#### What is a reduction computation?

- Summarize a set of input values into one value using a "reduction operation"
  - Max
  - Min
  - Sum
  - Product
- Often used with a user defined reduction operation function as long as the operation
  - Is associative and commutative
  - Has a well-defined identity value (e.g., 0 for sum)
  - For example, the user may supply a custom "max" function for 3D coordinate data sets where the magnitude for the each coordinate data tuple is the distance from the origin.

An example of "collective operation"

### An Efficient Sequential Reduction O(N)

- Initialize the result as an identity value for the reduction operation
  - Smallest possible value for max reduction
  - Largest possible value for min reduction
  - 0 for sum reduction
  - 1 for product reduction
- Iterate through the input and perform the reduction operation between the result value and the current input value
  - N reduction operations performed for N input values
  - Each input value is only visited once an O(N) algorithm
  - This is a computationally efficient algorithm.

# A parallel reduction tree algorithm performs N-1 operations in log(N) steps



#### A tournament is a reduction tree with "max" operation



### A Quick Analysis

#### For N input values, the reduction tree performs

- (1/2)N + (1/4)N + (1/8)N + ... (1)N = (1- (1/N))N = N-1 operations
- In Log (N) steps 1,000,000 input values take 20 steps
  - Assuming that we have enough execution resources
- Average Parallelism (N-1)/Log(N))
  - For N = 1,000,000, average parallelism is 50,000
  - However, peak resource requirement is 500,000
  - This is not resource efficient

#### This is a work-efficient parallel algorithm

- The amount of work done is comparable to an efficient sequential algorithm
- Many parallel algorithms are not work efficient

#### Objective

- To master parallel scan (prefix sum) algorithms
  - Frequently used for parallel work assignment and resource allocation
  - A key primitive in many parallel algorithms to convert serial computation into parallel computation
  - A foundational parallel computation pattern
  - Work efficiency in parallel code/algorithms

### Inclusive Scan (Prefix-Sum) Definition

**Definition:** *The* scan *operation takes a binary associative operator*  $\oplus$  (pronounced as circle plus), *and an array of n elements* 

$$[x_0, x_1, ..., x_{n-1}],$$

and returns the array

$$[x_0, (x_0 \oplus x_1), \ldots, (x_0 \oplus x_1 \oplus \ldots \oplus x_{n-1})].$$

**Example:** If  $\oplus$  is addition, then scan operation on the array would return

[3 4 11 11 15 16 22 25].

#### An Inclusive Scan Application Example

- Assume that we have a 100-inch sandwich to feed 10 people
- We know how much each person wants in inches
  - [3 5 2 7 28 4 3 0 8 1]
- How do we cut the sandwich quickly?
- How much will be left?
- Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
- Method 2: calculate prefix sum:
  - [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

#### Typical Applications of Scan

- Scan is a simple and useful parallel building block
  - Convert recurrences from sequential:

```
for(j=1;j<n;j++)
out[j] = out[j-1] + f(j);
```

– Into parallel:

```
forall(j) { temp[j] = f(j) };
scan(out, temp);
```

- Useful for many parallel algorithms:
  - Radix sort
  - Quicksort
  - String comparison
  - Lexical analysis
  - Stream compaction

- Polynomial
  - evaluation
- Solving recurrences
- Tree operations
  - Histograms, ....

#### Other Applications

- Assigning camping spots
- Assigning Farmer's Market spaces
- Allocating memory to parallel threads
- Allocating memory buffer space for communication channels

- ...

#### An Inclusive Sequential Addition Scan

Given a sequence  $[x_0, x_1, x_2, ...]$ Calculate output  $[y_0, y_1, y_2, ...]$ 

Such that 
$$y_0 = x_0$$
  
 $y_1 = x_0 + x_1$ 

$$y_2 = x_0 + x_1 + x_2$$

. . .

Using a recursive definition

$$y_i = y_{i-1} + x_i$$

#### A Work Efficient C Implementation

```
y[0] = x[0];
for (i = 1; i < Max_i; i++) y[i] = y[i-1] + x[i];
```

Computationally efficient:

N additions needed for N elements - O(N)!
Only slightly more expensive than sequential reduction.

#### A Naïve Inclusive Parallel Scan

- Assign one thread to calculate each y element
- Have every thread to add up all x elements needed for the y element

$$y_0 = x_0$$
  
 $y_1 = x_0 + x_1$   
 $y_2 = x_0 + x_1 + x_2$ 

"Parallel programming is easy as long as you do not care about performance."

- 1. Read input from device global memory to shared memory
- 2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration



STRIDE = 1

- Active threads *stride* to n-1 (n-stride threads)
- Thread j adds elements j and j-stride from shared memory and writes result into element j in shared memory
- Requires barrier synchronization, once before read and once before write

- 1. Read input from device to shared memory
- 2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration.



- 1. Read input from device to shared memory
- 2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
- 3. Write output from shared memory to device memory



- 1. Read input from device to shared memory
- 2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
- 3. Write output from shared memory to device memory



- 1. Read input from device to shared memory
- 2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
- 3. Write output from shared memory to device memory



### Handling Dependencies

- During every iteration, each thread can overwrite the input of another thread
  - Barrier synchronization to ensure all inputs have been properly generated
  - All threads secure input operand that can be overwritten by another thread
  - Barrier synchronization is required to ensure that all threads have secured their inputs
  - All threads perform addition and write output



TERATION = 1 STRIDE = 1

#### Work Efficiency Considerations

- This Scan executes log(n) parallel iterations
  - The iterations do (n-1), (n-2), (n-4),..(n-n/2) adds each
  - Total adds: n \* log(n) (n-1) → O(n\*log(n)) work
- This scan algorithm is not work efficient
  - Sequential scan algorithm does n adds
  - A factor of log(n) can hurt: 10x for 1024 elements!
- A parallel algorithm can be slower than a sequential one when execution resources are saturated from low work efficiency

#### Improving Efficiency

#### Balanced Trees

- Form a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each thread does at each step

#### – For scan:

- Traverse down from leaves to the root building partial sums at internal nodes in the tree
  - The root holds the sum of all leaves
- Traverse back up the tree building the output from the partial sums

### **Recap: Prefix Sums**

- Given A: set of n integers
- Find **B**: prefix sums

$$B[i] = \sum_{k=1}^{i} A[k]$$

- **A:** 3 1 1 7 2 5 9 2 4 3 3
- **B:** 3 4 5 12 14 19 28 30 34 37 40

### Iterative prefix sum

- 2 phases: up-sweep, down-sweep
- Up-sweep pseudocode:

```
PREFIXSUM(A[0,...,n-1])
```

```
1: for i = 0 to n - 1 in parallel do

2: B[0][i] = A[i]

3: end for

4: for h = 1 to \log n do

5: for i = 0 to \frac{n}{2^h} - 1 in parallel do

6: B[h][i] = B[h - 1][2i] + B[h - 1][2i + 1]

7: end for

8: end for
```

- 1: for i = 0 to n 1 in parallel do
- 2: B[0][i] = A[i]
- 3: end for



```
4: for h = 1 to \log n do
5: for i = 0 to \frac{n}{2^h} - 1 in parallel do
6: B[h][i] = B[h-1][2i] + B[h-1][2i+1]
7: end for
8: end for
```

$$\frac{n}{2^1} = \frac{n}{2}$$
 B[1]

**B[0]** 3 1 1 7 2 5 9 2

```
4: for h = 1 to \log n do
```

5: for 
$$i = 0$$
 to  $\frac{n}{2^h} - 1$  in parallel do

6: 
$$B[h][i] = B[h-1][2i] + B[h-1][2i+1]$$

- 7: end for
- 8: end for

$$\frac{n}{2^2} = \frac{n}{4}$$

**B[2]** 



**B[0]** 3 1 1 7 2 5 9 2

```
4: for h = 1 to \log n do
        for i = 0 to \frac{n}{2h} - 1 in parallel do
           B[h][i] = B[h-1][2i] + B[h-1][2i+1]
      end for
   7:
   8: end for
                                                \frac{n}{2^{\log n}} = \frac{n}{n} = 1
                   B[3]
            B[2]
      B[1]
B[0]
                                            2
                          1
                                                    5
```

```
4: for h = 1 to \log n do
       for i = 0 to \frac{n}{2h} - 1 in parallel do
         B[h][i] = B[h-1][2i] + B[h-1][2i+1]
     end for
  7:
  8: end for
                B[3]
           B[2]
     B[1]
                                            11
                              8
B[0]
                                     2
                                             5
```

