Combined Tutorial Exercises

Mathematics, Statistics, and Optimization
June 20, 2025

1. Algebra and Calculus

1. Inequalities.

- (a) Solve 4x 7 > 3x + 2.
- (b) Solve $\frac{x^2-4}{x-3} \le 2$.
- (c) Solve |2x + 5| < 9.
- (d) Solve $\frac{1}{x} + \frac{2}{x-2} \ge 0$.

2. Distance and Midpoint.

- (a) Distance and midpoint of (1,2) and (5,6).
- (b) Distance and midpoint of (-3,4) and (3,-2).
- (c) Distance and midpoint of (a,0) and (0,a), $a \neq 0$.

3. Limits and Continuity.

- (a) $\lim_{x\to 2} \frac{x^2-4}{x-2}$.
- (b) Determine continuity at x = 1 for

$$f(x) = \begin{cases} x^2 - 1, & x \neq 1, \\ 2, & x = 1. \end{cases}$$

1

4. Derivatives.

- (a) $\frac{d}{dx}(x^3e^{-x})$.
- (b) Using first principles, f'(x) for $f(x) = \sqrt{x+2}$.

5. Integrals.

(a)
$$\int_0^1 (3x^2 - 2x + 1) dx$$
.

(b)
$$\int \frac{1}{x^2 + 1} dx$$
.

2. Matrices and Linear Algebra

1. Solve by Gaussian elimination:

$$\begin{cases} 2x + 3y - z = 7, \\ -x + 4y + 2z = -1, \\ 3x - y + z = 4. \end{cases}$$

2. Determinants:

$$\det \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad \det \begin{bmatrix} 2 & 0 & 1 \\ -1 & 3 & 2 \\ 4 & 1 & 5 \end{bmatrix}.$$

3. Eigenpairs and diagonalization of

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

4. Inverse of

$$A = \begin{pmatrix} 4 & 7 \\ 2 & 3 \end{pmatrix}.$$

3. Probability and Statistics

- 1. Discrete: die twice, P(sum = 8); $X \sim \text{Bern}(p)$, E[X], Var(X).
- 2. Continuous: $X \sim N(\mu, \sigma^2)$, $P(\mu \sigma < X < \mu + \sigma)$; $X \sim \text{Exp}(\lambda)$, mean, median.
- 3. Testing: Type I/II errors; $n=25, \bar{x}=102, \sigma=5,$ test $H_0: \mu=100$ at $\alpha=0.05.$
- 4. CI: 95% for mean, known variance; interpretation.

4. Regression and Classification

- 1. Simple regression on (1,2), (2,4), (3,5), (4,7): $\beta_0, \beta_1, \hat{y}(2.5), SSR$.
- 2. Multiple regression: normal eqns for $X \in \mathbb{R}^{n \times 3}$; dims of $X^T X, X^T y, \beta$.
- 3. Logistic: logit and log-likelihood; gradient-ascent update.

5. Optimization and Lagrange Multipliers

- 1. Unconstrained: critical points of $x^3 3xy^2$, Hessian test.
- 2. Lagrange: minimize $x^2 + 3y^2$ s.t. x + 2y = 8; maximize xyz s.t. x + y + z = 9, y = 0.
- 3. Convex: define set/function; prove e^x convex.
- 4. Gradient descent: one iteration for $x^2 + 4x + 4$; step-size discussion.

6. Word Sum Challenge

 $\label{eq:sender} \mbox{Solve SEND} + \mbox{MORE} = \mbox{MONEY (distinct digits, no leading zeros)}.$