Проверка гипотез

План

- Что такое гипотезы
- p_value
- Ошибки 1 и 2 рода
- Какими бывают критерии
- Параметрические критерии для долей, средних и дисперсий

Обозначения

- Внимание: в этой презентации будут тонко использоваться греческие буквы с крышечкой и без крышечки. Это традиция в статистике
- Когда они <u>без</u> крышечки, речь идет о <u>параметрах</u> некоторого распределения (можно воспринимать их как неизвестные константы)

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

• Когда они <u>с</u> крышечкой, речь идет о некоторых статистиках, посчитанных по выборке из случайных величин, а значит тоже о случайных величинах с каким-то распределением. Этими статистиками мы будем оценивать параметры, которые обозначаются той же греческой буквой, но <u>без</u> крышечки.

$$\hat{\mu} = \bar{X} \sim N\left(\mu, \frac{\sigma^2}{\sqrt{n}}\right)$$

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$(n-1) \cdot \frac{\hat{\sigma}^2}{\sigma^2} = \frac{n-1}{\sigma^2} \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

Что такое гипотеза

Гипотеза — любое утверждение, которое возникло в нашей голове и которое мы собираемся проверить по данным.

- В Австралии женщин дискриминируют на рынке труда
- В Питере кофе любят больше, чем в Москве
- Осьминог Пауль может предсказывать будущее
- Доходности по акциям Яндекса нормально распределены
- Подгузники и пиво часто покупают вместе

Что значит проверить гипотезу

- Собрать данные и посмотреть, не противоречит ли им наше утверждение
- Любая выборка случайная, просто посчитать описательные статистики недостаточно
- Описательные статистики случайные величины
- При любом объёме выборки можно допустить ошибку

Что значит проверить гипотезу

• Собрали данные о предсказаниях осьминога

memepedia.com

- Данные не противоречат тому, что он провидец
- Это не означает, что осьминог правда пророк. Если мы соберём ещё данных, они могут начать этому противоречить.

Что значит проверить гипотезу

• Собрали данные о предсказаниях осьминога

Если данные не противоречат утверждению, это не является доказательством его верности

- Данные не противоречат тому, что он провидец
- Это не означает, что осьминог правда пророк. Если мы соберём ещё данных, они могут начать этому противоречить

Взболтать, но не смешивать

James Bond Casino Royale (2006)

«Взболтать, но не смешивать»

> © Бонд, Джеймс Бонд

 Правда ли агент 007 отличает взболтанный мартини от смешанного?

Взболтать, но не смешивать

James Bond Casino Royale (2006)

«Взболтать, но не смешивать»

> © Бонд, Джеймс Бонд

- Завязываем агенту 007 глаза и даём два мартини: смешанный и взболтанный n раз
- Случайная величина $X_i=1$, если Бонд отличил взболтанный мартини от смешанного

Взболтать, но не смешивать

James Bond Casino Royale (2006)

«Взболтать, но не смешивать»

> © Бонд, Джеймс Бонд

Н₀: агент 007 не различает два вида мартини

 H_a : агент 007 различает два вида мартини

Нужно формализовать гипотезу на языке статистики

Формализация задачи

Выборка состоит из единиц и нулей:

- $X_i = 1$, если правильно назвал вид мартини
- $X_i = 0$, если не правильно назвал

$$X_1, ..., X_n \sim iid Bern(p)$$

Если Бонд не различает напитки и выбирает наугад, вероятность успеха p должна быть равна 0.5

