DANIELL-KOLMOGOROV EXTENSION THEOREM

1. Introduction

In this notes we prove Daniell-Kolmogorov extension theorem, which concerns existence of probability measures on infinite products. Daniell-Kolmogorov theorem is a fundamental result of advanced probability theory. It implies the existence of various stochastic processes.

2. Daniell-Kolmogorov extension theorem

We start by introducing important notion.

Definition 2.1. Let (X, \mathcal{F}, μ) be a space with a finite measure. Suppose that τ is a Hausdorff topology on X such that $\tau \subseteq \mathcal{F}$ and for every $A \in \mathcal{F}$ we have

$$\mu(A) = \sup \{ \mu(K) \mid K \text{ is compact with respect to } \tau \text{ and } K \subseteq A \}$$

Then μ is an inner regular measure with respect to τ .

Theorem 2.2 (Daniell-Kolmogorov). Let T be a set and let $(X_t, \mathcal{F}_t)_{t \in T}$ be a set of measurable spaces. For every $t \in T$ we fix a Hausdorff topology τ_t on X_t . Suppose that the following assertions hold.

(1) For every finite subset F of T there exists a probability measure μ_F on the measurable space (X_F, \mathcal{F}_F) defined by

$$X_F = \prod_{t \in F} X_t, \, \mathcal{F}_F = \bigotimes_{t \in F} \mathcal{F}_t$$

- **(2)** If $F_1 \subseteq F_2$ are finite subsets of T and $\pi_{F_2,F_1}: X_{F_2} \to X_{F_1}$ is the projection, then $(\pi_{F_2,F_1})_* \mu_{F_2} = \mu_{F_1}$.
- **(3)** The measure μ_F is inner regular with respect to the product topology $\tau_F = \prod_{t \in \mathcal{F}} \tau_t$.

Then there exists a unique probability measure μ on the space (X, \mathcal{F}) where

$$X = \prod_{t \in T} X_t, \, \mathcal{F} = \bigotimes_{t \in T} \mathcal{F}_t$$

such that for every finite subset F of T we have

$$\mu_F = (\pi_F)_* \mu$$

where $\pi_F: X \to X_F$ is the projection.

For the proof we need some notation. First recall that $\mathcal{F} = \bigotimes_{t \in T} \mathcal{F}_t$ is the σ -algebra generated by subsets of X of the form $\pi_F^{-1}(B)$ where $B \in \mathcal{F}_F$. We call such sets *cylinders*. The proof of the theorem relies on the following two results.

Lemma 2.2.1. Let $\{F_n\}_{n\in\mathbb{N}}$ be a nondecreasing sequence of finite subsets of T and let $\{D_n\}_{n\in\mathbb{N}}$ be sets such that $D_n \in \mathcal{F}_{F_n}$ and $\{\pi_{F_n}^{-1}(D_n)\}_{n\in\mathbb{N}}$ form a nonincreasing family of cylinders in X. Assume that there exists $\epsilon > 0$ such that

$$\mu_{F_n}(D_n) \geq \epsilon$$

for every $n \in \mathbb{N}$. Then there exists a sequence $\{K_n\}_{n \in \mathbb{N}}$ such that the following assertions are satisfied.

- **(1)** K_n is a subset of D_n for every $n \in \mathbb{N}$.
- **(2)** K_n is compact with respect to τ_{F_n} for every $n \in \mathbb{N}$.
- **(3)** $\{\pi_{F_n}^{-1}(K_n)\}_{n\in\mathbb{N}}$ is nonincreasing sequence.
- **(4)** $\mu_{F_n}(K_n) \ge \frac{\epsilon}{2}$ for every $n \in \mathbb{N}$.

Proof of the lemma. We prove slightly stronger statement. More precisely, we prove that there exists a sequence $\{K_n\}_{n\in\mathbb{N}}$ satisfying all the assertions in the statement and the additional assertion that

$$\mu_{F_n}(D_n) \le \mu_{F_n}(K_n) + \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right)$$

for all $n \in \mathbb{N}$. The proof goes by induction. For D_0 we pick its compact subset K_0 with respect to τ_{F_0} such that

$$\mu_{F_0}(D_0) \le \mu_{F_0}(K_0) + \frac{\epsilon}{4}$$

Suppose that for some $n \in \mathbb{N}$ there is a sequence $\{K_m\}_{m \le n}$ such that $K_m \subseteq D_m$, K_m is compact with respect to τ_{F_m} , the sequence $\{\pi_{F_m}^{-1}(K_m)\}_{m \le n}$ is nonincreasing and

$$\mu_{F_m}(D_m) \le \mu_{F_m}(K_m) + \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^m}\right)$$