**B[0]** 

```
4: for h = 1 to \log n do
    for i = 0 to \frac{n}{2h} - 1 in parallel do
      B[h][i] = B[h-1][2i] + B[h-1][2i+1]
  end for
7:
8: end for
             B[3]
        B[2]
                          12
                                 18
  B[1]
                           8
                                         11
```

5

- 4: for h = 1 to  $\log n$  do
- 5: for i = 0 to  $\frac{n}{2^h} 1$  in parallel do

6: 
$$B[h][i] = B[h-1][2i] + B[h-1][2i+1]$$

- 7: end for
- 8: end for



```
9: C[\log n][0] = 0
10: for h = \log n - 1 down to 0 do
     for i = 0 to \frac{n}{2h} - 1 in parallel do
        if i \% 2 = 0 then
12:
          C[h][i] = C[h+1][i/2]
13:
   else
14:
          C[h][i] = C[h+1][\frac{i-1}{2}] + B[h][i-1]
15:
        end if
16:
     end for
17:
18: end for
19: for i = 0 to n - 1 in parallel do
   A[i] = A[i] + C[0, i]
21: end for
```

9: 
$$C[\log n][0] = 0$$

**C[3]** 

0

**B[2]** 

12 | 18

B[1]

4 8 7 11

**B[0]** 3 1 1 7 2 5 9 2

```
10: for h = \log n - 1 down to 0 do
      for i = 0 to \frac{n}{2h} - 1 in parallel do
               C[3]
                            12
                                   18
          B[2]
     B[1]
                            8
                                          11
B[0]
                                           5
```

12: if 
$$i \% 2 == 0$$
 then
13:  $C[h][i] = C[h+1][i/2]$ 
14: else
15:  $C[h][i] = C[h+1][\frac{i-1}{2}] + B[h][i-1]$ 

C[3]

B[2]

B[1]

4 8 7 11

B[0] 3 1 1 7 2 5 9 2

12: if 
$$i \% 2 == 0$$
 then
13:  $C[h][i] = C[h+1][i/2]$ 
14: else
15:  $C[h][i] = C[h+1][\frac{i-1}{2}] + B[h][i-1]$ 

C[3]

C[2]

B[1]

4 8 7 11

B[0] 3 1 1 7 2 5 9 2

12: if 
$$i \% 2 == 0$$
 then
13:  $C[h][i] = C[h+1][i/2]$ 
14: else
15:  $C[h][i] = C[h+1][\frac{i-1}{2}] + B[h][i-1]$ 

C[3]

C[2]

0

12

B[1]

4 8 7 11

12: if 
$$i \% 2 == 0$$
 then
13:  $C[h][i] = C[h+1][i/2]$ 
14: else
15:  $C[h][i] = C[h+1][\frac{i-1}{2}] + B[h][i-1]$ 

C[3]

C[2]

0

12

C[1]

0 12

B[0] 3 1 1 7 2 5 9 2

12: if 
$$i \% 2 == 0$$
 then
13:  $C[h][i] = C[h+1][i/2]$ 
14: else
15:  $C[h][i] = C[h+1][\frac{i-1}{2}] + B[h][i-1]$ 

C[3]

C[2]

0 12

B[0] 3 1 1 1 7 2 5 9 2

19: for i = 0 to n - 1 in parallel do

20: 
$$A[i] = A[i] + C[0, i]$$

21: end for



19: for i = 0 to n - 1 in parallel do

20: 
$$A[i] = A[i] + C[0, i]$$

21: end for



#### Work Analysis of the Work Efficient Kernel

- The work efficient kernel executes log(n) parallel iterations in the reduction step
  - The iterations do n/2, n/4,..1 adds
  - Total adds: (n-1) → O(n) work
- It executes log(n)-1 parallel iterations in the post-reduction reverse step
  - The iterations do 2-1, 4-1, .... n/2-1 adds
  - Total adds: (n-2) (log(n)-1) → O(n) work
- Both phases perform up to no more than 2x(n-1) adds
- The total number of adds is no more than twice of that done in the efficient sequential algorithm
  - The benefit of parallelism can easily overcome the 2X work when there is sufficient hardware

### Applications of prefix sums

- More useful than it seems:
  - Create an array of 1s and 0s
  - Prefix sums gives # of 1s up to each point
  - Used to separate an array into 2
    - Using almost any criteria!
- Examples:
  - separate array into upper-case and lower-case letters
  - separate array into numbers >x and <x</li>