 H_0 : $p = 0.5 \iff Бонд не различает напитки$

 H_a : $p \neq 0.5 \Leftrightarrow$ Бонд различает напитки

$$H_0$$
: $p = 0.5$ $X_1, ..., X_n \sim iid Bern(p)$ H_a : $p \neq 0.5$

Представим, что мы дали Бонду мартини 10 раз и получили, что $\hat{p}=0.6$

Выходит, что Бонд отвечает за свои слова

$$H_0$$
: $p = 0.5$

$$H_a: p \neq 0.5$$

$$X_1, \dots, X_n \sim iid \ Bern(p)$$

Представим, что мы дали Бонду мартини 10 раз и получили, что $\hat{p}=0.6$

Выходит, что Бонд отвечает за свои слова \hat{p} — случайная величина, которая зависит от выборки

$$H_0$$
: $p = 0.5$ $X_1, ..., X_n \sim iid \ Bern(p)$ H_a : $p \neq 0.5$

Представим, что мы дали Бонду мартини 10 раз и получили, что $\hat{p}=0.6$

Задача: узнать при текущем объёме выборки насколько \hat{p} близка к 0.5

$$H_0$$
: $p = 0.5$

$$H_a: p \neq 0.5$$

$$X_1, \dots, X_n \sim iid Bern(p)$$

- \hat{p} случайная величина
- $\hat{p}-0.5$ случайная величина

lacktriangle Если расстояние от \hat{p} до 0.5 достаточно маленькое, данные не противоречат нулевой гипотезе

$$H_0$$
: $p = 0.5$

$$H_a: p \neq 0.5$$

$$X_1, \dots, X_n \sim iid \ Bern(p)$$

По ЦПТ:

$$\hat{p} \stackrel{asy}{\sim} N\left(p, \frac{p(1-p)}{n}\right) \iff \hat{p} \stackrel{asy}{\sim} N\left(0.5, \frac{0.5 (1-0.5)}{n}\right)$$

$$\frac{\hat{p} - 0.5}{\sim} N\left(0.1\right)$$

$$\hat{p} \stackrel{asy}{\sim} N\left(0.5, \frac{0.5 (1 - 0.5)}{n}\right)$$

при верности нулевой гипотезы

$$\frac{\hat{p} - 0.5}{\sqrt{\frac{0.5 (1 - 0.5)}{n}}} \stackrel{asy}{\sim} N(0, 1)$$

H₀:
$$p = 0.5$$

 H_a : $p \neq 0.5$

$$Z = \frac{\hat{p} - 0.5}{\sqrt{\frac{0.5 (1 - 0.5)}{n}}} \stackrel{asy}{\sim} N(0, 1)$$

- Мы выяснили, как распределено расстояние до 0.5 при верности нулевой гипотезы
- Осталось выбрать порог, при котором мы будем считать, что нулевая гипотеза H_0 не отвергается
- Против нашей гипотезы говорят очень большие либо очень маленькие значения статистики

Проверка гипотезы

Мы рассуждаем о распределении в терминах нулевой гипотезы. Близкие к центру значения z-статистики показывают, что H_0 не противоречат данным

Мы не решаем, верна ли гипотеза,а проверяем, противоречат ли ей данные

Проверка гипотезы

Если наблюдаемое значение статистики попало в хвост (левый или правый), гипотеза отвергается, расстояние между \hat{p} и 0.5 оказывается слишком большим

Проверка гипотезы

Если наблюдаемое значение попало между критическими, данные не противоречат гипотезе

Уровень значимости

- Если мы отвергаем нулевую гипотезу, когда она верна мы ошибаемся
- Выбирая порог для отсечения, мы фиксируем вероятность такой ошибки
- Вероятность такой ошибки α уровень значимости, также эту ошибку называют ошибкой первого рода
- Если мы 100 раз попытаемся сесть на поезд на уровне значимости 0.05, в среднем мы будем опаздывать 5 раз
- Обычно α выбирают равным 0.05, 0.01 или 0.001

- 1. Определяем природу выборку, определяем распределение и его параметры
- 2. иксируем уровень значимости: $\alpha = 0.05$ H_0 : p = 0.5 H_a : $p \neq 0.5$
- 3. Формулируем нулевую гипотезу и альтернативную

- 4. Выбираем **союзника** (статистический тест) для проверки гипотезы
- 5. Находим наблюдаемо $\frac{Z_{0.6-0.5}}{\sqrt{10}} = 0.654$

ЦПТ:
$$z \stackrel{asy}{\sim} N(0,1)$$

6. Находим критическое значение с помощью **союзника**:

- 1. Определяем природу выборки: вид распределения и его параметры
- 2. Формулируем нулевую и альтернативную гипотезы о параметрах распределения

$$H_0$$
: $p = 0.5$ H_a : $p \neq 0.5$

3. Выбираем статистику, на основе которой мы будем тестировать гипотезу, и конструируем статистический тест для проверки гипотезы

ЦПТ:
$$z \stackrel{asy}{\sim} N(0,1)$$

4. Находим **наблюдаемое** и **критическое** значение статистики на некотором фиксированном уровне α

$$z_{obs} = \frac{0.6 - 0.5}{\sqrt{\frac{0.5 (1 - 0.5)}{10}}} = 0.654$$
 $z_{crit}(\alpha) = 1.96$

5. Сравниваем наблюдаемое значение с критическим и делаем выводы

- Наблюдаемое значение попало в область между критическими ⇒ гипотеза не отвергается
- Голубая площадь под хвостами уровень значимости

• Гипотеза, что Джеймс Бонд не различает напитки, не отвергается на уровне значимости 5%

Нельзя принять нулевую гипотезу

- Если при проверке нулевая гипотеза не отвергается, нельзя считать её доказанной
- Говорят, что данные не противоречат нулевой гипотезе
- Новые данные могут показать, что гипотеза неверна

Альтернативы

- Иногда рассматривают односторонние альтернативы
- Обычно это делается в ситуациях, когда мы уверены в направлении ожидаемых различий
- При таких альтернативах ошибку первого рода полностью переносят на один из двух хвостов

- Наблюдаемое значение попало в область между критическими ⇒ гипотеза не отвергается
- Голубая площадь под хвостами уровень значимости

• Красная площадь под хвостами — **р-значение** (достигаемый уровень значимости)

Р-значение упрощает проверку гипотез

Если красная площадь оказалась больше синей

$$p_value > \alpha$$
,

⇒ наблюдаемое значение попало в область между критическими, гипотеза **не отвергается**.

 $p_value > \alpha \Rightarrow$ не отвергается

Р-значение упрощает проверку гипотез

Если красная площадь оказалась меньше синей

$$p_value < \alpha$$
,

⇒ наблюдаемое значение попало в критическую область, гипотеза **отвергается**.

 $p_value < \alpha \Rightarrow$ отвергается

Вопрос: какой уровень значимости надо выбрать, чтобы гипотеза впервые отверглась?

Р-значение

Вопрос: какой уровень значимости надо выбрать, чтобы гипотеза впервые отверглась?

Ответ: равный Р-значению

Из-за этого Р-значение также называют **достигаемым уровнем значимости**

Р-значение

Достигаемый уровень значимости (**P-значение**) — это вероятность при справедливости нулевой гипотезы получить такое же наблюдаемое значение статистики, как в эксперименте либо ещё более экстремальное

$$p_value = \mathbb{P}(|z| > z_{\text{набл.}} \mid H_0)$$

Р-значение

Достигаемый уровень значимости (**Р-значение**) — это вероятность при справедливости нулевой гипотезы получить такое же наблюдаемое значение статистики, как в эксперименте либо ещё более экстремальное

$$p_value = \mathbb{P}(|z| > z_{\text{набл.}} \mid H_0)$$

 $oldsymbol{\Phi}$ В нашей ситуации $p_value = 0.518$, то есть вероятность получить наше или ещё более экстремальное значение статистики, при верности H_0 высока, что говорит в пользу гипотезы

Резюме

- С помощью Р-значения удобно проверять гипотезы
- Оно помогает не акцентировать внимание на том, как именно вычисляется критическое значение, и упрощает понимание статистических протоколов

Типичный протокол из статистического пакета:

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-2.5988	1.918	-1.355	0.175	-6.358	1.161
У	0.4170	0.297	1.404	0.160	-0.165	0.999

Ошибки 1 и 2 рода

	H_0 верна	H_0 неверна	
H_0 не отвергается	ok	β	ошибка 2 рода
H_0 отвергается	α	ok	

ошибка 1 рода

 $\alpha = \mathbb{P}(H_0 \text{ отвергнута} \mid H_0 \text{ верна})$

 $\beta = \mathbb{P}(H_0$ не отвергнута | H_0 не верна)

