ESSC 4520

Name: Wu Hei Tung SID: 1155109536 L03 Exercise

Ex1

$$F(x) = ax^3 + bx^2 + cx + d$$

a) Choosing a=1, b=2, c=3 and d=4, x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and $\Delta x=1$. The absolute error between numerical method and analytical method:

	x_1=1	x_2=2	x_3=3	x_4=4	x_5=5	x_6=6	x_7=7	x_8=8	x_9=9	x_10=10
Forward	6	9	12	15	18	21	24	27	30	33
Backward	-4	-7	-10	-13	-16	-19	-22	-25	-28	-31
Centered	1	1	1	1	1	1	1	1	1	1

Therefore, we can see that the centered finite differencing comes closest to the analytical values.

b) Choosing a=1, b=2, c=3 and d=4, x=1 and $\Delta x=[1,0.1,0.01]$. The absolute error between centered finite differencing scheme and analytical method:

	(Δx)_1	(Δx)_2	(Δx)_3
Δχ	1	0.1	0.01
dF	1	0.01	0.0001
$\frac{dx}{dx}$			

Therefore, we can see that when Δx becomes smaller, the absolute error is also smaller.

Ex2 Taking a = 1, b = 2, c = 3, $x = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and <math>\Delta x = [3, 2, 1]$.

	x_1=11	x_2=12	x_3=13	x_4=14	x_5=15	x_6=16	x_7=17	x_8=18	x_9=19	x_10=20
analytical	24	26	28	30	32	34	36	38	40	42
Δx=3	24	26	28	30	32	34	36	38	40	42
$\Delta x=2$	24	26	28	30	32	34	36	38	40	42
$\Delta x=1$	24	26	28	30	32	34	36	38	40	42
Absolute	0	0	0	0	0	0	0	0	0	0
error										
$(\Delta x=3)$										
Absolute	0	0	0	0	0	0	0	0	0	0
error										
$(\Delta x=2)$										
Absolute	0	0	0	0	0	0	0	0	0	0
error										
$(\Delta x=1)$										

From the result, we can see that the absolute error for $\frac{dF}{dx}$ is very small that ~ 0 with all cases of x and Δx .

$$F(x) = ax^2 + bx + c$$

The analytical result:

$$\frac{dF}{dx}$$

$$= \frac{d}{dx}(ax^2 + bx + c)$$

$$= 2ax + b$$

By centered finite differencing:

$$\frac{dF}{dx} \sim \frac{F(x+\Delta x) - F(x-\Delta x)}{2\Delta x}$$

$$= \frac{[a(x+\Delta x)^2 + b(x+\Delta x) + c] - [a(x-\Delta x)^2 + b(x-\Delta x) + c]}{2\Delta x}$$

$$= \frac{a(x^2 + 2x\Delta x + \Delta x^2) + b(x+\Delta x) + c - a(x^2 - 2x\Delta x + \Delta x^2) - b(x-\Delta x) - c}{2\Delta x}$$

$$= \frac{4ax\Delta x + 2b\Delta x}{2\Delta x}$$

$$= \frac{2\Delta x(2ax + b)}{2\Delta x}$$

$$= 2ax + b$$

Therefore, the centered finite differencing gives same result with the analytical method in this situation. That's why the absolute error ~ 0 .

$$F(x) = 400\cos\left(\frac{\pi x}{16}\right)$$

<u>a)</u>

	analytical	forward	Backward	centered	4 th -order
$\frac{dF}{dx}$	-43.63	-49.75	-36.96	-43.35	-43.63
Absolute	0	-6.111	6.670	0.2798	0.002152
error					

From the table above, we can figure out that the 4^{th} -order differencing scheme gives closest result with the analytical method.

b)

	analytical	2 nd -order	4 th -order
d ² F	-12.82	-12.78	-12.82
$\overline{\mathrm{d}\mathrm{x}^2}$			
Absolute error	0	0.04114	0.0002110

From the table above, we can see that the 4^{th} -order differencing scheme gives closest result with the analytical method.

$$F(x + \Delta x) = F(x) + F'(x)\Delta x + \frac{1}{2!}F^{(2)}(x)\Delta x^2 + \frac{1}{3!}F^{(3)}(x)\Delta x^3 + \frac{1}{4!}F^{(4)}(x)\Delta x^4 + \frac{1}{5!}F^{(5)}(x)\Delta x^5 + \frac{1}{6!}F^{(6)}(x)\Delta x^6 + \cdots$$

$$F(x - \Delta x) = F(x) - F'(x)\Delta x + \frac{1}{2!}F^{(2)}(x)\Delta x^2 - \frac{1}{3!}F^{(3)}(x)\Delta x^3 + \frac{1}{4!}F^{(4)}(x)\Delta x^4 - \frac{1}{5!}F^{(5)}(x)\Delta x^5 + \frac{1}{6!}F^{(6)}(x)\Delta x^6 + \cdots$$

$$F(x + \Delta x) + F(x - \Delta x)$$

$$= 2F(x) + \frac{2}{2!}F^{(2)}\Delta x^2 + \frac{2}{4!}F^{(4)}\Delta x^4 + \frac{2}{6!}F^{(6)}\Delta x^6 + \cdots$$

$$\frac{d^2F}{dx^2} = \frac{F(x + \Delta x) + F(x - \Delta x) - 2F(x)}{\Delta x^2} + \frac{2}{4!}F^{(4)}\Delta x^2 + \frac{2}{6!}F^{(6)}\Delta x^4 + \cdots$$

$$F(x + 2\Delta x) = F(x) + F'(x)(2\Delta x) + \frac{1}{2!}F^{(2)}(x)(2\Delta x)^{2} + \frac{1}{3!}F^{(3)}(x)(2\Delta x)^{3} + \frac{1}{4!}F^{(4)}(x)(2\Delta x)^{4} + \frac{1}{5!}F^{(5)}(x)(2\Delta x)^{5} + \cdots$$

$$F(x - 2\Delta x) = F(x) - F'(x)(2\Delta x) + \frac{1}{2!}F^{(2)}(x)(2\Delta x)^{2} - \frac{1}{3!}F^{(3)}(x)(2\Delta x)^{3} + \frac{1}{4!}F^{(4)}(x)(2\Delta x)^{4} - \frac{1}{5!}F^{(5)}(x)(2\Delta x)^{5} + \cdots$$

$$F(x + 2\Delta x) + F(x - 2\Delta x)$$

$$= 2F(x) + \frac{2}{2!}F^{(2)}(2\Delta x)^{2} + \frac{2}{4!}F^{(4)}(2\Delta x)^{4} + \frac{2}{6!}F^{(6)}(2\Delta x)^{6} + \cdots$$

$$\frac{d^{2}F}{dx^{2}} = \frac{F(x + 2\Delta x) + F(x - 2\Delta x) - 2F(x)}{(2\Delta x)^{2}} + \frac{2}{4!}F^{(4)}(2\Delta x)^{2} + \frac{2}{6!}F^{(6)}(2\Delta x)^{4} + \cdots$$

Let
$$a + b = 1$$
, so that
$$\frac{d^2 F}{dx^2}$$

$$= (a + b) \frac{d^2 F}{dx^2}$$

$$= a \frac{d^2 F}{dx^2} + b \frac{d^2 F}{dx^2}$$

$$= a \frac{F(x + \Delta x) + F(x - \Delta x) - 2F(x)}{\Delta x^2} + b \frac{F(x + 2\Delta x) + F(x - 2\Delta x) - 2F(x)}{(2\Delta x)^2}$$

$$+ a \frac{2}{4!} F^{(4)} \Delta x^2 + 4b \frac{2}{4!} F^{(4)} \Delta x^2 + a \frac{2}{6!} F^{(6)} \Delta x^4 + b \frac{2}{6!} F^{(6)} (2\Delta x)^4 + \cdots$$

To remove the highest order in the error,

$$a\frac{2}{4!}F^{(4)}\Delta x^2 + 4b\frac{2}{4!}F^{(4)}\Delta x^2 = 0.$$

Therefore, a + 4b = 0.

$$\begin{cases} a + b = 1 \dots (1) \\ a + 4b = 0 \dots (2) \end{cases}$$

By (2),

$$a + 4b = 0$$

 $a = -4b \dots (3)$

Sub (3) into (1):

$$(-4b) + b = 1$$

$$-3b = 1$$

$$b = -\frac{1}{3}$$

$$a = -4\left(-\frac{1}{3}\right)$$

$$a = \frac{4}{3}$$

Therefore, $b = -\frac{1}{3}$ and $a = \frac{4}{3}$.

$$\frac{d^{2}F}{dx^{2}} = \left(\frac{4}{3}\right) \frac{F(x + \Delta x) + F(x - \Delta x) - 2F(x)}{\Delta x^{2}}$$

$$+ \left(-\frac{1}{3}\right) \frac{F(x + 2\Delta x) + F(x - 2\Delta x) - 2F(x)}{(2\Delta x)^{2}} + \left(\frac{4}{3}\right) \frac{2}{4!} F^{(4)} \Delta x^{2}$$

$$+ 4\left(-\frac{1}{3}\right) \frac{2}{4!} F^{(4)} \Delta x^{2} + \left(\frac{4}{3}\right) \frac{2}{6!} F^{(6)} \Delta x^{4} + \left(-\frac{1}{3}\right) \frac{2}{6!} F^{(6)} (2\Delta x)^{4} + \cdots$$

$$= \left(\frac{4}{3}\right) \frac{F(x + \Delta x) + F(x - \Delta x) - 2F(x)}{\Delta x^{2}}$$

$$+ \left(-\frac{1}{12}\right) \frac{F(x + 2\Delta x) + F(x - 2\Delta x) - 2F(x)}{\Delta x^{2}} + \left(\frac{4}{3}\right) \frac{2}{6!} F^{(6)} \Delta x^{4}$$

$$+ \left(-\frac{1}{3}\right) \frac{2}{6!} F^{(6)} (2\Delta x)^{4} + \cdots$$

Let $\left(\frac{4}{3}\right)\frac{2}{6!}F^{(6)}\Delta x^4 + \left(-\frac{1}{3}\right)\frac{2}{6!}F^{(6)}(2\Delta x)^4 + \cdots$ be the error ε that we neglect.

Therefore,

$$\frac{d^2F}{dx^2}$$

$$\cong \left(\frac{4}{3}\right) \frac{F(x+\Delta x) + F(x-\Delta x) - 2F(x)}{\Delta x^2} + \left(-\frac{1}{12}\right) \frac{F(x+2\Delta x) + F(x-2\Delta x) - 2F(x)}{\Delta x^2}$$

$$= \frac{1}{\Delta x^2} \left\{ \frac{4}{3} [F(x + \Delta x) + F(x - \Delta x)] - \frac{1}{12} [F(x + 2\Delta x) + F(x - 2\Delta x)] - 2\left(\frac{4}{3} - \frac{1}{12}\right) F(x) \right\}$$

$$= \frac{1}{\Delta x^2} \left\{ \frac{4}{3} [F(x + \Delta x) + F(x - \Delta x)] - \frac{1}{12} [F(x + 2\Delta x) + F(x - 2\Delta x)] - \frac{5}{2} F(x) \right\}$$