# Introduction to Machine Learning

## **Evaluation: AUC Extensions**



#### Learning goals

- Understand why pAUC is a reasonable metric in some contexts
- Know how pAUC is computed and normalized
- Understand multi-class AUC

#### **PARTIAL AUC**

- Sometimes it can be useful to look at a specific region under the ROC curve ⇒ partial AUC (pAUC).
- For example, we might focus on a region with low FPR or a region with high TPR:





### PARTIAL AUC - EXAMPLE

- Applications where sensitivity and specificity are treated asymmetrically often occur in biomedical contexts.
- For example, Wild et al. (2010) used pAUC in their study of biomarkers for the detection of colorectal cancer.
- Sensitivity, i.e., being able to correctly detect present diseases, is crucial in this setting.
- At the same time, high sensitivity is only useful if the classifier also achieves high specificity.
  - $\rightarrow$  Otherwise, healthy patients might receive costly and entirely unnecessary treatment.
- It is therefore reasonable to demand a certain level of specificity and evaluate/optimize learners on the resulting pAUC.

#### **CORRECTED PARTIAL AUC**

- The scale of the partial AUC depends on the FPR cut-off values used to determine the region of interest  $\Rightarrow$  pAUC  $\in [0, c_2 c_1]$ .
- For standard AUC, we have  $c_1 = 0$  and  $c_2 = 1$ .
- We can scale pAUC to take on values in [0, 1] again:

$$\text{pAUC}_{\text{corrected}} = \frac{1}{2} \left( 1 + \frac{\text{pAUC} - \text{AUC}_{\text{min}}}{\text{AUC}_{\text{max}} - \text{AUC}_{\text{min}}} \right),$$

#### where

- AUC<sub>min</sub> is the value of the non-discriminant AUC, and
- AUC<sub>max</sub> is the maximum possible AUC in the region.
- NB: using pAUC means casting aside parts of the information deliberately.

### **MULTI-CLASS AUC**

- In its original form, AUC (as the other ROC metrics) is defined for the binary-class case.
- We can extend AUC to multi-class classification, where estimating the area under the ROC curve evolves into estimating the hypervolume under the ROC surface.
- This can be achieved by considering a set of two-dimensional curves, resulting from binry comparisons, and subsequent aggregation.
  - $\rightarrow$  In principle, we have the choice between one-vs-one and one-vs-rest comparisons.



One-vs-one comparisons between classes for classification of iris species with LDA according to sepal width

#### **MULTI-CLASS AUC**

- For the first possibility, Hand and Till (2001) proposed to average the AUC of respective pairwise comparisons between two classes.
  - First, compute for all pairs of classes  $k, \ell \in \{1, \dots, g\}$  the probability  $AUC(k \mid \ell)$  of a randomly drawn member of class k having a lower probability of belonging to class  $\ell$  than a randomly drawn member of class  $\ell$ .
  - For g=2, we have  $AUC(k \mid \ell) = AUC(\ell \mid k)$ , but not necessarily so for q>2.
  - However, since class identifiability is immune to any bijective transformation of the labels, we cannot distinguish  $AUC(k \mid \ell)$  from  $AUC(\ell \mid k)$ , so we set  $AUC(k, \ell) = \frac{1}{2} \cdot [AUC(k \mid \ell) + AUC(\ell \mid k)]$ .
  - Averaging over all pairs of classes yields the overall AUC<sub>MC</sub> as a multi-class performance metric:

$$\mathsf{AUC}_{\mathit{MC}} = rac{2}{g(g+1)} \sum_{k < \ell} \mathsf{AUC}(k,\ell) \in [0,1].$$

• This reduces to the standard AUC for the binary case.