

Cybersecurity Electronic and Communication Technologies Fiber Optic Communications

Marco Luise marco.luise@unipi.it

Optical Backbones: Submarine Cable

Uninterrupted 39,000 km cable

The state of the s

EM Waves Spectrum

The state of the s

Optical Backbones

The bit-rate R_b is of the order of hundreds of Gbit/s

Optical Link Technology

Key Components: LASER and Photodetector (photodiode)

Optical Fibers...

How does it work?

The Fiber Lamp and Snell's Law

The MultiMode Step-Index (MM-SI) Optical Fiber

Multi-Mode!

Fiber Cable

Numerical Aperture

InterModal Dispersion

Step-Index vs. Graded-Index Fibers

Curved Rays in MM-GI Fibers

Stil Intermodal Dispersion, but...

Chromatic (Intra-Modal) Dispersion

Pulse Broadening

Limitation Due to Intramodal Dispersion

Variability of D

The second secon

Why 1.55?

The Light-Emitting Diode (LED)

Spontaneous Emission

Stimulated Emission

It s the basis of Light Amplification through Stimulated Emission of Radiation: LASER

Fabry-Pérot LASER

Semiconductor Lasers for Optical Communications

Semiconductor Lasers for Optical Communications

The p-i-n Photodiode

Absorption

The p-i-n Photodiode - structure

DFB Laser

Multi-Hop Backbones

Transparent

Regenerative

Optical Amplifiers

EDFA

Usage of Optcal Amplifiers

Pre-Amplifier

(Transparent)Repeater

WIRED Systems for the Transport Network

Optical (D)WDM

The second secon

Why Transparent? WDM!

- COARSE WDM (CDWM): Few channels, high Δf
- DENSe WDM (DWDM): Many channels, low Δf

ITU channel	Frequency (THz)	Center Wavelength (nm)	
61	196.1	1528.77	
60	196.0	1529.55	
59	195.9	1530.33	
58	195.8	1531.12	(ITU 100 GHz)
57	195.7	1531.90	(IIO TOO GIIZ)
56	195.6	1532.68	
55	195.5	1533.47	
54	195.4	1534.25	
53	195.3	1535.04	
52	195.2	1535.82	
51	195.1	1536.61	
50	195.0	1537.40	
49	194.9	1538.19	
48	194.8	1538.98	
47	194.7	1539.77	
46	194.6	1540.56	
45	194.5	1541.35	
44	194.4	1542.14	
43	194.3	1542.94	
42	194.2	1543.73	
41	194.1	1544.53	
40	194.0	1545.32	
39	193.9	1546.12	
38	193.8	1546.92	
37	193.7	1547.72	
36	193.6	1548.51	1
35	193.5	1549.32	i
34	193.4	1550.12	i
33	193.3	1550.92	
32	193.2	1551.72	
31	193.1	1552.52	
30	193.0	1553.33	
29	192.9	1554.13	
28	192.8	1554.94	
27	192.7	1555.75	
26	192.6	1556.55	
25	192.5	1557.36	
24	192.4	1558.17	
23	192.3	1558.98	
22	192.2	1559.79	
21	192.1	1560.61	
20	192.0	1561.42	
19	191.9	1562.23	
18	191.8	1563.05	
17	191.7	1563.86	

Your benefits

Scalability

Up to 600Gbit/s per wavelength and 38.4Tbit/s duplex capacity per fiber pair with best-in-class metrics; up to 3.6Tbit/s per 1RU chassis

Flexibility

From complete turnkey systems including all equipment necessary for end-to-end transport applications to disaggregated solutions

Pay-as-you-grow design

Modular and scalable architecture that ensures both low initial cost and flexibility into the future

Fully open and programmable

Open line system (OLS) architecture and YANGbased APIs (OpenConfig) for network disaggregation and easy integration into SDN-based environments

Dynamic and scalable optical layer

Multitude of ROADM options from metro-optimized 2-degree ROADM to multi-degree ROADM for flexgrid optical layer

ConnectGuard™ encryption technology

Certified data encryption with 100% throughput for any service on the transport layer

