Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)
Constant	K	$K\delta(f)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$
Rectangle	$rect\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \left[\delta (f - f_o) + \delta (f + f_o) \right]$
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta (f - f_o) - \delta (f + f_o) \Big]$
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$
Comb	$\sum_{m=-\infty}^{\infty} \delta(t - mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\bigg(\frac{f}{\beta}\bigg)$
Duality	$X\left(t ight)$	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$
	$\int_{-\infty}^{\infty} (r) dr$	$\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$

Unilateral Laplace Transform: $X(s) = \int_{0^{-}}^{\infty} x(t) \exp(-st) dt$

LAPLACE TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(s)
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	1/s
Ramp	tu(t)	$1/s^2$
n th order Ramp	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
Damped Ramp	$t\exp(-\alpha t)u(t)$	$1/(s+\alpha)^2$
Exponential	$\exp(-\alpha t)u(t)$	$1/(s+\alpha)$
Cosine	$\cos(\omega_o t)u(t)$	$s/(s^2+\omega_o^2)$
Sine	$\sin(\omega_o t)u(t)$	$\omega_o/(s^2+\omega_o^2)$
Damped Cosine	$\exp(-\alpha t)\cos(\omega_o t)u(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_o^2}$
Damped Sine	$\exp(-\alpha t)\sin(\omega_o t)u(t)$	$\frac{\omega_o}{\left(s+\alpha\right)^2+\omega_o^2}$

LAPLACE TRANSFORM PROPERTIES		
	Time-domain	s-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(s) + \beta X_2(s)$
Time shifting	$x(t-t_o)u(t-t_o)$	$\exp(-st_o)X(s)$
Shifting in the s-domain	$\exp(s_o t)x(t)$	$X(s-s_o)$
Time scaling	$x(\alpha t)$	$\frac{1}{ \alpha }X\left(\frac{s}{\alpha}\right)$
Integration in the time-domain	$\int_{0^{-}}^{t} x(\zeta) d\zeta$	$\frac{1}{s}X(s)$
Differentiation in the	$\frac{dx(t)}{dt}$	$sX(s)-x(0^-)$
time-domain	$\frac{d^n x(t)}{dt^n}$	$s^{n}X(s) - \sum_{k=0}^{n-1} s^{n-1-k} \frac{d^{k}x(t)}{dt^{k}}\bigg _{t=0^{-}}$
Differentiation in the	-tx(t)	$\frac{dX\left(s\right)}{ds}$
s-domain	$\left(-t\right)^{n}x(t)$	$\frac{d^{n}X(s)}{ds^{n}}$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$	$X_1(s)X_2(s)$
Initial value theorem	$x(0^+) = \lim_{s \to \infty} sX(s)$	
Final value theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$	

Formulas (for EE2023 Final Exam)

