Mathematics Grade 9 June Paper (0001) Memo

Time: 2H

Total:100 marks

Section A (Algebra): [75]

Question 1: [8]

1.1 Complete the following table:

(6)

	Set builder notation:	Interval notation:	Graphic representation:			
(a)	$\{m \mid m \geq -10 \; ; \; m \in \mathbb{R}\}$	m ∈ [-10; ∞)	∠-10 →			
(b)	{x/-2 <x 2;="" <="">C ∈ IE}</x>	None	-3 -2 -1 0 1 2 3 4 5			
(c)	{y/ 0 × y × 30; y∈R}	$y \in [0;30]$				

1.2 Given: $-3, \dot{7}$; 125; $\sqrt[3]{-1}$; $\frac{14}{2}$; 4,125; $\sqrt{125}$ and π

(a) Write down the integer(s).

(1)

(a) Write down the integer(s). (1
$$\frac{\sqrt[3]{-1}}{\sqrt[3]{-1}} = -1$$

$$\therefore 125 ; \sqrt[3]{-1} : \frac{14}{2}$$

(b) Write down the irrational number(s).

(1)

Question 2: [13]

2.1 Simplify, without using a calculator.

Write the answers as positive exponents.

(a)
$$\sqrt{\frac{75mn^{19}}{12m^5n^3}}$$

$$= \sqrt{\frac{25}{4}} \frac{n^{-\frac{4}{2}} n^{\frac{16}{2}}}{4}$$

$$= \frac{5}{2} \frac{n^{-\frac{4}{2}} n^{\frac{16}{2}}}{2}$$

$$= \frac{5 m^2 n^8}{2}$$

$$= \frac{5 n^8}{2 m^3}$$

2.2 Simplify, without using a calculator and write the answer in scientific notation. (3)

$$(1,5 \times 10^{3}) \div (5 \times 10^{5})$$

$$= (1,5 \div 5) \times (10^{3} \div 10^{5})$$

$$= 0,3 \times 10^{-2}$$

$$= 3,0 \times 10^{-1} \times 10^{-2}$$

$$= 3,0 \times 10^{-3}$$

2.3 Solve for x:

(a)
$$2x^{\frac{2}{3}} = 32$$

 $x^{\frac{2}{3}} = \frac{32}{2}$ (2)

$$(x^{\frac{1}{5}})^{\frac{1}{2}} = 16$$

$$x' = (x^{\frac{2}{4}})^{\frac{3}{4}}$$

(b)
$$8^{x} = 0,5^{x+1}$$

$$\left(2\right)^{x} = \left(\frac{1}{2}\right)^{x+1}$$

$$2^{3x} = \sqrt{(2^{-1})^{x+1}}$$

$$2^{3x} = 2^{-x-1}$$

$$4x = -1$$

$$x = -\frac{1}{4}$$

Question 3: [10]

(2)

3.1 Complete the following table and answer the questions below:

		\circ	<u> </u>		\sim
Position in sequence:	1	3	4	5	8
Term:	3	-5	-9	-13	-254

(a) Determine the general term and write it as $T_n = \dots$ (2)

$$T_{n} = a + (n-1)d$$

$$T_{n} = 3 + (n-1)(-4)$$

$$T_{n} = 3 - 40 + 4 = 7 - 40$$

(b) Determine the 20th term. (2)

$$T_n = 7 - 40$$
 $T_{20} = 7 - 4(20)$
 $T_{20} = -73$

(c) which term will be equal to -301?	(2)
$T_0 = 7^-40$	
-361 = 7-40	
40=7+301 = 308	
$D = \frac{308}{4} = 77$	
3.2 Complete the next three terms in the sequence and write the pattern in	ı words:
-128 ; 64 ; -32 ; 16 ;	(2)
	(2)
-8.42	1151 1911
Divide by (-2) or multiply ω , $a = (-\frac{1}{2})$	<u>+</u> <u> </u>
Question 4 : [21]	
4.1 Consider the following algebraic expression:	
$3xy + 4x^2(2-3x) - 7 + 6x^{11}y^3 - (x^3-2)$	
(a) How many terms are there in the expression?	(1)
5 terms	
	(2)
(b) Shiping the expression.	(3)
(c) Arrange the expression in (b) in ascending powers of x.	<u>-1350 ~3</u>
(c) Arrange the expression in (b) in ascending powers of x .	(1)
-5+3xy+8x2-13x2+60c"y3V	
(d) Write down the constant term in (b).	(1)
	(-)

4.2 If $m = \frac{3}{4}$; n = -0.5 and t = 0, calculate the numerical value of the following without using a calculator. Show all calculations.

