FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

TIN Teoretická informatika

2. domáca úloha

Obsah

1	Príklad číslo 1	2
	1.1 (a)	2
	1.2 (b)	2
2	Príklad číslo 2	4
3	Príklad číslo 3	5
	3.1 Nerozhodnuteľnosť	5
	3.2 Čiastočná rozhodnuteľ nosť	6
4	Príklad číslo 4	7
5	Literatúra	8

1.1 (a)

Definice 4.29 [1](str. č. 97) Označme ZAV_n pre $n \geq 0$ jazyky setávající ze všech vyvážených řetězců závorek n typů. Tyto jazyky – označované též jako Dyckovy jazyky – jsou generovány gramatikami s pravidly tvaru: $S \rightarrow \begin{bmatrix} 1 & S \end{bmatrix}^1 \begin{bmatrix} 2 & S \end{bmatrix}^2 \end{bmatrix} \dots \begin{bmatrix} n & S \end{bmatrix}^n \begin{bmatrix} S \end{bmatrix}^n \begin{bmatrix} S \end{bmatrix} \varepsilon$

Z hore uvedenej definície pre náš príklad vyplýva, že náš Dyckov jazyk L je generovaný gramatikou G_D , definovanou ako $G_D = (\{S'\}, \{[,]\}, P, S')$ kde množina prepisovacích pravidiel P je daná ako

$$S' \to \varepsilon \mid S'S' \mid [S']$$

ktorá obsahuje iba jeden typ zátvoriek ktorými sú [a].

Pre každé slovo $w \in L$, pre ktoré platí že $w \neq \varepsilon$, muselo byť aspoň raz použité pravidlo $S' \to [S']$ v derivácii. S využitím pravidla $S' \to [S']$ vygenerujeme jeden pár zátvoriek, pričom medzi zátvorkami sa nachádza neterminál S', ktorým je možné ďalej aplikovať ďalšie pravidlá a generovať reťazec u – presnejšie reťazec u patriaci do jazyka L. V prípade použitia pravidla $S' \to S'S'$ pred pravidlom $S' \to [S']$ vieme generovať ďalší reťazec na pravej strane čo odpovedá reťazcu v ktorý patrí do L, t.j. vieme generovať za [u] reťazec v patriaci do jazyka L.

Takže, každé slovo $w \in L$, pre ktoré platí že $w \neq \varepsilon$, vieme zapísať v tvare [u]v kde $u, v \in L$ pretože

$$S' \underset{G_D}{\Rightarrow} S'S' \underset{G_D}{\Rightarrow} [S']S' \underset{G_D}{\Rightarrow}^* [u]v$$

Keďže $S' \underset{G_D}{\Rightarrow} {}^*u$ a $S \underset{G_D}{\Rightarrow} {}^*v$ ktoré patria do jazyka L, tak $S' \underset{G_D}{\Rightarrow} {}^*[u]v$ tiež patrí do jazyka, keďže $u, v \in L$ a $[,] \in L$. Je zrejmé, že ak $S' \underset{G_D}{\Rightarrow} {}^*w$ a $S' \underset{G_D}{\Rightarrow} {}^*[u]v$ tak potom platí že $S' \underset{G_D}{\Rightarrow} {}^*w = [u]v$ t.j. w = [u]v.

1.2 (b)

Báza

Báza je bázový prípad **pre** $\mathbf{i} = \mathbf{0}$.

Pre i=0 platí, že počet [a počet] v reťazci w je rovno nule z čoho vyplýva, že reťazec w sa musí rovnať ε . Formálne, pre i=0 platí, že $\#_{[}(w)=0 \land \#_{]}(w)=0$ z čoho vyplýva, že $w=\varepsilon$.

Keďže, existuje pravidlo $S' \to \varepsilon$ v gramatike G_D a taktiež, existuje pravidlo $S \to \varepsilon$ v gramatike G, potom existujú derivácie $S' \underset{G_D}{\Rightarrow} \varepsilon$ a $S \underset{G}{\Rightarrow} \varepsilon$ a tak platí, že $w = \varepsilon \land w \in L \land w \in L(G)$.

Indukčný predpoklad

 $S \Rightarrow^* w$ kde $w \in L \land w \in L(G) \land w = [u]v$ čo platí pre všetky j kde j < i pričom j, i značí počet zátvoriek typu [a počet zátvoriek typu].

Pre i

 $\#_{[}(u)+\#_{[}(v)\stackrel{?}{=}i$ analogicky pre $\#_{]}(u)+\#_{]}(v)\stackrel{?}{=}i$

1.)
$$\#_{[}(u) = 0 \Rightarrow \#_{[}(v) = i \quad \lor \quad \#_{[}(v) = 0 \Rightarrow \#_{[}(u) = i$$

Ak je buď $\#_{[}(u)$ alebo buď $\#_{[}(v)$ rovné nule, tak ho vieme vygenerovať z pravidla S na základe indukčnej bázi.

Ak je buď $\#_{\mathbb{I}}(u)$ alebo buď $\#_{\mathbb{I}}(v)$ rovné i, tak ten prvok prepíšeme pomocou vzorca

$$w' = [u']v' \Rightarrow \#_{[}(u') + \#_{[}(v') = i-1 = j, \text{ analogicky } \#_{]}(u') + \#_{]}(v') = i-1 = j$$

Na základe indukčného predpokladu vieme z S vygenerovať u' a v'.

$$S \Rightarrow [S]S \Rightarrow^* [u']v' = w'$$

kde

$$\#_{\boldsymbol{[}}(u') + \#_{\boldsymbol{[}}(v') = i,$$
analogicky $\#_{\boldsymbol{]}}(u') + \#_{\boldsymbol{]}}(v') = i$

2.)
$$\#_{\lceil}(u) \neq 0 \quad \land \quad \#_{\lceil}(v) \neq 0 \quad \land \quad \#_{\lceil}(u) + \#_{\lceil}(v) \leq i$$

Keď $\#_{\mathbb{I}}(u)$ a $\#_{\mathbb{I}}(v)$ sú nenulové, tak musí platiť že

$$\#_{\lceil}(u) < i \land \#_{\lceil}(v) < i$$

t.j.

$$\#_{\llbracket}(u)=i-M=j_1\wedge\#_{\llbracket}(v)=i-N=j_2 \text{ kde } M,N\in\mathbb{N}\setminus\{0\}$$

Pre i + 1

 $S \Rightarrow^* w$ kde $w \in L$ pre ktoré platí, že

$$\#_{\lceil}(w) = i + 1$$

a z definicie Dyckovho jazyka platí, že

$$\#_1(w) = i + 1$$

Potom vieme w zapísať ako w = [u]v podľa bodu (a)(kapitola 1.1) $\Rightarrow \#_{[}(u) + \#_{[}(v) = i$, analogicky musí platiť $\#_{[}(u) + \#_{[}(v) = i$.

$$S \Rightarrow [S]S \Rightarrow^* [u]v = w \text{ kde } \#_{\lceil}(u) + \#_{\lceil}(v) = i+1, \text{ analogicky } \#_{\rceil}(u) + \#_{\rceil}(v) = i+1.$$

Veta 4.19 [1](str. č. 92): Nechť L je bezkontextový jazyk. Pak existuje konstanta k>0 taková že jeli $z\in L$ a $|z|\geq k$, pak lze z napsat ve tvaru:

$$z = uvwxy, vx \neq \varepsilon, |vwx| \leq k$$

a pro všechna $i \geq 0$ je $uv^i w x^i y \in L$.

Nech L_{primes} je bezkontextový jazyk.

Tak existuje celočíselná konštanta k>0 taká, že ak $z\in L$ a $|z|\geq k$, tak

$$z = uvwxy \land vx \neq \varepsilon \land |vwx| \le k \land uv^iwx^iy \in L \text{ kde } i \ge 0$$

Zvoľme prvočíslo rväčšie ako ako kt.j. $r \geq k$ kde rje prvočíslo.

