МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №22

Студент: Самарина Арина Анатольевна, Суржицкий Арсений Арсентьевич Группа Р3266

Преподаватель: Машина Екатерина Александровна

1. Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

2. Порядок выполнения работы

• 1 часть: Решение нелинейного уравнения

Задание:

1. Отделить корни заданного нелинейного уравнения графически

$$f(x) = x^3 - 3,78x^2 + 1,25x + 3,49$$

- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения с точностью $\varepsilon = 10^{-2}$
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.

Крайний правый корень: метод хорд

Крайний левый корень: метод Ньютона

Центральный корень: метод простой итерации

5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.

Для метода хорд заполнить таблицу 2.

Для метода Ньютона заполнить таблицу 3.

Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.

2 часть: Решение системы нелинейных уравнений

Задание:

1. Отделить корни заданной системы нелинейных уравнений графически $(\sin(x-y) - xy = -1)$ $0.3x^2 + v^2 = 2$

2. Используя метод Ньютона, решить систему нелинейных уравнений с точностью до 0.01.

3 часть: Программная реализация

Для нелинейных уравнений

- Метод хорд
- Метод секущих
- Метод простой итерации

Для систем нелнейных уравнений

- Метод простой интерации

3. Рабочие формулы

Рабочая формула метода хорд:
$$x_{i+1} = x_i - \frac{x_0 - x_i}{f(a) - f(x_i)} f(x_i)$$

Рабочая формула метода Ньютона:

$$x_{i+1} = x_i - \frac{f(i)}{f'(x_i)}$$

Рабочая формула метод секущих

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$

Рабочая формула метода простой интерации:

$$x_{i+1} = \varphi(x_i)$$
, где $x = \varphi(x)$ — эквивалентный вид уравнения $f(x) = 0$

4. Вычислительная часть 1

1 - Отделить корни заданного нелинейного уравнения графически

Функция :
$$f(x) = x^3 - 3,78x^2 + 1,25x + 3,49$$

2 Определить интервалы изоляции корней

Для определения интервалов изоляции корней данного уравнения можно воспользоваться табличным способом. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

Знаем, что если непрерывная функция f(x) на концах отрезка [a; b] принимает значения разных знаков, т.е. $f(a) \cdot f(b) < 0$, то на этом отрезке содержится хотя бы один корень уравнения

Тогда мы получаем 3 интервала изоляции корней уравнения: (-1;-0,5), (1.5;2) и (2.5;3)

X	f(x)
-2	-22,13
-1,5	-10,27
-1	-2,54
-0,5	1,8
0	3,49
0,5	3,3
1	1,96
1,5	0,24
2	-1,13
2,5	-1,39
3	0.22

3 - Уточнить корни нелинейного уравнения с точностью $\epsilon = 10^{-2}$

$$x_1 = -0.75$$

$$x_2 = 1.57$$

$$x_3 = 2.96$$

4 - Используемые методы для уточнения каждого из 3-х корней

• Метод половинного деления

№ шага	a	b	X	f(a)	f(b)	f(x)	a-b
0	0	2	1	3,49	-1,13	1,96	
1	1	2	1,5	1,96	-1,13	0,24	
2	1,50	2	1,75	0,24	-1,13	-0,54	
						,	
3	1,50	1,75	1,63	0,24	-0,54	-0,18	
4	1,50	1,63	1,57	0,24	-0,54	0,01	
5	1,57	1,63	1,60	0,01	-0,54	-0,10	
6	1,57	1,60	1,59	0,01	-0,10	-0,06	
7	1,57	1,59	1,58	0,01	-0,10	-0,03	

$$x^* \approx 1,57$$

• Метод Ньютона

$$x_{i+1} = x_i - \frac{f(i)}{f'(x_i)}$$

№ итерации	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	$ x_{n+1}-x_n $
0	0	3,49	1,25	-2,79	2,79
1	-2,79	-51,14	45,69	-1,67	4,46
2	-1,67	-13,80	22,24	-1,05	0,62
3	-1,05	-3,15	12,50	-0,80	0,25
4	-0,80	-0,44	9,22	-0,75	0,05
5	-0,75	0,00	8,61	-0,75	0,00

$$n = 5$$

$$x^* \approx -0.75$$

• Метод простой итерации

Преобразуем уравнение к виду

$$x = \varphi(x) = (3.78x^2 - 1.25x - 3.49)^{1/3}$$

$$a_0 = 2,5, b_0 = 3$$

$$\varphi'(x) = 0.798045 \rightarrow |\varphi'(x)| < 1 \,\forall \, x \in [2.5; 3]$$

