1 Feb 11

1.1 Line Bundles

There exists a map,

$$\Gamma(X, \mathcal{L}^{\otimes a}) \otimes \Gamma(X, \mathcal{L}^{\otimes b}) \to \Gamma(X, \mathcal{L}^{\otimes ab})$$

since we have an isomorphism $\mathcal{L}^{\otimes a} \otimes \mathcal{L}^{\otimes b} = \mathcal{L}^{\otimes ab}$. Furthermore, since \mathcal{L} is rank 1 this map is commutative since $s \times s' = s' \otimes s$ since they only differ by a section of \mathcal{O}_X . This allows us to define the following graded ring structure.

Definition 1.1. Let \mathcal{L} be an invertable \mathcal{O}_X -module, \mathscr{F} any \mathcal{O}_X -module and $s \in \mathcal{L}(X)$ a global section. Then we define the following graded ring.

$$\Gamma_*(X,\mathcal{L}) = \bigoplus_{n \geq 0} \Gamma(X,\mathcal{L}^{\otimes n})$$

and then the following module,

$$\Gamma_*(X, \mathcal{L}, \mathscr{F}) = \bigoplus_{n>0} \Gamma(X, \mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n})$$

which is a graded $\Gamma_*(X, \mathcal{L})$ -module. Furthermore, there is a map,

$$\Gamma_*(X, \mathcal{L}, \mathscr{F})_{(s)} \to \mathscr{F}(X_s) = \Gamma(X_s, \mathscr{F})$$

sending $\frac{t}{s^n} \mapsto t|_{X_s} \otimes (s|_{X_s})^{\otimes -n}$.

Proposition 1.2. Let X be a quasi-compact, quasi-seperated scheme and \mathscr{F} be quasi-coherent. Then the above map is an isomorphism.

Proof. Tag OB5K. (Compare with that Hartshorne Excercise 2.16).

Example 1.3. Let A be a graded ring such that A is generated by A_1 as a A_0 -algebra (e.g. $A = k[X_0, \ldots, X_n]$). Let X = Proj(A) and consider the graded module M = A(n) which is the graded module $M_k = A_{k+n}$. Then we can construct the Serre twists,

$$\mathcal{O}_X(n) = \widetilde{M} = \widetilde{A(n)}$$

which is an invertable \mathcal{O}_X -module. Furthermore,

$$\mathcal{O}_X(n) \otimes_{\mathcal{O}_X} \mathcal{O}_X(m) = \mathcal{O}_X(n+m)$$

Remark. This will not be invertible and these maps will not be isomorphisms in general when A does not satisfy the required conditions.

Proof. We can decompose,

$$X = \bigcup_{f \in A_1} D_+(f) = \bigcup_{f \in A_1} \operatorname{Spec} (A_{(f)})$$

via the given assumptions. We know that,

$$\mathcal{O}_X(n)|_{D_+(f)} = \widetilde{A(n)}|_{D_+(f)} = A[\widetilde{f^{-1}}]_n$$

However it is clear that $A[f^{-1}]_n = A[f^{-1}]_0 \cdot f^n$ so this sheaf is free of rank 1.

Remark. For n = 1 any element $f \in A_1$ gives a global section $f \in \Gamma(X, \mathcal{O}_X(1))$ such that $D_+(f) = X_s$ and hence,

$$\mathcal{O}_X|_{D_+(f)} \xrightarrow{\sim} \mathcal{O}_X(1)|_{X_s}$$

Corollary 1.4. In the setting above, further assume that A is generated by finitely many $f \in A_1$ as an A_0 -algebra. Then for any quasi-coherent \mathcal{O}_X -module \mathscr{F} if we set,

$$M = \Gamma_*(X, \mathcal{O}_X(1), \mathscr{F})$$

as a graded A-module via the map,

$$A \to \Gamma_*(X, \mathcal{O}_X(1)) = \bigoplus_{n \ge 0} \Gamma(X, \mathcal{O}_X(n))$$

Then we get, $\mathscr{F} = \widetilde{M}$.

2 Feb. 13

Definition 2.1. Let X be a scheme and \mathcal{L} an invertible \mathcal{O}_X -module. We say \mathcal{L} is ample if X is quasi-compact and $\forall x \in X : \exists n > 0 : s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that X_s is affine and $x \in X_s$.

Example 2.2. Let X = Proj(A) where A is generated by A_1 as a A_0 -algebra and $A_1 = f_1 A_0 + \cdots + f_r A_0$. Then $\mathcal{O}_X(1)$ is invertible and X is covered by $D_+(f_i)$ and is quasi-compact, and $D_+(f_i) = X_{s_i}$ where $s_i \in \Gamma(X, \mathcal{O}_X(1))$ is a section corresponding to f_i .

Proposition 2.3. Let X be quasi-compact and quasi-seperated for $\mathcal{L} \in \text{Pic}(X)$ the following are equivalent,

- (a). \mathcal{L} is ample
- (b). for all \mathcal{O}_X -modules \mathscr{F} locally of finite type there exists n > 0 s.t. $\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$ is generated by global sections.

Proof. TAG 01Q3.
$$\Box$$

Lemma 2.4. \mathcal{L} is ample iff $\mathcal{L}^{\otimes n}$ is ample for any n > 0.

Lemma 2.5. If X is affine, and \mathcal{L} is invertible, and $s \in \Gamma(X, \mathcal{L})$ then X_s is affine.

Definition 2.6. A scheme is noetherian if it has a finite open cover by spectra of noetherian rings.

Remark. It is equivalent to require that X is quasi-compact and $\mathcal{O}_X(U)$ is noetherian for each affine open.

Lemma 2.7. A locally noetherian scheme is quasi-seperated.

Proof. If U, V are affines then $U \cap V$ is quasi-compact since every subspace of a noetherian space is quasi-compact.

Definition 2.8. Let X be a neotherian scheme. An \mathcal{O}_X -module \mathscr{F} is *coherent* if it is quasi-coherent and locally of finite type.

Remark. It is equivalent to require that locally on affine opens $\mathscr{F}|_U = \widetilde{M}$ for a finitely-generated module M.

Remark. The inclusion functors,

$$\mathfrak{Coh}\left(\mathcal{O}_{X}\right)\subset\mathfrak{QCoh}\left(\mathcal{O}_{X}\right)\subset Mod\left(\mathcal{O}_{X}\right)$$

are exact and preserved under extensions i.e. given a short exact sequence,

$$0 \longrightarrow \mathscr{F}_1 \longrightarrow \mathscr{F}_2 \longrightarrow \mathscr{F}_3 \longrightarrow 0$$

if $\mathscr{F}_1, \mathscr{F}_2$ are (quasi)-coherent then \mathscr{F}_2 is also (quasi)-coherent.

Lemma 2.9. A scheme of finite type over a noetherian scheme is noetherian.

