附件 3:

福州大学第二十三届数学竞赛大纲

为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现"福州大学数学竞赛"的目标,特制订本大纲。

一、竞赛的目的和参赛对象

竞赛目的:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

参赛对象:大学本科一年级至三年级的在校大学生。

- 二、竞赛的内容
- "福州大学数学竞赛"分为数学专业组、非数学专业 A 组和非数学专业 B 组。
- (一)数学专业组竞赛内容为大学本科数学专业基础课的教学内容,其中数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:
 - I、数学分析部分

一、集合与函数

- 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套 定理、聚点定理、有限覆盖定理.
- 2. \mathbf{R}^2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 \mathbf{R}^2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在 \mathbf{R}^n 上的推广.
- 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性 定理,初等函数以及与之相关的性质.

二、极限与连续

- 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).
- 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限 $\lim(1+\frac{1}{-})^n=e$ 及其应用.
- 3. 一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和 Cauchy 收敛准则,两个重要极限 $\lim_{x\to 0} \frac{\sin x}{x} = 1$, $\lim_{x\to \infty} (1+\frac{1}{x})^x = e$ 及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号 0 与 o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.
- 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).

三、一元函数微分学

- 1. 导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.
 - 2. 微分学基本定理: Fermat 定理, Rolle 定理, Lagrange 定理, Cauchy 定理, Taylor 公

式(Peano 余项与 Lagrange 余项).

3. 一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.

四、一元函数积分学

- 1. 原函数与不定积分、不定积分的基本计算方法 (直接积分法、换元法、分部积分法)、有理函数积分: $\int R(\cos x, \sin x) dx$ 型, $\int R(x, \sqrt{ax^2 + bx + c}) dx$ 型.
 - 2. 定积分及其几何意义、可积条件(必要条件、充要条件: $\sum \omega_i \Delta x_i < \varepsilon$)、可积函数类.
- 3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.
- 4. 无限区间上的广义积分、Canchy 收敛准则、绝对收敛与条件收敛、 f(x) 非负时 $\int_a^{+\infty} f(x)dx$ 的收敛性判别法(比较原则、柯西判别法)、Abel 判别法、Dirichlet 判别法、无界函数广义积分概念及其收敛性判别法.
- 5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.

五、无穷级数

1. 数项级数

级数及其敛散性,级数的和,Cauchy 准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的 Leibniz 判别法;一般项级数的绝对收敛、条件收敛性、Abel 判别法、Dirichlet 判别法.

2. 函数项级数

函数列与函数项级数的一致收敛性、Cauchy 准则、一致收敛性判别法(M-判别法、Abel 判别法、Dirichlet 判别法)、一致收敛函数列、函数项级数的性质及其应用.

3. 幂级数

幂级数概念、Abel 定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor 级数、Maclaurin 级数.

- 4. Fourier 级数
- 三角级数、三角函数系的正交性、 2π 及 2I 周期函数的 Fourier 级数展开、 Beseel 不等式、Riemanm-Lebesgue 定理、按段光滑函数的 Fourier 级数的收敛性定理.

Ⅱ、高等代数部分

一、多项式

- 1. 域与一元多项式的概念
- 1. 多项式整除、带余除法、最大公因式、辗转相除法
- 3. 互素、不可约多项式、重因式与重根.
- 4. 多项式函数、余数定理、多项式的根及性质.
- 5. 代数基本定理、复系数与实系数多项式的因式分解.
- 6. 本原多项式、Gauss 引理、有理系数多项式的因式分解、Eisenstein 判别法、有理数

域上多项式的有理根.

7. 多元多项式及对称多项式、韦达(Vieta)定理.

二、行列式

- 1.n 级行列式的定义.
- 2. n 级行列式的性质.
- 3. 行列式的计算.
- 4. 行列式按一行(列)展开.
- 5. 拉普拉斯(Laplace)展开定理.
- 6. 克拉默 (Cramer) 法则.