Условие сходимости выполняется

№ итерации	x_i	x_{i+1}	$f(x_{i+1})$	$ x_{n+1}-x_n $
0	2,50	2,57	-1,29	0,07
1	2,57	2,63	-1,18	0,06
2	2,63	2,69	-1,03	0,06
3	2,69	2,74	-0,89	0,05
4	2,74	2,78	-0,76	0,04
5	2,78	2,81	-0,66	0,03
6	2,81	2,84	-0,54	0,03
7	2,84	2,86	-0,46	0,02
8	2,86	2,88	-0,37	0,02
9	2,88	2,89	-0,33	0,01
10	2,89	2,90	-0,29	0,01
11	2,90	2,91	-0,24	0,01
12	2,91	2,92	-0,19	0,01
13	2,92	2,93	-0,14	0,01
14	2,93	2,94	-0,09	0,01
15	2,94	2,94		

$$n = 14$$

$$x^* \approx 2.94$$

5. Вычислительная часть 2

1 - Отделить корни заданной системы нелинейных уравнений графически

$$\begin{cases} \sin(x - y) - xy = -1\\ 0.3x^2 + y^2 = 2 \end{cases}$$

2 -Решить систему нелинейных уравнений с точностью $\varepsilon = 10^{-2}$ по методу Ньютона

$$\begin{cases} \sin(x-y) - xy = -1 \\ 0.3x^2 + y^2 = 2 \end{cases} \rightarrow \begin{cases} \sin(x-y) - xy + 1 = 0 \\ 0.3x^2 + y^2 - 2 = 0 \end{cases}$$

Построим матрицу Якоби

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial x} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

$$\rightarrow \begin{vmatrix} \cos(x-y) - y & -\cos(x-y) - x \\ 0.6x & 2y \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} -\sin(x-y) + xy - 1 \\ -0.3x^2 - y^2 + 2 \end{pmatrix}$$

$$\{ (\cos(x-y) - y)\Delta x - (\cos(x-y) + x)\Delta y = -\sin(x-y) + xy - 1 \\ 0.6x\Delta x + 2y\Delta y = -0.3x^2 - y^2 + 2 \end{vmatrix}$$

Выбираем
$$x_0 = -3, y_0 = -1$$

$$\rightarrow \begin{cases}
0.584\Delta x + 3.416\Delta y = 2.909 \\
-1.8\Delta x - 2\Delta y = -1.7
\end{cases}
\rightarrow \begin{cases}
\Delta x = -0.002 \\
\Delta y = -0.852
\end{cases}$$

$$x_1 = x_0 + \Delta x = -3.002, \quad y_0 = y_0 + \Delta y = -1.852$$

Аналогично, получается таблица

№ интераци	x_i	y_i	Δx_i	Δy_i	x_{i+1}	y_{i+1}
0	-3	-1	-0.0022	0.852	-3.0022	-0.1480
1	-3.0022	-0.1480	0.4008	0.0133	-2.6014	-0.1347
2	-2.6014	-0.1347	0.0312	-0.0014	-2.5702	-0.1361
3	-2.5702	-0.1361	0.0002 < ε	-0.00005 < ε		-

