## Modeling For Inference

#### Modeling for inference

- Descriptive or causal inference
- Focus on understanding the data generating process and its component parts
- Concerned with statistical significance
- Theory driven
- Hypothesis testing
- Regression
- White box

#### Modeling for prediction

- Forecasting
- Not concerned with model components
- Concerned with out of sample prediction
- Less theory driven
- Wider variety of methods used
- Black box

# Inferential Modeling With Regression







### Generalized Linear Models

- 1. An exponential distribution for modeling Y
- 2. A linear predictor
- 3. A link function

**Probability Distribution:** A mathematical function that gives the probability of a random phenomenon occurring in terms of its sample space.

Normal: Continuous random variables



- Normal: Continuous random variables
- Poisson and negative binomial: Count of events



- Normal: Continuous random variables
- Poisson and negative binomial: Count of events
- Binomial: Number of positive results in independent experiments.



- Normal: Continuous random variables
- Poisson and negative binomial: Count of events
- Binomial: Number of positive results in independent experiments.
- Exponential, Gamma, Weibull: Time to event.



#### A linear predictor

$$\beta_0 + \beta_1 X_i$$

#### A link function

• "Links" the linear predictor to the probability distribution.

Given link function g:

$$E(Y|X) = \mu = g^{-1}(\beta_0 + \beta_1 X_i)$$

| Distribution        | Support of distribution                                                                | Typical uses                                                                   | Link<br>name       | Link function, $\mathbf{X}oldsymbol{eta}=g(\mu)$               | Mean function                                                                                                               |
|---------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Normal              | real: $(-\infty, +\infty)$                                                             | Linear-response data                                                           | Identity           | $\mathbf{X}oldsymbol{eta}=\mu$                                 | $\mu = \mathbf{X} \boldsymbol{eta}$                                                                                         |
| Exponential         | real: $(0,+\infty)$                                                                    | Exponential-response data, scale parameters                                    | Negative inverse   | $\mathbf{X}oldsymbol{eta} = -\mu^{-1}$                         | $\mu = -(\mathbf{X}oldsymbol{eta})^{-1}$                                                                                    |
| Gamma               |                                                                                        |                                                                                |                    |                                                                |                                                                                                                             |
| Inverse<br>Gaussian | real: $(0,+\infty)$                                                                    |                                                                                | Inverse<br>squared | $\mathbf{X}oldsymbol{eta}=\mu^{-2}$                            | $\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$                                                                                   |
| Poisson             | integer: $0,1,2,\ldots$                                                                | count of occurrences in fixed amount of time/space                             | Log                | $\mathbf{X}oldsymbol{eta} = \ln(\mu)$                          | $\mu = \exp(\mathbf{X}oldsymbol{eta})$                                                                                      |
| Bernoulli           | integer: $\{0,1\}$                                                                     | outcome of single yes/no occurrence                                            | -                  | $\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$ | $\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1+\exp(-\mathbf{X}oldsymbol{eta})}$ |
| Binomial            | integer: $0,1,\ldots,N$                                                                | count of # of "yes" occurrences out of N yes/no occurrences                    |                    | $\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{n-\mu} ight)$ |                                                                                                                             |
|                     | integer: $[0,K)$                                                                       |                                                                                |                    | $\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$ |                                                                                                                             |
| Categorical         | K-vector of integer: $[0,1]$ , where exactly one element in the vector has the value 1 | outcome of single K-way occurrence                                             |                    |                                                                |                                                                                                                             |
| Multinomial         | $	extit{	extit{K-vector of integer: } [0,N]}$                                          | count of occurrences of different types (1 K) out of N total K-way occurrences |                    |                                                                |                                                                                                                             |

- 1. An exponential distribution for modeling Y
- 2. A linear predictor
- 3. A link function

- 1. An exponential distribution for modeling  $Y \longleftarrow$  Theory driven
- 2. A linear predictor
- 3. A link function

- 1. An exponential distribution for modeling  $Y \longleftarrow$  Theory driven
- 2. A linear predictor
- 3. A link function  $\leftarrow$  Done by R

- 1. An exponential distribution for modeling Y Theory driven
- 2. A linear predictor ← The hard part
- 3. A link function  $\leftarrow$  Done by R

How is your degree different from a stats or information science degree?

## What makes modeling human behavior so difficult?

#### Vocabulary

- Inferential modeling
- Predictive modeling
- GLM
- Probability distribution
- Link function
- · Normal, Poisson, Binomial, and Exponential distributions