Veröffentlichungsnr. (Sek.)

GB948498

Veröffentlichungsdatum:

1964-02-05

Erfinder:

Anmelder:

PERKIN ELMER CORP

Veröffentlichungsnummer:

DE1248985

Aktenzeichen:

(EPIDOS-INPADOC-normiert)

GB19600034477 19601007

Prioritätsaktenzeichen:

(EPIDOS-INPADOC-normiert)

US19590845254 19591008

Klassifikationssymbol (IPC):

Klassifikationssymbol (EC):

G01N15/14H, G06F19/00A1, G06K9/44, G06M11/02, G06M11/04,

H04N3/12, A61B5/14

Klassifikationssymbol (EC):

G01N15/14H; G06F19/00A1; G06K9/44; G06M11/02; G06M11/04;

H04N3/12; A61B5/14

Korrespondierende

Patentschriften

CH398141. DE1205320

Bibliographische Daten

948,498. Counting blood cells. PERKIN- ELMER CORPORATION. Oct. 7, 1960 [Oct. 8, 1959], No. 34477/60. Heading A5K. [Also in Division G4] White blood cells are stained and a slide with a blood sample is scanned by a microscope or iconoscope, the signals derived from the detec- tion of white blood cells being entered into a storage matrix. The slide is scanned along a path whose width is half the maximum width of a white cell, the field of detection at any time being as shown in Fig. 3, with a central area X and eight adjacent juror areas A-H. The signals from the various areas are 1 or 0. If X is 1 and less than three juror areas are 0 then a bi-nucleate cell is indicated and counted. If X is 1 and unlike adjacent juror areas occur more than twice in the cluster a link cell is in-dicated. In this case the co-ordinates of the cell are printed and visual inspection is made later.

THIS PAGE BLANK (USPTO)

PATENTSCHRIFT 1248958

Int CL:

G 01 d

Dentsche KL:

42 d - 1/01

Nummer:

1 248 958

Aktenzeichen:

St 13144 IX b/42 d

Anmeldetag:

September 1957

Auslegetag:

31. August 1967

Ausgabetag:

28. März 1968

Patentschrift stimmt mit der Auslegeschrift überein

Die Erfindung betrifft eine Vorrichtung zur pneumatischen Dämpfung eines schwingenden mechanischen Systems, insbesondere für Meßgeräte, mit einer Dampfungskammer, die in mindestens einer ihrer Wande eine Anzahl oder eine Gruppe von Öffnungen aufweist, durch die ein Gas in die Kammer hineinund aus der Kammer herausströmen kann, sowie mit einem oszillierend beweglichen Meßorgan, das über ein Übertragungsglied mit einer Membran verbunden ist, die an die Dämpfungskammer angrenzt.

Es ist bereits bekannt, die Luft aus einer Dämpfungskammer über Kapillarwiderstände abströmen zu lassen und dabei deren lineare Dämpfungswirkung

anszunutzen.

Es ist ferner eine Dämpfungsvorrichtung für hydrau- 15 lische oder pneumatische Stenerimpulsleitungen eines Druckanzeige- oder Regelgerätes bekannt, die aus der Vereinigung von Drosselstrecke und Dampfungskammer besteht und dem Anzeige oder Regelgerät vorgeschaltet ist. Bei dieser Vorrichtung ist die hinter so der Drosselstrecke angeordnete Dämpfungskammer in an sich bekannter Weise raumveränderlich, so daß sie bei jeder Druckwelle vergrößert wird. Durch diese bekannte Vorrichtung werden die Nachteile von Membranen mit gegeneinander versetzten kleinen as Bohrungen vermieden, die darin bestehen, daß die Elastizität der Membranen der Größe der anfallenden Druckwellen angepaßt sein muß, damit das angestrebte Ausschwingen der Membranen eintritt.

Zum Dämpfen der Schwingungen eines mechanischen 30 Systems hat man bisher Dampfungszylinder zum Komprimieren der Luft in einer Kammer verwendet, wobei die Luft durch eine Öffnung gepreßt und in die große Kammer entlassen wird. Das zu dämpfende as für die zulässige Größe der zugehörigen Öffnung, die vibrierende System steht mit einer Einrichtung in Verbindung, welche die Lust in einer Kammer verdrängt, wodurch die Luft zusammengedrückt und gezwungen wird, durch die Offmung zu strömen.

Der Erfindung liegt die Aufgabe zugrunde, eine 40 Dampfungsvorrichtung für schwingende Systeme zu schaffen, die eine geringe Frequenzabhängigkeit der Dämpfung aufweist und die sich insbesondere für

Meßgeräte eignet.

Die gestellte Aufgabe wird, ausgehend von einer 45 Vorrichtung der eingangs beschriebenen Art, erfindungsgemäß dadurch gelöst, daß der akustische Blindwiderstand der Öffnungen kleiner ist als der akustische Wirkwiderstand der Öffnungen. Vorzugsweise sind die Große und die Anzahl der Öffnungen so so gewählt, daß der akustische Hlindwiderstand weniger als 20% des akustischen Wirkwiderstandes beträgt.

Vorrichtung zur pneumatischen Dämpfung eines schwingenden mechanischen Systems, insbesondere für Meßgeräte

Patentiert für:

Statham Laboratories, Inc., Los Angeles, Calif. (V. St. A.)

Vertreter:

Dr.-Ing. H. Ruschke, Patentanwalt, München 27, Pienzenauer Str. 2

Als Erfinder benannt: Cecil K. Stedman, Enumelaw, Wash. (V. St. A.)

Beanspruchte Priorität:

V. St. v. Amerika vom 11. Oktober 1956 (615 397)

2

Für den Sonderfall eines einzelnen Durchlasses, ganz gleich welcher Form, gibt es eine obere Grenze um so kleiner ist, je höher die Frequenz der zu dämpfenden Einrichtung ist. Beispielsweise muß bei einer runden Öffnung der Radius r kleiner sein als die Quadratwurzel der kinematischen Viskosität v des Gases, dividiert durch die Frequenz f:

$$r^2 < \frac{r^2}{f} \,. \tag{1}$$

Wird diese Beziehung gestört, dann wird die Trägheit des Gases in der Öffnung im Verhältnis zum viskosen Widerstand groß. Danach wirken die Öffnungen nicht mehr als wirksame Dämpfer, und der Strömungswiderstand ändert sich mit der Frequenz, anstatt praktisch konstant zu bleiben; dabei kann die Strömung turbulent werden. 809 531/166

Bine untere Grenze für die Größe einer Öffnung ist dadurch gesetzt, daß die optimale Dämpfung des mechanischen Systems eine bestimmte Strömungs-menga des durch die Öffnung strömenden Gases je Druckeinheit in der Kammer vorschreibt (im folgenden als Strömungswiderstand der Offnung bezeichnet). Sind die Eigenschaften des mechanischen Systems derart, daß der auf diese Weise aufgestellte untere Grenzwert kleiner ist als der obengenannte obere Grenzwert, so ist es möglich, die günstigste Dämpfung 10 der Einrichtung mit Hilfe einer einzigen Öffnung zu erreichen. Jedoch bictet dieser Sonderfall begrenzte Verwendungsmöglichkeiten. Im allgemeinen können diese beiden Grenzwerte in bezug auf die Größe der Offnung nicht miteinander in Einklang gebracht werden, 15 und es ist unmöglich, mit einer einzigen Öffnung die günstigste Dämpfung zu erreichen.

Es hat sich gezeigt, daß die oben beschriebenen Einschränkungen überwunden werden können, wenn eine mit Poren versehene Membran verwendet wird. 20 Diese Membran wird als »poröser Stopfens bezeichnet. Derartige Membranen können durch Zusammen-sintern oder sonstiges Vereinigen kleiner Teilchen,

perforierte Platten sein.

Eine Ausgestaltung der Erfindung ist die pneumatische Dämpfung eines schwingenden mechanischen Systems durch Verwendung einer Dampfungskammer, die durch einen porösen Stopfen in die Atmosphäre 30 oder in eine hiernach als Endkammer bezeichnete Kammer derart entlüftet wird, daß der Stopfen eine im wesentlichen reine Wirkwiderstandsdämpfung bewirkt. Die Endkammer ist derartig ausgebildet, daß der Überdruck darin bei einer Kompression des Gases 35 in der Dämpfungskammer so klein bleibt, daß er unbedeutend ist und auf den porösen Stopfen im wesentlichen keine Rückstellkraft ausübt. Dieser Umstand ermöglicht es, daß der Stopfen selbst nur in unbedeutendem Maße die Steifheit oder die Masse des pneumatisch gedämpften schwingenden Systems erhöht. Dieses Ergebnis ist höchsterwünscht, da die akustische Steifheit oder die akustische Masse eines porösen Materials sich rasch mit der Frequenz ändert. Da diese schwankenden Größen der konstanten 45 Masse und Steifheit des schwingenden Systems hinzugefügt werden, so wird der Frequenzgang nach teilig beeinflußt. Im besonderen ist die Frequenz, bei der die Empfindlichkeit erstmals merklich von der Empfindlichkeit bei der Frequenz Null abweicht, 50 niedriger, als es sonst der Fall sein würde.

Inder nun folgenden Beschreibung ist die Vorrichtung nach der Erfindung an Hand schematischer Zeichnungen im einzelnen näher erläutert. In der Zeichnung

Fig. 1 ein Schnitt durch eine Ausführungsform der Vorrichtung nach der Erfindung längs der Linie 1-1

Fig. 2 ein Schnitt langs der Linie 2-2 der Fig. 1, der Fig. 2 Fig. 3 ein Schnitt längs der Linie 3-3 der Fig. 2, 60 Fig. 4 ein Teilschnitt längs der Linic 4-4 der

Fig. S ein Schnitt längs der Linie 3-5 der Fig. 6 einer anderen Ausführungsform der Vorrichtung nach der Erfindung,

Fig. 6 ein Schnitt längs der Linie 6-6 der Fig. 5, Fig. 7 ein Schnitt längs der Linie 7-7 der Fig. 5, Fig. 8 ein Schnitt längs der Linie 8-8 der Fig. 5,

Fi g. 9 ein Schnitt längs der Linie 9-9 der Fig. 5, Fig. 10 eine schematische Darstellung des Prinzips der Erfindung,

Fig. 11 eine graphische Darstellung des Prequenz-

ganges gedämpfter Systeme, Fig. 12 eine graphische Darstellung, die der später beschriebenen Tabelle entspricht,

Fig. 13 ein Schnitt durch eine weitere Ausführungsform der Erfindung,

Fig. 14 eine Draussicht, von der Linie 14-14- der

Fig. 13 aus gesehen. Um eine im wesentlichen reine Wirkwiderstandsdämpfung zu erzielen, muß die Ausführung des porösen Stopfens (oder der Stopfen, wenn mehr als einer verwendet wird) zwei kritischen Beziehungen genügen. Erstens muß das porüse Material dem Kriterium genügen, daß der nachstehende Bruch groß gegen 1 sein soll

$$\frac{R_1}{\varrho_0 k \, \omega} \gg 1 \,, \tag{2}$$

wobei R₁ den spezifischen Strömungswiderstand pro sintern oder sonstiges Veremigen kleiner auch sie können auch seine verfahren. Sie können auch seine k Stopfen, die dieselbe ist wie die in der Dämpfungskammer, und ω die Kreisfrequenz darstellt. Dieses Verhältnis (2) beträgt zweckmäßigerweise 5 bis 10 oder auch mehr, wobei vorzugsweise ein Wert von 10 oder mehr zum Erhalten bester Ergebnisse verwendet

Ferner ist erforderlich, daß die Länge I des Stopfens (oder jedes Stopfens, wenn mehrere verwendet werden), in der Strömungsrichtung des Gases gemessen, eine kritische Beziehung zur Dämpfungs-konstante a des Stopfenmaterials, bei der Resonanzfrequenz gemessen, besitzt, derart, daß deren Produkt für jeden Stopfen größer als Null und gleich oder kleiner als ein kritischer oberer Grenzwert (k) sein

Dieses Verhältnis wird durch die Gleichung ausgedrückt:

$$0 < al \le k_1$$
, $k_1 < 0.5$ (8. unten). (3)

Bei Stopfen mit gleichbleibender Querschnittsfläche beträgt, wenn al = 0.30 ist (wobei a und l in Zentimeter-Gramm-Sekunden-Einheiten ausgedrückt sind), der akustische Blindwiderstand des Stopfens 6,5% des akustischen Wirkwiderstandes des Stopfens. Je nach der Flachheit der für ein besonderes Verwendungsgebiet erforderlichen Frequenzgangkurve kann ein etwas größerer Prozentsatz zugelassen werden. Zur vollen Ausnutzung der erfindungsgemäßen Wirkung ist es günstig, wenn der akustische Blindwider-stand des akustischen Systems wesentlich geringer ist als der akustische Wirkwiderstand, wobei der Wert von k, vorzugsweise kleiner als 0,5 sein soll und ein Wert von 1,5 mit dem Zweck der Erfindung nicht im Binklang stände.

Die Fig. 12 zeigt in Kurvenform die Auswirkung (für Stopfen mit gleichförmigem Querschnittsbereich)
des Wertes des Faktors al auf das Verhältnis des Blind-zum Wirkwiderstand, in Prozenten ausgedrückt, bei der Resonanzfrequenz. Die nachstehende Tabelle gibt die Werte an, die der Kurve zugrunde liegen.

5		
a·l	*/a	
0,2 0,3 0,4 0,5 0,8 1,0 1,2 1,5 1,75 2,10 2,5	2,5 6,5 11,0 17,0 40 61 80 100 103 102	

Blindwiderstand . 100 . Wirkwiderstand

Daraus geht hervor, daß eine Erhöhung des Faktors 20 k1 auf 0,8 den Blindwiderstand auf 40% des Wirkwiderstandes erhöht (vgl. Fig. 12). Heispielsweise kann der Wert von k_1 auf ungefähr 0,5 erhöht werden und kann dort, wo der unerwünschte Blindwiderstand ungefähr 17% des Wirkwiderstandes beträgt, jeden 25 Wert besitzen, der kleiner als ungefähr 0,5 ist.

Das Verhältnis des akustischen Blindwiderstandes zum akustischen Wirkwiderstand wächst an, wenn der Wert von k, ansteigt. Vorzugsweise wird der Wert von I derart gewählt, daß dieses Verhältnis kleiner so als 1 ist. Je kleiner der Wert von k, ist, desto flacher ist die Frequenzgangkurve des gedämpsten Systems. Wird der Wert von k1 übermäßig hoch infolge Verwendens eines Stopfens, dessen Länge größer ist als die günstigste Länge für einen gegebenen Wert von a, 35 eder durch Wählen eines ungeeignet hohen Wertes für a bei einem Stopsen gewählter Länge, so zeigt die Frequenzgangkurve bei niedrigen Frequenzen einen unerwünschten Abfall.

Der Strukturfaktor k und die Dämpfungskonstante a, 40 die der reclle Teil der komplexen Fortpflanzungskonstante a+jb $(j=\sqrt{-1})$ ist, sind für Sachkundige der akustischen Technik geläufige Größen. Eine genaue Definition der Größe a und der komplexen Funktion a+jb sowie des akustischen Blindwider-standes und des akustischen Wirkwiderstandes nebst cincr Beschreibung der Einrichtung, mit deren Hilfe diese Größen gemessen werden können, findet sich herausgegeben 1949 von John Wiley and Sons, auf so daß die Masse eine Gelenkverbindung an einer den Seiten 351ff., 840ff., 857ff. In demsetben Werk wird auf Scite 844ff. eine Einrichtung zum Messen von R₁ für porüse Materialien beschrieben. Besteht der porose Stopfen aus einer perforierten Platte, so beträgt der effektive Wert von $R_1 = \frac{8 \mu A_2}{\mu \pi \pi^4}$ und der 55 Strukturfaktor k=1. Die Größe A_p ist der Bereich der Platte, in dem die Löcher gebohrt sind, n ist die Anzahl der Löcher, und $\frac{8 \mu A_r}{n \pi v^2}$ ist die Viskosität des 60

Gases in den Löchern. Der Wert des Produktes al kann dadurch festgesetzt werden, daß entweder ein Material mit dem gewünschten Wert von a gewählt oder ein oder mehrere Stopfen mit der erforderlichen Länge / verwendet 65 werden oder auch indem die Werte beider Parameter passend gewählt werden. Wird der durch die Gleichung (2) ausgedrückten Bedingung genügt, so kann a dar-

gestellt werden durch

$$a^2 = \frac{\omega R_1}{4 p}, \qquad (4)$$

5 wobei p der Durchschnittsumgebungsdruck in der Dämpfungskammer ist.

Bei Stopfen mit nicht gleichförmiger Querschnittsfinche, d. h. bei denjenigen, deren Querschnittsfläche sich längs der Längenausdehnung ändert, kann eine 10 eutsprechende Tabelle dadurch erhalten werden, daß der akustische Blindwiderstand und der akustische Wirkwiderstand bei Stopfen verschiedener Länge, jedoch derselben geometrischen Form ermittelt werden. Auf diese Weise kann für jede Stopfenform eine solche 15 Länge gewählt werden, daß der akustische Blindwiderstand im Vergleich zum akustischen Wirkwiderstand genügend niedrig ist, so daß die Kurve des Frequenzganges keinen unerwünschten Abfall bei niedriger Frequenz zeigt, beispielsweise indem der akustische Blindwiderstand auf weniger als ungefähr 20% des akustischen Wirkwiderstandes festgesetzt wird.

Sind die obengenannten Bedingungen erfüllt, dann ergibt sich, daß die akustische Impedanz Zp des porösen Stopfens im wesentlichen gleich R_1 ist. Durch eine derartige Bemessung wird nicht nur ein Dampfungseffekt erzielt, der frei von unerwünschten Steifheits- oder Trägheitseffekten ist, sondern auch ein im wesentlichen frequenzunabhängiges Verhalten.

Zur Erläuterung der Anwendung des obigen Prinzips wird nunmchr auf die Fig.1 bis 7 verwiesen, die Ausführungsformen von Wandlern zeigen, die mit der erfindungsgemäß ausgebildeten Dämpfungsvorrichtung ausgestattet sind.

Bei dem Wandler nach Fig. 1 bis 4 besitzt die vibrierende Masse zur Membran eine solche Beziehung, daß die Größe der Bewegung der Membran ein Vielfaches oder ein Bruchteil der Bewegung des Massenmittelpunktes einer zu dämpfenden Masse ist, d. h., das Hebelverhältnis zwischen der zu dämpfenden Masse und der Membran ist nicht 1.

Die in der Fig. 1 dargestellte Ausführungsform ist ein Beschleunigungsmesser, bei dem das Fühlersystem ein genaues Abbild des in der USA.-Patent-45 schrift 2 453 548 dargestellten und beschriebenen Systems ist.

