The history of Yanucho

by Gilmar and Yanacho

Alair professor de LabConsp

Reconhecimento de Emoções por Sinais Wireless

Gustavo Mendes Maciel Yannick T. Messias

Apresentação

- Mingmin Zhao, Fadel Adib, Dina Katabi
- Massachusetts Institute of Technology

"It is motivated by a simples vision:
 Can we build machines that sense our emotions?"

Motivação

- Smart homes
- Movie makers
- Marketing
- Diagnóstico de doenças psicológicas
- Interação homem-máquina
- Altos exemplos...

Soluções existentes

Visão computacional:

- Focado em expressões e gestos
- Prático: não requer acessórios
- Limitado (ex: pessoa sorri mas não está feliz)
- Pessoas expressam emoções diferentemente

Soluções existentes

ECG Monitor (eletrocardiograma)

- Baseado nos batimentos cardíacos
- Mais preciso
- Foca em sinais inconscientes do corpo
- Problema: uso de sensores pode interferir no resultado

Nova Solução

EQ-Radio

- Também focado nos sinais inconscientes do corpo
- Respiração e batimento cardíaco
- Não necessita o uso de sensores no corpo
- Utiliza sinais de radiofrequência (RF) rebatidas pelo corpo

Desafios

- Impacto da respiração nos sinais
- Batimentos carecem de picos bem definidos
- Diferença dos intervalos entre cada batimento é pequeno

Soluções

- Diminuir o impacto da respiração no sinal
- Algoritmo para segmentar o sinal RF refletido em batidas individuais

Implementação

3 componentes

- FMCW (Frequency Modulated Carrier Waves) radio
- Extrator de batimentos
- Classificador de emoções

FMCW radio

- Transmite sinais RF e recebe suas reflexões
- Vantagem: consegue separar diferentes fontes de movimento

FMCW radio

- Como o sinal é capturado?
 - mede o tempo de reflexão
 - separa reflexões de diferentes objetos
 - elimina reflexões de objetos estáticos
 - olha para a fase da onda RF, dada por:

$$\phi(t) = 2\pi \frac{d(t)}{\lambda}$$

Extrator de batimentos

- Recebe os sinais RF e devolvem uma segmentação de batimendos individuais
- Diminuir o impacto da respiração nos sinais:
 - trabalhar com a aceleração do sinal

Extrator de batimentos

- Segmentação dos batimentos:
 - não sabemos a morfologia dos batimentos
 - intuição: batidas sucessivas devem ter a mesma morfologia
 - otimização: minimizar as diferenças de forma entre as batidas e, ao mesmo tempo, descobrir a morfologia dos batimentos

Otimização

 $\mathbf{x} = (x_1, x_2, ..., x_n)$: sequência de tamanho n

 $S = \{s_1, s_2, ...\}$: segmentação de x

 μ : modelo para a forma das batidas

• Objetivo: encontrar a segmentação ótima S^* tal que s_1, s_2, \ldots sejam o mais similares entre si possível

$$Var(S) = \min_{\mu} \sum_{s_i \in S} ||s_i - \omega(\mu, |s_i|)||^2$$

Otimização

$$S^* = arg \min_{S} Var(S)$$

Reescrevendo:

$$\underset{s, \boldsymbol{\mu}}{minimizar} \sum_{s_i \in S} \|s_i - \omega(\boldsymbol{\mu}, |s_i|)\|^2$$

sujeito a
$$b_{min} \leq |s_i| \leq b_{max}$$
, $s_i \in S$

• Problema difícil de otimização

Algoritmo

- Alterna ente atualizar a segmentação e atualizar o modelo (μ)
- UpdateSegmentation:

$$S^{l+1} = arg \min_{S} \sum_{s_i \in S} ||s_i - \omega(\boldsymbol{\mu}^l, |s_i|)||^2 \qquad O(n)$$

UpdateTemplate:

$$\mu^{l+1} = arg \min_{\mu} \sum_{s_i \in S^{l+1}} ||s_i - \omega(\mu, |s_i|)||^2 \qquad O(1)$$

Algoritmo

- Inicialização: $\mu^0 = 0$
- Consumo de tempo: O(kn)
 - k: número de iterações para convergir
 - Nos experimentos realizados, k foi em média 8, e no máximo 16

Classificador de emoções

- 2D Emotion Model: valence and arousal
- Anger, Sadness, Pleasure, Joy
- Handling Dependencies: neutral state
- Feature Selection and Classification

Table 1: Features used in EQ-Radio.

Domain	Name	
Time	Mean, Median, SDNN, pNN50 , RMSSD, SDNNi, meanRate, $sdRate$, HRVTi, $TINN$.	
Frequency	Welch PSD: LF/HF , peakLF, peakHF. Burg PSD: LF/HF , peakLF, peakHF. Lomb-Scargle PSD: LF/HF , peakLF, peakHF.	
Poincaré	SD_1 , SD_2 , SD_2/SD_1 .	
Nonlinear	$\mathbf{SampEn}_1,\mathbf{SampEn}_2,\mathbf{DFA}_{all},\mathrm{DFA}_1,\mathrm{DFA}_2.$	
selected IBI features in bold ;		

selected IBI features in **bold**; selected respiration features in *italic*.

Resultados

Precisão da extração de batimentos cardíacos:

Erro médio do IBI: 3,2 ms

- IBI médio: 740 ms

Precisão do reconhecimento de emoções:

Method	Person-dependent	Person-independent
EQ-Radio	87%	72.3%
ECG-based	88.2%	73.2%

Conclusões

