Solidification Behaviour of y'-Ni₃Al Containing Alloys in the Ni-Al-O System

Evan Copland

Department of Materials Science and Engineering, CWRU/NASA Glenn Research Centre, Cleveland, Ohio 44135, USA.

The chemical activities of Al and Ni in γ' -Ni₃Al-containing systems were measured using the *multi-cell* Knudsen effusion-cell mass spectrometry technique (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K. From these measurements a better understanding of the equilibrium solidification behaviour of γ' -Ni₃Al-containing alloys in the Ni-Al-O system was established. Specifically, these measurements revealed that (1) γ' -Ni₃Al forms via the peritectiod reaction, $\gamma + \beta$ (+ Al₂O₃) = γ' (+ Al₂O₃), at 1633 ± 1 K, (2) the $\{\gamma + \beta + Al_2O_3\}$ phase field is stable over the temperature range 1633-1640 K, and (3) equilibrium solidification occurs by the eutectic reaction, L (+ Al₂O₃) = γ + β (+ Al₂O₃), at 1640 ± 1 K and a liquid composition of 24.8 ± 0.2 at.%Al (at an unknown oxygen content). When projected onto the Ni-Al binary, this behaviour is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the γ' -Ni₃Al phase field.

Solidification Behavior of \(\gamma'\)-Ni\(^3\)Al Containing Alloys in the Ni-Al-O System

E. Copland

Case Western Reserve University / NASA Glenn Research Center Cleveland, Ohio

CALPHAD XXXVI: 5/6 - 5/11/2007 - State College, PA, USA

www.nasa.gov

MASAM

outline

current Ni-Al phase diagram; critical experiments

experiments; multi-cell KEMS, consider Ni-Al-O system

observe different phase equilibrium, 3 independent measurements:

a(AI) and a(Ni): $X_{AI} = 0.08 - 0.32$; T = 1400 - 1750K

relative a(AI) and a(Ni): Ni-27AI / Ni-23AI

Ĵ

ion-intensity ratio I_{Ni}/I_{Ai} : $X_{Ai} = 0.08 - 0.32$

propose a new "Ni-AI" phase diagram

review "meta-stable" γ + β eutectic

compare Ni-Al diagrams and summarize

current Ni-Al phase diagram

W. Huang, Y. Chang, Intermetallics, 1998, 6, 487.

critical studies

Reference	Alexander 1937 Floyd 1951, 1952	Schamm 1941	Essent 1988	lipet 1987, 1990	Battezzati 1998	Lee 1991-94	1996	Ansara 1997	new land and a second a second and a second	Zhang 2003
Container	Al_2SiO_5 / Al_2O_3 Al_2O_3		structures: ^ା_ୁ	ns on cooling കൂടു (DTA)	art from KEMS	Õ	to ~ 0.2K)	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	e, Hunziker)	₹
Experimental Technique	cooling-curves / metallography		fficult to observe high-/structures:	1645★ quenching rate; γ′ broadens on €ooling Hipert 1987, 1990	othermal techniques (apart from <i>KEMS</i>)Batt 1998	.655 ± 1 directional solidification / Al₂O₃ containeraignored	1643.2 Fine tic ≈ peritectic: AT < 3K (to ~ 0.2K)	3888311011	stable″γ+βeutectic (Lee, Hunziker)	assessment
T (K)	1668 1658	\$ 6 9 9 9	Very difficus Se	245 ± 248 ±	• non-isothe	• 1AI ₂ O ₃ c	2.5 4.4 C. 2.2 4.4 C. 2.4 C. 2.4 C. 2.4 C. 2.4 C. 3.4 C. 3	1643.4	• 'meta-stab	1646.7 1646.0
Reaction	$L + \beta = \gamma'$ $L = \gamma + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$	$L + \gamma = \gamma'$ $L = \beta + \gamma'$

effusion-cell

- "closed" isothermal container: { alloy + vapor + Al_2O_3 }
- sample vapor phase by effusion
- complex vapor phase... need mass spectrometry (KEMS)

Ni-AI-O system

invariant: 5 phases

T < 1630K

uni-variant fields (T): 4 phases

$$\{\gamma + \gamma' + Al_2O_3\}$$
 or $\{\gamma' + \beta + Al_2O_3\}$

bi-variant fields (X_i, T): 3 phases

 α -Al₂O₃

... vapor always present

thermodynamic measurements

Sampled Effusate — Distribution

Solid Angle 4.4x10⁻⁵ Steradians

multi-cell KEMS

pressure measurement

$$p(i) = I_{ik}^+ T / S_{ik}$$

Electron Beam

Source Aperture 2 mm diam.