Nach den Fig. 1 bis 4 ist eine Masse 1 an dem einen Ende mit einer flachen Feder 3 verbunden, die an einen Rahmen 2 und die Masse angeklemmt ist, so punkt der zu dämpfenden trägen Masse ist mit 4 bezeichnet. Die Masse ist über eine zentral angeordnete Stange 5 mit einem zylindrischen Ansatz 6 verbunden, der seinerseits mit einer biegsamen metallenen Membran 7 konzentrisch verbunden ist. Nach der Darstellung befindet sich der Massenmittelpunkt 4 zwischen der Biegelinie und dem Befestigungspunkt der Stange 5 mit der Masse 1. Wie weiter unten noch beschrieben wird, kann die Stange an der Masse zwischen dem Massenmittelpunkt und der Biegelinie befestigt werden. Soll das Hebelverbältnis 1 betragen, so kann die Stange mit dem Massenmittelpunkt verbunden werden. Der Ansatz 6 trägt zwei zylindrische porose Stopfen 8 und 9, die aus demselben Material hergestellt sind und die gleiche Länge besitzen. Die Membran 7 ist an ihren Kanten an einen zylindrischen Flansch 12 angeklemmt, der an dem Rahmen 2 angebracht ist, welcher Rahmen an einer Basis 11 befestigt ist. Die Membran ist mit Hilfe einer Kappe 13 an den Flansch 12 angeklemmt und bildet zusammen mit der Kappe eine abgeschlossene Dampfungskammer 14. Die ganze Anordnung ist von einem Gehäuse 15 umgeben, das auf der Basis 11 mit Hilfe einer Dichtung 16 und von Schranben 17 einen flüssigkeits- und gasdichten Sitz erhält. Die Dämpfungskammer 14 steht mit einer Endkammer 14' im Innern des Gehäuses 15 über die porösen Stopfen 8 und 9 to in Verbindung, wobei die Kammern 14 und 14' mit Hilfe eines geeigneten Druckventils 18 unter jeden gewünschten Druck gesetzt werden können.

wird auf die Membran übertragen, die abwechseind 15 gesetzt werden, wodurch sich die Gleichungen vereine Verdichtung und Verdünnung des Gases in der Dämpfungskammer 14 bewirkt, so daß das Gas durch die porösen Stopfen 8 und 9 in die Endkammer 14' hinein- und herausströmt. Diese Vibration wird, wie noch beschrieben wird, akustisch gedämpft. 20 definiert: Der höchstzulässige Ausschlag der Masse 1 und die größte Volumenänderung werden durch Einstellen von Anschlägen 18' und 19 festgesetzt.

Die Fig. 5 zeigt eine weitere Anwendung der Erfindung, wobei das Hebelverhältnis gleich 1 ist. 25

Nach dieser Figur ist in dem einen Ende eines Gehäuses 101 eines Beschleunigungsmessers eine druckdichte Kappe 102 befestigt, die einen Einlaß 103 besitzt. Das andere Ende des Gehäuses 101 ist mit einem an einem Ring 105 befindlichen Flansch 104 verbunden, 30 welcher Ring eine Innenschulter 106 mit einer Mittelbohrung 107 aufweist. An der Innenschulter 106 ist ein Winkelstück 108 befestigt, das einen Rahmen 109 mit einer Mittelöffnung trägt, in der eine rechteckige Masse 100 an zwei flachen Federn 110 angebracht ist. 35 In die Masse und den Rahmen sind isolierte Stifte eingesetzt, über die Spanndrähte gezogen sind, entsprechend der in der USA.-Patentschrift 2.573,286 dar-

gestellten Konstruktion.

Die Masse 100 steht mit Hilfe einer durch eine 40 Öffnung 112 in dem Winkelstück 108 (112 in Fig. 13) laufenden Stange 111 mit einem zylindrischen Ansatz 113 in Verbindung, der seinerseits mit einer biegsamen metallenen Membran 114 verbunden ist, welche an den Kanten mit Hilfe einer Kappe 115 und von 45 Schrauben 116 an den Ring 105 angeklemmt ist. Die Kappe 115 trägt in der Mitte eine Platte 117 mit zwei porösen Stopfen 118 und 119, die den Stopfen 8 und 9 der F i g. 1 gleichen. Die Kammer zwischen der Membran 114 und der Kappe 115 stellt eine Dämpfungs- 50 kammer 121' dar. Ein Gehäuse 124 besitzt einen druckmitteldichten Sitz auf dem Ring 115, wobei zwischen der Kappe 115 und dem Gehäuse 119' die Kammer 121 gebildet wird. Es ist eine Bohrung 122 vorgesehen, die mit einer Endkammer 120 und an der anderen Seite 55 der Membran mit einer Bohrung 123 in Verbindung stcht. Das Gehäuse 124 und die Bohrung 123 können vorgesehen oder wie in den Fig. 14 und 13 fortgelassen sein, wobei die Stopfen mit der Atmosphäre oder einer anderen Umgebung in Verbindung stehen, 60 in der die Einheit untergebracht ist, wenn der Umgebungsdruck außerhalb der Kammer 121 und ein gleicher Druck, d. h. der Umgebungsdruck in dem Gchäuse 101, das zulassen, wie weiter unten noch eingehend beschrieben wird.

Die auf die Membran 114 übertragene Schwingung der Masse 100 auf den Federn 110 bewirkt abwechselnd eine Verdichtung und Verdünnung des Gases in der

Kammer 121 mit der Folge, daß das Gas durch die porösen Stopfen 119 und 118 zwischen den Kammern 121 und 120 hin- und herströmt. Der Höchstausschlag der Masse 100 und die größte Veränderung des Volumens in der Dämpfungskammer werden durch Einstellen der Anschläge 125 und 126 bestimmt.

Die obige und die folgende Beschreibung gelten für die Ausführungsform der Fig. 1 bis 4 wie auch der Fig. 5 bis 9, wobei die Gleichungen (1) bis (23) in gleichem Umfang anwendbar sind. Bei der Ausgleichem Umfang anwendbar sind. führungsform der F i g. 1 bis 4, bei der die Stange mit dem Massenmittelpunkt verbunden ist, und bei der

Ausführungsform der F i g. 5 bis 9 kann $\frac{L_1}{L_2}$ gleich 1

Nachstehend werden die in dieser Beschreibung verwendeten Ausdrücke unter Hinweis auf die besonderen, den Figuren dargestellten Ausführungsformen

I = Trägheitsmoment der Masse 1 oder 100 unter Einschluß der zusätzlichen Massen der Stange und der Feder, an der die Massen besestigt sind,

A = körperlicher, der Kammer 14 oder 121' ans-gesetzter Bereich der Membran 7. oder 114,

effektiver, der Kammer 14 oder 121' ausgesetzter Bereich der Membran 7 oder 114,

 $A_0 = A$ bei einer starren Membran, etwa einem

Vo = Volumen der Kammer 14 oder 121' bei unbeeinflußter Membran 7 oder 114,

 $A_p =$ Summe der effektiven Querschnittsbereiche der

Stopfen 8, 9 oder 118, 119,

I = Länge der Stopfen 8, 9 oder 118, 119, wobei die Stopfen vorzugsweise gleich lang sind, d. h.,

Stopfen 8 ist so lang wie Stopfen 9, und Stopfen 118 ist so lang wie Stopfen 119,

L₁ = Abstand der Mitte der Stange 5 von der Biegelinie der Feder, an der die Masse 1 angebracht

L₂ = Abstand der Massenmitte 4 von der Biegelinie

F — die auf das System ausgeübte Kraft, die eine Verschiebung der Massen und der Membran 7 oder 114 bewirkt,

 $S_1 =$ Steifheit der Federaufhängung der Massen 1 oder 100,

S₂ = Steifheit der Membran 7 oder 114.

Bci Stopfen mit gleichbleibendem Querschnitt, wie bei den dargestellten zylindrischen Stopfen 8, 9, 118 und 119, ist der effektive Querschnitt jedes Stopfens

dessen tatsächlicher Querschnitt.

Bei Stopfen mit nicht gleichbleibendem Querschnitt, wie bei Rotationskörpern, deren Umriß von einer zur Achse geneigten Linie oder von einer Kurve gebildet wird, ist der gleichwertige Querschnittsbereich der eines Zylinders mit gleichbleibendem Querschnitt derselben Länge und aus demselben Material, der den gleichen akustischen Gesamtwiderstand besitzt wie der Stopfen mit nicht gleichbleibendem Quer-

Werden mehrere Stopfen verwendet, so ist der effektive Gesamtquerschnitt gleich der Summe der effektiven Querschnitte A_p des Stopfensystems für Parallelströmung wie bei den in den Zeichnungen dar-

gestellten Ausführungsformen.

Sind die Massen nicht an Federn aufgehängt, kann diese Steifheit als irgendeine auf die Vibration der Masse ausgeübte Zwangskraft aufgefaßt werden, d. h. als die Proportionalitätskonstante, die die Kraft zur Amplitude der vibrierenden Masse in Beziehung setzt.

Es hat sich gezeigt, daß beim Einhalten der vorstehenden kritischen Beziehungen die Stopfen 8 und 9

im wesentlichen als reiner Wirkwiderstand wirken. Unter diesen Umständen wird die Gleichung, die die Empfindlichkeit z, d, h. die Amplitude der Vibration der Masse, beispielsweise 1 oder 100, mit einer bei einer gegebenen Frequenz ausgeübten Kraft F in Beziehung setzt:

$$F = \left\{ \left[S_1 + \left(\frac{L_1}{L_2} \right)^2 S_2 \right] - \frac{I}{L_2} \omega^2 - \frac{A_c^2}{A^2} \left(\frac{L_1}{L_2} \right)^3 - \left(\frac{A_1 I}{A_p} \right)^3 - \left(\frac{S_3}{A \omega} \right)^3 \right] + i \omega A_c^2 \left(\frac{L_1}{L_2} \right)^3 - \left(\frac{S_3}{A \omega} \right)^2 \left(\frac{R_1 I}{A_p} \right) + i \omega A_c^2 \left(\frac{L_1}{A_p} \right)^3 - \left(\frac{S_3}{A \omega} \right)^2 \left(\frac{S_3}{A \omega} \right)^2 \right\}$$

$$\left[\left(\frac{A_1 I}{A_p} \right)^3 + \left(\frac{S_3}{A \omega} \right)^2 \right] \left\{ \chi \right\}. \tag{5}$$

35

In dieser Gleichung ist das Symbol S₂ zur Darstel- 20 lung der Kammersteilheit benutzt, d. h. des Verhaltnisses zwischen der auf die Membran 7 oder 114 ausgeübten Kraft (wobei die Stopfen 8 und 9 sowie 118 und 119 abgedichtet sind, so daß kein Gas hindurchströmt) zur Auslenkung der Membran 7 oder 114, 25 wenn diese als starrer Kolben angesehen wird, dessen Bodenfläche gleich dem Querschnitt der Kammer 14 oder 121' ist. Der Wert von S₈ ist

$$S_3 - \frac{A^2 p_0}{V_0} \,, \tag{6}$$

wenn die Kompression isothermisch ist, oder

$$S_3 = -\frac{A^2 v p_0}{V_0}, \qquad (7)$$

wenn die Kompression adiabatisch ist.

In diesen Gleichungen ist v das Verhältnis der spezifischen Wärmen des Gases, und po ist der Gasdruck in der Dämpfungskammer 14 oder 121' und den Stopfen 8, 9 oder 118, 119, wenn die Membran 7 oder 114 ihre mittlere unabgelenkte Stellung einnimmt.

Die Gleichung (5) läßt sich vereinfachen durch Einsetzen der folgenden Ausdrücke (Parameter):

$$\varepsilon = \frac{\omega}{\omega}$$
 (8)

wohei ω_0 die Kreisfrequenz der schwingenden Masse 1 und ω die Kreisfrequenz ist, bei der die Auslenkung χ der Masse 1 von der Mitte der Membran 7 gemessen

$$\delta = \frac{\left(\frac{R_1 l \omega_0 A^2_{\sigma}}{A_2}\right) \left(\frac{L_1}{L_2}\right)^2}{2 \left[S_1 + \left(\frac{L_1}{L_2}\right)^0 S_2\right]}, \qquad (9)$$

$$\eta = \frac{\frac{S_3}{A \omega_0}}{\frac{A R_1 l}{A_2}} = \frac{p_0 A_p}{V_0 R_1 l \omega_0} . \tag{10}$$

In Ausdrücken dieser Parameter ist die relative Empfindlichkeit R_2 der beiden Vorrichtungen der Fig. 1 und 5, d. h. die Empfindlichkeit bei der Kreisfrequenz w dividiert durch die Empfindlichkeit bei der Kreisfrequenz 0 oder, wenn die Beschleunigung in 45 einer Richtung erfolgt:

$$R_{0} = \left[1 - \varepsilon^{2} + (2\delta\eta) - \frac{\varepsilon^{3}}{\eta^{2} + \varepsilon^{3}} + (j2\delta\eta^{3}) \frac{\varepsilon}{\eta^{3} + \varepsilon^{2}}\right]^{-1}.$$
 (11)

In der Fig. 11 ist R_2 als Funktion von ε für die verschiedenen Werte von η und δ aufgetragen.

Daraus ist zu erschen, daß die Gestalt einer Frequenzgangkurve allein bestimmt wird durch Festsetzen der Werte der beiden Parameter δ und η.

In der Fig. 11 gilt die mit 1 bezeichnete Kurve für einen Wert von $\delta = 0.54$ und $\eta = 2$. Diese Werte sind besonders geeignet für die Dämpfung eines Beschleunigungsmessers der in den obigen Figuren dargestellten Ausführungen. Es ist ersichtlich, daß der Verlauf 60 der relativen Empfindlichkeit flach und gleich 1 ist bis hinauf zu einer Frequenz, die gleich der Resonanz-frequenz der Einrichtung ist, d. h. bis $\varepsilon = 1$. Tatsächlich ist die Resonanzspitze nicht von Bedeutung, und der Empfindlichkeitsverlauf ist ziemlich flach ober- 63 halb der Resonanzfrequenz und sinkt erst um 10% ab bei einer Frequenz von ungefähr dem Eineinhalbfachen der Resonanzfrequenz, d. h. bei $\varepsilon = 1,5$. Dies

kann mit der Kurve 2 verglichen werden, die den Frequenzgang einer viskos gedämpsten Einrichtung, beispielsweise eines Beschleunigungsmessers, zeigt, die bei dem 0,7fachen Wert der kritischen Dampfung arbeitet, welcher Wert immer als die höchsterreichbare Dämpfung vibrierender Massen angesehen wurde. Hier liegt eine Verbesserung vor. Die Auswirkung der Werte von δ und η auf den Verlauf des Frequenzganges ist weiterhin in der Kurve 3 dargestellt, bei der der Wert von $\delta = 0.7$ und der Wert von $\eta = 3$ ist, und in der Kurve 4, bei der $\delta = 0.7$ und $\eta = 2$ ist.

Einer der besonderen Vorteile der Erfindung ist darin zu schen, daß durch geeignete Wahl des porosen Stopfenmaterials für die Stopfen 8, 9, 118 und 119 und deren Länge und durch Bestimmen der Werte von η und δ , wie oben beschrieben, ein im wesentlichen flacher Frequenzgang erreicht werden kann, d. h. eine Kurve, bei der die relative Empfindlichkeit 809 531/166

ungefähr 1 ist bei allen Frequenzen bis hinauf zu der Resonanzfrequenz des Systems und sogar bis zu

höheren Frequenzen.

Um für ein besonderes Gerät einen Dämpfer mit den gewünschten Werten von η und δ zu entwerfen, sei angenommen, daß die Konstanten S1, S2, L1, L2, Ae und ωe des Gerätes bereits bekannt sind, da sie mit Hilfe üblicher Einrichtungen gemessen werden können. Das Einsetzen dieser Werte in die Gleichung (9) ergibt den Wert von $\frac{R_1/\omega_0}{A_p}$, der dargestellt werden 10 soll durch

$$-\frac{R_1 I \omega_0}{A_n} = k_2, \qquad (12)$$

wobei

$$k_2 = -\frac{2\delta \left[S_1 + \left(\frac{L_1}{L_2}\right)^2 S_2\right]}{A_s^2 \left(\frac{L_1}{L_2}\right)^2} \tag{12a}$$

ist.

Das Einsetzen von k_z in die Gleichung (10) ergibt:

$$\eta = \frac{p_0}{V_0 k_2}.$$
 (13)

Auf diese Weise wird für jeden gegebenen Wert von η und k_2 der Wert von $\frac{p_0}{V_0}$, der die erforderliche Kammersteifheit ergibt, ermittelt. Dann wird das Volumen V_0 gewählt, wonach p_0 einen solchen Wert besitzen muß, daß das Verhältnis $\frac{p_0}{V_n}$ den erforderlichen Wert erhält.

Es verbleibt nur noch die Festsetzung der Größe des porösen Stopfens und dessen Strömungswider-

stand. Dies wird wie folgt durchgeführt:

Der bereits ermittelte Wert von po kann in die Gleichungen (3) und (4) eingesetzt und zugleich 40 $\omega - \omega_0$ gesetzt werden, wodurch der Wert von $\omega_0 R_1$? festgesetzt wird. Dieser werde dargestellt durch

$$\omega_0 R_1 I^2 = K. \tag{14}$$

Danach ergibt die Eliminiciung von ω₀ R₁ l zwischen 45 den Gleichungen (12) und (14)

$$IA_{p} = \frac{K}{k_{z}}. \tag{15}$$

von n und von al innerhalb der obigen kritischen Grenzwerte bei Dämpfern nach der Ersindung das benötigte Volumen des Stopfenmaterials I Ap aus den bekannten Konstanten des Gerätes berechnet werden kann und gänzlich unabhängig von dem spezifischen 55 Dann wird die Gleichung (17) abgewandelt zu Strömungswiderstand R_1 des Stopfenmaterials ist.

Es kann ein Stopfenmaterial mit Poren oder Löchern jeder Größe gewählt werden, die nur den durch die Gleichung (2) ausgedrückten Beschrän-(12), daß bei feinkörnigem Material, d. h. wenn R. groß ist, das Verhältnis $\frac{1}{A_s}$ verhältnismäßig klein sein muß (man bemerke, daß k_s eine Konstante des Gerätes ist, die im voraus festgesetzt oder bekannt ist). 65 Mit anderen Worten, der Stopfen wird kurz und breit. Bei gröberem Material wird der Stopfen länger und schmäler. Da ein Stopfen, ganz gleich, ob er lang oder

äußerst dünn ist, empfindlich und sehwer zu handhaben ist, so wird der Wert von R1 vorzugsweise so gewählt, daß der Stopfen ungefähr so lang wie breit ist.

