B \rightarrow C)) \lor (C \rightarrow A))$$

1.3 Оценка высказываний, общезначимость, следование.

1.3.1

1.3.2

Синтаксис для указания функции оценки переменных

$$\llbracket \alpha \rrbracket^{X_1:=v_1,\ \dots,\ X_n:=v_n}$$

Это всё метаязык — потому полагаемся на здравый смысл

$$[\![A \& B \& (C \to C)]\!]^{A:=H, B:=[\![\neg A]\!]}$$

1.3.3

1. Переменные

$$[\![X]\!] = f(X)$$
 $[\![X]\!]^{X:=a} = a$

2. Отрицание

$$\llbracket \neg \alpha \rrbracket = \left\{ \begin{array}{ll} \mathcal{I}, & ecnu \; \llbracket \alpha \rrbracket = \mathit{H} \\ \mathcal{U}, & uhaue \end{array} \right.$$

3. Конъюнкция

4. Дизъюнкция

$$[\![\alpha \vee \beta]\!] = \left\{ \begin{array}{ll} \mathcal{I}, & ecnu \ [\![\alpha]\!] = [\![\beta]\!] = \mathcal{I} \\ \mathcal{U}, & una\ ^{u}e \end{array} \right.$$

5. Импликация

$$\llbracket \alpha \to \beta \rrbracket = \left\{ \begin{array}{ll} \mathcal{I}, & ecnu \; \llbracket \alpha \rrbracket = \mathit{H}, \; \llbracket \beta \rrbracket = \mathcal{I} \\ \mathcal{H}, & unaue \end{array} \right.$$

1

1.3.4

Если α истинна при любой оценке переменных, то она *общезначима* (является *тавтологией*):

$$\models \alpha$$

Выражение $A \to A$ — тавтология. Переберём все возможные значения единственной переменной A:

$$\begin{bmatrix} A \to A \end{bmatrix}^{A:=H} = H$$

$$\begin{bmatrix} A \to A \end{bmatrix}^{A:=H} = H$$

Выражение $A \to \neg A$ тавтологией не является:

$$[\![A \to \neg A]\!]^{A:=H} = \mathcal{J}$$

1.3.5

1. Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \dots, \gamma_n$, будем говорить, что $\alpha - cnedcmbue$ этих высказываний:

$$\gamma_1, \ldots, \gamma_n \models \alpha$$

- 2. Истинна при какой-нибудь оценке выполнима.
- 3. Не истинна ни при какой оценке невыполнима.
- 4. Не истинна при какой-нибудь оценке опровержима.

1.4 Доказуемость, гипотезы (контекст), выводимость.

1.4.1

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

- 1. является аксиомой существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо
- 2. получается из $\delta_1, \dots, \delta_{i-1}$ по правилу Modus Ponens существуют такие индексы j < i и k < i, что $\delta_k \equiv \delta_j \to \delta_i$.

1.4.2

(доказательство формулы α) — такое доказательство (вывод) $\delta_1, \delta_2, \dots, \delta_n$, что $\alpha \equiv \delta_n$. Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

1.4.3

(вывод формулы α из гипотез $\gamma_1, \ldots, \gamma_k$) — такая последовательность $\delta_1, \ldots, \delta_n$, причём каждое δ_i либо:

- 1. является аксиомой;
- 2. либо получается по правилу Modus Ponens из предыдущих;
- 3. либо является одной из гипотез: существует $t: \delta_i \equiv \gamma_t$.

1.5 Корректность, полнота, противоречивость и непротиворечивость (эквивалентные формулировки).

1.5.1 Корректность

Лемма. Теория корректна, если любое доказуемое в ней утверждение общезначимо. То есть, $\vdash \alpha$ влечёт $\models \alpha$.

Лемма. Если $\vdash \alpha$, то $\models \alpha$

1.5.2 Полнота

Лемма. Теория полна, если любое общезначимое в ней утверждение доказуемо. То есть, $\models \alpha$ влечёт $\vdash \alpha$.

1.6 Теорема о дедукции для исчисления высказываний (формулировка). Теорема о полноте исчисления высказываний (формулировка)

1.6.1 Теорема о дедукции для исчисления высказываний

Теорема. $\Gamma, \alpha \vdash \beta$ выполнено тогда и только тогда, когда выполнено $\Gamma \vdash \alpha \to \beta$

1.6.2 Теорема о полноте исчисления высказываний

Теорема. Если $\models \alpha$, то $\vdash \alpha$.

2 Топологическое пространство

2.1 Определение.

2.1.1

Определение. Топологическим пространством называется упорядоченная пара $\langle X, \Omega \rangle$, где X — некоторое множество, а $\Omega \subseteq \mathcal{P}(X)$, причём:

- 1. $\emptyset, X \in \Omega$
- 2. если $A_1, \ldots, A_n \in \Omega$, то $A_1 \cap A_2 \cap \cdots \cap A_n \in \Omega$;
- 3. если $\{A_{\alpha}\}$ семейство множеств из Ω , то и $\bigcup_{\alpha} A_{\alpha} \in \Omega$.

Множество Ω называется mononorueй. Элементы Ω называются открытыми множествами.

2.2 Метрическое пространство.

2.2.1

Определение. Метрикой на X назовём множество, на котором определена функция расстояния $d: X^2 \to \mathbb{R}^+$, удовлетворяющая следующим свойствам:

- 1. d(x,y) = 0 тогда и только тогда, когда x = y
- 2. d(x,y) = d(y,x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (неравенство треугольника)

Определение. Открытым ε -шаром с центром в точке $x \in X$ назовём $O_{\varepsilon}(x) = \{t \in X \mid d(x,t) < \varepsilon\}.$

Определение. Если X — некоторое множество и d — метрика на X, то будем говорить, что топологическое пространство, задаваемое базой $\mathcal{B} = \{O_{\varepsilon}(x) \mid \varepsilon \in \mathbb{R}^+, x \in X\}$, порождено метрикой d.

2.3 Примеры (топология стрелки, Зарисского, топология на дереьвях).

2.3.1 Топология стрелки

Определение. Топология стрелки: $\langle \mathbb{R}, \{(x, +\infty) \mid x \in \mathbb{R}\} \cup \{\varnothing, \mathbb{R}\} \rangle$ — открыты все положительные лучи.

2.3.2 Топология Зарисского

2.3.3 Топология на дереьвях

Определение. Пусть некоторый лес задан конечным множеством вершин V и отношением (\leq), связывающим предков и потомков ($a \leq b$, если b — потомок a). Тогда подмножество его вершин $X \subseteq V$ назовём открытым, если из $a \in X$ и $a \leq b$ следует, что $b \in X$.

Лемма. Лес связен (является одним деревом) тогда и только тогда, когда соответствующее ему топологическое пространство связно.

2.4 Открытые и замкнутые множества. Связность. Компактность.

2.4.1 Открытые и замкнутые множества.

Определение. Множество Ω называется *топологией*. **Определение.** Элементы Ω называются открытыми множествами.

2.4.2 Связность.

Определение. Пространство $\langle X, \Omega \rangle$ связно, если нет $A, B \in \Omega$, что $A \cup B = X$, $A \cap B = \emptyset$ и $A, B \neq \emptyset$.

2.4.3 Компактность.

Определение. Будем говорить, что множество компактно, если из любого его открытого покрытия можно выбрать конечное подпокрытие.

Пример. Множество $\{0,1\}$ в дискретной топологии компактно.

Пример. Интервал (0,1) в \mathbb{R} не компактен — например, рассмотрим покрытие $\{(\varepsilon,1) \mid \varepsilon \in (0,1)\}$

2.5 Непрерывные функции. Путь. Линейная связность.

2.5.1 Непрерывные функции.

Определение. Функция $f: X \to Y$ непрерывна, если прообраз любого открытого множества открыт. **Пример.** Функция $f: \mathbb{N} \to \mathbb{R}$ всегда непрерывна (при дискретной топологии на \mathbb{N}), поскольку любое множество в \mathbb{N} открыто.

2.5.2 Путь.

2.5.3 Линейная связность.

3 Интуиционистское исчисление высказываний

3.1 Доказательства чистого существования.

Теорема. Любое непрерывное отображение f шара в \mathbb{R}^n на себя имеет неподвижную точку

Теорема. Существует пара иррациональных чисел a и b, такая, что a^b — рационально.

3.2 ВНК-интерпретация.

ВНК — это сокращение трёх фамилий: Брауэр, Гейтинг, Колмогоров.

- 1. α & β построено, если построены α и β
- 2. $\alpha \vee \beta$ построено, если построено α или β , и мы знаем, что именно
- 3. $\alpha \to \beta$ построено, если есть способ перестроения α в β
- 4. \perp конструкция, не имеющая построения
- 5. $\neg \alpha$ построено, если построено $\alpha \rightarrow \bot$

3.3 Решётки.

