NumPy for R (and S-Plus) users

Help

R/S-Plus	Python	Description
help.start()	help()	Browse help interactively
help()	help	Help on using help
$help(plot) \ \mathit{or} \ ?plot$	$help(plot) \ \mathit{Or} \ ?plot$	Help for a function
help(package='splines')	help(pylab)	Help for a toolbox/library package
demo()		Demonstration examples
example(plot)		Example using a function

Searching available documentation

R/S-Plus	Python	Description
help.search('plot')		Search help files
apropos('plot')		Find objects by partial name
library()	help(); modules [Numeric]	List available packages
find(plot)	help(plot)	Locate functions
methods(plot)		List available methods for a function

Using interactively

R/S-Plus	Python	Description
Rgui	ipython -pylab	Start session
	TAB	Auto completion
source('foo.R')	execfile('foo.py') or run foo.py	Run code from file
history()	hist -n	Command history
<pre>savehistory(file=".Rhistory")</pre>		Save command history
q(save='no')	CTRL-D	End session
	CTRL-Z # windows	
	sys.exit()	

Operators

R/S-Plus	Python	Description
help(Syntax)		Help on operator syntax

Arithmetic operators

R/S-Plus	Python	Description
a<-1; b<-2	a=1; b=1	Assignment; defining a number
a + b	a + b or add(a,b)	Addition
a - b	a - b <i>or</i> subtract(a,b)	Subtraction
a * b	a $*$ b or multiply(a,b)	Multiplication
a / b	a / b <i>or</i> divide(a,b)	Division

a ^ b	a ** b power(a,b) pow(a,b)	Power, \$a^b\$
a % % b	a % b remainder(a,b) fmod(a,b)	Remainder
a %/% b		Integer division
	a+=b <i>OT</i> add(a,b,a)	In place operation to save array creation overhead
factorial(a)		Factorial, \$n!\$

Relational operators

R/S-Plus	Python	Description
a == b	a == b Or equal(a,b)	Equal
a < b	a < b or less(a,b)	Less than
a > b	a > b or greater(a,b)	Greater than
a <= b	a <= b or less_equal(a,b)	Less than or equal
a >= b	a >= b <i>OT</i> greater_equal(a,b)	Greater than or equal
a != b	a != b or not_equal(a,b)	Not Equal

Logical operators

R/S-Plus	Python	Description
a && b	a and b	Short-circuit logical AND
a b	a or b	Short-circuit logical OR
a & b	${\sf logical_and(a,b)}\ or\ {\sf a}$ and ${\sf b}$	Element-wise logical AND
a b	${\sf logical_or(a,b)}\ \mathit{or}\ {\sf a}$ or ${\sf b}$	Element-wise logical OR
xor(a, b)	logical_xor(a,b)	Logical EXCLUSIVE OR
!a	logical not(a) or not a	Logical NOT

root and logarithm

R/S-Plus	Python	Description
sqrt(a)	math.sqrt(a)	Square root
log(a)	math.log(a)	Logarithm, base \$e\$ (natural)
log10(a)	math.log10(a)	Logarithm, base 10
log2(a)	math.log(a, 2)	Logarithm, base 2 (binary)
exp(a)	math.exp(a)	Exponential function

Round off

R/S-Plus	Python	Description
round(a)	$around(a)$ OP math.round(a)	Round
ceil(a)	ceil(a)	Round up
floor(a)	floor(a)	Round down
	fix(a)	Round towards zero

Mathematical constants

R/S-Plus	Python	Description
pi	math.pi	\$\pi=3.141592\$
exp(1)	math.e OT math.exp(1)	\$e=2.718281\$

Missing values; IEEE-754 floating point status flags

R/S-Plus	Python	Description
	nan	Not a Number
	inf	Infinity, \$\infty\$
	plus_inf	Infinity, \$+\infty\$
	minus_inf	Infinity, \$-\infty\$
	plus_zero	Plus zero, \$+0\$
	minus_zero	Minus zero, \$-0\$

Complex numbers

R/S-Plus	Python	Description
1i	z = 1j	Imaginary unit
z <- 3+4i	z = 3+4j Or z = complex(3,4)	A complex number, \$3+4i\$
abs(3+4i) Or Mod(3+4i)	abs(3+4j)	Absolute value (modulus)
Re(3+4i)	z.real	Real part
Im(3+4i)	z.imag	Imaginary part
Arg(3+4i)		Argument
Conj(3+4i)	<pre>z.conj(); z.conjugate()</pre>	Complex conjugate