Obwohl ein nach der Erfindung gebauter und akustisch gedämpfter Wandler ordnungsgemäß gedämpft wird und den gewünschten Frequenzgang besitzt, so hat sich doch gezeigt, daß, sofern nicht das effektive Volumen der Dämpfungskammer, beispielsweise 14 oder 121', einen gewissen kritischen unteren Grenzwert übersteigt, das Gerät eine ernstzunehmende Unlinearität zeigt. Übersteigt das effektive Volumen der Dämpfungskammer nicht den kritischen unteren Grenzwert, so wird der Ausschlag & beispielsweise der Masse oder 100 bei Einwirkung einer gegebenen Kraft F 15 nicht direkt verhältnisgleich F, wie bei Wandlern crwünscht. Die Einrichtung arbeitet so, als hätte sie eine veränderliche Steifheit an Stelle einer konstanten, wic es bei linearen Wandlern erwünscht ist. Damit ein Wandler für jeden gewünschten Wert des Aus-20 schlages z linear arbeitet, ist es erforderlich, den Wert von Vo so zu wählen, daß das Verhältnis der größten Volumenänderung AV in der Membrankammer, die von der größten Auslenkung der Membran bewirkt wird, zum ursprünglichen Volumen Vo im wesentlichen 25 gleich dem Verhältnis der resultierenden Veränderung des Druckes Ap in der Membrankammer zum ursprünglichen Druck po wird, d. h.

$$\frac{AV}{V_0} = \frac{\Delta p}{p_0} \,. \tag{16}$$

Ist der Stopfen offen, so daß Gas durch den Stopfen in die Atmosphäre oder in eine Endkammer, wie 120 oder 14', entweicht, deren Volumen so groß ist, daß der Druck ungeachtet des durch den Stopfen strömenden Gases im wesentlichen als konstant angesehen werden kann, so hat sich gezeigt, daß ein kleineres Volumen als das obengenannte verwendet werden kann. Mathematisch ausgedrückt wird die Bedingung:

$$\frac{\Delta V}{V_0} \cdot \frac{\varepsilon}{\sqrt{\eta^2 + \varepsilon^2}} < \frac{1}{18} , \qquad (17)$$

$$V_0 \ge \frac{18 \, A \, V \, \varepsilon}{\sqrt{\eta^2 + \varepsilon^2}},$$
 (17a)

wobei ε und η wie bisher definiert sind. Danach hängt die Reduzierung des zulässigen Volumens von der Frequenz ab. Werden die Bedingungen als Funktion Somit ergibt sich, daß durch Festsetzen des Wertes so der Resonanzfrequenz definiert, so kann e gleich 1 gesetzt werden. Weiterhin sei zwecks Erläuterung angenommen, es solle ein Wandler mit den Eigenschaften der Kurven I und 4 der Fig. 11 unter Verwendung irgendeiner Kurve entworfen werden, wobei $\eta=2$ ist.

$$\frac{\Delta V}{V_0} \le \frac{1}{8} \,. \tag{18}$$

Würde die Membran nicht durch den Überdruck Ap kungen unterliegen. Danach folgt aus der Gleichung 60 in der Membrankammer, der aus der Verringerung des Volumens infolge der Bewegung der Membran herrührt, beaufschlagt werden, so würde nach der Gleichung (18) die Volumenänderung einfach ΔV -- Aeχ sein, wobei x die Auslenkung der Mitte der Membran ist. Jedoch bewirkt bei einer biegsamen Membran der Druck tatsächlich, daß diese sich nach rückwärts ausbaucht, wobei das Volumen des verdrängten Gases (s. Fig. 10) um einen Betrag reduziert wird, der in der Fig. 10 durch den gestrichelten Teil dargestellt ist, wenn der Druck auf die Membran in Pfeilrichtung ausgeübt wird. Soweit es sich um die Größe des Überdruckes handelt, so ist die Wirkung dieselbe, als wenn die Volumen auf und $A_{e\,\chi}$ wäre, wobei jedoch das Volumen der Kammer auf den Wert $V_0 + k_3 p_0$ vergrößert erscheint. Mit dieser Modifikation wird die Gleichung (18):

$$\frac{A_s \chi}{V_0 + k_s p_0} \le \frac{1}{8} \,. \tag{19}$$

In dieser Gleichung ist k_2 das Ausbauchungsvolumens pro Druckeinheit (s. Fig. 10), gemessen bei bewegungslos gehaltener Membranmitte während ausübung des Druckes. Das Ausbauchungsvolumen ist das Volumen zwischen der unabgelenkten Membran und der ausgebauchten Membran, wenn auf diese ein Druck ausgeübt wird und die Membranmitte unbeweglich gehalten wird.

Die Größe $V_0 + k_3 p_0$ kann das sessektive Volumens der Kammer genannt werden, wobei die obige Beziehung [Gleichung (19)] das Volumen ergibt, das für jede gegebene Membran und Druck in der Kammer erforderlich ist, damit der Wandler linear (innerhalb der gewählten Grenzen) bis zu dem für das Gerät gewählten Höchstausschlag χ , d. h. bis zu dessen maximaler Skalenablenkung, wird.

Wird nummehr bei der Konstruktion der Kammer der oben für den Wert V_0 abgeleitete effektive Wert 30 des Kammervolumens in die Gleichung (13) eingesetzt, so erhält man

$$p_0 = \frac{V_0 \eta k_0}{1 - k_0 \eta k_0}. \tag{20}$$

Daraus geht hervor, daß mit zunehmenden Werten von k_B (d. h. je leichter sich die Membran ausbaucht) der Nenner in der Gleichung (20) um so kleiner wird, so daß p_0 um so größer werden muß. Bei einer starren 40 Membran, etwa einem Kolben, bei der $A_c = A$ ist, wird $k_b = 0$.

Ein kritisches Erfordernis für nach der Erfindung entworfene Dämpfer ist die Verwendung einer Membran, die so konstruiert ist, daß

$$k_2 < \frac{1}{\eta k_0} \tag{21}$$

und vorzugsweise

$$k_3 < \frac{1}{2\eta k_2} \tag{22}$$

50

wird.

