

Inductive Representation Learning on Large Graphs

William L. Hamilton*

wleif@stanford.edu

Rex Ying*

rexying@stanford.edu

Jure Leskovec

jure@cs.stanford.edu

Department of Computer Science Stanford University Stanford, CA, 94305

NIPS 2017

http://snap.stanford.edu/graphsage/

Made by Godder 2019/10/14

Previous methods:

SOUTHWEST

- Read-world application problem
 - A fixed graph can not simulate practical model.

e.g. recommender system

- Read-world application problem
 - A fixed graph can not simulate practical model.
 - Multi-graph and unseen nodes in existing graph.

- Deficiency of Previous methods:
 - Can not naturally generalize to unseen data.
 - Adding operation in an inductive setting will tend to be computational expensive.

- Work of paper
 - Extend GCN task in unsupervised learning
 - Propose a framework to generalize GCN with using trainable aggregation function.

Related work

- Factorization-based embedding
 - Random walking statistics
 - Matrix factorization-based learning objective

Related work

- Supervised learning: Kernel-based method
 - Graph embedding

Radial basis function(RBF)

The real-valued function which value only depends on the distance to the origin or other center point c.

$$\phi(\mathbf{x}) = \phi(\|\mathbf{x}\|)$$
 $\phi(\mathbf{x}, \mathbf{c}) = \phi(\|\mathbf{x} - \mathbf{c}\|)$

Radial basis function(RBF) kernel

For input x and x', the output can be regard as feature vector of input space

$$K(\mathbf{x},\mathbf{x}') = \exp\!\left(\!-rac{||\mathbf{x}-\mathbf{x}'||_2^2}{2\sigma^2}
ight)$$

Related work

- Supervised learning: Kernel-based method
 - Graph embedding
 - Graph kernel

Input: $G1(V_1,E_1)$, $G2(V_2,E_2)$, graph analytic function F

Output:
$$K_R(G_1,G_2) = \sum_{n_1=1}^{N_1} \sum_{n_2=1}^{N_2} \delta(S_{1,n_1},S_{2,n_2})$$

$$\mathcal{F}(G_1) = \{S_{1,1}, S_{1,2}, \dots, S_{1,N_1}\} \ \mathcal{F}(G_2) = \{S_{2,1}, S_{2,2}, \dots, S_{2,N_2}\}$$

Where $\delta(S_{1,n_1}, S_{2,n_2})$ is 1 when S_{1,n_1} and S_{2,n_2} are isomorphic

• WL(Weisfeiler-Lehman) kernel

WL(Weisfeiler-Lehman) kernel

With graph analytic function F

$$\mathcal{F}(G) = \{S_1, S_2, \dots, S_n\}$$

Update code in each node

$$\mathcal{L}^{new} = \{hash(S_1), hash(S_2), \dots, hash(S_n)\}$$

Decide nodes isomorphism

$$hash(S_i) = hash(S_j) \Rightarrow S_i \simeq S_j$$

Decide graphs isomorphism

$$k(G_1,G_2) = rac{|\mathcal{L}_1^{new} \cap \mathcal{L}_2^{new}|}{|\mathcal{L}_1^{new} \cup \mathcal{L}_2^{new}|} = rac{|\mathcal{L}_1^{new} \cap \mathcal{L}_2^{new}|}{|\mathcal{L}_1^{new}| + |\mathcal{L}_2^{new}| - |\mathcal{L}_1^{new} \cap \mathcal{L}_2^{new}|}$$

Related work

Graph Convolutional Network

Algorithm requires that the full graph Laplacian is known during training.

- GCN中卷积的计算方式
 - 欧拉公式 对于 $\theta \in \mathbb{R}$, 有 $e^{i\theta} = cos\theta + isin\theta$ 。
 - 博里日十级数 $f(x) = C + \sum_{n=1}^{\infty} \left(a_n cos(\frac{2\pi n}{T}x) + b_n sin(\frac{2\pi n}{T}x) \right), C \in \mathbb{R}$
 - 傅里叶变换 $\mathcal{F}\{f\}(v) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\cdot v}dx$
 - 傅里叶逆变换 $\mathcal{F}^{-1}\{f\}(x)=\int_{\mathbb{R}}f(v)e^{2\pi ix\cdot v}dv$
 - 巻积公式 $(f*g)(t) = \int_{\mathbb{R}} f(x)g(t-x)dx$
 - 变换后的卷积 $f * g = \mathcal{F}^{-1} \{ \mathcal{F} \{ f \} \cdot \mathcal{F} \{ g \} \}$

- GCN中卷积的计算方式
 - Laplacian算子
 - 图中Laplacian算子
 - 标准化
 - 图中Laplacian算子分解
 - 图中傅里叶变换
 - 图中傅里叶逆变换

$$\Delta f(x) = \lim_{h o 0} rac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

$$L = D - A$$

$$L = I_N - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

$$L = U \Lambda U^T$$
 其中 Λ 是特征值组成的对角矩阵 $U = [u_1 \ldots u_n]$

$$\mathcal{GF}\{f\}(\lambda_l) = \sum_{i=1}^n f(i)u_l^*(i) \quad \mathcal{GF}\{x\} = U^Tx \ x = (f(1)\dots f(n)) \in \mathbb{R}^n \ \mathcal{IGF}\{\hat{f}\}(i) = \sum_{l=0}^{n-1} \hat{f}\left(\lambda_l\right)u_l(i) \quad \mathcal{IGF}\{x\} = Ux$$

$$\mathcal{IGF}\{\hat{f}\}(i) = \sum_{l=1}^{n-1} \hat{f}\left(\lambda_l
ight) u_l(i) \;\;\; \mathcal{IGF}\{x\} = Ux$$

- GCN中卷积的计算方式
 - 图卷积公式 $g * x = U(U^T g \cdot U^T x)$
 - 利用Laplacian矩阵实现类似CNN的局部性 定义g为Laplacian矩阵的函数g(L)
 - 改写后 $g_{ heta} * x = U g_{ heta} U^T x = U g_{ heta'}(\Lambda) U^T x$
 - ・ 化筒 $g_{ heta'}*xpprox heta(I_N+L)x \ = heta(I_N+D^{-rac{1}{2}}AD^{-rac{1}{2}})x$
 - 加上激活函数 $H^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$

• GCN如何传导

Step1 send

• GCN如何传导

Step2 receive

• GCN如何传导

Step3 transform

欧拉公式推导

n阶泰勒公式

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$$

$$sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \cdots$$

$$cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + \cdots$$
 将 $x = i\theta$ 代入 e

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \frac{(i\theta)^6}{6!} + \frac{(i\theta)^7}{7!} + \frac{(i\theta)^8}{8!} + \cdots$$

$$=1+i\theta-\frac{\theta^2}{2!}-\frac{i\theta^3}{3!}+\frac{\theta^4}{4!}+\frac{i\theta^5}{5!}-\frac{\theta^6}{6!}-\frac{i\theta^7}{7!}+\frac{\theta^8}{8!}+\cdots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \frac{\theta^8}{8!} - \cdots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \cdots\right)$$

$$=\cos\theta + i\sin\theta$$

卷积傅里叶变换推导

$$h(z) = \int_{\mathbb{R}} f(x)g(z-x)dx$$

$$egin{aligned} \mathcal{F}\{fst g\}(v) &= \mathcal{F}\{h\}(v) \ &= \int_{\mathbb{R}} h(z)e^{-2\pi iz\cdot v}dz \ &= \int_{\mathbb{R}} \int_{\mathbb{R}} f(x)g(z-x)e^{-2\pi iz\cdot v}dxdz \ &= \int_{\mathbb{R}} f(x)(\int_{\mathbb{R}} g(z-x)e^{-2\pi iz\cdot v}dz)dx \end{aligned}$$

带入
$$y = z - x$$
; $dy = dz$

$$egin{aligned} \mathcal{F}\{fst g\}(v) &= \int_{\mathbb{R}} f(x) (\int_{\mathbb{R}} g(y) e^{-2\pi i (y+x)\cdot v} dy) dx \ &= \int_{\mathbb{R}} f(x) e^{-2\pi i x\cdot v} (\int_{\mathbb{R}} g(y) e^{-2\pi i y\cdot v} dy) dx \ &= \int_{\mathbb{R}} f(x) e^{-2\pi i x\cdot v} dx \int_{\mathbb{R}} g(y) e^{-2\pi i y\cdot v} dy \ &= \mathcal{F}\{f\}(v)\cdot \mathcal{F}\{g\}(v) \end{aligned}$$

