

INSTITUTE FOR REACTOR SAFETY AND TECHNOLOGY UNIV.-PROF. DR. RER. NAT. HANS-JOSEF ALLELEIN

INSTITUTE OF ENERGY- AND CLIMATE RESEARCH NUCLEAR WASTE MANAGEMENT AND REACTOR SAFETY (IEK-6)

Techno-economic Analysis of a Nuclear-Wind Hybrid System with Hydrogen Co-production

Tian Zhang

Outline

- Introduction
- Hybrid Energy System
- Modelling Approach
- Results & Discussion
- Conclusions

- Introduction
- Hybrid Energy System
- Modelling Approach
- Results & Discussion
- Conclusions

- Electricity demand kept increasing in last 20 years
- Energy mix structure has changed to have more renewables

Source: [1][2], the figure is up to year 2017, as no data is found offering same information.

More Energy and Less Carbon Emission Scenarios

Changes of Primary Sources in Future Energy Mix

Electricity generation mix and share by source in a possible scenario

Dramatic Increment of Renewables in Future Energy Mix:

- Reduce green house gas emission significantly
- Increase variability and uncertainty of the power system

Sources: [2][3]

Tian Zhang

Non-Dispatchable of Renewables Challenges the Grid

More frequent occurrences of extreme electricity prices

15-Apr

16-Apr

- Reduced baseload generator market size, and associated baseload generator output reductions.
- Low capital deployment efficiencies and declining of baseload technologies^[5]

- Introduction
- Hybrid Energy System
- Modelling Approach
- Results & Discussion
- Conclusions

Hybrid Energy System

Hybrid Energy System

Definition and Advantage of Hybrid Energy Systems

Hybrid Energy Systems^[6]

- combine two or more forms of energy generation, storage, or end-use technologies
- Deliver a boatload of benefits compared with single source systems

A well-designed hybrid energy system can^[7]:

- Reduces greenhouse gas emission by reducing conventional power sources
- Reliable grid demand dispatch off the grid
- Economically effective with high renewable energy penetration

Hybrid Energy System

Hybrid Nuclear-Renewable System

Nuclear Energy^[5]

- Sustainable, efficient and reliable, low-carbon base-load electricity source
- Large capital costs and low fuel costs require a high capacity factor
- Small Modular Reactor (SMR) designs offer flexibilities of scaling the system

Examples of Hybrid Nuclear-Renewable System^[8]

Resources	Coupling Method	Storage Mode	Products
Nuclear and biomass	Thermal	Chemical	Electricity, biofuels
Nuclear and wind energy	Electrical	Hydrogen	Electricity, hydrogen
Nuclear and CSP	Thermal	Thermal	Electricity, heat
Nuclear, wind energy, and natural gas	Electrical and thermal	Chemical	Electricity, chemical products, diesel fuel

• Will the system work as it is expected to?

Does the hybrid system pay off?

Hybrid Energy System

Hybrid Nuclear-Renewable System

Hydrogen Production and Electricity Conversion^{[9][10]}

٦	Technology	Temp. Range	Cathodic Reaction	Charge Carrier	Anodic Reaction
	Alkaline electrolysis	40 – 90°C	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	OH ⁻	$20H^- \to \frac{1}{2}O_2 + H_2O + 2e^-$
	Membrane electrolysis	20 – 100°C	$2H^+ + 2e^- \rightarrow H_2$	H ⁺	$H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$
	High temp. electrolysis	700 — 1000°C	$H_2O + 2e^- \rightarrow H_2 + O^{2-}$	0^{2-}	$0^{2-} \to \frac{1}{2}O_2 + 2e^-$

- Compact design
- High efficiency
- Fast response
- Easy to balance

Fit to Light Water Reactor Operation Condition

Schematic of membrane electrolysis^[10]

Hybrid Energy System

Hybrid Nuclear-Wind System with Hydrogen Co-production

PEM: Proton-Exchange Membrane fuel cell/electrolysis

- Introduction
- Hybrid Energy System
- Modelling Approach
- Results & Discussion
- Conclusions

- Modelling Strategy
- Code Introduction
- Technical Models
- Economic Models
- Techno-economic Coupling
- Optimization Scheme

