Lecture 12 Hoare Logic

(some material from Peter Müller, ETH Zurich)

Module II

Last week

This week

Constraint-based synthesis

Behavioral constraints = assertions, reference implementation, pre/post

encoding

Structural constraints

 $\exists c . \forall x . Q(c, x)$

Why is this hard?

```
Euclid (int a, int b) returns (int x)
                                                             infinitely many inputs
  requires a > 0 \land b > 0
  ensures x = \gcd(a, b)
  int x , y := a, b;
                                                              infinitely many paths!
  while (x != y) {
    if (x > y) x := ??*x + ??*y + ??;
else y := ??*x + ??*y + ??;
}}
```

Loop unrolling

```
Euclid (int a, int b) returns (int x)
  requires a > 0 \land b > 0
  ensures x = \gcd(a, b)
                                                      if (x != y) {
  int x , y := a, b;
                                                        if (x > y)
  while (x != y) {
                                                          x := ??*x + ??*y + ??;
                                          Unroll with
    if (x > y) x := ??*x + ??*y + ??;
                                                        else
                                           depth = 1
                                                          y := ??*x + ??*y + ??;
    else y := ??*x + ??*y + ??;
                                                        assert !(x != y);
}}
```

What's wrong with unrolling?

```
Euclid (int a, int b) returns (int x)
                                                                      Unsatisfiable sketch
  requires a > 0 \land b > 0
  ensures x = \gcd(a, b)
                                                       if (x != y) {
  int x , y := a, b;
                                                         if (x > y)
 while (x != y) {
                                                           x := ??*x + ??*y + ??;
                                           Unroll with
    if (x > y) x := ??*x + ??*y + ??;
                                                         else
                                            depth = 1
                                                           y := ??*x + ??*y + ??;
    else y := ??*x + ??*y + ??;
                                                         assert !(x != y);
}}
```

What's wrong with unrolling?

What if we restrict inputs to [1, 2]? Euclid (int a, int b) returns (int x) Unsound solution! requires $a > 0 \land b > 0$ ensures $x = \gcd(a, b)$ **if** (x != y) { **int** x , y := a, b; if (x > y)while (x != y) { x := 0 *x + 0 *y + 1;Unroll with if (x > y) x := ??*x + ??*y + ??;else depth = 1y := 0 * x + 0 * y + 1; else y := ??*x + ??*y + ??; **assert** !(x != y); }}

Constraint-based synthesis

Behavioral constraints = assertions, reference implementation, pre/post

Structural constraints

If we want to synthesize programs that are correct on all inputs, we need a better way to deal with loops!

Solution

Hoare logic = a program logic for simple imperative programs

• in particular: loop invariants

The Imp language

Hoare triples

Properties of programs are specified as judgments

$$\{P\} c \{Q\}$$

where c is a command and $P, Q: \sigma \rightarrow Bool$ are predicates

• e.g. if $\sigma = [x \mapsto 2]$ and $P \equiv x > 0$ then $P \sigma = T$

Terminology

- Judgments of this kind are called (Hoare) triples
- P is called precondition
- ullet Q is called postcondition

Meaning of triples

The meaning of $\{P\}$ c $\{Q\}$ is:

- if P holds in the initial state σ , and
- if the execution of c from σ terminates in a state σ'
- then Q holds in σ'

This interpretation is called *partial correctness*

termination is not essential

Another possible interpretation: total correctness

- if P holds in the initial state σ
- then the execution of c from σ terminates in a state (call it σ')
- and Q holds in σ'

Example: swap

```
\{T\}

x := x + y; y := x - y; x := x - y

\{x = y \land y = x\}
```

We have to express that y in the final state is equal to x in the initial state!

Logical variables

```
\{x = N \land y = M\}
x := x + y; y := x - y; x := x - y
\{x = M \land y = N\}
```

Assertions can contain *logical variables*

- may occur only in pre- and postconditions, not in programs
- the state maps logical variables to their values, just like normal variables

Inference system

We formalize the semantics of a language by describing which judgments are valid about a program

An inference system

 a set of axioms and inference rules that describe how to derive a valid judgment

We combine axioms and inference rules to build *inference trees* (derivations)

Semantics of skip

skip does not modify the state

```
{ P } skip { P }
```

Semantics of assignment

$$\{x > 0\} \ x := x + 1 \ \{???\}$$

$$\{???\}\ x := x + 1 \{x > 1\}$$

Semantics of assignment

x := e assigns the value of e to variable x

$$\{P[x \mapsto e]\}\ x \coloneqq e \{P\}$$

- Let σ be the initial state
- Precondition: $(P[x \mapsto e])\sigma$, i.e., $P(\sigma[x \mapsto \mathcal{A}[e]\sigma])$
- Final state: $\sigma' = \sigma[x \mapsto \mathcal{A}[e]\sigma]$
- Consequently, P holds in the final state

