О свойствах вероятностных характеристик деревьев вывода в разложимых стохастических КС-грамматиках. Докритический случай

Л. П. Жильцова

Автором в [4, 5] рассматривались вопросы, связанные с кодированием слов стохастического контекстно-свободного языка (стохастического КС-языка), при условии, что матрица первых моментов порождающей грамматики неразложима и ее максимальный по модулю собственный корень (перронов корень) строго меньше единицы (докритический случай). При неразложимой матрице первых моментов нетерминальные символы грамматики образуют один класс.

В настоящей работе рассматриваются стохастические КС-грамматики с произвольным числом классов нетерминальных символов без ограничений на порядок следования классов.

1 Предварительные сведения

Для изложения результатов о контекстно-свободных языках будем использовать определения КС-языка и стохастического КС-языка из [1, 8].

Стохастической КС-грамматикой называется система $G = \langle V_T, V_N, R, s \rangle$, где V_T и V_N - конечные множества терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно; $s \in V_N$ - аксиома, R - множество правил. Множество R можно представить в виде $R = \bigcup_{i=1}^k R_i$, где k - мощность алфавита V_N и $R_i = \{r_{i1}, \ldots, r_{i,n_i}\}$. Каждое правило r_{ij} из R_i имеет вид

$$r_{ij}: A_i \stackrel{p_{ij}}{\rightarrow} \beta_{ij}, \ j = 1, ..., n_i,$$

где $A_i \in V_N, \beta_{ij} \in (V_T \cup V_N)^*$ и p_{ij} - вероятность применения правила $r_{ij},$ удовлетворяющая следующим условиям:

$$0 < p_{ij} \le 1$$
 и $\sum_{j=1}^{n_i} p_{ij} = 1$.

Применение правила грамматики к слову в алфавите $V_T \cup V_N$ состоит в замене вхождения нетерминала из левой части правила на слово, стоящее в его правой части. КС-язык определяется как множество всех слов в алфавите V_T , выводимых из аксиомы s с помощью конечного числа применений правил грамматики. В работе рассматриваются бесконечные КС-языки.

Каждому слову α КС-языка соответствует последовательность правил грамматики (вывод), с помощью которой α выводится из аксиомы s. Для определенности в качестве вывода будем рассматривать левый вывод, когда очередное правило грамматики применяется к самому левому вхождению нетерминала в слово. Вероятность вывода определяется как произведение вероятностей правил, его образующих.

Дерево вывода строится по левому выводу слова следующим образом. Корень дерева помечается аксиомой s. Пусть при выводе слова α на очередном шаге в процессе левого вывода применяется правило $A_i \stackrel{p_{ij}}{\to} b_{i_1} b_{i_2} \dots b_{i_m}$, где $b_{i_l} \in V_N \cup V_T$ $(l=1,\dots,m)$. Тогда из самой левой вершины-листа дерева, помеченной символом A_i (при обходе листьев дерева слева направо), проводится m дуг в вершины следующего яруса, которые помечаются слева направо символами $b_{i_1}, b_{i_2}, \dots, b_{i_m}$ соответственно. После построения дуг и вершин для всех правил грамматики в выводе слова языка все листья дерева помечены терминальными символами и само слово получается при обходе кроны дерева слева направо. Высотой дерева называется максимальная длина пути от корня к листу.

Важной характеристикой стохастической КС-грамматики является матрица первых моментов, которая строится по грамматике.

Рассмотрим многомерные производящие функции

$$F_i(s_1, s_2, \dots, s_k), i = 1, \dots, k,$$

где переменная s_i соответствует нетерминальному символу A_i [7]. Функция $F_i(s_1, s_2, \ldots, s_k)$ строится по множеству правил R_i с одинаковой левой частью A_i следующим образом.

Для каждого правила $A_i \stackrel{p_{ij}}{\longrightarrow} \beta_{ij}$ выписывается слагаемое

$$q_{ij}=p_{ij}\cdot s_1^{l_1}\cdot s_2^{l_2}\cdot \ldots\cdot s_k^{l_k},$$

где l_m - число вхождений нетерминального символа A_m в правую часть правила $(m=1,\ldots,k)$. Тогда

$$F_i(s_1, s_2, \dots, s_k) = \sum_{j=1}^{n_i} q_{ij}.$$

Пусть

$$a_j^i = \frac{\partial F_i(s_1, \dots, s_k)}{\partial s_i} \mid_{s_1 = s_2 = \dots = s_k = 1.}$$

Квадратная матрица A порядка k, образованная элементами a_j^i , называется матрицей первых моментов грамматики G.

Так как матрица A неотрицательна, существует максимальный по модулю действительный неотрицательный собственный корень (перронов корень) [3]. Обозначим этот корень через r.

В работе рассматривается докритический случай, т.е. случай, когда r < 1. Основные результаты относятся к стохастическим КС-грамматикам с разложимой матрицей [3] первых моментов.

Введем некоторые обозначения. Будем говорить, что нетерминал A_j непосредственно следует за нетерминалом A_i (и обозначать $A_i \to A_j$), если в

грамматике существует правило вида $A_i \xrightarrow{p_{il}} \alpha_1 A_j \alpha_2$, где $\alpha_1, \alpha_2 \in (V_T \cup V_N)^*$. Рефлексивное транзитивное замыкание отношения \to обозначим \to_* .

Грамматика называется неразложимой, если для любых двух различных нетерминалов A_i и A_j верно $A_i \to_* A_j$. В противном случае она называется разложимой. Классом нетерминалов назовем максимальное по включению подмножество $K \in V_N$, такое, что $A_i \to_* A_j$ для любых $A_i, A_j \in K$.

Для различных классов K_1 и K_2 будем говорить, что класс K_2 непосредственно следует за классом K_1 (и обозначать $K_1 \prec K_2$), если существуют $A_1 \in K_1$ и $A_2 \in K_2$, такие, что $A_1 \to A_2$. Рефлексивное транзитивное замыкание отношения \prec обозначим через \prec_* и назовем отношением следования.

Очевидно, множество классов нетерминалов является разбиением множества V_N и отношение \prec устанавливает на множестве классов нетерминалов частичный порядок.

Будем полагать, что классы нетерминалов перенумерованы таким образом, что $K_i \prec K_j$ тогда и только тогда, когда i < j.

Соответствующая разложимой грамматике разложимая матрица [3] первых моментов A имеет следующий вид:

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1m-1} & A_{1m} \\ 0 & A_{22} & \dots & A_{2m-1} & A_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{m-1m-1} & A_{m-1m} \\ 0 & 0 & \dots & 0 & A_{mm} \end{pmatrix}.$$
 (1)

Один класс нетерминалов в матрице первых моментов представлен множеством подряд идущих строк и соответствующим множеством столбцов с теми же номерами. Для класса K_i квадратная подматрица, образованная соответствующими строками и столбцами, обозначается A_{ii} . Блоки, расположенные ниже главной диагонали, нулевые в силу упорядоченности классов нетерминалов. Подматрица A_{ij} является нулевой, если $K_i \not\prec K_j$.

Для каждого класса K_i матрица A_{ii} неразложима. Без ограничения общности будем считать, что она строго положительна и непериодична. Этого всегда можно добиться, применяя метод укрупнения правил грамматики, описанный в [4].

Обозначим через r_i перронов корень матрицы A_{ii} . Для неразложимой матрицы перронов корень является действительным и простым [3]. Очевидно, $r = \max_i \{r_i\}$, и r > 0, ввиду положительности матрицы A_{ii} для любого i.

Пусть $J=\{i_1,i_2,\ldots,i_l\}$ — множество всех номеров i_j классов, для которых $r_{i_j}=r$. Назовем J определяющим множеством.

Зафиксируем пару (l,h), $l,h \in \{1,2,\ldots,m\}$, и рассмотрим всевозможные последовательности классов $K_{i_1} \prec K_{i_2} \prec \ldots \prec K_{i_s}$, где $i_1 = l,i_s = h$. Среди всех таких последовательностей выберем ту, которая содержит наибольшее число классов с номерами из J. Это число обозначим через s_{lh} . В случае $K_l \not\prec_* K_h$ положим $s_{lh} = 0$.

Дополнительно переупорядочим классы по неубыванию величины s_{1l} , причем при одинаковых значениях s_{1l} сначала поставим классы с номерами из множества J.

Разобьем полученную последовательность классов $K_1, K_2, ..., K_m$ на группы классов $\mathcal{M}_1, \mathcal{M}_2, ..., \mathcal{M}_w$, при этом класс K_l отнесем к группе \mathcal{M}_1 при $s_{1l} \leq 1$, и к группе \mathcal{M}_j при $s_{1l} = j \ (j > 1)$.

Для групп \mathcal{M}_i и \mathcal{M}_j определим s_{ij}^* как $\max_{K_l \in \mathcal{M}_i, K_h \in \mathcal{M}_j} \{s_{lh}\}.$

Среди последовательностей вида

$$K_{i_1} \prec K_{i_2} \prec \ldots \prec K_{i_s},\tag{2}$$

где $i_1=l$ и i_s принимает всевозможные значения, выберем последовательности с наибольшим числом классов с номерами из J. Это число обозначим через q_l . Максимальным путем назовем последовательность вида (2) при $i_1=1$, содержащую q_1 классов с номерами из J. Множество всех классов с номерами из J, принадлежащих максимальным путям, обозначим J_{MAX} .

Для группы \mathcal{M}_j через q_i^* обозначим $\max_{K_i \in \mathcal{M}_j} \{q_i\}$.

Матрицу первых моментов будем также представлять в виде

$$A = \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1w} \\ 0 & B_{22} & \dots & B_{2w} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & B_{ww} \end{pmatrix}, \tag{3}$$

где B_{lh} – подматрица на пересечении строк для классов из группы \mathcal{M}_l и столбцов для классов из \mathcal{M}_h . Заметим, что любая группа содержит хотя бы один класс с номером из определяющего множества J. Поэтому каждая матрица B_{ll} имеет перронов корень r. Запись $B_{lh}^{(t)}$ будем применять для обозначения соответствующей подматрицы матрицы A^t .

Теорема 1 [6]. При $t \to \infty$

$$B_{lh}^{(t)} = H_{lh} \cdot t^{s_{lh}^* - 1} r^t (1 + o(1)),$$

где H_{lh} – неотрицательная матрица, не зависящая от t.

Рассмотрим более подробно некоторые необходимые в дальнейшем свойства матриц B_{lh} и $B_{lh}^{(t)}$ при $t \to \infty$.

Группу \mathcal{M}_1 разобьем на три подгруппы \mathcal{M}_{11} , \mathcal{M}_{12} и \mathcal{M}_{13} . К \mathcal{M}_{11} отнесем классы нетерминалов с $s_{1l}=0$, к \mathcal{M}_{12} — классы с номерами из множества J, к \mathcal{M}_{13} — все остальные классы. Подгруппа \mathcal{M}_{11} может быть пустой в том случае, если для класса K_1 матрица A_{11} имеет перронов корень r. Каждая следующая группа \mathcal{M}_h в силу упорядоченности классов начинается с класса с номером из J. Поэтому \mathcal{M}_h при h>1 разобьем на две подгруппы \mathcal{M}_{h2} и \mathcal{M}_{h3} , где \mathcal{M}_{h2} содержит классы с номерами из J, и \mathcal{M}_{h3} — все остальные классы. Для единообразия для \mathcal{M}_h будем рассматривать пустую подгруппу \mathcal{M}_{h1} .

В соответствии с этим разбиением B_{ll} представим в виде

$$B_{ll} = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ 0 & C_{22} & C_{23} \\ 0 & 0 & C_{33} \end{pmatrix}, \tag{4}$$

где C_{ij} — подматрица со строками для классов из \mathcal{M}_{li} и столбцами для классов из \mathcal{M}_{lj} .

Так как каждому классу K_i из \mathcal{M}_{l1} или из \mathcal{M}_{l3} соответствует перронов корень $r_i < r$, для C_{11}^t и C_{33}^t справедливы оценки $C_{11}^t = o(r^t)$ и $C_{33}^t = o(r^t)$ по теореме 1.

Пусть \mathcal{M}_{l2} содержит j_2 классов. Любому классу K_i из \mathcal{M}_{l2} соответствует неразложимая подматрица A_{ii} в представлении (1), и классы из \mathcal{M}_{l2} попарно несравнимы. Поэтому в силу свойств неразложимых матриц [7], матрица C_{22}^t имеет вид

$$\begin{pmatrix} U_{j_1+1}V_{j_1+1} & 0 & \dots & 0 & 0\\ 0 & U_{j_1+2}V_{j_1+2} & \dots & 0 & 0\\ \dots & \dots & \dots & \dots & \dots\\ 0 & 0 & \dots & 0 & U_{j_1+j_2}V_{j_1+j_2} \end{pmatrix} \cdot r^t(1+o(1)), \tag{5}$$

где U_i –правый собственный положительный вектор (вектор-столбец) и V_i – левый собственный положительный вектор (вектор-строка) матрицы A_{ii} , соответствующие r, при нормировке $V_i \cdot U_i = 1, i = j_1 + 1, \ldots, j_1 + j_2$ (здесь $j_1 = |\mathcal{M}_{l1}|$).

Обозначим матрицу

$$\begin{pmatrix} U_{j_1+1}V_{j_1+1} & 0 & \dots & 0 & 0 \\ 0 & U_{j_1+2}V_{j_1+2} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & U_{j_1+j_2}V_{j_1+j_2} \end{pmatrix}$$

через D. Очевидно, D можно представить в виде $\sum_{i=j_1+1}^{j_2} U_i^{(2l)} V_i^{(2l)}$, где

$$U_i^{(2l)} = (0, \dots, 0, U_i, 0, \dots, 0)^T, \quad V_i^{(2l)} = (0, \dots, 0, V_i, 0, \dots, 0), \tag{6}$$

и U_i и V_i расположены на местах, соответствующих классу K_i в \mathcal{M}_{l2} . Заметим, что $U_i^{(2l)}$ и $V_i^{(2l)}$ являются соответственно правым и левым собственными векторами матрицы C_{22} для корня r.

Кроме того, каждому классу $K_i \in \mathcal{M}_{l2}$ соответствуют правый и левый собственные векторы всей матрицы B_{ll} для перронова корня r.

Компоненты правого собственного вектора можно представить в виде $U_i^{(l)}=(U_i^{(1l)},U_i^{(2l)},U_i^{(3l)})^T$, где $U_i^{(jl)}$ соответствует $\mathcal{M}_{lj},\ j=1,2,3.$ В [6] установлено, что $U_i^{(3l)}=0$ и

$$U_i^{(1l)} = (rE - C_{11})^{-1}C_{12}U_i^{(2l)}.$$

Компоненты левого собственного вектора матрицы B_{ll} для перронова корня r представим в виде $V_i^{(l)}=(V_i^{(1l)},V_i^{(2l)},V_i^{(3l)})$. В [6] также показано, что $V_i^{(1l)}=0$ и

$$V_i^{(3l)} = V_i^{(2l)} C_{23} (rE - C_{33})^{-1}.$$

Используя описанные векторы, уточним вид матрицы B_{ll} [6]:

$$B_{ll}^{t} \sim \begin{pmatrix} 0 & \sum_{i=j_{1}+1}^{j_{2}} U_{i}^{(1l)} V_{i}^{(2l)} & \sum_{i=j_{1}+1}^{j_{2}} U_{i}^{(1l)} V_{i}^{(3l)} \\ 0 & \sum_{i=j_{1}+1}^{j_{2}} U_{i}^{(2l)} V_{i}^{(2l)} & \sum_{i=j_{1}+1}^{j_{2}} U_{i}^{(2l)} V_{i}^{(2l)} \\ 0 & 0 & 0 \end{pmatrix} \cdot r^{t}.$$
 (7)

Отметим, что строки матрицы B_{ll} , соответствующие классам $K_i \in \mathcal{M}_{l2}$, т.е. классам, для которых $i \in J$, пропорциональны компонентам правого собственного вектора $U_i^{(2l)}$, а столбцы, соответствующие классам $K_j \in \mathcal{M}_{l2}$, пропорциональны компонентам левого собственного вектора $V_i^{(2l)}$.

Рассмотрим случай l < h. Матрицу B_{lh} представим в виде

$$B_{lh} = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \\ D_{31} & D_{32} \end{pmatrix}, \tag{8}$$

где разбиение по строкам сделано в соответствии с подгруппами \mathcal{M}_{l1} , \mathcal{M}_{l2} и \mathcal{M}_{l3} , а по столбцам – в соответствии с подгруппами \mathcal{M}_{h2} и \mathcal{M}_{h3} . Так как h > 1, для группы нетерминалов \mathcal{M}_h подгруппа \mathcal{M}_{h1} пустая и не представлена в матрице B_{lh} . В [6] доказано следующее асимптотическое равенство:

$$B_{lh}^{(t)} \sim \begin{pmatrix} \sum_{j} U_{j}^{\prime(1l)} V_{j}^{(2h)} & \sum_{j} U_{j}^{\prime(1l)} V_{j}^{(3h)} \\ \sum_{j} U_{j}^{\prime(2l)} V_{j}^{(2h)} & \sum_{j} U_{j}^{\prime(2l)} V_{j}^{(3h)} \\ 0 & 0 \end{pmatrix} \cdot t^{s_{lh}^{*}-1} r^{t},$$

где
$$U_j^{\prime(sl)} = \frac{1}{s_{lh}^* - 1} \sum_i \left(V_i^{(2l)} D_{21} + V_i^{(3l)} D_{31} \right) U_j^{(2h)} U_i^{(sl)}, \ s = 1, 2.$$

2 Моменты

Пусть $\Xi = (\xi_1, \dots, \xi_k)$ — случайный вектор, $\alpha^* = (\alpha_1, \dots, \alpha_k)$ — фиксированный вектор с целочисленными неотрицательными компонентами и $\alpha = \alpha_1 + \dots + \alpha_k$. Обозначим

$$\Xi^{[\alpha^*]} = \xi_1^{[\alpha_1]} \dots \xi_n^{[\alpha_k]},$$

где $x^{[a]}=x(x-1)\dots(x-a+1)$. Математическое ожидание $M\Xi^{[\alpha^*]}$ будем называть α^* -моментом Ξ [Севаст].

Пусть A_i - некоторый нетерминальный символ грамматики G. Через L_i обозначим язык, порожденный грамматикой G_i , которая получается из G заменой аксиомы на A_i . Будем считать, что аксиомой исходной грамматики является нетерминал A_1 и $L=L_1$ для исходного языка L. Через D_i обозначим множество деревьев вывода для слов из L_i .

Пусть $x_j^i(t)$ — число нетерминалов A_j в дереве вывода из D_i на ярусе t. Через $M_{\alpha^*}^i(t)$ обозначим α^* —момент вектора $X^i(t) = (x_1^i(t), \dots, x_k^i(t))$.

Примем специальные обозначения для моментов первых четырех порядков. Факториальные моменты первого порядка будем обозначать через $a^i_j(t)$. Для факториальных моментов второго порядка введем обозначения $b^i_{jn}(t)$. Таким образом, $b^i_{jj}(t)=Mx^i_j(t)(x^i_j(t)-1)$ и $b^i_{jn}(t)=Mx^i_j(t)x^i_n(t)$ при $j\neq n$. Для факториальных моментов третьего и четвертого порядков введем обозначения $c^i_{jnq}(t)$ и $f^i_{inal}(t)$ соответственно.

Нетрудно заметить, что $a_j^i(1)$ – элементы матрицы первых моментов, для которых мы ввели ранее обозначения a_j^i .

Будем также применять далее обозначения b_{jn}^i для $b_{jn}^i(1)$.

Нас интересуют оценки для первых четырех моментов.

Свойства первых моментов исследованы в [6], так как $a_j^i(t)$ - элемент матрицы A^t . Для вторых моментов известна следующая формула из [7]:

$$b_{jn}^{i}(t) = \sum_{\tau=1}^{t} \sum_{l,m,s} a_{l}^{i}(t-\tau) b_{ms}^{l} a_{j}^{m}(\tau-1) a_{n}^{s}(\tau-1).$$
(9)

Пусть a_l^i принадлежит подматрице $A_{h_ih_l}$, a_j^m — подматрице $A_{h_mh_j}$, и a_n^s — подматрице $A_{h_sh_n}$. Подставим в (9) представление для первых моментов:

$$b_{jn}^{i}(t) = \sum_{\tau=1}^{t} \sum_{l,m,s} c_{il} \cdot (t-\tau)^{\delta_{1}} \cdot \left(1 + O\left(\frac{1}{t-\tau}\right)\right) \cdot r^{t-\tau} \cdot b_{ms}^{l} \cdot c_{mj} \cdot (\tau-1)^{\delta_{2}} \cdot r^{\tau-1} \times c_{mj} \cdot r^{\tau-1} \times c_{mj} \cdot (\tau-1)^{\delta_{2}} \cdot$$

$$c_{sn} \cdot (\tau - 1)^{\delta_3} \cdot r^{\tau - 1} \cdot \left(1 + O\left(\frac{1}{\tau}\right)\right).$$

Здесь $\delta_1 = s_{h_i h_l} - 1$, $\delta_2 = s_{h_m h_j} - 1$, и $\delta_3 = s_{h_s h_n} - 1$, и c_{il} , c_{mj} и c_{sn} — коэффициенты в соответствующих элементах матрицы A^t .

Проведем несложные преобразования в полученном равенстве:

$$b_{jn}^{i}(t) = r^{t} \sum_{l} c_{il} t^{\delta_{1}} \sum_{\tau=1}^{t} \left(1 - \frac{\tau}{t}\right)^{\delta_{1}} \left(1 + O\left(\frac{1}{t - \tau}\right)\right) \sum_{m,s} b_{ms}^{l} c_{mj} c_{sn} \cdot \tau^{\delta_{2} + \delta_{3}} \times \left(1 - \frac{1}{\tau}\right)^{\delta_{2} + \delta_{3}} r^{\tau - 2} \cdot \left(1 + O\left(\frac{1}{\tau}\right)\right).$$

Ряд

$$\sum_{\tau=1}^{\infty} \left(1 - \frac{\tau}{t}\right)^{\delta_1} \left(1 + O\left(\frac{1}{t - \tau}\right)\right) \sum_{m,s} b_{ms}^l c_{mj} c_{sn} \cdot \tau^{\delta_2} \left(1 - \frac{1}{\tau}\right)^{\delta_2 + \delta_3} r^{\tau - 2} \cdot \left(1 + O\left(\frac{1}{\tau}\right)\right)$$

сходится. Обозначим его сумму через $g_{jn}^i(l)$. Отметим, что $g_{jn}^i(l) > 0$ в тех случаях, когда существуют m и s такие, что $b_{ms}^l > 0$,

$$K_{h_i} \prec_* K_{h_l} \prec_* K_{h_m} \prec_* K_{h_j} \text{ if } K_{h_i} \prec_* K_{h_l} \prec_* K_{h_s} \prec_* K_{h_n}$$

Условие $b_{ms}^l > 0$ выполняется тогда и только тогда, когда в грамматике существует правило с нетерминалом A_l в левой части, содержащее в правой части оба нетерминала A_m и A_s .

При $t \to \infty$

$$b_{jn}^{i}(t) = \sum_{l} g_{jn}^{i}(l) \cdot t^{\delta_{1}} r^{t} (1 + o(1)),$$

где суммирование ведется по тем l, для которых $g_{in}^{i}(l) > 0$.

Очевидно, определяющими в этой сумме являются слагаемые с теми значениями l, для которых δ_1 имеет наибольшее значение. Обозначим его через δ^i_{jn} . Поэтому формулу для $b^i_{jn}(t)$ можно записать в следующем виде:

$$b_{in}^{i}(t) = g_{in}^{i} t^{\delta_{jn}^{i}} r^{t} \cdot (1 + o(1)). \tag{10}$$

Здесь $g^i_{jn} = \sum_l g^i_{jn}(l)$, где суммирование ведется по значениям l, удовлетворяющим перечисленным выше условиям. Так как $l \leq j$ и $l \leq n$, то $\delta^i_{jn} \leq \max\{s_{h_ih_j}-1,s_{h_ih_n}-1\}$. Поэтому $b^i_{jn}(t) \leq O\left(a^i_j(t)+a^i_n(t)\right)$.

Используя результаты из [7], запишем формулу для третьего момента:

$$c_{jnq}^{i}(t) = \sum_{\tau=1}^{t} \sum_{l} a_{l}^{i}(t-\tau) \cdot z_{jnq}^{l}(\tau-1).$$

В этой формуле $z^l_{jnq}(\tau-1)$ состоит из конечного числа слагаемых двух типов. Слагаемые первого типа имеют вид: $Ca^s_q(\tau-1)\cdot a^m_n(\tau-1)\cdot a^l_j(\tau-1)$ для некоторых s,m,l, где C — некоторая константа, зависящая от слагаемого; слагаемые второго типа имеют вид: $Ca^l_j(\tau-1)\cdot b^m_{nq}(\tau-1)$ для некоторых l,m и константы C.

Поэтому вычисление $c^i_{jnq}(t)$ сводится к вычислению конечного числа сумм вида

$$S_1(t) = \sum_{\tau=1}^t a_l^i(t-\tau) \cdot a_j^l(\tau-1) \cdot a_q^s(\tau-1) \cdot a_n^m(\tau-1)$$

и вида

$$S_2(t) = \sum_{\tau=1}^t a_l^i(t-\tau) \cdot a_j^s(\tau-1) \cdot b_{nq}^m(\tau-1)$$

для некоторых значений l, m, s.

Оценим $S_1(t)$ и $S_2(t)$, используя оценки $a^i_j(t) = O(t^{s_{ij}-1}r^t)$, $b^i_{jl}(t) \le O\left(a^i_j(t) + a^i_l(t)\right)$. Применяя очевидное неравенство $s_{ij} \le w$, где w -число групп, получим, что $S_1(t) \le O(t^{w-1}r^t)$ и $S_2(t) \le O(t^{w-1}r^t)$. Поэтому

$$c_{jnq}^i(t) \le O\left(t^{w-1}r^t\right).$$

Аналогичный результат может быть получен и для четвертого момента. Для него известна формула [7]:

$$f_{j_1 j_2 j_3 j_4}^i(t) = \sum_{\tau=1}^t \sum_{j=1}^k a_j^i(t-\tau) z_{j_1 j_2 j_3 j_4}^j(\tau-1),$$

где $z^{j}_{i_{1}i_{2}i_{3}i_{4}}(\tau-1)$ состоит из конечного числа слагаемых следующих четырех видов:

$$S_{1}(\tau-1) = a_{j_{1}}^{i_{1}}(\tau-1) \cdot a_{j_{2}}^{i_{2}}(\tau-1) \cdot a_{j_{3}}^{i_{3}}(\tau-1) \cdot a_{j_{4}}^{i_{4}}(\tau-1);$$

$$S_{2}(\tau-1) = a_{j_{1}}^{i_{1}}(\tau-1) \cdot a_{j_{2}}^{i_{2}}(\tau-1) \cdot b_{j_{3}j_{4}}^{i_{3}}(\tau-1);$$

$$S_{3}(\tau-1) = b_{j_{1}j_{2}}^{i_{1}}(\tau-1) \cdot b_{j_{3}j_{4}}^{i_{2}}(\tau-1);$$

$$S_{4}(\tau-1) = a_{j_{1}}^{i_{1}}(\tau-1) \cdot c_{j_{2}j_{3}j_{4}}^{i_{2}}(\tau-1)$$

для некоторых значений i_1, i_2, i_3, i_4 .

Используя оценки для первых трех моментов и проведя элементарные преобразования, получаем оценку по порядку для четвертого момента:

$$f_{j_1 j_2 j_3 j_4}^i(t) \le O\left(t^{w-1} r^t\right).$$

3 Вероятности продолжения

Через $Q_l(t)$ обозначим вероятность множества деревьев вывода из D_l , высота которых больше t. Эту вероятность назовем вероятностью продолжения по аналогии с теорией ветвящихся процессов. Пусть $(A_{j+1}, A_{j+2}, \ldots, A_{j+k_i})$ - последовательность

нетерминалов, образующих группу \mathcal{M}_i , где k_i – число нетерминалов в \mathcal{M}_i и j+1 – номер первого по порядку нетерминала в \mathcal{M}_i .

Через $Q^{(i)}(t)$ обозначим вектор вероятностей продолжения $Q^{(i)}(t) = (Q_{i+1}(t), Q_{i+2}(t), \dots, Q_{i+k_i}(t))^T$. Представим $Q^{(i)}(t)$ в виде

$$Q^{(i)}(t) = \left(Q_1^{(i)}(t), Q_2^{(i)}(t), Q_3^{(i)}(t)\right)^T, \tag{11}$$

где $Q_l^{(i)}(t)$ соответствует подгруппе $\mathcal{M}_{i,l}$ (l=1,2,3). Напомним, что подгруппа $\mathcal{M}_{i,1}$ может быть пустой, в этом случае вектор $Q_1^{(i)}(t)^T$ имеет нулевую размерность.

Теорема 2. $\Pi pu \ t \to \infty$

$$\begin{pmatrix} Q_1^{(i)}(t) \\ Q_2^{(i)}(t) \\ Q_3^{(i)}(t) \end{pmatrix} = \begin{pmatrix} U'^{(i)} \cdot t^{q_i^* - 1} \cdot r^t \cdot (1 + o(1)) \\ U''^{(i)} \cdot t^{q_i^* - 1} \cdot r^t \cdot (1 + o(1)) \\ o\left(t^{q_i^* - 1} \cdot r^t\right) \end{pmatrix}.$$

Для доказательства теоремы предварительно приведем несколько лемм.

Лемма 1 [7]. Пусть A — неотрицательная неразложимая матрица, r — ее перронов корень, $r \leq 1$, u A_t — последовательность матриц, для которых $0 \leq A_t \leq A$, u $A_t \to 0$ при $t \to \infty$. Пусть $A_t^* = (A - A_t)(A - A_{t-1}), \ldots, (A - A_1)$. Тогда для любого вектора x > 0 выполняется равенство

$$\lim_{t \to \infty} \frac{A_t^* x}{v A_t^* x} = u,$$

 $rde\ u\ u\ v\ -\ coombemcmbeehho\ правый\ u\ левый\ coбственные\ положительные\ векторы,$ $coombemcmbeehhou\ r,\ npu\ hopмupobke\ vu=1.$

Пусть $F(t,s) = (F_1(t,s), \dots, F_k(t,s))$ – (векторная) производящая функция, которая определяется как t-я итерация производящей функции F(s) соотношениями:

$$F(0,s) = s, \ F(1,s) = F(s),$$

$$F(t+1,s) = F(F(t,s)).$$
 (12)

Здесь k – общее число нетерминалов в грамматике.

Очевидно, что $F(t,\bar{1})=\bar{1}$ для всех t. Известно [7], что $Q(t)=\bar{1}-F(t,\bar{0})$, где $Q(t)=(Q_1(t),\ldots,Q_k(t))^T$. Пусть $R(t,s)=\bar{1}-F(t,s)$, в частности, $R_i(t,\bar{0})=Q_i(t)$.

Лемма 2. Для стохастической KC-грамматики с матрицей первых моментов A вида (1) справедливо равенство

$$\bar{1} - F(s) = (A - E(s))(\bar{1} - s),$$
 (13)

где $0 \leq E(s) \leq A$, причем элементы матрицы E(s) при $\bar{0} \leq s \leq \bar{1}$ удовлетворяют условиям

$$E(s)_{ij} = \frac{1}{2} \sum_{l} \delta^{i}_{jl}(s) (1 - s_{l}), \quad e \partial e \quad 0 \le \delta^{i}_{jl}(s) \le b^{i}_{jl}, \tag{14}$$

E(s) имеет блочный вид (1) при любом $s,\ \bar{0} \le s \le \bar{1}$ и b^i_{il} – вторые моменты.

Доказательство. Используя разложение производящей функции $F_i(s)$ в ряд Тейлора в окрестности $\bar{1}$, можно записать:

$$1 - F_i(s) = \sum_j \left. \frac{\partial F_i(s)}{\partial s_j} \right|_{s=\theta^i} (1 - s_j),$$
 где $\bar{0} \le \theta^i \le \bar{1}.$

Поскольку производящие функции $F_i(s)$ — многочлены с положительными коэффициентами, все их производные являются многочленами с неотрицательными коэффициентами и, следовательно, $0 \leq \left. \frac{\partial F_i(s)}{\partial s_j} \right|_{s=\theta^i} \leq a_j^i$. Раскладывая $\left. \frac{\partial F_i(s)}{\partial s_j} \right|_{s=\theta^i}$ аналогичным образом, получаем

$$\frac{\partial F_i(s)}{\partial s_j} = a_j^i - \frac{1}{2} \sum_l \delta_{jl}^i(s)(1 - s_l) = a_j^i - E_{ij}(s),$$

где $0 \leq \delta^i_{jl}(s) \leq \frac{\partial^2 F_i(s)}{\partial s_j \partial s_l} \Big|_{s=\bar{1}}$. Отсюда следуют равенства (13) и (14). Из неотрицательности и монотонности по s всех производных производящей функции $F_i(s)$ следует, что $0 \leq E(s) \leq A$ при любом $\bar{0} \leq s \leq \bar{1}$, и матрица E(s) имеет блочный вид (3). Лемма доказана.

Подставляя в соотношение (14) в качестве s вектор F(t,s) и используя равенство (13), получаем

$$\bar{1} - F(t+1,s) = (A - E(F(t,s)))(\bar{1} - F(t,s)).$$
 (15)

Обозначим E(F(t,s)) через $E_t(s)$, а $E_t(0)$ через E_t , и применим формулу (15) рекурсивно. Тогда

$$R(t,s) = \bar{1} - F(t,s) = \prod_{l=n}^{t-1} (A - E_l(s))R(n,s) = \prod_{l=1}^{t-1} (A - E_l(s))(\bar{1} - s).$$
 (16)

Здесь и далее будем применять запись $\prod_{l=m}^n (A - E_l(s))$ для выражения $(A - E_n(s)) (A - E_{n-1}(s)) \dots (A - E_m(s))$. Из (15) и (16) при $s = \bar{0}$ следует, что

$$Q(t) = (A - E_{t-1}) \cdot Q(t-1) = \prod_{l=1}^{t-1} (A - E_l) \cdot Q(n) = \prod_{l=1}^{t-1} (A - E_l) \cdot \bar{1}.$$
 (17)

Кроме того, из (16) следует, что при любом $s,\ \bar{0} \le s \le \bar{1},$

$$R(t,s) = \bar{1} - F(t,s) \le A^{t-1} \cdot (\bar{1} - s). \tag{18}$$

Из теоремы 1 следует, что $A^t \to 0$ при $t \to \infty$, поэтому $F(t,s) \to \bar{1}$ и $\lim_{t \to \infty} E_t(s) = 0$ (поэлементно).

Лемма 3. Для любого $s, 0 \le s \le 1$, справедлива оценка $E_t(s)_{ij} = O(t^{s_{lh}-1}r^t)$ при $s_{lh} \ge 1$, где l и h – номера классов, которым принадлежат нетерминалы A_i и A_j соответственно.

Доказательство. Из леммы 2 следует, что

$$E(s)_{ij} \le \frac{1}{2} \sum_{l} b_{jl}^{i} \cdot (1 - s_{l}).$$

Подставляя в качестве s значение F(t,s), получаем неравенство

$$E_t(s)_{ij} \le \frac{1}{2} \sum_{l} b^i_{jl} (1 - F_l(t, s)) = \frac{1}{2} \sum_{l} b^i_{jl} \cdot R_l(t, s).$$

Из (18) следует оценка

$$E_t(s)_{ij} \le O\left(t^{s_{lh}-1}r^t\right).$$

Лемма доказана.

Доказательство теоремы 2.

Доказательство проведем методом математической индукции по числу групп w. Пусть w=1. Применим представление (17) для Q(t):

$$Q(t+1) = \prod_{i=n}^{t} (A - E_i) \cdot Q(n).$$
 (19)

Положим $n = t - \lfloor \log_2 t \rfloor$. Выберем r' и t_1 такие, что r < r' < 1 и $E_t \le (r')^{t_1} \cdot A$ при $t \ge t_1$. Тогда $(1 - (r')^{t_1})^l \cdot A^l \le \prod_{i=n}^t (A - E_i) \le A^l$, где l = t - n + 1. Поэтому $A^l - \prod_{i=n}^t (A - E_i) \le A^l \cdot \left(1 - (1 - (r')^n)^l\right)$.

Оценим разность:

$$1 - (1 - (r')^n)^l = (r')^n \cdot \sum_{i=0}^{l-1} (1 - (r')^n)^i < l \cdot (r')^n.$$

Выберем $t_2 \geq t_1$ и r'' такие, что r' < r'' < 1 и $n \cdot (r')^n < (r'')^n$ при $t \geq t_2$. Тогда

$$\prod_{i=n}^{t} (A - E_i) = A^l \cdot (1 + O((r'')^n)),$$

и уравнение (19) можно переписать в следующем виде:

$$Q(t+1) = A^{l} \cdot (1 + O((r'')^{n})) \cdot Q(n).$$
(20)

Для w=1 из представления (3) следует $A=B_{11}$, поэтому

$$Q^{(1)}(t+1) = B_{11}^l \cdot (1 + O((r'')^n)) \cdot Q^{(1)}(n).$$

Из (18) следует, что $Q^{(1)}(n) \leq B_{11}^{n-1} \cdot \overline{1} = O(r^n)$. Поэтому, с учетом (11) и (4), справедлива оценка $Q_3^{(1)}(t) \leq C_{33}^{t-1} \cdot \overline{1}$.

Известно следующее представление для степени произвольной матрицы C [3]:

$$C^{t} = \sum_{l=1}^{s} \left(\lambda_{l}^{t} Z_{l1} + \left(\lambda_{l}^{t} \right)' \cdot Z_{l2} + \ldots + \left(\lambda_{l}^{t} \right)^{(m_{l}-1)} Z_{lm_{l}} \right), \tag{21}$$

где λ_l – корни минимального многочлена $\psi(\lambda)$ матрицы C $(l=1,\ldots,s), s < k, m_l$ – кратность корня λ_l для минимального многочлена, $(\lambda_l^t)^{(n)}-n$ -я производная по λ_l от λ_l^t , матрицы Z_{lj} вполне определяются заданием матрицы C и не зависят от t.

Применяя это представление для C_{33}^t , получим, что $Q_3^{(1)}(t) \leq O\left(t^m \cdot (r')^t\right)$, где r' – перронов корень для C_{33} и m – его кратность. Отметим, что r' < r. Используя оценку для $Q_3^{(1)}(t)$, запишем уравнение для $Q_2^{(1)}(t)$:

$$Q_2^{(1)}(t+1) = (C_{22} - E_t') \cdot Q_2^{(1)}(t) + O\left(t^m \cdot (r')^t\right). \tag{22}$$

Здесь E'_t – подматрица матрицы E_t , соответствующая C_{22} .

Через $Q[K_i](t)$ обозначим вектор вероятностей продолжения для класса нетерминалов K_i . Рассмотрим $K_i \in \mathcal{M}_{12}$. Для него из (22) следует уравнение

$$Q[K_i](t+1) = (A_{ii} - E_t^i) \cdot Q[K_i](t) + O\left(t^m \cdot (r')^t\right),$$

где E_t^i – подматрица матрицы E_t' , соответствующая подстрокам для класса K_i .

Умножим слева обе части уравнения на вектор V_i – левый собственный вектор матрицы A_{ii} , соответствующий перронову корню r. С учетом оценки (16) для $Q[K_i](t)$ и оценки из леммы 3 для E_t^i при w=1 получим уравнение

$$V_i \cdot Q[K_i](t+1) = rV_i \cdot Q[K_i](t) + O\left(r^{2t}\right) + O\left(t^m \cdot (r')^t\right).$$

Введем обозначение $x_t = \frac{V_i Q[K_i](t)}{r^t}$. Тогда предыдущее уравнение перепишется так:

$$x_{t+1} = x_t + O\left(r^t\right) + O\left(t^m \cdot \left(\frac{r'}{r}\right)^t\right).$$

Просуммировав уравнение от 1 до t, найдем $x_t = x_1 + c + o(1)$, где константа c получается в результате суммирования сходящихся рядов $\sum_{i=1}^{t} O\left(r^{i}\right)$ и $\sum_{j=1}^t O\left(j^m \cdot \left(\frac{r'}{r}\right)^j\right)$ при $t \to \infty$. Отсюда $V_i \cdot Q[K_i](t) = c_i^{(1)} \cdot r^t \cdot (1+o(1))$, где

Применяя лемму 1 к неразложимой матрице A_{ii} с учетом оценки для E_t^i , найдем,

$$Q[K_i](t) = c_i^{(1)} U_i r^t \cdot (1 + o(1)),$$

где U_i – правый собственный вектор матрицы A_{ii} , соответствующий r.

Таким образом, поскольку подгруппу \mathcal{M}_{12} составляют несравнимые классы с перроновым корнем r, мы можем записать формулу для $Q_2^{(1)}(n)$ в следующем виде:

$$Q_2^{(1)}(t) = U''^{(1)}r^t \cdot (1 + o(1)),$$

где $U''^{(1)} = \sum_i c_i^{(1)} U_i^{(21)}$ и $U_i^{(21)}$ определяется в соответствии с (6). Используя (20), запишем уравнение для $Q_1^{(1)}(t)$:

$$Q_1^{(1)}(t+1) = \left(C_{11}^l \cdot Q_1^{(1)}(n) + C_{12}^{(l)} \cdot Q_2^{(1)}(n) + C_{13}^{(l)} \cdot Q_3^{(1)}(n)\right) \cdot (1 + o(1)).$$

После подстановки значений для $C_{11}^l,\,C_{12}^{(l)},\,C_{13}^{(l)},$ следующих из теоремы 1, и оценок для $Q_1^{(1)}(n)$ и $Q_3^{(1)}(n)$ получим:

$$Q_1^{(1)}(t+1) = \left(C_{12}^{(l)} \cdot Q_2^{(1)}(n)\right) \cdot (1+o(1)) = \sum_i c_i^{(1)} U_i^{(11)} r^{t+1} \cdot (1+o(1)).$$

Здесь мы учли тот факт, что $V_i^{(21)}U''^{(1)}=V_i^{(21)}U_i^{(21)}=1.$ Введем обозначение $U'^{(1)}=\sum_i c_i^{(1)}U_i^{(11)}.$ Тогда

$$Q_1^{(1)}(t) = U'^{(1)}r^t \cdot (1 + o(1)).$$

Таким образом,

$$Q^{(1)}(t) = \begin{pmatrix} Q_1^{(1)}(t) \\ Q_2^{(1)}(t) \\ Q_3^{(1)}(t) \end{pmatrix} = \begin{pmatrix} U'^{(1)}r^t \cdot (1+o(1)) \\ U''^{(1)}r^t \cdot (1+o(1)) \\ o(r^t) \end{pmatrix}, \tag{23}$$

и утверждение теоремы при w=1 справедливо.

Пусть теперь w=2.

Используя (20), запишем систему для Q(t+1):

$$\begin{cases}
Q^{(1)}(t+1) = \left(B_{11}^l Q^{(1)}(n) + B_{12}^{(l)} Q^{(2)}(n)\right) \left(1 + O((r'')^n)\right) \\
Q^{(2)}(t+1) = \left(B_{22}^l Q^{(2)}(n)\right) \left(1 + O((r'')^n)\right).
\end{cases}$$
(24)

Представим $Q^{(2)}(t)$ в виде $Q^{(2)}(t) = \left(Q_2^{(2)}(t), Q_3^{(2)}(t)\right)^T$, где $Q_l^{(2)}(t)$ соответствует подгруппе $\mathcal{M}_{2,l}$ (l=2,3). Применяя доказательство теоремы для w=1 ко второму уравнению, получим, что

$$Q^{(2)}(t) = \begin{pmatrix} Q_2^{(2)}(t) \\ Q_3^{(2)}(t) \end{pmatrix} = \begin{pmatrix} U''^{(2)}r^t \cdot (1 + o(1)) \\ o(r^t) \end{pmatrix},$$

где $U''^{(2)} = \sum_i c_i^{(2)} U_i^{(22)}$, и $c_i^{(2)}$ – константа, соответствующая классу нетерминалов $K_i \in \mathcal{M}_{22}$.

Перейдем к оценке компонент вектора $Q^{(1)}(t)$. Применяя равенство (17), запишем уравнение для $Q^{(1)}(t)$:

$$Q^{(1)}(t+1) = (B_{11}Q^{(1)}(t) + B_{12}Q^{(2)}(t)) \cdot (1 + O(t^{s_{12}^*-1} \cdot r^t)).$$

Заметим, что $Q_3^{(1)}(t)$ можно рассматривать и в качестве $Q_1^{(2)}(t)$, поэтому отсюда следует оценка $Q_3^{(1)}(t)=U'^{(21)}\cdot r^t\cdot (1+o(1)).$

Применяя представления (4) и (8) для B_{11} и B_{12} , а также учитывая оценки для $Q^{(1)}(t)$ и $Q^{(2)}(t)$, следующие из (18), запишем уравнение для $Q_2^{(1)}(t)$:

$$Q_2^{(1)}(t+1) = C_{22}Q_2^{(1)}(t) + C_{23}Q_3^{(1)}(t) + D_{21}Q_2^{(2)}(t) + o(r^t) + O(t^{s_{12}^*-1} \cdot r^{2t}) =$$

$$C_{22}Q_2^{(1)}(t) + C_{23}U'^{(2)}r^t + D_{21}U''^{(2)}r^t + o(r^t) + O(t^{s_{12}^*-1} \cdot r^{2t}). \tag{25}$$

Умножим обе части уравнения на левый собственный вектор $V_i^{(21)}$ матрицы C_{22} , соответствующий r. Получим, что

$$V_i^{(21)}Q_2^{(1)}(t+1) = rV_i^{(21)}Q_2^{(1)}(t) + V_i^{(21)} \cdot (C_{23}U'^{(2)} + D_{21}U''^{(2)})r^t + o(r^t) + O(t^{s_{12}^*-1} \cdot r^{2t}).$$

Как и в случае w=1, введем обозначение $x_t=rac{V_i^{(21)}Q_2^{(1)}(t)}{r^t}$. Тогда предыдущее уравнение перепишется таким образом:

$$x_{t+1} = x_t + \frac{V_i^{(21)} \cdot (C_{23}U'^{(2)} + D_{21}U''^{(2)})}{r} \cdot (1 + o(1)) + O(t^{s_{12}^* - 1} \cdot r^t).$$

Просуммировав обе части уравнения по t от 1 до t, получим:

$$x_{t+1} = x_1 + c_i^{(1)}t + O(1) = c_i^{(1)}t \cdot (1 + o(1)),$$

где $c_i^{(1)}t$ – сумма ряда $\sum_{l=1}^t \frac{V_i^{(21)}\cdot (C_{23}U'^{(2)}+D_{21}U''^{(2)})}{r}$. Поэтому

$$V_i^{(21)}Q_2^{(1)}(t+1) = c_i^{(1)}tr^{t+1}(1+o(1)).$$
(26)

Используя первое уравнение системы (24), запишем уравнение для $Q_2^{(1)}(t)$:

$$Q_2^{(1)}(t+1) = \left(C_{22}^l Q_2^{(1)}(n) + C_{23}^{(l)} Q_3^{(1)}(n) + D_{21}^{(l)} Q_2^{(2)}(n) \cdot (1+o(1))\right) (1 + O((r'')^n)).$$

Применим оценки для $C_{22}^l,\,C_{23}^{(l)}$ и $D_{21}^{(l)},\,$ следующие из теоремы $1,\,$ и оценки для $Q_3^{(1)}(n)$ и $Q_2^{(2)}(n)$:

$$Q_2^{(1)}(t+1) = \left(\sum_i U_i^{(21)} V_i^{(21)} r^{t-n} Q_2^{(1)}(n) + O\left((t-n) \cdot r^t\right)\right) (1 + O((r'')^n)).$$

Учитывая (26), а также равенство $t-n=\lfloor \log_2 t \rfloor$, получим, что

$$Q_2^{(1)}(t) = \sum_i c_i^{(1)} U_i^{(21)} t r^t \cdot (1 + o(1)).$$

Отсюда следует, что для любого класса $K_i \in \mathcal{M}_{12}$ вектор $Q[K_i](t)$ пропорционален правому собственному вектору $U_i^{(21)}$ матрицы A_{ii} . Наконец, запишем уравнение для $Q_1^{(1)}(t+1)$, используя систему (24):

$$Q_1^{(1)}(t+1) =$$

$$\left(C_{11}^{t-n}Q_1^{(1)}(n) + C_{12}^{t-n}Q_2^{(1)}(n) + C_{13}^{t-n}Q_3^{(1)}(n) + D_{11}^{t-n}Q_2^{(2)}(n) + D_{12}^{t-n}Q_3^{(2)}(n)\right)(1 + O((r'')^n)).$$

Подставляя в уравнение полученные ранее оценки для $Q_2^{(1)}(n),\ Q_3^{(1)}(n),\ Q_2^{(2)}(n)$ и $Q_3^{(2)}(n),$ а также применяя теорему 1 для входящих в уравнение матриц, найдем,

$$Q_1^{(1)}(t) = \sum_i c_i^{(1)} U_i^{(11)} t r^t \cdot (1 + o(1)) = U'^{(11)} t r^t \cdot (1 + o(1)).$$

Таким образом, доказана справедливость теоремы для w=2.

Предположим, что теорема 2 справедлива для w-1 групп. Докажем, что тогда она справедлива и для w групп. Запишем уравнение для $Q^{(1)}(t)$:

$$Q^{(1)}(t+1) = B_{11}Q^{(1)}(t) + B_{12}Q^{(2)}(t) + B_{13}Q^{(3)}(t) + \dots + B_{1w}Q^{(w)}(t)(1 + O(t^{q_1^* - 1}r^t)). \tag{27}$$

Для последовательности групп $\mathcal{M}_2, \mathcal{M}_3, \ldots, \mathcal{M}_w$ утверждение теоремы справедливо по предположению индукции. Подставим значения $Q^{(l)}(t)$ $(l=2,\ldots,w)$ в (27). Так как q_l^* имеет наибольшее значение для l=2, определяющим будет слагаемое $B_{12}Q^{(2)}(t)$. Поэтому уравнение (27) можно записать в следующем виде:

$$Q^{(1)}(t+1) = B_{11}Q^{(1)}(t) + B_{12}Q^{(2)}(t)(1 + O(t^{q_1^*-1}r^t)).$$

Это уравнение аналогично уравнению для w=2. Повторяя рассуждения для w=2, при этом учитывая, что $Q^{(2)}(t)=O(t^{q_2^*-1}r^t)$ и рассматривая в качестве x_t значение $\frac{V_t^{(21)}Q_2^{(1)}(t)}{t^{q_2^*-1}r^t}$, получим утверждение теоремы для w групп нетерминалов.

Теорема доказана.

Обозначим D_i^t множество всех деревьев вывода высоты t для слов из L_i . Очевидно,

$$P(D_i^t) = Q_i(t-1) - Q_i(t).$$

Из теоремы 2 вытекает

Следствие. Пусть нетерминал $A_i \in \mathcal{M}_{l1}$, либо $A_i \in \mathcal{M}_{l2}$. Тогда

$$P(D_i^t) = d_i t^{q_i^* - 1} r^{t-1} \cdot (1 - r) \cdot (1 + o(1)), \tag{28}$$

где d_i – компонента вектора U' либо вектора U'', соответствующая нетерминалу A_i . Заметим, что в случае, когда $A_i \in \mathcal{M}_{l3}$, для нахождения $Q_i(t)$ и $P(D_i^t)$ следует присоединить \mathcal{M}_{l3} к следующей группе в качестве $\mathcal{M}_{l+1,1}$.

4 Закономерности в деревьях вывода слов стохастического КС-языка

Для доказательства основного результата раздела предварительно докажем две леммы.

