Aula 02

DSc. Eng. Samuel Moreira Duarte Santos Engenheiro Mecânico CREA MG 106478D

Rio de Janeiro, 12 de abril 2023

Agenda

- Máquinas de fluidos
- Classificação das máquinas de fluido (térmicas e de fluxo);
- Bombas centrífugas;
- Principais componentes
- Princípio de funcionamento das bombas centrífugas;
- Altura manométrica;
- Potência necessária ao acionamento das bombas;
- Seleção de bombas;
- Perda de carga;
 - Perda de carga contínua; e
 - Perda de carga localizada;
- Bibliografia;

- Maquinas de fluxo são quaisquer dispositivo que retire ou transfira energia para um fluido;
- Desde a Grécia antiga, onde Arquimedes criou seu primeiro dispositivo, o Parafuso de Arquimedes, creditado à Arquimedes de Siracusa (287 a.C. – 212 a.C.), as maquinas de fluxo vem sendo utilizadas, todavia a registros do uso das mesmas na Babilônia 300 anos antes de Arquimedes; e

· Ainda hoje o parafuso de Arquimedes é utilizado para drenar resíduos e

esgotos.

- Outro exemplo muito importante de máquinas de fluxo é a Roda d'água com pás também utilizada nos dias atuais;
- Embora inventada na Roma antiga sua criação causou um impacto gigantesco no modo de vida da sociedade romana, o simples fato de retirar energia d'água para utiliza-la em qualquer outra tarefa fez com que alguns serviços tivessem seu tempo de duração reduzido em horas, ou dias.

- O parafuso de Arquimedes fornece energia da maquina para o fluido;
- A roda d'água retira energia do fluido para aplicação em outro local;
- Estas são algumas das diferenças que podem existir entre as maquinas de fluxo;
- Não existe uma classificação em que podemos dizer qual é melhor ou pior que a outra, cada uma tem uma função na qual é utilizada da melhor forma

possível.

Classificação das máquinas de fluido

- Na tabela acima vemos ela dividia em maquinas hidráulicas e maquinas térmicas;
- Em máquinas hidráulicas a massa específica do fluído é constante; e
- Para as maquinas térmicas onde a variação de temperatura é muito grande esta propriedade muda.

- Após sua invenção as máquinas de fluxo rapidamente ganharam seu lugar em meio a sociedade, hoje elas tem papel fundamental no cotidiano;
- Uma das suas funções atuais mais famosa no Brasil ocorre dentro de usinas hidrelétricas onde através da extração de energia da água corrente nos rios conseguimos obter energia elétrica;
- Mas não se deixe enganar não é apenas das águas que tais maquinas sobrevivem, em fazendas eólicas utilizamos a força dos ventos para mover suas hélices e converter a energia cinética dos ventos em energia elétrica.

Classificação

Classificação das máquinas de fluxo

 As máquinas de fluxo podem ser classificadas em dois tipos principais: turbinas e bombas.

- As turbinas são máquinas que convertem a energia cinética de um fluido em energia mecânica, através de um rotor que gira com a força do fluido que passa por ele; e
- As turbinas são geralmente usadas para gerar energia elétrica a partir de hidrelétricas, térmicas ou eólicas.

10

Classificação das máquinas de fluxo

- As bombas, por outro lado, são máquinas que convertem a energia mecânica em energia hidráulica, ou seja, aumentam a pressão de um fluido para movê-lo de um lugar para outro;
- As bombas são usadas em diversas aplicações, como sistemas de irrigação, abastecimento de água e combustível em veículos, sistemas de refrigeração, entre outros.

Classificação

- As máquinas térmicas podem ser classificadas de várias maneiras diferentes, mas uma das classificações mais comuns é baseada no ciclo termodinâmico em que operam;
- **Ciclo de Carnot**: As máquinas térmicas que operam no ciclo de Carnot são consideradas ideais, pois têm a maior eficiência possível para uma máquina térmica que opera entre duas temperaturas diferentes.