Определение. Решёткой называется упорядоченная пара: $\langle X, (\leq) \rangle$, где X — некоторое множество, а (\leq) — частичный порядок на X, такой, что для любых $a,b \in X$ определены $a+b=\sup\{a,b\}$ и $a \cdot b=\inf\{a,b\}$.

Пример. $\langle \Omega, (\subseteq) \rangle$ — решётка. $\langle \mathbb{N} \setminus \{1\}, (\dot{\cdot}) \rangle$ — не решётка.

3.4 Дистрибутивная решётка. Пентагон и диамант.

Определение. Дистрибутивной решёткой называется такая, что для любых a,b,c выполнено $a \cdot (b+c) = a \cdot b + a \cdot c$.

Определение. Импликативная решётка — такая, в которой для любых элементов есть псевдодополнение.

 ${f Лемма}$. Любая импликативная решётка — дистрибутивна.

Определение. Псевдодополнением $a \to b$ называется наибольший из $\{x \mid a \cdot x \le b\}$.

Пример.

 $b \cdot b = b$ $c \cdot b = a$

 $d \cdot b = a$

Здесь $b \rightarrow c = \text{наиб}\{x \mid b \cdot x \le c\} = \text{наиб}\{a, c\} = c$

Пример. (нет псевдодополнения: диамант и пентагон)

 $b \rightarrow c = \text{наиб}\{a, c, d\}$

 $c \rightarrow b = \text{наиб}\{a, b, d\}$

3.5 Булевы и псевдобулевы алгебры.

Определение. 0— наименьший элемент решётки, а 1— наибольший элемент решётки.

Лемма. В любой импликативной решётке $\langle X, (\leq) \rangle$ есть 1.

Определение. Импликативная решётка с 0 — псевдобулева алгебра (алгебра Гейтинга). В такой решётке определено $\sim a := a \to 0$.

Определение. Булева алгебра — псевдобулева алгебра, в которой $a + \sim a = 1$ для всех a.

3.6 Алгебра Линденбаума.

Определение. Определим предпорядок на высказываниях: $\alpha \leq \beta := \alpha \vdash \beta$ в интуиционистском исчислении высказываний. Также $\alpha \approx \beta$, если $\alpha \leq \beta$ и $\beta \leq \alpha$.

Определение. Пусть L — множество всех высказываний. Тогда алгебра Линденбаума $\mathcal{L} = L/_{\approx}$. **Теорема.** \mathcal{L} — псевдобулева алгебра.

3.7 Полнота интуиционистского исчисления высказываний в псевдобулевых алгебрах (формулировка, идея доказательства).

Теорема. Пусть $[\![\alpha]\!] = [\![\alpha]\!]_{\mathcal{L}}$. Такая оценка интуиционистского исчисления высказываний алгеброй Линденбаума является согласованной.

Теорема. Интуиционистское исчисление высказываний полно в псевдобулевых алгебрах: если $\models \alpha$ во всех псевдобулевых алгебрах, то $\vdash \alpha$.

3.8 Модели Крипке. Вынужденность.

Определение. Модель Крипке $\langle \mathcal{W}, \leq, (\Vdash) \rangle$:

- 1. W множество миров, (\leq) нестрогий частичный порядок на W;
- 2. (\Vdash) $\subseteq \mathcal{W} \times P$ отношение вынуждения между мирами и переменными, причём, если $W_i \subseteq W_j$ и $W_i \Vdash X$, то $W_j \Vdash X$.

Доопределим вынужденность:

- 1. $W \Vdash \alpha \& \beta$, если $W \Vdash \alpha$ и $W \Vdash \beta$;
- 2. $W \Vdash \alpha \lor \beta$, если $W \Vdash \alpha$ или $W \Vdash \beta$;
- 3. $W \Vdash \alpha \to \beta$, если всегда при $W \leq W_1$ и $W_1 \Vdash \alpha$ выполнено $W_1 \Vdash \beta$
- 4. $W \Vdash \neg \alpha$, если всегда при $W \leq W_1$ выполнено $W_1 \not \Vdash \alpha$.

Будем говорить, что $\vdash \alpha$, если $W \vdash \alpha$ при всех $W \in \mathcal{W}$. Будем говорить, что $\models_{\kappa} \alpha$, если $\vdash \alpha$ во всех моделях Крипке.

3.9 Сведение моделей Крипке к псевдобулевым алгебрам.

