PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-104642

(43) Date of publication of application: 24.04.1998

(51)Int.CI. G02F 1/1341 G02F 1/1339

(21)Application number: 08-255647 (71)Applicant: SHARP CORP (22)Date of filing: 27.09.1996 (72)Inventor: MIYAZAKI RYUJI

(54) PRODUCTION OF LIQUID CRYSTAL PANEL

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a liquid crystal panel which obviates the occurrence of a sealing error, has the excellent uniformity of the gap between substrates and is strong to an external press without the occurrence of display unevenness by applying a sealing resin near a liquid crystal injection port while maintaining a liquid crystal extruding pressure, then dropping the pressure down to a resin withdrawing pressure.

SOLUTION: A pair of the substrates 1 injected with the liquid crystals 4 are held by pressure sealing jigs and the substrate 1 surfaces are pressurized under the prescribed pressure and are held for a specified time in order to discharge the excessively injected liquid crystals 4. Next, the pressure in the pressure sealing jigs is slightly dropped to withdraw the sealing resin 8 into the liquid crystal injection port 6 and is held for the specified time, by which the sealing resin 8 is cured. The pressurizing force to the substrates 1

after the liquid crystal injection is set in two stages; the liquid crystal extruding pressure and the resin withdrawing pressure lower than the pressure. The sealing resin 8 applied near the liquid crystal injection port 6 is withdrawn to the liquid crystal injection port 6 by the difference in the pressures and is then cured and, therefore, the sealing error is prevented.

LEGAL STATUS

[Date of request for examination]

28.01.2000

[Date of sending the examiner's decision of

10.07.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

CLAIMS

[Claim(s)]

[Claim 1] The manufacture method of a liquid crystal panel characterized by providing the following of coming to close liquid crystal between the substrates of the couple in which the electrode was formed. The process which sticks the substrate of the aforementioned couple by the sealant prepared around the display except a liquid crystal inlet. The process which pours in liquid crystal between the aforementioned substrates. The process which discharges the liquid crystal which pressurized the aforementioned substrate side to liquid crystal ***** using gas, held only predetermined time, and was poured in superfluously. The process which applies a closure resin near a liquid crystal inlet, with the aforementioned liquid crystal ***** held, the process which lowers the pressure concerning the aforementioned substrate side to resin ***** smaller than liquid crystal *****, holds only predetermined time, and draws a closure resin to a liquid crystal inlet, and the process which stiffens the aforementioned closure resin. [Claim 2] The aforementioned liquid crystal ***** is 0.1 kgf/cm2. It is 1.0 kgf/cm2 above. It is the manufacture method of the liquid crystal panel according to claim 1 characterized by being the following ranges and the

aforementioned resin ***** being the or more 1/2 19/20 or less range of the aforementioned liquid crystal *****.

[Claim 3] The holding time of the aforementioned resin ***** is the manufacture method of the liquid crystal panel according to claim 1 characterized by being 5 or less minutes 1 minute or more.

[Claim 4] The viscosity of the aforementioned closure resin is the manufacture method of the liquid crystal panel according to claim 1 characterized by 15000 or more CPS being 20000 or less CPS.

DETAILED DESCRIPTION

[Detailed Description of the Invention]
[0001]

[The technical field to which invention belongs] this invention relates to the liquid crystal pouring closing method of a liquid crystal panel in more detail about the manufacture method of a liquid crystal panel.

[0002]

[Description of the Prior Art] In fields, such as a portable information terminal equipment and a notebook computer, development of a flat-panel display is performed briskly and development of a liquid crystal panel in which the feature especially of lightweight, small, and a low power was employed efficiently is performed briskly.

[0003] Opposite arrangement of the translucency substrates 101 and 102 in which the electrode which is not illustrated as the conventional common liquid crystal panel is shown in drawing 4, signal wiring, etc. were formed is carried out through a sealant 105 and the spacer which is not illustrated, and it has come to pour in liquid crystal 104 among both substrates. Generally as a method of pouring in liquid crystal 104 between the aforementioned substrates, the vacuum pouring in method was used. This vacuum pouring-in method is explained. [0004] First, as shown in the aforementioned translucency substrate 101 (or 102) at <u>drawing 5</u>, a sealant 105 is formed in the portion except the liquid crystal inlet 106 around the display 107 of a liquid crystal panel. And the aforementioned liquid crystal inlet 106 is contacted to liquid crystal 104 within the chamber decompressed as both [these] the substrates 101 and 102 were shown in lamination and drawing 6 through the aforementioned sealant 105 or the spacer which is not illustrated. In addition, the liquid crystal panel section shown in drawing 6 is a B-B cross section in drawing 5. Then, by introducing gas or returning the inside of a chamber in the aforementioned chamber, at atmospheric pressure, the difference of a pressure is produced within and without a liquid crystal panel, and, as a result, liquid crystal 104 is poured in into a liquid

crystal panel. At this time, since liquid crystal will be superfluously poured in into a liquid crystal panel, the liquid crystal which applied the pressure to the liquid crystal panel and was superfluously poured into it here is discharged. And by applying the closure resin which finally is not illustrated to the liquid crystal inlet 106 neighborhood, liquid crystal 104 was poured in into the liquid crystal panel, and this was closed. [0005]