- Ciclo de Otto: As máquinas térmicas que operam no ciclo de Otto são usadas em motores de combustão interna, como os motores a gasolina; e
- Nesse ciclo, a mistura ar-combustível é comprimida, queimada e, em seguida, expandida para gerar energia mecânica.

- Ciclo de Diesel: As máquinas térmicas que operam no ciclo de Diesel são usadas em motores a diesel; e
- Nesse ciclo, o ar é comprimido até uma alta temperatura e, em seguida, o combustível é injetado, queimando e gerando energia mecânica.

- Ciclo de Rankine: As máquinas térmicas que operam no ciclo de Rankine são usadas em turbinas a vapor; e
- Nesse ciclo, a água é aquecida e vaporizada, e em seguida, o vapor é usado para girar uma turbina, produzindo energia mecânica.

- Ciclo Brayton: As máquinas térmicas que operam no ciclo Brayton são usadas em turbinas a gás; e
- Nesse ciclo, o ar é comprimido, aquecido e, em seguida, expandido através de uma turbina, gerando energia mecânica.

A bomba centrífuga é geralmente a mais econômica, seguida pelas bombas rotativas e alternativas;

Embora as bombas de deslocamento positivo sejam geralmente mais eficientes do que as bombas centrífugas, o benefício de uma maior eficiência tende a ser compensado por maiores custos de manutenção; e

Visto que, em todo o mundo, as bombas centrífugas são responsáveis pela maioria da eletricidade usada pelas bombas, o foco deste minicurso é a bomba centrífuga.

- Bomba centrífuga tem o projeto muito simples;
- As duas partes principais da bomba são o impelidor e a voluta;
- O impelidor, que é a única parte móvel, é preso a um eixo e acionado por um motor;
- A voluta aloja o impelidor e captura e direciona a água para fora do impelidor.

- A água entra no centro (olho) do impelidor e sai com a ajuda da força centrífuga;
- Conforme a água sai do olho do rotor, uma área de baixa pressão é criada, fazendo com que mais água flua para o olho;
- A pressão atmosférica e a força centrífuga fazem com que isso aconteça;

- Bomba (B): Órgão encarregado de succionar o fluido, retirando-o do reservatório de sucção e energizando-o através de seu rotor, o que impulsiona-o para o reservatório de recalque.
- Válvula de pé com crivo (VPC): Instalada junto ao pé da tubulação de sucção, é uma válvula unidirecional que só permite a passagem do fluido no sentido ascendente e que, com o desligamento do motor de acionamento, mantém a carcaça da bomba e a tubulação de sucção cheia do fluido recalcado, impedindo o seu retorno ao reservatório de sucção. Diz-se, nestas circunstâncias, que a válvula de pé com crivo mantem a bomba escorvada (carcaça e tubulação de sucção cheia de fluido).

Imagem ilustrativa.

Redução excêntrica (RE): Redução que liga o final da tubulação de succão à boca de entrada da bomba, de diâmetro, normalmente, menor. Com a excentricidade visa-se evitar a formação de bolsas de ar, à entrada da bomba, o que estrangula a secção de entrada e dificulta o funcionamento normal da bomba. São dispensáveis em instalações com linhas de sucção de pequeno diâmetro, acontecendo, normalmente, em instalações com diâmetro de sucção superiores a 4" (4 polegadas).

- Válvula de retenção (VR): Válvula também unidirecional instalada à saída da bomba e antes do registro de recalque.
- Tem as seguintes funções:
 - Impedir que o peso da coluna de recalque seja sustentado pelo corpo da bomba, pressionando-o e provocando vazamento no mesmo;
 - Impedir que, com um defeito na válvula de pé e entrando a tubulação de recalque por baixo do reservatório superior, haja o refluxo do fluido, fazendo a bomba funcionar como turbina e assim, com o disparo do rotor, atingir velocidades perigosas, provocando danos na bomba;
 - Possibilitar, através de um dispositivo chamado "by-pass" escorva automática da bomba, evidentemente, após se ter sanado o defeito da válvula de pé que provocou a perda da escorva.

