파이썬 텐서플로 기반 딥러닝

컴퓨터정보공학과
강 환수 교수

파이썬 기반 딥러닝 소개

- 인공지능 개요
 - 머신러닝과 딥러닝
 - 딥러닝
 - 인공신경망
 - 머신러닝 딥러닝 라이브러리
 - 텐서플로, theano, cntk
- 가상 환경
 - 독립적인 파이썬 개발 환경
 - 하나의 컴퓨터에 여러 개 생성 가능

수업 개요

- 2020-7/16(목), 7/17(금)에서 8/14(금)까지 4주 동안 매주 목 금
 - 총 48시간
 - 2시간 수업, 1시간 질의 및 자기주도학습
- 교재
 - 시작하세요! 텐서플로 2.0 프로그래밍
 - 코딩 참조:
 - 파이썬으로 시작하는 컴퓨터과학입문
 - 파이썬프로그래밍개론(An Introduction to Programming using Python)
 - Realpython.com
- 일정(변경될 수 있음)

		오전	오후
2020-05-07(목)	1일차	파이썬 기본 개발 환경	파이썬 문법 코딩하기(기본과 함수, 리스트)
2020-05-14(목)	2일차	아나콘다 설치, 주피터 노트북 사용	파이썬 문법 코딩하기(딕셔너리와 튜플, 집합)
2020-05-21(목)	3일차	모듈 기본, 파이참 설치	파이썬 문법 코딩하기, import this 코딩
2020-05-28(목)	4일차	가상환경 개요와 생성	직접 가상환경 생성과 파이참에서 생성
2020-06-04(목)	5일차	주피터 노트북과 파이참 심화	구글 코랩
2020-06-11(목)	6일차	비주얼 스튜디오 코드	서브라임텍스트와 아톰

데이터과학 분야의 핵심 언어 파이썬

파이썬 언어의 인기

파이썬의 활용 영역

• 데이터 과학 학습 순서

파이썬의 간결성

atilt

```
static void main(String args[]){
    int 软 = 0
    for(int i=0; i< VOC.length; i++){</pre>
        String = VOC.get(i);
        boolean 돼 = 의견.matches("박물");
        if(%は){
            软 += 1
        }
    }
}
```

正的经

파이썬의 확장성

주 개발환경

- 파이썬
- 아나콘다

인공지능과 딥러닝 개요

AI와 딥러닝 역사

- 1940년대 부터 시작한 분야
 - 두 번의 혹한기를 지냄
 - AI의 첫번째 암흑기 1969-1980
 - AI의 두번째 암흑기 1987-1993
- 2010년 이후 여러 문제 해결
 - 최고의 전성기를 누림

왜 지금 딥러닝이 인기?

- 딥러닝의 문제가 해결되고 있는 과정
 - 빅데이터, 계산 속도, 알고리즘

BIG DATA

인공지능과 머신러닝, 딥러닝

- 인공지능(Al: Artificial Intelligence)
 - 컴퓨터가 인간처럼 지적 능력을 갖게 하거나 행동하도록 하는 모든 기술
 - 머신러닝(machine learning)
 - 머신러닝은 기계가 스스로 학습할 수 있도록 하는 인공지능의 한 연구 분야
 - SVM(Support Vector Machine): 수학적인 방식의 학습 알고리즘
 - 딥러닝
 - 다중 계층의 신경망 모델을 사용하는 머신러닝의 일종.

기계학습과 딥러닝

• 특징과 데이터가 많을수록 딥러닝에 적합

머신러닝

- 기계학습이라고도 부르는 머신러닝(machine learning)
 - 주어진 데이터를 기반으로 기계가 스스로 학습하여 성능을 향상시키거나 최적의 해 답을 찾기 위한 학습 지능 방법
 - 스스로 데이터를 반복적으로 학습하여 기술을 터득하는 방식
 - 명시적으로 프로그래밍(explicit programmng)을 하지 않아도 컴퓨터가 학습을 할 수 있도록 해주는 인공지능의 한 형태
 - 더 많은 데이터가 유입되면, 컴퓨터는 더 많이 학습을 하고, 시간이 흐르면서 더 스마트 해져서 작업을 수행하는 능력과 정확도가 향상

