

PCT

Exp Mail EV335612956US
USAN 10/079.137
WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07H 21/04, C12Q 1/68	A1	(11) International Publication Number: WO 97/31011
		(43) International Publication Date: 28 August 1997 (28.08.97)

(21) International Application Number: **PCT/US97/02396**

(22) International Filing Date: **18 February 1997 (18.02.97)**

(30) Priority Data:
60/012,060 22 February 1996 (22.02.96) US

(71) Applicants (*for all designated States except US*): THE REGENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Management Technology Office, Wolverine Tower, Room 2071, 3003 South State Street, Ann Arbor, MI 48109-1280 (US). BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIVERSITY [US/US]; East Lansing, MI 48824 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): BREWER, George, J. [US/US]; 3820 Gensley, Ann Arbor, MI 48103 (US). VENTA, Patrick, J. [US/US]; 9646 Rolling Green, Pinckney, MI 48169 (US). YUZBASIYAN-GURKAN, Vilma [US/US]; 3101 Dexter Road, Ann Arbor, MI 48103 (US).

(74) Agents: SMITH, DeAnn, F. et al.; Harness, Dickey & Pierce, P.L.C., P.O. Box 828, Bloomfield Hills, MI 48303 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: **MICROSATELLITE MARKERS FOR IDENTIFYING CANINE GENETIC DISEASES OR TRAITS**

(57) Abstract

Microsatellite markers are provided which are useful in identifying linked markers for canine genetic diseases and traits. The microsatellite markers are derived from regions of genomic DNA which contain a repeat motif, flanked by unique sequences. The number of units contained within the repeat motif is variable, such that various different alleles are present in any given population. The microsatellite markers and their progeny are especially useful in detecting genetic diseases not phenotypically visible and identifying carriers of recessive diseases, as illustrated in the figure. In a preferred embodiment, microsatellite markers are provided which may be used to detect the canine copper toxicosis gene.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

**MICROSATELLITE MARKERS FOR IDENTIFYING
CANINE GENETIC DISEASES OR TRAITS**

FIELD OF THE INVENTION

This invention relates generally to genetic markers and methods of making 5 and using such markers, and more particularly, to a microsatellite marker that may be used to detect copper toxicosis in canines.

BACKGROUND OF THE INVENTION

Due to inbreeding and the relatively shallow gene pool, a large number of 10 genetic diseases are present in dogs (Clark, R.D. et al., *Medical and Genetic Aspects of Purebred Dogs* (Forum Publications, Fairway, KS) (1994) and Robinson, R., *Canine Pract.* 16:29-34 (1991)). Some of these genetic diseases such as copper toxicosis in the Bedlington terrier breed, are so prevalent in a particular breed that the mutant allele frequency may be higher than that of the normal allele (Hertrage, M.E. et al., *J. Small Anim.* 28:1141-1151 (1987); and Yuzbasiyan-Gurkan, V. et al., 15 *Genomics* 15:86-90 (1993)). Other genetic diseases cross many breeds, as exemplified by progressive retinal atrophy causing blindness (Barnett, K.C., *Adv. Vet. Sci. Comp. Med.* 20:9-67 (1976)) and hip dysplasia resulting in painful and crippling arthritis (Corley, E.A., *Small Anim. Pract.* 22:570-593 (1992)).

Canine copper toxicosis (CT) is an autosomal recessive genetic disorder of 20 copper accumulation which results in severe liver damage. Unless specific anti-copper treatment is instituted, affected dogs die by three to seven years of age. While reported in several breeds, it is best characterized in Bedlington terriers, with the frequency of the defective gene being estimated at 50%. The disease is also prevalent in the West Highland White Terrier and Keeshond.

25 Currently, the only method for diagnosing affected CT dogs is by a quantitative liver copper assay in a liver biopsy sample, after one year of age. Unfortunately, heterozygous and homozygous normal animals are indistinguishable from each other by this test. In order to determine if a dog is a heterozygous carrier, test-breeding strategies must be employed which require that there be a dog of a 30 known genotype to breed against the potential carrier. This process is very costly and results in the birth of many affected individuals. It is therefore impractical for breeders to identify breeding stock free of the gene and currently carriers of the gene are only identified after they are found to be the parents of an affected dog.

Because like CT, many of the canine genetic diseases are recessive, various 35 methods have been investigated which would identify, on a molecular level, phenotypically normal carriers. One method that has been employed is the whole

- 2 -

gene subtraction method. This approach requires the sorting out of differences between DNA from those with or without the disease or trait with molecular manipulation methods. Unfortunately, this technique is somewhat impractical and requires that all variability within individuals with the trait as well as the variability 5 within those without the trait independent of the trait, be differentiable from the one or few that are dependent on the trait. Furthermore, this method has only been demonstrated on very simple organisms such as yeast, and while this technique appears theoretically possible for higher species, it rapidly becomes impractical, as it requires many breeding studies of large numbers of affected animals.

10 An alternative method, the use of restriction fragment length polymorphisms (RFLP), is extremely labor intensive and expensive with respect to both characterization and analysis. Furthermore, this technique requires large quantities of DNA, generally is limited to only two alleles, and only a few loci have thus far been characterized for the canine genome. It appears that with this method, a 15 separate genetic system must be generated for each breed of dog, and such a library may not be sufficiently variable in most situations of interest.

The randomly amplified DNA fragment length polymorphism (RAPD) approach uses random primers to amplify fragments of genomic DNA that vary from individual to individual within a species. While the primers are relatively easy to 20 generate, the method is unreliable with minor experimental changes resulting in the resolution of different DNA band patterns. Furthermore, only a few such bands have been characterized for the canine genome.

The candidate gene method is another alternative wherein one or more candidate genes is identified based on what is known about the biochemical and 25 clinical or other phenotypic attributes of the disease or trait and information about similar conditions in another species where a gene has been identified for a similar trait. This approach was taken in evaluating genes linked to the Wilson's disease gene in humans, a disease similar to CT. Unfortunately, the genes linked to the Wilson's disease in humans were not linked to CT in dog (Yusbasiyan-Gurkan, V. 30 et al., *Genomics* 15:86-90 (1993)). Thus, even under the best-case scenario, the candidate gene method is merely a guess and the approach is of course, further limited by the availability of identified genes.

Because canine pedigrees for various genetic disease are abundant, with several generations and two or more affected members present in many cases, 35 these pedigrees lend themselves to linkage studies, provided polymorphic markers

- 3 -

are available. Since most of the breeding is controlled, identification of linked markers would allow concerned breeders to greatly reduce the incidence of these diseases in future generations.

One type of marker that has been developed consists of simple sequence length polymorphisms (SSLPs). SSLPs arise from a varying number of repeats of a simple sequence, such as a dinucleotide repeat at a given locus, and have been reported to be frequent in most eukaryotic genomes (Tautz, D. et al., *Nucleic Acids Res.* 12:4127-4138 (1984)). Such loci, also referred to as microsatellites (Tautz, D., *EXS: DNA Fingerprinting: State of the Science* 1:21-28 (1993)), are best exemplified by those containing the (CA)_n motif and are found to be highly polymorphic in many species and are being successfully used in the construction of genetic maps of the human (Weissenbach, J. et al., *Nature* 359:794-801 (1992)), mouse (Dietrich, W. et al., *Genetics* 131:423-477 (1992)), rat (Serikawa, T. et al., *Genetics* 131:701-721 (1992)) and bovine (Barendse, W. et al., *Nat. Genet.* 6:227-235 (1994)) genomes. High polymorphic information content and amenability to analysis by polymerase chain reaction (PCR) and thus to possible automation, make microsatellites excellent linkage and mapping tools.

CA microsatellites from the canine genome have been identified and their polymorphism evaluated on sets of unrelated dogs (Holmes, N.G. et al., *Anim. Genet.* 24:289-292 (1992)) or mixed bred dogs and beagles (Ostrander, E.A. et al., *Genomics* 16:207-213 (1993)). Presently there are about 150 SSLP-type markers for the canine genome available. Unfortunately, these known markers lack the ability to detect a linked marker for any genetic trait, because of the low probability of finding a linked marker sufficiently close to a given genetic locus, to ensure detection. Many purebred dog populations have a relatively high level of inbreeding which makes it important that such markers be very polymorphic. Further, important genetic diseases occur across many dozens of breeds, requiring the markers be polymorphic in most, if not all, breeds with many different breeds having varying sets of genetic problems.

It would thus be desirable to provide a method for identifying genetic diseases and traits in canines. It would also be desirable to provide a method for identifying genetic diseases and traits in canines which has high variability and low breed specificity. It would further be desirable to provide a method which allows breeders to select and breed for certain favorable characteristics, or conversely, to avoid unfavorable diseases and traits. It would further be desirable to provide a method

- 4 -

which allows the detection and screening of a recessive genetic disease such as copper toxicosis, which is phenotypically undetectable in heterozygote carriers. It would further be desirable to provide a method for identifying a carrier of a genetic disease or trait and affected individuals without undergoing test-breeding 5 experiments. It would also be desirable to provide genetic markers for the canine genome. It would further be desirable to provide a marker for the CT gene in canines.

SUMMARY OF THE INVENTION

A set of microsatellite markers are provided which are useful in identifying 10 linked markers for canine genetic diseases and traits. In particular, five hundred and nineteen microsatellite DNA markers are provided which are highly variable within and across many breeds of dogs. The microsatellite markers are derived from regions of genomic DNA which contain a repeated motif e.g., (CA)_n, flanked by unique sequences. The number of units contained within the repeat motif is 15 variable, such that various different alleles are present in any given population. The unique flanking sequences may be used as polymerase chain reaction (PCR) primers which allows for the rapid amplification and characterization of each locus from a small amount of DNA. Thus, each microsatellite marker has a unique set of primers. The microsatellite markers and their progeny are especially useful in 20 detecting genetic diseases not phenotypically visible and identifying carriers of recessive diseases. In a preferred embodiment, microsatellite markers are provided which may be used to detect the canine copper toxicosis gene.

In addition to identifying canine genetic diseases such as copper toxicosis, the microsatellite markers may also be used to create a genetic map of the canine 25 genome, generate specific breed profiles, settle parentage disputes and identify dogs by DNA fingerprinting. Pedigrees of affected individuals, their siblings, parent and progeny can also be created. Breeders and owners can thus choose breeding stock thereby reducing and possibly eliminating the incidence of specific genetic diseases.

30 Additional objects, advantages, and features of the present invention will become apparent from the following description and claims taken in conjunction with the accompanying drawings.

- 5 -

BRIEF DESCRIPTION OF THE DRAWINGS

The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and by referencing the following drawings in which:

5 Figure 1A is a bar graph showing the average and standard deviation of heterozygosity percentages across loci within a breed;

 Figure 1B is a bar graph showing the average and standard deviation of heterozygosity percentages across breeds within a locus;

10 Figures 2A-2D are photographs of gels showing marker locus D02011 in various breeds; and

 Figure 3 is a photograph of a gel showing segregation of alleles at the C04107 locus in a Bedlington terrier pedigree.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Five hundred and nineteen microsatellite markers from specific gene loci are provided which are highly variable within and across many breeds of dogs. The microsatellite markers of the present invention comprise a repeat motif e.g., (CA)_n, found in the canine genomic DNA, flanked by unique sequences. The unique sequences (also referred to herein as primer pairs) may be used as PCR primers, allowing the rapid amplification and thus detection of the sequence of interest in a small DNA sample. Table 2A sets forth the microsatellite markers of the present invention. The microsatellite markers and their progeny are especially useful in detecting genetic diseases not phenotypically visible and identifying carriers of recessive diseases.

In a preferred embodiment, microsatellite markers are provided which may be used to detect a carrier of the canine copper toxicosis gene. As further set forth in Specific Example II below, marker locus C04107 may be used to predict the inheritance of alleles at the copper toxicosis locus. C04107 has also been used to locate two other marker loci C04107B and C04107C, which either singly, or as a group, may also be used to detect the copper toxicosis gene.

30 The method of the present invention is useful for identifying disease free individuals (homozygous normal), carriers (heterozygous) and affected individuals (homozygous affected) at any stage of development. While a single marker may fail to provide the required information in any particular pedigree, a series of progeny

- 6 -

markers will, and thus such a family of progeny markers derived from the linked markers set forth herein, are also included in the invention.

