

Apprenant : LEPICAUT Didier

Objet : Learning par étude de cas

Période : Centre de formation

Jury Académique : Serge GRATTON - Co-Directeur Ms Valdom / Enseeiht

Intervenant : Pierre BOUDIER - Lecturer of Machine Learning / Enseeiht

Date: 29/01/18

Mots clefs: Pytorch, TF.Keras, CPU, GPU, Deep Learning, Computer Vision

CADRAGE	
date	29 novembre 2018
version	code Pytorch, TF.Keras
source des données	Fichier *.jpg, photos de mains
nombre de classes	k = 3
nombre d'enregistrements	297 (training) + 55 (test) = 352
périmètre	Jeu CHIFOUMI > Figures (Pierre / Feuille / Ciseaux)
problème	Classifieur multi-classes en traitement d'images (ie Computer Vision)
type d'analyse	Méthode d'apprentissage machine supervisée
langage de programmation	Langage Python – Pytorch & TensorFlow - Keras
Note destinée au lecteur	résultats clefs

- SOMMAIRE -

(1) Résumé	p. 3
(2) Problème	p. 4
(3) Données	p. 5
(4) Outils	p. 6
(5) Modèle	p. 7
(6) Résultats	p. 8
(7) Annexes	p. 9

1. Résumé

2. Problème

<u>Demande</u>: « ... entrainer et spécifier une machine qui produit des étiquettes ... »

3. Données

> Type: image au format *.jpg, en couleur

> Taille des images : plusieurs tailles identifiées, mais en entrées avec dimension unique 600 x 600 [max utilisable]

> Taille dataset training = 297 images

> Taille dataset test = 55 images

> Taille dataset total = 297 + 55 = 352 images

> Procédure apprentissage simple (train vs test) = Train (84.37 %) / Test (15.63 %) de la Taille dataset total

> Qualité des données : pas de « Fake image » et/ou « image de mauvaise qualité », toutes vérifiées

> Pas de « preprocessing du type augmentation des données », utilisation brute des images

> Pour garantir la convergence des calculs numériques, une simple normalisation « 1/255 » appliquée aux entrées (normalisation de la valeur de nos entrées 0-255 en 0-1)

4. Outils

HARDWARE			
Processeur	Intel Core i7-8750 H@ 2.20GHz × 12		
Carte graphique	NVIDIA GeForce GTX 1060 Max-Q 6Go		
Mémoire	2×8 Go, DDR4, DDR4-2400 (jusqu'à 32 Go)		
Stockage	SSD 512Go M.2 + HDD 1 To @ 5400 RPM)		
SOFTWARE			
Ubuntu	Lts 18.04 Bionic Beaver		
Anaconda	1.9.6		
Jupyter Notebook	5.7.4		
Nvidia	NVIDIA-SMI 396.54		
	cudatoolkit 9.2		
	cudnn 7.2.1		
Python	version 3.6		
Keras	version 2.2.4		
Tensorflow-GPU	version 1.12.0		

- Stack technique : code du modèle exécuté en mode local (pas d utilisation Google colab, Google Platform ... AWS)
- > Unité de calcul : apprentissage du modèle en mode GPU uniquement
- > Stack logiciel : mobilisation du framework TF-Keras apprentissage profond (permet de faire converger le modèle CNN avec 3x couches convolution 2D)
- > Github : le notebook Python Ms-Valdom est visible https://github.com/bouzou/valdom_chifoumi

5. Modèle

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	598, 598, 32)	896
activation_1 (Activation)	(None,	598, 598, 32)	0
max_pooling2d_1 (MaxPooling2	(None,	299, 299, 32)	0
conv2d_2 (Conv2D)	(None,	297, 297, 32)	9248
activation_2 (Activation)	(None,	297, 297, 32)	0
max_pooling2d_2 (MaxPooling2	(None,	148, 148, 32)	0
conv2d_3 (Conv2D)	(None,	146, 146, 64)	18496
activation_3 (Activation)	(None,	146, 146, 64)	0
max_pooling2d_3 (MaxPooling2	(None,	73, 73, 64)	0
flatten_1 (Flatten)	(None,	341056)	0
dense_1 (Dense)	(None,	64)	21827648
activation_4 (Activation)	(None,	64)	0
dropout_1 (Dropout)	(None,	64)	0
dense_2 (Dense)	(None,	3)	195
activation_5 (Activation)	(None,	3)	0