Potom platí, že

$$a^r \in L \land |a^r| = r \text{ kde } r \ge p \implies a^r = uvwxy \land vx \ne \varepsilon \land |vwx| \le k \land uv^i wx^i y \in L \text{ pre } i \ge 0$$

Nech

$$v = a^m \Rightarrow |v| = m$$

 $x = a^n \Rightarrow |x| = n$
 $w = a^o \Rightarrow |w| = o$

Tak musí platiť že m+n>0 pretože $vx\neq\varepsilon$ a $k\geq m+n+o$ pretože $|vwx|\leq k$.

Zvoľme i = r + 1, potom

$$uv^{r+1}wx^{r+1}y\in L$$

$$|uv^{r+1}wx^{r+1}y|=|uvwxy|+|v^r|+|x^r|=r+r\cdot m+r\cdot n=r\cdot (1+m+n)$$
 čo nie je prvočíšlo

A z toho vyplýva spor pretože

$$uv^{r+1}wx^{r+1}u \notin L$$

Takže jazyk L_{primes} nie je bezkontextový jazyk.

3.1 Nerozhodnuteľnosť

Problém môžeme charakterizovať jazykom L pre ktorý platí

$$L = \{ \langle M_L \rangle \mid M_L \text{ je } TS : \exists w \in Affine : w \in L(M_L) \}$$

Problém členstva je charakterizovaný jazykom MP pre ktorý platí

$$MP = \{ \langle M_{MP} \rangle \# w \mid M_{MP} \text{ je } TS \text{ ktorý prijme } w \}$$

Zostavíme redukciu

$$\sigma: \{0,1,\#\}^* \longrightarrow \{0,1\}^*$$
 z jazyka MP na L

TS M_{σ} implementujúci σ priradí každému vstupu $x \in \{0, 1, \#\}^*$ reťazec $\langle M_x \rangle$, kde M_x je TS, ktorý na vstupu $y \in \{0, 1\}^*$ pracuje následovne:

- 1. M_x zmaže svoj vstup y.
- 2. Zapíše na pásku reťazec x.
- 3. M_x posúdi, zda $x = x_1 \# x_2$ pre x_1 , ktorý je kódom TS, a x_2 , ktorý je kódom jeho vstupu. Pokiaľ nie, odmietne.
- 4. Inak M_x simuluje činnosť TS s kódom x_1 na reťazci s kódom x_2 .
 - Ak x_1 prijme x_2 , tak M_x prijme.
 - Ak x_1 odmietne x_2 , tak M_x odmietne.
 - Inak cyklí.

 M_{σ} je možné implementovať úplným TS. Konečne tento TS vypíše kód M_x , ktorý sa skladá zo štyroch komponent, ktoré odpovedajú vyššie uvedeným krokom. Tri z nich sú pritom konštantné (nezávisia na x) – konkrétne (1) zmazanie pásky, (2) test na dobré sformovanie instancie MP a (3) simulácia daného TS na danom vstupe (pomocou úplného TS). TS implementujúci tieto kroky, ktoré evidentne existujú, môžeme pripraviť vopred a M_{σ} vypíše kód spolu s kódom na predanie riadenia. Zostáva vygenerovať kód TS, ktorý zapíše na pásku dané $x = a_1 a_2 ... a_n$. To je možné ale ľahko realizovať pomocou TS $Ra_1Ra_2R...Ra_n$.