Trigonometry

R/S-Plus	Python	Description
atan2(b,a)	atan2(b,a)	Arctangent, \$\arctan(b/a)\$
	hypot(x,y)	Hypotenus; Euclidean distance

Generate random numbers

R/S-Plus	Python	Description
runif(10)	random.random((10,)) random.uniform((10,))	Uniform distribution
runif(10, min=2, max=7)	random.uniform(2,7,(10,))	Uniform: Numbers between 2 and 7
matrix(runif(36),6)	random.uniform(0,1,(6,6))	Uniform: 6,6 array
rnorm(10)	random.standard_normal((10,))	Normal distribution

Vectors

R/S-Plus	Python	Description
a <- c(2,3,4,5)	a=array([2,3,4,5])	Row vector, \$1 \times n\$-matrix
adash <- t(c(2,3,4,5))	array([2,3,4,5])[:,NewAxis] array([2,3,4,5]).reshape(-1,1) r [1:10.'c']	Column vector, \$m \times 1\$-matrix

Sequences

R/S-Plus	Python	Description
seq(10) <i>Or</i> 1:10	<pre>arange(1,11, dtype=Float) range(1,11)</pre>	1,2,3, ,10
seq(0,length=10)	arange(10.)	0.0,1.0,2.0, ,9.0
seq(1,10,by=3)	arange(1,11,3)	1,4,7,10
seq(10,1) <i>or</i> 10:1	arange(10,0,-1)	10,9,8, ,1
seq(from=10,to=1,by=-3)	arange(10,0,-3)	10,7,4,1
seq(1,10,length=7)	linspace(1,10,7)	Linearly spaced vector of n=7 points
rev(a)	a[::-1] <i>or</i>	Reverse
	a.fill(3), a[:] = 3	Set all values to same scalar value

Concatenation (vectors)

R/S-Plus	Python	Description
c(a,a)	<pre>concatenate((a,a))</pre>	Concatenate two vectors
c(1:4,a)	<pre>concatenate((range(1,5),a), axis=1)</pre>	

Repeating

R/S-Plus	Python	Description
rep(a,times=2)	<pre>concatenate((a,a))</pre>	1 2 3, 1 2 3
rep(a,each=3)	a.repeat(3) or	1 1 1, 2 2 2, 3 3 3
rep(a,a)	a.repeat(a) <i>Or</i>	1, 2 2, 3 3 3

Miss those elements out

R/S-Plus	Python	Description
a[- 1]	a[1:]	miss the first element
a[-10]		miss the tenth element
a[-seq(1,50,3)]		miss 1,4,7,
	a[-1]	last element
	a[-2:]	last two elements

Maximum and minimum

R/S-Plus	Python	Description
pmax(a,b)	maximum(a,b)	pairwise max
max(a,b)	<pre>concatenate((a,b)).max()</pre>	max of all values in two vectors
v <- max(a) ; i <- which.max(a)	v,i = a.max(0),a.argmax(0)	

Vector multiplication

R/S-Plus	Python	Description
a*a	a*a	Multiply two vectors
	dot(u,v)	Vector dot product, \$u \cdot v\$

Matrices

R/S-Plus	Python	Description
----------	--------	-------------

rbind(c(2,3),c(4,5)) array(c(2,3,4,5), dim=c(2,2)) a = array([[2,3],[4,5]])

Define a matrix

Concatenation (matrices); rbind and cbind

R/S-Plus	Python	Description
rbind(a,b)	<pre>concatenate((a,b), axis=0) vstack((a,b))</pre>	Bind rows
cbind(a,b)	<pre>concatenate((a,b), axis=1) hstack((a,b))</pre>	Bind columns
	<pre>concatenate((a,b), axis=2) dstack((a,b))</pre>	Bind slices (three-way arrays)
	<pre>concatenate((a,b), axis=None)</pre>	Concatenate matrices into one vector
rbind(1:4,1:4)	<pre>concatenate((r_[1:5],r_[1:5])).reshape(2,-1) vstack((r_[1:5],r_[1:5]))</pre>	Bind rows (from vectors)
cbind(1:4,1:4)		Bind columns (from vectors)

Array creation

R/S-Plus	Python	Description
matrix(0,3,5) or array(0,c(3,5))	zeros((3,5),Float)	0 filled array
	zeros((3,5))	0 filled array of integers
matrix(1,3,5) <i>OT</i> array(1,c(3,5))	ones((3,5),Float)	1 filled array
matrix(9,3,5) <i>Or</i> array(9,c(3,5))		Any number filled array
diag(1,3)	identity(3)	Identity matrix
diag(c(4,5,6))	diag((4,5,6))	Diagonal
	a = empty((3,3))	Empty array

