BIG DATA

PROYECTO FINAL

Jorge González Piedra

New Technology School Tokio.

Jorge González Piedra

RESPONSABLE DEL DESARROLLO DE LA APLICACIÓN

Fecha: 05, FEB, 2023

DESARROLLO

- 1. Un informe científico, en el que se transmitan los resultados de los análisis realizados. Aquí explicaremos paso a paso cada uno de los apartados con las conclusiones correspondientes de las tareas realizadas. Podremos incluir secciones de código si es necesario y por supuesto, los resultados de cada una de las tareas realizadas sobre los datos obtenidos a través de la ejecución del código contenido en el documento técnico.
- 2. Un documento técnico que tendrá el código fuente (PySpark) empleado para la resolución de cada una de las tareas. El código fuente debe ser insertado como imágenes y con un tamaño que permita leer el texto contenido en las imágenes.
- 3. Una presentación guardada en formato pdf. Esta presentación nos servirá para mostrar los resultados de cada una de las tareas y no contendrá código fuente sino que mostrará los resultados obtenidos siguiendo las guías de presentación que hemos visto en el módulo de proyectos *big data* y *storytelling*.

1. Cassandra

1.1. Recuperar registros de la aerolínea" Air China"

token@cqlsh:airtrafic> select * from airtrafic.airtraffic_table WHERE Operating Airline = 'Air China' ALLOW FILTERING;

Los datos se encuentras adjuntos a la entrega en la carpeta airchina_data_extraction

1.2. Recuperar todos los vuelos de la compañía "Air Berlín" embarcados por la puerta "G"

token@cqlsh:airtrafic> select * from airtrafic.airtraffic_table WHERE Operating_Airline = 'Air Berlin' AND boarding_area = 'G' ALLOW FILTERING;

Los datos se encuentras adjuntos a la entrega en la carpeta airberlin_data_extraction

2. PySpark

2.1. Creación del Dataframe y análisis preliminar

2.1.1. Creación dataframe

```
from pyspark.sql.functions import col

df_airport = spark.read.options(inferSchema='True',delimiter=',',
header=True).csv("/content/drive/MyDrive/TOKIO/Big Data - Cloud Computing/01 - Big Data/PROYECTO FINAL/Air_Traffic_Passenger_Statistics.csv")
```

```
df airport.printSchema()

p→ root

     |-- Activity Period: integer (nullable = true)
     |-- Operating Airline: string (nullable = true)
     |-- Operating Airline IATA Code: string (nullable = true)
      -- Published Airline: string (nullable = true)
     -- Published Airline IATA Code: string (nullable = true)
     -- GEO Summary: string (nullable = true)
     -- GEO Region: string (nullable = true)
     -- Activity Type Code: string (nullable = true)
     -- Price Category Code: string (nullable = true)
      -- Terminal: string (nullable = true)
      -- Boarding Area: string (nullable = true)
     -- Passenger Count: integer (nullable = true)
     -- Adjusted Activity Type Code: string (nullable = true)
     -- Adjusted Passenger Count: integer (nullable = true)
     -- Year: integer (nullable = true)
     |-- Month: string (nullable = true)
```

2.1.2. Seleccionar compañías diferentes en el fichero

```
df_airport.dropDuplicates(["OperatingAirline"]).select("OperatingAir-
line").count()
df_airport.dropDuplicates(["OperatingAirline"]).select("OperatingAir-
line").show()
```


2.1.3. Pasajeros de media de los vuelos de cada compañía

```
df_airport.groupBy("OperatingAirline").mean("PassengerCount","Adjusted-
PassengerCount").show()
```

2.1.4. Eliminación registros duplicados por GEO Region

```
df_GEORegion_no_duplicates = spark.sql("select a1.* FROM " \
"df_airport_view a1, " \
"(SELECT GEORegion, MAX(PassengerCount) PassengerCount FROM df_air-
port_view GROUP BY GEORegion) a2 "\
"WHERE a1.GEORegion = a2.GEORegion " \
"AND a1.PassengerCount = a2.PassengerCount")
df_GEORegion_no_duplicates.show();
```

2.1.5. Volcar resultados

```
df_GEORegion_no_duplicates.write.options(header="True").csv("/con-
tent/drive/MyDrive/TOKIO/Big Data - Cloud Computing/01 - Big Data/PROY-
ECTO FINAL/Entrega/Ficheros/airtraffic_drop_duplicates_georegion")
```

Los datos se encuentran adjuntos a la entrega en el fichero airtraffic_drop_duplicates_georegion.csv.

