

<u>Unit 2 Nonlinear Classification,</u> <u>Linear regression, Collaborative</u>

<u>Course</u> > <u>Filtering (2 weeks)</u>

> <u>Lecture 5. Linear Regression</u> > 8. Regularization

8. Regularization Ridge Regression

regression formula, apply gradient-based algorithm,

and to find the best theta.

In the homework, you will see-- in the exercise,

you will see how you can do the same kind of modification,

very straightforward modification,

to get a solution for this objective for the closed form

algorithm.

End of transcript. Skip to the start.

Video

<u>Download video file</u>

Transcripts
<u>Download SubRip (.srt) file</u>
<u>Download Text (.txt) file</u>

Regularization: extreme case 1

1/1 point (graded)

As in the video above, define the loss function

$$J_{n,\lambda}\left(heta, heta_0
ight) = rac{1}{n}\sum_{t=1}^{n}rac{\left(y^{(t)}- heta\cdot x^{(t)}- heta_0
ight)^2}{2} + rac{\lambda}{2}{\left\| heta
ight\|}^2$$

where λ is the regularization factor.

In the figure above, the blue dots are the training examples. If we increase λ to ∞ , where does $f(x)= heta\cdot x+ heta_0$ converge to?

- line 1
- O line 2
- O line 3

Solution:

If we increase λ to ∞ , minimizing J is equivalent to minimizing $||\theta||$. Thus θ will have to be a zero vector. Thus $f(x) = \theta \cdot x + \theta_0$ becomes $f(x) = \theta_0$, a horizontal line. Thus f converges to line 1.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Regularization: Extreme case 2

1/1 point (graded)
As in the problem above,

$$J_{n,\lambda}\left(heta, heta_0
ight) = rac{1}{n}\sum_{t=1}^nrac{\left(y^{(t)}- heta\cdot x^{(t)}- heta_0
ight)^2}{2} + rac{\lambda}{2}{\left\| heta
ight\|^2}$$

where λ is the regularization factor.

O line 1	
● line 2 ✔	
O line 3	
olution:	
we decrease λ to zero, minimizing J is equivalent to minimizing $rac{1}{n}\sum_{t=1}^nrac{(y^{(t)}\!\!-\! heta\!\cdot\! x^{(t)}\!\!-\! heta_0)^2}{2}$, which	th is the "fit." Thus f converges to line 2.
$n \succeq t=1$	Jesus and man man Jesus and and an
Submit You have used 1 of 2 attempts	, com en geo co mino <u>u</u>
	, com en geo com me =
Submit You have used 1 of 2 attempts	Show Discussion
Submit You have used 1 of 2 attempts Answers are displayed within the problem	
Submit You have used 1 of 2 attempts Answers are displayed within the problem iscussion pic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Lecture 5.	