LITERATURE SURVEY

S.no	Paper	Work	Link	Tools for algorithm	Findings
1	Heart Disease Prediction using Exploratory Data Analysis	The risk factors that causes heart disease is considered and predicted using K-means algorithm and the analysis is carried out using publicly available data for heart disease and visualized.	https://reader.elsevier.com/reader/sd/pii/S1877050920315210?token=FC35CF03FB39FCDE03A89E3BE7D84E48B432E9EC1528301598D6517C60BEA60FC710C4A57A4E3758D3340B636A3FDB2E&originRegion=eu-west-1&originCreation=20221006134056	K-means Clustering	Heart stroke and vascular disease are the major cause of disability and premature death. Chest pain is the key to recognize the heart disease.
2	Heart disease prediction using strength scores with significant predictors	This proposes an algorithm that measures the strength of the significant features that contribute to heart disease prediction.	https://bmcm edinformdeci smak.biomed central.com/a rticles/10.118 6/s12911-021 -01527-5	Weighted Associative Rule Mining	A set of important feature scores and rules were identified in diagnosing heart disease and cardiologists were consulted to confirm the validity of these rules.
3	Heart disease prediction using data mining	Data mining frameworks are utilized to extricate information from this data which can be utilized by media proficient individual to	https://ijcrt.or g/papers/IJC RT2205103.p df	Data Mining	In this work adaboost algorithm has the greater accuracy than logistic regression for training data and ensemble have comparatively less accuracy than both adaboost and

		figure future procedures.			logistic regression.
4	Heart disease prediction using machine learning techniques	This paper analyzes the supervised learning models of Logistic Regression, Naïve Bayes, and the ensemble technique of XGBoost to present a comparative study for the most efficient algorithm	https://www.ij ert.org/resear ch/heart-dise ase-predictio n-using-mach ine-learning-t echniques-IJ ERTV9IS110 259.pdf	Logistic Regression, Naïve Bayes, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Random Forest, XGBoost, Heart Disease Prediction	Random Forest with 86.89% and XGBoost with 78.69% are the most efficient algorithms. However, K-Nearest Neighbor performed with the worst accuracy with 57.83%.
5	Cardiovascul ar disease prediction model	Xinjiang is located in northwest China and is home to multiple ethnic groups. Find which model has the best prediction performance	https://www.fr ontiersin.org/ articles/10.33 89/fcvm.2022 .854287/full	Machine Learning	In the Xinjiang rural population, the prediction model based on L1-LR had the best prediction performance.

6	Heart disease prediction using data mining techniques	In this work, supervised machine learning algorithms namely SVM, KNN and Naive Bayes are used to predict the heart diseases.	https://hal.arc hives-ouverte s.fr/hal-02196 156/documen t	KNN, SVM, Naïve Bayes, Heart diseases, Data mining	From the experimental results it's evident that Naïve Bayes algorithm predicts the heart disease with the accuracy of 86.6%.
7	Heart Disease Prediction Using Various Algorithms of Machine Learning	They have collected a data set consists of 13 elements and 383 individual value to analyze the patients performance. The main aim of the paper is to get a better accuracy to detect the heart disease using ML algorithm.	https://papers .ssrn.com/sol 3/papers.cfm ?abstract_id= 3884968	KNN, SVM, Naive Bayes, Logistic Regression, Decision Trees, Random Forest	The analysis is carried out based on Confusion matrix and comparing accuracy among them and get SVM is finest algorithm. Thus the efficacy of presented work has been verified.