New Techniques for Traitor Tracing: Size N^{1/3} and More from Pairings

Mark Zhandry (Princeton & NTT Research)

Requirement

Given pirate decoder, can identify the traitor(s)

- * Even if arbitrarily many users collude
- * Even if decoder fails most of the time

Main Objective?

[me'13]

"The goal is to build collusion-resistant traitor tracing where ciphertext overhead in terms of N is minimized"

Sentiment common to much of the literature

Not the whole story...

Boneh-Naor'02:

 $PKE \longrightarrow |ctxt| = O(1)$

Combinatorial, uses "fingerprinting codes" [Boneh-Shaw'95]

Different views on why it doesn't "count"

Problem 1:

Only "threshold" secure

(Can only trace decoder if Pr[decrypt] ≥ 0.9)

Problem 2:

 $\Omega(N^2)$ -sized secret keys

Considered too large

Main Objective, Take 2

[me'20]

"The goal is to build collusion-resistant traitor tracing offering the best parameter-size *trade-offs* in terms of N"

"And ideally, without the threshold limitation"

What's Known

$$(P, K, C) = |P| = P(N) \times poly(\lambda)$$

 $(S, K, C) = |SK| = K(N) \times poly(\lambda)$
 $|C| + |C| + |C|$

Boneh-Sahai-Waters'06: Pairings $(N^{1/2}, 1, N^{1/2})$ Garg-Gentry-Halevi-Raykova-Sahai-Waters'13, Boneh-Z'14: (1,1,1)Goyal-Koppula-Waters'18: LWE (1,1,1) Trivial:

PKE \rightarrow (N,1,N)

IBE \rightarrow (1,1,N)

Boneh-Naor'02:

PKE \rightarrow (N²,N²,1)

IBE \rightarrow (1,N²,1)

Threshold

Some Previously Open Questions

```
PKE, IBE,
Pairing-free groups, \rightarrow (*, N<sup>1.99</sup>, N<sup>0.99</sup>)?
or Factoring-like (even w/ threshold tracing)
```

Pairings
$$\rightarrow$$
 (*, N^{1.99}, N^{0.49})? (even w/ threshold tracing)

Observation

(no threshold **or** fully sublinear)

All the "best" collusion-resistant schemes in the literature follow "PLBE" framework

Private Linear Broadcast Encryption (PLBE)

Plus: User i learns nothing about j, except whether i≤j

Thm ([Boneh-Sahai-Waters'06]): PLBE → Traitor Tracing

Trivial PLBE

PLBE-Based Traitor Tracing

Trivial PLBE: O(N)-sized ciphertexts

All the "best" traitor tracing schemes = improved algebraic constructions of PLBE

The N¹/₂ Barrier for Pairings

 $e(g^a,g^b) = e(g,g)^{ab}$ \rightarrow Degree-2 functions in exponent

 $N^{\frac{1}{2}}$ = best known PLBE from pairings

This Work: New techniques for (collusion-resistant) traitor tracing

New parameter trade-offs from pairings and other primitives

Parameters from Pairings P×K×C=N Simplex: (N,1,1)

Other Results

No threshold!

Pairings \rightarrow (N^{1-a},1,N^a) \forall a \in [½,1] w/ Broadcast

Compare w/ [Boneh-Water'06]: Pairings \rightarrow (N^{1/2},N^{1/2},N^{1/2})

Pairings \rightarrow (N^{1-a},N^{1-a},N^a) $\forall a \in [0,1]$ w/ Broadcast

Compare w/ [Goyal-Quach-Waters-Wichs'19] : Pairings + LWE \rightarrow (N,N²,N^{ϵ})

Other Results

PKE
$$\rightarrow$$
 (N^{2-a},N^{2-2a},N^a) \forall a \in [0,1]

No threshold!

$$\mathsf{IBE} \Longrightarrow (1,\mathsf{N}^{2-2a},\mathsf{N}^a) \ \forall \, a \in [0,1]$$

$$a=0 \rightarrow |ctxt| = O(1)$$

 $a=\frac{2}{3} \rightarrow |sk|=|ctxt|=O(N^{\frac{2}{3}})$

First fully sub-linear schemes from pairingfree groups or factoring-like assumptions [Cocks'01,Döttling-Garg'17]

Techniques

Generically remove thresholds w/o asymptotically changing (P,K,C)

"risky" no risky (个K)

Threshold* Broadcast > traitor tracing

New algebraic instantiations from pairings

* Not to be confused w/ threshold tracing

Trading off C for P,K: Generalizing Trivial PLBE

Often, using IBE techniques

Parameters;

 $P(N) \rightarrow \times P(N/T)$

 $K(N) \rightarrow K(N/T)$

 $C(N) \rightarrow T \times C(N/T)$

Note: Factor T loss Threshold tracing

Removing Thresholds

Key feature: #(shares) independent of N

Parameters:

 $P(N) \rightarrow P(N)$ $K(N) \rightarrow K(N)$ $C(N) \rightarrow C(N)$

Already enough for PKE/IBE results

Mitigating Risk

 α -Risky Tracing: Pr[false positive] \leq negletical negative \leq 1- α

Mitigating Risk

IBE techniques

Parameters:

 $P(N) \rightarrow (N)$

 $K(N) \rightarrow \alpha^{-1} \times K(N)$

 $C(N) \rightarrow C(N)$

Require

 Only threshold scheme

Then apply threshold elimination

Enough for (1,N,1)

Threshold* Broadcast -> Traitor Tracing

Like PLBE, except:

- (1) Arbitrary S
- (2) S public

* Not to be confused w/ threshold tracing

Threshold* Broadcast -> Traitor Tracing

How to encrypt to *secret* sets, when S is public?

Assign users (semi-)random identities (Only user/tracer knows their identity)

Problem: can "guess" user identity

Solution: generalize to threshold functionality

* Not to be confused w/ threshold tracing

Putting It All Together

[Attrapadung-Herranz-Laguillaumie-Libert-Panafieu-Ràfols'12]:

(N,N,1) Threshold Broadcast

Optimize for tracing app

(N^{1/3},N^{1/3},N^{1/3})
Tracing

Apply compilers

Combine w/ "risky" tracing

Lessons Learned

PLBE *not* inherent to traitor tracing

Thresholds no longer limitation

Risky and threshold tracing useful stepping stones