TD 2 : Récursivité

27 septembre 2023

Exercice 1

Ecrire une fonction récursive pour calculer la somme des entiers de 1 à n en fonction de n.

Exercice 2

- 1) Ecrire une fonction récursive qui prend en entrée u_0 et n et calcule u_n , le n-ième terme de la suite définie par $u_{n+1} = \frac{1}{2}u_n + 3$.
- 2) On suppose qu'une certaine fonction f a été définie précédemment : écrire une fonction récursive qui prend en entrée u_0 et n et calcule u_n , le n-ième terme de la suite définie par $u_{n+1} = f(u_n)$.

Exercice 3

Ecrire une fonction qui prend en entrée p et n avec $0 \le p \le n$ et calcule récursivement le coefficient binomial $\binom{n}{p}$.

Exercice 4

- 1) Donner une définition mathématique récursive du PGCD.
- 2) Ecrire une fonction qui prend en entrée deux entiers a et b et calcule récursivement le PGCD de a et b.

Exercice 5

Calculer le nombre d'appels récursifs effectués dans l'appel fibo(n) en fonction de n, où fibo est l'implémentation récursive naïve de la suite de Fibonacci.

Exercice 6

- 1) Ecrire en pseudo-code une fonction fusion qui prend en entrée deux listes triées et renvoie la fusion triée des deux listes.
- 2) On considère une liste de taille $n \ge 1$. L'algorithme de tri fusion procède ainsi pour trier la liste :
 - Si n = 1, il renvoie la liste telle quelle;
 - Si n > 1, il divise la liste en deux, trie chacune des deux listes et fusionne les deux listes triées.

Ecrire en pseudo-code une implémentation récursive d'une fonction tri_fusion en utilisant la fonction fusion définie précédemment.

Exercice 7

Il existe une bijection de $\mathbb{N} \times \mathbb{N}$ dans \mathbb{N} , obtenue en parcourant les diagonales de $\mathbb{N} \times \mathbb{N}$.

- 1) Faire un schéma pour illustrer, sur chaque point de coordonnées (n_1, n_2) de $\mathbb{N} \times \mathbb{N}$, l'entier $n \in \mathbb{N}$ associé.
- 2) Ecrire une fonction qui calcule récursivement l'image de (n_1,n_2) par cette bijection.