Molecular Beam (fixed)

Ion Beam

Field Aperture 7 mm diam.

0

Ionization Volume

Ion Source

activity measurement

$$a(i) = \frac{p(i)}{p^{\circ}(i)} = \frac{I_i}{I_i^{\circ}}$$

Heat Shields

Effusion-cells (Isothermal)

Furnace

(
$$i = Ti$$
, Al, Al₂O)

alloys compositions

W. Huang, Y. Chang, Intermetallics, 1998, 6, 487.

MAISA

expected behavior...

W. Huang, Y. Chang, Intermetallics, 1998, 6, 487.

direct measurement

$$a(\mathbf{i})_{(\gamma'+\beta)-(\gamma+\gamma')} = \frac{a(\mathbf{i})^{(\gamma'+\beta)}}{a(\mathbf{i})^{(\gamma+\gamma')}} = \frac{I_i^{\gamma'+\beta}}{I_i^{\gamma+\gamma'}}$$

- relative a(AI) and a(Ni)... Ni-27AI / Ni-23AI
- identify differences in phase equilibrium over range of T
- isothermal condition → equilibrium at each T

relative activities for Ni-27AI / Ni-23AI 🗪

review

- same a(AI) and a(Ni) for $X_{AI} = 0.23 0.27$; T = 1633 1640 K
- inconsistent with current Ni-Al phase diagram...
- L unstable $T < 1640\pm1$ K; γ' unstable $T > 1633\pm1$ K
- eutectic: $L (+ Al_2O_3) = \gamma + \beta (+ Al_2O_3)$ at $T = 1640\pm 1$ K
- peritectiod: $\gamma + \beta (+ Al_2O_3) = \gamma' (+ Al_2O_3)$ at $T = 1633\pm 1$ K Ĵ
- $\{\gamma + \beta + Al_2O_3\}$ stable over T = 1633 1640 KĴ
- need to propose new phase equilibrium...
- recheck behavior: ion-intensity ratio $I_{Ni}/I_{Al} \propto a(Ni)/a(Al)$
- direct measurement, from a single effusion-cell Ĵ
- independent of variations in instrument sensitivity Ĵ
- more sensitive to phase transformations... Ĵ

uni-variant phase fields

ASAM

proposed "Ni-AI" diagram

"meta-stable" γ + β eutectic

T

 $\gamma + \beta$

- Hunziker: Laser surface resolid. • Lee: Bridgman technique
- used current Ni-Al diagram
- $\gamma + \beta \leftrightarrow \gamma' + \beta$ independent of *DS*
- $rac{\gamma}{+}\beta$ fastest cooling
- $4 + \beta$ slower cooling
- unexplainable solidification

 $\gamma + \gamma' + \beta$

(meta-stable)

The quenched solid-liquid interface in the fastest

proposed Ni-Al phase diagram explains solidification behavior

 $\gamma + \beta$ eutectic is the equilibrium structure $\gamma + \beta$ eutectic is the equilibrium structure $\gamma + \beta$

O. Hunziker, W. Kurz, Acta mater., 1997, 45(12), 4981.

compare "Ni-AI" diagrams

summary

these results show γ -Ni₃Al is not stable up to solidus...

equilibrium solidification:

eutectic: $L (+ AI_2O_3) = \gamma + \beta (+ AI_2O_3)$ at $T = 1640\pm1$ K Ĵ

peritectiod: $\gamma + \beta (+ Al_2O_3) = \gamma' (+ Al_2O_3)$ at $T = 1633\pm 1$ K Ĵ

 $\{\gamma + \beta + Al_2O_3\}$ stable over T = 1633 - 1640 KĴ

explains: "unusual" steady-state DS structures... consistent with all previous measurements

need to quantify O effect... Ni-AI-O → Ni-AI

multi-cell KEMS is a very powerful tool:

thermodynamic properties → solution behavior

understand complex phase transformations Ĵ

acknowledgements:

Nathan Jacobson (NASA Glenn),

Judy Auping (NASA Glenn),

Christian Chatillon (Saint Martin d'Hères, France),

Brian Gleeson (ISU),

Pat Martin and Dallis Hardwick (AFRL, Wright-Patterson AFB)