Data Science: Tools & Process Week 3 (Module 4!)

Agenda

Announcements

- Today's Lecture is on Module 4. Next Week's lecture is on Module 5. Module 3 is postponed for 2 weeks.
- LinkedIn. Please post at least once a week.
- Milestone Project 1. Redo the DFD
- Milestone Project 2. Select a dataset from Milestone 2 Overview

Last Week's Assignment:

- Review DFD Semantics. Do not use the word "data". Strict grading. Milestone is worth 50 points
- Relational Algebra (Continued from last time)
- Break
- Aberrant Data Lab
 - L04-A-1-RemoveOutliers.py
 - L04-A-2-ReplaceOutliers.py
- Lesson 04 Quiz 1 (Quiz on Aberrant Data)
- Data Type Lab
 - L04-B-1-DataTypes.py
 - L04-B-2-RemoveMissing.py
- Lesson 04 Quiz 2 (Quiz on Data Types)
- Break
- Lesson 05 Lab (Time Permitting)
 - L05-A-1-Dataframes.py, L05-A-2-DataframesCSV.py, L05-B-1-PandasEDA.py

Relational Algebra The Theory behind Relational Databases

UNIVERSITY of WASHINGTON

Product Operation

SQL Statement:
SELECT * FROM TableR, TableS

	<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
	Blackbur	5	Menchú	Rent
			Alvarez	Rent
			Tagore	Own
	Kobayas	21	Menchú	Rent
•			Alvarez	Rent
			Tagore	Own
	Polational Algobra Product:			

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION

WASHINGTON

Combine Rows

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION

WASHINGTON

Combine Rows

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

Name	<u> </u>	<u>ge</u>	Name 2	<u>Home</u>
Blackbu	ır	5	Menchú	Rent
Kobaya	S Z	21		
Blackbu	ır	5	Alvarez	Rent
Kobaya	S 2	21		
Blackbu	ır	5	Tagore	Own
Kobaya	s Z	21		

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION

WASHINGTON

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Tagore	Own

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION

WASHINGTON

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

•	<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
	Blackbur	5	Menchú	Rent
	Kobayas	21	Menchú	Rent
	Blackbur	5	Alvarez	Rent
	Kobayas	21	Alvarez	Rent
	Blackbur	5	Tagore	Own
	Kobayas	21	Tagore	Own

Combine Rows

The result of a product is a relation with n*m tuples where n and m are the number of tuples in the operands. The arity of the result is i + j where i and j are the arities of the operands.

Name	Age
Blackbu	r 5
Kobaya	s 21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Tagore	Own

Combine Rows

The result of a product is a relation with n*m tuples where n and m are the number of tuples in the operands. The arity of the result is i + j where i and j are the arities of the operands.

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

Join Operation

> A Join is a Product with a select statement

- > Product followed by Select
 - >SELECT * FROM TableR, TableS WHERE Home = "Rent"
 - $> \sigma_{\phi}(R X S)$ where ϕ : Home = "Rent"

–JOIN

- > SELECT * FROM TableR JOIN TableS ON Home = "Rent"
- >R \bowtie_{ϕ} S where ϕ : Home = "Rent"

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

,	<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
	Blackbur	5	Menchú	Rent
	Kobayas	21	Menchú	Rent
	Blackbur	5	Alvarez	Rent
	Kobayas	21	Alvarez	Rent
	Blackbur	5	Tagore	Own
	Kobayas	21	Tagore	Own

Relational Algebra Product with Select: $\sigma_{\varphi}(R~X~S~)~where~\varphi : Home = "Rent" \\ Relational Algebra Join:$

 $R \bowtie_{\phi} S$ where ϕ : Home = "Rent"

& CONTINUING EDUCATION
HINGTON

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

•	<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
	Blackbur	5	Menchú	Rent
	Kobayas	21	Menchú	Rent
	Blackbur	5	Alvarez	Rent
	Kobayas	21	Alvarez	Rent
	Blackbur	5	Tagore	Own
	Kobayas	21	Tagore	Own

Relational Algebra Product with Select: $\sigma_{\varphi}(R~X~S~)~where~\varphi : Home = "Rent" \\ Relational Algebra Join:$

 $R \bowtie_{\phi} S$ where ϕ : Home = "Rent"

& CONTINUING EDUCATION
HINGTON

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent

Relational Algebra Product with Select: $\sigma_{\phi}(R \ X \ S)$ where ϕ : Home = "Rent" Relational Algebra Join:

 $R \bowtie_{\phi} S$ where ϕ : Home = "Rent"

Relational Algebra Operations

So far:

- Union
- Intersect
- Project
- Select
- Product
- Join

Coming up:

Division

Division Operation

This was a Product Operand

This was the result of a Product

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

A Division is sort of like the reverse of a Product

This was a Product Operand

This was the result of a Product

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

A Division is sort of like the reverse of a Product

This was a Product
Operand

This was the result of a Product

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

Add another row to this table that did not result from the product.

<u>Name</u>	<u>Age</u>	
Blackbur	5	
Kobayas	21	
<u> </u>		

Relational Algebra Division: R ÷ S

[Menchú, Rent] is in the same tuple as [Blackbur, 5] and [Kobayas, 21]

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

[Alvarez, Rent] is in the same tuple as [Blackbur, 5] and [Kobayas, 21]

<u>Age</u>
5
21

	<u> </u>
Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

[Tagore, Own] is in the same tuple as [Blackbur, 5] and [Kobayas, 21]

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

The result of a division is a relation with n tuples of arity I where the dividend operand has at least n*m tuples of arity i + j and the divisor operand has exactly m tuples of arity j that are a subset of the dividend tuples.

Blackbur 5	<u>Name</u>	<u>Age</u>
Kohayas 21	Blackbur	5
Robayas 21	Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

Relational Algebra: Resources

Links for definitions and concepts:

- http://en.wikipedia.org/wiki/Cartesian product
- http://en.wikipedia.org/wiki/Commutative property
- http://en.wikipedia.org/wiki/Associative_property
- http://en.wikipedia.org/wiki/Closure (mathematics)
- http://en.wikipedia.org/wiki/Relational calculus
- http://en.wikipedia.org/wiki/Relational_algebra
- http://en.wikipedia.org/wiki/Edgar F. Codd
- http://en.wikipedia.org/wiki/Relational_model
- http://en.wikipedia.org/wiki/Relational_database
- http://en.wikipedia.org/wiki/Query language

Summary

- > Table = Part of a Database
- >Relation = Table with unique rows
- >Attribute = Column in a table relation
 - –Arity number of columns
- >Tuple = Row in the table relation
- > Math operations on a Relation
 - -Union, Intersect, Project, Select, Join
 - –Product, Division

Relational Algebra

The theory behind Relational Databases

Break

Break

Aberrant Data Lab

- Files for Lab:
 - L04-A-1-RemoveOutliers.py
 - L04-A-2-ReplaceOutliers.py

Lesson 04 Quiz 1

Quiz on Aberrant Data

Answer: float("nan")

Remove Missing Values Lab

- Files for Lab:
 - L04-B-1-DataTypes.py (We need to understand data types in the context of missing values)
 - L04-B-2-RemoveMissing.py

Lesson 04 Quiz 2

Quiz on Data Type

Break

Break