(a)
$$(6m - 3n)^2$$

 $= [6(\frac{3}{4}) - 3(-0.5)]^2$
 $= [\frac{6}{1} \times \frac{3}{4} - \frac{3}{1} \times -\frac{1}{2}]^2$
 $= [\frac{9}{2} + \sqrt{3}]^2$
 $= [\frac{12}{2}]^2 = [6]^2 = 36$

(b)
$$\frac{n}{m} + 5t - m^t$$

$$= \frac{-0.5}{\frac{3}{4}} + 5(0) - \left(\frac{3}{4}\right)^0$$

$$= -\frac{1}{2} \div \frac{3}{4} + 0 - 1$$

$$= -\frac{1}{2} \times \frac{4^2}{3} - 1$$

$$= -\frac{2}{3} - 1 = -1\frac{2}{3}$$
(3)

4.3 Simplify:

(a)
$$(3k - p)(2k + p)$$

 $= 6k^2 + 3kp - 2kp - p^2$
 $= 6k^2 + 1kp - p^2$
(2)

(b)
$$2(x+5)^2$$
 (3)
= $2(x+5)(x+5)$
= $2(x^2+5x^2+5x+25)$
= $2(x^2+6x+25)$
= $2(x^2+6x+25)$
= $2(x^2+6x+25)$

(c)
$$2pq^{3}(p^{2}q^{2}-2)-(p^{3}q^{4}+3pq)$$
 (4)
 $=2p^{3}q^{4}-4pq^{3}-1p^{3}q^{4}-3pq$
 $=1p^{3}q^{4}-4pq^{3}-3pq$

Question 5: [18]

5.1 Solve for x:

(a)
$$4x = 6x - 2$$
 (1)

$$4 = 6x = -2 + 3$$

$$-2x = 1$$

$$x = -\frac{1}{2}$$

(b)
$$3(x + 1) - (x - 2)^2 = 2 - x^2$$
 (4)
 $3x + 3 - (x^2 - 2x - 2x + 4) = 2 - x^2$
 $3x + 3 - x^2 + 4x - 4 = 2 - x^2$
 $7x - x^2 + x^2 = 3 + 4 + 2$
 $7x = 3 \rightarrow x = \frac{3}{7}$

(c)
$$(3x - 2)(4 - 3x) = 0$$
 (2)

$$3x - 2 = 0 \qquad 0 - 4 - 3x = 0$$

$$x = \frac{2}{3} \qquad x = \frac{4}{3} \qquad x = \frac{4}{3}$$

(d)
$$\frac{x-4}{2} + \frac{1}{x} = \frac{x}{2}$$

$$\frac{\cancel{2}x}{\cancel{2}} \times \frac{\cancel{(x-4)}}{\cancel{2}} + \frac{\cancel{2}\cancel{x}}{\cancel{x}} \times \frac{\cancel{1}}{\cancel{x}} = \frac{\cancel{2}\cancel{x}}{\cancel{x}} \times \frac{\cancel{x}}{\cancel{2}}$$
(4)

$$3c(x-4) + 2x1 = xxx$$

$$3c^2 - 43c + 2 = x^2$$

$$\frac{x^2 - 4x(-x^2 = -2)}{-4x = -2}$$

$$-4x = -2$$

$$DC = \frac{-2}{-4}$$

$$\infty = \frac{1}{2} \sqrt{}$$

5.2 Calculate
$$x$$
 and y if $2x + 3 = x$ and $4y - x = 7$ (3)

$$2x + 3 = x$$
 $2x - x = -3$
 $3x + 3 = x$
 $4y - 3x = 7$
 $3x + 3 = 7$
 $3x + 3 = x$
 $4y - (-3) = 7$
 $3x + 3 = 7$

