Secret Code 20:

		9 cornot	W
3.2 A)	150thernal Expansion	nRTHen (1/1/18) = 2/n	natuln(ve/va)
	Adiabatic expansion	0	Cr (In-Te)
	Adiabutic Compression	nrtan ("/VD)	Cr(Tn-tc) NRTC ln(Vc/Vb) Cr(Tr-Tn)
			CV (TE-TU)
	QouteTH= NATH IN(VA/VB) = - 9in		
	Pin = 182.7	3/	
	10		

3.1C) Total Area: (assuming axes the Same as above)
$$(0.0005_{n3})(2.0 \times 10^{6} \text{ pa}) = 1000 \text{ J}$$

$$\therefore \text{ Paper energy density: } 1000 \text{ J}$$

$$1467.8 \text{ mg} = 0.6813 \text{ J/mg}$$

$$\text{Carnot weight} = 78.7 \text{ mg}$$

$$\text{Carnot energy} = 0.6813 \text{ J} = 78.7 \text{ mg} = 153.62 \text{ J}$$

3.10) Isothermal
$$\Delta S$$
: $NR \ln (V_F/V_I) = S_F - S_I$
given $S_I = 0.3 \text{ J/k}$
 $S_F = NR \ln (V_F/V_I) + S_I$
Adiabatic ΔS : $O \Delta T = T_H - T_C$

3.1E)
$$A = \Delta S \times \Delta T$$

 $=(S_E - S_1) \cdot (T_H - T_C) = [J_K \cdot K]$
 $=[52.8 \ J = W \text{ done by eyele}]$

3.4A)
$$dB = edK - JdL$$

$$dB = \left(\frac{2B}{2K}\right)dK - \left(\frac{2B}{2L}\right)dL$$

$$J = \left(\frac{\partial B}{2L}\right)$$

$$J = \left(\frac{\partial B}{\partial L}\right)$$

$$\frac{\partial B}{\partial L} = \frac{\partial B}{\partial L}$$

$$\frac{\partial B$$

