CLAIMS

What is claimed is.

1	1. A ball-limiting metallurgy (BLM) stack comprising:
2	a metal adhesion first layer disposed above and on a metallization;
3	a metal second layer disposed above and on the metal adhesion first layer;
4	a metal third layer disposed above and on the metal second layer;
5	an electrically conductive bump disposed above and on the metal third layer;
6	and /
7	wherein at least one of the metal second layer and the metal third layer
8	comprises copper.

- 1 2. The BLM stack according to claim 1, wherein the metal adhesion 2 first layer is selected from Ti, TiW, W, and Cr.
- 3. The BLM stack according to claim 1, wherein the metal second layer comprises copper and the metal third layer is selected from a refractory metal, a metal-doped refractory metal, or a refractory metal alloy.
- 1 4. The BLM stack according to claim 1, wherein the metal second
 2 layer comprises copper and the metal third layer is selected from a refractory metal,
 3 a metal-doped refractory metal, or a refractory metal alloy selected from Ni, Co, Pd,
 4 Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Se, Y, La, and Ce in a solid5 solution or stoichiometric ratio.
- 5. The BLM stack according to claim 1, wherein the metal second layer comprises copper and the metal third layer is selected from a nitrided refractory metal, a nitrided metal-doped refractory metal, or a nitrided refractory metal alloy selected from Ni, Co, Pd, Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Sc, Y, La, and Ce in a solid-solution or stoichiometric ratio.

Attorney Docket No. 884.522US1

Attorney Docket No. 884.522US1

	<u>.</u>	
1	6. The BLM stack according to claim 1, wherein the metal third layer	
2	comprises copper, and wherein the metal second layer is selected from a refractory	
3	metal, a metal-doped refractory metal, or a refractory metal alloy.	
1	7. The BLM stack according to claim 1, wherein the metal third layer	
2	comprises copper and the metal second layer is selected from a refractory metal, a	
3	metal-doped refractory metal, or a refractory metal alloy selected from Ni, Co, Pd,	
4	Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Sc, Y, La, and Ce in a solid-	
5	solution or stoichiometric ratio.	
	1	
1	8. The BLM stack according to claim 1, wherein the metal third layer	
2	comprises copper and the metal second layer is selected from a nitrided refractory	
3	metal, a nitrided metal-doped refractory metal, or a nitrided refractory metal alloy	
4	selected from Ni, Co, Pd, Pt, NiV, CoV, PdV, PtV, Ti, Zr, Hf, Cr, Mo, W, Sc, Y,	
5	La, and Ce in a solid-solution or stoichiometric ratio.	
1	9. The BLM stack according to claim 1, wherein the metal second layer	r
2	comprises a copper layer and wherein the metal third layer comprises a copper stud	
1	10. The BLM stack according to claim 1, further comprising:	
2	an intermetallic layer disposed between the metallization and the electrically	7
3	conductive bump.	
1	11. The BLM stack according to claim 1, wherein the electrically	
2	conductive bump comprises a tin-lead solder composition selected from Sn37Pb,	
3	Sn97Pb, and Sn _x Pb _y , wherein x+y total 1 and wherein x is in a range from about 0.3	j
4	to about 0.99.	
1	12. A process comprising:	
2	forming a metallization over a substrate;	

19

Client Ref. No. P11468

3	forming a metal adhesion first layer above and on the metallization;
4	forming a metal second layer above and on the metal adhesion first layer;
5	forming a metal third layer above and on the metal second layer;
6	forming a solder bump above and on the metal third layer, and
7	wherein at least one of the metal second layer and the metal third layer
8	comprises sputtered copper.
1	13. The process according to claim 12, forming a metal adhesion first
2	layer further comprising:
3	sputtering a composition over the metallization under conditions to impart a
4	compressive stress in the metal adhesion first layer, wherein the composition is
5	selected from Ti, TiW, W, and Cr.
1	14. The process according to claim 12, forming the metal second layer
2	and forming the metal third layer further comprising:
3	sputtering a copper metal second layer over the metal adhesion first layer
4	under conditions to impart a compressive stress therein; and
5	sputtering the metal third layer under conditions to impart a compressive
6	stress therein, wherein the metal third layer is selected from a refractory metal, a
7	metal-doped refractory metal, or a refractory metal alloy.
1	15. The process according to claim 12, forming the metal second layer
2	and forming the metal third layer further comprising:
3	sputtering the metal second layer over the metal adhesion first layer and
4	under conditions to impart a compressive stress therein, wherein the metal third
5	layer is selected from a refractory metal, a metal-doped refractory metal, or a
6	refractory metal alloy; and
7	sputtering a copper metal third layer over the metal second layer under
8	conditions/to impart a compressive stress therein.

1	16. The process according to claim 12, forming the metal second layer
2	and forming the metal third layer further comprising:
3	sputtering a copper metal second layer over the metal adhesion first layer
4	under conditions to impart a compressive stress therein; and
5	plating a copper stud through a mask that is disposed over the metal second
6	layer.
1	17. The process according to claim 12, further comprising:
2	forming an electrically conductive bump above and on the metal third layer.
1	18. A process comprising:
2	forming a copper pad over a metal-six (M6) metallization;
3	sputtering a Ti metal adhesion first layer above and on the metallization;
4	sputtering a metal second layer above and on the Ti metal adhesion first
5	layer;
6	forming a metal third layer above and on the metal second layer;
7	forming a solder bump above and on the metal third layer, and
8	wherein at least one of the metal second layer and the metal third layer
9	comprises copper.
1	19. The process according to claim 18, wherein sputtering a Ti metal
2	adhesion first layer above and on the metallization comprises:
3	sputtering a Ti composition over the metallization, wherein the Ti
4	composition has a thickness in a range from about 500 Å to about 4,000 Å.
1	20. The process according to claim 18, wherein sputtering a metal
2	second layer and forming a metal third layer comprise:
3	sputtering a NiV composition over the Ti metal adhesion first layer, wherein
4	the NiV composition has a thickness in a range from about 1,000 Å to about 5,000
5	Å; and

6	sputtering a Cu composition over the metal second layer, wherein the metal
7	third layer has a thickness in a range from about 1,000 Å to about 5,000 Å.
1	21. The process according to claim 18, wherein forming a metal third
2	layer comprises:
3	sputtering a NiV composition over the metal second layer, wherein the NiV
4	composition has a thickness in a range from about 1,000 Å to about 5,000 Å, and
5	wherein the metal second layer has a thickness in a range from about 1,000 Å to
6	about 5,000 Å.
1	22. The process according to claim 18, wherein forming a metal third
2	layer comprises:
3	electroplating a copper stud over the metal second layer, wherein the copper
4	stud has a thickness in a range from about 5 micrometers to about 15 micrometers,
5	and wherein the metal second layer has a thickness in a range from about 1,000 Å to
6	about 5,000 Å.
	· •
1	23. A system comprising:
2	a substrate comprising an electrical device;
3	a metallization pad disposed over the substrate;
4	a ball-limiting metallurgy disposed over the metallization pad, the ball-
5	limiting metallurgy comprising:
6	a metal adhesion first layer disposed above and on the metallization pad;
7	a metal second layer disposed above and on the metal adhesion first layer;
8	a metal third layer disposed above and on the metal second layer;
9	an electrically conductive bump disposed above and on the metal third layer;
10	wherein at least one of the metal second layer and the metal third layer
11	comprises copper; and
12	a flip-chip disposed over the ball-limiting metallurgy.
	/

The system according to claim 23, wherein the flip-chip comprises a 1 24. solder having a composition of about Sn37Pb, and wherein the electrically 2 conductive bump comprises a solder having a composition of about Sn97Pb. 3 The system according to claim 23, wherein the electrical device 1 25. 2 comprises a chip-scale package. 1 26. The system according to claim 23, wherein the flip-chip comprises a 2 chip-scale package. The system according to claim 23, wherein the electrical device 27. 1 comprises a chip-scale package and wherein the flip-chip comprises a chip-scale 2 3 package. The system according to claim 23, further comprising: 1 28. an intermetallic zone that substantially isolates the metal third layer from the 2 3 electrically conductive bymp. add 1