Statistical Inference

B. Statistical Data Science 2nd Year Indian Statistical Institute

Teacher: Soham Sarkar

Exercise Series 6

Exercise 1. Let $X_1, X_2 \stackrel{\text{i.i.d.}}{\sim} f_{\theta}$, where $f_{\theta}(x) = \theta x^{\theta-1} e^{-x^{\theta}}$, x > 0, $\theta > 0$. Show that $\frac{\log X_1}{\log X_2}$ is ancillary.

Hint: Notice that f_{θ} is the pdf of Y^{θ} , where $Y \sim \text{Exponential}(1)$.

Exercise 2. For the following cases, verify whether the minimal sufficient statistic is complete.

(a)
$$f_p = \mathsf{Bernoulli}(p), p \in (0,1). \ T = \sum_{i=1}^n X_i.$$

(b)
$$f_{\lambda} = \mathsf{Poisson}(\lambda), \ \lambda > 0. \ T = \sum_{i=1}^{n} X_{i}.$$

(c)
$$f_p = \text{Geometric}(p), p \in (0, 1). \ T = \sum_{i=1}^n X_i.$$

(d)
$$f_{\theta} = \mathsf{Uniform}(\theta, 1), \ \theta < 1. \ T = X_{(1)}.$$

$$\text{(e)} \ \ f_{\theta} = \mathsf{Uniform}(\theta, \theta+1), \ \theta \in \mathbb{R}. \ \ \mathbf{T} = \left(X_{(1)}, X_{(n)}\right).$$

Hint: This is a distribution from the location family. What can you say about $X_{(n)} - X_{(1)}$?

(f)
$$f_{\sigma} = \operatorname{Normal}(0, \sigma^2), \ \sigma > 0. \ T = \sum_{i=1}^{n} X_i^2.$$

(g)
$$f_{\mu,\sigma} = \mathsf{Normal}(\mu, \sigma^2), \ \mu \in \mathbb{R}, \sigma > 0. \ \mathbf{T} = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right).$$

(h)
$$f_{\sigma} = \mathsf{Laplace}(0, \sigma), \ \sigma > 0. \ T = \sum_{i=1}^{n} |X_i|.$$

$$(\mathrm{i}) \ \ f_{\theta} = \mathsf{Normal}(\theta, \theta^2), \ \theta \in \mathbb{R}. \ \ \mathbf{T} = \Biggl(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2 \Biggr).$$

$$(\mathbf{j}) \ f_{\theta} = \mathsf{Normal}(\theta, \theta), \, \theta > 0. \ T = \sum_{i=1}^n X_i^2.$$

$$(\mathbf{k}) \ \mathsf{Beta}(\alpha,\beta), \ \alpha > 0, \beta > 0. \ \mathbf{T} = \Biggl(\prod_{i=1}^n X_i, \prod_{i=1}^n (1-X_i) \Biggr).$$

(l)
$$\operatorname{Gamma}(\alpha, \lambda), \ \alpha > 0, \lambda > 0. \ \mathbf{T} = \left(\sum_{i=1}^{n} X_i, \prod_{i=1}^{n} X_i\right).$$

(m) Multinomial $(n; p_1, \dots, p_{k-1}), p_1, \dots, p_{k-1} \in (0, 1), 0 < p_1 + \dots + p_{k-1} < 1.$

$$\mathbf{T} = \left(\sum_{i=1}^{n} X_{1i}, \dots, \sum_{i=1}^{n} X_{k-1,i}\right).$$

Note: This is the *full rank* or *non-degenerate* version of the multinomial distribution. The pmf is given by

$$\mathbb{P}(X_1 = x_1, \dots, X_{k-1} = x_{k-1}) = \frac{n!}{x_1! \cdots x_{k-1}! (n - x_1 - \dots - x_{k-1})!}$$
$$p_1^{x_1} \cdots p_{k-1}^{x_{k-1}} (1 - p_1 - \dots - p_{k-1})^{n - x_1 - \dots - x_{k-1}},$$
$$0 \le x_1, \dots, x_{k-1} \le n, 0 \le x_1 + \dots + x_{k-1} \le n.$$

This is similar to the pmf we defined earlier, except p_k and x_k are missing, and we have $1 - p_1 - \cdots - p_{k-1}$ and $n - x_1 - \cdots - x_{k-1}$ in their places. Because of these changes, it is no longer true that $\sum_i p_i = 1$ and $\sum_i x_i = n$. This allows us to avoid degeneracy/non-full-rankness.

(n) $\mathsf{BVN}(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho), \, \mu_x \in \mathbb{R}, \mu_y \in \mathbb{R}, \sigma_x > 0, \sigma_y > 0, \rho \in (-1, 1).$

$$\mathbf{T} = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} Y_i, \sum_{i=1}^{n} X_i^2, \sum_{i=1}^{n} Y_i^2, \sum_{i=1}^{n} X_i Y_i\right).$$

Exercise 3. Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathsf{Normal}(\theta, a\theta^2)$, where a > 0 is a known constant and $\theta \in \mathbb{R}$ is the parameter.