Через $R_X(n)$ обозначим выражение

$$\prod_{j=1}^{k} (1 - Q_j(n))^{x_j} - \prod_{j=1}^{k} (1 - Q_j(n-1))^{x_j},$$

где $X = (x_1, \ldots, x_k)$ — целочисленный неотрицательный вектор, $Q_j(n)$ — вероятности продолжения $(j = 1, \ldots, k), k$ — общее число нетерминалов в грамматике.

Лемма 4. $\Pi pu \ n \to \infty$

$$\sum_{l=1}^{k} x_{l} P(D_{l}^{n}) \cdot (1 + \varphi_{l}(n-1)) \cdot \prod_{j=1}^{k} (1 - Q_{j}(n-1))^{x_{j}} \leq R_{X}(n) \leq$$

$$\sum_{l=1}^{k} x_{l} P(D_{l}^{n}) \cdot (1 + \varphi_{l}(n)) \cdot \prod_{j=1}^{k} (1 - Q_{j}(n))^{x_{j}},$$
(29)

 $e \partial e \varphi_l(n) = \frac{Q_l(n)}{1 - Q_l(n)}.$

Доказательство.

Проведем доказательство индукцией по k. При k=1 имеем:

$$R_X(n) = (1 - Q_1(n))^{x_1} - (1 - Q_1(n-1))^{x_1} =$$

$$((1 - Q_1(n)) - (1 - Q_1(n-1))) \cdot \sum_{l=0}^{x_1-1} (1 - Q_1(n))^{x_1-1-l} \cdot (1 - Q_1(n-1))^l.$$

Так как

$$(1 - Q_1(n)) - (1 - Q_1(n-1)) = Q_1(n-1) - Q_1(n) = P(D_1^n),$$

ТО

$$R_X(n) = P(D_1^n) \cdot \sum_{l=0}^{x_1-1} (1 - Q_1(n))^{x_1-1-l} \cdot (1 - Q_1(n-1))^l.$$

Положим $\varphi_j(n)=\frac{1}{1-Q_j(n)}-1=\frac{Q_j(n)}{1-Q_j(n)}\ (j=1,\dots,k).$ Поскольку $Q_1(n-1)\geq Q_1(n),$ можно записать систему неравенств

$$P(D_1^n) \cdot (1 + \varphi_1(n-1)) \cdot x_1 \cdot (1 - Q_1(n-1))^{x_1} \le R_X(n) \le$$

$$P(D_1^n) \cdot (1 + \varphi_1(n)) \cdot x_1 \cdot (1 - Q_1(n))^{x_1}.$$

Таким образом, доказана справедливость (29) для k=1.

Предположим, что соотношения (29) справедливы при k-1. Добавим к $R_X(n)$ и вычтем слагаемое $(1-Q_k(n))^{x_k}\prod_{j=1}^{k-1}(1-Q_j(n-1))^{x_j}$. Тогда

$$R_X(n) = \prod_{j=1}^k (1 - Q_j(n))^{x_j} - (1 - Q_k(n))^{x_k} \prod_{j=1}^{k-1} (1 - Q_j(n-1))^{x_j} + (1 - Q_k(n))^{x_k} \prod_{j=1}^{k-1} (1 - Q_j(n-1))^{x_j} - \prod_{j=1}^k (1 - Q_j(n-1))^{x_j} = (1 - Q_k(n))^{x_k} \cdot \left[\prod_{j=1}^{k-1} (1 - Q_j(n))^{x_j} - \prod_{j=1}^{k-1} (1 - Q_j(n-1))^{x_j} \right] + ((1 - Q_k(n))^{x_k} - (1 - Q_k(n-1))^{x_k}) \cdot \prod_{j=1}^{k-1} (1 - Q_j(n-1))^{x_j}.$$

Очевидно,

$$P(D_k^n) \cdot (1 + \varphi_k(n-1)) \cdot x_k \cdot (1 - Q_k(n-1))^{x_k} \le (1 - Q_k(n))^{x_k} - (1 - Q_k(n-1))^{x_k} \le P(D_k^n) \cdot (1 + \varphi_k(n)) \cdot x_k \cdot (1 - Q_1(n))^{x_k},$$

так как доказательство этого факта полностью совпадает с доказательством (29) при k=1. Кроме того, выражение в квадратных скобках есть $R_X(n)$ при k-1. Поэтому

$$R_X(n) \le (1 - Q_k(n))^{x_k} \cdot \sum_{l=1}^{k-1} x_l P(D_l^n) \cdot (1 + \varphi_l(n)) \cdot \prod_{j=1}^{k-1} (1 - Q_j(n))^{x_j} + P(D_k^n) \cdot (1 + \varphi_k(n)) \cdot x_k \cdot (1 - Q_k(n))^{x_k} \cdot \prod_{j=1}^{k-1} (1 - Q_j(n-1))^{x_j} \le \prod_{j=1}^{k} (1 - Q_j(n))^{x_j} \cdot \sum_{l=1}^{k} x_l P(D_l^n) \cdot (1 + \varphi_l(n)).$$

Аналогично доказывается неравенство

$$R_X(n) \ge \prod_{j=1}^k (1 - Q_j(n-1))^{x_j} \cdot \sum_{l=1}^k x_l P(D_l^n) \cdot (1 + \varphi_l(n-1)).$$

Лемма доказана.

Заметим, что в доказательстве леммы не используется вид функции $Q_j(n)$, а используется лишь условие $Q_j(n-1) \ge Q_j(n)$.

Лемма 5. Пусть $X=(x_1,\ldots,x_k)$ – неотрицательный целочисленный вектор и n – натуральное число. Тогда при $n\to\infty$

$$R_X(n) = (1 + \psi_X(n)) \sum_{l=1}^k x_l P(D_l^n),$$

 $arepsilon de - ilde{c}_1 n^{q_1^*-1} r^n \cdot \sum x_j \leq \psi_X(n) \leq ilde{c}_2 n^{q_1^*-1} r^n \ u \ ilde{c}_1 \ u \ ilde{c}_2 \ - \ некоторые \ положительные константы.$

Доказательство.

Найдем верхнюю оценку для $R_X(n)$. Используя (29), можно записать, что

$$R_X(n) \le \prod_{j=1}^k (1 - Q_j(n))^{x_j} \sum_{l=1}^k x_l P(D_l^n) \cdot (1 + \varphi_l(n)).$$

Заметим, что $\prod_{j=1}^k (1-Q_j(n))^{x_j} \le 1$ и $1+\varphi_l(n)=\frac{1}{1-Q_l(n)}$. Поэтому

$$R_X(n) \le \sum_{l=1}^k x_l P(D_l^n) \cdot \frac{1}{1 - Q_l(n)}.$$

Применим теорему 2 для $Q_l(n)$, учитывая, что $q_1^* = \max_{\mathcal{M}_i} \{q_i^*\}$. Тогда при $n \to \infty$

$$R_X(n) \leq \sum_{l=1}^k x_l P(D_l^n) \cdot (1 + \tilde{c}_2 n^{q_1^* - 1} r^n),$$
 где $\tilde{c}_2 > 0.$

Получим теперь нижнюю оценку для $R_X(n)$. Используя (29), можно записать, что

$$R_X(n) \ge \prod_{j=1}^k (1 - Q_j(n-1))^{x_j} \sum_{l=1}^k x_l P(D_l^n) \cdot (1 + \varphi_l(n-1)).$$

Для оценки выражения $\prod_{j=1}^{k} (1 - Q_j(n-1))^{x_j}$ используем следующее равенство, доказанное в [7]:

$$(1-y_1)^{n_1}\dots(1-y_k)^{n_k}=1-\Delta_1$$
, где $0\leq \Delta_1\leq \sum_j n_jy_j$. (30)

Применяя (30), получаем, что

$$R_X(n) \ge \left(1 - \sum_{j=1}^k x_j Q_j(n-1)\right) \sum_{l=1}^k x_l P(D_l^n) \cdot (1 + \varphi_l(n-1)).$$

Так как $(1 + \varphi_l(n-1)) = \frac{1}{1 - Q_l(n-1)} \ge 1$, то

$$R_X(n) \ge \left(1 - \sum_{j=1}^k x_j Q_j(n-1)\right) \sum_{l=1}^k x_l P(D_l^n) \ge \left(1 - \tilde{c}_1 n^{q_1^* - 1} r^n \sum_{j=1}^k x_j\right) \sum_{l=1}^k x_l P(D_l^n)$$

для некоторой положительной константы \tilde{c}_1 .

Лемма доказана.

Будем полагать, как и ранее, что аксиомой исходной грамматики G является нетерминал A_1 . Рассмотрим D_1^t — множество деревьев из D_1 высоты t. Для $d \in D_1^t$ через $p_t(d)$ будем обозначать условную вероятность дерева d, т.е. $p_t(d) = \frac{p(d)}{P(D_1^t)}$.

Через $M_i(t,\tau)$ обозначим условное математическое ожидание числа вершин на ярусе τ , помеченных нетерминалом A_i , в деревьях вывода высоты t.

Для нетерминала $A_l \in K_j$ положим $q'_l = q_j$ и $s'_{1l} = s_{1j}$.

Теорема 3. Пусть G-cmoxacmuческая KC-грамматика c разложимой матрицей первых моментов, для которой перронов корень r<1, и D_1^t-mu ножество деревьев вывода высоты t.

Тогда для любого $i\in\{1,\ldots,k\}$ при $au\to\infty$ и $t- au\to\infty$ выполняется асимптотическое равенство

$$M_i(t,\tau) \sim \sum_{l=1}^k \frac{f_{il} \cdot (t-\tau)^{q'_l-1} \cdot \tau^{\delta_{il}^1}}{t^{q_1-1}} + \frac{f_i \cdot (t-\tau)^{q'_i-1} \cdot \tau^{s'_{1i}-1}}{t^{q_1-1}},$$

в котором f_{il} , f_i - неотрицательные константы и δ^1_{il} определено в (30).

Доказательство. Представим $M_i(t,\tau)$ в виде

$$M_i(t,\tau) = \sum_{d \in D_1^t} p_t(d) z_i(d,\tau) = \frac{1}{P(D_1^t)} \sum_{d \in D_1^t} p(d) z_i(d,\tau),$$

где $z_i(d,\tau)$ – число вершин на ярусе τ дерева d, помеченных A_i .

Рассмотрим неотрицательный целочисленный вектор $X=(x_1,\ldots,x_k)$, который будем называть далее вектором нетерминалов. Используя вектор X, мы можем записать, что

$$M_i(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} \Delta_X,$$

где Δ_X – вклад в математическое ожидание тех деревьев вывода из D_1^t , которые на ярусе τ содержат x_j вершин, помеченных нетерминалом A_j $(j=1,\ldots,k)$. Множество таких деревьев обозначим через $D_X^t(\tau)$.

Пусть $d \in D_X^t(\tau)$. Выделим в d поддерево d_0 и последовательность поддеревьев $(d_1, d_2, \ldots d_n)$, где $n = \sum_{l=1}^k x_l$. Поддерево d_0 получено из d удалением всех вершин на ярусах $\tau+1, \tau+2, \ldots, t$ и инцидентных им дуг. Последовательность $(d_1, d_2, \ldots d_n)$ образуют все поддеревья, корни которых расположены на ярусе τ дерева d. При этом корни поддеревьев $d_1, d_2, \ldots d_m$ расположены в дереве d последовательно в порядке обхода вершин яруса τ слева направо, и каждое дерево d_l ($l=1,\ldots,n$) содержит все дуги и вершины дерева d, лежащие на путях от корня d_l к листьям дерева d.

Выделим в $D_X^t(\tau)$ множество деревьев, имеющих в качестве поддерева d_0 одно и то же дерево. Обозначим это множество через D_0 . Нетрудно понять, что

$$P(D_0) = p(d_0) \cdot \left(\prod_{l=1}^k (1 - Q_l(t-\tau))^{x_l} - \prod_{l=1}^k (1 - Q_l(t-\tau-1))^{x_l} \right), \tag{31}$$

где $Q_l(n)$ — суммарная вероятность деревьев из множества D_l , высота которых больше n, и, следовательно, $(1-Q_l(n))$ — суммарная вероятность деревьев из D_l , высота которых не превосходит n.

Обозначим через $\delta_1(X)$ выражение $\prod_{l=1}^k (1-Q_l(t-\tau))^{x_l}$ и через $\delta_2(X)$ — выражение $\prod_{l=1}^k (1-Q_l(t-\tau))^{x_l}$.

В (31) величина $p(d_0) \cdot \delta_1(X)$ есть суммарная вероятность деревьев, определяемых поддеревом d_0 , высота которых не превосходит t, так как каждое поддерево с корнем на ярусе τ имеет высоту, не превосходящую $(t-\tau)$.

Вторая величина $p(d_0)\cdot\delta_2(X)$ есть суммарная вероятность деревьев, определяемых поддеревом d_0 , высота которых не превосходит $(t-\tau-1)$.

Разность этих величин равна, очевидно, суммарной вероятности деревьев высоты t, определяемых деревом d_0 , и значение $\delta_1(X) - \delta_2(X)$ не зависит от порядка следования вершин на ярусе τ , помеченных нетерминалами. Поэтому

$$P(D_X^t(\tau)) = \sum_{d_0} p(d_0) \cdot (\delta_1(X) - \delta_2(X)) = (\delta_1(X) - \delta_2(X)) \sum_{d_0} p(d_0),$$

где суммирование ведется по всем возможным поддеревьям d_0 деревьев из $D_X^t(au)$.

