

MEASUREMENT/TECHNICAL REPORT FCC Part 15 Subpart C

	Issued: December 14th, 2007
Name and Address of the Applicant:	Konicaminolta Sensing, Inc. 3-91, Daisen, Nishimachi, Sakai-shi, Osaka 590-8551 Japan
Test Item:	Spectrophotometer / AC Adapter
Identification:	CM-700d / CM-A305
Serial No.:	10010007 / G264
Sample No.:	1
FCC ID:	·
Sample Receipt Date:	November 12th, 2007
Test Specification:	CFR 47 Part.15 Subpart C 15.247
Date of Testing:	December 4th - 13th, 2007
Test Result:	PASS
Report Prepared by:	Cosmos Corporation 2-3571 Ohnogi, Watarai-cho, Watarai-gun, Mie, Japan 516-2102 Phone: +81-596-63-0707 Fax: +81-596-63-0777
Tested by: M. Yaman	July December 14th, 2007 Date
Reviewed by: Y. Kawaha	December 14th, 2007 Date
NT-4	

- 1. This report should not be reproduced except in full, without the written approval of Cosmos Corporation.
- 2. All measurement data contained in this report may have uncertainty. A judgment for the limitation should be taken into the count.
- 3. The report in this report apply only to the sample tested.

List of	Contents	Page
1. Descri	ption of Equipment Under Test	4
1.1 Pro	oduct Description	4
1.2 An	tenna Description	4
2. Genera	l Information	5
2.1 Tes	st Methodology	5
2.2 Tes	st Facility	5
2.3 Tra	aceability	5
3. Summa	ary of Test Results	5
4. Test Co	onfiguration	6
4.1 1	5. 207 AC Power Conducted Emission in Shield Room	6
4.2	15. 247(c) Transmitter Radiated Emissions and Band Edge (Radia	ited) in 3m Anechoid
	er	
	With AC Adapter	
	All Other Test Items (Except Maximum Peak Output Power)	
	Maximum Peak Output Power	
	Γest Mode	
	rement Result	
	15. 207 AC Power Conducted Emission	
5.1.1		
5.1.2		
5.1.3		
5.1.4		
	15. 247(a)(1) Spectrum Bandwidth and Channel Separation of Frequency	
-	ım System	
	Setting Remarks	
5.2.2		
5.2.3		
5.2.4		
	15. 247(b) Maximum Peak Output Power	
5.3.1	O .	
5.3.2		
5.3.3		
5.3.4		
	15. 247(c) Transmitter Radiated Emissions (Conducted)	
5.4.1 5.4.2		
5.4.2		
J.4.J	1vesuit	10

5.4.4	Measured Data (No emission exceeding the 20dB limit was found)	17
5.5 15	. 247(c) Transmitter Radiated Emissions (Radiated)	19
5.5.1	Setting Remarks	19
5.5.2	Minimum Standard	20
5.5.3	Result	20
5.4.4	Measured Data	21
5.6 15	. 247(a)(1) Number of Channels and Time of Occupancy	33
5.6.1	Setting Remarks	33
5.6.2	Minimum Standard	33
5.6.3	Result	33
5.6.4	Measured Data	34
5.7 15	. 247(c) Band Edge Measurement	36
5.7.1	Setting Remarks	36
5.7.2	Minimum Standard	36
5.7.3	Result	36
5.7.4	Measured Data	37
6. Photos		43
6.1 Setu	p Photo (All Other Test Items)	43
6.2 Setu	p Photo (Radiated Emission)	44
6.3 Setu	p Photo (Conducted Emission)	45
7. List of T	est Measurement Instruments	46
7.1 Cond	ucted Emission	46
7.2 Radia	nted Emission Measurement	46
7.3 Cond	ucted Radio Measurement	47
Appendix A	Α	48

1. Description of Equipment Under Test

1.1 Product Description

Manufacturer	: Konicaminolta Sensing, Inc.
Model (referred to as the EUT)	: CM-700d
Nominal Voltage	: 2A, 5Vdc (AC Adapter).5V?4 (Batteries)
Type of Modulation	: PQUP 1009ZA
Mode of Operation	: \square duplex \square 1/2 duplex \boxtimes simplex \square other
The type of the equipment	: \square Stand-alone \square Combined Equipment
	\square Plug –In Card $oxtimes$ Other (Module Unit)
The type of the antenna	: $oxed{oxed}$ Integral $oxed{\Box}$ external $oxed{\Box}$ Other
The type of power source	: \square AC mains \square Dedicated AC adapter (
	□ DC Voltage □ Battery
The type of battery (if applicable)	: N/A
Type of Operation	: \square Continuous \square Burst \boxtimes Intermittent
Stand by Mode	: \square Available \boxtimes N/A
Intended functions	: Bluetooth spectrophotometer
The bandwidth of the IF filters	: N/A
Method of Communication Link	: Software to make maximum speed transmitting
The operating frequency band	: 2.402 to 2.480 MHz
The thermal limitation	: Not specified

1.2 Antenna Description

No.	Type Name	Gain	Antenna Type	Remarks
1	AHD1403-244ST01	0 dB	On board chip antenna	Originally Integrated.

2. General Information

2.1 Test Methodology

All measurement subject to the present report was carried out according to the procedures in ANSI C63.4: 2003.

2.2 Test Facility

All measurement was performed in the following facility;

Cosmos Corporation EMC Lab. Ohnogi

(2-3571 Ohaza-iwatachi, Ohnogi, Watarai-cho, Watarai-gun, Mie-ken 516-2102, Japan) The test firm has been filed since November 2, 2004 under CFR 47 Part.2.948.

2.3 Traceability

The calibration of measurement equipment used in the test subject to the present report is designed and operated to ensure that the measurement is traceable to national standards of measurement or equivalent abroad.

3. Summary of Test Results

Section	Test Item	Limit	Result
15. 207	AC Power Conducted Emission	See 5.1.2	Pass
15. 247(a)(1)	Spectrum Bandwidth of Frequency	< 1MHz if using less than 15	Pass
	Hopping Spread Spectrum System	non-overlapping channels	
15. 247(a)(1)	Channel Separation	> 2/3 of 20dB BW for systems	Pass
	_	with output power < 125mW	
15. 247(a)(1)	Number of Channels	> 15 channels	Pass
15. 247(a)(1)	Time of Occupancy	< 0.4 sec in 30 sec period	Pass
15. 247(b)	Maximum Peak Output Power	Max. 30dBm	Pass
15. 247(c)	Transmitter Radiated Emissions	20dB less than the peak value	Pass
15. 247(c)	Band Edge Measurement	See 5.7.2	Pass

4. Test Configuration

4.1 15. 207 AC Power Conducted Emission in Shield Room

■ Ferrite Core (ZCAT2035-0930, TDK)

4.2 15. 247(c) Transmitter Radiated Emissions and Band Edge (Radiated) in 3m Anechoic Chamber

With AC Adapter

■ Ferrite Core (ZCAT2035-0930, TDK)

4.3 All Other Test Items (Except Maximum Peak Output Power)

■ Ferrite Core (ZCAT2035-0930, TDK)

4.4 Maximum Peak Output Power

■ Ferrite Core (ZCAT2035-0930, TDK)

4.5 Test Mode

In all test configurations above, EUT makes continuous RF transmitting with maximum power.

All conducted measurement is performed with an external stabilized power supply voltage varied between 85% and 115% of the nominal rated supply voltage in accordance with the section 15.31 (e) of the part.

5. Measurement Result

5.1 15. 207 AC Power Conducted Emission

5.1.1 Setting Remarks

- Configure the EUT System in accordance with ANSI C63.4-2003.
- A wooden test table (1.5m×1.0m, height 0.8m) is used.
- EUT's dedicated AC adapter connected to Artificial Mains Network (AMN).
- Other power cord of support equipment is connected to another AMN to isolate its emission from the measured emission of EUT.
- The measuring port of AMN for support equipment is terminated by the 500
- · Activate the EUT System and run the software prepared for the test, if necessary.
- See test configuration figure 4.1.

5.1.2 Minimum Standard

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

5.1.3 Result

EUT complies with the requirement.

Uncertainty of measurement : \pm 2.26 dB Temperature, Humidity : 23°C, 40%

5.1.4 Measured Data

Measured Value Table

 Model Name
 : CM-700d
 Job No
 : CJ07-060626E

 Serial No.
 : 10010003
 Temp/Humi
 : 23 /40%

 Operator
 : M. Yamanaka
 Condition
 : CH39 (2440MHz)

 Power Supply
 : AC 120V,60Hz
 Remark
 : Firm Ver.1.0005BT

Memo : RBW:9kHz(150k-30MHz)

LIMIT : FCC 15.207(QP) FCC 15.207(AV)

	_	Reading	Level	0.5	Resi	ılts	Lin	nit	Mar	ain		
No	Freq.	QP	AV	C.Fac	QP	AV	QP	AV	QP	AV	Phase	Comment
	[MHz]	[/uRh]	[dRuV]	[dB]	[dRuV]	[/uRh]	[dRuV1	ſdRuV1	[dB]	[dB]		
1	0.15100	28.0	9.8	10.2	38.2	20.0	65.9	55.9	27.7	35.9	La	
2	0.47885	27.6	25.2	10.1	37.7	35.3	56.4	46.4	18.7	11.1	la	
3	0.87100	11 .6		10.1	21 .7	18.7	56.0	46.0	34.3	27.3	La	
4	1.51920	11 .4	8.7	10.1	21 .5	18.8	56.0	46.0	34.5	27.2	La	
5	2.22200	12.0		10.1	22 .1	20.1	56.0		33.9	25.9	La	
6	3.23200	10.7	8.9	10.2	20.9	19.1	56.0	46.0	35.1	26.9	La	
7	0.15000	28.0	10.6	10.2	38.2	20.8	66.0	56.0	27.8	35.2	Lb	
8	0.47940	27 .5	25.4	10.1	37.6	35.5	56.3	46.3	18.7	10.8	Lb	
9	0.88680	9.3		10.1	19.4	16.3	56.0	46.0	36.6	29.7		
10	1.54200	9.3	6.2	10.1	19.4	16.3	56.0	46.0	36.6	29.7	Lb	
11	2.23610	10.3	7.8	10.1	20.4	17.9	56.0	46.0	35.6	28.1	l h	
12	3.22450	9.1	6.9	10.2	19.3	17.1	56.0	46.0	36.7	28.9	Lb	
	ı						1					
	ı						1					
							,					
							,					

⁻TEPTO-DV/CE Ver1.50.0128

5.2 15. 247(a)(1) Spectrum Bandwidth and Channel Separation of Frequency Hopping Spread Spectrum System

5.2.1 Setting Remarks

- The both side of 20dB down value from peak power are measured by using delta-maker function of the spectrum analyzer.
- The spectrum analyzer is set-up as following;

Frequency Span : 10 MHz

Resolution bandwidth : 30 kHz

Video bandwidth : 30 kHz

Sweep : Auto

Detector function : Peak

Trace Mode : Max Hold

See test configuration figure 4.3.

5.2.2 Minimum Standard

The maximum permissible 20dB bandwidth is 1MHz, unless more than 15 non-overlapping channels are employed.

Frequency hopping systems operating in the $2402-2480\,\text{MHz}$ band may have hopping channel carrier frequencies that are separated by $25\,\text{kHz}$ or two-thirds of the $20\,\text{dB}$ bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than $125\,\text{mW}$.

5.2.3 Result

EUT complies with the requirement.

Uncertainty of measurement $: \pm 1.2 \text{ dB}$ Temperature, Humidity $: 23^{\circ}\text{C}, 40\%$

5.2.4 Measured Data

Frequency (MHz)	Measured	Limit (MHz)					
	Bandwidth (kHz)						
	20 dB band width						
2402 (1ch)	990	< 1					
2441 (39ch)	980	< 1					
2480 (78ch)	990	< 1					
Channel separation							
Hopping channel	835						

2441 MHz (39ch)

2480 MHz (78ch)

5.3 15. 247(b) Maximum Peak Output Power

5.3.1 Setting Remarks

- See test configuration figure 4.4.
- The maximum peak output power is measured as following;
 - 1. The diode detector is inserted between EUT and the oscilloscope.
 - 2. The oscilloscope is used to read the peak response of the detector.
 - 3. Replaced EUT by the signal generator (SG).
 - 4. Adjusted the frequency of SG to the fundamental frequency.
 - 5. Adjusted the amplitude of SG to be the same peak recorded in 2.
- The oscilloscope is set-up as following;

 \not Voltage level range: 10 mV / Div \not Sampling time: 1.00GS / s \not Function: Peak search

5.3.2 Minimum Standard

The maximum peak output power shall not exceed 1 watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.3.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: \pm 0.5 dB Temperature, Humidity : 25°C, 40%

5.3.4 Measured Data

(Normal Rated Voltage, 5.0 VDC)

Frequency (MHz)	Peak Power (dBm)	Limit (dB)	Margin (dB)
2402 (1ch)	2.6	30	27.4
2441 (39ch)	2.95	30	27.05
2480 (78ch)	3.44	30	26.56

(High-varied voltage, 5.75 VDC)

Frequency (MHz)	Peak Power	Limit (dB)	Margin (dB)
2402 (1ch)	2.59	30	27.41
2441 (39ch)	2.94	30	27.06
2480 (78ch)	3.46	30	26.54

(Low-varied voltage, 4.25 VDC)

Frequency (MHz)	Peak Power	Limit (dB)	Margin (dB)
2402 (1ch)	2.58	30	27.42
2441 (39ch)	2.92	30	27.08
2480 (78ch)	3.42	30	26.58

5.4 15. 247(c) Transmitter Radiated Emissions (Conducted)

5.4.1 Setting Remarks

- EUT directly connects to the spectrum analyzer via calibrated coaxial cable and a suitable attenuator.
- The Spectrums are scanned from the lowest generated frequency of EUT up to the 10th harmonics by using the spectrum analyzer.
- The spectrum analyzer is set-up as following;

ZE Resolution bandwidth: 100 kHzZE Video bandwidth: 100 kHzZE Sweep: AutoZE Detector function: PeakZE Trace Mode: Max Hold

See test configuration figure 4.3.

5.4.2 Minimum Standard

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

5.4.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: ± 0.8 dB Temperature, Humidity : 23°C, 40%

5.4.4 Measured Data (No emission exceeding the 20dB limit was found)

2402 MHz (1ch)

2441 MHz (39ch)

2480 MHz (78ch)

5.5 15. 247(c) Transmitter Radiated Emissions (Radiated)

5.5.1 Setting Remarks

- The data lists in "5.5.4 Measured Data "list the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, plus the limit.
- In the frequency range between 30MHz to 25 GHz (as 10th harmonics), the Electric Field Strength is measured in accordance with ANSI C63.4: 2003 and CISPR22: 1997.
- The test setup is made in accordance with ANSI C63.4: 2003.
- The antenna is measured at 1-4m height.
- The EUT is placed on the non-conductive table in the center of turntable. The height of this table is 0.8m.
- The measurement is carried out with both horizontal and vertical antenna polarization.
- The highest radiation from the equipment is recorded.
- By varying the configuration of the test sample and the cable routing, it is attempted to maximize the emission.
- The test receiver with Quasi Peak and Average detector is in compliance with CISPR 16-1:1993.
- The spectrum analyzer is set-up as following;

Note: Angle 1~3: Refer to page 47 and 48 Appendix A

(Frequency range : 30 - 1000 MHz)

ZE Resolution bandwidth: 100 kHzZE Video bandwidth: 300 kHzZE Detector function: PeakZE Trace Mode: Max Hold

(Frequency range : Above 1000 MHz)

 $\not z \not z$ Resolution bandwidth: 1 MHz $\not z \not z$ Video bandwidth: 1 MHz $\not z \not z$ Detector function: Peak $\not z \not z$ Trace Mode: Max Hold

· EMI Test Receiver analyzer is set-up as following;

✓ IF bandwidth✓ IF bandwidth✓ IF bandwidth✓ 1 MHz (Average Detector)

- See test configuration figure 4.2.
- Measurement distance : 3m

Note: The worst data is attached (Page 21 to 32).

5.5.2 Minimum Standard

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.5.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: ± 3.28 dB

Temperature, Humidity : See each data table

5.4.4 Measured Data

30MHz to 1GHz, Channel 1

Model Name : CM-700d Job No : CJ07-060626E Serial No. : 10010003 Temp./Humi. : 22 /42% Operator : M.Yamanaka Condition : CH01 (2402MHz) Power Supply : AC120V,60Hz Remark : Angle 1

Memo : RBW: $30M \sim 1 GHz(120 kHz)$

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type
1		39.5	-7.7	31 .8	43.5	11.7	Hori.	180	265	BC
2	315.859			31 . 1		14.9		100		LP
								100		
4						16.6		100		LP
5			-12.3	22 . 4		17.6		100		
6	95.802	37.3	-13.8	23.5	43.5	20.0	Vert	100	110	RC
								İ		
						İ		l l		

⁻TEPTO-DV/RE Ver 1.80.0020

30MHz to 1GHz, Channel 39

 Model Name
 : CM-700d
 Job No
 : CJ07-060626E

 Serial No.
 : 10010003
 Temp./Humi.
 : 22 /42%

 Operator
 : M. Yamanaka
 Condition
 : CH39 (2441MHz)

