15

<u>ე</u>

Aufgabe 2: M3-Schaltung

Ein gesteuerter Thyristor-Dreipuls-Stromrichter speist eine ohmsch-induktive Last

Gehen Sie von idealen Bedingungen aus (ideale Halbleiter-Bauteile, idealer Stromübergang von einem auf das andere Ventil, keine Verluste). Sämtliche Wechselgrößen sind als Effektivwerte gegeben.

 $U_{\Delta} = 400 \text{ V}, 50 \text{ Hz}$ $\ddot{u} = N_{P}/N_{S} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}$ $R = 10 \Omega$ $Steuerwinkel \alpha = 60^{\circ}$ $L_{d} \rightarrow \infty$

ü = N_P/N_S: Übersetzungsverhältnis des Transformators N_P: Primärwindungszahl des Transformators je Strang N_S: Sekundärwindungszahl des Transformators je Strang

- Zeichnen Sie den zeitlichen Verlauf der Stromrichter-Ausgangsspannung u_d.
 Benutzen Sie das bereitgestellte Diagramm (2a).
- 2.2. Berechnen Sie die Gleichspannung U_{dia} (Steuerwinkel α = 60°) an dem Lastwiderstand R und den Gleichstrom I_d .

Annahme: Der Thyristor T_2 bekommt durch eine Fehlansteuerung einen Zündwinkel von α_{T2} = 90°. Die Steuerwinkel der Thyristoren T_1 und T_3 bleiben unverändert bei 60°.

- 2.3. Zeichnen Sie für diesen Fall den zeitlichen Verlauf der Spannung u_d und kennzeichnen Sie den Steuerwinkel von T_2 (α_{T2}). Benutzen Sie das bereitgestellte Diagramm (2b).
- 2.4. Berechnen Sie die neue Gleichspannung Udia an dem Lastwiderstand R.
- 2.5. Zeichnen Sie die zeitlichen Verläufe der Ströme i_{71} , i_{72} und i_{73} . Benutzen Sie das bereitgestellte Diagramm (2c).

