

# Speech-based emotion recognition: Application of collective decision making concepts

Christina Brester, Eugene Semenkin,

Siberian State Aerospace University named after academician M. F. Reshetnev, Krasnoyarsk, Russian Federation

**Maxim Sidorov** 

Ulm University, Ulm, Germany

## Outline

- Background and Motivation
  - Some Examples
  - Problem Definition
  - Corpora Description
- Conventional models
  - Experiment Conducted
  - Results Obtained
  - Inferences #1
- Collective decision making in emotion recognition
  - Main Concepts
  - Results Obtained
  - Inferences #2
- Conclusions and Future work

## Example #1

## **Human-Human Communication**

First 30 min



After a while



## **Human-Machine Communication**

First 30 min



After a while



## To show regret







## To express happiness





## Example #2

## To personalize a response

Good morning, Mister! Can I help you?

Hey, guy! What's up?





## Example #3

# Quality monitoring of call centres

Please, wait a minute, Sir!



An agent

Are you kidding?
I've been waiting for two hours!



..okay



Speech-based emotion recognition:
Application of collective decision making concepts

## Speech-based Emotion Recognition Problem



- General features: Power, Mean, Root mean square, Jitter, Shimmer
- Mel-frequency cepstral coefficients (MFCCs):12 MFCCs
- •Formants: 5 Formants
- Pitch, Intensity and harmonicity based features: Mean, Minimum, Maximum, Range, Deviation
- •Etc.



Extraction of numerical characteristics



The **emotion** is detected

| Sample                  |                         |     |                  |       |  |  |
|-------------------------|-------------------------|-----|------------------|-------|--|--|
| <i>x</i> <sub>1,1</sub> | <i>x</i> <sub>1,2</sub> | ••• | $x_{1,m}$        | $y_1$ |  |  |
| $x_{2,1}$               | $x_{2,2}$               | ••• | $x_{2,m}$        | $y_2$ |  |  |
| $x_{3,1}$               | $x_{3,2}$               |     | $x_{3,m}$        | $y_3$ |  |  |
|                         |                         |     |                  |       |  |  |
| Xn 1                    | Xn 2                    |     | X <sub>n</sub> m | $v_n$ |  |  |

 $\overline{x}_i$  – independent variable,  $y_i$  – dependent variable,  $i = \overline{1,n}$ ,  $y_i \in C$ , where  $C = \{c_1, c_2, ..., c_r\}$  – finite set, r – the number of classes.

#### New examples

| <i>x</i> <sub>1,1</sub> | <i>x</i> <sub>1,2</sub> | ••• | $x_{1,m}$ | ? |
|-------------------------|-------------------------|-----|-----------|---|
|                         |                         |     |           |   |
| $x_{l,1}$               | $x_{l,2}$               | ••• | $x_{l,m}$ | ? |

#### Goal:

To classify new objects based on the sample (supervised learning).

# To get the conventional feature set introduced at INTERSPEECH 2009, the following systems might be used

### Praat

http://www.fon.hum.uva.nl/praat/

University of Amsterdam



## OpenSMILE

http://sourceforge.net/projects/opensmile/

**Technical University of Munich** 



## Speech-based Emotion Recognition Problem

#### List of extracted features

- General features: Power, Mean, Root mean square, Jitter, Shimmer
- Mel-frequency cepstral coefficients (MFCCs):12 MFCCs
- Formants: 5 Formants
- Pitch, Intensity and harmonicity based features: Mean, Minimum, Maximum, Range, Deviation
- •Etc.



