midterm

October 15, 2024

1 STP598 Machine Learning & Deep Learning

- 1.1 Midterm Exam (Take-home)
- 1.1.1 Due 11:59pm Friday Oct. 25, 2024 on Canvas
- 1.1.2 name, id

1.2 Question 1

- In multiple linear regression, we have residual vector defined as $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}} = \mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}}$. Prove that it is perpendicular to the column space of \mathbf{X} , i.e. $\mathbf{X}^T \mathbf{e} = \mathbf{0}$.
- Now if we want to plot $\hat{\mathbf{y}}$ against \mathbf{y} , what is the slope? Can you prove it?

1.3 Question 2

Probit regression is a binary classification model alternative to logistic regression. The link function is probit function (inverse CDF of standard normal Φ^{-1}) instead of logit function, i.e.

$$\Phi^{-1}(\Pr(Y=1|X)) = X\beta$$

- Write down the log-likelihood function of $\{x_i, y_i\}_{i=1}^n$ and answer briefly how you can find the solution $\hat{\beta}$.
- Fit digits data (using sklearn.datasets.load_digits for n_class=2) with logistic regression, probit regression, random forest, and Gaussian process classifier respectively. Split and dataset into training and testing (e.g. 80% vs 20%). Compare their testing accuracy in one table. Hint: probit regression is not implemented in scikit-learn but has been implemented in statsmodels. Consider statsmodels.discrete.discrete model.Probit

1.4 Question 3

Compare impurity measures for splitting nodes in trees.

• Fill in the blanks of the table to compute Gini index, Shannon entropy and misclassification error.

	Class 1	Class 2	Class 3	\hat{p}_1	\hat{p}_2	\hat{p}_3	Gini	Entropy	Error
$\overline{\mathcal{A}}$	3	3	4						
\mathcal{A}_L	1	0	3						

	Class 1	Class 2	Class 3	\hat{p}_1	\hat{p}_2	\hat{p}_3	Gini	Entropy	Error
$\overline{\mathcal{A}_R}$	2	3	1						

Compute the impurity reductions for the three measures.

1.5 Question 4

Gaussian process is a flexible tool for modeling nonlinear functional relationship. Given data $\{x_i, y_i\}_{i=1}^n$, we assume the following model:

$$y_i = f(x_i) + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$$
$$f \sim \mathcal{GP}(0, \mathcal{C})$$

- Given a new location x_* , predict $\hat{y} = f(x_*)$ and give the uncertainty estimate (credible interval).
- Simulate a dataset of 1-d input x and output y, e.g. using $y = \sin(x) + .1 * N(0, 1)$, for $n_1 = 10$ points. Use Gaussian process to fit such dataset. Predict x_* on a grid of 100 points over the defined domain ($[0, \pi]$ for example). Now increase the data to $n_2 = 50$ points (may contain n_1 points), repeat the same prediction. Plot the following on the same graph:
 - $-n_1$ data points and n_2 data points with different colors (scatter plot)
 - posterior prediction lines based on n_1 and n_2 respectively with different colors (line plot).
 - posterior credible bands based on n_1 and n_2 respectively with different colors (fill_between)
- Compare the plots between two cases $(n_1 \text{ vs } n_2)$. What do you find?

1.6 Extra*

Please comment on this course. What suggestions do you have to improve this course?