[Problem(s) to be Solved by the Invention] However, when liquid crystal was poured in based on the conventional technology mentioned above and this was closed, there were the following troubles. [0006] First, although the press machine which has a rigid parallel plate was conventionally used as a means to give a pressure to a substrate when making the liquid crystal poured in superfluously discharge, when the parallelism of the aforementioned parallel plate was not uniform, the gap between substrates varied, and there was a trouble that will cause a poor display or shock resistance will be inferior. Moreover, when a foreign matter etc. existed on a substrate, the load concerning the part became high in spot, and there was a trouble that display unevenness will occur.

[0007] Moreover, since this closure resin was adheres to the edge of a liquid crystal panel and a resin did not permeate the display side of a liquid crystal panel

enough when liquid crystal was closed by applying a closure resin to the liquid crystal inlet 106 neighborhood after discharging the liquid crystal poured in superfluously, there was a trouble that the closure mistake of liquid crystal will occur.

[0008] In order to discharge the liquid crystal superfluously poured in in JP,5·142506, A in order to prevent this closure mistake, after pressurizing a substrate and applying a closure resin to the liquid crystal inlet 106 neighborhood, pressurization is once stopped and the technology of releasing a substrate is indicated.

[0009] However, since the once pressurized substrate was released from pressurization at a stretch according to the technology indicated by aforementioned JP,5·142506,A, the closure resin permeated the display side of a liquid crystal panel too much, and there was a trouble that a poor display will occur in the liquid crystal inlet 106 neighborhood.

[0010] Without causing a closure mistake, in case it closes, after being made in view of the above-mentioned trouble and pouring in liquid crystal, this invention is excellent in the homogeneity of the gap between substrates, does not have display unevenness, and offers the manufacture method of a liquid crystal panel strong against an external pressure. [0011]

[Means for Solving the Problem] The manufacture method of the liquid crystal panel of this invention according to claim 1 The process which sticks the substrate of the aforementioned couple by the sealant which is the manufacture method of a liquid crystal panel of coming to close liquid crystal between the substrates of the couple in which the electrode was formed, and was prepared around the display except a liquid crystal inlet, The process which pours in liquid crystal between the aforementioned substrates. and the process which discharges the liquid crystal which pressurized the aforementioned substrate side to liquid crystal ***** using gas, held only predetermined time, and was poured in superfluously, The process which applies a closure resin near a liquid crystal inlet, with the aforementioned liquid crystal ***** held, The pressure concerning the aforementioned substrate side is lowered to resin ***** smaller than liquid crystal *****, only predetermined time is held, and it is characterized by having the process which draws a closure resin to a liquid crystal inlet, and the process which stiffens the aforementioned closure resin. [0012] Setting the manufacture method of the liquid crystal panel of this invention according to claim 2 to the manufacture method of a liquid crystal panel according to claim 1, the aforementioned liquid crystal ***** is 0.1 kgf/cm2. It is 1.0 kgf/cm2 above. It is

characterized by being the following ranges and the aforementioned resin ****** being the or more 1/2 19/20 or less range of the aforementioned liquid crystal ******.

[0013] The manufacture method of the liquid crystal panel of this invention according to claim 3 is characterized by the holding time of the aforementioned resin ***** being 5 or less minutes 1 minute or more in the manufacture method of a liquid crystal panel according to claim 1.

[0014] The manufacture method of the liquid crystal panel of this invention according to claim 4 is characterized by 15000 or more CPS being 20000 or less CPS by the viscosity of the aforementioned closure resin in the manufacture method of a liquid crystal panel according to claim 1.
[0015] Hereafter, the operation by the above mentioned composition is explained.

[0016] Since according to the manufacture method of the liquid crystal panel of this invention a closure resin can be drawn to an inlet by lowering a pressure to resin ***** after applying a closure resin near a liquid crystal inlet, with liquid crystal ***** maintained, a closure mistake can be prevented.
[0017] Moreover, since these pressurization is performed using gas, while it is possible to pressurize the whole substrate surface uniformly and

being able to stop a gap scatter, generating of the gap unevenness by this though foreign matter adhesion is carried out can be prevented to a substrate. [0018] Moreover, it is the aforementioned liquid crystal ****** 0.1 kgf/cm2 While being able to make superfluous liquid crystal discharge completely by considering as the above, it is 1.0 kgf/cm2. Generating of a vacuum foam can be prevented by considering as the following. Moreover, the aforementioned resin ***** can draw a closure resin to a liquid crystal inlet certainly by carrying out to 19/20 or less while being able to prevent drawing a closure resin to the display of a liquid crystal panel by carrying out to 1/2 or more [of the aforementioned liquid crystal ******]. [0019] Furthermore, while being able to draw a closure resin to a liquid crystal inlet still more certainly by holding the aforementioned resin ****** 1 minute or more, it can prevent certainly drawing a closure resin to the display of a liquid crystal panel by considering as 5 or less minutes.

