Swinburne University of Technology

Software Testing and Reliability (SWE30009)

Semester 2, 2023

Tutorial 1

Lecturer: Prof Tsong Yueh Chen

Tutor: Dr Hung Q Luu

Part A

Tutorial task

Testing objectives

Consider the following program:

Input A, B // A and B are integer variables C = (A - B) * BOutput C

Suppose the following testing objectives are applied:

- 1. One and only one incorrect arithmetic operator
- 2. Incorrect use of arithmetic operators

Task

Question 1:

What are the constraints for test cases in order to achieve testing objectives (1) and (2)?

Question 2:

How do you construct your concrete test cases from the constraints of test cases for testing objectives (1) and (2)?

Part B

Revisiting the Lectures

Why testing

- Ariane 5
 - On June 4 1996, the European Space Agency launched Ariane 5 rocket.
 - A bug in software (Ada language) caused the rocket to self-destruct 37s after blast-off.

Why testing

- Provident Financial lost £1.7 billion in a single day and company £120 million in profit of the year (2017) – Tricentis (2017).
- Glitch: Malfunction of a new appointment scheduling application.

LO\$\$E\$ FROM SOFTWARE FAILURES (USD)

Why testing

1,71 trillion dollar

Tricentis software testing company analyzed 606 software failure from 314 corporations. Results show they affected **3.6 billion people**

1,715,430,778,504 ONETRILLIONSEVENHUNDREDFIFTEENBILLIONFOURHUNDREDTHIRTYMILLIONSEVENHUNDREDSEVENTY-EIGHTTHOUSANDFIVEHUNDREDFOUR

Why testing

Cost for debugging

Discussion

- Error
- Fault
- Failure

Definitions

- Error
 - A mistake made by the programmer
- Fault
 - An incorrect definition or process in the program
- Failure
 - An observable violation against the specifications

Example

- Error
- Fault
- Failure

```
. . .
                                     tutorial1.py - Edited
器 ( )
                                                                                   ₹ E0 | ⊕
          @ tutorial1.py
e tutorial1.py No Selection
   1 x = input("Enter a number: ")
   3 print("x power of 1 is {}".format(x))
   4 print("x power of 2 is {}".format(x*x))
      print("x power of 3 is {}".format(x*x*x))
                                                                               Line: 1 Col: 1
```

Relations

Discussion

Test oracle

Test oracle

 A mechanism or procedure to check whether the output for any input is correct or not

Example

■ Test oracle

Program P

 $x^100 - 2x^10 + 1 = 0$

Test oracle

- Backward substitution and evaluation
- Commonly based on specifications and documentation

V&V

- Verification
 - Are we building the product **right**?
- Validation
 - Are we building the right **product**?

Testing activities

Discussion

Test objectives

Test objectives

The aim or purpose of testing

Example

- Incorrect arithmetic operator
- Incorrect variable definition
- Incorrect data type assignment

- ...

Suppose that we are asked to test the following program

Input A, B // A and B are integer variables C = A - BOutput C

$$A - B = \setminus =$$

- A + B
- A * B
- A / B

Discussion: Which test case is better?

■ Test case 1: A = 4, B = 2

■ Test case 2: A = 3, B = 1

■ Test case 3: A = -1, B = 1

■ Test case 4: A = 1, B = 1

$$A - B = \setminus =$$

- A + B
- A * B
- A / B

Discussion: Which test case is better?

■ Test case 1: A = 4, B = 2

■ Test case 2: A = 3, B = 1

■ Test case 3: A = -1, B = 1

■ Test case 4: A = 1, B = 1

Operator error

$$C = A^2 - B^2$$

Testing objectives

 Frankly speaking, we seek to create one or multiple test cases that can help distinguish "good" program (correctly coded) with "bad" programs (buggy or incorrectly implemented).

Solution

• Easy: Trial and error

• Medium: Automated search

Hard: Constraint solving