 Power Supply
 : AC120V,60Hz
 Remark
 : Angle 1

Memo : RBW:30M ~ 1GHz(120kHz)

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type
1	192.003	40.0				11.2	Hori.	181		BC
2	340.005	36.8	-5.3	31.5	46.0	14.5	Hori.	100	206	LP
3	365.235							100		
4	39.998							100	180	
5	94.873	36.0	-13.8	22.2	43.5	21.3	Vert.	100	172	BC

⁻TEPTO-DV/RE Ver 1.80.0020

30MHz to 1GHz, Channel 78

Model Name : CM-700d Job No : CJ07-060626E Serial No. : 10010003 Temp./Humi. : 22 /42% Operator : M.Yamanaka Condition : CH78 (2480MHz) Power Supply : AC120V,60Hz Remark : Angle 1

Memo : $RBW:30M \sim 1GHz(120kHz)$

LIMIT : FCC 15.209 3m

Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant
[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type
177.753	31.5	-9.3	22.2	43.5		Hori.	181	300	
192.002	40.0	-7.7	32.3			Hori.	180	0	BC
336.010	42.0	-5.4							
94.567	35.9	- 13 . 9	22.0	43.5	21 . 5	Vert.	100	168	BC
									ı
								,	,
								l	ı
								ı	ı
								Ì	ı
									ı
					-			l	
	177.753 192.002	177.753 31.5 192.002 40.0 336.010 42.0 383.998 34.8 40.059 35.0	177.753 31.5 -9.3 192.002 40.0 -7.7 336.010 42.0 -5.4 383.998 34.8 -4.5 40.059 35.0 -12.4	177.753 31.5 -9.3 22.2 192.002 40.0 -7.7 32.3 336.010 42.0 -5.4 36.6 383.998 34.8 -4.5 30.3 40.059 35.0 -12.4 22.6	177.753 31.5 -9.3 22.2 43.5 192.002 40.0 -7.7 32.3 43.5 336.010 42.0 -5.4 36.6 46.0 383.998 34.8 -4.5 30.3 46.0 40.059 35.0 -12.4 22.6 40.0	177.753 31.5 -9.3 22.2 43.5 21.3 192.002 40.0 -7.7 32.3 43.5 11.2 336.010 42.0 -5.4 36.6 46.0 9.4 383.998 34.8 -4.5 30.3 46.0 15.7 40.059 35.0 -12.4 22.6 40.0 17.4	177.753 31.5 -9.3 22.2 43.5 21.3 Hori. 192.002 40.0 -7.7 32.3 43.5 11.2 Hori. 336.010 42.0 -5.4 36.6 46.0 9.4 Hori. 383.998 34.8 -4.5 30.3 46.0 15.7 Hori. 40.059 35.0 -12.4 22.6 40.0 17.4 Vert.	177.753 31.5 -9.3 22.2 43.5 21.3 Hori. 181 192.002 40.0 -7.7 32.3 43.5 11.2 Hori. 180 336.010 42.0 -5.4 36.6 46.0 9.4 Hori. 100 383.998 34.8 -4.5 30.3 46.0 15.7 Hori. 100 40.059 35.0 -12.4 22.6 40.0 17.4 Vert. 100	177.753 31.5 -9.3 22.2 43.5 21.3 Hori. 181 300 192.002 40.0 -7.7 32.3 43.5 11.2 Hori. 180 0 336.010 42.0 -5.4 36.6 46.0 9.4 Hori. 100 213 383.998 34.8 -4.5 30.3 46.0 15.7 Hori. 100 212 40.059 35.0 -12.4 22.6 40.0 17.4 Vert. 100 170

-TEPTO-DV/RE Ver 1.80.0020

30MHz to 1GHz, Channel 78 (Angle1)

 Model Name
 : CM-700d
 Job No
 : CJ07-060626E

 Serial No.
 : 10010003
 Temp./Humi.
 : 22 /42%

 Operator
 : M. Yamanaka
 Condition
 : CH78 (2480MHz)

 Power Supply
 : DC 1.5V X 4 (Battery)
 Remark
 : Angle 1

Memo : RBW:30M ~ 1GHz(120kHz)

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type
1	166.012	34.9	-9.7	25.2	43.5	18.3	Hori.	125	168	
2	192.008			31.6				183		
	336.209							100		
4	369.563							100		
5	388.591							100		
6	460.523	27.0	-3.7	23.3	46.0	22.7	Hori.	226	172	LP
			,							
			ı							
			1							
			1							

⁻TEPTO-DV/RE Ver 1.80.0020

^{*} Only fundamental emissions were found.

30MHz to 1GHz, Channel 78 (Angle2)

 Model Name
 : CM-700d
 Job No
 : CJ07-060626E

 Serial No.
 : 10010003
 Temp./Humi.
 : 22 /42%

 Operator
 : M.Yamanaka
 Condition
 : CH78 (2480MHz)

 Power Supply
 : AC120V,60Hz
 Remark
 : Angle 2

Memo : $RBW:30M \sim 1GHz(120kHz)$

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type
1	192.003							100		
2	336.025							100		LP
3								100		
4								100		BC
5								100		
6	192.051	38.4	-7.7	30.7	43.5	12.8	Vert.	100	350	BC

⁻TEPTO-DV/RE Ver 1.80.0020

^{*} Only fundamental emissions were found.

30MHz to 1GHz, Channel 78 (Angle3)

 Model Name
 : CM-700d
 Job No
 : CJ07-060626E

 Serial No.
 : 10010003
 Temp./Humi.
 : 22 /42%

 Operator
 : M. Yamanaka
 Condition
 : CH78 (2480MHz)

 Power Supply
 : AC120V,60Hz
 Remark
 : Angle 3

Memo : RBW:30M~1GHz(120kHz)

No	Frea	Reading	C Fac	Result	limit	Margin	Pola	Heiaht	Anale	Ant
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type
1	192.001	34.3	-7.7	26.6	43.5	16.9	Hori.	243	180	BC
2	40.623	33.9		21 .4				100		RC:
3		35.9		22 .1				100		BC
4	192.000			31 . 1				100		BC
5								139		
6	336.052	36.7	-5.4	31 .3	46.0	14 . 7	Vert.	140	176	LP
								1		
								i		
										'
										, J

⁻TEPTO-DV/RE Ver 1.80.0020

^{*} Only fundamental emissions were found.