[0020] Furthermore, while a closure resin can prevent a bird clapper by setting viscosity of a closure resin to 15000 or more CPS that it is easy to be drawn to the display of a liquid crystal panel, time until a closure resin is drawn to an inlet can be shortened by being referred to as 20000 or less CPS.

[0021]

[Embodiments of the Invention] Hereafter, the gestalt of operation of this invention is explained using <u>drawing 1</u> or <u>drawing 3</u>.

[0022] <u>Drawing 1</u> (a) · (e) is the flow view showing the manufacture method of the liquid crystal panel of this invention, and <u>drawing 2</u> (a) · (e) shows the A·A cross section in <u>drawing 1</u>.

[0023] First, as shown in drawing 1 (a) and drawing 2 (a), opposite arrangement of the translucency substrates 1 and 2 in which the electrode which is not illustrated, signal wiring, the orientation film, etc. were formed is carried out, and a sealant 5 is formed and stuck on the portion except the surrounding liquid crystal inlet 6 of a display 7. [0024] Next, the substrate stuck the account of before is fixed in a reduced pressure chamber, and as shown in drawing 1 (b) and drawing 2 (b), liquid crystal 4 is contacted to the aforementioned liquid crystal inlet 6. At this time, liquid crystal 4 is poured in by the pressure differential of liquid crystal panel inside and outside into a liquid crystal panel, and goes by it. [0025] Next, as shown in drawing 1 (c) and drawing 2 (c), after sealing the open air on both sides of the substrate of the couple into which liquid crystal 4 was poured to the pressurization closure jig 9 to make the liquid crystal 4 poured in superfluously discharge, gas is introduced in this pressurization closure

jig 9, the aforementioned substrate side is pressurized by the predetermined pressure, and fixed time maintenance is carried out. In addition, the aforementioned pressurization closure jig is omitted in drawing 1 (c). Thus, since the substrate is pressurized using gas in this invention, it is possible to perform uniform pressurization all over a substrate, and the homogeneity of a gap can be raised. In addition, the pressure in the pressurization closure jig 9 at this time is called liquid crystal ***** in the following explanation.

[0026] Next, as shown in <u>drawing 1</u> (d) and <u>drawing 2</u> (d), after discharging the liquid crystal poured in superfluously, in order to close liquid crystal 4, the closure resin 8 is applied to the liquid crystal inlet 6 neighborhood.

[0027] Next, as shown in drawing 1 (e) and drawing 2 (e), some pressures in the pressurization closure jig 9 are lowered, the aforementioned closure resin 8 is drawn in the liquid crystal inlet 6, fixed time maintenance is carried out, and the aforementioned closure resin 8 is stiffened. In addition, the aforementioned pressurization closure jig is omitted in drawing 1 (e). Moreover, the pressure in the pressurization closure jig 9 at this time is called resin ****** in the following explanation.

[0028] Thus, in the manufacture method of the liquid crystal panel of this invention, since it is made to harden after drawing the closure resin 8 applied to the liquid crystal inlet 6 neighborhood according to the difference of this pressure by setting the welding pressure to the substrate after liquid crystal pouring as two stages with low resin ***** of a pressure from this with liquid crystal ***** to the liquid crystal inlet 6, a closure mistake can be prevented. Drawing 3 is drawing showing the pressurization profile to the substrate after liquid crystal pouring, and the profile of this invention in which a solid line has two steps of welding pressure, and a dashed line are the conventional pressurization profiles.

[0029] In addition, at the process in above mentioned drawing 1 (c) and drawing 2 (c), since the homogeneity of the gap between a substrate 1 and 2 changes with the holding times in liquid crystal ****** or this pressure, it is necessary to carry out by the optimal pressure and the optimal holding time. Then, this invention person obtained the result shown in Table 1 and Table 2, as a result of examining the holding time in liquid crystal ***** or this pressure using various numeric values.