Для каждой вершины, помеченной некоторым нетерминалом A_l , суммарная вероятность возможных деревьев с корнем в этой вершине и листьями, помеченными только терминалами, равна $P(D_l)$. Ввиду согласованности исходной грамматики $P(D_l) = 1$ для любого l. Поэтому $\sum_{d_0} p(d_0)$ равна вероятности деревьев вывода из D_1 , имеющих x_l вершин на ярусе τ , помеченных нетерминалом A_l ($l = 1, \ldots, k$):

$$\sum_{d_0} p(d_0) = \sum_{d_0} p(d_0) \cdot P(D_1)^{x_1} \cdot P(D_2)^{x_2} \cdot \ldots \cdot P(D_k)^{x_k} = \sum_{d \in D_X(\tau)} p(d),$$

где $D_X(\tau)$ — множество деревьев из D_1 , имеющих x_j вершин на ярусе τ , помеченных A_j $(j=1,\ldots,k)$.

Будем обозначать $\sum_{d \in D_X(\tau)} p(d)$ через $P_X(\tau)$. Таким образом,

$$M_i(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} P_X(\tau) \cdot (\delta_1(X) - \delta_2(X)) \cdot x_i.$$

Ранее величина $(\delta_1(X) - \delta_2(X))$ была обозначена через $R_X(t-\tau)$. Применим лемму 5 для представления $R_X(t-\tau)$. Получим, что

$$M_{i}(t,\tau) = \frac{1}{P(D_{1}^{t})} \sum_{X \neq 0} P_{X}(\tau) \cdot x_{i} \cdot (1 + \psi_{X}(t-\tau)) \sum_{l=1}^{k} x_{l} P(D_{l}^{t-\tau}) =$$

$$\sum_{l=1}^{k} \frac{P(D_{l}^{t-\tau})}{P(D_{1}^{t})} \sum_{X \neq 0} P_{X}(\tau) \cdot x_{i} \cdot x_{l} \cdot (1 + \psi_{X}(t-\tau)).$$

Отдельно вычислим $S_1 = \sum_{X \neq 0} P_X(\tau) \cdot x_i x_l$ и $S_2 = \sum_{X \neq 0} P_X(\tau) \cdot x_i \cdot x_l \cdot \psi_X(t-\tau)$. Используя первые и вторые моменты, мы можем записать, что $S_1 = b^1_{il}(\tau)$ при $i \neq l$ и $S_1 = b^1_{ii}(\tau) + a^1_i(\tau)$ при l = i.

Учитывая оценку из леммы 5 для $\psi_X(n)$ и используя первые три момента, получим нижнюю и верхнюю оценки для S_2 :

$$\begin{split} S_2 &= \sum_{X \neq 0} P_X(\tau) \cdot x_i \cdot x_l \cdot \psi_X(t - \tau) \geq \\ &- c_2 \tau^{q_1^* - 1} r^\tau \sum_{X \neq 0} P_X(\tau) \cdot x_i \cdot x_l \cdot \sum_j x_j = - c_2 \tau^{q_1^* - 1} r^\tau \sum_j c_{ilj}^{1*}(\tau), \\ &c_{ilj}^{1*}(\tau) = c_{ilj}^1(\tau) \quad \text{при } i \neq l, \ i \neq j \quad \text{и } j \neq l, \\ &c_{iii}^{1*}(\tau) = c_{iii}^1(\tau) + 3 b_{ii}^1(\tau) - a_i^1(\tau), \end{split}$$

И

где

$$c_{ijj}^{1*}(\tau) = c_{ijj}^{1}(\tau) + b_{ij}^{1}(\tau), \ c_{iij}^{1*}(\tau) = c_{iij}^{1}(\tau) + b_{ij}^{1}(\tau).$$

Применяя оценки для первых трех моментов, получим, что $S_2 \ge -c \cdot \tau^{2q_1^*-2} r^{2\tau}$, где c — некоторая положительная константа.

С другой стороны,

$$S_2 \le c_1 \tau^{q_1^* - 1} r^{\tau} \sum_{X \ne 0} P_X(\tau) \cdot x_i \cdot x_l = c_1 \tau^{q_1^* - 1} r^{\tau} \cdot S_1.$$

Так как $S_1 = b_{il}^1(\tau)$ при $i \neq l$ и $S_1 = b_{ii}^1(\tau) + a_i^1(\tau)$, то, с учетом оценок для моментов, получаем, что $S_2 = O(\tau^{2q_1^*-2}r^{2\tau})$.

Вернемся к вычислению $M_i(t,\tau)$:

$$M_i(t,\tau) = \sum_{l \neq i} \frac{P(D_l^{t-\tau})}{P(D_1^t)} b_{il}^1(\tau) + \frac{P(D_i^{t-\tau})}{P(D_1^t)} \left(b_{ii}^1(\tau) + a_i^1(\tau) \right) + \sum_{l=1}^k \frac{P(D_l^{t-\tau})}{P(D_1^t)} \cdot O\left(\tau^{2q_1^*-2}r^{2\tau}\right).$$

Раскрывая моменты и используя лемму 5, после несложных преобразований получим, что

$$M_i(t,\tau) =$$

$$\sum_{l=1}^{k} \frac{d_{l} \cdot (1-r) \cdot (t-\tau)^{q'_{l}-1} \cdot r^{t-\tau-1} \cdot (1+\phi_{l}(t-\tau))}{d_{1} \cdot (1-r) \cdot t^{q_{1}-1} \cdot r^{t-1} \cdot (1+\phi_{1}(t))} \cdot \left(g_{il}^{1} \cdot r^{\tau} \cdot \tau^{\delta_{il}^{1}} \left(1+\psi_{il}(\tau)\right)\right) +$$

$$\frac{d_i \cdot (1-r) \cdot (t-\tau)^{q_i'-1} r^{t-\tau-1} (1+\phi_i(t-\tau)) \cdot c_{1i} \cdot \tau^{s_{1i}'-1} r^{\tau} (1+\varphi_{1i}(n)(\tau))}{d_1 \cdot (1-r) \cdot t^{q_1-1} r^{t-1} \cdot (1+\phi_1(t))} + O\left(\tau^{2q_1^*-2} r^{2\tau}\right),$$

где $\phi_i(n)=o(1),\; \psi_{il}(n)=o(1),\; \varphi_{1i}(n)=o(1),\; q'_l=q_j$ для $A_l\in K_j,\;$ и $s'_{1i}=s_{1m}$ для $A_i \in K_m$.

Отсюда следует, что

$$M_{i}(t,\tau) = \frac{1}{d_{1}} \left(\sum_{l=1}^{k} \frac{d_{l} \cdot g_{il}^{1} \cdot (t-\tau)^{q'_{l}-1} \cdot \tau^{\delta_{il}^{1}}}{t^{q_{1}-1}} + \frac{d_{i} \cdot c_{1i} \cdot (t-\tau)^{q'_{i}-1} \cdot \tau^{s'_{1i}-1}}{t^{q_{1}-1}} \right) (1 + \xi(\tau, t-\tau)),$$

$$(32)$$

где $\xi(\tau,t- au) o 0$ при $\tau,t- au o \infty$. Теорема доказана.

Рассмотрим подробнее слагаемые в (32). Определяющими в сумме являются те значения l, для которых $g_{il}^1>0$ и $q_l'+\delta_{il}^1=q_1$. Равенство справедливо при одновременном выполнении следующих условий:

- 1) нетерминал A_l принадлежит классу K_{j_1} с $j_1 \in J_{MAX}$,
- 2) $A_i \in K_{j_2}$, для которого $K_{j_1} \prec_* K_{j_2}$

Обозначим N_i множество номеров l, для которых выполняются условия 1) и 2). Отметим, что слагаемое $\frac{d_i \cdot c_{1i} \cdot (t-\tau)^{q'_i-1} \cdot \tau^{s'_{1i}-1}}{t^{q_1-1}}$ влияет на значение $M_i(t,\tau)$ при $s'_{1i} + q'_i - 1 = q_1$. Это равенство выполняется в случае, если $A_i \in K_{j_2}$, где $j_2 \in J_{MAX}$. Поэтому равенство (32) при $N_i \neq \emptyset$ можно записать в виде

$$M_i(t,\tau) = \left(\sum_{l \in N_i} \frac{f_{il} \cdot (t-\tau)^{q'_i-1} \cdot \tau^{\delta_{il}^1}}{t^{q_1-1}} + \frac{f_i \cdot (t-\tau)^{q'_i-1} \cdot \tau^{s'_{1i}-1}}{t^{q_1-1}}\right) (1 + \xi(\tau, t-\tau)),$$

где $f_{il}=\frac{d_l\cdot g_{il}^1}{d_1},\,f_i=\frac{d_i\cdot c_{1i}}{d_1}$ и $\xi(\tau,t-\tau)\to 0$ при $\tau,t-\tau\to\infty$. Очевидно, $M_i(t,\tau)\le O(1/t)$ при $N_i=\emptyset$. Поэтому справедливо

Следствие.

$$1)M_i(t,\tau) = \left(\sum_{l \in N_i} \frac{f_{il} \cdot (t-\tau)^{q'_l-1} \cdot \tau^{\delta_{il}^1}}{t^{q_1-1}} + \frac{f_i \cdot (t-\tau)^{q'_i-1} \cdot \tau^{s'_{1i}-1}}{t^{q_1-1}}\right) (1 + \xi(\tau, t-\tau))$$

 $npu\ N_i \neq \emptyset;$

2)
$$M_i(t,\tau) \leq O(1/t) \ npu \ N_i = \emptyset.$$

Пусть r_{ij} — произвольное правило грамматики G. Через $s_l^{(ij)}$ обозначим число нетерминалов A_l в правой части правила r_{ij} . Условное математическое ожидание числа применений правила r_{ij} в деревьях вывода высоты t на ярусе τ будем обозначать через $M_{ij}(t,\tau)$.

Теорема 4. Пусть G-cтохастическая KC-грамматика c разложимой матрицей первых моментов, для которой перронов корень r<1, и D_1^t- множество деревьев вывода высоты t.

Тогда при $au \to \infty$ и $t- au \to \infty$ выполняется следующее асимптотическое равенство:

$$M_{ij}(t,\tau) \sim \frac{p_{ij}}{t^{q_1-1}} \left(\sum_{l=1}^k f_{il} \cdot (t-\tau)^{q'_l-1} \cdot \tau^{\delta_{il}^1} + \frac{1}{r} \sum_{m=1}^k f_m \cdot s_m^{(ij)} \cdot (t-\tau)^{q'_m-1} \tau^{s'_{1i}-1} \right).$$

В формулировке теоремы p_{ij} — вероятность правила r_{ij} , задаваемая в исходной грамматике, $s_m^{(ij)}$ — число нетерминалов A_m в правой части правила r_{ij} , а величины q'_l , δ^1_{il} , f_{il} и f_m имеют тот же смысл, что и в теореме 3.

Доказательство. Обозначим $z_{ij}(d,\tau)$ число вершин на ярусе τ дерева d, помеченных нетерминалом A_i , к которым применено правило r_{ij} . Используя неотрицательный целочисленный вектор $X=(x_1,\ldots,x_k)$, можно записать, что

$$M_{ij}(t,\tau) = \sum_{X \neq 0} \sum_{d \in D_X^t(\tau)} p_t(d) z_{ij}(d,\tau),$$

где $D_X^t(au)$ введено в доказательстве теоремы 3.

Представим $z_{ij}(d,\tau)$ в виде суммы случайных величин $I_1+I_2+\ldots+I_{x_i}$, где $I_m=1$, если к m-й по порядку вершине среди вершин, помеченных нетерминалом A_m на ярусе τ , применено правило r_{ij} , и $I_m=0$ в противном случае $(m=1,2,\ldots,x_i)$. Тогда

$$M_{ij}(t,\tau) = \sum_{X \neq 0} \sum_{d \in D_X^t(\tau)} p_t(d) \cdot (I_1 + I_2 + \ldots + I_{x_i}).$$

Очевидно, что случайные величины I_m $(m=1,2,\ldots,x_i)$ – одинаково распределены на $D_X^t(\tau)$, поэтому

$$M_{ij}(t,\tau) = \frac{1}{P(D_1^t)} \sum_{X \neq 0} P\left(D_{X,1}^t(\tau)\right) \cdot x_i,$$

где $P(D_{X,1}^t(\tau))$ – суммарная вероятность тех деревьев из $D_X^t(\tau)$, в которых правило r_{ij} применено к первой по порядку вершине на ярусе τ , помеченной A_i .

