Gramatici. Automate finite.

Curs 3

Gramatica $G = (N, \Sigma, P, S)$

Un ansamblu $G = (N, \Sigma, P, S)$ unde: • N este un alfabet de simboluri *neterminale*;

- Σ este un alfabet de simboluri **terminale**;
- $P \subseteq (N \cup \Sigma)^* N (N \cup \Sigma)^* \times (N \cup \Sigma)^*$, P este o multime finita de **productii**,
- SEN, S este simbolul initial;

se numeste gramatica.

Daca $(\alpha,\beta) \in P$, atunci notam productia $\alpha \rightarrow \beta$ si inseamna ca α se inlocuieste cu β

Ν∩Σ=Φ

Folosite pentru specificarea limbajelor de programare.

Clasificarea gramaticilor (Chomsky)

Gramatici de tip 1 Gramatici dependente de context

- · Gramatici in care pentru orice productie $\alpha \to \beta \in P$ avem $|\alpha| \le |\beta|$
- · Daca $S \to \varepsilon \in P$, atunci S nu apare in membrul drept al niciunei productii.

Gramatici de tip 2 Gramatici independente de context

· Gramatici in care productiile sunt de forma $A \to \alpha$, $A \in N$ si $\alpha \in (N \cup \Sigma)^*$

Gramatici de tip 3 Gramatici regulare

- · Gramatici in care orice productie are una din formele urmatoare:
- $A \rightarrow aB \ sau \ A \rightarrow b$, unde $A, B \in N \ si \ a, b \in \Sigma$
- · Daca $S \to \varepsilon \in P$, atunci S nu apare in membrul drept al niciunei productii.

Relatia de Derivare

Definita pe $(NU\Sigma)^*$

$$\gamma \implies \delta \Leftrightarrow \exists \gamma_1, \gamma_2, \alpha, \beta \in (\mathbb{N} \cup \Sigma)^* \xrightarrow{\text{\Rightarrow derivare directa}} astfel incat \ \gamma = \gamma_1 \alpha \gamma_2, \ \delta = \gamma_1 \beta \gamma_2, \quad iar \ (\alpha \longrightarrow \beta) \in P$$

k ⇒ k-derivare

Succesiune de k derivari directe

$$\gamma \overset{k}{\Rightarrow} \delta \Longleftrightarrow \exists \alpha_1, \alpha_2, \dots, \alpha_{k-1} \in (\mathbb{N} \cup \Sigma)^* \text{ astfel incat} \\ \gamma \Rightarrow \alpha_1 \Rightarrow \dots \Rightarrow \alpha_{k-1} \Rightarrow \delta$$

$$\gamma \stackrel{*}{\Rightarrow} \delta$$
, daca $\gamma = \delta sau \gamma \stackrel{k}{\Rightarrow} \delta$

$$\stackrel{+}{\Rightarrow} + \underline{derivare}$$

$$\gamma \stackrel{+}{\Rightarrow} \delta \ daca \ \exists \ k > 0 \ astfel \ incat \ \gamma \stackrel{k}{\Rightarrow} \delta$$

ε – productie. Gramatica ε -independenta

 \rightarrow O productie de forma $A \rightarrow \varepsilon$ se numeste ϵ -productie.

- > Gramatica $G=(N, \Sigma, P, S)$ se numeste ε -independenta:
 - Daca ε ∉ L(G) atunci G nu are ε-productii
 - Daca $\varepsilon \in L(G)$ atunci G are o singura productie $S \to \varepsilon$, iar S nu apare in membrul drept al niciunei productii.

Teorema

 \forall G= (N, Σ , P, S), \exists G' = (N', Σ ', P', S) echivalentã, ε -independentã.

Notatii

- > A, B, C neterminale/nonterminale
- > SEN simbol de start
- \rightarrow a, b, c $\in \Sigma$ -terminale
- $\rightarrow \alpha, \beta, \gamma \in (N \cup \Sigma)^*$ forme propozitionale
- \rightarrow x, y, z $\in \Sigma^*$ cuvinte
- > ε cuvantul vid
- \rightarrow X, YE(NU Σ) simboluri din gramatica

Forma propozitionala. Limbajul generat de o gramatica.

Fie G=(N, Σ , P, S). O secventa $x \in (NU\Sigma)^*$ astfel incat $S \stackrel{\circ}{\Rightarrow} x$ se numeste **forma propozitionala**.