- A common use case for parallel scans
- Stream compaction is the removal of unwanted or irrelevant elements from an input stream based on some predicate
- The elements which pass the predicate test are placed in contiguous memory

| _ | _ | _ |   |   |   | _ |   | _ | _ | • |   |   |   |   |   |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| Θ | / | Θ | Θ | 4 | Θ | 1 | Θ | O | O | 8 | 4 | Θ | O | 6 | 0 |  |

Predicate: x > 0





output[scan[x]] = input[x];



Separate array A into lower-case and upper-case:

A a PreRECFIOXOSUIMS

- Create bitstring B:
- 1 if upper-case, 0 otherwise

A a PreRECFIOXXOSUIMS

- Create bitstring B:
- 1 if upper-case, 0 otherwise



Time/work to do this in parallel?

- Create bitstring B:
- 1 if upper-case, 0 otherwise



Time/work to do this in parallel?

$$W(n) = O(n)$$
$$T(n) = O(1)$$

• Perform **prefix sums** on B



Perform prefix sums on B



What is B[i]?

Perform prefix sums on B



- What is B[i]?
  - The number of capital letters with index ≤ i

Copy capital letters into C



How can we use B to write only capitals into C?

Copy capital letters into C



- How can we use B to write only capitals into C?
  - B[i] is the **index** of each capital in C!

Copy capital letters into C



- How can we use B to write only capitals into C?
  - B[i] is the **index** of each capital in C!

- Create B'
- 1 for lower-case, 0 otherwise



Prefix sums on B'



Copy lower-case into the rest of C



Copy lower-case into the rest of C

- where 
$$j = B[n] + B'[i] = 10 + B'[i]$$

W(n)

T(n)

Create B and B'

O(n)

O(1)

Prefix sums

Copy into C

#### **Total algorithm**

|                    | W(n) | T(n)        |
|--------------------|------|-------------|
| Create B and B'    | O(n) | O(1)        |
| Prefix sums        | O(n) | $O(\log n)$ |
| Copy into <b>C</b> |      |             |

#### **Total algorithm**

|                    | W(n) | T(n)        |
|--------------------|------|-------------|
| Create B and B'    | O(n) | O(1)        |
| Prefix sums        | O(n) | $O(\log n)$ |
| Copy into <b>C</b> | O(n) | O(1)        |
| Total algorithm    | O(n) | $O(\log n)$ |

#### **Quicksort Review**

- Quicksort is a popular sorting algorithm
  - Works in-place
  - $O(n^2)$  worst-case
  - BUT O(n log n) expected

- Each recursive call:
  - Find pivot
  - Partition around pivot

#### Sequential Quicksort

```
\mathbf{Quicksort}(A[0,\cdots,n-1])
 1 pivot = random(1 \cdots n)
 \mathbf{2} \operatorname{swap}(A[0], A[\operatorname{pivot}])
 \mathbf{3} \text{ part} = 1
 4 for i = 1 to n-1 do
 if A/i \le A/0 then
           swap(A[i], A[part])
          part++
       end
 9 end
10 if part > 2 then
       Quicksort(A[0,\cdots,part-1])
12 end
13 if part < n-1 then
       Quicksort(A[part, \cdots, n-1])
15 end
```

# Select pivot

```
1 pivot = random(1 \cdots n)
```

 $\mathbf{2} \operatorname{swap}(A[0], A[\operatorname{pivot}])$ 



# Select pivot

- 1 pivot = random $(1 \cdots n)$
- $\mathbf{2} \operatorname{swap}(A[0], A[\operatorname{pivot}])$



#### **Partition elements**

```
3 part =1

4 for i = 1 to n-1 do

5 if A[i] \le A[0] then

6 swap(A[i], A[part])

7 part++

8 end

9 end
```

| Α | 4 | 9 | 1 | 7 | 3 | 5 | 8 | 2 |
|---|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|

