TABELAS DE DISPERSÃO

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

- 1 Dicionários
- 2 Hashing
- 3 Política de encadeamento
- 4 Política de endereçamento aberto
- 5 Bibliografia

Dicionários: ADT

Uma coleção de registros, permitindo armazenamento e recuperação

Registros indexados por uma chave (key)

■ Chaves precisam ser comparáveis; idealmente, ordem total

Operações:

- void clear(Dictionary d);
- void insert(Dictionary d, Key k, E e); // refletir: múltiplas entradas
- E remove(Dictionary d, Key k); // refletir: múltiplas entradas
- E removeAny(Dictionary d); // alternativa: getKeys
- E find(Dictionary d, Key k); // refletir: múltiplas entradas
- int size(Dictionary d);

Implementações: array, lista ligada, tabelas de dispersão, e árvores balanceadas

3/25

- Hashing

Hashing

Trade-off entre eficiência espacial e temporal

■ Hashing: mais espaço para privilegiar eficiência temporal

Maneira extremamente eficiente para implementar dicionários

- Tabela de dispersão (hash table): H[0..m 1]
- Função hash: $h: Key \rightarrow 0..m 1$

Requisitos desejáveis

- Relação entre *m* e | *Key* |: viável sem comprometer efic. temporal
- h deve distribuir chaves de forma uniforme
- h deve ser fácil de computar

Hashing

Desvantagens:

- Não é ideal se houver múltiplos registros por chave
- Não é ideal para percorrer registros em ordem por chave
- Não é ideal para pesquisas baseadas em faixas de valores

Uma das estruturas mais utilizadas para armazenar grandes volumes de dados em disco (alternativa: árvores B)

Hashing: funções hash para números

Uma primeira abordagem¹

 $\blacksquare h(K) = K \bmod m$

Exemplo:

- Seja m = 100 (índices de 0..99)
- Se K = 4567, então $h(K) = 4567 \mod 100 = 67$

Uma abordagem melhor (método mid-square):

■ Calcula o quadrado de K, seleciona or r dígitos do meio do resultado, tal que $10^r - 1 < m$

Exemplo:

- Seja m = 100 (índices de 0..99), então r = 2
- Se K = 4567, $K^2 = 20857489$, então h(K) = 57

¹**Cuidado** com implementação de mod : $\mathbb{Z} \to \mathbb{N}$

Hashing: funções hash para strings

Uma primeira abordagem (fold):

Algoritmo: int h(string x, int M)

- 1 $s \leftarrow length(x)$;
- 2 $sum \leftarrow 0$;
- 3 for $i \leftarrow 0$ to s-1 do
- 4 $sum \leftarrow sum + x[i];$
- 5 return sum % M;

A distribuição pode ser dependendo de M e s

- Considere que na média s = 10
- Seja x composta por letras maiúsculas
- Como A = 65 e Z = 90, $sum \in [650..900]$
- Se M ≤ 100, a distribuição é razoável
- Se M ≥ 1000, a distribuição é ruim

Hashing: funções hash para strings

Uma abordagem melhor (*sfold*):

Algoritmo: int h(string x, int M)

```
intLength \leftarrow length(x)/4;
     sum \leftarrow 0:
     for i \leftarrow 0 to intLength - 1 do
          sub \leftarrow substring(x, j * 4, (j * 4) + 4);
                                                        // pos. inicial e final
 4
          mult \leftarrow 1:
 5
          s \leftarrow length(sub);
          for k \leftarrow 0 to s-1 do
 7
                sum \leftarrow sum + sub[k] * mult:
 8
                mult \leftarrow mult * 256;
 9
     sub \leftarrow substring(x, intLength * 4);
                                                         // pos. inicial até o final
10
     mult \leftarrow 1;
11
     s \leftarrow length(sub):
12
     for k \leftarrow 0 to s-1 do
13
          sum \leftarrow sum + sub[k] * mult;
14
```

15

 $mult \leftarrow mult * 256$:

Hashing: colisões

Se *m* <| *Key* |, teremos necessariamente colisões

Colisões mesmo se $m \ge |\mathit{Key}|$

Política de resolução de colisões:

- Encadeamento (open hashing ou separate chaining)
- Endereçamento aberto (closed hashing ou open addressing)

Hashing perfeito

- Ausência de colisões
- Conjunto de chaves: conhecido e disponível previamente
- Pode ser muito custoso
- Exemplo de aplicação: acesso a dados em CD read-only

- 1 Dicionários
- 2 Hashing
- 3 Política de encadeamento
- 4 Política de endereçamento aberto
- 5 Bibliografia

Política de encadeamento

Uma lista ligada é associada a cada posição da tabela de dispersão

Exemplo (considerando h(A) = 1 e *fold*):

keys					Α	F00L	AND	HIS	MONEY	ARE	SOON	PARTED
hash addresses					1	9	6	10	7	11	11	12
0	1	2	3	4	5	6	7	8	9	10	11	12
	\downarrow					\downarrow	\downarrow		\downarrow	\downarrow	\downarrow	\downarrow
	Α					AND	MONE	Υ	F00L	HIS	ARE	PARTED

SOON

Política de encadeamento

Algoritmo de inserção:

- Calcula h(K), então insere na lista ligada
- Inserção ordenada: menor custo busca, maior custo inserção
- Inserção no final: maior custo busca, menor custo de inserção

Algoritmo de busca:

Calcula h(K), se a lista correspondente for "vazia", registro associado a K não está na tabela; se a lista correspondente não estiver "vazia", percorre a lista.

