

Linear Regression

Jiahui Chen
Department of Mathematical Sciences
University of Arkansas

Scikit-learn algorithm

Data set

Labeled data sets for supervised learning Regression (R)

Data set (R):
$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) | \mathbf{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R} \}_{i=1}^M$$

Classification (C)

Data set (C):
$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) | \mathbf{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0,1\} \}_{i=1}^M$$

Linear Regression

In statistics, linear regression is a linear approach to modelling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables).

Copyright 2014. Laerd Statistics.

One Variable Linear Regression: Example

Assume we have a dataset giving the living areas and prices of 47 houses from Portland, Oregon:

Living area (feet 2)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	<u>:</u>
•	•

One Variable Linear Regression: Example

Training/Test Sets

- In each house, we have living area (feature) and price (label)
- The previous dataset has given labels; thus we call it **training set**.
- If the dataset does not have labels, we call it test set

Living area (feet 2)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:
•	•

Test set

• If we are given a size of living area in a house, What is the estimated price of that house?

Living area	Estimated Price
1300	Ş
4000	Ş
2200	?
2000	?

Model Representation

Predictor and Loss Function

• We assume a predictor that is linear in model parameter (c_0, c_1) :

$$p(x) = c_0 + c_1 x$$

• We choose c_0 , c_1 such that they minimize the following loss function

$$L(c_0, c_1) = \sum_{i=1}^{M} (p(x^{(i)}) - y^{(i)})^2 = ||\mathbf{P} - \mathbf{Y}||_2^2$$
 where: $\mathbf{P} = (p(x^{(1)}), p(x^{(2)}), ..., p(x^{(M)}))^T$
$$\mathbf{Y} = (y^{(1)}, y^{(2)}, ..., y^{(M)})^T$$

In the dataset, $x^{(i)}$ and $y^{(i)}$ are, respectively, the living area and price of the i^{th} house. And M=45

$$\min_{c_0, c_1} : L(c_0, c_1) = \sum_{i=1}^{M} (p(x^{(i)}) - y^{(i)})^2$$

is known as the **least-square linear regression problem.**

There are two approaches to solve least-square linear regression problems

- 1. Use Calculus I technique to find minima point
- 2. Use Projection Matrix in Linear Algebra

- 1. Use gradient to determine minimum value The optimal values of c_0 , c_1 are:
- $\frac{\partial L}{\partial c_{j}} = 0, j = 0, 1 = >$ $\widehat{c_{1}} = \frac{\sum_{i=1}^{M} x^{(i)} y^{(i)} \frac{1}{M} \sum_{i=1}^{M} x^{(i)} \sum_{i=1}^{M} y^{(i)}}{\sum_{i=1}^{M} (x^{(i)})^{2} \frac{1}{M} \left(\sum_{i=1}^{M} x^{(i)}\right)^{2}}$ $\widehat{c_{0}} = \frac{1}{M} \sum_{i=1}^{M} y^{(i)} \widehat{c_{1}} \frac{1}{M} \sum_{i=1}^{M} x^{(i)}$

$$\begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$
$$\begin{bmatrix} 1 & x^{(1)} \end{bmatrix}$$

where
$$\mathbf{X} = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ & \cdots \\ 1 & x^{(M)} \end{bmatrix}$$
,

and
$$\mathbf{Y} = (y^{(1)}, y^{(2)}, \dots, y^{(M)})$$

Result

Multiple Variables Linear Regression: Example

- Used when having multiple features
- In the housing example, consider a richer dataset with knowing the number of bedrooms in each house

I	Living area (feet ²)	# bedrooms	Price (1000\$s)
	2104	3	400
	1600	3	330
	2400	3	369
	1416	2	232
	3000	4	540
	: :	:	:

Predictor and Loss Function

We assume our predictor:

$$p(x) = c_0 + c_1 x_1 + c_2 x_2$$

• Find c_0, c_1, c_2 to optimize the loss function:

$$L(c_0, c_1, c_2) = \sum_{i=1}^{M} \left(p\left(x_1^{(i)}, x_2^{(i)}\right) - y^{(i)} \right)^2$$

- Gradient and Projection Matrix can be used for the multivariable case.
- But Projection Matrix approach is preferred?

Solution of the optimization problem is $\begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

where
$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \\ & \cdots & \\ 1 & x_1^{(M)} & x_2^{(M)} \\ \mathbf{Y} = (y^{(1)}, y^{(2)}, \dots, y^{(M)}) \end{bmatrix}$$

General linear regression model

In general, we assume our predictor:

$$p(x) = c_0 + c_1 x_1 + \dots + c_n x_n$$

Find c_0, c_1, \dots, c_n to optimize the loss function:

$$L(c_0, c_1, \dots, c_n) = \sum_{i=1}^{M} \left(p\left(x_1^{(i)}, \dots, x_n^{(i)}\right) - y^{(i)} \right)^2$$

$$\begin{bmatrix} c_0 \\ c_1 \\ \dots \\ c_n \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

General linear regression model

Solution of the optimization problem is:

$$\begin{bmatrix} c_0 \\ c_1 \\ \dots \\ c_n \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

where
$$\mathbf{X} = \begin{bmatrix} 1 & x_1^{(1)} \dots & x_n^{(1)} \\ 1 & x_1^{(2)} \dots & x_n^{(2)} \\ \dots & \dots & \dots \\ 1 & x_1^{(M)} \dots & x_2^{(M)} \end{bmatrix}$$
, and $\mathbf{Y} = (y^{(1)}, y^{(2)}, \dots, y^{(M)})$

Discussions: Overfitting & linearity

 A model leads to overfitting when it perfectly fits the training data but poorly fits the test data

Linear regression is about the linearity with respect to c not X

Discussions: Loss Function minimization with L1 and L2 norms

L1:
$$\min_{c_0, c_1} : L(c_0, c_1) = \sum_{i=1}^{n} |p(x^{(i)}) - y^{(i)}|$$

Least Squares Regression	Least Absolute Deviations Regression
Not very robust	Robust
Stable solution	Unstable solution
Always one solution	Possibly multiple solutions
No feature selection	Built-in feature selection
Non-sparse outputs	Sparse outputs
Computational efficient due to having analytical solutions	Computational inefficient on non-sparse cases

Sklearn Library

- Linear Regression model is coded in sklearn python library
- Reference: <a href="https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Linea
- Load Linear Regression model from sklearn. linear_model import LinearRegression
- Parameters discussion
 - fit_intercept: use the free coefficient, very often, turn it on will improve the performance.
 - normalize: to standardize features, will explain further in upcoming lectures, have to turn it on.

Sklearn Library

- Output attributes
 - coef_: if $y = c_0 + c_1x_1 + c_2x_2$ then coef_ is an array of $[c_1, c_2]$
 - intercept_: use the above formulation as an example, intercept_ will return a bias c_0