Announcements

- H1 posted. Due Next Tuesday

Nondeterministic Finite Automata

CS 536

Previous Lecture

Scanner: converts a sequence of characters to a sequence of tokens

Scanner and parser: master-slave relationship

Scanner implemented using FSMs

FSM: DFA or NFA

This Lecture

NFAs from a formal perspective

Theorem: NFAs and DFAs are equivalent

Regular languages and Regular expressions

NFAs, formally

transition function $\delta: Q \times \Sigma \to 2^Q$

	0	1
s1	{s1}	{s1, s2}
		S2}
s2		

NFA

To check if string is in *L(M)* of NFA *M*, simulate **set** of **choices** it could make

At least one sequence of transitions that:

Consumes all input (without getting stuck)

Ends in one of the final states

NFA and DFA are Equivalent

Two automata M and M' are equivalent iff L(M) = L(M')

Lemmas to be proven

Lemma 1: Given a DFA M, one can construct an NFA M' that recognizes the same language as M, i.e., L(M') = L(M)

Lemma 2: Given an NFA M, one can construct a DFA M' that recognizes the same language as M, i.e., L(M') = L(M)

Proving lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M' that recognizes the same language as M, i.e., L(M') = L(M)

Idea: we can only be in finitely many subsets of states at any one time

possible combinations of states

Why?

Why 2[^]|Q| states?

Build DFA that tracks set of states the NFA is in!

$$0 \ 0 \ 0 = \{\}$$

$$0 \ 0 \ 1 = \{C\}$$

$$0 \ 1 \ 0 = \{B\}$$

$$0 \ 1 \ 1 = \{B,C\}$$

$$1 \ 0 \ 0 = \{A\}$$

$$1 \ 0 \ 1 = \{A,C\}$$

$$1 \ 1 \ 0 = \{A,B\}$$

$$1 \ 1 \ 1 = \{A,B,C\}$$

Defn: let succ(s,c) be the set of choices the NFA could make in state s with character c

$$succ(A,x) = \{A,B\}$$

$$succ(A,y) = \{A\}$$

$$succ(B,x) = \{C\}$$

$$succ(B,y) = \{C\}$$

$$succ(C,x) = \{D\}$$

$$succ(C,y) = \{D\}$$

Build new DFA M' where $Q' = 2^Q$

To build DFA: Add an edge from state S on character c to state S' if S' represents the union of states that all states in S could possibly transition to on input c

ε-transitions

Eg: xn, where n is even or divisible by 3

Useful for taking union of two FSMs

In example, left side accepts even n; right side accepts n divisible by 3

Eliminating ε-transitions

We want to construct ε -free FSM M' that is equivalent to M

Definition:

eclose(s) = set of all states reachable from s in zero or more epsilon transitions

M' components

s is an accepting state of M' iff eclose(s) contains an accepting state

s -c -> t is a transition in M' iff q -c -> t for some q in eclose(s)

Eliminating ε-transitions

We want to construct ε-free NFA M' that is equivalent to M

Definition: Epsilon Closure

eclose(s) = set of all states reachable from s using zero or more epsilon transitions

	eclose	
Α	{A, B, D}	
В	{B}	
С	{C}	
D	{D}	
Е	{E}	
F	{F}	

Def: eclose(s) = set of all states reachable from s in zero or more epsilon transitions

s is an accepting state of M' iff eclose(s) contains an accepting state

s -c -> t is a transition in M' iff

q -c -> t for some q in eclose(s)

Recap

NFAs and DFAs are equally powerful any language definable as an NFA is definable as a DFA •-transitions do not add expressiveness to NFAs we showed a simple algorithm to remove epsilons

Regular Languages and Regular Expressions

Regular Language

Any language recognized by an FSM is a regular language

Examples:

- Single-line comments beginning with //
- Integer literals
- {ε, ab, abab, ababab, abababab,}
- C/C++ identifiers

Regular expressions

Pattern describing a language

operands: single characters, epsilon

operators: from low to high precedence

alternation "or": a | b

catenation: a.b, ab, a^3 (which is aaa)

iteration: a* (0 or more a's) aka Kleene star

Why do we need them?

Each token in a programming language can be defined by a regular language

Scanner-generator input: one regular expression for each token to be recognized by scanner

Regular expressions are inputs to a scanner generator

Regexp, cont'd

Conventions:

```
a+ is aa*

letter is a|b|c|d|...|y|z|A|B|...|Z

digit is 0|1|2|...|9

not(x) all characters except x

. is any character

parentheses for grouping, e.g., (ab)*

ε, ab, abab, ababab
```

Regexp, example

```
Hex strings start with 0x or 0X followed by one or more hexadecimal digits optionally end with I or L O(x|X)hexdigit+(L|I|\epsilon) where hexdigit = digit|a|b|c|d|e|f|A|...|F
```

Regexp, example

```
Single-line comments in Java/C/C++
// this is a comment
//(not('\n'))*'\n'
```

Regexp, example

C/C++ identifiers: sequence of letters/digits/ underscores; cannot begin with a digit; cannot end with an underscore

Example: a, _bbb7, cs_536

Recap

Regular Languages

Languages recognized/defined by FSMs

Regular Expressions

Single-pattern representations of regular languages

Used for defining tokens in a scanner generator

Creating a Scanner