三、线性方程组

- 1. 高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.
- 2.n 维向量的运算与向量组.
- 3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.
- 4. 向量组的极大无关组、向量组的秩.
- 5. 矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.
- 6. 线性方程组有解判别定理、线性方程组解的结构.
- 7. 齐次线性方程组的基础解系、解空间及其维数

四、矩阵

- 1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.
- 2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.
- 3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.
- 4. 分块矩阵及其运算与性质.
- 5. 初等矩阵、初等变换、矩阵的等价标准形.
- 6. 分块初等矩阵、分块初等变换.

五、双线性函数与二次型

- 1. 双线性函数、对偶空间
- 2. 二次型及其矩阵表示.
- 3. 二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.
- 4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.
- 5. 正定、半正定、负定二次型及正定、半正定矩阵

六、线性空间

- 1. 线性空间的定义与简单性质.
- 2. 维数, 基与坐标.
- 3. 基变换与坐标变换.
- 4. 线性子空间.
- 5. 子空间的交与和、维数公式、子空间的直和.

七、线性变换

1. 线性变换的定义、线性变换的运算、线性变换的矩阵.

- 2. 特征值与特征向量、可对角化的线性变换.
- 3. 相似矩阵、相似不变量、哈密尔顿-凯莱定理.
- 4. 线性变换的值域与核、不变子空间.
- 5. 线性变换的 Jordan 标准型和 Frobenius 标准型.

Ⅲ、解析几何部分

一、向量与坐标

- 1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.
- 2. 坐标系的概念、向量与点的坐标及向量的代数运算.
- 3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.
- 4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.
- 5. 应用向量求解一些几何、三角问题.

二、轨迹与方程

- 1. 曲面方程的定义: 普通方程、参数方程(向量式与坐标式之间的互化)及其关系.
- 2. 空间曲线方程的普通形式和参数方程形式及其关系.
- 3. 建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.
- 4. 球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.

三、平面与空间直线

- 1. 平面方程、直线方程的各种形式,方程中各有关字母的意义.
- 2. 从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.
- 3. 根据平面和直线的方程, 判定平面与平面、直线与直线、平面与直线间的位置关系.
- 4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.

四、二次曲面

- 1. 柱面、锥面、旋转曲面的定义, 求柱面、锥面、旋转曲面的方程.
- 2. 椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.
 - 3. 单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.
 - 4. 根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.

五、二次曲线的一般理论

- 1. 二次曲线的渐进方向、中心、渐近线.
- 2. 二次曲线的切线、二次曲线的正常点与奇异点.
- 3. 二次曲线的直径、共轭方向与共轭直径.
- 4. 二次曲线的主轴、主方向,特征方程、特征根.
- 5. 化简二次曲线方程并画出曲线在坐标系的位置草图.

(二) 非数学专业 A 组竞赛内容为大学本科理工专业基础课的教学内容,具体内容如下:

一、函数、极限、连续

- 1. 函数的概念及表示法、简单应用问题的函数关系的建立.
- 2. 函数的性质: 有界性、单调性、周期性和奇偶性.
- 3. 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.
- 4. 数列极限与函数极限的定义及其性质、函数的左极限与右极限.
- 5. 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.
- 6. 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.
- 7. 函数的连续性(含左连续与右连续)、函数间断点的类型.
- 8. 连续函数的性质和初等函数的连续性.
- 9. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).

二、一元函数微分学

- 1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、 平面曲线的切线和法线.
 - 2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.
 - 3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.
 - 4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的 n 阶导数.
 - 5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.
 - 6. 洛必达(L'Hospital)法则与求未定式极限.
- 7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.
 - 8. 函数最大值和最小值及其简单应用.
 - 9. 弧微分、曲率、曲率半径.

三、一元函数积分学

- 1. 原函数和不定积分的概念.
- 2. 不定积分的基本性质、基本积分公式.
- 3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.
 - 4. 不定积分和定积分的换元积分法与分部积分法.
 - 5. 有理函数、三角函数的有理式和简单无理函数的积分.
 - 6. 广义积分.
- 7. 定积分的应用: 平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.

四、常微分方程

1. 常微分方程的基本概念: 微分方程及其解、阶、通解、初始条件和特解等.

- 2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.
- 3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: $y^{(n)} = f(x)$, y'' = f(x, y'), y'' = f(y, y').
 - 4. 线性微分方程解的性质及解的结构定理.
 - 5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.
- 6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积
 - 7. 欧拉(Euler)方程.
 - 8. 微分方程的简单应用

五、向量代数和空间解析几何

- 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.
- 2. 两向量垂直、平行的条件、两向量的夹角.
- 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.
- 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.
- 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.
- 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.
 - 7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.

六、多元函数微分学

- 1. 多元函数的概念、二元函数的几何意义.
- 2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.
- 3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.
- 4. 多元复合函数、隐函数的求导法.
- 5. 二阶偏导数、方向导数和梯度.
- 6. 空间曲线的切线和法平面、曲面的切平面和法线.
- 7. 二元函数的二阶泰勒公式.
- 8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.

七、多元函数积分学

- 1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).
 - 2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.
 - 3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.
 - 4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.
 - 5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.

6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、 弧长、质量、质心、转动惯量、引力、功及流量等)

八、无穷级数(本次竞赛暂不考察)

- 1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.
- 2几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.
 - 3. 任意项级数的绝对收敛与条件收敛.
 - 4. 函数项级数的收敛域与和函数的概念.
 - 5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.
- 6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.
 - 7. 初等函数的幂级数展开式.
- 8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-1,1]上的傅里叶级数、函数在[0,1]上的正弦级数和余弦级数.

(三) 非数学专业 B 组竞赛内容为大学本科文科专业基础课的教学内容,具体内容如下:

一、函数、极限、连续

- 1. 函数的概念及表示法、简单应用问题的函数关系的建立.
- 2. 函数的性质:有界性、单调性、周期性和奇偶性.
- 3. 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.
- 4. 数列极限与函数极限的定义及其性质、函数的左极限与右极限.
- 5. 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.
- 6. 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.
- 7. 函数的连续性(含左连续与右连续)、函数间断点的类型.
- 8. 连续函数的性质和初等函数的连续性.
- 9. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).

二、一元函数微分学

- 1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、 平面曲线的切线和法线.
 - 2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.
 - 3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.
 - 4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的 n 阶导数.
 - 5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.
 - 6. 洛必达(L'Hospital)法则与求未定式极限.
- 7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.
 - 8. 函数最大值和最小值及其简单应用.
 - 9. 弧微分、曲率、曲率半径.

三、一元函数积分学

- 1. 原函数和不定积分的概念.
- 2. 不定积分的基本性质、基本积分公式.
- 3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.
 - 4. 不定积分和定积分的换元积分法与分部积分法.
 - 5. 有理函数、三角函数的有理式和简单无理函数的积分.
 - 6. 广义积分.
- 7. 定积分的应用: 平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.

四、常微分方程

1. 常微分方程基本概念: 微分方程及其解、阶、通解、初始条件和特解等.

- 2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.
- 3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: $y^{(n)} = f(x)$, y'' = f(x, y'), y'' = f(y, y')
 - 4. 线性微分方程解的性质及解的结构定理.
 - 5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.
- 6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积
 - 7. 微分方程的简单应用.

五、空间解析几何

- 1. 曲面方程和空间曲线方程的概念、平面方程、直线方程.
- 2. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.
 - 3. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.

六、多元函数微分学

- 1. 多元函数的概念、二元函数的几何意义.
- 2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.
- 3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.
- 4. 多元复合函数、隐函数的求导法.
- 5. 二阶偏导数.
- 6. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.

七、多元函数积分学

二重积分的概念及性质、二重积分的计算(直角坐标、极坐标).

八、无穷级数

- 1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.
- 2. 几何级数与 p 级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨 (Leibniz)判别法.
 - 3. 任意项级数的绝对收敛与条件收敛.
 - 4. 函数项级数的收敛域与和函数的概念.
 - 5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.
- 6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.
 - 7. 初等函数的幂级数展开式.