Iniciação Científica

Programa de Educação Tutorial - PET Efeitos de Propagação e Cálculo de SINR

Emanuel Valério Pereira
Orientador: Prof. Dr. Francisco Rafael Marques Lima
emanuelvalerio@alu.ufc.br

Universidade Federal do Ceará

30 de maio de 2022

Objetivos

O objetivo desta atividade é a construção de um programa em Matlab destinado ao estudo de técnicas de alocação de recursos de rádio em sistemas de comunicação sem fio com antenas distribuídas.

Posicionamento das estações rádio base

I Seguindo as posições das ERBs sugeridas no enunciado, e posteriormente delimitando a área de cobertura de cada ERB.

Posicionamento das estações rádio base

- I Seguindo as posições das ERBs sugeridas no enunciado, e posteriormente delimitando a área de cobertura de cada ERB.
- **2** Posicionamento ERBs = (r,θ) :

Posicionamento das estações rádio base

- I Seguindo as posições das ERBs sugeridas no enunciado, e posteriormente delimitando a área de cobertura de cada ERB.
- 2 Posicionamento ERBs = (r,θ) :

Definition

$$ERB_1 = (0,0)$$

$$ERB_2 = (500, \frac{2\pi}{3})$$

$$ERB_3 = (500, 0)$$

$$ERB_4 = (500, \frac{-2\pi}{3})$$

Nó central e Áreas de cobertura

O nó central na qual conecta todas as ERBs através de um enlace rápido que perimite a transferência de dados e informação de controle do/para o nó central, está posicionado também em (0,0).

Nó central e Áreas de cobertura

- 1 O nó central na qual conecta todas as ERBs através de um enlace rápido que perimite a transferência de dados e informação de controle do/para o nó central, está posicionado também em (0,0).
- 2 Para uma melhor análise das posições utilizou-se o plano polar para as plotagens.

Nó central e Áreas de cobertura

- 1 O nó central na qual conecta todas as ERBs através de um enlace rápido que perimite a transferência de dados e informação de controle do/para o nó central, está posicionado também em (0,0).
- 2 Para uma melhor análise das posições utilizou-se o plano polar para as plotagens.
- 3 Portanto, para cada área de cobertura assim como para cada posicionamento de ERBs e TMs é necessário centra-los nos raios e ângulos definidos.

Nó central e Áreas de cobertura

- 1 O nó central na qual conecta todas as ERBs através de um enlace rápido que perimite a transferência de dados e informação de controle do/para o nó central, está posicionado também em (0,0).
- 2 Para uma melhor análise das posições utilizou-se o plano polar para as plotagens.
- 3 Portanto, para cada área de cobertura assim como para cada posicionamento de ERBs e TMs é necessário centra-los nos raios e ângulos definidos.
- Sabe-se que a coordenada (r,θ) corresponde a um único ponto no plano polar, então, para delimitar-se uma circunferência no plano polar é necessário uma sequência contínua de pontos. Álem disso, cada estação rádio base cobre uma área de 500m.

Posições ERBs

Posição nó central

Posições áreas de cobertura

☐ 3. Posicionamento dos Terminais Móveis

Posicionamento Terminais Móveis

Como cada ERB cobre um raio de 500m em torno de sua posição, qualquer terminal móvel nessa áreas pode se comunicar com essa ERB, diante disso a posição dos terminais móveis não podem ser controladas. De tal forma que na simulação a posição dos TMs devem ser modeladas por variáveis aleatórias uniformemente distribuídas dentro da área de cobertura de cada ERB.

Posicionamento Terminais Móveis

- Como cada ERB cobre um raio de 500m em torno de sua posição, qualquer terminal móvel nessa áreas pode se comunicar com essa ERB, diante disso a posição dos terminais móveis não podem ser controladas. De tal forma que na simulação a posição dos TMs devem ser modeladas por variáveis aleatórias uniformemente distribuídas dentro da área de cobertura de cada ERB.
- 2 A posição aleatória dos TMs se dá pela geração aleatória uniformemente distribuída de um raio r e de um ângulo θ .

