## **HPCA Programming Assignment 2023-2024**

# **Optimizing Performance of Dilated Convolution (PartA)**

### **Machine Specification**

For the single threaded and the multi-threaded executions, we have used a system with Intel x86 64-bit ISA with 4 cores and 2 threads per core.L1d cache size: 128 KB (4 instances),L1i cache size: 128 KB (4 instances),L2 cache size: 1 MB (4 instances),LL Cache size: 6 MB (1 instance).

For the running of large matrix 16834 \* 16834(for Single thread, Multithread) We used a system with specifications Intel x86 64-bit ISA with 4 cores and 2 threads per core.L1d cache size: 192 KB (4 instances),L1i cache size: 128 KB (4 instances),L2 cache size: 2 MB (4 instances),LL Cache size: 6 MB (1 instance).

**Input**: Input Matrix of dimensions: Input\_Row x Input\_Column.

Kernel Matrix of dimensions: Kernel\_Row x Kernel\_Column.

**Output:** An Output Matrix of dimensions: (Input\_Row-Kernel\_Row+1) x (Input\_Column – Kernel Column +1)

Speed up = Runtime of unoptimized program/Runtime of optimized program

Our solution enhances the efficiency of a single-threaded implementation of Dilated Convolution by introducing a series of optimizations. Subsequently, we extend these optimizations to leverage multithreading capabilities. In Dilated Convolution, the arithmetic operations are inherently independent, with similar operations executed on each index value of the output. This intrinsic independence presents a vast potential for exploring parallelism and exploiting data parallelism across the computation, leading to significant improvements in performance

## 1. Single Thread Implementation:

#### 1.1. Optimizing Dilated Convolution Code Motion, and Loop Unrolling:

• We also have minimized the number of unnecessary arithmetic computations to save CPU time.

#### • Code Motion:

Code motion, also known as loop invariant code motion, involves moving code outside a loop if it remains constant across loop iterations. In the provided code, the expression int a = output\_i \* output\_col; is moved outside the innermost loop. This calculation does not depend on the inner loop variables and can be computed once for each iteration of the outer loop. Moving this calculation outside the inner loop reduces redundant computations and can lead to performance improvements.

#### • Loop Unrolling:

Loop unrolling is a technique that involves replicating loop bodies to reduce loop overhead and potentially improve instruction-level parallelism. The innermost loop, responsible for convolving elements with the kernel, is unrolled with a factor of 4. Instead of processing one element at a time, the loop processes four elements

simultaneously. This unrolling reduces loop control overhead and enhances the potential for instruction pipelining and parallel execution, leading to improved computational efficiency.

### Speedup achieved on different matrix sizes:

| Matrix size | Kernel size | Reference Code motion + |                          | Speed<br>Up |
|-------------|-------------|-------------------------|--------------------------|-------------|
|             |             | Time(ms)                | loop unrolling execution |             |
|             |             |                         | time(ms)                 |             |
| 4096*4096   | 5*5         | 4087.95                 | 1712.71                  | 2.39        |
| 4096*4096   | 7*7         | 8245.46                 | 3002.48                  | 2.74        |
| 4096*4096   | 9*9         | 13281                   | 5642.82                  | 2.35        |
| 4096*4096   | 11*11       | 19662.3                 | 8664.24                  | 2.27        |
| 4096*4096   | 13*13       | 27634.5                 | 11926.4                  | 2.31        |
| 8192*8192   | 5*5         | 17757.7                 | 7570.12                  | 2.34        |
| 8192*8192   | 7*7         | 30862.9                 | 12603.4                  | 2.45        |
| 8192*8192   | 9*9         | 54491.7                 | 23197.4                  | 2.34        |
| 8192*8192   | 11*11       | 81232.4                 | 34281.3                  | 2.36        |
| 8192*8192   | 13*13       | 113442                  | 44435.1                  | 2.55        |
| 16384*16384 | 5*5         | 36828.1                 | 21712.9                  | 1.69        |
| 16384*16384 | 7*7         | 71833                   | 37288.8                  | 1.93        |
| 16384*16384 | 9*9         | 112958                  | 61223.2                  | 1.84        |
| 16384*16384 | 11*11       | 163031                  | 86324                    | 1.89        |
| 16384*16384 | 13*13       | 42338.4                 | 127038                   | 1.82        |

<sup>•</sup> There is a significant speedup achieved by this specific optimization.

