Prezime:

Ime: _____

br.ind.:

1. Izračunati $P(1 \le X < \pi)$ za slučajnu promenljivu koja ima Binomnu raspodelu $X : \mathcal{B}(4, \frac{1}{4})$.

2. Nezavisne slučajne promenljive X i Y imaju istu raspodelu $X: \mathcal{N}(1,1), Y: \mathcal{N}(2,1),$ Kolika je verovatnoća $P((X-1)^2+(Y-2)^2\geq 1)$?

3. Za uzorak obeležja sa Normalnom raspodelom $X: \mathcal{N}(2,1)$, koliko je $E(\bar{S}_{10}^2)$?

4. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije za uzorak u kome X uzima 4 mogućih vrednosti i Y uzima 4 moguće vrednosti sa $\alpha = 0.05$.

Sa kvantilima koje raspodele se poredi statistika $\theta = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o \acute{c}ekivano)^2}{o \acute{c}ekivano}$, gde se suma uzima po svih $4\cdot 4=16$ ćelija?

Kako glasi komanda u R-u za dobijanje traženog kvantila?

Rekonstruisati uzorak $(x_1,...,x_{10})$ čija je empirijska funkcija raspodele data levo:

Naći Medijanu uzorka Me =

Regresija slučajnih promenljivih X i Y

FΤ	N	SII	T /	IIS
		\sim	. ,	

Statistika - test

14. II 2019.

 Prezime:

 br.ind.:

1. Za događaje A i B u prostoru verovatnoće (Ω, \mathscr{F}, P) staviti znak =, \leq , \geq u polje \square gde važi, ostaviti prazno ako ništa od toga ne važi.

 $P(A|B) \square P(A|B), \qquad P(A \cap B) \square P(A) + P(B) - P(A \cup B), \qquad \frac{P(B)}{P(A)} \square \frac{P(B|A)}{P(A|B)}$

2. Nezavisne slučajne promenljive X i Y imaju istu Poasonovu raspodelu $\mathcal{P}(2)$. Kolika je verovatnoća P(X+Y>2)?

3. Za prost slučajni uzorak obeležja sa Uniformnom raspodelom $X: \mathcal{U}(0,\sqrt{3})$, koliko je $E(\bar{S}_{10}^2)$?

4. Naći jednačinu prave linearne regresije y po x, ako je realizovana vrednost dvodimenzionalnog uzorka obeležja (X,Y): ((1,3.1),(2,5.1),(3,7.1)).

5. Nacrtati Empirijsku funkciju raspodele uzorka (4,5,5,5,4,6,2,3,4,2).

Intervali poverenja za očekivanje obeležja $X:\mathcal{N}(m,\sigma)$ i testiranje hipoteze $H_0(m=m_0)$, σ poznato

FTN SIIT / IIS	6
----------------	---

 $P(A \cup B \cup C) =$

promenljiva U = X + Y - 2Z?

Prezime:

Statistika - test

14. II 2019.

br.ind.:

1. U	J prostoru verovatnoće (Ω, \mathcal{F}, P) , koristeći uopštenu formulu unije, verovatnoća $P(A \cup B \cup C)$ je:	

Ime: _

- 2. Ako slučajne promenljive X,Y,Z imaju normalnu $\mathcal{N}(1,1)$ raspodelu, koju raspodelu ima slučajna
- 3. Ako za slučajne promenljive X i Y važi: cov(X,Y)=1, cov(X,X)=2, cov(Y,Y)=2, koliki je koeficijent korelacije $\rho_{X,Y}$?
- 4. Vrši se testiranje jendakosti srednjih vrednosti 4 grupe uzorka sa po 8 elemenata svaka, sa pragom značajnosti 5%. Pod pretpostavkom da obeležje u svakoj grupi ima normalnu raspodelu sa istom srednjom vrednošću i jednakom varijansom za sve elemente uzorka.

Ako je SSTR = 300 i SSE = 280, kolika je realizovana vrednost F statistike i kojom komandom u R-u se dobija kvantil sa kojim se dobijena vrednost upoređuje?

$$f =$$

>_____

5. Naći korigovanu uzoračku standardnu devijaciju uzorka (4,5,5,5,4,6,2,3,4,2).

Jednostavni linearni model

FTN SIIT / IIS

Statistika - test

14. II 2019.

Prezime:

Ime:

br.ind.:

1. Za događaje A i B u prostoru verovatnoće (Ω, \mathcal{F}, P) staviti znak $=, \leq, \geq$ u polje gde važi, ostaviti prazno ako ništa od toga ne važi.

$$P(AB) \bigcap P(A)P(B)$$
,

$$P(AB) \square P(A) + P(B) - P(AB),$$

2. Nezavisne slučajne promenljive X i Y imaju raspodele X: $\mathcal{N}(1,1)$, Y: $\mathcal{N}(1,2)$. Kolika je verovatnoća $P(X - Y \le 0)$?

3. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $ss_x = \sum_{i=1}^n (x_i - \bar{x}_n)^2$, $ss_y = \sum_{i=1}^n (y_i - \bar{y}_n)^2$, $s_{xy} = \sum_{i=1}^{n} (x_i - \bar{x}_n) (y_i - \bar{y}_n), \ \bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y}_n = \frac{1}{n} \sum_{i=1}^{n} y_i.$ Formule za r, b, a, preko ss_x , ss_y , s_{xy} , \bar{x}_n , \bar{y}_n : b =r =

4. Za uzorak obeležja sa normalnom raspodelom testiranjem $H_0(m=m_0)$ protiv $H_1(m>m_0)$ odbačena je nulta hipoteza sa pragom značajnosti α . Da li se odbacuje nulta hipoteza testiranjem $H_0(m=m_0)$ protiv $H_1(m \neq m_0)$ sa pragom značajnosti $\alpha/2$?

DA

Nekad DA, nekad NE

5.

Za uzorak iz boxplota levo očitati:

$$IQR =$$

$$Q_1 =$$

$$Q_2 =$$

Zakoni velikih brojeva

FTN SIIT / IIS	Statis	tika - test	14. II 2019.
Prezime:	Ime:		br.ind.:
1. Za slučajnu prome	nljivu X sa gustinom $\varphi(x)$	$=x,x\in(0,\sqrt{2})$ naći $E(2)$	(X) i $P(X \ge 1)$.
2. Nazaviena elučajna	e promenljive X i Y imaju r	raspodele V : W(1 1) V	· W(3 1)
	a slučajna promenljiva (X -		$\mathcal{L}(3,1)$.
rioja raspodera mi	a siacajna promenijiva (A	1) (1 3) .	
	(/ 1)2 (2)2	. 1) 2	
Kolika je verovatno	oća $P((X-1)^2 + (Y-3)^2$	≤ 1)?	
3. Za prost slučajni u	zorak normalne rapodele o	bima <i>n</i> realizovane vredu	nosti su: $\bar{x}_n = 11$, $\bar{s}'_n = 3$. Izra-
čunati su intervali	sa istim nivoom poverenja	i to: kada je $\sigma = 3$ pozi	nato: I_1 ; kada je σ nepoznato:
I ₂ . Staviti krstić gd	le važi		
$I_1 \subseteq I_2$	$I_2 \subseteq I_1$	$I_1 = I_2$	ništa od toga
4. U analizi varijanse	, koji znak stoji između <i>E</i> ((SSTR) i $E(SST)$?	
≤	\geq	=	kako kad

5. Nacrtati ECDF (Empirijsku funkciju raspodele) uzorka (4,5,5,5,4,6,2,3,4,2).

Neparametarske hipoteze

Statistika - test

14. II 2019.

br.ind.:

Prezime: _____ Ime: ____

1. U prostoru verovatnoće (Ω, \mathcal{F}, P) , koristeći uopštenu formulu preseka, verovatnoća P(ABCD) je: P(ABCD) =

2. Ako nezavisne slučajne promenljive X i Y imaju istu χ_2^2 raspodelu, koju raspodelu ima statistika $Z = \frac{X}{Y}$?

3. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije sa $\alpha = 0.05$.

Realizovana vrednost statistike $\chi^2 = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o\check{c}ekivano)^2}{o\check{c}ekivano}$ sa 6 stepeni slobode iznosi $\chi^2 = 12$.

Dat je deo tabele kvantila Pirsonove χ^2 raspodele

	aco tabele n'antina i insonove X i aspoacie				Durjea		
	.9950	.9900	.9750	.9500	.9000	$n \setminus F$	
Da li su obeležja <i>X</i> i <i>Y</i> nezavisna?	18.5	16.8	14.4	12.6	10.6	6	
Nekad DA, neka	NE					DA	
	1						

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $\hat{y}_i = a + bx_i$, $i = 1, 2, \dots, n$.

Koji znak stoji između $\frac{1}{n} \sum_{i=1}^{n} \hat{y}_i$, i $\frac{1}{n} \sum_{i=1}^{n} y_i$?

\leq	≥	=	Zavisi od y_i

5. Izračunati centralni momenat trećeg reda μ_3 uzorka (4,5,5,5,4,6,2,3,4,2).

Tačkaste ocene parametara, osobine