Notes on Coxeter Matroids

Abel Doñate Muñoz abel.donate@estudiantat.upc.edu

Contents

1	Mat	${ m troids}$	2
2	Permutahedron		2
	2.1	Regular permutahedron	2
	2.2	Generalized permutahedra	3
3	Cox	ceter Groups	3
	3.1	Classification of Platonic Solids	3
4	4 Description of Coxeter Groups		4
	4.1	Group A_n	4
	4.2	Group B_n	4
	4.3	Group D_n	5
5	Reg	gular Subdivision and height functions	5

1 Matroids

Definition (Matroid). A base of a matroid M over a given a ground set [n] is $\binom{\mathcal{B}(M)\subseteq}{[n],r}$, where r is the rank of the matroid. The set \mathcal{B} must fulfill:

•
$$A, B \in \mathcal{B}, a \in A - B \Rightarrow \exists b \in B - A : (A - \{a\}) \cup \{b\} \in \mathcal{B}$$

2 Permutahedron

2.1 Regular permutahedron

The permutahedron Π_n is generated by the convex hull of the vertices $V = \{(\sigma(1), \dots \sigma(n)) : \sigma \in S_n\}$

There is a (fancy) bijection between the flags of [n] and the faces of permutahedron Π_n as shown in the picture.

Flags could be interpreted as ordered partitions. One example of the three points of view as follows: $F = \{\{3\}, \{1, 2, 3, 4\}\} \iff 3|124 \iff$ "the face whose vertices have a 3 in the first position and the other three are free permutations".

2.2 Generalized permutahedra

Definition (Hypersimplex). $\Delta(n,k) = \{(x_1,\ldots,x_n): x_1+\ldots+x_n=k\}$

The basis of $\Delta(n, k)$ (vertices of the polytope) is formed by vectors with k ones and n - k zeroes.

Definition (Generalized Permutahedron). Convex polytope with all the edges parallel to $e_i - e_j$

Permutahedron vertices came from a subset of the vertices of $\Delta(n,k)$

Definition (Matroid polytope). Matroid generated by the permutahedron whose vertices are a subset of $\Delta(n,k)$

3 Coxeter Groups

A coxeter group is a finite group that has a set of generators $S = \{s_1, \ldots s_n\}$ and a function $m : S \times S \to \mathbb{N}$ with $m(s_i, s_i) = 1$ and $m(s_i, s_i) = m(s_i, s_i)$ such that the group is described with its presentation:

$$G = \{: s_i^2 = e; (s_i s_j)^{m(s_i, s_j)} = e\}$$

We can associate every generation with a hyperplane reflection passing through the origin $s_i \leftrightarrow \rho_i$

Suppose we have two generators s_i and s_j . Then we can represent this as two lines in a plane as follows:

If the angle $\angle \rho_i \rho_j = \frac{\pi}{k}$ we have that $s_i s_j$ is a rotation of angle $\frac{2\pi}{k}$. It follows that $m(s_i, s_j) = k$.

Coxeter groups have a fancy representation into a diagram. We represent each generator as a node, and we connect two nodes by a labeled edge with the value of $m(s_i, s_j) \geq 3$. If m = 3 it is not needed to label it.

$$A_n \quad \bigcirc \cdots \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

There is a correspondence with each flag selecting one variety to a generator, though it is not a bijection.

The flag is composed by a vertex, an edge containing the vertex, a face containing the edge . . . etc. If we focus on one variety, then the corresponding symmetry is the hyperplane ρ that fixes the lower dimension varieties and keeps invariant the higher ones.

We will see it more clear in the next subsection.

3.1 Classification of Platonic Solids

There exist 5 platonic solids. We can think all the solids in the projective space to make easier computations.

Tetrahedron A_3

Vertices are the indicator vectors of $\binom{[4]}{1}$

We have a flag $\{V_1, V_2, V_3\}$, where V_i are projective varieties that correspond to a vertex, edge and face respectively and for each V_i we have the induced hyperplane ρ_i associated with the reflection s_i . If we compute the normal vectors of the planes:

$$\rho_{1}^{\perp} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \quad \rho_{2}^{\perp} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \quad \rho_{3}^{\perp} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \quad \Rightarrow \quad \angle \rho_{1} \rho_{2} = \frac{\pi}{3}, \quad \angle \rho_{1} \rho_{3} = \frac{\pi}{2}, \quad \angle \rho_{2} \rho_{3} = \frac{\pi}{3}$$

And then we deduce the diagram (1) —— (2) —— (3)

Cube B_3

Octahedron B_3

Vertices are the indicator vectors of $\binom{[4]}{2}$

We have a flag $\{V_1, V_2, V_3\}$, where V_i are projective varieties that correspond to a vertex, edge and face respectively and for each V_i we have the induced hyperplane ρ_i associated with the reflection s_i . If we compute the normal vectors of the planes:

$$\rho_1^{\perp} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \quad \rho_2^{\perp} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \quad \rho_3^{\perp} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \quad \Rightarrow \quad \angle \rho_1 \rho_2 = \frac{\pi}{3}, \quad \angle \rho_1 \rho_3 = \frac{\pi}{2}, \quad \angle \rho_2 \rho_3 = \frac{\pi}{4}$$

And then we deduce the diagram \bigcirc — \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Dodecahedron H_3

Icosahedron H_3

4 Description of Coxeter Groups

4.1 Group A_n

$$\circ \longrightarrow \circ \longrightarrow \cdots \longrightarrow \circ \longrightarrow \circ$$

