Домашнее задание

1. В коде из методички реализуйте один или несколько критериев останова (количество листьев, количество используемых признаков, глубина дерева и т.д.).

Сгенерируем данные

In [2]:

```
1
    import pandas as pd
   import numpy as np
 2
   import matplotlib.pyplot as plt
   # Сгенерируем данные
4
 5
   from sklearn import datasets
   from matplotlib.colors import ListedColormap
 7
 8
   # сгеренируем данные с помощью sklearn.datasets
9
   classes = datasets.make_classification(n_samples=500, n_features=2, n_informative=2,
                                           n_redundant=0, n_classes=2, random_state=6)
10
   # datasets.make_blobs(centers = 5, cluster_std = 1, random_state=1)
11
12
13
   # и изобразим их на графике
   colors = ListedColormap(['red', 'blue'])
14
   light_colors = ListedColormap(['lightcoral', 'lightblue'])
15
16
17
   plt.figure(figsize=(8, 8))
   plt.scatter([x[0] for x in classes[0]], [x[1] for x in classes[0]], c=classes[1], cmap=
```


Далее разделим выборку на обучающую и тестовую.

In [3]:

```
# перемешивание датасета
 1
   np.random.seed(41)
   shuffle_index = np.random.permutation(classes[0].shape[0])
 3
   X_shuffled, y_shuffled = classes[0][shuffle_index], classes[1][shuffle_index]
 5
   # разбивка на обучающую и тестовую выборки
 6
 7
   train_proportion = 0.7
   train_test_cut = int(len(classes[0]) * train_proportion)
 8
9
   train_data, test_data, train_labels, test_labels = \
10
11
       X_shuffled[:train_test_cut], \
12
       X_shuffled[train_test_cut:], \
13
       y shuffled[:train test cut], \
       y_shuffled[train_test_cut:]
14
```

In [4]:

```
# Реализуем класс узла

class Node:

def __init__(self, index, t, true_branch, false_branch):
    self.index = index # индекс признака, по которому ведется сравнение с порогом self.t = t # значение порога
    self.true_branch = true_branch # поддерево, удовлетворяющее условию в узле self.false_branch = false_branch # поддерево, не удовлетворяющее условию в узле
```

In [5]:

```
1
    # И класс терминального узла (листа)
 2
 3
    class Leaf:
 4
 5
        def __init__(self, data, labels):
 6
            self.data = data
 7
            self.labels = labels
 8
            self.prediction = self.predict()
 9
10
        def predict(self):
11
            # подсчет количества объектов разных классов
            classes = {} # сформируем словарь "класс: количество объектов"
12
            for label in self.labels:
13
14
                if label not in classes:
15
                    classes[label] = 0
16
                classes[label] += 1
17
            # найдем класс, количество объектов которого будет максимальным в этом листе и
            prediction = max(classes, key=classes.get)
18
19
            return prediction
```

Индекс Джини:

$$H(X) = 1 - \sum_{k=1}^{K} p_k^2.$$

In [6]:

```
1
    # Расчет критерия Джини
2
 3
    def gini(labels):
4
        # подсчет количества объектов разных классов
        classes = {}
 5
 6
        for label in labels:
 7
            if label not in classes:
8
                classes[label] = 0
9
            classes[label] += 1
10
11
        # расчет критерия
        impurity = 1 # коэффициент неопределенности Джини
12
        for label in classes:
13
            p = classes[label] / len(labels)
14
            impurity -= p ** 2
15
16
17
        return impurity
```

Функционал качества:

$$Q = H(X_m) - \frac{|X_l|}{|X_m|} H(X_l) - \frac{|X_r|}{|X_m|} H(X_r)$$

In [7]:

```
# Расчет качества

def quality(left_labels, right_labels, current_gini):

# доля выбоки, ушедшая в левое поддерево

p = float(left_labels.shape[0]) / (left_labels.shape[0] + right_labels.shape[0])

return current_gini - p * gini(left_labels) - (1 - p) * gini(right_labels)
```

