Energy Reconstruction at High Energies

Michinari Sakai

May 2, 2014

KLG4 e-type lepton energy reconstruction using KAT

vertex $R < 600 \,\mathrm{cm}$, no residual nucleus

KLG4 μ -type lepton energy reconstruction using KAT

vertex $R < 600 \, \mathrm{cm}$, no residual nucleus

Energy calibration using cosmic ray μ

Can we find more accurate μ speed when prepulse is filtered out?

Algorithm:

- 1. threshold $\equiv 0.3 \times (\text{charge of largest pulse} Q_2)$
- 2. choose first pulse above threshold
- 3. let $T = t_2$
- 4. let $Q = Q_1 + Q_2 + Q_3$

Energy calibration using cosmic ray μ

Plot PMT hit time vs angle wrt middle point of muon track

Conditions:

- ▶ runs 5000 to 5009
- ▶ impact parameter < 50 cm
- ▶ muon fitter badness < 20

PMT hit time vs angle wrt μ center point

run 5000 to 5009, 204 events

PMT hit time vs angle wrt μ center point

run 5000 to 5009, 204 events, 3σ cut wrt neighbor PMTs

Notes

- what was defined as "prepulse" previously is successfully removed
- fist hit time is less precise where prepulse previously existed (Angle/ $\pi <$ 0.4)
- ▶ many secondary pulses are included in first hits for $Angle/\pi > 0.5$ (can be seen by second rainbow shape above main first hits streak)
- prepulses are removed around area of muon entrance?