Course: CHM202

Energetics and dynamics of chemical reactions

Assignment – I

Q.1. van der Waals constants for gases A, B and C are as follows-

Gas	a (litre ² atm.mole ⁻²)	b (litre.mole ⁻¹)
A	4.0	0.027
В	12.0	0.030
C	6.0	0.032

Which gas has (a) highest critical temperature? (b) largest molecular volume, (c) most ideal behavior at STP?

- **Q.2.** Using van der Waals equation calculate the pressure developed by 100 gm CO_2 contained in a volume of 5 litres at 40 °C. Compare this value with that calculated from ideal gas laws. [a = 3.59 litre² atm.mole⁻², b = 0.0427 litre.mole⁻¹.]
- Q.3. If the temperature above which a van der Waals gas cannot be liquified is 32.8 °C and minimum pressure to be applied at this temperature for liquefication is 48.2 atm.
 - (a) Find the minimum distance of approach between the centres of two molecules?
 - (b) Calculate the Boyle temperature.

[Hint: $b \propto radius(r)$]

- **Q.4.** If compressibility factor Z for a van der Waals gas is 1.000054 at 0 °C and 1 atm. Boyle temperature of the gas is 107 K, neglecting higher terms of P, calculate the values of a, b and molecular diameter.
- **Q.5.** Gases A and B obeying van der Waals equation have following p_C and T_C values.

Gases	$T_C(K)$	p_{C} (atm)
A	44	26
В	304	72

Which gas (i) has higher $\overline{V_C}$ value and (ii) shows more nearly ideal behavior at 25 °C and pressure of 1000 torr? [1 torr = 1 mm].

- **Q**.6 (a) The molar volume of a perfect gas at 500 K and 100 bar is $V_m^o = 0.416 \text{ dm}^3 \text{mol}^{-1}$. The mean molar volume of air at 60 bar and 400 K is $V_m = 0.9474 \text{ dm}^3 \text{ mol}^{-1}$. In these conditions, which force dominant, attractions or repulsions? (Hint: compression factor).
 - (b) Calculate the critical compression factor (Z_C) for the van der Waals equation.
- **Q**.7 The mass density of phosphorus vapor at 100 °C and 16 kPa is 0.6388 kg m⁻³. What is the formula under these conditions?
- Q.8 A specimen of H₂ gas was found to have a pressure of 125 kPa at the room temperature (i.e. 25 °C). What can its pressure be expected to be when the temperature is 12 °C?
- **Q**.9. The critical constants of methane are $p_C = 45.6$ atm, $\overline{V_C} = 98.7$ cm³mol⁻¹, and $T_C = 190.6$ K. Evaluate the van der Waals coefficients of the methane and determine the radius of the molecules.
- **Q.**10 Estimate the molar volume of chlorine gas on the basis of the van der Waals equation of state at 250 K and 150 kPa. Also calculate the percentage difference from the value predicted by the perfect gas equation. [a = 6.260 atm dm⁶mol⁻²; $b = 5.42 \times 10^{-2}$ dm³mol⁻¹; 1 Pa = 1.01×10^{-5} atm].