- Registro de recalque (R): Acessório destinado a controlar a vazão recalcada, através do seu fechamento e abertura.
- Deve vir logo após a válvula de retenção e ten diferentes sendo, entretanto, o registro de gav mais comum.

2.1/2"

Princípio de funcionamento das bombas centrífugas

- Imagine-se um vaso cilíndrico aberto, parcialmente cheio de água e capaz de, acionado por fonte externa, girar em torno do seu eixo de simetria;
- Esse giro em torno de seu eixo de simetria, atingido o equilíbrio dinâmico, faz com que o vaso fique dotado de uma velocidade angular ω constante:

$$\omega = \frac{\pi n}{30}$$

- Sabe-se que, ao assim acontecer, a água sobe pelas paredes do vaso, compondo sua superfície livre um parabolóide de revolução;
- No plano cartesiano, um ponto M (x, v) da parábola obedece a equação:

$$y = h_0 + \frac{\omega^2 x^2}{2g}$$

• Atingido o equilíbrio dinâmico, a pressão em pontos situados junto ao fundo do vaso será dada por: $p=p_0+\gamma y$

- Quando a velocidade angular c for suficientemente grande, a água sobe tanto pelas paredes do vaso, a ponto de descobrir sua região central;
- A experiência nos revela, então, que:
- Há sobrepressão junto à periferia do vaso (pontos para os quais, segundo a equação (1), y é grande porque o termo $\frac{\omega^2 x^2}{2g}$);
- Há depressão junto ao centro do vaso (pontos para os quais, segundo a equação (1), y é negativo porque h_0 é negativo e $\frac{\omega^2 x^2}{2g}$ é pequeno).

- Fato posto, construiremos agora um vaso cilíndrico fechado e totalmente cheio de água, vaso esse passível de ligação por tubulações a dois reservatórios: um, inferior, e ao qual se liga pelo centro e outro, superior e ao qual se liga pela periferia;
- Ao acionar o vaso girante (rotor); a depressão central aspira o fluido que, sob a ação da força centrífuga, ganha, na periferia, a sobre pressão que o recalca para o reservatório superior; e
- Teremos, assim, criado a bomba centrífuga e explicado o seu princípio de funcionamento.

Altura manométrica

Altura manométrica

- Define-se a altura manométrica de um sistema elevatório como sendo a quantidade de energia que deve ser absorvida por 1 (um) quilograma de fluido que atravessa a bomba;
- Energia esta necessária para que o mesmo vença:
 - O desnível da instalação;
 - A diferença de pressão entre os 2 (dois) reservatórios (caso exista); e
 - A resistência natural que as tubulações e acessórios oferecem ao escoamento dos fluidos (perda de carga).

$$H_{man} = H_o + \frac{p_r - p_s}{\gamma} + \Delta H$$

- H_{man} (ou H): altura manométrica, em m;
- H_o : desnível geométrico, em m
- p_r . Pressão no reservatório de recalque, em ${
 m kg/m^2}$
- p_s : pressão no reservatório de sucção, em ${
 m kg/m^2}$
- γ : peso específico do fluido, em kg/m³
- ΔH : perda de carga nas tubulações e acessórios, em m.

Quando ambos os reservatórios são abertos e sujeitos, portanto, à pressão atmosférica

$$H_{man} = H_o + \Delta H$$

$$H_{man} = \left(\frac{p_2}{\gamma} + \frac{v_2^2}{2g} + y\right) - \left(\frac{p_1}{\gamma} + \frac{v_1^2}{2g} + 0\right)$$

$$M = \left(\frac{p_2}{\gamma}\right)_{abs} - \left(\frac{p_{atm}}{\gamma}\right)_{abs} \qquad V = \left(\frac{p_{atm}}{\gamma}\right)_{abs} - \left(\frac{p_1}{\gamma}\right)_{abs}$$

$$M + V = \left(\left(\frac{p_2}{\gamma} \right)_{abs} + \frac{v_2^2}{2g} + y \right) - \left(\left(\frac{p_1}{\gamma} \right)_{abs} + \frac{v_1^2}{2g} + 0 \right)$$

$$H_{man} = \left(\frac{p_2}{\gamma}\right)_{abs} - \left(\frac{p_1}{\gamma}\right)_{abs} + y = M + V + y$$