We can think type A_n Coxeter Groups as groups generated by the reflections s_1, \ldots, s_{n-1} whose associated hyperplanes are defined by

$$\rho_{1}^{\perp} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \rho_{2}^{\perp} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots \quad \rho_{n-1}^{\perp} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ -1 \end{pmatrix},$$

It is easy to see that the angles between the hyperplanes are

$$\angle \rho_i \rho_{i+1} = \frac{\pi}{3}, \quad \angle \rho_i \rho_j = \frac{\pi}{2} \ if \ i - j \neq \pm 1$$

so that corresponds to the Dynkin diagram, and thus to the Coxeter group

4.2 Group B_n

$$\circ \stackrel{4}{\longrightarrow} \circ \longrightarrow \cdots \longrightarrow \circ \longrightarrow \circ$$

We can think type B_n Coxeter groups as the group generated by the reflections τ, s_1, \ldots, s_n , whose associated hyperplanes are defined by

$$\rho_{\tau}^{\perp} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \rho_{1}^{\perp} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \rho_{2}^{\perp} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots \quad \rho_{n}^{\perp} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 1 \end{pmatrix},$$

One can check that the angles between the hyperplanes are

$$\angle \rho_{\tau}\rho_{1} = \frac{\pi}{4}, \quad \angle \rho_{\tau}\rho_{i} = \frac{\pi}{2} \ if \ i > 1, \quad \angle \rho_{i}\rho_{i+1} = \frac{\pi}{3}, \quad \angle \rho_{i}\rho_{j} = \frac{\pi}{2} \ if \ i - j \neq \pm 1$$

so the construction correspond to the Dynkin diagram, and thus to the coxeter group.

4.3 Group D_n

We can think type D_n Coxeter groups as the group generated by the reflections $\tau_1, \tau_2, s_1, \ldots, s_n$, whose associated hyperplanes are defined by

$$\rho_{\tau_{1}}^{\perp} = \begin{pmatrix} 1\\1\\0\\\vdots\\0 \end{pmatrix}, \quad \rho_{\tau_{2}}^{\perp} = \begin{pmatrix} -1\\1\\0\\\vdots\\0 \end{pmatrix}, \quad \rho_{1}^{\perp} = \begin{pmatrix} 0\\1\\1\\\vdots\\0 \end{pmatrix}, \quad \dots \quad \rho_{n}^{\perp} = \begin{pmatrix} 0\\\vdots\\0\\1\\1 \end{pmatrix},$$

One can check that the angles between the hyperplanes are

$$\angle \rho_{\tau_1} \rho_{\tau_2} = \frac{\pi}{2}, \quad \angle \rho_{\tau_1} \rho_1 = \frac{\pi}{3}, \quad \angle \rho_{\tau_2} \rho_1 = \frac{\pi}{3}, \quad \angle \rho_i \rho_{i+1} = \frac{\pi}{3}, \quad \angle \rho_i \rho_j = \frac{\pi}{2} \text{ if } i - j \neq \pm 1$$

so the construction correspond to the Dynkin diagram, and thus to the coxeter group.

5 Regular Subdivision and height functions

Given a set of points T, we define a height function as $h: T \to \mathbb{R}$.

The height function h is said to be M-convex if the regular subdivisions induced by h are permutahedral.

A subset S of points is a (lower) regular subdivision induced by h if the convex hull of S is described by the lower convex hull of the polytope $T \times h(T)$

Definition (3-Term Plücker Relations). Let ω be a height function. For each $S \in \binom{[n]}{d-2}$ and $i, j, k, l \notin S$ the minimum

$$\min(h(S_{ij}) + h(S_{kl}), h(S_{ik}) + h(S_{jl}), h(S_{il}) + h(S_{jl}))$$

is attained at least twice.

Theorem. A height function induces a permutahedral regular division if the 3-Term Plücker Relations (3TPR) holds.

Proof. We first translate what does it mean for the set of vertices S_{ij} , S_{ik} , S_{jk} , S_{jk} , S_{jk} , S_{kl} to be a regular subdivision induced by h. Trivially these 6 vertices form a subpermutahedron of P.

Now we have to see that the convex hull of the vertices is a lower convex hull of all the points. This means we can assign it a linear functional $\varphi = (\varphi_1, \dots, \varphi_n, \varphi_{n+1}), \ \varphi_{n+1} > 0$ that minimizes the set of 6 points over all the points. The consequence is that the functional evaluated in each of the 6 vertices should be equal. We abbreviate $h_{ij} := h(S_{ij})$

$$\varphi_{i_1} + \varphi_{i_2} + \varphi_{n+1}h_{i_1i_2} = \varphi_{i_3} + \varphi_{i_4} + \varphi_{n+1}h_{i_3i_4} \ \forall i_1, i_2, i_3, i_4 \in i, j, k, l$$
 (1)

$$\varphi_{i_1} - \varphi_{i_3} = \varphi_{n+1}(h_{i_3i_2} - h_{i_1i_2}) \tag{2}$$

$$(\varphi_{i_2} - \varphi_{i_1})(h_{i_5i_7} - h_{i_6i_7}) = (\varphi_{i_6} - \varphi_{i_5})(h_{i_1i_3} - h_{i_2i_3})$$
(3)

Making now $i_1 = i_5$ and $i_2 = i_6$ yields

$$h_{i_5i_7} - h_{i_6i_7} = h_{i_1i_3} - h_{i_2i_3} \quad or \quad \varphi_{i_2} = \varphi_{i_6}$$
 (4)

We observe that if all φ_i are equal, then all the h_{ij} should be equal by (1)