OPTIMIZATION ALGORITHMS

Local Search Methods

Prof Renata Mansini

Academic year 2021/2022

Models and Algorithms for Optimization at Department of Information Engineering

Heuristic Algorithms 1/2

From the greek word εὑρίσκω, eurisko \rightarrow to find or discover.

Objective:

determining a good solution (not necessarily the optimal one) in a reasonable amount of time.

Properties:

- Computing time should not grow too rapidly when the size of the problem grows (i.e. time complexity should be a polynomial function in the size of the problem with low degree);
- Identified solutions should be, at least for the majority of the instances of the problem, optimal or close to the optimal one;
- It is a compromise between quality of the solution and time needed to find it.

Heuristic Algorithms 2/2

Minimum Problem

A heuristic A determines an **Upper Bound** on the optimal value:

$$z^*: z^A \geq z^*$$

(Lower Bound for a maximum problem).

Two main families of heuristic algorithms:

- Constructive heuristic algorithms
 - start from an empty solution;
 - iteratively determine new elements to add, until a complete (feasible) solution has been reached.

• Local search algorithms

- start from a feasible solution x;
- iteratively try to improve it by applying changes to the current solution (*moves* in a neighborhood of *x*);
- terminate when there are no moves (of the selected type) that can improve the current solution (local minimum).

Examples of constructive algorithms: TSP 1/3

The Traveling Salesman Problem (TSP):

The constructive algorithms for the TSP start from an empty solution and iteratively determine the new vertices to add to the solution, until a complete solution has been reached:

- Chose an arbitrary vertex and consider the corresponding self-loop as the initial partial solution S.
- 2. Expand *S* by inserting one by one the remaining vertices, finally obtaining an hamiltonian cycle.

This procedure is done in two separate phases:

- a) select a vertex k, not included in S, according to some **criterion**;
- b) insert vertex k in S, between two specific consecutive vertices u, v.

Examples of constructive algorithms: TSP 2/3

Several selection *criteria* can be used in point 2a:

- Nearest neighbor: select the vertex with the minimum distance from S. (average case: 20%; worst case: error equal to 1; computational complexity $O(n^2)$)
- Farthest insertion: select the vertex with the maximum distance from S. (average case: 10%; worst case: error equal to $\lceil logn \rceil + 1$; computational complexity $O(n^2)$)
- Arbitrary insertion: randomly select the vertex to insert in S. (average case: 11%; worst case: error equal to $\lceil logn \rceil + 1$; computational complexity $O(n^2)$).
- Cheapest insertion: select the vertex with the minimum insertion cost. (average case: 17%; worst case: error equal to 1; computational complexity $O(n^2 log n)$).

Examples of constructive algorithms: TSP 3/3

Point 2b: the vertex is usually inserted in a way that minimizes the "insertion cost":

- for each $(i,j) \in S$ we compute $d_{ij} = c_{ik} + c_{kj} c_{ij}$;
- k is inserted between the consecutive vertices u, v such that:

$$d_{uv} \leq d_{ij} \quad \forall (i,j) \in S.$$

Examples of constructive algorithms: 0-1 KP

0-1 Knapsack Problem

Greedy Algorithm:

- 1. Sort the items in non-increasing order of profit/weight ratio;
- 2. Add items in the knapsack until you reach the first one that exceeds the capacity.

Alternatively: sort the items in non-increasing order of profit or non-decreasing order of weight.

Algorithm performance analysis

How do you evaluate the quality of an algorithm?

There are two ways to analyze the performance of a heuristic algorithm:

- Experimental. The quality of the solutions obtained for a benchmark set of instances is evaluated:
 - Can always be performed.
 - Not generalizable.
 - Performance are evaluated according to the solution quality/computing time ratio.
- 2. *Worst case.* The greatest error from the optimal solution is analytically computed:
 - Generalizable, but hard to determine.

Greedy Algorithm for the TSP

- 1. **Step 1.** Choose a starting node i and add it to the empty partial solution W, i.e. $W := \{i\}$. Set r = i.
- 2. **Step 2.** Select $s \in V \setminus W$ with minimum distance from node r, i.e. $d_{rs} = \min_{j \in V \setminus W} d_{rj}$, where d_{ij} is the length of arc (i, j).
- 3. **Step 3.** Set $W := W \cup \{s\}$ and r = s. If W = V, stop. Node i is the one following node s, and W is now a cycle. If that is not the case, return to Step 2.

The heuristic has a polynomial computational complexity: the number of operations performed by the algorithm is $O(n^2)$, where n = |V|.

The quality of the solution can be terrible: the ratio between the identified solution and the optimal solution can be infinitely high. Let's see it in the next example.

