Candidate's seat no .:	
------------------------	--

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY First Semester of B. Tech. (All branches) Theory Examination (March 2021) MA143 Engineering Mathematics-I Date: 05/03/2021 (Friday)

Date:	05/03/2021 (Friday)	Ti	me: 10:00 a.m	. to 0	l:00 p.m.	Mar	ximum Marks: 70	
Instruc								
	question paper contains two ion I and II must be attemp							
	ares to the right indicate ma		separate answe	er ange	ets.			
iv. Mal	ce suitable assumptions and	draw	neat figure wh	ere it	is required.			
v. All r	otations and terminologies	are st	andard.		0.50			
Section-1								
Q-1	Choose the correct an	swer	from the give	n opt	tions in the fo	llow	ings:	[10]
1)				-				
	$\lim_{x \to \frac{1}{2}} (\sin x)^{\tan x} = \underline{\qquad}$ (A) -2	(D)				(m)		
2)	(A) -2 The Mean value theorem	(B)	-1 	(C)	0	(D)	1 in the interval (0.2)	
2)	(A) 2	IS NO	applicable to t	the fur	iction	(D)	in the inserval [0, 2].	
	The Mean value theorem (A) $f(x) = x^3 + 2x + 1$	(B)	$f(x) = \sin x$	(C)	$f(x)=e^{x}$	(D)	$f(x) = \begin{cases} x^2 + 1, & x \neq 1 \end{cases}$	
							[0, x=1]	
3)	The nth order derivative of	of the	function $y = 5^{3}$	e^{2x} i	s y _n =		x = 0.	
	The n th order derivative of (A) $(\log 5 + 2)^n$ The series $\sum_{n=1}^{\infty} \frac{1}{n^{(2p)}} \operatorname{con}(A)$ $p > 0.5$	(B)	$(2 \log 5)^n$	(C)	2"	(D)	$(\log 5 - 2)^n$	
4)	The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ con	verge	s. if				, .	
	(A) $p > 0.5$	(B)	0< p < 0.5	(C)	p = 0.5	(D)	p < 0	
						(-)	•	
5)	The series $\sum_{n=2}^{\infty} \left(\frac{1}{2}\right)^n$ co	nverg	es to					
							_	
		_	1	(C)	1.5	(D)	2	
6)	The series $\sum_{n=1}^{\infty} (1)^n$ is			(D)				
	(A) a divergent series			(R)	a convergent	series		
	(C) an oscillating series				a positive ten	m seri	ics	
7)	The value of $Log(2+i)$ +	Log(2- <i>i</i>) is	<u> </u>				
	(A) 0.69897	(B)	1.60944	(C)		(D)	0.69312	
8)	The real part of the comp	lex nu	imber $z = \frac{1}{z}$	is	•			
•		(D)	1+1	(C)	0.5	(D)	,	
	(A) -1		-0.5		0.5	(D)		
9)	If the polynomial equatio							
	(A) 3	(B)	4	(C)	5	(D)	6	
101	d tanh(ir) =							

(C) $\sec x \tan x$ (D) $i \sec x \tan x$

(B) $i \sec^2 x$

(A) $\sec^2 x$

Q-2 Attempt any Four of the followings:

[16]

- 1) State Leibnitz's theorem for the nth order derivative of product of two functions and using it prove that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$, where $y = (\sin^{-1}x)^2$.
- 2) Expand the function $f(x) = \log(x+1)$ about x=0 using Taylor's series up to first four terms and hence using it, find the approximate value of $\log(1.2)$ correct up to 4 decimal places.
- 3) (i) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^5 + 2n + 1}{n^6 + 4n 1}$.

(ii) If
$$y = x \log \left(\frac{x-1}{x+1} \right)$$
, then show that $y_n = (-1)^{n-2} (n-2)! \left[\frac{x-n}{(x-1)^n} - \frac{x+n}{(x+1)^n} \right]$.

- 4) Find the roots of the equation $x^3 18x + 35 = 0$ using Cardon's method.
- 5) Find the roots of the equation $x^4 3x^2 42x 40 = 0$ using Ferrari's method.

Q-3 Attempt any Three of the followings:

[09]

- 1) Using Mean Value Theorem for the function $f(x) = \log x$, $x \in [a, b]$ and 1 < a, show that $\frac{b-a}{b} < \log\left(\frac{b}{a}\right) < \frac{b-a}{a}$.
- 2) (i) Test the convergence of the series $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$
 - (ii) Show that sin(ix) = isinh x and cos(ix) = cosh x.
- 3) Find all fourth roots of unity using De Moivre's theorem.
- 4) If $\cosh(u+iv) = x+iy$, then prove that $\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1$ and $\frac{x^2}{\cos^2 v} \frac{y^2}{\sin^2 v} = 1$.

[10]

1) If
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, then A is _____ matrix.

(A) a unit (B) a scalar (C) a diagonal
2) If
$$A = \begin{pmatrix} a & -1 & 0 \\ 0 & a & -1 \\ -1 & 0 & a \end{pmatrix}$$
 and $r(A) = 2$, then $a = 2$.

(B) 1

(C) 2

(D) 3

The rank of any 2×2 nonsingular matrix is____ 3)

(A) 0

(B) 1

(C) · 2 (D) 3 The system of equations 4x + 6y = 5, 6x + 9y = 7 has ___

(A) no solution

(B) infinitely (C) unique

solution

(D) none of these

many solutions

5) Which of the following matrices is not in row-echelon form with leading "1"?

 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \begin{array}{ccc} (B) & \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix} \qquad (C)$

6) If $f(x, y) = x^3 + y^3 - 2x^2y^2$, then $\left(\frac{\partial^2 f}{\partial x^2}\right)_{(1,1)} =$ _____

(A) -1

(D) 2

7) If $z = \frac{1}{2}(x^2 - y^2)$, then dz is equal to_____.

(A) x dx + y dy (B) dx + y dy (C) x dx - y dy (D) x dx - dy8) The tangent plane to the surface $z = x^2 + y^2$ at (1, -1, 2) is_____ (A) 2x + 2y - z = 2

(B) 2x - 2y - z = 2

(C) 2x - 2y + z = 2

(D) 2x - y - 2z = 2

(C) 2x - 2y + 2 - 2If $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial(x,y)}{\partial(r,\theta)}$ is _____.

(C) r^{-1}

(D) r

10) An approximate value of $(4.1)^2 + (2.9)^2$ is _____using the theory of approximations. (B) 20.02 (C) 26.02 (D) 2.02

(A) 25.02

Attempt any Four of the followings:

[16]

Reduce the matrix $\begin{pmatrix} 3 & 1 & 7 \\ 1 & 2 & 4 \\ 4 & -1 & 7 \\ 4 & -1 & 5 \end{pmatrix}$ to reduced row-echelon form and hence determine the rank.

Find the inverse of $\begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$ by Gauss-Jordan method, if exists.

Solve the system

$$x + 2y - 2z = 1$$

$$2x - 3y + z = 0$$
$$5x + y - 5z = 1$$

$$3x + 14y - 12z = 5$$

by Gauss elimination method, if it is consistent.

Find the extreme values of the function

$$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

 $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$ Find the maximum value of $x^l y^m z^n$ subject to x + y + z = a. 5)

Attempt any Three of the followings: Q-6

If $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) - y^2 \tan^{-1} \left(\frac{x}{y} \right)$, then find

(i)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$$
.

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$$
.

- If u = f(x y, y z, z x), then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (π, π, π) , if $\sin(x + y) + \sin(y + z) + \sin(x + z) = 0$. 3)
- Expand $f(x, y) = xe^y + 1$ in the powers of (x 1) and y using Taylor's series 4) expansion.