Algoritmo de remoção:

■ Calcula h(K), então remove da lista ligada

Política de encadeamento

Eficiência da inserção (considerando inserção no final)

■ No caso médio: $\Theta(1)$

Eficiência da busca: depende do tamanho das listas

- Tamanho das listas: depende das chaves, *m* e *h*
- Seja fator de carga: $\alpha = n/m$, então $S \approx 1 + \frac{\alpha}{2}$ e $U = \alpha$
 - \blacksquare *n* = quantidade de chaves armazenadas na tabela
- Considerando $\alpha \approx$ 1, então $\Theta(1)$ na média

Eficiência da remoção (considerando $\alpha \approx 1$)

■ No caso médio: $\Theta(1)$

- Hashing
- Política de endereçamento aberto

Registros armazenados na própria tabela

■ Requisito: $m \ge n$

Estratégias:

- Linear probing
- Pseudo-random probing
- Quadratic probing
- Double hashing

Linear probing:

- Inserção: havendo colisão, tenta a próxima posição até conseguir
 - Probe sequence | Probe function (offset): p(K, i) = i
 - Tabela trada como array circular | Só pode inserir se m > n

Exemplo (considerando h(A) = 1 e *fold*):

keys			Α	F	00L	AND	HIS	MON	ΕY	ARE	SO	ON	PARTED
hash addr	1		9	6	10	7		11	1	1	12		
													_
0	1	2	3	4	5	6	7	8	!	9	10	11	12
	Α												
	Α								FC	OOL			
	Α					AND			FC	00L			
	Α					AND			FC	00L	HIS		
	Α					AND	MONEY		FC	00L	HIS		
	Α					AND	MONEY		FC	00L	HIS	ARI	E
	Α					AND	MONEY		FC	00L	HIS	ARI	SOON
PARTED	Α					AND	MONEY		FC	00L	HIS	ARE	SOON

tin. Introduction to the Design and Analysis of Algorithms, 2011.

Linear probing:

■ Busca: (1) calcula *h*(*K*), se a célular estiver vazia, registro não está na tabela; (2) caso contrário, se for o que se busca, encontrou; (3) caso contrário, tentar a próxima posição até encontrar uma posição vazia ou o que se procura

Exemplo (considerando h(A) = 1 e *fold*):

- $h(LIT) = (12 + 9 + 20) \mod 13 = 2$, como a posição 2 está vazia, então LIT não está na tabela
- h(KID) = (11 + 9 + 4) mod 13 = 11, comparações com ARE, SOON, PARTED e A até declarar que KID não está na tabela

Linear probing:

- Remoção: não pode remover o valor; usar símbolo especial
 - Alterar a inserção/remoção para considerar este símbolo

Análise da eficiência temporal é mais complicada de ser feita:

- $S \approx \frac{1}{2}(1 + \frac{1}{1-\alpha})$
- $U \approx \frac{1}{2} (1 + \frac{1}{(1-\alpha)^2})$

Linear probing: evolução de S e U em função de α

α	$\frac{1}{2}(1+\frac{1}{1-\alpha})$	$\frac{1}{2}(1+\frac{1}{(1-\alpha)^2})$				
50%	1.5	2.5				
75%	2.5	8.5				
90%	5.5	50.5				

Quando $\alpha \approx 1$, eficiência deteriora: primary clustering

- Maior chance de adicionar um elemento a um cluster
- Maior chance de unificar dois clusters

Pseudo-random probing: quando houver colisão

lacksquare p(K,i) = Perm[i-1], onde Perm é uma permutação de 1..m-1

Quadratic probing: quando houver colisão

- $p(K, i) = c_1 i^2 + c_2 i + c_3$
- Se $m = 2^k$, $p(K, i) = (i^2 + i)/2$ garante visitar todas as posições

Estas duas abordagens não impedem: secondary clustering

- Se $h(k_1) = h(k_2)$, k_1 e k_2 compartilham mesma probe sequence
- Motivo: *p* ignora o parâmetro *K*

Alernativa: double hashing

- Uma nova função hash determina o incremento: s(K)
 - p(K, i) = i * s(K)
- Sugestões da literatura
 - Tabelas pequenas

$$s(K) = 8 - (K \mod 8)$$

- Tabelas grandes
 - $s(K) = K \mod 97 + 1$

Eficiência temporal

- Boas escolhas de h e s: melhor que linear probing
- Também deteriora quando $\alpha \approx$ 1
- Alternativa: aumentar a tabela e fazer rehashing

Solução para armazenamento em disco: bucket hashing

- Hashing

- Bibliografia

Bibliografia + leitura recomendada

Capítulo 1 (pp. 35–37)
Capítulo 7 (pp. 253–254)
Capítulo 7 (pp. 269–274)
Anany Levitin.

Introduction to the Design and Analysis of Algorithms. 3a edicão. Pearson. 2011.

Capítulo 4 (pp. 131–138)
Capítulo 9 (pp. 314–336)
Clifford Shaffer.
Data Structures and
Algorithm Analysis.

Dover, 2013.

4 = 3 + 4 = 3 + 4 = 3 +

TABELAS DE DISPERSÃO

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

