

Probability and Statistics

Author: Isaac FEI

Contents

1 Measure Theory	1
Chapter 1 Measures	2
1.1 Semi-Algebras, Algebras and Sigma-Algebras	2
1.2 Measures	3
1.3 Extension of Set Functions on Semi-Algebras	5
1.4 Carathéodory's Extension Theorem	5
1.5 Lebesgue Measure	8
II Probability Theory	9
Chapter 2 Random Variables, Expectations, and Independence	10
2.1 Random Variables	10
III Mathematical Statistics	11
Chapter 3 Fundamentals of Statistics	12
3.1 Populations, Samples and Models	12
3.2 Statistical Decision Theory	12
Index	13

Part I Measure Theory

Chapter 1 Measures

1.1 Semi-Algebras, Algebras and Sigma-Algebras

Definition 1.1.1 (Semi-Algebras)

A family of subsets S of Ω is a semi-algebra if it

- 1. contains the empty set, i.e., $\emptyset \in \mathcal{S}$,
- 2. closed under finite Intersections, i.e., $A, B \in \mathcal{S} \implies A \cap B \in \mathcal{S}$, and
- 3. the complement of each set in S can be written as a finite disjoint union of other sets in S, i.e., $A \in S \implies \exists E_1, \dots, E_n \in S, \ A = \biguplus_{i=1}^n E_i$.

Example 1.1 Consider the following semi-algebra on \mathbb{R} :

$$\mathcal{S} = \emptyset \cup \{(a,b] \mid a,b \in \mathbb{R}, a < b\} \cup \{(a,\infty) \mid a \in \mathbb{R}\} \cup \{(-\infty,b] \mid b \in \mathbb{R}\} \cup \mathbb{R}$$

It is easy to verify that it is indeed a semi-algebra. In fact, the definition of semi-algebra arises from the study of this very example. We will construct the famous Lebesgue measure from this semi-algebra, which defines the length of a set.

Definition 1.1.2 (σ -Algebras)

A family of subsets \mathcal{F} of Ω is a σ -algebra if it satisfies the following:

- 1. $\emptyset \in \mathcal{F}$
- 2. \mathcal{F} is closed under complements, i.e., $A \in \mathcal{F} \implies A^{\complement} \in \mathcal{F}$
- 3. \mathcal{F} is closed under countable unions, i.e., $A_i \in \mathcal{F} \ \forall i \in \mathbb{N}^* \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Definition 1.1.3

The Borel σ -algebra $\mathcal{B}(\mathbb{R}^d)$ on \mathbb{R}^d is defined as the σ -algebra generated by the collection of all open sets in \mathbb{R}^d . Mathematically,

$$\mathcal{B}(\mathbb{R}^d) := \sigma(\tau)$$

where τ is the Euclidean topology on \mathbb{R}^d .

Lemma 1.1.1

Suppose $C_1, C_2 \subset \Omega$. If for any $E \in C_1$, either one of the following holds:

- 1. $E = F^{\complement}$ for some $F \in \mathcal{C}_2$
- 2. $E = \bigcup_{i=1}^{\infty} F_i \text{ where } F_i \in \mathcal{C}_2 \ \forall i \in \mathbb{N}^*$
- 3. $E = \bigcap_{i=1}^{\infty} F_i$ where $F_i \in \mathcal{C}_2 \ \forall i \in \mathbb{N}^*$

then we have

$$\sigma(\mathcal{C}_1) \subset \sigma(\mathcal{C}_2)$$

1.2 Measures

A **set function** is a function that maps from collections of subsets of Ω to the extended real numbers $\mathbb{R} \cup \{\pm \infty\}$.

We say a set function μ is **finitely additive** if

$$\mu(A \uplus B) = \mu(A) + \mu(B)$$

The above equation also holds for finitely many disjoint unions of sets, that is,

$$\mu\left(\biguplus_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i) \tag{1.1}$$

which can be proved by the mathematical induction.

If (1.1) holds for countably infinite disjoint unions of sets, i.e.,

$$\mu\left(\biguplus_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{\infty} \mu(A_{i})$$

Then we say μ is σ -additive.

Definition 1.2.1

Let (Ω, \mathcal{F}) be a measurable space. A set function $\mu : \mathcal{F} \to [0, \infty]$ is called a **measure** if

- 1. $\mu(\emptyset) = 0$, and
- 2. μ is σ -additive.

The triplet $(\Omega, \mathcal{F}, \mu)$ is then called a **measure space** .

