

Detecting Al-Altered Media with Deep Learning

Advisor

Dr. Arnab Bose

Presented By

Rhys Chua Jim Fang Jon Huff

August 29th, 2020:

A digitally altered video of Joe Biden is uploaded onto Twitter & Youtube

The video received 2.4M views on Twitter...

The video received 2.4M views on Twitter...

200K+ views on YouTube...

The video received 2.4M views on Twitter...

200K+ views on YouTube...

Shared tens of thousands of times on Facebook...

The video received 2.4M views on Twitter...

200K+ views on YouTube...

Shared tens of thousands of times on Facebook...

...And gets retweeted by the White House Deputy Chief of Staff & Director of Social Media, Dan Scanvino, which was then seen by millions more

Deepfakes are roughly doubling every 6 months

The Public senses a looming threat...

63%

of U.S. adults surveyed believe altered videos create a great deal of confusion about the facts of current events

77%

of U.S. adults surveyed support restrictions on publishing and accessing them

...and the U.S. Government Agrees

63%

of U.S. adults surveyed believe altered videos create a great deal of confusion about the facts of current events

77%

of U.S. adults surveyed support restrictions on publishing and accessing them

Spent by DARPA to research ways to fight threat of deepfakes in 2016-2018

The Solution

Build a deep learning pipeline to distinguish Fake, Al-altered videos from real videos using Deep Ensemble Learning

Audio

Speech Synthesis (Concatenative, Parametric, and Deep Learning)

Audio

Speech Synthesis (Concatenative, Parametric, and Deep Learning)

Goals of this Project

Build a deep learning pipeline to distinguish fake from real videos

Contribute something new to the research community **AND deliver a best-in-class deepfake detector** that stands up to the current SoTA on the latest datasets

Publish a working app + code that can detect deepfakes in real-time as a contribution to the research community & for commercial use

Contributions	Tolosana Et Al. (2020)	1 st Place DFDC Winner	Dessa (2019)	Wang Et Al. (2020)	Our Method
Utilizes CNN's and image preprocessing techniques (augmentation, cropping)	✓	✓	✓	✓	✓
Trained on datasets that use Face2Face, FaceSwap, Deepfake, and NeuralTextures techs.	✓	✓	✓	✓	✓
Transfer Learning using Xception	✓		✓	✓	✓
Transfer Learning using Efficientnet		✓			✓
Trained on <i>Mixed Datasets</i> for greater generalizability			✓		✓
Transfer Learning using 3D CNN's				✓	
Utilizes LSTM to process sequences of frames					✓

Contributions	Tolosana Et Al. (2020)	1 st Place DFDC Winner	Dessa (2019)	Wang Et Al. (2020)	Our Method
Utilizes CNN's and image preprocessing techniques (augmentation, cropping)	✓	✓	✓	✓	✓
Trained on datasets that use Face2Face, FaceSwap, Deepfake, and NeuralTextures techs.	✓	✓	✓	✓	✓
Transfer Learning using <i>Xception</i>	✓		✓	✓	✓
Transfer Learning using Efficientnet		✓			✓
Trained on <i>Mixed Datasets</i> for greater generalizability			✓		✓
Transfer Learning using 3D CNN's				✓	
Utilizes LSTM to process sequences of frames					✓
Ability to detect <i>multiple subjects</i> per frame					✓
Uses <i>Ensemble Meta-learner</i> that increases performance and allows plug/play new models					✓
Developed a <i>functional app</i> with built-in <i>model interpretability</i> algorithms					✓

Implementation

Data Collection

Data Collection

	DFDC	FaceForensics++	Celeb-DF	Mixed Dataset
Main Focus	Compilation of Diff Datasets	Different forgery methods	Reduce Visual Quality Gap	FF++ and CDF
Generation	3rd	2nd	2nd	Created by Us
Size (# Videos)	25TB (129K)	39GB (5K)	34GB (6K)	280GB (8.4K)
Train/Val/Test %	58/21/21	72/14/14	68/16/16	70/15/15
Real/Fake Ratio	1:4.5	1:4	1:9	1:1
Method	Convolution Autoencoder	Generative Adversarial Network	Convolution Autoencoder	-
Technique	FaceSwap, Neural Talking Heads, Augmentation Techs	FaceSwap, Deepfakes, Face2Face, NeuralTextures	Increase resolution pixels, color transfer algorithm, face masking, temporal flickering	-

Real

Fake

Independent Variables: Dependent Variables: Unit of Analysis: Pixels from each frame of a sample video Fake (1) vs Real (0) – Image Label 300x300pixel RGB image

	DFDC	FaceForensics++	Celeb-DF	Mixed Dataset
Main Focus	Compilation of Diff Datasets	Different forgery methods	Reduce Visual Quality Gap	FF++ and CDF
Generation	3rd	2nd	2nd	Created by Us
Size (# Videos)	25TB (129K)	39GB (5K)	34GB (6K)	280GB (8.4K)
Train/Val/Test %	58/21/21	72/14/14	68/16/16	70/15/15
Real/Fake Ratio	1:4.5	1:4	1:9	1:1
Method	Convolution Autoencoder	Generative Adversarial Network	Convolution Autoencoder	-
Technique	FaceSwap, Neural Talking Heads, Augmentation Techs	FaceSwap, Deepfakes, Face2Face, NeuralTextures Increase resolution pixels, color transfer algorithm, face masking, temporal flickering		-

Independent Variables: Dependent Variables: Unit of Analysis:

Pixels from each frame of a sample video Fake (1) vs Real (0) – Image Label 300x300pixel RGB image

Manipulated

	DFDC	FaceForensics++	Celeb-DF	Mixed Dataset
Main Focus	Compilation of Diff Datasets	Different forgery methods	Reduce Visual Quality Gap	FF++ and CDF
Generation	3rd	2nd	2nd	Created by Us
Size (# Videos)	25TB (129K)	39GB (5K)	34GB (6K)	280GB (8.4K)
Train/Val/Test %	58/21/21	72/14/14	68/16/16	70/15/15
Real/Fake Ratio	1:4.5	1:4	1:9	1:1
Method	Convolution Autoencoder	Generative Adversarial Network	Convolution Autoencoder	-
Technique	FaceSwap, Neural Talking Heads, Augmentation Techs	FaceSwap, Deepfakes, Face2Face, NeuralTextures	Increase resolution pixels, color transfer algorithm, face masking, temporal flickering	-

Real

Fake

Independent Variables: Dependent Variables: Unit of Analysis: Pixels from each frame of a sample video Fake (1) vs Real (0) – Image Label 300x300pixel RGB image

	DFDC	FaceForensics++	Celeb-DF	Mixed Dataset
Main Focus	Compilation of Diff Datasets	Different forgery methods	Reduce Visual Quality Gap	FF++ and CDF
Generation	3rd	2nd	2nd	Created by Us
Size (# Videos)	25TB (129K)	39GB (5K)	34GB (6K)	280GB (8.4K)
Train/Val/Test %	58/21/21	72/14/14	68/16/16	70/15/15
Real/Fake Ratio	1:4.5	1:4	1:9	1:1
Method	Convolution Autoencoder	Generative Adversarial Network	Convolution Autoencoder	-
Technique	FaceSwap, Neural Talking Heads, Augmentation Techs	FaceSwap, Deepfakes, Face2Face, NeuralTextures	Increase resolution pixels, color transfer algorithm, face masking, temporal flickering	-

6.0

Independent Variables: Dependent Variables: Unit of Analysis: Pixels from each frame of a sample video Fake (1) vs Real (0) – Image Label 300x300pixel RGB image

Source Target

Swapped

Video Processing

The Sorting Challenge

- We propose to analyze sequences of still frame images in videos for deepfake detection
- Naïve face detection algorithms do not automatically sort identities when multiple faces are detected in each frame.
 Mixed sequences of faces contaminate our datasets.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

"Subject A"

"Subject B"

"Subject A"

"Subject B"

Solution: A Custom Face-Sorting Algorithm

To overcome the issue of **contaminated sequences**, we designed and implemented a high-performance sorting algorithm which isolates sequences of faces based on:

Data Transformations

Dataset Splits

To prevent **overfitting** and **data leakage**, face identities were strictly isolated to each of the train, validation, and test datasets

Detection System

(Training + Tuning)

Model Selection

(results below based on ImageNet)

Our Novel Architecture

Model Assumptions

- 1. Ensembles provide better predictive power
- 2. Sequence classification will add robustness
- 3. May not generalize well to unseen forgery methods

Model Training & Tuning

Image Classifiers

Meta-Learner

LSTM

- XceptionNet and EfficientNet (b4)
- All layers unfrozen
- AdaBelief optimizer
- Weight decay added
- Fully custom multithreaded streaming data loader

- Xception and EfficientNet fully trained and frozen
- Classifier final layers replaced with trainable dense layers
- Outputs fed into ensemble metalearner
- Meta-learner trained using same hyperparameters as the classifiers

- Analyzes a sequence of outputs from the meta-learner
- Training hyperparameters remained unchanged
- Classifies each 30-frame sequence as "real" or "fake"
- Model probabilities calibrated using temperature scaling

- Mixed: (Train/Test/Validation, in-distribution) Dataset comprised of randomly sampled videos from curated Celeb-DF and FF++ full datasets (Deepfakes, Face2Face, FaceSwap, FaceShifter, Neural Textures)
- DFDC: (Holdout, out-of-distribution) Deepfake Detection Challenge, random sample from full dataset
- DFD: (Holdout, out-of-distribution) FF++ Deepfake Detection; curated full dataset (original new actors different from FF++, not YouTube videos)