Modelling Approach

Modelling Strategy

System Scale Optimization on Grid Demand Fitting and Economic Return

Technical

Economical

Wind Turbine

Nuclear Reactor

PEM Fuel Cell/Electrolysis

Hydrogen Storage

Grid Data

Energy Dispatch

Data interpolation

Deployment schedule

Deployment Schedule
Profits Estimation
Capital and Operation Cost
Cash Flow

Lifetime Replacement

Code Development

HyNuReCT: Hybrid Nuclear Renewable Coupling Tools

- Self-developed code for this work in Python3
- Open source under GPLv3 license
- Accessible via github (https://github.com/tzhang0475/HyNuReCT)

Modelling Approach

Wind Energy

Wind Farm

- Wind turbine works within user-defined cut-in and cut-out range
- Power limit P_{limit} is set by user to limit the maximum output

Modelling Approach

Wind Energy

Wind Data^[13]

- Rayleigh probability distribution according to mean and maximum wind velocity
- Time dependent velocity generated according to probability density function

1400

200

400

600

800

Time (min)

1000

PEM Fuel Cell/Electrolysis

PEM Unit^{[14][15]}

- Two-way convert between electricity and hydrogen by same mechanism
- Quasi-steady state model which assume fast response of the PEM

Current in PEM

$$I = \underbrace{\frac{P}{V_{oc}}}$$

Circuit Voltage

Ohmic overpotential

Activation overvoltage

Reversible potential^[16]

$$E_{rev} = E_{rev}^{0} + \frac{RT}{2F} \log(\frac{P_{H_2}P_{O_2}}{P_{H_2O}})$$

$$E_{rev}^{0} = 1.229 - 0.9 * 10^{-3} * T$$

Activation overvoltage^[16]

$$\eta_{act} = \eta_{an} + \eta_{cat}$$

$$\eta_{a/c} = \frac{RT}{\alpha_{a/c}F} \sin^{-1}(\frac{I}{2i_{0,a/c}})$$

Ohmic overpotential^[16]

$$\eta_{ohm} = 0.005139\lambda - 0.0326[1268(\frac{1}{303} - \frac{1}{T})]$$

Solve by Iteration

19

 $V_{oc} = E_{rev} + \eta_{act} + \eta_{ohm}$

HyNuReCT Version 1.0, 2020

Nuclear Power Plant

Small Modular Reactor Unit

Technically assumed to be a power generator with constant output

Power Dispatching between Grid and Hydrogen

- Priority to satisfy the demand of grid
- Hydrogen consumption can not exceed its storage

 $P_{demand} > P_{coupled}$

Cannot meet the grid demand

Storage is drained to empty All PEM units works at full power

Generated Electricity P_{coupled}

Modelling Approach

Overall Economic Evaluation[18]

Cash Flow (CF)

System Profits

- electricity to grid, hydrogen

System Costs

cost of each component

Levelized Cost of Electricity (LCOE)

$$LCOE = \frac{Discounted\ Cost}{Discounted\ Energy}$$

$$in\ \$/MWh$$

Note: Not accurate for hybrid system

Net Present Value (NPV)

discounted value of all annual cash flows

$$NPV = \sum_{y=0}^{n} \frac{CF_y}{(1 + r_{discount})^y}$$

 $NPV \ge 0$, the project make profits

Internal Rate of Return (IRR)

the return on investment over lifetime

$$NPV = \sum_{y=0}^{n} \frac{CF_y}{(1+IRR)^y} = 0$$
 | Iteration

 $IRR \ge r_{discount}$, the project make profits

Modelling Approach

Nuclear Energy Costs

Total Cost = OCC + IDC + Other Costs

Overnight Capital Cost (OCC)^[19]

 Scaling of costs for different power output (direct, indirect):

$$Cost = Cost_{base} \left(\frac{MWe_{new}}{MW\epsilon_{base}} \right)^{\eta}$$

Default set as value suggested by OECD-NEA^[22], $\eta = 0.51$ (large uncertainty)

Combine with SMR economic features

Interests During Construction (IDC)^[22]

$$IDC = \frac{N}{2} \left[\frac{OCC}{N} * (1+r)^{N-1} - \frac{OCC}{N} \right]$$

- *N* is number of construction year
- r is the interest rate

inflation Code of Accounts System

DOE Energy Economic Data Base^[21]