Posicionamento Terminais Móveis

- Como cada ERB cobre um raio de 500m em torno de sua posição, qualquer terminal móvel nessa áreas pode se comunicar com essa ERB, diante disso a posição dos terminais móveis não podem ser controladas. De tal forma que na simulação a posição dos TMs devem ser modeladas por variáveis aleatórias uniformemente distribuídas dentro da área de cobertura de cada ERB.
- 2 A posição aleatória dos TMs se dá pela geração aleatória uniformemente distribuída de um raio r e de um ângulo θ .
- 3 Para a geração do ângulo θ utilizou-se a função **rand()** que gera valores aleatórios com distribuição uniforme. Para a geração do raio uniformemente distribuído em uma circunferência observou-se uma problemática, uma vez que a probabilidade de um ponto estar a uma distância r do centro não depender exclusivamente de r. Uma análise simples é pelo fato da região de raio entre 1 e 10 tem a mesma probabilidade de uma região entre 490 e 500, entretanto a área dessas regiões são bastante diferentes, o que não reflete de fato uma distribuição desejada.

☐ 3. Posicionamento dos Terminais Móveis

Posicionamento Terminais Móveis

I A probabilidade de se colocar um certo ponto a uma distância r deve crescer com r. Uma vez que o tamanho das circunferências cresce linearmente com o raio $(=2\pi r)$, é de se esperar que essa probabilidade cresça também linearmente com r.

Posicionamento Terminais Móveis

- 1 A probabilidade de se colocar um certo ponto a uma distância r deve crescer com r. Uma vez que o tamanho das circunferências cresce linearmente com o raio $(=2\pi r)$, é de se esperar que essa probabilidade cresça também linearmente com r.
- 2 Uma maneira de gerar os valores de fato com distribuição uniforme é fazendo com que a probabilidade de um TM ser gerado em determinado ponto dependa da área relacionada ao raio gerado, com isso, desejamos que a probabilidade varie com o aumento da área.

☐3. Posicionamento dos Terminais Móveis

Posicionamento Terminais Móveis

☐3. Posicionamento dos Terminais Móveis

Posicionamento Terminais Móveis

■ Diante disso, modelando o valor aleatório de distribuição uniforme gerado pela função rand() tem-se que :

Posicionamento Terminais Móveis

Diante disso, modelando o valor aleatório de distribuição uniforme gerado pela função rand() tem-se que :

Definition

$$rand() = rac{r^2}{R^2}$$
 $\sqrt{rand()} = \sqrt{rac{r^2}{R^2}} = rac{r}{R}$
 $r = R\sqrt{rand()}$

3. Posicionamento dos Terminais Móveis

Posicionamento Terminais Móveis

Posicionamento Terminais Móveis

Posicionamento Terminais Móveis

Por fim, com todas as correções realizadas, foram gerados um Terminal Móvel em cada região de cobertura de cada estação rádio base conforme é apresentado na Figura abaixo.

4. Cálculo dos Ganhos

Perda de Percurso

1 A comunicação rádio-móvel é afetada por diferentes fenômenos de propagação. Os principais fenômenos modelados são a perda de percurso média em função da distância em km entre o TM e ERB, o sombreamento devido a obstáculos e o desvanecimento rápido devido a interferência construtivas e destrutivas de réplicas do sinal transmitido.

- 1 A comunicação rádio-móvel é afetada por diferentes fenômenos de propagação. Os principais fenômenos modelados são a perda de percurso média em função da distância em km entre o TM e ERB, o sombreamento devido a obstáculos e o desvanecimento rápido devido a interferência construtivas e destrutivas de réplicas do sinal transmitido.
- 2 Para cada tipo de ganho, foi criado uma função em Matlab.

- 1 A comunicação rádio-móvel é afetada por diferentes fenômenos de propagação. Os principais fenômenos modelados são a perda de percurso média em função da distância em km entre o TM e ERB, o sombreamento devido a obstáculos e o desvanecimento rápido devido a interferência construtivas e destrutivas de réplicas do sinal transmitido.
- 2 Para cada tipo de ganho, foi criado uma função em Matlab.
- 3 A perda de percurso média pode ser calculada como