characteristics

Classification of sound signals

> The emotion is detected

| Sample                  |                         |     |           |       |  |  |
|-------------------------|-------------------------|-----|-----------|-------|--|--|
| <i>x</i> <sub>1,1</sub> | $x_{1,2}$               | ••• | $x_{1,m}$ | $y_1$ |  |  |
| $x_{2,1}$               | $x_{2,2}$               | ••• | $x_{2,m}$ | $y_2$ |  |  |
| <i>x</i> <sub>3,1</sub> | <i>x</i> <sub>3,2</sub> | ••• | $x_{3,m}$ | $y_3$ |  |  |
|                         |                         |     |           |       |  |  |
| $\overline{x_{n,1}}$    | $x_{n,2}$               | ••• | $x_{n,m}$ | $y_n$ |  |  |

 $x_i$  – independent variable,

 $y_i$  – dependent variable,  $i = \overline{1, n}$ ,

 $y_i \in C$ , where  $C = \{c_1, c_2, ..., c_r\}$  – finite set,

r – the number of classes.

#### New examples

|   | <i>x</i> <sub>1,1</sub> | <i>x</i> <sub>1,2</sub> | <br>$x_{1,m}$ | ? |
|---|-------------------------|-------------------------|---------------|---|
|   |                         |                         | <br>          |   |
| - | $x_{l,1}$               | $x_{l,2}$               | <br>$x_{l,m}$ | ? |

#### Goal:

To classify new objects based on the sample (supervised learning).

12

emotions

5

4

4

4

Speech-based emotion recognition:

Application of collective decision making concepts

Mean (sec.)

2.7

3.8

1.6

3.02

6.26

1.4

Std. (sec.)

1.02

1.07

1.4

2.1

5.17

1.7

Notes

Acted

Acted

Non-acted

Non-acted

Non-acted

Non-acted

13

|  | orpor | a o | lesc | ription             |
|--|-------|-----|------|---------------------|
|  |       |     |      | File level duration |

|          | C        | orpor       | a desc    | ription    |    |
|----------|----------|-------------|-----------|------------|----|
| Database | Language | Full length | Number of | File level | dı |
| Database | Language | /           |           |            |    |

(min.)

24.7

30.7

118.2

47.8

278.5

113.4

**EMO-DB** 

**SAVEE** 

**LEGO** 

**VAM** 

**RadioS** 

**UUDB** 

German

English

English

German

German

Japanese

#### Conventional classification models used

- \* Multilayer Perceptron (MLP)
- \* Support Vector Machine (SVM)
- Linear Logistic Regression (Logit)
- \* Radial Basis Function network (RBF)
- Naive Bayes
- Decision trees (J48)
- \* Random Forest
- \* Bagging
- \* Additive Logistic Regression (LogitBoost)
- One Rule (OneR)

## **Experiment conducted**

For each classifier the *F-score* metric was evaluated to estimate the results of the <u>6-fold cross-validation procedure</u>:

the more effective the classifier that we used, the higher F-score value we obtained.

$$F\_score = 2 \cdot \frac{Re\,call \cdot Precision}{Re\,call + Precision}$$

## F-score definition

|            |                    | True_class         |                    |     |                    |  |
|------------|--------------------|--------------------|--------------------|-----|--------------------|--|
|            |                    | Class <sub>1</sub> | Class <sub>2</sub> | ••• | Class <sub>N</sub> |  |
| class      | Class <sub>1</sub> | a <sub>11</sub>    | a <sub>12</sub>    | ••• | a <sub>1N</sub>    |  |
|            | Class <sub>2</sub> | a <sub>21</sub>    | a <sub>22</sub>    | ••• | a <sub>2N</sub>    |  |
| Predicted_ |                    | •••                | •••                | ••• |                    |  |
| Pre        | Class <sub>N</sub> | a <sub>1N</sub>    | a <sub>2N</sub>    | ••• | a <sub>NN</sub>    |  |

$$precision_{l} = \frac{a_{ll}}{\sum_{j} a_{lj}},$$

$$recall_l = \frac{a_{ll}}{\sum_{i} a_{il}},$$

$$F\_score = 2 \cdot \frac{Re\,call \cdot Precision}{Re\,call + Precision}, \quad Pr\,ecision = \sum_{l} precision, \\ Re\,call = \sum_{l} recall.$$

## Experimental results for conventional classifiers, F-score, %

|                | Emo-DB       | SAVEE        | LEGO         | VAM          | RadioS       | UUDB         |
|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| MLP            | <u>82.87</u> | <u>61.72</u> | 67.53        | 41.08        | <u>34.81</u> | 25.48        |
| SVM            | 81.71        | 59.22        | <u>70.81</u> | 43.57        | 27.26        | 35.59        |
| Logit          | 80.04        | 57.20        | 70.75        | 36.88        | 31.91        | 36.72        |
| RBF            | 68.93        | 43.27        | 52.61        | 37.87        | 23.14        | 26.75        |
| Naive Bayes    | 66.91        | 43.64        | 57.00        | 40.86        | 34.02        | 36.52        |
| J48            | 50.15        | 42.46        | 57.55        | 36.20        | 29.81        | 38.70        |
| Random Forest  | 54.69        | 38.60        | 65.47        | <u>45.66</u> | 30.31        | 40.11        |
| Bagging        | 60.60        | 42.99        | 67.53        | 37.24        | 26.37        | 40.94        |
| Logit<br>Boost | 66.66        | 49.08        | 67.66        | 40.06        | 31.24        | 41.28        |
| OneR           | 29.20        | 30.41        | 59.01        | 33.34        | 23.94        | <u>41.92</u> |

## Inferences #1

 There is no particular model that is equally effective for all of the databases.

 The random choice of the classifier may lead to significant performance deterioration.

 For the used corpora Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Linear Logistic Regression (Logit) demonstrated rather high performance.

## Collective decision making

| Concente decision maxing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Concept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Detailed information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Scheme 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1. For each test example it is determine k-nearest neighbours from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| For each test example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | data set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Choose a model that classifies correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2. The prediction of the model that c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| I was a second and a label and the control of the c | The second of th |  |  |  |

data set.

it is necessary to rs from the training I that classifies these k-nearest neighbours correctly is used as the final k-nearest neighbours from the training decision. (If several models demonstrate equal effectiveness, choose one of them randomly).

Scheme 2. 1. For each test example the engaged models vote for different classes according to their own *Voting procedure is realized with the* predictions. usage of the majority rule. 2. The final decision is defined as a collective choice based on the majority rule. Scheme 3.

Combine Schemes 1 and 2 in the following way: - fulfil the voting procedure as it is described in Combination of Scheme 1 and Scheme 2. Scheme 2; - if several classes have the maximum number of votes, apply Scheme 1.

# Experimental results for collective decision making schemes

|        | Scheme 1     | Scheme 2     | Scheme 3     |
|--------|--------------|--------------|--------------|
| Berlin | 81.18        | 84.01        | <u>84.23</u> |
| SAVEE  | 61.52        | <u>64.33</u> | 63.50        |
| LEGO   | 70.52        | <u>71.19</u> | 71.13        |
| VAM    | 42.29        | <u>50.19</u> | 43.69        |
| RadioS | <u>30.68</u> | 26.39        | 26.39        |
| UUDB   | 37.96        | 36.41        | <u>39.78</u> |

### Classification results for Emo-DB



## Classification results for SAVEE



## Classification results for LEGO



### Classification results for VAM



### Classification results for RadioS



## Classification results for UUDB



## Inferences #2

 Due to the usage of the proposed techniques it became possible to improve the classification results for most of the corpora.

(In some cases even by up to 9.93% relative improvement)

 On the set of the presented databases Scheme 2 was the most effective for the collective classification process.

## Conclusions and Future work

- 1. Although we managed to achieve some good results, there are a number of questions:
- How many classifiers should we use to provide the most reliable scheme? What kind of models should it be compulsory to include in the ensemble of classifiers?
- 2. There are some other aspects related to recognition of qualities of the user such as **gender** and **speaker identification**. Consequently, the proposed schemes might be applied to solve these problems.

## Thanks a lot