#### **Partition elements**

```
3 part =1 -
4 for i = 1 to n-1 do
5 if A[i] \le A[0] then
6 swap(A[i], A[part])
7 part++
8 end
9 end
```



```
\mathbf{3} \text{ part} = 1
4 for i = 1 to n-1 do
  if A/i/ \leq A/0/ then
           swap(A[i], A[part])
           part++
   \operatorname{end}
9 end
                                       3
Α
              9
                      1
                                               5
                                                       8
             part
```

```
\mathbf{3} \text{ part} = 1
4 for i = 1 \text{ to } n\text{-}1 \text{ do}
  if A/i/ \le A/0/ then FALSE
           swap(A[i], A[part])
           part++
8 end
9 end
                                        3
              9
                       1
                                                 5
                                                         8
             part
```

```
\mathbf{3} \text{ part} = 1
4 for i = 1 \text{ to } n\text{-}1 \text{ do}
  if A/i/ \leq A/0/ then TRUE
           swap(A[i], A[part])
           part++
8 end
9 end
                                         3
                                                 5
                                                          8
             part
```

```
\mathbf{3} \text{ part} = 1
 4 for i = 1 \text{ to } n\text{-}1 \text{ do}
   if A/i/ \leq A/0/ then TRUE
            swap(A[i], A[part])
            part++
   \mathbf{end}
9 end
                                          3
Α
                                                   5
                                                            8
              part
```

```
\mathbf{3} \text{ part} = 1
4 for i = 1 \text{ to } n\text{-}1 \text{ do}
  if A/i/ \le A/0/ then FALSE
           swap(A[i], A[part])
           part++
8 end
9 end
                                         3
Α
                                                 5
                                                          8
                      part
```

```
\mathbf{3} \text{ part} = 1
4 for i = 1 \text{ to } n\text{-}1 \text{ do}
   if A/i/ \leq A/0/ then TRUE
            swap(A[i], A[part])
            part++
8 end
9 end
                                         3
Α
                                                  5
                                                          8
                      part
```

```
\mathbf{3} \text{ part} = 1
 4 for i = 1 \text{ to } n\text{-}1 \text{ do}
   if A/i/ \leq A/0/ then TRUE
            swap(A[i], A[part])
            part++
   \mathbf{end}
9 end
Α
                                                   5
                                                            8
                       part
```

```
\mathbf{3} \text{ part} = 1
4 for i = 1 \text{ to } n\text{-}1 \text{ do}
  if A/i/ \leq A/0/ then FALSE
            swap(A[i], A[part])
            part++
8 end
9 end
Α
                        3
                                                  5
                                                          8
                               part
```

```
\mathbf{3} \text{ part} = 1
4 for i = 1 \text{ to } n\text{-}1 \text{ do}
  if A/i/ \le A/0/ then FALSE
           swap(A[i], A[part])
           part++
8 end
9 end
Α
                        3
                                                 5
                               part
```

```
\mathbf{3} \text{ part} = 1
4 for i = 1 \text{ to } n\text{-}1 \text{ do}
  if A/i/ \leq A/0/ then TRUE
            swap(A[i], A[part])
            part++
8 end
9 end
Α
                        3
                                                  5
                                                          8
                               part
```

```
\mathbf{3} \text{ part} = 1
 4 for i = 1 \text{ to } n\text{-}1 \text{ do}
   if A/i/ \leq A/0/ then TRUE
             swap(A[i], A[part]) \longleftarrow
             part++
   \mathbf{end}
 9 end
Α
                           3
                                              9
                                                        5
                                   part
```

#### Recurse

```
10 if part > 2 then

11 Quicksort(A[0,···,part-1]) \leftarrow

12 end

13 if part < n-1 then

14 Quicksort(A[part,···,n-1]) \leftarrow

15 end
```



#### Recursion sorts sublists

```
10 if part > 2 then

11 Quicksort(A[0,···,part-1]) \blacksquare

12 end

13 if part < n-1 then

14 Quicksort(A[part,···,n-1]) \blacksquare

15 end
```



### How can we parallelize?

```
\mathbf{Quicksort}(A[0,\cdots,n-1])
 1 pivot = random(1 \cdots n)
 \mathbf{2} \operatorname{swap}(A[0], A[\operatorname{pivot}])
                                             O(1)
 \mathbf{3} \text{ part} = 1
 4 for i = 1 to n-1 do
 if A/i \le A/0 then
 6 swap(A[i], A[part])
7 part++
     \mathbf{end}
 9 end
10 if part > 2 then
    Quicksort(A[0, \cdots, part-1])
12 end
                                               Parallel calls
13 if part < n-1 then
       Quicksort(A[part,\cdots,n-1])
15 end
```

• **Separate** all elements ≤ pivot



How can we do this in parallel?

Separate all elements ≤ pivot



- How can we do this in parallel?
  - Prefix sums!

