1 - Successioni Generalizzate e Limiti

Successioni generalizzate

⋮ Definizione: Relazione filtrante, insieme diretto

Sia D un insieme.

Sia \leq una relazione d'ordine parziale su D.

≤ si dice **relazione filtrante** quando

 $orall lpha, eta \in D, \ \exists \gamma \in D : \gamma \succeq lpha \wedge \gamma \succeq eta.$

Data una relazione filtrante \leq su D, l'insieme ordinato (D, \leq) si dice **insieme diretto**.

⋮ Example : Definizione: Successione generalizzata

Sia (D, \preceq) un insieme diretto.

Sia X un insieme non vuoto.

Si dice **successione generalizzata** su X una funzione del tipo $\varphi:D\to X$.

Fissato $\alpha \in D$, l'elemento $\varphi(\alpha)$ si denota con x_{α} , e la successione generalizzata φ si denota con $\{x_{\alpha}\}_{\alpha \in D}$.

Per indicare che il codominio della successione è X, si scrive $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$.

Limiti e punti limite di successioni generalizzate

□ Definizione: Limiti e punti limite di una successione generalizzata

Sia X uno spazio topologico.

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ una successione generalizzata su X.

Sia $x \in X$.

x si dice **limite** di $\{x_{lpha}\}_{lpha \in D}$ quando

 $\forall U \text{ intorno di } x, \ \exists \alpha_0 \in D : \forall \alpha \succeq \alpha_0, \ x_\alpha \in U.$

In tal caso, si scrive $x = \lim_{\alpha} x_{\alpha}$.

x si dice **punto limite** di $\{x_{\alpha}\}_{\alpha \in D}$ quando

 $orall U ext{ intorno di } x, orall lpha \in D: \exists eta \succeq lpha, \ x_eta \in U.$

Q Osservazione: Unicità del limite

Non vale generalmente l'unicità del limite per successioni generalizzate.

Tuttavia, essa vale sotto le seguenti condizioni:

Proposizione 1.1: Limite di una successione generalizzata su uno spazio di Hausdorff è unico

Sia X uno spazio di Hausdorff.

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ una successione generalizzata su X.

Siano $x, y \in X$ due limiti per $\{x_{\alpha}\}_{{\alpha} \in D}$.

Allora, x = y.

Dimostrazione

Si supponga per assurdo che $x \neq y$.

Essendo X di Hausdorff, esistono U intorno di x e V intorno di y tali che $U \cap V = \emptyset$.

Essendo $x = \lim x_{\alpha}$, in corrispondenza all'intorno U esiste $\alpha_x \in D$ tale che $x_{\alpha} \in U$ per ogni $x \succeq \alpha_x$;

essendo $y=\lim_{lpha}x_{lpha}$, in corrispondenza all'intorno V esiste $lpha_y\in D$ tale che $x_{lpha}\in V$ per ogni $x\succeq lpha_y.$

Per filtranza di \preceq , esiste $\beta \succeq \alpha_x, \alpha_y$. Allora, $x_\beta \in U$ e $x_\beta \in V$, il che è contraddittorio in quanto $U \cap V = \varnothing$.

Osservazione: Relazione tra limiti e punti limiti

Un limite per una successione generalizzata è anche punto limite per questa. Il viceversa generalmente non è vero.

Caratterizzazioni di enti e proprietà topologiche tramite le successioni generalizzate

Proposizione 1.2: Caratterizzazione della chiusura di un insieme in uno spazio topologico

Sia X uno spazio topologico.

Sia $A \subseteq X$.

Sia $x \in X$.

Sono equivalenti i seguenti fatti:

- 1. $x \in \overline{A}$;
- 2. Esiste una successione generalizzata $\{x_{lpha}\}_{lpha\in D}\subseteq A$ tale che $x=\lim_{lpha}x_{lpha}.$

Si supponga che esiste una successione generalizzata $\{x_{lpha}\}_{lpha\in D}\subseteq A$ tale che $x=\lim_{lpha}x_{lpha}.$

Sia U un intorno di x.