If μ is only finitely additive, we say that μ is a **finitely additive measure**.

Remark If we assume $\mu: \mathcal{F} \to [0,\infty]$ is σ -additive, and there exists some set $A \in \mathcal{F}$ such that $\mu(A) < \infty$, then $\mu(\emptyset) = 0$ holds naturally and hence condition 1 is redundant. To see this, we note that $\mu(A) = \mu(A \uplus \emptyset) = \mu(A) + \mu(\emptyset)$, which implies $\mu(\emptyset) = 0$ provided that $\mu(A)$ is finite.

The following proposition shows the monotonicity of a measure.

Proposition 1.2.1

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. For $A, B \in \mathcal{F}$, we have

$$A \subset B \implies \mu(A) \le \mu(B)$$
 (1.2)

Moreover, if $\mu(A) < \infty$ in (1.2), we have

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

Proof Suppose $A \subset B$. We have

$$B = A \uplus (B \setminus A)$$

By the σ -additivity (or weaker, the finite additivity), it follows that

$$\mu(B) = \mu(A) + \mu(B \setminus A)$$

(1.2) follows since $\mu(B \setminus A) \geq 0$. If $\mu(A) < \infty$, by subtracting $\mu(A)$ from both sides of the above

equation, we obtain

$$\mu(B) - \mu(A) = \mu(B \setminus A)$$

Given a sequence of sets $\{A_k\}$, we need this sequence of sets to be mutually disjoint in order to apply the σ -additivity of a measure. However, it is not the case in general. But we can easily construct another sequence of mutually disjoint sets from $\{A_k\}$ while keeping the union of first n sets unchanged. The procedure is illustrated in the following proposition.

Proposition 1.2.2 (Construction of Mutually Disjoint Sets)

Let $\{A_k\}_{k\in\mathbb{N}^*}$ be sequence of subsets of Ω . Let B_k be given by

$$B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$$

 $B_k=A_k\setminus\bigcup_{i=1}^{k-1}A_i$ where $A_0:=\emptyset$. Then $\{B_k\}$ is a family of mutually disjoint sets, and

$$\biguplus_{k=1}^{n} B_k = \bigcup_{k=1}^{n} A_k \quad \forall n \in \mathbb{N}^*$$

Specially,

$$\biguplus_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} A_k$$

Remark This technique will be frequently used in the proofs of upcoming propositions and theorem. **Proof**

Proposition 1.2.3

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and $\{A_k\}$ a sequence of sets in \mathcal{F} . We have

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) \le \sum_{k=1}^{\infty} \mu(A_k) \tag{1.3}$$

Remark If a set function satisfies (1.3), we say that it is σ -subadditive.

Proof Let B_k be given by

$$B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$$

as in Proposition 1.2.2. Then we have

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} B_k\right) = \sum_{k=1}^{\infty} \mu(B_k) \le \sum_{k=1}^{\infty} \mu(A_k)$$

The last inequality follows from Proposition 1.2.1.

Proposition 1.2.4

*

1.3 Extension of Set Functions on Semi-Algebras

Theorem 1.3.1

Let S be a semi-algebra on Ω , and $\mu: S \to [0, \infty]$ a nonnegative additive (resp. σ -additive) set function. Then μ can be extended uniquely to an additive (resp. σ -additive) function ν on $\mathcal{A}(S)$. That is, $\exists ! \nu: \mathcal{A}(S) \to [0, \infty]$ such that

- 1. ν is additive (resp. σ -additive), and
- 2. $\nu|_{S} = \mu$.

To be specific, this extension ν is given by

$$\nu(A) = \sum_{i=1}^{n} \mu(E_i)$$

where $\{E_1, \ldots, E_n\}$ is a family of mutually disjoint sets in S satisfying $A = \biguplus_{i=1}^n E_i$.

1.4 Carathéodory's Extension Theorem

Definition 1.4.1

An outer measure on Ω is a set function $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ such that it

- 1. assumes zero at empty set, i.e., $\mu^*(\emptyset) = 0$, and
- 2. is σ -subadditive, i.e., $E \subset \bigcup_{i=1}^{\infty} E_i, \ \mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$

Definition 1.4.2

Suppose that μ^* is an outer measure on Ω . The collection of **measurable sets** with respect to μ^* is defined by

$$\mathcal{M} = \left\{ A \subset \Omega \mid \forall E \subset \Omega, \ \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^{\complement}) \right\}$$

Sometimes, we also say the sets in M are μ^* -measurable.