Potência necessária ao acionamento das bombas

Potência necessária ao acionamento das bombas

- O trabalho útil realizado por uma bomba centrífuga é o produto do peso do líquido deslocado pela altura desenvolvida;
- Esse trabalho na unidade de tempo é a potência hidráulica, expressa pelas fórmulas: $\gamma Q H_{man}$

• *N*: Potência, em W;

- γ : peso específico, em N/m³
- Q. Vazão volumétrica, em m³/s
- H_{man} : altura manométrica, em m; e
- η : eficiência da bomba, em %.

Seleção de de bombas

Seleção de bombas

• A perda de carga na instalação consiste na resistência oferecida pelas tubulações e acessórios (que são rugosos) ao escoamento do fluido (que é viscoso);

• Pode ser:- Contínua: perda de carga nos trechos retos de canalizações.

• Localizada ou acidental: perda de carga nos acessórios das tubulações.

(TUBULAÇÕES DE FERRO FUNDIDO E AÇO)

Comprimentos Equivalentes a Perdas Localizadas

(Em Metros de Canalização Retilínea)

DIÂM		Cotovelo 90° Raio Lango	Cotovelo 90° Raio Médio	Cotovele 90° Raio Curto	Colovela 43°	Pariga SO. Calsa	Curve 90° %=1	Curva 45°	Entrada Normal	Entrada de Borda	Registro Geveta Aberta	Registro Globo Aberto	Registro Ángulo Aberto	TÊ Passagem Direte	TĒ Saida de Lada	TÊ Selda Skateral	Válvula de Pa e Crive	Saide de Ceneli- -zagão	Tipo	
mm	pol.	V	U	D		0	0	\Box			â	ð	8	†	争	\$			Ð	-£7
13	1/2	0,3	0,4	0,5	0,2	0,2	0,3	0,2	0,2	0,4	0,1	4,9	2,6	0,3	1,0	1,0	3,6	0,4	1,1	₹,●
19	*4	0,4	0,6	0,7	0,3	0,3	0,4	0,2	0,2	0,5	0,1	6,7	3,6	0,4	1,4	1,4	5,6	0,5	1,8	2,4
25	44	0,8	0,7	0,8	0,4	0,3	0,8	0,2	0,3	0,7	0,2	8,2	46	0,3	1,7	1,7	7,3	0,7	2,1	3,2
32	14	0,7	0,9	1,1	0.5	0,4	0,6	0,3	0,4	0,9	0,2	(1,3	3,6	0,7	2,3	2,3	10,0	0,9	2,7	4,0
36	ا ا	0,9	1,1	1,3	0,6	0,5	0,7	0,3	0,5	1,0	0,3	13,4	4,7	0,9	2,0	2,8	11,6	1,0	3,2	4,5
50	2	1,1	1,4	1,7	0,8	0,6	0,9	0,4	0,7	1,5	0,4	17,4	6,9	G1	3,5	3,5	14,0	1,5	4,2	6,4
63	2 /2	1,3	1,7	2,0	O,9	0,0	1,0	0,5	0,9	1,9	0,4	2 1,0	10,0	1,3	4,3	4,3	17,0	1,9	5,2	1,0
75	3	1,6	2,1	2,5-	1,2	1,0	1,3	0,6	1,1	2,2	0,5	26,0	13,0	1,4	5,2	3,2	20,0	2,2	6,3	9,7
100	4	2,1	2,0	3,4	1,5	1,3	1,6	0,7	1,6	3,2	0,7	34,0	17,0	2,1	6,7	0,7	23,0	3,2	8,4	12,9
125	5	2,7	3,7	4,2	i ,9	ŧ,	2,1	0,9	2,0	4,0	0,9	43,0	21,0	2,7	8,4	8,4	30,0	4,0	10,4	1,01
150	6	3,4	4,3	4,9	2,3	1,9	2,5	1,1	2,5	5,0	1,1	51,0	26,0	3,4	10,0	10,0	36,0	5,0	12,5	19,3
200	8	4,3	5,5	4,4	3,0	2,4	3,3	1,5	3,5	6,0	1,4	67,0	34,0	4,3	13,0	13,0	52,0	6,0	18,0	25,0
250	10	3,5	6,7	7,9	3,8	3,0	4,1	1,0	4,5	7,5	1,7	05, 0	43,0	5,5	16,0	16,0	0,28	7,5	20,0	32,0
300	12	6,1	7,9	9,5	4,0	3,6	4,0	2,2	5,5	9,0	2,1	102,0	51,0	4, I	19,0	19,0	78,0	9,0	24,0	36,0
350	14	7,2	9,5	10.5	5,8	4,4	3,4	2,5	4,2	11,0	2,4	120,0	60,0	7,3	22,0	22,0	90,0	11,0	20,0	45,0