Подсчитаем вероятность $P\left(D_{X,1}^{t}(\tau)\right)$:

$$P\left(D_{X,1}^{t}(\tau)\right) = p_{ij} \cdot P_X(\tau) \times \left[\prod_{m=1}^{k} \left(1 - Q_m(t-\tau)\right)^{x'_m} \cdot \prod_{m=1}^{k} \left(1 - Q_m(t-\tau-1)\right)^{s_m^{(ij)}} - \right]$$

$$\prod_{m=1}^{k} \left(1 - Q_m(t - \tau - 1)\right)^{x_m'} \cdot \prod_{m=1}^{k} \left(1 - Q_m(t - \tau - 2)\right)^{s_m^{(ij)}}$$
(33)

Здесь $X'=(x'_1,\ldots,x'_k)=(x_1,\ldots,x_{i-1},x_i-1,x_{i+1},\ldots,x_k)$ и $S=(s_1^{(ij)},\ldots,s_k^{(ij)}),$ где $s_m^{(ij)}$ равно числу нетерминалов A_m в правой части правила r_{ij} $(m=1,\ldots,k).$ Величина $P_X(\tau)$ имеет тот же смысл, что и в доказательстве теоремы 3. Выражение в квадратных скобках в (33) аналогично выражению $R_X(t-\tau)$. При этом с помощью множителей $(1-Q_m(t-\tau-1))^{s_m^{(ij)}}$ и $(1-Q_m(t-\tau-2))^{s_m^{(ij)}}$ учитывается тот факт, что к первому нетерминалу A_i на ярусе τ применено правило r_{ij} , которому на ярусе $\tau+1$ соответствует $s_m^{(ij)}$ вершин, помеченных нетерминалом A_m $(m=1,\ldots,k)$.

Проведем несложные преобразования в (33):

$$P\left(D_{X,1}^{t}(\tau)\right) = p_{ij} \cdot P_X(\tau) \cdot \frac{1}{1 - Q_i(t - \tau)} \cdot \prod_{m=1}^{k} \left(1 - Q_m(t - \tau - 1)\right)^{s_m^{(ij)}} \times \left[\prod_{m=1}^{k} \left(1 - Q_m(t - \tau)\right)^{x_m} - \frac{1 - Q_i(t - \tau)}{1 - Q_i(t - \tau - 1)} \times \prod_{m=1}^{k} \left(\left(1 - Q_m(t - \tau - 1)\right)^{x_m} \cdot \frac{\left(1 - Q_m(t - \tau - 2)\right)^{s_m^{(ij)}}}{\left(1 - Q_m(t - \tau - 1)\right)^{s_m^{(ij)}}}\right)\right].$$

Очевидно, что

$$\frac{1 - Q_i(t - \tau)}{1 - Q_i(t - \tau - 1)} = 1 + \frac{Q_i(t - \tau - 1) - Q_i(t - \tau)}{1 - Q_i(t - \tau - 1)} = 1 + \frac{P(D_i^{t - \tau})}{1 - Q_i(t - \tau - 1)} = 1 + P(D_i^{t - \tau}) + \frac{P(D_i^{t - \tau}) \cdot Q_i(t - \tau - 1)}{1 - Q_i(t - \tau - 1)}.$$

Применим теорему 2 и следствие из нее для оценки $Q_i(t-\tau-1)$ и $P(D_i^{t-\tau})$. Получим, что

$$\frac{1 - Q_i(t - \tau)}{1 - Q_i(t - \tau - 1)} = 1 + P(D_i^{t - \tau}) + O((t - \tau)^{2(q_1 - 1)} \cdot r^{2(t - \tau)}).$$

Проводя аналогичные преобразования и учитывая, что $s_m^{(ij)}$ – константа, определяемая правой частью правила r_{ij} , мы можем записать, что

$$\prod_{m=1}^{k} \frac{(1 - Q_m(t - \tau - 2))^{s_m^{(ij)}}}{(1 - Q_m(t - \tau - 1))^{s_m^{(ij)}}} = 1 - \sum_{m=1}^{k} s_m^{(ij)} \cdot P\left(D_m^{t - \tau - 1}\right) + O\left((t - \tau)^{2(q_1 - 1)} \cdot r^{2(t - \tau)}\right).$$

Поэтому

$$P\left(D_{X,1}^{t}(\tau)\right) = p_{ij} \cdot P_X(\tau) \cdot \left(1 + O\left((t - \tau)^{q_1 - 1} \cdot r^{t - \tau}\right)\right) \left[\prod_{m=1}^{k} \left(1 - Q_m(t - \tau)\right)^{x_m} - \frac{1}{2} \left(1 - Q_m(t - \tau)\right)^{x_m} - \frac{1}{2} \left(1 - Q_m(t - \tau)\right)^{x_m} \right]$$

$$\prod_{m=1}^{k} \left(1 - Q_m(t - \tau - 1)\right)^{x_m} \cdot \left(1 + P(D_i^{t-\tau}) + O((t - \tau)^{2(q_1 - 1)} \cdot r^{2(t - \tau)})\right) \times \left(1 - \sum_{m=1}^{k} s_m^{(ij)} \cdot P\left(D_m^{t-\tau - 1}\right) + O\left((t - \tau)^{2(q_1 - 1)} \cdot r^{2(t - \tau)}\right)\right) \right] = p_{ij} \cdot P_X(\tau) \left[R_X(t - \tau) + \prod_{m=1}^{k} \left(1 - Q_m(t - \tau - 1)\right)^{x_m} \times \left(\sum_{m=1}^{k} s_m^{(ij)} P(D_m^{t-\tau - 1}) - P(D_i^{t-\tau})\right)\right] \cdot \left(1 + O\left((t - \tau)^{q_1 - 1} \cdot r^{t - \tau}\right)\right).$$

(Здесь $R_X(t-\tau)$ – величина, рассмотренная в лемме 4.) Вернемся к вычислению $M_{ij}(t,\tau)$, учитывая оценку

$$\prod_{m=1}^{k} (1 - Q_m(t - \tau - 1))^{x_m} = 1 - O\left((t - \tau)^{q_1 - 1} \cdot r^{t - \tau} \sum_{m=1}^{k} x_m\right),\,$$

следующую из (30). Тогда

$$M_{ij}(t,\tau) = \frac{1}{P(D_1^t)} \left[\sum_{X \neq 0} p_{ij} \cdot P_X(\tau) \cdot R_X(t-\tau) \cdot x_i + \left(\sum_{m=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau}\right) \right) \times \left(\sum_{m=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau}\right) \right) \right] \times \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau}\right) \right) \right) \times \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) \right) \times \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) \right) \times \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) \right) \times \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) \right] \times \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_m^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_i^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i=1}^k s_m^{(ij)} P\left(D_i^{t-\tau-1}\right) - P\left(D_i^{t-\tau-1}\right) \right) + \left(\sum_{i$$

$$\sum_{X \neq 0} p_{ij} \cdot P_X(\tau) \cdot x_i \cdot \left(1 - O\left((t - \tau)^{q_1 - 1} \cdot r^{t - \tau} \sum_{m = 1}^k x_m \right) \right) \cdot \left(1 + O\left((t - \tau)^{q_1 - 1} \cdot r^{t - \tau} \right) \right).$$

Величина

$$\frac{1}{P(D_1^t)} \cdot \sum_{X \neq 0} P_X(\tau) \cdot R_X(t - \tau) \cdot x_i$$

есть $M_i(t,\tau)$ из теоремы 3, и

$$\sum_{X \neq 0} P_X(\tau) \cdot x_i = a_i^1(\tau) = c_{1i} \cdot \tau^{s'_{1i} - 1} r^{\tau} (1 + o(1)),$$

где $a_i^1(\tau)$ – элемент матрицы A^{τ} , A – матрица первых моментов, и s'_{1i} имеет тот же смысл, что и в теореме 3.

Кроме того,

$$\sum_{X \neq 0} P_X(\tau) \cdot x_i \cdot O\left((t - \tau)^{q_1 - 1} \cdot r^{t - \tau} \sum_{m = 1}^k x_m \right) = O\left((t - \tau)^{q_1 - 1} \cdot r^{t - \tau} \right) \sum_{m = 1}^k b_{im}^1(\tau) = O\left(\tau^{q_1 - 1} \cdot (t - \tau)^{q_1 - 1} r^t \right),$$

где $b_{im}^1(au)$ – вторые моменты. Следовательно,

$$M_{ij}(t,\tau) = \left(M_i(t,\tau) \cdot p_{ij} + \frac{p_{ij} \cdot c_{1i} \cdot \tau^{s'_{1i} - 1} r^{\tau} \cdot (1 + o(1))}{P(D_1^t)} \times \right)$$

$$\left(\sum_{m=1}^{k} s_{m}^{(ij)} \cdot P(D_{m}^{t-\tau-1}) - P(D_{i}^{t-\tau})\right) \cdot \left(1 + O\left((t-\tau)^{q_{1}-1}r^{t-\tau}\right)\right).$$

Применяя теорему 3 к $M_i(t,\tau)$ и формулу (28) к $P(D_m^n)$, после проведения несложных преобразований $M_{ij}(t,\tau)$ можем представить в следующем виде:

$$M_{ij}(t,\tau) = \frac{p_{ij}}{t^{q_1-1}} \left(\sum_{l=1}^k f_{il} \cdot (t-\tau)^{q'_l-1} \cdot \tau^{\delta_{il}^1} + \frac{1}{r} \sum_{m=1}^k f_m \cdot s_m^{(ij)} \cdot (t-\tau)^{q'_m-1} \tau^{s'_{1i}-1} \right) +$$

$$\xi_{ij}^{1}(t) + \xi_{ij}^{2}(\tau) + \xi_{ij}^{3}(t-\tau),$$

где $\xi_{ij}^1(t)=o(1),\, \xi_{ij}^2(\tau)=o(1)$ и $\xi_{ij}^3(t-\tau)=o(1).$ Обозначим сумму $\xi_{ij}^1(t)+\xi_{ij}^2(\tau)+\xi_{ij}^3(t-\tau)$ через $\xi_{ij}(t,\tau)$. Очевидно, $\xi_{ij}(t,\tau)\to 0$ при $\tau\to\infty$ и $t-\tau\to\infty$. Поэтому

$$M_{ij}(t,\tau) =$$

$$\frac{p_{ij}}{t^{q_1-1}} \left(\sum_{l=1}^{k} f_{il} \cdot (t-\tau)^{q'_{l}-1} \cdot \tau^{\delta_{il}^{1}} + \frac{1}{r} \sum_{m=1}^{k} f_{m} \cdot s_{m}^{(ij)} \cdot (t-\tau)^{q'_{m}-1} \tau^{s'_{1i}-1} \right) + \xi_{ij}(t,\tau). \tag{34}$$

Теорема доказана.

Сделаем несколько выводов из теоремы 4.

- 1. $M_{ij}(t,\tau)$ ограничено константой при $\tau \to \infty, t-\tau \to \infty$.
- 2. Величина $\sum_{m=1}^k f_m \cdot s_m^{(ij)} \cdot (t-\tau)^{q_m'-1} \tau^{s_{1i}'-1}$ имеет большее значение для тех правил,
- которые содержат в правой части большее количество нетерминальных символов. 3. Величина $\sum_{l \in N_i} f_{il} \cdot (t-\tau)^{q'_l-1} \cdot \tau^{\delta^1_{il}}$ имеет одно и то же значение для всех правил грамматики с одинаковой левой частью A_i .

Пусть $S_{ij}(t) = q_{ij}(t,0) + q_{ij}(t,1) + \ldots + q_{ij}(t,t-1)$, где $q_{ij}(t,\tau)$ — число правил r_{ij}

на ярусе au в дереве из D_1^t ; $S_{ij}(t)$ — число правил r_{ij} в дереве вывода из D_1^t . Рассмотрим случайную величину $\frac{S_{ij}(t)}{t}$ — среднее число правил r_{ij} , приходящееся на один ярус дерева вывода из D_1^t .

Теорема 5. Пусть G — стохастическая KC-грамматика c разложимой матрицей первых моментов, для которой перронов корень $r \ < \ 1$, и D_1^t множество деревьев вывода высоты t.

Tогда $npu\ t o\infty$ выполняется следующее асимптотическое равенство:

$$M\left(\frac{S_{ij}(t)}{t}\right) \sim w_{ij},$$

где w_{ij} - константа, определяемая грамматикой G.

Доказательство.

Разобьем $S_{ij}(t)$ на три части:

$$S_{ij}(t) = S_{ij}^{(1)}(t) + S_{ij}^{(2)}(t) + S_{ij}^{(3)}(t),$$

где

$$S_{ij}^{(1)}(t) = q_{ij}(t,0) + \ldots + q_{ij}(t,\tau_0-1),$$

$$S_{ij}^{(2)}(t) = q_{ij}(t, \tau_0) + \dots + q_{ij}(t, t - \tau_0 - 1),$$

$$S_{ij}^{(3)}(t) = q_{ij}(t, t - \tau_0) + \dots + q_{ij}(t, t - 1),$$

и положим $\tau_0 = \lfloor \log \log t \rfloor$ (здесь и далее логарифм берется по основанию 2). Число

слагаемых в $S_{ij}^{(1)}(t)$ и в $S_{ij}^{(3)}(t)$ равно $\lfloor \log \log t \rfloor$, а в $S_{ij}^{(2)}(t)$ равно $t-2\lfloor \log \log t \rfloor$. Найдем математические ожидания $M\left(S_{ij}^{(1)}(t)\right)$, $M\left(S_{ij}^{(2)}(t)\right)$ и $M\left(S_{ij}^{(3)}(t)\right)$.

