

Problems. Consider the nth order linear homogeneous equation with constant coefficients:

$$L(y) = y^{(n)} + \sum_{i=0}^{n-1} a_i y^{(i)} = 0.$$

Suppose ϕ is a solution to this equation. Define

$$\|\phi\| = \left(\sum_{i=0}^{n-1} \left(\phi^{(i)}\right)^2\right)^{1/2}.$$

We begin with finding an estimate of $\|\phi\|$ in some explicit terms. Let $u = \|\phi\|^2 = \sum_{i=0}^{n-1} (\phi^{(i)})^2$, then

$$u' =$$

$$|u'| \leq$$

Since ϕ is assumed to be a solution of L(y) = 0, we have

$$\phi^{(n)} = \sum_{i=0}^{n-1} -a_i \phi^{(i)}$$

$$|\phi^{(n)}| \le \sum_{i=0}^{n-1} |a_i| |\phi^{(i)}|$$

Consequently, substituting in u', we have

We now apply the elementary inequality $2|b||c| \le |b|^2 + |c|^2$ to obtain

Now, denote $k = 1 + \sum_{i=0}^{n-1} |a_i|$, then

$$|u'| \le 2ku$$
,

or equivalently,

$$-2ku \le u' \le 2ku. \tag{1}$$

1. Based on inequality (1), prove that

$$\|\phi(x_0)\|e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\|e^{k|x-x_0|}.$$
(2)

- 2. Let $\{c_i\}_{i=0}^{n-1}$ be any n constants, and let x_0 be any real number. We want to prove that there exists at most one solution ϕ of L(y) = 0 satisfying $\{y^{(i)}(x_0) = c_i\}_{i=0}^{n-1}$. We break the proof into two steps:
 - (a) Suppose both ϕ and ψ were two solutions of L(y)=0 satisfying $\{y^{(i)}(x_0)=c_i\}_{i=0}^{n-1}$. Prove that $\chi=\phi-\psi$ satisfies L(y)=0 and $\{\chi^{(i)}(x_0)=0\}_{i=0}^{n-1}$.

(b) Use inequality (2) to prove that $\|\chi\| = 0$, which implies $\chi(x) = 0$ for all x and hence $\phi = \psi$.