- Based on typical Westinghouse four-loop plant, PWR12 (1144 MWe)
- Referred to the construction experiences during the 1970s and 1980s
- Grouped by median and better experiences data
- Values documented as 1987 dollars
- Include direct cost and indirect cost

Other Costs^{[22][23]}: Utilization factor related

- Operation and maintenance (OM) cost
- Cost of reactor fuel
- Cost prepared for decommissioning (DCMS)

Nuclear Energy Costs

SMR Economic Features^[23]

For SMR series of n units with output power P_e

Learning effects

- x: FOAK extra cost parameter, range 15%-55%
- y: gain in a pair of units, range 74%-85%
- z: gain in two pairs of units on the same site, 82%-95%
- k: industrial productivity coefficient, 0%-2%

Gain from co-site effects

$$f_{cosite} = \frac{1 + (n-1)(1 - F_{IND})}{n}$$

Learn from plant configuration

$$f_{lc} = \sum_{n=1}^{i=1} f_i \qquad f_i = \begin{cases} 1 + x & \text{if } FOAK, 1 & \text{if } NOAK \\ \frac{y/z}{(1+k)^{i-2}} & \text{y for } i & \text{is even, z for } i & \text{is odd} \end{cases}$$

Learn from new technology

$$f_{lt} = (1 + x)P_e^{-\frac{\log(1-R)}{\log 2}}$$

Gain from modular design simplification

$$f_{modular} = \begin{cases} 0.6, for \ P_e \leq 35 \ MWe \\ 4*10^{-10}P_e^3 - 10^{-6}P_e^2 + 0.0012P_e + 0.581 \ for \ 35 < P_e < 600 \ MWe \\ 1 \ for \ P_e \geq 600 \ MWe \end{cases}$$

FOAK: First-of-A-Kind, NOAK: Nth-of-A-Kind

Comparison of nuclear cost between HyNuReCT and references^{[22][25][26]}

	mparioon o	- IIaoioai						
	Power				Refe	rence	Mc	odel
Туре	(MW)	OM	Fuel	DCMS	occ	LCOE	OCC	LCOE
,,	/lifetime (year)	(\$/MWh)	(\$/MWh)	(\$/MWh)	(/kW)	(/MWh)	(/kW)	(/MWh)
EPR (France)	1600/60	16	9.3	0.16	\$3860	\$56.4	\$3320	\$53.3
Advanced Gen.III (USA)	1350/60	12.8	9.3	0.16	\$3382	\$48.7	\$3609	\$52.5
Nuscale (FOAK)	47.5*12/60	36	5.2	0.16	\$5078	\$65.0	\$5250	\$75.5
Nuscale (NOAK)	57*12/60	36	6.2	0.16	\$3600	\$65.0	\$3980	\$66.0

EPR and Advanced Gen. III costs are in 2009 dollar

Nuscale (FOAK) cost is in 2015 dollar

Nuscale (NOAK) cost is in 2018 dollar

Note: Power Output is changed for NuScale SMR unit as the design developed

Wind Energy and PEM Cluster Cost

modelled by relatively simple model

PEM Cluster^[28]

Total Cost = CAPEX+ OPEX

Defined by percentage of CAPEX

$$Cost_{kW}*P_{PEM}*n_{units}$$

 $P_{t/PEM}$ is the designed power of a wind turbine or a PEM unit n_{units} is the number of units in a wind farm or PEM cluster

Deployment Schedule & Lifetime Replacement

Automatic construction and replacement schedule is integrated in the model

Modelling Approach

Techno-economic Coupling

Technical Model

- Time-dependent quasi-steady state simulation of a time period
- Generally carried out on time scale of hours, days, and months

Economical Model

- Analysis over the whole lifetime of the system
- Based on system performance of annual scale

- Calculate grid demand level during construction period
- Collect data of electricity to the grid, hydrogen stored
- Scale and average short-term data to annual value
- Adjust data according installed capacity to lifetime value
- Calculate nuclear utilization and wind intermittence factor

Techno-economic Coupling

Example of Coupling

Input data

Grid Demand Data Day 1
Grid Demand Data Day 2

Input data

4 SMRs (2y a unit)

45 Wind Turbines (1y a batch)

90 PEMs (1y a batch)

Output

Economical Model

Economical Evaluation

Technical Model

four cases

Electricity to grid (day 1, day 2) Hydrogen storage (day 1, day 2)

