DAV Experiment 1

1. Matplotlib

In [22]:

```
import pandas as pd
import matplotlib.pyplot as plt
```

In [27]:

```
# reading the csv data set
df = pd.read_csv("data_python.csv")
```

In [28]:

df.head()

Out[28]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											>

In [35]:

```
# Plotting Scatter plot of loan_ID vs Education
plt.bar(df['Loan_ID'], df['Education'])
```

Out[35]:

<BarContainer object of 614 artists>

In [33]:

```
# Giving our plot a title
plt.title("Bar Chart")
```

Out[33]:

Text(0.5, 1.0, 'Bar Chart')

In [36]:

```
# Giving x and y Labels names
plt.xlabel('Loan_ID')
plt.ylabel('Education')
plt.show()
```


2. Seaborn

In [37]:

import seaborn as sns

In [38]:

```
# reading the csv data set using pandas
df = pd.read_csv("data_python.csv")
```

In [39]:

df.head()

Out[39]:

arried	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_
No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban	
Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	
Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	
Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	
No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	
4										>

In [40]:

```
sns.lineplot(x='Loan_ID', y='Education', data=df)
plt.show()
```


3. Bokeh

In [41]:

import bokeh.plotting

In [42]:

```
# creating an object for the figure
chart = bokeh.plotting.figure(title="Bokeh Bar Chart")
```

```
In [43]:
# reading the csv dataset through pandas
df = pd.read_csv("data_python.csv")
In [44]:
df.head()
Out[44]:
    Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_Hist
0 LP001002
                Male
                          No
                                        0
                                            Graduate
                                                                No
                                                                               5849
                                                                                                   0.0
                                                                                                               NaN
                                                                                                                                  360.0
 1 LP001003
                          Yes
                                                                No
                                                                               4583
                                                                                                 1508.0
                                                                                                               128.0
                                                                                                                                  360.0
                                                                                                                                  360.0
 2 LP001005
                Male
                          Yes
                                        0
                                            Graduate
                                                                Yes
                                                                               3000
                                                                                                    0.0
                                                                                                                66.0
                                                 Not
 3 LP001006
                                                                                                 2358.0
                                                                                                               120.0
                                                                                                                                  360.0
                Male
                          Yes
                                        0
                                                                No
                                                                               2583
                                            Graduate
 4 LP001008
                                        0
                                            Graduate
                                                                               6000
                                                                                                    0.0
                                                                                                               141.0
                                                                                                                                  360.0
                Male
                          No
                                                                No
In [45]:
# Counting unique columns of thwe tips file
count = df['Education'].value_counts()
In [46]:
# plotting the graph
chart.line(count, df['Education'])
BokehUserWarning: ColumnDataSource's columns must be of the same length. Current lengths: ('x', 2), ('y', 614)
Out[46]:
GlyphRenderer(
id = '1211', ...)
coordinates = None,
data_source = ColumnDataSource(id='1207', ...),
glyph = Line(id='1208', ...),
group = None,
hover_glyph = None,
js_event_callbacks = {},
js_property_callbacks = {},
level = 'glyph',
muted = False.
muted_glyph = Line(id='1210', ...),
name = None,
nonselection_glyph = Line(id='1209', ...),
selection_glyph = 'auto',
subscribed_events = [],
syncable = True,
tags = [],
view = CDSView(id='1212', ...),
visible = True.
x_range_name = 'default',
y_range_name = 'default')
In [47]:
# showing the figure
bokeh.plotting.show(chart)
  4. Plotly
In [56]:
# importing the required modules
import plotly.express
```

```
In [57]:
```

```
# reading the csv dataset through pandas
df = pd.read_csv("data_python.csv")
```

In [58]:

df.head()

Out[58]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	_
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											•

In [61]:

plotting our scatter plot
graph = plotly.express.scatter(df, x="Loan_ID", y="Education", color='Property_Area')

In [62]:

displaying the plot created
graph.show()

Plots to be used for visualization

Histogram

In [63]:

df.head()

Out[63]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											•

In [64]:

%matplotlib inline

In [69]:

```
plt.hist(x='ApplicantIncome', data=df)
plt.show()
```


In [70]:

```
plt.hist(x='ApplicantIncome', data=df, bins=5)
plt.show()
```


Scatter plot

In [71]:

df.head()

Out[71]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											>

In [74]:

df.plot.scatter('Loan_ID','LoanAmount')

Out[74]:

<AxesSubplot:xlabel='Loan_ID', ylabel='LoanAmount'>

Line plot

In [114]:

```
keep_up = df.query("Married == 'No'")
sns.lineplot(data=keep_up, x="Loan_ID", y="LoanAmount")
```

Out[114]:

<AxesSubplot:xlabel='Loan_ID', ylabel='LoanAmount'>

• Swarm plot (using seaborn)

In [78]:

```
# ignoring warnings
import warnings
warnings.filterwarnings("ignore")
```

In [77]:

```
sns.swarmplot(data=df, x="Loan_ID", y="LoanAmount")
```

Out[77]:

<AxesSubplot:xlabel='Loan_ID', ylabel='LoanAmount'>

· Violin plot

In [81]:

```
sns.violinplot(x="Dependents", y="LoanAmount", data=df , size=10)
```

Out[81]:

<AxesSubplot:xlabel='Dependents', ylabel='LoanAmount'>

KDE plot

In [84]:

```
sns.kdeplot(data=df, x="LoanAmount")
```

Out[84]:

<AxesSubplot:xlabel='LoanAmount', ylabel='Density'>

• Pie chart

In [100]:

df.head()

Out[100]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											•

In [101]:

x= df[['Loan_ID']]

In [102]:

plt.figure(figsize=(8,5))

Out[102]:

<Figure size 576x360 with 0 Axes>

<Figure size 576x360 with 0 Axes>

```
In [103]:
```

```
labels = ['LP001002', 'LP001003', 'LP00104', 'LP00105', 'LP00106', 'LP00107']
```

In [108]:

```
plt.pie([1002, 1003, 1004, 1005, 1006, 1007], labels = labels, autopct='%.1f %%')
```

Out[108]:

• Heat maps

In [85]:

df.corr()

Out[85]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
ApplicantIncome	1.000000	-0.116605	0.570909	-0.045306	-0.014715
CoapplicantIncome	-0.116605	1.000000	0.188619	-0.059878	-0.002056
LoanAmount	0.570909	0.188619	1.000000	0.039447	-0.008433
Loan_Amount_Term	-0.045306	-0.059878	0.039447	1.000000	0.001470
Credit_History	-0.014715	-0.002056	-0.008433	0.001470	1.000000

In [86]:

sns.heatmap(df.corr(), annot=True)

Out[86]:

<AxesSubplot:>

Pair plot

In [87]:

```
sns.set(rc={'figure.figsize':(25,12)})
sns.pairplot(df)
```

Out[87]:

<seaborn.axisgrid.PairGrid at 0x2627f8101c0>

* Box plot

In [88]:

df.head()

Out[88]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											•

In [91]:

df['LoanAmount'].plot.box()

Out[91]:

<AxesSubplot:>

Count plot

In [109]:

df.head()

Out[109]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_His
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
4											•

In [116]:

sns.countplot(x='Gender', data=df, hue='Education')

Out[116]:

<AxesSubplot:xlabel='Gender', ylabel='count'>

In []: