MoodleBox building reference* Version 1.9.3

Nicolas Martignoni

October 9, 2022

Contents

1	Introduction	2
2	Raspberry Pi preparation	3
3	Wireless access point (AP) feature	6
4	Web server and database installation (LEMP stack)	11
5	Moodle installation and configuration	14
6	MoodleBox plugin installation	17
7	Repositories for USB stick and uploads via SFTP	18
8	Additional Moodle configurations	20
9	Configuration de Adminer	20
10	Optimisation	20
11	Redimensionnement automatique de la partition	22
12	Nettoyage de la distribution	23
13	Acknowledgements	24

 $^{^*}$ This work is licensed under a Creative Commons Attribution - Non Commercial - Share Alike 4.0 International license.

1 Introduction

This article documents how to build a MoodleBox. It is intended for developers or system administrators to provide background information on how a MoodleBox is built.

This is not meant to be an end-user documentation. For end-user documentation, please consult MoodleBox website.

The actual building of MoodleBox is now done using Ansible. Using Ansible enables most of the build to be automated, as well as ensuring that it is reproducible. Though complete, the instructions in this document should not be understood as a method to obtain a MoodleBox that is totally equivalent to the officially published MoodleBox images.

What MoodleBox does

- Configurable wireless access point with SSID: *MoodleBox* and password: *moodlebox*.
- DHCP server for wireless clients.
- Moodle server (http://moodlebox.home/). This is a totally standard Moodle installation.
- MoodleBox Moodle administration plugin¹ providing a GUI to manage most aspects of the MoodleBox.
- Internet access: If MoodleBox is connected via ethernet or wireless LAN to an Internetconnected network, it acts as a router and gives its wireless clients access to the Internet.

Specific Moodle features

- Moodle version 3.11.x in its basic configuration, with no content (no courses). The only Moodle user account is an administrator account (username: *moodlebox*, password: *Moodlebox4\$*). The server is configured to accept clients from the official Moodle app.² *cron* service is launched every minute.
- When a USB stick is inserted into the MoodleBox, its files are available to users in Moodle's *File system* repository.
- Ability to upload files via SFTP directly to the MoodleBox (username: *moodlebox*, password: *Moodlebox4\$*); these files are then available to users in Moodle's *File system* repository.
- Adminer, a full-featured database management tool, is installed (http://moodlebox.home/adminer.php).

What MoodleBox doesn't do

- Email server: MoodleBox is intended to be used "in the field", independent of any network infrastructure; email server functionality is not relevant for this purpose.
- Coffee machine.

¹https://github.com/moodlebox/moodle-tool moodlebox.

²https://download.moodle.org/mobile/.

2 Raspberry Pi preparation

Although MoodleBox works fine on other models, a Raspberry Pi Model 3B, 3B+ or 4B is recommended to **build** it.

Copy last version of Raspberry Pi OS Lite on a microSD card

Download last version of *Raspberry Pi OS Lite* from Raspberry Pi web site,³ copy it on your (good quality!) microSD card. Complete description of the process is available on Raspberry Pi web site.⁴

Enable SSH access

For security reasons, SSH access isn't enabled by default.⁵ To enable it, we copy a file with name ssh in the boot directory (root of boot partition of microSD card). The content of the file doesn't matter. The following commands will do.

```
$ cd <mounting point of "boot" partition>
$ > ssh
```

Eject the microSD card and insert it into the Raspberry Pi.

Connect the power supply of the Raspberry Pi. Plug the Raspberry Pi with an Ethernet cable into a network with a DHCP server and wait 20-30 seconds. Your Raspberry Pi is now reachable on the network using the address raspberrypi.local.⁶

Log into the Raspberry Pi via SSH

From now on, all operations are done via the command line, using ssh (a regular terminal on macOS and Linux, or Putty on Windows).

Login to the Raspberry Pi. Username is *pi* with password *raspberry* (this password will be changed later, as will the user account).

```
$ ssh pi@raspberrypi.local
$ pi@raspberrypi.local's password:
```

Upgrade Raspberry Pi OS

Upgrade the Raspberry Pi's operating system, with these commands:

³https://www.raspberrypi.com/software/operating-systems.

⁴https://www.raspberrypi.org/documentation/computers/getting-started.html.

⁵See https://www.raspberrypi.org/blog/a-security-update-for-raspbian-pixel/

⁶This network address is provided by the *zeroconf* standard protocol. Some older Android and Windows devices do not understand this protocol. With such devices, it is necessary to get access to the Raspberry Pi via its numerical IP address, which must be discovered manually.

```
$ sudo apt-get update -y
$ sudo apt-get full-upgrade -y
```

This step can take several minutes, depending on your Internet connection speed.

Configure some Raspberry Pi important settings

Launch raspi-config utility:

```
$ sudo raspi-config
```

With *raspi-config*, configure following settings:

- Expand Filesystem.
- Change password for the pi user. As the disk image being produced is intended to be openly distributed, we choose MoodleBox default password *Moodlebox4\$*.
- Install following *locales*:

```
- de_DE.UTF-8
```

- en_AU.UTF-8

- en GB.UTF-8

- es_ES.UTF-8

- fr FR.UTF-8

- it_IT.UTF-8

and set en_GB.UTF-8 as default locale.

- Set time zone and WLAN country. This will also unblock wireless use. MoodleBox default settings are respectively Europe/Zurich and CH.
- Set the hostname to *moodlebox*.

From now on, to connect to the Raspberry Pi (via SSH or SFTP), use address moodlebox.local, username *pi* and password *Moodlebox4*\$.

Reboot and log into the MoodleBox with these new credentials.

Change default username⁷

There's no problem to use default username *pi* for MoodleBox usage. However, for the convenience of the end-user, we change the default username to *moodlebox*.

We start by creating a temporary user account, *tempuser*, and set its password. As this account will be deleted later, the quality of the password is not important.

```
$ sudo useradd -m tempuser
$ sudo passwd tempuser
```

⁷This section is based on http://unixetc.co.uk/2016/01/07/how-to-rename-the-default-raspberry-pi-user/.

User account *tempuser* is added to *sudoers* user group, to allow it to perform the appropriate operations. The current session of user *pi* is then exited.

```
$ sudo usermod -a -G sudo tempuser
$ exit
```

Log now into the MoodleBox with username *tempuser* and its previously set password.

```
$ ssh tempuser@moodlebox.local
$ tempuser@moodlebox.local's password:
```

We first save the files we're going to modify as a backup, in case a problem occurs.

```
$ cd /etc
$ sudo tar -czf /home/pi/authfiles.tgz passwd group shadow gshadow subuid
    subgid sudoers sudoers.d/010_pi-nopasswd systemd/system/autologin@.
    service
```

We change now the account name to *moodlebox* in the relevant files, then change its home directory name. A symbolic link to the old directory is created, in order to avoid some unlikely (but possible) side effects due to the account name change.

```
$ sudo sed -i 's/\bpi\b/moodlebox/g' passwd group shadow gshadow subuid
    subgid sudoers sudoers.d/010_pi-nopasswd systemd/system/autologin@.
    service
$ sudo mv /etc/sudoers.d/010_pi-nopasswd /etc/sudoers.d/010_moodlebox-
    nopasswd
$ sudo mv /home/pi /home/moodlebox
$ sudo ln -s /home/moodlebox /home/pi
$ exit
```

We can now log into the MoodleBox with the new username *moodlebox* and password *Moodlebox4\$* (which was not changed).

```
$ ssh moodlebox@moodlebox.local
$ moodlebox@moodlebox.local's password:
```

Temporary user account *tempuser* can be now deleted, as well as the backup file:

```
$ sudo userdel tempuser
$ sudo rm -rf /home/tempuser/
$ sudo rm authfiles.tgz
```

From now on, we will log into the MoodleBox with username *moodlebox* and password *Moodlebox4\$*.

Increase system available memory

To increase the system available memory, the memory reserved for the graphics chip is reduced to 16 MB. This is of no consequence, as our system does not have a graphical interface. We do

this by adding the following line at the end of the file /boot/config.txt:

```
gpu_mem=16
```

Enable shutdown/startup hardware button

We enable shutdown/startup hardware button feature by further editing file /boot/config.txt. Insert following line after line beginning with # Additional overlays to get:

```
\# Additional overlays and parameters are documented /boot/overlays/README dtoverlay=gpio-shutdown
```

3 Wireless access point (AP) feature

Enable wireless interface for access point mode

We want to be able to use standard wireless interface wlan0 to optionally connect to a wireless LAN, so we need another interface for our AP.

We use a *udev* rule for this purpose, creating a new file named 90-wireless.rules in directory /etc/udev/rules.d/.

Here's the content of /etc/udev/rules.d/90-wireless.rules on the MoodleBox:

```
# File /etc/udev/rules.d/90-wireless.rules
# Add wireless interface for AP mode
ACTION=="add", SUBSYSTEM=="ieee80211", KERNEL=="phy0", \
RUN+="/sbin/iw phy %k interface add uap0 type __ap"
```

Switch to alternative wireless chip firmware

Standard Raspberry Pi wireless firmware has several additional features that are not very useful for a MoodleBox. However, SRAM on the wireless chip is used both for data storage whilst in use, but also for additional features and bug fixes. Each time a feature is added or a bug fix made, the amount of SRAM available for runtime variables decreases, and so the number of clients in AP mode.

An alternative firmware is now available that has been tuned to maximise the number of clients in AP mode while still supporting STA mode. This is the firmware we choose to use in Moodle-Box. Following commands switch the firmware to the alternative one.

```
$ cd /lib/firmware/brcm/
$ sudo ln -sf ../cypress/cyfmac43455-sdio-minimal.bin \
    brcmfmac43455-sdio.bin
```

Wireless connection as a client (optional)

If MoodleBox is intended to be used as a client (STA mode) as well as an access point, a valid configuration file named wpa_supplicant.conf should be provided to wpa_supplicant service, in directory /etc/wpa_supplicant/.

Following listing shows an example of such file:

```
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=CH

network={
    scan_ssid=1
    ssid="<Name of your wireless LAN>"
    psk="<Password for your wireless LAN>"
    proto=RSN
    key_mgmt=WPA-PSK
    pairwise=CCMP
    auth_alg=OPEN
}
```

Don't forget to edit the file and put the SSID and password of your wireless network.

Install required packages for access point feature

Access point feature requires packages hostand and dnsmasq. Let's install them.

```
$ sudo apt-get install -y hostapd dnsmasq
```

Static IP address configuration

MoodleBox gets dynamically via DHCP its IP address on the ethernet interface eth0 or as a wireless client on the wlan0 interface.

With its access point feature, it will also act as a DHCP provider on its wireless interface uap0. We force then a static IP address 10.0.0.1 on wlan0 interface. Any other private IP address can alternatively be used.

To this end, we add at the very end of file /etc/dhcpcd.conf the lines

```
interface wlan0
# Uncomment following line to disable AP+STA mode
# nohook wpa_supplicant

interface uap0
static ip_address=10.0.0.1/24
nohook wpa_supplicant
```

Access point configuration

To configure the access point, we edit hostapd.conf. This is where the access point SSID and password are set, as well as other options, such as the broadcast channel and regulatory country. We define *MoodleBox* as SSID and *moodlebox* as password.

Here's the content of /etc/hostapd/hostapd.conf on the MoodleBox:

```
# Set country code
country_code=CH
# Name of the Wi-Fi interface
interface=uap0
# Use the nl80211 driver
driver=n180211
# Wi-Fi network name (SSID)
ssid=MoodleBox
# Show or hide SSID
ignore_broadcast_ssid=0
# Use the 2.4GHz band
hw_mode=g
# The Wi-Fi channel
channel=11
# Enable 802.11n
ieee80211n=1
# Enable WMM
wmm enabled=1
# Enable 40 MHz channels with short guard interval for 20 Mhz
ht_capab=[HT40][SHORT-GI-20][DSSS_CCK-40]
# Accept all MAC addresses
macaddr_acl=0
# Use WPA authentication
auth_algs=1
# Use WPA2
wpa=2
# Use a pre-shared key
wpa_key_mgmt=WPA-PSK
# The network passphrase
wpa_passphrase=moodlebox
# Use AES, instead of TKIP
rsn pairwise=CCMP
# Enable hostapd cli
ctrl_interface=/var/run/hostapd
ctrl_interface_group=0
```

We now need to define where hostapd gets its configuration. This is set in file /etc/default /hostapd. In this file we replace #DAEMON_CONF="" with DAEMON_CONF="/etc/hostapd/hostapd.conf".

Finally, we enable hostapd service:

```
$ sudo systemctl unmask hostapd
$ sudo systemctl enable hostapd
```

DHCP and **DNS** server configuration

DHCP and DNS server configuration on uap0 interface are provided through dnsmasq.⁸ We edit /etc/dnsmasq.conf to have this content:

```
interface=uap0
                         # Use interface uap0
listen-address=127.0.0.1 # Explicitly specify the address to listen on
listen-address=10.0.0.1 # Explicitly specify the address to listen on
bind-interfaces
                         # Make sure we aren't sending things elsewhere
server=9.9.9.9
                        # Forward DNS requests to external public DNS
server=149.112.112 # Forward DNS requests to external public DNS
domain-needed
                       # Don't forward short names
                        # Don't forward addresses in the non-routed spaces
bogus-priv
domain=home
                        # Set private domain name to 'home'
local=/home/
                        # Don't forward queries for private domain 'home'
                       # Resolve subdomains '*.home'
address=/home/10.0.0.1
expand-hosts
                        # Add private domain name to hostnames
dhcp-range=wifi, 10.0.0.10, 10.0.0.254, 255.255.255.0, 1h # Assign IP addresses
    with 1h lease, subnet name 'wifi'
dhcp-option=wifi,6,10.0.0.1 # Set DNS server for subnet wifi
txt-record=moodlebox.home, "MoodleBox by Nicolas Martignoni"
log-facility=/var/log/dnsmasq.log # Enable log
```

We edit now the file /etc/hosts, replacing last line, beginning with 127.0.1.1, with this line:

```
10.0.0.1 moodlebox
```

This configuration enables any device to access the MoodleBox via its URL http://moodlebox.home/, even those which do not implement *zeroconf* standard protocol.

Finally, we fix a race condition between dhcpcd and dnsmasq by editing dnsmasq service file /lib/systemd/system/dnsmasq.service. We add following lines just before [Install]:

```
RestartSec=5
Restart=on-failure
```

mDNS services publication

In order to make MoodleBox services visible on the network, we create the file /etc/avahi/services/moodlebox.service, with following content.

⁸DNS configuration is based on https://www.linux.com/learn/dnsmasq-easy-lan-name-services.

