Pracownia Elektroniczna

Wydział Matematyki i Informatyki UWM w Olsztynie

<u>Ćwiczenie 1</u>

Układy całkujące i różniczkujące. Filtry RC.

Imię i Nazwisko	

Data wykonania ćwiczenia	Ocena

Cel ćwiczenia

Poznanie budowy oraz zasady działania filtrów RC

Przygotowanie do ćwiczeń:

KARTKA PAPIERU MILIMETROWEGO (wyrysować skalę logarytmiczną)

Definicje: skali logarytmicznej, obwodów RC, filtrów dolnoprzepustowego (FDP) i górnoprzepustowego (FGP), "dobrego całkowania i różniczkowania", współczynnika wzmocnienia napięciowego k_u , stałej czasowej τ , częstotliwości granicznej. Jednostki opisujące wymienione definicje w układzie SI. Znajomość obsługi generatora i oscyloskopu. Symbole graficzne używanych elementów oraz ich podstawowe parametry.

Opis ćwiczenia

- 1. Zmontować pierwszy układ (później powtórzyć dla drugiego układu) według schematu.
- 2. Skalibrować oscyloskop.
- 3. Zbadać różniczkowanie sygnału prostokątnego przef FGP. Do wejścia filtru doprowadzić z generatora sygnał prostokątny. Zbadać różniczkowanie sygnału wejściowego przy częstotliwościach ~5 Hz 1 MHz. Dla przypadku najlepszego różniczkowania przerysować sygnał wejściowy i odpowiadający mu zróżniczkowany sygnał wyjściowy. Rysunki dokładnie opisać!
- 4. Zbadać układ FDP postępując analogicznie jak w punkcie trzecim.
- 5. Zbadać wpływ zmiany pojemności na układy badanych filtrów (pomiary wykonać analogicznie jak w punkcie 3 i 4).
- 6. Zbadać charakterystykę amplitudową FGP I FDP. Do wejścia filtru doprowadzić z generatora sygnał sinusoidalny o ustalonej wartości napięcia. Zmieniając częstotliwość sygnału wejściowego, dokonać pomiaru napięcia międzyszczytowego (V_{ss}). Zbadać zakres zmian napięcia wyjściowego i zaplanować gęstość i ilość punktów w proponowanej tabelce:

f [Hz]	•••	•••	•••	•••	•••
$U_{\mathrm{wy}}\left[V_{\mathrm{ss}} ight]$		• • •	•••	•••	•••
K _u [U _{wy} /U _{we}]	•••	•••	•••	•••	•••

Dyskusja wyników

- Oscylogramy napięcia wyjściowego i wejściowego z wyskalowanymi osiami dla najlepszego różniczkowania i całkowania
- Określić wpływ zmiany pojemności z punku 5.
- Narysować tabelę z wyliczonymi wartościami współczynnika (k_u). Wykreślić współczynnik (k_u) w funkcji częstotliwości dla FGP i FDP (oś częstotliwości wyrysować w skali logarytmicznej). Zaznaczyć wartość częstotliwości granicznej.
- Wykreślić krzywe teoretyczne wykorzystując podane wartości rezystancji i pojemności. Określić zgodność danych doświadczalnych (np. częstości granicznych) z przewidywaniami teoretycznymi.

Ćwiczenie 1 – Układy całkujące i różniczkujące. Filtry RC.