In [8]:

```
1
    # Разбиение датасета в узле
 2
 3
    def split(data, labels, index, t):
4
        left = np.where(data[:, index] <= t)</pre>
 5
        right = np.where(data[:, index] > t)
 6
 7
        true data = data[left]
 8
        false_data = data[right]
9
        true_labels = labels[left]
        false_labels = labels[right]
10
11
        return true_data, false_data, true_labels, false_labels
12
```

In [9]:

```
1
    # Нахождение наилучшего разбиения
 2
 3
    def find_best_split(data, labels):
 4
 5
        # обозначим минимальное количество объектов в узле
 6
        min_leaf = 5
 7
 8
        current_gini = gini(labels)
9
10
        best quality = 0
11
        best_t = None
12
        best_index = None
13
14
        n_features = data.shape[1]
15
16
        for index in range(n features):
17
            # будем проверять только уникальные значения признака, исключая повторения
            t_values = np.unique([row[index] for row in data])
18
19
20
            for t in t_values:
21
                true_data, false_data, true_labels, false_labels = split(data, labels, index
22
23
            # пропускаем разбиения, в которых в узле остается менее 5 объектов
24
                if len(true_data) < min_leaf or len(false_data) < min_leaf:</pre>
25
                    continue
26
27
                current_quality = quality(true_labels, false_labels, current_gini)
28
29
                # выбираем порог, на котором получается максимальный прирост качества
30
                if current quality > best quality:
                    best_quality, best_t, best_index = current_quality, t, index
31
32
        return best_quality, best_t, best_index
33
```

In [10]:

```
1
    def classify_object(obj, node):
 2
 3
        # Останавливаем рекурсию, если достигли листа
 4
        if isinstance(node, Leaf):
 5
            answer = node.prediction
            return answer
 6
 7
 8
        if obj[node.index] <= node.t:</pre>
 9
            return classify_object(obj, node.true_branch)
10
        else:
            return classify_object(obj, node.false_branch)
11
```

In [11]:

```
def predict(data, tree):

classes = []
for obj in data:
    prediction = classify_object(obj, tree)
    classes.append(prediction)
return classes
```

Органичим глубину дерева

In [13]:

```
d = int(input("Введите максимальную глубину дерева: "))
 1
 2
   # Построение дерева с помощью рекурсивной функции
 3
 4
    def build_tree(data, labels):
 5
        global depth, true_branch, false_branch
        print("Глубина", depth)
 6
 7
        quality, t, index = find_best_split(data, labels)
 8
 9
           Базовый случай - прекращаем рекурсию, когда нет прироста в качества
10
        if quality == 0:
            return Leaf(data, labels)
11
            print("quality == 0")
12
13
        if depth == d:
14
15
            return Leaf(data, labels)
16
        # Рекурсивно строим два поддерева
17
18
        print("Делаем ветвление на глубине ", depth)
19
        depth += 1
        true_data, false_data, true_labels, false_labels = split(data, labels, index, t)
20
        true_branch = build_tree(true_data, true_labels)
21
22
        false branch = build tree(false data, false labels)
23
24
        # Возвращаем класс узла со всеми поддеревьями, то есть целого дерева
        return Node(index, t, true_branch, false_branch)
25
```