2.2. Análisis estadístico

2.2.1. Análisis descriptivo

2.2.1.1. Activity Period

```
[21] df_airport.describe("ActivityPeriod").show()

+----+
|summary| ActivityPeriod|
+----+
| count| 15007|
| mean|201045.07336576266|
| stddev|313.33619609986414|
| min| 200507|
| max| 201603|
+----+

[41] df_airport_pandas['ActivityPeriod'].mode()
```

0 200807 dtype: int32

2.2.1.2. Operating airline

df_airport_pandas['OperatingAirline'].mode()

0 United Airlines - Pre 07/01/2013
dtype: object

2.2.1.3. Operating airline IATA code

2.2.1.4. Published airline

2.2.1.5. Published airline IATA code

2.2.1.6. GEO summary

2.2.1.7. **GEO Region**

2.2.1.8. Activity type code


```
df_airport.select("ActivityTypeCode").dropDuplicates().show()

+-----+
|ActivityTypeCode|
+-----+
| Enplaned|
| Thru / Transit|
| Deplaned|
+-----+
```

2.2.1.9. Price category code

```
df_airport_pandas['PriceCategoryCode'].mode()

0   Other
dtype: object
```

2.2.1.10. Terminal

2.2.1.11. Boarding área

2.2.1.12. Passenger count


```
df_airport.describe("PassengerCount").show()

+----+
|summary| PassengerCount|
+----+
| count| 15007|
| mean|29240.521090157927|
| stddev|58319.509284123524|
| min| 1|
| max| 659837|
```

2.2.1.13. Adjusted activity type code

```
df_airport_pandas['AdjustedActivityTypeCode'].mode()

0    Deplaned
dtype: object
```

2.2.1.14. Adjusted Passenger count

```
df_airport.describe("AdjustedPassengerCount").show()

the distribution of the dis
```


2.2.1.15. Year

```
[62] df_airport.describe("Year").show()

+----+
|summary| Year|
+----+
| count| 15007|
| mean|2010.385220230559|
|stddev|3.137589043169972|
| min| 2005|
| max| 2016|
+----+

[63] df_airport_pandas['Year'].mode()

0 2015
dtype: int32
```

2.2.1.16. Month

2.2.2. Análisis de correlación

df_airport_pd.<mark>corr</mark>()

df_airport_pd.corr().style.background_gradient(cmap='coolwarm')

Correlaciones mas fuertes:

2.2.2.1. GEO Summary – Price Category Code

[] df_airport_pd.GEOSummary.corr(df_airport_pd.PriceCategoryCode)

0.41149848056451377

2.2.2.2. GEO Summary - GEO Region

[] df_airport_pd.GEOSummary.corr(df_airport_pd.GEORegion)

-0.8718261857198394

2.2.2.3. GEO Region - Terminal

[] df_airport_pd.GEORegion.corr(df_airport_pd.Terminal)

0.5091186306605863

2.2.2.4. GEO Region - Price Category Code

BIG DATA
PROYECTO FINAL
Jorge González Piedra

Utilizamos el **método Point-Biserial** para calcular de manera más precisa la correlación entre las variables dicotómicas y el número de pasajeros.

2.2.2.7. GEO Summary- Adjusted passenger count

```
[58] stats.pointbiserialr(df_airport_pd['GEOSummary'], df_airport_pd['AdjustedPassengerCount'])

PointbiserialrResult(correlation=-0.39685620097984975, pvalue=0.0)
```

2.2.2.8. Price category code - Adjusted passenger count

```
[59] stats.pointbiserialr(df_airport_pd['PriceCategoryCode'], df_airport_pd['AdjustedPassengerCount'])

PointbiserialrResult(correlation=-0.0646612429860395, pvalue=2.2120528625642906e-15)
```


2.2.3. Regresión lineal

 Creación del nuevo DataFrame para estudiar el número de pasajeros a lo largo de los años

```
from pyspark.sql.functions import sum
df_pass_by_year = df_airport.groupBy("Year" , "Month").agg(sum("Passen-
gerCount").alias("PassengerCountSum"))
df_pass_by_year.show()
```