Reshape and flatten matrices

R/S-Plus	Python	Description
matrix(1:6,nrow=3,byrow=T)	<pre>arange(1,7).reshape(2,-1) a.setshape(2,3)</pre>	Reshaping (rows first)
matrix(1:6,nrow=2) array(1:6,c(2,3))	<pre>arange(1,7).reshape(-1,2).transpose()</pre>	Reshaping (columns first)
as.vector(t(a))	a.flatten() <i>or</i>	Flatten to vector (by rows, like comics)
as.vector(a)	a.flatten(1)	Flatten to vector (by columns)
a[row(a) <= col(a)]		Flatten upper triangle (by columns)

Shared data (slicing)

R/S-Plus	Python	Description
h = a	b = a.copy()	Copy of a

Indexing and accessing elements (Python: slicing)

R/S-Plus Python Description

a <- rbind(c(11, 12, 13, 14), c(21, 22, 23, 24), c(31, 32, 33, 34))	<pre>a = array([[11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34]])</pre>	Input is a 3,4 array
a[2,3]	a[1,2]	Element 2,3 (row,col)
a[1,]	a[0,]	First row
a[,1]	a[:,0]	First column
	a.take([0,2]).take([0,3], axis=1)	Array as indices
a[-1,]	a[1:,]	All, except first row
	a[-2:,]	Last two rows
	a[::2,:]	Strides: Every other row
	a[,2]	Third in last dimension (axis)
a[-2,-3]		All, except row, column (2,3)
a[,-2]	a.take([0,2,3],axis=1)	Remove one column
	a.diagonal(offset=0)	Diagonal

Assignment

R/S-Plus	Python	Description
a[,1] <- 99	a[:,0] = 99	
a[,1] <- c(99,98,97)	a[:,0] = array([99,98,97])	
a[a>90] <- 90	<pre>(a>90).choose(a,90) a.clip(min=None, max=90)</pre>	Clipping: Replace all elements over 90
	a.clip(min=2, max=5)	Clip upper and lower values

Transpose and inverse

R/S-Plus	Python	Description
t(a)	a.conj().transpose()	Transpose
	a.transpose()	Non-conjugate transpose
det(a)	linalg.det(a) or	Determinant
solve(a)	linalg.inv(a) or	Inverse
ginv(a)	linalg.pinv(a)	Pseudo-inverse
	norm(a)	Norms
eigen(a)\$values	<pre>linalg.eig(a)[0]</pre>	Eigenvalues
svd(a)\$d	linalg.svd(a)	Singular values
	linalg.cholesky(a)	Cholesky factorization
eigen(a)\$vectors	<pre>linalg.eig(a)[1]</pre>	Eigenvectors
rank(a)	rank(a)	Rank

Sum

R/S-Plus	Python	Description
apply(a,2,sum)	a.sum(axis=0)	Sum of each column
apply(a,1,sum)	a.sum(axis=1)	Sum of each row
sum(a)	a.sum()	Sum of all elements
	a.trace(offset=0)	Sum along diagonal
apply(a,2,cumsum)	a.cumsum(axis=0)	Cumulative sum (columns)

Sorting

R/S-Plus	Python	Description
	a = array([[4,3,2],[2,8,6],[1,4,7]])	Example data
t(sort(a))	a.ravel().sort() or	Flat and sorted
apply(a,2,sort)	a.sort(axis=0) Or msort(a)	Sort each column
t(apply(a,1,sort))	a.sort(axis=1)	Sort each row
	a[a[:,0].argsort(),]	Sort rows (by first row)
order(a)	<pre>a.ravel().argsort()</pre>	Sort, return indices
	a.argsort(axis=0)	Sort each column, return indices
	a.argsort(axis=1)	Sort each row, return indices

Maximum and minimum

R/S-Plus	Python	Description
apply(a,2,max)	$a.max(0) ext{ } Or ext{ amax(a [,axis=0])}$	max in each column
apply(a,1,max)	a.max(1) Or amax(a, axis=1)	max in each row
max(a)	a.max() <i>Or</i>	max in array
<pre>i <- apply(a,1,which.max)</pre>		return indices, i
pmax(b,c)	<pre>maximum(b,c)</pre>	pairwise max
apply(a,2,cummax)		
	a.ptp(); a.ptp(0)	max-to-min range

