单周期CPU设计

李厚润2019202463

单周期数据通路设计以及合并

指令	Adder	Adder	PC	IM	REG	REG	REG	REG	ALU	ALU	DM	DM	Nadd	Nadd	shift
指令	Α	В	PC	addr	reg1	reg2	Wreg	Wdata	А	В	Addr	Wdata	A	В	imm
R型指 令	PC	4	Adder	PC	Rs	Rt	Rd	ALU	Rdata1	Rdata2					
addi	PC	4	Adder	PC	Rs		Rt	ALU	Rdata1	signedExt16					
LW	PC	4	Adder	PC	Rs		Rt	DM	Rdata1	signedExt16	ALU				
SW	PC	4	Adder	PC	Rs	Rt			Rdata1	signedExt16	ALU	Rdata2			
Beq	PC	4	Adder Nadd	PC	Rs	Rt			Rdata1	Rdata2			Adder	shift	imm16
lui	PC	4	Adder	PC			Rt	ALU		imm16					
ori	PC	4	Adder	PC	Rs		Rt	ALU	Rdata1	imm16					
j	PC	4	shift26	PC											imm26
jal	PC	4	shift26				GR[31]	Nadd					Adder	4	imm26
jr	PC	4	Rdata1	PC	Rs										
syscall															
合并	PC	4	Adder Nadd shift Rdata1	PC	Rs	Rt	Rd Rt GR[31]	ALU DM Nadd	Rdata1	Rdata2 imm16 signedExt16	ALU	Rdata2	Adder	shift 4	imm

主控单元控制信号分析

我们用:

- RegDst 表示向GeneralPurposeRegisters 写入的目的寄存器
- ALUSrc 表示ALU第二个操作数B的来源
- MemtoReg 表示向GeneralPurposeRegisters 写入的数据
- Branch表示跳转指令的类型
- ALUOP表示ALU操作码

1. RegDst wire[1:0] for wreg

jal指令: RegDst = 2, 选择GR[31]
R型指令: RegDst = 1, 选择Rd
其他: RegDst = 0, 选择Rt

2. ALUSrc wire[1:0] for ALUB

• R型指令或者Beq: ALUSrc = 0, 选择寄存器的Rdata2作为输入

• lui, ori: ALUSrc = 1, 选择立即数imm16作为输入

• 其他: ALUSrc = 2, 选择立即数signedExt16作为输入

3. MemtoReg wire[1:0] for wdata

• jal指令: MemtoReg = 2, 选择Nadd输出(pc+8)

• LW指令: MemtoReg = 1,选择数据存储器DM输出

• 其他: MemtoReg = 0, 选择ALU输出

4. Branch wire[1:0]

• jal, j指令: Branch= 2'b11, PC设置为shift26

• jr指令: Branch= 2'b10, PC设置为Rdata1

• Beq指令: Branch=2'b01,此时若Zero=1, PC设置为选择加法器Nadd 输出(分支指令目的地址),否则设置为Add输出(PC+4)

• 其他指令:Branch= 2'b00, PC设置为加法器Add输出(PC+4)

5. ALUOP wire[2:0]

• ALUOP = 3'b000 add

• ALUOP = 3'b001 addu

• ALUOP = 3'b010 sub

• ALUOP = 3'b011 subu

• ALUOP = 3'b100 lui

• ALUOP = 3'b101 ori

单周期控制器设计

Input/output	signal	R- format(addu)	R- format(subu)	R- format(sub)	addi	LW	SW	Beq	lui	ori	j	jal	jr
Input	OP5	0	0	0	0	1	1	0	0	0	0	0	0
Input	OP4	0	0	0	0	0	0	0	0	0	0	0	0
Input	OP3	0	0	0	1	0	1	0	1	1	0	0	0
Input	OP2	0	0	0	0	0	0	1	1	1	0	0	0
Input	OP1	0	0	0	0	1	1	0	1	0	1	1	0
Input	OP0	0	0	0	0	1	1	0	1	1	0	1	0
input	func5	1	1	1	х	x	x	х	х	х	х	х	0
input	func4	0	0	0	x	x	x	х	х	х	х	х	0
input	func3	0	0	0	x	×	×	х	х	х	х	х	1
input	func2	0	0	0	x	x	x	х	х	х	х	х	0
input	func1	0	1	1	х	x	x	х	х	х	х	х	0
input	func0	1	1	0	x	x	x	х	х	х	х	х	0
output	RegDst	1	1	1	0	0	×	х	0	0	х	2	х
output	ALUSrc	0	0	0	2	2	2	0	1	1	х	х	х
output	MemtoReg	0	0	0	0	1	х	х	0	0	х	2	х
output	Branch1	0	0	0	0	0	0	0	0	0	1	1	1
output	Branch0	0	0	0	0	0	0	1	0	0	1	1	0
output	RegWrite	1	1	1	1	1	0	0	1	1	0	1	0
output	MemRead	0	0	0	0	1	0	0	0	0	0	0	0
output	MemWrite	0	0	0	0	0	1	0	0	0	0	0	0
output	ALUOP2	0	0	0	0	0	0	0	1	1	х	х	х
output	ALUOP1	0	1	1	0	0	0	1	0	0	х	х	х
output	ALUOP0	1	1	0	0	0	0	0	0	1	х	х	х