# 1.2. SIMD(Singular Intruction multiple data) instructions :

- We can use SIMD instructions code to exploit more data parallelism.
- An AVX 256 bit vector is used in our code which performs 8 16-bit integer multiplications and integer additions in parallel.

- Memory Access and Accumulation with SIMD: Memory access and accumulation are optimized using SIMD instructions. The input values are loaded using \_mm256\_loadu\_si256, and the convolution operation ( mm256 mullo epi32) is performed in a vectorized manner.
- Contiguous Processing and Alignment: The results are then accumulated using \_mm256\_add\_epi32, and the updated values are stored back in memory with mm256 storeu si256.

The loop processing is aligned to handle contiguous blocks of data, as evident from the alignment of the \_\_m256i vectors and the adjustment of the loop indices (output\_j and output\_i).

The optimization using SIMD instructions accelerates the convolution operation by leveraging the parallel processing capabilities of AVX2. SIMD allows multiple arithmetic operations to be performed simultaneously on data elements, enhancing the efficiency of the dilated convolution and potentially providing significant performance gains, especially when dealing with large datasets.

### **Speedup achieved on different matrix sizes:**

| Matrix size Kernel size |       | Reference           | SIMD Execution Speed U |      |  |
|-------------------------|-------|---------------------|------------------------|------|--|
|                         |       | Time(ms)            |                        |      |  |
| 4096*4096               | 5*5   | 4087.95             | 735.24                 | 5.89 |  |
| 4096*4096               | 7*7   | 8245.46             | 1592.75                | 4.98 |  |
| 4096*4096               | 9*9   | 13281               | 2649.07                | 5.01 |  |
| 4096*4096               | 11*11 | 19662.3             | 3691.25                | 5.38 |  |
| 4096*4096               | 13*13 | 27634.5             | 4136.86                | 6.68 |  |
| 8192*8192               | 5*5   | 17757.7             | 4235.22                | 4.19 |  |
| 8192*8192               | 7*7   | 30862.9             | 5488.74                | 5.62 |  |
| 8192*8192               | 9*9   | 9*9 54491.7 9468.26 |                        | 5.76 |  |
| 8192*8192               | 11*11 | 81232.4             | 14807.5                | 5.49 |  |
| 8192*8192               | 13*13 | 113442              | 16048.8                | 7.07 |  |
| 16384*16384             | 5*5   | 36828.1             | 7599.83                | 4.84 |  |
| 16384*16384             | 7*7   | 71833               | 13563                  | 5.29 |  |
| 16384*16384             | 9*9   | 112958              | 24751                  | 4.5  |  |
| 16384*16384             | 11*11 | 163031              | 30772.1                | 5.29 |  |

| 16384*16384 | 13*13 | 231187 | 42338.4 | 5.46 |  |
|-------------|-------|--------|---------|------|--|
|             |       |        |         |      |  |

• We were able to achieve a greater speedup compared to the previous optimization.

## Observations using perf tool and hardware performance Counters:

Here we Considered input size of 8192\*8192 and kernel size of 13\*13

The results from the experiment for after applying each optimization have been tabulated below followed by the set of observations for each experiment.

| Performance Events | Unoptimized | Code motion + loop | SIMD instructions |
|--------------------|-------------|--------------------|-------------------|
|                    |             | unrolling          |                   |
| L1-dcache-load-    | 6703001407  | 7990195477         | 5884411542        |
| misses             |             |                    |                   |
| L1-icache-load-    | 20347434    | 22074942           | 18272799          |
| misses             |             |                    |                   |
| dTLB-load-misses   | 136741      | 108594             | 450897            |
| LLC -load-misses   | 2600407     | 2507497            | 3286650           |
| dTLB-store-misses  | 2954438     | 2756544            | 3524384           |
| iTLB-load-misses   | 96101       | 96839              | 107088            |
| branch-misses      | 32377256    | 98411522           | 34492213          |