Величину $M\left(S_{ij}^{(1)}(t)\right)$ можно представить в следующем виде:

$$M\left(S_{ij}^{(1)}(t)\right) = M_{ij}(t,0) + M_{ij}(t,1) + \ldots + M_{ij}(t,\tau_0-1).$$

Число правил r_{ij} на ярусе au в дереве из D_1^t обозначим $q_{ij}(t, au)$. Оценим $q_{ij}(t, au)$ для $\tau < \tau_0$. Обозначим через k_{max} максимальное число нетерминалов в правой части правил грамматики G. Тогда $q_{ij}(t,\tau) \leq k_{max}^{\tau} < k_{max}^{ au_0}$. Поэтому $M_{ij}(t,\tau) < k_{max}^{ au_0}$ и

$$M\left(S_{ij}^{(1)}(t)\right) \leq k_{max}^{\tau_0} \tau_0 \leq k_{max}^{\log\log t} \log\log t = \log^{c_1} t \, \log\log t \leq \log^{c_2} t,$$

где $c_1 = \log k_{max}$, $c_2 = c_1 + 1$.

Для $t - \tau_0 \le \tau < t$ имеем:

$$M_{ij}(t,\tau) \le M_i(t,\tau) = \frac{1}{P(D^t)} \sum_X P_X(\tau) R_X(t-\tau) x_i \le \frac{1}{P(D^t)} \sum_X P_X(\tau) x_i = \frac{1}{P(D^t)} a_i^1(\tau) \le O\left(\frac{\tau^{q_1-1}}{t^{q_1-1} \cdot r^{t-\tau}}\right) \le O\left(\frac{1}{r^{t-\tau}}\right).$$

Поэтому

$$M\left(S_{ij}^{(3)}(t)\right) \leq \sum_{t=\tau_0}^{t-1} O\left(\frac{1}{r^{t-\tau}}\right) = O\left(\frac{\tau_0}{r^{\tau_0}}\right) = O\left(\frac{\log\log t}{r^{\log\log t}}\right) = O\left(\log^{c_3} t\right)$$

для некоторой константы $c_3 > 0$.

Для τ , удовлетворяющего условию $\tau_0 \le \tau \le t - \tau_0 - 1$, применим теорему 4:

$$M\left(S_{ij}^{(2)}(t)\right) = \sum_{\tau = \lfloor \log \log t \rfloor}^{t - \lfloor \log \log t \rfloor - 1} \frac{p_{ij}}{t^{q_1 - 1}} \left(\sum_{l=1}^{k} f_{il} \cdot (t - \tau)^{q'_l - 1} \cdot \tau^{\delta_{il}^1} + \right)$$

$$\frac{1}{r} \sum_{m=1}^{k} f_m \cdot s_m^{(ij)} \cdot (t-\tau)^{q'_m-1} \tau^{s'_{1i}-1} + \sum_{\tau=|\log \log t|}^{t-\lfloor \log \log t \rfloor - 1} \xi(t,\tau).$$

Оценим величину $\delta = \frac{1}{t^{n_1+n_2}} \cdot \sum_{\tau=|\log\log t|}^{t-\lfloor\log\log t\rfloor-1} (t-\tau)^{n_1} \cdot \tau^{n_2}$:

$$\delta = \sum_{\tau = |\log \log t|}^{t - \lfloor \log \log t \rfloor - 1} \left(1 - \frac{\tau}{t} \right)^{n_1} \left(\frac{\tau}{t} \right)^{n_2} =$$

$$\sum_{\tau=|\log\log t|}^{t-\lfloor\log\log t\rfloor-1}\sum_{n=0}^{n_1}(-1)^nC_{n_1}^n\left(\frac{\tau}{t}\right)^{n+n_2}=\left(\sum_{n=0}^{n_1}(-1)^nC_{n_1-1}^n\cdot\frac{t}{n+n_2+1}\right)\cdot(1+o(1)).$$

Очевидно, величина $\sum_{n=0}^{n_1} (-1)^n C_{n_1-1}^n \cdot \frac{1}{n+n_2+1}$ является константой, зависящей от n_1 и n_2 , обозначим ее $\alpha(n_1,n_2)$. Применяя обозначение $\alpha(n_1,n_2)$, мы можем записать:

$$\delta = \alpha(n_1, n_2) \cdot t \cdot (1 + o(1)).$$

Применим полученную оценку к вычислению $M\left(S_{ij}^{(2)}(t)\right)$, учитывая равенства $q_l'+\delta_{il}^1=q_1$ и $q_i'+s_{1i}'-1=q_1$:

$$M\left(S_{ij}^{(2)}(t)\right) = p_{ij} \cdot \left[\sum_{l=1}^{k} f_{il} \cdot \alpha(q_l'-1, \delta_{il}^1) + \frac{1}{r} \sum_{m=1}^{k} f_m \cdot s_m^{(ij)} \cdot \alpha(q_m'-1, s_{1i}'-1)\right] t \cdot (1 + o(1)).$$

Константу в квадратных скобках обозначим w_{ij} .

Применяя полученные оценки для $M\left(S_{ij}^{(1)}(t)\right),\ M\left(S_{ij}^{(2)}(t)\right)$ и $M\left(S_{ij}^{(3)}(t)\right),$ находим, что при $t\to\infty$

$$M\left(\frac{S_{ij}(t)}{t}\right) = w_{ij} + o(1) + O\left(\frac{\log^{c_2} t}{t}\right) + O\left(\frac{\log^{c_3} t}{t}\right) = w_{ij} + o(1).$$

Теорема доказана.

5 Энтропия и нижняя оценка стоимости кодирования

Пусть L - стохастический язык, т.е. язык, на множестве слов которого задано распределение вероятностей.

Под энтропией стохастического языка L будем понимать величину

$$H(L) = -\lim_{N \to \infty} \sum_{\alpha \in L, |\alpha| \le N} p(\alpha) \log p(\alpha).$$

Если энтропия конечна, будем применять запись $H(L) = -\sum_{\alpha \in L} p(\alpha) \log p(\alpha)$. Кодированием языка L назовем инъективное отображение

$$f: L \to \{0, 1\}^+.$$

В качестве L рассмотрим язык, порождаемый стохастической КС-грамматикой с однозначным выводом, т.е. грамматикой, в которой каждое слово из L имеет единственное дерево вывода. Через L^t обозначим множество всех слов из L, каждое из которых имеет дерево вывода высоты t. Для $\alpha \in L^t$ через $p_t(\alpha)$ обозначим условную вероятность появления слова α , т.е. $p_t(\alpha) = \frac{p(\alpha)}{P(L^t)}$. В силу однозначности вывода $P(L^t) = P(D_1^t)$.

Стоимостью кодирования f назовем величину

$$C(L, f) = \lim_{t \to \infty} \frac{\sum_{\alpha \in L^t} p_t(\alpha) \cdot |f(\alpha)|}{\sum_{\alpha \in L^t} p_t(\alpha) \cdot |\alpha|}$$
(35)

(здесь |x| -длина последовательности x).

Величина C(L,f) характеризует число двоичных разрядов, приходящихся на кодирование одного символа слова языка.

Через F(L) обозначим класс всех инъективных отображений из L в $\{0,1\}^+$, для которых существует C(L,f).

Стоимостью оптимального кодирования языка L назовем величину

$$C_0(L) = \inf_{f \in F(L)} C(L, f).$$

Предварительно получим асимптотическую формулу для энтропии множества слов L^t . По определению имеем

$$H(L^t) = -\sum_{\alpha \in L^t} p_t(\alpha) \log p_t(\alpha).$$

Следовательно,

$$H(L^t) = -\sum_{\alpha \in L^t} p_t(\alpha) \left(\log p(\alpha) - \log P(L^t) \right) =$$

$$\frac{1}{P(L^t)} \cdot \left(-\sum_{\alpha \in L^t} p(\alpha) \log p(\alpha) \right) + \log P(L^t).$$

Для слова α обозначим через $q_{ij}(\alpha)$ число применений правила r_{ij} при его выводе. Вероятность слова α равна $p(\alpha) = \prod_{i=1}^k \prod_{j=1}^{n_i} (p_{ij})^{q_{ij}}$. Следовательно, $\log p(\alpha) = \sum_{i=1}^k \sum_{j=1}^{n_i} q_{ij}(\alpha) \log p_{ij}$. Поэтому

$$H(L^t) = \frac{1}{P(L^t)} \cdot \left(-\sum_{\alpha \in L^t} p(\alpha) \cdot \sum_{i=1}^k \sum_{j=1}^{n_i} q_{ij}(\alpha) \log p_{ij} \right) + \log P(L^t) =$$

$$\frac{1}{P(L^t)} \cdot \left(-\sum_{i=1}^k \sum_{j=1}^{n_i} \log p_{ij} \cdot \sum_{\alpha \in L^t} p(\alpha) q_{ij}(\alpha) \right) + \log P(L^t).$$

Очевидно, что $\sum_{\alpha \in L^t} p(\alpha) q_{ij}(\alpha) = P(L^t) \cdot M(S_{ij}(t))$. Используя теорему 5, выражение для энтропии можно переписать в виде

$$H(L^{t}) = -t \cdot (1 + o(1)) \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} w_{ij} \log p_{ij} + \log P(L^{t}).$$

Ввиду однозначности вывода, с использованием (28), имеем

$$\log P(L^t) = \log P(D_1^t) = t \log r + O(\log t).$$

Поэтому

$$H(L^t) = t \cdot \left(\log r - \sum_{j=1}^{n_i} w_{ij} \log p_{ij} \right) + o(t).$$

Полученный результат сформулируем в виде следующей теоремы.

Теорема 6. Пусть G — однозначная стохастическая KC-грамматика c разложимой матрицей первых моментов, для которой перронов корень r < 1, u L^t - множество всех слов из L, порождаемого G, c деревьями вывода высоты t. Тогда

$$H(L^t) = t \cdot \left(\log r - \sum_{j=1}^{n_i} w_{ij} \log p_{ij} \right) + o(t),$$

где w_{ij} определяются теоремой 5.

Таким образом, энтропия $H(L^t)$ линейно зависит от высоты t дерева вывода, как и в неразложимом случае [5].

Используя энтропию, оценим стоимость оптимального кодирования $C_0(L)$. Обозначим через f^* кодирование множества L^t , минимизирующее величину

$$M_t(f) = \sum_{\alpha \in L^t} p_t(\alpha) \cdot |f(\alpha)|.$$

Очевидно, для любого кодирования $f \in F(L)$ верно неравенство $M_t(f) \geq M_t(f^*)$. Оценим $M^*(L^t) = M_t(f^*)$, используя следующую теорему, доказанную в [2].

Теорема 7. Пусть L_k – последовательность стохастических языков, для которой $H(L_k) \to \infty$ при $k \to \infty$. Тогда

$$\lim_{k \to \infty} \frac{M^*(L_k)}{H(L_k)} = 1.$$

Поскольку $H(L)^t \to \infty$ при $t \to \infty$, из теоремы 7 следует, что $M_t(f^*)/H(L^t) \to 1$ при $t \to \infty$.

Найдем величину $\sum_{\alpha \in L^t} p_t(\alpha) \cdot |\alpha|$. Пусть правило r_{ij} содержит в правой части l_{ij} терминальных символов. Очевидно, $|\alpha| = \sum_{ij} q_{ij}(\alpha) \cdot l_{ij}$. Поэтому

$$\sum_{\alpha \in L^t} p_t(\alpha) \cdot |\alpha| = \sum_{ij} l_{ij} M(S_{ij}(t)) = t \cdot \sum_{ij} l_{ij} w_{ij} + o(t).$$

Следовательно, справедлива

Теорема 8. Пусть L - стохастический KC-язык, порожденный разложимой стохастической KC - грамматикой c однозначным выводом, для которой перронов корень r матрицы первых моментов меньше 1. Тогда стоимость любого кодирования $f \in F(L)$ удовлетворяет неравенству

$$C(L,f) \ge C_0(L) = \frac{\log r - \sum_{ij} w_{ij} \log p_{ij}}{\sum_{ij} l_{ij} w_{ij}}.$$

Список литературы

- [1] Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и компиляции. Том 1. М.: Мир, 1978.
- [2] Борисов А.Е. О свойствах стохастического КС-языка, порожденного грамматикой с двумя классами нетерминальных символов // Дискретный анализ и исследование операций. 2005. Серия 1, том 12, N3. Новосибирск: Издательство Института математики СО РАН. С.3 31.
- [3] Гантмахер Ф. Р. Теория матриц. М.: Наука, 1967.
- [4] Жильцова Л.П. Закономерности применения правил грамматики в выводах слов стохастического контекстно-свободного языка // Математические вопросы кибернетики. М.: Наука. 2000. Вып.9. С. 101 126.
- [5] Жильцова Л.П. О нижней оценке стоимости кодирования и асимптотически оптимальном кодировании стохастического контекстно-свободного языка // Дискретный анализ и исследование операций. 2001.— Серия 1. Том 8, N3. Новосибирск: Издательство Института математики СО РАН. С. 26 45.
- [6] Л.П. Жильцова. О матрице первых моментов разложимой стохастической КС-грамматики // Ученые записки Казанского государственного университета. Физико-математические науки. Том 151, книга 2, 2009. С. 80 89.
- [7] Севастьянов В. А. Ветвящиеся процессы. М.: Наука, 1971.
- [8] Фу К. Структурные методы в распознавании образов. М.: Мир, 1977.