1GHz to 18GHz, Channel 78

CJ07-060626E RE 1G-18GHz TotalNoise05 FCC CM-700d 78CH.RED

RADIATED EMISSION

Cosmos Corporation Onoki Lab.

Model Name Serial No. Operator Power Supply : CM-700d : 10010003 : M.Yamanaka : AC 120V, 60Hz : CJ07-060626E : 26 /42% : CH78 (2480MHz) : Angle 1 Firm Ver.1.0005BT Job No. Temp/Humi Condition

: RBW:1GHz ~ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz(AV) FCC Subpart C 15.209 (3m) 1G-26.5GHz(PK)

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deq]	Type	
1	2480.231	75.2	-1.6	73.6	54.0	-19.6	Hori.	151	59	HRN	PK Fundamental Frequency
2	2480 231	73.6	-1.6	72.0	54.0	-18.0	Hori	151	59	HRN	AV Fundamental Frequency
3	4960.315	47.9	5.8	53.7	54.0	0.3	Hori.	100	156	HRN	PK
4	4960.315	46.5	5.8	52.3	54.0	1.7	Hori.	100	156	HRN	AV
5	9919.436	39.0	14.7	53.7	54.0	0.3	Hori.	121	150	HRN	AV
6	9919.436	45.8	14.7	60.5		-6.5		121	150	1	PK
7	4879 . 060	39.2	18.5	57.7	54.0	-3.7	Hori.	178	80	HRN	PK Freq:14879.060MHz
8	4879.060		18.5	53.0		1.0		178		ı	AV Freq:14879.060MHz
9	2480.166		-1.6	68.8		-14.8		100			AV Fundamental Frequency
10	2480.166		-1.6	69.6		-15.6		100		ı	PK Fundamental Frequency
11			5.8	53.3		0.7		115		i	AV
12	4960.365	48.3	5.8	54.1	54.0	-0.1	Vert.	115	63	1	PK
13			14.7	53.5		0.5		123	-	ı	AV
14	9919.456		14.7	61.7	54.0	-7.7		123			1
15	4881 . 620	32.1	18.5	50.6	54.0	3.4	Vert.	100	60		AV Freq:14881 .620MHz
16	4881 620	38.0	18.5	56.5	54.0	-2.5	Vert	100	60	HRN	PK Fred:14881 620MHz

⁻TEPTO-DV/RE Ver1.80.0020

18GHz to 26.5GHz, Channel 78

CJ07-060626E RE 18G-26.5GHz TotalNoise02 FCC CM-700d 78CH.RED

RADIATED EMISSION

Cosmos Corporation Onoki Lab.

Model Name Serial No. Operator Power Supply : CM-700d : 10010003 : M.Yamanaka : AC 120V , 60Hz : CJ07-060626E : 26 ,41% : CH78 (2480MHz) : Angle1 Firm Ver.1.0005BT Job No Temp/Humi Condition

: RBW:1G~ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz(AV) FCC Subpart C 15.209 (3m) 1G-26.5GHz(PK)

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dRuV]	[dR/m]	[dRuV/m1	[dRuV/m1	[dR1	[H/V]	[cm]	[ded]	Type	
1	9846 . 650	45.3	20.5	65.8	54.0	-11.8	Hori.	100	23	HRN	PK Freq:19846.650MHz
2	9846 . 650	31.8	20.5	52.3	54.0	1.7	Hori.	100	23	HRN	AV Freq:19846 .650MHz
3	9845 . 890	27.2	20.5	47.7	54.0	6.3	Vert.	100			AV Freq:19845.890MHz
4	9845 . 890	38.9	20.5	59.4	54.0	-5.4	Vert.	100	54	HRN	PK Freq:19845.890MHz
	i							1			
								1		İ	
				'						İ	
)		İ	
	,			,							
								!			1
				1							
											1
	1										
				l .							
								1			

-TEPTO-DV/Ver 1.80.0020

1GHz to 18GHz, Channel 39

CJ07-060626E RE 1G-18GHz TotalNoise FCC CM-700d 39CH Angle1.RED

RADIATED EMISSION

Cosmos Corporation Onoki Lab.

Model Name Serial No. Operator Power Supply : CM-700d : 10010003 : M.Yamanaka : AC 120V, 60Hz : CJ07-060626E :26 /42% :CH39 (2440MHz) :Angle 1 Firm Ver.1.0005BT Job No. Temp/Humi Condition

: RBW:1GHz ~ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz(AV) FCC Subpart C 15.209 (3m) 1G-26.5GHz(PK)