Proof. Since $f: X \to Y$ is finite type f is quasi-compact but Y is quasi-compact open so its preimage X is also quasi-compact. Furthermore, for any affine opens $\operatorname{Spec}(A) = U \subset X$ and $\operatorname{Spec}(B) = V \subset Y$ such that $f(U) \subset V$ we get a ring map $B \to A$ of finite type so $B[x_1, \ldots, x_n] \twoheadrightarrow A$ and since B is noetherian we see that A is noetherian so X is quasi-compact and covered by $\operatorname{Spec}(A)$ for noetherian rings A.

Remark. We want to prove the following theorem. Let R be a noetherian ring, X a projective (or proper) scheme over R (then X is noetherian), and \mathscr{F} a coherent sheaf on X, then,

$$H^i(X, \mathscr{F})$$

is a finite R-module for any i and $H^i(X, \mathcal{F}) = 0$ for $i > \dim X$.

3 Feb 18

Definition 3.1. An immersion $j: X \to Y$ is a morphism which may be factored as $X \to U \to Y$ where $X \to U$ is a closed immersion and $U \to Y$ is an open immersion.

Definition 3.2. Let R be a ring, and X a scheme over R. We say X is quasi-projective over R iff there exists a quasi-compact immersion $j: X \to \mathbb{P}^n_R$ over R.

Remark. If X is proper over R (or just universally closed) then j is automatically a closed immersion since $\mathbb{P}^n_R \to \operatorname{Spec}(R)$ is separated and $X \to \operatorname{Spec}(R)$ is universally closed implies that $j: X \to \mathbb{P}^n_R$ is universally closed and in particular topologically closed and thus closed as an immersion. This gives the following lemma.

Lemma 3.3. X is projective over R iff X is quasi-projective and proper over R.

Theorem 3.4. Let R be a ring and X a scheme over R. The TFAE,

- (a). X is quasi-projective over R
- (b). X is of finite type over R and X has an ample invertible module \mathcal{L}
- (c). there exists a quasi-compact open immersion $X \hookrightarrow X'$ with X' projective over R.

Lemma 3.5. Let $j: X \to Y$ be a quasi-compact immersion and \mathcal{L} an ample line bundle on Y. Then $j^*\mathcal{L}$ is an ample line bundle on Y.

Proof. (DO THIS!!)

Lemma 3.6. Let $j: X \to Y$ be a quasi-compact immersion and X' is scheme-theoretic image. Then $j: X \to X'$ is an open immersion.

Proof. Since j is qc and qs (immersions are separated) then $j_*\mathcal{O}_X$ is quasi-coherent and thus $\mathscr{I} = \ker(\mathcal{O}_Y \to \mathcal{O}_X)$ is quasi-coherent so we find $X' = V(\mathscr{I})$ (FINSIH THIS)

Example 3.7. Spec $(k[[x]]) \to \operatorname{Spec}(k[x])$ has scheme theoretic image $\operatorname{Spec}(k[x])$ since its image contains the generic point. However, its set theoretic image is two points.

Proof. of Theorem (2) \implies (1). Choose $r \geq 0$ and $n \geq 1$ and $s_0, \ldots, s_r \in \Gamma(X, \mathcal{L}^{\otimes n})$ s.t.

$$X = \bigcup_{i=0}^{r} X_{s_i}$$

and X_{s_i} affine. Write $X_{s_i} = \operatorname{Spec}(A_i)$. Now R is finite type over R so A_i is finite type over R so we may take $a_{i1}, \ldots, a_{iN_i} \in A_i$ which generate A_i as an R-algebra. Choose $m \geq 1$ and $s_{ij} \in \Gamma(X, \mathcal{L}^{\otimes mn})$ such that $a_{ij} = s_{ij} \cdot s_i^{\otimes -m}|_{X_{s_i}}$. Therefore, $s_0^{\otimes m}, \ldots, s_r^{\otimes m}, s_{ij} \in \Gamma(X, \mathcal{L}^{\otimes mn})$ generate $\mathcal{L}^{\otimes mn}$ and therefore define a morphism $\varphi: X \to \mathbb{P}_R^{r+\sum N_i}$. It suffices to check that $X_{s_i} \to D_+(T_i)$ are a closed immersion. This holds because it is given by the ring map,

$$R\left[\frac{T_0}{T_1}, \dots, \frac{T_r}{T_i}, \frac{T_{ij}}{T_i}\right] \to A_i = \mathcal{O}_X(X_{s_i})$$

given by $\frac{T_{ij}}{T_i} \to a_{ij}$ which is clearly surjective so $X_{s_i} \to D_+(T_i)$ is a closed immersion.

Remark. If we had checked that $X_{s_{ij}} \to D(T_{ij})$ we also a closed immersion with $X_{s_{ij}}$ affine then $\varphi: X \to \mathbb{P}_R^N$ would be a *closed* immersion. We checked only that it is locally a closed immersion on X

3.1 Functorial Characterization of \mathbb{P}^n_R

Consider the functor, $F: \mathfrak{Sch}_R \to \mathfrak{Set}$ via,

$$T \mapsto \{(\mathcal{L}, s_0, \dots, s_n) \mid \mathcal{L} \in \text{Pic}(T) \ \mathcal{O}_T^{n+1} \xrightarrow{(s_0, \dots, s_n)} \mathcal{L} \text{ i.e. } s_0, \dots, s_n \in \Gamma(X, \mathcal{L}) \text{ generate}\}/\cong$$

where $(\mathcal{L}, s_0, \dots, s_n) \cong (\mathcal{L}', s_0', \dots, s_n')$ if there is an isomorphism $\alpha : \mathcal{L} \to \mathcal{L}'$ with $\alpha(s_i) = s_i'$.

Theorem 3.8. \mathbb{P}_R^n represents this functor, $\operatorname{Hom}_{\mathfrak{Sch}_R}(T,\mathbb{P}_R^n) = F(T)$.

Proof. Given $\varphi: T \to \mathbb{P}^n_R$ we get $\mathcal{L} = \varphi^* \mathcal{O}_{\mathbb{P}^n_R}(1)$ and $s_i = \varphi^*(T_i)$.

Conversely, given $(\mathcal{L}, s_0, \ldots, s_n)$ and $U \subset T$ and

Theorem 3.9. If R is Noetherian and X is proper over R and \mathcal{L} is ample on X then,

$$X \cong \operatorname{Proj}(\Gamma_*(X, \mathcal{L}))$$

and $\Gamma_*(X, \mathcal{L})$ is a finitely-generated graded R-algebra whose degree zero part is a finite R-module. Remark. We will prove this using cohomology.

4 Cohomology

Theorem 4.1. $\mathbf{Mod}_{\mathcal{O}_X}$ is a Grothendieck abelian category so there are enough injectives.