SPECIFIC EXAMPLE I

Materials and Methods

- 5 *Isolation and Characterization of Microsatellite Loci.* Established protocols were used for the cloning and screening procedures as described (Sambrook, J. et al., *Molecular Cloning. A Laboratory Manual* (2nd ed. Cold Springs Harbor: Cold Springs Harbor Laboratory Press) (1992)). Genomic DNA was isolated from a peripheral blood sample from a Labrador retriever and partially digested with *Bam*
- 10 *H*I. Size selected fragments purified from agarose gels using QIAEX beads (Qiagen Corp., Chatsworth, CA) were cloned into the phagemid vector pBS (Stratagene, La Jolla, CA) to construct a library of average insert size of 600 bps and propagated in the host XL-1 blue. The library was plated at low density (about 500 colonies/plate) without amplification. Duplicate nitrocellulose colony lifts were prepared, denatured
- 15 and hybridized with (CA)₁₆ oligomer, labeled with ³²P dCTP using terminal transferase. Positive colonies were picked with a sterile pipette tip and lysed in 50 μ l of a solution consisting of 1% Triton X 100, 20 mM Tris and 2 mM EDTA. Using primers complementary to the T3 and T7 promoter sequences which flank the cloning site, the inserts were amplified from 1-2 μ l of the colony lysate in polymerase
- 20 chain reactions for 30 cycles of 94, 55 and 72°C at 1, 2 and 3 min., respectively after an initial denaturation at 94°C for 4 min. The standard buffer, nucleotide and primer concentrations were 50 mM Tris-HCl (pH 8.3 at 25°C), 50 mM KCl, 1.5 mM MgCl₂, 200 μ M dNTPs and 40 pmoles of each primer in 100 μ l reactions. PCR reactions were carried out on either a Perkin-Elmer Cetus (Perkin Elmer, Corp.
- 25 Norwalk, CT) or an MJR PTC-100 thermocycler (MJ Research, Watertown, MA). To carry out secondary screenings of the clones, aliquots of the amplification products were run on 1.5% agarose TBE gels (90 mM Tris, pH 8.3, 90 mM boric acid, 2 mM EDTA). Southern blot analysis was carried out on the gels after transfer to Gene-Screen Plus membranes (NEN, Boston, MA) using the alkaline transfer
- 30 protocol. The membranes were probed with (CA)₁₆ oligomers, 3' end-labeled with digoxigenin-dUTP using terminal transferase. A chemiluminescence detection system based on Lumi-Phos 530 as a substrate was used to detect positive hybridization signals following the recommendations included in a commercial kit, Genius (Boehringer Mannheim Corp., Indianapolis, IN). The membranes were
- 35 washed to a final stringency of 0.1 X SSC (1 X SSC = 15 mM sodium chloride, 1.5

- 7 -

mM sodium citrate) at 65°C. The blots were then processed for immunological detection as described by the manufacturer. Once a clone was confirmed to be positive, the corresponding amplification product was then purified using QIAEX beads (Qiagen Corp., Chatsworth, CA) after electrophoresis on TAE gels (40 mM Tris acetate, pH 8.3, 2 mM EDTA) and directly sequenced using cycle sequencing (Delta Taq 2.0 Cycle Sequencing Kit, United States Biochemical Corp., Cleveland, OH). The sequencing reactions were carried out according to the manufacturer's instructions with the slight modification that T3 and T7 primers labeled at their 5' end with ³³P ATP (NEN, Boston, MA) using T4 polynucleotide kinase were used as sequencing primers. Sequencing products were analyzed by electrophoresis on 6% polyacrylamide gels containing 8M urea. The gels were dried and exposed to X-OMAT X-ray film (Eastman Kodak, Rochester, NY) for 1-2 days and developed. Primers flanking the repeat motif in each insert were selected to minimize hetero- and homodimerization; occasionally, the computer program Oligo (National Biosciences, Plymouth, MN) was used to help in the primer selection. The primers were synthesized by the Michigan State University Macromolecular Structure Facility.

Dog DNA Panel. To check the usefulness of microsatellite markers within and across different breeds of dogs, a dog DNA panel was established. The breeds to be included in the panel were chosen with consideration given to the diversity in origin and function of breeds that exist. Table I presents various characteristics of the breeds chosen for the dog panel (Alderton, D., *The Eyewitness Handbook of Dogs* (New York: Dorling Kindersley) (1993); American Kennel Club, *The Complete Dog Book* (17th ed. New York: Howell Book House) (1985); Clark, R.D., *Medical and Genetic Aspects of Purebred Dogs* (Forum Publications, Fairway, KS (1994), Walkowitz, et al., *Successfully Dog Breeding* (2nd ed., New York, Howel Book House) (1994); and Lee, M.P., *The Official Book of the Scottish Terrier* (Neptune City, T.F.H. Publications p. 158) (1994)). Five to ten individual dogs from each breed were selected for inclusion in the panel. Pedigrees were investigated to ensure that only dogs that had no common ancestors through four generations were included for independent representation of alleles. Ten, apparently unrelated, mixed bred dogs were also sampled. DNA was isolated from peripheral blood as previously described (Sambrook, J et al., *Molecular Cloning. A Laboratory Manual*. (2nd ed., Cold Springs Harbor, Cold Springs Harbor Laboratory Press) (1989)).

- 8 -

Table 1
Various Characteristics of Breeds in Dog DNA Panel

Breed	Country of Origin	Current Classification	Date of Origin	Height Range (cm)	Weight Range (kg)	Litter size
Cocker Spaniel	Great Britain	Sporting Dog	1800s	36-38	11-13	5
Labrador Retriever	Canada	Sporting Dog	1800s	51-57	25-34	7
Pointer	Great Britain	Sporting Dog	1600s	61-69	20-30	6-16
German Shepherd Dog	Germany	Herdin Dog	1800s	57-62	34-43	8-10
Shetland Sheepdog	Great Britain	Herdin Dog	1700s	35-37	6-7	4-6
Beagle	Great Britain	Hound Dog	1300s	33-41	8-14	5-6
Greyhound	Great Britain	Hound Dog	3000 BC	69-76	27-32	10-15
Scottish Terrier	Great Britain	Terrier	1800s	25-28	8.5-10.5	3-6
Doberman Pinscher	Germany	Working Dog	1800s	65-69	30-40	8
Siberian Husky	Siberia	Working Dog	1800s	59	16-27	3-7

- 9 -

Analysis of Microsatellite Variability. Amplification of the correct target was verified by comparing the product obtained from genomic DNA to that obtained from the reference clone. The variability at each locus was tested by amplification of DNA from the dog panel. PCR conditions were 35 cycles of 94°C, optimal annealing 5 temperature (50-60°C) and 72°C at 1, 1, and 2 min., respectively after an initial denaturation at 94°C for 4 min. in the standard PCR buffer conditions described above. 100 ng of genomic DNA was used as template in each reaction. 10 µl of the PCR products were analyzed by vertical electrophoresis using a modification of a SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) protocol 10 (Laemmli, U.K., *Nature* 227:680-685 (1970)) as described previously (Tas, S., *Anal. Biochem.* 188:33-37 (1992)). An HSI SE600 vertical slab gel electrophoresis system (Hoeffer Scientific Instruments, San Francisco, CA) connected to a cooling unit was used. The gels were poured between 16 x 16 cm. plates using 1 mm spacers. 1.5% acrylamide stacking gels of 2-3 cm were used on top of 12.5% acrylamide 15 separating gels with 30:0.8 acrylamide to bis-acrylamide ratio. The gels were run at 40 mA through the stacking gel and than at 70 mA thorough the separating gel until the bromophenol blue dye reached the end of the plates, for approximately 4 hours. The amplification products were visualized after silver staining with the Silver Staining Kit (Bio-Rad Laboratories, Richmond, CA). This procedure resolved 20 differences greater than or equal to 4 bps in the size of amplification products in the 75-250 bp range.

Results

Screening 110 plates resulted in the isolation of 1064 independent clones that were confirmed to be positive on secondary screening. Using 600 bps as the 25 average insert size and 500 as the average colony number per plate, it was calculated that 1064 positives reflected an estimated incidence of one CA repeat clone every 31 kilobases in the dog genome.

The first 14 CA repeat loci for which primers were designed are presented in Table 2 together with the optimal annealing temperatures.

Table 2

	Marker Locus	Primer Pair	Repeat Motif In Reference Clone	Product Size (bp)	Annealing Temperature °C
1	D00101	ACTCTCTCCATCTCCCTCTGC	(CA) 9	150	65
2	D00401	TGCCCCTCACCGGGTGTATAAGA	(CA) 22	90	58
3	D01205	GTTGTGAATATGATGTGTGAAAAA	(GT) 16	201	58
4	D01902	AGCATGATGCCCTCAAGGTC	(CA) 18	129	55
		GGATCTTTACCCGCCATGTTC			
5	D02001	CCTACTAAATACAGAAACG	(CA) 20	270	67
		AACTGTTAGAACCTTAGACATGC			
6	D02005	TCTAAATATGATTATGTTATGGGT	(TA) 7 (CA) 13	119	55
		CACTTTATAACACATATTCAAAT			
7	D02011	ATATTCTCTTAGTTAGACAGCAGG	(CA) 15	171	60
		GGTCACCAAGCTAAGAATGTTGC			
8	D02012	GATCTCTCTGTCTATTGCTC	(CA) 12	91	60
		CTGAGATGTGTCAAAGTCCTTTGC			
9	D02202	TTGCCTACAAGATCCCTACATGCC	(CA) 13	94	58
		TTAAGCCAGAACGCTCGCTGC			
10	D03709	AATTTGGTCCCCACTATGGAAGCC	(CA) 9	86	58
		ACATTCTGAGTGGCATGGCT			
11	D03805	ACTCCCCAAATCTTCACAAGGAA	(CA) 12	90	58
		GTCAACAGCTTAGAAGTCACCA			
12	D03908	ACTATTATGCTGTAGGGGGTGC	(CA) 13	94	58
		AA			
13	D04403	TACACCTGACACTTGTATCC	(CA) 15	130	50
		GTGCTTGTAGTCCATGACC			
14	D04702	CTATTGATTTTCCAAAAGC	(CA) 12	112	60
		GTCTTTCATGTTTCATATACTC			
		ATCCTCTCTACCCCTCAGGCC			

- 11 -

The complete set of microsatellite markers is set forth in Table 2A below.
These markers were identified and the primers designed as described above.

- 12 -

Table 2A

Marker Locus	Sns Sequence	Asn sequence	PCR Product (bps)	Motif
C00103	CTACTCTTGTATTCCATCAAT	ATTTTCCCCATTCTCACTGGT	242	(GT)21
C00104	TGACATAAGCTGTGAGAAAGAC	ATTGAAACTGATAGAGAAAGAG	140	(GT)9
C00111	TACGGAACCCCACACTACTGA	TCCAAAGGGAAATCATAGAAC	226	(GT)11
C00111	AGCTTCCAGGTCTGTTTCCAAG	TATCCCAGAGCTTAGAGCCCTGGCA	174	(GT)11
C00113	TTTTTGATGGCTGAATAATA	GAATGGATAAAAAGAGATGTG	82	(GT)14
C00114	CTGCCCTCTCCCTCGCCCTATGT	CTACCAACACCAATGTTGATTGA	140	(GT)12
C00203	AGGGTGCCCTAAGTGACTGAGCC	TTTCAAAATGGGCTTTCCTTT	162	(AC)17
C00203	AGGGTGCCCTAAGTGACTGAGCC	TTTCAAAATGGGCTTTCCTTT	162	(AC)17
C00215	TGCCCCCTAAAGATTTTATT	CCTGCATCGAACCTGCTTCT	127	(CA)10(AC)12 (AG)4
C00217	TCCCTGCATGGAGCCTGCTTCT	TGTGTATTCAAGATGTGCTACTTGGT	181	T11A2G(AT4)(AT3)(AT2)...(AC)10 ...(GA)16
C00304	GCACCACTTGTAAACCCCTGAAC	TCGCATAGGATGATGAATAATA	181	(CA)4TA(CA)12
C00403	ATGGAGCCTACTTCTCCCTC	GACTTCTGTATTGGTTACACT	123	(TG)11
C00412	ATCAGTCCATTCTGATTGGCTATC	AAAAATGGCAGTTGTACCTGAATCT	209	(TG)13(TA)4
C00501	ATCACATCCAATCAAGACTAT	TGTCTATGCCGTGCTCTATTAT	172	(AC)15
C00502	TGACTTTACCTTACTTACCTT	AGGGCAACTTGGTTACAGATTA	109	(CA)3T(AC)2C2(CA)6
C00505	CAGAGCCTTCAGATAACAGTA	ATTATTCTTCCCTTCTAC	230	(GT)9T(TG)4(TA)4 (TG)7
C00506	CATATCCATCCCTCTAAACTTTC	AGTGCCCTAAACAAACAGAACTG	173	(GT)2A(GT)9
C00602	CCAGGAAGTTATGATTCAAATGT	GACCTTCTTCTCCCTCTGCC	214	(AC)7(AG)8
C00603	CTTTTCTTATGTCAACAAAT	ACAGATGAATGAATACAGTTG	107	(TG)12
C00607	AGTCCCACATCGGGCTCTCT	TGCTGGTTCTCTTCTGTGTCTTAT	169	(CA)9TA(CA)4
C00613	GTGGAGCCTGCTTCCCTCTG	CTTCCAAGTGCACACATAGC	191	(GT)7(A3T)n
C00802	TACCTGAGTCAGTTACCTAGCA	GTTTCTACAGTCACCCAGATG	185	(GT)19
C00803	TAAGAGTTATGCCACTTGACC	CCAGGGAAAGAGACCAGTATATGA	100	(GT)12
C00901	TAAGAGTCATGATAGAGGA	TGATCCCAAGGAGTTTCTTCTT	105	(AC)12
C00902	GAGCCTGCTTCTCCCTCTG	TGTTTCTTCAATGACCTTCTCAG	175	(CA)14
C01001	ATGGGCTCCAAGAACATCA	ACCGAAACATTCATTGCTCC	219	(GA)12
C01003	GAAGTAAATCAACAAACATCA	GAACCAAAAGTATAAGAGCTGTG	87	(AC)11
C01201	ATTCTTCTATGGCTAGGAGT	TGAGTTTCTCCCTTCTCT	150	(GT)6A(TG)5A(TG)3
C01207	AGACCACTCTGCTCCCTCTT	TGCCCTTGAATGAACAATGA	84	(GT)15
C01212	AGGTGTTCTCACTCTCATA	CTCCCTCTGCCGTGTCCTCT	115	(CA)10
C01304	CTGAGCAAGACCCATACCACTT	CCTCCCCAGAACATCTATTTC	180	(TG)7TA(TG)4
C01305	GCATGAGATAAGACACCCACCTGTT	TTCATTTCTGCCCTCTGTG	136	(GT)9
C01403	GAGGCTGACAACACTGTTGCTA	GGAGATAAAATGATGAGAACTCA	284	(AT)2T(AT)7CA(GA)4...-(CA)7(GA)2(CA)2
C01406	GATTTTATTCTATTATCCATGAC	CTCCCTCTGCCCTATGTCCTG	107	(CA)16(GA)16
C01406	TGGTGAAGTAACATAGAACAA	TCCCTCTGCCCTATGTCCTG	150	(CA)16(GA)17
C01409	GTTCCTCCCCAATGGTATTAA	TTGCATAAGAGCCACCAAAC	246	(CA)6A2(CA)3
C01503	TCTGCCATTGTCCTGCCGT	ATAAGATACACGAAACATTAGCC	109	(GT)13
C01601	CTTGCATGGAGCCTGTTCTC	CATTCTGGAAAGACATACTGGTA	143	(GT)7
C01606	ATGCTTGTATTACACAGACC	ATCACTTCTGGTATTACAC	109	(GT)19
C01801	TCTGATTTTACCCCTTAAAGAC	GCAGTTTCTCTGCTCTCTT	144	(TG)10(GT)9
C01802	ATGCAAGTTCTAAAACCATCTG	TAGTGAAGACAGGATTTGTTG	137	(TG)19
C01908	ATCAAGTCCCACATCACCAACCT	AGTGGTATGAGGGCATAAGGAA	189	(GT)10
C02005	GAGTAAAGAAGAGTTGAACAT	AGTTGGAGAAATGAGCACTTA	146	(GT)10
C02122	ATGTCAGGCTCCCTGCATGG	GTTAAATGTAAGATGTC	149	(CT)4GT(CT)6(GT)6(CT)3
C02401	CCAGACCCAAATGACATCTCC	ACCCAGGTGCCCTTATAC	236	(GT)18
C02509	TGGCTAACACACCTCTGACAT	TGGGATACAAAATGAAAC	189	(CA)18
C02511	GACATGATTACACACATTCTAC	GTACAACGAAAGAGACTGACC	97	(GT)16
C02601	CTCCCTCTGCCCTGTCT	TGTTAGTCTAGCCATTCTGA	144	(GT)8(CT)3...(CA)12
C02604	CTCACCCAGAGGATCTTGAA	TTAACCTGAGAACATGCCACAA	190	(CA)17
C02608	AGGGAGCAGGTTGTGGTTG	TACTTCTGGTCCAACATTCTC	110	(GT)19
C02705	GAATGATTCATCAAAAGGGA	TCAAGGGCACTTCTACTGTGTA	116	(GT)10
C02709	CTCTGCCCTACGCTCTGCC	CACCAAGTATGATATAATTCT	142	(CA)18
C02711	TCTCATTCAAAAGGGAGATGC	TTTCAAGGGCACTTCTACTG	109	(GT)10