Write $\pi_{F_{n+1},F_n}^{-1}(K_n) = \tilde{K}_n$ and $\pi_{F_{n+1},F_n}^{-1}(D_n) = \tilde{D}_n$. Then

$$\mu_{F_{n+1}}(\tilde{D}_n) = \mu_{F_n}(D_n) \le \mu_{F_n}(K_n) + \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right) = \mu_{F_{n+1}}(\tilde{K}_n) + \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right)$$

and $\tilde{K}_n \subseteq \tilde{D}_n$. Moreover, by assumption $D_{n+1} \subseteq \tilde{D}_n$. Thus we have

$$\mu_{F_{n+1}}\left(D_{n+1} \setminus (\tilde{K}_n \cap D_{n+1})\right) = \mu_{F_{n+1}}(D_{n+1} \setminus \tilde{K}_n) \le \mu_{F_{n+1}}(\tilde{D}_n \setminus \tilde{K}_n) \le \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right)$$

and hence

$$\mu_{F_{n+1}}(D_{n+1}) - \mu_{F_{n+1}}(\tilde{K}_n \cap D_{n+1}) \le \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right)$$

Now we pick a subset K_{n+1} of $\tilde{K}_n \cap D_{n+1}$ such that K_{n+1} is compact with respect to $\tau_{F_{n+1}}$ and

$$\mu_{F_{n+1}}(\tilde{K}_n \cap D_{n+1}) \le \mu_{F_{n+1}}(K_{n+1}) + \frac{\epsilon}{4} \cdot \frac{1}{2^{n+1}}$$

Then

$$\mu_{F_{n+1}}(D_{n+1}) \leq \mu_{F_{n+1}}\left(\tilde{K}_n \cap D_{n+1}\right) + \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right) \leq \\ \leq \mu_{F_{n+1}}(K_{n+1}) + \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^n}\right) + \frac{\epsilon}{4} \cdot \frac{1}{2^{n+1}} = \mu_{F_{n+1}}(K_{n+1}) + \frac{\epsilon}{4} \cdot \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n+1}}\right)$$

Hence we can extend sequence $\{K_m\}_{m \le n}$ by adding K_{n+1} and our inductive proof is completed.

Lemma 2.2.2. Let S be a countable set. Suppose that $\{F_n\}_{n\in\mathbb{N}}$ is a nondecreasing sequence of finite subsets of S such that $S = \bigcup_{n\in\mathbb{N}} F_n$ and assume that $\{X_s\}_{s\in S}$ is a family of Hausdorff topological spaces. If $\{K_n\}_{n\in\mathbb{N}}$ is a sequence of nonempty sets such that $K_n \subseteq \prod_{s\in F_n} X_s$ is compact for every $n\in\mathbb{N}$ and

$$\left\{K_n \times \prod_{s \in \mathcal{S} \setminus F_n} X_s\right\}_{n \in \mathbb{N}}$$

is a nondecreasing sequence of subsets of $\prod_{s \in S} X_s$, then

$$\bigcap_{n\in\mathbb{N}} \left(K_n \times \prod_{s\in\mathcal{S}\setminus F_n} X_s \right) \neq \emptyset$$

Proof of the lemma. For each $s \in S$ we choose $n_s \in \mathbb{N}$ such that $s \in F_{n_s}$. We define

$$K_s = \pi_s \left(K_{n_s} \times \prod_{s \in \mathcal{S} \setminus F_{n_s}} X_s \right)$$

where $\pi_s: \prod_{s\in\mathcal{S}} X_s \to X_s$ is the projection. According to assumptions K_s is a compact and nonempty subset of X_s . We define K as a product of $\prod_{s\in\mathcal{S}} K_s$. By Tychonoff's theorem K is compact and nonempty subset of $\prod_{s\in F_n} X_s$. Fix now $n\in\mathbb{N}$. Define $m=\max(n,\max_{s\in F_n} n_s)$. Then

$$\pi_s\bigg(K_m\times\prod_{s\in\mathcal{S}\smallsetminus F_m}X_s\bigg)\subseteq\pi_s\bigg(K_{n_s}\times\prod_{s\in\mathcal{S}\smallsetminus F_{n_s}}X_s\bigg)\subseteq K_s$$

for every $s \in F_n$. Thus

$$K_m \times \prod_{s \in S \setminus F_m} X_s \subseteq \prod_{s \in F_n} K_s \times \prod_{s \in S \setminus F_n} X_s$$

Since $m \ge n$, we have

$$K_m \times \prod_{s \in \mathcal{S} \times F_m} X_s \subseteq \left(\prod_{s \in F_n} K_s \times \prod_{s \in \mathcal{S} \times F_n} X_s \right) \cap \left(K_n \times \prod_{s \in \mathcal{S} \times F_n} X_s \right)$$

Together with $K_m \neq \emptyset$ this implies that

$$\left(\prod_{s \in F_n} K_s \times \prod_{s \in S \setminus F_n} X_s\right) \cap \left(K_n \times \prod_{s \in S \setminus F_n} X_s\right) \neq \emptyset$$

We infer that

$$K \cap \left(K_n \times \prod_{s \in S \setminus F_n} X_s\right) \neq \emptyset$$