Definition 4.2. Therefore, we can produce the right-derived functors $H^i(X, -)$ of the global sections functor,

$$\Gamma(X,-): \mathbf{Mod}_{\mathcal{O}_X} \to \mathbf{Mod}_{\Gamma(X,\mathcal{O}_X)}$$

where (X, \mathcal{O}_X) is a ringed space. Since this is right-exact we find $H^0(X, -) = \Gamma(X, -)$.

Definition 4.3. Furthermore, given a morphism $f: X \to Y$ we can produce $R^i f_* : \mathbf{Mod}_{\mathcal{O}_X} \to \mathbf{Mod}_{\mathcal{O}_Y}$ the right-derived functors of $f_* : \mathbf{Mod}_{\mathcal{O}_X} \to \mathbf{Mod}_{\mathcal{O}_Y}$.

Remark. $\mathbf{Ab}(X) = \mathbf{Mod}_{\mathbb{Z}}$ so we may apply the theory of cohomology of \mathcal{O}_X -modules to the ringed space (X, \mathbb{Z}) to get a cohomology theory for abelian sheaves.

Lemma 4.4 (locality of cohomology). Given $\xi \in H^p(X, \mathscr{F})$ with p > 0 there exists an open covering,

$$X = \bigcup_{i \in I} U_i$$

s.t. $\xi|_{U_i} = 0$ for each $i \in I$.

Proof.

Remark. The pullback is defined as follows,

5 Feb 20

5.1 Cech Cohomology

For any open covering $\mathfrak U$ of a space X and a sheaf $\mathscr F$ there is a simplicial abelian group,

$$\prod_{i_0 \in I} \mathscr{F}(U_{i_0})$$

Then $\check{C}^{\bullet}(\mathfrak{U},\mathscr{F})$ is the complex associated to the cosimplicial object.

Example 5.1. Given an exact sequence of sheaves,

$$0 \longrightarrow \mathscr{F} \longrightarrow \mathscr{G} \longrightarrow \mathscr{H} \longrightarrow 0$$

An obstruction to lifting a section $s \in \Gamma(X, \mathcal{H})$ is a cocycle in $\check{C}^1(\mathfrak{U}, \mathscr{F})$.

Lemma 5.2. Cech cohomology vanishes on injective objects in the category of presheaves.

Corollary 5.3. As a functor ON THE CATEGORY OF PRESHEAVES $\check{H}^i(\mathfrak{U}, -)$ are the right-derived functors of $\check{H}^0(\mathfrak{U}, -)$.

Lemma 5.4. Given a ringed space, (X, \mathcal{O}_X) and B is a basis of top and Cov a set of coverings s.t.

- (a). If in cov implies that its union and all finite intersections are in B
- (b). for U basis the coverings of U in Cov are cofinal

If
$$\mathcal{F} \in \mathcal{M}od(\mathcal{O}_X)$$
 and

$$(*)\forall \mathfrak{U} \in Cov : \check{H}^p(\mathfrak{U}, \mathscr{F}) = 0$$

Then $H^p(\mathfrak{U}, \mathscr{F}) = 0$ for any U in the basis.

6 Feb 25

Lemma 6.1. Let \mathfrak{U} be an open covering of X and $\mathscr{F} \in Mod(\mathcal{O}_X)$ s.t. $H^p(U_{i_1} \cap \cdots \cup U_{i_n}, \mathscr{F}) = 0$ for all finite intersections. Then $H^p(X, \mathscr{F}) = \check{H}^p(X, \mathscr{F})$ for all $p \geq 0$.

Proof. See proof in Hartshorne Ex. It goes as follows,

(a). Use an exact sequence,

$$0 \longrightarrow \mathscr{F} \longrightarrow \mathscr{I} \longrightarrow \mathscr{G} \longrightarrow 0$$

with \mathscr{I} injective.

- (b). Show for any sheaf $\check{H}^0(X,\mathscr{F}) = H^0(X,\mathscr{F})$ just by the sheaf property.
- (c). By the assumptions, there is an exact sequence on check complexes,

$$0 \longrightarrow \check{C}^{\bullet}(\mathfrak{U},\mathscr{F}) \longrightarrow \check{C}^{\bullet}(\mathfrak{U},\mathscr{I}) \longrightarrow \check{C}^{\bullet}(\mathfrak{U},\mathscr{G}) \longrightarrow 0$$

- (d). this gives a long exact sequence of Cech cohomology
- (e). use this exact sequence plus $\check{H}^p(\mathfrak{U},\mathscr{I}) = 0$ for p > 0 (since flasque) to show that $\check{H}^p(\mathfrak{U},\mathscr{G}) = \check{H}^{p+1}(\mathfrak{U},\mathscr{F})$ and $\check{H}^1(\mathfrak{U},\mathscr{F}) = \operatorname{coker} \check{H}^0(\mathfrak{U},\mathscr{I}) \to \check{H}^0(\mathfrak{U},\mathscr{G})$
- (f). use long exact sequence of $H^p(U_{i_0,\ldots,i_n},-)$ to show that \mathscr{G} also satisfies the hypotheses.
- (g). use long exact sequence of $H^p(X,-)$ to show that the above hold for usual cohomology.
- (h). then by induction we get $\check{H}^{p+1}(\mathfrak{U},\mathscr{F}) = \check{H}^p(\mathfrak{U},\mathscr{G}) = H^p(X,\mathscr{G}) = H^{p+1}(X,\mathscr{F})$ and the base case holds since they are both kernels.

Corollary 6.2. Let X be a scheme whose diagonal is affine (for example a separated scheme). Let \mathfrak{U} be a covering of affine opens and \mathscr{F} a quasi-coherent \mathcal{O}_X -module. Then,

$$H^p(X,\mathscr{F})=\check{H}^p(X,\mathscr{F})$$

Remark. There is a Cech to cohomology spectral sequence,

$$E_2^{p,q} = \check{H}^p(\mathfrak{U},\underline{H}^q(\mathscr{F})) \implies H^{p+q}(X,\mathscr{F})$$

Corollary 6.3. Let $f: X \to Y$ be a squasi-compact quasi-separated morphism of schemes. Then $R^i f_*$ sends quasi-coherent modules to quasi-coherent modules.

Lemma 6.4. Let $f: X \to Y$, $F \in \mathcal{M}_{od}(\mathcal{O}_X)$ then $R^p f_* \mathscr{F}$ is the sheaf associated to the presheaf,

$$V\mapsto H^i(f^{-1}(V),\mathscr{F})$$

Proposition 6.5. We define the following modifications to the Cech complex,

 $\check{C}_{\mathrm{alt}}^{\bullet}$ is elements of the form $(s_{i_0...i_p})$ which are antisymmetric and vanish if any two indicies agree and the ordered check complex for a total order < on I,

$$\check{C}_{\mathrm{ord}}^p = \prod_{i_0 < \dots < i_p} \mathscr{F}(U_{i_0 \dots i_p})$$

There are the following relations between Cech complexes,

$$\check{C}_{\mathrm{alt}}^{\bullet}(\mathfrak{U},\mathscr{F}) \xrightarrow{\mathrm{include}} \check{C}^{\bullet}(\mathfrak{U},\mathscr{F}) \xrightarrow{\mathrm{project}} \check{C}_{\mathrm{ord}}^{\bullet}(\mathfrak{U},\mathscr{F})$$

the curves arrow is an isomorphism of complexes and the horizontal arrows are homotopy equivalences.

7 Feb. 27

Proposition 7.1. Let R be a Noetherian ring and \mathscr{F} a coherent sheaf on \mathbb{P}_{R}^{n} . Then,

- (a). $\exists r \geq 0 : \exists m \in \mathbb{Z} \text{ and a surjection } \mathcal{O}_X(m)^{\oplus r} \twoheadrightarrow \mathscr{F}$
- (b). $H^i(\mathbb{P}^n_R, \mathscr{F}) = 0$ for $i \notin [0, n]$
- (c). $H^i(\mathbb{P}^n_R, \mathscr{F})$ is a finite R-module
- (d). for i > 0, $H^i(\mathbb{P}^n_R, \mathscr{F}(d)) = 0$ for any $d \geq d_0(\mathscr{F})$
- (e). $\bigoplus_{d\geq 0} H^0(\mathbb{P}^n_R, \mathscr{F}(d))$ is a finite $P=R[T_0,\ldots,T_n]$ -module.

Proof. Recall that $\mathcal{O}_X(1)$ is ample so $\mathscr{F} \otimes \mathcal{O}_X(d)$ is generated by global sections for sufficiently large d and thus we get $\mathcal{O}_X^{\oplus r} \twoheadrightarrow \mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(d)$ and thus $\mathcal{O}_X(-d)^{\oplus r} \twoheadrightarrow \mathscr{F}$.

Note that $\mathbb{P}_{R}^{n} = \bigcup_{i} D_{+}(T_{i})$ which is an open cover of n+1 affines so by Cech cohomology, cohomology vanishes above n.

Now we apply descending induction since $H^{n+1}(\mathbb{P}_R^n, \mathscr{F}) = 0$. Now we assume (3) and (4) for degree k+1. For a coherent sheaf \mathscr{F} consider the exact sequence,

$$0 \longrightarrow \mathscr{G}(d) \longrightarrow \mathcal{O}_X(m+d)^{\oplus n} \longrightarrow \mathscr{F}(d) \longrightarrow 0$$

then, from the LES we get,

$$H^k(\mathbb{P}^n_R, \mathcal{O}_X(m+d)^{\oplus r}) \longrightarrow H^k(\mathbb{P}^n_R, \mathscr{F}(d)) \longrightarrow H^{k+1}(\mathbb{P}^n_R, \mathscr{G}(d))$$

For the case d=0 we assume that $H^{k+1}(\mathbb{P}^n_R,\mathscr{G})$ is a finite R-module and, by computation, so is $H^k(\mathbb{P}^n_R,\mathcal{O}_X(m)^{\oplus r})$ and thus $H^k(\mathbb{P}^n_R,\mathscr{F})$ is a finite R-module. For $d\gg 0$ then we assume that $H^{k+1}(\mathbb{P}^n_R,\mathscr{G}(d))=0$ for sufficiently large d. Futhermore, for k>0 we computed that $H^k(\mathbb{P}^n_R,\mathcal{O}_X(m)^{\oplus r})=0$ for $d\geq m$ and thus we see that $H^k(\mathbb{P}^n_R,\mathscr{F}(d))=0$ for sufficiently large d proving (3) and (4).

Finally, we also use descending induction and conisder the exact sequence,

$$\bigoplus_{d\geq 0} H^0(\mathbb{P}^n_R, \mathcal{O}_X(m+d)^{\oplus r}) \longrightarrow \bigoplus_{d\geq 0} H^0(\mathbb{P}^n_R, \mathscr{F}(d)) \longrightarrow \bigoplus_{d\geq 0} H^0(\mathbb{P}^n_R, \mathscr{G}(d))$$

By computation, the first term is a submodule of a finite P-module and the last term is zero is sufficiently large degrees. Thus the middle term M has a f.g. P-submodule M' such that M/M' is finite as an R-module so M is a f.g. P-module.

Lemma 7.2. Let $f: X \to Y$ be an affine morphism of schemes. Then $H^p(X, \mathscr{F}) = H^p(Y, f_*\mathscr{F})$ for \mathscr{F} quasi-coherent.

Proof. We use the Grothendieck spectral sequence and not that for $f: X \to Y$ affine and \mathscr{F} quasi-coherent we have $R^p f_* \mathscr{F} = 0$ for p > 0 since quasi-coherent higher cohomology vanishes on affine schemes.

Example 7.3. If X is a projective scheme over a Noetherian ring R. For closed immersion $X \hookrightarrow \mathbb{P}_R^n$,

$$H^i(X,\mathscr{F})=H^i(\mathbb{P}^n_R,j_*\mathscr{F})$$

for quasi-coherent \mathcal{O}_X -modules.

Lemma 7.4. If $\mathscr{F}: X \to Y$ is finite and X and Y are Noetherian then f_* preserves coherent sheaves.

Proof. Since f is affine it preserves quasi-coherent modules. Since the morphism is additionally finite on rings so it changes finite modules to finite modules on the affine open level.

Corollary 7.5. For any coherent \mathscr{F} on a scheme X projective over Noetherian R then the above proposition holds with $\mathscr{F}(d) = \mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d}$ where \mathcal{L} is an ample line bundle.

Remark. Let X be Noetherian over Noetherian R then let $n = \max\{\dim X_s \mid s \in \operatorname{Spec}(R)\}$ then $H^i(X, \mathscr{F}) = 0$ for i > n. Warning, this is not true for quasi-projective X over a Noetherian ring. For example, consider $X = \mathbb{A}^2_{\mathbb{Q}} \setminus \{0\} \to \mathbb{A}^2_{\mathbb{Q}}$ is quasi-projective over $R = \mathbb{Q}[x, y]$ but X does not have finitely generated cohomology.

Lemma 7.6. Let X be projective over a field k then X has an open cover by $\dim X + 1$ affines.

Proof. Choose $X \hookrightarrow \mathbb{P}^n_k$ show that we can find $F \in k[T_0, \ldots, T_n]_d$ s.t. $\dim(X \cap V(F)) < \dim X$. Namely, choose F not vanishing at the generic points of X by graded prime avoidance. Then we can repeat to get,

$$X \cap V(F_1) \cap \cdots \cap V(F_{\dim X + 1}) = \emptyset$$

and thus,

$$X = (X \cap D_+(F)) \cup \cdots \cup (X \cap D_+(F_{\dim X + 1}))$$

where these factors are affine.