Per definizione di limite, esiste $\alpha_0 \in D$ tale che $x_\alpha \in U$ per ogni $\alpha \succeq \alpha_0$.

Poiché $x_{\alpha} \in A$ per ogni $\alpha \in D$ per ipotesi, si ha $x_{\alpha} \in U \cap A$ per ogni $\alpha \succeq \alpha_0$, dunque $U \cap A$.

Allora, $A \cap U \neq \emptyset$ per ogni U intorno di x, ossia $x \in \overline{A}$.

Si supponga che $x \in \overline{A}$.

Sia \mathcal{U} la famiglia degli intorni di x ordinata con \subseteq .

 \subseteq è filtrante; infatti, fissati $U, V \in \mathcal{U}$, si ha $U \cup V \in \mathcal{U}$ e $U, V \subseteq U \cup V$.

Essendo $x \in \overline{A}$ per ipotesi, si ha $U \cap A \neq \emptyset$ per ogni $U \in \mathcal{U}$.

Dunque, per ogni $U \in \mathcal{U}$, sia x_U tale che $x_U \in U \cap A$.

Si consideri la successione generalizzata $\{x_U\}_{U\in\mathcal{U}}$.

Si ha $\{x_U\}_{U\in\mathcal{U}}\subseteq A$ per come è stato definito x_U .

Inoltre, si ha $x=\lim_U x_U$. Infatti, per ogni intorno U di x, ossia per ogni $U\in\mathcal{U}$, si ha $x_U\in U$ per definizione di x_U ; allora, $x_U\in V$ per ogni $V\in\mathcal{U}$ tale che $V\supset U$.

Sia $X \neq \emptyset$ uno spazio topologico.

Siano τ_1, τ_2 due topologie su X.

Sono equivalenti i seguenti fatti:

- 1. τ_1 è meno fine di τ_2 , ossia $\tau_1 \subseteq \tau_2$;
- 2. Per ogni successione generalizzata $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ e per ogni $x\in X$, si ha $x=\lim_{\alpha}x_{\alpha}$ in $\tau_{2}\Longrightarrow x=\lim_{\alpha}x_{\alpha}$ in τ_{1} .

Q Osservazioni preliminari

 τ_1 è meno fine di τ_2 , se e solo se ogni chiuso secondo τ_1 è chiuso secondo τ_2 .

ho Dimostrazione (1. \Rightarrow 2.)

Si supponga τ_1 meno fine di τ_2 .

Sia $\{x_{\alpha}\}_{\alpha\in D}\subseteq X$ una successione generalizzata.

Sia $x=\lim_{\alpha}x_{lpha}$ in au_2 ;

si provi che $x=\lim_{lpha}x_{lpha}$ in au_1 .

Sia U un intorno di x secondo τ_1 .

Allora, esso è intorno di x anche secondo T_2 per ipotesi;

dunque, per definizione di x,

 $\exists \alpha_0 \in D : \forall \alpha \succeq \alpha_0, \ x_\alpha \in U.$

Pertanto, $x=\lim_{\alpha}x_{\alpha}$ in au_1 .

Intanto, si denoti con $\operatorname{cl}_{\tau}(A)$ la chiusura dell'insieme A rispetto alla topologia τ .

Sia C un insieme chiuso secondo τ_1 .

Sia $x\in \operatorname{cl}_{ au_2}(C)$.

Si provi che $x \in C$, mostrando così che $\operatorname{cl}_{\tau_2}(C) \subseteq C$, ossia C è chiuso secondo τ_2 .

Per la [proposizione 1.2], esiste $\{x_{lpha}\}_{lpha\in D}\subseteq X$ tale che $x=\lim_{lpha}x_{lpha}$ in au_2 .