[0030]

[Table 1]

液晶押出圧	ギャップむら	真空気泡	評価
0.09Kgf/cm ²	×	0	×
0.10Kgf/cm ²	0	0	0
0.50Kgf/cn ²	0	0	0
0.80Kgf/cm ²	0	0	0
1.00Kgf/cn ²	0	0	0
1.10Kgf/cn ²	0	×	×

[0031] [Table 2]

液晶押出圧を加える時間	評価
なし	× .
5 分	0
10分	0

[0032] As shown in Table 1, about liquid crystal *****, it is 0.1 kgf/cm2. If it is the following, gap unevenness will occur. This is because sufficient pressure effect is not obtained by the rigidity of the translucency substrates 1 and 2 which consist of glass, a plastic, etc. and superfluous liquid crystal cannot be discharged. Moreover, 1.0 kgf/cm2 Since a vacuum foam will be generated in a liquid crystal panel if large, liquid crystal ***** is 0.1 - 1.0 kgf/cm2. Then, superfluous liquid crystal can be discharged, without causing generating of gap unevenness which was mentioned above, and a vacuum foam. [0033] Moreover, since superfluous liquid crystal cannot be made to discharge enough but gap unevenness arises with it being less than 10 minutes about the holding time of liquid crystal *****, it is

desirable for at least 10 minutes to make it hold. Although so superfluous liquid crystal can be made to discharge completely if this holding time is lengthened, when productivity is taken into consideration, considering as 30 or less minutes is desirable.

[0034] Moreover, also in the process in above mentioned drawing 1 (d) and drawing 2 (d), since how the closure resin 8 is drawn by resin ****** and the holding time in this pressure differs, it is necessary to carry out by the optimal pressure and the optimal holding time. Then, this invention person obtained the result shown in Table 3 and Table 4, as a result of examining the holding time in resin ****** or this pressure using various numeric values.

[0035]

[Table 3]

液晶押出圧に対する樹脂引込圧の割合	評価
1/2より小さい	×
1/2	0
19/20	0
19/20より大きい	×

[0036] [Table 4]

樹脂引込圧を加える時間	評価
30₺	×
1分	0
5分	0
6 <i>分</i>	×

[0037] That is, about resin ******, if it is less than [of the aforementioned liquid crystal ******] 1/2 Since the closure resin 8 permeates to a display, the closure resin 8 will not be completely drawn if larger than 19/20 of the aforementioned liquid crystal ******, but a closure mistake occurs Resin ****** can close liquid crystal 4, without drawing 1 / 2 - 19/20 of liquid crystal ******, then the closure resin 8 to a display, or causing a closure mistake.

[0038] Moreover, since the closure resin 8 will permeate to a display if a closure mistake occurs without drawing the closure resin 8 completely as it is less than 1 minute and 5 minutes is exceeded about the holding time of resin ******, as for the holding time of resin ******, it is desirable for 5 or less minutes to take 1 minute or more.

[0039] In addition, the aforementioned resin ****** does not necessarily need to be fixed among the holding time, and you may make it give two or more pressures gradually.

[0040] Moreover, what is necessary is just to make it set up suitably resin ****** and the holding time which were mentioned above according to each viscosity, although how the closure resin 8 is drawn changes also with viscosity of this closure resin 8. However, since a display side is permeated by change of few pressures when viscosity is too low, it is desirable to be referred to as 15000 or

more CPS. Moreover, in order to require time most if viscosity is too high, in order to draw a resin, it is desirable to be referred to as 20000 or less CPS. [0041]

[Effect of the Invention] Since a closure resin can be drawn to an inlet by lowering a pressure to resin ****** according to the manufacture method of the liquid crystal panel of this invention after applying a closure resin near a liquid crystal inlet, with liquid crystal ****** maintained as explained above, the effect that a closure mistake can be prevented is done so.

[0042] Moreover, the effect that generating of the gap unevenness by this since the aforementioned pressure is performed using gas, though it is possible to pressurize the whole substrate surface uniformly, gap precision can be raised and foreign matter adhesion is carried out at the substrate can be prevented is done so.

[0043] Moreover, it is the aforementioned liquid crystal ****** 0.1 kgf/cm2 While being able to make superfluous liquid crystal discharge completely, without producing gap unevenness by considering as the above, it is 1.0 kgf/cm2. The effect that generating of a vacuum foam can be prevented is done so by considering as the following.

[0044] Moreover, the aforementioned resin ***** does so the effect that a closure resin can be certainly drawn to a

liquid crystal inlet, by making it or less into 19/20, while being able to prevent drawing a closure resin to the display of a liquid crystal panel by carrying out to 1/2 or more [of the aforementioned liquid crystal ******].

[0045] Furthermore, while being able to draw a closure resin to a liquid crystal inlet still more certainly by holding the aforementioned resin ***** 1 minute or more, the effect that it can prevent certainly drawing a closure resin to the display of a liquid crystal panel is done so by considering as 5 or less minutes. [0046] Furthermore, while a closure resin can prevent a bird clapper by setting viscosity of a closure resin to 15000 or more CPS that it is easy to be drawn to the display of a liquid crystal panel, the effect that time until a closure resin is drawn to an inlet can be shortened is done so by being referred to as 20000 or less CPS.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]
[Drawing 1] It is the flow view showing the manufacture method of the liquid crystal panel of this invention.

