Laplace Transforms for Math 221

Functions		Rules	
f(t)	$\mathcal{L}\{f\}(s)$	f(t)	$\mathcal{L}\{f\}(s)$
1	$\frac{1}{s}$	f+g	$\mathcal{L}\{f\} + \mathcal{L}\{g\}$
e^{at}	$\frac{1}{s-a}$, $(s>a)$	cf	$c\mathcal{L}\{f\}, (c \text{ real})$
t^n	$\frac{n!}{s^{n+1}}, (s > 0)$	$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$
$\sin(bt)$	$\frac{b}{s^2 + b^2}$	$\frac{df}{dt}$	$s\mathcal{L}\{f\} - f(0)$
$\cos(bt)$	$\frac{s}{s^2 + b^2}$	$\frac{d^2f}{dt^2}$	$s^2 \mathcal{L}\{f\} - sf(0) - f'(0)$
$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$	$f^{(n)}$	$s^{n} \mathcal{L}\{f\} - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2 + b^2}$	tf(t)	$-\frac{d}{ds}(\mathcal{L}\{f\}(s))$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$
u(t-a)	$\frac{e^{-as}}{s}, (s > 0)$	u(t-a)f(t) $u(t-a)f(t-a)$	$e^{-as}\mathcal{L}\{f(t+a)\}$
$\delta(t-a)$	e^{-as}	u(t-a)f(t-a)	$e^{-as}\mathcal{L}\{f\}$