

0113611 Computer Hardware

Digital Logic Review

Textbook References

- Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, 3rd Edition
- M. M. Mano and C. R. Kime. (2008) Logic and Computer Design Fundamentals, 4th Edition. Prentice Hall. (ISBN: 0-13-600158-0).
- OR your undergraduate digital logic textbook
- Adapted from lecture notes at ece.gmu.edu/.../ECE/ECE545

Basic Logic Review

Basic Concepts

- Simple logic gates
 - AND → 0 if one or more inputs is 0
 - OR → 1 if one or more inputs is 1
 - NOT
 - NAND = AND + NOT
 - 1 if one or more inputs is 0
 - NOR = OR + NOT
 - 0 if one or more input is 1
 - XOR implements exclusive-OR function
- NAND and NOR gates require fewer transistors than AND and OR in standard CMOS
- Functionality can be expressed by a truth table
 - A truth table lists output for each possible input combination

Basic Logic Gates

AND gate

OR gate

NOT gate

Logic symbol

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

A	В	F
0	0	0
0	1	1
1	0	1
_1	1	1

A	F
0	1
1	0

NAND gate

NOR gate

XOR gate

Logic symbol

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

Complete Set of Gates

- Complete sets
 - A set of gates is complete
 - if we can implement any logical function using only the type of gates in the set
 - Some example complete sets

 - {AND, NOT}
 - {OR, NOT}
 - {NAND}
 - {NOR}
 - Minimal complete set
 - A complete set with no redundant elements.

NAND as a Complete Set

Proving NAND gate is universal

Logic Functions

- Logical functions can be expressed in several ways:
 - Truth table
 - Logical expressions
 - Graphical form
 - HDL code
- Example:
 - Majority function
 - Output is one whenever majority of inputs is 1
 - We use 3-input majority function

Logic Functions (cont'd)

Truth table

Α	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logical expression form

$$F = AB + BC + AC$$

Graphical schematic form

Boolean Algebra

Boolean identities

Name	AND version	OR version
Identity	$x \cdot 1 = x$	x + 0 = x
Complement	$x \cdot x' = 0$	x + x' = 1
Commutative	$x \cdot y = y \cdot x$	x + y = y + x
Distribution	$x \cdot (y+z) = xy+xz$	$x + (y \cdot z) =$
		(x+y)(x+z)
Idempotent	$x \cdot x = x$	$\chi + \chi = \chi$
Null	x.0 = 0	x + 1 = 1

Boolean Algebra (cont'd)

Boolean identities (cont'd)

Name	AND version	OR version
Involution	x = (x')'	
Absorption	$x \cdot (x+y) = x$	$x + (x \cdot y) = x$
Associative	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	x + (y + z) =
		(x + y) + z
de Morgan	$(x \cdot y)' = x' + y'$	$(x + y)' = x' \cdot y'$
(de Morgan's la	aw in particular is ve	ry useful)

Majority Function Using Other Gates

- Using NAND gates
 - Get an equivalent expression

$$AB+CD=(AB+CD)"$$

Using de Morgan's law

$$A B + C D = ((A B)' \cdot (C D)')'$$

- Can be generalized
 - Example: Majority function

$$A B + B C + AC = ((A B)' \cdot (B C)' \cdot (AC)')'$$

Majority Function Using Other Gates (cont'd)

Majority function

Karnaugh Maps

<i>J</i>	x ₁	x_2	x_3	
	0	0	0	m_0
	0	0	1	m_1
	0	1	0	m_2
	0	1	1	m_3
	1	0	0	m_4
	1	0	1	m_5
	1	1	0	m_6
	1	1	1	m_7

(a) Truth table

(b) Karnaugh map

An example of three-variable Karnaugh maps

Numbers

Decimal	Binary	Octal	Hexadecimal
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	04	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	10	08
09	01001	11	09
10	01010	12	0A
11	01011	13	0B
12	01100	14	0C
13	01101	15	0D
14	01110	16	0E
15	01111	17	0F
16	10000	20	10
17	10001	21	11
18	10010	22	12

Table 5.1	Interpretation of four-bit signed integers.		
$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	- 7	-8
1001	-1	-6	- 7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	- 6	-1	-2
1111	- 7	-0	-1

Combinational Logic Building Blocks

Multiplexers

log₂n selection inputs

- multiplexer
 - n binary inputs (binary input = 1-bit input)
 - log₂n binary selection inputs
 - 1 binary output
 - Function: one of n inputs is placed onto output
 - Called n-to-1 multiplexer

2-to-1 Multiplexer

(a) Graphical symbol

(b) Truth table

(c) Sum-of-products circuit

(d) Circuit with transmission gates

4-to-1 Multiplexer

s_1	s_0	f
0	0	<i>w</i> ₀
0	1	w_1
1	0	<i>W</i> ₂
1	1	w ₃

(a) Graphic symbol

(b) Truth table

Source: Brown and Vranesic

Multiplexer

Using 2-to-1 multiplexers to build a 4-to-1 multiplexer.

A 16-to-1 multiplexer.

Decoders

Decoder

- n binary inputs
- 2ⁿ binary outputs
- Function: decode encoded information
 - If enable=1, one output is asserted high, the other outputs are asserted low
 - If enable=0, all outputs asserted low
- Often, enable pin is not needed (i.e. the decoder is always enabled)
- Called n-to-2ⁿ decoder
 - Can consider n binary inputs as a single n-bit input
 - Can consider 2ⁿ binary outputs as a single 2ⁿ-bit output
- Decoders are often used for RAM/ROM addressing

2-to-4 Decoder

En	<i>W</i> ₁	W_0	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	<i>y</i> ₀
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0
0	-	-	0	0	0	0

(a) Truth table

(b) Graphical symbol

Decoders

A 4-to-16 decoder built using a decoder tree

Demultiplexers

log₂n selection inputs

- Demultiplexer
 - 1 binary input
 - n binary outputs
 - log₂n binary selection inputs
 - Function: places input onto one of n outputs, with the remaining outputs asserted low
 - Called **1-to-n** demultiplexer
- Closely related to decoder
 - Can build 1-to-n demultiplexer from \log_2 n-to-n decoder by using the decoder's enable signal as the demultiplexer's input signal, and using decoder's input signals as the demultiplexer's selection input signals.

1-to-4 Demultiplexer

(a) Truth table

Encoders

- Encoder
 - 2ⁿ binary inputs
 - n binary outputs
 - Function: encodes information into an n-bit code
 - Called 2ⁿ-to-n encoder
 - Can consider 2ⁿ binary inputs as a single 2ⁿ-bit input
 - Can consider n binary output as a single n-bit output
- Encoders only work when exactly one binary input is equal to 1

4-to-2 Encoder

<i>W</i> ₃	<i>W</i> ₂	<i>w</i> ₁	w_0	<i>y</i> ₁	<i>y</i> ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

(a) Truth table

Priority Encoders

- Priority Encoder
 - 2ⁿ binary inputs
 - n binary outputs
 - 1 binary "valid" output
 - Function: encodes information into an n-bit code based on priority of inputs
 - Called **2**ⁿ**-to-n** priority encoder
- Priority encoder allows for multiple inputs to have a value of '1', as it encodes the input with the highest priority (MSB = highest priority, LSB = lowest priority)
 - "valid" output indicates when priority encoder output is valid
 - Priority encoder is more common than an encoder

4-to-2 Priority Encoder

w ₃	W_2	W_1	W_0	<i>y</i> ₁	<i>y</i> ₀	Z
0	0	0	0	-	_	0
0	0	0	1	0	0	1
0	0	1	-	0	1	1
0	1	-	_	1	0	1
1	-	-	-	1	1	1

Single-Bit Adders

- Half-adder
 - Adds two binary (i.e. 1-bit) inputs A and B
 - Produces a sum and carryout
 - Problem: Cannot use it alone to build larger adders
- Full-adder
 - Adds three binary (i.e. 1-bit) inputs A, B, and carryin
 - Like half-adder, produces a *sum* and *carryout*
 - Allows building M-bit adders (M > 1)
 - Simple technique
 - Connect C_{out} of one adder to C_{in} of the next
 - These are called ripple-carry adders
 - Shown in next section

Single-Bit Adders (cont'd)

(a) Half-adder truth table and implementation

Α	В	C_{in}	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) Full-adder truth table and implementation

Adders

A decomposed implementation of the full-adder circuit

Multi-Bit Combinational Logic Building Blocks

Multi-bit 4-to-1 Multiplexer

- When drawing schematics, can draw multi-bit multiplexers
- Example: 4-to-1 (8 bit) multiplexer
 - 4 inputs (each 8 bits)
 - 1 output (8 bits)
 - 2 selection bits
- Can also have multi-bit 2-to-1 muxes, 16-to-1 muxes, etc.

