Corrigé de l'examen de Géométrie et arithmétique 1 (L1 IM, 2015-2016, session 2)

Le texte entre crochets ne fait pas partie du corrigé : il s'agit de variantes ou de commentaires. Le barème est sur 20.

Exercice 1. [barème : 5 = 1 + 1 + 1 + 2]

1. Avec les coordonnées du point comme constantes, et celles du vecteur comme coefficients, on obtient le système paramétrique suivant pour \mathcal{D}_1 :

$$\begin{cases} x = t, \\ y = 1 - t, \\ z = t. \end{cases}$$

2. Comme solutions évidentes du système cartésien de \mathcal{D}_2 , on obtient les points suivants :

$$O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \qquad Q = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

On en déduit le vecteur directeur et le système paramétrique suivants pour \mathcal{D}_2 :

$$u_2 = \overrightarrow{OQ} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \begin{cases} x = s, \\ y = s, \\ z = 0. \end{cases}$$

[On peut aussi obtenir le système paramétrique en posant s=x dans le système cartésien. u_2 est alors le vecteur dont les coordonnées sont les coefficients du système obtenu.]

3. En remplaçant x, y, z dans le système cartésien pour \mathcal{D}_2 par leurs valeurs respectives dans le système paramétrique pour \mathcal{D}_1 , on obtient :

$$\left\{ \begin{array}{rcl} t-(1-t)&=&0,\\ t&=&0, \end{array} \right. \mbox{d'où } -1=0: \mbox{impossible}.$$

L'intersection $\mathcal{D}_1 \cap \mathcal{D}_2$ est donc vide.

4. Si P est donné par t dans le système paramétrique de \mathcal{D}_1 , et si Q est donné par s dans le système paramétrique de \mathcal{D}_2 , on obtient :

$$\overrightarrow{PQ} = \begin{pmatrix} s - t \\ s + t - 1 \\ -t \end{pmatrix}.$$

[On a pris soin de donner des noms différents aux paramètres pour P et pour Q.] On cherche P, Q tels que ce vecteur soit orthogonal à u_1 et à u_2 , autrement dit :

$$\left\{ \begin{array}{rcl} (s-t) - (s+t-1) + (-t) & = & 0, \\ (s-t) + (s+t-1) & = & 0, \end{array} \right. \text{ c'est-\`a-dire } \left\{ \begin{array}{rcl} 3t & = & 1, \\ 2s & = & 1. \end{array} \right.$$

La solution unique de ce système est $(t,s)=(\frac{1}{3},\frac{1}{2}).$

En remplaçant les paramètres t et s par leurs valeurs respectives, on obtient :

$$P = \begin{pmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}, \qquad Q = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}.$$

1

Exercice 2. [barème : 4 = 1 + 1 + 1 + 1]

1. On a
$$f(z) = iz + 2 = z$$
 pour $z = \frac{2}{1-i} = \frac{2(1+i)}{(1-i)(1+i)} = \frac{2(1+i)}{2} = 1+i$.

- 2. f est la composée de la translation $z\mapsto z+2$ avec la rotation $z\mapsto iz=e^{i\frac{\pi}{2}}z$. D'après le résultat de la question précédente, f est la rotation de centre 1+i et d'angle $\frac{\pi}{2}$, c'est-à-dire la similitude de centre 1+i, d'angle $\frac{\pi}{2}$ et de rapport 1.
- 3. C est le cercle de centre 1+i et de rayon r.
- 4. \mathcal{C} est invariant par f car f est une rotation de centre 1+i. Autrement dit, $f(\mathcal{C})=\mathcal{C}$.

Exercice 3. [barème : 3 = 1 + 2]

- 1. Une racine n-ième de c est un complexe z tel que $z^n=c$. Il y en a exactement n.
- 2. Les 3 racines cubiques de $c = 8i = 2^3 e^{i\frac{\pi}{2}}$ sont les suivantes :

$$2e^{i\frac{\pi}{6}} = \sqrt{3} + i, \qquad 2e^{i(\frac{\pi}{6} + \frac{2\pi}{3})} = 2e^{i\frac{5\pi}{6}} = -\sqrt{3} + i, \qquad 2e^{i(\frac{\pi}{6} + \frac{4\pi}{3})} = 2e^{i\frac{3\pi}{2}} = -2i.$$

Exercice 4. [barème : 8 = 1 + 1 + 1 + 2 + 1 + 2]

1.
$$P'(X) = 6X^5 + 5X^4 - 16X^3 + 6X^2 - 22X + 1$$
.

- 2. Par division euclidienne, on obtient P' = AQ avec $Q(X) = X^2 + 1$. Le reste est nul.
- 3. Les racines de Q sont $\pm i$.
- 4. $P(i) = i^6 + i^5 4i^4 + 2i^3 11i^2 + i 6 = -1 + i 4 2i + 11 + i 6 = 0$, et de même, P(-i) = 0.

Ainsi, $\pm i$ sont des racines communes de P et P': ce sont donc des racines multiples de P. [Comme P' = AQ, il est inutile de calculer $P'(\pm i)$ pour vérifier que ce sont des racines de P'.]

5. On a
$$Q^2(X) = (X^2 + 1)^2 = X^4 + 2X^2 + 1$$
.
Par division euclidienne, on obtient $P = Q^2 B$ avec $B(X) = X^2 + X - 6$. Le reste est nul.

6. Les racines de Q sont complexes, mais celles de B sont les réels $\frac{-1\pm\sqrt{25}}{2}$, c'est-à-dire 2 et -3, d'où les décompositions suivantes de P en facteurs irréductibles dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$:

$$P(X) = (X-2)(X+3)(X^2+1)^2 = (X-2)(X+3)(X-i)^2(X+i)^2$$