- Create B[i] by comparing A[i] to pivot
  - -1 if  $A[i] \leq A[0]$
  - 0 otherwise



| В | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|

Prefix sums on B





- Write each A[i] ≤ A[0] to array **C** 
  - C[B[i]] = A[i]







- Create B' as opposite of B
  - B'[i] = 1 if A[i] > A[0]
  - B'[i] = 0 otherwise







• Prefix sums on B'



Write remaining elements to C

$$- C[B[n-1] + B'[i]] = A[i]$$







## Parallel quicksort analysis

- Each recursive call performs prefix sum
- Worst-case, pivot is always min or max:

$$W(n) = W(n-1) + O(n) = O(n^2)$$

If we assume "good" pivot is chosen:

$$W(n) = W(\frac{n}{2}) + O(n) = O(n \log n)$$

## Parallel quicksort analysis

Assuming a "good" pivot choice:

$$T(n) = T(\frac{n}{2}) + O(\log n)$$

$$= \log n + \log \frac{n}{2} + \dots + \frac{n}{n}$$

$$= \log n) + (\log n - 1) + (\log n - 2) + \dots + 1$$

$$= \frac{(\log n)(\log n + 1)}{2} = O(\log^2 n)$$

# Issues with parallel quicksort

- Have to copy A to C => not in-place
  - O(n) extra space needed
- O(log²n) "average" parallel runtime
- Recursive definition
  - Difficult to make iterative
  - Perform many small prefix-sums
    - Performance overhead

- What if we can combine recursive calls
  - One iteration for each level

Separate recursive calls on partitions:

|   |               | Р | 0 |  |   | $P_{_{1}}$ |    |    |    | $P_{2}$ |    |    |    | Р  | 3 |  |
|---|---------------|---|---|--|---|------------|----|----|----|---------|----|----|----|----|---|--|
| Α | 1 3 5 2 7 6 9 |   |   |  | 9 | 12         | 16 | 19 | 17 | 14      | 22 | 25 | 20 | 23 |   |  |

- Know size of partition i = |P<sub>i</sub>|
- Find a pivot for each partition

|   |               | Р | 0 |  |   | $P_{_{1}}$ |    |    |    | $P_{2}$ |    |    |    | Р  | 3 |  |
|---|---------------|---|---|--|---|------------|----|----|----|---------|----|----|----|----|---|--|
| Α | 1 3 5 2 7 6 9 |   |   |  | 9 | 12         | 16 | 19 | 17 | 14      | 22 | 25 | 20 | 23 |   |  |

- Know size of partition i = |P<sub>i</sub>|
- Find a pivot for each partition
  - Move pivots to front



- Know size of partition  $i = |P_i|$
- Find a pivot for each partition
  - Move pivots to front
- Compute B
  - Compare each to the pivot in its partition

|   |   | Р | 0 |   |   | $P_{_1}$ |   |    |    | $P_{2}$ |    |    |    | Р  | 3  |    |
|---|---|---|---|---|---|----------|---|----|----|---------|----|----|----|----|----|----|
| A | 3 | 1 | 5 | 2 | 9 | 6        | 7 | 16 | 12 | 19      | 17 | 14 | 22 | 25 | 20 | 23 |
|   |   |   |   |   |   |          |   |    |    |         |    |    |    |    |    |    |
| В | 1 | 1 | 0 | 1 | 1 | 1        | 1 | 1  | 1  | 0       | 0  | 1  | 1  | 0  | 1  | 0  |

- Want prefix sum within each partition:
- Segmented prefix sums
  - Each partition is a separate **segment**

|   |   | Р | 0 |   |   | $P_{_1}$ |   |    |    | $P_{2}$ |    |    |    | Р  | 3  |    |
|---|---|---|---|---|---|----------|---|----|----|---------|----|----|----|----|----|----|
| Α | 3 | 1 | 5 | 2 | 9 | 6        | 7 | 16 | 12 | 19      | 17 | 14 | 22 | 25 | 20 | 23 |
| · |   |   |   |   |   |          |   |    |    |         |    |    |    |    |    |    |
| В | 1 | 1 | 0 | 1 | 1 | 1        | 1 | 1  | 1  | 0       | 0  | 1  | 1  | 0  | 1  | 0  |

- Want prefix sum within each partition:
- Segmented prefix sums
  - Each partition is a separate segment
  - Can combine into 1 operation...

|   |   | Р | 0 |   |   | $P_{_1}$ |   |    |    | $P_{2}$ |    |    |    | Р  | 3  |    |
|---|---|---|---|---|---|----------|---|----|----|---------|----|----|----|----|----|----|
| Α | 3 | 1 | 5 | 2 | 9 | 6        | 7 | 16 | 12 | 19      | 17 | 14 | 22 | 25 | 20 | 23 |
| · |   |   |   |   |   |          |   |    |    |         |    |    |    |    |    |    |
| В | 1 | 2 | 2 | 3 | 1 | 2        | 3 | 1  | 2  | 2       | 2  | 3  | 1  | 1  | 2  | 2  |

# Segmented prefix sums

- Input array A and flag bits F
  - 1 if start of new segment
  - 0 otherwise
- Prefix sums, except sum resets when F[i]=1



## Segmented prefix sums

- Input array A and flag bits F
  - 1 if start of new segment
  - 0 otherwise
- Prefix sums, except sum resets when F[i]=1



Credits: Nodari Sitchinava

Create F with partition boundaries

|   |   | Р | 0 |   |   | $P_{_1}$ |   |    |    | $P_2$ |    |    |    | Р  | 3  |    |
|---|---|---|---|---|---|----------|---|----|----|-------|----|----|----|----|----|----|
| Α | 3 | 1 | 5 | 2 | 9 | 6        | 7 | 16 | 12 | 19    | 17 | 14 | 22 | 25 | 20 | 23 |
|   |   |   |   |   |   |          |   |    |    |       |    |    |    |    |    |    |
| В | 1 | 1 | 0 | 1 | 1 | 1        | 1 | 1  | 1  | 0     | 0  | 1  | 1  | 0  | 1  | 0  |
|   |   |   |   |   |   |          |   |    |    |       |    |    |    |    |    |    |
| F | 0 | 0 | 0 | 0 | 1 | 0        | 0 | 1  | 0  | 0     | 0  | 0  | 1  | 0  | 0  | 0  |

- Create F with partition boundaries
- Perform segmented prefix sums on B and F



- Create F with partition boundaries
- Perform segmented prefix sums on B and F
- Copy A[i] into C[B[i]] (plus partition offsets)

|   |   | Р | 0 |   |   | $P_{_{1}}$ |   |    |    | $P_{2}$ |    |    |    | Р  | 3  |    |
|---|---|---|---|---|---|------------|---|----|----|---------|----|----|----|----|----|----|
| Α | 3 | 1 | 5 | 2 | 9 | 6          | 7 | 16 | 12 | 19      | 17 | 14 | 22 | 25 | 20 | 23 |
|   |   |   |   |   |   |            |   |    |    |         |    |    |    |    |    |    |
| В | 1 | 2 | 2 | 3 | 1 | 2          | 3 | 1  | 2  | 2       | 2  | 3  | 1  | 1  | 2  | 2  |

| _ |   |   |   |   |   |   |    |    |    |  |    |    |  |
|---|---|---|---|---|---|---|----|----|----|--|----|----|--|
| С | 3 | 1 | 2 | 9 | 6 | 7 | 16 | 12 | 14 |  | 22 | 20 |  |

- Repeat for > pivots:
  - Build B'

|    |   | Р | 0 |   |   | $P_{_1}$ |   |    |    | $P_{2}$ |    |    |    | Р  | 3  |    |
|----|---|---|---|---|---|----------|---|----|----|---------|----|----|----|----|----|----|
| Α  | 3 | 1 | 5 | 2 | 9 | 6        | 7 | 16 | 12 | 19      | 17 | 14 | 22 | 25 | 20 | 23 |
| ·  |   |   |   |   |   |          |   |    |    |         |    |    |    |    |    |    |
| Bʻ | 0 | 0 | 1 | 0 | 0 | 0        | 0 | 0  | 0  | 1       | 1  | 0  | 0  | 1  | 0  | 1  |
|    |   |   |   |   |   |          |   |    |    |         |    |    |    |    |    |    |
|    |   |   |   |   |   |          |   |    |    |         |    |    |    |    |    |    |
| C  | 3 | 1 | 2 |   | 9 | 6        | 7 | 16 | 12 | 14      |    |    | 22 | 20 |    |    |

- Repeat for > pivots:
  - Segmented prefix sums on B'



- Repeat for > pivots:
  - Copy remaining A values into C



Ready for next iteration...

