Robótica I

Tareas 1 y 2. Tangent Bug 9 de mayo de 2020

Marco Antonio Esquivel Basaldua

I. Introducción

El algoritmo de plaeación de movimientos en robótica Tangent Bug sirve como una mejora al algoritmo Bug2, determinando el camino más corto a la meta usando un sensor, con rango de alcance, de orientación de 360 grados de resolución infinita. Este sensor se modela con la función de distancia $\rho: \mathbb{R}^2 \times S^1 \to \mathbb{R}$. Se considera que el robot es un punto localizado en $x \in \mathbb{R}^2$ con líneas de sensado emanando de él de forma radial. Para cada $\theta \in S^1$, el valor $\rho(x,\theta)$ es la distancia al obstáculo más cercano siguiendo la línea de sensado desde x con un ángulo θ . De manera más formal

$$\rho(x,\theta) = \min_{\lambda \in [0,\infty]} d(x, x + \lambda [\cos\theta, \sin\theta]^T),$$

$$tal \ que \ x + \lambda [\cos\theta, \sin\theta]^T \in \cup_i \mathcal{WO}_i$$

Ya que los sensores en la vida real tienen rango limitado, se define la función de distancia saturada denotada por $\rho_R:\mathbb{R}^2\times S^1\to\mathbb{R}$ que toma los valores de ρ cuando un obstáculo se encuentra dentro de su rango de sensado y vale infinito cuando las líneas de sensado son mayores a este rango, R, lo que significa que los obstáculos están fuera de del espacio de sensado. De forma más formal

$$\rho_R(x,\theta) = \begin{cases} \rho(x,\theta) & si & \rho(x,\theta) < R \\ \infty & si & e.o.c. \end{cases}$$

Justo como los algoritmos *Bug1* y *Bug2*, *Tangent Bug* itera entre dos comportamientos: " ir a la meta" y "seguimiento de frontera". Estos comportamientos difieren de *Bug1* y *Bug2*. Aunque " ir a la meta" direcciona el robot a la meta, este comportamiento puede tener una fase donde el robot sigue la frontera, y el "seguimiento de frontera" puede tener una fase en la que no se sigue la frontera.

Para mayor información se puede consultar el capítulo 2 del libro "Principles of Robot Motion, Theory, Algorithms and Implementations" de Howie Choset et al.

II. ALGORITMO

El algoritmo Tangent Bug se presenta a continuación.

Input: A point robot with a range sensor

Output: A path to the q_{goal} or a conclusion no such path exists

- 1: while True do
- : repeat
- 3: Continuously move toward the point $n \in \{T, O_i\}$ which minimizes $d(x, n) + d(n, q_{\rm geal})$
- : until
 - the goal is encountered or
 - The direction that minimizes $d(x, n) + d(n, q_{goal})$ begins to increase $d(x, q_{goal})$, i.e., the robot detects a "local minimum" of $d(\cdot, q_{goal})$.
- Chose a boundary following direction which continues in the same direction as the most recent motion-to-goal direction.
- : repeat
- Continuously update d_{reach}, d_{followed}, and {O_i}.
- 8: Continuously moves toward $n \in \{O_i\}$ that is in the chosen boundary direction.
- : until
 - The goal is reached.
 - The robot completes a cycle around the obstacle in which case the goal cannot be achieved.
 - \blacksquare $d_{\text{reach}} < d_{\text{followed}}$
- 10: end while

III. IMPLEMENTACIÓN

Para la implementación del algoritmo se hace uso del simulador *webots* en el que se simula el robot *e-puck* (figura 1). Este es un robot tipo disco de 7.4 cm de diámetro de diámetro y 4.5 cm de alto.

Cabe señalar que aunque el algoritmo *Tangent Bug* está pensado para un robot tipo punto con un sensor de rango de resolución infinita, en este caso se adapta el comportamiento del algoritmo para el robot *e-puck* que es un robot disco con sólo 8 rayos de sensado radiales. Entre estas modificaciones se encuentra el hacer que el robot rote en sitio para alinearse ya sea a la meta o a la frontera que debe seguir. También se debe de tomar en cuenta que no es posible que el robot pase por espacios menores a su radio, como lo haría un robot tipo punto.

Figura 1. Robot e-puck usado en la implementación.

La ejecución del algoritmo se ejemplifica en un video sensillo en el que se observa como el robot *e-puck* alcanza la meta marcada con un punto rojo en un mapa con dos

obstáculos. El mapa utilizado se muestra en la figura 2 en la que se aprecia la ubicación inical del robot y la meta marcada por un círculo rojo.

Figura 2. Mapa de prueba para el algoritmo Tangent Bug.

IV. PRUEBA DE ALGORTIMO COMPLETO

Para probar que el algoritmo *Tangent Bug* es completo se consideran dos escenarios, uno en el que el robot llega al objetivo q_{goal} en un camino de distancia finita desde q_{start} y otro en el que no se encuentra tal camino a la meta.

Para el pimero de los escenarios, primero se considera el caso de un robot con un sensor de contacto (R=0). En lo siguiente se denota D_{goal} como el disco centrado en q_{goal} y de radio $||q_{start}-q_{goal}||$. Usando un sensor de este tipo, existe una cota superior L_{max}

$$L_{max} = ||q_{start} - q_{goal}|| + \sum_{i \in \mathcal{I}} \Pi_i \times \#Minima_i$$

donde \mathcal{I} es el índice de los obstáculos que intersectan el disco D_{qoal} , Π_i es el perímetro del i-ésimo obstáculo y $\#Minima_i$ es el número de mínimos locales de $d(x, q_{goal})$ en D_{goal} a lo largo de la fontera del iésimo obstáculo. Ya que se trabaja con un número finito de obstáculos y de perímetro finito cada uno, por tanto con lugares finitos donde se generen mínimos locales en la función de distancia, se comprueba que $L_{max} < \infty$. En el caso de un sensor con un rango de deteccion ilimitado $(R=\infty)$, se hacen los siguientes dos supuestos. Sea \hat{v} denota un vector unitario. Los nodos O_i (veáse la figura 3) satisfacen $(O_i - x)(q_{goal} - x) > 0$, donde x es la posición actual del robot. Se asume que existe un valor γ positivo y mayor a cero tal que $(\widehat{O_i} - x)(\widehat{q_{qoal}} - x) > \gamma$. El segundo supuesto tiene que ver con la condición de dejar el comportameinto de "seguimiento de frontera". El nodo O_i que se busca para para dejar este comportamiento debe de estar dentro de un rango ρ , donde ρ es un valor finito y positivo. Bajo estos supuestos se define la cota superior

$$L_{max} = (1 + \frac{1}{\gamma})||q_{start} - q_{goal}|| + \sum_{i \in \mathcal{I}} (\Pi_i + \rho) \times \#Minima_i$$

Estas dos cotas descritas están definidas en los casos límite del rango de sensado, por lo que tambi'en se comprueban los casos en que $0 < R < \infty_i$.

Para el segundo de los escenarios, se reporta que no se encuentra un camino a la meta cuando se recorre todo el borde de un obstáculo. Es decir, cuando se regresa al punto donde se hizo el cambio por última vez del comportamiento " ir a la meta" a "segimiento de frontera".

Figura 3. Puntos que indican discontinuidad debido a la pescencia de obstáculos.

REFERENCIAS

- H. Cheset et.al., "Principles of Robot Motion, Theory, Algorithms and Applications," MIT Press, pp. 23–31, 2005.
- [2] Yoshiaki Shirai, "Robotics Research: The Eighth International Symposium", Springer, pp.113–116, 2012