Total params: 21,856,483 Trainable params: 21,856,483 Non-trainable params: 0

> Choix architecture du modèle apprentissage :

- 4 critères mobilisés pour sélectionner l'architecture adaptée a notre problème
 - . état de l'art des modèles d'apprentissage en computer vision
 - . vérification empirique modèle ranking top3 en compétition Kaggle
 - . utiliser un modèle qui passe l'échelle sur classif image multiclasses
 - . utiliser un CNN activable empiriquement sur des datasets de petites tailles

Modèle retenu = CNN a 3 couches convolutionnelles 2D [performeur sur Mnist]

> Typage des paramètres du CNN:

- . fct activation Relu (Unité de Rectification Linéaire) dans les Conv2D
- . MaxPooling2D 2 x 2 et un pas de 2 (couches d'agrégation spatiale, afin de permettre une invariance aux translations locales)
- . dans la couche « fully connected »
 - une fonction activation de sortie softmax (k=3)
- . dropout = 0.5 technique de régularisation pour réduire l'over-fitting
- . les métriques de performance du modèle
 - fct de perte [loss] = categorical_crossentropy
- optimiseur = adam (adaptative moment estimation Published as a conference paper at ICLR 2015)
 - métrique = accuracy

> Mise en œuvre technique :

- . prise en compte de la taille de nos entrées et déclinaison dans les couches
- . tous les autres paramètres du modèle inchangés
- . pas de travail de fine-tuning des paramètres par procédure de validation croisée
- . pas d'utilisation de model de transfert learning VGG16 ou Inception V3
- . epochs = 10 & batch_size = 25 [valeur max pour ce stack technique et de calculs]
- . Code Py : introduction, d'un compteur de temps pour mesurer l'exécution des Epochs

29 novembre 2018 - 7/9

6. Résultats

```
Epoch 10/10
            Learning TIme for 10 epochs: 477 seconds
## Prédiction
ts = time.time()
score conv val = model conv.evaluate generator(validation generator, test /batch size, verbose=1)
score_conv_train = model_conv.evaluate_generator(train_generator, train / batch_size, verbose=1)
te = time.time()
t_prediction_conv_simple_model = te-ts
print('Train accuracy:', score conv train[1]*100)
print('Validation accuracy:', score conv val[1]*100)
print("Time Prediction: %.2f seconds" %t_prediction_conv_simple_model )
3/2 [=======] - 6s 2s/step
Train accuracy: 93.19727881019618
Validation accuracy: 94.2307690015206
Time Prediction: 50.79 seconds
```

A RETENIR:

Train accuracy = 93.19 %
Validation accuracy = 94.23 %
Temps d'apprentissage = 477 sec ~ 8 minutes

Taux Charge Max GPU ~ 99 % [nvidia-smi]
Temp Max GPU ~ +65.0°C [nvidia X server setting]
Temp Max CPU ~ +58.0°C [sensors]

ANALYSE:

- . Tx Acc. Validation CNN TF.Keras dans l'épure de cette métrique pour ce type de modèle
- . Tx Acc. Val. CNN TF.Keras > Tx Acc Val. MLP Pytorch

Remarque : résultat à confirmer avec un nombre d'Epochs = 100, C-a-d retrouver le résultat théorique nomimal Accuracy train > Accuracy Validation pour garantir que le gradient a bien converge sur un minimum global.

