Knowledge-Defined Networking using In-band Network Telemetry

Jonghwan Hyun, James Won-Ki Hong

Department of Computer Science Engineering, POSTECH, Korea

{noraki, jwkhong}@postech.ac.kr

Sept. 27, 2017

Contents

- Introduction
- Background
- Proposed Architecture
- Use cases
- Conclusion

Introduction

Complexity of Network Management

- Network traffic volume is growing [CISCO VNI 2017]
 - Will reach 3.3 ZB by 2021
 - Will increase nearly threefold over the next 5 years
- The number of connected devices is growing [CISCO VNI 2017]
 - 3.5 networked devices per capita by 2021
 - Was 2.3 in 2016
- Network changes dynamically
 - e.g., hosts moving around, contents dynamically moving in the network, dynamic bandwidth allocation caused by SLA and QoS
- Make it hard to manage network in real-time by human operators
- The need for the closed-loop network management solution is arising

Introduction

Self-Driving Networks

- Autonomous network that is predictive and adaptive to its environment
- Advantages
 - Reduce operation complexity by simplifying and abstracting networks
 - Enable customers to <u>deploy new network services faster</u>
 - Improve capacity utilization and network resiliency
- Technologies required
 - Telemetry, Automation, Intents, Decision making, Local and global views
- Building blocks
 - Knowledge-defined Networking (KDN)
 - Software-defined Networking (SDN)
 - In-band Network Telemetry (INT)

In this paper

- Propose an architecture for collecting network telemetry and combining KDN to work with SDN and P4 INT
- Suggest several use-cases for the proposed architecture

Background

- P4 (Programming Protocol-Independent Packet Processors)
 - Domain specific language for programmable data plane
 - Based on a Match+Action forwarding model
 - Automatically generate APIs to manage the packet processing tables

Source: The P4 Language Specification Version 1.0.3, The P4 Language Consortium, Nov. 2016

Background

In-band Network Telemetry (INT)

- Framework for collecting and reporting network state by the data plane, without requiring intervention or work by the control plane
- Examples of network state (metadata)
 - Switch ID, timestamp, Ingress/Egress Port ID
 - Link Utilization, Hop Latency
 - Egress Queue Occupancy
 - Egress Queue Congestion Status
- Advantages
 - Provide metadata at packet-level granularity
 - Collect data in real-time, polling-free

SW4 metadata

Background

* Knowledge-Defined Networking (KDN)

- Originally defined at the early stage of the Internet [Clark, ACM '03]
 - Suggested a concept of Knowledge Plane
 - Adopted Artificial Intelligence (AI) and cognitive system to <u>build a model</u> for the <u>network</u>
 - Limitation
 - Each network node only has a local view
 - Computing power is limited
 - → Complex to learn on nodes
- Re-defined as the combination of knowledge plane, network telemetry, SDN and network analytics [Mestres, arXiv'16]
- When KDN adopts the programmable data plane, richer set of actions can be provided

Control Plane

- SDN controller works as a control plane
 - Deploy INT functionality to programmable switches
 - Control the condition of network monitoring using INT
 - Convert the intent-driven requirements from the knowledge plane into the specific network policy

Data Plane

- INT metadata is generated, extracted and transmitted to the management plane
- INT operations
 - Source switch: insert INT header for target flows
 - Transit switch: identify INT header and insert metadata
 - Sink switch: Extract INT header and metadata, sending to the management plane

Management Plane

- Collect, store and aggregate INT metadata
- INT data collector
 - Collect the metadata
 - Send to the distributed messaging system
- Distributed messaging system
 - Distribute the metadata to one of the data stream processors
- Data stream processor
 - Provide basic analysis result and statistics per flow, per switch
 - Send the result to the control plane and knowledge plane

Management Plane

- Output
 - Contain the <u>real path</u> of the flow traversed in the network, <u>latency</u> for each hop, <u>queue occupancy</u> <u>and congestion</u> status for each switch
 - To the control plane: event which requires immediate action
 - e.g., link failure, black-hole or loop detection
 - To the knowledge plane: actions requiring knowledge
 - e.g., resource planning and optimization, performance management, verification

Knowledge Plane

- Take the data gathered in the management plane
- Feed the data to the ML algorithm
- Populate knowledge
- Convert the knowledge into the form of intent language
 - To describe the requirement to change the network configuration
- Need to be separated from control plane because of the compute-intensive ML algorithms

Use Cases

Traffic Engineering (TE)

- Offload traffic information collection and analysis on the management plane, reducing the overhead to the SDN controller
- Collect fine-grained traffic information, deeper into the packet level
- Refine and cluster traffic information, reducing the number of input values of the TE algorithm

Network Anomaly Detection

- Build network model for the normal condition
- Raise an alarm when the unexpected traffic pattern is detected
 - DDoS and port scan attacks can be easily detected in this way
- Involve knowledge plane to record and analyze the traffic generated in each host
 - To further detect an abnormal traffic pattern

Conclusion

Summary

- Discuss the concept of self-driving network and its building blocks,
 P4 INT, SDN and KDN
 - P4 INT: collect packet-level network telemetry
 - KDN: bring the intelligence to the network management, using the telemetry data
 - SDN: manage and control the network according to the decision made by the knowledge plane
- Suggest two use cases: traffic engineering and anomaly detection

Future work

 Implement the proposed architecture and proof of concepts for the use cases.