Величину $1-\beta$ называют **мощностью** критерия

Н₀: нет беременности

 H_0 верна

 H_a : есть беременность

 H_0 неверна

 H_0 не этвергается

Вы не беременны

Вы не беременны

 H_0 отвергается

Вы беременны

Вы беременны

$$H_0: p = p_0$$

Ошибки первого и второго рода неравнозначны:

мы перед экспериментом фиксируем lpha,

$$H_a: p = p_a$$

а β минимизируется по остаточному принципу

 $H_0: p = p_0$

 $H_a: p = p_a$

При уменьшении ошибки первого рода всегда возрастает ошибка второго рода

Аналогия с классификацией

$$y=1$$
 $y=0$ $\hat{y}=1$ TP FP ошибка 2 рода $\hat{y}=0$ FN TN

ошибка 1 рода

Пример: хотим, чтобы классификатор удалял спам и задел минимум хороших документов

Подбор порога: зафиксировать $FPR = \frac{FP}{FP + TN} \leq 0.05$ (доля зря удалённых), а дальше максимизировать полноту $Recall = TPR = \frac{TP}{TP + FN} = 1 - \frac{FN}{TP + FN}$

Наиболее мощный критерий

- Статистический критерий способ посчитать расстояние между наблюдаемым значением и предполагаемым
- Подобные расстояния можно считать разными способами
- Хочется выбрать такой способ, который при фиксированном размере выборки и фиксированной ошибке первого рода будет давать наименьшую ошибку второго рода
- Такой критерий называется наиболее мощным

Резюме

- Ошибки первого и второго рода неравнозначны
- Имеется презумпция нулевой гипотезы
- Обычно нулевую гипотезу формулируют так, что нет значимого эффекта

Параметрические критерии

Какими бывают критерии

Проверяется гипотеза о виде неизвестного закона распределения

Есть и другие группы критериев. Любое математически формализованное правило, по которому проверяется гипотеза, можно назвать критерием.

Схема математической статистики

Выборка: x_1, \ldots, x_n Параметр: θ

 $\widehat{\theta} \longrightarrow f_{\widehat{\theta}}(t)$

Как оценить

- Метод моментов
- Метод максимального правдоподобия

Хорошие свойства

- Несмещенная
- Состоятельная
- Эффективная

Союзники

Асимптотические (при большом n)

- ЦПТ
- Дельта-метод

Точные

- Теорема Фишера
- χ_n^2 , t_n , $F_{n,k}$
- Ещё союзники!

Точность оценки, прогнозов

доверительные интервалы

Ответы на вопросы

проверка гипотез

Схема математической статистики

Выборка: x_1, \ldots, x_n Параметр: θ

 $\widehat{\theta} \longrightarrow f_{\widehat{\theta}}(t)$

Союзники

Асимптотические (при большом n)

- ЦПТ
- Дельта-метод

Точные

- Теорема Фишера
- χ_n^2 , t_n , $F_{n,k}$
- Ещё союзники!

очность оценки, прогнозов

доверительные интервалы

Ответы на вопросы

проверка гипотез

Асимптотические критерии

> Точные критерии

Гипотезы о долях

Z-критерий для доли

$$X_1, ..., X_n \sim iid Bern(p)$$

$$H_0: p = p_0$$

$$H_a: p \neq p_0$$

ЦПТ:

$$\hat{p} \stackrel{asy}{\sim} N\left(p_0, \frac{p_0(1-p_0)}{n}\right)$$

Критерий для проверки:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \stackrel{asy}{\sim} N(0, 1)$$

Критерий асимптотический,т.к. использует ЦПТ

Пример (дискриминация):

- В 70-х за участие в антивоенной демонстрации арестован педиатр, автор книг о воспитании детей, Бенджамин Спок
- Суд присяжных назначается сложной многоступенчатой процедурой отбора
- Отобрано 300 человек, из них 90 женщин
- Адвокаты протестуют на предвзятость выбора
- Проверяем гипотезу о предвзятости на уровне значимости 5%