Corollary 7.7. $H^i(X, \mathscr{F}) = 0$ for $i > \dim X$ for \mathscr{F} quasi-coherent on X projective over a field.

Theorem 7.8 (Grothendieck). If (X, \mathcal{O}_X) is a Noetherian ringed space then $H^i(X, \mathcal{F}) = 0$ for $i > \dim X$ and any \mathcal{O}_X -module \mathcal{F} .

Remark. Since we can always choose $\mathcal{O}_X = \underline{\mathbb{Z}}$ in the above theorem applies to all abelian sheaves.

Lemma 7.9. If X is qc and qs then for \mathscr{F}_i quasi-coherent and I an arbitrary index set,

$$H^p(X, \bigoplus_{i \in I} \mathscr{F}_i) = \bigoplus_{i \in I} H^p(X, \mathscr{F})$$

Remark. The above is always true in general for finite I since biproducts preserve exact sequences and injectives.

Proof. It is enough to show the above for Cech cohomology for finite affine open covers. Thus, it is enough to show that,

$$\left(\bigoplus_{i\in I}\mathscr{F}_i\right)(U)=\bigoplus_{i\in I}\mathscr{F}_i(U)$$

If X is affine open in X (WAIT WHAT??)

7.1 Duality

Lemma 7.10. Let R be a ring, M an R-module, and X qc + sep over R. And some $n \geq 0$ such that $H^{n+1}(X, \mathscr{F})$ for all \mathscr{F} quasi-coherent. Then, the functor $F : \mathfrak{QCoh}(\mathcal{O}_X) \to \mathbf{Mod}_R$ via $\mathscr{F} \mapsto \operatorname{Hom}_R(H^n(X, \mathscr{F}), N)$ is representable by some $\omega_{X/R,M} \in \mathfrak{QCoh}(\mathcal{O}_X)$. That is,

$$F(-) = \operatorname{Hom}_{\mathcal{O}_X}(-, \omega_{X/R,M})$$

Example 7.11. For $X = \operatorname{Spec}(A)$ then we have $\widetilde{N} \mapsto \operatorname{Hom}_R(N_R, M)$. Then,

$$\operatorname{Hom}_R(N_R, M) = \operatorname{Hom}_A(N, \operatorname{Hom}_R(A, M))$$

so we would have $\omega_{A/R,M} = \widetilde{\operatorname{Hom}}_R(A,M)$.

Proof. First note that F acts on direct sums as,

$$F\left(\bigoplus_{i\in I}\mathscr{F}_i\right)=\mathrm{Hom}_R\left(H^n(X,\bigoplus_{i\in I}\mathscr{F}_i),M\right)=\mathrm{Hom}_R\left(\bigoplus_{i\in I}H^n(X,\mathscr{F}_i),M\right)=\prod_{i\in I}\mathrm{Hom}_R(H^n(X,\mathscr{F}_i),M)$$

Furthermore, F takes epis to monos since given an exact sequence,

$$0 \longrightarrow \mathscr{F}_1 \longrightarrow \mathscr{F}_2 \longrightarrow \mathscr{F}_3 \longrightarrow 0$$

then we get,

$$H^n(X, \mathscr{F}_2) \longrightarrow H^n(X, \mathcal{D}_3) \longrightarrow H^{n+1}(X, \mathscr{F}_1) = 0$$

These together shows that F takes all small colimits to products. Then if F satisfies some mild set-theoretic condition then the adjoint functor theorem gives $\omega_{X/R,M}$ as a funtor on M. The ideal goes as follows. We take,

$$\omega_{X/R,M} = \operatorname{colim}_{\mathcal{C}} \mathscr{F}$$

where \mathcal{C} is a category of pairs (\mathscr{F}, α) where \mathscr{F} is a quasi-coherent sheaf and $\alpha \in F(\mathscr{F})$ and $\operatorname{Hom}_{\mathcal{C}}((\mathscr{F}, \alpha), \mathscr{G}, \beta)) = \varphi : \mathscr{F} \to \mathscr{G}$ and $\varphi^*\beta = \alpha$. However, this category is big so we cannot take a total colimit over it. We must resolve this set-theoretic issue.

In the case R is Noetherian and X is finite type over R then any quasi-coherent \mathscr{F} can be writen as a filtered colimit,

$$\mathscr{F} = \operatorname{colim}_{i \in I} \mathscr{F}_i$$

with \mathscr{F}_i coherent. This means that in the colimit defining $\omega_{X/R,M}$ we can restrict to only coherent \mathscr{F} and there is a set of isomorphism classes of coherent sheaves.

8 Mar 3

Remark. Here X will be a Noetherian scheme.

Lemma 8.1. Let X be a Noetherian scheme. Any presheaf on $\mathfrak{QCoh}(\mathcal{O}_X)$ which transforms colimits into limits is representable.

Lemma 8.2. Any quasi-coherent module \mathscr{F} on X is a filtered colimit of coherent \mathcal{O}_X -modules. (In fact \mathscr{F} is the rising union of its coherent submodules).

Corollary 8.3. For any $\mathscr{F} \in \mathfrak{QCoh}(\mathcal{O}_X)$ there exists an exact sequence,

$$\bigoplus_{j\in J} \mathscr{G}_j \longrightarrow \bigoplus_{i\in I} \mathscr{F}_i \longrightarrow 0$$

where \mathscr{F}_i and \mathscr{G}_j are coherent.

Lemma 8.4. There is a set of isomorphism classes of coherent \mathcal{O}_X -modules.

Proposition 8.5. Let X be finite type over R Noetherian. Let n be an integer s.t. $H^{n+1}(X, \mathscr{F}) = 0$ for any $\mathscr{F} \in \mathfrak{QCoh}(\mathcal{O}_X)$. Then, for any R-module M, the functor,

$$\mathscr{F} \mapsto \operatorname{Hom}_R(H^n(X,\mathscr{F}),M)$$

is representable by $\omega_{X/R,M,n} \in \mathfrak{QCoh}(\mathcal{O}_X)$ i.e.

$$\operatorname{Hom}_{R}(H^{n}(X,\mathscr{F}),M) = \operatorname{Hom}_{\mathcal{O}_{X}}(\mathscr{F},\omega_{X/R,M,n})$$

functorially in $\mathscr{F} \in \mathfrak{QCoh}(\mathcal{O}_X)$.

Remark. For any integer p and $\mathscr{F} = \operatorname{colim} \mathscr{F}_i$ is a filted colimit of \mathcal{O}_X -modules on a Noetherian scheme (or qcqs scheme) we have,

$$H^p(X, \mathscr{F}) = \operatorname{colim} H^p(X, \mathscr{F}_i)$$

Theorem 8.1. If k is a field and $n \geq 0$. Then $\omega_{\mathbb{P}_k^n/k,k,n} = \mathcal{O}_{\mathbb{P}_k^n}(-n-1)$. In particular,

$$H^n(\mathbb{P}^n_k, \mathscr{F})^{\vee} = \operatorname{Hom}_{\mathcal{O}_X}(\mathscr{F}, \mathcal{O}_{\mathbb{P}^n_k}(-n-1))$$

functorially in $\mathscr{F} \in \mathfrak{QCoh}\left(\mathcal{O}_{\mathbb{P}^n_k}\right)$.