Matrix manipulation

R/S-Plus	Python	Description
a[,4:1]	fliplr(a) <i>or</i> a[:,::-1]	Flip left-right
a[3:1,]	flipud(a) or a[::-1,]	Flip up-down
	rot90(a)	Rotate 90 degrees
<pre>kronecker(matrix(1,2,3),a)</pre>	kron(ones((2,3)),a)	Repeat matrix: [a a a ; a a a]
a[lower.tri(a)] <- 0	triu(a)	Triangular, upper
a[upper.tri(a)] <- 0	tril(a)	Triangular, lower

Equivalents to "size"

R/S-Plus	Python	Description
dim(a)	a.shape or a.getshape()	Matrix dimensions
ncol(a)	a.shape[1] or size(a, axis=1)	Number of columns
<pre>prod(dim(a))</pre>	a.size or size(a[, axis=None])	Number of elements
	a.ndim	Number of dimensions
object.size(a)	a.nbytes	Number of bytes used in memory

Matrix- and elementwise- multiplication

R/S-Plus	Python	Description
a * b	a st b or multiply(a,b)	Elementwise operations
a %*% b	<pre>matrixmultiply(a,b)</pre>	Matrix product (dot product)
	inner(a,b) <i>or</i>	Inner matrix vector multiplication \$a\cdot b'\$
outer(a,b) or a %o% b	outer(a,b) Or	Outer product
crossprod(a,b) or t(a) %*% b		Cross product

kronecker(a,b)	kron(a,b)	Kronecker product
solve(a,b)	<pre>linalg.solve(a,b)</pre>	Left matrix division, \$b^{-1} {\cdot}a\$ \newline (solve linear equations)
	vdot(a,b)	Vector dot product
	cross(a,b)	Cross product

Find; conditional indexing

R/S-Plus	Python	Description
which(a != 0)	a.ravel().nonzero()	Non-zero elements, indices
which(a != 0, arr.ind=T)	(i,j) = a.nonzero() (i,j) = where(a!=0)	Non-zero elements, array indices
<pre>ij <- which(a != 0, arr.ind=T); v <- a[ij]</pre>	<pre>v = a.compress((a!=0).flat) v = extract(a!=0,a)</pre>	Vector of non-zero values
which(a>5.5)	(a>5.5).nonzero()	Condition, indices
ij <- which(a>5.5, arr.ind=T); v <- a[ij]	- a.compress((a>5.5).flat)	Return values
	where(a>5.5,0,a) <i>or</i> a * (a>5.5)	Zero out elements above 5.5
	a.put(2,indices)	Replace values

Multi-way arrays

R/S-Plus	Python	Description
	a = array([[[1,2],[1,2]], [[3,4], [3,4]]])	Define a 3-way array
	a[0]	

File input and output

R/S-Plus	Python	Description
<pre>f <- read.table("data.txt")</pre>	<pre>f = fromfile("data.txt") f = load("data.txt")</pre>	Reading from a file (2d)
f <- read.table("data.txt")	f = load("data.txt")	Reading from a file (2d)
<pre>f <- read.table(file="data.csv", sep=";")</pre>	<pre>f = load('data.csv', delimiter=';')</pre>	Reading fram a CSV file (2d)
write(f,file="data.txt")	<pre>save('data.csv', f, fmt='%.6f', delimiter=';')</pre>	Writing to a file (2d)
	<pre>f.tofile(file='data.csv', format='%.6f', sep=';')</pre>	Writing to a file (1d)
	<pre>f = fromfile(file='data.csv', sep=':')</pre>	Reading from a file (1d)

Plotting

Basic x-y plots

R/S-Plus	Python	Description
plot(a, type="l")	plot(a)	1d line plot
plot(x[,1],x[,2])	plot(x[:,0],x[:,1],'o')	2d scatter plot
	plot(x1,y1,'bo', x2,y2,'go')	Two graphs in one plot

plot(x1,y1)	plot(x1,y1,'o')	Overplotting: Add new plots to
<pre>matplot(x2,y2,add=T)</pre>	plot(x2,y2,'o')	current
	<pre>show() # as normal</pre>	
	subplot(211)	subplots
plot(x,y,type="b",col="red")	plot(x,y,'ro-')	Plotting symbols and color

