CS1231S Midterm Cheatsheet 24/25 Teh Xu An

Sets	Sets (Slide 1.1.3)			
N	Set o All Natural Numbers	{0, 1, 2, 3, 4,}		
\mathbb{Z}	Set of All Integers	{, -1, 0, 1,}		
\mathbb{Z}^+	Set of All Positive Integers	{1, 2, 3, 4,}		
Q	Set of All Rational Numbers	{, -0.5, 0, 0.5,}		
\mathbb{R}	Set of All Real Numbers	$\{, -1, \pi, \sqrt{2}, 4.5,\}$		
\mathbb{C}	Set of All Complex Numbers	{, -i, 0, i,}		

Conjunction & Disjunction / Tautology & Contradiction		
Conjunction of p and q : $(p \land q)$	Disjunction of p and q : $(p \lor q)$	
Tautology: Always true	Contradiction: Always false	

Logical E	quivalence ≡
$p \equiv q$	$p \& q$ have identical truth values \forall (possible substitutions)

Implication Law			
Statement Type	Statement	Equivalence	
Conditional	$p \rightarrow q$	$\sim p \lor q$	
Negation	$\sim (p \rightarrow q)$	<i>p</i> ∧ ~ <i>q</i>	
Converse	$q \rightarrow p$	$\sim q \vee p$	
Inverse	$\sim p \rightarrow \sim q$	<i>p</i> ∨ ~ <i>q</i>	
Contrapositive	$\sim q \rightarrow \sim p$	<i>q</i> ∨ ~ <i>p</i>	

If, Only If, Biconditional	
p if q / if q then p /	$q \rightarrow p$
p is a necessary condition for q	
p only if q / only if q then p /	$\sim q \rightarrow \sim p$
p is a sufficient condition for q	$p \rightarrow q$
p iff q / p if and only if q /	$p \leftrightarrow q$
p is a necessary and sufficient	$(p \to q) \land (q \to p)$
condition for q	$(\sim q \to \sim p) \land (\sim p \to \sim q)$

Order of Ope	rations (Left to	Right)		
()	2	R	ΛV	$\rightarrow \leftrightarrow$

Theorem 2.1.1		
Commutative Laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
Associative Laws	$p \wedge q \wedge r \equiv (p \wedge q)$	$q) \wedge r \equiv p \wedge (q \wedge r)$
	$p \vee q \vee r \equiv (p \vee q)$	$q) \lor r \equiv p \lor (q \lor r)$
Distributive Laws		$(p \land q) \lor (p \land r)$
	$p \lor (q \land r) \equiv$	$(p \lor q) \land (p \lor r)$
Identity Laws	$p \land true \equiv p$	$p \lor false \equiv p$
Negation Laws	$p \land \sim p \equiv false$	$p \lor \sim p \equiv true$
Double Negative Laws	$\sim (\sim p) \equiv p$	
Idempotent Laws	$p \wedge p \equiv p$	$p \lor p \equiv p$
Universal Bound Laws	$p \lor true \equiv true$	$p \land false \equiv false$
De Morgan's Laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption Laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Variant Absorption	$p \lor (\sim p \land q)$	$p \wedge (\sim p \vee q) \equiv p \wedge q$
Laws (Assignment 1)	$\equiv p \lor q$	

Negation of T and F		$\sim true \equiv false$	$\sim false \equiv true$			
Arguments	Arguments (Valid and Sound)					
Valid	Valid All premises true \wedge Conclusion true					
	Conclusions in all critical row is true					
Invalid	Invalid There is a critical row which the conclusion is false					
Critical Ro	Critical Row: All premises are true					
Sound	Sound Valid ∧ All premises true					
Unsound	Unsound Not sound ie ~Valid v Contradictory Premise					
Valid & Unsound: Contradictory Premise (Vacuously True)						

Rules of Inference				
1	Inference	Premise 1	Premise 2	Conclusion
1	Modus Ponens	$p \rightarrow q$	p	∴ q
	Modus Tollens	$p \rightarrow q$	~q	∴ ~p
1	Generalisation	p		$\therefore p \lor q$
١.		q		$\therefore p \lor q$
1	Specialisation	$p \wedge q$		∴ p
1		$p \wedge q$		∴ q
1	Conjunction	p	q	$\therefore p \land q$
ł	Elimination	$p \lor q$	~p	∴ q
1		$p \lor q$	~q	∴ p
J	Transitivity	$p \rightarrow q$	$q \rightarrow r$	$\therefore p \rightarrow r$
,	Contradiction	$\sim p \rightarrow false$		∴ p
	Proof by Division	$p \lor q$	$(p \to r) \land (q \to r)$	∴ r
	into Cases			
1				

Predicate Logic			
Predicate	In the form of $P(x)$, becomes statement when x has value		
Domain	n Set of values that substitute x		
Truth Set $\{x \in D P(x)\}$ where D is Domain of x			

Universal Statements & Existential Statements			
Universal Statement		$\forall x \in D, P(x)$	
Existential Statement		$\exists x \in D, P(x)$	
Unique Existential Statement		$\exists ! x \in D, P(x)$	
Negation of Universal Statement Negation of Existential Statement Negation of UE Statement Vyx		$\exists x \in D(\sim P(x))$	
		$\forall x \in D(\sim P(x))$	
		$\in D. \sim P(x) \setminus \{\{x \in D. P(x)\}\} > 2$	

Rules of Inference for Quantified Statements				
Name	Premise Conclusion			
Universal Instantiation	$\forall x \in D\big(P(x)\big)$	$\therefore P(a) \text{ if } a \in D$		
Universal Generalization	$P(a)$ for every $a \in D$	$ \exists \forall x \in D(P(x)) $		
Existential Instantiation	$\exists x \in D(P(x)) \qquad \therefore P(a) \text{ for some } a \in L$			
Existential Generalization	$P(a)$ for some $a \in D$ $\therefore \exists x \in D(P(x))$			
•	<u> </u>			

Direct Proof & Counterexample	
Proving existential statements by constructive proof.	

An existential statement: $\exists x \in D(Q(x))$ is true iff Q(x) is true for at least one x in D. To prove such statement, we may use constructive proofs of existence:

- 1) Find an x in D that makes Q(x) true; or
- 2) Give a set of directions for finding such an x.

Disproving universal statements by counterexample.

Given a universal (conditional) statement: $\forall x \in D\big(P(x) \to Q(x)\big)$. Showing this statement is false is equivalent to showing that its negation is true. The negation of the above statement is an existential statement: $\exists x \in D\big(P(x) \land \neg Q(x)\big)$.

Find a value of x in D for which the hypothesis P(x) is true but the conclusion Q(x) is false. Such an x is called a counterexample.

Proving universal statements by exhaustion.

Given a universal conditional statement: $\forall x \in D \ (P(x) \to Q(x))$. When D is finite or when only a finite number of elements satisfy P(x), we may prove the statement by the method of exhaustion.

Proving universal statements by generalizing from the generic particular (arbitrarily chosen element).

To show that every element of a set satisfies a certain property, suppose x is a particular but arbitrarily chosen element of the set, and show that x satisfies the property.

Indirect Proof

Proof by contradiction

- 1) Suppose the statement to be proved, S, is false. That is, the negation of the statement, $\sim S$, is true.
- 2) Show that this supposition leads logically to a contradiction.
- 3) Conclude that the statement S is true.

Proof by contraposition (Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$)

- 1) Statement to be proved: $\forall x \in D(P(x) \to Q(x))$.
- 2) Rewrite the statement into its contrapositive form:

 $\forall x \in D(\sim Q(x) \to \sim P(x)).$

- 3) Prove the contrapositive statement by a direct proof.
- 3.1) Suppose x is an (particular but arbitrarily chosen) element of D s.t. Q(x) is false.
- 3.2) Show that P(x) is false.
- 4) Therefore, the original statement $\forall x \in D (P(x) \to Q(x))$ is true.

Proven (Methods of Proof)					
n is even	$\exists k \in \mathbb{Z}(n=2k)$				
n is odd	$\exists k \in \mathbb{Z}(n=2k+1)$				
n is prime	$(n > 1) \land \forall r, s \in \mathbb{Z}^+$				
	$(n = rs \Rightarrow (r = 1 \land s = n) \lor (r = n \land s = 1))$				
$\it n$ is prime (alt)	$(n > 1) \land \Big(\forall r, s \in \mathbb{Z} \Big((r > 1) \land (s > 1) \rightarrow rs \neq n \Big) \Big)$				
n is prime (alt) (Lec 4 Slide 7)	$(n \neq 1) \land \forall y, z \in \mathbb{Z} \left(x = yz \to \left((y = x) \lor (y = 1) \right) \right)$				
n is composite	$\exists r, s \in \mathbb{Z}^+ \big(n = rs \land (1 < r < n) \land (1 < s < n) \big)$				
n is rational	$\exists a, b \in \mathbb{Z}^+ \left(n = \frac{a}{b} \land b \neq 0 \right)$				
$d n(d,n\in Z)$	$\exists k \in \mathbb{Z}(n=dk)$				

CS1231S Midterm Cheatsheet 24/25 Teh Xu An

Lecture 4 Slide 16	The sum of any two eve	en integers is even.	Lecture 5 Slide 3	ecture 5 Slide 35		Suppose A is a finite set with n elements,		Tutorial 3 Qn 8		$A \subseteq A$	$B \Leftrightarrow A \cup B = B$
(Example #4)			(Theorem 6.3.1)		the $\mathcal{P}(A)$	l) has 2^n eleme	nts. In other words,				
Lecture 4 Slide 19	Every integer is a ration	nal number.			$ \mathcal{P}(A) $	$=2^{ A }.$		Relations			
(Theorem 4.2.1)			Equality of Ordered <i>n</i> -tuples, $\forall n \in \mathbb{Z}^+$ $(x_1 = y_1) \land (x_2 = y_2)$			Relation (binary) xF	<u>'</u> ν	$\forall (x, y) \in A >$	$\forall B(xRy \Leftrightarrow (x,y) \in R)$		
(5 th : 4.3.1)			(x_1, x_2, \dots, x_n)	$y_1)=(y_1,y_2,$	$, \ldots, y_n)$		$ \wedge (x_n = y_n)$	" x is R-related to y "			$\langle B(xRy \Leftrightarrow (x,y) \notin R)$
Lecture 4 Slide 20	The sum of any two rati	ional numbers is	Cartesian Produc	ct of Sets	$A_1 \times A_2$	$A_2 \times \cdots \times A_n = 0$	$[a_1, a_2, \cdots, a_n]$:	Domain of R: Dom(for some $b \in B$ }
(Theorem 4.2.2)	rational.		A_1, A_2, \ldots, A_n		1 -	$A_1 \wedge a_2 \in A_2 \wedge \cdots$,	Co-Domain of R: co	Dom(R)	B	•
(5 th : 4.3.2)			If A is a set, then			$A \times A \times \times A$ (n many A's)	Range of R: $Range(R)$ $\{b \in B \mid aRb \text{ for some } a \in A\}$			for some $a \in A$ }
Lecture 4 Slide 21	The double of a rationa		Disjoint Sets		$A \cap B =$			Inverse Relation: R	-1 {(1	$(x,x) \in B \times A$: (
(Corollary 4.2.3)	rational. (Corollary: Sin	nple deduction	Pairwise Disjoint		. ,	$= \emptyset$ whenever i			' "		$(y,x) \in R^{-1} \Leftrightarrow (x,y) \in R$
(5 th : 4.2.3)	from theorem.)		Partition of Set			$\operatorname{ere} A_1, A_2, \dots, A_n$		"Divides" Relations: $\forall \forall (d, n) \in \mathbb{Z} \times \mathbb{Z} (d n \Leftrightarrow \exists k \in \mathbb{Z} (n = dk)) \}$			
Lecture 4 Slide 24	For all positive integers	a, a and b , if $a b$,		disjoint su	ubsets o	f A and $igcup_{i=0}^n A_i$ =	= A	Relation on a set A	- 1 (-	$\forall (a_1, a_h) \in A$	
(Theorem 4.3.1)	then $a \leq b$.							$A^{n} \qquad A^{n} = A \times A \times \times A(n \text{ times})$			
(5 th : 4.4.1)	The section of the second of	4 1 4	Theorem 6.2.1 (S	ome Subse	t Relatio	ns) *For all sets	A, B and C	Composition of R with S $\forall x \in A, \forall z \in C$			
Lecture 4 Slide 25	The only divisors of 1 a	re 1 and -1.	Inclusion of Inter	section	(a)	$A \cap B \subseteq A$ (b) A	$\cap B \subseteq B$	$R \subseteq A \times B, S \subseteq A$		1	
(Theorem 4.3.2) (5 th : 4.4.2)			Inclusion in Unio	n	(a)	$A \subseteq A \cup B$ (b) B	$C \subseteq A \cup B$	(xb + RE (x (\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \)			() () ()
(5**: 4.4.2) Lecture 4 Slide 26	For all integers a, b and	da if alb and bla	Transitive Proper	ty of Subset	ts A	$\subseteq B \land B \subseteq C \rightarrow$	$A \subseteq C$	Composition is Associative $T \circ (S \circ R) = (T \circ S) \circ R = T \circ S \circ R$			
(Theorem 4.3.3)	then $a c$.	a c, π α <i>υ</i> and <i>υ</i> <i>c</i>	$a \in X \cup Y$	$a \in X \vee a$	$a \in Y$	$a \in X \cap Y$	$a \in X \land a \in Y$	Inverse of Composi	tion	$(S \circ R)^{-1} = R$	K - 0 5 -
(5 th : 4.4.3)	then a _l c.		$a \in X \backslash Y$	$a \in X \land a$	a∉Y	$a \in \bar{X}$	$a \notin X$				
Lecture 4 Slide 29	There is no greatest into	odor	$(a,b) \in X \times Y$	$a \in X \wedge b$	$b \in Y$			Properties of Relati	ons (Relat		
(Theorem 4.6.1)	There is no greatest into	egei.						Reflexive			$\equiv A(xRx)$
(5 th : 4.7.1)			Theorem 6.2.2 Se	et Identities	*For all	sets A.B and C		Symmetric			$(xRy \Rightarrow yRx)$
Lecture 4 Slide 32	For all integers n , if n^2 i	is avan than n is	Commutative La			$DB = B \cup A$	$A \cap B = B \cap A$	Transitive	$\forall x, y, z \in A(xRy \land yRz \Rightarrow xRz)$		
(Proposition 4.6.4)	even.	is even then n is	Associative Laws		$(A \cup B) \cup C = A \cup (B \cup C)$		Equivalence (~)	Reflexive, Symmetric, Transitive			
(5 th : 4.7.4)	0.0111		$(A \cap B) \cap C = A \cap (B \cap C)$			Class of $a([a])$			$\forall x \in A(x \in [a]_{\sim} \Leftrightarrow a \sim x)$		
Tutorial 1 Q10 The product of any two odd integers is an		Distributive Laws $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$			Quotient of set	Set of al	l equivalence c				
odd integer.		$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$			A by ~			$\{[x]_{\sim}: x \in A\}$			
Tutorial 1 Q11	For all integers n , n^2 is odd iff n is odd.		Identity Laws		A	$A \cup \emptyset = A$	$A \cap U = A$			$y \wedge yRx \Rightarrow x = y)$	
Tutorial 2 Q11	If n is a product of two		Complement Laws $A \cup \bar{A} = U$ $A \cap \bar{A} = \emptyset$		$\neg \text{Antisymmetric} \qquad \exists x, y \in A(xRy \land yRx \land x \neq y)$						
	and b, then $a < n^{1/2}$ or		Double Complement Laws		$\bar{A} = A$		Asymmetric	$\forall x, y \in A(xRy \Rightarrow yRx)$			
Tutorial 2 Q4	Rational numbers are o		Idempotent Laws		l A	$A \cup A = A$	$A \cap A = A$			symmetric relation is Antisymmetric	
	addition.		Universal Bounds Laws		l A	$A \cup U = U$	$A \cap \emptyset = \emptyset$	Partial Order	Reflexive, Antisymmetric, Transitive		
Tutorial 2 Q8	$\forall x \in \mathbb{R}((x^2 > x) \to (x^2 > x))$	$(x < 0) \lor (x > 1)$	De Morgan's Laws		ĀŪ	$\overline{B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$][$(U,\subseteq))$ $((\mathbb{Z}^+,)$:	Proven)
	1	(11 (0) (11 2))	Absorption Laws		$A \cup (A \cap B) = A$		$A \cap (A \cup B) = A$				
Sets			Complements of U and \emptyset $\overline{U} = \emptyset$ $\overline{\emptyset} = U$ Transitive Closure of $R: R^t$								
Set-Roster Notation	{1, 2, 3,}		Set Difference Law $A \setminus B = A \cap \overline{B}$			Relation obtained with least ordered pairs added to ensure transitivity					
Set-Builder Notation	$\{x \in U P(x)\}$		* Note that Logical Equivalence and Set Properties are similar, as they are								
Replacement Notation	$\begin{cases} \{x \in U \mid P(x)\} \\ \{t(x) \mid x \in A\} \end{cases}$		special cases of th	e same gen	same general structure Boolean Algebra			Transitive $R \subseteq R$	$\forall S$	$\in U((S \text{ is trans}))$	sitive) $\land (R \subseteq S) \rightarrow R^t \subseteq S$
	1 1 7 7	of C	1	3.			-				
	Membership of Set (\in) $x \in S$: x is an element of S		Proven (Sets)			Reflexive Closure of R (Tutorial 4 Qn 7)					
Cardinality of Set ($ S $)	17 1 1		Proven (sets) Lecture 5 Slide 22 $\{x \in \mathbb{Z} x^2 = 1\} = \{1, -1\}$			The smallest relation on A that is reflexive and contains R as a subset.					
`	$A \times (x \in A \Rightarrow x \in B) \qquad A \subseteq B \qquad A \subseteq B \land A \neq B$ $A \times (x \in A \land x \notin B) \qquad A = B \qquad (\forall x \in A \Leftrightarrow x \in B)$		Lecture 5 Stide 22 $\{x \in \mathbb{Z} x^2 = 1\} = \{1, -1\}$ Lecture 5 Stide 31 Quotient-Remainder Theorem			$\forall x, y \in A(xSy \Leftrightarrow (x = y) \lor (xRy))$					
$A \nsubseteq B \qquad \exists x \ (x \in A \land x \notin B) \qquad A = B \qquad \{\forall x \in A \Leftrightarrow x \in B\}$				Remainder i neorem $ otag n \in \mathbb{Z}, d \in \mathbb{Z}^+(\exists ! \operatorname{q}, \operatorname{r} \in \mathbb{Z})$		Reflexive $R \subseteq S$.,,		exive) $\land (R \subseteq S') \rightarrow S \subseteq S'$		
		$((n = dq + r) \land (0 \le r < d)))$			1.0	1 (0 10 10110	, ()				
		Lecture 5 Slide 46 $ (A \cap B) \cup (A \setminus B) = A \text{ for all sets } A, B $			Partition of a set A						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Tutorial 3 Qn 3 $ A \cap B = A \text{ for all sets } A, B $ $ A \cap B = A \text{ for all sets } A, B $ $ A \cap B = A \text{ for all sets } A, B $ $ A \cap B = A \text{ for all sets } A, B $			C is a partition of a set A if the following hold:						
$\bigcup_{i=0}^{n} A_{i} \qquad \{x \in U x \in A_{i} \text{ for at least one } i = 0,1,,n\}$		Tutorial 3 Qn 5	- 11 71 7 1 2 71			(1) C is a partition of a set A if the following hold: (1) C is a set of which all elements are non-empty subsets of A, i.e.,					
$\bigcap_{i=0}^{n} A_i \qquad \{x \in U x \in A_i \text{ for all } i = 0,1,,n\}$			Tutorial 3 Qn 6 $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$			(1) C is a set of which all elements are non-empty subsets of A , i.e., $\emptyset \neq S \subseteq A$ for all $S \in \mathbb{C}$.					
Lecture 5 Slide 34 Let A be a finite set where $ A = n$, then						$\psi \neq S \subseteq A$ for all $S \in C$. (2) Every element of A is in exactly one element of C , i.e.,					
(Cardinality of Power Set $ \mathcal{P}(A) = 2^n$						11 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '					
of a Finite Set)			Tutorial 3 Qn 9 $A \otimes B = (A \cup B) \setminus (A \cap B)$			$\forall x \in A \exists S \in C (x \in S)$ and					

CS1231S Midterm Cheatsheet 24/25 Teh Xu An

$\forall x \in A \ \forall S1, S2 \in C \ (x \in S1 \land x \in S2 \Rightarrow S1 = S2).$					
Partition Definition $\forall x \in A \exists ! S \in C(x \in S)$					
Induced Relation	$\forall x, y \in A(xRy \Leftrightarrow \exists S \in C(x, y \in S))$				
by partition	R is reflexive, symmetric, and transitive (proven)				

Partial Ordered Set (Poset) A set A is called a partially ordered set (or poset) with respect to a partial order relation R on A , denoted by (A, R) . Lecture 6 Slide 71 (Notation \leq) Because of the special paradigmatic role played by the \leq relation in the study of partial order relations, the symbol \leq is often used to refer to a general partial order, and the notation $x \leq y$ is read " x is curly less than or equal to y ". Hasse Diagram Let \leq be a partial order on a set A . A Hasse diagram of \leq satisfies the following condition for all distinct $x, y, m \in A$: If $x \leq y$ and no $m \in A$ is such that $x \leq m \leq y$, then x is placed below y with a line joining them, else no line joins x and y . x, y comparable x, y comparable x, y compatible elements are compatible. Any two comparable elements are not always comparable. Eg $(\mathbb{Z}^+, y) : 2, 3$ Maximal Element $x, y \in A(x \leq x) > x \in x$ Minimal Element $x, y \in A(x \leq x) > x \in x$ $x \in A(x \leq x) > x \in x$ $x \in A(x \leq x) > x \in x$ Maximal Element $x \in A(x \leq x) > x \in x$ $x \in A(x \leq x) > x \in x$ $x \in A(x \leq x) > x \in x$ $x \in A(x \leq x) > x \in x$ Maximal Chain $x \in A(x, y) > x \in x$ $x \in A(x, y) > x \in x$ Chain $x \in A(x, y) > x \in x$ Chain $x \in A(x, y) > x \in x$ $x \in A(x, y) > x \in x$ Maximal Chain Chain $x \in A(x, y) > x \in x$ Chain $x \in A(x, y) > x \in x$ Let $x \in A(x, y) > x \in x$ Use $x \in A(x, y) > x \in x$ $x \in A(x, y) > x \in x$ Use $x \in A(x, y) > x \in x$ $x \in A(x, y) > x \in x$ Parameter $x \in A(x, y) > x \in x$ $x \in A(x, y) > x \in x \in x$ $x \in A(x, y) > x \in x$ $x \in A(x, y) > x \in x$ $x \in A(x, y$						
$\begin{array}{lll} \mbox{partial order relation R on A, denoted by (A,R).} \\ \mbox{Lecture 6 Slide 71} & \mbox{Because of the special paradigmatic role} \\ \mbox{played by the \le relation in the study of partial} \\ \mbox{order relations, the symbol \leqslant is often used to} \\ \mbox{refer to a general partial order, and the notation} \\ \mbox{$x \leqslant y$ is read "x$ is curly less than or equal to $y"$.} \\ \mbox{Hasse Diagram} & \mbox{Let \leqslant be a partial order on a set A. A Hasse} \\ \mbox{diagram of \leqslant satisfies the following condition} \\ \mbox{for all distinct x, y, $m \in A$:} \\ \mbox{If $x \leqslant y$ and $n o m \in A$ is such that $x \leqslant m \leqslant y$,} \\ \mbox{them x is placed below y with a line joining} \\ \mbox{them, else no line joins x and y.} \\ \mbox{x, y comparable} & \mbox{$(x \leqslant y) \lor (y \leqslant x)$} \\ \mbox{$x$, y comparable} & \mbox{$(x \leqslant y) \land \sim (y \leqslant x)$} \\ \mbox{$x$, y compatible} & \mbox{$\exists z \in A((x \leqslant z) \land (y \leqslant z))$} \\ \mbox{Tutorial 5 Qn 11} & \mbox{Any two comparable elements are compatible.} \\ \mbox{A ny two comparable elements are not always comparable.} \\ \mbox{$\exists g(\mathbb{Z}^+,): 2, 3$} \\ \mbox{Maximal Element} & \mbox{$\forall x \in A(c \leqslant x \Rightarrow c = x)$} \\ \mbox{Mainmal Element} & \mbox{$\forall x \in A(c \leqslant x \Rightarrow c = x)$} \\ \mbox{Maximal Element} & \mbox{$\forall x \in A(c \leqslant x)$} \\ \mbox{Largest Element} & \mbox{$\forall x \in A(c \leqslant x)$} \\ \mbox{Largest Element} & \mbox{G reatest Element} = \mbox{Maximum} \\ \mbox{Smallest Element} & \mbox{C hain}(C) \land (t \notin C \Rightarrow \sim \mbox{Chain}(C) \cup \{t\})$} \\ \mbox{Total Order Relation} & \mbox{C hain}(C) \land (t \notin C \Rightarrow \sim \mbox{Chain}(C) \cup \{t\})$} \\ \mbox{Total Order Relation} & \mbox{A inearization of \leqslant is a total order $\leqslant x$ on A:} \\ \mbox{$\forall x, y \in A(x \leqslant y \Rightarrow x \leqslant * y)$} \\ \mbox{Well-Ordered Set} & \mbox{$\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S(x \leqslant y)$)} \\ \mbox{lee Every non-empty subset of A has a smallest} \\ \mbo$	Partial Ordered Set (P	oset)				
Lecture 6 Slide 71 (Notation \preccurlyeq) Because of the special paradigmatic role played by the \preceq relation in the study of partial order relations, the symbol \preccurlyeq is often used to refer to a general partial order, and the notation $x \preccurlyeq y$ is read " x is curly less than or equal to y ". Hasse Diagram Let \preccurlyeq be a partial order on a set A . A Hasse diagram of \preccurlyeq satisfies the following condition for all distinct x , y , $m \in A$: If $x \preccurlyeq y$ and no $m \in A$ is such that $x \preccurlyeq m \preccurlyeq y$, then x is placed below y with a line joining them, else no line joins x and y . x,y comparable $(x \preccurlyeq y) \lor (y \preccurlyeq x)$ x,y compatible $\exists z \in A((x \preccurlyeq z) \land (y \preccurlyeq z))$ Tutorial 5 Qn 11 Any two comparable elements are compatible. Any two compatible elements are not always comparable. Eg (\mathbb{Z}^+ ,): 2,3 Maximal Element $\forall x \in A(c \preccurlyeq x \Rightarrow c = x)$ Minimal Element $\forall x \in A(x \preccurlyeq c)$ Smallest Element $\forall x \in A(x \preccurlyeq c)$ Smallest Element = Greatest Element = Maximum Smallest Element = Least Element = Minimum Chain $(C \subseteq A) \land (\forall x, y \in C(x \preccurlyeq y \lor y \preccurlyeq x))$ Maximal Chain C horizontal order and $\forall x, y \in A(xRy \lor yRx)$ Linearization Let \preccurlyeq be a partial order on a set A . A linearization of \preccurlyeq is a total order \preccurlyeq on A : $\forall x, y \in A(x \preccurlyeq y \Rightarrow x \preccurlyeq^* y)$ Well-Ordered Set $\forall x \in A(x \preccurlyeq x \in x \in x \in x)$ In a partial order on $x \in A(x \preccurlyeq x \in x \in x \in x)$ Well-Ordered Set $\forall x \in A(x \preccurlyeq x \in $	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '					
$ (\text{Notation} \preccurlyeq) \qquad \text{played by the } \leq \text{ relation in the study of partial order relations, the symbol } \leqslant \text{ is often used to refer to a general partial order, and the notation } x \leqslant y \text{ is read } \text{"} x \text{ is curly less than or equal to } y\text{"}. $ $ \text{Hasse Diagram} \qquad \text{Let} \leqslant \text{be a partial order on a set } A. \text{ A Hasse diagram of } \leqslant \text{ satisfies the following condition for all distinct } x, y, m \in A\text{:} \\ \text{If } x \leqslant y \text{ and no } m \in A \text{ is such that } x \leqslant m \leqslant y, \\ \text{then } x \text{ is placed below } y \text{ with a line joining them, else no line joins } x \text{ and } y. $ $ x, y \text{ comparable } \qquad (x \leqslant y) \lor (y \leqslant x) $ $ x, y \text{ comparable } \qquad (x \leqslant y) \land \sim (y \leqslant x) $ $ x, y \text{ compatible } \qquad \exists z \in A((x \leqslant z) \land (y \leqslant z)) $ $ \exists z \in A((x \leqslant z) \land (y \leqslant z)) $ $ \exists x \in A((x \leqslant z) \land (y \leqslant z)) $ $ \exists x \in A((x \leqslant z) \land (y \leqslant z)) $ $ \exists x \in A((x \leqslant z) \land (y \leqslant z)) $ $ \exists x \in A(x \leqslant z) $ $ \exists x \in A(x \leqslant z)$	partial order relation R on A , denoted by (A, R) .					