Per ipotesi, segue allora $x=\lim_{\alpha}x_{\alpha}$ in au_1 .

Pertanto, $x \in \operatorname{cl}_{\tau_1}(C)$ ossia, essendo C chiuso secondo τ_1 per definizione, $x \in C$, come volevasi dimostrare.

Proposizione 1.4: Caratterizzazione della compattezza

Sia X uno spazio topologico.

Sono equivalenti le seguenti affermazioni:

- 1. X è compatto;
- 2. Ogni successione generalizzata in X ammette almeno un punto limite.

Si supponga X compatto.

Sia $\{x_{\alpha}\}_{\alpha\in D}\subseteq X$ una successione generalizzata in X.

Si supponga per assurdo che ogni $x \in X$ non è punto limite per $\{x_{\alpha}\}_{\alpha \in D}$.

Cioè, per ogni $x \in X$, esistono U_x intorno aperto di x e $\alpha_x \in D$ tali che $x_\beta \notin U_x$ per ogni $\beta \succeq \alpha_x$.

Si consideri la famiglia $\{U_x \mid x \in X\}$; essa è un ricoprimento di aperti per X in quanto $x \in U_x$ per ogni $x \in X$.

Per compattezza di X, esistono allora $x_1,\ldots,x_n\in X$ tali che $igcup_{i=1}^n U_{x_i}=X.$

Si considerino $\alpha_{x_1},\ldots,\alpha_{x_n}$; per filtranza di \preceq , esiste $\beta\in D$ tale che $\beta\succeq \alpha_{x_i}$ per ogni $i\in\{1,\ldots,n\}$.

Ma allora, per definizione di $\alpha_{x_1},\ldots,\alpha_{x_n}$, essendo β successivo a ognuno di questi si ha $x_\beta \notin U_{x_i}$ per ogni $i \in \{1,\ldots,n\}$, segue allora $x_\beta \notin \bigcup_{i=1}^n U_{x_i}$;

ciò risulta contraddittorio in quanto $igcup_{i=1}^n U_{x_i} = X$, e $x_{eta} \in X$ in quanto $\{x_{lpha}\}_{lpha \in D} \subseteq X$.

ho Dimostrazione (2. \Rightarrow 1.)

Si supponga che ogni successione generalizzata in X ammetta almeno un punto limite.

Sia \mathcal{F} una famiglia di chiusi con la proprietà d'intersezione finita.

Sia \mathscr{G} la famiglia delle sottofamiglie finite di \mathcal{F} con la relazione d'ordine \subseteq ; essa è filtrante in quanto, fissati $\mathcal{G}_1, \mathcal{G}_2 \in \mathscr{G}$, si ha $\mathcal{G}_1 \cup \mathcal{G}_2 \in \mathscr{G}$ e $\mathcal{G}_1, \mathcal{G}_2 \subset \mathcal{G}_1 \cup \mathcal{G}_2$.

Poiché \mathcal{F} soddisfa la proprietà d'intersezione finita, per ogni $\mathcal{G} \in \mathcal{G}$ si ha $\bigcap \mathcal{G} \neq \emptyset$;

Per ogni $G \in \mathcal{G}$, sia dunque $x_{\mathcal{G}} \in \bigcap \mathcal{G}$.

Si consideri la successione generalizzata $\{x_{\mathcal{G}}\}_{{\mathcal{G}}\in\mathscr{G}}\subseteq X$.

Per ipotesi, esiste $x^* \in X$ tale da essere un punto limite di $\{x_{\mathcal{C}}\}_{{\mathcal{C}} \in \mathscr{G}}$.

Si provi che $x^* \in \bigcap \mathcal{F}$.

Sia $C \in \mathcal{F}$; si provi che $x^* \in C$.

Sia U un intorno di x^* ;

si ha $\{C\} \in \mathscr{G}$ essendo sottofamiglia finita di \mathcal{F} .

