Aix * Marseille université cnrs

An introduction to experiment building with OpenSesame

Sebastiaan Mathôt Joshua Snell

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 622738.

http://www.cogsci.nl/smathot

EPOS, Leiden, Sep 24, 2015 For resources, see http://osdoc.cogsci.nl/epos2015

Today

- A short introduction (20 min)
- Create an experiment (75 min) ...
- Coffee break
- ... and some more (75 min)

About OpenSesame

About OpenSesame

- A graphical experiment builder
 - Drag-and-drop, point-and-click
 - Complement with Python scripting
- Open source
 - Free of charge
 - Source code available
- Cross platform
 - All major platforms
 - Runtime support for Android

About OpenSesame

- A broad focus
 - Fits many types of research
- Psychophysics
 - Reaction time tasks, complex stimuli, etc.
- Neuroimaging
 - Parallel-port triggers, etc.
- Social psychology
 - Questionnaires, etc.
- Clinical applications
 - Test batteries, mobile (tablet-based) experiments, etc.

Support

- Documentation
 - http://osdoc.cogsci.nl
- Community
 - http://forum.cogsci.nl
 - 1400+ members, daily activity, very responsive
- Outlook
 - Will OpenSesame still be there in [X] years?
 - Active development team
 - Large user base (±450,000 yearly hits for cogsci.nl)

Developers

- A core team
 - Daniel Schreij (VU University Amsterdam)
 - Lotje van der Linden (CNRS / Aix-Marseille)
 - Edwin Dalmaijer (Oxford)
 - Eduard Ort (VU University Amsterdam)
 - Joshua Snell (CNRS / Aix-Marseille)
 - Sebastiaan Mathôt (CNRS / Aix-Marseille)
- Occasional contributors

Laboratoire de Psychologie Cognitive

Teaching

Teaching

- No licensing issues
- No steep learning curve
- Used for teaching at universities across the world
 - Used for many bachelor and master projects
 - Used as part of courses on programming/ research methods

Using OpenSesame

Items

- Items are building blocks
- Ten core items offer common functionality

Plug-ins

- Plug-ins are additional items
 - Eye trackers (PyGaze) (Dalmaijer, Mathôt, Van der Stigchel, 2014)
 - Video playback
 - Forms
 - Etc.
- Plug-ins also provide graphical controls
- New plug-ins can be written easily

User interface vs script

Combining GUI and script

- The GUI generates a script
 - Custom language
 - Not Python!
- You can edit this script directly
- Afterwards you can continue using the GUI

Combining GUI and script

- You can create a prototype display using the GUI, and add variables using scripting
- Prototype script:
 - draw image 0.0 0.0 "gaze_left.png" scale=1.0
 center=1 show if="always"
- Variable script:
 - draw image 0.0 0.0 "gaze_[gaze_cue].png"
 scale=1.0 center=1 show_if="always"

Back-ends

Back-ends

- There are many ways to control the display, input, etc.
- OpenSesame is not tied to one method
- Back-ends can be flexibly added, like plug-ins

Back-ends

- Each back-end has its own benefits
 - Temporal precision
 - Stability
 - Extra functionality
 - Cross-platform support

- Xpyriment → Simple with good temporal precision. Expyriment-based (Krause & Lindeman, 2013)
- Legacy → Fallback, modest temporal precision
- Psycho → PsychoPy based, good temporal precision (Peirce, 2007)
- Droid → For Android devices

Design

- Multisensory cueing task
- Participants see:
 - cat
 - dog
 - capybara
- ... and hear:
 - meow
 - bark

Design

Task:

- dog → tap left
- cat → tap right
- capybara → no response

Hypotheses:

- Congruent sound and image (cat + meow, or dog + bark) → fast response
- Incongruent sound and image (cat + bark, or dog + meow) → slow response
- When there is a capybara, most false responses are congruent with the sound

Design

- Formally: $\underline{S}_N \times V_3 \times A_2$
- What kind of design is this?
 - Within-subjects or between-subjects?
 - Fully crossed?
 - How many factors with how many levels?

And now for the tutorial!

References

Dalmaijer, E., Mathôt, S., & Van der Stigchel, S. (2014). PyGaze: An opensource, cross-platform toolbox for minimal-effort programming of eyetracking experiments. *Behavior Research Methods*, *46*(4), 913–921. doi:10.3758/s13428-013-0422-2

Krause, F., & Lindemann, O. (2013). Expyriment: A Python library for cognitive and neuroscientific experiments. *Behavior Research Methods*. doi:10.3758/s13428-013-0390-6

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An opensource, graphical experiment builder for the social sciences. *Behavior Research Methods*, *44*(2), 314–324. doi:10.3758/s13428-011-0168-7

Peirce, J. W. (2007). PsychoPy: Psychophysics software in Python. *Journal of Neuroscience Methods*, *162*(1-2), 8–13. doi:10.1016/j.jneumeth.2006.11.017