Traditional Programming

Machine Learning

머신러닝 분류 개요

- 머신러닝은 지도학습과 자율학습, 그리고 강화학습으로 분류
 - 지도학습(supervised learning)
 - 올바른 입력과 출력의 쌍으로 구성된 정답의 훈련 데이터(labeled data)로부터 입출력 간의 함수를 학습시키는 방법
 - k-최근접 이웃 (k-Nearest Neighbors)
 - - 선형 회귀 (Linear Regression)
 - - 로지스틱 회귀 (Logistic Regression)
 - - 서포트 벡터 머신 (Support Vector Machines (SVM))
 - - 결정 트리 (Decision Tree)와 랜덤 포레스트 (Random Forests)
 - · 신경망 (Neural networks)
 - 자율학습(unsupervised learning)
 - 정답이 없는 훈련 데이터(unlabeled data)를 사용하여 데이터 내에 숨어있는 어떤 관계를 찾아내는 방법
 - 강화학습(reinforcement learning)
 - 잘한 행동에 대해 보상을 주고 잘못한 행동에 대해 벌을 주는 경험을 통해 지식을 학습하는 방법
 - _ 딥마닝의 알파고
 - » 자동 게임분야

비지도 학습과 지도 학습

• 자율학습

- 군집 (Clustering)
 - - k-평균 (k-Means)
 - - 계층 군집 분석 (Hierarchical Cluster Analysis (HCA))
 - - 기댓값 최대화 (Expectation Maximization)
- 시각화 (Visualization)와 차원 축소(Dimensionality reduction)
 - - 주성분 분석 (Principal Component Analysis (PCA))
 - - 커널 (kernel PCA)
 - - 지역적 선형 임베딩 (Locally-Linear Embedding (LLE))
- 연관 규칙 학습 (Association rule learning)
 - · 어프라이어리 (Apriori)
 - - 이클렛 (Eclat)

강화학습

(그림 출처 : Hands-On Machine Learning 도서 - 한빛미디어)

머신 러닝 분류

머신러닝과 딥러닝의 분류(1)

• 머신러닝

머신러닝과 딥러닝의 분류(2)

딥러닝 인공신경망(ANN) 사용 Deep learning Feature vector Label Train Data 3 connected layers (170, 35, 169, 51, 38, ...) (Bicycle) (86, 79, 50, 181, 25, ...) (Boat) ---> (13, 157, 90,178, 145, ...) (Car) (94, 90, 202, 25, 158, ...) (Plane) Test Data Feature vector Label Inference Output

(?)

(213, 167, 7, 54, 23, ...)

(Car)

---->

머신러닝과 딥러닝의 차이

TRANDITIONAL MACHINE LEARNING

DEEP LEARNING

머신러닝 과정

머신러닝과 딥러닝 비교

머신 러닝과 딥 러닝의 차이점

	기계 학습	딥 러닝
데이터 의 존성	중소형 데이터 세트에서 탁월한 성능	큰 데이터 세트에서 뛰어난 성능
하드웨어 의존성	저가형 머신에서 작업하십시오.	GPU가있는 강력한 기계가 필요합니다. DL은 상당한 양의 행렬 곱셈을 수행합니다.
기능 공학	데이터를 나타내는 기능을 이해해야 함	데이터를 나타내는 최고의 기능을 이해할 필요가 없 습니다
실행 시간	몇 분에서 몇 시간	최대 몇 주. 신경망은 상당한 수의 가중치를 계산해 야합니다.
통역 성	일부 알고리즘은 해석하기 쉽고 (물류, 의사 결정 트리) 일부 는 거의 불가능합니다 (SVM, XGBoost)	불가능한 어려움

딥러닝 개요

- 심층학습이라고도 부르는 딥러닝(deep learning)
 - 인공신경망(ANN: Artificial Neural Network) 사용
 - 인간의 신경세포인 뉴런(neuron)을 모방하여 만든 가상의 신경으로 뇌와 유사한 방식으로 입력되는 정보를 학습하고 판별하는 신경 모델
 - 다양한 데이터에서 다중 계층인 심층신경망(deep neural network)을 사용
 - 학습 성능을 높이는 고유 특징들만 스스로 추출하여 학습하는 알고리즘
 - 입력값에 대해 여러 단계의 심층신경망을 거쳐 자율적으로 사고 및 결론 도출

그림 10.28 ▶ 단일계층과 딥러닝의 다중계층 신경망

인공신경망에서 시작

- 세계 최초의 인공신경망을 제안
 - 1957년 심리학자인 프랭크 로젠블랫(Frank Rosenblatt) 코넬대 교수
 - 퍼셉트론(perceptron)
 - 다수의 신호(input)를 입력 받아서 하나의 신호(output)를 출력
 - 입력층(input layer)과 출력층(output layer),
 - 중간의 은닉층(hidden layer)인 여러 개의 층으로 연결하여 하나의 신경망을 구성
 - 신경망에서는 방대한 양의 데이터를 신경망으로 유입
 - 데이터를 정확하게 구분하도록 시스템을 학습시켜 원하는 결과를 얻어냄
- 현재, 발전해 여러 분야에서 활용
 - 항공기나 드론의 자율비행
 - 자동차의 자율주행
 - _ 필체 인식
 - 음성인식에 이용
 - 언어 번역

인공신경망 개념

- 실제 뉴런과 인공 신경망
- 입력층과 출력층
 - 은닉층

그림 10.27 ▶ 뉴런과 퍼셉트론, 신경망 개념

딥러닝 활용

과거 수개월 소요되었던 달러닝이 몇 분~수시간 만에 처리가 가능.