Axes and titles

grid() plot(c(1:10,10:1), asp=1) figure(figsize=(6,6)) plot(x,y, xlim=c(0,10), ylim=c(0,5)) axis([0, 10, 0, 5]) Set axes manually plot(1:10, main="title", Axis labels and titles xlab="x-axis", ylab="y-axis") text(2,25,'hello') Insert text	R/S-Plus	Python	Description
<pre>plot(x,y, xlim=c(0,10), ylim=c(0,5)) axis([0, 10, 0, 5])</pre>	grid()	grid()	Turn on grid lines
plot(1:10, main="title", Axis labels and titles xlab="x-axis", ylab="y-axis")	plot(c(1:10,10:1), asp=1)	<pre>figure(figsize=(6,6))</pre>	1:1 aspect ratio
xlab="x-axis", ylab="y-axis")	plot(x,y, xlim=c(0,10), ylim=c(0,	5)) axis([0, 10, 0, 5])	Set axes manually
•	plot(1:10, main="title",		Axis labels and titles
text(2,25,'hello') Insert text	xlab="x-axis", ylab="y-axis")		
		text(2,25,'hello')	Insert text

Log plots

R/S-Plus	Python	Description
<pre>plot(x,y, log="y")</pre>	semilogy(a)	logarithmic y-axis
<pre>plot(x,y, log="x")</pre>	semilogx(a)	logarithmic x-axis
plot(x,y, log="xy")	loglog(a)	logarithmic x and y axes

Filled plots and bar plots

R/S-Plus	Python	Description
<pre>plot(t,s, type="n", xlab="", ylab="")</pre>	<pre>fill(t,s,'b', t,c,'g', alpha=0.2)</pre>	Filled plot
<pre>polygon(t,s, col="lightblue")</pre>		
polygon(t,c, col="lightgreen")		
stem(x[,3])		Stem-and-Leaf plot

Functions

R/S-Plus	Python	Description
$f \leftarrow function(x) sin(x/3) - cos(x/5)$		Defining functions
<pre>plot(f, xlim=c(0,40), type='p')</pre>	<pre>x = arrayrange(0,40,.5) y = sin(x/3) - cos(x/5) plot(x,y, 'o')</pre>	Plot a function for given range

Polar plots

R/S-Plus	Python	Description
	theta = arange(0,2*pi,0.001)	
	r = sin(2*theta)	
	polar(theta, rho)	

Histogram plots

```
hist(rnorm(1000))
hist(rnorm(1000), breaks= -4:4)
hist(rnorm(1000),
breaks=c(seq(-5,0,0.25),
seq(0.5,5,0.5)), freq=F)
plot(apply(a,1,sort),type="1")
```

3d data

Contour and image plots

R/S-Plus	Python	Description
contour(z)	<pre>levels, colls = contour(Z, V, origin='lower', extent=(-3,3,-3,3)) clabel(colls, levels, inline=1, fmt='%1.1f', fontsize=10)</pre>	Contour plot
<pre>filled.contour(x,y,z, nlevels=7, color=gray.colors)</pre>	<pre>contourf(Z, V, cmap=cm.gray, origin='lower', extent=(-3,3,-3,3))</pre>	Filled contour plot
<pre>image(z, col=gray.colors(256))</pre>	<pre>im = imshow(Z, interpolation='bilinear', origin='lower', extent=(-3,3,-3,3))</pre>	Plot image data
	<pre># imshow() and contour() as above</pre>	Image with contours
	quiver()	Direction field vectors

Perspective plots of surfaces over the x-y plane

R/S-Plus	Python	Description
$f \leftarrow function(x,y) x*exp(-x^2-y^2)$	n=arrayrange(-2,2,.1)	
n <- seq(-2,2, length=40)	<pre>[x,y] = meshgrid(n,n)</pre>	
z <- outer(n,n,f)	z = x*power(math.e,-x**2-y**2)	
persp(x,y,z,		Mesh plot
theta=30, phi=30, expand=0.6,		
<pre>ticktype='detailed')</pre>		
persp(x,y,z,		Surface plot
theta=30, phi=30, expand=0.6,		
col='lightblue', shade=0.75,		
ltheta=120,		
ticktype='detailed')		

Scatter (cloud) plots

R/S-Plus	Python	Description
cloud(z~x*y)		3d scatter plot

Save plot to a graphics file

R/S-Plus	Python	Description
<pre>postscript(file="foo.eps")</pre>	<pre>savefig('foo.eps')</pre>	PostScript
plot(1:10)		
<pre>dev.off()</pre>		

<pre>pdf(file='foo.pdf')</pre>	<pre>savefig('foo.pdf')</pre>	PDF
<pre>devSVG(file='foo.svg')</pre>	<pre>savefig('foo.svg')</pre>	SVG (vector graphics for www)
<pre>png(filename = "Rplot%03d.png"</pre>	<pre>savefig('foo.png')</pre>	PNG (raster graphics)