- 13 -

Table 2A (cont)

C02712	GCTTGGATGCTATTGGCTCAA	CAATGACTTGGAAACTACATTC	156	(GT)22
C02802	CCCTGCATAGAGCTGCTTCT	ACCTTTCTTATTATGCTTG	186	(GT)6(CT)2CA(TG) 6(TC)2(Ant)
C02805	GACAAGAACAGGTATGAGACC	TGTTGAGTGTAAAGATTCAAACC	118	(CA)12
C02806	TCCCCCTCTCTGTGCTCT	CTACACCTGTAAACTACCA	159	(GT)1GAG(AT3T4) (CT3)6(TA2)(T A3)
C02903	CCTACATGGAACTGCTCTTC	TGTCCTTCCCCTCAACAAAGATG	167	(TC)TG(TC)6
C02911	ATCATGGAGAGGGGTGGTAT	GGGTAGATAAAAGACCTGTAAG	122	(CA)16
C03001	TTCAAGAGTTATGATGCTTCTT	GAGATTCTCTCCCTGACCCAC	153	(GT)7(GA)17
C03102	ACTTGTGTTACCCCTTTTAC	CCTGCCCTTATGGAGTTACA	108	(CA)5TA(CA)13
C03104	TCCCTCTCCCTGCTCTCTAC	ATCAATGAAACAAAAGGAACAGTA	147	(GT)19
C03109	CCTGCATGGAGGCTGCTTCTC	CACACCAATTAAACAAATAGACATT	183	(GT)16
C03301	CCATTCCCATAGAGGAGAA	ACCTAGCCAGGACTGAAAG	118	(CA)7A (CA)11
C03302	TGAGTATTATGACCTGGAGGGT	TCAGTAGTTGTGCTAGCCT	97	(GT)11C(TG)3
C03302	TCTCAATGATACAAGAACTTCAC	TCCAGTCACCCCTCCAAGATGT	183	(AT)11(TA)8(CA)1 6
C03304	ATTGGCCATCATTCCACTGGTCA	TGGAGGCAGCTTAAATCTCAACA	95	(AC)16
C03308	TGATAAGAGTGTGAAAGAGAAGA	CTAGGAGATTGTAACAGGTGCT	275	(GA)-20
C03401	GGTCATCTTATACCATCAATTAG	CTTAAATGCTGGCAGATCTAT	104	(CA)10
C03404	CAATTCTCTATGCCCTCTTGT	TCTTCTGATTACAGCCAACTCT	171	(CT)4T(CT)2GT(C T)10(CA)18
C03501	TCGGAGATGGAAACTTTGTAAGAG	TCTACTGGACTGTTCTGAATTG	106	(GT)21
C03507	ATCTCGTAAATTCCCATATACTTA	ATCAAGTCCCACATCAGACTCC	161	(GA)2(CA)5TA(CA 6(GA)6
C03508	TACTCCAATGGAACAGTTA	CCTTAGACCATCTACCTCTTTTC	110	(CA)5G(CA)17
C03509	CATTCTGCTCATCTCCATAAAG	GGCACAACTAACTCATTTCTAT	188	(CA)15
C03510	CTCTGCATGGAGCCTGCTTCTC	TGGTATTATGGAGCATCTCTT	156	(GT)19
C03512	GAGCCTGCTTCTCCCTCTG	GAGACCATATACTCAATTCTTC	113	(TC)12ATGA2T(A 3)T3...An
C03601	AGCCTGCTTCTCCCTCTGTC	TGTTGCTTACCCCTCTGTTAGA	151	(CT)3(GT)10(CT)2
C03607	AGTTCATCCACATCGTTGCA	AGAAAAGAGCCTAGATCCCCAT	141	(GT)18
C03810	TGCTTCTCCCTGCTCT	GGCTGTAAGACGCCAGATTCT	134	(AC)17
C03814	ACATTGGGTTCTGCATGGAG	GGCAAGTTGGTGTATGCTATCAA	237	(TG)19
C03815	GTGCATGGAGCCTGCTTCT	AGCTTAGCACCCCTGCATGGA	161	(CT)6...-(TA3)2(T A5)T2A4)(TA3)4
C03907	TAGTGCTCATGGAGCCTTCA	TATGCTGATTCCACCTACCTC	83	(GT)13
C03909	TCAAATCAACTCGTGTCTCTGT	GGATCTGATAATCCACTTCTAGA	71	(TG)8
C03913	GAAGGGACAGAGAAAAGAAATGAC	TGTAAGGGCTGTTACCTCTAAATC	333	(TC)13(AC)12
C04003	GGGTCTCTTATCACACTG	ACCAACACTTGACATTATTT	135	(CA)12
C04007	ACCAAATGAGCCACTTAGGT	CCTCTGCCCTTCTCTATG	109	(CA)11
C04103	AATGCTGTGAAAGGTGAATGATA	ATGGAGCCTGCTCTCCCTCTG	224	(CA)8(GA)4
C04107	TCAGCAACTATACATTTAAGAGCA	CTGTCCTCATCTAAAGGATAGG	160	((GT)6GA/GT)11
C04107B	ATCGAGTCCCCACATCTTG	CATTACTGGTTGTCACTT	120	(AG)11
C04107C	TGCGAGAGTAAAAGTATCCCT	CCTGTGCCCTCAAGATAGATO	250	(CA)18
C04201	GAGTTCTCTTCCGCATCTAG	ACTATTCAAGAAAGCAGTACAACT	120	(GT)6A2(GT)14
C04208	ATCCCTAGTTAGGCATGTGCTT	GCTAAATTCAAGCAGGAGTGT	205	(GA)2(AC)11
C04302	TGGTTATTACTGAGCAGACATC	GCTTTCTCTCTAAATAC	168	(GT)21
C04601A	AGAACCTATCCAGCTATTAGTG	CTCTCAGATATGACCAACCTA	214	(TG)18
C04601B	ATATACTTTCACTCTCATGCAA	AGAAGAGGAGCTTGGATG	139	(TG)18
C04704	CAGTTGCTAAGAGGTAGGTC	GTAATGATTACCATATAAAGCT	114	(CA)13
C04716	TTCTCCCTCTGCCTATGTCT	AGCACCCCTGTTACTGTTCT	133	(CT)3(GT)9(ATX ATC)(TA3)2(TA8 XTA12)
C04802	TTACCAAGCTAACGCTGCCA	TGGAACCATCACTGAAGGGA	150	(C6A)(C6T)(AC)20
C04802	AGACCAACCGAATGGATGGAGT	TGGAGTAAGTAGCAATCTCT	144	(AC)17
C04805	CTTTGGTCTCTGGTGGCAATAG	TGGACTTTGTGATACACCCGACT	207	(CA)17
C04806	GCCTCACITCATCATCTTTC	GAACAAAGGATTCTATGGCTATCA	180	(TG)18
C04903	ACTGCAAATAACCTGTAGAGTGT	ACCAATCACCATCTCTTCTTC	157	(AC)16
C04904	AAGACTTCACCACTCACAGTC	CTGGCTCAGTGTGTATGAATG	143	((CA)6T(CA)11)
C05101	CTCTTAACCGACCTTGACACC	AGAACTTGCTTATGAACTCATGT	208	(AC)13
C05102	AAAGCTGTGATGTGGCTCTCAC	CAATGGGAGAAACATGAGGA	171	(AC)20
C05103	ATTGGCAATTATCTCATGT	AAGAGGAAAGAATCTGTGAAC	196	(GT)16T(GT)2A(T G)5
C05110	TGGAGCCTGCTTCCCTCT	ACCCCTGAGACCATGAGCTAAG	185	(CT)5(GT)8

- 14 -

Table 2A (cont.)

C05112	GTA CTA ACT CCT TG CATT C ATC	GGC ACC AAG TGT TTT CAT GT AA T	138	(CA)2CG(CA)9
C05201	CTG CTT GA AC ACT G CCAT C	GCC AT GG AG C CT G CT T CTC	167	(CA)18
C05204	GAG C CT G CT T C T C C C T C T	TAC CT GT C ACC AT A CA TAG T	164	(CT)2(GT)14
C05205	A T C A C G A C C C T G A A C C T A A G	CCT G CT T C T C C C T G C C T	224	(AT)3..(AT)3..(AC)10
C05206	T G A C C T T G G G A A G C T G G A G	CCAT CAG TGG TTT AT C T O T A	151	(GA)2G(GT)14
C05302	GAG G C T G C T T C T C C C T C G	CCAG G AT T T G G A A G G T T C T	178	(GT)15
C05303	A T C A A A G T G A C A C A T C A T A T T	T G A A A G G A C C G T G A A T T G G	132	(AC)18
C05305	T A T T G C A T C C T G C T T C C A G A	CAG C A C C T T G G G C C T C T	103	(GT)14
C05306	A C A A T A G C C T A G A T A T G G A A G C A	GCT G C A A A T A G C A A G A A T C A T	148	(TA)3(CA)13
C05307	T G A A G T A G A C C C T A A C T G A C A	TA A T C C T A A T C C A C T C T A A T G T	300	(AC)15
C05401	C G G T G C A T G G A C C C T G C T T C	CT G A A C C A T C C A G A T G T C C A G A	152	(GT)13
C05403	G G T G C A T G G A C C C T G C T T C T	CAC C T A C C T C C C C T T C T G C A A	141	(CT)3(TG)10
C05404	C T G T A T G G A G C C T O C T T C T C	C C T T G A A G G A T A T T G T G T C C	138	(CT)3(GT)13(CT)2
C05405	C T T A A C C A C T G A G C C A C C T G	A T G T G T A A C A G A A G C C A C T A A	263	(GA)2(CA)6TG(CA)7
C05406	C A G G G A T C T T G C T T T A G C A T	A T T G A T G T T T T G T C A G A T T C	280	(TG)3TA(TG)7
C05407	A T T A T T A C T G G T G G C T T A T T T A G A	T C A T G G G T C T A A G T G T T T O G A	101	(CA)8
C05409	C G G T G C A T G G A G C C T G C T T C T	G G G A G A T A G C A A T C C A C C A A A T	231	(CT)5(GT)7(CT)2
C05410	T T T C A G T C C A G C C A A T G A A C	C C T G G G A T G G A G G C C T G C T T C T	183	(CA)8
C05414	G A G T C C C A C A T C A G G C T C C	G C T G T T A C A C A A A A C A T A G A A G	150	(GT)11
C05415	G C C A C C C A G G G A T C T T A A T	C C A T T A C C T C A C A T G G T T A C T T	73	(AC)7
C05503	T A C C A C T C O C T T G G A C A T	A C T A A T C C A A T G T A C T G T T A C	163	(AC)9
C05504	G T C C A C T T C C A A T T G C C G T T	A A G T A C A G G A T T C T G T T A T G A G	234	(CA)2G(AC)8
C05505	A A T C T C T C A A A T C T C C T C C A T	C T C T G A T T C C T C A G T T T C T T C C T	243	(TG)11T3(GT)4
C05506	C A C A T O G G C C A A T T C C T A T A A	G T A T T G G T C A G G A T T C T C C A G	136	(CT)17(AC)7C(CA)10
C05509	T G T C G G T A G C A T A C C A T A G A A	C C T C A G T T T T A C A T G A A C T C A	78	(CA)14
C05601	C T G C T T A G A G T G C T G T A C C A C	C T C A G C T C C T G G A C A C T T C C T	168	(AC)19T(CA)4
C05602	T C T A G A G G A T C A C A T G C A A	C T T C T G G A C T C C T G C C T T C C	105	(TG)13
C05604	C A G A T G T C A G A A T G A T T T A A T G	A C C T G A T A T G T G C C A T G T T G T	227	(AT)4(GT)7
C05606	T A T A G T A G G A T T C T T G G G T T G	A T C G A G T C T C A C A T C G G O C T C	194	(AC)23
C06105	A A T A T G A A A A C A G C C A A C T T	A T C A T A A T G A T T G A A T G A O A T	98	(GT)12
C06106	A A T A T G A A A A C A G C C A A C T T	T T A T T T A A C C C A C T G G A G G T A C C	151	(GT)12
C06114	C T C C C T C T G C C T G T G T C T G	G G O C T T C T C C T T G T A T C T T T	140	(GT)14
C06201	T C T C C T T C T G C T A C T T C T C C	T A G T G G G T G G G G T G A A A G A G	138	(A3T)11
C06204	G G C T G C C C C T C A C A C A T A T T	A T A A C A T T G G A T T G G G T C T A	105	(CA)10TA(CA)8
C06213	C T G A T A T A G G T A A G T G C A T T T G	C T G G A G C C T T T A A G G T C A T T	177	(GT)14
C06216	A C T C T C T C C T G G C T T G A G A T G	T A G C A C T C C C C C T T C C C C T T A	167	(GT)15
C06404	A T C A A C C A C A C G C T C C T C T	T T G G G G G A G T A G C T C A T T T C T G	128	(TG)18
C06405	G A A T G A A G T T A T G A A G T T I T G	A G G G A T T A G T G A C T G T G T T A C C	143	(CA)11
C06406	A C C A A T G T C A A T C A A T A G A T G A A	C T A G A C C C A T C C A T G T G T G T G	131	(CA)16
C06504	C C T G A A T A G A G C C T G C T T C C	T G T T T A T T G C C C A T T T G G A A A	214	(CT)6(GT)7AT(GT)2(CT)2CATG(A&T)3
C06508	C C A T G A A T G T G A G T G T C T C A T A	G A G C A T G C T T C T C C C T C T G	186	(CA)8(GA)13
C06511	A T A G T G A A A T T G C C T A G T G G T	T A T C A T A C T G C C C A T T A T G T O	114	(CA)11
C06513	T G T T G C T C T C T G C C T A A T	C T T C A A T C T G T G G G T C T A T	161	(CT)9(CA)10
C06602	A T C C T T A G A T G T A G A C C C T A G	T G T C A T C C A G G C A A T A G A A C T	137	(GT)11
C06605	T C C T C C T T A G G G A C T G T A C C C	G C A T C A C A G A C G T G T C A G G A A C	131	(GT)19
C06610	C T C A G A A T C A G C A C C A G G T G C C	G T G C T A A G T T A C A G A C A T C A C C A	206	(CA)10
C06905	C A G A A A C T G A G A T G T G C A A A G T C C	A T G C C A T G T T C T G A T G C T C T T G	166	(GT)14
C07002	T T C T G G A T A C A C A T C C C T T G	T G G T C A G G G G T A G A A G A G T G	81	(GT)12
C07003	G A G C C T G C T T C T G C C T C T C C	G T T A T T A G G A T G G A T T G C A	156	(GT)25
C07004	A G T T G A A C A T C C T T A A T T G A T	A A T G C A G A A T C C A A G A A A T A G A G	118	(GT)12
C07010	C T A G T T C C A T C C A C A T C A T T G	A C A G T C C A A G T G T C C A T C A A C	138	(CA)15
C07011	T T C T C C C T C T G C C T G T G T C T	G T A T C T T T A T A C C T T G G A C C T A T	215	(CT)6(GT)15(A&T)8
C07013	G A A G G A A G C C A C C A G T A A A G T	T T C T T A G A A A G A C C C G A G T A	138	(GT)11
C07102	A G T C A C A G A G G G C A G T G T G G	A C A T C C G C T T T A A T T T G T T C	118	(GT)17
C07104	G T A A T C T C C A T T C A A C A C A G T G A	C G G A T A T A A G G T G G G G T A T T	187	(CA)9
C07108	T G C A T A C A G T A T C A A T T T G T G A	G G A T A G A G T C C C A C A T C G G	168	(GT)10(GA)9
C07212	A C T A T A T T G A C A A G T A T G C A C A A G A	G A G C C T G C T T T C C C T C T G	183	(CA)20
C07301	G A T A G A T G A A T G G A T A A A G A A A A	T T A G C A T A A C A C T C T C A A G T T	135	(GT)11
C07302	A T C A C T A A A C C A C C A C C A G A G	A G G T A A A G G C G A A A G A A C T T	129	(GT)9