Semantics of composition

Sequential composition **c1**; **c2** executes **c1** to produce an intermediate state and from there executes **c2**

$$\frac{\{P\}\;c_1\;\{R\}\;\;\{R\}\;c_2\;\{Q\}}{\{P\}\;c_1;\,c_2\;\{Q\}}$$

Example: swap

inference tree

leaves = axioms

assign
$$\overline{\{\mathbf{x} = N + M \land \mathbf{y} = N\}} \quad \mathbf{x} := \mathbf{x} - \mathbf{y} \quad \{\mathbf{x} = M \land \mathbf{y} = N\}$$

assign
$$\overline{\{x = N + M \land y = M\}}$$
 $y := x - y \{x = N + M \land y = N\}$

edges = rules

$$\{x = N + M \land y = M\} y := x - y; x := x - y \{x = M \land y = N\}$$

assign

$$\{x = N \land y = M\} \ x := x + y \ \{x = N + M \land y = M\}$$

comp

$$\{x = N \land y = M\}$$
 x := x + y; y := x - y; x := x - y $\{x = M \land y = N\}$

root = triple to prove

Proof outline

$$\{P[x \mapsto e]\}\ \mathbf{x} \coloneqq \mathbf{e}\ \{P\}$$

An alternative (more compact) representation of inference trees

$$\{x = N \land y = M\}$$

$$\Rightarrow$$

$$\{(x + y) - ((x + y) - y) = M \land (x + y) - y = N\}$$

$$x = x + y;$$

$$\{x - (x - y) = M \land x - y = N\}$$

$$y = x - y;$$

$$\{x - y = M \land y = N\}$$

$$x = x - y$$

$$\{x = M \land y = N\}$$

Rule of consequence

$$\frac{\{P'\} \ c \ \{Q'\}}{\{P\} \ c \ \{Q\}} \quad \text{if} \quad P \Rightarrow P' \land Q' \Rightarrow Q$$

Corresponds to adding \Rightarrow steps in a proof outline Here $P \Rightarrow P'$ should be read as

• "We can prove for all states σ , that P σ implies P' σ "

Semantics of conditionals

$$\frac{\{P \land e\} c_1 \{Q\}}{\{P\} \text{ if } e \text{ then } c_1 \text{ else } c_2 \{Q\}}$$

Example: absolute value

```
\{T\}
     if x < 0 then
       \{T \land x < 0\}
        (-x \ge 0)
         x := -x
         \{x \ge 0\}
     else
      \Rightarrow^{\{\neg(x<0)\}}
         \{x \ge 0\}
         skip
         \{x \ge 0\}
\{x \ge 0\}
```

$$\frac{\{P \land e\} c_1 \{Q\} \qquad \{P \land \neg e\} c_2 \{Q\}}{\{P\} \text{ if } e \text{ then } c_1 \text{ else } c_2 \{Q\}}$$

Semantics of loops

We want to say:

- P holds initially
- after executing *c*
 - if e still holds, we execute c again
 - otherwise, Q holds

```
\frac{\{?\} c \{?\}}{\{P\} \text{ while } e \text{ do } c \{Q\}}
```

Semantics of loops

Example: GCD

```
\{x = N \land y = M \land N > 0 \land M > 0\}
{I}
    while x != y do
      {I \land x \neq y}
         if x > y then
            x := x - y
         else
            y := y - x
       {I}
{I \land x = y}
\{x = \gcd(N, M)\}
```

Guessing the loop invariant:

X	У	N	M
10	4	10	4
6	4	10	4
2	4	10	4
2	2	10	4

$$I \equiv \gcd(x, y) = \gcd(N, M)$$

Example: GCD

```
\{x = N \land y = M \land N > 0 \land M > 0\}
  \Rightarrow
\{\gcd(x,y)=\gcd(N,M)\land x,y>0\}
    while x != y do
      \{\gcd(x,y)=\gcd(N,M)\land x,y>0\land x\neq y\}
         if x > y then
          \{\gcd(x,y)=\gcd(N,M) \land x\neq y \land x>y\}
           \{\gcd(x-y,y)=\gcd(N,M)\land x-y,y>0\}
              X := X - y
           \{\gcd(x,y)=\gcd(N,M)\land x,y>0\}
         else
              y := y - x
      \{\gcd(x,y)=\gcd(N,M)\land x,y>0\}
\{\gcd(x,y)=\gcd(N,M)\land x,y>0\land x=y\}
  \Rightarrow
\{x = \gcd(N, M)\}
```