⁹https://en.wikipedia.org/wiki/Zero-configuration_networking

Routing configuration

We configure routing so that wireless clients can browse the Internet when MoodleBox is connected via ethernet or wireless to an Internet router.

We edit the file /etc/sysctl.conf, uncommenting or adding line

```
net.ipv4.ip_forward=1
```

Installation of package iptables-persistent enables routing rules to survive MoodleBox reboot or shutdown.

```
$ sudo apt-get install -y iptables-persistent
```

We can now define the routing rules:

```
$ sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
$ sudo iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE
$ sudo iptables -A FORWARD -i eth0 -o uap0 \
    -m state --state RELATED,ESTABLISHED -j ACCEPT
$ sudo iptables -A FORWARD -i wlan0 -o uap0 \
    -m state --state RELATED,ESTABLISHED -j ACCEPT
$ sudo iptables -A FORWARD -i uap0 -o eth0 -j ACCEPT
$ sudo iptables -A FORWARD -i uap0 -o wlan0 -j ACCEPT
```

And we reboot.

```
$ sudo reboot
```

Captive portal

We can now install the captive portal, based on free software Nodogsplash.¹⁰ Nodogsplash needs first to be compiled for the Raspberry Pi platform. Its compilation is not covered in this guide. Refer to Nodogsplash documentation for any support about its compilation.

Let's install the Nodogsplash package we got after compilation:

```
$ sudo dpkg -i nodogsplash_5.0.0-1_armhf.deb
```

Nodogsplash configuration file /etc/nodogsplash/nodogsplash.conf should read

```
# Nodogsplash Configuration File
GatewayInterface uap0
FirewallRuleSet authenticated-users {
    FirewallRule allow all
FirewallRuleSet preauthenticated-users {
FirewallRuleSet users-to-router {
    FirewallRule allow udp port 53
    FirewallRule allow tcp port 53
    FirewallRule allow udp port 67
   FirewallRule allow tcp port 22
    FirewallRule allow tcp port 80
    FirewallRule allow tcp port 443
GatewayName MoodleBox
GatewayAddress 10.0.0.1
RedirectURL http://moodlebox.home/
GatewayPort 2050
MaxClients 50
SessionTimeout 360
```

We can now edit Nodogsplash splash page at our convenience. The files to edit are located in directory /etc/nodogsplash/htdocs/.

In the official MoodleBox image, Nodogsplash captive portal is not enabled. If we want to disable it too, we type following commands in our shell:

```
$ sudo systemctl stop nodogsplash.service
$ sudo systemctl disable nodogsplash.service
```

4 Web server and database installation (LEMP stack)

The LEMP software stack is a group of software that can be used to serve dynamic web pages and web applications. The term LEMP is an acronym that represents a Linux operating system with an Nginx (pronounced "engine-x", hence the E in the acronym) web server. The backend data stored in a MariaDB database and the dynamic processing is handled by PHP.

¹⁰https://nodogsplashdocs.readthedocs.io/.

Nginx and PHP installation et configuration

We install first Nginx and all needed PHP packages, notably those required by Moodle.

```
$ sudo apt-get install -y nginx php7.4-fpm php7.4-cli php7.4-common \
    php7.4-json php7.4-mbstring php7.4-opcache php7.4-readline \
    php7.4-xmlrpc php7.4-curl php7.4-gd php7.4-intl php7.4-soap \
    php7.4-mysql php7.4-xml php7.4-zip php7.4 php-apcu
```

SSL certificate and key

We can now copy the SSL certificate moodlebox.pem and its key moodlebox.key to the directory /etc/nginx/.

SSL certificate generation is not covered in this guide. Refer to adequate documentation on SSL certificate generation, e.g. on https://stackoverflow.com/a/10176685.

Web server configuration

Nginx web server configuration is done in file /etc/nginx/sites-available/default, which content should be like below.

```
# Default server configuration
server {
    listen 80 default_server;
    listen [::]:80 default_server;
    listen 443 ssl;
    listen [::]:443 ssl;
    ssl_certificate /etc/nginx/ssl/moodlebox.pem;
    ssl_certificate_key /etc/nginx/ssl/moodlebox.key;
    root /var/www/moodle;
    index index.php index.html index.htm index.nginx-debian.html;
    server_name moodlebox;
    location / {
        try_files $uri $uri/ =404;
    location ~ [^/] \cdot php(/|\$) {
        include fastcgi_params;
        fastcgi_split_path_info ^(.+\.php)(/.+)$;
        fastcgi read timeout
                                300;
                        unix:/var/run/php/php7.4-fpm.sock;
        fastcgi_pass
        fastcgi_index
                        index.php;
        fastcgi_param
                        PATH INFO
                                    $fastcgi_path_info;
        fastcgi_param
                        SCRIPT_FILENAME $document_root$fastcgi_script_name;
```

Last fastcgi_param line, with line client_max_body_size, increases to 50 MB the max upload file size, as well as script maximum execution time to 300 s. It also sets max_input_vars to 5000.

We then relaunch the web server:

```
$ sudo systemctl restart nginx php7.4-fpm
```

The ownership, group and access rights of Nginx and PHP should now be tweaked so that the default user *moodlebox* can easily edit the files, while allowing Moodle updates and plugin installation via the web interface.

To do this, we edit the two files /lib/systemd/system/nginx.service and /lib/systemd/system/php7.4-fpm.service, adding after line [Service] the line UMask=0002, to get something like

```
...
[Service]
UMask=0002
Type=...
```

We then edit the file /etc/php/7.4/fpm/pool.d/www.conf to set the correct group ownership for PHP, replacing line group = www-data with group = moodlebox, so we have now

```
user = www-data
group = moodlebox
...
```

If needed, variables in /etc/php/7.4/fpm/pool.d/www.conf can be tweaked, e.g. for performance gains.

MariaDB installation and configuration

We install now MariaDB package. PHP MariaDB support was already installed with PHP (see section 4).

```
$ sudo apt-get install -y mariadb-server
```

During the installation, we define the password of the main user *moodlebox* of the database. For this installation, we set the password to *Moodlebox4*\$.

In order to allow flexible access to the databases, a new database user is created in MariaDB.

If needed, variables in /etc/mysql/mariadb.conf.d/50-server.cnf can be tweaked, e.g. for performance gains.

5 Moodle installation and configuration

Moodle database creation

We first create the database which Moodle will use.

Moodle download

We can now download Moodle; we do this with Git in order to facilitate future updates. We first install Git.

```
$ sudo apt-get install -y git
```

We get now Moodle source in the appropriate location, specifying the current stable branch of Moodle. A shallow clone is used to later save space on the MoodleBox image.

```
$ sudo git clone --depth=1 -b MOODLE_311_STABLE \
    git://git.moodle.org/moodle.git /var/www/moodle
```

Creation of Moodle data directories

Moodle data and several other directories are now created.

```
$ sudo mkdir -p /var/www/moodledata/repository /var/www/moodledata/temp \
    /var/www/moodledata/backup /var/cache/moodle /var/cache/moodle-cache-
    backup
```

Adequate permissions and ownership are set on these directories, including SGID permission on Moodle data directory. We also set the correct permissions to Moodle source directory:

```
$ sudo chown -R www-data:moodlebox /var/www/moodle /var/www/moodledata/ \
    /var/cache/moodle /var/cache/moodle-cache-backup
$ sudo chmod -R ug+w,o-w /var/www/moodle /var/www/moodledata/ \
    /var/cache/moodle /var/cache/moodle-cache-backup
$ sudo chmod -R g+s /var/www/moodledata/
```

We can now launch Moodle installation, either by loading URL http://moodlebox.home/ in a browser and follow the instructions on screen, or by using Moodle command line interface. For MoodleBox, the administrator account is defined with *moodlebox* as username and the password *Moodlebox4\$*.

The installation takes at least 10 minutes. Be patient!

Tweaking the Moodle configuration

Moodle course backup directory

As we use for Moodle course backup a different directory than the data directory, we set the following line in Moodle configuration file /var/www/moodle/config.php:

```
$CFG->backuptempdir = '/var/www/moodledata/backup';
```

X-Sendfile setup

We set *X-Sendfile* in /var/www/moodle/config.php to allow files in the Moodle data directory to be uploaded faster through the web server:

```
$CFG->xsendfile = 'X-Accel-Redirect';
$CFG->xsendfilealiases = array ('/dataroot/' => $CFG->dataroot);
```

For *X-Sendfile* to be active, we must add following lines to Nginx configuration file /etc/nginx /sites-available/default, inside server block:

```
location /dataroot/ {
   internal;
   alias /var/www/moodledata/;
}
```

Custom filetype definition

Defining a custom file type in Moodle facilitates the web certificate from MoodleBox home page. The definition is coded in /var/www/moodle/config.php too:

¹¹See https://docs.moodle.org/311/en/Installing_Moodle#Command_line_installer.

```
$CFG->customfiletypes = array(
  (object)array(
    'extension' => 'crt',
    'icon' => 'sourcecode',
    'type' => 'application/x-x509-ca-cert',
    'customdescription' => 'X.509 CA certificate'
)
);
```

Hiding content that doesn't make sense for MoodleBox

We hide Moodle campaign and Moodle services and support sections from notifications page. These content don't make sense for MoodleBox, which is offline most of the time.

```
$CFG->showcampaigncontent = false;
$CFG->showservicesandsupportcontent = false;
```

