# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

#### ОТЧЕТ

# по лабораторной работе №1 по дисциплине «Построение и анализ алгоритмов»

Тема: Поиск с возвратом Вариант: Зи

| Студент гр. 3388 | Трунов Б.Г.   |
|------------------|---------------|
| Преподаватель    | Жангиров Т.Р. |

Санкт-Петербург 2025

#### Цель работы:

Изучить теоретические основы алгоритма поиска с возвратом. Решить с его помощью задачу о разбиении квадрата. Провести исследование зависимости количества итераций от стороны квадрата.

#### Задание:

У Вовы много квадратных обрезков доски. Их стороны (размер) изменяются от 1 до N-1, и у него есть неограниченное число обрезков любого размера. Но ему очень хочется получить большую столешницу - квадрат размера N. Он может получить ее, собрав из уже имеющихся обрезков(квадратов).

Например, столешница размера 7×7 может быть построена из 9 обрезков.



Внутри столешницы не должно быть пустот, обрезки не должны выходить за пределы столешницы и не должны перекрываться. Кроме того, Вова хочет использовать минимально возможное число обрезков.

#### Входные данные:

Размер столешницы - одно целое число N ( $2 \le N \le 20$ ).

#### Выходные данные:

Одно число K, задающее минимальное количество обрезков(квадратов), из которых можно построить столешницу (квадрат) заданного размера N. Далее должны идти K строк, каждая из которых должна содержать три целых числа x,y и w, задающие координаты левого верхнего угла  $(1 \le x, y \le N)$  и длину стороны соответствующего обрезка (квадрата).

#### Пример входных данных:

7

#### Соответствующие выходные данные:

9

1 1 2

1 3 2

3 1 1

4 1 1

3 2 2

5 1 3

444

153

3 4 1

#### Выполнение работы

#### Описание алгоритма:

Общее описание алгоритма:

Алгоритм нацелен на поиск минимального количества подквадратов, полностью покрывающих квадрат размером  $N \times N$ , сочетая метод backtracking с оптимизациями для сокращения вычислений. В зависимости от типа числа N выбирается начальная конфигурация: для простых значений используется стартовая схема из трёх крупных квадратов, а для составных применяется масштабирование решений, найденных для меньших размеров. Процесс перебора организован по принципу «от большего к меньшему» — сначала рассматриваются максимально возможные квадраты, что соответствует локальному оптимальному выбору.

На каждом шаге проверяется корректность размещения квадрата (отсутствие перекрытий с уже установленными). Ветви перебора, где число использованных квадратов превышает текущий рекорд, немедленно отсекаются. Для ускорения работы алгоритм задействует битовые маски для быстрой проверки условий, а также прерывает обработку заведомо неэффективных вариантов до их полного исследования. Эти оптимизации позволяют сохранить вычислительную эффективность даже для крупных значений N, минимизируя количество рассматриваемых комбинаций.

#### Основные этапы работы алгоритма:

#### • Масштабирование исходного квадрата

- $\circ$  **Цель:** Уменьшение задачи для составных N (например, N=k\*m).
- о Действия:
  - Находятся делители N.
  - Задача решается для квадрата с меньшей стороной min  $m \in \{m: m|N\} m$  простое число, а коэффициент *upscaling 'a k* не обязательно простое число.
  - Решение масштабируется обратно с коэффициентом k

#### о Функции в коде:

scale\_size(side\_size : PositiveInt) -> tuple[PositiveInt] - на
 вход подаётся сторона квадрата side\_size(N). Функция ищет минимальный простой делитель числа side\_size и возвращает кортеж из числа m u числа upscaling coefficient.

#### • Инициализация начального разбиения

#### о Жадная стратегия:

- В левый верхний угол помещается квадрат максимально возможного размера: Размер =  $\lceil \frac{N}{2} \rceil$
- Оставшиеся прямоугольники справа и снизу заполняются квадратами остаточного размера.

#### **о** Место в коде:

• В функции *solve* соответственно квадрат с размером (N/2) – квадрат с размером *start\_pave\_size*, квадраты остаточного размера – квадраты со стороной *remainder*.

#### • Работа с битовой матрицей (Bitboard)

#### о Структура данных:

Каждая строка матрицы кодируется битовой маской (1 – место занято, 0 – свободно)

#### о Функции в коде:

- $is\_paved(self) \rightarrow bool метод$  проверки замощения квадрата.
- place\_square(self, x\_coord : PositiveInt, y\_coord : PositiveInt, side\_size : PositiveInt) -> None метод постановки квадрата на BitBoard.
- can\_place\_square(self, x\_coord : PositiveInt, y\_coord : PositiveInt, side\_size : PositiveInt) -> bool метод проверки возможности постановки квадрата на BitBoard.

#### • Перебор с отсечением (Backtracking)

#### о Шаги:

- Поиск первой свободной клетки:
  - Сканирование матрицы сверху вниз и слева направо.

#### Перебор размеров квадратов:

- От максимально возможного до 1×1.
- Для каждого размера проверяется возможность размещения.
- При успешном размещении создаётся новая ветвь перебора.

#### • Отсечение ветвей:

• Если текущее количество квадратов превышает найденный минимум — ветка игнорируется.

#### о Функции в коде:

solve(side\_size : PositiveInt, debug\_mode : bool) -> SolveResult функция поиска минимального замощения.

#### • Сохранение оптимального решения

- о Лучшее решение:
  - Сохраняется конфигурация с минимальным числом квадратов.
- о При обнаружении улучшения обновляется лучшее решение.