Data analysis

Set membership operators

R/S-Plus	Python	Description
a <- c(1,2,2,5,2) b <- c(2,3,4)	<pre>a = array([1,2,2,5,2]) b = array([2,3,4]) a = set([1,2,2,5,2]) b = set([2,3,4])</pre>	Create sets
unique(a)	unique1d(a) unique(a) set(a)	Set unique
union(a,b)	union1d(a,b) a.union(b)	Set union
<pre>intersect(a,b)</pre>	<pre>intersect1d(a) a.intersection(b)</pre>	Set intersection
setdiff(a,b)	<pre>setdiff1d(a,b) a.difference(b)</pre>	Set difference
<pre>setdiff(union(a,b),intersect(a,b))</pre>	<pre>setxor1d(a,b) a.symmetric_difference(b)</pre>	Set exclusion
is.element(2,a) <i>or</i> 2 %in% a	<pre>2 in a setmember1d(2,a) contains(a,2)</pre>	True for set member

Statistics

R/S-Plus	Python	Description
apply(a,2,mean)	a.mean(axis=0) mean(a [,axis=0])	Average
apply(a,2,median)	median(a) or median(a [,axis=0])	Median
apply(a,2,sd)	a.std(axis=0) or std(a [,axis=0])	Standard deviation
apply(a,2,var)	a.var(axis=0) Or var(a)	Variance
cor(x,y)	<pre>correlate(x,y) or corrcoef(x,y)</pre>	Correlation coefficient
cov(x,y)	cov(x,y)	Covariance

Interpolation and regression

R/S-Plus	Python	Description
z <- lm(y~x)	(a,b) = polyfit(x,y,1)	Straight line fit
plot(x,y)	plot(x,y,'o', x,a*x+b,'-')	
abline(z)		
solve(a,b)	<pre>linalg.lstsq(x,y)</pre>	Linear least squares $y = ax + b$
	<pre>polyfit(x,y,3)</pre>	Polynomial fit

Non-linear methods

Polynomials, root finding

R/S-Plus	Python	Description
	poly()	Polynomial
polyroot(c(1,-1,-1))	roots()	Find zeros of polynomial
	polyval(array([1,2,1,2]),arange(1,11))	Evaluate polynomial

Differential equations

R/S-Plus	Python	Description
	<pre>diff(x, n=1, axis=0)</pre>	Discrete difference function and
		approximate derivative

Fourier analysis

R/S-Plus	Python	Description
fft(a)	fft(a) <i>or</i>	Fast fourier transform
fft(a, inverse=TRUE)	ifft(a) or	Inverse fourier transform
	<pre>convolve(x,y)</pre>	Linear convolution

Symbolic algebra; calculus

R/S-Plus Python Description

Programming

R/S-Plus	Python	Description
. R	.py	Script file extension
#	#	Comment symbol (rest of line)
library(RSvgDevice)	from pylab import *	Import library functions
string <- "a <- 234"	string="a=234"	Eval
eval(parse(text=string))	eval(string)	

Loops

R/S-Plus	Python	Description
for(i in 1:5) print(i)	for i in range(1,6): print(i)	for-statement
for(i in 1:5) {	<pre>for i in range(1,6):</pre>	Multiline for statements
print(i)	print(i)	
print(i*2) }	print(i*2)	

Conditionals

R/S-Plus	Python	Description
if (1>0) a <- 100	if 1>0: a=100	if-statement
ifelse(a>0,a,0)		Ternary operator (if?true:false)

Debugging

R/S-Plus	Python	Description
.Last.value		Most recent evaluated expression
objects()		List variables loaded into memory

rm(x) Clear variable \$x\$ from memory print(a) print(a) print(a) print(a) print(a) print(a)

Working directory and OS

R/S-Plus	Python	Description
list.files() or dir()	os.listdir(".")	List files in directory
list.files(pattern="\.r\$")	<pre>grep.grep("*.py")</pre>	List script files in directory
getwd()	os.getcwd()	Displays the current working directory
setwd('foo')	os.chdir('foo')	Change working directory
system("notepad")	os.system('notepad') os.popen('notepad')	Invoke a System Command

Time-stamp: "2007-11-09T16:46:36 vidar"

©2006 Vidar Bronken Gundersen, /mathesaurus.sf.net

Permission is granted to copy, distribute and/or modify this document as long as the above attribution is retained.