Final content of the file /var/www/moodle/config.php is then:

```
<?php // Moodle configuration file</pre>
unset($CFG);
global $CFG;
$CFG = new stdClass();
$CFG->dbtype = 'mariadb';
$CFG->dblibrary = 'native';
$CFG->dbhost = 'localhost';
$CFG->dbname = 'moodle';
$CFG->dbuser = 'moodlebox';
$CFG->dbpass = 'Moodlebox4$';
$CFG->prefix = 'mdl_';
$CFG->dboptions = array (
  'dbpersist' => 0,
  'dbport' => '',
  'dbsocket' => ''
  'dbcollation' => 'utf8mb4_general_ci',
);
$CFG->wwwroot = 'http://moodlebox.home';
$CFG->dataroot = '/var/www/moodledata';
               = 'admin';
$CFG->admin
$CFG->backuptempdir = '/var/www/moodledata/backup';
$CFG->xsendfile = 'X-Accel-Redirect';
$CFG->xsendfilealiases = array('/dataroot/' => $CFG->dataroot);
$CFG->customfiletypes = array(
  (object)array(
     'extension' => 'crt',
     'icon' => 'sourcecode',
    'type' => 'application/x-x509-ca-cert',
    'customdescription' => 'X.509 CA certificate'
```

```
)
);
$CFG->showcampaigncontent = false;
$CFG->showservicesandsupportcontent = false;

$CFG->directorypermissions = 02777;

require_once(__DIR__ . '/lib/setup.php');

// There is no php closing tag in this file,
// it is intentional because it prevents trailing whitespace problems!
```

Cron configuration

Moodle cron should be launched every minute. Moreover, since MoodleBox is offline most of the time and doesn't have a mail server, no mail should be sent by cron process. We edit cron configuration with the shell command

```
$ sudo crontab -e
```

and add following lines to the crontab

```
MAILTO=""
* * * * * nice -n10 /usr/bin/php /var/www/moodle/admin/cli/cron.php
```

6 MoodleBox plugin installation

MoodleBox plugin¹² enables monitoring of the MoodleBox as well as managing several of its settings, such as password change, date and time setting, wireless access settings, etc.

We install it by visiting *Site administration > Plugins > Repositories > Install plugins*. Click on the *Install plugins from the Moodle plugins directory* button and select *MoodleBox* administration plugin (*Admin tools*).

It's also possible to install it via Git.

```
$ cd /var/www/moodle/admin/tool/
$ sudo git clone https://github.com/moodlebox/moodle-tool_moodlebox.git
    moodlebox
```

In this case, the installation of the plugin is completed by visiting the page http://moodlebox.home/admin.

We have still to create a few files and set their permissions.

```
$ cd /var/www/moodle/admin/tool/moodlebox
```

¹²MoodleBox plugin source code is available at https://github.com/moodlebox/moodle-tool_moodlebox.

TODO: Create sudoers file /etc/sudoers.d/020_www-data-nopasswd

TODO: Replace incron with direvent

On installe et configure finalement le paquetage *direvent*.

```
$ sudo apt-get install -y direvent
```

On autorise l'utilisation de *incron* par *root*, puis modifie la table des tâches de *incron*.

```
$ echo root | sudo tee -a /etc/incron.allow
$ sudo incrontab -e
```

en y ajoutant les lignes

```
/var/www/moodle/admin/tool/moodlebox/.reboot-server IN_CLOSE_WRITE /sbin/shutdown -r now
/var/www/moodle/admin/tool/moodlebox/.shutdown-server IN_CLOSE_WRITE /sbin/shutdown -h now
/var/www/moodle/admin/tool/moodlebox/.set-server-datetime IN_MODIFY /bin/bash /var/www/moodle/admin/tool/moodlebox/.set-server-datetime
/var/www/moodle/admin/tool/moodlebox/.newpassword IN_CLOSE_WRITE /bin/bash /var/www/moodle/admin/tool/moodlebox/bin/changepassword.sh
/var/www/moodle/admin/tool/moodlebox/.wifisettings IN_CLOSE_WRITE /bin/bash /var/www/moodle/admin/tool/moodlebox/.wifisettings IN_CLOSE_WRITE /bin/bash /var/www/moodle/admin/tool/moodlebox/bin/changewifisettings.sh
```

7 Repositories for USB stick and uploads via SFTP

USB stick

We set up automatic mounting of USB sticks (regardless of their format), as well as access to all files on inserted USB sticks via the *File system* repository.¹³

This is done by installing the usbmount package, then creating a folder in the Moodle data folder, and finally creating a link from the USB stick mount point to this folder.

The usbmount package should be built from its source code before to be installed.¹⁴ We also install standard packages to support exFAT and NTFS formatted devices.

```
$ sudo apt-get install -y ntfs-3g exfat-fuse
$ sudo dpkg -i usbmount_0.0.24_all.deb
```

¹³If more than one USB stick is inserted into the MoodleBox, only the files on the first stick inserted are accessible via the File system repository.

¹⁴See https://github.com/rbrito/usbmount. Follow the instructions in the README file.

```
$ sudo mkdir -p /var/www/moodledata/repository
$ sudo chown -R www-data:moodlebox /var/www/moodledata/
$ sudo ln -s /media/usb /var/www/moodledata/repository
```

You then have to configure Moodle appropriately: 15: logged in as administrator on the platform, visit *Site administration > Plugins > Repositories > Manage repositories*.

Select *Enabled and visible* in the row *File system* to enable this repository.

