

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15050033103

# FCC REPORT (BLE)

**Applicant:** SENWA MEXICO, S.A.DE C.V

Av. Javier Barros Sierra 540, Torre I, Planta 5; COL. LOMAS

Address of Applicant: DE SANTA FE DELEGACION ALVARO OBREGON C.P.

01210 MEXICO, DISTRITO FEDERAL

### **Equipment Under Test (EUT)**

Product Name: Smart Phone

Model No.: S905

Trade mark: SENWA

**FCC ID:** 2AAA6-S905

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 18 May 2015

**Date of Test:** 18 May to 16 Jun., 2015

Date of report issued: 16 Jun., 2015

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 16 Jun., 2015 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Prepared by: Date: 16 Jun., 2015

Report Clerk

Reviewed by: Date: 16 Jun., 2015

**Project Engineer** 



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | ER PAGE                        | 1    |
| 2 | VER   | SION                           | 2    |
| 3 |       | TENTS                          |      |
| 4 |       | T SUMMARY                      |      |
|   |       |                                |      |
| 5 | GEN   | ERAL INFORMATION               | 5    |
|   | 5.1   | CLIENT INFORMATION             | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.  |      |
|   | 5.3   | TEST ENVIRONMENT AND MODE      |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   |      |
|   | 5.5   | LABORATORY FACILITY            | 7    |
|   | 5.6   | LABORATORY LOCATION            | 7    |
|   | 5.7   | TEST INSTRUMENTS LIST          | 8    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 6.1   | ANTENNA REQUIREMENT:           | 9    |
|   | 6.2   | CONDUCTED EMISSION             | 10   |
|   | 6.3   | CONDUCTED OUTPUT POWER         | 13   |
|   | 6.4   | OCCUPY BANDWIDTH               |      |
|   | 6.5   | POWER SPECTRAL DENSITY         | 18   |
|   | 6.6   | BAND EDGE                      |      |
|   | 6.6.1 | 00.000000 =00.00               |      |
|   | 6.6.2 |                                |      |
|   | 6.7   | SPURIOUS EMISSION              |      |
|   | 6.7.1 |                                |      |
|   | 6.7.2 | Radiated Emission Method       | 30   |
| 7 | TES   | T SETUP PHOTO                  | 35   |
| 8 |       | CONSTRUCTIONAL DETAILS         | 26   |





# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth           | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.





# **5** General Information

# 5.1 Client Information

| Applicant:               | SENWA MEXICO, S.A.DE C.V                                                                                                              |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | Av. Javier Barros Sierra 540, Torre I, Planta 5; COL. LOMAS DE SANTA FE DELEGACION ALVARO OBREGON C.P. 01210 MEXICO, DISTRITO FEDERAL |
| Manufacturer:            | MEGAUN GROUP                                                                                                                          |
| Address of Manufacturer: | Room 315, HKUST SZ IER Building, No, 9 Yuexing 1 <sup>st</sup> RD, South Area, Hi-tech Park, Nanshan, Shenzhen, P.R.C                 |

# 5.2 General Description of E.U.T.

| Product Name:          | Smart Phone                                |
|------------------------|--------------------------------------------|
| Model No.:             | S905                                       |
| Operation Frequency:   | 2402-2480 MHz                              |
| Channel numbers:       | 40                                         |
| Channel separation:    | 2 MHz                                      |
| Modulation technology: | GFSK                                       |
| Data speed :           | 1Mbps                                      |
| Antenna Type:          | Internal Antenna                           |
| Antenna gain:          | 2.6 dBi                                    |
| Power supply:          | Rechargeable Li-ion Battery DC3.7V-2100mAh |
| AC adapter:            | Input:100-240V AC,50/60Hz 0.3A             |
|                        | Output:5V DC MAX 1A                        |



| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0                                   | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |
| 1                                   | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |
| 2                                   | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |
| 3                                   | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |
| 4                                   | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |
| 5                                   | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |
| 6                                   | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |
| 7                                   | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |
| 8                                   | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |
| 9                                   | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2442MHz   |
| The Highest channel | 2480MHz   |



5.3 Test environment and mode

| Operating Environment: |                                                         |  |  |  |
|------------------------|---------------------------------------------------------|--|--|--|
| Temperature:           | 24.0 °C                                                 |  |  |  |
| Humidity:              | 54 % RH                                                 |  |  |  |
| Atmospheric Pressure:  | 1010 mbar                                               |  |  |  |
| Test mode:             |                                                         |  |  |  |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |  |  |  |

Report No: CCIS15050033103

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

# 5.4 Description of Support Units

N/A

# 5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

# 5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





# 5.7 Test Instruments list

| Rad  | Radiated Emission:                   |                                            |                   |                  |                         |                             |  |
|------|--------------------------------------|--------------------------------------------|-------------------|------------------|-------------------------|-----------------------------|--|
| Item | Test Equipment                       | Manufacturer                               | Model No.         | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1    | 3m Semi- Anechoic<br>Chamber         | SAEMC                                      | 9(L)*6(W)* 6(H)   | CCIS0001         | 08-23-2014              | 08-22-2017                  |  |
| 2    | BiConiLog Antenna                    | SCHWARZBECK<br>MESS-ELEKTRONIK             | VULB9163          | CCIS0005         | 03-28-2015              | 03-28-2016                  |  |
| 3    | Double -ridged waveguide horn        | SCHWARZBECK<br>MESS-ELEKTRONIK             | BBHA9120D         | CCIS0006         | 03-28-2015              | 03-28-2016                  |  |
| 4    | EMI Test Software                    | AUDIX                                      | E3                | N/A              | N/A                     | N/A                         |  |
| 5    | Amplifier<br>(10kHz-1.3GHz)          | HP                                         | 8447D             | CCIS0003         | 04-01-2015              | 03-31-2016                  |  |
| 6    | Amplifier<br>(1GHz-18GHz)            | Compliance Direction Systems Inc. PAP-1G18 |                   | CCIS0011         | 04-01-2015              | 03-31-2016                  |  |
| 7    | Pre-amplifier<br>(18-26GHz)          | Rohde & Schwarz AFS33-1800<br>650-30-8P-4  |                   | GTS218           | 04-01-2015              | 03-31-2016                  |  |
| 8    | Horn Antenna                         | ETS-LINDGREN                               | 3160              | GTS217           | 04-01-2015              | 03-31-2016                  |  |
| 9    | Printer                              | HP                                         | HP LaserJet P1007 | N/A              | N/A                     | N/A                         |  |
| 10   | Positioning Controller               | UC                                         | UC3000            | CCIS0015         | N/A                     | N/A                         |  |
| 11   | Spectrum analyzer<br>9k-30GHz        | Rohde & Schwarz                            | FSP               | CCIS0023         | 03-28-2015              | 03-28-2016                  |  |
| 12   | EMI Test Receiver                    | Rohde & Schwarz                            | ESPI              | CCIS0022         | 03-28-2015              | 03-28-2016                  |  |
| 13   | Loop antenna                         | Laplace instrument                         | RF300             | EMC0701          | 04-01-2015              | 03-31-2016                  |  |
| 14   | Universal radio communication tester | Rhode & Schwarz                            | CMU200            | CCIS0069         | 03-28-2015              | 03-28-2016                  |  |
| 15   | Signal Analyzer                      | Rohde & Schwarz                            | FSIQ3             | CCIS0088         | 04-08-2015              | 04-08-2016                  |  |

| Con  | Conducted Emission: |                    |                       |                  |                         |                             |  |
|------|---------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|
| Item | Test Equipment      | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room      | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 11-10-2012              | 11-09-2015                  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz    | ESCI                  | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |
| 3    | LISN                | CHASE              | MN2050D               | CCIS0074         | 03-28-2015              | 03-28-2016                  |  |
| 4    | Coaxial Cable       | CCIS               | N/A                   | CCIS0086         | 04-01-2015              | 03-31-2016                  |  |
| 5    | EMI Test Software   | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |



# 6 Test results and Measurement Data

# 6.1 Antenna requirement:

# Standard requirement: FCC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.6 dBi.







# 6.2 Conducted Emission

| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                           |                                                                                                                                                                       |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:          | ANSI C63.4: 2009                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                              | Quasi-peak<br>66 to 56*                                                                                                                                                     | Average                                                                                                                                                               |  |  |  |  |
|                       | 0.15-0.5<br>0.5-5                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                          | 56 to 46*<br>46                                                                                                                                                       |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                          | 50                                                                                                                                                                    |  |  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                               |                                                                                                                                                                             | 00                                                                                                                                                                    |  |  |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators line impedance stabilize 50ohm/50uH coupling im</li> <li>The peripheral devices a a LISN that provides a 5 termination. (Please refe photographs).</li> <li>Both sides of A.C. lir interference. In order to positions of equipment ar according to ANSI C63.4.</li> </ol> | ation network (L.I.S.N pedance for the measure also connected to the common of the block diagram are checked for the find the maximum and all of the interface compediates. | N.), which provides a uring equipment. he main power through mpedance with 50ohm of the test setup and maximum conducted emission, the relative ables must be changed |  |  |  |  |
| Test setup:           | AUX Equipment E.  Test table/Insulation pl  Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilizati Test table height=0.8m                                                                                                                                                                       | LU.T EMI Receiver                                                                                                                                                           | ter — AC power                                                                                                                                                        |  |  |  |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                             |                                                                                                                                                                       |  |  |  |  |

### **Measurement Data**





#### Neutral:



Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart Phone : S905 Model

model : 5905
Test Mode : BLE TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark

| Remark                |        | 122   |           | 120020000000000000000000000000000000000 |       | 202           | 14204117700 |         |  |
|-----------------------|--------|-------|-----------|-----------------------------------------|-------|---------------|-------------|---------|--|
|                       | Evan   | Read  | LISN      | Cable                                   |       | Limit<br>Line | Over        | Remark  |  |
|                       | Freq   | rever | ractor    | FORR                                    | Level | Line          | LIMIT       | Kemark  |  |
|                       | MHz    | dBu∜  | <u>ab</u> | ₫B                                      | dBu₹  | ₫₿u₹          | d₿          |         |  |
| 1                     | 0.202  | 14.51 | 0.25      | 10.76                                   | 25.52 | 63.54         | -38.02      | QP      |  |
| 2                     | 0.277  | 22.82 | 0.26      | 10.74                                   | 33.82 | 60.90         | -27.08      | QP      |  |
| 3                     | 0.299  | 18.71 | 0.26      | 10.74                                   | 29.71 | 50.28         | -20.57      | Average |  |
| 2<br>3<br>4<br>5<br>6 | 0.318  | 26.34 | 0.26      | 10.74                                   | 37.34 | 59.75         | -22.41      | QP      |  |
| 5                     | 0.751  | 18.68 | 0.19      | 10.79                                   | 29.66 | 46.00         | -16.34      | Average |  |
| 6                     | 0.759  | 26.85 | 0.19      | 10.80                                   | 37.84 | 56.00         | -18.16      | QP      |  |
| 7<br>8<br>9           | 1.054  | 12.61 | 0.22      | 10.88                                   | 23.71 | 46.00         | -22.29      | Average |  |
| 8                     | 1.135  | 20.81 | 0.23      | 10.89                                   | 31.93 | 56.00         | -24.07      | QP      |  |
| 9                     | 3.107  | 7.19  | 0.29      | 10.92                                   | 18.40 | 46.00         | -27.60      | Average |  |
| 10                    | 8.916  | 25.67 | 0.25      | 10.89                                   | 36.81 | 60.00         | -23.19      | QP      |  |
| 11                    | 9.705  | 11.59 | 0.25      | 10.93                                   | 22.77 | 50.00         | -27.23      | Average |  |
| 12                    | 18.920 | 14.51 | 0.26      | 10.92                                   | 25.69 | 50.00         | -24.31      | Average |  |

