Drugs in Heart Failure

Dr Chamila Mettananda Dept. of Pharmacology

Objectives

- Introduction
- Pathophysiology of HF
- Different drugs used in HF
- Principles of drug usage

What is HF?

- Cardiac output fails to maintain adequate blood supply to other organs to meet their demands
- Classification;
 - Backward failure
 - JVP elevated
 - Peripheral oedema
 - Hepatomegaly
 - Forward failure
 - Lethargy, SOB on exertion
 - Features of poor organ failure
 - Renal failure
 - Acute / chronic HF

Pathophysiology of HF

Pathophysiology of HF and drugs

- Initially compensatory (physiological) but later pathological
- Drugs are used for
 - To improve morbidity (symptomatic benefit)
 - Symptoms of forward failure
 Fatigue, exertional dyspnea
 - Symptoms of backward failure
 SOB due to pulmonary oedema, generalized oedema
 - To improve mortality (survival benefit)

What drugs?

- To improve mortality (survival benefit)
 - **⇔**ACEI
 - **❖**ARB
 - Beta blockers
 - **Spironolactone** (Aldosterone antagonists)
 - ❖ Nitrate + hydralazine
- To improve morbidity (symptomatic benefit)
 - Loop Diuretics
 - Digoxin
 - **❖** Nitrates
- **❖** A, B, D,D,S

ACEI and ARB

- Both symptomatic benefit and survival benefit
- Inhibit RAAS

Beta blockers

- Mechanism of action:
 - ➤ Blunting of activated sympathetic nervous system
 - Negative inotropic and chronotropic action
 - Vasoconstriction
 - > Reduce risk of sudden death(via antiarrhythmic effect)

- Clinical uses:
 - Not suitable for **unstable** heart failure
 - Chronic stable heart failure
 - ➤ Asymptomatic heart failure
- Gives survival benefit.

Loop diuretics

Frusemide, Bumetanide

Inhibits Na resorption in the thick Ascending limb of loop of Henle

Increase Na+ and water loss

Reduce preload

venodilataion

reduce preload

Loop diuretics...

Well absorbed via gut

Exception; oedematous gut

Onset of action – Oral : 1 hour

IV : 5-10 mins

- Modes of administration :oral / iv (slow) / iv infusion
- Usual maintenance dose: 40-80mg daily (up to 2g)
- Indication: Symptomatic benefit only, no survival benefit

Loop diuretics

Adverse affects

- Hypokalemia, hyponatraemia
- Hypotension
- Transient deafness and tinnitus (with rapid IV & large doses)
- Hyperuricaemia and gout
- Temporary increase in serum cholesterol and TG
- Rashes and photosensitivity rare

Digoxin

- Cardiac glycoside
- Natural substance from Fox glove plant
- Oleander (Kaneru) also has this
- Increase myocardial contractility

Indication:

- only in <u>Symptomatic</u> chronic heart failure
- Supra-ventricular tachyarrhythmias

Digoxin – Mode of action

1. Binds and inhibit Na+ K+ATPase pump intra

Accumulation of Na+ ions intracellularly

increase intracellular Ca++ (by NA/Ca pump)

Inotropic effect

- 2. Electrical effect on cardiac conduction system
 - Direct effect reduce refractory time in cardiac cycle
 - Indirect effect Increase vagal activity and slow AV conduction

Digoxin Pharmacokinetics

- well absorbed orally
- Therefore use IV only in emergencies
- t1/2 long: 36hours
- renal excretion (unchanged), CI in advanced renal failure
- Narrow therapeutic index
- Na/K ATPase pump sensitivity is high in the following situations, hence those patients may be more sensitive to digoxin,
 - Hypokalaemia
 - Hypercalcaemia
 - hypothyroidism

Digoxin contraindications

- Complete heart block
- Second degree AV block
- Supraventricular arrhythmias caused by wolf-Parkinson-white syndrome
- Ventricular tachycardia or fibrillation
- LV outflow tract obstruction

Digoxin adverse effects

- Usually associated with excessive dosage
 - Gl disturbance Nausea, anorexia, diarrhea (earliest symp of toxicity)
 - Disturbance of colour vision eg: xanthopsia
 - Ventricular ectopics (ventricular bigeminy)

Any symptom of toxicity →

- should do digoxin level, SE and renal function
- Antidote: IV digoxin binding antibody

Toxicity Mx:

- Stop digoxin
- Correct electrolytes
- Manage arrhythmias accordingly
- Digoxin AB

Aldosterone antagonists Spironolactone

* Competitive blocking of aldosterone receptor

Inhibit Na reabsorption in DCT

Reduce Na and water retention

Reduce preload

* Conserves K+ and Mg++ → anti-arrhythmic

Spironolactone cont.

Clinical uses:

- Symptomatic chronic heart failure
 - symptomatic and survival benefits
 - Add on therapy in patients with **persisting symptoms in spite of optimal treatment** with diuretic, ACEI and beta blocker
 - Target dose 25mg daily
- Cirrhosis (high doses up to 400mg)

Spironolactone cont.

Adverse effects

- Hyperkalemia
- Gynaecomastia, impotence
- Hypernatremia

Contraindications

- Hyperkalemia
- Hyponatremia
- Renal failure

Nitrates

Veno-dilatation / vaso-dilatation

Reduce venous return

Reduce preload

Relief from congestive features

Nitrates in HF

- Main clinical use is in acute LVF GTN
- In chronic heart failure Nitrates + hydralazine symptomatic and survival benefit (VHeFT)

HF management summary