7. Annexes

Implementation - Pytorch - version 3 MLP {Pytorch v1.0.0}

Entrée [32]: model.eval()

output = model(evaluate x)

```
: #== architecture du reseaux fully connected : Multi Layers Perceptron (a 3 couches)
 #== + dropout
 #== + 1 sortie log softmax
 class Model(nn.Module):
     def init (self):
         super(Model, self). init ()
         self.fc1 = nn.Linear(32*32, 64)
         self.fc1 drop = nn.Dropout(0.2)
         self.fc2 = nn.Linear(64, 32)
         self.fc2 drop = nn.Dropout(0.2)
         self.fc3 = nn.Linear(32, 3)
     def forward(self. x):
         x = x.view(-1. 32*32)
         x = F.relu(self.fc1(x))
         x = self.fcl drop(x)
         x = F.relu(self.fc2(x))
         x = self.fc2 drop(x)
         return F.log softmax(self.fc3(x),dim=1)
 model = Model()
 if cuda:
     model.cuda()
 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
 print(model)
```

plt.plot(losses)

[<matplotlib.lines.Line2D at 0x7f6e804dedd8>]

Le perceptron multicouche (multilayer perceptron = MLP) est un type de réseau neuronal formel organisé en plusieurs couches au sein desquelles une information circule de la couche d'entrée vers la couche de sortie uniquement ; il s'agit donc d'un réseau à propagation directe (feedforward).

```
pred = output.data.max(1)[1]
           d = pred.eq(evaluate y.data).cpu()
            accuracy = d.sum().item()/d.size()[0]
            print ('#========')
           print ('Performance de note classifieur en test a la 100e Epoch :')
           print ('#======')
           print ('Accuracy = tx de Bien Classe', round((100*accuracy),2),'%')
           TMC=round((1-accuracy),2)
           print('Taux de mal Classe:', round((TMC*100),2),'%')
            Performance de note classifieur en test a la 100e Epoch :
           #-----
           Accuracy = tx de Bien Classe 34.62 %
           Taux de mal Classe: 65.0 %
Entrée [28]: # == Analyse : sur le critere d accuracy, avec un small dataset, le MLP fait moins bien que le hasard (50%)
Entrée [29]: # == 3 leviers d amelioration pour redresser l accuracy :
            # levier 1 = faire de la "vrai data augmentation", en generant des images avec un reseau GAN
           # levier 2 = utiliser une modele de transfert learning (ie inception v3)
           # levier 3 = levier 2 + un mlp surcouche + une validation croisee kfolds (hyper parametre : nb de couches (?))
Entrée [30]: # Affichage du temps d execution
           print("Temps d execution : %s secondes ---" % round((time.time() - start time),1))
           Temps d execution: 1371.9 secondes ---
Entrée [31]: # == Analyse : pour un GPU GTX1060M < 23 minutes, le temps de convergence est "nominal"</pre>
```

Ms-Valdom « retrouver nos 16 livrables sur Github »

■ LISEZMOI.md

https://github.com/bouzou/valdom_chifoumi

LE PROJET:

- date: 08.01.19
- · auteur: didier lepicaut membre de l'équipe projet Valorisation des Donnees Massives
- · objet: code pytorch d'algorithmes d'apprentissage statistique en Computer Vision
- · version: mode projet, tests de codes, tests d'architectures

LES LIVRABLES:

suite à l'intervention de Pierre Boudier, expert de la société Nvidia, voici les codes de:

2018:

- Debruiteur RNN y = sin (x) GRU CPU pytorque
- RNN Fit y = sin (x) CPU pytorque
- RN Fit y = sin (x) Réseaux de neurones couche dense GPU keras ** mean_squared_error: 0.01% **
- · CNN avec attaque-défense (GPU pytorch)
- · AE 6 couches de débruiteur d image GPU keras
- · VAE CNN GPU pytorch
- · AE CPU Pytorch
- AE GPU keras
- 1 CNN multi-classes k = 3, Chifouni GPU keras ** précisions en validation = 94.23% **

2019:

. GAN = Generative Adversarial Networks - GPU - Keras, 400 epochs, creer les chiffres 0 à 9 de MNIST