Econometrics Homework 2

Utpalraj Kemprai MDS202352

February 11, 2025

Question 1

We have the following ordinal regression model:

$$z_i = x_i'\beta + \epsilon_i \quad \forall i = 1, \dots, n$$

 $\gamma_{i-1} < z_i \le \gamma_j \implies y_i = j, \quad \forall i, j = 1, \dots, J$

where (in the first equation) z_i is the latent variable for individual i, x_i is a vector of covariates, β is a $k \times 1$ vector of unknown parameters, and n denotes the number of observations. The second equation shows how z_i is related to the observed discrete response y_i , where $-\infty = \gamma_0 < \gamma_1 < \gamma_{J-1} < \gamma_J = \infty$ are the cut-points (or thresholds) and y_i is assumed to have J categories or outcomes.

(a)

We assume that $\epsilon_i \sim N(0,1)$, for $i=1,2,\cdots,n$. Therefore we have, The probability of success,

$$Pr(y_i = j) = Pr(\gamma_{j-1} < z_i \le \gamma_j)$$

$$= Pr(\gamma_{j-1} < x_i'\beta + \epsilon_i \le \gamma_j)$$

$$= Pr(\gamma_{j-1} - x_i'\beta < \epsilon_i \le \gamma_j - x_i'\beta)$$

$$= \Phi(\gamma_j - x_i'\beta) - \Phi(\gamma_{j-1} - x_i'\beta)$$
 [where $\Phi(\cdot)$ is the cdf of $N(0, 1)$]

The likelihood function for the ordinal probit model is,

$$L(\beta, \gamma; y) = \prod_{i=1}^{n} \prod_{j=1}^{J} Pr(y_i = j | \beta, \gamma)^{I(y_i = j)}$$
 [where $I(\cdot)$ is the indicator function]
$$= \prod_{i=1}^{n} \prod_{j=1}^{J} (\Phi(\gamma_j - x_i'\beta) - \Phi(\gamma_{j-1} - x_i'\beta))^{I(y_i = j)}$$

(b)

We assume that $\epsilon_i \sim \mathcal{L}(0,1)$, for $i=1,2,\cdots,n$. Therefore the probability of success,

$$Pr(y_{i} = j) = Pr(\gamma_{j-1} < z_{i} \le \gamma_{j})$$

$$= Pr(\gamma_{j-1} < x_{i}'\beta + \epsilon_{i} \le \gamma_{j})$$

$$= Pr(\gamma_{j-1} - x_{i}'\beta < \epsilon_{i} \le \gamma_{j} - x_{i}'\beta)$$

$$= \frac{1}{1 + e^{-(\gamma_{j} - x_{i}'\beta)}} - \frac{1}{1 + e^{-(\gamma_{j-1} - x_{i}'\beta)}}$$

$$= \frac{e^{-(\gamma_{j-1} - x_{i}'\beta)} - e^{-(\gamma_{j} - x_{i}'\beta)}}{(1 + e^{-(\gamma_{j-1} - x_{i}'\beta)})(1 + e^{-(\gamma_{j-1} - x_{i}'\beta)})}$$

$$= \frac{e^{x_{i}'\beta}(e^{-\gamma_{j-1}} - e^{-\gamma_{j}})}{(1 + e^{-(\gamma_{j-1} - x_{i}'\beta)})(1 + e^{-(\gamma_{j-1} - x_{i}'\beta)})}$$

The likelihood function for the ordinal logit model is,

$$L(\beta, \gamma; y) = \prod_{i=1}^{n} \prod_{j=1}^{J} Pr(y_i = j | \beta, \gamma)^{I(y_i = j)}$$

$$= \prod_{i=1}^{n} \prod_{j=1}^{J} \left[\frac{e^{x_i' \beta} (e^{-\gamma_{j-1}} - e^{-\gamma_j})}{(1 + e^{-(\gamma_j - x_i' \beta)})(1 + e^{-(\gamma_{j-1} - x_i' \beta)})} \right]^{I(y_i = j)}$$