Введите максимальную глубину дерева: 5

In [14]:

```
# Построим дерево по обучающей выборке

depth = 0

true_branch = None

false_branch = None

my_tree = build_tree(train_data, train_labels)
```

```
Глубина 0
Делаем ветвление на глубине 0
Глубина 1
Делаем ветвление на глубине 1
Глубина 2
Делаем ветвление на глубине 2
Глубина 3
Делаем ветвление на глубине 3
Глубина 4
Делаем ветвление на глубине 4
Глубина 5
Глубина 5
Глубина 5
Глубина 5
Глубина 5
Глубина 5
```

```
In [15]:
    # Напечатаем ход нашего дерева
 2
    def print_tree(node, spacing=""):
 3
 4
        # Если лист, то выводим его прогноз
 5
        if isinstance(node, Leaf):
 6
            print(spacing + "Прогноз:", node.prediction)
 7
            return
 8
 9
        # Выведем значение индекса и порога на этом узле
10
        print(spacing + 'Индекс', str(node.index))
        print(spacing + 'ΠοροΓ', str(node.t))
11
12
        # Рекурсионный вызов функции на положительном поддереве
13
14
        print (spacing + '--> True:')
        print_tree(node.true_branch, spacing + " ")
15
16
        # Рекурсионный вызов функции на отрицательном поддереве
17
        print (spacing + '--> False:')
18
19
        print_tree(node.false_branch, spacing + " ")
20
21
   print_tree(my_tree)
Индекс 1
Порог -0.107726691940364
--> True:
 Индекс 1
 Порог -0.3549877301133244
  --> True:
   Индекс 0
   Порог -0.23882214445115557
    --> True:
```

```
Индекс 0
      Порог -0.4381064214473833
      --> True:
        Индекс 0
        Порог -1.793845443769914
        --> True:
         Прогноз: 0
        --> False:
          Прогноз: 0
      --> False:
        Прогноз: 1
    --> False:
      Прогноз: 0
  --> False:
   Прогноз: 0
--> False:
 Прогноз: 1
```

In [16]:

```
# Получим ответы для обучающей выборки
train_answers = predict(train_data, my_tree)

# Получим ответы для тестовой выборки
test_answers = predict(test_data, my_tree)
```

```
In [17]:
```

In [18]:

```
# Точность на обучающей выборке
train_accuracy = accuracy_metric(train_labels, train_answers)
train_accuracy
```

Out[18]:

91.71428571428571

In [19]:

```
# Точность на тестовой выборке
test_accuracy = accuracy_metric(test_labels, test_answers)
test_accuracy
```

Out[19]:

89.3333333333333

In [20]:

```
# Визуализируем дерево на графике
 2
 3
    def get_meshgrid(data, step=.05, border=1.2):
 4
        x_{min}, x_{max} = data[:, 0].min() - border, <math>data[:, 0].max() + border
 5
        y_min, y_max = data[:, 1].min() - border, data[:, 1].max() + border
 6
        return np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step))
 7
 8
    plt.figure(figsize = (16, 7))
9
10
    # график обучающей выборки
11
    plt.subplot(1,2,1)
    xx, yy = get_meshgrid(train data)
12
    mesh_predictions = np.array(predict(np.c_[xx.ravel(), yy.ravel()], my_tree)).reshape(xx)
13
14
    plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors)
    plt.scatter(train_data[:, 0], train_data[:, 1], c = train_labels, cmap = colors)
15
16
    plt.title(f'Train accuracy={train_accuracy:.2f}')
17
   # график тестовой выборки
18
19
   plt.subplot(1,2,2)
    plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors)
20
    plt.scatter(test_data[:, 0], test_data[:, 1], c = test_labels, cmap = colors)
22
   plt.title(f'Test accuracy={test_accuracy:.2f}')
```

Out[20]:

Text(0.5, 1.0, 'Test accuracy=89.33')

2. Для задачи классификации обучите дерево решений с использованием критериев разбиения Джини и Энтропия. Сравните качество классификации, сделайте выводы.

In [21]:

```
1
    # Расчет критерия энтропия
2
 3
    def entropy(labels):
        # подсчет количества объектов разных классов
4
        classes = {}
 5
 6
        for label in labels:
 7
            if label not in classes:
8
                classes[label] = 0
9
            classes[label] += 1
10
11
        # расчет критерия
        impurity = 1 # коэффициент неопределенности энтропии
12
        for label in classes:
13
14
            p = classes[label] / len(labels)
            impurity -= np.sum(p * np.log2(p))
15
16
17
        return impurity
```

Функционал качества:

$$Q = H(X_m) - \frac{|X_l|}{|X_m|} H(X_l) - \frac{|X_r|}{|X_m|} H(X_r)$$

In [22]:

```
# Pacчem καчесm6a

def quality(left_labels, right_labels, current_entropy):

# dons βыбоки, ушедшая β левое поддерево

p = float(left_labels.shape[0]) / (left_labels.shape[0] + right_labels.shape[0])

return current_entropy - p * entropy(left_labels) - (1 - p) * entropy(right_labels)
```