Report No: CCIS15050033103



#### Line:



Trace: 21

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : Smart Phone

: S905 Model

: BLE TX mode Test Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

| CMALK            | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level  | Limit<br>Line | Over<br>Limit | Remark  |
|------------------|-------|---------------|----------------|---------------|--------|---------------|---------------|---------|
|                  | MHz   | dBu∜          | <u>dB</u>      |               | dBu₹   | —dBu∇         | <u>ab</u>     |         |
| 1                | 0.206 | 23.99         | 0.28           | 10.76         | 35.03  | 53.36         | -18.33        | Average |
| 2                | 0.211 | 39.46         | 0.28           | 10.76         | 50.50  | 63.18         | -12.68        | QP      |
| 2                | 0.274 | 38.68         | 0.26           | 10.74         | 49.68  | 60.98         | -11.30        | QP      |
| 4<br>5<br>6<br>7 | 0.274 | 24.67         | 0.26           | 10.74         | 35.67  | 50.98         | -15.31        | Average |
| 5                | 0.334 | 35.87         | 0.27           | 10.73         | 46.87  | 59.35         | -12.48        | QP      |
| 6                | 0.334 | 23.94         | 0.27           | 10.73         | 34.94  | 49.35         | -14.41        | Average |
| 7                | 0.466 | 20.18         | 0.29           | 10.75         | 31.22  | 46.58         | -15.36        | Average |
| 8<br>9           | 0.481 | 34.73         | 0.29           | 10.75         | 45.77  | 56.32         | -10.55        | QP      |
| 9                | 0.546 | 32.05         | 0.27           | 10.76         | 43.08  | 56.00         | -12.92        | QP      |
| 10               | 0.675 | 17.48         | 0.23           | 10.77         | 28.48  | 46.00         | -17.52        | Average |
| 11               | 1.772 | 32.55         | 0.26           | 10.94         | 43.75  | 56.00         | -12.25        | QP      |
| 12               | 9.502 | 21.57         | 0.31           | 10.92         | 32, 80 | 50.00         | -17.20        | Average |

#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                          |  |  |  |  |
|-------------------|------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                                |  |  |  |  |
| Limit:            | 30dBm                                                                        |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane        |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                             |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                             |  |  |  |  |
| Test results:     | Passed                                                                       |  |  |  |  |
| Remark:           | Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2 |  |  |  |  |

### Measurement Data

| Test CH | Maximum Conducted Output Power (dBm) | Limit(dBm) | Result |
|---------|--------------------------------------|------------|--------|
| Lowest  | -5.80                                |            |        |
| Middle  | -6.62                                | 30.00      | Pass   |
| Highest | -7.32                                |            |        |

Test plot as follows:







# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                         |
| Limit:            | >500kHz                                                               |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.7 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

### Measurement Data

| Test CH | 6dB Emission Bandwidth (MHz) | Limit(kHz) | Result |  |
|---------|------------------------------|------------|--------|--|
| Lowest  | 0.77                         |            |        |  |
| Middle  | 0.77                         | >500       | Pass   |  |
| Highest | 0.77                         |            |        |  |

| Test CH | 99% Occupy Bandwidth (MHz) | Limit(kHz) | Result |  |
|---------|----------------------------|------------|--------|--|
| Lowest  | 1.04                       |            |        |  |
| Middle  | 1.04                       | N/A        | N/A    |  |
| Highest | 1.04                       |            |        |  |

Test plot as follows:









Highest channel









Highest channel



# 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                         |
| Limit:            | 8 dBm                                                                 |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.7 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

### Measurement Data

| Test CH | Power Spectral Density (dBm) | Limit(dBm) | Result |
|---------|------------------------------|------------|--------|
| Lowest  | -6.37                        |            |        |
| Middle  | -7.21                        | 8.00       | Pass   |
| Highest | -7.91                        |            |        |

