

6.2.5 电子云的角度分布图

天津大学

邱海霞

波函数的统计学解释

无固定轨道

无法同时测得其位置和速度

核外运动的电子

波恩 (1882-1970) 德国物理学家

从统计学的角度对波函数进行了解释

波函数的统计学解释

光具有波粒二象性

光的强度 $\propto |\psi|^2$

光的强度∝光子密度

光子密度 $\propto |\psi|^2$

电子在空间某处 $\propto |\psi|^2$ 出现的概率密度

电子的波动性是其统计性的体现

概率波

电子云(electron cloud)

|\v|^2 电子在核外空间出现的概率密度大小 |\v|^2 大的地方,电子出现的概率密度大

以小黑点的疏密程度表示电子在核外空间各点的概率密度,所得图像形象化描述为电子云

电子云的空间图形

电子云

电子在核外空间概率密度的形象化描述

 $|\psi|^2$ 作图 电子云的空间图形 $\psi = R(r) \cdot Y(\theta, \phi)$

$$\left|\psi\right|^{2}$$
 $R^{2}(r)$ $Y^{2}(\theta,\phi)$ 角度分布图

反映了电子在核外空间各个方向 上出现的概率密度的分布规律

s 电子云的角度分布图

H原子的1s轨道

$$Y(\theta, \varphi) = \sqrt{\frac{1}{4\pi}}$$
 $Y^2(\theta, \varphi) = \frac{1}{4\pi}$

p电子云的角度分布图

H原子的 $2p_z(m=0)$

$$Y(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} \cos \theta$$
 $Y^2(\theta, \varphi) = \frac{3}{4\pi} \cos^2 \theta$

d 电子云的角度分布图

电子云角度分布图与原子轨道角度分布图

