Dual Program ϵ -SV Regression:

minimize
$$\frac{1}{2} \sum_{i,j=1}^{m} (\lambda_i - \mu_i)(\lambda_j - \mu_j) x_i^{\top} x_j + \sum_{i=1}^{m} (\lambda_i - \mu_i) y_i + \epsilon \sum_{i=1}^{m} (\lambda_i + \mu_i)$$
subject to
$$\sum_{i=1}^{m} \lambda_i - \sum_{i=1}^{m} \mu_i = 0$$
$$0 \le \lambda_i \le \frac{C}{m}, \quad 0 \le \mu_i \le \frac{C}{m}, \quad i = 1, \dots, m,$$

minimizing over α and μ .

The constraint

$$\sum_{i=1}^{m} \lambda_i + \sum_{i=1}^{m} \mu_i \le C\nu$$

is gone but the extra term $\epsilon \sum_{i=1}^{m} (\lambda_i + \mu_i)$ has been added to the dual function, to prevent λ_i and μ_i from blowing up.

There is an obvious kernelized version of ϵ -SV regression. It is easy to show that ν -SV regression subsumes ϵ -SV regression, in the sense that if ν -SV regression succeeds and yields $w, b, \epsilon > 0$, then ϵ -SV regression with the same C and the same value of ϵ also succeeds and returns the same pair (w, b). For more details on these methods, see Schölkopf, Smola, Williamson, and Bartlett [147].

Remark: The linear penalty function $\sum_{i=1}^{m} (\xi_i + \xi_i')$ can be replaced by the quadratic penalty function $\sum_{i=1}^{m} (\xi_i^2 + \xi_i'^2)$; see Shawe–Taylor and Christianini [159] (Chapter 7). In this case, it is easy to see that for an optimal solution we must have $\xi_i \geq 0$ and $\xi_i' \geq 0$, so we may omit the constraints $\xi_i \geq 0$ and $\xi_i' \geq 0$. We must also have $\gamma = 0$ so we omit the variable γ as well. It can be shown that $\xi = (m/2C)\lambda$ and $\xi' = (m/2C)\mu$. This problem is very similar to the Soft Margin SVM (SVM_{s4}) discussed in Section 54.13.

56.5 ν -Regression Version 2; Penalizing b

Yet another variant of ν -SV regression is to add the term $\frac{1}{2}b^2$ to the objective function. We will see that solving the dual not only determines w but also b and ϵ (provided a mild condition on ν). We wish to solve the following program: