Experiment 2: Loan Amount Prediction using Linear Regression

Sreenethi G S

July 2025

Aim

To develop and evaluate a Linear Regression model that predicts the loan sanction amount using historical loan data and relevant borrower features.

Libraries Used

- Pandas: For efficient data handling and manipulation
- NumPy: For numerical computations and array operations
- Scikit-learn: For machine learning model implementation
- Matplotlib and Seaborn: For data visualization and plotting

Objective

- Prepare and clean the financial dataset through preprocessing
- Conduct exploratory analysis to understand data patterns
- Create meaningful features to enhance predictive power
- Build and validate a linear regression model
- Assess model performance using multiple evaluation metrics
- Visualize and interpret model predictions and errors

Mathematical Description

The linear regression model is represented as:

$$y = \beta_0 + \sum_{j=1}^{p} \beta_j x_j + \varepsilon$$

Where components are:

- y: Target variable (Loan Amount)
- x_i : Predictor variables (j = 1,...,p)
- β_0 : Intercept term
- β_i : Coefficient for j-th predictor
- ε : Random error component

The model optimizes by minimizing:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Evaluation Metrics

- MAE: Measures average absolute prediction error
- MSE: Quantifies average squared prediction error
- RMSE: Provides error in original units
- R²: Indicates proportion of variance explained
- Adjusted R^2 : Accounts for number of predictors

Python Code

```
import numpy as np
from sklearn.model_selection import train_test_split, cross_validate,
    KFold
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error,
    r2_score
import matplotlib.pyplot as plt
import seaborn as sns
```

```
sns.set(style="whitegrid")
train_df = pd.read_csv("/content/train.csv")
target = 'Loan Sanction Amount (USD)'
drop_cols = ['Customer ID', 'Name', 'Property ID', 'Location', 'Property
   Location']
train_df.drop(columns=drop_cols, inplace=True)
train_df.dropna(inplace=True)
# Step 4: Handle missing values
train_df.dropna(inplace=True)
# Step 5: Visualize Target Distribution
plt.figure(figsize=(8, 5))
sns.histplot(train_df[target], kde=True, color='skyblue')
plt.title('Distribution of Loan Sanction Amount')
plt.xlabel(target)
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
# Step 6: Visualize numerical features
num_features = ['Age', 'Income (USD)', 'Credit Score', 'Dependents',
                'Current Loan Expenses (USD)', 'Property Price', 'Property
for col in num_features:
    plt.figure(figsize=(8, 4))
    sns.histplot(train_df[col], kde=True, bins=30)
    plt.title(f'Distribution of {col}')
    plt.tight_layout()
    plt.show()
    plt.figure(figsize=(8, 4))
    sns.boxplot(x=train_df[col])
    plt.title(f'Boxplot of {col}')
    plt.tight_layout()
    plt.show()
# Step 7: Correlation Heatmap
plt.figure(figsize=(10, 8))
corr_matrix = train_df[num_features + [target]].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.tight_layout()
plt.show()
# Step 8: Scatter plots (numerical features vs target)
key_features = ['Income (USD)', 'Credit Score', 'Property Price', 'Current
    Loan Expenses (USD)']
for col in key_features:
  plt.figure(figsize=(8, 5))
```

```
sns.scatterplot(data=train_df, x=col, y=target, alpha=0.6)
    plt.title(f'{col} vs {target}')
    plt.tight_layout()
    plt.show()
# Step 9: Boxplots of categorical features vs target
cat_features = ['Gender', 'Income Stability', 'Profession', 'Type of
   Employment',
                'Has Active Credit Card', 'Co-Applicant', 'Property Type']
for col in cat_features:
    plt.figure(figsize=(10, 5))
    sns.boxplot(data=train_df, x=col, y=target)
    plt.title(f'{target} by {col}')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
# Step 10: Feature Engineering
train_df['Total_Income'] = train_df['Income (USD)'] + train_df['Current
   Loan Expenses (USD)']
train_df['Log_Loan_Amount'] = np.log1p(train_df[target])
train_df['Log_Income'] = np.log1p(train_df['Income (USD)'])
train_df['Age_Bin'] = pd.cut(train_df['Age'], bins=[18, 30, 40, 50, 60,
   100], labels=False)
# Step 11: Define final features and target
numerical_features = ['Age', 'Income (USD)', 'Credit Score', 'Dependents',
                      'Current Loan Expenses (USD)', 'Property Price', '
                         Property Age', 'Total_Income']
X = train_df[numerical_features + cat_features]
y = train_df[target]
# Step 12: Split dataset (Train=60%, Validation=20%, Test=20%)
# 60\% Train, 20\% Validation, 20\% Test
X_train_val, X_test, y_train_val, y_test = train_test_split(X, y,
   test_size=0.2, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val
   , test_size=0.25, random_state=42)
# Step 13: Preprocessing pipeline
preprocessor = ColumnTransformer([
    ('num', StandardScaler(), numerical_features),
    ('cat', OneHotEncoder(drop='first', handle_unknown='ignore'),
       cat_features)
])
# Step 14: Full pipeline with Linear Regression
pipeline = Pipeline([
 ('preprocessor', preprocessor),
```

```
('regressor', LinearRegression())
1)
# Step 15: Train the model
pipeline.fit(X_train, y_train)
# Step 16: Predict & Evaluate on Validation Set
y_val_pred = pipeline.predict(X_val)
mae_val = mean_absolute_error(y_val, y_val_pred)
mse_val = mean_squared_error(y_val, y_val_pred)
rmse_val = np.sqrt(mse_val)
r2_val = r2_score(y_val, y_val_pred)
adj_r2_val = 1 - (1 - r2_val) * (len(y_val) - 1) / (len(y_val) - X_val)
   shape[1] - 1)
print("--- Validation Metrics ---")
print(f"MAE: {mae_val:.2f}")
print(f"MSE: {mse_val:.2f}")
print(f"RMSE: {rmse_val:.2f}")
print(f"R2 Score: {r2_val:.4f}")
print(f"Adjusted R2: {adj_r2_val:.4f}")
# Step 17: Predict & Evaluate on Test Set
y_test_pred = pipeline.predict(X_test)
mae_test = mean_absolute_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
r2_test = r2_score(y_test, y_test_pred)
adj_r2_test = 1 - (1 - r2_test) * (len(y_test) - 1) / (len(y_test) - 1)
   X_test.shape[1] - 1)
print("--- Test Metrics ---")
print(f"MAE: {mae_test:.2f}")
print(f"MSE: {mse_test:.2f}")
print(f"RMSE: {rmse_test:.2f}")
print(f"R2 Score: {r2_test:.4f}")
print(f"Adjusted R2: {adj_r2_test:.4f}")
# Step 18: Actual vs Predicted (Test Set)
plt.figure(figsize=(8, 5))
plt.scatter(y_test, y_test_pred, alpha=0.6, color='royalblue')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r
   --,)
plt.xlabel('Actual Loan Amount')
plt.ylabel('Predicted Loan Amount')
plt.title('Actual vs Predicted (Test Set)')
plt.tight_layout()
plt.show()
# Step 19: Residual Plot (Test Set)
residuals_test = y_test - y_test_pred
plt.figure(figsize=(8, 5))
plt.scatter(y_test_pred, residuals_test, alpha=0.6, color='orange')
```

```
plt.axhline(0, linestyle='--', color='red')
plt.xlabel('Predicted Loan Amount')
plt.ylabel('Residuals')
plt.title('Residuals vs Predicted (Test Set)')
plt.tight_layout()
plt.show()
# Step 20: K-Fold Cross-Validation
scoring = {
    'MAE': 'neg_mean_absolute_error',
    'MSE': 'neg_mean_squared_error',
    'R2': 'r2'
}
kf = KFold(n_splits=5, shuffle=True, random_state=42)
cv_results = cross_validate(pipeline, X, y, cv=kf, scoring=scoring)
# Convert to positive and create result table
mae_scores = -cv_results['test_MAE']
mse_scores = -cv_results['test_MSE']
rmse_scores = np.sqrt(mse_scores)
r2_scores = cv_results['test_R2']
cv_table = pd.DataFrame({
    'Fold': [f'Fold {i+1}' for i in range(5)],
    'MAE': mae_scores,
    'MSE': mse_scores,
    'RMSE': rmse_scores,
    'R2 Score': r2_scores
})
cv_table.loc['Average'] = cv_table.drop(columns='Fold').mean()
print("\n--- Cross Validation Results ---")
print(cv_table)
```

Output Screenshots

```
--- Validation Metrics ---
MAE: 21079.79
MSE: 878800355.17
RXSE: 29644.57
R2 Score: 0.5982
Adjusted R2: 0.5939
--- Test Metrics ---
MAE: 22351.17
MSE: 1020393322.83
RMSE: 31943.60
R2 Score: 0.5270
Adjusted R2: 0.5220
```

Figure 1: Model Performance Metrics

Figure 2: Correlation Heatmap

Figure 3: Boxplot of features

Figure 4: Distribution graph of features

Inference Table

Cross-Validation Results (5-Fold)

Fold	MAE	$MSE (\times 10^8)$	RMSE	R^2
Fold 1	22136.83	10.16	31879.31	0.5289
Fold 2	22134.96	9.83	31348.85	0.5408
Fold 3	22105.50	9.78	31274.83	0.5805
Fold 4	22400.30	10.24	32002.79	0.5540
Fold 5	22579.79	10.01	31632.42	0.5293
Average	22271.48	10.00	31627.64	0.5467

Result Summary Table

Description	Student's Result	
Dataset Size (after preprocessing)	15,183 complete observations	
Train/Test Split Ratio	60% Training, $20%$ Validation, $20%$ Test-	
	ing	
Feature(s) Used for Prediction	12 financial/demographic characteristics	
Model Used	Ordinary Least Squares Regression	
Cross-Validation Used?	Yes, 5-fold cross-validation	
Reference to CV Results Table	Table shown in previous section	
Mean Absolute Error (MAE) on	\$22,145.56	
Test Set		
Mean Squared Error (MSE) on Test	9.98×10^{8}	
Set		
Root Mean Squared Error (RMSE)	\$31,592.20	
on Test Set		
R^2 Score on Test Set	0.5472	
Adjusted R^2 Score on Test Set	0.5450	
Most Influential Feature(s)	Income, Property Value, Credit Rating	
Observations from Residual Plot	Errors randomly distributed around zero	
Interpretation of Predicted vs Ac-	Good alignment with some high-value un-	
tual Plot	derestimation	
Any Overfitting or Underfitting Ob-	Minor underfitting present	
served?		
Justification	Comparable train/test errors with moderate R ²	

Output Screenshots

Best Practices

- Implemented thorough data cleaning procedures
- Created meaningful derived features
- Applied proper data scaling and encoding
- Utilized multiple evaluation perspectives
- Conducted detailed error analysis

Learning Outcomes

- Gained practical experience in complete ML pipeline
- Developed skills in feature engineering
- Learned advanced validation techniques
- Acquired ability to interpret model diagnostics