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant		Comment	
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deq]	Type			
1	2480.192	73.9	-1.6	72.3	54.0	-18.3	Hori.	138	23			Fundamental Frequency	
2	2480 192	72.8	-1.6	71.2	54.0	-17.2	Hori	138	23	HRN	AV F	Fundamental Frequency	-
3	4960.280	47.5	5.8	53.3	54.0	0.7	Hori.	100	185	HRN	PK		
4	4960.280	46.4	5.8	52.2	54.0	1.8	Hori.	100	185	HRN	ΑV		
5	9919.561	45.1	14.7	59.8	54.0	-5.8	Hori.	100	134	HRN	PK		-
6	9919.561	38.3		53.0		1.0		100			1		
7	4879 . 170	34.1	18.5	52.6	54.0	1.4	Hori.	100	66	HRN	AV F	Freq:14879.170MHz	-
8	4879 . 170		18.5	57.1		-3.1	Hori.	100				Freq:14879.170MHz	-
	2480.237		-1.6	68.6				100				Fundamental Frequency	
	2480.237		-1.6	66.7		-12.7	Vert.	100		ı	1	Fundamental Frequency	-
11			5.8	54.4		-0.4	Vert.	100		i	PK		
12				53.2				100		ı	1		-
	9919 464		14.7	62.0		-8.0	Vert	150		1	PK		
	9919.464		14.7	53.1		0.9		150			1	_	-
	4880 . 780		18.5	50.3		3.7	Vert.	100			ľ	Freq:14880 .780MHz	
16	4880 780	37.6	18.5	56.1	54.0	-2.1	Vert	100	151	HRN	PK F	Fred:14880 780MHz	-
											ļ		-
											l		-
		ŀ									ļ		- 1
											1		-
		ŀ									ļ		- 1
											1		
	l							!			I		
											1		
										I			_

⁻TEPTO-DV/RE Ver1.80.0020

18GHz to 26.5GHz, Channel 39

CJ07-060626E RE 18G-26.5GHz TotalNoise FCC CM-700d 39CH.RED

RADIATED EMISSION

Job No Temp/Humi Condition

Cosmos Corporation Onoki Lab.

: CJ07-060626E : 26 ,41% : CH39 (2440MHz) : Angle1 Firm Ver.1.0005BT

: CM-700d : 10010003 : M.Yamanaka : AC 120V , 60Hz Model Name Serial No. Operator Power Supply

: RBW:1G~ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz(AV) FCC Subpart C 15.209 (3m) 1G-26.5GHz(PK)

Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deq]	Type	
9846 . 360								36	HRN	PK Freq:19846.360MHz
9846 360	31.0	20.5	51.5	54.0	2.5	Hori	100	36	HRN	AV Fred 19846 360MHz
9844 . 990			47.3							AV Freq:19844.990MHz
9844 . 990	38.8	20.5	59.3	54.0	-5.3	Vert.	100	78	HRN	PK Freq:19844 .990MHz
							l l			
							1			
							!			
							1			
							!			1
							1			
							!			1
							1			
	[MHz] 9846 .360 9846 .360 9844 .990	[MHz] [dBuV] 9846.360 44.8 9846.360 31.0 9844.990 26.8	[MHz] [dBuV] [dB/m] 9846.360 44.8 20.5 9846.360 31.0 20.5 9844.990 26.8 20.5	[MHz] [dBuV] [dB/m] [dBuV/m] 9846.360 44.8 20.5 65.3 9846.360 31.0 20.5 51.5 9844.990 26.8 20.5 47.3	[MHz] [dBuV] [dB/m] [dBuV/m] [dBuV/m] [dBuV/m] 9846.360 44.8 20.5 65.3 54.0 9846.360 31.0 20.5 51.5 54.0 9844.990 26.8 20.5 47.3 54.0	[MHz] [dBuV] [dB/m] [dBuV/m] [dBuV/m] [dBuV/m] [dBuV/m] [dB] 9846.360 44.8 20.5 65.3 54.0 -11.3 9846.360 31.0 20.5 51.5 54.0 2.5 9844.990 26.8 20.5 47.3 54.0 6.7	[MHz] [dBuV] [dB/m] [dBuV/m] [dBuV/m] [dB] [H/V] 9846.360 44.8 20.5 65.3 54.0 -11.3 Hori. 9846.360 31.0 20.5 51.5 54.0 2.5 Hori 9844.990 26.8 20.5 47.3 54.0 6.7 Vert.	[MHz] [dBuV] [dB/m] [dBuV/m] [dBuV/m] [dB] [H/V] [cm] 9846.360 44.8 20.5 65.3 54.0 -11.3 Hori 100 9846.360 31.0 20.5 51.5 54.0 2.5 Hori 100 9844.990 26.8 20.5 47.3 54.0 6.7 Vert 100	[MHz] [dBuV] [dBuV] [dBuV/m] [dBuV/m] [dB] [H/V] [cm] [deg] 9846.360 44.8 20.5 65.3 54.0 -11.3 Hori 100 36 9846.360 31.0 20.5 51.5 54.0 2.5 Hori 100 36 9844.990 26.8 20.5 47.3 54.0 6.7 Vert 100 78	[MHz] [dBuV] [dB/m] [dBuV/m] [dBuV/m] [dB] [H/V] [cm] [deg] Type 9846.360 44.8 20.5 65.3 54.0 -11.3 Hori 100 36 HRN 9846.360 31.0 20.5 51.5 54.0 2.5 Hori 100 36 HRN 9844.990 26.8 20.5 47.3 54.0 6.7 Vert 100 78 HRN

-TEPTO-DV/Ver 1.80.0020

1GHz to 18GHz, Channel 1

CJ07-060626E RE 1G-18GHz TotalNoise FCC CM-700d 1CH Angle1.RED

RADIATED EMISSION

Cosmos Corporation Onoki Lab.

Model Name Serial No. Operator Power Supply : CM-700d : 10010003 : M.Yamanaka : AC 120V, 60Hz : CJ07-060626E : 26 /42% : CH1 (2402MHz) : Angle 1 Firm Ver.1.0005BT Job No. Temp/Humi Condition

: RBW:1GHz ~ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz(AV) FCC Subpart C 15.209 (3m) 1G-26.5GHz(PK)

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dRuV]	[dR/m]	[dRuV/m1	[dRuV/m1	[dR]	[H/V]	[cm]	[ded]	Tyne	
1	2480.023	74.0	-1.6	72.4	54.0	-18.4	Hori.	151	38	HRN	PK Fundamental Frequency
2	2480.023	72.5	-1.6	70.9	54.0	-16.9	Hori.	151	38	HRN	AV Fundamental Frequency
3	4959.897	46.2	5.8	52.0	54.0	2.0	Hori.	100	164	HRN	AV
4	4959.897	47.4	5.8	53.2	54.0	0.8	Hori.	100	164	HRN	PK
5	9919.232	45.0	14.7	59.7	54.0	-5.7	Hori.	100	128	HRN	PK
6	9919.232	38.4	14.7	53.1	54.0			100	128		
7	4880 . 000		18.5					102			PK Freq:14879 .170MHz
8	4880 . 000	33.8	18.5	52.3	54.0	1.7	Hori.	102	127	HRN	AV Freq:14879 .170MHz
9	2480.167			67.9		-13.9		100		i	PK Fundamental Frequency
10	2480.167	68.3	-1.6	66.7	54.0	-12.7	Vert.	100	46	HRN	AV Fundamental Frequency
11	4960 632	47.2	5.8	53.0	54.0	1.0	Vert	100	312	HRN	AV
12	4960.632		5.8	54.5				100			1
13	9919.969	38.3	14.7	53.0	54.0	1.0	Vert.	141	125	HRN	AV
	9919.969		14.7	62.1	54.0	-8.1	Vert.	141	125		1
	4880 . 670		18.5					100		1	PK Freq:14880 .780MHz
16	4880 . 670	31.5	18.5	50.0	54.0	4.0	Vert.	100	73	HRN	AV Freq:14880 .780MHz
											l
				,							
											l
				1							
											ļ

⁻TEPTO-DV/RE Ver1.80.0020

18GHz to 26.5GHz, Channel 1

CJ07-060626E RE 18G-26.5GHz TotalNoise FCC CM-700d 1CH.RED

RADIATED EMISSION

Cosmos Corporation Onoki Lab.

: CM-700d : 10010003 : M.Yamanaka : AC 120V , 60Hz Model Name Serial No. Operator Power Supply : CJ07-060626E : 26 ,41% : CH1 (2402MHz) : Angle1 Firm Ver.1.0005BT Job No Temp/Humi Condition

: RBW:1G~ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz(AV) FCC Subpart C 15.209 (3m) 1G-26.5GHz(PK)

No	Freq.	Reading	C.Fac	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deq]	Type	
1	9848.290	44.4	20.5	64.9	54.0	-10.9	Hori.	100	98	HRN	PK Freq:19848.290MHz
2	9848 290	31.3	20.5	51.8	54.0	2.2	Hori	100	98	HRN	AV Fred 19848 290MHz
3	9845 . 000	38.6	20.5	59.1	54.0		Vert.	100		HRN	PK Freq:19845.000MHz
4	9845 . 000	27.3	20.5	47.8	54.0	6.2	Vert.	100	123	HRN	AV Freq:19845.000MHz
										l	ļ
	1										
										ļ	ļ
	1										
										ļ	ļ
	i									ļ	
	i										
	•										
]			
	i										
]			
										l	
	•							[l	
			[[
								i i		l	

-TEPTO-DV/Ver 1.80.0020

5.6 15. 247(a)(1) Number of Channels and Time of Occupancy

5.6.1 Setting Remarks

- EUT directly connects to the spectrum analyzer via calibrated coaxial cable and a suitable attenuator.
- The Number of Channels is determined by using Max-hold of the spectrum shape of spectrum analyzer.
- Time of Occupancy is determined by using the marker-data function of spectrum analyzer.
- The spectrum analyzer is set-up as following to measure Number of Channels;

Frequency Span : 79 MHz

Resolution bandwidth : 1 MHz

Video bandwidth : 3 MHz

Sweep Time : Auto

Detector function : Peak

Trace Mode : Max Hold

• The spectrum analyzer is set-up as following to measure Time of Occupancy;

ZZ Frequency Span: 0 HzZZ Resolution bandwidth: 30 kHzZZ Video bandwidth: 30 kHzZZ Detector function: PeakZZ Trace Mode: Max Hold

• See test configuration figure 4.3.

5.6.2 Minimum Standard

This frequency hopping system must employ minimum of 15 hopping channels.

The maximum permissible time of occupancy is 400 ms within the minimum time period required to hop through all channels.

5.6.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: 1 usec
Temperature, Humidity : 23°C, 40%

5.6.4 Measured Data

Higher band of hopping frequency spectrum

Number of observed channels 79	Number of observed channels	79
--------------------------------	-----------------------------	----

The dwell time within a 31.6sec period in data mode is 1 inside the packet type.

Channel Hopping Rate: 1600 hops / sec

Number of channels: 79

Time slot length: 2.9 msec

The calculation for a 31.6sec period is a follows;

Dwell time = time slot length x hoprate / number of channels x period time

Time of occupancy (dwell time) is a follows;

(DH5 Time slot Dwell time) = 2.9msec x (1600/(6x79)) x 31.6sec = 0.309sec

5.7 15. 247(c) Band Edge Measurement

5.7.1 Setting Remarks

- EUT directly connects to the spectrum analyzer via calibrated coaxial cable and 10 dB attenuator.
- The emission at the band edge is measured by using the marker function of spectrum analyzer.
- The peak of the in-band emission is measured by using the marker to peak function of spectrum analyzer.
- This measurement is repeated in both side of the spectrum.
- The spectrum analyzer is set-up as following;

Resolution bandwidth : Equal or less than 1% of frequency span

 $\not \bowtie \not \bowtie$ Video bandwidth: > RBW $\not \bowtie \not \bowtie$ Sweep: Auto $\not \bowtie \bowtie$ Detector function: Peak $\not \bowtie \bowtie$ Trace Mode: Max Hold

- Where bandedge spectrum is too rough to find precise edge point, larger RBW i.e. 1MHz, 3MHz shall be applied as severer condition.
- See test configuration figure 4.3.