Ist k_0 genügend klein, so kann das kleinste effektive 55 Volumen, das sich mit dem geforderten Grad der Linearität vereinbaren läßt, wie bereits erläutert, benutzt werden, beispielsweise das kleinste nach der Gleichung (19) zulässige effektive Volumen, wonach

$$V_0 + k_a p_0 = 8 A_e \chi$$

ist.

Wird dieser Wert in die Gleichung (20) eingesetzt, so ergibt sich

$$p_0 \ge 8 A_e \chi \eta k_2. \tag{23}$$

Der Anlangsgasdruck in der Membrankammer und dem Stopfen muß zumindest den Wert des Ausdrucks $8 A_e \chi \eta k_2$ [Gleichung (23)] haben, damit der gewünschte Dämpfungsgrad, wie beschrieben, erreicht wird

Patentansprüche:

1. Vorrichtung zur pneumatischen Dämpfung eines schwingenden mechanischen Systems, insbesondere für Meßgeräte, mit einer Dämpfungskammer, die in mindestens einer ihrer Wände eine Anzahl oder eine Gruppe von Öffnungen aufweist, durch die ein Gas in die Kammer hinein- und aus der Kammer herausströmen kann, sowie mit einem oszillierend beweglichen Organ, das über ein Übertragungsglied mit einer Membran verbunden ist, die an die Dämpfungskammer angrenzt, dad urch gekennzeich net, daß der akustische Blindwiderstand der Öffnungen kleiner ist als der akustische Wirkwiderstand der Öffnungen

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Größe und die Anzahl der Öffnungen (8) so gewählt sind, daß der akustische Blindwiderstand weniger als 20% des akustischen

Wirkwiderstandes beträgt.

3. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine ein Fach umschließende Wandung (119') und im Abstand voneinander angeordnete Wände innerhalb dieses Fachs, welche dieses in drei Kammern (120, 121', 121) unterteilen, von denen die eine Wand eine Membran (114) mit einander gegenüberstehenden Oberflächen ist, durch eine die Bewegungen übertragende Verbindung (111) zwischen dem oszillierenden Organ (100) und der Membran, deren eine Oberfläche einer der Seitenwände einer der Kammern zugewandt ist, wobei der Raum zwischen der Membran und dieser Seitenwand eine Dämpfungskammer (121') begrenzt, durch Öffnungen in den Seitenwänden, die die Dampfungskammer mit einer der anderen Kammern verbinden, und durch einen Nebenschluß (122), der die beiden Kammern unter Umgehung der Dämpfungskammer miteinander verbindet (Fig. 5).

4. Vorrichtung nach Anspruch 1, gekennzeichnet durch ein Gehäuse (101), durch eine in dem Gehäuse schwingfähig angebrachte Masse (100), durch einen Druckmitteldurchlaß (107) zwischen dem Inneren des Gehäuses und einer Seite der Membran (114), durch eine abgeschlossene pneumatische Dämpfungskammer, wobei die Membran mit ihrer gegenüberliegenden Seite in Druckmittelverbindung mit der Dämpfungskammer steht, durch eine zweite Kammer, durch einen Druckmitteldurchlaß zwischen der Dämpfungskammer und der zweiten Kammer, durch einen porösen Stopfen in dem Druckmitteldurchlaß, durch einen Nebenschluß, der die zweite Kammer und das Gehäuse miteinander verbindet, und durch eine Gasfüllung inden Kammern (Fig. 5).

5. Vorrichtung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der Betrag des Produktes aus der Dämpfungskonstante a für das Material des porösen Stopfens und die Länge / des Stopfens in der Strömungsrichtung des Gases kleiner als 1,5 und größer als 0 ist (Parameter a und 1 in Zentimeter-Gramm-Sekunden-Einheiten gemessen) und daß der spezifische Strömungswiderstand R, des Stopfens je Längeneinheit größer ist als das Produkt der Dichte ϱ_0 des Gases in dem Stöpsel

multipliziert mit dem Strukturfaktor k des Stopfenmaterials und mit der Kreisfrequenz w der vibric-

renden Masse.

6. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Öffnungen sich in einem 5 porösen Stopfen (8, 9, 118, 119) befinden, der von der Membran (7) getragen ist, und daß der Stopfen so dimensioniert ist, daß das Produkt aus der Länge i des Stopiens und der Dämpfungskonstante a des Materials des Stopfens im Bereich zwischen 0 10 und 1,5 liegt (Fig. 3).

7. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Stopfen so dimensioniert ist, daß das Produkt aus der Lange I des Stopfens und der Dämpfungskonstante a des Stopfenmaterials 15 2 573 286, 2 453 548;

nicht größer als 0,5 ist.

8. Vorrichtung nach Anspruch 1, dadurch ge-kennzeichnet, daß die Membran (7) eine Wand

zwischen zwei Kammern (14, 14') darstellt; die mit Hilfe eines Druckregelventils (18) unter einem ge-

eigneten Druck gehalten sind (Fig. 2 und 3).

9. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß sich die Offnungen in einem porösen Stopfen (118) befinden, der in einer der Seitenwände untergebracht ist (Fig. 5).

In Betracht gezogene Druckschriften: Deutsche Patentschriften Nr. 595 695, 618 994; deutsche Auslegeschrift Nr. 1 032 011; britische Patentschrift Nr. 277 969; französische Patentschrift Nr. 642 787; USA.-Patentschriften Nr. 2 713 466, 2 618 776, Archiv für Technisches Messen, 1932, Bl. J 014-2; Beranek, Acoustic Measurements, John Wiley & Sons, 1949, S. 351 ff., 840 ff., 857 ff.

Hierzu 2 Blatt Zeichnungen

Nummer: 1 248 958
Int. Cl.: G 01 d
Deutsche Kl.: 42 d - 1/01
Auslegetag: 31. August 1967

Nummer: 1 248 958 Int. Ci.:

42 d - 1/01 31. August 1967

Nummer: 1248 958
Int, Cl.: G 01 d
Deutsche Kl.: 42 d - 1/01

Auslegetag: 31. August 1967

Nummer:

1 248 958 G 01 d

Int, Cl.: Deutsche Kl.:

42 d - 1/01

Auslegetag:

31. August 1967

Nummer: 1 248 958

Int. Cl.: G 01 d

Deutsche Kl.: 42 d - 1/01

Auslegetag: 31. August 1967

Nummer: 1248 958
Int. Cl.: G 01 d
Deutsche Kl.: 42 d - 1/01

Auslegetag: 31. August 1967

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	_

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)