Proof. It suffices to show for \mathscr{F} coherent. Pick a resolution,

$$\bigoplus_{j=1}^{s} \mathcal{O}_{\mathbb{P}^{k}_{k}}(e_{j}) \longrightarrow \bigoplus_{j=1}^{r} \mathcal{O}_{\mathbb{P}^{n}_{k}}(d_{i}) \longrightarrow \mathscr{F} \longrightarrow 0$$

Since $H^n(\mathbb{P}^n_k, -)$ is right exact (by dimension vanishing) we get,

$$\bigoplus_{j=1}^{s} H^{n}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{k}_{k}}(e_{j})) \longrightarrow \bigoplus_{j=1}^{r} H^{n}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{n}_{k}}(d_{i})) \longrightarrow H^{n}(\mathbb{P}^{n}_{k}, \mathscr{F}) \longrightarrow 0$$

Then taking k-linear duals,

$$\bigoplus_{j=1}^{s} H^{n}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{k}_{k}}(e_{j}))^{\vee} \longleftarrow \bigoplus_{j=1}^{r} H^{n}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{n}_{k}}(d_{i}))^{\vee} \longleftarrow H^{n}(\mathbb{P}^{n}_{k}, \mathscr{F}) \longleftarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\bigoplus_{j=1}^{s} H^{n}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{k}_{k}}(-e_{j}-n-1)) \leftarrow \bigoplus_{j=1}^{r} H^{n}(\mathbb{P}^{n}_{k}, \mathcal{O}_{\mathbb{P}^{n}_{k}}(-d_{i}-n-1)) \leftarrow \operatorname{Hom}_{\mathcal{O}_{\mathbb{P}^{n}_{k}}}(\mathscr{F}, \mathcal{O}_{\mathbb{P}^{n}_{k}}(-n-1)) \leftarrow 0$$

Note that,

$$\mathcal{O}_{\mathbb{P}^n_k}(-d-n-1) = \mathscr{H}\!\!\mathit{em}_{\mathcal{O}_{\mathbb{P}^n_k}}\!\!\left(\mathcal{O}_{\mathbb{P}^n_k}(d), \mathcal{O}_{\mathbb{P}^n_k}(-n-1)\right)$$

gives the above "transpose" map t above by functoriality in the first argument along with the fact,

$$H^0(\mathbb{P}^n_k, \mathscr{H}om_{\mathcal{O}_{\mathbb{P}^n}}(\mathscr{F},\mathscr{G})) = \operatorname{Hom}_{\mathcal{O}_X}(\mathscr{F},\mathscr{G})$$

9 March 5

9.1 Serre Duality for \mathbb{P}^n_k Continued.

Write $\omega = \mathcal{O}_{\mathbb{P}^n_k}(-n-1)$ and $t: H^n(\mathbb{P}^n_k, \omega) \to k$ via the Check class,

$$\frac{1}{T_0 \cdots T_n} \mapsto 1$$

Then we know that ω represents the functor,

$$\mathscr{F} \mapsto H^n(\mathbb{P}^n_k, \mathscr{F})^\vee$$

on $\mathfrak{QCoh}(\mathcal{O}_X)$ with universal object t.

Theorem 9.1. For coherent modules \mathscr{F} , there is an isomorphism,

$$H^{n-i}(\mathbb{P}^n_k,\mathscr{F})^{\vee}=\operatorname{Ext}^i_{\mathcal{O}_X}(\mathscr{F},\omega)$$

Proof. Both sides are contravariant δ -functors in \mathscr{F} so it suffices to show that both are universal for which it suffices to show that both are coeffecable. For any coherent sheaf \mathscr{F} we can find,

$$\mathcal{O}_{\mathbb{P}^n_k}(-q)^{\bigoplus r} \twoheadrightarrow \mathscr{F}$$

and then for i > 0 we know,

$$H^{n-i}(\mathbb{P}^n_k,\mathcal{O}_{\mathbb{P}^n_k}(-q))=0 \quad \text{ and } \quad \operatorname{Ext}^i_{\mathcal{O}_X}\left(\mathcal{O}_{\mathbb{P}^n_k}(-q),\omega\right)=H^i(\mathbb{P}^n_k,\omega(q))=H^i(\mathbb{P}^n_k,\mathcal{O}_{\mathbb{P}^n_k}(-n-1+q))=0$$

for sufficiently large $q \gg 0$ using our Cech calculations.

Lemma 9.1. Let (X, \mathcal{O}_X) be a ringed space and \mathcal{E} a finite locally free \mathcal{O}_X -module. Then.

$$\operatorname{Ext}_{\mathcal{O}_{X}}^{i}\left(\mathcal{E},\mathscr{G}\right) = H^{i}(X, \mathcal{E}^{\vee} \otimes_{\mathcal{O}_{X}} \mathscr{G})$$

where $\mathcal{E}^{\vee} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$.

Proof. Choose an injective resolution $\mathscr{G} \to \mathscr{I}^{\bullet}$ then,

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E}, \mathscr{I}^{\bullet}) = \Gamma(X, \mathscr{H}_{\mathcal{O}_X}(\mathcal{E}, \mathscr{I}^{\bullet})) = \Gamma(X, \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathscr{I}^{\bullet})$$

Now I claim that $\mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathscr{I}^{\bullet}$ is an injective resolution over $\mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathscr{G}$. To see this, we use,

$$\operatorname{Hom}_{\mathcal{O}_X}(-,\mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathscr{I}^{\bullet}) = \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E} \otimes_{\mathcal{O}_X} -, \mathscr{I}^{\bullet})$$

but I^{\bullet} is injective and \mathcal{E} is flat so this is an exact functor. Taking cohomology of the first equality proves the lemma.

Remark. We could also just say, $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E}, -) = \Gamma(X, \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} -)$ so taking their derived functors gives the same thing. However, $\mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} -$ is exact so taking derived functors of $\Gamma(X, \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} -) = H^i(X, \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} -)$.

Remark. The perfect pairings,

$$\operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^n_k}}^i(\mathscr{F},\omega) \times H^{n-i}(\mathbb{P}^n_k,\mathscr{F}) \to H^n(\mathbb{P}^n_k,\omega) \xrightarrow{t} k$$

factors through $H^n(\mathbb{P}^n_k,\omega)$. The first map can be realized as composition of ext classes or a cup product.