Per definizione di x^* quale punto limite di $\{x_G\}_{G\in\mathcal{H}}$, esiste $\mathcal{G}\in\mathscr{G}$ con $\mathcal{G}\supseteq\{C\}$, ossia $C\in\mathcal{G}$, tale che $x_\mathcal{G}\in U$.

Essendo $x_{\mathcal{G}} \in \bigcap \mathcal{G}$ per definizione e $C \in \mathcal{G}$, si ha anche $x_{\mathcal{G}} \in C$.

Dunque, $x_{\mathcal{G}} \in U \cap C$.

Allora, $U \cap C \neq \emptyset$ per ogni U intorno di x^* , ossia $x^* \in \overline{C}$.

Essendo C chiuso, segue $x^* \in C$, come volevasi dimostrare.

Proposizione 1.5: Caratterizzazione della continuità

Siano X e Y due spazi topologici.

Sia $x \in X$.

Sono equivalenti i seguenti fatti:

- 1. f è continua in x;
- 2. Per ogni successione generalizzata $\{x_{\alpha}\}_{\alpha\in D}\subseteq X$ convergente a x, si ha $f(x)=\lim_{\alpha}f(x_{\alpha})$.

ightharpoonup Dimostrazione (1. \Rightarrow 2.)

Si supponga f continua in x.

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ una successione generalizzata convergente a x.

Sia V un intorno di f(x).

Per continuità di f, esiste un intorno U di x tale che $f(U) \subseteq V$.

Poiché $x=\lim_{\alpha}x_{\alpha}$ per ipotesi, esiste $\alpha_{0}\in D$ tale che $x_{\alpha}\in U$ per ogni $\alpha\succeq \alpha_{0}.$

Essendo $f(U) \subseteq V$, si ha allora $f(x_{\alpha}) \in V$ per ogni $\alpha \succeq \alpha_0$.

Ne segue allora che $f(x) = \lim_{\alpha} f(x_{\alpha}).$

```
lacksquare Dimostrazione (2. \Rightarrow 1.)
```

Si supponga che valga quanto dichiarato nel punto 2.

Si supponga per assurdo che f non sia continua in x;

cioè, esiste \tilde{V} intorno di f(x) tale che, per ogni U intorno di x, $f(U) \nsubseteq \tilde{V}$.

Per ogni intorno U di x, sia dunque $x_U \in U$ tale che $f(x_U) \notin \tilde{V}$.

Sia \mathcal{U} la famiglia degli intorni di x con la relazione d'ordine \subseteq , che è filtrante.

Si consideri quindi la successione generalizzata $\{x_U\}_{U\in\mathcal{U}}$.

Si ha
$$x = \lim_{U} x_{U}$$
;

infatti, per ogni U intorno di x, ossia per ogni $U \in \mathcal{U}$, si ha $x_U \in U$, dunque $x_U \in V$ per ogni $V \in \mathcal{U}$ con $V \supseteq U$.

Allora, per ipotesi si ha $f(x) = \lim_U f(x_U)$.

Tuttavia ciò contraddice il fatto che, in corrispondenza all'intorno \tilde{V} di f(x), si ha $f(x_U) \notin \tilde{V}$ per ogni $U \in \mathcal{U}$ per definizione di x_U .

Minimo e massimo limite per successioni generalizzate

¡ Definizione: Limite minimo e limite massimo di una successione generalizzata

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq \mathbb{R}$ una successione generalizzata in \mathbb{R} .

Si dice **limite minimo** di $\{x_{\alpha}\}_{\alpha\in D}$ l'elemento $\liminf_{\alpha}x_{\alpha}=\sup_{\alpha\in D}\inf_{\beta\geq\alpha}x_{\beta}.$

Si dice **limite massimo** di $\{x_{\alpha}\}_{\alpha\in D}$ l'elemento $\limsup_{\alpha}x_{\alpha}=\inf_{\alpha\in D}\sup_{\beta>\alpha}x_{\beta}.$