Therefore, the sequence

$$\left\{K \cap \left(K_n \times \prod_{s \in \mathcal{S} \setminus F_n} X_s\right)\right\}_{n \in \mathbb{N}}$$

is nondecreasing and consists of closed nonempty subsets of a compact topological space *K*. Hence it has nonempty intersection. This completes the proof that

$$\bigcap_{n\in\mathbb{N}} \left(K_n \times \prod_{s\in\mathcal{S}\setminus F_n} X_s \right) \neq \emptyset$$

Proof of the theorem. Fix a finite subset F of T and for B in \mathcal{F}_F we set

$$\mu\left(\pi_F^{-1}(B)\right) = \mu_F(B)$$

Note that this makes μ into a function defined on the family of all cylinders. Moreover, it is clear that the family of all cylinders is an algebra of subsets of X and such defined μ is an additive function. We claim that it is also σ -additive. For this pick a nondecreasing sequence $\{F_n\}_{n\in\mathbb{N}}$ of finite subsets of T and a sequence $\{B_n\}_{n\in\mathbb{N}}$ of sets such that $B_n\in\mathcal{F}_{F_n}$ for every $n\in\mathbb{N}$ and the sequence $\{\pi_{F_n}^{-1}(B_n)\}_{n\in\mathbb{N}}$ is nondecreasing. Moreover, we assume that there exists a finite subset F of T and a set $B\in\mathcal{F}_F$ such that

$$\pi_F^{-1}(B) = \bigcup_{n \in \mathbb{N}} \pi_{F_n}^{-1}(B_n)$$

We want to prove that

$$\mu(\pi_F^{-1}(B)) = \lim_{n \to +\infty} \mu(\pi_{F_n}^{-1}(B_n))$$

We define $D_n = \pi_{F \cup F_n, F}^{-1}(B) \setminus \pi_{F \cup F_n, F_n}^{-1}(B_n)$ for every $n \in \mathbb{N}$. Then $D_n \in \mathcal{F}_{F \cup F_n}$ satisfies

$$\pi_{F \cup F_n}^{-1}(D_n) = \pi_F^{-1}(B) \smallsetminus \pi_{F_n}^{-1}(B_n)$$

Moreover, the sequence $\{\pi_{F \cup F_n}^{-1}(D_n)\}_{n \in \mathbb{N}}$ is nonincreasing and

$$\varnothing = \bigcap_{n \in \mathbb{N}} \pi_{F \cup F_n}^{-1}(D_n)$$

Now suppose that there exists $\epsilon > 0$ such that $\mu\left(\pi_{F \cup F_n}^{-1}(D_n)\right) \ge \epsilon$ for every $n \in \mathbb{N}$. Then by Lemma 2.2.1 there exists a sequence $\{K_n\}_{n \in \mathbb{N}}$ such that the following assertions are satisfied.

- **(1)** K_n is a subset of D_n for every $n \in \mathbb{N}$.
- **(2)** K_n is compact with respect to $\tau_{F \cup F_n}$ for every $n \in \mathbb{N}$.
- (3) $\{\pi_{F \cup F_n}^{-1}(K_n)\}_{n \in \mathbb{N}}$ is nonincreasing sequence.
- **(4)** $\mu_{F \cup F_n}(K_n) \ge \frac{\epsilon}{2}$ for every $n \in \mathbb{N}$.

In particular, assertion (4) implies that K_n is nonempty for every $n \in \mathbb{N}$. We set $S = \bigcup_{n \in \mathbb{N}} (F \cup F_n)$ and apply Lemma 2.2.2 to S, $\{X_s\}_{s \in S}$ and $\{K_n\}_{n \in \mathbb{N}}$. We obtain

$$\bigcap_{n\in\mathbb{N}}\left(K_n\times\prod_{s\in\mathcal{S}\smallsetminus F_n}X_s\right)\neq\varnothing$$

which implies that

$$\bigcap_{n\in\mathbb{N}}\pi_{F\cup F_n}^{-1}(K_n)\neq\varnothing$$

This is contradiction, since

$$\bigcap_{n\in\mathbb{N}}\pi_{F\cup F_n}^{-1}(K_n)\subseteq\bigcap_{n\in\mathbb{N}}\pi_{F\cup F_n}^{-1}(D_n)=\varnothing$$

Therefore, we proved that

$$\lim_{n\to+\infty}\mu(\pi_{F\cup F_n}^{-1}(D_n))=0$$

and hence

$$\mu(\pi_F^{-1}(B)) = \lim_{n \to +\infty} \mu(\pi_{F_n}^{-1}(B_n))$$

This proves the claim that μ is σ -additive. According to [Monygham, 2018, Theorem 3.3] additive function μ defined on the algebra of cylinders can be extended to a unique probability measure on \mathcal{F} . Since no confusion can arise, we denote this probability measure by μ . We constructed a unique probability measure $\mu: \mathcal{F} \to [0,1]$ such that

$$\mu\left(\pi_F^{-1}(B)\right) = \mu_F(B)$$

for every finite subset F of T and $B \in \mathcal{F}_F$.

REFERENCES

[Monygham, 2018] Monygham (2018). Introduction to measure theory. github repository: "Monygham/Pedo-mellon-a-minus"