Пример (дискриминация):

 H_0 : отбор беспристрастный

 H_a : женщин дискриминируют

$$H_0: p = 0.5$$

 $H_0: p = 0.5$ $H_a: p < 0.5$

Левосторонняя альтернатива, так как нас интересует именно дискриминация женщин

Пример (дискриминация):

 H_0 : отбор беспристрастный

 H_a : женщин дискриминируют

⇔ H₀: <math>p = 0.5 H_a: <math>p < 0.5

$$X_1, ..., X_n \sim iid Bern(p)$$

 $X_i = 1$, если присяжный – женщина

$$\hat{p} = \frac{90}{300}$$

$$z_{obs} = \frac{0.3 - 0.5}{\sqrt{\frac{0.5 (1 - 0.5)}{300}}}$$

$$z_{0.05} = -1.64$$

Гипотеза о беспристрастном отборе отвергается

Z-критерий для разности независимых долей

$$X_1, \dots, X_{n_x} \sim iid \ Bern(p_x)$$

$$Y_1, \dots, Y_{n_y} \sim iid Bern(p_y)$$

Выборки независимые

$$H_0: p_x = p_y = P \quad H_a: p_x \neq p_y$$

Критерий асимптотический, т.к. использует ЦПТ

Критерий для проверки:

$$z = \frac{\hat{p}_{x} - \hat{p}_{y}}{\sqrt{P(1-P) \cdot \left(\frac{1}{n_{x}} + \frac{1}{n_{y}}\right)}}$$

$$\stackrel{asy}{\sim} N(0,1)$$

$$\stackrel{asy}{\sim} N(0,1) \qquad P = \frac{m_x + m_y}{n_x + n_y}$$

 m_i – число 1 в выборке

Пример (кофе):

Н₀: кофе любят одинаково

 $H_0: p_{\Pi} = p_{M}$

 \Leftrightarrow

На: в Москве любят сильнее

 $H_a: p_\Pi < p_M$

$$X_1, \dots, X_{100} \sim iid Bern(p_M)$$

$$Y_1, \dots, Y_{100} \sim iid Bern(p_{\Pi})$$

$$\hat{p}_{M} = 0.6, \qquad \hat{p}_{\Pi} = 0.5$$

$$P = \frac{50 + 60}{200} = 0.55$$

$$z_{obs} = \frac{0.5 - 0.6}{\sqrt{0.55 \cdot 0.45 \cdot \frac{2}{100}}}$$

$$z_{0.05} = -1.64$$

Гипотеза об одинаковой любви **не отвергается**

Z-критерий для разности зависимых долей

$$X_1, \dots, X_n \sim iid Bern(p_x)$$

$$Y_1, \dots, Y_n \sim iid Bern(p_y)$$

Выборки зависимые

$$H_0: p_x = p_y$$

$$H_a: p_x \neq p_y$$

$egin{array}{c|cccc} & 0 & 1 & & & & & & & & & & & & & & & \\ \hline 0 & a & & b & & & & & & & & & & & & \\ \hline 1 & c & & d & & & & & & & & & & & & \end{array}$

Люди одни и те же, нас интересуют те, кто поменял мнение

Критерий для проверки:

$$z = \frac{c - b}{\sqrt{c + b - \frac{(c - b)^2}{n}}} \stackrel{asy}{\sim} N(0, 1)$$

• Критерий асимптотический

Пример (кофе):

- В 2020 году в Москве сотню человек спросили, любят ли они кофе
- Через год у этих же ста человек снова спросили, любят ли они кофе по-прежнему
- Правда ли, что число любителей кофе изменилось?

		2020			
		0	1		
2021	0	20	10		
2021	1	20	50		

Пример (кофе):

$$X_1, ..., X_n \sim iid Bern(p_x)$$

$$Y_1, ..., Y_n \sim iid Bern(p_y)$$

2020

Выборки зависимые

$$H_0: p_x = p_y$$

$$H_a: p_x \neq p_y$$

$$z_{obs} = \frac{20 - 10}{\sqrt{20 + 10 - \frac{(20 - 10)^2}{100}}}$$

$$z_{0.975} = 1.96$$

Гипотеза о том, что люди не поменяли вкусовых предпочтений **не отвергается**

Резюме

- Для проверки гипотезы о долях используется z-тест, основанный на ЦПТ
- В случае независимых и зависимых выборок статистика считается немного по-разному, для зависимых мы акцентируем внимание только на изменениях
- Обе имеют асимптотически нормальное распределение

 С помощью ровно этих же статистик мы до этого строили для долей асимптотические доверительные интервалы

Гипотезы о средних

Z-критерий для среднего

$$X_1, \dots, X_n \sim iid (\mu, \sigma^2)$$

$$H_0: \mu = \mu_0$$

$$H_a: \mu \neq \mu_0$$

ЦПТ:

$$\bar{X} \overset{asy}{\sim} N\left(\mu_0, \frac{\hat{\sigma}^2}{\sqrt{n}}\right)$$

Критерий для проверки:

$$z = \frac{\overline{X} - \mu_0}{\sqrt{\frac{\widehat{\sigma}^2}{n}}} \quad \stackrel{asy}{\sim} \quad N(0, 1)$$

Критерий асимптотический, т.к. использует ЦПТ, применим для любых средних

t-критерий для среднего

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

$$H_0: \mu = \mu_0$$

$$H_a$$
: $\mu \neq \mu_0$ σ^2 — известна

ЦПТ:

$$\bar{X} \stackrel{\sim}{\sim} N\left(\mu_0, \frac{\sigma^2}{\sqrt{n}}\right)$$

Критерий для проверки:

$$z = \frac{\overline{X} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}} \quad \stackrel{\text{H}_0}{\sim} \quad N(0, 1)$$

Критерий точный, используется предположение о нормальности выборки и известности σ²

t-критерий для среднего

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

$$H_0: \mu = \mu_0$$

$$H_a$$
: $\mu \neq \mu_0$ σ^2 — НЕизвестна

ЦПТ:

$$\bar{X} \sim N\left(\mu_0, \frac{\sigma^2}{\sqrt{n}}\right)$$

Критерий для проверки:

$$z = \frac{\overline{X} - \mu_0}{\sqrt{\frac{\widehat{\sigma}^2}{n}}} \quad \sim \quad t(n-1)$$

Критерий точный, используется предположение о нормальности выборки

Пример (курсы подготовки):

- Каждый год люди сдают ЕГЭ по математике. В обычной ситуации средний результат составляет 65 баллов.
- Игорь открыл свои курсы подготовки к ЕГЭ, его группа из 100 человек получила в среднем 70 баллов, стандартное отклонение составило 20 баллов.
- Правда ли, что курсы Игоря помогают получить более высокий балл?
- Проверяем гипотезу на уровне значимости 5%

Пример (курсы подготовки):

Н₀: курсы Игоря неэффективны

 H_0 : $\mu = 60$

На: курсы помогают

 $H_a: \mu > 60$

Предположение:

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

$$t_{obs} = \frac{70 - 60}{\frac{20}{\sqrt{100}}}$$

$$t_{0.95} = 1.66$$

Гипотеза о неэффективности курсов Игоря **отвергается,** они помогают получить более высокий балл

Z-критерий для разности средних

$$X_1, \dots, X_{n_x} \sim iid \ (\mu_x, \sigma_x^2)$$

$$Y_1, \dots, Y_{n_y} \sim iid \ (\mu_y, \sigma_y^2)$$

Критерий асимптотический,т.к. использует ЦПТ

Выборки независимые

$$H_0$$
: $\mu_x = \mu_y$

$$H_a: \mu_x \neq \mu_y$$

ЦПТ:

$$\bar{X} - \bar{Y} \stackrel{asy}{\sim}_{H_0} N \left(0, \frac{\sigma_{\chi}^2}{n_{\chi}} + \frac{\sigma_{y}^2}{n_{y}} \right)$$

Критерий для проверки:

$$z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \stackrel{asy}{\sim} N(0, 1)$$

