Logic, Sets, Number Theory, and Counting

Walker Smith

November 23, 2012

Contents

1	\mathbf{Intr}	oduction	4			
2	Propositional Logic 5					
	2.1	Proposition	5			
	2.2	Negation of p	5			
	2.3	Conjunction of p and q	5			
	2.4	Disjunction of p and q	5			
	2.5	Exclusive or of p and q	5			
	2.6	Conditional statement	5			
	2.7	Biconditional statement	6			
	2.8	Logical Equivalence	6			
	2.9	Propositional Function	6			
	2.10		6			
	2.11	Universal Quantification	6			
	2.12	Existential Quanification	6			
		Quantifaction Equivalences	7			
		Quantification of Two Variables	7			
3	Laws of Logical Equivalence 8					
	3.1	De Morgan's Laws	8			
	3.2	Identity Laws	8			
	3.3	Domination Laws	8			
	3.4	Idempotent Laws	8			
	3.5	Double Negation	8			
	3.6	Communative Laws	8			
	3.7	Associative Laws	9			
	3.8	Distributive Laws	9			
	3.9	Absorption Laws	9			
	3.10	Absorption Laws	9			
4	Sets 10					
	4.1	Set	10			
	4.2	Set Membership	10			
	4.3	Set Membership	10			
	4.4	Roster Notation	10			
	15	Set Ruilder Notation	10			

	4.6	Null Set	10
	4.7	Singleton Set	11
	4.8	Subset	11
	4.9	Proper Subset	11
	4.10	Set Equality	11
	4.11	Cardinality	11
	4.12	Power Set	11
	4.13	Ordered n-tuples	12
	4.14	Ordered n-tuples Equality	12
	4.15	Ordered n-tuples Equality	12
5	Nun	nber Theory and Cryptography 1	13
	5.1	Coprime	13
	5.2	Euler's Theorm	13

1 Introduction

2 Propositional Logic

2.1 Proposition

A proposition is a declartive sentence that is either true or false.

$$p (1)$$

2.2 Negation of p

The negation of p has the opposite truth value of p.

$$\neg p$$
 (2)

2.3 Conjunction of p and q

The conjunction of p and q is true when both p and q are true and false otherwise.

$$p \wedge q$$
 (3)

2.4 Disjunction of p and q

The disjunction of p and q is false when both p and q are false and true otherwise.

$$p \vee q$$
 (4)

2.5 Exclusive or of p and q

The exclusive or of p and q is true when exactly one of p and q are true and false otherwise.

$$p \oplus q$$
 (5)

2.6 Conditional statement

The conditional statement if p then q is false when p is true and q is false and true otherwise.

$$p \to q$$
 (6)

2.7 Biconditional statement

The biconditional statement p if and only if q is true when p and q have the same truth value and false otherwise.

$$p \leftrightarrow q$$
 (7)

2.8 Logical Equivalence

compound propositions p and q are logically equivalent if p if and only if q is a tautology, that is the compound proposition is true no matter the truth values of the propositional variables.

$$p \equiv q \tag{8}$$

2.9 Propositional Function

Value of a propositional function P at x. Function defined by it's predicate, P and subject, x where x is the subject of the statement and P refers to a property that the subject has.

$$P(x) (9)$$

2.10 Propositional Multivariable Function

Value of a propositional function P at the n-tuple (x_1, x_2, \ldots, x_n) .

$$P(x_1, x_2, \dots, x_n) \tag{10}$$

2.11 Universal Quantification

Universal quantification of P(x) is true when P(x) is true for every x and false when there is an x for which P(x) is false.

$$\forall x P(x) \tag{11}$$

2.12 Existential Quanification

Existential quantification of P(x) is true when there exists an element x in the domain such that P(x) and false when P(x) is false for every x.

$$\exists x P(x) \tag{12}$$

2.13 Quantifaction Equivalences

Statement is true when there is an x for which P(x) is false and false when P(x) is true for every x.

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \tag{13a}$$

Statement is true when for every x P(x) is true and false when there is an x for which P(x) is true.

$$\neg \exists x P(x) \equiv \forall x \neg P(x) \tag{13b}$$

2.14 Quantification of Two Variables

P(x,y) is true for every pair x,y and false when there is a pair x,y for which P(x,y) is false.

$$\forall x \forall y P(x, y) \tag{14a}$$

$$\forall y \forall x P(x, y) \tag{14b}$$

For every x there is a y for which P(x,y) is true. There is an x such that P(x,y) is false for every y.

$$\forall x \exists y P(x, y) \tag{14c}$$

There is an x for which P(x,y) is true for every y. For every x there is a y for which P(x,y) is false.

$$\exists x \forall y P(x, y) \tag{14d}$$

There is a pair x,y for which P(x,y) is true. P(x,y) is false for every pair x,y.

$$\exists x \exists y P(x, y) \tag{14e}$$

$$\exists y \exists x P(x, y) \tag{14f}$$

3 Laws of Logical Equivalence

3.1 De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{1a}$$

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{1b}$$

3.2 Identity Laws

$$p \wedge T \equiv p \tag{2a}$$

$$p \vee F \equiv p \tag{2b}$$

3.3 Domination Laws

$$p \vee T \equiv T \tag{3a}$$

$$p \wedge F \equiv F \tag{3b}$$

3.4 Idempotent Laws

$$p \lor p \equiv p \tag{4a}$$

$$p \wedge p \equiv p \tag{4b}$$

3.5 Double Negation

$$\neg(\neg p) \equiv p \tag{5}$$

3.6 Communative Laws

$$p \lor q \equiv q \lor p \tag{6a}$$

$$p \wedge p \equiv q \wedge p \tag{6b}$$

3.7 Associative Laws

$$(p \lor q) \lor r \equiv p \lor (q \lor r) \tag{7a}$$

$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \tag{7b}$$

3.8 Distributive Laws

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \tag{8a}$$

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \tag{8b}$$

3.9 Absorption Laws

$$p \lor (p \land q) \equiv p \tag{9a}$$

$$p \wedge (p \vee q) \equiv p \tag{9b}$$

3.10 Absorption Laws

$$p \vee \neg p \equiv T \tag{10a}$$

$$p \land \neg p \equiv F \tag{10b}$$

4 Sets

4.1 Set

A set is an unordered collection of elements where elements are referred to as members of the set.

$$S$$
 (1)

4.2 Set Membership

s is an member of the set S.

$$s \in S \tag{2}$$

4.3 Set Membership

s is not an member of the set S.

$$s \notin S$$
 (3)

4.4 Roster Notation

Roster notation desribes a set by listing the set's elements

$$S = \{s_1, \dots, s_n\} \tag{4}$$

4.5 Set Builder Notation

Set builder notation determines membership an element s in a set S based on a property or properties, P(s)

$$S = \{ s \mid P(s) \} \tag{5}$$

4.6 Null Set

The null set, \emptyset , contains no elements

$$\{\} \tag{6}$$

4.7 Singleton Set

The singleton set contains exactly one element, the null set

$$\{\emptyset\} \tag{7}$$

4.8 Subset

The set A is a subset of set B, denoted $A \subseteq B$, is true if all members of A are also members of B and false if there is a single $a \in A$ such that $x \notin B$

$$\forall x (x \in A \to x \in B) \tag{8}$$

4.9 Proper Subset

The set A is a proper subset of a set B, denoted $A \subset B$, is true if A is a subset of B and there exists an x of B that is not an element of A

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \notin A) \tag{9}$$

4.10 Set Equality

Two sets are equal, denoted A = B, if and only if they have the same elements

$$\forall x (x \in A \leftrightarrow x \in B) \tag{10}$$

4.11 Cardinality

The set A with n distinct elements, where n is a non negative integer, has a cardinality or size of n.

$$|A| \tag{11}$$

4.12 Power Set

Given a set A, the power set of A is the set of all subsets of the set A

$$\mathcal{P}\left(S\right) \tag{12}$$

4.13 Ordered n-tuples

An ordered collection (a_1, a_2, \ldots, a_n) has a_1 as its first element, a_2 as its second element, ..., and a_n as its last element.

$$(a_1, a_2, \dots, a_n) \tag{13}$$

4.14 Ordered n-tuples Equality

Two ordered n-tuples, (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are equal if and only if $a_i = b_i$ for $i = 1, 2, \ldots, n$

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$$
 (14)

4.15 Ordered n-tuples Equality

The cartesian product is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$
(15)

5 Number Theory and Cryptography

5.1 Coprime

Integers m and n are relatively prime if

$$\gcd(m,n) = 1 \tag{1}$$

5.2 Euler's Theorm

If n and m are relatively prime for some m,n $\in \mathbb{Z}^+$

$$n^{\Phi(m)} \equiv 1 \mod m \tag{2a}$$

$$n^{\Phi(m)} - 1 \equiv 0 \mod m \tag{2b}$$