MT222: Calculus II

Miraj Samarakkody

Tougaloo College

04/02/2025

Integration of Rational Functions by Partial Fractions

Motivation

In this section, we show how to integrate any rational function by expressing it as a sum of simpler fractions, called *partial fraction*, that we already know how to integrate.

Find

$$\int \frac{x^3 + x}{x - 1} \ dx$$

Find

$$\int \frac{x^3 + x}{x - 1} \ dx$$

Next we study some different cases.

CASE I: The denominator Q(x) is a product of distinct linear factors.

We can write

$$Q(x) = (a_1x + b_1)(a_2x + b_2) \dots (a_kx + b_k),$$

where no factor is repeated.

CASE I: The denominator Q(x) is a product of distinct linear factors.

We can write

$$Q(x) = (a_1x + b_1)(a_2x + b_2) \dots (a_kx + b_k),$$

where no factor is repeated.

In this case the partial fraction theorem states that there exist constants $A_1, A_2, A_3, \ldots, A_k$ such that

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \frac{A_2}{a_2x + b_2} + \dots + \frac{A_k}{a_kx + b_k}.$$

Write the partial fraction decomposition of

$$\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x}$$

Use and alternative method to write the partial fraction decomposition of

$$\frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x}$$

Find

$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx$$

Find

$$\int \frac{x^2 - a^2}{dx},$$

where $a \neq 0$.

CASE II: Q(x) is a product of linear factors, some of which are repeated.

Suppose the first linear factor $(a_1x + b_1)$ is repeated r times; that is, $(a_1x + b_1)^r$ occurs in the factorization of Q(x). Then instead of the single term $\frac{A_1}{(a_1x + b)}$, we would write

$$\frac{A_1}{(a_1x+b)} + \frac{A_2}{(a_1x+b)^2} + \cdots + \frac{A_r}{(a_1x+b)^r}$$

Find

$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} \ dx.$$

Case III: Q(x) contains irreducible quadratic factors, none of which is repeated.

If Q(x) has the factor $ax^2 + bx + c$, where $b^2 - 4ac < 0$, then the expression for R(x)/Q(x) will have a term of the form

$$\frac{Ax+B}{ax^2+bx+c},$$

$$\int \frac{2x^2 - x + 4}{x^3 + 4x} \ dx$$

$$\int \frac{4x^2 - 3x + 2}{4x^2 - 4x + 3} \ dx$$

Case IV: Q(x) contains a repeated irreducible quadratic factor.

If Q(x) has the factor $(ax^2 + bx + c)^r$, where $b^2 - 4ac < 0$, then instead of the single partial fraction, the sum

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_rx + B_r}{(ax^2 + bx + c)^r}$$

occurs in the partial fraction decomposition of R(x)/Q(x).

Write out the form of the partial fraction decomposition of the function

$$\frac{x^3 + x^2 + 1}{x(x-1)(x^2 + x + 1)(x^2 + 1)^3}$$

$$\int \frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} dx$$

Rationalizing Substitutions

Some non-rational functions can be changed into rational functions by means of appropriate substitutions.

Example 9

$$\int \frac{\sqrt{x+4}}{x} \ dx.$$