Greedy Algorithm for the TSP: worst case example 1/2

Let us consider an undirected complete graph with 4 nodes. The following (symmetric) table shows the distances between each pair of nodes:

	1	2	3	4
1	-	2	М	2
2	2	-	2	1
3	М	2	-	2
4	2	1	2	-

Starting from node 1 (and similarly for all the other nodes), we obtain the hamiltonian cycle: $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$ of length 5 + M.

Greedy Algorithm for the TSP: worst case example 2/2

- For $M \le 3$, the cycle identified by the heuristic is the optimal one, but for M > 3 the optimal solution becomes the hamiltonian cycle: $1 \to 2 \to 3 \to 4 \to 1$, with objective function value equal to 8.
- For M > 3 the ratio between the objective function value of the cycle identified by the heuristic and the optimal one is:

$$\frac{5+M}{8}$$

and it grows to infinity for $M \to \infty$.

Neighborhood Function

- Given an optimization problem P = (f, S)
 - **S** set of all the feasible solutions for **P**;
 - $f: S \to R$ objective function;
- · Neighborhood
 - $N:S \to 2^{|S|}$ that $\forall i \in S$ defines $N(i) \subseteq S$ set of all the solutions close to i;
- Local Search algorithms try to improve a solution by exploring one of its neighborhoods.

Iterative Improvement Algorithms 1/3

First improvement: the neighbors of the current solution are analyzed in random order. A move is made towards the first one that improves the current solution (the algorithm exits the **for** cycle at the first improvement).

```
Procedure FI_Simple_Descent(s) /*s \in S initial sol.*/
Found := TRUE;
while Found = TRUE do
Found := FALSE;
for each s' \in N(s) do
    if f(s') < f(s) then
    s := s'; Found := TRUE; break;
end while
return (s);
```

Converges to a local optimum s with respect to N(.), i.e. a solution $s: f(s) \le f(i) \ \forall i \in N(s)$;

Iterative Improvement Algorithms 2/3

Best improvement: all the neighbors of the current solution are examined, and a move towards the best one is made. It is a *steepest descent* method: the move that produces the greatest improvement is made.

```
Procedure BI_Simple_Descent(s) /*s \in S initial sol.*/
Found := TRUE;
while Found = TRUE do
    Found := FALSE: shest := s:
   for each s' \in N(s) do
       if f(s') < f(s_{best}) then
           S_{hest} := s':
   if s_{hest} \neq s then
       s := s_{hest}; Found := TRUE;
end while
return (s);
```

Iterative Improvement Algorithms 3/3

Main drawback of the Best Improvement algorithm:

Each iteration of the algorithm requires a lot of time: the time needed to evaluate f(s) for O(|N(s)|), where |N(s)| := is the cardinality of the neighborhood.

 \Downarrow

the number of iterations required to reach the local optimum could be very high (although polynomial).

Local Search Algorithms

Advantages

- broad applicability;
- · flexibility with respect to changes to the problem;
- · can be used even when the solution is not feasible.

Disadvantages

 they cannot escape local minima, since they do not allow moves towards solutions that are worse than the current one.

Require

- A solution evaluator (objective function);
- · feasibility check for a solution;
- · neighborhood function;
- · efficient neighborhood exploration technique.

Example 1:

2-opt heuristic

Traveling Salesman Problem TSP (G(V, E), c, min).

Basic idea: 2 arcs are removed at each step, then the two paths are reconnected with two different arcs.

2-opt algorithm:

- · start from an hamiltonian cycle,
- perform the 2-opt swaps between all pairs of arcs that reduce the circuit length.

Effectiveness: 8% more than the minimum, on average.

Initial cycle:

Paths:

Cycle at Step 1:

Notice the inversion of the direction of travel in one of the paths.

Cycle at Step 2:

Cycle at Step 3:

Notice the inversion of the direction of travel in one of the paths.

Example 2:

3-opt heuristic

Traveling Salesman Problem TSP (G(V, E), c, min).

Basic idea: 3 arcs are removed at each step, then the 3 paths are reconnected with 3 different arcs.

Effectiveness: 4% more than the minimum, on average.

The idea can be generalized up until the k-opt. For k=n the neighborhood becomes exact and contains all the possible hamiltonian cycles, which are n!.

Initial cycle:

New cycle:

Meta-heuristic techniques

Problem:

Heuristic descent methods risk getting stuck in local optima that are not global optima.

Solution: meta-heuristic algorithms:

- local search algorithms that emply special techniques to escape local minima;
- algorithms that have to avoid cycles (repetition of already visited solutions).

Examples:

- Simulated Annealing (SA)
- Tabu Search (TS): allows a move towards a solution worse than the current one and avoids to visit already seen solutions by means of a list of forbidden (tabu) moves.
- · Genetic Algorithms (GA)