In [23]:

```
1
    # Разбиение датасета в узле
 2
 3
    def split(data, labels, index, t):
4
        left = np.where(data[:, index] <= t)</pre>
 5
        right = np.where(data[:, index] > t)
 6
 7
        true data = data[left]
 8
        false_data = data[right]
        true_labels = labels[left]
9
        false_labels = labels[right]
10
11
        return true_data, false_data, true_labels, false_labels
12
```

In [24]:

```
1
    # Нахождение наилучшего разбиения
 2
 3
    def find_best_split(data, labels):
 4
 5
        # обозначим минимальное количество объектов в узле
 6
        min_leaf = 5
 7
 8
        current_entropy = entropy(labels)
9
10
        best quality = 0
11
        best_t = None
        best_index = None
12
13
        n_features = data.shape[1]
14
15
16
        for index in range(n features):
            # будем проверять только уникальные значения признака, исключая повторения
17
18
            t_values = np.unique([row[index] for row in data])
19
20
            for t in t_values:
21
                true_data, false_data, true_labels, false_labels = split(data, labels, index
22
            # пропускаем разбиения, в которых в узле остается менее 5 объектов
23
24
                if len(true_data) < min_leaf or len(false_data) < min_leaf:</pre>
25
                    continue
26
27
                current_quality = quality(true_labels, false_labels, current_entropy)
28
29
                  выбираем порог, на котором получается максимальный прирост качества
30
                if current quality > best quality:
31
                    best_quality, best_t, best_index = current_quality, t, index
32
33
        return best_quality, best_t, best_index
```

In [25]:

```
1
    def classify_object(obj, node):
 2
 3
        # Останавливаем рекурсию, если достигли листа
 4
        if isinstance(node, Leaf):
 5
            answer = node.prediction
            return answer
 6
 7
 8
        if obj[node.index] <= node.t:</pre>
 9
            return classify_object(obj, node.true_branch)
10
        else:
            return classify_object(obj, node.false_branch)
11
```

In [26]:

```
def predict(data, tree):

classes = []
for obj in data:
    prediction = classify_object(obj, tree)
    classes.append(prediction)
return classes
```

In [27]:

```
d = int(input("Введите максимальную глубину дерева: "))
 2
    # Построение дерева с помощью рекурсивной функции
 3
    def build tree(data, labels):
 4
        global depth, true_branch, false_branch
 5
        print("Глубина", depth)
 6
        quality, t, index = find_best_split(data, labels)
 7
 8
 9
           Базовый случай - прекращаем рекурсию, когда нет прироста в качества
10
        if quality == 0:
            return Leaf(data, labels)
11
            print("quality == 0")
12
13
14
        if depth == d:
            return Leaf(data, labels)
15
16
        # Рекурсивно строим два поддерева
17
        print("Делаем ветвление на глубине ", depth)
18
19
        depth += 1
20
        true_data, false_data, true_labels, false_labels = split(data, labels, index, t)
        true branch = build tree(true data, true labels)
21
22
        false branch = build tree(false data, false labels)
23
        # Возвращаем класс узла со всеми поддеревьями, то есть целого дерева
24
        return Node(index, t, true_branch, false_branch)
25
```