- 15 -

Table 2A (cont.)

C07304	CAGTTACATATAACCATTAGCCA	TGCCTCCCTTGTCTCCA	109	(CA)7TACG(CA)10
C07308	ACATTGGGCCATTAAATTAATAGAT	GTCCTGGAGAGCTTATAGTAGACA	127	(CA)11TA(CA)3
C07403	TGCCATCTCTGATGCTCTG	TCGTGGTTCTCTGGAACTCG	134	(CA)14(T3A)10
C07407	TCATTCATCAAGTCCTCAGTTAT	CTTATGGGCTGGAGGTGTGA	121	(CA)15
C07413	TTCACAGCAOGGAAAAGTGTATG	ACCCCATCAATCAAGAGAAGTTA	120	(GT)18
C07415	AACTGTGACTTCTCTGTCAT	ATTTAACATGACTGAATGTTCTC	101	(GT)8
C07502	CATACCCTCAGACTGTAGTGTT	GCATTCTTCTGGGGGAOGA	180	(GT)11
C07902	GACTGTGATGGTGAAGGTGAG	TGTGACCGAGTCTGTAAACTAC	91	(GT)14
C08103	CTTGGAAATGTAATGTGTGTA	CAGTTGTATATTGTTTCAG	91	(CA)12
C08202	ATGTTCTAGGCCAGTCATAAAATC	TTTGAAGTTGGGATGTTCTCTA	203	(GT)13
C08204	TCATCTACTTCTCTGTTAGCC	GGACATAAGAGGATGTGAGAA	113	(CA)21
C08411	AAGCAGATGCTCAACCACTGT	GAGGATCGAGTCCCAGGTCAG	174	(CA)13
C08413	ACTTAACTAGAGAGCGTGTGACT	ACCTACTTGGCTGTTAAAGG	135	(GT)13
C08601	ATATACCTTCACTTCATGCCAA	AGAACAGGAGGTCTTGGATG	139	(GT)18
C08608	CACAGAATACTGGAACCTATTAG	AGAACTTATTGGTTGGCTTGG	155	(GT)18
C08903	AACTGACATCAACAGTCTGATAC	CGACTCTAACATCGAGACCTC	186	(CA)16
C09004	CTACATGGAGGCTGCTTC	TGAAGAGGAATGGAATGACTC	138	(GT)11
C09107	CCTGCATGGAGGCTGCTTC	ACAAATAGGTGGTCACTTACTGAA	150	(CT)14(GT)7
C09109	TGGAGCAAGCCTTCTATAAAC	GAGCCTGCTTCTCCCTCTG	148	(GT)16....(GA)8
C09205	CCTCAAAATAATGGAAGTGGCT	CAATCCAGTTATGAAATGTTAC	123	(GT)14
C09210	GGTGGCTCAGTGTTAGCA	GGTGGTTATGATTGACTTCTG	149	(CA)18
C09211	TCACCTACTGAGATACTTCCAT	CTGCTTATGTCCTGCTTC	204	(CA)7
C09213	TTTACCTCTGATTATATCTAGG	TGCATGGAAGGCTGCTTC	140	(AC)18
C09215	CCAGGAATAGACAATGCCA	AAACCTAACGACCTTGTAAATC	255	(CA)12
C09217	CTCTGCATAATGCCCTCT	AAGACTATTATTTATTCATAGAC	80	(TG)11
C09220	CCTACTGTTTCTGTATTGGCA	CTGCATATAAGGCTGCTTC	163	(CA)4TA(CA)8
C09303	TCTGTCAATGGATAAGTGGAT	TCCAGGTTTATCAAGTAGTTAC	129	(CA)13
C09304	CTAGATTATCCACGTCACTG	CCATCAACTGATAGGGAAAGAT	129	(GT)12
C09305	TTGCCATCACTGATACAAGT	TTTTTCTCTGCATAAAATAGCT	181	(CA)9
C09307	TTACCCCTGGCTATCTATCTAT	CTGTTCCATCTTCTCACCCTA	164	(GT)3G(GT)12
C09309	TGGAGCCAGTTCTCCCTCTG	TGTTCTTGATTTGGGTGGTA	141	(GT)13
C09310	TAGAGGATCAGGCCAACGTC	GCAGTGGCAGGAATGAGTC	264	(CT)11....(GT)17
C09312	AACTGGAAAAATGGATAATCA	TTGGAAGATATTACATTAT	144	(CA)9
C09314	GTCACTAAATTACAGTTATGA	CTTTCTCAGTGTCTCAGAA	228	(CA)18G(CA)6
C09403	AGATTGAACCAGGAAATTAGGA	CTTGAGACTCTCTCTCTGTCC	182	(CA)9
C09407	TGTTAACCTCTCTAACCTCTCAG	TCCACTGTTATTGGCATCACAT	104	(CA)16
C09413	TGGAGCCTGCTTCTCCCTCTG	GATCCACATCCCTGAGCTGA	202	(GT)9
C09501	TGGAGCCTGCTTCTCCCTCT	TGCTTCAAAGGACACATCAAGT	138	(GT)17
C09607	GCTGGTTCTTCTCTATTATAC	TTCAAGCTAGTCACTATTAGCA	131	(CA)13
C09609	ACTGCTGGTTCTTCTCTATT	GGTAAATACTTGAGGAATTACATT	102	(CA)12
C09610	CTAGCTTGTCCACTGAGTTCC	CAGATGCCCTCTAAAGATGTG	163	(GT)9
C09703	GCTTCAGGAATCTAGGGACAA	TGTATTCCTATGCAATATAACC	152	(CA)16
C09805	GTGCGCTGCTTCTCCCTCTC	CACAGCAACTGAGAGTGGCA	156	(GT)10
C09806	GTAGTCGCTTCTCCCTCTCC	TTCTCATATGTGTAACTGAGTA	208	(CA)16
C09807	GCCAAATTAAACCTATATTAGAAC	AAGGCCCTCAGACATGAACTATAAT	176	(GT)6AT(GT)3
C09903	TCCACATCTCTTATCTGTTG	AACTCAGTGGGACCTCAATA	148	(GT)5AT(GT)11
C09912	AAGATGATAGCTGGTCAAGAG	GAACCAAGTAATTCTCTATTGAA	135	(CA)8AA(CA)10
C10103	GTTGGGCTCCTACTCAGTG	GAAGTGGAGACTGCTTAATA	289	(CA)11
C10104	GGCAGATTCTCAATACAGATT	TGCTCTCATAATAGACGAATCACC	119	(CA)12
D00101	ACTCTCTCCATCTCCCTCTGC	TCCTGGGGTTAAAGCTCTGACC	150	(CA)9
D00103	GTACTCTCAGCTTCCAATG	CTCCCTCTGCTTCTCTG	177	(AT)4....(GA)4(CA)12
D00109	TGTATGCTCAAGGATTATCTGG	TCTCTGTGCTGCTCTGTC	127	(CA)17
D00401	TGCCCTCACCAAGGTGTATAGA	GTGTGAATATGATGTTCTAGAAA	90	(CA)22
D00701	CCTGCATGGAGCTTCTCTC	TGTATGCTCATTAACCCATAGTCTT	150	(GT)17
D00704	ATGGGGAAAAGCTGAAGGAGATCC	TGTCAAGCTGATAATAATGTC	459	(CA)25
D01004	TCCCTGCATGGAGCTGCTT	GAACCCAGATTTCACTGCTA	246	(TC)12....(GT)12
D01204	TATCCTACCTCTACACTCCCTG	TGAGAGTTAAGGGGGTAAATGG	589	(GT)20
D01205	AGCATGATGCCCTCAAGGTC	GGATCTTACCCGATGTTGC	201	(GT)2A2(GT)16
D01208	ACTCTGACAAGGTTCTGGCG	GAGTTTATTTGGTGGTGT	130	(CA)12
D01210	GCCACAACTCACAAATAACTAA	TTCTACAGTGATGAATGCGAGT	213	(CA)>10
D01211	GCTTTTGTCTCCCTTGTGTA	GTTCATGCCAGGAATGTCCAC	127	(CA)23
D01212	CATAATAATTCCCAACCAACT	GGAGCCCTGCTTCTCTCTG	133	(CA)17
D01214	ATCATTGAAAGCAACCTCTC	TTCTCCCTCTCCCTCTGCT	234	(CA)15(GA)6

-16-

Table 2A (cont.)

D01215	CCTGCATGGAGCCTGCTTC	AACAGAGACTCTAACTCTGAA	260	(TG)17
D01504	CTGCTTGTAGTCTAAGTAGGTC	CTAACCTGGCACAGTGATCTA	237	(TG)5(CA)(TG)7 AX(T)9
D01505	CCAAGGGATATTTGCTATTACT	CAACATGAAGGATCTCTGACTA	137	(GC)9(AC)13
D01702	CTGCCCTGCGCTATGTCCTGTC	TCCAAACCAAAATATCAGTTGCC	450	(CT)16(GT)19
D01707	CTGATACTCAAGTCCACTGCCC	CTGTTGACAGAAGCTCAGATCC	396	(AC)10AC(AC)5
D01708	GTAGAAAGCACTGAAAGACATG	ATTTGGTACAAAGATAGAGGC	279	(GT)12
D01715	TTACTGAAACTGATACTGTTACCCGTC	TAACCTTCTCTTGGATGTGAAGG	192	(GC)9(AC)5AT(AC) 7
D01901	TTGGGTGATAATAATCTATTGCT	CCTGCTTCTCCTCTGCTG	190	(CA)13
D01902	CTCTACTAAAATACAGAAACG	AACTGTTAGAACCTTAGACATGC	129	(GT)18
D02001	GTTCTCATAGAAGGAAATAGGAGC	ATATCTCTTAGGTTAGACAGCG	271	(AC)20
D02004	CTTCTCATCATCATTTTAC	GTAGATATGAAAGAATGAAACA	184	(CA)17
D02005	TCTAAATATGTTATATGATGCT	CACTTATAACAAACATATCAAAT	119	(CA)13
D02009	AAAAGTTCTCATTTTCACT	ATGCTTCTCTTTCCTAAATA	143	(GT)15(GA)15
D02012	CTGAGATGTTGCAAAAGTCTTTCG	TTCCTACAAAGATGCGTACATCC	171	(GT)15
D02202	TTAAGCAGAAGCTCCCTGTC	AAATTGTTGCCCCACTATGGAAAC	91	(CA)12
D02209	GCTCACACATGATCTTGTATTCC	TTCCTCTCTGCGCTGTATCTGCC	180	(AC)10
D02210	GGGTCGAAATTGTTTCAC	ACATCAGGCTCCCTCATGG	160	(AC)11(AT)2(AC)5 (AG)3
D02211	CCACCATTAACCTGATACCA	GAATAAACTCTCTGATTGTG	201	(CA)18
D02212	AGCCTGCTTCTCCCTCTG	CCTTAGTATCCAGTATCAC	213	(GT)12
D02214	AAAGATTCTGTGAGACAGGATCAGCG	ACTGGAAGGAAAGATAGCCAAATGCC	191	(TO)16
D02919	GTTGCAGTTACTTAAAGCAG	ATGTTGGTAAACAGTAACTGAG	123	A15T2A10
D03202	CTGTCAGGTCACTGAGTTTAA	CCAGGACTTACACCTGACAT	156	(GT)15GT(GT)3
D03209	ACTGGAAGTAAAGGGTCAGGA	CTGCATGGAGGCTGCTTCT	300	(CA)3(GT)21
D03301	CCACCAACACTCCAGGTTCCA	CACTGTTAAAGTAGTTAACCTAC	231	(CA)17
D03305	GGCTCTCTTGGCAGAGA	CTGGACTTTGCTTCACTTTTCAG	133	(TC)4(AC)2(TC)3
D03601	GGAATCTGCTTCTCCCT	ACATGTTGAGATGCTCAATC	183	(GT)20A(TG)10
D03707	AGAGCCTAGATGCCCATCAA	TTCCTTAACTGCTTATATCTCT	156	(GT)19
D03708	TTGAAAAGATAAAGGAGTCTGGAG	TGCAGGCTGGACTCTAGGAAAT	82	(GT)3A(GT)5
D03709	ACATTCTGAGTGGCATGGCT	ACTCCAAAATCTTCACAAAGGAA	86	(GT)9
D03805	GTCACACGTTAGAACTCACC	ACTATTATGCTGTATGGGTGCAA	90	(AC)12AA(TC)5 A/AC)2
D03815	CTAAGATCAAATCCCACGTC	GATTGATCTGAGTTAGCAC	172	(TG)5(TG)8
D03821	CCACCCAGGCATCCCAAGA	ATCTCAGAGAGTTGGAAATCAATC	190	(AC)19
D03823	ATCTGGCTCCCTGCATGAA	ACTTGTCTTCCCTCATATCTGTT	151	(CT)10(TG)5—(T A3)(TA4)(TA3)9
D03908	TACACCTGACACTTGTATCC	GTCCTTGTAGTCATGACC	94	(AC)13
D04101	CTGCATGGAGCCTGCTTC	GAATATGATGTAACAGGTGTGG	171	(TG)16
D04402	CCAGGACCCCCCTTCTC	ATCAAGTCCCATGTCAGGCT	179	(CA)18
D04403	CTATTOATTTTCCAAAC	GTCTTCATGTTCTCATATACTC	130	((GT)15
D04501	ACTAGAAGACACAAAATGA	AGGAATCTGCTGGATCTCT	176	(AG)4—(GT)3
D04503	GAACCTGTTCTCCCTGCGCT	GTCTCTCCCTTCTGCGTAA	158	(TG)17
D04504	GCAATCTATTAGTGGGTCT	CTGACTCACAGGCTGAAATGAT	224	(TG)14(GA)3GC(G A)6
D04513	TTGTCATTGAGGAGAGTCAT	CCACTCCAGAAATGATCTAAAC	96	(CA)5A(CA)5
D04517	TTGACTAAGGACTCTCAG	TGGGTGGCTCAGGAGTTA	254	(GA)3(CA)10(GA) 14
D04606	CTGCTTCTGCTCTGCTTAAT	TCCCTCTGCTGTGTTCTG	280	(CT)10—(CA)13
D04609	AGCTATCTCTTCATTTGATCTATCC	CTAGAAGGACAAATGTTGCTACTGC	225	(TO)10AG(TO)5
D04610	ATCCAAAGACAATTCAAAGG	TTGGGTCTATTTCTGGGTCT	133	(GT)10
D04613	ATCTCACTCAAGGCGAAAGCT	CGAGGTTCCAAATCTTCAAGG	293	(GT)10(AT)7(AC)6
D04614	ATCAAGTCCCAACATGCGCT	GTGTTCTTATCTTCTCTTATC	154	(CT)12(GT)12
D04616	TCTCATTTCTGTTATGCGT	ATGCACTCCCTATGTTATGGCAO	167	(GT)17
D04617	AGGATGAGGTTAGGAGTCAGAA	GCTATGCTTGGGATGACGOTG	271	(GT)14
D04702	GTCTTCCAAAGTGGTAAGAGCTACC	ATOCTCTCTACCCCTGAGADCC	112	((CA)12
D04710	TOCTGOCATGOAGCTCTT	CATTICATTCTAACTTGAGTGT	526	(GT)17
D04810	CTCCCTGCGCTCTGCGCTG	ATGAACTCTGCACTTGGCGT	231	(TG)14
D04811	TCAAGTCACATCAGGCTTC	ACGTGGTGGTATCAAGTCTCT	189	(CA)19
D04812	TCCCTGCGCATGGAAACCTCTTC	ACTGGTTTAATGTTGACTCTTA	190	(TG)11—(AT)12
D04813	TGGAGTCAGTAAAGCAAGCTA	TGAGTGACTGTGTTCTATCTG	122	(TG)10TAGTC(TG) XTCTA(TG)7
D04907	TCGATTGAGCCTCCAAATAACT	CCATCACCGGGAGTCTGTAAT	216	(CA)13
D04911	TGATAGACACTTGGGTCTTCCA	ACTCTTGGCTTACTGAGGAA	164	(AT)5(GT)9(AT)5C (AT)7

- 17 -

Table 2A (cont.)

D05005	ACATCGGCGTCCCTGCAT	ACCGTGATGTCGCCACA	232	(AC)13
D05008	TCCCTATATGGAGCCTCTTCT	GAAGGCTCTATTGGCTTTCACCA	200	(CA)13
D05012	GAAACTTCATAGGGAGACAAATG	AAAGTACCTATGGTGGAGCATA	136	(CA)17
D05101	AGGCATCAAGGAAATATTGTGGGA	AGAAAAACACACCCAGAGACAGG	165	(GT)16(GA)21
D05120	ACTCTOCTGTATAGACATCTTGT	AGCAGAGGACTATGGAAATAAC	108	(TG)12
DX-4	ACATCAGGCTCCCTACATGG	CTCACTCAGGTTACTTGGCTGC	170	(CT)&(GT)?
E00402	TCACCGTTTACCCAGTATTC	TOCATTOCTGATCGAGTTCTG	212	(AT)3(AC)3(AG)11
E00409	TGCTTTGGATGGAGCTGAAG	TGAGAGGATCAGTTCTGTTG	211	(CT)8(GT)8
E03906	ACGAGTGAAGTTAACGAAATAC	GCTCAGGAATTACCAAGAGGAG	85	(CT)12
E03909	AGCACTTACAGGGTGTGGTCATA	GAATCCCAGTTGACTAAATAACCTA	214	(CT)9
E03912	TGTGGAGTCAGCTTCAGAATTTC	GCTAAACCACTGCACCCTGG	150	(TC)18
E03913	AAACAACTGGGGAGGGAGGAG	CTTGATCGAACCTCTGCAATTGG	117	(AG)4(GT)7
E03914	TCAGTCCCACATGCAGCTCTG	GTGAGACCAATTGTTATGTAA	202	(CT)16(GT)8
E03917	AGGGAGAACAGATACTGACTCAA	TAATCAGGCCCTAAAGGATTCTGG	216	(AG)14
E03920	CTGTGTGAAGCCTGCCTCTC	AGCCAGTCATGTGCCCTTA	132	(CT)9(GTC)3
E03922	CACATTTACATAAAAATAATATGCCA	CAGTCATGGAGCCTGCTTCTC	192	(AG)17
E03923	CTGCACTGGAGCCTGCTTCTC	GTTCAGCATCTGCACCAGGAT	172	(CT)14G(TC)3
E04001	TCAGCATGGAATCTACTTGAG	AAATGTAAGTACAAAGGTAGG	76	(CT)11
E04007	GCTCATGATGATTCTTAAAACAG	CTGGGCTCCGGGATGGAGT	202	(GA)5(AG)15
E04008	GGTAGCCCTGCTTCTCCTCTG	ACGAGTATCCCCCTCACCTG	143	(CT)12(GT)3
E04019	GCCCTCACTGGACATCTTATT	TGAGGCTCTGCTTCTCCCTCTG	116	(GA)13
E04021	CAGTTGGAGTCGCTTCTCCT	ATCACCTGAATTGCACTTGTCA	182	(CT)10
E04104	ACTAGGCATCTCACATACATTATT	CCTGCTTCTCCCTCTGCCAT	109	(AG)12
E04105	CTCTGGAAATGGAGCACCATOTC	ATACTTATGCTCCCTGGCTCTG	168	(CT)8C2T2(CT)6
E04107	CTCCCCTGCTGCTATGTCCTG	CCAAGCAGTTTACACCGATA	110	(CT)12
E04108	CTTCTCCTCTGCCACTTC	TTCTTATTGACAGGAAA	98	(CT)10....(CT)6
E04401	CCTGGCATGGAACCTGCTT	GTTCAGGCTACACTTCTGAGT	122	(CT)9(GT)3
E04402	TGAATCATTATGGTCTATCCTTC	TAACATCAGCTTACCAAGGAA	111	(TC)13
E04403	TGCATGGAGCCTGCTCTC	CCCTTCAATTGAATATCTGTAT	123	(CT)11
E04404	CCCACATAAACACTTGGTGT	CGGGATGGAGCCTGCTCTC	114	(GA)12
E04407	GGAGCCTGCTTCTCCCTCTG	CACTAGTACCTTAAATTGTCCT	124	(CT)14G(TC)4
E04408	TGCTCTGGAAACTGACAT	TGCATGGAGCCTGCTCTC	144	(AG)12
E04409	AGCCGCTTCTCCCTCTC	GTTCAGGCTACACTTCTGAGTAA	111	(CT)9(GT)3
E04411	GAGATCGAATCCCACATCG	CCTACTCTTCCACCATTTGCC	166	(CT)11
G00203	CTCTGCTATGTCCTCCT	TGATGTCATTTGTGCCAGTA	164	(TC)13
G00402	GTGGAACCCCTGCCATAGGTA	CGGAATCGACTCCACGTCA	175	(CA)5(GA)20
G00410	TGGAGCCTGCTTCTCCCTCTG	GCCAACTCTTACATCTGCTA	148	(CT)11
G00501	ATGCCAACGTCAAGGTTCTG	GTGTTCCAGTATTCTCATTC	171	(CT)11
G00504	CCTGCTCAGCAGAGAGTCG	GATTGGATTATTGTTCTGG	161	(CT)14
G00508	AGTGGTGGAGCCTGCTCT	GATGTAUTGGCCCATCTTCT	196	(CT)14
G00512	CAGGGCTCAATGAGTGTATGTA	TCAACTCTTGCATCGCACACC	158	(CA)15
G00602	CGAGCTCTCAACCGCTCAAC	TGAGGCTGCTTCTCCCTCTG	187	(GA)19
G00605	TTCTCCCTTGCCTGTGCT	GTCTATGAGAGCACCAAGGTCA	190	(CT)11
G00703	CTTCTCCCTCTGCCATGTCT	AAGTTGTCATTTGATTCATCTG	206	(TC)6T3(TC)7CA(C T)3G(TC)3
G00704	GTCCTCTGAATCCCTGTCTAT	GTGGAGCCTGCTTCTCTCTTGT	225	(CT)9T(TC)5—A 17
G00707	CTTCTCCCTCTGCCATGTCT	GAAGGCTTAGCAAGAGTTGAAGA	189	(CT)13GACTATC A(TA)2(TA5)(T2 A10)(TA6)2
G00708	CCTCTCCCTCTGCCCTGTGCT	ACCTCTGAATCAGGAATGTAAC	132	(TC)12
G00709	ATCGAGTCGACATAGGGTTCAC	AAACAGTGTAAACACATGCTACC	152	(CT)12(GT)4(CD)3
G00712	ATCGAGTCCTGTTGGCTCC	TGAGCAGGGCAATAGGAGACTTC	226	(CT)9G(TC)3ATG(A ZT2)(A3T)2(A4T) (CT2A8)
G00713	CTGGATGGAGCCTGCTCTC	GCGTATCTAGTGTGCCACTTCT	194	(CT)10T(TC)3ATG(A ZT)(A3T)2(A4T) (CT4A4)
G00801	TGCTTATGGCTACTCTCTCAA	TCCCTGCATGGAGCCTGCTTC	184	(CT)12GAG(TC)3 ATG(A2T)(A3T)2(A 4T)(CT3A9)
G00810	CTCCCTCTGCCACGGCTCTG	AGAAGTTACTGTGTCAAGTACAA	152	(CT)17(GT)ACTA TCAT(A3T)2(A4T 3)(A1T)

- 18 -

Table 2A (cont)