Coupling

Construction Schedule

8 years construction schedule

(4 capacity cases)

Lifetime performance data

Scale day 1 day 2 data to annual value

Average data to annual average data of each lifetime year

System Scale Optimization^[29]

Optimize number of units of each component in the hybrid system by Genetic Algorithm

- Introduction
- Hybrid Energy System
- Modelling Strategy
- Results & Discussion
- Conclusions

- System Parameters
- Optimization Results
- Scenarios Analyzed
- Grid Fitting Results
- Hydrogen Production Results
- Economic Evaluation

System Parameters

Grid Demand Data

- UK real grid demand in Jan., Apr., Jul., and Oct. 2018^[31]
- Approx. 5 min interval between data points
- Hybrid system aiming to supply 2% of the UK grid demand

System Parameters

Unit Parameters (Detailed parameters see appendix)

Component	Power Designed (MW)	Power Min (MW)	Lifetime (year)	Construction time (year)
SMR Unit	100	100	60	2
Wind Turbine	2.4	0	30	1
PEM Unit	0.5	0.05 or 0	20	1

Costs Data(in \$)

Nuclear Costs ^{[22][23]}				Wind Cost (land-type)[30]			
	Operation Cost (MWh)			26.90	Capital Cost (kW)	1470	
	Fuel C	Cost (MWh)	9.30	Operation Cost (MWh)	12.10	
	Decommissioning Cost (MWh)			0.16	Decommissioning Cost (M	Wh) 4.00	
	General Economic Data ^{[23][32]}				PEM Cost [28]		
Dollar Ba	ase	2018	Discount Rate	5%	Capital Cost (kW)	1200	
	Electricity Price (\$/MWh)			\$110	Operation Cost (MWh)	2% of Capital	
Hydrogen Price (\$/kg)			\$8				

Optimized Model

Results & Discussion

Scale Optimization

- Optimize number of units from a rough estimate model to a techno-economical favorable model
- Performed by Genetic Algorithm

Fitness function for evaluation is adaptable according to demand

> 0 means meet the target

Scenarios Analyzed

Conservation Case

- A model with parameters target to meet the grid demands
- With and without hydrogen production and storage

Optimized Case

- A model with grid demand and economical balance optimized by Genetic Algorithm
- With and without hydrogen production and storage

Component	Number of Units				
Component	Conservation	Optimized			
SMR Unit	6	4			
Wind Turbine	150	322			
PEM Unit	300 0	365 0			

Grid Fitting Results

Grid Fitting Results

Results & Discussion

Hydrogen Production

Conservation Case

- Monthly production up to 60t by low grid demand month
- Surplus in all months

Optimized Case

- Monthly production up to 35t by low grid demand month
- Surplus in all months, in peak demand month nearly no hydrogen stored

Results & Discussion

Economic Evaluation Results

Lifetime Internal Rate of Return (IRR)					
Model	Cons (wPEM)	Cons (noPEM)	Opti (wPEM)	Opti (noPEM)	
IRR	8.62%	8.91%	11.20%	10.33%	

Results & Discussion

Reference Large Reactor

Power $1000 MW_e$

Construction 7 years

Levelized Cost of Electricity (LCOE) in \$					
Cons (wPEM)	Cons (noPEM)	Opti (wPEM)	Opti (noPEM)	LR	
\$47.37	\$43.79	\$40.24	\$40.89	\$65.63	

^{*} Hydrogen Profits are not included in LCOE

Results & Discussion

Limitations of Current Model

- Time-independent wind mean velocity and air density
- Constant electricity price

- Electricity market will have strong impact on economic performance
- Quasi-steady state PEM responses
- No load following ability of nuclear power plant
- Hydrogen storage cost not yet implemented
- Hydrogen storage starts from zero for each input data
- · Uncertainty and sensitivity studies not yet been performed
- Costs of dispatching and related components are not included
- The techno-economic analysis gives the tendency of the system behavior
- The given result is accompanied with uncertainty

- Introduction
- Hybrid Energy System
- Modelling Strategy
- Results & Discussion
- Conclusions

Conclusions

Hybrid Nuclear-Wind System with Hydrogen Co-production

- Will the system work as it is expected to?
- The system shows its advantage on meeting the grid demand in real demand scenarios;
- With optimization, economical performance can be improved.
- Does the hybrid system pay off?
- The system shows a higher economic value in its lifetime with a more friendly cash flow and faster return rate with proper configuration;
- Co-produced hydrogen plays crucial role in the system, in electricity market,
 peak power electricity may be more profitable than selling hydrogen;
- Cost of hydrogen storage and transport influences the economic value of the system, which is not taken into account currently.