Test plots as follow:









Highest channel



# 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                   | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                   | E.U.T                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                   | Non-Conducted Table                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                   | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

Test plots as follow:







Highest channel



### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:          | ANSI C63.4: 20                                                                                                                                                                                                                                                                                                                                                                                             | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |
| Test Frequency Range: | 2.3GHz to 2.5G                                                                                                                                                                                                                                                                                                                                                                                             | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                              | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |
| Receiver setup:       | Frequency Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                       | Detector<br>Peak<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW<br>1MHz<br>1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW<br>3MHz<br>10Hz                                                                                                                                                                                                                               | Remark<br>Peak Value<br>Average Value                                                                                                                   |  |
| Limit:                | Freque<br>Above 1                                                                                                                                                                                                                                                                                                                                                                                          | ency<br>GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit (dBuV/m @3m) 54.00 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   | Remark<br>Average Value<br>Peak Value                                                                                                                   |  |
| Test Procedure:       | the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the numbers and to find the numbers and the limit spoof the EUT have 10 decembers. | at a 3 meter of the position was set 3 meter which was mountained to determine the postal and vertice the postal a | camber. The toof the highest rs away from need on the total ried from one the maximum cal polarization was turned to was turned to was turned to was set to Polarize to Polari | table was rost radiation.  the interfer op of a variate meter to for a value of the arrow of the arrow 0 degree ak Detect old Mode.  It was arrant to heights from 0 degree was arrow old Mode.  It mode was be stopped arise the emit one by one | rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 the ees to 360 degrees |  |
| Test setup:           | Antenna Tower  Horn Antenna  Spectrum  Analyzer  Turn  Table  Amplifier                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                           | 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                                                                                                                                         |  |





Test channel: Lowest

Horizontal:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : S905 EUT Model : BLE-L Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

REMARK

|     | Freq                 |      | Antenna<br>Factor |            |           |        |        |                 | Remark |  |
|-----|----------------------|------|-------------------|------------|-----------|--------|--------|-----------------|--------|--|
| 9   | MHz                  | dBuV | <u>dB</u> /m      | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u>       |        |  |
| 1 2 | 2390.000<br>2390.000 |      |                   |            |           |        |        | -19.62<br>-7.60 |        |  |





Test channel: Lowest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Phone Model : S905

Test mode : BLE-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

REMARK

|     | Freq                 |      | Antenna<br>Factor |           |    |                |        |    |  |
|-----|----------------------|------|-------------------|-----------|----|----------------|--------|----|--|
| 3   | MHz                  | dBuV | <u>dB</u> /m      | <u>dB</u> | dB | dBuV/m         | dBuV/m | dB |  |
| 1 2 | 2390.000<br>2390.000 |      |                   |           |    | 53.45<br>46.38 |        |    |  |





Test channel: Highest

#### Horizontal:



: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition EUT

: S905
Test mode : BLE-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK : : Smart Phone

|   | Freq                 |      | Antenna<br>Factor |            |           |        |        |            |  |
|---|----------------------|------|-------------------|------------|-----------|--------|--------|------------|--|
| - | MHz                  | dBu₹ | <u>dB</u> /m      | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m | <u>d</u> B |  |
|   | 2483.500<br>2483.500 |      |                   |            |           |        |        |            |  |





Test channel: Highest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : S905 EUT Model : BLE-H Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki REMARK:

| יוונטוני |           | Read  | Antenna      | Cable      | Preamn    |        | Limit  | Over      |         |
|----------|-----------|-------|--------------|------------|-----------|--------|--------|-----------|---------|
|          | Freq      |       | Factor       |            |           |        |        |           | Remark  |
|          | MHz       | dBuV  | <u>dB</u> /m | <u>d</u> B | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |         |
| 1        | 2483.500  | 20.31 | 27.52        | 6.85       | 0.00      | 54.68  | 74.00  | -19.32    | Peak    |
| 2        | 2483, 500 | 11.78 | 27.52        | 6.85       | 0.00      | 46.15  | 54.00  | -7.85     | Average |