G00812	CTGCTTCTCCCTCTCCGTATC	AGGAACCTGGCATTCTACATTAGCA	198	(CT)11(GT)3CTCA TG(A2T)(A3T)2(A 4TC(T3A6)
G00903	TGCTTCTCCCTCTCTGTGT	ATTGTGAAAATCCCTCCCTAGAAAT	142	(CT)11
G00908	CCTGCGCATGGAGCCCTGCTT	GATGCGCAATGAACACGAGACT	145	(CT)12
G01006	GAACCTGCTCTCCCTCTG	TTTATTCTCCCTGTGTCTT	113	(TC)18TATCA(A3 T2(A5T2)A10
G01109	TCCCTCTGCCCTCAACCC	AGCCCAAGTTATAGACAATGAT	112	(CT)18C2T2(ASG) 2A9GA4
G01204	CATAGGGCTCCCTGCATGG	AGCCATTGGTATGTCTTCTTGT	226	(TC)17(TG)3TCTC 3ATG(A2T)(A3T)2 (AAT)
G01303	CTGCTTCTCCCTCTGCTTGT	GTGCTAGATGGGGCTTCTC	118	(TC)17GTG(A2T) A3T(A4T)CT3A8
G01305	TAGCTTAAATGAAAGGGCTGATAG	TGCTTCTCCCTCTGCCCTGTOTC	181	(TC)16—(TA3)2(
				T2A6(TA2)(T2A1 0)
G01406	ATCAAGTCCCACGTCAAGCTTCC	ATTCGAGTGTTCCTCGAGAAGTT	161	(CT)15—(A2T)(A 3T)3
G01506	TGGAGAACCAAATTGAGTCCT	GAATCCACATTATATGAGGTTAAC	155	(TC)16(GT)2
G01509	CTAATGTAACATTGTGTGACAACCTACA	CATGGAGCTGCTACTCCCTCT	110	(GA)9 G2 (CA)(GA)2
G01511	CCTTGCTCACCATATCACACA	TTCCTTCTGCCCCCTGTCT	153	(GA)5 GA3 (GA)5
G01515	TGCTTCTCCCTCTGCCCTATGCTT	GTGCGAGGGCTCAATGAGTGTGTT	133	(CT)16
G01617	TGGGATGGAGCCACAAAGTCA	CTTACGACTGTTCCTCACCTG	240	(CT)10
G01621	CCACTCCCATTCTGCTCAT	CCAAACGACTAOAGCTGTCT	134	(CT)4CA(CT)6
G01705	TGGAGCCTGCTTCTCCCTCTG	OGGGTTGCCCTCTCTCTCTT	125	(CT)9
G01707	TCATTGCCAGACCAGGTGTC	GTGCATGGAGCCCGCTCTC	159	(GA)9
G01709	AGGGAAAGACCCGTGACCAT	GCTTCTCCCTCTCCCTGTOTC	258	(GA)10
G01713	ACTAGAACTACAGATCACTCC	GAGAACAAATGCGAGTGTCT	187	(CT)8
G01715	ATGGAGCCTGCTTCTCCCT	GGGGTTGCCCTCTCTCTCT	128	(CT)9
G01717	TGGAGCCTGCTTCTCCCTCT	CTGCATTTCCCTGTGACAT	172	(CT)11
G01804	CCAAGGATCAAGAACACAGTC	GATGCACTCTCCAGTTGAACTA	168	(CT)14
G01807	AGGATCGAGTCCCACATTGG	TCAGTTAGAGCATGAACTTGT	203	(CT)2GC(CT)12TT (CT)4(GT)4
G01811	TATGAGTTGGGCTCTGGTC	CTGGGACAGTAACACACATTAGT	197	(CT)16TT(CT)3
G01817	AGTCCTGTGTCAGGCTCCAG	ATAGTGCATTCTTTCAAGGAC	152	(TA)6
G01901	CTCCCTGCATGGAGCCCTACTT	CTAGAGTTCTCTCAAATCTGTCA	130	(TC)11 (GT)2 (TC)2
G01903	AATTAGCAGGGAGTCTGTTT	GGTACTTGGGTTTAAATAT	165	(CT)4T2(CT)5
G01905	TGAACCCCTGCTTCTCCCACTG	ACGACTTGGAGCCACCCAGGT	169	(CT)9 (GT)2 (CT)2
G01906	GAGTCTGCTTCTGCCCTCTG	CTGTACACTCTAAATGGGGTCAATT	152	(CT)9(A3T)2CT2A 6
G01918	TGTCTCATCTAGCTGCTACATT	CTTCTCCCTCTGCCCTGT	106	(GA)18
G01920	TGGAACATATCTTTGGGTGACC	CTCTGCTTCTCTCTCTGCCCTGT	233	(CT)23—(CA)6(G A)7
G02002	AGGATCATGGCTAGACAAAC	TACATAGTTGGGATCGAGTCC	248	(GA)10
G02007	TCCCTGCAAGGCGCTGCTT	GAATAAAACCTAGACTGCTGTOAAG	128	(CT)2GC(CT)7
G02106	CATGGAGCCCTGCTTCTCCCT	AAGGCAGATGCTCAACCACTGA	159	(CT)9
G02107	CTGCCCAOAGAGACTCCTCCAT	TCGAATCCCATGTCGGGTC	189	(GA)10
G02108	CATGGGAOCCCTCTTCTCCCTCTG	AGAATATCTGGCTGCAATGCTT	146	(CT)13
G02111	ATTCGAAACTATGCGAGCTAT	CCTGTGTCTCTACCTCTCT	163	(CT)13
G02202	GGATCOAGTCTGCATCGAG	CTGAGCCAAAGGCACTCAACAG	177	A13(GA)9
G02204	ATCAGGCTCATCCCCGATCATCG	ACATAGGAAACTCTCCATCCAT	200	(CT)9
G02301	OAGCCTGCTTCTGCTTCTGCG	GCCTATGGCTTATGGGTGTTCC	132	(CT)9
G02304	TAGAGGATCGGGCTCCCGCTC	TTACATGGCTTCTCTTGGT	197	(CT)16
G02306	GCAGAAACATACACTCACTAAG	CCCTCTGCCCTGTCTCTAACC	179	(GA)14
G02309	OAGGATCAAGTCCCACATTO	GTAGGCAGCGTACAGATGGAT	135	(TC)9
G02312	CGCTCATGCAAGTACATCACAT	ACACTCTGGTCAAGCGACTC	125	(CT)15
G02313	CATTCTCTGAGTATTATAGAT	GTGGGCTCCCTGCGATAGG	120	(GA)14
G02602	TACTCTGGATGCACTCATAGG	TGCTTAAACCTACTCCCTCG	123	(CT)14
G02610	CTTGGCCAGTTATGGCTGTG	TGCTTGTCTATGTCTGCA	132	(GA)16
G02616	GCCTACTTCTCCCTCTGCCCTATG	CTGCTTCTCCCTCTGCCCTT	163	(CA)2(GA)10
G02619	CCTGCTTCTCCCTCTGCCCT	TTAGTTTCAACCAACTGTAQGG	154	(CT)9
G02620	CTGCATGGAGCCCTGCTCTCT	GAATTGTAAGTTTCAACTGCC	144	(CT)9CC(CT)4
G02702	ATCACAACTAACCAAAAGCT	CTCTCCCTCTGCTGCCACTOC	142	(GA)12

- 19 -

Table 2A (cont.)

G02704	ACCCAGGTGTCCTTCAAATGT	GCTCTCCCTCGCCGTGTC	206	(GA)9
G02709	ATGGAGCCTGCTCTCCTCT	TCAGCTATAAAATTCACTGGCTTA	151	(CT)14(GT)2
G02710	GGCACGTTAGTCTAGTCTCTG	TAATCAGGTTCTGGAGATGAC	139	(GA)8AT(GA)
G02712	CCAAAATTCAAGGATTCTGACTCC	ATGGAGCCTGCTCTCCTCT	161	(GA)12
G02806	GCAGCCAATATGACATCATOC	TACATGGAGCCTGCTCTCCTC	161	(GA)8
G02807	TGCATGGAGCCTGCTCTCCTC	GAACAGCTTTGCAGCAACC	173	(CT)11
G02812	TAGCTGTAGCTGCGTGTGAA	GGCACTTCACCTAATCTTGAGT	114	(CT)7
G02813	CGAGGATGAAATCCCACGTC	TCATTTGTCACTTATTAGTCCAC	174	(CT)2GC(CT)9(GT)3
G02814	TGCTGCTTATAGTAAAAATG	CCTGCTTCTCCCTCGGCTAT	265	(CA)5(GA)12
G02815	TCCCTGCTGAATATGACGTTCA	AAAGGGAGGGAAACGACACAT	154	(CT)15
G02817	ATCGAAATCCCACATGCGCTC	CACAAATOTAAACTGGTATATT	177	(CT)9
G02819	ACACTCAGCATAGAGTCTGCTTG	CAACAGGTTGGAAATGATAAG	154	(CT)13
G02821	CCTGCACAGAGCCTGCTCTC	AAACACACTGAGCCACCGGGACT	153	(CT)14
G02902	GATTGAGTCCCACATCAGGCT	ACCTGTGTTATGACTACACATG	241	(CT)2TG(CT)6-(CT)6
G02903	TAGAGCCTGCTTCTCCCTCTG	CCAATTGAAGGATTCACTATT	146	(CT)2GT(CT)7GT AT(CT)8
G03001	TCCATCTGCCATCACACCACT	TGAGCACTGGATGTTATGCAA	199	(TC)9
G03006	ATCTAATCCCACATTGGGCTC	ATGGGGAGTCATCAGACAGG	171	(TC)13
G03011	TACGCTTCTGCTCAAGACAG	GGATGGAGGAGAGGCTTDTTA	209	(GAT)6-(TC)9
G03012	CTGCTCTTCTGCTCACTC	TTCTCCCTCTGCTGTGTC	141	(GA)17
G03013	ACTGAGATGGAAAGGGGAGA	CTACATCGGGCTCTATCCTC	83	(GA)8
G03016	OAGCCTGCTTCTCCCTCTG	AGTCTGTGATTAGTCTCAGAC	106	(CT)10
G03017	TCTCTCCCACATTTACAAATOA		134	(GA)3CA(GA)9
G03018	TGCTTCTCCCTCGCTGTGT	CCTTCTGGATCTGTTTACTAT	203	(CT)13
G03019	CCACTCAGATGTCCTATACAT	AAACAGGATCGAGTCCTACA	212	(GA)13
G03104	TAGCAGACAAACCCAACTG	GAGCCTGCTTCTCCCTCTG	167	(GA)13
G03109	CTGCTATGGAGCCTGCTTCTT	TCTTATTCAAACTCTCTGATTAT	153	(CT)9
G03111	CCTGCTGAGACTCTCT	TGTTTCTCTACCTCTACTGA	218	(CT)21
G03601	GACACAGGTTGATTATCATT	TGGAGACCTGGATTAGTC	166	(GA)10
G03601	ATCACACCCCTGGGCTGAAGG	TGGAGCCTGCTTCTCCCTCTG	174	(GA)14
G04801	AGGATGCCAGTTACATTTOAA	TGATGTTGATGTTACGTTGAT	208	(GA)18
G05002	CACTGTGATGCTCTTATTAG	CAGGAGTCTACTTTCTCTG	170	(GA)30
G05602	CACTAAACCACTGAACACCT	GTCCCACGTGAGGCTCTG	158	(GA)9
G05602	CACTAAACCACTGAACCCACCT	GTCCCACGTGAGGCTCTG	158	(GA)9
G05604	TGCATGGGCTGCTCTC	CCTCTCTACATTCAGCAAGTG	169	(CT)9
G06202	CCCTCTCTGCTTGTGAGAGT	AGCCTGCTTCTCCCTCTGCC	144	(GA)3(CAG)9(GA)5
G06204	CTTCTCCCTGACTGTGTC	TCCCTCAAAATTCAACATACAA	168	(CT)11(GA)3(CT)2
G06208	CCTGCTCTCCCTCTCTG	TCCACAAAGTCCTCTACTCAT	163	(CT)10
G06211	CACTGGGCTGTAACCTGCT	CTGAAATGTAAGTGCAAAAGAA	172	(CT)12-(A3C)8
G06219	CTAATATCAAAAGTTATCCAC	CATCTCTCTGCCCCAGTGT	267	(GA)11
G06221	GGATAACCAGATAATTCTAC	AGAGAGGCCACATCAGGCT	156	(AT)4(XAT)3(GA)13
G06222	CTGCTCTCCCTCTGCCCT	ATTTATGGAAATGTTCCCAA	150	(CT)17(TC)3
G06224	AGGCTCTCTCCCTCTGCC	ACCCATGTGAGGCCATTGA	137	(CT)19
G06303	CAGGTGCTGCAAGAGCTTAGA	CTTCTCCCTCTGCCCTCTGCC	176	(GA)17
G06305	GTCACGCTTCAACCCCTCTC	ATTGAGTCCCCCATCAGGCT	215	(GA)14
G06316	AGCCTGCTCTCCCTCTC	CCACACCTCACACCGTGT	125	(CT)15
G06320	ACTGGCAATGGGCTGAAAATAG	CTCAGTTATTGTTGGGCTCTT	216	(GA)13
G06401	TGCTTCTCTGCTGTATCTC	CAGGTCCTCTACACTAAGTG	133	(GA)10
G06402	ATGAATACCTTGTGCACTAGTCATT	TGCTTCTCCCTCTGCTGTGT	132	(GA)13
G06407	CCATCAAACCTTACAGTOAA	GGGTCTGCTTCTCCCTCTC	163	(GA)12
G06407	CAATCAAACCTTACAGTOAA	GGGTCTGCTTCTCCCTCTC	163	(GA)12
G06502	TGTTAGGCTCTGTTCACTG	CGTGTATACCTCTCATCAT	146	(CT)9
G06601	TGTGAAACATGCTTACAATTTC	TCGGTTACCTACAAAGTTATTG	158	(CT)17
G06602	TCGAATCCCACGTGGGCT	ATTTTACAATGATCTGATTATTCT	236	(CT)5GT(TC)12
G06603	CATTCAAGATGCGGGAACTTC	CCAGGTGAGGTCAGTTGT	211	(GA)9
G06607	CTTCACAAAGGTTGCAACAGAG	CTGCTTCTCCCTCTGCCCTGT	159	(GA)14
G06608	TGATAGGACACTTACGCAAGGCT	GAGGCTGCTTCTCCCTCTG	194	(CA)2(GA)12
G06619	ACAACTACAGAATGGAGAA	CTTCCACAGCTTTATTGT	196	(CT)10
G06701	GCTTTACACCAACGACTTAA	AACCTGTGCTGCAACCAAGG	211	(GA)12
G06703	CTTCTCCCTCTGCCGTGTC	GGGTCTATAATCATCAGAAAT	159	(CT)11(GT)4
G06703	CTCTGCCGTGTCCTCTGCC	CTATACACATTGAGAAATGGCA	168	(TC)13

- 20 -

Table 2A (cont.)

G06706	ATCGAGTCCCACGTCAAGGCT	TTATITATTTATTCATAGAGATGCA	98	(CT)13...ATG(A2T) YA3T2(A5T)
G06707	GGTGCATGGAGCCTGCTTCT	TGCCAGTTCAAGTTTCAAAGTT	147	(CT)17(GT)2
G06710	TCCTTGTCTTCTATTCTCTC	AACCCGGGATTGAGTCTO	167	(GA)14
G06713	GAGATCGAGTCCCACATGTCA	CTTGAGGAGATAAAATCTTCTA	225	(TC)20
G06714	ATCAAATCCCACATCGGGCTC	ATTAGTTCAAAACCTCOCCAATG	163	(TC)12
G06715	TTGATCGAGTCTACATC000	TCTTGGTAAACTACTTAACTT	174	(TC)11
G06717	TGGAACCTCTTCTTCTCTCT	CCTTATTCAAGTTAACCTGT	147	(TC)&(T0)3
G06801	AGGAGACGTCTTCTTCTCTG	CAATGATTATGGTTTGTCAACTT	162	(CT)17
G06805	GACACCCAAACGGCTGAGCAC	GAGCCTGCTCTCCCTCTGCC	168	(CA)3(GA)9
G06901	GGCACCTTGATGACTGATTGA	AGTCCTGTGTCAGGCTCCCT	211	(GA)17
G06908	GGAACACGTTAATTCTATAAAATGAT	ATGGAGTCCCACGTCAAGGCTAC	203	(GA)3CA(GA)10
G06909	GGCACGACTAAACCACTGAG	TGCTTTCATCTTCCATT	209	(GA)15
G06910	CTGTGCTCAGGGGGAGTCT	TTATCTTCAAGTGTGAGAGTGG	101	(CT)13
G06914	GGAAAGATGTTCTCTTATCA	GGTAGGGGTTTGTATTOO	159	(GA)20
G07001	CTACATGGAGCCTGCTCTCC	TCCCCACAACTTTATGCTC	129	(CT)11(GT)4
G07002	CCTTCTCCCTCTGCCTGTG	GCCACTGATTCTCTGT	197	(CT)11
G07004	TGCTTGCTCTCTCAAATAA	GTGCATGAGCCCTGCTCT	181	(GA)10G(GA)3
G07005	COCTCTGCCTGTGTATGTGTC	ATGGCAGCAGGAGTAGTCCA	134	(CT)12
G07006	CACTGGGAAATCTGCTTGA	CATTCACTACATACAGGTGTCA	150	(CT)11.....(CT)10
G07007	AATACCTGGTAAACATTA	GGGATCGACTCCCATGTC	156	(GA)11
G07008	GTGATGGAGCCTGCTCTC	AATGACCTGTCCCCCTTGTG	127	(CT)13
G07301	GCATTCAACCAATAGCTCTG	GCTGCTCTCCCTCTGCCCTAC	135	(GA)13
G07302	TCTCAATTGAAAAGTTATAGTC	TTCTCCCTCTCCCCCTATC	174	(TA)39...(GA)5... (GA)7
G07310	TATGCTTCTCCCTCTCTCTG	GGTTTCTCTCTGATTGTAAG	159	(CT)14
G07312	CTTCTCCCTCTGCCTGTG	TGCTAAACTCAACTCTCTCAA	123	(CT)14
G07314	CCATCAAGTTCTCTATCA	GAAGCTAAGTGGAGGAGTAG	224	(CT)11
G07402	GGAGCCTGCTCTCCCTCTG	TATCGTGCACACTGCTGAAT	244	(CT)11T2(CT)5
G07406	AATTTAGTCGAAGAATGAAAGATG	GAAATAGCCTAAAGCAATOTA	221	(GA)14
G07407	CCACCTGGGCTGACTGAGA	TGGAGCCTGCTTCTCCCTCTG	134	(GA)10
G07408	TGTCACTCTGCTCTCCACCTO	ACTGCCTAAAGTCTCTCTATTG	135	(CT)14
G07410	ATCTCTCTGCACTCTGTCT	CACGTAAGGGATGAGTTCAAGT	147	(TC)8(TG)2
G07413	CTGGAACAGAACCCACAATA	ACGAGATCAGTCCCACATCAG	231	(GA)24
G07414	TCCCTGAAGGGGCTTAAAGACC	ACCCCTGCTCTCCCTCTGCCATATG	128	(GA)11
G07420	TCAGGAGGTGAGTGTGTTGGAG	CGGTGCATGGAGCCGCTTCT	162	(CA)3(GA)16
G07502	CTCCCTCTGCCTATGCTCTG	ACAGCCCTGTTTACCGAGGTG	255	(CT)14
G07503	CAGGAACACTGCTGGACTTGTGCT	TGCTTCTCCCTCTGCCTGTGT	126	(GA)15
G07504	AGTTCTGGAGGCTGGGAAGTC	GGTGTGAAATGGCTTCTTAGATA	215	(CT)23
G07505	TGCATGGAGCCTGCTCTC	ACGAGGTTACTCTTAGTGAETCC	138	(CT)11
G07506	ACTCTCCCTCTGCCGTG	TTCCAGTGTATGTTGATTGAA	124	(CT)13
G07507	ATGGAGCCTGCTTCTCCCTCT	GTTTCTGCTCTCCCTACCTGG	163	(TC)9
G07508	AGCCCTGCTTCTCCCTCT	GATTITGATTACATTACAAGTACA	98	(TC)10
G07510	AGGCATCCCTTACTTACTTACTTG	TCCACATCAGGCTTGTGTAT	152	(GA)9
G07701	TATTCAGCCATTGACGGATTG	CATGGAGCCTGCTCTCCCTC	247	(TG)2(TC)2GCC(T C)16
G07703	CTGCTTCTCCCTCTGCCATG	TTTCCAACTTATGCTATGAT	198	(CT)14
G07704	AGCCTGCCTCTCCCTCTCCA	AGAGTCACAAATGCAACCCCCACAA	246	(TC)24
G07706	GGTGAACACTATACTGAACCTTCT	TCTTCTCCCTCTCCCTCTGA	116	(CT)11
G07707	CTCCCTCTGCCGTGCTCTG	AATTTTATGTTGCTCTGGTCAAGCC	202	(CT)9
G07709	CATTTGCGCTCATGCTCTGACTGA	CATGGAGCCTGCTCTCCCTCTCC	147	(GA)16
G07710	GCTTCTCCCTCTGCCCTATCTCT	ATTGATCCCCGGATTTGGTAATA	173	(CT)9
G07711	TAGTTCTTCTGCCCTCTCC	CATTTCACATCCATTAGAGA	149	(CT)9
G07712	CTGCATGGAGCCTGCTCTC	TCAGACGCTCAACCAACTGAG	179	(CT)9
G07713	CTTGAAGGGGCTGTTCTG	TTGGACTTCTCCCTCTOCT	234	(GA)16
G07803	CACCATGAGTGTGCTTGTG	AGCTAACATTTAACCAACTGAG	219	(CT)14
G07804	GGGTAGAAACTAACATCTT	CTGTAGGGAGGCCGTGCTCTC	133	(GA)7CA(GA)8
G08002	GGTATGGCTTGGAGACCTG	CTAATTGAGGAGATAGGATACATAAT A	153	(CT)17
G08003	GTCAGCTTACGCCATTGAAAGAT	CCTGCTTCTCCCTCTGCC	174	(CA)2(GA)15
G08003	GTCAGCTTACGCCATTGAAAGAT	CCTGCTTCTCCCTCTGCC	174	(CA)2(GA)15
G08004	GGCACACACTCTGAAATTATTAG	CACTCATTTATGCCCTACTTTA	175	(GA)15
G08005	GGTCTTCACTGCAAGG0.ACT	CATCAGATACTCCACATTCAAG	190	(GA)20
G08007	CAGAGTATCCTGCTGTAG	GTGCCTGGAGGCCGTGCTCT	139	(CA)3(GA)12
G09201	TGGTACTGTAGCTTGAAGAT	TCTGTGAAAGACACCCCTATTAA	173	(CT)14

- 21 -

Table 2A (cont.)

H03501	TTGCCCTCTGGGTGATTGACTT	GAATGTGGTTAGTAGAATTATAACAG	300	(AT3)10(AT2)2AT
H03502	GATCCTGATTGTTCTTGAG	GGCATGGAGGCATACTTCA	135	(AT3)4
H06601	TGCTTCTOCCCTCTGCCGT	TGGTGAAGATTAGCCTGTGGA	125	(AT3)5—(AT4)(A T3)2
H06602	AAGTCCCACGTCAGGCTC	ACGTCACCCACAACCATCTAA	165	(AT3)12
H09203	CATTGCTGAGTCAGGAATTCT	AGTTACCTGGAACCTGTCAAGAA	200	(AT3)12
H08303	TCCATGGAGCCTGCTCT	CTTCTACACATGTTGTO CCT	160	(AT6)(AT4)2(AT3) 13
H09208	AGTCCAGCATCACCGTTTGT	GAGGCTTATTTCTGTCCAOTT	144	(AT3)9(AT4)
H10101	TCAGGCTCATGGATTGAGACTTC	TGCCATTGCACAGGATATAAGGTCCA	305	(AT3)11
H10103	TCCACACTCACTGCCAGAACATCGCTT	TGTGAGACCCAGAACATACAGTA TCTC	141	(AT3)11

- 22 -

Amplification reactions were carried out under standard PCR conditions described above using the annealing temperature indicated for each locus or a touchdown PCR protocol (Don, R.H. et al., *Nucleic Acids Res.* 19:4008 (1991)) was established. The variability of these loci were evaluated using the dog panel. For 5 each locus, 5-10 dogs were studied in each breed. The number of alleles observed are presented in Tables 3A and 3B.

Table 3A

	Marker Locus	Mixed Breed	Cocker Spaniel	Labrador Retriever	German Shepherd	Beagle
10	D00101	3	2	2	2	3
	D00401	5	4	3	6	4
	D01205	4	2	4	4	4
	D01902	6	4	6	3	4
	D02001	4	3	3	2	4
	D02005	3	3	3	3	3
	D02011	3	1	3	3	2
	D02012	5	4	3	3	4
	D02202	4	1	2	3	4
	D03709	5	4	3	4	2
15	D03805	6	4	4	3	3
	D03908	4	4	3	5	4
	D04403	2	3	1	1	3
	D04702	3	1	3	2	3
20						

- 23 -

Table 3B

Marker Locus	Doberman Pinscher	Siberian Husky	Scottish Terrier	English Pointer	Greyhound
5	D00101	3	2	2	3
	D00401	3	6	5	5
	D01205	2	2	1	3
	D01902	5	3	4	7
	D02001	2	4	3	2
	D02005	1	3	2	3
10	D02011	2	3	4	5
	D02012	3	3	4	4
	D02202	1	3	2	2
	D03709	4	6	4	5
	D03805	3	7	4	5
15	D03908	3	8	3	4
	D04403	1	3	2	3
	D04702	2	3	2	3

In general, all of the microsatellite loci tested displayed variability within and across breeds. While 9 cells out of 140 (6.4%) in Tables 3A and 3B were 20 monomorphic, these were scattered though 6 different microsatellite loci, which were quite polymorphic in other breeds. The maximum number of alleles detectable by this analysis for a locus in a given breed was 8, in the case of locus D3908 in the Siberian Husky. The percent heterozygosity observed at each locus in each breed is presented in Tables 4A and 4B.

- 24 -

Table 4A

	Marker Locus	Mixed Breed	Cocker Spaniel	Labrador Retriever	German Shepherd	Beagle
5	D00101	20	0	0	0	90
	D00401	100	100	100	88	25
	D01205	70	50	0	22	64
	D01902	100	100	100	11	36
	D02001	40	86	57	50	33
	D02005	90	29	38	22	27
10	D02011	38	0	25	44	18
	D02012	0	17	33	0	33
	D02202	20	0	0	0	0
	D03709	20	100	75	89	50
	D03805	100	50	50	30	67
	D03908	100	100	100	88	100
15	D04403	100	100	100	100	100
	D04702	22	0	80	0	30

- 25 -

Table 4B

	Marker Locus	Doberman Pinscher	Siberian Husky	Scottish Terrier	English Pointer	Greyhound
5	D00101	60	0	78	86	38
	D00401	33	50	86	67	100
	D01205	60	44	0	86	25
	D01902	100	63	100	100	100
	D02001	100	57	25	50	13
	D02005	0	50	77	71	100
10	D02011	20	33	44	43	50
	D02012	0	50	17	40	0
	D02202	0	0	17	17	0
	D03709	100	78	100	86	100
	D03805	100	67	100	80	29
15	D03908	33	44	100	100	100
	D04403	30	50	56	14	29
	D04702	67	20	33	60	40

- 26 -

- No heterozygotes were observed in only 21 out of 140 (15%) of the loci/breed combinations studied. At the same time, 30 out of 140 (21%) cells showed 100% heterozygosity. The mean and standard deviation of heterozygosity observed for each locus across different breeds, as well as the mean and standard deviation of heterozygosity observed within each breed across different loci are shown in Figures 1A and 1B, respectively. The breeds studied show a mean heterozygosity ranging from 36 to 60% across different microsatellite loci with considerable standard deviations. Among the loci studied D03908, D01902, D03709 and D00401 showed the highest mean heterozygosity across breeds of 87, 81, 80 and 75%, respectively.
- 5 The number of repeats in the reference clone in these loci were 16, 18, 12 and 22. The least informative loci across breeds were D02202 and D02012 at 5 and 19% mean heterozygosity, respectively. The number of repeats in the reference clone in these loci are 12 and 15, respectively. Correlation analysis did not reveal any significant linear relationship between the number of repeats at a locus and its
- 10 overall observed heterozygosity ($r=0.22$).
- 15

Figures 2A-2D show the results from typical gels used to evaluate the alleles in gathering the data as described above. Amplification products of DNA from various different breeds at the locus D02011 are shown. Figures 2A-2D represent different gels, run under similar conditions. Note that the molecular weight marker identified in lanes marked M is the 246 bp band of the 123 bp ladder (Gibco-BRL, Gaithersburg, MD). The size of the amplification product in the reference clone was 238. The different alleles are easily identified, with PCR products separating in sharp and well resolved bands, near and below the 246 bp marker. Some non-specific amplification products can be observed, especially in cases with higher template DNA concentrations; however, these do not interfere with correct typing.

20

25

The results indicate that microsatellite loci containing CA repeats are abundant and highly polymorphic markers for the canine genome. These findings indicate that such markers hold great potential for use as linked markers for genetic defects in pure bred dogs.