Точные критерии для разности средних

$$X_1, \dots, X_{n_x} \sim iid N(\mu, \sigma^2)$$
 $H_0: \mu_x = \mu_y$ $Y_1, \dots, Y_{n_y} \sim iid N(\mu, \sigma^2)$ $H_a: \mu_x \neq \mu_y$

Выборки независимые

Критерий для проверки:

Точные критерии для разности средних

Критерий для проверки:

дисперсии известны

$$z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \sim N(0, 1)$$

Нормальное распределение

дисперсии неизвестны, но равны

$$t=rac{ar{X}-ar{Y}}{\sqrt{rac{\hat{\sigma}_o^2}{n_\chi}+rac{\hat{\sigma}_o^2}{n_y}}}\sim t(n+m-2)$$
 Распределение Стьюдента

дисперсии неизвестны

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\hat{\sigma}_{x}^{2}}{n_{x}} + \frac{\hat{\sigma}_{y}^{2}}{n_{y}}}} \sim t(v)$$

Распределение Уэлча

Пример (стоимость недвижимости):

- До коронакризиса один квадратный метр в Москве стоил 105 тыс. рублей при стандартном отклонении в 40 тыс.
- После коронакризиса один квадратный метр стоит 90 тыс. рублей при стандартном отклонении в 50 тыс.
- Упала ли стоимость, если $n_{\chi} = 20$, $n_{V} = 30$?

Пример (стоимость недвижимости):

Пример (стоимость недвижимости):

Н₀: стоимость не поменялась

 H_0 : $\mu_{2021} = \mu_{2020}$

 H_a : стоимость упала

 $H_a: \mu_{2021} < \mu_{2020}$

Предположение:

Выборки независимы, нормальны

$$t_{obs} = \frac{90 - 105}{\sqrt{\frac{40}{20} + \frac{50}{30}}}$$

$$\nu = 43.89$$

$$t_{0.95} = -1.67$$

Гипотеза о неизменности цен **отвергается**

 \Leftrightarrow

Разность средних (зависимые выборки)

Выборки зависят друг от друга:

$$X_1, ..., X_n \sim iid N(\mu_1, \sigma_1^2)$$
 $Y_1, ..., Y_n \sim iid N(\mu_2, \sigma_2^2)$

- Измерения делаются на одних и тех же объектах
- Можем посмотреть прирост на отдельных объектах

$$d_i = X_i - Y_i$$

• Используем распределение Стьюдента, дисперсию считаем по формуле:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2$$

Пример (польза лекарства):

- На 5 испытуемых сравнивают два лекарства против респираторных заболеваний
- Каждый вдыхает лекарство из ингалятора, а после принимает участие в упражнении на беговой дорожке
- Измеряется время достижения максимальной нагрузки
- Затем то же самое проделывается со вторым лекарством, правда ли что лекарства не отличаются?

Пример (польза лекарства):

H_0 :	μ_1	=	μ_2
---------	---------	---	---------

$$H_a: \mu_1 \neq \mu_2$$

Лекарство 1	50	40	45	45	35
Лекарство 2	60	30	30	35	30
d_i	10	-10	-15	-10	-5

Предположение:

Выборки независимы, нормальны

$$\bar{d} = \frac{1}{5} \sum_{i=1}^{5} d_i = -6$$

$$\hat{\sigma}^2 = \frac{1}{5-1} \sum_{i=1}^{5} (d_i - \bar{d})^2 = 92.5$$

$$t_{obs} = \frac{-6 - 0}{92.5/\sqrt{5}} \qquad t_{0.95} = 2.78$$

Гипотеза, что время достижения максимальной нагрузки не отличается не отвергается

Резюме

- Благодаря удобству ЦПТ, критерии основанные на ней широко распространены
- Для маленьких выборок бывает лучше использовать точные критерии
- Если эти критерии основаны на нормальном распределении, надо проверить выборку на нормальность
- Если предполагается равенство дисперсий, это тоже не помешает проверить
 - С помощью ровно этих же статистик мы до этого строили для средних доверительные интервалы.

Гипотезы о дисперсиях

χ^2 – критерий для дисперсии

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

Критерий для проверки:

 μ — известно

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_a: \sigma^2 > \sigma_0^2$$

$$\frac{n \cdot \hat{s}^2}{\sigma_0^2} = \sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma_0^2} \sim_{H_0} \chi_n^2$$

- Высокая дисперсия связана с риском и нестабильностью
- Мы хотим знать, принимает ли дисперсия своё значение ниже σ_0^2
- Из-за этого в качестве альтернативы обычно используют правостороннюю

χ^2 – критерий для дисперсии

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

 μ — известно

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_a: \sigma^2 > \sigma_0^2$$

Критерий для проверки:

$$\frac{n \cdot \hat{s}^2}{\sigma_0^2} = \sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma_0^2} \sim_{H_0} \chi_n^2$$

 $m{\P}$ Критерий точный, используется предположение о нормальности выборки и известности μ

χ^2 – критерий для дисперсии

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

 μ — НЕизвестно

$$H_0: \sigma^2 = \sigma_0^2$$

$$H_a: \sigma^2 > \sigma_0^2$$

Критерий для проверки:

$$\frac{(n-1)\cdot\hat{\sigma}^2}{\sigma_0^2} \underset{H_0}{\sim} \chi_{n-1}^2$$

 Критерий точный, используется предположение о нормальности выборки

- Мистер Белфорд считает, что вкладываться в активы с дисперсией доходности выше 0.04 очень риксованно.
- За последний год дисперсия Chesapeake Energy составила 0.09. Следует ли вкладываться в эту бумагу? Решение принимается на уровне значимости 5%.

 H_0 : стоит вкладываться

 H_a : лучше не надо

$$H_0: \sigma^2 \le 0.04$$

 $H_0: \sigma^2 \le 0.04$ $H_a: \sigma^2 > 0.04$

Предположение:

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

$$\chi_{obs}^2 = \frac{(10-1)\cdot 0.09}{0.04}$$

$$\chi_9^2(0.95) = 16.92$$

Гипотеза о том, что риск бумаги устроит мистера Белфорда **отвергается**

Тест Фишера для отношения дисперсий

$$X_1, \dots, X_{n_x} \sim iid \ N(\mu_x, \sigma_y^2)$$

$$Y_1, \dots, Y_{n_y} \sim iid N(\mu_y, \sigma_y^2)$$

Выборки независимые

$$H_0$$
: $\sigma_x = \sigma_y$

$$H_a: \sigma_x \neq \sigma_y$$

Критерий для проверки:

$$\frac{\hat{\sigma}_{\chi}^2/\sigma_{\chi}^2}{\hat{\sigma}_{y}^2/\sigma_{y}^2} = \frac{\hat{\sigma}_{\chi}^2}{\hat{\sigma}_{y}^2} \sim F_{n_{\chi}-1, n_{y}-1}$$

Критерий точный, используется предположение о нормальности выборки

- Мистер Белфорд наблюдает за двумя бумагами. За последние десять лет выборочная дисперсия доходности для первой бумаги составила 0.05. Для второй бумаги 0.08.
- Есть ли основания полагать, что на уровне значимости 5% вложение во вторую бумагу более рискованно.

 H_0 : риск одинаковый

 H_a : вторая бумага риксованнее

Предположение:

$$X_1, \dots, X_{n_x} \sim iid N(\mu_x, \sigma_y^2)$$

$$Y_1, \dots, Y_{n_y} \sim iid N(\mu_y, \sigma_y^2)$$

Выборки независимые

$$F_{obs} = \frac{0.08}{0.05}$$

$$F_{9.9}(0.95) = 3.18$$

Гипотеза о том, что бумаги обладают одинаковой рискованностью не отвергается

Резюме

- Для нормальных выборок для проверки гипотез о дисперсиях можно использовать критерий Хи-квадрат
- Для случая двух нормальных выборок подойдёт тест Фишера
- Есть и другие способы проверять гипотезы о дисперсиях

 С помощью ровно этих же статистик мы до этого строили для дисперсий доверительные интервалы