n = 2 $x^* \approx -2.5702$ $y^* \approx -0.1361$

6. Листинг программы

Main.py

```
}
switch_command.get(input_variant, exit)()
```

data_input.py

```
from validate input import count roots on interval,
quation solution, validate roots
import numpy as np
import matplotlib.pyplot as plt
def try to convert to int(number):
        if number float.is integer():
            return int(number float)
            return number float
       return float(number)
def hand input(quation, method):
def file input(quation, method):
   current working directory = os.path.dirname( file )
   file name = input("Enter the relative path to your file\n")
   file path = os.path.join(current working directory,
file name)
   with open(file path, "r", encoding="utf-8") as file:
        lines = file.readlines()
    if len(lines) == 3:
       data =[]
        for line in lines:
                var = float(var)
```

```
data.append(var)
                exit()
            except UnboundLocalError:
       a = data[0]
       b = data[1]
       inaccuracy = data[2]
        count roots = count roots on interval(quation, a, b,
       if not (validate roots(count roots)):
def choose inaccuracy():
            return try to convert to int(inaccuracy)
       except UnboundLocalError:
def input selection(quation, method):
            input selection = int(
```

```
if input selection in range(1,3):
   switch command = {
       1: hand input,
       2: file input,
   a, b, inaccuracy = switch command.get(input selection,
def choose quation():
            input quation = int(
def choose system():
            input quation = int(
            if input quation in range(1,3):
        except ValueError:
```

```
return input quation
def choose method():
            if input variant in range(1, 4):
   return input variant
def choose system method():
            if input variant in range(1, 2):
   return input variant
def choose left interval():
            interval= (
            ).replace(",", ".")
            interval = int(interval)
            return try to convert to int(interval)
       except ValueError:
```

```
return interval
       except UnboundLocalError:
def choose right interval(a):
            interval= (
            return try to convert to int(interval)
                interval =try to convert to int(interval)
            except ValueError:
       except UnboundLocalError:
def choose x():
            interval= (
            interval = int(interval)
                interval =try to convert to int(interval)
```

```
except UnboundLocalError:
def choose y():
            interval= (
            return try to convert to int(interval)
                interval =try to convert to int(interval)
def choose output format():
            if input variant in range (1, 3):
   return input variant
def output_data(solution, function, iterations, quation):
   input variant = choose output format()
       1: output in console,
```

```
2: output in file,
    switch command.get(input variant, exit)(solution, function,
iterations, quation)
def output_in_console(solution, function, iterations, quation):
    print("Quation: ", quation, "Solution: ", solution, "f(",
def output in file(solution, function, iterations, quation):
        filename = input("Enter the file name to save the data:
        file path = os.path.join('./lb2/solutions', filename)
        if not os.path.exists('./lb2/solutions'):
            os.makedirs('./lb2/solutions')
        with open(file path, 'w') as file:
            file.write("Quation: " + str(quation) + '\n')
            file.write("Solution: " + str(solution) + '\n')
str(function) + ' n'
            file.write("iterations = " + str(iterations) + '\n')
written to the file: {file path}")
def draw grapth(quation, function, a, b):
    x values = np.linspace(-a-a*0.3, b+b*0.3, 100)
    y values = quation solution(quation, x values)
    plt.plot(x values, y values, label=function, color='b')
    plt.xlabel('x')
    plt.ylabel('f(x)')
    plt.axvline(0, color='black', linewidth=0.5)
```

```
# Добавим легенду
plt.legend()

# Отобразим график
plt.show()
```

non_lineare_quation.py

```
from data imput import *
from validate input import check convergencecondition,
converted quation, quation df2 solution, quation df solution,
def str quation(quation):
    if quation == 1:
    elif quation == 3:
def validate initial approximation(quation,a,b):
   dfa2 =quation df2 solution(quation,a)
   dfb2 = quation df2 solution(quation,b)
    if fa * dfa2 > 0:
    elif fb * dfb2 > 0:
def Chord method(quation, method):
   a, b, inaccuracy = input selection(quation, method)
   a1 =a
   iterations = 0
   while abs(quation solution(quation, x0)) > inaccuracy and
        x0 = a1 - ((b1-a1)/(quation solution(quation,b1) -
quation solution(quation, a1)))*quation solution(quation, a1)
        if quation solution(quation, x0) *
            a1 = x0
```

```
output data(solution, quation solution(quation, solution),
    draw grapth(quation, str quation(quation), a1, b1)
def Newton method(quation, method):
    a, b, inaccuracy = input selection(quation, method)
    approximation = validate initial approximation(quation, a,
    iterations = 0
    max iter = 1000
    x = approximation
        iterations += 1
    output data(solution, quation solution(quation, solution),
iterations, str quation(quation))
    draw grapth(quation, str quation(quation), a, b)
def Simple iteration method(quation, method):
    a, b, inaccuary = input selection(quation, method)
    q = check convergencecondition(quation, a, b)
    approximation = validate initial approximation(quation, a,
b)
    x = approximation
    iterations = 0
        while abs(converted quation(quation, x) - x) > inaccuary
            x = converted quation(quation, x)
            print(x)
            iterations += 1
        while abs(converted quation(quation, x) -x) > ((1-
            x = converted quation(quation, x)
            iterations += 1
```

```
solution = try_to_convert_to_int(x)
  output_data(solution, quation_solution(quation, solution),
iterations, str_quation(quation))
  draw_grapth(quation, str_quation(quation), a, b)

def non_lineare_quation():
    quation = choose_quation()
    method = choose_method()

    switch_command = {
        1: Chord_method,
        2: Newton_method,
        3: Simple_iteration_method,
        4: exit,
    }
switch_command.get(method, exit)(quation,method)
```