• 이세돌을 이긴 알파고

- 다중 계층의 신경망 구조로 반복 계산에는 많은 계산 능력이 필요하고 이를 고성능의 컴퓨터로 해결
- 부동소숫점 계산에 탁월한 GPU(Graphic Processing Unit)와 분산처리가 가능한 클라 우드 컴퓨팅 사용
- 스마트폰, 자동자, 스피커, 냉장고, TV 등 모든 주변 기기들에 인공지능이 더해져 지 능화되고 있음

• 다양한 분야에서 활용

- 인간과 대화하는 지능형 에이전트와 실시간 채팅이 가능한 챗봇(chatbot)
 - 음성인식과 자연어처리, 자동번역 등의 분야
 - 애플의 시리, 삼성의 빅스비, IBM 의 왓슨, 구글 나우, 마이크로소프트의 코타나, 아마 존의 알렉사와 대시 등
- 얼굴을 비롯한 생체인식, 사물 인식, 자동자 번호판 인식 등 다양한 인식 분야
- X-ray 사진 판독과 각종 진단 등의 의료분야
- 드론의 자율비행이나 자동차의 자율주행 분야
- 주식이나 펀드, 환율, 일기예보 등의 예측 분야
- 음악의 작곡과 그림을 그리는 회화, 소설을 쓰는 분야 등에도 활용

구글 딥마인드

딥마인드(DeepMind)

- 원래 데미스 하사비스(Demis Hassabis)가 2010년 창업한 영국의 벤처 기업
- 2014년에 구글에 4억달러에 인수

• 2016년의 알파고

- 구글의 딥마인드에서 개발한 인공지능 바 둑 프로그램
 - 머신러닝의 강화학습과 신경망의 딥러닝 이 적용
- 인터넷상에 있는 3000만 건의 기보 데이터를 기반으로 1차적으로 학습
 - 다시 컴퓨터끼리 대국을 시켜 경험을 반복 학습하는 방식으로 알파고의 기력을 향상
- 딥마인드의 알파고는 2017년 말에 바둑 프로그램의 역할을 종료

그래픽처리 장치 GPU의 인기

- 그래픽 처리 장치 GPU(Graphics Processing Unit)
 - 그래픽 연산 처리를 하는 전용 프로세서
 - GPU 란 용어는 1999년 엔비디아(Nvidia)에서 처음 사용
- GPGPU(General Purpose Graphic Processing Unit)
 - 일반 CPU 프로세서를 돕는 보조프로세서(coprocessor)로서의 GPU
 - 중앙 처리 장치(CPU)가 맡았던 응용 프로그램들의 계산에 GPU를 사용하는 기술
 - GPU 컴퓨팅이란 GPGPU를 연산에 참여
 - 고속의 병렬처리로 대량의 행렬과 벡터를 다루는 데 뛰어난 성능을 발휘
 - 딥러닝의 심층신경망에서 빅데이터를 처리하기 위해 대량의 행렬과 벡터를 사용
 - GPU 사용이 매우 효과적
 - 12개 GPU가 2,000개의 CPU와 비슷한 계산 능력

구글의 TPU

- 구글은 2016년
 - 텐서 처리 장치(Tensor Processing Unit)를 발표
 - 텐서란 벡터·행렬 을 의미
 - TPU는 데이터 분석 및 딥러닝용 칩으로서 벡터·행렬연산의 병렬처리에 특화
 - 텐서플로(TensorFlow)
 - TPU를 위한 소프트웨어

딥러닝 라이브러리(플랫폼)

- 다양한 라이브러리 활용
 - 파이썬 가장 적합한 언어

Deep Learning Framework Power Scores 2018

케라스의 특징

- Tensorflow의 고수준 API
 - 동일한 코드로 CPU와 GPU에서 실행 가능
 - 사용하기 쉬운 API를 가지고 있어 딥러닝 모델의 프로토타입을 빠르게 생성

Basic Linear Algebra Subprograms Compute Unified Device Architecture CUDA Deep Neural Network library

CUDA

• Compute Unified Device Architecture의 약자

GPU 활용

딥러닝 라이브러리와 GPU