[Drawing 2] It is an A·A cross section in drawing 1.

Drawing 3 It is drawing showing the pressurization profile in the manufacture method of the liquid crystal panel of this invention.

[Drawing 4] It is the cross section of a liquid crystal panel.

[Drawing 5] It is drawing showing the plan of a liquid crystal panel.

[Drawing 6] It is drawing showing the pouring method of the liquid crystal by the vacuum pouring in method.

[Description of Notations]

- 1 Translucency Substrate
- 2 Translucency Substrate
- 4 Liquid Crystal
- 5 Sealant
- 6 Liquid Crystal Inlet
- 7 Display
- 8 Closure Resin
- 9 Pressurization Closure Jig

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出題公園番号

特開平10-104642

(43)公開日 平成10年(1998) 4月24日

(51) Int.Cl.6

識別記号

505

FΙ

G02F 1/1341

1/1339

G 0 2 F 1/1341

1/1011

1/1339

505

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特顯平8-255647

(22)出願日

平成8年(1996)9月27日

(71)出廣人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 宮崎 龍司

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 弁理士 梅田) 勝

(54) 【発明の名称】 液晶パネルの製造方法

(57)【要約】

【課題】 封止ミスをおこすことなく、かつギャップの 均一性の高い液晶パネルを提供する。

【解決手段】 基板間に真空注入法によって液晶を注入したのち、ガスを用いて前記基板を全方位から均一に加圧し過剰に注入された液晶を排出させてギャップを均一に保ち、液晶注入口付近に封止樹脂を塗布した後、基板への加圧力を少し下げて封止樹脂を注入口側へ引き込むことによって封止ミスを防ぐ。

【特許請求の範囲】

【請求項1】 電極が形成された一対の基板間に液晶が 封止されてなる液晶パネルの製造方法であって、

液晶注入口を除く表示部周辺に設けられたシール材によ って前記一対の基板を貼り合わせる工程と、

前記基板間に液晶を注入する工程と、

前記基板面を、ガスを用いて液晶押出圧まで加圧して所 定の時間だけ保持し、過剰に注入された液晶を排出する

前記液晶押出圧を保持したまま液晶注入口付近に封止樹 脂を塗布する工程と、

前記基板面にかかる圧力を液晶押出圧より小さい樹脂引 込圧まで下げて所定の時間だけ保持し、封止樹脂を液晶 注入口まで引き込む工程と、

前記封止樹脂を硬化させる工程と、を有することを特徴 とする液晶パネルの製造方法。

【請求項2】 前記液晶押出圧は0.1 kgf/cm² 以上1. $0 \text{ kg f } / \text{ cm}^2$ 以下の範囲であり、かつ前記 樹脂引込圧は前記液晶押出圧の1/2以上19/20以 下の範囲であることを特徴とする請求項1記載の液晶パ 20 ネルの製造方法。

【請求項3】 前記樹脂引込圧の保持時間は1分以上5 分以下であることを特徴とする請求項1記載の液晶パネ ルの製造方法。

【請求項4】 前記封止樹脂の粘度は15000CPS 以上20000CPS以下であることを特徴とする請求 項1記載の液晶パネルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は液晶パネルの製造方 30 法に関し、さらに詳しくは液晶パネルの液晶注入封止法 に関する。

[0002]

【従来の技術】携帯用情報端末機器やノートパソコンな どの分野において、フラットパネルディスプレイの開発 が盛んに行われており、特に軽量、小型、低消費電力と いう特徴を生かした液晶パネルの開発が盛んに行われて いる。

【0003】従来の一般的な液晶パネルは、図4に示さ れるように図示しない電極や信号配線などが形成された 40 透光性基板101、102をシール材105および図示 しないスペーサを介して対向配置させ、両基板間に液晶 104が注入されてなっている。前記基板間に液晶10 4を注入する方法としては、真空注入法が一般的に用い られていた。この真空注入法について説明する。

【0004】まず、前記透光性基板101 (または10 2) には、図5に示されるように、液晶パネルの表示部 107の周りに、液晶注入口106を除いた部分にシー ル材105を形成する。そして、これら両基板101、

して貼り合わせ、図6に示されるように減圧されたチャ ンバー内で前記液晶注入口106を液晶104に接触さ せる。なお、図6に示した液晶パネル部は、図5におけ るB-B断面である。その後、前記チャンバー内にガス を導入する、またはチャンパー内を大気圧に戻すことに よって液晶パネルの内外に圧力の差を生じさせ、その結 果液晶104を液晶パネル内に注入する。この時点で は、液晶が液晶パネル内に過剰に注入されてしまうの で、ここで液晶パネルに圧力を加えて過剰に注入された 液晶を排出する。そして最後に液晶注入口106付近に 図示しない封止樹脂を塗布することによって、液晶パネ ル内に液晶104を注入し、これを封止していた。