- 1 A comunicação rádio-móvel é afetada por diferentes fenômenos de propagação. Os principais fenômenos modelados são a perda de percurso média em função da distância em km entre o TM e ERB, o sombreamento devido a obstáculos e o desvanecimento rápido devido a interferência construtivas e destrutivas de réplicas do sinal transmitido.
- 2 Para cada tipo de ganho, foi criado uma função em Matlab.
- 3 A perda de percurso média pode ser calculada como

Definition

$$P_{L_{i,j}} = 128.1 + 36.7 log 10(d_{i,j})[dB]$$

- 1 A comunicação rádio-móvel é afetada por diferentes fenômenos de propagação. Os principais fenômenos modelados são a perda de percurso média em função da distância em km entre o TM e ERB, o sombreamento devido a obstáculos e o desvanecimento rápido devido a interferência construtivas e destrutivas de réplicas do sinal transmitido.
- 2 Para cada tipo de ganho, foi criado uma função em Matlab.
- 3 A perda de percurso média pode ser calculada como

Definition

$$P_{L_{i,j}} = 128.1 + 36.7 log 10(d_{i,j})[dB]$$

4 Sabendo que a perda está em dB e que o ganho é o inverso da perda em escala linear, utilizou-se as funções disponibilizadas na atividade computacional, convertendo valores em dB para escala linear e vice-versa.

4. Cálculo dos Ganhos

Sombreamento e desvanecimento rápido

O sombreamento $\chi_{i,j}$ que afeta o enlace entre a ERB_i com o TM_j é normalmente modelado utilizando uma variável aleatória com distribuição log-normal (normal em dB). Portanto utilizou-se a função randn() que por padrão possui média 0 e desvio padrão 1, como o desvio padrão solicitado foi de $\sigma_\chi = 8dB$, manteve-se a média $\mu = 0$ e após gerar o valor aleatório em dB, o resultado foi convertido para escala linear.

Sombreamento e desvanecimento rápido

I O sombreamento $\chi_{i,j}$ que afeta o enlace entre a ERB_i com o TM_j é normalmente modelado utilizando uma variável aleatória com distribuição log-normal (normal em dB). Portanto utilizou-se a função randn() que por padrão possui média 0 e desvio padrão 1, como o desvio padrão solicitado foi de $\sigma_\chi = 8dB$, manteve-se a média $\mu = 0$ e após gerar o valor aleatório em dB, o resultado foi convertido para escala linear.

Definition

$$\chi_{i,j} = \mu + \sigma_{\chi} * randn()$$

= 8 * randn()[dB]

Sombreamento e desvanecimento rápido

I O sombreamento $\chi_{i,i}$ que afeta o enlace entre a ERB_i com o TM_i é normalmente modelado utilizando uma variável aleatória com distribuição log-normal (normal em dB). Portanto utilizou-se a função randn() que por padrão possui média 0 e desvio padrão 1, como o desvio padrão solicitado foi de $\sigma_{\rm v}=8dB$, manteve-se a média $\mu=0$ e após gerar o valor aleatório em dB, o resultado foi convertido para escala linear.

Definition

$$\chi_{i,j} = \mu + \sigma_{\chi} * randn()$$

= 8 * randn()[dB]

2 O desvanecimento rápido normalmente é modelado utilizando uma variável aleatória com distribuição de Rayleigh. Sendo $h_{i,i} = x_{i,i} + j * y_{i,i}$ representa o desvanecimento Rayleigh se x_i , e y_i , são variáveis aleatórias com distribuição normal e desvio padrão $\sigma = \frac{1}{\sqrt{2}}$.

4. Cálculo dos Ganhos

Sombreamento e desvanecimento rápido

Il Logo como a distribuição das VAs é normal, utilizou-se a função randn() matendo a média padrão ou seja, $\mu=0$ e alterando o desvio padrão, temos que o ganho proveniente do desvanecimento rápido foi calculado por

Sombreamento e desvanecimento rápido

Il Logo como a distribuição das VAs é normal, utilizou-se a função randn() matendo a média padrão ou seja, $\mu=0$ e alterando o desvio padrão, temos que o ganho proveniente do desvanecimento rápido foi calculado por