- (a) Show that $\mathbf{T} = (\overline{X}, S^2)$ is minimal sufficient for θ .
- (b) Show that the parameter space $\{(\theta, a\theta^2) : \theta \in \mathbb{R}\}$ does not contain a two-dimensional open set.

Hint: Try to visualize the parameter space in \mathbb{R}^2 .

(c) Show that the minimal sufficient statistic **T** is not complete.

Hint: Start with $\mathbb{E}_{\theta}(\overline{X})$, $\mathbb{E}_{\theta}(\overline{X}^2)$, $\mathbb{E}_{\theta}(S^2)$.

Exercise 4. Suppose that the random variable X takes the values 0, 1 and 2 according to the following pmf

$$\mathbb{P}_{\theta}(X=0) = \theta, \quad \mathbb{P}_{\theta}(X=1) = 3\theta, \quad \mathbb{P}_{\theta}(X=2) = 1 - 4\theta, \quad 0 < \theta < \frac{1}{4}.$$

Verify whether X is complete.

Is X complete with the following pmf?

$$\mathbb{P}_{\theta}(X=0) = \theta, \quad \mathbb{P}_{\theta}(X=1) = \theta^2, \quad \mathbb{P}_{\theta}(X=2) = 1 - \theta - \theta^2, \quad 0 < \theta < \frac{1}{2}.$$

Exercise 5. As we mentioned in the class, completeness is a property of the entire family of distributions of a statistic. In particular, the parameter space plays a vital role in determining whether a statistic is complete. Let $X \sim \mathsf{Poisson}(\theta)$, where $\theta \in \{1, 2\}$. Show that X is not complete.

Note: We have already seen that if $T \sim \mathsf{Poisson}(n\theta)$, $\theta > 0$, then T is complete. Here, the completeness is lost when the parameter space is changed.

Exercise 6. Let X_1, \ldots, X_n be i.i.d. with pdf $f_{\theta}(x) = e^{-(x-\theta)}, \quad x > \theta, \ \theta \in \mathbb{R}$.

- (a) Show that $X_{(1)}$ is complete sufficient for θ .
- (b) Define $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ to be the sample variance based on X_1, \dots, X_n . Show that $X_{(1)}$ and S^2 are independent.

Hint: Use Basu's theorem. The pdf f_{θ} is a member of the location family. S^2 can be written as

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{2n(n-1)} \sum_{1 \le i, j \le n} (X_{i} - X_{j})^{2}.$$

Exercise 7. Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathsf{Gamma}(\alpha, \theta)$, where $\alpha > 0$ is a known constant and $\theta > 0$ is the parameter.

- (a) Show that $T = \sum_{i=1}^{n} X_i$ is sufficient for θ .
- (b) Show that $T \sim \mathsf{Gamma}(n\alpha, \theta)$.

Hint: Find the moment generating function/characteristic function of X_1 . What is the characteristic function of $X_1 + \cdots + X_n$? Be careful about the domain of the moment generating function. It is not defined everywhere.

- (c) Use part (b) to show that T is complete.
- (d) Verify that $Gamma(\alpha, \theta)$ with known α is a scale family.
- (e) Use part (d) to show that $\frac{X_{(i)}}{T}$ is an ancillary statistic.
- (f) Use Basu's theorem to conclude that

$$\mathbb{E}\left(X_{(i)} \mid T\right) = \mathbb{E}\left(\frac{X_{(i)}}{T} \mid T\right) = \mathbb{E}\left(\frac{X_{(i)}}{T} \mid T\right) T = \frac{\mathbb{E}\left(X_{(i)}\right)}{\mathbb{E}(T)} T.$$

Hint: If X/Y and Y are independent, then

$$\mathbb{E}(X) = \mathbb{E}\left(\frac{X}{Y} Y\right) = \mathbb{E}\left(\frac{X}{Y}\right) \mathbb{E}(Y) \quad \Rightarrow \quad \mathbb{E}\left(\frac{X}{Y}\right) = \frac{E(X)}{\mathbb{E}(Y)}.$$

Exercise 8. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be i.i.d. with pdf $f_{\theta}(x, y) = e^{-(\theta x + y/\theta)}, \quad x > 0, y > 0, \ \theta > 0.$ Define $T = \sqrt{\frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} Y_i}}$ and $U = \sqrt{\sum_{i=1}^{n} X_i \sum_{i=1}^{n} Y_i}.$

- (a) Show that T and U are jointly sufficient for θ .
- (b) Show that (T, U) is not complete.