Instituto Superior Técnico

Análise e Síntese de Algoritmos

Ano Lectivo 2019/2020

2º Teste

1 de Julho de 2020

Duração: 1h30m (09h00-10h30)

- As questões deste teste são geradas unicamente para o aluno número: 92438
- O grupo I deve ser submetido no Fénix através do ficheiro asa1920-t2-gI.json
- As respostas dos restantes grupos devem ser efectuadas em folhas manuscritas, e as suas digitalizações submetidas no Fénix
- Certifique-se que o seu nome e número de aluno está legível na digitalização
- Bom trabalho!

I. (2.5 + 2.5 + 2.5 + 2.5 = 10.0 val.)

I.a) Considere o problema de compressão de dados de um ficheiro usando a codificação de Huffman. Indique o código livre de prefixo óptimo para cada carácter num ficheiro com 500 caracteres com a seguinte frequência de ocorrências: f(a) = 12, f(b) = 13, f(c) = 4, f(d) = 8, f(e) = 47, f(f) = 16. Quando constrói a árvore, considere o bit 0 para o nó com menor frequência.

Indique também o total de bits no ficheiro codificado.

	a	b	c	d	e	f
Codificação						
Total Bits						

I.b) Considere a maior sub-sequência comum entre as duas strings ACABACB e ABCAABAC e calcule a respectiva matriz de programação dinâmica c[i,j] para este problema, em que o índice i está associado à string ACABACB. Indique os seguintes valores: c[5,3], c[4,4], c[7,4], c[5,7], c[7,8].

c[5,3]	c[4,4]	c[7,4]	c[5,7]	c[7,8]

I.c) Considere o algoritmo de Knuth-Morris-Pratt com o seguinte texto T=ababaabaabae o padrão P=abbaaa. Calcule a função de prefixo para o padrão P:

P	=	a	b	b	a	a	a
	i	1	2	3	4	5	6
π	$\cdot [i]$						

Indique ainda todas as posições da sequência de índices i que percorre o padrão P, ao aplicar o algoritmo sobre o texto T apenas quando o índice que percorre o texto é incrementado.

|--|

I.d) Considere o seguinte programa linear:

$$\begin{array}{llll} \min & -3x_1 - x_2 + x_3 \\ \text{s.a} & x_1 + x_2 + x_3 \leq 3 \\ & -2x_1 - 2x_2 - x_3 \geq -7 \\ & x_1 + 2x_2 + 2x_3 \leq 4 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

Indique o valor da função objectivo e o respectivo valor das variáveis básicas e nãobásicas após uma única operação de pivot.

Z	x_1	x_2	x_3	x_4	x_5	x_6

II.
$$(2.5 + 2.5 + 2.5 + 2.5 = 10 \text{ val.})$$

II.a) O Eng. Caracol foi encarregado de apresentar uma proposta para a construção de postos de primeiros socorros ao longo da autoestrada AX, que começa no kilómetro 0 e termina no kilómetro k. O Eng. Caracol dispõe de uma lista de n locais candidatos. Cada local candidato, $1 \le i \le n$, é associado à sua distância ao kilómetro 0, d_i , e ao seu custo estimado de construção, c_i . Sabendo que dois postos de primeiros socorros consecutivos não podem estar a uma distância superior a D kilómetros, o objectivo do Eng. Caracol é determinar o conjunto de locais candidatos que satisfazem a restrição do problema pelo menor custo possível.

1. Seja O(i) o custo da solução óptima para o troço da autoestrada AX entre o kilómetro 0 e o local candidato i, que atribui necessariamente um posto de primeiros socorros ao local candidato i. Defina O(i) recursivamente, completando os campos abaixo.

2. Complete o template de código em baixo que calcula a quantidade O(i) para $1 \le i \le n$ e indique a respectiva complexidade assimptótica.

Find0
$$(c[1..n], d[1..n])$$

let $O[1..n]$ be a new vector of size n
 $O[1] = c[1]$
for $i = 2$ to n do

endfor
return O

3. Explique como determinar o custo da melhor solução a partir do vector O.

II.b) Considere a seguinte variação do algoritmo de Rabin-Karp para emparelhamento de cadeias de caracteres sobre o alfabeto $\Sigma = \{a, b, c\}$, que usa a função de hash:

$$h(x_1...x_n) = (\alpha(x_1) + ... + \alpha(x_n)) \text{ mod } 5$$

onde: $\alpha(a) = 1$, $\alpha(b) = 2$ e $\alpha(c) = 3$. Seja $T = abab^2ab^3 \dots ab^{n-1}ab^n$ a string de texto a processar. Calcule o número de *hits* espúrios, em função de n, gerados ao procurar os seguintes padrões em T (deve apresentar os cálculos): Nota: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

- 1. $P_1 = abb$
- 2. $P_2 = abc$

II.c)

Considere o seguinte programa linear:

- 1. Desenhe o conjunto exequível e resolva geometricamente o programa linear (indique tanto o valor máximo como as coordenadas onde esse valor é atingido).
- 2. Formule o programa linear dual e calcule a respectiva solução a partir da solução do programa primal (indique tanto o valor mínimo como as coordenadas onde esse valor é atingido). Nota: pode obter o valor das coordenadas resolvendo o sistema de equações do problema dual colocando a 0 as variáveis que correspondem a restrições não activas.
- **II.d)** Uma matriz de incompatibilidades é uma matriz quadrada cujas células guardam valores decimais entre 0 e 1. Intuitivamente, dada uma matriz de incompatibilidades M, $n \times n$, a célula M_{ij} guarda a incompatibilidade entre os índices i e j; M_{ij} é 0 se i e j são completamente compatíveis e $M_{ij} = 1$ se i e j são completamente incompatíveis. Dado um sub-conjunto de índices $I \subseteq \{1, ..., n\}$, o nível de incompatibilidade do conjunto é dado por: $\sum_{i,j\in I} M_{ij}$. O problema das incompatibilidades define-se formalmente da seguinte maneira:

 $\textbf{Incompat} = \{ \langle M, k, v \rangle \mid M \text{ contém um sub-conjunto de índices} \\ \text{de tamanho } k \text{ e incompatibilidade igual ou inferior a } v \}$

- 1. Mostre que o problema **Incompat** está em **NP**.
- 2. Mostre que o problema **Incompat** é NP-difícil por redução a partir do problema **ISet**, que é sabido tratar-se de um problema NP-completo e que se define em baixo. Não é necessário provar formalmente a equivalência entre os dois problemas; é suficiente indicar a redução e a respectiva complexidade.

Pista: Dado um grafo G indique como construir uma matriz de incompatibilidades cujos índices correspondem aos vértices de G tendo em conta o problema \mathbf{ISet} .

Problema ISet: Seja G=(V,E) um grafo não dirigido; dizemos que $V'\subseteq V$ é um conjunto de vértices independentes em G se e apenas se $\forall u,v\in V'.(u,v)\not\in E$. O problema **ISet** define-se formalmente da seguinte maneira:

 $\mathbf{ISet} = \{ \langle G, k \rangle \mid G \text{ contém um conjunto de vértices independentes de tamanho } k \}$