4-to-1 (8-bit) Multiplexer

A 4-to-1 (8-bit) multiplexer is composed of eight 4-to-1 (1-bit) multiplexers

16-bit Unsigned Adder

Multi-Bit Ripple-Carry Adder

A 16-bit ripple-carry adder is composed of 16 (1-bit) full adders

Inputs: 16-bit A, 16-bit B, 1-bit carryin (set to zero in the figure below)

Outputs: 16-bit sum R, 1-bit overflow

Called a ripple-carry adder because carry ripples from one full-adder to the next.

Critical path is 16 full-adders.

Adder/subtractor unit

Comparator

- Used two compare two M-bit numbers and produce a flag (M >1)
 - Inputs: M-bit input A, M-bit input B
 - Output: 1-bit output flag
 - 1 indicates condition is met
 - 0 indicates condition is not met
 - Can compare: >, >=, <, <=, =, etc.

Example: 4-bit comparator (A = B)

Tri-state Buffer

(a) A tri-state buffer

	e	X	f
•	0	0	Z
	0	1	Z
	1	0	0
	1	1	1

(c) Truth table

(b) Equivalent circuit

Four types of Tri-state Buffers

Sequential Logic Building Blocks

Introduction to Sequential Logic

- Output depends on current as well as past inputs
 - Depends on the history
 - Have "memory" property
- Sequential circuit consists of
 - Combinational circuit
 - Feedback circuit
 - Past input is encoded into a set of state variables
 - Uses feedback (to feed the state variables)
 - Simple feedback
 - Uses flip flops

Introduction (cont'd)

Main components of a typical synchronous sequential circuit (synchronous = uses a clock to keep circuits in lock step)

State-Holding Memory Elements

- Latch versus Flip Flop
 - Latches are level-sensitive: whenever clock is high, latch is transparent
 - Flip-flops are edge-sensitive: data passes through (i.e. data is sampled) only on a rising (or falling) edge of the clock
 - Latches cheaper to implement than flip-flops
 - Flip-flops are easier to design with than latches
- In this course, primarily use D flip-flops

Latches and Flip- Flops

Clk	S	R	Q(t+1)
0	x	х	Q(t) (no change)
1	0	0	Q(t) (no change)
1	0	1	0
1	1	0	1
1	1	1	x
			I

(a) Circuit

(b) Characteristic table

(c) Graphical symbol

(d) Graphical symbol

D Latch vs. D Flip-Flop

Latch transparent when clock is high

"Samples" D on rising edge of clock

D Flip-Flop with Asynchronous Preset and Clear

(b) Graphical symbol

- Bubble on the symbol means "active-low"
 - When preset = 0, preset Q to 1
 - When preset = 1, do nothing
 - When clear = 0, clear Q to 0
 - When clear = 1, do nothing
- "Preset" and "Clear" also known as "Set" and "Reset" respectively
- In this circuit, preset and clear are asynchronous
 - Q changes immediately when preset or clear are active, regardless of clock

D Flip-Flop with Synchronous Clear

- Asynchronous active-low clear: Q immediately clears to 0
- Synchronous active-low clear: Q clears to 0 on rising-edge of clock

Sequential Logic Circuits

Register

 In typical nomenclature, a register is a name for a collection of flip-flops used to hold a bus (i.e. std_logic_vector)

Shift Register

Parallel Access Shift Register

Synchronous Up Counter

- Enable (synchronous): when high enables the counter, when low counter holds its value
- Load (synchronous): when load = 1, load the desired value into the counter
- Output carry: indicates when the counter "rolls over"
- D3 downto D0, Q3 downto Q0 is how to interpret MSB to LSB

Memories

Random Access Memory (RAM)

- More efficient than registers for storing large amounts of data
- Can read and write to RAM
- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)
- SRAM dimensions are:
 - (number of words) x (bits per word) SRAM
- Address is m bits, data is n bits
 - 2^m x n-bit RAM
- Example: address is 5 bits, data is 8 bits
 - 32 x 8-bit RAM
- Write
 - Data in and address are stable
 - Assert write signal (then de-assert)
- Read
 - Address is stable
 - Assert read signal
 - Data out is valid

Random Access Memory (RAM)

Read Only Memory (ROM)

- Similar to RAM except read only
- Addressable memory
- Can be synchronous (with clock) or asynchronous (no clock)

Read-Only Memory (ROM)