non_lineare_system.py

```
import sys
import numpy as np
import matplotlib.pyplot as plt
from data_imput import
choose_inaccuracy,choose_x,choose_y,choose_system,choose_system_
method
def non_lineare_system():
    system_num = choose_system()
    method = choose_system_method()

    switch_command = {
        1: simple_iteration_method,
        2: exit,
    }
    switch_command.get(method, exit)(system_num,method)

def simple_iteration_method(system,method):
    x0 = choose_x()
    y0 = choose_y()
    a = x0
    b = y0
    inaccuracy = choose_inaccuracy()
    max_iter = 1000
    iteration =0
```

```
if not check convergence (system, method, x0, y0):
    for i in range(max iter):
        y = f2(x0, y0, system)
            print(f"inncaury x = \{x-f1(x,y,system)\} \setminus ninncaury y
= \{y-f2(x,y,system)\}"\}
        iteration += 1
    plt.figure(figsize=(12, 6))
    x \text{ values} = \text{np.linspace}(-5, 5, 1000)
    y1 pos = np.array([f1 y positive(x, system) for x in
x values])
    y1 neg = np.array([f1 y negative(x, system) for x in
x values])
    y2 pos = np.array([f2 y positive(x, system) for x in
x values])
    y2 neg = np.array([f2 y negative(x, system) for x in
x values])
    plt.subplot(1, 2, 1)
    plt.plot(x values, y1 pos, label=f'{str quation 1(system)}
    plt.plot(x values, y1 neg, label=f'{str quation 1(system)}
   plt.plot(x values, y2 pos, label=f'{str quation 2(system)}
    plt.plot(x values, y2 neg, label=f'{str quation 2(system)}
    plt.xlabel('x')
    plt.ylabel('y')
    plt.axhline(0, color='black', linewidth=1.5)
    plt.title(f'System {system}')
   plt.grid(True)
    plt.legend()
    plt.tight layout()
def f1(x, y, system):
    if(system == 1):
    elif(system == 2):
```

```
if(system == 1):
    elif(system == 2):
        return np.sin(x)**2
def check convergence(system, method, x0, y0):
    jacobian matrix = np.array([[f1 dx(system, x0, y0),
f1 dy(system, x0, y0)],
                                 [f2 dx(system, x0, y0),
f2 dy(system, x0, y0)]])
   eigenvalues = np.linalg.eigvals(jacobian matrix)
    if np.all(np.abs(eigenvalues) < 1):</pre>
def f1 dx(system, x, y):
   if system == 1:
    elif system == 2:
def f1 dy(system, x, y):
   if system == 1:
    elif system == 2:
\frac{def f2}{dx}(system, x, y):
   if system == 1:
    elif system == 2:
        return np.sin(2*x)
def f2 dy(system, x, y):
    if system == 1:
```

```
elif system == 2:
def f1 y positive(x, system):
   if system == 1:
       argument = (0.3 - x - 0.1 * x * x) / 0.2
        return np.sqrt(argument) if argument >= 0 else np.nan
   elif system == 2:
       argument = (x - 0.5 * x * x) / 3
        return np.sqrt(argument) if argument >= 0 else np.nan
def f1 y negative(x, system):
   if system == 1:
        argument = (0.3 - x - 0.1 * x * x) / 0.2
       return -np.sqrt(argument) if argument >= 0 else np.nan
   elif system == 2:
       argument = (x - 0.5 * x * x) / 3
       return -np.sqrt(argument) if argument >= 0 else np.nan
def f2 y positive(x, system):
   if system == 1:
       argument = (0.7 - 0.2 * x * x) / (1 + 0.1 * x)
       return argument
   elif system == 2:
       return np.abs(np.sin(x))
def f2 y negative(x, system):
   if system == 1:
       argument = (0.7 - 0.2 * x * x) / (1 + 0.1 * x)
       return argument
   elif system == 2:
       return np.abs(np.sin(x))
def str quation 1(system):
   elif system == 2:
def str_quation 2(system):
   if system == 1:
```

```
return "0.2x^2 + y + 0.1xy -0.7"
elif system == 2:
    return "sin(x)^2-y"
```

validate_input.py

```
import numpy as np
def quation solution(quation,x):
   elif quation == 3:
def quation_df_solution(quation, x):
   if quation == 1:
   elif quation == 3:
       return -2*x - \sin(x)
def quation df2 solution(quation, x):
   elif quation == 2:
def converted quation(quation,x):
   elif quation == 3:
```

```
def convertred df quation(quation, x):
   elif quation == 2:
       return (3*x**2)/(10)+(2*x)/5+1
def check convergencecondition(guation, a, b):
   print("q(a) = ", convertred_df_quation(quation, a), "q(b) =
   return max(abs(convertred df quation(quation, a)),
def count roots on interval(quation, a, b, inaccuracy):
   b1 = b
   num roots = 0
quation solution (quation, x + inaccuracy) < 0:
           num roots += 1
   return num roots
def validate roots(num roots):
   num roots = int(num roots)
   elif num roots > 1:
        print("More than one root (", num roots, ")")
```

7. Выводы

В ходе лабораторной работы были изучены и реализованы численные методы решения нелинейных уравнений и их систем. Программа успешно находила корни, подтвердив эффективность методов Ньютона, простых итераций и бисекции. Тестирование показало точность и стабильность результатов. Работа подчеркнула важность выбора метода и начальных приближений, создавая основу для дальнейшего использования в численном анализе и математическом моделировании.