#### Оценка сложности алгоритма:

#### • Временная сложность алгоритма

- о Асимптотика  $O(k^N)$ , где 1 < k < 2.
  - Константа k зависит от структуры разбиений (Составные N имеют меньшее значение k, простые большие).

#### о Доказательство:

#### о Резкий рост сложности

- На каждом этапе алгоритм анализирует все допустимые размеры квадратов, которые можно разместить в текущей позиции (x,y). Количество вариантов определяется минимальным значением из (N-x) и (N-y), что в худшем случае приводит к O(N) операций на шаг.
- Без применения оптимизаций количество возможных комбинаций растёт катастрофически быстро например, как функция  $O(N^{N^2})$ . Однако использование двух ключевых подходов позволяет смягчить эту проблему

#### о Оптимизации:

- Жадные стратегии выбор локально оптимальных решений (приоритет крупных квадратов). И жадное начальное разбиение.
- Масштабирование сведение задачи к меньшему размеру для составных N.  $k \approx 1.2$ -1.5
- Отсечение ветвей при достижении текущего минимума.

#### • Пространственная сложность алгоритма

о Асимптотика  $O(N^2*k^N)$ , где k — та же константа что и для времени.

- о Доказательство:
- о Структуры данных:
  - *BitBoard*:
    - Хранит N целых чисел (битовые маски строк),
    - Занимает O(N) памяти на состояние.
  - Список квадратов (squares):
    - В худшем случае (минимальные квадраты  $1 \times 1$ ) содержит  $O(N^2)$  элементов.
- о Стек состояний:
  - Хранит пары (BitBoard, squares),
  - Максимальный размер стека:  $O(k^N)$  (экспоненциальный рост).
- о Дополнительные затраты по памяти:
  - Лучшее решение ( $best\_squares\_com$ ): O( $N^2$ ) памяти.

# Визуализация

Для визуализации работы алгоритма была использована библиотека Pillow.



Рис. 1 Визуализация работы алгоритма.(N=37)

# Тестирование

Таблица 1. Тестирование.

| Входные данные | Выходные данные |
|----------------|-----------------|
| 7              | 9               |
|                | 1 1 4           |
|                | 153             |
|                | 5 1 3           |
|                | 4 5 2           |
|                | 471             |
|                | 5 4 1           |
|                | 5 7 1           |
|                | 6 4 2           |
|                | 662             |
| 25             | 8               |
|                | 1 1 15          |
|                | 1 16 10         |
|                | 16 1 10         |
|                | 11 16 5         |
|                | 11 21 5         |
|                | 16 11 5         |
|                | 16 16 10        |
|                | 21 11 5         |
| 26             | 4               |
|                | 1 1 13          |
|                | 1 14 13         |
|                | 14 1 13         |
|                | 14 14 13        |
| 31             | 15              |
|                | 1 1 16          |
|                | 1 17 15         |
|                | 17 1 15         |
|                | 16 17 1         |
|                | 16 18 1         |
|                | 16 19 4         |
|                | 16 23 3         |
|                | 16 26 6         |
|                | 17 16 3         |

|    | 19 23 3  |
|----|----------|
|    | 20 16 6  |
|    | 20 22 1  |
|    | 21 22 1  |
|    | 22 22 10 |
|    | 26 16 6  |
| 37 | 15       |
|    | 1 1 19   |
|    | 1 20 18  |
|    | 20 1 18  |
|    | 19 20 1  |
|    | 19 21 3  |
|    | 19 24 7  |
|    | 19 31 7  |
|    | 20 19 2  |
|    | 22 19 5  |
|    | 26 24 2  |
|    | 26 26 12 |
|    | 27 19 4  |
|    | 27 23 1  |
|    | 28 23 3  |
|    | 31 19 7  |

## Исследование

В ходе лабораторной работы было проведено исследование зависимости количества итераций от стороны квадрата. В ходе исследования получились следующие результаты (рис. 1 и табл. 2).

Таблица 2. Зависимость количества итераций от стороны квадрата.

| Сторона квадрата | Количество итераций |
|------------------|---------------------|
| 2                | 2                   |
| 3                | 4                   |
| 4                | 2                   |
| 5                | 19                  |

| 6  | 2        |
|----|----------|
| 7  | 92       |
| 8  | 2        |
| 9  | 4        |
| 10 | 2        |
| 11 | 1776     |
| 12 | 2        |
| 13 | 5290     |
| 14 | 2        |
| 15 | 4        |
| 16 | 2        |
| 17 | 43801    |
| 18 | 2        |
| 19 | 103275   |
| 20 | 2        |
| 21 | 4        |
| 22 | 2        |
| 23 | 535267   |
| 24 | 2        |
| 25 | 19       |
| 26 | 2        |
| 27 | 4        |
| 28 | 2        |
| 29 | 4591530  |
| 30 | 2        |
| 31 | 8243190  |
| 32 | 2        |
| 33 | 4        |
| 34 | 2        |
| 35 | 19       |
| 36 | 2        |
| 37 | 57422881 |
| 38 | 2        |
| 39 | 4        |
| 40 | 2        |
|    |          |
|    | 1        |



Рис. 2. Зависимость количества итераций и времени от стороны квадрата

## Вывод

В ходе выполнения лабораторной работы был изучен и реализован алгоритм минимального замощения квадрата, основанный на комбинации методов масштабирования, жадных эвристик и итеративного поиска с возвратом.