In [1]:

import pandas as pd

In [4]:

df = pd.read_csv('survey_ai.csv')

In [5]:

df.head()

Out[5]:

	ID	Q1.Al_knowledge	Q2.Al_sources	Q2#1.Internet	Q2#2.Books/Papers	Q2#3.Socia
0	1	8	Internet;Books/Scientific papers (physical/onl	1	1	
1	2	7	Internet;Social media	1	0	
2	3	5	Internet;Books/Scientific papers (physical/onl	1	1	
3	4	5	Internet;Social media	1	0	
4	5	4	Internet	1	0	

5 rows × 35 columns

In [6]:

df.tail()

Out[6]:

	ID	Q1.Al_knowledge	Q2.AI_sources	Q2#1.Internet	Q2#2.Books/Papers	Q2#3.Social_med
86	87	8	Internet	1	0	
87	88	6	Social media	0	0	
88	89	9	Books/Scientific papers (physical/online format)	0	1	
89	90	2	I don't inform myself about Al	0	0	
90	91	2	Discussions with family/friends	0	0	

localhost:8888/notebooks/AlSurvey .ipynb

5 rows × 35 columns

```
In [7]:
df.shape
Out[7]:
(91, 35)
In [8]:
df.columns
```

Out[8]:

```
Index(['ID', 'Q1.AI_knowledge', 'Q2.AI_sources', 'Q2#1.Internet',
       'Q2#2.Books/Papers', 'Q2#3.Social_media', 'Q2#4.Discussions',
       'Q2#5.NotInformed', 'Q3#1.AI_dehumanization', 'Q3#2.Job_replacemen
t',
       'Q3#3.Problem_solving', 'Q3#4.AI_rulling_society', 'Q4#1.AI_costl
у',
       'Q4#2.Economic_crisis', 'Q4#3.Economic_growth', 'Q4#4.Job_loss',
       'Q5.Feelings', 'Q6.Domains', 'Q6#1.Education', 'Q6#2.Medicine',
       'Q6#3.Agriculture', 'Q6#4.Constructions', 'Q6#5.Marketing',
       'Q6#6.Administration', 'Q6#7.Art', 'Q7.Utility_grade',
       'Q8.Advantage_teaching', 'Q9.Advantage_learning',
       'Q10.Advantage_evaluation ', 'Q11.Disadvantage_educational_proces
s',
       'Q12.Gender', 'Q13.Year_of_study', 'Q14.Major', 'Q15.Passed_exams',
       'Q16.GPA'],
      dtype='object')
```

In [9]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 91 entries, 0 to 90
Data columns (total 35 columns):

# 	Column	Non-Null Count	Dtype
0	ID	91 non-null	int64
1	Q1.AI_knowledge	91 non-null	int64
2	Q2.AI_sources	91 non-null	object
3	Q2#1.Internet	91 non-null	int64
4	Q2#2.Books/Papers	91 non-null	int64
5	Q2#3.Social_media	91 non-null	int64
6	Q2#4.Discussions	91 non-null	int64
7	Q2#5.NotInformed	91 non-null	int64
8	Q3#1.AI_dehumanization	91 non-null	int64
9	Q3#2.Job_replacement	91 non-null	int64
10	Q3#3.Problem_solving	91 non-null	int64
11	Q3#4.AI_rulling_society	91 non-null	int64
12	Q4#1.AI_costly	91 non-null	int64
13	Q4#2.Economic_crisis	91 non-null	int64
14	Q4#3.Economic_growth	91 non-null	int64
15	Q4#4.Job_loss	91 non-null	int64
16	Q5.Feelings	91 non-null	int64
17	Q6.Domains	91 non-null	object
18	Q6#1.Education	91 non-null	int64
19	Q6#2.Medicine	91 non-null	int64
20	Q6#3.Agriculture	91 non-null	int64
21	Q6#4.Constructions	91 non-null	int64
22	Q6#5.Marketing	91 non-null	int64
23	Q6#6.Administration	91 non-null	int64
24	Q6#7.Art	91 non-null	int64
25	Q7.Utility_grade	91 non-null	int64
26	Q8.Advantage_teaching	91 non-null	int64
27	Q9.Advantage_learning	91 non-null	int64
28	Q10.Advantage_evaluation	91 non-null	int64
29	Q11.Disadvantage_educational_process	91 non-null	int64
30	Q12.Gender	91 non-null	int64
31	Q13.Year_of_study	91 non-null	int64
32	Q14.Major	91 non-null	int64
33	Q15.Passed_exams	91 non-null	int64
34	Q16.GPA	91 non-null	float64
	63 164(4) 1164(33) 11 1(3)		

dtypes: float64(1), int64(32), object(2)

memory usage: 25.0+ KB

In [10]:

df.describe()

Out[10]:

	ID	Q1.Al_knowledge	Q2#1.Internet	Q2#2.Books/Papers	Q2#3.Social_media	Q2
count	91.00000	91.000000	91.000000	91.000000	91.000000	
mean	46.00000	5.912088	0.813187	0.351648	0.439560	
std	26.41338	1.970044	0.391921	0.480130	0.499083	
min	1.00000	1.000000	0.000000	0.000000	0.000000	
25%	23.50000	5.000000	1.000000	0.000000	0.000000	
50%	46.00000	6.000000	1.000000	0.000000	0.000000	
75%	68.50000	7.000000	1.000000	1.000000	1.000000	
max	91.00000	10.000000	1.000000	1.000000	1.000000	

8 rows × 33 columns

In [11]:

df.nunique()

Out[11]:

ID	91
Q1.AI_knowledge	10
Q2.AI_sources	13
Q2#1.Internet	2
Q2#2.Books/Papers	2
Q2#3.Social_media	2
Q2#4.Discussions	2
Q2#5.NotInformed	2
Q3#1.AI_dehumanization	5
Q3#2.Job_replacement	5
Q3#3.Problem_solving	5
Q3#4.AI_rulling_society	5
Q4#1.AI_costly	5
Q4#2.Economic_crisis	5
Q4#3.Economic_growth	4
Q4#4.Job_loss	5
Q5.Feelings	4
Q6.Domains	44
Q6#1.Education	2
Q6#2.Medicine	2
Q6#3.Agriculture	2
Q6#4.Constructions	2
Q6#5.Marketing	2
Q6#6.Administration	2
Q6#7.Art	2
Q7.Utility_grade	9
Q8.Advantage_teaching	3
Q9.Advantage_learning	3
Q10.Advantage_evaluation	3
Q11.Disadvantage_educational_process	4
Q12.Gender	2
Q13.Year_of_study	2
Q14.Major	3
Q15.Passed_exams	2
Q16.GPA	10
dtype: int64	

```
In [16]:
```

```
for i in df.columns:
   print(i)
   print(df[i].unique())
   print('\n')
ID
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2
 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4
8
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7
2
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91]
Q1.AI_knowledge
[8 7 5 4 6 9 1 3 10 2]
Q2.AI_sources
['Internet; Books/Scientific papers (physical/online format)'
 'Internet;Social media' 'Internet'
 'Internet; Discussions with family/friends'
 'Books/Scientific papers (physical/online format); Social media; Discuss
In [17]:
for i in df.columns:
   print(i)
   print(df[i].value_counts())
   print('\n')
ID
      1
1
69
      1
67
      1
66
      1
65
      1
29
     1
28
     1
27
      1
26
      1
91
      1
Name: ID, Length: 91, dtype: int64
Q1.AI_knowledge
7
      17
5
      17
6
      17
```

In [19]:

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from IPython import get_ipython
import warnings
warnings.filterwarnings("ignore")
```

In [20]:

In [38]:

In [22]:

```
for i in df.columns:
    plt.figure(figsize=(15,6))
    sns.histplot(df[i], bins = 10, kde = True, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
                                     Q2.Al_sources
 70
 50
 30
In [25]:
num_cols = df.select_dtypes(include=[np.number])
```

In [26]:

```
for i in num_cols.columns:
   plt.figure(figsize=(15,6))
   sns.boxplot(num_cols[i], data = df, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.show()
```


In [27]:

```
for i in num_cols.columns:
    plt.figure(figsize=(15,6))
    sns.violinplot(num_cols[i], data = df, palette = 'hls')
    plt.xticks(rotation = 90)
    plt.show()
```


In [28]:

```
for i in num_cols.columns:
    for j in num_cols.columns:
        plt.figure(figsize=(15,6))
        sns.lineplot(x = num_cols[i], y = num_cols[j], data = df, palette = 'hls')
        plt.xticks(rotation = 90)
        plt.show()
```


0.2

In [29]:

```
for i in num_cols.columns:
    for j in num_cols.columns:
        plt.figure(figsize=(15,6))
        sns.scatterplot(x = num_cols[i], y = num_cols[j], data = df, palette = 'hls')
        plt.xticks(rotation = 90)
        plt.show()
```

In [34]:

In [35]:

In [37]:

In [39]:

```
informed = df.groupby(['Q2#5.NotInformed']).mean()
informed_utility = pd.DataFrame(informed['Q7.Utility_grade'])
informed_utility['Utility_Percentage'] = informed['Q7.Utility_grade'].apply(lambda x : x
informed_utility.columns
```

Out[39]:

Index(['Q7.Utility_grade', 'Utility_Percentage'], dtype='object')

In [41]:

