Dynamical Modeling and Predictive Control of Bus Transport Systems: A Hybrid Systems Approach

Işık İlber Sırmatel, Nikolas Geroliminis

Urban Transport Systems Laboratory, EPFL

IFAC 2017, 12.07.2017

Motivation

Problem: Irregularity/inefficiency

Solution: Control

Literature review - Control of bus systems¹

- ► Station control (only at some stops)
 - Holding
 - ▶ Eberlein, Wilson, and Bernstein 2001
 - ▶ Daganzo 2009
 - Stop-skipping
 - ► Fu, Liu, and Calamai 2003
 - ► Cortés et al. 2010
- ► Inter-station control (while buses are moving)
 - Traffic signal priority
 - ► Liu, Skabardonis, and Zhang 2003
 - ► Van Oort, Boterman, and Van Nes 2012
 - Bus speed control (focus of the talk)
 - ▶ Daganzo and Pilachowski 2011
 - ► Ampountolas and Kring 2015

¹Ibarra-Rojas et al. 2015.

Mixed logical dynamical (MLD) modeling²

Continuous states

- ▶ Distance of bus 1 from stop 1 at time t: $x_1(t) \in \mathbb{R}$
- ▶ No. of pax on bus 1 at time t: $n_1(t) \in \mathbb{R}$
- ▶ No. of pax at stop 1 at time t: $m_1(t) \in \mathbb{R}$

Binary states

▶ Is bus 1 holding at stop 2 at time *t*?

$$\delta_{1,2}(t) = \begin{cases} 0 & \to & \text{no} \\ 1 & \to & \text{yes} \end{cases}$$

▶ Is bus 1 cruising to stop 2 at time *t*?

$$\gamma_{1,2}(t) = \begin{cases} 0 & \to & \text{no} \\ 1 & \to & \text{yes} \end{cases}$$

²Bemporad and Morari 1999.

MLD modeling - Continuous dynamics

► Bus position

$$x_1(t+1) = \overbrace{(\gamma_{1,1}(t) + \gamma_{1,2}(t))(x_1(t) + T_s v_1(t))}^{\text{cruising}} + \dots$$

$$\overbrace{\delta_{1,2}(t)x_1(t)}^{\text{holding}} + \overbrace{\delta_{1,1}(t)0}^{\text{reset}}$$

▶ Bus accumulation

$$n_1(t+1) = n_1(t) + \overbrace{\delta_{1,1}(t)q_{1,2}^{\mathsf{in}}(t)}^{\mathsf{boarding}} - \overbrace{\delta_{1,2}(t)q_{1,2}^{\mathsf{out}}(t)}^{\mathsf{alighting}}$$

Stop accumulation

$$m_1(t+1) = m_1(t) + \overbrace{T_s\beta_{1,2}(t)}^{\text{accumulating}} - \overbrace{\delta_{1,1}(t)q_{1,2}^{\text{in}}(t)}^{\text{alighting}}$$

MLD modeling - Events

▶ "Bus nonempty" event

$$e_1^n(t) = \begin{cases} 0 & \text{if } n_1(t) = 0\\ 1 & \text{otherwise} \end{cases}$$

► "Stop reached" event

$$e_{1,2}^x(t) = \begin{cases} 0 & \text{if } x_1(t) < D_2\\ 1 & \text{otherwise} \end{cases}$$

$$\left(\begin{array}{ll} [f(x) \leq 0] \leftrightarrow [\delta = 1] \text{ is true iff } \begin{cases} f(x) \leq M(1 - \delta) \\ f(x) \geq \varepsilon + (m - \epsilon)\delta \end{cases} \right)$$

$$x \in \mathbb{R} \quad \delta \in \{0, \ 1\} \quad M \triangleq \max_{x \in \mathcal{X}} f(x) \quad m \triangleq \min_{x \in \mathcal{X}} f(x)$$

MLD modeling - Discrete dynamics

$$\overbrace{\delta_{1,2}(t+1)}^{\text{holding state}} = \overbrace{\left(\gamma_{1,2}(t) \wedge e_{1,2}^x(t)\right)}^{\text{start holding}} \vee \overbrace{\left(\delta_{1,2}(t) \wedge e_{1}^n(t)\right)}^{\text{keep holding}}$$

$$\overbrace{\gamma_{1,1}(t+1)}^{\text{cruising state}} = \overbrace{\left(\delta_{1,2}(t) \land \neg e_1^n(t)\right)}^{\text{start cruising}} \vee \overbrace{\left(\gamma_{1,1}(t) \land \neg e_{1,1}^x(t)\right)}^{\text{keep cruising}}$$

Control - PI-like bus speed controller

position error:
$$e_{x_i}(t) = x_i^{\text{ideal}}(t) - x_i(t)$$

speed error:
$$e_{v_i}(t) = \bar{v}_i(t) - v_i(t-1)$$

$$v_i(t) = v_i(t-1) + K_P e_{v_i}(t) + K_I e_{x_i}(t)$$

Control - Linear MPC (QP)

Control - **Linear MPC**, speed bounds

Control - Hybrid MPC (MIQP)

regularize drive as fast headways as possible minimize
$$\sum_{i=1}^{K_b} \sum_{k=0}^{N-1} \left(\left[x_{i,k}^f - x_{i,k}^r \right]^2 + \sigma \left(\overline{\boldsymbol{v}}_{i,k} - \boldsymbol{v}_{i,k} \right)^2 \right)$$
 subject to for $i=1,\ldots,K_b$:
$$x_{i,1}^f = x_i^f(t) \\ x_{i,1}^r = x_i^r(t) \\ x_{i,1}^u = x_i^u(t) \\ c_{i,k} = 0 \\ \text{digital clock initialization}$$
 for $k=1,\ldots,N$:
$$x_{i,k+1}^f = x_{i,k}^f + T(\boldsymbol{v}_{i+1,k} - \boldsymbol{v}_{i,k}) \\ x_{i,k+1}^r = x_{i,k}^r + T(\boldsymbol{v}_{i,k} - \boldsymbol{v}_{i-1,k}) \\ x_{i,k+1}^u = x_{i,k}^u - T\boldsymbol{v}_{i,k} \\ \text{digital clock} c_{i,k+1} = c_{i,k} + c_{i,k}^x \\ \text{dynamics} 0 \leq \boldsymbol{v}_{i,k} \leq \overline{\boldsymbol{v}}_{i,k} (1-e_{i,k}^h) \\ \text{speed bounds}$$

Control - Hybrid MPC, speed bounds

Results - Simulation setup

► Bus system description

- 9 buses, 44 stops, 15 km loop
- Demands and speed bounds from bus data of 2 months

► Compared schemes

- No control (NC)
- PI-like bus speed control (PI-BSC)
- Linear model predictive control (LMPC)
- Hybrid model predictive control (HMPC)

Results - Bus positions

Results - Headway distributions

Results - Performance evaluation

Control scheme	mean	mean	std. of	mean/max.
	TSPP	speed	hws.	CPU
	(min)	(km/h)	(min)	time (s)
NC	25.7	25.7	13.3	_
PI-BSC	31.2	17.6	0.95	_
LMPC	24.6	19.3	1.02	0.16/0.21
НМРС	18.6	18.7	1.03	0.47/0.68

Conclusion

Contributions

- ► MLD bus system model
- ► Linear and hybrid bus speed MPC

Results

- ► MLD model captures detailed dynamics
- ► MPC yields improvement

Ongoing/future work

- ► Consider pax flows/accumulations in MPC
- Extend to multi-loop bus systems

Işık İlber Sırmatel sirmatel.github.io