Лемма. Если $W_1 \Vdash \alpha$ и $W_1 \leq W_2$, то $W_2 \Vdash \alpha$

Теорема. Пусть $\langle \mathcal{W}, (\leq), (\Vdash) \rangle$ — некоторая модель Крипке. Тогда она есть корректная модель интуиционистского исчисления высказываний.

3.10 Нетабличность ИИВ (формулировка теоремы).

Определение. Пусть задано V, значение $T \in V$ («истина»), функция $f_P : P \to V$, функции $f_{\&}, f_{\lor}, f_{\to} : V \times V \to V$, функция $f_{\neg} : V \to V$.

Тогда оценка $[\![X]\!] = f_P(X), [\![\alpha \star \beta]\!] = f_\star([\![\alpha]\!], [\![\beta]\!]), [\![\neg \alpha]\!] = f_\neg([\![\alpha]\!])$ — табличная.

Определение. Табличная модель конечна, если V конечно.

Теорема. Не существует полной конечной табличной модели для интуиционистского исчисления высказываний.

4 Дизъюнктивность интуиционистского исчисления высказываний.

4.1 Гёделева алгебра. Операция $\Gamma(A)$.

Определение. Для алгебры Гейтинга $\mathcal{A} = \langle A, (\leq) \rangle$ определим операцию «гёделевизации»: $\Gamma(\mathcal{A}) = \langle A \cup \{\omega\}, (\leq_{\Gamma(\mathcal{A})}) \rangle$, где отношение $(\leq_{\Gamma(\mathcal{A})})$ — минимальное отношение порядка, удовлетворяющее условиям:

- 1. $a \leq_{\Gamma(\mathcal{A})} b$, если $a \leq_{\mathcal{A}} b$ и $a, b \notin \{\omega, 1\}$;
- 2. $a \leq_{\Gamma(\mathcal{A})} \omega$, если $a \neq 1$;
- 3. $\omega \leq_{\Gamma(\mathcal{A})} 1$

Теорема. $\Gamma(\mathcal{A})$ — гёделева алгебра.

Теорема. Рассмотрим оценку $[\![\alpha]\!]_{\Gamma(\mathcal{L})} = [\![\alpha]\!]_{\mathcal{L}}$. Тогда она является согласованной с ИИВ.

4.2 Дизъюнктивность ИИВ (формулировка).

Определение. Исчисление дизъюнктивно, если при любых α и β из $\vdash \alpha \lor \beta$ следует $\vdash \alpha$ или $\vdash \beta$.

Определение. Решётка гёделева, если a + b = 1 влечёт a = 1 или b = 1.

Теорема. Интуиционистское исчисление высказываний дизъюнктивно.

5 Разрешимость интуиционистского исчисления высказываний (формулировка).

Теорема. Если $ot\vdash \alpha$ в ИИВ, то существует \mathcal{G} , что $\mathcal{G} \models \alpha$, причём $|\mathcal{G}| \leqslant 2^{2^{|\alpha|+2}}$.

Теорема. ИИВ разрешимо.

6 Исчисление предикатов.

6.1 Язык исчисления предикатов.

Определение.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - (a) Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - (b) Функциональные выражения: $f(\theta_1, \dots, \theta_n)$, метапеременные f, g, \dots
 - (c) Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные $\alpha, \beta, \gamma, \dots$

- (a) Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A, B, C, ...
- (b) Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.
- (c) Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

6.2 Сокращения метаязыка для исчисления предикатов.

Определение.

- 1. Метапеременные:
 - (a) ψ , ϕ , π , ... формулы
 - (b) P, Q, \ldots предикатные символы
 - (c) θ , ...— термы
 - (d) f, g, \ldots функциональные символы
 - (e) x, y, \ldots предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. \underbrace{A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}}_{\exists b...}) \& F$$

- 3. Дополнительные обозначения при необходимости:
 - (a) $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$
 - (b) $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$
 - (c) 0 вместо z
 - (d) ...

6.3 Следование в исчислении предикатов.

Определение. $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \dots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \dots, \gamma_n$.

Теорема. Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

6.4 Теорема о дедукции в исчислении предикатов (формулировка).

Теорема. Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

6.5 Теорема о корректности исчисления предикатов (формулировка).

Теорема. Если θ свободен для подстановки вместо x в φ , то $[\![\varphi]\!]^{x:=[\![\theta]\!]} = [\![\varphi[x:=\theta]\!]]$

Теорема. Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из $FV(\Gamma)$, то $\Gamma \models \alpha$