Theorem 1.4.1

Let μ^* be an outer measure on Ω and \mathcal{M} the collection of μ^* -measurable sets. We claim that

- 1. M is a σ -algebra, and
- 2. $\mu^*|_{\mathcal{M}}$ is σ -additive.

Consider the equality

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^{\complement})$$

in the definition of \mathcal{M} . Note that it always holds that

$$\mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^{\complement})$$

because $E\subset (E\cap A)\cup (E\cap A^\complement)$ and μ^* is an outer measure and hence σ -subadditive. Therefore, in

the following proofs, we only need to show

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^{\complement})$$

in order to prove the equality.

Before proving that \mathcal{M} is a σ -algebra, we first show that it is an algebra.

Proof We shall check each condition in the definition of an algebra.

(Containment of the Empty Set) Note that

$$\mu^*(E \cap \Omega) + \mu^*(E \cap \Omega^{\complement}) = \mu^*(E) + 0 = \mu^*(E)$$

Therefore, clearly $\Omega \in \mathcal{M}$.

(Closure under Complements) Suppose $A \in \mathcal{M}$, then $\forall E \subset \Omega$, we have

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^{\complement}) = \mu^*(E \cap (A^{\complement})^{\complement}) + \mu^*(E \cap A^{\complement})$$

The last equality above implies that $A^{\complement} \in \mathcal{M}$.

(Closure under Finite Intersections) Suppose $A_1, A_2 \in \mathcal{M}$. Let $E \subset \Omega$ be arbitrary, then

$$\mu^{*}(E) = \mu^{*}(E \cap A_{1}) + \mu^{*}(E \cap A_{1}^{\complement}) \qquad \text{since } A_{1} \in \mathcal{M}$$

$$= \mu^{*}(E \cap A_{1} \cap A_{2}) + \mu^{*}(E \cap A_{1} \cap A_{2}^{\complement}) + \mu^{*}(E \cap A_{1}^{\complement}) \quad \text{since } A_{2} \in \mathcal{M}$$
(1.4)

On the other hand, consider $\mu^*(E \cap (A_1 \cap A_2)^{\complement})$. We have

$$\mu^*(E \cap (A_1 \cap A_2)^{\complement}) = \mu^*((E \cap A_1^{\complement}) \cup (E \cap A_2^{\complement}))$$

$$= \mu^*(E \cap A_1 \cap A_2^{\complement}) + \mu^*(E \cap A_1^{\complement}) \quad \text{since } A_1 \in \mathcal{M}$$

$$(1.5)$$

Combining equations (1.4) and (1.5), we obtain

$$\mu^*(E) = \mu^*(E \cap A_1 \cap A_2) + \mu^*(E \cap (A_1 \cap A_2)^{\complement})$$

Therefore, $A_1 \cap A_2 \in \mathcal{M}$.

In the following, we show that $\mu^*|_{\mathcal{M}}$ is σ -additive.

Proof We prove this by first showing μ^* is additive on \mathcal{M} and then applying Proposition 1.2.4 to conclude that μ^* is actually σ -additive on \mathcal{M} .

(Additivity) First, clearly $\mu^*(\emptyset) = 0$ since μ^* is an outer measure. Suppose $A_1, A_2 \in \mathcal{M}$ and $A = A_1 \uplus A_2$. Note that $A \in \mathcal{M}$ since we have shown that \mathcal{M} is an algebra. It follows that

$$\mu^*(A) = \mu^*(A \cap A_1) + \mu^*(A \cap A_1^{\complement})$$

Note that $A \cap A_1 = A_1$ and $A \cap A_1^{\complement} = A_2$. Therefore,

$$\mu^*(A) = \mu^*(A_1) + \mu^*(A_2)$$

Then by induction, we can show that for $A_i \in \mathcal{M}$,

$$\mu^* \left(\biguplus_{i=1}^n A_i \right) = \sum_{i=1}^n \mu^*(A_i)$$

 $(\sigma$ -Additivity) Note that μ^* is σ -subadditive on $\mathcal{P}(\Omega)$ (and of course it is also σ -subadditive on \mathcal{M}) because μ^* is an outer measure. Moreover, we have already shown that μ^* is also additive on \mathcal{M} . Then Proposition 1.2.4 immediately implies that μ^* is σ -additive.

Finally, we show that \mathcal{M} is actually a σ -algebra.

