利用開始と簡単な計算 Getting started through simple calculations

初めてのプログラミング 2019年度 只木進一(理丁学部)

pythonの環境

- ●今回は、Webブラウザ内で編集実行ができる環境を利用する
- https://notebooks.azure.com/
 - ■右上の「Sign In」を押す
 - ▶大学のメールアドレスでログイン

利用の流れ use flow

- ■上のバーにある「My Projects」を選択
- ■「+New Project」で新たなプロジェクトを生成
 - ■名前を付ける
 - ■今日は"simpleProject"
 - 「Public」のチェックを外す

- ■「+New」を押し、「Notebook」を 選択し、新たなファイルを生成
 - ■ファイル名を付け、「Python 3.6」を選択

単純な計算

一つの変数 s_2 に繰り返し値を加える

33 33

プログラムを書く

- ■Cellの中にプログラムを書く
 - ►Cell毎に実行できる
 - ■全てのセルを上から順に実行することも できる
- Cell TypeをMarkdownとすると、ただのテキストとなる
- ■プログラム中のコメントは#で開始

プログラムの書き方 how to write programs

- ▶文の区切り
 - ▶改行か";"(セミコロン)
- ▶行途中での折り返し
 - ▶バックスラッシュ
- ■コメント
 - **#**"
- ▶大文字小文字の区別

計算、代入 calculation and substitution

- "="の記号の意味:右辺を計算して、 左辺に代入する
 - ■「等しい」という記号との区別

演算子	例	説明
+	a + b	加算
-	a - b	減算
*	a * b	乗算
/	a/b	除算
//	a // b	a を b で除した整数部分
%	a%b	a を b で除した余り
Python入門©只木: **	a ** b	a を b 回掛ける

サンプルプログラムの取得 how to get samples

- ■プロジェクトのダウンロード
 - ►MyProjectへ移動
 - ■「Upload GitHub Repo」を押す
 - ■GitHubRepositoryを指定
 - <u>https://github.com/first-programming-saga/fundamentals</u>
 - ■「public」のチェックを外す
 - 「Import」ボタンを押す

- ■簡単な計算の例
 - ■simpleSum0.ipynb
 - ■dataSum0.ipynb
- ▶二次方程式の解の例
 - simpleQuadratic.ipynb

課題 excercises

- simpleSum0.ipynb
 - ▶別の計算式を試す
- dataSum0.ipynb
 - ■プログラムを読み、理解する
 - ■知らない文法のところは予想する
- simpleQuadratic.ipynb
 - ▶二次方程式の定数を変更してみる

dataSum0.ipynb

- ■データ $\{d_i\}$ (0 $\leq i < n$)の平均(means) と標準偏差(standard devistions)
- ■和(sum)と二乗和(squared sum)を求める

$$s = \sum_{i=0}^{n-1} d_i, \qquad s_2 = \sum_{i=0}^{n-1} d_i^2$$

■和の記号の意味

$$s = \sum_{i=0}^5 d_i = d_0 + d_1 + d_2 + d_3 + d_4 + d_5$$

▶平均と二乗平均から標準偏差へ

$$\langle d \rangle = \frac{s}{n}, \qquad \langle d^2 \rangle = \frac{s_2}{n}$$

$$\sigma^2 = \langle (d - \langle d \rangle)^2 \rangle = \langle d^2 \rangle - \langle d \rangle^2$$

simpleQuadratic.ipynb

- ■二次方程式 $ax^2 + bx + c = 0$ の解
- ■判別式 $D = b^2 4ac$
- ■D ≥ 0の場合: 実数解(real solutions)

$$x_{\pm} = \frac{-b \pm \sqrt{D}}{2a}$$

■D < 0の場合:複素数解(complex solutions)

$$x_{\pm} = \frac{-b \pm i\sqrt{-D}}{2a}$$

次回

■3章「値と変数」