- Mixed: (Train/Test/Validation, in-distribution) Dataset comprised of randomly sampled videos from curated Celeb-DF and FF++ full datasets (Deepfakes, Face2Face, FaceSwap, FaceShifter, Neural Textures)
- DFDC: (Holdout, out-of-distribution) Deepfake Detection Challenge, random sample from full dataset
- DFD: (Holdout, out-of-distribution) FF++ Deepfake Detection; curated full dataset (original new actors different from FF++, not YouTube videos)

- Mixed: (Train/Test/Validation, in-distribution) Dataset comprised of randomly sampled videos from curated Celeb-DF and FF++ full datasets (Deepfakes, Face2Face, FaceSwap, FaceShifter, Neural Textures)
- DFDC: (Holdout, out-of-distribution) Deepfake Detection Challenge, random sample from full dataset
- DFD: (Holdout, out-of-distribution) FF++ Deepfake Detection; curated full dataset (original new actors different from FF++, not YouTube videos)

Comparison to SoTA Detectors on OOD Datasets

	Test Set	OOD	AUC
Tolosana et al (2020)	CDF		0.999
Oscar et al (2020)	CDF		0.997
Ours (ID)	Mixed		0.996
Ours (OOD)	DFD	✓	0.843
Lingzhi et al (2020)	CDF	✓	0.806
Yuval et al (2020)	CDF	✓	0.660
Dessa (2019)	FF++	✓	0.630

Model Interpretability

True Positive (Fake Image – Easy Detection)

True Positive (Fake Image – Easy Detection)

Our detector easily discerns this poorly rendered deepfake (lighting differences)

GradCAM, a **model interpretability algorithm**, reveals the facial regions that are most positively attributed to the prediction of "Fake"

True Positive (Fake Image – Difficult Detection)

Here, the difference is less easily discerned, but our model is just as confident

We expect artifacts/latent features to occur around the chin and forehead region due to the techniques mentioned in Face2Face's paper, which is confirmed by GradCAM

True Negative (Real Image)

False Negative (Fake Image)

Here, the model is extremely confident that this is a real image, however it is **wrong**

Our model potentially placed too much weight on this region or was tricked by expert blending for this frame

False Positive (Real Image)

The model gets confused here and labels a real image as fake

GradCAM tells us that the upper browline + upper left lip appeared similar to previously trained fake frames, potentially due to poor image quality or some naturally occurring blemish caused by movment

Future Improvements Based on GradCAM

avzmrjrmdd_1_ 160_0.png

azcdoycnpg_1_ 200_1.png

achejkrwas_1_ 240 0.png

bdwacwjnnu_1_ 250 0.png

-) Blackout random regions of the face
- Focus on conv layers that address outer edges of face
- 3) Augment dataset with more images that have that type of artifact/blemish

Deployment (Detection Web App)

Powered by

- 1. User uploads and selects a subset of a video
- 2. Video is parsed and still frames propagate through the pipeline
- 3. The app then displays basic classification results
- 4. GradCAM interpretability algorithm results are displayed

Addressing Generalizability

Two Approaches

Image outlier detection: We know what authentic video frames look like, **flag** videos that do not conform

Deepfake Anomaly Detection Reconstruction Error

Real images
Fake images

0.04

0.02

0.01

0.01

Sample

Neural activation analysis: Model misclassifications on never-before-seen forgery methods may be identified by investigating the **inner workings** of our detection model

Final Thoughts and Future Work

Contributions	Tolosana Et Al. (2020)	1 st Place DFDC Winner	Dessa (2019)	Wang Et Al. (2020)	Our Method
Utilizes CNN's and image preprocessing techniques (augmentation, cropping)	✓	✓	✓	✓	✓
Trained on datasets that use Face2Face, FaceSwap, Deepfake, and NeuralTextures techs.	✓	✓	✓	✓	✓
Transfer Learning using <i>Xception</i>	✓		✓	✓	✓
Transfer Learning using Efficientnet		✓			✓
Trained on <i>Mixed Datasets</i> for greater generalizability			✓		✓
Transfer Learning using 3D CNN's				✓	
Utilizes LSTM to process sequences of frames					✓
Ability to detect <i>multiple subjects</i> per frame					✓
Uses <i>Ensemble Meta-learner</i> that increases performance and allows plug/play new models					✓
Developed a <i>functional app</i> with built-in <i>model interpretability</i> algorithms					✓

Future Work

Improve on Deep Learning Models

3D CNN

Capture spatio-temporal features

Siamese Network

Distinguishes unique facial features

Optical Flow

Granular pixel-to-pixel prediction

Additional Datasets for Diversification

Demographics

Race

Age

Deeper Forensics

Full face swapping

Additional data augmentation

Online Deep Learning

Increase data availability for model training

Thank you!