图卷积公式化简

化简前图卷积公式

$$g_{ heta} * x = U g_{ heta} U^T x = U g_{ heta'}(\Lambda) U^T x$$

$$g_{ heta'}(\Lambda) pprox \sum_{k=0}^K heta'_k T_k(ilde{\Lambda})$$

$$\tilde{\Lambda} = \frac{2}{\lambda_{\text{max}}} \Lambda - I_N$$

 $\lambda_{\rm max}$ denotes the largest eigenvalue of L

其中 T_k 是Chebyshev多项式。这里可以把简单 $g_ heta(\Lambda)$ 简单看成是 Λ 的多项式。

因为
$$U\Lambda^kU^T=(U\Lambda U^T)^k=L^k$$

$$g_{ heta'}(\Lambda) pprox \sum_{k=0}^K heta'_k T_k(ilde{L})$$

$$\tilde{L} = \frac{2}{\lambda_{\max}} L - I_N$$

设定 K=1 那卷积公式可以简化为

$$egin{aligned} g_{ heta'} * x &pprox heta(I_N+L)x \ &= heta(I_N+D^{-rac{1}{2}}AD^{-rac{1}{2}})x \end{aligned}$$

- Focus on feature-rich graph
- Learning the topological structure of each node's neighborhood.
- Learning the distribution of node features

Embedding generation algorithm

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
```

 $egin{array}{c|c} \mathbf{6} & \mathbf{end} \ \mathbf{7} & \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, orall v \in \mathcal{V} \end{array}$

8 end

9 $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$

1. Sample neighborhood

2. Aggregate feature information from neighbors

3. Predict graph context and label using aggregated information

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

- Relation to the WL Isomorphism Test
 - Algorithm 1 is an instance of the WL isomorphism test
 Set K = |V|
 Set weight matrices as the identity
 Use appropriate hash function as aggregator function
 - Algorithm 1 is a continuous approximation to WL test
 Replace hash function with trainable neural network

- Learning the parameters of GraphSAGE
 - Unsupervised loss

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$$
 v is node that co-occurs near u on fixed-length random walk. σ is sigmoid function. Q is the number of negative smaple(non-adjacent node in fixed-length random walk)

Supervised lossCross-entropy loss etc

- Aggregator Architectures
 - Mean aggregator

$$h^k_{N(v)}=mean(\{h^{k-1}_u,u\in N(v)\})$$

Mean aggregator base GCN

$$\mathbf{h}_v^k \leftarrow \sigma(\mathbf{W} \cdot \text{mean}(\{\mathbf{h}_v^{k-1}\} \cup \{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\})$$

- Aggregator Architectures
 - LSTM aggregator

Adapt LSTM to operate on an unordered set.(random permutation of the node's neighbors)

Pooling aggregator
 Each neighbor's vector is independently fed through a FC

$$AGGREGATE_k^{pool} = \max(\left\{\sigma\left(\mathbf{W}_{pool}\mathbf{h}_{u_i}^k + \mathbf{b}\right), \forall u_i \in \mathcal{N}(v)\right\})$$

- Setting
 - Hyper-parameter

K = 2(aggregate 2 times). $S_1 = 25(sample number in first iteration)$. $S_2 = 10(sampl number in second iteration)$

Optimizer

Adam

Supervised loss function

Cross-entropy

Batch size

512

- Mini-batch load
 - Uniformly sample a fixed-size set of neighbors.
 - Draw different uniform samples at each iteration

- Dataset & Task
 - Citation data (node classification)
 Contain 302,424 nodes with an average degree of 9.15.
 300-dimensional word vectors as node feature
 - Reddit data (node classification)
 Contain 232,965 nodes with an average degree 492.
 300-dimensional word vectors as node feature
 - Protein-protein interactions (graph classification) Include 121 labels and average graph contains 2373 nodes, with an average degree of 28.8. train with 20 graphs.

- Evaluation protocol
 - F1 score

$$F1 = \frac{2TP}{2TP + FN + FP} = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

• Time cost

Performance

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324	_	_
DeepWalk + features	0.701	0.701	0.691	0.691	_	_
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

Performance

Figure 2: A: Timing experiments on Reddit data, with training batches of size 512 and inference on the full test set (79,534 nodes). B: Model performance with respect to the size of the sampled neighborhood, where the "neighborhood sample size" refers to the number of neighbors sampled at each depth for K = 2 with $S_1 = S_2$ (on the citation data using GraphSAGE-mean).

Reference

- Haussler, D. "Convolution kernels on discrete structures." *Tech Rep 7(1999)*:95-114
- N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeilerlehman graph kernels. Journal of Machine Learning Research, 12:2539–2561, 2011.

