THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Customer Complaint Analysis and Prediction System

Leveraging NLP to Enhance Customer Experience

Group - 7:

Bhumika Mallikarjun Horapet Manoj Padala Swathi Murali Swathi K R

Data

Consumer Complaint Database

Data Link: https://www.consumerfinance.gov/data-research/consumer-complaints/

Total number of rows: 2199541

Size of the data: 4.05GB

Dates: 01/01/2018 to 11/11/2024

Problem Statement:

- Predict the likely outcome of customer complaints.
- Summarize lengthy or unclear narratives for better understanding by the service team.
- Classify issues into categories to streamline escalation to the appropriate team.
- Analyze sentiment to prioritize complaints based on urgency.

Key Benefits:

- Customer will get know predicted response from company
- Improve satisfaction through better complaint handling.
- Improve understanding of complaint from the customer (even if the language is unclear).

Pre-Processing

Summarization of Complains

Summarized to check if the classification of resolution gets improved with summary generated forn complaint resolution

Data Filtered to 70k records from 2M records.

Summarization of Complains

Models used:

 T5- small time taken to summarize: 9hrs Avg Rouge Score: 0.23

 facebook/bart-large-cnn time taken to summarize: 13hrs Avg Rouge Score: 0.71

CHALLENGES

MULTIPLE FORMATS ACCURATE CATEGORIZATION

SCALABILITY

SOLUTION APPROACH

EVALUATION

MODEL SELECTION

FINE TUNING

MODELS TESTED

Model	Accuracy	Macro	Weighted Avg	Тор-	Validation Loss
		Avg F1-	F1-Score	3 Accuracy	
		Score			
DistilBERT	58.25%	0.16	0.34	0.58	2.7234
RoBERTa	56.19%	0.17	0.32	0.56	2.8800
ALBERT	37.91%	0.06	0.16	0.37	3.5996
XLM-	30.00%	0.15	0.30	52.5%	3.0853
RoBERTa					
DistilBERT	67.71%	0.19	0.38	0.67	2.8119

FUTURE ENHANCEMENTS

- Model Ensemble
- Advanced Class Imbalance Handling

Company Response Classification

Models used:

Bert Base Uncased

Rows used: 67k

Columns used: Company, Issue, Category and Summary,

Test train split: 80:20

Epochs: 4

Handled Imbalance issue using Class weights

Validation F1- Score: 0.82

Validation Accuarcy: 0.84

Company Response Classification

Model used:

Bert Base Uncased

Rows used: 230k

Columns used: Company, Issue, Category and Complaint

Labels: Closed, Closed with explaination, Closed with monetary relief, Closed with

non monetary relief, Untimely response

Test train split: 80:20

Epochs: 4

Handled Imbalance issue using Class weights

Validation F1- Score: 0.81

Validation Accuracy: 0.77

Company Response Classification

Model used:

Roberta-base

Rows used: 67k

Columns used: Company, Issue, Category and Summary,

Test train split: 80:20

Epochs: 4

Handled Imbalance issue using Class weights

Validation F1- Score: 0.82

Validation Accuarcy: 0.80

Sentiment Analysis for Consumer Complaints

Model Comparison:

- 1. Model Implementation
 - Data 67k customer complaints data
 - Four transformer models were implemented:
 - BERT (bert-base-uncased)
 - RoBERTa (roberta-base)
 - DistilBERT (distilbert-base-uncased)
 - T5 (t5-base)
 - Models were fine-tuned on consumer complaint data.
 - Sentiment labels: Negative (0), Neutral (1), Positive (2)
- 2. Evaluation Metrics
 - Classification report generated for each model
 - Accuracy and F1 score used as primary comparison metric

Results and Best Model Selection

Model	Accuracy	Precision	Recall	F1-Score
BERT (base- uncased)	0.9028	0.84	0.82	0.83
RoBERTa (base)	0.8920	0.88	0.80	0.83
DistilBERT (base- uncased)	0.8942	0.84	0.81	0.82
T5 (base)	0.8418	0.81	0.68	0.72

- BERT outperformed other models with 90.28% accuracy
- DistilBERT closely followed with 89.42% accuracy
- T5 showed the lowest performance at 84.18%
- Best Model: BERT (base-uncased)

Fine-tuned BERT Model for Sentiment Analysis

- Model: BERT (bert-base-uncased)
- Data: Consumer complaints with 'Processed Narrative' column
- Task: 3-class sentiment classification (Negative, Neutral, Positive)
- Approach: 5-fold stratified cross-validation

Results and Performance

Class	Precision	Recall	F1-Score	Support
0 (Negative)	0.97	0.97	0.97	31,258
1 (Neutral)	0.94	0.92	0.93	3,342
2 (Positive)	0.97	0.97	0.97	33,048

Accuracy: 0.97

Macro Avg: 0.96

Weighted Avg: 0.97

DEMO

Thank You!