Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

unzip the file

!unzip '/content/archive.zip'

Archive: /content/archive.zip
 inflating: Crude Oil Prices Daily.xlsx

Load the dataset

Data = pd.read_excel('/content/Crude Oil Prices Daily.xlsx')
Data

	Date	Closing Value
0	1986-01-02	25.56
1	1986-01-03	26.00
2	1986-01-06	26.53
3	1986-01-07	25.85
4	1986-01-08	25.87
8218	2018-07-03	74.19
8219	2018-07-04	NaN
8220	2018-07-05	73.05
8221	2018-07-06	73.78
8222	2018-07-09	73.93
0000		

8223 rows × 2 columns

Handling Missing Data

```
Data.isnull().any()
```

Date False Closing Value True dtype: bool

Data.isnull().sum()

Date 0 Closing Value 7 dtype: int64

Data.dropna(axis=0,inplace=True)

Data.isnull().sum()

Date 0
Closing Value 0
dtype: int64

data_oil=Data.reset_index()['Closing Value'] data_oil

0	25.56
1	26.00
2	26.53
3	25.85
4	25.87
8211	73.89
8212	74.19

```
8213 73.05
8214 73.78
8215 73.93
Name: Closing Value, Length: 8216, dtype: float64
```

Feature Scaling

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))
data_oil=scaler.fit_transform(np.array(data_oil).reshape(-1,1))
```

Data Visualization

```
plt.plot(data_oil)
```

```
[<matplotlib.lines.Line2D at 0x7ff4ebc4cd90>]

10

0.8

0.6

0.2

0.0

2000 4000 6000 8000
```

Splitting Data into Train and Test

print(X_test.shape), print(ytest.shape)

(2865, 10) (2865,) (None, None)

```
training_size=int(len(data_oil)*0.65)
test_size=len(data_oil)-training_size
train_data,test_data=data_oil[0:training_size,:],data_oil[training_size:len(data_oil),:1]
training_size,test_size
     (5340, 2876)
train_data.shape
     (5340, 1)
creating a dataset with sliding windows
def create_dataset(dataset,time_step=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-time_step-1):
        a = dataset[i:(i+time_step),0]
        dataX.append(a)
        dataY.append(dataset[i+time_step,0])
    return np.array(dataX), np.array(dataY)
time\_step = 10
X_train, y_train = create_dataset(train_data, time_step)
X_test, ytest = create_dataset(test_data, time_step)
print(X_train.shape), print(y_train.shape)
     (5329, 10)
     (5329,)
     (None, None)
```