Miscellaneous Problems on Semantics and Computability

* 1. For each of the following states σ_1 , σ_2 , σ_3 :

1.
$$\sigma_1 = [x \mapsto 0, y \mapsto 0]$$

2.
$$\sigma_2 = [x \mapsto -1, y \mapsto 10]$$

3.
$$\sigma_3 = [x \mapsto -1, z \mapsto 10]$$

calculate the following:

- (a) the denotation of the arithmetic expression x + (y * 3);
- (b) the denotation of the Boolean expression $x == y \&\& x y \le 3$;
- (c) And, for each $i \in \{1, 2, 3\}$, a state σ such that while $x \le y$ && !(x = y) do $x \leftarrow x + z$, $\sigma_i \downarrow \sigma$ when one exists.
- * 2. Find two distinct states σ , $\sigma' \in \text{State}$ such that while $1 \le x$ do $y \leftarrow y + x$, $x \leftarrow x 1$, $\sigma \downarrow [y \mapsto 10]$ and likewise for while $1 \le x$ do $y \leftarrow y + x$, $x \leftarrow x 1$, $\sigma' \downarrow [y \mapsto 10]$.
- ** 3. Suppose $e \in \mathcal{B}$ is a Boolean expression and $S_1, S_2, S_3 \in \mathcal{S}$ are statements. Prove that the statement if e then S_1 else S_2 and the statement if e then S_1 else S_3 } else {if !e then S_2 else S_3 } are semantically equivalently.
- ** 4. Let \mathbb{P} be the three element set $\{+,-,\pm\}$. We define the function $\operatorname{sign}_{\sigma}:\mathcal{A}\to\mathbb{P}$ for a given state

 $\sigma \in \mathsf{State}$ by recursion as follows:

$$\begin{aligned} \operatorname{sign}_{\sigma}(x) &= \begin{cases} + & \text{if } \sigma(x) \geq 0 \\ - & \text{otherwise} \end{cases} \\ \operatorname{sign}_{\sigma}(n) &= \begin{cases} + & \text{if } n \geq 0 \\ - & \text{otherwise} \end{cases} \\ + & \text{if } \operatorname{sign}_{\sigma}(e_{1}) = + \operatorname{and } \operatorname{sign}_{\sigma}(e_{2}) = + \\ - & \text{if } \operatorname{sign}_{\sigma}(e_{1}) = - \operatorname{and } \operatorname{sign}_{\sigma}(e_{2}) = - \\ \pm & \text{otherwise} \end{cases} \\ + & \text{if } \operatorname{sign}_{\sigma}(e_{1}) = + \operatorname{and } \operatorname{sign}_{\sigma}(e_{2}) = - \\ - & \text{if } \operatorname{sign}_{\sigma}(e_{1}) = + \operatorname{and } \operatorname{sign}_{\sigma}(e_{2}) = + \\ \pm & \text{otherwise} \end{cases} \\ = \begin{cases} \pm & \text{if } \operatorname{sign}_{\sigma}(e_{1}) = \pm \operatorname{or } \operatorname{sign}_{\sigma}(e_{2}) = \pm \\ + & \text{if } \operatorname{sign}_{\sigma}(e_{1}) = \operatorname{sign}_{\sigma}(e_{2}) = \pm \\ + & \text{if } \operatorname{sign}_{\sigma}(e_{1}) = \operatorname{sign}_{\sigma}(e_{2}) \end{cases} \\ + & \text{if } \operatorname{sign}_{\sigma}(e_{1}) \neq \operatorname{and } \operatorname{sign}_{\sigma}(e_{2}) \end{cases}$$

Prove by structural induction over arithmetic expressions, for any arithmetic $e \in A$ and state $\sigma \in State$, that:

- If $sign_{\sigma}(e) = +$, then $[e]_{\mathcal{A}}(\sigma) \ge 0$;
- And, if $sign_{\sigma}(e) = -$, then $[e]_{\mathcal{A}}(\sigma) < 0$

You should treat this as a single induction proof rather than proving each cases separately.

*** 5. Let *P* be the following While program:

while
$$x + 1 \le y$$
 do $y \leftarrow y - 1$;

Prove by induction, over a combination of x and y, that P terminates from any initial state $\sigma \in \text{State}$ such that $\sigma(x) \leq \sigma(y)$. That is, prove, for all $\sigma \in \text{State}$ such that $\sigma(x) \leq \sigma(y)$, that there exists some $\sigma' \in \text{State}$ such that $P, \sigma \Downarrow \sigma'$. You may *not* assume that $\sigma(x)$ or $\sigma(y)$ are greater than or equal to 0.