[0005]

【発明が解決しようとする課題】しかしながら、上述し た従来技術に基づいて液晶を注入し、これを封止した場 一 合、以下のような問題点があった。

【0006】まず、過剰に注入された液晶を排出させる 際に基板に圧力を与える手段として、従来は剛性の平行 平板を有するプレス機等を用いていたが、前記平行平板 の平行度が均一でないと基板間のギャップがばらついて しまい、表示不良を起こしたり耐衝撃性が劣ってしまう という問題点があった。また、基板上に異物等が存在し た場合、その箇所にかかる荷重がスポット的に高くな り、表示むらが発生してしまうという問題点があった。

【0007】また、過剰に注入された液晶を排出した 後、液晶注入口106付近に封止樹脂を塗布することに よって液晶を封止した場合、該封止樹脂が液晶パネルの 端部に付着するだけとなり、樹脂が液晶パネルの表示部 側へ十分浸透しないので液晶の封止ミスが発生してしま うという問題点があった。

【0008】この封止ミスを防ぐために、特開平5-1 42506号公報においては、過剰に注入された液晶を 排出するために基板を加圧し、封止樹脂を液晶注入口1 06付近に塗布した後、いったん加圧を中止し基板を解 放するという技術が開示されている。

【0009】しかしながら、前記特開平5-14250 6号公報に開示された技術によれば、いったん加圧され た基板を一気に加圧から解放しているので、封止樹脂が 液晶パネルの表示部側へ浸透し過ぎてしまい、液晶注入 口106付近において表示不良が発生してしまうという 問題点があった。

【0010】本発明は、上記問題点に鑑みてなされたも のであり、液晶を注入した後、封止する際において封止 ミスを起こすことなく、かつ基板間のギャップの均一性 に優れ、表示むらがなく外的圧力に強い液晶パネルの製 造方法を提供するものである。

[0011]

【課題を解決するための手段】本発明の請求項1記載の 液晶パネルの製造方法は、電極が形成された一対の基板 102を前記シール材105や図示しないスペーサを介 50 間に液晶が封止されてなる液晶パネルの製造方法であっ

て、液晶注入口を除く表示部周辺に設けられたシール材 によって前記一対の基板を貼り合わせる工程と、前記基 板間に液晶を注入する工程と、前記基板面を、ガスを用 いて液晶押出圧まで加圧して所定の時間だけ保持し、過 剰に注入された液晶を排出する工程と、前記液晶押出圧 を保持したまま液晶注入口付近に封止樹脂を塗布する工 程と、前記基板面にかかる圧力を液晶押出圧より小さい 樹脂引込圧まで下げて所定の時間だけ保持し、封止樹脂 を液晶注入口まで引き込む工程と、前記封止樹脂を硬化 させる工程と、を有することを特徴とするものである。 【0012】本発明の請求項2記載の液晶パネルの製造 方法は、請求項1記載の液晶パネルの製造方法におい て、前記液晶押出圧はO.1kg f / c m² 以上1.0 kgf/cm²以下の範囲であり、かつ前記樹脂引込圧 は前記液晶押出圧の1/2以上19/20以下の範囲で あることを特徴とするものである。

【0013】本発明の請求項3記載の液晶パネルの製造方法は、請求項1記載の液晶パネルの製造方法において、前記樹脂引込圧の保持時間は1分以上5分以下であることを特徴とするものである。

【0014】本発明の請求項4記載の液晶パネルの製造方法は、請求項1記載の液晶パネルの製造方法において、前記封止樹脂の粘度は15000CPS以上20000CPS以下であることを特徴とするものである。 【0015】以下、上記構成による作用について説明する。

【0016】本発明の液晶パネルの製造方法によれば、液晶押出圧を保ったまま液晶注入口付近に封止樹脂を塗布した後、樹脂引込圧まで圧力を下げることによって封止樹脂を注入口まで引き込むことができるので、封止ミスを防ぐことができる。

【0017】また、これらの加圧はガスを用いて行っているため、基板全面をむらなく加圧することが可能であり、ギャップのばらつきを抑えることができるとともに、基板に異物付着していたとしてもこれによるギャップむらの発生を防ぐことができる。

【0018】また、前記液晶押出圧を $0.1kgf/cm^2$ 以上とすることにより過剰な液晶を完全に排出させることができるとともに、 $1.0kgf/cm^2$ 以下とすることにより真空気泡の発生を防ぐことができる。また、前記樹脂引込圧は前記液晶押出圧の1/2以上とすることによって封止樹脂が液晶パネルの表示部まで引き込まれることを防ぐことができるとともに、19/20以下とすることによって確実に封止樹脂を液晶注入口まで引き込むことができる。

