

Model Development Phase Template

Date	10 July 2024	
Team ID	739659	
Project Title	Trip-Based Modelling of Fuel Consumption in Modern Fleet Vehicles Using Machine Learning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Linear regression

Lasso Regression

Decision Tree

```
#DecisionTree Model:

dt = DecisionTreeRegressor(random_state = 0)
dt.fit(x,y)

DecisionTreeRegressor
DecisionTreeRegressor(random_state=0)
```

Random Forest

Model Validation and Evaluation Report:

Model	Training Report	Accuracy	Metrix
Linear Regression	101 Group 1 Septing Private	0.11	[98]
Lasso Regression		0.14	Typed = [assisting.pedintin_inst] print "Wealthin residuation using lands ungression"; print "Wealthin residuation using lands ungression"; pedit ("new depoints from"; peus, depoint, petit ("new depoints from"; peus ("new lands lands lands "new"; peus ("new lands la
SVM	(ANT - AND MANA) (ANT - AND MANA) (ANT - AND MANANCE - AND	0.41	<pre>py_pred = nor_predict(x_just) print("Prediction Midisarian using our Engression") print("Mean Absolute Engre", even_absolute_print("ptent, y_predi) print("Mean Absolute Engre", even_absolute_print("ptent, y_predi) print("Mean Absolute Engress (*predi) print("Accor make Squared Engress", ap.opt(),mean squared encot(y_test, y_predi)) Prediction Evaluation using for Engression Pass Absolute Engress (*predictionState) Pass Absolute English (*predictionState) Pass Absolute En</pre>
Decision Tree		0.98	y_grad = dt.predict(s_test) prie("Nederline testestion using Originative Regression") print("Ness Samplife Server", manufaction_error_grad, y_grad)) print("Ness Samplife Server, desprint(), manufaction_error_grad, y_grad))) Production_graduative_error_grad_error