order relations, the symbol \leqslant is often used to refer to a general partial order, and the notation $x \leqslant y$ is read " x is curly less than or equal to y ". Hasse Diagram Let \leqslant be a partial order on a set A . A Hasse diagram of \leqslant satisfies the following condition for all distinct $x, y, m \in A$: If $x \leqslant y$ and no $m \in A$ is such that $x \leqslant m \leqslant y$, then x is placed below y with a line joining them, else no line joins x and y . x, y comparable x, y comparable x, y compatible Tutorial x of x	Lecture 6 Slide 71	Because of the special paradigmatic role				
refer to a general partial order, and the notation $x \le y$ is read " x is curly less than or equal to y ". Let \le be a partial order on a set A . A Hasse diagram of \le satisfies the following condition for all distinct $x, y, m \in A$: If $x \le y$ and no $m \in A$ is such that $x \le m \le y$, then x is placed below y with a line joining them, else no line joins x and y . x, y comparable $(x \le y) \lor (y \le x)$ x, y comparable $(x \le y) \land (y \le x)$ x, y compatible $(x \le y) \land (y \le x)$ Tutorial $x \ge y$ and $x \ge y$ and $y $	(Notation ≼)	played by the ≤ relation in the study of partial				
$x\leqslant y \text{ is read $"x$ is curly less than or equal to $y"$.}$ $\text{Hasse Diagram} \qquad \text{Let \leqslant be a partial order on a set A. A Hasse diagram of \leqslant satisfies the following condition for all distinct x, y, $m\in A$:} \\ \text{If $x\leqslant y$ and no $m\in A$ is such that $x\leqslant m\leqslant y$, then x is placed below y with a line joining them, else no line joins x and y.} \\ x,y \text{ comparable} \qquad (x\leqslant y)\lor (y\leqslant x) \\ x,y \text{ noncomparable} \qquad \sim (x\leqslant y)\land\sim(y\leqslant x) \\ x,y \text{ compatible} \qquad \exists z\in A((x\leqslant z)\land(y\leqslant z)) \\ \text{Tutorial 5 Qn 11} \qquad \text{Any two comparable elements are compatible.} \\ \text{Any two comparable elements are not always comparable.} \text{ Eg }(\mathbb{Z}^+,):2,3 \\ \text{Maximal Element} \qquad \forall x\in A(c\leqslant x\Rightarrow c=x) \\ \text{Minimal Element} \qquad \forall x\in A(x\leqslant c\Rightarrow c=x) \\ \text{Largest Element} \qquad \forall x\in A(x\leqslant c) \\ \text{Smallest Element} = \text{Greatest Element = Maximum} \\ \text{Smallest Element} = \text{Least Element = Minimum} \\ \text{Chain} \qquad (C\subseteq A)\land(\forall x,y\in C(x\leqslant y\lor y\leqslant x)) \\ \text{Maximal Chain} \qquad \text{Chain}(C)\land(t\notin C\Rightarrow Chain}(C)\cup\{t\}) \\ \text{Total Order Relation} \qquad \text{R is a partial order on a set A. A linearization of \leqslant is a total order $\leqslant * on A:} \\ \forall x,y\in A(x\leqslant y\Rightarrow x\leqslant^* y) \\ \text{Well-Ordered Set} \qquad \forall S\in \mathcal{P}(A), S\neq\emptyset\Rightarrow (\exists x\in S\forall y\in S(x\leqslant y)) \\ \text{le Every non-empty subset of A has a smallest}$		order relations, the symbol ≤ is often used to				
		refer to a general partial order, and the notation				
$\begin{array}{c} \text{diagram of} \leqslant \text{ satisfies the following condition} \\ \text{for all distinct } x, y, m \in A : \\ \text{If } x \leqslant y \text{ and no } m \in A \text{ is such that } x \leqslant m \leqslant y, \\ \text{then } x \text{ is placed below } y \text{ with a line joining} \\ \text{them, else no line joins } x \text{ and } y. \\ x, y \text{ comparable} & (x \leqslant y) \lor (y \leqslant x) \\ x, y \text{ noncomparable} & \neg (x \leqslant y) \land \neg (y \leqslant x) \\ x, y \text{ compatible} & \exists z \in A \big((x \leqslant z) \land (y \leqslant z) \big) \\ \text{Tutorial 5 Qn 11} & \text{Any two comparable elements are compatible.} \\ \text{Any two comparable elements are not always comparable. Eg} (\mathbb{Z}^+,) : 2, 3 \\ \text{Maximal Element} & \forall x \in A (c \leqslant x \Rightarrow c = x) \\ \text{Minimal Element} & \forall x \in A (c \leqslant x \Rightarrow c = x) \\ \text{Largest Element} & \forall x \in A (c \leqslant x) \\ \text{Smallest Element} & = \text{Greatest Element = Maximum} \\ \text{Smallest Element} & = \text{Least Element = Maximum} \\ \text{Smallest Element} & = \text{Least Element = Minimum} \\ \text{Chain} & (C \subseteq A) \land \big(\forall x, y \in C (x \leqslant y \lor y \leqslant x) \big) \\ \text{Maximal Chain} & \text{Chain}(C) \land \big(\notin C \Rightarrow \neg \text{Chain}(C) \cup \{t\} \big) \\ \text{Total Order Relation} & \text{R is a partial order and } \forall x, y \in A (xRy \lor yRx) \\ \text{Linearization} & \text{Let} \leqslant \text{be a partial order on a set } A. \land \\ \text{linearization of } \leqslant \text{is a total order } \leqslant \text{on } A : \\ \forall x, y \in A (x \leqslant y \Rightarrow x \leqslant^* y) \\ \text{Well-Ordered Set} & \forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow \big(\exists x \in S \forall y \in S (x \leqslant y) \big) \\ \text{le Every non-empty subset of } \land \text{has a smallest} \end{cases}$		$x \le y$ is read "x is curly less than or equal to y".				
for all distinct $x, y, m \in A$: If $x \leqslant y$ and no $m \in A$ is such that $x \leqslant m \leqslant y$, then x is placed below y with a line joining them, else no line joins x and y . x, y comparable	Hasse Diagram	Let \leq be a partial order on a set A . A Hasse				
$ \text{If } x \leqslant y \text{ and no } m \in A \text{ is such that } x \leqslant m \leqslant y, \\ \text{then } x \text{ is placed below } y \text{ with a line joining} \\ \text{them, else no line joins } x \text{ and } y. \\ x,y \text{ comparable} \qquad \qquad (x \leqslant y) \lor (y \leqslant x) \\ x,y \text{ noncomparable} \qquad \qquad \sim (x \leqslant y) \land \sim (y \leqslant x) \\ x,y \text{ compatible} \qquad \qquad \exists z \in A \Big((x \leqslant z) \land (y \leqslant z) \Big) \\ \text{Tutorial 5 Qn 11} \qquad \qquad \text{Any two comparable elements are compatible.} \\ \text{Any two comparable elements are not always} \\ \text{comparable. Eg} (\mathbb{Z}^+,): 2,3 \\ \text{Maximal Element} \qquad \forall x \in A (c \leqslant x \Rightarrow c = x) \\ \text{Minimal Element} \qquad \forall x \in A (x \leqslant c \Rightarrow c = x) \\ \text{Largest Element} \qquad \forall x \in A (x \leqslant c) \\ \text{Smallest Element} \qquad \forall x \in A (c \leqslant x) \\ \text{Largest Element} = \text{Greatest Element} = \text{Maximum} \\ \text{Smallest Element} = \text{Least Element} = \text{Minimum} \\ \text{Chain} \qquad \qquad (C \subseteq A) \land (\forall x,y \in C (x \leqslant y \lor y \leqslant x)) \\ \text{Maximal Chain} \qquad \text{Chain}(C) \land (t \notin C \Rightarrow \sim \text{Chain}(C) \cup \{t\}) \\ \text{Total Order Relation} \qquad \text{R is a partial order and } \forall x,y \in A (xRy \lor yRx) \\ \text{Linearization} \qquad \text{Let} \leqslant \text{be a partial order on a set } A. \land \\ \text{linearization of } \leqslant \text{is a total order } \leqslant \ast \text{ on } A: \\ \forall x,y \in A (x \leqslant y \Rightarrow x \leqslant^* y) \\ \text{Well-Ordered Set} \qquad \forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S (x \leqslant y)) \\ \text{le Every non-empty subset of } \land \text{ has a smallest} $		diagram of ≤ satisfies the following condition				