Click on *Save*, then, on the same row, on *Settings*, then on the button *Create a repository instance*. Finally select *usb* from the drop-down menu, and enter *USB Drive* in the mandatory *Name* field.

Configuration for file system repository

SFTP upload

We create a folder in which the files must be dropped in order to be accessible from Moodle, as well as a link to the Moodle data folder. Appropriate permissions are set.

```
$ mkdir -p /home/moodlebox/files
$ sudo chown -R moodlebox:www-data files/
$ sudo chmod g+s files/
$ sudo ln -s /home/moodlebox/files /var/www/moodledata/repository
```

A repository is configured in a similar way to the *USB Drive* repository above, by specifying the folder *files* and enter *SFTP Documents* as the repository name.

To use this feature, log into the MoodleBox using a SFTP software ¹⁶, with the user name *moodle-box* and the password *Moodlebox4\$*. Upload files in the files folder.

¹⁵See https://docs.moodle.org/en/File system repository.

¹⁶For instance: FileZilla, Cyberduck, WinSCP.

8 Additional Moodle configurations

Activation de l'accès via l'app mobile de Moodle

Après s'être connecté à la plateforme avec le compte administrateur, on visite dans le Moodle *Administration du site > Plugins > Services web > Mobile.* On coche la case *Activer les services web pour appareils mobiles* et l'on enregistre les modifications.

Pour cette plateforme dont la destination n'est pas d'être publiée sur Internet, l'avertissement concernant le certificat SSL peut être ignoré sans risque.

Autres réglages: installation de ghostscript et de poppler-utils

Bla

9 Configuration de Adminer

```
$ sudo apt-get install -y -t stretch phpmyadmin
$ sudo ln -s /usr/share/phpmyadmin /var/www/moodle/phpmyadmin
```

Définir un mot de passe fort. Pour cette installation, le mot de passe choisi est *Moodlebox4\$*. Pour accéder à la totalité des fonctionnalités de PhpMyAdmin, on accèdera à l'interface au moyen de l'utilisateur *moodlebox* et du mot de passe *Moodlebox4\$*.

10 Optimisation

Pour que la MoodleBox soit utilisable en pratique, il est nécessaire de prendre soin à son optimisation. On configure ainsi le cache de Moodle, ainsi que sa gestion des dépôts et téléchargements de fichiers.

Disque RAM pour certains dossiers de Moodle¹⁷

Créer un dossier comme point de montage pour le disque RAM.

```
$ sudo mkdir /var/cache/moodle
$ sudo chown www-data:moodlebox /var/cache/moodle/
$ sudo chmod ug+w,o-w /var/cache/moodle/
```

On utilise également des disques RAM pour le dossier temporaire et le dossiers des sessions de Moodle. Ces deux dossiers sont situés dans le dossier *moodledata*.

On définit dans la table des partitions du Raspberry les disques RAM. Pour ce faire, on ajoute au fichier /etc/fstab, les lignes suivantes

¹⁷Inspired by https://www.leading-interactive.de/e-learning/moodle-performance-tuning-mit-tmpfs/.

Le contenu du fichier /etc/fstab sera alors :

```
/proc
                                 proc
                                         defaults
                                                                    \cap
proc
PARTUUID=2e60d480-01
                      /boot
                                       vfat
                                                defaults
                                                                  0
                                                                           2
PARTUUID=2e60d480-02
                                       ext4
                                                defaults, noatime
                                                                           1
tmpfs /var/cache/moodle tmpfs size=64M, mode=775, uid=www-data, gid=www-data 0
tmpfs /var/www/moodledata/temp tmpfs size=64M,mode=775,uid=www-data,gid=www
tmpfs /var/www/moodledata/sessions tmpfs size=16M, mode=775, uid=www-data, gid
   =www-data 0 0
# a swapfile is not a swap partition, no line here
         dphys-swapfile swap[on|off] for that
```

Après un redémarrage de la Raspberry, le cache peut être configuré dans Moodle.

On se connecte à Moodle avec le compte administrateur (créé plus haut), puis dans le Moodle on visite *Administration du site > Plugins > Cache > Configuration*. On crée deux nouvelles instances de dépôt, en cliquant sur *Ajouter une instance* dans la section *Entrepôts de cache installés* (en haut de la page).

- 1. Nom de l'entrepôt : *TMPFS application*, chemin d'accès du cache : /var/cache/moodle/application, cocher la case *Auto-création de dossiers*;
- 2. Nom de l'entrepôt : *TMPFS sessions*, chemin d'accès du cache : /var/cache/moodle/sessions, cocher la case *Auto-création de dossiers*.

Pour terminer, il reste à associer ces nouvelles instances de cache à leur destination, en cliquant sur *Modifier les correspondances* tout en bas de la page, dans le domaine *Entrepôts utilisés en l'absence de correspondance*.