+	Month	 PassengerCountSum			
Tear	HOITCH	Fassenger Councount			
2006	September	2720100			
2007	May	3056934			
2012	February	2998119			
2008	April	3029021			
2006	October	2834959			
2011	November	3326859			
2006	February	2223024			
2014	July	4499221			
2011	August	3917884			
2007	December	2903637			
2013	August	4347059			
2009	February	2359800			
2014	May	4147096			
2011	October	3602455			
2006	July	3227605			
2006	November	2653887			
2014	November	3628786			
2009	May	3177100			
2013	December	3814984			
2014	December	3855835			
+		+			
only showing ton 20 nows					

only showing top 20 rows

• Conversión de los valores de la columna *Month* a tipo numérico

```
df_pass_by_year_pd = df_pass_by_year.toPandas()
```

```
import calendar as cal

lower_ma = [m.lower() for m in cal.month_name]

df_pass_by_year_pd['Month'] =

df_pass_by_year_pd['Month'].str.lower().map(lambda m: lower_ma.in-
dex(m)).astype('Int8')
```

0	df_pa	ss_by_	_year_po	.sort_values(by=['
₽		Year	Month	PassengerCountSum
	60	2005	7	3225769
	62	2005	8	3195866
	90	2005	9	2740553
	117	2005	10	2770715
	84	2005	11	2617333
	109	2015	11	4013814
	82	2015	12	4129052
	113	2016	1	3748529
	85	2016	2	3543639
	31	2016	3	4137679
	129 rd	ws × 3	columns	

 Creación de una nueva columna para unir Year y Month en un campo de tipo fecha:

```
df_pass_by_year_pd['Date'] = df_pass_by_year_pd[df_pass_by_year_pd.col-
umns[0:2]].apply(lambda x: "-".join(x.values.astype(str)),axis="columns")
df_pass_by_year_pd['Date']=
pd.to_datetime(df_pass_by_year_pd['Date']).dt.strftime("%Y-%m")
df_pass_by_year_pd.sort_values(by=["Date"])
```

	Year	Month	PassengerCountSum	Date
60	2005	7	3225769	2005-07
62	2005	8	3195866	2005-08
90	2005	9	2740553	2005-09
117	2005	10	2770715	2005-10
84	2005	11	2617333	2005-11
				•••
109	2015	11	4013814	2015-11
82	2015	12	4129052	2015-12
113	2016	1	3748529	2016-01
85	2016	2	3543639	2016-02
31	2016	3	4137679	2016-03

129 rows x 4 columns


```
df_pass_by_year_pd.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 129 entries, 0 to 128
Data columns (total 4 columns):
                        Non-Null Count Dtype
     Column
 0
     Year
                                         int32
                        129 non-null
 1
     Month
                        129 non-null
 2
     PassengerCountSum 129 non-null
                                         int64
 3
                        129 non-null
                                         datetime64[ns]
dtypes: Int8(1), datetime64[ns](1), int32(1), int64(1)
memory usage: 2.9 KB
```

Utilización de la librería matplotlib para la creación del gráfico

```
import matplotlib.pyplot as plt
df_pass_by_year_pd.plot(x="Date", y="PassengerCountSum")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f3663bb8760>

 Importación de la librería para crear posteriormente el modelo de regresión lineal

from sklearn <mark>import</mark> linear model

• Conversión del campo Date a un ordinal:

```
import datetime as dt

df_pass_by_year_pd['Date']= pd.to_datetime(df_pass_by_year_pd['Date'])

df_pass_by_year_pd['DateOrd']=df_pass_by_year_pd['Date'].map(dt.datetime.
toordinal)

df_pass_by_year_pd = df_pass_by_year_pd.sort_values(by=["DateOrd"])
```

	Year	Month	PassengerCountSum	Date	DateOrd
60	2005	7	3225769	2005-07-01	732128
62	2005	8	3195866	2005-08-01	732159
90	2005	9	2740553	2005-09-01	732190
117	2005	10	2770715	2005-10-01	732220
84	2005	11	2617333	2005-11-01	732251
109	2015	11	4013814	2015-11-01	735903
82	2015	12	4129052	2015-12-01	735933
113	2016	1	3748529	2016-01-01	735964
85	2016	2	3543639	2016-02-01	735995
31	2016	3	4137679	2016-03-01	736024

• Simplificación del DataFrame

Correlación entre las variables del nuevo DataFrame:

[117] df_pass_by_year_pd_simple.corr().style.background_gradient(cmap='coolwarm')

PassengerCountSum DateOrd

PassengerCountSum 1.000000 0.773315

DateOrd 0.773315 1.000000