From the above results, we make the following observations

- For a vector operation of loading the data it costs only one load instruction. Load instruction will fetch the consecutive 8 elements in the memory starting from the given memory location. It can be inferred that huge decrease in the cache misses led to the decrease in execution time for the vector intrinsic code.
- L1-dcache misses -load misses as we can see that for loop unrolling the misses increase because that for vector intrinsic code it will load multiple rows at a time. Since matrix size is 8192 in above .that means row size of 32KB.it will take advantage of locality so the L1-dcache load misses are less for it
- For the unoptimized code due to sequential access the DTLB load misses are less than loop unrolling.DTLB misses increase and worsen when we do loop unrolling. Also once we unroll the loop, we further increase the load operations each time by 4 fold in our program and hence this leads to more DTLB misses.
- Considering the CPU times for each optimization we see that each subsequent optimization reduces the runtime for the code. As expected loop unrolling improves performance. The most significant improvements however are seen when we use processor (SIMD)intrinsic vectorization instruction which decrease the CPU runtime of program by more than 4 times.

### 2. Multhreaded Implemtation:

- The provided code implements a multithreaded approach to parallelize the computation of a dilated convolution operation.
- The code determines the number of threads (Number\_of\_Threads) to be created.
- Same ideas as mentioned in the single threaded code are implemented in multithreaded code as individual versions.

| Input  | Kernel | Unoptimized | 1       | 2       | 4       | 8       | 16      | 32      |
|--------|--------|-------------|---------|---------|---------|---------|---------|---------|
| matrix | Matrix | code        | thread  | threads | threads | threads | threads | threads |
| size   | size   | execution   |         |         |         |         |         |         |
|        |        | time        |         |         |         |         |         |         |
| 4096   | 9*9    | 12371.7     | 5507.14 | 2959.07 | 1787.04 | 1273.74 | 1280.92 | 1346.81 |
|        | 11*11  | 18977.5     | 7968.09 | 4810.87 | 2705.97 | 1857.18 | 1879.57 | 1885.49 |
|        | 13*13  | 26008.7     | 11117.7 | 6411.65 | 3918.27 | 2597.92 | 2618.95 | 2639.18 |
|        |        |             |         |         |         |         |         |         |
| 8192   | 9*9    | 52662.6     | 25574.5 | 14072.8 | 8254.42 | 5928.25 | 5616.84 | 5707.21 |
|        | 11*11  | 77786.1     | 34580   | 19145.6 | 11183.8 | 7709.3  | 7832.03 | 7816.06 |
|        | 13*13  | 107427      | 48248.5 | 26457.2 | 15340.2 | 10407.1 | 10554.6 | 11579.1 |
|        |        |             |         |         |         |         |         |         |
| 16834  | 9*9    | 112911      | 62520.9 | 31478.5 | 16714.9 | 18434.1 | 18421.2 | 18428.6 |
|        | 11*11  | 162957      | 87510.9 | 44466.3 | 23679.7 | 26211.8 | 26121   | 26299.6 |
|        | 13*13  | 235956      | 130737  | 64918.8 | 35233.3 | 38772.8 | 38637.8 | 38283.4 |







- As we can see that for 4K and 8K size matrix after 8 threads there is slight increasing
  of time because as mentioned in the specifications the machine of 4 cores of 2 threads
  each where it will best for 8 threads
- Similarly the same reason for slight improving after 4 threads in 16k matrix because of machine specifications.
- Increasing time because of more context switchings happen within the core.



- The reason of 16k slight decrease is it was run on different machine than 4k and 8k due that specifications it has changed but improvement is there for optimizations in each.
- Same as in the single thread implementation, it also out performs in the vector intrinsic implementation

### **Bottlenecks**

We observe that there remain few bottlenecks in the program which limit the scalability of the code.

- There remains a limit to the speedup which AVX instructions can provide since these instructions
  can only do a certain number of parallel computations. There remains a large unexploited potential
  in terms of the thread-level performance of this program. An issue with the use of these vector
  intrinsic instructions can be their inflexibility since many instructions require the operands to be
  aligned in memory.
- While multithreading can speed up the code, it also can incur context switching and thread creation overheads which can limit its performance. Also it becomes very critical to divide the work among thread evenly since the run time of program depends on the slowest threads