Aislinn E. Smith 512-962-5090 | aislinnsmith@utexas.edu

EDUCATION

University of Texas at Austin – College of Natural Sciences | Class of 2022

Overall GPA: 3.87/4.00

Bachelor's – Mathematics (Honors Track)

Certificate Program - Scientific Computation and Data Science

RESEARCH/ PROJECTS

Max Planck Institute for Math in the Natural Sciences - Guest Researcher

Summer 2023 - Present

• Currently leading a remote inquiry-based reading course focused on Riemann surfaces and complex algebraic curves with a survey of other topics in Lie group theory, symplectic geometry, and mapping class groups.

Mathematics Honors Thesis: "Minimal surfaces in hyperbolic manifolds and link complements" Fall 2022

- Advised by Prof. John Luecke
- The project is motivated by REU research, specifically on the topic of geodesics formed by horocyclic edges within minimal surfaces of hyperbolic manifolds with parabolic cusps.

SUMRY REU – Yale University

Summer 2022

- Undergraduate NSF funded research in low dimensional topology and combinatorial hyperbolic geometry mentored by Dr. Franco Vargas-Pallete
- Project was motivated by the converging interests of closed geodesics of hyperbolic surfaces within surfaces of constant mean curvature.
- One of my contributions was the development of a finite element method that could simulate mean curvature flow such that it was compatible with a hyperbolic metric.

Moncrief Internship w/ The UT ODEN Institute for Computational Sciences Summer 2021 - Spring 2022

- Developed mathematical models/algorithms using principles of stochastic path integral control to aid automated vehicles in avoiding obstacles with a degree of randomized motion and varying levels of allowed risk under advisement of Dr. Takashi Tanaka
- Compared the computational complexity and success of two different models of diffusion-based optimal control. One of which used reinforcement learning and a weighted average of randomly sampled trajectories, while the second method numerically found solutions to the Hamilton-Jacobi-Bellman differential equation.

NSF RTG Undergraduate fellowship w/ UT Analysis of PDEs group

Fall 2020 – Spring 2022

- Undergraduate NSF funded research in low dimensional topology and combinatorial hyperbolic geometry mentored by Dr. Franco Vargas-Pallete
- Independent research project guided by Dr. Stefania Patrizi on the topic non-local diffusion operators/the Fractional Laplacian
- Studied derivation and applications of harmonic extension of Laplacian to model energy minimization of crystal dislocations
- Took a series of three independent study courses on various topics in harmonic analysis and complex analysis following the completion of the year-long fellowship.

Complex Systems REU- University of Minnesota

Summer 2020

- Undergraduate NSF-funded research in nonlinear fluid dynamics led by Dr. Arnd Scheel
- Researched the stability and resonances of non-linear Fischer KPP reaction-diffusion equations.

The goal of this project was to use heteroclinic bifurcation analysis to explain and characterize a strange
resonance pattern that occurred at the threshold of absolute and convective instability in the control parameter
of the non-linear ODE.

TALKS/CONFERENCES

CIRM Research School - Renormalization and Visualization for Packing, Billiards, and Surfaces Summer 2023

• Research school participant

Joint Mathematics Meeting (JMM)

Winter 2023

- Presentation: Low dimensional topology and combinatorial hyperbolic geometry
- Presented on Yale REU research @ Pi Mu Epsilon undergraduate research forum

The Young Mathematicians Conference @ Ohio State University

Summer 2022

• Presentation: Finding the Minimal Splitting Surface of the Ideal Regular Octahedron in the Poincare Ball

GROW (Graduate Research Opportunities for Women) @ Duke University

Fall 2022

Texas Undergraduate Mathematicians Conference

Fall 2022

- Presented on Yale REU research and hyperbolic geometry for early undergraduates, and spoke on panel advising on undergraduate research
- Presentation: Finding the Minimal Splitting Surface of the Ideal Regular Octahedron in the Poincare Ball

UT Math Directed Reading Project Presentation

Spring 2021

• Presented on the computation of homology groups of piecewise linear manifolds

UT Austin College of Natural Sciences Research Forum

Spring 2021

Poster presentation on work done during Fellowship with Analysis and PDEs RTG

TEACHING/ WORK EXPERIENCE/SKILLS

Teaching Assistant – UT Austin Department of Mathematics

Spring 2023

UT Austin Sanger Learning Center – College Math and Physics tutor

Summer 2019 – Fall 2021

Math and Physics Instructor/Tutor @ The Liberal Arts and Science Academy

Fall 2020 – Spring 2021

- Tutored AP Physics afterschool
- Instructed inquiry-based pre-calculus course for accelerated high school students

UT Austin Undergraduate Learning Assistant

Fall 2020 & Winter 2021

• Undergraduate TA for Engineering Physics (Electricity and Magnetism)

Coding Knowledge – Fortran, C++, Python (Scipy, Pyvista), MATLAB

ACADEMIC AWARDS

2023 NSF Graduate Fellowship – Topology	Fall 2023 - Spring 2028
UT Austin Dean's Strategic Fellowship	Fall 2023 - Spring 2028
Nancy Francis and William Arnold McMinn Presidential Scholarship	Fall 2021 - Spring 2022
NSF Undergraduate Research Training Grant	Fall 2020 - Spring 2021

PUBLICATIONS:

- [1] Avery, M., Dedina, C., Smith, A, Scheel, A. (2021). Instability in large bounded domains—branched versus unbranched resonances. Nonlinearity, 34(11), 7916–7937. https://doi.org/10.1088/1361-6544/ac2a15
- [2] Patil, A., Duarte, A., Smith, A., Tanaka, T., & Bisetti, F. (2022). Chance-Constrained Stochastic Optimal Control via Path Integral and Finite Difference Methods. arXiv. https://doi.org/10.48550/arXiv.2205.00628