Administration du cache

Le cache en disque RAM a un défaut: les données qu'il contient disparaissent à chaque redémarrage de la MoodleBox. Moodle doit donc à chaque fois reconstruire le cache. Si l'on veut conserver le cache entre les redémarrages, on copie à intervalle régulier le contenu du disque RAM sur la carte microSD, et, lors de chaque démarrage, on effectue l'opération inverse.

On crée le dossier de sauvegarde, puis on définit le cron

```
$ sudo mkdir /var/cache/moodle-cache-backup/
$ sudo crontab -e
```

On ajoute à la table des crons les deux lignes suivantes pour effectuer la sauvegarde du cache toutes les 20 minutes et pour restaurer le cache au démarrage:

```
*/20 * * * * rsync -a --delete /var/cache/moodle/ /var/cache/moodle-cache-backup/
@reboot cp -Rpf /var/cache/moodle-cache-backup/* /var/cache/moodle/
```

Optimisation de MariaDB

On modifie les valeurs de quelques variables de MariaDB dans le fichier /etc/mysq1/mariadb .conf.d/50-server.cnf. Pour ce faire, on ouvre le fichier en question et on y modifie les lignes adéquates, à savoir:

```
table_cache = 512
table_definition_cache = 512
max_connections = 100
query_cache_size = 16M
query_cache_type = 0
```

11 Redimensionnement automatique de la partition

Afin d'éviter à l'utilisateur de devoir redimensionner manuellement la partition de travail, on configure le redimensionnement automatique au premier démarrage. La méthode est identique à celle utilisée lors de la construction de l'image-disque de *Raspbian Stretch Lite*. ¹⁸

On copie le fichier resize2fs_once ci-dessous dans le dossier /etc/init.d/, et on lui donne les permissions adéquates pour être lancé au redémarrage.

¹⁸https://github.com/RPi-Distro/pi-gen.

```
#!/bin/sh
### BEGIN INIT INFO
# Provides:
                     resize2fs_once
# Required-Start:
# Required-Stop:
# Default-Start: 3
# Default-Stop:
# Short-Description: Resize the root filesystem to fill partition
# Description:
### END INIT INFO
. /lib/lsb/init-functions
case "$1" in
  start)
    log_daemon_msg "Starting resize2fs_once"
    ROOT_DEV=`grep -Eo 'root=[[:graph:]]+' /proc/cmdline | cut -d '=' -f
       2-` &&
    resize2fs $ROOT DEV &&
    update-rc.d resize2fs once remove &&
    rm /etc/init.d/resize2fs once &&
    log_end_msg $?
    echo "Usage: $0 start" >&2
    exit 3
    ;;
esac
```

Finalement, avant la dernière extinction précédant le clonage et le redimensionnement de l'image disque, on termine en lançant la commande

```
$ sudo systemctl enable resize2fs_once
```

puis on ajoute à la fin de la ligne du fichier /boot/cmdline.txt les instructions ci-dessous, immédiatement après le texte rootwait (sans oublier un espace).

```
quiet init=/usr/lib/raspi-config/init_resize.sh
```

Il est indispensable de ne pas redémarrer la MoodleBox, sans quoi l'opération décrite dans cette section devra être intégralement recommencée.

12 Nettoyage de la distribution

Les commandes ci-dessous permettent de nettoyer la MoodleBox et de diminuer l'espace disque qui lui est nécessaire, avant de la cloner et de la distribuer.

```
$ sudo rm -r /var/www/moodledata/cache/*
$ sudo rm -r /var/www/moodledata/localcache/*
$ sudo rm -r /var/www/moodledata/temp/*
$ sudo rm -r /var/www/moodledata/trashdir/*
$ sudo rm -r /var/www/moodledata/sessions/*
```

```
$ sudo rm -r /var/cache/moodle/*
$ sudo rm -r /var/cache/moodle-cache-backup/*
$ sudo mysql moodle -e "truncate table moodle.mdl_logstore_standard_log"
$ sudo mysql moodle -e "truncate table moodle.mdl_config_log"
$ sudo mysql moodle -e "truncate table moodle.mdl_upgrade_log"
$ sudo apt-get clean
$ sudo rm -r /var/lib/apt/lists/*
$ sudo rm -r /var/cache/debconf/*
$ sudo rm -r /var/cache/debconf/*
$ sudo rm -r /tmp/*
$ sudo rm -r /var/tmp/*
$ sudo rm -r /var/tmp/*
$ rm ~/.mysql_history
$ sudo bash -c 'for logs in `find /var/log -type f`; do > $logs; done'
$ cat /dev/null > ~/.bash_history && history -c && sudo shutdown -h now
```

Si tout s'est bien passé, la totalité a une taille d'environ 1.6 Go. L'image-disque, une fois tronquée, a une taille d'environ 1.9 Go. Compressée, elle tient dans environ 550 Mo.

13 Acknowledgements

MoodleBox utilise certaines idées de la première version de Christian Westphal,¹⁹ qui mérite pour cela une gratitude particulière.

¹⁹Christian Westphal, Académie de Strasbourg, voir https://moodle.org/user/view.php?id=1378197&course=20.