Aula 24

Séries

Seja $\{z_j\}$ uma sucessão complexa. Quer-se somar os infinitos termos da sucessão

$$\sum_{j=1}^{\infty} z_j = z_1 + z_2 + z_3 + \cdots$$

Definição: Dada uma sucessão complexa $\{z_j\}$ chama-se sucessão das somas parciais à sucessão

$$S_n = \sum_{j=1}^n z_j = z_1 + z_2 + z_3 + \dots + z_n.$$

Diz-se que a série $\sum_{j=1}^{\infty} z_j$ converge se converge a sucessão das somas parciais. Nesse caso chama-se **soma da série** ao limites da sucessão das somas parciais,

$$\sum_{j=1}^{\infty} z_j = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{j=1}^n z_j.$$

Proposição: Uma série da forma

$$\sum_{j=j_0}^{\infty} r^j,$$

diz-se uma **série geométrica de razão** $r \in \mathbb{C}$. Diverge se $|r| \geq 1$ e converge para |r| < 1 com soma

$$\sum_{j=j_0}^{\infty} r^j = r^{j_0} \frac{1}{1-r}.$$

Proposição: Se uma série $\sum_{j=1}^{\infty} z_j$ converge então, necessariamente, o termo geral é um infinitésimo, ou seja $\lim_{j\to\infty} z_j = 0$. Equivalentemente, se $z_j \not\to 0$ então a correspondente série diverge.

Proposição: Se $\sum_{j=1}^{\infty} z_j$ e $\sum_{j=1}^{\infty} w_j$ são séries convergentes, então também o são as séries

- $\sum_{j=1}^{\infty} (z_j + w_j)$ e a soma é $\sum_{j=1}^{\infty} z_j + \sum_{j=1}^{\infty} w_j$.
- $\sum_{j=1}^{\infty} cz_j$ para qualquer $c \in \mathbb{C}$ e a soma é $c \sum_{j=1}^{\infty} z_j$.

Proposição: Uma série $\sum_{j=1}^{\infty} z_j$ converge se e só se a sucessão das somas parciais é uma sucessão de Cauchy

$$\forall_{\delta>0} \exists_{N\in\mathbb{N}} : n, m > N \Rightarrow |S_n - S_m| = \left|\sum_{j=m+1}^n z_j\right| < \delta.$$

<u>Corolário</u>: A convergência duma série $\sum_{j=1}^{\infty} z_j$ não se altera por modificações num número finito de termos (mas, no caso de convergir, o valor da soma pode alterar-se).

Corolário: Se a série $\sum_{j=1}^{\infty} |z_j|$ converge, então $\sum_{j=1}^{\infty} z_j$ converge.

Definição:

- Se a série $\sum_{j=1}^{\infty} |z_j|$ converge diz-se que $\sum_{j=1}^{\infty} z_j$ converge absolutamente ou que é absolutamente convergente.
- Se a série $\sum_{j=1}^{\infty} |z_j|$ diverge mas $\sum_{j=1}^{\infty} z_j$ converge, diz-se que **converge simplesmente** ou que é **simplesmente convergente**.

Séries de Termos Positivos

Revisão dos Principais Critérios de Convergência:

- (Critério Geral de Comparação) Se $0 \le a_n \le b_n$ e a série $\sum_{n=0}^{\infty} b_n$ converge então $\sum_{n=0}^{\infty} a_n$ converge. Equivalentemente, se $\sum_{n=0}^{\infty} a_n$ diverge então $\sum_{n=0}^{\infty} b_n$ diverge.
- Se $\lim \frac{a_n}{b_n} = L$, com $0 < L < \infty$, então as séries $\sum_n^\infty a_n$ e $\sum_n^\infty b_n$ têm a mesma natureza, ou seja, ou são ambas convergentes, ou ambas divergentes.
- A série $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converge se $\alpha > 1$ e diverge se $\alpha \leq 1$.
- (Critério da Raíz/Critério de Cauchy) Se $\sqrt[n]{a_n} \le r < 1$ então a série $\sum_n^\infty a_n$ converge. E se $\sqrt[n]{a_n} \ge 1$ a série diverge. Analogamente se existir o limite $\lim_n \sqrt[n]{a_n}$ e este for < 1 ou > 1. O critério de Cauchy é inconclusivo se $\lim_n \sqrt[n]{a_n} = 1$.
- (Critério da Razão/Critério de D'Alembert) Se $\frac{a_{n+1}}{a_n} \leq r < 1 \text{ então a série } \sum_{n=0}^{\infty} a_n \text{ converge. E se } \frac{a_{n+1}}{a_n} \geq 1 \text{ a série diverge. Analogamente se existir o limite } \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \text{ e este for } < 1 \text{ ou } > 1. \text{ O critério de } \text{D'Alembert é inconclusivo se } \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1.$

Séries de Potências

A ideia é generalizar polinómios

$$a_0 + a_1 z + a_2 z^2 + a_3 z + \dots + a_n z^n$$
,

a grau infinito

$$a_0 + a_1 z + a_2 z^2 + a_3 z + \dots + a_n z^n + \dots = \sum_{n=0}^{\infty} a_n z^n.$$

<u>Definição</u>: Designa-se por **série de potências centrada em** $z_0 \in \mathbb{C}$ e coeficientes $a_n \in \mathbb{C}$ a função dada por

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n =$$

$$= a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + a_3 (z - z_0)^3 + \dots + a_n (z - z_0)^n + \dots$$

com domínio $z \in \mathbb{C}$ para o qual a série converge.

<u>Teorema</u>: Dada uma série de potências centrada em $z_0 \in \mathbb{C}$ e coeficientes $a_n \in \mathbb{C}$

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n =$$

$$= a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots + a_n (z - z_0)^n + \dots$$

existe um $0 \le R \le \infty$, denominado **raio de convergência** tal que a série converge absolutamente para $|z - z_0| < R$ e diverge para $|z - z_0| > R$ (para $|z - z_0| = R$ a convergência ou divergência depende da série específica).

Quando existem os limites, o raio de convergência pode ser obtido pela fórmula

$$R = \lim \frac{|a_n|}{|a_{n+1}|} = \lim \frac{1}{\sqrt[n]{|a_n|}}.$$

Geralmente, mesmo quando estes limites não existem, o raio de convergência pode sempre ser dado por

$$R = \frac{1}{\limsup \sqrt[n]{|a_n|}}.$$