Remark. If \mathcal{F} is locally free then we have a diagram,

which gives the same pairing using the unique evaluation pairing,

$$\mathscr{F}\otimes_{\mathcal{O}_{\mathbb{P}^n_k}}\mathscr{F}^ee=\mathscr{F}\otimes_{\mathbb{P}^n_k}\mathscr{H}om_{\mathcal{O}_{\mathbb{P}^n_k}}(\mathscr{F},\mathcal{O}_{\mathbb{P}^n_k}) o\mathcal{O}_{\mathbb{P}^n_k}$$

9.2 Dualizing Sheaves in General

Definition 9.2. Let X be proper over k and dim X = n. A dualizing sheaf (ω_X, t) is a pair consisting of a coherent \mathcal{O}_X -module ω_X and a map $t: H^n(X, \omega_X) \to k$ which represents the functor,

$$\mathscr{F} \mapsto H^n(X,\mathscr{F})^{\vee}$$

Remark. We have proven, by abstract nonsense, that such a *quasi-coherent* dualizing sheaf exists but now we want to know when such a module is actually *coherent*.

Remark. Consider the case that X is the disjoint union of a curve and a surface. Then $H^2(X, -)$ ignores cohomology on the curve since it vanishes above $H^1(X, -)$. Thus the dualizing sheaf will be zero on the curve. To fix this one looks for a dualizing complex,

$$\omega_X^{\bullet} \in D^b(\mathfrak{QCoh}(\mathcal{O}_X))$$

such that $H^i(X, \mathscr{F})$ is dual to $\operatorname{Ext}_{\mathcal{O}_X}^{-i}(\mathscr{F}, \omega_X^{\bullet})$.

Theorem 9.3. Every projective scheme X/k has a dualizing module ω_X and for any closed immersion $\iota: X \hookrightarrow \mathbb{P}^n_k$,

$$\iota_*\omega_X \cong \operatorname{Ext}_{\mathcal{O}_X}^c(\iota_*\mathcal{O}_X,\omega_{\mathbb{P}^n_k})$$

where $c = n - \dim X$ is the codimension.

Lemma 9.4. Let $\iota: X \to Y$ be a closed immersion of schemes then $\iota_*: \mathfrak{QCoh}(\mathcal{O}_X) \to \mathfrak{QCoh}(\mathcal{O}_X)$ defines an equivalence of categories onto its image which is the full subcategory of quasi-coherent \mathcal{O}_Y -modules \mathscr{F} such that $\mathscr{I} \cdot \mathscr{F} = 0$ for $\mathscr{I} = \ker(\mathcal{O}_Y \to \iota_* \mathcal{O}_X)$.

Remark. If X and Y are Noetherian schemes, then the above holds also for coherent modules.

Remark. If $f: X \to Y$ is an affine morphism, $\mathfrak{QCoh}(\mathcal{O}_X)$ is the category of pairs (\mathscr{F}, γ) with $\mathscr{F} \in \mathfrak{QCoh}(\mathcal{O}_Y)$ and $\gamma: f_*\mathcal{O}_Y \otimes_{\mathcal{O}_Y} \mathscr{F} \to \mathscr{F}$ gives \mathscr{F} a $f_*\mathcal{O}_X$ -module structure

10 Mar. 12

Lemma 10.1. Let A be Noetherian and M, N be finite-presentation A-modules and $X = \operatorname{Spec}(A)$. Then,

$$\mathscr{H}\!\mathit{om}_{\mathcal{O}_X}\!\!\left(\widetilde{M},\widetilde{N}\right) = \widetilde{\operatorname{Hom}_A(M,N)}$$

Proof. The isomorphism,

$$\operatorname{Hom}_A(M,N)_f = \operatorname{Hom}_{A_f}(M_f,N_f)$$

for finitely-presented modules patch together on the open sets D(f) to give an isomorphism,

$$\operatorname{Hom}_{A}(M,N) = \operatorname{Hom}_{\mathcal{O}_{X}}(\widetilde{M},\widetilde{N})$$

Lemma 10.2. Let A be Noetherian and M, N be finite A-modules and $X = \operatorname{Spec}(A)$. Then,

$$\operatorname{Ext}_{\mathcal{O}_{X}}^{i}\!\!\left(\widetilde{M},\widetilde{N}\right)=\operatorname{Ext}_{A}^{i}\left(\widetilde{M},N\right)$$

Proof. This holds for i = 0 by the above. Then we apply dimension-shifting to prove this in general. Given a

Lemma 10.3. For $p < \dim P - \dim X$ we have,

$$\operatorname{Ext}_{\mathcal{O}_{X}}^{p}(\iota_{*}\mathcal{O}_{X},\omega_{P})=0$$

Proof. This reduced to the algebra question, given $B = k[x_1, \ldots, x_n] \rightarrow A$ then,

$$\operatorname{Ext}_{B}^{p}\left(A,B\right)=0$$

for $p < \dim B - \dim A$. To see this, recall we have $\iota : X \hookrightarrow P = \mathbb{P}^n_k$ then $X \cap D_+(T_i) \subset X$ and $D_+(T_i) = \operatorname{Spec}(B)$. Then, $\omega_P|_{D_+(T_i)} = \mathcal{O}_X|_{D_+(T_i)} = \widetilde{B}$. Furthermore, $\iota : X \hookrightarrow P$ is affine (closed immersion) so $X \cap D_+(T_i) = \operatorname{Spec}(A)$ for A = B/I.

Since B is Cohen-Macaullay we have vanishing for,

$$\operatorname{depth}_{I}(A) \ge \dim B - \dim A$$

Proof.

Theorem 10.4. Every projective scheme X/k has a dualizing module ω_X and for any closed immersion $\iota: X \hookrightarrow \mathbb{P}^n_k$,

$$\iota_*\omega_X \cong \operatorname{Ext}_{\mathcal{O}_X}^c(\iota_*\mathcal{O}_X,\omega_{\mathbb{P}^n_k})$$

where $c = n - \dim X$ is the codimension.

Proposition 10.5. If $\iota: X \to Y$ is a closed immersion then $\iota^*\iota_*\mathscr{F} = \mathscr{F}$ for any \mathcal{O}_X -module \mathscr{F} and if $\mathscr{I} \cdot \mathscr{G} = 0$ for some \mathcal{O}_Y -module \mathscr{F} then $\mathscr{G} = \iota_*\iota^*\mathscr{G}$ where $\mathscr{I} = \ker (\mathcal{O}_Y \to \iota_*\mathcal{O}_X)$.

11 Local Property

Definition 11.1. A property P of ring maps is *local* if,

- (a). $P(R \to A) \implies P(R_f \to A_f)$ for all $f \in R$
- (b). $P(R_f \to A)$ for some $f \in R$ then $P(R \to A_a)$ for any $a \in A$
- (c). if $P(R \to A_{a_i})$ for $(a_1, \ldots, a_r) = A$ then $P(R \to A)$.