```
| Description of the content of the
```

Creación la regresión:

```
model = linear_model.LinearRegression()
```

```
explicativas = df_pass_by_year_pd_simple[['DateOrd']]                         #independiente
objetivo = df_pass_by_year_pd_simple[['PassengerCountSum']]                          #dependiente
```

model.fit(explicativas , objetivo)

```
| model.__dict__

{ 'fit_intercept': True,
        'normalize': 'deprecated',
        'copy_X': True,
        'n_jobs': None,
        'positive': False,
        'n_features_in_': 1,
        'coef_': array([[385.52307302]]),
        '_residues': array([1.65561339e+13]),
        'rank_': 1,
        'singular_': array([12873.05356763]),
        'intercept_': array([-2.79601791e+08]),
        'feature_names_in_': array(['DateOrd'], dtype=object)}
```


• Creación de la predicción:

```
pred = model.predict(X=df_pass_by_year_pd_simple[['DateOrd']]
```

Ordenación de los valores en función del campo DateOrd:

```
df_pass_by_year_pd_simple.insert(3, 'Prediction', pred)

pd.set_option('display.float_format', '{:.3f}'.format)

df_pass_by_year_pd_simple = df_pass_by_year_pd_simple.sort_val-

ues(by=["DateOrd"])

df_pass_by_year_pd_simple
```


pd.set_option('display.float_format', '{:.3f}'.format)
df_pass_by_year_pd_simple = df_pass_by_year_pd_simple.sor
df_pass_by_year_pd_simple

₿		PassengerCountSum	Date	DateOrd	Prediction
	60	3225769	2005-07-01	732128	2650445.119
	62	3195866	2005-08-01	732159	2662396.334
	90	2740553	2005-09-01	732190	2674347.550
	117	2770715	2005-10-01	732220	2685913.242
	84	2617333	2005-11-01	732251	2697864.457
	109	4013814	2015-11-01	735903	4105794.720
	82	4129052	2015-12-01	735933	4117360.412
	113	3748529	2016-01-01	735964	4129311.627
	85	3543639	2016-02-01	735995	4141262.842
	31	4137679	2016-03-01	736024	4152443.012

129 rows × 4 columns

• Precisión del modelo:

```
[94] print(model.score(X=explicativas , y=objetivo))
```

0.5980165190500482

```
df_pass_by_year_pd_simple['Date']=
pd.to_datetime(df_pass_by_year_pd['Date']).dt.strftime("%Y-%m") #esto
hace la columna un string
```


• Gráfico de regresión lineal:

```
plt.plct(df_pass_by_year_pd_simple['bate'] , df_pass_by_year_pd_simple['PassengerCountSum'], label="Datos reales")
plt.plct(df_pass_by_year_pd_simple[bate'] , df_pass_by_year_pd_simple['Prediction'], label="Prediccion')
plt.rpta((rea)
plt.rpta((rea)
plt.rpta((rea)
plt.rpta((rea)
plt.lagend())
plt.lagend()

D castplotlib.lagend.lagend at 0x7f0add6ca400>

45
```

• Predicción de datos futuros:


```
df_pred_future = pd.DataFrame(dates_list, columns=["Date"])
    df_pred_future['DateOrd']=df_pred_future['Date'].map(dt.datetime.toordinal)
    df_pred_future = df_pred_future.sort_values(by=["DateOrd"])
    df_pred_future
₽
              Date DateOrd
     0 2016-01-01
                    735964
     1 2016-02-01
                    735995
     2 2016-03-01
                    736024
     3 2016-04-01
                    736055
     4 2016-05-01
                    736085
        2016-06-01
                     736116
     6 2016-07-01
                    736146
        2016-08-01
                    736177
       2016-09-01
                    736208
       2016-10-01
                    736238
     10 2016-11-01
                    736269
     11 2016-12-01 736299
```

pred_future = model.predict(X=df_pred_future[['DateOrd']])
df_pred_future.insert(2, 'Prediction' , pred_future)

