## Giải thuật Nash-Tabu Search cho bài toán lập lịch

## 1. Mô hình hóa bài toán

- Project:  $P = \{P_1, P_2, ..., P_{n_p}\}$  là tập  $n_p$  project độc lập.
- Task: Mỗi project  $P_i$  sẽ có  $n_t$  task  $T_{ij}$
- Staff: :  $S = \{S_1, S_2, ..., S_{n_s}\}$  là tập  $n_s$  staff, mỗi staff chỉ có thể xử lý một task trong một thời gian nhất định
- Dữ liêu đầu vào:
  - $\circ$   $n_p, n_s, n_t$
  - o Process time tương ứng với mỗi cặp (Task, Staff)
  - Lương của mỗi Staff
- Các ràng buộc có thể:
  - Các operation có tính thứ tự
  - o Thời gian làm việc của mỗi máy ứng với mỗi tiến trình
- Fitness:
  - O Gọi t(T, S) là thời gian staff S hoàn thành task T, salary(S) là lương của S, staff(T) là staff ứng với T. Hàm objective (2) tính tổng chi phí của tất cả các dự án:

$$F_1(P) = \sum_{i=0}^{n_p} \sum_{j=0}^{n_t} [t(T_{ij}, staff(T_{ij})) \times salary(staff(T_{ij}))]$$

O Gọi s(T) và e(T) là thời gian hoàn thành của task T. Hàm objective (1) tính tổng thời gian hoàn thành của các project:

$$F_2(P) = \sum_{i=0}^{n_p} max_j e(T_{ij})$$

## 2. Mã hóa

Mã hóa bao gồm 2 phần:

- Phần 1: mã hóa thứ tư thực hiện của các task → hóan vi
- Phần 2: mã hóa máy tương ứng với các task → dãy số nguyên



Hình ví dụ bao gồm 2 project, mỗi project có 3 task và có 3 staff

Project 1(màu đỏ) bao gồm: 3 task 1,2,3

Project 1(màu xanh lá) bao gồm: 3 task 4,5,6

Các máy(Màu xanh dương) lần lượt tương ứng với các task

## 3. Giải thuật Nash – Tabu Search:

Giải thuật Nash-Tabu Search được trình bày ở trong Hình 1. Ý tưởng chung của của giải thuật là tối ưu đồng ưu hàm  $F_1(P)$  và  $F_2(P)$ . Khi đó biến P=XY

Thực hiện hai quá trình tối ưu Tabu Search một cách song song.

- o Tabu Search F1(P) thực hiện tối ưu  $F_1(XY)$  và trả ra kết quả  $\bar{X}$
- O Tabu Search F2(P) thực hiện tối ưu  $F_1(\bar{X}Y)$  (hay với  $X = \bar{X}$ ) và trả ra kết quả  $\bar{Y}$

Lặp lại liên tục quá trình này. Tabu\_Search\_F1 và Tabu\_Search\_F2 ở đây tương tự các người chơi đang cố gắng tối ưu chiến lược của bản thân trong điều kiện cho trước của người chơi còn lại.

Quá trình Tabu\_Search được mô tả cụ thể trong Hình 2. Mỗi Tabu\_Search có hai yếu tố quan trọng là: Hàm fitness và cách xác định neighbor



Hình 1. Sơ đồ giải thuật Nash-Tabu Search



Hình 2. Sở đồ giải thuật Tabu Search

• Từ không gian mã hóa (như phần 2)



- Tabu Search F1:
  - o Hàm Fitness F1 (Mục 1)
  - Tìm kiếm neighbor = Hóan đổi Y → nhằm mục tiêu tìm ra các staff cho các task một cách phù hợp sao cho tối ưu F1
- Tabu Search F2:
  - Hàm Fitness F1 (Mục 1)
  - o Tìm kiếm neighbor = Hóan đổi X (kéo theo staff trong mục Y tương ứng) → Nhằm mục tiêu sắp xếp thứ tự thực hiện các task một cách hợp lý.