Definition 11.2. We say a morphism of schemes $f: X \to Y$ is locally P for some local property P if for each $x \in X$ there is an affine open $U = \operatorname{Spec}(A)$ with $x \in U \subset X$ and $V = \operatorname{Spec}(R)$ with $V \subset Y$ with $f(U) \subset V$ such that $P(R \to A)$.

Lemma 11.3. If $f: X \to Y$ is locally P then for any affine opens $U \subset X$ and $V \subset Y$ with $f(U) \to V$ then $P(\mathcal{O}_Y(V) \to \mathcal{O}_X(U))$.

Remark.

12 Smooth Maps

Definition 12.1. A ring map $R \to A$ is *smooth* if it is of finite presentation,

$$A \cong R[x_1, \dots, x_n]/I$$

where I is finitely generated. Then consider,

$$I/I^2 \xrightarrow{\mathrm{d}} \bigoplus_{i=1}^n A \mathrm{d} x_i$$

given by,

$$f \mapsto \mathrm{d}f = \sum \frac{\partial f}{\partial x_i} \mathrm{d}x_i$$

Then d is injective and its cokernel is a projective A-module. Since K = coker d is projective an finitely generated then it is locally free so it has a rank function. We say that $R \to A$ is smooth of relative dimension n if K is of constant rank n.

Remark. Smoothness satisfies the following,

(a). local

- (b). preserved under composition
- (c). preserved uncer base change

Example 12.2. Take $R \to R[x_1, \ldots, x_n]/(f_1, \ldots, f_c)$ such that,

$$\det\left(\frac{\partial f_j}{\partial x_i}\right)_{\substack{i=1,\dots,c\\j=1,\dots,c}}$$

maps to an invertible element of A. Then,

$$\frac{(f_1, \dots, f_c)}{(f_1, \dots, f_c)^2} \to \bigoplus_{i=1}^n A dx_i \to \text{coker}$$

In differential geometry, we have,

$$f^{-1}(\{0\}) \longleftrightarrow \mathcal{C}^n$$

$$\downarrow^f$$

$$\{0\} \longleftrightarrow \mathcal{C}^n$$

Then $f^{-1}(\{0\})$ is a smooth manifold by the implicit function theorem. We call this situation standard smooth.

Lemma 12.3. A map $R \to A$ is smooth if and only if there exist a_i s.t. $(a_1, \ldots, a_r) = A$ and $R \to A_{a_i}$ is standard smooth.

Definition 12.4. For a standard smooth ring map, $R \to A$ we can factor,

$$R \xrightarrow{R[x_{n+1}, \dots, x_n]} \downarrow$$

$$R[x_1, \dots, x_n]/(f_1, \dots, f_c)$$

Then the downward map is étale.

Definition 12.5. A smooth morphism of schemes is a morphism which is locally smooth.

Remark. Using the previous lemma, for any smooth morphism of schemes $X \to Y$ it is locally standard smooth so we can factor,

Definition 12.6. A variety X over k is smooth iff $X \to \operatorname{Spec}(k)$ is smooth.

Definition 12.7. A locally noetherian scheme X is regular or nonsingular iff $\mathcal{O}_{X,x}$ is regular at each $x \in X$.

15

Remark. For locally Noetherian schemes it suffices to check regularity on the closed points.

Theorem 12.8. If $X \to \operatorname{Spec}(k)$ is smooth then X is regular.

Theorem 12.9. If k is perfect then a variety is smooth iff it is regular.

Example 12.10. Let $k = \mathbb{F}_p(t)$ then take Spec $(k[x]/(y^2 - (x^p - t)))$ which is regular but not smooth. Consider,

$$d(y^2 - x^p + t) = 2ydy + 0$$

and thus we have,

$$(f)/(f^2) \mapsto A\mathrm{d}x \oplus A\mathrm{d}y$$

which is injective but the cokernel is $A \oplus A/yA$ but A/yA has torsion so cannot be projective and thus not smooth.

However, we just need to check regularity at $(y, x^p - t) = (y) \subset A$ which is a height one ideal and generated by one element so $A_{(y)}$ is regular.

13 Differentials

Definition 13.1. For a ring map $\varphi: R \to A$ the A-module of differentials $\Omega_{A/R}$ is generated by the symbols da for $a \in A$ such that,

- (a). $d(a_1 + a_2) = da_1 + da_2$
- (b). $da_1a_2 = da_1 \cdot a_2 + a_1 \cdot da_2$
- (c). dr = 0 for $r \in R$

Then $d_{R/A}: R \to \Omega_{R/A}$ is the universal derivation meaning that $\Omega_{R/A}$ represents the functor $Der_R(A, -)$ i.e.

$$\operatorname{Hom}_A(\Omega_{A/R}, M) \cong \operatorname{Der}_R(A, M)$$

via
$$(f: \Omega_{A/R} \to M) \mapsto f \circ d_{A/R}$$

(O8RL, O8RT)

Definition 13.2. Given a morphism of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ then there is a universal derivation $d_{X/Y} : \mathcal{O}_X \to \Omega_{X/Y}$ s.t.

$$\operatorname{Hom}_{\mathcal{O}_X}(\Omega_{X/Y}, \mathscr{F}) \cong \operatorname{Der}_{f^{-1}\mathcal{O}_Y}(\mathcal{O}_X, \mathscr{F})$$

Where a derivation $\varphi: \mathcal{O}_X \to \mathscr{F}$ is an abelian map such that $\varphi(fs) = f\varphi(s) + \varphi(f)s$ and under $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ we send $s \in \mathcal{O}_Y(U)$ to $\varphi(s) = 0$.

Lemma 13.3. For a morphism of schemes $f: X \to Y$ we have,

$$X \longleftarrow U = \operatorname{Spec}(A)$$

$$\downarrow^f \qquad \qquad \downarrow$$

$$Y \longleftarrow V = \operatorname{Spec}(R)$$

Then we have $\Omega_{X/Y}|_U = \widetilde{\Omega_{A/R}}$.

13.1 The Diagonal

(Tag O1R1) Consider $R \to A$ then consider the map,

$$\Omega_{A/R} \xrightarrow{\sim} J/J^2$$

via $da \mapsto a \otimes 1 - 1 \otimes a$ where $J = \ker (A \otimes_R A \to A)$ via $a \otimes b \mapsto ab$. This situation generalizes to Schemes in which,

$$\Omega_{X/Y} = \Delta_{X/Y}^*(\mathscr{J})$$

where \mathscr{J} is the sheaf of ideals of $\Delta: X \to X \times_Y X$ i.e. $\mathscr{J} = \ker (\mathcal{O}_{X \times_Y X} \to \Delta_{X/Y}^* \mathcal{O}_X)$. This is the conormal sheaf of $\Delta_{X/Y}: X \to X \times_Y X$.