- **1.** Determine the intersection points between the line ℓ : 2x y 10 = 0 and the hyperbola \mathcal{H} : $\frac{x^2}{20} \frac{y^2}{5} 1 = 0$.
- 2. Determine the tangents to the hyperbola $\mathcal{H}: \frac{x^2}{16} \frac{y^2}{8} 1 = 0$ which are parallel to the line $\ell: 4x + 2y 5 = 0$.

3. Determine the tangents to the hyperbola $\mathcal{H}: x^2 - y^2 = 16$ which contain the point M(-1,7).

4. Determine the relations between the coordinates (x_P, y_P) of the point P such that P does not belong to any tangent line to the hyperbola

$$\frac{x^2}{4} - \frac{y^2}{9} = 1.$$

- **5.** Find the area of the triangle determined by the asymptotes of the hyperbola $\mathcal{H}: \frac{x^2}{4} \frac{y^2}{9} 1 = 0$ and the line $\ell: 9x + 2y 24 = 0$.
- **6.** Find an equation for the tangent lines to:
 - a) the hyperbola $\mathcal{H}: \frac{x^2}{20} \frac{y^2}{5} 1 = 0$, orthogonal to the line $\ell: 4x + 3y 7 = 0$;
 - b) the parabola $P: y^2 8x = 0$, parallel to $\ell: 2x + 2y 3 = 0$.
- 7. Find an equation for the tangent lines to:

- a) the hyperbola $\mathcal{H}: \frac{x^2}{3} \frac{y^2}{5} 1 = 0$, passing through P(1, -5);
- b) the paraola $P: y^2 36x = 0$, passing through P(2, 9).
- **8.** Consider the hyperbola $\mathcal{H}: x^2 \frac{y^2}{4} 1 = 0$ with focal points F_1 and F_2 . Find the points M situated on the hyperbola such that
 - a) The angle $\angle F_1 M F_2$ is right;
 - b) The angle $\angle F_1 M F_2$ is 60°;
 - c) The angle $\angle F_1 M F_2$ is θ .

- **9.** Consider the tangents to the parabola $P: y^2 10x = 0$ passing through the point P(-3,12). Calculate the distance from the point P to the chord of the parabola which is formed by the two contact points.
- **10.** Consider the hyperbola $\mathcal{H}: x^2 2y^2 = 1$. Determine the geometric locus described by the midpoints of the chords of \mathcal{H} which are parallel to the line 2x y = 0.

- **11.** For which value *k* is the line y = kx + 2 tangent to the parabola $\mathcal{P}: y^2 = 4x$?
- 12. Consider the parabola $\mathcal{P}: y^2 = 16x$. Determine the tangents to \mathcal{P} which are
 - a) parallel to the line $\ell : 3x 2y + 30 = 0$;
 - b) perpendicular to the line ℓ : 4x + 2y + 7 = 0.
- **13.** Determine the tangents to the parabola $P: y^2 = 16x$ which contain the point P(-2,2).

14. Using the gradient, prove the reflective properties of the hyperbola and of the parabola.