$ \begin{array}{c} \text{then x is placed below y with a line joining} \\ \text{them, else no line joins x and y.} \\ x,y \text{comparable} & (x \leqslant y) \lor (y \leqslant x) \\ x,y \text{noncomparable} & \neg (x \leqslant y) \land \neg (y \leqslant x) \\ x,y \text{compatible} & \exists z \in A \big((x \leqslant z) \land (y \leqslant z) \big) \\ \text{Tutorial 5 Qn 11} & \text{Any two comparable elements are compatible.} \\ \text{Any two compatible elements are not always} \\ \text{comparable. Eg} (\mathbb{Z}^+,):2,3 \\ \text{Maximal Element} & \forall x \in A(c \leqslant x \Rightarrow c = x) \\ \text{Minimal Element} & \forall x \in A(x \leqslant c \Rightarrow c = x) \\ \text{Largest Element} & \forall x \in A(x \leqslant c) \\ \text{Smallest Element} & \forall x \in A(c \leqslant x) \\ \text{Largest Element} & \exists x \in A(x \leqslant c) \\ \text{Smallest Element} & \exists x \in A$		for all distinct $x, y, m \in A$:				
them, else no line joins x and y . x,y comparable $(x \leqslant y) \lor (y \leqslant x)$ x,y noncomparable $\neg(x \leqslant y) \land \neg(y \leqslant x)$ x,y compatible $\exists z \in A\big((x \leqslant z) \land (y \leqslant z)\big)$ Tutorial 5 Qn 11 Any two comparable elements are compatible. Any two comparable elements are not always comparable. Eg $(\mathbb{Z}^+, \cdot): 2,3$ Maximal Element $\forall x \in A(c \leqslant x \Rightarrow c = x)$ Minimal Element $\forall x \in A(x \leqslant c \Rightarrow c = x)$ Largest Element $\forall x \in A(x \leqslant c)$ Smallest Element $\forall x \in A(c \leqslant x)$ Largest Element = Greatest Element = Maximum Smallest Element = Least Element = Minimum Chain $(C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x))$ Maximal Chain $(C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x))$ Total Order Relation $A = x \Rightarrow x$		If $x \le y$ and no $m \in A$ is such that $x \le m \le y$,				
$ \begin{array}{c} x,y \ comparable & (x \leqslant y) \lor (y \leqslant x) \\ x,y \ noncomparable & \neg (x \leqslant y) \land \neg (y \leqslant x) \\ x,y \ compatible & \exists z \in A \big((x \leqslant z) \land (y \leqslant z) \big) \\ \hline Tutorial 5 Qn 11 & Any two comparable elements are compatible. \\ Any two compatible elements are not always comparable. Eg \left(\mathbb{Z}^+, \right) : 2,3 \\ \hline Maximal Element & \forall x \in A (c \leqslant x \Rightarrow c = x) \\ Minimal Element & \forall x \in A (x \leqslant c \Rightarrow c = x) \\ Largest Element & \forall x \in A (x \leqslant c) \\ \hline Smallest Element & \forall x \in A (c \leqslant x) \\ \hline Largest Element = Greatest Element = Maximum \\ Smallest Element = Least Element = Minimum \\ \hline Chain & (C \subseteq A) \land \big(\forall x,y \in C(x \leqslant y \lor y \leqslant x) \big) \\ Maximal Chain & Chain(C) \land (t \notin C \Rightarrow \neg Chain(C) \cup \{t\}) \\ \hline Total Order Relation & R is a partial order and \forall x,y \in A (xRy \lor yRx) \\ \hline Linearization & Let \leqslant be a partial order on a \mathsf{set A. A \\ linearization \ of \leqslant is a total order \leqslant vo A : \\ \forall x,y \in A (x \leqslant y \Rightarrow x \leqslant^* y) \\ \hline Well-Ordered Set & \forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow \big(\exists x \in S \forall y \in S (x \leqslant y)\big) \\ le Every non-empty subset of A has a \mathsf{smallest} \\ \hline \end{tabular}$, , , , , ,				
$x,y \text{noncomparable} \qquad \qquad \sim (x \leqslant y) \land \sim (y \leqslant x)$ $x,y \text{compatible} \qquad \qquad \exists z \in A \big((x \leqslant z) \land (y \leqslant z) \big)$ $\text{Tutorial 5 Qn 11} \qquad \qquad \text{Any two comparable elements are compatible.}$ $\text{Any two compatible elements are not always}$ $\text{comparable. Eg} (\mathbb{Z}^+,): 2,3$ $\text{Maximal Element} \qquad \forall x \in A (c \leqslant x \Rightarrow c = x)$ $\text{Minimal Element} \qquad \forall x \in A (x \leqslant c \Rightarrow c = x)$ $\text{Largest Element} \qquad \forall x \in A (x \leqslant c)$ $\text{Smallest Element} \qquad \forall x \in A (c \leqslant x)$ $\text{Largest Element} = \text{Greatest Element} = \text{Maximum}$ $\text{Smallest Element} = \text{Least Element} = \text{Minimum}$ $\text{Chain} \qquad \qquad (C \subseteq A) \land (\forall x, y \in C (x \leqslant y \lor y \leqslant x))$ $\text{Maximal Chain} \qquad \text{Chain}(C) \land (t \notin C \Rightarrow \sim \text{Chain}(C) \cup \{t\})$ $\text{Total Order Relation} \qquad \text{R is a partial order and } \forall x, y \in A (xRy \lor yRx)$ $\text{Linearization} \qquad \text{Let} \leqslant \text{be a partial order on a set } A. \land \text{linearization of } \leqslant \text{is a total order } \leqslant \circ \circ \land A:$ $\forall x, y \in A (x \leqslant y \Rightarrow x \leqslant^* y)$ $\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S (x \leqslant y))$ $\text{le Every non-empty subset of } \land \land \text{has a smallest}$						
Tutorial 5 Qn 11 Any two comparable elements are compatible. Any two comparable elements are not always comparable. Eg (\mathbb{Z}^+ ,): 2,3 Maximal Element $\forall x \in A(c \leqslant x \Rightarrow c = x)$ Minimal Element $\forall x \in A(x \leqslant c \Rightarrow c = x)$ Largest Element $\forall x \in A(x \leqslant c)$ Smallest Element $\forall x \in A(c \leqslant x)$ Largest Element = Greatest Element = Maximum Smallest Element = Least Element = Minimum Chain $(C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x))$ Maximal Chain $Chain(C) \land (t \notin C \Rightarrow \sim Chain(C) \cup \{t\})$ Total Order Relation $Chain(C) \land (t \notin C \Rightarrow chain(C) \cup \{t\})$ Total Order Relation Let $cont = cont = cont$	x, y comparable	$(x \le y) \lor (y \le x)$				
Tutorial 5 Qn 11	x, y noncomparable	$\sim (x \le y) \land \sim (y \le x)$				
Any two compatible elements are not always comparable. Eg (\mathbb{Z}^+ ,): 2,3 Maximal Element $\forall x \in A(c \leqslant x \Rightarrow c = x)$ Minimal Element $\forall x \in A(x \leqslant c \Rightarrow c = x)$ Largest Element $\forall x \in A(x \leqslant c)$ Smallest Element $\forall x \in A(c \leqslant x)$ Largest Element = Greatest Element = Maximum Smallest Element = Least Element = Minimum Chain $(C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x))$ Maximal Chain $(C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x))$ Maximal Chain $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Total Order Relation $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Total Order Relation $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Uninearization $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Well-Ordered Set $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Well-Ordered Set $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Well-Ordered Set $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Well-Ordered Set $(C \subseteq A) \land (x \notin C \Rightarrow Chain(C) \cup \{t\})$ Be Every non-empty subset of A has a smallest	x, y compatible	$\exists z \in A \big((x \leqslant z) \land (y \leqslant z) \big)$				
	Tutorial 5 Qn 11	Any two comparable elements are compatible.				
$\begin{array}{lll} \text{Maximal Element} & \forall x \in A(c \leqslant x \Rightarrow c = x) \\ \text{Minimal Element} & \forall x \in A(x \leqslant c \Rightarrow c = x) \\ \text{Largest Element} & \forall x \in A(x \leqslant c) \\ \text{Smallest Element} & \forall x \in A(c \leqslant x) \\ \text{Smallest Element} & \forall x \in A(c \leqslant x) \\ \text{Largest Element} & \exists x \in A(c \leqslant x) \\ \text{Largest Element} & \exists x \in A(c \leqslant x) \\ \text{Largest Element} & \exists x \in A(c \leqslant x) \\ \text{Largest Element} & \exists x \in A(c \leqslant x) \\ \text{Largest Element} & \exists x \in A(c \leqslant x) \\ \text{Maximum} & \exists x \in A(c \leqslant x) \\ \text{Maximum} & \exists x \in A(c \leqslant x) \\ \text{Maximal Chain} & \exists x \in A(c \leqslant $						
$\begin{array}{lll} \text{Minimal Element} & \forall x \in A(x \leqslant c \Rightarrow c = x) \\ \text{Largest Element} & \forall x \in A(x \leqslant c) \\ \text{Smallest Element} & \forall x \in A(c \leqslant x) \\ \text{Largest Element} = \text{Greatest Element} = \text{Maximum} \\ \text{Smallest Element} = \text{Least Element} = \text{Minimum} \\ \text{Chain} & (C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x)) \\ \text{Maximal Chain} & \text{Chain}(C) \land (t \notin C \Rightarrow \sim \text{Chain}(C) \cup \{t\}) \\ \text{Total Order Relation} & R \text{ is a partial order and } \forall x, y \in A(xRy \lor yRx) \\ \text{Linearization} & \text{Let} \leqslant \text{be a partial order on a set } A. \land \\ \text{linearization of} \leqslant \text{is a total order} \leqslant * \text{ on } A: \\ \forall x, y \in A(x \leqslant y \Rightarrow x \leqslant^* y) \\ \text{Well-Ordered Set} & \forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S(x \leqslant y)) \\ \text{le Every non-empty subset of } \land \text{ has a smallest} \\ \end{array}$						
Largest Element $\forall x \in A(x \leqslant c)$ Smallest Element $\forall x \in A(c \leqslant x)$ Largest Element = Greatest Element = Maximum Smallest Element = Least Element = Minimum $(C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x))$ Maximal Chain $(C \subseteq A) \land (\forall x, y \in C(x \leqslant y \lor y \leqslant x))$ Total Order Relation $R \text{ is a partial order and } \forall x, y \in A(xRy \lor yRx)$ Linearization $Let \leqslant be \text{ a partial order on a set } A. \text{ A linearization of } \leqslant \text{ is a total order } \leqslant \ast \text{ on } A:$ $\forall x, y \in A(x \leqslant y \Rightarrow x \leqslant^* y)$ Well-Ordered Set $\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S(x \leqslant y))$ le Every non-empty subset of A has a smallest	Maximal Element	$\forall x \in A(c \leqslant x \Rightarrow c = x)$				
	Minimal Element	$\forall x \in A(x \leqslant c \Rightarrow c = x)$				
Largest Element = Greatest Element = Maximum Smallest Element = Least Element = Minimum		$\forall x \in A(x \leqslant c)$				
		` ,				
	0					
Maximal Chain $ \begin{array}{c} (C) \wedge (t \notin \mathcal{C} \Rightarrow \neg C \text{hain}(\mathcal{C}) \cup \{t\}) \\ \text{Total Order Relation} \\ \text{Linearization} \\ \text{Linearization} \\ \text{Let} \leqslant \text{be a partial order and } \forall x, y \in A(xRy \vee yRx) \\ \text{Linearization} \\ \text{Let} \leqslant \text{be a partial order on a set } A. \text{ A} \\ \text{linearization of } \leqslant \text{is a total order } \leqslant \ast \text{ on } A: \\ \forall x, y \in A(x \leqslant y \Rightarrow x \leqslant^\ast y) \\ \text{Well-Ordered Set} \\ \text{VS} \in \mathcal{P}(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S(x \leqslant y)) \\ \text{le Every non-empty subset of A has a smallest} \\ \end{array} $	Smallest Element = L	east Element = Minimum				
$ \begin{array}{c} \text{Total Order Relation} & R \text{ is a partial order and } \forall x,y \in A(xRy \lor yRx) \\ \text{Linearization} & \text{Let} \leqslant \text{be a partial order on a set } A. \text{ A} \\ \text{linearization of} \leqslant \text{is a total order } \leqslant \ast \text{ on } A: \\ \forall x,y \in A(x \leqslant y \Rightarrow x \leqslant^\ast y) \\ \text{Well-Ordered Set} & \forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow \left(\exists x \in S \forall y \in S(x \leqslant y)\right) \\ \text{le Every non-empty subset of A has a smallest} \\ \end{array} $	Chain	$(C \subseteq A) \land (\forall x, y \in C(x \leq y \lor y \leq x))$				
Linearization Let \leq be a partial order on a set A . A linearization of \leq is a total order \leq * on A : $\forall x, y \in A(x \leq y \Rightarrow x \leq^* y)$ Well-Ordered Set $\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow (\exists x \in S \forall y \in S(x \leq y))$ le Every non-empty subset of A has a smallest	Maximal Chain	$Chain(C) \land (t \notin C \Rightarrow \sim Chain(C) \cup \{t\})$				
	Total Order Relation	R is a partial order and $\forall x, y \in A(xRy \lor yRx)$				
$\forall x,y \in A(x \leqslant y \Rightarrow x \leqslant^* y)$ Well-Ordered Set $\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow \left(\exists x \in S \forall y \in S(x \leqslant y)\right)$ le Every non-empty subset of A has a smallest	Linearization	Let \leq be a partial order on a set A. A				
Well-Ordered Set $\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow \big(\exists x \in S \forall y \in S (x \leq y)\big)$ le Every non-empty subset of A has a smallest		linearization of \leq is a total order \leq * on A :				
le Every non-empty subset of A has a smallest						
	Well-Ordered Set	$\forall S \in \mathcal{P}(A), S \neq \emptyset \Rightarrow \big(\exists x \in S \forall y \in S(x \leqslant y)\big)$				
element. Eg (\mathbb{N}, \leq) is well-ordered. (\mathbb{Z}, \leq) is not.		· · · · · · · · · · · · · · · · · · ·				
3(2, 7, 10, 11, 21, 21, 21, 21, 21, 21, 21, 21, 21		element. Eg (\mathbb{N}, \leq) is well-ordered, (\mathbb{Z}, \leq) is not.				