$$4y = 4$$

$$y = 4$$

$$y = 4$$

5.3	the season that is 0,3 m less than the personal best for Karen for the season. The personal best for the season for Carel, Karen's brother, is double
	Sandra's personal best for the season. The total (each athlete's personal best) for the three athletes is 15,5 meters. Calculate Karen's personal best for the season. (4)
	Assume Karen's personal best is a meters
_	:. Sordras " " is (oc-0,3) m
_	and Carel's 11 11 is 2(x-0,3)m
-	Total = 15,5 meter
	$\therefore x + (x - 0,3) + 2(x - 0,3) = 15,5$
_	5c + 5c - 0,3 + 25c - 0,6 = 15,5
_	400-0,9 = 15,5
_	430 = 16,4
	$x = \frac{16.4}{4}$
_	DC = 4,1V
_	,
_	: Karen's personal best for the
-	segson is 4,1 m.
_	
_	
_	
_	

Section B (Geometry): [30]

Question 6: [4]

- 6.1 Use a sharp pencil, compass, protractor and a ruler and construct \triangle ABC with $\widehat{A} = 50^{\circ}$, AB = 8 cm and AC = 65 mm.
- 6.2 Use the construction in 6.1 and construct CP if CP \perp AB. (2)

Question 7: [11]

7.1 Complete the following:

- (a) A rhombus is a parallelogram of which the ediacent (1)

 sides are equal in length. ... All
- (b) The diagonals of a parallelogram bisect one (1)

another.

- (a) Calculate, with reasons, for x.
- (b) If $\widehat{B}_1 = 2x + 18^{\circ}$, prove that ABCD is a rhombus. (3)
- (c) AD = 100 mm and BD = 120 mm. Calculate the length of AT. (4)

(a)
$$\hat{A} + \hat{D} = 180^{\circ}$$
 [co-interior L^S: AB // CD]
 $\therefore 50c + 100^{\circ} = 180^{\circ}$
 $5x = 80^{\circ}$
 $5c = \frac{80^{\circ}}{5} = 16^{\circ}$

(2)

$$\frac{(5)}{\hat{B}_{1}} = 20c + 18^{\circ}$$

$$\frac{\hat{B}_{1}}{\hat{B}_{2}} = 2(16^{\circ}) + 18^{\circ}$$

$$\therefore \hat{\mathcal{D}}_{2} = 100^{\circ} - 50^{\circ} \quad [\hat{\mathcal{D}} = 100^{\circ} \quad given]$$

$$\vec{B}_1 = \vec{D}_2 = 50^{\circ}$$

(c) T, = 90° / [diog of rhombus bisect - DT = TB = 60 mm ["]
DT = TB = 60 mm ["]
In a ATD:
$AD^{2} = AT^{2} + VOT^{2}$ [Pythagoras 7 $(100)^{2} = AT^{2} + (60)^{2}$
10000 = AT2 + 3600
:. AT = 10000 - 3600
AT = 6 400
:. AT = 80 mm

Vraag 8: [7]

PR // TS with TS = PS = RS = QR and $\hat{S}_1 = 44^{\circ}$

- 8.1 Calculate \hat{R} (3)
- 8.2 Prove that $\triangle QRS \equiv \triangle PST$ (4)

8.1. $\vec{P}_1 = 44^{\circ}$ [Alt. s; PR || TS]

by $\vec{P}_1 = \vec{R} = 44^{\circ}$ [L's apposite equal sides: PS = RS]

8.2 In a ORS and a PST:

* OR = PS / [given]

* R = S = 44° V [calculated]

* RS = TS [given]

: DORS = DPST [SLS]

<u>Vraag 9</u>: [8]

9.1 Prove that: $\triangle KML /// \triangle MPI$	9.	1	Prove	that:	Δ	KML	///	Δ	MP	L
---	----	---	--------------	-------	---	------------	-----	---	----	---

(4)

9.2 Calculate the length of ML if
$$KL = 9 cm$$
 and $PL = 4 cm$.

(4)

:. DLMK /// DLPM [LLL]

$$\frac{Lm}{Lp} = \frac{mk}{pm} = \frac{LK}{Lm} \qquad [OKmK] || OLPMJ$$

:
$$LM = \sqrt{36} = 6 cm$$