【0019】さらに、前記樹脂引込圧を1分以上保持することによって更に確実に封止樹脂を液晶注入口まで引き込むことができるとともに、5分以下とすることによって封止樹脂が液晶パネルの表示部まで引き込まれることを確実に防ぐことができる。

【0020】さらに、封止樹脂の粘度を15000CP S以上とすることによって封止樹脂が液晶パネルの表示 部まで引き込まれやすくなることを防ぐことができると ともに、20000CPS以下とすることによって封止 樹脂が注入口まで引き込まれるまでの時間を短縮させる ことができる。

[0021]

【発明の実施の形態】以下、本発明の実施の形態について、図1万至図3を用いて説明する。

【0022】図1(a)~(e)は本発明の液晶パネルの製造方法を示すフロー図であり、図2(a)~(e)は図1におけるA-A断面図を示したものである。

【0023】まず、図1(a)及び図2(a)に示されるように、図示しない電極、信号配線、配向膜等が形成された透光性基板1、2を対向配置させ、表示部7の周りの液晶注入口6を除いた部分にシール材5を形成し貼り合わせる。

【0024】次に、前記貼り合わされた基板を減圧チャンパー内に固定し、図1(b)及び図2(b)に示され 20 るように、液晶4を前記液晶注入口6に接触させる。このとき、液晶パネル内外の圧力差によって液晶4が液晶パネル内に注入されて行く。

【0025】次に、図1(c)及び図2(c)に示されるように、過剰に注入された液晶4を排出させるべく、液晶4が注入された一対の基板を加圧封止ジグ9に挟み外気を密閉した後、該加圧封止ジグ9内にガスを導入し、前記基板面を所定の圧力にて加圧し、一定時間保持する。なお、図1(c)においては前記加圧封止ジグを省略している。このように、本発明においてはガスを用いて基板を加圧しているので、基板全面に均一な加圧を行うことが可能であり、ギャップの均一性を向上させることができる。なお、このときの加圧封止ジグ9内の圧力を、以下の説明において液晶押出圧と称する。

【0026】次に、図1(d)及び図2(d)に示されるように、過剰に注入された液晶を排出した後、液晶4を封止するために液晶注入口6付近に封止樹脂8を塗布する。

【0027】次に、図1(e)及び図2(e)に示されるように、加圧封止ジグ9内の圧力を少し下げて前記封止樹脂8を液晶注入口6に引き込んで一定時間保持し、前記封止樹脂8を硬化させる。なお、図1(e)においては前記加圧封止ジグを省略している。また、このときの加圧封止ジグ9内の圧力を、以下の説明において樹脂引込圧と称する。

【0028】このように、本発明の液晶パネルの製造方法においては、液晶注入後の基板への加圧力を、液晶押出圧と、これより圧力の低い樹脂引込圧との2段階に設定することにより、この圧力の差によって液晶注入口6付近に塗布する封止樹脂8を液晶注入口6まで引き込ん だ後に硬化させているので、封止ミスを防止することが

5

できる。図3は、液晶注入後の基板への加圧プロファイルを示す図であり、実線が2段階の加圧力を有する本発明のプロファイル、破線が従来の加圧プロファイルである。

【0029】なお、上記図1(c)及び図2(c)における工程では、液晶押出圧や該圧力での保持時間によって基板1、2間のギャップの均一性が変化するので、最適な圧力や保持時間で行う必要がある。そこで、本発明者は液晶押出圧や該圧力での保持時間についてさまざまな数値を用いて検討を行った結果、表1、表2に示す結 10果を得た。

[0030]

[表1]

[XI]			
液晶押出圧	ギャップむら	真空気泡	評価
0.09Kgf/cm2	- · · · X- ······		···×
0.10Kgf/cm ²	0	0	0
0.50Kgf/cm ²	0	0	0
0.80Kgf/cm ²	0	0	0
1.00Kgf/cm ²	0	0	0
1.10Kgf/cm ²	0	×	×

[0031]

【表2】

液晶押出圧を加える時間	評価
なし	×
5分	0
10分	0

【0032】表1から分かるように、液晶押出圧については、 $0.1 \, \mathrm{kg} \, \mathrm{f} / \mathrm{cm}^2$ 未満であればギャップむらが発生してしまう。これは、ガラスやプラスティック等からなる透光性基板1、 $2 \, \mathrm{om}$ 性等により、十分な加圧効果が得られず、過剰な液晶を排出することができないためである。また、 $1.0 \, \mathrm{kg} \, \mathrm{f} / \mathrm{cm}^2$ より大きいと液晶パネル内に真空気泡が発生してしまうため、液晶押出圧は $0.1 \, \mathrm{cm}^2$ とすれば上述したようなギャップむらや真空気泡の発生を招くことなく過剰な液晶を排出することができる。

