基礎生物学研究所 ゲノムインフォマティクストレーニングコース RNA-seq入門: 実践編 2019年 3月

Gene Ontology解析

Shuji Shigenobu 重信 秀治

基礎生物学研究所生物機能解析センター

What is Gene Ontology (GO)?

- ▶ GO project describes gene products from all organisms using a consistent and computable language.
- ▶ GO produces sets of explicitly defined, structured vocabularies in both a computer- and human-readable manner.
- 3 categories
 - Biological processes
 - Molecular functions
 - Cellular components
- 2 components
 - Ontology: term definition and the structured relationships between them
 - Associations between gene products and the GO terms.

http://www.geneontology.org/

Two components of GO

- Ontology
- Gene associations

Ontology structure

- Ontologies are represented as a directed acyclic graph (DAG).
- Parent-child relationship
 - ▶ is_a
 - part_of
- Ontology can be changed / updated

Rhee et al., 2008

vesicle fusion

Gene association

- Gene <=> GO
- ▶ A gene may associate with multiple GO terms.
- ▶ Evidence codes.

Evidence code	Evidence code description	Source of evidence	Manually checked
IDA	Inferred from direct assay	Experimental	Yes
IEP	Inferred from expression pattern	Experimental	Yes
IGI	Inferred from genetic interaction	Experimental	Yes
IMP	Inferred from mutant phenotype	Experimental	Yes
IPI	Inferred from physical interaction	Experimental	Yes
ISS	Inferred from sequence or structural similarity	Computational	Yes
RCA	Inferred from reviewed computational analysis	Computational	Yes
IGC	Inferred from genomic context	Computational	Yes
IEA	Inferred from electronic annotation	Computational	No
IC	Inferred by curator	Indirectly derived from experimental or computational evidence made by a curator $$	Yes
TAS	Traceable author statement	Indirectly derived from experimental or computational evidence made by the author of the published article	Yes
NAS	Non-traceable author statement	No 'source of evidence' statement given	Yes
ND	No biological data available	No information available	Yes
NR	Not recorded	Unknown	Yes

nanos

How to annotate GO for non-model organisms?

- Ortholog grouping with a model organism and then transfer the GO terms from the reference organism to your target organism.
- ▶ BLAST2GO
- InterProScan

Gene Ontology enrichment analysis

- What is GO enrichment analysis?
- Why GO enrichment analysis is required in DEG studies?
- ▶ Type of GO enrichment analysis.
 - gene set
 - gene score
- Software
 - gene set type: DAVID (web), metascape (web), goseq (R), GOstat (R)
 - gene score: GSEA, roast, camera
 - both: ErmineJ

Basic over-representation test: 2 x 2 table and Fisher's exact test

- Suppose we perform a test of DE and find a list of 200 significant genes out of 10,000
- ▶ Consider a specific GO term, apoptosis. Among the 200 DE genes, 20 genes are annotated as apoptosis related, while 300 / 10,000 are associated with apoptosis in the whole gene set.
- Question: Is the gene set "apoptosis" over-represented among "significant" genes?

	apoptosis	non-apoptosis	total
DE	20	180	200
non-DE	280	9,520	9,800
total	300	9,700	10,000

Try 演習問題 ex10

Gene score type enrichment analysis

- Drawback of basic 2x2 table method
 - ▶ Threshold value is arbitral
 - Magnitude of significance is ignored

▶ GSEA

http://software.broadinstitute.org/gsea/ index.jsp

implemented within edgeR

Tutorial: ErmineJ

http://erminej.chibi.ubc.ca/

- Easy to use Java software with both GUI and CUI
- Three enrich methods supported
 - ▶ ORA: overrepresentation analysis
 - ▶ GSR: gene score resampling
 - ▶ ROC: rank-based gene score in receiver-operator curves

演習問題 exll