Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Sciences
Industrielles de
l'Ingénieur

Chapitre 2

Caractéristation inertielle des solides

Cours

Savoirs et compétences :

- *Mod2.C13 : centre d'inertie*
- Mod2.C14 : opérateur d'inertie
- *Mod2.C15 : matrice d'inertie*

Volants d'inertie d'un vilebrequin

1	Masse et centre de masse (centre d'inertie) 2
1.1	Masse d'un solide indéformable
1.2	Centre d'inertie d'un solide
1.3	Centre d'inertie d'un en ensemble de solides encastrés
	entre eux
2	Matrice d'inertie d'un solide 2
2.1	Opérateur et matrice d'inertie
2.2	Déplacement d'une matrice d'inertie
2.3	Détermination de la matrice d'inertie d'un solide2
2.4	Compléments2
2.5	Matrice d'inertie de soldies usuels

1 Masse et centre de masse (centre d'inertie)

1.1 Masse d'un solide indéformable

Définition On peut définir la masse totale d'un système E par : $M = \int\limits_{P \in E} \mathrm{d}m$. Si de plus l'ensemble est fait d'un matériau homogène de masse volumique μ , on a $M = \mu \int\limits_{P \in E} \mathrm{d}V$.

1.2 Centre d'inertie d'un solide

Définition La position du centre d'inertie G d'un ensemble matériel E est définie par $\int_{P \in E} \overrightarrow{GP} dm = \overrightarrow{0}$.

Pour déterminer la position du centre d'inertie d'un ensemble E, on passe généralement par l'origine du repère associé à E. On a alors $\int\limits_{P\in E}\overrightarrow{GP}\,\mathrm{d}m=\int\limits_{P\in E}\left(\overrightarrow{GO}+\overrightarrow{OP}\right)\mathrm{d}m=\overrightarrow{0}\Leftrightarrow\int\limits_{P\in E}\overrightarrow{OG}\,\mathrm{d}m=\int\limits_{P\in E}\overrightarrow{OP}\,\mathrm{d}m\Leftrightarrow M\overrightarrow{OG}=\int\limits_{P\in E}\overrightarrow{OP}\,\mathrm{d}m.$

Méthode Pour déterminer les coordonnées (x_G, y_G, z_G) du centre d'inertie G du solide E dans la base $(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$, on a donc :

$$\begin{cases} Mx_G = \mu \int\limits_{P \in E} x_P \, \mathrm{d}V \\ My_G = \mu \int\limits_{P \in E} y_P \, \mathrm{d}V \\ Mz_G = \mu \int\limits_{P \in E} z_P \, \mathrm{d}V \end{cases} \text{ avec } \mathrm{d}V \text{ volume \'el\'ementaire du solide } E.$$

Pour simplifier les calculs, on peut noter que le centre d'inertie appartient au(x) éventuel(s) plan(s) de symétrie du solide.

R Centre d'inertie et centre de gravité sont confondus lorsque le champ de pesanteur est considéré comme uniforme en tout point de l'espace.

1.3 Centre d'inertie d'un ensemble de solides encastrés entre eux

Méthode Soit un solide composé de n solides élémentaires dont la position des centres d'inertie G_i et les masses M_i sont connues. On note $M = \sum_{i=1}^n M_i$. La position du centre d'inertie G de l'ensemble E est donné par :

$$\overrightarrow{OG} = \frac{1}{M} \sum_{i=1}^{n} M_i \overrightarrow{OG_i}.$$

2 Matrice d'inertie d'un solide

- 2.1 Opérateur et matrice d'inertie
- 2.2 Déplacement d'une matrice d'inertie Théorème de Huygens
- 2.3 Détermination de la matrice d'inertie d'un solide
- 2.4 Compléments
- 2.5 Matrice d'inertie de soldies usuels

Références

- [1] Emilien Durif, Introduction à la dynamique des solides, Lycée La Martinière Monplaisir, Lyon.
- [2] Florestan Mathurin, Correction des SLCI, Lycée Bellevue, Toulouse, http://florestan.mathurin.free.fr/.