- Influem de uma forma direta na perda de carga:
 - A natureza do fluido;
 - O estado superficial da parede e, portanto, o material de que é feito o tubo;
 - O diâmetro da tubulação;
 - A natureza do regime de escoamento (laminar ou turbulento);
 - O comprimento da tubulação;

- Além desses fatores, podemos considerar ainda:-
 - O material empregado na fabricação do tubo;
 - O estado superficial (rugosidade) da parede é função do material empregado;
 - O processo de fabricação do tubo: um tubo sem costura oferece menos resistência do que um tubo com costura;
 - Existência de revestimentos especiais: são empregados visando eliminar ou minorar o efeito da corrosão;
 - O estado de conservação das paredes: um tubo que sofre uma limpeza periódica apresenta melhores condições.

Perda de carga contínua

• Uso conjugado da fórmula de Darcy-Weissbacl Moody.

$$\Delta H = f \frac{L}{D} \frac{V^2}{2g}$$

- ΔH : perda de carga, em m;
- L: comprimento do tubo, em m.
- *D* diâmetro do tubo, em m;
- f :coeficiente de atrito (coeficienteque depende do REGIME DEESCOAMENTO (LAMINAR OU TURBULENTO) e da RUGOSIDADE RELATIVA DA PAREDE DO CONDUTO);
- g: aceleração da gravidade, em m/s²; e
- V velocidade média de escoamento, em m/s².

• Esta velocidade média de escoamento, segundo a equação da continuidade aplicada a condutos circulares, é dada por:

$$Q = VA :: V = \frac{4Q}{\pi D^2}$$

• *V*: velocidade do fluido em m/s²;

• *Q*: vazão volumétrica do fluido em m/s²

• *D*: diâmetro da tubulação em m.

- Para determinação do coeficiente de atrito (f), devemos considerar:
- O escoamento é laminar (Re < 2000);
- Quando o escoamento for laminar, o coeficiente de atrito fé dado diretamente por:

$$Re = \frac{\rho VD}{\mu} = \frac{VD}{v} \qquad f = \frac{64}{Re}$$

- *Re* : número adimensional de Reynolds;
- ρ : massa específica do fluido kg/m³;
- V velocidade média de escoamento, em m/s²;
- *D* diâmetro do tubo, em m;
- μ : viscosidade dinâmica do fluido: Pa.s;
- v: viscosidade cinemática do fluido: m^2/s