Page 3 of 4

System Type	Transfer Function (Standard Form)	Unit Impulse and Unit Step Responses	Remarks
1 st order system	$G(s) = \frac{K}{T} \cdot \frac{1}{s + 1/T}$	$y_{\delta}(t) = \frac{K}{T} \exp\left(-\frac{t}{T}\right) u(t)$ $y_{step}(t) = K \left[1 - \exp\left(-\frac{t}{T}\right)\right] u(t)$	T : Time-constant K : DC Gain Real Pole at $s = -\frac{1}{T}$
$2^{ ext{nd}}$ order system $(\zeta > 1)$ Overdamped	$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $= \frac{K_1}{s + p_1} + \frac{K_2}{s + p_2}$	$y_{\delta}(t) = \left[K_1 \exp(-p_1 t) + K_2 \exp(-p_2 t) \right] u(t)$ $y_{step}(t) = \left[K - \frac{K_1}{p_1} \exp(-p_1 t) - \frac{K_2}{p_2} \exp(-p_2 t) \right] u(t)$	$K : DC Gain$ $p_1 = \omega_n \zeta + \omega_n \sqrt{\zeta^2 - 1}$ $p_2 = \omega_n \zeta - \omega_n \sqrt{\zeta^2 - 1}$ $Real Distinct Poles at s = -p_1 and s = -p_2$
2^{nd} order system $\left(\zeta=1\right)$ Critically damped	$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $= \frac{K\omega_n^2}{(s + \omega_n)^2}$	$y_{\delta}(t) = K\omega_n^2 t \exp(-\omega_n t) u(t)$ $y_{step}(t) = K \left[1 - \exp(-\omega_n t) - \omega_n t \exp(-\omega_n t) \right] u(t)$	K : DC Gain Real Repeated Poles at $s = -\omega_n$
2^{nd} order system $\left(0<\zeta<1 ight)$ Underdamped		$y_{\delta}(t) = K \frac{\omega_n^2}{\omega_d} \exp(-\sigma t) \sin(\omega_d t) u(t)$ $y_{step}(t) = K \left[1 - \frac{\omega_n}{\omega_d} \exp(-\sigma t) \sin(\omega_d t + \phi) \right] u(t)$	K : DC Gain ω_n : Undamped Natural Frequency ζ : Damping Ratio ω_d : Damped Natural Frequency $\sigma = \zeta \omega_n \omega_d^2 = \omega_n^2 \left(1 - \zeta^2\right) \omega_n^2 = \sigma^2 + \omega_d^2 \tan(\phi) = \frac{\omega_d}{\sigma}$ Complex Conjugate Poles at $s = -\sigma \pm j\omega_d$
$2^{ ext{nd}}$ order system $\left(\mathcal{\zeta} = 0 ight)$ Undamped	$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $= \frac{K\omega_n^2}{s^2 + \omega_n^2}$	$y_{\delta}(t) = K\omega_n \sin(\omega_n t)u(t)$ $y_{step}(t) = K(1 - \cos\omega_n t)u(t)$	K : DC Gain ω_n : Undamped Natural Frequency Imaginary Conjugate Poles at $s=\pm j\omega_n$

Formulas (for EE2023 Final Exam)

$$\begin{array}{c}
2^{\text{nd}} \text{ order system RESONANCE} \\
\left(0 \le \zeta < 1/\sqrt{2}\right)
\end{array}$$

RESONANCE FREQUENCY:
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

RESONANCE PEAK:
$$M_r = \left| G(j\omega_r) \right| = \frac{K}{2\zeta\sqrt{1-\zeta^2}}$$

Trigonometric Identities		
$e^{j\theta} = \cos(\theta) + j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = 0.5\left(e^{j\theta} + e^{-j\theta}\right)$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = -0.5j(e^{j\theta} - e^{-j\theta})$	$\tan(\alpha \pm \alpha) = \tan(\alpha) \pm \tan(\beta)$	
$\sin^2(\theta) + \cos^2(\theta) = 1$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = 0.5\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = 0.5[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$	
$\sin^2(\theta) = 0.5 [1 - \cos(2\theta)]$	$\sin(\alpha)\cos(\beta) = 0.5\left[\sin(\alpha - \beta) + \sin(\alpha + \beta)\right]$	
$\cos^2(\theta) = 0.5 [1 + \cos(2\theta)]$	$C\cos(\theta) - S\sin(\theta) = \sqrt{C^2 + S^2}\cos\left[\theta + \tan^{-1}\left(\frac{S}{C}\right)\right]$	

Complex Unit
$$(j)$$
 \rightarrow $(j = \sqrt{-1} = e^{j\pi/2} = e^{j90^{\circ}})$ $(-j = \frac{1}{j} = e^{-j\pi/2} = e^{-j90^{\circ}})$ $(j^2 = -1)$

Definitions of Basic Functions

Rectangle:

$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1; & -T/2 \le t < T/2 \\ 0; & \text{elsewhere} \end{cases}$$

Triangle:

$$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - |t|/T; & |t| \le T \\ 0; & |t| > T \end{cases}$$

Sine Cardinal:

$$\operatorname{sinc}\left(\frac{t}{T}\right) = \begin{cases} \frac{\sin\left(\pi t/T\right)}{\pi t/T}; & t \neq 0\\ 1; & t = 0 \end{cases}$$

Signum:

$$\operatorname{sgn}(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$

Unit Impulse:

$$\delta(t) = \begin{cases} \infty; & t = 0 \\ 0; & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

Unit Step:

$$u(t) = \begin{cases} 1; & t \ge 0 \\ 0; & t < 0 \end{cases}$$