【0033】また、液晶押出圧の保持時間については、 10分未満であると過剰な液晶を十分排出させることが 40 できずギャップむらが生じてしまうので、少なくとも1 0分間は保持させることが望ましい。この保持時間は長くすればそれだけ過剰な液晶を完全に排出させることが できるが、生産性を考慮すると30分以下とすることが 望ましい。

【0034】また、上記図1(d)及び図2(d)における工程においても、樹脂引込圧や、該圧力での保持時間によって封止樹脂8の引き込まれ方が異なるため、最適な圧力や保持時間で行う必要がある。そこで、本発明者は樹脂引込圧や該圧力での保持時間についてさまざま 50

な数値を用いて検討を行った結果、表3、表4に示す結果を得た。

[0035]

【表3】

液晶押出圧に対する樹脂引込圧の割合	評価
1/2より小さい	×
1/2	0
19/20	0
19/20より大きい	×

[0036]

【表4】

	樹脂引込圧を加える時間	評価
	30₺	×
-	1分	0
	5分	0
	6分	×

【0037】つまり、樹脂引込圧については、前記液晶 20 押出圧の1/2未満であれば、封止樹脂8が表示部まで 浸透してしまい、前記液晶押出圧の19/20より大きいと、封止樹脂8が完全に引き込まれず封止ミスが発生してしまうので、樹脂引込圧は液晶押出圧の1/2~19/20とすれば、封止樹脂8が表示部まで引き込まれたり、封止ミスを招いたりすることなく液晶4を封止することができる。

【0038】また、樹脂引込圧の保持時間については、 1分未満であると封止樹脂8が完全に引き込まれずに封 止ミスが発生してしまい、5分を越えると封止樹脂8が 表示部まで浸透してしまうので、樹脂引込圧の保持時間 は1分以上5分以下とすることが望ましい。

【0039】なお、前記樹脂引込圧は、その保持時間中 必ずしも一定である必要はなく、複数の圧力を段階的に 与えるようにしても良い。

【0040】また、封止樹脂8の引き込まれ方は該封止樹脂8の粘度によっても異なってくるが、夫々の粘度に応じて上述した樹脂引込圧や保持時間を適宜設定するようにすれば良い。しかしながら、粘度が低すぎる場合は僅かな圧力の変動によって表示部側へ浸透してしまうため、15000CPS以上とすることが望ましい。また、粘度が高すぎると樹脂を引き込むためにかなりの時間を要するため、20000CPS以下とすることが望ましい。

[0041]

【発明の効果】以上説明したように、本発明の液晶パネルの製造方法によれば、液晶押出圧を保ったまま液晶注入口付近に封止樹脂を塗布した後、樹脂引込圧まで圧力を下げることによって封止樹脂を注入口まで引き込むことができるので、封止ミスを防ぐことができるという効果を奏する。

7

【0042】また、前記圧力はガスを用いて行っているので、基板全面を均一に加圧することが可能でありギャップ精度を向上させることができ、かつ基板に異物付着していたとしても、これによるギャップむらの発生を防ぐことができるという効果を奏する。

【0043】また、前記液晶押出圧を 0.1 kg f/cm^2 以上とすることによりギャップむらを生じることなく過剰な液晶を完全に排出させることができるとともに、 1.0 kg f/cm^2 以下とすることにより真空気泡の発生を防ぐことができるという効果を奏する。

【0044】また、前記樹脂引込圧は前記液晶押出圧の 1/2以上とすることによって封止樹脂が液晶パネルの 表示部まで引き込まれることを防ぐことができるととも に、19/20以下とすることによって確実に封止樹脂 を液晶注入口まで引き込むことができるという効果を奏 する。

【0045】さらに、前記樹脂引込圧を1分以上保持することによって更に確実に封止樹脂を液晶注入口まで引き込むことができるとともに、5分以下とすることによって封止樹脂が液晶パネルの表示部まで引き込まれることを確実に防ぐことができるという効果を奏する。

【0046】さらに、封止樹脂の粘度を15000CP S以上とすることによって封止樹脂が液晶パネルの表示 部まで引き込まれやすくなることを防ぐことができるとともに、20000CPS以下とすることによって封止 樹脂が注入口まで引き込まれるまでの時間を短縮させる ことができるという効果を奏する。

【図面の簡単な説明】

【図1】本発明の液晶パネルの製造方法を示すフロー図 である。

【図2】図1におけるA-A断面図である。

【図3】本発明の液晶パネルの製造方法における加圧プ 10 ロファイルを示す図である。

【図4】液晶パネルの断面図である。

【図5】液晶パネルの平面図を示す図である。

【図6】真空注入法による液晶の注入方法を示す図である。

【符号の説明】

- 1 透光性基板
- 2 透光性基板
- 4 液晶
- 5 シール材
- 20 6 液晶注入口
 - 7 表示部
 - 8 封止樹脂
 - 9 加圧封止ジグ

【図1】

【図2】