- 30 The estimate that there is one useful CA repeat every 31 kb in the canine genome is in good agreement with one every 42 kb estimated recently by others (Rothuzien, J. et al., *Theor. App. Genet.* 89:403-406 (1994)). In the above-described study, a secondary screening was carried out and only very strong hybridization signals were accepted as positive, which resulted in elimination of about 20% of the
- 35 primary positives. It thus appears that the estimate of the minimal CA microsatellites

- 27 -

frequency in the canine genome is accurate. These estimates have practical implications particularly, since most cosmids have insert sizes in the 30-40 kb range, the likelihood of finding a useful CA repeat in a cosmid clone harboring a gene of interest is high.

5

SPECIFIC EXAMPLE II

Materials and Methods

Patients and pedigrees. The patients and pedigrees used were primarily those used and described earlier (Yuzbasiyan-Gurkan, V. et al., *Genomics* 15:86-90 (1993)). Briefly, pedigrees of American Kennel Club registered Bedlington terriers 10 were associated with the help of Bedlington terrier (BT) breeders. While all of the pedigrees have a family history of CT, not all had a symptomatic proband at the time of pedigree ascertainment. Diagnosis of dogs as to whether they were affected or unaffected with CT was made in all cases by quantitative copper assay from liver biopsies performed at 1 year of age or older by criteria earlier described. DNA was 15 extracted from peripheral blood samples collected in acid-citrate-dextrose as anticoagulant as described (Yuzbasiyan-Gurkan, V. et al., *Genomics* 15:86-90 (1993)).

Microsatellite analysis. The microsatellite markers used in this study were developed as described in Specific Example I. Standard conditions used to amplify 20 each marker locus in polymerase chain reactions (PCR) were as follows: 25-50 ng of genomic DNA as template in 25 μ l of PCR buffer (50 mM Tris HCl, pH 8.3 @ 25°C, 50 mM KCl, 1.5 mM MgCl₂), 200 μ M dNTPs, 200 pM with respect to each primer and 1.5 U of Taq DNA polymerase. A touchdown PCR protocol (Don, R.H. et al., *Nucleic Acids Res.* 19:4008 (1991)) was established to facilitate the robust 25 amplification of most markers under the same conditions. PCR was carried out at 94°C for 45 sec., 52°C for 30 sec., and 72°C for 1 min.

The microsatellite markers were initially evaluated in ten sets of parents from the BT pedigrees. Those markers for which at least one parent was heterozygous were then evaluated in all the dogs in the pedigree. Seven to twelve microliters of 30 product were run on a 5% to 7% Hydrolink D600 acrylamide horizontal gel according to the manufacturer's instructions with the following modification. During the overnight runs, a plexiglas gel carrier was placed on top of the gel to prevent the swelling and distortion that was otherwise observed. Initially, electrophoresis was carried out from 4 to 5 hr. at 50 V in 1 X TBE (90 mM Tris, pH 8.3, 90 mM boric 35 acid, 2 mM EDTA) with ethidium bromide. A photograph was taken and the gel

- 28 -

electrophoresis then continued overnight at 35-40 volts depending on the fragment size of the product. A second photograph was taken and the results visually evaluated. It was found that two photographs were helpful in comparing different dogs with similar patterns. The alleles were then tabulated and used in linkage analysis.

Linkage analysis. Two point LOD (logarithm of odds) scores between CT and all the markers tested were generated using the MLINK program of the LINKAGE package (v5.1) (Lathrop, G.M. et al., *PNAS (USA)* 81:3443-3446 (1984)). A gene frequency of 0.5 was assumed for CT.

10

Results

Two hundred thirteen microsatellite markers were evaluated in the process of finding linkage. Of these 213 markers, 181 provided scorable products in BTs using the touchdown protocol described above. Of these, 114 were informative in the pedigrees and were further evaluated.

15

Of all the markers tested for linkage to CT, only one yielded a significant LOD score. As shown in Table 5 below, marker number C04107 was found to be linked to the CT locus at a LOD score of 5.96, at a recombination fraction of zero. No recombinants were detected. Since a LOD score of 5.96 indicates that the odds of observing this linkage by chance is about 1 in a million, and since, a LOD score of greater than 3 or an odds ratio of 1 in 1000 is considered proof of linkage, the findings imply that the CT locus is indeed very close to the C04107 locus and thus can be used to predict the inheritance of alleles at the CT locus. No recombinants were detected in this study and thus a value can not be put on the genetic distance between these loci, except to say that they are very close.

20

Table 5

25

θ (Recombin- ation Fraction):	0.0	0.001	0.01	0.05	0.15	0.1	0.2	0.3
C04107 vs. CT	5.96	5.95	5.85	5.38	4.78	4.14	3.49	2.13
C04107 vs. ESD	-∞	-19.73	-10.78	-4.77	-2.44	-1.28	-0.6	-0.01
C04107 vs. RB1	-∞	-20.35	-11.43	-5.47	-3.18	-2.01	-1.28	-0.47

30

35

- 29 -

The primer sequence and allele information about this marker are shown in Table 6. The allele frequencies were determined from alleles observed in apparently unrelated dogs.

Table 6

5	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="padding: 2px;">Marker Locus</td><td style="padding: 2px;">C04107</td></tr> <tr> <td style="padding: 2px;">Repeat Motif in Reference Clone</td><td style="padding: 2px;">(CA)₆ CT(CA)₁₁</td></tr> <tr> <td style="padding: 2px;">Primer Pair</td><td style="padding: 2px; vertical-align: top;"> TCAGCAACTATACATTAAAGAGGA CTGTCCCATCTAAAGGATAGG </td></tr> <tr> <td style="padding: 2px;">Allele 1 and Frequency</td><td style="padding: 2px;">163 bp, 0.39</td></tr> <tr> <td style="padding: 2px;">Allele 2 and Frequency</td><td style="padding: 2px;">167 bp, 0.61</td></tr> </table>	Marker Locus	C04107	Repeat Motif in Reference Clone	(CA) ₆ CT(CA) ₁₁	Primer Pair	TCAGCAACTATACATTAAAGAGGA CTGTCCCATCTAAAGGATAGG	Allele 1 and Frequency	163 bp, 0.39	Allele 2 and Frequency	167 bp, 0.61
Marker Locus	C04107										
Repeat Motif in Reference Clone	(CA) ₆ CT(CA) ₁₁										
Primer Pair	TCAGCAACTATACATTAAAGAGGA CTGTCCCATCTAAAGGATAGG										
Allele 1 and Frequency	163 bp, 0.39										
Allele 2 and Frequency	167 bp, 0.61										

10 Marker C04107 was used to locate markers C04107B and C04107C shown in Table 2A, which are close to C04107 and also contain repeats. This "family" of markers may be used to detect CT.

15 A typical pedigree illustrating linkage to C04107 is shown in Figure 3. In Figure 3, circles and squares depict females and males, respectively, and individuals affected with CT are indicated by the filled symbols. The asterisk in the figure indicates an individual not available for analysis. The bands are the negative image of amplification products obtained from the dogs indicated in the pedigree and analyzed individuals share the 2,2 genotype at this locus. In this pedigree, all dogs with the 1,1 genotype are predicted to be homozygous normal while those with the 20 1,2 genotype are predicted to be heterozygous, and thus carriers of the CT gene.

Given the finding of linkage and allowing for a small error for recombination, it is predicted that all the offspring with the 1, 1 genotype are clear of the CT gene i.e., homozygous normal, and that all 1, 2 offspring are carriers in this pedigree.

25 Since data on the ESD and RB1 loci were available for most of the dogs from a previous study (Yuzbasiyan-Gurkan, V. et al., *Genomics* 15:86-90 (1993)), the linkage relationships of these loci with C04107 were evaluated. Neither ESD or RB1 were found to closely linked to C04107 (see Table 5).

As demonstrated by the pedigree illustrated in Figure 3, given an informative mating, it is now possible to identify all the genotypes in the offspring, distinguishing 30 between the homozygous normal, homozygous affected and heterozygous dogs provided the genotype of one affected dog is available. However, C04107 is not extremely polymorphic in the BT population, showing only two alleles and a

- 30 -

- calculated heterozygosity of 0.43. Therefore, typing at the C04107 will not always yield information about the CT status of the offspring. Thus far, all affected dogs have been of the 2,2 genotype and the 2 allele is more common than the 1 allele (see Table 6). The matings which produce affected dogs will be found to be either
- 5 between parents who are both 2,2 both 1,2 or one 1,2 and the other 2,2. In such cases, typing at the C04107 locus will only be useful in the second and third mating types. In the latter mating pairs, predictive information would only be available as to which dogs are affected. In order to make most pedigrees in the breed informative, additional polymorphic markers closely linked to C04107 are developed.
 - 10 It is predicted that a battery of three to five highly polymorphic markers will make almost every pedigree informative.

If strong linkage disequilibrium occurs at C04107 or nearby loci, the predictive power will be substantially improved. However, further studies of allele distributions in the BT population are needed to evaluate linkage disequilibrium. In any case, it

- 15 should be possible to dramatically reduce the frequency of this serious disease within a very few generations.

As discussed above, canine copper toxicosis is present in the West Highland White Terrier and perhaps in several other breeds. (Thornburg, L.P. et al., *Vet. Pathol.* 27:81-88 (1990)). In the West Highland Terrier, it is clear that the phenotype

- 20 is more complex, in that there is a spectrum of liver copper levels. This marker is evaluated in the West Highland White Terrier breed and it is determined whether there is segregation of high liver copper values with C04107.

The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize

- 25 from such discussion and from the accompanying claims and drawings, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention.

All publications referred to herein are expressly incorporated by reference.

- 31 -

WE CLAIM:

1. A primer comprising a polynucleotide, wherein the polynucleotide has a sequence selected from the group consisting of the sequences of Table 2A.
2. The primer of Claim 1, wherein the sequence is the Sns sequence of 5 marker locus C04107 of Table 2A.
3. The primer of Claim 1, wherein the sequence is the Asn sequence of marker locus C04107 of Table 2A.
4. The primer of Claim 1, wherein the sequence is the Sns sequence of the marker locus C04107B of Table 2A.
- 10 5. The primer of Claim 1, wherein the sequence is the Asn sequence of the marker locus C04107B of Table 2A.
6. A method for amplifying DNA, comprising the step of performing PCR with the DNA and a primer set selected from the group consisting of the primer sets of Table 2A.
- 15 7. The method of Claim 6, wherein the primer set is that shown as the Sns sequence and Asn sequence of the marker locus C04107 of Table 2A.
8. The method of Claim 6, wherein the primer set is that shown as the Sns sequence and Asn sequence of the marker locus C04107B of Table 2A.

1/4

Fig 1A.

Fig 1B.

3/4

Pointer

Scottish
TerrierScottish
TerrierFig [redacted] . B.B.

Greyhound

Fig [redacted] . B.C.

Beagle

Fig [redacted] . B.D.

4/4

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/02396

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C07H 21/04; C12Q 1/68
US CL : 536/24.33; 435/6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/23.1, 24.33; 435/6. 91.2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	OSTRANGER et al. One hundred and one new simple sequence repeat-based markers for the canine genome. Mammalian Genome. March 1995. Vol. 6, No. 3, pages 192-195, especially abstract and Table 1.	1-8 (in part)
Y	OSTRANGER et al. Identification and Characterization of Dinucleotide Repeat (CA)n Markers for Genetic Mapping in Dog. Genomics. April 1993. Vol. 16, No. 1, pages 207-213, especially Table 2.	1-8 (in part)
A	YUZBASIYAN-GURKAN et al. Linkage Studies of the Esterase D and Retinoblastoma Genes to Canine Copper Toxicosis: A Model for Wilson Disease. Genomics. January 1993. Vol. 15, No. 1, pages 86-90, especially page 86.	1-8 (in part)

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"		document defining the general state of the art which is not considered to be of particular relevance
"E"	"X"	earlier document published on or after the international filing date
"L"		document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	"Y"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"P"	"&"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
		document member of the same patent family

Date of the actual completion of the international search

10 JUNE 1997

Date of mailing of the international search report

08 JUL 1997

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. (703) 305-3230

Authorized officer

DEBRA SHOEMAKER

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/02396

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	FREDHOLM et al. Efficient resolution of parentage in dogs by amplification of microsatellites. Animal Genetics. February 1996. Vol. 27, No. 1, pages 19-23, especially page 21.	1-8 (in part)
A	ROTHUIZEN et al. The incidence of mini- and micro-satellite repetitive DNA in the canine genome. Theoretical and Applied Genetics. October 1994. Vol. 89, No. 4, pages 403-406, especially pages 405-406.	1-8 (in part)

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US97/02396**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-8, as limited to 10 sequences

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US97/02396**B. FIELDS SEARCHED**

Electronic data bases consulted (Name of data base and where practicable terms used):

searched for inventors and keywords: microsatellite or linkage or polymorphism or allele and dog/canine genome or gene or dna and ca repeat and copper toxicosis in APS, CAPLUS, MEDLINE, SCISEARCH, LIFESCI, EMBASE, BIOSIS WPIDS. Searched sequences of elected group by registry, genbank and dgene.

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

each of the 519 microsatellite markers disclosed in Table 2A are distinct species. It is noted that in two cases there are more than one primer set corresponding to the same loci, for example C01407, C01407B and C01407C, which do have unity with each other.

The claims are deemed to correspond to the species listed above in the following manner:

Claims 1 and 6 are generic to each of the 519 microsatellite markers disclosed. Claims 2-5 & 7-8 have unity with each other because a single microsatellite locus is claimed but do not have unity with claims 1 & 6 because distinct microsatellite loci are claimed.

The following claims are generic: 1 & 6.

Applicant is allowed to select 10 sequence for the search fee and pay an additional \$200 for each additonal 4 sequences to be examined. Since there is unity of invention between C01407, C01407B and C01407C, these sequences are considered to be one species. A search report will be established on C01407, C01407B and C01407C and the first four primer pairs (so as to form a group of 10 sequences) recited in Table 2A if no other groups ar paid for and it considers that the International Application does not comply with the requirements of unity of invention (Rules 13.1, 13.2, 13.2) for the reasons indicated below:

The species listed above do not relate to a single inventive concept under PCR 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical feaures for the following reasons: each of the 519 microsatellite markers claimed in claims 1& 6 are drawn to a unique nucleic acid squence, each with a unique location in the canine genome and each linked with distinct genes and traits. Thus there is no special technical feature that relates to these microsatellite makers to each other.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.