Definition

$$egin{align*} g_{\mathcal{H}_{i,j}} &= 10log10((abs(h_{i,j}))^2) \ x_{i,j} &= \mu + \sigma * randn() \ y_{i,j} &= \mu + \sigma * randn() \ h_{i,j} &= x_{i,j} + j * y_{i,j} \ Logo, \ g_{\mathcal{H}_{i,j}} &= 10log10((abs(x_{i,j} + j * y_{i,j}))^2)[dB] \ \end{bmatrix}$$

Sombreamento e desvanecimento rápido

I Logo como a distribuição das VAs é normal, utilizou-se a função randn() matendo a média padrão ou seja, $\mu=0$ e alterando o desvio padrão, temos que o ganho proveniente do desvanecimento rápido foi calculado por

Definition

$$g_{H_{i,j}} = 10log10((abs(h_{i,j}))^2) \ x_{i,j} = \mu + \sigma * randn() \ y_{i,j} = \mu + \sigma * randn() \ h_{i,j} = x_{i,j} + j * y_{i,j} \ Logo, \ g_{H_{i,j}} = 10log10((abs(x_{i,j} + j * y_{i,j}))^2)[dB]$$

2 Os ganhos para cada tipo de fenômeno envolvendo cada ERB_i com TM_j são armazenados em uma matriz.

└5. Cálculo da potência recebida

Potência Recebida

I Dados os efeitos de propagação trabalhados, todos os valores de ganhos foram armazenados em escala linear, para então realizar o cálculo da potência recebida pelo TM_j devido a uma ERB_i , considerando uma potência de transmissão da ERB_i sendo $P_{T_{i,j}} = 43dBm$.

Potência Recebida

1 Dados os efeitos de propagação trabalhados, todos os valores de ganhos foram armazenados em escala linear, para então realizar o cálculo da potência recebida pelo TM_j devido a uma ERB_i , considerando uma potência de transmissão da ERB_i sendo $P_{T_{i,j}} = 43dBm$.

Definition

$$p_{R_{i,j}} = p_{T_{i,j}} * g_{i,j} * g_{\chi_{i,j}} * g_{h_{i,j}}$$

Potência Recebida

Dados os efeitos de propagação trabalhados, todos os valores de ganhos foram armazenados em escala linear, para então realizar o cálculo da potência recebida pelo TM_i devido a uma ERB_i , considerando uma potência de transmissão da ERB_i sendo $P_{T_{i,i}} = 43dBm$.

Definition

$$p_{R_{i,j}} = p_{T_{i,j}} * g_{i,j} * g_{\chi_{i,j}} * g_{h_{i,j}}$$

2 Para todos os enlaces entre uma ERB_i e seu TM_i a potência recebida foi armazenada em uma matriz

6. Cálculo relação Sinal Interferência-mais-Ruído (SINR)

Cálculo SINR

I Como é sabido, em cada área de cobertura de uma ERB_i existe um TM_i servido por ela, entretanto nessa área de cobertura pode existir terminais móveis TM_j onde $i \neq j$ servidos por outras ERBs, logo como todas as ERBs utilizam o mesmo canal ao mesmo tempo, o sinal transmitido pela ERB_i sofrerá interferência do sinal transmitido pela ERB_k , $\forall k \neq i$.

Cálculo SINR

- I Como é sabido, em cada área de cobertura de uma ERB_i existe um TM_i servido por ela, entretanto nessa área de cobertura pode existir terminais móveis TM_j onde $i \neq j$ servidos por outras ERBs, logo como todas as ERBs utilizam o mesmo canal ao mesmo tempo, o sinal transmitido pela ERB_i sofrerá interferência do sinal transmitido pela ERB_k , $\forall k \neq i$.
- 2 Seja $P_N = -116dBm$ a potência de ruído média em dBm. Considerando que cada ERB_i serve um TM_i a relação sinal interferência-mais-ruído $\gamma_{i,i}$ é dada por:

Cálculo SINR

- I Como é sabido, em cada área de cobertura de uma ERB_i existe um TM_i servido por ela, entretanto nessa área de cobertura pode existir terminais móveis TM_i onde $i \neq j$ servidos por outras ERBs, logo como todas as ERBs utilizam o mesmo canal ao mesmo tempo, o sinal transmitido pela ERB; sofrerá interferência do sinal transmitido pela $ERB_k, \forall k \neq i$.
- \square Seja $P_{N}=-116dBm$ a potência de ruído média em dBm. Considerando que cada ERB_i serve um TM_i a relação sinal interferência-mais-ruído $\gamma_{i,i}$ é dada por:

Definition

$$\gamma_{i,i} = \frac{p_{R_{i,i}}}{\sum_{i \neq i} p_{R_{i,i}} + p_N}$$

Cálculo SINR

- I Como é sabido, em cada área de cobertura de uma ERB_i existe um TM_i servido por ela, entretanto nessa área de cobertura pode existir terminais móveis TM_j onde $i \neq j$ servidos por outras ERBs, logo como todas as ERBs utilizam o mesmo canal ao mesmo tempo, o sinal transmitido pela ERB_i sofrerá interferência do sinal transmitido pela ERB_k , $\forall k \neq i$.
- 2 Seja $P_N=-116dBm$ a potência de ruído média em dBm. Considerando que cada ERB_i serve um TM_i a relação sinal interferência-mais-ruído $\gamma_{i,i}$ é dada por:

Definition

$$\gamma_{i,i} = \frac{p_{R_{i,i}}}{\sum_{i \neq j} p_{R_{i,j}} + p_N}$$

3 Para todos os enlaces entre uma *ERB*_i e seu *TM*_i a relação SINR foi armazenada nas colunas de uma matriz.

7. Análise da simulação

Análise da simulação

A fim de caracterizar estatisticamente a qualidade média dos enlaces, é necessário medir os valores de SINR associados a diversas posições de usuários que também depedem de características aleatórias do canal. 7. Análise da simulação

Análise da simulação

- 1 A fim de caracterizar estatisticamente a qualidade média dos enlaces, é necessário medir os valores de SINR associados a diversas posições de usuários que também depedem de características aleatórias do canal.
- 2 Para isso realizou-se uma repetição de 5000 vezes, em cada laço a posição dos TMs e todos os cálculos dos fenômenos aleatórios são novamente calculados, esses valores de SINR são armazenados em uma matriz de tamanho 5000x4 para posterior plotagem da CDF.

Análise da simulação

- 1 A fim de caracterizar estatisticamente a qualidade média dos enlaces, é necessário medir os valores de SINR associados a diversas posições de usuários que também depedem de características aleatórias do canal.
- Para isso realizou-se uma repetição de 5000 vezes, em cada laço a posição dos TMs e todos os cálculos dos fenômenos aleatórios são novamente calculados, esses valores de SINR são armazenados em uma matriz de tamanho 5000x4 para posterior plotagem da CDF.
- 3 Alguns outros tipos de gráficos também são plotados para um melhor entendimento do comportamento dos enlaces.

Histogramas

Os histogramas abaixo mostram as quantidades de amostras distribuidas de acordo com o valor da relação sinal interferência mais ruído **S**INR.

7. Análise da simulação

Geração 5000 TMs

Plotagem da Função Distribuição de Probabilidade Acumulada (CDF)

- 1 Conforme pode-se analisar nos gráficos, a ERB₁ possui sua área de cobertura interseccionada com a área de cobertura das demais ERBs, isso significa que os TM's atendidos por outras TMs poderam causar maior interferência no sinal emitido pela ERB₁ por conta de toda sua área está passível desse tipo de interferência, as demais ERBs apenas uma pequena parte da área está passível de sofrer deste tipo de interferência.
- 2 Com isso, espera-se que a CDF do enlace ERB₁ TM₁ sofra mais com interferência possuindo uma menor SINR, isso pode ser analisado no gráfico da CDF, como a probabilidade acumulada de baixos valores de SINR tende a ser maior no enlace ERB₁ TM₁, espera-se que a CDF esteja mais a esquerda, enquanto a CDF dos demais enlaces estejam bem próximos, dado que suas áreas de intersecções passíveis de interferência serem aproximadamente as mesmas.

Plotagem da Função Distribuição de Probabilidade Acumulada (CDF)

Referências Bibliográficas I

- Rappaport, Theodore S.
 Wireless communications: principles and practice.
 2th edition, New Jersey: prentice hall PTR, 1996.
- Saunders, Simon R., and Alejandro Aragón-Zavala. Antennas and propagation for wireless communication systems.. 2th edition, John Wiley & Sons, 2007.