Введите максимальную глубину дерева: 5

In [28]:

```
# Построим дерево по обучающей выборке
depth = 0
true_branch = None
false_branch = None
my_tree = build_tree(train_data, train_labels)
```

```
Глубина 0
Делаем ветвление на глубине
Глубина 1
Делаем ветвление на глубине 1
Глубина 2
Делаем ветвление на глубине 2
Глубина 3
Делаем ветвление на глубине 3
Глубина 4
Делаем ветвление на глубине 4
Глубина 5
Глубина 5
Глубина 5
Глубина 5
Глубина 5
Глубина 5
```

```
In [29]:
    # Напечатаем ход нашего дерева
    def print_tree(node, spacing=""):
 2
 3
 4
        # Если лист, то выводим его прогноз
 5
        if isinstance(node, Leaf):
 6
            print(spacing + "Прогноз:", node.prediction)
 7
            return
 8
 9
        # Выведем значение индекса и порога на этом узле
10
        print(spacing + 'Индекс', str(node.index))
        print(spacing + 'ΠοροΓ', str(node.t))
11
12
13
        # Рекурсионный вызов функции на положительном поддереве
14
        print (spacing + '--> True:')
        print_tree(node.true_branch, spacing + " ")
15
16
        # Рекурсионный вызов функции на отрицательном поддереве
17
        print (spacing + '--> False:')
18
19
        print_tree(node.false_branch, spacing + " ")
20
21
   print_tree(my_tree)
Индекс 1
Порог -0.107726691940364
--> True:
```

```
Индекс 1
 Порог -0.5175343065438042
  --> True:
   Индекс 0
   Порог -0.23882214445115557
    --> True:
      Индекс 0
      Порог -0.46469463939970623
      --> True:
        Индекс 0
        Порог -2.165676399540467
        --> True:
          Прогноз: 0
        --> False:
         Прогноз: 0
      --> False:
        Прогноз: 1
    --> False:
      Прогноз: 0
  --> False:
   Прогноз: 0
--> False:
 Прогноз: 1
```

In [30]:

```
# Получим ответы для обучающей выборки
train_answers = predict(train_data, my_tree)

# Получим ответы для тестовой выборки
test_answers = predict(test_data, my_tree)
```

In [31]:

```
# Введем функцию подсчета точности как доли правильных ответов

def accuracy_metric(actual, predicted):
    correct = 0

for i in range(len(actual)):
    if actual[i] == predicted[i]:
        correct += 1

return correct / float(len(actual)) * 100.0
```

In [32]:

```
# Точность на обучающей выборке
train_accuracy = accuracy_metric(train_labels, train_answers)
train_accuracy
```

Out[32]:

91.71428571428571

In [33]:

```
# Точность на тестовой выборке
test_accuracy = accuracy_metric(test_labels, test_answers)
test_accuracy
```

Out[33]:

90.0

In [34]:

```
1
    # Визуализируем дерево на графике
 2
 3
    def get_meshgrid(data, step=.05, border=1.2):
        x_{min}, x_{max} = data[:, 0].min() - border, <math>data[:, 0].max() + border
 4
 5
        y_min, y_max = data[:, 1].min() - border, data[:, 1].max() + border
 6
        return np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step))
 7
 8
    plt.figure(figsize = (16, 7))
9
10
    # график обучающей выборки
11
    plt.subplot(1,2,1)
12
    xx, yy = get_meshgrid(train_data)
    mesh_predictions = np.array(predict(np.c_[xx.ravel(), yy.ravel()], my_tree)).reshape(xx)
13
14
    plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors)
    plt.scatter(train_data[:, 0], train_data[:, 1], c = train_labels, cmap = colors)
15
16
    plt.title(f'Train accuracy={train_accuracy:.2f}')
17
   # график тестовой выборки
18
19
   plt.subplot(1,2,2)
    plt.pcolormesh(xx, yy, mesh_predictions, cmap = light_colors)
20
    plt.scatter(test_data[:, 0], test_data[:, 1], c = test_labels, cmap = colors)
22
   plt.title(f'Test accuracy={test_accuracy:.2f}')
```

Out[34]:

Text(0.5, 1.0, 'Test accuracy=90.00')

Вывод: Видим, что качество работы моделей на этих данных идентичное

3. *Реализуйте дерево для задачи регрессии. Возьмите за основу дерево, реализованное в методичке, заменив механизм предсказания в листе на взятие среднего значения по выборке, а критерий Джини на дисперсию значений.