O forma propozitionala care nu contine neterminale se numeste propozitie.

Limbajul generat de o gramatica $G=(N, \Sigma, P, S)$ este:

$$L(G) = \{w|w \in \Sigma^*, S \stackrel{*}{\Rightarrow} w\}$$

Doua gramatici, G_1 si G_2 sunt *echivalente* daca ele genereaza acelasi limbaj ($L(G_1)=L(G_2)$).

Exemplu

$$\rightarrow$$
 G=(N, Σ , P, S)

$$\rightarrow N=\{S,A\}$$

$$\Sigma = \{a, b\}$$

$$\rightarrow$$
 P: S \rightarrow AS | a

$$A \rightarrow b$$

bba €L(G)?

$$S \Longrightarrow AS \Longrightarrow bS \Longrightarrow bAS \Longrightarrow bbS \Longrightarrow bba$$

$$\exists S \stackrel{*}{\Rightarrow} bba, deci w = bba \in L(G)$$

ab €L(G)?

Provocare

- > Gramatica pentru declaratie lista identificatori C++.
- > Ex: int a, b, c;
- > a,b,c identificatori (notati prin id)

Solutie

```
    → G=(N, Σ, P, Decl)
    → N={Decl, Tip, Listald}
    → Σ={",", id, integer, char, double, ";"}
    → P: Decl→ Tip Listald;
    Tip → integer|char|double
    Listald → id| id, Listald
```

int a; char x, y, z; double max, min;

AUTOMATE FINITE

$$M = (Q, \Sigma, \delta, q_0, F)$$

> Un automat finit este un ansamblu

$$M = (Q, \Sigma, \delta, q_0, F)$$
 in care:

- Q- multime finita si nevida de elemente, numite *stari*;
- Σ multime finita si nevida numita,
 alfabet de intrare;
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ este o aplicatie, numita *functie de tranzitie*;
- q₀€Q este *stare initiala*;
- F⊆ Q este o multime nevida numita, multimea starilor finale.

Modelul fizic

Automat finit determinist (AFD). Automat finit nedeterminist (AFN)

Fie M un automat finit. Daca $\forall q \in Q, \forall a \in \Sigma \ avem \ |\delta(q,a)| \leq 1$ atunci automatul M se numeste *automat finit determinist (AFD)*, iar in caz contrar se numeste *automat finit nedeterminist (AFN)*.

Fie M un automat finit. Daca $\forall q \in Q, \forall a \in \Sigma \ avem \ |\delta(q,a)| = 1 \ atunci \ automatul M se numeste automat finit determinist complet (total) definit. In acest caz, avem intotdeauna <math>\forall q \in Q, \forall a \in \Sigma, \delta(q,a) = \{p\}, p \in Q$

Configuratii si relatii de tranzitie

c = (q, x), q- stare, x -secventa necitita de pe banda de intrare, x $\in \Sigma^*$

Configuratia initiala

 \cdot (q₀,w), w secventa

Configuratia finala

· (q_f, ϵ) , $q_f \in F$, ϵ -secventa vida (acceptare)

Relatii intre configuratii

Tranzitie simpla (move) ⊢

$$(q,ax) \vdash (p,x), p \in \delta(q,a)$$

k-tranzitie k

Succesiune de k tranzitii directe $c_0 \vdash c_1 \vdash \cdots \vdash c_k$

+-tranzitie +

 $c \vdash^+ c' daca \exists k > 0 \text{ ast fel incat } c \vdash^k c'$

$$\frac{\text{*-tranzitie}^* \vdash}{c \vdash c' daca \exists k \geq 0 \text{ astfel incat } c \vdash c'}$$

Limbajul acceptat de un automat

Limbajul acceptat de automatul $M = (Q, \Sigma, \delta, q_0, F)$ este $T(M) = \{w \in \Sigma^* | (q_0, w) \vdash (q_f, \varepsilon), q_f \in F\}.$

- Doua automate M_1 si M_2 sunt echivalente daca si numai daca $T(M_1)=T(M_2)$
- ε∈L(M) ⇔ q₀∈F

Reprezentare

Exercitii

Reprezentati ca graf automatul:

Q	Σ	a	b	
p		q	р	1
q		r	р	0
r		р	r	0

Exercitii

Construiti un AFD pentru identificatori.