Kahn's Algorithm to finding Linearization on a partial order set
Input: A finite set A and a partial order \leq on A.
1. Set $A_0 := A$ and $i := 0$.

- 2. Repeat until A_i = \emptyset 2.1. find a minimal element c_i of A_i wrt \leqslant
- 2.2. set $A_i + 1 = A_i \setminus \{c_i\}$ 2.3. set i := i + 1

Output: A linearization $\leq *$ of \leq defined by setting, for all indices i, j, c_i	
$\leq * c_i \Leftrightarrow i \leq j$.	

Proven (Relations)				
Tutorial 4 Qn 2	(i) R is symmetric, ie $\forall x, y \in A(xRy \Rightarrow yRx)$			
	$(ii) \forall x, y \in A(xRy \Leftrightarrow yRx)$			
	$(iii) R = R^{-1}$			
Tutorial 4 Qn 5	(i) R is an equivalence relation			
	$(ii) R^{-1} \circ R = R \circ R^{-1}$			
	(iii) $R \subseteq R \circ R$			
	(iv) $R \circ R \subseteq R$			
	$(v)R\circ R^{-1}=R$			
Tutorial 4 Qn 6	R is an equivalence relation $\Leftrightarrow R \circ R = R$			
Tutorial 4 Qn 9	$S = \{(m,n) \in \mathbb{Z}^2 : m^3 + n^3\}$			
	$S^{-1} = S$			
	$S \circ S = S$			
	$S \circ S^{-1} = S$			
Tutorial 4 Qn 10	$\forall a, b \in \mathbb{Z} \setminus \{0\} (a \sim b \Leftrightarrow ab > 0)$			
	~ is an equivalence relation.			
Lecture 6 Slide 27	Congruence module 3 defined as:			
(Example #12)	$\forall x, y \in z(xRy \Leftrightarrow 3 (x-y))$ is reflexive,			
	symmetric and transitive.			
Lecture 6 Slide 39	Relation Induced by a Partition is reflexive,			
(Theorem 8.3.1)	symmetric and transitive.			
Lecture 6 Slide 47	(i) $x \sim y$ equivalent $\forall x, y \in A$			
(Lemma Rel.1	(ii) [x] = [y]			
Equivalence classes)	1 () () ()			
Lecture 6 Slide 50	If A is a set and R is an equivalence relation on			
(Theorem 8.3.4)	A, then the distinct equivalence classes of R			
	form a partition of A; that is, the union of the			
	equivalence classes is A , and the intersection of			
	any two distinct classes is empty.			
Lecture 6 Slide 52	Congruence module <i>n relation</i> :			
	$\forall x, y \in \mathbb{Z} (xRy \Leftrightarrow n (x - y)) \text{ iff } a \equiv b \pmod{n}$			
Lecture 6 Slide 54	Congruence-mod n is an equivalence relation			
(Proposition)	on \mathbb{Z} for every $n \in \mathbb{Z}^+$			
Lecture 6 Slide 57	Equivalence classes for a partition.			
(Theorem Rel.2)	ie A/\sim is a partition of A .			

Sun	nmary	
Inf	formal description	ns of the terms $ \int_{f}^{b} \frac{7}{p} k $
1.	underlying set	A the set to be "partitioned"
2.	components	S subsets of A, mutually disjoint, together union to A $A = \{b, e, f, k, m, p\}$
3.	partition	The set of all components
4.	same-component relation	n ~ equivalence relation
1.	underlying set	A the set of all vertices
2.	relation	R the set of all arrows
3.	equivalence relation	if ignoring directions of arrows one can walk from x to y , then there is an arrow from x to y
4.	equivalence classes	[x] connected components
5.	quotient	A/∼ the set of all connected components
Lectur	e 6 Slide 69	is a partial order relation on $A \in \mathbb{Z}^+$
(Exam	ple #20)	·
Lectur	e 6 Slide 83 C	consider a partial order \leq on a set A. Any

smallest element is minimal.

Likewise, any largest element is maximal.