The following question uses the notation $\sigma \sim_x \sigma'$ which indicates, for some variable $x \in Var$ and for two states $\sigma, \sigma' \in State$, that $\sigma(y) = \sigma'(y)$ for all *other* variable $y \in Var \setminus \{x\}$. For example, $[x \mapsto 2, y \mapsto 3] \sim_x [x \mapsto -100, y \mapsto 3]$ but $[x \mapsto 2, y \mapsto 3] \not\sim_x [x \mapsto 2, y \mapsto 4]$.

*** 6. Let us suppose we introduce a new language construct for Boolean expressions so that the extended grammar is given as follows:

$$B \rightarrow \text{true} \mid \text{false} \mid B \&\& B \mid B \parallel B \mid !B \mid \text{forall } x.B$$

The denotational semantics for the new construct is given by the following equation:

$$\llbracket \text{forall } x.e \rrbracket_{\mathcal{B}}(\sigma) = \begin{cases} \top & \forall \sigma' \in \text{State.} \ \sigma \sim_x \sigma' \Rightarrow \llbracket e \rrbracket_{\mathcal{B}}(\sigma') \\ \bot & \text{otherwise} \end{cases}$$

with all other constructs retaining their original semantics.

- (a) Evaluate the denotation of the expressions for all $x \cdot x = 2$ and for all $x \cdot x \le y \parallel y \le x$ in the state $[x \mapsto 2, y \mapsto 2]$.
- (b) Prove that if $e \in \mathcal{B}$ and $e' \in \mathcal{B}$ are semantically equivalent Boolean expressions, then forall x.e' and forall x.e' are semantically equivalent.
- (c) Suppose that $e \in \mathcal{B}$ is a Boolean expression such that $[e]_{\mathcal{B}}(\sigma) = [e]_{\mathcal{B}}(\sigma')$ for any two states $\sigma \sim_x \sigma'$. Prove that forall x.e is semantically equivalent to e.
- * 7. Show that the function $f : \mathbb{N} \to \mathbb{N}$ defined by

$$f(x) \begin{cases} \simeq x + 1 & \text{if } x^2 - 1 \text{ is at least 2022} \\ \uparrow & \text{otherwise} \end{cases}$$

is computable.

- * 8. State whether each of the following statements is true or false.
 - (a) Every injection has an inverse.
 - (b) The set \mathbb{N} is decidable.
 - (c) Some WHILE programs compute total functions.
 - (d) If a function has an inverse, it must be a surjection.
 - (e) The set of all WHILE programs is countable.
- * 9. Write a program that demonstrates that the function

$$f: \mathbb{N} \to \mathbb{N}$$

$$f(n) \begin{cases} \simeq 2^n & \text{if } n \text{ is divisible by 3} \\ \uparrow & \text{otherwise} \end{cases}$$

is computable.

- ** 10. Construct a bijection $\mathbb{Z} \times \mathbb{Z} \xrightarrow{\cong} \mathbb{N}$. Prove that it is a bijection by constructing its inverse, and show that it is indeed an inverse.
- ** 11. Show that the predicate

$$U = \{\lceil S_1 \rceil \mid \text{ for all } k \le 100 \text{ it is true that } \llbracket S_1 \rrbracket_{\mathbf{x}}(k) + 1 = \llbracket S_1 \rrbracket_{\mathbf{x}}(k+1) \}$$

is semi-decidable.

** 12. Show that if the predicates $A \subseteq \mathbb{N}$ and $B \subseteq \mathbb{N}$ are decidable then their *symmetric difference*, i.e. the set

$$A \oplus B = \{x \in \mathbb{N} \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\} = (A \cup B) - (A \cap B)$$

is also decidable.

*** 13. Show that the predicate

$$V = \{ \langle \lceil S_1 \rceil, \lceil S_2 \rceil \rangle \mid \text{there exists } k \in \mathbb{N} \text{ such that } \llbracket S_1 \rrbracket_{\mathtt{x}}(k) + 1 = \llbracket S_2 \rrbracket_{\mathtt{x}}(k+1) \}$$

is undecidable. (The use of = above means that both sides of the equation must be defined, and equal.)