Proof Recall that we have already shown \mathcal{M} is an algebra. Hence, we only need to show that \mathcal{M} is closed under countable unions. Suppose that $A_i \in \mathcal{M}$ and $A = \bigcup_{i=1}^{\infty} A_i$. Fix a set $E \subset \Omega$. Note that $\bigcap_{i=1}^{n} A_i \in \mathcal{M}$ since \mathcal{M} is an algebra. It then follows that

$$\mu^*(E) = \mu^* \left(E \cap \bigcap_{i=1}^n A_i \right) + \mu^* \left(E \cap \left(\bigcap_{i=1}^n A_i \right)^{\complement} \right)$$
$$= \mu^* \left(E \cap \bigcap_{i=1}^n A_i \right) + \mu^* \left(E \cap \bigcup_{i=1}^n A_i^{\complement} \right)$$

And since $E \cap \bigcap_{i=1}^n A_i \supset E \cap \bigcap_{i=1}^\infty A_i = E \cap A$, we have

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^* \left(E \cap \bigcup_{i=1}^n A_i^{\complement} \right)$$
(1.6)

For the convenience of the notations, we denote

$$F_i = E \cap \bigcup_{j=1}^i A_j^{\complement}$$

Define sets G_i as follows.

$$G_1 = F_1 \qquad G_i = F_i \setminus \bigcup_{j=1}^{i-1} F_j \quad i \ge 2$$

One can show that all G_i 's are mutually disjoint and $\bigcup_{i=1}^n G_i = \bigcup_{i=1}^n F_i$. It is also true that $\bigcup_{i=1}^\infty G_i = \bigcup_{i=1}^\infty F_i$. In summary,

$$\biguplus_{i=1}^{n} G_{i} = \bigcup_{i=1}^{n} F_{i} \qquad \qquad \biguplus_{i=1}^{\infty} G_{i} = \bigcup_{i=1}^{\infty} F_{i} = E \cap A^{\complement}$$

Applying the additivity of μ^* (this is valid because $G_i \in \mathcal{M}$) to inequality (1.6), we obtain

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*\left(\biguplus_{i=1}^n G_i\right) = \mu^*(E \cap A) + \sum_{i=1}^n \mu^*(G_i)$$

Letting $n \to \infty$,

$$\mu^*(E) \ge \mu^*(E \cap A) + \sum_{i=1}^{\infty} \mu^*(G_i)$$

Then we apply the σ -subadditivity of μ^* ,

$$\mu^*(E) \ge \mu^*(E \cap A) + \sum_{i=1}^{\infty} \mu^*(G_i) \ge \mu^*(E \cap A) + \mu^*\left(\biguplus_{i=1}^{\infty} G_i\right) = \mu^*(E \cap A) + \mu^*(E \cap A^{\complement})$$

Therefore, we have shown that

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^{\complement})$$

In fact, the inequality above can be replaced by equality as we have explained before. Therefore, $A \in \mathcal{M}$ and hence \mathcal{M} is indeed a σ -algebra.

The following theorem extends a pre-measure, i.e., a σ -additive nonnegative set function on an algebra \mathcal{A} to a measure on the σ -algebra generated by \mathcal{A} .

Theorem 1.4.2 (Carathéodory's Extension Theorem)

Let A be an algebra on Ω , and μ_0 a pre-measure on A. Then μ_0 can be extended to a measure μ on $\mathcal{F} = \sigma(A)$, i.e., there exists a measure $\mu : \mathcal{F} \to [0, \infty]$ such that $\mu|_{A} = \mu_0$. Furthermore, if μ_0 is σ -fintie, then the extension is unique.

Proof

Theorem 1.4.3 (Extension of Set Funcitons on Semi-Algebras)

Let S be a semi-algebra on Ω , and $\nu : S \to [0, \infty]$ a σ -additive set function. Then, ν can be first uniquely extended to a pre-measure μ_0 on A(S). After that, if μ_0 is σ -fintie, it can be extended uniquely to a measure μ on $\sigma(S)$. (Note that $\sigma(A(S)) = \sigma(S)$).

1.5 Lebesgue Measure

Part II Probability Theory

Chapter 2 Random Variables, Expectations, and Independence

2.1 Random Variables

We define random variables formally.

Part III Mathematical Statistics

Chapter 3 Fundamentals of Statistics

3.1 Populations, Samples and Models

We shall introduce basic concepts.

3.2 Statistical Decision Theory

We shall discuss decision theory.

Index

Symbols		M	
σ -additive	3	measurable sets	5
σ -algebra	2	measure	3
σ -subadditive	4	measure space	3
		0	
F		outer measure	5
finitely additive	3	S	
finitely additive measure	3	set function	3