Termination

loop variant / ranking function / termination metric $\{I \land e \land r = R\} \ c \ \{I \land r < R \land r \geq 0\}$ $\{I\} \ \text{while} \ e \ \text{do} \ c \ \{\neg e \land I\}$

Example: GCD

Example: GCD

```
\{x = N \land y = M \land N > 0 \land M > 0\}
  \Rightarrow
\{\gcd(x,y)=\gcd(N,M)\land x,y>0\}
    while x != y do
       \{\gcd(x,y) = \gcd(N,M) \land x, y > 0 \land x + y = R \land x \neq y\}
          if x > y then
               x := x - y
          else
               y := y - x
       \{\gcd(x,y) = \gcd(N,M) \land x, y > 0 \land x + y < R \land x + y \ge 0\}
\{\gcd(x,y) = \gcd(N,M) \land x, y > 0 \land x = y\}
  \Rightarrow
\{x = \gcd(N, M)\}
```

Program Verification

```
method Euclid (a: int, b: int) returns (gcd: int)
  requires a > 0 && b > 0
  ensures x == gcd(a,b)
  var x, y := a, b;
  while (x != y)
    invariant y > 0 & x > 0 & gcd(x,y) == gcd(a,b)
                                                                                 correct!
                                                            Dafny
    decreases x + y
    if (x > y) {
                                                                                 can't prove
      X := X - y;
                                                                                 correctness
    } else {
      y := y - x;
```

Program synthesis

```
method Euclid (a: int, b: int) returns (gcd: int)
  requires a > 0 && b > 0
  ensures x == gcd(a,b)
{
  var x, y := ??;
  ??;
  while (??)
    invariant ??
    decreases ??
  {
    ??;
  }
  ??;
}
```

found a correct program!

```
var x, y := a, b;
while (x != y)
  invariant y > 0 && x > 0 && gcd(x,y) == gcd(a,b)
  decreases x + y
{
  if (x > y) {
    x := x - y;
  } else {
    y := y - x;
  }
}
```


can't find a (program, invariant) pair that I can prove correct

Verification → synthesis

Srivastava, Gulwani, Foster: From program verification to program synthesis. POPL'10

- idea: make constraint-based synthesis unbounded by synthesizing loop invariants alongside programs
- synthesized some looping programs with integers, including Bresenheim line-drawing algorithm
- won "Most Influential Paper" at POPL'20!

Qiu, Solar-Lezama: <u>Natural Synthesis of Provably-Correct Data-</u> Structure Manipulations. OOPSLA'17

same approach for pointer-manipulating programs

Verification → synthesis

How verification works

Step 1: eliminate loops

```
\{pre\}
                                                   init;
                                                 {inv }
{pre}
                                                            \{inv \land cond\}
    init;
   while (cond)
                                                               body;
      invariant inv
                                                            {inv}
      body;
    final;
{post}
                                                 \{inv \land \neg(cond)\}
                                                    final;
                                                  {post}
```

Step 2: generate VCs

From verification to synthesis

Program synthesis


```
{pre}
    S_i(x,x')
\{I[x \mapsto x']\}
 \{I \wedge G\}
     S_b(x,x')
 \{I[x \mapsto x']\}
 \{I \wedge \neg G_0\}
  S_f(x, x') {post}
```

```
\exists S \ G \ I. \forall x.
         pre \wedge S_i \Rightarrow I'
                       Λ
         I \wedge G \wedge S_b \Rightarrow I'
                       Λ
       I \land \neg G \land S_f \Rightarrow post
     synthesis constraint
\exists I P. \forall x. Q(I, P, x)
```

Synthesis constraints

$$pre \land S_i \Rightarrow I'$$
 $I \land G \land S_b \Rightarrow I'$
 $I \land \neg G \land S_f \Rightarrow post$

Domain for I, G: formulas over program variables

Domain for
$$S = \{x' = e_x \land y' = e_y \land \cdots \mid e_x, e_y, \dots \in Expr\}$$

• conjunction of equalities, one per variables

Solving synthesis constraints

$$pre \land S_i \Rightarrow I'$$

$$I \land G \land S_b \Rightarrow I'$$

$$I \land \neg G \land S_f \Rightarrow post$$

Can solve this with...

- SyGuS solvers
- Sketch
 - Look we made an unbounded synthesizer out of Sketch!
- VS3 uses Lattice search
 - More efficient for predicates