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and KDB558074                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                   | Spectrum Analyzer  E.U.T  Non-Conducted Table                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Toot Instruments  | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

Test plot as follows:



#### Lowest channel



Date: 1.JUN.2015 10:34:59

#### 30MHz~25GHz

### Middle channel



Date: 1.JUN.2015 10:36:10

30MHz~25GHz



### Highest channel



Date: 11.JUN.2015 18:27:21

30MHz~25GHz



### 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C S                                                                                                                                                                                                               | Section 15.20                                                                                                                                                                                                                          | 9 and 15.205                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| Test Method:          | ANSI C63.4:2009                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
| Test Frequency Range: | 9KHz to 25GHz                                                                                                                                                                                                                 |                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                 | istance: 3m                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
| Receiver setup:       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
| •                     | Frequency Detector RBW VBW Remark                                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
|                       | 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value                                                                                                                                                                          |                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                   | 1MHz                                                                                                                                                                                            | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Value                     |  |  |  |  |  |  |
|                       | Above IGHZ                                                                                                                                                                                                                    | Peak                                                                                                                                                                                                                                   | 1MHz                                                                                                                                                                                            | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                  |  |  |  |  |  |  |
| Limit:                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |
|                       | Frequency                                                                                                                                                                                                                     |                                                                                                                                                                                                                                        | Limit (dBuV/m                                                                                                                                                                                   | @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark                         |  |  |  |  |  |  |
|                       | 30MHz-88MHz                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        | 40.0                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value               |  |  |  |  |  |  |
|                       | 88MHz-216MHz                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        | 43.5                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value               |  |  |  |  |  |  |
|                       | 216MHz-960MH                                                                                                                                                                                                                  | z                                                                                                                                                                                                                                      | 46.0                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value               |  |  |  |  |  |  |
|                       | 960MHz-1GHz                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        | 54.0                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value               |  |  |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                      | 54.0                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Value                  |  |  |  |  |  |  |
|                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        | 74.0                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value le 0.8 meters above |  |  |  |  |  |  |
| Test Procedure:       | the ground to determin 2. The EUT of antenna, we tower.  3. The antenre the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB | at a 3 meter e the position was set 3 m hich was mount and ver to determine that and ver the anterest and with a the rota table maximum reasectiver system and width with sion level of the cified, then the would be resumargin would | camber. The of the highest eters away funted on the trailed from or ethe maximutical polarizations was turned awas turned ding.  In Maximum Highesting could be corted. Other did be re-tested. | table was st radiation. From the incop of a variance meter to the important of the importan | rotated 360 degrees            |  |  |  |  |  |  |











#### **Below 1GHz**

Horizontal:



Site 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT Smart Phone Model S905 Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki REMARK :

| EWWVV. |         |       |              |            |            |                     |                     |           |        |
|--------|---------|-------|--------------|------------|------------|---------------------|---------------------|-----------|--------|
|        |         |       | Antenna      |            |            |                     | Limit               |           |        |
|        | Freq    | Level | Factor       | Loss       | Factor     | Level               | Line                | Limit     | Remark |
| _      | MHz     | dBu∇  | <u>dB</u> /m | <u>d</u> B | <u>d</u> B | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>dB</u> |        |
| 1      | 31.399  | 38.64 | 12.32        | 0.44       | 29.97      | 21.43               | 40.00               | -18.57    | QP     |
| 2      | 89.276  | 29.53 | 11.76        | 0.91       | 29.57      | 12.63               | 43.50               | -30.87    | QP     |
| 3      | 106.385 | 28.50 | 12.59        | 1.02       | 29.48      | 12.63               | 43.50               | -30.87    | QP     |
| 4      | 176.888 | 31.64 | 9.49         | 1.35       | 29.00      | 13.48               | 43.50               | -30.02    | QP     |
| 5      | 348.027 | 29.64 | 14.25        | 1.93       | 28.56      | 17.26               | 46.00               | -28.74    | QP     |
| 6      | 586 844 | 28 11 | 1.8 24       | 2.60       | 28 08      | 10 07               | 46 00               | -26.03    | OP     |





### Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Smart Phone Condition

EUT : 5905
Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK

|     | Freq    |       | Antenna<br>Factor |      |           |                                            |        |           |    |
|-----|---------|-------|-------------------|------|-----------|--------------------------------------------|--------|-----------|----|
| _   | MHz     | dBu₹  | <u>dB</u> /m      |      | <u>dB</u> | $\overline{dB} \overline{uV}/\overline{m}$ | dBuV/m | <u>dB</u> |    |
| 1   | 31.510  | 37.32 | 12.32             | 0.45 | 29.97     | 20.12                                      | 40.00  | -19.88    | QP |
| 2   | 76.244  | 40.60 | 8.03              | 0.83 | 29.67     | 19.79                                      | 40.00  | -20.21    | QP |
| 3   | 80.081  | 43.24 | 8.54              | 0.85 | 29.64     | 22.99                                      | 40.00  | -17.01    | QP |
| 4 5 | 83.816  | 43.03 | 9.87              | 0.87 | 29.61     | 24.16                                      | 40.00  | -15.84    | QP |
| 5   | 89.905  | 43.53 | 11.90             | 0.91 | 29.57     | 26.77                                      | 43.50  | -16.73    | QP |
| 6   | 139.361 | 40.38 | 8.19              | 1.25 | 29.28     | 20.54                                      | 43.50  | -22.96    | QP |



### **Above 1GHz**

| Т                  | est channel             | :                           | Lowest                |                          | Le                | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 46.75                   | 31.53                       | 10.57                 | 40.24                    | 48.61             | 74.00                  | -25.39                | Vertical     |
| 4804.00            | 45.59                   | 31.53                       | 10.57                 | 40.24                    | 47.45             | 74.00                  | -26.55                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Lowest                   |                   | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4804.00            | 36.76                   | 31.53                       | 10.57                 | 40.24                    | 38.62             | 54.00                  | -15.38                | Vertical     |
| 4804.00            | 35.63                   | 31.53                       | 10.57                 | 40.24                    | 37.49             | 54.00                  | -16.51                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Middle                   |                   | vel:                   | Peak                  |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4884.00            | 46.04                   | 31.58                       | 10.66                 | 40.15                    | 48.13             | 74.00                  | -25.87                | Vertical     |
| 4884.00            | 45.54                   | 31.58                       | 10.66                 | 40.15                    | 47.63             | 74.00                  | -26.37                | Horizontal   |

| Т                  | Test channel:           |                             |                       | Middle                   |                   | Level:                 |                       | Average      |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4884.00            | 36.44                   | 31.58                       | 10.66                 | 40.15                    | 38.53             | 54.00                  | -15.47                | Vertical     |  |
| 4884.00            | 35.45                   | 31.58                       | 10.66                 | 40.15                    | 37.54             | 54.00                  | -16.46                | Horizontal   |  |

| Т                  | Test channel:           |                             |                       | Highest                  |                   | Level:                 |                       | Peak         |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |
| 4960.00            | 45.99                   | 31.69                       | 10.73                 | 40.03                    | 48.38             | 74.00                  | -25.62                | Vertical     |  |
| 4960.00            | 46.14                   | 31.69                       | 10.73                 | 40.03                    | 48.53             | 74.00                  | -25.47                | Horizontal   |  |

| Т                  | est channel             | :                           | Highest               |                          | Le                | vel:                   | Average               |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 4960.00            | 35.88                   | 31.69                       | 10.73                 | 40.03                    | 38.27             | 54.00                  | -15.73                | Vertical     |
| 4960.00            | 36.55                   | 31.69                       | 10.73                 | 40.03                    | 38.94             | 54.00                  | -15.06                | Horizontal   |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366