Aqueous CYAN Update

David Wilson dw@ieee.org

July 26, 2021

Aqueous CYAN Basics

(Updated from July 9 Report)

- Same reaction as Classic CYAN:
 Ca(OH)2 + CO2 → CaCO3 + H2O
- Parts reuse: Aquarium pump, air stone, chemicals. New: replace plastic box with 1-L soda bottle.

Han's Paper

Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent

Sang-Jun Han, Miran Yoo, Dong-Woo Kim, and Jung-Ho Wee*

Department of Environmental Engineering, The Catholic University of Korea, 43-1, Yeokgok 2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea

Figure 1. Schematic diagram for a CO_2 -capture system using $Ca(OH)_2$ aqueous solution as the absorbent: (1) N_2 cylinder, (2) CO_2 cylinder, (3) MFC, (4) gas mixer, (5) temperature controller, (6) Pyrex reactor, (7) sparser, (8) magnetic stirrer, (9) thermometer, (10) pH sensor, (11) EC sensor, (12) pH/EC meter, (13) dehumidifier, (14) sampling pump, (15) gas analyzer, and (16) computer for data acquisition.

Figure 11. CO₂-capture efficiencies of each absorbent in the pH ranges.

Main Take-aways (for me) from Han's Paper

- When pH goes < 10 as CO₂ is captured, CaCO₃ (precipitate) production STOPS.
- As pH continues to drop, CaCO₃ combines with more CO₂ to produce (soluble!) HCO₃ ions...
- ...until by the time pH <7, there's no more CaCO₃ precipitate.
- We should stop when pH reaches 10, so we can recover solid output, and
- Most CO₂ has already been captured.

Han Paper Detail

Saturated Ca(OH)2 solution

My Experiment

- 1g Ca(OH)₂ in 1L water. Solubility of Ca(OH)₂ in H2O: 1.73 g/L at 20C.
- Pumped air through air stone (bubbler), periodically checking pH with pH paper.
- Stopped when pH reached 10.

pH vs. Time

Results

- Stopped at 19:44.
- Siphoned out clear solution
- Dried precipitate in air

Analysis

- Weight of dry precipitate: 1.044g
- Vinegar test: significant bubbling!
- Calculated CO2 captured: 0.459g (from 1g input material—77% of theoretical)

Followup

- Caveat: calculated capture amount may be over-estimate due to impurities in water and sorbent.
- Ideas for automating end of process:
 - Electronic pH meter (\$\$)
 - Electronic resistivity measurement (\$)
- Need to pump more air
- How to separate and dry precipitate?