Сгенерируем датасет для регрессии

In [35]:

```
from sklearn.datasets import load_boston
   import pandas as pd
   import seaborn as sns
4 import matplotlib.pyplot as plt
 5
   import numpy as np
 6 from sklearn.model_selection import learning_curve
   from sklearn.metrics import make_scorer
 7
   %matplotlib inline
9
10
   np.random.seed(42)
11
   boston_data = load_boston()
12
boston_df = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
14 | boston_df_2 = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
15 # boston_df = np.array(boston_df[['RM', 'LSTAT']])
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tools_testing.py:19:
FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
 import pandas.util.testing as tm

In [36]:

1 boston_df

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88

Переведем таблицу в матрицу

In [37]:

```
boston_df = np.array(boston_df)
target = boston_data.target
```

In [38]:

```
# И класс терминального узла (листа)
 2
 3
    class Leaf:
 4
 5
        def __init__(self, data, labels):
 6
            self.data = data
 7
            self.labels = labels
 8
            self.prediction = self.predict()
9
        def predict(self):
10
11
            prediction = np.mean(self.labels)
12
            return prediction
```

In [39]:

```
#nepeмewaem данные
np.random.seed(41)
shuffle_index = np.random.permutation(boston_df.shape[0])
X_shuffled, y_shuffled = boston_df[shuffle_index], np.array(target[shuffle_index])
```

In [40]:

```
# разбивка на обучающую и тестовую выборки
train_proportion = 0.7
train_test_cut = int(len(classes[0]) * train_proportion)

train_data, test_data, train_labels, test_labels = \
X_shuffled[:train_test_cut], \
X_shuffled[train_test_cut:], \
y_shuffled[:train_test_cut:], \
y_shuffled[train_test_cut:]
```

В случае регрессии разброс будет характеризоваться дисперсией, поэтому критерий информативности будет записан в виде

$$H(X) = \frac{1}{X} \sum_{i \in X} (y_i - \bar{y}(X))^2,$$

где $\bar{y}(X)$ - среднее значение ответа в выборке X:

$$\bar{y}(X) = \frac{1}{|X|} \sum_{i \in X} y_i.$$

In [41]:

```
# Pacyem ducnepcuu
def variance(labels):

impurity = (np.sum())/labels
return impurity
```

In [42]:

```
# Pacyem ducnepcuu

def variance(labels):

impurity = np.var(labels)
return impurity
```

In [43]:

```
# Расчет качества

def quality(left_labels, right_labels, current_variance):

# доля выбоки, ушедшая в левое поддерево

p = float(left_labels.shape[0]) / (left_labels.shape[0] + right_labels.shape[0])

return current_variance - p * variance(left_labels) - (1 - p) * variance(right_labels)
```

In [44]:

```
1
   # Разбиение датасета в узле
2
    def split(data, labels, index, t):
 3
4
        left = np.where(data[:, index] <= t)</pre>
 5
        right = np.where(data[:, index] > t)
 6
 7
        true_data = data[left]
        false_data = data[right]
 8
9
        true_labels = labels[left]
        false_labels = labels[right]
10
11
        return true_data, false_data, true_labels, false_labels
12
```

In [45]:

```
1
    # Нахождение наилучшего разбиения
 2
 3
    def find_best_split(data, labels):
 4
 5
        # обозначим минимальное количество объектов в узле
 6
        min_leaf = 5
 7
 8
        current_variance = variance(labels)
9
10
        best quality = 0
11
        best_t = None
        best_index = None
12
13
        n_features = data.shape[1]
14
15
16
        for index in range(n features):
17
            # будем проверять только уникальные значения признака, исключая повторения
18
            t_values = np.unique([row[index] for row in data])
19
20
            for t in t_values:
21
                true_data, false_data, true_labels, false_labels = split(data, labels, index
22
            # пропускаем разбиения, в которых в узле остается менее 5 объектов
23
                if len(true_data) < min_leaf or len(false_data) < min_leaf:</pre>
24
25
                    continue
26
27
                current_quality = quality(true_labels, false_labels, current_variance)
28
29
                  выбираем порог, на котором получается максимальный прирост качества
30
                if current quality > best quality:
31
                    best_quality, best_t, best_index = current_quality, t, index
32
33
        return best_quality, best_t, best_index
```

In [46]:

```
1
    def classify_object(obj, node):
 2
 3
        # Останавливаем рекурсию, если достигли листа
 4
        if isinstance(node, Leaf):
 5
            answer = node.prediction
 6
            return answer
 7
 8
        if obj[node.index] <= node.t:</pre>
9
            return classify_object(obj, node.true_branch)
10
            return classify_object(obj, node.false_branch)
11
```

In [47]:

```
def predict(data, tree):

classes = []
for obj in data:
    prediction = classify_object(obj, tree)
    classes.append(prediction)
return classes
```

In [48]:

```
d = int(input("Введите максимальную глубину дерева: "))
 1
 2
 3
   # Построение дерева с помощью рекурсивной функции
 4
    def build_tree(data, labels):
        global depth, true_branch, false_branch
 5
 6
        print("Глубина", depth)
 7
        quality, t, index = find_best_split(data, labels)
 8
 9
           Базовый случай - прекращаем рекурсию, когда нет прироста в качества
        if quality == 0:
10
            return Leaf(data, labels)
11
12
            print("quality == 0")
13
14
        if depth == d:
            return Leaf(data, labels)
15
16
17
        # Рекурсивно строим два поддерева
        print("Делаем ветвление на глубине ", depth)
18
19
        depth += 1
        true_data, false_data, true_labels, false_labels = split(data, labels, index, t)
20
        true_branch = build_tree(true_data, true_labels)
21
22
        false_branch = build_tree(false_data, false_labels)
23
        # Возвращаем класс узла со всеми поддеревьями, то есть целого дерева
24
        return Node(index, t, true_branch, false_branch)
25
```

Введите максимальную глубину дерева: 5

In [49]:

```
# Построим дерево по обучающей выборке
depth = 0
true_branch = None
false_branch = None
my_tree = build_tree(train_data, train_labels)
```

```
Глубина 0
Делаем ветвление на глубине
Глубина 1
Делаем ветвление на глубине 1
Глубина 2
Делаем ветвление на глубине 2
Глубина 3
Глубина 3
Делаем ветвление на глубине
Глубина 4
Делаем ветвление на глубине 4
Глубина 5
Глубина 5
Глубина 5
Глубина 5
Глубина 5
```

In [50]:

```
# Напечатаем ход нашего дерева
2
   def print_tree(node, spacing=""):
 3
        # Если лист, то выводим его прогноз
4
 5
        if isinstance(node, Leaf):
            print(spacing + "Прогноз:", node.prediction)
 6
 7
            return
8
9
       # Выведем значение индекса и порога на этом узле
10
        print(spacing + 'Индекс', str(node.index))
       print(spacing + 'ΠοροΓ', str(node.t))
11
12
13
       # Рекурсионный вызов функции на положительном поддереве
        print (spacing + '--> True:')
14
       print_tree(node.true_branch, spacing + " ")
15
16
        # Рекурсионный вызов функции на отрицательном поддереве
17
        print (spacing + '--> False:')
18
19
        print_tree(node.false_branch, spacing + " ")
20
21
   print_tree(my_tree)
```

```
Индекс 12
Порог 9.53
--> True:
 Индекс 5
  Порог 7.42
  --> True:
    Индекс 7
    Порог 1.7573
    --> True:
      Индекс 5
      Порог 6.538
      --> True:
        Прогноз: 22.87068965517241
      --> False:
        Прогноз: 27.54
    --> False:
      Индекс 5
      Порог 6.794
      --> True:
        Индекс 5
        Порог 6.538
        --> True:
          Прогноз: 22.87068965517241
        --> False:
          Прогноз: 27.54
      --> False:
        Прогноз: 32.768571428571434
  --> False:
    Прогноз: 44.915
--> False:
  Прогноз: 17.74455445544554
```

```
In [51]:
```

```
# Получим ответы для обучающей выборки
train_answers = predict(train_data, my_tree)

# Получим ответы для тестовой выборки
test_answers = predict(test_data, my_tree)
```

In [52]:

1 from sklearn.metrics import mean_absolute_error

In [53]:

```
1 # Точность на обучающей выборке
2 mean_absolute_error(train_labels, train_answers)
```

Out[53]:

3.6628201238843094

In [54]:

```
1 # Точность на тестовой выборке
2 mean_absolute_error(test_labels, test_answers)
```

Out[54]:

3.911579368622728