42

Thanks for your kind attention!

Code GitHub:

HyNuReCT: Hybrid Nuclear Renewable Coupling Tools

(https://github.com/tzhang0475/HyNuReCT)

References

- [1] IEA (2019), World Energy Outlook 2019, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2019
- [2] IEA (2018), World Energy Outlook 2018, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2018
- [3] BP, Energy Outlook 2019, BP p.l.c., London
- [4] Lew, D., et al, How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study, Technical Report NREL/TP-5500-50057, United States, December 2010
- [5] Bragg-Sitton, S. M., & Boardman, R. Rethinking the Future Grid: Integrated Nuclearrenewable Energy Systems, United States, 2014
- [6] Zohuri, B., Hybrid Energy System, Springer International Publishing, 2018, p. 1
- [7] Suman, S, *Hybrid nuclear-renewable energy systems: A review*, Journal of Cleaner Production, Volume 181, 2018, Pages 166-177, ISSN 0959-6526

44

- [8] Ruth, M.F., et al, Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs, Energy Conversion and Management, Volume 78, 2014, Pages 684-694, ISSN 0196-8904
- [9] Smolinka, T., Water Electrolysis: Status and Potential for Development, Fraunohfer-ISE, FCH JU Water Electrolysis Day, 2014
- [10] Shiva Kumar, S., Himabindu, V., *Hydrogen production by PEM water electrolysis- A Review*, Materials Science for Energy Technologies, Volume 2, Issue 3, 2019, Pages 442-454, ISSN 2589-2991,
- [11] Siegfried, H., and Waddington R., *Grid Integration of Wind Energy Conversion Systems*. Chichester, England: Wiley, 2014. Print.
- [12] International Standard, *IEC 61400-12-1:2017 Wind energy generation systems Part 12-1: Power performance measurements of electricity producing wind turbines*

- [13] Eberhart, P., Chung, T.S., Haumer, A. and Kral C., *Open Source Library for the Simulation of Wind Power Plants*, in *11th International Modelica Conference*, Versailles, 2015.
- [14] Marangio, F, Santarelli, M, and Cali, M. *Theoretical model and experimental analysis of a high-pressure PEM water electrolyser for hydrogen production*. United Kingdom: N. p., 2009. Web. doi:10.1016/J.IJHYDENE.2008.11.083.
- [15] Tijani, A. S., Abdul Ghani, M.F., Abdol Rahim A.H, et al, Electrochemical characteristics of (PEM) electrolyzer under influence of charge transfer coefficient, International Journal of Hydrogen Energy, Volume 44, Issue 50,2019,Pages 27177-27189,ISSN 0360-3199,
- [16] Awasthi, A., Scott, K., Basu, S., *Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production,* International Journal of Hydrogen Energy, Volume 36, Issue 22,2011, Pages 14779-14786, ISSN 0360-3199.

- [17] Taljan, G., Fowler M., Cañizares C., Verbič G., *Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy,* International Journal of Hydrogen Energy, Volume 33, Issue 17,2008, Pages 4463-4475, ISSN 0360-3199
- [18] Sabharwall, P., Bragg-Sitton, S., Boldon, L., Blumsack, S., *Nuclear Renewable Energy Integration: An Economic Case Study*, The Electricity Journal, Volume 28, Issue 8, 2015, Pages 85-95, ISSN 1040-6190
- [19] Black, G. A., Aydogan, F., Koerner, C. L., *Economic viability of light water small modular nuclear reactors: General methodology and vendor data*, Renewable and Sustainable Energy Reviews, Volume 103,2019,Pages 248-258,ISSN 1364-0321
- [20] Locatelli, G, Pecoraro, M, Meroni, G et al. *Appraisal of small modular nuclear reactors with 'real options' valuation*. Proceedings of the Institution of Civil Engineers Energy, 170 (2). 1600004. pp. 51-66. ISSN 1751-4223, 2017

- [21] DOE, the Code of Account (COA) of DOE Energy Economic Data Base (EEDB), the data of PWR 12
- [22] NEA/OECD, Current Status, Technical Feasibility and Economics of Small Nuclear Reactors, NEA/OECD, 2011.
- [23] Boldon, L. M., and Sabharwall, P., *Small modular reactor: First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK)* Economic Analysis. United States: N. p., 2014
- [24] Holcomb D, Peretz F, Qualls A. *Advanced High Temperature Reactor Systems and Economic Analysis*, Rev 0. ORNL/TM-2011/364 September 2011. Oak Ridge National Laboratory; 2011.
- [25] Vegel, B. and Quinn, J..C., *Economic evaluation of small modular nuclear reactors and the complications of regulatory fee structures*, Energy Policy, vol. 104, pp. 395-403, 2017.
- [26] NuScale Power, LLC, NuScale'S Affordable SMR Technology For All, Jan. 2020.

References

- [27] Ragheb M., Chapter 25 Economics of Wind Power Generation, Editor(s): Trevor M. Letcher, Wind Energy Engineering, Academic Press,2017,Pages 537-555,ISBN 9780128094518
- [28] Bertuccioli, L., Chan, A., et al, *Development of Water Electrolysis in the European Union*, Fuel Cells and Hydrogen Joint Undertaking (FCH JU), 2014
- [29] Singh, S. and Verma, K.S., Optimal Power Flow using Genetic Algorithm and Particle Swarm Optimization, IOSR Journal of Engineering, vol. 2, no. 1, pp. 46-49, 2012
- [30] Stehly, T.J., Beiter, P.C., 2018 Cost of Wind Energy Review. NREL/TP-5000-74598, NREL, 2020
- [31] Stolworthy, M., GB Electricity National Grid Demand and Output per Production Type, Grid Watch, 2020. [Online]. Available: https://gridwatch.co.uk/
- [32] Eichiman, J., Townsend, A. and Melaina, M., Hydrogen Technologies Participating in California Electricity Markets, National Renewable Energy Laboratory, Golden, 2016

49

Back-up Slides

Code GitHub:

HyNuReCT: Hybrid Nuclear Renewable Coupling Tools

(https://github.com/tzhang0475/HyNuReCT)

Modelling Parameters

Wind Turbine^[30]

Wing Diameter	Wind Data	Turbine Working Range	Туре
90 m	Mean 11 m/s Max 28 m/s in 40 range	4.0 m/s ~ 25.0 m/s	Land Type Turbine

Nuclear Economic [22][25][26]

Scaling Factor η	x	у	z	k	Learning Rate
0.51	15%	74%	82%	2%	4%

PEM Cell^{[9][14][15]}

Operation Condition	Membrane Data	Charge Transfer Coefficient	Exchange Current Density
Temperature 80 °C	Area 120 cm ²	Anode 0.5	Anode 1e-7 A/cm ²
Pressure 4 bar	Thickness 0.1 mm	Cathode 0.5	Cathode 1e-3 A/cm ²

Learn from plant configuration

$$f_{lc} = \sum_{n=1}^{i=1} f_i \qquad f_i = \begin{cases} 1 + x & \text{if } FOAK, 1 & \text{if } NOAK \\ \frac{y/z}{(1+k)^{i-2}} & \text{y for } i & \text{is even, z for } i & \text{is odd} \end{cases}$$

- x: FOAK extra cost parameter, range 15%-55%
- y: gain in a pair of units, range 74%-85%
- z: gain in two pairs of units on the same site,
 82%-95%
- k: industrial productivity coefficient, 0%-2%

Learn from new technology

$$f_{lt} = (1+x)P_e^{-\frac{\log(1-R)}{\log 2}}$$

Gain from co-site effects

Gain from modular design simplification

$$f_{modular} = \begin{cases} 0.6, for \ P_e \leq 35 \ MWe \\ 4*10^{-10}P_e^3 - 10^{-6}P_e^2 + 0.0012P_e + 0.581 \ for \ 35 < P_e < 600 \ MWe \\ 1 \ for \ P_e \geq 600 \ MWe \end{cases}$$

FOAK VS NOAK

Lifetime Internal Rate of Return (IRR)					
Model	Cons (FOAK)	Cons (NOAK)	Opti (FOAK)	Opti (NOAK)	
IRR	8.62%	11.00%	11.20%	13.28%	