5.7.2 Minimum Standard

In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency of Emission (MHz)	Limit of the band edge spurious emission (dBµV)	
Below 2,390.0	Peak	Average
Above 2,483.5	74	54

5.7.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: ± 2.6 dB

Temperature, Humidity : 23°C, 40%

5.7.4 Measured Data

The band edge emissions are calculated as following;

(Angle 1)

Lower frequency 2,390 MHz (FH	I) Vertical	Higher fr	requency 2,483.5 MHz (FI	H) Vertical
Level			Level	
(dBuV/m)			(dBuV/m)	
P _{max} 77.25		P_{max}	74.32	
P _{av} 73.46		P_{av}	70.82	
P _{dev} 38.34		P_{dev}	36.31	

	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)		Level (dBuV/m)		Margin (dB)
E_{be}	38.91	74.00	35.09	E_{be}	38.01	74.00	35.99
Eav	35.12	54.00	18.88	Eav	34.51	54.00	19.49

 P_{max} : Maximum peak power of the fundamental.

 P_{dev} : The amplitude delta between the peak power and the band

edge emission.

 E_{be} : Band edge emission.

 $E_{\text{av}} \qquad : Average \ of \ the \ band \ edge \ emission.$

(Angle 2)

Lower f	<u>requency 2,390 M</u> H	lz (FH)	Vertical	<u>Higher f</u>	<u>requency 2,483.5</u>	MHz (FH)	Vertical
	Level				Level		
	(dBuV/m)				(dBuV/m)		
P_{max}	76.73			P_{max}	73.56		
P_{av}	74.75			P_{av}	60.23		
P_{dev}	38.03			P_{dev}	32.88		

	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
E_{be}	38.70	74.00	35.30
E_{av}	36.72	54.00	17.28

	Level (dBuV/m)		Margin (dB)
E_{be}	40.68	74.00	33.32
Eav	27.35	54.00	26.65

 $P_{max} \qquad : Maximum \ peak \ power \ of \ the \ fundamental.$

 $P_{\text{dev}} \ \ :$ The amplitude delta between the peak power and the band

edge emission.

 E_{be} : Band edge emission.

 E_{av} : Average of the band edge emission.

(Angle 3)

Lower frequ	iency 2,390 M	lHZ (FH)	Vertical	Higher fr	equency 2,483.5	MHZ (FH)	Vertical
	Level				Level		
	(dBuV/m)				(dBuV/m)		
P_{max}	79.23			P_{max}	75.56		
P_{av}	72.56			P_{av}	68.82		
P_{dev}	41.12			P_{dev}	40.69		

	Level (dBuV/m)		Margin (dB)
E_{be}	38.11	74.00	35.89
Eav	31.44	54.00	22.56

	Level (dBuV/m)		Margin (dB)
E_{be}	34.87	74.00	39.13
Eav	28.13	54.00	25.87

 $P_{max} \qquad : Maximum \ peak \ power \ of \ the \ fundamental.$

 $P_{\text{dev}} \ \ \ :$ The amplitude delta between the peak power and the band

edge emission.

 E_{be} : Band edge emission.

 E_{av} : Average of the band edge emission.

Lower frequency of the band edge 2,390.0 MHz, Angle 1

Higher frequency of the band edge 2,483.5 MHz, Angle 1

Higher frequency of the band edge 2,483.5 MHz, Angle 2

Higher frequency of the band edge 2,483.5 MHz, Angle 3

6. Photos

6.1 Setup Photo (All Other Test Items)

Cosmos Corporation

6.2 Setup Photo (Radiated Emission)

Cosmos Corporation

6.3 Setup Photo (Conducted Emission)

Cosmos Corporation

7. List of Test Measurement Instruments

7.1 Conducted Emission

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
Spectrum Analyzer	ADVANTEST CORPORATION	R3132	140501174	July, 2007 July, 2008
EMI Test Receiver	ROHDE & SCHWARZ	ESCS30	100335	May, 2007 May, 2008
Artificial-Mains Network	KYORITSU CORPORATION	KNW-341C	8-1659-1	September, 2007 September, 2008
Transient Limiter	AGILENT TECHNOLOGIES	11947A	3107A03745	July, 2007 July, 2008
RF Selector	Techno Science Japan Corp.	RFM-E221	3148	

7.2 Radiated Emission Measurement

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
Programmable AC/DC Power Source	NF Corporation	ES18000W	425779	
EMI Test Receiver	ROHDE & SCHWARZ	ESIB40	100211	April, 2007 April, 2008
Biconical Antenna (30 to 300MHz)	SCHWARZBECK	VHBB9124(Balun) BBA9106(Elements)	311	September, 2007 September, 2008
LogPeriodic Antenna (300 MHz to 1 GHz)	SCHWARZBECK	UHALP 9108 A	645	September, 2007 September, 2008
Horn Antenna	SCHWARZBECK	BBHA 9120 D	446	September, 2007 September, 2008
Horn Antenna	ETS LINDGREN	3160-08	00033778	September, 2007 September, 2008
Horn Antenna	ETS LINDGREN	3160-09	00034723	September, 2007 September, 2008
Pre-Amplifier	HEWLETT PACKARD	8447D OPT 010	2944A 07891	September, 2007 September, 2008
Pre-Amplifier	HEWLETT	8449B	3008A	July, 2007
(1 GHz to 18 GHz)	PACKARD		01251	July, 2008
Pre-Amplifier (18 GHz to 26.5 GHz)	Techno Science Japan Corp.	MLA-1826POM-30		January, 2007 January, 2008

7.3 Conducted Radio Measurement

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
DC Power Source	Diamond Antenna	GSV3000	01101481	
Spectrum Analyzer	Anritsu	MS2687B	620016270 6	April, 2007 April, 2008
Signal Generator	Agilent Technology	E8254A	US411401 86	June, 2007 June, 2008
Oscilloscope	Tektronix	TDS794D	B031832	June, 2007 June, 2008
Diode Detector	Agilent Technology	423B	MY422418 36	March, 2007 March, 2008

Appendix A

Angle 1

Angle 2

Cosmos Corporation

Appendix A (Continued)