- O escoamento é turbulento (Re > 4000);
- Quando o escoamento for turbulento, o coeficiente de atrito f, além de ser função do regime de escoamento, depende também da rugosidade relativa da tubulação.;

$$\frac{\epsilon}{D} = \frac{K}{D}$$

• A título de informação: ϵ ou K - rugosidade absoluta

RUGOSIDADE ABS	OLUTA
MATERIAL	K ou ϵ (em mm)
Ferro fundido novo Aço galvanizado Aço comercial Cobre ou vidro (2000) Aço laminado novo Concreto centrifugado Cimento alisado Ferro fundido asfaltado Aço asfaltado Aço soldado liso Aço ribitado	0,26 a 1,00 0,15 0,046 0,0015 0,007 0,30 a 0,80 0,12 a 0,26 0,04 0,10 0,04

Perda de carga localizada

Cálculo da Perda de carga localizada

- Método direto;
- A perda de carga pode ser calculada diretamente por:

$$\Delta H_l = K \frac{V^2}{2g}$$

- Onde:
 - ΔH_l : perda de carga localizada em m;
 - *K*: característica do acessório;
 - V velocidade média de escoamento, em m/s²; e
 - g: aceleração da gravidade, em m/s²; e
- A perda de carga global de todos os acessórios é então:

$$\Delta H_l = \left(\sum K\right) \frac{V^2}{2g}$$

Cálculo da Perda de carga localizada

PERDAS DE CARGA LOCALIZADAS

 $\triangle H = K - \frac{V^2}{2g}$

VALORES APROXIMADOS DE K

PEÇA	K	PEÇA	K	
AMPLIAÇÃO GRADUAL	0,30*	JUNÇÃO	0,40	
BOCAIS	2,75	MEDIDOR VENTURI	2,50 "	
COMPORTA ABERTA	1,00	REDUÇÃC GRADUAL	0,15*	
CONTROLADOR DE VAZÃO	2,50	REGISTRO DE ÂNGULO ABERTO	5,00	
COTOVELO DE 90°	0,90	REGISTRO DE GAVETA ABERTO	0,20	
COTOVELO DE 45°	0,40	REGISTRO DE GLOBO ABERTO	10,00	
CRIVO	0,75	SAIDA DE CANALIZAÇÃO	1,00	
CURVA DE 90°	0,40	TE PASSAGEM DIRETA	0,60	
CURVA DE 45°	0,20	TESAIDA DE LADO	1,30	
CURVA DE 22,5°	0.10	TE SAIDA BILATERAL	1,80	
ENTRADA NORMAL EM CANALIZAÇÃO	0.50	VÁLVULA DE PÉ	1,75	
ENTRADA DE BORCA	1.00	VÁLVULA DE RETENÇÃO	2,50	
EXISTÊNCIA DE PEQUENA DERIVAÇÃO	0.03	VELOCIDADE	1,00	

^{*} COM BASE NA VELOCIDADE MAIOR (SEÇÃO MENCR)

^{*} RELATIVA A VELOCIDADE NA CANALIZAÇÃO

Cálculo da Perda de carga localizada

Bibliografia

Bibliografia

CARVALHO, Djalma Francisco. **Instalações elevatórias bombas**. Universidad Catolica Minas Gerais, 1979.

MACINTYRE, Archibald Joseph. Bombas e instalações de bombeamento. **Rio de Janeiro: Guanabara Dois**, 1982.

ÇENGEL, Yunus A.; BOLES, Michael A.; BUESA, Ignacio Apraiz. termodinâmica. São Paulo: McGraw-Hill, 2006.

G. Van Wylen, C. Borgnakke, and R. E. Sonntag. Fundamentos da Termodinâmica. Editora Edigar Blucher, 8^a edição, 2013.

MORAN, Michael J.; SHAPIRO, Howard N.; BOETTNER, Daisie D. Princípios de termodinâmica para engenharia. Grupo Gen-LTC, 2000.

DSc. Eng. Samuel Moreira Duarte Santos CREA 106478D

samuelmoreira@id.uff.br

(21) 980031100

https://www.linkedin.com/in/samuel-moreira-a3669824/

http://lattes.cnpq.br/8103816816128546