Economically-Efficient Sentiment Stream Analysis

Roberto Loureco Jr., Adriano Veloso, Adriano Pereira Wagner Meira Jr., Renato Ferreira, Srini Parthasarathy

Computer Science Dept - UFMG - Brazil Dept. Computer Science and Engineering - OSU

Sentiment Analysis

Definition

 Automatically extraction of opinions, sentiments, attitudes, and emotions expressed in text messages (i.e., Twitter).

Motivation

 It allows us to track products, brands and people to determine whether they are viewed positively or negatively.

Problem

- Content is created almost at the same time the event is happening in the real world.
 - Keeping track of sentiment streams is useful for advertising.

Sentiment Streams and Advertising

Superbowl 2013

8:38 PM - 3 Feb 13 · Details

Audi @Audi Sending some LEDs to the @MBUSA Superdome right now...

Collapse ← Reply 13 Retweet ★ Favorite · · · · More

2,980 **FAVORITES**

8:40 PM - 3 Feb 13 · Details

15h

15h

Sentiment Streams and Advertising

and yesterday ... Brazil $1 \times$ Germany 7

PlayStation Brasil @PlayStation_BR · 2 h
#SeFosseNoPLAY era apertar o Reset e começar outra!
#BRAS vs #GER ■ pic.twitter.com/wMtwosGNFF

Just hit the reset button and start again

#BRAS vs #GER

Classifying Sentiment Streams

 Classifiers may be used to distinguish sentiments in the text.

Classifying Sentiment Streams

 Classifiers may be used to distinguish sentiments in the text.

• Sentiments may change with time.

Sports (WC 2010)

Elections (Brazil 2010)

Classifying Sentiment Streams

- Effective classification requires:
 - Updating the training-set to mitigate drifts.
 - Updating the classifier accordingly.

Research Questions

- Effort:
 - How to reduce labeling effort?
- Accuracy:
 - How to select messages to be kept and discarded?

Research Questions

- Effort:
 - How to reduce labeling effort?
- Accuracy:
 - How to select messages to be kept and discarded?

Batch Mode

- Instead of updating the training set on an instance-basis
 - Wait for a batch of b messages.
 - A similarity parameter δ controls the messages in the batch that must be labeled.

Batch Mode

- Trade-off between accuracy and labeling effort
 - Accuracy and effort decrease with batch size.
- However, there is locality of reference:
 - Messages appearing closer in time tend to be similar to each other (i.e., retweets).
 - Possible reduction without compromising accuracy.

Research Questions

- Effort:
 - How to reduce labeling effort?
- Accuracy:
 - How to select messages to be kept and discarded?

Dealing with Drifts

- Two properties are necessary in order to produce classifiers that are robust to drifts:
 - Adaptiveness:
 - The ability to adapt itself to drifts.
 - Memorability:
 - The ability to recover itself from drifts.

Dealing with Drifts

- Two properties are necessary in order to produce classifiers that are robust to drifts:
 - Adaptiveness:
 - The ability to adapt itself to drifts.
 - The training-set must contain fresh messages.
 - Memorability:
 - The ability to recover itself from drifts.
 - The training-set must contain pre-drift messages.
- Improving both properties simultaneously may lead to a conflict-objective problem.
 - Improve adaptiveness may hurt memorability, and vice-versa.

Pareto Efficiency

Example: hotels in Gold Coast.

Pareto Efficiency

Pareto frontier.

Compensation — Kaldor-Hicks Principle

Region of compensation.

Utility Measures

- Distance in space:
 - How similar message t_j is to the newest message t_n .

•
$$U_s(t_j) = \frac{|\mathcal{R}(t_n) \cap \mathcal{R}(t_j)|}{|\mathcal{R}(t_n)|}$$

- Distance in time:
 - How fresh is the message.
 - $U_t(t_j) = \frac{\gamma(t_j)}{\gamma(t_n)}$.
 - $\gamma(t_j)$ returns the time in which message t_j arrived.
- Random permutation of messages:
 - $U_r(t_j) = \frac{\alpha(t_j)}{|\mathcal{D}_n|}$
 - $\alpha(t_j)$ returns the position of t_j in the shuffle.
 - \mathcal{D}_n is the training set at time step n.

Utility Measures

- At each time step *n*:
 - Place candidate messages in the utility space.
 - Select messages in the Pareto frontier.

Evaluation

- Measures used:
 - Mean Squared Error.
 - RAM-Hours:
 - A GB of RAM deployed for 1 hour execution.
- Labeling Effort:
 - Different batch sizes and δ values.
- Three datasets:
 - Brazilian elections 2010.
 - World Cup 2010.
 - Person of the Year 2010 (Assange vs. Zuckerberg)
 - Baselines:
 - AC Active Classifiers (KDD 2011)
 - HAT Hoeffding Adaptive Trees (JMLR 2011)
 - ILAC Incremental Lazy Classifiers (SIGIR 2011)

Evaluation

MSE and RAM-Hours

Evaluation

MSE and Labeling Effort

Conclusions

- Sentiment analysis on Twitter streams.
 - Limited computing and training resources.
 - Sentiment drifts.
- Efficiency and accuracy.
 - Incremental classifiers.
 - Pareto efficiency and compensation principle.
- Our results.
 - 50% reduction in terms of labeling effort without impact on accuracy.
- Future work includes:
 - Other utility measures.
 - Other application scenarios.

Thank you!

adrianov@dcc.ufmg.br