Skúmajme možné jazyky $TS M_x$:

- $L(M_x) = \emptyset \iff (x \text{ nie je správne sformovaná instancia } MP)$ alebo $(x = x_1 \# x_2 \text{ a } TS \text{ s kódom } x_1 \text{ na reťazci s kódom } x_2 \text{ odmietne})$ alebo $(x = x_1 \# x_2 \text{ a } TS \text{ s kódom } x_1 \text{ na reťazci s kódom } x_2 \text{ neskončí t.j. cyklí)}$
- $L(M_x) = \Sigma^* \iff (x \text{ je správne sformovaná instancia } MP, \text{ kde } x = x_1 \# x_2 \text{ a } TS \text{ s kódom } x_1 \text{ na refazci s kódom } x_2 \text{ prijme})$

Ak $L(M_x) = \Sigma^*$ je zrejmé, že jazyk $L(M_x)$ iste obsahuje aspoň jeden reťazec ktorý patrí do jazyka Affine.

Teraz už ľahko ukážeme, že σ zachováva členstvo $\langle M_x \rangle \in L \Leftrightarrow L(M_x) = \Sigma^* \Leftrightarrow x = x_1 \# x_2$ kde x_1 je kód TS, ktorý zastaví na vstupe s kódem $x_2 \Leftrightarrow x \in MP$.

3.2 Čiastočná rozhodnuteľnosť

Majme TS M pre ktorý platí, že $\exists w \in Affine : w \in L(M)$.

K čiastočnému rozhodovaniu uvedeného problému môžeme využiť $TS\ M'$ ktorý na svojej prvej páske simuluje beh $TS\ M$ pre jednotlivé možné vstupné reťazce napríklad v lexikografickom usporiadaní (viz dole uvedený príklad) a na druhej páske vykonáva kontrolu podmienky patričnosti reťazca do jazyka Affine.

```
\begin{aligned} & konf_{M}(\varepsilon,0) \\ & konf_{M}(\varepsilon,1) \# konf_{M}(0,0) \\ & konf_{M}(\varepsilon,2) \# konf_{M}(0,1) \# konf_{M}(1,0) \\ & konf_{M}(\varepsilon,3) \# konf_{M}(0,2) \# konf_{M}(1,1) \# konf_{M}(00,0) \\ & konf_{M}(\varepsilon,4) \# konf_{M}(0,3) \# konf_{M}(1,2) \# konf_{M}(00,1) \# konf_{M}(01,0) \end{aligned}
```

M' nemôže len systematicky generovať vstupy pre TS M a na nich nechať TS M neobmedzene bežať pretože hrozí zacyklenie.

 $TS\ M'$ ale môže mať na svojej páske súčastne rozbehnutú simuláciu $TS\ M$ pre ľubovoľný počet vstupných reťazcov, jednotlivé konfigurácie pásky budú vhodne oddelené.

 $TS\ M'$ môže vždy prejsť všetky aktuálne rozbehnuté simulácie a na každej vykonať práve jeden krok. Pokiaľ v niektorom prípade dôjde k prijatiu reťazca $TS\ M$, vykoná kontrolu pratričnosti prijatého reťazca do jazyka Affine na druhej páske. Ak kontrola patričnosti prijatého reťazca skončila úspechom, t.j. reťazec bol prijatý $TS\ M$ a súčastne patrí do jazyka Affine môžeme tvrdiť, že existuje reťazec ktorý patrí do Affine a súčastne do L(M). Ak $TS\ M$ neprijal reťazec alebo reťazec nepatrí do jazyka Affine, tak $TS\ M'$ pridá páskovú konfiguráciu pre ďalší reťazec a celý krok opakuje.

 $TS\ M'$ vykonáva kontrolu patričnosti reťazca do Affine na druhej páske tak, že TODO.

Funkčnosť TS M' môžeme chápať tak, že najskôr TS M' spustí simuláciu TS M na prvej páske. Ak TS M zastaví a prijme určitý reťazec, tak tento reťazec TS M' overí na druhej páske zda patrí do jazyka Affine t.j. skontroluje podmienku patričnosti tohto reťazca do jazyka Affine.

...

5 Literatúra

[1] M. Češka, T. Vojnar, A. Smrčka, A. Rogalewicz: Teoretická informatika - Studijní text.
 2018-08-23, [Online; Accessed: 2018-10-15].
 URL: http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf