Dimensionality Reduction: Principal Component Analysis and SVD

CS771: Introduction to Machine Learning
Piyush Rai

Dimensionality Reduction

Can think of W as a linear mapping that transforms low-dim \boldsymbol{z}_n to high-dim \boldsymbol{x}_n

A broad class of techniques

Some dim-red techniques assume a nonlinear mapping function f such that $x_n = f(z_n)$

For example, f can be modeled by a kernel or a deep neural net

■ Example: Approximate each input $x_n \in \mathbb{R}^D$, n=1,2,...,N as a linear combination of $K < \min\{D,N\}$ "basis" vectors $w_1,w_2,...,w_K$, each also $\in \mathbb{R}^D$

Note: These "basis" vectors need not necessarily be linearly independent. But for some dim. red. techniques, e.g., classic principal component analysis (PCA), they are

$$\boldsymbol{x}_n \approx \sum_{k=1}^K z_{nk} \boldsymbol{w}_k = \boldsymbol{W} \boldsymbol{z}_n$$
 $\boldsymbol{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}] \text{ is } K \times 1$

- lacktriangle We have represented each $oldsymbol{x}_n \in \mathbb{R}^D$ by a K-dim vector $oldsymbol{z}_n$ (a new feat. rep)
- To store N such inputs $\{x_n\}_{n=1}^N$, we need to keep W and $\{z_n\}_{n=1}^N$
 - Originally we required $N \times D$ storage, now $N \times K + D \times K = (N + D) \times K$ storage
 - If $K \ll \min\{D, N\}$, this yields substantial storage saving, hence good compression

Dimensionality Reduction

Dim-red for face images

Each "basis" image is like a "template" that captures the common properties of face images in the dataset

K=4 "basis" face images

- In this example, $\mathbf{z}_n \in \mathbb{R}^K$ (K=4) is a low-dim feature rep. for $\mathbf{x}_n \in \mathbb{R}^D$
- Like 4 new features
- Essentially, each face image in the dataset now represented by just 4 real numbers ©
- Different dim-red algos differ in terms of how the basis vectors are defined/learned
 - lacktriangle .. And in general, how the function f in the mapping $oldsymbol{x}_n=f(oldsymbol{z}_n)$ is defined

Principal Component Analysis (PCA)

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as
 - Learning directions (co-ordinate axes) that capture maximum variance in data

 e_1 , e_2 : Standard co-ordinate axis ($\mathbf{x} = [x_1, x_2]$)

 w_1 , w_2 : New co-ordinate axis ($\mathbf{z} = [z_1, z_2]$)

To reduce dimension, can only keep the co-ordinates of those directions that have largest variances (e.g., in this example, if we want to reduce to one-dim, we can keep the co-ordinate z_1 of each point along w_1 and throw away z_2). We won't lose much information

PCA is essentially doing a change of axes in which we are representing the data

Each input will still have 2 co-ordinates, in the new co-ordinate system, equal to the distances measured from the new origin

Learning projection directions that result in smallest reconstruction error

$$\arg\min_{W,Z} \sum_{n=1}^{N} \|x_n - Wz_n\|^2 = \arg\min_{W,Z} \|X - ZW\|^2$$

PCA also assumes that the projection directions are orthonormal

Subject to orthonormality constraints: $\mathbf{w}_i^\mathsf{T} \mathbf{w}_j = 0$ for $i \neq j$ and $\|\mathbf{w}_i\|^2 = 1$

PCA: From the variance perspective

Solving PCA by Finding Max. Variance Directions

- lacktriangle Consider projecting an input $oldsymbol{x}_n \in \mathbb{R}^D$ along a direction $oldsymbol{w}_1 \in \mathbb{R}^D$
- lacktriangle Projection/embedding of $oldsymbol{x}_n$ (red points below) will be $oldsymbol{w}_1^{\mathsf{T}} oldsymbol{x}_n$ (green pts below)

Mean of projections of all inputs:

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{n} = \mathbf{w}_{1}^{\mathsf{T}} (\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}) = \mathbf{w}_{1}^{\mathsf{T}} \boldsymbol{\mu}_{1}$$

Variance of the projections:

$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{n} - \mathbf{w}_{1}^{\mathsf{T}} \boldsymbol{\mu})^{2} = \frac{1}{N} \sum_{n=1}^{N} \{\mathbf{w}_{1}^{\mathsf{T}} (\mathbf{x}_{n} - \boldsymbol{\mu})\}^{2} = \mathbf{w}_{1}^{\mathsf{T}} \mathbf{S} \mathbf{w}_{1}$$

lacktriangle Want $oldsymbol{w_1}$ such that variance $oldsymbol{w_1}^\mathsf{T} oldsymbol{S} oldsymbol{w_1}$ is maximized

$$\underset{\boldsymbol{w}_1}{\operatorname{argmax}} \ \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{S} \boldsymbol{w}_1 \qquad \text{s.t.} \quad \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{w}_1 = 1$$

Need this constraint otherwise the objective's max will be infinity

For already centered data, $\mu = \mathbf{0}$ and $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \, \mathbf{x}_n^\mathsf{T} = \frac{1}{N} \mathbf{X} \mathbf{X}^\mathsf{T}$

Max. Variance Direction

Variance along the direction $oldsymbol{w_1}$

- lacktriangle Our objective function was $\underset{w_1}{\operatorname{argmax}} \ w_1^\mathsf{T} \mathcal{S} w_1$ s.t. $w_1^\mathsf{T} w_1 = 1$
- Can construct a Lagrangian for this problem

$$\underset{\boldsymbol{w}_1}{\operatorname{argmax}} \; \boldsymbol{w}_1^{\top} \boldsymbol{S} \boldsymbol{w}_1 + \lambda_1 (1 \text{-} \boldsymbol{w}_1^{\top} \boldsymbol{w}_1)$$

lacktriangle Taking derivative w.r.t. $oldsymbol{w}_1$ and setting to zero gives $oldsymbol{S}oldsymbol{w}_1=\lambda_1oldsymbol{w}_1$

- Note: In general, \boldsymbol{S} will have D eigvecs
- lacktriangle Therefore w_1 is an eigenvector of the cov matrix s with eigenvalue λ_1
- Claim: w_1 is the eigenvector of s with largest eigenvalue λ_1 . Note that

$$\boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{S} \boldsymbol{w}_1 = \lambda_1 \boldsymbol{w}_1^{\mathsf{T}} \boldsymbol{w}_1 = \lambda_1$$

- Thus variance $\mathbf{w}_1^\mathsf{T} \mathbf{S} \mathbf{w}_1$ will be max. if λ_1 is the largest eigenvalue (and \mathbf{w}_1 is the corresponding top eigenvector; also known as the first Principal Component)
- Other large variance directions can also be found likewise (with each being orthogonal to all others) using the eigendecomposition of cov matrix S (this is PCA) CS771: Intro to ML

Note: Total variance of the data is equal to the sum of eigenvalues of S, i.e., $\sum_{d=1}^{D} \lambda_d$

PCA would keep the top

K < D such directions

of largest variances

PCA: From the reconstruction perspective

Alternate Basis and Reconstruction

■ Representing a data point $x_n = [x_{n1}, x_{n2}, ..., x_{nD}]^{\top}$ in the standard orthonormal basis $\{e_1, e_2, ..., e_D\}$ $x_n = \sum_{d=1}^{D} x_{nd} e_d$ $x_n = \sum_{d=1}^{D} x_{nd} e_d$ in the standard orthonormal probability in the standar

lacktriangle Let's represent the same data point in a new orthonormal basis $\{w_1,w_2,\ldots,w_D\}$

 z_{nd} is the projection of x_n along the direction x_n since $z_{nd} = w_d^\mathsf{T} x_n = x_n^\mathsf{T} w_d$ (verify) $z_n = \sum_{d=1}^D z_{nd} w_d$ $z_n = [z_{n1}, z_{n2}, ..., z_{nD}]$ The denotes the co-ordinates of x_n in the new basis

lacktriangle Ignoring directions along which projection z_{nd} is small, we can approximate x_n as

$$\boldsymbol{x}_n \approx \widehat{\boldsymbol{x}}_n = \sum_{d=1}^K z_{nd} \boldsymbol{w}_d = \sum_{d=1}^K (\boldsymbol{x}_n^\mathsf{T} \boldsymbol{w}_d) \boldsymbol{w}_d = \sum_{d=1}^K (\boldsymbol{w}_d \boldsymbol{w}_d^\mathsf{T}) \boldsymbol{x}_n^\mathsf{T}$$
Note that $\|\boldsymbol{x}_n - \sum_{d=1}^K (\boldsymbol{w}_d \boldsymbol{w}_d^\mathsf{T}) \boldsymbol{x}_n\|^2$ is the reconstruction error on \boldsymbol{x}_n . Would like it to minimize w.r.t. $\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_K$

lacktriangle Now $oldsymbol{x}_n$ is represented by K < D dim. rep. $oldsymbol{z}_n = [z_{n1}, z_{n2}, ..., z_{nK}]$ and (verify)

Also, $\mathbf{x}_n \approx \mathbf{W}_K \mathbf{z}_n$ $\mathbf{z}_n \approx \mathbf{W}_K^{\mathsf{T}} \mathbf{x}_n^{\mathsf{T}}$ $\mathbf{W}_K = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_K]$ is the "projection matrix" of size $D \times K$

CS771: Intro to ML

Minimizing Reconstruction Error

lacktriangle We plan to use only K directions $[w_1, w_2, ..., w_K]$ so would like them to be such that the total reconstruction error is minimized $\begin{tabular}{c} \hline \end{tabular}$ Constant; doesn't

$$\mathcal{L}(\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_K) = \sum_{n=1}^N ||\boldsymbol{x}_n - \widehat{\boldsymbol{x}}_n||^2 = \sum_{n=1}^N \left||\boldsymbol{x}_n - \sum_{d=1}^K (\boldsymbol{w}_d \boldsymbol{w}_d^\mathsf{T}) \boldsymbol{x}_n\right||^2 = C - \sum_{d=1}^K \boldsymbol{w}_d^\mathsf{T} \mathbf{S} \boldsymbol{w}_d \text{ (verify)}$$
Variance along \boldsymbol{w}_d

lacktriangle Each optimal $oldsymbol{w}_d$ can be found by solving

$$\underset{\boldsymbol{w}_d}{\operatorname{argmin}} \, \mathcal{L}(\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_K) = \underset{\boldsymbol{w}_d}{\operatorname{argmax}} \; \boldsymbol{w}_d^{\mathsf{T}} \mathbf{S} \boldsymbol{w}_d$$

- Thus minimizing the reconstruction error is equivalent to maximizing variance
- lacktriangle The K directions can be found by solving the eigendecomposition of ${f S}$
- Note: $\sum_{d=1}^{K} \mathbf{w}_d^\mathsf{T} \mathbf{S} \mathbf{w}_d = \operatorname{trace}(\mathbf{W}_K^\mathsf{T} \mathbf{S} \mathbf{W}_K)$
 - Thus $\operatorname{argmax}_{W_K} \operatorname{trace}(W_K^\mathsf{T} \mathbf{S} W_K)$ s.t. orthonormality on columns of W_k is the same as solving the eigendec. of S (recall that Spectral Clustering also required solving this)

Principal Component Analysis

- lacktriangle Center the data (subtract the mean $m{\mu} = \frac{1}{N} \sum_{n=1}^N m{x}_n$ from each data point)
- lacktriangle Compute the D imes D covariance matrix lacktriangle using the centered data matrix lacktriangle as

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X} \qquad \text{(Assuming } \mathbf{X} \text{ is arranged as } N \times D\text{)}$$

- Do an eigendecomposition of the covariance matrix **S** (many methods exist)
- Take top K < D leading eigvectors $\{w_1, w_2, \dots, w_K\}$ with eigvalues $\{\lambda_1, \lambda_2, \dots, \lambda_K\}$
- \blacksquare The K-dimensional projection/embedding of each input is

$$\mathbf{z}_n \approx \mathbf{W}_K^{\mathsf{T}} \mathbf{x}_n$$
 $\mathbf{W}_K = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_K]$ is the "projection matrix" of size $D \times K$

Note: Can decide how many eigvecs to use based on how much variance we want to campure (recall that each λ_k gives the variance in the k^{th} direction (and their sum is the total variance)

Singular Value Decomposition (SVD)

■ Any matrix **X** of size $N \times D$ can be represented as the following decomposition

- $\mathbf{U} = [u_1, u_2, ..., u_N]$ is $N \times N$ matrix of left singular vectors, each $u_n \in \mathbb{R}^N$ \mathbf{U} is also orthonormal
- $\mathbf{V} = [v_1, v_2, ..., v_N]$ is $D \times D$ matrix of right singular vectors, each $v_d \in \mathbb{R}^D$ \mathbf{V} is also orthonormal
- $\blacksquare \Lambda$ is $N \times D$ with only $\min(N, D)$ diagonal entries singular values
- Note: If **X** is symmetric then it is known as eigenvalue decomposition ($\mathbf{U} = \mathbf{V}$)

Low-Rank Approximation via SVD

■ If we just use the top $K < \min\{N, D\}$ singular values, we get a rank-K SVD

- lacktriangle Above SVD approx. can be shown to minimize the reconstruction error $\| m{X} \widehat{m{X}} \|$
 - Fact: SVD gives the best rank-*K* approximation of a matrix
- PCA is done by doing SVD on the covariance matrix **S** (left and right singular vectors are the same and become eigenvectors, singular values become eigenvalues)

Dim-Red as Matrix Factorization

lacktriangleright If we don't care about the orthonormality constraints, then dim-red can also be achieved by solving a matrix factorization problem on the data matrix f X

$$\{\widehat{\mathbf{Z}}, \widehat{\mathbf{W}}\} = \operatorname{argmin}_{\mathbf{Z}, \mathbf{W}} \|\mathbf{X} - \mathbf{Z}\mathbf{W}\|^2$$

If $K < \min\{D, N\}$, such a factorization gives a low-rank approximation of the data matrix X

- Can solve such problems using ALT-OPT
- Can impose various constraints on \mathbf{Z} and \mathbf{W} (e.g., sparsity, non-negativity, etc)_{CS771: Intro to N}

Joint Dim-Red

■ Often we have two or more data sources with 1-1 correspondence between inputs

- Sometimes, we may want to perform a common dim-red for both sources to get a common feature rep which captures properties of both sources (or fused their info)
- This can be done by doing a joint dim-red of both sources. Many methods exists, e.g.,
 - Canonical Correlational Analysis (CCA): looks at cross-covar rather than variances
 - Joint Matrix Factorization

$$\operatorname{argmin}_{\mathbf{Z},\mathbf{W}_1,\mathbf{W}_2} \|\mathbf{X}_1 - \mathbf{Z}\mathbf{W}_1\|^2 + \|\mathbf{X}_2 - \mathbf{Z}\mathbf{W}_2\|^2$$

Coming up next

- Some methods for computing eigenvectors
- Supervised dimensionality reduction
- Nonlinear dimensionality reduction
 - Kernel PCA
 - Manifold Learning

